(merching) NR

Topologie

2 octobre 2018

1 Cardinaux

1.1

Soit E un ensemble, montrer que $|E| \le |P(E)|$,

1.1.1

Montrer que l'ensemble des parties finies de N est dénombrable,

1.1,2

Montrer que $C([0,1], \mathbb{R})$ contient une famille dénombrable dense pour $\|\cdot\|_{\infty}$. On Arguer admettra le théorème de weierstrass,

1.1.3

Montrer que l'ensemble des bijections de N dans lui-même n'est pas dénombrable.

2 Intérieur, adhérence, densité

2.1 Ouverts disjoints

Soient U et V deux ouverts disjoints de l'evn E. Montrer que Int(Adh(U)) et Int(Adh(V)) sont disjoints.

2.2 Densité multiplicative.

Montrer que l'ensemble $\{2^n3^{-m}|(m,n)\in\mathbb{N}^2\}$ est dense dans \mathbb{R}^+ ,

2. Densité L^{∞} . Trouver, dans $l^{\infty}(\mathbf{R})$ muni la norme sup., l'adhérence des suites telles que la série correspondante converge,

2.3

Montrer que l'ensemble des points d'accumulation d'un ensemble A est fermé.

2.4

Soit $A \subset \mathbf{R}$. On dit que a est adhérent à gauche à A si : $a \in \overline{A}$ et $\exists b > a$ $]a,b[\cap A=\emptyset$. Montrer que l'ensemble des points adhérents à gauche à A est fini ou dénombrable. Montrer qu'une partie de \mathbf{R} qui ne contient aucune suite strictement décroissante est finie ou dénombrable.

2.5.

Si $t \in \mathbb{R}$, on pose $\{t\} = t - E(t)$. Soit $x \in \mathbb{R} \setminus \mathbb{Q}$. Montrer que $\{\{nx\}, n \in \mathbb{N}\}$ est dense dans [0,1].

3 Limites et continuité

3.1

Soient (E, || ||) un espace vectoriel normé, et u un morphisme additif de E dans E. Si u est continu (resp. borné sur la boule unité), montrer que u est linéaire.

3.2

Soit f une fonction continue du disque ouvert D de rayon 1 de C dans C. On suppose que f possède une limite en chaque point z de S^1 . Montrer que f possède un prolongement continu à \overline{D} .

3.3

Soit f une application continue de \mathbb{R}^+ dans \mathbb{R} , montrer que $g: x \to \sup_{0 \le t \le x} f(t)$ est continue.

3.4

Soit f une fonction continue et minorée de R vers R et $\varepsilon>0$. Montrer qu'il existe x_0 dans R tel que

$$\forall x \in \mathbf{R}, f(x_0) - f(x) \le \varepsilon |x - x_0|.$$

3.5

Soit f une application continue surjective de R dans R telle que, pour toute partie bornée B de R, $f^{-1}(B)$ soit bornée. Montrer que f possède une limite infinie en $-\infty$ et en $+\infty$.

3.6

Soient [a,b] un segment de R, f et g deux applications continues de [a,b] dans [a,b] telles que $f \circ g = g \circ f$. Montrer qu'il existe x dans [a,b] tel que f(x) = g(x). On pourra s'intéresser à l'ensemble A des points fixes de f.

how I ate pineapol how to make a bind - I

3.7

Montrer que $d(x, A) = 0 \Leftrightarrow x \in \overline{A}$; $d(x, A) = d(x, \overline{A})$; $d(A, B) = d(\overline{A}, \overline{B})$.

3.8

Soit f une fonction de R vers R.

- a) Montrer que l'ensemble des points où f admet un maximum local strict est dénombrable.
- b) Même question avec l'ensemble des points où f admet une limite à droite et une limite à gauche, ces limites étant distinctes.

4 Applications linéaires continues

L'idée essentielle de la théorie des applications linéaires continue est d'étudier si elles sont (ou non) bornées sur la boule unité fermée B de E, puis éventuellement de déterminer le sup. des normes $\|u(x)\|_F$ lorsque x parcourt B.

Montrer que le dual topologique de E s'identifie à F; quelle alors la norme d'opérateur?

4.1

Soit $E = \mathbb{R}[X]$. On pose $||P|| = \int_{0}^{1} |P(t)| dt$. Montrer que c'est une norme; E est-il complet pour cette norme?

Soit u une fonction continue sur [0,1], et $f:E\to \mathbb{R},\ f(P)=\int\limits_0^1 u(t)P(t)\ dt.$ Etudier la continuité de f et sa norme d'opérateur lorsque : E est muni de $\|\cdot\|_{\infty}$, de la norme précédente. On pourra admettre le théorème de Weierstrass.

