CMSC330 Spring 2019 Midterm 2 11:00am / 12:15pm / 2:00pm

Solution

Name (PRINT YOUR NAME as it appears on gradescope):

Discussion Time (circle one)

10am 11am 12pm 1pm 2pm 3pm

Instructions

- Do not start this test until you are told to do so!
- You have 75 minutes to take this midterm.
- This exam has a total of 100 points, so allocate 45 seconds for each point.
- This is a closed book exam. No notes or other aids are allowed.
- Answer essay questions concisely in 2-3 sentences. Longer answers are not needed.
- For partial credit, show all of your work and clearly indicate your answers.
- Write neatly. Credit cannot be given for illegible answers.

	Problem	Score
1	PL Concepts	/13
2	Finite Automata	/31
3	Context Free Grammars	/17
4	Parsing	/16
5	Operational Semantics	/10
6	Lambda Calculus	/13
	Total	/100

1. PL concepts [13 pts]

A) [5 pts] Circle true or false for each of the following 5 questions (1 point each)

True / False In OCaml, if an exception is thrown, then the executing program will terminate

True / False OCaml variables are immutable

True / False If x and y are aliases, changing the content in the location referenced by x will

cause it to no longer be an alias of y

True / False If a lambda calculus expression reduces to a beta-normal form using

call-by-value order, then it will also do so using call-by-name

True / False You can create a cyclic data structure in OCaml (i.e., one that points to itself)

B) [4 pts] Consider the following OCaml definitions for f, g, and h (each is a int -> int function).

Answer:

Which of these functions is not referentially transparent?	either g or h
Which function's execution outcome depends on OCaml's evaluation order	h
What is a side effect carried out by at least one of the functions?	Printing or incrementing
Which function's execution is <i>only</i> interesting/useful because of its side effects, not what it returns?	h

C) [4 pts] Check the box next to each function that is tail recursive (they all type check and run properly).

```
let rec sum lst =
  match lst with
  [] -> 0
  | h::t-> h + sum t
```

```
let rec max lst r =
  match lst with
  [] -> r
  | h::t ->
      if r>h then max t r
      else max t h
```

```
let rec pow2 x =
   if x = 1 then true
   else
    let y = x/2 in
    if y*2 = x then pow2 y
    else false
```

```
let rec prod lst =
    match lst with
    [] -> 1
    | h::t -> (prod t) * h
```

2. Finite Automata [31 pts]

A) [4 pts] Circle true or false for each of the following 4 questions (1 point each)

True / False NFAs are more expressive than DFAs (i.e., they can describe more languages)

True / False Every CFG has an equivalent NFA

True / False Every formal language has a unique DFA that generates it

True / False Regexes are more expressive (can generate more languages) than DFAs

B) [6 pts] For each of the following statements, check the DFA box if it's true for DFAs, and the NFA box for NFAs. You may check neither or both boxes.

□dfa Ø nfa	Can transition to multiple states at once with a symbol
□dfa Ø nfa	Can have epsilon transitions
Ø DFA Ø NFA	Can have multiple final states
□dfa □nfa	Always has at least one final state
□dfa Ø nfa	Easy to translate directly from a regular expression
Ø DFA Ø NFA	Can accept an empty string

C) [6 pts] Draw a DFA that is equivalent to the following NFA.

D) [4 pts] Circle any of the following strings that would be accepted by the nfa from the previous problem.

aba abbbbba aa abaa

E) [6 pts] Draw an NFA that accepts the same language as the regex $(\mathbf{a}^*\mathbf{b})|(\mathbf{cd})$. Here are some examples this NFA will accept: \mathbf{b} , \mathbf{ab} , \mathbf{cd} , \mathbf{aaaaab}

F) [5 pts] Draw a DFA that accepts strings of the form $\mathbf{a}^n \mathbf{b}^n$ where $0 \le n \le 3$ over $\Sigma = \{ \mathbf{a}, \mathbf{b} \}$

Solution:

3. Context Free Grammars [17 pts]

A) [4 pts] Check the box next to the strings that are accepted by the following CFG. Note that here and below all nonterminals are in italics (like T and W) and terminals are in bold (like a, b).

$$T oup aW \mid b$$
 $W oup b \mid bT \mid aW$
 \square abba

 \square aaabb

 \square baa

 \square aab

B) [5 pts] Create a CFG for the language of all strings of the form $n^x f^z a^y$ where $x \ge y \ge 0$ and z > 0. Example strings in the language are nfa, f, nnnfaa. Example strings *not* in the language are a, n, fa, nfaa.

Solution:

C) [4 pts] Rewrite the following grammar so that it can be parsed by a recursive descent parser. Note that parentheses and commas, below, are terminals (along with \mathbf{r} , \mathbf{u} , and \mathbf{o}).

$$S \rightarrow A$$
)
 $A \rightarrow A$, r | A, u | (o

Solution:

$$S \rightarrow A)$$

 $A \rightarrow (oB$
 $B \rightarrow ,rB \mid ,uB \mid \varepsilon$

D) [4 pts] The following CFG is ambiguous. Rewrite the grammar to remove the ambiguity. Note that minus sign is a terminal (along with 1, 2, and 3).

$$E \rightarrow E - E \mid N$$

 $N \rightarrow 1 \mid 2 \mid 3$

$$E \rightarrow N - E \mid N$$
 $N \rightarrow 1 \mid 2 \mid 3$

4. Parsing and Scanning [16 pts]

A) [3 pts] Recall the scanner for SmallC. Suppose, when you tokenize the variable "for2", your tokenizer returned [Tok_ID("for");Tok_Int(2)] instead of [Tok_ID("for2")]. How would you fix this? (Write 1-2 sentences only.)

