Claims

What is claimed is:

 A redundancy circuit for a memory array comprising:
a miscompare detector for comparing a current address to be
accessed with a memory defect address; said miscompare detector
providing an enable redundant wordline signal responsive to a match of the
compared addresses;
a deactivate driver circuit coupled to said miscompare detector for

a deactivate driver circuit coupled to said miscompare detector for disabling non-redundant wordlines responsive to said enable redundant wordline signal; and

a redundant driver coupled to said miscompare detector for enabling redundant wordlines responsive to said enable redundant wordline signal.

- 2. A redundancy circuit for a memory array as recited in claim 1 includes a wordline select circuit coupled to said redundant driver for selecting a redundant wordline responsive to said enable redundant wordline signal.
- 3. A redundancy circuit for a memory array as recited in claim 1 wherein said miscompare detector includes a plurality of compare field effect transistors coupled between a common precharge node and a common discharge node.
- 4. A redundancy circuit for a memory array as recited in claim 3 wherein said miscompare detector includes a precharge circuit coupled between a supply voltage and said common precharge node and a discharge device coupled between said common discharge node and ground.
- 5. A redundancy circuit for a memory array as recited in claim 4 wherein one of said plurality of compare field effect transistors is activated, said common precharge node is discharged to identify a miscompare of the compared addresses and an access to a non-redundant wordline is allowed.

6.	A redundancy circuit for a memory array as recited in claim 1
wherein said	d match of the compared addresses is identified by said plurality
of compare	transistors being deactivated, said common precharge node is
maintained	in a precharge state.

- 7. A redundancy circuit for a memory array as recited in claim 1 includes for each redundant wordline a miscompare detector for a wordline read address and a miscompare detector for a wordline write address.
- 8. A redundancy circuit for a memory array as recited in claim 7 wherein said deactivate driver circuit receives a common precharge node signal for each said read address miscompare detector and each said write address miscompare detector.
- 9. A redundancy circuit for a memory array as recited in claim 1 wherein said deactivate driver circuit generates a reset signal to deactivate a non-redundant wordline decoder responsive to said enable redundant wordline signal.
- 10. A redundancy circuit for a memory array as recited in claim 1 wherein said deactivate driver circuit includes a two-high field effect transistor stack coupled between a reset common node and ground.
- 11. A redundancy circuit for a memory array as recited in claim 10 wherein said deactivate driver circuit couples said enable redundant wordline signal to said two-high field effect transistor stack to discharge said reset common node responsive to said match and generate a reset signal to deactivate a non-redundant wordline decoder.
- 12. A redundancy circuit for a memory array as recited in claim 10 wherein said deactivate driver circuit includes a keeper circuit coupled to said reset common node.

- 13. A redundancy circuit for a memory array as recited in claim 10 wherein said deactivate driver circuit includes a saver transistor coupled to said reset common node; said saver transistor being constantly activated and said saver transistor providing said reset common node in a precharged state when said deactivate driver circuit is activated.
- 14. A redundancy circuit for a memory array as recited in claim 1 wherein said redundant driver coupled to said miscompare detector for enabling redundant wordlines responsive to said enable redundant wordline signal includes a buffer circuit receiving said enable redundant wordline signal and providing a buffered enable redundant wordline signal output.
- 15. A redundancy circuit for a memory array as recited in claim 2 wherein said wordline select circuit coupled to said redundant driver for selecting a redundant wordline responsive to said enable redundant wordline signal includes a wordline select circuit for a wordline read address and a wordline select circuit for a wordline write address; said wordline select circuit for said wordline read address and said wordline select circuit for said wordline write address coupled to said deactivate driver circuit.
- 16. A redundancy circuit for a memory array as recited in claim 15 wherein said wordline select circuit for said wordline write address includes a dynamic write node and said wordline select circuit for said wordline read address includes a dynamic read node; said dynamic write node and said dynamic read node being precharged responsive to a clock output signal generated by said deactivate driver circuit.
- 17. A redundancy circuit for a memory array as recited in claim 15 wherein said wordline select circuit for said wordline write address receives a write clock signal and said enable redundant wordline signal and said wordline select circuit for said wordline read address receives a read clock signal and said enable redundant wordline signal.

	10		
1	A method for disabling non-redundant wordlines and for		
2	enabling redundant wordlines using a redundancy circuit for a memory array		
3	comprising the steps of:		
4	comparing a current address to be accessed with a memory defect		
5	address;		
6	providing an enable redundant wordline signal responsive to a match		
7	of the compared addresses;		
8	responsive to said enable redundant wordline signal, generating a		
9	reset signal for disabling non-redundant wordlines; and		
10	responsive to said enable redundant wordline signal, activating a		
11	redundant wordline for said memory defect address.		
1	19. A method for disabling non-redundant wordlines and for		
2	enabling redundant wordlines as recited in claim 19 wherein said generated		
3	reset signal deactivates a wordline decoder for the memory array.		
1	20. A method for disabling non-redundant wordlines and for		
2	enabling redundant wordlines as recited in claim 19 includes the step		
3	responsive to a miscompare of the compared addresses, of allowing a		
4	normal access to a non-redundant wordline.		