RA Set Operations

- RA Set Operations
- Union
- Intersection
- Difference

COMP3311 20T3 ♦ RA Set Operations ♦ [0/8]

>>

>>

RA Set Operations

Relational algebra defines three set operations

- union ... $R \cup S$... (Query₁) **UNION** (Query₂)
- intersection ... R∩S ... (Query₁) **INTERSECT** (Query₂)
- difference ... R S ... (Query₁) **EXCEPT** (Query₂)

All relations involved must have the same schema (union-compatible)

All operations give a set of results (i.e. no duplicates)

To get bag semantics, use **UNION** ALL, etc.

COMP3311 20T3 ♦ RA Set Operations ♦ [1/8]

Union combines two compatible relations into a single relation via set union of sets of tuples.

$$r_1 \cup r_2 = \{ t \mid t \in r_1 \lor t \in r_2 \}, \text{ where } r_1(R), r_2(R)$$

Result size: $|r_1 \cup r_2| \le |r_1| + |r_2|$ Result schema: R

Algorithmic view:

```
result = r_1 for each tuple t in relation r_2 result = result \cup \{t\}
```

COMP3311 20T3 ♦ RA Set Operations ♦ [2/8]

<< \ \ >>

Intersection combines two compatible relations into a single relation via set intersection of sets of tuples.

$$r_1 \cap r_2 = \{ t \mid t \in r_1 \land t \in r_2 \}, \text{ where } r_1(R), r_2(R) \}$$

Result size: $|r_1 \cap r_2| \le \min(|r_1|, |r_2|)$ Result schema: R

Algorithmic view:

```
result = \{\}
for each tuple t in relation r_1
if (t \in r_2) \{ result = result \cup \{t\} \}
```

COMP3311 20T3 ♦ RA Set Operations ♦ [3/8]

<< \ \ >>

♦ Intersection (cont)

Examples of union and intersection:

$$T = Sel[B=1](R)$$

Α	В	С	D
а	1	х	4
е	1	у	4

$$U = Sel[C=x](R)$$

Α	В	С	D
а	1	х	4
d	8	х	5

T union U

Α	В	O	D
а	1	Х	4
d	8	Х	5
е	1	у	4

T intersect U

A	В	O	D
а	1	х	4

COMP3311 20T3 ♦ RA Set Operations ♦ [4/8]

< \ \ >>

Querying with relational algebra (set operations)...

Bars where either John or Gernot drinks

```
JohnBars = Proj[bar](Sel[drinker=John](Frequents))
GernotBars = Proj[bar](Sel[drinker=Gernot](Frequents))
Result = JohnBars union GernotBars
```

• Bars where both John and Gernot drink

```
Result = JohnBars intersect GernotBars
```

COMP3311 20T3 ♦ RA Set Operations ♦ [5/8]

<< / >>

Difference

Difference finds the set of tuples that exist in one relation but do not occur in a second compatible relation.

$$r_1 - r_2 = \{ t \mid t \in r_1 \land t \notin r_2 \}, \text{ where } r_1(R), r_2(R) \}$$

Uses same notion of relation compatibility as union.

Note: tuples in r_2 but not r_1 do not appear in the result

• i.e. set difference != complement of set intersection

Algorithmic view:

```
result = \{\}
for each tuple t in relation r_1
if (!(t \in r_2)) \{ result = result \cup \{t\} \}
```

COMP3311 20T3 ♦ RA Set Operations ♦ [6/8]

<< / />>>

❖ Difference (cont)

Examples of difference:

$$T = Sel[B=1](R)$$

Α	В	С	D
а	1	х	4
е	1	у	4

$$U = Sel[C=x](R)$$

Α	В	O	D
а	1	х	4
d	8	Х	5

Α	В	O	D
е	1	у	4

Α	В	O	D
d	8	x	5

Clearly, difference is not symmetric.

COMP3311 20T3 ♦ RA Set Operations ♦ [7/8]

❖ Difference (cont)

Querying with relational algebra (difference) ...

Bars where John drinks and Gernot doesn't.

```
JohnBars = Proj[bar](Sel[drinker=John](Frequents))
GernotBars = Proj[bar](Sel[drinker=Gernot](Frequents))
Result = JohnBars - GernotBars
```

Bars that sell VB but not New

```
VBBars = Proj[bar](Sel[beer=VB](Sells))
NewBars = Proj[bar](Sel[beer=New](Sells))
Result = VBBars - NewBars
```

COMP3311 20T3 ♦ RA Set Operations ♦ [8/8]

Produced: 11 Nov 2020