

#### Relatório do Lab 5 de CT-213

# Trabalho 5 – Otimização com Estratégias Evolutivas Comparando Estratégias Evolutivas simples com o CMA-ES (Covariance Matrix Adaptation – Evolution Strategy) em funções benchmark

| •                   | 1 |   |   |                        |   |
|---------------------|---|---|---|------------------------|---|
| /                   | ш |   | n | $\boldsymbol{\Lambda}$ | • |
| $\boldsymbol{\Box}$ | ш | ш |   | w                      | • |

Bruno Costa Alves Freire

Turma:

T 22.4

#### **Professor:**

Marcos Ricardo Omena de Albuquerque Máximo

Data:

28/04/2019

Instituto Tecnológico de Aeronáutica – ITA Departamento de Computação

# Implementação da Estratégia Evolutiva Simples (SES)

A implementação da estratégia simples foi baseada no roteiro. A classe SimpleEvolutionStrategy funciona armazenando as  $\lambda$  amostras em cada geração, bem como os valores de média e covariância das  $\mu$  melhores amostras. Seus métodos <code>ask</code> e <code>tell</code> fazem a interface com o programa cliente, sendo o primeiro responsável por retornar ao cliente as amostras a serem avaliadas com a função de *fitness*. O segundo recebe como parâmetro um *array* com os valores da função de *fitness* ordenados segundo o *array* de amostras retornado em <code>ask</code>.

No método tell é feita uma ordenação das amostras segundo o array de fitnesses, e em seguida são tomadas as mu melhores amostras, as quais são usadas para calcular a nova matriz de covariância segundo a equação:

$$C^{(g+1)} = \frac{1}{\mu} \sum_{i=1}^{\mu} (s_{i:\lambda}^{(g+1)} - m^{(g)}) (s_{i:\lambda}^{(g+1)} - m^{(g)})^{T}$$

Onde  $s_{i:\lambda}^{(g+1)}$  é a *i*-ésima melhor amostra da geração g+1, e  $m^{(g)}$  é a média da geração g. Note que a covariância deve necessariamente ser atualizada antes da média, pois deve-se utilizar a mesma média que gerou as amostras daquela geração. Caso a média seja atualizada antes da covariância, teremos sempre resultados enviesados, prejudicando o aspecto de *exploration* da estratégia, e realizando excessivo *exploitation*.

Em seguida, é atualizado o valor da média, segundo a equação:

$$m^{(g+1)} = \frac{1}{\mu} \sum_{i=1}^{\mu} s_{i:\lambda}^{(g+1)}$$

Após atualizar a média, é realizada o sorteio das amostras da nova geração, por meio de uma distribuição gaussiana multivariada com a média e covariância recém calculadas.

## 2. Teste da implementação

Após implementada a estratégia evolutiva simples, a mesma foi testada juntamente com o CMA-ES para as funções Esfera Transladada, Ackley, Schaffer 2D e Rastrigin, cujas expressões constam no roteiro. Nas figuras 1 a 8, podemos ver o resultado final, isto é, o ponto para o qual cada algoritmo convergiu, de uma execução de cada algoritmo para a minimização de cada uma das funções. A SES foi utilizada com  $\lambda$  = 24 e  $\mu$  = 12, enquanto o CMA-ES foi utilizado conforme o padrão para problemas 2D, com  $\lambda$  = 5 e  $\mu$  = 3.



Figura 1: Gráfico da solução final encontrada pela SES para a função Esfera Transladada.



Figura 2: Gráfico da solução final encontrada pela CMA-ES para a função Esfera Transladada.



Figura 3: Gráfico da solução final encontrada pela SES para a função de Ackley.



Figura 4: Gráfico da solução final encontrada pela CMA-ES para a função de Ackley.



Figura 5: Gráfico da solução final encontrada pela SES para a função de Schaffer 2D.



Figura 6: Gráfico da solução final encontrada pela CMA-ES para a função de Schaffer 2D.



Figura 7: Gráfico da solução final encontrada pela SES para a função de Rastrigin.



Figura 8: Gráfico da solução final encontrada pela CMA-ES para a função de Rastrigin.

Além de produzir essas figuras, foram rodadas várias animações mostrando a evolução da solução de cada algoritmo para cada função.

Para a esfera transladada, percebeu-se que ambas os algoritmos convergiam praticamente para o mesmo ponto, o mínimo global. No entanto, pode-se observar que a dispersão das amostras no caso do SES diminuía muito rapidamente próximo do centro da esfera, levando eventualmente a uma convergência estagnada, isto é, que estagnou num ponto subótimo pois o passo diminuiu rápido demais. Em contrapartida, o CMA-ES exibia uma convergência mais dispersa próxima do centro, seguida de uma abrupta redução da dispersão, centrada no mínimo global.

Para a função de Ackley, ocorria em alguns casos do SES convergir para um mínimo local não global, demonstrando um certo vício no aspecto de *exploitation*, em detrimento do *exploration*. O CMA-ES não apresentou esse comportamento, convergindo sempre para o mínimo global.

Para a função de Schaffer 2D, observou-se uma curiosa inversão de desempenho. O CMA-ES por algumas vezes acabava por convergir para mínimos locais subótimos, pontos mínimos dos "vales" da superfície de nível, com coordenadas 0 em um dos eixos, e um pouco deslocado no outro. Houve inclusive um caso em que o CMA-ES convergiu para fora da região do plot. O SES por sua vez, apesar de também ter tido suas falhas ao convergir para pontos de mínimo localizados na diagonal, em geral convergiu mais vezes para o mínimo global. Vale observar o comportamento do CMA-ES ao encontrar mínimos subótimos, em que ele se concentrava numa região azulada, diminuía sua dispersão, e em seguida basicamente buscava o ótimo naquela região.

