Standard units form, in English:

```
estimate of y, = r \times \text{ given } x
in standard units of y in standard units of x
```

Standard units form, in English:

estimate of y, $= r \times$ given xin standard units of y in standard units of x

Standard units form, in math notation:

$$\frac{\text{estimate of y} - \mu_y}{\sigma_y} = r \times \frac{x - \mu_x}{\sigma_x}$$

Standard units form, in English:

estimate of y, $= r \times$ given xin standard units of y in standard units of x

Standard units form, in math notation:

$$\frac{\text{estimate of y} - \mu_y}{\sigma_y} = r \times \frac{x - \mu_x}{\sigma_x}$$

Rearrangement: estimate of $y = slope \times x + intercept$

Standard units form, in English:

estimate of y, $= r \times$ given xin standard units of y in standard units of x

Standard units form, in math notation:

$$\frac{\text{estimate of y} - \mu_y}{\sigma_y} = r \times \frac{x - \mu_x}{\sigma_x}$$

Rearrangement: estimate of $y = slope \times x + intercept$ where

$$slope = \frac{r \times \sigma_y}{\sigma_x} \qquad and \qquad intercept = \mu_y - slope \times \mu_x$$

estimate of
$$y = \text{slope} \times x + \text{intercept}$$

where

$$\mathsf{slope} = \frac{r \times \sigma_{\mathsf{y}}}{\sigma_{\mathsf{x}}} \qquad \mathsf{and} \qquad \mathsf{intercept} = \mu_{\mathsf{y}} - \mathsf{slope} \times \mu_{\mathsf{x}}$$

estimate of
$$y = \text{slope} \times x + \text{intercept}$$

where

$$\mathsf{slope} = \frac{r \times \sigma_{\mathsf{y}}}{\sigma_{\mathsf{x}}} \qquad \mathsf{and} \qquad \mathsf{intercept} = \mu_{\mathsf{y}} - \mathsf{slope} \times \mu_{\mathsf{x}}$$

"Plug in" μ_x as the value of x:

estimate of
$$y = \text{slope} \times x + \text{intercept}$$

where

$$\mathsf{slope} = rac{r imes \sigma_y}{\sigma_\mathsf{x}} \qquad \mathsf{and} \qquad \mathsf{intercept} = \mu_\mathsf{y} - \mathsf{slope} imes \mu_\mathsf{x}$$

"Plug in" μ_x as the value of x:

estimate of
$$y = \text{slope} \times \mu_x + [\mu_y - \text{slope} \times \mu_x] = \mu_y$$

estimate of
$$y = \text{slope} \times x + \text{intercept}$$

where

$$\mathsf{slope} = rac{r imes \sigma_y}{\sigma_\mathsf{x}} \qquad \mathsf{and} \qquad \mathsf{intercept} = \mu_\mathsf{y} - \mathsf{slope} imes \mu_\mathsf{x}$$

"Plug in" μ_x as the value of x:

estimate of
$$y = \text{slope} \times \mu_x + [\mu_y - \text{slope} \times \mu_x] = \mu_y$$

So (μ_x, μ_y) is on the regression line.

estimate of
$$y = \text{slope} \times x + \text{intercept}$$

where

$$\mathsf{slope} = \frac{r \times \sigma_y}{\sigma_x} \qquad \mathsf{and} \qquad \mathsf{intercept} = \mu_y - \mathsf{slope} \times \mu_x$$

"Plug in" μ_x as the value of x:

estimate of
$$y = \text{slope} \times \mu_x + [\mu_y - \text{slope} \times \mu_x] = \mu_y$$

So (μ_x, μ_y) is on the regression line.

The regression line passes through the point of averages.

Heights: average 67 inches, SD 3 inches

Weights: average 160 pounds, SD 20 pounds

r = 0.6; scatter diagram is roughly football shaped

Heights: average 67 inches, SD 3 inches

Weights: average 160 pounds, SD 20 pounds

r = 0.6; scatter diagram is roughly football shaped

Find the equation of the regression line for estimating height based on weight.

Heights: average 67 inches, SD 3 inches

Weights: average 160 pounds, SD 20 pounds

r = 0.6; scatter diagram is roughly football shaped

Find the equation of the regression line for estimating height based on weight.

slope =
$$\frac{0.6 \times 3}{20}$$
 = 0.09 inches per pound

intercept
$$= 67 - 0.09 \times 160 = 52.6$$
 inches

Heights: average 67 inches, SD 3 inches

Weights: average 160 pounds, SD 20 pounds

r = 0.6; scatter diagram is roughly football shaped

Find the equation of the regression line for estimating height based on weight.

slope =
$$\frac{0.6 \times 3}{20}$$
 = 0.09 inches per pound intercept = $67 - 0.09 \times 160$ = 52.6 inches

Answer: estimated height = $0.09 \times$ weight + 52.6

Heights: average 67 inches, SD 3 inches

Weights: average 160 pounds, SD 20 pounds

r = 0.6; scatter diagram is roughly football shaped

Find the equation of the regression line for estimating height based on weight.

slope =
$$\frac{0.6 \times 3}{20}$$
 = 0.09 inches per pound intercept = $67 - 0.09 \times 160$ = 52.6 inches

Answer: estimated height = $0.09 \times$ weight + 52.6

Use: A person who weighs 100 pounds is estimated to be $0.09 \times 100 + 52.6 = 61.6$ inches tall.

slope = 0.09 inches per pound

slope = 0.09 inches per pound

If one of these people puts on one more pound of weight, will he/she get taller by 0.09 inches???

slope = 0.09 inches per pound

If one of these people puts on one more pound of weight, will he/she get taller by 0.09 inches???

Surely not.

slope = 0.09 inches per pound

If one of these people puts on one more pound of weight, will he/she get taller by 0.09 inches???

Surely not.

• Take all the people of any given weight;

slope = 0.09 inches per pound

If one of these people puts on one more pound of weight, will he/she get taller by 0.09 inches???

Surely not.

- Take all the people of any given weight;
- then take all the people who are one pound heavier;

slope = 0.09 inches per pound

If one of these people puts on one more pound of weight, will he/she get taller by 0.09 inches???

Surely not.

- Take all the people of any given weight;
- then take all the people who are one pound heavier;
- the heavier group is 0.09 inches taller, on average.

slope = 0.09 inches per pound

If one of these people puts on one more pound of weight, will he/she get taller by 0.09 inches???

Surely not.

- Take all the people of any given weight;
- then take all the people who are one pound heavier;
- the heavier group is 0.09 inches taller, on average.

Another use of the slope:

If one of the people is 5 pounds heavier than another, then the heavier person is estimated to be $0.09 \times 5 = 0.45$ inches taller.