Introduction To The Theory Of Computation Michael Sipser

计算理论导论

Name 屈德林

Student No. 201808010522

Class 计算机科学与技术 1805

Department CSEE

Email qdl.cs@qq.com

Date 2021年3月20日

目录

1	Lab	Target 目标	1
	1.1	数据库定义	1
	1.2	数据基本查询	1
	1.3	数据高级查询	1
	1.4	数据更新	1
	1.5	视图	1
	1.6	索引	1
2	Lab	Environment 环境	1
3	Lab	Contents 内容	2
	3.1	内容和要求	2
	3.2	实验重点和难点	2
		3.2.1 实验重点	2
		3.2.2 实验难点	2
4	Lab Steps 步骤		
	4.1	实验要求	2
	4.2	Step1	2
	4.3	Step2	2
	4.4	Step3	3
	4.5	Step4	3
	4.6	Step5	3
5	Lab	Results 结果	3
	5.1	实验结果	3
6	Lab Experience 心得		
	6.1	实验心得 a	4
	6.2	实验心得 2	4
A	附录	1: matlab Code	6
В	附录	2: python Code	6

1 Lab Target 目标

1.1 数据库定义

理解和掌握数据库 DDL 语言,能够熟练地使用 SQL DDL 语句创建、修改和删除数据库、模式和基本表。

1.2 数据基本查询

掌握 SQL 程序设计基本规范,熟练运用 SQL 语言实现数据基本查询,包括单表查询、分组统计查询和连接查询。

1.3 数据高级查询

掌握 SQL 程序设计基本规范,熟练运用 SQL 语言实现数据基本查询,包括单表查询、分组统计查询和连接查询。

1.4 数据更新

熟悉数据库的数据更新操作,能够使用 SQL 语句对数据库进行数据的插入、修改、删除操作。

1.5 视图

熟悉 SQL 语言有关视图的操作,能够熟练使用 SQL 语句来创建需要的视图,定义数据库外模式,并能使用所创建的视图实现数据管理。

1.6 索引

掌握索引设计原则和技巧,能够创建合适的索引以提高数据库查询、统计分析效率。

2 Lab Environment 环境

- 操作系统: Arch Linux
- 程序运行环境: Python3.7
- Python 库 (标准库未列出): numpy, pandas, matplotlib, sklearn
- 报告编写环境: TeX Live 2020

• 开发工具: VSCode

3 Lab Contents 内容

3.1 内容和要求

理解和掌握 SQL DDL 语句的语法,特别是各种参数的具体含义和使用方法;使用 SQL 语句创建、修改和删除数据库、模式和基本表。掌握 SQL 语句常见语法错误的调试方法。

3.2 实验重点和难点

3.2.1 实验重点

创建数据库、基本表。

3.2.2 实验难点

创建基本表时,为不同的列选择合适的数据类型,正确创建表级和列级完整性约束,如列值是否允许为空、主码和外码等。注意:数据完整性约束,可以在创建基本表时定义,也可以先创建表然后定义完整性约束;由于完整性约束的限制,被引用的表要先创建。

4 Lab Steps 步骤

4.1 实验要求

理解和掌握 SQL DDL 语句的语法,特别是各种参数的具体含义和使用方法;使用 SQL 语句创建、修改和删除数据库、模式和基本表。掌握 SQL 语句常见语法错误的调试方法。

4.2 Step1

创建数据库 CRAETE DATABASE test;

4.3 Step2

删除数据库 DROP DATABASE test;

4.4 Step3

SQL 中创建模式的语句: CRAETE SCHEMA < 模式名 > AUTHORIZATION < 用户名 >; SQL 中删除模式的语句: DROP SCHEMA < 模式名 ><CASCADE|RESTRICT> 但是 MySQL 中没有模式,因此无法创建。

4.5 Step4

创建表 CREATE TABLE Student(Sno CHAR(9) PRIMARY KEY,Sname CHAR(20) UNIQUE,Ssex CHAR(2),Sage SMALLINT, Sdept CHAR(20)); Create Table Course(Cno char(4) primary key,Cname Char(40) not null,Cpno char(4),Ccredit smallint,foreign key(Cpno) references Course(Cno)); Create table SC(Sno char(9),Cno char(4),Grade Smallint,primary key(Sno,Cno),foreign key(Sno) references Student(Sno),foreign key (Cno) references Course(Cno));

4.6 Step5

删除表 DROP table Student;

5 Lab Results 结果

5.1 实验结果

图 1: 这里是子图 (subfigure) 的示例。

通过图像我们发现.....,因此我们可以认为....

6 Lab Experience 心得

6.1 实验心得 a

理解和掌握 SQL DDL 语句的语法,特别是各种参数的具体含义和使用方法;使用 SQL 语句创建、修改和删除数据库、模式和基本表。掌握 SQL 语句常见语法错误的调试方法。

6.2 实验心得 2

通过此次试验我熟悉了很多数据库的基本操作,令我收获颇丰

参考文献

[1] https://www.google.com/

A 附录 1: matlab Code

```
[X, Y] = meshgrid(0.01:0.01:1, 0.01:0.01:1);

Zfun =@(x,y)12.5*x.*log10(x).*y.*(y-1)+exp(-((25 ...
*x - 25/exp(1)).^2+(25*y-25/2).^2).^3)./25;

Z = Zfun(X,Y);

figure;

surf(Y,Z,X,'FaceColor',[1 0.75 0.65],'linestyle','none');

hold on

surf(Y+0.98,Z,X,'FaceColor',[1 0.75 0.65],'linestyle','none');

axis equal;

view([116 30]);

camlight;

lighting phong; % 设置光照和光照模式
```

B 附录 2: python Code

```
def run():
from sko.GA import GA_TSP
import numpy as np
from scipy import spatial
from numpy.linalg import norm
import cvxpy as cp
import pandas as pd
#python原始代码
data=pd.read_excel("3.xlsx")
```