Data Mining und Maschinelles Lernen Häufige Mengen und PageRank

"Data Mining is a non-trivial process of identifying valid, novel, potentially useful and ultimately understandable patterns in data."

— (Fayyad et al. 1996)

Gliederung

Apriori

Ranking von Web-Seiten

Data Mining: Beispiel

Anwendung: Optimierung von Supermärkten **Ziel:** häufig gemeinsam gekaufte Dinge gruppieren

- Datengrundlage:
 - Logfiles von Registrierkassen
- Häufig zitiertes Beispiel:
 - Windeln und Bier
 - wahrscheinlich ein Mythos...
- Populäre Anwendung im Netz
 - Recommender-Systeme
 - Kunden, die A kauften, kauften auch B

Lernen von Assoziationsregeln

Gegeben:

- Eine Menge von Einkäufen, z.B.
 - Nudeln, Tomaten, Basilikum, Tageszeitung
 - Brötchen, Tageszeitung
 - Nudeln, Tomaten, Hackfleisch, Basilikum, Zigaretten
 - **.**

Finde:

- Häufige Muster in Form von Regeln, z.B.
 - Wenn Nudeln, dann auch Tomaten
 - Wenn Hackfleisch und Basilikum, dann auch Nudeln und Tomaten
 - Wenn Brötchen, dann auch Tageszeitung

Lernen von Assoziationsregeln

Gegeben:

- ► R eine Menge von Objekten, die binäre Werte haben
- ightharpoonup t eine Transaktion, $t \subseteq R$
- r eine Menge von Transaktionen
- $ightharpoonup s_{min} \in [0, 1]$ die minimale Unterstützung,
- ► $conf_{min} \in [0, 1]$ die minimale Konfidenz

Finde alle Regeln *c* der Form $X \rightarrow Y$, wobei $X \subseteq R$, $Y \subseteq R$, $X \cap Y = \{\}$

$$s(r,c) = \frac{|\{t \in r \mid X \cup Y \subseteq t\}|}{|r|} \ge s_{min}$$
 (1)

$$conf(r,c) = \frac{|\{t \in r \mid X \cup Y \subseteq t\}|}{|\{t \in r \mid X \subseteq r\}|} \ge conf_{min}$$
 (2)

Binäre Datenbanken

Sei R eine Menge von Objekten, die binäre Werte haben, und r eine Menge von Transaktionen, dann ist $t \in r$ eine Transaktion und die Objekte mit dem Wert 1 sind eine Teilmenge aller Objekte.

$$R = \{A, B, C\}$$
$$t = \{B, C\} \subseteq R$$

Α	В	С	ID
0	1	1	1
1	1	0	2
0	1	1	3
1	0	0	4

Warenkorbanalyse

Aftershave	Bier	Chips	EinkaufsID
0	1	1	1
1	1	0	2
0	1	1	3
1	0	0	4

Verband

Ordnungsrelation

- ► Hier ist die Ordnungsrelation die Teilmengenbeziehung.
- ► Eine Menge S_1 ist größer als eine Menge S_2 , wenn $S_1 \supseteq S_2$.
- Eine kleinere Menge ist allgemeiner.

Assoziationsregeln

LH: Assoziationsregeln sind keine logischen Regeln!

- ► In der Konklusion können mehrere Attribute stehen
- Attribute sind immer nur binär.
- Mehrere Assoziationsregeln zusammen ergeben kein Programm.

LE: Binärvektoren (Transaktionen)

Attribute sind eindeutig geordnet.

Aufgabe:

Aus häufigen Mengen Assoziationsregeln herstellen

Apriori Algorithmus

LH des Zwischenschritts: Häufige Mengen $L_k = X \cup Y$ mit k Objekten (large itemsets, frequent sets)

- Wenn eine Menge häufig ist, so auch all ihre Teilmengen. (Anti-Monotonie)
- Wenn eine Menge selten ist, so auch all ihre Obermengen. (Monotonie)
- ▶ Wenn X in L_{k+1} dann alle $S_i \subseteq X$ in L_k (Anti-Monotonie)
- Alle Mengen L_k , die k-1 Objekte gemeinsam haben, werden vereinigt zu L_{k+1} .

