Importing the Dependencies

```
import numpy as np
import pandas as pd
import sklearn.datasets
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, precision_score
import warnings
warnings.filterwarnings("ignore")
Data Collection & Processing
# Loading the data from sklearn
breast_cancer_dataset = sklearn.datasets.load_breast_cancer()
print(breast_cancer_dataset)
[] {'data': array([[1.799e+01, 1.038e+01, 1.228e+02, ..., 2.654e-01, 4.601e-01,
           1.189e-01],
          [2.057e+01, 1.777e+01, 1.329e+02, ..., 1.860e-01, 2.750e-01,
           8.902e-02],
          [1.969e+01, 2.125e+01, 1.300e+02, ..., 2.430e-01, 3.613e-01,
           8.758e-021,
          [1.660e+01, 2.808e+01, 1.083e+02, ..., 1.418e-01, 2.218e-01,
           7.820e-02],
          [2.060e+01, 2.933e+01, 1.401e+02, ..., 2.650e-01, 4.087e-01,
           1.240e-01],
          [7.760e+00, 2.454e+01, 4.792e+01, ..., 0.000e+00, 2.871e-01,
           0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0,
          1,\ 1,\ 1,\ 1,\ 0,\ 1,\ 0,\ 0,\ 1,\ 0,\ 0,\ 1,\ 1,\ 1,\ 0,\ 0,\ 1,\ 0,\ 0,
          1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1,
          1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0,
          0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
          1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1,
          1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0,
          0,\ 0,\ 1,\ 0,\ 0,\ 1,\ 0,\ 1,\ 0,\ 1,\ 0,\ 1,\ 0,\ 0,\ 0,\ 0,\ 1,\ 1,\ 0,\ 0,
          1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1,
          1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
          0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1,
          1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1,
          1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0,
          0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0,
          1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1,
          1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1,
          1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1,
          1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0,
          1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1,
          1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1,
          'radius error', 'texture error', 'perimeter error', 'area error
           'smoothness error', 'compactness error', 'concavity error', 'concave points error', 'symmetry error',
          'fractal dimension error', 'worst radius', 'worst texture',
           'worst perimeter', 'worst area', 'worst smoothness',
'worst compactness', 'worst concavity', 'worst concave points',
           'worst symmetry', 'worst fractal dimension'], dtype='<U23'), 'filename': 'breast_cancer.csv', 'data_module': 'sklearn.dataset
   4
# Loading the data to a data frame
data_frame = pd.DataFrame(breast_cancer_dataset.data, columns = breast_cancer_dataset.feature_names)
# Printing the first 5 rows
data_frame.head()
```

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension	•••	worst radius	worst texture	woı perime
0	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	0.14710	0.2419	0.07871		25.38	17.33	184
1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	0.07017	0.1812	0.05667		24.99	23.41	158
2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	0.12790	0.2069	0.05999		23.57	25.53	152
3	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	0.10520	0.2597	0.09744		14.91	26.50	98
4	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	0.10430	0.1809	0.05883		22.54	16.67	152
5 ro	5 rows × 30 columns													

Adding the 'target' column to the data frame
data_frame['label'] = breast_cancer_dataset.target

Printing last 5 rows
data_frame.tail()

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension	 worst texture	worst perimeter	W										
564	21.56	22.39	142.00	1479.0	0.11100	0.11590	0.24390	0.13890	0.1726	0.05623	 26.40	166.10	20										
565	20.13	28.25	131.20	1261.0	0.09780	0.10340	0.14400	0.09791	0.1752	0.05533	 38.25	155.00	17										
566	16.60	28.08	108.30	858.1	0.08455	0.10230	0.09251	0.05302	0.1590	0.05648	 34.12	126.70	1.										
567	20.60	29.33	140.10	1265.0	0.11780	0.27700	0.35140	0.15200	0.2397	0.07016	 39.42	184.60	18										
568	7.76	24.54	47.92	181.0	0.05263	0.04362	0.00000	0.00000	0.1587	0.05884	 30.37	59.16	:										
5 rows	s × 31 colu	umns									5 rows × 31 columns												

Number of rows and columns in the dataset
data_frame.shape

(569, 31)

data_frame.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 569 entries, 0 to 568 Data columns (total 31 columns):

