Arf property and Patterns on the numerical duplication, with an application to quadratic quotients of the Rees algebra

Alessio Borzì

Stockholm University 2019

A numerical semigroup is a subset $S \subseteq \mathbb{N}$ such that

- **1** $0 \in S$;
- $a, b \in S \Rightarrow a + b \in S$;

A numerical semigroup is a subset $S \subseteq \mathbb{N}$ such that

- **1** $0 \in S$;
- $a, b \in S \Rightarrow a + b \in S$;

In other words, a numerical semigroup S is a submonoid of $(\mathbb{N},+)$ with finite complement in \mathbb{N} .

A numerical semigroup is a subset $S \subseteq \mathbb{N}$ such that

- **1** $0 \in S$;
- $a, b \in S \Rightarrow a + b \in S$;

In other words, a numerical semigroup S is a submonoid of $(\mathbb{N},+)$ with finite complement in \mathbb{N} .

Every numerical semigroup is finitely generated $S = \langle n_1, \dots, n_e \rangle$ and we can always assume that $gcd(n_1, \dots, n_e) = 1$.

A numerical semigroup is a subset $S \subseteq \mathbb{N}$ such that

- **1** $0 \in S$;
- $a, b \in S \Rightarrow a + b \in S;$

In other words, a numerical semigroup S is a submonoid of $(\mathbb{N},+)$ with finite complement in \mathbb{N} .

Every numerical semigroup is finitely generated $S=\langle n_1,\ldots,n_e\rangle$ and we can always assume that $gcd(n_1,\ldots,n_e)=1$.

The multiplicity of S is $\mu(S) = \min S \setminus 0$.

Connection with commutative algebra

Let (R,\mathfrak{m}) be a one-dimensional, Noetherian, local, domain. We also assume that R is analytically irreducible, that is the integral closure \overline{R} of R is a DVR, finite as an R-module; and residually rational, that is R and \overline{R} have the same residue field.

Connection with commutative algebra

Let (R,\mathfrak{m}) be a one-dimensional, Noetherian, local, domain. We also assume that R is analytically irreducible, that is the integral closure \overline{R} of R is a DVR, finite as an R-module; and residually rational, that is R and \overline{R} have the same residue field.

Thus, there exists a valuation $v:\overline{R}\to\mathbb{N}$. Since $R\subseteq\overline{R}$, every element of R has a value in \mathbb{N} . The set of values v(R) form a numerical semigroup.

Symmetric numerical semigroups

Let S be a numerical semigroup. The Frobenius number of S is $F(S) = \max(\mathbb{N} \setminus S)$. The conductor of S is c(S) = F(S) + 1

Symmetric numerical semigroups

Let S be a numerical semigroup. The Frobenius number of S is $F(S) = \max(\mathbb{N} \setminus S)$. The conductor of S is c(S) = F(S) + 1

$$S$$
 is symmetric if $x \in S \iff F(S) - x \notin S \quad \forall x \in \mathbb{Z}$

A theorem of Kunz

With the above assumptions on R we have

Theorem (Kunz)

R is Gorenstein $\iff v(R)$ is symmetric.

Semigroup ideals

 $E \subseteq \mathbb{Z}$ is a relative ideal of S if

- \bullet $E + S \subseteq E$;

A relative ideal E contained in S is an ideal of S.

Quotient of a numerical semigroup

Let $a \in \mathbb{N}$ be a positive integer. The set

$$\frac{S}{a} = \{x \in \mathbb{N} : ax \in S\}$$

is again a numerical semigroup, called the quotient of S by a.

Numerical duplication

Let
$$A \subseteq \mathbb{Z}$$
, fix $2 \cdot A = \{2a : a \in A\} \neq 2A = A + A$.

Numerical duplication

Let
$$A \subseteq \mathbb{Z}$$
, fix $2 \cdot A = \{2a : a \in A\} \neq 2A = A + A$.

Given an ideal E of S and an odd integer $d \in S$, the numerical duplication is the numerical semigroup

$$S \bowtie^d E = 2 \cdot S \cup (2 \cdot E + d).$$

Numerical duplication

Let
$$A \subseteq \mathbb{Z}$$
, fix $2 \cdot A = \{2a : a \in A\} \neq 2A = A + A$.

