Fakulteit Natuur- & Landbouwetenskappe Faculty of Natural & Agricultural Sciences

Department of Statistics

WST121

SAS Notes

CONTENTS

Introduction to SAS for Windows	2
PART 1: The DATA step	4
SAS Functions	4
PROC PRINT: Printing a data set	4
Entering a data set directly into SAS	7
Creating new variables	8
Creating a new library in SAS	11
How to import an Excel file in SAS	11
Using the SET statement	12
PART 2: PROC SURVEYSELECT	13
Drawing a simple random sample using SAS	
PART 3: SAS Base Procedures	14
1. PROC FREQ	14
2. PROC MEANS	18
3. PROC UNIVARIATE	20
4. PROC PLOT	27
5. PROC CHART	28
The WHERE clause	29
PART 4: PROC MEANS (continued) and PROC TTEST	30
1. Confidence intervals	30
1. One sample case	32
2. Two sample case	34
PART 5: PROC REG	37
1. Fitting a simple regression line, $\hat{y} = \beta_0 + \beta_1 x$.	
Obtaining confidence intervals for the parameters.	
Testing H ₀ : $\beta_0 = 0$ and H ₀ : $\beta_1 = 0$.	38
2. Fitting a simple regression line, $\hat{y} = \beta_0 + \beta_1 x$.	30
Testing H ₀ : $\beta_0 = \beta_{00}$ and H ₀ : $\beta_1 = \beta_{10}$.	40
3. Calculating:	40
(a)a confidence interval for the mean value of the dependent (b) aprediction interval	
for the dependent variable for a particular value of the expl	lanatory variable.
PART 6: PROC CORR	44
1. Calculating the correlation between two variables X and	nd <i>Y</i> .
Testing H_0 : $\rho = 0$.	44
2. Calculating the correlation between two variables X and	nd <i>Y</i> .
Obtaining confidence intervals for ρ.	
Testing H ₀ : $\rho = \rho_0$.	46

PART 7: PROC MEANS and PROC TTEST(continued) 1. Testing H_0 : $\mu_1 - \mu_2 = 0$	47	
(Two Dependent Samples from Normal Populations)	47	
PART 8: PROC GLM	49	
1. One-way Analysis of Variance (One-way ANOVA)	49	
2. Two-way Analysis of Variance (Two-way ANOVA)	50	
PART 9: PROC FREQ (continued)	52	
1. The Chi-Square test	52	
2. The (I x J) independence test	53	

Introduction to SAS for Windows (Statistical Analysis System)

Activating SAS

- Click on the START menu at the bottom left hand side of the screen
- Go to \rightarrow Programs
 - \rightarrow SAS system
 - → SAS system for windows

SAS Windows

Interaction with SAS can be accomplished through the use of three windows namely the PROGRAM EDITOR window, the LOG window and the OUTPUT window.

Activate a certain window by VIEW

- → Enhanced Editor or Program Editor (or F5)
- \rightarrow Log (or F6)
- \rightarrow Output (or F7)

Program Editor Window

- contains the SAS program (type in a new program or open an existing program)
- is used for writing and editing of SAS statements
- contents can be altered and filed
- to run program, use runner-icon (or F8)
- to recall program after running, use F4

LOG Window

- use this window to identify your errors in the SAS program
- contains SAS statements submitted previously
- contains error messages in red, warning messages in green
- contents cannot be altered, but can be filed
- always clear contents of the LOG window before rerunning a program (use EDIT → clear all)

Output Window

- contains output generated by a SAS-program
- the contents cannot be altered, but can be filed
- always clear contents of the OUTPUT window before rerunning a program

 $\begin{array}{ccc} \text{(use} & & \text{EDIT} & \rightarrow & & \text{clear} & & \text{all)} \end{array}$

PART 1: The DATA step

Using SAS to calculate probabilities and quantiles for known statistical distributions

Example

```
For X_1 \sim \chi^2(20), P(X_1 < 25.04) = p p = 0.79857

For X_2 \sim bi(5,0.3), P(X_2 \le 3) = p p = 0.96922

For X_3 \sim n(10,16), P(X_3 \le 5) = p p = 0.10565
```

SAS Program

data func1;
x1=probchi(25,20);
x2=probbnml(0.3,5,3);
x3=cdf('normal',5,10,4);
proc print;
run;

SAS Output

OBS X1 X2 X3 1 0.79857 0.96922 0.10565

DATA step	Comment
DATA FUNC1;	The keyword DATA starts the data step and
	indicates that a SAS data set with the name
	FUNC1 is to be created.
	Contains 1 to 8 characters.
	Starts with letters A-Z or _ (not numbers).
	SAS is not case sensitive.
x1=probchi(25,20);	Variables x1,x2 and x3 are created using built-in
x2=probbnml(0.3,5,3);	SAS functions (see list on the next page)
x3=cdf('normal',5,10,4);	
PROC PRINT DATA=FUNC1;	The data set is printed with the PROC PRINT
	procedure.

Probability and Density Functions

Calculates the area on the left of a value from a specified distribution.

List of some functions

CDF

left cumulative distribution function,

e.g. CDF('NORMAL',x, μ , σ)

returns the probability that an observation from a $n(\mu, \sigma^{2})$ distribution is less than or equal to x.

POISSON((lambda,n)

Poisson probability distribution function

PROBBNML(p,n,m)

binomial probability distribution function

PROBCHI(x,df<,nc>)

chi-squared probability distribution function

PROBF(x,ndf,ddf<,nc>)

F distribution function

PROBHYPR(N,K,n,x<,r>)

hypergeometric probability distribution function

PROBNORM(x)

standard normal probability distribution function

PROBT(x,df<,nc>)

Student's t distribution function

2. Quantile Functions

Inverse distributions.

List of some functions

CINV(p,df<,nc>)

the quantile for the chi-square distribution

FINV(p,ndf,ddf<,nc>)

the quantile for the F distribution

PROBIT(argument)

inverse of the standard normal distribution function

TINV(p,df<,nc>)

the quantile for the t distribution

Example

For
$$X \sim F(7,14)$$
, $P(X < x) = 0.9$ $x = 2.19313$
For $Y \sim n(10,16)$ and $Z \sim n(0,1)$, $P(Y < y) = P(Z < z) = 0.25$ $z = -0.674$ and $y = \mu + \sigma z = 7.304$

SAS Program

```
data func2;
x=finv(0.9,7,14);
z=probit(0.25);
y=10+z*4;
proc print;
run;
```

DATA step	Comment
DATA FUNC2;	The keyword DATA starts the data step and
	indicates that a SAS data set with the name
	FUNC2 is to be created.
	Contains 1 to 8 characters.
	Starts with letters A-Z or _ (not numbers).
	SAS is not case sensitive.
x=finv(0.9,7,14);	Variables x, and z are created using built-in SAS
z=probit(0.25);	functions (see list on the next page)
y=10+z*4;	
PROC PRINT DATA=FUNC2;	The data set is printed with the PROC PRINT
	procedure.

Entering a data set directly into SAS, creating new variables and printing the data set

Consider the questionnaire below:

	Questionnaire: TV-channel preferences						
				FOR	R OFF	ICE USE	
				Respno	V1		1-2
1	Home Language		Ĺ]		
	Afrikaans	1					
	English	2					
	Sepedi	3					
	Tswana	4					
	Venda	5					
	Xhosa	6					
	Zulu	7			V2		3
2	Gender						
	Male	M					
	Female	F			V3		4
3	What is your favourite	TV-cha	nnel?				
	SABC1	1					
	SABC2	2					
	SABC3	3					
	MNET	4			V4		5
4	How many hours do you TV per day?	u watch	l		V5		6-9
5	Age in years				V6		10-11

From 12 questionnaires the following data was captured:

Respno	Language	Gender	TVChan	Time_D	Age
1	1	М	1	5	26
2	2	М	3	1	40
3	2	F	4	6.5	26
4	6	F	2	1	39
5	1	М	2	6	18
6	7	М	3	3	36
7	5	М	2	7	31
8	3	М	1	2.5	28
9	4	F	2	3.5	23
10	2	М	1	2	21
11	1	F	4	8	34
12	1	М	4		20

The data is entered into SAS with the program given below. This program also creates the following variables:

- (i) TIME_W, which calculates the time that a respondent watches TV per week.
- (ii) TGROUP, which is defined as follows:

 TGROUP=H if the time that a respondent watches TV per day is 4 hours or more.

 TGROUP=L if the time that a respondent watches TV per day is less than 4 hours.
- (iii) LGROUP, which is defined as follows:

LGROUP=Afrikaans if a repondent's language=1.

LGROUP=English if a repondent's language=2.

LGROUP=African if a repondent's language is between 3 and 7.

The data set is then printed with the PROC PRINT procedure.

