

Operações farmacêuticas

Operações Farmacêuticas

NOME	SÍMBOLO	FATOR	MASSA	VOLUME
Yotta	Y	10 ²⁸		
Zetta	Z	10 ²¹		
Exa	E	1018		
Peta	P	10 ¹⁵		
Tera	T	10 ¹²		
Giga	G	10 ^y		
Меда	M	1 N°		
Quilo	k	10 ³	kg	L
Hecto	h	10^{2}	hg	hL
Deca	da	10 ¹	dag	daL
Unidade fundamental		100	g	mL
Deci	đ	10-1	dg	đL
Centi	С	10-72	cg	cL
Mili	m	10-3	mg	mL
Micro	μ	10 ⁻⁸	μg	μL
Nano	n	10 ⁻⁹	ng	
Pico	р	10-12		
Femto	f	10-15		
Atto	a	10 ⁻¹⁸		V
Zepto	z	10-21	Med	

10*24

colher de café

colher de sobremesa

colher de sopa

cálice de licor

copo de ágya

copo de vinho

30

150

70

30

150

70

39

195

Yocto

27

135

Operações de Uso Geral

(A) Pesagem - sólidos

Balanças de precisão X balanças ordinárias

- quantidade
- Sensibilidade

Verificação X Calibração

(B) Medição de volumes - líquidos OBS 1: empresa certificada pelo IN METRO

- Bureta

- Béquer
- Erlenmeyer

Operações de Uso Geral

Operações Farmacêuticas

Operações Farmacêuticas Propriamente Ditas

- → Triagem ou monda*
- → Tamisação*
- → Levigação*
- → Decantação
- → Centrifugação
- → Filtração

Operações de divisão:

- → Divisão grosseira*
- → Pulverização*
- → Emulsificação

OBS: exclusivas de sólidos

a) Triagem ou monda

= Separação de partes inertes ou alteradas de drogas

i) Manual

= Separação de flores, frutos, caule, cascas

ii) Por crivo

- = Retirada de terra aderida a raízes
- uso de crivo ou tamis de arame

iii) Por ventilação: eliminação de partes leves - ventiladores

iv) Por lavagem

b) Tamisação

= Separação e calibração de partículas sólidas → estabelece a tenuidade dos pós

i) Tamises

- ✓ O fio tem um diâmetro definido que pode se afastar dentro dos limites d_{max} e d_{min} definidos;
- ✓ Não pode haver reação entre o tamis e o produto a tamisar;
- ✓ O número do tamis indica a abertura das malhas em micrômetros;
- ✓ Segundo a Farmacopéia Americana: número do tamis = número de mesh.

TAMISES		
NÚMERO	TAMANHO	
	DA M,ALHA (mm)	
2	9,52	
4	4,76	
8	2,38	
10	2,00	
20	0,84	
40	0,42	
80	0,177	
200	0,074	

- → Por meio de agitação, manual ou mecânica, sem compressão geralmente são cobertos para evitar disseminação dos pós
- → Distribuição granulométrica histograma

c) Levigação

= Método que utiliza uma corrente de água para carregar as partes menos densas da mistura.

(II) Separação sólido-líquido e/ou líquido-líquido:

a) Decantação

= Consiste em deixar a mistura em repouso e o componente mais denso, sob a ação da força da gravidade, formará a fase inferior e o menos denso ocupará a fase superior.

Pré-requisito:

- → Separação sólido-líquido: deposição prévia do sólido.
- → Separação de líquidos imiscíveis: formação de interface.

b) Centrifugação

= É usada para acelerar a decantação por meio de um movimento de rotação intenso (força centrífuga) de tal forma que o componente mais denso se deposite no fundo do recipiente.

- = Separação de partículas sólidas em suspensão em um líquido por efeito de pressão sobre superfície porosa.
- i) Componentes da filtração
- sólido
- líquido
- unidade filtrante

Prantepássimaseriais:

- papeh; ser inertes;
- teriodoms; sofrer o mínimo de almeirações: tomambes emígiodos ato com ládumidos; sílica, carvão...)
- Devem passar o máximo de líquido e reter os sólidos em suspensão.

(I) Divisão de sólidos:

a) Moagem/divisão grosseira

= Operação mecânica de redução do tamanho das partículas dos sólidos.

i) Teoria da Moagem

b) Divisão fina: pulverização = operação principal

moagem grosseira: particulas 20mesh operações acessórias moagem intermediária: particulas 200 - 20mesh

moagem fina: partículas < 200mesh</pre>

i) Pulverização em almofariz

ii) Pulverização por moinhos

iii) Pulverização por intermédio

*levigação

*porfirização

(II) Divisão de não-sólidos:

a) Emulsificação

= Divisão do líquido em pequenos glóbulos com consequente aumento de sua área superficial

Operações Farmacêuticas Propriamente Ditas

Transformação de um fármaco em uma forma farmacêutica.

