MAT 3007 Optimization: Tutorial 4

Guxin DU

The Chinese University of Hong Kong, Shenzhen

June 17, 2025

Review: Fundamental LP Theorem

Consider a linear problem in standard form and assume that A has full row rank m.

- (1) existence of extreme points: If the feasible set is nonempty, there is a basic feasible solution. \Leftrightarrow Nonempty polyhedra in standard form have at least one extreme point. Remark: Standard form (especially $x \ge 0$) plays an important role in the existence here!
- (2) optimality of extreme points: If there is an optimal solution, there is an optimal solution that is also a basic feasible solution.

More generally, if feasible, then the optimal cost is either $-\infty$, or finite and can be attained by an extreme point as an optimal solution Remark: In LP, if optimal cost is **finite**, then it's **attainable**!

Review: Fundamental LP Theorem & Exercise

For each of the following statements, state whether it is true or false. If true, provide a proof, else, provide a counterexample.

Now consider the standard form polyhedron $P = \{x \in \mathbb{R}^n \mid Ax = b, x \geq 0\}$. Suppose $A \in \mathbb{R}^{m \times n}$ has m linearly independent rows.

- (a) if n = m + 1, then P has at most two basic feasible solutions.
- (b) The set of all optimal solutions is bounded.
- (c) At every optimal solution, no more than m variables can be positive.
- (d) If there is more than one optimal solution, then there are unaccountably many optimal solutions.
- (e) If there are several optimal solutions, then there exist at least two optimal basic feasible solutions.

Review: Fundamental LP Theorem & Solution

- (a) \sqrt{n} is the dimension of x, m(=n-1) is the number of equality constraints. Now x lies in a n-dimensional space but n-1 degrees of freedom are taken away, so actually x lies in a line in this n-dimensional space and for any line, it has at most 2 vertexes.
- (b) \times Consider the following toy example, $P = \{(x_1, 0) \in R^2 \mid x_1 \ge 0\}$ is the unbounded optimal solution set.

min
$$x_2$$

s.t. $x_1 \ge 0$
 $x_2 \ge 0$

Review: Fundamental LP Theorem & Solution

min
$$x_2$$

s.t. $x_1 \ge 0$
 $x_2 \ge 0$

- (c) \times Recall the toy example in (b), m=0, but every point in $S = \{(x_1, 0) \in R^2 \mid x_1 > 0\}$ has 1 positive variable and optimal (they are all not extreme points!).
- (d) √By convexity of polyhedron.
- (e) x Same as in (b), $P = \{(x_1, 0) \in R^2 \mid x_1 \ge 0\}$ has several optimal solutions but only (0,0) is extreme point i.e. BFS.

Exercise 1

For the standard Lp polyhedron $\{x: Ax = b, x \ge 0\}$, the followings are equivalent:

- (1) x is an extreme point
- (2) x is a basic feasible solution

Solution to Exercise $1:(1)\Rightarrow(2)$

Suppose x is an extreme point, $B = \{B(1), B(2), \ldots, B(k)\}$ be the set of indices such that $x_i > 0$. Then we want to prove that $A_{B(1)}$, $A_{B(2)}$, ..., $A_{B(k)}$ are linearly independent.

We prove by contradiction. If not, we have k numbers $\alpha_1, \alpha_2, \ldots, \alpha_k$, which are not all zeros, such that $\sum_{j=1}^k \alpha_j A_{B(j)} = 0$.

For $\epsilon > 0$, define two vectors x^+ and x^- as

$$x_{B(j)}^{+} = x_{B(j)} + \epsilon \alpha_{j}, \quad j = 1, ..., k$$

 $x_{B(j)}^{-} = x_{B(j)} - \epsilon \alpha_{j}, \quad j = 1, ..., k$
 $x_{i}^{+} = x_{i}^{-} = x_{i} = 0, \quad i \notin B$

We can choose ϵ small enough such that $x^+ \geq 0$ and $x^- \geq 0$, and we also have $Ax^+ = Ax^- = b$, i.e. x^+ and x^- are two different feasible solutions. Then $x = \frac{1}{2}(x^+ + x^-)$ contradicts the fact that x is an extreme point.

