II

Infinite Series and Complex numbers

2.1 Tests of convergence of series viz., comparison test, ratio test, root test, Leibnitz test

Some concepts to discuss for sequences:

- 1. An ordered set of real numbers a_1, a_2, a_3, \dots is called a sequence and is denoted by $\{a_n\}$. If the number of terms is unlimited, then the sequence is said to be an infinite sequence and a_n is its n^{th} term.
 - **e.g.** {3,5,7,9,}, Here n^{th} term $a_n = 2n + 1$.
- **2. Limit**: A sequence is said to tend to a limit l, if for every $\varepsilon > 0$, a natural number n_0 can be found such that $|a_n l| < \varepsilon$ for all $n \ge n_0$.
- **3.** Convergence: If a sequence $\{a_n\}$ has a finite limit, it is called a convergent sequence. If the limit of sequence $\{a_n\}$ does not tend to a finite number, it is said to be divergent.
 - **e.g.** $\left\{1, \frac{1}{4}, \frac{1}{9}, \dots, \frac{1}{n^2}, \dots\right\}$ is a convergent sequence. $\left\{3, 5, 7, \dots, (2n+1), \dots\right\}$ is a divergent sequence.
- **4. Bounded sequence:** A sequence $\{a_n\}$ is said to be bounded, if there exists a number k > 0 such that $|a_n| < k$ for every n.
- **5.** A sequence $\{a_n\}$ is called **increasing** if $a_n \le a_{n+1}$ for all n
- **6.** A sequence $\{a_n\}$ is called **decreasing** if $a_n \ge a_{n+1}$ for all n
- 7. Monotonic sequence: A sequence $\{a_n\}$ is called monotonic if it is either increasing or decreasing.
 - e.g. $\{1,4,7,10,\dots\}$ is a monotonic sequence.

$$\left\{1, \frac{1}{4}, \frac{1}{9}, \dots, \frac{1}{n^2}, \dots\right\}$$
 is also a monotonic sequence.

 $\{1, -1, 1, -1, \dots \}$ is not a monotonic sequence.

A monotonic sequence always tends to a limit, finite or infinite.

A sequence which is monotonic and bounded is convergent.

Series:

Definition: If $u_1, u_2, u_3, ..., u_n, ...$ is an infinite sequence of real numbers, then $u_1 + u_2 + u_3 + \cdots + u_n + \cdots$ is called an infinite series. An infinite series is denoted by $\sum_{n=1}^{\infty} u_n$, the sum of its first n terms is denoted by $s_n = \sum_{j=1}^n u_j$ and it is known as partial sum of n terms.

e.g. $1 + 3 + 5 + 7 + \cdots$ is an infinite series.

Convergent and divergent series:

Consider the infinite series $\sum_{n=1}^{\infty} u_n = u_1 + u_2 + u_3 + \dots + u_n + \dots$ and let the sum of the first n terms be $s_n = u_1 + u_2 + u_3 + \dots + u_n$.

- 1. If s_n tends to a finite number as $n \to \infty$, then the series $\sum_{n=1}^{\infty} u_n$ is said to be convergent.
 - **e.g.** Test the convergence of the series $\frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} + \frac{1}{7.9} + \cdots + \frac{1}{(2n-1).(2n+1)}$

Solution: Let

$$\begin{split} s_n &= \frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} + \frac{1}{7.9} + \dots \frac{1}{(2n-1).(2n+1)} \\ &= \frac{1}{2} \left(1 - \frac{1}{3} \right) + \frac{1}{2} \left(\frac{1}{3} - \frac{1}{5} \right) + \frac{1}{2} \left(\frac{1}{5} - \frac{1}{7} \right) + \dots + \frac{1}{2} \left(\frac{1}{(2n-1)} - \frac{1}{(2n+1)} \right) \\ &= \frac{1}{2} \left(1 - \frac{1}{(2n+1)} \right) \end{split}$$

 $\lim_{n\to\infty} s_n = \lim_{n\to\infty} \frac{1}{2} \left(1 - \frac{1}{(2n+1)} \right) = \frac{1}{2}, \text{ which is a finite quantity.}$

the series is convergent.

- 2. If s_n tends to infinity as $n \to \infty$, then the series $\sum_{n=1}^{\infty} u_n$ is said to be divergent.
 - **e.g.** (i) Test the convergence of the series $1 + 2 + 3 + \cdots$.

Solution: Let
$$s_n = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$
.

$$\lim_{n\to\infty} s_n = \lim_{n\to\infty} \frac{n(n+1)}{2} = \infty$$
, the series is divergent.

e.g. (ii) Test the convergence of the series $1 + 4 + 9 + 16 + \cdots$.

