# Topic 6:

# 3D Transformations

- Homogeneous 3D transformations
- Scene Hierarchies
- Change of basis and rotations in 3D

#### Representing 2D transforms as a 3x3 matrix

Translate a point  $[x y]^T$  by  $[t_x t_y]^T$ :  $\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 10 & t_x \\ 01 & t_y \\ 00 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$ Rotate a point  $[x y]^T$  by an angle t:  $\begin{bmatrix} x' \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} \cos t & -\sin t & 0 \\ \sin t & \cos t & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$ 

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

#### Representing 3D transforms as a 4x4 matrix

Translate a point  $[x\ y\ z]^T$  by  $[t_x\ t_y\ t_z]^T$ :

$$\begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{pmatrix} 10 & 0 & t_x \\ 01 & 0 & t_y \\ 00 & 1 & t_z \\ 00 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

Rotate a point  $[x \ y \ z]^T$  by an angle t around z axis:

$$\begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{pmatrix} \cos t & -\sin t & 0 & 0 \\ \sin t & \cos t & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 & 1 \end{pmatrix}$$

Scale a point [x y z]<sup>T</sup> by a factor [s s s ]

$$\begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{pmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

#### Scene Hierarchies



#### Change of reference frame/basis matrix



$$p = ap_x' + bp_y' + cp_z' + o$$

$$p = \begin{pmatrix} a & b & c & o \\ 0 & 0 & 0 & 1 \end{pmatrix} p'$$

$$p' = \begin{bmatrix} a & b & c & o \\ 0 & 0 & 0 & 1 \end{bmatrix}^{1} p$$

# Topic 7:

# 3D Viewing

- Camera Model
- Orthographic projection
- The world-to-camera transformation
- Perspective projection
- The transformation chain for 3D viewing

#### Camera model



#### Camera model: camera obscura





#### Camera model



### Camera model







#### Camera model

Camera with a lens



Depth of Field



# Viewing Transform



# Viewing Transform



# Viewing Transform



# Viewing Transform



# Change-of-basis Matrix



# Camera model



#### Camera model

What is the difference between these images?





# Perspective: Muller-Lyer Illusion



# Orthographic projection



#### Orthographic projection



### Cannonical view volume



#### Cannonical view volume



#### Camera model

#### Perspective Projection



### Perspective projection



# Perspective projection



# Simple Perspective



# Simple Perspective



# Simple Perspective



### Simple Perspective



Find **a** and **b** such that z'=-1 when z=d and z'=1 when z=D, where d and D are near and far clip planes.

### Simple Perspective



z'=d(az+b)/z => -1=ad+b and 1=d(aD+b)/D=> b=2D/(d-D) and a=(D+d)/(d(D-d))

### Viewing volumes



#### Viewing Pipeline

