Battery Materials for Electric Vehicles: Today and Tomorrow

Vijayamohanan K Pillai CECRI , Karaikudi E-mail: vijay@ cecri.res.in Google "Vijayamohanan"

"Symposium on Materials of Today and Tomorrow" Annual Meeting of the Indian Academy of Sciences 2-4 November, 2018 - BHU Varanasi

INTRODUCTION

- All EV by 2030: National Mobility Mission; FAME- Rapid scale of commercialization (6-7 million sale by 2020)- April 2015 -2/3/4 Wheelers
- Increase in Fuel Price -daily
- Climate Mitigation- India committed to reduce 25% by 2020 (INDC)
- □ 175 gW by 2022; 100 solar, 60 wind, 10 -small hydro and 5 from biomass but no storage

Kyoto Protocol- to expire in 2020
UNFCCC- COP 21 PARIS

– ratified by 111
Marrakesh Climate
Change Conference COP
22 (190 countries)
US, now Australia - out

China emits 9 gT CO₂/year - India will follow-Smart Cities, Smart Grid - Carbon neutral to negative 2015-16 (Rs. 75 & 122.90 crore for 2016-17) Charging Infrastructure; Recyclability

Exponential Evolution of Li-ion Batteries and Rapid Decline of Cost

KEY BARRIERS FOR LARGE SCALE EV PENETRATION

EVs need powerful, light and affordable batteries – Li-ion compact and stable (last 15–20 years, 3 times longer than the 5–7 years for Pb-acid, but still too bulky and expensive – current cost is 3-5 times higher
Safety – overcharge protection currently expensive

Steady improvement for decades
- energy stored in 1 L pack has
more than tripled (200 to > 700
Wh/L) and cost has fallen 30 times
(US\$ 150/kWh) still exceeding \$100
goal for affordability by DOE batteries powerful enough for an
electric car (50–100 kWh) still weigh
600 kg with 500 L Scarce and
expensive materials like Co and Ni
- Co prices surged 4 times in the
past two years from 22 to 81 \$/kg

Agastya battery: the first?

A Sanskrit verse written by Maharishi Agastya in Agastya Samhita (7000 years agol) संस्था प्ये मृन्मये पत्रे "तम्रपान्न" सुसांकरतम च्छाड्येत शिखी ग्रिवेनड्रारभिही कस्थापन्सुभिही दस्तलोष्तो निधताव्याहा पारडच्छादितस्ताटाहा संयोगात जयते तेजो मित्रावरून संद्यिटम अणेन जलभगोस्ती प्रणोदनेशू वायूषू एवं शतना कुंभना संयोगहा कार्यक्ृटसमृताहा

संस्था प्ये (Take) मृन्मये (soil) पत्रे (patra= container) "तम्रपात्र्न" (cleaned copper plate) सुसांकरतम च्छाड्येत (covered with) शिखी (Morchud = copper sulphate) ग्रिवेनड्रारभिही कस्थाप

Sansthapya Mrinmaya Patre Tamrapatram Susanskritam Chhadyechhikhigriven Chardrarbhih Kashthpamsubhih Dastaloshto Nidhatavyah Pardachhaditastah Sanyogajjayte Tejo Mitravarunsangyitam Anen Jalbhangosti Prano Daneshu Vayushu Evam Shatanam Kumbhanamsanyogkaryakritsmrita mitra = cathode

varuna = anode

pranavayu = oxygen

udanavayu = hydrogen

ghritachi = earthen ceramic beaker

shata kumbh = 100 cells in series to convert chemical energy

to electrical energy

apsara = water tight vessel

A clean copper plate is put in an earthenware vessel. It is covered first by copper sulfate and then moist sawdust. After that put a mercury-amalgamated-zinc sheet on top of an energy known by the twin name of Mitra-Varuna. Water will be split by this current into Pranavayu and Udanavayu. A chain of one hundred jars is used to give a very strong electricity

Baghdad batteries (ca. 2000 years ago)

container: terracotta jar cathode: copper cylinder anode: iron rod electrolyte: vinegar separator: non-conducting stopper debated uses: electroplating; experiencing god!

