

SAR Test Report

Product Name: 300 Mbps 802.11n Wireless

USB Adapter

Model No. : Air 2411

FCC ID : Z3W-00001-AIR2411

Applicant: AirTies Wireless Networks

Address: Gulbahar Mah. Avni Dilligil sk. No:5 Celik Is Merkezi

Mecidiyekoy Istanbul, Turkey

Date of Receipt: 09/01/2012

Date of Test : 30/01/2012

Issued Date : 02/02/2012

Report No. : 121S014R-HP-US-P03V01

Report Version: V2.1

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation.

Test Report Certification

Issued Date: 02/02/2012

Report No: 121S014R-HP-US-P03V01

QuieTek

Product Name : 300 Mbps 802.11n Wireless USB Adapter

Applicant : AirTies Wireless Networks

: Gulbahar Mah. Avni Dilligil sk. No:5 Celik Is Merkezi Mecidiyekoy Address

Istanbul, Turkey

Manufacturer : Shenzhen Gongjin Electronics Co., Ltd.

[:] B116-B118, A211-213LA311-313; B411-413 Baiying Building,

Address 1019# Naihai RD, Nanshan Section, Shenzhen, Guangdong,

China

FCC ID : Z3W-00001-AIR2411

Model No. : Air 2411
Brand Name : AirTies

EUT Voltage : DC 5V

Applicable Standard : FCC OET65 Supplement C June 2001

IEEE Std. 1528-2003,

47CFR § 2.1093

Test Result : Max. SAR Measurement (1g)

802.11b (2.4GHz): 0.643 W/kg

802.11n(20MHz)(5GHz): 0.374 W/kg

Performed Location : Suzhou EMC Laboratory

No.99 Hongye Rd., Suzhou Industrial Park Loufeng Hi-Tech

Development Zone., Suzhou, China

TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098

FCC Registration Number: 800392

Documented By : Alice Mi

(Engineering ADM: Alice Ni)

Reviewed By : Labin Wa.

(Engineering Supervisor: Robin Wu)

Approved By : Marlinchen

(Engineering Manager: Marlin Chen)

Laboratory Information

We, **QuieTek Corporation**, are an independent EMC and safety consultancy that was established the whole facility in our laboratories. The test facility has been accredited by the following accreditation Bodies in compliance with ISO 17025, EN 45001 and Guide 25:

Taiwan R.O.C. : BSMI, NCC, TAF

Germany : TUV Rheinland

Norway : Nemko, DNV

USA : FCC, NVLAP

Japan : VCCI

The related certificate for our laboratories about the test site and management system can be downloaded from QuieTek Corporation's Web Site: http://tw.quietek.com/modules/myalbum/

The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site: http://www.quietek.com/

If you have any comments, Please don't hesitate to contact us. Our contact information is as below:

HsinChu Testing Laboratory:

No.75-2, 3rd Lin, Wangye Keng, Yonghxing Tsuen, Qionglin Shiang, Hsinchu County 307, Taiwan, R.O.C. TEL:+886-3-592-8859 E-Mail: service@guietek.com

LinKou Testing Laboratory:

Suzhou (China) Testing Laboratory:

 $No.\ 99\ Hongye\ Rd.,\ Suzhou\ Industrial\ Park\ Loufeng\ Hi-Tech\ Development\ Zone.,\ Suzhou, China.$

TABLE OF CONTENTS

Description	Page
1. General Information	5
1.1. EUT Description	5 6
2. SAR Measurement System	7
2.1. DASY5 System Description 2.1.1. Applications 2.1.2. Area Scans 2.1.3. Zoom Scan (Cube Scan Averaging) 2.1.4. Uncertainty of Inter-/Extrapolation and Averaging 2.2. DASY5 E-Field Probe 2.2.1. Isotropic E-Field Probe Specification	8 8 8
 2.3. Boundary Detection Unit and Probe Mounting Device 2.4. DATA Acquisition Electronics (DAE) and Measurement Server 2.5. Robot 2.6. Light Beam Unit 2.7. Device Holder 2.8. SAM Twin Phantom 	10 11 11 12
3. Tissue Simulating Liquid	
The composition of the tissue simulating liquid	13
4. SAR Measurement Procedure	15
4.1. SAR System Validation	15 15
5. SAR Exposure Limits	18
6. Test Equipment List	19
7. Measurement Uncertainty	23
8. Conducted Power Measurement	25
9. Test Procedures	28
9.1. Test position and configuration	28 29
Appendix A. SAR System Validation Data	32
Appendix B. SAR measurement Data	35
Appendix C. Test Setup Photographs & EUT Photographs	60
Appendix D. Probe Calibration Data	66
Appendix F Dipole Calibration Data	66

1. General Information

1.1. EUT Description

Product Name	300 Mbps 802.11n Wireless USB Adapter
FCC ID	Z3W-00001-AIR2411
Brand Name	AirTies
Model No.	Air 2411
Frequency Range	For 2.4GHz Band
	802.11b/g/n(20MHz): 2412 - 2462 MHz
	802.11n(40MHz): 2422 - 2452 MHz
	For 5.0GHz Band
	802.11n(20MHz): 5180 - 5240 MHz, 5745 - 5825MHz
	802.11n(40MHz): 5190 - 5230 MHz, 5755 - 5795 MHz
Channel Number	For 2.4GHz Band
	802.11b/g/n(20MHz): 11
	802.11n(40MHz): 7
	For 5.0GHz Band
	802.11n(20MHz): 9
	802.11n(40MHz): 4
Type of Modulation	802.11b: DSSS
	802.11g/n: OFDM
Data Rate	802.11g: 6/9/12/18/24/36/48/54 Mbps
	802.11b: 1/2/5.5/11 Mbps
	802.11n: up to 300 Mbps
Device Category	Mobile
RF Exposure Environment	Uncontrolled
Antenna Type	PCB (Internal)
Peak Antenna Gain	2.15 dBi for 2.4GHz band
	0 dBi for 5GHz band
Max. Output Power	802.11b: 11.70dBm
(Conducted)	802.11g: 11.42dBm
	802.11n(20MHz): 15.50dBm
	802.11n(40MHz): 14.65dBm

1.2. Test Environment

Ambient conditions in the laboratory:

Items	Required	Actual
Temperature (°C)	18-25	21.5± 2
Humidity (%RH)	30-70	52

2. SAR Measurement System

2.1. DASY5 System Description

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

2.1.1. Applications

Predefined procedures and evaluations for automated compliance testing with all worldwide standards, e.g., IEEE 1528, OET 65, IEC 62209-1, IEC 62209-2, EN 50360, EN 50383 and others.

2.1.2. Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 10mm² step integral, with 1mm interpolation used to locate the peak SAR area used for zoom scan assessments.

When an Area Scan has measured all reachable points, it computes the field maxima found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE 1528-2003, EN 50361 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan).

2.1.3. Zoom Scan (Cube Scan Averaging)

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. A density of 1000 kg/m³ is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1 g cube is 10mm, with the side length of the 10 g cube 21,5mm.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications utilize a physical step of 7x7x7 (5mmx5mmx5mm) providing a volume of 30mm in the X & Y axis, and 30mm in the Z axis.

2.1.4. Uncertainty of Inter-/Extrapolation and Averaging

In order to evaluate the uncertainty of the interpolation, extrapolation and averaged SAR calculation algorithms of the Postprocessor, DASY5 allows the generation of measurement grids which are artificially predefined by analytically based test functions. Therefore, the grids of area scans and zoom scans can be filled with uncertainty test data, according to the SAR benchmark functions of IEEE 1528. The three analytical functions shown in equations as below are used to describe the possible range of the expected SAR distributions for the tested handsets. The field gradients are covered by the spatially flat distribution f1, the spatially steep distribution f3 and f2 accounts for H-field cancellation on the phantom/tissue surface.

$$f_1(x,y,z) = Ae^{-\frac{z}{2a}}\cos^2\left(\frac{\pi}{2}\frac{\sqrt{x'^2 + y'^2}}{5a}\right)$$

$$f_2(x,y,z) = Ae^{-\frac{z}{a}}\frac{a^2}{a^2 + x'^2}\left(3 - e^{-\frac{2z}{a}}\right)\cos^2\left(\frac{\pi}{2}\frac{y'}{3a}\right)$$

$$f_3(x,y,z) = A\frac{a^2}{\frac{a^2}{4} + x'^2 + y'^2}\left(e^{-\frac{2z}{a}} + \frac{a^2}{2(a+2z)^2}\right)$$

2.2. DASY5 E-Field Probe

The SAR measurement is conducted with the dosimetric probe manufactured by SPEAG. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency.

SPEAG conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528, EN 62209-1, IEC 62209, etc.) under ISO 17025. The calibration data are in Appendix D.

2.2.1. Isotropic E-Field Probe Specification

Model	EX3DV4
Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Frequency	10 MHz to 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic Range	10 μW/g to 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μW/g)
Dimensions	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.

2.3. Boundary Detection Unit and Probe Mounting Device

The DASY probes use a precise connector and an additional holder for the probe, consisting of a plastic tube and a flexible silicon ring to center the probe. The connector at the DAE is flexibly mounted and held in the default position with magnets and springs. Two switching systems in the connector mount detect frontal and lateral probe collisions and trigger the necessary software response.

2.4. DATA Acquisition Electronics (DAE) and Measurement Server

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit.

Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE4 is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

The DASY5 measurement server is based on a PC/104 CPU board with a 400MHz intel ULV Celeron, 128MB chipdisk and 128MB RAM. The necessary circuits for communication with the DAE electronics box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY5 I/O board, which is directly connected to the PC/104 bus of the CPU board.

2.5. Robot

The DASY5 system uses the high precision robots TX90 XL type out of the newer series from Stäubli SA (France). For the 6-axis controller DASY5 system, the CS8C robot controller version from Stäubli is used.

The XL robot series have many features that are important for our application:

- High precision (repeatability 0.02 mm)
- High reliability (industrial design)
- > Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- ➢ 6-axis controller

2.6. Light Beam Unit

The light beam switch allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions. During probe rotations, the probe tip will keep its actual position.

2.7. Device Holder

The DASY5 device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles.

The DASY5 device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $\epsilon r = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

2.8. SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- Left head
- > Right head
- > Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

3. Tissue Simulating Liquid

3.1. The composition of the tissue simulating liquid

INGREDIENT	2450MHz	2450MHz	5800MHz
(% Weight)	Head	Body	Body
Water	46.7	73.2	75.68
Salt	0.00	0.04	0.43
Sugar	0.00	0.00	0.00
HEC	0.00	0.00	0.00
Preventol	0.00	0.00	0.00
DGBE	53.3	26.7	4.42
Triton X-100	0.00	0.00	19.47

3.2. Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using DASY5 Dielectric Probe Kit and Agilent Vector Network Analyzer E5071C

Body Tissue Simulant Measurement				
Frequency	Description	Dielectric Parameters		Tissue Temp.
[MHz]	Description	8 r	σ [s/m]	[°C]
	Reference result	52.7	1.95	N/A
2450MHz	± 5% window	50.07 to 55.34	1.85 to 2.05	14/7 (
	30-01-2012	52.29	2.00	21.0
	Reference result	49.0	5.30	N/A
5200MHz	± 5% window	46.55 to 51.45	5.04 to 5.57	IN//A
	30-01-2012	47.95	5.15	21.0
	Reference result	48.2	6.00	N/A
5800MHz	± 5% window	45.79 to 50.61	5.70 to 6.30	IN//A
	30-01-2012	46.27	6.02	21.0

3.3. Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Target Frequency	He	ad	Вс	ody
(MHz)	ε _r	σ (S/m)	E _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

(ϵ_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

4. SAR Measurement Procedure

4.1. SAR System Validation

4.1.1. Validation Dipoles

The dipoles used is based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of both IEEE and FCC Supplement C. the table below provides details for the mechanical and electrical specifications for the dipoles.

Frequency	L (mm)	h (mm)	d (mm)
2450MHz	53.5	30.4	3.6
5800MHz	20.6	14.2	3.6

4.1.2. Validation Result

Sı	ıstem	Performand	ce Check	at	2450MHz
3	y Stelli	F CHOHIII and	SE CHECK	aι	2430191112

Validation Dipole: D2450V2, SN: 839

Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp. [°C]
2450 MHz	Reference result ± 10% window	51.6 46.44 to 56.76	24.2 21.78 to 26.62	N/A
	30-01-2012	52.40	24.48	21.0

Note: All SAR values are normalized to 1W forward power.

System Performance Check at 5200MHz

Validation Dipole: D5GHzV2, SN: 1078

Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp. [°C]
5200 MHz	Reference result ± 10% window	77.9 70.11 to 85.69	21.8 19.62 to 23.98	N/A
	30-01-2012	77.50	21.70	21.0

Note: All SAR values are normalized to 1W forward power.

System Performance Check at 5800MHz

Validation Kit: D5GHzV2, SN: 1078

	· · · · · · · · · · · · · · · · · · ·			
Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp. [°C]
5800 MHz	Reference result ± 10% window	73.3 65.97 to 80.63	20.2 18.18 to 22.22	N/A
	30-01-2012	75.00	21.90	21.0

Note: All SAR values are normalized to 1W forward power.

4.2. SAR Measurement Procedure

The DASY 5 calculates SAR using the following equation,

$$SAR = \frac{\sigma |E|^2}{\rho}$$

σ: represents the simulated tissue conductivity

p: represents the tissue density

The EUT is set to transmit at the required power in line with product specification, at each frequency relating to the LOW, MID, and HIGH channel settings.

Pre-scans are made on the device to establish the location for the transmitting antenna, using a large area scan in either air or tissue simulation fluid.

The EUT is placed against the Universal Phantom where the maximum area scan dimensions are larger than the physical size of the resonating antenna. When the scan size is not large enough to cover the peak SAR distribution, it is modified by either extending the area scan size in both the X and Y directions, or the device is shifted within the predefined area.

The area scan is then run to establish the peak SAR location (interpolated resolution set at 1mm²) which is then used to orient the center of the zoom scan. The zoom scan is then executed and the 1g and 10g averages are derived from the zoom scan volume (interpolated resolution set at 1mm³).

5. SAR Exposure Limits

SAR assessments have been made in line with the requirements of IEEE-1528, FCC Supplement C, and comply with ANSI/IEEE C95.1-1992 "Uncontrolled Environments" limits. These limits apply to a location which is deemed as "Uncontrolled Environment" which can be described as a situation where the general public may be exposed to an RF source with no prior knowledge or control over their exposure.

Limits for General Population/Uncontrolled Exposure (W/kg)

Type Exposure	Uncontrolled
	Environment Limit
Spatial Peak SAR (1g cube tissue for brain or body)	1.60 W/kg
Spatial Average SAR (whole body)	0.08 W/kg
Spatial Peak SAR (10g for hands, feet, ankles and wrist)	4.00 W/kg

6. Test Equipment List

Instrument	Manufacturer	Model No.	Serial No.	Cali. Due Date
Stäubli Robot TX60L	Stäubli	TX60L	F10/5C90A1/A/01	only once
Controller	Stäubli	SP1	S-0034	only once
Dipole Validation Kits	Speag	D2450V2	839	2012.03.12
Dipole Validation Kits	Speag	D5GHzV2	1078	2012.03.11
SAM Twin Phantom	Speag	SAM	TP-1561/1562	N/A
Device Holder	Speag	SD 000 H01 HA	N/A	N/A
Data	Speag	DAE4	915	2012.07.26
Acquisition Electronic				
E-Field Probe	Speag	EX3DV4	3698	2012.07.28
SAR Software	Speag	DASY5	V5.2 Build 162	N/A
Power Amplifier	Mini-Circuit	ZHL-42	D051404-28	N/A
Directional Coupler	Agilent	778D	20160	N/A
Universal Radio	R&S	CMU 200	117088	2012.04.29
Communication Tester				
Vector Network	Agilent	E5071C	MY48367267	2012.04.10
Signal Generator	Agilent	E4438C	MY49070163	2012.04.23
Power Meter	Anritsu	ML2495A	0905006	2013.01.12
Wide Bandwidth Sensor	Anritsu	MA2411B	0846014	2013.01.12

Note: Per KDB 450824 D02 requirements for dipole calibration, QuieTek Lab has adopted two years calibration intervals. On annual basis, every measurement dipole has been evaluated and is in compliance with the following criteria:

- 1. There is no physical damage on the dipole;
- 2. System validation with specific dipole is within 10% of calibrated value;
- 3. Return-loss is within 20% of calibrated measurement (Show below);
- 4. Impedance is within 5Ω of calibrated measurement (Show below).

Impedance Plot for D2450V2

2450 Body

Calibrated impedance: 50 Ω ; Measured impedance: 50.36 Ω (within 5Ω)

Calibrated return loss: -40.8 dB; Measured impedance: -42.22 dB (within 20%)

5200 Body

Calibrated impedance: 53.6 Ω ; Measured impedance: 54.4 Ω (within 5 Ω)

Calibrated return loss: -20.8 dB; Measured impedance: -20.5 dB (within 20%)

5800 Body

Calibrated impedance: 55.6 Ω ; Measured impedance: 55.9 Ω (within 5 Ω)

Calibrated return loss: -25.2 dB; Measured impedance: -25.7 dB (within 20%)

7. Measurement Uncertainty

		DASY	5 Unc	ertain	ıtv			
Measurement uncertainty					•	/ 10 gram.		
Error Description	Uncert.	Prob.	Div.	(Ci)	(Ci)	Std.	Std.	(Vi)
	value	Dist.		1g	10g	Unc.	Unc.	Veff
						(1g)	(10g)	
Measurement System		•	•	1	·	1		
Probe Calibration	±6.0%	N	1	1	1	±6.0%	±6.0%	∞
Axial Isotropy	±4.7%	R	√3	0.7	0.7	±1.9%	±1.9%	∞
Hemispherical Isotropy	±9.6%	R	√3	0.7	0.7	±3.9%	±3.9%	∞
Boundary Effects	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Linearity	±4.7%	R	√3	1	1	±2.7%	±2.7%	∞
System Detection Limits	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Readout Electronics	±0.3%	N	1	1	1	±0.3%	±0.3%	∞
Response Time	±0.8%	R	√3	1	1	±0.5%	±0.5%	∞
Integration Time	±2.6%	R	√3	1	1	±1.5%	±1.5%	∞
RF Ambient Noise	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞
RF Ambient Reflections	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞
Probe Positioner	±0.4%	R	√3	1	1	±0.2%	±0.2%	∞
Probe Positioning	±2.9%	R	√3	1	1	±1.7%	±1.7%	∞
Max. SAR Eval.	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Test Sample Related			·I	1	l	1	•	l .
Device Positioning	±2.9%	N	1	1	1	±2.9%	±2.9%	145
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%	5
Power Drift	±5.0%	R	√3	1	1	±2.9%	±2.9%	∞
Phantom and Setup		•	•	1	·	1		
Phantom Uncertainty	±4.0%	R	√3	1	1	±2.3%	±2.3%	∞
Liquid Conductivity	LE 00/	П	/m	0.64	0.42	14.00/	14.20/	
(target)	±5.0%	R	√3	0.64	0.43	±1.8%	±1.2%	∞
Liquid Conductivity	12.50/	N	1	0.64	0.43	14 60/	14 40/	8
(meas.)	±2.5%	IN	1	0.04	0.43	±1.6%	±1.1%	ω
Liquid Permittivity	±5.0%	R	/5	0.6	0.49	±1.7%	±1.4%	∞
(target)	13.0 /0	1	√3	0.0	0.48	±1.7 /0	⊥1.+/0	
Liquid Permittivity	±2.5%	N	1	0.6	0.49	±1.5%	±1.2%	8
(meas.)	±2.0 /0	11	'	0.0	0.78	±1.070	±1.∠/0	
Combined Std. Uncertain	inty					±10.9%	±10.7%	387
Expanded STD Uncertain	inty					±21.9%	±21.4%	

