Analise Dimensional

Autor: Abmael Carvalho Barberino Junior Ultima atualização: 26/09/2020

MLTIONJ, Massa, Comprimento, Tempo, Corrente elétrica, Temperatura, Quantidade de

substância, Inter	sidade lumi	nosa		
Descrição	Unidade SI mais simples	Unidades alternativas	MLTIØNJ	
Comprimento, espaço	m		L	
Tempo e Período	S		T	
Frequencia	Hz	$1 Hz = \frac{1}{s}$	T^{-1}	
Velocidade	<u>m</u> s	$3.6 \frac{km}{h} = \frac{m}{s}$	$L \cdot T^{-1}$	
Aceleração	$\frac{m}{s^2}$	$3.6\frac{km/h}{s} = \frac{m}{s^2}$	$L \cdot T^{-2}$	
Massa	Kg	$\frac{N \cdot s^2}{m}$	M	
Força	N	1 kgf = 9.80665 N	$M \cdot L \cdot T^{-2}$	
Área	m²	ha = 10000 m2 $acre = 4046.9 m2$ $alqueire Paulista = 24000 m2$	L^2	
Volume	m^3	$litro = 0.001m^3$	L^3	
Energia, Trabalho	J	$3600 kJ = kwh = \frac{450}{0.523} kcal$	$M \cdot L^2 \cdot T^{-2}$	
Torque	N·m	J	$M \cdot L^2 \cdot T^{-2}$	
Potencia	W	$4184 w = 1 \frac{kcal}{s}$	$M \cdot L^2 \cdot T^{-3}$	
Momento, Quantidade de movimento, Impulso, Impulso de uma força	N∙s	<u>kg∙m</u> s	$M\!\cdot\! L\!\cdot\! T^{-1}$	
Momento de inércia (rotação)	kg·m²	$N \cdot m \cdot s^2 = J \cdot s^2$	$M \cdot L^2$	
Momento de inércia (resistencia dos materiais) Segundo momento de area Second moment of area	m^4	cm^4	L^4	

Primeiro momento de área	m^3	cm ³	L^3	
Constante da gravitação universal	$\frac{m^3}{kg \cdot s^2}$	$\frac{m^3}{kg \cdot s^2} = \frac{N \cdot m^2}{kg^2} = \frac{J \cdot m}{kg^2}$	$M^{-1} \cdot L^3 \cdot T^{-2}$	
Pressão, Tensão mecânica	Pa	$100 kPa = \text{bar} \sim 1 \frac{kgf}{cm^2}$	$M \cdot L^{-1} \cdot T^{-2}$	
Módulo de elasticidade E, módulo de Young	Pa	$100 kPa = \text{bar} \sim 1 \frac{kgf}{cm^2}$	$M \cdot L^{-1} \cdot T^{-2}$	
Constante elástica	$\frac{N}{m}$	$\frac{J}{m^2}$	$M \cdot T^{-2}$	
Tensão superficial	$\frac{N}{m}$	$\frac{J}{m^2}$	$M \cdot T^{-2}$	
Densidade	kg m³	$\frac{kg}{m^3}$	$M \cdot L^{-3}$	
Peso especifico	$\frac{N}{m^3}$		$M \cdot L^{-2} \cdot T^{-2}$	
Viscosidade absoluta ou dinâmica	Pa∙s	$\frac{kg}{m \cdot s} = \frac{N \cdot s}{m^2}$	$M \cdot L^{-1} \cdot T^{-1}$	
Viscosidade cinemática	$\frac{m^2}{s}$		$L^2 \cdot T^{-1}$	
Vazão volumétrica	$\frac{m^3}{s}$	$\frac{m^3}{s} = \frac{3600000 l}{h}$	$L^3 \cdot T^{-1}$	
Vazão mássica	<u>kg</u> s		$M \cdot T^{-1}$	
Temperatura	K°		Θ	
Coeficiente de Dilatação, linear, superficial ou volumétrica	$\frac{1}{K^{\circ}}$		Θ^{-1}	
Capacidade térmica sensível de um objeto	$\frac{J}{K^{\circ}}$	$\frac{N \cdot m}{K^{\circ}}$	$M \cdot L^2 \cdot T^{-2} \cdot \Theta^{-1}$	
Calor especifico, Capacidade termica sensivel de uma substancia	J kg⋅K°	<u>N·m</u> kg·K°	$L^2 \cdot T^{-2} \cdot \Theta^{-1}$	
Calor especifico molar, Capacidade termica sensivel molar de uma	J mol⋅K°		$M \cdot L^2 \cdot T^{-2} \cdot \Theta^{-1} \cdot N^{-1}$	