SAS Program

```
data tv;
input respno language gender $ tvchan time_d age @@;
time_w=time_d*7; *Mathematical expression;
if time_d>=4 then tgroup='H'; *recoding;
if time_d<4 then tgroup='L';</pre>
if time_d=. then tgroup=' ';
if language=1 then lgroup='Afrikaans';
if language=2 then lgroup='English';
if 3<=language<=7 then lgroup='African';</pre>
1 1
                1
                       5
                              26
2 2
         M
                3
                              40
                       1
3 2
                       6.5
                              26
                4
         F
4 6
                2
                              39
                       1
5 1
         M
                2
                       6
                              18
6 7
                       3
                              36
         M
               3
7 5
              2
                      7
       M
                              31
8 3
                      2.5
                              28
9 4
              2
                      3.5
                              23
10 2
         M
                       2
                              21
               1
                       8
11 1
         F
                              34
                4
                              20
12 1
                4
PROC PRINT DATA=TV;
RUN;
```

0bs	respno	language	gender	tvchan	time_d	age	time_w	tgroup	lgroup
1	1	1	M	1	5.0	26	35.0	Н	Afrikaans
2	2	2	M	3	1.0	40	7.0	L	English
3	3	2	F	4	6.5	26	45.5	Н	English
4	4	6	F	2	1.0	39	7.0	L	African
5	5	1	M	2	6.0	18	42.0	Н	Afrikaans
6	6	7	M	3	3.0	36	21.0	L	African
7	7	5	M	2	7.0	31	49.0	Н	African
8	8	3	M	1	2.5	28	17.5	L	African
9	9	4	F	2	3.5	23	24.5	L	African
10	10	2	M	1	2.0	21	14.0	L	English
11	11	1	F	4	8.0	34	56.0	Н	Afrikaans
12	12	1	M	4		20			Afrikaans

DATA step	Comment			
DATA TV;	The keyword DATA starts the data step and indicates that a SAS data set with the name TV is to be created. Contains 1 to 8 characters. Starts with letters A-Z or _ (not numbers).			
INPUT RESPNO LANGUAGE GENDER\$ TVCHAN TIME_D AGE @@;	INPUT gives names to all the variables in the data set. Contains 1 to 8 characters. Starts with letters A-Z or _ (not numbers). Alpha numerical data is indicated with a \$ sign. @@ indicates that more than one respondent's data can be entered into a line.			
TIME_W=TIME_D*7; IF TIME_D >= 4 THEN TGROUP='H'; IF TIME_D < 4 THEN TGROUP='L'; IF TIME_D = '.' THEN TGROUP=' '; IF LANGUAGE=1 THEN LGROUP='AFRIKAANS'; IF LANGUAGE=2 THEN LGROUP='ENGLISH'; IF 3<=LANGUAGE<=7 THEN LGROUP='AFRICAN';	New variables are created			
CARDS; 1	CARDS indicates that the data follows. Data is entered in SAS. In this case only one respondent's data is entered into a line. The @@ could be omitted in the INPUT statement.			
9 4 F 2 3.5 23 10 2 M 1 2 21 11 1 F 4 8 34 12 1 M 4 . 20 ;	No commas are allowed in SAS. Use a decimal point in stead of a comma for decimal digits. A non-response is indicated by a . The data entered must be followed by a semicolon at the end.			

Creating a new library in SAS

Data sets in SAS are organized in libraries. They are stored in the WORK library of SAS by default. On exiting the SAS program all the data in the WORK library is lost. Other libraries can be created and used to store data. The data in these libraries will not be lost when the program is terminated.

- Create a directory C:\WST121 **or** use the existing directory S:\WST121. The name of this directory need not be the same as that of the library in SAS.
- Activate SAS
- Select → New Library (icon)
 - → Enter the name of the new library, e.g. WST121
 - → Enable at startup
 - → Specify the Path:, e.g. C:WST121 or S:\WST121
 - \rightarrow OK

How to import an Excel file into SAS

- Activate SAS
- Select \rightarrow File
 - → Import Data
 - → Select type of format to import, e.g. Microsoft Excel 97, 2000 or 20002 Workbook
 - \rightarrow Next
 - → Give the location of the Excel file, e.g. Workbook: S:\WST121
 - \rightarrow OK
 - → Select the specific worksheet in the file, e.g. What table do you want to import? Sheet 1
 - \rightarrow Next
 - → Choose the SAS destination, e.g. Library: WST121
 - → Give a name for the data set, e.g. Member: D1
 - \rightarrow Next
 - → Finish
- Check LOG window
- Check data set:
 - \rightarrow Explorer
 - → WST121
 - \rightarrow D1

Using the SET statement to create a new data set from an existing one.

A temporary data file can be stored in a permanent library using the SET statement.

e.g. The temporary data file TV can be stored in the library WST121:

SAS Program

```
data wst121.tv;
set tv;
proc print data=wst121.tv;
```

SAS Output

The same output as that on p.9, is obtained.

Using the SET statement to create a new data set from an existing one in order to recode variables.

A temporary or permanent data file with new variables can be created from an existing one by using the SET statement.

e.g. A new temporary data file D1 with new variables can be created from WST121.TV:

SAS Program

```
data d1;
set wst121.tv;
if age<20 then agecat=" <20";
if 20<=age<30 then agecat="20-29";
if age>=30 then agecat=" 30+";
run;

proc print data=d1;
var age agecat;
run;
```

)bs	age	agecat
1	26	20-29
2	40	30+
3	26	20-29
4	39	30+
5	18	<20
6	36	30+
7	31	30+
8	28	20-29
9	23	20-29
10	21	20-29
11	34	30+
12	20	20-29

PART 2: PROC SURVEYSELECT

Drawing a simple random sample using SAS

The following program draws a simple random sample from a given dataset.

SAS Program

```
proc surveyselect data=d1
    method=srs n=10
    out=SampleofD1;
run;
```

Note on the SAS Program

The DATA option specifies the population from which the sample must be drawn, e.g. dataset WORK.D1. The METHOD=option specifies the sampling method, e.g. Simple Random Sampling.

The N=option specifies the size of the sample, e.g. 10.

The OUT=options names the output data set, e.g. WORK.SAMPLEOFD1.

SAS Output

The SURVEYSELECT Procedure

Selection Method Simple Random Sampling

Input Data Set D1
Random Number Seed 280921001
Sample Size 10
Selection Probability 0.059524
Sampling Weight 16.8
Output Data Set SAMPLEOFD1

The data set can be viewed with Explorer, printed and used for further computations.

PART 3: SAS Base Procedures

1. PROC FREQ

(a) The following program constructs one way frequency tables for the categorical variables LGROUP, GENDER and TVCHAN.

SAS Program

proc freq data=tv; tables lgroup gender tvchan; run;

Note on SAS Program

If the TABLES statement is omitted, one-way frequency tables will be constructed for all the variables, including the continuous variables.

The FREQ Procedure

lgroup	Frequency	Percent	Cumulative Frequency	Cumulative Percent
African	5	41.67	5	41.67
Afrikaans	4	33.33	9	75.00
English	3	25.00	12	100.00
			Cumulative	Cumulative
gender	Frequency	Percent	Frequency	Percent
F	4	33.33	4	33.33
M	8	66.67	12	100.00
			Cumulative	Cumulative
tvchan	Frequency	Percent	Frequency	Percent
1	3	25.00	3	25.00
2	4	33.33	7	58.33
3	2	16.67	9	75.00
4	3	25.00	12	100.00

(b) The following program constructs a one-way frequency table for the variable TVCHAN by GENDER. Note that the data is first sorted by the variable GENDER. The BY statement in PROC FREQ specifies the variable by which the table must be constructed.

SAS Program

proc sort data=tv; by gender; proc freq data=tv; tables tvchan; by gender; run;

SAS Output

----- gender=F

The FREQ Procedure

tvchan	Frequency	Percent	Cumulative Frequency	Cumulative Percent
2	2	50.00	2	50.00
4	2	50.00	4	100.00
 		gender=M		

The FREQ Procedure

tvchan	Frequency	Percent	Cumulative Frequency	Cumulative Percent
1	3	37.50	3	37.50
2	2	25.00	5	62.50
3	2	25.00	7	87.50
4	1	12.50	8	100.00

(c) The following program will construct a two-way frequency table for the variables LGROUP and TVCHAN.

SAS Program proc freq data=tv; tables language*tvchan;

The FREQ Procedure

Table of lgroup by tvchan

lgroup	tvchan				
Frequency Percent Row Pct Col Pct			3	l 4	Total
	1	2	3	4	TOTAL
African	1	3	1	0	5
	8.33	25.00	8.33	0.00	41.67
	20.00	60.00	20.00	0.00	
	33.33	75.00	50.00	0.00	
Afrikaans	1	1	0	2	4
	8.33	8.33	0.00	16.67	33.33
	25.00	25.00	0.00	50.00	
	33.33	25.00	0.00	66.67	
English	1	0	1	1	3
	8.33	0.00	8.33	8.33	25.00
	33.33	0.00	33.33	33.33	
	33.33	0.00	50.00	33.33	
Total	3	4	2	3	† 12
	25.00	33.33	16.67	25.00	100.00

(d) The following program will construct a three-way frequency table for the variables LGROUP, GENDER and TVCHAN.

