Chapter S:II

II. Search Space Representation

- □ Systematic Search
- □ Encoding of Problems
- □ State-Space Representation
- □ Problem-Reduction Representation
- □ Choosing a Representation

The Counterfeit Coin Problem

- □ 12 coins are given, one of which is known to be heavier or lighter.
- 3 weighing tests are allowed to find the counterfeit coin.

The Counterfeit Coin Problem

Sought: a weighing strategy
 What to weigh first, second, etc.?
 How to process different weighing outcomes?

- Solution: exhaustive search
- The role of heuristics: focus on the most promising weighing strategy.

- □ Each rest problem (specified as state) can be described by knowledge already acquired by the preceding tests. A coin belongs to one of the following four categories: not-heavy, not-light, not-suspect, unknown (= none of the first three categories).
- □ A weighing action is the selection of a number of coins (for each pan the same number) and to test the selection.
- □ After each test the category information of each coin is updated. E.g., if some coin is currently assigned to "not-light" and from the weighing outcome follows "not-heavy", its new category becomes "not-suspect".
- □ Each weighing action leads to one of three possible outcomes all of which must be dealt with. The most suitable weighing strategy depends on the objective to optimized:
 - 1. If the maximum number of weighing action is to be minimized, treat the most difficult outcome next.
 - 2. If the expected number of weighing action is to be minimized, treat the most likely outcome next.

The Different Link Types

The application of an operator may lead to different kinds of subproblems. A graph that captures such a search space structure has two kinds of links:

1. AND links.

Lead to independent subproblems all of which, however, must be solved in order to solve the problem associated with the parent node.

2. OR links.

Lead to alternative subproblems one of which has to be solved in order to solve the problem associated with the parent node.

A graph of this type is called problem-reduction graph or AND-OR graph.

- As in the state-space graph: OR links encode applied operators (problem transformation).
- As in the state-space graph: The sequence of OR links along a path that starts at the root node define a solution base.
- Q. Does a path from the root node to a leaf node represent a solution to the problem?
- □ AND links model a problem decomposition. They are employed to decompose a problem according to possible outcomes (as in the counterfeit problem) or to decompose a complex problem into less complex subproblems. [Towers of Hanoi]
- □ Several possibilities may exist to decompose a given rest problem (at a parent node) into subproblems. The AND links of those subproblems that belong together (sibling links) are hence marked as such.

sibling links

- □ In the 2-suspect problem, for instance, we have two coins for which the balance tips one way or another, along with ten remaining coins from which we know that they are honest.
- ☐ The 2-suspect problem (for instance) may occur several times in a weighing strategy.
- ☐ The 2-suspect problem (for instance) can be solved independently from all other weighing problems.
- ☐ The solution of the 2-suspect problem (for instance) can be determined, saved, and reused.

The Different Node types

The application of an operator may lead to different kinds of subproblems. A canonical graph that captures such a search space structure has two kinds of nodes:

1. AND nodes.

Nodes with outgoing AND links only; more precisely: AND links that belong together, sibling AND links.

Examples: decisions of an opponent (Keyword: game tree search), random processes in the nature, (artificial) experiments, results of external computations, all kinds of events controlled by a third party

2. OR nodes.

Nodes with outgoing OR links only.

Examples: the own decisions, the actual strategy

Canonical Representation of AND-OR Graphs

If nodes are incident with different link types or with multiple groups of AND links, a canonical representation can always be generated:

In the following we will consider only AND-OR graphs that have a canonical representation.

- ☐ The AND-OR graph of the counterfeit problem has a canonical representation by nature.
- In the AND-OR graph of the counterfeit problem the child nodes of an OR node are AND nodes and vice versa. This alternation of node types is typical for action-reaction problems, e.g. represented in the form of a game tree. [S:VII Game Playing Introduction].
- ☐ The canonical representation of AND-OR graphs does not require alternating node types. In particular, the root node may not be of OR type.

Search Building Blocks [State-Space]

Definition 5 (Problem-Reduction Graph, AND-OR Graph)

Consider the set of all problems that can be generated by applying either the operators or a problem decomposition to the database.

