Applicant submits an amended description which includes reference characters 3, 4 and 5.

The examiner has objected to the drawings because Fig. 1B because reference character 15

had been used to designate both CCD cmera and a connection between lock-in amp. 13 and SPV

probe 11. Applicant submits one replacement drawing, included herein as Fig. 1B.

The examiner has objected to informal errors in the description. Applicant submits a marked

up edition of the description adopting the examiner's requested corrections and a clean version of the

amended description included herein.

The examiner has objected to informal errors in the claims. Applicant submits a marked up

edition of the claims adopting the examiner's requested corrections and a clean version of the

amended claims included herein.

No new matter has been introduced into the disclosure. Applicant believes that all pending

claims are allowable and respectfully requests a timely Notice of Allowance for this application from

the Examiner.

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and

belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment or both, under 18 U.S.C. 100 I and that such willful false statements may

jeopard!ze the validity of the application or any patent issued thereon.

Respectfully submitted,

1631 North First Street, San Jose, CA 95112

408-452-8898

Date: January , 2005



10

15

20

# DETERMINATION OF MINORITY CARRIER DIFFUSION LENGTH IN SOLID STATE MATERIALS

#### FIELD OF INVENTION

This invention relates to determining the diffusion length in solid state materials.

### BACKGROUND OF THE INVENTION

The purity of the silicon wafers depends on the concentration of different impurities, including heavy metal contaminates (e.g., Fe, Cr, Cu), introduced during the manufacturing and processing of semiconductor devices. The minority carrier lifetime and the diffusion length are used for contamination monitoring in the silicon wafers. The challenge is to measure diffusion length, and monitor contamination in the product wafers at all steps of processing and manufacturing of integrated circuits.

In current techniques, the intensity-modulated light, with the photon energy larger than the band gap, is directed to the front side of semiconductor. As a result of photo generation, the excess carriers change the surface potential of the semiconductor, and alternative surface photo voltage (SPV) is measured using a transparent conducting electrode placed near the front surface of the silicon wafer within the illumination area. Diffusion length is determined by measurements of the SPV signals and light fluxes under successive illuminations of the wafer with monochromatic light at different wavelengths.

The American Society for Testing and Materials (ASTM) recommends two methods, F 391 A and B, for SPV measurement of the diffusion length. The calculation of the diffusion length is based on upon the solution of the one-dimensional diffusion

equation for excess minority carriers assuming that diffusion length is short compared to ¼ wafer thickness.

This expression is

5

10

15

20

$$\Delta n = \Phi \frac{1 - R}{D/L + S_F} \cdot \frac{\alpha L}{\alpha L + 1} \tag{1}$$

where  $\Delta n$  is the excess minority carrier concentration, L is the diffusion length,  $\alpha$  is the absorption coefficient,  $\mathcal{O}$  is the incident light flux, R is the reflectivity of the semiconductor, D is the minority carrier diffusion constant, and  $S_F$  is the front side surface recombination velocity. This method has been described in the patent to A. M. Goodman in U.S. Patent No 4,333,051, 1982. The SPV has monotonical dependence versus light flux with linear region for small level excitation. This method has been described in the patent to A. M. Goodman in U.S. Patent No 4,333,051 in1982.

In the first ASTM- recommended method F391 A, the magnitude of SPV is adjusted to the same value by changing the light intensity at each wavelength. The effective diffusion length is obtained from the linear plot of the light flux,  $\Phi$ , versus the light penetration depth  $\alpha^I$ . The effective diffusion length equals the intercept value  $L_{EFF}=-\alpha^I$  at  $\Phi=0$ . The effective diffusion length depends on the bulk lifetime,  $\tau$ , and the surface recombination velocity, Sb, at the back surface of the wafer. If the effective diffusion length is less then one-fourth wafer thickness,  $L_{EFF}$  can be taken to be equal to the diffusion length  $L=\sqrt{D\cdot\tau}$ , where  $\tau$  is minority carrier lifetime.

The second ASTM recommended method F-391-B is the linear constant photon flux method, uses the SPV measurement for several different wavelengths of light with the same intensity, where the photovoltage has the linear dependence versus light intensity. The diffusion length is obtained using the linear plot of inverse value of the surface photovoltage as a function of light penetration depth. This method is discussed in the patents to Lagowski, U.S. Patent No.5[.] 2025,145 and US Patent 5,177,351 and J. Lagowski et. al., Semicond, Sci. Technol. 7, A185 (1992). The apparatus includes halogen light source with wavelength selecting wheel for illumination and the quartz disk with indium thin oxide (ITO) film for directing the light on the wafer surface and detecting an SPV signal.

