Modellierung mit FEM Kapitel 8: Schraub- und Schweißverbindungen

Prof. Dr.-Ing. Thomas Grätsch
Department Maschinenbau und Produktion
Fakultät Technik und Informatik
Hochschule für Angewandte Wissenschaften Hamburg

thomas.graetsch@haw-hamburg.de

Modellbeispiel

2

CAD-Modell

Verschiedene FE-Modellierungsarten der Schraubverbindung: (vgl. auch sog. Modellklassen I-IV, VDI 2230 Blatt2)

- Bauteile mit Glue-Funktion (s. Kap. 7) im Bereich des Druckkegels der Vorspannkraft koppeln
- 2. Schraube als vorgespanntes Balkenelement modellieren
- 3. Schraube als nicht vorgespanntes Balkenelement modellieren
- 4. Schraube als 3D-Körper mit Volumenelementen vernetzen, allerdings ohne Gewindemodellierung

3

Schraube als 3D-Körper mit Volumenelementen vernetzen, einschließlich Gewindemodellierung

1. Bauteile mit Glue-Funktion im Bereich des Druckkegels koppeln

- Einfachste Modellierungsart, geringer Aufwand
- Nur anzuwenden, wenn globale Größen bzw. Größen im Fernfeld von primärem Interesse sind
- Keine Aussage über Spannungen in der Schraube möglich
- Gilt heutzutage nicht als "state-of-the-art" in der FE-Technologie

1. Bauteile mit Glue-Funktion im Bereich des Druckkegels koppeln

Berechnung des Druckkegels:

Aus einschlägiger Literatur, z.B. Roloff/Matek: Maschinenelemente

5

Nach VDI-Richtlinie 2230

2. Schraube als vorgespanntes Balkenelement modellieren

- Relativ einfache und effektive Modellierung
- Berechnung der Schraubenkräfte im Model enthalten
- Gutes Modell, wenn Globalverhalten von Interesse
- FE-Programme verwenden interne "Tricks" zur Berechnung der Vorspannung, z.B. über thermische Abkühlung

3. Schraube als nicht vorgespanntes Balkenelement modellieren

- Entspricht Kombination von Modell 1 und 2: Verwendung der Glue-Funktion und Wahl des Balkenquerschnitts entsprechend des Querschnitts des Druckkegels nach VDI 2230
- Schraubennachweis mit Betriebslasten aus FEM wieder mit VDI 2230

7

Rückkopplung mit VDI 2230 somit in jedem Fall nötig

4. Schraube als 3D-Körper mit Volumenelementen vernetzen (ohne Gewinde)

- Aufwendige Modellierung, allerdings Automatisierung möglich
- Berechnung der Schraubenkräfte im Modell enthalten
- Auswertung der Spannung im Nahbereich der Schraube möglich, z.B. detaillierte Analyse der Spannungen unter Schraubenkopf

8

Gilt als "state-of-the-art" bei 3D FEM-Berechnungen

4. Schraube als 3D-Körper mit Volumenelementen vernetzen (ohne Gewinde)

9

Einfaches Beispiel:

Schraube: M10x60, 8.8, $F_v = 28.8 \text{ kN}$

Spannung: $\sigma = F_v/A = 28800 \text{ N} / (\pi 5^2 \text{mm}^2)$

 $= 366,7 \text{ N/mm}^2$

LF Vorspannung

LF Vorspannung + F

⇒ Weitere Praxisbeispiele in der Vorlesung

5. Schraube als 3D-Körper mit Volumenelementen vernetzen (mit Gewinde)

- Wie Modell 4, allerdings mit voll ausmodellierten Gewindegängen
- Sehr aufwendige Modellierung, sehr rechenintensiv
- Spannungsaussagen im Gewindegang möglich, wichtig z.B. bei Schrauben-Neuentwicklungen

Zum Nachweis einer Schweißnaht im Rahmen einer FE-Berechnung existieren im Wesentlichen drei Konzepte:

- Nennspannungskonzept
- Strukturspannungskonzept
- 3. Kerbspannungskonzept

<u>Literatur:</u>

- Forschungskuratorium Maschinenbau (FKM): Rechnerischer Festigkeitsnachweis für Maschinenbauteile. VDMA Verlag, Frankfurt am Main, 2003
- Radaj D, Vormwald M: Ermüdungsfestigkeit. Springer-Verlag, Berlin, 2007

Maßgebender Unterschied zwischen den Konzepten auf einen Blick:

