Dato il seguente problema di Knapsack 0-1

$$\max 30x_1 + 36x_2 + 15x_3 + 11x_4 + 5x_5 + 3x_6$$
$$9x_1 + 12x_2 + 6x_3 + 5x_4 + 3x_5 + 2x_6 \le 17$$
$$x \in \{0,1\}^6$$

risolvere il problema tramite l'algoritmo di Branch-and-Bound.

Poiché in corrispondenza di ogni nodo dell'albero dovremo risolvere un problema di Knapsack continuo, riordiniamo gli oggetti in modo tale che

$$\frac{p_1}{a_1} \ge \frac{p_2}{a_2} \ge \dots \ge \frac{p_n}{a_n}$$

$$p_1/a_1 = 30/9 = 3,333 \quad \Rightarrow \quad y_1$$

$$p_2/a_2 = 36/12 = 3 \quad \Rightarrow \quad y_2$$

$$p_3/a_3 = 15/6 = 2,5 \quad \Rightarrow \quad y_3$$

$$p_4/a_4 = 11/5 = 2,2 \quad \Rightarrow \quad y_4$$

$$p_6/a_6 = 3/2 = 1.5$$
 \Rightarrow y_6

 $p_5/a_5 = 5/3 = 1,666$

Gli oggetti sono già ordinati ⇒ Conserviamo la formulazione iniziale

 y_5

Sia P₀ il rilassamento lineare associato al sottoproblema S₀ del nodo radice

$$\max 30x_1 + 36x_2 + 15x_3 + 11x_4 + 5x_5 + 3x_6$$
$$9x_1 + 12x_2 + 6x_3 + 5x_4 + 3x_5 + 2x_6 \le 17$$
$$0 \le x_i \le 1, i = 1, ..., 6$$

Calcoliamo la soluzione associata all'upper bound utilizzando l'algoritmo per il Knapsack continuo:

$$X_{UB}^{0} = [1, (17 - 9)/12, 0, 0, 0, 0] = [1, 2/3, 0, 0, 0, 0] \Rightarrow Z_{UB}^{0} = 54$$

Per il lower bound, consideriamo una soluzione ammissibile data da

$$X_{LB}^0 = [1, 0, 0, 0, 0, 0] \Rightarrow Z_{LB}^0 = 30 = Z_{LB}$$

Sia P_1 il rilassamento lineare associato al sottoproblema S_1 ($x_2 = 0$)

$$\max 30x_1 + 15x_3 + 11x_4 + 5x_5 + 3x_6$$

$$9x_1 + 6x_3 + 5x_4 + 3x_5 + 2x_6 \le 17$$

$$0 \le x_i \le 1, i = 1, ..., 6$$

$$x_{UB}^1 = [1, 0, 1, (17-15)/5, 0, 0] = [1, 0, 1, 2/5, 0, 0] \Rightarrow z_{UB}^1 = 49,4$$

 $X_{LB}^{1} = [1, 0, 1, 0, 0, 0] = [1, 0, 1, 0, 0, 0] \Rightarrow Z_{LB}^{1} = 45.$

Poiché $z_{LB}^1 > z_{LB}$, aggiorniamo il valore del lower bound corrente $z_{LB} = 45$

Sia P₂ il rilassamento lineare associato al sottoproblema S₂ ($x_2 = 1$)

$$\max 30x_1 + 36 + 15x_3 + 11x_4 + 5x_5 + 3x_6$$

$$9x_1 + 12 + 6x_3 + 5x_4 + 3x_5 + 2x_6 \le 17 \Rightarrow 9x_1 + 6x_3 + 5x_4 + 3x_5 + 2x_6 \le 5$$

$$0 \le x_i \le 1, i = 1, ..., 6$$

$$x_{UB}^2 = [(17-12)/9, 1, 0, 0, 0, 0] = [5/9, 1, 0, 0, 0, 0] \Rightarrow z_{UB}^2 = 52,6$$

