

Árboles binarios donde los punteros a NULL son reemplazados por "hebras" (threads) que apuntan al nodo sucesor y/o predecesor en un recorrido inorden.

Formato del nodo:

Formato del nodo:

LeftThread Boolean LeftChild Puntero a nodo izquierdo Data •Dato que almacena el nodo RightChild Puntero a nodo derecho Boolean RightThread

TRUE: LeftChild es hebra **FALSE**: LeftChild es hijo

TRUE: RightChild es hebra **FALSE**: RightChild es hijo

• El árbol siempre tiene un nodo de encabezamiento.

 Si el árbol no está vacío, el nodo de encabezamiento apunta al primer elemento (por su hijo izquierdo).

• El árbol anterior es:


```
void threadedInorder(){
   if(root->LeftThread) return;
   Node current = leftMost(root->LeftChild);

while(current <> root){
   print(current->data);

   if(current->RightThread) //Hebra
        current = current->RightChild;
   else //Hijo
        current= leftMost(current->RightChild);
   }
}
```

```
Node leftMost(Node p){
    if(!p) return NULL;

    Node aux = p;
    while(!aux->LeftThread)
        aux = aux->LeftChild;

    return aux;
}
```


Contenidos

- a) Conceptos
- b) Árboles binarios
- c) Recorrido de árboles binarios
- d) Árboles binarios enhebrados
- e) Heaps
- f) Árboles de búsqueda binarios
- g) Árboles de búsqueda binarios balanceados
- h) Familia de árboles B (B, B*, B+)

• Es un caso especial de árbol binario completo.

Insertar en un heap

- Insertar en un heap
 - Ejemplo I:

- Insertar en un heap
 - Ejemplo 2:

- Insertar en un heap
 - Ejemplo 3:

• Eliminar en un heap

- Eliminar en un heap
 - Ejemplo I:

Eliminar en un heap

Comportamiento BIFO (Best In First Out)

Colas con prioridad

 El nodo que sale es aquel con mayor valor (posición [1])

• Ejemplo: BEST = más alto

- Representación como arreglo: (secuencial)
 - La posición 0 se deja vacía.
 - Datos desde A[1] hasta A[N].
 - El valor en A[i] es el padre de los valores en
 Δ[2i] ν Δ[2i+1]
 - A[2i] y A[2i+1] h. izq h. der

0	1	2	3	4			N

- A[1] es padre de A[2*1] y A[2*1+1]
- A[4] es padre de A[2*4] y A[2*4+1]

Para ir del hijo al padre hay que dividir en 2.

• El padre de A[x] está en A $\left[\frac{x}{2} \right]$

					6				
73	50	36	21	46	27	9	18	10	30

- A[10] es hijo de A $\left[\left| \frac{10}{2} \right| \right]$ A[3] es hijo de A $\left[\left| \frac{3}{2} \right| \right]$

- HeapSort
 - Algoritmo de ordenamiento con $O(n * \log n)$ en el peor caso.

Consta de dos pasos:

Convertir a heap

Intercambios

Ordenar de menor a mayor: MAX heap.
 Ordenar de mayor a menor: MIN heap.

- HeapSort
 - Ejemplo: ordenar el siguiente arreglo de menor a mayor:

0										
	47	82	13	42	77	6	71	30	50	3

Converti r a heap

10

3

50

Intercam bios

- I° Convertir a heap
 - \circ N = 10
 - · Los elementos terminales del árbol son heap por definición.
 - Es decir, desde $\left\lfloor \frac{N}{2} \right\rfloor + 1$ hasta N son heap.

6 hasta 10

• Hay que analizar desde $\left\lfloor \frac{N}{2} \right\rfloor$ hasta 1 (en ese orden).

Entonces nos queda el MAX heap:

Convertir a heap Intercambios

2° Intercambios

- Intercambio de A[1] con A[último].
- · Asegurar que se mantiene la condición de heap.