SAS Program

proc freq data=tv;
tables gender*lgroup*tvchan;
run;

Table 1 of lgroup by tvchan Controlling for gender=F

	001111	orrring i	or genaer	•	
lgroup Frequency	tvchan 				
Percent					
Row Pct					
	_				
Col Pct	1	2	3	4	Total
African	0	2	0	0	2
	0.00	50.00	0.00	0.00	50.00
	0.00	100.00	0.00	0.00	
		100.00		0.00	
Afrikaans	0	0	0	1	1
	0.00	0.00	0.00	25.00	25.00
	0.00	0.00	0.00	100.00	
		0.00		50.00	
English	0	0	0	1	1
· ·	0.00	0.00	0.00	25.00	25.00
	0.00	0.00	0.00	100.00	
		0.00		50.00	
Total	0	2	0	2	† 4
	0.00	50.00	0.00	50.00	100.00

Table 2 of lgroup by tvchan Controlling for gender=M

lgroup	tvchan				
Frequency					
Percent					
Row Pct					
Col Pct	1	2	3	4	Total
African	1	1	1	0	3
	12.50	12.50	12.50	0.00	37.50
	33.33	33.33	33.33	0.00	
	33.33	50.00	50.00	0.00	
Afrikaans	1	1	0	1	3
	12.50	12.50	0.00	12.50	37.50
	33.33	33.33	0.00	33.33	
	33.33	50.00	0.00	100.00	
English	1	0	1	0	2
	12.50	0.00	12.50	0.00	25.00
	50.00	0.00	50.00	0.00	
	33.33	0.00	50.00	0.00	
Total	3	2	2	1	8
	37.50	25.00	25.00	12.50	100.00

2. PROC MEANS

(a) The following program gives summary statistics for the numerical variables TIME_D and AGE.

SAS Program

```
proc means data=tv;
var time_d age;
run;
```

Note on SAS Program

The VAR statement specifies the continuous variables for which descriptive statistics must be calculated.

The MEANS Procedure

Variable	N	Mean	Std Dev	Minimum	Maximum
time_d age	11 12	4.1363636 28.5000000	2.4808356 7.4893864	1.0000000	8.0000000

(b) The following program gives summary statistics for the variable TIME_D for each of the four TV channels.

All results are rounded to two decimal places.

SAS Program

```
proc sort data=tv;
by tvchan;
proc means n mean std data=tv maxdec=2;
var time_d;
by tvchan;
run;
```

Note on SAS Program

Only the sample size, mean and standard deviation are printed. MAXDEC=2 rounds all numbers to 2 decimal places. The VAR statement specifies continuous variables for which descriptive statistics must be calculated.

SAS Output ------ tvchan=1 ------The MEANS Procedure Analysis Variable : time d Std Dev Ν Mean 1.61 3 3.17 Analysis Variable : time_d Std Dev Ν Mean 4 4.38 2.69 ------tvchan=3 ------Analysis Variable : time_d Ν Mean Std Dev 2 2.00 1.41 Analysis Variable : time d Ν Mean Std Dev 2 7.25 1.06

2. PROC UNIVARIATE

(a) The following program gives extensive descriptive statistics for the variable TIME_D. A test for normality is also performed.

SAS Program

proc univariate normal plot data=tv; var time_d; run;

Note on the SAS Program

In PROC UNIVARIATE the following options can be specified (see SAS Help for more options):

NORMAL: gives a statistic which test for normality of the data

PLOT: gives a normal probability plot

FREQ: gives a one-way frequency table of the data.

The VAR statement specifies continuous variables for which descriptive statistics must be calculated.

SAS Output

The UNIVARIATE Procedure Variable: time_d

Moments

N	11	Sum Weights	11
Mean	4.13636364	Sum Observations	45.5
Std Deviation	2.48083564	Variance	6.15454545
Skewness	0.1914727	Kurtosis	-1.4694539
Uncorrected SS	249.75	Corrected SS	61.5454545
Coeff Variation	59.9762462	Std Error Mean	0.74800009

Basic Statistical Measures

Location Varial

Mean	4.136364	Std Deviation	2.48084
Median	3.500000	Variance	6.15455
Mode	1.000000	Range	7.00000
		Interquartile Range	4.50000

Tests for Location: Mu0=0

Test	-Statistic-		p Val	ue
Student's t	t	5.529897	Pr > t	0.0003
Sign	M	5.5	Pr >= M	0.0010
Signed Rank	S	33	Pr >= S	0.0010

Tests for Normality

Test	Sta	tistic	p Val	.ue
Shapiro-Wilk	W	0.930426	Pr < W	0.4152
Kolmogorov-Smirnov	D	0.146677	Pr > D	>0.1500
Cramer-von Mises	W-Sq	0.048759	Pr > W-Sq	>0.2500
Anderson-Darling	A-Sq	0.30693	Pr > A-Sq	>0.2500

Quantiles	(Definition 5)
Quantile	Estimate
100% Max	8.0
99%	8.0
95%	8.0
90%	7.0
75% Q3	6.5
50% Media	n 3.5
25% Q1	2.0
10%	1.0
5%	1.0
1%	1.0
0% Min	1.0

Extreme Observations

Lowe	est	Highe	st
Value	0bs	Value	0bs
1.0	8	5.0	1
1.0	4	6.0	6
2.0	3	6.5	10
2.5	2	7.0	7
3.0	9	8.0	11

Missing Values

			Percent	Of
M:	issing			Missing
	Value	Count	All Obs	0bs
		1	8.33	100.00
Stem	Leaf		#	Boxplot
8	0		1	
7	0		1	
6	05		2	++
5	0		1	
4				+
3	05		2	* *
2	05		2	++
1	00		2	
	++-	++		

Test for normality:

H₀: Data have a normal distribution

H₁: Data do not have a normal distribution

Since the p-value for the Shapiro-Wilk statistic is 0.4152 (> 0.05) the distribution of the data do not differ significantly from a normal distribution.

(a) The following program gives extensive descriptive statistics for the variable TIME_D by GENDER.

SAS Program

proc sort data=tv; by gender; proc univariate plot data=tv; var time_d; by gender; run;

SAS Output

The UNIVARIATE Procedure Variable: time_d

Moments

N	4	Sum Weights	4
Mean	4.75	Sum Observations	19
Std Deviation	3.122499	Variance	9.75
Skewness	-0.328468	Kurtosis	-2.2393162
Uncorrected SS	119.5	Corrected SS	29.25
Coeff Variation	65.736821	Std Error Mean	1.5612495

Basic Statistical Measures

Location Variability

Mean	4.750000	Std Deviation	3.12250
Median	5.000000	Variance	9.75000
Mode		Range	7.00000
		Interquartile Range	5.00000

Tests for Location: Mu0=0

Test	-8	tatistic-	p Valu	ıe
Student's t	t	3.042435	Pr > t	0.0558
Sign	M	2	Pr >= M	0.1250
Signed Rank	S	5	Pr >= S	0.1250

Quantiles (Definition 5)

Quantile	Estimate
100% Max	8.00
99%	8.00
95%	8.00
90%	8.00
75% Q3	7.25
50% Median	5.00
25% Q1	2.25
10%	1.00
5%	1.00
1%	1.00
0% Min	1.00

Extreme Observations

Lowest		Highest		
Value	0bs	Value	0bs	
1.0	1	1.0	1	
3.5	2	3.5	2	
6.5	3	6.5	3	
8.0	4	8.0	4	

Stem	Leaf	#	Boxplot
8	0	1	1
7			++
6	5	1	1 1
5			**
4			+
3	5	1	
2			++
1	0	1	
	+		

Normal Probability Plot

----- gender=M -----

The UNIVARIATE Procedure Variable: time_d

Moments

N	7	Sum Weights	7
Mean	3.78571429	Sum Observations	26.5
Std Deviation	2.23340441	Variance	4.98809524
Skewness	0.33372642	Kurtosis	-1.5276707
Uncorrected SS	130.25	Corrected SS	29.9285714
Coeff Variation	58.9955881	Std Error Mean	0.84414752

Basic Statistical Measures

Location Variability

Mean	3.785714	Std Deviation	2.23340
Median	3.000000	Variance	4.98810
Mode		Range	6.00000
		Interquartile Range	4.00000

Tests for Location: Mu0=0

- S1	tatistic-	p Valu	ue
t	4.48466	Pr > t	0.0042
M	3.5	Pr >= M	0.0156
S	14	Pr >= S	0.0156
	t M	M 3.5	t 4.48466 Pr > t M 3.5 Pr >= M

Quantiles (Definition 5)

Quantile	Estimate
100% Max	7
99%	7
95%	7
90%	7
75% Q3	6
50% Median	3
25% Q1	2
10%	1
5%	1
1%	1
0% Min	1

Extreme Observations

Lowest		High	est
Value	0bs	Value	0bs
1.0	10	2.5	6
2.0	7	3.0	11
2.5	6	5.0	5
3.0	11	6.0	8
5.0	5	7.0	9

Missing Values

Mis	sing		Percent	Of Missing
	alue	Count	All Obs	0bs
		1	12.50	100.00
Stem L	eaf		#	Boxplot
7 0			1	1
6 0			1	++
5 0			1	1 1
4				
3 0			1	* + *
2 0	5		2	++
1 0			1	1

----+

Normal Probability Plot

Schematic Plots

4. PROC PLOT

The following program plots the variable TIME_D against the variable AGE.

