Engineering License Exam Study Guide: Basic Electrical and Electronics Engineering (AExE01)

Table of Contents

- 1. Basic Concepts
 - o 1.1 Ohm's Law
 - 1.2 Electric Voltage, Current, Power, and Energy
 - 1.3 Conducting and Insulating Materials
 - 1.4 Series and Parallel Electric Circuits
 - o 1.5 Star-Delta and Delta-Star Conversion
 - 1.6 Kirchhoff's Laws
 - 1.7 Types of Circuits
- 2. Network Theorems
 - 2.1 Superposition Theorem
 - o 2.2 Thevenin's Theorem
 - 2.3 Norton's Theorem
 - 2.4 Maximum Power Transfer Theorem
- 3. R-L, R-C, and R-L-C Circuits
 - 3.1 Resonance in AC Circuits
 - 3.2 Active and Reactive Power
- 4. Alternating Current Fundamentals
 - 4.1 Generation of AC Voltages and Currents
 - 4.2 AC Waveforms and Equations
 - 4.3 Average, Peak, and RMS Values
 - 4.4 Three-Phase Systems
- 5. Semiconductor Devices
 - 5.1 Semiconductor Diodes
 - 5.2 BJT Configurations and Biasing
 - 5.3 MOSFET and CMOS Principles
- 6. Signal Generators
 - 6.1 Principles of Oscillators
 - 6.2 RC, LC, and Crystal Oscillator Circuits
 - 6.3 Waveform Generators
- 7. Amplifiers
 - 7.1 Classification of Output Stages
 - 7.2 Class A, B, and AB Output Stages
 - 7.3 Biasing Techniques
 - 7.4 Power BJTs and Transformer-Coupled Push-Pull Stages
 - 7.5 Tuned Amplifiers and Op-Amps
- 8. Practice Questions and Solutions

1. Basic Concepts

1.1 Ohm's Law

Definition: Ohm's Law states that the current flowing through a conductor between two points is directly proportional to the voltage across the two points.

Formula: [V = I \times R] Where:

- (V) = Voltage (Volts)
- (I) = Current (Amperes)
- (R) = Resistance (Ohms)

Explanation:

- Voltage (V): The potential difference that drives current through a circuit.
- **Current (I):** The flow of electric charge.
- **Resistance (R):** The opposition to current flow.

Example Problem: Given a resistor with a resistance of 10 Ω and a voltage of 5 V across it, calculate the current flowing through the resistor.

Solution: [$I = \frac{V}{R} = \frac{5, \text{0.5}}{10, \text{0.5}} = 0.5, \text{0.5}}$

1.2 Electric Voltage, Current, Power, and Energy

Voltage (V):

- The potential difference between two points.
- Unit: Volt (V)

Current (I):

- The rate of flow of electric charge.
- Unit: Ampere (A)

Power (P):

- The rate at which electrical energy is transferred by an electric circuit.
- Formula: [P = V \times I]
- Unit: Watt (W)

Energy (E):

- The capacity to do work.
- Formula: [E = P \times t]
- Unit: Joule (J) or Watt-hour (Wh)

1.3 Conducting and Insulating Materials

Conductors:

• Materials that allow easy flow of electric current.

• Examples: Copper, Aluminum, Silver

Insulators:

- Materials that resist the flow of electric current.
- **Examples:** Rubber, Glass, Plastic

1.4 Series and Parallel Electric Circuits

Series Circuits:

- Components connected end-to-end.
- Total Resistance (R_total): [R_{\text{total}} = R_1 + R_2 + R_3 + \dots]
- Current (I): Same through all components.

Parallel Circuits:

- Components connected across the same two points.
- Total Resistance (R_total): [\frac{1}{R_{\text{total}}}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots]
- **Voltage (V):** Same across all components.

