

UNIVERSITÄT HEIDELBE

Constraint satisfaction problems (CSPs)

- Standard search problem:
 - state is a "black box" any data structure that supports successor function, heuristic function, and goal test
- · CSP:
 - state is defined by variables X_i with values from domain D_i
 - goal test is a set of constraints specifying allowable combinations of values for subsets of variables
- Simple example of a formal representation language
- Allows useful general-purpose algorithms with more power than standard search algorithms

B. Ommer | ommer@uni-heidelberg.de

Example: Map-Coloring

Solutions are complete and consistent assignments (satisfying all constraints),

e.g., WA = red, NT = green, Q = red, NSW = green, V = red, SA = blue, T = green

Constraint graph Binary CSP: each constraint relates two variables Constraint graph: nodes are variables, arcs are constraints General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!

B. Ommer | ommer@uni-heidelberg.de

UNIVERSITÄT HEIDELBERG

Varieties of CSPs

- Discrete variables
 - finite domains:
 - n variables, domain size $d \rightarrow O(d^n)$ complete assignments
 - e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)
 - infinite domains:
 - integers, strings, etc.
 - e.g., job scheduling, variables are start/end days for each job
 - need a constraint language, e.g., $StartJob_1 + 5 \le StartJob_3$
 - linear constraints solvable, nonlinear undecidable
- Continuous variables
 - e.g., start/end times for Hubble Space Telescope observations
 - linear constraints solvable in polynomial time by linear programming

UNIVERSITÄT HEIDELBERG

Varieties of constraints

- Unary constraints involve a single variable,
 - e.g., SA ≠ green
- Binary constraints involve pairs of variables,
 - e.g., SA ≠ WA
- Higher-order constraints involve 3 or more variables.
 - e.g., constraints from large neighborhoods
- Preferences (soft constraints), e.g., red is better than green often representable by a cost for each variable assignment
 - **⇒**constrained optimization problems (c.f. simplex)

Real-world CSPs

- Assignment problems
 - e.g., who teaches what class
- Timetabling problems
 - e.g., which class is offered when and where?
- Transportation scheduling
- Factory scheduling
- Notice that many real-world problems involve real-valued variables

Standard search formulation (incremental)

Let's start with the straightforward approach, then fix it

Idea from informed search (last chapter):

- Relaxed problems
- Optimal solution cost of a relaxed problem is not greater than the optimal solution cost of the real problem
- ⇔ cost of solving relaxed problem is an admissible heuristic for original problem
- Solve relax problem / then try to fix relaxed problem

Standard search formulation (incremental)

Let's start with the straightforward approach, then fix it

States are defined by the values assigned so far:

- Initial state: the empty assignment { }
- Successor function: assign a value to an unassigned variable that does not conflict with current assignment

 → fail if no legal assignments (not fixable)
- Goal test: the current assignment is complete

This is the same for all CSPs:

- Every solution appears at depth n with n variables
 → use depth-first search
- Path is irrelevant, so can also use complete-state formulation
- $b = (n l) \cdot d$ at depth l, hence $n! \cdot d^n$ leaves!!

Backtracking search

Variable assignments are commutative), i.e.,
[WA = red then NT = green] same as [NT = green then WA = red]

UNIVERSITÄT HEIDELBER

- Only need to consider assignments to a single variable at each
 - ⇒simplifies to b = d and number of leaves = dⁿ
- Depth-first search for CSPs with single-variable assignments is called backtracking search
- Backtracking search is the basic *uninformed* algorithm for CSPs
- Can solve n-queens for n ≈ 25
- # Solutions for n queens problem:

1 0 0 2 10 4 40 92 352 724 ... 227,514,171,973,736 2,207,893,435,808,352 22,317,699,616,364,044 234,907,967,154,122,5

Improving backtracking efficiency General-purpose methods can give huge gains in speed: Which variable should be assigned next? In what order should its values be tried? Can we detect inevitable failure early? Can we take advantage of problem structure?

