Interpretable Machine Learning

Theory of Standard fANOVA

Learning goals

- Properties of classical fANOVA, reason for its popularity
- Equivalent definition of classical fANOVA
- Understand the role constraints play for any functional decomposition

Interpretable Machine Learning

Functional Decompositions Theory of Standard fANOVA

Learning goals

- Properties of classical fANOVA, reason for its popularity
- Equivalent definition of classical fANOVA
- Understand the role constraints play for any functional decomposition

EXAMPLE: FANOVA ALGORITHM

- Remember: Functional decomposition in general not unique
- Standard fANOVA only one possible approach
- Example:

$$\hat{f}(x_1, x_2) = 4 - 2x_1 + 0.3e^{x_2} + |x_1|x_2$$

$$= \underbrace{2.95 + 0.3e}_{g_0} + \underbrace{-2x_1 + 0.5|x_1| + 0.75}_{g_1(x_1)} + \underbrace{0.3e^{x_2} + 0.5x_2 - 0.3e + 0.05}_{g_2(x_2)} + \underbrace{|x_1|x_2 - 0.5|x_1| - 0.5x_2 + 0.25}_{g_{1,2}(x_1, x_2)}$$

→ seems arbitrarily chosen?

 \longleftrightarrow Show: Standard fANOVA fulfills specific desirable properties or constraints

EXAMPLE: FANOVA ALGORITHM

- Remember: Functional decomposition in general not unique
 - Standard fANOVA only one possible approach
 - Example:

$$\hat{f}(x_1, x_2) = 4 - 2x_1 + 0.3e^{x_2} + |x_1|x_2
= \underbrace{2.95 + 0.3e}_{g_0} + \underbrace{-2x_1 + 0.5|x_1| + 0.75}_{g_1(x_1)}
+ \underbrace{0.3e^{x_2} + 0.5x_2 - 0.3e + 0.05}_{g_2(x_2)} + \underbrace{|x_1|x_2 - 0.5|x_1| - 0.5x_2 + 0.25}_{g_{1,2}(x_1, x_2)}$$

→ seems arbitrarily chosen?

←→ Show: Standard fANOVA fulfills specific desirable properties or constraints

Interpretable Machine Learning - 1/5

CONSTRAINTS FOR STANDARD FANOVA ALGORITHM

Theorem

Features independent \implies The components defined by standard fANOVA fulfill the so-called vanishing conditions:

$$\mathbb{E}_{X_j}\left[g_{S}(\mathbf{x}_S)
ight] = \int g_{S}(\mathbf{x}_S) d\mathbb{P}(x_j) = 0 \quad ext{for any } j \in S ext{ and } S \subseteq \{1,\ldots,p\}$$

CONSTRAINTS FOR STANDARD FANOVA ALGO.

Theorem

Features independent \implies The components defined by standard fANOVA fulfill the so-called vanishing conditions:

$$\mathbb{E}_{X_j}\left[g_S(\mathbf{x}_S)\right] = \int g_S(\mathbf{x}_S) d\mathbb{P}(x_j) = 0 \quad \textit{for any } j \in S \textit{ and } S \subseteq \{1,\dots,p\}$$

CONSTRAINTS FOR STANDARD FANOVA ALGORITHM

Theorem

Features independent \implies The components defined by standard fANOVA fulfill the so-called vanishing conditions:

 $\mathbb{E}_{X_j}[g_S(\mathbf{x}_S)] = \int g_S(\mathbf{x}_S) d\mathbb{P}(x_j) = 0 \quad \textit{for any } j \in S \textit{ and } S \subseteq \{1,\dots,p\}$

Implications:

• For any component g_S , all its PD-functions are 0:

$$\mathbb{E}_{X_V}\left[g_S(\mathbf{x}_S)\right] = \int g_S(\mathbf{x}_S) d\mathbb{P}(\mathbf{x}_V) = 0 \quad \text{for any } V \subsetneqq S \text{ and } S \subseteq \{1,\dots,p\}$$

 $\rightsquigarrow g_S$ contains no lower-order effects, but only pure interaction term (compare H-statistic)

CONSTRAINTS FOR STANDARD FANOVA ALGO.

Theorem

Features independent \implies The components defined by standard fANOVA fulfill the so-called vanishing conditions:

$$\mathbb{E}_{X_j}\left[g_S(\mathbf{x}_S)\right] = \int g_S(\mathbf{x}_S) d\mathbb{P}(x_j) = 0 \quad \textit{for any } j \in S \textit{ and } S \subseteq \{1,\dots,p\}$$

Implications:

• For any component g_S , all its PD-functions are 0:

$$\mathbb{E}_{\mathcal{X}_V}\left[g_S(\mathbf{x}_S)
ight] = \int g_S(\mathbf{x}_S) d\mathbb{P}(\mathbf{x}_V) = 0 \quad ext{for any } V \subsetneqq S ext{ and } S \subseteq \{1,\dots,p\}$$

 $\rightsquigarrow g_S$ contains no lower-order effects, but only pure interaction term (compare H-statistic)

