Интерфейсы и периферийные устройства

Раздел 2. Устройства хранения данных

Лекция 5-1 Устройства внешней памяти

Архитектура подсистемы памяти ПЭВМ. Классификация устройств хранения данных, физические основы функционирования, основные характеристики и интерфейсы.

Накопители на твердотельных дисках. Гибридные жесткие диски. Накопители на базе флэш-памяти. Перспективы применения новых технологий энергонезависимой памяти для хранения данных

Иерархия устройств памяти

В общем случае подсистема памяти предназначена для хранения данных, подлежащих обработке центральным процессором (процессорами). В современных системах она является многоуровневой с точки зрения архитектуры, причем каждый уровень имеет свои особенности и характеристики. Замечено, что чем ниже уровень, тем выше емкость, но ниже быстродействие и стоимость.

Классификация

По исполнению:

- внутренние (внутри корпуса системы, без отдельного питания);
- внешние (в отдельном корпусе).

По конструкции:

- со сменными носителями;
- со встроенными движущимися носителями (обычно дисками);
- твердотельные накопители (без движущихся деталей).

По принципу адресации и доступа:

- блочные с произвольным доступом;
- блочные с последовательным доступом (чаще всего ленточные);
- потоковые (практически то же, что и последовательного типа).

По типу использованного физического явления:

- магнитные (магнитная ориентация ячеек);
- оптические (оптические свойства материалов);
- электронные (хранение электронного заряда в ячейках);
- комбинированные (разные принципы для чтения и записи).

Устройства внешней памяти (Storage Devices)

Относятся к периферийной части системы, доступны через контроллеры, подключены к периферийным шинам.

Предназначены для подгрузки данных в оперативную память, которая не может вместить весь требуемый объем целиком.

Единица адресации значительно больше байта. Чаще всего используется **понятие «сектора»** (по аналогии с сектором диска, поскольку большинство устройств первого поколения имело вращающиеся диски). Типичный объем сектора — 512 байт.

Устройства внешней памяти могут иметь различную конструкцию и варианты исполнения, однако в любом случае они не доступны процессору напрямую, через команды загрузки и сохранения операндов (Load/Store). Системная адресация к ним тоже не применима.

Характеристики внешней памяти

Емкость (capacity).

Максимальное количество информации, которое может в ней храниться. Измеряется в байтах. Принята десятичная, а не двоичная система обозначений: K, M, G, T, P.

Скорость доступа (access time)

Время от поступления запроса до фактического выполнения операции. Для чтения и записи, как правило, различаются.

Время позиционирования (seek time)

.Для механических устройств — время перемещения считывающего элемента к требуемой ячейке.

Удельная стоимость хранения данных

Это – стоимость в расчете на емкость.

Скорость доступа

Время обращения при чтении:

$$t_0^{um} = t_O + t_{um} + t_{per}$$

Время обращения при записи:

$$t^{3n}_{0} = t_{\partial} + t_{n} + t_{3n}$$

- *t*д промежуток времени между началом операции обращения и моментом начала процесса чтения / записи;
- tчт продолжительность физического процесса считывания;
- *t*рег время регенерации (восстановления), если в процессе чтения информации произошло ее разрушение
- где *t*п время подготовки, расходуемое на приведение запоминающих элементов в исходном состоянии, если это необходимо;
- *t*зп время, необходимое для физического изменения состояния запоминающих элементов при записи информации.

Цикл памяти:
$$t_{y} = \max \begin{pmatrix} 4m & 3n \\ t_{0}, t_{0} \end{pmatrix}.$$

Время ожидания (latency)

- С точки зрения производительности память удобно характеризовать двумя параметрами:
- временем ожидания
- пропускной способностью.

Время, уходящее на пересылку в память или из памяти одного слова данных.

- Если данные считываются и записываются пословно, то латентность полностью характеризует производительность памяти.
- Для **пакетных** операций, в ходе которых пересылаются блоки данных, полное время, уходящее на выполнение операции, зависит от скорости пересылки отдельных слов и размера блока данных. Поэтому при блочной пересылке под временем ожидания подразумевается время пересылки первого слова данных. Обычно это слово пересылается значительно дольше следующих слов блока.