Page: 23 of 99

		DASY	5 Und	ertain	ity			
Measurement uncertainty					•	0 gram.		
Error Description	Uncert.	Prob.	Div.	(Ci)	(Ci)	Std.	Std.	(Vi)
	value	Dist.		1g	10g	Unc.	Unc.	Veff
						(1g)	(10g)	
Measurement System								
Probe Calibration	±6.55%	N	1	1	1	±6.55%	±6.55%	∞
Axial Isotropy	±4.7%	R	√3	0.7	0.7	±1.9%	±1.9%	∞
Hemispherical Isotropy	±9.6%	R	√3	0.7	0.7	±3.9%	±3.9%	∞
Boundary Effects	±2.0%	R	√3	1	1	±1.2%	±1.2%	∞
Linearity	±4.7%	R	√3	1	1	±2.7%	±2.7%	∞
System Detection Limits	±1.0%	R	√3	1	1	±0.6%	±0.6%	∞
Readout Electronics	±0.3%	N	1	1	1	±0.3%	±0.3%	∞
Response Time	±0.8%	R	√3	1	1	±0.5%	±0.5%	∞
Integration Time	±2.6%	R	√3	1	1	±1.5%	±1.5%	∞
RF Ambient Noise	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞
RF Ambient Reflections	±3.0%	R	√3	1	1	±1.7%	±1.7%	∞
Probe Positioner	±0.8%	R	√3	1	1	±0.5%	±0.5%	∞
Probe Positioning	±9.9%	R	√3	1	1	±5.7%	±5.7%	∞
Max. SAR Eval.	±4.0%	R	√3	1	1	±2.3%	±2.3%	∞
Test Sample Related			- I	I				I.
Device Positioning	±2.9%	N	1	1	1	±2.9%	±2.9%	145
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%	5
Power Drift	±5.0%	R	√3	1	1	±2.9%	±2.9%	∞
Phantom and Setup			1		·	-1	•	
Phantom Uncertainty	±4.0%	R	√3	1	1	±2.3%	±2.3%	∞
Liquid Conductivity	. 5.00/	_	75	0.04	0.40	.4.00/	.4.00/	
(target)	±5.0%	R	√3	0.64	0.43	±1.8%	±1.2%	∞
Liquid Conductivity	.0.50/	NI		0.04	0.40	14.00/	.4.40/	
(meas.)	±2.5%	N	1	0.64	0.43	±1.6%	±1.1%	∞
Liquid Permittivity	±5 O9/	В	/2	0.6	0.40	±1 70/	±1 40/	8
(target)	±5.0%	R	√3	0.0	0.49	±1.7%	±1.4%	
Liquid Permittivity	±2.5%	N	1	0.6	0.49	±1.5%	±1.2%	8
(meas.)	12.0/0	IN	<u> </u>	0.0	0.48	11.0/0	⊥1.∠/0	
Combined Std. Uncertain	inty					±12.8%	±12.6%	330
Expanded STD Uncertain	inty					±25.6%	±25.2%	

8. Conducted Power Measurement

1Tx Chain 0

Test Mode	Channel No.	Frequency	Conducted Power	
		(MHz)	(dBm)	
	01	2412	11.70	
802.11b	06	2437	11.35	
	11	2462	11.22	
	01	2412	11.42	
802.11g	06	2437	10.95	
	11	2462	10.82	
	01	2412	10.82	
802.11n(20MHz)	06	2437	10.53	
	11	2462	10.52	
	03	2422	10.61	
802.11n(40MHz)	06	2437	10.57	
	09	2452	10.74	
	36	5180	15.50	
	48	5240	14.60	
802.11n(20MHz)	149	5745	13.84	
	157	5785	13.70	
	165	5825	13.41	
	38	5190	14.12	
802.11n(40MHz)	46	5230	14.65	
002.1111(40IVI⊓Z)	151	5755	11.14	
	159	5795	11.71	

1Tx Chain 1

Test Mode	Channel No.	Frequency	Conducted Power
		(MHz)	(dBm)
	01	2412	11.70
802.11b	06	2437	11.35
	11	2462	11.22
	01	2412	11.42
802.11g	06	2437	10.95
	11	2462	10.82
	01	2412	10.82
802.11n(20MHz)	06	2437	10.53
	11	2462	10.52
	03	2422	10.61
802.11n(40MHz)	06	2437	10.57
	09	2452	10.74
	36	5180	15.50
	48	5240	14.60
802.11n(20MHz)	149	5745	13.84
	157	5785	13.70
	165	5825	13.41
	38	5190	14.12
902 11p/40MU=\	46	5230	14.65
802.11n(40MHz)	151	5755	11.14
	159	5795	11.71

2Tx Chain 2

Test Mode	Channel No.	Frequency	Conducted Power
		(MHz)	(dBm)
	01	2412	10.82
	06	2437	10.53
	11	2462	10.52
902 11p/20MH=\	36	5180	15.50
802.11n(20MHz)	48	5240	14.60
	149	5745	13.84
	157	5785	13.70
	165	5825	13.41
	03	2422	10.61
	06	2437	10.57
	09	2452	10.74
802.11n(40MHz)	38	5190	14.12
	46	5230	14.65
	151	5755	11.14
	159	5795	11.71

Note: Antenna chain 0 and chain 1 has the same circuit and transmit power. Therefore, we choose one of the antenna(chain 1) to complete the test(802.11b/g).

9. Test Procedures

9.1. Test position and configuration

SAR was performed with the device configured in the positions according to IEEE1528, and KDB 447498 D02 SAR Procedures for Dongle Xmtr v01 1, body SAR was performed with the device to phantom separation distance of 5mm. All USB orientations (A: Horizontal-Up, B: Horizontal-Down, C: Vertical-Front, D: Vertical-Back, and E: Tip) were evaluated with 15cm USB cable for extension. Please check the SAR test photos.

Other KDB files were referred for this device SAR evaluation: D01 Mobile Portable RF Exposure v04, 248227 802.11abg SAR and 388624 D02 Permit But Ask List v09R01.

9.2. SAR Test Results Summary

SAR MEASURE	EMENT									
Ambient Tempera		Relative Humidity (%): 55								
Liquid Temperatu	Liquid Temperature (°C) : 21.0 ±2						Depth of Liquid (cm):>15			
Product: 300 Mbp	s 802.11n \	Vireless US	SB Adapte	er						
Test Mode: 802.1	1b-1Tx Cha	in 1								
Test Position	Antenna	Frequ	ency		aration	Power	SAR 1g	Limit		
Body	Position	Channel	MHz		stance (cm)	Drift (<±0.2)	(W/kg)	(W/kg)		
Horizontal Up (Laptop)	Fixed	1	2412		0.5	-0.085	0.643	1.6		
Horizontal Up (Laptop)	Fixed	6	2437		0.5	0.030	0.564	1.6		
Horizontal Up (Laptop)	Fixed	11	2462		0.5	0.095	0.528	1.6		
Horizontal Down (USB Cable)	Fixed	1	2412		0.5	-0.137	0.467	1.6		
Vertical Front (USB Cable)	Fixed	1	2412		0.5	0.156	0.083	1.6		
Vertical Back (USB Cable)	Fixed	1	2412		0.5	-0.083	0.325	1.6		
Tip (USB Cable)	Fixed	1	2412		0.5	0.186	0.101	1.6		
Test Mode: 802.1	1g-1Tx Cha	in 1					_			
Horizontal Up (Laptop)	Fixed	1	2412		0.5	-0.173	0.366	1.6		
Test Mode: 802.1	1n(20MHz)-	2Tx Chain	2							
Horizontal Up (Laptop)	Fixed	1	2412		0.5	-0.037	0.332	1.6		
Test Mode: 802.1	1n(40MHz)-	2Tx Chain	2							
Horizontal Up (Laptop)	Fixed	9	2452		0.5	0.182	0.331	1.6		

