Estructuras Algebraicas Primer examen parcial	1 ^{er} Apellido:	4 de abril de 2017 Tiempo 2 h.
Departamento Matem. aplic. TIC ETS de Ingenieros Informáticos Universidad Politécnica de Madrid	Nombre: Número de matrícula:	Calificación:

- 1. (3 puntos) Estudia si las siguientes afirmaciones son verdaderas o falsas (si la afirmación es verdadera hay que dar una demostración mientras que si la afirmación es falsa es suficiente con dar un contraejemplo).
 - a) Dado un grupo (G,*) se verifica que el orden de a*b coincide con el orden de b*a para todo par de elementos $a,b\in G$.
 - b) Sea $(G_1,*)$ un grupo de orden infinito y (G_2,\cdot) un grupo de orden finito. Entonces no existe ningún homomorfismo no trivial de grupos φ entre G_1 y G_2 $\varphi:G_1\to G_2$.
 - c) (U_{16}, \cdot_{16}) es isomorfo a $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$.
- 2. (2 puntos) Se consideran las matrices reales $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ y $B = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$
 - a) Calcular el orden de A, el orden de B y el orden de AB como elementos del grupo $(GL_2(\mathbb{R}),\cdot)$
 - b) Sea (G,\cdot) el grupo generado por A y B con la multiplicación de matrices habitual. Demostrar que existe un homomorfismo inyectivo de $(\mathbb{Z},+)$ en (G,\cdot) .
- 3. (3 puntos) Se considera el siguiente subgrupo de S_8 :

$$G = \{e = (1), \ \alpha = (1, 2, 3)(4, 5, 6)(7, 8), \ \beta = (1, 2, 3)(4, 5, 6),$$
$$\gamma = (1, 3, 2)(4, 6, 5), \ \delta = (1, 3, 2)(4, 6, 5)(7, 8), \ \tau = (7, 8)\}$$

a) Obtener el resultado, en forma de ciclos disjuntos, de la siguiente operación:

$$\alpha^2 \beta \gamma \delta \tau$$

b) Sea H el subgrupo de G formado pos sus permutaciones pares: $H = \{ \sigma \in G : \sigma \text{ es par} \}$. Estudiar, justificando la respuesta, si $H \leq G$. En caso afirmativo obtener el grupo G/H e indicar si se trata de un grupo cíclico.

4. (2 puntos)

- a) Sea (G,*) un grupo abeliano de orden 120. Determinar los divisores elementales y los factores invariantes de (G,*) sabiendo que tiene exactamente 3 elementos de orden 2.
- b) Sea (G,*) un grupo de orden 63. Usar el tercer teorema de Sylow para calcular el número de 7-grupos de Sylow de (G,*). Determinar razonadamente si (G,*) es simple.

Solución:

- 1. a) La afirmación es verdadero, demostrado en clase Tema 1.2 ejercicio 1c).
 - b) La afirmación es falsa: $\varphi:\mathbb{Q}^* \to \{1,-1\}$ definida por $\varphi(r) = \left\{ \begin{array}{cc} 1 & \text{si } r>0 \\ -1 & \text{si } r<0 \end{array} \right.$ es un homomorfismo de grupos, no trivial.

 $\varphi: \mathbb{Z} \to \mathbb{Z}_n$ definida por $\varphi(r) = [r]_n$ es un homomorfismo de grupos, no trivial.

- c) La afirmación es falsa: [3] $_{16} \in U_{16}$ y |[3] $_{16}$ | = 4
- 2. a) |A| = 4, |B| = 3, $|AB| = \infty$
 - $b) \ \ \phi: \mathbb{Z} \to G \ \text{definida por } \phi(n) = \left(\begin{array}{c} 1 & n \\ 0 & 1 \end{array} \right) \text{ es homomorfismo de grupos: } \phi(n+m) = \left(\begin{array}{c} 1 & n+m \\ 0 & 1 \end{array} \right) = \left(\begin{array}{c} 1 & n \\ 0 & 1 \end{array} \right) \left(\begin{array}{c} 1 & m \\ 0 & 1 \end{array} \right) = \phi(n)\phi(m) \ \text{y } \ker(\phi) = \left(\begin{array}{c} 1 & 0 \\ 0 & 1 \end{array} \right), \text{por tanto es inyectiva.}$
- 3. a) β
 - $b) \ \ H = \{e,\beta,\gamma\}. \qquad [G:H] = 2 \Rightarrow H \trianglelefteq G. \ |G/H| = 2 \Rightarrow G/H \ \text{es un grupo c\'aclico de orden 2}.$
- 4. a) Divisores elementales: (4, 2, 3, 5). Factores invariantes: (60, 2)
 - b) $63 = 3^2 \cdot 7$, por el tercer teorema de Sylow, el número de 7-grupos de Sylow es n_7 tal que $n_7|36$ y $n_7 \equiv 1 \mod 7 \Rightarrow n_7 = 1 \Rightarrow S_7 \subseteq G$ es propio y no trivial $(|S_7 = 7|) \Rightarrow G$ no es simple.