Solution to Exercise 1: $(2) \Rightarrow (1)$

Suppose x is a BFS, and not an extreme point. then $\exists x^{(1)}, x^{(2)} \neq x, \lambda \in (0,1)$, such that $x = \lambda x^{(1)} + (1-\lambda)x^{(2)}$

$$\begin{pmatrix} x_B \\ x_N \end{pmatrix} = \lambda \begin{pmatrix} x_B^{(1)} \\ x_N^{(1)} \end{pmatrix} + (1 - \lambda) \begin{pmatrix} x_B^{(2)} \\ x_N^{(2)} \end{pmatrix}$$

$$x_N = \lambda x^{(1)} x_N + (1 - \lambda) x_N^{(2)} \Rightarrow x_N^{(1)} = x_N^{(2)} = 0$$

$$Ax^{(1)} = Ax^{(2)} = b \Rightarrow x_B^{(1)} = x_B^{(2)} = A_B^{-1} b$$

$$x = x^{(1)} = x^{(2)}$$

Exercise 2

Use the simplex method to solve the following problem (This trivial problem is an illustration of simplex method.)

min
$$3x_1 + 4x_2$$

 $s.t.$ $x_1 + x_2 \le 4$
 $x_2 \le 5$
 $x \ge 0$ (1)

Recap on simplex procedure for standard form LP:

- (1) Find a BFS with basis B.
- (2) Find reduced cost \bar{c}_j for $j \notin B$ If $\exists j$ s.t. $\bar{c}_j < 0$, then continue; otherwise stop. (\rightarrow Stopping Criterion)
- (3) *j*th direction is $\mathbf{d} = [-A_B^{-1}A_j; 0; ...; 1; ...0]$ If $\mathbf{d} >= 0$, then unbounded; otherwise for some $d_i < 0$,choose $\theta = \min_{(i \in B|d_i < 0)} (-x_i/d_i)$
- (4) $\mathbf{y} = \mathbf{x} + \theta \mathbf{d}$ is a new BFS with basis B'
- (5) go to (1)

Standardization:

min
$$3x_1 + 4x_2$$

 $s.t.$ $x_1 + x_2 + x_3 = 4$
 $x_2 + x_4 = 5$
 $x \ge 0$

$$\mathbf{c} = [3; \ 4; \ 0; \ 0] \quad \mathbf{x} = [x_1; \ x_2; \ x_3; \ x_4] \quad \mathbf{b} = [4; \ 5]$$

$$A = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

Note: A has 2 linearly independent rows.

(1) Suppose we choose B(1)=1 and B(2)=4, we reoder all entries by B $= [B(1) \ B(2)]$ and N $= B^c$

$$A_B^{-1} = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)^{-1} = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$$

- (2) compute $\bar{c}_j = c_j \mathbf{c}_B^T A_B^{-1} A_j$ (we start from the smallest index) $\bar{c}_2 = 1$ $\bar{c}_3 = -3$. Choose index 3.
- (3) Since $\mathbf{d} = [\mathbf{d}_B; \mathbf{d}_N] = [-A_B^{-1}A_j; 0; 1] = [-1; 0; 0; 1]$ (index : 1 4 2 3), $\theta = \min_{(i \in B|d_i < 0)} (-x_i/d_i) = 4$
- (4) $\mathbf{y} = x + \theta d = [0; 5; 0; 4]$ (index : 1 4 2 3)
- (5) we repeat the above (2)-(4) and find out this is optimal. We conclude: optimal solution[x_1 ; x_2] = [0; 0] and optimal value = 0.

