HOMEWORK 3: QUOTIENTS AND CONNECTEDNESS DUE: FRIDAY, SEPTEMBER 28

- 1) Suppose $f: X \to Y$ is a continuous map. If there exists $g: Y \to X$ a continuous map such that $f \circ g$ is the identity map on Y, show that f is a quotient map.
- 2) If $A \subseteq X$, $r: X \to A$ a continuous map is said to be a **retraction** if r(a) = a for every $a \in A$. Show that r is a quotient map.
- 3) Consider the map $\pi: \mathbb{R}^2 \to \mathbb{R}: (x,y) \mapsto x$. Let $A \subseteq \mathbb{R}^2$ be the set of points such that $x \geq 0$ or (inclusive) y = 0. Show that the restricted map $f: A \to \mathbb{R}$ is a quotient map that is neither open nor closed.
- 4) If $X_1, X_2, \ldots \subseteq X$ are a sequence of connected subspaces, such that $X_i \cap X_{i+1} \neq \emptyset$, show that $\bigcup_{i=1}^{\infty} X_i$ is connected.
- 5) If $p: X \to Y$ is a quotient map, with Y connected and $p^{-1}(y) \subseteq X$ connected for each $y \in Y$, then X is connected.
- 6) Let $Y \subseteq X$ be two connected topological spaces. Suppose that $X \setminus Y$ is disconnected with a separation by A, B. Show that $Y \cup A$ and $Y \cup B$ are connected.¹
- 7) Show any infinite cardinality space X with the finite complement topology is connected.²
- 8) We have shown that $X = \mathbb{R}^{\mathbb{N}}$ with the product topology is connected, whereas X with the box topology is not. Consider the **uniform topology**; define $d(\mathbf{x}, \mathbf{y}) = \sup\{d_i(x_i, y_i)\}$, where $d_i(a, b) = \min\{|x_i y_i|, 1\}$ is the *standard bounded metric*. The induced metric topology is the uniform topology, which by 20.4 of Munkres is finer than the product yet coarser than the box topology.

Prove or disprove that X with the uniform topology is connected.³

¹This result is very helpful for identifying connected subsets of \mathbb{R}^n . As a **hint**, suppose $Y \cup A = U \cup V$. Apply Prop 8.4 from class to Y and U WLOG. Then show that V and $U \cup B$ separate X.

²This mildly generalizes 'every space is connected with the trivial/indiscrete topology'.

³Hint: Are the sets we used for the box topology open in the uniform topology?