SAR MEASUREMENT

Ambient Temperature (°C): 21.5 ±2 Relative Humidity (%): 55

Liquid Temperature (°C): 21.0 \pm 2 Depth of Liquid (cm):>15

Product: 300 Mbps 802.11n Wireless USB Adapter

Test Mode: 802.11n(20MHz)- 2Tx Chain 2

Test Position	Antenna	Frequency		Separation	Power	SAR 1g	Limit
Body	Position	Channel	MHz	Distance (cm)	Drift (<±0.2)	(W/kg)	(W/kg)
Horizontal Up (Laptop)	Fixed	36	5180	0.5	0.159	0.347	1.6
Horizontal Down (USB Cable)	Fixed	36	5180	0.5	-0.060	0.248	1.6
Vertical Front (USB Cable)	Fixed	36	5180	0.5	-0.105	0.349	1.6
Vertical Back (USB Cable)	Fixed	36	5180	0.5	0.135	0.336	1.6
Tip (USB Cable)	Fixed	36	5180	0.5	0.108	0.080	1.6
Vertical Front (USB Cable)	Fixed	48	5240	0.5	0.032	0.350	1.6
Vertical Front (USB Cable)	Fixed	149	5745	0.5	0.067	0.364	1.6
Vertical Front (USB Cable)	Fixed	157	5785	0.5	0.136	0.374	1.6
Vertical Front (USB Cable)	Fixed	165	5825	0.5	0.096	0.329	1.6

Vertical Front							
(USB Cable)	Fixed	38	5190	0.5	0.093	0.185	1.6
Vertical Front	Fired	40	5000	0.5	0.407	0.475	4.0
(USB Cable)	Fixed	46	5230	0.5	0.107	0.175	1.6
Vertical Front	Fired	454	F7FF	0.5	0.445	0.000	4.0
(USB Cable)	Fixed	151	5755	0.5	0.115	0.230	1.6
Vertical Front	Fired	450	5705	0.5	0.050	0.475	4.0
(USB Cable)	Fixed	159	5795	0.5	0.056	0.175	1.6

Appendix A. SAR System Validation Data

Date/Time: 30-01-2012

Test Laboratory: QuieTek Lab System Check Body 2450MHz

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2

Communication System: CW; Communication System Band: D2450 (2450.0 MHz); Duty Cycle: 1:1;

Frequency: 2450 MHz; Medium parameters used: f = 2450 MHz; $\sigma = 2$ mho/m; $\epsilon r = 52.3$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section; Input Power=250mW

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

Probe: EX3DV4 - SN3698; ConvF(6.60, 6.60, 6.60); Calibrated: 28/07/2011

• Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn915; Calibrated: 26/07/2011

Phantom: SAM2; Type: SAM; Serial: TP1562

Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/Body 2450MHz/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 13.1 mW/g

Configuration/Body 2450MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm, Reference Value = 85.8 V/m; Power Drift = 0.039 dB

Peak SAR (extrapolated) = 26.4 W/kg

SAR(1 g) = 13.1 mW/g; SAR(10 g) = 6.12 mW/g Maximum value of SAR (measured) = 15.2 mW/g

0 dB = 15.2 mW/g

Date/Time: 30-01-2012

Test Laboratory: QuieTek Lab System Check Body 5200MHz

DUT: Dipole D5GHzV2; Type: D5GHzV2

Communication System: CW; Communication System Band: ITD5500 (5000.0 - 5900.0 MHz); Duty Cycle: 1:1; Frequency: 5200 MHz; Medium parameters used: f = 5200 MHz; $\sigma = 5.15$ mho/m; $\epsilon r = 48.0$; $\rho = 1000$ kg/m³; Phantom section: Flat Section; Input Power=100mW Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(3.95, 3.95, 3.95); Calibrated: 28/07/2011
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/Body 5200MHz/Area Scan (6x6x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 5.37 mW/g

Configuration/Body 5200MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 40.3 V/m; Power Drift = -0.082 dB

Peak SAR (extrapolated) = 37.9 W/kg

SAR(1 g) = 7.75 mW/g; SAR(10 g) = 2.17 mW/g Maximum value of SAR (measured) = 8.07 mW/g

0 dB = 8.07 mW/g

Date/Time: 30-01-2012

Test Laboratory: QuieTek Lab System Check Body 5800MHz

DUT: Dipole D5GHzV2; Type: D5GHzV2

Communication System: CW; Communication System Band: ITD5500 (5000.0 - 5900.0 MHz); Duty Cycle: 1:1; Frequency: 5800 MHz; Medium parameters used: f = 5800 MHz; σ = 6.02 mho/m; ϵ r = 46.3; ρ = 1000 kg/m³; Phantom section: Flat Section; Input Power=100mW Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(3.74, 3.74, 3.74); Calibrated: 28/07/2011
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/Body 5800MHz/Area Scan (6x6x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 6.29 mW/g

Configuration/Body 5800MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 40.3 V/m; Power Drift = -0.057 dB

Peak SAR (extrapolated) = 25.1 W/kg

SAR(1 g) = 7.5 mW/g; SAR(10 g) = 2.19 mW/g Maximum value of SAR (measured) = 9.65 mW/g

0 dB = 9.65 mW/g

Appendix B. SAR measurement Data

Date/Time: 30-01-2012

Test Laboratory: QuieTek Lab 802.11b Low-Horizontal Up

DUT: 300 Mbps 802.11n Wireless USB Adapter; Type: Air 2411

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Frequency: 2412 MHz; Medium parameters used: f = 2412 MHz; $\sigma = 1.95$ mho/m; $\epsilon r = 52.4$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(6.60, 6.60, 6.60); Calibrated: 28/07/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11b Low-Horizontal Up/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.637 mW/g

Configuration/802.11b Low-Horizontal Up/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 14.2 V/m; Power Drift = -0.085 dB
Peak SAR (extrapolated) = 1.45 W/kg

SAR(1 g) = 0.643 mW/g; SAR(10 g) = 0.295 mW/g Maximum value of SAR (measured) = 0.704 mW/g

0 dB = 0.704 mW/g

Z-Axis Plot

Test Laboratory: QuieTek Lab 802.11b Mid-Horizontal Up

DUT: 300 Mbps 802.11n Wireless USB Adapter; Type: Air 2411

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Frequency: 2437 MHz; Medium parameters used: f = 2437 MHz; $\sigma = 1.99$ mho/m; $\epsilon r = 52.3$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(6.60, 6.60, 6.60); Calibrated: 28/07/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11b Mid-Horizontal Up/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.564 mW/g

Configuration/802.11b Mid-Horizontal Up/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 14.2 V/m; Power Drift = 0.030 dB

Peak SAR (extrapolated) = 1.26 W/kg

SAR(1 g) = 0.564 mW/g; SAR(10 g) = 0.265 mW/g Maximum value of SAR (measured) = 0.624 mW/g

0 dB = 0.624 mW/g

Test Laboratory: QuieTek Lab 802.11b High-Horizontal Up

DUT: 300 Mbps 802.11n Wireless USB Adapter; Type: Air 2411

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Frequency: 2462 MHz; Medium parameters used: f = 2462 MHz; $\sigma = 2.02$ mho/m; $\epsilon r = 52.2$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(6.60, 6.60, 6.60); Calibrated: 28/07/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11b High-Horizontal Up/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.538 mW/g

Configuration/802.11b High-Horizontal Up/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 15 V/m; Power Drift = 0.095 dB

Peak SAR (extrapolated) = 1.17 W/kg

SAR(1 g) = 0.528 mW/g; SAR(10 g) = 0.247 mW/g Maximum value of SAR (measured) = 0.587 mW/g

0 dB = 0.587 mW/g

Test Laboratory: QuieTek Lab 802.11b Low-Horizontal Down

DUT: 300 Mbps 802.11n Wireless USB Adapter; Type: Air 2411

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Frequency: 2412 MHz; Medium parameters used: f = 2412 MHz; $\sigma = 1.95$ mho/m; $\epsilon r = 52.4$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(6.60, 6.60, 6.60); Calibrated: 28/07/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11b Low-Horizontal Down/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.420 mW/g

Configuration/802.11b Low-Horizontal Down/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 15.9 V/m; Power Drift = -0.137 dB

Peak SAR (extrapolated) = 0.991 W/kg

SAR(1 g) = 0.467 mW/g; SAR(10 g) = 0.218 mW/g Maximum value of SAR (measured) = 0.518 mW/g

0 dB = 0.518 mW/g

Test Laboratory: QuieTek Lab 802.11b Low-Vertical Front

DUT: 300 Mbps 802.11n Wireless USB Adapter; Type: Air 2411

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Frequency: 2412 MHz; Medium parameters used: f = 2412 MHz; $\sigma = 1.95$ mho/m; $\epsilon r = 52.4$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(6.60, 6.60, 6.60); Calibrated: 28/07/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11b Low-Vertical Front/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.088 mW/g

Configuration/802.11b Low-Vertical Front/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 6 V/m; Power Drift = 0.156 dB

Peak SAR (extrapolated) = 0.218 W/kg

SAR(1 g) = 0.083 mW/g; SAR(10 g) = 0.038 mW/g Maximum value of SAR (measured) = 0.094 mW/g

0 dB = 0.094 mW/g

Test Laboratory: QuieTek Lab 802.11b Low-Vertical Back

DUT: 300 Mbps 802.11n Wireless USB Adapter; Type: Air 2411

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Frequency: 2412 MHz; Medium parameters used: f = 2412 MHz; $\sigma = 1.95$ mho/m; $\epsilon r = 52.4$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(6.60, 6.60, 6.60); Calibrated: 28/07/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11b Low-Vertical Back/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.373 mW/g

Configuration/802.11b Low-Vertical Back/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 12.8 V/m; Power Drift = -0.083 dB

