회귀분석팀

6팀

김민우

채희지

김다민

성준혁

천예원

INDEX

- 1. 기본 수식
- 2. 회귀 분석이란?
 - 3. 단순선형회귀
 - 4. 다중선형회귀
 - 5. 데이터 진단
- 6. 로버스트 회귀

1

기본 수식

__ 표본 평균 (Sample Mean)

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

표본 표순변자 (Sample Standard Deviation)

$$S_{x} = \sqrt{S_{x}^{2}}$$

$$= \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

— 표본 분산 — (Sample Variance)

$$S_{x}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

$$S^{2}_{y} = \frac{1}{n-1} \sum_{i=1}^{n} (y_{i} - \bar{y})^{2}$$

편차제곱합(변동)

$$S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2 S_{xy}$$

$$=\sum_{i=1}^{n}(x_i-\bar{x})(y_i-\bar{y})$$

표본 평균 (Sample Mean)

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

표본 표준편차 (Sample Standard Deviation)

$$S_{x} = \sqrt{S_{x}^{2}}$$

$$= \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

— 표본 분산 — (Sample Variance)

$$S_{x}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

$$S^{2}_{y} = \frac{1}{n-1} \sum_{i=1}^{n} (y_{i} - \bar{y})^{2}$$

편차제곱합(변동)

$$S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2 S_{xy}$$

$$=\sum_{i=1}^{n}(x_i-\bar{x})(y_i-\bar{y})$$

표본 평균 (Sample Mean)

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

표본 표준편차 (Sample Standard Deviation)

$$S_x = \sqrt{S_x^2}$$

$$= \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

— 표본 분산 — (Sample Variance)

$$S_{x}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

$$S^{2}_{y} = \frac{1}{n-1} \sum_{i=1}^{n} (y_{i} - \bar{y})^{2}$$

편차제곱합(변동)

$$S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2 S_{xy}$$

$$=\sum_{i=1}^{n}(x_i-\bar{x})(y_i-\bar{y})$$

표본 평균 (Sample Mean)

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

표본 표준편차 (Sample Standard Deviation)

$$S_x = \sqrt{S_x^2}$$

$$= \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

표본 분산 (Sample Variance)

$$S_{x}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

$$S^{2}_{y} = \frac{1}{n-1} \sum_{i=1}^{n} (y_{i} - \bar{y})^{2}$$

변동

$$S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2 S_{xy}$$

$$=\sum_{i=1}^{n}(x_i-\bar{x})(y_i-\bar{y})$$

공분산 (Covariance)

공분산(Covariance)

두 개의 확률변수의 선형 관계를 나타내는 값.

두 변수가 가지는 선형관계의 방향성(양, 음)만 나타낼 뿐이며,

어느 정도로 선형성을 갖는지는 표현하지 못함

$$Cov(X,Y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

공분산 (Covariance)

Cov(X,Y) > 0: X가 증가할 때 Y도 증가

Cov(X,Y) < 0: X가 증가할 때 Y는 감소

Cov(X,Y) = 0: X,Y 두 변수 간 선형 상관관계 존재하지 않음

공분산 (Covariance)

공분산은 확률 변수의 측정 단위에 영향을 많이 받으므로

상관성의 <mark>형태</mark>에 대해서는 나타낼 수 있지만, 상관성의 <mark>정도</mark>를 직접 나타낼 수는 없다!

Ex) A, B의 공분산과 C, D의 공분산 크기가 다르더라도, 각각 선형 관계를 나타내는 정도는 같을 수 있음

Cov(X,Y) < 0 : X 증가할 때 Y는 감소

Cov(X,Y) = 0 : X,Y = 변수 ¹간 선형 상관관계 존재하지 않음단순히 공분산이 더 크다고 해서 선형관계가 더 강하게 나타난다고 할 수 없음

공분산 (Covariance)

공분산은 확률 변수의 측정 단위에 영향을 많이 받으므로

상관성의 <mark>형태</mark>에 대해서는 나타낼 수 있지만, 상관성의 <mark>정도</mark>를 직접 나타낼 수는 없다!

Cov(X,Y) > 0: X가 증가할 때 Y도 증가

이를 보완하기 위해 <mark>상관계수</mark> 사용!

Cov(X,Y) = 0: X,Y 두 변수 간 선형 상관관계 존재하지 않음

상관계수(Correlation Coefficient)

상관계수(Correlation Coefficient)

확률변수의 절대적 크기에 영향을 받지 않도록 단위화를 진행한

표준화된 공분산

$$r_{xy} = \frac{Cov(X,Y)}{s_x \cdot s_y} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

상관계수(Correlation Coefficient)

- ✓ 두 확률변수의 선형 상관관계의 여부와 선형적 상관성 크기까지 파악할 수 있는 지표
- ✓ -1부터 1까지의 값을 가짐
- ✓ 일반적으로 0.7 이상이면 강한 상관관계를 지닌다고 판단
- ✓ 확률변수 X, Y가 독립일 때 상관계수는 0이 됨

상관계수가 0일 때, 선형 관계가 없을 뿐 ▶ 비선형 관계는 존재할 수 있음!

2

회귀분석이란?

