Beobachtung

Abb. 7.3 zeigt die Orginalbeobachtungen von Dyce, Pettengill & Shapiro, die mit dem 300 m-Radioteleskop in Arecibo, Puerto Rico, am 17. August 1967 aufgenommen wurden. Das oberste Signal stammt vom SRP, die relative Zeitverzögerung Δt der anderen Reflektionsregionen ist in μ s angegeben.

- 1. Bestimme für $\Delta t \neq 0$ µs jeweils die Abstände der äußersten beiden Intensitätsmaxima bezüglich der eingezeichneten Nulllinie.
- 2. Vermesse die *x*-Achse des Diagramms zur Kalibration.

Auswertung

- 1. Berechne den Versatz d (Gl. 7.1 mit $c \approx 3 \times 10^8 \,\mathrm{m\,s^{-1}}$).
- 2. Der Radius des Merkurs ist $R \approx 2,44 \times 10^6$ m. Bestimme die geometrischen Größen x und y nach Gl. 7.2.
- 3. Mittle den jeweiligen linksseitigen und rechtsseitigen Maximumsabstand und rechne die Werte anhand der Kalibration in Hz um.
- 4. Da sich Merkur sowohl bezüglich des einlaufenden als auch des auslaufenden Signals bewegt, wird der Radarimpuls zweimal dopplerverschoben. Die gesuchte Frequenzverschiebung Δf entspricht somit gerade der Hälfte der zuvor gemittelten Signalbreite. Mit der ursprünglichen Frequenz $f=430\,\mathrm{MHz}$ kann nach Gl. 7.4 die Radialgeschwindigkeit v_0 für jede Reflektionsregion bestimmt werden.
- 5. Berechne v nach Gl. 7.3 und mittle den Wert aller vier Regionen.
- 6. Für die Rotationsperiode *P* gilt:

$$P = \frac{2\pi R}{v}$$
 (Literaturwert: $P = 58,65 \,\mathrm{d}$)

Das Radarsignal wurde 616,125 s nach dem Aussenden wieder empfangen.

7. Berechne aus dieser Laufzeit den Abstand Arecibo – SRP zum Zeitpunkt der Messung. (Literaturwert: 0,517 au (kleinster Abstand), 1,483 au (größter Abstand))

Material

Abbildung 7.3.: Radarecho $(f=430\,\mathrm{MHz})$ des Merkurs aufgezeichnet bei 5 Zeitverzögerungen Δt (Zeitangabe in μ s).