Peak SAR (extrapolated) = 0.733 W/kg

SAR(1 g) = 0.325 mW/g; SAR(10 g) = 0.150 mW/g Maximum value of SAR (measured) = 0.355 mW/g

0 dB = 0.355 mW/g

Test Laboratory: QuieTek Lab

802.11b Low-Tip Mode

DUT: 300 Mbps 802.11n Wireless USB Adapter; Type: Air 2411

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Frequency: 2412 MHz; Medium parameters used: f = 2412 MHz; $\sigma = 1.95$ mho/m; $\epsilon r = 52.4$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(6.60, 6.60, 6.60); Calibrated: 28/07/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11b Low-Tip Mode/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.115 mW/g

Configuration/802.11b Low-Tip Mode/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 7.43 V/m; Power Drift = 0.180 dB
Peak SAR (extrapolated) = 0.201 W/kg

SAR(1 g) = 0.101 mW/g; SAR(10 g) = 0.051 mW/g Maximum value of SAR (measured) = 0.111 mW/g

0 dB = 0.111 mW/g

Test Laboratory: QuieTek Lab 802.11g Low-Horizontal Up

DUT: 300 Mbps 802.11n Wireless USB Adapter; Type: Air 2411

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Frequency: 2412 MHz; Medium parameters used: f = 2412 MHz; $\sigma = 1.95$ mho/m; $\epsilon r = 52.4$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0 DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(6.60, 6.60, 6.60); Calibrated: 28/07/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11g Low-Horizontal Up/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.381 mW/g

Configuration/802.11g Low-Horizontal Up/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 15.7 V/m; Power Drift = -0.173 dB

Peak SAR (extrapolated) = 0.790 W/kg

SAR(1 g) = 0.366 mW/g; SAR(10 g) = 0.178 mW/g Maximum value of SAR (measured) = 0.405 mW/g

0 dB = 0.405 mW/g

Test Laboratory: QuieTek Lab

802.11n(20MHz) Low-Horizontal Up

DUT: 300 Mbps 802.11n Wireless USB Adapter; Type: Air 2411

Communication System: Wi-Fi; Communication System Band: 802.11b; Duty Cycle: 1:1; Frequency: 2412 MHz; Medium parameters used: f = 2412 MHz; $\sigma = 1.95$ mho/m; $\epsilon r = 52.4$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(6.60, 6.60, 6.60); Calibrated: 28/07/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11n(20MHz) Low-Horizontal Up/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.272 mW/g

Configuration/802.11n(20MHz) Low-Horizontal Up/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 11.6 V/m; Power Drift = -0.037 dB

Peak SAR (extrapolated) = 0.731 W/kg

SAR(1 g) = 0.332 mW/g; SAR(10 g) = 0.162 mW/g Maximum value of SAR (measured) = 0.365 mW/g

0 dB = 0.365 mW/g

Test Laboratory: QuieTek Lab

802.11n(40MHz) High-Horizontal Up

DUT: 300 Mbps 802.11n Wireless USB Adapter; Type: Air 2411

Communication System: Wi-Fi; Communication System Band: 802.11n(40MHz); Duty Cycle: 1:1; Frequency: 2452 MHz; Medium parameters used: f = 2452 MHz; $\sigma = 2.01$ mho/m; $\epsilon r = 52.3$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(6.60, 6.60, 6.60); Calibrated: 28/07/2011
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11n(40MHz) High-Horizontal Up/Area Scan (5x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.296 mW/g

Configuration/802.11n(40MHz) High-Horizontal Up/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 10.7 V/m; Power Drift = 0.182 dB

Peak SAR (extrapolated) = 0.688 W/kg

SAR(1 g) = 0.331 mW/g; SAR(10 g) = 0.164 mW/g Maximum value of SAR (measured) = 0.365 mW/g

0 dB = 0.365 mW/g

Test Laboratory: QuieTek Lab

802.11n(20MHz) 5180MHz-Horizontal Up

DUT: 300 Mbps 802.11n Wireless USB Adapter; Type: Air 2411

Communication System: CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Duty Cycle: 1:1; Frequency: 5180 MHz; Medium parameters used: f = 5180 MHz; σ = 5.12 mho/m; ϵ r = 48; ρ = 1000 kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(3.95, 3.95, 3.95); Calibrated: 28/07/2011
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11n(20MHz) Channel36-Horizontal Up/Area Scan (6x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.556 mW/g

Configuration/802.11n(20MHz) Channel36-Horizontal Up/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm, Reference Value = 8.09 V/m; Power Drift = 0.159 dB Peak SAR (extrapolated) = 1.35 W/kg

SAR(1 g) = 0.347 mW/g; SAR(10 g) = 0.173 mW/g Maximum value of SAR (measured) = 0.644 mW/g

0 dB = 0.644 mW/g

Test Laboratory: QuieTek Lab

802.11n(20MHz) 5180MHz-Horizontal Down

DUT: 300 Mbps 802.11n Wireless USB Adapter; Type: Air 2411

Communication System: CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Duty Cycle: 1:1; Frequency: 5180 MHz; Medium parameters used: f = 5180 MHz; σ = 5.12 mho/m; ϵ r = 48; ρ = 1000 kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(3.95, 3.95, 3.95); Calibrated: 28/07/2011
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11n(20MHz) Channel36-Horizontal Down/Area Scan (6x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.450 mW/g

Configuration/802.11n(20MHz) Channel36-Horizontal Down/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm, Reference Value = 6.45 V/m; Power Drift = -0.060 dB Peak SAR (extrapolated) = 0.891 W/kg

SAR(1 g) = 0.248 mW/g; SAR(10 g) = 0.088 mW/g Maximum value of SAR (measured) = 0.482 mW/g

0 dB = 0.482 mW/g

Test Laboratory: QuieTek Lab

802.11n(20MHz) 5180MHz-Vertical Front

DUT: 300 Mbps 802.11n Wireless USB Adapter; Type: Air 2411

Communication System: CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Duty Cycle: 1:1; Frequency: 5180 MHz; Medium parameters used: f = 5180 MHz; σ = 5.12 mho/m; ϵ r = 48; ρ = 1000 kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(3.95, 3.95, 3.95); Calibrated: 28/07/2011
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11n(20MHz) Channel36-Vertical Front/Area Scan (6x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.612 mW/g

Configuration/802.11n(20MHz) Channel36-Vertical Front/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm, Reference Value = 9.16 V/m; Power Drift = -0.105 dB Peak SAR (extrapolated) = 1.27 W/kg

SAR(1 g) = 0.349 mW/g; SAR(10 g) = 0.109 mW/g Maximum value of SAR (measured) = 0.699 mW/g

0 dB = 0.699 mW/g

Test Laboratory: QuieTek Lab

802.11n(20MHz) 5180MHz-Vertical Back

DUT: 300 Mbps 802.11n Wireless USB Adapter; Type: Air 2411

Communication System: CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Duty Cycle: 1:1; Frequency: 5180 MHz; Medium parameters used: f = 5180 MHz; σ = 5.12 mho/m; ϵ r = 48; ρ = 1000 kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(3.95, 3.95, 3.95); Calibrated: 28/07/2011
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11n(20MHz) Channel36-Vertical Back/Area Scan (6x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.480 mW/g

Configuration/802.11n(20MHz) Channel36-Vertical Back/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm, Reference Value = 8.83 V/m; Power Drift = 0.135 dB Peak SAR (extrapolated) = 1.33 W/kg

SAR(1 g) = 0.336 mW/g; SAR(10 g) = 0.099 mW/g Maximum value of SAR (measured) = 0.681 mW/g

0 dB = 0.681 mW/g

Test Laboratory: QuieTek Lab

802.11n(20MHz) 5180MHz-Tip Mode

DUT: 300 Mbps 802.11n Wireless USB Adapter; Type: Air 2411

Communication System: CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Duty Cycle: 1:1; Frequency: 5180 MHz; Medium parameters used: f = 5180 MHz; $\sigma = 5.12$ mho/m; $\epsilon r = 48$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(3.95, 3.95, 3.95); Calibrated: 28/07/2011
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11n(20MHz) Channel36-Tip Mode/Area Scan (6x7x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.138 mW/g

Configuration/802.11n(20MHz) Channel36-Tip Mode/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm, Reference Value = 3.51 V/m; Power Drift = 0.108 dB

Peak SAR (extrapolated) = 0.285 W/kg

SAR(1 g) = 0.080 mW/g; SAR(10 g) = 0.030 mW/g Maximum value of SAR (measured) = 0.146 mW/g

0 dB = 0.146 mW/g

Test Laboratory: QuieTek Lab

802.11n(20MHz) 5240MHz-Vertical Front

DUT: 300 Mbps 802.11n Wireless USB Adapter; Type: Air 2411

Communication System: CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Duty Cycle: 1:1; Frequency: 5240 MHz; Medium parameters used: f = 5240 MHz; $\sigma = 5.2$ mho/m; $\epsilon r = 47.8$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(3.95, 3.95, 3.95); Calibrated: 28/07/2011
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11n(20MHz) Channel48-Vertical Front/Area Scan (6x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.609 mW/g

Configuration/802.11n(20MHz) Channel48-Vertical Front/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm, Reference Value = 9 V/m; Power Drift = 0.032 dB

Peak SAR (extrapolated) = 1.26 W/kg

SAR(1 g) = 0.350 mW/g; SAR(10 g) = 0.112 mW/g Maximum value of SAR (measured) = 0.695 mW/g