5

10

15

20

In the patent to Lagowski et al., U.S. Patent No 5,663,657, another SPV probe is used. The SPV electrode consists of the quartz disk with evaporated transparent conductance indium thin oxide (ITO) film with the diameter smaller than the diameter of the disk and hence the illumination area. The SPV probe configuration allows <u>one</u> to diminish the systematic error of the diffusion length measurement by excluding influence of the lateral diffusion of the minority carriers in the bulk of the wafer.

In a Russian patent No 2080689 (1994), the apparatus includes a transparent and conductive electrode, the set of light emission diodes and objective lens to focus the light through said transparent electrode into a spot on the wafer. The diameter of the electrode is larger than the optical beam diameter. This configuration is different with respect to U.S. Patent No 5,663,657, where the illumination area is larger than the electrode and at the same time also eliminates error due to lateral diffusion of the minority carriers in the body of the wafer and provide better spatial resolution for the diffusion length measurement. In *Proceedings of 24<sup>th</sup> ESSDERC'94*, Edinburgh, p.601 (1994), using numerical calculations and the experiment, it was shown that this apparatus can be used

for fast mapping (2 minutes with 8000 points) of the diffusion length, with improved spatial resolution close to the optical beam diameter,  $d_B$ , even if L is comparable with  $d_B$ .

#### SUMMARY OF THE INVENTION

5

10

15

20

An advantage of the present invention is to provide non-contact apparatus and method for measurements of the diffusion length especially for patterned product silicon wafers

Another advantage of the present invention is to provide a non-contact apparatus and method for diffusion length measurement in the region of scribe lines of patterned silicon wafers.

In one embodiment, the invention features an apparatus for measuring the diffusion length with high spatial resolution around 0.1-1 mm from the backside of the product wafer in its predetermined regions. This apparatus includes a probe for measuring surface photovoltage from the backside of the semiconductor wafer. The probe includes an optical element, placed in proximity with semiconductor surface for directing uniform light flux onto the area of the semiconductor wafer. The probe further includes a detection element, which consists of a transparent and conducting first electrode with diameter 0.1-1 mm, coated on the surface of the said optical element close to the wafer and a conducting non transparent second electrode, connected to the first electrode and overlapping it. The apparatus also includes a set of laser diodes with different wavelengths installed in optical combiners, a series of optical fibers connected to the SPV probe, an optical collimator for directing light on said optical element and a photo detector. The apparatus also includes an optical system with a CCD camera

installed from the front surface of the wafer coaxially with said optical element of SPV probe. This system is designed for pattern recognition and measurement of the diffusion length in the bulk of the wafer in the predetermined regions including the regions under testing areas located within scribe lines. Embodiments include the wafer chuck with the diameter smaller than the diameter of the wafer to get access to front and backside of the wafer.

5

10

15

20

In another embodiment of the invention, the apparatus additionally includes the second SPV probe for diffusion length measurement with low spatial resolution >1 mm. This SPV probe can be used to get full wafer map of the diffusion length. The second SPV probe may include a transparent disk with a diameter>1 mm as an optical element for directing light flux onto semiconductor wafer. The transparent disk has a transparent conducting material (first electrode) covering the surface of the transparent disk. The transparent disk is placed inside of the metal ring (second electrode), which has electrical contact with the transparent and conducting material. The electrodes are connected to the preamplifier and lock-in amplifier. The apparatus also includes a set of LED's with interference filters, a series of optical fibers bundles connected to the SPV probe and directing light on said optical element – transparent disk, and photo detector.

In the third embodiment of the invention, the apparatus can include multiple SPV probes for diffusion length measurement. These multiple SPV probes can be used simultaneously at different locations on the sample, to cut the measurement time significantly, compared with a single SPV probe running in a sequential measurement mode. For example, the apparatus can include 2 SPV probes with low spatial resolution > 1 mm and 1 SPV probe with high spatial resolution 0.1 - 1 mm. One low resolution

SPV probe can be used with one LED at certain wavelength, while the other low resolution SPV probe can be used with the same or another LED at the same or different wavelength. In this way, the measurement time of multiple sites per sample can be cut in half. After measuring by multiple low resolution SPV probes, one or several specific locations (scribe lines etc.) may be measured by high resolution SPV probe.

