به نام انکه جان را فکرت اموخت

مرتضى اميني

نيمسال اول ۱۴۰۰–۱۳۹۹

(محتویات اسلایدها برگرفته از یادداشتهای کلاسی استاد محمدتقی روحانی رانکوهی است.)

مقدمات ييادهسازي

بخش پنجم: مقدمات پیادهسازی و SQL

- 🔲 برای پیادهسازی طراحی منطقی انجام شده در یک سیستم مدیریت پایگاه دادهها نیاز به یک زبان پایگاهی داریم.
- زبان SQL زبان استاندارد انجام عملیات پایگاهی در پایگاه دادههای رابطهای (از دیدگاه کاربردی: جدولی) است.

Data Definition Language (DDL)

Data Manipulation Language (DML)

Data Control Language (DCL) :Structured Query Language (SQL) دستورهای □

CREATE TABLE ايجاد جدول DROP TABLE حذف جدول ightharpoons حذف ightharpoonsALTER TABLE تغییر جدول

نکته: در دستورات SQL در دو طرف مقادیر متنی یا رشتهای از single و استفاده می شود (بسیاری از \square سیستمهای پایگاه داده double quote را هم میپذیرند) ولی در اطراف مقادیر عددی چیزی قرار نمی گیرد.

تعریف و حذف پایگاه داده و شما

بخش پنجم: مقدمات پیادهسازی و SQL

🗖 دستور تعریف پایگاه داده

CREATE DATABASE DatabaseName

🗖 دستور حذف پایگاه داده

DROP DATABASE DatabaseName

🔲 در اغلب سمپادها می توان در یک پایگاه داده چند شِما تعریف کرد.

🗖 دستور تعریف و حذف شِما

CREATE SCHEMA SchemaName

DROP SCHEMA SchemaName

□ شمای پایگاه داده است و شامل تعدادی جدول، شمای پایگاه داده است و شامل تعدادی جدول، نوع، دامنه، دید، محدودیت و دیگر انواع اشیاء مرتبط با یک برنامه کاربردی است. با تعریف اشیاء در یک شِما، نام شِما به عنوان پیشوند نام آنها لحاظ می شود و از تداخل نام اشیاء برای کاربردهای مختلف جلوگیری می شود. (مثال: dbcourse جدول student از شِمای student)

بخش پنجم: مقدمات پیاده سازی و SQL

{[**INHERITS** (parent-tables)]})

```
□ دستور تعریف جدول CREATE TABLE
CREATE
          TABLE
                    TableName
          ({columnName dataType [NOT NULL | UNIQUE]
         [DEFAUTL
                        defaultOption][CHECK (Condition)] [, ...]}
                                                                                   ریف جدولها: شِمای پایگاه جدولی
         [PRIMARY KEY (listOfColumns), ]
         {[UNIQUE (listOfColumns),][, ...]}
         {[FOREIGN KEY (listOfForeignKeyColumns)
         REFERENCES
                           ParentTableName [(listOfCandidateKeyColumns)],
                          UPDATE referentialAction]
                   ON
                          DELETE referentialAction]][, ...]}
                   ON
         { CHECK
                    (Condition)[, ...]}
```

میتوان جدول را به صورت موقت نیز (با استفاده از CREATE TEMPORARY TABLE) ایجاد کرد. جدول موقت حاوی دادههای ناپایا و موقت (نتایج میانی) است و پس از اینکه برنامه کاربر (SQL Session) اجرایش تمام بشود، این جدول توسط سیستم حذف می شود.

\mathbf{SQL} بخش پنجم: مقدمات پیادهسازی و

- 🔲 انواع دادههای قابل استفاده در تعریف ستونها عبارتند از:
 - CHAR(n), VARCHAR(n) کاراکتری: \Box
 - BIT [VARYING] (n) بيتى: □
- NUMERIC(p, q), REAL, INTEGER, SMALLINT, FLOAT(p), عددی: DOUBLE PRECISION
 - 🗖 زمانی: DATE, TIME, TIMESTAMP, INTERVAL
 -
- در برخی DBMSها، نوع دادههای خاصی پشتیبانی می شود که امکان ذخیره، بازیابی و پردازش دادههای از آن نوع را برای کاربر تسهیل می نماید. به طور مثال نوع داده جغرافیایی در PostgreSQL.

