Indicator	Acronym	Formula	Reference
Inradius Ratio	INR	$\frac{2r}{h}$	Gillette et al., "Error estimates for generalized barycentric interpolation," Advances in Computational Mathematics, 2012
Outradius Ratio	OUR	$rac{h}{2R}$	Gillette et al., "Error estimates for generalized barycentric interpolation," Advances in Computational Mathematics, 2012
Circle Ratio	CIR	$\frac{r}{R}$	Attene et al., "Benchmarking the geometrical robustness of a virtual element Poisson solver," Mathematics and Computers in Simulation, 2021
$Kernel\ Radius$ $Ratio$	KRR	$\frac{r_K}{R}$	Attene et al., "Benchmarking the geometrical robustness of a virtual element Poisson solver," Mathematics and Computers in Simulation, 2021
Kernel Area Ratio	KAR	$rac{A_K}{A}$	Attene et al., "Benchmarking the geometrical robustness of a virtual element Poisson solver," Mathematics and Computers in Simulation, 2021
$Area\ Perimeter \ Ratio$	APR	$\frac{2\pi A}{P^2}$	Attene et al., "Benchmarking the geometrical robustness of a virtual element Poisson solver," Mathematics and Computers in Simulation, 2021
$Minimum\ Angle$	MIA	$rac{ heta_{\min}}{2\pi}$	Stimpson et al., "The verdict library reference manual," Sandia National Laboratories Technical Report, 2007
$Maximum\ Angle$	MAA	$rac{ heta_{ m max}}{2\pi}$	Stimpson et al., "The verdict library reference manual," Sandia National Laboratories Technical Report, 2007
$Angle\ Ratio$	ANR	$\frac{\theta_{\min}}{\theta_{\max}}$	Stimpson et al., "The verdict library reference manual," Sandia National Laboratories Technical Report, 2007
$VEM\ Indicator$	VEM	$\sqrt{\frac{\varrho_1\varrho_2+\varrho_1\varrho_3+\varrho_1\varrho_4}{3}}$	Sorgente et al., "The role of mesh quality and mesh quality indicators in the virtual element method," Advances in Computational Mathematics, 2022
$Scaled\ Jacobian$	JAC	$\min_i \left\{ rac{\mathcal{J}_i}{e_{i-1} e_i} ight\}$	Knupp, "Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities" <i>International Journal for Numerical Methods in Engineering</i> , 2000
$Frobenius\ Norm$	FRO	$\min_{i} \left\{ \frac{2}{\kappa_i} \right\}$	Knupp, "Algebraic mesh quality metrics," SIAM Journal on Scientific Computing, 2001

Notation:

- h: polygon diameter (maximum point-to-point distance)
- A, P: polygon area and perimeter
- e_i : length of the *i*-th edge of the polygon
- $\theta_{\min}, \theta_{\max}$: minimum and maximum angle in the polygon
- r: radius of the maximum circle inscribed in the polygon
- $\bullet~R:$ radius of the minimum circle circumscribing the polygon
- A_K : area of the polygon kernel
- r_K : radius of the maximum circle inscribed in the polygon kernel
- $\varrho_1, \dots \varrho_4$: VEM quality indicators (see reference paper)
- A_i, κ_i : determinant and condition number of the Jacobian matrix at the *i*-th vertex