PAUTA CONTROL II - MICROECONOMÍA II

PROFESOR: JUAN PABLO TORRES MARTÍNEZ SEMESTRE PRIMAVERA - 2023

[1] En el contexto de una economía con n individuos y dos alternativas sociales, siguiendo la notación usual, denote por $f_{\beta}: \{-1,0,1\}^n \to \{-1,0,1\}$ a la regla de elección social caracterizada por

$$f_{\beta}(\theta_1,\ldots,\theta_n) = \operatorname{signo}\left(\sum_{i=1}^n \beta_i \theta_i\right),$$

donde $\beta = (\beta_1, \dots, \beta_n) \in \mathbb{R}^n$. Defina las propiedades de *simetría*, *neutralidad* y *responsividad*. Además, para cada vector $\beta \in \mathbb{R}^n_+$ determine cuales de esas propiedades son satisfechas.

Dada una regla de elección social $\eta: \{-1,0,1\}^n \to \{-1,0,1\}$, tenemos que:

- La simetría asegura que el resultado de η no depende de la identidad de los votantes, solo de la distribución de sus votos. Formalmente, la simetría requiere que $\eta(\theta_{\sigma(1)}, \dots, \theta_{\sigma(n)}) = \eta(\theta_1, \dots, \theta_n)$ para toda función bijectiva $\sigma: \{1, \dots, n\} \to \{1, \dots, n\}$ y para todo perfil de preferencias $(\theta_1, \dots, \theta_n) \in \{-1, 0, 1\}^n$.
- La neutralidad de η asegura que la alternativa social escogida no dependa de la "etiqueta" que se le ha dado. Así, la neutralidad requiere que $\eta(\theta) = -\eta(-\theta)$ para todo $\theta \in \{-1,0,1\}^n$.
- La responsividad nos asegura que un aumento en el apoyo a una alternativa que ya es socialmente deseable siempre la transforma en la única alternativamente socialmente óptima. Esto es, η es responsiva si para todo par $\theta, \theta' \in \{-1, 0, 1\}^n$ tenemos que $\eta(\theta) \geq 0$ y $\theta' > \theta$ implican $\eta(\theta') = 1$.

La regla de elección social f_{β} es simétrica si y solo si β es un múltiplo del vector $(1,\ldots,1)$. Efectivamente, f_{β} es simétrica cuando $\beta=\alpha(1,\ldots,1)$ pues $\sum_{i=1}^{n}\beta_{i}\theta_{i}=\alpha\sum_{i=1}^{n}\theta_{i}=\alpha\sum_{i=1}^{n}\theta_{i}=\alpha\sum_{i=1}^{n}\beta_{i}\theta_{\sigma(i)}=\sum_{i=1}^{n}\beta_{i}\theta_{\sigma(i)}$. Recíprocamente, asuma que f_{β} es simétrica y que $\beta_{i}>\beta_{j}$ para algún par $i,j\in\{1,\ldots,n\}$. Defina $\theta=(\theta_{1},\ldots,\theta_{n})$ tal que $\theta_{i}=1$, $\theta_{j}=-1$ y $\theta_{k}=0$ para todo $k\notin\{i,j\}$. Dada una función $\sigma:\{1,\ldots,n\}\to\{1,\ldots,n\}$ tal que $\sigma(i)=j,\,\sigma(j)=i$ y $\sigma(k)=k$ para todo $k\notin\{i,j\}$, tenemos que $f_{\beta}(\theta)=\mathrm{signo}(\beta_{i}-\beta_{j})=1$ y $f_{\beta}(\theta_{\sigma})=\mathrm{signo}(\beta_{j}-\beta_{i})=-1$. Una contradicción con la simetria de f_{β} .

La regla f_{β} es neutral para todo $\beta \in \mathbb{R}^n_+$ pues $\sum_{i=1}^n \beta_i \theta_i = -\sum_{i=1}^n \beta_i (-\theta_i)$. Finalmente, f_{β} es responsiva si y solo si $\beta \in \mathbb{R}^n_{++}$. Efectivamente, dados dos perfiles de preferencia $\theta, \theta' \in \{-1, 0, 1\}^n$ tales que $f_{\beta}(\theta) \geq 0$ y $\theta' > \theta$, tenemos que

$$0 \leq \sum_{i=1}^n \beta_i \theta_i = \sum_{i=1}^n \beta_i \theta_i' + \sum_{i=1}^n \beta_i (\theta_i - \theta_i') \leq \sum_{i=1}^n \beta_i \theta_i',$$

donde la última desigualdad es estricta si y solo si existe $i \in \{1, ..., n\}$ tal que $\beta_i > 0$ y $(\theta_i - \theta'_i) > 0$, pues $\beta \in \mathbb{R}^n_+$. Por lo tanto, para asegurar que $f_\beta(\theta') = 1$ es suficiente que $\beta \gg 0$. Esta última condición tambien es necesaria para asegurar la responsividad, pues si $\beta_i = 0$ y consideramos el vector $\theta' \in \{0,1\}^n$ tal que $\theta'_k = 1$ si y solo si k = i, entonces $f_\beta(\theta') = 0$ aunque $f_\beta(0, ..., 0) \geq 0$ y $\theta' > (0, ..., 0)$.

Note que, como era de esperar a partir del Teorema de May, dado $\beta \in \mathbb{R}^n_+$ la regla de elección social f_β es simétrica, neutral y responsiva si y solamente si $\beta \in \{\alpha(1,\ldots,1): \alpha>0\}$.