Dies ist der Kern des Algorithmus, die Kandidatengenerierung.

Beispiel

- ► Wenn {A, B, C} häufig ist, dann sind auch {A, B}, {A, C}, {B, C} häufig.
- Das bedeutet, daß{A, B}, {A, C}, {B, C} (k = 2) häufig sein müssen, damit {A, B, C} (k + 1 = 3) häufig sein kann.
- Also ergeben die häufigen Mengen aus L_k die Kandidaten C_{k+1}

Beispiel

Gesucht werden Kandidaten mit k + 1 = 5 (also k=4)

 $L_4 = \{\{ABCD\}, \{ABCE\}, \{ABDE\}, \{ACDE\}, \{BCDE\}\}\}$ die aktuellen häufigen Mengen k - 1 Stellen gemeinsam vereinigen zu:

- denn die müssen schon häufug gewesen sein $I = \{ABCDE\}$
- Sind alle k langen Teilmengen von l in L₄? {ABCD}{ABCE}{ABDE}{ACDE}{BCDE} - ja!
- ▶ Dann wird / Kandidat C₅.

$$L4 = \{\{ABCD\}, \{ABCE\}\}\$$

- $I = \{ABCDE\}$
 - Sind alle Teilmengen von I in L₄? {ABCD}{ABCE}{ABDE}{ACDE}{BCDE} - nein!
 - Dann wird / nicht zum Kandidaten.

Kandidatengenerierung

- \triangleright Erzeuge-Kandidaten(L_k)
 - $C_{k+1} := \{\}$
 - For all l_1 , l_2 in L_k , sodass

$$l_1 = \{i_1, \dots, i_{k-1}, i_k\}$$
 und
 $l_2 = \{i_1, \dots, i_{k-1}, i'_k\}i'_k < i_k$

effiziente Aufzählung aller Teilmengen

- $I := \{i_1, \dots, i_{k-1}, i_k, i'_k\}$
- ▶ if alle k-elementigen Teilmengen von I in L_k sind, then

$$C_{k+1} := C_{k+1} \cup \{I\}$$

- return C_{k+1}
- Prune(C_{k+1} , r) vergleicht Häufigkeit von Kandidaten mit s_{min} .

behalte nur die Kandidaten, die über dem Threshold der Häufigkeiten sein.

Häufige Mengen

- ightharpoonup Häufige-Mengen(R, r, s_{min})
 - $C_1 := \bigcup_{i \in B} i, k = 1$
 - $ightharpoonup L_1 := Prune(C_1)$
 - \blacktriangleright while $L_k \neq \{\}$
 - $ightharpoonup C_{k+1} := \text{Erzeuge-Kandidaten}(L_k)$
 - $ightharpoonup L_{k+1} := Prune(C_{k+1}, r)$
 - k := k + 1
 - return $\bigcup_{j=2}^{k} L_j$

APRIORI

- Apriori(R, r, s_{min}, conf_{min})
 - $ightharpoonup L := Häufige-Mengen(R, r, s_{min})$
 - c :=Regeln (L, conf_{min})
 - return c

Regelgenerierung

Aus den häufigen Mengen werden Regeln geformt. Wenn die Konklusion länger wird, kann die Konfidenz sinken. Die Ordnung der Attribute wird ausgenutzt:

$$conf_1 \ge conf_2 \ge \cdots \ge conf_k$$

Was wissen Sie jetzt?