회귀분석의 정의

회귀분석

- 독립 변수와 종속 변수 간의 관계를 설명하고 모델링하는 통계적 기법
- 변수들 간의 상관관계를 파악하고, 특정 변수의 값을 다른 변수들을 이용해 설명하고 예측하는 방법
- <mark>지도학습(Supervised Learning)</mark>의 한 종류

Train data로부터 하나의 **함수를 유추**해내기 위한 ML 방법. 유추된 함수 중 연속적인 값을 출력하는 **회귀분석**, 주어진 입력 벡터가 어느 집단인지 구분하는 분류 등이 속함.

회귀분석의 정의

회귀분석의 종류

- ✔ 단순회귀분석: 한 개의 종속변수와한 개의 독립변수 사이의 관계 분석
- ✔ 다중회귀분석: 한 개의 종속변수와
 여러 개의 독립변수 사이의 관계 분석

회귀분석의 목적

- ✓ 변수들 간의 관계에 대한 표현
- ✓ 독립변수에 따른 종속변수의 변화 파악
- ✓ 미래 관측값에 대한 예측

회귀식

회귀식

종속변수(Predictor, Feature) Y와 **독립변수(Response)** X의 관계를 함수식으로 표현한 것.

$$Y = f(X_1, X_2, \cdots, X_p) + \epsilon$$

Y, 종속변수: 독립변수에 의해 설명되는 변수. 반응변수라고도 불림.

 X_k , 독립변수 : 종속변수를 설명하기 위한 변수. 설명변수, 예측변수라고도 불림.

 ϵ , **오차항** : 변수를 측정할 때 발생할 수 있는 오차. 설명할 수 없는 무작위성을 지님.

상관분석과의 차이

상관분석

- 두 변수의 관계만 표현 가능
- 변수 간 선형적 상관성 정도만표현 가능하며, 구체적인 예측과설명 불가능

독립변수가 한 단계 변할 때마다 <mark>종속변수가 어떻게 변화할지</mark> 알게 된다면, 더 유의미한 관계 파악이 가능해짐! 상관분석과의 차이

_{상과}회귀분석과 인과관계

회귀분석은 변수 간 상관관계를 기반으로 한 분석이며,

독립변수를 통해 종속변수를 예측하는 것이 목표.

표현 가능하며, 거체적인 예측과 설명 불가능

독립변수와 종속변수를 가정해 분석하지만,

그 결과가 **인과 관계를 의미하지는 않음**.

독립변수가 한 단계 변할 때마다 **종속변수가 어떻게 변화할지** 알게 된다면,

더 유의미한 관계 파악이 가능해짐!

독립변수가 종속변수를 잘 예측한다고 해서

인과 관계가 있다고 할 수 없음!

회귀 모델링 과정

① 문제 정의

나의 학점을 가장 잘 표현할 수 있는 변수들은 무엇이 있을까?

② 적절한 변수 선택

 X_1, X_2, \cdots, X_p : 공부 시간, 통학 거리, 아침 식사 여부

③ 데이터 수집 및 전처리

나의 학점, 공부 시간, 집에서 학교까지의 거리, 아침 식사 여부 조사

회귀 모델링 과정

① 문제 정의

나의 학점을 가장 잘 표현할 수 있는 변수들은 무엇이 있을까?

② 적절한 변수 선택

 X_1, X_2, \cdots, X_p : 공부 시간, 통학 거리, 아침 식사 여부

③ 데이터 수집 및 전처리

나의 학점, 공부 시간, 집에서 학교까지의 거리, 아침 식사 여부 조사

회귀 모델링 과정

① 문제 정의

나의 학점을 가장 잘 표현할 수 있는 변수들은 무엇이 있을까?

② 적절한 변수 선택

 X_1, X_2, \dots, X_p : 공부 시간, 통학 거리, 아침 식사 여부

③ 데이터 수집 및 전처리

나의 학점, 공부 시간, 집에서 학교까지의 거리, 아침 식사 여부 조사

회귀 모델링 과정

④ 모델 설정과 적합

적절한 회귀분석 모델 선택 (선형/비선형, 단순회귀/다중회귀, 모수/비모수, 일변량/다변량 등)

⑤ 모형 평가

설정한 모델이 회귀 가정을 만족하는가? 만족하지 않는다면, 처방 시도(회귀팀 클린업 2주차 예정)

⑥ 모형 해석

현재보다 주당 2시간 더 공부하고, 자취방에서 통학하고, 아침밥을 꼬박꼬박 챙겨 먹는다면 학점이 0.5만큼 오를 것이다! (제발.

회귀 모델링 과정

④ 모델 설정과 적합

적절한 회귀분석 모델 선택 (선형/비선형, 단순회귀/다중회귀, 모수/비모수, 일변량/다변량 등)

⑤ 모형 평가

설정한 모델이 회귀 가정을 만족하는가? 만족하지 않는다면, 처방 시도(회귀팀 클린업 2주차 예정)

⑥ 모형 해석 현재보다 주당 2시간 더 공부하고, 자취방에서 통학하고, 아침밥을 꼬박꼬박 챙기

회귀 모델링 과정

④ 모델 설정과 적합

적절한 회귀분석 모델 선택

(선형/비선형, 단순회귀/다중회귀, 모수/비모수, 일변량/다변량 등)

⑤ 모형 평가

설정한 모델이 회귀 가정을 만족하는가?

