Stat 642 Spring 2022 - Solutions for Assignment 8

Problem 5. (12 points)

1.
$$C_1 = \mu_{11} - \mu_{14} - \mu_{31} + \mu_{34} = (\mu_{11} - \mu_{14}) - (\mu_{31} - \mu_{34})$$

- a. The contrast, C_1 is an **interaction contrast** because it is the difference between the first and third levels of F_1 of a contrast in the levels of F_2 .
- b. The contrast is **estimable** because all four μ_{ij} 's in the contrast have estimates from the data, $n_{ij} > 0$, with $\hat{\mu}_{ij} = \bar{y}_{ij}$.

2.
$$C_2 = \mu_{11} + \mu_{21} + \mu_{31} - \mu_{13} - \mu_{23} - \mu_{33} = (\mu_{11} + \mu_{21} + \mu_{31}) - (\mu_{13} + \mu_{23} + \mu_{33}) = \mu_{.1} - \mu_{.3}^*$$

- a. The contrast is a **Main Effect contrast** for F_2 consisting of the difference in the first and third levels of F_2 "averaged" over the levels of F_1 (with no data to estimate μ_{13}).
- b. The contrast is **not estimable** because $n_{13} = 0$ which makes μ_{13} non-estimable, \bar{y}_{13} was not observed in the data.

3.
$$C_5 = \mu_{11} - \mu_{14} + \mu_{21} - \mu_{24} + \mu_{31} - \mu_{34} = (\mu_{11} + \mu_{21} + \mu_{31}) - (\mu_{14} + \mu_{24} + \mu_{34}) = \mu_{.1} - \mu_{.4}^*$$

- a. The contrast is a **Main Effect contrast** for F_2 consisting of the difference in the first and fourth levels of F_2 "averaged" over the levels of F_1 (with no data to estimate μ_{24}).
- b. The contrast is **not estimable** because $n_{24} = 0$ which makes μ_{24} non-estimable, \bar{y}_{24} was not observed in the data..

Problem 6. (5 points)

a. Two contrasts which evaluate the Main Effect of F_1 , contrasts in levels of F_1 averaged over levels of F_2 :

Contrast	μ_{11}	μ_{13}	μ_{14}	μ_{22}	μ_{23}	μ_{24}	μ_{31}	μ_{33}	μ_{34}
C_1									
C_2	0	1	1	0	-2	-2	0	1	1

 $C_1 = (\mu_{11} + \mu_{13} + \mu_{14}) - (\mu_{31} + \mu_{33} + \mu_{34}) = \mu_{1.}^* - \mu_{3.}^*$ is comparing the 1 and 3 levels of factor F_1 averaged over the levels of factor F_2 but with the second level of factor F_2 , μ_{12} and μ_{32} missing from the averages.

 $C_2 = (\mu_{13} + \mu_{14}) - 2(\mu_{23} + \mu_{24}) + (\mu_{33} + \mu_{34}) = \mu_{1.}^* - 2\mu_{2.}^* + \mu_{3.}^*$ is a contrast in the means of the three levels of F_1 but with the 1 and 2 levels of F_2 missing from the averages.

The two contrasts C_1 and C_2 are orthogonal:

$$(1)(0) + (1)(1) + (1)(1) + (0)(0) + (0)(-2) + (0)(-2) + (-1)(0) + (-1)(1) + (-1)(1) = 0$$

b. Two contrasts which evaluate the Interaction between F_1 and F_2 , $F_1 \times F_2$, first comparing contrasts in levels of F_2 at two levels of F_1 and then comparing contrasts in levels of F_1 at two levels of F_2 :

Contrast	μ_{11}	μ_{13}	μ_{14}	μ_{22}	μ_{23}	μ_{24}	μ_{31}	μ_{33}	μ_{34}
C_3	1	1	-2	0	0	0	-1	-1	2
C_4	0	1	-1	0	-2	2	0	1	-1

 $C_3 = (\mu_{11} + \mu_{13} - 2\mu_{14}) - (\mu_{31} + \mu_{33} - 2\mu_{34})$ is comparing a contrast with coefficients (1,1,-2) in the 1, 3 and 4 levels of factor F_2 at the 1 and 3 levels of factor F_1

