SYSTÈME DE GESTION DES FICHIERS

Plan

- 1. Concept de Fichier
- 2. Méthodes d'accès à un Fichier
- 3. Méthodes d'accès au contenu d'un Fichier
- 4. Implantation d'un SGF
- 5. Gestion de l'espace mémoire libre
- 6. Étude de cas : Linux et Windows

Problématique

Le stockage dans l'espace d'adressage souffre de :

- Une capacité de stockage restreinte
- Une perte d'information après la fin du processus
- Un conflit d'accès par d'autres processus

Solution

Stockage à long terme qui offre :

- Une grande capacité de stockage
- Une conservation des informations après la fin du processus
- Un accès simultané par plusieurs processus
- Fichiers

Définition

 Un Fichier est l'unité logique de stockage de l'information qui fait abstraction des propriétés physiques des périphériques de stockage

Définition

- Un Fichier est l'unité logique de stockage de l'information qui fait abstraction des propriétés physiques des périphériques de stockage
- Le Fichier est physiquement stocké sur un support de mémoire de masse (permanent)

Définition

- Un Fichier est l'unité logique de stockage de l'information qui fait abstraction des propriétés physiques des périphériques de stockage
- Le Fichier est physiquement stocké sur un support de mémoire de masse (permanent)
- Le SE gère les Fichiers via le Système de Gestion des Fichiers (file system): nommage, utilisation, accès, protection et implantation
- Un SGF fournit le mécanisme de stockage et d'accès aux données

Un Fichier peut être :

Types

Concept de Fichier

- Fichier régulier : texte, binaire (exécutable),
- Fichier spécial: répertoire, périphériques, ...

SE

Types

Un Fichier peut être :

Concept de Fichier

- Fichier régulier : texte, binaire (exécutable),
- Fichier spécial: répertoire, périphériques, ...

Sous Unix la commande file permet de visualiser le type d'un Fichier :

Attributs

Un Fichier a un ensemble de caractéristiques (attributs):

- la taille (octets)
- les dates : création, dernière modification, dernier accès
- le propriétaire
- les droits d'accès
- le type
- •

Chap 2. SGF

Attributs

Un Fichier a un ensemble de caractéristiques (attributs):

la taille (octets)

Concept de Fichier

- les dates : création, dernière modification, dernier accès
- le propriétaire
- les droits d'accès
- le type
- •

Certains de ces attributs sont fournis par l'utilisateur, d'autres sont compétés par le SE

Sous Unix pour afficher tous les attributs, on utilise la commande ls -l

Structure interne

Le Fichier peut avoir l'une des trois sortes de structures :

□ Séquence d'octets non structurés:

Octets
...

- **□** Séquence d'enregistrements:
 - Enregistrements sont de longueur fixe
 - Opérations manipulent des enregistrements
- **□** Arborescence d'enregistrements:
 - Enregistrements ne sont pas tous de même longueur
 - Clé dont la position est fixe
 - Arbre trié en fonction des clés (recherche rapide)

Chap 2. SGF

Cas de Répertoire

Concept de Fichier

Le répertoire forme un moyen d'organisation des Fichiers.

Cas de Répertoire

Le répertoire forme un moyen d'organisation des Fichiers.

De point de vue S.D, un répertoire est un tableau :

Cas de Répertoire

Le répertoire forme un moyen d'organisation des Fichiers.

De point de vue S.D, un répertoire est un tableau :

Cas de Répertoire

Le répertoire forme un moyen d'organisation des Fichiers.

De point de vue S.D, un répertoire est un tableau :

Cas de Répertoire

Structure

Nous distinguons 3 structures logiques:

- Systèmes à un niveau de répertoire
- Systèmes à deux niveaux de répertoire
- Systèmes à répertoires hiérarchiques

Cas de Répertoire

Structure plate ou à un niveau:

- □ Tous les fichiers appartiennent au même répertoire
- Avantages:
 - Facilité de gestion et d'interprétation

Cas de Répertoire

Structure plate ou à un niveau:

□ Inconvénients:

- Problème de nommage: noms uniques
- Difficile à exploiter dans un système multi-utilisateurs

Application: Système embarqué

Cas de Répertoire

Structure à deux niveaux :

- Un répertoire de fichiers maître contient des comptes utilisateur
- Chaque utilisateur possède son propre répertoire de fichiers utilisateur

SE Chap 2. SGF

Cas de Répertoire

Structure à deux niveaux :

