# Biostatistics Week VII

Ege Ülgen, MD, PhD

17 November 2022



#### Hypothesis Testing - Steps

#### 1. Check assumptions, determine $H_0$ and $H_a$ , choose $\alpha$

- Assumptions differ based on the test
- The null hypothesis always contains equality (=)

#### 2. Calculate the appropriate test statistic

• z, t,  $\chi^2$ , ...

#### 3. Calculate critical values/p value

With the aid of precalculated tables/software

#### 4. Decide whether to reject/fail to reject H<sub>0</sub>

• Reject if the statistic is within the critical region/p  $\leq \alpha$ 

#### χ<sup>2</sup> Test of Association

- Used to assess the association between two categorical variables
- More generally, used to investigate the significance of the difference between expected and observed values

Are the 2 categorical variables independent?

χ<sup>2</sup> Test – Test Statistic

$$\chi^2 = \sum \frac{(observed - expected)^2}{expected}$$

TABLE III—Changes in frequency of physical exercise in patients with angina between baseline and review at two years

|           | No (%) of patients |               |
|-----------|--------------------|---------------|
|           | Intervention group | Control group |
| Increased | 108 (34)           | 63 (21)       |
| No change | 120 (38)           | 74 (25)       |
| Decreased | 89 (28)            | 163 (54)      |

- 1. Determine  $H_0$  and  $H_a$ , choose  $\alpha$ 
  - $H_0$ : there is **no association** between frequency of physical exercise and group  $H_a$ : there **is association** between frequency of physical exercise and group
  - $\alpha = 0.05$
- 2. Calculate the appropriate test statistic

|           | Intervention Group | Control Group | Total |
|-----------|--------------------|---------------|-------|
| Increased | 108                | 63            | 171   |
| No change | 120                | 74            | 194   |
| Decreased | 89                 | 163           | 252   |
| Total     | 317                | 300           | 617   |

$$expected_{1,1} = 317 \times \frac{171}{617}$$
  $expected_{1,2} = 300 \times \frac{171}{617}$   
 $expected_{2,1} = 317 \times \frac{194}{617}$   $expected_{2,2} = 300 \times \frac{194}{617}$   
 $expected_{3,1} = 317 \times \frac{252}{617}$   $expected_{3,2} = 300 \times \frac{252}{617}$ 

| OBSERVED  | Intervention Group | Control Group |  |
|-----------|--------------------|---------------|--|
| Increased | 108                | 63            |  |
| No change | 120                | 74            |  |
| Decreased | 89                 | 163           |  |

| EXPECTED  | Intervention Group | Control Group |
|-----------|--------------------|---------------|
| Increased | 87.86              | 83.14         |
| No change | 99.67              | 94.33         |
| Decreased | 139.47             | 122.53        |

#### χ<sup>2</sup> Test – Test Statistic

$$\chi^2 = \sum \frac{(observed - expected)^2}{expected}$$

$$\chi_H^2 = 44.04 \sim \chi_{(3-1)(2-1)=2}^2$$

### χ<sup>2</sup> Test – Test Statistic



• Is the protection status dependent on different COVID vaccines?

|           | Protected | Not protected |
|-----------|-----------|---------------|
| Vaccine 1 | 82        | 41            |
| Vaccine 2 | 70        | 24            |
| Vaccine 3 | 45        | 20            |
| Vaccine 4 | 48        | 42            |



- 1. Check assumptions, determine  $H_0$  and  $H_a$ , choose  $\alpha$ 
  - $H_0$ : there is **no association** between protection status and vaccine type  $H_a$ : there **is association** between protection status and vaccine type
  - $\alpha = 0.05$
- 2. Calculate the appropriate test statistic

$$\chi_H^2 = 9.297 \sim \chi_3^2$$

|           | Proctected | Not protected | Total |
|-----------|------------|---------------|-------|
| Vaccine 1 | 82         | 41            | 123   |
| Vaccine 2 | 70         | 24            | 94    |
| Vaccine 3 | 45         | 20            | 65    |
| Vaccine 4 | 48         | 42            | 90    |
| Total     | 245        | 127           | 372   |

$$expected_{4,1} = 245 \times \frac{90}{372} = 59$$

$$expected_{4,2} = 127 \times \frac{90}{372} = 31$$

$$\chi_H^2 = \sum_{j=1}^m \sum_{i=1}^n \frac{(observed_{ij} - expected_{ij})^2}{expected_{ij}} \sim \chi_{(m-1)(n-1)}^2$$

 $\chi_H^2 = 9.297 \sim \chi_3^2$ 



p = 0.025592

