cours 6 Construction de l'arbre de jonction

Toutes les séquences d'élimination ne sont pas égales

Séquence 1 : *A, B, C, F, D, E* **Séquence 2 :** *D, C, A, E, B, F*

De la propriété d'intersection courante

Propriété d'intersection courante

Soient C_1 et C_2 deux cliques quelconques de l'arbre de jonction et soit $S=C_1\cap C_2\neq\emptyset$. Alors sur toute chaîne reliant C_1 et C_2 , les cliques et séparateurs contiennent S

Théorème

L'algorithme de Shafer-Shenoy fonctionne avec n'importe quel graphe sans cycle vérifiant la propriété d'intersection courante (ce que l'on appelle un *join tree*)

Un graphe de jonction avec cycles

Si l'on n'y prend garde, des cycles peuvent exister bien que la propriété d'intersection courante soit vérifiée

Graphe de jonction et triangulation (1/2)

Triangulation

Un graphe non orienté est triangulé si et seulement si, pour tout cycle de longueur 4 ou plus, il existe une corde, c'est-à-dire une arête reliant deux nœuds non consécutifs du cycle

Exemple : le graphe ci-dessus n'est pas triangulé car le cycle A, B, D, E, C, A ne comporte pas de corde

Graphe de jonction et triangulation (2/2)

Proposition

il y a équivalence entre les deux assertions :

- Le graphe de jonction est acyclique
- 2 Le graphe non orienté correspondant est triangulé
- pour trouver un « bon » arbre de jonction, il faut trouver une « bonne » triangulation

Un peu de morale, ça ne fait pas de mal

Moralisation

relier tous les parents d'un même nœud, puis supprimer les orientations \Longrightarrow le graphe moral.

⇒ les cliques pourront contenir l'ensemble des probabilités conditionnelles de la décomposition de la loi jointe

Recherche des triangulations optimales (1/2)

Proposition [Rose 1970]

Un graphe non orienté est triangulé si et seulement si l'application des deux règles suivantes permet d'éliminer tous les nœuds X_i du graphe sans rajouter une seule arête :

- on rajoute des arêtes entre tous les voisins du nœud X_i
 que l'on veut éliminer (on forme une clique)
- on supprime X_i ainsi que les arêtes qui lui sont adjacentes du graphe
- pour créer un join tree, il suffit de partir d'un graphe non orienté et d'appliquer, avec une certaine séquence d'élimination, les deux points ci-dessus

[Mellouli (87)] : Tout join tree « optimal » peut être construit à partir d'une séquence d'élimination

Recherche des triangulations optimales (2/2)

- Arnborg et al. (87): trouver la triangulation optimale est NP-difficile ⇒ essayer de trouver des heuristiques
- ▶ *Kjærulff (90) :* un algorithme glouton rapide et efficace : Soit un graphe non orienté (moral) $G = (X, E), X = \{X_1, ..., X_n\}$
 - ◆ Associer à chaque X_i un « poids » égal au produit des modalités de X_i et de ses voisins
 - ② éliminer le nœud X_i dont le poids est minimal (i.e., relier tous ses voisins de manière à former une clique C_i puis éliminer X_i et ses arêtes adjacentes)
 - mettre à jour les poids des nœuds restants
 - \implies les C_i sont les cliques (ellipses) du join tree
- ▶ van den Eijkhof & Bodlaender (2002) : "safe reductions"
 ⇒ élimination de variables avec garantie d'optimalité
- ► Autres algorithmes : Becker & Geiger (96) ; Shoiket & Geiger (87)

Exemple de création de join tree (1/5)

ightharpoonup Variable à éliminer : $J\Longrightarrow$ clique EIJ

Exemple de création de join tree (2/5)

- ightharpoonup première variable à éliminer : $B \Longrightarrow$ clique ABD
- ightharpoonup deuxième variable à éliminer : $F \Longrightarrow$ clique DEF

Exemple de création de join tree (3/5)

- ▶ première variable à éliminer : *D* ⇒ clique *ADE*
- ▶ deuxième variable à éliminer : I ⇒ clique EHI

Exemple de création de join tree (4/5)

- ightharpoonup première variable à éliminer : $H \Longrightarrow$ clique EGH
- ▶ puis les autres variables peuvent être éliminées dans n'importe quel ordre puisqu'elles appartiennent toutes à la même clique : A ⇒ clique ACEG

 $C \Longrightarrow \text{clique } CEG$

 $G \Longrightarrow \text{clique } EG$

 $E \Longrightarrow \text{clique } E$

Exemple de création de join tree (5/5)

Ensemble des cliques selon leur ordre de création (avec la variable dont l'élimination a créé la clique) : EIJ (J), ABD (B), DEF (F), ADE (D), EHI (I), EGH (H), ACEG (A), CEG (C), EG (G), E (E)

ACEG

Problème : comment relier les cliques entre elles ?

Des cliques vers l'arbre d'élimination (1/2)

Définition de l'arbre d'élimination

- ▶ Soit σ : $\{1, ..., n\} \mapsto \{1, ..., n\}$ la permutation telle que les variables X_i sont éliminées dans l'ordre $X_{\sigma(1)}, ..., X_{\sigma(n)}$
- ▶ Pour tout i, soit $D_{\sigma(i)}$ la clique créée au moment où $X_{\sigma(i)}$ est éliminée
- ▶ Arbre d'élimination : graphe $\mathcal{G} = (\mathcal{D}, \mathcal{E})$, où :
 - $\mathcal{D} = \{D_{\sigma(i)} : i \in \{1,\ldots,n\}\},$
 - ▶ $\mathcal{E} = \{ (D_{\sigma(i)}, D_{\sigma(j)}) : 1 \le i < n, j = min\{k \ne i : X_{\sigma(k)} \in D_{\sigma(i)}\} \}$
- \implies Si l'on trie les nœuds X_i à l'intérieur des cliques selon leur ordre d'élimination, alors : on relie $D_{\sigma(i)} = \{X_{\sigma(i)}, X_{\sigma(i)}, \ldots\}$ à $D_{\sigma(i)}$.

