SVERIGE

PATENTSKRIFT (12)

(11) 518 394

(19) SE

(51) Internationall klass 7 G01N 33/46, B27L 1/00

(45) Patent meddelat 2002-10-01 (41) Ansökan allmänt tillgänglig 2000-01-13

9904173-3

nummer

(22) Patentansökan inkom (24) Löpdag

1998-05-19

1999-11-18 Ansökan inkommen som:

svensk patentansökan

(21) Patentansöknings-

(62) Stamansökans nummer

(86) International ingivningsdag 1998-05-19

fullfölld internationell patentansökan med nummer PCT/FI98/00420 omvandlad europeisk patentansökan

Ingivningsdag för ansökan om europeisk patent

med nummer

(83) Deposition av mikroorganism

(30) Prioritetsuppgifter 1997-05-19 FI 972123

(73) PATENTHAVARE Andritz-Patentverwaltungs-GmbH, Statteggerstrasse 18 8045 Graz AT

(72) UPPFINNARE

(54) BENÄMNING

REGISTRERINGSVERKET

Esa Taipale, Lahtis FI, Rudolf Maybock, Bartholomä AT

(74) OMBUD

PATENT- OCH

Dr Ludwig Brann Patentbyrå AB

Metod för bestämning av andelen trämaterial i en barkström

(56) ANFÖRDA PUBLIKATIONER: - - -

(57) SAMMANDRAG:

Uppfinningen avser en metod för bestämning av andelen trämaterial i en barkström som kommer ut från avbarkning, och för styrning av en avbarkningsprocess utifrån nämnda data i syfte att minska träförlusterna i avbarkningsprocessen. I anordningen enligt uppfinningen är en barkström som kommer ut från avbarkningen anpassad att avbildas medelst en kamera (6), varvid bilden som tas av kameran är anpassad att behandlas medelst en bildbehandlingsenhet (8) som använder de olika graderna av vithet hos bildelementen eller pixlarna i bilden som bas för att, på mjukvaruväg, definiera andelen trämaterial i barkströmmen. Bildbehandlingsenheten (8) är anpassad att alstra en utsignal (9) för styrning av avbarkningsprocessen. Dessutom avser uppfinningen en metod för bestämning av andelen trämaterial i en barkström som förflyttas till en förbränningsprocess, och för styrning av förbränningsprocessen utifrån dessa data.

PRV Patent använder följande dokumentkoder för sina patentskrifter kođ klartext allmänt tillgänglig allmänt tillgänglig patentansökan utläggningsskrift * rättad utläggningsskrift * översättning av kraven i europeisk patentansökan В TI **B**5 råttelse av översättning av kraven i europeisk patentansökan T2 patentskrift • patentskrift • översättning av europeisk patentskrift **T3** CI T4 översättning av europeisk patentskrift i ändrad avfattning patentskrift C2 T5 råttad översättning av europeisk patentskrift C3 rättad patentskrift T8 rättad översättning av europeisk patentskrift C5 rättad patentskrift * **T9** korrigerad översättning av europeisk patentskrift korrigerad förstasida till patentskrift C8 patentskrift i ändrad lydelse E korrigerad förstasida till palentskrift i ändrad lydelse rättad patentskrift i ändrad lydelse E8 * publicerad under aldre lagstiftning

