

#### Creator/PreSOC-PXA270 實驗模組

Lab Unit 04 – UART & Interrupt

教育部顧問室嵌入式軟體聯盟 http://esw.cs.nthu.edu.tw

#### Summary Version 1.0.50 Unit Code Lab-PXA270-04-UART&Interrupt Ver./Date 2012-11-15 Non-OS 進階 Category Unit Title Creator PreSOC/PXA270 UART & Interrupt (1)瞭解Creator PXA270 EVM之UART運作與程式設計 Tasks (2)熟悉Creator PXA270 EVM應用Interrupt機制控制UART之程式設計 ■ MicroTime Creator-PXA270 EVM & Power Supply Hardware RS232 Null Modem Cable RJ45 Cable Resources Cygwin與ARM toolchains for PXA270 Software ■ Host連線程式:超級終端機 or putty TFTP Server (A) Introduction - 20 minutes (B) Demonstration - 15 minutes Timing (C) Hands-on Practicing - 30 minutes (D) Exercises- 45 minutes Duty T. A.



# 嵌入式軟體設計與實習

- Creator/PreSOC-PXA270 Lab-U04
  - ◆Introduction to this Lab Practicing Unit
  - Demonstration
  - → Hands-on Practicing
  - Exercises
  - → References and Further Reading

# 嵌入式軟體設計與實習

- Creator/PreSOC-PXA270 Lab-U04
  - ✓Introduction to this Lab Practicing Unit
  - → Demonstration
  - → Hands-on Practicing
  - **→** Exercises
  - → References and Further Reading





- ❖ 資料傳輸類型
  - ▶以使用的時脈分為同步與非同步傳輸
    - 同步傳輸 (synchronous communication)
      - 傳送與接收端使用共同的外部時脈信號
    - 非同步傳輸 (asynchronous communication)
      - 傳送與接收端個別使用自己的時脈信號
  - ⇒以資料的處理方式分為串列與並列傳輸
    - 並列傳輸 (parallel communication)
      - 一次傳輸多個位元,將一筆資料的多個位元一次傳送
      - 例:PC的印表機埠、Data Bus
    - 串列傳輸 (serial communication)
      - 一次傳輸一個位元,將一筆資料的多個位元依序傳送
      - 例: PC的COM port、USB



5

#### Introduction

#### ❖ 通訊傳輸用詞

- ▶ 鮑率 (Baud Rate)
  - ■資料通訊之單位,表每秒傳輸的symbol數量
  - ■若1個bit為1個symbol,鮑率等同位元率(一秒傳輸位元數)
  - PXA270鮑率等同於位元率
  - PXA270 U-boot程式預設鮑率為9600 Baud (bps)

#### UART

- ◆ Universal Asynchronous Receiver/Transmitter
- 為將序列傳輸與並列傳輸所用資料格式作傳輸轉換的電腦硬體
- ◆ 常用通訊標準介面有 RS-232、RS-422等



6

### Introduction

❖ UART傳輸資料格式

Start

Data 0

Data 1

... Data N

Parity

Stop

- ➡ 開始位元 (Start Bit)
  - ■通知一次封包傳輸的開始,為邏輯0
- ➡ 資料位元 (Data Bit)
  - ■傳輸時實際資料所在的區塊
  - ■資料位元個數可為5至8個,通常為7或8個
  - ■後面可選擇是否附上 Parity bit以作為簡單的錯誤檢查
- ➡ 結束位元 (Stop Bit)
  - ■通知一次封包傳輸完成,為邏輯1
  - 個數可有1或2個, 越多則不同時脈的同步化越具彈性





- ◆擁有可程式化的鮑率產生器
- **◆UART與CPU**的互動方式
  - Polling
  - Interrupt
- ●可產生多組中斷事件觸發
- ▶配備收發各可容納64字元之FIFO緩衝記憶體
- ▶ FIFO緩衝記憶體存取方式
  - 軟體 (polling、interrupt)
  - DMA (Direct Memory Access)
- ▶相容於 16550A / 16750工業標準



