

School of Mathematics and Statistics MATH2111 - Higher Several Variable Calculus

5. Continuous Functions

Dr Alan Stoneham

a.stoneham@unsw.edu.au

Elementary Functions

Definition

Let $\Omega \subseteq \mathbb{R}^n$, $f : \Omega \to \mathbb{R}$ and $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$. We say that f is **elementary** if it

- is a constant function; or
- maps x to any of x_i , $\cos x_i$, $\sin x_i$, $\exp x_i$; or
- is an inverse of an elementary function, like $\ln(x_i)$; or

finte

- is a sum or product of elementary functions; or
- is a composition of elementary functions.

Example. The following are elementary functions:

•
$$f: \mathbb{R}^3 \to \mathbb{R}$$
, $f(x, y, z) = xy - z^3$;

•
$$g: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}, g(x,y) = \sin(x^2 - 3y) + \ln(x^4 + y^6);$$

•
$$h: (0, \infty)^3 \to \mathbb{R}, h(x, y, z) = x^y + y^z + z^x;$$
 $x^y = e^{y \ln x}$

•
$$F: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$$
, $F(\mathbf{x}, \mathbf{y}) = \mathbf{x} \cdot \mathbf{y} = \sum_{i=1}^n x_i y_i$.

Elementary Functions

Theorem

If $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$ is an elementary function, then f is continuous on Ω .

Example. Define $f_1, f_2 : \mathbb{R}^2 \to \mathbb{R}$ by

$$f_1(x,y) = \begin{cases} \frac{\sin(x^2 + y^2)}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 1 & \text{if } (x,y) = (0,0), \end{cases}$$

$$f_2(x,y) = \begin{cases} \frac{x^2 y}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0), \end{cases}$$

and define $f: \mathbb{R}^2 \to \mathbb{R}^2$ by $f(x,y) = (f_1(x,y), f_2(x,y))$.

Firstly, f_1 and f_2 are elementary, and hence continuous, functions on $\mathbb{R}^2 \setminus \{(0,0)\}$. We showed last lecture that $\lim_{(x,y)\to(0,0)} f_2(x,y) = 0$, and so f_2 is continuous on \mathbb{R}^2 .

Since the components of f are continuous on \mathbb{R}^2 , we have that f is continuous on \mathbb{R}^2 .

Images and Preimages

Recall that for a function $f: X \to Y$, $A \subseteq X$ and $B \subseteq Y$, the **image of** A **under** f is

$$f(A) = \{ f(x) \in Y : x \in A \},\$$

and the **preimage of** B **under** f is

$$f^{-1}(B) = \{x \in X : f(x) \in B\}.$$

$$f(x) = 1$$

 $f(x) = 1$
 $f(x) = 1$
but $f^{-1}(x) = 1$

That is, f(A) is the set of all outputs when the inputs are restricted to A, and $f^{-1}(B)$ is the set of all inputs that output to B. Consequently, $A \subseteq f^{-1}(f(A))$.

Images and Preimages

Example. Consider $f : \mathbb{R} \to \mathbb{R}$, $f(x) = \sin x$. Then

$$f(I_0, \pi_1) = [0,1]$$

•
$$f(\xi_0, \pi_0) = [0, 1]$$

• $f(\xi_0, 2\pi, 3\pi_0) = \xi_0$

$$\cdot f^{-1}(\tau_{-1}, \tau_{-1}) = \mathbb{R}$$

Continuity and Preimages

Theorem

Suppose that $\Omega \subseteq \mathbb{R}^n$ is open and $f : \Omega \to \mathbb{R}^m$. Then f is continuous if and only if $f^{-1}(U)$ is open for every open $U \subseteq \mathbb{R}^m$.

This does not work for images. Consider a constant function.