 $x_{LB}^2 = [0, 1, 0, 0, 0, 0] \Rightarrow z_{LB}^2 = 36.$

Da S₂, generiamo i due sottoproblemi

$$S_3$$
 t.c. $X_1 = 0$
 S_4 t.c. $X_1 = 1$
 $Z_{UB}^1 = 49.4$

Sia P_3 il rilassamento lineare associato al sottoproblema S_3 ($x_2 = 1$, $x_1 = 0$)

$$\max 36 + 15x_3 + 11x_4 + 5x_5 + 3x_6$$
$$6x_3 + 5x_4 + 3x_5 + 2x_6 \le 5$$
$$0 \le x_i \le 1, i = 1, ..., 6$$

$$x^3_{UB} = [0, 1, 5/6, 0, 0, 0] \Rightarrow z^3_{UB} = 48,5$$

$$x_{LB}^3 = [0, 1, 0, 0, 0, 0] \Rightarrow z_{LB}^3 = 36.$$

Sia P₄ il rilassamento lineare associato al sottoproblema S₄ ($x_2 = x_1 = 1$)

max 30 + 36 +
$$15x_3$$
 + $11x_4$ + $5x_5$ + $3x_6$
9 + 12 + $6x_3$ + $5x_4$ + $3x_5$ + $2x_6 \le 17 \Rightarrow 6x_3 + 5x_4 + 3x_5 + 2x_6 \le 17 - 21$
 $0 \le x_i \le 1, i = 1, ..., 6$

inammissibilità

Poiché P_4 è inammissibile, il nodo S_4 può essere chiuso per inammissibilità.

Da S_1 , generiamo i due sottoproblemi

$$S_5$$
 t.c. $X_4 = 0$
 S_6 t.c. $X_4 = 1$
 $z_{UB}^1 = 49.4$
 $z_{LB}^2 = 45$
 $z_{LB}^2 = 45$
 $z_{LB}^2 = 45$
 $z_{LB}^3 = 45$
 $z_{LB}^3 = 45$
 $z_{LB}^3 = 45$
 $z_{LB}^3 = 45$

$$z^{5}_{UB} = 48.33$$
 $z^{6}_{LB} = 45$

 $z^{3}_{UB} = 48.5$ $z^{3}_{LB} = 36$

inammissibilità

Sia P_5 il rilassamento lineare associato al sottoproblema S_1 ($x_2 = x_4 = 0$)

 S_6

$$\max 30 x_1 + 15x_3 + 5x_5 + 3x_6$$

$$9x_1 + 6x_3 + 3x_5 + 2x_6 \le 17$$

$$0 \le x_i \le 1, i = 1, ..., 6$$

$$x_{UB}^{5} = [1, 0, 1, 0, (17-15)/3, 0] = [1, 0, 1, 0, 2/3, 0] \Rightarrow z_{UB}^{5} = 48,33$$

 $x_{LB}^{5} = [1, 0, 1, 0, 0, 0] \Rightarrow z_{LB}^{5} = 45.$

Da S₁, generiamo i due sottoproblemi

Sia P_6 il rilassamento lineare associato al sottoproblema S_6 ($x_2 = 0$, $x_4 = 1$)

max 30
$$x_1 + 15x_3 + 11 + 5x_5 + 3x_6$$

 $9x_1 + 6x_3 + 5 + 3x_5 + 2x_6 \le 17 \Rightarrow 9x_1 + 6x_3 + 3x_5 + 2x_6 \le 12$
 $0 \le x_i \le 1, i = 1, ..., 6$

$$x_{\text{UB}}^6 = [1, 0, (12-9)/6, 1, 0, 0] = [1, 0, 1/2, 1, 0, 0] \Rightarrow z_{\text{UB}}^6 = 48,5$$

