Notes on subset construction

• ϵ -closure (s_0) shows a pseudo-state composed of the states $s \in T$ reachable

from s_0 . For symbol a, these states include $\epsilon closure(move(s_0, a))$

• Starting state of D is $\epsilon - closure(s_0)$.

reading a sequence of of input symbols including all possible ϵ -transitions before or after the symbols are read.

• Each state of D corresponds to a set of NFA states that N could be after

- An accepting state in D is defined as the state is a set of NFA states containing at least one accepting state of N.
 A simple algorithm to compute a closure (T) uses a stack to hold states.
- A simple algorithm to compute ϵ closure (T) uses a stack to hold states whose states whose edges have not been checked for ϵ labeled transitions.