1.5 Star-Delta and Delta-Star Conversion

Star (Y) to Delta (Δ) Conversion:

• Formulae: $[R_{AB} = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_3}] [R_{BC} = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_1}] [R_{CA} = \frac{R_1 R_2 + R_2 R_3 + R_3 R_1}{R_2}]$

Delta (Δ) to Star (Y) Conversion:

• Formulae: [R_1 = \frac{R_{AB} R_{CA}}{R_{AB} + R_{BC} + R_{CA}}] [R_2 = \frac{R_{AB} R_{BC}}{R_{AB} + R_{BC}} + R_{CA}}] [R_3 = \frac{R_{BC} R_{CA}}{R_{AB} + R_{BC}} + R_{CA}}]

1.6 Kirchhoff's Laws

Kirchhoff's Current Law (KCL):

- The algebraic sum of currents entering a node is zero.
- Formula: [\sum I_{\text{entering}} = \sum I_{\text{leaving}}]

Kirchhoff's Voltage Law (KVL):

- The algebraic sum of all voltages around any closed loop in a circuit is zero.
- **Formula:** [\sum V = 0]

1.7 Types of Circuits

Linear vs. Non-Linear Circuits:

• **Linear Circuits:** Parameters (resistance, inductance, capacitance) are constant with respect to voltage and current.

• Non-Linear Circuits: Parameters change with voltage and current.

Bilateral vs. Unilateral Circuits:

- Bilateral Circuits: Circuit properties are the same in either direction.
- Unilateral Circuits: Circuit properties change with the direction of current.

Active vs. Passive Circuits:

- Active Circuits: Contain active components (can supply energy), e.g., transistors.
- Passive Circuits: Contain passive components (cannot supply energy), e.g., resistors, capacitors.

2. Network Theorems

2.1 Superposition Theorem

Statement: In a linear circuit with multiple independent sources, the response (voltage or current) in any element is the algebraic sum of the responses caused by each independent source acting alone.

Procedure:

- 1. Select one independent source; replace all other independent voltage sources with short circuits and current sources with open circuits.
- 2. Calculate the response due to the selected source.
- 3. Repeat steps 1 and 2 for each independent source.
- 4. Sum all individual responses.

2.2 Thevenin's Theorem

Statement: Any linear bilateral circuit can be replaced by an equivalent circuit consisting of a single voltage source (V_TH) in series with a resistance (R_TH).

Procedure:

- 1. Remove the load resistor from the original circuit.
- 2. Calculate the open-circuit voltage across the load terminals (V_TH).
- 3. Calculate the equivalent resistance seen from the load terminals with all independent sources turned off (R_TH).
- 4. Draw the Thevenin equivalent circuit.

2.3 Norton's Theorem

Statement: Any linear bilateral circuit can be replaced by an equivalent circuit consisting of a single current source (I_N) in parallel with a resistance (R_N).

Procedure:

- 1. Remove the load resistor.
- 2. Calculate the short-circuit current across the load terminals (I_N).
- 3. Calculate the equivalent resistance (R N) same as R TH in Thevenin's theorem.
- 4. Draw the Norton equivalent circuit.

2.4 Maximum Power Transfer Theorem

Statement: Maximum power is transferred to the load when the load resistance (R_L) equals the Thevenin resistance (R_TH) of the source network.

Formula: $[R_L = R_{TH}]$

Maximum Power: [$P_{\text{max}} = \frac{V_{TH}^2}{4 R_{TH}}$]

3. R-L, R-C, and R-L-C Circuits

3.1 Resonance in AC Circuits

Series Resonance:

- Occurs in R-L-C series circuits when the inductive reactance equals the capacitive reactance.
- Resonant Frequency (f_r): [f_r = \frac{1}{2\pi\sqrt{LC}}]

Parallel Resonance:

Occurs in R-L-C parallel circuits under similar conditions.

3.2 Active and Reactive Power

Active Power (P):

- The real power consumed by resistive components.
- **Formula:** [P = V_{\text{rms}} I_{\text{rms}} \cos\phi]
- Unit: Watt (W)

Reactive Power (Q):

- The power stored and released by inductive and capacitive components.
- **Formula:** [Q = V_{\text{rms}} I_{\text{rms}} \sin\phi]
- Unit: Volt-Ampere Reactive (VAR)

Apparent Power (S):

- Combination of active and reactive power.
- Formula: [S = V_{\text{rms}} I_{\text{rms}}]
- Unit: Volt-Ampere (VA)

Power Factor (PF):

• The ratio of active power to apparent power.

