Задача 2.3

- $(x,x) \in \stackrel{\alpha}{=}$
- $(A,A) \in \stackrel{\alpha}{=}$
- ako $(A_1, A_2) \in \stackrel{\alpha}{=}$, to $(A_2, A_1) \in \stackrel{\alpha}{=}$
- ако $(A_1, A_2) \in \stackrel{\alpha}{=}$ и $(A_2, A_3) \in \stackrel{\alpha}{=}$, то $(A_1, A_3) \in \stackrel{\alpha}{=}$
- ако $(A_1, B_1) \in \stackrel{\circ}{=}$ и $(A_2, B_2) \in \stackrel{\circ}{=}$, то $(A_1B_1, A_2B_2) \in \stackrel{\circ}{=}$
- Нека имаме $M = \lambda_x A$, $N = \lambda_y B$. Ако $x \notin FV(B)$ и $(A, B[y \leadsto x]) \in \stackrel{\alpha}{=}$, то $(M, N) \in \stackrel{\alpha}{=}$ (тук \leadsto е наивна субституция)

Задача 2.1

(1)

Ще напрваим индукция по дефиницията на частичната субституция.

- 1. $M \equiv x$. В този случай $M[x \leadsto N] \equiv N$ и $M[x \hookrightarrow N] \equiv N$.
- 2. $M \equiv y, y \not\equiv x$. В този случай $M[x \leadsto N] \equiv y$ и $M[x \hookrightarrow N] \equiv y$.
- 3. $M \equiv M_1 M_2$. Тогава $M[x \leadsto N] = (M_1[x \leadsto N])(M_2[x \leadsto]N)$ и $M[x \hookrightarrow N] = (M_1[x \hookrightarrow N])(M_2[x \hookrightarrow N])$. От ИП $(M_1[x \leadsto N]) \equiv (M_1[x \hookrightarrow N])$ и $(M_2[x \leadsto N]) \equiv (M_2[x \hookrightarrow N])$. Също от ИП знаем, че двете частични субституции са дефинирани. Така получаваме, че $M[x \leadsto N] \equiv M[x \hookrightarrow N]$, а също сме и сигурни, че $M[x \hookrightarrow N]$ е дефинирано.
- 4. $M=\lambda_x P$. Тогава $M[x\leadsto N]\equiv \lambda_x P$ и $M[x\hookrightarrow N]\equiv \lambda_x P$, така получаваме, че $M[x\leadsto N]\equiv M[x\hookrightarrow N]$.
- 5. $M = \lambda_y P$ за $y \not\equiv x$. Ясно е, че ако частичната субституция е дефинирана в този случай, то резултатите от двете субституции ще съпвадат. Това, което трябва да се покаже е, че частичната субституция е дефинирана в този случай. По-конкретно трябва да покажем, че $x \not\in FV(P)$ или $y \not\in FV(N)$. Ще използваме допускането от задачата, че $FV(N) \cap BV(M) = \{\}$.

От дефиницията на BV може да се види, че $y \in BV(M)$. Понеже $FV(N) \cap BV(M) = \{\}$, то излиза, че $y \notin FV(N)$. Това показва, че частичната субституция е дефинирана.

Също така от ИП имаме, че $P[x \hookrightarrow N] \equiv P[x \leadsto N]$, от което и получаваме, че $[x \hookrightarrow N] \equiv [x \leadsto N]$

(2)

Да разгледаме терма $M = \lambda_y \lambda_x y$. Искаме да направим субституция като заместим x с y. Забелязваме, че частичната субституция $M[x \hookrightarrow y]$ е дефинирана и дава $\lambda_y \lambda_x y$. Но наивната субституция не е коректна, понеже $BV(M) = \{x,y\}$, а $FV(N) = \{y\}$ (тук N е y) и съответно нямат празно сечение.