Proof. (\Leftarrow) suppose $f^{\dagger}(U)$ is open for every open $U \in \mathbb{R}^n$. Let $\epsilon > 0$ and $\epsilon \in \Omega$. Since $\beta(f(\alpha), \epsilon)$ is open, then $V = f^{\dagger}(\beta(f(\alpha), \epsilon))$ is open in \mathbb{R}^n As $\alpha \in V$ and V is open there is $\beta > 0$ st. $\beta(\alpha, \beta) \in V$. Then for any $\alpha \in \beta(\alpha, \beta)$, we have that $f(\alpha) \in \beta(f(\alpha), \epsilon)$. Let, $\beta(\alpha, \beta) \in \beta(f(\alpha), \epsilon)$. Let, $\beta(\alpha, \beta) \in \beta(f(\alpha), \epsilon)$. Let, $\beta(\alpha, \beta) \in \beta(f(\alpha), \epsilon)$.

Continuity and Preimages

Proof cont.

Conversely suppose that it is writineous on a and let us R' be open if u = ø, then f'(u) = ø unich is open. Heruise, cet en f-(cu). As u and or are open, we can find 1, 2 >0 st. $B(\alpha,r) \subseteq \Omega$ and $B(f(\alpha), \epsilon) \subseteq u$. As f is contineous, there is \$>0 st. fcn, \(\mathbb{E} \) \(\mathbb{E} \) \(\mathbb{E} \) \(\mathbb{E} \) for dl x = B(2,8). That is, B(2,8) = f-(as, so a is an interior point of f⁻(a). As a was orbitary

Continuity and Preimages

Corollary

Suppose that $f: \mathbb{R}^n \to \mathbb{R}^m$. Then f is continuous if and only if $f^{-1}(\Omega)$ is a closed subset of \mathbb{R}^n for every closed $\Omega \subseteq \mathbb{R}^m$.

The previous theorem and it's corollary are useful for proving that sets are open or closed.

Exercise. Show that the set $\Omega = \{(x,y) \in \mathbb{R}^2 : \sin x < y < \cos x\}$ is open.

Path-connected Sets

Definition

A set $\Omega \subseteq \mathbb{R}^n$ is **path-connected** if for every $\mathbf{x}, \mathbf{y} \in \Omega$, there is a continuous function $\varphi : [0,1] \to \Omega$ such that $\varphi(0) = \mathbf{x}$ and $\varphi(1) = \mathbf{y}$.

Examples.

- The path-connected subsets of \mathbb{R} are the empty set, singleton sets, intervals, and \mathbb{R} .
- The unit circle \mathbb{T} and $\{(x,y): xy \ge 0\}$ are path-connected subsets of \mathbb{R}^2 .
- The Topologist's Sine Curve $\{(x, \sin \frac{1}{x}) : x \in (0, \infty)\} \cup \{(0, 0)\}$ is NOT path-connected.

Path-connected Sets

Proposition

If Ω_1, Ω_2 are path-connected with $\Omega_1 \cap \Omega_2 \neq \emptyset$, then $\Omega_1 \cup \Omega_2$ is path-connected.

Generalising the IVT

Intermediate Value Theorem (IVT)

Suppose that $f : [a, b] \to \mathbb{R}$ is continuous. Then for any z between f(a) and f(b), there is a $c \in [a, b]$ such that f(c) = z.

The following theorem generalises the IVT.

Theorem

Suppose that $\Omega \subseteq \mathbb{R}^n$ is path-connected and $f : \Omega \to \mathbb{R}^m$. Then $f(\Omega)$ is path-connected.

Continuous functions preserve path-connectedness.

Generalising the IVT

Path-Connected Example

Example. Show that $\Omega = \{(x,y) \in \mathbb{R}^2 : 1 < x^2 + y^2 < 4\}$ is path-connected.

Option 1: for every $\mathbf{a}, \mathbf{b} \in \Omega$, find a continuous function $\varphi : [0,1] \to \Omega$ with $\varphi(0) = \mathbf{a}$ and $\varphi(1) = \mathbf{b}$.

Option 2: find a continuous function $f: D \to \mathbb{R}^2$ where D is path-connected and $f(D) = \Omega$.