만족하지 않는다면, 처방 시도(회귀팀 클린업 2주차 예정)

⑥ 모형 해석

현재보다 주당 2시간 더 공부하고, 자취방에서 통학하고, 아침밥을 꼬박꼬박 챙겨

먹는다면 학점이 0.5만큼 오를 것이다! (제발..)

3

단순선형회귀

단순선형회귀

독립변수 X와 종속변수 Y의 관계를 가장 잘 표현할 수 있는 직선을 찾는 것

두 변수의 관계가 <mark>선형적</mark>일 것이라는 가정을 바탕으로 추정!

단순선형회귀 모델

선형회귀식

$$\epsilon_i \sim N(0, \sigma^2)$$
 라는 가정 하에, $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$

 y_i : 종속변수 y의 i번째 관측값

 x_i : 독립변수 x의 i번째 관측값

 β_0 , β_1 : 회귀계수 = 우리가 추정해야 할 모수

 ϵ_i : 오차항 = i번째 관측값에 의한 랜덤한 오차

단순선형회귀 모델

선형회귀식

$$\epsilon_i \sim N(0, \sigma^2)$$
 라는 가정 하에,

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

단순선형회귀의 해석

X가 한 단위 증가할 때, Y가 **평균적으로** β_1 **만큼 증가**한다.

왜 직선인가?

선형 근사를 할 경우

변수의 영향력을 **간단하게 모형화** 가능 X의 변화에 따른 Y의 변화를 직관적으로 확인 가능

고차 근사를 할 경우

모델의 복잡도가 높아져서, **과적합**(overfitting) 문제의 원인이 됨

왜 직선인가?

선형 근사를 할 경우

변수의 영향력을 **간단하게 모형화** 가능 X의 변화에 따른 Y의 변화를 직관적으로 확인 가능

고차 근사를 할 경우

모델의 복잡도가 높아져서, **과적합**(overfitting) 문제의 원인이 됨

단순선형회귀 모델

과적합(Overfitting)이란?

Train data에 대한 설명력은 높을 수 있지만

Test data에 대한 설명력은 떨어지는 문제

모델의 분산을 높이고, 검증 데이터의 예측 성능 저하시킴!

(데마팀 1주차 클린업 참고)

모수의 추정(LSE)

좋은 추정이란 ...

우리가 만들 회귀직선과 관측치 사이의 오차가 작을수록 좋은 추정!

Χ

최소제곱법 (LSE)

오차의 제곱합을 최소화하는 모수를 추정하는 방법

최소제곱법(LSE: Least Square Estimation Method)

오차의 제곱합

$$\sum_{i=1}^{n} \epsilon_i^2 = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

오차 제곱합을 최소화시키는 β_0 , β_1 을 찾는 것이 목적! 아래로 볼록한 Convex 함수 \rightarrow '미분식=0' 을 만족시키는 β_0 , β_1 을 구함

$$\frac{\partial S}{\partial \beta_0} = -2 \sum_{i=1}^n (y_i - \widehat{\beta_0} - \widehat{\beta_1} x_i) = 0$$

$$\frac{\partial S}{\partial \beta_1} = -2 \sum_{i=1}^n (y_i - \widehat{\beta_0} - \widehat{\beta_1} x_i) x_i = 0$$

최소제곱법(LSE: Least Square Estimation Method)

$$\widehat{\beta_0} = \overline{y} - \widehat{\beta_1} \, \overline{x}$$
 , $\widehat{\beta_1} = \frac{S_{xy}}{S_{xx}}$

$$S_{xy} = \sum_{i=1}^{n} y_i (x_i - \bar{x})$$
 , $S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2$

최소제곱법으로 추정한

 $\widehat{eta_0}$, $\widehat{eta_1}$

최소제곱추정치

(LSE: Least Square Estimator)

최소제곱법 (LSE : Least Square E<mark>stim</mark>ation Method) 왜 오차의 '제곱한'을 최소화할까?

오차의 '절댓값' 사용 시 미분 불가능 → 계산이 오래 걸리게 됨!

BLUE

BLUE(Best Linear Unbiased Estimator)

분산이 가장 작은 선형 불편추정량

(추정량이 안정적이기 때문에 더 유용한 성질)

LSE가 BLUE가 되는 3가지 조건

- ① 오차들의 평균은 0
- ② 오차들의 분산은 σ^2 으로 동일 (등분산성)
- ③ 오차 간에 자기상관 없음 (uncorrelated)

3 단순선형회귀

최소제곱추정량(LSE) vs. 최대가능도추정량(MLE)

최대가능도 추정 (Maximum Likelihood Estimator)

확률적인 방법에 근거해서, 원하는 데이터가 나올 가능도를 최대로 하는 모수를 선택하는 방법

 $\epsilon_i \sim N(0, \sigma^2)$ 라는 가정만 있다면 사용 가능

LSE와 MLE는 완전히 동일한 추정량을 산출!

적합성 검정(Goodness of Fit Test)

우리가 만든 회귀직선이 데이터를 얼마나 잘 설명하는가?

변동 분할을 통해 구한 <mark>결정계수(R²)</mark>로 판단!

