COMPOSITIONS AND METHODS FOR THE TREATMENT OF IMMUNE RELATED DISEASES

Field of the Invention

The present invention relates to compositions and methods useful for the diagnosis and treatment of immune related diseases.

5

10

15

20

25

30

35

40

Background of the Invention

Immune related and inflammatory diseases are the manifestation or consequence of fairly complex, often multiple interconnected biological pathways which in normal physiology are critical to respond to insult or injury, initiate repair from insult or injury, and mount innate and acquired defense against foreign organisms. Disease or pathology occurs when these normal physiological pathways cause additional insult or injury either as directly related to the intensity of the response, as a consequence of abnormal regulation or excessive stimulation, as a reaction to self, or as a combination of these.

Though the genesis of these diseases often involves multistep pathways and often multiple different biological systems/pathways, intervention at critical points in one or more of these pathways can have an ameliorative or therapeutic effect. Therapeutic intervention can occur by either antagonism of a detrimental process/pathway or stimulation of a beneficial process/pathway.

Many immune related diseases are known and have been extensively studied. Such diseases include immune-mediated inflammatory diseases, non-immune-mediated inflammatory diseases, infectious diseases, immunodeficiency diseases, neoplasia, etc.

T lymphocytes (T cells) are an important component of a mammalian immune response. T cells recognize antigens which are associated with a self-molecule encoded by genes within the major histocompatibility complex (MHC). The antigen may be displayed together with MHC molecules on the surface of antigen presenting cells, virus infected cells, cancer cells, grafts, etc. The T cell system eliminates these altered cells which pose a health threat to the host mammal. T cells include helper T cells and cytotoxic T cells. Helper T cells proliferate extensively following recognition of an antigen -MHC complex on an antigen presenting cell. Helper T cells also secrete a variety of cytokines, i.e., lymphokines, which play a central role in the activation of B cells, cytotoxic T cells and a variety of other cells which participate in the immune response.

Immune related diseases could be treated by suppressing the immune response. Using neutralizing antibodies that inhibit molecules having immune stimulatory activity would be beneficial in the treatment of immune-mediated and inflammatory diseases. Molecules which inhibit the immune response can be utilized (proteins directly or via the use of antibody agonists) to inhibit the immune response and thus ameliorate immune related disease.

CD4+ T cells are known to be important regulators of inflammation. Herein, CD4+ T cells were activated and the profile of genes differentially expressed upon activation was analyzed. As such, the activation specific genes may be potential therapeutic targets. *In vivo* co-stimulation is necessary for a productive immune proliferative response. The list of costimulatory molecules is quite extensive and it is still unclear just which co-stimulatory molecules play critical roles in different types and stages of

inflammation. In this application the focus is on genes which are specifically upregulated or downregulated by stimulation with anti-CD3/ICAM, or anti-CD3/anti-CD28 and may be useful in targeting inflammatory processes which are associated with these different molecules.

Despite the above identified advances in T cell research, there is a great need for additional diagnostic and therapeutic agents capable of detecting the presence of a T cell mediated disorders in a mammal and for effectively reducing these disorders. Accordingly, it is an objective of the present invention to identify polypeptides that are overexpressed in activated T cells as compared to resting T cells, and to use those polypeptides, and their encoding nucleic acids, to produce compositions of matter useful in the therapeutic treatment and diagnostic detection of T cell mediated disorders in mammals.

10

15

20

25

30

35

40

5

Summary of the Invention

A. Embodiments

The present invention concerns compositions and methods useful for the diagnosis and treatment of immune related disease in mammals, including humans. The present invention is based on the identification of proteins (including agonist and antagonist antibodies) which are a result of stimulation of the immune response in mammals. Immune related diseases can be treated by suppressing or enhancing the immune response. Molecules that enhance the immune response stimulate or potentiate the immune response to an antigen. Molecules which stimulate the immune response can be used therapeutically where enhancement of the immune response would be beneficial. Alternatively, molecules that suppress the immune response attenuate or reduce the immune response to an antigen (e.g., neutralizing antibodies) can be used therapeutically where attenuation of the immune response would be beneficial (e.g., inflammation). Accordingly, the PRO polypeptides, agonists and antagonists thereof are also useful to prepare medicines and medicaments for the treatment of immune-related and inflammatory diseases. In a specific aspect, such medicines and medicaments comprise a therapeutically effective amount of a PRO polypeptide, agonist or antagonist thereof with a pharmaceutically acceptable carrier. Preferably, the admixture is sterile.

In a further embodiment, the invention concerns a method of identifying agonists or antagonists to a PRO polypeptide which comprises contacting the PRO polypeptide with a candidate molecule and monitoring a biological activity mediated by said PRO polypeptide. Preferably, the PRO polypeptide is a native sequence PRO polypeptide. In a specific aspect, the PRO agonist or antagonist is an anti-PRO antibody.

In another embodiment, the invention concerns a composition of matter comprising a PRO polypeptide or an agonist or antagonist antibody which binds the polypeptide in admixture with a carrier or excipient. In one aspect, the composition comprises a therapeutically effective amount of the polypeptide or antibody. In another aspect, when the composition comprises an immune stimulating molecule, the composition is useful for: (a) increasing infiltration of inflammatory cells into a tissue of a mammal in need thereof, (b) stimulating or enhancing an immune response in a mammal in need thereof, (c) increasing the proliferation of T-lymphocytes in a mammal in need thereof in response to an antigen, (d) stimulating the activity of T-lymphocytes or (e) increasing the vascular permeability. In a further aspect, when the composition comprises an immune inhibiting molecule, the composition is useful for: (a) decreasing infiltration of inflammatory cells into a tissue of a mammal in need thereof, (b) inhibiting or reducing an

5

10

15

20

25

30

35

immune response in a mammal in need thereof, (c) decreasing the activity of T-lymphocytes or (d) decreasing the proliferation of T-lymphocytes in a mammal in need thereof in response to an antigen. In another aspect, the composition comprises a further active ingredient, which may, for example, be a further antibody or a cytotoxic or chemotherapeutic agent. Preferably, the composition is sterile.

In another embodiment, the invention concerns a method of treating an immune related disorder in a mammal in need thereof, comprising administering to the mammal an effective amount of a PRO polypeptide, an agonist thereof, or an antagonist thereto. In a preferred aspect, the immune related disorder is selected from the group consisting of: systemic lupus erythematosis, rheumatoid arthritis, osteoarthritis, juvenile chronic arthritis, spondyloarthropathies, systemic sclerosis, idiopathic inflammatory myopathies, Sjögren's syndrome, systemic vasculitis, sarcoidosis, autoimmune hemolytic anemia, autoimmune thrombocytopenia, thyroiditis, diabetes mellitus, immune-mediated renal disease, demyelinating diseases of the central and peripheral nervous systems such as multiple sclerosis, idiopathic demyelinating polyneuropathy or Guillain-Barré syndrome, and chronic inflammatory demyelinating polyneuropathy, hepatobiliary diseases such as infectious, autoimmune chronic active hepatitis, primary biliary cirrhosis, granulomatous hepatitis, and sclerosing cholangitis, inflammatory bowel disease, gluten-sensitive enteropathy, and Whipple's disease, autoimmune or immune-mediated skin diseases including bullous skin diseases, erythema multiforme and contact dermatitis, psoriasis, allergic diseases such as asthma, allergic rhinitis, atopic dermatitis, food hypersensitivity and urticaria, immunologic diseases of the lung such as eosinophilic pneumonias, idiopathic pulmonary fibrosis and hypersensitivity pneumonitis, transplantation associated diseases including graft rejection and graft -versus-host-disease.

In another embodiment, the invention provides an antibody which specifically binds to any of the above or below described polypeptides. Optionally, the antibody is a monoclonal antibody, humanized antibody, antibody fragment or single-chain antibody. In one aspect, the present invention concerns an isolated antibody which binds a PRO polypeptide. In another aspect, the antibody mimics the activity of a PRO polypeptide (an agonist antibody) or conversely the antibody inhibits or neutralizes the activity of a PRO polypeptide (an antagonist antibody). In another aspect, the antibody is a monoclonal antibody, which preferably has nonhuman complementarity determining region (CDR) residues and human framework region (FR) residues. The antibody may be labeled and may be immobilized on a solid support. In a further aspect, the antibody is an antibody fragment, a monoclonal antibody, a single-chain antibody, or an anti-idiotypic antibody.

In yet another embodiment, the present invention provides a composition comprising an anti-PRO antibody in admixture with a pharmaceutically acceptable carrier. In one aspect, the composition comprises a therapeutically effective amount of the antibody. Preferably, the composition is sterile. The composition may be administered in the form of a liquid pharmaceutical formulation, which may be preserved to achieve extended storage stability. Alternatively, the antibody is a monoclonal antibody, an antibody fragment, a humanized antibody, or a single-chain antibody.

In a further embodiment, the invention concerns an article of manufacture, comprising:

- (a) a composition of matter comprising a PRO polypeptide or agonist or antagonist thereof;
- (b) a container containing said composition; and

(c) a label affixed to said container, or a package insert included in said container referring to the use of said PRO polypeptide or agonist or antagonist thereof in the treatment of an immune related disease. The composition may comprise a therapeutically effective amount of the PRO polypeptide or the agonist or antagonist thereof.

In yet another embodiment, the present invention concerns a method of diagnosing an immune related disease in a mammal, comprising detecting the level of expression of a gene encoding a PRO polypeptide (a) in a test sample of tissue cells obtained from the mammal, and (b) in a control sample of known normal tissue cells of the same cell type, wherein a higher or lower expression level in the test sample as compared to the control sample indicates the presence of immune related disease in the mammal from which the test tissue cells were obtained.

5

10

15

20

25

30

35

In another embodiment, the present invention concerns a method of diagnosing an immune disease in a mammal, comprising (a) contacting an anti-PRO antibody with a test sample of tissue cells obtained from the mammal, and (b) detecting the formation of a complex between the antibody and a PRO polypeptide, in the test sample; wherein the formation of said complex is indicative of the presence or absence of said disease. The detection may be qualitative or quantitative, and may be performed in comparison with monitoring the complex formation in a control sample of known normal tissue cells of the same cell type. A larger quantity of complexes formed in the test sample indicates the presence or absence of an immune disease in the mammal from which the test tissue cells were obtained. The antibody preferably carries a detectable label. Complex formation can be monitored, for example, by light microscopy, flow cytometry, fluorimetry, or other techniques known in the art. The test sample is usually obtained from an individual suspected of having a deficiency or abnormality of the immune system.

In another embodiment, the invention provides a method for determining the presence of a PRO polypeptide in a sample comprising exposing a test sample of cells suspected of containing the PRO polypeptide to an anti-PRO antibody and determining the binding of said antibody to said cell sample. In a specific aspect, the sample comprises a cell suspected of containing the PRO polypeptide and the antibody binds to the cell. The antibody is preferably detectably labeled and/or bound to a solid support.

In another embodiment, the present invention concerns an immune-related disease diagnostic kit, comprising an anti-PRO antibody and a carrier in suitable packaging. The kit preferably contains instructions for using the antibody to detect the presence of the PRO polypeptide. Preferably the carrier is pharmaceutically acceptable.

In another embodiment, the present invention concerns a diagnostic kit, containing an anti-PRO antibody in suitable packaging. The kit preferably contains instructions for using the antibody to detect the PRO polypeptide.

In another embodiment, the invention provides a method of diagnosing an immune-related disease in a mammal which comprises detecting the presence or absence or a PRO polypeptide in a test sample of tissue cells obtained from said mammal, wherein the presence or absence of the PRO polypeptide in said test sample is indicative of the presence of an immune-related disease in said mammal.

In another embodiment, the present invention concerns a method for identifying an agonist of a PRO polypeptide comprising:

(a) contacting cells and a test compound to be screened under conditions suitable for the induction of a cellular response normally induced by a PRO polypeptide; and

(b) determining the induction of said cellular response to determine if the test compound is an effective agonist, wherein the induction of said cellular response is indicative of said test compound being an effective agonist.

In another embodiment, the invention concerns a method for identifying a compound capable of inhibiting the activity of a PRO polypeptide comprising contacting a candidate compound with a PRO polypeptide under conditions and for a time sufficient to allow these two components to interact and determining whether the activity of the PRO polypeptide is inhibited. In a specific aspect, either the candidate compound or the PRO polypeptide is immobilized on a solid support. In another aspect, the non-immobilized component carries a detectable label. In a preferred aspect, this method comprises the steps of:

- (a) contacting cells and a test compound to be screened in the presence of a PRO polypeptide under conditions suitable for the induction of a cellular response normally induced by a PRO polypeptide; and
 - (b) determining the induction of said cellular response to determine if the test compound is an effective antagonist.

In another embodiment, the invention provides a method for identifying a compound that inhibits the expression of a PRO polypeptide in cells that normally express the polypeptide, wherein the method comprises contacting the cells with a test compound and determining whether the expression of the PRO polypeptide is inhibited. In a preferred aspect, this method comprises the steps of:

- (a) contacting cells and a test compound to be screened under conditions suitable for allowing expression of the PRO polypeptide; and
 - (b) determining the inhibition of expression of said polypeptide.

5

10

15

20

25

30

35

40

In yet another embodiment, the present invention concerns a method for treating an immune-related disorder in a mammal that suffers therefrom comprising administering to the mammal a nucleic acid molecule that codes for either (a) a PRO polypeptide, (b) an agonist of a PRO polypeptide or (c) an antagonist of a PRO polypeptide, wherein said agonist or antagonist may be an anti-PRO antibody. In a preferred embodiment, the mammal is human. In another preferred embodiment, the nucleic acid is administered via ex vivo gene therapy. In a further preferred embodiment, the nucleic acid is comprised within a vector, more preferably an adenoviral, adeno-associated viral, lentiviral or retroviral vector.

In yet another aspect, the invention provides a recombinant viral particle comprising a viral vector consisting essentially of a promoter, nucleic acid encoding (a) a PRO polypeptide, (b) an agonist polypeptide of a PRO polypeptide, or (c) an antagonist polypeptide of a PRO polypeptide, and a signal sequence for cellular secretion of the polypeptide, wherein the viral vector is in association with viral structural proteins. Preferably, the signal sequence is from a mammal, such as from a native PRO polypeptide.

In a still further embodiment, the invention concerns an ex vivo producer cell comprising a nucleic acid construct that expresses retroviral structural proteins and also comprises a retroviral vector consisting essentially of a promoter, nucleic acid encoding (a) a PRO polypeptide, (b) an agonist polypeptide of a PRO polypeptide or (c) an antagonist polypeptide of a PRO polypeptide, and a signal sequence for cellular secretion of the polypeptide, wherein said producer cell packages the retroviral vector in association with the structural proteins to produce recombinant retroviral particles.

In a still further embodiment, the invention provides a method of increasing the activity of T-lymphocytes in a mammal comprising administering to said mammal (a) a PRO polypeptide, (b) an agonist of a PRO polypeptide, or (c) an antagonist of a PRO polypeptide, wherein the activity of T-lymphocytes in the mammal is increased.

In a still further embodiment, the invention provides a method of decreasing the activity of T-lymphocytes in a mammal comprising administering to said mammal (a) a PRO polypeptide, (b) an agonist of a PRO polypeptide, or (c) an antagonist of a PRO polypeptide, wherein the activity of T-lymphocytes in the mammal is decreased.

In a still further embodiment, the invention provides a method of increasing the proliferation of T-lymphocytes in a mammal comprising administering to said mammal (a) a PRO polypeptide, (b) an agonist of a PRO polypeptide, or (c) an antagonist of a PRO polypeptide, wherein the proliferation of T-lymphocytes in the mammal is increased.

In a still further embodiment, the invention provides a method of decreasing the proliferation of T-lymphocytes in a mammal comprising administering to said mammal (a) a PRO polypeptide, (b) an agonist of a PRO polypeptide, or (c) an antagonist of a PRO polypeptide, wherein the proliferation of T-lymphocytes in the mammal is decreased.

B. Additional Embodiments

5

10

15

20

25

30

35

40

In other embodiments of the present invention, the invention provides vectors comprising DNA encoding any of the herein described polypeptides. Host cell comprising any such vector are also provided. By way of example, the host cells may be CHO cells, *E. coli*, or yeast. A process for producing any of the herein described polypeptides is further provided and comprises culturing host cells under conditions suitable for expression of the desired polypeptide and recovering the desired polypeptide from the cell culture.

In other embodiments, the invention provides chimeric molecules comprising any of the herein described polypeptides fused to a heterologous polypeptide or amino acid sequence. Example of such chimeric molecules comprise any of the herein described polypeptides fused to an epitope tag sequence or a Fc region of an immunoglobulin.

In another embodiment, the invention provides an antibody which specifically binds to any of the above or below described polypeptides. Optionally, the antibody is a monoclonal antibody, humanized antibody, antibody fragment or single-chain antibody.

In yet other embodiments, the invention provides oligonucleotide probes useful for isolating genomic and cDNA nucleotide sequences or as antisense probes, wherein those probes may be derived from any of the above or below described nucleotide sequences.

In other embodiments, the invention provides an isolated nucleic acid molecule comprising a nucleotide sequence that encodes a PRO polypeptide.

In one aspect, the isolated nucleic acid molecule comprises a nucleotide sequence having at least about 80% nucleic acid sequence identity, alternatively at least about 81% nucleic acid sequence identity, alternatively at least about 83% nucleic acid sequence identity, alternatively at least about 83% nucleic acid sequence identity, alternatively at least about 85% nucleic acid sequence identity, alternatively at least about 85% nucleic acid sequence identity, alternatively at least about 86% nucleic acid sequence identity,

alternatively at least about 87% nucleic acid sequence identity, alternatively at least about 88% nucleic acid sequence identity, alternatively at least about 99% nucleic acid sequence identity, alternatively at least about 90% nucleic acid sequence identity, alternatively at least about 91% nucleic acid sequence identity, alternatively at least about 92% nucleic acid sequence identity, alternatively at least about 93% nucleic acid sequence identity, alternatively at least about 95% nucleic acid sequence identity, alternatively at least about 95% nucleic acid sequence identity, alternatively at least about 96% nucleic acid sequence identity, alternatively at least about 98% nucleic acid sequence identity at least about 98% nucleic acid sequence identity and alternatively at least about 99% nucleic acid sequence identity to (a) a DNA molecule encoding a PRO polypeptide having a full-length amino acid sequence as disclosed herein, an amino acid sequence lacking the signal peptide as disclosed herein, an extracellular domain of a transmembrane protein, with or without the signal peptide, as disclosed herein or any other specifically defined fragment of the full-length amino acid sequence as disclosed herein, or (b) the complement of the DNA molecule of (a).

5

10

15

20

25

30

35

40

In other aspects, the isolated nucleic acid molecule comprises a nucleotide sequence having at least about 80% nucleic acid sequence identity, alternatively at least about 81% nucleic acid sequence identity, alternatively at least about 82% nucleic acid sequence identity, alternatively at least about 83% nucleic acid sequence identity, alternatively at least about 84% nucleic acid sequence identity, alternatively at least about 85% nucleic acid sequence identity, alternatively at least about 86% nucleic acid sequence identity, alternatively at least about 87% nucleic acid sequence identity, alternatively at least about 88% nucleic acid sequence identity, alternatively at least about 89% nucleic acid sequence identity, alternatively at least about 90% nucleic acid sequence identity, alternatively at least about 91% nucleic acid sequence identity, alternatively at least about 92% nucleic acid sequence identity, alternatively at least about 93% nucleic acid sequence identity, alternatively at least about 94% nucleic acid sequence identity, alternatively at least about 95% nucleic acid sequence identity, alternatively at least about 96% nucleic acid sequence identity, alternatively at least about 97% nucleic acid sequence identity, alternatively at least about 98% nucleic acid sequence identity and alternatively at least about 99% nucleic acid sequence identity to (a) a DNA molecule comprising the coding sequence of a full-length PRO polypeptide cDNA as disclosed herein, the coding sequence of a PRO polypeptide lacking the signal peptide as disclosed herein, the coding sequence of an extracellular domain of a transmembrane PRO polypeptide, with or without the signal peptide, as disclosed herein or the coding sequence of any other specifically defined fragment of the full-length amino acid sequence as disclosed herein, or (b) the complement of the DNA molecule of (a).

In a further aspect, the invention concerns an isolated nucleic acid molecule comprising a nucleotide sequence having at least about 80% nucleic acid sequence identity, alternatively at least about 81% nucleic acid sequence identity, alternatively at least about 82% nucleic acid sequence identity, alternatively at least about 83% nucleic acid sequence identity, alternatively at least about 84% nucleic acid sequence identity, alternatively at least about 85% nucleic acid sequence identity, alternatively at least about 86% nucleic acid sequence identity, alternatively at least about 87% nucleic acid sequence identity, alternatively at least about 89% nucleic acid sequence identity, alternatively at least about 89% nucleic acid sequence identity, alternatively at least about 91% nucleic acid sequence identity, alternatively at least about 92% nucleic acid sequence identity, alternatively at least about 94% nucleic acid sequence identity, alternatively at least about 94% nucleic acid sequence identity, alternatively at least about 94% nucleic acid

sequence identity, alternatively at least about 95% nucleic acid sequence identity, alternatively at least about 96% nucleic acid sequence identity, alternatively at least about 97% nucleic acid sequence identity, alternatively at least about 98% nucleic acid sequence identity and alternatively at least about 99% nucleic acid sequence identity to (a) a DNA molecule that encodes the same mature polypeptide encoded by any of the human protein cDNAs as disclosed herein, or (b) the complement of the DNA molecule of (a).

5

10

15

20

25

30

35

Another aspect the invention provides an isolated nucleic acid molecule comprising a nucleotide sequence encoding a PRO polypeptide which is either transmembrane domain-deleted or transmembrane domain-inactivated, or is complementary to such encoding nucleotide sequence, wherein the transmembrane domain(s) of such polypeptide are disclosed herein. Therefore, soluble extracellular domains of the herein described PRO polypeptides are contemplated.

Another embodiment is directed to fragments of a PRO polypeptide coding sequence, or the complement thereof, that may find use as, for example, hybridization probes, for encoding fragments of a PRO polypeptide that may optionally encode a polypeptide comprising a binding site for an anti-PRO antibody or as antisense oligonucleotide probes. Such nucleic acid fragments are usually at least about 20 nucleotides in length, alternatively at least about 30 nucleotides in length, alternatively at least about 40 nucleotides in length, alternatively at least about 50 nucleotides in length, alternatively at least about 60 nucleotides in length, alternatively at least about 70 nucleotides in length, alternatively at least about 80 nucleotides in length, alternatively at least about 90 nucleotides in length, alternatively at least about 100 nucleotides in length, alternatively at least about 110 nucleotides in length, alternatively at least about 120 nucleotides in length, alternatively at least about 130 nucleotides in length, alternatively at least about 140 nucleotides in length, alternatively at least about 150 nucleotides in length, alternatively at least about 160 nucleotides in length, alternatively at least about 170 nucleotides in length, alternatively at least about 180 nucleotides in length, alternatively at least about 190 nucleotides in length, alternatively at least about 200 nucleotides in length, alternatively at least about 250 nucleotides in length, alternatively at least about 300 nucleotides in length, alternatively at least about 350 nucleotides in length, alternatively at least about 400 nucleotides in length, alternatively at least about 450 nucleotides in length, alternatively at least about 500 nucleotides in length, alternatively at least about 600 nucleotides in length, alternatively at least about 700 nucleotides in length, alternatively at least about 800 nucleotides in length, alternatively at least about 900 nucleotides in length and alternatively at least about 1000 nucleotides in length, wherein in this context the term "about" means the referenced nucleotide sequence length plus or minus 10% of that referenced length. It is noted that novel fragments of a PRO polypeptide-encoding nucleotide sequence may be determined in a routine manner by aligning the PRO polypeptide-encoding nucleotide sequence with other known nucleotide sequences using any of a number of well known sequence alignment programs and determining which PRO polypeptide-encoding nucleotide sequence fragment(s) are novel. All of such PRO polypeptide-encoding nucleotide sequences are contemplated herein. Also contemplated are the PRO polypeptide fragments encoded by these nucleotide molecule fragments, preferably those PRO polypeptide fragments that comprise a binding site for an anti-PRO antibody.

In another embodiment, the invention provides isolated PRO polypeptide encoded by any of the isolated nucleic acid sequences herein above identified.

In a certain aspect, the invention concerns an isolated PRO polypeptide, comprising an amino acid sequence having at least about 80% amino acid sequence identity, alternatively at least about 81% amino acid sequence identity, alternatively at least about 82% amino acid sequence identity, alternatively at least about 83% amino acid sequence identity, alternatively at least about 84% amino acid sequence identity, alternatively at least about 85% amino acid sequence identity, alternatively at least about 86% amino acid sequence identity, alternatively at least about 87% amino acid sequence identity, alternatively at least about 88% amino acid sequence identity, alternatively at least about 89% amino acid sequence identity, alternatively at least about 90% amino acid sequence identity, alternatively at least about 91% amino acid sequence identity, alternatively at least about 92% amino acid sequence identity, alternatively at least about 93% amino acid sequence identity, alternatively at least about 94% amino acid sequence identity, alternatively at least about 95% amino acid sequence identity, alternatively at least about 96% amino acid sequence identity, alternatively at least about 97% amino acid sequence identity, alternatively at least about 98% amino acid sequence identity and alternatively at least about 99% amino acid sequence identity to a PRO polypeptide having a full-length amino acid sequence as disclosed herein, an amino acid sequence lacking the signal peptide as disclosed herein, an extracellular domain of a transmembrane protein, with or without the signal peptide, as disclosed herein or any other specifically defined fragment of the full-length amino acid sequence as disclosed herein.

5

10

15

20

25

30

35

40

In a further aspect, the invention concerns an isolated PRO polypeptide comprising an amino acid sequence having at least about 80% amino acid sequence identity, alternatively at least about 81% amino acid sequence identity, alternatively at least about 83% amino acid sequence identity, alternatively at least about 83% amino acid sequence identity, alternatively at least about 85% amino acid sequence identity, alternatively at least about 86% amino acid sequence identity, alternatively at least about 86% amino acid sequence identity, alternatively at least about 88% amino acid sequence identity, alternatively at least about 89% amino acid sequence identity, alternatively at least about 91% amino acid sequence identity, alternatively at least about 91% amino acid sequence identity, alternatively at least about 93% amino acid sequence identity, alternatively at least about 93% amino acid sequence identity, alternatively at least about 95% amino acid sequence identity, alternatively at least about 96% amino acid sequence identity, alternatively at least about 96% amino acid sequence identity, alternatively at least about 96% amino acid sequence identity, alternatively at least about 96% amino acid sequence identity, alternatively at least about 96% amino acid sequence identity, alternatively at least about 96% amino acid sequence identity, alternatively at least about 96% amino acid sequence identity, alternatively at least about 96% amino acid sequence identity and alternatively at least about 99% amino acid sequence identity to an amino acid sequence encoded by any of the human protein cDNAs as disclosed herein.

In a specific aspect, the invention provides an isolated PRO polypeptide without the N-terminal signal sequence and/or the initiating methionine and is encoded by a nucleotide sequence that encodes such an amino acid sequence as herein before described. Processes for producing the same are also herein described, wherein those processes comprise culturing a host cell comprising a vector which comprises the appropriate encoding nucleic acid molecule under conditions suitable for expression of the PRO polypeptide and recovering the PRO polypeptide from the cell culture.

Another aspect the invention provides an isolated PRO polypeptide which is either transmembrane domain-deleted or transmembrane domain-inactivated. Processes for producing the same are also herein described, wherein those processes comprise culturing a host cell comprising a vector which comprises the

appropriate encoding nucleic acid molecule under conditions suitable for expression of the PRO polypeptide and recovering the PRO polypeptide from the cell culture.

In yet another embodiment, the invention concerns agonists and antagonists of a native PRO polypeptide as defined herein. In a particular embodiment, the agonist or antagonist is an anti-PRO antibody or a small molecule.

5

10

15

In a further embodiment, the invention concerns a method of identifying agonists or antagonists to a PRO polypeptide which comprise contacting the PRO polypeptide with a candidate molecule and monitoring a biological activity mediated by said PRO polypeptide. Preferably, the PRO polypeptide is a native PRO polypeptide.

In a still further embodiment, the invention concerns a composition of matter comprising a PRO polypeptide, or an agonist or antagonist of a PRO polypeptide as herein described, or an anti-PRO antibody, in combination with a carrier. Optionally, the carrier is a pharmaceutically acceptable carrier.

Another embodiment of the present invention is directed to the use of a PRO polypeptide, or an agonist or antagonist thereof as herein before described, or an anti-PRO antibody, for the preparation of a medicament useful in the treatment of a condition which is responsive to the PRO polypeptide, an agonist or antagonist thereof or an anti-PRO antibody.

List of Figures

Figure 46: PRO58230

Figure 48: PRO2455

Figure 50: PRO86495

Figure 52: PRO60296

Figure 54: PRO37430

Figure 47: DNA88643, NP_000190.1, 35626_at

Figure 49: DNA331435, NP_006143.1, 35974_at

Figure 53: DNA226967, NP_055145.2, 37028_at

Figure 51A-B: DNA272022, NP_002607.1, 36829_at

Figure 1: DNA325395, NP_000973.2, 200012_x_at Figure 2: PRO81927 Figure 3: DNA329897, NP_031401.1, 200020_at Figure 4: PRO69676 Figure 5: DNA326769, NP_001000.2, 200024_at Figure 6: PRO83105 Figure 7: DNA329898, NP_000979.1, 200025_s_at Figure 8: PRO10643 Figure 9: DNA293451, NP_296374.1, 200026_at Figure 10: PRO70720 Figure 11: DNA326466, NP_004530.1, 200027_at Figure 12: PRO60800 Figure 13: DNA329899, NP_002785.1, 200039_s_at Figure 14: PRO69614 Figure 15: DNA326953, HSPC117, 200042_at Figure 16: PRO83270 Figure 17: DNA255084, NP_001081.1, 200045_at Figure 18: PRO50170 Figure 19: DNA272614, NP_004506.1, 200052_s_at Figure 20: PRO60747 Figure 21: DNA304680, HSPCB, 200064_at Figure 22: PRO71106 Figure 23: DNA189703, NP_005539.1, 200079_s_at Figure 24: PRO22637 Figure 25: DNA329900, NP_002905.1, 1053_at Figure 26: PRO81549 Figure 27: DNA88189, NP_037362.1, 266_s_at Figure 28: PRO2690 Figure 29: DNA272992, NP_055479.1, 32069_at Figure 30: PRO61064 Figure 31A-B: DNA329901, BAA32291.2, 32091_at Figure 32: PRO85218 Figure 33: DNA329902, NP_110419.2, 32502_at Figure 34: PRO85219 Figure 35: DNA329903, NP_005596.2, 32541_at Figure 36: PRO85220 Figure 37: DNA327521, NP_002192.2, 33304_at Figure 38: PRO58320 Figure 39: DNA272223, NP_004444.1, 33494_at Figure 40: PRO60485 Figure 41A-B: DNA329904, NP_066554.1, 33767_at Figure 42: PRO85221 Figure 43: DNA210121, NP_001794.1, 34210_at Figure 44: PRO33667 Figure 45: DNA269828, NP_006691.1, 35254_at

Figure 55: DNA226043, NP_006424.2, 37145_at Figure 56: PRO36506 Figure 57: DNA329906, MGC14258, 37577_at Figure 58: PRO85223 Figure 59: DNA256295, NP_002310.1, 37796_at Figure 60: PRO51339 Figure 61: DNA328354, AF237769, 37966_at Figure 62: PRO84215 Figure 63A-B: DNA329907, NP_036423.1, 38158_at Figure 64: PRO85224 Figure 65A-B: DNA329908, BAA13246.1, 38892_at Figure 66: PRO85225 Figure 67: DNA328356, BC013566, 39248.at Figure 68: PRO38028 Figure 69: DNA327523, NP_004916.1, 39249_at Figure 70: PRO38028 Figure 71A-B: DNA328358, STK10, 40420_at Figure 72: PRO84218 Figure 73: DNA329909, NP_077084.1, 40446_at Figure 74: PRO62251 Figure 75: DNA329910, NP_003251.2, 40837_at Figure 76: PRO82891 Figure 77A-B: DNA329093, NP_006631.1, 41220_at Figure 78: PRO84745 Figure 79A-C: DNA331436, 7689629.6, 43427_at Figure 80: PRO86496 Figure 81: DNA154653, DNA154653, 43511_s_at Figure 82: DNA262129, NP_079389.1, 44790_s_at Figure 83: PRO54740 Figure 84: DNA326185, NP_073607.2, 45633_at Figure 85: PRO82602 Figure 86: DNA329912, NP_004614.1, 46167_at Figure 87: PRO85227 Figure 88: DNA329913, SSB-3, 46256_at Figure 89: PRO85228 Figure 90: DNA324145, NP_060259.1, 46665_at Figure 91: PRO80846 Figure 92: DNA329094, NP_077285.1, 48531_at Figure 93: PRO84746 Figure 94: DNA329914, NP_079175.2, 52285_f_at Figure 95: PRO85229 Figure 96: DNA328364, NP_068577.1, 52940_at Figure 97: PRO84223 Figure 98: DNA329915, NP_065093.1, 56197_at Figure 99: PRO85230 Figure 100A-B: DNA328966, AK024397, 57082_at Figure 101: PRO84670 Figure 102A-B: DNA226870, NP_000782.1, 48808_at Figure 103: PRO37333 Figure 104: DNA328366, NP_079233.1, 59375_at Figure 105: PRO84225 Figure 106: DNA331437, 338326.15, 60084_at Figure 107: PRO86497 Figure 108: DNA328367, NP_079108.2, 60471_at

Figure 162: PRO85236
Figure 163: DNA329538, M11S1, 200722_s_at
Figure 164: PRO85088
Figure 165: DNA227618, HSGPIP137, 200723_s_at
Figure 166: PRO38081
Figure 167: DNA327114, NP_006004.1, 200725_x_at
Figure 168: PRO62466
Figure 169A-B: DNA327534, NP_003454.1,
200730_s_at
Figure 170: PRO41180
Figure 171A-B: DNA327534, PTP4A1, 200731_s_at
Figure 172: PRO41180
Figure 173: DNA331438, 402431.7, 200732_s_at
Figure 174: PRO86498
Figure 175: DNA327845, NP_000282.1, 200737_at
Figure 176: PRO61271
Figure 177: DNA327845, PGK1, 200738_s_at
Figure 178: PRO61271
Figure 179: DNA287207, NP_006316.1, 200750_s_at
Figure 180: PRO39268
Figure 181A-B: DNA274977, HSU97105, 200762_at
Figure 182: PRO62709
Figure 183: DNA324135, BC001854, 200768.s.at
Figure 184: PRO80837
Figure 185: DNA324135, NP_005902.1, 200769_s_at
Figure 186: PRO80837 Figure 187: DNA271608, NP_055485.1, 200777_s_at
Figure 188: PRO59895
Figure 189: DNA226262, NP_005554.1, 200783_s_at
Figure 190: PRO36725
Figure 191: DNA324060, NP_002530.1, 200790_at
Figure 192: PRO80773
Figure 193: DNA272928, NP_055579.1, 200794_x_at
Figure 194: PRO61012
Figure 195: DNA304668, NP_005336.2, 200799_at
Figure 196: PRO71095
Figure 197: DNA227607, NP_005337.1, 200800_s_at
Figure 198: PRO38070
Figure 199: DNA287211, NP_002147.1, 200806_s_at
Figure 200: PRO69492
Figure 201: DNA287211, HSPD1, 200807_s_at
Figure 202: PRO69492
Figure 203: DNA269874, NP_001271.1, 200810_s_at
Figure 204: PRO58272
Figure 205: DNA269874, CIRBP, 200811_at
Figure 206: PRO58272
Figure 207: DNA227795, NP_006420.1, 200812_at
Figure 208: PRO38258
Figure 209: DNA325596, NP_000356.1, 200822_x_at
Figure 210: PRO69549
Figure 211A-B: DNA328700, AF097514, 200831_s_at
Figure 212: PRO84464
Figure 213A-B: DNA328378, AB032261, 200832_s_at
Figure 214: PRO84233
Figure 215: DNA329922, CTSB, 200838_at
Figure 216: PRO3344

Figure 270A-B: DNA287217, CCND2, 200952_s_at Figure 217: DNA88165, HUMCTSB, 200839_s_at Figure 271: PRO36766 Figure 218: PRO2678 Figure 272: DNA227491, NP_009027.1, 200960_x_at Figure 219: DNA329923, NP_057211.3, 200847_s_at Figure 273: PRO37954 Figure 220: PRO85237 Figure 274: DNA331440, NP_036380.2, 200961_at Figure 221: DNA324509, NP_002097.1, 200853_at Figure 275: PRO86500 Figure 222: PRO10297 Figure 276A-B: DNA331289, ABLIM1, 200965_s_at Figure 223A-C: DNA331439, NP_001447.1, Figure 277: PRO86390 200859_x_at Figure 278: DNA287355, NP_000025.1, 200966_x_at Figure 224: PRO86499 Figure 279: PRO69617 Figure 225A-B: DNA228029, NP_055577.1, 200862_at Figure 280: DNA324110, NP_005908.1, 200978_at Figure 226: PRO38492 Figure 281: PRO4918 Figure 227: DNA226112, NP_002769.1, 200866_s_at Figure 282: DNA329928, ANXA6, 200982_s_at Figure 228: PRO36575 Figure 283: PRO85241 Figure 229: DNA226112, PSAP, 200871_s_at Figure 284A-B: DNA325896, NP_001521.1, 200989_at Figure 230: PRO36575 Figure 285: PRO82352 Figure 231: DNA254537, NP_002957.1, 200872_at Figure 286: DNA329929, 400903.6, 200994_at Figure 232: PRO49642 Figure 287: PRO85242 Figure 233: DNA271030, NP_006383.1, 200875_s_at Figure 288: DNA325778, CKAP4, 200998_s_at Figure 234: PRO59358 Figure 289: PRO82248 Figure 235: DNA324107, NP_006421.1, 200877_at Figure 290: DNA331441, BC015436, 200999_s_at Figure 236: PRO80814 Figure 291: DNA275408, NP_001596.1, 201000_at Figure 237: DNA328379, BC015869, 200878.at Figure 292: PRO63068 Figure 238: PRO84234 Figure 293: DNA304713, NP_006463.2, 201008_s_at Figure 239: DNA329099, 1164406.9, 200880_at Figure 294: PRO71139 Figure 240: PRO60127 Figure 295: DNA304713, TXNIP, 201009_s_at Figure 241: DNA271847, NP_001530.1, 200881_s_at Figure 296: PRO71139 Figure 242: PRO60127 Figure 297: DNA304713, S73591, 201010_s_at Figure 243: DNA287187, NP_002620.1, 200886_s_at Figure 298: PRO71139 Figure 244: PRO69473 Figure 299: DNA89242, NP_000691.1, 201012_at Figure 245A-B: DNA327539, NP_009330.1, Figure 300: PRO2907 200887_s_at Figure 301: DNA328388, BC010273, 201013_s_at Figure 246: PRO12211 Figure 302: PRO84240 Figure 247: DNA326326, NP_000969.1, 200888_s_at Figure 303: DNA328388, NP_006443.1, 201014_s_at Figure 248: PRO82724 Figure 304: PRO84240 Figure 249: DNA325584, NP_002005.1, 200894_s_at Figure 305: DNA151697, DNA151697, 201016_at Figure 250: PRO59262 Figure 306: PRO11993 Figure 251: DNA325584, FKBP4, 200895_s_at Figure 307A-B: DNA329101, NP_056988.2, Figure 252: PRO59262 201024_x_at Figure 253: DNA328380, HSHLAEHCM, 200904_at Figure 308: PRO84751 Figure 254: DNA304665, NP_000995.1, 200909_s_at Figure 309A-B: DNA329101, IF2, 201027_s_at Figure 255: PRO71092 Figure 310: PRO84751 Figure 256: DNA272695, NP_001722.1, 200920_s_at Figure 311: DNA287372, NP_002618.1, 201037_at Figure 257: PRO60817 Figure 312: PRO69632 Figure 258: DNA272695, BTG1, 200921 s_at Figure 313: DNA328391, NP_004408.1, 201041_s_at Figure 259: PRO60817 Figure 314: PRO84242 Figure 260: DNA227077, NP_005558.1, 200923_at Figure 315: DNA328391, DUSP1, 201044_x_at Figure 261: PRO37540 Figure 316: PRO84242 Figure 262: DNA327255, NP_002385.2, 200924_s_at Figure 317: DNA274743, NP_002850.1, 201087_at Figure 263: PRO57298 Figure 318: PRO62517 Figure 264: DNA225878, NP_004334.1, 200935_at Figure 319: DNA254725, NP_002257.1, 201088_at Figure 265: PRO36341 Figure 320: PRO49824 Figure 266: DNA329925, NP_001528.1, 200942_s_at Figure 321: DNA329930, ATP6V1B2, 201089 at Figure 267: PRO85239 Figure 322: PRO85243 Figure 268A-B: DNA287217, NP_001750.1, Figure 323: DNA287198, NP_006073.1, 201090_x_at 200951_s_at Figure 324: PRO69484 Figure 269: PRO36766

Figure 325A-B: DNA328395, NP_056198.1,	Figure 379: PRO84252
201104_x_at	Figure 380: DNA270526, NP_001166.1, 201288_at
Figure 326: PRO84245	Figure 381: PRO58903
Figure 327: DNA304719, NP_002296.1, 201105_at	Figure 382A-B: DNA327545, TOP2A, 201291_s_at
Figure 328: PRO71145	Figure 383: PRO82731
Figure 329: DNA329931, AF053642, 201111_at	Figure 384: DNA327546, HSTOP2A10, 201292_at
Figure 330: DNA331442, NP_002783.1, 201114_x_at	Figure 385: DNA328407, WSB1, 201294_s_at
Figure 331: PRO83189	Figure 386: PRO84254
Figure 332: DNA273865, NP_006221.1, 201115_at	Figure 387A-B: DNA226778, HSM800772,
Figure 333: PRO61824	201295_s_at
Figure 334: DNA326273, NP_001961.1, 201123_s_at Figure 335: PRO82678	Figure 388: PRO37241
	Figure 389: DNA327547, NP_060691.1, 201298_s_at
Figure 336: DNA329255, NP_006267.1, 201129_at Figure 337: PRO84855	Figure 390: PRO83583
Figure 338: DNA329103, NP_002112.2, 201137_s_at	Figure 391: DNA287222, NP_055555.1, 201303_at Figure 392: PRO69501
Figure 339: PRO84752	Figure 393: DNA324612, P311, 201310_s_at
Figure 340: DNA329104, NP_004085.1, 201144_s_at	Figure 394: PRO81261
Figure 341: PRO69550	Figure 395: DNA325595, NP_001966.1, 201313_at
Figure 342: DNA329105, NP_006109.2, 201145_at	Figure 396: PRO38010
Figure 343: PRO84753	Figure 397: DNA331445, NP_002778.1, 201317_s_at
Figure 344: DNA329015, NFE2L2, 201146_at	Figure 398: PRO71133
Figure 345: PRO84691	Figure 399: DNA274745, NP_006815.1, 201323_at
Figure 346: DNA329932, BC008801, 201160_s_at	Figure 400: PRO62518
Figure 347: PRO85244	Figure 401: DNA150781, NP_001414.1, 201324_at
Figure 348: DNA151802, NP_003661.1, 201169_s_at	Figure 402: PRO12467
Figure 349: PRO12890	Figure 403: DNA329002, AF385084, 201326_at
Figure 350: DNA151802, BHLHB2, 201170_s_at	Figure 404: PRO4912
Figure 351: PRO12890	Figure 405: DNA329002, NP_001753.1, 201327_s_at
Figure 352: DNA273342, NP_005887.1, 201193_at	Figure 406: PRO4912
Figure 353: PRO61345	Figure 407: DNA269536, S80343, 201330_at
Figure 354: DNA331443, NP_003000.1, 201194_at	Figure 408: PRO57952
Figure 355: PRO86501	Figure 409: DNA273323, NP_004243.1, 201349_at
Figure 356A-B: DNA103453, HUME16GEN,	Figure 410: PRO61330
201195_s_at	Figure 411: DNA103227, NP_004466.1, 201350_at
Figure 357: PRO4780	Figure 412: PRO4557
Figure 358: DNA272251, NP_002798.1, 201198_s_at Figure 359: PRO60513	Figure 413: DNA329934, NP_000090.1, 201360_at
Figure 360: DNA103488, NP_002583.1, 201202_at	Figure 414: PRO2721 Figure 415: DNA329107, NP_008818.3, 201367_s_at
Figure 361: PRO4815	Figure 416: PRO84754
Figure 362: DNA327544, NP_002865.1, 201222_s_at	Figure 417A-B: DNA329108, 1383643.16, 201368_at
Figure 363: PRO70357	Figure 418: PRO84755
Figure 364: DNA287173, ENO1, 201231_s_at	Figure 419: DNA329107, ZFP36L2, 201369_s_at
Figure 365: PRO69463	Figure 420: PRO84754
Figure 366: DNA287331, NP_002645.1, 201251_at	Figure 421A-E: DNA331446, NP_000436.1, 201373_at
Figure 367: PRO69595	Figure 422: PRO86502
Figure 368: DNA274139, NP_006494.1, 201252_at	Figure 423: DNA329109, NP_004957.1, 201376_s_at
Figure 369: PRO62075	Figure 424: PRO81854
Figure 370: DNA270950, NP_003182.1, 201263_at	Figure 425: DNA329111, NP_001349.1, 201385_at
Figure 371: PRO59281	Figure 426: PRO84756
Figure 372A-B: DNA328404, NP_003321.1, 201266_at	Figure 427: DNA270979, NP_002800.1, 201388_at
Figure 373: PRO84251	Figure 428: PRO59309
Figure 374: DNA331444, NP_002781.1, 201274_at	Figure 429: DNA331447, NP_006614.1, 201397_at
Figure 375: PRO60981	Figure 430: PRO85247
Figure 376: DNA323936, NP_001995.1, 201275_at	Figure 431: DNA329937, NP_002786.2, 201400_at
Figure 377: PRO80669	Figure 432: PRO61014
Figure 378: DNA328405, NP_112556.1, 201277_s_at	Figure 433: DNA328412, NP_060428.1, 201411_s_at

	TI 100 PRO04061
Figure 434: PRO84257	Figure 490: PRO84261
Figure 435: DNA329938, 1394805.1, 201416_at	Figure 491: DNA331292, NP_002779.1, 201532_at
Figure 436: PRO70544	Figure 492: PRO84262
Figure 437: DNA329939, 1393503.1, 201417.at	Figure 493: DNA329943, NP_009037.1, 201534_s_at
Figure 438: PRO85248	Figure 494: PRO85251
Figure 439: DNA83109, NP_006323.1, 201422_at	Figure 495: DNA331448, UBL3, 201535_at
Figure 440: PRO2592	Figure 496: PRO86503
Figure 441: DNA226600, NP_003371.1, 201426_s_at	Figure 497: DNA272171, NP_002379.2, 201555_at
Figure 442: PRO37063	Figure 498: PRO60438
Figure 443: DNA272286, NP_001743.1, 201432_at	Figure 499: DNA226291, NP_055047.1, 201556_s_at
Figure 444: PRO60544	Figure 500: PRO36754
Figure 445: DNA327550, NP_001959.1, 201437_s_at	Figure 501: DNA226291, VAMP2, 201557_at
Figure 446: PRO81164	Figure 502: PRO36754
Figure 447A-C: DNA88140, COL6A3, 201438_at	Figure 503A-B: DNA270995, NP_004721.1, 201574_at
Figure 448: PRO2670	Figure 504: PRO59324
Figure 449: DNA150535, NP_004809.1, 201440_at	Figure 505: DNA227071, NP_000260.1, 201577_at
Figure 450: PRO12078	Figure 506: PRO37534
Figure 451: DNA325049, NP_005605.1, 201453_x_at	Figure 507: DNA327199, NP_066979.1, 201580_s_at
Figure 452: PRO37938	Figure 508: PRO83475
Figure 453: DNA326736, NP_006657.1, 201459_at	Figure 509A-B: DNA329944, AB032988, 201581_at Figure 510: DNA329945, NP_006354.2, 201583_s_at
Figure 454: PRO83076	
Figure 455: DNA226359, NP_002219.1, 201464_x_at	Figure 511: PRO85252 Figure 512A-B: DNA329946, D80000, 201589_at
Figure 456: PRO36822	Figure 513: DNA290280, NP_004359.1, 201605_x_at
Figure 457: DNA226359, JUN, 201465_s_at	Figure 514: PRO70425
Figure 458: PRO36822	Figure 515: DNA329947, NP_536806.1, 201613_s_at
Figure 459: DNA226359, DNA226359, 201466_s_at	Figure 516: PRO37674
Figure 460: PRO36822	Figure 517: DNA272904, NP_006784.1, 201619_at
Figure 461: DNA328413, NP_004823.1, 201470_at	Figure 518: PRO60991
Figure 462: PRO84258	Figure 519: DNA255406, NP_005533.1, 201625_s_at
Figure 463: DNA103320, NP_002220.1, 201473_at	Figure 520: PRO50473
Figure 464: PRO4650 Figure 465: DNA325704, NP_004981.2, 201475_x_at	Figure 521: DNA255406, INSIG1, 201627_s_at
Figure 466: PRO82188	Figure 522: PRO50473
Figure 467: DNA327551, NP_001024.1, 201476_s_at	Figure 523: DNA329115, NP_434702.1, 201631_s_at
Figure 468: PRO59289	Figure 524: PRO84760
Figure 469: DNA327551, RRM1, 201477_s_at	Figure 525: DNA287240, NP_004326.1, 201641_at
Figure 470: PRO59289	Figure 526: PRO29371
Figure 471: DNA254783, NP_001354.1, 201478_s_at	Figure 527: DNA327557, NP_004214.1, 201649_at
Figure 472: PRO49881	Figure 528: PRO83588
Figure 473: DNA329940, NP_001805.1, 201487_at	Figure 529A-B: DNA220748, NP_000201.1, 201656_at
Figure 474: PRO2679	Figure 530: PRO34726
Figure 475: DNA304459, BC005020, 201489_at	Figure 531A-B: DNA328422, NP_004448.1,
Figure 476: PRO37073	201662_s_at
Figure 477: DNA304459, NP_005720.1, 201490_s_at	Figure 532: PRO84263
Figure 478: PRO37073	Figure 533A-B: DNA273732, NP_005487.2,
Figure 479: DNA325920, NP_036243.1, 201491_at	201663_s_at
Figure 480: PRO82373	Figure 534: PRO61695
Figure 481: DNA328415, BC006997, 201503_at	Figure 535A-B: DNA273732, HSM801845, 201664_at
Figure 482: PRO60207	Figure 536: PRO61695
Figure 483: DNA329941, NP_001543.1, 201508_at	Figure 537: DNA273090, NP_002347.4, 201669_s_at
Figure 484: PRO85249	Figure 538: PRO61148
Figure 485: DNA323741, NP_003123.1, 201516_at	Figure 539: DNA273090, MARCKS, 201670_s_at
Figure 486: PRO80498	Figure 540: PRO61148
Figure 487: DNA329942, NCBP2, 201521_s_at	Figure 541: DNA290244, NP_000261.1, 201695_s_at
Figure 488: PRO85250	Figure 542: PRO70353 Figure 543: DNA329948, NP_002797.1, 201699_at
Figure 489: DNA328418, NP_003398.1, 201531_at	rigule 343. Divasasseo, includass.1.1, 201035 At

