MIPS Reference Data

CORE INSTRUCTI	ON SE	т			OPCODE					
		FOR-			/ FUNCT					
NAME, MNEMO	NIC	MAT	OPERATION (in Verilog)		(Hex)					
Add	add	R	R[rd] = R[rs] + R[rt]		0 / 20 _{hex}					
Add Immediate	addi	I	R[rt] = R[rs] + SignExtImm	(1,2)	8 _{hex}					
Add Imm. Unsigned	addiu	I	R[rt] = R[rs] + SignExtImm	(2)	9 _{hex}					
Add Unsigned	addu	R	R[rd] = R[rs] + R[rt]		$0/21_{hex}$					
And	and	R	R[rd] = R[rs] & R[rt]		$0/24_{hex}$					
And Immediate	andi	I	R[rt] = R[rs] & ZeroExtImm	(3)	c_{hex}					
Branch On Equal	beq	I	if(R[rs]==R[rt]) PC=PC+4+BranchAddr	(4)	4 _{hex}					
Branch On Not Equal	bne	I	if(R[rs]!=R[rt]) PC=PC+4+BranchAddr	(4)	5 _{hex}					
Jump	j	J	PC=JumpAddr	(5)	2_{hex}					
Jump And Link	jal	J	R[31]=PC+8;PC=JumpAddr	(5)	3_{hex}					
Jump Register	jr	R	PC=R[rs]		0 / 08 _{hex}					
Load Byte Unsigned	lbu	I	R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)}	(2)	24 _{hex}					
Load Halfword Unsigned	lhu	I	R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)}	(2)	25 _{hex}					
Load Linked	11	I	R[rt] = M[R[rs] + SignExtImm]	(2,7)	30_{hex}					
Load Upper Imm.	lui	I	$R[rt] = \{imm, 16'b0\}$		f_{hex}					
Load Word	lw	I	R[rt] = M[R[rs] + SignExtImm]	(2)						
Nor	nor	R	$R[rd] = \sim (R[rs] \mid R[rt])$		0 / 27 _{hex}					
Or	or	R	$R[rd] = R[rs] \mid R[rt]$		0 / 25 _{hex}					
Or Immediate	ori	I	$R[rt] = R[rs] \mid ZeroExtImm$	(3)						
Set Less Than	slt	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0		0 / 2a _{hex}					
Set Less Than Imm.	slti	I	R[rt] = (R[rs] < SignExtImm)? 1	: 0 (2)						
Set Less Than Imm. Unsigned	sltiu	I	R[rt] = (R[rs] < SignExtImm) ? 1:0	(2,6)	b					
Set Less Than Unsig.	sltu	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0	(6)	0 / 2b _{hex}					
Shift Left Logical	sll	R	$R[rd] = R[rt] \ll shamt$		0 / 00 _{hex}					
Shift Right Logical	srl	R	R[rd] = R[rt] >>> shamt		0 / 02 _{hex}					
Store Byte	sb	I	M[R[rs]+SignExtImm](7:0) = R[rt](7:0)	(2)	28					
Store Conditional	sc	I	$\begin{aligned} M[R[rs] + SignExtImm] &= R[rt]; \\ R[rt] &= (atomic) ? 1 : 0 \end{aligned}$	(2,7)	38 _{hex}					
Store Halfword	sh	I	M[R[rs]+SignExtImm](15:0) = R[rt](15:0)	(2)						
Store Word	sw	I	M[R[rs]+SignExtImm] = R[rt]	(2)						
Subtract	sub	R	R[rd] = R[rs] - R[rt]	(1)	0 / 22 _{hex}					
Subtract Unsigned	subu	R	R[rd] = R[rs] - R[rt]		$0/23_{hex}$					
Subtract Unsigned Subtract Unsigned R R[rd] = R[rs] - R[rt] 0/23 _{hex} (1) May cause overflow exception (2) SignExtImm = { 16{immediate[15]}, immediate } (3) ZeroExtImm = { 16{1b'0}, immediate } (4) BranchAddr = { 14{immediate[15]}, immediate, 2'b0 } (5) JumpAddr = { PC+4[31:28], address, 2'b0 } (6) Operands considered unsigned numbers (vs. 2's comp.)										