Solution. Here
$$S_n = 1^2 + 2^2 + \dots + n^2 = \frac{n}{6}(n+1)(2n+1)$$
.

$$\therefore \lim_{n\to\infty} S_n = \infty.$$

Hence, the given series is divergent.

Some Standard Limits

$$1. \quad \lim_{n\to\infty} \frac{\log n}{n} = 0.$$

$$2. \quad \lim_{n\to\infty}\frac{1}{\log n}=0.$$

$$3. \quad \lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e.$$

$$4. \quad \lim_{n\to\infty} \left(1+\frac{a}{n}\right)^n = e^a.$$

5.
$$\lim_{n\to\infty} (1+n)^{1/n} = e$$
.

6.
$$\lim_{n\to\infty} (n)^{\frac{1}{n}} = 1.$$

7.
$$\lim_{n\to\infty} (n!)^{\frac{1}{n}} = \infty.$$

8.
$$\lim_{n\to 0} e^n = 1$$
.

9.
$$\lim_{n \to \infty} x^n = 0$$
 if $|x| < 1$.

10.
$$\lim_{n\to\infty} x^n = \infty$$
 if $x > 1$.

11.
$$\lim_{n\to\infty} n. x^n = 0$$
 if $|x| < 1$.

12.
$$\lim_{n\to\infty} \frac{x^n}{n!} = 0$$
 for all values of x .

13.
$$\lim_{n\to\infty} \left[\frac{(n!)}{n}\right]^{1/n} = \infty.$$

General properties of infinite series:

- 1. The nature (convergence or divergence) of an infinite series does not change:
 - (i) by multiplication of all terms by a non-zero number k.
 - (ii) by addition or deletion of a finite number of terms.
- 2. If two series $\sum_{n=1}^{\infty} u_n$ and $\sum_{n=1}^{\infty} v_n$ are convergent, then $\sum_{n=1}^{\infty} (u_n + v_n)$ is also convergent.

Necessary condition for convergence

If a series $\sum_{n=1}^{\infty} u_n$ is convergent, then $\lim_{n\to\infty} u_n = 0$.

Note: The converse of this result need not be true.

Consider, for instance, the series $1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + ... + \frac{1}{\sqrt{n}} + \cdots$

Since the term go on descending,

$$s_n = 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \ldots + \frac{1}{\sqrt{n}} > \frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n}} + \ldots + \frac{1}{\sqrt{n}} = \frac{n}{\sqrt{n}}$$

So,
$$\lim_{n\to\infty} s_n = \lim_{n\to\infty} \sqrt{n} \to \infty$$
.

Thus the series is divergent even though $\lim_{n\to\infty} u_n = \lim_{n\to\infty} \frac{1}{\sqrt{n}} = 0$.

 $\lim_{n\to\infty} u_n = 0$ is a necessary but not sufficient condition for the convergence of $\sum_{n=1}^{\infty} u_n$.

We have simple test for divergence from above:

If $\lim_{n\to\infty} u_n \neq 0$, then the series $\sum_{n=1}^{\infty} u_n$ does not converge.

Geometric series:

Geometric series $a + ar + ar^2 + \cdots + ar^{n-1} + \cdots$ is

- i. convergent if |r| < 1.
- ii. divergent if $r \ge 1$.

If |r| < 1, then the sum of the Geometric series is $S = \frac{a}{1-r}$.

e.g. Test the convergence of the series $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots$

Solution: Let
$$s_n = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{n}$$
.

Here series is a Geometric series with common ratio $r = \frac{1}{2}$.

$$\lim_{n \to \infty} s_n = \frac{a}{1 - r} = \frac{1}{1 - \frac{1}{2}} = 2.$$

Hence, the series is convergent.

Tutorial Work:

Test the convergence of the following series

]	1	$log2 + log \frac{3}{2} + log \frac{4}{3} + \cdots$ Answer: divergent.
2	2	$\frac{1}{1.5} + \frac{1}{5.9} + \frac{1}{9.13} + \frac{1}{13.17} + \cdots$
		Answer: convergent.

- **P- Test:** The *p* series $\sum_{n=1}^{\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \cdots$ is
 - **i.** convergent if p > 1.
 - ii. divergent if $p \le 1$.
 - iii. It is not always possible to find the partial sum S_n for every series easily. Thus it becomes necessary to use other tests for series with all terms positive. Using these tests, we can discuss the convergence/divergence of series.

Limit Comparison Test:

If two positive term series $\sum_{n=1}^{\infty} u_n$ and $\sum_{n=1}^{\infty} v_n$ are such that $\lim_{n\to\infty} \frac{u_n}{v_n} =$ finite and is nonzero, then $\sum_{n=1}^{\infty} u_n$ and $\sum_{n=1}^{\infty} v_n$ converge or diverge together.

e.g. Test the convergence of the series $\frac{2}{1} + \frac{3}{4} + \frac{4}{9} + \cdots + \frac{n+1}{n^2} + \cdots$.

