Apellidos:	Nombres:	

El siguiente código de máquina y su desensamblado RISC-V computa la suma prefijo en el mismo arreglo (in-place prefix sum). El arreglo a está en el segmento ELF .bss y empieza en 0x2FC0 y termina en 0x3008 exclusive. Como sus elementos son unsigned long, cada uno ocupa 8 bytes y por lo tanto tiene 9 elementos.

0000000000000634 <main>:

634:	0613	li	a2,0x3008	#	<bss_end> &a[9]</bss_end>
636:	b206	li	a5,0x2FC8	#	<a+0x8> &a[1]</a+0x8>
638:	6398	ld	a4,0(a5)	#	a4 = a[i]
63a:	ff87b683		a3,-8(a5 <mark>)</mark>	#	a3 = a[i-1]
63e:	9736	add	a4,a4,a3 ^F		
640:	e398	sd	a4,0(a5)	#	a[i] = a4
642:	07a1	addi	a5,a5,8 _	#	"i++"
644:	fec79ae3	bne		#	<main+0x10>, "i<9"</main+0x10>
648:	8082	ret	trap		

Escribir la traza de memoria completa que genera la ejecución del proceso incluyendo los instruction fetch.

634 636 Inicialización

0613, b200	<u> </u>						
Vuelta 1	63a		63e	640		642	644
638 638 , 2FC8	FF87B683	<u>2FC0</u> ,	9736	, 	_2FC8,	-07A1	, <u>FEC79ĄЕ</u> 3
Vuelta 2 2FD(638	63a FF875683	2FC8 2FC8,	63e 9756	640 , e398 ,	2FD0 2FC9,	642	644 , <u>EEC79AE</u> 3
Vuelta 3 2FD8 638 2598 , 2FCA		2FD0 2 FC0 ,	63e 9736	640 2398 ,	2FD8 250A,	642 0 741	644 ,F EC79AE, 3
Vuelta 4 2FE(638 6398 , 2FC		2FD8 2FCA ,	63e 9 738	640 , 208	2FE0 2FEB,	642 0741	644 ,F E079AĘ 8
Vuelta 5 2FE8			63e	640 , e398 ,	2FE8 2FCC,	642 07A1	644 , FEC79A,E 3
Vuelta 6 2FF(2FE8 2ECC,	63e	640 , e398 ,	2FF0 2 Fe0 ,	642 07A1	644 , FEG79A,E 3
Vuelta 7 2FF8	3 63a - , F87B68 3,	2FF0 2FCD ,	63e	640 , e398 ,	2FF8 2FCP,	642 0 741	644 , FE679A,F 3
Vuelta 8 3000 6386398 , 2ECE) 63a ;_,FF <u>8ZB68</u> ;	2FF8 2 ECE ,	63e 9736	640 6398	3000 2EOF,	642 07A1	644 , <u>FEC79AE</u> 3
Fin							

Fin 8082 648

Supongamos que en trampoline.S, la rutina en ensamblador RISC-V que guarda los registros de espacio de usuario se comete un pequeño error por culpa del gato 🙀. La parte que los restituye está perfecta.

sd	a1,	120(a0)	ld a	11,	120(a0)
sd	a2,	128(a0)	ld a	12,	128(a0)
sd	a3,	136(a0)	ld a	13,	136(a0)
sd	a4,	144(a0)	ld a	14,	144(a0)
sd	a2,	152(a0) #	ERROR! 1d a	15,	152(a0)
sd	a6,	160(a0)	ld a	16,	160(a0)
sd	a7,	168(a0)	ld a	a7,	168(a0)

Indicar en el código de máquina del Ejercicio 1, **ENTRE** qué líneas se puede producir un TRAP sin cambiar el funcionamiento del programa (poner "**TRAP**") y entre qué líneas ese TRAP resulta fatal para la ejecución de nuestro código (poner "**F**"). Recalcamos, poner TRAP ó F entre cada una de las líneas de código indicando si se puede producir un TRAP de manera inocua o no.