 $C_4 = (\mu_{13} - 2\mu_{23} + \mu_{33}) - (\mu_{14} - 2\mu_{24} + \mu_{34})$ is comparing a contrast (1,-2,1) in the 1, 2, and 3 levels of factor F_1 at the 3 and 4 levels of factor F_2

The two contrasts C_3 and C_4 are orthogonal:

$$(1)(0) + (1)(1) + (-2)(-1) + (0)(0) + (0)(-2) + (0)(2) + (-1)(0) + (-1)(1) + (2)(-1) = 0$$

Problem III. (30 points) Traffic Engineering Study:

- 1. Model: $y_{ijk\ell} = \mu + \alpha_i + \beta_j + I_{k(i)} + (\alpha\beta)_{ij} + (\beta I)_{jk(i)} + \gamma_\ell + (\alpha\gamma)_{i\ell} + (\beta\gamma)_{j\ell} + (\gamma I)_{\ell k(i)} + (\alpha\beta\gamma)_{ij\ell} + e_{ijk\ell}, i = 1, 2, 3, j = 1, 2, k = 1, 2, \ell = 1, 2, \text{ where}$
 - α_i is the fixed effect for signal type with $\alpha_3 = 0$
 - β_j is the fixed effect for level of traffic with $\beta_2 = 0$
 - γ_{ℓ} is the fixed effect for method of measuring with $\gamma_2=0$
 - $(\alpha \gamma)_{i\ell}$ is the fixed interaction effect between signal type and method of measuring with $(\alpha \gamma)_{3\ell} = 0$ and $(\alpha \gamma)_{i2} = 0$
 - $(\beta\gamma)_{j\ell}$ is the fixed interaction effect between level of traffic and method of measuring with $(\beta\gamma)_{2\ell}=0$ and $(\beta\gamma)_{j2}=0$
 - $(\alpha\beta\gamma)_{ij\ell}$ is the fixed interaction effect between signal type, level of traffic and method of measuring with $(\alpha\beta\gamma)_{3j\ell} = 0$, $(\alpha\beta\gamma)_{i2\ell} = 0$ and $(\alpha\beta\gamma)_{ij2} = 0$
 - \bullet $I_{k(i)}$ is the random effect due to intersection nested within signal type
 - $(\beta I)_{jk(i)}$ is the random effect due to interaction between intersection nested within signal type and traffic level
 - $(\gamma I)_{\ell k(i)}$ is the random effect due to interaction between intersection nested within signal type and method of measurement
 - $I_{k(i)}$, $(\beta I)_{jk(i)}$, $(\gamma I)_{\ell k(i)}$ and $e_{ijk\ell}$ are independent
 - $I_{k(i)} \sim iid \ N(0, \sigma^2_{I(S)}), \ (\beta I)_{jk(i)} \sim iid \ N(0, \sigma^2_{T*I(S)}), \ (\gamma I)_{\ell k(i)} \sim iid \ N(0, \sigma^2_{M*I(S)})$ and $e_{ijk\ell} \sim iid \ N(0, \sigma^2_e)$
 - Note that the error term $e_{ijk\ell}$ is equivalent to $I_{h(i)} \times (\beta \gamma)_{j\ell}$, that is, Error = I(S)*T*M
- 2. AOV Table From SAS-MIXED output: S=Signal Type, T=Traffic level, I=Intersection, M=Method

The SAS System

The Mixed Procedure

Model Information							
Data Set	WORK.DATA8						
Dependent Variable	Y						
Covariance Structure	Variance Components						
Estimation Method	Type 3						
Residual Variance Method	Factor						
Fixed Effects SE Method	Model-Based						
Degrees of Freedom Method	Containment						

Class Level Information						
Class	Levels	Values				
s	3	FPS				
м	2	PS PT				
T	2	NR R				
1	2	12				

Dimensions					
Covariance Parameters	4				
Columns in X	36				
Columns in Z	30				
Subjects	1				
Max Obs per Subject	24				

Number of Observations							
Number of Observations Read	24						
Number of Observations Used	24						
Number of Observations Not Used	0						