substancia				
Constante universal dos gases	$\frac{J}{\mathit{mol} \cdot \mathit{K} ^{\circ}}$		$M \cdot L^2 \cdot T^{-2} \cdot \Theta^{-1} \cdot N^{-1}$	
Capacidade térmica latente	$\frac{J}{kg}$	$4.184 \frac{J}{kg} = 1 \frac{cal}{kg}$	$L^2 \cdot T^{-2}$	
Condutância térmica	$\frac{w}{m \cdot K^{\circ}}$	$\frac{w \cdot m}{m^2 \cdot K^{\circ}}$	$M \cdot L \cdot T^{-3} \cdot \Theta^{-1}$	
Entropia, S	$\frac{J}{K^{\circ}}$		$M \cdot L^2 \cdot T^{-2} \cdot \Theta^{-1}$	
Carga elétrica	С	$A \cdot s$	$T \cdot I$	
Corrente elétrica	А	<u>C</u> s	I	
Tensão elétrica ou potencial elétrico	V	$\frac{J}{C} = \frac{N \cdot m}{C}$	$M \cdot L^2 \cdot T^{-3} \cdot I^{-1}$	
Resistência elétrica	Ω	$\frac{J \cdot s}{C^2} = \frac{H}{s}$	$M \cdot L^2 \cdot T^{-3} \cdot I^{-2}$	
Capacitância elétrica	F	$F = \frac{C}{V} = \frac{C^2}{J} = \frac{C^2}{N \cdot m}$	$M^{-1} \cdot L^{-2} \cdot T^4 \cdot I^2$	
Campo elétrico, E	$\frac{N}{C}$	$\frac{V}{m} = \frac{J}{C \cdot m} = \frac{N}{C}$	$M \cdot L \cdot T^{-3} \cdot I^{-1}$	
Fluxo elétrico	V·m	$\frac{N \cdot m^2}{C} = \frac{J \cdot m}{C}$	$M \cdot L^3 \cdot T^{-3} \cdot I^{-1}$	
Permissividade elétrica, ε	$\frac{F}{m}$	$\frac{C}{V \cdot m}$	$M^{-1} \cdot L^{-3} \cdot T^4 \cdot I^2$	
Campo magnético, B, campo magnetico em um ponto do espaço	Т	$T = \frac{Wb}{m^2} = \frac{N}{m \cdot A}$	$M \cdot T^{-2} \cdot I^{-1}$	
Fluxo magnético	Wb	$Wb = T \cdot m^2 = \frac{N \cdot m}{A} = \frac{J}{A}$	$M \cdot L^2 \cdot T^{-2} \cdot I^{-1}$	
Permeabilidade magnética, μ	<u>H</u> m	$\frac{N}{A^2}$	$M \cdot L \cdot T^{-2} \cdot I^{-2}$	
Campo magnetizante, H	$\frac{A}{m}$	$\frac{T \cdot m}{H} = \frac{Wb}{m \cdot H} = \frac{J}{T \cdot m^3} = \frac{N}{T \cdot m^2}$	$L^{-1} \cdot I$	
Indutância, L	Н	$H = \Omega \cdot s = \frac{V \cdot s}{A} = \frac{J}{A^2}$	$M \cdot L^2 \cdot T^{-2} \cdot I^{-2}$	
Momento magnetico, Dipólo magnetico, μ	$\frac{J}{T}$	$\frac{N \cdot m}{T} = m^2 \cdot A$	$L^2 \cdot I$	