• **Formula:** [\text{PF} = \cos\phi = \frac{P}{S}]

4. Alternating Current Fundamentals

4.1 Generation of AC Voltages and Currents

Principle:

• AC voltages are generated by rotating a coil within a magnetic field, inducing an electromotive force (FMF).

4.2 AC Waveforms and Equations

Sinusoidal Waveform:

- Voltage Equation: [v(t) = V_{\text{max}} \sin(\omega t + \phi)]
- **Current Equation:** [i(t) = I_{\text{max}} \sin(\omega t + \phi)] Where:
- (V_{\text{max}}) = Peak voltage
- (I_{\text{max}}) = Peak current
- (\omega) = Angular frequency ((\omega = 2\pi f))
- (\phi) = Phase angle
- (f) = Frequency in Hz

4.3 Average, Peak, and RMS Values

Peak Value (V_max or I_max):

Maximum value of voltage or current.

Root Mean Square (RMS) Value:

- Effective value of AC voltage or current.
- **Formula:** [V_{\text{rms}} = \frac{V_{\text{max}}}{\sqrt{2}}] [I_{\text{rms}} = \frac{I_{\text{max}}}{\sqrt{2}}]

Average Value:

- Average over half a cycle.
- **Formula:** [V_{\text{avg}} = \frac{2 V_{\text{max}}}{\pi}] [I_{\text{avg}} = \frac{2 I_{\text{max}}}{\pi}]

4.4 Three-Phase Systems

Characteristics:

Consists of three sinusoidal voltages of equal magnitude and frequency but displaced by 120 degrees.

Advantages:

- Constant power delivery.
- More efficient than single-phase systems.

5. Semiconductor Devices

5.1 Semiconductor Diodes

Characteristics:

- Allows current flow in one direction.
- Forward Bias: Conducts current.
- Reverse Bias: Blocks current.

I-V Characteristics:

• Exponential relationship in forward bias.

5.2 BJT Configurations and Biasing

Configurations:

- Common Emitter (CE): Amplifies voltage and current.
- Common Base (CB): High voltage gain.
- Common Collector (CC): Voltage follower.

Biasing:

- **Purpose:** To set the transistor's operating point.
- Methods:
 - Fixed Bias
 - Voltage Divider Bias
 - o Emitter Bias

5.3 MOSFET and CMOS Principles

MOSFET:

- Voltage-controlled device.
- Types: Enhancement and Depletion mode.

CMOS:

- Complementary MOSFET (combines n-MOS and p-MOS).
- Advantages: Low power consumption.

6. Signal Generators

6.1 Principles of Oscillators

Oscillator:

• Generates periodic waveforms without external input.

Requirements:

- Amplifier with Gain (A)
- Feedback Network (β)
- **Barkhausen Criterion:** [A \beta = 1] [\text{Total phase shift} = 0^\circ \text{ or } 360^\circ]

6.2 RC, LC, and Crystal Oscillator Circuits

RC Oscillators:

- Use resistors and capacitors.
- Example: Phase Shift Oscillator.

LC Oscillators:

- Use inductors and capacitors.
- Example: Hartley and Colpitts Oscillators.

Crystal Oscillators:

• Use quartz crystals for stable frequency.

6.3 Waveform Generators

Types:

- Sine Wave Generators
- Square Wave Generators
- Triangle Wave Generators

Applications:

• Testing and calibration of electronic circuits.

7. Amplifiers

7.1 Classification of Output Stages

Classes:

- Class A: Conduction angle = 360°
- Class B: Conduction angle = 180°
- Class AB: Conduction angle between 180° and 360°
- Class C: Conduction angle < 180°

7.2 Class A, B, and AB Output Stages

Class A Amplifiers:

- Operate over the entire input cycle.
- Advantages: Low distortion.
- **Disadvantages:** Low efficiency (~30%).

