P401 Elektonische Übergänge in Atomen

Mykhailo Miniailo & Noah Reinhardt

Durchgeführt am 27.-28.10.25

Inhaltsverzeichnis

Einleitung	2
Teil I: Zeeman-Effekt	2
Aufbau	2
Beobachtung der Aufspaltung	
Magnetfeld-Kalibrierung	
Messung in Transversaler Konfiguration	
Messung in Longitudinaler Konfiguration	
Ergebnisse	
Teil II: Frank-Hertz-Versuch	4
Aufbau	4
Messung unter variabler Bremsspannung U_2	4
Messung unter variabler Temperatur T	
Ergebnisse	
Fazit	5
Anhang	6

Einleitung

Der nachfolgende Versuch beschäftigt sich mit Anregungszuständen in Atomen und ist dabei in zwei Teile unterteilt:

Im Teil I wird der normale Zeeman-Effekt nachgewiesen, welcher zum Verständnis der magnetischen Moments eines Atoms historisch von zentraler Bedeutung war. Der Versuch wird an einer Cadmiumlampe durchgeführt, welche sich jeweils transversal oder longitudinal im Magnetfeld befindet und dessen Übergänge mithilfe eines Fabry-Perot-Etalons untersucht werden. Ziel dieses Versuchs ist der Nachweis der Übergänge $^1D_2 \rightarrow ^1P_1$ in Form von π , σ^+ und σ^- Strahlung sowie deren Polarisationen.

Im Teil II wird der Frank-Hertz-Versuch mit Quecksilber (Hg) durchgeführt. Mit diesem belegten James Franck und Gustav Hertz die Existenz von diskreten Energieniveaus in Atomen und gewannen dafür 1925 einen Nobelpreis. In diesem Versuchs werden Elektronen durch Quecksilber-Gas beschleunigt, an welchem jene elastisch streuen. Erreichte die kinetische Energie eines Elektron jedoch die Anregungsenergie von Quecksilber, so streut jenes inelastisch und ein Einbruch im Elektronenstrom wird beobachtbar. [4]

Teil I: Zeeman-Effekt

Aufbau

- Justierung des Fabry-Perot-Etalon
- · Aufbau der optischen Bank
- Strahlungsquelle & Eigenschaften

Abbildung 1: Aufbau in transversaler Konfiguration. [1]

Beobachtung der Aufspaltung

- Beobachtung B = 0 (1 Ring)
- Beobachtung $B \gg 0$ (3 Ringe)
- Beobachtung $B \gg 0$ mit Filter (1 oder 2 Ringe)
- Erklärung des Gesehenen

Abbildung 2: Winkelverteilung der elektrischen Dipolstrahlung. [1]

Magnetfeld-Kalibrierung

- Aufbau der Magnetfeld-Messung
- Ermittlung des Zusammenhang B(I)
- Ermittlung der Zusammenhangs B(x)
- vergleiche zweite Magnetfeld-Messung
- Diskussion Thermischer Effekte

Messung in Transversaler Konfiguration

- Aufbau der Kamera und Aufnahme
- Spezifikationen der Kamera
- Beobachtung B = 0 (1 Ring)
- Beobachtung $B \gg 0$ (3 Ringe)
- Beobachtung $B \gg 0$ mit Filter (1 oder 2 Ringe)
- Erklärung des Gesehenen

Messung in Longitudinaler Konfiguration

- · Aufbau der Messung
- Beobachtung B = 0 (1 Ring)
- Beobachtung $B \gg 0$ (2 Ringe)
- Beobachtung $B \gg 0$ mit Filter & Platte (1 bis 2 Ringe)
- Erklärung des Gesehenen

Ergebnisse

- \bullet Theoret. Abschätzung von Auflösung ${\mathcal A}$ und Finesse ${\mathcal F}$
- ullet Experim. Bestimmung von Auflösung ${\mathcal A}$ und Finesse ${\mathcal F}$
- Umrechnung Pixel -> Winkel -> Wellenlänge
- Positionen & Breiten der Maxima bestimmen

- Berechnung Energieverschiebung ΔE
- Bestimmung Bohrschen Magnetons μ_B
- Abschätzung von Doppler- und natürlicher Linienverbreiterung
- Literaturvergleich
- Allgemeine Fehlerdiskussion

Text neben Abbildung...

Abbildung 3: Niveaufspaltung von Cadmium durch normalen Zeeman-Effekt. [1]

Teil II: Frank-Hertz-Versuch

Aufbau

- Vorgehen beim Aufbau
- Bestimmung von $U_{1,\text{max}}$

Messung unter variabler Bremsspannung U_2

- Spektrum mit Gauß fitten
- Maxima, Halbwertsbreiten und ΔU bestimmen
- Einfluss von U_2 diskutieren

Messung unter variabler Temperatur T

- Spektrum mit Gauß fitten
- Maxima, Halbwertsbreiten und ΔU bestimmen
- Einfluss von T diskutieren

Ergebnisse

- ΔE Vergleich Literaturwert
- Einfluss Wirkungsquerschnitt diskutieren
- Warum keine scharfen Einbrüche in Anodenstrom?
- Warum kleines Temperaturintervall bei Hg?
- Zusammenhang mit konkreten Hg-Übergängen
- Zusammenhang von Hg-Gasdruck und Temperatur

(a) Vereinfachtes Hg-Termschema. [2]

(b) Totaler Wirkungsquerschnitt von Hg für Elektronenstoßanre-

Abbildung 4

Fazit

Literatur

- [1] LD Didactic GmbH. Spektroskopie mit einem Fabry-Perot-Etalon. URL: https://www.ld-didactic.de/documents/ de-DE/EXP/P/P6/P6273_d.pdf (besucht am 26. 10. 2025).
- [2] Kuhn. Atomic Spectra. 1962.
- [3] Moiseiwitsch. "Electron Impact on Excitation of Atoms". In: Rev. Mod. Phys. 40 (1968).
- P401 Elektronische Übergänge in Atomen. url: https://uni-bonn.sciebo.de/s/azE6754UkY23ABa (besucht am 26. 10. 2025).

Anhang

Abbildung 5: Gesamtabbildung

Text neben Abbildung...

Abbildung 6: Abbildung neben Text

 $f_{\text{measured}} = (3.0 \pm 0.5) \text{ MHz}$

 $f_{\text{theory}} = (3.6 \pm 0.2) \,\text{MHz}$

(1)

(2)