Figure 598: PRO49461 Figure 544: PRO85253 Figure 599: DNA329118, NP_068660.1, 201853_s_at Figure 545: DNA324742, NP_001751.1, 201700_at Figure 600: PRO83123 Figure 546: PRO81367 Figure 601: DNA272066, NP_002931.1, 201872_s_at Figure 547: DNA270883, NP_001061.1, 201714_at Figure 602: PRO60337 Figure 548: PRO59218 Figure 603: DNA150805, NP_055703.1, 201889_at Figure 549A-B: DNA151806, NP_001422.1, Figure 604: PRO11583 201719_s_at Figure 605: DNA253582, DNA253582, 201890_at Figure 550: PRO12768 Figure 606: PRO49181 Figure 551: DNA227461, NP_006753.1, 201720_s_at Figure 607: DNA329956, NP_000875.1, 201892_s_at Figure 552: PRO37924 Figure 608: PRO85260 Figure 553: DNA227461, LAPTM5, 201721_s_at Figure 609: DNA328431, NP_001817.1, 201897_s_at Figure 554: PRO37924 Figure 610: PRO45093 Figure 555: DNA329949, BC003376, 201726_at Figure 611: DNA254978, NP_060625.1, 201917_s_at Figure 556: PRO85254 Figure 612: PRO50067 Figure 557: DNA227576, NP_005618.1, 201739_at Figure 613: DNA329057, NP_004116.2, 201921_at Figure 558: PRO38039 Figure 614: PRO84719 Figure 559: DNA326373, NP_008855.1, 201742_x_at Figure 615: DNA227112, NP_006397.1, 201923_at Figure 560: PRO82769 Figure 616: PRO37575 Figure 561: DNA327559, NP_058432.1, 201752_s_at Figure 617: DNA275240, NP_005906.2, 201930_at Figure 562: PRO83589 Figure 618: PRO62927 Figure 563: DNA331294, ADD3, 201753_s_at Figure 619: DNA273014, NP_000117.1, 201931_at Figure 564: PRO86393 Figure 620: PRO61085 Figure 565: DNA227035, NP_006730.1, 201755_at Figure 621A-B: DNA329120, NP_002560.1, 201945_at Figure 566: PRO37498 Figure 622: PRO2752 Figure 567: DNA329016, NP_006283.1, 201758_at Figure 623: DNA274167, NP_006422.1, 201946_s_at Figure 568: PRO4887 Figure 624: PRO62097 Figure 569: DNA328427, NP_061109.1, 201760_s_at Figure 625: DNA274167, CCT2, 201947_s_at Figure 570: PRO84265 Figure 626: PRO62097 Figure 571: DNA287167, NP_006627.1, 201761_at Figure 627: DNA103481, NP_037417.1, 201948_at Figure 572: PRO59136 Figure 628: PRO4808 Figure 573: DNA287625, NP_002809.1, 201762_s_at Figure 629A-B: DNA327563, NP_066945.1, 201963_at Figure 574: PRO69491 Figure 630: PRO83592 Figure 575: DNA329950, NP_076961.1, 201764_at Figure 631: DNA275214, NP_002473.1, 201970_s_at Figure 576: PRO11558 Figure 632: PRO62908 Figure 577A-B: DNA329951, NP_055680.1, Figure 633A-B: DNA328433, ATP6V1A1, 201774_s_at 201971_s_at Figure 578: PRO85255 Figure 634: PRO84268 Figure 579: DNA151017, NP_004835.1, 201810_s_at Figure 635A-B: DNA272191, NP_002947.1, 201975_at Figure 580: PRO12841 Figure 636: PRO60456 Figure 581: DNA151017, SH3BP5, 201811_x_at Figure 637: DNA328809, PTPN12, 202006_at Figure 582: PRO12841 Figure 638: PRO4803 Figure 583: DNA227929, NP_061932.1, 201812_s_at Figure 639: DNA328437, AF083441, 202021_x_at Figure 584: PRO38392 Figure 640: PRO84271 Figure 585: DNA324015, NP_006326.1, 201821_s_at Figure 641: DNA329957, NP_005156.1, 202022_at Figure 586: PRO80735 Figure 642: PRO85261 Figure 587: DNA329952, BC010285, 201829_at Figure 643A-B: DNA329958, NP_510880.1, 202039_at Figure 588: PRO85256 Figure 644: PRO85262 Figure 589: DNA329952, NET1, 201830_s_at Figure 645: DNA327017, NP_004586.2, 202043_s_at Figure 590: PRO85256 Figure 646: PRO61744 Figure 591: DNA329954, NP_001518.1, 201833_at Figure 647A-B: DNA227985, NP_055107.1, Figure 592: PRO85258 Figure 593A-B: DNA329955, AB029551, 201845_s_at 202047_s_at Figure 648: PRO38448 Figure 594: PRO85259 Figure 649A-B: DNA225991, NP_000518.1, Figure 595: DNA254350, NP_004043.2, 201848_s_at 202067_s_at Figure 596: PRO49461 Figure 650: PRO36454 Figure 597: DNA254350, BNIP3, 201849_at

Figure 705A-B: DNA227176, NP_056371.1, Figure 651A-B: DNA225991, LDLR, 202068_s_at 202255_s_at Figure 652: PRO36454 Figure 706: PRO37639 Figure 653: DNA327567, NP_005521.1, 202069_s_at Figure 707: DNA326120, NP_006101.1, 202257_s_at Figure 654: PRO83596 Figure 708: PRO82546 Figure 655: DNA226116, NP_002990.1, 202071_at Figure 709: DNA150808, NP_002044.1, 202269_x_at Figure 656: PRO36579 Figure 710: PRO12478 Figure 657: DNA289522, NP_004994.1, 202077_at Figure 711: DNA150808, GBP1, 202270_at Figure 658: PRO70276 Figure 712: PRO12478 Figure 659: DNA327568, NP_002453.1, 202086_at Figure 713: DNA329966, NP_006295.1, 202276_at Figure 660: PRO57922 Figure 714: PRO22705 Figure 661: DNA327569, CTSL, 202087_s_at Figure 715: DNA304716, NP_510867.1, 202284_s_at Figure 662: PRO2683 Figure 716: PRO71142 Figure 663: DNA329959, 251651.5, 202094_at Figure 717: DNA331450, NP_004381.1, 202295_s_at Figure 664: PRO85263 Figure 718: PRO2682 Figure 665: DNA129504, NP_001159.1, 202095_s_at Figure 719A-B: DNA329967, NP_003592.2, Figure 666: PRO7143 202303_x_at Figure 667: DNA328440, NP_004517.1, 202107_s_at Figure 720: PRO85270 Figure 668: PRO84274 Figure 721: DNA329524, NP_000584.2, 202307_s_at Figure 669: DNA329960, 1381890.1, 202136_at Figure 722: PRO36996 Figure 670: PRO85264 Figure 723A-B: DNA151108, NP_004167.3, 202308_at Figure 671: DNA324895, NP_006294.2, 202138_x_at Figure 724: PRO12105 Figure 672: PRO81501 Figure 725: DNA270142, NP_005947.2, 202309_at Figure 673: DNA227150, NP_002337.1, 202145_at Figure 726: PRO58531 Figure 674: PRO37613 Figure 727: DNA269842, NP_002708.1, 202313_at Figure 675: DNA329020, NP_057637.1, 202153_s_at Figure 728: PRO58243 Figure 676: PRO84695 Figure 729: DNA328448, NP_000777.1, 202314_at Figure 677: DNA328442, NP_006078.2, 202154_x_at Figure 730: PRO62362 Figure 678: PRO84275 Figure 731: DNA331451, UNG, 202330_s_at Figure 679A-C: DNA331449, NP_004371.1, 202160_at Figure 732: PRO86505 Figure 680: PRO86504 Figure 733A-B: DNA329970, NP_000910.2, Figure 681: DNA327573, BC007655, 202165_at 202336_s_at Figure 682: PRO59301 Figure 734: PRO85272 Figure 683: DNA329962, AASDHPPT, 202170_s_at Figure 735: DNA255088, NP_003249.1, 202338_at Figure 684: PRO85266 Figure 736: PRO50174 Figure 685A-B: DNA329963, NP.060700.1, Figure 737: DNA325115, NP_001435.1, 202345_s_at 202184_s_at Figure 738: PRO81689 Figure 686: PRO85267 Figure 739: DNA270502, NP_002807.1, 202352_s_at Figure 687: DNA254570, NP_055484.1, 202188_at Figure 740: PRO58880 Figure 688: PRO49673 Figure 741A-B: DNA227353, NP_055637.1, 202375_at Figure 689A-B: DNA304479, BC016556, 202194_at Figure 742: PRO37816 Figure 690: PRO733 Figure 743: DNA328449, NP_005462.1, 202382_s_at Figure 691A-B: DNA329599, NP_003128.2, Figure 744: PRO60304 202200_s_at Figure 745: DNA290234, NP_002914.1, 202388_at Figure 692: PRO85131 Figure 746: PRO70333 Figure 693A-B: DNA329964, 215949.9, 202206_at Figure 747: DNA325417, NP_001742.1, 202402_s_at Figure 694: PRO85268 Figure 748: PRO69635 Figure 695: DNA329965, BC001051, 202208_s_at Figure 749: DNA150989, NP_005523.1, 202411_at Figure 696: PRO85269 Figure 750: PRO12569 Figure 697: DNA325477, NP_004256.1, 202218_s_at Figure 751: DNA326563, NP_036421.2, 202417_at Figure 698: PRO12878 Figure 752: PRO82927 Figure 699: DNA328258, SLC16A1, 202236_s_at Figure 753: DNA150514, NP_065203.1, 202418_at Figure 700: PRO84151 Figure 754: PRO12304 Figure 701: DNA326133, NP_005021.2, 202240_at Figure 755: DNA88332, NP_002026.1, 202419_at Figure 702: PRO82557 Figure 756: PRO2753 Figure 703: DNA328444, MGC14458, 202246_s_at Figure 757A-B: DNA329971, NP_075266.1, Figure 704: PRO84277

202543_s_at 202422_s_at Figure 808: PRO62605 Figure 758: PRO85273 Figure 809: DNA275244, DNA275244, 202557_at Figure 759: DNA227121, NP_066928.1, 202430_s_at Figure 810A-C: DNA331454, NP_068506.1, Figure 760: PRO37584 202565_s_at Figure 761: DNA66487, NP_002458.1, 202431_s_at Figure 811: PRO86507 Figure 762: PRO1213 Figure 812A-C: DNA329978, SVIL, 202566_s_at Figure 763: DNA103322, NP_005818.1, 202433_at Figure 813: PRO85277 Figure 764: PRO4652 Figure 814: DNA326939, NP_004166.1, 202567_at Figure 765: DNA68868, DNA68868, 202441_at Figure 815: PRO83257 Figure 766: PRO1460 Figure 816: DNA325587, NP_068772.1, 202580_x_at Figure 767: DNA227121, PLSCR1, 202446_s_at Figure 817: PRO82083 Figure 768: PRO37584 Figure 818: DNA227607, HSPA1B, 202581_at Figure 769: DNA329972, BC004452, 202451_at Figure 819: PRO38070 Figure 770: PRO85274 Figure 820: DNA328456, NP_000467.1, 202587_s_at Figure 771A-B: DNA329973, NP_055461.1, Figure 821: PRO84283 202459_s_at Figure 822: DNA329979, NP_001062.1, 202589_at Figure 772: PRO82824 Figure 823: PRO82821 Figure 773A-B: DNA269642, NP_004557.1, Figure 824: DNA329125, NP_056159.1, 202595_s_at 202464_s_at Figure 825: PRO84767 Figure 774: PRO58054 Figure 826A-C: DNA270287, NP_003480.1, Figure 775: DNA227921, NP_003789.1, 202468_s_at 202599_s_at Figure 776: PRO38384 Figure 827: PRO58675 Figure 777A-B: DNA329122, NP_067675.1, 202478_at Figure 828A-C: DNA270287, NRIP1, 202600_s_at Figure 778: PRO84764 Figure 829: PRO58675 Figure 779: DNA329123, NP_002873.1, 202483_s_at Figure 830A-C: DNA329268, NP_004220.1, Figure 780: PRO84765 202610_s_at Figure 781A-B: DNA103449, NP_008862.1, Figure 831: PRO84864 202498_s_at Figure 832: DNA274881, NP_001896.1, 202613_at Figure 782: PRO4776 Figure 833: PRO62626 Figure 783: DNA329974, NP_055083.1, 202501_at Figure 834A-B: DNA329980, 1134366.16, 202615_at Figure 784: PRO85275 Figure 835: PRO85278 Figure 785: DNA234442, NP_055551.1, 202503_s_at Figure 836: DNA329126, NP_005025.1, 202635_s_at Figure 786: PRO38852 Figure 837: PRO84768 Figure 787A-B: DNA273879, NP_055753.1, 202519_at Figure 838: DNA59763, NP_000192.1, 202637_s_at Figure 788: PRO61835 Figure 839: PRO160 Figure 789A-B: DNA277809, NP_055582.1, Figure 840: DNA59763, ICAM1, 202638_s_at 202524_s_at Figure 841: PRO160 Figure 790: PRO64556 Figure 842: DNA289528, NP_004302.1, 202641_at Figure 791: DNA328452, NP_000394.1, 202528_at Figure 843: PRO70286 Figure 792: PRO63289 Figure 844A-B: DNA151841, NP-006281.1, Figure 793A-B: DNA226870, DHFR, 202532_s_at 202643_s_at Figure 794: PRO37333 Figure 845: PRO12904 Figure 795: DNA331452, BC003584, 202533_s_at Figure 846A-B: DNA151841, TNFAIP3, 202644_s_at Figure 796: PRO86506 Figure 847: PRO12904 Figure 797: DNA331453, NP_060993.1, 202534_x_at Figure 848: DNA329981, NP_001155.1, 202652_at Figure 798: PRO69586 Figure 849: PRO49894 Figure 799: DNA329976, NP_003815.1, 202535_at Figure 850: DNA254129, NP_006001.1, 202655_at Figure 800: PRO4801 Figure 851: PRO49244 Figure 801: DNA329977, BC001553, 202536_at Figure 852: DNA331455, NP_002792.1, 202659_at Figure 802: PRO85276 Figure 853: PRO58763 Figure 803A-B: DNA255105, NP_000850.1, Figure 854: DNA287424, NP_004292.1, 202666_s_at 202539_s_at Figure 855: PRO69681 Figure 804: PRO50187 Figure 856: DNA326896, NP_003672.1, 202671_s_at Figure 805A-B: DNA255105, HMGCR, 202540_s_at Figure 857: PRO69486 Figure 806: PRO50187 Figure 858: DNA289526, ATF3, 202672_s_at Figure 807A-B: DNA274852, NP_004115.1,

Figure 912: DNA269828, FLN29, 202837_at Figure 859: PRO70282 Figure 913: PRO58230 Figure 860: DNA84130, NP_003801.1, 202687_s_at Figure 914: DNA329988, NP_036460.1, 202842_s_at Figure 861: PRO1096 Figure 915: PRO1471 Figure 862: DNA84130, TNFSF10, 202688_at Figure 916: DNA329988, DNAJB9, 202843_at Figure 863: PRO1096 Figure 917: PRO1471 Figure 864: DNA329982, NP_008937.1, 202697_at Figure 918: DNA103394, NP_004198.1, 202855_s_at Figure 865: PRO85279 Figure 919: PRO4722 Figure 866A-B: DNA150467, NP_055513.1, Figure 920: DNA103394, SLC16A3, 202856_s_at 202699_s_at Figure 921: PRO4722 Figure 867: PRO12272 Figure 922A-B: DNA272022, PER1, 202861_at Figure 868A-B: DNA150467, KIAA0792, 202700_s_at Figure 923: PRO60296 Figure 869: PRO12272 Figure 924: DNA275144, NP_000128.1, 202862_at Figure 870: DNA326000, NP_004692.1, 202705_at Figure 925: PRO62852 Figure 871: PRO82442 Figure 926: DNA328467, SP100, 202864_s_at Figure 872: DNA273371, NP_000364.1, 202706_s_at Figure 927: PRO84293 Figure 873: PRO61373 Figure 928: DNA287289, NP_058132.1, 202869_at Figure 874: DNA329983, BC012595, 202710_at Figure 929: PRO69559 Figure 875: PRO85280 Figure 930: DNA273060, NP_001246.1, 202870_s_at Figure 876: DNA43010, NP_000588.1, 202718_at Figure 931: PRO61125 Figure 877: PRO36145 Figure 932: DNA329130, NP_004286.2, 202871_at Figure 878A-B: DNA270254, NP_002006.2, Figure 933: PRO20124 202723_s_at Figure 934: DNA328469, NP_001686.1, 202874_s_at Figure 879: PRO58642 Figure 935: PRO84295 Figure 880: DNA150713, NP_006570.1, 202735_at Figure 936: DNA271881, PSCD1, 202880_s_at Figure 881: PRO12082 Figure 937: PRO60160 Figure 882: DNA58828, DNA58828, 202746_at Figure 938: DNA329989, HSPPP2R15, 202886_s_at Figure 883: PRO1189 Figure 939A-B: DNA225538, NP_002476.1, Figure 884: DNA327192, NP_004858.1, 202747_s_at 202906_s_at Figure 885: PRO1189 Figure 940: PRO36001 Figure 886: DNA227133, NP_004111.1, 202748_at Figure 941A-B: DNA225538, NBS1, 202907_s_at Figure 887: PRO37596 Figure 942: PRO36001 Figure 888: DNA329984, NP_004618.2, 202749_at Figure 943: DNA328483, NP_061163.1, 202911_at Figure 889: PRO11656 Figure 944: PRO84309 Figure 890A-C: DNA329129, NP_009134.1, Figure 945: DNA327584, NP_002955.2, 202917_s_at 202760_s_at Figure 946: PRO80649 Figure 891: PRO84288 Figure 947A-B: DNA329132, NP_002648.1, Figure 892: DNA329008, NP_004337.2, 202763_at 202925_s_at Figure 893: PRO12832 Figure 948: PRO83145 Figure 894A-B: DNA328464, 977954.20, 202769_at Figure 949: DNA272979, NP_003841.1, 202930_s_at Figure 895: PRO84290 Figure 950: PRO61058 Figure 896: DNA226578, NP_004345.1, 202770_s_at Figure 951: DNA331456, BIN1, 202931_x_at Figure 897: PRO37041 Figure 952: PRO86508 Figure 898: DNA273346, NP_055316.1, 202779_s_at Figure 953: DNA327585, NP_056518.1, 202937_x_at Figure 899: PRO61349 Figure 954: PRO83605 Figure 900: DNA329985, NP_002185.1, 202794_at Figure 955: DNA328471, ZMPSTE24, 202939_at Figure 901: PRO60589 Figure 956: PRO84297 Figure 902: DNA88428, NP_000202.1, 202803_s_at Figure 957: DNA304681, NP_066552.1, 202941_at Figure 903: PRO2787 Figure 958: PRO71107 Figure 904: DNA329986, NP_006454.1, 202811_at Figure 959: DNA269481, NP_001976.1, 202942_at Figure 905: PRO61895 Figure 960: PRO57901 Figure 906A-B: DNA226364, NP_001612.1, 202820_at Figure 961: DNA273320, NP_008950.1, 202954_at Figure 907: PRO36827 Figure 962: PRO61327 Figure 908: DNA328465, NP_005639.1, 202823_at Figure 963: DNA273334, NP_000246.1, 202960_s_at Figure 909: PRO84291 Figure 964: PRO61341 Figure 910: DNA329987, NP_000286.2, 202833_s_at Figure 965A-B: DNA328473, NP_006473.1, Figure 911: PRO85281

202968_s_at Figure 1015: DNA269660, NP_003192.1, 203177_x_at Figure 966: PRO84299 Figure 1016: PRO58071 Figure 967A-B: DNA227293, NP_055698.1, Figure 1017: DNA304720, NP_062427.1, 203186_s_at 202972_s_at Figure 1018: PRO71146 Figure 968: PRO37756 Figure 1019A-B: DNA271744, NP_055476.1, Figure 969A-B: DNA227293, KIAA0914, 202973_x_at 203206_at Figure 970: PRO37756 Figure 1020: PRO60028 Figure 971: DNA329135, NP_002913.2, 2029.88_s_at Figure 1021: DNA329997, BC001866, 203209_at Figure 972: PRO58102 Figure 1022: PRO61115 Figure 973: DNA274034, NP_006388.1, 203022_at Figure 1023: DNA329997, NP_031396.1, 203210_s_at Figure 974: PRO61977 Figure 1024: PRO61115 Figure 975: DNA329136, NP_057475.1, 203023_at Figure 1025A-B: DNA328481, MTMR2, 203211_s_at Figure 976: PRO84772 Figure 1026: PRO84307 Figure 977A-B: DNA271865, NP_055566.1, Figure 1027: DNA331458, 995529.4, 203213_at 203037_s_at Figure 1028: PRO86510 Figure 978: PRO60145 Figure 1029: DNA331459, CDC2, 203214_x_at Figure 979A-B: DNA304464, NP_055733.1, 203044_at Figure 1030: PRO70806 Figure 980: PRO71042 Figure 1031: DNA76514, NP_000409.1, 203233_at Figure 981A-B: DNA329991, NP_003911.1, Figure 1032: PRO2540 203046_s_at Figure 1033: DNA325507, NP_005842.1, 203252_at Figure 982: PRO85284 Figure 1034: PRO69461 Figure 983: DNA331457, AF119894, 203047_at Figure 1035: DNA330000, NP_036277.1, 203270_at Figure 984: PRO86509 Figure 1036: PRO85289 Figure 985: DNA150976, NP_071503.1, 203054_s_at Figure 1037: DNA302020, NP_005564.1, 203276_at Figure 986: PRO12565 Figure 1038: PRO70993 Figure 987: DNA326693, NP_004697.2, 203055_s_at Figure 1039: DNA328486, NP_000149.1, 203282_at Figure 988: PRO83039 Figure 1040: PRO60119 Figure 989: DNA188357, NP_000651.1, 203085_s_at Figure 1041A-B: DNA330001, NP_036394.1, Figure 990: PRO21897 203285_s_at Figure 991: DNA324133, NP_037379.1, 203089_s_at Figure 1042: PRO85290 Figure 992: PRO80835 Figure 1043: DNA225675, NP_005561.1, 203293_s_at Figure 993: DNA269984, NP_055443.1, 203094_at Figure 1044: PRO36138 Figure 994: PRO58380 Figure 1045: DNA330002, BC007195, 203315_at Figure 995: DNA329992, NP_002399.1, 203102_s_at Figure 1046: PRO80853 Figure 996: PRO59267 Figure 1047A-B: DNA330003, NP_005532.1, Figure 997: DNA329993, NP_115754.1, 203113_s_at 203331_s_at Figure 998: PRO85285 Figure 1048: PRO85291 Figure 999: DNA329994, PCSK7, 203118_at Figure 1049: DNA330004, NP_055785.2, 203333_at Figure 1000: PRO85286 Figure 1050: PRO85292 Figure 1001A-B: DNA150447, NP_004854.1, Figure 1051: DNA330005, NP_003696.2, 203340_s_at 203128_at Figure 1052: PRO85293 Figure 1002: PRO12256 Figure 1053: DNA271959, NP_002885.1, 203344_s_at Figure 1003: DNA254543, NP_006799.1, 203133_at Figure 1054: PRO60234 Figure 1004: PRO49648 Figure 1055: DNA330006, NP_031384.1, 203347_s_at Figure 1005: DNA269918, NP_003633.1, 203138_at Figure 1056: PRO85294 Figure 1006: PRO58316 Figure 1057: DNA330007, NP_055111.1, 203357_s_at Figure 1007: DNA329001, BCL6, 203140_at Figure 1058: PRO85295 Figure 1008: PRO26296 Figure 1059: DNA330008, NP_004447.2, 203358_s_at Figure 1009A-B: DNA329995, NP_006452.1, Figure 1060: PRO85296 Figure 1061: DNA272449, NP_036465.1, 203360_s_at 203145_at Figure 1010: PRO85287 Figure 1062: PRO60698 Figure 1011A-B: DNA226330, NP_001461.1, Figure 1063: DNA324514, NP_002349.1, 203362_s_at 203146_s_at Figure 1064: PRO81169 Figure 1012: PRO36793 Figure 1065: DNA325749, NP_003868.1, 203372_s_at Figure 1013: DNA271624, NP_001539.1, 203153_at Figure 1066: PRO12839 Figure 1014: PRO59911 Figure 1067: DNA325749, STATI2, 203373_at

Figure 1115: PRO60653 Figure 1068: PRO12839 Figure 1116A-B: DNA272399, BTEB1, 203543 s_at Figure 1069: DNA274960, NP_008856.1, 203380_x_at Figure 1117: PRO60653 Figure 1070: PRO62694 Figure 1118: DNA324684, NP_004210.1, 203554_x_at Figure 1071: DNA151022, NP_001336.1, 203385_at Figure 1119: PRO81319 Figure 1072: PRO12096 Figure 1120: DNA330015, NP_004620.1, 203564_at Figure 1073: DNA331460, NP_002780.1, 203396_at Figure 1121: PRO58704 Figure 1074: PRO60499 Figure 1122: DNA330016, NP_006346.1, 203567_s_at Figure 1075: DNA326892, NP_003711.1, 203405_at Figure 1123: PRO85303 Figure 1076: PRO83213 Figure 1124A-B: DNA150765, NP_003974.1, Figure 1077: DNA274778, NP_005917.1, 203406_at 203579_s_at Figure 1078: PRO62545 Figure 1125: PRO12458 Figure 1079: DNA270134, NP_000098.1, 203409_at Figure 1126: DNA273676, NP_055488.1, 203584_at Figure 1080: PRO58523 Figure 1127: PRO61644 Figure 1081: DNA28759, NP_006150.1, 203413_at Figure 1128: DNA271003, NP_003720.1, 203594_at Figure 1082: PRO2520 Figure 1129: PRO59332 Figure 1083: DNA287267, NP_001228.1, 203418_at Figure 1130A-B: DNA270323, NP-036552.1, Figure 1084: PRO37015 203595_s_at Figure 1085A-B: DNA256807, NP_057339.1, Figure 1131: PRO58710 203420_at Figure 1132A-B: DNA270323, RI58, 203596_s_at Figure 1086: PRO51738 Figure 1133: PRO58710 Figure 1087: DNA326745, NP_002682.1, 203422_at Figure 1134: DNA330017, NP_009118.1, 203597_s_at Figure 1088: PRO83083 Figure 1135: PRO60916 Figure 1089: DNA330009, NP_054753.1, 203428_s_at Figure 1136: DNA329604, NP_003127.1, 203605_at Figure 1090: PRO85297 Figure 1137: PRO85134 Figure 1091A-B: DNA275186, DNA275186, Figure 1138: DNA287246, NP_004044.2, 203612_at 203432_at Figure 1139: PRO69521 Figure 1092A-B: DNA330010, NP_005721.2, Figure 1140: DNA330018, NP_064528.1, 203622_s_at 203445_s_at Figure 1141: PRO85304 Figure 1093: PRO85298 Figure 1142: DNA331465, SKP2, 203625_x_at Figure 1094: DNA273410, NP_004036.1, 203454_s_at Figure 1143: PRO81225 Figure 1095: PRO61409 Figure 1144A-B: DNA327596, 345314.2, 203628_at Figure 1096: DNA328495, NP_055578.1, 203465_at Figure 1145: PRO1920 Figure 1097: PRO58967 Figure 1146A-B: DNA331466, BCL2, 203685_at Figure 1098A-C: DNA331461, NP_005493.2, Figure 1147: PRO86515 203504_s_at Figure 1148A-B: DNA330021, NP_001940.1, Figure 1099: PRO86511 203693_s_at Figure 1100A-B: DNA331462, NP_003096.1, Figure 1149: PRO85306 203509_at Figure 1150: DNA329900, RFC2, 203696_s_at Figure 1101: PRO86512 Figure 1151: PRO81549 Figure 1102: DNA272911, NP_006545.1, 203517_at Figure 1152A-C: DNA331467, NP_002213.1, Figure 1103: PRO60997 203710_at Figure 1104A-D: DNA331463, NP_000072.1, Figure 1153: PRO86516 203518_at Figure 1154: DNA329144, KIAA0020, 203712.at Figure 1105: PRO86513 Figure 1155: PRO84779 Figure 1106A-C: DNA331464, NP_055160.1, Figure 1156: DNA326402, NP_004515.1, 203713_s_at 203520_s_at Figure 1157: PRO82793 Figure 1107: PRO86514 Figure 1158: DNA324183, DPP4, 203716_s_at Figure 1108A-C: DNA330014, HRIHFB2436, Figure 1159: PRO80881 203521_s_at Figure 1160: DNA150784, NP_001974.1, 203720_s_at Figure 1109: PRO85302 Figure 1161: PRO12800 Figure 1110: DNA325404, NP_002330.1, 203523_at Figure 1162A-B: DNA269573, NP_002212.1, Figure 1111: PRO81936 203723_at Figure 1112: DNA323910, NP_002956.1, 203535_at Figure 1163: PRO57986 Figure 1113: PRO80648 Figure 1164: DNA330023, NP_001915.1, 203725_at Figure 1114A-B: DNA272399, NP_001197.1, Figure 1165: PRO85308 203542_s_at

Figure 1166: DNA227020, NP_001416.1, 203729_at Figure 1216: DNA275012, NP_004679.1, 203964_at Figure 1167: PRO37483 Figure 1217: PRO62740 Figure 1168A-B: DNA325369, NP_055877.2, Figure 1218: DNA272338, NP_001245.1, 203967_at 203737_s_at Figure 1219: PRO60595 Figure 1169: PRO81905 Figure 1220: DNA272338, CDC6, 203968_s_at Figure 1170A-B: DNA150748, NP_001105.1, Figure 1221: PRO60595 203741_s_at Figure 1222: DNA227232, NP_001850.1, 203971_at Figure 1171: PRO12446 Figure 1223: PRO37695 Figure 1172: DNA327523, AQP3, 203747_at Figure 1224: DNA271374, NP_005474.1, 203976_s_at Figure 1173: PRO38028 Figure 1225: PRO59673 Figure 1174: DNA330024, NP_058521.1, 203748_x_at Figure 1226: DNA226133, NP_001983.1, 203989_x_at Figure 1175: PRO85309 Figure 1227: PRO36596 Figure 1176: DNA97279, NP_005345.2, 203751_x_at Figure 1228: DNA225915, NP_000561.1, 204006_s_at Figure 1177: PRO3628 Figure 1229: PRO36378 Figure 1178A-B: DNA325972, BUB1B, 203755_at Figure 1230: DNA330032, HUMGCRFC, 204007.at Figure 1179: PRO82417 Figure 1231: PRO85317 Figure 1180: DNA330025, NP_055565.2, 203764_at Figure 1232: DNA329145, DUSP4, 204014_at Figure 1181: PRO85310 Figure 1233: PRO84780 Figure 1182: DNA330026, NP_005899.1, 203778_at Figure 1234: DNA331470, HSU48807, 204015_s_at Figure 1183: PRO85311 Figure 1235: PRO86519 Figure 1184: DNA330027, NP_036578.1, 203787_at Figure 1236: DNA326089, NP_000508.1, 204018_x_at Figure 1185: PRO85312 Figure 1237: PRO3629 Figure 1186A-B: DNA150954, NP_055695.1, Figure 1238: DNA330033, NP_056492.1, 204019_s_at 203799_at Figure 1239: PRO85318 Figure 1187: PRO12558 Figure 1240: DNA330034, NP_002907.1, 204023_at Figure 1188: DNA331468, DGUOK, 203816_at Figure 1241: PRO85319 Figure 1189: PRO86517 Figure 1242: DNA328271, NP_008988.2, 204026_s_at Figure 1190: DNA274125, NP_071739.1, 203830_at Figure 1243: PRO81868 Figure 1191: PRO62061 Figure 1244: DNA330035, NP_004228.1, 204033_at Figure 1192A-B: DNA331469, 094680.4, 203845_at Figure 1245: PRO85320 Figure 1193: PRO86518 Figure 1246: DNA325181, CLTA, 204050_s_at Figure 1194A-B: DNA325529, GAB2, 203853_s_at Figure 1247: PRO81742 Figure 1195: PRO82037 Figure 1248: DNA226342, NP_000305.1, 204054_at Figure 1196A-B: DNA275079, NP_056648.1, Figure 1249: PRO36805 203865_s_at Figure 1250A-B: DNA331471, NP_055498.1, Figure 1197: PRO62797 204063_s_at Figure 1198: DNA275339, NP_005685.1, 203880_at Figure 1251: PRO61468 Figure 1199: PRO63012 Figure 1252: DNA274783, NP_006272.1, 204068_at Figure 1200: DNA329034, NP_006075.2, 203882_at Figure 1253: PRO62549 Figure 1201: PRO84701 Figure 1254A-C: DNA331472, NP_075463.1, Figure 1202A-B: DNA288692, NP_055719.1, 204072_s_at 203884_s_at Figure 1255: PRO86520 Figure 1203: PRO70078 Figure 1256: DNA270476, NP_003591.1, 204092_s_at Figure 1204: DNA328513, TAF9, 203893_at Figure 1257: PRO58855 Figure 1205: PRO37815 Figure 1258: DNA216689, NP_002975.1, 204103_at Figure 1206A-B: DNA330030, NP_055684.1, Figure 1259: PRO34276 203907_s_at Figure 1260: DNA328522, NP_001769.2, 204118_at Figure 1207: PRO85315 Figure 1261: PRO2696 Figure 1208: DNA82376, NP_002407.1, 203915_at Figure 1262: DNA150529, NP_003323.1, 204122_at Figure 1209: PRO1723 Figure 1263: PRO12313 Figure 1210: DNA271676, NP_002052.1, 203925_at Figure 1264: DNA328524, NP_057097.1, 204125_at Figure 1211: PRO59961 Figure 1265: PRO84336 Figure 1212: DNA288249, NP_002940.1, 203931_s_at Figure 1266: DNA304489, NP_003495.1, 204126_s_at Figure 1213: PRO69507 Figure 1267: PRO71058 Figure 1214: DNA330031, NP_057210.1, 203960_s_at Figure 1268: DNA330037, BC000149, 204127_at Figure 1215: PRO85316 Figure 1269: PRO82290

Figure 1270: DNA325824, NP_002906.1, 204128_s_at	204255_s_at
Figure 1271: PRO82290	Figure 1323: PRO4854
Figure 1272: DNA328525, BC021224, 204131_s_at	Figure 1324: DNA228132, NP_076995.1, 204256_at
Figure 1273: PRO84337	Figure 1325: PRO38595
Figure 1274: DNA103532, NP_003263.1, 204137_at	Figure 1326: DNA226577, NP_071390.1, 204265_s_at
Figure 1275: PRO4859	Figure 1327: PRO37040
Figure 1276: DNA330038, BC016330, 204146_at	Figure 1328: DNA88643, SGSH, 204293_at
Figure 1277: PRO85322	Figure 1329: PRO2455
Figure 1278: DNA330039, NP_002396.2, 204152_s_at	Figure 1330: DNA330044, GTSE1, 204318_s_at
Figure 1279: PRO85323	Figure 1331: PRO85327
Figure 1280: DNA330039, MFNG, 204153_s_at	Figure 1332: DNA330045, NP_005943.1, 204326_x_at
Figure 1281: PRO85323	Figure 1333: PRO82583
Figure 1282: DNA330040, NP_523240.1, 204159_at	Figure 1334: DNA328530, NP_009198.2, 204328_at
Figure 1283: PRO59546	Figure 1335: PRO24118
Figure 1284: DNA273694, NP_006092.1, 204162_at	Figure 1336: DNA330046, 987987.10, 204334_at
Figure 1285: PRO61661	Figure 1337: PRO85328
Figure 1286: DNA227116, NP_006738.1, 204164_at	Figure 1338: DNA328531, NP_037542.1, 204348_s_at
Figure 1287: PRO37579	Figure 1339: PRO84338
Figure 1288A-B: DNA254376, NP_055778.1,	Figure 1340: DNA330047, BC005250, 204349_at
204166_at	Figure 1341: PRO37777
Figure 1289: PRO49486	Figure 1342A-B: DNA193847, NP_055518.1,
Figure 1290: DNA272655, NP_001818.1, 204170_s_at	204377_s_at
Figure 1291: PRO60781	Figure 1343: PRO23272
Figure 1292: DNA330041, NP_000088.2, 204172_at	Figure 1344: DNA328533, NP_003647.1, 204392_at
Figure 1293: PRO85324	Figure 1345: PRO84340
Figure 1294: DNA328528, MLC1SA, 204173_at	Figure 1346: DNA226462, NP_002241.1, 204401_at
Figure 1295: PRO60636	Figure 1347: PRO36925
Figure 1296: DNA329148, NP_056955.1, 204175_at	Figure 1348A-B: DNA330048, AF080255, 204407 at
Figure 1297: PRO84782	Figure 1349: PRO85329 Figure 1350: DNA327616, NP_075011.1, 204415_at
Figure 1298: DNA226380, NP_001765.1, 204192_at Figure 1299: PRO4695	Figure 1351: PRO83624
Figure 1300: DNA271778, NP_068594.1, 204205_at	Figure 1352: DNA331473, NP_000839.1, 204418_x_at
Figure 1301: PRO60062	Figure 1353: PRO60552
Figure 1302: DNA330042, HSU16307, 204221_x_at	Figure 1354: DNA226286, NP_001657.1, 204425_at
Figure 1303: PRO85325	Figure 1355: PRO36749
Figure 1304: DNA150812, NP_006842.1, 204222_s_at	Figure 1356: DNA327617, NP_006811.1, 204439_at
Figure 1305: PRO12481	Figure 1357: PRO83625
Figure 1306: DNA227514, NP_000152.1, 204224_s_at	Figure 1358A-B: DNA330049, NP_004514.2,
Figure 1307: PRO37977	204444_at
Figure 1308: DNA88308, NP_004097.1, 204232_at	Figure 1359: PRO85330
Figure 1309: PRO2739	Figure 1360: DNA329150, NP_000689.1, 204446_s_at
Figure 1310: DNA226881, NP_002008.2, 204236_at	Figure 1361: PRO84783
Figure 1311: PRO37344	Figure 1362: DNA270496, NP_001316.1, 204459_at
Figure 1312: DNA270434, NP_006434.1, 204238_s_at	Figure 1363: PRO58875
Figure 1313: PRO58814	Figure 1364: DNA330050, NP_056289.1, 204502_at
Figure 1314A-B: DNA287273, NP_006435.1,	Figure 1365: PRO85331
204240_s_at	Figure 1366: DNA273612, HSU79274, 204521_at
Figure 1315: PRO69545	Figure 1367: PRO61586
Figure 1316: DNA330043, NP_001789.2, 204252_at	Figure 1368: DNA330051, NP_003431.1, 204523_at
Figure 1317: PRO85326	Figure 1369: PRO85332
Figure 1318A-B: DNA103527, NP_000367.1,	Figure 1370A-B: DNA330052, NP_009227.1,
204253_s_at	204531_s_at
Figure 1319: PRO4854	Figure 1371: PRO25103
Figure 1320A-B: DNA103527, VDR, 204254_s_at Figure 1321: PRO4854	Figure 1372: DNA82362, NP_001556.1, 204533_at Figure 1373: PRO1718
Figure 1322A-B: DNA103527, HUMVDR,	Figure 1374A-B: DNA331474, 357276.11, 204552_at
rigute 1322A-D. Divario3321, MOIVI VDA,	1 Iguio 13/Th-D. Divid314/4, 33/2/0.11, 204332.21

Figure 1424A-B: DNA325192, NP_038203.1, Figure 1375: PRO86521 204744_s_at Figure 1376A-B: DNA329036, NP_002451.1, Figure 1425: PRO81753 204562_at Figure 1426: DNA330057, NP_005941.1, 204745_x_at Figure 1377: PRO84703 Figure 1378: DNA287284, NP_060943.1, 204565_at Figure 1427: PRO85337 Figure 1428: DNA287178, NP_001540.1, 204747_at Figure 1379: PRO59915 Figure 1429: PRO69467 Figure 1380: DNA151910, NP_004906.2, 204567_s_at Figure 1430: DNA330058, NP_004529.2, 204749_at Figure 1381: PRO12754 Figure 1431: PRO85338 Figure 1382A-B: DNA273627, NP_055739.1, Figure 1432: DNA329153, NP_001259.1, 204759_at 204568_at Figure 1433: PRO84786 Figure 1383: PRO61599 Figure 1434: DNA330059, NP_068370.1, 204760_s_at Figure 1384: DNA272992, N4BP1, 204601_at Figure 1435: PRO85339 Figure 1385: PRO61064 Figure 1436: DNA330060, NP_002443.2, 204766_s_at Figure 1386: DNA254157, NP_005245.2, 204618_s_at Figure 1437: PRO85340 Figure 1387: PRO49271 Figure 1438: DNA329154, BC000323, 204767_s_at Figure 1388: DNA151048, NP_006177.1, 204621_s_at Figure 1439: PRO69568 Figure 1389: PRO12850 Figure 1440: DNA325479, NP_004102.1, 204768_at Figure 1390: DNA151048, NR4A2, 204622_x_at Figure 1441: PRO69568 Figure 1391: PRO12850 Figure 1442: DNA328541, NP_004503.1, 204773_at Figure 1392A-B: DNA330054, NP_004746.1, Figure 1443: PRO4843 204633_s_at Figure 1444: DNA329155, NP_000034.1, 204780_s_at Figure 1393: PRO85334 Figure 1445: PRO1207 Figure 1394: DNA254470, NP_002488.1, 204641_at Figure 1446: DNA329155, TNFRSF6, 204781 s.at Figure 1395: PRO49578 Figure 1447: PRO1207 Figure 1396: DNA226182, EDG1, 204642_at Figure 1448: DNA272121, NP_005895.1, 204790_at Figure 1397: PRO36645 Figure 1449: PRO60391 Figure 1398: DNA210121, CDW52, 204661_at Figure 1450A-B: DNA330061, NP_055525.1, Figure 1399: PRO33667 204793_at Figure 1400: DNA103526, LRMP, 204674_at Figure 1451: PRO85341 Figure 1401: PRO4853 Figure 1452: DNA103269, NP_005366.1, 204798_at Figure 1402: DNA225974, NP_000864.1, 204683_at Figure 1453: PRO4599 Figure 1403: PRO36437 Figure 1454: DNA287168, NP_003132.2, 204804_at Figure 1404: DNA256295, LRN, 204692_at Figure 1455: PRO69460 Figure 1405: PRO51339 Figure 1456: DNA330062, NP_006017.1, 204805_s_at Figure 1406: DNA227573, NP_001780.1, 204696_s_at Figure 1457: PRO85342 Figure 1407: PRO38036 Figure 1458A-B: DNA329907, ESPL1, 204817_at Figure 1408: DNA329151, NP_004280.3, 204702_s_at Figure 1459: PRO85224 Figure 1409: PRO84784 Figure 1460: DNA331477, NP_003309.1, 204822_at Figure 1410: DNA331475, KNSL5, 204709_s_at Figure 1461: PRO58276 Figure 1411: PRO86522 Figure 1462: DNA255289, NP_055606.1, 204825_at Figure 1412A-B: DNA331476, NP_000121.1, Figure 1463: PRO50363 204713_s_at Figure 1464A-B: DNA226387, NP_001752.1, Figure 1413: PRO86523 204826_at Figure 1414A-B: DNA225911, F5, 204714_s_at Figure 1465: PRO36850 Figure 1415: PRO36374 Figure 1466: DNA328544, NP_006673.1, 204834_at Figure 1416A-B: DNA218283, NP_004436.1, Figure 1467: PRO84347 204718_at Figure 1468A-B: DNA270446, NP_058633.1, Figure 1417: PRO34335 204835_at Figure 1418A-B: DNA256461, NP_009017.1, Figure 1469: PRO58825 204728_s_at Figure 1470: DNA330063, HUMLPTPASE, Figure 1419: PRO51498 Figure 1420A-C: DNA274487, NP_055562.1, 204852_s_at Figure 1471: PRO85343 204730_at Figure 1472: DNA150598, NP_003541.1, 204857_at Figure 1421: PRO62389 Figure 1422A-B: DNA83176, NP_003234.1, 204731_at Figure 1473: PRO12142 Figure 1474: DNA225661, NP_001944.1, 204858_s_at Figure 1423: PRO2620

