Maths 721 Notes

2020

Contents

1	Lecture 1			
		Representations		
	1.2	FG-Modules	4	
2		ure 2 Module Reducibility	5	
3	Lecture 3			
	3.1	Module and Representation Reducibility	7	
		Group Algebras		
	3.3	The Regular FG-module, FG	9	

1 Lecture 1

In the first half of this course we will cover three main topics:

- representations;
- modules;
- characters.

We will further see that representations and modules are essentially the same, and that modules and characters are essentially the same; and hence all three are essentially the same.

From now on G is a group.

1.1 Representations

Definition 1.1. A **representation** of a group G over a field F is a group homomorphism from G to GL(n, F), where n is the **degree** of the representation.

Explicitly, a representation is a function $\rho: G \to \mathrm{GL}(n,F)$ such that for all $g,h \in G$;

- (i) $(gh)\rho = (g\rho)(h\rho)$,
- (ii) $1_G \rho = I_n$,
- (iii) $q^{-1}\rho = (q\rho)^{-1}$.

Note the use of the (incredibly shit) postfix function notation.

Example 1.2. Take D_4 , the Dihedral group of order 8. It has the following group presentations

$$D_4 = \langle a, b \mid a^4 = 1, b^2 = 1, a^b = a^{-1} \rangle$$

 $\cong \langle (1\ 2\ 3\ 4), (1\ 4)(2\ 3) \rangle,$

where $a^b = bab^{-1}$ is conjugation of a by b. By defining the matrix subgroup

$$H = \left\langle A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \right\rangle$$

and defining $\rho: D_4 \to \operatorname{GL}(n, F)$ where $F = \mathbb{R}, \mathbb{C}$, by $a \mapsto A$ and $b \mapsto B$, and $a^i b^j \mapsto A^i B^j$ for $0 \le i \le 3$, and $0 \le j \le 1$. Hence we have ρ is a representation of D_4 over F. \blacksquare **Example 1.3.** Take \mathbb{Q}_8 the Quaternion group of order 8, which has the following group presentations

$$\mathbb{Q}_8 = \langle a, b \mid a^4 = 1, a^2 = b^2, a^b = a^{-1} \rangle$$

$$\cong \langle \bar{a} = (1 \ 6 \ 2 \ 5)(3 \ 8 \ 4 \ 7), \bar{b} = (1 \ 4 \ 2 \ 3)(5 \ 7 \ 6 \ 8) \rangle$$

Define

$$H = \left\langle A = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}, B = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\rangle \subset \mathrm{GL}(2, \mathbb{C}).$$

Then $\rho: \mathbb{Q}_8 \to \mathrm{GL}(2,\mathbb{C})$ defined by $a^k b^\ell \mapsto A^k B^\ell$ is a group representation of \mathbb{Q}_8 over \mathbb{C} of degree 2.

Definition 1.4. Let G be a group and define

$$\rho: G \to \mathrm{GL}(n, F)$$
$$g\rho = I_n$$

for all $g \in G$. Then ρ is a representation, called the **trivial representation** of arbitrary of degree.

It follows from the trivial representation that any group G has a representation of an arbitrary degree.

Let $\rho: G \to \operatorname{GL}(n, F)$ be a group homomorphism, and take $T \in \operatorname{GL}(n, F)$. Then

$$(T^{-1}AT)(T^{-1}BT) = T^{-1}(AB)T.$$

Thus, given ρ define σ such that

$$q\sigma = T^{-1}(q\rho)T$$

for all $g \in G$. As for all $g, h \in G$, one has

$$(gh)\sigma = T^{-1}((gh)\rho)T$$

$$= T^{-1}(g\rho)(h\rho)T$$

$$= T^{-1}(g\rho)TT^{-1}(h\rho)T$$

$$= (g\sigma)(h\sigma),$$

and so σ is a group homomorphism; and hence a representation.

Definition 1.5. Define

$$\rho: G \to \mathrm{GL}(m, F), \qquad \sigma: G \to \mathrm{GL}(n, F)$$

to both be representation of G over F. We say that ρ is equivalent to σ if n=m and there exists $T \in GL(n, F)$ such that $g\sigma = T^{-1}(g\rho)T$.