- Assoziationsregeln sind keine logischen Regeln.
- Anti-Monotonie der Häufigkeit: Wenn eine Menge häufig ist, so auch all ihre Teilmengen.
- Man erzeugt häufige Mengen, indem man häufige Teilmengen zu einer Menge hinzufügt und diese Mengen dann auf Häufigkeit testet. Bottom-up Suche im Verband der Mengen.
- Monotonie der Seltenheit: Wenn eine Teilmenge selten ist, so auch jede Menge, die sie enthält.
- Man beschneidet die Suche, indem Mengen mit einer seltenen Teilmenge nicht weiter betrachtet werden.

Probleme von Apriori

- Im schlimmsten Fall ist Apriori exponentiell in R, weil womöglich alle Teilmengen gebildet würden. In der Praxis sind die Transaktionen aber spärlich besetzt. Die Beschneidung durch s_{min} und conf_{min} reicht bei der Warenkorbanalyse meist aus.
- Apriori liefert unglaublich viele Regeln.
- Die Regeln sind höchst redundant.
- Die Regeln sind irreführend, weil die Kriterien die a priori Wahrscheinlichkeit nicht berücksichtigen. Wenn sowieso alle Cornflakes essen, dann essen auch hinreichend viele Fußballer Cornflakes.

Prinzipien für Regelbewertungen

- 1. $RI(A \rightarrow B) = 0$, wenn $|A \rightarrow B| = \frac{(|A||B|)}{|r|}$ A und B sind unabhängig.
- 2. $RI(A \rightarrow B)$ steigt monoton mit $|A \rightarrow B|$.
- 3. $RI(A \rightarrow B)$ fällt monoton mit |A| oder |B|.

Also:

- ► RI > 0, wenn $|A \rightarrow B| > \frac{(|A||B|)}{|r|}$, d.h. wenn A positiv mit B korreliert ist.
- ► RI < 0, wenn $|A \rightarrow B| > \frac{(|A||B|)}{|r|}$, d.h. wenn A negativ mit B korreliert ist.

Wir wissen, dass immer $|A \rightarrow B| \le |A| \le |B|$ gilt, also

- $ightharpoonup RI_{min}$, wenn $|A \rightarrow B| = |A|$ oder |A| = |B|
- $ightharpoonup RI_{max}$, wenn $|A \rightarrow B| = |A| = |B|$

Piatetsky-Shapiro 1991

Konfidenz

- ▶ Die Konfidenz erfüllt die Prinzipien nicht! (Nur das 2.) Auch unabhängige Mengen A und B werden als hoch-konfident bewertet.
- Die USA-Census-Daten liefern die Regel

aktiv-militär → kein-Dienst-in-Vietnam

mit 90% Konfidenz. Tatsächlich ist *s*(kein-Dienst-in-Vietnam) = 95% Es wird also wahrscheinlicher, wenn aktiv-militär gegeben ist!

 Gegeben eine Umfrage unter 2000 Schülern, von denen 60% Basketball spielen, 75% Cornflakes essen. Die Regel

Basketball → Cornflakes

hat Konfidenz 66% Tatsächlich senkt aber Basketball die Cornflakes Häufigkeit!

Signifikanztest

► Ein einfaches Maß, das die Prinzipien erfüllt, ist:

$$|A \rightarrow B| - \frac{|A||B|}{|r|}$$

▶ Die Signifikanz der Korrelation zwischen *A* und *B* ist:

$$\frac{|A \rightarrow B| - \frac{|A||B|}{|r|}}{\sqrt{|A||B|\left(1 - \frac{A}{r}\right)\left(1 - \frac{|B|}{|r|}\right)}}$$

Was wissen Sie jetzt?