Figure 1475: PRO36124	Figure 1530A-B: DNA220750, NP_002199.2,
Figure 1476A-B: DNA330064, 332518.2, 204886_at	205055_at
Figure 1477: PRO85344	Figure 1531: PRO34728
Figure 1478: DNA330065, NP_055079.2, 204887_s_at	Figure 1532: DNA330071, NP_003607.1, 205063_at
Figure 1479: PRO85345	Figure 1533: PRO85350
Figure 1480: DNA103444, LCK, 204890_s_at	Figure 1534: DNA330072, NP_071801.1, 205072_s_at
Figure 1481: PRO4771	Figure 1535: PRO85351
Figure 1482: DNA331478, BC013200, 204891_s_at	Figure 1536: DNA304705, NP_002634.1, 205078_at
Figure 1483: PRO86524	Figure 1537: PRO71131
Figure 1484: DNA194139, DNA194139, 204897_at	Figure 1538: DNA327632, NP_001302.1, 205081_at
Figure 1485: PRO23533	Figure 1539: PRO83635
Figure 1486: DNA255326, NP_003855.1, 204900_x_at	Figure 1540: DNA255336, NP_061332.1, 205084_at
Figure 1487: PRO50396	Figure 1541: PRO50406
Figure 1488: DNA329157, NP_004271.1, 204905_s_at	Figure 1542: DNA330073, NP_004144.1, 205085_at
Figure 1489: PRO62861	Figure 1543: PRO85352
Figure 1490: DNA329011, NP_005169.1, 204908_s_at	Figure 1544: DNA330074, HUMHM145, 205098_at
Figure 1491: PRO4785	Figure 1545: PRO85353
Figure 1492A-B: DNA76503, NP_001549.1, 204912_at	Figure 1546: DNA226177, NP_001286.1, 205099_s_at
Figure 1493: PRO2536	Figure 1547: PRO36640
Figure 1494: DNA330066, NP_004520.1, 204917_s_at	Figure 1548: DNA192060, NP_002974.1, 205114_s_at
Figure 1495: PRO85346	Figure 1549: PRO21960
Figure 1496: DNA228014, NP_002153.1, 204949_at	Figure 1550: DNA299899, NP_002148.1, 205133_s_at
Figure 1497: PRO38477	Figure 1551: PRO62760
Figure 1498: DNA271093, NP_004064.1, 204958_at	Figure 1552: DNA331482, NP_001241.1, 205153_s_at
Figure 1499: PRO59417	Figure 1553: PRO34457
Figure 1500: DNA103283, NP_002423.1, 204959_at	Figure 1554: DNA330075, CDC25C, 205167_s_at
Figure 1501: PRO4613	Figure 1555: PRO85354
Figure 1502: DNA330067, NP_001800.1, 204962_s_at	Figure 1556: DNA330076, NP_005410.1, 205170_at
Figure 1503: PRO60368	Figure 1557: PRO85355
Figure 1504: DNA287399, NP_058197.1, 204972_at	Figure 1558: DNA328810, NP_001770.1, 205173_x_at
Figure 1505: PRO69656	Figure 1559: PRO2557
Figure 1506: DNA269665, NP_002454.1, 204994_at	Figure 1560: DNA330077, ITGB3BP, 205176_s_at
Figure 1507: PRO58076	Figure 1561: PRO85356
Figure 1508: DNA331479, 411441.5, 204995_at	Figure 1562: DNA151804, NP_006500.1, 205205_at
Figure 1509: PRO86525	Figure 1563: PRO12188
Figure 1510: DNA272427, NP_004799.1, 205005_s_at	Figure 1564: DNA272443, NP_055531.1, 205213_at
Figure 1511: PRO60679	Figure 1565: PRO60693
Figure 1512: DNA272427, NMT2, 205006_s_at	Figure 1566: DNA273535, NP_004217.1, 205214_at
Figure 1513: PRO60679	Figure 1567: PRO61515
Figure 1514: DNA329534, NP_004615.2, 205019_s_at	Figure 1568: DNA325255, NP_001994.2, 205237_at
Figure 1515: PRO2904	Figure 1569: PRO1910
Figure 1516: DNA331480, RAD51, 205024_s_at	Figure 1570: DNA330078, NP_001648.1, 205239_at
Figure 1517: PRO86526	Figure 1571: PRO46
Figure 1518: DNA329159, NP_005195.2, 205027_s_at	Figure 1572: DNA327634, NP_005129.1, 205241_at
Figure 1519: PRO4660	Figure 1573: PRO83636
Figure 1520: DNA325061, NP_005208.1, 205033_s_at	Figure 1574: DNA188333, NP_006410.1, 205242_at
Figure 1521: PRO9980	Figure 1575: PRO21708
Figure 1522: DNA328297, NP_477097.1, 205034_at	Figure 1576: DNA227081, NP_000390.2, 205249_at
Figure 1523: PRO59418	Figure 1577: PRO37544
Figure 1524A-C: DNA331481, NP_001804.1,	Figure 1578: DNA227447, NP_003193.1, 205254_x_at
205046_at	Figure 1579: PRO37910
Figure 1525: PRO86527	Figure 1580: DNA227447, TCF7, 205255_x_at
Figure 1526: DNA324991, ASNS, 205047_s_at	Figure 1581: PRO37910
Figure 1527: PRO81585	Figure 1582A-B: DNA226483, NP_000892.1,
Figure 1528: DNA271461, NP_000937.1, 205053_at	205259_at
Figure 1529: PRO59757	Figure 1583: PRO36946

Figure 1584A-B: DNA330079, 341358.1, 205263_at Figure 1636: DNA330085, D86324, 205518_s_at Figure 1585: PRO1162 Figure 1637: PRO85359 Figure 1586A-B: DNA188301, NP_002300.1, Figure 1638: DNA330086, NP_079184.1, 205519_at 205266_at Figure 1639: PRO85360 Figure 1587: PRO21834 Figure 1640: DNA254810, NP_056536.1, 205527_s_at Figure 1588: DNA227173, NP_001456.1, 205285_s_at Figure 1641: PRO49906 Figure 1589: PRO37636 Figure 1642: DNA331486, OAS1, 205552_s_at Figure 1590A-B: DNA331483, CDC14A, 205288_at Figure 1643: PRO69559 Figure 1591: PRO86528 Figure 1644: DNA330087, PCSK5, 205559_s_at Figure 1592A-B: DNA331484, NP_000869.1, Figure 1645: PRO85361 205291_at Figure 1646: DNA256257, NP_055213.1, 205569_at Figure 1593: PRO3276 Figure 1647: PRO51301 Figure 1594: DNA88119, NP_000617.1, 205297_s_at Figure 1648A-B: DNA327643, NP_055712.1, Figure 1595: PRO2663 205594_at Figure 1596A-B: DNA330081, NP_003026.1, Figure 1649: PRO83644 205339_at Figure 1650: DNA329013, NP_005649.1, 205599_at Figure 1597: PRO85358 Figure 1651: PRO20128 Figure 1598: DNA256854, NP_000456.1, 205345_at Figure 1652: DNA324324, NP_000679.1, 205633_s_at Figure 1599: PRO51785 Figure 1653: PRO81000 Figure 1600: DNA270415, NP_002059.1, 205349_at Figure 1654: DNA330088, NP_003087.1, 205644_s_at Figure 1601: PRO58796 Figure 1655: PRO61962 Figure 1602: DNA325568, NP_001265.1, 205393_s_at Figure 1656: DNA287317, NP_003724.1, 205660_at Figure 1603: PRO12187 Figure 1657: PRO69582 Figure 1604: DNA325568, CHEK1, 205394_at Figure 1658: DNA328570, NP_004040.1, 205681_at Figure 1605: PRO12187 Figure 1659: PRO37843 Figure 1606: DNA330082, NP_005582.1, 205395_s_at Figure 1660: DNA330089, NP_004200.2, 205691_at Figure 1607: PRO60497 Figure 1661: PRO12507 Figure 1608: DNA328561, NP_004624.1, 205403_at Figure 1662: DNA226234, NP_001766.1, 205692_s_at Figure 1609: PRO2019 Figure 1663: PRO36697 Figure 1610: DNA329010, NP_004942.1, 205419_at Figure 1664: DNA330090, NP_002749.2, 205698_s_at Figure 1611: PRO23370 Figure 1665: PRO62976 Figure 1612A-B: DNA210654, NP_055726.1, Figure 1666: DNA220761, NP_000880.1, 205718_at 205434_s_at Figure 1667: PRO34739 Figure 1613: PRO54603 Figure 1668A-B: DNA271762, NP_000048.1, Figure 1614: DNA287337, NP_002096.1, 205436_s_at 205733_at Figure 1615: PRO69600 Figure 1669: PRO60046 Figure 1616: DNA330083, NP_003073.1, 205443_at Figure 1670: DNA331318, NP_003636.1, 205768_s_at Figure 1617: PRO69499 Figure 1671: PRO51139 Figure 1618: DNA272221, NP_037431.1, 205449_at Figure 1672: DNA331318, SLC27A2, 205769_at Figure 1619: PRO60483 Figure 1673: PRO51139 Figure 1620: DNA88194, NP_000724.1, 205456_at Figure 1674: DNA330091, NP_057461.1, 205771_s_at Figure 1621: PRO2220 Figure 1675: PRO85362 Figure 1622: DNA188355, NP_004582.1, 205476_at Figure 1676: DNA330092, NP_004904.1, 205781_at Figure 1623: PRO21885 Figure 1677: PRO85363 Figure 1678A-B: DNA220752, NP_000623.1, Figure 1624: DNA287224, NP_005092.1, 205483_s_at Figure 1625: PRO69503 205786_s_at Figure 1626: DNA330084, NP_055265.1, 205484_at Figure 1679: PRO34730 Figure 1627: PRO9895 Figure 1680: DNA330093, NP_003717.2, 205790_at Figure 1628: DNA225959, NP_006135.1, 205488_at Figure 1681: PRO85364 Figure 1629: PRO36422 Figure 1682: DNA76517, NP_002176.1, 205798_at Figure 1630: DNA331485, GNLY, 205495_s_at Figure 1683: PRO2541 Figure 1631: PRO86529 Figure 1684A-B: DNA271915, NP_056191.1, Figure 1632: DNA328566, NP_060446.1, 205510_s_at 205801_s_at Figure 1633: PRO84363 Figure 1685: PRO60192 Figure 1634: DNA327639, NP_001053.2, 205513_at Figure 1686: DNA194766, NP_079504.1, 205804_s_at Figure 1635: PRO83640 Figure 1687: PRO24046

Figure 1688A-B: DNA328574, NP_004963.1, Figure 1740: DNA329168, CLC, 206207_at 205841_at Figure 1741: PRO84794 Figure 1689: PRO84368 Figure 1742: DNA281446, NP_031394.1, 206220_s_at Figure 1690A-B: DNA328574, JAK2, 205842_s_at Figure 1743: PRO66285 Figure 1691: PRO84368 Figure 1744: DNA281446, GAP1IP4BP, 206221_at Figure 1692: DNA330094, TREX1, 205875_s_at Figure 1745: PRO66285 Figure 1693: PRO85365 Figure 1746A-B: DNA331488, NP_055523.1, Figure 1694: DNA331320, HSU37122, 205882_x_at 206316_s_at Figure 1695: PRO86409 Figure 1747: PRO86531 Figure 1696A-B: DNA220746, NP_000876.1, Figure 1748: DNA327661, NP_005522.1, 206332_s_at 205884_at Figure 1749: PRO83652 Figure 1697: PRO34724 Figure 1750: DNA218278, NP_000408.1, 206341_at Figure 1698A-B: DNA220746, ITGA4, 205885_s_at Figure 1751: PRO34330 Figure 1699: PRO34724 Figure 1752: DNA269870, NP_005382.1, 206348_s_at Figure 1700: DNA329540, NP_006389.1, 205890_s_at Figure 1753: PRO58270 Figure 1701: PRO85090 Figure 1754A-B: DNA330100, NP_055690.1, Figure 1702: DNA330095, NP_004732.1, 205895_s_at 206364_at Figure 1703: PRO85366 Figure 1755: PRO85369 Figure 1704: DNA328576, HSU20350, 205898_at Figure 1756: DNA329169, NP_002986.1, 206366_x_at Figure 1705: PRO4940 Figure 1757: PRO1610 Figure 1706: DNA287318, NP_002683.1, 205909_at Figure 1758: DNA271310, NP_004411.1, 206374_at Figure 1707: PRO69583 Figure 1759: PRO59617 Figure 1708: DNA75525, NP_005805.1, 205929_at Figure 1760A-E: DNA331489, NP_066267.1, Figure 1709: PRO2524 206385_s_at Figure 1710: DNA76516, NP_000556.1, 205945_at Figure 1761: PRO86532 Figure 1711: PRO2022 Figure 1762: DNA326727, NP_001527.1, 206445_s_at Figure 1712: DNA329047, NP_006390.1, 205965_at Figure 1763: PRO83069 Figure 1713: PRO58425 Figure 1764A-B: DNA271891, NP_055766.1, Figure 1714: DNA273487, NP_004785.1, 206039_at 206448_at Figure 1715: PRO61470 Figure 1765: PRO60170 Figure 1716A-B: DNA290265, NP_003421.1, Figure 1766: DNA153751, NP_005942.1, 206461_x_at 206059_at Figure 1767: PRO12925 Figure 1717: PRO70395 Figure 1768: DNA88203, NP_055022.1, 206485_at Figure 1718: DNA330096, NP_057051.1, 206060_s_at Figure 1769: PRO2698 Figure 1719: PRO37163 Figure 1770: DNA288243, NP_002277.3, 206486_at Figure 1720: DNA271992, NP_006665.1, 206082_at Figure 1771: PRO36451 Figure 1721: PRO60267 Figure 1772: DNA269850, NP_002003.1, 206492_at Figure 1722: DNA270851, NP_006617.1, 206098_at Figure 1773: PRO58251 Figure 1723: PRO59189 Figure 1774: DNA270444, NP_004824.1, 206513_at Figure 1724: DNA226105, NP_002925.1, 206111_at Figure 1775: PRO58823 Figure 1725: PRO36568 Figure 1776A-B: DNA188192, NP_006130.1, Figure 1726: DNA83063, NP_004429.1, 206114_at 206545_at Figure 1727: PRO2068 Figure 1777: PRO21704 Figure 1728A-B: DNA151420, NP_004421.1, Figure 1778A-B: DNA330102, NP_004289.1, 206115_at 206550_s_at Figure 1729: PRO12876 Figure 1779: PRO85371 Figure 1730: DNA287306, NP_059993.1, 206133_at Figure 1780: DNA331490, OAS2, 206553_at Figure 1731: PRO69572 Figure 1781: PRO69656 Figure 1732: DNA330097, NP_001233.1, 206150_at Figure 1782: DNA227540, NP_003036.1, 206566_at Figure 1733: PRO2024 Figure 1783: PRO38003 Figure 1734: DNA331487, GABPB2, 206173_x_at Figure 1784: DNA330103, NP_056179.1, 206584_at Figure 1735: PRO86530 Figure 1785: PRO19671 Figure 1736: DNA329005, NP_003028.1, 206181_at Figure 1786: DNA329172, NP_005254.1, 206589_at Figure 1737: PRO12612 Figure 1787: PRO84796 Figure 1738: DNA330098, NP_073619.1, 206205_at Figure 1788: DNA103451, NP_003846.1, 206618_at Figure 1739: PRO85367 Figure 1789: PRO4778

Figure 1790: DNA227709, NP_000947.1, 206631_at	Figure 1844: DNA218655, NP_000585.1, 207113_s_at
Figure 1791: PRO38172	Figure 1845: PRO34451
Figure 1792: DNA331491, NP_004891.2, 206632_s_at	Figure 1846: DNA330111, NP_002615.2, 207132_x_at
Figure 1793: PRO62308	Figure 1847: PRO85376
Figure 1794: DNA331492, BCL2L1, 206665_s_at	Figure 1848: DNA330112, NP_444504.1, 207153_s_at
Figure 1795: PRO83141	Figure 1849: PRO61610
Figure 1796: DNA88374, NP_002095.1, 206666_at	Figure 1850: DNA103418, NP_036616.1, 207165_at
Figure 1797: PRO2768	Figure 1851: PRO4746
Figure 1798: DNA330105, HUMNCAX, 206676.at	Figure 1852: DNA330113, NP_203124.1, 207181_s_at
Figure 1799: PRO85372	Figure 1853: PRO85377
Figure 1800: DNA328590, C6orf32, 206707_x_at	Figure 1854: DNA330114, NP_006134.1, 207183_at
Figure 1801: PRO84375	Figure 1855: PRO4946
Figure 1802: DNA330106, NP_003646.1, 206724_at	Figure 1856: DNA331496, RBMS1, 207266_x_at
Figure 1803: PRO85373	Figure 1857: PRO86534
Figure 1804A-B: DNA88191, NP_001234.1, 206729_at	Figure 1858: DNA83048, NP_001916.1, 207269_at
Figure 1805: PRO2691	Figure 1859: PRO2057
Figure 1806A-B: DNA88650, NP_005807.1, 206761_at	Figure 1860A-B: DNA330115, NP_077739.1,
Figure 1807: PRO2460	207324_s_at
Figure 1808: DNA226427, NP_002251.1, 206785_s_at	Figure 1861: PRO85378
Figure 1809: PRO36890	Figure 1862A-B: DNA226536, NP_003225.1,
Figure 1810: DNA88195, NP_000064.1, 206804_at	207332_s_at
Figure 1811: PRO2693	Figure 1863: PRO36999
Figure 1812: DNA256561, NP_062550.1, 206914_at	Figure 1864: DNA331497, LTB, 207339.s.at
Figure 1813: PRO51592	Figure 1865: PRO11604
Figure 1814: DNA93439, NP_006555.1, 206974_at	Figure 1866: DNA330117, NP_003966.1, 207351_s_at
Figure 1815: PRO4515	Figure 1867: PRO85379
Figure 1816: DNA35629, NP_000586.2, 206975_at	Figure 1868: DNA330118, NP_036389.2, 207361_at
Figure 1817: PRO7	Figure 1869: PRO85380
Figure 1818: DNA328591, NP_006635.1, 206976_s_at	Figure 1870: DNA226396, NP_002180.1, 207375_s_at
Figure 1819: PRO84376	Figure 1871: PRO36859
Figure 1820: DNA331493, CCR2, 206978_at	Figure 1872: DNA227668, NP_000158.1, 207387_s_at
Figure 1821: PRO84690	Figure 1873: PRO38131
Figure 1822: DNA188346, NP_001450.1, 206980_s_at	Figure 1874A-B: DNA329093, MSF, 207425_s_at
Figure 1823: PRO21766	Figure 1875: PRO84745
Figure 1824A-B: DNA227659, NP_000570.1,	Figure 1876: DNA36718, NP_000563.1, 207433_at
206991_s_at	Figure 1877: PRO73
Figure 1825: PRO38122	Figure 1878A-B: DNA330119, NP_060189.2,
Figure 1826A-B: DNA227750, NP_001550.1,	207474_at
206999_at	Figure 1879: PRO85381
Figure 1827: PRO38213	Figure 1880: DNA328597, NP_001680.1, 207507_s_at
Figure 1828: DNA329903, PPP3CC, 207000_s_at	Figure 1881: PRO84381
Figure 1829: PRO85220	Figure 1882: DNA328597, ATP5G3, 207508_at
Figure 1830: DNA330108, NP_004080.1, 207001_x_at	Figure 1883: PRO84381
Figure 1831: PRO85374	Figure 1884A-B: DNA256059, NP_005164.1,
Figure 1832: DNA331494, PLAGL1, 207002_s_at	207521_s_at
Figure 1833: PRO62736	Figure 1885: PRO51107
Figure 1834: DNA331495, HUMBCL2B, 207005_s_at	Figure 1886A-B: DNA256059, ATP2A3, 207522_s_at
Figure 1835: PRO86533	Figure 1887: PRO51107
Figure 1836: DNA330110, HUMK10A, 207023_x_at	Figure 1888: DNA304473, NP_001552.2, 207536_s_at
-	Figure 1889: PRO2023
Figure 1838: DNA225550, NP_003844.1, 207072_at	Figure 1890: DNA325454, NP_003637.1, 207556_s_at
Figure 1839: PRO36013	Figure 1891: PRO81977
Figure 1840: DNA273159, NP_005457.1, 207078_at	Figure 1892: DNA328601, NP_056490.1, 207574_s_at
Figure 1841: PRO61201	Figure 1893: PRO84384
Figure 1842: DNA227481, VAMP1, 207100_s_at	Figure 1894A-B: DNA330120, FLJ10971, 207606_s_at
Figure 1843: PRO37944	Figure 1895: PRO85382

Figure 1896: DNA255271, NP_038475.1, 207610_s_at Figure 1946: DNA275286, NP_009205.1, 208002_s_at Figure 1897: PRO50348 Figure 1947: PRO62967 Figure 1898: DNA331498, TANK, 207616_s_at Figure 1948: DNA288217, NP_002101.1, 208018_s_at Figure 1899: PRO86535 Figure 1949: PRO69990 Figure 1900: DNA226337, NP_005683.2, 207622_s_at Figure 1950: DNA227224, NP_060877.1, 208029_s_at Figure 1901: PRO36800 Figure 1951: PRO37687 Figure 1902: DNA227606, NP_001872.2, 207630_s_at Figure 1952A-B: DNA188492, NAB1, 208047_s_at Figure 1903: PRO38069 Figure 1953: PRO22070 Figure 1904: DNA196426, NP_037440.1, 207651_at Figure 1954: DNA330127, NP_006442.2, 208051_s_at Figure 1905: PRO24924 Figure 1955: PRO85387 Figure 1906: DNA328554, NP_038202.1, 207677_s_at Figure 1956A-B: DNA328607, NP_003639.1, Figure 1907: PRO84354 208072_s_at Figure 1908A-B: DNA226405, NP_006525.1, Figure 1957: PRO84390 207700_s_at Figure 1958A-C: DNA331500, NP_003307.2, 208073_x_at Figure 1909: PRO36868 Figure 1910: DNA329064, NP_060301.1, 207735_at Figure 1959: PRO86537 Figure 1911: PRO84724 Figure 1960A-B: DNA328312, NP_110378.1, Figure 1912: DNA329020, NUP62, 207740_s_at 208078_s_at Figure 1913: PRO84695 Figure 1961: PRO84180 Figure 1914: DNA325654, NP_054752.1, 207761_s_at Figure 1962: DNA331501, STK6, 208079_s_at Figure 1915: PRO4348 Figure 1963: PRO58855 Figure 1916A-B: DNA329179, NP_056958.1, Figure 1964: DNA323896, NP_112182.1, 208103_s_at 207785_s_at Figure 1965: PRO80638 Figure 1917: PRO84802 Figure 1966: DNA330129, NP_112495.1, 208119_s_at Figure 1918: DNA227494, NP_002158.1, 207826_s_at Figure 1967: PRO85389 Figure 1919: PRO37957 Figure 1968: DNA325329, NP_004719.1, 208152_s_at Figure 1920A-C: DNA331499, NP_057427.2, Figure 1969: PRO81872 207828_s_at Figure 1970: DNA36717, NP_000581.1, 208193_at Figure 1921: PRO86536 Figure 1971: PRO72 Figure 1922: DNA329182, HPIP, 207838_x_at Figure 1972A-E: DNA330130, HSTITIN, 208195_at Figure 1923: PRO84805 Figure 1973: DNA328611, RASGRP2, 208206_s_at Figure 1924: DNA330123, NP_008984.1, 207840_at Figure 1974: PRO84393 Figure 1925: PRO35080 Figure 1975: DNA328612, NP_000166.2, 208308_s_at Figure 1926: DNA227175, NP_006857.1, 207857_at Figure 1976: PRO84394 Figure 1927: PRO37638 Figure 1977A-D: DNA331502, NP_000050.1, Figure 1928: DNA330124, NP_002981.2, 207861_at 208368_s_at Figure 1929: PRO34107 Figure 1978: PRO86538 Figure 1930: DNA217245, NP_000579.1, 207906_at Figure 1979: DNA324250, NP_536349.1, 208392_x_at Figure 1931: PRO34287 Figure 1980: PRO80934 Figure 1932: DNA218651, NP_003798.1, 207907_at Figure 1981A-B: DNA331503, RAD50, 208393_s_at Figure 1933: PRO34447 Figure 1982: PRO86539 Figure 1934: DNA330125, NP_002729.2, 207957_s_at Figure 1983: DNA327690, NP_004022.1, 208436_s_at Figure 1935: PRO85385 Figure 1984: PRO83673 Figure 1936A-B: DNA226290, NP_036333.1, Figure 1985: DNA103427, NP_005239.1, 208438_s_at 207966_s_at Figure 1986: PRO4755 Figure 1937: PRO36753 Figure 1987A-C: DNA331504, ATM, 208442_s_at Figure 1938: DNA329183, NP_055962.1, 207971_s_at Figure 1988: PRO86540 Figure 1939: PRO84806 Figure 1989A-B: DNA330134, BAZ1B, 208445_s_at Figure 1940A-B: DNA330126, NP_008912.1, Figure 1990: PRO85394 207978_s_at Figure 1991A-C: DNA331505, NP_000642.2, Figure 1941: PRO85386 208488_s_at Figure 1942: DNA329184, CITED2, 207980_s_at Figure 1992: PRO86541 Figure 1943: PRO84807 Figure 1993: DNA330136, NP_002441.1, 208581_x_at Figure 1944A-C: DNA254145, NP_004329.1, Figure 1994: PRO82583 207996_s_at Figure 1995A-C: DNA331506, NP_001448.1, Figure 1945: PRO49260 208614_s_at

Figure 1996: PRO86542 Figure 2051: PRO69498 Figure 1997A-B: DNA330138, PTP4A2, 208617_s_at Figure 2052: DNA329189, NP_009139.1, 208787_at Figure 1998: PRO85397 Figure 2053: PRO4911 Figure 1999A-B: DNA273567, NP_004944.1, Figure 2054: DNA238565, NP_005907.2, 208795_s_at 208624_s_at Figure 2055: PRO39210 Figure 2000: PRO61545 Figure 2056: DNA330145, NP_002788.1, 208799_at Figure 2001A-B: DNA273567, EIF4G1, 208625_s_at Figure 2057: PRO84403 Figure 2002: PRO61545 Figure 2058: DNA331511, HSMPIO, 208805_at Figure 2003: DNA325912, NP_001093.1, 208636_at Figure 2059A-C: DNA331512, 1397486.26, 208806_at Figure 2004: PRO82367 Figure 2060: PRO86547 Figure 2005: DNA325912, ACTN1, 208637_x_at Figure 2061A-B: DNA330147, HSU91543, Figure 2006: PRO82367 208807_s_at Figure 2007: DNA329188, BC012142, 208638_at Figure 2062: PRO85405 Figure 2008: PRO84810 Figure 2063: DNA324531, NP_002120.1, 208808_s_at Figure 2009: DNA324641, NP_005608.1, 208646_at Figure 2064: PRO81185 Figure 2010: PRO10849 Figure 2065: DNA273521, NP_002070.1, 208813_at Figure 2011: DNA271268, NP_009057.1, 208649_s_at Figure 2066: PRO61502 Figure 2012: PRO59579 Figure 2067A-B: DNA330148, AB020636, 208838_at Figure 2013: DNA328617, AF299343, 208653_s_at Figure 2068A-B: DNA330149, HSM801778, Figure 2014: PRO84399 208839_s_at Figure 2015: DNA330139, AK022493, 208657_s_at Figure 2069: PRO82209 Figure 2016: PRO85398 Figure 2070: DNA227874, NP_003320.1, 208864_s_at Figure 2017A-C: DNA151898, TTC3, 208661_s_at Figure 2071: PRO38337 Figure 2018: PRO12135 Figure 2072: DNA328624, BC003562, 208891_at Figure 2019A-C: DNA151898, D84294, 208662_s_at Figure 2073: PRO59076 Figure 2020: PRO12135 Figure 2074: DNA331513, DUSP6, 208892_s_at Figure 2021A-C: DNA331507, D83327, 208663_s_at Figure 2075: PRO84404 Figure 2022: DNA304686, NP_002565.1, 208680_at Figure 2076: DNA331330, BC005047, 208893_s_at Figure 2023: PRO71112 Figure 2077: PRO82215 Figure 2024A-B: DNA328619, BC001188, 208691_at Figure 2078: DNA329221, NP_061984.1, 208894_at Figure 2025: PRO84401 Figure 2079: PRO4555 Figure 2026: DNA287189, NP_002038.1, 208693_s_at Figure 2080A-B: DNA329007, NP_003277.1, Figure 2027: PRO69475 208900_s_at Figure 2028: DNA330140, AF275798, 208696_at Figure 2081: PRO37029 Figure 2029: PRO85399 Figure 2082A-B: DNA329007, TOP1, 208901.s.at Figure 2030A-C: DNA331508, 198777.9, 208707_at Figure 2083: PRO37029 Figure 2031: PRO86543 Figure 2084: DNA327700, BC015130, 208905_at Figure 2032: DNA97298, NP_003899.1, 208726_s_at Figure 2085: PRO83683 Figure 2086: DNA327701, NP_001203.1, 208910_s_at Figure 2033: PRO3645 Figure 2034: DNA330142, BC003564, 208737_at Figure 2087: PRO82667 Figure 2035: PRO85401 Figure 2088: DNA281442, NP_149124.1, 208912_s_at Figure 2036: DNA331509, 1138554.23, 208740_at Figure 2089: PRO66281 Figure 2037: PRO86544 Figure 2090A-B: DNA330151, AB029003, 208914_at Figure 2038: DNA328591, HSP105B, 208744_x_at Figure 2091: DNA325473, NP_006353.2, 208922_s_at Figure 2039: PRO84376 Figure 2092: PRO81996 Figure 2040: DNA287285, NP_005794.1, 208748_s_at Figure 2093: DNA329552, NP_063948.1, 208925_at Figure 2041: PRO69556 Figure 2094: PRO85097 Figure 2042: DNA324217, ATIC, 208758_at Figure 2095: DNA326233, NP_000968.2, 208929_x_at Figure 2043: PRO80908 Figure 2096: PRO82645 Figure 2044: DNA327696, AF228339, 208763_s_at Figure 2097: DNA327702, NP_006490.2, 208934_s_at Figure 2045: PRO83679 Figure 2098: PRO83684 Figure 2046A-B: DNA331510, 1298307.1, 208776_at Figure 2099: DNA330152, NP_001939.1, 208956_x_at Figure 2047: PRO86545 Figure 2100: PRO85406 Figure 2048: DNA287427, NP_002806.1, 208777_s_at Figure 2101: DNA290261, NP_001291.2, 208960_s_at Figure 2049: PRO69684 Figure 2102: PRO70387 Figure 2103A-B: DNA325478, NP_037534.2, Figure 2050: DNA287219, NP_110379.1, 208778_s_at

208962_s_at	Figure 2155: PRO84814
Figure 2104: PRO81999	Figure 2156A-B: DNA330161, NP_085059.1,
Figure 2105: DNA327661, IFI16, 208965_s_at	209081_s_at
Figure 2106: PRO83652	Figure 2157: PRO85413
Figure 2107A-B: DNA270277, AF208043,	Figure 2158: DNA330162, NP_057093.1, 209091_s_at
208966_x_at	Figure 2159: PRO85414
Figure 2108: PRO58665	Figure 2160: DNA330163, NP_060308.1, 209104_s_at
Figure 2109: DNA326343, KPNB1, 208974_x_at	Figure 2161: PRO85415
Figure 2110: PRO82739	Figure 2162: DNA330164, NP_004752.1, 209110_s_at
Figure 2111A-B: DNA330153, HUMIMP90A,	Figure 2163: PRO85416
208975_s_at	Figure 2164: DNA327709, NP_000509.1, 209116_x_at
Figure 2112: PRO82739	Figure 2165: PRO83690
Figure 2113: DNA328629, NP_006079.1, 208977_x_at	Figure 2166: DNA288254, NP_006000.2, 209118_s_at
Figure 2114: PRO84407	Figure 2167: PRO69536
Figure 2115: DNA330154, HUMPECAM27,	Figure 2168: DNA325163, NP_001113.1, 209122_at
208981_at	Figure 2169: PRO81730
Figure 2116: DNA330155, 7692317.2, 208982_at	Figure 2170: DNA330165, BC015833, 209138_x_at
Figure 2117: PRO85407	Figure 2171: PRO85417
Figure 2118: DNA330156, NP_003749.1, 208985_s_at	Figure 2172: DNA327713, BC010653, 209146_at
Figure 2119: PRO85408	Figure 2173: PRO37975
Figure 2120: DNA331514, STAT3, 208992_s_at	Figure 2174: DNA325285, AKR1C3, 209160_at
Figure 2121: PRO86548	Figure 2175: PRO81832
Figure 2122: DNA227552, NP_003346.2, 208997_s_at	Figure 2176: DNA330166, BC001588, 209161_at
Figure 2123: PRO38015	Figure 2177: PRO85418
Figure 2124: DNA227552, UCP2, 208998_at	Figure 2178: DNA271722, NP_004688.1, 209162_s_at
Figure 2125: PRO38015	Figure 2179: PRO60006
Figure 2126: DNA328630, NP_036293.1, 209004_s_at	Figure 2180: DNA330167, CAB43224.1, 209177_at
Figure 2127: PRO84408	Figure 2181: PRO85419
Figure 2128: DNA331515, FBXL5, 209005.at Figure 2129: PRO86549	Figure 2182A-B: DNA328642, AF073310, 209184_s_at
Figure 2130: DNA328631, AK027318, 209006_s_at	Figure 2183: PRO84418
Figure 2131: PRO84409	Figure 2184: DNA331331, AF161416, 209185_s_at
Figure 2132: DNA331516, DNAJB6, 209015_s_at	Figure 2185A-B: DNA328643, HUMHK1A,
Figure 2133: PRO83680	209186_at
Figure 2134: DNA328633, NP_004784.2, 209017_s_at	Figure 2186: PRO84419
Figure 2135: PRO84411	Figure 2187: DNA189700, NP_005243.1, 209189_at
Figure 2136: DNA330158, NP_057554.4, 209020_at	Figure 2188: PRO25619
Figure 2137: PRO85410	Figure 2189: DNA324766, NP_005443.2, 209196_at
Figure 2138: DNA327851, NP_006363.2, 209024_s_at	Figure 2190: PRO81387
Figure 2139: PRO83795	Figure 2191: DNA226176, NP_003458.1, 209201_x_at
Figure 2140: DNA328635, BC020946, 209026_x_at	Figure 2192: PRO36639
Figure 2141: PRO84413	Figure 2193: DNA326267, NP_004861.1, 209208_at
Figure 2142: DNA331517, NP_004150.1, 209040_s_at	Figure 2194: PRO82674
Figure 2143: PRO69506	Figure 2195: DNA326891, NP_001748.1, 209213_at
Figure 2144A-C: DNA328637, HSA7042, 209052_s_at	Figure 2196: PRO83212
Figure 2145: PRO81109	Figure 2197: DNA227483, NP_003120.1, 209218_at
Figure 2146A-B: DNA331518, AF330040,	Figure 2198: PRO37946
209053_s_at	Figure 2199: DNA330168, NP_006322.1, 209233_at
Figure 2147: PRO86550	Figure 2200: PRO85420
Figure 2148A-B: DNA226405, NCOA3, 209060_x_at	Figure 2201: DNA328649, NP_116093.1, 209251_x_at
Figure 2149: PRO36868	Figure 2202: PRO84424
Figure 2150: DNA330159, HSM801885, 209064_x_at	Figure 2203: DNA255255, NP_071437.1, 209267_s_at
Figure 2151: PRO85411	Figure 2204: PRO50332
Figure 2152: DNA330160, NP_006285.1, 209066_x_at	Figure 2205A-B: DNA188492, AF045451, 209272_at
Figure 2153: PRO85412 Figure 2154: DNA329194, NP_112740.1, 209068_at	Figure 2206: PRO22070 Figure 2207A-B: DNA226827, NP_001673.1,
FIRUIC 4134. DINA347174, INF_114/40.1, 209008_8[rigule 220/M-D. DIMA22002/, INF_0010/3.1,