[2] Considere una economía en la cual hay un conjunto finito H de individuos, los cuales tienen preferencias por las alternativas sociales en $A = \{a_1, \ldots, a_m\}$. Denote por \mathcal{P} a la colección de perfiles preferencia $(\succ_h)_{h \in H}$ tales que cada \succ_h está definida sobre A y es completa, transitiva y estricta.

Dados $P = (\succ_h)_{h \in H}$ y $P' = (\succ'_h)_{h \in H}$ en el conjunto \mathcal{P} , diremos que una alternativa social a_i no reduce su ranking al pasar de P a P' cuanto $a_i \succ_h a_j$ implica $a_i \succ'_h a_j$ para todo $a_j \in A$ y $h \in H$.

Sea $f: \mathcal{P} \to A$ una función que cumple las siguientes propiedades:

- (i) El conjunto $\{a \in A : f(P) = a \text{ para algún } P \in \mathcal{P}\}$ tiene al menos tres elementos.
- (ii) Dados $P, P' \in \mathcal{P}$ y $a_i \in A$, si la alternativa social a_i no reduce su ranking al pasar de P a P', entonces $f(P) = a_i$ implica que $f(P') = a_i$.

Demuestre que existe un individuo $\hat{h} \in H$ tal que, para cada perfil de preferencias $P = (\succ_h)_{h \in H} \in \mathcal{P}$ la alternativa social f(P) es la mejor opción para \hat{h} cuando sus preferencias vienen dadas por $\succ_{\hat{h}}$.

Note que $\overline{A} = \{a \in A : f(P) = a \text{ para algún } P \in \mathcal{P}\}$ son los valores que toma la función f. Por lo tanto, podemos considerar que $f : \mathcal{P} \to \overline{A}$ pues $f(\mathcal{P}) = \overline{A}$. Como la condición (i) nos asegura que $|\overline{A}| \geq 3$, si probamos que la condición (ii) implica que f es Condorcet monótona, el resultado es una consecuencia del Teorema de Yu (2013).

Sean $P, P' \in \mathcal{P}$ dos perfiles de preferencia que coinciden sobre un par de alternativas sociales $a_i, a_j \in A$, las cuales son top bajo P'. Para asegurar la monotonía Condorcet de f tenemos que probar que, bajo estas condiciones, $f(P) = a_i$ implica que $f(P') = a_i$. Ahora, como $\{a_i, a_j\}$ son top bajo P' y los perfiles P y P' coinciden en esas dos alternativas, a_i no reduce su ranking al pasar de P a P'. Así, la condición (ii) nos asegura la propiedad deseada. \square

[3] Considere una subasta de Vickrey-Clarke-Groves en la cual se venden dos objetos, a y b. Asuma que en la subasta participan tres potenciales compradores, $i \in \{1, 2, 3\}$, cuyas valoraciones vienen dadas por:

donde los parámetros cumplen $0 < \alpha < \beta < \gamma < \delta < \alpha + \gamma$.

(i) Explicando detalladamente sus argumentos, determine la distribución de los objetos, el precio que paga cada comprador y los ingresos del vendedor.

La subasta de Vickrey-Clarke-Groves asignará los objetos de tal forma de maximizar el bienestar social. Note que, si se entregan los dos objetos a un único individuo, el máximo bienestar social se alcanza al entregarle $\{a,b\}$ al individuo 3, pues $\delta > \beta$. Alternativamente, si se entregan los objetos a individuos diferentes, el máximo bienestar social se obtiene al entregarle b al individuo 2 y a al individuo 3, lo cual genera un bienestar social de $a + \gamma$. Como $a + \gamma > \delta$, concluimos que la subasta asignará el objeto b al individuo 2 y el objeto a al individuo 3. Cada individuo pagará el costo social que genera su presencia en la subasta. El individuo 1 no pagará nada, pues su presencia no afecta la asignación. El individuo 2 pagará $\delta - \gamma$, pues en su ausencia ambos objetos se asignarían al individuo 3 generando un bienestar social δ en vez del bienestar social γ que los individuos $\{1,3\}$ tienen cuando 2 está presente. El individuo 3 pagará $\beta - \alpha$, pues en su ausencia ambos objetos se asignarían a un único individuo generando un bienestar social β , el cual es mayor que el bienestar social α que los individuos $\{1,2\}$ tienen cuando 3 está presente. Concluimos que los ingresos del vendedor serán $(\delta - \gamma) + (\beta - \alpha)$.

(ii) Demuestre que el vendedor podría recaudar <u>más</u> recursos si impide la participación de alguno de los potenciales compradores.

Suponga que se impide la participación del individuo 3. En este caso, el máximo bienestar social es β y se alcanza asignando ambos objetos a un mismo individuo, 1 ó 2. Además, quien recibe los objetos debe pagar una cantidad β por ellos, pues en su ausencia el otro individuo se los llevaría y tendría un bienestar β en vez de cero. Por lo tanto, en este contexto los ingresos del vendedor son iguales a β . Como en la presencia de todos los potenciales compradores el vendedor tiene ingresos $(\delta - \gamma) + (\beta - \alpha) = \beta - (\alpha + \gamma - \delta) < \beta$, concluimos que al impedir la participación de alguno de los potenciales compradores se pueden aumentar los ingresos de la subasta. Esta "anti-monotonía" de los ingresos es una de las patologías de la subasta VCG. Esencialmente, es uno de los costos asociados a dar incentivos a los potenciales compradores a revelar sus verdaderas preferencias.