Exempel 0.0.1 ((Typisk tentatal) Låt $f(x) = e^{-x} sinx$)

- $\bullet\,$ A) Bestäm alla kritiska (stationära) punkter till funktionen f
- B) Avgör vilka av de kritiska punkterna som är lokala maxpunkter
- \bullet C) Har f något största värde?

A):

Kritiska punkter:

$$f'(x) = -e^{-x}sinx + e^{-x}cosx = e^{-x}(cosx - sinx)$$

De enda kritiska punkterna är då cosx = sinx som sker endast vid $x = \frac{\pi}{4} + 2\pi n, \ n \in \mathbb{Z}$ och vid $x = \frac{5\pi}{4} + 2\pi n, n \in \mathbb{Z}$

B):

Vi studerar f:s tecken till höger och till vänster om de kritiska punkterna:

- f' > 0 till vänster om $x = \frac{\pi}{4} + 2\pi n$
- f' < 0 till höger om $x = \frac{\pi}{4} + 2\pi n$
- f' < 0 till höger om $x = \frac{5\pi}{4} + 2\pi n$
- f' > 0 till vänster om $x = \frac{5\pi}{4} + 2\pi n$

Slutsats: lokalt max i $x = \frac{\pi}{4}$ och lokalt min i $x = \frac{5\pi}{4}$

T.ex $f(\frac{\pi}{2} - 2\pi n) = e^{2\pi n - \frac{\pi}{2}}$, $n \in \mathbb{Z}$. Då $n \to \infty$ går detta mot $+\infty$. Slutsats: Alltså antar f ej ett största värde.