				Type 3 Analysis of Variance				
Source DF		Sum of Squares	Mean Square	Expected Mean Square	Error Term	Error DF	F Value	Pr > F
s	2	3143.023333	1571.511667	$ \begin{aligned} & Var(Residual) + 2 \ Var(M^*I(S)) + 2 \ Var(T^*I(S)) + 4 \ Var(I(S)) + Q(S,S^*T,S^*M,S^*M^*T) \end{aligned} $	MS(I(S))	3	2.30	0.2484
Т	1	236.881667	236.881667	Var(Residual) + 2 Var(T*I(S)) + Q(T,S*T,M*T,S*M*T)	MS(T*I(S))	3	7.37	0.0728
S*T	2	275.773333	137.886667	Var(Residual) + 2 Var(T*I(S)) + Q(S*T,S*M*T)	MS(T*I(S))	3	4.29	0.1318
М	1	96.000000	96.000000	Var(Residual) + 2 Var(M*I(S)) + Q(M,S*M,M*T,S*M*T)	MS(M*I(S))	3	3.00	0.1817
S*M	2	51.430000	25.715000	Var(Residual) + 2 Var(M*I(S)) + Q(S*M,S*M*T)	MS(M*I(S))	3	0.80	0.5255
M°T	1	31.740000	31.740000	Var(Residual) + Q(M*T,S*M*T)	MS(Residual)	3	7.61	0.0702
S*M*T	2	11.970000	5.985000	Var(Residual) + Q(S*M*T)	MS(Residual)	3	1.44	0.3652
I(S)	3	2053.050000	684.350000	$\label{eq:Var(Residual) + 2 Var(M*I(S)) + 2 Var(T*I(S)) + 4 Var(I(S))} Var(Residual) + 2 Var(M*I(S)) + 2 Var(T*I(S)) + 4 Var(I(S))$	MS(T*I(S)) + MS(M*I(S)) - MS(Residual)	5.2014	11.41	0.0101
T°I(S)	3	96.370000	32.123333	Var(Residual) + 2 Var(T*I(S))	MS(Residual)	3	7.71	0.0638
M*I(S)	3	96.015000	32.005000	Var(Residual) + 2 Var(M*I(S))	MS(Residual)	3	7.68	0.0641
Residual	3	12.505000	4.168333	Var(Residual)	1.			

Covariance Parameter Estimates										
Cov Parm	Estimate	Standard Error	Z Value	Pr Z	Alpha	Lower	Upper			
I(S)	156.10	140.00	1.11	0.2649	0.05	-118.30	430.49			
T*I(S)	13.9775	13.2242	1.06	0.2905	0.05	-11.9415	39.8965			
M*I(S)	13.9183	13.1763	1.06	0.2908	0.05	-11.9068	39.7435			
Residual	4.1683	3.4034	1.22	0.1103	0.05	1.3377	57.9484			

3. AOV (S-3, T-2, I=2, M-2)

SV	Q_S	Q_T	$\sigma^2_{I(S)}$	Q_{S*T}	$\sigma^2_{T*I(S)}$	Q_M	Q_{S*M}	Q_{T*M}	$\sigma^2_{M*I(S)}$	Q_{T*S*M}	σ_e^2
S	8	0	4	0	2	0	0	0	2	0	1
T	0	12	0	0	2	0	0	0	0	0	1
I(S)	0	0	0	0	2	0	0	0	2	0	1
S*T	0	0	0	4	2	0	0	0	0	0	1
T*I(S)	0	0	0	0	2	0	0	0	0	0	1
M	0	0	0	0	0	12	0	0	2	0	1
S*M	0	0	0	0	0	0	4	0	2	0	1
T*M	0	0	0	0	0	0	0	6	0	0	1
M*I(S)	0	0	0	0	0	0	0	0	2	0	1
S*T*M	0	0	0	0	0	0	0	0	0	2	1
Error	0	0	0	0	0	0	0	0	0	0	1

Source	df	EMS
S	2	$\sigma_e^2 + 2\sigma_{M*I(S)}^2 + 2\sigma_{T*I(S)}^2 + 4\sigma_{I(S)}^2 + 8Q_S$
T	1	$\sigma_e^2 + 2\sigma_{T*I(S)}^2 + 12Q_T$
I(S)	3	$\sigma_e^2 + 2\sigma_{M*I(S)}^2 + 2\sigma_{T*I(S)}^2 + 4\sigma_{I(S)}^2$
S*T	2	$\sigma_e^2 + 2\sigma_{T*I(S)}^2 + 4Q_{S*T}$
T*I(S)	3	$\sigma_e^2 + 2\sigma_{T*I(S)}^2$
M	1	$\sigma_e^2 + 2\sigma_{M*I(S)}^2 + 12Q_M$
S*M	2	$\sigma_e^2 + 2\sigma_{M*I(S)}^2 + 4Q_{S*M}$
T*M	1	$\sigma_e^2 + 6Q_{T*M}$
M*I(S)	3	$\sigma_e^2 + 2\sigma_{M*I(S)}^2$
S*T*M	2	$\sigma_e^2 + 2Q_{S*T*M}$
Error	3	σ_e^2
Total	23	

