No uso de parâmetros Denavit-Hartenberg para descrever manipuladores robóticos, bem como para posicionar os sistemas de referência em relação a sua estrutura, existem duas convenções vigentes na literatura. Embora as notações sejam semelhantes, representando uma junta como duas translações, a e d, e duas rotações α e θ , as matrizes de transformação apresentam diferenças [1]. Para a versão clássica, utilizada por Spong [2], α_i e a_i são definidos com base no eixo \hat{X} da junta i, já os parâmetros d_i e θ_i são definidos com base no eixo \hat{Z} da junta i-1, assim como mostra a figura 1.

Figura 1: Arranjo clássico [2].

Já no modelo modificado, utilizado por Craig [3], utilizam-se os parâmetros α_{i-1} e a_{i-1} , definidos em função do eixo \hat{X}_{i-1} , e os parâmetros d_i e θ_i , definidos em função de \hat{Z}_i , assim como mostra a figura 2.

Figura 2: Arranjo modificado [3].

Utilizando a definição para o termo d_i exposta no trabalho [3] (d_i significa a distância entre

 \hat{X}_{i-1} e \hat{X}_i , ao longo de \hat{Z}_i), nota-se na figura do trabalho de graduação, 3, que o parâmetro d_6 está ao longo do eixo \hat{Z}_6 , seguindo a convenção proposta por Craig. O eixo \hat{Z}_6 , devido à construção do manipulador, coincidirá sempre com o eixo \hat{Y}_5 para a convenção adotada. De acordo com a figura 2, o parâmetro foi definido entre a origem do sistema da junta i, com i=6, e a intersecção entre \hat{Z}_i (\hat{Z}_6) e \hat{X}_{i-1} (\hat{X}_5), que coincide com a origem do sistema $\{5\}$.

Figura 3: Arranjo proposto.

REFERÊNCIAS BIBLIOGRÁFICAS

- [1] REDDY, A. C. Difference between denavit-hartenberg (d-h) classical and modified conventions for forward kinematics of robots with case study. In: *International Conference on Advanced Materials and manufacturing Technologies (AMMT)*, 2014, India. [S.l.: s.n.], 2014.
- [2] SPONG, M. W.; VIDYASAGAR, M. Robot dynamics and control. 1st. ed. New York: John Wiley & Sons, 1989.
- [3] CRAIG, J. J. Introduction to robotics: mechanics and control. 3rd. ed. [S.l.]: Pearson Education India, 2009.