Análise Matemática. Curso 2021-2022.

Grao en Enxenería Informática. ESEI Ourense.

Departamento de Matemáticas. Universidade de Vigo.

BLOQUE III

Data: 15/12/2021

APELIDOS	NOME	DNI	NOTA

1. Queremos aplicar o método de Newton-Raphson para resolver a seguinte ecuación:

$$x + 5 = e^{x+1}.$$

- a) Cúmprense as condicións de converxencia global no intervalo [-1,1]? E no intervalo [0,1]? Xustificar a resposta.
- b) Aproximar a solución no intervalo onde se cumpran as condicións de converxencia global realizando 3 iteracións e empezando cun valor inicial x_0 adecuado.

Solución: Definimos $f(x) = x + 5 - e^{x+1}$ que é continua e duas veces continuamente derivable no seu dominio que é \mathbb{R} .

- i) $f(-1) \cdot f(1) < 0$, $f(0) \cdot f(1) < 0$. $\sqrt{}$ (A primeira condición cúmprese nos dous intervalos.)
- ii) $f'(x) = 1 e^{x+1} = 0 \iff e^{x+1} = 1 \iff x+1 = 0 \iff x = -1 \notin [0,1].$ (A segunda condición non se cúmpre no intervalo [-1,1].)
- iii) $f''(x) = -e^{x+1} < 0$ para todo $x \in [-1, 1] \Longrightarrow f(x)$ é cóncava. $\boxed{\checkmark}$ (A terceira condición cúmprese nos dous intervalos.)

Polo tanto xúmprense as condicións de converxencia global do método de Newton-Raphson no intervalo [0,1], pero non en [-1,1] porque falla a segunda condición.

Partimos dun valor $x_0 \in [0,1]$ tal que $f(x_0)f''(x_0) > 0$, por exemplo $x_0 = 1$. Entón

$$x_0 = 1,$$

 $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 0.782588,$
 $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 0.749701,$
 $x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} = 0.749032.$

- 2. Considése a integral $I = \int_0^1 x \cos(x) dx$.
 - a) Calcular o valor exacto de I.
 - b) Aproximar o valor de I usando a fórmula de Trapecio composta con n=4. Cal é o erro cometido?

Solución: Os datos que nos proporciona o exercicio son

$$f(x) = x\cos(x), \quad a = 0, \quad b = 1 \quad e \quad n = 4.$$

Entón a lonxitude de cada subintervalo onde aplicaremos a fórmula de Simpson é

$$h = \frac{b-a}{n} = \frac{1-0}{4} = 0.25,$$

e os nodos da partición que divide ó intervalo [0,1] en n=4 partes iguais son

$$x_0 = 0$$
, $x_1 = 0.25$ $x_2 = 0.5$, $x_3 = 0.75$, e $x_4 = 1$.

Aplicando a fórmula de Trapecio composta con n=4 obtense o seguinte valor aproximado:

$$\int_{0}^{1} f(x)dx = \int_{0}^{0.25} f(x)dx + \int_{0.25}^{0.5} f(x)dx + \int_{0.5}^{0.75} f(x)dx + \int_{0.75}^{1} f(x)dx \approx$$

$$\approx \frac{0.25}{2} (f(0) + f(0.25)) + \frac{0.25}{2} (f(0.25) + f(0.5)) + \frac{0.25}{2} (f(0.5) + f(0.75)) + \frac{0.25}{2} (f(0.75) + f(1)) =$$

$$= \frac{0.25}{2} (f(0) + f(1) + 2(f(0.25) + f(0.5) + f(0.75))) = \boxed{0.374984}$$

Para calcular unha primitiva da función f(x) usamos o método de integración por

partes
$$u = x \implies du = dx, dv = \cos(x)dx \implies u = \sin(x)$$

$$\int x\cos(x)dx = x\operatorname{sen}(x) - \int \operatorname{sen}(x)dx = x\operatorname{sen}(x) + \cos(x) + c.$$

Agora, usando a regra de Barrow obtense o valor exacto

$$I = \int_0^1 x \cos(x) dx = x \sin(x) + \cos(x) \Big|_{x=0}^{x=1} = \sin(1) + \cos(1) - 1 = \boxed{0.381773}$$

Desta forma o erro cometido no apartado anterior é

$$Erro = |ValorExacto-ValorAproximado| = 0.006789$$