4. From AOV table above, we conclude there is significant evidence of an effect due to intersections nested within signal type but all other effects are not significant.

$$5. \ \, \hat{\sigma}_{I(S)}^2 = 156.10 \ (83.0\%); \quad \hat{\sigma}_{T*I(S)}^2 = 13.98 \ (7.4\%); \quad \hat{\sigma}_{M*I(S)}^2 = 13.92 \ (7.4\%); \quad \hat{\sigma}_e^2 = 4.17 \ (2.2\%),$$

Problem IV: (**30 points**) Factor A has 4 randomly selected levels, Factor B has 5 fixed levels, Factor C has 3 randomly selected levels at each level of Factor B (C is nested within B), and there are 6 EU's at each of the t=60 treatments:

1.

Source	DF	MS	Expected Mean Squares
A	3	24.5	$\sigma_e^2 + 6\sigma_{A*C(B)}^2 + 18\sigma_{A*B}^2 + 90\sigma_A^2$
В	4	19.7	$\sigma_e^2 + 6\sigma_{A*C(B)}^2 + 18\sigma_{A*B}^2 + 24\sigma_{C(B)}^2 + 72Q_B$
$A \times B$	12	8.9	$\sigma_e^2 + 6\sigma_{A*C(B)}^2 + 18\sigma_{A*B}^2$
C(B)	10	7.5	$\sigma_e^2 + 6\sigma_{A*C(B)}^2 + 24\sigma_{C(B)}^2$
$A \times C(B)$	30	6.8	$\sigma_e^2 + 6\sigma_{A*C(B)}^2$
Error	300	5.8	σ_e^2

2. Test for a significant AB interaction ($\alpha = 0.05$). Note that the AOV table is providing the MS, not SS for each source of variation.

Test $H_o: \sigma_{AB}^2 = 0$ vs $H_1: \sigma_{AB}^2 > 0$. Using the expected MS, we have the following test statistic:

$$F = \frac{MS_{AB}}{MS_{A*C(B)}} = \frac{8.9}{6.8} = 1.309 < 2.09 = F_{.05,12,30} \text{ and } p - value = 1 - pf(1.309,12,30) = .2644 > .05 \ \Rightarrow \ \frac{MS_{AB}}{MS_{A*C(B)}} = \frac{8.9}{6.8} = 1.309 < 2.09 = F_{.05,12,30} \text{ and } p - value = 1 - pf(1.309,12,30) = .2644 > .05 \ \Rightarrow \ \frac{MS_{AB}}{MS_{A*C(B)}} = \frac{8.9}{6.8} = 1.309 < 2.09 = F_{.05,12,30} \text{ and } p - value = 1 - pf(1.309,12,30) = .2644 > .05 \ \Rightarrow \ \frac{MS_{AB}}{MS_{A*C(B)}} = \frac{8.9}{6.8} = 1.309 < 2.09 = F_{.05,12,30} \text{ and } p - value = 1 - pf(1.309,12,30) = .2644 > .05 \ \Rightarrow \ \frac{MS_{AB}}{MS_{A*C(B)}} = \frac{8.9}{6.8} = 1.309 < \frac{MS_{AB}}{MS_{AB}} = \frac{8.9}{6.8} =$$

There is not significant evidence that $\sigma_{AB} > 0$

3. Test for a significant B main effect ($\alpha=0.05$): $H_o: \mu_1=\mu_2=\mu_3=\mu_4=\mu_5$ vs $H_1:$ difference in μ_i 's or equivalently, test $H_o: Q_B=0$ vs $H_1: Q_B\neq 0$ Examining the EMS' for Factor B with $Q_B=0$, there is no other EMS which matches it. Thus, we must create a linear combination of several MS's:

Let $M = MS_{AB} + MS_{C(B)} - MS_{AC(B)} = 9.6$. When $Q_B = 0, E[M] = E[MS_B]$, thus the appropriate test statistic is

 $F=\frac{MS_B}{M}=\frac{19.7}{9.6}=2.052$ with $p-value=pf(2.052,4,6.6942)=.1952>\alpha=.05\Rightarrow$ There is not significant evidence that $Q_B\neq 0$, that is, there is not significant evidence of a difference in the 5 treatment means associated with the levels of Factor B.