Задача 2.5

Искаме да намерикм $M' \stackrel{\cong}{=} M$, такова, че $M'[x \rightsquigarrow N]$ да коректна, тоест $FV(N) \cap BV(M') = \{\}$. Нека вземем множеството $FV(N) \cap BV(M) = \{x_1x_2,...,x_n\}$. Можем да изберем произволни $\{z_1,z_2,...,z_n\}$ извън $FV(N) \cup BV(M)$ (променливите са безкрайно много). Така можем да заместим x_i със z_i . По-конкретно $M' \equiv M[x_1 \leadsto z_1][x_2 \leadsto z_2]...[x_n \leadsto z_n]$. Сигурни сме, че така ще сменим само свързани променливи, понеже според конвенцията свободните и свързаните променливи нямат сечение и така можем да сме сигурни, че $M' \stackrel{\cong}{=} M$.

Задача ???

Нека дефинираме $c_i = \lambda_n n c_s c_0$

- 1. Да се докаже, че за произволно $n \in \mathbb{N}$ е изпълнено $c_i c_n \stackrel{\beta}{=} c_n$.
- 2. Вярно ли е, че $c_i \stackrel{\beta\eta}{=} I$?

1

Ще докажем твърдението с индукция $n \in \mathbb{N}$. Преди това ще забележим, че $c_i c_n \stackrel{\beta}{=} c_n c_s c_0 = (\lambda_f \lambda_x f^n x) c_s c_n \stackrel{\beta}{=} c_s^n c_0$.

База

При n=0 имаме, $c_i c_0 \stackrel{\beta}{=} = c_0 c_s c_0 = (\lambda_f \lambda_x x) c_s c_0 \stackrel{\beta}{=} c_0$, с което базата е доказана.

Индуктивна стъпка

Нека се опитаме да докажем твърдението за n+1. $c_ic_{n+1} \stackrel{\beta}{=} c_{n+1}c_sc_0 = (\lambda_f\lambda_x f^{n+1}x)c_sc_0 \stackrel{\beta}{=} c_s^{n+1}c_0$. Използваме дефиницията за n-кратна композиция на функция и записваме, че $c_s^{n+1}c_0 = c_s(c_s^nc_0)$. От наблюдението горе се сещаме, че $c_s(c_s^nc_0) \stackrel{\beta}{=} c_s(c_ic_n)$. От ИП можем да запишем, че $c_s(c_ic_n) \stackrel{\beta}{=} c_sc_n$. Сега от свойствата на c_s получаваме, че $c_sc_n = c_{n+1}$. По този начин индуктивната стъпка е завършена.

2

Нека разгледаме $K = \lambda_x \lambda_y x$. Нека приложим K на c_i и на I. $IK \stackrel{\beta}{=} K = A_1$. От друга страна $c_i K \stackrel{\beta}{=} K c_s c_0 \stackrel{\beta}{=} c_s = A_2$. Използваме дефиницията за c_s от лекции $c_s = \lambda_n \lambda_f \lambda_x f(nfx)$. Вижда се, че A_1 и A_2 са два фундаментално различни обекта, понеже ако приложим променлива a към A_1 получаваме $A_1 a = K a \stackrel{\beta}{=} \lambda_y a$, което е константа функция, а ако се опитаме да приложим променливата a към A_2 ще се получи грешка, понеже $A_2 a \stackrel{\beta}{=} \lambda_f \lambda_x f(afx)$. Това няма как да е валидно, понеже изисква a да бъде функция.

Задача ????

В тази задача ще използваме наготово аритметиката с нумералите на Church като ще приемем, че имаме работещи основни аритметични функции за числата, както и за тяхното представяне. За момента ще покажем минимизация само за обикновени функции от вида $f: \mathbb{N} \to \mathbb{N}$. Тоест няма да имаме "константни аргументи".

