MAT0122 ÁLGEBRA LINEAR I FOLHA DE SOLUÇÃO

Nome: Gabriel Haruo Hanai Takeuchi Número USP: 13671636

Assinatura

Gabriel Haruo Hanai Takeuchi

Sua assinatura atesta a autenticidade e originalidade de seu trabalho e que você se compromete a seguir o código de ética da USP em suas atividades acadêmicas, incluindo esta atividade.

Exercício: E78 Data: 10/12/2022

SOLUÇÃO

Let's assume (because I have no idea how to prove it) the matrix $A \in \mathbb{R}^{m \times n}$ can be factored to be A = QR, where Q is an $m \times n$ column-orthogonal matrix and R is an invertible matrix. Let's initially consider the equation $AA^{intercal}$. As we assumed early, A = QR. We are going to use the fact that if A, B are matrices, then $(AB)^{\intercal} = B^{\intercal}A^{\intercal}$. Therefore,

$$AA^{\mathsf{T}} = (QR)(R^{\mathsf{T}}Q^{\mathsf{T}})$$

= QIQ^{T}
= QQ^{T}
= I [By the fact Q is orthonormal, as we've proven in exercise 77]