Proposition 1.6. Equivalence of representations is an equivalence relation.

Proof. Reflexivity is clear by taking $T = I_n$. For symmetry, take T to be its inverse. For transitivity, if

$$g\sigma = T^{-1}(g\rho)T, \qquad g\rho = S^{-1}(g\eta)S,$$

then

$$g\sigma = (ST)^{-1}(g\eta)(ST).$$

Definition 1.7. Define the **kernel** of the representation $\rho: G \to GL(n, F)$ as $\ker \rho = \{g \in G \mid g\rho = I_n\}$.

Proposition 1.8. The kernel of a representation of G is a normal subgroup of G; i.e. $\ker \rho \triangleleft G$.

Proof. Suppose $g \in \ker \rho$ and $h \in G$ is arbitrary. Then

$$(hgh^{-1})\rho = (h\rho)(g\rho)(h^{-1}\rho) = (h\rho)I_n(h\rho)^{-1} = (h\rho)(h\rho)^{-1} = I_n,$$

and so $hgh^{-1} \in \ker \rho$. As $\ker \rho$ is closed under conjugation, it is a normal subgroup of G.

Definition 1.9. We say ρ is a **faithful** representation of G if $\ker \rho = \{1_G\}$.

Example 1.10. For the trivial representation $\rho: G \to \mathrm{GL}(n,F)$ with $g \mapsto I_n$ for all $g \in G$, we have $\ker \rho = G$. Hence the representation is not faithful.

Lemma 1.11. Suppose G is a finite group, and ρ is a representation of G over F. Then ρ is faithful if, and only if, im $\rho \cong G$.

Proof. Immediate from the first isomorphism theorem.

1.2 FG-Modules

Suppose G is a group, and $F = \mathbb{R}, \mathbb{C}$. Given $\rho : G \to GL(n, F)$, with $V = F^n$, let $v = (\lambda_1, \ldots, \lambda_n) \in V$ for $\lambda_i \in F$ be a row vector. Moreover, note that $g\rho$ is an $n \times n$ matrix for all $g \in G$. Thus, we have $v \cdot (g\rho) \in V$, and satisfies the following properties:

- (i) $v \cdot ((qh)\rho) = v \cdot (q\rho)(h\rho)$;
- (ii) $v \cdot (1_G \rho) = v$;
- (iii) $(\lambda v) \cdot (g\rho) = \lambda (v \cdot (g\rho));$
- (iv) $(u+v) \cdot (g\rho) = u \cdot (g\rho) + v \cdot (g\rho)$.

We often will omitted the \cdot in the operation, and write $v(a\rho)$ for $v \cdot (a\rho)$.

Example 1.12. Recall D_4 and its given presentation from a previous example. We have

$$a\rho = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \qquad b\rho = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

If $v = (\lambda_1, \lambda_2)$, then we have

$$v(a\rho) = (-\lambda_2, \lambda_1), \quad v(b\rho) = (\lambda_1, -\lambda_2).$$

Definition 1.13. Let V a vector space over the field $F = \mathbb{R}, \mathbb{C}$, and let G be a group. We say V is a FG-module if a multiplication $v \cdot g$ for $v \in V$, and $g \in G$ is defined such that:

- (i) $v \cdot g \in V$;
- (ii) $v \cdot (gh) = (v \cdot g) \cdot h$;
- (iii) $v \cdot 1_G = v$;
- (iv) $(\lambda v) \cdot g = \lambda (v \cdot g);$
- (v) $(u+v) \cdot g = u \cdot g + v \cdot g$.

This generalises the previous discussion from a matrix group to an arbitrary group.

Note that properties (i), (iv), and (v) imply that the map $v \mapsto v \cdot g$ is an endomorphism of V (a linear map from V to itself).

Definition 1.14. Suppose V is an FG-module and B is a basis for V. For $g \in G$, let $[g]_B$ denote the matrix of the endomorphism $v \mapsto v \cdot g$ of V relative to the basis B.

2 Lecture 2

Theorem 2.1. Let $\rho: G \to GL(n, F)$ be a representation of G over F.