One obtains the *problem-reduction graph* or *AND-OR graph* by

- connecting each parent node with its generated successors using directed links,
- 2. labeling those links that belong to an operator with the applied operator,
- comprising those links that belong to a problem decomposition as sibling links, and
- 4. introducing additional intermediate nodes and OR-links for each set of sibling AND-links if a node would have more than one set of outgoing sibling links or outgoing AND-links together with outgoing OR-links.

Solution Graph [State-Space]

Typically, a solution in an AND-OR graph is not a path but a more complex subgraph, called *solution graph*.

Definition 6 (Solution Graph in a Problem-Reduction Graph)

Let G be an acyclic AND-OR graph, and let n be a node in G. A finite subgraph H of G is called a *solution graph for* n *in* G iff (\leftrightarrow) the following conditions hold:

- 1. H contains the node n.
- 2. If H contains an inner OR node, then H contains exactly one link to a successor node in G and this successor node.
- 3. If *H* contains an inner AND node, then *H* contains all links to its successor nodes in *G* and all these successor nodes.
- 4. The leaf nodes in H are goal nodes (nodes with solved or trivial rest problems) in G.
- 5. *H* is minimal: it contains no additional nodes and edges.

Solution Graph (continued)

AND-OR graph example:

Two possible solution graphs:

- \Box Usually, we are interested in finding a solution pgraphs H for the root node s in G.
- If H is a solution graph for a node n in G and if n' is some node in H, then the subgraph of H rooted at n', H', is a solution graph for a node n' in G. This subgraph is called the solution graph in H induced by n'.
- \Box Each solution graph defines a decomposition hierarchy of the problem associated with n.
- □ The instantiation of a solution graph is based on local decisions. E.g., a solution graph for some AND node is given by combining solution graphs of its successors.
- A solution graph is compact in the sense that it does not contain multiple occurrences of identical rest problems.
- □ A legitimate solution in a problem-reduction graph must be finite. This property is implicitly fulfilled since the problem-reduction graph itself is created by a search algorithm within a finite amount of time.

Remarks (continued):

- □ The conditions for the determination of a solution graph in Definition 6 are not constructional but declarative. A constructional procedure for bottom-up solution graph synthesis could look like follows:
 - 1. If $n \in \Gamma$, i.e., n is a node that represents a solved rest problem, then $H_n := \langle \{n\}, \emptyset \rangle$ is a solution graph for n in G.
 - 2. If n is an OR node with successor n' in G and $H_{n'} = \langle V', E' \rangle$ is a solution graph for n' in G, then $H_n := \langle V' \cup \{n\}, E' \cup \{(n, n')\} \rangle$ is a solution graph for n in G.
 - 3. If n is an AND node with successors n'_1, \ldots, n'_k in G and $H_{n'_i} = \langle V'_i, E'_i \rangle$ is a solution graph for n'_i in $G, i = 1, \ldots, k$, then $H_n := \langle V'_1 \cup \ldots \cup V'_k \cup \{n\}, E'_1 \cup \ldots \cup E'_k \cup \{(n, n'_1), \ldots, (n, n'_k)\} \rangle$ is a solution graph for n in G.

Why is the above process problematic?

Solution Graph (continued)

Synthesized solution graphs are not necessarily minimum:

→ The inductive formulation given subsequently as "solved-labeling procedure" will address this issue by node labeling.

Solution Graph (continued)

Synthesized solution graphs are not necessarily minimum:

→ The inductive formulation given subsequently as "solved-labeling procedure" will address this issue by node labeling.

Solution Graph (continued)

Synthesized solution graphs are not necessarily minimum:

→ The inductive formulation given subsequently as "solved-labeling procedure" will address this issue by node labeling.

Solution Graph (continued)

The question whether or not an AND-OR graph G contains a solution graph H can be answered by a recursive application (depth-first search) of the following labeling rules, starting with the root node s.

Definition 7 (Solved-Labeling Procedure)

Let G be an acyclic AND-OR graph. A problem associated with a node n in G is labeled as "solved", if one of the following conditions is fulfilled.