SAS Program

proc plot data=tv;
plot time_d*age;
run;

SAS Output

NOTE: 1 obs had missing values.

5. PROC CHART

The following program plots a vertical bar chart for the variable TVCHAN by GENDER.

SAS Program

```
proc sort data=tv; by gender;
proc chart data=tv;
vbar tvchan / discrete; by gender;
run:
```

Note on the SAS Program

VBAR plots a vertical bar chart of the variable.

HBAR plots a horizontal bar chart of the variable.

PIE requests a pie chart for each variable listed.

The DISCRETE option specifies that the variable is discrete.

Simlar output, but with improved graphical quality, can be obtained by using PROC GPLOT (instead of PROC PLOT) and PROC GCHART (instead of PROC CHART).

Another statement that can be used with many PROCs is the following:

WHERE condition;

The WHERE clause enables you to restrict the data that you analyze by specifying a condition that each observation in your data set must satisfy, i.e. it can be used to select a subgroup in the data set.

Example

The following program plots a vertical bar chart for the variable TVCHAN for GENDER=M (produces output similar to the above – heading excluded):

SAS Program

```
proc chart data=tv;
vbar tvchan / discrete;
where gender='M';
run;
```

PART 4: PROC MEANS (continued) and PROC TTEST

PROC MEANS Syntax

PROC MEANS DATA= SAS-data-set <options>; CLASS variable; /* required */ VAR variables;

The following options can appear in the PROC TTEST statement.

CLM

Specifies that the two-sided confidence limits for the mean be given.

LCLM

Specifies that the lower confidence bound for the mean be given.

UCLM

Specifies that the upper confidence bound for the mean be given.

ALPHA=p

specifies that confidence intervals are to be 100(1-p)% confidence intervals, where 0 . By default, PROC MEANS uses ALPHA=0.05. If <math>p is 0 or less, or 1 or more, an error message is printed.

CLASS variable;

specifies one or more variables that the procedure uses to group the data. Variables in a CLASS statement are referred to as *class variables*. Class variables are numeric or character. Class variables can have continuous values, but they typically have a few discrete values that define levels of the variable. You do not have to sort the data by class variables.

VAR variables;

The VAR statement specifies the names of the dependent variables whose means are to be compared. If the VAR statement is omitted, all numeric variables in the input data set (except a numeric variable appearing in the CLASS statement) are included in the analysis.

Example:

The number of raisins in each of 14 mini packets were counted for a generic brand and for Sunmaid brand raisins:

Generic	25	26	26	26	26	28	27	26	25	28	24	28	27	25
Sunmaid	25	28	25	28	29	24	28	24	24	28	30	24	22	27

Find a 99% confidence interval for:

- the mean number of generic brand raisins
- the mean number of Sunmaid brand raisins

per mini packet.

SAS Program

```
data d1;
input number brand $ @@;
cards;
  25 generic 25 Sunmaid 26
                              generic 28 Sunmaid 26 generic 25 Sunmaid
                                                                  Sunmaid
  26 generic 28
                  Sunmaid 26
                              generic 29
                                          Sunmaid
                                                  28
                                                      generic 24
  27
      generic 28
                  Sunmaid
                          26
                              generic 24
                                          Sunmaid
                                                  25
                                                      generic 24
                                                                  Sunmaid
  28 generic 28
                  Sunmaid 24
                              generic 30
                                          Sunmaid
                                                      generic 24
                                                                  Sunmaid
  27 generic 22 Sunmaid 25
                              generic 27
                                          Sunmaid
proc means data=d1 mean std clm alpha=0.01;
var number;
class brand;
run;
```

SAS Output

The MEANS Procedure

Analysis Variable : number

brand	N Obs	Mean	Std Dev	Lower 99% CL for Mean	Upper 99% CL for Mean
Sunmaid	14	26.1428571	2.4133329	24.1999683	28.0857460
generic	14	26.2142857	1.2513729	25.2068497	27.2217217

PROC TTEST

PROC TTEST Syntax

PROC TTEST DATA= SAS-data-set <options>;

CLASS variable; /* required */

VAR variables;

The following options can appear in the PROC TTEST statement.

ALPHA=p

specifies that confidence intervals are to be 100(1-p)% confidence intervals, where 0 . By default, PROC TTEST uses ALPHA=0.05. If <math>p is 0 or less, or 1 or more, an error message is printed.

CI=EQUAL

specifies whether a confidence interval is displayed for σ and, if so, what kind. The CI=EQUAL option specifies an equal tailed confidence interval, and it is the default.

H0=m

requests tests against m instead of 0 in all three situations (one-sample, two-sample, and paired observation t tests). By default, PROC TTEST uses H0=0.

CLASS variable;

A CLASS statement specifying the name of the grouping variable must accompany the PROC TTEST statement. The grouping variable must have two, and only two, levels. PROC TTEST divides the observations into the two groups for the t test using the levels of this variable.

VAR variables;

The VAR statement specifies the names of the dependent variables whose means are to be compared. If the VAR statement is omitted, all numeric variables in the input data set (except a numeric variable appearing in the CLASS statement) are included in the analysis.

1. HYPOTHESIS TESTING: ONE SAMPLE CASE

Testing H_0 : $\mu = \mu_0$

Example:

A firm's board of directors has to decide whether newly appointed representatives would take the traditional course in sales techniques or, would instead, change to a new course offered by a consultant. Suppose the first-year sales figures of ten representatives selected at random, who completed the new course are as follows:

R287900 R419400 R338300 R287500 R310850

R292600 R390050 R369850 R430400 R338450

The mean first year sales of representatives who took the traditional course is R300000.

```
SAS Program
```

```
data ex_12_9;
input sales @@;
cards;
287900 419400 338300 287500 310850
292600 390050 369850 430400 338450
;
proc ttest data= ex_12_9 H0=300000 alpha=0.05 ci=equal;
var sales;
run;
```

SAS Output

The TTEST Procedure Variable: sales

N 10	Mean 346530	Std Dev 53767.6	Std Err 17002.8	Minimum 287500	Maximum 430400
Mean	95%	CL Mean	Std Dev	95% CL	Std Dev
346530	30806	7 384993	53767.6	36983.2	98158.6
		DE + V	-1 D	1.4.1	

DF t Value Pr > |t|9 2.74 0.0230

PROC TTEST Step	Comment
DATA EX_12_9;	The keyword DATA starts the data step and indicates that a SAS
	data set with the name EX_12_9 is to be created.
INPUT SALES @@;	INPUT gives names to all the variables in the data set.
	@@ indicates that more than one respondent's data will be
	entered into a line.
PROC TTEST;	The last data set is used to calculate descriptive statistics unless
or	the name of the data set is specified in the DATA option of
PROC TTEST DATA=EX_12_9;	PROC TTEST.
PROC TTEST DATA=EX_12_9	The mean, a 95% confidence interval for the mean, standard
H0=300000 ALPHA=0.05	deviation, a 95% confidence interval for the standard deviation
CI=EQUAL;	and the standard error of the estimate are given.
	The T-test test H0: μ =300000 at the 5% level. It gives DF, the
	degrees of freedom for T, the test statistic value, i.e. the <i>t</i> -value
	and $PR > t $ the <i>p</i> -value for the <i>t</i> -test.
VAR SALES;	The VAR statement specifies the names of the dependent
	variables whose means are to be compared.
	If the VAR statement is omitted, all numeric variables in the
	input data set (except a numeric variable appearing in the
	CLASS statement) are included in the analysis.

Hypothesis test from SAS Output

 $H_0: \mu = 300000$ $H_1: \mu > 300000$

Use $\alpha = 0.05$. Reject H_0 if p-value < 0.05.

Since *p*-value (Prob>|T|) = 0.0230/2 = 0.0115 H_0 is rejected.

 \therefore The mean first-year sales of the ten representatives who attended the new course is significantly higher than R300 000.

Note: The p-value (Prob>|T|) for a two-sided hypothesis is given on the output. In the case of a one sided hypothesis the Prob>|T| value must be divided by 2.

2. HYPOTHESIS TESTING: TWO SAMPLE CASE

2.1. Testing H_0 : $\mu_1 - \mu_2 = 0$ (Two Independent Samples from Normal Populations)

Example: Applied Statistics and the SAS Programming Language, Cody R.P. and Smith J.K. Students are randomly assigned to a control or treatment group (where a drug is administered). Their response time to a stimulus is then measured. The times are as follows:

Control	Treatment
(response tir	me in millisec)
80	100
93	103
83	104
89	99
98	102

Do the treatment scores come from a population whose mean is different from the mean of the population from which the control scores were drawn?

