Ασκηση 1

 $A = [1 \ 1 \ 0; 2 \ 2 \ 1; 2 \ 4 \ 2], b = [1 \ -1 \ 2]^{t}$

- (α) Να κάνω παραγοντοποίηση PA=LDU όπου P είναι πίνακας αντιμετάθεσης, L είναι κάτω τριγωνικός με 1 στη διαγώνιο, U είναι άνω τριγωνικός με 1 στη διαγώνιο και D είναι ένας διαγώνιος πίνακας.
- (β) Να λύσω το σύστημα Αχ=b
- (γ) Να βρω τον αντίστροφο του Α εάν υπάρχει με τη μέθοδο Gauss-Jordan. Εάν δεν υπάρχει να δικαιολογήσω το γιατί

Άσκηση 2

- (α)Να βρω μια βάση υποχώρου όλων τνω διανυσμάτων του R^6 που να ικανοποιούν την σχέση $x_1+2x_2=x_3+2x_4=x_5+2x_6$.
- (β) Να βρώ πίνακα με τον απο πάνω υποχώρο ώς μηδενοχώρο.
- (γ) Να βρω πίνακα με τον απο πάνω υποχώρο ως χώρο στηλών.

Άσκηση 3

Έστω Β βάση υποχώρου S. Να δείξω ότι όλα τα διανύσματα νε S μπορούν να γραφτούν ως μοναδικοι γραμμικοί συνδιασμοί των διανυσμάτων του S.

Άσκηση 4

Έστω πίνακας A_{vxv} με στοιχεία α_{ii} =2i+j. Να βρω ορίζουσα για v>=2.

Άσκηση 5

Έστω η αναδρομική συνάρτηση Φ_{κ} =5 Φ_{κ -1</sub>-6 Φ_{κ -2} Με Φ_0 =2 και Φ_1 =5

(α) Με ιδιοτιμές και ιδιοδυανύσματα να βρω αναλυτική της μορφή δηλαδή μια μη-αναδρομική συνάρτηση.

Άσκηση 6

$$F(x,y)=-2x^2+8xy-10y^2$$

- (α) Να γραψω την f σε μορφή z^tAz , όπου $z=[x\ y\]^t$ και A είναι συμμετρικός πίνακας.
- (β) Είναι ο Α θετικά ή αρνητικά ημιορισμένος;
- (γ) ανάλογα με την από πάνω απάντηση να χαρακτηρίσω τα μέγιστα ή τα ελάχιστα της συνάρτησης.