- ❖ PXA270 UART控制器
  - ➡ 三種UART控制器
    - FFUART (Full Function UART,全功能UART)
      - 支援數據機控制能力
      - 最大傳輸速率為 230.4 Kbps (bits/s)
    - BTUART (BlueTooth UART,藍芽UART)
      - 高速UART, 可與藍牙模組連接
      - 最大傳輸速率達 921.6 Kbps (bits/s)
    - STUART (Standard UART,標準UART)
      - 不支援數據機控制能力
      - 最大傳輸速率為 230.4 Kbps (bits/s)



9

### Introduction

#### ❖ PXA270 UART控制器

→UART控制器運作方塊圖





10

## Introduction



- ▶ PXA270 UART FIFO緩衝記憶體
  - 輸入FIFO共64×11位元
  - ■輸出FIFO共64×8位元
  - ■UART可選擇是否啟動FIFO
  - ■當啟動FIFO後,接收到的資料會先放至輸入FIFO內,欲傳送的資料則會先放至輸出FIFO中



- ▶ PXA270 UART控制暫存器
  - ■控制暫存器記憶體映對表
    - FFUART Base位址為 0x40100000

| UART Register Addresses<br>(Base + offset) | DLAB Bit Value | Register Accessed                    |
|--------------------------------------------|----------------|--------------------------------------|
| Base                                       | 0              | Receive Buffer (read-only)           |
| Base                                       | 0              | Transmit Buffer (write-only)         |
| Base + 0x04                                | 0              | Interrupt Enable (read/write)        |
| Base + 0x08                                | X              | Interrupt Identification (read-only) |
| Base + 0x08                                | X              | FIFO Control (write-only)            |
| Base + 0x0C                                | X              | Line Control (read/write)            |
| Base + 0x10                                | X              | Modem Control (read/write)           |
| Base + 0x14                                | ×              | Line Status (read-only)              |
| Base + 0x18                                | X              | Modem Status (read-only)             |
| Base + 0x1C                                | ×              | Scratch Pad (read/write)             |
| Base + 0x20                                | ×              | Infrared Selection (read/write)      |
| Base                                       | 1              | Divisor Latch Low (read/write)       |
| Base + 0x04                                | 1              | Divisor Latch High (read/write)      |





- ❖ PXA270 UART控制器
  - ▶ PXA270 UART控制暫存器
    - Receive Buffer Register (RBR)
      - 存放UART接收之資料
      - 啟動FIFO時, RBR會被寫入FIFO的頭一筆資料
    - Transmit Holding Register (THR)
      - 存放UART準備傳輸之資料
      - 啟動FIFO時,寫入THR的資料會放入FIFO的最末端
    - UART 鮑率 Divisor Latch Register (DL)
      - 作為UART鮑率產生器的除頻輸入,含DLH與DLL二Register
      - Divisor Latch Register High (DLH): 代表除頻輸入高8位元
      - Divisor Latch Register Low (DLL): 代表除頻輸入低8位元



13

## Introduction

#### ❖ PXA270 UART控制器

- → PXA270 UART控制暫存器
  - Line Status Register (LSR)
    - 顯示UART狀態
    - bit0 (DR)為 Data Ready,代表是否收到資料並存於RBR
    - 資料從RBR被讀取後,DR會恢復為 0

| 31-8     | 7     | 6    | 5    | 4  | 3  | 2  | 1  | 0  |
|----------|-------|------|------|----|----|----|----|----|
| Reserved | FIFOE | TEMT | DAGT | 18 | 34 | 34 | 30 | DR |



1.