The df for the F-test are obtained from the Satterthwaite approximation are obtained as follows:

$$df_M = \frac{(9.6)^2}{\frac{(8.9)^2}{12} + \frac{(7.5)^2}{10} + \frac{(6.8)^2}{20}} = 6.6942$$

4. Compute the variance of the difference in treatment means for levels 1 and 2 of Factor B:

$$\begin{split} y_{ijkl} &= \mu + a_i + \beta_j + c_{k(j)} + (a\beta)_{ij} + (ac)_{ik(j)} + e_{ijkl} \Rightarrow \\ \bar{y}_{.1..} &= \mu + \bar{a}_{.} + \beta_1 + \bar{c}_{.(1)} + (\bar{a}\beta)_{.1} + (\bar{a}c)_{..(1)} + \bar{e}_{.1..} \\ \bar{y}_{.2..} &= \mu + \bar{a}_{.} + \beta_2 + \bar{c}_{.(2)} + (\bar{a}\beta)_{.2} + (\bar{a}c)_{..(2)} + \bar{e}_{.2..} \Rightarrow \\ Var[\bar{y}_{.1..} - \bar{y}_{.2..}] &= Var(\bar{c}_{.(1)} - \bar{c}_{.(2)}) + Var((\bar{a}\beta)_{.1} - (\bar{a}\beta)_{.2}) + Var((\bar{a}c)_{..(1)} - (\bar{a}c)_{..(2)}) + Var(\bar{e}_{.1..} - \bar{e}_{.2..}) \end{split}$$

Therefore, we have

$$Var[\bar{y}_{.1..} - \bar{y}_{.2..}] = \frac{2\sigma_{C(B)}^2}{3} + \frac{2\sigma_{AB}^2}{4} + \frac{2\sigma_{AC(B)}^2}{12} + \frac{2\sigma_e^2}{72}$$

$$= 2\left[\frac{24\sigma_{C(B)}^2 + 18\sigma_{AB}^2 + 6\sigma_{AC(B)}^2 + \sigma_e^2}{72}\right]$$

$$= \frac{2[EMS_{AB} + EMS_{C(B)} - EMS_{AC(B)}]}{72}$$

Provide an estimate of this variance and the degrees of freedom of the estimate.

$$\widehat{Var}[\bar{y}_{.1..} - \bar{y}_{.2..}] = \frac{2[MS_{AB} + MS_{C(B)} - MS_{AC(B)}]}{72} = \frac{2[8.9 + 7.5 - 6.8]}{72} = \frac{2[9.6]}{72} = 0.2667.$$

Using the Sattherwaite approximation: $df_M \approx \frac{(8.9+7.5-6.8)^2}{\frac{(8.9)^2}{12} + \frac{(7.5)^2}{10} + \frac{(6.8)^2}{30}} = 6.6942.$

5. Compute the value of Tukey-Kramer HSD with $\alpha=.05$ that would be used to determine which pairs of means across the levels of Factor B are different:

$$HSD = q_{(.05,t,\nu)}\sqrt{\frac{1}{2}\widehat{Var}(\hat{\mu}_1 - \hat{\mu}_2)} = q_{(.05,5,6.6942)}\sqrt{\frac{1}{2}\frac{2[MS_{AB} + MS_{C(B)} - MS_{AC(B)}]}{72}} = 5.1257\sqrt{\frac{9.6}{72}} = 1.87$$

where $q_{(.05,5,6.6942)} = qtukey(.95,5,6.6942) = 5.1257$ using the r-function qtukey.