Solution: Let $u_n = \frac{n+1}{n^2}$.

(In general take $v_n=\frac{1}{n^p}$ can be obtained from u_n , where p= (the highest power n in denominator of u_n) - (the highest power n in numerator of u_n)).

So here in this case p = 1.

i.e.
$$v_n = \frac{n}{n^2} = \frac{1}{n}$$
.

$$\therefore \lim_{n \to \infty} \frac{u_n}{v_n} = \lim_{n \to \infty} \frac{\left(\frac{n+1}{n^2}\right)}{\left(\frac{1}{n}\right)} = \lim_{n \to \infty} \frac{n+1}{n} = 1, \text{ finite \& non-zero.}$$

 \therefore By limit comparison test, both the series $\sum_{n=1}^{\infty} u_n$ and $\sum_{n=1}^{\infty} v_n$ converges or diverges together.

Now, $\sum_{n=1}^{\infty} v_n = \sum_{n=1}^{\infty} \frac{1}{n}$ is a *p*-series with p=1.

$$\therefore \sum_{n=1}^{\infty} v_n \text{ is divergent.}$$

So,
$$\sum_{n=1}^{\infty} u_n$$
 is also divergent.

e.g. Test the convergence of the series $\frac{1}{1.2} + \frac{1}{3.4} + \frac{1}{5.6} + \cdots$

Solution: Let
$$u_n = \frac{1}{(2n-1)(2n)}$$
.

Take
$$v_n = \frac{1}{n^2}$$
.

$$\therefore \quad \frac{u_n}{v_n} = \frac{n^2}{(2n-1)(2n)} = \frac{1}{2\left(2-\frac{1}{n}\right)}.$$

$$\therefore \lim_{n\to\infty} \frac{u_n}{v_n} = \frac{1}{4} \quad \text{(finite)}.$$

So, both series are convergent or divergent together.

But we know that $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent. (: p = 2 in p series $\sum_{n=1}^{\infty} \frac{1}{n^p}$)

Therefore the given series is convergent by limit comparison test.

Tutorial:

Test the convergence of the following series:

1	$\sum_{n=1}^{\infty} \frac{1}{n^2+1} .$
	Answer: convergent.
2	$\sum_{n=1}^{\infty} \sqrt{n+1} - \sqrt{n} .$
	Answer: divergent.

$$3 \qquad \sum_{n=1}^{\infty} \frac{n^p}{\sqrt{n+1} + \sqrt{n}} .$$

Answer: convergent if p < -1/2 and divergent if $p \ge -1/2$.

D'alembert's Ratio Test:

If $\sum_{n=1}^{\infty} u_n$ is a positive term series and $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = l$, then

- i. $\sum_{n=1}^{\infty} u_n$ is convergent if l < 1.
- ii. $\sum_{n=1}^{\infty} u_n$ is divergent if l > 1.
- iii. If l=1, the ratio test fails, i.e., no conclusion can be drawn about the convergence or divergence of the series.

Example: Test the convergence of the series $\frac{1}{3} + \frac{1.2}{3.5} + \frac{1.2.3}{3.5.7} + \cdots$.

Solution: Here $u_n = \frac{1.2.3...n}{3.5.7...(2n+1)}$.

$$\therefore u_{n+1} = \frac{1.2.3...n(n+1)}{3.5.7...(2n+1)(2n+3)},$$

$$\therefore \frac{u_{n+1}}{u_n} = \frac{n+1}{2n+3} = \frac{1+\frac{1}{n}}{2+\frac{3}{n}},$$

Here
$$\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \lim_{n\to\infty} \frac{1+\frac{1}{n}}{2+\frac{3}{n}} = \frac{1}{2} < 1.$$

So, the given series is convergent using ratio test.

Tutorial:

Test the convergence of the following series:

1	$\sum_{n=1}^{\infty} \frac{n!}{n^2} .$
	Answer: divergent.
2	$\sum_{n=1}^{\infty} \frac{n^3 + 2}{2^n + 2} .$
	Answer: convergent.
3	$1 + \frac{2^p}{2!} + \frac{3^p}{3!} + \frac{4^p}{4!} + \cdots$
	Answer: convergent.
4	$\sum_{n=1}^{\infty} \frac{n!}{n^n} .$
	Answer: convergent.

7

Cauchy's Root Test:

If $\sum u_n$ is a positive term series and $\lim_{n\to\infty} (u_n)^{\frac{1}{n}} = l$, then

- i. $\sum u_n$ is convergent if l < 1.
- ii. $\sum u_n$ is divergent if l > 1.
- iii. If l = 1, the root test fails. i.e., no conclusion can be drawn about the convergence or divergence of the series.

