AutoML: Bayesian Optimization for HPO

The Tree-Parzen Estimator (TPE)

Bernd Bischl <u>Frank Hutter</u> Lars Kotthoff Marius Lindauer Joaquin Vanschoren

Overview of TPE [Bergstra et al. 2011]

- Standard Bayesian optimization models the probability $p(y \mid \pmb{\lambda})$ of observations y given configurations $\pmb{\lambda}$
- Instead, TPE fits kernel density estimators (KDEs) $l(\lambda \mid y \leq \gamma)$ and $g(\lambda \mid y > \gamma)$
 - ▶ These KDEs are for "good configurations" (leading to objective function values below a threshold γ) and "bad configurations"
 - lacktriangle By default, γ is set to the 15% quantile of the observations

Overview of TPE [Bergstra et al. 2011]

- Standard Bayesian optimization models the probability $p(y \mid \pmb{\lambda})$ of observations y given configurations $\pmb{\lambda}$
- Instead, TPE fits kernel density estimators (KDEs) $l(\lambda \mid y \leq \gamma)$ and $g(\lambda \mid y > \gamma)$
 - ▶ These KDEs are for "good configurations" (leading to objective function values below a threshold γ) and "bad configurations"
 - lacktriangle By default, γ is set to the 15% quantile of the observations
- Optimizing $l(\pmb{\lambda})/g(\pmb{\lambda})$ is equivalent to optimizing standard expected improvement in Bayesian optimization [Bergstra et al. 2011]

Overview of TPE [Bergstra et al. 2011]

- Standard Bayesian optimization models the probability $p(y \mid \pmb{\lambda})$ of observations y given configurations $\pmb{\lambda}$
- Instead, TPE fits kernel density estimators (KDEs) $l(\lambda \mid y \leq \gamma)$ and $g(\lambda \mid y > \gamma)$
 - ▶ These KDEs are for "good configurations" (leading to objective function values below a threshold γ) and "bad configurations"
 - lacktriangle By default, γ is set to the 15% quantile of the observations
- Optimizing $l(\lambda)/g(\lambda)$ is equivalent to optimizing standard expected improvement in Bayesian optimization [Bergstra et al. 2011]
- Why is the technique called TPE?
 - ► The used KDEs are Parzen estimators
 - ► TPE can handle tree-structured search spaces

TPE Pseudocode

```
TPE loop
    Require: Search space \Lambda, cost function c, percentile \gamma, maximal number
                      of function evaluations T
    Result: Best observed configuration \lambda according to \mathcal{D}^{(T)}
1 Initialize data \mathcal{D}^{(0)} with initial observations
2 for t=1 to T do
         \mathcal{D}_{\mathsf{good}}, \mathcal{D}_{\mathsf{bad}} \leftarrow \mathsf{split} \ \mathcal{D}^{(t-1)} according to quantile \gamma
       l(\lambda), q(\lambda) \leftarrow \text{fit KDE on } \mathcal{D}_{good}, \mathcal{D}_{bad} \text{ respectively}
       \Lambda_{\mathsf{cand}} \leftarrow \mathsf{draw} \; \mathsf{samples} \; \mathsf{from} \; l;
       Select next query point: \lambda^{(t)} \in \arg \max_{\lambda \in \Lambda_{\text{max}}} l(\lambda)/g(\lambda)
        Query c(\boldsymbol{\lambda}^{(t)})
         \mathcal{D}^{(t)} \leftarrow \mathcal{D}^{(t-1)} \cup \{\langle \boldsymbol{\lambda}^{(t)}, c(\boldsymbol{\lambda}^{(t)}) \rangle \}
9 end
```

Further Details

Remarks:

- ullet TPE models $p(oldsymbol{\lambda}|c(oldsymbol{\lambda}))$
 - we can multiply it with a prior to add expert knowledge

Further Details

Remarks:

- TPE models $p(\boldsymbol{\lambda}|c(\boldsymbol{\lambda}))$
 - we can multiply it with a prior to add expert knowledge
- Performance of TPE depends on:
 - ightharpoonup setting of γ to trade-off exploration and exploitation
 - bandwidth of the KDEs

Further Details

Remarks:

- TPE models $p(\boldsymbol{\lambda}|c(\boldsymbol{\lambda}))$
 - we can multiply it with a prior to add expert knowledge
- Performance of TPE depends on:
 - ightharpoonup setting of γ to trade-off exploration and exploitation
 - bandwidth of the KDEs
- A successful tool implementing TPE is Hyperopt [Bergstra et al.]

Summary

Advantages

- ullet Computationally efficient: O(Nd)
- Parallelizable
- Robust
- Can handle complex search spaces with priors

Summary

Advantages

- ullet Computationally efficient: O(Nd)
- Parallelizable
- Robust
- Can handle complex search spaces with priors

Disadvantages

• Less sample-efficient than GPs

Questions to Answer for Yourself / Discuss with Friends

- Disussion. Is TPE really Bayesian optimization?
- ullet Disussion. How does γ impact the optimization procedure?
- Derivation. Go through the derivation that optimizing $l(\lambda)/g(\lambda)$ is equivalent to optimizing expected improvement; see Section 4.1 in [Bergstra et al. 2011].