محدودیتهای صفتی (ستونی)

بخش پنجم: مقدمات پیادهسازی و SQL

- تعیین مقدار پیشفرض یک ستون:**Default**
 - 🔲 Not Null: ستون ناهیچمقدار
 - □ :Unique: یکتایی مقادیر ستون(ها)
- ایک کلید اصلی (می توان تعدادی از ستونها را با یکدیگر به عنوان کلید اصلی تعریف کرد: Primary $\mathbb{K}\mathrm{ey}$
- یکدیگر به عنوان تعدادی از ستونها را با یکدیگر به عنوان:Foreign Key References \Box

کلید خارجی تعریف کرد)

- تعیین محدودیت مقداری برای مقادیر ستون: \mathbf{Check}
- یک جدول از جدول(های) دیگر. برای پیادهسازی روابط IS-A میتواند به کار رود. IS-IS-II

مثالی از تعریف جدول

بخش پنجم: مقدمات پیادهسازی و SQL

شِمای پایگاه داده جدولی:

CREATE TABLE STT CHAR(8) **NOT NULL**, (STID **STNAME** CHAR(25), **STLEV** CHAR(12), **STMJR** CHAR(20), **STDEID** CHAR(4), **PRIMARY** KEY (STID), **CHECK** STMJR **IN** ('bs', 'ms', 'doc', '???'));

محدوديت صفتي (ستوني) [كلاز كنترلي]

CREATE TABLE COT

(COID CHAR(6) NOT NULL,

COTITLE CHAR(16),

CREDIT SMALLINT,

COTYPE CHAR(1),

CODEID CHAR(4),

PRIMARY KEY (COID));

مثالی از تعریف جدول (ادامه)

بخش پنجم: مقدمات پیادهسازی و SQL

CREATE TABLE SCT

(STID CHAR(8) NOT NULL,

COID CHAR(6) NOT NULL,

TR CHAR(1),

YR CHAR(5),

GRADE DECIMAL(2, 2),

PRIMARY KEY (STID, COID),

CHECK (0 >= GRADE AND GRADE <= 20), —

محدودیت صفتی (ستونی) [کلاز کنترلی]

FOREIGN KEY (STID) REFERENCES STT (STID)

ON DELETE CASCADE

ON UPDATE CASCADE,

FOREIGN KEY (COID) REFERENCES COT (COID)

ON DELETE CASCADE

ON UPDATE CASCADE);

بخش پنجم: مقدمات پیادهسازی و SQL

DROP TABLE دستور حذف جدول

DROP TABLE tablename [CASCADE| RESTRICT]

- □ CASCADE باعث می شود که همه اشیاء وابسته به جدول (مانند دیدهای تعریف شده بر روی آن یا محدودیتهایی مانند کلید خارجی وابسته به آن) نیز به صورت خودکار حذف شود.
- یشفرض RESTRICT و جود دیگر اشیاء وابسته به جدول، از حذف آن جلوگیری می کند. پیشفرض این دستور، RESTRICT است.

DROP TABLE SCT;

بخش پنجم: مقدمات پیادهسازی و SQL

□ دستور تغيير جدول ALTER TABLE

ALTER TABLE tableName

اضافه کردن ستون، تغییر تعریف ستون، حذف ستون و ...

[ADD [COLUMN] columnName dataType [NOT NULL] [UNIQUE]

[DEFAULT defaultOption] [CHECK (searchCondition)]]

[DROP COLUMN columnName [RESTRICT | CASCADE]]

[ADD CONSTRAINT [constraintName]] tableConstraintDefinition]

[DROP CONSTRAINT constraintName [RESTRICT | CASCADE]]

[ALTER [COLUMN] columnName SET DEFAULT defaultOption]

[ALTER [COLUMN] columnName DROP DEFAULT]

[RENAME [COLUMN] columnName TO newColumnName]

اضافه کردن ستون «وضعیت» به جدول اطلاعات دانشجو

ALTER TABLE STT

ADD COLUMN STATE CHAR(10);

شمای یایگاهی

بخش پنجم: مقدمات پیادهسازی و SQL

و نه دستورات **Data Manipulation (DM)**

Data Definition (DD)

Data Controller (DC)

Data Controller (DC)