Test the convergence of the series $\sum_{n=2}^{\infty} \frac{1}{(\log n)^n}$.

Solution: Here $u_n = \frac{1}{(\log n)^n}$.

$$\therefore (u_n)^{\frac{1}{n}} = \left(\frac{1}{(\log n)^n}\right)^{\frac{1}{n}} = \frac{1}{\log n},$$

$$\therefore \lim_{n\to\infty} (u_n)^{\frac{1}{n}} = \lim_{n\to\infty} \frac{1}{\log n} = 0 < 1.$$

So, the given series is convergent using Root test.

Tutorial:

Test the convergence of the following series:

1	$\sum_{n=1}^{\infty} \frac{(n-\log n)^n}{2^n \cdot n^n} .$
	Answer: convergent.
2	$1 + \frac{1}{2^2} + \frac{1}{3^3} + \frac{1}{4^4} + \cdots$
	Answer: convergent.

Alternating series:

An infinite series with alternate positive and negative terms is called an alternating series.

Leibnitz's test for alternating series:

An alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} u_n$, where $u_n > 0$ is convergent if

- i. $\{u_n\}$ is strictly decreasing, i.e., $u_{n+1} < u_n$ for all n.
- ii. $\lim_{n\to\infty}u_n=0.$

Example: Show that the series $1 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}} + \cdots$ is convergent.

Solution: Here $u_n = \frac{1}{\sqrt{n}}$

i. The given series is $\sum_{n=1}^{\infty} (-1)^{n+1} u_n = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{\sqrt{n}}$ an alternating series.

ii. Clearly
$$\sqrt{n+1} > \sqrt{n} \Rightarrow \frac{1}{\sqrt{n+1}} < \frac{1}{\sqrt{n}} \Rightarrow u_{n+1} < u_n$$
.

So the sequence $\{u_n\}$ is strictly decreasing.

Also $\lim_{n\to\infty} u_n = \lim_{n\to\infty} \frac{1}{\sqrt{n}} = 0$. By Leibnitz's test, the series is convergent.

Tutorial:

Test the convergence of the following series:

1	$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\log (n+1)}.$
	Answer: convergent.
2	4 1 1 1 .
	$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$
	Answer: convergent.

2.2 Complex numbers and their geometric representation

A number of the form z = x + iy, where x and y are real numbers and $i = \sqrt{-1}$ i.e.

 $i^2 = -1$, is called a **Complex number**. This is known as Cartesian form of a Complex number. A complex number z = x + iy may be written as a pair (x, y).

Here, x is known as the real part of z and y is known as the imaginary part of z and are often denoted as, Re(z) = x and Im(z) = y respectively.

If a complex number has a zero real part i.e. z = 0 + iy = iy. We call it a purely imaginary number.

A complex number has a zero imaginary part i.e. z = x + 0. i = x. We can see that such complex number represents a real number.

The set of complex numbers is denoted by \mathbb{C} .

The roots of quadratic equation $x^2 - 2x + 5 = 0$ are 1 - 2i and 1 + 2i. Which are complex numbers. z = 1 + 2i, 3i are also complex numbers.

We can represent the complex number z = x + iy using Argand Diagram.

Sketch the complex number 3+2i:

Equality of two complex numbers:

Two complex numbers $z_1 = a + ib$ and $z_2 = c + id$ are equal. i.e. $z_1 = z_2$, if a = c and b = d. In other words, two complex numbers are equal iff their real parts are equal and their imaginary parts are equal.

Modulus: The modulus or absolute value of z = x + iy is $|z| = \sqrt{x^2 + y^2}$. It can be denoted by mod(z). In fact, |z| is the distance of z to the origin.

Algebraic operations on complex numbers:

Addition and subtraction:

If $z_1 = a + ib$ and $z_2 = c + id$ are two complex numbers, then

$$z_1 \pm z_2 = (a+c) \pm (b+d)i.$$

Multiplication:

If $z_1 = a + ib$ and $z_2 = c + id$ are two complex numbers, and k is a real number, then

(i)
$$z_1.z_2 = (a+ib)(c+id) = (ac-bd) + (ad+bc)i$$

(ii)
$$kz_1 = ka + kbi$$

Complex Conjugate:

If z = a + ib, then the conjugate of z is defined as $\bar{z} = a - bi$.

Note that
$$z. \bar{z} = (a + ib)(a - ib) = a^2 + b^2 = |z|^2$$
.

