

地化与采样

主讲: 龙良曲

Outline

Pooling

upsample

ReLU

Reduce Dim

Max/Avg pooling

stride=2

https://towardsdatascience.com/a-deeper-understanding-of-nnets-part-1-cnns-263a6e3ac61

Strides

stride=1

1	3	2	4
1	3	2	4
5	7	6	8
5	7	6	8

 3
 3
 4

 7
 7
 8

 7
 7
 8

For instance

(a) Illustration of max pooling drawback

(b) Illustration of average pooling drawback

LeNet-5


```
In [36]: x # TensorShape([1, 14, 14, 4])
In [37]: pool=layers.MaxPool2D(2,strides=2)
In [38]: out=pool(x)
Out[39]: TensorShape([1, 7, 7, 4])
In [40]: pool=layers.MaxPool2D(3,strides=2)
In [41]: out=pool(x)
Out[42]: TensorShape([1, 6, 6, 4])
In [44]: out=tf.nn.max_pool2d(x, 2,strides=2,padding='VALID')
Out[45]: TensorShape([1, 7, 7, 4])
```

upsample

- nearest
- bilinear

UpSampling2D

```
In [47]: x=tf.random.normal([1,7,7,4])
In [48]: layer=layers.UpSampling2D(size=3)
In [49]: out=layer(x)
Out[50]: TensorShape([1, 21, 21, 4])
In [51]: layer=layers.UpSampling2D(size=2)
In [52]: out=layer(x)
Out[53]: TensorShape([1, 14, 14, 4])
```

ReLU


```
In [55]: x=tf.random.normal([2,3])
<tf.Tensor: id=154, shape=(2, 3), dtype=float32, numpy=
array([[-1.533682 , -2.7053335 , 0.36354962],
       [ 0.00713745, 0.69756126, 0.8053344 ]], dtype=float32)>
In [57]: tf.nn.relu(x)
<tf.Tensor: id=156, shape=(2, 3), dtype=float32, numpy=
array([[0. , 0. , 0.36354962],
       [0.00713745, 0.69756126, 0.8053344 ]], dtype=float32)>
In [59]: layers.ReLU()(x)
<tf.Tensor: id=158, shape=(2, 3), dtype=float32, numpy=
array([[0. , 0. , 0.36354962],
       [0.00713745, 0.69756126, 0.8053344 ]], dtype=float32)>
```

下一课时

CIFAR100 实战

Thank You.