离散数学——第五周作业

计83 刘轩奇 2018011025

2019.10.11

2.9 证明下列推理关系:

- (1) 在大城市球赛中,如果北京队第三,那么如果上海队第二,那么天津队第四。沈阳队不是第一或北京队第三。上海队第二。从而知,如果沈阳队第一,那么天津队第四。
- (2) 如果国家不对农产品给与补贴,那么国家就要对农产品进行控制。如果对农产品进行控制,农产品就不会短缺。或者农产品短缺或者农产品过剩。事实上农产品不过剩。从而国家对农产品给与了补贴。
- 解 (1) P: 北京队第三; Q: 上海队第二; R: 天津队第四; S: 沈阳队第一。

欲证:
$$P \to (Q \to R), \neg S \lor P, Q \Rightarrow S \to R$$

$$(a) \neg S \lor P$$
 前提
 $(b)S \to P$ (a)置换
 $(c)S$ 附加前提
 $(d)P$ (b)(c)分离
 $(e)P \to (Q \to R)$ 前提
 $(f)Q \to R$ (d)(e)分离
 $(g)Q$ 前提
 $(h)R$ (f)(g)分离
 $(i)S \to R$ 条件证明规则

(2) P: 国家对农产品给与补贴; Q: 国家对农产品进行控制; R: 农产品短缺; S:, 农产品过剩。

欲证:
$$\neg P \rightarrow Q, Q \rightarrow \neg R, R \leftrightarrow \neg S, \neg S \Rightarrow P$$

$$(a) \neg S$$
 前提

 $(b)R \leftrightarrow \neg S$
 前提

 $(c)R$
 $(a)(b)$ 分离

 $(d)Q \to \neg R$
 前提

 $(e)R \to \neg Q$
 (d) 置换

 $(f) \neg Q$
 $(c)(e)$ 分离

 $(g) \neg P \to Q$
 前提

 $(h) \neg Q \to P$
 (g) 置换

 $(i)P$
 $(f)(h)$ 分离

2.10 如果合同是有效的,那么张三应受罚。如果张三受罚,他将破产。如果银行给张三贷款,他就不会破产。事实上,合同有效并且银行给张三贷款了。验证这些前提是否有矛盾。

 \mathbf{P} : 合同有效; Q: 张三受罚; R: 张三破产; S: 银行给张三贷款。

- 2.12 利用归结法证明:
 - $(1) (P \lor Q) \land (P \to R) \land (Q \to R) \Rightarrow R$
 - $(3) \neg (P \land \neg Q) \land (\neg Q \lor R) \land \neg R \Rightarrow \neg P$
- 证 (1) 子句集 $\{P \lor Q, P \to R, Q \to R, \neg R\}$

2.11 若 $P_i \to Q_i (i=1,\cdots,n)$ 为真, $P_1 \lor P_2 \lor \cdots \lor P_n$ 和 $\neg (Q_i \land Q_j) (i \neq j)$ 也为真。试证明必有 $Q_i \to P_i (i=1,\cdots,n)$ 为真。

证

(a)
$$\neg (Q_i \wedge Q_j)$$
 前提
(b) $Q_i \rightarrow \neg Q_j$ (a) 置換
(c) $P_i \rightarrow Q_i$ 前提
(d) $P_i \rightarrow \neg Q_j$ (b) (c) 分离
(e) $\neg Q_i \rightarrow \neg P_i$ (c) 置換
(f) $P_i \rightarrow \neg P_j$ (d) (e) 分离
(g) $P_i \rightarrow (\neg P_1 \wedge \neg P_2 \cdots \wedge \neg P_{i-1} \wedge \neg P_{i+1} \cdots \wedge \neg P_n)$ 由(f)
(h) $\neg P_i \vee (\neg P_1 \wedge \neg P_2 \cdots \wedge \neg P_{i-1} \wedge \neg P_{i+1} \cdots \wedge \neg P_n)$ (g) 置換
(i) $P_1 \vee P_2 \vee \cdots \vee P_n$ 前提
(j) $P_i \vee (P_1 \vee P_2 \vee \cdots \vee P_{i-1} \vee P_{i+1} \vee \cdots \vee P_n)$ (i) 置換
(k) $\neg (P_1 \vee P_2 \vee \cdots \vee P_{i-1} \vee P_{i+1} \vee \cdots \vee P_n) \rightarrow P_i$ (j) 置換
(l) $(\neg P_1 \wedge \neg P_2 \cdots \wedge \neg P_{i-1} \wedge \neg P_{i+1} \cdots \wedge \neg P_n) \rightarrow P_i$ (k) 置換
(m) $Q_i \rightarrow (\neg Q_1 \wedge \neg Q_2 \cdots \wedge \neg Q_{i-1} \wedge \neg Q_{i+1} \wedge \cdots \wedge Q_n)$ 由(b)
(n) $Q_i \rightarrow (\neg P_1 \wedge \neg P_2 \cdots \wedge \neg P_{i-1} \wedge \neg P_{i+1} \cdots \wedge \neg P_n)$ 由(e) (m) 三段论
(o) $Q_i \rightarrow P_i$

3.1 依公理系统证明

$$(1) \vdash \neg(P \land Q) \to (\neg P \lor \neg Q)$$

$$(3) \vdash P \to (Q \lor P)$$

证 (1)

$$(a) \vdash \neg \neg P \to P$$
 定理3.2.5

$$(b) \vdash \neg \neg (\neg P \lor \neg Q) \to (\neg P \lor \neg Q)$$
 代入 $\frac{P}{\neg P \lor \neg Q}$

$$(c) \vdash \neg (P \land Q) \to (\neg P \lor \neg Q)$$
 定义(2)

(3)

$$(a) \vdash (Q \to R) \to ((P \to Q) \to (P \to R))$$
 定理3.2.1
$$(b) \vdash ((P \lor Q) \to (Q \lor P)) \to ((P \to (P \lor Q) \to (P \to (Q \lor P)))$$
 代入 $\frac{Q}{(P \lor Q)}, \frac{R}{(Q \lor P)}$ 公理3
$$(c) \vdash ((P \lor Q)) \to (Q \lor P))$$

$$(d) \vdash ((P \to (P \lor Q) \to (P \to (Q \lor P)))$$

$$(b)(c) \to (P \to (P \lor Q))$$
 公理2
$$(f) \vdash P \to (Q \lor P)$$

$$(d)(e) \to (Q \lor P)$$

3.2 依王浩算法判断下述蕴含式是否正确

$$(1) \neg Q \land (P \rightarrow Q) \Rightarrow \neg P$$

解

$$(a) \neg Q \wedge (P \to Q) \stackrel{s}{\Rightarrow} \neg P$$
 (写成相继式)

$$(b) \neg Q, (P \to Q) \stackrel{s}{\Rightarrow} \neg P$$
 ($\wedge \Rightarrow$)

$$(c) Q, \neg Q \stackrel{s}{\Rightarrow} \neg P$$
 而且 $\neg Q \stackrel{s}{\Rightarrow} P, \neg P$ ($\rightarrow \Rightarrow$)

$$(d) Q \stackrel{s}{\Rightarrow} \neg P, Q$$
 而且 $\stackrel{s}{\Rightarrow} P, \neg P, Q$ ($\neg \Rightarrow$)

$$(e) P, Q \stackrel{s}{\Rightarrow} Q$$
 而且 $P \stackrel{s}{\Rightarrow} P, Q$ ($\Rightarrow \neg$)

上式无联结词而且 ⇒ 两端均有共同的命题变项,从而是公理,则原蕴含式正确。