 $x_{\text{LB}}^6 = [1, 0, 0, 1, 0, 0] \Rightarrow z_{\text{LB}}^6 = 41.$

Da S₃, generiamo i due sottoproblemi

$$S_7$$
 t.c. $X_5 = 0$

$$S_8$$
 t.c. $X_5 = 1$

$$z^{1}_{UB} = 49.4$$

$$z_{LB}^1 = 45 \left(S_1 \right) Z_{LB} = 45$$

$$x_4 = 0$$

 S_8

$$Z^5_{UB} = 48.33$$

$$z_{1B}^{5} = 45$$
 (S_{5}

$$Z^{7}_{UB} = 48$$

$$Z_{1B}^{7} = 48$$

$$Z_{1B} = 48$$

$$x_4 = 1$$

$$Z^6_{UB} = 48.5$$

$$z_{LB}^6 = 41$$
 S_6

 $x_2 = 0$

$$z^3 = 48.5$$

$$z^{3}_{UB} = 48.5$$
 $z^{3}_{LB} = 36$

$$S_2 z_{LB} = 36$$

$$x_1 = 0 \qquad \qquad x_1 = 1$$

$$z^3_{UB} = 48.5$$

$$z_{LB}^3 = 36$$

 $x_{2} = 1$

Sia P₇ il rilassamento lineare associato al sottoproblema S₇ $(x_2=x_4=x_5=0)$

$$\max 30x_1 + 15x_3 + 3x_6$$

$$9x_1 + 6x_3 + 2x_6 \le 17$$

$$0 \le x_i \le 1, i = 1, ..., 6$$

$$X^{7}_{UB} = [1, 0, 1, 0, 0, 1] \Rightarrow Z^{7}_{UB} = 48$$

$$X_{LB}^{7} = [1, 0, 1, 0, 0, 1] \Rightarrow Z_{LB}^{7} = 48 \Rightarrow Z_{LB} = 48.$$

Da S₃, generiamo i due sottoproblemi S_7 t.c. $X_5 = 0$

$$S_8$$
 t.c. $x_5 = 1$

$$x_2 = 0$$

$$x_2 = 1$$

$$z^{1}_{UB} = 49.4$$
 $z^{1}_{LB} = 45 \left(S_{1} \right)$

$$z_{LB}^1 = 45 \left(S_1 \right) z_{LB} = 45$$

$$x_4 = 0$$
 $x_4 = 1$

$$x_1 = 0 \qquad x_1 = 1$$

 $Z^2_{UB} = 52.6$

 $S_2)_{Z^2_{LB}} = 36$

$$Z^{5}_{UB} = 48.33$$
 $Z^{5}_{LB} = 45$

$$z^{6}_{UB} = 48.5$$
 $z^{6}_{LB} = 41$
bound.

$$z^{3}_{UB} = 48.5$$
 $z^{3}_{LB} = 36$
bound.

$$x_5 = 0 \qquad x_5 = 1$$

PieiPhi right sauthen since P_0 in the sauthen saut bouthd.

 $Z^{8}_{UB} = 47.5$ $Z^{7}_{UB} = 48$

Per lo stesso motivo, anche i nodi S_{i} ed S_{i} possono essere chiusi per bound. $9x_1 + 6x_3 + 3 + 2x_6 \le 17 \Rightarrow 9x_1 + 6x_3^6 + 2x_6 \le 14$ $0 \le x_i \le 1, i = 1, ..., 6$

$$z_{LB}^7 = 48$$
 $z_{LB}^8 = 35$ $z_{LB}^8 = 48$

$$x_{\text{UB}}^{8} = [1, 0, (14-9)/6, 0, 1, 0] = [1,0,5/6,0,1,0] \Rightarrow z_{\text{UB}}^{8} = 47,5$$

OPT

bound.

 $x^{8}_{1B} = [1, 0, 0, 0, 1, 0] \implies z^{8}_{1B} = 35$

Per determinare il valore finale ottimo del problema, consideriamo tutti i nodi che sono stati chiusi per ottimalità e prendiamo la soluzione che da' il massimo valore della funzione obiettivo.

Nel nostro caso il valore ottimo è dato da $z^*=48$ e corrisponde alla soluzione $x^*=[1,0,1,0,0,1]$ associata al nodo S_7 .

Dato il seguente problema di Knapsack

max 6
$$x_1$$
 + 10 x_2 + 12 x_3
 x_1 + 2 x_2 + 3 x_3 \leq 5 (KP)
 $x \in \{0,1\}^3$

risolvere il problema tramite l'algoritmo di programmazione dinamica.

max
$$6 x_1 + 10 x_2 + 12 x_3$$

 $x_1 + 2x_2 + 3 x_3 \le 5$ (KP)
 $x \in \{0,1\}^3$

Calcoliamo la formula di ricorsione per r = 1:

$$Z_1(0) = 0 \Rightarrow X_1 = 0$$

$$Z_1(1) = 6 \Rightarrow X_1 = 1$$

$$Z_1(2) = 6 \Rightarrow X_1 = 1$$

$$Z_1(3) = 6 \Rightarrow X_1 = 1$$

$$Z_1(4) = 6 \Rightarrow X_1 = 1$$

$$Z_1(5) = 6 \Rightarrow X_1 = 1$$

Rappresentiamo questi valori in una tabella di dimensione $n \times b = 3 \times 5$, in cui ogni elemento contiene $z_r(d)$.

