Exercice 1 (Conditional distributions).

Consider a binary classification problem where the target variable Y takes values in $\{0,1\}$ and the observed data X is a random variable taking values in a subset of \mathbb{R}^d . We assume that the following elements are known:

- 1. The constant p = P(Y = 1)
- 2. The conditional distribution $P_1 = P(X|Y=1)$
- 3. The conditional distribution $P_0 = P(X|Y=0)$

Write down the posterior distribution $\eta(X) = P(Y = 1|X)$ as a function of p, P_0 and P_1 .

Exercice 2 (Bayes risk).

Consider a binary classification problem where the target variable Y takes values in $\{0,1\}$ and the observed data X is a random variable taking values in a subset of \mathbb{R}^d denoted by \mathcal{X} . Let $\eta(X) = P(Y = 1|X)$.

Show that the Bayes classifier defined by

$$h^* = \operatorname*{arg\,min}_h P(Y \neq h(X))$$

verifies:

$$P(Y \neq h^{\star}(X)) = \int_{\mathcal{X}} \min(\eta(x), 1 - \eta(x)) dP_X(x)$$

Exercice 3 (Bayes Risk - Weighted).

Let $w: y \in \{0,1\} \to [0,1]$ be a function such that w(0) + w(1) = 1. Consider the same setting of the previous exercise but with a modified loss:

$$L_w(g) = \mathbb{E}\left(2w(Y)\mathbb{1}_{\{Y\neq g(X)\}}\right)$$

Find the Bayes Classifier for the weighted loss L_w as a function of $w_0 = w(0)$ and $w_1 = w(1)$.

Exercice 4 (Sum of exponentials).

Consider three independent random variables T, U, V following a standard Exponential distribution $\mathcal{E}(1)$. Define $Y = \mathbb{1}_{\{T+U+V>\theta\}}$ where $\theta \geq 0$.

- 1. Compute the Bayes classifier for X = (U, T) i.e V is not observed.
- 2. Compute the Bayes classifier for X = U i.e both V and T are not observed.
- 3. Propose a classifier if no data are observed.

Exercice 5 (Concentration bounds).

Consider a binary classification problem where the data X is a random variable taking values in a subset of \mathbb{R}^d and the target Y takes values in $\{-1,1\}$. Let \mathcal{G} be a finite set of classifiers $g:\mathcal{X}\to\{-1,1\}$. We assume that there exists $g^\star\in\mathcal{G}$ such that the 0-1 loss is optimal i.e $L^\star=L(g^\star)=P(Y\neq g^\star(X))=0$. Let $n\in\mathbb{N}^\star$, the observed data are i.i.d samples $(X_1,Y_1),\ldots,(X_n,Y_n)$ following the distribution of (X,Y). Consider the empirical 0-1 loss:

$$L_n(g) = \min_{g \in \mathcal{G}} \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{Y_i \neq g(X_i)\}}.$$

We denote the empirical classifier :

$$\hat{g}_n = \arg\min_{g \in \mathcal{G}} L_n(g).$$

- 1. Show that $\mathbb{P}(\min_{g \in \mathcal{G}} L_n(g) = 0) = 1$.
- 2. Show that for all $\varepsilon \in [0,1]$:

$$\mathbb{P}\left(L(\hat{q}_n) > \varepsilon\right) < |\mathcal{G}|(1-\varepsilon)^n$$

3. Deduce that for all $\varepsilon > 0$:

$$\mathbb{P}\left(L(\hat{g}_n) > \varepsilon\right) \le |\mathcal{G}|e^{-n\varepsilon}$$

4. Show that:

$$\mathbb{E}\left(L(\hat{g}_n)\right) \le \frac{\log(e|\mathcal{G})}{n}$$

Exercice 6 (Convergence of regressors).

Consider a binary classification problem where $Y \in \{-1,1\}$. Given the posterior $\eta^*(x) = P(Y = 1 \mid X = x)$, the Bayes classifier is given by $g^*(x) = 2\mathbb{1}_{\{\eta^*(x) \geq \frac{1}{2}\}} - 1$. Let $(\eta_n)_{n \in \mathbb{N}^*}$ be a sequence of functions $\mathcal{X} \to]0,1[$ and define the classifier $g_n: x \in \mathcal{X} \mapsto 2\mathbb{1}_{\{\eta_n(x) \geq \frac{1}{2}\}} - 1$. The Bayes risk is denoted by $L^* = L(g^*)$.