Figure 2209: PRO37290 Figure 2209: PRO37290 Figure 2209: DNA328601, GADD45B, 209304_x.at Figure 2210: PRO84384 Figure 2211: DNA328651, AF087853, 209305_s.at Figure 2212: PRO84389 Figure 2212: PRO52889 Figure 2213: DNA151780, NP_006611.1, 209314_s.at Figure 2214: PRO12057 Figure 2215: DNA230169, NP_006709_1, 209318_x.at Figure 2216: PRO52736 Figure 2217: DNA275106, HSU76248, 209339_at Figure 2218: PRO52821 Figure 2219: PNA287506, HSU76248, 209339_at Figure 2219: PNA287506, HSU76248, 209339_at Figure 22219: PRO58042 Figure 2222: PRO58042 Figure 2222: PRO58042 Figure 2222: PRO58043 Figure 2223: DNA330170, AF109161, 209357_at Figure 2222: PRO58432 Figure 2223: DNA330171, CAA34971.1, 209374_s.at Figure 2223: PRO58542 Figure 2223: PRO58542 Figure 2239: DNA330173, HUMAUTOTAX, 20939_at Figure 2239: DNA330173, HUMAUTOTAX, 20939_at Figure 2239: DNA330173, HUMAUTOTAX, 20939_at Figure 2239: DNA330175, NP_006836.1, 20940_s.at Figure 2239: DNA330177, BC000529, 209377_s.at Figure 2239: PRO59562 Figure 2239: DNA330178, BTMA2668, AP064943, 209585_s.at Figure 2239: DNA330178, BTMA2668, AP064948_at Figure 2239: DNA330179, BC000748, AP064948_at Figure 2239: DNA330179, BC000748, AP064948_at Figure 2240: PRO65426 Figure 2241: DNA27569, BA2, 209408_at Figure 22429: PRO65426 Figure 22429: PRO65426 Figure 22429: DNA330179, BC00748, 209408_at Figure 22429: PRO65436 Figure 22429: PRO65436 F		
Figure 2209: DNA328601, GADD45B, 209304.x.t Figure 2209: PRO84344 Figure 2211: DNA328651, AF087853, 209305.s.at Figure 2211: DNA328651, AF087853, 209305.s.at Figure 2212: DNA330180, NP.006101.1, 209314.s.at Figure 2216: DNA320169, NP.006709.1, 209318.x.at Figure 2216: PRO62736 Figure 2217: DNA275106, HSU76248, 209339.at Figure 2216: DNA275060, NP.003281.1, 209344.at Figure 2220: DNA269630, NP.003281.1, 209344.at Figure 2220: DNA269630, NP.003281.1, 209344.at Figure 2221: DNA2530170, AF109161, 209357.at Figure 2222: DNA330170, AF109161, 209357.at Figure 2223: DNA330170, AF109161, 209357.at Figure 2223: DNA330170, AF109161, 209357.at Figure 2223: DNA330171, CAA34971.1, 209374.s.at Figure 2224: PRO84807 Figure 2225: DNA330173, HUMAUTOTAX, 209392.at Figure 2232: DNA330173, HUMAUTOTAX, 209392.at Figure 2232: DNA330174, AK027512, 209404.s.at Figure 2234: DNA330173, HUMAUTOTAX, 209392.at Figure 2235: DNA330174, AK027512, 209404.s.at Figure 2236: DNA330175, NP.006836.1, 209408.at Figure 2236: DNA328666, AF084943, 209585.s.at Figure 2236: DNA330176, AAB61703.1, 209417.s.at Figure 2236: DNA330176, AB61703.1, 209417.s.at Figure 2246: PRO85426 Figure 2237: DNA330176, AAB61703.1, 209417.s.at Figure 2246: PRO85426 Figure 2237: DNA330178, NP.006836.1, 209408.s.at Figure 2249: DNA25767, NP.000534.1, 209408.s.at Figure 2239: DNA330176, AAB61703.1, 209417.s.at Figure 2249: PRO3629 PRO59568 Figure 2239: DNA330178, NP.000534.1, 209408.s.at Figure 2239: DNA330178, NP.000534.1, 209404.s.at Figure 2236: DNA330178, NP.0074279.2, 209606.at Figure 2237: DNA330183, NP.004279.2, 209606.at Figure 2239: DNA330178, NP.006836.1, 209408.s.at Figure 2239: DNA330178, NP.006838.3, 209451.at Figure 2239: DNA330183, NP.004279.	209281_s_at	Figure 2261: DNA274027, RAB27A, 209514_s_at
Figure 2210: DNA328651, AF087853, 209305.s.at Figure 2212: PRO82889 Figure 2213: DNA330169, NP.006611.1, 209314.s.at Figure 2214: PRO12057 Figure 2215: DNA330169, NP.006709.1, 209318.x.at Figure 2215: DNA330169, NP.006709.1, 209318.x.at Figure 2216: PRO62736 Figure 2216: PRO62736 Figure 2217: DNA275106, HSU76248, 209339.at Figure 2219: PRO826830, NP.003281.1, 209344.at Figure 2219: PRO826830 Figure 2219: PRO836930 Figure 2221: PRO834432 Figure 2222: PRO84432 Figure 2222: PRO84432 Figure 2223: DNA330170, AF109161, 209357.at Figure 2222: PRO84432 Figure 2223: DNA330171, CAA34971.1, 209374.s.at Figure 2229: PRO83699 Figure 2229: DNA330172, BC009529, 209377.s.at Figure 2239: DNA330173, HUMAUTOTAX, 209392.at Figure 2239: DNA330174, AK027512, 209404.s.at Figure 2239: DNA330175, NP.006836.1, 209408.at Figure 2239: DNA330175, NP.006836.1, 209408.at Figure 2239: DNA330177, BC00743, 209446.s.at Figure 2249: PRO85425 Figure 2249: PRO85426 Figure 2249: DNA328670, NP.000534.1, 209404.s.at Figure 2249: DNA25767, NP.000534.1, 209404.s.at Figure 2249: PRO85426 Figure 2249: DNA25767, NP.000534.1, 209404.s.at Figure 2249: PRO85426 Figure 2249: DNA25767, NP.000534.1, 209404.s.at Figure 2249: PRO85426 Figure 2249: DNA25767, NP.000534.1, 209404.s.at Figure 2249: DNA25767, NP.000534.1, 209404.s.at Figure 2239: DNA330178, BC00743, 209446.s.at Figure 2239: DNA330179, BC00743, 209446.s.at Figure 2239: DNA330179, BC00743, 209446.s.at Figure 2239: DNA330179, BC00743, 209446.s.at Figure 2230: DNA330179, BC00743, 209446.s.at Figure 2231: PRO85432 Figure 2232: DNA330179, BC00743, 209446.s.at Figure 2231: PRO85435 Figure 2232: DNA330179, BC00743, 209446.s.at Figure 2232: DNA330184, BC0224	Figure 2208: PRO37290	Figure 2262: PRO61971
Figure 2210: DNA328651, AF087853, 209305.s.at Figure 2212: PRO82889 Figure 2213: DNA330169, NP.006611.1, 209314.s.at Figure 2214: PRO12037 Figure 2215: DNA330169, NP.006709.1, 209314.s.at Figure 2215: DNA330169, NP.006709.1, 209314.s.at Figure 2216: PRO62736 Figure 2216: PRO62736 Figure 2217: DNA275106, HSU76248, 209339.at Figure 2218: PRO58281 Figure 2219: PRO58042 Figure 2219: DNA328658, AF055376, 209348.s.at Figure 2221: PRO84432 Figure 2222: PRO84432 Figure 2222: PRO84432 Figure 2223: DNA330170, AF109161, 209357.at Figure 2222: PRO84432 Figure 2223: DNA330171, CAA34971.1, 209374.s.at Figure 2229: DNA330171, CAA34971.1, 209374.s.at Figure 2239: DNA330171, CAA34971.1, 209374.s.at Figure 2239: DNA330173, HUMAUTOTAX, 209392.at Figure 2239: DNA330174, AK027512, 209404.s.at Figure 2239: DNA330175, NP.006836.1, 209408.at Figure 2239: DNA330177, RO00534.1, 209408.at Figure 2239: DNA330177, RO00534.1, 209408.at Figure 2249: PRO3629 Figure 2249: DNA328698, HBA2, 209458.x.at Figure 2249: PRO3629 Figure 2249: DNA328698, HBA2, 209458.x.at Figure 2249: PRO3629 Figure 2249: DNA3287304, AAH00040.1, 209461.x.at Figure 2259: DNA330178, BSTM2CEA, 209498.at Figure 2259: DNA330178, BSTM2CEA, 209498.at Figure 2259: DNA330179, NP.007023.1, 209464.at Figure 2259: DNA330179, NP.007023.1, 209465.at Figure 2259: DNA330189, NP.004356.1, 209466.at Figure 2259: DNA330189, NP.004356.1, 209466	Figure 2209: DNA328601, GADD45B, 209304_x_at	Figure 2263: DNA274027, HSU38654, 209515_s_at
Figure 2211: DNA328651, AF087853, 209305.s.at Figure 2213: DNA151780, NP.006611.1, 209314.s.at Figure 2213: DNA151780, NP.006611.1, 209314.s.at Figure 2216: PRO62736 Figure 2216: DNA275106, HSU76248, 209339.at Figure 2219: DNA2750630, NP.003281.1, 209344.at Figure 2220: PRO58042 Figure 2221: DNA320170, AF109161, 209357.at Figure 2222: DNA330170, AF109161, 209357.at Figure 2222: DNA330171, CAA34971.1, 209374.s.at Figure 2223: DNA330171, CAA34971.1, 209374.s.at Figure 2229: DNA330171, CAA34971.1, 209374.s.at Figure 2229: DNA330171, CAA34971.1, 209374.s.at Figure 2231: DNA330173, HUMAUTOTAX, 209392.at Figure 2232: DNA330174, AK027512, 209404.s.at Figure 2232: DNA330174, AK027512, 209404.s.at Figure 2232: DNA330175, NP.006836.1, 209408.at Figure 2239: DNA330176, AAB61703.1, 209417.s.at Figure 2242: DNA327177, DNA271683, NP.002841.at Figure 2244: DNA276689, HBA2, 209458.x.at Figure 2246: DNA273076, HSU59863, 209451.at Figure 2249: DNA330178, BSU59863, 209451.at Figure 2249: DNA330179, NP.006803.at Figure 2249: DNA330179, NP.006803.at Figure 2249: DNA330179, DO00284.1, 209464.s.at Figure 2249: DNA330179, NP.006803.at Figure 2249: DNA330179, NP.006803.at Figure 2249: DNA330179, NP.006803.at Figure 2249: DNA330179, NP.006803.at Figure 2249: DNA330179, NP.004208.at Figure 2259: PRO685437 Figure 2259: PRO68571 Figure 2259: PRO685437 Figure 2259: PRO685437 Figure 2259: PRO685430 Figure 2259: DNA330179, NP.004208.at Figure 2259: DNA330179, NP.004208.at Figure 2259: DNA330179, NP.006803.at Figure 2259: DNA330179, NP.006803.at Figure 2259: PRO685431 Figure 2259: DNA330179, NP.006803.at Figure 2259: PRO685431 Figure 2259: PRO685431 Figure 2259: PRO685431 Figure 2259: PRO685431 Figure 2259: DNA330179, NP.006803.at Figure 2259: DNA330179, NP.006803.at F		
Figure 2213: DNA151780, NP_006611.1, 209314_s.at Figure 2215: DNA330169, NP_006709.1, 209314_s.at Figure 2216: DNA330169, NP_006709.1, 209314_s.at Figure 2216: DNA330169, NP_006709.1, 209318_s.at Figure 2216: PRO662736 Figure 2216: PRO652736 Figure 2219: DNA259630, NP_003281.1, 209344_st Figure 2229: PRO58042 Figure 2221- R-B: DNA3328658, AF055376, 209348_s.at Figure 2221- R-B: DNA3328658, AF055376, 209348_s.at Figure 2222: PRO84432 Figure 2222: PRO84432 Figure 2222: PRO84432 Figure 2222: PRO84300, NP_001970.1, 209368_s.at Figure 2225: DNA330170, AF109161, 209357_s.t Figure 2225: DNA330170, DNA30171, CAA34971.1, 209374_s.at Figure 2236: PRO583699 Figure 2237: DNA330173, HUMAUTOTAX, 209392_st Figure 2231: DNA330173, HUMAUTOTAX, 209392_st Figure 2231: DNA330174, AK027512, 209404_s.at Figure 2232: DNA330174, AK027512, 209404_s.at Figure 2239: DNA330175, NP_006836.1, 209408_st Figure 2249: PRO59053 Figure 2249: DNA330175, NP_006836.1, 209408_st Figure 2249: PRO59053 Figure 2249: DNA330175, NP_006836.1, 209408_st Figure 2249: DNA330187, NP_006908.1, at Figure 2249: DNA330187, NP_006908.1, at Figure 2249: DNA330178, NP_006908.1, at Figure 2249: DNA330178, NP_006908.1, at Figure 2259: DNA330178, NP_00690	•	
Figure 2214: DNA151780, NP.006611.1, 209314.s.at Figure 2215: PNA330169, NP.006709.1, 209318.x.at Figure 2215: DNA330169, NP.006709.1, 209318.x.at Figure 2216: PNC052736 Figure 2217: DNA275106, HSU70648, 209339.at Figure 2218: PNC05281 Figure 2219: DNA269603, NP.003281.1, 209344.at Figure 2229: DNA328658, AF055376, 209348.s.at Figure 2229: DNA328658, AF055376, 209348.s.at Figure 2229: DNA330170, AF109161, 209357.at Figure 2229: DNA330170, AF109161, 209357.at Figure 2229: DNA330171, CAA34971.1, 209374.s.at Figure 2229: DNA330171, CAA34971.1, 209374.s.at Figure 2229: DNA330172, DNA30171, CAA34971.1, 209374.s.at Figure 2229: DNA330173, DNA30174, AK027512, 209404.s.at Figure 2239: DNA330174, AK027512, 209404.s.at Figure 2239: DNA330175, NP.006836.1, 209408.at Figure 2239: DNA330177, BC001743, 209417.s.at Figure 2249: DNA32703076, HSU59863, 209451.at Figure 2249: DNA3230178, NP.001873, NP.006834.at Figure 2249: DNA330179, BC001743, 209446.s.at Figure 2249: DNA330179, BC001743, 209446.s.at Figure 2249: DNA330179, NP.006834.at Figure 2249: DNA330179, NP.006803.at Figure 2249: DNA330179, NP.006803.at Figure 2249: DNA330179, NP.006903.at Figure 2259: DNA330180, NP.004203.at Figure 2259: DNA330179, NP.006903.a	~	
Figure 2215: DNA330169, NP.006709.1, 209318.x.at Figure 2216: PRO62736 Figure 2217: DNA275106, HSUT6248, 209339.at Figure 2218: PRO628216 FRO62736 Figure 2218: PRO628236 Figure 2219: PRO62836 Figure 2219: PRO62836 Figure 2219: DNA329630, NP.003281.1, 209344.at Figure 2220: PRO58642 Figure 2222: PRO84432 Figure 2222: PRO84432 Figure 2222: PRO84432 Figure 2222: DNA330170, AF109161, 209357.at Figure 2222: PRO84432 Figure 2222: DNA330170, AF109161, 209358.at Figure 2223: DNA330170, AF109161, 209358.at Figure 2223: DNA330171, CAA34971.1, 209374.s.at Figure 2223: DNA330171, CAA34971.1, 209374.s.at Figure 2223: DNA330171, CAA34971.1, 209374.s.at Figure 2223: DNA330173, HUMAUTOTAX, 209390. at Figure 2232: DNA330173, HUMAUTOTAX, 209390. at Figure 2232: DNA330174, AK027512, 209404.s.at Figure 2233: DNA330175, NP.006836.1, 209408.at Figure 2234: DNA330176, AAB61703.1, 209417.s.at Figure 2239: DNA330176, AAB61703.1, 209417.s.at Figure 2231: DNA320176, BOODS44.1, 209420.s.at Figure 2234: DNA273076, HSU59863, 209451.at Figure 2246: PRO65117 Figure 2247: DNA252668, HBA2, 209458.x.at Figure 2248: PRO36269 Figure 2249: DNA273076, HSU59863, 209451.at Figure 2259: PRO70812 Figure 2259: PRO70812 Figure 2259: PRO85436 Figure 2259: PRO85436 Figure 2259: PRO85437 Figure 2259: PRO85436 Figure 2259: PRO85436 Figure 2259: PRO85437 Figure 2259: PRO85437 Figure 2259: PRO85436 Figure 2259: PRO85437 Figure 2259: PRO85436 Figure 2259: PRO85437 Figure 2259: PRO85436 Figure 2259: PRO85437 Figure 2259: PRO85435 Figure 2259: PRO85437 Figure 2259: PRO85437 Figure 2259: PRO85436 Figure 2259: PRO85437 Figure 2259: PRO85437 Figure 2259: PR		
Figure 2216: PRO36183 Figure 2217: DNA275106, HSU76248, 209339. at Figure 2218: PRO62821 Figure 2219: DNA263630, NP.003281.1, 209344. at Figure 2220: PRO58042 Figure 2221- B: DNA328658, AF055376, 209348.s. at Figure 2221- B: DNA328658, AF055376, 209348.s. at Figure 2221: DNA330170, AF109161, 209357. at Figure 2222: DNA330170, AF109161, 209357. at Figure 2223: DNA330170, AF109161, 209357. at Figure 2223: DNA330170, AF109161, 209357. at Figure 2223: DNA330171, CAA34971.1, 209374.s. at Figure 2224: DNA330171, CAA34971.1, 209374.s. at Figure 2225: DNA330173, BC009529, 209377.s. at Figure 2223: DNA330173, HUMAUTOTAX, 209392. at Figure 2232: PRO58422 Figure 2232: DNA330174, AK027512, 209404.s. at Figure 2235: DNA330174, AK027512, 209404.s. at Figure 2236: PRO59681 Figure 2236: DNA330176, AAB61703.1, 209417.s. at Figure 2236: DNA330177, BC00534.1, 209408. at Figure 2241: DNA25767, NP.005935.7, at Figure 2242: DNA330175, ABA61703.1, 209417.s. at Figure 2242: DNA330176, AAB61703.1, 209417.s. at Figure 2241: DNA25767, NP.000534.1, 209408.s. at Figure 2242: DNA330176, AAB61703.1, 209417.s. at Figure 2242: PRO36230 Figure 2293: PRO59566 Figure 2242: DNA330176, ABB61703.1, 209446.s. at Figure 2242: DNA330177, BC001743, 209446.s. at Figure 2242: DNA330179, NP.005945.s. at Figure 2242: DNA330179, NP.005945.s. at Figure 2242: DNA330179, NP.005935.3, 209551.at Figure 2242: DNA330179, NP.006962.s. at Figure 2236: DNA330179, NP.006962.s. at Figure 2237: DNA330179, NP.006938.1, 209507. at Figure 2239: DNA330179, NP.006938.1, 209507. at	•	
Figure 2216: PR062736 Figure 2217: DNA275106, HSU76248, 209339.at Figure 2218: PR062821 Figure 2219: DNA269630, NP_003281.1, 209344.at Figure 2219: DNA269630, NP_003281.1, 209344.at Figure 22219: PR058421 Figure 2222: PR084432 Figure 2222: PR084432 Figure 2222: PR084432 Figure 2223: DNA330170, AF109161, 209357.at Figure 2223: DNA330170, AF109161, 209357.at Figure 2223: DNA330171, CAA34971.1, 209368.at Figure 2223: PR085421 Figure 2223: PR085421 Figure 2223: DNA330172, BC009529, 209377.s.at Figure 2230: DNA330173, HUMAUTOTAX, 209392.at Figure 2231: DNA330173, HUMAUTOTAX, 209392.at Figure 2232: PR085423 Figure 2232: PR085423 Figure 2232: DNA330175, NP_006836.1, 209404.s.at Figure 2232: PR085424 Figure 2233: DNA330176, AAB61703.1, 209447.s.at Figure 2234: DNA330177, BC001743, 209446.s.at Figure 2246: PR085425 Figure 2247: DNA3230176, AAB61703.1, 209445.s.at Figure 2248: DNA330177, BC001743, 209446.s.at Figure 2249: DNA330177, BC001743, 209446.s.at Figure 2249: DNA330178, BSD00548.at Figure 2249: DNA330177, BC001743, 209446.s.at Figure 2249: DNA330178, HSTM2CEA, 209498.at Figure 2259: DNA330178, HSTM2CEA, 209498.at Figure 2259: DNA330179, NP_067023.1, 209504.s.at Figure 2259: DNA330179, NP_067023.1, 209505.s.at Figure 2259: DNA330179, NP_067023.1, 209505.s.at Figure 2259: DNA330179, NP_067023.1, 209505.s.at Figu		
Figure 2219: DNA275106, HSU76248, 209339.at Figure 2219: DNA269630, NP.003281.1, 209344.at Figure 2219: DNA269630, NP.003281.1, 209344.at Figure 2220: PROS8042 Figure 2221: DNA330168, AF055376, 209348.s.at Figure 2222: DNA330170, AF109161, 209357.at Figure 2222: DNA330170, AF109161, 209357.at Figure 2223: DNA330170, AF109161, 209357.at Figure 2223: DNA330170, NP.001970.1, 209368.at Figure 2223: DNA330171, CAA34971.1, 209374.s.at Figure 2226: PRO86369 Figure 2227: DNA330171, CAA34971.1, 209374.s.at Figure 2229: DNA330173, HUMAUTOTAX, Figure 2231: DNA330173, HUMAUTOTAX, Figure 2232: PRO85422 Figure 2232: PRO85424 Figure 2232: PRO85424 Figure 2233: DNA330174, AK027512, 209404.s.at Figure 2235: DNA330175, NP.006836.1, 209408.at Figure 2236: DNA330175, NP.006836.1, 209408.at Figure 2237. BDNA270076, HSU59863, 209451.at Figure 2249: PRO85425 Figure 2241: DNA25767, NP.000534.1, 209404.s.at Figure 2242: PRO3629 Figure 2242: PRO3629 Figure 2243: DNA330177, BC001743, 209446.s.at Figure 2244: DNA25767, NP.000534.1, 209404.s.at Figure 2245: DNA3230179, BC00743, 209446.s.at Figure 2247: DNA330179, NP.00536.1, 209408.at Figure 2249: DNA330178, NP.004208.s.at Figure 2249: DNA330178, NP.004208.s.at Figure 2249: PRO85425 Figure 2241: DNA25767, NP.000534.1, 209404.s.at Figure 2249: DNA330178, NP.004208.s.at Figure 2249: DNA330178, NP.004208.s.at Figure 2249: DNA330179, BC00743, 209446.s.at Figure 2259: DNA330188, NP.004208.s.at Figure 2259: DNA330188, NP.004208.s.at Figure 2259: DNA330188, NP.004208.s.at Figure 2259: DNA33018, NP.004208.s.at Figure 2259: DNA330184, AAF181265, 209536.s.at Figure 2275: DNA320183, AF181265, 209536.s.at Figure 2275: DNA330183, AF181265, 209536.s.at Figure 2275: DNA330177, NP.005935.1, 209546.s.at Figure 2286: DNA330183, NP.003788.1, 209546.s.at Figure 2296: DNA330188, NP.004208.s.at Figure 2296: DNA330188, NP.004208.s.		
Figure 2218: PRO52821 Figure 2220: PRO58042 Figure 2220: PRO58042 Figure 2221: DNA330173, AF181265, 209536.s.at Figure 2221: PRO84432 Figure 2222: PRO84432 Figure 2222: PRO84432 Figure 2222: PRO84432 Figure 2223: DNA330170, AF109161, 209357.at Figure 2223: DNA330170, NP.001970.1, 209368.at Figure 2223: DNA330171, CAA34971.1, 209374.s.at Figure 2223: DNA330172, BC009529, 209377.s.at Figure 2223: DNA330172, BC009529, 209377.s.at Figure 2231: DNA330173, HUMAUTOTAX, 209392.at Figure 2232: DNA330173, HUMAUTOTAX, 209392.at Figure 2233: DNA330174, AK027512, 209404.s.at Figure 2236: PRO85423 Figure 2237: DNA330175, NP.006836.1, 209408.at Figure 2236: DNA330175, NP.006836.1, 209408.at Figure 2236: PRO85425 Figure 2237: DNA330176, AAB61703.1, 209417.s.at Figure 2240: DNA230177, BC001743, 209412.s.at Figure 2241: DNA230177, BC001743, 209416.s.at Figure 2242: PRO36230 Figure 2242: DNA230177, BC001743, 209446.s.at Figure 2244: PRO10283 Figure 2247: DNA326089, HBA2, 209458.x.at Figure 2247: DNA327308, NP.004208.1, 209461.x.at Figure 2252: DNA2730178, NP.004208.1, 209464.at Figure 2254: DNA273076, HSU59863, 209451.at Figure 2255: DNA2730178, NP.004208.1, 209464.at Figure 2255: DNA2730178, NP.004208.1, 209464.at Figure 2255: DNA330179, NP.004208.1, 209464.at Figure 2256: PRO85426 Figure 22		V
Figure 2219: DNA269630, NP_003281.1, 209344_at Figure 2221A_B: DNA328658, AF055376, 209348_s. at Figure 2221A_B: DNA328658, AF055376, 209348_s. at Figure 2222: PRO84432 Figure 2222: PRO84432 Figure 2222: DNA330170, AF109161, 209357_at Figure 2223: DNA330170, AF109161, 209357_at Figure 2223: DNA330170, AF109161, 209357_at Figure 2224: DNA330170, AF109161, 209357_at Figure 2225: DNA327720, NP_001970.1, 209368_at Figure 2226: PRO83699 Figure 2227: DNA330171, CAA34971.1, 209374_s.at Figure 2226: PRO83699 Figure 2228: PRO85421 Figure 2229: DNA330172, BC009529, 209377_s.at Figure 2226: DNA330173, HUMAUTOTAX, 209392_at Figure 2231: DNA330173, HUMAUTOTAX, 209392_at Figure 2232: PRO85423 Figure 2233: DNA330174, AK027512, 209404_s.at Figure 2235: DNA330175, NP_006836.1, 209408_at Figure 2235: DNA330175, NP_006836.1, 209408_at Figure 2235: DNA330176, AAB61703.1, 209417_s.at Figure 2241: DNA225767, NP_000534.1, 209420_s.at Figure 2242: DNA330177, BC001743, 209446_s.at Figure 2244: DNA325767, NP_000534.1, 209420_s.at Figure 2245: DNA330176, AB61703.1, 209417_s.at Figure 2245: DNA330176, HSU59863, 209451_at Figure 2255: DNA330179, NP_004208_s.at Figure 2255: DNA330179, NP_004208_s.at Figure 2255: DNA330179, NP_004208_s.at Figure 2255: DNA330179, NP_004083_s.at Figure 2255: DNA330179, NP_004083_s.at Figure 2255: DNA330179, NP_0067023.1, 209504_s.at Figure 2255: DNA330179, NP_004208_s.at Figure 2255: DNA330179, NP_00408_s.at Figure 2255: DNA330179, NP_00408_s.at Figure 2255: DNA330		
Figure 2221- PROS8042 Figure 2221- St. DNA328658, AF055376, Figure 2222- St. DNA328658, AF055376, Figure 2222- St. DNA320170, AF109161, 209357- at Figure 2222- DNA320170, AF109161, 209357- at Figure 2222- DNA320170, NP_010970.1, 209368. at Figure 2223- DNA330171, CAA34971.1, 209374.s. at Figure 2226- PRO83699 Figure 2227- St. DNA330171, CAA34971.1, 209374.s. at Figure 2229- DNA330172, BC009529, 209377.s. at Figure 2229- DNA330173, HUMAUTOTAX, 209392_at Figure 2231- DNA330173, HUMAUTOTAX, 209392_at Figure 2233- DNA330174, AK027512, 209404.s. at Figure 2235- DNA330175, NP_006836.1, 209408.at Figure 2236- PRO59681 Figure 2237- DNA330176, AAB61703.1, 209412.at Figure 2249- DNA225767, NP_000534.1, 209404.s. at Figure 2246- PRO61137 Figure 2247- DNA326089, HBA2, 209458.x. at Figure 2246- PRO61137 Figure 2247- DNA327308, ABHO0400.1, 209461.x. at Figure 2246- PRO6129 Figure 2259- DNA330178, HSTM2CEA, 209498. at Figure 2259- SPO85427 Figure 2259- DNA330179, NP_007023.1, 209504.s. at Figure 2259- DNA330179, NP_007023.1, 209504.s. at Figure 2259- DNA3230180, NP_00194.2, 209510.at Figure 2259- DNA320180, NP_00194.2, 209510.at Figure 2239- DNA320185, NP_004208.1, 209464.at Figure 2259- DNA330179, NP_007023.1, 209504.s. at Figure 2259- DNA330179, NP_007023.1, 209504.s. at Figure 2259- DNA330179, NP_007023.1, 209504.s. at Figure 2259- DNA3230180, NP_00194.2, 209510.at Figure 2259- DNA320180, NP_00194.2, 209510.at Figure 2259- DNA320180, NP_00194.2, 209510.at Figure 2239- DNA320858, AF05527 Figure 2239- DNA320185, NP_004208.1 Figure 2230- DNA320185, NP_004208.1 Figure 2230- DNA320188, NP_004208.1 Figu		
Figure 221A-B: DNA328658, AF055376, 209348_s.at Figure 2222: PRO84432 Figure 2222: DNA330170, AF109161, 209357_at Figure 2223: DNA330170, AF109161, 209357_at Figure 2225: DNA327720, NP_001970.1, 209368_at Figure 2225: DNA327720, NP_001970.1, 209368_at Figure 2225: DNA327720, NP_001970.1, 209368_at Figure 2225: DNA330171, CAA34971.1, 209374_s_at Figure 2226: PRO83699 Figure 2227: DNA330171, CAA34971.1, 209374_s_at Figure 2228: PRO70367 Figure 2228: PRO85421 Figure 2228: PRO85421 Figure 2231: DNA330172, BC009529, 209377_s_at Figure 2231: DNA330173, HUMAUTOTAX, 209392_at Figure 2231: DNA330174, AK027512, 209404_s_at Figure 2233: DNA330174, AK027512, 209404_s_at Figure 2235: DNA330175, NP_006836.1, 209408_at Figure 2235: DNA330175, NP_006836.1, 209408_at Figure 2239: DNA330176, AAB61703.1, 209417_s_at Figure 2230: DNA330177, BC001743, 209446_s_at Figure 2240: PRO85425 Figure 2240: PRO85425 Figure 2240: PRO85425 Figure 2241: DNA225767, NP_000534.1, 209420_s_at Figure 22429: DNA330177, BC001743, 209446_s_at Figure 2248: PRO3629 Figure 2248: PRO3629 Figure 2248: PRO3629 Figure 2249: DNA330178, HSTM2CEA, 209498_at Figure 2259: DNA330178, HSTM2CEA, 209498_at Figure 2251: DNA297388, NP_004208.1, 209461_at Figure 22525: DNA330178, HSTM2CEA, 209498_at Figure 2255: DNA330178, NP_006923.1, 209507_at Figure 2255: DNA330180, NP_004293.1, 209507_at Figure 2259: DNA330180, NP_004298.1 Figure 2259: DNA330180, NP_004949.2, 209510_at Figure 2259: DNA330180, NP_004968_s_at Figure 2259: DNA330180, NP_004988_s_t Figure 2259: DNA330180, NP_004949_s_t Figure 2306: DNA330180, NP_004968_s_at Figure 2259: DNA330180, NP_004968_s_at Figure 2259: DNA330180, NP_004988_s_t Figure 2259: DNA330180, NP_004968_s_at Figure 2359: DNA330180, NP_		
20348_s_at Figure 2223: DR0330170, AF109161, 209357_at Figure 2224: PRO84402 Figure 2224: PRO84807 Figure 2224: PRO84807 Figure 2225: DNA320170, NP_001970.1, 209368_at Figure 2225: DNA327720, NP_001970.1, 209368_at Figure 2226: PRO83699 Figure 2227: DNA330171, CAA34971.1, 209374_s_at Figure 2229: DNA330172, BC009529, 209377_s_at Figure 2229: DNA330173, BC009529, 209377_s_at Figure 2229: DNA330173, HUMAUTOTAX, 209392_at Figure 2231: DNA330173, HUMAUTOTAX, 209392_at Figure 2232: PRO85422 Figure 2233: DNA330174, AK027512, 209404_s_at Figure 2236: PRO85424 Figure 2236: PRO85426 Figure 2239: DNA330176, AB61703.1, 209417_s_at Figure 2239: DNA330176, AB61703.1, 209417_s_at Figure 2242: PRO36230 Figure 2242: PRO36230 Figure 2242: PRO36238 Figure 2242: PRO861137 Figure 2242: PRO36238 Figure 2242: PRO3629, Figure 2242: PRO3629 Figure 2242: PRO3629, Figure 2242: PRO36230 Figure 2253: DNA330178, NP_00428.1, 209464_at Figure 2253: DNA330178, NP_00		
Figure 2221: PRO84437 Figure 2222: PRO84807 Figure 2222: DNA330170, AF109161, 209357.at Figure 2222: DNA330171, CAA34971.1, 209368.at Figure 2227: DNA330171, CAA34971.1, 209374.s.at Figure 2228: PRO85421 Figure 2230: PRO85422 Figure 2230: PRO85422 Figure 2231: DNA330173, HUMAUTOTAX, Figure 2231: DNA330173, HUMAUTOTAX, Figure 2232: PRO85424 Figure 2233: PRO85424 Figure 2233: PRO85424 Figure 2234: PRO85425 Figure 2235: DNA330175, NP.006836.1, 209408.at Figure 2236: PRO59556 Figure 2237.A-B: DNA271241, HSU61500, 209412.at Figure 2240: PRO85425 Figure 2241: DNA225767, NP.000534.1, 209420.s.at Figure 2242: PRO86426 Figure 2242: PRO661137 Figure 2244: PRO1023 Figure 2245: DNA273076, HSU59863, 209451.at Figure 2246: PRO661137 Figure 2247: DNA326089, HBA2, 209458.x.at Figure 2248: PRO3629 Figure 2249: DNA287304, AAH00040.1, 209461.x.at Figure 2249: DNA287304, AAH00040.1, 209461.x.at Figure 2249: DNA28730178, NP.004208.1, 209464.at Figure 2248: PRO685426 Figure 2249: DNA28730178, NP.004208.1, 209464.at Figure 2250: PRO68571 Figure 2251: DNA297388, NP.004208.1, 209464.at Figure 22529: PRO88426 Figure 2255: DNA330179, NP.0067023.1, 209504.s.at Figure 2255: DNA330179, NP.0067023.1, 209504.s.at Figure 2256: PRO885427 Figure 2256: PRO885426 Figure 2255: DNA330179, NP.0067023.1, 209504.s.at Figure 2256: PRO885427 Figure 2256: DNA330179, NP.002938.1, 209507.at Figure 2259: DNA330180, NP.0049149.2, 209510.at	•	
Figure 2223: DNA330170, AF109161, 209357.at Figure 2224: PRO84807 Figure 2225: DNA327720, NP.001970.1, 209368.at Figure 2225: DNA327720, NP.001970.1, 209368.at Figure 2226: PRO83699 Figure 2227: DNA330171, CAA34971.1, 209374.s.at Figure 2228: PRO85421 Figure 2229: DNA330172, BC009529, 209377.s.at Figure 2229: DNA330172, BC009529, 209377.s.at Figure 2230: PRO85421 Figure 2231: DNA330173, HUMAUTOTAX, 209368.at Figure 2232: PRO85423 Figure 2232: PRO85423 Figure 2233: DNA330174, AK027512, 209404.s.at Figure 2235: DNA330175, NP.006836.1, 209408.at Figure 2236: PRO59681 Figure 2236: PRO59681 Figure 2239: DNA330176, AAB61703.1, 209412.at Figure 2239: DNA330176, AAB61703.1, 209412.s.at Figure 2241: DNA25767, NP.000534.1, 209420.s.at Figure 2242: PRO36230 Figure 2255: DNA3330176, HSU59863, 209451.at Figure 2255: PRO85427 Figure 2255: DNA330179, NP.007023.1, 209504.s.at Figure 2255: DNA330179, NP.007023.1, 209505.at Figure		
Figure 2224: PRO84807 Rigure 2225: DNA327720, NP_001970.1, 209368 at Figure 2225: DNA320712, CAA34971.1, 209374_s_at Figure 2225: PRO85421 Figure 2220: PRO85421 Figure 2231: DNA330172, BC009529, 209377_s_at Figure 2231: DNA330172, BC009529, 209377_s_at Figure 2232: PRO85422 Figure 2231: DNA330173, HUMAUTOTAX, 209382_at Figure 2231: DNA330173, HUMAUTOTAX, 209392_at Figure 2232: PRO85423 Figure 2232: PRO85423 Figure 2232: PRO85424 Figure 2232: PRO85424 Figure 2235: DNA330174, AK027512, 209404_s_at Figure 2235: DNA330175, NP_006836.1, 209408_at Figure 2236: PRO59681 Figure 2239: DNA330176, AAB61703.1, 209417_s_at Figure 2239: DNA330176, AAB61703.1, 209417_s_at Figure 2241: DNA225767, NP_000534.1, 209420_s_at Figure 2242: PRO36230 Figure 2242: PRO36230 Figure 2242: PRO36236 Figure 2242: PRO36237 Figure 2242: PRO36237 Figure 2242: PRO36236 Figure 2242: PRO36236 Figure 2242: PRO36236 Figure 2242: PRO36236 Figure 2252: PRO7812 Figure 2252: PRO7812 Figure 2252: PRO7813017 Figure 2252: PRO69571 Figure 2252: PRO69571 Figure 2252: PRO685427 Figure 2252: PRO885426 Figure 2252: PRO685427 Figure 2252: PRO885427 Figure 2255: DNA330178, HSTM2CEA, 209464_s_t Figure 2255: DNA330178, HSTM2CEA, 209498_s_t Figure 2308: DNA330188, NP_004356.1, 209681_s_t Figure 2255: DNA330179, NP_067023.1, 209504_s_t Figure 2255: DNA330179, NP_067023.1, 209504_s_t Figure 2255: DNA330180, NP_009149.2, 209510_s_t Figure 2259: DNA330180, NP_009685_s_at Figure 2259: DNA330180, NP_009685_s_at Figure 2259: DNA330180, NP_009685_s_at Figure 2259: DNA330180, NP_009685_s_at Figure 2259: DNA330180, N		
Figure 2225: DNA327720, NP_001970.1, 209368_at Figure 2226: PRO83699 Figure 2227: DNA330171, CAA34971.1, 209374_s_at Figure 2228: PRO85421 Figure 2229: DNA330172, BC009529, 209377_s_at Figure 2230: PRO85422 Figure 2231: DNA330173, HUMAUTOTAX, 209392_at Figure 2231: DNA330173, HUMAUTOTAX, 209392_at Figure 2232: PRO85423 Figure 2232: PRO85423 Figure 2233: DNA330174, AK027512, 209404_s_at Figure 2235: DNA330175, NP_006836.1, 209408_at Figure 2235: DNA330175, NP_006836.1, 209408_at Figure 2238: PRO59053 Figure 2238: PRO59681 Figure 2238: PRO59681 Figure 2239: DNA330176, AAB61703.1, 209417_s_at Figure 2240: PRO85425 Figure 2241: DNA227676, NP_000534.1, 209404_s_at Figure 2242: PRO36230 Figure 2244: PRO16283 Figure 2244: PRO16283 Figure 2245: DNA273076, HSU59863, 209451_at Figure 2247: DNA330189, HBA2, 209458_x_at Figure 2247: DNA327689, HBA2, 209468_at Figure 2250: PRO69571 Figure 2250: PRO69521 Figure 2251: DNA297388, NP_004208.1, 209464_at Figure 2252: DNA330179, NP_067023.1, 209504_s_at Figure 2255: DNA3		
Figure 2226: PRO83699 Figure 2227: DNA330171, CAA34971.1, 209374 s. at Figure 2229: PRO85421 Figure 2239: PRO85421 Figure 2230: PRO85422 Figure 2230: PRO85422 Figure 2231: DNA330173, HUMAUTOTAX, 209392_at Figure 2232: PRO85423 Figure 2232: PRO85423 Figure 2232: PRO85424 Figure 2232: PRO85425 Figure 2233: DNA330174, AK027512, 209404_s_at Figure 2235: DNA330175, NP_006836.1, 209408_at Figure 2236: PRO59681 Figure 2236: PRO59566 Figure 2239: DNA330176, AAB61703.1, 209417_s_at Figure 2239: DNA330176, AAB61703.1, 209417_s_at Figure 2241: DNA225767, NP_000534.1, 209404_s_at Figure 2242: PRO36230 Figure 2241: DNA273076, HSU59863, 209451_at Figure 2242: PRO3623 Figure 2242: PRO3623 Figure 2242: PRO3623 Figure 2242: PRO3623 Figure 2242: PRO3629 Figure 2243: DNA330178, BAC001743, 209446_s_at Figure 2244: PRO60534 Figure 2245: DNA273076, HSU59863, 209451_at Figure 2245: DNA273076, HSU59863, 209451_at Figure 2245: DNA273076, HSU59863, 209451_at Figure 2249: DNA287304, AAH00040.1, 209461_x_at Figure 2250: PRO69571 Figure 2251: DNA297388, NP_004208.1, 209464_at Figure 2252: DNA330178, HSTM2CEA, 209498_at Figure 2252: DNA330179, NP_067023.1, 209504_s_at Figure 2255: DNA330189, NP_00238.1, 209507_at Figure 2255: DNA330179, NP_067023.1, 209504_s_at Figure 225	_	
Figure 2227: DNA330171, CAA34971.1, 209374.s.at Figure 2228: PRO85421 Figure 2230: PRO85422 Figure 2231: DNA330172, BC009529, 209377.s.at Figure 2231: DNA330173, HUMAUTOTAX, 209392.at Figure 2232: PRO85423 Figure 2232: DNA330174, AK027512, 209404.s.at Figure 2235: DNA330175, NP_006836.1, 209408.at Figure 2236: PRO59681 Figure 2239: DNA330175, NP_006836.1, 209408.at Figure 2239: DNA330176, AAB61703.1, 209417.s.at Figure 2240: PRO85425 Figure 2241: DNA225767, NP_000534.1, 209420.s.at Figure 2242: PRO36230 Figure 2242: DNA3230176, AAB61703.1, 209417.s.at Figure 2242: PRO36230 Figure 2243: DNA330177, BC001743, 209446.s.at Figure 2245: DNA273076, HSU59863, 209451.at Figure 2246: PRO61137 Figure 2249: DNA326089, HBA2, 209458.x.at Figure 2249: DNA287304, AAH00040.1, 209461.x.at Figure 2251: DNA297388, NP_004208.1, 209464.at Figure 2252: PRO7812 Figure 2252: PRO7812 Figure 2252: DNA330178, HSTM2CEA, 209498.at Figure 2252: DNA330179, NP_067023.1, 209504.s.at Figure 2255: DNA330179, NP_067023.1, 209504.s.at Figure 2255: DNA330179, NP_067023.1, 209504.s.at Figure 2255: DNA330179, NP_002938.1, 209507.at Figure 2255: DNA330189, NP_002938.1, 209510.at Figure 2255: DNA330180, NP_009149.2, 209510.at Figure 2259: DNA330185, NP_009685.s.at Figure 2259: DNA330185, NP_004208.1, 209468.s.at Figure 2259: PRO85426 Figure 2259: DNA330179, NP_0067023.1, 209504.s.at Figure 2250: DNA330179, NP_0067023.1, 209504.s.at Figure 2255: DNA330179, NP_0067023.1, 209504.s.at Figure 2255: DNA330189, NP_002938.1, 209507.at Figure 2255: DNA330189, NP_002938.1, 209507.at Figure 2255: DNA330180, NP_009149.2, 209510.at Figure 2259: DNA330185, NP_00335.3, 209578.s.at Figure 2268: DNA329203, NP_002498.1, 209608.s.at Figure 2269: DNA3230186, NP_004208.1, 209468.s.at Figure 2260: DNA330188, NP_004208.1, 209468.s.at Figure 2260: DNA330189, DC000712, 209680.s.at Figure 2250: DNA330180, NP_002938.1, 209507.at Figure 2250: DNA330185, NP_002938.1, 209507.at Figure 2250: DNA33	-	
Figure 2228: PRO85421 Figure 2229: DNA330172, BC009529, 209377.s.at Figure 2223: PRO85422 Figure 2231: DNA330173, HUMAUTOTAX, 209392.at Figure 2232: PRO85423 Figure 2232: PRO85423 Figure 2233: DNA330174, AK027512, 209404.s.at Figure 2234: PRO85424 Figure 2235: DNA330175, NP_006836.1, 209408.at Figure 2236: PRO59681 Figure 2237A-B: DNA271241, HSU61500, 209412.at Figure 2239: DNA330176, AAB61703.1, 209417.s.at Figure 2240: PRO85425 Figure 2241: DNA225767, NP_000534.1, 209420.s.at Figure 2242: PRO36230 Figure 2242: PRO36230 Figure 2244: PRO10283 Figure 2244: PRO10283 Figure 2245: DNA273076, HSU59863, 209451.at Figure 2246: PRO3629 Figure 2246: DNA27304, AAH00040.1, 209461.x.at Figure 2247: DNA326089, HBA2, 209458.x.at Figure 2246: PRO3629 Figure 2251: DNA287304, AAH00040.1, 209464.at Figure 2252: PRO70812 Figure 2252: PRO70812 Figure 2252: PRO70812 Figure 2252: PRO85427 Figure 2252: PRO70812 Figure 2252: PRO85427 Figure 2252: DNA330179, NP_0067023.1, 209504.s.at Figure 2205: DNA330189, NP_002938.1, 209507.at Figure 2252: PRO85427 Figure 2252: PRO85426 Figure 2252: PRO85427 Figure 2252: PRO85428 Figure 2264: PRO86104 Figure 2294: PRO86104 Figure 2294: PRO86104 Figure 2294: PRO86104 Figure 2294: PRO86104 Figure 2295: PRO85438 Figure 2296: PRO85438 Figure 2296: PRO85438 Figure 2297: PRO85438 Figure 2298: PRO85438 Figure 2298:		
Figure 2229: DNA330172, BC009529, 209377 s.at Figure 2230: PRO85422 Figure 2230: PRO85422 Figure 2231: DNA330173, HUMAUTOTAX, 209392_at Figure 2232: PRO85423 Figure 2232: PRO85423 Figure 2232: PRO85424 Figure 2235: DNA330174, AK027512, 209404_s.at Figure 2235: DNA330175, NP_006836_1, 209408_at Figure 2235: DNA330175, NP_006836_1, 209408_at Figure 2236: PRO59681 Figure 2236: PRO59681 Figure 2237a.B: DNA371241, HSU61500, 209412_at Figure 2239: DNA320176, AAB61703.1, 209417_s.at Figure 2240: PRO85425 Figure 2241: DNA225767, NP_000534.1, 209420_s.at Figure 2242: PRO36230 Figure 2242: PRO36230 Figure 2244: PRO10283 Figure 2244: PRO10283 Figure 2245: DNA273076, HSU59863, 209451_at Figure 2246: PRO65137 Figure 2247: DNA326089, HBA2, 209458_x_at Figure 2248: PRO3629 Figure 2249: DNA287304, AAH00040.1, 209461_x_at Figure 2251: DNA297388, NP_004208.1, 209464_at Figure 2252: PRO70812 Figure 2252: PRO70812 Figure 2252: DNA330179, NP_0067023.1, 209504_s.at Figure 2255: DNA330179, NP_0067023.1, 209504_s.at Figure 2255: PNA330179, NP_0067023.1, 209504_s.at Figure 2305: PNA330189, BC000712, 209680_s.at Figure 2305: PNA330189, BC000712, 209681_s.at Figure 2310_s. PNA320125, HUMPKB, 209685_s.at Figure 2311: DNA320125, HUMPKB, 209685_s.at Figure 2311: DNA320125, HUMPKB, 209685_s.at Figure 23113: PRO85385	-	
Figure 2230: PRO85422 Figure 2231: DNA330173, HUMAUTOTAX, 209392_at Figure 2232: PRO85423 Figure 2233: DNA330174, AK027512, 209404_s_at Figure 2233: DNA330174, AK027512, 209404_s_at Figure 2235: DNA330175, NP_006836.1, 209408_at Figure 2236: PRO59681 Figure 2237A-B: DNA271241, HSU61500, 209412_at Figure 2239: DNA330176, AAB61703.1, 209417_s_at Figure 2240: PRO85425 Figure 2241: DNA225767, NP_000534.1, 209420_s_at Figure 2242: PRO36230 Figure 2243: DNA330177, BC001743, 209446_s_at Figure 2244: PRO10283 Figure 2245: DNA273076, HSU59863, 209451_at Figure 2246: PRO61137 Figure 2247: DNA326089, HBA2, 209458_x_at Figure 2248: PRO3629 Figure 2249: DNA273076, AAH00040.1, 209461_x_at Figure 2252: PRO69571 Figure 2252: PRO69571 Figure 2252: DNA330179, NP_004208.1, 209464_at Figure 2252: PRO85426 Figure 2252: PRO85426 Figure 2252: PRO85426 Figure 2252: PRO85426 Figure 2255: DNA330179, NP_067023.1, 209504_s_at Figure 2255: PRO85427 Figure 2255: PRO85426 Figure 2255: PRO85427 Figure 2255: DNA330179, NP_067023.1, 209504_s_at Figure 2255: PRO85426 Figure 2255: PRO85427 Figure 2255: PRO85426 Figure 2255: PRO85426 Figure 2255: PRO85426 Figure 2255: PRO85427 Figure 2255: PRO85426 Figure 2255: PRO85427 Figure 2255: PRO85426 Figure 2255: PRO85426 Figure 2255: PRO85426 Figure 2255: PRO85427 Figure 2255: PRO85426 Figure 2255: PRO85427 Figure 2255: PRO85426 Figure 2256: PRO85426 Figure 2257: PRO85435 Figure 2258: PRO85426 Figure 2258: PRO85426 Figure 2258: PRO85426 Figure		
Figure 2231: DNA330173, HUMAUTOTAX, 209392.at Figure 2232: PRO85423 Figure 2232: PRO85423 Figure 2233: DNA330174, AK027512, 209404.s.at Figure 2234: PRO85424 Figure 2235: DNA330175, NP.006836.1, 209408.at Figure 2236: PRO59681 Figure 2237.A-B: DNA271241, HSU61500, 209412.at Figure 2238: PRO59556 Figure 2239: DNA330176, AAB61703.1, 209417.s.at Figure 2240: PRO85425 Figure 2241: DNA225767, NP.000534.1, 209420.s.at Figure 2242: PRO36230 Figure 2242: PRO36230 Figure 2244: PRO10283 Figure 2245: DNA273076, HSU59863, 209451.at Figure 2247: DNA326089, HBA2, 209458.x.at Figure 2248: PRO3629 Figure 2249: DNA273076, AAH00040.1, 209461.x.at Figure 2259: PRO85426 Figure 2250: PRO85426 Figure 2251: DNA297388, NP.004208.1, 209464.s.at Figure 2252: PRO70812 Figure 2252: PRO70812 Figure 2252: PRO85426 Figure 2255: PRO85427 Figure 2255: PRO85426 Figure 2255: PRO85427 Figure 2255: PRO85427 Figure 2256: PRO85427 Figure 2257: PRO85438 Figure 2258: PRO81503 Figure 2259: PRO85436 Figure 2259: PRO85436 Figure 2259: PRO85436 Figure 2259: PRO85436 Figure 2250: PRO85		
209392.at Figure 2232: PRO85423 Figure 2233: DNA330174, AK027512, 209404.s.at Figure 2234: PRO85424 Figure 2235: DNA330175, NP.006836.1, 209408.at Figure 2236: PRO59681 Figure 2236: PRO59681 Figure 2237A-B: DNA271241, HSU61500, 209412.at Figure 2238: PRO59556 Figure 2239: DNA330176, AAB61703.1, 209417.s.at Figure 2240: PRO85425 Figure 2241: DNA225767, NP.000534.1, 209420.s.at Figure 2242: PRO36230 Figure 2243: DNA330177, BC001743, 209446.s.at Figure 2244: PRO10283 Figure 2245: DNA273076, HSU59863, 209451.at Figure 2246: PRO61137 Figure 2247: DNA326089, HBA2, 209458.x.at Figure 2248: PRO3629 Figure 2249: DNA327304, AAH00040.1, 209461.x.at Figure 2250: PRO69571 Figure 2251: DNA297388, NP.004208.1, 209464.at Figure 2252: PRO70812 Figure 2252: PRO85426 Figure 2252: DNA330179, NP.067023.1, 209504.s.at Figure 2255: DNA330179, NP.067023.1, 209504.s.at Figure 2255: PRO85427 Figure 2255: DNA330180, NP.002938.1, 209507.at Figure 2259: DNA330180, NP.009149.2, 209510.at Figure 2251: DNA330180, NP.009149.2, 209510.at Figure 2259: DNA330180, NP.009149.2, 209510.at Figure 2258: PRO85385 Figure 2311: PRO85385 Figure 2311: PRO85385 Figure 2311: PRO85385 Figure 2311: PRO85385		Figure 2286: DNA328666, AF084943, 209585_s_at
Figure 2232: PRO85423 Figure 2233: DNA330174, AK027512, 209404_s_at Figure 2234: PRO85424 Figure 2235: DNA330175, NP_006836.1, 209408_at Figure 2236: PRO59681 Figure 2237A-B: DNA271241, HSU61500, 209412_at Figure 2238: PRO59556 Figure 2239: DNA330176, AAB61703.1, 209417_s_at Figure 2240: PRO85425 Figure 2241: DNA225767, NP_000534.1, 209420_s_at Figure 2242: PRO36230 Figure 2242: PRO10283 Figure 2244: PRO10283 Figure 2245: DNA273076, HSU59863, 209451_at Figure 2246: PRO61137 Figure 2247: DNA287304, AAH00040.1, 209461_x_at Figure 2249: DNA287304, AAH00040.1, 209464_at Figure 2249: DNA287304, AAH00040.1, 209464_at Figure 2250: PRO69571 Figure 2251: DNA297388, NP_004208.1, 209404_s_at Figure 2252: PRO70812 Figure 2255: DNA330179, NP_067023.1, 209504_s_at Figure 2255: DNA330179, NP_067023.1, 209504_s_at Figure 2255: PRO85427 Figure 2259: DNA330180, NP_002938.1, 209507_at Figure 2259: DNA330180, NP_009149.2, 209510_at	•	-
Figure 2233: DNA330174, AK027512, 209404.s.at Figure 2234: PRO85424 Figure 2235: DNA330175, NP_006836.1, 209408.at Figure 2236: PRO59681 Figure 2237A-B: DNA271241, HSU61500, 209412.at Figure 2238: PRO59556 Figure 2239: DNA330176, AAB61703.1, 209417.s.at Figure 2240: PRO85425 Figure 2241: DNA225767, NP_000534.1, 209420.s.at Figure 2242: PRO36230 Figure 2243: DNA2330177, BC001743, 209446.s.at Figure 2244: PRO10283 Figure 2245: DNA273076, HSU59863, 209451.at Figure 2246: PRO61137 Figure 2247: DNA286089, HBA2, 209458.x.at Figure 2248: PRO3629 Figure 2249: DNA287304, AAH00040.1, 209461.x.at Figure 2250: PRO69571 Figure 2251: DNA297388, NP_004208.1, 209464.at Figure 2252: PRO70812 Figure 2255: DNA330179, NP_067023.1, 209504.s.at Figure 2256: PRO85426 Figure 2256: PRO85427 Figure 2259: DNA330180, NP_009149.2, 209510.at Figure 2259: DNA330125, HUMPKB, 209685.s.at Figure 2259: DNA330180, NP_009149.2, 209510.at Figure 2313: PRO85385		
Figure 2234: PRO85424 Figure 2235: DNA330175, NP_006836.1, 209408_at Figure 2236: PRO59681 Figure 2237A-B: DNA271241, HSU61500, 209412_at Figure 2239: DNA330176, AAB61703.1, 209417_s_at Figure 2239: DNA330176, AAB61703.1, 209417_s_at Figure 2240: PRO85425 Figure 2241: DNA225767, NP_000534.1, 209420_s_at Figure 2242: PRO36230 Figure 2243: DNA330177, BC001743, 209446_s_at Figure 2244: PRO10283 Figure 2245: DNA273076, HSU59863, 209451_at Figure 2247: DNA326089, HBA2, 209458_x_at Figure 2248: PRO3629 Figure 2249: DNA287304, AAH00040.1, 209461_x_at Figure 2250: PRO69571 Figure 2251: DNA297388, NP_004208.1, 209464_at Figure 2252: PRO70812 Figure 2255: DNA330178, HSTM2CEA, 209498_at Figure 2255: DNA330179, NP_067023.1, 209504_s_at Figure 2255: PRO85427 Figure 2255: DNA330179, NP_067023.1, 209504_s_at Figure 2259: DNA330180, NP_009149.2, 209510_at Figure 2259: DNA330125, HUMPKB, 209685_s_at Figure 2259: DNA330180, NP_009149.2, 209510_at Figure 2259: DNA330125, HUMPKB, 209685_s_at Figure 2313: PRO85385		
Figure 2235: DNA330175, NP.006836.1, 209408_at Figure 2236: PRO59681 Figure 2237A-B: DNA271241, HSU61500, 209412_at Figure 2238: PRO59556 Figure 2239: DNA330176, AAB61703.1, 209417_s_at Figure 2240: PRO85425 Figure 2241: DNA225767, NP.000534.1, 209420_s_at Figure 2242: PRO36230 Figure 2243: DNA330177, BC001743, 209446_s_at Figure 2244: PRO10283 Figure 2245: DNA273076, HSU59863, 209451_at Figure 2246: PRO3629 Figure 2247: DNA326089, HBA2, 209458_x_at Figure 2248: PRO3629 Figure 2249: DNA287304, AAH00040.1, 209461_x_at Figure 2250: PRO69571 Figure 2251: DNA297388, NP_004208.1, 209464_at Figure 2252: PRO70812 Figure 2252: PRO70817 Figure 2253: DNA330178, HSTM2CEA, 209498_at Figure 2255: DNA330179, NP_067023.1, 209504_s_at Figure 2255: DNA330179, NP_067023.1, 209504_s_at Figure 2257: DNA324899, NP_002938.1, 209507_at Figure 2259: DNA330180, NP_009149.2, 209510_at Figure 2313: PRO60104 Figure 22921: PRO60104 Figure 2293: PRO70011 Figure 2294: DNA330185, NP_071415.1, 209624_s_at Figure 2295: PRO85433 Figure 2295: DNA330186, NP_004208.1, 209446_s_at Figure 2300: DNA330188, NP_004356.1, 209662_at Figure 2300: DNA330189, BC000712, 209680_s_at Figure 2307: PRO85437 Figure 2307: PRO85437 Figure 2250: PRO85426 Figure 2255: DNA330179, NP_067023.1, 209504_s_at Figure 2257: DNA324899, NP_002938.1, 209507_at Figure 2259: DNA330180, NP_009149.2, 209510_at Figure 2251: DNA330125, HUMPKB, 209685_s_at Figure 2311: PRO60796 Figure 2311: PRO60796 Figure 2311: PRO60796 Figure 2311: PRO60796 Figure 2311: PRO65038		Figure 2290: DNA271823, NP_004279.2, 209606_at
Figure 2236: PRO59681 Figure 2237A-B: DNA271241, HSU61500, 209412 at Figure 2238: PRO59556 Figure 2239: DNA330176, AAB61703.1, 209417 s.at Figure 2240: PRO85425 Figure 2241: DNA225767, NP_000534.1, 209420_s.at Figure 2242: PRO36230 Figure 2242: PRO36230 Figure 2244: PRO10283 Figure 2244: PRO10283 Figure 2245: DNA273076, HSU59863, 209451_at Figure 2246: PRO61137 Figure 2247: DNA326089, HBA2, 209458_x_at Figure 2249: DNA287304, AAH00040.1, 209461_x_at Figure 2250: PRO69571 Figure 2251: DNA297388, NP_004208.1, 209464_at Figure 2252: PRO70812 Figure 2252: PRO70812 Figure 2252: DNA330178, HSTM2CEA, 209498_at Figure 2255: DNA330179, NP_067023.1, 209504_s.at Figure 2256: PRO85426 Figure 2257: DNA330179, NP_067023.1, 209504_s.at Figure 2258: PRO81503 Figure 2259: DNA330180, NP_009149.2, 209510_at Figure 2313: PRO85385 Figure 2313: PRO85385	Figure 2235: DNA330175, NP_006836.1, 209408_at	Figure 2291: PRO60104
Figure 2238: PRO59556 Figure 2239: DNA330176, AAB61703.1, 209417 s.at Figure 2240: PRO85425 Figure 2241: DNA225767, NP_000534.1, 209420_s.at Figure 2242: PRO36230 Figure 2243: DNA330177, BC001743, 209446_s.at Figure 2244: PRO 10283 Figure 2244: PRO 10283 Figure 2245: DNA273076, HSU59863, 209451_at Figure 2246: PRO61137 Figure 2247: DNA326089, HBA2, 209458_x.at Figure 2249: DNA287304, AAH00040.1, 209461_x.at Figure 2250: PRO69571 Figure 2251: DNA297388, NP_004208.1, 209464_at Figure 2252: PRO70812 Figure 2253: DNA330178, HSTM2CEA, 209498_at Figure 2255: DNA330179, NP_067023.1, 209504_s.at Figure 2256: PRO85426 Figure 2257: DNA324899, NP_002938.1, 209507_at Figure 2258: PRO81503 Figure 2259: DNA330180, NP_009149.2, 209510_at Figure 2313: PRO85385 Figure 2313: PRO85385		Figure 2292A-B: DNA328670, BC001618,
Figure 2239: DNA330176, AAB61703.1, 209417.s.at Figure 2240: PRO85425 Figure 2241: DNA225767, NP_000534.1, 209420.s.at Figure 2242: PRO36230 Figure 2243: DNA330177, BC001743, 209446.s.at Figure 2244: PRO10283 Figure 2245: DNA273076, HSU59863, 209451.at Figure 2246: PRO61137 Figure 2247: DNA326089, HBA2, 209458.x.at Figure 2248: PRO3629 Figure 2249: DNA287304, AAH00040.1, 209461.x.at Figure 2250: PRO69571 Figure 2251: DNA297388, NP_004208.1, 209464.at Figure 2252: PRO70812 Figure 2253: DNA330178, HSTM2CEA, 209498.at Figure 2254: PRO85426 Figure 2255: DNA330179, NP_067023.1, 209504.s.at Figure 2256: PRO85427 Figure 2257: DNA324899, NP_002938.1, 209507.at Figure 2259: DNA330180, NP_009149.2, 209510.at Figure 2313: PRO85385 Figure 2313: PRO85385 Figure 2313: PRO85385	Figure 2237A-B: DNA271241, HSU61500, 209412_at	209610_s_at
Figure 2240: PRO85425 Figure 2241: DNA225767, NP_000534.1, 209420_s_at Figure 2242: PRO36230 Figure 2243: DNA330177, BC001743, 209446_s_at Figure 2244: PRO10283 Figure 2245: DNA273076, HSU59863, 209451_at Figure 2246: PRO61137 Figure 2247: DNA326089, HBA2, 209458_x_at Figure 2248: PRO3629 Figure 2249: DNA287304, AAH00040.1, 209461_x_at Figure 2250: PRO69571 Figure 2251: DNA297388, NP_004208.1, 209464_at Figure 2252: PRO70812 Figure 2252: DNA330178, HSTM2CEA, 209498_at Figure 2255: DNA330179, NP_067023.1, 209504_s_at Figure 2258: PRO85427 Figure 2258: PRO85103 Figure 2259: DNA330180, NP_009149.2, 209510_at Figure 2313: PRO85385 Figure 2313: PRO85385 Figure 2313: PRO85385	Figure 2238: PRO59556	
Figure 2241: DNA225767, NP_000534.1, 209420_s_at Figure 2242: PRO36230 Figure 2243: DNA330177, BC001743, 209446_s_at Figure 2244: PRO10283 Figure 2245: DNA273076, HSU59863, 209451_at Figure 2246: PRO61137 Figure 2247: DNA326089, HBA2, 209458_x_at Figure 2248: PRO3629 Figure 2249: DNA287304, AAH00040.1, 209461_x_at Figure 2250: PRO69571 Figure 2251: DNA297388, NP_004208.1, 209464_at Figure 2252: PRO70812 Figure 2252: PRO70812 Figure 2253: DNA330178, HSTM2CEA, 209498_at Figure 2255: DNA330179, NP_067023.1, 209504_s_at Figure 2256: PRO85427 Figure 2302: DNA330186, NP_004327.1, 209662_at Figure 2300.A-B: DNA330187, HSM801454, 209649_at Figure 2301: PRO85435 Figure 2302: DNA330188, NP_004356.1, 209662_at Figure 2303: PRO85436 Figure 2304: DNA323856, PAI-RBP1, 209669_s_at Figure 2305: DNA330189, BC000712, 209680_s_at Figure 2307: PRO85437 Figure 2308: DNA193881, AAF15129.1, 209681_at Figure 2310A-B: DNA272671, HSU26710, 209682_at Figure 2311: PRO60796 Figure 2312: DNA330125, HUMPKB, 209685_s_at Figure 2313: PRO85385	Figure 2239: DNA330176, AAB61703.1, 209417_s_at	Figure 2294: DNA330185, NP_071415.1, 209624_s_at
Figure 2242: PRO36230 Figure 2243: DNA330177, BC001743, 209446_s_at Figure 2244: PRO10283 Figure 2245: DNA273076, HSU59863, 209451_at Figure 2246: PRO61137 Figure 2247: DNA326089, HBA2, 209458_x_at Figure 2248: PRO3629 Figure 2249: DNA287304, AAH00040.1, 209461_x_at Figure 2250: PRO69571 Figure 2251: DNA297388, NP_004208.1, 209464_at Figure 2252: PRO70812 Figure 2253: DNA330178, HSTM2CEA, 209498_at Figure 2254: PRO85426 Figure 2255: DNA330179, NP_067023.1, 209504_s_at Figure 2257: DNA324899, NP_002938.1, 209507_at Figure 2259: DNA330180, NP_009149.2, 209510_at Figure 2313: PRO85385 Figure 2313: PRO85385	Figure 2240: PRO85425	
Figure 2243: DNA330177, BC001743, 209446_s_at Figure 2244: PRO10283 Figure 2245: DNA273076, HSU59863, 209451_at Figure 2246: PRO61137 Figure 2247: DNA326089, HBA2, 209458_x_at Figure 2248: PRO3629 Figure 2249: DNA287304, AAH00040.1, 209461_x_at Figure 2250: PRO69571 Figure 2251: DNA297388, NP_004208.1, 209464_at Figure 2252: PRO70812 Figure 2253: DNA330178, HSTM2CEA, 209498_at Figure 2254: PRO85426 Figure 2255: DNA330179, NP_067023.1, 209504_s_at Figure 2256: PRO85427 Figure 2257: DNA324899, NP_002938.1, 209507_at Figure 2259: DNA330180, NP_009149.2, 209510_at Figure 2251: DNA330180, NP_009149.2, 209510_at Figure 2251: DNA330180, NP_009149.2, 209510_at Figure 2258: DNA330180, NP_004327.1, 209642_at Figure 2299: PRO85434 Figure 2300A_B: DNA330186, NP_004327.1, 209642_at Figure 2300A_B: DNA330188, NP_004356.1, 209662_at Figure 2302: DNA330188, NP_004356.1, 209662_at Figure 2303: PRO85436 Figure 2305: PRO80599 Figure 2306: DNA330189, BC000712, 209680_s_at Figure 2307: PRO85437 Figure 2308: DNA193881, AAF15129.1, 209681_at Figure 2310A_B: DNA272671, HSU26710, 209682_at Figure 2311: PRO60796 Figure 2312: DNA330125, HUMPKB, 209685_s_at Figure 2313: PRO85385	Figure 2241: DNA225767, NP_000534.1, 209420_s_at	
Figure 2244: PRO10283 Figure 2245: DNA273076, HSU59863, 209451_at Figure 2246: PRO61137 Figure 2247: DNA326089, HBA2, 209458_x_at Figure 2248: PRO3629 Figure 2249: DNA287304, AAH00040.1, 209461_x_at Figure 2250: PRO69571 Figure 2251: DNA297388, NP_004208.1, 209464_at Figure 2252: PRO70812 Figure 2253: DNA330178, HSTM2CEA, 209498_at Figure 2254: PRO85426 Figure 2255: DNA330179, NP_067023.1, 209504_s_at Figure 2256: PRO85427 Figure 2257: DNA324899, NP_002938.1, 209507_at Figure 2258: PRO81503 Figure 2259: DNA330180, NP_009149.2, 209510_at Figure 2300.A-B: DNA330187, HSM801454, 209649_at Figure 2301: PRO85435 Figure 2302: DNA330188, NP_004356.1, 209662_at Figure 2303: PRO85436 Figure 2303: PRO85436 Figure 2305: PRO80599 Figure 2306: DNA330189, BC000712, 209680_s_at Figure 2307: PRO85437 Figure 2308: DNA193881, AAF15129.1, 209681_at Figure 2309: PRO23299 Figure 2310A-B: DNA272671, HSU26710, 209682_at Figure 2311: PRO60796 Figure 2312: DNA330125, HUMPKB, 209685_s_at Figure 2313: PRO85385		
Figure 2245: DNA273076, HSU59863, 209451_at Figure 2246: PRO61137 Figure 2247: DNA326089, HBA2, 209458_x_at Figure 2248: PRO3629 Figure 2249: DNA287304, AAH00040.1, 209461_x_at Figure 2250: PRO69571 Figure 2251: DNA297388, NP_004208.1, 209464_at Figure 2252: PRO70812 Figure 2253: DNA330178, HSTM2CEA, 209498_at Figure 2254: PRO85426 Figure 2255: DNA330179, NP_067023.1, 209504_s_at Figure 2256: PRO85427 Figure 2257: DNA324899, NP_002938.1, 209507_at Figure 2258: PRO81503 Figure 2300.A-B: DNA330187, HSM801454, 209649_at Figure 2301: PRO85435 Figure 2302: DNA330188, NP_004356.1, 209662_at Figure 2303: PRO85436 Figure 2304: DNA323856, PAI-RBP1, 209669_s_at Figure 2305: PRO80599 Figure 2306: DNA330189, BC000712, 209680_s_at Figure 2307: PRO85437 Figure 2308: DNA193881, AAF15129.1, 209681_at Figure 2309: PRO23299 Figure 2310A-B: DNA272671, HSU26710, 209682_at Figure 2311: PRO60796 Figure 2312: DNA330125, HUMPKB, 209685_s_at Figure 2313: PRO85385	Figure 2243: DNA330177, BC001743, 209446_s_at	
Figure 2246: PRO61137 Figure 2247: DNA326089, HBA2, 209458_x_at Figure 2248: PRO3629 Figure 2249: DNA287304, AAH00040.1, 209461_x_at Figure 2250: PRO69571 Figure 2251: DNA297388, NP_004208.1, 209464_at Figure 2252: PRO70812 Figure 2253: DNA330178, HSTM2CEA, 209498_at Figure 2255: DNA330179, NP_067023.1, 209504_s_at Figure 2256: PRO85427 Figure 2257: DNA324899, NP_002938.1, 209507_at Figure 2259: DNA330180, NP_009149.2, 209510_at Figure 2310: PRO85435 Figure 2302: DNA330188, NP_004356.1, 209662_at Figure 2303: PRO85436 Figure 2304: DNA323856, PAI-RBP1, 209669_s_at Figure 2305: PRO80599 Figure 2306: DNA330189, BC000712, 209680_s_at Figure 2307: PRO85437 Figure 2308: DNA193881, AAF15129.1, 209681_at Figure 2309: PRO23299 Figure 2310A-B: DNA272671, HSU26710, 209682_at Figure 2311: PRO60796 Figure 2312: DNA330125, HUMPKB, 209685_s_at Figure 2313: PRO85385	Figure 2244: PRO10283	
Figure 2247: DNA326089, HBA2, 209458_x_at Figure 2248: PRO3629 Figure 2249: DNA287304, AAH00040.1, 209461_x_at Figure 2250: PRO69571 Figure 2251: DNA297388, NP_004208.1, 209464_at Figure 2252: PRO70812 Figure 2253: DNA330178, HSTM2CEA, 209498_at Figure 2254: PRO85426 Figure 2255: DNA330179, NP_067023.1, 209504_s_at Figure 2256: PRO85427 Figure 2257: DNA324899, NP_002938.1, 209507_at Figure 2258: PRO81503 Figure 2301: PRO85435 Figure 2302: DNA330188, NP_004356.1, 209662_at Figure 2303: PRO85436 Figure 2304: DNA323856, PAI-RBP1, 209669_s_at Figure 2305: PRO80599 Figure 2306: DNA330189, BC000712, 209680_s_at Figure 2307: PRO85437 Figure 2308: DNA193881, AAF15129.1, 209681_at Figure 2310A-B: DNA272671, HSU26710, 209682_at Figure 2311: PRO60796 Figure 2312: DNA330125, HUMPKB, 209685_s_at Figure 2313: PRO85385		•
Figure 2248: PRO3629 Figure 2249: DNA287304, AAH00040.1, 209461_x_at Figure 2250: PRO69571 Figure 2251: DNA297388, NP_004208.1, 209464_at Figure 2252: PRO70812 Figure 2253: DNA330178, HSTM2CEA, 209498_at Figure 2254: PRO85426 Figure 2255: DNA330179, NP_067023.1, 209504_s_at Figure 2256: PRO85427 Figure 2257: DNA324899, NP_002938.1, 209507_at Figure 2258: PRO81503 Figure 2302: DNA330188, NP_004356.1, 209662_at Figure 2303: PRO85436 Figure 2304: DNA323856, PAI-RBP1, 209669_s_at Figure 2305: PRO80599 Figure 2306: DNA330189, BC000712, 209680_s_at Figure 2307: PRO85437 Figure 2308: DNA193881, AAF15129.1, 209681_at Figure 2309: PRO23299 Figure 2310A-B: DNA272671, HSU26710, 209682_at Figure 2311: PRO60796 Figure 2312: DNA330125, HUMPKB, 209685_s_at Figure 2313: PRO85385		
Figure 2249: DNA287304, AAH00040.1, 209461_x_at Figure 2250: PRO69571 Figure 2251: DNA297388, NP_004208.1, 209464_at Figure 2252: PRO70812 Figure 2253: DNA330178, HSTM2CEA, 209498_at Figure 2254: PRO85426 Figure 2255: DNA330179, NP_067023.1, 209504_s_at Figure 2256: PRO85427 Figure 2257: DNA324899, NP_002938.1, 209507_at Figure 2258: PRO81503 Figure 2303: PRO85436 Figure 2304: DNA323856, PAI-RBP1, 209669_s_at Figure 2305: PRO80599 Figure 2306: DNA330189, BC000712, 209680_s_at Figure 2307: PRO85437 Figure 2308: DNA193881, AAF15129.1, 209681_at Figure 2309: PRO23299 Figure 2310A-B: DNA272671, HSU26710, 209682_at Figure 2311: PRO60796 Figure 2312: DNA330125, HUMPKB, 209685_s_at Figure 2313: PRO85385	Figure 2247: DNA326089, HBA2, 209458_x_at	
Figure 2250: PRO69571 Figure 2251: DNA297388, NP_004208.1, 209464_at Figure 2252: PRO70812 Figure 2253: DNA330178, HSTM2CEA, 209498_at Figure 2254: PRO85426 Figure 2255: DNA330179, NP_067023.1, 209504_s_at Figure 2256: PRO85427 Figure 2257: DNA324899, NP_002938.1, 209507_at Figure 2258: PRO81503 Figure 2304: DNA323856, PAI-RBP1, 209669_s_at Figure 2305: PRO80599 Figure 2306: DNA330189, BC000712, 209680_s_at Figure 2307: PRO85437 Figure 2308: DNA193881, AAF15129.1, 209681_at Figure 2309: PRO23299 Figure 2310A-B: DNA272671, HSU26710, 209682_at Figure 2311: PRO60796 Figure 2312: DNA330125, HUMPKB, 209685_s_at Figure 2313: PRO85385	•	
Figure 2251: DNA297388, NP_004208.1, 209464_at Figure 2252: PRO70812 Figure 2253: DNA330178, HSTM2CEA, 209498_at Figure 2254: PRO85426 Figure 2255: DNA330179, NP_067023.1, 209504_s_at Figure 2256: PRO85427 Figure 2257: DNA324899, NP_002938.1, 209507_at Figure 2258: PRO81503 Figure 2305: PRO80599 Figure 2306: DNA330189, BC000712, 209680_s_at Figure 2307: PRO85437 Figure 2308: DNA193881, AAF15129.1, 209681_at Figure 2309: PRO23299 Figure 2310A-B: DNA272671, HSU26710, 209682_at Figure 2311: PRO60796 Figure 2312: DNA330125, HUMPKB, 209685_s_at Figure 2313: PRO85385		
Figure 2252: PRO70812 Figure 2253: DNA330178, HSTM2CEA, 209498_at Figure 2254: PRO85426 Figure 2255: DNA330179, NP_067023.1, 209504_s_at Figure 2256: PRO85427 Figure 2257: DNA324899, NP_002938.1, 209507_at Figure 2258: PRO81503 Figure 2259: DNA330180, NP_009149.2, 209510_at Figure 2306: DNA330189, BC000712, 209680_s_at Figure 2307: PRO85437 Figure 2308: DNA193881, AAF15129.1, 209681_at Figure 2309: PRO23299 Figure 2310A-B: DNA272671, HSU26710, 209682_at Figure 2311: PRO60796 Figure 2312: DNA330125, HUMPKB, 209685_s_at Figure 2313: PRO85385		
Figure 2253: DNA330178, HSTM2CEA, 209498_at Figure 2254: PRO85426 Figure 2255: DNA330179, NP_067023.1, 209504_s_at Figure 2256: PRO85427 Figure 2257: DNA324899, NP_002938.1, 209507_at Figure 2258: PRO81503 Figure 2259: DNA330180, NP_009149.2, 209510_at Figure 2307: PRO85437 Figure 2308: DNA193881, AAF15129.1, 209681_at Figure 2309: PRO23299 Figure 2310A-B: DNA272671, HSU26710, 209682_at Figure 2311: PRO60796 Figure 2312: DNA330125, HUMPKB, 209685_s_at Figure 2313: PRO85385		
Figure 2254: PRO85426 Figure 2308: DNA193881, AAF15129.1, 209681_at Figure 2255: DNA330179, NP_067023.1, 209504_s_at Figure 2256: PRO85427 Figure 2257: DNA324899, NP_002938.1, 209507_at Figure 2258: PRO81503 Figure 2310. PRO60796 Figure 2312: DNA330125, HUMPKB, 209685_s_at Figure 2259: DNA330180, NP_009149.2, 209510_at Figure 2313: PRO85385		
Figure 2255: DNA330179, NP_067023.1, 209504_s_at Figure 2256: PRO85427 Figure 2257: DNA324899, NP_002938.1, 209507_at Figure 2258: PRO81503 Figure 2259: DNA330180, NP_009149.2, 209510_at Figure 2313: PRO85385 Figure 2313: PRO85385		
Figure 2256: PRO85427 Figure 2310A-B: DNA272671, HSU26710, 209682_at Figure 2257: DNA324899, NP_002938.1, 209507_at Figure 2258: PRO81503 Figure 2312: DNA330125, HUMPKB, 209685_s_at Figure 2259: DNA330180, NP_009149.2, 209510_at Figure 2313: PRO85385		
Figure 2257: DNA324899, NP_002938.1, 209507_at Figure 2311: PRO60796 Figure 2312: DNA330125, HUMPKB, 209685_s_at Figure 2259: DNA330180, NP_009149.2, 209510_at Figure 2313: PRO85385		
Figure 2258: PRO81503 Figure 2312: DNA330125, HUMPKB, 209685_s_at Figure 2259: DNA330180, NP_009149.2, 209510_at Figure 2313: PRO85385	_	•
Figure 2259: DNA330180, NP_009149.2, 209510_at Figure 2313: PRO85385		
Figure 2260: PRO85428 Figure 2314: DNA331519, HMMR, 209709_s_at	_	
	Figure 2260: PRO85428	Figure 2314: DNA331519, HMMR, 209/09.s.at

