SOLUŢII ŞI BAREMURI ORIENTATIVE

Etapa județeană și a municipiului București $5~\mathrm{martie}~2005$

CLASA A XI-a

Subiectul 1. a) Se arată ușor că prin permutarea unor linii matricea ${\cal A}$

se transformă în I_n . Rezultă det $A \in \{\pm 1\}$
b) Din a) rezultă că $\det(A_1)\cdots\det(A_p)\neq 0$, deci $\det(A_k)\neq 0$, pentru
orice $k = 1, 2, \dots, p$. Cum produsul a două matrice din H este tot o matrice
din H , va fi suficient să demonstrăm afirmația pentru $p=2$, soluția fiind
dată apoi de o inducție evidentă
Fie $A, B \in H$. astfel încât $AB \in P$. Cum det $A \neq 0$ și det $B \neq 0$, rezultă
că pe fiecare linie și pe fiecare coloană a matricelor A și B avem cel puțin
un element nenul. Dacă pe o linie din matricea ${\cal A}$ avem cel puțin 2 elemente
nenule, atunci linia din produsul AB va fi o sumă de cel puțin 2 linii din
matricea B fiecare din ele înmulțită cu un număr natural nenul. Prin urmare suma tuturor elementelor matricei AB va fi strict mai mare decât n , fals.
Deci pe orice linie din matricea A avem un singur element nenul. Acela
nu poate fi decât 1. Rezultă că matricea A este din P . De aici deducem că
și matricea B este din P , deoarece este produsul dintre $A^{-1} \in P$ și o matrice
din <i>P</i>
Subiectul 2. Presupunem că f nu e monotonă şi considerăm $a < b < c$ astfel încât $f(a) < f(b) > f(c)$. Cum f are proprietatea lui Darboux, există $c_1 \in (a,b)$ şi $c_2 \in (b,c)$ cu $f(c_1) = f(c_2) = \lambda < f(b)$
Subiectul 3. a) Dacă rang $(A) = 3$, inegalitatea este evidentă. Dacă rang $(A) = 1$, nu e nimic de demonstrat 1 punct Fie deci rang $(A) = 2$; atunci rang $(B) \le 1$. Din inegalitatea lui Sylvester (rang $(XY) \ge \operatorname{rang}(X) + \operatorname{rang}(Y) - 3$ sau din argumente geometrice), avem rang $(A^2) \ge 1 \ge \operatorname{rang}(B) \ge \operatorname{rang}(B^2)$ 2 puncte

Arătăm acum că dacă polinomul f are o rădăcină complexă nereală z=

Rezultă că polinoamele căutate sunt de forma $f=aX,\,a\in\mathbb{R}^*.$. 1 punct

b) Fie $G: \mathbb{R} \to \mathbb{R}$, $G(x) = x^3 - 2x$. Cum $G(0) = G(\sqrt{2})$ rezultă că G nu

este injectivă1 pr	unct
Dacă $x, y \in \mathbb{Q}$ cu $G(x) = G(y)$ și $x \neq y$ obținem $x^2 + xy + y^2 = 2$	sau
$\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}=2$, deci ecuația $X^2+3Y^2=2$ ar avea soluții rațion	nale.
Dacă $X = \frac{m}{n}$, $Y = \frac{p}{q}$, fracții ireductibile, din $m^2q^2 + 3p^2n^2 = 2n^2q^2$ am	
$n^2 q^2,q^2 3n^2$, de unde $n^2=q^2$. De aici $m^2+3p^2=2n^2$, deci $m^2\equiv 2n^2$ (mo	d3).
Rezultă că m și n sunt multipli de 3, contradicție. Deci G este injective	ă pe
① 1 pu	net