R	opcode	rs		rt	rd	S	hamt	funct	
	31 26	5 25	21 20	16	15	11 10	6.5		
	opcode	rs		rt		im	nmediate		
	31 26	5 25	21 20	16	15				
1	opcode		address						

(7) Atomic test&set pair; R[rt] = 1 if pair atomic, 0 if not atomic

ARITHMETIC	CODE	INICTO	ICTION	CET

ARITHMETIC CORE II	ISTRU		OPCODE
	FOR		/ FMT /FT / FUNCT
NAME, MNEMONIC	MAT		(Hex)
Branch On FP True bc1		if(FPcond)PC=PC+4+BranchAddr (4)	,
Branch On FP False bc1		if(!FPcond)PC=PC+4+BranchAddr(4)	
Divide div		Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt]	0//-1a
Divide Unsigned div		Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt] (6)	0///1b
FP Add Single add.	s FR	F[fd] = F[fs] + F[ft]	11/10//0
FP Add	d FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} +$	11/11//0
Double add.	d FK	{F[ft],F[ft+1]}	11/11//0
FP Compare Single c.x.s	* FR	FPcond = (F[fs] op F[ft])? 1:0	11/10//y
FP Compare	* FR	$FPcond = (\{F[fs], F[fs+1]\} op$	11/11//y
Double		$\{F[ft],F[ft+1]\}\)?1:0$	11/11//9
		==, <, or <=) (y is 32, 3c, or 3e)	44/40/ /2
FP Divide Single div.	s FR	F[fd] = F[fs] / F[ft]	11/10//3
FP Divide	d FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} /$	11/11//3
Double		{F[ft],F[ft+1]}	11/10/ /2
FP Multiply Single mul.	s FR	F[fd] = F[fs] * F[ft]	11/10//2
FP Multiply mul.	d FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} *$	11/11//2
Double	ED	{F[ft],F[ft+1]}	11/10/ /1
FP Subtract Single sub	s FR	F[fd]=F[fs]-F[ft]	11/10//1
FP Subtract	d FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} -$	11/11//1
Double Sup-	. т	{F[ft],F[ft+1]}	31//
Load FP Single lwc	1 I	F[rt]=M[R[rs]+SignExtImm] (2)	
Load FP Double	1 I	F[rt]=M[R[rs]+SignExtImm]; (2) F[rt+1]=M[R[rs]+SignExtImm+4]	35//
Move From Hi mfh	i R	R[rd] = Hi	0 ///10
Move From Lo mfl		R[rd] = In R[rd] = Lo	0 ///12
Move From Control mfc		R[rd] = CR[rs]	10 /0//0
Multiply mul		$\{Hi,Lo\} = R[rs] * R[rt]$	0///18
Multiply Unsigned mult		$\{Hi,Lo\} = R[rs] * R[rt]$ $\{Hi,Lo\} = R[rs] * R[rt] $ (6)	
Shift Right Arith. sra		R[rd] = R[rt] >> shamt	0///3
Store FP Single swo	_	M[R[rs]+SignExtImm] = F[rt] (2)	
Store FP		M[R[rs]+SignExtImm] = F[rt]; (2)	
Double	1 I	M[R[rs]+SignExtImm+4] = F[rt+1]	3d//
		[[]	

FLOATING-POINT INSTRUCTION FORMATS

FR	opcode		fmt		ft		fs	fd	funct	
	31	26 2	5 21	20	16	15	11	10 6	5	0
FI	opcode	,	fmt		ft			immediate	e	
	31	26 2	5 21	20	16	15				0

PSEUDOINSTRUCTION SET

NAME	MNEMONIC	OPERATION
Branch Less Than	blt	if(R[rs] < R[rt]) PC = Label
Branch Greater Than	bgt	if(R[rs]>R[rt]) PC = Label
Branch Less Than or Equal	ble	$if(R[rs] \le R[rt]) PC = Label$
Branch Greater Than or Equal	bge	$if(R[rs] \ge R[rt]) PC = Label$
Load Immediate	li	R[rd] = immediate
Move	move	R[rd] = R[rs]