Figure 2315: PRO86551	Figure 2369: DNA330199, BC004357, 209944_at
Figure 2316: DNA328264, NP_005183.2, 209714_s_at	Figure 2370: PRO85447
Figure 2317: PRO12087	Figure 2371A-B: DNA329065, HSU12767, 209959 at
Figure 2318: DNA330191, NP_036249.1, 209715_at	Figure 2372: PRO84725
Figure 2319: PRO85439	Figure 2373: DNA154921, DNA154921, 209967_s_at
Figure 2320A-C: DNA254412, AF008915, 209717_at	Figure 2374: DNA327736, BC002704, 209969_s_at
Figure 2321: PRO49522	Figure 2375: PRO83711
Figure 2322A-B: DNA330192, 234780.1, 209733.at	Figure 2376: DNA324895, JTV1, 209971_x_at
Figure 2323: PRO85440	Figure 2377: PRO81501
Figure 2324: DNA330193, BC015929, 209750_at	Figure 2378: DNA226658, NP_003736.1, 209999_x_at
Figure 2325: DNA330194, HSU09087, 209754_s_at	Figure 2379: PRO37121
Figure 2326: PRO85442	Figure 2380: DNA226658, SSI-1, 210001_s_at
Figure 2327: DNA275195, NP_001025.1, 209773_s_at	Figure 2381: PRO37121
Figure 2328: PRO62893	Figure 2382: DNA330200, NP_056222.1, 210006_at
Figure 2329: DNA329205, NP_001343.1, 209782.s_at	Figure 2383: PRO85448
Figure 2330: PRO84821	Figure 2384: DNA269534, NP_002155.1, 210029_at
Figure 2331: DNA226436, NP_001772.1, 209795_at	Figure 2385: PRO57950
Figure 2332: PRO36899	Figure 2386: DNA326054, NP_002159.1, 210046_s_at
Figure 2333: DNA327731, NP_003302.1, 209803_s_at	Figure 2387: PRO82489
Figure 2334: PRO83707	Figure 2388: DNA326809, NP_036244.2, 210052_s_at
Figure 2335A-B: DNA271368, HUMKIAAI,	Figure 2389: PRO83142
209804_at	Figure 2390: DNA150551, AAB97010.1, 210054_at
Figure 2336: PRO59668	Figure 2391: PRO12778
Figure 2337: DNA329206, AF151103, 209813_x_at	Figure 2392: DNA274960, SFRS5, 210077_s_at
Figure 2338: PRO84822	Figure 2393: PRO62694
Figure 2339A-C: DNA331520, 1096711.1, 209815_at	Figure 2394: DNA324922, BC018962, 210095_s_at
Figure 2340: PRO86552	Figure 2395: PRO119
Figure 2341: DNA327732, UMPK, 209825_s_at	Figure 2396A-B: DNA328685, NP_127497.1,
Figure 2342: PRO61801	210113_s_at
Figure 2343: DNA328676, IL16, 209827.s_at	Figure 2397: PRO34751
Figure 2344: PRO84448	Figure 2398: DNA330201, NP_003774.1, 210121_at
Figure 2345A-B: DNA196499, AB002384, 209829_at	Figure 2399: PRO50625
Figure 2346: PRO24988	Figure 2400: DNA330202, NP_005400.1, 210163_at
Figure 2347: DNA330197, NP_112190.1, 209832_s_at	Figure 2401: PRO19838
Figure 2348: PRO85445	Figure 2402: DNA287620, NP_004122.1, 210164_at
Figure 2349: DNA328677, AF060511, 209836_x_at	Figure 2403: PRO2081 Figure 2404: DNA270196, HUMZFM1B, 210172_at
Figure 2350: PRO84449 Figure 2351: DNA270180, NP_478123.1, 209849_s_at	Figure 2405: PRO58584
Figure 2352: PRO58569	Figure 2406: DNA330203, NP_003755.1, 210190_at
Figure 2353: DNA331521, BC018951, 209868_s_at	Figure 2407: PRO85449
Figure 2354: PRO58719	Figure 2408: DNA331335, AF070576, 210201_x_at
Figure 2355A-B: DNA329536, NP_005494.2,	Figure 2409: DNA331522, AF068918, 210202.s_at
209870_s_at	Figure 2410: PRO86553
Figure 2356: PRO22775	Figure 2411: DNA331523, RAD1, 210216_x_at
Figure 2357: DNA330198, AB014719, 209871_s_at	Figure 2412: PRO61690
Figure 2358: PRO85446	Figure 2413: DNA328467, AF056322, 210218_s_at
Figure 2359: DNA324184, NP_065726.1, 209891_at	Figure 2414: PRO84293
Figure 2360: PRO80882	Figure 2415: DNA217253, NP_000749.1, 210229_s_at
Figure 2361: DNA328258, HSM802616, 209900_s_at	Figure 2416: PRO34295
Figure 2362: PRO84151	Figure 2417: DNA331084, BC008487, 210254_at
Figure 2363: DNA330152, DUT, 209932_s_at	Figure 2418: PRO81984
Figure 2364: PRO85406	Figure 2419A-B: DNA270015, NP_003444.1,
Figure 2365: DNA150133, AAD01646.1, 209933_s_at	210281_s_at
Figure 2366: PRO12219	Figure 2420: PRO58410
Figure 2367: DNA329208, CFLAR, 209939_x_at	Figure 2421: DNA330206, NP_005801.2, 210288_at
Figure 2368: PRO84823	Figure 2422: PRO85450

Figure 2423: DNA329945, SEC23B, 210293_at	Figure 2475: PRO84829
Figure 2424: PRO85252	Figure 2476: DNA330215, DKFZp762A227Homo,
Figure 2425: DNA218653, NP_003799.1, 210314_x_at	210692_s_at
Figure 2426: PRO34449	Figure 2477: DNA331530, AF064103, 210742_at
Figure 2427: DNA326239, NP_006752.1, 210317_s_at	Figure 2478: PRO86559
Figure 2428: PRO39530	Figure 2479: DNA237817, NP_001307.1, 210766_s_at
Figure 2429: DNA329213, NP_219491.1, 210321_at	Figure 2480: PRO38923
Figure 2430: PRO2313	Figure 2481A-B: DNA330216, NP_006445.1,
Figure 2431A-B: DNA329214, NP_001087.1,	210778_s_at
210337_s_at	Figure 2482: PRO85457
Figure 2432: PRO84826	Figure 2483: DNA226881, FLI1, 210786_s_at
Figure 2433: DNA225528, NP_000610.1, 210354_at	Figure 2484: PRO37344
Figure 2434: PRO35991	Figure 2485: DNA255402, NP_055288.1, 210802_s_at
Figure 2435: DNA196621, HUMLY9, 210370_s_at	Figure 2486: PRO50469
Figure 2436: DNA330207, BC001131, 210387_at	Figure 2487: DNA330027, SSBP2, 210829_s_at
Figure 2437: PRO85451	Figure 2488: PRO85312
Figure 2438: DNA226229, NP_002432.1, 210410_s_at	Figure 2489: DNA329219, BC000385, 210844_x_at
Figure 2439: PRO36692	Figure 2490: PRO81278
Figure 2440A-B: DNA330208, AF164622,	Figure 2491A-B: DNA331107, HSU26455,
210425_x_at	210858_x_at
Figure 2441: PRO85452	Figure 2492: PRO86255
Figure 2442: DNA329215, NP_036224.1, 210439_at	Figure 2493: DNA188234, NP_000630.1, 210865_at
Figure 2443: PRO7424	Figure 2494: PRO21942
Figure 2444: DNA226394, NP_002552.1, 210448_s_at	Figure 2495: DNA331531, PFDN5, 210908_s_at
Figure 2445: PRO36857	Figure 2496: PRO86560
Figure 2446: DNA331524, BC003388, 210458_s_at Figure 2447: PRO86554	Figure 2497: DNA330217, AF043183, 210915_x_at
Figure 2448: DNA331525, BC002448, 210461_s_at	Figure 2498: PRO85458 Figure 2499: DNA274326, NP_003079.1, 210933_s_at
Figure 2449: PRO86555	Figure 2500: PRO62244
Figure 2450: DNA329216, AF022375, 210512_s_at	Figure 2501: DNA329317, NP_057353.1, 210948_s_at
Figure 2451: PRO84827	Figure 2502: PRO81157
Figure 2452: DNA227633, NP_001156.1, 210538_s_at	Figure 2503: DNA331532, AF125393, 210951_x_at
Figure 2453: PRO38096	Figure 2504: PRO86561
Figure 2454: DNA330209, BC000585, 210542_s_at	Figure 2505: DNA330218, HUMTCAXA,
Figure 2455: PRO85453	210972_x_at
Figure 2456: DNA331526, BC014563, 210559_s_at	Figure 2506: DNA273236, NP_004306.1, 210980_s_at
Figure 2457: PRO58324	Figure 2507: PRO61263
Figure 2458: DNA331527, BC001602, 210563_x_at	Figure 2508: DNA269888, NP_002073.1, 210981_s_at
Figure 2459: PRO86556	Figure 2509: PRO58286
Figure 2460: DNA331528, AF00619, 210564_x_at	Figure 2510: DNA329221, HLA-DRA, 210982_s_at
Figure 2461: PRO86557	Figure 2511: PRO4555
Figure 2462: DNA329217, BC003406, 210571_s_at	Figure 2512: DNA238565, MCM7, 210983_s_at
Figure 2463: PRO84828	Figure 2513: PRO39210
Figure 2464: DNA330210, HSU03858, 210607_at	Figure 2514: DNA326239, YWHAE, 210996_s_at
Figure 2465: PRO126	Figure 2515: PRO39530
Figure 2466: DNA330211, NP_009092.1, 210629_x_at	Figure 2516A-B: DNA330219, NP_150241.1,
Figure 2467: PRO85454	211013_xat
Figure 2468: DNA330212, HUMKRT10A, 210633_x_at	Figure 2517: PRO85459
Figure 2469: PRO85455	Figure 2518: DNA327699, AB023420, 211015_s_at
Figure 2409: PRO83455 Figure 2470: DNA331529, LAIR1, 210644_s_at	Figure 2519: PRO83682 Figure 2520: DNA 288254, TUBA 3, 211058, v. et
Figure 2471: PRO86558	Figure 2520: DNA288254, TUBA3, 211058_x_at Figure 2521: PRO69536
Figure 2472A-C: DNA330214, HUMTPRD,	Figure 2522: DNA329992, MGAT2, 211061_s_at
210645_s_at	Figure 2523: PRO59267
Figure 2473: PRO12135	Figure 2524: DNA324171, NP_065438.1, 211070_x_at
Figure 2474: DNA329218, NP_055227.1, 210691_s_at	Figure 2525: PRO60753
J	

Figure 2526: DNA330220, NP_006809.1, 211071_s_at	Figure 2579: DNA331534, AF116616, 211708_s_at
Figure 2527: PRO60769	Figure 2580: DNA226342, PTEN, 211711_s_at
Figure 2528: DNA287198, K-ALPHA-1, 211072_x_at	Figure 2581: PRO36805
Figure 2529: PRO69484	Figure 2582: DNA328706, BC021909, 211714_x_at
Figure 2530: DNA254470, NEK2, 211080_s_at	Figure 2583: PRO10347
Figure 2531: PRO49578	Figure 2584: DNA88307, NP_001992.1, 211734_s_at
Figure 2532: DNA196432, AF064804, 211106_at	Figure 2585: PRO2280
Figure 2533: PRO24928	Figure 2586: DNA329225, EVI2B, 211742_s_at
Figure 2534: DNA330202, CXCL11, 211122_s_at	Figure 2587: PRO84833
Figure 2535: PRO19838	Figure 2588: DNA331535, AF105974, 211745_x_at
Figure 2536: DNA304765, HUMTCRGAD,	Figure 2589: PRO3629
211144_x_at	Figure 2590: DNA328649, TUBA6, 211750_x_at
Figure 2537: PRO71178	Figure 2591: PRO84424
Figure 2538: DNA327752, HSDHACTYL,	Figure 2592: DNA254725, KPNA2, 211762_s_at
211150_s_at Figure 2520 A. R. DNA 228700_SCD_211162_rt at	Figure 2593: PRO49824 Figure 2594: DNA330225, NP_115712.1, 211767_at
Figure 2539A-B: DNA328700, SCD, 211162_x_at	•
Figure 2540: PRO84464	Figure 2595: PRO85462 Figure 2596A-B: DNA329226, BC006181,
Figure 2541: DNA330221, NP_056071.1, 211207_s_at Figure 2542: PRO85460	211784_s_at
Figure 2543: DNA330222, NP_003848.1, 211226_at	Figure 2597: PRO60388
Figure 2544: PRO45958	Figure 2598: DNA304473, BC006196, 211786_at
Figure 2545: DNA218278, IL2RA, 211269_s_at	Figure 2599: PRO2023
Figure 2546: PRO34330	Figure 2600: DNA330226, AF198052, 211794_at
Figure 2547: DNA151022, DGKA, 211272_s_at	Figure 2601: PRO85463
Figure 2548: PRO12096	Figure 2602: DNA227173, FYB, 211795_s_at
Figure 2549: DNA330223, NP_001790.1, 211297_s_at	Figure 2603: PRO37636
Figure 2550: PRO49730	Figure 2604: DNA331536, AAA60662.1, 211796_s_at
Figure 2551A-C: DNA328811, ITPR1, 211323_s_at	Figure 2605: PRO86563
Figure 2552: PRO84551	Figure 2606: DNA331537, CCNE2, 211814_s_at
Figure 2553: DNA188234, TNFSF6, 211333_s_at	Figure 2607: PRO59418
Figure 2554: PRO21942	Figure 2608A-B: DNA331342, DEFCAP, 211822_s_at
Figure 2555: DNA103395, HSU80737, 211352_s_at	Figure 2609: PRO86422
Figure 2556: PRO4723	Figure 2610: DNA331343, AK026398, 211824_x_at
Figure 2557A-B: DNA275066, NP_000170.1,	Figure 2611: PRO86423
211450_s_at	Figure 2612: DNA331538, AF327066, 211825_s_at
Figure 2558: PRO62786	Figure 2613: PRO86564
Figure 2559: DNA327755, NP_115957.1, 211458_s_at	Figure 2614A-B: DNA331539, BRCA1, 211851_x_at
Figure 2560: PRO83725	Figure 2615: PRO86565
Figure 2561: DNA93439, CXCR6, 211469_s_at	Figure 2616A-B: DNA188192, CD28, 211856_x_at
Figure 2562: PRO4515	Figure 2617: PRO21704
Figure 2563: DNA330175, KNSL6, 211519_s_at	Figure 2618: DNA331540, AF222343, 211861_x_at
Figure 2564: PRO59681	Figure 2619: PRO86566
Figure 2565: DNA327756, NP_068814.2, 211538_s_at	Figure 2620: DNA330228, HUMTCRAZ, 211902_x_at
Figure 2566: PRO83726	Figure 2621: PRO85465
Figure 2567: DNA269888, GPRK6, 211543_s_at	Figure 2622: DNA226176, CXCR4, 211919_s_at
Figure 2568: PRO58286	Figure 2623: PRO36639
Figure 2569: DNA226255, NP_003047.1, 211576_s_at Figure 2570: PRO36718	Figure 2624: DNA272286, CAT, 211922_s_at Figure 2625: PRO60544
Figure 2570: PRO50716 Figure 2571: DNA330211, LST1, 211581_x_at	Figure 2626: DNA330229, BC011915, 211926_s_at
Figure 2572: PRO85454	Figure 2627: PRO85466
Figure 2572: PRO65454 Figure 2573: DNA330224, HUMNCA, 211657_at	Figure 2628: DNA226254, NP_001408.1, 211937_at
Figure 2574: PRO85461	Figure 2629: PRO36717
Figure 2575: DNA327709, HBB, 211696_x_at	Figure 2630: DNA330230, NP_060977.1, 211938_at
Figure 2576: PRO83690	Figure 2631: PRO85467
Figure 2577: DNA331533, PPARG, 211699_x_at	Figure 2632A-B: DNA325306, ITGB1, 211945_s_at
Figure 2578: PRO86562	Figure 2633: PRO81851

Figure 2634A-B: DNA272195, HUMORFGA, Figure 2683: DNA330240, CAA52801.1, 212141.at 211951_at Figure 2684: PRO85475 Figure 2635: DNA328437, NP_005792.1, 211956_s_at Figure 2685: DNA330240, HSP1CDC21, 212142_at Figure 2636: PRO84271 Figure 2686A-B: DNA150829, AB014568, 212144_at Figure 2637: DNA325941, NP_005339.1, 211969_at Figure 2687: DNA329602, AK2, 212175_s_at Figure 2638: PRO82388 Figure 2688: PRO85133 Figure 2639: DNA287194, AAA60258.1, 211974_x_at Figure 2689: DNA330241, AF314185, 212176_at Figure 2640: PRO69480 Figure 2690: DNA328716, HSM800707, 212179_at Figure 2641A-C: DNA331541, 1390535.1, 211986_at Figure 2691: DNA330242, BC007034, 212185_x_at Figure 2642: PRO86567 Figure 2692: PRO85477 Figure 2643: DNA330232, NP_291032.1, 211991_s_at Figure 2693: DNA330243, BC015663, 212190.at Figure 2644: PRO85469 Figure 2694: PRO2584 Figure 2645: DNA330233, AF218029, 211999_at Figure 2695: DNA326233, RPL13, 212191_x_at Figure 2646: PRO11403 Figure 2696: PRO82645 Figure 2647: DNA287433, NP_006810.1, 212009_s_at Figure 2697A-C: DNA330244, 253946.17, 212196_at Figure 2648: PRO69690 Figure 2698: PRO85478 Figure 2649A-D: DNA103461, MKI67, 212020_s_at Figure 2699A-B: DNA330245, 230497.7, 212206_s_at Figure 2650: PRO4788 Figure 2700: PRO85479 Figure 2651A-D: DNA226463, HSMKI67A, Figure 2701: DNA331543, BC008710, 212227_x_at 212021_s_at Figure 2702: PRO84271 Figure 2652: PRO36926 Figure 2703: DNA327770, 1384008.4, 212239_at Figure 2653A-D: DNA103461, HSMKI67, Figure 2704: PRO83736 212022_s_at Figure 2705: DNA151120, DNA151120, 212240_s_at Figure 2654: PRO4788 Figure 2706: PRO12179 Figure 2655A-D: DNA226463, DNA226463, Figure 2707: DNA330246, AF326773, 212241_at 212023_s_at Figure 2708A-B: DNA329229, 1345070.7, 212249_at Figure 2656: PRO36926 Figure 2709: PRO84835 Figure 2657: DNA275447, HSMEMA, 212037_at Figure 2710: DNA329182, BC016852, 212259_s_at Figure 2658: PRO63095 Figure 2711: PRO84805 Figure 2659: DNA103380, NP_003365.1, 212038_s_at Figure 2712: DNA331544, BC018823, 212266_s_at Figure 2660: PRO4710 Figure 2713: PRO86569 Figure 2661A-B: DNA330234, 215138.24, 212045_at Figure 2714: DNA327771, NP_109591.1, 212268_at Figure 2662: PRO85470 Figure 2715: PRO83737 Figure 2663: DNA328709, BC004151, 212048_s_at Figure 2716: DNA326463, NP_000976.1, 212270_x_at Figure 2664: PRO37676 Figure 2717: PRO82846 Figure 2665A-B: DNA330235, BAA20790.1, Figure 2718: DNA150980, HUMMAC30X, 212279_at 212061_at Figure 2719: DNA150980, DNA150980, 212281_s_at Figure 2666: PRO85471 Figure 2720: PRO12566 Figure 2667: DNA330236, 228447.20, 212071_s_at Figure 2721: DNA253017, DNA253017, 212282_at Figure 2668: PRO85472 Figure 2722: PRO48926 Figure 2669: DNA154139, DNA154139, 212099_at Figure 2723: DNA328719, BC012895, 212295.s_at Figure 2670A-B: DNA331542, BAA74910.1, Figure 2724: PRO84475 212108_at Figure 2725: DNA271103, NP_005796.1, 212296_at Figure 2671: PRO86568 Figure 2726: PRO59425 Figure 2672A-B: DNA150956, BAA06685.1, Figure 2727: DNA207620, DNA207620, 212300_at 212110_at Figure 2728: DNA330247, BC019110, 212313_at Figure 2673: PRO12560 Figure 2729: PRO85481 Figure 2674: DNA328711, AK023154, 212115_at Figure 2730: DNA330248, BC019924, 212320_at Figure 2675: PRO84468 Figure 2731: PRO10347 Figure 2676: DNA219225, NP_002874.1, 212125_at Figure 2732A-B: DNA124122, HSP130K, 212331.at Figure 2677: PRO34531 Figure 2733: PRO6323 Figure 2678: DNA330238, BC019676, 212127_at Figure 2734A-B: DNA124122, NP_005602.2, Figure 2679: DNA328713, AF100737, 212130_x_at 212332_at Figure 2680: PRO84470 Figure 2735: PRO6323 Figure 2681: DNA330239, AK027643, 212131_at Figure 2736: DNA287190, CAB43217.1, 212333_at Figure 2682: PRO85474 Figure 2737: PRO69476

Figure 2787A-B: DNA331545, AB040884, 212585_at Figure 2738A-B: DNA330216, MAD4, 212347_x_at Figure 2788: DNA275100, DNA275100, 212589_at Figure 2739: PRO85457 Figure 2789: DNA330256, BC020889, 212592_at Figure 2740A-B: DNA327773, BAA25456.1, Figure 2790: PRO81145 212366_at Figure 2791: DNA330257, 441179.4, 212605_s_at Figure 2741: PRO83739 Figure 2792: PRO85489 Figure 2742A-C: DNA330249, AAA99177.1, Figure 2793A-B: DNA330258, BAA22955.2, 212372_at Figure 2743: PRO85482 212619_at Figure 2744: DNA329231, NP_000810.1, 212378_at Figure 2794: PRO85490 Figure 2795A-B: DNA330258, AB006624, 212621_at Figure 2745: PRO84837 Figure 2796: DNA330259, NP_008944.1, 212638_s_at Figure 2746: DNA329231, GART, 212379_at Figure 2797: PRO49366 Figure 2747: PRO84837 Figure 2798: DNA331357, BC010494, 212639_x_at Figure 2748A-B: DNA 150950, HUMKIAAH, Figure 2799: PRO38556 212396_s_at Figure 2800A-D: DNA327777, HSIL1RECA, Figure 2749A-B: DNA328549, NP_002897.1, 212657_s_at 212397_at Figure 2801A-B: DNA327778, AB011154, Figure 2750: PRO84350 212675_s_at Figure 2751A-B: DNA328549, RDX, 212398_at Figure 2802: DNA273465, DNA273465, 212677_s_at Figure 2752: PRO84350 Figure 2803: DNA328744, AF318364, 212680_x_at Figure 2753: DNA151330, DNA151330, 212400_at Figure 2804: PRO84496 Figure 2754: PRO11708 Figure 2805A-B: DNA329901, AB007915, 212683.at Figure 2755A-B: DNA330250, NP_060727.1, Figure 2806A-B: DNA269508, AB011110, 212706_at 212406_s_at Figure 2807A-B: DNA331546, 332730.12, 212714_at Figure 2756: PRO85483 Figure 2808: PRO86570 Figure 2757: DNA254828, AK023204, 212408_at Figure 2809: DNA331547, BC010994, 212734_x_at Figure 2758: PRO49923 Figure 2810: PRO82645 Figure 2759: DNA330251, NP_059965.1, 212430_at Figure 2811: DNA329906, BC007848, 212738_at Figure 2760: PRO85484 Figure 2812: PRO85223 Figure 2761: DNA327774, BC016808, 212460_at Figure 2813: DNA330261, NP_110383.1, 212762_s_at Figure 2762: PRO83740 Figure 2814: PRO85492 Figure 2763A-B: DNA330252, NP_055447.1, Figure 2815: DNA330262, NP_006409.2, 212768_s_at 212473_s_at Figure 2816: PRO85493 Figure 2764: PRO85485 Figure 2817A-B: DNA254149, BAA06224.1, Figure 2765: DNA269630, TPM4, 212481_s_at 212789_at Figure 2766: PRO58042 Figure 2818: PRO49264 Figure 2767: DNA330253, BC007665, 212493_s_at Figure 2819: DNA331548, BC017356, 212827_at Figure 2768: PRO85486 Figure 2820: PRO86571 Figure 2769: DNA330254, AK024029, 212508_at Figure 2821A-B: DNA150452, BAA32470.1, Figure 2770: PRO85487 212830_at Figure 2771A-B: DNA254192, BAA07648.1, Figure 2822: PRO12260 212510_at Figure 2823A-B: DNA331549, BAA07892.2, Figure 2772: PRO49304 212832_s_at Figure 2773: DNA329233, 383512.16, 212527_at Figure 2824: PRO86572 Figure 2774: PRO84839 Figure 2775: DNA226041, NP_005555.1, 212531_at Figure 2825: DNA271714, BAA05039.1, 212836_at Figure 2776: PRO36504 Figure 2826: PRO59998 Figure 2827: DNA331550, AAA59587.1, 212859_x_at Figure 2777: DNA269882, HSWEE1HU, 212533_at Figure 2778: PRO58280 Figure 2828: PRO6386 Figure 2779A-D: DNA328737, 148650.1, 212560_at Figure 2829A-B: DNA328753, BAA13212.1, Figure 2780: PRO84490 212873_at Figure 2830: PRO84502 Figure 2781A-B: DNA330255, AK025499, 212561_at Figure 2831: DNA330265, NP_056436.1, 212886_at Figure 2782: PRO85488 Figure 2832: PRO85495 Figure 2783: DNA225632, NP_002037.2, 212581_x_at Figure 2833A-B: DNA271215, BAA24380.1, Figure 2784: PRO36095 212892_at Figure 2785A-C: DNA329236, AF392452, 212582_at

Figure 2786: PRO84841

Figure 2834: PRO59530

Figure 2835A-B: DNA330266, CAA10334.1, Figure 2885A-B: DNA330278, BAA13216.1, 212902_at 213174_at Figure 2836: PRO85496 Figure 2886: PRO85507 Figure 2837A-B: DNA271137, AB014589, 212905_at Figure 2887: DNA330279, AF043182, 213193_x_at Figure 2838: DNA271630, DNA271630, 212907_at Figure 2888: PRO85508 Figure 2839: DNA330267, 235076.14, 212914_at Figure 2889: DNA227909, NP_005024.1, 213226_at Figure 2840: PRO85497 Figure 2890: PRO38372 Figure 2841: DNA330268, BC009116, 212928_at Figure 2891A-B: DNA330280, BAA83045.2, Figure 2842: PRO85498 213254_at Figure 2843: DNA331551, BC013078, 212933_x_at Figure 2892: PRO85509 Figure 2844: PRO82645 Figure 2893A-B: DNA328761, BAA82991.1, Figure 2845A-B: DNA330269, BC020584, 212936_at 213280_at Figure 2846: PRO23868 Figure 2894: PRO84509 Figure 2847: DNA330270, HUMORF007, 212949_at Figure 2895: DNA331555, BC009874, 213281_at Figure 2848A-B: DNA331552, PAM, 212958_x_at Figure 2896A-B: DNA274945, HSACKI10, Figure 2849: PRO86573 213287_s_at Figure 2850: DNA273283, HUMCYSTRNA, Figure 2897: DNA260974, NP_006065.1, 213293_s_at 212971_at Figure 2898: PRO54720 Figure 2851: DNA330271, 399773.20, 212980_at Figure 2899: DNA328357, 1452321.2, 213295_at Figure 2852: PRO85500 Figure 2900: PRO84217 Figure 2853: DNA330272, AF119896, 212981_s_at Figure 2901A-B: DNA329248, BAA20816.1, Figure 2854: DNA330273, AK027564, 213007_at 213302_at Figure 2855: PRO85502 Figure 2902: PRO84850 Figure 2856: DNA254940, BAA91770.1, 213008_at Figure 2903A-B: DNA255273, BAA83044.1, Figure 2857: PRO50030 213309_at Figure 2858: DNA325596, TPI1, 213011_s_at Figure 2904: PRO50349 Figure 2859: PRO69549 Figure 2905: DNA155418, DNA155418, 213326_at Figure 2860: DNA331553, 228519.3, 213021.at Figure 2906A-B: DNA331355, AAG24545.1, Figure 2861: PRO86574 213330_s_at Figure 2862A-B: DNA253815, BAA20833.2, Figure 2907: PRO86431 213035_at Figure 2908A-B: DNA330281, AB058688, 213341_at Figure 2863: PRO49218 Figure 2909: DNA327789, 1449824.5, 213348_at Figure 2864A-B: DNA329240, NP.056133.1, Figure 2910: PRO83753 213039_at Figure 2911: DNA287176, AB025254, 213361_at Figure 2865: PRO84845 Figure 2912: DNA327790, 1448999.3, 213364_s_at Figure 2866A-B: DNA330275, BAA25487.1, Figure 2913: PRO83754 213045.at Figure 2914A-B: DNA330282, 217860.13, 213376_at Figure 2867: PRO85504 Figure 2915: PRO85510 Figure 2868A-B: DNA329242, BAA76857.1, Figure 2916: DNA330283, BC020225, 213408_s_at 213056_at Figure 2917: PRO85511 Figure 2869: PRO84847 Figure 2918: DNA330284, 235806.16, 213434_at Figure 2870: DNA323869, NP_000960.2, 213080_x_at Figure 2919: PRO85512 Figure 2871: PRO80612 Figure 2920: DNA225632, GAPD, 213453_x_at Figure 2872: DNA270466, HUMG6PD, 213093_at Figure 2921: PRO36095 Figure 2873: DNA330276, NP_001614.3, 213095_x_at Figure 2922A-B: DNA330285, 241020.1, 213469_at Figure 2874: PRO85505 Figure 2923: PRO85513 Figure 2875: DNA331554, AF118070, 213113_s_at Figure 2924: DNA328766, NP_006077.1, 213476_x_at Figure 2876: PRO86575 Figure 2925: PRO84514 Figure 2877: DNA287230, AAA36325.1, 213138_at Figure 2926: DNA330286, BC018130, 213506_at Figure 2878: PRO69509 Figure 2927: PRO85514 Figure 2879: DNA330277, CAB45152.1, 213142_x_at Figure 2928: DNA326639, NP_001229.1, 213523_at Figure 2880: PRO85506 Figure 2929: PRO82992 Figure 2881: DNA228053, DNA228053, 213156_at Figure 2930A-C: DNA330287, AF380180, 213538_at Figure 2882: DNA151370, DNA151370, 213158_at Figure 2931: PRO85515 Figure 2883: PRO11747 Figure 2932: DNA227483, SQLE, 213562_s_at Figure 2884: DNA106374, DNA106374, 213164_at Figure 2933: PRO37946

Figure 2934: DNA330288, NP_005606.1, 213566_at Figure 2986: DNA327807, NP_115613.1, 213975_s_at Figure 2935: PRO2869 Figure 2987: PRO83768 Figure 2936: DNA330289, 197444.1, 213567_at Figure 2988: DNA327808, NP_002961.1, 213988_s_at Figure 2937: PRO85516 Figure 2989: PRO83769 Figure 2938: DNA159560, DNA159560, 213577_at Figure 2990: DNA329136, HSPC111, 214011_s_at Figure 2991: PRO84772 Figure 2939: DNA330290, 1398807.8, 213581_at Figure 2992: DNA196110, DNA196110, 214016_s_at Figure 2940: PRO85517 Figure 2941: DNA327799, HSRP26AA, 213587_s_at Figure 2993: PRO24635 Figure 2942: PRO40011 Figure 2994: DNA227224, LC27, 214039_s_at Figure 2943: DNA273753, AAC39561.1, 213599_at Figure 2995: PRO37687 Figure 2996: DNA330296, 206955.3, 214054_at Figure 2944: PRO61716 Figure 2945: DNA330291, 1500175.9, 213616_at Figure 2997: PRO85523 Figure 2946: PRO85518 Figure 2998: DNA273696, DNA273696, 214060_at Figure 2999A-B: DNA330297, AF378753, 214081_at Figure 2947A-C: DNA330292, NP_056045.2, 213618_at Figure 3000: PRO85524 Figure 2948: PRO85519 Figure 3001: DNA227091, NP_000256.1, 214084_x_at Figure 2949: DNA225974, ICAM2, 213620_s_at Figure 3002: PRO37554 Figure 3003: DNA331557, BC016778, 214085_x_at Figure 2950: PRO36437 Figure 2951: DNA331556, BC009513, 213646_x_at Figure 3004: PRO86576 Figure 2952: PRO38556 Figure 3005: DNA254686, NP_005475.1, 214086_s_at Figure 2953A-B: DNA273985, BAA07647.1, Figure 3006: PRO49786 213647_at Figure 3007: DNA330298, BC011911, 214095_at Figure 2954: PRO61932 Figure 3008: PRO83772 Figure 2955: DNA270758, HSU54778, 213655_at Figure 3009: DNA329254, BC004215, 214096_s_at Figure 2956: PRO59117 Figure 3010: PRO84854 Figure 2957: DNA330293, BC011922, 213666_at Figure 3011: DNA330299, AK023737, 214102_at Figure 2958: PRO85520 Figure 3012: PRO85525 Figure 2959: DNA325704, MARS, 213671_s_at Figure 3013: DNA331360, AK022497, 214177_s_at Figure 2960: PRO82188 Figure 3014: PRO86435 Figure 2961: DNA304796, NP_443109.1, 213696.s_at Figure 3015A-B: DNA269826, NP_003195.1, Figure 2962: PRO71208 214179_s_at Figure 2963: DNA273236, ASAH1, 213702_x_at Figure 3016: PRO58228 Figure 2964: PRO61263 Figure 3017: DNA331558, AF000424, 214181_x_at Figure 2965: DNA255913, DNA255913, 213725_x_at Figure 3018: PRO86577 Figure 2966: DNA328629, TUBB2, 213726_x_at Figure 3019: DNA290295, NP_055203.1, 214193_s_at Figure 2967: PRO84407 Figure 3020: PRO70455 Figure 2968: DNA328771, HSMYOSIE, 213733.at Figure 3021: DNA327701, C1QBP, 214214_s_at Figure 2969A-C: DNA151167, FLNA, 213746_s_at Figure 3022: PRO82667 Figure 3023: DNA331361, NP_003318.1, 214228_x_at Figure 2970: PRO12867 Figure 2971: DNA326273, BC001832, 213757_at Figure 3024: PRO2398 Figure 2972: PRO82678 Figure 3025: DNA154914, DNA154914, 214230_at Figure 3026: DNA330300, NP_004883.1, 214257_s_at Figure 2973A-B: DNA274483, NP_000126.1, 213778_x_at Figure 3027: PRO41086 Figure 3028: DNA273940, DNA273940, 214272_at Figure 2974: PRO62385 Figure 3029: DNA97279, JUND, 214326_x_at Figure 2975: DNA328774, NP_004263.1, 213793_s_at Figure 2976: PRO60536 Figure 3030: PRO3628 Figure 2977: DNA327804, AF442151, 213797_at Figure 3031: DNA84130, HSU37518, 214329_x_at Figure 3032: PRO1096 Figure 2978: PRO69493 Figure 3033: DNA272928, DAZAP2, 214334_x_at Figure 2979A-B: DNA329967, SMARCA5, 213859_x_at Figure 3034: PRO61012 Figure 2980: PRO85270 Figure 3035: DNA331362, AF275719, 214359_s_at Figure 3036: PRO86436 Figure 2981: DNA151041, HSAMYB2, 213906_at Figure 2982: DNA330294, 426625.1, 213908_at Figure 3037: DNA331559, AF043723, 214368_at Figure 2983: PRO85521 Figure 3038: PRO85114 Figure 2984: DNA330295, NP_037515.1, 213951_s_at Figure 3039: DNA328611, AF043722, 214369_s_at Figure 2985: PRO85522 Figure 3040: PRO84393