CONSTRAINTS FOR STANDARD FANOVA ALGORITHM

Theorem

Features independent \implies The components defined by standard fANOVA fulfill the so-called vanishing conditions:

$$\mathbb{E}_{X_j}\left[g_S(\mathbf{x}_S)
ight] = \int g_S(\mathbf{x}_S) d\mathbb{P}(x_j) = 0 \quad ext{for any } j \in S ext{ and } S \subseteq \{1,\dots,p\}$$

Implications:

• For any component g_S , all its PD-functions are 0:

$$\mathbb{E}_{X_V}\left[g_S(\mathbf{x}_S)\right] = \int g_S(\mathbf{x}_S) d\mathbb{P}(\mathbf{x}_V) = 0 \quad \text{for any } V \subsetneqq S \text{ and } S \subseteq \{1,\dots,p\}$$

- $ightharpoonup g_{\mathcal{S}}$ contains no lower-order effects, but only pure interaction term
- (compare H-statistic)

• All components are orthogonal, i.e., mutually independent and uncorrelated:
$$\forall V \neq S: \quad \mathbb{E}_{\mathbf{X}}[g_V(\mathbf{x}_V)g_S(\mathbf{x}_S)] = 0$$

• This implies variance decomposition used to define Sobol indices: $Var[\hat{f}(\mathbf{x})] = \sum_{S \subset \{1,...,p\}} Var[g_S(\mathbf{x}_S)]$

CONSTRAINTS FOR STANDARD FANOVA ALGO.

Theorem

Features independent \implies The components defined by standard fANOVA fulfill the so-called vanishing conditions:

$$\mathbb{E}_{X_j}\left[g_{\mathcal{S}}(\mathbf{x}_{\mathcal{S}})\right] = \int g_{\mathcal{S}}(\mathbf{x}_{\mathcal{S}}) d\mathbb{P}(x_j) = 0 \quad \textit{for any } j \in \mathcal{S} \textit{ and } \mathcal{S} \subseteq \{1, \dots, p\}$$

Implications:

• For any component g_S , all its PD-functions are 0:

$$\mathbb{E}_{X_V}\left[g_S(\mathbf{x}_S)
ight] = \int g_S(\mathbf{x}_S) d\mathbb{P}(\mathbf{x}_V) = 0 \quad ext{for any } V \subsetneqq S ext{ and } S \subseteq \{1,\dots,p\}$$

- g_{S} contains no lower-order effects, but only pure interaction term
- (compare H-statistic)

 $\forall V \neq S: \quad \mathbb{E} \big[g_V(\mathbf{x}_V) g_S(\mathbf{x}_S) \big] = 0$ • This implies variance decomposition used to define Sobol indices: $\text{Var} [\hat{f}(\mathbf{x})] = \sum_{S \subset \{1, \dots, p\}} \text{Var} [g_S(\mathbf{x}_S)]$

EXAMPLES REVISITED

Example:
$$\hat{f}(\mathbf{x}) = 2 + x_1^2 - x_2^2 + x_1 \cdot x_2$$
 (e.g., for $x_1 = 5$ and $x_2 = 10$ we have $\hat{f}(\mathbf{x}) = -23$)

• Computation of components using feature values $x_1 = x_2 = (-10, -9, ..., 10)^{\top}$ gives:

 $x_2 = 10$: • $g_{\emptyset} = 2$ • $g_1(x_1) = -9.67$ • $g_2(x_2) = -65.33$

For $x_1 = 5$ and

- Vanishing condition means:
 - g_1 and g_2 are mean-centered w.r.t. marginal distribution of x_1 and x_2
 - g₁ and g₂ are mean-centered w.r.t. marginal distribution of x₁ and x
 Integral of g_{1,2} over marginal distribution x₁ (or x₂) is always 0.

EXAMPLES REVISITED

Example: $\hat{f}(\mathbf{x}) = 2 + x_1^2 - x_2^2 + x_1 \cdot x_2$ (e.g., for $x_1 = 5$ and $x_2 = 10$ we have $\hat{f}(\mathbf{x}) = -23$)

• Computation of components using feature values $x_1 = x_2 = (-10, -9, ..., 10)^{\top}$ gives:

For $x_1 = 5$ and $x_2 = 10$:

•
$$g_{\emptyset} = 2$$

• $g_1(x_1) = -9.67$

•
$$g_2(x_2) = -65.33$$

Vanishing condition means:

- g_1 and g_2 are mean-centered w.r.t. marginal distribution of x_1 and x_2
- Integral of $g_{1,2}$ over marginal distribution x_1 (or x_2) is always 0.

