Benign Overfitting in Linear Regression STAT-576

David Lundquist

January 22, 2024

A supposedly impossible trinity in supervised learning theory:

- 1 Interpolate the training data (i.e. fit with zero loss)
- Minimize the complexity of the fitted model. For example
 - $\|\hat{\beta}\|$ in linear models
 - The bandwidth parameter *h* in kernel regression
 - K in KNN regression
- Achieve nearly zero loss out-of-sample

ima.jpeg

Figure: Classification in \mathbb{R}^2

Figure: Classification in \mathbb{R}^2

Interpolation is a bit harder to visualize for linear regression...

imc.png

Figure: Linear regression; Data not interpolated

Yet we know the data can be interpolated by taking $p \ge n$ linearly independent covariates.

4 / 1

Punchline of the paper

In linear regression, under assumptions that will follow, near-perfect prediction is possible if "the number of directions in θ that are unimportant for prediction significantly exceeds the sample size".

Thus, there are only two quantitites that matter here: Σ and n. Most of our attention will be on Σ .

Outline

Setting for the problem

- $y \in \mathbb{R}^n$, a mean-zero, real-valued response to be predicted
- Mean-zero covariate vectors $x \in \mathbb{H}$, a Hilbert space, where \mathbb{H} can be taken to be \mathbb{R}^p for the sake of illustration
- We predict y using a linear function of the covariates X, but this is not an assumption about the data generating process. We do not assume $y = f(X) + \epsilon$, but y may contain exogenous noise (called "label noise" by the authors.)

Technical Specifications (many, but familiar)

- We define $\Sigma := \mathbb{E}[xx^T]$
- We define $\theta^* \in \mathbb{H}$ to be s.t. $\mathbb{E}[(y x^T \theta^*)^2] = \min_{\theta} \mathbb{E}[(y x^T \theta)^2]$
 - As defined here, not necessarily unique, which matters for this paper.
- $x = V \Lambda^{1/2} z$, where $\Sigma = V \Lambda V^T$ is the spectral decomposition of Σ and z is a vector of independent components, each subgaussian(σ_x), where $\sigma_x > 0$.
- The conditional noise variance $\mathbb{E}[(y-x^T\theta^*)^2|x]$ is bounded below by $\sigma^2>0$.
- $(y x^T \theta^*)|x$ is subgaussian (σ_y)
- Almost surely, for any eigenvector v of Σ , $Proj_{v^T}(X)$ spans a space of dimension n.
 - Guaranteed when, for example, there exist p linearly independent covariates and p > n.

What's the goal here?

In this particular setting, excess risk of an estimator θ has the form

$$R(\theta) = \mathbb{E}_{x,y}[(y - x^T \theta)^2 - (y - x^T \theta^*)^2]$$
$$= (\theta - \theta^*)^T \Sigma(\theta - \theta^*)$$

which we want to minimize, of course.

$$\min_{\theta \in \mathbb{H}} \|\theta\|$$

$$s.t. \frac{1}{n} \|X^T \theta - y\|_2^2 \le D$$

$$\min_{\theta \in \mathbb{H}} \|\theta\|$$

$$s.t. \frac{1}{n} \|X^T \theta - y\|_2^2 \le D$$

$$\min_{\theta \in \mathbb{H}} \|\theta\|$$

$$s.t. \frac{1}{n} \|X^T \theta - y\|_2^2 \le D$$

Remarks

• Heuristically speaking, overfitting means $D << \min_{\theta} \mathbb{E}(x^T \theta - y)^2$, where x, y are out of sample

$$\min_{\theta \in \mathbb{H}} \|\theta\|$$

$$s.t. \frac{1}{n} \|X^T \theta - y\|_2^2 \le D$$

- Heuristically speaking, overfitting means $D << \min_{\theta} \mathbb{E}(x^T \theta y)^2$, where x, y are out of sample
- ② Of course, we're concerned with interpolation, i.e. D = 0.

Minimum Norm Estimator

Why did we just assume something very technical about $Proj_{v^T}(X)$? This condition implies multiple solutions to the equation $y = X\theta$.

"Almost surely, for any eigenvector v of Σ , $Proj_{v^T}(X)$ spans a space of dimension n."