- (I) If $V = F^n$ is an FG module and G acts on V by $v \cdot g = v(g\rho)$ there exists a basis B of V such that $g\rho = [g]_B$.
- (II) The map $g \mapsto [g]_B$ is a representation for G over F.

Proof. Choose the standard basis $B = [e_1, \ldots, e_n]$.

Since V is an FG-module we have v(gh) = (vg)h for all $g, h \in G$ and $v \in V$. Thus $[gh]_B = [g]_B[h]_B$ so the map is a homomorphism. We now check that $[g]_B$ is invertable for all $g \in G$. We know $v \cdot 1_G = (vg)g^{-1}$ so $I_n = [g]_B[g^{-1}]_B$ and thus $[g]_B$ has an inverse. \square

Example 2.2. Recall the representation of $G = D_4$ from a previous example. Define an FG-module $V = F^2$ with the action defined by taking vg to $v(g\rho)$.

$$v_1 = (1,0), \quad v_1 a = v_2, \quad v_1 b = v_1,$$

 $v_2 = (0,1), \quad v_1 a = -v_1, \quad v_1 b = -v_2.$

In this basis we recover our representation

$$a\mapsto [a]_B=\begin{bmatrix}0&1\\-1&0\end{bmatrix},\quad b\mapsto [b]_B=\begin{bmatrix}1&0\\0&-1\end{bmatrix}.$$

We now provide an equivalent basis-dependent definition for an FG-module.

Lemma 2.3. Let V a vector space over the field $F = \mathbb{R}, \mathbb{C}$ with basis $B = [v_1, \dots, v_n]$, and let G be a group. If a multiplication $v \cdot g$ for $v \in B$, and $g \in G$ is defined such that:

(i) $v \cdot g \in V$;

(ii)
$$v \cdot (gh) = (v \cdot g) \cdot h;$$

(iii) $v \cdot 1_G = v$;

(iv)
$$(\sum_{i=1}^{n} \lambda_i v_i) \cdot g = \sum_{i=1}^{n} \lambda_i (v_i \cdot g)$$
 for all $\lambda_i \in F$;

then V is an FG-module.

Definition 2.4. The trivial module of a group over F is a one dimensional vector space V over F such that vg = v for all $v \in V$ and $g \in G$.

Definition 2.5. An FG-module is faithful if 1_G is the only $g \in G$ such that vg = v for all $v \in V$.

Theorem 2.6. Let V be an FG-module with basis B and ρ a representation of group G over F defined by taking $g \mapsto [g]_B$.

- (i) If B' is another basis of V then the map $g \mapsto [g]_{B'}$ is a representation of G equivalent to ρ .
- (ii) If representation σ is equivalent to ρ then there exists basis B'' such that $\sigma(g) = [g]_{B''}$ for all $g \in G$.

Proof. Taking T to be the change of basis matrices, the two representations are equivalent.

Example 2.7. Let $G = C_3 = \langle a \mid a^3 = 1 \rangle$ and representation $\rho : G \to GL(n, F)$ defined by

$$a \mapsto \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}$$
.

We attempt to construct an FG-module with group action described by ρ . Take $V = F^2$ with basis $B = [v_1, v_2]$. Define the action of G on V by

$$v_1 a = v_2, \quad v_2 a = -v_1 - v_2.$$

Let us now choose alternate basis $B' = [u_1 = v_1, u_2 = v_1 + v_2]$. The action of G on this basis is described by

$$u_1a = -u_1 + u_2, \quad u_2a = -u_1.$$

This gives us a representation

$$a \mapsto [a]_{B'} = \begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix}.$$

To verify this construction we write our change of basis matrix as

$$T = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$

and verify that

$$\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix}.$$

Definition 2.8. The permutation module of a group $G \leq S_n$ is an *n*-dimensional vector space V with basis $B = [v_1, \ldots, v_n]$ and action by G defined by

$$v_i g = v_{ig}$$

for all $g \in G$ where ig is the image of i under $g \in S_n$.

It follows from Caley's theorem that every group has a faithful FG-module.