Des cliques vers l'arbre d'élimination (2/2)

EIJ

- ▶ Arbre d'élimination : $\mathcal{G} = (\mathcal{D}, \mathcal{E})$, où :
 - ▶ $\mathcal{D} = \{D_{\sigma(i)} : i \in \{1, ..., n\}\},\$
 - ► $\mathcal{E} = \{ (D_{\sigma(i)}, D_{\sigma(j)}) : 1 \le i < n, \\ j = min\{k \ne i : X_{\sigma(k)} \in D_{\sigma(i)}\} \}$
- ► Ensemble des cliques selon leur ordre de création (avec la variable dont l'élimination a créé la clique) : EIJ (J), ABD (B), DEF (F), ADE (D), EHI (I), EGH (H), ACEG (A), CEG (C), EG (G), E (E)

De l'arbre d'élimination vers l'arbre de jonction (1/2)

Propriétés de l'arbre d'élimination

Propriétés

$$\mathcal{D} = \{ D_{\sigma(i)} : i \in \{1, \dots, n\} \}, \\ \mathcal{E} = \{ (D_{\sigma(i)}, D_{\sigma(j)}) : 1 \le i < n, j = \min\{ k \ne i : X_{\sigma(k)} \in D_{\sigma(i)} \} \}$$

- L'arbre d'élimination est un arbre
- Il vérifie la propriété d'intersection courante
- ③ Soit $D_{\sigma(i)}$ un enfant de $D_{\sigma(i)}$, alors $|D_{\sigma(i)}| \ge |D_{\sigma(i)}| 1$
- Soient $D_{\sigma(i)}$ et $D_{\sigma(j)}$ les parents de $D_{\sigma(k)}$, alors $D_{\sigma(i)} \not\subset D_{\sigma(j)}$ et $D_{\sigma(j)} \not\subset D_{\sigma(i)}$
- Soit $D_{\sigma(j)}$ un enfant de $D_{\sigma(i)}$, alors $D_{\sigma(j)} \subset D_{\sigma(i)} \Longleftrightarrow |D_{\sigma(j)}| = |D_{\sigma(i)}| 1$
- Soit $D_{\sigma(j)}$ un enfant de $D_{\sigma(i)}$ tel que $D_{\sigma(j)} \not\subset D_{\sigma(i)}$, alors il n'existe pas d'ancêtre $D_{\sigma(k)}$ de $D_{\sigma(i)}$ tel que $D_{\sigma(j)} \subset D_{\sigma(k)}$

De l'arbre d'élimination vers l'arbre de jonction (2/2)

```
Algorithme pour obtenir un arbre de jonction
```

```
01 créer l'arbre d'élimination \mathcal{G} = (\mathcal{D}, \mathcal{E})
02 marquer à false tous les arcs de \mathcal{E}
03 pour i variant de n à 1 faire
       si il existe D_{\sigma(i)} parent de D_{\sigma(i)} tel que l'arc
04
       (D_{\sigma(i)}, D_{\sigma(i)}) est non marqué et |D_{\sigma(i)}| = |D_{\sigma(i)}| - 1 alors
05
           pour tous les autres parents D_{\sigma(k)} de D_{\sigma(i)} faire
06
               créer dans \mathcal{G} un arc (D_{\sigma(k)}, D_{\sigma(i)})
07
               marquer cet arc à true
80
           fait
09
       si D_{\sigma(i)} a un enfant D_{\sigma(k)} alors
10
           créer dans \mathcal{G} un arc (D_{\sigma(i)}, D_{\sigma(k)})
11
       finsi
12
       supprimer D_{\sigma(i)} ainsi que ses arcs adjacents
13 fait
```

A la fin de l'algorithme ci-dessus, \mathcal{G} est un arbre de jonction.

Bibliographie

- Becker A. et Geiger D. (1996) « A sufficiently fast algorithm for finding close to optimal junction trees », Proceedings of Uncertainty in Artificial Intelligence
- ► Flores J., Gámez J. et Olesen, K. (2003) « Incremental compilation of Bayesian networks », Proceedings of Uncertainty in Artificial Intelligence
- ▶ Jensen F.V. et Jensen F. (1994) « Optimal junction trees », Proceedings of Uncertainty in Artificial Intelligence
- ► Kjærulff U. (1990) « Triangulation of graphs Algorithms giving small total state space », technical report, Aalborg University
- Kjærulff U. (1991) « Optimal decomposition of probabilistic networks by simulated annealing », Statistics and Computing, 2:7–17
- ► Leimer H.-G. (1993) « Optimal decomposition by clique separators », Discrete Mathematics, 113:99–123

Bibliographie

- ► Lepar V. et Shenoy P.P. (1998) « A Comparison of Lauritzen-Spiegelhalter, Hugin and Shenoy-Shafer Architectures for Computing Marginals of Probability Distributions », Proceedings of Uncertainty in Artificial Intelligence, 328–337
- Olesen K. et Madsen A. (1999) « Maximal prime decomposition of Bayesian networks », technical report.
- ➤ Shoikhet K. et Geiger D. (1997) « Finding optimal triangulations via minimal vertex separators », Proceedings of the International Conference on Artificial Intelligence
- van den Eijkhof F. et Bodlaender A. (2002) « Safe reduction rules for weighted treewidth », Proceedings of the 28th International Workshop on Graph-Theoretic Concepts in Computer Science, Lecture Notes in Computer Science, 2573:176–185