0 dB = 0.695 mW/g

Test Laboratory: QuieTek Lab

802.11n(20MHz) 5745MHz-Vertical Front

DUT: 300 Mbps 802.11n Wireless USB Adapter; Type: Air 2411

Communication System: CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Duty Cycle: 1:1; Frequency: 5745 MHz; Medium parameters used: f = 5745 MHz; $\sigma = 5.95$ mho/m; $\epsilon = 46.4$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(3.74, 3.74, 3.74); Calibrated: 28/07/2011
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11n(20MHz) Channel149-Vertical Front/Area Scan (6x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.673 mW/g

Configuration/802.11n(20MHz) Channel149-Vertical Front/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm, Reference Value = 8.44 V/m; Power Drift = 0.067 dB

Peak SAR (extrapolated) = 1.47 W/kg

SAR(1 g) = 0.364 mW/g; SAR(10 g) = 0.117 mW/g Maximum value of SAR (measured) = 0.748 mW/g

0 dB = 0.748 mW/g

Test Laboratory: QuieTek Lab

802.11n(20MHz) 5785MHz-Vertical Front

DUT: 300 Mbps 802.11n Wireless USB Adapter; Type: Air 2411

Communication System: CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Duty Cycle: 1:1; Frequency: 5785 MHz; Medium parameters used: f = 5785 MHz; σ = 6 mho/m; ϵ r = 46.3; ρ = 1000 kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(3.74, 3.74, 3.74); Calibrated: 28/07/2011
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11n(20MHz) Channel157-Vertical Front/Area Scan (6x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.704 mW/g

Configuration/802.11n(20MHz) Channel157-Vertical Front/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm, Reference Value = 8.46 V/m; Power Drift = 0.136 dB Peak SAR (extrapolated) = 2.8 W/kg

SAR(1 g) = 0.374 mW/g; SAR(10 g) = 0.123 mW/g Maximum value of SAR (measured) = 0.773 mW/g

0 dB = 0.773 mW/g

Z-Axis Plot

Test Laboratory: QuieTek Lab

802.11n(20MHz) 5825MHz-Vertical Front

DUT: 300 Mbps 802.11n Wireless USB Adapter; Type: Air 2411

Communication System: CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Duty Cycle: 1:1; Frequency: 5825 MHz; Medium parameters used: f = 5825 MHz; $\sigma = 6.07$ mho/m; $\epsilon r = 46.2$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(3.74, 3.74, 3.74); Calibrated: 28/07/2011
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11n(20MHz) Channel165-Vertical Front/Area Scan (6x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.593 mW/g

Configuration/802.11n(20MHz) Channel165-Vertical Front/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm, Reference Value = 7.9 V/m; Power Drift = 0.096 dB Peak SAR (extrapolated) = 1.34 W/kg

SAR(1 g) = 0.329 mW/g; SAR(10 g) = 0.106 mW/g Maximum value of SAR (measured) = 0.674 mW/g

0 dB = 0.674 mW/g

Test Laboratory: QuieTek Lab

802.11n(40MHz) 5190MHz-Vertical Front

DUT: 300 Mbps 802.11n Wireless USB Adapter; Type: Air 2411

Communication System: CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Duty Cycle: 1:1; Frequency: 5190 MHz; Medium parameters used: f = 5190 MHz; $\sigma = 5.14$ mho/m; $\epsilon = 47.9$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(3.95, 3.95, 3.95); Calibrated: 28/07/2011
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11n(40MHz) Channel38-Vertical Front/Area Scan (6x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.256 mW/g

Configuration/802.11n(40MHz) Channel38-Vertical Front/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm, Reference Value = 5.91 V/m; Power Drift = 0.093 dB Peak SAR (extrapolated) = 0.995 W/kg

SAR(1 g) = 0.185 mW/g; SAR(10 g) = 0.064 mW/g Maximum value of SAR (measured) = 0.343 mW/g

0 dB = 0.343 mW/g

Test Laboratory: QuieTek Lab

802.11n(40MHz) 5230MHz-Vertical Front

DUT: 300 Mbps 802.11n Wireless USB Adapter; Type: Air 2411

Communication System: CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Duty Cycle: 1:1; Frequency: 5230 MHz; Medium parameters used: f = 5230 MHz; $\sigma = 5.18$ mho/m; $\epsilon = 47.9$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(3.95, 3.95, 3.95); Calibrated: 28/07/2011
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11n(40MHz) Channel46-Vertical Front/Area Scan (6x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.275 mW/g

Configuration/802.11n(40MHz) Channel46-Vertical Front/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm, Reference Value = 6.11 V/m; Power Drift = 0.107 dB Peak SAR (extrapolated) = 0.853 W/kg

SAR(1 g) = 0.175 mW/g; SAR(10 g) = 0.051 mW/g Maximum value of SAR (measured) = 0.357 mW/g

0 dB = 0.357 mW/g

Test Laboratory: QuieTek Lab

802.11n(40MHz) 5755MHz-Vertical Front

DUT: 300 Mbps 802.11n Wireless USB Adapter; Type: Air 2411

Communication System: CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Duty Cycle: 1:1; Frequency: 5755 MHz; Medium parameters used: f = 5755 MHz; $\sigma = 5.97$ mho/m; $\epsilon = 46.4$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(3.74, 3.74, 3.74); Calibrated: 28/07/2011
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11n(40MHz) Channel151-Vertical Front/Area Scan (6x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.338 mW/g

Configuration/802.11n(40MHz) Channel151-Vertical Front/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm, Reference Value = 5.72 V/m; Power Drift = 0.115 dB

Peak SAR (extrapolated) = 1.75 W/kg

SAR(1 g) = 0.230 mW/g; SAR(10 g) = 0.087 mW/g Maximum value of SAR (measured) = 0.392 mW/g

0 dB = 0.392 mW/g

Test Laboratory: QuieTek Lab

802.11n(40MHz) 5795MHz-Vertical Front

DUT: 300 Mbps 802.11n Wireless USB Adapter; Type: Air 2411

Communication System: CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz); Duty Cycle: 1:1; Frequency: 5795 MHz; Medium parameters used: f = 5795 MHz; $\sigma = 6.01$ mho/m; $\epsilon = 46.3$; $\rho = 1000$ kg/m³; Phantom section: Flat Section

Ambient temperature ($^{\circ}$ C): 21.5, Liquid temperature ($^{\circ}$ C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 SN3698; ConvF(3.74, 3.74, 3.74); Calibrated: 28/07/2011
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 26/07/2011
- Phantom: SAM2; Type: SAM; Serial: TP1562
- Measurement SW: DASY5, V5.2 Build 162; SEMCAD X Version 14.0 Build 59

Configuration/802.11n(40MHz) Channel159-Vertical Front/Area Scan (6x11x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.325 mW/g

Configuration/802.11n(40MHz) Channel159-Vertical Front/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm, Reference Value = 5.62 V/m; Power Drift = 0.056 dB Peak SAR (extrapolated) = 0.755 W/kg

SAR(1 g) = 0.175 mW/g; SAR(10 g) = 0.054 mW/g Maximum value of SAR (measured) = 0.386 mW/g

0 dB = 0.386 mW/g

Appendix C. Test Setup Photographs & EUT Photographs

(Horizontal Up)

(Horizontal Down)

(Vertical Front)

(Vertical Back)

Depth of the liquid in the phantom – Zoom in

Note: The position used in the measurements were according to IEEE 1528 - 2003

EUT Photographs

(1) EUT Photo

(2) EUT Photo

(3) EUT Photo

(4) EUT Photo

(5) EUT Photo

(6) EUT Photo

Appendix D. Probe Calibration Data

1155

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

Quietek (Auden)

Certificate No: EX3-3698_Jul11

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3698

Calibration procedure(s)

QA CAL-01.v8, QA CAL-14.v3, QA CAL-23.v4, QA CAL-25.v4

Calibration procedure for dosimetric E-field probes

Calibration date:

July 28, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	31-Mar-11 (No. 217-01372)	Apr-12
Power sensor E4412A	MY41498087	31-Mar-11 (No. 217-01372)	Apr-12
Reference 3 dB Attenuator	SN: S5054 (3c)	29-Mar-11 (No. 217-01369)	Apr-12
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12
Reference 30 dB Attenuator	SN: S5129 (30b)	29-Mar-11 (No. 217-01370)	Apr-12
Reference Probe ES3DV2	SN: 3013	29-Dec-10 (No. ES3-3013_Dec10)	Dec-11
DAE4	SN: 654	3-May-11 (No. DAE4-654_May11)	May-12
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-10)	In house check: Oct-11

Calibrated by:

Name
Function
Signature
Technical Manager

Approved by:

Niels Kuster
Quality Manager

Issued: July 28, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3698_Jul11

Page 1 of 11

Calibration Laboratory of Schmid & Partner

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurlch, Switzerland

S Schweizerischer Kallbrierdlenst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization φ φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3698_Jul11 Page 2 of 11

EX3DV4 - SN:3698 July 28, 2011

Probe EX3DV4

SN:3698

Manufactured: April 22, 2009 Calibrated: July 28, 2011

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3698_Jul11 Page 3 of 11

EX3DV4-SN:3698

July 28, 2011

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3698

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)	
Norm (µV/(V/m) ²) ^A	0.51	0.44	0.45	± 10.1 %	
DCP (mV) ^B	99.1	98.8	101.0		