1. Nennspannungskonzept

- Älteste und einfachste der drei Konzepte
- Voraussetzung: Einfache Geometrie mit klar definiertem Querschnitt
- Nahtgeometrie wird beim Vernetzen nicht berücksichtigt
- Basis sind die Nennspannungen σ_{\perp} , τ_{\perp} und τ_{\parallel} im tragenden Querschnitt
- In der Regel hohe Sicherheiten notwendig (z.B. nach DIN 18800, EC 3),
 somit Überdimensionierung der Schweißnaht möglich
- Zur Bewertung der Lebensdauer existieren eine Reihe von experimentell ermittelte Grenzwerte für Standardverbindungen

Lebensdauerberechnung mit Nennspannungskonzept:

No.	Structural Detail	Description (St.= steel; Al.= aluminium)	FAT St.	FAT Al.	Requirements and Remarks
412		Cruciform joint or T-joint, K-butt welds, full penetration, no lamellar tearing, misalignment e<0.15·t, toe crack	71	25	Material quality of intermediate plate has to be checked against susceptibility of lamellar tearing. Misalignment <15% of loaded plate.
413		Cruciform joint or T-joint, fillet welds or partial penetration K-butt welds, no lamellar tearing, misalignment e<0.15 t, toe crack	63	22	Material quality of intermediate plate has to be checked against susceptibility of lamellar tearing. Misalignment <15% of loaded plate. Also to be assessed as 414
414	a	Cruciform joint or T-joint, fillet welds or partial penetration K-butt welds including toe ground joints, weld root crack. For a/t<=1/3	36 40	12	Analysis based on stress in weld throat Also to bes assessed as 413. Ratio a/t is calculated from weld throat over wall thicknes
415		Cruciform joint or T-joint, single-sided arc or laser beam welded V-butt weld, full penetration, no lamellar tearing, misalignment e< 0.15·t, toe crack. Root inspected. If root is not inspected, then root crack	71 36	25 12	

⇒ Angabe der sog. FAT-Klasse, z.B. FAT 71: Schweißnaht ist dauerfest, wenn Nennspannung ≤ 71 MPa

2. Strukturspannungskonzept

Bauteil wird vernetzt, zum Teil auch vereinfacht die Nahtgeometrie

15

- Abschätzung der Spannung im "hot spot" durch Extrapolation
- Verschiedene Vorschläge zur Wahl der Basispunkte und zum Polynomgrad der Extrapolierenden
- Gängiger Ansatz:

$$A = 0.4 t \text{ und } B = 1.0 t (t = Dicke)$$

$$\Rightarrow \sigma_{\rm S} = 5/3 \, \sigma_{\rm A} - 2/3 \, \sigma_{\rm B}$$

Übung: Verifizieren Sie die Formel

2. Strukturspannungskonzept

Vorteile:

- Genauer als Nennspannungskonzept
- Vertretbarer Modellierungsaufwand

Nachteile:

- Stützstellen müssen bekannt sein
- Kerbwirkung in der Schweißnaht wird nicht exakt erfasst

3. Kerbspannungskonzept

- Bauteil und Schweißnaht wird vollständig ausmodelliert
- Annahme für Kerbradius in der Regel 1,0 mm
- Sehr feines Netz nötig, mind. 10-12 Elemente entlang Radius

3. Kerbspannungskonzept

Vorteile:

- Sehr hohe Genauigkeit
- Exakte Erfassung der Kerbwirkung

Nachteile:

- Hoher Modellierungs- und Rechenaufwand
- Kerbradius nicht genau bekannt
- ⇒ Praxis: Kombination von Konzept 2 und 3

Praxisbeispiel zum Kerbspannungskonzept

Nachweis der Schweißnaht bei einem Kunststoffrohr:

Radius 1,0 mm (12 Elemente pro Radius)

Berechnung des Kerbradius beim Kerbspannungskonzept:

$$\rho_f = \rho + s \cdot \rho^*$$

 $\rho = \text{realer Kerbradius},$

s = Faktor der Mikrostützwirkung,

20

 $\rho^* = \text{Ersatzstrukturlänge}.$

Faktor s der Mikrostützwirkung:

Festigkeitshypothese		k / Biegung Rundstäbe	Torsion
Normalspannungshypothese	2	2	0,5 bzw. 1
Schubspannungshypothese	2	$\frac{2-\nu}{1-\nu}$	0,5 bzw. 1
Oktaederschubspannungs- hypothese und Hypothese der Gestaltänderungsenergie	2,5	$\frac{5 - 2 \cdot \nu + 2 \cdot \nu^2}{2 - 2 \cdot \nu + 2 \cdot \nu^2}$	0,5 bzw. 1
Dehnungshypothese	$2 + \nu$	$\frac{2-\nu}{1-\nu}$	0,5 bzw. 1
Formänderungsenergiehypothese	$2 + \nu$	$\frac{2-\nu}{1-\nu}$	0,5 bzw. 1