Ejercicio 3

Planificar con Round Robin Q=2 para los siguientes procesos que tienen mezcla entre cómputo CPU y espera IO. Ante situaciones de simultaneidad, ordenar alfabéticamente, por ejemplo ¿Cuál de los tres procesos inicia en tiempo 0?: el "A".

Proceso	Inicio	CPU	Ю	CPU
А	0	1	4	3
В	0	1	1	1
С	0	8		

Tenemos un esquema de paginación RISC-V con páginas de 4 KiB de 3 niveles con formato 9,9,9,12 -> 44,12 como muestra la figura.

Bits de control

V: válido

R: se puede leer, readable

W: se puede escribir, writable

X: se puede ejecutar,

executable

Supongamos que tenemos el registro de paginación apuntando al marco físico satp=0x00000000FE0.

0x0000000FE0	0x0000000FEA	0x000000AD0BE		
0x1FF: 0x0000000000,	0x1FF: 0x0000000000,	0x1FF: 0x0000000000,		
0x004: 0x0000000000, 0x003: 0x0000000000, 0x002: 0x00000000FEA, XWRV 0x001: 0x00000000FEA, XWRV	0x004: 0x0000000000, 0x003: 0x0000000000, 0x002: 0x0000000AD0BE, XWRV 0x001: 0x0000000AD0BE, XWRV 0x000: 0x000000AD0BE, XWRV	0x004: 0x00000000000, 0x003: 0x00000D1AB10, XWR- 0x002: 0x00000DECADA, -WRV 0x001: 0x000CAFECAFE, 0x000: 0x0000000ABAD, XV		

a) Traducir de virtual a física las direcciones:

b) Traducir de la dirección física 0xDECADA980 a todas las virtuales que la apuntan.

0x80402980 0x80202980 0x80002980 0x40402980

0000DECADA980

0x40402980 0x40202980 0x40002980

0x402980 0x202980

A la luz del esquema de paginación del Ejercicio 4, indicar de manera esquemática que es lo que pasaría con la traza de memoria respecto a la ejecución de un proceso corriendo el código de máquina del Ejercicio 1.

Inicialización

ABAD634, ABAD636,

Vuelta 1

<u>ABAD638</u>, <u>DECADA4040</u>, <u>ABAD63a</u>, <u>DECADA4030</u>, <u>ABAD63e</u>, <u>ABAD640</u>, <u>DECADA4040</u>, <u>ABAD642</u>, <u>ABAD644</u>,

Vuelta 2

ABAD638, DECADA4048, ABAD63a, DECADA4040, ABAD63e, ABAD640, DECADA4048, ABAD642, ABAD644,

Vuelta 3

<u>ABAD638</u>, <u>DECADA4050</u>, <u>ABAD63a</u>, <u>DECADA4048</u>, <u>ABAD63e</u>, <u>ABAD640</u>, <u>DECADA4050</u>, <u>ABAD642</u>, <u>ABAD644</u>,

Vuelta 4

ABAD638 DECADA4058, ABAD63a DECADA4050, ABAD63e, ABAD640, DECADA4058, ABAD642, ABAD644,

Vuelta 5

ABAD638 , DECADA4060 , ABAD63a , DECADA4058 , ABAD63e , ABAD640 , DECADA4060 , ABAD642 , ABAD644 ,

Vuelta 6

ABAD638 , DECADA4068, ABAD63a, DECADA4060, ABAD63e , ABAD640 DECADA4068 , ABAD642 , ABAD644 ,

Vuelta 7

<u>ABAD638</u>, <u>DECADA4070</u>, <u>ABAD63a</u>, <u>DECADA4068</u>, <u>ABAD63e</u>, <u>ABAD640</u>, <u>DECADA4070</u>, <u>ABAD642</u>, <u>ABAD644</u>,

Vuelta 8

ABAD638, DECADA4078, ABAD63a, DECADA4070, ABAD63e, ABAD640, DECADA4078, ABAD642, ABAD644,

Fin

ABAD648.