- Sie haben drei Prinzipien für die Regelbewertung kennengelernt:
 - Unabhängige Mengen sollen mit 0 bewertet werden.
 - Der Wert soll h\u00f6her werden, wenn die Regel mehr Belege hat.
 - Der Wert soll niedriger werden, wenn die Mengen weniger Belege haben.
- Sie haben Maße kennen gelernt, die den Prinzipien genügen:
 - Einfaches Maß und
 - statistisches Maß

Web Mining

Das WWW hat zu einer Menge interessanter Forschungsaufgaben geführt. Unter anderem gibt es:

- Indexieren von Web-Seiten für die Suche machen wir hier nicht
- Analysieren von Klick-Strömen web usage mining kommt später
- Co-Citation networks machen wir hier nicht
- Finden häufiger Muster in vernetzten Informationsquellen
- Ranking von Web-Seiten

Das Web und das Internet als Graph

Webseiten sind Knoten, verbunden durch Verweise. Router und andere Rechner sind Knoten, physikalisch verbunden.

WORLD-WIDE WEB

INTERNET

Ranking von Web-Seiten

Was sind besonders wichtige Seiten?

- Eine Seite, von der besonders viele Links ausgehen, heißt expansiv.
- Eine Seite, auf die besonders viele links zeigen, heißt beliebt.
- ▶ Wie oft würde ein zufälliger Besucher auf eine Seite i kommen? Zufällige Besuche von einer beliebigen Startseite aus:
 - Mit der Wahrscheinlichkeit α folgt man einer Kante der aktuellen Seite (Übergangswahrscheinlichkeit).
 - Mit der Wahrscheinlichkeit 1α springt man auf eine zufällige Seite, unter der Annahme, dass die Seiten gleich verteilt sind (Sprungwahrscheinlichkeit).

Der Rang einer Seite *PageRank(i)* ist der Anteil von *i* an den besuchten Knoten.

Zufalls-Surfermodell: PageRank

Matrix M_{ij} für Kanten von Knoten j zu Knoten i; n(j) ist die Anzahl der von j ausgehenden Kanten; N Knoten insgesamt.

$$\begin{pmatrix} & 1 & \dots & & N \\ 1 & 0 & \dots & & M_{1N} \\ \vdots & \dots & M_{ij} = 1/n(j) & \dots \\ N & \dots & \dots & 0 \end{pmatrix}$$

Matrix $N \times N$ mit den Einträgen 1/N gibt die Gleichverteilung der Knoten an (Sprungwahrscheinlichkeit).

Die Wahrscheinlichkeit, die Seite zu besuchen, ist die Summe von Sprung- und Übergangswahrscheinlichkeit, angegeben in $N \times N$ Matrix M':

$$M' = (1 - \alpha) \left[\frac{1}{N} \right] + \alpha M \tag{3}$$

PageRank

Eigenvektoren von M' geben den Rang der Knoten an.

Man kann das Gleichungssystem für $\alpha <$ 1 lösen:

$$Rang_i = (1 - \alpha) \left[\frac{1}{N} \right] + \alpha \sum_i M^{-1} ij$$

PageRank ist der rekursive Algorithmus:

$$Rang_{i} = \frac{1 - \alpha}{N} + \alpha \sum_{\forall i \in f(i, h)} \frac{Rang_{i}}{n(j)}$$
 (4)

PageRank Beispiel

Mit α = 0, 85 hier ein kleines Beispiel (wikipedia). Die Größe der Kreise entspricht der Wahrscheinlichkeit, mit der ein Surfer auf die Seite kommt. Seite C wird nur von einer einzigen, aber gewichtigeren Seite verlinkt und hat also einen höheren PageRank als Seite E, obwohl E von sechs Seiten verlinkt wird.

Was wissen Sie jetzt?

- Sie kennen jetzt die Grundlage des Ranking von Web-Seiten und einige Probleme.
- PageRank schätzt die Wahrscheinlichkeit ab, auf die Seite zu kommen, indem es Kanten folgt und zufällig auf Knoten springt. Dabei verwendet es die Wahrscheinlichkeit α als Gewicht der Übergangswahrscheinlichkeiten und $1-\alpha$ als Gewicht der Sprungwahrscheinlichkeit.