Disciplina: Cálculo I

Lista 2 de Exercícios – Limite e Continuidade

Livro STEWART, J. Cálculo. Volume I. 7a edição. São Paulo: Pioneira Thomson Learning, 2013.

Seção 2.2 - O limite de uma função - pág. 88 a 90.

Explique com suas palavras o significado da equação

$$\lim_{x\to 2} f(x) = 5$$

É possível que a equação anterior seja verdadeira, mas que f(2) = 3? Explique.

2. Explique o que significa dizer que

$$\lim_{x \to 1^{-}} f(x) = 3 \qquad \text{e} \qquad \lim_{x \to 1^{+}} f(x) = 7$$

Nesta situação, é possível que $\lim_{x\to 1} f(x)$ exista? Explique.

Explique o significado de cada uma das notações a seguir.

(a)
$$\lim_{x \to a^2} f(x) = \infty$$

(a) $\lim_{x \to -3} f(x) = \infty$ (b) $\lim_{x \to 4^+} f(x) = -\infty$

4. Use o gráfico dado de f para dizer o valor de cada quantidade, se ela existir. Se não existir, explique por quê.

(a)
$$\lim_{x \to 2^{-}} f(x)$$
 (b) $\lim_{x \to 2^{+}} f(x)$ (c) $\lim_{x \to 2} f(x)$

(b)
$$\lim_{x \to a} f(x)$$

(c)
$$\lim_{x \to 0} f(x)$$

(d)
$$f(2)$$

(d)
$$f(2)$$
 (e) $\lim_{x \to 4} f(x)$ (f) $f(4)$

(f)
$$f(4)$$

29-37 Determine o limite infinito.

29.
$$\lim_{x \to -3^+} \frac{x+2}{x+3}$$
 30. $\lim_{x \to -3^-} \frac{x+2}{x+3}$ **33.** $\lim_{x \to 3^+} \ln(x^2-9)$ **34.** $\lim_{x \to \pi^-} \cot x$

30.
$$\lim_{x \to -3^-} \frac{x+2}{x+3}$$

33.
$$\lim_{x \to 3^+} \ln(x^2 - 9)$$

34.
$$\lim_{x \to \pi^{-}} \cot x$$

(a) Encontre as assíntotas verticais da função

$$y = \frac{x^2 + 1}{3x - 2x^2}$$

(b) Confirme sua resposta da parte (a) fazendo o gráfico da função.

Seção 2.3 - Cálculos Usando Propriedades dos Limites – pág. 98 a 99

3–9 Calcule o limite justificando cada passagem com as Propriedades dos Limites que forem usadas.

3.
$$\lim_{x \to -2} (3x^4 + 2x^2 - x + 1)$$

9.
$$\lim_{x\to 2} \sqrt{\frac{2x^2+1}{3x-2}}$$

4.
$$\lim_{x \to -1} (x^4 - 3x)(x^2 + 5x + 3)$$

11–32 Calcule o limite, se existir.

11.
$$\lim_{x\to 2} \frac{x^2+x-6}{x-2}$$

13.
$$\lim_{x\to 2} \frac{x^2 - x + 6}{x - 2}$$

13.
$$\lim_{x \to 2} \frac{x^2 - x + 6}{x - 2}$$
 15. $\lim_{t \to -3} \frac{t^2 - 9}{2t^2 + 7t + 3}$

17.
$$\lim_{h\to 0} \frac{(-5+h)^2-25}{h}$$
 19. $\lim_{x\to -2} \frac{x+2}{x^3+8}$ 21. $\lim_{h\to 0} \frac{\sqrt{9+h}-3}{h}$

19.
$$\lim_{x \to -2} \frac{x+2}{x^3+8}$$

21.
$$\lim_{h\to 0} \frac{\sqrt{9+h}-3}{h}$$

35. Use o Teorema do Confronto para mostrar que $\lim_{x\to 0} (x^2 \cos 20\pi x) = 0$. Ilustre, fazendo os gráficos das funções $f(x) = -x^2$, $g(x) = x^2 \cos 20\pi x$ e $h(x) = x^2$ na mesma tela.

41-46 Encontre, quando existir, o limite. Caso não exista, explique por quê.

