Отбор переменных. Снижение размерности данных

Подготовка фичей

- Масштабирование фичей
 - Как правило вычитаем среднее, делим на стандартное отклонение
- Отбор фичей(переменных).

Отбор переменных (фичей) для линейных моделей

- Переменные должны коррелировать с моделируемой переменой:
 - Кореляция (для регрессии)
 - AU-ROC(для классификации)
 - Взаимная информация (для классификации)

- Переменные должны быть максимально независимы:
 - Минимальная корреляция(Pearson)
 - Мнимальная мультиколлинеарность(VIF)
- Оптимальное число переменных пропорционально количеству объектов(в случае некоррелированных переменных) или корню квадратному из количества объектов

Снижение размерности данных

- Может использоваться в рамках задачи сокращения количества фичей (переменных)
- Может использоваться для самостоятельных задач:
 - Topic modelind
 - Coctail party problem

Principal Component Analysis

Многомерное шкалирование (MDS)

• Дана матрица расстояний $D = \{d_{ij}\}$ объектов. Необходимо найти координаты объектов так, чтобы минимизировать функционал $stress = \sqrt{\frac{\displaystyle\sum_i \left(d_i - \hat{d}_i\right)^2}{\displaystyle\sum_i d_i^2}}$

- Алгоритм:
 - 1. Вычисляем $A = \{-\frac{1}{2}d_{ij}^2\}$
 - 2. Вычисляем $B = \{a_{ij} a_{i.} a_{j.} + a_{..}\}$, где $a_{i.}$, $a_{.j}$ и $a_{..}$ средние значения по строке i , столбцу j и всей матрице.
 - 3. Находим собственные значения(λ_i) и соответствующие собственные векторы (L_i). Отбираем векторы соответствующие наибольшим собственным числам. Нормировка векторов: $L_i \bar{L}_i = \lambda_i$, где \bar{L}_i комплексно-сопряженный вектор.
 - 4. Матрица из собственных векторов $L_{1...p}$ исходная матрица

Independent Component Analysis

Local discriminative analysis(LDA), Corelate components analysis(CCA)

Нелинейные методы снижения размерности

• Isomap:

- Нелинейная разновидность шкалиировпния натягивает многообразие (mainfold) и проецирует на него объекты таким образом чтобы новая матрица расстояний не отличалась от изначальной.
- Kohonen self-organizing map:
 - Максимально натягивает многообразие меньшей размерности на датасет и проецирует на него данные
- Generative topographic map:
 - Вероятностная модификация SOM с улучшенной сходимостью