Avantages

Résout le problème de collision des noms entre différents utilisateurs

SE Chap 2. SGF

Cas de Répertoire

Structure à deux niveaux :

■ Inconvénients

- Collaboration des utilisateurs
- Recherche des Fichiers (Chemin de recherche)

SE Chap 2. SGF

Cas de Répertoire

Structure à deux niveaux :

Problème: Nécessité d'authentification (login+ password)

Chap 2. SGF

Cas de Répertoire

Concept de Fichier

Structure multi-niveaux ou arborescente:

- Structure arborescente de hauteur quelconque
- Répertoire racine, sous-répertoires, fichiers

Cas de Répertoire

Concept de Fichier

Structure multi-niveaux ou arborescente:

Utilisation des chemins d'accès: suite des répertoires à traverser, depuis la racine pour accéder au fichier, séparés par un caractère spécial (séparateur).

Cas de Répertoire

Concept de Fichier

Structure multi-niveaux ou arborescente:

- Deux types de chemins d'accès :
 - □ Chemin d'accès absolu: chemin de la racine jusqu'au fichier
 - □ Chemin d'accès relatif: à partir de répertoire de travail

SE Chap 2. SGF

Cas de Répertoire

Structure multi-niveaux ou arborescente:

- "." fait référence au répertoire courant
- ".." fait référence au répertoire parent

SE Chap 2. SGF

Cas de Répertoire

Structure multi-niveaux ou arborescente:

Problème : Accès peut être complexe

Cas de Répertoire

Montage

Définition: Intégration d'un système de fichiers spécial (CD, clé USB, partition, second disque dur) à l'arborescence existante.

Chap 2. SGF

- Objectif: permettre et faciliter l'accès aux données qui se trouve dans le système "monté"
- Point de montage: est un répertoire à partir duquel sont accessibles les données se trouvant dans le système de fichiers qui a été intégré
- **Sémantique:**
 - Le montage se fait sur des répertoires vides
- Si le point de montage contient déjà des fichiers, ces derniers deviennent inaccessibles jusqu'au démontage K. ElBedoui-Maktouf

SE Chap 2. SGF

Cas de Répertoire

Montage

Avant montage

Après montage

Méthodes d'accès à un Fichier

A . A . . > . C f 12 . 1

Accès Séquentiel

Si l'arrivée à un Fichier oblige le parcourt des Fichiers précédents.

Ceci est fortement lié au support de stockage.

Exp. Bandes magnétiques

Chap 2. SGF

Méthodes d'accès à un Fichier

Chap 2. SGF

Si l'arrivée à un Fichier peut être sans nécessité de parcourt des Fichiers précédents. Ceci est aussi fortement lié au support de stockage.

Exp. CD, Disque, Flash,...

Chap 2. SGF

Méthodes d'accès au contenu d'un Fichier

Accès Séquentiel

Il faut parcourir le contenu du Fichier donnée par donnée (à partir du début).

Exp. Compilateur, imprimante

SE

Méthodes d'accès au contenu d'un Fichier

Accès Direct

On peut accéder à une donnée directement en connaissant son numéro, sa clé, ...

Exp. Base des données

SE Chap 2. SGF

Organisation

le disque dur

SE Chap 2. SGF

Organisation

le disque dur

Vue Physique

SE Chap 2. SGF

le disque dur

Vue Logique

Le disque dur est un ensemble de blocs

Organisation

le disque dur

Vue Logique

Les blocs sont numérotés

Chap 2. SGF

Chap 2. SGF

Organisation

le disque dur

Vue Logique

Le bloc 0 du disque dur contient le MBR (Master Boot Record) qui sert à booter la machine et charger le SE

Implantation d'un SGF

Organisation

le disque dur

Vue Logique

Chaque Fichier est stocké sur un ensemble de blocs.

SE Chap 2. SGF

Organisation

le disque dur

Vue Logique

Chaque Fichier est stocké sur un ensemble de blocs.

Comment choisir ces blocs?

