

Basic Orbital Manoeuvres

Orbital Manoeuvres Concept

Most **ascent** missions release spacecraft in a **temporary** orbit, after which a series of **manoeuvres** place the satellite in the **desired** orbit/on the desired path.

Orbital Manoeuvres Concept

Orbital manoeuvres are typically carried out by burning fuel for a short duration, so that it results in increase/decrease in the velocity.

In this context, it is assumed that **burn** time is sufficiently **small** in comparison to the orbital **time period** so that all manoeuvres are generally **impulsive** in nature.

In view of the above, **manoeuvres** are typically described in terms of **required** velocity impulse, ' Δv ' at a specified **location** along the orbital **path.**

Chandrayaan-I Manoeuvres – Earth

Earth orbit burns				
Date	Burn time (minutes)	Resulting apogee		
22 October Launch	18.2 in four stages	22,860 km		
23 October	18	37,900 km		
25 October	16	74,715 km		
26 October	9.5	164,600 km		
29 October	3	267,000 km		
4 November	2.5	380,000 km		

Chandrayan-I Manoeuvres - Moon

Lunar orbit insertion				
Date	Burn time (seconds)	Resulting periselene	Resulting aposelene	
8 November	817	504 km	7,502 km	
9 November	57	200 km	7,502 km	
10 November	866	187 km	255 km	
11 November	31	101 km	255 km	
12 November Final orbit		100 km	100 km	

Orbital Manoeuvre Types

In general, orbital manoeuvres involve following tasks.

Apogee Raising / Perigee Raising

Argument of Perigee Changing

Orbit **Shape** and Size Changing

Orbit **Plane** Changing

The above **tasks** are accomplished by providing appropriate **velocity** impulses.

Apogee Raising Manoeuvre

Circular Apogee Raising Manoeuvre

Apogee raising involves **increasing** 'r_a', while keeping 'r_p' same, by a **collinear** velocity change at **perigee**.

Consider the **schematic** of an orbit **raising** manoeuvre, from **circular** orbit, to an **elliptic** orbit as shown below.

Circular Apogee Raising Formulation

Basic equations for ' Δv ', are as follows.

$$a_{elp} = \frac{r_0 + r_1}{2}; \quad e = \frac{r_1 - r_0}{2a_{elp}} = \frac{r_1 - r_0}{r_1 + r_0}; \quad v_{cir} = \sqrt{\frac{\mu}{r_0}}$$

$$\varepsilon_{elp} = \frac{v_{elp}^2}{2} - \frac{\mu}{r_{elp}} = -\frac{\mu}{2a_{elp}} = -\frac{\mu}{r_1 + r_0}; \quad r_{elp}(\text{perigee}) = r_0$$

$$v_{elp}(\text{perigee}) = \sqrt{\frac{2\mu a_1}{r_0 (r_1 + r_0)}}; \quad \Delta v_{ratising} = v_{elp} - v_{cir}$$

$$\Delta v_{ratising} = \sqrt{\frac{2\mu r_1}{r_0 (r_1 + r_0)}} - \sqrt{\frac{\mu}{r_0}} = \sqrt{\frac{\mu}{r_0}} \left(\sqrt{\frac{r_1}{a_{elp}}} - 1\right)$$

Elliptic Apogee Raising Formulation

Apogee raising for an elliptical orbit is as shown below.

$$\begin{split} v_{p1} &= \sqrt{\left(\frac{\mu \sigma_{a1}}{r_p a_{elp1}}\right)}; \quad v_{p2} &= \sqrt{\left(\frac{\mu \sigma_{a2}}{r_p a_{elp2}}\right)} \\ \Delta v &= v_{p2} - v_{p1} = \sqrt{\frac{\mu}{r_p}} \times \left[\sqrt{\left(\frac{r_{a2}}{a_{elp2}}\right)} - \sqrt{\left(\frac{r_{a1}}{a_{elp1}}\right)}\right] \end{split}$$

Perigee Changing Manoeuvre

Perigee Raising Manoeuvre

Perigee raising involves velocity **change** at apogee, as shown along side.

The **manoeuvre** is also employed for **circularizing** an existing **elliptic** orbit.

Perigee Raising Solution

The solution for **perigee** raising impulse is as follows.

$$r_{0} \rightarrow \text{Perigee}, \quad r_{1} \rightarrow \text{Apogee}, \quad a_{elp} = \frac{r_{0} + r_{1}}{2}$$

$$v_{elp-a} = \sqrt{\frac{\mu}{r_{1}}}; \quad \frac{v_{elp-a}^{2} - \mu}{2} - \frac{\mu}{r_{1}} = -\frac{\mu}{2a_{elp}}$$

$$v_{elp-a} = \sqrt{2\left(\frac{\mu}{r_{1}} - \frac{\mu}{r_{1} + r_{0}}\right)} = \sqrt{\left(\frac{\mu r_{0}}{r_{1} a_{elp}}\right)}$$

$$\Delta v = \sqrt{\frac{\mu}{r_{1}}} - \sqrt{\frac{\mu r_{0}}{r_{1} a_{elp}}} = \sqrt{\frac{\mu}{r_{1}}} \left(1 - \sqrt{\frac{r_{0}}{a_{elp}}}\right)$$

Summary

We see that orbital manoeuvres are easily set up with basic orbital parameters in terms of velocity impulses that are given either at perigee or at apogee.