

Generating High Voltage Using the PIC16C781/782

Author: Ross Fosler

Microchip Technology Inc.

INTRODUCTION

The Nixie tube is a device born out of the middle twentieth century, used to display digital information in a human readable format. Basically, it is a high-voltage numerical display. Today, the Nixie tube has been replaced by more efficient, more durable, and longer lasting devices, such as LED displays and LCDs. However, for this technical brief, the Nixie tube serves as an excellent visual feedback of the PIC16C782 device's ability to generate high voltage from a low-voltage source.

This technical brief introduces the boost converter topology operating in Discontinuous mode. As an example, a simple 9V to 170V DC-DC converter is designed based on this topology, and is used to provide power to a three-digit Nixie tube display. The PIC16C782 is used to control the DC-DC converter and provides data decoding for the display. To make the display useful, the PICmicro® MCU samples a temperature sensor and displays the results.

THE BASIC BOOST TOPOLOGY (DISCONTINUOUS MODE)

FIGURE 1: BOOST CONVERTER TOPOLOGY

In the basic boost topology shown in Figure 1, the input voltage (VIN) is always less than the output voltage (VOUT). Initially, energy is stored in inductor L_1 when Q_1 is turned on. From the electrical characteristics of the inductor, the current ramps up linearly according to Equation 1 (assuming inductor series resistance and switch on resistance are negligible).

EQUATION 1:

$$VIN = L_I \frac{di_L}{dt} \rightarrow \frac{VIN}{L_I} t = i_L$$

The peak current is achieved the moment before Q_1 turns off. Equation 2 shows the peak current, where D is the duty cycle and T is the period for Pulse-Width Modulation (PWM).

EQUATION 2:

$$\frac{VIN}{L_1}$$
 $DT = IPEAK$

The current in an inductor cannot change instantaneously. When Q1 is switched off, the current in L1 continues to flow through D_1 to the storage capacitor, C_1 , and the load, R_L . Thus, the current in the inductor decreases linearly in time from the peak current. In discontinuous operation, the inductor current actually falls to zero. Equation 3 shows this relationship.

EQUATION 3:

$$\frac{di_L}{dt} = \frac{\mathit{Vin-Vout}}{L_I} \rightarrow i_L = \frac{\mathit{Vin-Vout}}{L_I} \ t + \mathit{Ipeak}$$

During this linear decrease in current, the energy stored in the inductor is transferred to C_1 . The result is a simple relationship between input and output voltage shown in Equation 4. This equation is derived from the simple concept: power in equals the power out. Refer to the publications listed under "**REFERENCES**" for more details.

EQUATION 4:

$$VOUT = VIN \sqrt{\frac{R_L DT}{2L_I}}$$

A HIGH-VOLTAGE DISPLAY EXAMPLE

The Nixie tubes used in this design require 170 VDC, at a peak operating current of approximately 4 mA or 0.68 Watts per tube. For a three-digit display, the peak operating power is slightly over 2 Watts. The input to the supply is 9 VDC. Thus, the desired power supply design is a 9V to 170V DC-DC converter, with a maximum output operating power of 2 Watts.

The programmable functions of the PIC16C781/782 are considered together with the design of the boost power circuit. The following options in the PIC16C781/782 are selected which affect the DC-DC converter operation:

- · Internal 4 MHz oscillator is selected
- PWM clock set to Fosc/128
- Maximum duty cycle set to 75%

Essentially, this means the on time of the MOSFET, Q1, is about 24 µs. Using Equation 4, a function for power in terms of inductance is easily derived:

EQUATION 5:

$$170 = 9\sqrt{\frac{\frac{(170 \text{ Volts})^2}{(P)\text{Watts}} 24 \,\mu\text{S}}{2L_I}} \rightarrow P = \frac{(24 \,\mu\text{S})(9 \text{ Volts})^2}{2L_I}$$

The desired peak output power of the DC-DC converter is 2 Watts. To achieve this, the output power must be greater to overcome losses in the voltage conversion. Therefore, an inductor size must be chosen to achieve a power output of 2 Watts, plus some power loss. The inductor chosen for this design is 330 $\mu H.$ This means the maximum power is 2.945 Watts, assuming no power loss. With power loss, the lowest allowable efficiency for the chosen inductor is 67.9%. Efficiency in the 70% region is a reasonable assumption for this design and should not be a problem.

The peak current, from Equation 2, for the 330 μH inductor is:

EQUATION 6:

$$\frac{9}{2L_I} 24 \,\mu\text{S} = IPEAK = 0.655 \,Amps$$

Power inductors, in the range of 330 μH @ 0.655A, are common and readily available.

This design is intended to run in Discontinuous mode and should stay in Discontinuous mode throughout the load range. Therefore, the rise and fall time of the current in the inductor for maximum load is compared with the switching period. The rise time of the inductor current is already known to be 24 μs . The fall time is calculated using Equation 3.