Méthodes d'allocation de blocs de disque

Chap 2. SGF

* Allocation Contiguë

Principe:

Le Fichier est stocké sur un ensemble adjacents de blocs

Méthodes d'allocation de blocs de disque

Chap 2. SGF

* Allocation Contiguë

Mise en œuvre:

L'entrée à un Fichier est structurée de la façon suivante :

Nom Fichier	Attributs	Adresse de début	Longueur (nombre de blocs)

- Méthodes d'allocation de blocs de disque
 - * Allocation Contiguë

F1	•••	2	2
F2	•••	5	3

Répertoire A

Méthodes d'allocation de blocs de disque

Chap 2. SGF

* Allocation Contiguë

Nom	Att	début	Long
F1	•••	2	2
F2		5	3

Répertoire A

- Méthodes d'allocation de blocs de disque
 - * Allocation Contiguë

Nom	Att	début	Long
FI	•••	2	2
F2	•••	5	3

Répertoire A

- Méthodes d'allocation de blocs de disque
 - * Allocation Contiguë

Nom	Att	début	Long
FI		2	2
F2		5	3

Répertoire A

- Méthodes d'allocation de blocs de disque
 - * Allocation Contiguë

Nom	Att	début	Long
FI	•••	2	2
F2	•••	5	3

Répertoire A

Méthodes d'allocation de blocs de disque

Chap 2. SGF

* Allocation Contiguë

Avantages

- + Simple
- + Accès direct et accès séquentiel facile

Méthodes d'allocation de blocs de disque

Chap 2. SGF

* Allocation Contiguë

Inconvénients

Nécessité de connaitre en avance la taille de Fichier !!!

SE Chap 2. SGF

- Méthodes d'allocation de blocs de disque
 - Allocation Contiguë

Inconvénients

Nécessité de connaitre en avance la taille de Fichier !!!

Méthodes d'allocation de blocs de disque

Chap 2. SGF

* Allocation Contiguë

Inconvénients

- Nécessité de connaitre en avance la taille de Fichier !!!
- Fragmentation externe
- Fragmentation interne

Méthodes d'allocation de blocs de disque

Chap 2. SGF

* Allocation Contiguë

Inconvénients

- Nécessité de connaitre en avance la taille de Fichier !!!
- Fragmentation externe
- Fragmentation interne

Exemple: F1 de taille 900 Ø

Taille bloc: 512 Ø

- Méthodes d'allocation de blocs de disque
 - * Allocation Contiguë

Inconvénients

- Nécessité de connaitre en avance la taille de Fichier !!!
- Fragmentation externe
- Fragmentation interne

F1 de taille 900 Ø

Taille bloc: 512 Ø

Chap 2. SGF

- Méthodes d'allocation de blocs de disque
 - Allocation Contiguë

Inconvénients

- Nécessité de connaitre en avance la taille de Fichier !!!
- Fragmentation externe
- Fragmentation interne

F1 de taille 900 Ø

Taille bloc: 512 Ø

Fragmentation interne = $2*512 - 900 = 124 \varnothing$

K. FlBedoui-Maktouf

Chap 2. SGF

Méthodes d'allocation de blocs de disque

Chap 2. SGF

* Allocation Contiguë

Remarques:

Nécessité de connaître en avance la taille de Fichier !!!

- Méthodes d'allocation de blocs de disque
 - * Allocation Contiguë

Remarques:

Fragmentation externe

La solution est le compactage (défragmentation)

Cette technique est coûteuse en terme de temps et nécessite la mise à jour des adresses.

Chap 2. SGF

- Méthodes d'allocation de blocs de disque
 - * Allocation Contiguë

Implantation d'un SGF

Le compactage (défragmentation)

Chap 2. SGF

Méthodes d'allocation de blocs de disque

* Allocation Contiguë

Implantation d'un SGF

Le compactage (défragmentation)

SE Chap 2. SGF

- Méthodes d'allocation de blocs de disque
 - * Allocation Contiguë

Le compactage (défragmentation)

- Méthodes d'allocation de blocs de disque
 - Allocation Chaînée

Principe:

Le Fichier est stocké sur un ensemble de blocs liés enter eux par des pointeurs.

Chap 2. SGF

Chaque bloc se termine par un pointeur qui indique l'adresse du bloc suivant.

- Méthodes d'allocation de blocs de disque
 - Allocation Chaînée

Principe:

Le Fichier est stocké sur un ensemble de blocs liés enter eux par des pointeurs.

Chaque bloc se termine par un pointeur qui indique l'adresse du bloc suivant.