Since we have more than one choice of θ , we choose the unique $\hat{\theta}$ with minimum norm:

$$\hat{\theta} := (X^T X)^{\dagger} X^T y$$

We don't have to do this, but the results that follow correspond to the minimum-norm solution. It's most interesting.

Rank of Matrix

We know the rank of a matrix $A \in M_{n \times p}(\mathbb{C})$ is

- The column rank of A (number of linearly independent columns)
- The row rank of A (number of linearly independent rows)
- The dimension of im(A)

However, this notion of rank is too rigid. It's integer-valued, and it tells us very little about the distribution of the eigenvalues.

Definition

For a covariance operator Σ with the decreasing sequence of eigenvalues $\lambda_1, \lambda_2, ...$, if $\sum_{i=1}^{\infty} \lambda_i < \infty$ and $\lambda_{k+1} > 0$, then for $k \geq 0$, define

$$r_k = \frac{\sum_{i>k} \lambda_i}{\lambda_{k+1}}$$
 $R_k = \frac{(\sum_{i>k} \lambda_i)^2}{\sum_{i>k} \lambda_i^2}$

Definition

For a covariance operator Σ with the decreasing sequence of eigenvalues $\lambda_1, \lambda_2, ...$, if $\sum_{i=1}^{\infty} \lambda_i < \infty$ and $\lambda_{k+1} > 0$, then for $k \geq 0$, define

$$r_k = \frac{\sum_{i>k} \lambda_i}{\lambda_{k+1}}$$
 $R_k = \frac{(\sum_{i>k} \lambda_i)^2}{\sum_{i>k} \lambda_i^2}$

Definition

For a covariance operator Σ with the decreasing sequence of eigenvalues $\lambda_1, \lambda_2, ...$, if $\sum_{i=1}^{\infty} \lambda_i < \infty$ and $\lambda_{k+1} > 0$, then for $k \geq 0$, define

$$r_k = \frac{\sum_{i>k} \lambda_i}{\lambda_{k+1}}$$
 $R_k = \frac{(\sum_{i>k} \lambda_i)^2}{\sum_{i>k} \lambda_i^2}$

Key Properties

• $r_k \in [1, p-k]$, assuming $p < \infty$

Definition

For a covariance operator Σ with the decreasing sequence of eigenvalues $\lambda_1, \lambda_2, ...$, if $\sum_{i=1}^{\infty} \lambda_i < \infty$ and $\lambda_{k+1} > 0$, then for $k \geq 0$, define

$$r_k = \frac{\sum_{i>k} \lambda_i}{\lambda_{k+1}}$$
 $R_k = \frac{(\sum_{i>k} \lambda_i)^2}{\sum_{i>k} \lambda_i^2}$

- $P_k \in [1, \infty)$

Definition

For a covariance operator Σ with the decreasing sequence of eigenvalues $\lambda_1, \lambda_2, ...$, if $\sum_{i=1}^{\infty} \lambda_i < \infty$ and $\lambda_{k+1} > 0$, then for $k \geq 0$, define

$$r_k = \frac{\sum_{i>k} \lambda_i}{\lambda_{k+1}}$$
 $R_k = \frac{(\sum_{i>k} \lambda_i)^2}{\sum_{i>k} \lambda_i^2}$

- $r_k \in [1, p k]$, assuming $p < \infty$
- $\mathbf{P}_k \in [1, \infty)$
- **3** They can be understood in terms of ℓ_1 and ℓ_2 norms.

Definition

For a covariance operator Σ with the decreasing sequence of eigenvalues $\lambda_1, \lambda_2, ...$, if $\sum_{i=1}^{\infty} \lambda_i < \infty$ and $\lambda_{k+1} > 0$, then for $k \geq 0$, define

$$r_k = \frac{\sum_{i>k} \lambda_i}{\lambda_{k+1}}$$
 $R_k = \frac{(\sum_{i>k} \lambda_i)^2}{\sum_{i>k} \lambda_i^2}$

- $r_k \in [1, p k]$, assuming $p < \infty$
- $\mathbf{P}_k \in [1, \infty)$
- **③** They can be understood in terms of ℓ_1 and ℓ_2 norms.
- $r_k(\Sigma^2) \le r_k(\Sigma) \le R_k(\Sigma) \le r_k^2(\Sigma)$