#### Introduction



- ▶ PXA270 UART控制暫存器
  - Line Control Register (LCR)
    - 作資料傳輸設定
    - DLAB為 1可存取DLL與DLH, 0則可存取RBR與THR
    - WLS設定傳輸資料的長度,3為 8-bit資料

| 31-8     | 7    | 6  | 5     | 4   | 3   | 2   | 1 | 0   |
|----------|------|----|-------|-----|-----|-----|---|-----|
| Reserved | DLAB | SB | STKУР | EPS | PEN | STB |   | WLS |





- ▶ PXA270 UART控制暫存器
  - Interrupt Identification Register (IIR)
    - 顯示UART中斷的類型
    - nIP為0代表有interrupt等待處理,1代表沒有
    - FIFOES為3代表有啟動FIFO,0代表未啟動FIFO
    - IID為1代表資料傳送中斷,2代表資料接收中斷

| 31-8     | 7 | 6      | 5   | 4   | 3   | 2 | 1      | 0   |
|----------|---|--------|-----|-----|-----|---|--------|-----|
| Reserved |   | riroes | EOC | ABL | ТОБ |   | A<br>H | nIP |



- ❖ PXA270 UART控制器
  - → PXA270 UART控制暫存器
    - Interrupt Enable Register (IER)
      - 控制UART interrupt的啟動設定
      - RAVIE決定資料接收中斷能否被觸發
      - TIE決定資料傳送中斷是否能被觸發,在THR被寫入或IIR被 請取後會被清為0
      - RTOIE致能 FIFO receive time-out interrupt
      - UUE為1代表UART可使用,0則為不可使用

| 31-8     | 7    | 6   | 5    | 4     | 3   | 2    | 1   | 0     |
|----------|------|-----|------|-------|-----|------|-----|-------|
| Reserved | DMAE | UUE | NRZE | RTOIE | MIE | RLSE | TIE | RAVIE |



17

#### Introduction

#### ❖ PXA270 UART控制器

- ◆ PXA270 UART控制暫存器
  - FIFO Control Reigster (FCR)
    - 設定FIFO緩衝區暫存器之相關設定
    - TRFIFOE為1時,啟動FIFO (進入FIFO mode)
    - ITL設定觸發 UART Interrupt與DMA Request的 threshold

| 31 - 8   | 7 | 6 | 5   | 4     | 3   | 2       | 1       | 0       |
|----------|---|---|-----|-------|-----|---------|---------|---------|
| Reserved | Ī | 1 | BUS | TRAIL | TIL | RESETTF | RESETRF | TRFIFOE |



18

#### Introduction



- ▶鮑率產生器
  - 使用14.857MHz的時脈源
  - 以DLH與DLL產生鮑率值
- ◆自動鮑率偵測
- ➡ 手動調整鮑率
  - ■調整 DLH與 DLL暫存器
  - ■使用計算法計算鮑率
    - 計算公式 14.7456M / (16 \* (DLH@DLL)) (單位bps)
    - •實際鮑率 14.857MHz / (16 \* (DLH@DLL)) (單位bps)
    - 適用於28.8Kbps以上的鮑率。低於28.8Kbps的鮑率若實際產生鮑率與目標鮑率相差1%以上,傳輸會產生問題





- ▶ 手動調整鮑率
  - ■使用查表法決定鮑率

| Required<br>Frequency(MHz) | Required Baud<br>Rate | DLH@DLL | Actual Baud Rate | Actual<br>Frequency(MHz) |
|----------------------------|-----------------------|---------|------------------|--------------------------|
| 14.7456                    | 300                   | 3072    | 302              | 14.857                   |
| 14.7456                    | 1200                  | 768     | 1209             | 14.857                   |
| 14.7456                    | 2400                  | 384     | 2418             | 14.857                   |
| 14.7456                    | 4800                  | 192     | 4836             | 14.857                   |
| 14.7456                    | 9600                  | 96      | 9675             | 14.857                   |
| 14.7456                    | 19200                 | 48      | 19345            | 14.857                   |
| 14.7456                    | 38400                 | 24      | 38690            | 14.857                   |
| 14.7456                    | 57600                 | 16      | 58035            | 14.857                   |
| 14.7456                    | 115200                | 8       | 116070           | 14.857                   |