Il simbolo * nella soluzione indica che la variabile non è stata ancora fissata

d						
r	0	1	2	3	4	5
	(0,*,*)	(1,*,*)	(1,*,*)	(1,*,*)	(1,*,*)	(1,*,*)
1	0	6	6	6	6	6
2	Z ₂ (0)	Z ₂ (1)	z ₂ (2)	z ₂ (3)	Z ₂ (4)	z ₂ (5)
3	z ₃ (0)	Z ₃ (1)	z ₃ (2)	z ₃ (3)	Z ₃ (4)	z ₃ (5)

Calcoliamo ora $z_2(d)$:

Per
$$d = \{0, 1\}$$

 $z_2(0) = z_1(0) = 0 \Rightarrow x_2 = 0$
 $z_2(1) = z_1(1) = 6 \Rightarrow x_2 = 0$
Per $d = \{2, 3, 4, 5\}$
 $z_2(2) = \max\{z_1(2), z_1(0) + c_2\} = \max\{6, 10\} = 10 \Rightarrow x_2 = 1$
 $z_2(3) = \max\{z_1(3), z_1(1) + c_2\} = \max\{6, 16\} = 16 \Rightarrow x_2 = 1$
 $z_2(4) = \max\{z_1(4), z_1(2) + c_2\} = \max\{6, 16\} = 16 \Rightarrow x_2 = 1$
 $z_2(5) = \max\{z_1(5), z_1(3) + c_2\} = \max\{6, 16\} = 16 \Rightarrow x_2 = 1$

Riportando questi valori in tabella si ha:

d						
r	0	1	2	3	4	5
	(0,*,*)	(1,*,*)	(1,*,*)	(1,*,*)	(1,*,*)	(1,*,*)
1	0	6	6	6	6	6
	(0,0,*)	(1,0,*)	(0,1,*)	(1,1,*)	(1,1,*)	(1,1,*)
2	0	6	10	16	16	16
3	$Z_3(0)$	$Z_3(1)$	$Z_3(2)$	$Z_3(3)$	$Z_{3}(4)$	<i>Z</i> ₃ (5)

Calcoliamo ora $z_3(d)$:

Per $d = \{0, 1, 2\}$

$$z_3(0) = z_2(0) \Rightarrow x_3 = 0$$

 $z_3(1) = z_2(1) \Rightarrow x_3 = 0$
 $z_3(2) = z_2(2) \Rightarrow x_3 = 0$
Per $d = \{3, 4, 5\}$
 $z_3(3) = \max\{z_2(3), z_2(0) + c_3\} = \max\{16, 12\} = 16 \Rightarrow x_3 = 0$

 $z_3(4) = \max\{z_2(4), z_2(1) + c_3\} = \max\{16, 18\} = 18 \Rightarrow x_3 = 1$

 $z_3(5) = \max\{z_2(5), z_2(2) + c_3\} = \max\{16, 22\} = 22 \Rightarrow x_3 = 1$

Riportando questi valori in tabella si ha:

d						
r	0	1	2	3	4	5
	(0,*,*)	(1,*,*)	(1,*,*)	(1,*,*)	(1,*,*)	(1,*,*)
1	0	6	6	6	6	6
	(0,0,*)	(1,0,*)	(0,1,*)	(1,1,*)	(1,1,*)	(1,1,*)
2	0	6	10	16	16	16
	(0,0,0)	(1,0,0)	(0,1,0)	(1,1,0)	(1,0,1)	(0,1,1)
3	0	6	10	16	18	22

Pertanto, la soluzione ottima è $x^* = (0, 1, 1)$ di valore 22.

Dato il seguente problema di Knapsack 0-1

$$\max 22x_1 + 8x_2 - 12x_3 + 16x_4$$
$$7x_1 + 3x_2 - 4x_3 + 5x_4 \le 10$$
$$x \in \{0,1\}^4$$

risolvere il problema tramite l'algoritmo di Branch-and-Bound.

Poiché la variabile x_3 ha coefficiente negativo, applichiamo il seguente cambio di variabile $x'_3 = 1 - x_3$ per ricondurci ad un problema di Knapsack 0-1 in cui i coefficienti del vincolo e della funzione obiettivo sono tutti non negativi.

Il problema diventa

$$-12 + \max 22x_1 + 8x_2 + x_3' + 16x_4$$
$$7x_1 + 3x_2 + 4x_3' + 5x_4 \le 14$$
$$x \in \{0,1\}^4$$

Possiamo momentaneamente trascurare la costante –12 ricordandoci di aggiungerla al valore finale della soluzione di branch & bound.