Definition

For a covariance operator Σ with the decreasing sequence of eigenvalues $\lambda_1, \lambda_2, ...$, if $\sum_{i=1}^{\infty} \lambda_i < \infty$ and $\lambda_{k+1} > 0$, then for $k \geq 0$, define

$$r_k = \frac{\sum_{i>k} \lambda_i}{\lambda_{k+1}}$$
 $R_k = \frac{(\sum_{i>k} \lambda_i)^2}{\sum_{i>k} \lambda_i^2}$

- $\mathbf{Q} \quad R_k \in [1, \infty)$
- **③** They can be understood in terms of ℓ_1 and ℓ_2 norms.
- $r_k(\Sigma^2) \le r_k(\Sigma) \le R_k(\Sigma) \le r_k^2(\Sigma)$
- **1** For the result we now show, bigger values of r_k and R_k are better.

Theorem

Define $k^* = min\{k \geq 0 : r_k(\Sigma) \geq bn\}$. For any σ_x , $\exists b, c, c_1 > 1$ s.t. $\forall \delta \in (0,1)$ s.t. $\log(1/\delta) < n/c$, if $k^* \geq n/c_1$, then $\mathbb{E}[R(\hat{\theta})] \geq \sigma^2/c$. Otherwise,

$$R(\hat{\theta}) \leq \underbrace{c \left(\|\theta^*\|^2 \|\Sigma\| \max\{\sqrt{\frac{r_0(\Sigma)}{n}}, \frac{r_0(\Sigma)}{n}, \sqrt{\frac{\log(1/\delta)}{n}}\} \right)}_{related to the bias} + \underbrace{c \log(1/\delta)\sigma_y^2 \left(\frac{k^*}{n} + \frac{n}{R_{k^*}(\Sigma)}\right)}_{related to the noise}$$

with probability at least $1-\delta$.

$$\mathbb{E}[R(\hat{\theta})] \geq \frac{\sigma^2}{c} \left(\frac{k^*}{n} + \frac{n}{R_{k^*}(\Sigma)} \right)$$

Theorem

Define $k^* = \min\{k \geq 0 : r_k(\Sigma) \geq bn\}$. For any σ_x , $\exists b, c, c_1 > 1$ s.t. $\forall \delta \in (0,1)$ s.t. $\log(1/\delta) < n/c$, if $k^* \geq n/c_1$, then $\mathbb{E}[R(\hat{\theta})] \geq \sigma^2/c$. Otherwise,

$$R(\hat{\theta}) \leq \underbrace{c \left(\|\theta^*\|^2 \|\Sigma\| \max\{\sqrt{\frac{r_0(\Sigma)}{n}}, \frac{r_0(\Sigma)}{n}, \sqrt{\frac{\log(1/\delta)}{n}}\} \right)}_{\text{related to the bias}} + \underbrace{c \log(1/\delta)\sigma_y^2 \left(\frac{k^*}{n} + \frac{n}{R_{k^*}(\Sigma)}\right)}_{\text{related to the noise}}$$

the bias related to the noise

 $\mathbb{E}[R(\hat{\theta})] \geq \frac{\sigma^2}{c} \left(\frac{k^*}{n} + \frac{n}{R_{k^*}(\Sigma)} \right)$

with probability at least $1 - \delta$.

Theorem

Define $k^* = \min\{k \geq 0 : r_k(\Sigma) \geq bn\}$. For any σ_x , $\exists b, c, c_1 > 1$ s.t. $\forall \delta \in (0,1)$ s.t. $\log(1/\delta) < n/c$, if $k^* \geq n/c_1$, then $\mathbb{E}[R(\hat{\theta})] \geq \sigma^2/c$. Otherwise,

$$R(\hat{\theta}) \leq \underbrace{c \left(\|\theta^*\|^2 \|\Sigma\| \max\{\sqrt{\frac{r_0(\Sigma)}{n}}, \frac{r_0(\Sigma)}{n}, \sqrt{\frac{\log(1/\delta)}{n}}\} \right)}_{\text{related to the bias}} + \underbrace{c \log\left(1/\delta\right) \sigma_y^2 \left(\frac{k^*}{n} + \frac{n}{R_{k^*}(\Sigma)}\right)}_{\text{related to the noise}}$$

with probability at least $1 - \delta$.