Nationskoder

AP	African Regional	CN	Kina	KI	Kiribati	RLI	Ryska Federationen
	Industrial Property	CO	Colombia	KM	Comorema	RW	Ruanda
	Organization (ARIPO)	CR	Costa Rica	KN	St Kitts	S.A.	Saudi-Arabien
EA	Euroasian Patent Office	CU	Kuba	KP	Dem. Folkrepubliken Korea	SB	Salomondama
	(EAPO)	C.	Kap Verde	KR	Republiken Korea	SC	Seychellema
EP	Europeiska Patentverket	CY.	Cypern	KW	Kuwait	SD	Sudan
	(EPO)	CZ	Tjeckiska republiken	KY	Cayman-ōarna	SE	Sverige
OA	African Intellectual	DE	Tyskland	KZ	Kazachstan	SG	Singapore
	Property Organization	DJ	Djibouti	LA	Laos	SH	St Helena
	(OAPI)		Danmark	LB	Libanon	SI	Slovenien
wo	World Intellectual	DM	Dominica	LC	Saint Lucia	SK	Slovakien
	Property Organization	DO	Dominikanska republiken	Li	Liechtenstein	SL	Sierra Leone
	(WIPO)	DZ	Algeriet	LK	Sri Lanka	SM	San Marino
IB	WIPO (i vissa fall)	EC	Ecuador	LR	Liberia	SN	Senegal ·
		EE	Estland	LS	Lesotho	SO	Somalia
ΑD	Andorra	EG	Egypten	LT	Litauen	SR	Surinam
ΑĒ	Förenade Arabemiraten	ES	Spanien	LU	Luxembourg	ST	São Thomé
AF	Afghanistan	ET	Etiopien	LV	Lettland	SV	El Salvador
AG	Antigua	FI	Finland	LY	Libyen	SY	Syrien
A.I	Anguilla .	FJ	Fiji-ōarna	MA	Marocko	SZ	Swaziland
AL.	Albanien	FK	Falklandsöarna	MC	Monaco	TD	Tchad
AM	Armenien	FR	Frankrike	MD	Moldavien	TG	Togo
AN	Nederländska Antillerna	GA	Gabon	MG	Madagaskar	TH	Thailand
AO	Angola	GB	Storbritannien	MK	Makedonien	TJ	Tadzjikistan
AR	Argentina	GD	Grenada	NIL	Mali	TM	Turkmenistan
AT	Österrike	GE	Georgien	MM	Mayanmar	TN	Tunisien
ΑU	Australien	GH	Ghana	MN	Mongoliet	TO	Tonga
AZ.	Azerbajdzjan	GI	Gibraltar	MR	Mauretanien	TR	Turkiet
BA	Bosnien och	GM	Gambia	MS	Monsterrat	TT	Trinidad och Tobago
	Hercegovina	GN	Guinea	MIT	Malta	TV	Tuvalu
BB	Barbados	GQ	Ekvatorial Guinea	MU	Mauritius	TW	Taiwan
BD	Bangladesh	GR	Grekland	MV	Maldiverna	TZ	Tanzania
BE	Belgien	GT	Guatemala	MW	/ Malawi	UA	Ukraina
BF	Burkina Faso	GW	Guinea-Bissau	MX	Mexiko	UG	Uganda
BG	Bulgarien	GY	Guyana	MY	Malaysia	US	Fôrenta Staterna (USA)
BH	Bahrain	HK	Hongkong	MZ	Mocambique	UΥ	Uruguay
BI	Burundi	HN	Honduras	NA	Namibia	UZ	Uzbekistan
BJ	Benin	HR	Kroatien	NG	Nigeria	VA	Vatikanstaten
BM	Bermuda	HT	Haiti	NI	Nicaragua	VC	St Vincent
во	Bolivia	HU	Ungern	NL	Nederländerna	VE	Venezuela
BR	Brasilien	1D	Indonesien	NO	Norge	VG	Jungfruðarna
BS	Bahamaöarna	ΙE	Irland	NP	Nepal	VN	Viet Nam
BT	Bhutan	IL	Israel	NR	Nauru	VU	Vanuatu
BW	Botswana	IN	Indien	NZ	Nya Zeeland	WS	Samoa
BY	Vitryssland	IO	Irak		Oman	YD	Syd-Jemen
BZ	Belize	IR	Iran	PA	Panama	YE	Jemen
CA	Kanada	IS	Island	PE	Peru	YU	Yugoslavien
CF	Centralafrikanska	iT	Italien	PG	Papua Nya Guinea	ZA	Sydafrika
	Republiken	JM	Jamaica	PH	Filippinema		Zambia
CC	Kongo	JO	Jordanien	PK	Pakistan	ZR	Zaire
	Schweiz	л	Japan	PL	Polen		Zimbabwe
CI	Elfenbenskusten	KE	Kenya	PT	Portugal	∠₩	-unvalue
CL	Chile	KG		PY	•		
	Kamerun				Paraguay Rumānien		
/ Civi	*zertiei nii	νn	Kambodja	ĸO	Kontainen		

Metod för definiering av andelen trämaterial i en ström av bark

Föreliggande uppfinning avser en metod för definiering av andelen trämaterial i en ström av bark som kommer ut från avbarkning, och för styrning av en avbarkningsprocess på basis av nämnda data för minskning av träförlusterna i avbarkningsprocessen.

