Al Model Testing Fuzzing: Research Project Proposal

Yuging Yang

Nanjing University

November 30, 2018

Backgrounds

- **Backgrounds**
 - Al fuzzing
 - Fuzzing for AI
 - Al for fuzzing
 - Testing

 - CNN,RNN
 - - DeepXPlore

 - ReluVal

o ●00

Al fuzzing

Fuzzing:

- an automated software testing technique
- provides invalid, unexpected, or random data as inputs to a computer program
- monitors exceptions such as crashes, failing built-in code assertions, or potential memory leaks

Research Goal

Two main categories:

- Fuzzing for Al
- Al for fuzzing

Al fuzzing

0.0

Backgrounds

Fuzzing for Al

Target: Al Components

- neuron coverage¹
- layer coverage²
- formal security method³

¹[Kexin Pei et al., 2017]DeepXplore: Automated Whitebox Testing of Deep Learning Systems

²[Lei Ma et al., 2018]DeepGauge: Multi-Granularity Testing Criteria for Deep Learning Systems

 $^{^{3}}$ [Shiqi Wang et al., 2018]Formal Security Analysis of Neural Networks using Symbolic Intervals

Backgrounds ○ ○ ○ ○ ○ ○

Al fuzzing

Al for fuzzing

Method: Al

- RNN-based(LSTM+AFL)⁴
- CNN-based(CNN+gradient descent)⁵
- RL(Q-Learning)⁶

⁴ [Mohit Raipal et al., 2017]Not all bytes are equal: Neural byte sieve for fuzzing

⁵[Dongdong She et al., 2018]NEUZZ: Efficient Fuzzing with NeuralProgram Smoothing

⁶[Konstantin Bottinger et al., 2018]Deep Reinforcement Fuzzing

Testing

- Blackbox, testing functions without peering into internal structures or workings
- Whitebox, testing internal structures or workings of an application
- Greybox, tests improper structure-caused defects, if any

Coverage Software testing measurement for describing the degree to which the source code of a program is executed

- Edge Coverage
- Function Coverage
- Statement Coverage

CNN,RNN

Short view:

- MLP: Simplest DNN with fully-connected layers
- CNN: +Hypo:Space-correlation, everywhere in CV
- RNN: +Hypo:Time-correlation, usually used in Speech Analytics

- 1 Backgrounds
 - Al fuzzing
 - Fuzzing for Al
 - Al for fuzzing
 - Testing
 - Coverage
 - CNN,RNN
- 2 Related Works
 - DeepXPlore
 - DeepGauge
 - ReluVal
- 3 Research Goal
- 4 Refereences

DeepXPlore¹

- Neuron coverage: coverage of neurons with outputs exceeding preset thresholds
- Goal: Optimize neuron coverage
- How: Gradient Descending aiming to find maximal value

 $^{^{}m 1}$ [Kexin Pei et al., 2017]DeepXplore: Automated Whitebox Testing of Deep Learning Systems

DeepGauge

DeepGauge²

- Neuron coverage is not enough:
 - k-multisection Neuron Coverage
 - Neuron Boundary Coverage (Corner Region Coverage)
 - Strong Neuron Activation Coverage (Corner Case Coverage)
- Layer coverage:
 - Top-k Neuron Coverage
 - Top-k Neuron Patterns

²[Lei Ma et al., 2018]DeepGauge: Multi-Granularity Testing Criteria for Deep Learning Systems

ReluVal

ReluVal³

- Formal Security: Mathematically declared secure properties
- Goal: Achieve a exhaustive, high-performance analysis method
- How: Symbolic intervals and Interval analysis

12 / 16

Refereences

 $^{^3}$ [Shiqi Wang et al., 2018]Formal Security Analysis of Neural Networks using Symbolic Intervals

- - Al fuzzing
 - Fuzzing for AI
 - Al for fuzzing
 - Testing

 - CNN,RNN
 - - DeepXPlore

 - ReluVal
 - Research Goal

Refereences

Research Goal

- Target: Exsisting AI components
- How: Explore by adopting, analysing, optimizing exsisting fuzzing methods
- How: Optimize by combining suitable AI methods

- - Al fuzzing
 - Fuzzing for AI
 - Al for fuzzing
 - Testing

 - CNN,RNN
- - DeepXPlore

 - ReluVal
- Refereences

- [Lei Ma et al., 2018]DeepGauge: Multi-Granularity Testing Criteria for Deep Learning Systems
- [Shiqi Wang et al., 2018]Formal Security Analysis of Neural Networks using Symbolic Intervals
- [Mohit Rajpal et al., 2017]Not all bytes are equal: Neural byte sieve for fuzzing
- [Dongdong She et al., 2018]NEUZZ: Efficient Fuzzing with NeuralProgram Smoothing
- [Konstantin Bottinger et al., 2018]Deep Reinforcement Fuzzing