可控放大器 (I题)

【高职高专组】

一、任务

设计并制作一个可控放大器,其组成框图如图 1 所示。放大器的增益可设置;低通滤波器、高通滤波器、带通滤波器的通带、截止频率等参数可设置。

图 1 可控放大器组成框图

二、要求

1. 基本要求

- (1) 放大器输入正弦信号电压振幅为 10mV, 电压增益为 40dB, 通频带为 100Hz~40kHz, 放大器输出电压无明显失真。
- (2) 滤波器可设置为低通滤波器,其-3dB 截止频率 f_c 在 1kHz \sim 20kHz 范围内可调,调节的频率步进为 1kHz, $2f_c$ 处放大器与滤波器的总电压增益不大于 30dB, R_c =1k Ω 。
- (3) 滤波器可设置为高通滤波器,其-3dB 截止频率 f_c 在 1kHz \sim 20kHz 范围内可调,调节的频率步进为 1kHz,0. 5 f_c 处放大器与滤波器的总电压增益不大于 30dB, R_c =1k Ω 。
- (4) 截止频率的误差不大于 10%。
- (5) 有设置参数显示功能。

2、发挥部分

- (1) 放大器电压增益为 60dB,输入正弦信号电压振幅为 10mV,增益 10dB 步进可调,通频带为 100Hz~100kHz。
- (2)制作一个带通滤波器,中心频率 50kHz,通频带 10kHz,在 40kHz 和 60kHz 频率处,要求放大器与带通滤波器的总电压增益不大于 45dB。
- (3) 上述带通滤波器中心频率可设置,设置范围 40kHz~60kHz,步进为 2kHz。
- (4) 电压增益、截止频率误差均不大于5%。
- (5) 其他。

三、说明

- 1. 正弦输入信号由信号源提供。
- 2. 放大器输出端应留测试端子。
- 3. 设计报告正文应包括系统总体框图、核心电路原理图和主要的测试结果。完整的电路原理图、重要的源程序和完整的测试结果可用附件给出。

四、评分标准

	项目	满分
	系统方案	4
	理论分析与计算	3
设计	电路设计	4
报告	测试方案与测试结果	5
	设计报告结构及规范性	4
	总分	20
基本	分 匹生1/佐宁	50
要求	实际制作完成情况	50
	完成第(1)项	15
	完成第(2)项	14
发挥	完成第(3)项	10
部分	完成第(4)项	6
	其他	5
	总分	50