Riordiniamo ora gli oggetti in modo tale che

$$\frac{p_1}{a_1} \ge \frac{p_2}{a_2} \ge \dots \ge \frac{p_n}{a_n}$$

$$p_1/a_1 = 22/7 = 3,14 \qquad \Rightarrow \qquad y_2$$

$$p_2/a_2 = 8/3 = 2,66 \qquad \Rightarrow \qquad y_4$$

$$p_3/a_3 = 12/4 = 3 \qquad \Rightarrow \qquad y_3$$

$$p_4/a_4 = 16/5 = 3,2 \qquad \Rightarrow \qquad y_1$$

Riscriviamo ora il problema nelle nuove variabili y

$$\max 16y_1 + 22y_2 + 12y_3 + 8y_4$$
$$5y_1 + 7y_2 + 4y_3 + 3y_4 \le 14$$
$$y \in \{0,1\}^4$$

Sia P₀ il rilassamento lineare associato al sottoproblema S₀ del nodo radice

$$\max 16y_1 + 22y_2 + 12y_3 + 8y_4$$
$$5y_1 + 7y_2 + 4y_3 + 3y_4 \le 14$$
$$0 \le y_i \le 1, i = 1, ..., 4$$

Calcoliamo la soluzione associata all'upper bound utilizzando l'algoritmo per il Knapsack continuo:

$$y^{0}_{UB} = [1, 1, 1/2, 0] \Rightarrow z^{0}_{UB} = 44$$

Per il lower bound, consideriamo una soluzione ammissibile data da

$$X_{LB}^{0} = [1, 1, 0, 0] \Rightarrow Z_{LB}^{0} = 38 = Z_{LB}$$

$$S_1$$
 t.c. $y_3 = 0$
 S_2 t.c. $y_3 = 1$

Sia P_1 il rilassamento lineare associato al sottoproblema S_1 ($y_3 = 0$)

$$\max 16y_1 + 22y_2 + 8x_4$$

$$5y_1 + 7y_2 + 3y_4 \le 14$$

$$0 \le y_i \le 1, i = 1, ..., 4$$

$$y_{UB}^1 = [1, 1, 0, 2/3] \Rightarrow z_{UB}^1 = 43,33$$

$$z_{UB}^1 = [1, 1, 0, 0] \Rightarrow z_{UB}^1 = 38.$$

Sia P₂ il rilassamento lineare associato al sottoproblema S₂ ($y_3 = 1$)

$$\max 16y_1 + 22y_2 + 12 + 8y_4$$

$$5y_1 + 7y_2 + 3y_4 \le 10$$

$$0 \le y_i \le 1, i = 1, ..., 4$$

$$y_{UB}^2 = [1, 5/7, 1, 0] \Rightarrow z_{UB}^2 = 43,7$$

 $y_{LB}^2 = [1, 0, 1, 0] \Rightarrow z_{LB}^2 = 28.$

Da S₁, generiamo i due sottoproblemi

$$S_3$$
 t.c. $y_4 = 0$

$$S_4$$
 t.c. $y_4 = 1$

$$z_{LB}^{1} = 38$$

$$y_4 = 0$$

$$z_{\text{UB}}^3 = 38$$

 $z_{\text{LB}}^3 = 38$

 $y_3 = 0$

Sia P_3 il rilassamento lineare associato al sottoproblema S_3 ($y_3 = y_4 = 0$)

$$\max 16y_1 + 22y_2$$

$$5y_1 + 7y_2 \le 14$$

$$0 \le y_i \le 1, i = 1, ..., 4$$

Chiudiamo il nodo per ottimalità.

 $Z^2_{UB} = 43.7$

$$y^3_{LIB} = [1, 1, 0, 0] \Rightarrow z^3_{LIB} = 38$$

$$X_{LB}^3 = [1, 1, 0, 0] \implies Z_{LB}^3 = 38.$$

Sia P_4 il rilassamento lineare associato al sottoproblema S_4 ($y_3 = 0$, $y_4 = 1$)

$$\max 16y_1 + 22y_2 + 8$$

$$5y_1 + 7y_2 \le 11$$

$$0 \le y_i \le 1, i = 1, ..., 5$$

$$y^4_{UB} = [1, 6/7, 0, 1] \Rightarrow z^4_{UB} = 42, 8$$

$$y^4_{LB} = [1, 0, 0, 1] \Rightarrow z^4_{LB} = 24.$$

Sia P_5 il rilassamento lineare associato al sottoproblema S_5 ($y_3 = 1$, $y_2 = 0$)

$$\max 16y_1 + 12 + 8y_4$$

$$5y_1 + 3y_4 \le 10$$

$$0 \le y_i \le 1, i = 1, ..., 4$$

$$y_{UB}^5 = [1, 0, 1, 1] \Rightarrow z_{UB}^5 = 36$$

 $y_{1B}^5 = [1, 0, 1, 1] \implies z_{1B}^5 = 36.$

Chiudiamo il nodo per ottimalità o per bound.

