Detyra e dytë në lëndën Arkitekturë e Kompjuterëve, Grupi 21

Detyra 1

Të tregohet forma e normalizuar binare si dhe vlera decimale që paraqesin numrat vijues të cilët janë paraqitur në formatin IEEE754 32-bitësh.

- b) 1 10011100 1101110001000000000000000 $_{(2)}$
- c) 0 10010110 1000000100000000000000000 $_{(2)}$

Detyra 2

Të shkruhet programi në gjuhë të ulët programuese i cili kryen punët në vijim.

a) Vendos vlerat e regjistrave me vlerat si në vijim.

$$BX = 6AEB_{(16)}, \quad CX = 9578_{(16)}, \quad DX = B4EB_{(16)}$$

b) Deklaron variablat dy-bajtëshe të pa-inicializuara (pas kodit kryesor).

$$VAR1 = ?$$
, $VAR2 = ?$, $VAR3 = ?$

c) Llogarit vlerat e variablave sipas formulave në vijim (duke pasur kujdes në rendtitje të operacioneve).

$$\begin{array}{lll} \mathtt{VAR1} &=& 20 + ((\mathtt{DX} + \mathtt{BX}) - (94 \vee 96)) \\ \mathtt{VAR2} &=& 51 \vee ((\mathtt{DX} \wedge 79) - \mathtt{BX}) \\ \mathtt{VAR3} &=& (\mathtt{DX} - (\mathtt{BX} - 44)) \vee \mathtt{CX} \end{array}$$

d) Pas llogaritjes, të tregohet cila variabël është më e vogla duke e ruajtur indeksin e saj në regjistrin BX. Psh. nëse është variabla VAR2 atëherë në regjistrin BX të ruhet vlera 2.

Detyra 3

Të shkruhet programi në gjuhë të ulët programuese i cili i numëron numrat tek ndërmjet numrit 18 dhe numrit 62 (përfshirë kufirin e poshtëm dhe të lartëm). Rezultati të ruhet në regjistrin CX. Programi duhet të realizohet përmes kërcimeve.

Detyra 4

Të tregohen statuset (flags) e ALU (CF, OF, ZF, PF) që fitohen pas llogaritjes së secilës nga shprehjet në vijim.

- a) $A7_{(16)} \wedge A0_{(16)}$
- b) $05_{(16)} + 58_{(16)}$
- c) $87_{(16)} + B5_{(16)}$
- d) $E2_{(16)} + F5_{(16)}$
- e) $C5_{(16)} \wedge 9B_{(16)}$

Detyra 5

Procesori ka qasje në hapësirë memorike 32-bitëshe e cila është e adresueshme në nivel të bajtit. Memoria është e organizuar në blloqe 32 bajtëshe. Cache memoria L1 ka kapacitet prej 4096KB.

- a) Të skicohet ndarja e memories kryesore nëse për L1 cache përdorim teknikat në vijim.
 - 1. Mapim direkt.
 - 2. Mapim asociativ.
 - 3. Mapim set-asociativ 8-linjësh.
- b) Nëse kemi adresat memorike në vijim:

$$38C13A0B_{(16)}$$
, DA9FE461₍₁₆₎, BF8A0223₍₁₆₎

Atëherë për secilën nga këto adresa të tregohen informatat vijuese në formë heksadecimale.

- 1. Tagu, linja, dhe wordi për mapimin direkt.
- 2. Tagu dhe wordi për mapimin asociativ.
- 3. Tagu, seti, dhe wordi për mapimin set-asociativ 8-linjësh.

 B_C

 B_D

 B_E

 B_F

F5

DD

96

99

76

EC

7C

52

95

B0

3D

6C

44

B5

7F

E1

E2

ΑE

40

9B

ЗВ

7F

DC

21

0C

E3

15

13

52

04

2A

4C

Detyra 6

Në tabelën 1 është paraqitur memoria kryesore (RAM) e madhësisë 128B e cila është e organizuar në 16 blloqe. Në tabelën 2 është paraqitur një cache memorie me 4 linja e cila e pasqyron memorien kryesore me metodën direkte. Në fillim cache memoria është e zbrazët. Procesori kërkon sekuencën e këtyre adresave heksadecimale nga memoria:

Të skicohet gjendja e cache memories pas leximit të adresave dhe të tregohet sa herë është qëlluar cache (cache hit).

Blloku w_0 w_1 w_2 w_3 w_4 w_5 w_6 w_7 3F 2A B_0 3D 43 33 6B 7B 07 3D DC B_1 63 AD 87 E9 ΑE CE B_2 65 ACA1 C6 37 46 C9 CA AF E9 E6 23 B_3 18 BDD3 30 B_4 4B 06 68 49 2A OA 44 74 CF 88 37 B_5 5E 0E FD AC88 74 1B 43 72 94 D8 B_6 6A 94 5C D7 88 9F 46 57 70 B_7 01 48 39 E5 3B **A9** 29 B_8 EΑ 18 B_9 E3 52 50 B0 E5 90 ВЗ 7E B_A OA 9B 49 E9 OD ΒE В7 6D B_B 58 BB32 65 9F 4C C9 14

Table 1: RAM Memoria.

Table 2: Cache Memoria.

Linja	w_0	w_1	w_2	w_3	w_4	w_5	w_6	$\overline{w_7}$
$\overline{L_0}$?	?	?	?	?	?	?	?
L_1	?	?	?	?	?	?	?	?
L_2	?	?	?	?	?	?	?	?
L_3	?	?	?	?	?	?	?	?