Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа Р3212	К работе допущен	
Студент Козаченко Данил Александрович	Работа выполнена	
Преподаватель <u>Агабабаев Валентин</u> Александрович	Отчет принят	

Рабочий протокол и отчет по лабораторной работе №1.01

Исследование распределения случайной величины

1. Цель работы.

Исследование распределения случайной величины на примере многократных измерений определённого интервала времени

2. Задачи, решаемые при выполнении работы.

- 1. Провести многократные измерения времени падения листа бумаги с определённой высоты.
- 2. Построить гистограмму распределения результатов измерения.
- 3. Вычислить среднее значение и дисперсию полученной выборки.
- 4. Сравнить гистограмму с графиком функции Гаусса с такими же, как и у экспериментального распределения средним значением и дисперсией.

3. Объект исследования.

Случайная величина – результат измерения промежутка времени от момента отпускания листа бумаги с высоты картины до его падения на кровать.

4. Метод экспериментального исследования.

Многократное прямое измерение времени падения листа бумаги и проверка закономерностей распределения значений этой случайной величины.

5. Рабочие формулы и исходные данные.

- $\langle t \rangle_N = \frac{1}{N} \left(t_1 + t_2 + \ldots + t_N \right) = \frac{1}{N} \sum_{i=1}^N t_i$ среднее арифметическое всех результатов
- $\sigma_N = \sqrt{\frac{1}{N-1}\sum_{i=1}^N (t_i \langle t \rangle_N)^2}$ выборочное среднеквадратичное отклонение.
- $\rho_{max} = \frac{1}{\sigma\sqrt{2\pi}}$ максимальное значение плотности распределения. $\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i \langle t \rangle_N)^2}$ среднеквадратичное отклонение среднего значения.
- $\rho(t) = \frac{1}{\sigma\sqrt{2\pi}} exp\left(-\frac{(t-\langle t\rangle)^2}{2\sigma^2}\right)$ нормальное распределение, описываемое функцией Гаусса.
- $\Delta_{\overline{t}} = t_{\alpha,N} \cdot \sigma_{\langle t \rangle}$ доверительный интервал. $m \approx \sqrt{N} = \sqrt{52} \approx 7$ число интервалов для построения гистограммы $\frac{\Delta N}{N \, \Delta t}$ опытное значение плотности вероятности

6. Измерительные приборы.

№ n/n	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Секундомер	Цифровой	0-5 c	0.01 c

7. Схема установки:

Лист бумаги, расположенный на высоте картины над кроватью и цифровой секундомер, с ценой деления не более 0,01 с. Лист падает на кровать, интервал времени падения до кровати многократно измеряется цифровым секундомером.

8. Результаты прямых измерений и их обработки.

Таблица 1. Результаты прямых измерений

	а 1. Результаты прямы. + о		(+ /+\)2 22
<u>No</u>	<i>t_i</i> , c	$t_i - \langle t \rangle_N$, c	$(t_i - \langle t \rangle_N)^2, c^2$
1	1,51	-0,06	0,00320
2	1,37	-0,20	0,03863
3	1,66	0,09	0,00874
4	1,74	0,17	0,03009
5	1,64	0,07	0,00540
6	1,37	-0,20	0,03863
7	1,35	-0,22	0,04689
8	1,44	-0,13	0,01601
9	1,70	0,13	0,01781
10	1,68	0,11	0,01287
11	1,49	-0,08	0,00586
12	1,55	-0,02	0,00027
13	1,41	-0,16	0,02450
14	1,51	-0,06	0,00320
15	1,59	0,02	0,00055
16	1,65	0,08	0,00697
17	1,50	-0,07	0,00443
18	1,63	0,06	0,00403
19	1,41	-0,16	0,02450
20	1,65	0,08	0,00697
21	1,42	-0,15	0,02147
22	1,44	-0,13	0,01601
23	1,66	0,09	0,00874
24	1,58	0,09	0,00018
25	1,55	,	0,00018
26 26		-0,02	
2 0 27	1,67	0,10	0,01070
	1,17	-0,05	0,15724
28	1,43	-0,14	0,01864
29	1,59	0,02	0,00055
30	1,37	-0,20	0,03863
31	1,83	0,26	0,06941
32	1,66	0,09	0,00874
33	1,63	0,06	0,00403
34	1,56	-0,01	0,00004
35	1,55	-0,02	0,00027
36	1,53	-0,04	0,00134
37	1,67	0,10	0,01070
38	1,76	0,19	0,03743
39	1,69	0,12	0,01524
40	1,54	-0,03	0,00070
41	1,65	0,08	0,00697
42	1,48	-0,09	0,00749
43	1,67	0,10	0,01070
44	1,59	0,02	0,00055
45	1,56	-0,01	0,00004
46	1,63	0,06	0,00403
47	1,68	0,11	0,01287
48	1,79	0,22	0,04994
49	1,67	0,10	0,01070
50	1,34	-0,23	0,05132