Figure 3041: DNA273138, NP_005495.1, 214390_s_at	Figure 3097: DNA275473, DNA275473, 214787_at
Figure 3042: PRO61182	Figure 3098A-B: DNA272353, AB007958, 214833_at
Figure 3043: DNA273174, NP_001951.1, 214394_x_at	Figure 3099: DNA226577, C6orf9, 214847_s_at
Figure 3044: PRO61211	Figure 3100: PRO37040
Figure 3045: DNA328782, 337794.1, 214405_at	Figure 3101A-B: DNA331565, BAA34472.1,
Figure 3046: PRO84528	214945_at
Figure 3047: DNA326090, NP_000549.1, 214414_x_at	Figure 3102: PRO86581
Figure 3048: PRO3629	Figure 3103: DNA328530, LAK-4P, 214958_s_at
Figure 3049: DNA271374, CHAF1A, 214426_x_at	Figure 3104: PRO24118
Figure 3050: PRO59673	Figure 3105A-B: DNA271654, AB020704,
Figure 3051: DNA287630, NP_000160.1, 214430_at	214978_s_at
Figure 3052: PRO2154	Figure 3106A-B: DNA329261, HSM802517,
Figure 3053: DNA327811, SHMT2, 214437.s_at	215001_s_at
Figure 3054: PRO83772	Figure 3107: PRO84859
Figure 3055: DNA331363, AF001383, 214439_x_at	Figure 3108: DNA330308, 307914.1, 215029_at
Figure 3056: PRO86437	Figure 3109: PRO85533
Figure 3057: DNA331560, NP_001326.1, 214450_at	Figure 3110: DNA196372, HSBCLXL, 215037_s_at
Figure 3058: PRO85081	Figure 3111: PRO24874 Figure 3112: DNA331566, AIF1, 215051_x_at
Figure 3059: DNA273138, BCAT1, 214452_at	Figure 3113: PRO86582
Figure 3060: PRO61182	Figure 3114: DNA330309, NP_003503.1, 215071_s_at
Figure 3061: DNA327812, NP_006408.2, 214453_s_at Figure 3062: PRO83773	Figure 3115: PRO85534
Figure 3063: DNA150971, NP_002249.1, 214470_at	Figure 3116A-B: DNA330307, AB018295,
Figure 3064: PRO12564	215133_s_at
Figure 3065: DNA330301, NP_008908.1, 214482_at	Figure 3117: DNA331567, 333089.1, 215147_at
Figure 3066: PRO85526	Figure 3118: PRO86583
Figure 3067: DNA325246, RRP4, 214507 s_at	Figure 3119: DNA273371, UMPS, 215165_x_at
Figure 3068: PRO81800	Figure 3120: PRO61373
Figure 3069: DNA331561, CREM, 214508_x_at	Figure 3121A-B: DNA150496, AB023212, 215175_at
Figure 3070: PRO86578	Figure 3122A-B: DNA220748, ITGA6, 215177_s_at
Figure 3071: DNA331562, NP_003090.1, 214531_s_at	Figure 3123: PRO34726
Figure 3072: PRO58654	Figure 3124: DNA330311, 405318.1, 215221_at
Figure 3073: DNA216515, NP_003166.1, 214567_s_at	Figure 3125: PRO85536
Figure 3074: PRO34267	Figure 3126: DNA227597, NP_000627.1, 215223_s_at
Figure 3075: DNA331223, HUMPRF1M, 214617_at	Figure 3127: PRO38060
Figure 3076: DNA331563, BC004101, 214643_x_at	Figure 3128A-B: DNA330312, 406407.1, 215262_at
Figure 3077: PRO86579	Figure 3129: PRO85537
Figure 3078: DNA150552, AAB97011.1, 214661_s_at	Figure 3130: DNA331568, TADA3L, 215273_s_at
Figure 3079: PRO12326	Figure 3131: PRO80953
Figure 3080: DNA330303, BAA05499.1, 214662_at	Figure 3132: DNA330314, 026641.5, 215275_at
Figure 3081: PRO85528	Figure 3133: PRO85538
Figure 3082: DNA330304, HSIGVL026, 214677_x_at	Figure 3134: DNA330315, 1500205.1, 215283_at
Figure 3083: PRO85529	Figure 3135: PRO85539
Figure 3084: DNA287355, ALDOA, 214687_x_at	Figure 3136: DNA330316, 1448781.1, 215284_at
Figure 3085: PRO69617	Figure 3137: PRO85540
Figure 3086: DNA330305, HSU79263, 214700_x_at	Figure 3138: DNA330317, 228133.1, 215330_at
Figure 3087: DNA288259, NP_114172.1, 214710_s_at	Figure 3139: PRO85541 Figure 3140: DNA331569, NP_000552.1, 215333_x_at
Figure 3088: PRO4676	Figure 3141: PRO85542
Figure 3089: DNA324984, NP_115540.1, 214714_at Figure 3090: PRO81578	Figure 3141: PRO63342 Figure 3142: DNA327831, NP_076956.1, 215380_s_at
	Figure 3143: PRO83783
Figure 3091: DNA330306, 407311.1, 214743_at Figure 3092: PRO85531	Figure 3144: DNA328801, 407831.1, 215392_at
Figure 3092: PRO85351 Figure 3093: DNA331564, BC014654, 214752_x_at	Figure 3145: PRO84543
Figure 3094: PRO86580	Figure 3146: DNA325174, NP_038470.1, 215416_s_at
Figure 3095: DNA254338, AAA60119.1, 214765_s_at	Figure 3147: PRO9819
Figure 3096: PRO49449	Figure 3148: DNA275385, NP_002085.1, 215438_x_at
7 10m10 2020; 7 770 12 12	

Figure 3149: PRO63048	Figure 3202: DNA88189, CD24, 216379_x_at
Figure 3150: DNA331570, BC015794, 215440_s_at	Figure 3203: PRO2690
Figure 3151: PRO84545	Figure 3204: DNA330329, IR1875335, 216483_s_at
Figure 3152: DNA330319, AF247727, 215483_at	Figure 3205: DNA287243, NP_004452.1, 216602_s_at
Figure 3153: DNA331571, MAP2K3, 215498_s_at	Figure 3206: PRO69518
Figure 3154: PRO86584	Figure 3207: DNA331580, 1099517.2, 216607_s_at
Figure 3155: DNA330186, BUB1, 215509_s_at	Figure 3208: PRO86590
Figure 3156: PRO85434	Figure 3209: DNA227874, TXN, 216609_at
Figure 3157: DNA330321, 315726.1, 215605_at	Figure 3210: PRO38337
Figure 3158: PRO85545	Figure 3211: DNA88296, NP_005733.1, 216640_s_at
Figure 3159: DNA331572, AF000426, 215633_x_at	Figure 3212: PRO2274
Figure 3160: PRO86585	Figure 3213: DNA269692, S59049, 216834_at
Figure 3161: DNA330031, LOC51668, 215691_x_at	Figure 3214: PRO58102
Figure 3162: PRO85316	Figure 3215: DNA227597, SOD2, 216841_s_at
Figure 3163: DNA331573, HSAPT1, 215719_x_at	Figure 3216: PRO38060
Figure 3164A-B: DNA254376, KIAA0963,	Figure 3217A-B: DNA330331, BAA86451.1,
215760_s_at	216873_s_at
Figure 3165: PRO49486	Figure 3218: PRO85554
Figure 3166A-B: DNA328805, BAA86482.1,	Figure 3219: DNA188275, NP_002181.1, 216876_s_at
215785_s_at	Figure 3220: PRO21800
Figure 3167: PRO84547	Figure 3221A-B: DNA150987, NP_006051.1,
Figure 3168: DNA331574, HUMTCGCH, 215806_x_at	216901_s_at
Figure 3169: DNA330322, 234025.21, 215855_s_at	Figure 3222: PRO12163
Figure 3170: PRO85546	Figure 3223: DNA329267, HUMTCRGAAC,
Figure 3171: DNA330323, 335053.1, 215908_at	216920_s_at
Figure 3172: PRO85547	Figure 3224A-C: DNA328811, HUMINSP3R1,
Figure 3173: DNA330324, HHEX, 215933_s_at	216944_s_at
Figure 3174: PRO58034	Figure 3225: PRO84551
Figure 3175: DNA331575, AF223408, 215942.s.at	Figure 3226A-B: DNA151027, AAA80979.1,
Figure 3176: PRO86587	216952_s_at
Figure 3177: DNA330325, NP_055057.1, 215948_x_at	Figure 3227: PRO12843
Figure 3178: PRO85548	
	Figure 3228A-E: DNA269650, PLEC1, 2169/1.S.at
	Figure 3228A-E: DNA269650, PLEC1, 216971_s_at Figure 3229A-B: PRO58061
Figure 3179: DNA227668, GK, 215966_x_at	Figure 3229A-B: PRO58061
Figure 3179: DNA227668, GK, 215966_x_at Figure 3180: PRO38131	•
Figure 3179: DNA227668, GK, 215966_x_at Figure 3180: PRO38131 Figure 3181: DNA330326, AY007142, 215967_s_at	Figure 3229A-B: PRO58061 Figure 3230: DNA328812, BAA86575.1, 216997_x_at Figure 3231: PRO84552
Figure 3179: DNA227668, GK, 215966_x_at Figure 3180: PRO38131 Figure 3181: DNA330326, AY007142, 215967_s_at Figure 3182: PRO85549	Figure 3229A-B: PRO58061 Figure 3230: DNA328812, BAA86575.1, 216997_x_at Figure 3231: PRO84552 Figure 3232: DNA331581, AAB59396.1, 217022_s_at
Figure 3179: DNA227668, GK, 215966_x_at Figure 3180: PRO38131 Figure 3181: DNA330326, AY007142, 215967_s_at Figure 3182: PRO85549 Figure 3183: DNA331576, HSRNAGLK, 215977_x_at	Figure 3229A-B: PRO58061 Figure 3230: DNA328812, BAA86575.1, 216997_x_at Figure 3231: PRO84552
Figure 3179: DNA227668, GK, 215966_x_at Figure 3180: PRO38131 Figure 3181: DNA330326, AY007142, 215967_s_at Figure 3182: PRO85549 Figure 3183: DNA331576, HSRNAGLK, 215977_x_at Figure 3184: DNA188736, U00115, 215990_s_at	Figure 3229A-B: PRO58061 Figure 3230: DNA328812, BAA86575.1, 216997_x_at Figure 3231: PRO84552 Figure 3232: DNA331581, AAB59396.1, 217022_s_at Figure 3233: PRO86591 Figure 3234: DNA331366, HUMGPCR, 217028_at Figure 3235: PRO4516
Figure 3179: DNA227668, GK, 215966_x_at Figure 3180: PRO38131 Figure 3181: DNA330326, AY007142, 215967_s_at Figure 3182: PRO85549 Figure 3183: DNA331576, HSRNAGLK, 215977_x_at Figure 3184: DNA188736, U00115, 215990_s_at Figure 3185: PRO26296	Figure 3229A-B: PRO58061 Figure 3230: DNA328812, BAA86575.1, 216997_x_at Figure 3231: PRO84552 Figure 3232: DNA331581, AAB59396.1, 217022_s_at Figure 3233: PRO86591 Figure 3234: DNA331366, HUMGPCR, 217028_at Figure 3235: PRO4516
Figure 3179: DNA227668, GK, 215966_x_at Figure 3180: PRO38131 Figure 3181: DNA330326, AY007142, 215967_s_at Figure 3182: PRO85549 Figure 3183: DNA331576, HSRNAGLK, 215977_x_at Figure 3184: DNA188736, U00115, 215990_s_at Figure 3185: PRO26296 Figure 3186: DNA331577, 208045.1, 216109_at	Figure 3229A-B: PRO58061 Figure 3230: DNA328812, BAA86575.1, 216997_x_at Figure 3231: PRO84552 Figure 3232: DNA331581, AAB59396.1, 217022_s_at Figure 3233: PRO86591 Figure 3234: DNA331366, HUMGPCR, 217028_at
Figure 3179: DNA227668, GK, 215966_x_at Figure 3180: PRO38131 Figure 3181: DNA330326, AY007142, 215967_s_at Figure 3182: PRO85549 Figure 3183: DNA331576, HSRNAGLK, 215977_x_at Figure 3184: DNA188736, U00115, 215990_s_at Figure 3185: PRO26296 Figure 3186: DNA331577, 208045.1, 216109_at Figure 3187: PRO86588	Figure 3229A-B: PRO58061 Figure 3230: DNA328812, BAA86575.1, 216997_x_at Figure 3231: PRO84552 Figure 3232: DNA331581, AAB59396.1, 217022_s_at Figure 3233: PRO86591 Figure 3234: DNA331366, HUMGPCR, 217028_at Figure 3235: PRO4516 Figure 3236A-B: DNA227293, AB020721,
Figure 3179: DNA227668, GK, 215966_x_at Figure 3180: PRO38131 Figure 3181: DNA330326, AY007142, 215967_s_at Figure 3182: PRO85549 Figure 3183: DNA331576, HSRNAGLK, 215977_x_at Figure 3184: DNA188736, U00115, 215990_s_at Figure 3185: PRO26296 Figure 3186: DNA331577, 208045.1, 216109_at Figure 3187: PRO86588 Figure 3188: DNA331578, HSTCELD, 216133_at	Figure 3229A-B: PRO58061 Figure 3230: DNA328812, BAA86575.1, 216997_x_at Figure 3231: PRO84552 Figure 3232: DNA331581, AAB59396.1, 217022_s_at Figure 3233: PRO86591 Figure 3234: DNA331366, HUMGPCR, 217028_at Figure 3235: PRO4516 Figure 3236A-B: DNA227293, AB020721, 217047_s_at
Figure 3179: DNA227668, GK, 215966_x_at Figure 3180: PRO38131 Figure 3181: DNA330326, AY007142, 215967_s_at Figure 3182: PRO85549 Figure 3183: DNA331576, HSRNAGLK, 215977_x_at Figure 3184: DNA188736, U00115, 215990_s_at Figure 3185: PRO26296 Figure 3186: DNA331577, 208045.1, 216109_at Figure 3187: PRO86588 Figure 3188: DNA331578, HSTCELD, 216133_at Figure 3189: PRO86589	Figure 3229A-B: PRO58061 Figure 3230: DNA328812, BAA86575.1, 216997_x_at Figure 3231: PRO84552 Figure 3232: DNA331581, AAB59396.1, 217022_s_at Figure 3233: PRO86591 Figure 3234: DNA331366, HUMGPCR, 217028_at Figure 3235: PRO4516 Figure 3236A-B: DNA227293, AB020721, 217047_s_at Figure 3237: PRO37756
Figure 3179: DNA227668, GK, 215966_x_at Figure 3180: PRO38131 Figure 3181: DNA330326, AY007142, 215967_s_at Figure 3182: PRO85549 Figure 3183: DNA331576, HSRNAGLK, 215977_x_at Figure 3184: DNA188736, U00115, 215990_s_at Figure 3185: PRO26296 Figure 3186: DNA331577, 208045.1, 216109_at Figure 3187: PRO86588 Figure 3188: DNA331578, HSTCELD, 216133_at Figure 3189: PRO86589 Figure 3190: DNA254783, DKC1, 216212_s_at	Figure 3229A-B: PRO58061 Figure 3230: DNA328812, BAA86575.1, 216997_x_at Figure 3231: PRO84552 Figure 3232: DNA331581, AAB59396.1, 217022_s_at Figure 3233: PRO86591 Figure 3234: DNA331366, HUMGPCR, 217028_at Figure 3235: PRO4516 Figure 3236A-B: DNA227293, AB020721, 217047_s_at Figure 3237: PRO37756 Figure 3238A-B: DNA329269, BAA32292.2, 217122_s_at Figure 3239: PRO84865
Figure 3179: DNA227668, GK, 215966_x_at Figure 3180: PRO38131 Figure 3181: DNA330326, AY007142, 215967_s_at Figure 3182: PRO85549 Figure 3183: DNA331576, HSRNAGLK, 215977_x_at Figure 3184: DNA188736, U00115, 215990_s_at Figure 3185: PRO26296 Figure 3186: DNA331577, 208045.1, 216109_at Figure 3187: PRO86588 Figure 3188: DNA331578, HSTCELD, 216133_at Figure 3189: PRO86589 Figure 3190: DNA254783, DKC1, 216212_s_at Figure 3191: PRO49881	Figure 3229A-B: PRO58061 Figure 3230: DNA328812, BAA86575.1, 216997_x_at Figure 3231: PRO84552 Figure 3232: DNA331581, AAB59396.1, 217022_s_at Figure 3233: PRO86591 Figure 3234: DNA331366, HUMGPCR, 217028_at Figure 3235: PRO4516 Figure 3236A-B: DNA227293, AB020721, 217047_s_at Figure 3237: PRO37756 Figure 3238A-B: DNA329269, BAA32292.2, 217122_s_at Figure 3239: PRO84865
Figure 3179: DNA227668, GK, 215966_x_at Figure 3180: PRO38131 Figure 3181: DNA330326, AY007142, 215967_s_at Figure 3182: PRO85549 Figure 3183: DNA331576, HSRNAGLK, 215977_x_at Figure 3184: DNA188736, U00115, 215990_s_at Figure 3185: PRO26296 Figure 3186: DNA331577, 208045.1, 216109_at Figure 3187: PRO86588 Figure 3188: DNA331578, HSTCELD, 216133_at Figure 3189: PRO86589 Figure 3190: DNA254783, DKC1, 216212_s_at Figure 3191: PRO49881 Figure 3192A-B: DNA255273, AB029015,	Figure 3229A-B: PRO58061 Figure 3230: DNA328812, BAA86575.1, 216997_x_at Figure 3231: PRO84552 Figure 3232: DNA331581, AAB59396.1, 217022_s_at Figure 3233: PRO86591 Figure 3234: DNA331366, HUMGPCR, 217028_at Figure 3235: PRO4516 Figure 3236A-B: DNA227293, AB020721, 217047_s_at Figure 3237: PRO37756 Figure 3238A-B: DNA329269, BAA32292.2, 217122_s_at
Figure 3179: DNA227668, GK, 215966_x_at Figure 3180: PRO38131 Figure 3181: DNA330326, AY007142, 215967_s_at Figure 3182: PRO85549 Figure 3183: DNA331576, HSRNAGLK, 215977_x_at Figure 3184: DNA188736, U00115, 215990_s_at Figure 3185: PRO26296 Figure 3186: DNA331577, 208045.1, 216109_at Figure 3187: PRO86588 Figure 3188: DNA331578, HSTCELD, 216133_at Figure 3189: PRO86589 Figure 3190: DNA254783, DKC1, 216212_s_at Figure 3191: PRO49881 Figure 3192A-B: DNA255273, AB029015, 216218_s_at	Figure 3229A-B: PRO58061 Figure 3230: DNA328812, BAA86575.1, 216997_x_at Figure 3231: PRO84552 Figure 3232: DNA331581, AAB59396.1, 217022_s_at Figure 3233: PRO86591 Figure 3234: DNA331366, HUMGPCR, 217028_at Figure 3235: PRO4516 Figure 3236A-B: DNA227293, AB020721, 217047_s_at Figure 3237: PRO37756 Figure 3238A-B: DNA329269, BAA32292.2, 217122_s_at Figure 3239: PRO84865 Figure 3240: DNA331582, AAA59588.1, 217165_x_at
Figure 3179: DNA227668, GK, 215966_x_at Figure 3180: PRO38131 Figure 3181: DNA330326, AY007142, 215967_s_at Figure 3182: PRO85549 Figure 3183: DNA331576, HSRNAGLK, 215977_x_at Figure 3184: DNA188736, U00115, 215990_s_at Figure 3185: PRO26296 Figure 3186: DNA331577, 208045.1, 216109_at Figure 3187: PRO86588 Figure 3188: DNA331578, HSTCELD, 216133_at Figure 3189: PRO86589 Figure 3190: DNA254783, DKC1, 216212_s_at Figure 3191: PRO49881 Figure 3192A-B: DNA255273, AB029015, 216218_s_at Figure 3193A-B: DNA256461, AND-1, 216228_s_at	Figure 3229A-B: PRO58061 Figure 3230: DNA328812, BAA86575.1, 216997_x_at Figure 3231: PRO84552 Figure 3232: DNA331581, AAB59396.1, 217022_s_at Figure 3233: PRO86591 Figure 3234: DNA331366, HUMGPCR, 217028_at Figure 3235: PRO4516 Figure 3236A-B: DNA227293, AB020721, 217047_s_at Figure 3237: PRO37756 Figure 3238A-B: DNA329269, BAA32292.2, 217122_s_at Figure 3239: PRO84865 Figure 3240: DNA331582, AAA59588.1, 217165_x_at Figure 3241: PRO86592
Figure 3179: DNA227668, GK, 215966_x_at Figure 3180: PRO38131 Figure 3181: DNA330326, AY007142, 215967_s_at Figure 3182: PRO85549 Figure 3183: DNA331576, HSRNAGLK, 215977_x_at Figure 3184: DNA188736, U00115, 215990_s_at Figure 3185: PRO26296 Figure 3186: DNA331577, 208045.1, 216109_at Figure 3187: PRO86588 Figure 3188: DNA331578, HSTCELD, 216133_at Figure 3189: PRO86589 Figure 3190: DNA254783, DKC1, 216212_s_at Figure 3191: PRO49881 Figure 3192A-B: DNA255273, AB029015, 216218_s_at	Figure 3229A-B: PRO58061 Figure 3230: DNA328812, BAA86575.1, 216997_x_at Figure 3231: PRO84552 Figure 3232: DNA331581, AAB59396.1, 217022_s_at Figure 3233: PRO86591 Figure 3234: DNA331366, HUMGPCR, 217028_at Figure 3235: PRO4516 Figure 3236A-B: DNA227293, AB020721, 217047_s_at Figure 3237: PRO37756 Figure 3238A-B: DNA329269, BAA32292.2, 217122_s_at Figure 3239: PRO84865 Figure 3240: DNA331582, AAA59588.1, 217165_x_at Figure 3241: PRO86592 Figure 3242: DNA331583, S70123, 217173_s_at Figure 3243: DNA331584, AF105973, 217232_x_at Figure 3244: PRO86593
Figure 3179: DNA227668, GK, 215966_x_at Figure 3180: PRO38131 Figure 3181: DNA330326, AY007142, 215967_s_at Figure 3182: PRO85549 Figure 3183: DNA331576, HSRNAGLK, 215977_x_at Figure 3184: DNA188736, U00115, 215990_s_at Figure 3185: PRO26296 Figure 3186: DNA331577, 208045.1, 216109_at Figure 3187: PRO86588 Figure 3188: DNA331578, HSTCELD, 216133_at Figure 3189: PRO86589 Figure 3190: DNA254783, DKC1, 216212_s_at Figure 3191: PRO49881 Figure 3192A-B: DNA255273, AB029015, 216218_s_at Figure 3193A-B: DNA256461, AND-1, 216228_s_at Figure 3194: PRO51498	Figure 3229A-B: PRO58061 Figure 3230: DNA328812, BAA86575.1, 216997_x_at Figure 3231: PRO84552 Figure 3232: DNA331581, AAB59396.1, 217022_s_at Figure 3233: PRO86591 Figure 3234: DNA331366, HUMGPCR, 217028_at Figure 3235: PRO4516 Figure 3236A-B: DNA227293, AB020721, 217047_s_at Figure 3237: PRO37756 Figure 3238A-B: DNA329269, BAA32292.2, 217122_s_at Figure 3239: PRO84865 Figure 3240: DNA331582, AAA59588.1, 217165_x_at Figure 3241: PRO86592 Figure 3242: DNA331583, S70123, 217173_s_at Figure 3243: DNA331584, AF105973, 217232_x_at
Figure 3179: DNA227668, GK, 215966_x_at Figure 3180: PRO38131 Figure 3181: DNA330326, AY007142, 215967_s_at Figure 3182: PRO85549 Figure 3183: DNA331576, HSRNAGLK, 215977_x_at Figure 3184: DNA188736, U00115, 215990_s_at Figure 3185: PRO26296 Figure 3186: DNA331577, 208045.1, 216109_at Figure 3187: PRO86588 Figure 3188: DNA331578, HSTCELD, 216133_at Figure 3189: PRO86589 Figure 3190: DNA254783, DKC1, 216212_s_at Figure 3191: PRO49881 Figure 3192A-B: DNA255273, AB029015, 216218_s_at Figure 3193A-B: DNA256461, AND-1, 216228_s_at Figure 3194: PRO51498 Figure 3195: DNA329266, BC000142, 216237_s_at Figure 3196: PRO12845	Figure 3229A-B: PRO58061 Figure 3230: DNA328812, BAA86575.1, 216997_x_at Figure 3231: PRO84552 Figure 3232: DNA331581, AAB59396.1, 217022_s_at Figure 3233: PRO86591 Figure 3234: DNA331366, HUMGPCR, 217028_at Figure 3235: PRO4516 Figure 3236A-B: DNA227293, AB020721, 217047_s_at Figure 3237: PRO37756 Figure 3238A-B: DNA329269, BAA32292.2, 217122_s_at Figure 3239: PRO84865 Figure 3240: DNA331582, AAA59588.1, 217165_x_at Figure 3241: PRO86592 Figure 3242: DNA331583, S70123, 217173_s_at Figure 3243: DNA331584, AF105973, 217232_x_at Figure 3244: PRO86593 Figure 3245: DNA330334, NP_114402.1, 217286_s_at Figure 3246: PRO85557
Figure 3179: DNA227668, GK, 215966_x_at Figure 3180: PRO38131 Figure 3181: DNA330326, AY007142, 215967_s_at Figure 3182: PRO85549 Figure 3183: DNA331576, HSRNAGLK, 215977_x_at Figure 3184: DNA188736, U00115, 215990_s_at Figure 3185: PRO26296 Figure 3186: DNA331577, 208045.1, 216109_at Figure 3187: PRO86588 Figure 3188: DNA331578, HSTCELD, 216133_at Figure 3189: PRO86589 Figure 3190: DNA254783, DKC1, 216212_s_at Figure 3191: PRO49881 Figure 3192A-B: DNA255273, AB029015, 216218_s_at Figure 3193A-B: DNA256461, AND-1, 216228_s_at Figure 3194: PRO51498 Figure 3195: DNA329266, BC000142, 216237_s_at Figure 3196: PRO12845 Figure 3197: DNA151048, HSNOT, 216248_s_at	Figure 3229A-B: PRO58061 Figure 3230: DNA328812, BAA86575.1, 216997_x_at Figure 3231: PRO84552 Figure 3232: DNA331581, AAB59396.1, 217022_s_at Figure 3233: PRO86591 Figure 3234: DNA331366, HUMGPCR, 217028_at Figure 3235: PRO4516 Figure 3236A-B: DNA227293, AB020721, 217047_s_at Figure 3237: PRO37756 Figure 3238A-B: DNA329269, BAA32292.2, 217122_s_at Figure 3239: PRO84865 Figure 3240: DNA331582, AAA59588.1, 217165_x_at Figure 3241: PRO86592 Figure 3242: DNA331583, S70123, 217173_s_at Figure 3243: DNA331584, AF105973, 217232_x_at Figure 3244: PRO86593 Figure 3245: DNA330334, NP_114402.1, 217286_s_at Figure 3246: PRO85557 Figure 3247: DNA331369, HSU88968, 217294_s_at
Figure 3179: DNA227668, GK, 215966_x_at Figure 3180: PRO38131 Figure 3181: DNA330326, AY007142, 215967_s_at Figure 3182: PRO85549 Figure 3183: DNA331576, HSRNAGLK, 215977_x_at Figure 3184: DNA188736, U00115, 215990_s_at Figure 3185: PRO26296 Figure 3186: DNA331577, 208045.1, 216109_at Figure 3187: PRO86588 Figure 3188: DNA331578, HSTCELD, 216133_at Figure 3189: PRO86589 Figure 3190: DNA254783, DKC1, 216212_s_at Figure 3191: PRO49881 Figure 3192A-B: DNA255273, AB029015, 216218_s_at Figure 3193A-B: DNA256461, AND-1, 216228_s_at Figure 3194: PRO51498 Figure 3195: DNA329266, BC000142, 216237_s_at Figure 3196: PRO12845	Figure 3229A-B: PRO58061 Figure 3230: DNA328812, BAA86575.1, 216997_x_at Figure 3231: PRO84552 Figure 3232: DNA331581, AAB59396.1, 217022_s_at Figure 3233: PRO86591 Figure 3234: DNA331366, HUMGPCR, 217028_at Figure 3235: PRO4516 Figure 3236A-B: DNA227293, AB020721, 217047_s_at Figure 3237: PRO37756 Figure 3238A-B: DNA329269, BAA32292.2, 217122_s_at Figure 3239: PRO84865 Figure 3240: DNA331582, AAA59588.1, 217165_x_at Figure 3241: PRO86592 Figure 3242: DNA331583, S70123, 217173_s_at Figure 3243: DNA331584, AF105973, 217232_x_at Figure 3244: PRO86593 Figure 3245: DNA330334, NP_114402.1, 217286_s_at Figure 3246: PRO85557
Figure 3179: DNA227668, GK, 215966_x_at Figure 3180: PRO38131 Figure 3181: DNA330326, AY007142, 215967_s_at Figure 3182: PRO85549 Figure 3183: DNA331576, HSRNAGLK, 215977_x_at Figure 3184: DNA188736, U00115, 215990_s_at Figure 3185: PRO26296 Figure 3186: DNA331577, 208045.1, 216109_at Figure 3187: PRO86588 Figure 3188: DNA331578, HSTCELD, 216133_at Figure 3189: PRO86589 Figure 3190: DNA254783, DKC1, 216212_s_at Figure 3191: PRO49881 Figure 3192A-B: DNA255273, AB029015, 216218_s_at Figure 3193A-B: DNA256461, AND-1, 216228_s_at Figure 3194: PRO51498 Figure 3195: DNA329266, BC000142, 216237_s_at Figure 3196: PRO12845 Figure 3197: DNA151048, HSNOT, 216248_s_at Figure 3198: PRO12850	Figure 3229A-B: PRO58061 Figure 3230: DNA328812, BAA86575.1, 216997_x_at Figure 3231: PRO84552 Figure 3232: DNA331581, AAB59396.1, 217022_s_at Figure 3233: PRO86591 Figure 3234: DNA331366, HUMGPCR, 217028_at Figure 3235: PRO4516 Figure 3236A-B: DNA227293, AB020721, 217047_s_at Figure 3237: PRO37756 Figure 3238A-B: DNA329269, BAA32292.2, 217122_s_at Figure 3239: PRO84865 Figure 3240: DNA331582, AAA59588.1, 217165_x_at Figure 3241: PRO86592 Figure 3242: DNA331583, S70123, 217173_s_at Figure 3243: DNA331584, AF105973, 217232_x_at Figure 3244: PRO86593 Figure 3245: DNA330334, NP_114402.1, 217286_s_at Figure 3246: PRO85557 Figure 3247: DNA331369, HSU88968, 217294_s_at
Figure 3179: DNA227668, GK, 215966_x_at Figure 3180: PRO38131 Figure 3181: DNA330326, AY007142, 215967_s_at Figure 3182: PRO85549 Figure 3183: DNA331576, HSRNAGLK, 215977_x_at Figure 3184: DNA188736, U00115, 215990_s_at Figure 3185: PRO26296 Figure 3186: DNA331577, 208045.1, 216109_at Figure 3187: PRO86588 Figure 3188: DNA331578, HSTCELD, 216133_at Figure 3189: PRO86589 Figure 3190: DNA254783, DKC1, 216212_s_at Figure 3191: PRO49881 Figure 3192A-B: DNA255273, AB029015, 216218_s_at Figure 3193A-B: DNA256461, AND-1, 216228_s_at Figure 3194: PRO51498 Figure 3195: DNA329266, BC000142, 216237_s_at Figure 3196: PRO12845 Figure 3197: DNA151048, HSNOT, 216248_s_at Figure 3198: PRO12850 Figure 3199: DNA329155, BC012479, 216252_x_at	Figure 3229A-B: PRO58061 Figure 3230: DNA328812, BAA86575.1, 216997_x_at Figure 3231: PRO84552 Figure 3232: DNA331581, AAB59396.1, 217022_s_at Figure 3233: PRO86591 Figure 3234: DNA331366, HUMGPCR, 217028_at Figure 3235: PRO4516 Figure 3236A-B: DNA227293, AB020721, 217047_s_at Figure 3237: PRO37756 Figure 3238A-B: DNA329269, BAA32292.2, 217122_s_at Figure 3239: PRO84865 Figure 3240: DNA331582, AAA59588.1, 217165_x_at Figure 3241: PRO86592 Figure 3242: DNA331583, S70123, 217173_s_at Figure 3244: PRO86593 Figure 3244: PRO86593 Figure 3245: DNA330334, NP_114402.1, 217286_s_at Figure 3246: PRO85557 Figure 3247: DNA331369, HSU88968, 217294_s_at Figure 3247: DNA331369, HSU88968, 217294_s_at Figure 3248A-B: DNA331585, AF051334,

Figure 3250: DNA331586, S81916, 217356_s_at	Figure 3304: DNA327851, NSAP1, 217834_s_at
Figure 3251: DNA331587, HSNGMRNA, 217398_x_at	Figure 3305: PRO83795
Figure 3252: PRO86595	Figure 3306: DNA328823, NP_057421.1, 217838_s_at
Figure 3253: DNA330335, NP ₋ 054765.1, 217408_at	Figure 3307: PRO84561
Figure 3254: PRO62166	Figure 3308: DNA330341, NP_006061.2, 217839_at
Figure 3255: DNA331588, AF097635, 217414_x_at	Figure 3309: PRO85563
Figure 3256: PRO3629	Figure 3310: DNA254773, NP_057231.1, 217841_s_at
Figure 3257: DNA329539, HLA-DMA, 217478_s_at	Figure 3311: PRO49871
Figure 3258: PRO85089	Figure 3312: DNA330342, NP_067021.1, 217844_at
Figure 3259: DNA331589, 243999.2, 217502_at	Figure 3313: PRO85564
Figure 3260: PRO86596	Figure 3314: DNA329272, NP_055181.1, 217850_at
Figure 3261: DNA329271, 406848.1, 217591_at	Figure 3315: PRO84868
Figure 3262: PRO84867	Figure 3316A-B: DNA330343, AF403012,
Figure 3263: DNA330337, 1447003.1, 217616_at	217857_s_at
Figure 3264: PRO85559	Figure 3317: DNA330344, NP_057392.1, 217870_s_at
Figure 3265: DNA331590, 368556.1, 217655_at	Figure 3318: PRO85565
Figure 3266: PRO86597	Figure 3319: DNA326937, NP_002406.1, 217871_s_at
Figure 3267: DNA330339, HSA012375, 217672_x_at	Figure 3320: PRO83255
Figure 3268: DNA323856, HSM800628, 217725_x_at	Figure 3321: DNA330345, NP_055130.1, 217906_at
Figure 3269: PRO80599	Figure 3322: PRO85566
Figure 3270: DNA326523, NP_001121.2, 217729_s_at Figure 3271: PRO71126	Figure 3323: DNA330346, NP_054880.2, 217907_at
Figure 3271: PRO71120 Figure 3272: DNA325832, NP_068839.1, 217731_s_at	Figure 3324: PRO85567 Figure 3325: DNA325780, NP_060371.1, 217914_at
Figure 3273: PRO1869	Figure 3326: PRO82250
Figure 3274A-B: DNA327847, 142131.14, 217738_at	Figure 3327: DNA327853, NP_054769.1, 217919_s_at
Figure 3275: PRO2834	Figure 3328: PRO82223
Figure 3276: DNA88541, NP_005737.1, 217739_s_at	Figure 3329: DNA330347, 255559.4, 217922_at
Figure 3277: PRO2834	Figure 3330: PRO85568
Figure 3278: DNA327935, NP_079422.1, 217745_s_at	Figure 3331: DNA330348, NP_079150.1, 217929_s_at
Figure 3279: PRO83866	Figure 3332: PRO85569
Figure 3280: DNA327849, NP_057269.1, 217755_at	Figure 3333: DNA330349, BC022093, 217931_at
Figure 3281: PRO83794	Figure 3334: DNA287241, NP_056991.1, 217933_s_at
Figure 3282A-B: DNA274131, AF183421,	Figure 3335: PRO69516
217762_s_at	Figure 3336A-B: DNA225648, NP_061165.1,
Figure 3283: PRO62067	217941_s_at
Figure 3284: DNA330340, NP_006859.1, 217763_s_at	Figure 3337: PRO36111
Figure 3285: PRO85562	Figure 3338: DNA326730, NP_057037.1, 217950_at
Figure 3286A-B: DNA274131, DNA274131,	Figure 3339: PRO83072
217764_s_at	Figure 3340: DNA329273, NP_037374.1, 217957_at
Figure 3287: PRO62067	Figure 3341: PRO84869
Figure 3288: DNA325821, NP_057016.1, 217769_s_at	Figure 3342: DNA328829, NP_057230.1, 217959_s_at
Figure 3289: PRO82287	Figure 3343: PRO84566
Figure 3290: DNA325910, AF167438, 217776_at	Figure 3344: DNA328830, NP_061118.1, 217962.at
Figure 3291: PRO82365 Figure 3292: DNA227358, NP_057479.1, 217777_s_at	Figure 3345: PRO84567 Figure 3346: DNA329274, NP_055195.1, 217963_s_at
Figure 3293: PRO37821	Figure 3347: PRO84870
Figure 3294: DNA328819, NP_057145.1, 217783_s_at	Figure 3348: DNA325496, NP_037397.2, 217969_at
Figure 3295: PRO84557	Figure 3349: PRO82013
Figure 3296: DNA325873, SKB1, 217786_at	Figure 3350: DNA327855, NP_057387.1, 217975_at
Figure 3297: PRO82331	Figure 3351: PRO83367
Figure 3298: DNA331591, NP_055241.1, 217792_at	Figure 3352: DNA227218, NP_003721.2, 217983_s_at
Figure 3299: PRO69560	Figure 3353: PRO37681
Figure 3300: DNA328303, NP_056525.1, 217807_s_at	Figure 3354: DNA227218, RNASE6PL, 217984_at
Figure 3301: PRO84173	Figure 3355: PRO37681
Figure 3302: DNA227223, NP_064583.1, 217814_at	Figure 3356A-B: DNA227238, NP_038476.1,
Figure 3303: PRO37686	217985_s_at

Figure 3357: PRO37701 Figure 3413: DNA304470, PRO2577, 218172_s_at Figure 3358A-B: DNA227238, BAZ1A, 217986_s_at Figure 3414: PRO2577 Figure 3359: PRO37701 Figure 3415: DNA330359, NP_065145.1, 218178_s_at Figure 3360: DNA328831, NP_057329.1, 217989_at Figure 3416: PRO85575 Figure 3361: PRO233 Figure 3417: DNA304495, NP_057156.1, 218193_s_at Figure 3362: DNA328832, NP_067022.1, 217995_at Figure 3418: PRO793 Figure 3363: PRO84568 Figure 3419A-C: DNA330360, NP_078789.1, Figure 3364: DNA328833, BC018929, 217996_at 218204_s_at Figure 3365: PRO84569 Figure 3420: PRO85576 Figure 3366: DNA328834, AF220656, 217997_at Figure 3421: DNA327858, NP_036473.1, 218238_at Figure 3367: DNA287364, NP_031376.1, 218000_s_at Figure 3422: PRO83800 Figure 3368: PRO69625 Figure 3423: DNA327858, CRFG, 218239_s_at Figure 3369: DNA273008, NP_003972.1, 218009_s_at Figure 3424: PRO83800 Figure 3370: PRO61079 Figure 3425A-B: DNA330361, CKAP2, 218252_at Figure 3371: DNA330350, NP_006108.1, 218025_s_at Figure 3426: PRO85577 Figure 3372: PRO85570 Figure 3427: DNA328850, NP_057187.1, 218254_s_at Figure 3373: DNA328836, NP_054894.1, 218027_at Figure 3428: PRO84581 Figure 3374: PRO84572 Figure 3429: DNA331594, MRPL24, 218270_at Figure 3375: DNA329275, AF070673, 218032_at Figure 3430: PRO11652 Figure 3376: PRO12342 Figure 3431: DNA273230, NP_060914.1, 218273_s_at Figure 3377: DNA331592, ANKT, 218039_at Figure 3432: PRO61257 Figure 3378: PRO82424 Figure 3433: DNA324444, NP_006333.1, 218308_at Figure 3379: DNA328838, NP_054797.2, 218049_s_at Figure 3434: PRO81108 Figure 3380: PRO70319 Figure 3435: DNA330363, NP_060252.1, 218331_s_at Figure 3381: DNA330352, NP_075059.1, 218051_s_at Figure 3436: PRO85578 Figure 3437: DNA329281, NP_036526.2, 218336_at Figure 3382: PRO85571 Figure 3383: DNA329276, NP_077001.1, 218069_at Figure 3438: PRO84874 Figure 3384: PRO12104 Figure 3439A-B: DNA330364, NP_004417.1, Figure 3385: DNA328841, NP_060557.2, 218073_s_at 218338_at Figure 3386: PRO84575 Figure 3440: PRO85579 Figure 3387: DNA329277, NP_054883.3, 218084_x_at Figure 3441: DNA272918, NP_055269.1, 218346_s_at Figure 3388: PRO6241 Figure 3442: PRO61003 Figure 3389: DNA330353, BC020796, 218085_at Figure 3443: DNA327862, NP_060445.1, 218349_s_at Figure 3390: PRO69464 Figure 3444: PRO83803 Figure 3391: DNA329278, NP_004495.1, 218092_s_at Figure 3445: DNA328854, NP_056979.1, 218350_s_at Figure 3392: PRO84871 Figure 3446: PRO84585 Figure 3393: DNA227313, NP_060945.1, 218095_s_at Figure 3447A-B: DNA273415, KIF4A, 218355_at Figure 3394: PRO37776 Figure 3448: PRO61414 Figure 3395: DNA331593, MRPL4, 218105_s_at Figure 3449: DNA324890, NP_037525.1, 218356_at Figure 3396: PRO86598 Figure 3450: PRO81496 Figure 3397: DNA326596, NP_060624.1, 218115.at Figure 3451: DNA330365, NP_036591.1, 218357_s_at Figure 3398: PRO82954 Figure 3452: PRO85580 Figure 3399: DNA330355, NP_055063.1, 218117_at Figure 3453A-B: DNA331595, NP_073602.2, Figure 3400: PRO83289 218376_s_at Figure 3401: DNA330356, NP_006318.1, 218118_s_at Figure 3454: PRO86599 Figure 3402: PRO85572 Figure 3455: DNA330367, NP_057174.1, 218379_at Figure 3403: DNA330357, NP_078786.2, 218130_at Figure 3456: PRO85582 Figure 3404: PRO85573 Figure 3457: DNA328856, NP_068376.1, 218380_at Figure 3405: DNA227155, NP_057654.1, 218135_at Figure 3458: PRO84586 Figure 3406: PRO37618 Figure 3459: DNA227248, NP_006287.1, 218397_at Figure 3407: DNA254496, NP_060076.1, 218149_s_at Figure 3460: PRO37711 Figure 3408: PRO49604 Figure 3461A-B: DNA287192, NP_006178.1, Figure 3409: DNA330358, NP_079012.1, 218154_at 218400_at Figure 3410: PRO85574 Figure 3462: PRO69478 Figure 3411: DNA254739, NP_068766.1, 218156_s_at Figure 3463: DNA329912, TTC4, 218442_at Figure 3412: PRO49837 Figure 3464: PRO85227

Figure 3465: DNA150661, NP_057162.1, 218446_s_at	Figure 3519: DNA330378, NP_071741.2, 218662_s_at
Figure 3466: PRO12398	Figure 3520: PRO81126
Figure 3467: DNA304781, NP_057385.2, 218461_at	Figure 3521: DNA330378, HCAP-G, 218663_at
Figure 3468: PRO71191	Figure 3522: PRO81126
Figure 3469: DNA328861, NP_057030.2, 218472_s_at	Figure 3523: DNA287291, NP_067036.1, 218676_s_at
Figure 3470: PRO84589	Figure 3524: PRO69561
Figure 3471: DNA330368, NP_064446.1, 218494_s_at	Figure 3525: DNA304835, NP_071327.1, 218681_s_at
Figure 3472: PRO85583	Figure 3526: PRO71242
Figure 3473: DNA150648, NP_037464.1, 218507_at	Figure 3527: DNA330379, NP_073562.1, 218689_at
Figure 3474: PRO11576	Figure 3528: PRO85591
Figure 3475: DNA328864, NP_060726.2, 218512_at	Figure 3529: DNA329288, NP_061910.1, 218695_at
Figure 3476: PRO84592	Figure 3530: PRO84880
Figure 3477: DNA330369, NP_060822.1, 218513_at	Figure 3531: DNA287378, NP_060898.1, 218715_at
Figure 3478: PRO85584	Figure 3532: PRO69637
Figure 3479: DNA330370, NP_060415.1, 218519_at	Figure 3533: DNA327202, NP_057289.1, 218718_at
Figure 3480: PRO190	Figure 3534: PRO200
Figure 3481: DNA327867, NP_061873.2, 218532_s_at	Figure 3535: DNA330380, NP_078937.2, 218722_s_at
Figure 3482: PRO83808	Figure 3536: PRO85592
Figure 3483: DNA330371, NP_060813.1, 218535_s_at	Figure 3537: DNA324251, NP_060880.2, 218726_at
Figure 3484: PRO85585 Figure 3485: DNA327868, NP_060601.2, 218542_at	Figure 3538: PRO80935 Figure 3539: DNA227617, NP_057161.1, 218732_at
Figure 3486: PRO83809	Figure 3540: PRO38080
Figure 3487: DNA255113, NP_073587.1, 218543_s_at	Figure 3541: DNA330381, NP_076958.1, 218741_at
Figure 3488: PRO50195	Figure 3542: PRO38668
Figure 3489: DNA330372, NP_057117.1, 218549_s_at	Figure 3543: DNA330382, NP_005724.1, 218755_at
Figure 3490: PRO85586	Figure 3544: PRO61907
Figure 3491: DNA330373, NP_060751.1, 218552_at	Figure 3545: DNA330383, NP_054828.1, 218782_s_at
Figure 3492: PRO85587	Figure 3546: PRO85593
Figure 3493: DNA330374, NP_054901.1, 218556_at	Figure 3547: DNA330384, NP_060388.1, 218802_at
Figure 3494: PRO23321	Figure 3548: PRO51129
Figure 3495: DNA330375, NP_059142.1, 218558_s_at	Figure 3549: DNA88315, NP_004098.1, 218831_s_at
Figure 3496: PRO85588	Figure 3550: PRO2743
Figure 3497: DNA329587, NP_036256.1, 218566_s_at	Figure 3551: DNA330385, NP_057733.2, 218859_s_at
Figure 3498: PRO85121	Figure 3552: PRO85594
Figure 3499: DNA329286, NP_005691.2, 218567_x_at	Figure 3553: DNA330386, NP_057394.1, 218866_s_at
Figure 3500: PRO69644	Figure 3554: PRO85595
Figure 3501: DNA329054, NP_078805.2, 218578_at	Figure 3555: DNA330387, NP_036309.1, 218875_s_at
Figure 3502: PRO84716	Figure 3556: PRO85596
Figure 3503A-B: DNA273435, NP_057532.1,	Figure 3557: DNA327874, BC022791, 218880_at
218585_s_at Figure 3504: PRO61430	Figure 3558: PRO4805 Figure 3559A-B: DNA271829, NP.006775.1,
Figure 3505: DNA227327, NP_060547.1, 218593_at	218882_s_at
Figure 3506: PRO37790	Figure 3560: PRO60109
Figure 3507: DNA328628, NP_060542.2, 218594_at	Figure 3561: DNA330388, NP_078905.1, 218883_s_at
Figure 3508: PRO84406	Figure 3562: PRO85597
Figure 3509: DNA287642, NP_060934.1, 218597_s_at	Figure 3563: DNA226633, NP_060376.1, 218886_at
Figure 3510: PRO9902	Figure 3564: PRO37096
Figure 3511A-B: DNA254789, NP_057301.1,	Figure 3565: DNA304780, NP_060562.2, 218888_s_at
218603_at	Figure 3566: PRO69889
Figure 3512: PRO49887	Figure 3567: DNA256762, AK022882, 218889_at
Figure 3513: DNA330376, NP_076962.1, 218622_at	Figure 3568: PRO51695
Figure 3514: PRO85589	Figure 3569: DNA328881, NP_057706.2, 218890_x_at
Figure 3515: DNA327869, NP_057672.1, 218625_at	Figure 3570: PRO49469
Figure 3516: PRO1898	Figure 3571: DNA325622, NP_060518.1, 218894_s_at
Figure 3517: DNA330377, NP_036577.1, 218638_s_at	Figure 3572: PRO82113
Figure 3518: PRO85590	Figure 3573: DNA225694, NP_060087.1, 218902_at

