Redox In Daily Life

- + Photosynthesis
- + Extraction of metals
- + Combustion process
- + Electrochemical cells

Classical Theory

Addition of oxygen or removal of hydrogen from a substance

OXIDATION

$$C + O_2 \rightarrow CO_2 + Heat$$

Modern Theory

- 1) Oxidation is loss of electrons.
- 2) They are considered as reducing agents.
- 3) Lower oxidation number.

REDUCTION

Classical Theory

Removal of oxygen or addition of hydrogen from a substance

$$H_2 + S \rightarrow H_2S$$

Modern Theory

- 1) Reduction is gain of electrons.
- 2) They are considered as oxidising agents.
- 3) Increases Oxidation Number.

Oxidation Number

It indicates the number of electron gained or lost by a particular atom

Oxidation Numbers by Structure

a) Caro's acid (H₂SO₅)

$$0^{-2}$$
II

 $H^{+1} - 0^{-2} - S^{+6} - 0^{-1} - 0^{-1} - H^{+1}$
II

 0^{-2}

b) Chromium (VI) peroxide

c) (Br₃O₈)

Rules for Arranging Oxidation Number

- a) Oxidation Number in elemental state is always O.
- b) Oxidation Number of monoatomic ions is equal to charge on ion
- c) Oxidation Number of oxygen in most of the compound is -2.
- d) Oxidation Number of hydrogen is +1, except when it is bonded to metals in binary compounds.
- e) Halogens have an oxidation number of -1, when they occur as halide ions in their compounds.
- f) Algebraic sum of oxidation number of all the atoms in a neutral compounds must be zero.

TYPES OF REDOX REACTIONS /

Combination Reaction Two

Two reactants combine to form single product.

$$H_{2(g)} + O_{2(g)} \rightarrow H_2O_{(l)}$$

Decomposition Reaction

Breakdown of a compound into two or more compounds.

$$CaCO_{3(s)} \rightarrow CaO_{(s)} + CO_{2(g)}$$

Displacement Reaction

An ion/atom in a compound, is replaced by an ion/atom of another elements

$$CuSO_{4 (aq)} + Zn_{(s)} \rightarrow ZnSO_{4 (aq)} + Cu$$

Disproportionation

An element in one oxidation state is simultaneously oxidised and reduced.

$$2H_2O_{2(l)} \rightarrow 2H_2O_{(l)} + O_{2(g)}$$

BALANCING REDOX REACTION /

1. OXIDATION NUMBER METHOD

STEPS

- 1. Write the correct formula of the reaction
- 2. Identify atoms undergoing change in oxidation number
- 3. Calculate increase or decrease in oxidation number per atom for entire ion or molecule. If unequal, multiply by suitable number to make equal.
- 4. Add H⁺/OH⁻ ion to make total ionic charges of reactants and product equal
- 5. Equalize H⁺ on two sides by adding water.

2. HALF REACTION METHOD

STEPS

- 1. Seperate equation into two half reaction.
- 2. Balance atoms other than O and H
- 3. For reaction occuring in acidic medium, add H₂O to balance O atoms and H⁺ to balance H atoms.
- 4. Balance charges by adding e⁻ to one side of the half reaction.
- 5. Add two half reactions and cancel the electron on each side.

CALCULATION OF n - FACTOR/

n - factor of oxidising agent/reducing agent

= Change in oxidation number per molecule

ELECTRO-CHEMICAL SERIES

A series of electrode potentials on half cells arranged in order of their increasing standard oxidation potentials or in the decreasing order of their standard reduction potential.

