Decision Trees Lab 0

PIMA indians example

Adapted by EVL, FRC and ASP 2025-03-12

Introductory example

The Pima Indians dataset

The Pima Indian Diabetes data set (PimaIndiansDiabetes2) is available in the mlbench package.

data("PimaIndiansDiabetes2", package = "mlbench")

The data contains 768 individuals (female) and 9 clinical variables for predicting the probability of individuals in being diabete-positive or negative:

- pregnant: number of times pregnant
- glucose: plasma glucose concentration
- pressure: diastolic blood pressure (mm Hg)
- triceps: triceps skin fold thickness (mm)
- insulin: 2-Hour serum insulin (mu U/ml)
- mass: body mass index (weight in kg/(height in m)^2)
- pedigree: diabetes pedigree function
- age: age (years)
- diabetes: class variable

dplyr::glimpse(PimaIndiansDiabetes2)

Rows: 768

Columns: 9

\$ pregnant <dbl> 6, 1, 8, 1, 0, 5, 3, 10, 2, 8, 4, 10, 10, 1, 5, 7, 0, 7, 1, 1~

\$ glucose <dbl> 148, 85, 183, 89, 137, 116, 78, 115, 197, 125, 110, 168, 139,~

\$ pressure <dbl> 72, 66, 64, 66, 40, 74, 50, NA, 70, 96, 92, 74, 80, 60, 72, N~

\$ triceps <dbl> 35, 29, NA, 23, 35, NA, 32, NA, 45, NA, NA, NA, NA, NA, 23, 19, N~

\$ insulin <dbl> NA, NA, NA, 94, 168, NA, 88, NA, 543, NA, NA, NA, NA, NA, 846, 17~

\$ mass <dbl> 33.6, 26.6, 23.3, 28.1, 43.1, 25.6, 31.0, 35.3, 30.5, NA, 37.~

\$ pedigree <dbl> 0.627, 0.351, 0.672, 0.167, 2.288, 0.201, 0.248, 0.134, 0.158~

\$ age <dbl> 50, 31, 32, 21, 33, 30, 26, 29, 53, 54, 30, 34, 57, 59, 51, 3~

\$ diabetes <fct> pos, neg, po

A typical classification/prediction problem is to build a model that can distinguish and predict diabetes using some or all the variables in the dataset.

A quick exploration can be done wirh the skimr package:

```
library(skimr)
skim(PimaIndiansDiabetes2)
```

Table 1: Data summary

Name Number of rows	PimaIndiansDiabetes2 768
	100
Number of columns	9
Column type frequency:	
factor	1
numeric	8
Group variables	None

Variable type: factor

skim_variab	l <u>e</u> missin g or	nplete_:	ractaced ered n	_uniq	utop_counts
diabetes	0	1	FALSE	2	neg: 500, pos: 268

Variable type: numeric

skim_var	r <u>ia</u> ble	s siong plet	e <u>m</u> erantesd	p0	p25	p50	p75	p100 hist
pregnant	0	1.00	3.85 3.37	0.00	1.00	3.00	6.00	17.00
glucose	5	0.99	121.6 3 0.54	144.0	099.0	0117.0	041.0	0 0 99.00
pressure	35	0.95	72.4112.38	324.0	064.0	072.00	0.080	0122.00
triceps	227	0.70	29.1510.48	37.00	22.0	029.00	36.00	099.00
insulin	374	0.51	155.5 5 18.7	78 4.0	076.2	5125.0	0 0 90.0	0 8 46.00
mass	11	0.99	32.466.92	18.2	027.5	032.30	36.60	067.10
pedigree	0	1.00	$0.47 \ 0.33$	0.08	0.24	0.37	0.63	2.42
age	0	1.00	33.2411.76	321.0	024.0	029.00)41.00	081.00

Building a classification tree

Start building a simple tree with default parameters

```
library(rpart)
model1 <- rpart(diabetes ~., data = PimaIndiansDiabetes2)
# par(xpd = NA) # otherwise on some devices the text is clipped</pre>
```

