Aufgabe 12.1

Zu zeigen: Ein gleichschenkliges Dreieick (im \mathbb{R}^2), dessen Basis in der x_1 -Achse liegt, wird durch eine komponentenweise positiv-affine Transformation in ein gleichschenkliges Dreieck, dessen Basis auf einer Parallelen zur x_1 -Achse liegt, überführt.

Beweis: Wir haben ein gleichschenkliges Dreieck gegeben, dessen Basis in der x_1 -Achse liegt. Daher wissen wir folgendes über die drei Eckpunkte A, B und C:

- $A = (a_1, a_2) = (a_1, 0)$
- $B = (b_1, b_2) = (a_1 + c, 0)$
- $C = (c_1, c_2) = (a_1 + \frac{c}{2}, c_2)$

Sei $\alpha x + \beta$ eine komponentenweise positiv-affine Transformation von $x \in \mathbb{R}^2$, d.h. $\alpha > 0$ und $\beta \in \mathbb{R}^2$. Wir wenden diese Transformation auf A, B und C an:

- $A' = \alpha A + \beta = (\alpha_1 a_1 + \beta_1, 0 + \beta_2)$
- $B' = \alpha B + \beta = (\alpha_1 \cdot (a_1 + c) + \beta_1, 0 + \beta_2)$
- $C' = \alpha C + \beta = (\alpha_1 \cdot (a_1 + \frac{c}{2}) + \beta_1, \alpha_2 c_2 + \beta_2)$

Wir stellen fest:

- A' und B' haben beide den x_2 -Wert $\beta_2 \Rightarrow A'$ und B' liegen auf der Parallele zur x_1 -Achse durch $(0, \beta_2)$. $\overline{A'B'}$ ist die Basis des gleichschenkligen Dreiecks.
- Die Distanz zwischen A' und B' beträgt $\alpha_1 \cdot (a_1 + c) + \beta_1 (\alpha_1 a_1 + \beta_1) = \alpha_1 \cdot c$. Die Differenz der x_1 -Werte von A und C beträgt $\alpha_1 \cdot (a_1 + \frac{c}{2}) + \beta_1 (\alpha_1 a_1 + \beta_1) = \alpha_1 \cdot \frac{c}{2}$. Das ist genau die Hälfte der Differenz der x_1 -Werte von A' und $B' \Rightarrow C'$ liegt auf der Mittelsenkrechten zu $\overline{A'B'}$.

Da A'B' parallel zur x_1 -Achse ist und C' auf der Mittelsenkrechten zu A'B' liegt, ist A'B'C' ein gleichschenkliges Dreieck, dessen Basis auf einer Parallelen zur x_1 -Achse liegt.

Aufgabe 12.3

a)

Wir zeigen, dass $(\frac{3}{4},\frac{3}{4})$ die Nash-Lösung für das Spiel (S,d) ist.

Dazu zeigen wir einfach, dass $x=(\frac{3}{4},\frac{3}{4})$ die Alternative $x\in S$ ist, welche die Fläche des Rechtecks mit unterer linker Ecke d und oberer rechter Ecke x maximiert.

In der Abbildung ist neben S noch ein Teil der Funktion $x_2(x_1) = (\frac{3}{4})^2 \cdot \frac{1}{x_1}$ eingezeichnet, sprich dies sind genau die Punkte (x_1, x_2) mit $x_1 \cdot x_2 = (\frac{3}{4})^2$. Für die Punkte auf dieser Kurve ist der Flächeninhalt des Rechtecks mit unterer linker Ecke d und oberer Rechter Ecke $x = (x_1, x_2)$ genau $(\frac{3}{4})^2$.

Für x oberhalb dieser Kurve ist der Flächeninhalt größer, für x unterhalb kleiner. Da die Kurve genau durch $(\frac{3}{4}, \frac{3}{4})$ verläuft und S mit Ausnahme von $(\frac{3}{4}, \frac{3}{4})$ komplett unterhalb der Kurve liegt, ist $\mathcal{N}(S,d)=(\frac{3}{4},\frac{3}{4})$ die Nash-Lösung für dieses Spiel.

Die Nash-Lösung für dieses Spiel findet sich im Buch von Maschler, Solan und Zamir, wo auf Seite 642 genau dieses Beispiel als Kritik an der Nash-Lösung aufgeführt wird.

Abbildung 1: entnommen aus Maschler, Solan, Zamir: Game Theory

Dort heißt es:

[...] Since the bargaining game $(S_1, (0,0))$ is symmetric, $\mathcal{N}(S_1, (0,0)) = (0.75, 0.75)$. By drawing an equilateral triangle whose vertices are (0,0), (1,0.7), (2,0) (see Figure 15.16) and using Theorem 15.20, we deduce that $\mathcal{N}(S_2, (0,0) = (1,0.7)$. [...]

Theorem 15.20 ist genau der Satz, welcher in Aufgabe 2 bewiesen wurde. Damit ist $\mathcal{N}(S_2,(0,0)=(1,0.7)$ die Nash-Lösung für dieses Spiel.