SST = SSR + SSE

SST): 총 변동

SSR): 회귀선이 설명하는 변동

SSE): 회귀선이 설명하지 못하는 변동

3 단순선형회귀

적합성 검정(Goodness of Fit Test)

결정계수 R²

총변동(SST)에서 회귀직선이 설명하는 변동(SSR)의 비율

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

결정계수 R^2 이 **1에 가까울수록** 회귀모형이 데이터를 **잘 설명한다는** 의미!

유의성 검정

개별 모수(회귀계수)의 추정량이 통계적으로 유의한가?

 $\epsilon_i \sim N(0, \sigma^2)$ 라는 오차의 정규분포 가정 하에,

- ① 가설 설정 : $H_0: \beta_1 = 0 \text{ vs } H_1: \beta_1 \neq 0$
- ② 추정량의 분포 상정 : $\widehat{\beta}_1 \sim N \ (\beta_1, \frac{\sigma^2}{S_{rr}})$
- ③ 검정 통계량을 분포에 적용 : $t_0=\beta_1, \frac{\widehat{\beta_1}}{s.e.(\widehat{\beta_1})} \sim t_{(n-2)}$
- ④ 임계값 확인: $t_{(1-\frac{a}{2},n-2)}$
- ⑤ 통계적 검정(양측): $|t_0| > t_{(1-\frac{a}{2},\,n-2)}$ 이면, H_0 기각!

3 단순선형회귀

유의성 검정 해석

귀무가설을 기각했다면,

X와 Y 사이에 선형적 관계가 **있다**고 판단

귀무가설을 기각하지 못했다면,

X와 Y 사이에 선형적 관계가 **없다**고 판단 단, **비선형적 관계는 있을 수도** 있음!

3 단순선형회귀

유의성 검정 해석

귀무가설을 기각했다면,

X와 Y 사이에 선형적 관계가 **있다**고 판단

귀무가설을 기각하지 못했다면,

X와 Y 사이에 선형적 관계가 **없다**고 판단 단, **비선형적 관계는 있을 수도** 있음! 4

다중선형회귀

단순선형회귀

$$y_i = \beta_0 + \beta_1 x_1 + \epsilon$$

독립변수 1개 → 종속변수 1개

다중선형회귀

$$y_i = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p + \epsilon$$

독립변수 p개 → 종속변수 1개

- ① 단순선형회귀보다 복잡한 관계를 더 잘 설명 가능
 - ② 자연현상, 사회현상 파악에 유리

단순선형회귀

$$y_i = \beta_0 + \beta_1 x_1 + \epsilon$$

독립변수 1개 → 종속변수 1개

다중선형회귀

$$y_i = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p + \epsilon$$

독립변수 p개 → 종속변수 1개

다중선형회귀 모델 해석

나머지 독립변수 X들이 고정된 상태에서

 x_p 가 한 단위 증가할 때, y가 β_p 만큼 증가함

모수의 추정 - 최소제곱법(LSE)

단순선형회귀와 동일하게 최소제곱법(LSE)을 활용해 모수 추정 가능

오차의 제곱합 :
$$\sum_i (y_i - \beta_0 - \beta_1 x_1 - \dots - \beta_p x_{pi})^2$$

$$\frac{\partial S}{\partial \beta_0} = -2 \sum_i (y_i - \beta_0 - \beta_1 x_1 - \dots - \beta_p x_{pi}) = 0$$
 :
$$\frac{\partial S}{\partial \beta_p} = -2 \sum_i (y_i - \beta_0 - \beta_1 x_1 - \dots - \beta_p x_{pi}) x_{pi} = 0$$

모수의 추정 - 최소제곱법(LSE)

단순선형회귀와 동일하게 최소세습납(LSE)을 활용해 모수 추정 가능

모수가 (p+1)개인 <mark>다차원</mark> 식이기 때문에 으편미분을 통해 추정 시 계산식이 매우 <mark>복잡해짐!</mark>

$$\frac{\partial S}{\partial \beta_0} = -2 \sum_{i} (y_i - \beta_1 x_1 - \dots - \beta_p x_{pi}) = 0$$

$$\frac{\partial S}{\partial \beta_p} = -2 \sum_{i} (y_i - \beta_0 - \beta_1 x_1 - \dots - \beta_p x_{pi}) x_{pi} = 0$$

모수의 추정

$$Y = X\beta + \epsilon \Leftrightarrow \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} 1 & x_{11} & \cdots & x_{1p} \\ 1 & x_{21} & \cdots & x_{2p} \\ 1 & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \cdots & x_{np} \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix}$$

- ✓ 다중선형회귀식을 행렬로 표현한 것!
 - ✓ 행렬을 이용해 모수의 추정 가능!

최소제곱법

$$S(\beta) = \sum_{i=1}^{n} \epsilon^{2} = \epsilon^{T} \epsilon = (y - X\beta)^{T} (y - X\beta)$$

목적함수 S를 β 에 대해 미분하고 미분식을 0으로 만들어주는 **추정량** $\hat{\beta}$ 를 구함!

$$\frac{\partial S}{\partial \beta} = -2X'(Y - X\beta) = 0$$
$$\hat{\beta} = X'(X'(X'X)^{-1}X'y)$$

최소 제곱법으로 추정된 회귀식:

$$\hat{Y} = X\hat{\beta} = X(X'X)^{-1}X'y = Hy$$

$$(H = X(X'X)^{-1}X'$$
는 투영행렬)

최소제곱법

'투영행렬'이란?

