Global Exercise - Gue09

Tuan Vo

 $16^{\rm th}~{\rm June},~2022$

Content covered:

- \checkmark Programming exercise 02: Explanation + Hints.
- ✓ Analysis:
 - * Expansion of f(x, y) in eigenfunctions of Laplace operator (2D).
 - * Distribution & its derivative.
- \checkmark Numerics: Ghost points in FDM + Neumann BCs.

1 Programming exercise 02: Explanation + Hints

Figure 1: Comparison among different values of $\varepsilon = [1, 10^{-1}, 10^{-2}, 10^{-4}]$: Upwind differences used for discretizing convection terms $\partial_x u$ and $\partial_y u$; fixed $\beta = 5\pi/6$.

Figure 2: Comparison among different values of $\varepsilon = [1, 10^{-1}, 10^{-2}, 10^{-4}]$: Central difference used for discretizing convection terms $\partial_x u$ and $\partial_y u$; fixed $\beta = 5\pi/6$.

Figure 3: Comparison among different values of $\beta = \left[0, \frac{\pi}{6}, \frac{2\pi}{6}, \frac{3\pi}{6}, \frac{4\pi}{6}, \frac{5\pi}{6}, \pi\right]$: Upwind differences used for discretizing convection terms $\partial_x u$ and $\partial_y u$; fixed $\varepsilon = 10^{-1}$.

2 Analysis: 2D Eigenfuctions of Laplace operator

 $\mathbf{Example\ 1.}\ \mathit{Examine\ the\ following}$

3 Analysis: Distribution and its derivative

Example 2. Examine the following

4 Numerics: Ghost points in FDM

Example 3. Examine the following