In the fourth embodiment, the invention features a method for fast mapping of the diffusion length. This method includes one or several pulses of light at one wavelength alternating with one or several pulses of light at another wavelength. In this way, the measurement time can be cut in half.

Other advantages include but not limited to the following:

10

15

1) The SPV probe, including transparent and non-transparent electrodes, improves spatial resolution and accuracy of the diffusion length measurement by making uniform light intensity distribution inside the transparent electrode; 2) The SPV probe with reduced size of transparent electrode <1 mm provide measurements within scribe lines; 3) The apparatus and method improves accuracy of measurement of very long diffusion length; 4) The apparatus and method improves accuracy fast measurement of the diffusion length for its fast mapping; and 5) Multiple probes usage improves the apparatus throughput for wafer mapping.

### 20 BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a schematic diagram of an apparatus adapted for determining a minority carrier diffusion length in predetermined areas in accordance with the invention.

Fig. 1[a]  $\underline{A}$  is an example of schematic diagram of an apparatus adapted for determining a minority carrier diffusion length in predetermined areas in accordance with the invention in which a second low-resolution probe is installed and both low resolution probes share the same set of light sources and both low resolution probes share the same light flux detector;

Fig. 1[b]  $\underline{B}$  is an example of schematic diagram of an apparatus adapted for determining a minority carrier diffusion length in predetermined areas in accordance with the invention in which a second low-resolution probe is installed and each low resolution probe has a separate set of light sources and each low resolution probe has a separate light flux detector;

Fig. 2 is a schematic diagram of SPV probes and optical microscope arrangement in accordance with the invention.

Fig. 3 is an arrangement of the pick-up electrode.

5

10

15

20

Fig. 4 is an arrangement of the pick-up electrode.

Fig. 5 is a calculated plot of dependence error of the diffusion length measurement versus electrode diameter for optical beam 0.5mm for L=375  $\mu$ m, 750  $\mu$ m, 1500  $\mu$ m.

Fig. 6 is a diagram of the light intensity and SPV signal vs. time for fast diffusion length mapping if one pulses of the first light source alternates with one light pulse of the second light source:

Fig. 6A is a diagram of the light intensity and SPV signal vs. time for fast diffusion length mapping if four pulses of the first light source alternates with four light pulse of the second light source;

# DETAILED DESCRIPTION OF THE PREFERED EMBODIMENT Probe and Apparatus:

5

10

15

20

Referring to FIGs. 1, 1A, 1B, 2, 3, 4, an apparatus 1 is shown for determining minority carrier diffusion length of a semiconductor wafer 2. Briefly, the apparatus includes a grounded chuck 3 with diameter less than the diameter of the silicon wafer 2. The wafer chuck 3 is mounted on the rotary stage 4 and linear stage 5. For measurement in the central region the position of the wafer on the chuck is changed using robotic or other system. The apparatus also includes optical and electrical components, which give possibility to illuminate the back surface of the wafer and detect the surface photo voltage on the back surface. A first source of the light 6 consists of two or more laser LED's installed in the optical combiners. A first source of the photons 6 is coupled trough through first optical fiber system 7 to first SPV transducer 8 to direct light onto back surface of the wafer. A second source of the photons 9 consists of two or more LED's with interference optical filters. A second source of the photons 9 is coupled through fiber bundle system 10 to a second back SPV transducer 11 to direct light onto back surface of the wafer. Both sources of photons are coupled to a photo detector 12. The photo detector 12 is connected to the preamplifier and than to the computer. Probes are coupled to the look-in lock-in amplifier 13 by a computer-controlled switch 14, so that photo voltage from both probes can be analyzed. The output of lock-in amplifier 13 is connected to the interface. Referring to Fig. 1, the apparatus includes an optical microscope with CCD camera 15 for pattern recognition, installed coaxially with the electrode of the first SPV probe 8.

The examples of the arrangement of the apparatus including multiple SPV probes are shown at Fig. 1A, 1B. At the arrangement of the apparatus shown at Fig.1A, 2 SPV probes with low spatial resolution > 1 mm use the same set of light sources. At the arrangement of the apparatus shown at Fig.1B, both probes with low spatial resolution > 1 mm use separate sets of light sources.