 $\hat{\beta} = X'(X'(X'X)^{-1}X'y)$ $\rightarrow Y = X$ 의 열공간에 투영시킴으로써 근자해 β 을 찾음 무영행렬)

선대팀 2주차 클린업 예정!

유의성 검정

유의성 검정

추정량이 <mark>통계적으로 유의</mark>한지 알아보는 검정

다중선형회귀의 3가지 test

- 1. F-test
- 2. Partial F-test
- 3. T-Test

유의성 검정

1, F-test

전체 회귀계수에 대한 검정

가설 설정

$$\boldsymbol{H_0}: \, \beta_0 = \beta_1 = \dots = \beta_p = 0$$

 $H_1: \beta_0, \beta_1, \dots, \beta_p$ 중 적어도 하나는 0이 아니다

귀무가설이 기각되어야 모형이 의미 있음

유의성 검정

1. F-test

전체 회귀계수에 대한 검정

$$F_0 = \frac{(SST - SSE)/p}{SSE/(n-p-1)} = \frac{SSR/p}{SSE/(n-p-1)} = \frac{MSR}{MSE}$$

MSR: 평균회귀제곱, MSE: 평균오차제곱

 F_0 값이 임계치보다 충분히 크면 귀무가설을 기각할 수 있음

>> SSR과 SSE이 각각 분자, 분모에 위치하므로, 회귀식이 설명한 부분이 그렇지 않은 부분보다 충분히 크다는 것을 의미

유의성 검정

1. F-test

전체 회귀계수에 대한 검정

$$F_0 = \frac{(SST - SSE)/p}{SSE/(n-p-1)} = \frac{SSR/p}{SSE/(n-p-1)} = \frac{MSR}{MSE}$$

MSR: 평균회귀제곱, MSE: 평균오차제곱

 F_0 값이 임계치보다 충분히 크면 귀무가설을 기각할 수 있음

>> SSR과 SSE이 각각 분자, 분모에 위치하므로, 회귀식이 설명한 부분이 그렇지 않은 부분보다 충분히 크다는 것을 의미

유의성 검정

1, F-test

전체 회귀계수에 대한 검정

임계값 :
$$F_{(1-\frac{a}{2}, p, n-p-1)}$$

- ① 귀무가설 기각 if $F_0 \ge F_{(1-\frac{a}{2},p,n-p-1)}$
- ▶ 적어도 한 개의 회귀계수는 0이 아님
- ② 귀무가설 기각 안됨 if $F_0 < F_{(1-\frac{a}{2},p,n-p-1)}$
- ▶ 모든 회귀 계수는 0임

유의성 검정

1, F-test

전체 회귀계수에 대한 검정

임계값 :
$$F_{(1-\frac{a}{2}, p, n-p-1)}$$

- ① 귀무가설 기각 if $F_0 \ge F_{(1-\frac{a}{2},p,n-p-1)}$
- ▶ 적어도 한 개의 회귀계수는 0이 아님
- ② 귀무가설 기각 안됨 if $F_0 < F_{(1-\frac{a}{2},p,n-p-1)}$
- ▶ 모든 회귀 계수는 0임

유의성 검정

1. F-test

F-test의 귀무가설이 기각되지 않는다면

 $y=oldsymbol{eta}_0+\epsilon\left(arphi\,oldsymbol{eta}_1=oldsymbol{eta}_0=\cdots=oldsymbol{eta}_p=0
ight)$ 이므로

임계값 : $F_{(1-\frac{a}{2},\,p,\,n-p-1)}$ 회귀식이 아무 의미가 없음

- ① 귀무가설 **기각** if $F_0 \geq F$
 - ▶ 적어도 한 개의 축귀계수는 0이 아님
- ② 귀무가설 기<mark>목델 재설정 등 조치가 필요</mark>
 - ▶ 모든 회귀 계수는 0임

유의성 검정

2. Partial F-test

일부 회귀계수에 대한 검정

가설 설정

 $H_0: \beta_j = \beta_{j+1} = \dots = \beta_{j+q-1} = 0 \text{ (RM이 맞다)}$

 H_1 : not H_0 (RM이 틀렸다, q개 중 적어도 한 개의 회귀계수가 0이 아니다)

유의성 검정

2. Partial F-test

일부 회귀계수에 대한 검정

검정 통계량

$$F_{0} = \frac{\{SSE(RM) - SSE(FM)\}/(p-q)}{SSE(FM)/(n-p-1)}$$

$$= \frac{\{SSR(FM) - SSR(RM)\}/(p-q)}{SSE(FM)/(n-p-1)} \sim F_{p-q,n-p-1}$$

유의성 검정

2. Partial F-test

일부 회귀계수에 대한 검정

q개의 변수를 제거했을 때

모델이 설명하지 못하는 변동

$$= \frac{\{SSR(FM) - SSR(RM)\}/(p-q)}{SSE(FM)/(n-p-1)} \sim F_{p-q,n-p-1}$$

유의성 검정

2. Partial F-test

일부 회귀계수에 대한 검정

모든 변수를 포함했을 때

모델이 설명하지 못하는 변동

$$F_0 = \frac{\{SSE(RM) - \frac{SSE(FM)}{SSE(FM)}\}/(p-q)}{SSE(FM)/(n-p-1)}$$

$$= \frac{\{SSR(FM) - SSR(RM)\}/(p-q)}{SSE(FM)/(n-p-1)} \sim F_{p-q,n-p-1}$$

유의성 검정

일반적으로 변수를 제거하면 SSE(RM) > SSE(FM)