Given an ideal E of S and an odd integer $d \in S$, the numerical duplication is the numerical semigroup

$$S \bowtie^d E = 2 \cdot S \cup (2 \cdot E + d).$$

Note that
$$\frac{S\bowtie^d E}{2}=S$$
.

Symmetry in the numerical duplication

The standard canonical ideal of S is the relative ideal

$$K(S) = \{ x \in \mathbb{Z} : F(S) - x \notin S \}.$$

An ideal E of S is a canonical ideal if exists $x \in \mathbb{Z}$ such that E = x + K(S).

Proposition (D'Anna-Strazzanti)

 $S \bowtie^d E$ is symmetric $\iff E$ is a canonical ideal of S.

Arf numerical semigroups

A numerical semigroup S is Arf if

$$\forall x, y, z \in S \text{ with } x > y > z \quad x + y - z \in S.$$

Multiplicity sequence

Suppose that $S = \{ 0 = s_0 < s_1 < s_2 < \ldots \}$ is Arf, the multiplicity sequence of S is the sequence of differences

$$(e_0, e_1, e_2, \ldots)$$
 with $e_i = s_{i+1} - s_i$.

Multiplicity sequence

Suppose that $S = \{ 0 = s_0 < s_1 < s_2 < \ldots \}$ is Arf, the multiplicity sequence of S is the sequence of differences

$$(e_0, e_1, e_2, \ldots)$$
 with $e_i = s_{i+1} - s_i$.

Note that since $\mathbb{N} \setminus S$ is finite, $e_n = e_{n+1} = \cdots = 1$ for some n.

Integral closure

The integral closure of an ideal $E \subseteq S$ is

$$\overline{E} = \{s \in S : s \geq \min E\}.$$

If $\overline{E} = E$, then E is integrally closed.

Arf property in the numerical duplication

Theorem (B. 2018)

$$S \bowtie^d E$$
 is Arf \iff S is Arf, E is integrally closed and if $\min(E) < c(S)$, S has multiplicity sequence $(d, d, \ldots, d, 1, 1, \ldots)$.

$$S=\langle 3,10,11\rangle=\{0,3,6,9,\rightarrow\}, \quad \textbf{d}=\textbf{3}\in S, \quad E=\{6,9,\rightarrow\}$$
 multiplicity sequence of S $(3,3,3,1,\ldots)$

$$S = \langle 3, 10, 11 \rangle = \{0, 3, 6, 9, \rightarrow \}, \quad \mathbf{d} = \mathbf{3} \in \mathbf{S}, \quad E = \{6, 9, \rightarrow \}$$

$$2 \cdot S$$

$$S = \langle 3, 10, 11 \rangle = \{0, 3, 6, 9, \rightarrow \}, \quad d = 3 \in S, \quad E = \{6, 9, \rightarrow \}$$

$$2 \cdot S$$

0 3 6

15

21

Rees algebra

Let I be an ideal of R and t be an indeterminate. The Rees algebra associated with R and I is the graduated ring

$$R[It] = R \oplus It \oplus I^2t^2 \oplus \ldots = \bigoplus_{n \in \mathbb{N}} I^nt^n.$$

Quadratic quotients of the Rees algebra

In a work of Barucci-D'Anna-Strazzanti it was studied the family of quadratic quotients

$$R(I)_{a,b} = \frac{R[It]}{(t^2 + at + b) \cap R[It]} \quad a, b \in R.$$

This family generalise two constructions. The Nagata idealization

$$R \ltimes I = R \oplus I$$
 $(r,i) \cdot (s,j) = (rs,rj+si),$

and the amalgamated duplication

$$R \bowtie I = R \oplus I$$
 $(r,i) \cdot (s,j) = (rs,rj+si+ij).$

In fact they can be obtained as follows

$$R \ltimes I \simeq R(I)_{0,0} = \frac{R[It]}{(t^2) \cap R[It]}$$
 $a = 0, b = 0$

$$R \bowtie I \simeq R(I)_{-1,0} = \frac{R[It]}{(t^2 - t) \cap R[It]} \quad a = -1, \ b = 0$$

