MA101 Mathematics I

Tutorial & Additional Problem Set - 4

SECTION - A (for Tutorial -4)

- 1. True or False? Give justifications.
 - (a) If S is a subspace of \mathbb{R}^n of dimension n, then $S = \mathbb{R}^n$.
 - (b) For any two matrices A and B for which AB is defined, $rank(AB) \leq rank(A)$, rank(B).
 - (c) If $C = [A \mid B]$, then $rank(C) \le rank(A) + rank(B)$.
 - (d) If $C = \begin{bmatrix} A & B \\ \mathbf{0} & D \end{bmatrix}$, then $\operatorname{rank}(C) \ge \operatorname{rank}(A) + \operatorname{rank}(D)$.

Solution:

- (a) True. If $y \in \mathbb{R}^n$ but not in S, then for any basis \mathbb{B} of $S, \mathbb{B} \cup \{y\}$ is LI.
- (b) True. $row(AB) \subseteq row(B)$ and $col(AB) \subseteq col(A)$.
- (c) True. Let $\operatorname{rank}(A) = k$, $\operatorname{rank}(B) = r$ and let the columns a_{i_1}, \ldots, a_{i_k} of A form a basis of $\operatorname{col}(A)$ and the columns b_{j_1}, \ldots, b_{j_r} of B form a basis of $\operatorname{col}(B)$. Then $a_{i_1}, \ldots, a_{i_k}, b_{j_1}, \ldots, b_{j_r}$ spans $\operatorname{col}[A|B]$. Hence $\operatorname{rank}[A|B] \leq r + k$.
- (d) True. If $\operatorname{rank}(A) = k$ and if the columns $a_{i_1}, a_{i_2}, \ldots, a_{i_k}$ of A forms a basis of $\operatorname{col}(A)$ then the corresponding columns (i_1, i_2, \ldots, i_k) in C are LI. If $\operatorname{rank}(D) = r$ and the columns $d_{j_1}, d_{j_2}, \ldots, d_{j_r}$ of D forms a basis of $\operatorname{col}(D)$ then the corresponding columns $(m+j_1, m+j_2, \ldots, m+j_r)$ (if A has m columns) in C are LI. It can be easily checked that the columns $i_1, i_2, \ldots, i_k, m+j_1, m+j_2, \ldots, m+j_r$ of C are LI. Hence $\operatorname{rank}(C) \geq r+k$.
- If rank(A) = rank(A²) then show that rank(A²) = rank(A³). Is rank(A⁵) = rank(A⁶)?
 Hint: Note that col(A²) ⊆ col(A), rank(A²) = rank(A) implies col(A²) = col(A). Again note that col(A³) ⊆ col(A²), show col(A³) = col(A²), and so on.

Solution: Note that $\operatorname{col}(A^2) \subseteq \operatorname{col}(A)$. $\operatorname{rank}(A^2) = \operatorname{rank}(A)$ implies $\operatorname{col}(A^2) = \operatorname{col}(A)$. Again note that $\operatorname{col}(A^3) \subseteq \operatorname{col}(A^2)$. If $y \in \operatorname{col}(A^2)$, then $y = A^2z = A(Az)$ for some $z \in \mathbb{R}^n$. Since $\operatorname{col}(A^2) = \operatorname{col}(A)$, $Az = A^2u$ for some $u \in R^n$. Hence $y = A(A^2u)$ for some $u \in R^n$, that is $y \in \operatorname{col}(A^3)$. Hence $\operatorname{col}(A^3) = \operatorname{col}(A^2)$.

By similar argument one can show that $rank(A^k) = rank(A^{k+1})$ for all $k \in \mathbb{N}$.

(One could have argued similarly by considering the row space.)

3. (a) Suppose \mathbb{V} is a vector space over \mathbb{R} , and $A = [a_{ij}] \in \mathcal{M}_k(\mathbb{R})$ is invertible. Show that $\mathbf{u}_1, \dots, \mathbf{u}_k \in \mathbb{V}$ are linearly independent if and only if $\sum_{i=1}^k a_{i1}\mathbf{u}_i, \dots, \sum_{i=1}^k a_{ik}\mathbf{u}_i$ are linearly independent.

(b) Show that $\{\mathbf{u}, \mathbf{v}\}$ is linearly independent iff $\{\mathbf{u} + \mathbf{v}, \mathbf{u} - \mathbf{v}\}$ is linearly independent.

Solution:

(a) (
$$\Rightarrow$$
) Put $\mathbf{w}_r = \sum_{i=1}^k a_{ir} \mathbf{u}_i$. Then $\begin{bmatrix} \mathbf{w}_1 \\ \vdots \\ \mathbf{w}_r \end{bmatrix} = \begin{bmatrix} a_{11} & \cdots & a_{k1} \\ \vdots & & \vdots \\ a_{1k} & \cdots & a_{kk} \end{bmatrix} \begin{bmatrix} \mathbf{u}_1 \\ \vdots \\ \mathbf{u}_k \end{bmatrix} = A^T \begin{bmatrix} \mathbf{u}_1 \\ \vdots \\ \mathbf{u}_k \end{bmatrix}$.