Figure 3574: PRO36157	Figure 3629: DNA330399, NP_060609.1, 219166_at
Figure 3575: DNA325690, NP_076973.1, 218903_s_at	Figure 3630: PRO85607
Figure 3576: PRO82179	Figure 3631: DNA330400, NP_078796.1, 219176_at
Figure 3577: DNA328364, SIGIRR, 218921 at	Figure 3632: PRO85608
Figure 3578: PRO84223	Figure 3633: DNA271455, NP_057735.1, 219179_at
Figure 3579: DNA287166, NP_055129.1, 218943_s_at	Figure 3634: PRO59751
Figure 3580: PRO69459	Figure 3635: DNA330401, NP_057377.1, 219191_s_at
Figure 3581: DNA330389, NP_079221.1, 218979_at	Figure 3636: PRO85609
Figure 3582: PRO85598	Figure 3637: DNA330402, NP_076996.1, 219200_at
Figure 3583: DNA329050, NP_057053.1, 218982_s_at	Figure 3638: PRO85610
Figure 3584: PRO84712	Figure 3639: DNA287235, NP_060598.1, 219204_s_at
Figure 3585: DNA330390, NP_057630.1, 218983_at	Figure 3640: PRO69514
Figure 3586: PRO85599	Figure 3641: DNA327879, NP_071451.1, 219209_at
Figure 3587: DNA288277, NP_061915.1, 218984_at	Figure 3642: PRO83818
Figure 3588: PRO70034	Figure 3643: DNA330403, NP_059110.1, 219211_at
Figure 3589: DNA256265, NP_060101.1, 218986_s_at	Figure 3644: PRO85611
Figure 3590: PRO51309	Figure 3645: DNA330404, ZNF361, 219228_at
Figure 3591: DNA227194, FLJ11000, 218999 at	Figure 3646: PRO85612 Figure 3647: DNA225594, NP_037404.1, 219229_at
Figure 3592: PRO37657	
Figure 3593: DNA330391, NP_076999.1, 219000_s_at	Figure 3648: PRO36057 Figure 3649: DNA328894, NP_060796.1, 219243_at
Figure 3594: PRO34008 Figure 3595: DNA330392, NP_078923.2, 219007_at	Figure 3650: PRO84617
Figure 3596: PRO85600	Figure 3651: DNA329296, NP_060328.1, 219258_at
Figure 3597: DNA328885, NP_061108.2, 219017_at	Figure 3652: PRO84886
Figure 3598: PRO50294	Figure 3653: DNA304461, NP_054877.1, 219283_at
Figure 3599: DNA330393, NP_067635.1, 219024_at	Figure 3654: PRO71039
Figure 3600: PRO85601	Figure 3655: DNA330405, RBM15, 219286_s_at
Figure 3601: DNA329292, NP_057185.1, 219031_s_at	Figure 3656: PRO85613
Figure 3602: PRO84882	Figure 3657A-B: DNA329076, NP_064627.1,
Figure 3603: DNA330394, NP_079402.1, 219035_s_at	219306_at
Figure 3604: PRO85602	Figure 3658: PRO84733
Figure 3605: DNA329293, NP_057136.1, 219037_at	Figure 3659: DNA329914, FLJ12542, 219311_at
Figure 3606: PRO84883	Figure 3660: PRO85229
Figure 3607: DNA328886, NP_078811.1, 219040_at	Figure 3661: DNA255939, NP_078876.1, 219315_s_at
Figure 3608: PRO84610	Figure 3662: PRO50991
Figure 3609: DNA331596, NP_060841.1, 219049_at	Figure 3663: DNA287404, NP_073748.1, 219334_s_at
Figure 3610: PRO84884	Figure 3664: PRO69661
Figure 3611: DNA330395, NP_060212.1, 219062_s_at	Figure 3665: DNA254710, NP_060382.1, 219352_at
Figure 3612: PRO85603	Figure 3666: PRO49810
Figure 3613: DNA330396, NP_077303.1, 219088_s_at	Figure 3667: DNA325169, HSPC177, 219356_s_at
Figure 3614: PRO85604	Figure 3668: PRO81734
Figure 3615: DNA330397, NP_054873.1, 219094_at	Figure 3669: DNA330406, NP_079368.1, 219359_at
Figure 3616: PRO85605	Figure 3670: PRO85614 Figure 3671: DNA330407, NP_057026.2, 219363_s_at
Figure 3617: DNA331597, PLA2G4B, 219095_at	
Figure 3618: PRO86600	Figure 3672: PRO85615 Figure 3673: DNA330408, NP_077024.1, 219364_at
Figure 3619: DNA330398, NP_060367.1, 219133_at	Figure 3674: PRO85616
Figure 3620: PRO85606 Figure 3621: DNA297191, NP_060962.2, 219148_at	Figure 3675: DNA254518, NP_057354.1, 219371_s_at
Figure 3622: PRO70808	Figure 3676: PRO49625
Figure 3623: DNA329295, NP_036549.1, 219155_at	Figure 3677: DNA327886, NP_060832.1, 219399_at
Figure 3624: PRO84885	Figure 3678: PRO41077
Figure 3625A-B: DNA329438, NP_476516.1,	Figure 3679: DNA256417, NP_077271.1, 219402_s_at
219158_s_at	Figure 3680: PRO51457
Figure 3626: PRO85008	Figure 3681A-B: DNA327887, NP_006656.1,
Figure 3627: DNA328892, NP_067643.2, 219165_at	219403_s_at
Figure 3628: PRO84616	Figure 3682: PRO83823
	-

Figure 3683: DNA271811, NP_036514.1, 219421_at Figure 3734: PRO37718 Figure 3684: PRO60092 Figure 3735: DNA328919, NP_078987.1, 219777_at Figure 3685: DNA329014, NP_005746.2, 219424_at Figure 3736: PRO84637 Figure 3686: PRO9998 Figure 3737A-B: DNA331602, NP_060568.3, Figure 3687: DNA328901, FLJ20533, 219449_s_at 219787_s_at Figure 3738: PRO86604 Figure 3688: PRO84622 Figure 3689: DNA328902, NP_071750.1, 219452_at Figure 3739: DNA255822, NP_036346.1, 219797_at Figure 3690: PRO84623 Figure 3740: PRO50877 Figure 3691: DNA328367, RIN3, 219456_s_at Figure 3741: DNA227305, NP_064564.1, 219806_s_at Figure 3692: PRO84226 Figure 3742: PRO37768 Figure 3693: DNA331598, AK026092, 219457_s_at Figure 3743: DNA329303, NP_054737.1, 219819_s_at Figure 3694: PRO86601 Figure 3744: PRO84892 Figure 3695: DNA327890, NP_079021.1, 219493_at Figure 3745: DNA287295, NP_078784.1, 219836_at Figure 3696: PRO83826 Figure 3746: PRO69564 Figure 3747: DNA287234, NP_114174.1, 219862_s_at Figure 3697A-B: DNA227179, NP_059120.1, 219505_at Figure 3748: PRO69513 Figure 3698: PRO37642 Figure 3749: DNA287221, NP_057407.1, 219863_at Figure 3699A-C: DNA331599, BCL11B, 219528_s_at Figure 3750: PRO69500 Figure 3700: PRO86602 Figure 3751: DNA330419, NP_038469.1, 219864_s_at Figure 3701: DNA329300, GEMIN6, 219539_at Figure 3752: PRO85624 Figure 3702: PRO84889 Figure 3753: DNA255255, LOC64116, 219869_s_at Figure 3703: DNA328908, 7691567.2, 219540_at Figure 3754: PRO50332 Figure 3704: PRO84629 Figure 3755: DNA330420, NP_078890.1, 219871_at Figure 3705: DNA256737, NP_060276.1, 219541_at Figure 3756: PRO85625 Figure 3757: DNA256325, NP_005470.1, 219889_at Figure 3706: PRO51671 Figure 3707: DNA330410, NP_060925.1, 219555_s_at Figure 3758: PRO51367 Figure 3708: PRO85618 Figure 3759: DNA330421, NP_057438.2, 219911_s_at Figure 3709A-B: DNA331600, NP_061985.1, Figure 3760: PRO85626 219577_s_at Figure 3761A-B: DNA330422, NP_057736.2, Figure 3710: PRO86603 219913_s_at Figure 3711: DNA325053, NP_060230.2, 219588_s_at Figure 3762: PRO85627 Figure 3712: PRO81637 Figure 3763: DNA227787, NP_060606.1, 219918.s_at Figure 3713: DNA330412, NP_057617.1, 219594_at Figure 3764: PRO38250 Figure 3714: PRO23600 Figure 3765: DNA330423, NP_037466.2, 219920_s_at Figure 3715: DNA331601, NP_071915.1, 219628_at Figure 3766: PRO85628 Figure 3716: PRO85620 Figure 3767A-B: DNA330424, LTBP3, 219922_s_at Figure 3717: DNA330414, NP_057615.1, 219657.s.at Figure 3768: PRO85629 Figure 3718: PRO81138 Figure 3769: DNA328924, NP_057150.2, 219933_at Figure 3719A-B: DNA274044, HSM801565, Figure 3770: PRO84641 219671_at Figure 3771: DNA218280, NP_068570.1, 219971_at Figure 3720: PRO61987 Figure 3772: PRO34332 Figure 3721: DNA293243, RCP, 219681_s_at Figure 3773: DNA325979, NP_060924.4, 219978_s_at Figure 3722: PRO70699 Figure 3774: PRO82424 Figure 3775: DNA330425, NP_078956.1, 219990_at Figure 3723: DNA255161, NP_071430.1, 219684_at Figure 3724: PRO50241 Figure 3776: PRO85630 Figure 3725: DNA287206, NP_060124.1, 219691_at Figure 3777A-B: DNA330426, SGKL, 220038_at Figure 3726: PRO69488 Figure 3778: PRO85631 Figure 3727A-B: DNA330297, NP_065138.2, Figure 3779: DNA328926, NP_064703.1, 220046_s_at 219700_at Figure 3780: PRO84643 Figure 3728: PRO85524 Figure 3781A-B: DNA218680, NP_071731.1, Figure 3729: DNA330416, TDP1, 219715_at 220048_at Figure 3730: PRO85622 Figure 3782: PRO21724 Figure 3731: DNA330417, NP_085144.1, 219716_at Figure 3783: DNA330427, NP_036593.1, 220052_s_at Figure 3732: PRO21341 Figure 3784: PRO85632 Figure 3733A-B: DNA227255, NP_036579.1, Figure 3785: DNA330428, NP_060385.1, 220060_s_at 219753_at Figure 3786: PRO85633

Figure 3787: DNA330537, NP_060533.2, 220085_at	220690_s_at
Figure 3788: PRO81892	Figure 3842: DNA330442, NP_054866.1, 220692_at
Figure 3789: DNA256091, NP_071385.1, 220094_s_at	Figure 3843: PRO85643
Figure 3790: PRO51141	Figure 3844: DNA330443, NP_061086.1, 220702_at
Figure 3791: DNA330430, NP_078945.1, 220112_at	Figure 3845: PRO85644
Figure 3792: PRO85634	Figure 3846: DNA288247, NP_478059.1, 220892_s_at
Figure 3793: DNA330431, NP_055198.1, 220118_at	Figure 3847: PRO70011
Figure 3794: PRO85635	Figure 3848: DNA327916, NP_079466.1, 220940_at
Figure 3795: DNA227302, NP_037401.1, 220132_s_at	Figure 3849: PRO83851
Figure 3796: PRO37765	Figure 3850: DNA327953, NP_055182.2, 220942_x_at
Figure 3797: DNA330432, NP_079219.1, 220169_at	Figure 3851: PRO83878
Figure 3798: PRO85636	Figure 3852: DNA327917, NP_112240.1, 220966_x_at
Figure 3799: DNA331603, TMPRSS3, 220177_s_at	Figure 3853: PRO83852
Figure 3800: PRO83482	Figure 3854: DNA329078, VMP1, 220990_s_at
Figure 3801: DNA256291, NP_079182.1, 220232_at	Figure 3855: PRO23253
Figure 3802: PRO51335	Figure 3856A-B: DNA254516, NP_112196.1,
Figure 3803: DNA330434, NP_060842.1, 220235_s_at Figure 3804: PRO85637	220992_s_at
Figure 3805: DNA330435, NP_060179.1, 220306_at	Figure 3857: PRO49623
Figure 3806: PRO85638	Figure 3858: DNA330444, NP_110405.1, 220999_s_at Figure 3859: PRO85645
Figure 3807: DNA330436, NP_037394.1, 220319_s_at	
Figure 3808: PRO85639	Figure 3860: DNA324246, NP_112188.1, 221004_s_at Figure 3861: PRO80930
Figure 3809: DNA327904, NP_071419.2, 220330_s_at	Figure 3862: DNA330445, NP_112174.1, 221012_s_at
Figure 3810: PRO83839	Figure 3863: PRO85646
Figure 3811: DNA287186, NP_061134.1, 220358_at	Figure 3864A-B: DNA254816, NP_110444.1,
Figure 3812: PRO69472	221031_s_at
Figure 3813A-B: DNA330437, NP_079366.1,	Figure 3865: PRO49912
220370_s_at	Figure 3866: DNA330446, NP_054889.1, 221046_s_at
Figure 3814: PRO85640	Figure 3867: PRO85647
Figure 3815: DNA330438, NP_061026.1, 220485_s_at	Figure 3868: DNA330447, NP_079174.1, 221080_s_at
Figure 3816: PRO50795	Figure 3869: PRO85648
Figure 3817: DNA327214, NP_078991.2, 220495_s_at	Figure 3870: DNA226227, NP_060872.1, 221111_at
Figure 3818: PRO83483	Figure 3871: PRO36690
Figure 3819: DNA324252, NP_060444.1, 220521_s_at	Figure 3872: DNA227267, NP_061130.1, 221123_x_at
Figure 3820: PRO80936	Figure 3873: PRO37730
Figure 3821: DNA331604, PHEMX, 220558_x_at	Figure 3874: DNA217256, NP_065386.1, 221165_s_at
Figure 3822: PRO86605	Figure 3875: PRO34298
Figure 3823: DNA256363, NP_057686.1, 220565_at	Figure 3876: DNA329310, AK027224, 221185_s_at
Figure 3824: PRO51405	Figure 3877: PRO84899
Figure 3825: DNA255798, NP_079265.1, 220576_at	Figure 3878: DNA324408, NP_060493.2, 221203_s_at
Figure 3826: PRO50853	Figure 3879: PRO81072
Figure 3827: DNA330440, NP_079098.1, 220591_s_at	Figure 3880A-B: DNA330448, NP_059111.1,
Figure 3828: PRO85642	221221_s_at
Figure 3829: DNA255734, NP_057607.1, 220646_s_at	Figure 3881: PRO85649
Figure 3830: PRO50791	Figure 3882: DNA331605, CISH, 221223_x_at
Figure 3831A-B: DNA327908, MCM10, 220651_s_at	Figure 3883: PRO86458
Figure 3832: PRO83843	Figure 3884: DNA330450, AK025947, 221235_s_at
Figure 3833: DNA329306, NP_079149.2, 220655_at Figure 3834: PRO84895	Figure 3885: PRO85651
Figure 3835A-B: DNA327909, ARNTL2, 220658.s.at	Figure 3886: DNA330451, NP_110429.1, 221249_s_at
Figure 3836: PRO83844	Figure 3887: PRO85652
Figure 3837: DNA329307, NP_037483.1, 220684_at	Figure 3888: DNA330452, NP_112494.2, 221258_s_at Figure 3889: PRO85653
Figure 3838: PRO84896	Figure 3890: DNA295327, NP_068575.1, 221271_at
Figure 3839: DNA323756, NP_057267.2, 220688_s_at	Figure 3891: PRO70773
Figure 3840: PRO80512	Figure 3892: DNA330453, NP_112597.1, 221277_s_at
Figure 3841: DNA331380, DKFZp566O084Homo,	Figure 3893: PRO85654
	* *Paro 2010, * *********

Figure 3894: DNA329312, NP_005205.2, 221331_x_at	Figure 3949: PRO84669
Figure 3895: PRO84901	Figure 3950: DNA330463, HSM801191, 221790_s_at
Figure 3896: DNA288250, NP_112487.1, 221434_s_at	Figure 3951A-B: DNA151745, DNA151745,
Figure 3897: PRO70013	221805_at
Figure 3898: DNA330454, NP_112589.1, 221436_s_at	Figure 3952: PRO12033
Figure 3899: PRO85655	Figure 3953: DNA274058, NP_057203.1, 221816_s_at
Figure 3900: DNA330455, 1097190.16, 221477_s_at	Figure 3954: PRO61999
Figure 3901: PRO85656	Figure 3955: DNA325039, NP_004902.1, 221824_s_at
Figure 3902: DNA150865, NP_057005.1, 221488_s_at	Figure 3956: PRO2733
Figure 3903: PRO11587	Figure 3957: DNA273311, NP_003022.1, 221833_at
Figure 3904: DNA272972, NP_057356.1, 221496_s_at	Figure 3958: PRO61319
Figure 3905: PRO61052	Figure 3959: DNA272419, AF105036, 221841 s_at
Figure 3906A-B: DNA329316, AF158555,	Figure 3960: PRO60672
221510_s_at	Figure 3961: DNA330464, NP_067082.1, 221882_s_at
Figure 3907: PRO84904	Figure 3962: PRO85663
Figure 3908: DNA330456, NP_060571.1, 221520_s_at	Figure 3963A-B: DNA330465, 253695.2, 221916_at
Figure 3909: PRO85657	Figure 3964: PRO85664
Figure 3910: DNA326221, NP_057179.1, 221521_s_at	Figure 3965A-B: DNA330466, AB018304, 221922_at
Figure 3911: PRO82634	Figure 3966: DNA329321, NP_112493.1, 221931_s_at
Figure 3912: DNA328953, NP_004086.1, 221539_at	Figure 3967: PRO84906
Figure 3913: PRO70296	Figure 3968: DNA330467, NP_060114.1, 221986_s_at
Figure 3914: DNA329317, AF288571, 221558_s_at	Figure 3969: PRO85665 Figure 3970: DNA287235, FLJ10534, 221987_s_at
Figure 3915: PRO81157	
Figure 3916: DNA330457, NP_076944.1, 221559_s_at	Figure 3971: PRO69514 Figure 3972: DNA327114, RPL10, 221989_at
Figure 3917: PRO85658	Figure 3972: DNA32/114, RFL10, 221969_at Figure 3973: PRO62466
Figure 3918: DNA329319, BC006401, 221601_s_at	Figure 3974: DNA331606, BC018529, 222017_x_at
Figure 3919: PRO1607	Figure 3975: PRO86606
Figure 3920: DNA329319, NP_005440.1, 221602_s_at	Figure 3976: DNA257797, DNA257797, 222036_s_at
Figure 3921: PRO1607 Figure 3922: DNA254308, NP_060950.1, 221622_s_at	Figure 3977: DNA257798, DNA257798, 222037_at
Figure 3923: PRO49419	Figure 3978: DNA330468, 1454101.4, 222044_at
Figure 3924: DNA287254, NP_077004.1, 221637_s_at	Figure 3979: PRO85666
Figure 3925: PRO69528	Figure 3980: DNA329919, BC013365, 222045_s_at
Figure 3926: DNA330458, NP_060634.1, 221652_s_at	Figure 3981: PRO85234
Figure 3927: PRO85659	Figure 3982: DNA304466, NP_004834.1, 222062_at
Figure 3928: DNA218280, IL21R, 221658_s_at	Figure 3983: PRO34336
Figure 3929: PRO34332	Figure 3984: DNA325648, NP_037409.2, 222077_s_at
Figure 3930: DNA327927, NP_037390.2, 221666_s_at	Figure 3985: PRO82139
Figure 3931: PRO57311	Figure 3986: DNA331386, HST000012, 222150_s_at
Figure 3932: DNA254777, NP_055140.1, 221676_s_at	Figure 3987: DNA287209, NP_056350.1, 222154_s_at
Figure 3933: PRO49875	Figure 3988: PRO69490
Figure 3934: DNA330459, NP_060083.1, 221677_s_at	Figure 3989: DNA256784, NP_075069.1, 222209_s_at
Figure 3935: PRO50083	Figure 3990: PRO51716
Figure 3936: DNA330460, NP_060255.2, 221685_s_at	Figure 3991: DNA328977, NP_071344.1, 222216_s_at
Figure 3937: PRO85660	Figure 3992: PRO84678
Figure 3938: DNA273185, DNA273185, 221727_at	Figure 3993: DNA330469, NP_056249.1, 222250_s_at
Figure 3939: DNA330461, BC005104, 221732_at	Figure 3994: PRO85667
Figure 3940: DNA328961, NP_443112.1, 221756_at	Figure 3995: DNA328885, EKI1, 222262_s_at
Figure 3941: PRO84667	Figure 3996: PRO50294
Figure 3942: DNA328961, MGC17330, 221757_at	Figure 3997: DNA330470, 096828.1, 222307_at
Figure 3943: PRO84667	Figure 3998: PRO85668
Figure 3944: DNA330462, NP_060103.1, 221766_s_at	Figure 3999: DNA330471, 027307.1, 222309_at
Figure 3945: PRO85661	Figure 4000: PRO85669
Figure 3946: DNA193901, DNA193901, 221768_at	Figure 4001: DNA330472, 128864.1, 222326_at
Figure 3947: PRO23319	Figure 4002: PRO85670
Figure 3948: DNA328964, AK056028, 221770_at	Figure 4003: DNA330473, NP_060676.2, 222387_s_at

Figure 4004: PRO85671	Figure 4057: PRO86608
Figure 4005: DNA330474, AF186382, 222388_s_at	Figure 4058: DNA330485, NP_057415.1, 222624_s_at
Figure 4006: PRO85672	Figure 4059: PRO85681
Figure 4007: DNA331607, HSA251830, 222392_x_at	Figure 4060: DNA327942, NP_060596.1, 222642_s_at
Figure 4008: PRO86607	Figure 4061: PRO83870
Figure 4009A-B: DNA270901, NP_004238.1,	Figure 4062: DNA327943, NP_055399.1, 222646_s_at
222398_s_at	Figure 4063: PRO865
Figure 4010: PRO59235	Figure 4064A-B: DNA273435, RAMP, 222680_s_at
Figure 4011: DNA325821, BC014334, 222402_at	Figure 4065: PRO61430
Figure 4012: PRO82287	Figure 4066: DNA330486, HSM802473, 222692_s_at
Figure 4013: DNA227358, HSPC121, 222404_x_at	Figure 4067: DNA330487, AB052751, 222696_at
Figure 4014: PRO37821	Figure 4068: DNA330488, AK025568, 222704_at
Figure 4015: DNA330476, AK027421, 222405_at	Figure 4069: PRO85682
Figure 4016: PRO85674	Figure 4070: DNA272874, NP_057111.1, 222714_s_at
Figure 4017: DNA328819, CGI-127, 222408_s_at	Figure 4071: PRO60967
Figure 4018: PRO84557	Figure 4072: DNA275116, DNA275116, 222726_s_at
Figure 4019: DNA331608, SNX5, 222417_s_at	Figure 4073: DNA330489, BC019909, 222740_at
Figure 4020: PRO69560	Figure 4074: PRO85683
Figure 4021: DNA326307, NP_056399.1, 222425_s_at	Figure 4075: DNA330490, 399171.38, 222754_at
Figure 4022: PRO82707	Figure 4076: PRO85684
Figure 4023: DNA227223, GK001, 222432_s_at	Figure 4077: DNA330491, BC002522, 222759_at
Figure 4024: PRO37686	Figure 4078: PRO85685
Figure 4025A-B: DNA329326, NP_005110.1,	Figure 4079A-B: DNA330492, FLJ11294, 222763_s_at
222439_s_at	Figure 4080: PRO85686
Figure 4026: PRO84910	Figure 4081: DNA329332, LOC51605, 222768 s_at
Figure 4027: DNA327939, NP_060654.1, 222442_s_at	Figure 4082: PRO84916
Figure 4028: PRO83869	Figure 4083: DNA330493, AK025248, 222770.s_at
Figure 4029: DNA329327, AF198620, 222443_s_at	Figure 4084: PRO85687
Figure 4030: PRO84911	Figure 4085: DNA304780, NETO2, 222774_s_at Figure 4086: PRO69889
Figure 4031A-B: DNA256489, NP_079110.1, 222464_s_at	Figure 4080: FROO9889 Figure 4087: DNA330494, BC020651, 222775_s_at
Figure 4032: PRO51526	Figure 4088: PRO85688
Figure 4033A-B: DNA225648, ERBB2IP, 222473_s_at	Figure 4089: DNA330495, NP_060468.1, 222781_s_at
Figure 4034: PRO36111	Figure 4090: PRO85689
Figure 4035: DNA304460, BC003048, 222500_at	Figure 4091: DNA330496, HSM802366, 222793_at
Figure 4036: PRO4984	Figure 4092: DNA330395, FLJ20281, 222816_s_at
Figure 4037: DNA330477, NP_036227.1, 222516_at	Figure 4093: PRO85603
Figure 4038: PRO37979	Figure 4094A-B: DNA331610, TBDN100,
Figure 4039: DNA329328, NP_067026.2, 222532_at	222837_s_at
Figure 4040: PRO84912	Figure 4095: PRO86609
Figure 4041: DNA16435, DNA16435, 222543_at	Figure 4096: DNA330881, AB027233, 222838 at
Figure 4042: PRO276	Figure 4097: PRO1138
Figure 4043: DNA330478, NP_056978.2, 222557_at	Figure 4098: DNA329335, AK023411, 222843_at
Figure 4044: PRO85675	Figure 4099: PRO84919
Figure 4045A-B: DNA330479, 900264.1, 222572_at	Figure 4100: DNA273489, NP.055210.1, 222858_s_at
Figure 4046: PRO85676	Figure 4101: PRO61472
Figure 4047: DNA330480, NP_060697.2, 222600_s_at	Figure 4102: DNA273489, DAPP1, 222859_s_at
Figure 4048: PRO85677	Figure 4103: PRO61472
Figure 4049A-B: DNA330481, AB058718, 222603_at	Figure 4104: DNA330498, NP_036225.1, 222862_s_at
Figure 4050: DNA330482, AK027468, 222606_at	Figure 4105: PRO85691
Figure 4051: PRO85678	Figure 4106: DNA329336, NP_057144.1, 222867_s_at
Figure 4052: DNA330483, AK001472, 222608_s_at	Figure 4107: PRO84920
Figure 4053: PRO85679	Figure 4108: DNA287404, FLJ22833, 222872_x_at
Figure 4054: DNA329330, NP_057130.1, 222609_s_at	Figure 4109: PRO69661
Figure 4055: PRO84914	Figure 4110: DNA330499, AK026944, 222875_at
Figure 4056A-B: DNA331609, 402471.3, 222613_at	Figure 4111: PRO85692

PCT/US2003/035971 WO 2004/047728

Figure 4112: DNA330500, AK022872, 222889_at 223056_s_at Figure 4165: DNA327948, NP_060394.1, 223060_at Figure 4113: PRO85693 Figure 4114A-C: DNA330409, HSA404614, Figure 4166: PRO69660 222895_s_at Figure 4167: DNA288247, PSA, 223062_s_at Figure 4115: PRO85617 Figure 4168: PRO70011 Figure 4169: DNA330509, AK024555, 223066_at Figure 4116: DNA330501, AK022792, 222958_s_at Figure 4117: PRO85694 Figure 4170: PRO80652 Figure 4118A-B: DNA330502, AB042719, Figure 4171: DNA227294, NP_060225.1, 223076_s_at 222962_s_at Figure 4172: PRO37757 Figure 4119: PRO85695 Figure 4173: DNA331612, AF097492, 223079_s_at Figure 4120: DNA329337, AF279437, 222974_at Figure 4174: PRO86611 Figure 4121: PRO10096 Figure 4175: DNA326258, NP_077273.1, 223081_at Figure 4122: DNA329338, 459502.10, 222977_at Figure 4176: PRO82665 Figure 4123: PRO84921 Figure 4177: DNA329346, AK027070, 223085_at Figure 4124A-B: DNA329339, 459502.5, 222978_at Figure 4178: PRO84928 Figure 4125: PRO84922 Figure 4179: DNA327949, NP_057581.2, 223086_x_at Figure 4126: DNA329340, AF078866, 222979_s_at Figure 4180: PRO83874 Figure 4181: DNA331613, 238178.17, 223087_at Figure 4127: PRO81805 Figure 4182: PRO86612 Figure 4128: DNA152786, NP_057215.1, 222980_at Figure 4183: DNA329347, NP_060949.1, 223088_x_at Figure 4129: PRO10928 Figure 4130: DNA152786, RAB10, 222981_s_at Figure 4184: PRO84929 Figure 4185: DNA330511, AK001338, 223090_x_at Figure 4131: PRO10928 Figure 4132A-B: DNA287236, AB024334, 222985_at Figure 4186: PRO85701 Figure 4187: DNA324209, NP_057018.1, 223096_at Figure 4133: PRO10607 Figure 4188: PRO80902 Figure 4134: DNA330503, NP_038466.2, 222989_s_at Figure 4135: PRO85696 Figure 4189: DNA329349, NP_054861.1, 223100_s_at Figure 4190: PRO84931 Figure 4136: DNA331611, UBQLN1, 222991_s_at Figure 4191: DNA327917, MGC3038, 223101_s_at Figure 4137: PRO86610 Figure 4192: PRO83852 Figure 4138: DNA330504, NP_057575.2, 222993_at Figure 4139: PRO84923 Figure 4193: DNA330512, NP_056494.1, 223109_at Figure 4140: DNA329571, NP_057547.3, 222996_s_at Figure 4194: PRO85702 Figure 4141: PRO51662 Figure 4195: DNA330436, MIR, 223129_x_at Figure 4142: DNA326195, NP_054781.1, 223018_at Figure 4196: PRO85639 Figure 4197: DNA330513, AF212221, 223130_s_at Figure 4143: PRO82611 Figure 4144: DNA330505, BC005937, 223021_x_at Figure 4198: PRO85703 Figure 4145: PRO85697 Figure 4199A-: DNA330514, DDX36, 223138_s_at Figure 4200: PRO85704 Figure 4146A-B: DNA329342, AF172847, 223027_at Figure 4201A-: DNA330514, AF217190, 223139_s_at Figure 4147: PRO84924 Figure 4148: DNA329344, FRSB, 223035_s_at Figure 4202: PRO85704 Figure 4149: PRO84926 Figure 4203: DNA325557, NP_115675.1, 223151_at Figure 4150: DNA330506, NP_067061.1, 223038_s_at Figure 4204: PRO82060 Figure 4151: PRO82123 Figure 4205: DNA329352, NP_057154.2, 223156_at Figure 4206: PRO84932 Figure 4152: DNA330507, AK054681, 223039_at Figure 4153: PRO85698 Figure 4207: DNA329353, NP_113665.1, 223179_at Figure 4154: DNA287260, NP_057184.1, 223040_at Figure 4208: PRO84933 Figure 4155: PRO69532 Figure 4209: DNA254276, NP_054896.1, 223180_s_at Figure 4156: DNA324198, HSM801908, 223044_at Figure 4210: PRO49387 Figure 4157: PRO37675 Figure 4211: DNA327953, E2IG5, 223193_x_at Figure 4158: DNA330508, AF116694, 223047_at Figure 4212: PRO83878 Figure 4159: PRO85699 Figure 4213A-B: DNA281444, NP_064544.1, 223197_s_at Figure 4160: DNA189412, NP_057390.1, 223054_at Figure 4161: PRO25349 Figure 4214: PRO66283 Figure 4162A-B: DNA256347, AF298880, Figure 4215: DNA304467, NP_115703.1, 223212_at 223055_s_at Figure 4216: PRO71043 Figure 4163: PRO51389 Figure 4217: DNA227267, LOC55893, 223216_x_at Figure 4164A-B: DNA329345, AB033117,

Figure 4218: PRO37730

Figure 4219: DNA327954, NP_113646.1, 223220_s_at	Figure 4272: PRO84939
Figure 4220: PRO83879	Figure 4273: DNA330531, NP_037508.1, 223394_at
Figure 4221: DNA330515, NP_004580.1, 223221_at	Figure 4274: PRO85718
Figure 4222: PRO85705	Figure 4275: DNA329361, AF161528, 223397_s_at
Figure 4223: DNA329321, SEC13L, 223225_s_at	Figure 4276: PRO84940
Figure 4224: PRO84906	Figure 4277: DNA324156, NP_115588.1, 223403_s_at
Figure 4225: DNA247474, NP_054895.1, 223229_at	Figure 4278: PRO80856
Figure 4226: PRO44999	Figure 4279A-B: DNA254516, Clorf25, 223404_s_at
Figure 4227: DNA330516, AK000796, 223239_at	Figure 4280: PRO49623
Figure 4228: PRO85706	Figure 4281: DNA256407, NP_055188.1, 223423_at
Figure 4229: DNA287171, NP_036312.1, 223240_at	Figure 4282: PRO51448
Figure 4230: PRO69462	Figure 4283: DNA255676, HSM801648, 223434_at
Figure 4231: DNA324046, NP_115700.1, 223272_s_at	Figure 4284: PRO50738
Figure 4232: PRO80763	Figure 4285: DNA330532, NP_078804.1, 223439_at
Figure 4233: DNA330517, NP_115879.1, 223273_at Figure 4234: PRO85707	Figure 4286: PRO85719 Figure 4287: DNA330533, NP_058647.1, 223451_s_at
Figure 4235: DNA330518, BC002493, 223274_at	Figure 4288: PRO772
Figure 4236: PRO85708	Figure 4289: DNA329365, CAB56010.1, 223452.s_at
Figure 4237: DNA330519, NP_060607.1, 223275_at	Figure 4290: PRO84944
Figure 4238: PRO85709	Figure 4291: DNA327958, NP_115789.1, 223484_at
Figure 4239: DNA330520, NP_005777.2, 223283_s_at	Figure 4292: PRO23554
Figure 4240: PRO85710	Figure 4293: DNA329456, NP_057126.1, 223489_x_at
Figure 4241: DNA330521, BC002762, 223286_at	Figure 4294: PRO85023
Figure 4242: PRO85711	Figure 4295: DNA329456, RRP40, 223490_s_at
Figure 4243A-B: DNA330522, AF250920,	Figure 4296: PRO85023
223287_s_at	Figure 4297: DNA330534, AF307332, 223494_at
Figure 4244: PRO85712	Figure 4298: PRO85720
Figure 4245: DNA330523, BC001220, 223294_at	Figure 4299: DNA304784, NP_006564.1, 223502_s_at,
Figure 4246: PRO85713	Figure 4300: PRO738
Figure 4247: DNA330524, MGC4268, 223297_at	Figure 4301: DNA330535, NP_115883.1, 223506_at
Figure 4248: PRO85714	Figure 4302: PRO85721
Figure 4249: DNA329356, NP_115671.1, 223304_at	Figure 4303: DNA330536, NP_115666.1, 223542_at
Figure 4250: PRO84935	Figure 4304: PRO85722
Figure 4251: DNA330454, BC002551, 223307_at	Figure 4305: DNA330537, AF155827, 223556_at
Figure 4252: PRO85655	Figure 4306: PRO81892
Figure 4253: DNA330526, NP_115682.1, 223318_s_at	Figure 4307A-B: DNA327908, HSM801808,
Figure 4254: PRO34564	223570_at
Figure 4255A-B: DNA330527, AF272663, 223319_at	Figure 4308: PRO83843 Figure 4309: DNA330538, AF262027, 223598 at
Figure 4256: PRO85716	•
Figure 4257: DNA329358, NP_115649.1, 223334_at Figure 4258: PRO84937	Figure 4310: PRO85723 Figure 4311: DNA330539, NP_055411.1, 223639_s_at
Figure 4259: DNA330528, AF151063, 223335_at	Figure 4312: PRO85724
Figure 4260: PRO50764	Figure 4313: DNA330540, NP_055081.1, 223640_at
Figure 4261: DNA330529, 241399.1, 223343_at	Figure 4314: PRO85725
Figure 4262: PRO85717	Figure 4315: DNA330541, AF277625, 223675_s_at
Figure 4263A-B: DNA255756, HUMPDE7A,	Figure 4316: PRO85726
223358_s_at	Figure 4317: DNA330542, NP_115493.1, 223700_at
Figure 4264: PRO50812	Figure 4318: PRO85727
Figure 4265: DNA227125, AF132297, 223377_x_at	Figure 4319: DNA330543, NAG73, 223725_at
Figure 4266: PRO37588	Figure 4320: PRO85728
Figure 4267: DNA331614, CDCA1, 223381_at	Figure 4321: DNA329367, TTYH2, 223741_s_at
Figure 4268: PRO38881	Figure 4322: PRO84946
Figure 4269A-B: DNA329360, NP_115644.1,	Figure 4323: DNA331615, AB049635, 223743_s_at
223382_s_at	Figure 4324: PRO62669
Figure 4270: PRO84939	Figure 4325: DNA188735, NP_001506.1, 223758_s_at
Figure 4271A-B: DNA329360, NIN283, 223383_at	Figure 4326: PRO26224

Figure 4327: DNA287253, LOC85028, 223774_at	Figure 4380: DNA330556, NP_061881.2, 224319_s_at
Figure 4328: PRO69527	Figure 4381: PRO85739
Figure 4329: DNA331616, BC004277, 223785_at	Figure 4382: DNA330557, C20orf154, 224320.s_at
Figure 4330: PRO86613	Figure 4383: PRO85740
Figure 4331: DNA330544, NP_277049.1, 223800_s_at	Figure 4384: DNA330558, NP_057588.1, 224330_s_at
Figure 4332: PRO85729	Figure 4385: PRO84950
Figure 4333: DNA256005, NP_004842.1, 223806_s_at	Figure 4386: DNA327949, MRP64, 224334_s_at
Figure 4334: PRO51056	Figure 4387: PRO83874
Figure 4335: DNA330545, AF233516, 223834_at	Figure 4388A-B: DNA330559, BAB21791.1,
Figure 4336: PRO70906	224336_s_at
Figure 4337: DNA327200, NP_114156.1, 223836_at	Figure 4389: PRO85741
Figure 4338: PRO1065	Figure 4390: DNA331619, BC010896, 224345_x_at
Figure 4339: DNA330546, AF132203, 223839_s_at	Figure 4391: PRO86616
Figure 4340: PRO85730	Figure 4392: DNA331620, NDRG3, 224368_s_at
Figure 4341: DNA330547, NP_066014.1, 223849_s_at Figure 4342: PRO85731	Figure 4393: PRO86617
Figure 4343: DNA331392, NP_004186.1, 223851_s_at	Figure 4394: DNA272626, RIP5, 224376_s_at Figure 4395: PRO60759
Figure 4344: PRO364	Figure 4395: PNO30739 Figure 4396: DNA330560, NP_510882.1, 224413_s_at
Figure 4345: DNA330548, NP_115590.1, 223880_x_at	Figure 4397: PRO85742
Figure 4346: PRO85732	Figure 4398: DNA330561, AF321617, 224416_s_at
Figure 4347A-B: DNA330522, FOXP1, 223936_s_at	Figure 4399: PRO85743
Figure 4348: PRO85712	Figure 4400: DNA328323, NP_114148.2, 224428_s_at
Figure 4349A-B: DNA330550, HSM801744,	Figure 4401: PRO69531
223946_at	Figure 4402: DNA331621, AF060225, 224437_s_at
Figure 4350: PRO85734	Figure 4403: PRO86618
Figure 4351: DNA331393, D83532, 223961_s_at	Figure 4404: DNA330562, NP_115716.1, 224448_s_at
Figure 4352: PRO86458	Figure 4405: PRO85744
Figure 4353: DNA324248, SP110, 223980_s_at	Figure 4406: DNA330563, NP_113668.1, 224450_s_at
Figure 4354: PRO80932	Figure 4407: PRO85745
Figure 4355: DNA330551, BC009946, 223983_s_at	Figure 4408: DNA330564, NP_115885.1, 224451_x_at
Figure 4356: PRO85735	Figure 4409: PRO85746
Figure 4357: DNA330552, BC001104, 223984_s_at	Figure 4410: DNA330565, BC006111, 224454_at
Figure 4358: PRO85736	Figure 4411: PRO85747
Figure 4359: DNA328847, NP_056338.1, 223989_s_at	Figure 4412: DNA330566, NP_115720.1, 224464_s_at
Figure 4360: PRO84579	Figure 4413: PRO85748
Figure 4361: DNA331617, AF332652, 224046_s_at	Figure 4414: DNA329373, NP_115722.1, 224467_s_at
Figure 4362: PRO86614	Figure 4415: PRO84952
Figure 4363: DNA329369, AF293026, 224130_s_at Figure 4364: PRO84948	Figure 4416: DNA330567, NP_116114.1, 224504_s_at
	Figure 4417: PRO85749 Figure 4418: DNA 227076 NP 116120 1 224511 c at
Figure 4365: DNA330553, AF116653, 224148.at Figure 4366: DNA331618, AF231339, 224204_x_at	Figure 4418: DNA327976, NP_116120.1, 224511_s_at Figure 4419: PRO69574
Figure 4367: PRO86615	Figure 4420: DNA330568, BC006428, 224516_s_at
Figure 4368: DNA330554, AF277993, 224211_at	Figure 4421: PRO85750
Figure 4369: PRO85737	Figure 4422: DNA329374, NP_115735.1, 224523_s_at
Figure 4370A-C: DNA227619, NP_054831.1,	Figure 4423: PRO84953
224218_s_at	Figure 4424: DNA331622, TNFRSF18, 224553.s.at
Figure 4371: PRO38082	Figure 4425: PRO86619
Figure 4372: DNA324707, NP_037369.1, 224232_s_at	Figure 4426: DNA330569, BC020516, 224572_s_at
Figure 4373: PRO81339	Figure 4427A-B: DNA330570, AB040903, 224578 at
Figure 4374: DNA323935, NP_060586.1, 224233_s_at	Figure 4428: DNA330571, AK027320, 224607_s_at
Figure 4375: PRO80668	Figure 4429: PRO85752
Figure 4376: DNA329370, NP_060611.2, 224247_s_at	Figure 4430: DNA327980, BC008959, 224615_x_at
Figure 4377: PRO84949	Figure 4431: PRO83900
Figure 4378A-B: DNA330555, HSM801768,	Figure 4432: DNA329376, BAA91036.1, 224632_at
224308_s_at	Figure 4433: PRO84954
Figure 4379: PRO85738	Figure 4434: DNA330572, CAB82324.1, 224648_at

Figure 4489: DNA329382, BC009072, 224913_s_at Figure 4435: PRO85753 Figure 4490: DNA330590, CIP29, 224914_s_at Figure 4436A-B: DNA327981, 344095.3, 224654_at Figure 4491: PRO85770 Figure 4437: PRO83901 Figure 4492A-B: DNA169523, DNA169523, Figure 4438: DNA330573, C20orf108, 224690_at 224917_at Figure 4439: PRO85754 Figure 4493: PRO23253 Figure 4440A-B: DNA330574, AB033054, 224698_at Figure 4494: DNA330591, NP_115865.1, 224919_at Figure 4441: DNA330575, AK022542, 224701_at Figure 4442: PRO85756 Figure 4495: PRO85771 Figure 4496: DNA330592, AB014733, 224953_at Figure 4443: DNA331623, BC014138, 224711_at Figure 4497: DNA287258, C20orf52, 224972_at Figure 4444: PRO86620 Figure 4445: DNA329378, BC022990, 224713_at Figure 4498: PRO52174 Figure 4446: PRO84956 Figure 4499: DNA151170, DNA151170, 224989_at Figure 4447: DNA324173, NP_115766.2, 224714_at Figure 4500: PRO12626 Figure 4501: DNA330593, HS126A53, 225005_at Figure 4448: PRO80871 Figure 4502A-B: DNA329385, 330826.1, 225010_at Figure 4449: DNA330577, NP_443076.1, 224715_at Figure 4450: PRO85758 Figure 4503: PRO84961 Figure 4504: DNA161646, DNA161646, 225036_at Figure 4451A-B: DNA330578, 1353105.1, 224718_at Figure 4505: DNA330594, BC005148, 225039_at Figure 4452: PRO85759 Figure 4506: DNA331626, 412293.2, 225047_at Figure 4453: DNA330579, BC009925, 224719_s_at Figure 4454: PRO85760 Figure 4507: PRO86623 Figure 4508: DNA195755, DNA195755, 225051_at Figure 4455: DNA287382, 1383817.3, 224738_x_at Figure 4509A-B: DNA330596, 998535.1, 225070_at Figure 4456: PRO69641 Figure 4457: DNA257352, DNA257352, 224739_at Figure 4510: PRO85774 Figure 4511A-C: DNA271612, BAA92642.1, Figure 4458: PRO51940 225076_s_at Figure 4459: DNA331624, BC014242, 224740_at Figure 4512: PRO59899 Figure 4460: PRO86621 Figure 4513: DNA330597, NP_057291.1, 225082_at Figure 4461: DNA330581, MGC16386, 224753_at Figure 4514: PRO85775 Figure 4462: PRO82014 Figure 4515: DNA330598, 1384569.2, 225086_at Figure 4463: DNA330582, 1454377.6, 224755_at Figure 4516: PRO85776 Figure 4464: PRO85762 Figure 4517: DNA330599, 898528.3, 225095_at Figure 4465: DNA330583, BC020522, 224759_s_at Figure 4518: PRO85777 Figure 4466: PRO85763 Figure 4519: DNA330600, HSA272196, 225096_at Figure 4467A-B: DNA287330, BAA86479.1, 224799_at Figure 4520: PRO85778 Figure 4521: DNA330601, 1322727.6, 225098_at Figure 4468: PRO69594 Figure 4522: PRO85779 Figure 4469A-B: DNA330584, FENS-1, 224800_at Figure 4523: DNA331627, BC013920, 225105_at Figure 4470: PRO85764 Figure 4524: PRO86624 Figure 4471: DNA331397, AK001723, 224802_at Figure 4525: DNA225597, NP_060703.1, 225106_s_at Figure 4472: PRO23259 Figure 4526: PRO36060 Figure 4473: DNA330585, 206983.10, 224806_at Figure 4527A-B: DNA331628, 245994.3, 225113 at Figure 4474: PRO85765 Figure 4528: PRO86625 Figure 4475: DNA330586, NP_443183.1, 224825_at Figure 4476: PRO85766 Figure 4529A-B: DNA327993, 898436.7, 225133_at Figure 4477A-B: DNA330559, AB051487, 224832_at Figure 4530: PRO81138 Figure 4531: DNA155396, DNA155396, 225143_at Figure 4478A-B: DNA330809, 336997.1, 224838_at Figure 4532: DNA330603, 235138.16, 225157_at Figure 4479: PRO85973 Figure 4533: PRO85781 Figure 4480A-B: DNA330587, 1045521.4, Figure 4534: DNA329393, NP_079272.4, 225158_at 224839_s_at Figure 4535: PRO84969 Figure 4481: PRO85767 Figure 4536: DNA329393, EFG1, 225161_at Figure 4482: DNA329380, BC014868, 224855_at Figure 4537: PRO84969 Figure 4483: PRO80743 Figure 4538: DNA330604, NP.277050.1, 225171_at Figure 4484: DNA330588, BC019034, 224871_at Figure 4539: PRO85782 Figure 4485: PRO85768 Figure 4540: DNA327996, BC010181, 225195_at Figure 4486: DNA196374, DNA196374, 224880_at Figure 4541: PRO83915 Figure 4487A-B: DNA331625, 411236.19, 224897_at Figure 4542: DNA199601, DNA199601, 225199_at Figure 4488: PRO86622