Fix $b \in R$ with v(b) odd. Consider the ring

$$R(I)_{0,-b} = \frac{R[It]}{(t^2 - b) \cap R[It]}.$$

Fix $b \in R$ with v(b) odd. Consider the ring

$$R(I)_{0,-b} = \frac{R[It]}{(t^2 - b) \cap R[It]}.$$

Theorem (B. 2018)

If $\operatorname{char}(R) \neq 2$ then $R(I)_{0,-b}$ has the same properties of R and if v' is the valuation of $\overline{R(I)_{0,-b}}$ then $v'_{|\overline{R}} = 2v$ and

$$v'(R(I)_{0,-b}) = v(R) \bowtie^{v(b)} v(I).$$

Integral closure of an ideal (of a ring)

Let I be an ideal of R. An element $x \in R$ is integral over I if

$$x^n + a_1 x^{n-1} + a_2 x^{n-2} + \ldots + a_n = 0$$
 for some $a_j \in I^j$.

The set \overline{I} of elements in R integral over I is an ideal called the integral closure of I. If $I=\overline{I}$, then I is integrally closed.

Stable ideals and Arf rings

An ideal I of R is stable if exists $x \in I$ such that $I^2 = xI$.

R is an Arf ring if every integrally closed ideal is stable.

Multiplicity sequence

The multiplicity $\mu(R)$ of R is equal to the multiplicity of v(R).

Multiplicity sequence

The multiplicity $\mu(R)$ of R is equal to the multiplicity of v(R).

The blow up of R is $L(R) = \bigcup_{n \in \mathbb{N}} (\mathfrak{m}^n : \mathfrak{m}^n)$. Fix

$$R_0 = R,$$

$$R_{i+1} = L(R_i).$$

The sequence $(\mu(R_0), \mu(R_1), \mu(R_2), \ldots)$ is the multiplicity sequence of R.

Multiplicity sequence

The multiplicity $\mu(R)$ of R is equal to the multiplicity of v(R).

The blow up of R is $L(R) = \bigcup_{n \in \mathbb{N}} (\mathfrak{m}^n : \mathfrak{m}^n)$. Fix

$$R_0 = R,$$

$$R_{i+1} = L(R_i).$$

The sequence $(\mu(R_0), \mu(R_1), \mu(R_2), \ldots)$ is the multiplicity sequence of R.

The value semigroup of an Arf ring

R is Arf $\iff v(R)$ is an Arf numerical semigroup and the multiplicity sequences of R and v(R) coincide.

The conductor

Let $C = (R : \overline{R})$ be the conductor of R.

Note that $\min v(C)$ is the conductor of v(R).

The conductor

Let $C = (R : \overline{R})$ be the conductor of R.

Note that $\min v(C)$ is the conductor of v(R).

If I is integrally closed, $C \subsetneq I$ is equivalent to $\min(v(I)) < \min(v(C)).$

Theorem (B. 2018)

 $R(I)_{0,-b}$ is Arf \iff R is Arf, I is integrally closed and if $C \subsetneq I$ the multiplicity sequence of R is $(v(b),v(b),\ldots,v(b),1,1,\ldots)$.

Patterns

A numerical semigroup S is Arf if

$$\forall x \ge y \ge z \in S \quad x + y - z \in S.$$

Patterns

A numerical semigroup S is Arf if

$$\forall x \ge y \ge z \in S \quad x + y - z \in S.$$

A pattern $p(x_1, \ldots, x_n)$ is a lineare homogeneuos polynomial with non zero integer coefficients.

A numerical semigroup S admits the pattern p if

$$\forall \lambda_1 \geq \cdots \geq \lambda_n \in S \quad p(\lambda_1, \dots, \lambda_n) \in S.$$

A pattern p is admissible if there exists a numerical semigroup S that admits it.

A pattern p is admissible if there exists a numerical semigroup S that admits it.