Vid avbarkning utförs vanligtvis en avbarkningsprocess av en avbarkningstrumma, varvid syftet är att avlägsna bark från trädens yta för att åstadkomma en önskad avbarkningsgrad. Samtidigt förekommer dock avskalning och förstörande av själva trämaterialet, där detta trä betecknas som träförluster då det blir en del av barkströmmen. Naturligtvis är det önskvärt att hålla träförlusterna vid ett minimum, särskilt som trä är en stor kostnadsfaktor vid massa- och papperstillverkning. Som regel kan barkströmmen innehålla trä i kvantiteter upp till omkring 10 till 40%, som är ungefär lika med träförluster i storleksordningen 2 till 5% av den totala använda kvantiteten trämaterial

Enligt teknikens ståndpunkt mäts andelen trä i en barkström genom att ett prov tas upp från barkströmmen. Provet hanteras manuellt för att separera trämaterialet från barkmaterialet, vilket följs av torkning och därefter mätning av den relativa andelen trä. Torkning är nödvändig för jämförelse av torrvikterna. Enligt SCANstandarden tar torkningen 16 timmar.

Ovan nämnda typer av mätningar har mestadels använts för statistik, men dessa mätningar har ändock haft liten betydelse i termer av processtyrning, eftersom situationen kan ha förändrats mycket under den tid som torkningen tar i anspråk.

Ett syfte med uppfinningen är att tillhandahålla en metod för mätning av träförluster i en avbarkningsprocess huvudsakligen i realtid, och således erbjuda möjligheten till styrning av avbarkningsprocessen i syfte att minska träförlusterna.

I enlighet med uppfinning uppnås detta syfte, och en metod enligt uppfinningen kännetecknas av att en barkström som kommer ut från avbarkningen mäts på optisk väg med avseende på dess vithet, och mätresultatet används som bas för bestämning på mjukvaruväg medelst en databehandlingsenhet, av mängden trämaterial i barkströmmen, och av att avbarkningsprocessen styrs utifrån mängden trämaterial som fastställts i barkströmmen.

Det bör understrykas att i denna ansökan avser termen vithet ej enbart olika grå varianter, utan också färgseparering.

Realtidsmätningen av barkströmmen i enlighet med uppfinningen för bestämning av andelen trämaterial som finns i barkströmmen erbjuder i ett genomsnittligt vedrenseri en möjlighet till besparing av 1 till 2% av den totala mängden trä, vilket motsvarar 5000 till 40 000 fastkubikmeter trä per år, beroende på renseriets storlek.

Förutom detta avser uppfinningen en metod för bestämning av andelen trämaterial i en barkström som levereras till en förbränningsprocess, och för styrning av förbränningsprocessen utifrån nämnda data för optimering av förbränningsprocessen.

Särskilt i kraftverk vid sågverk, massa- och pappersfabriker, vilka bränner en blandning av bark- och trämaterial utgör fluktuation hos värmevärdet hos blandningen som skall brännas ett problem. Den mest betydande faktorn avseende påverkan på värmevärdet är fukten hos blandningen som skall brännas, men också fluktuation hos de relativa andelarna av t.ex. bark- och trämaterial i blandningen som skall brännas påverkar värmevärdet.

I den uppfinningsenliga metoden löses inverkan av fluktuationer av de relativa andelarna av bark- och trämaterial på värmevärdet på så sätt att i en barkström mäts på optisk väg dess vithet och mätresultatet används som bas för bestämning, på mjukvaruväg, av andelen trämaterial i barkströmmen, och att mängden trämaterial som bestämts i barkströmmen används som bas för beräkning av värmevärdet för det material som finns i barkströmmen och för styrning av förbränningsprocessen enligt vad som krävs utifrån nämnda värde.

Föredragna vidareutvecklingar framgår av underkraven.

Uppfinningen kommer nu att beskrivas i närmare detalj med hänvisning till de bifogade ritningarna, i vilka:

- Fig. 1 schematiskt visar ett vedrenseri utrustat för metoden enligt en utföringsform av uppfinningen,
- Fig. 2 visar ett svart-vitt originalfoto taget i en barkström, samt formning av bilden efter en itereringsprocess.

I figur 1 betecknar hänvisningssiffran 1 en roterbar avbarkningstrumma, varvid träden som skall avbarkas levereras in i denna genom en av dess ändar medelst en inmatningstransportör 2, varvid det avbarkade trädet kommer ut från den andra änden på en utmatningstransportör 3.