این جدایی چه مزایایی دارد؟

اسیستم با شِمای پایگاهی چه می کند؟

اطلاعات موجود در آن را در جایی به نحوی ذخیره می کند. \longrightarrow در تعدادی جدول \square

آشنایی با کاتالوگ

بخش پنجم: مقدمات پیادهسازی و SQL

مثالی از جدولهای کاتالوگ:

SysTables	نام جدول	ايجاد كننده	تاريخ	تعداد ستون	•••
	STT	C1	D1	5	
	COT	C1	D2	5	
	SCT	C2	D2	5	
	:	:	:	:	

جدولی که جدولها را مدیریت میکند.

SysCols	نام ستون	نام جدول	نوع	طول	•••
	STID	STT	CHAR	8	
	STNAME	STT	CHAR	25	
	÷	÷	:	:	
\downarrow	GR	SCT	DEC	2,2	

جدولی که ستونها را مدیریت میکند.

آشنایی با کاتالوگ (ادامه)

بخش پنجم: مقدمات پیادهسازی و SQL

INSERT, آیا برنامه ساز می تواند محتوای کاتالوگ را مستقیما تغییر دهد؟ (با دستورات

(DELETE, UPDATE

- 🖵 تمرین: حداقل سه جدول دیگر برای کاتالوگ طراحی کنید.
 - 🖵 تمرین: چه اطلاعاتی در کاتالوگ ذخیره می شود؟

زبان جدولي TDBL

بخش پنجم: مقدمات پیادهسازی و SQL

□ عملیات در TDB : **دستور های**

\mathbf{SQL} بخش پنجم: مقدمات پیادهسازی و

SELECT دستور بازیابی \Box

SELECT [ALL | **DISTINCT**] *item(s) list*

FROM table(s) expression

 $[WHERE \ condition(s)] \longrightarrow m$ شرط سطر

 $[ORDER BY \ Col(s)]$ مرتبسازی

 $[HAVING \ condition(s)]$ \longrightarrow شرط گروه

- است. SELECT خروجی دستور \square
- 🖵 از DISTINCT برای حذف سطرهای تکراری در جدول نتیجه استفاده میشود.
- □ در شرط WHERE می توان از =، <>، >، <، =<، = WHERE ، و IN استفاده کرد.

بازیابی دادهها (ادامه)

SQL بخش پنجم: مقدمات پیادهسازی و

4. ... 4

FROM STT

WHERE STT.STMJR='phys'

AND

STT.STLEV='bs'

SELECT STT1. STID **AS** SN,

STT1. STNAME AS SName

FROM STT AS STT1

WHERE STT1. STMJR='phys'

AND

STT1. STLEV='bs'

بخش ینجم: مقدمات پیادهسازی و SQL

☐ مرتب سازي (ORDER BY)

SELECT S.*

FROM S

ORDER BY SNAME یا 2 (Descending): باید قید شود. ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ (asc | desc] شماره ستون نام ستون

• پیش فرض صعودی: (Ascending)

ك قابليتهاى پيشرفته (Advanced features):

SELECT S#, CITY

S#, CITY

FROM S
WHERE SNAME

LIKE
NOT LIKE $(M\%)' \longrightarrow \text{ Spin Result} \times \text{ NOT LIKE}$ $(M\%)' \longrightarrow \text{ Spin Result} \times \text{ NOT LIKE}$ $(A_-') \longrightarrow \text{ A control of the limit of the$

بازیابی دادهها (ادامه)

بخش پنجم: مقدمات پیادهسازی و SQL

SELECT P#

FROM P

WHERE WEIGHT BETWEEN 5 AND 15

b

WHERE WEIGHT >= 5 AND WEIGHT <= 15

🖵 شماره قطعاتی را بدهید که وزن آنها بین ۵ و ۱۵ است.

