PSC 400 SYRACUSE UNIVERSITY

DATA ANALYTICS FOR POLITICAL SCIENCE

BIVARIATE RELATIONSHIPS

ASSIGNMENTS

- Data Analysis Memo 2 due on Friday
- Problem Set 3 will be posted after class
 - due Friday next week
 - solution to PS2 online
- Review Exercise 5 due Monday
 - Probably, depending on how far we get today

UNCERTAINTY

```
> reg1 <- lm(d.share ~ d.comp, data=facedata)</pre>
> summary(reg1)
Call:
lm(formula = d.share \sim d.comp, data = facedata)
Residuals:
              1Q Median
                                3Q
    Min
                                       Max
-0.33743 -0.08300 0.00700 0.08871 0.37149
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
                       0.03298 10.427 < 2e-16 ***
(Intercept) 0.34389
                       0.06359 5.193 8.85e-07 ***
d.comp
            0.33019
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
Residual standard error: 0.1332 on 117 degrees of freedom
Multiple R-squared: 0.1873, Adjusted R-squared: 0.1803
F-statistic: 26.96 on 1 and 117 DF, p-value: 8.854e-07
```

PROBLEM

- Want to know: is perceived facial competence correlated with election performance in the population?
- We only have data from a random sample
- Idea: Use relation between two variables in sample to make inference about relation between two variables in population
 - Of course, means we can make mistakes

NULL HYPOTHESIS

- In the population, there is *no relationship* between dependent and independent variable
 - H₀

ALTERNATIVE HYPOTHESIS

- There is a relationship between the independent and dependent variable in the population
 - H_a or H₁

ERRORS

TYPE I ERROR

- We conclude there is a relationship between X and Y when in reality there is not
 - "Type I error"
 - We falsely reject H₀

TYPE II ERROR

- We conclude there is no relationship between X and Y when in reality there is
 - "Type II error"
 - We falsely do not reject H₀

DECISION

- It's really bad if we conclude there is a relationship when in reality there is not
- Type I error: falsely rejecting H₀
- We only want to reject H_0 based on our sample if chance of committing Type I error is relatively small

UNCERTAINTY

```
> reg1 <- lm(d.share ~ d.comp, data=facedata)</pre>
> summary(req1)
Call:
lm(formula = d.share ~ d.comp, data = facedata)
Residuals:
             10 Median
    Min
                             30
                                     Max
-0.33743 -0.08300 0.00700 0.08871 0.37149
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.34389 0.03298 10.427 < 2e-16 ***
           d.comp
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 0.1332 on 117 degrees of freedom
Multiple R-squared: 0.1873, Adjusted R-squared: 0.1803
F-statistic: 26.96 on 1 and 117 DF, p-value: 8.854e-07
```

- Estimate: Intercept/slope coefficient
- Std. Error: Estimate of random sampling error
- t value: Estimate/Std. Error
- Pr(>|t|): Probability of falsely rejecting H₀

CONFIDENCE INTERVAL

- Related to standard error and p-value: 95 confidence interval
- 95% CI: Estimate ± 1.96 * Std. Err.

CONFIDENCE INTERVAL

 If we run many regressions using random samples and construct 95% CI for each, 95% of those intervals contain the true effect

EXAMPLE

Table 4.5. 2012 US Presidential Election Data.	
Variable	Description
state	abbreviated name of the state
Obama	Obama's vote share (percentage)
Romney	Romney's vote share (percentage)
EV	number of Electoral College votes for the state

- pres12.csv
- How does Obama's vote share in 2012 depend on his 2008 vote share?

EXPLANATORY POWER MEASURE

- Need: measure of how well independent variable explains dependent variable in a linear regression
- Measure is called R²
- R² tells us how much variation of the dependent variable is explained by the independent variable
 - Between 0 and 1
 - 0: The independent variable explains none of the variation in the dependent variable
 - 1: The independent variable explains *all* of the variation in the dependent variable