Division:

If $z_1 = a + ib$ and $z_2 = c + id$ are two complex numbers with $z_2 \neq 0$, then

$$\frac{z_1}{z_2} = \frac{(a+ib)}{(c+id)} \times \frac{(c-id)}{(c-id)} = \frac{(ac+bd)+i(-ad+bc)}{c^2+d^2}. \text{ In fact, } \frac{z_1}{z_2} = \frac{z_1\bar{z}_2}{|z_2|^2}.$$

If we are dividing with a complex number, the denominator must be converted to a real number. In order to do this, multiply both the denominator and numerator by the complex conjugate of the denominator.

Laws of complex numbers: If z_1 and z_2 are two complex numbers, then

(i) (Triangle inequality)
$$|z_1 + z_2| \le |z_1| + |z_2|$$

(ii)
$$|z_1 - z_2| \ge ||z_1| - |z_2||$$

(iii) (parallelogram equality)
$$|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2[|z_1|^2 + |z_2|^2]$$

$$(iv)|z_1z_2| = |z_1||z_2|$$

(v)
$$\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$$
 if $z_2 \neq 0$.

Tutorial:

Find the real and imaginary parts of the complex numbers (a) 3 + 4i (b) i (c) 10

Solution: (a) Here z = 3 + 4i then Re(z) = 3 and Im(z) = 4.

(b) Here z = i then Re(z) = 0 and Im(z) = 1. You can also say that it is purely imaginary number.

(c) Here z = 10 then Re(z) = 10 and Im(z) = 0, here z is a real number.

2 Simplify $\frac{(3+2i)^2}{(1+2i)} + \frac{1+i}{1-i}$.

Solution: Note that,

$$(3+2i)^2 = (9-4) + (6+6)i = 5+12i$$

Therefore,

$$\frac{(3+2i)^2}{(1+2i)} = \frac{(5+12i)}{(1+2i)} = \frac{(5+12i)}{(1+2i)} \times \frac{(1-2i)}{(1-2i)} = \frac{29+2i}{5}$$

$$\frac{1+i}{1-i} = \frac{1+i}{1-i} \times \frac{1+i}{1+i} = \frac{(1+i)^2}{(1-i)(1+i)} = \frac{1+2i+i^2}{1^2+1^2} = \frac{2i}{2} = i.$$

$$\frac{(3+2i)^2}{(1+2i)} + \frac{1+i}{1-i} = \frac{29+2i}{5} + i = \frac{29+7i}{5} = \frac{29}{5} + \frac{7}{5}i$$

Which is the required form.

3 Solve
$$(3+4i)^2 - 2(x-iy) = x + iy$$
 for real numbers x and y.

Answer: $x = -\frac{7}{3}$, y = -24.

Given
$$z_1 = 2 + i$$
 and $z_2 = 3 - 4i$, find $\frac{1}{z_1} + \frac{1}{z_2}$ in the form of $a + ib$.

Answer: $\frac{13}{25} - i \frac{2}{25}$.

5 If
$$w_1 = -1 + i$$
, $w_2 = 2 - 3i$ and $w_3 = -3 - 2i$. Find (a) $w_2 - w_3$ (b) $w_1 + w_3$ (c) $\frac{w_2}{w_3}$ (d) $w_2 \cdot w_3$.

Answer: (a) 5 - i

(b) 2 + 3i (c) 0 + i

(d)-12+5i.

Complex numbers in polar and exponential forms 2.3

Let P be a point in the complex plane corresponding to the complex number z = x + iy.

From the above diagram, we can see that $x = r\cos\theta$, $y = r\sin\theta$.

As we have seen that, the modulus of z = x + iy is $|z| = \sqrt{x^2 + y^2}$. We take r = |z|. In fact, it is the magnitude of the vector OP.

From the above figure, $\tan \theta = \frac{y}{x}$, i. e. $\theta = \tan^{-1} \left(\frac{y}{x}\right)$.

The Argument or amplitude of z = x + iy is defined as $\arg(z) = \theta = tan^{-1} \left(\frac{y}{x}\right)$. In fact it is the angle between x-axis and the line segment OP.

The complex number z can be written as $z=x+iy=re^{i\theta}$, where $e^{i\theta}=\cos\theta+i\sin\theta$ i.e. $z=r\cos\theta+ir\sin\theta=r(\cos\theta+i\sin\theta)$. In notation, we may write $z=r\cos\theta$.

Which is known as the polar form of a complex number.

For complex number $z \neq 0$, there corresponds only one value of θ in $-\pi < \theta \leq \pi$. This value of θ is called the value of the principle argument of z and interval is called principal range. It is denoted by Arg(z). Also, $arg(z) = \theta \pm 2k\pi$, k = 0,1,2,... is called the general value of the argument of z. (Note that $tan(\theta \pm 2k\pi) = tan\theta$)

Note:

- (i) Every complex number x + iy can always be express in the form $r(\cos \theta + i\sin \theta)$.
- (ii) Consider a complex number z = a + ib,

(1) If
$$b = 0$$
 and $a \ge 0$, then $\theta = 0$

(2) If
$$b = 0$$
 and $a < 0$, then $\theta = \pi$

(3) If
$$a = 0$$
 and $b > 0$, then $\theta = \frac{\pi}{2}$

(4) If
$$a = 0$$
 and $b < 0$, then $\theta = -\frac{\pi}{2}$.