بازیابی دادهها (ادامه)

بخش پنجم: مقدمات پیادهسازی و SQL

NULL

SELECT S#, CITY

FROM IS NULL IS NOT NULL WHERE STATUS

بررسی برخورد یک package با NULL؟

عملگرهای جبر مجموعهها

بخش پنجم: مقدمات پیادهسازی و SQL

tablename1 op tablename2 [CORRESPONDING [BY {column, [, column ...]}]] $op \in \left\{ \begin{array}{c} \text{UNION [ALL]} \\ \text{INTERSECT [ALL]} \\ \text{EXCEPT [ALL]} \end{array} \right\}$

- □ اگر از گزینه CORRESPONDING BY استفاده شود، عمل درخواست شده روی ستونهای تصریح شده انجام می شود.
 - اگر CORRESPONDING بدون BY استفاده شود، عمل درخواست شده روی ستونهای مشترک انجام میشود.
 - اگر از این گزینه استفاده نشود، عمل روی تمام ستونهای دو جدول انجام می شود.
 - ☐ شرط استفاده: برابری Heading: همنامی و هم نوعی ستون(های) دو جدول
- توجه: تکراریها در نتیجه اجرای عملگرهای جبر مجموعهها حذف میشوند مگر آنکه از ALL استفاده شود.

عملگرهای جبر مجموعهها (ادامه)

بخش پنجم: مقدمات پیادهسازی و SQL

SELECT S.S#.

ِ شماره تهیه کنندگانی را بدهید که حداقل یک قطعه تولید میکنند.

FROM

INTERSECT

SELECT SP.S#.

FROM SP

SELECT SP.S#,

SP **FROM**

سن سازگاری پایگاه دادهها: هر فردی که قطعه ای تولید کرده

EXCEPT

SELECT S.S#,

FROM S

مدل دیگر

SP *EXCEPT* S Using S# يا Corresponding by S#

عملگرهای جبر مجموعهها (ادامه)

بخش پنجم: مقدمات پیادهسازی و SQL

شماره تهیه کنندگانی را بدهید که هیچ قطعهای تولید نمی کنند.

SELECT S.S#,

FROM S

EXCEPT

SELECT SP.S#,

FROM SP

🗖 تمرین: این مثالها به طرز دیگر هم نوشته شود.

توابع جمعی (گروهی)

\mathbf{SQL} بخش پنجم: مقدمات پیادهسازی و

- **Aggregation Functions**
 - ميانگين 🗲 AVG 🚨
 - مینیمم **←** MIN □
 - → MAX ماكزيمم
 - **←** SUM ¬ جمع
- تعداد عبارات ناهیچمقدار / تعداد کل سطرها **← COUNT(*)** / COUNT □

c2 یا c1 یا c1 یا c2 یا c2 یا c2 یا c2 یا c2 یا

SELECT MAX (STATUS) AS SMAX

FROM S

WHERE CITY='c1'

OR

CITY='c2'

\mathbf{SQL} بخش پنجم: مقدمات پیادهسازی و

SELECT COUNT (DISTINCT P#) AS N1
FROM SP

تعداد انواع قطعات قابل توليد

SELECT COUNT (*) AS N2 FROM P

s2 تعداد کل قطعات تولیدی توسط

SELECT SUM (QTY) AS N3

FROM SP

WHERE S# = 's2'

بخش پنجم: مقدمات پیادهسازی و SQL

GROUP BY

سطرهای جدول داده شده در کلاز FROM را گروه بندی می کند، به نحوی که مقدار ستون(های) \Box گروهبندی در گروه یکسان است.

منا المعاد كل قطعات توليدى توسط هر توليدكننده

SELECT S# AS SN, SUM (QTY) AS SQ

FROM	SP	
GROUP	BY	S#

SP
گروهبندی
شده

S#	P #	QTY
s1	p1	• • •
s1	p2	• • •

جدول جواب	SN	SQ
	s1	280
	s2	100
	s3	203

	ı.		
s1	p2	• • •	
 s1	p4		
s2	p2	•••	
s2	p3	• • •	
 s3	p5		

SQL بخش پنجم: مقدمات پیادهسازی و

که با توابع جمعی به دست آمدهاند.

HAVING

🖵 امکانی است برای دادن شرط یا شرایط ناظر به گروه سطرها

شماره تهیه کنندگانی را بدهید که بیش از ۱۰۰ قطعه تولید کردهاند.

SELECT S#

FROM SP

GROUP BY S#

HAVING SUM(QTY) > 100

بخش پنجم: مقدمات پیادهسازی و SQL

- 🖵 تمرین: شماره دانشجویانی را بدهید که در ترم دوم سال ۹۷–۹۸ همه نمراتشان بالای ۱۸ بوده است.
 - تمرین: شماره دانشجویانی را بدهید که در ترم دوم سال ۹۷–۹۸ بیش از ۷ درس گرفته باشند.