- 1. n is a leaf node (terminal node) that represents a solved rest problem.
- 2. n is a nonterminal OR node, and at least one of its OR links points to a node labeled as "solved".
- 3. n is a nonterminal AND node, and all of its AND links point to nodes labeled as "solved".

Usually, solved-labeling is not applied to an underlying search space graph G. Instead, it is applied to the finite, explored subgraph of G as a termination test: If the root node s is labeled "solved", the explored part of G contains a solution graph.

Algorithm: solved-labeling

Input: G. A finite, acyclic AND-OR graph.

n. A node in G.

successors(n). Returns the successors of node n.

 $\star(n)$. Predicate that is *True* if n is a goal node.

Output: The symbol *True* if a solution exists, *False* otherwise.

Algorithm: solved-labeling (without labeling)

Input: G. A finite, acyclic AND-OR graph.

n. A node in G.

successors(n). Returns the successors of node n.

 $\star(n)$. Predicate that is *True* if n is a goal node.

Output: The symbol *True* if a solution exists, *False* otherwise.

```
solved-labeling(G, n, successors, \star)
```

```
1. IF |successors(n)| = 0 THEN IF \star(n) THEN RETURN(\mathit{True}); ELSE RETURN(\mathit{False});
```

Algorithm: solved-labeling (without labeling) Input: G. A finite, acyclic AND-OR graph. n. A node in G. successors(n). Returns the successors of node n. \star (n). Predicate that is *True* if n is a goal node. The symbol *True* if a solution exists, *False* otherwise. Output: solved-labeling $(G, n, successors, \star)$ 1. IF |successors(n)| = 0 THEN IF $\star(n)$ THEN RETURN(True); ELSE RETURN(False);

```
ELSE RETURN(False);
2. FOREACH n' IN successors(n) DO
    If solved-labeling(G, n', successors,*)
    THEN
        IF OR_node(n) THEN RETURN(True); // One success is enough.
        ELSE
        IF AND_node(n) THEN RETURN(False); // One fail is one too much.
ENDDO
```

Algorithm: solved-labeling (without labeling)

Input: G. A finite, acyclic AND-OR graph. n. A node in G. successors(n). Returns the successors of node n. $\star(n)$. Predicate that is True if n is a goal node.

Output: The symbol *True* if a solution exists, *False* otherwise.

```
solved-labeling(G, n, successors, \star)
```

IF $\star(n)$

IF |successors(n)| = 0 THEN

```
THEN RETURN(True);
ELSE RETURN(False);

2. FOREACH n' IN successors(n) DO
    IF solved-labeling(G, n', successors, *)
    THEN
        IF OR_node(n) THEN RETURN(True); // One success is enough.
        ELSE
```

IF $AND_node(n)$ THEN RETURN(False); // One fail is one too much.

3. IF $OR_node(n)$ THEN RETURN(False); // OR_node n has no solvable successor. ELSE RETURN(True); // All successors of AND_node n are solvable.

ENDDO

1.

```
Algorithm:
           solved-labeling (with labeling)
Input:
            G. A finite, acyclic AND-OR graph.
            n. A node in G.
            successors(n). Returns the successors of node n.
            \star(n). Predicate that is True if n is a goal node.
            The symbol True if a solution exists, False otherwise.
Output:
solved-labeling(G, n, successors, \star)
        IF solved(n) THEN RETURN(True);
  1.
        IF |successors(n)| = 0 THEN
  2.
          IF \star(n)
          THEN solved(n) = True, RETURN(True);
          ELSE RETURN(False);
  3.
        FOREACH n' IN successors(n) DO
          IF solved-labeling(G, n', successors, \star)
          THEN
                OR\_node(n) THEN solved(n) = True, RETURN(True);
          ELSE
             IF AND\_node(n) THEN RETURN(False);
        ENDDO
        IF OR\_node(n)
  4.
        THEN RETURN(False);
        ELSE solved(n) = True, RETURN(True);
```

Solution Graphs with Cycles (1)

Cyclic problem-reduction graphs can entail infinite solution graphs, caused by "unfolding":