Given a pattern $p(x_1,\ldots,x_n)=\sum_i a_i x_i$ set

$$p' = \begin{cases} p - x_1 & a_1 > 1\\ p(0, x_1, \dots, x_{n-1}) & a_1 \le 1 \end{cases}$$

and define recursively

$$p^{(0)} = p$$

$$p^{(i+1)} = \left(p^{(i)}\right)'$$

Admissibility degree

The admissibility degree of p, denoted ad(p), is the least integer k such that $p^{(k)}$ is not admissible, if k exists; $ad(p) = \infty$ otherwise.

Admissibility degree

The admissibility degree of p, denoted ad(p), is the least integer k such that $p^{(k)}$ is not admissible, if k exists; $ad(p) = \infty$ otherwise.

```
\operatorname{ad}(p)=0 not admissible patterns \operatorname{ad}(p)\geq 1 \quad \text{admissible patterns} \operatorname{ad}(p)\geq 2 \quad \text{strongly admissible patterns} \quad (p' \text{ is admissible})
```

Equivalent patterns

Denote with $\mathscr{S}(p)$ the set of all numerical semigroups that admits a pattern p.

Equivalent patterns

Denote with $\mathscr{S}(p)$ the set of all numerical semigroups that admits a pattern p.

$$p \text{ induces } q \text{ if } \mathscr{S}(p) \subseteq \mathscr{S}(q).$$

p is equivalent to q if $\mathscr{S}(p) = \mathscr{S}(q)$ (or they induces each other).

Equivalent patterns

Denote with $\mathscr{S}(p)$ the set of all numerical semigroups that admits a pattern p.

p induces q if $\mathscr{S}(p) \subseteq \mathscr{S}(q)$.

p is equivalent to q if $\mathscr{S}(p)=\mathscr{S}(q)$ (or they induces each other).

Proposition (B. 2019)

- If p induce q then $ad(p) \leq ad(q)$.
- If p is equivalent to q then ad(p) = ad(q).

Boolean patterns

The pattern $p = \sum a_i x_i$ is Boolean if $a_i \in \{\pm 1\}$.

Proposition (Bras-Amóros, García-Sánchez)

All Boolean patterns p with ad(p) = i are equivalent $(i \in \{0, 1, 2\})$.

Arf pattern

The Arf pattern is $x_1 + x_2 - x_3$.

Arf pattern

The Arf pattern is $x_1 + x_2 - x_3$.

Set
$$p = \sum a_i x_i$$
 and $b_i = \sum_{j \leq i} a_j$.

Theorem (B. 2019)

- The Arf pattern induces every strongly admissible pattern.
- p is equivalent to the Arf pattern if and only if ad(p) = 2 and there exists i s.t. $b_i = 2$.

Head, Center, Tail

Every pattern p can be decomposed uniquely into the sum of three patterns (called respectively the head, center and tail)

$$p = H_p + C_p + T_p$$

such that the coefficients of H_p are positive, the sum of the coefficients of C_p is zero and ${\rm ad}(T_p)>1.$

Patterns on the numerical duplication

Let $E\subseteq S$ be a semigroup ideal and $d\in S$ an odd integer. Recall that if $p=\sum a_ix_i$ we set $b_i=\sum_{j\le i}a_j$. We note also that $E\cup\{0\}$ form a numerical semigroups, and we set $c(E)=c(E\cup\{0\})$.

We say that $S \bowtie^d E$ admits a pattern p eventually with respect to d if there exists $d' \in \mathbb{N}$ such that $S \bowtie^d E$ admits p for every $d \geq d'$.

Patterns on the numerical duplication

Theorem (B. 2019)

The numerical duplication $S\bowtie^d E$ admits a monic pattern $p=\sum a_ix_i$ eventually with respect to d if one of the following cases occurs

- $\begin{array}{l} \textbf{ ad}(p) = 2 \text{, for all } i \in \{1, \dots, n\} \\ \begin{cases} (b_i 1)/2 \in E E & b_i \text{ odd} \\ b_i/2 \geq c(E) \min(E) & b_i \text{ even} \\ \text{and } S \bowtie^d E \text{ admits } x_1 + T_p. \end{cases}$
- 3 $ad(p) \ge 3$ and $p'(S) \subseteq E E$.

Thank you for your attention!