Class B Amplifiers:

- Operate over half the input cycle.
- **Advantages:** Higher efficiency (~78.5%).
- Disadvantages: Crossover distortion.

Class AB Amplifiers:

- Operate over more than half but less than full cycle.
- Advantages: Compromise between Class A and B.

7.3 Biasing Techniques

Class AB Biasing:

- Eliminates crossover distortion.
- Methods:
 - o Diode Biasing
 - VBE Multiplier

7.4 Power BJTs and Transformer-Coupled Push-Pull Stages

Power BJTs:

• Designed to handle high currents and voltages.

Transformer-Coupled Push-Pull Amplifiers:

- Use transformers to combine outputs.
- Advantages: Efficient power transfer.

7.5 Tuned Amplifiers and Op-Amps

Tuned Amplifiers:

- Amplify a specific frequency or band.
- **Applications:** Radio frequency amplification.

Operational Amplifiers (Op-Amps):

- High-gain voltage amplifiers.
- Characteristics:
 - High input impedance.
 - Low output impedance.
- Configurations:

- Inverting
- Non-inverting
- Differential

8. Practice Questions and Solutions

Question 1

Problem: Calculate the total resistance in a series circuit with three resistors of values 5 Ω , 10 Ω , and 15 Ω .

Solution: [$R_{\text{total}} = R_1 + R_2 + R_3 = 5$, Omega + 10, Omega + 15, Omega = 30, Omega

Question 2

Problem: Using Thevenin's theorem, find the equivalent circuit across terminals A and B for the following circuit: A voltage source of 20 V in series with a resistor of 4 Ω is connected to terminals A and B, which are connected across a load resistor of 6 Ω .

Solution:

- 1. Remove the Load Resistor (6 Ω).
- 2. Find V_TH (Open-Circuit Voltage):
 - Since there's only one voltage source and one resistor, (V_{TH} = 20, \text{V}).
- 3. Find R_TH (Thevenin Resistance):
 - With voltage source shorted, (R_{TH} = 4, \Omega).
- 4. Thevenin Equivalent Circuit:
 - \circ Voltage source of 20 V in series with a 4 Ω resistor across terminals A and B.

Question 3

Problem: Determine the resonant frequency of an R-L-C series circuit with L = 50 mH and C = 0.1 μ F.

Solution: [f_r = $\frac{1}{2\pi} \left[f_r = \frac{1}{2\pi} \left[f_r \right] \right] \right] \right] } \right]$

Ouestion 4

Problem: A pure resistive AC circuit has an RMS voltage of 230 V and consumes 10 A of current. Calculate the active power consumed.

Solution: [$P = V_{\text{rms}} I_{\text{rms}} \cos \beta$] For a pure resistive circuit, ($\cos \beta = 1$). [P = 230, $\text{text}\{V\} \times 10$, $\text{text}\{A\} \times 1 = 2300$, $\text{text}\{W\}$]

Question 5

Problem: In a common-emitter BJT amplifier, if the base current is 20 μ A and the current gain ((\beta)) is 100, find the collector current.

Solution: $[I_C = \beta] [I_C = 100 \times 10^{-6}, \text{A} = 2, \text{A}]$

Question 6

Problem: An op-amp is configured in an inverting amplifier setup with a feedback resistor ($R_f = 100$, text(k)Omega) and an input resistor ($R_{in} = 10$, text(k)Omega). Calculate the voltage gain.

Solution: [$A_v = -\frac{R_f}{R_{in}}$] [$A_v = -\frac{100}{\text{text}(k)}Omega}{10}, \text{$100} = -10$]

Question 7

Problem: A Class B push-pull amplifier has a supply voltage of ($V_{CC} = 15$, $\text{text}\{V\}$). Determine the maximum output power.

Solution: For Class B amplifier: [$P_{\text{max}} = \frac{V_{CC}^2}{2 R_L}$] Assuming ($R_L = 8$, Omega), [$P_{\text{max}} = \frac{15^2}{2 \times 8} = \frac{225}{16} \cdot 4.06$, text(W)]