

Neural Logic Reasoning

N'dah Jean Kouagou

Data Science Group Paderborn University

September 03, 2021

▶ Motivation

- Model
 - ► Model Architecture LINN

- ► Training
 - ► Loss Functions
- ightharpoonup Logical Regularizers and L_2 Regularization

- ► Evaluation
 - ► On Synthetic Data
- ► On Recommendation Systems

Motivation

- Generalization power of deep neural networks and reasoning capability of symbolic systems
- Solving real world tasks usually requires both reasoning and generalization capabilities

- ► The authors proposed Logic Integrated Neural Network (LINN)
- ► The Model is dynamic

- ► The authors proposed Logic Integrated Neural Network (LINN)
- ► The Model is dynamic

- ► Logic variables are represented as vectors
- Each logic operation AND, OR, and NOT are represented as neural modules

- Logic variables are represented as vectors
- Each logic operation AND, OR, and NOT are represented as neural modules
- ► The authors used MLP architecture for logic operations:

$$\begin{aligned} \textbf{AND}(w_i, w_j) &= H_{a2} \textit{ReLU}(H_{a1}(w_i \oplus w_j) + b_a) \\ \textbf{NOT}(w) &= H_{n2} \textit{ReLU}(H_{n1}(w) + b_n), \end{aligned}$$

- Logic variables are represented as vectors
- Each logic operation AND, OR, and NOT are represented as neural modules
- The authors used MLP architecture for logic operations:

$$\begin{aligned} \textbf{AND}(w_i, w_j) &= H_{a2} ReLU(H_{a1}(w_i \oplus w_j) + b_a) \\ \textbf{NOT}(w) &= H_{n2} ReLU(H_{n1}(w) + b_n), \end{aligned}$$

where $H_{a1} \in \mathbb{R}^{d \times 2d}$, $H_{a2} \in \mathbb{R}^{d \times d}$, $b_a \in \mathbb{R}^d$, $H_{n1} \in \mathbb{R}^{d \times d}$, $H_{n2} \in \mathbb{R}^{d \times d}$, $h_a \in \mathbb{R}^d$, h

Loss Functions

► Two task-specific loss functions are considered:

$$L_t = L_{ce} = -\sum_i y_i \log(p_i) + (1 - y_i) \log(1 - p_i)$$
 (1)

$$L_t = L_{bpr} = -\sum_{e^+} \log(sigmoid(p(e^+) - p(e^-)))$$
 (2)

► The first is the Cross-entropy loss, and the second is the Bayesian Personalized Ranking Loss

Logic Regularizers and L_2 Regularization \Re DICE

	Logical Rule	Equation	Logic Regularizer r_i
NOT	Negation Double Negation	$\neg T = F$ $\neg (\neg w) = w$	$r_1 = \sum_{\mathbf{w} \in W \cup \{T\}} Sim(\text{NOT}(\mathbf{w}), \mathbf{w})$ $r_2 = \sum_{\mathbf{w} \in W} 1 - Sim(\text{NOT}(\text{NOT}(\mathbf{w})), \mathbf{w})$
AND	Identity Annihilator Idempotence Complementation	$w \wedge T = w$ $w \wedge F = F$ $w \wedge w = w$ $w \wedge \neg w = F$	$\begin{aligned} r_3 &= \sum_{\mathbf{w} \in W} 1 - Sim(\text{AND}(\mathbf{w}, \mathbf{T}), \mathbf{w}) \\ r_4 &= \sum_{\mathbf{w} \in W} 1 - Sim(\text{AND}(\mathbf{w}, \mathbf{F}), \mathbf{F}) \\ r_5 &= \sum_{\mathbf{w} \in W} 1 - Sim(\text{AND}(\mathbf{w}, \mathbf{w}), \mathbf{w}) \\ r_6 &= \sum_{\mathbf{w} \in W} 1 - Sim(\text{AND}(\mathbf{w}, \text{NOT}(\mathbf{w})), \mathbf{F}) \end{aligned}$
OR	Identity Annihilator Idempotence Complementation	$w \lor F = w$ $w \lor T = T$ $w \lor w = w$ $w \lor \neg w = T$	$r_7 = \sum_{\mathbf{w} \in W} 1 - Sim(OR(\mathbf{w}, \mathbf{F}), \mathbf{w})$ $r_8 = \sum_{\mathbf{w} \in W} 1 - Sim(OR(\mathbf{w}, \mathbf{T}), \mathbf{T})$ $r_9 = \sum_{\mathbf{w} \in W} 1 - Sim(OR(\mathbf{w}, \mathbf{w}), \mathbf{w})$ $r_{10} = \sum_{\mathbf{w} \in W} 1 - Sim(OR(\mathbf{w}, NOT(\mathbf{w})), \mathbf{T})$

