

生物化學實驗報告

菌落聚合酶鏈鎖反應 Colony PCR

組 別:第14組

主寫人: 陳相瑋 b202110082 組 員: 李品辰 b202110064

王威鈞 b202110089

日 期:2023/12/12

實驗目的:

- 1. 利用 PCR 技術,複製大腸桿菌轉型實驗中的 DNA。
- 2. 觀察並比較轉型成功與未成功的細菌 DNA 電泳結果。

實驗步驟:

實驗器材

- 1. polymerase reagent(20μL)
- 2. primer mixture(20µL)
- 3. 大腸桿菌轉形實驗中含藍、白菌 落的培養基
- 4. 500µL 的 PCR tube x2
- 5. P20
- 6. Eppendorf

- 7. PCR machine
- 8. 電泳儀
- 9. 電源供應器
- 10. Agarose gel
- 11. 電泳 buffer
- 12. Light box
- 13. 離心機

步驟

- 1. 取兩個 $500\mu L$ 的 PCR tube 並用標示 W 和 B,各自加入 $10\mu L$ 的 polymerase reagent 和 $10\mu L$ 的 primer mixture,再 pipetting 得到 PCR sample。
- 2. 用兩個 P200/P20 的 tip 分別沾取培養基中的藍色與白色菌落,再分別加入標示 W 和 B 的 PCR tube,與 PCR sample 均勻混合。(若混合後氣泡過多或液體殘留在管壁,可先離心再進行下一步驟)
- 3. 將標示 W 和 B 的 PCR tube 放到 PCR machine 中反應 40 分鐘。
- 從 W 和 B 兩管各用 pipette 取 10μL 到 eppendorf 的蓋子上,再分別取 2μL 的 loading buffer 與之混合,最後 load 到 agarose gel 裡面,以 140V 電泳 15 分鐘。
- 5. 將跑完的 agarose gel 放到 light box 觀察。

實驗結果及討論:

結果

- 1. 白色菌落 (W 組) 在 3-4kbp 與有明顯亮帶,於 250bp 以下有較模糊的亮帶。
- 2. 藍色菌落 (B 組) 僅在 250bp 以下有明顯亮帶。

實驗討論

Discussion 1. 電泳結果的意義

- 1. 白色菌落的 colony 有成功 insert, 其 DNA 分子量較大, 電泳時移動速度較慢; 藍色菌落的 colony 未成功 insert, 其 DNA 分子量較小, 電泳時移動速度較快。
- 2. 白色菌落在對藍色菌落的亮帶處也有模糊的亮帶,推測是因為沾取到部分沒有 insert 成功的 colony 造成。
- 3. 藍色與白色菌落的 colony 皆為環狀 DNA ,其分子量都比對應到的 Marker 分子量大。

Discussion 2. 進行 PCR 實驗後進行核酸電泳如果有實驗上的誤差,可能造成的原因為何?

- 1. PCR 反應失敗:如果 PCR 反應本身存在問題,例如缺乏 DNA 模板、Primer 設計不當、PCR 條件不準確等,則核酸電泳的結果可能是無產物或者不正確的產物。
- 2. 樣品污染:樣品可能受到 DNA 或 RNA 污染,這可能來自實驗室環境、實驗者、或者之前的實驗。污染會導致其他產物出現在膠片中。

- 3. 電泳條件不當:選擇不當的電泳條件(例如電壓、運行時間)可能導致產物 的模糊或者過度擴散。這可能使不同大小的 DNA 片段難以區分。
- 4. 樣品負載量不均:如果樣品負載量不均,則可能在電泳圖譜中看到強度差異明顯的條帶,這可能會影響樣品的比較和分析。
- 5. DNA 量不足:如果 PCR 反應的起始 DNA 量太少,則可能難以在電泳中檢 測到目標產物。這可能發生在樣品提取或者 PCR 反應的早期階段。
- 6. 引物選擇: Primer 的設計可能影響 PCR 產物的 specificity。如果 Primer 與非 特異的 DNA 結合,則可能在電泳中觀察到額外的亮帶。
- 7. 電泳環境:電泳室的環境條件,例如溫度和緩衝液,可能對電泳結果產生影響。環境條件的不穩定可能導致結果的不一致性。
- 8. 膠體質量:使用老化、變質或者不適當的瓊脂糖膠可能導致電泳結果不準確。

Discussion 3. 我們這組實驗的誤差來源?如何減少本次實驗所造成的誤差與錯誤? 與膠片上的另外一組相比,我們這組白色菌落的亮帶較不清晰,而且在 250bp處還有模糊的亮帶,可知樣品可能受到 DNA 或 RNA 污染,而汙染的由來 可能是我們在取白色菌落的時候,有沾染到其他東西,或者在呼吸的過程中有引 入汙染物。在取樣及把樣品加入 PCR tube 的時候應該更加迅速且準確,以避免樣 品受到汙染。

Discussion 4. qPCR 的應用

- 1. 基因表達分析: qPCR 用於量化特定基因的 mRNA 水平,進行基因表達研究。這可以幫助研究者了解基因在不同條件下的表達模式,探討生物學過程和疾病的機制。
- 2. 基因型分析:qPCR 可用於檢測和定量 DNA 序列的存在,從而進行基因型分析。這在基因組學研究和遺傳學研究中具有重要意義,例如檢測基因突變、基因多態性等。
- 3. 病原體檢測:qPCR 被廣泛應用於檢測和定量病原體,如細菌、病毒、真菌等。這對於臨床診斷、疾病監測和食品安全檢測都具有重要的意義。
- 4. 病毒量化:在病毒學研究中,qPCR 可用於量化病毒的基因體或 RNA,並評估病毒複製和感染的程度。但病毒的 RNA 需要先被反轉錄酶 (reverse transcriptase) 反轉錄回 DNA 才可進行 PCR, 故又稱為 RT-PCR。
- 藥物研發:在藥物研發過程中,qPCR可用於評估潛在藥物對特定基因的影響,進行基因表達標記物的篩選,並評估藥物的效能。
- 6. 生態學和環境研究: qPCR 可用於環境樣品中的微生物群體和基因的定量分析,有助於了解生態系統中的微生物多樣性和生態過程。
- 7. 轉基因植物檢測: qPCR 可以檢測和定量轉基因植物中外源基因的存在和表達,確保農作物品質和生態安全。

Discussion 5. Real-time PCR 介紹

目的:除了 PCR 增加目標片段 DNA 作用,利用螢光物質與 DNA 片段結合的效果,藉由偵測濃度,達到定量效果。

目前主要分為 TaqMan 與 SYBR green 兩種

方式	SYBR green	TaqMan
原理	藉由螢光染劑對雙股 DNA 有較高親和力的效果,達成 PCR 過程中螢光強度會隨著 cycle 數目增加的定量方式。	藉由 DNA 探針上兩個螢光基團, 分別為紅綠,當兩基團較接近 時,紅色螢光因為波長較長造 成綠色螢光無法被偵測,而 PCR 過程中,兩基團隨著 DNA 合成 而遠離,綠色螢光基團則可被偵 測,達成定量目的。
優點	較便宜、降低實驗設計的複雜度	較為準確
缺點	比起 TaqMan 方式有較高的誤差	設計 DNA 探針較為複雜、昂貴