Suppose $\mathbf{w}_1, \dots, \mathbf{w}_k$ are linearly dependent. Then there exists $\begin{bmatrix} \alpha_1 & \cdots & \alpha_k \end{bmatrix}^T \neq \mathbf{0}$ such that $\begin{bmatrix} \alpha_1 & \cdots & \alpha_k \end{bmatrix} \begin{bmatrix} \mathbf{w}_1 \\ \vdots \end{bmatrix} = \mathbf{0}$. So

$$\mathbf{0} = \begin{bmatrix} \alpha_1 & \cdots & \alpha_k \end{bmatrix} \begin{bmatrix} a_{11} & \cdots & a_{k1} \\ \vdots & & \vdots \\ a_{1k} & \cdots & a_{kk} \end{bmatrix} \begin{bmatrix} \mathbf{u}_1 \\ \vdots \\ \mathbf{u}_k \end{bmatrix} = \begin{bmatrix} \beta_1 & \cdots & \beta_k \end{bmatrix} \begin{bmatrix} \mathbf{u}_1 \\ \vdots \\ \mathbf{u}_k \end{bmatrix},$$

where $[\alpha_1 \quad \cdots \quad \alpha_k]A^T = [\beta_1 \quad \cdots \quad \beta_k] \neq \mathbf{0}$. Thus $\mathbf{u}_1, \ldots, \mathbf{u}_k$ are linearly dependent. (\Rightarrow) Similar.

(b) Take
$$A = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
. Then $A^T \begin{bmatrix} \mathbf{u} \\ \mathbf{v} \end{bmatrix} = \begin{bmatrix} \mathbf{u} + \mathbf{v} \\ \mathbf{u} - \mathbf{v} \end{bmatrix}$.

4. Let \mathbb{W}, \mathbb{U} be subspaces of \mathbb{V} . Show that $\mathbb{W} \cup \mathbb{U}$ is a subspace iff either $\mathbb{W} \subseteq \mathbb{U}$ or $\mathbb{U} \subseteq \mathbb{W}$. What about union of three subspaces?

Solution: (\Rightarrow) Suppose that $\mathbb{U} \cup \mathbb{W}$ is a subspace. We claim that either $\mathbb{U} \subseteq \mathbb{W}$ or $\mathbb{W} \subseteq \mathbb{U}$. Assume our claim is not true. Then \exists a $u \in \mathbb{U} \setminus \mathbb{W}$ and a $w \in \mathbb{W} \setminus \mathbb{U}$. Note that $u, w \in \mathbb{U} \cup \mathbb{W}$, a subspace. So $u + w \in \mathbb{U} \cup \mathbb{W}$, a union of two sets. So either $u + w \in \mathbb{U}$ or $u + w \in \mathbb{W}$. Let $u + w \in \mathbb{U}$. As u is already in \mathbb{U} , we get $w = (u + w) + (-1)u \in \mathbb{U}$, a contradiction. Similarly, $u + w \in \mathbb{W}$ leads to another contradiction. Hence our claim is valid and we are done.

(⇐) Trivial.

2nd part Answer: If and only if one of the subspaces contains the other two (take the field as \mathbb{R} or \mathbb{C}).

5. Extend

$$S = \left\{ \begin{bmatrix} 1\\2\\0\\-1\\0\\3 \end{bmatrix}, \begin{bmatrix} 2\\4\\1\\0\\1\\-1 \end{bmatrix}, \begin{bmatrix} 3\\6\\2\\1\\2\\-1 \end{bmatrix} \right\}$$

to a basis of \mathbb{R}^6 using GJE.

Solution: Consider
$$A = \begin{bmatrix} 1 & 2 & 0 & -1 & 0 & 3 \\ 2 & 4 & 1 & 0 & 1 & -1 \\ 3 & 6 & 2 & 1 & 2 & -1 \end{bmatrix}$$
. Then $\tilde{A} = \operatorname{rref}(A) = \begin{bmatrix} 1 & 2 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$.

Note that $\operatorname{span}(S) = \operatorname{col}(A^T) = \operatorname{col}(\tilde{A}^T)$. Since the 2nd, 4th and 5th columns in \tilde{A} are non-leading, if we add rows \mathbf{e}_2^T , \mathbf{e}_4^T , \mathbf{e}_5^T to \tilde{A} , then we get a 6×6 matrix of rank 6. Thus, $S \cup \{\mathbf{e}_2, \mathbf{e}_4, \mathbf{e}_5\}$ is a basis for \mathbb{R}^6 .