2. Partial F-test

이때 제거된 변수가 모델에 유의미 하다면

SSE(RM)은 월등히 커짐

검정 통계량

$$F_0 = rac{\{SSE(RM) - SSE(FM)\}/(p-q)}{S$$
검정통계량 $F_0 p$

{SSR(FM) − SSR(RM)}/(p − q) 검정통계량이 귀무가설을 기각시킬만큼 충분히 커짐

유의성 검정

2. Partial F-test

일부 회귀계수에 대한 검정

임계값 :
$$F_{\left(1-rac{a}{2},p,n-p-1
ight)}$$

- ① 귀무가설 기각 if $F_0 \ge F_{(1-\frac{a}{2},p-q,n-p-1)}$
- ▶ q개의 회귀계수 중 모든 회귀계수가 0이 아님
- ② 귀무가설 기각 안됨 if $F_0 \ge F_{(1-\frac{a}{2},p-q,n-p-1)}$
- ▶ q개의 회귀계수 중 적어도 한 개의 회귀계수는 0임

유의성 검정

2. Partial F-test

일부 회귀계수에 대한 검정

임계값 :
$$F_{\left(1-rac{a}{2},p,n-p-1
ight)}$$

- ① 귀무가설 기각 if $F_0 \ge F_{(1-\frac{a}{2},p-q,n-p-1)}$
- ▶ q개의 회귀계수 중 모든 회귀계수가 0이 아님
- ② 귀무가설 기각 안됨 if $F_0 \ge F_{(1-\frac{a}{2},p-q,n-p-1)}$
- ▶ q개의 회귀계수 중 적어도 한 개의 회귀계수는 0임

유의성 검정

3. T-test

개별 회귀계수에 대한 검정

가설 설정

 $H_0: \beta_j = 0$ (다른 변수들이 적합된 상태에서 x_j 는 통계적으로 유의하지 않다)

 $H_1: \beta_j \neq 0$ (다른 변수들이 적합된 상태에서 x_j 는 통계적으로 유의하다)

유의성 검정

3. T-test

개별 회귀계수에 대한 검정

검정통계량

$$t_J = \frac{\hat{\beta}_J}{s.\,e.\,(\hat{\beta}_J)}$$

t-test는 나머지 변수들이 다 적합된 상태에서

 x_i 를 추가적으로 적합했을 때 통계적 유의성을 검정

유의성 검정

3. T-test

개별 회귀계수에 대한 검정

임계값 :
$$t_{\left(rac{a}{2},n-p-1
ight)}$$

- ① 귀무가설 기각 if $|t_j| \geq t_{\left(\frac{a}{2},n-p-1\right)}$
- $\triangleright x_i$ 의 추가는 유의미한 회귀식의 설명력 증가를 가져옴
- ② 귀무가설 기각 안됨 if $\left|t_{j}\right| < t_{\left(\frac{a}{2},n-p-1\right)}$
- $\triangleright x_i$ 의 추가는 유의미한 회귀식의 설명력 증가를 가져오지 않음

유의성 검정

3. T-test

개별 회귀계수에 대한 검정

임계값 :
$$t_{\left(rac{a}{2},n-p-1
ight)}$$

- ① 귀무가설 기각 if $|t_j| \geq t_{\left(\frac{a}{2},n-p-1\right)}$
- $\triangleright x_j$ 의 추가는 유의미한 회귀식의 설명력 증가를 가져옴
- ② 귀무가설 <mark>기각</mark> 안됨 if $\left|t_{j}\right| < t_{\left(\frac{a}{2},n-p-1\right)}$
- $\triangleright x_i$ 의 추가는 유의미한 회귀식의 설명력 증가를 가져오지 않음

유의성 검정

3. T-test

개별 회귀계수에 대한 검정

F-test는 모든 설명변수의 유의성을, T-test는 특정변수가 추가될 때의 유의성을 검정..

유의성 검정

3. T-test

개별 회귀계수에 대한 검정

그럼 F-test랑 T-test 중 대체 뭘 먼저 해야 하는데?

유의성 검정

F-test vs. T-test

(F-Test를 먼저 수행해야 한다!)

3, T-test

- ① 전체 회귀식에 대한 검정이 더 엄격함
- ② F-test를 기각 못해도 T-test는 기각하는 경우 발생 가능

그럼 F-test랑 T-test 중 대체 뭘 먼저 해야 한다는 거야?

(F-Test를 먼저 수행해야 한다!)