51	1,62	0,05	0,00286
52	1,63	0,06	0,00403
	$\langle t \rangle_N = 1,573 \text{ c}$	$\sum_{i=1}^{N} (t_i - \langle t \rangle_N) = -1,710 * 10^{-14} c$	$\sigma_N = 0.101 c$ $\rho_{max} = 3.935 c^{-1}$

• $t_{min} = 1.34 \text{ c}, t_{max} = 1.83 \text{ c}$

9. Расчет результатов косвенных измерений.

- $\langle t \rangle_N = \frac{1}{N} \sum_{i=1}^N t_i = 1,573$ с среднее арифметическое всех результатов измерений.
- $\sum_{i=1}^{N} (t_i \langle t \rangle_N) = -1,710 * 10^{-14} \text{ c}$ сумма отклонений $\sum_{i=1}^{N} (t_i \langle t \rangle_N)^2 = 0,724$ сумма квадратов отклонений
- $\sigma_N = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (t_i \langle t \rangle_N)^2} = 0.101 \text{ c}$ выборочное среднеквадратичное отклонение.
- $\rho_{max} = \frac{1}{\sigma \sqrt{2\pi}} = 3.935 \, \text{c}^{-1}$ максимальное значение плотности распределения.
- $m \approx \sqrt{N} = \sqrt{52} \approx 7 \Rightarrow$ для построения гистограммы возьмём 7 интервалов длиной $(t_{max} - t_{min}) / 7 = 0.07 c$

Таблица 2 Ланные для построения гистограммы

Границы интервалов, с	ΔN	ΔN $\Delta N/(N \Delta t), c^{-1}$ t, c		ρ , c ⁻¹	
1,34 1,41	7	0,037	1,38	0,581	
1,41 1,48	7	0,037	1,45	1,767	
1,48 1,55	18	0,095	1,52	3,336	
1,55 1,62	17	0,090	1,59	3,909	
1,62 1,69	18	0,095	1,66	2,843	
1,69 1,76	5	0,026	1,73	1,284	
1,76 1,83	3	0,016	1,80	0,360	

Таблица 3 Стандартные доверительные интервалы

	Интервал, с		ΔN	ΔN	D
	ОТ	до	ΔIV	\overline{N}	Γ
$\langle t \rangle_N \pm \sigma_N$	1,47	1,67	33	0,635	0,683
$\langle t \rangle_N \pm 2\sigma_N$	1,37	1,77	45	0,865	0,954
$\langle t \rangle_N \pm 3\sigma_N$	1,27	1,87	52	1,000	0,997

10. Расчет погрешностей измерений

- $\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i \langle t \rangle_N)^2} = 0.017 \, \text{c}$ среднеквадратичное отклонение среднего
- $t_{\alpha,N} \approx 2,01$ коэффициент Стьюдента
- $\Delta_{\overline{t}} = t_{\alpha,N} \cdot \sigma_{\langle t \rangle} = 0.034 \text{ c}$ доверительный интервал.
- $\Delta_t = \sqrt{\Delta_t^2 + (\frac{2}{3}\Delta_{ut})^2} = 0.035 \text{ c} \text{абсолютная погрешность}$
- $\varepsilon_t = \frac{\Delta_t}{\tau} 100\% = 2,2\%$ относительная погрешность

11. Графики

12. Окончательные результаты.

$$t = (1,573 \pm 0,035)$$
c; $\varepsilon_t = 2,2\%$; $\alpha = 0,95$

13. Выводы и анализ результатов работы.

В ходе выполнения лабораторной работы было проведено 52 измерения случайной величины. На графике была построена гистограмма по плотности вероятности в данном промежутке времени. Функция Гаусса характеризует нормальное распределение. При помощи гистограммы и функции Гаусса мы можем заметить, что на результат сильно влияет небольшое количество измерений (при математическом ожидании N должно стремиться к бесконечности). Также на результаты повлияли собственные недочёты в измерении, а именно небольшая задержка при включении секундомера. При этом гистограмма похожа на функцию распределения случайной величины, но с погрешностью на перечисленные выше условия.

14. Дополнительные задания.

15. Выполнение дополнительных заданий.

16. Замечания преподавателя (исправления, вызванные замечаниями преподавателя, также помещают в этот пункт).