Questions and Answers *

Alexandre Gaillard TOULOUSE SCHOOL OF ECONOMICS (M2 ETE)

Macro 2017

Here all (I hope) detailed answers to your questions and doubts during the sessions. If you have other questions, contact me.

1 Session 1

Recall: When time is discrete and time period is 1, growth rate is $\gamma_k = \frac{\partial log(k_t)}{\partial k_t} = \frac{log(k_{t+1}) - log(k_t)}{1} = log(\frac{k_{t+1}}{k_t})$. As for small a, we have $log(a) \approx a - 1$, then $\gamma_k = \frac{k_{t+1}}{k_t} - 1$.

Uniqueness before stability? You can have more than one stable fixed point.

Steady state: confusion Q3 - Q4 In question 3, we found $\gamma_k = \frac{s+1-\delta}{1+n} - 1 = \frac{s-(n+\delta)}{1+n}$. A constant growth rate implies that $s > n+\delta$ such that $\{k_t\}_{t=0}^{\infty}$ is unbounded. In that case: there is no steady state value for k_t (there is no value of k_t such that $\Delta k_{t+1} = 0$ except if $k_t = 0$). If $s < n+\delta$, then $\gamma_k < 0$ and the economy converges to a steady state $\bar{k} = 0$ (which is stable).

In question 4, we found two possible equilibriums, $k_t^1 = 0$ and k_t^2 , but we do not restrict on the case $\alpha + \beta = 1$. The fact that we found two steady states comes from the fact that the "investment" curve cross one time the depreciation line.

Recall: balanced growth path is an economy where variables grow at a constant rate, here K_t and L_t are at a balanced growth path whereas k_t is a steady-state (in volume, it does not move).

Finally, bellow figures which summarize all of this:

Homogeneity of the value function How do we get $v(\alpha A, \alpha Y) = \alpha^{1-\theta} v(A, Y)$ from

$$v(\alpha A, \alpha Y) = \max_{0 \leq \tilde{A}' \leq RA + Y} \frac{\alpha^{1-\theta}}{1-\theta} (A + Y/R - \tilde{A}'/R)^{1-\theta} + \beta v(\alpha \tilde{A}', \mu \alpha Y)$$

^{*}Corresponding author: alexandre.gaillard@tse-fr.eu.

Fig. 1. case where $\alpha + \beta = 1$

Fig. 2. case where $\alpha + \beta > 1$ or < 1

One answer could be to use a guess and verify approach. If we suppose $v(\alpha A, \alpha Y) = \alpha^{1-\theta}v(A, Y)$, then:

$$\alpha^{1-\theta}v(A,Y) = \max_{0 \leq \tilde{A}' \leq RA+Y} \frac{\alpha^{1-\theta}}{1-\theta} (A+Y/R-\tilde{A}'/R)^{1-\theta} + \beta \alpha^{1-\theta}v(\tilde{A}',\mu Y)$$

Dividing everything by $\alpha^{1-\theta}$ yields

$$v(A, Y) = \max_{0 \leq \tilde{A}' \leq RA + Y} \frac{1}{1 - \theta} (A + Y/R - \tilde{A}'/R)^{1 - \theta} + \beta v(\tilde{A}', \mu Y)$$

So that it is indeed homogeneous of degree $1 - \theta$.