5

10

15

20

In more detail, the arrangement of the SPV probes and optical microscope is shown at Fig.2. The first SPV probe 8 includes electrode 16, optical collimator 18 at the end of the optical fiber 7 and preamplifier 19 connected to the electrode 16. The second SPV probe 11 includes electrode 17, optical fiber bundle 10 and preamplifier 20 connected to the electrode 17. Referring to Fig.3, 4 Figs. 3 and 4 for accurate measurement of the diffusion length, the special electrodes configurations are used. The electrode 16 consists of glass or quartz disk 26 with ITO coating 21 installed inside metal ring 25 with diaphragm 24 and dielectric ring 23. The electrode 17 consists of glass or quartz disk 27 with ITO coating 30 installed inside metal ring 28 and dielectric ring 29. The dimensions of these electrodes should be chosen according to theoretical calculations. Referring to Fig 5, the curves 35, 36, 37 are the calculated curves of a ratio of measured diffusion length to true L value for light beam diameter 0.5mm versus diameter of electrode for Ltrue =375 μm; 750 μm; 1000 μm.

For measurement of the diffusion length up to 1 mm with spatial resolution 0.1-1 mm, the diameter of the transparent disk 16 should be 0.1-1 mm and the outer diameter of the metal ring should be larger than 8 mm. This electrode configuration gives optimal

signal noise ratio and lateral resolution for measurement within scribe line. This configuration is implemented in electrode 16.

For measurement of the diffusion length up to 1 mm with spatial resolution 5 mm, the diameter of the transparent disk 16 should be 5 mm and the outer diameter of the metal ring should be larger than 8 mm. This electrode configuration gives optimal signal noise ratio and lateral resolution for full wafer mapping of the diffusion length measurement within the scribe line. This configuration is implemented in electrode 17.

For fast diffusion length mapping with both high and low spatial resolution, the wafer surface can be illuminated by 1 or several pulses of light at one wavelength (Fig.6, 6A), alternating with one or several pulses of light at different wavelength. An example when the wafer surface is illuminated by 4 pulses of light at one wavelength alternating with 4 pulses of light at different wavelength is shown at Fig 6A.

# Diffusion length determination.

5

10

15

20

The procedure of measurement includes the following steps:

- a) positioning the wafer 2 using pattern recognition system 8 to get the predetermined region of the wafer front surface over the illumination area on back side wafer surface;
- b) illuminating of the back surface of the wafer 2 with monochromatic light at series of wavelength λ<sub>i</sub> and modulating frequency f using light source 6, optical fiber [17] Z and SPV probe 8 and measurement of SPV signal, V<sub>i</sub>, using SPV probe 8 and leok-in lock-in amplifier 13 and measurement of light flux Φ<sub>i</sub> using photodiode;

- c) illuminating said area at different intensities at the same wavelength  $\lambda_1$ , measuring light fluxes  $\Phi_1$  and  $\Phi_{11}$  and corresponding surface photovoltages  $V_1$ ;
- d) recalculating SPV signals using the formulas:

$$\begin{split} C_{NL} &= \frac{V_{11} \cdot \Phi_1^2 - V_1 \cdot \Phi_{11} \cdot \Phi_1}{V_{11} \cdot \Phi_1^2 - V_1 \cdot \Phi_{11}^2} \\ \\ V_i^L &= \frac{1 - C_{NL}}{1 - C_{--} \cdot V_- I/V_-} V_i \end{split}$$

15

20

e) determining diffusion length using values  $V_i^l$ ,  $\Phi_i$  and intercept of the plot  $\Phi_i / V_i^l$  versus light penetration depths.

The light wavelengths can be in the range 800-1000 nm and light modulating frequency is in the range 400-5000Hz

To get full wafer map of the diffusion length the second SPV probe can be used.

The procedure of measurement includes the following steps:

- a) illuminating of the back surface of the wafer 2 with monochromatic light at series of wavelength λ<sub>i</sub> and modulating frequency f using light source
   9, optical fiber 10 and SPV probe 11 and measurement of SPV signal, V<sub>i</sub>, using SPV probe 11 and look-in lock-in amplifier 13 and measurement of light flux Φ<sub>I</sub> using photodiode 12;
  - b) illuminating said area at different intensities at the same wavelength  $\lambda_1$ , measuring light fluxes  $\Phi_1$  and  $\Phi_{11}$  and corresponding surface photovoltages  $V_1$ ;

e) recalculating SPV signals using the formulas:

$$C_{NL} = \frac{V_{11} \cdot \Phi_{1}^{2} - V_{1} \cdot \Phi_{11} \cdot \Phi_{1}}{V_{11} \cdot \Phi_{1}^{2} - V_{1} \cdot \Phi_{11}^{2}}$$

$$1 - C_{NL}$$

$$V_{i}^{L} = \frac{1 - C_{NL}}{1 - C_{NL} \cdot V_{i} / V_{1}} V_{i}$$

- e) determining diffusion length using values  $\mathrm{Vi}^{l},\,\Phi_{i}$  and intercept of the
- 5 plot  $\Phi_i$  /  $Vi^l$  versus light penetration depths.

Using the measurement of the diffusion length within scribe lines and full wafer map of the diffusion length more detail information concerning metal contamination during technological processing can be obtained.





10

#### CLAIMS

## What is claimed is:

 (Currently amended) An apparatus for determining the diffusion length of semiconductor wafers comprising:

a probe for directing radiation on an area of back side wafer surface to excite charge carriers, create and detect a surface photovoltage, said probe including an electrode, including a transparent element placed on surface of the transparent element a transparent element placed on surface of the electrode in the path of said radiation and a non transparent element surrounding [a] said transparent element, said electrode is placed in proximity to the back side of the wafer,

means for illuminating of the surface at different wavelengths, including two or more different sources of monochromatic light driven by light drivers controlled by a computer,

means for directing light flux onto said electrode of the probe and  $\underline{a}$  photo detector,

means for measuring surface photovoltage (SPV) signals picked up by said electrode, said <u>means for</u> measuring system including SPV pre-amplifier and lock-in amplifier with said electrode connected to said pre-amplifier input, said pre-amplifier output connected to said lock-in amplifier input and said lock-amplifier output connected to computer to the input of said SPV pre-amplifier, the output of said SPV pre-

20

amplifier connected to the output of said lock-in amplifier and the output of said lock-in amplifier connected to said computer.

means for measuring light flux including pre-amplifier with said photo detector connected to pre-amplifier input and said pre-amplifier output eennected to computer the input of said pre-amplifier and the output of said pre-amplifier connected to said computer.

an optical system installed from the front surface of the wafer coaxially with said electrode, said optical system being designed for pattern recognition, said optical system including objective lens and CCD matrix with said CCD matrix output connected to <u>said</u> computer, means for positioning said optical system coaxially with said probe electrode, and

means for wafer positioning using for measurements in different locations including one or more linear stages and a rotary stage, said <a href="linear-stages and said rotary stage">linear stages and said rotary stage</a> controlled by <a href="mailto:said computer">said computer</a>.

2. (Currently amended) [An] The apparatus as in Claim 1, wherein the transparent element of the probe electrode is [the] a transparent glass or quartz disk, said transparent disk has a transparent and conducting coating on its top and side surfaces, said transparent being disk being installed inside [the] a metal ring with a diaphragm covering a part of said transparent disk excluding [the] a central region.

20

5

10

- (Currently amended) [An] <u>The</u> apparatus as in Claim 2, wherein the diameter
  of said central region is in the range 0.1-1 mm and outer diameter of the metal
  ring is 8-10 mm.
- (Currently amended) [An] The apparatus as in any one of Claims 1-3, wherein
  means for illuminating wafer surface includes laser diodes installed in [the] an
  optical combiners, said optical combiners coupled with optical fibers.
- 5. (Currently amended) [An] The apparatus as in any one of Claims 1-4, wherein the means for directing light flux onto a-transparent substrate said electrode of the probe includes a Y-shaped optical fiber, with one end of the optical fiber is connected to [the] an optical collimator installed in proximity with said optical transparent element, and the other end of the optical fiber splits light flux between said transparent element and the photo detector.
- 6. (Currently amended) [An] <u>The</u> apparatus as in any one of Claims 1-5, wherein said apparatus further comprises:

a second probe for directing <u>a second</u> radiation on an area on the back side wafer surface to excite charge carriers, create and detect a surface photovoltage from back side of the wafer, said <u>second</u> probe including [an] <u>a second</u> electrode including <u>a second</u> transparent element and a <u>second</u> non-transparent element, where said <u>second</u> transparent element <u>is</u> placed on the path of said <u>second</u> radiation and said <u>second</u> non-transparent element surrounding said <u>second</u> transparent element, said <u>second</u> electrode <u>of the second probe and a</u>