Пропускная способность

Скорость обмена данными (transfer rate):

- количество бит или байтов, пересылаемых за одну секунду.
- При пакетном способе обмена для оценки пропускной способности необходимо знать, сколько времени уходит на пересылку блока данных.
- Различают внутреннюю (internal) скорость, ограниченную физическими процессами, и внешнюю (external), ограниченную пропускной способностью интерфейса.
- Скорость чтения/записи (read/write performance): зависит от характера поступающих запросов. У ряда устройств эти скорости существенно различаются.

Пропускная способность

- Пропускная способность подсистемы памяти, состоящей из одной или более микросхем, зависит от скорости доступа к хранящимся в памяти данным и от количества параллельно доступных бит.
- Однако реальная пропускная способность памяти определяется не только её быстродействием. Она зависит и **от пропускной способности соединений**, то есть в наиболее типичном случае от пропускной способности шины.
 - (Связано это с затратами на кодирование, избыточность (для определения и коррекции ошибок), квитирование, арбитраж, получение доступа к среде передачи, «зазоры», процедуры установление соединения, передачу различной управляющей информации (маркеры, номера пакетов, служебные поля в пакетах и т.д.).

Память обычно разрабатываются с учетом скорости функционирования шин, пропускная способность которых зависит от количества линий шины данных или, по другому, от ширины шины.

Физические основы функционирования

- В основе работы запоминающего устройства может лежать любой физический эффект, обеспечивающий приведение системы к двум или более устойчивым состояниям.
- Физические свойства полупроводников, когда прохождение тока через полупроводник или его отсутствие трактуются как наличие логических сигналов 0 или 1.
- Устойчивые состояния, определяемые направлением намагниченности, позволяют использовать для хранения данных разнообразные магнитные материалы.
- **Наличие или отсутствие заряда в конденсаторе** также может быть положено в основу системы хранения.
- **Отражение или рассеяние света от п**оверхности CD, DVD или Blu-ray диска также позволяет хранить информацию.

комбинированный

Устройства на основе магнитного принципа хранения

Устройства на основе магнитного принципа хранения данных исторически появились одними из первых (если не считать перфокарты, использующие комбинированный механически-оптический метод) и применялись в качестве и внутренних накопителей, и устройств со сменными носителями (для персонального пользования), и средств ведения архивов и резервного копирования. Этому способствовали прежде всего низкая себестоимость производства и возможность применения движущихся носителей (дисков или ленты).

- Х, Y провода возбуждения,
- S считывания,
- Z запрета

Матрица памяти на магнитных сердечниках

Перфокарта, перфолента

комбинированный механически-оптический метод

80 символов.

Скорость считывания от 20-50 перфокар в первых и до 2000 в более новых машинтаких как ЭВМ ЕС-серии (конец 70-х годс Запись информации (≪пробивка дырок») со скоростью 10-250 перфокарт в минуту.

информационная емкость зависела от длины рулона и составляла обычно 10-100КБ.

Скорость считывания составляла до 1500 строк в секунду, скорость записи до

Устройства на основе оптических дисков

- Устройства на основе оптических дисков быстро вытеснили магнитные из сферы устройств копирования и резервного хранения данных ввиду высокой плотности данных и отсутствия механического контакта (луч лазера фокусируется линзой на требуемом расстоянии).
- Диск обычно плоский, его основа сделана из поликарбоната, на который нанесён специальный слой, который и служит для хранения информации.
- Для считывания информации используется обычно луч лазера, который направляется на специальный слой и отражается от него. При отражении луч модулируется мельчайшими выемками питами (от англ. *pit ямка*, *углубление*) на специальном слое, на основании декодирования этих изменений устройством чтения восстанавливается записанная на диск информация

Устройства электронной памяти

Устройства электронной памяти изначально имеют самую высокую себестоимость, однако выигрывают благодаря твердотельной конструкции, высокой скорости доступа и высокой плотности (последний параметр очень важен для устройств хранения персональной информации).