Solution:

Use a regular expression that captures all IDs (i.e. upper & lower letters and digits). Then check the captured term against a list of keywords. If the term doesn't match any keyword, it must be just an ID.

B) [5 pts] Consider the following CFG. Compute the first sets for each nonterminal.

FIRST(S) =
$$\{m, a\}$$

FIRST(A) = $\{c, \epsilon\}$
FIRST(B) = $\{1, d, m, a, c, o\}$

$$S \rightarrow mB \mid aA$$

 $A \rightarrow cS \mid \epsilon$
 $B \rightarrow 1\#S \mid dB \mid St \mid Ao$

C) [8 pts] Complete the implementation for a recursive-descent parser for the provided CFG, given on the next page. Write your answer on the next page.

(scratch space, do not write your final answer here)

```
exception ParseError of string
let tok_list = ref [];;
                                                             S \rightarrow mB \mid aA
let match_tok x = match !tok_list with
|(h::t)| when x = h \rightarrow tok_list := t
|_ -> raise (ParseError "bad match")
                                                             B → 1#S | dB | St | Ao
let lookahead () = match !tok_list with
|[] -> None
|(h::t) -> Some h
let rec Parse_S() =
      if lookahead() = Some "m" then
             (match_tok "m"; Parse_B())
      else (* fill-in below *)
      if Lookahead() = Some "a" then
             (match_tok "a"; Parse_A())
      eLse
             raise(Parse Error "not valid input")
and Parse_A() =
      if lookahead() = Some "c" then (* fill-in below *)
             (match tok "c"; parse S())
      eLse
             ()
and Parse_B() =
      if lookahead() = Some "1" then
             (match_tok "1"; match_tok "#"; parse_S())
      else (* fill-in below *)
      if Lookahead() = Some "d" then
             (match tok "d"; Parse B())
      else if Lookahead() = Some "m" || Lookahead = Some "a" then
             (parse_S(); match_tok"t")
      else if lookahead() = Some "c" || lookahead() = Some "o" then
             (parse_A(); match_tok "o")
      else
             raise(Parse Error "not valid input")
```

5. Operational Semantics [10 pts]

A) [5 pts] Using the rules given below, show: let x = 1 in $1 + x \rightarrow 2$

In the rules, e refers to an expression whose abstract syntax tree (AST) is defined by the following grammar, where x is an arbitrary identifier and n is an integer.

$$v := n$$

e := x | v | let x = e in e | e + e

$$\operatorname{Id} \frac{A(x) = v}{A; x \longrightarrow v} \qquad \operatorname{Int} \frac{A}{A; n \longrightarrow n}$$

B) [5 pts] Below are operational semantics rules for a simple language, where the abstract syntax tree for expressions e and values v defined as follows.

```
\begin{array}{c} \textit{v} ::= \text{false} \mid \text{true} \\ e ::= \textit{v} \mid \text{not } e \mid \text{if } e1 \text{ then } e2 \\ \\ \text{true} \quad \hline true \longrightarrow true \qquad \qquad \text{false} \quad \hline false \longrightarrow false \qquad \qquad \text{not} \\ \hline \\ e1 \longrightarrow true \\ \hline \\ e2 \longrightarrow v \\ \hline \\ if \ e1 \ then \ e2 \longrightarrow v \\ \hline \\ \hline \\ if \ e1 \ then \ e2 \longrightarrow v \\ \hline \\ \hline \\ if \ e1 \ then \ e2 \longrightarrow true \\ \hline \end{array}
```

Write a function eval of type exp -> exp, where exp is the OCaml representation of e:

The eval function evaluates an expression in a manner consistent with the rules. For example:

6. Lambda Calculus [13 pts]

A) [2 pts] Circle the **free variables** in the following λ -term:

$$\lambda x. y (\lambda z.z y x) z$$

B) [2 pts] Write a lambda calculus term that is α -equivalent to the one above.

Solution:

Examples: $\lambda x. y (\lambda z. z y x) z$ $\lambda a. y (\lambda b. b y a) z$

C) [4 pts] Circle true or false for the following questions (1 point each)

True / False The beta-normal form of $(\lambda x.y z) z$ is y z

True / False The fixpoint combinator Y is used in lambda calculus to achieve recursion

True / False A Church numeral is the encoding of a real number as a lambda calculus term

True / False The expression (λx . y) z encodes let x = y in z

D) [5 pts] Reduce the following lambda expressions into beta-normal form. Show each beta reduction. If already in normal form or infinite reduction, write "normal form" or "infinite reduction", respectively.

```
1) (\lambda x. (\lambda y. y x) (\lambda z. x z)) (\lambda y. y y)
```

$$\Rightarrow$$
 $(\lambda x. (\lambda z. x z) x) (\lambda y. y y)$

$$\Rightarrow (\lambda x. xx) (\lambda y. yy)$$
$$\Rightarrow (\lambda y. yy) (\lambda y. yy)$$

Infinite reduction

2)
$$(\lambda x. x y z) (\lambda y. z)$$

$$\Rightarrow$$
 $(\lambda y. z) y z$
 $\Rightarrow z z$

11