- 6. For each of these, find a basis.
 - (a) $\left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : 2a c d = 0, a + 3b = 0, a, b, c, d \in \mathbb{R} \right\}.$
 - (b) $\{p(x): p(x) = \mathbf{0} \text{ or } p(x) \text{ is a polynomial in } x \text{ of degree at most } 4 \text{ with real coefficients}, p(-2) = 0\}.$

Solution:

- (a) Solving 2a c d = 0, a + 3b = 0 we get $[a, b, c, d]^T = \left[\frac{s}{2} + \frac{t}{2}, \frac{-s}{6} + \frac{-t}{6}, s, t\right]^T$. Thus, $\left\{\begin{bmatrix}\frac{1}{2} & \frac{-1}{6}\\1 & 0\end{bmatrix}, \begin{bmatrix}\frac{1}{2} & \frac{-1}{6}\\0 & 1\end{bmatrix}\right\}$ or $\left\{\begin{bmatrix}3 & -1\\6 & 0\end{bmatrix}, \begin{bmatrix}3 & -1\\0 & 6\end{bmatrix}\right\}$ is a basis.
- (b) Let $p(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4$ be such that p(-2) = 0. Then, $a_0 2a_1 + 4a_2 8a_3 + 16a_4 = 0$. Therefore,

$$p(x) = (2a_1 - 4a_2 + 8a_3 - 16a_4) + a_1x + a_2x^2 + a_3x^3 + a_4x^4$$
$$= a_1(2+x) - a_2(4-x^2) + a_3(8+x^3) - a_4(16-x^4).$$

and we get a basis $\{2+x, 4-x^2, 8+x^3, 16-x^4\}$.

SECTION - B: ADDITIONAL PROBLEMS

1. (a) Show that for any two $m \times n$ matrices A and B, $\operatorname{rank}(A+B) \leq \operatorname{rank}(A) + \operatorname{rank}(B)$.

Hint:
$$A + B = [A|B] \begin{bmatrix} I_n \\ I_n \end{bmatrix}$$
.

Solution: Since
$$A + B = [A|B] \begin{bmatrix} I_n \\ I_n \end{bmatrix}$$
, $\operatorname{rank}(A+B) \leq \operatorname{rank}[A|B] \leq \operatorname{rank}(A) + \operatorname{rank}(B)$.

(b) Hence show that if A is an $m \times n$ matrix and B is the matrix obtained by changing exactly k entries of A, then $\operatorname{rank}(A) - k \leq \operatorname{rank}(B) \leq \operatorname{rank}(A) + k$.

Hint: B = A + C, where C has exactly k nonzero entries.

Solution: Since C has at most k nonzero rows, $\operatorname{rank}(C) \leq k$, Hence $\operatorname{rank}(B+C) \leq \operatorname{rank}(A) + k$.

To show the other inequality, note that A = B + (-C).

2. Let \mathbb{V} be a vector space and S be a subset of \mathbb{V} . Let $L = \{\mathbb{U} | \mathbb{U} \leq \mathbb{V}, S \subseteq \mathbb{U}\}$. Then show that $\operatorname{span}(S) = \bigcap_{\mathbb{U} \in L} \mathbb{U} = \text{the smallest subspace containing } S$.

Solution: As each \mathbb{U} contains S, it must contain $\operatorname{span}(S)$. Hence $\bigcap_{\mathbb{U}\in L}\mathbb{U}$ contains $\operatorname{span}(S)$. Further, as $\operatorname{span}(S)$ is subspace, it must appear as one \mathbb{U} on the right hand side. Thus $\bigcap_{\mathbb{U}\in L}\mathbb{U}$ cannot be larger than $\operatorname{span}(S)$.

- 3. Give subspaces \mathbb{W}_i , $(1 \leq i \leq 5)$ of $\mathbb{R}^{[0,1]}$ such that $\mathbb{W}_5 \subsetneq \mathbb{W}_4 \subsetneq \cdots \subsetneq \mathbb{W}_1$. Hint: Take for example $\mathbb{W}_1 = \mathbb{R}[x]$, where $x \in [0,1]$.
- 4. Consider $\mathbb{W} = \{ v \in \mathbb{R}^6 \mid v_1 + v_2 + v_3 = 0, \ v_2 + v_3 + v_4 = 0, \ v_5 + v_6 = 0 \}$. Supply a basis for \mathbb{W} and extend it to a basis of \mathbb{R}^6 .
- 5. For each of these, find a basis.

a)
$$\left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a - d = 0, a, b, c, d \in \mathbb{R} \right\}$$
.

- b) $\{a + bx + cx^3 : a, b, c \in \mathbb{R}, a 2b + c = 0\}.$
- c) $\{A_{m \times n} : \text{row sums of } A \text{ are zero} \}$.
- 6. Give 2 bases for the trace 0 real symmetric matrices of size 3×3 . Extend these bases to bases of the real symmetric matrices of size 3×3 . Extend these bases to bases of the real matrices of size 3×3 .
- 7. Consider the vector space of real polynomials in x. Let $S = \{1 + t, (1 + t)^2, 1 t^2, 10\}$. Describe span(S) and find its dimension.