

Ingeniería Informática, 26-1-2009

Temas 2 y 3

Cálculo para la Computación

DNI:	Grupo:
Apellidos y Nombre:	

- 1. (2,5 p.) Consideramos la función $f(x) = \operatorname{tg}(x/2)$.
 - a) Represente la función $f(x)=\operatorname{tg}(x/2)$ en el plano cartesiano XY y en el intervalo $(-\pi,\pi)$.
 - b) Estudie si la curva polar $r=f(\theta),\, \theta\in(-\pi,\pi)$, tiene asíntotas. Indicación: para los cálculos, tenga en cuenta que $\sin\theta=2\sin\frac{\theta}{2}\cos\frac{\theta}{2}$.
 - c) Dibuje la curva polar r=f(heta), $heta\in(-\pi,\pi)$.
- 2. (2,5 p.) Consideramos el campo $f(x,y) = 8y^2 12xy 6y 8x^2 + 2x + 2$:
 - a) Describa las curvas de nivel de f(x, y).
 - b) Halle todos los elementos necesarios para dibujar la curva o curvas de nivel asociadas al valor 1, es decir, f(x,y)=1.
- 3. (2,5 p.) Consideramos el campo $f(r,t)=t^n\exp(-r^2/4t)$:
 - a) Halle $rac{\partial f}{\partial t}$ y $rac{\partial f}{\partial r}$
 - b) Halle $rac{\partial}{\partial r}\left(r^2\cdotrac{\partial f}{\partial r}
 ight)$
 - c) Halle un valor de la constante n para que f satisfaga la siguiente ecuación

$$r^2 \cdot rac{\partial f}{\partial t} = rac{\partial}{\partial r} \left(r^2 rac{\partial f}{\partial r}
ight)$$

- 4. $(2.5 \; extsf{p.})$ Consideramos el campo $f(x,y)=3x^2+y^2$
 - a) Para cada punto (x,y), ¿cuál es la dirección sobre la cual la tasa de cambio puntual de f es máxima?
 - b) Para cada punto (x,y), ¿cuál es el valor máximo de la tasa de cambio puntual de f?
 - c) Utilice el método de los multiplicadores de Lagrange para determinar en qué puntos de la circunferencia $x^2+y^2=1$, la tasa de cambio puntual hallada en el punto anterior es máxima.

NO SE PUEDE UTILIZAR CALCULADORA