Lecture 15: Linear regression

Textbook: chapter 10

Dr. Huiping Cao

Regression problem

- One type of supervised learning.
- **Regression problem**: predict the value of one or more continuous target variables y given the value of a d-dimensional vector **x**.
 - Output is a real number, which is why the method is called regression
 - x are called explanatory variables.
 - y is called response/target variable.
- **Linear regression** is one of the most basic and important technique for predicting a value of an attribute (y).
 - It is used to fit values in a forecasting or predictive model.

Linear regression - example

 A collection of observations of the Old Faithful geyser in the USA Yellowstone National Park.

	eruptions waitir	
1	3.600	79
2	1.800	54
3	3.333	74
4	2.283	62
5	4.533	85
6	2.883	55

- There are two observation variables in the data set.
 - eruptions: the duration of the geyser eruptions.
 - waiting: the length of waiting period until the next eruption.
- Predict eruption time given waiting time.

Linear regression – representation

- Training set: $\{x^{(1)}, x^{(2)}, ..., x^{(n)}\}$
 - $x^{(i)}$ is a d-dimensional data point (or vector)
 - n is the number of training data points.
 - *d is* number of features
 - $x_i^{(i)}$ is the value of the *j*-th feature of the *i*th instance.
- $y = (y^{(1)}, ..., y^{(n)})$ is output
- (x, y): one training example
- $(\mathbf{x^{(i)}}, y^{(i)})$: the i-th training example.
- Hypothesis $h(\cdot)$: The learning algorithm learns the hypothesis. Using h, we can predict y for any given x.

Linear regression – How do we represent h

- Linear regression with one variable (univariate linear regression).
- $h_{\mathbf{w}}(\mathbf{x}) = w_0 + w_1 x$ Or,
- $\bullet \ h(\mathbf{x}) = w_0 + w_1 x$
- Linear regression can be understood as finding the bestfitting line through the sample points as shown in the following figure.

Linear regression – cost function

- Hypothesis $h_{\mathbf{w}}(\mathbf{x}) = w_0 + w_1 x$.
- How to choose $h_{\mathbf{w}}(\mathbf{x}) = w_0 + w_1$?
- Idea: Choose w_0 and w_1 such that $h_{\mathbf{w}}(\mathbf{x})$ is close to \mathbf{y} for our training examples.
- Intuitively

$$minimize_{w_0,w_1} \sum_{i=1}^{n} (h_{\mathbf{w}}(\mathbf{x}^{(i)}) - y^{(i)})^2$$

Cost function

$$J(w_0, w_1) = \frac{1}{2n} \sum_{i=1}^{n} (h_{\mathbf{w}}(\mathbf{x}^{(i)}) - y^{(i)})^2$$

- Factor $\frac{1}{n}$ is to average the cost, and the factor $\frac{1}{2}$ is to make the analysis easier.
- J is called squared error function, or cost function, or squared error cost function.
- There are other cost functions, but squared error cost function is working well.
- Goal: $minimize_{w_0,w_1}J(w_0,w_1)$

Multivariate Linear Regression - motivation and notation

- Example
 - y: house prices
 - x_1 : house square feet
 - x_2 : number of bedrooms
 - x_3 : age of home etc.

Multivariate Linear Regression - Hypothesis

•
$$h_{\mathbf{w}}(\mathbf{x}^{(i)}) = w_0 + w_1 x_1^{(i)} + ... + w_d x_d^{(i)}$$

• E.g., $h_{\mathbf{w}}(\mathbf{x}^{(i)}) = 80 + 0.1 x_1^{(i)} + 0.01 x_2^{(i)} + 3 x_3^{(i)} - 2 x_4^{(i)}$
• For convenience, denote $x_0^{(i)} = 1$ to define a 0-th feature.

- We can define two vectors x and w

$$\mathbf{x}^{(i)} = \begin{pmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \dots \\ x_d^{(i)} \end{pmatrix} \in \mathbb{R}^{d+1}, \mathbf{w} = \begin{pmatrix} w_0 \\ w_1 \\ w_2 \\ \dots \\ w_d \end{pmatrix} \in \mathbb{R}^{d+1}$$

• $h_{\mathbf{w}}(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$

Multivariate Linear Regression - cost function

$$J(w_0, w_1, \dots, w_n) = \frac{1}{2n} \sum_{i=1}^{n} (h_{\mathbf{w}}(\mathbf{x}^{(i)}) - y^{(i)})^2$$

or

$$J(\mathbf{w}) = \frac{1}{2n} \sum_{i=1}^{n} \left(h_{\mathbf{w}}(\mathbf{x}^{(i)}) - y^{(i)} \right)^{2}$$

- Parameters: $w_0, w_1, w_2, ..., w_d$ (or, $\mathbf{w} \in \mathbb{R}^{d+1}$)
- Linear regression models: linear functions of the **adjustable parameters**. The simplest form of linear regression models are also linear functions of the **input variables**.