Most constrained variable Most constrained variable: choose the variable with the fewest legal values a.k.a. minimum remaining values (MRV) heuristic

Arc consistency

Simplest form of propagation makes each arc consistent

X → Y is consistent iff for every value x of X there is some allowed y

If X loses a value, neighbors of X need to be rechecked

Arc consistency

Simplest form of propagation makes each arc consistent

X → Y is consistent iff for every value x of X there is some allowed y

If X loses a value, neighbors of X need to be rechecked

Arc consistency detects failure earlier than forward checking

Can be run as a preprocessor or after each assignment

Arc consistency algorithm AC-3 function AC-3(csp) returns the CSP, possibly with reduced domains inputs: csp, a binary CSP with variables $\{X_1, X_2, \ldots, X_n\}$ local variables: queue, a queue of arcs, initially all the arcs in csp while queue is not empty do $(X_i, X_j) \leftarrow \text{REMOVE-FIRST}(queue)$ if REMOVE-INCONSISTENT-VALUES (X_i, X_j) then for each X_k in Neighbors $[X_i]$ do add (X_k, X_i) to queue function REMOVE-INCONSISTENT-VALUES (X_i, X_j) returns true iff succeeds removed \leftarrow false for each x in DOMAIN $[X_i]$ do if no value y in DOMAIN $[X_i]$ allows (x,y) to satisfy the constraint $X_i \leftarrow X_j$ then delete x from DOMAIN $[X_i]$: removed \leftarrow true return removed

Problem Structure

Tasmania and mainland are independent subproblems
Identifiable as connected components of constraint graph

UNIVERSITÄT HEIDELBEI

Problem Structure

- Suppose each subproblem has c variables out of n total
- Worst-case solution cost is n/c ⋅ dc, linear in n
- E.g., n=80, d=2, c=20
 - 2⁸⁰ = 4 billion years at 10 million nodes/sec brute force vs.
 - 4 · 2²⁰ = 0.4 seconds at 10 million nodes/sec

UNIVERSITÄT HEIDEI

Tree-structured CSPs

- Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d²) time
- Compare to general CSPs, where worst-case time is O(dⁿ)
- This property also applies to logical and probabilistic reasoning:
 an important example of the relation between syntactic restrictions and the complexity of reasoning.

UNIVERSITÄT HEIDELBER

Algorithm for tree-structured CSPs

 Choose a variable as root, order variables from root to leaves such that every node's parent precedes it in the ordering

- 2. For j from n down to 2, apply RemoveInconsistent(Parent(X_i); X_i)
- 3. For j from 1 to n, assign \boldsymbol{X}_j consistently with $Parent(\boldsymbol{X}_j)$

UNIVERSITÄT HEIDELBERG

Nearly tree-structured CSPs

 Conditioning: instantiate a variable, prune its neighbors' domains: turn structure into tree

B. Ommer | ommer@uni-heidelberg.de

Cutset Conditioning Cutset size c ⇒ runtime O(d^c (n - c)d²), very fast for small c

UNIVERSITÄT HEIDELBERG

Local search for CSPs

Hill-climbing, simulated annealing typically work with "complete" states, i.e., all variables assigned

Solve the resulting tree structured CSPs

- To apply to CSPs:
 - allow states with unsatisfied constraints
 - operators reassign variable values
- Variable selection: randomly select any conflicted variable
- Value selection by min-conflicts heuristic:
 - choose value that violates the fewest constraints
 - i.e., hill-climb with h(n) = total number of violated constraints

Example: 4-Queens

- States: 4 queens in 4 columns (4⁴ = 256 states)
- Actions: move queen in column
- Goal test: no attacks
- Evaluation: h(n) = number of attacks

Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)

Performance of min-conflicts

- Given random initial state, can solve nqueens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)
- The same appears to be true for any randomlygenerated CSP except in a narrow range of the $R = \frac{\text{number of constraints}}{}$

Summary

- CSPs are a special kind of problem:
 - states defined by values of a fixed set of variables goal test defined by constraints on variable values
- Backtracking = depth-first search with one variable assigned per node
- Variable ordering and value selection heuristics help significantly
- Forward checking prevents assignments that guarantee later failure
- Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies
- Iterative min-conflicts is usually effective in practice