0 0

- 3<u>, T-test</u>
- ① 전체 회귀식에 대한 검정이 더 엄격함
- ② F-test를 기각 못해도 T-test는 기각하는 경우 발생 가능

F- test를 먼저 시행해 봄으로써

모델 전체가 통계적으로 유의한지 확인해야 함

유의성 검정

T-test로 변수 선택이 가능할까?

3. T-test

T-test는 다른 변수들이 다 적합된 상태에서 해당 변수의 추가가 유의미한 설명력 증가를 가져오는지 판단하는 것

그럼 F-test랑 T-test 중 대체 뭘 먼저 해야 한다는 거야? 유의성 검정

T-test로 변수 선택이 가능할까?

3, T-test

T-test는 다른 변수들이 다 적합된 상태에서 해당 변수의 추가가 유의미한 설명력 증가를 가져오는지 판단하는 것

> 그럼 F-t (S) 당 T-test 중 대체 뭘 먼저 (한다는 거야?

다른 회귀식을 가정하면 해당 변수의 유의성도 바뀔 수 있음

3. 유의성 검정

T-test로 변수 선택이 가능할까?

T-test

개별 회귀계수에 대한 검정

T-test로 변수를 선택하는 것은 매우 위험!

뭘 먼저 해야 한다는 거야?

적합성(Goodness of fit)

결정계수 (R square) R²

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

관찰값의 **전체 변동** 대비 회귀 모델이 **설명한 변동**

모델을 잘 설명할수록 값이 1에 가까워짐

적합성(Goodness of fit)

결정계수 (R square) R²

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

하지만 결정계수는 독립변수가 추가될 때 항상 값이 증가

아무 의미 없는 변수를 추가해도 값이 오름

중요하지 않은 변수를 추가함에 따라 모델의 해석도 어려워지고, 예측에도 좋지 않은 영향을 미침

독립변수가 늘어날 때, 페널티를 줄 필요성이 생김

적합성(Goodness of fit)

수정결정계수 (Adjusted R square) R_{adj}^2

$$R_{adj}^2 = \frac{SSR/p}{SST/(n-1)} = 1 - \frac{SSE/(n-p-1)}{SST/(n-1)}$$

 R^2 에 변수 개수 증가에 대한 페널티를 부과한 형태

 R^2_{adj} 가 높은 회귀 모델이 더 좋은 모델!

 $(그러나 <math>R^2$ 와 달리 그 자체로 해석이 어려움)

5

데이터 진단

왜 데이터를 진단해야 할까?

일반적인 경향을 벗어난 점들

왜곡

성능 저하

최소제곱 회귀모형에 <mark>문제 발생!</mark>

잔차

잔차

설명할 수 없는 오차(ε)의 추정치.

관측된 종속변수(\hat{y})와 예측된 종속변수(\hat{y})의 차를 통해 구해짐

스튜던트화 잔차

Y값의 단위에 영향을 크게 받는 잔차의 한계를 해소하기 위해 일반화해서 적용할 수 있도록 표준화한 것

$$r_i = \frac{e_i}{\widehat{\sigma}\sqrt{1-h_{ii}}}, \quad \widehat{\sigma} = \sqrt{\frac{SSE}{n-p-1}}$$

이상치(Outlier)

이상치

스튜던트화 잔차가 매우 큰 값 (y를 기준으로 절댓값이 큰 값)

Test Scores Versus Performance Measured by Sales

지렛값(Leverage point)

지렛값

x의 평균으로부터 멀리 떨어져 있어 기울기에 영향을 주는 값.

이상치가 y의 관점이었다면, 지렛값은 x를 기준으로 관찰!

투영행렬

$$H = X(X^T X)^{-1} X^T$$

대각원소

$$h_{ii} = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum (x_i - \bar{x})^2}$$

지렛값(Leverage point)

지렛값

x의 평균으로부터 멀리 떨어져 났어 기울기에 영향을 주는 값.

이상치가
$$y$$
의 관점이었다면, $\frac{(x_i - \bar{x})^2}{\sum (x_i - \bar{x})^2}$ [준으로 관찰!]

 $(x_i - \bar{x})^2$ 의 크기가 클수록,

즉 x_i (관측값)와 \bar{x} (평균)의 차가 클수록 h_{ii} 가 증가한다.

$$H = X(X^T X)^{-1} X^T$$

$$h_{ii} = \frac{1}{n} + \frac{(x_i - x)^2}{\sum (x_i - \bar{x})^2}$$

지렛값(Leverage point)

지렛값

x의 평균으로부터 멀리 떨어져 있어 기울기에 영향을 주는 값.

이상치가
$$y$$
의 관점이었다면, $(x_i - \bar{x})^2$ 기준으로 관찰!
$$\frac{h_{ii}}{n} = \frac{1}{n} + \frac{1}{\sum (x_i - \bar{x})^2}$$

투영행렬
$$\frac{h_{ii}}{n}$$
 $> \frac{2(p+1)}{n}$ 인 값을 **지렛값**으로 판단! 대각원소

$$H = X(X^T X)^{-1} X^T$$

$$h_{ii} = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum (x_i - \bar{x})^2}$$

영향점(Influential point)

영향점

회귀 직선의 기울기에 유의미한 영향을 미치는 관측치 이상치와 지렛값을 동시에 고려함

이상치

x 평균 주변에 위치

 \downarrow

기울기를 변화시킬 수 X

지렛값

영향점(Influential point)

영향점

회귀 직선의 기울기에 유의미한 영향을 미치는 관측치 이상치와 지렛값을 동시에 고려함

▲ <mark>빨간 점</mark>의 유무에 따라 회귀직선의 기울기가 크게 변화함. 빨간 점은 **영향점**으로 간주될 수 있음!