1. Show that:

$$L(g_n) - L^* = 2\mathbb{E}\left[\left|\eta^*(X) - \frac{1}{2}\right| |\psi(X)|\right]$$

where $\psi(X) = \mathbb{1}_{\{\eta_n(X) < \frac{1}{2}\}} - \mathbb{1}_{\{\eta(X) < \frac{1}{2}\}}$

2. Show that

$$L(g_n) - L^* \le 2\mathbb{E}\left[\left|\eta^*(X) - \eta_n(X)\right| \left|\psi(X)\right|\right]$$

3. Assume there exists $\delta > 0$ such that $\forall x | \eta^*(x) - \frac{1}{2} | > \delta$. Show that :

$$\mathbb{E}\left[|\psi(X)|\right] \le \frac{L(g_n) - L^*}{2\delta}$$

and conclude the upper bound:

$$L(g_n) - L^* \le \frac{2}{\delta} \mathbb{E}\left[(\eta^*(X) - \eta_n(X))^2 \right]$$

4. Assume that $L^* = 0$. Show that for all $q \in \mathbb{N}^*$:

$$L(g_n) - L^* \le 2^q \mathbb{E}\left[|\eta^*(X) - \eta_n(X)|^q\right]$$

5. Let $\eta: \mathcal{X} \to [0,1]$ and $g: x \in \mathcal{X} \mapsto 2\mathbb{1}_{\{\eta(x) > \frac{1}{\alpha}\}} - 1$. Show that for all $\alpha > 0$:

$$|L(g_n) - L(g)| \le 2P\left(\left|\eta(X) - \frac{1}{2}\right| < \alpha\right) + 2P(|\eta(X) - \eta_n(X)| \ge \alpha)$$

6. Assume that $\lim_{n\to+\infty} \mathbb{E}\left[|\eta(X)-\eta_n(X)|\right]=0$ and that $P(\eta(X)=\frac{1}{2})=0$. Show that :

$$\lim_{n \to +\infty} L(g_n) = L(g).$$

7. We assume that we can no longer observe Y. But we can observe a proxy target $Z \in \{-1,1\}$ such that :

$$\mathbb{P}(Z=1|Y=-1,X) = P(Z=1|Y=-1) = a < \frac{1}{2}.$$

$$\mathbb{P}(Z=-1|Y=1,X) = P(Z=-1|Y=1) = b < \frac{1}{2}.$$

Let $\eta: x \in \mathcal{X} \mapsto \mathbb{P}(Z=1|X=x)$ and g its associated classifier. Show that :

$$L(g) \le L^* \left(1 + \frac{2|a-b|}{1 - 2\max(a,b)} \right).$$

Comment on the situation where a = b.

Exercice 7 (VC dimension).

Compute the VC dimension of the following sets :

- 1. Half-spaces of \mathbb{R}^d i.e linear classifiers.
- 2. Boxes of the form $]-\infty,x_1]\times\cdots\times]-\infty,x_d]$ where $(x_1,\ldots,x_d)\in\mathbb{R}^d$.
- 3. Rectangles of \mathbb{R}^d .

Exercice 8 (VC dimension).

Provide an upper bound of the VC dimension of the following sets :

1. Closed balls of \mathbb{R}^d .

2. Any finite set of classifiers.

Exercice 9 (Sauer's Lemma).

Let A be a set class in \mathbb{R}^d with VC dimension $V < \infty$. Show that :

- 1. for all $n \in \mathbb{N}^*$ $s_A(n) \le (n+1)^V$
- 2. for all $n \geq V$ $s_A(n) \leq \left(\frac{ne}{V}\right)^V$

Exercice 10 (Parametrized linear classifiers).

Consider a binary classification problem in \mathbb{R} where the target variable Y takes values in $\{0,1\}$. Let \mathcal{G} be the set of all functions from $\mathbb{R} \to \{0,1\}$. L denotes the usual 0-1 loss and $L^* = \inf_g L(g)$. Consider the following family of classifiers denoted by \mathcal{G}_{ℓ} :

$$g_{(x_0,y_0)}: x \in \mathbb{R} \mapsto \begin{cases} y_0 \text{ if } x \le x_0. \\ 1 - y_0 \text{ if } x > x_0 \end{cases}$$

for $(x_0, y_0) \in \mathbb{R} \times \{0, 1\}$. For the sake of convenience, we denote $L(x_0, y_0) = L(g_{(x_0, y_0)})$ and $L_0 = \inf_{x_0, y_0} L(x_0, y_0)$.

- 1. What is the VC dimension of \mathcal{G}_0 ?
- 2. Write down the loss of an element in \mathcal{G}_0 as a function of $F_y(x) = \mathbb{P}(X \le x | Y = y)$ and $p = \mathbb{P}(Y = 1)$.
- 3. Show that $L_0 \leq \frac{1}{2}$.
- 4. Using the result $\min(a,b) = \frac{a+b-|a-b|}{2}$, show that :

$$L_0 = \frac{1}{2} - \sup_{x} \left| pF_1(x) - (1-p)F_0(x) - p + \frac{1}{2} \right|$$

Provide a simple expression for $p = \frac{1}{2}$.

- 5. Show that $L_0 = \frac{1}{2}$ if and only if $L^* = \frac{1}{2}$.
- 6. Prove the inequality of Chebychev-Cantelli i.e for any real random variable Z and $t \geq 0$:

$$\mathbb{P}(Z - \mathbb{E}(Z) \ge t) \le \frac{\mathbb{V}(Z)}{\mathbb{V}(Z) + t^2}$$

7. Let m_y and σ_y^2 denote the mean and variance of the conditional distribution X|Y=y. Show that:

$$L_0 \le \left(1 + \frac{(m_0 - m_1)^2}{(\sigma_0 + \sigma_1)^2}\right)^{-1}$$

Discuss the performance and limitations of the model \mathcal{G}_0 .