(1) Suppose we choose B(1)=1 and B(2)=4, we reoder all entries by B $= [B(1) \ B(2)]$ and N $= B^c$

$$A_B^{-1} = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)^{-1} = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$$

- (2) compute $\bar{c}_j = c_j \mathbf{c}_B^T A_B^{-1} A_j$ (we start from the smallest index) $\bar{c}_2 = 1$ $\bar{c}_3 = -3$. Choose index 3.
- (3) Since $\mathbf{d} = [\mathbf{d}_B; \mathbf{d}_N] = [-A_B^{-1}A_j; 0; 1] = [-1; 0; 0; 1]$ (index : 1 4 2 3), $\theta = \min_{(i \in B|d_i < 0)} (-x_i/d_i) = 4$
- (4) $\mathbf{y} = x + \theta d = [0; 5; 0; 4]$ (index : 1 4 2 3)
- (5) we repeat the above (2)-(4) and find out this is optimal. We conclude: optimal solution[x_1 ; x_2] = [0; 0] and optimal value = 0.

(1) Suppose we choose B(1)=1 and B(2)=4, we reoder all entries by B $= [B(1) \ B(2)]$ and N $= B^c$

$$A_B^{-1} = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)^{-1} = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$$

- (2) compute $\bar{c}_j = c_j \mathbf{c}_B^T A_B^{-1} A_j$ (we start from the smallest index) $\bar{c}_2 = 1$ $\bar{c}_3 = -3$. Choose index 3.
- (3) Since $\mathbf{d} = [\mathbf{d}_B; \mathbf{d}_N] = [-A_B^{-1}A_j; 0; 1] = [-1; 0; 0; 1]$ (index : 1 4 2 3), $\theta = \min_{(i \in B | d_i < 0)} (-x_i/d_i) = 4$
- (4) $\mathbf{y} = x + \theta d = [0; 5; 0; 4]$ (index : 1 4 2 3)
- (5) we repeat the above (2)-(4) and find out this is optimal. We conclude: optimal solution[x_1 ; x_2] = [0; 0] and optimal value = 0.

(1) Suppose we choose B(1)=1 and B(2)=4, we reoder all entries by B $= [B(1) \ B(2)]$ and N $= B^c$

$$A_B^{-1} = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)^{-1} = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$$

- (2) compute $\bar{c}_j = c_j \mathbf{c}_B^T A_B^{-1} A_j$ (we start from the smallest index) $\bar{c}_2 = 1$ $\bar{c}_3 = -3$. Choose index 3.
- (3) Since $\mathbf{d} = [\mathbf{d}_B; \mathbf{d}_N] = [-A_B^{-1}A_j; 0; 1] = [-1; 0; 0; 1]$ (index : 1 4 2 3), $\theta = \min_{(i \in B|d_i < 0)} (-x_i/d_i) = 4$
- (4) $\mathbf{y} = x + \theta d = [0; 5; 0; 4]$ (index : 1 4 2 3)
- (5) we repeat the above (2)-(4) and find out this is optimal. We conclude: optimal solution[x_1 ; x_2] = [0; 0] and optimal value = 0.

(1) Suppose we choose B(1)=1 and B(2)=4, we reoder all entries by B $= [B(1) \ B(2)]$ and N $= B^c$

$$A_B^{-1} = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)^{-1} = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$$

then, a BFS is $x = [x_B \ x_N]$ where $x_B = A_B^{-1} \mathbf{b} = [4; 5]$ and $x_N = 0$

- (2) compute $\bar{c}_j = c_j \mathbf{c}_B^T A_B^{-1} A_j$ (we start from the smallest index) $\bar{c}_2 = 1$ $\bar{c}_3 = -3$. Choose index 3.
- (3) Since $\mathbf{d} = [\mathbf{d}_B; \mathbf{d}_N] = [-A_B^{-1}A_j; 0; 1] = [-1; 0; 0; 1]$ (index : 1 4 2 3), $\theta = \min_{(i \in B|d_i < 0)} (-x_i/d_i) = 4$
- (4) $\mathbf{y} = x + \theta d = [0; 5; 0; 4]$ (index : 1 4 2 3)
- (5) we repeat the above (2)-(4) and find out this is optimal. We conclude: optimal solution[x_1 ; x_2] = [0; 0] and optimal value = 0.

G. Du (CUHKSZ) MAT 3007 June 17, 2025 12 / 13

Thanks!

Acknowledgements: Prof. Zizhuo WANG, Jiancong XIAO Wentao Ding, and Zhuo Li.