

Para el día de hoy...

- Regresión logística
- Redes neuronales
- Gradiente descendente

Motivación

Hasta ahora hemos visto el caso donde las variables de salida están en los reales

En muchos de los casos esto no es así y se encuentran dados por categorías

Este problema se conoce como clasificación

La tarea

Proveer de decisiones basadas en ejemplos que permitan que nuevas observaciones sean clasificadas.

Esto puede ser visto como encontrar la "frontera"

Un ejemplo

- Sean C_1 y C_2 dos clases de patrones. Cada observación es un vector $x=(x_1,x_2)^T$
- Las dos poblaciones pueden ser separadas por una línea recta
- Sea d(x) = 0 dicha línea, entonces $d(x) = w_1x_1 + w_2x_2 + w_3 = 0$
- d(x) puede ser "ajustado" tal que
 - d(x) > 0 para todo $x \in C_1$
 - d(x) < 0 para todo $x \in C_2$
- Entonces, d(x) es una función de decisión lineal

Función sigmoide

- $sigm(\eta)$ se le conoce como la función sigmoide, logísitca o logit:
- $sigm(\eta) = \frac{1}{1+e^{-\eta}} = \frac{e^{\eta}}{e^{\eta}+1}$, donde $\eta = X\theta$

Separación lineal del hiperplano

• La separación ocurre cuando:

$$P(y_i|X_i\theta) = sigm(X_i\theta) = \frac{1}{2}$$

De forma equivalente

$$X_i\theta=0$$

Regresión logística

• Especifica la probabilidad de una salida binaria $y_i \in \{0,1\}$ dada la entrada x_i

$$p(y|X,\theta) = \prod_{i=1}^{n} Ber(y_i|sigm(x_i\theta))$$

Sustituyendo

$$\prod_{i=1}^{n} \left[\frac{1}{1 + e^{-x\theta}} \right]^{y_i} \left[1 - \frac{1}{1 + e^{-x\theta}} \right]^{1 - y_i}$$

Donde $x_i\theta = \theta_0 + \sum_{j=1}^d \theta_j x_{ij}$ y sea $\pi = 1 + e^{-x\theta}$ entonces

$$J(\theta) = -\log p(y|x, \theta) = -\sum_{i=1}^{n} y_i \log \pi_i + (1 - y_i) \log(1 - \pi_i)$$

El gradiente y la hessiana de la regresión logística binaria

•
$$\nabla J(\theta) = \sum_{i=1}^{n} x_i^T (\pi_i - y_i) = X^T (\pi - y)$$

•
$$\nabla^2 J(\theta) = \sum_i \pi_i (1 - \pi_i) x_i x_i^T = X^T \operatorname{diag} (\pi_i (1 - \pi_i)) X$$

Donde $\pi_i = sigm(x_i\theta)$

Es posible probar que $\nabla^2 J(\theta)$ es positiva definida

Métodos de búsqueda directa

• Eligen una dirección p_k y buscan en esa dirección desde algún valor x_k algún punto x_{k+1} tal que $f(x_{k+1}) < f(x_k)$. La distancia a moverse puede encontrarse resolviendo

$$\min_{\alpha>0} f(x_k + \alpha p_k)$$

Gradiente descendente

• La iteración está dada por:

$$x_{k+1} = x_k + \alpha p_k,$$

Donde $\alpha_k \in \mathbb{R}^+$ es el tamaño de paso.

Normalmente se requiere que p_k sea una dirección descendente ($p_k^T \nabla f_k < 0$).

La elección obvia es $-\nabla f_k$ que da a lugar al método de gradiente descendente.

El algoritmo

- Dado f, ∇f , $x_0 \in \mathbb{R}^n$
- $x_k = x_0$
- Mientras condición_de_paro:
 - $p_k = -\nabla f(x_k)$
 - Calcular tamaño de paso α_k
 - $x_{k+1} = x_k + \alpha p_k$
- fin

Redes neuronales

Red neuronal artificial

$$\sum_{i=0}^{d} \mathbf{w}_i \mathbf{x}_i$$

- El objetivo es reflejar observaciones neurofisiológicas y no reproducir su dinámica
- Fácil de componer
- Representa computación simple
- Tiene conexiones para inhibir y excitar