Плотность упаковки определяется площадью запоминающего элемента и зависит от числа транзисторов в схеме элемента и используемой технологии. Наибольшая плотность упаковки достигнута в кристаллах динамической МОП - памяти.

Основные типы устройств внешней памяти

Внутренние устройства:

- Жесткий диск типа «винчестер» (HDD).
- Твердотельный диск (SSD).
- Накопитель на основе модулей DRAM (RAM disc).

Внешние сменные устройства без сменных носителей:

- USB флэш-диск (USB Flash device).
- Внешний жесткий диск (External HDD).
- Твердотельный диск форм-фактора PC Card/ExpressCard.
- Накопитель на основе DRAM форм-фактора PC Card/ExpressCard.

Устройства со сменными носителями, внешние и внутренние:

- Гибкий диск + дисковод (Floppy Disc + FDD).
- Оптический диск + оптический привод (Optical Disc + ODD).
- Карточка памяти + картовод (Flash Card + Card Reader).

Устройства архивной памяти:

- Ленточные накопители (Tape Storage Devices).
- Голографические устройства (Holographic Storage Media).
- Устройства на основе оптических дисков (Optical Disc Storage).

Твердоте́льный накопитель (SSD)

англ. SSD, solid-state drive — компьютерное немеханическое ЗУ на основе микросхем памяти. Кроме них, SSD содержит управляющий контроллер, который управляет процессом чтения / записи и структурой размещения данных, для кеш-памяти используется микросхема DDR DRAM.

Различают два вида твердотельных накопителей: SSD на основе памяти, подобной оперативной памяти компьютеров, и SSD на основе флеш-памяти.

В настоящее время SSD используются в компактных устройствах: ноутбуках, нетбуках, коммуникаторах и смартфонах, но могут быть использованы и в системных блоках для повышения производительности. Некоторые известные производители переключились на выпуск твердотельных накопителей уже полностью, например Samsung продал бизнес по производству жёстких дисков компании Seagate.

Гибридный жесткий диск (SSHD — Solid State Hybrid Drive

Такие устройства сочетают в одном устройстве накопитель на жёстких магнитных дисках (HDD) и SSD относительно небольшого объёма, в качестве кэша (для увеличения производительности и срока службы устройства, снижения энергопотребления).

Используются, в основном, в переносных устройствах (ноутбуках, сотовых телефонах, планшетах и т. п.).

Гибридные жесткие диски являются промежуточным решением между SSD и HDD. За счет наличия дополнительной Flash-памяти они способны буферизовать наиболее часто используемые файлы и впоследствии обращаться к ним с гораздо более высокой скоростью.

Алгоритм Adaptive Memory, записывающий наиболее часто используемые данные в твердотельный кэш объемом 8 Гбайт. - позволяет заметно ускорить работу операционной системы и часто используемых приложений. Seagate Laptop Thin SSHD (2,5") Desktop SSHD (3,5") TOSHIBA

Плюсы и минусы SSD

- + Высокая скорость чтения и записи (в разы по сравн. С HDD).
- + Относительно низкое энергопотребление.
- + Полное отсутствие шума и вибрации.
- + Менее чувствительны к механическим воздействиям и внешним электромагнитным полям
- + Более широким диапазоном рабочих температур.
- + Низкое тепловыделение, что способствует улучшению производительности
- Ограниченное количество циклов перезаписи (10 000 100 000)
- Высокая стоимость.
- Проблемы с восстановлением данных после резкого скачка напряжения и др.

RAM drive

RAM drive, RAM disk (диск в памяти), электронный диск — компьютерная технология, позволяющая хранить данные в быстродействующей оперативной памяти как на блочном устройстве (диске). Может быть реализована как программно, так и аппаратно.

