[CSED233-01] Data Structure Algorithm Analysis

Jaesik Park

Announcement

Attendance

- 9:30~9:45 late (-1 pts from your scores)
- 9:45~ absent (-3 pts from your scores)
- 3 absent without proper reason you may get failure

Office hour

- Tuesday and Thursday
- 1PM~2PM, via Online (meeting link will be announced on PLMS)

Programming assignment #1

- Assignment was announced: 3/2
- Due date: 3/21 midnight
- It will include basic concepts we've learned so far
- Don't be afraid
 - We will provide template code and instructions
 - Will be easy to follow
 - DO NOT COPY your friend's code

Can we determine which algorithm is better?

Algorithm

- A step-by-step procedure for solving a problem in a finite amount of time
- How to compare two algorithms?
- One measure is efficiency
 - Running time
 - Time complexity
 - Space requirements
 - Space complexity
- Two ways of comparison
 - Empirical studies (programming & testing)
 - Theoretical analysis

Empirical Studies

Programming & testing

- Write a program implementing the algorithm
- Run the program with inputs of varying size
- Measure the efficiency

Limitations

- Much effort to implement the algorithm
- Results may not apply to other inputs which are not included in the experiment
- For fair comparison, the same H/W and S/W environments must be used

Theoretical Analysis

- High-level description of the algorithm instead of an implementation
 - Running time as a function of the input size n
 - Consider all possible inputs

- Limitations
 - You input size might be naturally constrained, so don't need to think!

Allow us to evaluate the speed of an algorithm independent of the HW
 SW environments

Best, Worst, and Average Cases

- Different inputs of a given size can require different amount of running time
 - Best case
 - At least, takes this much
 - Average case
 - Usually, it takes this much
 - Difficult to determine, and often infeasible
 - Worst case
 - It could take up to this
 - Easier to analyze
 - Crucial to *interactive* applications
- Focusing on the worst-case running time, here

Asymptotic Analysis

- Asymptotic analysis, also known as asymptotics, is a method of describing limiting behavior.
 - If $f(n) = n^2 + 3n$, then as n becomes very large, the term 3n becomes insignificant compared to n^2 .
 - The function f(n) is said to be "asymptotically equivalent to n^2 , as $n \to \infty$ ".
- Let T(n) the running-time function that maps an input size N to a running time R
- To capture the growth rate behavior of T(n) in the long run
 - Worst case → upper bound: Big-Oh
 - Average case → Equal: Big-Theta
 - Best case → Lower bound: Big-Omega

Big-O Notation

• An algorithm is O(f(n)) if there exist a constant c > 0 & an integer constant $n_0 \ge 1$ such that

$$T(n) \le c \cdot f(n)$$
 for all $n \ge n_0$

- Then, we write $T(n) \in O(f(n))$, or T(n) = O(f(n))
- Upper bound on the growth rate of *T(n)*

Big-O Notation: Examples

• Example: $T(n) = (n+1)^2$ is $O(n^2)$

$$T(n) = (n+1)^2 = n^2 + 2n + 1$$

 $\leq n^2 + 2n^2 + n^2 = 4n^2 \text{ for all } n \geq 1$
Thus pick $c = 4$ and $n_0 = 1$

More examples:

$$3n^3 \in O(n^3)$$
: tight bound $\Leftrightarrow 3n^3 \in O(n^4)$: loose bound $3n^3 + 2n^2 + 8 \in O(n^3)$ $2^{100} \in O(1)$ $3\log(n) + 5 \in O(\log(n))$

Properties of Big-Oh

Addition rule:

$$T_1(n) \in O(f(n)) \text{ and } T_2(n) \in O(g(n)) \Rightarrow T_1(n) + T_2(n) \in O(\max\{f(n), g(n)\})$$

Product rule:

$$T_1(n) \in O(f(n))$$
 and $T_2(n) \in O(g(n)) \Rightarrow T_1(n) \cdot T_2(n) \in O(f(n) \cdot g(n))$