 $\mathbb{E}[R(\hat{\theta})] \geq \frac{\sigma^2}{c} \left(\frac{k^*}{n} + \frac{n}{R_{k^*}(\Sigma)} \right)$

Remarks

1 A gives us a (high probability) upper bound on the excess risk.

Theorem

Define $k^* = \min\{k \geq 0 : r_k(\Sigma) \geq bn\}$. For any σ_x , $\exists b, c, c_1 > 1$ s.t. $\forall \delta \in (0,1)$ s.t. $\log(1/\delta) < n/c$, if $k^* \geq n/c_1$, then $\mathbb{E}[R(\hat{\theta})] \geq \sigma^2/c$. Otherwise,

$$R(\hat{\theta}) \leq \underbrace{c \left(\|\theta^*\|^2 \|\Sigma\| \max\{\sqrt{\frac{r_0(\Sigma)}{n}}, \frac{r_0(\Sigma)}{n}, \sqrt{\frac{\log(1/\delta)}{n}}\} \right)}_{related to the bias} + \underbrace{c \log(1/\delta)\sigma_y^2 \left(\frac{k^*}{n} + \frac{n}{R_{k^*}(\Sigma)}\right)}_{related to the noise}$$

with probability at least $1-\delta$.

 $\mathbb{E}[R(\hat{\theta})] \geq \frac{\sigma^2}{c} \left(\frac{k^*}{n} + \frac{n}{R_{k^*}(\Sigma)} \right)$

- 1 A gives us a (high probability) upper bound on the excess risk.
- 2 B gives us a lower bound on its expectation.

Theorem

Define $k^* = \min\{k \geq 0 : r_k(\Sigma) \geq bn\}$. For any σ_x , $\exists b, c, c_1 > 1$ s.t. $\forall \delta \in (0,1)$ s.t. $\log(1/\delta) < n/c$, if $k^* \geq n/c_1$, then $\mathbb{E}[R(\hat{\theta})] \geq \sigma^2/c$. Otherwise,

$$R(\hat{\theta}) \leq \underbrace{c \left(\|\theta^*\|^2 \|\Sigma\| \max\{\sqrt{\frac{r_0(\Sigma)}{n}}, \frac{r_0(\Sigma)}{n}, \sqrt{\frac{\log(1/\delta)}{n}}\} \right)}_{related to the bias} + \underbrace{c \log\left(1/\delta\right) \sigma_y^2 \left(\frac{k^*}{n} + \frac{n}{R_{k^*}(\Sigma)}\right)}_{related to the noise}$$

related to the noise

 $\mathbb{E}[R(\hat{\theta})] \geq \frac{\sigma^2}{c} \left(\frac{k^*}{n} + \frac{n}{R_{l*}(\Sigma)} \right)$

with probability at least $1 - \delta$.

- ① A gives us a (high probability) upper bound on the excess risk.
- 2 B gives us a lower bound on its expectation.
- **3** The constants b, c, c_1 depend on σ_X , the subgaussian parameter corresponding to the covariates X.

Theorem

Define $k^* = \min\{k \geq 0 : r_k(\Sigma) \geq bn\}$. For any σ_x , $\exists b, c, c_1 > 1$ s.t. $\forall \delta \in (0,1)$ s.t. $\log(1/\delta) < n/c$, if $k^* \geq n/c_1$, then $\mathbb{E}[R(\hat{\theta})] \geq \sigma^2/c$. Otherwise,

$$R(\hat{\theta}) \leq \underbrace{c \left(\|\theta^*\|^2 \|\Sigma\| \max\{\sqrt{\frac{r_0(\Sigma)}{n}}, \frac{r_0(\Sigma)}{n}, \sqrt{\frac{\log(1/\delta)}{n}}\} \right)}_{\textit{related to the bias}} + \underbrace{c \log\left(1/\delta\right) \sigma_y^2 (\frac{k^*}{n} + \frac{n}{R_{k^*}(\Sigma)}\right)}_{\textit{related to the noise}}$$

related to the hoise

 $\mathbb{E}[R(\hat{\theta})] \geq \frac{\sigma^2}{c} \left(\frac{k^*}{n} + \frac{n}{R_{**}(\Sigma)} \right)$

with probability at least $1 - \delta$.