REGISTER NAME, NUMBER, USE, CALL CONVENTION

NAME	NUMBER	USE	PRESERVEDACROSS
NAME	NUMBER	USE	A CALL?
\$zero	0	The Constant Value 0	N.A.
\$at	1	Assembler Temporary	No
\$v0-\$v1	2-3	Values for Function Results and Expression Evaluation	No
\$a0-\$a3	4-7	Arguments	No
\$t0-\$t7	8-15	Temporaries	No
\$s0-\$s7	16-23	Saved Temporaries	Yes
\$t8-\$t9	24-25	Temporaries	No
\$k0-\$k1	26-27	Reserved for OS Kernel	No
\$gp	28	Global Pointer	Yes
\$sp	29	Stack Pointer	Yes
\$fp	30	Frame Pointer	Yes
\$ra	31	Return Address	Yes

© 2014 by Elsevier, Inc. All rights reserved. From Patterson and Hennessy, Computer Organization and Design, 5th ed.

OPCOR	SEC BACI	E CONVER	SION	A S C II	CVMD	01.6		3	
	(1) MIPS	(2) MIPS	Joion, 7			ASCII		Hexa-	ASCII
opcode	funct	funct	Binary	Deci-	deci-	Char-	Deci-	deci-	Char-
(31:26)	(5:0)	(5:0)	Dinary	mal	mal	acter	mal	mal	acter
(1)	sll	add.f	00 0000	0	0	NUL	64	40	(a)
(1)	SII	sub.f	00 0001		1	SOH	65	41	A
j	srl	mul.f	00 0010		2	STX	66	42	В
jal	sra	div.f	00 0011	3	3	ETX	67	43	Č
beq	sllv	sqrt.f	00 0100		4	EOT	68	44	D
bne		abs.f	00 0101		5	ENQ	69	45	E
blez	srlv	mov.f	00 0110		6	ACK	70	46	F
bgtz	srav	neg.f	00 0111	7	7	BEL	71	47	G
addi	jr		00 1000	8	8	BS	72	48	Н
addiu	jalr		00 1001		9	HT	73	49	I
slti	movz		00 1010		a	LF	74	4a	J
sltiu	movn		00 1011	11	b	VT	75	4b	K
andi	syscall	round.w.f	00 1100		С	FF	76	4c	L
ori	break	trunc.w.f			d	CR	77	4d	M
xori		ceil.w.f	00 1110		e	SO	78	4e	N
lui	sync	floor.w.f	00 1111		f	SI	79	4f	O
(2)	mfhi		01 0000		10	DLE	80	50	P
(2)	mthi	C	01 0001		11	DC1	81	51	Q
	mflo	movz.f	01 0010	18 19	12 13	DC2 DC3	82 83	52 53	R S
	mtlo	movn.f	01 0110		14	DC3	84	54	T
			01 0100		15	NAK	85	55	Û
			01 0110		16	SYN	86	56	v
			01 0111		17	ETB	87	57	w
	mult		01 1000		18	CAN	88	58	X
	multu		01 1001		19	EM	89	59	Y
	div		01 1010		1a	SUB	90	5a	Z
	divu		01 1011	27	1b	ESC	91	5b	[
			01 1100	28	1c	FS	92	5c	Ţ
			01 1101	29	1d	GS	93	5d]
			01 1110	30	1e	RS	94	5e	^
			01 1111		1 f	US	95	5f	_
lb	add	cvt.s.f	10 0000		20	Space	96	60	•
lh	addu	$\operatorname{cvt.d} f$	10 0001		21	!	97	61	a
lwl	sub		10 0010		22	"	98	62	Ь
lw	subu		10 0011	35	23	#	99	63	С
lbu	and	cvt.w.f	10 0100		24	\$	100	64	d
lhu	or		10 0101		25	%	101	65	e
lwr	xor		10 0110 10 0111	38	26 27	&	102	66 67	f
sb	nor		10 1000		28	- (103	68	g h
sh			10 1000		29	(105	69	i
swl	slt		10 1010		2a	*	106	6a	j
SW	sltu		10 1011	43	2b	+	107	6b	k
	0200		10 1100		2c	,	108	6c	Ī
			10 1101		2d	-	109	6d	m
swr			10 1110		2e		110	6e	n
cache			10 1111	47	2f	/	111	6f	O
11	tge	c.f.f	11 0000	48	30	0	112	70	р
lwcl	tgeu	c.un.f	11 0001	49	31	1	113	71	q
lwc2	tlt	c.eq f	11 0010		32	2	114	72	r
pref	tltu	c.ueq.f	11 0011	51	33	3	115	73	S
	teq	c.olt.f	11 0100		34	4	116	74	t
ldc1		c.ult.f	11 0101		35	5	117	75	u
ldc2	tne	c.ole.f	11 0110		36	6	118	76	V
		c.ule.f	11 0111		37	7	119	77	W
sc		c.sf.f	11 1000		38	8	120	78	X
swc1		c.ngle.f	11 1001 11 1010		39	9	121 122	79	У
swc2		c.seq.f	11 1010		3a 3b		123	7a 7b	Z
		c.ngl.f	11 11011		3c	;	123	76 7c	{
sdcl		c.it.j	11 1100		3d	=	125	7d	}
sdc1		c.le.f	11 1110		3e	>	126	7e	~
Jucz		c.ngt.f	11 1111		3f	?	127	7f	DEL
		2.11909		0.5	51	•	127	/ 1	