Sumerian batteries (2500 BC)

Evolution of batteries

LITHIUM BATTERY: WORKING PRINCIPLE

OTHER NAMES:

SHUTTLE- COCK BATTERY

SWING BATTERY

ROCKING CHAIR BATTERY

Essential Components

Anode

Cathode

Electrolyte

Separator / Container

Technology Trends –Cell Type

Trend Towards higher energy density (and to a lesser extent, safety) will drive the Li-ion cell type and market share

Characteristics of POPULAR cathode materials

Crystal Structure	Compound	Specific capacity mAh/g (theoreticl/experime ntal/typical commercial cells)	Volumetric capacity (mAh cm ⁻³) (theoretical/ typical in commercial cells)	Average Voltage (V)	Level of Development
Layered	LiTiS ₂	225/210	697	1.9	Commercialized
	LiCoO ₂	277/148/145	1363/550	3.8	Commercialized
	LiNiO ₂	275/150	1280	3.8	Research
	LiMnO ₂	285/140	1148	3.3	Research
	$LiNi_{0.33}Mn_{0.33}Co_{0.33}O_2$	280/160/170	1333/600	3.7	Commercialized
	$LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$	279/199/200	1284/700	3.7	Commercialized
	Li ₂ MnO ₃	458/180	1708	3.8	Research
Spinel	LiMn ₂ O ₄	148/120	596	4.1	Commercialized
	LiCo ₂ O ₄	142/84	704	4.0	Research
Olivine	LiFePO ₄	170/165	589	3.4	Commercialized
	LiMnPO ₄	171/168	567	3.8	Research
	LiCoPO ₄	167/125	510	4.2	Research
Tavorite	LiFeSO ₄ F	152/120	487	3.7	Research
	LiVPO ₄ F	156/129	484	4.2	Research

Well-known Cathode Materials for Li-ion Batteries

LiCoO₂ (layered)

Li₂MnO₃ Li-rich layered

LiMn₂O₄ (Spinel)

LiFePO₄ (Olivine)

Mechanism: Li deintercalation-reintercalation during chargedischarge process

Metal dichalogenides: The early known Li⁺ intercalation layered compounds

Whittingham, Science. 192, 1126 (1976).

Whittingham, Mater. Res. Bull. **10**, 363 (1975).

J. Gopalakrishnan, J. Mater. Chem. 13, 433 (2003)

Cathodes: Comparison of Oxide vs. Phosphate

Oxide Cathodes

 $Li_{x}MO_{2}^{-n}$

:: (+) High Capacity, Cycleability, Proven cathode candidates

(-) Chemical instability, Off-stoichiometry and Poor safety

- **Polyanionic Cathodes**:: (+) Inherent safety and High voltage possibilities
- $Li_{\mathbf{v}}M(\mathbf{XO_4})^{-n}$

(-) Poor electronic conductivity, Inferior capacity

Thermal stability of Oxide vs. Phosphate cathodes

Temperature (C)

Major challenges in developing solid-state batteries

Li metal gives 500 Wh/kg but a resistive SEI between anode and electrolyte (RSE/SEI) complicates; the grains and grain boundaries also (RSE,gb) adds and dendrite formation due to highly inhomogeneous lithium metal deposition serious risk of short-circuiting. Most SEs react with cathode active materials and need to be protected by coating the active material. Potential Li depletion at the cathode (space charge with rectifying effect) to be avoided by a coating. The red curve indicates the drop of potential ϕ across the space charge; blue arrows- mechanical pressure required to avoid contact loss due to local volume changes upon lithiation/delithiation .

