

AO8800

Common-Drain Dual N-Channel Enhancement Mode Field Effect Transistor

General Description

The AO8800 uses advanced trench technology to provide excellent $R_{\text{DS(ON)}}$, low gate charge and operation with gate voltages as low as 1.8V while retaining a 12V $V_{\text{GS(MAX)}}$ rating. This device is suitable for use as a uni-directional or bi-directional load switch, facilitated by its common-drain configuration.

Features

 $V_{DS}(V) = 30V$

 $I_D = 6.4A$

 $R_{DS(ON)}$ < 24m Ω (V_{GS} = 10V)

 $R_{DS(ON)}$ < 30m Ω (V_{GS} = 4.5V)

 $R_{DS(ON)}$ < 40m Ω (V_{GS} = 2.5V)

 $R_{DS(ON)}$ < 70m Ω (V_{GS} = 1.8V)

Absolute Maximum Ratings T _A =25°C unless otherwise noted						
Parameter		Symbol	Maximum	Units		
Drain-Source Voltage		V_{DS}	30	V		
Gate-Source Voltage		V_{GS}	±12	V		
Continuous Drain	T _A =25°C		6.4			
Current ^A T _A =70°C		I_D	5.4	Α		
Pulsed Drain Current B		I_{DM}	30			
	T _A =25°C	P_{D}	1.5	W		
Power Dissipation A	T _A =70°C	D	1.08	VV		
Junction and Storage Temperature Range		T_J, T_{STG}	-55 to 150	°C		

Thermal Characteristics							
Parameter	Symbol	Тур	Max	Units			
Maximum Junction-to-Ambient A	t ≤ 10s R _{θJA}		64	83	°C/W		
Maximum Junction-to-Ambient A	Steady-State	Γ∖ _θ JA	89	120	°C/W		
Maximum Junction-to-Lead ^C	Steady-State	$R_{ heta JL}$	53	70	°C/W		

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
STATIC F	PARAMETERS						
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$		30			V
I _{DSS}	Zero Gate Voltage Drain Current	V_{DS} =24V, V_{GS} =0V				1	μА
יטאי	Zero Gate Voltage Brain Guirent		T _J =55°C			5	μΑ
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±12V				100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=250\mu A$		0.6	8.0	1	V
$I_{D(ON)}$	On state drain current	V_{GS} =4.5V, V_{DS} =5V		30			Α
		V_{GS} =10V, I_D =6.4A			20	24	mΩ
			T _J =125°C		28	36	1115.2
$R_{DS(ON)}$	Static Drain-Source On-Resistance	V_{GS} =4.5V, I_D =6A			23	30	mΩ
		V_{GS} =2.5V, I_{D} =5A			32	40	mΩ
		V_{GS} =1.8V, I_{D} =2.5A			51	70	mΩ
g _{FS}	Forward Transconductance	V_{DS} =5V, I_{D} =5A		10	17		S
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V			0.66	1	V
I _S	Maximum Body-Diode Continuous Current					2.4	Α
DYNAMIC	PARAMETERS						
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =15V, f=1MHz			767		pF
C _{oss}	Output Capacitance				111		pF
C_{rss}	Reverse Transfer Capacitance				82		pF
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz			1.3		Ω
SWITCHI	NG PARAMETERS	•					
Q_g	Total Gate Charge				10		nC
Q_{gs}	Gate Source Charge	V_{GS} =4.5V, V_{DS} =15V, I_{D} =6.4A			1.2		nC
Q_{gd}	Gate Drain Charge				3.1		nC
t _{D(on)}	Turn-On DelayTime				5		ns
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =15V, R_L =2.4 Ω , R_{GEN} =6 Ω			5.5		ns
$t_{D(off)}$	Turn-Off DelayTime				39		ns
t _f	Turn-Off Fall Time				4.7		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =5A, dI/dt=100A/μs			15		ns
Q _{rr}	Body Diode Reverse Recovery Charge	l _F =5A, dl/dt=100A/μs			7.1		nC

A: The value of $R_{\theta JA}$ is measured with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any a given application depends on the user's specific board design. The current rating is based on the t 10s thermal

resistance rating.

B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6,12,14 are obtained using $80\mu s$ pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The SOA curve provides a single pulse rating.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 7: Gate-Charge Characteristics

Figure 8: Capacitance Characteristics

Figure 9: Maximum Forward Biased Safe Operating Area (Note E)

Figure 10: Single Pulse Power Rating Junction-to-Ambient (Note E)

Figure 11: Normalized Maximum Transient Thermal Impedance

TSSOP-8 Package Data

SYMBOLS	DIMENSIONS IN MILLIMETERS			DIMENSIONS IN INCHES			
	MIN	NOM	MAX	MIN	NOM	MAX	
A			1.20			0.047	
A1	0.05		0.15	0.002		0.006	
A2	0.80	1.00	1.05	0.031	0.039	0.041	
b	0.19		0.30	0.007		0.012	
c	0.09		0.20	0.004		0.008	
D	2.90	3.00	3.10	0.114	0.118	0.122	
Е	6.40 BSC			0.252 BSC			
E1	4.30	4.40	4.50	0.169	0.173	0.177	
e	0.65 BSC			0.0259 (REF)			
L	0.45	0.60	0.75	0.018	0.024	0.030	
У			0.10			0.004	
θ	0°		8°	0°		8°	

- NOTE: 1. LEAD FINISH: 150 MICROINCHES (3.8 um) MIN. THICKNESS OF Tin/Lead (SOLDER) PLATED ON LEAD 2. TOLERANCE ±0.100 mm (4 mil) UNLESS OTHERWISE SPECIFIED

- 3. COPLANARITY : 0.1000 mm 4. DIMENSION L IS MEASURED IN GAGE PLANE

PACKAGE MARKING DESCRIPTION

AOS LOGO
PARTN - PART NUMBER CODE.
F - FAB LOCATION
A - ASSEMBLY LOCATION
W - WEEK CODE.
L N - ASSEMBLY LOT CODE

TSSOP-8 PART NO. CODE

PART NO.	CODE	PART NO.	CODE	PART NO.	CODE
AO8800	8800				
AO8701	8701				

RECOMMENDED LAND PATTERN

UNIT: mm