 $\mathbb{E}[R(\theta)] \geq \frac{1}{c} \left(\frac{1}{n} + \frac{1}{R_{k^*}(\Sigma)} \right)$

- A gives us a (high probability) upper bound on the excess risk.
- B gives us a lower bound on its expectation.
- **3** The constants b, c, c_1 depend on σ_x , the subgaussian parameter corresponding to the covariates X.
- ① Think of k^* as the number of dimensions we ignore when hiding the noise. We want k^* to be small compared to n, yet no smaller than it need be, obviously.

Theorem

Define $k^* = \min\{k \geq 0 : r_k(\Sigma) \geq bn\}$. For any σ_x , $\exists b, c, c_1 > 1$ s.t. $\forall \delta \in (0,1)$ s.t. $\log(1/\delta) < n/c$, if $k^* \geq n/c_1$, then $\mathbb{E}[R(\hat{\theta})] \geq \sigma^2/c$. Otherwise,

$$R(\hat{\theta}) \leq \underbrace{c \left(\|\theta^*\|^2 \|\Sigma\| \max\{\sqrt{\frac{r_0(\Sigma)}{n}}, \frac{r_0(\Sigma)}{n}, \sqrt{\frac{\log(1/\delta)}{n}}\} \right)}_{\textit{related to the bias}} + \underbrace{c \log\left(1/\delta\right) \sigma_y^2 (\frac{k^*}{n} + \frac{n}{R_{k^*}(\Sigma)}\right)}_{\textit{related to the noise}}$$

related for the blas related γ

with probability at least $1-\delta$.

 $\mathbb{E}[R(\hat{\theta})] \geq \frac{\sigma^2}{c} \left(\frac{k^*}{n} + \frac{n}{R_{k^*}(\Sigma)} \right)$

- A gives us a (high probability) upper bound on the excess risk.
- B gives us a lower bound on its expectation.
- **3** The constants b, c, c_1 depend on σ_x , the subgaussian parameter corresponding to the covariates X.
- ① Think of k^* as the number of dimensions we ignore when hiding the noise. We want k^* to be small compared to n, yet no smaller than it need be, obviously.
- **5** Effective rank encodes how far the vectors x are from isotropy. Isotropy implies maximum effective rank, whereas small values of effective rank suggests (just like ordinary matrix rank) that many of the vectors generating Σ are irrelevant to the variation Σ houses.

$$\Sigma = V \Lambda V^T =$$

$$\Sigma = V \Lambda V^T =$$

$$\Sigma = V \Lambda V^T =$$

Necessary Properties For Near-Perfect Accuracy

1 $r_0(\Sigma)$ should be small compared to n.

$$\Sigma = V \Lambda V^T =$$

$$V \left(\begin{array}{cccc} \lambda_1 & & & & & \\ & \lambda_2 & & \mathbf{0} & & \\ & & \lambda_3 & & & \\ & \mathbf{0} & & \ddots & & \\ & & & & \lambda_p \end{array} \right) V^T$$

- **1** $r_0(\Sigma)$ should be small compared to n.
- 2 r_{k*} and R_{k*} should be large compared to n.

$$\Sigma = V \Lambda V^T =$$

- \bigcirc $r_0(\Sigma)$ should be small compared to n.
- **3** The sum of the λ_i should be small compared to n (to make k^* smaller).

$$\Sigma = V \Lambda V^T =$$

$$V \left(egin{array}{cccc} \lambda_1 & & & & & & & & \\ & \lambda_2 & & & & & & & \\ & & \lambda_3 & & & & & & \\ & & & & \lambda_3 & & & & \\ & & & & \ddots & & & \\ & & & & & \lambda_p \end{array}
ight) V^T$$

- **1** $r_0(\Sigma)$ should be small compared to n.
- $oldsymbol{0}$ The sum of the λ_i should be small compared to n (to make k^* smaller).
- The number of non-zero eigenvalues should be large compared to n.

