Autonomous Institution Affiliated to Visvesvaraya Technological University, Belagavi Approved by AICTE, New Delhi

DEPARTMENT OF PHYSICS

Course: Quantum Physics for	CIE: II	Maximum marks: 50
Engineers	First semester 2022-2023	
Course code: 22PHY22C	Physics Cycle:	Time: 90 Minutes
	Computer Science Stream	Date: 21/8/2023

Instructions to candidates:

i. Answer all the questions.

1. Physical constants: $h = 6.625 \times 10^{-34} Js$, $m_e = 9.1 \times 10^{-31} kg$, $k_b = 1.38 \times 10^{-23} J/K$.

Q. No		M	BT	CO
la.	For a pure Si semiconductor derive a general expression for electron concentration in the conduction band.		L2	2
	A fiber surrounded by air has a numerical aperture of 0.369. Will light entering	3	L3	3
b.	b. the fiber at an angle of incidence of 25° remain in the fiber, or will it escape Why?			
2a.	Describe in detail the basics of point-to-point communication and describe the role of repeater.		L2	1
	A bar of n-type Germanium bar of dimensions (1cm x 0.1cm x 0.1 cm) in the order of	3	LI	3
b.	length, width and thickness is placed in a magnetic field of 0.2 T. If the drift velocity of			
υ.	the electrons is 4 cm/s calculate the Hall voltage produced in the bar. Assume the magnetic field to be along the direction of width.			
За.	With a neat figure derive the expression for numerical aperture of an optical fibre and the fractional index change.		L3	2
ь	With a neat sketch explain the structure and working of GRIN fiber.	3	L1	1
4a.	Define Hall Effect and with a neat figure arrive at an expression for hall coefficient for a pentavalent doped semiconductor.		L3	2
	For Silicon at 30°C, calculate the number of states per unit energy per unit	3	L3	3
ь.	volume at an energy 26meV above the bottom of the conduction band			
В.	$(m_{\theta}^* = 1.18 m_{\theta})$			
	With a neat figure describe the variation of Fermi level with respect to temperature for	7	LI	1
5a.	an intrinsic semiconductor doped with a trivalent impurity.	NEG	76	25000
h	Define fermi factor, fermi energy level and sketch the variation of fermi level when T≠ 0K.		1.2	1

COs	CO 1	CO 2	CO 3
Marks	20	21	9