41.
$$\lim_{x \to 3} (2x + |x - 3|)$$
 42. $\lim_{x \to -6} \frac{2x + 12}{|x + 6|}$

42.
$$\lim_{x \to -6} \frac{2x + 12}{|x + 6|}$$

Seção 2.4 - A Definição Precisa de um Limite - pág. 108.

19–32 Demonstre cada afirmação usando a definição ε , δ de limite.

21.
$$\lim_{x \to 2} \frac{x^2 + x - 6}{x - 2} = 5$$

31.
$$\lim_{x \to -2} (x^2 - 1) = 3$$

Seção 2.5 - Continuidade - pág. 117 a 119.

12-14 Use a definição de continuidade e propriedades de limites para demonstrar que a função é contínua em um dado número a.

12.
$$f(x) = x^2 + \sqrt{7 - x}$$
, $a = 4$

13.
$$f(x) = (x + 2x^3)^4$$
, $a = -1$.

12.
$$f(x) = x^2 + \sqrt{7 - x}$$
, $a = 4$. **13.** $f(x) = (x + 2x^3)^4$, $a = -1$. **14.** $h(t) = \frac{2t - 3t^2}{1 + t^3}$, $a = 1$.

17–22 Explique por que a função é descontínua no número dado a. Esboce o gráfico da função.

17.
$$f(x) = \frac{1}{x+2}$$

$$a = -2$$

17.
$$f(x) = \frac{1}{x+2}$$
 $a = -2$ **18.** $f(x) = \begin{cases} \frac{1}{x+2} & \text{se } x \neq -2 \\ 1 & \text{se } x = -2 \end{cases}$

$$a = -2$$

41–43 Encontre os pontos nos quais f é descontínua. Em quais desses pontos f é contínua à direita, à esquerda ou em nenhum deles? Esboce o gráfico de f.

41.
$$f(x) = \begin{cases} 1 + x^2 & \text{se } x \le 0 \\ 2 - x & \text{se } 0 < x \le 2 \\ (x - 2)^2 & \text{se } x > 2 \end{cases}$$

43.
$$f(x) = \begin{cases} x + 2 & \text{se } x < 0 \\ e^x & \text{se } 0 \le x \le 1 \\ 2 - x & \text{se } x > 1 \end{cases}$$

51.
$$x^4 + x - 3 = 0$$
, $(1, 2)$

53.
$$e^x = 3 - 2x$$
, (0, 1)

Seção 2.6 - Limites no Infinito; Assíntotas Horizontais – pág. 128 a 130.

Explique com suas palavras o significado de cada um dos itens a seguir.

(a)
$$\lim_{x \to \infty} f(x) = 5$$

(b)
$$\lim_{x \to -\infty} f(x) = 3$$

4. Para a função q, cujo gráfico é dado, determine o que se pede.

(a)
$$\lim_{x\to\infty} g(x)$$

(b)
$$\lim_{x \to -\infty} g(x)$$

(c)
$$\lim_{x\to 3} g(x)$$

(d)
$$\lim_{x\to 0} g(x)$$

(e)
$$\lim_{x \to -2^+} g(x)$$

15-38 Encontre o limite ou demonstre que não existe.

15.
$$\lim_{x \to \infty} \frac{1}{2x + 3}$$

17.
$$\lim_{x \to -\infty} \frac{1 - x - x^2}{2x^2 - 7}$$

23.
$$\lim_{x \to \infty} \frac{\sqrt{9x^6 - x}}{x^3 + 1}$$

15.
$$\lim_{x \to \infty} \frac{1}{2x+3}$$
 17. $\lim_{x \to -\infty} \frac{1-x-x^2}{2x^2-7}$ **23.** $\lim_{x \to \infty} \frac{\sqrt{9x^6-x}}{x^3+1}$ **29.** $\lim_{x \to \infty} \frac{x^4-3x^2+x}{x^3-x+2}$

41-46 Encontre as assíntotas horizontais e verticais de cada curva.

Confira seu trabalho por meio de um gráfico da curva e das estimativas das assíntotas.

41.
$$y = \frac{2x+1}{x-2}$$

43.
$$y = \frac{2x^2 + x - 1}{x^2 + x - 2}$$
 45. $y = \frac{x^3 - x}{x^2 - 6x + 5}$

45.
$$y = \frac{x^3 - x}{x^2 - 6x + 5}$$