Neurona artificial

Capa lineal

- En aprendizaje máquina linear en realidad quiere decir afin
- Las neuronas en una capa son llamadas unidad
- Los parámetros son llamados pesos

$$h(\mathbf{x}, \mathbf{w}, b) = \langle \mathbf{w}, \mathbf{x} \rangle + b$$

$$f_{\text{linear}}(\mathbf{x}, \mathbf{W}, \mathbf{b}) = \mathbf{W}\mathbf{x} + \mathbf{b}$$

Red neuronal de una capa

- Las funciones de activación son llamadas no linealidades
- Las funciones de activación se aplican a cada punto
- Producen estimaciones de probabilidad
- Se saturan
- Las derivadas desaparecen

Entropia cruzada

$$\ell_{\mathrm{CE}}(\mathbf{p}, \mathbf{t}) = -[\mathbf{t} \log \mathbf{p} + (1 - \mathbf{t}) \log(1 - \mathbf{p})]$$

- La entropía cruzada también es llamada log verosimilitud negativa o pérdida logística
- Es numéricamente inestable

Softmax

$$f_{\rm sm}(\mathbf{x}) = \frac{e^{\mathbf{x}}}{\sum_{j=1}^{k} e^{\mathbf{x}_j}}$$

$$f_{\rm sm}([\mathbf{x}, 0]) = \left[\frac{e^{\mathbf{x}}}{e^{\mathbf{x}} + e^{\mathbf{0}}}, \frac{e^{\mathbf{0}}}{e^{\mathbf{x}} + e^{\mathbf{0}}}\right]$$

$$= [f_{\sigma}(\mathbf{x}), 1 - f_{\sigma}(\mathbf{x})]$$

- Generalización de la sigmoide
- Produce estimación de probabilidad
- Se satura
- Las derivadas desaparecen

Softmax + cross entropy

 $\ell_{\text{CE}}(f_{\text{sm}}(\mathbf{x}), \mathbf{t}) = -\sum_{j=1}^{k} \mathbf{t}_{j} \log[f_{\text{sm}}(\mathbf{x}_{j})] = -\sum_{j=1}^{k} \mathbf{t}_{j} [\mathbf{x}_{j} - \log \sum_{l=1}^{k} e^{\mathbf{x}_{l}}]$

- Numéricamente estables
- Equivalente al modelo de regresión logística multinomial
- Muy utilizada en clasificación y
 RL

Redes de dos capas

El ejemplo I

El ejemplo II

El ejemplo III

El ejemplo IV

Para ver más

Aprendizaje en línea

Batch

$$\theta_{k+1} = \theta_k + \eta \sum_{i=1}^n x_i^T (y_i - x_i \theta_k)$$

Online

$$\theta_{k+1} = \theta_k + \eta x_k^T (y_k - x_k \theta_k)$$

• Mini-batch

$$\theta_{k+1} = \theta_k + \eta \sum_{i=1}^{20} x_i^T (y_i - x_i \theta_k)$$

Teorema de aproximación universal

- Para cualquier función continua desde un hipercubo [0,1]^d a los números reales, y para cualquier épsilon positivo, existe una red neuronal basada en sigmoide con una capa oculta que obtiene a lo más un error épsilon en el espacio de funciones
- Redes grandes puede aproximar pero no representar cualquier función suave

Intuición

Hace 20 años...

- Solo se utilizaba una capa adicional al modelo de regresión logística
- El enfoque estaba en optimización convexa
- Uso de pocos datos

A Long Time Ago

Redes neuronales profundas

Rectified Linear Unit (ReLU)

- Una de las funciones más utilizadas
- Las derivadas no desaparecen
- Puede ocurrir que neuronas mueran
- Técnicamente no es diferenciable en 0

$$f_{\text{relu}}(\mathbf{x}) = \max(0, \mathbf{x})$$

$$f_{\rm sp}(\mathbf{x}) = \log(1 + e^{\mathbf{x}})$$

Un ejemplo

Grafos computacionales

Aprendizaje

Modelo de composición

- Se necesitan 3 funciones
 - Forward
 - Backward
 - Derivada
- ¿Como componer las capas?
 - Secuencial
 - Recursivas
 - Redes

Redes neuronales profundas

Indicadores de que tan bueno es nuestro clasificador

El sesgo y la varianza

Para la otra vez...

• Aprendizaje no supervisado