Modulation Calibration Parameters

UID 10000	Communication System Name	PAR		A dB 0.00	8 dB 0.00	C dB 1.00	VR mV 115.2	Unc ^E (k=2) ±2.5 %
	CW	0.00	X					
			Y	0.00	0.00	1.00	105.0	
	The same of the sa		Z	0.00	0.00	1.00	108.1	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

[^] The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

B Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the

EX3DV4-SN:3698

July 28, 2011

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3698

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	41.9	0.89	8.77	8.77	8.77	0.80	0.67	± 12.0 %
835	41.5	0.90	8.40	8.40	8.40	0.69	0.74	± 12.0 %
900	41.5	0.97	8.29	8.29	8.29	0.64	0.76	± 12.0 %
1750	40.1	1.37	7.38	7.38	7.38	0.80	0.60	± 12.0 %
1900	40.0	1.40	7.18	7.18	7.18	0.80	0.60	± 12.0 %
2450	39.2	1.80	6.51	6.51	6.51	0.80	0.61	± 12.0 %
2600	39.0	1.96	6.39	6.39	6.39	0.74	0.63	± 12.0 %
3500	37.9	2.91	6.41	6.41	6.41	0.20	1.60	± 13.1 %
5200	36.0	4.66	4.80	4.80	4.80	0.35	1.80	± 13.1 %
5300	35.9	4.76	4.58	4.58	4.58	0.35	1.80	± 13.1 %
5500	35.6	4.96	4.48	4.48	4.48	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.16	4.16	4.16	0.45	1.80	± 13.1 %
5800	35.3	5.27	4.22	4.22	4.22	0.45	1.80	± 13.1 %

Certificate No: EX3-3698_Jul11

Page 5 of 11

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

July 28, 2011 EX3DV4-SN:3698

DASY/EASY - Parameters of Probe: EX3DV4- SN:3698

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	55.5	0.96	8.56	8.56	8.56	0.80	0.71	± 12.0 %
835	55.2	0.97	8.59	8.59	8.59	0.80	0.68	± 12.0 %
900	55.0	1.05	8.31	8.31	8.31	0.74	0.75	± 12.0 %
1750	53.4	1.49	7.09	7.09	7.09	0.80	0.68	± 12.0 %
1900	53.3	1.52	6.74	6.74	6.74	0.80	0.65	± 12.0 %
2450	52.7	1.95	6.60	6.60	6.60	0.80	0.60	± 12.0 %
2600	52.5	2.16	6.40	6.40	6.40	0.80	0.50	± 12.0 %
3500	51.3	3.31	5.73	5.73	5.73	0.23	1.90	± 13.1 %
5200	49.0	5.30	3.95	3.95	3.95	0.55	1.90	± 13.1 %
5300	48.9	5.42	3.74	3.74	3.74	0.55	1.90	± 13.1 %
5500	48.6	5.65	3.68	3.68	3.68	0.50	1.90	± 13.1 %
5600	48.5	5.77	3.42	3.42	3.42	0.60	1.90	±13.1 %
5800	48.2	6.00	3.74	3.74	3.74	0.60	1.90	± 13.1 %

Certificate No: EX3-3698_Jul11

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

EX3DV4- SN:3698 July 28, 2011

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3698_Jul11 Page 7 of 11

EX3DV4-SN:3698 July 28, 2011

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

f=1800 MHz,R22

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: EX3-3698_Jul11

Page 8 of 11

EX3DV4— SN:3698 July 28, 2011

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3698_Jul11 Page 9 of 11

EX3DV4- SN:3698 July 28, 2011

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Certificate No: EX3-3698_Jul11

Page 10 of 11

EX3DV4-SN:3698

July 28, 2011

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3698

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Certificate No: EX3-3698_Jul11

Page 11 of 11

Appendix E. Dipole Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multifateral Agreement for the recognition of calibration certificates

Client Quietek (Auden)

Certificate No: D2450V2-839_Mar10

Accreditation No.: SCS 108

Object	D2450V2 - SN: 8	39	
Calibration procedure(s)	QA CAL-05.v7 Calibration proce	dure for dipole validation kits	
Calibration date:	March 12, 2010		
		onal standards, which realize the physical un robability are given on the following pages an	
All calibrations have been conduc	cted in the closed laborator	y facility: environment temperature (22 ± 3)**	C and humidity < 70%.
Calibration Equipment used (M&	TE critical for calibration)		
alibration Equipment used (M&	TE critical for calibration)	Cal Date (Certificate No.)	Scheduled Calibration
alibration Equipment used (M& rimary Standards ower meter EPM-442A	TE critical for calibration) ID # GB37480704	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086)	
alibration Equipment used (M& rimary Standards ower meter EPM-442A ower sensor HP 8481A	TE critical for calibration)	Cal Date (Certificate No.)	Scheduled Calibration Oct-10
rimary Standards Ower meter EPM-442A Ower sensor HP 8481A Reference 20 dB Attenuator	TE critical for calibration) ID # GB37480704 US37292783	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086)	Scheduled Calibration Oct-10 Oct-10
railbration Equipment used (M& rimary Standards lower meter EPM-442A lower sensor HP 8481A teference 20 dB Attenuator ype-N mismatch combination	TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g)	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025)	Scheduled Calibration Oct-10 Oct-10 Mar-10
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327	Cai Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029)	Scheduled Calibration Oct-10 Oct-10 Mar-10 Mar-10
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10)	Scheduled Calibration Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-11
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house)	Scheduled Calibration Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-11 Scheduled Check
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10)	Scheduled Calibration Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-11
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09)	Scheduled Calibration Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-11 Scheduled Check In house check: Oct-11
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	Scheduled Calibration Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-11
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09)	Scheduled Calibration Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-11
Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	Cal Date (Certificate No.) 06-Oct-09 (No. 217-01086) 06-Oct-09 (No. 217-01086) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 02-Mar-10 (No. DAE4-601_Mar10) Check Date (in house) 18-Oct-02 (in house check Oct-09) 4-Aug-99 (in house check Oct-09) 18-Oct-01 (in house check Oct-09)	Scheduled Calibration Oct-10 Oct-10 Mar-10 Mar-10 Jun-10 Mar-11 Scheduled Check In house check: Oct-11 In house check: Oct-11

Certificate No: D2450V2-839_Mar10

Page 1 of 9

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D2450V2-839_Mar10 Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY5	V5.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.4 ± 6 %	1.80 mho/m ± 6 %
Head TSL temperature during test	(21.0 ± 0.2) °C	2244	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR normalized	normalized to 1W	52.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	52.3 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.11 mW / g
SAR normalized	normalized to 1W	24.4 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.5 mW /g ± 16.5 % (k=2)

Certificate No: D2450V2-839_Mar10

Body TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.4 ± 6 %	2.00 mho/m ± 6 %
Body TSL temperature during test	(21.0 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 mW / g
SAR normalized	normalized to 1W	52.0 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	51.6 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.06 mW / g
SAR normalized	normalized to 1W	24.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	24.2 mW / g ± 16.5 % (k=2)

Certificate No: D2450V2-839_Mar10

Page 4 of 9

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.5 Ω - 0.6 jΩ	
Return Loss	- 29.4 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$50.0 \Omega + 0.9 j\Omega$	
Return Loss	- 40.8 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.134 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 20, 2009

Certificate No: D2450V2-839_Mar10

DASY5 Validation Report for Head TSL

Date/Time: 12.03.2010 13:24:52

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:839

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL U11 BB

Medium parameters used: f = 2450 MHz; $\sigma = 1.81 \text{ mho/m}$; $\varepsilon_r = 40.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe; ES3DV3 - SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 26.06.2009

· Sensor-Surface: 3mm (Mechanical Surface Detection)

· Electronics: DAE4 Sn601; Calibrated: 02.03.2010

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Head/d=10mm, Pin=250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.1 V/m; Power Drift = 0.060 dB

Peak SAR (extrapolated) = 26.5 W/kg

SAR(1 g) = 13 mW/g; SAR(10 g) = 6.11 mW/g Maximum value of SAR (measured) = 16.5 mW/g

0 dB = 16.5 mW/g

Certificate No: D2450V2-839_Mar10

Certificate No: D2450V2-839_Mar10

CENTER 2 458,000 800 MHz

Page 7 of 9

SPAN 408,000 000 MHz

DASY5 Validation Report for Body

Date/Time: 12.03.2010 15:25:35

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:839

Communication System; CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL U10 BB

Medium parameters used: f = 2450 MHz; $\sigma = 2.01 \text{ mho/m}$; $\varepsilon_r = 54.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.31, 4.31, 4.31); Calibrated: 26.06.2009

· Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 02.03.2010

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

Body/d=10mm, Pin250 mW, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.9 V/m; Power Drift = -0.0047 dB

Peak SAR (extrapolated) = 27.1 W/kg

SAR(1 g) = 13 mW/g; SAR(10 g) = 6.06 mW/g

Maximum value of SAR (measured) = 17.2 mW/g

0 dB = 17.2 mW/g

Certificate No: D2450V2-839_Mar10

Certificate No: D2450V2-839_Mar10

Page 9 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Quietek (Auden)