Solution

SAS Program

```
data response;
input group$ time @@;
cards;
c 80 c 93 c 83 c 89 c 98
t 100 t 103 t 104 t 99 t 102
;
proc ttest;
class group;
var time;
run;
```

SAS Output

The TTEST Procedure Variable: time

anoun	N	Mean	Std Dev	Std Eri	· Minir	num May	imum	
group	IN	Weali	Stu Dev	Stu Lii	INITITI	iiuiii wax.	LIIIUIII	
С	5	88.6000	7.3007	3.2650	80.00	98.	0000	
t	5	101.6	2.0736	0.9274	99.00	000 10	04.0	
	Diff	(1-2)	-13.0	0000 5	.3666	3.3941		
group	Method		Mean	95% CI	_ Mean	Std Dev	95% CL	Std Dev
С			88.6000	79.5350	97.6650	7.3007	4.3741	20.9789
t			101.6	99.0252	104.2	2.0736	1.2424	5.9587
Diff (1-2)	Pooled		-13.0000	-20.8268	-5.1732	5.3666	3.6249	10.2811
Diff (1-2)	Sattert	thwaite	-13.0000	-21.9317	-4.0683			
		Metho	od	Variances	DF	t Value	Pr > t	
		Poole	ed	Equal	8	-3.83	0.0050	
		Satte	erthwaite	Unequal	4.6412	-3.83	0.0141	
				Equality	of Varia	nces		
			Method	Num DF	Den DF	F Value	Pr > F	
			Folded F	4	4	12.40	0.0318	

Note:

The information in the bottom line of the output above is used to test the hypothesis of equal variances. If the p-value is small (say the Prob>F' value is less than 0.05) then the null hypothesis of equal variances is rejected. The t-value and p-value for unequal variances are used. If the Prob>F' value is greater than 0.05 the t-value and p-value for equal variances are used. In this example Prob>F' = 0.0318. The two samples come from populations with variances that differ significantly.

PROC TTEST Step	Comment
PROC TTEST;	PROC TTEST computes a <i>t</i> statistic for testing the hypothesis
or	that the means of two groups of observations in a SAS data
PROC TTEST DATA=RESPONSE;	set are equal.
	The last data set is used unless the name of the data set is
	specified in the DATA option of the PROC TTEST statement.
CLASS GROUP;	This statement identifies the independent variable; the variable
	that identifies the two groups of subjects.
VAR TIME;	Identifies the dependent variable. When more than one
	dependent variable is listed, a separate <i>t</i> -test is computed for
	each dependent variable in the list.

Hypothesis test from SAS Output

 $H_0: \sigma^2_{\text{control}} = \sigma^2_{\text{treatment}}$ $H_1: \sigma^2_{\text{control}} \neq \sigma^2_{\text{treatment}}$

Use $\alpha = 0.05$. Reject H_0 if p-value < 0.05.

Since *p*-value (Prob>F') = $0.0318 H_0$ is rejected.

∴ Population variances differ significantly.

 $H_0: \mu_{\text{control}} = \mu_{\text{treatment}}$ $H_1: \mu_{\text{control}} \neq \mu_{\text{treatment}}$

Use $\alpha = 0.05$. Reject H_0 if p-value < 0.05.

Since *p*-value (Prob>|T|) = 0.0145 H_0 is rejected.

:. The average response times for the two groups differ significantly.

Note:

The *p*-value for a two-sided hypothesis is given in the output. In the case of a one sided hypothesis the Prob>|T| value must be divided by 2.

Example:

Two risk factors that have a bearing on the condition of the heart are fitness and cholesterol level. In a research project on this subject the amounts of triglycerides (unsaturated fats) in the blood samples of nine coronary patients and 21 marathon athletes were measured. The observations in millimol per litre are as follows:

Coronary patients: 3.80	2.71	1.60	1.62	1.93	1.32	1.09	2.28	0.65
Marathon athletes: 0.86	0.84	1.15	1.12	0.72	1.62	1.23	1.22	1.13
0.98	0.62	0.38	0.86	1.25	0.90	0.56	0.66	0.73
0.73	0.50	0.92						

Test the hypothesis that, compared to marathon athletes, coronary patients have a significantly higher population mean triglyceride level.

SAS Program

```
data response;
input group$ triglyc @@;
cards;
c 3.80  c 2.71  c 1.60  c 1.62  c 1.93  c 1.32  c 1.09  c 2.28  c 0.65
m 0.86  m 0.84  m 1.15  m 1.12  m 0.72  m 1.62  m 1.23  m 1.22  m 1.13
m 0.98  m 0.62  m 0.38  m 0.86  m 1.25  m 0.90  m 0.56  m 0.66  m 0.73
m 0.73  m 0.50  m 0.92
;
proc ttest;
class group;
var triglyc;
run;
```

SAS Output

The TTEST Procedure

				• • • • • • • • • • • • • • • • • • • •	C IILO		caarc				
				Va	riable:	tri:	glyc				
group	N	Mean	Std De	v	Std Err	•	Minimu	m N	laximum		
C m	9 21 Diff (1	1.8889 0.9038 -2)	0.944 0.300 0.9		0.3148 0.0655 0.5		0.650 0.380 0.		3.8000 1.6200		
group	Method		Mean		95% CL	Mean		Std De	V	95% CL	Std Dev
c m Diff (1-2) Diff (1-2)	Pooled Satterthy	vaite	1.8889 0.9038 0.9851 0.9851	0	.1630 .7672 .5241 .2539	2.61 1.04 1.44 1.71	04 61	0.944 0.300 0.564	1	0.6378 0.2296 0.4483	1.8091 0.4334 0.7640
		Method		Varia	nces		DF	t Value	Pr	> t	
		Pooled Satterth	waite	Equal Unequ		8.70	28 11	4.38 3.06		0.0002 0.0140	
				Equ	ality o	of Var	iances				
		Met	hod	Num D	F De	en DF	F۷	alue	Pr >	F	
		Fol	ded F		8	20		9.90	<.000	1	

Hypothesis test from SAS Output

 $H_0: \sigma_1^2 = \sigma_2^2$ $H_1: \sigma_1^2 \neq \sigma_2^2$

Use $\alpha = 0.05$. Reject H_0 if p-value < 0.05.

Since *p*-value (Prob>F') = $0.0000 H_0$ is rejected.

∴ Population variances differ significantly.

 $H_0: \mu_1 = \mu_2$ $H_1: \mu_1 > \mu_2$

Use $\alpha = 0.01$. Reject H_0 if p-value < 0.01.

Since *p*-value (Prob>|T|) = 0.0141/2 = 0.00705 H_0 is rejected.

:. The mean amount of triglycerides for coronary patients is significantly higher than for marathon athletes.

PART 5: PROC REG

PROC REG: Syntax

```
PROC REG DATA= SAS-data-set;

MODEL dependents = independent (s)/ options;

< label: > TEST equation,<, ..., equation> < / option > ;
```

DATA= SAS-data-set

The DATA= option names the SAS data set containing the data to be analyzed. If the DATA= option is omitted, the most recently created SAS data set is used.

MODEL dependents= independents / options;

The MODEL statement names the dependent variables and independent effects.

If no independent effects are specified, only an intercept term is fit. Many options can be specified in the MODEL statement after a slash (/), e.g.:

ALPHA = p

XPX displays sums-of-squares and crossproducts matrix (totals required in calculation of parameters)

NOINT fits a model without the intercept term

CLB computes $100(1-\alpha)\%$ confidence limits for the parameter estimates

CLI computes $100(1-\alpha)\%$ confidence limits for an individual predicted value

CLM computes $100(1-\alpha)$ % confidence limits for the expected value of the dependent variable

P computes predicted values

R produces analysis of residuals

< label: > TEST equation, <, ..., equation > < / option > ;

```
e.g.
model y=a1 a2 b1 b2;
aplus: test a1+a2=1;
b1: test b1=0, b2=0;
b2: test b1, b2;
```

The TEST statement tests hypotheses about the parameters estimated in the preceding MODEL statement. Each equation specifies a linear hypothesis to be tested. The rows of the hypothesis are separated by commas.

Variable names must correspond to regressors, and each variable name represents the coefficient of the corresponding variable in the model. An optional label is useful to identify each test with a name. The keyword INTERCEPT can be used instead of a variable name to refer to the model's intercept.

The REG procedure performs an F test for the joint hypotheses specified in a single TEST statement. More than one TEST statement can accompany a MODEL statement. The relation between the t-test and F-test is t^2 =F.

1. Fitting a simple regression line, $\hat{y} = \beta_0 + \beta_1 x$. Obtaining confidence intervals for the parameters. Testing H₀: $\beta_0 = 0$ and H₀: $\beta_1 = 0$.

Example:

It is common knowledge that it pays to advertise. An investigation is undertaken to determine the effect of advertisement on sales in pharmacies. Twelve pharmacies are selected at random and both the advertising expenditure and the business profit are determined. The data is reflected below:

Pharmacy	Advertising	Business
	Expenditure (R), x	Profit (R), y
1	1581.61	6302.52
2	2292.80	6901.88
3	2595.47	7773.93
4	1062.19	4527.45
5	1930.86	5720.73
6	655.12	4660.12
7	1294.00	6507.83
8	1232.03	5348.99
9	2096.78	7578.83
10	1381.22	5125.67
11	1104.78	5258.17
12	403.62	4445.21

Fit a simple regression line to the data. Test whether the intercept is significantly different from zero. Test whether there is a significant relationship between advertising expenditure and business profit.