FÍSICAS

Modificam de forma
transitória ou permanente
o estado fímicânias
corpos a elas submetidos,
sem, contudo, alterarem a
sua composição química.

Operações físicas

- 1) Refrigeração
- 2) Evaporação
- (II) Que sexigem a Eintervanção de um líquido
 - 4) Liofilização Dissolução
 - 5)..Sublimação.....
 - 6) Torrefação
 - 7) Carbonização
 - 8) Calcinação
 - 9) Cristalização
 - 10) Fusão
 - 11) Destilação

1) Refrigeração:

= Tem por fim baixar a temperatura de um corpo, podendo o grau de arrefecimento conseguido ser mais ou menos acentuado e estando dependente do processo utilizado.

√ agente refrigerante

- água, p. ex. renovação!
 - condensadores de refluxo

√ por mudança de fase

- fusão de um sólido, gelo, p. ex. (calor de fusão)
- evaporação de um líquido (calor de vaporização)
- sublimação de um sólido, gelo seco, p. ex. (calor de sublimação)

2) Evaporação

- = Consiste na formação de vapores à superfície de um líquido, os quais o vão abandonando gradualmente, resultando disso uma diminuição progressiva do volume inicial da fase líquida.
- → concentração de uma solução
- → recuperação de sólido não volátil dissolvido em um líquido X qualquer

Fatores que afetam a velocidade de evaporação:

- \checkmark área da superfície evaporante (↑A \uparrow V)
- ✓ temperatura (↑T ↑V)
- ✓ pressão atmosférica (↓p ↑V)

3.a) Secagem

= É a operação que tem por fim privar os corpos da umidade neles existente, podendo ser um gás, um líquido ou um sólido. Em geral, a secagem apenas retira dos corpos a água neles existente sob a forma de umidade higroscópica, para a distinguirem da água de cristalização dos corpos químicos, a qual só é eliminada totalmente pela exsicação.

→ Secagem de gás adsorção contato com subst. higroscópica

→ Secagem de líquido destilação contato com subst. higroscópica

Reagentes exsicantes indicados para certas classes de compostos orgânicos

Reagente exsicaníe	Indicado para secagem de	Não indicado para a secagem cie		
Pentóxido de fósforo	Halogenetos de alquilos, hídro- carbonetos, hidrocarbonetos halogenados, CS,,.	Bases, cetonas e outros produtos em que possa haver polime- rização.		
Ácido sulfürico	Halogenetos de alquilos, hidro- carbonetos saturados, hidro- carbonetos halogenados.	Bases, cetonas, álcoois, fenóis. etc. Álcoois, aminas, fenóis, ácidos		
Cloreto de cálcio	Éteres, ésteres, etc. É o agente exsicante mais usado	gordos. Cetonas, aldeídos, ésteres, ácidos.		
Hidróxido de potássio	Bases.	Ácidos gordos, ésteres.		
Carbonato de potássio	Bases, cetonas.	3		
Sulfato de sódio Sulfato	Maioria das substâncias.			
de Magnésio Sulfato de	Maioria das substâncias.			
Cobre anidro Sódio	Ésteres, álcoois, etc.			
	Ésteres, hidrocarbonetos _{satu-}	Álcoois, aminas, ésteres.		
Sulfato de cálcio	rados.			
	Maioria das substâncias.			

- exposição ao ar livre
- uso de dessecadores (ou exsicadores)
- ar quente estufa
- radiações infravermelhas
- por dispersão ou nebulização

3.b) Exsicação

= É a operação por meio da qual se privam as substâncias cristalinas da sua água de cristalização por aquecimento a uma temperatura elevada.

Compostos contendo água de cristalização:

PROBLEMA:

-é perdida com facilidade
RESULTADO:

- composição variável e pouco definida

→ Técnica: aquecimento gradual até peso constante

4) Liofilização Criodessecação OU criosublimação OU freeze-drying

= Técnica especial que permite a secagem de um corpo após prévio congelamento, removendo-se a água congelada por sublimação, de modo a dar-se, diretamente, a passagem do estado sólido ao gasoso.

VANTAGENS:

- ✓ Baixa temperatura → garante: inalterável a sua composição química original, a sua atividade terapêutica e outras propriedades características; redução do desenvolvimento de microrganismos; inibição de reações enzimáticas;
- ✓ A perda de constituintes voláteis está reduzida ao mínimo;
- 🗸 Resultam em uma estrutura esponjosa 🗦 rápida dissolução;
- ✓ Se acondicionados e armazenados convenientemente mantêm-se por longo tempo.

APLICAÇÕES:

✓ secagem e armazenamento de substâncias instáveis em solução;

√ termosensíveis ou oxidáveis;

✓ conservação de plasma humano, enxertos de tecidos e materiais vivos.