Données

@ bloc suivant

- Méthodes d'allocation de blocs de disque
 - * Allocation Chaînée

Mise en œuvre:

L'entrée à un Fichier est structurée de la façon suivante :

Nom Fichier	Attributs	Adresse de début

- Méthodes d'allocation de blocs de disque
 - Allocation Chaînée

Répertoire A

Méthodes d'allocation de blocs de disque

Chap 2. SGF

Allocation Chaînée

Nom	Att	début
F1	•••	2
F2		5

Répertoire A

- Méthodes d'allocation de blocs de disque
 - Allocation Chaînée

Nom	Att	début
FI	•••	2
F2	•••	5

Répertoire A

- Méthodes d'allocation de blocs de disque
 - Allocation Chaînée

Nom	Att	début
FI	•••	2
F2	•••	5

Répertoire A

- Méthodes d'allocation de blocs de disque
 - Allocation Chaînée

Nom	Att	début
FI	•••	2
F2		5

Répertoire A

- Méthodes d'allocation de blocs de disque
 - Allocation Chaînée

Nom	Att	début
F1	•••	2
F2	•••	5

Répertoire A

- Méthodes d'allocation de blocs de disque
 - Allocation Chaînée

Nom	Att	début
F1	•••	2
F2	•••	5

Répertoire A

- Méthodes d'allocation de blocs de disque
 - Allocation Chaînée

Nom	Att	début
F1	•••	2
F2	•••	5

Répertoire A

Méthodes d'allocation de blocs de disque

Chap 2. SGF

Allocation Chaînée

Avantages

- + Pas de fragmentation externe
- + Pas de problème de taille de Fichier (il n'est pas nécessaire de connaître la taille de Fichier en avance).

Chap 2. SGF

- Méthodes d'allocation de blocs de disque
 - Allocation Chaînée

Implantation d'un SGF

Inconvénients

- Fragmentation interne
- Accès direct impossible
- Accès séquentiel lent
- La perte d'un pointeur engendre la perte du Fichier

Méthodes d'allocation de blocs de disque

Allocation Chaînée

Inconvénients

- Fragmentation interne
- Accès direct impossible
- Accès séquentiel lent
- La perte d'un pointeur engendre la perte du Fichier

Mélange entre donnée utilisateur et donnée système

Chap 2. SGF

- Méthodes d'allocation de blocs de disque
 - Allocation chaînée avec table FAT

Principe:

Le chaînage entre les blocs d'un fichier est stocké dans une table et non pas au niveau du bloc

Chap 2. SGF

La table est dite FAT (File Allocation Table).

Méthodes d'allocation de blocs de disque

Chap 2. SGF

Allocation chaînée avec table FAT

Principe:

La table FAT

Elle est indexée par le numéro de bloc et indique pour chaque bloc l'adresse du bloc suivant.

- Méthodes d'allocation de blocs de disque
 - Allocation chaînée avec table FAT

Principe:

La table FAT

N° bloc	@ du bloc suivant
0	
1	
2	
•••	

Méthodes d'allocation de blocs de disque

Chap 2. SGF

Allocation chaînée avec table FAT

Mise en œuvre:

L'entrée à un Fichier est structurée de la façon suivante :

Nom Fichier Attributs		Adresse de début

SE Chap 2. SGF

- Méthodes d'allocation de blocs de disque
 - Allocation chaînée avec table FAT

Exemple:

Nom	Att	début
FI	•••	2
F2	•••	5

Répertoire A

En cas de FAT ?

SE Chap 2. SGF

Méthodes d'allocation de blocs de disque

Allocation chaînée avec table FAT

Exemple:

Nom	Att	début
FI	•••	2
F2	•••	5

Répertoire A

FAT

- Méthodes d'allocation de blocs de disque
 - Allocation chaînée avec table FAT

Avantages

- + Pas de fragmentation externe
- + Pas de problème de taille de Fichier (il n'est pas nécessaire de connaître la taille de Fichier en avance).
- + pas de mélange entre donnée utilisateur et donnée système

Méthodes d'allocation de blocs de disque

Chap 2. SGF

Allocation chaînée avec table FAT

Inconvénients

- Fragmentation interne
- Retour régulier à la table FAT
- Accès séquentiel et direct lent
- Consommation de l'espace mémoire pour le stockage de FAT
 (et ceci quelque soit le nombre de Fichiers)

- Méthodes d'allocation de blocs de disque
 - Allocation indexée

Principe:

Le chaînage entre les blocs d'un fichier est stocké dans un nœud d'index

Chap 2. SGF

(index node: i-node)

Chaque Fichier a son propre i-node

SE Chap 2. SGF

- Méthodes d'allocation de blocs de disque
 - Allocation indexée

Principe:

L'i-node

- Méthodes d'allocation de blocs de disque
 - Allocation indexée

Mise en œuvre:

L'entrée à un Fichier est structurée de la façon suivante :

Nom Fichier	Adresse de l'i-node

- Méthodes d'allocation de blocs de disque
 - Allocation indexée

Exemple:

Nom	i-node
FI	4
F2	8

Répertoire A

- Méthodes d'allocation de blocs de disque
 - Allocation indexée

Exemple:

Nom	i-node
FI	4
F2	8

Répertoire A

Att	F1	
2		
8		

i-node 8

Att F2	
5	
3	
7	

- Méthodes d'allocation de blocs de disque
 - Allocation indexée

Exemple:

Nom	i-node
FI	4
F2	8

Répertoire A

Att	F1
2	
8	

i-node 8

Att F2	
5	
3	
7	

Sous Unix, pour connaître le numéro d'i-node d'un Fichier, on utilise la commande ls -i

- Méthodes d'allocation de blocs de disque
 - Allocation indexée

Avantages

- + Pas de fragmentation externe
- + Pas de problème de taille de Fichier (il n'est pas nécessaire de connaître la taille de Fichier en avance).
- + pas de mélange entre donnée utilisateur et donnée système

Chap 2. SGF

- Méthodes d'allocation de blocs de disque
 - Allocation indexée

Implantation d'un SGF

Inconvénients

- Fragmentation interne (au niveau de l'i-node et du Fichier)
- Retour régulier à l'i-node
- Accès séquentiel et direct lent
- Consommation de l'espace mémoire pour le stockage des i-nodes

Chap 2. SGF

Gestion de l'espace mémoire Libre

Méthode dynamique

Se base sur l'utilisation d'une liste chaînée de blocs spéciaux qui contiennent les numéros des blocs libres.

Chap 2. SGF

Méthode dynamique

Se base sur l'utilisation d'une liste chaînée de blocs spéciaux qui contiennent les numéros des blocs libres.

@de début de la liste chaînée

Chap 2. SGF

Méthode Statique

Se base sur l'utilisation d'une table de bits où chaque bits fait référence à un bloc et indique s'il est libre (bit=1) ou non (bit=0).

Méthode Statique

Se base sur l'utilisation d'une table de bits où chaque bits fait référence à un bloc et indique s'il est libre (bit=1) ou

non (bit=0).

Méthode Statique

Se base sur l'utilisation d'une table de bits où chaque bits fait référence à un bloc et indique s'il est libre (bit=1) ou

non (bit=0).

N°Bloc	0	1	2	3	4	5	6	7	8	9	10	11
Etat	0	1	0	0	1	0	1	0	0	1	1	1

SE Chap 2. SGF

Disque dur

SE Chap 2. SGF

Organisation

MBR

(sur le bloc 0) : le programme qui permet de démarrer la machine et de lancer le SE

SE Chap 2. SGF

Organisation

MBR Super Table des
Bloc i-nodes

Blocs des données

Super Bloc

(sur le bloc 1) : contient des informations nécessaires:

- @ de début de la liste des blocs libres
- Nombre de blocs libres
- Taille de la table d'i-nodes
- Nombre de blocs de disque

K. ElBedoui-Maktouf

•

SE Chap 2. SGF

Organisation

MBR Super Table des
Bloc i-nodes

Blocs des données

Table d'i-nodes : contient les i-nodes numérotés de 1 à max i-node

Chaque i-node décrit un Fichier unique.

- L'i-node 1 contient la liste des blocs défectueux
- L'inode 2 concerne la racine

SE Chap 2. SGF

Organisation

MBR Super Table des I-nodes

Blocs des données

Table d'i-nodes : contient les i-nodes numérotés de 1 à max i-node

Chaque i-node décrit un Fichier unique.

Lorsqu'un Fichier est supprimé alors son i-node est marqué libre et peut être attribué à un nouveau Fichier.

SE Chap 2. SGF

❖ Structure d'un i-node

SE

Cas de Linux

❖ Structure d'un i-node

Les attributs

- Mode de protection
- Type
- UID
- GID
- Taille en Octet (réelle)
- Dates

atime : dernier accès

ctime : création

mtime : dernière modification

SE Chap 2. SGF

Structure d'un i-node

Les adresses directes

Indiquent les adresses des blocs de données (sur le disque) qui composent le Fichier.

