תרגיל חזרה לבדיקת דמיון התפלגויות (χ²)

במחקר משוער כי טיפול תרופתי מסויים יוביל להתפלגות תוצאות כדלהלן: 50% החלמה מלאה, 30% ללא שינוי, 18% הרעה בסמפטומים ו-2% תמותה.

בבדיקת התרופה במדגם של 240 חולים במצב אבחנתי אחיד נתגלו הממצאים הבאים: 115 עברו החלמה מלאה, 76 נותרו ללא שינוי, ב-45 חלה הרעה בסמפטומים, וארבעה נפטרו.

האם ניתן לומר כי תוצאות המדגם תומכות בהשערת המודל ברמת בטחון של 95%?

:לצורך כך

- 1. נסחו השערה סטטיסטית הבודקת את השאלה.
- בעזרת טבלת χ^2 המצורפת, מצאו אמדן סטטיסטי קריטי (χ^2) המתאים לבחינת ההשערה ברמת χ^2 שימו לב למספר דרגות החופש המתאים לנתונים).
 - 3. חשבו את האמדן הסטטיסטי של המדגם (X²). האם ניתן לקבל או יש לדחות את השערת האפס לפי האמדן הסטטיסטי?
- 4. מצאו *בקרוב* את הסיכוי לשימור השערת האפס (P_{ν}), מתוך הטבלה. האם ניתן לקבל או האם יש לדחות את השערת האפס לפי סיכוי משוער זה?
 - 5. סכמו את מסקנותיכם מילולית (האם הממצאים תומכים או מפריכים את המודל)

תזכורת לנוסחאות רלוונטיות:

- $\chi^2 = \sum_{i=1}^k rac{(O_i E_i)^2}{E_i}$ אמדן סטטיסטי במדגם, בהשוואה לנתוני המודל:
 - מספר דרגות החופש בטבלת שכיחויות:

 $df = (\# of \ categories - 1) \cdot (\# of \ comparison \ groups - 1)$

: ההשערות הנבדקות הן

 H_0 : $X \sim F$ H_1 : אחרת

: סימונים

.(Observed) שכיחויות התאים שהתקבלו במדגם O_i

 \cdot F הסתברויות התאים לפי השערת האפס – פונקציית ההתפלגות - p_i

(Expected) H_0 השכיחויות הצפויות השכיח - $E_i = n \cdot p_i$

 $E_i \geq 5$: יש לדאוג שעבור למעלה מ-80% מהתאים מתקיים התנאי: יש לדאוג שעבור למעלה מ

<u>טבלת X²</u>

Degrees of freedom (df)	χ^2 value $^{[19]}$										
1	0.004	0.02	0.06	0.15	0.46	1.07	1.64	2.71	3.84	6.63	10.83
2	0.10	0.21	0.45	0.71	1.39	2.41	3.22	4.61	5.99	9.21	13.82
3	0.35	0.58	1.01	1.42	2.37	3.66	4.64	6.25	7.81	11.34	16.27
4	0.71	1.06	1.65	2.20	3.36	4.88	5.99	7.78	9.49	13.28	18.47
5	1.14	1.61	2.34	3.00	4.35	6.06	7.29	9.24	11.07	15.09	20.52
6	1.63	2.20	3.07	3.83	5.35	7.23	8.56	10.64	12.59	16.81	22.46
7	2.17	2.83	3.82	4.67	6.35	8.38	9.80	12.02	14.07	18.48	24.32
8	2.73	3.49	4.59	5.53	7.34	9.52	11.03	13.36	15.51	20.09	26.12
9	3.32	4.17	5.38	6.39	8.34	10.66	12.24	14.68	16.92	21.67	27.88
10	3.94	4.87	6.18	7.27	9.34	11.78	13.44	15.99	18.31	23.21	29.59
P value (Probability)	0.95	0.90	0.80	0.70	0.50	0.30	0.20	0.10	0.05	0.01	0.001