Solution Graphs with Cycles (1)

Cyclic problem-reduction graphs can entail infinite solution graphs, caused by "unfolding":

Solution Graphs with Cycles (1)

Cyclic problem-reduction graphs can entail infinite solution graphs, caused by "unfolding":

- "Unfolding" means that when a node is reached a second time, the state is not reused but a copy is created instead. I.e., we are completely omitting an occur check.
- Note that the <u>solution graph definition</u> restricts to acyclic AND-OR graphs.
 Q. How could the solved-labeling procedure be adapted to deal with cyclic AND-OR graphs?
- Usually the search space underlying a problem is only partially explored, and hence the AND-OR graph H does not show the complete picture.
 - Q. How could the solved-labeling procedure be adapted to deal with incomplete AND-OR graphs?
- Q. How could an "unsolvable-labeling procedure" be defined, which proves whether a problem is unsolvable?

Solution Graphs with Cycles (2)

Cyclic problem-reduction graphs can entail cyclic synthesized solution graphs even if an acyclic solution graph exists:

Solution Graphs with Cycles (2)

Cyclic problem-reduction graphs can entail cyclic synthesized solution graphs even if an acyclic solution graph exists:

Hypergraphs

AND-OR graphs can be considered as a generalization of ordinary graphs called *hypergraphs*:

- Ordinary graph: Directed links (edges, arcs) connect two nodes.
- Hypergraph: Directed hyperedges, also called "connectors", connect two sets of nodes.
- AND-OR graph: The links of an AND node form a single hyperedge.
- → The determination of a solution graph corresponds to the determination of a hyperpath between the root node s and a set of goal nodes that represent solved rest problems.

- \Box The hyperedges in an AND-OR graph are also called F-edges. [Gallo 1992]
- ☐ The definition of hyperpaths includes the property of being minimal. [Nielsen/Andersen/Pretolani 2005]

Choosing a Representation

Problem-Reduction Graphs with Alternating Node Types

Problem-Reduction Graphs with Alternating Node Types (continued)

Interpretation:

- \Box k operators \sim own actions, decisions, strategy
- \Box l events \sim reactions
- Action problems.

Consequences that result from a subproblem under the impact of applicable operators.

Reaction problems.

Consequences that result from a subproblem under the impact of possible events.

Transforming Problem-Reduction into State-Space Graphs

Transforming Problem-Reduction into State-Space Graphs

Transforming Problem-Reduction into State-Space Graphs

Transforming Problem-Reduction into State-Space Graphs (continued)

Transformation rules:

- \Box To the node s the applicable operators are applied.
- \Box The successor node n' of s is comprised of all reaction problems that may result from applying the chosen operator.
- □ To the node n' all applicable operator combinations are applied, whereas each subproblem $p \in n'$ gets its own operator, i.e., a set of |n'| operators is associated with the link (n', n'').
- \Box The successor node n'' of n' is comprised of all reaction problems that may result from applying the chosen operator set.
 - Observe that the node n' has as many successors as operator combinations are possible, given the subproblems $p \in n'$. This number is in $O(k^{|n'|})$

Transformed Counterfeit Problem

State-Space versus Problem-Reduction Representation

A state-space representation is advisable if solutions are paths (or nodes).

→ The solution graph is a path in the state-space graph.

Examples:

- constraint satisfaction problems
- sequence seeking problems

State-Space versus Problem-Reduction Representation (continued)

A problem-reduction representation is advisable if solution are trees, graphs, or partially ordered node sets.

→ The solution graph is a tree-like subgraph of the problem-reduction graph.

Examples:

- strategy seeking problems
- symbolic integration
- theorem proving

Characteristics:

- Problems may be decomposed into subproblems that can be solved independently of each other (= in parallel).
- The divide-and-conquer paradigm can be applied to find a global optimum.

Remarks:

- Choosing a search space representation requires the analysis whether and how the solutions of subproblem interact with each other when being composed.
- Q. Is a problem-reduction representation possible for the 8-puzzle problem?
- Q. Is a problem-reduction representation an advisable choice for the 8-puzzle problem?
- ☐ There are sequence seeking problems where the solutions of subproblems interact with each other (e.g. the 8-puzzle problem), but where a problem-reduction representation is superior to a state-space representation. Example: The tower of Hanoi problem.

