Heterocycles In Biological Chemistry

A. Introduction

B. Names

2,4-dimethylpyrrole

1-methylindole

2,4-dichloropyrimidine

2-dimethylaminopyridine

$$\sqrt[N]{N}$$

1,2-dimethylimidazole

piperazine

1,2-dimethylindole

4,5-dichloropyrimidine

pyrrole

piperazine

allopurinol

piperidine

morphine

piperazine and pyrimidine and pyridine

pyrrazole

C. Aromaticity And Basicity Of Heterocycles

Pyridines And Pyrimidines sp² hybridized with a lone pair aromatic.

sp² hybridized with a lone pair

aromatic.

sp² hybridized with a lone pair aromatic.

Pyrrole sp² hybridized with 0 can aromatic.

Imidazole

can

are both sp² hybridized, and one

does influence

Pyrazole

cannot are one

Pyrazole is

aromatic stabilization.

1,3,4-Oxadiazole

sp² hybridized and each contributes 1 sp² hybridized and contributes 2 aromatic.

1,3,4-oxadiazole

does not good base is not lost.

Heterocycles In Nature

N³: 0 N²: 1

N¹: 2

cytosine

$$\begin{array}{c|cccc}
O & N^4: 2 \\
N^3: 2 & N^3: 2 \\
N^4: 1 & N^2: 2 \\
N^1: 1 & Caffeine
\end{array}$$

$$N^{5}$$
: 0 N^{5} : 0 N^{5} : 0 N^{5} : 0 N^{5} : 0 N^{4} : 1 N^{4} : 1 N^{3} : 1 N^{2} : 2 N^{2} : 1 N^{2} : 2 N^{2} : 1 N^{2} : 1 N^{2} : 2 N^{2} : 1 N^{2} : 2

2 pyridine-like nitrogen atoms, 2 **26** π -electrons are aromatic. 2

Fe²⁺ complex overall charge 0

Mg²⁺ complex overall charge 0

Hemoglobin chlorophyll

): strongly UV absorbing / fluorescent / capable of redox chemistry.

Aromatic Characteristics Of Protonated Heterocycles

aromatic because it has

aromatic because it has

not aromatic because it has

not aromatic because it has

aromatic because it has $6 \pi e^{-}$.

not aromatic because it has $4 \pi e^{-}$.

aromatic because it has $6 \pi e^{-}$.

aromatic because it has

aromatic because it has $10 \text{ } \pi\text{e}^{-}$.

not aromatic because it has 8 πe⁻.

 C^3

pyridine

pyrimidine

oxazole

D. Electrophilic Attack On Pyrrole And Indole Compared

Pyrrole

low

in the 2-position

complete diagrams and show arrows

in the 3 position

$$H$$
 B
 $+N$
 H
 H
 H
 H
 H

complete diagrams and show arrows

2-position thermodynamic

Hammond's postulate.

choose correct regiochemistry, show resonance structures, and electron flow that relates them using curly arrows

more electron rich than benzene, hence it reacts faster

least reactive most reactive

Indole

in the 2-position

in the 3 position

donation of the N-lone pair does disrupt aromaticity of the benzene ring

2-position

because it has four resonance structures to delocalize the charge without disrupting aromaticity of the benzene ring while substitution at the 3-position doesn't have resonance structure to delocalize the charge without disrupting aromaticity.