Example 2.9. Take $G = S_4$ and pick $g = (1\ 2)$ and $h = (1\ 2\ 3\ 4)$. We have representations

$$[g]_B = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad [h]_B = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}.$$

2.1 Module Reducibility

Definition 2.10. Let V be an FG-module. We call W a submodule of V if W is a vector subspace of V and W is closed under the action of G. We then write W < V.

Example 2.11. Let $G = C_3 = \langle (1\ 2\ 3) \rangle$ and V the permutation module of G with basis $B = [v_1, v_2, v_3]$. The subspace $W = \langle v_1 + v_2 + v_3 \rangle$ is a submodule but the subspace $U = \langle v_1 + v_2 \rangle$ is not.

For example, consider the action of $g = (1 \ 2 \ 3)$ on $v_1 + v_2 \in U$.

$$(v_1 + v_2)g = v_{1q} + v_{2q} = v_2 + v_3 \notin U$$

whereas G acts on W trivially.

3 Lecture 3

3.1 Module and Representation Reducibility

For any module, it is clear that we have two trivial submodules: 0 < v and V < V. Where $0 = \{0\} \subset V$.

Definition 3.1. Let V be an FG-module. We say that V is irreducible if the only submodules of V are V and V. Otherwise V is reducible

In 2.11 we showed that the permutation module of C_3 is reducible.

Definition 3.2. Let $\rho: G \to GL(n, F)$ be a representation. We say that ρ is irreducible if the corresponding FG-module (as constructed in 2.1) is irreducible. Otherwise ρ is reducible.

If an FG-module, V is reducible, that is, 0 < W < V, $0 \neq W \neq V$. Let B_W be a basis for W. If we extend B_W to B a basis of V, then we get the following representation of G:

$$g \mapsto [g]_B = \begin{bmatrix} X_g & 0 \\ Y_g & Z_g \end{bmatrix} \tag{3.1}$$

Where the matrices X_g, Y_g and Z_g are some block matrices and 0 is a block of zeros and X_g has the dimensions $m \times m$ and, in this case, $\dim(W) = m$.

Proposition 3.3. A representation $\rho: G \to GL(n, F)$ is reducible if and only if with respect to some basis, B, of F^n , $[g]_B$ has the form 3.1 for some $0 < m < \dim(V)$ for all $g \in G$. Then the maps $g \mapsto X_g$ and $g \mapsto Z_g$ are both representations of G.

Proof. Suppose we have a presentation, $\rho: G \to GL(n, F)$ and a basis B of $V = F^n$ such that $[g]_B$ has the form 3.1 for every $g \in G$. Then consider the subspace $0 \subset W \subset V$ spanned by the first m elements of B. It is clear that $v[g]_B \in W$ for all $v \in W$. Therefore the module induced by ρ is reducible, so ρ is reducible. Now, if we have a reducible representation, then the argument above this proposition shows that with respect to any basis extending B_W , the matrices $[g]_B$ have the required form.

Now, using elementary block matrix multiplication, we get the following for $g, h \in G$:

$$\rho(g)\rho(h) = [g]_B[h]_B = \begin{bmatrix} X_gX_h & 0 \\ Y_qX_h + Z_qY_h & Z_qZ_h \end{bmatrix} = [gh]_B = \rho(gh)$$

Therefore $X_{gh} = X_g X_h$ and $Z_{gh} = Z_g Z_h$, so the maps $g \mapsto X_g$ and $g \mapsto Z_g$ are both representations of G.

Problem 1. Prove that the example representation of D_8 of degree 2 over \mathbb{R} or \mathbb{C} is irreducible.

3.2 Group Algebras

Recall that an algebra over a field F is a vector space over F equipped with a bilinear product $A \times A \to A$ that is compatible with scalar multiplication.