영향점(Influential point)

영향점

회귀 직선의 기울기에 유의미한 영향을 미치는 관측치 이상치와 지렛값을 동시에 고려함

▲ 지렛값이라고 해서 모두 영향점인 것은 아님!

회귀직선의 기울기에 유 한 영향을 미치는 관측치

이상치와 지렛값을 r_i^2 시에 고려 h_{ii} 위해 사용됨 $C_i = \frac{1}{p+1} \times \frac{1}{1-h_{ii}}$

$$C_i = \frac{\iota}{p+1} \times \frac{\iota \iota}{1 - h_{ii}}$$

이상치와 지렛값 각각이 커질수록 C_i (Cook's Distance) 증가

보통 $C_i > 1$ 이면 영향점으로 판단

영향점(Influential Point)의 처리

이상치는 추정량을 불안정하게 만듦

잘못된 모델의 해석, 예측 성능 저하

i

적절한 처리 必

영향점(Influential Point)의 처리

영향점(Influential Point)의 처리

6

로버스트 회귀

로버스트 회귀

이상치의 영향을 줄이는 회귀분석 방법

Median Regression

Huber's M-estimation Least Trimmed Square

Median Regression

Median Regression

이상치에 대해 너무 큰 가중치를 주는 최소제곱회귀의 단점을 극복하는

회귀분석 방법

▲ Median Regression

모든 경우에 대해 동일한 가중치를 부여하는 방식으로 극복!

Median Regression

Median Regression

이상치에 대해 너무 큰 가중치를 주는 최소제곱회귀의 단점을 극복하는 회귀분석 방법

오차의 제곱합을 최소로 하는 추정량 : $\sum \varepsilon_i^2 = (y - X\beta)^t (y - X\beta)$

 X에 따른 평균적인 Y를 반환:

 조건부 평균 E(Y|X)

Median Regression

Median Regression

이상치에 대해 너무 큰 가중치를 주는 최소제곱회귀의 단점을 극복하는

회귀분석 방법

오차의 절댓값의 합을 최소로 하는 추정량 : $\sum |\varepsilon_i|$

X에 따른 Y의 조건부 중앙값을 반환

▲ Median Regression

Median Regression

Median Regression

이상치에 대해 너무 큰 가중치를 오하시고제곱회귀의 단점을 극복하는

중앙값이 이상치의 영향으로부터 비교적 자유롭다는 점을 이용한 것!

 $\sum |\varepsilon_i|$

X에 따른 Y의 조건부 중앙값을 반환

▲ Median Regression

Huber's M-estimation

Huber's M-estimation

이상치에 너무 큰 가중치를 주는 최소제곱회귀의 단점을 극복하면서 적정 수준 내에서 페널티를 완화시키는 최소제곱회귀의 장점을 이용한 분석 방법

$$p(e) = \begin{cases} \frac{1}{2}e^{2}, & if |e| \le c\\ c|e| - \frac{1}{2}c^{2}, & otherwise \end{cases}$$

잔차의 절댓값이 c 이하

→ 최소제곱추정법의 목적함수와 동일

Huber's M-estimation

Huber's M-estimation

이상치에 너무 큰 가중치를 주는 최소제곱회귀의 단점을 극복하면서 적정 수준 내에서 페널티를 완화시키는 최소제곱회귀의 장점을 이용한 분석 방법

$$p(e) = \begin{cases} \frac{1}{2}e^2, & if |e| \le c\\ \frac{1}{2}e^2, & otherwise \end{cases}$$

잔차의 절댓값이 c 이상 → 이상치에 큰 페널티를 주지 않는 일차식의 형태

Huber's M-estimation

 \rightarrow 이상시에 근 페일디를 주지 않

<mark>이상치에 대한 페널티를 완</mark>화하여 MSE 값을 줄임 형태

Least Trimmed Square

Least Trimmed Square

통계적 기준에 따라 **잔차가 너무 큰 관측치를 제거**하고 회귀계수를 추정하는 회귀분석 방법

$$r_1 \sim r_h$$
 의 제곱합

$$\hat{\beta} = \min \sum_{j=1}^{h} r_{(j)}^{2} \begin{cases} r_{1} \leq r_{2} \leq \dots \leq r_{h} \\ \frac{n}{2} + 1 \leq h \end{cases}$$

 $% r_{(j)} = j 번째로 작은 residual$

관측값의 개수가 적거나 영향점이 없는 경우 주의해서 사용!

Support Vector Regression

Support Vector Regression

Robust하면서 비선형적인 모델링이 가능한 회귀분석 방법

다음 주 예고

- 1. 회귀 기본 가정
- 2. 잔차 플랏
- 3. 선형성 진단과 처방
- 4. 정규성 진단과 처방
- 5. 등분산성 진단과 처방
- 6. 독립성 진단과 처방