Others

For any constant
$$a > 0$$
, $T(n) \in O(f(n)) \Rightarrow a \cdot T(n) \in O(f(n))$
 $T(n) \in O(f(n))$ and $f(n) \in O(g(n)) \Rightarrow T(n) \in O(g(n))$
 $T(n)$: polynomial of degree $d \Rightarrow T(n) \in O(n^d)$

Big-Omega & Big-Theta

• T(n) is $\Omega(f(n))$ if there exist a constant c > 0 & an integer constant $n_0 \ge 1$ such that

$$T(n) \ge c \cdot f(n)$$
 for all $n \ge n_0$

• Lower bound - asymptotically greater than or equal to f(n)

• T(n) is $\Theta(f(n))$ if T(n) is O(f(n)) and $\Omega(f(n))$

$$c_1 \cdot f(n) \le T(n) \le c_2 \cdot f(n)$$
 for all $n \ge n_0$

Asymptotically equal to f(n)

Asymptotic Running Time

- If $T_A(n) \in \Theta(f(n))$, we say that algorithm A has asymptotic running time $\Theta(f(n))$
- Typical growth rate:
 - **⊕**(1) − constant
 - $\Theta(\log(n))$ logarithmic
 - Θ(n) − linear
 - ⊕(n * log(n)) log linear
 - ⊕(n²) quadratic
 - $\Theta(n^3)$ cubic
 - **⊕**(2ⁿ) exponential
 - ⊕(n!) factorial

Asymptotic Algorithm Analysis

- The asymptotic analysis of an algorithm determines the running time in big-Oh notation
 - Find the worst-case # of *primitive operations* executed as a function of the input size
 - Express it with big-Oh notation

• Since constant factors and lower-order terms are eventually dropped anyhow, we can disregard them when counting primitive operations

Asymptotic Algorithm Analysis: Example

program segment

```
for i:=1 to n do
    for j:=1 to n do begin
        C[i,j]:=0;
        for k:=1 to n do
        C[i,j]:=C[i,j]+A[i,k]*B[k,j]
    end
```


$$T(n) = \sum_{i=1}^{n} \sum_{j=1}^{n} (c_1 + \sum_{k=1}^{n} c_2) = \sum_{i=1}^{n} \sum_{j=1}^{n} (c_1 + c_2 \cdot n)$$

$$= \sum_{i=1}^{n} (c_1 \cdot n + c_2 \cdot n^2) = c_1 \cdot n^2 + c_2 \cdot n^3$$

$$\Rightarrow T(n) \in O(n^3)$$

Limitations of Analysis

- Not account for *constant factors*, but constant factor may dominate
 - 1000*n vs. n^2 (when interested only in n < 1000)
- Not account for different memory access times at different levels of memory hierarchy
 - Cache Memory << MM << HDD

- Programs that do more computation may take less time than those that do less computation
 - Cost (fetch from MM) >> Cost (operation in CPU)
 - Memory access could take more than computation

Intuition for Asymptotic Notation

- Big-Oh
 - f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n)
- Big-Omega
 - f(n) is $\Omega(g(n))$ if f(n) is asymptotically greater than or equal to g(n)
- Big-Theta
 - f(n) is $\Theta(g(n))$ if f(n) is asymptotically equal to g(n)
- Little-oh
 - f(n) is o(g(n)) if f(n) is asymptotically *strictly* less than g(n)
- Little-omega
 - f(n) is $\omega(g(n))$ if is asymptotically *strictly* greater than g(n)

References

- Further reading list and references
 - https://www.w3schools.com/cpp/
 - https://en.wikipedia.org/wiki/Asymptotic_analysis
 - https://www.geeksforgeeks.org/difference-between-big-oh-big-omega-and-big-theta/

- Slide credit
 - Jaesik Park
 - Seung-Hwan Baek
 - Jong-Hyeok Lee