- It may be observed that the samples of a signal are highly correlated with each other.
- This is due to the fact that any signal does not change fast.
 - Which means, its value from present sample to next sample does not vary by a large amount.
- The adjacent samples of the signal carry the same information with a little difference.
- When these samples are encoded by a standard **PCM system**, the resulting encoded signal contains some redundant information.
- These effects can be seen in voice and video signals encoded with PCM system.

Redundant Information in PCM

- To process this redundant information and to have a better output,
- DPCM quantizes the difference of the actual sample and predicted value.
- Such a process is called as Differential Pulse Code Modulation (DPCM).

Working Principle

- The differential pulse code modulation works on the principle of prediction.
- The value of the present sample is predicted from the past samples.
- The prediction may not be exact but it is very close to the actual sample value.

Transmitter of D PCM system

- The sampled signal is denoted by $x(nT_s)$ and predicted signal is denoted by $x^{n}(nT_s)$.
- The comparator finds out the difference between the actual sample value $x(nT_s)$ and predicted sample value $x(nT_s)$
- This is known as prediction error and it is denoted by $e(nT_s)$.
- It can be defined as,

$$e(nT_s) = x(nT_s) - x^{\wedge}(nT_s)$$

The predicted value is produced by using a prediction filter.

- The quantizer output signal gap $e_q(nT_s)$ and previous prediction is added and given as input to the prediction filter.
- This signal is called $x_q(nT_s)$.
- If prediction is well performed then the variance of $e(nT_s)$ will be much smaller than the variance of $x(nT_s)$
- Then it may lead to smaller levels of quantization of $e(nT_s)$ (using small number of bits).
- Thus number of bits per sample are reduced in DPCM.
- The quantizer output can be written as,

$$e_q(nT_s) = e(nT_s) + q(nT_s)$$

• Where, $q(nT_s)$ is the quantization error

• The prediction filter input $x_q(nT_s)$ is obtained by sum of $x'(nT_s)$ and quantizer output. $e_q(nT_s)$ i.e.,

$$x_q(nT_s) = x(nT_s) + e_q(nT_s)$$

• Substituting the value of $e_q(nT_s)$,

$$x_q(nT_s) = x(nT_s) + e(nT_s) + q(nT_s)$$

- We know that $e(nT_s) = x(nT_s) x(nT_s) \rightarrow x(nT_s) = e(nT_s) + x(nT_s)$
- Therefore,

 $x_q(nT_s) = x(nT_s) + q(nT_s)$

Receiver of DPCM system

- The decoder first reconstructs the quantized error signal from incoming binary signal.
- The **prediction filter** output and quantized error signals are summed up to give the quantized version of the original signal.
- Thus the signal at the receiver differs from actual signal by quantization error $q(nT_s)$, which is introduced permanently in the reconstructed signal.

Advantages of DPCM

- 1. As the difference between x (nT_s) and x (nT_s) is being encoded and transmitted by the DPCM technique, a small difference voltage is to be quantized and encoded.
- 2. This will require less number of quantization levels and hence less number of bits to represent them.
- 3. Thus signaling rate and bandwidth of a DPCM system will be less than that of PCM.

SNR improvement in DPCM

- Consider a signal x(t) of peak amplitude x_p applied to both PCM and DPCM systems.
- The signal power in both the systems are assumed to be same.
- The quantizer in the PCM system quantizes the signal x(t)
- The quantizer in the DPCM system quantizes the signal e(t) with peak amplitude of e_p
- If the number of levels L'in both the cases are same, then the step size in DPCM is reduced by the factor of $\frac{x_p}{e_p}$

- So the quantization noise error is reduced by the factor of $\left(\frac{x_p}{e_p}\right)^2$
- So the SNR of DPCM increases by the same factor over the SNR of PCM.
- Processing gain of DPCM is

$$G_p = \left(\frac{x_p}{e_p}\right)^2 = \frac{\overline{x^2}}{e^2}$$

The mean square error of prediction is

$$\overline{\left(x(nT_s)-x(nT_s)\right)^2}=\overline{e^2(n)}$$

Slope Overload Noise in DPCM

• If the signal x(t) changes so fast that the predicted signal x'(t) cannot follow it, the system noise increases which is called slope overloading.

$$\left(\frac{d\mathbf{x}'(t)}{dt}\right)_{max} = \pm f_s(\mathbf{N} - \mathbf{1})\Delta$$

- Where, N is the past number of samples.
- The slop overload can be prevented of the sampling frequency is chosen greater than the threshold value given below,

$$f_s \geq \frac{2\pi A_m f_m}{(N-1)\Delta}$$

• Using Mid riser quantizer, find the DPCM output for the given input sequence. (Assume first order prediction filter)

 $\{0, 0.3, 1.5, 0.7, 1, 2.3\}$

• Using Mid riser quantizer, find the DPCM output for the given input sequence. $\{0, 0.3, 1.5, 0.7, 1, 2.3\}$

X(n)	X^(n)=Xq(n-1)	e(n)	eq(n)	Xq(n)

• Using Mid riser quantizer, find the DPCM output for the given input sequence. $\{0, 0.3, 1.5, 0.7, 1, 2.3\}$

X(n)	X^(n)=Xq(n-1)	e(n)	eq(n)	Xq(n)
0	0	0	0.5	0.5
0.3	0.5	-0.2	-0.5	0
1.5	0	1.5	1.5	1.5
0.7	1.5	-0.8	-0.5	1
1	1	0	0.5	1.5
2.3	1.5	0.8	0.5	2

• Using Mid riser quantizer, find the DPCM output for the given input sequence. $\{0, 0.3, 1.5, 0.7, 1, 2.3\}$

eq(n)	X^(n)=Xq(n-1)	Xq(n)
0.5	0	0.5
-0.5	0.5	0
1.5	0	1.5
-0.5	1.5	1
0.5	1	1.5
0.5	1.5	2

• Consider the input sample values {2.1,2.2,2.3,2.6,2.7,2.8}. Explain about the process of DPCM encoding and decoding. Assume first order prediction filter and Mid tread quantizer.

• Consider the input sample values {2.1,2.2,2.3,2.6,2.7,2.8}. Explain about the process of DPCM encoding and decoding. Assume first order prediction filter and Mid tread quantizer.

X(n)	X^(n)=Xq(n-1)	e(n)	eq(n)	Xq(n)
2.1	0	2.1	2	2
2.2	2	0.2	0	2
2.3	2	0.3	0	2
2.6	2	0.6	1	3
2.7	3	-0.3	0	3
2.8	3	-0.2	0	3

• Consider the input sample values {2.1,2.2,2.3,2.6,2.7,2.8}. Explain about the process of DPCM encoding and decoding. Assume first order prediction filter and Mid tread quantizer.

eq(n)	X^(n)=Xq(n-1)	Xq(n)
2	0	2
0	2	2
0	2	2
1	2	3
0	3	3
0	3	3