- (iii) Let z = a + ib is a complex number. If $a \neq 0$, $b \neq 0$, $\alpha = \tan^{-1}\left(\left|\frac{b}{a}\right|\right)$ and
 - (1) a > 0, b > 0, then $\theta = \alpha$
 - (2) a < 0, b > 0, then $\theta = \pi \alpha$
 - (3) a < 0, b < 0, then $\theta = -\pi + \alpha$
 - (4) a > 0, b < 0, then $\theta = -\alpha$

Tutorial:

Express the complex number $\left(\frac{1+i}{\sqrt{2}}\right)^4$ in its polar form.

Solution: Here,
$$(1+i)^4 = (1+i)^2(1+i)^2 = (2i)(2i) = 4i^2 = -4$$

$$\therefore z = \left(\frac{1+i}{\sqrt{2}}\right)^4 = \frac{-4}{4} = -1$$

	Now, $r = \sqrt{(-1)^2} = 1$
	$\theta = \tan^{-1}\left(\frac{b}{a}\right) = \tan^{-1}\left(\frac{0}{-1}\right) = \pi$
	The required polar form is $z = 1(\cos(\pi) + i\sin(\pi))$.
2	Express the following complex numbers in their polar form.
	(a) $z = \sqrt{3} + i$ (b) $z = i$
	(a) $z = \sqrt{3} + i$ (b) $z = i$ Answer: $2 \left[\cos \left(\frac{\pi}{6} \right) + i \sin \left(\frac{\pi}{6} \right) \right]$.
3	Express $\frac{2+3i}{1-i}$ in polar form after finding arg(z) and r.
	Answer: $\sqrt{\frac{13}{2}} [\cos(\pi - \tan^{-1} 5) + i \sin(\pi - \tan^{-1} 5)].$

2.4 De Moivre's theorem and its applications

De Moivre's Theorem: For any rational number n the value or one of the values of $(cos\theta + isin\theta)^n$ is $cosn\theta + isinn\theta$.

e.g.
$$(\cos\theta + i\sin\theta)^5 = \cos 5\theta + i\sin 5\theta$$

Tutorial:

1 Express
$$\frac{(\cos\theta + i\sin\theta)^8}{(\sin\theta + i\cos\theta)^4}$$
 in the form $(x + iy)$.

Solution:
$$\frac{(\cos\theta + i\sin\theta)^8}{(\sin\theta + i\cos\theta)^4} = \frac{(\cos\theta + i\sin\theta)^8}{(i)^4(\cos\theta + \frac{1}{i}\sin\theta)^4}$$

$$= \frac{(\cos\theta + i\sin\theta)^8}{(\cos\theta - i\sin\theta)^4} = \frac{(\cos\theta + i\sin\theta)^8}{[\cos(-\theta) + i\sin(-\theta)]^4} = \frac{(\cos\theta + i\sin\theta)^8}{[(\cos\theta + i\sin\theta)^{-1}]^4}$$

$$= \frac{(\cos\theta + i\sin\theta)^8}{(\cos\theta + i\sin\theta)^{-4}} = (\cos\theta + i\sin\theta)^{12} = \cos12\theta + i\sin12\theta.$$

2 Prove that $\frac{(\cos\alpha + i\sin\alpha)^4}{(\sin\beta + i\cos\beta)^5} = \sin(4\alpha + 5\beta) - i\cos(4\alpha + 5\beta)$.

3 Prove that the general value of θ which satisfies the equation $(\cos\theta + i\sin\theta)(\cos2\theta + i\sin2\theta) \dots (\cos n\theta + i\sin n\theta) = 1$ is $\frac{4m\pi}{n(n+1)}$, where m is an integer.