4.2

Soit ϕ une forme linéaire de $E = C([0,1], \mathbb{C})$ muni de la norme de la convergence uniforme dans \mathbb{C} . On suppose que $|||\phi||| = 1$ et que $\phi(1) = 1$. Montrer qué, si l'élément $f \in E$ est à valeurs réelles, $\phi(f)$ est réel. Prouver que ϕ est positive.

4.3

Soient E un evn et K un convexe compact non vide de E. Soit $u \in L(E)$ continue telle que $u(K) \subset K$. Si $n \ge 1$, on pose $v_n = (Id + u + \dots + u^{n-1})/n$.

- a) Montrer que $v_n(K) \subset K$ et $v_n(K)$ compact convexe.
- b) Si $n, p \in \mathbb{N}^*$, montrer $v_{np}(K) \subset v_n(K)$. En déduire que $V = \cap v_n(K)$ est non vide.
- c) Si $y = v_n(x)$, calculer u(y) y. Montrer que $V = \{x \in K | u(x) = x\}$. Qu'en conclure?

Court - In

5 Comparaison des normes

5.1 Normes sur les fonctions C^0 et séries.

Soit (a_n) une suite d'éléments de [0,1]. CNS pour que $f \to \sum_{k=0}^{\infty} 2^{-n} |f(a_n)|$ soit une norme sur $E = C([0,1], \mathbb{R})$, la comparer alors à $\|\cdot\|_{\infty}$.

5.2

On désigne par E l'espace vectoriel $C([0,1],\mathbf{R})$ muni de la norme $\| \ \|_{\infty}$. On se donne $g\in E$ et l'on pose $N(f)=\|fg\|_{\infty}$. Trouver des CNS pour que :

- i) N soit une norme;
- ii) N soit équivalente à $\| \|_{\infty}$.

6 Compacité, dimension finie

6.1 Fonctions continues bornées.

Soit A une partie de \mathbb{R}^n . Trouver une CNS pour que

- i) toute fonction continue sur A soit bornée;
- ii) n=1. Toute fonction continue sur A soit uniformément continue. (Difficile).

6.2 Images de polynômes.

- a) Quelles sont les parties de R de la forme $P(\mathbf{R})$, avec $P \in \mathbf{R}[X]$?
- b) Quelles sont les parties de R de la forme $P(\mathbb{R}^2)$ avec $P \in \mathbb{R}[X,Y]$?

6.3

Soit K une partie compacte non vide de l'espace normé \mathbb{R}^n .

- a) Montrer que l'ensemble des $\rho \in \mathbb{R}_+$ pour les quels il existe une boule fermée B' de rayon ρ contenant K est de la forme $[\Lambda, +\infty[$.
- b) Lorsque la norme de \mathbb{R}^n est euclidienne, montrer qu'il existe un seul $x \in \mathbb{R}^n$ tel que K soit contenu dans $B'(x, \Lambda)$.
- c) Contre-exemple lorsque la norme n'est pas euclidienne?

6.4

Soient (X,d) un espace métrique compact et f une isométrie de X dans X.

a) Montrer qu'il existe $N \in \mathbb{N}$ tel que que toute suite de X vérifiant

$$\forall n \neq m \, d(x_n x_m) \geq \varepsilon \, (*)$$

soit finie de longueur $\leq N$. On note le maximum de ces longueurs $N(\varepsilon)$ Vérifier qu'il existe une suite x_n vérifiant (*) de taille $N(\varepsilon)$.

b) Montrer que, pour tout $y \in X$, la distance de y à f(X) est $\leq \varepsilon$. En déduire que f est surjective.

6.5

Soit E un evn. On suppose que S(0,1) est compacte. Montrer que E est de dimension finie.

6.6

Soit E un evn de dimension finie et u un endomorphisme de norme ≤ 1 . Montrer que la suite des moyennes de u^m converge vers un projecteur.

6.7 Parties absorbantes.

Soit C une partie convexe de \mathbb{R}^n absorbante, c'est-à-dire que, pour tout $x \in \mathbb{R}^n$, il existe $\delta > 0$ tel que, pour tout $\lambda \in]-\delta, \delta[, \lambda x \in C$. Montrer que C est un voisinage de 0.

7 Connexité

7.1

Montrer qu'un espace métrique connexe non déduit à un point est non dénombrable.

7.2

(Passage des douanes). Soit A une partie de E et C un connexe tel que $C \cap A \neq \emptyset$ et $C \cap {}^{c}A \neq \emptyset$. Montrer $C \cap \operatorname{Fr}(A) \neq \emptyset$.

7.3 a poste sammet

Soit C un cône positif épointé de sommet 0 de \mathbb{R}^n , tel que $C\cap S(0,1)$ soit connexe. Montrer que C est connexe.

7.4

Soit x_n une suite bornée de \mathbb{R}^n telle que $x_{n+1}-x_n\to 0$. Montrer que l'ensemble Λ des VA de X_n est compact et connexe. En déduire que, si x_n ne possède qu'un nombre fini de VA, x_n converge.