

<u>Home</u> <u>Gameboard</u> Biology Cell Biology Meiosis Meiosis Overview

Meiosis Overview

Part A Chromosome copies	
Meiosis is a unique form of cell division in which one chromosome) undergoes rounds of division to produce with 1 copy of each chromosome).	cell (a cell with 2 copies of each uce cells (cells
In most sexually reproducing organisms, this is how combine during fertilisation to form a zygote.	are made. Two of these cells then
Items:	
two haploid diploid four gametes	

Part B Meiosis I

One complete round of meiosis involves two rounds of cell division. These are called meiosis I and meiosis II. Each of these are similar to mitosis, but with a few differences.
During, chromosomes condense and homologous chromosomes bind to each other at points along the chromosomes called Regions of one chromosome may then switch with the same regions on the other chromosome, in a process called "". During, chromosomes line up in homologous pairs, rather than as individual chromosomes.
And during, the homologous chromosomes are then pulled apart (instead of sister chromatids being pulled apart).
During the nuclear membranes form around the double-chromatid chromosomes at opposite ends of the cell, these chromosomes decondense, and the cell splits into two by cytokinesis.
centromeres telophase I anaphase I prophase I nondisjunction chiasmata crossing over
Part C Meiosis II
Meiosis II is much more similar to mitosis. During the chromosomes condense. These then line up in the middle of the cells as individual chromosomes during, and are pulled apart into sister chromatids during (though, because of crossing over during meiosis I, the sister chromatids of each chromosome may not be identical to each other). During the nuclear membranes form around the single-chromatid chromosomes at opposite ends of the cell, these chromosomes decondense, and the cell splits into two by cytokinesis.
Items: metaphase II anaphase II prophase II telophase II

Created for isaacphysics.org by Lewis Thomson

<u>Home</u> <u>Gameboard</u> Biology Cell Biology Meiosis Stages of Meiosis

Stages of Meiosis

Part A Meiosis I

The images below represent different stages of meiosis I, for an organism with a diploid chromosome number of 8.

Α

В

D

Ε

F

Put the stages above in the correct order, and match the name to each stage.

Order	Stage
Α	interphase

Е	cytokinesis

Items:

В	C	D	F	anaphase I	metaphase I	prophase I	telophase I
---	---	---	---	------------	-------------	------------	-------------

Part B Meiosis II

The images below represent different stages of meiosis II, for an organism with a diploid chromosome number of 8.

Α

В

D

Ε

Put the stages above in the correct order, and match the name to each stage.

Order	Stage
С	cytokinesis

Items:

A B D E anaphase II metaphase II prophase II telophase II

Created for isaacphysics.org by Lewis Thomson

Gameboard:

STEM SMART Biology Week 10

<u>Home</u> <u>Gameboard</u> Biology Cell Biology Meiosis Gamete Variation

Gamete Variation

Meiosis produces daughter cells that are genetically distinct from each other as well as from the gametes that produced the mother cell. This variation is produced in two main ways: independent assortment and crossing over.

Part A Independent assortment

In the images below, blue chromosomes represent paternally-inherited chromosomes and red chromosomes represent maternally-inherited chromosomes.

Α

В

С

D

Ε

F

Which of the images above illustrate independent assortment during meiosis I of a cell with a diploid chromosome number of 6? Select all that apply.

Α .

В

8/12/2023, 12:21 C	Gamete Variation — Isaac Physics
E	
F	
Part B Crossing over	
Crossing over (swapping) of chromosome regions	chromosomes bind to each
other (during of) at points	along the chromosomes called
Items:	
non-homologous homologous prophase m	eiosis 2 centromeres meiosis 1 telophase
chiasmata	

Gamete possibilities Part C

An individual ("individual Z") is heterozygous for three genes (gene 1, gene 2, and gene 3). Gene 1 and gene 2 are located on the same chromosome, and gene 3 is located on a different chromosome.

Individual Z inherited allele A for gene 1, allele B for gene 2 and allele C for gene 3 from its father, and in

inherited	dallele a for gene 1 , allele b for gene 2 , and allele c for gene 3 from its mother.
Which c	f the following genotypes could be found in gametes produced by this individual?
	ABC
	ABc
	AbC
	Abc
	аВС
	аВс
	abC
	abc
Which cover oc	f the following genotypes could be found in gametes produced by this individual if no crossing curs?
over oc	
over oc	curs?
over oc	curs? ABC
over oc	CURS? ABC ABc
over od	CURS? ABC ABC AbC
over oc	CURS? ABC ABC AbC AbC
	CURS? ABC ABC AbC AbC AbC AbC
	curs? ABC ABC AbC AbC Abc aBC

Which of the following genotypes could be found in gametes produced by this individual if no crossing over AND no independent assortment occurs?