Structure d'un i-node

Si les adresses directes ne sont pas suffisantes pour lister les adresses des blocs des données qui composent le Fichier, on peut utiliser :

un pointeur d'indirection simple

Attributs . @ directes PS PD PT

Chap 2. SGF

Structure d'un i-node

Si les adresses directes ne sont pas suffisantes pour lister les adresses des blocs des données qui composent le Fichier, on peut utiliser :

un Pointeur d'indirection Simple

Structure d'un i-node

Si les adresses directes ne sont pas suffisantes pour lister les adresses des blocs des données qui composent le Fichier, on peut utiliser :

un Pointeur d'indirection Simple un Pointeur d'indirection Double

Chap 2. SGF

Structure d'un i-node

Si les adresses directes ne sont pas suffisantes pour lister les adresses des blocs des données qui composent le Fichier, on peut utiliser :

un Pointeur d'indirection Simple un Pointeur d'indirection Double un Pointeur d'indirection Triple

Chap 2. SGF

SE Chap 2. SGF

UFS (Unix File System)

La taille d'un bloc est 1K Ø

La taille d'i-node est 64 Ø

La taille d'une adresse est 4 Ø

L'i-node contient 10 adresses directes

SE Chap 2. SGF

UFS (Unix File System)

La taille d'un bloc est 1K Ø

La taille d'i-node est 64 Ø

La taille d'une adresse est 4 Ø

L'i-node contient 10 adresses directes

Chaque bloc peut contenir :

SE Chap 2. SGF

UFS (Unix File System)

La taille d'un bloc est 1 KØ

La taille d'i-node est 64 Ø

La taille d'une adresse est 4 Ø

L'i-node contient 10 adresses directes

Chaque bloc peut contenir: 1 KØ / 4Ø @

SE Chap 2. SGF

UFS (Unix File System)

La taille d'un bloc est 1 KØ

La taille d'i-node est 64 Ø

La taille d'une adresse est 4 Ø

L'i-node contient 10 adresses directes

Chaque bloc peut contenir: 256 @

SE Chap 2. SGF

UFS (Unix File System)

La taille d'un bloc est 1K Ø

La taille d'i-node est 64 Ø

La taille d'une adresse est 4 Ø

L'i-node contient 10 adresses directes

La taille de plus grand Fichier

Ø

SE Chap 2. SGF

UFS (Unix File System)

La taille d'un bloc est 1K Ø

La taille d'i-node est 64 Ø

La taille d'une adresse est 4 Ø

L'i-node contient 10 adresses directes

La taille de plus grand Fichier

$$= (10 + 256 + 256^2 + 256^3) * 1 KØ$$

≈ 16 GØ

SE Chap 2. SGF

UFS (Unix File System)

La taille d'un bloc est 1K Ø

La taille d'i-node est 64 Ø

La taille d'une adresse est 4 Ø

L'i-node contient 10 adresses directes

SE Chap 2. SGF

Ext2 (second extended filesystem - Linux)

La taille d'un bloc est 1K Ø

La taille d'i-node est 128 Ø

La taille d'une adresse est 4 Ø

L'i-node contient 12 adresses directes

SE Chap 2. SGF

Le cluster est un ensemble de blocs adjacents

SE Chap 2. SGF

Disque dur

SE Chap 2. SGF

FAT1 table qui conserve le chaînage entre les clusters de chaque Fichier.

SE Chap 2. SGF

FAT2 copie de la FAT1 et ce pour des mesures de sécurité.

SE Chap 2. SGF

Racine concerne le répertoire racine

SE Chap 2. SGF

N° Cluster	@ Cluster suivant
0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	

SE Chap 2. SGF

FAT 16: L'adresse d'un cluster est sur 16 bits = $2 \varnothing$ (SE < Windows 95)

FAT 32 : L'adresse d'un cluster est sur 32 bits = $4 \varnothing$ (Windows 98)

NTFS (New Technologie File System)

Utilise la table MFT (Master File Table) depuis Windows NT

Chaque ligne est un enregistrement :

- Attributs
- Description

Chap 2. SGF

NTFS (New Technologie File System)

Utilise la table MFT (Master File Table) depuis Windows NT

Contient au maximum 2⁴⁸ enregistrements

Les 16 premières lignes

sont réservées pour le SE

NTFS (New Technologie File System)

Utilise la table MFT (Master File Table) depuis Windows NT

Le premier enregistrement décrit

l'emplacement les blocs du Fichier

NTFS (New Technologie File System)

Utilise la table MFT (Master File Table) depuis Windows NT

Le deuxième enregistrement est une copie du précédent.

NTFS (New Technologie File System)

Utilise la table MFT (Master File Table) depuis Windows NT

Le fichier Log (journal du SE) enregistre toutes les manipulations faites sur les Fichiers

FIN

Madame Khaoula ElBedoui-Maktouf

2^{ème} année Ingénieur Informatique