Основные достоинства:

- Крайне высокая скорость чтения (измеряется гигабайтами в секунду);
- Крайне высокая скорость (IOPS операций ввода-вывода в секунду). Некоторые образцы оперативной памяти типа DDR3 позволяют достигать более 1 000 000 IOPS. Для сравнения IOPS современных жестких дисков составляет 20-300. IOPS NAND SSD накопителей 700-100 000.
- Отсутствие задержек при произвольном доступе;
- Реализация без использования дополнительных аппаратных компонентов;
- Цена за гигабайт сопоставима с ценой за гигабайт NAND SSD накопителя; Основные недостатки:
- Потребление крайне ценного ресурса (оперативной памяти);
- Малые ёмкости (при наличии на рынке жёстких дисков в 500—4000Гб, модули оперативной памяти исчисляются гигабайтами);
- Потеря содержимого при отключении подачи напряжения (решается сохранением содержимого на диске при выключении, однако риск есть);

Примеры реализаций RAM drive

- MS-DOS RAMDRIVE.SYS драйвер операционной системы
 - COMBI.SYS драйвер, созданный для реализации максимально эффективного использования памяти, задействованной для электронного диска. Свободное пространство электронного диска, созданного этой программой, использовалось как кэш для жёсткого диска.
- RAMDisk от Dataram для Windows 9x, 2000, XP, Vista, Seven, Server 2000, 2003, 2008. Поддержка 32-х и 64-битных версий.

Linux реализует три вида ram-disk:

- Специализированный архив в формате сріо для размещения модулей для начальной загрузки (initrd)
- Файловая система, размещающаяся в памяти tmpfs (используется чаще всего для хранения временных данных, сохранение которых не актуально между перезагрузками и к которым нужен быстрый доступ)
- Блочный ramdisk (модуль brd), позволяющий создавать блочные устройства (вида /dev/ram0).
- FreeBSD Поддержка RAM-диска встроена в базовую систему, реализуется драйвером md(4), настраивается программой mdconfig(8).

Основные интерфейсы устройств внешней памяти

Для внутренних устройств (по возрастанию производительности):

- FDC (для подключения FDD).
- (Parallel) ATA и производные (для HDD, SSD и ODD).
- (Parallel) SCSI (для HDD и ODD).
- Serial ATA (для HDD, SSD и ODD).
- FC-AL (для HDD).
- Serial Attached SCSI (для HDD).
- USB (для разных устройств).
- PCI Express (для SSD, RAM Disc).

Основные интерфейсы устройств внешней памяти

Для внешних устройств:

- Устаревшие интерфейсы (LPT, COM, SCSI).
- USB (для USB Flash, HDD, ODD).
- IEEE 1394.
- PCMCIA, CompactFlash (фактически ATA, но в другом формфакторе).
- External SATA (eSATA) (для HDD).

LPT (Line Print Terminal) - порт принтера, параллельный порт

Международный стандарт параллельного интерфейса для подключения ПУ ПЭВМ.

В основном используется для подключения к компьютеру

- принтера,
- сканера
- других внешних устройств (часто использовался для подключения внешних устройств хранения данных),
- может применяться и для других целей (организация связи между двумя компьютерами, подключение каких-либо механизмов телесигнализации и телеуправления).

Режимы интерфейса LPT

- EPP (Enhanced Parallel Port) Mode двунаправленный обмен (см. LPC) данными, при котором управляющие сигналы интерфейса генерируются аппаратно во время цикла обращения к порту (чтения или записи в порт). Эффективен при работе с устройствами внешней памяти, адаптерами локальных сетей.
- Полубайтный **обмен** Nibble Mode

Проблема двунаправленного обмена возникла при появлении устройств типа накопителя ZIP, которые удобно подключать к LPT порту.