Por fim, para a função de Rastrigin, ambos os métodos tiveram dificuldade em encontrar o mínimo global. O SES, talvez um pouco viciado em *exploitation* rapidamente convergia para um mínimo local próximo de seu chute inicial. O CMA-ES apesar de exibir uma busca mais persistente, eventualmente acabava convergindo para um ponto subótimo também.

### 3. Testes benchmark

Para realizar uma análise comparativa mais rigorosa entre os dois algoritmos para cada função, foram realizados testes *benchmark* por meio de várias simulações de Monte Carlo, e coletou-se as estatísticas do desempenho de cada algoritmo. Foram comparados os algoritmos SES com  $(\lambda, \mu) = (6, 3)$ ,  $(\lambda, \mu) = (12, 6)$  e  $(\lambda, \mu) = (24, 12)$ , e o CMA-ES padrão, com  $(\lambda, \mu) = (6, 3)$ .

Após cada bateria de simulações, foram produzidos gráficos da evolução do valor da função de *fitness*, considerando o *fitness* médio das amostras a cada geração, e também o melhor *fitness* de cada geração. As figuras 9 a 16 mostram os gráficos com as estatísticas para cada uma das 4 funções de *fitness*.



Figura 9: Valor de fitness médio por geração para a função Esfera Transladada.



Figura 10: Valor do melhor fitness por geração para a função Esfera Transladada.



Figura 11: Valor de fitness médio por geração para a função de Ackley.



Figura 12: Valor do melhor fitness por geração para a função de Ackley.



Figura 13: Valor de fitness médio por geração para a função de Schaffer 2D.



Figura 14: Valor do melhor fitness por geração para a função de Schaffer 2D.



Figura 15: Valor de fitness médio por geração para a função de Rastrigin.



Figura 16: Valor do melhor fitness por geração para a função de Rastrigin.

Analisando os gráficos das figuras 9 e 10, vemos podemos comparar o comportamento do SES e do CMA-ES para a função esfera transladada. Vemos que conforme o tamanho da população usada pelo SES aumenta, mais baixo é o valor final obtido. Ou seja, a qualidade da solução final melhora com o aumento do tamanho da população. Isso demonstra a calibração do SES sob a ótica do *trade-off exploration* x *exploitation*. Quanto maior a população usada, mais se sobressai o aspecto de *exploration*, permitindo encontrar soluções melhores.

Em contrapartida, o CMA-ES exibe uma curva menos íngreme, e com um platô ainda mais baixo, ou seja, converge mais devagar no começo, e encontra uma solução ainda melhor (no caso, a solução ótima). Esse comportamento é resultado da sofisticação do CMA-ES, que implementa uma taxa de aprendizado variável.

Para a função de Ackley, o SES apresenta uma convergência mais rápida e melhor conforme aumenta o tamanho da população utilizado, novamente demonstrando uma dependência desse hiperparâmetro para ajustar o seu passo, ou sua taxa de aprendizado. O CMA-ES por sua vez, apresenta uma curva de convergência distinta, tendo uma velocidade de convergência mais lenta que o SES-(24, 12), mas eliminando o fenômeno de estagnação.

Para a função de Schaffer 2D, foram executadas 2 vezes mais iterações (ou seja, 2 vezes mais gerações de cada algoritmo) com 2.5 vezes mais simulações Monte Carlo. O intuito era reduzir o ruído das simulações para essa função, que apresenta um aspecto um pouco mais complicado que as demais.

Das figuras 13 e 14 podemos constatar esse aspecto ruidoso da função. No entanto, vemos que o SES foi em geral menos sujeito a todo esse ruído, e apresentou uma velocidade maior de convergência, e ainda platôs mais baixos (conforme aumenta-se o tamanho da população) que o CMA-ES. É possível ainda notar que o CMA-ES não chegou exatamente a exibir platôs muito visíveis nos gráficos, diferente de todas as versões do SES.

Uma possível explicação do porquê o SES foi melhor que o CMA-ES nesse caso reside na análise dos platôs. O CMA-ES possui uma taxa de aprendizagem adaptativa, enquanto essa funcionalidade no SES é regulada pelo tamanho da população. Isso faz com que o CMA-ES precise fazer muito mais *exploration* da função antes de convergir. Com uma função tão ruidosa, o CMA-ES provavelmente precisaria de muito mais iterações até chegar ao nível de *exploitation* que o SES exibe em poucas iterações. Ou seja, o CMA-ES demora muito mais para exibir um platô, devido a sua alta tendência de *exploration*. Como o SES possui esse viés de *exploitation* intrínseco, ele é menos sujeito a buscar mínimos novos da função e tende a concentrar sua convergência nos mínimos mais óbvios (os mínimos com maior probabilidade de serem encontrados dado um chute inicial aleatório).

Por fim, olhando as figuras 15 e 16, que exibem as estatísticas para a função de Rastrigin, temos que novamente o SES apresenta uma dependência da taxa de aprendizagem com o tamanho da população, convergindo mais rapidamente e para pontos piores quanto menor for o tamanho da população.

Vemos que o SES-(24, 12) foi capaz de superar o CMA-ES nesse caso. Naturalmente, é de se esperar que um algoritmo com uma população maior tenha mais chances de detectar mínimos subótimos e evita-los. No caso dessa função, marcada pela presença de vários mínimos locais próximos, isolados por regiões de máximos locais, a capacidade do CMA-ES de regular sua taxa de aprendizagem é superada pelo tamanho da população usada pelo SES, e seu *modus operandi* de convergir mais devagar (e para pontos melhores) quanto maior for a população.