Tower of Hanoi Problem [Wikipedia]

A stack of n disks D_1, \ldots, D_n (different sizes, sorted) is to be moved from peg 1 to peg 3. Only one disk can be moved at a time, no disk may be placed on top of a smaller one.

Tower of Hanoi Problem [Wikipedia]

A stack of n disks D_1, \ldots, D_n (different sizes, sorted) is to be moved from peg 1 to peg 3. Only one disk can be moved at a time, no disk may be placed on top of a smaller one.

Observations:

- \Box The n subproblems (move $D_i, i = 1, ..., n$ on peg 3) are not independent. A solution based on a state-space representation may be advisable.
- There is a linear connection between the subproblems: as soon as D_{k+1}, \ldots, D_n are moved, D_1, \ldots, D_k can be moved as well without moving D_{k+1}, \ldots, D_n .

Tower of Hanoi Problem [Wikipedia]

A stack of n disks D_1, \ldots, D_n (different sizes, sorted) is to be moved from peg 1 to peg 3. Only one disk can be moved at a time, no disk may be placed on top of a smaller one.

Observations:

- \Box The n subproblems (move $D_i, i = 1, ..., n$ on peg 3) are not independent. A solution based on a state-space representation may be advisable.
- There is a linear connection between the subproblems: as soon as D_{k+1}, \ldots, D_n are moved, D_1, \ldots, D_k can be moved as well without moving D_{k+1}, \ldots, D_n .
- \rightarrow Start with the most difficult problem: D_n from peg 1 to peg 3.
 - \rightarrow D_n must be clear and peg 3 must be empty.
 - \rightarrow Introduce new subproblems: D_1, \ldots, D_{n-1} from peg 1 to peg 2.
- Solve the remaining problems.

Tower of Hanoi Problem (continued)

Means-End Analysis

Characteristic for the tower of Hanoi problem is that the set of subproblems p_1, \ldots, p_n is serializable. Formally, this means that there is a sequence i_1, \ldots, i_n such that for problems p_{i_1}, \ldots, p_{i_n} hold:

- 1. p_{i_1}, \ldots, p_{i_k} can be solved after $p_{i_{k+1}}, \ldots, p_{i_n}$ have been solved.
- 2. Solving p_{i_1}, \ldots, p_{i_k} will not compromise the solutions of $p_{i_{k+1}}, \ldots, p_{i_n}$.

Means-End Analysis

Characteristic for the tower of Hanoi problem is that the set of subproblems p_1, \ldots, p_n is serializable. Formally, this means that there is a sequence i_1, \ldots, i_n such that for problems p_{i_1}, \ldots, p_{i_n} hold:

- 1. p_{i_1}, \ldots, p_{i_k} can be solved after $p_{i_{k+1}}, \ldots, p_{i_n}$ have been solved.
- 2. Solving p_{i_1}, \ldots, p_{i_k} will not compromise the solutions of $p_{i_{k+1}}, \ldots, p_{i_n}$.

If this underlying problem structure is identified, the powerful operator selection strategy "means end analysis" can be applied:

"The basic difference between this method [means end analysis] and the state-space approach is its purposeful behavior: operators are invoked by virtue of their potential in fulfilling a desirable subgoal, and new subgoals are created in order to enable the activation of a desirable operator."

[Pearl 1984, p.29]

Remarks:

- □ Planning a trip (e.g. to New York) is another example for a problem that can be tackled by a means end analysis:
 - 1. New York → plane from Frankfurt
 - 2. plane from Frankfurt \rightarrow train to Frankfurt
 - 3. train to Frankfurt \rightarrow bus to train station
 - 4. ...
- The power of problem reduction representation under a regime of a means end analysis: AND-linked subproblems can be solved independently, though for processing the global plan a strict order (from left to right) must be obeyed.
- Q. What is the complexity class of the tower of Hanoi problem?