EC3093D Digital Signal Processing Lab Winter Semester 2023-24

Experiment-1: Discrete time signal generation and convolution

General instructions

- The experiment is presented as five problems below. Use Matlab for all problems
- Report and lab output evaluation will be based only on the problems or parts of problems which are marked as 'Do in lab'
 - o **Report** needs to be submitted (as one pdf file per group) via Eduserver (before deadline) and will be evaluated out of a *maximum* of 100 marks, and split-up is given alongside the problems.
 - For each problem (marked 'Do in lab'), report should cover
 - 1. the problem (copy from this document)
 - 2. the result depicted using necessary figure(s) with proper title, legends, axis labels etc with readable font sizes.
 - 3. a **brief** discussion of the results, highlighting only the salient/interesting points.
 - o **Lab output** will be evaluated out of a *maximum* of 100 marks, and split-up is given alongside the problems.
 - the result depicted using figure(s) with proper title, legends, axis labels etc with readable font sizes.
- You need to be familiar with all the problems. Experiment test will cover all problems.
- For queries regarding this experiment, contact vioseph@nitc.ac.in, sanjayviswanath@nitc.ac.in

Problems

- 1. **Basic signals**: Generate the following discrete time signals for n=-10 to +10 and display the following in separate figures using "stem" Matlab function:
 - a. Unit impulse $\delta[n]$
 - b. Unit step u[n]
 - c. u[n-1]
 - d. **Do in lab (15 marks):** Generate unit impulse $\delta[n]$ using u[n] and u[n-1]
 - e. **Do in lab (15 marks):** Unit ramp r[n], and also x[n]=r[2n] in one figure (using Matlab's hold) with appropriate legend and title for n=-20 to +20.
 - f. Generate unit step u[n] using r[n] and r[n-1].
- 2. Perform the following using the stem function.
 - a. Let $x[n] = 20(0.9)^n u[n]$.
 - i. Choose c and generate $y[n] = 10(c)^n u[n]$, which reaches zero slower than x[.]

- ii. Display x[n] and y[n] for n=-10 to +100 on the same plot with appropriate legend (using hold).
- b. **Do in lab (10 marks):** Let $x[n] = 0.2(1.2)^n u[n]$
 - i. Choose c and generate $y[n] = 2(c)^n u[n]$, which reaches infinity slower than x[.].
 - ii. Display x[n] and y[n] for n=-10 to +100 on the same plot with appropriate legend (using hold).
- c. Generate and display following discrete time signals for n=-10 to +40 on the same plot using hold with appropriate legend:
 - i. $x[n] = (-0.8)^n u[n]$
 - ii. $x[n] = -(0.8)^n u[n]$
- d. **Do in lab (10 marks):** Generate complex exponential signal $x[n] = e^{(-1/12 + j\pi/6)n}$.
 - i. Display the real part and imaginary parts of x[n] for n=0 to 20 in one subplot of one figure with appropriate legend.
 - ii. Display the absolute value of x[n] for n=0 to 20 in another subplot of the same figure.
- 3. Perform the following.
 - a. Generate $x1[n] = \cos(0.2\pi n)$, $x2[n] = \cos(1.8.\pi n)$, $x3[n] = \cos(2.2\pi n)$. Compare the plots generated for the three cases for n=-10 to +10, and comment on your result. Plot all the signals in the same figure using hold.
 - b. **Do in lab (15 marks):** $x4[n]=\cos(4\pi n/17)$, $x5[n]=3\cos(1.3\pi n)-4\sin(0.5\pi n+0.5\pi)$, $x6[n]=5\cos(1.5\pi n+0.75\pi)+ 4\cos(0.6\pi n)-\sin(0.5\pi n)$. In each case, determine the period of the signal theoretically and verify the result by displaying the signal in a plot.

4. Random signal generation

- a. **Do in lab (15 marks):** Display all of the following in one plot using hold function and rand(.,.) function for N=100 including appropriate legend
 - i. A random signal of length N with samples uniformly distributed in the interval [0,1]
 - ii. Another random signal of length N with samples uniformly distributed in the interval [0,1]
 - iii. A random signal of length N with samples uniformly distributed in the interval [-5.-3]
- b. Display all of the following in one plot using hold function and randn(.,.) function for N=100 including appropriate legend
 - i. A random signal x[n] of length N with samples normally distributed with zero mean and unity variance;
 - ii. Another random signal x[n] of length N with samples normally distributed with zero mean and unity variance;
 - iii. A random signal x[n] of length N with samples normally distributed with zero mean and variance of 100;

- 5. **Do in lab (40 marks): Convolution**: Write a program to perform convolution of two signals given by $y[n] = \sum_{k} h[k] x[n-k]$
 - a. Create any two arbitrary signals x(n) and h(n) of short lengths and compute the result using your program. Use the "conv" function in MATLAB to verify your result.
 - b. Set h(n) as the impulse signal $\delta[n]$ and compute the result. Comment on the result.
 - c. Create any two arbitrary signals x(n), h(n) and g(n) of short lengths and verify distributive property of convolution.