Osnove obradbe signala

Završni ispit - 31. siječnja 2022.

- **1. (6 bodova)** Promatramo digitalni filtar koji je zadan diferencijskom jednadžbom $y[n] = \frac{1}{8}(3x[n] 3x[n-2] + 2y[n-2])$, gdje je x[n] ulazni signal, a y[n] izlazni signal.
 - a) (1 bod) Odredite prijenosnu funkciju filtra te nađite njene polove i nule.
 - b) (2 boda) Odredite impulsni odziv filtra. Je li filtar FIR ili IIR?
 - c) (2 boda) Odredite i skicirajte amplitudno-frekvencijsku karakteristiku filtra.
 - d) (1 bod) Koji od četiri tipa amplitudno selektivnih filtara (NP, VP, PP ili PB) najbolje opisuje promatrani filtar?
- 2. (6 bodova) Za svaku raspravu o filtriranju poželjno je poznavati kako izgledaju impulsni odzivi idealnih sustava. U ovom zadatku želimo odrediti impulsni odziv vremenski diskretnog sustava čija idealna frekvencijska karakteristika je zadana slikom. Zadana idealna amplitudna karakteristika $A_{\mathcal{H}}(\omega)$ i idealna fazna karakteristika $\phi_{\mathcal{H}}(\omega)$ definiraju takozvani Hilbertov transformator koji utječe samo na fazu signala.
 - a) (1 bod) Iskažite $H_{\mathcal{H}}(e^{j\omega}) = A_{\mathcal{H}}(\omega)e^{j\phi_{\mathcal{H}}(\omega)}$ formulom (npr. kao razlomljenu linearnu funkciju).
 - b) (3 boda) Koristeći IDTFT odredite impulsni odziv $h_{\mathcal{H}}[n]$ koji pripada $H_{\mathcal{H}}(e^{j\omega})$.
 - c) (1 bod) Kako se $h_{\mathcal{H}}[n]$ ponaša kada $n \to \pm \infty$. Trne li prema 0 ili ne?
 - d) (1 bod) Nakon kojeg n vrijedi $\left|h_{\mathcal{H}}[n]\right| < \frac{1}{100} \left|h_{\mathcal{H}}[0]\right|$?

Uputa: Izračunajte integral za IDTFT; pazite što se događa za n = 0.

- 3. **(6 bodova)** Promatramo vremenski diskretan signal oblika $x[n] = x_0[n] + A\cos(\omega_0 n) + B\sin(\omega_0 n)$, gdje je $x_0[n]$ korisna komponenta i gdje je $A\cos(\omega_0 n) + B\sin(\omega_0 n)$, $A,B \in \mathbb{R}$, neželjena komponenta koja predstavlja brujanje na nekoj poznatoj frekvenciji $\omega_0 \in [0,\pi]$. Želimo dizajnirati zaporni FIR filtar koji će ukloniti neželjeno brujanje.
 - a) **(2 boda)** Neka je frekvencija očitavanja $f_s = 360\,\mathrm{Hz}$. Odredite frekvenciju ω_0 ako je poznato da je neželjeno brujanje posljedica gradske mreže, odnosno ako je frekvencija brujanja $f_B = 60\,\mathrm{Hz}$.
 - b) (2 boda) Odredite impulsni odziv i prijenosnu funkciju kauzalnog zapornog FIR filtra drugog reda koji u potpunosti potiskuje neželjeno brujanje gradske mreže i čiji amplitudno-frekvencijska karakteristika je jednaka 1 na $\omega = 0$.
 - c) (2 boda) Izračunajte i skicirajte frekvencijsku karakteristiku dizajniranog FIR filtra.
- **4. (6 bodova)** Želimo efikasno izračunati DFT₄ transformaciju konačnog niza $x[n] = \{\underline{3}, 1, 1, 1\}$ korištenjem korijen-2 decimacije u frekvenciji.
 - a) (2 boda) U potpunosti razložite DFT₄ transformaciju koristeći korijen-2 decimaciju u frekvenciji.
 - b) (2 boda) Skicirajte graf toka signala dobivenog razlaganja te na skici jasno označite ulazne i izlazne signale te potrebne faktore za sva množenja.
 - c) (2 boda) Za zadani konačni niz x[n] izračunajte vrijednosti signala u svim čvorovima grafa iz prethodnog podzadatka.
- **5. (6 bodova)** Zadana su dva niza konačne duljine, $x[n] = \{2, 1, 4, 1, 2\}$ i $y[n] = \{1, 0, -2, 0, 1\}$.
 - a) (2 boda) Izračunajte njihovu linearnu konvoluciju x[n] * y[n].
 - b) (2 boda) Izračunajte njihovu cirkularnu konvoluciju $x[n] \odot y[n]$.
 - c) **(2 boda)** Označimo linearnu konvoluciju s a[n] = x[n] * y[n] i cirkularnu konvoluciju duljine N s $b[n] = x[n] \otimes y[n]$, gdje je N pozitivni cijeli broj. Uz pretpostavku da su svi nedefinirani uzorci signala x[n] i y[n] jednaki nuli za koje N vrijedi jednakost a[n] = b[n]? Objasni!