Roots of a Complex Number:

We know that $cos\theta + isin\theta = cos(2n\pi + \theta) + isin(2n\pi + \theta), n \in \mathbb{Z}$,

By De Moivre's theorem one of the value of

$$(\cos\theta + i\sin\theta)^{\frac{1}{q}} = \cos\left(\frac{2n\pi + \theta}{q}\right) + i\sin\left(\frac{2n\pi + \theta}{q}\right)$$
, where q is an integer....(1)

Giving n the values 0, 1, 2, 3, ..., (q-1) successively, we get the following q values of $(\cos\theta + i\sin\theta)^{\frac{1}{q}}$.

$$cos\left(\frac{\theta}{a}\right) + isin\left(\frac{\theta}{a}\right)$$
 (for n=0),

$$\cos\left(\frac{2\pi+\theta}{q}\right) + i\sin\left(\frac{2\pi+\theta}{q}\right)$$
 (for n=1),

$$\cos\left(\frac{4\pi+\theta}{q}\right) + i\sin\left(\frac{4\pi+\theta}{q}\right)$$
 (for n=2),

$$\cos\left(\frac{2(q-1)\pi+\theta}{q}\right) + isin\left(\frac{2(q-1)\pi+\theta}{q}\right)$$
 (for n=q-1).

Putting n=q in (1), we get a value of

$$(\cos\theta + i\sin\theta)^{\frac{1}{q}} = \cos\left(\frac{2\pi + \theta}{q}\right) + i\sin\left(\frac{2\pi + \theta}{q}\right) = \cos\left(\frac{\theta}{q}\right) + i\sin\left(\frac{\theta}{q}\right),$$

Which is same as the value of n = 0.

Thus, the values of $(\cos\theta + i\sin\theta)^{\frac{1}{q}}$ for n=q, q+1, q+2,... etc. are the repetition of the values obtained as above.

Hence $(\cos\theta + i\sin\theta)^{\frac{1}{q}}$ has q and only q distinct values given as above.

Tutorial:

1 Use De Moivre's theorem to solve the equation $x^4 - x^3 + x^2 - x + 1 = 0$.

Solution: We have $x^4 - x^3 + x^2 - x + 1 = 0$. From which,

$$(x + 1) (x^4 - x^3 + x^2 - x + 1) = 0.$$

We get $x^5 + 1 = 0$, which can be written as

$$x^5 = -1 = (\cos\pi + i\sin\pi) = \cos(2n\pi + \pi) + i\sin(2n\pi + \pi).$$

Using De Moivre's theorem, we obtain

$$x = \left[\cos(2n+1)\pi + i\sin(2n+1)\pi\right]^{\frac{1}{5}} = \cos\left(\frac{(2n+1)\pi}{5}\right) + i\sin\left(\frac{(2n+1)\pi}{5}\right)$$

when n=0,1,2,3,4, the values are

$$cos\frac{\pi}{5} + isin\frac{\pi}{5}$$

	$\cos\frac{3\pi}{5} + i\sin\frac{3\pi}{5},$
	$cos\pi + isin\pi$,
	$\cos\frac{7\pi}{5} + i\sin\frac{7\pi}{5},$
	$\cos\frac{9\pi}{5} + i\sin\frac{9\pi}{5}.$
	$cos\pi + isin\pi = -1$, which is rejected as it is corresponding to $x + 1 = 0$.
	Hence, the required roots of the equation $x^4 - x^3 + x^2 - x + 1 = 0$ are
	$\cos\frac{\pi}{5} + i\sin\frac{\pi}{5}, \cos\frac{3\pi}{5} + i\sin\frac{3\pi}{5}, \cos\frac{7\pi}{5} + i\sin\frac{7\pi}{5}, \cos\frac{9\pi}{5} + i\sin\frac{9\pi}{5}.$
2	Find the roots of the equation $x^3 + 8 = 0$.
	Answer: $2\left[\cos\left(\frac{2n\pi+\pi}{3}\right)+i\sin\left(\frac{2n\pi+\pi}{3}\right)\right]$, where $n=0,1,2$.
3	Find the values of $(-i)^{\frac{1}{6}}$.
	Tind the values of (1).
	Answer: $cos(4n+1)\frac{\pi}{12} - i sin(4n+1)\frac{\pi}{12}$, where $n=0,1,2,3,4,5$.

2.5 Exponential, Logarithmic, Trigonometric and hyperbolic functions.

Exponential Function:

If z = x + iy then the exponential function with complex variable is defined as $e^z = e^{(x+iy)} = e^x e^{iy} = e^x (\cos y + i \sin y)$, where $e^{iy} = \cos y + i \sin y$ is known as the Euler's formula.

Logarithmic Function:

If z = x + iy and w = u + iv such that $e^w = z$, then w is said to be a logarithm of z to the base e and written as $w = \log_e z$.

If $z = r(\cos \theta + i \sin \theta)$, then $r(\cos \theta + i \sin \theta) = z = e^w = e^u(\cos v + i \sin v)$ implies $r = e^u$ or $u = \log r$ and $v = \theta + 2n\pi$, $\theta \in (-\pi, \pi]$

Hence, $\log z = \log r + i(\theta + 2n\pi)$, $n \in \mathbb{Z}$ i.e. the logarithm of a complex number has an infinite number of values, therefore, it is a multi-valued function. If n = 0 then it is called the principal value and it is denoted by $Log\ z$. i.e. $Log\ z = \log|z| + i\theta$, $\theta + 2n\pi$ is known as the argument of z and denoted by arg(z). θ is known as the principal argument of z and denoted by Arg(z).