GROUP BY و HAVING در SQL افزونهاند، اما نوشتن QUERY بدون آنها پیچیده است.

%GROUP BY بدون HAVING

به چند روش می توان یک کپی از جدول ساخت؟

بازیابی از بیش از یک جدول

بخش پنجم: مقدمات پیادهسازی و SQL

روش اول

نام تهیه کنندگان قطعه 'p2' را بدهید: S در جدول | در جدول SP

SELECT SNAME

FROM S. SP

WHERE SP.S# = S.S# **AND** SP.P# = 'p2'

شبیه سازی عملگر پیوند

فرب دکارتی در SQL

SELECT T1.*, T2.*

FROM T1, T2

🖵 مکانیزم اجرا از دید برنامهساز:

P به ازای هر سطر جدول S، بررسی می کند که آیا S آن در S وجود دارد یا نه و P آن سطر در Sاست یا نه. اگر درست بود SNAME آن سطر جزو جواب است.

بازیابی از بیش از یک جدول - عملگر پیوند یا JOIN

بخش پنجم: مقدمات پیادهسازی و SQL

پیوند: ارائه مقدماتی (غیر ریاضی)

T1 [NATURAL] JOIN T2 🗆

بازیابی از بیش از یک جدول - عملگر پیوند یا JOIN (ادامه)

بخش پنجم: مقدمات پیادهسازی و SQL

🔲 توضیح مقدماتی عملگر پیوند:

به هم پیوند می زند.

 \Box صرف نظر از جزئیات تئوریک، سطرهای دو جدول را که مقدار ستون(های) مشترکشان یکسان است،

روش دوم

SELECT SNAME

FROM S [NATURAL] JOIN SP

WHERE P# = p2

نام تهیه کنندگان قطعه 'p2' را بدهید:

S

S#	SNAME	
s1	sn1	• • •
s2	sn2	
s3	sn3	
s3	sn4	
	•••	

SP

S#	P#	QTY
s1	p1	100
s1	p2	120
s1	р3	500
s2	p1	50

S [NATURAL] JOIN SP

S#	SNAME	•••	P#	QTY
s1	sn1	•••	p1	100
s1	sn1	•••	p2	120
s1	sn1	• • •	р3	500
s2	sn2	•••	p1	50
	•••	•••		

بازیابی از بیش از یک جدول - زیرپرسش

بخش پنجم: مقدمات پیادهسازی و SQL

SubQuary زير پرسش يا

یک SELECT است در درون SELECT دیگر.

بازیابی از بیش از یک جدول - عملگر تعلق

 \mathbf{SQL} بخش پنجم: مقدمات پیادهسازی و

IN و NOT IN: عملگر تعلق

روش سوم

SELECT SNAME

🖵 مكانيزم اجرا:

■ سیستم ابتدا SELECT درونی را اجرا می کند، آنگاه به ازای هر سطر S بررسی می کند که #S در مجموعه جواب SELECT درونی هست یا نه.

بازیابی از بیش از یک جدول - پرسش های بهم بسته

بخش پنجم: مقدمات پیادهسازی و SQL

کروپرسش درونی و بیرونی (در یک پرسش تو در تو) را **بهم بسته (Correlated**) گوییم هرگاه در کلاز

WHERE پرسش درونی به ستونی از جدول موجود در کلاز FROM پرسش بیرونی، ارجاع داشته باشیم.

توجه: نحوه اجرای پرسشهای بهمبسته با طرز اجرای پرسشهای نابهمبسته متفاوت است: در حالت \Box بهمبسته، سیستم پرسش درونی را به ازای هر سطر از جدول پرسش بیرونی یک بار اجرا می کند.

روش ششم

SELECT SNAME

بازیابی از بیش از یک جدول (ادامه)

بخش پنجم: مقدمات پیادهسازی و SQL

م شماره تهیه کنندگانی را بدهید که مقدار وضعیت آنها بیشینه نباشد.

1- SELECT S#

FROM S

WHERE STATUS < ANY (SELECT DISTINCT STATUS FROM S)

2- SELECT S#

چون جواب SELECT تک مقداری است نیازی به ANY نیست.

