

From: tomking@something.com

Good morning!

The snow/ice storm is creating an ice buildup and conditions where the Grounds crew cannot plow to ground level or apply melting agents until the precipitation stops.

All college-related activities – including classes – are cancelled today (Tuesday 3-14-17). No classes or other activities will be held, including the Graduate School of Social Work. Those employees designated as non-essential should not report to work.

The Tri-College Transportation system will stay closed throughout the day, and resume on a normal schedule tomorrow (Wednesday). Please go to the Transportation section of storm.brynmawr.edu for run times.

Please check the Hotline and website throughout the day for updates.

Weather Hotline: 610-526-7310

Website storm.brynmawr.edu

Students – please check the website for updates on Dining, the Library, Fitness Center, Transportation, etc. at storm.brynmawr.edu

The Township has declared a Snow Emergency. Please use caution if you must go out - icy conditions and gusty winds are expected throughout the day.

Thanks

Tom

How is Spam Detected?

Gmail Spam Filtering Factors:

- 1. Content:
- Grammar and spelling errors
- Spam trigger words
- 2. Domain Name
 - Blacklisted domain names
- 3. Email Header
- 4. Attachments
- 5. Get Whitelisted
 - List of approved email addresses

Spam Database

Dataset:

• 58 Attributes

1 means the email is spam

Label

0 means the email is not spam

Spam Database

Features:

• Frequency of some words

```
word_freq_make: continuous.
word_freq_address: continuous.
word_freq_all: continuous.
word_freq_3d: continuous.
```

Frequency of some characters

```
char_freq_;: continuous.
char_freq_[: continuous.
char_freq_[: continuous.
char_freq_!: continuous.
```

Capital Letters

```
capital_run_length_average: continuous.
capital_run_length_longest: continuous.
capital_run_length_total: continuous.
```

Spam Database

Pre-processing:

• Built Data object to store X (features) and y (label)

Note: To avoid bias when training our models, we made sure to randomly chose points from the dataset to split the data into training and testing

Detect Spam Using Machine Learning

- Decision Trees
- Naive Bayes
- Random Forests
- AdaBoost
- Neural Networks

Detect Spam Using Machine Learning

- Decision Trees
- Naive Bayes
- Random Forests
- AdaBoost
- Neural Networks

Decision Trees

- Used sklearn.tree. DecisionTreeClassifier(criterion='entropy', splitter='best')
- No maximum depth
- Relied on entropy to find the best feature

Prediction

	Non-Spam	Spam
Non-Spam	652	46
Spam	38	414

Decision Trees

- Used sklearn.tree. DecisionTreeClassifier(criterion='entropy', splitter='best')
- No maximum depth
- Relied on entropy to find the best feature

Decision Trees

Detect Spam Using Machine Learning

- Decision Trees
- Naive Bayes
- Random Forests
- AdaBoost
- Neural Networks

Naive Bayes

- Used sklearn.naive_bayes. GaussianNB(alpha=1.0)
- Assumes features are independent
- GaussianNB classifies features that are continuous

Prediction

		Non-Spam	Spam
N	lon-Spam	544	176
S	Spam	17	413

Naive Bayes

- Used sklearn.naive_bayes. GaussianNB(alpha=1.0)
- Assumes features are independent
- GaussianNB classifies features that are continuous

Detect Spam Using Machine Learning

- Decision Trees
- Naive Bayes
- Random Forests
- AdaBoost
- Neural Networks

Random Forest

- Used sklearn.ensemble. RandomForestClassifier(n_estimators=20)
- Used bootstrap samples
- Tried Gini and Entropy as criterion (almost similar results)

Prediction

		Non-Spam	Spam
o ا	Non-Spam	675	21
Irne	Spam	33	421

Random Forest

- Used sklearn.ensemble. RandomForestClassifier(n_estimators=20)
- Used bootstrap samples
- Tried Gini and Entropy as criterion (almost similar results)

Random Forest

Detect Spam Using Machine Learning

- Decision Trees
- Naive Bayes
- Random Forests
- AdaBoost
- Neural Networks

AdaBoost

- Used sklearn.ensemble. AdaBoostClassifier(n_estimators=200)
- The base classifier is <u>DecisionTreeClassifier</u> (max_depth=1) (i.e Decision Stump)

Prediction

	Non-Spam	Spam
Non-Spam	661	26
Spam	31	432

AdaBoost

- Used sklearn.ensemble. AdaBoostClassifier(n_estimators=200)
- The base classifier is DecisionTreeClassifier (max_depth=1) (i.e Decision Stump)

AdaBoost using Decision Stumps

We varied the number of classifiers used to observe how the algorithm behaves.

AdaBoost using Decision Stumps

AdaBoost

Best Features

Detect Spam Using Machine Learning

- Decision Trees
- Naive Bayes
- Random Forests
- AdaBoost
- Neural Networks

Fully Connected Neural Network

Architecture was Flatten -> layer with 4000 hidden units and ReLU -> output
 layer with 2 and softmax

84

Non-Spam	Spam
564	108

394

Prediction

True

Non-Spam

Spam

Fully Connected Neural Network

 Architecture was Flatten -> layer with 4000 hidden units and ReLU -> output layer with 2 and softmax

Performance Evaluation

- During the training, Decision Trees and Random Forest methods achieve the highest accuracy. NN performance was in between NB and the others.
- During the testing, AdaBoost and Random Forest show a better performance than the other methods. NN performed almost the same as NB.

Performance Evaluation

- Naive Bayes is very strict. It classified many emails as spam (high FP).
- Random Forest and AdaBoost seem to do well overall.
- In particular Random Forest has a lower FP
- NN had both a high FP and FN

Advantages of Random Forest

- High training and testing accuracy (99% training 95% testing)
- Takes **less time** because it requires a **lower number of classifiers**
- Random Forest was able to give **reliable importance values** to each features

Testing on Real Email

Spam Email

Subject: Join the thousands who are now sp@m-free

FORGET SPAM BLOCKERS!

Get SMART Spam Control That Always Delivers The Email You Want!

Finally, we discovered the ultimate solution that is guaranteed to stop all spam without losing any of your important email! This revolutionary advanced technology

also protects you 100% against ALL email-borne viruses — both known and unknown.

We didn't believe it either until we actually tried it. So you be the judge and see for yourself.

{LINK}

Sara's Email

Hi Jocelyn and Lamiaa,

Apologies for the delay getting you feedback. I love the dataset and don't foresee any issues. A few comments:

- For your presentation, I think it will be important to explain the features. Are these words, capitalization, etc? It would also be very interesting to do a feature analysis to see which features are most helpful for predicting the output (and if these change across methods).
- I also think it will be important to talk about previous work on this dataset.
- I think your investigation of hyper-parameters is a great idea. For this part, you probably have enough data to do a proper cross-validation, even if the number of folds is low.
- -For the NN method, I would probably recommend using a FC architecture unless there are some features that would benefit from a convolutional layer.
- Runtime might also be worth noting/comparing.

Thank you! Looking forward to the results. All the best,

-Sara

Testing on Real Email

	Spam Email (label = 1)	Sara's Email (label = 0)
Decision Trees	0	0
Naive Bayes	1	0
Random Forest	0	0
AdaBoost	1	0
Neural Network	0	0

Conclusion & Future Work

1. We should use machine learning to detect spam!

Future goals:

- 1. Collect a larger spam dataset (can't have too much data!) to train/test and a larger database of real spam emails to test our model on
- 2. Tweak the best model (ex. AdaBoost) to get the highest possible accuracy
- 3. Compare varieties of the same type of algorithm to see if something subtle could help.

Thank you! Questions?