ooites-robotisees-a-double-embrayage-22/

Sciences Industrielles de l'Ingénieur

Chapitre 1

Approche énergétique

Savoirs et compétences :

Cours

- Mod2.C18.SF1: Déterminer l'énergie cinétique d'un solide, ou d'un ensemble de solides, dans son mouvement par rapport à un autre solide.
- Res1.C1.SF1 : Proposer une démarche permettant la détermination de la loi de mouvement.
- Res1.C3.SF1: Choisir une méthode pour déterminer la valeur des paramètres conduisant à des positions d'équilibre.
- Mod1.C4.SF1: Associer les grandeurs physiques aux échanges d'énergie et à la transmission de puissance.
- □ Mod1.C5.SF1 : Identifier les pertes d'énergie .
- □ Mod1.C6.SF1 : Évaluer le rendement d'une chaîne d'énergie en régime permanent.
- Mod1.C5.SF2: Déterminer la puissance des actions mécaniques extérieures à un solide ou à un ensemble de solides, dans son mouvement rapport à un autre solide.
- Mod1.C5.SF3: Déterminer la puissance des actions mécaniques intérieures à un ensemble de solides.

1	Caractéristiques d'inertie des solides 2
1.1	Détermination de la masse d'un solide 2
1.2	Centre d'inertie d'un solide
1.3	Grandeurs inertielles d'un solide
2	Cinétique et dynamique du solide indéformable 3
2.1	Le torseur cinétique
2.2	Le torseur dynamique
2.3	Énergie cinétique
3	Principe fondamental de la dynamique 3
4	Théorème de l'énergie puissance 3
5	Méthodologie 3

Caractéristiques d'inertie des solides

L'inertie d'un solide peut se « caractériser » par la résistance ressentie lorsqu'on souhaite mettre un solide en mouvement. Pour un mouvement de translation, la connaissance de la masse permet de déterminer l'effort nécessaire à la mettre en mouvement. Pour un mouvement de rotation, il est nécessaire de connaître la répartition de la masse autour de l'axe de rotation.

Exemple

- Couple pour faire tourner une hélice bipale, tripale, quadripale.
- Couple pour faire tourner une bille et effort pour faire translater une bille.

Détermination de la masse d'un solide

Définition 1.1.1

Définition

On peut définir la masse M d'un système matériel (solide) S par :

$$M = \int_{S} dm = \int_{P \in V} \mu(P) dv$$

- μ(P) la masse volumique au point P;
 dν un élément volumique de S.

Principe de conservation de la masse

Centre d'inertie d'un solide 1.2

1.2.1

Définition — Centre d'inertie d'un solide. La position du centre d'inertie G d'un solide S est définie par $\int_{P \cap G} \overrightarrow{GP} dm = \overrightarrow{0}.$

Pour déterminer la position du centre d'inertie d'un solide S, on passe généralement par l'origine du repère associé à S. On a alors $\int_{P \in S} \overrightarrow{GP} \, dm = \int_{P \in S} \left(\overrightarrow{GO} + \overrightarrow{OP} \right) dm = \overrightarrow{0} \iff \int_{P \in S} \overrightarrow{OG} \, dm = \int_{P \in S} \overrightarrow{OP} \, dm \iff M \overrightarrow{OG} = \int_{P \in S} \overrightarrow{OP} \, dm.$

Méthode Pour déterminer les coordonnées (x_G, y_G, z_G) du centre d'inertie G du solide S dans la base $(O; \overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z})$, on a donc:

$$\begin{cases} M x_G = \mu \int_{P \in S} x_P \, dV \\ M y_G = \mu \int_{P \in S} y_P \, dV \\ M z_G = \mu \int_{P \in S} z_P \, dV \end{cases}$$

- d*V* : un élément volumique de *S* ;
- μ : la masse volumique supposée constante.

Pour simplifier les calculs, on peut noter que le centre d'inertie appartient au(x) éventuel(s) plan(s) de symétrie du solide.

Centre d'inertie d'un solide constitué de plusieurs solides

Soit un solide composé de n solides élémentaires dont la position des centres d'inertie G_i et les masses M_i sont connues. On note $M = \sum_{i=1}^{n} M_i$. La position du centre d'inertie G de l'ensemble S est donné par :

$$\overrightarrow{OG} = \frac{1}{M} \sum_{i=1}^{n} M_i \overrightarrow{OG_i}.$$

- 1.2.3 Théorème de Guldin
- 1.2.3.1 Centre d'inertie d'une courbe plane
- 1.2.3.2 Centre d'inertie d'une surface plane
 - 1.3 Grandeurs inertielles d'un solide
 - 1.3.1 Matrice d'inertie
 - 1.3.2 Moment d'inertie
 - 1.3.3 Propriétés des matrices d'inertie
 - 1.3.4 Théorème de Huygens
 - 1.3.5 Rotation de la matrice d'inertie
 - 2 Cinétique et dynamique du solide indéformable
 - 2.1 Le torseur cinétique
 - 2.1.1 Définition
 - 2.1.2 Cas particuliers
 - 2.2 Le torseur dynamique
 - 2.2.1 Définition
 - 2.2.2 Cas particuliers
 - 2.3 Énergie cinétique
 - 2.3.1 Définition
 - 2.3.2 Cas du solide indéformable
 - 2.3.3 Cas d'un système de solide
 - 2.3.4 Inertie équivalente
 - 3 Principe fondamental de la dynamique
 - 4 Théorème de l'énergie puissance
 - 5 Méthodologie

Références

[1] Émilien Durif, Approche énergétique des systèmes, Lycée La Martinière Monplaisir, Lyon.