

INFORMATION RETRIEVAL EXTRACTION AND INTEGRATION

LAB ML RANKING ASSIGNMENT

José Antonio Ruiz Heredia Joseph Tartivel Álvaro Honrubia

INTRODUCTION

A brief introduction of the project.

ADARANK: A BOOSTING ALGORITHM FOR INFORMATION RETRIEVAL

Presentation of research paper used for this work.

CONSTRUCTING THE TRAINING DATASET

Presentation of the dataset used and how we prepared it for AdaRank.

MODEL DEVELOPMENT AND IMPLEMENTATION

Description of the implementation of the project.

EXPANDING THE DATASET

Explanation of the methods used to expand the DataSet in terms and in query.

EVALUATION AND CONCLUSION

Evaluation of the different experiments and a view of potentials improvements.

TABLE OF CONTENTS

INTRODUCTION

- Challenge: Ranking lab tests efficiently and accurately
- Solution: Machine learning ranking (MLR) methods to optimize search results
- **Focus**: Using *AdaRank* to improve retrieval of lab tests in response to queries
- **Goal**: Build and train a ranking model on documents related to specific medical tests

ADARANK: A BOOSTING ALGORITHM FOR INFORMATION RETRIEVAL

- **Concept**: AdaRank improves search results through iterative learning
- **Approach**: Adjusts focus over time, giving more weight to incorrectly ranked cases
- Advantage over Traditional Methods:
 - **Pointwise methods**: Score documents individually, don't optimize ordering
 - **Pairwise methods** (*Ranking SVM*, *RankBoost*): Compare document pairs but don't optimize full list
 - **AdaRank**: Considers entire list at once, directly optimizes performance metrics like *NDCG*

CONSTRUCTING THE TRAINING DATASET: PRE-PROCESSING

3 loinc_num	long_common_name	component	system	property
4 1988-5	C reactive protein [Mass/volume] in Serum or Plasma	C reactive pro	Ser/Plas	MCnc
5 1959-6	Bicarbonate [Moles/volume] in Blood	Bicarbonate	Bld	SCnc
6 10331-7	Rh [Type] in Blood	Rh	Bld	Type
7 18998-5	Trimethoprim+Sulfamethoxazole [Susceptibility]	Trimethoprim	Isolate	Susc
8 1975-2	Bilirubin.total [Mass/volume] in Serum or Plasma	Bilirubin	Ser/Plas	MCnc
9 890-4	Blood group antibody screen [Presence] in Serum or Plasma	Blood group a	Ser/Plas	ACnc
.0 20565-8	Carbon dioxide, total [Moles/volume] in Blood	Carbon dioxid	Bld	SCnc
1 18906-8	Ciprofloxacin [Susceptibility]	Ciprofloxacin	Isolate	Susc
2 2143-6	Cortisol [Mass/volume] in Serum or Plasma	Cortisol	Ser/Plas	MCnc
3 2075-0	Chloride [Moles/volume] in Serum or Plasma	Chloride	Ser/Plas	SCnc
4 4671-4	Protein C [Mass/volume] in Plasma	Protein C	Plas	MCnc

We need a clean dataset to calculate relevance score

- "Dirty" Text: Ponctuation, special characters, capital letters...
- **Useless Information:** Grammar, *LOINC* number, repetition...
- **Abbreviations:** "Bld" instead of "Blood", "Plas" instead of "Plasma"...
- Bad Structuring: Units of measurement in the "name" column...

CONSTRUCTING THE TRAINING DATASET: PRE-PROCESSING

• "Dirty" Text -> Text Cleaning

Convert text to lowercase, remove punctuation and special characters.

Useless Information -> Lemmatization

Eliminate common stop words and reduce words to their base forms.

Abbreviations -> Mapping Dictionary

Standardize the terminology.

Bad Structuring -> Column Creation

Creation of a new column for the unit of measurement.

CONSTRUCTING THE TRAINING DATASET: HYBRID SCORING

Traditional Scoring

Keyword Matching

+ Embeddings Scoring

Semantic Similarity

= Hybrid Scoring

Capture relationships beyond exact keyword matches.

CONSTRUCTING THE TRAINING DATASET: TRADITIONAL SCORING

$$ext{Score}_{ ext{traditional}}(q,d) = \sum_{f \in \{component, system\}} \omega_f \cdot ext{Match}_f(q,d)$$

Where:

- ω_f is the weight for field f (e.g., 6.0 for component, 3.0 for system)
- Match f(q, d) equals:

Component

* if there's an exact match between query term and component field:

$$\mathbf{weight}_{\mathbf{component}} \cdot \mathbf{weight}_{\mathbf{component}}$$

* if the query term is contained within the component field:

$$ext{weight}_{ ext{component}} \cdot rac{ ext{weight}_{ ext{component}}}{2}$$

* 0 if there's no match

System

 \ast if there's an exact match between query term and system field:

$$weight_{system} \cdot weight_{system}$$

 $\ast\,$ if the query term is contained within the system field:

$$\text{weight}_{\text{system}} \cdot \frac{\text{weight}_{\text{system}}}{2}$$

* 0 if there's no match

For column "Component" and "System"

To capture exact keyword matches.