Two Very Simple Examples

Consider $\Sigma = I_p$ (which is induced by isotropy):

$$r_0(\Sigma) = \frac{\sum_{i=1}^p \lambda_i}{\lambda_1} = \frac{p}{1} = p = \frac{p^2}{p} = R_0(\Sigma)$$

Next consider infinite-dimensional Σ with spectral decomposition

$$u \left(\begin{array}{cccc}
\lambda_1 & & & & & \\
& \frac{1}{2} & & 0 & & \\
& & \frac{1}{4} & & & \\
& & & \frac{1}{8} & & \\
& & & & \ddots &
\end{array} \right) V^T$$

$$r_0(\Sigma) = \frac{\sum_{i=1}^p 2^{-i}}{\lambda_1} = \frac{\lambda_1 + 1}{\lambda_1} \quad R_0(\Sigma) = \frac{(\lambda_1 + 1)^2}{\lambda_1^2 - 1 + \sum_{i=1}^{i=1} 4^{-i}} = \frac{(\lambda_1 + 1)^2}{\lambda_1^2 + 1/3}$$

Two Very Simple Examples

Consider $\Sigma = I_p$ (which is induced by isotropy):

$$r_0(\Sigma) = \frac{\sum_{i=1}^p \lambda_i}{\lambda_1} = \frac{p}{1} = p = \frac{p^2}{p} = R_0(\Sigma)$$

Next consider infinite-dimensional Σ with spectral decomposition

$$r_0(\Sigma) = \frac{\sum_{i=1}^{p} 2^{-i}}{\lambda_1} = \frac{\lambda_1 + 1}{\lambda_1} \qquad R_0(\Sigma) = \frac{(\lambda_1 + 1)^2}{\lambda_1^2 - 1 + \sum_{i=1}^{r} 4^{-i}} = \frac{(\lambda_1 + 1)^2}{\lambda_1^2 + 1/3}$$

Which of these two cases will be good for benign overfitting?

Two Very Simple Examples

Consider $\Sigma = I_p$ (which is induced by isotropy):

$$r_0(\Sigma) = \frac{\sum_{i=1}^p \lambda_i}{\lambda_1} = \frac{p}{1} = p = \frac{p^2}{p} = R_0(\Sigma)$$

Next consider infinite-dimensional Σ with spectral decomposition

$$r_0(\Sigma) = \frac{\sum_{i=1}^p 2^{-i}}{\lambda_1} = \frac{\lambda_1 + 1}{\lambda_1} \quad \ R_0(\Sigma) = \frac{(\lambda_1 + 1)^2}{\lambda_1^2 - 1 + \sum_{i=1}^j 4^{-i}} = \frac{(\lambda_1 + 1)^2}{\lambda_1^2 + 1/3}$$

Which of these two cases will be good for benign overfitting?

Neither!

A more benign example

Example (Coverging at the slowest rate possible)

Fix
$$\alpha = 1, \beta > 1$$
. Let $\lambda_i = \frac{1}{i \log^{\beta}(i+1)}$.

- In training, we observe both X and y, but not the noise. We then derive $\hat{\theta}$, a noisy, imperfect guess at θ^* .
- In prediction, we do not observe y or the noise; we're given x; we're hostage to the random object $\hat{\theta}$ we've just fit.

- In training, we observe both X and y, but not the noise. We then derive $\hat{\theta}$, a noisy, imperfect guess at θ^* .
- In prediction, we do not observe y or the noise; we're given x; we're hostage to the random object $\hat{\theta}$ we've just fit.

- In training, we observe both X and y, but not the noise. We then derive $\hat{\theta}$, a noisy, imperfect guess at θ^* .
- In prediction, we do not observe y or the noise; we're given x; we're hostage to the random object $\hat{\theta}$ we've just fit.

The Magic

ullet Not all of the coordinates (directions) in $\hat{ heta}$ matter for prediction.

- In training, we observe both X and y, but not the noise. We then derive $\hat{\theta}$, a noisy, imperfect guess at θ^* .
- In prediction, we do not observe y or the noise; we're given x; we're hostage to the random object $\hat{\theta}$ we've just fit.