Consider the **polar map** $P: \mathbb{R}^2 \to \mathbb{R}^2$ where

$$P(r,\theta) = (r\cos\theta, r\sin\theta).$$

We observe that P is continuous since its components are elementary functions and, if we set $D = (1,2) \times [0,2\pi)$, then $P(D) = \Omega$. Clearly D is path-connected, and so Ω is also path-connected.

Note that the polar map is not invertible. Even if we restrict the domain to $\mathbb{R}_{>0} \times [0, 2\pi)$ so that it is invertible, the inverse is not continuous!

Bounded Sets and Compact Sets

Definition

Let Ω be a subset of \mathbb{R}^n . We say that Ω is bounded if there is an $M \in \mathbb{R}$ such that $d(\mathbf{x}, \mathbf{0}) \leq M$ for all $\mathbf{x} \in \Omega$.

We also say that Ω is **compact** if it is closed and bounded.

Examples.

- Ø is compact but \mathbb{R}^n is not;
- (0,1), (0,1] and [0,1) are bounded but not compact, but [0,1] is compact;
- The union of two bounded sets is bounded, hence the union of two compact sets is compact;
- The unit circle, sphere and (closed) disc are compact;
- A convergent sequence is bounded. The set $\{1, \frac{1}{2}, \frac{1}{3}, \dots\}$ is bounded, but $\{1, \frac{1}{2}, \frac{1}{3}, \dots\} \cup \{0\}$ is compact.

Monotone Subsequences of Real Numbers

Recall that a sequence of real numbers $\{a_k\}_{k=1}^{\infty}$ is said to be **monotonic** if it is non-decreasing $(a_{k+1} \ge a_k \text{ for all } k \in \mathbb{Z}^+)$ or if it is non-increasing $(a_{k+1} \le a_k \text{ for all } k \in \mathbb{Z}^+)$.

Lemma

Suppose that $\{a_k\}_{k=1}^{\infty}$ is a sequence of real numbers. Then there is a subsequence $\{a_{k_i}\}_{j=1}^{\infty}$ that is monotonic.

Monotone Subsequences of Real Numbers

Bolzano-Weierstrass Theorem

- A monotone bounded sequence in \mathbb{R} converges to its supremum (least upper bound) if it is non-decreasing or to its infimum (greatest lower bound) if it is non-increasing.
- Every bounded sequence in \mathbb{R} has a convergent subsequence by the previous lemma.
- By taking subsequences of subsequences (finitely many times), every bounded sequence in \mathbb{R}^n has a convergent subsequence.

Bolzano-Weierstrass Theorem

A set $\Omega \subseteq \mathbb{R}^n$ is compact if and only if every sequence in Ω has a convergent subsequence whose limit is in Ω .

The above reasoning and Ω being closed proves the forward direction. The backward direction follows since if Ω is unbounded, we can construct a sequence that is not Cauchy (and hence not convergent), or if Ω is not closed, then it does not contain one of its limit points, say \mathbf{x} , but there will be a sequence $\{\mathbf{x}_k\}_{k=1}^{\infty}$ in Ω converging to \mathbf{x} .

Continuous Functions Preserve Compactness

Theorem

Suppose that $K \subseteq \mathbb{R}^n$ is compact and $f: K \to \mathbb{R}^m$ is continuous. Then f(K) is compact.

Applications

Corollary (Extreme Value Theorem)

Suppose that $K \subseteq \mathbb{R}^n$ is compact and $f : K \to \mathbb{R}$ is continuous. Then f attains a maximum and a minimum on K. That is, there are $\mathbf{a}, \mathbf{b} \in K$ such that for all $\mathbf{x} \in K$,

$$f(\mathbf{a}) \leq f(\mathbf{x}) \leq f(\mathbf{b}).$$

Let $S_1 = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ (compact) and $S_2 = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$ (not compact). Is there a continuous function $f : \mathbb{R}^2 \to \mathbb{R}^2$ such that

- 1. $f(S_1) = S_2$?
- 2. $f(S_2) = S_1$?

Answers:

- 1.
- 2.