Circular Functions:

Since,
$$e^{iy} = cosy + isiny$$
 and $e^{-iy} = cosy - isiny$. Then

$$siny = \frac{e^{iy} - e^{-iy}}{2i}$$
 and $cosy = \frac{e^{iy} + e^{-iy}}{2}$.

Similarly one can define circular function of a complex variable z by the equations:

$$sinz = \frac{e^{iz} - e^{-iz}}{2i}, cosz = \frac{e^{iz} - e^{-iz}}{2} \ , \quad tanz = \frac{sinz}{cosz} \ , \ cosecz = \frac{2i}{e^{iz} - e^{-iz}}, \ secz = \frac{2}{e^{iz} - e^{-iz}} \ \text{and}$$

$$cotz = \frac{cosz}{sinz}.$$

Hyperbolic Functions:

If x is real or complex, then $\frac{e^{x}-e^{-x}}{2}$ is defined as hyperbolic sine of x and is written as sinh x.

$$\frac{e^x + e^{-x}}{2}$$
 is defined as hyperbolic cosine of x and is written as $\cosh x$.

Also we define.

$$\tan hx = \frac{\sin hx}{\cos hx} = \frac{e^x - e^{-x}}{e^x + e^{-x}}; cothx = \frac{1}{tanhx} = \frac{e^x + e^{-x}}{e^x - e^{-x}}; sechx = \frac{1}{coshx} = \frac{2}{e^x + e^{-x}}$$
and $cosechx = \frac{1}{\sin hx} = \frac{2}{e^x - e^{-x}}$

Relations between hyperbolic and circular functions:

$$\sin ix = i \sin hx$$

$$\cos ix = \cos hx$$

$$tan ix = itanhx$$

$$sinh ix = isinx$$

$$\cosh ix = \cos x$$

$$tanh ix = i tan x$$

Formulae of Hyperbolic Functions:

$$cosh^2x - sinh^2x = 1$$

$$sech^2x = 1 - tanh^2x$$

$$cosech^2x = coth^2x - 1$$

$$sinh(x \pm y) = sinhxcoshy \pm coshxsinhy$$

$$cosh(x \pm y) = cosxcoshy \pm sinhxsinhy$$

$$\tanh(x \pm y) = \frac{\tanh x \pm \tanh y}{1 + \tanh x \tanh y}$$

$$sin h2x = 2sinhxcoshx$$

$$\cosh 2x = \cosh^2 x + \sinh^2 x$$

$$cosh\ 2x = 2cosh^2x - 1$$

$$\cosh 2x = 1 + 2\sinh^2 x$$

$$\tanh 2x = \frac{2\tanh x}{1 + \tanh^2 x}$$

$$\sinh x + \sinh y = 2\sinh\left(\frac{x+y}{2}\right)\cosh\left(\frac{x-y}{2}\right)$$

$$\sinh x - \sinh y = 2\cosh\left(\frac{x+y}{2}\right)\sinh\left(\frac{x-y}{2}\right)$$

$$\cosh x + \cosh y = 2\cosh\left(\frac{x+y}{2}\right)\cosh\left(\frac{x-y}{2}\right)$$

$$\cosh x - \cosh y = 2\sinh\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)$$

Tutorial:

1	Find the value of $log(-i)$.
	Solution: We know that
	$\log(z) = \log r + i \left(2n\pi + Arg(z)\right), n \in \mathbb{Z}.$
	Here $r = 1$ and $Arg(z) = -\frac{\pi}{2}$.
	$\log(-i) = \log 1 + \left(2n\pi - \frac{\pi}{2}\right)i = (4n-1)\frac{\pi}{2}i, n \in \mathbb{Z}.$
2	Separate the real and imaginary parts of $(-i)^{-(1-i)}$.
	Answer: 0 and $e^{\frac{\pi}{2}}$
3	Show that $\sin ix = i \sinh x, x \in R$.
	Solution: We know that $sinx = \frac{e^{ix} - e^{-ix}}{2i}$. Then
	$sinix = \frac{e^{-x} - e^x}{2i} = i \frac{e^x - e^{-x}}{2} = i sinhx.$
4	If $tan(x + iy) = sin(u + iv)$, then show that $\frac{sin 2x}{sinh 2y} = \frac{tan u}{tanh v}$.
5	If $sin(A + iB) = x + iy$, then prove that $\frac{x^2}{\cosh^2 B} + \frac{y^2}{\sinh^2 B} = 1$.