Gradient descent algorithm for multivariate linear regression

• Cost function:

$$J(w) = \frac{1}{2n} \sum_{i=1}^{n} \left(h_{\mathbf{w}} \left(\mathbf{x}_{1}^{(i)} \right) - y^{(i)} \right)^{2}$$

- Gradient descent
 - Repeat until convergence { $w_j = w_j \alpha \frac{\partial}{\partial w_j} \ J(w) \ \text{for} \ j=0, \dots, j=d$ }

Batch gradient descent

Repeat until convergence {

$$w_j = w_j - \alpha \frac{\partial}{\partial w_j} J(\mathbf{w}) = w_j - \alpha \frac{1}{n} \sum_{i=1}^n (h_{\mathbf{w}}(\mathbf{x}^{(i)}) - y^{(i)}) \cdot x_j^{(i)}$$

$$w_0 = w_0 - \alpha \frac{1}{n} \sum_{i=1}^{n} (h_{\mathbf{w}}(\mathbf{x}^{(i)}) - y^{(i)}) \cdot x_0^{(i)}$$

$$w_1 = w_1 - \alpha \frac{1}{n} \sum_{i=1}^{n} (h_{\mathbf{w}}(\mathbf{x}^{(i)}) - y^{(i)}) \cdot x_1^{(i)}$$

$$w_2 = w_2 - \alpha \frac{1}{n} \sum_{i=1}^{n} (h_{\mathbf{w}}(\mathbf{x}^{(i)}) - y^{(i)}) \cdot x_2^{(i)}$$

Feature scaling

- **Example**: given $0 \le x_1^{(i)} \le 3$ and $-1 \le x_2^{(i)} \le 1.5$, then adding two features $-200 \le x_3^{(i)} \le 200$ and $-0.001 \le x_4^{(i)} \le 0.001$ makes the range very different.
- **z-score normalization**, replace Replace $x_j^{(i)}$ with $\frac{x_j^{(i)} \mu_j}{\sigma_j}$ where σ_j is standard deviation
- Mean normalization: Replace $x_j^{(i)}$ with $\frac{x_j^{(i)} \mu_j}{\max(x_j) \min(x_j)}$
 - to make features have approximately zero mean (do not apply to $x_0^{(i)}=1$)
 - E.g., $x_1^{(i)} = \frac{\text{size} 1000}{2000}$, $x_2^{(i)} = \frac{\text{# of bedrooms} 2}{5}$

Solution – normal equation

- Normal equation: method to solve for w analytically
- Normal equation method has some advantages and disadvantages, which will be discussed later.

• General case: n examples $(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), ..., (\mathbf{x}^{(n)}, y^{(n)})$ and each $\mathbf{x}^{(i)}$ has d features. I.e.,

$$\mathbf{x}^{(i)} = \begin{pmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \dots \\ x_d^{(i)} \end{pmatrix} \in \mathbb{R}^{d+1}$$

Solution – normal equation

• Construct a $n \times (d+1)$ matrix X by using the training examples and adding extra feature $x_0^{(i)}$ with values 1

$$X = \begin{pmatrix} ----(x^{(1)})^{T} - ---- \\ ----(x^{(2)})^{T} - ---- \\ ... \\ ----(x^{(n)})^{T} - ---- \end{pmatrix} \in \mathbb{R}^{n \times (d+1)}$$

- Construct an *n*-dimensional vector $\mathbf{y} = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \dots \\ y^{(n)} \end{pmatrix}$ • Solution: $\mathbf{w} = (X^T X)^{-1} Y^T \mathbf{v}$
 - **Solution:** $\mathbf{w} = (X^T X)^{-1} X^T \mathbf{y}$ (Derivation details can be found from extra materials; omitted here)

Method comparison

Gradient descent	Normal equation
Need to choose α Need many iterations	No need to choose α Don't need to iterate
Works well even when <i>n</i> is large	Need to compute $(X^TX)^{-1} \in \mathbb{R}^{n \times n}$ (cost roughly $O(n^3)$) Slow if n is large (e.g., $n \ge 1000$)
Need feature scaling	No need to do feature scaling