FROM S

WHERE STATUS < (SELECT MAX (STATUS) FROM

بازیابی از بیش از یک جدول (ادامه)

بخش پنجم: مقدمات پیادهسازی و SQL

روش نهم

SELECT SNAME

FROM S

WHERE 0 < (SELECT COUNT(*)

FROM SP

WHERE SP.S# = S.S#

AND

SP.P# = 'p2')

سور وجودی (از حساب رابطهای)

بخش پنجم: مقدمات پیادهسازی و SQL

NOT EXISTS **□** EXISTS □

🖵 امکان بررسی وجود یا عدم وجود سطر در جدول خروجی

SELECT SNAME

FROM S

WHERE EXISTS (SELECT*

FROM SP

WHERE SP.S# = S.S#

AND

SP.P# = 'p2')

عمليات ذخيرهسازي

بخش پنجم: مقدمات پیادهسازی و SQL

INSERT, UPDATE, DELETE دستورهای

:INSERT درج

INSERT INTO table-name [(col1,col2, ...)]

VALUES (one row) | subquery

UPDATE table-name

بهنگامسازی UPDATE: 🗓

SET $col = value \mid experession [, <math>col = value \mid experission]...$

:

WHERE *condition(s) | subquery*

DELETE FROM table-name

WHERE *condition(s) | subquery*

🖵 حذف DELETE:

SQL بخش پنجم: مقدمات پیادهسازی و

درج سطری (سطر کامل – سطر ناقص):

INSERT INTO STT

VALUES ('222', 'st2', 'IT', 'bs', 'D17')

INSERT INTO STT

VALUES ('333', 'st3', null, 'ms', null)

مثال درج گروهی:

CREATE TEMPORRAYR TABLE T1

(STN,)

اطلاعات دانشجویان مقطع کارشناسی ارشد

INSERT INTO T1

رشته کامپیوتر در جدول موقت T1 درج شود.

(**SELECT** STT.*

FROM STT

WHERE STJ = 'comp'

AND

STL = 'ms')

بهنگامسازی

\mathbf{SQL} بخش پنجم: مقدمات پیادهسازی و

بهنگامسازی چند سطر:

تعداد واحد تمام درسهای عملی گروه آموزشی D11 را برابر یک کن.

UPDATE COT

SET CREDIT = '1'

WHERE COTYPE = 'p' **AND** CODEID = 'D11'

بهنگامسازی در بیش از یک جدول:

UPDATE STT

SET STID = 911044444

WHERE STID = 91107777

UPDATE STCOT

SET STID = 91104444

WHERE STID = 91107777

SQL بخش پنجم: مقدمات پیادهسازی و

نمره دانشجویان گروه آموزشی D111 در درس 'com222' در ترم دوم سال ۹۷–۹۸را ناتمام اعلان

UPDATE STCOT

SET STCOT.GRADE = 'U'

WHERE STCOT.TR = '2' AND STCOT.YRYR = '94-95'

AND STCOT.COID = 'COM222'

AND STID IN (SELECT STID

FROM STT

WHERE STT.STDEID = 'D111');

بخش پنجم: مقدمات پیادهسازی و SQL

حذف تكدرس: درس com111 را براى دانشجوى 88104444 حذف كنيد.

DELETE FROM STOCOT

WHERE STID = 88104444

AND

COID = 'COM111'

آیا این حذف باید انتشار یابد؟

DELETE FROM DEPT

WHERE DEID = 'D333'

منال حذف از بیش از یک جدول:

UPDATE STT

SET DEID = null

WHERE DEID = 'D333'

دیگر امکانات SQL

بخش پنجم: مقدمات پیادهسازی و SQL

- 🔲 مطالعه شود :
- (Recursive) پرسش بازگشتی
 - ادغام شده SQL 🖵
 - يويا SQL 🖵
 - 🗖 نوشتن رویّه
 - 🖵 نوشتن تابع
 - 🖵 امكانات شيئ رابطهاي
 - 🗖 مديريت تراكنش
- (Parameterized Query) پرسش پارامتری شده \Box

بخش پنجم: مقدمات پیادهسازی و SQL

پرسش و پاسخ . . .

amini@sharif.edu