

Data, models and science DAIDD 2019

1 Introduction

Goals

- Process of science
- How science informs public health
 - Specific examples
- Different approaches

Science is a process

- Observe and experiment with reality to discover and challenge ideas about how it works
- A key to science is that everything is open to question
 - Science is the belief in the ignorance of experts Feynman

The process of science

Science without experiments

2 Public health

2.1 Maternal mortality

- Igor Semmelweiss
- Vienna general hospital
- ADD Odds ratios
- ADD Better HIGHFIG

2.2 Cholera

- Is it caused by bad air, or bad water?
- What's bad about it?

Cholera and air

Cholera and air

2.3 Other examples

Yellow fever and malaria

- Ross determined the cause of malaria primarily by experiments on mosquitoes
- ullet Reed determined the cause of yellow fever primarily by experiments on human volunteers

Rubella

Measles

Polio

Influenza

3 Approaches to epidemiology

Data, models and science

- We're never finished, we compare models to data over and over again
- $\bullet\,$ Data is what we use to develop and understand models
- Models are what we use to interpret data
 - and they can suggest what data we need to collect
- Complicated or hard-to-test theories may require dynamical models

Classical epidemiology

- Avoid mechanism
- Control for non-independence of "units"

Dynamical epidemiology

- Embrace mechanism
- Explicitly incorporate dependence between units
 - X is infected because Y infected them

Classical example

Classical example

Univariate means

Multivariate means

Dynamical example

Bridging

- Classical epidemiology relies on statistics, avoids mechanism
- Mathematical epidemiology (the traditional approach to dynamical epidemiology) explores mechanism, avoids statistics
- Much modern dynamical epidemiology seeks ways to put dynamical mechanisms into a statistical framework
 - This is hard

4 Summary

• Science is an ongoing process

- Models are the way that we bridge between theory and reality
- Dynamical models have a key role
 - When we can't do experiments
 - When mechanisms are complex
- We should work to combine dynamics with statistical approaches
 - But not this week