Problema 1 (Roblems
Representa c la energia di también como	a su estado de energia lel estado funda mentan la energia de pento c	mas bajo posible; se conoce ero del sistema.
Problema 2 (0.7) E = hc = (h2) 8 me 42	n2 => 1 = (8me L2) (24 1)	$27 = \frac{3h^2}{8m_eL^2}$
> hc = 3 h ² 8 MeL ³	=> 8 MeL hC = 3 h n -/	4 - 8MeKC
=> L= 3hn 8me C	1 10 10 17 17 170	= 7.93 × 10 m

Problema 3 TE e-2CL	(U-E)=(S-4.5)
C= \2 Ma (U-E).	U-E = 5 eV (1.60 x10 19)
$C = \sqrt{2(9, 10 \times 10^{31})(8 \times 10^{20})} = 3.62 \times 10^{9} \text{m}$	me= 9.10×1031 == 1.055×1034
2 CL = 2 (3.62×10°)(9.5×10°)	9.5 Å = 9.5 X 10 m
2CL = 6.878 => 11 = e = 1.03 X10	

(0.75) La respuesta es correcta, pero no se observa el proceso de derivar y reducir.

(1) - Bien derivado, solo hace falta considerar que $U=0\,$ para que E= Energia Cinetica