Logic Regularizers and L_2 **Regularization**

	Logical Rule	Equation	Logic Regularizer r_i
NOT	Negation Double Negation	$\neg T = F$ $\neg (\neg w) = w$	$r_1 = \sum_{\mathbf{w} \in W \cup \{T\}} Sim(NOT(\mathbf{w}), \mathbf{w})$ $r_2 = \sum_{\mathbf{w} \in W} 1 - Sim(NOT(NOT(\mathbf{w})), \mathbf{w})$
AND	Identity Annihilator Idempotence Complementation	$w \wedge T = w$ $w \wedge F = F$ $w \wedge w = w$ $w \wedge \neg w = F$	$\begin{aligned} r_3 &= \sum_{w \in W} 1 - Sim(\text{AND}(\mathbf{w}, \mathbf{T}), \mathbf{w}) \\ r_4 &= \sum_{w \in W} 1 - Sim(\text{AND}(\mathbf{w}, \mathbf{F}), \mathbf{F}) \\ r_5 &= \sum_{w \in W} 1 - Sim(\text{AND}(\mathbf{w}, \mathbf{w}), \mathbf{w}) \\ r_6 &= \sum_{w \in W} 1 - Sim(\text{AND}(\mathbf{w}, \text{NOT}(\mathbf{w})), \mathbf{F}) \end{aligned}$
OR	Identity Annihilator Idempotence Complementation	$w \lor F = w$ $w \lor T = T$ $w \lor w = w$ $w \lor \neg w = T$	$r_7 = \sum_{\mathbf{w} \in W} 1 - Sim(OR(\mathbf{w}, \mathbf{F}), \mathbf{w})$ $r_8 = \sum_{\mathbf{w} \in W} 1 - Sim(OR(\mathbf{w}, \mathbf{T}), \mathbf{T})$ $r_9 = \sum_{\mathbf{w} \in W} 1 - Sim(OR(\mathbf{w}, \mathbf{w}), \mathbf{w})$ $r_{10} = \sum_{\mathbf{w} \in W} 1 - Sim(OR(\mathbf{w}, NOT(\mathbf{w})), \mathbf{T})$

► The final loss for training LINN is:

$$L = L_t + \lambda_r \sum_{i} r_i + \lambda_w \sum_{w \in W} ||w||_F^2 + \lambda_{\Theta} ||\Theta||_F^2$$
 (3)

Evaluation – On Synthetic Data

- ► Generate *n* random logic variables and assign to each of them *T* or *F*
- ► Create *m* logic expressions from the generated variables

Evaluation – On Synthetic Data

- Generate n random logic variables and assign to each of them T or F
- Create m logic expressions from the generated variables

$$(\neg v_{80} \land v_{56} \land v_{71}) \lor (\neg v_{46} \land \neg v_7 \land v_{51} \land \neg v_{47} \land v_{26})$$

$$\lor v_{45} \lor (v_{31} \land v_{15} \land v_2 \land v_{46}) = T$$

$$(\neg v_{19} \land \neg v_{65}) \lor (v_{65} \land \neg v_{24} \land v_9 \land \neg v_{83})$$

$$\lor (\neg v_{48} \land \neg v_9 \land \neg v_{51} \land v_{75}) = F$$

$$\neg v_{98} \lor (\neg v_{76} \land v_{66} \land v_{13}) \lor (v_{97} \land v_{89} \land v_{45} \land v_{83}) = T$$

$$(v_{43} \land v_{21} \land \neg v_{53}) = F$$

Evaluation – On Synthetic Data

	$n = 1 \times 10^3, m = 3 \times 10^3$		$n = 1 \times 10^4, m = 3 \times 10^4$		
	Accuracy	RMSE	Accuracy	RMSE	
Bi-RNN [32]	0.6493 ± 0.0102	0.4736 ± 0.0032	0.6942 ± 0.0028	0.4492 ± 0.0009	
Bi-LSTM [11]	0.5933 ± 0.0107	0.5181 ± 0.0162	0.6847 ± 0.0051	0.4494 ± 0.0020	
CNN [19]	0.6380 ± 0.0043	0.5085 ± 0.0158	0.6787 ± 0.0025	0.4557 ± 0.0016	
LINN- R_l	0.8353 ± 0.0043	0.3880 ± 0.0069	0.9173 ± 0.0042	0.2733 ± 0.0065	
LINN	$0.9440 \pm 0.0064^*$	$0.2318 \pm 0.0124^*$	$0.9559 \pm 0.0006^*$	$0.2081 \pm 0.0018^{*}$	

^{*} Significantly better than the best of the other results (italic ones) with p < 0.05

Recommendation Systems

	ML-100k			Amazon Electronics			
	nDCG@10	Hit@1	time/epoch	nDCG@10	Hit@1	time/epoch	
BPRMF [31]	0.3664 ± 0.0017	0.1537 ± 0.0036	4.9s	0.3514 ± 0.0002	0.1951 ± 0.0004	112.1s	
SVD++ [21]	0.3675 ± 0.0024	0.1556 ± 0.0044	30.4s	0.3582 ± 0.0004	0.1930 ± 0.0006	469.3s	
STAMP [25]	0.3943 ± 0.0016	0.1706 ± 0.0022	8.3s	0.3954 ± 0.0003	0.2215 ± 0.0003	352.7s	
GRU4Rec [16]	0.3973 ± 0.0016	0.1745 ± 0.0038	7.1s	0.4029 ± 0.0009	0.2262 ± 0.0009	225.0s	
NARM [24]	0.4022 ± 0.0015	0.1771 ± 0.0016	9.6s	0.4051 ± 0.0006	0.2292 ± 0.0005	268.8s	
LINN-R _I	0.4022 ± 0.0027	0.1783 ± 0.0043	20.7s	0.4152 ± 0.0014	0.2396 ± 0.0019	498.0s	
LINN	$0.4064 \pm 0.0015^{\ast}$	$0.1850\pm0.0053^*$	30.7s	0.4191 ± 0.0012*	$0.2438 \pm 0.0014^{\circ}$	754.9s	

^{*} Significantly better than the best of other results (italic ones) with p < 0.05

9 random movies ranked on popularity

- 0.8

0.6

0.4

- 0.2