- ullet Not all of the coordinates (directions) in $\hat{ heta}$ matter for prediction.
- In fact, some are nearly irrelevant for prediction.

- In training, we observe both X and y, but not the noise. We then derive $\hat{\theta}$, a noisy, imperfect guess at θ^* .
- In prediction, we do not observe y or the noise; we're given x; we're hostage to the random object $\hat{\theta}$ we've just fit.

- \bullet Not all of the coordinates (directions) in $\hat{\theta}$ matter for prediction.
- In fact, some are nearly irrelevant for prediction.
- Key insight: if there are enough of these unimportant directions, they can store the 'badness' of $\hat{\theta}$ that has been induced by the label noise.

- In training, we observe both X and y, but not the noise. We then derive $\hat{\theta}$, a noisy, imperfect guess at θ^* .
- In prediction, we do not observe y or the noise; we're given x; we're hostage to the random object $\hat{\theta}$ we've just fit.

- ullet Not all of the coordinates (directions) in $\hat{ heta}$ matter for prediction.
- In fact, some are nearly irrelevant for prediction.
- Key insight: if there are enough of these unimportant directions, they can store the 'badness' of $\hat{\theta}$ that has been induced by the label noise.
 - $oldsymbol{\hat{ heta}}$ can be bad by being biased

- In training, we observe both X and y, but not the noise. We then derive $\hat{\theta}$, a noisy, imperfect guess at θ^* .
- In prediction, we do not observe y or the noise; we're given x; we're hostage to the random object $\hat{\theta}$ we've just fit.

- ullet Not all of the coordinates (directions) in $\hat{ heta}$ matter for prediction.
- In fact, some are nearly irrelevant for prediction.
- Key insight: if there are enough of these unimportant directions, they can store the 'badness' of $\hat{\theta}$ that has been induced by the label noise.
 - $oldsymbol{\hat{ heta}}$ can be bad by being biased
 - ullet $\hat{ heta}$, as a random object, can be bad by being a noisy stand-in for $heta^*$

- In training, we observe both X and y, but not the noise. We then derive $\hat{\theta}$, a noisy, imperfect guess at θ^* .
- In prediction, we do not observe y or the noise; we're given x; we're hostage to the random object $\hat{\theta}$ we've just fit.

The Magic

- ullet Not all of the coordinates (directions) in $\hat{ heta}$ matter for prediction.
- In fact, some are nearly irrelevant for prediction.
- Key insight: if there are enough of these unimportant directions, they can store the 'badness' of $\hat{\theta}$ that has been induced by the label noise.
 - $oldsymbol{\hat{ heta}}$ can be bad by being biased
 - $\hat{\theta}$, as a random object, can be bad by being a noisy stand-in for θ^*

So let's examine the punchline: how exactly can noise by hidden in unimportant directions?

How noise is hidden just right

Recall

$$\hat{\theta} := (X^T X)^{\dagger} X^T y = (X^T X)^{\dagger} X^T (\epsilon + f(X)) = (X^T X)^{\dagger} X^T (\textit{noise} + \textit{signal})$$

Zero-in on the left action of the operator X^T . In any direction $i, 1 \le i \le p$, it scales the noise from ϵ by $n\lambda_i$.

Ultimately, for any direction $i, 1 \le i \le p$, we can bound the prediction error in direction i by $\frac{n\lambda_i^2}{(\sum_{i>k}\lambda_i)^2}$. If we sum these terms, what do we get?

After all of this waiting, we formalize the notion under discussion.

Definition (Asymptotically Benign)

We say that Σ_n is asymptotically benign iff

$$\lim_{n\to\infty} \left(bias(\theta^*, \Sigma_n, n) + \frac{k_n^*}{n} + \frac{n}{R_{k_n^*}(\Sigma_n)}\right) = 0$$

Some things to think about with papers like this

- Has little practical value, at present. It's a conceptual piece.
- The interpretations that the authors give the phenomenon are a little fuzzy. There's a gap between what the math says and what the authors say it does.
- Theorems change between the Arxiv paper, PNAS paper, early presentations, and later presentations!

References I

Tsigler, Alexander, and Peter L. Bartlett. "Benign overfitting in ridge regression." arXiv preprint arXiv:2009.14286 (2020).

