COMP90042 Web search and text analysis

Workshop Week 2

Your tutor

- Xudong Han
- Master of Data Science
- xudong.han@unimelb.edu.au

Workshops

- Please post questions to LMS
- Workshop slides: https://github.com/HanXudong/COMP90042_Workshops
- Review and discussion

Python 3

- Familiarise yourself with Python 3
- https://trevorcohn.github.io/comp90042/workshops/ week1-python-01.pdf
- Canopy: https://store.enthought.com/downloads/
- NLTK: https://www.nltk.org/install.html using Canopy Command Prompt

Web Search & Text Analysis

- Natural Language Processing(NLP)
- Web search
 E.g. Information retrieval(IR)
- Text analysis
 E.g. Structure learning
- Larger tasks:
 E.g. Information extraction, question answering, translation.

```
from nltk.tokenize import word_tokenize

sentence = "Hello Aswathi How are you doing today"
sentence_token = word_tokenize(sentence)
sentence_token

['Hello', 'Aswathi', 'How', 'are', 'you', 'doing', 'today']
```

Tokenization

http://blog.xnextcon.com/?p=233

Tokenization

- A token is an instance of a sequence of characters in some particular document that are grouped together as a useful semantic unit for processing.
- A type is the class of all tokens containing the same character sequence.
- E.g. You for me and me for you.

```
from nltk.stem.porter import PorterStemmer
stem = PorterStemmer()
word = "mulitplying"
stem.stem(word)
'mulitpli'
from nltk.stem.wordnet import WordNetLemmatizer
lem = WordNetLemmatizer()
word = "multiplying"
lem.lemmatize(word, "v")
```

'multiply'

Stemming and Lemmatisation

Stemming and Lemmatisation

- https://semanticsmorphology.weebly.com/inflectionaland-derivational-morphemes.html
- Inflectional morphology
 - Do not really alter the meaning
- Derivational morphology
 - Alter the meaning
 - One class to another e.g. Verb (teach) -> Noun (teacher)

Stemming and Lemmatisation

Engl	lish Inflectional Morphemes	Added to	Examples
-S	plural	Nouns	She has got two guitars.
- 's	possessive	Nouns	Zeynep's hair is long.
-e1	comparative	Adjectives	Zeynep has long er hair than Derya.
-est	superlative	Adjectives	Zeynep has the longest hair.
-S	3rd person singular present tense	Verbs	Zeynep plays the guitar.
-ed	past tense	Verbs	She played the guitar at the party.
-ing	progressive	Verbs	She is play ing the guitar at the party
-en	past participle	Verbs	She has taken the guitar to the party.

Stemming and Lemmatisation

Some English derivational affixes

Affix	Change	Examples
Suffixes		
-able	$V \rightarrow A$	fix-able, do-able
-(at)ion	$V \rightarrow N$	realiz-ation
-ing	$V \rightarrow N$	the shoot-ing, the
-ing	$V \rightarrow A$	danc-ing
-ive	$V \rightarrow A$	the sleep-ing giant assert-ive
-al	$V \rightarrow N$	refusal
-ment	$V \rightarrow N$	treat-ment
-ful	$N \rightarrow A$	hope-ful

Vector Space Model

Term-document matrix(TDM)

doc1	Two	for	tea	and	tea	for	two
doc2	Tea	for	me	and	tea	for	you
doc3	You	for	me	and	me	for	you

	two	tea	me	you
doc1	2	2	0	0
doc2	0	2	1	1
doc3	0	0	2	2

Term-document matrix(TDM)

	two	tea	me	you
doc1	2	2	0	0
doc2	0	2	1	1
doc3	0	0	2	2

Query 1: Tea me

• Query 2: Two

$$cos(a,b) = \frac{a \cdot b}{|a||b|}$$

Term-document matrix(TDM)

	two	tea	me	you
doc1	0.707	0.707	0	0
doc2	0	0.707	0.353	0.353
doc3	0	0	0.707	0.707

Normalisation

All document prenormalised to unit length

Query 1: Tea me

$$cos(a,b) = \frac{a \cdot b}{|a||b|} = a \cdot b$$

Query 2: Two

Inverted index

	two	tea	me	you
doc1	0.707	0.707	0	0
doc2	0	0.707	0.353	0.353
doc3	0	0	0.707	0.707

Query 1: Tea me

Query 2: Two

two 1: 0.707;

tea 1:0.707; 2: 0.707

me 2: 0.353; 3:0.707

you 2: 0.353; 3:0.707

$$tf_{d,t} \times idf_t$$

 $t\!f_{d,t}$: term frequency of a document (count of a term t in a document d)

 idf_t : inverse document frequency

 df_{t} : document frequency (count of documents that contain the term t)

	two	tea	me	you
doc1	2	2	0	0
doc2	0	2	1	1
doc3	0	0	2	2
idf_t				

$$idf_t = log \frac{N}{df_t}$$

	two	tea	me	you
doc1	2	2	0	0
doc2	0	2	1	1
doc3	0	0	2	2
idf_t	1.58	0.58	0.58	0.58

$$idf_t = log \frac{N}{df_t}$$

$$log_2$$
 or log_e ?

	two	tea	me	you
doc1	3.17	1.16	0	0
doc2	0	1.16	0.58	0.58
doc3	0	0	1.16	1.16

Question 4

	apple	ibm	lemo	sun
D1	4	0	1	1
D2	5	0	5	0
D3	2	5	0	0
D4	1	0	1	7
D5	0	1	3	0
idf				

	apple	ibm	lemo	sun
D1	4	0	1	1
D2	5	0	5	0
D3	2	5	0	0
D4	1	0	1	7
D5	0	1	3	0
idf				

	apple	ibm	lemon	sun
idf	$\log \frac{5}{4} = 0.22$	$\log \frac{5}{2} = 0.92$	$\log \frac{5}{4} = 0.22$	$\log \frac{5}{2} = 0.92$

	apple	ibm	lemo	sun
D1	0.89	0	0.22	0.92
D2	1.12	0	1.12	0
D3	0.45	4.58	0	0
D4	0.22	0	0.22	6.41
D5	0	0.92	0.67	0

Query: apple ibm

skip the document normalisation

$$S_{TF-IDF}(d,Q) = \sum_{t \in Q} tf_{d,t} \times log \frac{N}{df_t}$$

	apple	ibm	lemo	sun
D1	0.89	0	0.22	0.92
D2	1.12	0	1.12	0
D3	0.45	4.58	0	0
D4	0.22	0	0.22	6.41
D5	0	0.92	0.67	0

Query: apple ibm

What if do document normalisation?

$$S_{TF-IDF}(d,Q) = \sum_{t \in Q} tf_{d,t} \times log \frac{N}{df_t}$$

BM25

$$w_{t} = log \frac{N - df_{t} + 0.5}{df_{t} + 0.5} \times \frac{(K_{1} + 1)tf_{d,t}}{k_{1}((1 - b) + b\frac{L_{d}}{L_{avg}}) + tf_{d,t}} \times \frac{(k_{3} + 1)tf_{q,t}}{k_{3} + tf_{q,t}}$$

where $0 \le K_1 \le \infty$, $0 \le K_3 \le \infty$, and $0 \le b \le 1$

What happens?

- b = 0; b = 1
- K 1 = 0; K_1 = inf
 binary model or document tf?
- K 3 = 0; K_3 = inf
 binary model or query tf?
 - document length matters?

Very Useful Online Resources

- https://web.stanford.edu/ ~jurafsky/
- 2012 NLP MOOC w/Chris Manning(YouTube)