Accreditation No.: SCS 108

Certificate No: D5GHzV2-1078_Mar10

CALIBRATION CERTIFICATE

Object D5GHzV2 - SN: 1078

Calibration procedure(s) QA CAL-22.v1

Calibration procedure for dipole validation kits between 3-6 GHz

Calibration date: March 11, 2010

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-09 (No. 217-01086)	Oct-10
Power sensor HP 8481A	US37292783	06-Oct-09 (No. 217-01086)	Oct-10
Reference 20 dB Attenuator	SN: 5086 (20g)	31-Mar-09 (No. 217-01025)	Mar-10
Type-N mismatch combination	SN: 5047.2 / 06327	31-Mar-09 (No. 217-01029)	Mar-10
Reference Probe EX3DV4	SN: 3503	05-Mar-10 (No. EX3-3503_Mar10)	Mar-11
DAE4	SN: 601	02-Mar-10 (No. DAE4-601_Mar10)	Mar-11
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-09)	In house check: Oct-10

Function

Technical Manager

Calibrated by: Jeton Kastrati Laboratory Technician

Issued: March 11, 2010

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Katja Pokovic

Certificate No: D5GHzV2-1078_Mar10 Page 1 of 14

Approved by:

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

C Service suisse d etaionnage
Servizio svizzero di taratura
S wiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC Std 62209 Part 2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", Draft Version 0.9, December 2004
- b) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D5GHzV2-1078_Mar10 Page 2 of 14

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Area Scan resolution	dx, dy = 10 mm	
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 2.5 mm	
Frequency	5200 MHz ± 1 MHz 5500 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.7 ± 6 %	4.56 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C	(2000)	12002

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	100 mW input power	8.17 mW / g
SAR normalized	normalized to 1W	81.7 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	82.0 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.31 mW / g
SAR normalized	normalized to 1W	23.1 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	23.1 mW / g ± 19.5 % (k=2)

Certificate No: D5GHzV2-1078_Mar10

Page 3 of 14

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.2 ± 6 %	4.82 mho/m ± 6 %
Head TSL temperature during test	(21.0 ± 0.2) °C		

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	100 mW input power	8.73 mW / g
SAR normalized	normalized to 1W	87.3 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	87.5 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.45 mW / g
SAR normalized	normalized to 1W	24.5 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.5 mW / g ± 19.5 % (k=2)

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.6 ± 6 %	5.08 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C		****

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	100 mW input power	8.09 mW / g
SAR normalized	normalized to 1W	80.9 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	80.4 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.28 mW / g
SAR normalized	normalized to 1W	22.8 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	22.7 mW / g ± 19.5 % (k=2)

Certificate No: D5GHzV2-1078_Mar10

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	49.4 ± 6 %	5.44 mho/m ± 6 %
Body TSL temperature during test	(21.6 ± 0.2) °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	
SAR measured	100 mW input power	7.78 mW / g
SAR normalized	normalized to 1W	77.8 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	77.9 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.17 mW / g
SAR normalized	normalized to 1W	21.7 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.8 mW / g ± 19.5 % (k=2)

Body TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.8 ± 6 %	5.81 mho/m ± 6 %
Body TSL temperature during test	(21.6 ± 0.2) °C	- Albert	

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	
SAR measured	100 mW input power	8.35 mW / g
SAR normalized	normalized to 1W	83.5 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	83.6 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.30 mW / g
SAR normalized	normalized to 1W	23.0 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	23.0 mW / g ± 19.5 % (k=2)

Certificate No: D5GHzV2-1078_Mar10 Page 5 of 14

Body TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.2 ± 6 %	6.18 mho/m ± 6 %
Body TSL temperature during test	(21.6 ± 0.2) °C	2222	

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	
SAR measured	100 mW input power	7.33 mW / g
SAR normalized	normalized to 1W	73.3 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	73.3 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.02 mW / g
SAR normalized	normalized to 1W	20.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	20.2 mW / g ± 19.5 % (k=2)

Certificate No: D5GHzV2-1078_Mar10

Page 6 of 14

Appendix

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	$53.4~\Omega$ - $8.7~j\Omega$	
Return Loss	-20.9 dB	

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	52 .8 Ω - 6.1 jΩ	
Return Loss	-23.7 dB	

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	54.6 Ω - 3.8 jΩ	
Return Loss	-24.9 dB	

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	53.6 Ω - 8.7 jΩ	
Return Loss	-20.8 dB	

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	51.7 Ω - 5.2 jΩ	
Return Loss	-25.4 dB	

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	55.6 Ω - 1.4 jΩ
Return Loss	-25.2 dB

Certificate No: D5GHzV2-1078_Mar10

Page 7 of 14

General Antenna Parameters and Design

Electrical Delay (one direction)	1.201 ns

After long term use with 40 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 26, 2008

Certificate No: D5GHzV2-1078_Mar10 Page 8 of 14

DASY5 Validation Report for Head TSL

Date/Time: 10.03.2010 17:25:49

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN:1078

Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz; Duty

Cycle: 1:1

Medium: HSL 5000

Medium parameters used: f = 5200 MHz; σ = 4.56 mho/m; ϵ_r = 36.7; ρ = 1000 kg/m³, Medium parameters used: f = 5500 MHz; σ = 4.82 mho/m; ϵ_r = 36.1; ρ = 1000 kg/m³, Medium parameters used: f = 5800

MHz; $\sigma = 5.08 \text{ mho/m}$; $\varepsilon_r = 35.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.36, 5.36, 5.36), ConvF(4.85, 4.85, 4.85), ConvF(4.74, 4.74, 4.74); Calibrated: 05,03,2010
- · Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.03.2010
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

D5GHzV2 Dipole (Head)/d=10mm, Pin=100mW, f=5200 MHz/Zoom Scan (4x4x2.5mm), dist=2mm

(8x8x10)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 64.8 V/m; Power Drift = 0.079 dB

Peak SAR (extrapolated) = 30.9 W/kg

SAR(1 g) = 8.17 mW/g; SAR(10 g) = 2.31 mW/g

Maximum value of SAR (measured) = 15.7 mW/g

D5GHzV2 Dipole (Head)/d=10mm, Pin=100mW, f=5500 MHz/Zoom Scan (4x4x2.5mm), dist=2mm

(8x8x10)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 65.4 V/m; Power Drift = 0.074 dB

Peak SAR (extrapolated) = 35 W/kg

SAR(1 g) = 8.73 mW/g; SAR(10 g) = 2.45 mW/g

Maximum value of SAR (measured) = 17.1 mW/g

D5GHzV2 Dipole (Head)/d=10mm, Pin=100mW, f=5800 MHz/Zoom Scan (4x4x2.5mm), dist=2mm

(8x8x10)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 62.3 V/m; Power Drift = 0.099 dB

Peak SAR (extrapolated) = 33.5 W/kg

SAR(1 g) = 8.09 mW/g; SAR(10 g) = 2.28 mW/g

Maximum value of SAR (measured) = 16 mW/g

Certificate No: D5GHzV2-1078_Mar10 Page 9 of 14

0 dB = 16 mW/g

Certificate No: D5GHzV2-1078_Mar10

Page 10 of 14

Certificate No: D5GHzV2-1078_Mar10

Page 11 of 14

DASY5 Validation Report for Body TSL

Date/Time: 11.03.2010 14:40:41

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN:1078

Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz; Duty

Cycle: 1:1

Medium: MSL 5000 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 5.47$ mho/m; $\epsilon_r = 49.4$; $\rho = 1000$ kg/m 3 , Medium parameters used: f = 5500 MHz; $\sigma = 5.84$ mho/m; $\epsilon_r = 48.7$; $\rho = 1000$ kg/m 3 , Medium parameters used: f = 5800

MHz; $\sigma = 6.21 \text{ mho/m}$; $\varepsilon_r = 48.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.88, 4.88, 4.88), ConvF(4.37, 4.37, 4.37), ConvF(4.57, 4.57, 4.57); Calibrated: 05.03.2010
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.03.2010
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- Measurement SW: DASY5, V5.2 Build 157; SEMCAD X Version 14.0 Build 57

$D5GHzV2\ Dipole\ (Body)/d=10mm,\ Pin=100mW,\ f=5200\ MHz/Zoom\ Scan\ (4x4x2.5mm),\ dist=2mm$

(8x8x10)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 59.5 V/m; Power Drift = 0.000976 dB

Peak SAR (extrapolated) = 29.6 W/kg

SAR(1 g) = 7.78 mW/g; SAR(10 g) = 2.17 mW/g

Maximum value of SAR (measured) = 15 mW/g

$D5GHzV2\ Dipole\ (Body)/d=10mm,\ Pin=100mW,\ f=5500\ MHz/Zoom\ Scan\ (4x4x2.5mm),\ dist=2mm$

(8x8x10)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 60.4 V/m; Power Drift = 0.013 dB

Peak SAR (extrapolated) = 34 W/kg

SAR(1 g) = 8.35 mW/g; SAR(10 g) = 2.3 mW/g

Maximum value of SAR (measured) = 16.4 mW/g

D5GHzV2 Dipole (Body)/d=10mm, Pin=100mW, f=5800 MHz/Zoom Scan (4x4x2.5mm), dist=2mm

(8x8x10)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 55.3 V/m; Power Drift = 0.012 dB

Peak SAR (extrapolated) = 31.4 W/kg

SAR(1 g) = 7.33 mW/g; SAR(10 g) = 2.02 mW/g

Maximum value of SAR (measured) = 14.5 mW/g

Certificate No: D5GHzV2-1078_Mar10

Page 12 of 14

0 dB = 14.5 mW/g

Certificate No: D5GHzV2-1078_Mar10

Page 13 of 14

Certificate No: D5GHzV2-1078_Mar10

Page 14 of 14