18/12/2023, 12:21 ABC	Gamete Variation — Isaac Physics
ABc	
AbC	
Abc	
aBC	
аВс	
abC	
abc	
Created for isaacphysics.org by Lewis Thomson	
Gameboard:	
STEM SMART Biology Week 10	

<u>Home</u> <u>Gameboard</u> <u>Biology</u> <u>Cell Biology</u> <u>Meiosis</u> <u>Mitosis vs Meiosis</u>

Mitosis vs Meiosis

Part A	Meiosis functions
Which o	f the following describe meiosis in humans?
	tissue growth & repair
	the fusion of two gametes to form a zygote
	producing gametes
	asexual reproduction
	cell division of a zygote to form an embryo
	producing haploid cells from diploid cells

Part B DNA & division

Figure 1: The mean mass of DNA of a population of cells dividing at the same time, measured in femtograms (10^{-15} g) per cell.

Which of these processes are shown in Figure 1? Select all that apply.

DNA replication
mitosis
meiosis
interphase
fertilisation
cytokinesis

Part C True or false?

In the table below, identify which events occur during mitosis, meiosis I, and meiosis II. Fill in every box with either a tick (event occurs) or a cross (event does not occur).

	Mitosis	Meiosis I	Meiosis II
homologous chromosomes pair up			
crossing over occurs			
chromatids separate			

Items:

Question elements adapted with permission from NSAA 2020 Section 2 Q55 & OCR January 2002 Science Modular Biology Foundation Q1

Gameboard:

STEM SMART Biology Week 10

<u>Home</u> <u>Gameboard</u> <u>Biology</u> <u>Cell Biology</u> <u>Meiosis</u> <u>Meiosis</u> <u>Mathematics</u>

Meiosis Mathematics

Part A How many haploid cells?

Figure 1: The four steps in human sperm production. For each step, one complete division (i.e. one full round of the process) takes place.

Assuming no mutations and that all of the cells survive, what will be the maximum number of haploid cells originating from a single early spermatogonium (see Figure 1)?

Part B Chromosome numbers

Humans have a diploid chromosome number of 46 (i.e. 2n = 46). Fill in the correct numbers and types of chromosomes present in a germ cell (reproductive cell) after each stage of meiosis, as well as the ploidy of each cell (haploid or diploid).

	after meiosis I	after meiosis II
number of chromosomes		
number of chromatids per chromosome		
ploidy (haploid or diploid)		

Items:

23	46		$\left[1 \right]$	$\left[ight]$		$igg] \ igg [4$		haploid	diploid
----	----	--	--------------------	-----------------	--	-------------------	--	---------	---------

Part C Chromosome combinations

During meiosis, independent assortment ensures that each gamete inherits a combination of some paternal chromosomes and some maternal chromosomes. How many possible combinations are there for a human gamete?

Question elements adapted with permission from NSAA 2018 Section 1 Q60

Gameboard:

STEM SMART Biology Week 10

<u>Home</u> <u>Gameboard</u> Biology Cell Biology Meiosis Meiosis Mistakes

Meiosis Mistakes

Figure 1: Two cells are shown, each from an organism with a diploid chromosome number of 12. The cell on the left is undergoing meiosis I, and the cell on the right is undergoing meiosis II. Both cells show something going wrong during their respective stages.

Part A Meiosis stages

Which	stages are shown in Figure 1?				
	prophase I				
	prophase II				
	metaphase I				
	metaphase II				
	anaphase I				
	anaphase II				
	telophase I				
	telophase II				
Part B	Diagnosis				
What is the name for what has gone wrong in Figure 1?					
Part C	Consequences				
Which o	of the following are conditions caused by what is shown in Figure 1?				
	cystic fibrosis				
	monosomy (one less chromosome) e.g. Turner Syndrome (XO)				
	trisomy (one extra chromosome) e.g. Down Syndrome				
	haemophilia				
	sickle cell anaemia				

Created for isaacphysics.org by Lewis Thomson