Rotation av trumman 1 ger upphov till att stockarna rullar och stöter emot varandra, varvid barken avlägsnas från deras ytor och matas ut från trumman 1 genom barkhål (visas ej) som anordnats i trummanteln, och ned på en bandtransportör 4 anordnad under trumman 1. Beroende på processinställningarna lossar samtidigt från träden mer eller mindre av själva trämaterialet, varvid trämaterialet representerar träförluster då det matas ut genom barkhålen tillsammans med barken.

För att fotografera en ström av trä som faller ned på bandtransportören 4 som anordnats nedanför trumman 1 och rör sig på denna i pilens 5 riktning, har en kamera 6 och nödvändiga belysningsenheter 7 anordnats ovanför bandtransportörens 4 utmatningsände.

Kameran 6 är ansluten till en bildbehandlingsenhet 8, som använder graden av vithet i bildelementen hos en bild tagen av kameran 6 som bas för bestämning, på mjukvaruväg, av mängden trämaterial i barkströmmen.

Bildbehandlingsenheten 8 är anpassad att alstra en utsignal 9 för styrning av avbarkningsprocessen. Mest föredraget är det om utsignalen 9 är anpassad att automatiskt styra avbarkningsprocessen.

Mätningen av en barkström utförs huvudsakligen som en realtidsmätning och företrädesvis utförs mätningen på en barkström som befinner sig i rörelse. Naturligtvis är det också möjligt att plocka upp prover och fotografera dessa i stationärt tillstånd.

Bildbehandlingen fortgår enligt följande.

Förinställda tröskelvärden för vithet används som bas för att skilja ut stora delar av trämaterial från små delar av bark och bakgrunden (transportbandet).

Om till exempel vitheten ligger mellan 0 och 256, vari, med avseende på vitheten, noll representerar svart, och 256 representerar vitt, inställs förbestämda tröskelvärden, baserade på experiment, för specifika träsorter, till exempel vid 120 och 200, varvid 200-256 representerar trä, och 1-120 representerar bark.

- 2. Vitheten hos bildelementen som identifierats som bark eller trä ställs in vid minimum eller maximum, d.v.s. bark vid värdet 0 och trä vid värdet 256.
- 3. Den nya bilden som utformats i föregående steg, analyseras medelst ett medelvärdesfilter, som studerar hela bilden i små sektioner och beräknar en genomsnittlig vithet ur varje sektion. Genomsnitts- eller medelvärdet används som bas för bestämning av bildsektionen såsom endera trä, bark eller oidentifierad för inväntande av nästa cykel. Denna sekvens separerar små träbitar från stora barkbitar.

Om medelvärdet ligger inom ett intervall som definierats som trå (200-256) eller som bark (0-120), representeras sådana intervall som bark=0 och trä=256. Sekvenserna 1 till 3 upprepas tills samtliga pixlar bestämts, eller ett förvalt antal iterationer nås.

Funktionen hos detta system baseras på det faktum att områdena, vilka bestäms som endera bark eller trä, påverkar de medelvärden som erhålls från medelvärdesfiltret under nästa iterationscykel, varvid varje cykel således tillhandahåller ett mer komplett resultat.

Fig. 2a avbildar ett exempel på en originalbild som tagits av en barkström.

Fig. 2b visar en originalbild som motsvarar fig. 2a och som behandlats medelst bildbehandlingsenheten 8, efter den första iterationscykeln. Utifrån vitheten är det möjligt att i termer av det relativa antalet av bildelement som bestäms som trä, bark eller odefinierade, beräkna att andelen trä är 12%, andelen bark är 33,1%, varvid mer än hälften, eller 54,8% består av områden som fortfarande ej definierats.

I fig. 2c illustreras originalbilden (fig. 2a) i samma form som fig. 2b efter 20 slutförda iterationscykler. Utifrån vitheten är det möjligt att beräkna att andelen trä är 27,4%, andelen bark är 70,5%, varvid andelen av alltjämt odefinierade områden ej är större än 2,1%.

I fig. 1 avbildas en metod och en anordning för minskning av träförluster i en avbarkningsprocess. Dock kan uppfinningens grundkoncept även användas t.ex. på ett sådant sätt att en barkström på en bandtransportör 4 såsom visas i fig. 1, som rör sig till bränning, analyseras såsom beskrivits i samband med fig. 1, men vad som beräknas efter bestämning av andelen trämaterial är värmevärdet för materialet i barkströmmen och förbränningsprocessen styrs utifrån detta.

