Algebra and Number Theory

Solve every problem.

Problem 1. Let F be a field of characteristic zero. Consider the polynomial ring $F[x_1, \ldots, x_n]$.

(a) Prove Newton's identity over the field F

$$p_k - p_{k-1}e_1 + \dots + (-1)^{k-1}p_1e_{k-1} + (-1)^k ke_k = 0,$$

where

$$e_k(x_1,\ldots,x_n)=\sum_{1\leq i_1<\cdots<\beta_k\leq n}x_{i_1}\cdots x_{i_k}$$

for $1 \le k \le n$, $e_0 = 1$, $e_k = 0$ when k > n, and

$$p_k(x_1,\ldots,x_n)=x_1^k+\cdots+x_n^k.$$

(b) Prove that over the field of F of characteristic zero, an $n \times n$ matrix A is nilpotent if and only if the trace of A^k is equal to zero for all $k = 1, 2 \dots$

Hint: use Part (a).

(c) Prove that over the field of F of characteristic zero, two $n \times n$ matrix A and B have the same characteristic polynomial if and only if the trace of A^k and trace of B^k are equal for all $k = 1, 2 \dots$

Hint: use Part (a).

Problem 2.

(a) Let M be a finitely generated R-module and $\mathfrak{a} \subset R$ an ideal. Suppose $\phi: M \to M$ is an R-module map such that $\phi(M) \subseteq \mathfrak{a}M$. Prove that there is a monic polynomial $p(t) \subset R[t]$ with coefficients from \mathfrak{a} such that $p(\phi) = 0$.

Hint: p(t) is basically just the characteristic polynomial.

(b) If M is a finitely generated R-module such that $\mathfrak{a}M = M$ for some ideal $\mathfrak{a} \subset R$, then there exits $x \in R$ such that $1 - x \in \mathfrak{a}$ and xM = 0.

Problem 3. Let $R = F[x, y]/(y^2 - x^2 - x^3)$ for some field F.

- (a) Prove that R is an integral domain.
- **(b)** Compute the normalization of *R* (*i.e.*, the integral closure of *R* in its field of fraction).

Problem 4. Let p and ℓ be two prime numbers and $[\ell_x]$ denote the ℓ -th cyclotomic polynomial $1 + x + \cdots + x^{\ell-1}$.

- (a) Prove that $[\ell_x]$ is an irreducible element of $\mathbb{Q}[x]$.
- (b) Show that $[\ell_x]$ is divisible by x-1 in $\mathbb{F}_p[x]$ if $p=\ell$. Here \mathbb{F}_p is the finite field $\mathbb{Z}/p\mathbb{Z}$.

(c) Suppose $p \neq \ell$. let a be the order of p in \mathbb{F}_{ℓ} . Show that a is the first value of m for which the group $\mathrm{GL}_m(\mathbb{F}_p)$ of invertible $m \times m$ matrices with entries from \mathbb{F}_p contains an element of order ℓ .

Hint: Derive and use the formula for the number of elements in $GL_m(\mathbb{F}_p)$.

Problem 5. Let $p \ge 3$ be a prime number and let \mathbb{Z}_p be the ring of p-adic integers.

- (a) Show that an element in $1 + p\mathbb{Z}_p$ is a p-th power in \mathbb{Z}_p if and only if it lives in $1 + p^2\mathbb{Z}_p$.
- (b) Let \mathbb{Z}_p^{\times} denote the group of units in \mathbb{Z}_p . Show that there exist $a,b,c\in\mathbb{Z}_p^{\times}$ such that $a^p+b^p=c^p$ if and only if

$$\sum_{i=1}^{p-1} i^{p-2} t^i \equiv 0 \pmod{p}$$

for some integer $t \in \{2, 3, ..., p-1\}$. (In particular, this condition holds for p = 7 by taking t = 3. Therefore, Fermat's Last Theorem does not hold for \mathbb{Z}_7 .)

Problem 6. Recall that a metric space is called *spherically complete* if any decreasing sequence of closed balls has nonempty intersection.

Let p be a prime number and let \mathbb{Q}_p be the field of p-adic numbers. For every integer $n \geq 1$, consider the finite extension $\mathbb{Q}_p(\mu_{p^n})$ of \mathbb{Q}_p generated by all p^n -th roots of unity. Let $\mathbb{Q}_p(\mu_{p^\infty}) = \bigcup_{n\geq 1} \mathbb{Q}_p(\mu_{p^n})$. All of these algebraic extensions of \mathbb{Q}_p are equipped with the unique norm $|\cdot|$ extending the usual p-adic norm on \mathbb{Q}_p .

Question: Which of the following are spherically complete? Explain why.

- (a) \mathbb{Q}_p ;
- **(b)** $\mathbb{Q}_p(\mu_{p^n});$
- (c) $\mathbb{Q}_p(\mu_{p^{\infty}})$;
- (d) $\widehat{\mathbb{Q}_p(\mu_{p^{\infty}})}$, the completion of $\mathbb{Q}_p(\mu_{p^{\infty}})$.

Hint: Show that there exists a sequence $a_1, a_2, \ldots \in \mathbb{Q}_p(\mu_{p^{\infty}})$ such that $|a_1| > |a_2| > \cdots$ and $\lim |a_i| > 0$, and such that the closed balls

$$B_i := \left\{ x \in \widehat{\mathbb{Q}_p(\mu_{p^{\infty}})} : |x - a_1 - a_2 - \dots - a_i| \le |a_i| \right\}$$

have empty intersection.