# SENTENCE REORDERING FOR QATASK

Maochen Guan 2016-07

# TASK DEF.

Sentence reordering is the first step of QA.

Need to be efficient for vast amount of docs.

Conventional semantic parsing and logic inference won't work.

#### Example:

Q: What is the price of IBM share?

CI: IBM is located in the U.S.

C2: Linkedin's stock price was increased by 40% during the day.

C3: IBM did win Jeopardy prize.

C4: Currently, IBM's price is about 150.79 per share.

#### After reordering:

Sentence - Prob

C4 - 0.89

C2 - 0.40

C3 - 0.33

CI - 0.28

Only consider single answer with I knowledge each case. Not valid: Tom went to the school and John is happy.

# SENTENCE REORDERING STRATEGY

Query - Q Candidate - C

For every candidate Ci: (Q, Ci) -> Feature Extractors -> ML Models -> Predict Output (Oi)

Sort Ci based on Oi.

#### Evaluation:

Take the highest prob candidate as actual output. 10-fold CV, report F1 score.

## DATA AND FEATURES

#### Training Data:

WikiQA — Yi Yang, Wen-tau Yih, and Christopher Meek (2015) MSFT Research 3,047 questions and 29,258 sentences where 1,473 sentences were labeled as positive answers.

#### Factorial Question only.

QuestionID Q11

Question how big is bmc software in houston, tx

DocumentID D11

DocumentTitle BMC Software

SentenceID D11-3

Sentence Employing over 6,000, BMC is often credited ...

Label 1

Training Data Tuple: (context, question, sentence, isAnswer)

#### Features:

**Question Type** 

**Question Document ID** 

Candidate Document ID

Question Vector (100 dimension)

Candidate Vector (100 dimension)

Features end up with 203 dimensions.

# QUESTION TYPE CLASSIFICATION

#### **Question Type Distribution:**

Syntactic form
Wh-type Question 87.7% (544)
Yes-no Question 9.5% (59)
Imperative (Information request) 2.6% (16)
Declarative (Answer to clarification) 0.2% (1)

#### For the Factorial Questions:

Dataset:

Xin Li, Dan Roth, Learning Question Classifiers. COLING'02, Aug., 2002.

Size: 5500 labeled question.

Example of training data:

NUM:date What is the date of Boxing Day?

Features:

N-Gram word features
Brown Cluster features
POS feats
Dependency features from Stanford parser
Named entity features

Wordnet sense

Trained a MaxEnt QT classifier based on UIUC dataset.

Evaluation: (10-fold CV)

Coarse class F1-score: 95.13% Fine class F1-score: ??? (Missing)

Syntactic classification of user utterances from (Kato et al., 2006)

| Class            | #   | Class       | #   |
|------------------|-----|-------------|-----|
| ABBREVIATION     | 18  | term        | 19  |
| abbreviation     | 2   | vehicle     | 7   |
| expression       | 16  | word        | 0   |
| DESCRIPTION      | 153 | HUMAN       | 171 |
| definition       | 126 | group       | 24  |
| description      | 13  | individual  | 140 |
| manner           | 7   | title       | 4   |
| reason           | 7   | description | 3   |
| ENTITY           | 174 | LOCATION    | 195 |
| animal           | 27  | city        | 44  |
| body             | 5   | country     | 21  |
| color            | 12  | mountain    | 5   |
| creative         | 14  | other       | 114 |
| currency         | 8   | state       | 11  |
| disease/medicine | 3   | NUMERIC     | 289 |
| event            | 6   | code        | 1   |
| food             | 7   | count       | 22  |
| instrument       | 1   | date        | 146 |
| lang             | 3   | distance    | 38  |
| letter           | 0   | money       | 9   |
| other            | 19  | order       | 0   |
| plant            | 7   | other       | 24  |
| product          | 9   | period      | 18  |
| religion         | 1   | percent     | 7   |
| sport            | 3   | speed       | 9   |
| substance        | 20  | temp        | 7   |
| symbol           | 2   | vol.size    | 4   |
| technique        | 1   | weight      | 4   |

# WORD EMBEDDINGS

Use PCA or any Single Value Decomposition based approach?

#### Problems with SVD:

- 1. Computational cost scales quadratically for n x m matrix: O(mn^2) flops (when n<m)
- 2. Linear transformation
- Direct Learn Low Dimensional Word Vectors

<How to Generate a Good Word Embedding?> Cite as: arXiv:1507.05523 [cs.CL]
Compared different Word2vec models, NNLM as well as GloVe.



# ONE-HOT WORD REPRESENTATION

 NLP treats words mainly (rule-based/statistical approaches at least) as atomic symbols:



· or in vector space:

```
[00000100000000000...]
```

- also known as "one hot" representation.
- Its problem?

```
Candy [0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 ...] AND
Store [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 ...] = 0!
```

# WORD2VEC

Input: "one-hot" word vector

$$J(\theta) = \frac{1}{T} \sum_{t=1}^{T} \sum_{-m \le j \le m, j \ne 0} \log p(w_{t+j}|w_t)$$

$$p(o|c) = \frac{\exp(u_o^T v_c)}{\sum_{w=1}^W \exp(u_w^T v_c)}$$



Loss Function:

 $E = -\log p(w_t|w_{t-C}..w_{t+C})$ 

 $E = -\log p(w_{t-C}..w_{t+C}|w_t)$ 

# WORD2VEC

For example window size c = 1, sentence: "I like learning."