This builds a model consisting of a series of nested decision rules.

```
print(model1)

n= 768

node), split, n, loss, yval, (yprob)
   * denotes terminal node

1) root 768 268 neg (0.65104167 0.34895833)
   2) glucose< 127.5 485 94 neg (0.80618557 0.19381443)
   4) age< 28.5 271 23 neg (0.91512915 0.08487085) *
   5) age>=28.5 214 71 neg (0.66822430 0.33177570)
   10) insulin< 142.5 164 48 neg (0.70731707 0.29268293)
   20) glucose< 96.5 51 4 neg (0.92156863 0.07843137) *
   21) glucose>=96.5 113 44 neg (0.61061947 0.38938053)
```

```
42) mass< 26.35 19 0 neg (1.00000000 0.00000000) *
      43) mass>=26.35 94 44 neg (0.53191489 0.46808511)
        86) pregnant< 5.5 49 15 neg (0.69387755 0.30612245)
         172) age< 34.5 25 2 neg (0.92000000 0.08000000) *
         173) age>=34.5 24 11 pos (0.45833333 0.54166667)
           346) pressure>=77 10
                               2 neg (0.80000000 0.20000000) *
           347) pressure< 77 14
                                 3 pos (0.21428571 0.78571429) *
        87) pregnant>=5.5 45 16 pos (0.35555556 0.64444444) *
  11) insulin>=142.5 50 23 neg (0.54000000 0.46000000)
    22) age>=56.5 12
                     1 neg (0.91666667 0.08333333) *
    23) age< 56.5 38 16 pos (0.42105263 0.57894737)
      46) age>=33.5 29 14 neg (0.51724138 0.48275862)
        92) triceps>=27 22 8 neg (0.63636364 0.36363636) *
        47) age< 33.5 9 1 pos (0.11111111 0.88888889) *
3) glucose>=127.5 283 109 pos (0.38515901 0.61484099)
 6) mass< 29.95 75 24 neg (0.68000000 0.32000000) *
 7) mass>=29.95 208 58 pos (0.27884615 0.72115385)
  14) glucose< 157.5 116 46 pos (0.39655172 0.60344828)
    28) age< 30.5 50 23 neg (0.54000000 0.46000000)
      56) pressure>=73 29 10 neg (0.65517241 0.34482759)
       112) mass< 41.8 20 4 neg (0.80000000 0.20000000) *
       113) mass>=41.8 9 3 pos (0.33333333 0.66666667) *
      57) pressure< 73 21 8 pos (0.38095238 0.61904762) *
    29) age>=30.5 66 19 pos (0.28787879 0.71212121) *
  15) glucose>=157.5 92 12 pos (0.13043478 0.86956522) *
```

The model can be visualized using a tree:

```
plot(model1)
text(model1, digits = 3, cex=0.8)
```


A nicer plot can be obtained using the rpart.plot function from the rpart.plot package. This function allows for multiple tunings, but the default values may already yield a nice informative plot.

```
library(rpart.plot)
rpart.plot(model1, cex=.7)
```


detach(package:rpart.plot)

Assessing model performance

Imagine we kow nothing about overfitting.

We may want to check the accuracy of the model on the dataset we have used to build it.

```
predicted.classes<- predict(model1, PimaIndiansDiabetes2, "class")
mean(predicted.classes == PimaIndiansDiabetes2$diabetes)</pre>
```

[1] 0.8294271

A better strategy is to use train dataset to build the model and a test dataset to check how it works.

```
set.seed(123)
ssize <- nrow(PimaIndiansDiabetes2)
propTrain <- 0.8
training.indices <-sample(1:ssize, floor(ssize*propTrain))
train.data <- PimaIndiansDiabetes2[training.indices, ]
test.data <- PimaIndiansDiabetes2[-training.indices, ]</pre>
```

Now we build the model on the train data and check its accuracy on the test data.

```
model2 <- rpart(diabetes ~., data = train.data)
predicted.classes.test<- predict(model2, test.data, "class")
mean(predicted.classes.test == test.data$diabetes)</pre>
```

[1] 0.7272727

The accuracy is good, but smaller, as expected.

Making predictions with the model

As an example on how to use the model we want to predict the class of individuals 521 and 562

(aSample <- PimaIndiansDiabetes2[c(521,562),])

pregnant glucose pressure triceps insulin mass pedigree age diabetes 521 2 68 70 32 66 25.0 0.187 25 neg 0 198 66 32 562 274 41.3 0.502 28 pos

```
predict(model1, aSample, "class")
```

521 562 neg pos

Levels: neg pos

- $\bullet\,$ If we follow individuals 521 and 562 along the tree, we reach the same prediction.
- The tree provides not only a classification but also an explanation.