Univerza na Primorskem, FAMNIT: TOR I Študijsko leto 2016/2017

Kolokvij 1 21. november 2016

Ime in priimek: Študijski program:	Vpisna št.: Letnik:		
1. Let <i>A</i> , <i>B</i> and <i>C</i> be arbitrary logical statements. Consider	the following logical statement.		
$\mathcal{I} = (A \Rightarrow (B \Rightarrow C)) \Leftrightarrow (($	$(A \wedge B) \Rightarrow C)$		
(a) (10 točk) Construct the truth table for \mathcal{I} .			
(b) (10 točk) Write down the canonical disjuntive and co	njuctive forms for the negation of I		
(c) (5 točk) Draw the circuit for I .			
2. For each statement, write down its negation. Consider x (a) $(4 \text{ točk}) (\forall x)(x \in S \Rightarrow x \neq 3)$	$x \in \mathbb{R}$ (x is a real number)		
(b) $(4 \text{ točk}) (\exists x)(x > 2 \Rightarrow (\forall y)(y > 2 \Rightarrow x + y < 0))$			
(c) $(4 \text{ točk}) (\exists !x)(x \le 4 \lor x > -1).$			
3. (15 točk) Without additional assumptions check the of (sklepa) and explain your answer. If Janez wins the competition then either Miha is second of Miha did not win.		dedu	ction
Deduction: If Miha was not second then Janez did not wir	1.		
4. Determine whether the following statements are true or	· false.		
(a) (4 points) If the consequence is a contradiction (proti be a tautology.	islovje), then the antecedent (anteced	dens) i DA	must NE
(b) (4 points) A Logical statement which implies its own	negation must be a contradiction.	DA	NE
(c) (4 points) $A \Rightarrow A \lor B$		DA	NE
(d) (4 points) We can construct 2^n logical statements from	n <i>n</i> atomic statements.	DA	NE

- **5.** Are the following implications correct?
 - (a) (4 points) $(A \Rightarrow B) \Rightarrow (A \lor C \Rightarrow B \lor C)$
 - (b) (4 points) $(A \Rightarrow B \land C) \Rightarrow (A \Rightarrow C)$
 - (c) (4 points) $(A \Leftrightarrow B) \Rightarrow (\neq A \lor B) \land (A \lor \neq B)$
- **6.** (15 points) Prove the following logical implication $(A \Rightarrow B) \Rightarrow ((C \Rightarrow A) \Rightarrow (C \Rightarrow B))$ without a truth table.
- 7. (8 points) For every fo the following sets

$$\emptyset$$
, $\{\emptyset\}$, $\{1\}$, $\{1,\{\emptyset\}\}$, $\{\{1\}\}$, $\{1,\{1\}\}$

determine whether it is an element or subset of the set

$$\{\emptyset, 1, \{1, \emptyset\}, \{\{1\}\}\}$$

.

8. (8 points) Write down the logical statement for th following circuits.