Da S_2 , generiamo i due sottoproblemi S_5 t.c. S_4 S_5 t.c. S_4 S_5 t.c. S_5 t.c. S

OPT/Bound

Sia P_6 il rilassamento lineare associato al sottoproblema S_6 ($y_3 = 0$, $y_2 = 1$)

$$\max 16y_1 + 22 + 12 + 8y_4$$

$$5y_1 + 3y_4 \le 3$$

$$0 \le y_i \le 1, i = 1, ..., 4$$

$$y^6_{UB} = [3/5, 1, 1, 0] \Rightarrow z^6_{UB} = 43, 6$$

$$y^6_{LB} = [0, 1, 1, 1] \Rightarrow z^6_{LB} = 34.$$

Sia P₇ il rilassamento lineare associato al sottoproblema S₇ ($y_3 = y_2 = 0, y_4 = 1$)

$$\max 16y_1 + 8$$

$$5y_1 \le 11$$

$$0 \le y_i \le 1, i = 1, ..., 4$$

$$y_{UB}^7 = [1, 0, 0, 1] \Rightarrow z_{UB}^7 = 20$$

$$y_{LB}^7 = [1, 0, 0, 1] \Rightarrow z_{LB}^7 = 20$$

Poiché y^7_{UB} è intera il nodo S_7 può essere chiuso per ottimalità.

Osserviamo che questo nodo potrebbe anche essere chiuso per bound in quanto $z_{\text{UB}}^7 < z_{\text{LB}}$.

Sia P₈ il rilassamento lineare associato al sottoproblema S₈ $(y_3=0,y_4=y_2=1)$

max
$$16y_1 + 30$$

 $5y_1 \le 4$
 $0 \le y_i \le 1, i = 1, ..., 4$

$$y^{8}_{UB} = [4/5, 1,0, 1] \Rightarrow z^{8}_{UB} = 42,8$$

 $y^{8}_{LB} = [0, 0, 1, 1] \Rightarrow z^{8}_{LB} = 30$

Sia P_9 il rilassamento lineare associato al sottoproblema S_9 ($y_3 = y_2 = 1$, $y_1 = 0$)

max 22 + 12 +
$$8y_4$$

 $3y_4 \le 3$
 $0 \le y_i \le 1, i = 1, ..., 4$

$$y^9_{UB} = [0, 1, 1, 1] \Rightarrow z^8_{UB} = 42$$

 $y^8_{LB} = [0, 1, 1, 1] \Rightarrow z^8_{LB} = 42$

Poiché y^9_{UB} è intera, il nodo S_9 può essere chiuso per ottimalità.

Aggiorniamo il valore del lower bound globale: $z_{LB} = 42$.

Poiché il lower bound globale è stato aggiornato al valore $z_{18} = 42$, anche il nodo S_{8} può essere chiuso per bound.

Sia P_{10} il rilassamento lineare associato al sottoproblema S_{10} $(y_3=y_2=y_1=1)$

$$\max 16 + 22 + 12 + 8y_4$$

$$5 + 3y_4 \le 3$$

$$0 \le y_i \le 1, i = 1, ..., 4$$

Poiché P_{10} è inammissibile, il nodo S_{10} può essere chiuso per inammissibilità.

La soluzione ottima del problema è quella associata al nodo S_9 e data da y^* = [0, 1,1, 1] di valore z^* = 42. Ricordandoci di aggiungere la costante –12 al valore finale, otteniamo che la soluzione ottima ha valore z^* = 30.

Ricordiamo che y* è la soluzione del problema in cui gli oggetti sono stati riordinati e la variabile x_3 è stata complementata.

La soluzione ottenuta riordinando gli oggetti è data da:

$$(x^*)' = [1, 1, 1, 0]$$

La soluzione ottenuta ricomplementando la variabile x_3 è data da:

$$x^* = [1, 1, 0, 0]$$