CONSTRUCTING THE TRAINING DATASET: EMBEDDINGS SCORING

$$Score_{embedding}(q, d) = \sum_{f \in F} \omega_f \cdot \frac{\cos(\vec{q}, \vec{d_f}) + 1}{2} \cdot 5$$

Where:

- F is the set of all fields in the document
- ω_f is the weight for field f
- \vec{q} is the embedding vector of the query
- $\vec{d_f}$ is the embedding vector of field f in document d
- $\cos(\vec{q}, \vec{d_f})$ is the cosine similarity between the query embedding and field embedding
- The term $\frac{\cos(\vec{q},\vec{d_f})+1}{2}$ normalizes the cosine similarity from [-1,1] to [0,1]
- The multiplier 5 scales the normalized similarity to match the scale of the traditional score

With the pre-trained biomedical embedding model: **BioBERT-MNLI**

To calculate semantic similarity between the query and document fields

CONSTRUCTING THE TRAINING DATASET: FINAL RESULT

Query	LOINC Co	c Name	Component	System	Property	Measurement	Normalized_Scor
glucose in blood	1988-5	component reactive protein serum plasma	component reactive protein	serum plasma	mass concentration	mass volume	0.14186244
glucose in blood	1959-6	bicarbonate blood	bicarbonate	blood	substance concentration	mole volume	0.40183312
glucose in blood	10331-7	rh blood	rh	blood	type	type	0.36898455
glucose in blood	18998-5	trimethoprim sulfamethoxazole	trimethoprim sulfamethoxazole	isolate	susceptibility	susceptibility	0.015217709
glucose in blood	1975-2	bilirubin total serum plasma	bilirubin	serum plasma	mass concentration	mass volume	0.6513374
glucose in blood	890-4	blood group antibody screen serum plasma	blood group antibody screen	serum plasma	amount concentration	presence	0.22904973
glucose in blood	20565-8	carbon dioxide total blood	carbon dioxide	blood	substance concentration	mole volume	0.4322821
glucose in blood	18906-8	ciprofloxacin	ciprofloxacin	isolate	susceptibility	susceptibility	0.015049424
glucose in blood	2143-6	cortisol serum plasma	cortisol	serum plasma	mass concentration	mass volume	0.17161444
glucose in blood	2075-0	chloride serum plasma	chloride	serum plasma	substance concentration	mole volume	0.174336
glucose in blood	4671-4	protein component plasma	protein component	plasma	mass concentration	mass volume	0.25051117
glucose in blood	18864-9	ampicillin	ampicillin	isolate	susceptibility	susceptibility	0.042238485
glucose in blood	15076-3	glucose urine	glucose	urine	substance concentration	mole volume	0.7523206
glucose in blood	1798-8	amylase serum plasma	amylase	serum plasma	cell concentration	enzymatic activity volur	0.21758804
glucose in blood	26474-7	lymphocyte blood	lymphocyte	blood	number concentration	volume	0.43848428
glucose in blood	1920-8	aspartate aminotransferase serum plasma	aspartate aminotransferase	serum plasma	cell concentration	enzymatic activity volur	0.22135702
glucose in blood	13317-3	methicillin resistant staphylococcus aureus unspecified specimen organism sp	e staphylococcus aureus methicillin resistant isola	XXX	amount concentration	presence	0.019305676

Normalized Relevance Score using Min-Max.

Allowing to train the AdaRank Algorithm.

MODEL DEVELOPMENT AND IMPLEMENTATION

Dataset Preparation:

- **Encoded categorical features** to numerical representations
- Score labels by scaling normalized scores to integers
- **Split data**: 75% training, 25% testing

Implementation:

- **LightGBM** with **rank_xendcg** objective
- Simulated AdaRank's boosting and reweighting mechanism
- Parameters: boosting_type, num_leaves, learning_rate, max_depth, feature_fraction, label_gain, regularization...

EXPANDING THE DATASET

Query Expansion:

Added new queries: "calcium in serum", "cells in urine"

Added variations based on <u>component</u>: "bilirubin", "cells", "leukocytes", "calcium", "glucose"

Added variations based on <u>system</u>: "blood", "serum or plasma", "urine"

Model Optimization:

Adjusted **hyperparameters** and **learning rates** depending on the dataset

Evaluated each version of the dataset to measure impact on ranking quality

Spearman's: 0.4615

MSE: 0.0191

CONCLUSION

Project Insights

- Dataset diversity impacts ranking performance
- Adding medical queries improves model adaptability
- AdaRank effectively optimizes ranking for medical retrieval

Implications

- Improved search efficiency supports better clinical decision-making
- Structured search optimization more important as medical information grows