Definition 3.4. The group algebra over a finite group G over a field F is an algebra of dimension n = |G| over $F = \mathbb{R}$ or \mathbb{C} called FG, with basis $B = G = \{g_1, \dots g_n\}$. Where the algebra structure is given by the following for two arbitrary elements of FG, $u = \sum_{g \in G} \lambda_g g$, $v = \sum_{g \in G} \mu_g$, λ_g , $\mu_g \in F$ and $\nu \in F$:

1.
$$u + v = \sum_{i=1}^{n} (\lambda_i + \mu_i) g_i$$

¹See Lemma3.6

2.
$$\nu \cdot u = \sum_{i=1}^{n} (\nu \lambda_i) g_i$$

3.
$$u \cdot v = \sum_{(h,g) \in G \times G} \lambda_g \mu_h(gh)$$

This is clearly a vector space.

Example 3.5. Consider $G = C_3 = \{e, a, a^2\} = \langle a|a^3 = e\rangle$ and $F = \mathbb{R}$ or \mathbb{C} . Then if we let $u = e - a + 2a^2$, $v = \frac{1}{2}e + 5a$, then:

$$u + v = \frac{3}{2}e + 4a + 2a^2$$
, $\frac{1}{3}u = \frac{1}{3}e - \frac{1}{3}a + \frac{2}{3}a^2$, $uv = \frac{21}{2}e + \frac{9}{2}a - 4a^2$

Lemma 3.6. Given a group algebra FG, $r, s, t \in FG$, $\lambda \in F$:

1.
$$rs \in FG$$

2.
$$(rs)t = r(st)$$

3.
$$1_G r = r 1_G = r$$

4.
$$(\lambda r)s = \lambda(rs)$$

5.
$$(r+s)t = rt + st$$

6.
$$r(s+t) = rs + rt$$

7.
$$r0 = 0r = 0$$

That is, FG is an associative algebra with unit

Proof. 1,3 and 7 are clear from the definition of FG, 4,5 and 6 follow from the distributive and associative laws of F and 2 follows from associativity in G.

3.3 The Regular FG-module, FG

Problem 2. V = FG is an FG-module with the group action defined by $v \cdot g = vg$ for $v \in FG$, $g \in G \subset FG$.

Definition 3.7. For a finite group G and $F = \mathbb{R}$ or \mathbb{C} , the regular FG-module is FG. The associated module, $g \mapsto [g]_B$ is called the regular representation.

Lemma 3.8. FG is a faithful module for G over F

Proof. If vg = v for all $v \in FG$, then specifically, hg = h for all $h \in G$, so $g = 1_G$.

Example 3.9. For $C = C_3$, over the basis B = G, we get:

$$[e]_B = I_3, \quad [a]_B = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}, \quad [a^2]_B = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Now, if we have an FG-module, V, then FG acts on V in the following way:

$$v \cdot r = v \cdot \left(\sum_{g \in G} \mu_g g\right) = \sum_{g \in G} \mu_g (v \cdot g)$$

Lemma 3.10. For $u, v \in V$, $\lambda \in F$, $r, s \in FG$:

1.
$$vr \in FG$$

2.
$$(vr)s = v(rs)$$

3.
$$v1 = v$$

4.
$$(\lambda v)r = \lambda(vr) = v(\lambda r)$$

5.
$$(r+s)v = rv + sv$$

6.
$$r(u+v) = ru + rv$$

7.
$$r0 = v0 = 0$$

Proof. 1,3 and the first part of 7 follow from V being an FG-module, the second equality of 7 follows from scalar multiplication by 0 in V. The following calculation:

$$(\lambda v)r = \sum_{g \in G} \mu_g((\lambda v)g)$$

$$= \sum_{g \in G} \mu_g(\lambda(vg))$$

$$= \sum_{g \in G} (\lambda \mu_g)(vg) = v(\lambda r)$$

$$= \lambda \sum_{g \in G} \mu_g(vg)$$

$$= \lambda(vg)$$

proves 4. 6 follows from the linearity of the action of G on V. 5 follows from distributivity of scalar multiplication in V. Finally, to prove 2:

$$v(rs) = \sum_{(g,h)\in G\times G} (\mu_g \lambda_h(v(gh)))$$

$$= \sum_{h\in G} \lambda_h \sum_{g\in G} \mu_g(gv)h$$

$$= \sum_{h\in G} \lambda_h \left(\sum_{g\in G} \mu_g(gv)\right)h$$

$$= \sum_{h\in G} \lambda_h(vr)h = (vr)s$$