- ❖ PXA270 中斷控制器
  - ▶採用2階層中斷架構
    - Primary
      - 以 Processor Device為來源所發出的中斷
    - Secondary
      - 以周邊設備的內部事件為來源所發出的中斷
      - 多個 secondary source會應對至同一個primary source
      - UART控制器為一 primary source,其中有接收、傳輸等 secondary source
  - ➡中斷 Level分為 IRQ與 FIQ兩種
  - ▶中斷 mask決定中斷之觸發與否



21

## Introduction

- ❖ PXA270 中斷控制器
  - ▶ PXA270 Demo Code 中斷執行流程



#### Introduction



- **▶UART**中斷分為五種,觸發時以IIR判斷之
  - Receive Line Status Error Interrupt
    - 最高優先權 (優先權 0)
    - 當LSR有任何Error bit被設為1時觸發
  - Receive Data Interrupt
    - 次高優先權 (優先權 1)
    - 在未啟動FIFO時, RBR被寫入時觸發
    - 在啟動FIFO時,輸入FIFO內資料量到達threshold觸發
  - Receive Time-out Interrupt
    - 優先權2
    - 僅在啟動FIFO可觸發
    - 當有資料在輸入FIFO內,且最近一次接收與最久之前的讀取發生超過一定時間(4個資料接收的時間)



- ❖ PXA270 UART中斷
  - **◆UART**中斷分為五種,觸發時以IIR判斷之
    - Transmit Data Interrupt
      - 優先權 3
      - 啟動 FIFO時,輸出FIFO至少半空才可觸發
      - 未啟動FIFO時, THR已將前一筆資料送出才可觸發
    - Modem Interrupt
      - 最低優先權 (優先權4)
      - 不討論



# 嵌入式軟體設計與實習

- Creator/PreSOC-PXA270 Lab-U04
  - ◆Introduction to this Lab Practicing Unit
  - ✓ Demonstration
  - → Hands-on Practicing
  - **◆** Exercises
  - → References and Further Reading



25

### Demonstration

- The above operation procedures will now be demonstrated:
  - ◆ The operations and outcome messages at host computer will be broadcast to your computer.
  - ◆ The outcome on EVM will be shown at demo desk.
- ❖ Part A 程式說明
- ❖ Part B 下載程式碼與編譯
- ❖ Part C 超級終端機操作與執行程式



2

## Demonstration

- ❖ Part A 程式說明
  - ▶程式使用方式
    - ■本程式為將使用者所從鍵盤輸入或複製貼上至實驗板的 內容呈現在終端機上
    - ■程式分為 polling與 interrupt兩種模式,使用 ctrl + A鍵在兩模式之間做交換,切換之後螢幕會在新的一行顯示代表 Polling的 'P'或代表 Interrupt的 'l'
    - Interrupt模式中,每輸入一個文字,LCD上會顯示觸發中 斷的訊息

# Demonstration



- ●變數
  - FFLCR
    - 映對至FFUART的LCR
    - 資料型態: unsigned long (U32)、Macro
    - #define FFLCR (\*(volatile unsigned long\*)0x4010000C)
  - FFLSR
    - 映對至FFUART的LSR
    - 資料型態: unsigned long、Macro
    - #define FFLSR (\*(volatile unsigned long\*)0x40100014)





- ◆ Part A 程式說明
  - →變數
    - FFRBR
      - 在LCR的DLAB為0且被讀取時映對至FFUART的RBR
      - 資料型態: unsigned long、Macro
      - #define FFRBR (\*(volatile unsigned long\*)0x40100000)
    - FFTHR
      - 在LCR的DLAB為0且被寫入時映對至FFUART的THR
      - 資料型態: unsigned long、Macro
      - #define FFTHR (\*(volatile unsigned long\*)0x40100000)
      - 將資料存入後UART即會自動傳送



29

# Demonstration

- ❖ Part A 程式說明
  - ▶變數
    - FFDLL
      - 在LCR的DLAB為1時映對至FFUART的DLL
      - 資料型態: unsigned long、Macro
      - #define FFDLL (\*(volatile unsigned long\*)0x40100000)
    - FFDLH
      - 在LCR的DLAB為1時映對至FFUART的DLH
      - 資料型態: unsigned long、Macro
      - #define FFDLH (\*(volatile unsigned long\*)0x40100004)