#	Columns (total 31 columns	S): Non-Null Count	Dtype
π 		Non-Null Count	
0	mean radius	569 non-null	float64
1	mean texture	569 non-null	float64
2	mean perimeter	569 non-null	float64
3	mean area	569 non-null	float64
4	mean smoothness	569 non-null	float64
5	mean compactness	569 non-null	float64
6	mean concavity	569 non-null	float64
7	mean concave points	569 non-null	float64
8	mean symmetry	569 non-null	float64
9	mean fractal dimension	569 non-null	float64
10	radius error	569 non-null	float64
11	texture error	569 non-null	float64
12	perimeter error	569 non-null	float64
13	area error	569 non-null	float64
14	smoothness error	569 non-null	float64
15	compactness error	569 non-null	float64
16	concavity error	569 non-null	float64
17	concave points error	569 non-null	float64
18	symmetry error	569 non-null	float64
19	fractal dimension error	569 non-null	float64
20	worst radius	569 non-null	float64
21	worst texture	569 non-null	float64
22	worst perimeter	569 non-null	float64
23	worst area	569 non-null	float64
24	worst smoothness	569 non-null	float64
25	worst compactness	569 non-null	float64
26	worst concavity	569 non-null	float64
27	worst concave points	569 non-null	float64
28	worst symmetry	569 non-null	float64
29	worst fractal dimension	569 non-null	float64
30	label	569 non-null	int64
dtype	es: float64(30), int64(1)		

dtypes: float64(30), int64(1) memory usage: 137.9 KB

Checking for missing values
data_frame.isnull().sum()

mean radius mean perimeter 0 mean area 0 mean smoothness mean compactness mean concavity 0 mean concave points mean symmetry mean fractal dimension 0 radius error texture error perimeter error area error 0 smoothness error 0 compactness error 0 concavity error concave points error 0 symmetry error fractal dimension error 0 worst radius worst texture worst perimeter 0 worst area worst smoothness 0 worst compactness worst concavity 0 worst concave points 0 worst symmetry 0 worst fractal dimension label dtype: int64

Statistical Measures
data_frame.describe()

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension	•••	
count	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000		56
mean	14.127292	19.289649	91.969033	654.889104	0.096360	0.104341	0.088799	0.048919	0.181162	0.062798		2
std	3.524049	4.301036	24.298981	351.914129	0.014064	0.052813	0.079720	0.038803	0.027414	0.007060		
min	6.981000	9.710000	43.790000	143.500000	0.052630	0.019380	0.000000	0.000000	0.106000	0.049960		1
25%	11.700000	16.170000	75.170000	420.300000	0.086370	0.064920	0.029560	0.020310	0.161900	0.057700		2
50%	13.370000	18.840000	86.240000	551.100000	0.095870	0.092630	0.061540	0.033500	0.179200	0.061540		2
75%	15.780000	21.800000	104.100000	782.700000	0.105300	0.130400	0.130700	0.074000	0.195700	0.066120		2
max	28.110000	39.280000	188.500000	2501.000000	0.163400	0.345400	0.426800	0.201200	0.304000	0.097440		4
8 rows × 31 columns												

Checking the distribution of Target Varibale
data_frame['label'].value_counts()

1 357 0 212

Name: label, dtype: int64

1 --> Benign

0 --> Malignant

data_frame.groupby('label').mean()

		mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension	 worst radius
1	abel											
	0	17.462830	21.604906	115.365377	978.376415	0.102898	0.145188	0.160775	0.087990	0.192909	0.062680	 21.134811
	1	12.146524	17.914762	78.075406	462.790196	0.092478	0.080085	0.046058	0.025717	0.174186	0.062867	 13.379801
2	rows ×	30 columns										

```
Separating the features and target
X = data_frame.drop(columns = 'label', axis = 1)
Y = data_frame['label']
print(X)
          mean radius mean texture mean perimeter mean area
                                                                  mean smoothness
     0
                 17.99
                               10.38
                                               122.80
                                                           1001.0
                                                                           0.11840
     1
                 20.57
                               17.77
                                               132.90
                                                           1326.0
                                                                            0.08474
     2
                 19.69
                               21.25
                                               130.00
                                                           1203.0
                                                                            0.10960
     3
                11.42
                               20.38
                                                77.58
                                                            386.1
                                                                            0.14250
     4
                20.29
                                                           1297.0
                                                                           0.10030
                               14.34
                                               135.10
                21.56
                               22.39
                                               142.00
                                                           1479.0
                                                                           0.11100
     564
     565
                               28.25
                                               131,20
                                                           1261.0
                                                                           0.09780
                20.13
     566
                16.60
                               28.08
                                               108.30
                                                           858.1
                                                                           0.08455
     567
                 20.60
                               29.33
                                               140.10
                                                           1265.0
                                                                           0.11780
     568
                 7.76
                               24.54
                                                47.92
                                                            181.0
                                                                           0.05263
          mean compactness mean concavity mean concave points mean symmetry
     0
                   0.27760
                                    0.30010
                                                           0.14710
                                                                           0.2419
                    0.07864
                                     0.08690
                                                           0.07017
                                                                           0.1812
     1
     2
                   0.15990
                                     0.19740
                                                           0.12790
                                                                           0.2069
                   0.28390
                                     0.24140
     3
                                                           0.10520
                                                                           0.2597
     4
                    0.13280
                                     0.19800
                                                           0.10430
                                                                           0.1809
     564
                    0.11590
                                     0.24390
                                                           0.13890
                                                                           0.1726
     565
                    0.10340
                                     0.14400
                                                           0.09791
                                                                           0.1752
     566
                    0.10230
                                     0.09251
                                                           0.05302
                                                                           0.1590
     567
                    0.27700
                                     0.35140
                                                           0.15200
                                                                            0.2397
     568
                    0.04362
                                     0.00000
                                                           0.00000
                                                                            0.1587
          mean fractal dimension
                                        worst radius worst texture
     0
                          0.07871
                                               25.380
                                                                17.33
                                    . . .
                                               24.990
                          0.05667
                                                                23,41
     1
                                    . . .
                                               23.570
     2
                          0.05999
                                    . . .
                                                                25.53
     3
                          0.09744
                                               14.910
                                                                26.50
     4
                          0.05883
                                               22.540
                                                                16.67
                                    . . .
                                    . . .
     564
                          0.05623
                                               25.450
                                                                26.40
                                    . . .
     565
                          0.05533
                                               23.690
                                                                38.25
                                    . . .
                                               18.980
     566
                          0.05648
                                                                34.12
                                  . . .
     567
                          0.07016
                                               25.740
                                                                39.42
                                   . . .
     568
                                                9.456
                                                                30.37
                          0.05884
          worst perimeter
                            worst area worst smoothness worst compactness \
     0
                                2019.0
                   184,60
                                                  0.16220
                                                                      0.66560
     1
                   158.80
                                1956.0
                                                  0.12380
                                                                      0.18660
     2
                    152.50
                                1709.0
                                                  0.14440
                                                                      0.42450
     3
                    98.87
                                 567.7
                                                  0.20980
                                                                      0.86630
     4
                    152.20
                                1575.0
                                                  0.13740
                                                                      0.20500
                    166.10
                                2027.0
                                                  0.14100
                                                                      0.21130
                                1731.0
     565
                    155.00
                                                  0.11660
                                                                      0.19220
     566
                   126.70
                                1124.0
                                                  0.11390
                                                                      0.30940
     567
                    184.60
                                1821.0
                                                  0.16500
                                                                      0.86810
     568
                    59.16
                                 268.6
                                                  0.08996
                                                                      0.06444
          worst concavity worst concave points worst symmetry
     0
                    0.7119
                                           0.2654
                                                            0.4601
     1
                    0.2416
                                           0.1860
                                                            0.2750
     2
                    0.4504
                                           0.2430
                                                            0.3613
     3
                    0.6869
                                           0.2575
                                                            0.6638
                                           0.1625
print(Y)
     0
            0
            0
     1
```

```
564
           565
                         0
           566
           567
                         0
           568
           Name: label, Length: 569, dtype: int64
Splitting the data into training data & Testing data
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.2, random_state = 2)
print(X.shape, X_train.shape, X_test.shape)
           (569, 30) (455, 30) (114, 30)
Model Training
Logistic Regression
model = LogisticRegression()
# Training the Logistic Regression model using Training data
model.fit(X_train, Y_train)
            ▼ LogisticRegression
           LogisticRegression()
Model Evaluation
Accuracy Score
# Accuracy on training data
X_train_prediction = model.predict(X_train)
training_data_accuracy = accuracy_score(Y_train, X_train_prediction)
print('Accuracy on training data = ', training_data_accuracy * 100)
           Accuracy on training data = 94.72527472527472
# Accuracy on test data
X_test_prediction = model.predict(X_test)
test_data_accuracy = accuracy_score(Y_test, X_test_prediction)
print('Accuracy on test data = ', test_data_accuracy * 100)
           Accuracy on test data = 92.98245614035088
X_train_prediction = model.predict(X_train)
test predictions = model.predict(X test)
# Calculate precision for training and test data
train_precision = precision_score(Y_train, X_train_prediction)
test_precision = precision_score(Y_test, X_test_prediction)
print('Precision on training data:', train_precision * 100)
print('Precision on test data:', test_precision * 100)
           Precision on training data: 95.2054794520548
           Precision on test data: 94.20289855072464
Model's Accuracy: 92.98 % Model's Precision: 94.20 %
Building a Predictive System
input\_data = (13.54, 14.36, 87.46, 566.3, 0.09779, 0.08129, 0.06664, 0.04781, 0.1885, 0.05766, 0.2699, 0.7886, 2.058, 23.56, 0.008462, 0.0146, 0.02387, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.08129, 0.
# Change the input data to a numpy array
input_data_as_numpy_array = np.asarray(input_data)
```

```
# Reshape the numpy array as we are predicting for one datapoint
input_data_reshaped = input_data_as_numpy_array.reshape(1,-1)

prediction = model.predict(input_data_reshaped)
print(prediction)

if (prediction[0] == 0):
    print('The Breast cancer is Malignant')

else:
    print('The Breast Cancer is Benign')
[1]
The Breast Cancer is Benign
```