CS144 An Introduction to Computer Networks

Routing

Link State Protocol: Dijkstra's shortest path first algorithm

Dijkstra's shortest path first algorithm (example of a "Link State Algorithm")

- 1. Exchange link state: A router floods to every other router the state of links connected to it.
 - Periodically
 - When link state changes
- 2. <u>Run Dijkstra</u>: Each router independently runs Dijkstra's shortest path first algorithm.

Each router finds min-cost spanning tree to every other router.

Add path of cost 4

Add path of cost 4

Add path of cost 5

Add path of cost 6

The algorithm

	0	1	2	3	4	5	6	7
Shortest Path Set	R ₈							
Candidate Set	R_3R_5 R_6R_7							
Add	R ₇							

The algorithm

	0	1	2	3	4	5	6	7
Shortest Path Set	R ₈	R ₈ R ₇	R ₈ R ₇ R ₆	R_8R_7 R_6R_4	$R_8R_7R_6$ R_4R_3	$R_8R_7R_6$ $R_4R_3R_2$	$R_8R_7R_6$ $R_4R_3R_2R_1$	$\begin{array}{c} R_8R_7R_6R_4R_3R_2 \\ R_1R_5 \end{array}$
Candidate Set	R_3R_5 R_6R_7	R_3R_5 R_6R_4	R_3R_5 R_4	R_3R_5 R_2	R_5R_2 R_1	R ₅ R ₁	R ₅	Empty
Add	R ₇	R ₆	R ₄	R ₃	R ₂	R ₁	R ₅	Done

Dijkstra's Algorithm

Questions:

- 1. How long does the algorithm take to run?
- 2. What happens when link costs change, or when routers/links fail?

Dijkstra's algorithm in practice

Dijkstra's algorithm is an example of a Link State algorithm.

- Link state is known by every router.
- Each router finds the shortest path spanning tree to every other router.

It is the basis of OSPF (Open Shortest Path First), a very widely used routing protocol.

Another view of Dijkstra...