30

## Demonstration

- ❖ Part A 程式說明
  - ●函數
    - int uart\_init()
      - 初始化UART軟體模組,使用其他UART函數前須呼叫此函數
      - 參數:無
      - 回傳: 0為初始化失敗, 1為初始化成功
    - int uart\_on(int channel, termios\_t \*termios)
      - 設定channel代表的UART控制器環境與註冊ISR
      - 參數:channel,UART控制器編號,UARTO為FFUART

UART1為BTUART UART2為STUART

termios, UART傳輸環境參數 (baud rate, etc.)

●回傳:1代表設置成功,0為參數錯誤



# Demonstration



- ▶函數
  - int uart\_put\_char(int channel, char ch)
    - 將單筆8-bit資料放至程式的傳送buffer內並觸發interrupt傳送
    - 参數: channel, UART控制器編號 ch, 欲傳送的資料
    - ●回傳:1代表傳送成功,O代表buffer溢位或參數錯誤
  - int uart\_put\_string(int channel, char\* pstring)
    - 將多筆8-bit資料放至程式的傳送buffer並觸發interrupt傳送
    - 參數: channel, UART控制器編號 pstring, 欲傳送的資料起始位址
    - ●回傳:1代表傳送成功,O代表buffer溢位或參數錯誤



- ❖ Part A 程式說明
  - ▶函數
    - int uart get char(int channel, char\* ch)
      - 讀取程式的接收buffer,並將讀取值存入ch中,接收buffer中的資料為透過interrupt傳入
      - 參數: channel, UART控制器編號

ch, 欲將讀取資料放置之處的記憶體位址

- ●回傳:1為讀取成功,O代表buffer是空的或參數錯誤
- int uart\_off(int channel)
  - 關閉channel所代表的UART控制器
  - 參數: channel, UART控制器編號
  - 回傳:1代表關閉成功,0為關閉失敗



33

# Demonstration

- ❖ Part A 程式說明
  - ▶函數
    - void serial\_isr(U16 irq, struct irq\_desc, void \*pVoid)
      - UART Interrupt的 ISR, ISR參數與回傳資料型態為固定格式
      - 參數: irq, ISR所註冊的interrupt 編號 desc, 註冊isr之相關 structure pVoid, 傳予此 ISR所使用的參數
      - 回傳: 無



34

## Demonstration

- ❖ Part A 程式說明
  - ▶程式流程
    - Polling







,

- ❖ Part B 下載程式碼與編譯
  - ▶執行 cygwin,做以下步驟
  - ▶1. 於 cygwin下進入本次實習的資料夾下
    - 鍵入「cd /usr/var/pxa270\_lab\_material/Lab04」
    - ■若以上目錄不存在,則將 pxa270\_lab\_material資料夾複製到「C:\cygwin\usr\var」目錄下再重複以上步驟
    - ■註:在 cygwin下鍵入第一個字母再按「tab鍵」會自動出現符合的目錄或檔案名稱,鍵入 ls 則顯示當下目錄的所有資料



37

### Demonstration

- ❖ Part B 下載程式碼與編譯
  - ▶ 2. 建立本次實習程式碼
    - 鍵入「./set\_env.sh」
  - ▶ 3. 檢查本次實習程式碼的檔案是否完整
    - 鍵入「./check\_file.sh」
  - ◆4. 進入資料夾 Code,此為本次實習程式碼所在 之目錄
    - 鍵入「cd Code」
  - ▶5. 進行編譯
    - 鍵入「make clean;make」
    - ■若程式沒有錯誤則會產生檔案「lab.bin」,若程式有錯誤則會有錯誤訊息顯示,修改後再進行步驟 5



