

Generative Models

Dr. Konda Reddy Mopuri Dept. of Al IIT Hyderabad

Typical (broad) categorization of ML tasks

Supervised

- Driving data: samples (x,y)
- x is data, y is its label
- Aim: mapping function $x \rightarrow y$
- E.g. Classification, Regression,
 Object Detection, Semantic
 Segmentation, etc.

Unsupervised

- Driving data: samples x
- No labels
- Learn 'some structure' from the data
- E.g. Clustering, Dimensionality Reduction, Feature Learning,
 Density Estimation, etc.

Another categorization

Discriminative vs. Generative Models

Discriminative

- Learn the boundaries between the classes
- Learns $\rho(y/x)$

Generative

- Model the distribution of individual classes
- Learns ρ(x)
- Conditional Generative models learn ρ(x/y)

Probability density function (PDF)

- Function on the sample space that indicates relative likelihood of the random variable
- Non-negative function
- Normalized to 1 (AUC)
- → Different values of random variable
 (x) compete for the density
- Discrete random variable → PMF

Figure Credits: GeeksforGeeks

Generative model

Given training data, generate samples from the same distribution

dl4cv-17/Generative Models 6

Discriminative

- Learns ρ(y/x)
- Competition among the set of labels for each input (not across inputs)

Discriminative

 Must predict labels for any input

Discriminative

• Can't reject inputs!

Generative

- Learns ρ(x)
- Competition is among different samples

Requires a great understanding of the data (e.g., images)
How likely for a snake to be on the ground? Or, in the air? Or, next to a human?

Generative

- Learns ρ(x)
- Competition is among different samples

Importantly, the model can reject unreasonable samples as 'unlikely' (small value assignment)

Conditional Generative

- Learns $\rho(x/y)$
- Conditioning label results in competition among different samples

dl4cv-17/Generative Models

 Conditional generative models can be built from other components!

Summary

- Discriminative ρ(y/x) → assign labels, feature learning (with labels)
- Generative ρ(x) → Detect outliers, feature learning (w/o labels), and sample to generate new data!
- Conditional ρ(x/y) → Assign labels and detect outliers, Generate new data conditioned on the label!

Dr. Konda Reddy Mopuri

Example

Conditional Generative Model

Given data, model estimates distribution of ρ(x/y)

Conditional Generative Model

Given data, model estimates distribution of ρ(x/y)

Conditional Generative Model

What is the value of y for new data?

Discriminative Model

- Focus is on 'How to distinguish different classes?'
- Goal is to find the decision boundary

Discriminative Model

- Focus is on 'How to distinguish different classes?'
- Goal is to find the decision boundary
- Uses $\rho(y/x)$ to classify \rightarrow predicts the class with highest $\rho(y/x)$

dl4cv-17/Generative Models 20 Dr. Konda Reddy Mopuri

Why generative models?

- Real-like samples for artwork
- Useful transformations colorization, inpainting, super-resolution
- Representation learning (e.g., for discriminative tasks)
- Provides insights about the high-dim data
- Modeling physical world for simulation & planning (e.g., Robotics and RL)

Dr. Konda Reddy Mopuri

Broad categorization of Generative Models

Models with Explicit Density

$$p(x) = f(x, \theta)$$

• Given the training data $\{x_1, x_2, ..., x_N\}$, train the model via maximum likelihood estimation (MLE)

$$\theta^* = \underset{\theta}{\operatorname{arg max}} \prod_{i} p(x_i)$$

$$\theta^* = \underset{\theta}{\operatorname{arg max}} \sum_{i} \log p(x_i)$$

$$\theta^* = \underset{\theta}{\operatorname{arg max}} \sum_{i} \log f(x_i, \theta)$$

Autoregressive models

- Based on the assumption that sample x consists of multiple portions (subparts) $\rightarrow x = (x_1, x_2, x_3, \dots, x_W)$
- Probability is expressed using the chain rule

$$\rho(x_1, x_2, x_3, \dots, x_W) = \rho(x_1) \ \rho(x_2/x_1) \rho(x_3/x_2, x_1) \dots = \Pi \ \rho(x_t/x_1x_2 \dots x_{t-1})$$

→ Recurrent models (RNNs) can do this!

dl4cv-17/Generative Models 24

Autoregressive models: Pixel RNNs (ICML 2016)

- Generate the pixels of an image: one at a time, from top-left to bottom right
- Hidden state of each pixel is modeled from the hidden state and pixel values of left and top pixels

1	1	1	1	1
1	1	1	1	1
1	1	0	0	0
0	0	0	0	0
0	0	0	0	0

$$h_{i,j} = f(h_{i-1,j}, h_{i,j-1}, \theta)$$

Autoregressive models: Pixel RNNs (ICML 2016)

 Very slow during both training and testing!

$$h_{i,j} = f(h_{i-1,j}, h_{i,j-1}, \theta)$$

Autoregressive models: Pixel CNNs (NeurIPS 2016)

- Dependency is modeled with a CNN over the context
- Training MLE
- Training is faster but sampling is slow

Pixel RNN results

CIFAR-10 (32 X 32)

ImageNet (32 X 32)

Broad categorization of Generative Models

dl4cv-17/Generative Models 29

Variational Autoencoders (VAE)

VAE

- Deal with an intractable density → can't be computed/optimized explicitly
- Optimizes the 'lower bound' on the density

Next: VAEs