Problem V. (23 points)

1. Factor A = Patients, have random effects, Factor B = Runs, with random effects and nested within Patients, and e-Tubes (error term);

model
$$y_{ijk} = \mu + a_i + b_{i(i)} + e_{ijk}$$
; $a = 5, b = 4, r = 2$:

DF	SV	σ_A^2	$\sigma^2_{B(A)}$	σ_e^2	EMS
4	A	8	2	1	$\sigma_e^2 + 2\sigma_{b(a)}^2 + 8\sigma_a^2$
15	B(A)	0	2	1	$\sigma_e^2 + 2\sigma_{b(a)}^2$
20	e(A,B)	0	0	1	σ_e^2

2. A is random, B is random and nested within A; C is random and nested within B; D is random and nested within C; a = 4, b = 3, c = 2, d = 3:

Model:
$$y_{ijk\ell} = \mu + a_i + b_{j(i)} + c_{k(i,j)} + d_{\ell(ijk)}$$
, $i = 1, 2, 3, 4, j = 1, 2, 3, k = 1, 2, \ell = 1, 2, 3$,

DF	SV	σ_A^2	$\sigma_{B(A)}^2$	$\sigma^2_{C(AB)}$	σ_e^2	EMS
3	A	18	6	3	1	$\sigma_d^2 + 3\sigma_{C(AB)}^2 + 6\sigma_{B(A)}^2 + 18\sigma_A^2$
8	B(A)	0	6	3	1	$\sigma_d^2 + 3\sigma_{C(AB)}^2 + 6\sigma_{B(A)}^2$
12	C(A,B)	0	0	3	1	$\sigma_d^2 + 3\sigma_{C(AB)}^2$
48	D(A,B,C)	0	0	0	1	σ_d^2

3. A,B,D are fixed, C is random nested within A and B and A,B, and D are crossed:

The model is given by

$$y_{ijkl} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + c_{k(i,j)} + \delta_l + (\alpha\delta)_{il} + (\beta\delta)_{jl} + (\alpha\beta\delta)_{ijl} + (c\delta)_{lk(i,j)} + e_{m(i,j,k,l)}$$
 with $i = 1, 2, 3; \ j = 1, 2; \ k = 1, 2, 3, 4, 5, 6; \ l = 1, 2, 3, 4, 5; \ m = 1, 2, 3, 4, 5, 6$

	OX I				2					9	2
DF	SV	Q_A	Q_B	Q_{A*B}	$\sigma^2_{C(A,B)}$	Q_D	Q_{A*D}	Q_{B*D}	Q_{A*B*D}	$\sigma^2_{D*C(A,B)}$	σ_e^z
2	A	360	0	0	30	0	0	0	0	6	1
1	В	0	540	0	30	0	0	0	0	6	1
2	A*B	0	0	180	30	0	0	0	0	6	1
30	C(A,B)	0	0	0	30	0	0	0	0	6	1
4	D	0	0	0	0	216	0	0	0	6	1
8	A*D	0	0	0	0	0	72	0	0	6	1
4	B*D	0	0	0	0	0	0	108	0	6	1
8	A*B*D	0	0	0	0	0	0	0	36	6	1
120	C(A,B)*D	0	0	0	0	0	0	0	0	6	1
900	e(A,B,C,D)	0	0	0	0	0	0	0	0	0	1

$$E(MS_A)$$
 = $\sigma_e^2 + 6\sigma_{D*C(A,B)}^2 + 30\sigma_{C(A,B)}^2 + 360Q_A$

$$E(MS_B) = \sigma_e^2 + 6\sigma_{D*C(A,B)}^2 + 30\sigma_{C(A,B)}^2 + 540Q_B$$

$$E(MS_{A*B})$$
 = $\sigma_e^2 + 6\sigma_{D*C(A,B)}^2 + 30\sigma_{C(A,B)}^2 + 180Q_{A*B}$

$$E(MS_{C(A,B)}) = \sigma_e^2 + 6\sigma_{D*C(A,B)}^2 + 30\sigma_{C(A,B)}^2$$

$$E(MS_D)$$
 = $\sigma_e^2 + 6\sigma_{D*C(A,B)}^2 + 216Q_D$

$$E(MS_{A*D}) = \sigma_e^2 + 6\sigma_{D*C(A,B)}^2 + 72Q_{A*D}$$

$$E(MS_{B*D}) = \sigma_e^2 + 6\sigma_{D*C(A,B)}^2 + 108Q_{B*D}$$

$$E(MS_{A*B*D}) = \sigma_e^2 + 6\sigma_{D*C(A,B)}^2 + 36Q_{A*B*D}$$

$$E(MS_{C*D(A,B)}) = \sigma_e^2 + 6\sigma_{D*C(A,B)}^2$$

$$E(MSE) = \sigma_e^2$$