$(1) \operatorname{opcode}(31:26) == 0$ (2) opcode(31:26) == 17_{ten} (11_{hex}); if fmt(25:21)== 16_{ten} (10_{hex}) f = s (single); if $fmt(25:21) == 17_{ten} (11_{hex}) f = d (double)$

IEEE 754 FLOATING-POINT STANDARD

3

 $(-1)^S \times (1 + Fraction) \times 2^{(Exponent - Bias)}$ where Single Precision Bias = 127, Double Precision Bias = 1023.

IEEE Single Precision and Double Precision Formats:

S

S

IEEE 754 Symbols Exponent Object ± 0 0 0 **≠**0 ± Denorm 1 to MAX - 1 anything ± Fl. Pt. Num. MAX ±∞ NaN MAX **≠**0 S.P. MAX = 255, D.P. MAX = 2047

4

Exponent Fraction Exponent Fraction

MEMORY ALLOCATION STACK FRAME Higher Stack \$sp → 7fff fffc_{hex} Memory Argument 6 Addresses Argument 5 Saved Registers Stack Dynamic Data \$gp-1000 8000_{hex} Grows Static Data Local Variables 1000 0000_{hex} \$sp -Text Lower pc →0040 0000_{hex} Memory Addresses Reserved 0_{hex}

DATA ALIGNMENT

	Double Word											
	Wo	rd		Word								
Halfword		Half	word	Halt	fword	Halfword						
Byte	Byte	Byte	Byte	Byte	Byte	Byte	Byte					

Value of three least significant bits of byte address (Big Endian)

EXCEPTION CONTROL REGISTERS: CAUSE AND STATUS

52 51

В		Interrupt			l		
D	Ma	sk		Code			
31	15	8	6		2		
	Pend	ing		U		Е	Ι
	Inter	rupt		M		L	Е
	15	8		4		1	0

BD = Branch Delay, UM = User Mode, EL = Exception Level, IE =Interrupt Enable

EXCEPTION CODES

	• • • • •				
Number	Name	Cause of Exception	Number	Name	Cause of Exception
0	Int	Interrupt (hardware)	9	Bp	Breakpoint Exception
4	AdEL	Address Error Exception	10	RI	Reserved Instruction
4	Auel	(load or instruction fetch))		Exception
5	AdES	Address Error Exception	11	CpU	Coprocessor
3 P	AuES	(store)	11	СрО	Unimplemented
6	IBE	Bus Error on	12 Ov		Arithmetic Overflow
0	IDE	Instruction Fetch	12	OV	Exception
7	DBE	Bus Error on	13	Tr	Tron
_ ′	DBE	Load or Store	13	11	Trap
8	Sys	Syscall Exception	15	FPE	Floating Point Exception

SIZE PREFIXES

	PREFIX	SYMBOL	SIZE	PREFIX	SYMBOL	SIZE	PREFIX	SYMBOL	SIZE	PREFIX	SYMBOL
103	Kilo-	К	210	Kibi-	Ki	1015	Peta-	P	250	Pebi-	Pi
106	Mega-	М	220	Mebi-	Mi	1018	Exa-	Е	260	Exbi-	Ei
109	Giga-	G	230	Gibi-	Gi	1021	Zetta-	Z	270	Zebi-	Zi
1012	Tera-	Т	240	Tebi-	Ti	1024	Yotta-	Y	280	Yobi-	Yi