Interpretable Machine Learning - 3 / 5

• $g_{1,2}(x_1,x_2) =$

 $\Rightarrow \hat{f}(\mathbf{x}) = -23$

Interpretable Machine Learning - 3/5

EXAMPLES REVISITED

Example

$$\hat{f}(x_1, x_2) = 4 - 2x_1 + 0.3e^{x_2} + |x_1|x_2$$

$$= \underbrace{2.95 + 0.3e}_{g_{\emptyset}} + \underbrace{-2x_1 + 0.5|x_1| + 0.75}_{g_1(x_1)}$$

$$+ \underbrace{0.3e^{x_2} + 0.5x_2 - 0.3e + 0.05}_{g_2(x_2)} + \underbrace{|x_1|x_2 - 0.5|x_1| - 0.5x_2 + 0.25}_{g_{1,2}(x_1, x_2)}$$

$$\Rightarrow$$
 Same for constant terms inside g_1 and g_2 : Ensure centering

EXAMPLES REVISITED

Example

$$\hat{f}(x_1, x_2) = 4 - 2x_1 + 0.3e^{x_2} + |x_1|x_2$$

$$= \underbrace{2.95 + 0.3e}_{g_{\emptyset}} + \underbrace{-2x_1 + 0.5|x_1| + 0.75}_{g_1(x_1)}$$

$$+ \underbrace{0.3e^{x_2} + 0.5x_2 - 0.3e + 0.05}_{g_2(x_2)} + \underbrace{|x_1|x_2 - 0.5|x_1| - 0.5x_2 + 0.25}_{g_{1,2}(x_1, x_2)}$$

Same for constant terms inside g_1 and g_2 : Ensure centering

EXAMPLES REVISITED

Example

$$\hat{f}(x_1, x_2) = 4 - 2x_1 + 0.3e^{x_2} + |x_1|x_2
= \underbrace{2.95 + 0.3e}_{g_0} + \underbrace{-2x_1 + 0.5|x_1| + 0.75}_{g_1(x_1)}
+ \underbrace{0.3e^{x_2} + 0.5x_2 - 0.3e + 0.05}_{g_1(x_1)} + |x_1|x_2 - 0.5|x_1| - 0.5x_2 + 0.25$$

 \implies Main effect terms inside $g_{1,2}$ are chosen exactly such that the one-dimensional PDPs of $g_{1,2}$ vanish

Same for constant terms inside g_1 and g_2 : Ensure centering

 $g_2(x_2)$

Example From in-class exercise: $g(x_1, x_2) = \beta_{12} (x_1 - \mu_1)(x_2 - \mu_2)$

EXAMPLES REVISITED

Example

$$\hat{f}(x_1, x_2) = 4 - 2x_1 + 0.3e^{x_2} + |x_1|x_2$$

$$= \underbrace{2.95 + 0.3e}_{g_0} + \underbrace{-2x_1 + 0.5|x_1| + 0.75}_{g_1(x_1)} + \underbrace{0.3e^{x_2} + 0.5x_2 - 0.3e + 0.05}_{g_2(x_2)} + \underbrace{|x_1|x_2 - 0.5|x_1| - 0.5x_2 + 0.25}_{g_{1,2}(x_1, x_2)}$$

- Main effect terms inside $g_{1,2}$ are chosen exactly such that the
 - one-dimensional PDPs of $q_{1,2}$ vanish Same for constant terms inside g_1 and g_2 : Ensure centering

Example From in-class exercise: $g(x_1, x_2) = \beta_{12} (x_1 - \mu_1)(x_2 - \mu_2)$

 $g_{1,2}(x_1,x_2)$

• So far: Definition of standard fANOVA implies vanishing conditions

CONSTRAINTS: EQUIVALENT CHARACTERIZATION

• So far: Definition of standard fANOVA implies vanishing conditions

- So far: Definition of standard fANOVA implies vanishing conditions

CONSTRAINTS: EQUIVALENT CHARACTERIZATION

- So far: Definition of standard fANOVA implies vanishing conditions

Interpretable Machine Learning - 5/5

Interpretable Machine Learning - 5/5

- So far: Definition of standard fANOVA implies vanishing conditions
- In other words: Vanishing conditions are equivalent characterization

CONSTRAINTS: EQUIVALENT CHARACTERIZATION

- So far: Definition of standard fANOVA implies vanishing conditions
- In other words: Vanishing conditions are equivalent characterization

- So far: Definition of standard fANOVA implies vanishing conditions
- In other words: Vanishing conditions are equivalent characterization
- In general: Functional decompositions can be defined by sets of constraints

CONSTRAINTS: EQUIVALENT CHARACTERIZATION

- So far: Definition of standard fANOVA implies vanishing conditions
- In other words: Vanishing conditions are equivalent characterization
- In general: Functional decomp. can be defined by sets of constraints

Interpretable Machine Learning - 5/5

Interpretable Machine Learning - 5/5

- So far: Definition of standard fANOVA implies vanishing conditions
- In other words: Vanishing conditions are equivalent characterization
- In general: Functional decompositions can be defined by sets of constraints
- Many other methods to compute decompositions exist, each with their set of constraints

CONSTRAINTS: EQUIVALENT CHARACTERIZATION

- So far: Definition of standard fANOVA implies vanishing conditions
- In other words: Vanishing conditions are equivalent characterization
- In general: Functional decomp. can be defined by sets of constraints
- Many other methods to compute decompositions exist, each with their set of constraints

