ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC) Department of Computer Science and Engineering (CSE)

MID SEMESTER EXAMINATION

WINTER SEMESTER, 2017-2018

TIME: 1 Hour 30 Minutes

FULL MARKS: 75

PHY 4141: Physics I

Programmable calculators are not allowed. Do not write anything on the question paper.

There are 4 (four) questions. Answer any 3 (three) of them.

Figures in the right margin indicate marks.

1.	a)	Discuss charge and matter in electrostatics. With the help of a suitable example show that electric charge is quantized.	7
	b) c)	Distinguish electric flux and magnetic flux. Derive Coulombs law from Gauss's law. Protons in the cosmic rays strike the earth's upper atmosphere at a rate, averaged over the earth's surface, of 0.15 protons/cm²-sec. What total current does the earth receive from beyond its atmosphere in the form of incident cosmic ray protons? (Earth's radius=6.4 x 106 meters).	10 8
2.	a)	What is an electric dipole? Draw the electric field lines and the equipotential lines for an electric dipole.	7
	b)	An infinite long line charge has a linear charge density λ coul/m. Show that the electric field	10
		E at distance y from the line charge is given by $E = \frac{\lambda}{2\pi\varepsilon_0 y}$, where the symbols have their	
	c)	usual meaning. (Do not use Gauss's law). Write down the corresponding equation for the magnetic field B produced due to a current i flowing through a wire. An electric dipole consists of two opposite charges of magnitude $q = 1.0 \times 10^{-6}$ coul. separated by $d = 2.0$ cm. The dipole is placed in an external field of 1.0×10^{5} nt/coul. (i) Calculate the maximum torque exerted by the field on the dipole (ii) How much work must an external agent do to turn the dipole end for end from a position $\theta = 180^{\circ}$ to $\theta = 0$?	8
3.	a)	Discuss Gauss's law and Coulomb's law in electrostatics. Show with an example that an excess charge put on a metallic conductor will move onto the outer surface of the conductor.	7
	b)	Describe with a clear circuit diagram the phenomenon of Einstein's Photo-electric effect. Discuss photocurrent, stopping potential, threshold frequency, and the work function.	10
	c)	A laser gun produces a beam of light 2.0 mm in diameter. The wavelength of the light is 532 nm ($1 \text{ nm} = 10^{-9} \text{ meter}$) and the output power is 20 mW ($1 \text{ mW} = 10^{-3} \text{ Watt}$). Calculate the number of photons emitted by the gun in one second.	8
4.	a)	Write down the postulates of Special theory of relativity. What are inertial and non-inertial frames of reference?	7
	b)	Derive Lorentz Transformation equations. Also write down the inverse transformation equations.	10
	c)	Give a geometrical description of Michelson-Morley's experiment. Discuss how the fringe shift in this experiment is related to the existence of Ether pervading the Universe?	8