First window computes gradients for: Internal vector Vlike and external vectors up and upearning

# Compute Grad for all words

$$heta = \left[ egin{array}{c} v_{aardvark} \\ v_{a} \\ \vdots \\ v_{zebra} \\ u_{aardvark} \\ u_{a} \\ \vdots \\ u_{zebra} \end{array} 
ight] \in \mathbb{R}^{2dV}$$

# WORD2VEC CONCLUSION

#### Pros:

- 1. No annotated data required
- 2. Fast to train
- 3. Can do semantic logical deduction

#### Cons:

- 1. Lost word order info
- 2. After projection layer, there is just a logistic function to map to the output.
- 3. Cannot distinguish negation.

These two sentences will yield to the same set of vectors

Tom likes Mary == Mary likes Tom

# Autoencoder - Semantic Hashing

- 1. Observations from word2vec cons (Last slides)
- 2. Window size = Avg sentence length (Both question and candidates)  $\sim$ 20 words. (300 dimension \* 20 = 6000)

#### **Training Data:**

All WikiQA Q&As, treat all data as sentence, no labeled data involved in here.

Avg. len. of question 9.59

Avg. len. of sentence 28.85

#### Approach:

Take w2v as initial input layer (6000 nodes), 3 RBM hidden layer (3000, 800, 100), use tanh as

activation function.

Right side is W\_(n) transpose.

Objective Function:  $J(A,s) = ||As - x||_2^2 + \lambda ||s||_1$ 

 $A_j^T A_j \le 1 \ \forall j$ 

s - sparse coding

A - weight matrix

$$||x||_k = \left(\sum |x_i^k|\right)^{\frac{1}{k}}$$



# Autoencoder - Semantic Hashing

# Learning Alg:

Objective Function:  $J(A,s) = ||As - x||_2^2 + \lambda ||s||_1$ 

$$J(A,s) = \|As - x\|_2^2 + \lambda \sqrt{s^2 + \epsilon} + \gamma \|A\|_2^2$$

$$\uparrow \qquad \uparrow$$

$$\sum_k \sqrt{s_k^2 + \epsilon} \qquad \sum_r \sum_c A_{rc}^2$$

- 1. Initialize A randomly
- 2. Repeat until convergence
- I. Find the s that minimizes J(A,s) for the A found in the previous step
- II. Solve for the A that minimizes J(A,s) for the s found in the previous step



# RESULT OF AUTOENCODER VS PCA

# 400,000 Reuters business news stories Different color for different doc categories



PCA 2-dim

Autoencoder 2-dim

# **FEATURES**

Question Vector/Candidate Vector: 100 dim each.

Question Type: QT classifier (trained on UIUC data)

#### ContextID matcher

- 1. Parse the sentence (Dependency tree)
- 2. Take the subj + obj as sentence topic
- 3. Use word2vec embeddings correspondingly to find the closest distance predefined existing context, use that as context id.

Dependency parse tree example (Stanford CoreNLP):

I have a car.

| ID | Form    | Lemma CPOS | POS     | Head Id Dep Label |          |  |
|----|---------|------------|---------|-------------------|----------|--|
| 1  | 1 1     | PRON PRP   | _ 2     | nsubj _           |          |  |
| 2  | have    | have VE    | RB VBP_ | 0 root            |          |  |
|    |         | DET DT     | _ 4     | det               |          |  |
| 4  | car car | NOUN NN    | _ 2     |                   | <u> </u> |  |
| 5  |         | PUNCT.     | _ 2     | punct             |          |  |

# ML MODEL — MAXENTROPY

Derived from LR (softmax version LR)
Discriminative model (Only needs P(y|x))
For experiment, we are using OpenNLP MaxEnt package

$$p^*(y \mid x) = \frac{\exp\left(\sum_{i} \lambda_i f_i(x, y)\right)}{\sum_{y} \exp\left(\sum_{i} \lambda_i f_i(x, y)\right)} \qquad H(p) = -\sum_{x \in A \times B} p(x) \log p(x)$$

# Generalized Iterative Scaling

I. Random init lambda\_j

2. Define 
$$C = \max_{x \in \varepsilon} \sum_{j=1}^{k} f_j(x)$$

3. Add a bias feature 
$$\forall x \in \varepsilon \quad f_{k+1}(x) = C - \sum_{j=1}^{k} f_j(x)$$

4. Compute 
$$E_{p^{(n)}} f_j = \sum_{x \in \varepsilon} p^{(n)}(x) f_j(x)$$
  $E_p f_j = d_j$ 

5. Update rule 
$$\lambda_{j}^{(n+1)} = \lambda_{j}^{(n)} + \frac{1}{C} (\log \frac{d_{i}}{E_{p^{(n)}} f_{j}})$$

6. Repeat step 3, 4 until converge

# TRAINING & EVALUATION

### Training:

Balance Pos/Neg samples: Randomly pickup negative samples corresponding to the positive.

#### Evaluation:

Calculate P(isMatch | Q,C; lambda)

#### Current status:

F-score is available for sentence embedding. F-score is available for QT classifier.

Still trying to evaluate the whole system, missing F-score

# THINGS FORWARD

- Sequence model RNN?
- Coreference
- Entity recognition
- Entity linking
- Ontology



Slides available at www.maochen.org/playground/playground.html