Fundamentos de Lógica Proposicional

1. Motivación de la lógica proposicional

La lógica formal nace de la necesidad de analizar la validez de los argumentos, más allá de si sus afirmaciones individuales son verdaderas o no.

Ejemplo válido

- Todos los hombres son mortales.
- Sócrates es hombre.
- \Rightarrow Sócrates es mortal.

Ejemplo no válido

- Algunas personas son mujeres.
- Sócrates es una persona.
- ⇒ Sócrates es mujer.

Estos ejemplos muestran que el análisis informal del lenguaje natural no siempre es confiable: surgen ambigüedades, presupuestos, creencias, etc. Por eso, necesitamos un **lenguaje** formal con:

- Sintaxis precisa: reglas claras de construcción.
- Semántica bien definida: significado sin ambigüedades.

Este lenguaje es esencial para:

- Definir objetos y teorías matemáticas.
- Formalizar demostraciones.
- Aplicaciones en computación, ingeniería e inteligencia artificial.

2. Sintaxis de la lógica proposicional

Elementos

• Variables proposicionales: p, q, r, ...

■ Conectivos: \neg , \wedge , \vee , \rightarrow , \leftrightarrow

• Paréntesis: para evitar ambigüedades

Reglas de construcción

1. Cada variable proposicional p es una fórmula.

2. Si φ es fórmula, entonces $\neg \varphi$ también lo es.

3. Si φ y ψ son fórmulas, entonces $\varphi \wedge \psi$, $\varphi \vee \psi$, $\varphi \rightarrow \psi$, $\varphi \leftrightarrow \psi$ también lo son.

3. Semántica: significado de las fórmulas

Dada una valuación $\sigma: P \to \{0,1\}$, se extiende a fórmulas completas con:

• $\sigma(\neg \varphi) = 1$ si $\sigma(\varphi) = 0$, y viceversa.

• $\sigma(\varphi \to \psi) = 1$ salvo que $\varphi = 1$ y $\psi = 0$.

• $\sigma(\varphi \wedge \psi) = 1$ si ambas son 1.

• $\sigma(\varphi \lor \psi) = 1$ si alguna es 1.

• $\sigma(\varphi \leftrightarrow \psi) = 1$ si tienen el mismo valor.

Nota importante: la implicación (\rightarrow) es falsa solo cuando el antecedente es verdadero y la conclusión falsa. Si el antecedente es falso, la implicación siempre es verdadera.

4. Tablas de verdad

Permiten analizar fórmulas exhaustivamente. Por ejemplo, para $p \to q$ y su equivalencia con $\neg p \lor q$:

p	q	$p \rightarrow q$	$\neg p \lor q$	¿Equivalentes?
0	0	1	1	Sí
0	1	1	1	Sí
1	0	0	0	Sí
1	1	1	1	Sí

5. Equivalencia lógica

Dos fórmulas α y β son equivalentes ($\alpha \equiv \beta$) si tienen la misma tabla de verdad.

Ejemplos de equivalencias útiles

- $\neg(\neg\varphi) \equiv \varphi$ (doble negación)
- $\neg(\varphi \land \psi) \equiv \neg \varphi \lor \neg \psi$ (De Morgan)
- $\quad \bullet \quad \varphi \to \psi \equiv \neg \varphi \lor \psi$
- $\varphi \leftrightarrow \psi \equiv (\varphi \to \psi) \land (\psi \to \varphi)$

6. Formas normales

Forma Normal Disyuntiva (DNF)

Una disyunción de conjunciones de literales: Ejemplo: $(p \land q) \lor (\neg p \land r)$

Forma Normal Conjuntiva (CNF)

Una conjunción de disyunciones de literales: Ejemplo: $(p \lor \neg q) \land (\neg r \lor s)$ **Teorema:** Toda fórmula proposicional es equivalente a una fórmula en DNF o CNF.

7. Conjuntos funcionalmente completos

Un conjunto de conectivos es funcionalmente completo si puede expresar cualquier fórmula proposicional.

- Funcionalmente completos: $\{\neg, \lor, \land\}, \{\neg, \lor\}, \{\neg, \land\}, \{\neg, \rightarrow\}, \{nand\}$
- No funcionalmente completos: $\{\land, \lor, \rightarrow, \leftrightarrow\}$

Ejemplo: El conectivo nand (not and) se define como:

$$p \text{ nand } q = \neg(p \land q)$$

Con solo nand se pueden expresar $\neg,\,\wedge$ y cualquier otra operación.

8. Conectivos definidos por tablas de verdad

Dada una tabla de verdad, se puede construir una fórmula equivalente en base a los casos donde el valor es 1 (verdadero), uniendo las conjunciones de literales correspondientes por disyunción.

Ejemplo: Si $\alpha(p,q,r,s)$ es verdadera en ciertas combinaciones, se representa como:

$$(\neg p \wedge \neg q \wedge \neg r \wedge s) \vee (p \wedge q \wedge r \wedge \neg s) \vee \dots$$