38

#### **Demonstration**

- ❖ Part C -電腦端操作以執行程式
  - ▶ 1. 進入 Windows下的資料夾 C:\cygwin\usr\var\pxa270\_lab\_material\Lab04 \Code
  - ◆2. 設置好PXA270實驗板,先不要開啟電源,開啟「C:\TFTP」目錄下的「TFTPD.exe」
  - ▶3-A. 開啟與設定超級終端機
    - ■開始→所有程式→附屬應用程式→通訊→超級終端機
    - Win7使用者參照 3-B putty的設定操作



# Demonstration



▶3-A. 開啟與設定超級終端機







- ❖ Part C -電腦端操作以執行程式
  - ➡ 3-B. putty設定操作





41

### Demonstration

- ❖ Part C -電腦端操作以執行程式
  - ▶4. 下載編譯好的程式至實驗板上執行
    - (1) 開啟Creator PXA270電源
    - ■(2) 在超級終端機畫面按任意鍵停止倒數
    - ■(3) 在超級終端機畫面鍵入 printenv檢查環境變數 serverip=AAA.BBB.CCC.XXX ipaddr=AAA.BBB.CCC.YYY 兩個變數IP位址前三段須相同,最後一段不可相同

Ex: serverip=140.116.49.167 ipaddr=140.116.49.170

若原設定確認無誤,跳至步驟(7)



42

## Demonstration

- ❖ Part C -電腦端操作以執行程式
  - ▶4. 下載編譯好的程式至實驗板上執行
    - (4) 設定 serverip,設定的位址須與連接的電腦相同 鍵入「setenv serverip 電腦IP位址」
    - (5) 設定 ipaddr 鍵入「setenv ipaddr IP位址」
    - (6) 儲存設定的變數 鍵入「saveenv」
    - (7) 用 tftp將 lab.bin傳到 PXA270實驗板上 鍵入「tftp a0000000 lab.bin」
    - (8) 執行程式 鍵入「go a00000000」



# Demonstration

- ❖ Part C -電腦端操作以執行程式
  - ▶4. 下載編譯好的程式至實驗板上執行
    - 5. 執行結果
      - 鮑率設定為9600,複製26個字母
        "abcdefghijkImnopqrstuvwxyz" 至終端機,在 Polling與 Interrupt模式下貼上後所產生的結果

Load address: 0xa0000000 Loading: ######### done Bytes transferred = 48804 (bea4 hex) ## Starting application at 0xA0000000 ...

Pacegikmoprtvxz <sup>r</sup>

Iabcdefghijklmnopgrstuvwxyz Interrupt



## 嵌入式軟體設計與實習

❖ Creator/PreSOC-PXA270實驗模組-U04

Q&A





45

# 嵌入式軟體設計與實習

- Creator/PreSOC-PXA270 Lab-U04
  - ◆Introduction to this Lab Practicing Unit
  - Demonstration
  - √ Hands-on Practicing
  - **→** Exercises
  - → References and Further Reading



46

# Hands-on Practicing

- Based on the introduction and demo, please do the following practicing:
  - ▶Part A 擷取程式碼與編譯
  - ▶ Part B 下載與執行程式,並複製一段文字串在 Polling與Interrupt兩個模式分別貼上, 觀察產生的現象,試解釋其原因。

# 嵌入式軟體設計與實習

- Creator/PreSOC-PXA270 Lab-U04
  - → Introduction to this Lab Practicing Unit
  - Demonstration
  - → Hands-on Practicing
  - **√**Exercises
  - → References and Further Reading





# 嵌入式軟體設計與實習 Lab-U04

# **Exercises**



# 嵌入式軟體設計與實習

- Creator/PreSOC-PXA270 Lab-U04
  - ◆Introduction to this Lab Practicing Unit
  - Demonstration
  - Hands-on Practicing
  - Exercises
  - ✓ References and Further Reading



50

#### References



▶ 作者:新華電腦股份有限公司

▶ 出版:新華電腦股份有限公司







#### References



◆ 出版:Intel

▶ 參閱章節:第10章UART



# 嵌入式軟體設計與實習

❖ Creator/PreSOC-PXA270實驗模組-U04



# The End



53