Solution SAS Program

```
data d1;
input x y;
cards;
1581.61
            6302.52
2292.80
            6901.88
2595.47
            7773.93
1062.19
            4527.45
1930.86
            5720.73
655.12
            4660.12
1294.00
            6507.83
1232.03
            5348.99
2096.78
            7578.83
1381.22
            5125.67
1104.78
            5258.17
403.62
            4445.21
proc reg data=d1;
model y=x/ xpx clb;
run;
```

The REG Procedure Model: MODEL1

Model Crossproducts X'X X'Y Y'Y

Variable	Intercept	x	У
Intercept	12	17630.48	70151.33
X	17630.48	30660573.634	110463001.84
у	70151.33	110463001.84	424815913.32

The REG Procedure Model: MODEL1 Dependent Variable: y

Number of Observations Read 12 Number of Observations Used 12

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	1	11497813	11497813	35.74	0.0001
Error	10	3217342	321734		
Corrected Total	11	14715155			
Root MSE		567.21617	R-Square	0.7814	

Dependent Mean Adj R-Sq 5845.94417 0.7595 Coeff Var 9.70273

Parameter Estimates

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	95% Confid	ence Limits
Intercept	1	3561.97897	415.66847	8.57	<.0001	2635.81190	4488.14605
X	1	1.55456	0.26004	5.98	0.0001	0.97514	2.13397

2. Fitting a simple regression line, $\hat{y} = \beta_0 + \beta_1 x$.

Testing H_0 : $\beta_0 = \beta_{00}$ and H_0 : $\beta_1 = \beta_{10}$.

Example:

It is claimed that a certain device will offer a saving of more than 15% on fuel consumption of motor cars. Twelve motor cars of different makes and piston capacity are chosen. The distance (in km) travelled per litre of petrol, with and without the device, is given in the table below:

Vehicle	With device, y	Without device, x
1	9.11	7.63
2	8.24	7.20
3	13.47	11.05
4	13.43	10.95
5	9.98	8.45
6	14.50	11.25
7	9.10	7.60
8	12.67	10.68
9	10.96	9.07
10	11.74	9.46
11	12.74	9.69
12	14.51	13.11

Fit a simple regression line to the data. Test whether the new device offers a saving of more than 15%, i.e. test whether •

 $\frac{y}{x} \ge 1.15$

Note below that $t_b^2 = 0.226^2 = 0.05 = F$ and p-value= $P(T \ge t) = 0.4128 = \frac{1}{2}P(F \ge f) = \frac{1}{2} \times 0.8256$.

Solution

SAS Program

```
data d2;
input y x;
cards;
 9.11 7.63
 8.24 7.20
13.47 11.05
13.43 10.95
 9.98 8.45
14.50 11.25
 9.10 7.60
12.67 10.68
10.96 9.07
11.74 9.46
12.74 9.69
14.51 13.11
proc reg data=d2;
model y=x;
b: test x=1.15;
run;
```

The REG Procedure Model: MODEL1 Dependent Variable: y

Number of Observations Read 12 Number of Observations Used 12

Analysis of Variance

Source		DF	Sum of Squares	Mean Square	F Value	Pr > F
Model		1	48.72848	48.72848	118.76	<.0001
Error		10	4.10301	0.41030		
Corrected To	otal	11	52.83149			
	Root MSE		0.64055	R-Square	0.9223	
	Dependent I	Mean	11.70417	Adj R-Sq	0.9146	
	Coeff Var		5.47282			

Parameter Estimates

		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	0.33822	1.05922	0.32	0.7561
X	1	1.17437	0.10776	10.90	<.0001

Model: MODEL1

Test b Results for Dependent Variable y

Source	DF	Mean Square	F Value	Pr > F
Numerator Denominator	1 10	0.02098 0.41030	0.05	0.8256

3. Calculating:

- (a)a confidence interval for the mean value of the dependent variable and
- (b) aprediction interval

for the dependent variable for a particular value of the explanatory variable.

Example:

In an investigation into the effect of the landing speed on the number of landings made with a set of main landing tires on the Boeing 737, the following data was obtained:

Observation	Number of landings, y	Landing speed, x
1	<mark>84</mark>	112
2	<mark>85</mark>	114
3	<mark>84</mark>	116
4	80	118
5	81	120
6	<mark>76</mark>	122
7	78	124
8	<mark>71</mark>	126
9	<mark>72</mark>	128
10	68	130
11	<mark>69</mark>	132
12	64	134

- (a) Fit a simple regression line to the data and determine a 95% confidence band for the population regression line.
- (b) Also determine a 95% prediction band.

Solution SAS Program

```
data boeing;
input y x;
cards;
84
      112
85
      114
84
      116
80
      118
81
      120
76
      122
78
      124
71
      126
72
      128
68
      130
69
      132
64
      134
Proc reg data=boeing;
model y=x / clm cli;
run;
```

The REG Procedure
Model: MODEL1
Dependent Variable: y

Number of Observations Read 12 Number of Observations Used 12

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	517.37063	517.37063	149.40	<.0001
Error	10	34.62937	3.46294		
Corrected Tota	al 11	552.00000			
	Root MSE Dependent Mean Coeff Var	1.86090 76.00000 2.44855	R-Square Adj R-Sq	0.9373 0.9310	

Parameter Estimates

		Parameter	Standard			
Variable	DF	Estimate	Error	t Value	Pr > t	
Intercept	1	192.97902	9.58545	20.13	<.0001	
	Х	1	-0.95105	0.07781	-12.22	<.0001
			The REG Proce	dure		

Model: MODEL1 Dependent Variable: y

Output Statistics

0bs	Dependent Variable	Predicte Value	d Std Error Mean Predict	95%	CL Mean	95% CL P	redict	Residual
1	84.0000	86.4615	1.0105	84.2100	88.7131	81.7433	91.1798	-2.4615
2	85.0000	84.5594	0.8826	82.5929	86.5260	79.9704	89.1485	0.4406
3	84.0000	82.6573	0.7650	80.9528	84.3619	78.1743	87.1404	1.3427
4	80.0000	80.7552	0.6633	79.2774	82.2331	76.3534	85.1571	-0.7552
5	81.0000	78.8531	0.5857	77.5481	80.1582	74.5063	83.2000	2.1469
6	76.0000	76.9510	0.5428	75.7416	78.1605	72.6319	81.2702	-0.9510
7	78.0000	75.0490	0.5428	73.8395	76.2584	70.7298	79.3681	2.9510
8	71.0000	73.1469	0.5857	71.8418	74.4519	68.8000	77.4937	-2.1469
9	72.0000	71.2448	0.6633	69.7669	72.7226	66.8429	75.6466	0.7552
10	68.0000	69.3427	0.7650	67.6381	71.0472	64.8596	73.8257	-1.3427
11	69.0000	67.4406	0.8826	65.4740	69.4071	62.8515	72.0296	1.5594
12	64.0000	65.5385	1.0105	63.2869	67.7900	60.8202	70.2567	-1.5385

Sum of Residuals 0 Sum of Squared Residuals 34.62937

Predicted Residual SS (PRESS) 50.87705

PART 6: PROC CORR

PROC CORR: Syntax

PROC CORR <option-list>; VAR variable-list; WITH variable-list; BY variable-list;

The CORR procedure computes Pearson correlation coefficients.

The FISHER options request that the Fisher's z transformation be used to derive confidence limits and a p-value under a specified null hypothesis H_0 : $\rho=\rho_0$. Either a one-sided or a two-sided alternative is used for these statistics. The following FISHER-options are available:

$ALPHA = \alpha$

specifies the level of the confidence limits for the correlation, $100(1-\alpha)\%$. The value of the ALPHA= option must be between 0 and 1, and the default is ALPHA=0.05.

BIASADJ= YES | NO

specifies whether or not the bias adjustment is used in constructing confidence limits. The BIASADJ=YES option also produces a new correlation estimate using the bias adjustment. By default, BIASADJ=YES.

RHO0= ρ_0

specifies the value ρ_0 in the null hypothesis H_0 : $\rho=\rho_0$, where $-1<\rho_0<1$. By default, RHO0=0.

TYPE= LOWER | UPPER | TWOSIDED

specifies the type of confidence limits. The TYPE=LOWER option requests a lower confidence limit from the lower alternative H_1 : $\rho<\rho_0$, the TYPE=UPPER option requests an upper confidence limit from the upper alternative H_1 : $\rho>\rho_0$, and the default TYPE=TWOSIDED option requests two-sided confidence limits from the two-sided alternative H_1 : $\rho\neq\rho_0$.

The BY statement specifies groups in which separate correlation analyses are performed.

The VAR statement lists the numeric variables to be analyzed and their order in the correlation matrix. If you omit the VAR statement, all numeric variables not listed in other statements are used.