Nature Energy volume 1 (2016) 16141

ENERGY ADVANTAGE

Batteries that use conversion electrodes can store more energy in a given unit stack volume than those using conventional electrodes.

Conversion electrodes

Conventional electrodes

C, carbon (graphite); LFP, lithium iron phosphate; NCA, lithium nickel cobalt aluminium oxide; NCM, lithium nickel cobalt manganese oxide; LMO, lithium manganese oxide.

FLUORINATED SOLVENTS AS POTENTIAL ELECTROLYTES FOR HIGH VOLTAGE CATHODES

- Fluoro-EC
- Fluorinated Alkyl EC
- Fluorinated Ether EC
- Fluorinated Linear Carbonate
- Fluorinated Ether
- Fluorinated Linear Sulfone
- Fluorinated Sulfone
- DFT calculations of Redox potential or conductivity
- Leakage current measurements

Road to Super-Batteries for Tomorrow

CURRENT	FUTURE 425 km range; Functional, Green & Cool
250 Wh/kg; 650 Wh/L	500 Wh/kg: 1500 Wh/L Solid-state Li batteries: smaller, cheaper and higher capacity: could potentially charge faster, last longer, and better overall performance for safer EVs
Li _x MO ₂ , LiM ₂ O ₄ , LiMPO ₄ Li or Na ion glass electrolyte	Li Metal Anode; Na or Mg Air or Oxygen; Sulphur
$\sigma_{\rm i}$ > 10 ⁻² S/cm at 25 °C	
Liquid Electrolyte Polymeric Separator	Polymer/Ceramic Electrolytes Smart Composite Separator

\$ 100/kWh	
Roll-to-roll Process	
3-D Printing	
Al-enabled BMS software	
Layer-by-Layer – paint or s	skir

Sakti3
Amprius
SeeO
SiNode Systems
Graphenenano
SiLa Nano
Grabat Energy
Blue Current
Envia (123)
Nexelon
Axion (LLZO)
NanoExa (Sujit Kumar & Sinkula)

Cell generation	Cell chemistry	
Generation 5	Li/Oz (lithium-air)	
Generation 4	All-solid-state with lithium anode Conversion materials (primarily lithium-sulphur)	> 2025 ?
Generation 3b	 Cathode: HE-NCM, HVS (high-voltage spinel) Anode: silicon/carbon 	~ 2025
Generation 3a	 Cathode: NCM622 to NCM811 Anode: carbon (graphite) + silicon component (5-10%) 	~ 2020
Generation 2b	Cathode: NCM523 to NCM622 Anode: carbon	
Generation 2a	Cathode: NCM111 Anode: 100% carbon	current
Generation 1	Cathode: LFP, NCA Anode: 100% carbon	

BATTLE AT THE UNIVERSITY OF TEXAS

1992 - Akshaya Padi - Olivine compounds
Shigeto Okada arrived in 1993 from NTT

– tinked spinel formulation with Co, V, Mn
Developed a secret formulation and in 1995 filed a patent with NTT for LFP - UT filed a 500 million patent suit against but eventually settled for 30 million from NTT

An MIT professor Yet-Ming Chiang tweaked Goodenough's idea and filed patents for improved material, in a company called A123 & this company persuaded a European tribunal to strike down the old man's patents, which it eventually did in 2008.

The result was a free-for-all, one that reached an apex late in 2008 when Warren Buffett spent \$230 million to buy 10 percent of BYD, a Chinese car company used a new LFP powered EV. In 2009, A123 sold shares Chiang's company raised \$587 million, Except, again, Goodenough. In the end, the UT settled with NTT. The payoff to the school was \$30 million along with a share of any profit from its Japanese patents, recognition that Goodenough had been infringed

BE THE FIRST TO PARK ONE IN YOUR DRIVEWAY: Introducing the Tucson Fuel Cell, Hyundai's first-ever, hydrogen-powered vehicle with zero-emissions. ..And it can be yours.

