2021 AMC 10A Problems/Problem 19

Contents

- 1 Problem
- 2 Solution 1
- 3 Remark
- 4 Solution 2 (Guessing)
- 5 Video Solution (Using Absolute Value Properties to Graph)
- 6 Video Solution by The Power Of Logic (Graphing)
- 7 Video Solution by TheBeautyofMath
- 8 See Also

Problem

The area of the region bounded by the graph of

$$|x^2 + y^2 = 3|x - y| + 3|x + y|$$

is $m+n\pi$, where m and n are integers. What is m+n?

(A) 18

(B) 27

(C) 36

(D) 45 **(E)** 54

Solution 1

In order to attack this problem, we need to consider casework:

Case 1:
$$|x - y| = x - y, |x + y| = x + y$$

Substituting and simplifying, we have $x^2-6x+y^2=0$, i.e. $(x-3)^2+y^2=3^2$, which gives us a circle of radius 3centered at (3,0).

Case 2:
$$|x - y| = y - x, |x + y| = x + y$$

Substituting and simplifying again, we have $x^2+y^2-6y=0$, i.e. $x^2+(y-3)^2=3^2$. This gives us a circle of radius 3 centered at (0,3)

Case 3:
$$|x - y| = x - y, |x + y| = -x - y$$

Doing the same process as before, we have $x^2+y^2+6y=0$, i.e. $x^2+(y+3)^2=3^2$. This gives us a circle of radius 3 centered at (0, -3)

Case 4:
$$|x - y| = y - x$$
, $|x + y| = -x - y$

One last time: we have $x^2+y^2+6x=0$, i.e. $(x+3)^2+y^2=3^2$. This gives us a circle of radius 3 centered at (-3,0)

After combining all the cases and drawing them on the Cartesian Plane, this is what the diagram looks like:

Now, the area of the shaded region is just a square with side length 6 with four semicircles of radius 3. The area is

$$6\cdot 6 + 4\cdot \frac{9\pi}{2} = 36 + 18\pi$$
. The answer is $36+18$ which is (E) 54

Solution by Bryguy

Remark

This problem asks for the area of the union of these four circles:

Solution 2 (Guessing)

Assume y = 0. We get that x = 6. That means that this figure must contain the points (0,6), (6,0), (0,-6), (-6,0). Now, assume that x = y. We get that x = $3\sqrt{3}$. We get the points (3,3), (3,-3), (-3,3), (-3,-3).

Since this contains x^2+y^2 , assume that there are circles. Therefore, we can guess that there is a center square with area $6\cdot 6=36$ and 4 semicircles with radius 3. We get 4 semicircles with area 4.5π , and therefore the answer is $36+18=\boxed{(E)54}$

~Arcticturn

Video Solution (Using Absolute Value Properties to Graph)

https://youtu.be/EHHpB6GIGPc

~ pi_is_3.14

Video Solution by The Power Of Logic (Graphing)

https://youtu.be/-pa72wBA85Y

Video Solution by TheBeautyofMath

https://youtu.be/U6obY_kio0g

~IceMatrix

See Also

2021 AMC 10A (Problems · Answer Key · Resources (http://www.artofproblemsolving.com/community/c1 3))	
Preceded by Problem 18	Followed by Problem 20
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25	
All AMC 10 Problems and Solutions	

The problems on this page are copyrighted by the Mathematical Association of America (http://www.maa.org)'s American

Mathematics Competitions (http://amc.maa.org).

Retrieved from "https://artofproblemsolving.com/wiki/index.php?title=2021_AMC_10A_Problems/Problem_19&oldid=164237"

Copyright © 2022 Art of Problem Solving