PATENTKRAV

- 1. Metod för bestämning av andelen trämaterial i en barkström som kommer ut från avbarkning, och för styrning av en avbarkningsprocess utifrån nämnda data i och för minskning av träförluster i avbarkningsprocessen, i vilken metod vitheten hos en barkström som kommer ut från avbarkning mäts på optisk väg, och mätresultatet används som bas för att, på mjukvaruväg, medelst en databehandlingsenhet fastställa andelen av trämaterial i barkströmmen, varvid avbarkningsprocessen styrs utifrån den fastställda mängden trämaterial i barkströmmen, kännetecknad av att en bild som tas av barkströmmen analyseras med avseende på vithet, och proceduren för fastställande av andelen trämaterial är som följer:
- a) vitheten hos varje bildelement i en bild som indelats i bildelement definieras medelst åtminstone en tredelad numerisk skala, vars ändpunkter är m och n, varvid en ändpunkt avsätts att representera bark, och den andra trä;
- b) för ett bildelement eller en pixel sätts värdet till m, då pixeln har en vithet i intervallet m-a, där m<a<n,
- och en pixel sätts till värdet n då pixeln har en vithet i intervallet b-n, där a<b<n, och pixelns värde hålls oförändrat då pixeln har en vithet inom intervallet a-b, varvid a och b representerar tröskelvärden som bestämts experimentellt för den aktuella träsorten;
- c) bilden som produceras i steg B behandlas som bildsektioner medelst ett medelvärdesfilter, varvid bildsektionen består av ett antal pixlar, varvid medelvärdesfiltret används för att definiera ett vithetsmedelvärde för varje pixel i bilden, och de således erhållna medelvärdena används som bas för klassificering av samtliga pixlar i en bild med samma värde m eller n, i enlighet med steg B, eller med ett oförändrat värde, om den ligger i intervallet a-b;
- d) sekvensen A-C upprepas tills samtliga pixlar har klassificerats eller tills ett förvalt antal iterationer nåtts, och

- e) andelen av pixlar som klassificerats såsom representerande trä beräknas i termer av totalt antal pixlar i en bild i syfte att uttrycka andelen trä i barkströmmen.
- 2. Metod för bestämning av andelen trämaterial i en barkström som matas till en förbränningsprocess, och för styrning av förbränningsprocessen utifrån nämnda data i och för optimering av förbränningsprocessen, i vilken metod vitheten hos en barkström som kommer ut från avbarkning mäts på optisk väg, och mätresultatet används som bas för att, på mjukvaruväg, medelst en databehandlingsenhet fastställa andelen av trämaterial i barkströmmen, varvid den definierade mängden trämaterial i barkströmmen används som bas för beräkning av värmevärdet för materialet i barkströmmen och för styrning av förbränningsprocessen utifrån vad som erfordras av detta värde, kännetecknad av att en bild som tas av barkströmmen analyseras med avseende på vithet, och proceduren för fastställande av andelen trämaterial är som följer:
- a) vitheten hos varje bildelement i en bild som indelats i bildelement definieras medelst åtminstone en tredelad numerisk skala, vars ändpunkter är m och n, varvid en ändpunkt avsätts att representera bark, och den andra trä;
- b) för ett bildelement eller en pixel sätts värdet till m, då pixeln har en vithet i intervallet m-a, där m<a<n, och en pixel sätts till värdet n då pixeln har en vithet i intervallet b-n, där a<b<n, och pixelns värde hålls oförändrat då pixeln har en vithet inom intervallet a-b, varvid a och b representerar tröskelvärden som bestämts experimentellt för den aktuella träsorten;
- c) bilden som produceras i steg B behandlas som bildsektioner medelst ett medelvärdesfilter, varvid bildsektionen består av ett antal pixlar, varvid medelvärdesfiltret används för att definiera ett vithetsmedelvärde för varje pixel i bilden, och de således erhållna medelvärdena används som bas för klassificering av samtliga pixlar i en bild med samma värde m eller n, i enlighet med steg B, eller med ett oförändrat värde, om den ligger i intervallet a-b;
- d) sekvensen A-C upprepas tills samtliga pixlar har klassificerats eller tills ett förvalt antal iterationer nåtts, och

e) andelen av pixlar som klassificerats såsom representerande trä beräknas i termer av totalt antal pixlar i en bild i syfte att uttrycka andelen trä i barkströmmen.

Fig. 1

Fig.2a

Fig.2b

Fig.2c

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

This Page Blank (uspto)