2007 - Honda FCX Clarity - hydrogen fuel cell; 2010 - Mercedes-Benz F-Cell; 2014 - Hyundai Tucson FCEV; 2015 - Toyota Mirai - production version of the FCV concept car; 2016 - Riversimple Rasa; 2016 - Honda Clarity Fuel Cell; 2018 - Hyundai Nexo

BATTLE AT THE UNIVERSITY OF TEXAS

1992 - Akshaya Padi - Olivine compounds

Shigeto Okada in 1993 from NTT

– tinkered spinel formulation with Co, V, Mn
a secret formulation and in 1995
patent with NTT for LFP -

for MIT im trib

UT filed a 500 million patent suit but eventually settled for 30 million from NTT

MIT - Yet-Ming Chiang tweaked patents for improved material, (A123) persuaded a European tribunal to strike down patents, (2008) Warren Buffett spent \$230 million to buy 10 % of BYD, a Chinese car company with LFP - EV. In 2009, A123 sold shares raised \$587 million

UT settled with NTT for \$30 million along with a share of any profit from its Japanese patents.

The fierce war between Start-ups and Venture capital firms for the most promising ideas.

TESLA – GM BATTLE

Toward the end of 2014, - rivalry Tesla with GM to produce the 200 mile electric for mass-market in 2017 - the Model III @ \$35,000. The top electrics—the Volt, the Leaf, and Musk's Model S— 2,000 to 3,000 vehicles a month each, but 40,000 for BMW 3-Series, the entry-level gasoline-driven luxury. Musk promised 500,000 electrics a year by 2020.

"GM has observed a significant and very large disparity between the data obtained from Arpa-E cells and proof of concept cells based on 400 wh/kg technology we sent them for testing

Just a year after losing the GM contract, Envia was awarded two grants totaling \$7.2 million aimed at making NMC 2.0 work. One of the grants from a government backed consortium (GM, Ford, and Chrysler) - gamble on Envia

ALL SOLID STATE LITHIUM

Edible Battery Could Enable Future Medical Devices!

Self-destructing Li-ion battery propels promise of transient electronics

Li-ion Batteries: Indian Technologies

ISRO	CSIR Technology	ARCI Technology
PRISMATIC CELLS NCA CHEMISTRY ROBUST ENGINEERING TESTED AND VALIDATED AS BATTERY PACKS TESTED FOR ROCKETS THERMAL MANAGEMENT HIGHER TRL? INTERFACE WITH BMS SUPERIOR SAFTY FEATURES	18650 AND POUCH CELLS TRL-5/6 OWNS IP RIGHTS IN KOREA, JAPAN, CHINA, US SYNERGY FROM LABS (NPL, CGCRI, CECRI, IICT?) FLEXIBLE: NMC,LCO,LTO <5 Ah LINK WITH SUPPLY CHAIN STRENGTH WITH ELECTROCHEMISTRY	PRISMATIC CELLS LFP CHEMISTRY TRL-5/6 BETTER CREDIBITY AND INDUSTRIAL TRACK RECORD STRENGTH IN SCALE-UP STRONG MATERIALS ENGINEERING GROUP FREEDOM TO PRACTICE 40 Ah
COST? FREEDOM TO PRACTICE? IP RIGHTS?	BATTERY PACK NOT VALIDATED FOR EV? SEMIAUTOMATIC? COST? SCALE-UP?	COST? PART IP? HOW MUCH INDIGENEOUS?

IIT-Mumbai, - Cell Fabrication Facility & Strenghth in Materials

Thank You

"The storage battery is, in my opinion, a catchpenny, a sensation, a mechanism for swindling the public by stock companies. The storage battery is one of those peculiar things which appeals to the imagination, and no more perfect thing could be desired by stock swindlers than that very selfsame thing. . . . Just as soon as a man gets working on the secondary battery it brings out his latent capacity for lying"

1883
Thomas Alva Edison