The WITH statement lists the numeric variables with which correlations are to be computed

1. Calculating the correlation between two variables X and Y. Testing H_0 : $\rho = 0$.

Example 11.8: Wackerley, Mendenhall & Scheaffer

Table 11.3 Data for Example 11.8

Student	Mathematics Achievement Test Score	Final Calculus Grade
1	39	65
2	43	78
3	21	52
4	64	82
5	57	92
6	47	89
7	28	73
8	75	98
9	34	56
10	52	75

Are the achievement scores and calculus grades independent? Use α =0.05. Identify the attained significance level.

SAS Program

```
data d1;
input student score grade;
cards;
1 39 65
 2 43 78
 3 21 52
 4 64 82
 5 57 92
 6 47 89
 7 28 73
 8 75 98
 9 34 56
10 52 75
proc corr data=d1;
var score;
with grade;
run;
```

SAS Output

The CORR Procedure

1 With Variables: grade
1 Variables: score

Simple Statistics

Variable	N	Mean	Std Dev	Sum	Minimum	Maximum
grade	10	76.00000	15.11438	760.00000	52.00000	98.00000
score	10	46.00000	16.57977	460.00000	21.00000	75.00000

Pearson Correlation Coefficients, N = 10 Prob > |r| under HO: Rho=0

score

grade 0.83979 0.0024

Hypothesis test from SAS Output

 $H_0: \rho = 0 \quad H_1: \rho \neq 0$

Use $\alpha = 0.05$. Reject H_0 if p-value < 0.05.

Since *p*-value (Prob>|r|) = 0.0024/2 = 0.0021, H_0 is not rejected.

: The population correlation coefficient differs significantly from 0.

Note: The *p*-value (Prob> $|\mathbf{r}|$) for a two-sided hypothesis is given on the output. In the case of a one sided hypothesis the Prob> $|\mathbf{r}|$ value must be divided by 2.

2. Calculating the correlation between two variables *X* and *Y*. Obtaining confidence intervals for ρ . Testing H_0 : $\rho = \rho_0$.

Example 11.8: Wackerley, Mendenhall & Scheaffer

Is there reason to believe that the correlation between achievement scores and calculus grade is greater than 0.80? Use α =0.10. Identify attained significance level.

SAS Program

```
proc corr data=d1 fisher (rho0=0.80 type=upper biasadj=no alpha=0.10);
var score;
with grade;
run;
```

SAS Output

The CORR Procedure

1 With Variables: grade
1 Variables: score

Pearson Correlation Statistics (Fisher's z Transformation)

	With		Sample			H0:Rho>	=Rho0
Variable	Variable	N	Correlation	Fisher's z	Upper 90% CL	Rho0	p Value
score	grade	10	0.83979	1,22045	0.936010	0.80000	0.5811

Hypothesis test from SAS Output

 $H_0: \rho = 0.80$ $H_1: \rho > 0.80$

Use $\alpha = 0.10$. Reject H_0 if p-value < 0.10.

Since *p*-value (Prob>z) = 0.5811, H_0 is not rejected.

:. The population correlation coefficient is not significantly larger than 0.80.

Note: The *p*-value (Prob>z) for a one-sided hypothesis is given on the output by specifying TYPE=UPPER.

Confidence Interval from SAS Output

90% Confidence Interval for ρ : (- ∞ ,0.936)

Since 0.80 in 90% confidence interval for ρ , H_0 is not rejected.

PART 7: PROC MEANS and PROC TTEST(continued)

HYPOTHESIS TESTING: TWO DEPENDENT SAMPLES

Testing H_0 : $\mu_1 - \mu_2 = 0$ (Two Dependent Samples from Normal Populations)

The following two examples illustrate how either PROC MEANS (by calculating differences) or PROC TTEST (using the PAIRED statement) can be used to test the hypothesis above.

Example: Applied Statistics and the SAS Programming Language, Cody R.P. and Smith J.K.

The response times to a stimulus of six students are each measured in the absence of a drug (control value) and after having received the drug (treatment value). The times are as follows:

Subject	Control	Treatment
	(response tir	ne in millisec)
1	90	95
2	87	92
3	100	104
4	80	89
5	95	101
6	90	105

Do the average response times for the students differ between the control and treatment?

Solution

SAS Program

```
data paired;
input ctime ttime @@;
diff=ttime-ctime;
cards;
90 95 87 92 100 104
80 89 95 101 90 105
proc means n mean stderr t prt;
var diff;
run;
```

	S Output vsis Variable :	: DIFF		
N	Mean	Std Error	Т	Prob> T
6	7.3333333	1.6865481	4.3481318	0.0074

Hypothesis test from SAS Output

 $H_0: \mu_{\text{control}} = \mu_{\text{treatment}}$ $H_1: \mu_{\text{control}} \neq \mu_{\text{treatment}}$ Reject H_0 if p-value < 0.05.

Since *p*-value (Prob>|T|) = 0.0074 H_0 is rejected.

.. The average response times for the control and drug treatment differ significantly.

Note:

The p-value for a two-sided hypothesis is given in the output. In the case of a one sided hypothesis the Prob>|T| value must be divided by 2.

Example:

The time (in minutes) it takes operators to fit a certain part before and after completing a training program appears in the table below. Determine whether the training program significantly decreased the mean fitting time.

Time required by eight operators before and after training

Operator	Before training	After training
1	23	17
2	17	14
3	16	12
4	15	13
5	19	12
6	21	20
7	13	14
8	20	15

Solution

SAS Program

```
data d1;
input before after @@;
cards;
23 17 17 14 16 12 15 13
19 12 21 20 13 14 20 15;
proc ttest;
paired before*after;
run;
```

SAS Output

The TTEST Procedure

Statistics

	L	Lower CL		Upper CL	Lower CL		Upper CL			
Difference	N	Mean	Mean	Mean	Std Dev	Std Dev	Std Dev	Std Err	Minimum	Maximum
before - after	8	1.1434	3.375	5.6066	1.7649	2.6693	5.4327	0.9437	-1	7

T-Tests

Difference	DF	t Value	Pr > t
before - after	7	3.58	0.0090

Hypothesis test from SAS Output

 $H_0: \mu_1 = \mu_2$ $H_1: \mu_1 > \mu_2$

Use $\alpha = 0.01$. Reject H_0 if p-value < 0.01.

Since *p*-value (Prob>|T|) = $0.0090/2 = 0.0045 H_0$ is rejected.

: The training program significantly decreased the mean fitting time.

PART 8: PROC GLM

ANALYSIS OF VARIANCE

```
PROC GLM: Syntax
PROC GLM options;
CLASS variable-list;
MODEL dependents= independents / options; /* required */
MEANS effects / options;
```

CLASS variable-list;

The CLASS statement names the classification variables to be used in the analysis. If the CLASS statement is used, it must appear before the MODEL statement.

Classification variables can be either character or numeric. Only the first sixteen characters of a character variable are used.

MODEL dependents= independents / options;

The MODEL statement names the dependent variables and independent effects.

If no independent effects are specified, only an intercept term is fit. Many options can be specified in the MODEL statement after a slash (/), e.g.: ALPHA= p

MEANS effects / options;

For any effect that appears on the right-hand side of the model and that does not contain any continuous variables, GLM can compute means of all continuous variables in the model.

You can use any number of MEANS statements, provided they appear after the MODEL statement.

These options can appear in the MEANS statement after a slash (/):

1. One-way Analysis of Variance (One-way ANOVA)

Example:

In order to compare four different textbooks covering the same topic, students are divided randomly into four classes and subsequently a different textbook is assigned to each of the four classes. The table below gives the final achievement of the 23 students who wrote the examination in the course. Test whether the mean achievement for the four groups differ significantly.

Textbook	Per	centage					
1	72	65 81	83	67	73		
2	48	63 71	55	52	49	54	
3	72	76 82	73	69			
4	65	68 75	61	92			

Solution

SAS Program

```
data d1;
input textbook obs @@;
cards;
1 72 1 65 1 81 1 83 1 67 1 73
2 48 2 63 2 71 2 55 2 52 2 49 2 54
3 72 3 76 3 82 3 73 3 69
4 65 4 68 4 75 4 61 4 92
;
proc glm;
class textbook;
model obs=textbook;
means textbook; run;
```

Class Level Information
Class Levels Values
TEXTBOOK 4 1 2 3 4

Number of observations in data set = 23 General Linear Models Procedure

Dependent Vari	able: OBS					
Source	DF	5	Sum of Squares	Mean Square	F Value	Pr > F
Model	3		1482.32608696	494.10869565	6.89	0.0025
Error	19		1363.50000000	71.76315789		
Corrected Tota	1 22		2845.82608696			
	R-Square		C.V.	Root MSE		OBS Mean
	0.520877		12.44190	8.47131382	6	8.08695652
Source	DF		Type I SS	Mean Square	F Value	Pr > F
TEXTBOOK	3		1482.32608696	494.10869565	6.89	0.0025
Source	DF		Type III SS	Mean Square	F Value	Pr > F
TEXTBOOK	3		1482.32608696	494.10869565	6.89	0.0025
Level of		0	bs			
textbook	N	Mean	Std Dev	•		
1	6 73	5000000	7.2594766	;		
2	7 56	.0000000	8.2462113	}		
3	5 74	4000000	4.9295030			
4	5 72.	2000000	12.1942609			

Hypothesis test from SAS Output

 $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$

 H_1 : One of the μ 's differ

Use $\alpha = 0.01$. Reject H_0 if p-value < 0.01.

