Introduction to Scientific Computing II

Amir Farbin

A Data Science BS Degree

- The Degree Proposal has been in progress for 3 years.
- Approved by Texas Higher Education Coordinating Board (October 22)
 - Full program launch Fall 2021.
- Courses available since Fall 2018.
- Minor define Fall 2020.
- Unique Degree
 - Undergraduate
 - Most programs are professional masters or PhD.
 - Within College of Science
 - Most are in Computer Science or Business
 - Requires concentration and Capstone Project
- Aim to prepare students:
 - Entry-level Data Science jobs
 - Better Science Research
 - Undergraduate
 - · Better positioned for Graduate School
 - Stronger Application
 - Start on research quicker

The UTA Data Science faculty

https://www.uta.edu/science/data-science/

The Challenge

- Practicing Data Science requires
 - Coding
 - Math (e.g. Statistics)
 - Domain expertise (e.g. physics, biology, ...)
- Each of these areas can be a degree onto itself...
 - Usually people come into data science from one of these areas.
- Challenge: Start with a University Freshman with no preparation.

The Courses

- Note courses are being renumbered/renamed for Fall 2021. Pending UCC approval:
 - **DATA 1301** Introduction to Data Science
 - DATA 3401 (formerly 1401) -- Python for Data Science 1
 - DATA 3402 (formerly 1402) -- Python for Data Science 2
 - DATA 3421 (formerly 3401) -- Data Mining, Management, and Curation
 - DATA 3441 (formerly 3402) -- Statistical Methods for Data Science 1
 - DATA 3442 (formerly 3403) -- Statistical Methods for Data Science 2
 - DATA 3461 (formerly 3404) -- Machine Learning
 - **DATA 4380** (formerly 4301) -- Data Problems
 - DATA 4381 (formerly 4302) -- Data Capstone Project 1
 - DATA 4382 (formerly 4303) -- Data Capstone Project 2
- Major: core + these courses + 2 math courses (and calculus I)
- Minor: ~ 5 courses

Logistics

- Lectures: Tuesday/Thursday 2-3:20
- **Lab** (50%) Friday
- 2 Stages:
 - Pre-spring break: Like Data 1401
 - ~4 Labs, each taking ~2 weeks
 - 50% of grade
 - Post-spring break: Projects/Presentations
 - Project in 4 steps: proposal, feasibility, prototype, production
 - One presentation at each step.
 - Details TBA.
 - 50% of grade

Logistics (2)

- Homework Policy
 - You can work with others, but do not copy/paste code from another student.
 - Submitted via git (Version Control System).
- Help
 - Clinic: We usually run a clinic where students can ask for help... wasn't effective virtually.
 - Will run a poll to determine optimal time for an additional help session.
 - Office Hours: I'll generally be available after every classes session.
- Laptop (with a physical keyboard).
 - Highly recommended to have a laptop for this class
 - Doesn't matter what OS you run... all you need is a browser.
 - If you don't have a laptop, you can rent one. Details ...
- First lab will be this Friday (1/22)

Course Plan

- Before Spring Break (~ 8 Weeks)
 - Setting up
 - Platforms: Linux, Windows, Mac
 - Unix Review
 - PyPi
 - Virtual Environment
 - Containers
 - Review of 1401
 - Pandas
 - numpy
 - Matplotlib
 - Advanced Python
 - Decorators
 - Computation
 - Mutli-treading/multi-processing
 - TensorFlow/PyTorch as computation engines
 - Packages/Projects
 - Sympy
 - SciPy
 - SciKit
 - SciKit-learn
 - Statistical Inference
 - Statistical Modeling
 - Parameter Estimation
 - Regression
 - Maximum Likelihood
 - Confidence Intervals
 - Monte Carlo
 - Machine Learning
 - Classification
 - Performance Measures
 - Deep Learning
 - Problem Formulation
 - Map Reduce

- After Spring Break
 - Kaggle
 - Project
 - Proposal
 - Feasibility
 - Prototype
 - Production
 - Software Development
 - Waterfall vs Agile

Introduce Yourself

- Your UTA Degree
 - What is your major?
 - What year?
 - When will you graduate?
- Interests
 - Is there a specific scientific or professional field?
 - Have you done any research?
 - Any hobbies, etc, that you can apply DS to?
- Your goals
 - What's next (job, grad school)?
 - How can this course help?
- Your setup
 - What kind of computer? (Windows, Mac, Linux)
- Anything else...