EQUATION 7:

$$0 = \frac{(9 - 170) \text{ Volts}}{330 \text{ } \mu\text{H}} t_{fall} + 0.655 \text{ Amps} \rightarrow t_{fall} = 1.34 \text{ } \mu\text{s}$$

The inductor has current flowing through it for a total of 25.34 μ s. The period T is 32 μ s, which is much larger than the total time the current is flowing. Thus, the supply is sure to stay in Discontinuous mode for the given input and load conditions.

CLOSING THE LOOP WITH THE PIC16C781/782

The control loop is closed with the PIC16C781/782. Figure 2 shows the configuration within the PIC16C781/782. Essentially, the voltage feedback is compared to a fixed voltage. The Digital-to-Analog Converter provides the fixed voltage reference. When the feedback voltage crosses the voltage reference, the Programmable Switch Mode Controller (PSMC) output is reset. Thus, changing the reference voltage provided by the Digital-to-Analog Converter (DAC) changes the output voltage, VouT.

FIGURE 2: PIC16C781/782 CONTROL LOOP CONFIGURATION

This feedback method is unusual for this topology. Energy is transferred from the inductor when the Pulse-Width Modulation (PWM) is in its negative (low output) portion of the duty cycle. However, the PSMC has acting feedback control only during the positive portion of the duty cycle. Thus, energy is transferred to the output on the cycle prior to the control portion. The net result is a pseudo pulse-skip operation, while the PIC16C781/782 PSMC is in the PWM mode. Refer to the "PIC16C781/782 Data Sheet" (DS41171) for information about the PSMC and its standard modes of operation. To smooth the output ripple due to pulse skipping, the minimum pulse width in the PIC16C781/782 is set to 25%.

Soft start is provided in the software. By slowly increasing the voltage reference, the output voltage ramps up linearly over several hundred milliseconds (Figure 3). Gradually ramping up controls the current drawn during start-up. This prevents saturating the inductor, thus, preventing excessive current through the switch. As a result, a smaller FET can be used safely.

FIGURE 3: VOLTAGE OUTPUT REFERENCE

CONCLUSION

Nixie tubes are very much out of date in terms of technology and have passed into history. However, there are some applications that still require high voltage, for example, EL backlighting and low-current fluorescent lighting. This application demonstrates the ability of the PIC16C781/782 to perform a simple DC-DC voltage boost and have additional control for other system functions.

REFERENCES

- Ross, J. N., The Essence of Power Electronics, Prentice Hall, New York, 1997.
- 2. Pressman, Abraham I., *Switching Power Supply Design*, McGraw-Hill, New York, 1998.

APPENDIX A: SCHEMATICS

FIGURE A-1: HIGH-VOLTAGE DRIVER DISPLAY CONTROL

FIGURE A-2: NIXIE TUBE DISPLAY

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
 intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
 mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WAR-RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB, PICMASTER, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Linear Active Thermistor, MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel, Total Endurance and WiperLock are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2005, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

QUALITY MANAGEMENT SYSTEM

CERTIFIED BY DNV

ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona and Mountain View, California in October 2003. The Company's quality system processes and procedures are for its PICmicro® 8-bit MCUs, KEELOO® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://support.microchip.com

Web Address: www.microchip.com

Atlanta

Alpharetta, GA Tel: 770-640-0034 Fax: 770-640-0307

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo

Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

San Jose

Mountain View, CA Tel: 650-215-1444 Fax: 650-961-0286

Toronto

Mississauga, Ontario,

Canada

Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

Fax: 61-2-9868-6755

China - Beijing

Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu

Tel: 86-28-8676-6200 Fax: 86-28-8676-6599

China - Fuzhou

Tel: 86-591-8750-3506 Fax: 86-591-8750-3521

China - Hong Kong SAR

Tel: 852-2401-1200 Fax: 852-2401-3431

China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai

Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang

Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen

Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Shunde

Tel: 86-757-2839-5507 Fax: 86-757-2839-5571

China - Wuhan

Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian

Tel: 86-29-8833-7250 Fax: 86-29-8833-7256

ASIA/PACIFIC

India - Bangalore

Tel: 91-80-2229-0061 Fax: 91-80-2229-0062

India - New Delhi

Tel: 91-11-5160-8631 Fax: 91-11-5160-8632

India - Pune

Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama

Tel: 81-45-471-6166 Fax: 81-45-471-6122

Korea - Gumi

Tel: 82-54-473-4301 Fax: 82-54-473-4302

Korea - Seoul

Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Penang

Tel: 60-4-646-8870 Fax: 60-4-646-5086

Philippines - Manila

Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870

Fax: 65-6334-8850 **Taiwan - Hsin Chu**

Tel: 886-3-572-9526

Fax: 886-3-572-6459

Taiwan - Kaohsiung Tel: 886-7-536-4818

Fax: 886-7-536-4803 **Taiwan - Taipei**

Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-399 Fax: 43-7242-2244-393 Denmark - Copenhagen

Tel: 45-4450-2828

Fax: 45-4485-2829
France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0

Fax: 49-89-627-144-44 Italy - Milan

Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen

Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-9

Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 **UK - Wokingham**

Tel: 44-118-921-5869 Fax: 44-118-921-5820