Since *p*-value (Pr > F) = $0.0025 H_0$ is rejected.

... The mean achievements differ significantly.

2. Two-way Analysis of Variance (Two-way ANOVA)

Example:

Suppose we wish to compare the average valuation of houses in the three areas of the Witwatersrand, namely the Johannesburg area, the East Rand and the West Rand. In order to ensure that differences in valuations are not due to differences in house size, we shall use a randomized block design. Three houses of comparable size are repeatedly selected randomly from the three areas and the valuations are noted. The table below gives the data:

		Block									
Area	1	2	3	4	5	6	7	8	9	10	11
Jhb	320	160	195	165	300	315	120	170	120	300	210
East	430	105	170	160	206	190	165	215	159	150	320
West	515	185	95	185	220	160	205	240	305	240	235

Solution

SAS Program

```
data d1;
input treat$ block f @@;
cards;
j 1 320 j 2 160 j 3 195 j 4 165 j 5 300 j 6 315 j 7 120 j 8 170 j 9 120 j 10 300 j 11 210
e 1 430 e 2 105 e 3 170 e 4 160 e 5 206 e 6 190 e 7 165 e 8 215 e 9 159 e 10 150 e 11 320
w 1 515 w 2 185 w 3 95 w 4 185 w 5 220 w 6 160 w 7 205 w 8 240 w 9 305 w 10 240 w 11 235;
proc glm;
class treat block;
model f=treat block;
run;
```

SAS Output

General Linear Models Procedure
Class Level Information

Class Levels Values TREAT 3 e j w

BLOCK 11 1 2 3 4 5 6 7 8 9 10 11

Number of observations in data set = 33

General Linear Models Procedure

Dependent Variab	le: F				
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	179594.00000000	14966.16666667	3.50	0.0065
Error	20	85420.72727273	4271.03636364		
Corrected Total	32	265014.72727273			
	R-Square	C.V.	Root MSE		F Mean
	0.677676	29.82925	65.35316644	219	.09090909
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TREAT	2	4677.2727272	2338.63636364	0.55	0.5868
BLOCK	10	174916.72727273	17491.67272727	4.10	0.0035

Hypothesis test from SAS Output

(a)

 H_0 : The valuations are the same for the different areas.

 H_1 : The valuations differ.

Use $\alpha = 0.05$. Reject H_0 if p-value < 0.05.

Since *p*-value (Pr > F) = $0.5868 H_0$ is not rejected.

... The mean building valuations of houses of comparable floor area in the Johannesburg area, the East Rand and the West Rand do not differ significantly from one another.

(b)

 H_0 : The block effects are the same.

 H_1 : The block effects differ.

Use $\alpha = 0.05$. Reject H_0 if p-value < 0.05.

Since *p*-value (Pr > F) = $0.0035 H_0$ is rejected.

:. The inclusion of blocks was justified and led to a significant decrease in the mean error sum of squares.

PART 9: PROC FREQ (continued)

PROC FREQ: Syntax

PROC FREQ options;

OUTPUT <OUT= SAS-data-set><output-statistic-list>;

TABLES requests / options;

WEIGHT variable;

BY variable-list:

PROC FREQ options;

ORDER= specifies the order in which the values of the frequency and crosstabulation table variables are to be reported. The ORDER= DATA option orders values according to their order in the input data set.

TABLES requests / options;

The TABLES command requests tables be produced. Any number of TABLES statements can be included. If no TABLES statement is given, one-way frequencies for all of the variables in the data set are produced. To request a one-way frequency table for a variable, name the variable in a TABLES statement. For example: PROC FREQ; TABLES a;

For a crosstabulation table of two variables, give their names separated by an asterisk. The first variable's values form the rows of the table, and the second variable's values form the columns. For example: PROC FREQ; TABLES a*b;

For n-way crosstabulation tables, the last variable's values form the columns; the next-to-last variable's values form the rows. Each level (or combination of levels) of the other variables form one stratum. A contingency table is produced for each stratum.

Options that can be used in the TABLES statement:

Request Statistical Analysis CHISQ TESTF= TESTP=

Statistical Details ALPHA=
Request Additional CELLCHI2
Table Information EXPECTED

Suppress Printing NOCOL NOFREQ NOPERCENT NOPRINT NOROW

TABLES requests / CHISQ EXPECTED CELLCHI2;

The CHISQ option requests tests of no association between the row variable and the column variable for each two-way table (or for each stratum in an n-way table). The tests include Pearson chi-square and for 2x2 tables, Fisher's exact test. Also printed are some measures of association based on chi-square. If null hypothesis proportions are given by the TESTP= option, then the CHISQ option performs a chi-square test for specified proportions. If null hypothesis frequencies are given by the TESTF= option, the CHISQ option performs a chi-square test for specified frequencies.

The EXPECTED option requests that the expected cell frequencies under the hypothesis of independence (or homogeneity) be printed. The CELLCHI2 option displays each cell's contribution to the total Pearson chi-square statistic.

1. The Chi-Square test

Example:

The following table was obtained from a table of random numbers.

	Distribution of random numbers										
()	1	2	3	4	5	6	7	8	9	Total
7	7	11	7	12	14	12	6	9	8	14	100

Test at a 5% level of significance whether the random numbers do appear in the random table with equal probability.

Solution SAS Program

```
data d1;
input digit f @@;
cards;
1 11
2
   7
3 12
4 14
5 12
6
  6
7
   9
8
  8
9 14
proc freq data=d1;
weight f;
tables digit /nocum testf=(10 10 10 10 10 10 10 10 10);
```

SAS Output

The FREQ Procedure Test digit Frequency Frequency Percent 0 7 10 7.00 1 11 10 11.00 2 7 10 7.00 3 12 10 12.00 4 14 10 14.00 5 12 10 12.00 6 6 10 6.00 7 9 9.00 10 8 8 10 8.00 14 14.00 Chi-Square Test for Specified Frequencies Chi-Square 8.0000 9 0.5341 Pr > ChiSq

Sample Size = 100

2. The (I x J) independence test

Example:

Two-way contingency table of a random sample of 893 houses classified according to age and number of bedrooms

Bedrooms	Built before 1960	Built 1960 – 1969			Built 1990 or later	Total
2	41	11	5	9	7	73
3	135	70	92	169	167	633
4 and more	38	17	37	48	47	187
Total	214	98	134	226	221	893

Test whether there is a relationship between the age of the residence and the number of bedrooms.

Solution

SAS Program

```
proc format;
                                                       data ex_15_5;
value $bb 1='built before 1960'
         2='built 1960-1969'
                                                       do bedrooms=2 to 4;
         3='built 1970-1979'
                                                         do built=1 to 5;
         4='built 1980-1989'
                                                           input f @@;
         5='built 1990 and later';
                                                           output;
data ex_15_5;
                                                         end;
input built$ bedrooms f @@;
                                                       end;
format built bb.;
cards;
                                                       cards;
1 2 41
       2 2 11 3 2 5 4 2 9 5 2 7
                                                       41 11 5 9 7
1 3 135  2 3 70 3 3 92 4 3 169 5 3 167
                                                       135 70 92 169 167
1 4 38  2 4 17 3 4 37 4 4 48 5 4 47
                                                       38 17 37 48 47
;
proc freq;
tables bedrooms*built/chisq expected nocol norow nopercent;
weight f;
run;
```

SAS Output

TABLE OF BEDROOMS BY BUILT

BEDROOMS	BUILT					
Frequency						
Expected	built	built	built	built	built	Total
	before	1960-1969	1970-1979	1980-1989	1990 and	
	1960				later	
		4.4				- 70
2	41	11	5	9		73
	17.494	8.0112	10.954	18.475	18.066	
3	135	70	92	169	167	633
	151.69	69.467	94.985	160.2	156.66	
		47	0.7	40	47	-
4	38	17	37	48	47	187
	44.813	20.522	28.06	47.326	46.279	
Total	214	98	134	226	221	- 893

STATISTICS FOR TABLE OF BEDROOMS BY BUILT

Statistic	DF	Value	Prob
Chi-Square	8	55.184	0.001
Likelihood Ratio Chi-Square	8	50.247	0.001
Mantel-Haenszel Chi-Square	1	18.114	0.001
Phi Coefficient		0.249	
Contingency Coefficient		0.241	
Cramer's V		0.176	
Sample Size = 893			

Hypothesis test from SAS Output

 H_0 : The age of a residence and the number of bedrooms in the house are independent.

 H_1 : The age of a residence does influence the number of bedrooms in the residence.

Use $\alpha = 0.01$. Reject H_0 if p-value < 0.01.

Since *p*-value (Prob) = $0.001 H_0$ is rejected.

:. The age of the residence and the number of bedrooms are dependent.