- . Существует несколько стандартных решений, одобренных IEEE 1284. Хост (Host) - ПК с LPT портом
- Прямой канал (передача в прямом направлении) канал (передача) от хоста к ПУ; обратный канал канал ввода данных в Хост от ПУ

Специфика подключений внешних накопителей

- Подключение Iomega Zip Drive, CD-ROM и др., адаптеров ЛВС и других *симметричных* устройств ввода-вывода имеет свою специфику.
- (В режиме SPP) наряду с замедлением работы устройства заметна принципиальная асимметрия этого режима: **чтение данных происходит в два раза медленнее, чем запись** (тоже, кстати, небыстрая).
- Применение двунаправленного режима (Bi-Di или PS/2 Туре 1) устраняет эту асимметрию скорости выравниваются.
- Только перейдя на ЕРР или ЕСР, можно получить нормальную скорость работы.

Flash-память (1988 г., фирма Intel)

Flash - "быстрый, мгновенный" при описании своих новых микросхем.

Изобретателем считается Intel, представившая в 1988 году флэш-память с архитектурой NOR.

Годом позже Toshiba разработала **архитектуру NAND**, которая и сегодня используется наряду с той же NOR в микросхемах флэш. Собственно, сейчас можно сказать, что это два различных вида памяти, имеющие в чем-то схожую технологию производства.

Среди главных достоинств можно назвать следующие:

энергонезависимость, т.е. способность хранить информацию при выключенном питании (энергия расходуется только в момент записи данных);

информация может храниться очень длительное время (десятки лет);

сравнительно небольшие размеры;

высокая надежность хранения данных, в том числе устойчивость к механическим нагрузкам;

не содержит движущихся деталей (как в жестких дисках).

Особенности Flash-памяти

Основные недостатки флэш-памяти:

невысокая скорость передачи данных (в сравнении с динамической оперативной памятью);

незначительный объем (по сравнению с жесткими дисками);

ограничение по количеству циклов перезаписи (хотя эта цифра в современных разработках очень высока – более миллиона циклов).

Флэш-память строится на однотранзисторных элементах памяти с "плавающим" затвором, что обеспечивает высокую плотность хранения информации. Существуют различные технологии построения базовых элементов флэш-памяти, разработанные ее основными производителями. Эти технологии отличаются количеством слоев, методами стирания и записи данных, а также структурной организацией, что отражается в их названии. Наиболее широко известны NOR и NAND типы флэш-памяти, запоминающие транзисторы которых подключены к разрядным шинам, соответственно, параллельно и последовательно

Архитектура Flash-памяти

память на основе ячеек NOR (логическая функция ИЛИ-НЕ).

Структура NOR состоит из параллельно включенных элементарных ячеек хранения информации. Такая организация ячеек обеспечивает произвольный доступ к данным и побайтную запись информации.

Схема ячейки NOR

Схема ячейки NOR представляет из себя транзистор с двумя изолированными затворами: управляющим (control) и плавающим (floating). Важной особенностью последнего является способность удерживать электроны, то есть заряд. Также в ячейке имеются так называемые «сток» и «исток». При программировании между ними, вследствие воздействия положительного поля на управляющем затворе, создается канал — поток электронов. Некоторые из электронов, благодаря наличию большей энергии, преодолевают слой изолятора и попадают на плавающий затвор. На нем они могут храниться в течение нескольких лет. Определенный диапазон количества электронов (заряда) на плавающем затворе соответствует логической единице, а все, что больше его, — нулю. При чтении эти состояния распознаются путем измерения порогового напряжения транзистора. Для стирания информации на управляющий затвор подается высокое отрицательное напряжение, и электроны с плавающего затвора переходят (туннелируют) на исток. В технологиях различных производителей этот принцип работы может отличаться по способу подачи тока и чтению данных из ячейки.

Схема ячейки NAND

В основе структуры NAND лежит принцип последовательного элементарных соединения ячеек, образующих группы (по 16 ячеек в одной группе), которые объединяются в страницы, а страницы - в блоки. При таком построении массива памяти обращение к отдельным ячейкам невозможно. Программирование выполняется одновременно пределах только в одной при стирании страницы, а обращение происходит к блокам или к группам блоков.