20

5

10

second photo detector is placed in proximity to the back side of the wafer.

a second means for illumination of the back side of the wafer surface at different wavelengths, including different sources of monochromatic light driven by light drivers controlled by <u>said</u> computer,

5

10

15

20

a second means for directing light flux onto said <u>second</u> transparent element of said <u>second</u> electrode of the <u>second</u> probe and <u>a second</u> photo detector,

a second means for measuring surface photovoltage signals picked up by said second electrode including a second pre-amplifier and a second lock-in amplifier with said second electrode connected to the input of said second pre-amplifier, input, the output of said second pre-amplifier output connected to the input said second lock-in amplifier input and the output of said second lock-amplifier output connected to said computer, and

connected to <u>said</u> computer, and second means for measuring light flux including pre-amplifier with said photo detector connected to pre-amplifier input and said pre-amplifier output connected to computer.

 (Currently amended) [An] The apparatus as in Claim 6, wherein the second transparent element of the second probe is a second transparent glass or quartz disk, said second transparent disk having a transparent and conducting coating

- on its top and side surfaces, said transparent disk installed inside a second metal ring.
- (Currently amended) [An] <u>The</u> apparatus as in Claim 7, wherein the diameter of said <u>second</u> transparent disk is in the range 1-7 mm and outer diameter of the <u>second</u> metal ring is 8-14 mm.

10

- (Currently amended) [An] The apparatus as in any one of Claims 6-8, wherein
  said second means for illuminating [a] the wafer surface includes light
  emitting diodes with interference optical filters, said LED's coupled with
  optical fiber bundles.
- 10. (Currently amended) [An] The apparatus as in any one of Claims 6-9, wherein the second means for directing light flux onto [a] said second transparent element of the second probe includes Y- shaped optical fiber bundles, where one of the end of these optical fiber bundles is coupled with said [SPV] second probe and the other end of the optical fiber bundles splits light flux between said second transparent element of said second probe electrode and said second photo detector.
  - 11. (Currently amended) [An] The apparatus as in any one in Claims 6-10 wherein said apparatus includes two or more SPV units for said apparatus throughput improvement.
- 20 12. (Currently amended) A method for determining diffusion length in predetermined regions of the wafer, comprising:

positioning [the] <u>a</u> wafer, using a pattern recognition system to get the predetermined region of the wafer over [the] <u>an</u> illumination area on <u>a</u> back side wafer surface,

illuminating said area on the back side wafer surface with frequency modulated light with predetermined intensities at a series of wavelengths,  $\lambda_i$ , measuring light fluxes  $\Phi_i$  directed onto said illumination area and measuring photovoltages  $V_i$  from said illuminating area,

illuminating said area at different intensities at the same wavelength  $\lambda_1$ , measuring light fluxes  $\Phi_1$  and  $\Phi_{11}$  and corresponding surface photovoltages  $V_1$ ,

recalculating SPV signals using the formulas:

5

10

15

$$C_{NL} = \frac{V_{11} \cdot \boldsymbol{\Phi}_1^2 - V_1 \cdot \boldsymbol{\Phi}_{11} \cdot \boldsymbol{\Phi}_1}{V_{11} \cdot \boldsymbol{\Phi}_1^2 - V_1 \cdot \boldsymbol{\Phi}_{11}^2}$$

$$V_i^L = \frac{1 - C_{NL}}{1 - C_{NL} \cdot V_1 \cdot V_2} V_i \cdot \text{and}$$

determining diffusion length using values  $Vi^l$ ,  $\Phi_i$  and intercept of the plot  $\Phi_i / V_i^l$  versus light penetration depth.

- 13. (Currently amended) [A] The method as in Claim 12 wherein the wafer is positioned using pattern recognition system to get the predetermined region of the wafer within scribe line over the illumination area on the back side wafer surface.
- 20 14. (Currently amended) [A] The method as in Claim 12, wherein the light wavelengths are in the range 800-1000 nm.

- 15. (Currently amended) [A] <u>The</u> method as in Claim 12, wherein the light modulating frequency is in the range 400-5000Hz.
- 16. (Currently amended) [A] The method as in Claim 12, wherein multiple SPV probes are used simultaneously.
- 17. (Currently amended) [A] The method as in Claim 12, wherein one or several pulses of light at one wavelength alternate with one or several pulses of light at different wavelength.