Нека разгледаме терма $\Gamma = \lambda_F \lambda_f \lambda_y (c = (f \ y) c_0) y (Ff(c_s \ y))$. Тук функцията c_s дава следващото число, тоест $c_s c_x \stackrel{\beta}{=} c_{x+1}$. От сега нататък приемаме, че искаме да минимизираме функцията $f_1 \in \Lambda$. Приемаме, че тя има следната семантика $f_1 c_x \stackrel{\beta}{=} c_y \iff f_2(x) = y$. Термът който ще минимизира f_1 ще бъде $s_1 := Y \Gamma f_1$. Ще докажем, че нашия терм s_1 има се-

мантиката на функцията
$$s_2(x) = \begin{cases} x & f_2(x) = 0 \\ s_2(x+1) & \exists y > x : f_2(y) = 0 \end{cases}$$
 недефинирана $\exists y > x : f_2(y) = 0$

(тоест, че $s_1c_x \stackrel{\beta}{=} c_y \iff s_2(x) = y$). Също и ще покажем, че функцията s_2 всъщност извършва минимизацията на f_2 .

Случай 1:
$$f_1c_x \stackrel{\beta}{=} c_0 \iff f_2(x) = 0$$

Трябва да покажем, че $s_1c_x \stackrel{\beta}{=} c_x$. $s_1c_x \equiv (Y\Gamma f_1)c_x \equiv ((\lambda_f(\lambda_x f(xx))(\lambda_x f(xx)))\Gamma f_1)c_x \stackrel{\beta}{=} (((\lambda_x \Gamma(xx))(\lambda_x \Gamma(xx)))f_1)c_x \stackrel{\beta}{=} \Gamma((\lambda_x \Gamma(xx))(\lambda_x \Gamma(xx)))f_1c_x$. Нека $\Delta := ((\lambda_x \Gamma(xx))(\lambda_x \Gamma(xx)))$. Тогава $\Gamma((\lambda_x \Gamma(xx))(\lambda_x \Gamma(xx)))f_1c_x$ $\Gamma \Delta f_1c_x \equiv \lambda_F \lambda_f \lambda_y (c = (f y)c_0)y(Ff(c_s y))\Delta f_1c_x \stackrel{\beta}{=} (c = (f_1 c_x)c_0)c_x(\Delta f_1(c_s c_x))$.

 $\Gamma \Delta f_1 c_x = \lambda_f \lambda_f \lambda_y (c - (f y)c_0) g(\Gamma f(c_s y)) \Delta f_1 c_x - (c - (f_1 c_x)c_0) c_x (\Delta f_1(c_s c_x)).$ От допускането можем да презапишем този израз като $(c = c_0 c_0) c_x (\Delta f_1(c_s c_x)) \stackrel{\beta}{=} c_t c_x (\Delta f_1(c_s c_x)) \stackrel{\beta}{=} c_x.$ По този начин довършваме случая.

Случай 2: $f_1c_x \neq c_0 \iff f_2(x) \neq 0$ и $s_2(x)$ е дефинирано

В този случай трябва да покажем, че $s_1c_x \stackrel{\beta}{=} s_1c_{x+1}$. По-късно ще видим като доказваме коректността на функцията s_2 , че s_1c_{x+1} ще бъде λ -определимо. Подобно на миналия случай започваме да правим β -редукции $s_1c_x \equiv (Y\Gamma f_1)c_x \stackrel{\beta}{=} \dots \stackrel{\beta}{=} (c=(f_1\ c_x)c_0)c_x(\Delta f_1(c_s\ c_x))$. От предположението знаем, че този израз е β -еквивалентен на $c_fc_x(\Delta f_1(c_s\ c_x)) \stackrel{\beta}{=} \Delta f_1(c_s\ c_x) \equiv ((\lambda_x\Gamma(xx))(\lambda_x\Gamma(xx)))f_1(c_s\ c_x) \stackrel{\beta}{=} Y\Gamma f_1(c_s\ c_x) \stackrel{\beta}{=} Y\Gamma f_1c_{x+1} \equiv s_1c_{x+1}$. Така доказахме случая.

Случай 3: $s_2(x)$ не е дефинирано

Тук трябва да покажем, че s_1c_x няма нормална форма.