AGUA LÍQUIDA

TEMPERATURA

Diagrama esquemático do equilíbrio pressão-temperatura para a água

✓ Condições de liofilização:
-40 °C a -0,1 mmHg

5) Sublimação

= Esta operação consiste em fazer passar uma substância diretamente de sólida a gasosa, sem passar pelo estado líquido, recolhendo-se a substância primitiva novamente solidificada (PONTO TRIPLO).

Na prática laboratorial a sublimação representa um meio de purificar substâncias sólidas que sejam voláteis, permitindo a sua fácil separação das impurezas fixas que as acompanham.

6) Torrefação

= Executa-se aquecendo os corpos em contato direto com o ar, para os privar da sua água de constituição e de certas matérias voláteis, de que resultam modificações na cor, aroma e composição química.

7) Carbonização

= Operação na qual são provocadas decomposições profundas em substâncias vegetais ou animais submetendo-as a temperaturas elevadas. É feita em recipientes fechados e ao abrigo do ar, podendo executar-se com o fim de aproveitar os vapores que se volatilizam ou a matéria residual.

8) Calcinação

= Consiste em submeter um corpo a urna temperatura bastante elevada, de modo a alterar profundamente a sua composição ou reduzi-lo a cinzas - sem qualquer interesse na Técnica Farmacêutica, é frequentemente usada na Análise Química e na preparação industrial de certos produtos químicos minerais.

9) Cristalização

- = Executa-se com o fim de purificar substâncias sólidas, sendo baseada nas suas diferenças de solubilidade num determinado solvente.
- i) dissolução da substância num solvente apropriado, aquecido à ebulição;
- ii} filtração da solução quente (eliminar os sólidos insolúveis)
- iii) arrefecimento da solução, de modo a permitir que a substância dissolvida cristalize;
- iv) separação dos cristais formados por um processo adequado (filtração, centrifugação, decantação).

60

Escolha do solvente adequado:

- alto poder dissolvente em temperaturas elevadas;
- baixo poder dissolvente a temperatura ambiente;
- facilmente eliminado da substância cristalizada.

10) Fusão

= Consiste em fazer passar um corpo do estado sólido a líquido por ação do calor.

Correntemente praticada nos laboratórios com fins analíticos para a determinação do ponto de fusão, método de controle do estado de pureza dos compostos sólidos de constituição química definida, a fusão utiliza-se ainda no campo farmacêutico com vários fins, como: para facilitar a incorporação de substâncias medicamentosas insolúveis num excipiente sólido, p. ex.

11) Destilação

- = É um conjunto de operações que tem por fim separar as substâncias voláteis das que não são ou separar os constituintes de uma mistura líquida cujos componentes tenham pontos de ebulição diferentes.
- i) evaporação das substâncias voláteis;
- ii) condensação dos vapores formados;
- iii) arrefecimento do destilado.
- 11.a) Destilação simples
- 11.b) Destilação a pressão reduzida
- 11.c) Destilação em corrente de vapor
- 11.d) Destilação fracionada

11.a) Destilação simples

→ não permite uma separação completa dos componentes de uma mistura binária, a não ser que estes tenham pontos de ebulição muito afastados.

DESTILAÇÃO DA ÁGUA

11.c) Destilação em corrente de vapor

= A principal aplicação desta técnica de destilação em Farmácia é na preparação das águas destiladas ou hidrolalos, os quais se obtêm destilando, em corrente de vapor de água, certas drogas contendo essências.

= Aplicada quando da separação de dois líquidos miscíveis formando uma solução ideal.

Esta difere da destilação simples porque entre o balão destilatório e o condensador se intercala uma coluna de fracionamento ou de retificação.

Métodos de purificação de água

✓ Troca iônica (deionização ou desmineralização da água) → todos os sais dissolvidos são teoricamente eliminados

Principais Vantagens: médio custo de operação; baixo custo de capital

Filtração por membranas solução B fluxo de água solução A **OSMOSE** membrana semi-permeável solução B fluxo de água solução A OSMOSE **REVERSA** membrana semi-permeável

Métodos de purificação de água

√Comparação da capacidade dos processos de purificação da água:

CONTAMINANTES

Métodos	Sólidos	Gases	Substâncias orgânicas	Partículas	Bactérias	Pirogênio/ Endotoxinas
Destilação	Е	B/R	В	E	E	Е
Deionização	E	Е	R	R	R	R
Osmose reversa	В	R	В	E	E	E
Absorção pelo carvão	R	R	E/B	R	R	R
Filtração (O,22 m m)	R	R	R	E	E	R
Ultrafiltração	R	R	R	E	E	E
Oxidação por U.V.	R	R	В	R	B/R	R
Esterilização por U.V.	R	R	R	R	В	R
Nanofiltração	B/R	R	В	E	E	Е
Oxidação química	R	R	R	R	E/B	E/B

OBRIGADA!!