Различия в организации структуры между памятью NOR и NAND находят свое отражение в их характеристиках. При работе со сравнительно большими массивами данных процессы записи/стирания в памяти выполняются значительно быстрее, чем в памяти NOR. Поскольку 16 прилегающих друг к другу ячеек памяти **NAND** соединены последовательно, без контактных промежутков, достигается высокая плотность размещения ячеек на кристалле, что позволяет получить большую емкость при одинаковых технологических Последовательная организация ячеек обеспечивает высокую степень масштабируемости, что делает **NAND-флэш лидером в гонке наращивания** объемов памяти.

В структуре флэш-памяти для хранения 1 бита информации задействуется только один элемент (транзистор), в то время как в энергозависимых типах памяти для этого требуется несколько транзисторов и конденсатор. Это позволяет существенно уменьшить размеры выпускаемых микросхем, упростить технологический процесс, а следовательно, снизить себестоимость. Но и 1 бит - далеко не предел.

Еще в 1992 г. команда инженеров корпорации Intel начала разработку устройства флэш-памяти, одна ячейка которого хранила бы более одного бита информации. Еще в сентябре 1997 г. была анонсирована микросхема памяти Intel StrataFlash емкостью 64 Мбит, одна ячейка которой могла хранить 2 бита данных.

Технология StrataFlash (Intel)

технологии StrataFlash были использованы элементы двух разных типов флэш-памяти: NAND и NOR. Доступ к флэш-памяти NOR осуществляется без проверки ошибок, поскольку в этом нет необходимости. Флэш-память NAND не имеет такой надежности, как NORпамять, но она дешевле в производстве, а, кроме того, чтение и запись данных в память NAND происходит намного быстрее, чем в NOR. Это быстродействие дополнительно увеличивается за счет использования в комплекте с этой памятью модулей ОЗУ. В StrataFlash инженеры Intel объединили два типа флэш-памяти, оптимизировав ее и для хранения данных, и для записи программ. Первый модуль памяти StrataFlash состоял из нескольких кристаллов, часть из которых была модулями ОЗУ, а другая представляла собой непосредственно флэш-память.

Кроме того, сегодня существуют образцы с 4-битными ячейками. В такой памяти используется технология многоуровневых ячеек. Они имеют обычную структуру, а отличие заключается в том, что их заряд делится на уровней, каждому из несколько которых соответствие ставится определенная комбинация битов. Теоретически прочитать/записать можно и более 4 проблемы бит, однако практике возникают на устранением шумов и с постепенной утечкой электронов при продолжительном хранении.

Отметим также, что **Intel первой в индустрии** наладила выпуск многоуровневых микросхем флэшпамяти класса NOR емкостью 1 Гбит для мобильных устройств, используя 65-нм производственную технологию.

Применение Flash-памяти

Современные технологии производства флэш-памяти позволяют использовать ее для различных целей. Непосредственно в компьютере эту память применяют для хранения BIOS (базовой системы ввода-вывода), что позволяет, при необходимости, производить обновление последней, прямо на рабочей машине.

Распространение получили, так называемые, USB-Flash накопители, эмулирующие работу внешних винчестеров. Эти устройства подключается, обычно, к шине USB и состоит из собственно флэш-памяти, эмулятора контроллера дисковода и контроллера шины USB. При включении его в систему (допускается "горячее" подключение и отключение) устройство с точки зрения пользователя ведет себя как обычный (съемный) жесткий диск. Конечно, производительность его меньше, чем у жесткого диска.

Существуют вполне реальные планы перехода от динамической регенерируемой памяти к памяти энергонезависимой (NV-RAM) – FeRAM, MRAM, PCM (PCRAM) и т.д.

NV = nonvolatile storage

http://www.eltech.spb.ru/pdf/309.pdf

микросхемы ферроэлектрической памяти F-RAM корпорации Ramtron микросхемы магниторезистивной памяти (Magnetoresistive RAM, M-RAM) и фазопеременной памяти (Phase-Change RAM, P-RAM)

Память типа NOR Flash, которая ныне применяется во многих мобильных устройствах, на эту роль не подходит ввиду высокой технологической сложности и недостаточной надежности.