Figure 4543: DNA329394, BC010416, 225201_s_at Figure 4595: PRO85792 Figure 4544: DNA329396, NP_060866.1, 225253_s_at Figure 4596A-B: DNA330617, 336147.2, 225447 at Figure 4597: PRO59923 Figure 4545: PRO84972 Figure 4546: DNA329397, NP_114109.1, 225260_s_at Figure 4598: DNA329404, BC013949, 225454_at Figure 4547: PRO84973 Figure 4599: PRO82972 Figure 4600: DNA330618, CAB55990.1, 225457_s_at Figure 4548A-B: DNA329398, 411135.13, 225262_at Figure 4601: PRO85793 Figure 4549: PRO4805 Figure 4602: DNA330618, HSM801081, 225458_at Figure 4550A-B: DNA258863, DNA258863, 225266_at Figure 4603: DNA196561, DNA196561, 225470_at Figure 4551A-B: DNA331629, 233102.7, 225269_s_at Figure 4604: DNA329405, HSM800962, 225520.at Figure 4552: PRO86626 Figure 4605A-B: DNA330619, BC013128, 225527_at Figure 4553A-B: DNA330606, 475590.1, 225290_at Figure 4606: PRO12186 Figure 4554: PRO85784 Figure 4607A-B: DNA330620, CAB55950.1, Figure 4555: DNA329400, BC005986, 225291_at 225533_at Figure 4556: DNA326458, BC014003, 225297_at Figure 4608: PRO85794 Figure 4557: PRO82841 Figure 4609: DNA330621, AF116628, 225535_s_at Figure 4558: DNA330607, 167391.12, 225300_at Figure 4610: DNA328008, 240051.4, 225541_at Figure 4559: PRO85785 Figure 4611: PRO83926 Figure 4560: DNA330608, BC016880, 225323_at Figure 4612A-B: DNA330622, 233388.8, 225543_at Figure 4561: PRO85786 Figure 4613: PRO85796 Figure 4562A-B: DNA169918, DNA169918, Figure 4614: DNA330623, 1502854.5, 225549_at 225340_s_at Figure 4615: PRO85797 Figure 4563: PRO23256 Figure 4616: DNA329406, 1503139.10, 225562_at Figure 4564: DNA330609, AF419331, 225348_at Figure 4617: PRO84979 Figure 4565: PRO22196 Figure 4618: DNA330624, AK000500, 225580_at Figure 4566: DNA327965, NP_060760.1, 225367_at Figure 4619: PRO85798 Figure 4567: PRO83888 Figure 4620: DNA330625, AK025643, 225581_s_at Figure 4621: PRO85799 Figure 4568: DNA273635, HSM801117, 225371_at Figure 4569A-B: DNA330610, BAB15739.1, Figure 4622: DNA304469, NP_149078.1, 225621_at 225372_at Figure 4623: PRO71045 Figure 4570: PRO85787 Figure 4624: DNA151667, DNA151667, 225634_at Figure 4625: PRO11970 Figure 4571: DNA331630, BC020568, 225373_at Figure 4572: PRO86627 Figure 4626: DNA330626, 1398905.1, 225638 at Figure 4627: PRO85800 Figure 4573A-B: DNA331631, 1383781.5, 225385_s_at Figure 4628: DNA331634, CTSC, 225647_s_at Figure 4574: PRO86628 Figure 4629: PRO86631 Figure 4575: DNA329401, BC017480, 225386_s_at Figure 4630A-B: DNA288261, NP_037414.2, Figure 4576: PRO84976 225655_at Figure 4577: DNA329402, 198708.7, 225387_at Figure 4631: PRO70021 Figure 4632: DNA329408, NP_056235.2, 225676_s_at Figure 4578: PRO4845 Figure 4579: DNA329403, AF288394, 225399_at Figure 4633: PRO38893 Figure 4580: DNA331632, BC022030, 225400_at Figure 4634A-B: DNA330627, 987725.3, 225679_at Figure 4581: PRO86629 Figure 4635: PRO85801 Figure 4582: DNA330612, C20orf64, 225402_at Figure 4636: DNA329409, BC017248, 225682_s_at Figure 4637: PRO84981 Figure 4583: PRO85789 Figure 4584A-B: DNA328893, BC020490, 225406_at Figure 4638: DNA325272, NP_054891.1, 225683_x_at Figure 4585: PRO9914 Figure 4639: PRO81822 Figure 4586: DNA330613, BC019355, 225414_at Figure 4640: DNA328012, BC017873, 225686_at Figure 4587A-B: DNA331633, 1449606.5, 225433.at Figure 4641: PRO83930 Figure 4588: PRO86630 Figure 4642: DNA328013, AAH01068.1, 225687_at Figure 4589: DNA304802, AAH00967.1, 225439.at Figure 4643: PRO83931 Figure 4590: PRO71212 Figure 4644A-C: DNA330628, 1400234.13, 225690 at Figure 4591: DNA328005, BC004413, 225440_at Figure 4645: PRO85802 Figure 4646A-B: DNA330629, BAA74856.2, Figure 4592: DNA330615, NP_115732.1, 225441_x_at Figure 4593: PRO85791 225692_at Figure 4594: DNA330616, 429555.1, 225443_at Figure 4647: PRO50227

Figure 4543: DNA329394, BC010416, 225201_s_at Figure 4595: PRO85792 Figure 4544: DNA329396, NP_060866.1, 225253_s_at Figure 4596A-B: DNA330617, 336147.2, 225447_at Figure 4545: PRO84972 Figure 4597: PRO59923 Figure 4546: DNA329397, NP_114109.1, 225260_s_at Figure 4598: DNA329404, BC013949, 225454_at Figure 4547: PRO84973 Figure 4599: PRO82972 Figure 4548A-B: DNA329398, 411135.13, 225262_at Figure 4600: DNA330618, CAB55990.1, 225457 s_at Figure 4549: PRO4805 Figure 4601: PRO85793 Figure 4602: DNA330618, HSM801081, 225458_at Figure 4550A-B: DNA258863, DNA258863, Figure 4603: DNA196561, DNA196561, 225470_at 225266_at Figure 4551A-B: DNA331629, 233102.7, 225269_s_at Figure 4604: DNA329405, HSM800962, 225520_at Figure 4605A-B: DNA330619, BC013128, 225527_at Figure 4552: PRO86626 Figure 4606: PRO12186 Figure 4553A-B: DNA330606, 475590.1, 225290_at Figure 4554: PRO85784 Figure 4607A-B: DNA330620, CAB55950.1, Figure 4555: DNA329400, BC005986, 225291.at 225533_at Figure 4556: DNA326458, BC014003, 225297_at Figure 4608: PRO85794 Figure 4609: DNA330621, AF116628, 225535_s_at Figure 4557: PRO82841 Figure 4558: DNA330607, 167391.12, 225300_at Figure 4610: DNA328008, 240051.4, 225541 at Figure 4559: PRO85785 Figure 4611: PRO83926 Figure 4560: DNA330608, BC016880, 225323_at Figure 4612A-B: DNA330622, 233388.8, 225543_at Figure 4561: PRO85786 Figure 4613: PRO85796 Figure 4562A-B: DNA169918, DNA169918, Figure 4614: DNA330623, 1502854.5, 225549_at 225340_s_at Figure 4615: PRO85797 Figure 4616: DNA329406, 1503139.10, 225562_at Figure 4563: PRO23256 Figure 4617: PRO84979 Figure 4564: DNA330609, AF419331, 225348_at Figure 4618: DNA330624, AK000500, 225580_at Figure 4565: PRO22196 Figure 4619: PRO85798 Figure 4566: DNA327965, NP_060760.1, 225367_at Figure 4620: DNA330625, AK025643, 225581_at Figure 4567: PRO83888 Figure 4621: PRO85799 Figure 4568: DNA273635, HSM801117, 225371_at Figure 4622: DNA304469, NP_149078.1, 225621_at Figure 4569A-B: DNA330610, BAB15739.1, 225372_at Figure 4623: PRO71045 Figure 4570: PRO85787 Figure 4624: DNA151667, DNA151667, 225634_at Figure 4571: DNA331630, BC020568, 225373 at Figure 4625: PRO11970 Figure 4572: PRO86627 Figure 4626: DNA330626, 1398905.1, 225638_at Figure 4573A-B: DNA331631, 1383781.5, Figure 4627: PRO85800 Figure 4628: DNA331634, CTSC, 225647_s_at 225385_s_at Figure 4629: PRO86631 Figure 4574: PRO86628 Figure 4575: DNA329401, BC017480, 225386.s.at Figure 4630A-B: DNA288261, NP-037414.2, 225655_at Figure 4576: PRO84976 Figure 4631: PRO70021 Figure 4577: DNA329402, 198708.7, 225387_at Figure 4578: PRO4845 Figure 4632: DNA329408, NP_056235.2, 225676_s_at Figure 4633: PRO38893 Figure 4579: DNA329403, AF288394, 225399 at Figure 4634A-B: DNA330627, 987725.3, 225679_at Figure 4580: DNA331632, BC022030, 225400_at Figure 4635: PRO85801 Figure 4581: PRO86629 Figure 4636: DNA329409, BC017248, 225682_s_at Figure 4582: DNA330612, C20orf64, 225402_at Figure 4637: PRO84981 Figure 4583: PRO85789 Figure 4638: DNA325272, NP_054891.1, 225683 x_at Figure 4584A-B: DNA328893, BC020490, 225406_at Figure 4639: PRO81822 Figure 4585: PRO9914 Figure 4640: DNA328012, BC017873, 225686_at Figure 4586: DNA330613, BC019355, 225414.at Figure 4641: PRO83930 Figure 4587A-B: DNA331633, 1449606.5, 225433 at Figure 4588: PRO86630 Figure 4642: DNA328013, AAH01068.1, 225687_at Figure 4643: PRO83931 Figure 4589: DNA304802, AAH00967.1, 225439.at Figure 4644A-C: DNA330628, 1400234.13, 225690_at Figure 4590: PRO71212 Figure 4591: DNA328005, BC004413, 225440_at Figure 4645: PRO85802 Figure 4592: DNA330615, NP_115732.1, 225441_x_at Figure 4646A-B: DNA330629, BAA74856.2, 225692_at Figure 4593: PRO85791 Figure 4647: PRO50227 Figure 4594: DNA330616, 429555.1, 225443_at

Figure 4648: DNA273623, AY037153, 225693_s_at Figure 4700: PRO86638 Figure 4649: PRO61596 Figure 4701A-B: DNA329360, AF378524, 225962_at Figure 4650: DNA330630, TIGA1, 225698_at Figure 4702: PRO84939 Figure 4703: DNA329420, BC018014, 225970_at Figure 4651: PRO85803 Figure 4652A-B: DNA331635, BAB13371.1, Figure 4704A-B: DNA330645, 350385.2, 225973_at 225704_at Figure 4705: PRO85817 Figure 4653: PRO86632 Figure 4706A-B: DNA329421, 343552.1, 225974_at Figure 4654: DNA331636, 221395.1, 225716_at Figure 4707: PRO84992 Figure 4655: PRO86633 Figure 4708A-B: DNA331642, BAB15719.1, Figure 4656: DNA330633, BC003515, 225723.at 225979_at Figure 4657A-B: DNA330634, 243208.1, 225725_at Figure 4709: PRO86639 Figure 4658: PRO85806 Figure 4710: DNA330647, AK002174, 226001_at Figure 4659A-B: DNA330635, 233691.4, 225736_at Figure 4711: PRO85819 Figure 4660: PRO85807 Figure 4712: DNA330648, 1399123.1, 226005_at Figure 4661: DNA324266, NP_056268.1, 225741_at Figure 4713: PRO85820 Figure 4662: PRO80949 Figure 4714: DNA330649, AK056957, 226008_at Figure 4663: DNA323970, MGC21854, 225763_at Figure 4715: PRO85821 Figure 4664: PRO80699 Figure 4716A-B: DNA331643, 246054.6, 226021_at Figure 4665: DNA331637, 7693984.1, 225768_at Figure 4717: PRO86640 Figure 4666: PRO86634 Figure 4718: DNA331644, 027830.2, 226034_at Figure 4667: DNA330636, NP.201575.2, 225794_s_at Figure 4719: PRO86641 Figure 4668: PRO85808 Figure 4720: DNA328021, BC004538, 226038_at Figure 4669: DNA330636, LOC91689, 225795_at Figure 4721: DNA273736, DNA273736, 226040_at Figure 4670: PRO85808 Figure 4722: DNA330652, CLONE24945, 226055_at Figure 4671: DNA329414, MGC4677, 225799_at Figure 4723: PRO85824 Figure 4672: PRO84986 Figure 4724: DNA330653, 7687670.2, 226068_at Figure 4673: DNA330637, NP_478136.1, 225803_at Figure 4725: PRO85825 Figure 4674: PRO85809 Figure 4726: DNA304795, AK056513, 226077_at Figure 4675A-C: DNA330638, CAB63749.1, Figure 4727: PRO71207 225814_at Figure 4728A-B: DNA331645, AAD09327.1, Figure 4676: PRO85810 226082_s_at Figure 4729: PRO86642 Figure 4677: DNA330639, 420605.8, 225834_at Figure 4678: PRO85811 Figure 4730: DNA287271, NP_116188.2, 226088_at Figure 4679: DNA329417, 411336.1, 225842_at Figure 4731: PRO69542 Figure 4680: PRO84989 Figure 4732: DNA330655, AF114264, 226103_at Figure 4681: DNA287622, AF041429, 225849_s_at Figure 4733: PRO85827 Figure 4682: DNA329418, BC018969, 225850_at Figure 4734A-B: DNA330656, AK023825, 226109_at Figure 4683: PRO19906 Figure 4735: PRO85828 Figure 4684: DNA287370, BAB14983.1, 225866_at Figure 4736: DNA329425, BC008294, 226117_at Figure 4737: DNA330657, 198409.1, 226140_s_at Figure 4685: PRO69630 Figure 4686A-B: DNA331638, 1097910.3, 225886.at Figure 4738: PRO85829 Figure 4687: PRO86635 Figure 4739: DNA330658, 204262.3, 226157_at Figure 4688A-B: DNA331639, 1391157.25, 225888_at Figure 4740: PRO85830 Figure 4689: PRO86636 Figure 4741: DNA330659, AF289605, 226175_at Figure 4690: DNA330642, NP_115494.1, 225898_at Figure 4742: PRO85831 Figure 4691: PRO85814 Figure 4743A-B: DNA330660, 979126.7, 226178_at Figure 4692A-B: DNA331640, 481415.9, 225927_at Figure 4744: PRO85832 Figure 4693: PRO86637 Figure 4745A-B: DNA259025, DNA259025, Figure 4694A-B: DNA255887, BAB13380.1, 226180_at 225929_s_at Figure 4746: PRO52958 Figure 4695: PRO50940 Figure 4747: DNA56350, DNA56350, 226181_at Figure 4696A-B: DNA255887, AB046774, Figure 4748: PRO956 225931_s_at Figure 4749: DNA330661, BAB47431.1, 226194_at Figure 4697A-B: DNA330644, 236657.4, 225935_at Figure 4750: PRO85833 Figure 4751A-B: DNA329428, 1446144.8, 226218_at Figure 4698: PRO85816 Figure 4699: DNA331641, AK027752, 225959_s_at Figure 4752: PRO84999

Figure 4753: DNA195822, DNA195822, 226241_s_at Figure 4809: DNA304794, NP_115521.2, 226541_at Figure 4754A-B: DNA330662, 334156.1, 226252_at Figure 4810: PRO71206 Figure 4755: PRO85834 Figure 4811: DNA330683, 1446727.8, 226546_at Figure 4756: DNA331646, 956845.3, 226261.at Figure 4812: PRO85854 Figure 4757: PRO86643 Figure 4813: DNA330684, 984114.1, 226548_at Figure 4758A-B: DNA330664, 400637.4, 226265_at Figure 4814: PRO85855 Figure 4759: PRO85836 Figure 4815A-B: DNA328031, 331264.1, 226587_at Figure 4760A-B: DNA330665, 233070.3, 226270_at Figure 4816: PRO83948 Figure 4761: PRO85837 Figure 4817: DNA330685, BAB13430.1, 226588_at Figure 4762: DNA330666, 199829.14, 226272_at Figure 4818: PRO85856 Figure 4819A-B: DNA330686, 1502531.18, Figure 4763: PRO85838 Figure 4764: DNA193896, DNA193896, 226276_at 226602_s_at Figure 4765: PRO23314 Figure 4820: PRO85857 Figure 4766: DNA330667, AF301222, 226287_at Figure 4821: DNA328033, 1446419.1, 226625_at Figure 4767: DNA330668, BC010176, 226308_at Figure 4822: PRO83949 Figure 4768: PRO85840 Figure 4823: DNA330687, 215158.5, 226650_at Figure 4769: DNA328028, NP_005773.1, 226319_s_at Figure 4824: PRO85858 Figure 4770: PRO83945 Figure 4825: DNA258913, DNA258913, 226661_at Figure 4771: DNA328028, ALY, 226320_at Figure 4826: PRO52846 Figure 4772: PRO83945 Figure 4827A-C: DNA328462, HSA303079, Figure 4773: DNA330669, 236903.4, 226321_at 226694_at Figure 4774: PRO85841 Figure 4828: PRO84288 Figure 4775: DNA330670, BC018453, 226329_s_at Figure 4829: DNA328037, BC016969, 226702_at Figure 4776: PRO85842 Figure 4830: DNA330688, 240121.1, 226725.at Figure 4777A-B: DNA330671, 228447.18, 226342_at Figure 4831: PRO85859 Figure 4778: PRO85843 Figure 4832A-C: DNA330689, 978733.6, 226732_at Figure 4779: DNA330672, 255309.4, 226347_at Figure 4833: PRO85860 Figure 4780: PRO85844 Figure 4834: DNA257914, DNA257914, 226743_at Figure 4781: DNA330673, 236879.2, 226348_at Figure 4835: PRO52447 Figure 4782: PRO85845 Figure 4836: DNA330690, 245065.1, 226745_at Figure 4783: DNA329430, NP_116191.2, 226353_at Figure 4837: PRO85861 Figure 4784: PRO38524 Figure 4838: DNA330691, BC022075, 226748_at Figure 4785: DNA331647, 236137.11, 226354_at Figure 4839: PRO85862 Figure 4786: PRO86644 Figure 4840: DNA329435, 347092.10, 226750_at Figure 4787A-B: DNA330675, 177663.2, 226368_at Figure 4841: PRO85005 Figure 4788: PRO85847 Figure 4842: DNA331648, 243999.3, 226757_at Figure 4789: DNA330676, CAA11393.1, 226388.at Figure 4843: PRO86645 Figure 4790: PRO85848 Figure 4844: DNA330692, 1446140.1, 226758_at Figure 4791: DNA330677, 1384190.6, 226390_at Figure 4845: PRO85863 Figure 4792: PRO85849 Figure 4846A-B: DNA330331, AB032963, 226771_at Figure 4793: DNA151740, DNA151740, 226419_s_at Figure 4847: DNA330693, HSBRN1H12, 226773 at Figure 4794: PRO12029 Figure 4848A-B: DNA330694, 481455.4, 226810_at Figure 4795: DNA329433, NP_115937.1, 226442_at Figure 4849: PRO85865 Figure 4796: PRO85003 Figure 4850: DNA330695, 404167.9, 226818_at Figure 4797: DNA330678, 401430.1, 226444_at Figure 4851: PRO85866 Figure 4798: PRO85850 Figure 4852A-C: DNA330696, 404167.10, 226841_at . Figure 4799: DNA287657, BC009447, 226448_at Figure 4853: PRO85867 Figure 4800: PRO69688 Figure 4854: DNA330697, BC011808, 226858_at Figure 4801: DNA330679, BC013040, 226456_at Figure 4855: PRO85868 Figure 4802A-B: DNA330680, BC022792, 226477_at Figure 4856A-B: DNA329436, 236863.1, 226869_at Figure 4803: PRO85852 Figure 4857: PRO85006 Figure 4804: DNA326066, NP_291022.1, 226488_at Figure 4858: DNA330698, BC020852, 226896_at Figure 4805: PRO82501 Figure 4859: PRO85869 Figure 4806A-B: DNA330681, 971066.5, 226503.at Figure 4860: DNA329437, 156503.10, 226901 at Figure 4807: PRO85853 Figure 4861: PRO85007 Figure 4808: DNA330682, HSM801031, 226510_at Figure 4862: DNA330699, BC014203, 226905_at

Figure 4917: DNA327206, AY037161, 227262_at Figure 4863: DNA330564, ARHGAP9, 226906_s_at Figure 4864: PRO85746 Figure 4918: PRO271 Figure 4919A-B: DNA329442, AH007300S2, Figure 4865: DNA327917, BC000798, 226915_s_at 227265_at Figure 4866: PRO83852 Figure 4920A-B: DNA331651, 099572.12, Figure 4867A-C: DNA331649, 201042.4, 226921_at 227266_s_at Figure 4868: PRO86646 Figure 4921: PRO86647 Figure 4869: DNA328044, 039170.3, 226936_at Figure 4922: DNA330717, 232831.10, 227290_at Figure 4870: PRO83958 Figure 4923: PRO85888 Figure 4871: DNA151713, DNA151713, 226943_at Figure 4924: DNA329445, 001839.3, 227291_s_at Figure 4872: PRO12003 Figure 4925: PRO85013 Figure 4873: DNA330701, NP_115652.1, 226945_at Figure 4926: DNA330718, 025465.3, 227295_at Figure 4874: PRO85872 Figure 4927: PRO85889 Figure 4875: DNA330702, 023085.2, 226965_at Figure 4928: DNA330719, 7697121.1, 227307_at Figure 4876: PRO85873 Figure 4929: PRO85890 Figure 4877: DNA330703, 201413.1, 226970_at Figure 4930: DNA330720, 186766.12, 227337_at Figure 4878: PRO85874 Figure 4931: PRO85891 Figure 4879: DNA154627, DNA154627, 226976_at Figure 4932: DNA35664, DNA35664, 227345_at Figure 4880: DNA330704, BC019075, 226980_at Figure 4933: PRO34697 Figure 4881: PRO85875 Figure 4934A-B: DNA330721, 198680.1, 227350 at Figure 4882A-B: DNA331650, HSA314788, Figure 4935: PRO85892 226998_at Figure 4936: DNA226872, NP-001955.1, 227404_s_at Figure 4883: PRO85008 Figure 4937: PRO37335 Figure 4884: DNA329439, HSM802614, 227014_at Figure 4938A-B: DNA330722, AB058729, 227418_at Figure 4885A-B: DNA330705, 198782.1, 227020_at Figure 4939: DNA330723, AB040960, 227438_at Figure 4886: PRO85876 Figure 4940: DNA329447, BC016981, 227449_at Figure 4887A-B: DNA330706, AF445027, 227027_at Figure 4941: PRO85015 Figure 4888: PRO85877 Figure 4942: DNA330724, AK056677, 227450_at Figure 4889: DNA330707, 028375.3, 227044_at Figure 4943: PRO1575 Figure 4890: PRO85878 Figure 4944A-B: DNA328054, 233014.1, 227458_at Figure 4891: DNA330708, 1101317.1, 227066_at Figure 4892: PRO85879 Figure 4945: PRO83968 Figure 4946A-B: DNA258781, DNA258781, Figure 4893: DNA329440, 7691797.1, 227068_at 227466_at Figure 4894: PRO85009 Figure 4947: PRO52715 Figure 4895: DNA330709, 7692923.1, 227117_at Figure 4948: DNA329448, BC012948, 227477_at Figure 4896: PRO85880 Figure 4949: PRO85016 Figure 4897: DNA323785, NP_116261.1, 227134_at Figure 4950: DNA329053, LOC51105, 227523_s_at Figure 4898: PRO80537 Figure 4951: PRO84715 Figure 4899: DNA330710, 331040.11, 227135_at Figure 4952: DNA330725, 337360.7, 227545_at Figure 4900: PRO85881 Figure 4901A-B: DNA330711, 425448.18, 227150_at Figure 4953: PRO85894 Figure 4954: DNA330726, BC014967, 227558_at Figure 4902: PRO85882 Figure 4955: PRO85895 Figure 4903: DNA330712, 1452648.12, 227167_s_at Figure 4956A-B: DNA331652, 1447357.3, 227572_at Figure 4904: PRO85883 Figure 4905: DNA328281, BC000282, 227172_at Figure 4957: PRO86648 Figure 4958: DNA330728, HSM801012, 227580_s_at Figure 4906: DNA330713, 334485.4, 227187_at Figure 4959: PRO85897 Figure 4907: PRO85884 Figure 4960: DNA330729, 031130.2, 227600_at Figure 4908: DNA330714, 034544.1, 227198_at Figure 4961: PRO85898 Figure 4909: PRO85885 Figure 4910: DNA330715, BC022374, 227211_at Figure 4962A-B: DNA287193, AB037794, Figure 4911: PRO85886 227606_s_at Figure 4963: DNA330730, BC010846, 227607_at Figure 4912A-B: DNA330620, HSM800990, Figure 4964: PRO85899 227212_s_at Figure 4965: DNA257714, NP_150280.1, 227609_at Figure 4913: DNA330716, BC021675, 227236_at Figure 4966: PRO52268 Figure 4914: PRO85887 Figure 4967: DNA330731, BC012337, 227614_at Figure 4915: DNA251633, AK023151, 227245_at Figure 4968: DNA 196237, DNA 196237, 227616_at Figure 4916: PRO47694

PCT/US2003/035971 WO 2004/047728

Figure 4969A-B: DNA330426, AF085233, 227627_at Figure 5021: PRO86652 Figure 5022: DNA331657, BLR1, 228065_at Figure 4970: PRO85631 Figure 4971A-B: DNA330733, BAA92631.1, Figure 5023: PRO23970 227653_at Figure 5024: DNA329459, 230998.1, 228066_at Figure 4972: PRO85902 Figure 5025: PRO85026 Figure 4973: DNA329449, 979180.1, 227682_at Figure 5026: DNA330745, BC011716, 228069_at Figure 5027: PRO85913 Figure 4974: PRO85017 Figure 4975: DNA330734, BC008322, 227686_at Figure 5028: DNA196216, DNA196216, 228071_at Figure 4976: PRO85903 Figure 5029: DNA329460, BC017117, 228092_at Figure 4977: DNA273987, DNA273987, 227708_at Figure 5030: PRO85027 Figure 4978: DNA330735, 1400830.3, 227722_at Figure 5031: DNA330746, 346395.7, 228097_at Figure 4979: PRO85904 Figure 5032: PRO85914 Figure 5033: DNA330436, AF187016, 228098_s_at Figure 4980: DNA329450, BC017226, 227726_at Figure 5034: PRO85639 Figure 4981: PRO85018 Figure 5035A-C: DNA331658, 200650.1, 228109_at Figure 4982A-B: DNA330736, BAA86532.1, 227732_at Figure 5036: PRO86653 Figure 5037: DNA329461, BC016615, 228113 at Figure 4983: PRO85905 Figure 5038: PRO85028 Figure 4984A-B: DNA330737, 331100.8, 227766.at Figure 5039: DNA330748, 224725.3, 228159_at Figure 4985: PRO85906 Figure 4986: DNA331653, 212641.1, 227792_at Figure 5040: PRO85916 Figure 5041: DNA330749, 337382.1, 228174_at Figure 4987: PRO86649 Figure 5042: PRO85917 Figure 4988: DNA151733, DNA151733, 227807_at Figure 5043: DNA330750, 984920.1, 228180_at Figure 4989: PRO12022 Figure 5044: PRO85918 Figure 4990A-B: DNA330739, AK000004, 227811_at Figure 5045: DNA153924, DNA153924, 228188_at Figure 4991: DNA329454, BC022534, 227856_at Figure 5046: DNA330751, 334282.2, 228189_at Figure 4992: PRO85022 Figure 5047: PRO85919 Figure 4993: DNA260485, DNA260485, 227867_at Figure 5048: DNA330752, 7694335.3, 228191_at Figure 4994: PRO54411 Figure 5049: PRO85920 Figure 4995: DNA327214, AK056512, 227873_at Figure 5050A-B: DNA331659, 198497.1, 228201_at Figure 4996: PRO83483 Figure 4997: DNA151503, DNA151503, 227877_at Figure 5051: PRO86654 Figure 5052A-C: DNA328072, AB051556, 228230_at Figure 4998: PRO11849 Figure 5053: DNA330754, 349978.1, 228242_at Figure 4999: DNA329481, NP_057234.2, 227915_at Figure 5054: PRO85922 Figure 5000: PRO60949 Figure 5055: DNA328663, CGI-142, 228266_s_at Figure 5001: DNA329456, AF151860, 227916_x_at Figure 5056: PRO36183 Figure 5002: PRO85023 Figure 5057: DNA260948, DNA260948, 228273_at Figure 5003A-B: DNA330740, AY028320S2, Figure 5058: PRO54700 227928_at Figure 5059: DNA330755, BC020784, 228280_at Figure 5004: DNA151580, DNA151580, 227930_at Figure 5060: PRO85923 Figure 5005: PRO11901 Figure 5061: DNA331660, 230589.4, 228281_at Figure 5006: DNA330741, 350868.1, 227952_at Figure 5007: PRO85909 Figure 5062: PRO86655 Figure 5063A-B: DNA330757, AB046790, 228323_at Figure 5008A-B: DNA331654, 476805.1, 228006_at Figure 5064: DNA304814, BC016879, 228330_at Figure 5009: PRO86650 Figure 5065: PRO52650 Figure 5010: DNA330539, ZNRD1, 228009_x_at Figure 5066: DNA194202, DNA194202, 228370_at Figure 5011: PRO85724 Figure 5067: PRO23594 Figure 5012: DNA150660, NP_057151.1, 228019_s_at Figure 5068: DNA330758, 238545.7, 228381_at Figure 5013: PRO12397 Figure 5069: PRO85925 Figure 5014A-B: DNA328432, NP_005768.1, Figure 5070: DNA330759, 337444.1, 228390_at 228030_at Figure 5015: PRO61793 Figure 5071: PRO85926 Figure 5016: DNA331655, 1449874.3, 228053_s_at Figure 5072A-B: DNA330760, 330900.8, 228401_at Figure 5073: PRO85927 Figure 5017: PRO86651 Figure 5074: DNA228118, DNA228118, 228456_s_at Figure 5018: DNA330743, AK054689, 228062_at Figure 5075: DNA297188, NP_116233.1, 228468_at Figure 5019: PRO85911 Figure 5076: PRO70805

Figure 5020: DNA331656, 244771.1, 228063.s.at

T. TOTAL & TITLES AND AND A COLUMN	TI
Figure 5077A-C: DNA331661, 388991.1, 228487_s_at	Figure 5132: PRO86661
Figure 5078: PRO86656	Figure 5133: DNA330783, 239601.22, 228987_at
Figure 5079: DNA330762, BC010269, 228499_at	Figure 5134: PRO85947
Figure 5080: PRO80989	Figure 5135: DNA330784, 233595.21, 228990_at
Figure 5081: DNA195938, DNA195938, 228531_at	Figure 5136: PRO85948
Figure 5082: DNA329463, 412954.5, 228532_at	Figure 5137: DNA330785, 475283.24, 228999 at
Figure 5083: PRO85030	Figure 5138: PRO85949
Figure 5084: DNA330763, 1306177.32, 228549_at	Figure 5139: DNA330786, 233085.1, 229029_at
Figure 5085: PRO85929	Figure 5140: PRO85950
Figure 5086: DNA331662, 1450017.11, 228559_at	Figure 5141: DNA330787, 349981.7, 229040_at
Figure 5087: PRO86657	Figure 5142: PRO85951
Figure 5088A-C: DNA331663, 475198.1, 228562_at	Figure 5143: DNA330788, AF305195, 229060_at
Figure 5089: PRO86658	Figure 5144: PRO85952
Figure 5090: DNA330766, 977419.7, 228597_at	Figure 5145: DNA330789, 199829.13, 229064_s_at
Figure 5091: PRO85932	Figure 5146: PRO85953
Figure 5092A-B: DNA331664, 201954.14, 228603_at	Figure 5147: DNA330790, NP_116133.1, 229070_at
Figure 5093: PRO86659	Figure 5148: PRO85954
Figure 5094: DNA328079, 239903.1, 228617_at	Figure 5149: DNA330791, 7697349.2, 229072_at
Figure 5095: PRO83991	Figure 5150: PRO85955
Figure 5096: DNA330768, NP_003681.1, 228620_at	Figure 5151: DNA330792, 983946.2, 229097_at
Figure 5097: PRO60565	Figure 5152: PRO85956
Figure 5098A-B: DNA271477, NP_055774.1,	Figure 5153: DNA155281, DNA155281, 229111_at
228641_at	Figure 5154: DNA330793, 215114.2, 229145_at
Figure 5099: PRO59770	Figure 5155: PRO85957
Figure 5100: DNA330769, 230457.1, 228664_at	Figure 5156: DNA330794, 481414.8, 229202.at
Figure 5101: PRO85934	Figure 5157: PRO85958
Figure 5102: DNA330770, 1447329.13, 228702_at	Figure 5158: DNA330795, BC017339, 229253 at
Figure 5103: PRO85935 Figure 5104: DNA330771, 1447928.4, 228710_at	Figure 5159: PRO85959 Figure 5160: DNA265865, DNA265865, 229274_at
Figure 5105: PRO85936	Figure 5161: DNA151375, DNA151375, 229327-s.at
Figure 5106: DNA330772, 286623.2, 228729.at	Figure 5162: PRO11752
Figure 5107: PRO85937	Figure 5163: DNA328919, FLJ22690, 229367 s_at
Figure 5108: DNA330773, 027401.1, 228758_at	Figure 5164: PRO84637
Figure 5109: PRO85938	Figure 5165: DNA257575, DNA257575, 229374_at
Figure 5110: DNA330774, 024160.1, 228760_at	Figure 5166: DNA268708, DNA268708, 229391_s_at
Figure 5111: PRO85939	Figure 5167A-C: DNA331667, 198342.3, 229394_s_at
Figure 5112: DNA273232, DNA273232, 228785_at	Figure 5168: PRO86662
Figure 5113: DNA330775, 407523.3, 228806_at	Figure 5169: DNA287421, 234832.1, 229437_at
Figure 5114: PRO85940	Figure 5170: PRO69678
Figure 5115: DNA330776, NP_005740.1, 228834_at	Figure 5171: DNA330797, 211332.1, 229442_at
Figure 5116: PRO58014	Figure 5172: PRO85961
Figure 5117: DNA256483, HSM802155, 228859.at	Figure 5173: DNA328090, 007911.2, 229450_at
Figure 5118: PRO51520	Figure 5174: PRO84001
Figure 5119: DNA331665, 330848.1, 228869_at	Figure 5175: DNA330798, 984597.1, 229483_at
Figure 5120: PRO86660	Figure 5176: PRO85962
Figure 5121: DNA330778, 998621.10, 228891_at	Figure 5177: DNA330799, 481875.1, 229551_x_at
Figure 5122: PRO85942	Figure 5178: PRO85963
Figure 5123: DNA328084, 236591.7, 228905_at	Figure 5179: DNA330800, AK056271, 229595 at
Figure 5124: PRO83996	Figure 5180: PRO85964
Figure 5125: DNA330779, 244243.1, 228953_at	Figure 5181: DNA330801, 199864.1, 229610_at
Figure 5126: PRO85943	Figure 5182: PRO85965
Figure 5127: DNA330780, 335374.1, 228955_at	Figure 5183: DNA327205, NP_443174.1, 229625_at
Figure 5128: PRO85944	Figure 5184: PRO83478
Figure 5129: DNA330781, 289775.9, 228960_at	Figure 5185A-B: DNA226321, NP_006021.1,
Figure 5130: PRO85945	229636_at
Figure 5131A-B: DNA331666, 7684887.1, 228964_at	Figure 5186: PRO36784

Figure 5187A-B: DNA330802, 7694410.1, 229686_at Figure 5241: PRO85035 Figure 5188: PRO85966 Figure 5242: DNA331671, 277648.15, 230375_at Figure 5189: DNA331668, 403448.4, 229699_at Figure 5243: PRO86666 Figure 5190: PRO86663 Figure 5244: DNA331672, 332195.1, 230391_at Figure 5191A-C: DNA330804, NP_055847.1, Figure 5245: PRO86667 229704_at Figure 5246: DNA257756, DNA257756, 230405_at Figure 5192: PRO85968 Figure 5247: DNA330823, 010867.1, 230449_x_at Figure 5193: DNA331669, 1466538.1, 229718_at Figure 5248: PRO85987 Figure 5249A-B: DNA331673, 333480.5, 230489_at Figure 5194: PRO86664 Figure 5195A-B: DNA227985, CBX6, 229733_s_at Figure 5250: PRO86668 Figure 5196: PRO38448 Figure 5251A-B: DNA330825, 406864.4, 230526_at Figure 5197: DNA330806, 200298.1, 229809_at Figure 5252: PRO85989 Figure 5198: PRO85970 Figure 5253: DNA331674, 059446.1, 230529_at Figure 5199: DNA330807, 334422.1, 229814_at Figure 5254: PRO86669 Figure 5200: PRO85971 Figure 5255: DNA330827, NP_079521.1, 230536_at Figure 5201: DNA328092, NP_002598.2, 229830_at Figure 5256: PRO85991 Figure 5202: PRO84003 Figure 5257: DNA330828, 233615.1, 230566_at Figure 5203: DNA330808, 1397087.3, 229838_at Figure 5258: PRO85992 Figure 5204: PRO85972 Figure 5259: DNA330829, 007717.1, 230580_at Figure 5205: DNA328972, BC009950, 229872_s_at Figure 5260: PRO85993 Figure 5206A-C: DNA330810, AF330041, 229881.at Figure 5261: DNA257789, NP_116219.1, 230656_s_at Figure 5207: PRO85974 Figure 5262: PRO52338 Figure 5208: DNA287290, AK001793, 229980_s_at Figure 5263: DNA330830, 216899.1, 230703_at Figure 5209: PRO69560 Figure 5264: PRO85994 Figure 5210: DNA330811, 1382987.2, 230000_at Figure 5265A-B: DNA328499, SORL1, 230707_at Figure 5211: PRO85975 Figure 5266: PRO84321 Figure 5212A-B: DNA330812, 000264.19, 230021_at Figure 5267A-B: DNA328099, 335889.1, 230779_at Figure 5213: PRO85976 Figure 5268: PRO84009 Figure 5214: DNA330813, 246201.1, 230036_at Figure 5269: DNA194391, HSM800477, 230848_s_at Figure 5215: PRO85977 Figure 5270: DNA330831, 208876.1, 230913_at Figure 5216: DNA258657, DNA258657, 230060_at Figure 5271: PRO85995 Figure 5217: PRO52596 Figure 5272: DNA330832, 253831.5, 230930_at Figure 5218: DNA330814, 309641.1, 230097_at Figure 5273: PRO85996 Figure 5219: PRO85978 Figure 5274: DNA304827, AF293462, 230966_at Figure 5220: DNA329467, 029236.1, 230110_at Figure 5275: PRO1265 Figure 5221: PRO85033 Figure 5276: DNA330833, 984179.1, 230970_at Figure 5222: DNA330815, AK057940, 230165_at Figure 5277: PRO85997 Figure 5223: PRO85979 Figure 5278: DNA331675, BC017477, 231094_at Figure 5224: DNA329468, BC011589, 230170_at Figure 5279: PRO86670 Figure 5280: DNA331676, 980781.1, 231109_at Figure 5225: PRO88 Figure 5226: DNA330816, 980409.1, 230192_at Figure 5281: PRO86671 Figure 5227: PRO85980 Figure 5282: DNA329473, 370473.13, 231124_x_at Figure 5228A-B: DNA194784, DNA194784, Figure 5283: PRO85038 230218_at Figure 5284: DNA330835, 399441.1, 231166_at Figure 5229: PRO24061 Figure 5285: PRO85999 Figure 5230: DNA331670, 373719.30, 230257_s_at Figure 5286A-B: DNA330836, 242968.17, 231169_at Figure 5231: PRO86665 Figure 5287: PRO86000 Figure 5232A-C: DNA330817, AB020335, 230265_at Figure 5288: DNA330837, 429490.1, 231182_at Figure 5233: PRO85981 Figure 5289: PRO86001 Figure 5234: DNA330818, 212282.1, 230304_at Figure 5290: DNA150808, HUMGBP1, 231577_s_at Figure 5235: PRO85982 Figure 5291: PRO12478 Figure 5236: DNA330819, 982802.1, 230337_at Figure 5292: DNA155700, DNA155700, 231579_s_at Figure 5237: PRO85983 Figure 5293: DNA330838, NP_037460.2, 231715_s_at Figure 5238: DNA330820, 230585.2, 230345_at Figure 5294: PRO80743 Figure 5239: PRO85984 Figure 5295: DNA330839, NP_060908.1, 231769_at Figure 5240: DNA329470, NP_002756.1, 230352_at Figure 5296: PRO86002

Figure 5297: DNA330840, BC015355, 231772_x_at	Figure 5351: PRO86024
Figure 5298: PRO86003	Figure 5352: DNA287658, 199168.2, 232291_at
Figure 5299: DNA208647, DNA208647, 231775_at	Figure 5353: PRO69902
Figure 5300: PRO1206	Figure 5354: DNA331681, 339154.9, 232304_at
Figure 5301: DNA330841, 983019.1, 231776_at	Figure 5355: PRO86676
Figure 5302: PRO86004	Figure 5356: DNA330863, 295041.1, 232365_at
Figure 5303: DNA329474, AK001874, 231784_s_at	Figure 5357: PRO86026
Figure 5304: PRO38893	Figure 5358: DNA331682, 1384413.5, 232369_at
Figure 5305: DNA330842, 242234.14, 231793_s_at	Figure 5359: PRO86677
Figure 5306: PRO86005	Figure 5360: DNA287182, 424693.25, 232375_at
Figure 5307: DNA329312, AF414120, 231794_at	Figure 5361: PRO69470
Figure 5308: PRO84901	Figure 5362: DNA330865, 066613.1, 232412.at
Figure 5309: DNA330843, 201388.1, 231832_at	Figure 5363: PRO86028
Figure 5310: PRO86006	Figure 5364: DNA331683, 422960.1, 232504_at Figure 5365: PRO86678
Figure 5311A-B: DNA330844, 243553.2, 231852_at	Figure 5366: DNA330867, 333565.1, 232527_at
Figure 5312: PRO86007	Figure 5367: PRO86030
Figure 5313: DNA330845, BC009777, 231863_at Figure 5314: PRO86008	Figure 5368: DNA331684, AF161339, 232543_x_at
Figure 5315A-B: DNA330846, BC005847, 231876_at	Figure 5369: DNA330868, 337037.1, 232584_at
Figure 5316: DNA331677, 981573.1, 231890.at	Figure 5370: PRO86031
Figure 5317: PRO86672	Figure 5371: DNA330869, 406591.1, 232687_at
Figure 5318: DNA330848, 1447268.2, 231904_at	Figure 5372: PRO86032
Figure 5319: PRO86011	Figure 5373: DNA330870, 227719.1, 232883_at
Figure 5320: DNA330849, EFG2, 231918_s_at	Figure 5374: PRO86033
Figure 5321: PRO86012	Figure 5375: DNA330871, 419923.1, 233019_at
Figure 5322A-B: DNA256267, BAB13444.1,	Figure 5376: PRO86034
231956_at	Figure 5377: DNA287404, AK026486, 233085 s.at
Figure 5323: PRO51311	Figure 5378: PRO69661
Figure 5324A-B: DNA271768, AB037834, 231996_at	Figure 5379: DNA330872, 056107.1, 233127_at
Figure 5325A-C: DNA330850, 152462.1, 232044_at	Figure 5380: PRO86035
Figure 5326: PRO86013	Figure 5381A-B: DNA329422, BAA92605.1,
Figure 5327: DNA330851, 337679.3, 232081_at	233208_x_at
Figure 5328: PRO86014	Figure 5382: PRO84993
Figure 5329: DNA330852, 1383611.1, 232138_at	Figure 5383A-B: DNA330873, AB040885, 233458 at
Figure 5330: PRO86015	Figure 5384: DNA330874, NP_057528.1, 233461_x_at
Figure 5331: DNA330853, 255956.19, 232141_at	Figure 5385: PRO86037
Figure 5332: PRO86016	Figure 5386: DNA331423, AF176071, 233467 s.at
Figure 5333: DNA328113, 218535.1, 232150_at	Figure 5387: DNA330875, 006221.2, 233506_at Figure 5388: PRO86038
Figure 5334: PRO84020 Figure 5335: DNA330854, AK023113, 232155_at	Figure 5389: DNA330876, AK055587, 233528_s_at
Figure 5355: DNA550654, AR025115, 25215526 Figure 5336: PRO86017	Figure 5390: PRO86039
Figure 5337: DNA331678, ABIN-2, 232160_s_at	Figure 5391: DNA328812, AB033087, 233575_s_at
Figure 5338: PRO86673	Figure 5392: DNA330877, NP_055075.1, 233588_x_at
Figure 5339A-E: DNA331679, NP_112598.1,	Figure 5393: PRO86040
232164_s_at	Figure 5394A-C: DNA330638, HSM801490,
Figure 5340: PRO86674	233632_s_at
Figure 5341: DNA330856, HSM802268, 232165_at	Figure 5395: DNA329287, NP_057484.2, 233746_x_at
Figure 5342: DNA330857, 271071.1, 232175_at	Figure 5396: PRO84879
Figure 5343: PRO86020	Figure 5397: DNA329481, ASB2, 233857_s_at
Figure 5344: DNA330858, 252659.1, 232213_at	Figure 5398: PRO60949
Figure 5345: PRO86021	Figure 5399: DNA326800, XRN2, 233878_s_at
Figure 5346: DNA330859, 016890.1, 232216_at	Figure 5400: PRO83133
Figure 5347: PRO86022	Figure 5401: DNA330547, MOV10, 233917_s_at
Figure 5348: DNA331680, 393520.1, 232238_at	Figure 5402: PRO85731
Figure 5349: PRO86675	Figure 5403: DNA330878, NP_079111.1, 233937_at
Figure 5350: DNA330861, AK000490, 232278_s_at	Figure 5404: PRO86041

Figure 5405: DNA329571, HSPC195, 233955_x_at	Figure 5461: PRO85047
Figure 5406: PRO51662	Figure 5462: DNA330894, AF455817, 235177_at
Figure 5407: DNA329332, BC001262, 233970_s_at	Figure 5463: PRO86055
Figure 5408: PRO84916	Figure 5464: DNA331690, 200228.1, 235199_at
Figure 5409: DNA331685, AK026111, 233986_s_at	Figure 5465: PRO86685
Figure 5410: PRO86680	Figure 5466: DNA330896, 250896.1, 235213_at
Figure 5411: DNA331686, HSA271091, 234000_s_at	Figure 5467: PRO86057
Figure 5412: PRO86681	Figure 5468: DNA329488, 1501300.6, 235244_at
Figure 5413: DNA331687, HUMVA25A, 234013_at	Figure 5469: PRO85049
Figure 5414: PRO86682	Figure 5470A-C: DNA330897, 332999.23, 235252_at
Figure 5415: DNA330880, NP_150283.1, 234284_at	Figure 5471: PRO86058
Figure 5416: PRO86043	Figure 5472: DNA324093, BC019263, 235256_s_at
Figure 5417: DNA330881, CRACC, 234306_s_at	Figure 5473: PRO80802
Figure 5418: PRO1138	Figure 5474: DNA260946, NP_115741.1, 235266_at
Figure 5419: DNA329312, CTLA4, 234362_s_at	Figure 5475: PRO54699
Figure 5420: PRO84901	Figure 5476A-C: DNA329379, 010205.2, 235287_at
Figure 5421: DNA329483, NP_443104.1, 234408_at	Figure 5477: PRO84957
Figure 5422: PRO20110	Figure 5478: DNA330898, 227608.1, 235299_at
Figure 5423: DNA287425, NP_060979.1, 234464_s_at	Figure 5479: PRO86059
Figure 5424: PRO69682	Figure 5480A-B: DNA330899, 7690822.1, 235306_at
Figure 5425: DNA330387, FBXO5, 234863_x_at	Figure 5481: PRO86060
Figure 5426: PRO85596	Figure 5482A-B: DNA330900, 199492.10,
Figure 5427: DNA304813, NP_277053.1, 234973_at	235331_x_at
Figure 5428: PRO71222	Figure 5483: PRO86061
Figure 5429: DNA330882, 406739.1, 234974_at	Figure 5484: DNA330901, 400258.1, 235360.at
Figure 5430: PRO86044	Figure 5485: PRO86062
Figure 5431: DNA330883, 1384547.1, 234986_at	Figure 5486: DNA330902, 481462.4, 235389_at
Figure 5432: PRO86045	Figure 5487: PRO86063
Figure 5433A-B: DNA330884, 267153.16, 234987_at	Figure 5488: DNA331691, 405045.1, 235412_at
Figure 5434: PRO86046	Figure 5489: PRO86686 Figure 5490: DNA330904, 1446121.1, 235415_at
Figure 5435: DNA257389, NP_116248.1, 234993_at	Figure 5491: PRO86065
Figure 5436: PRO51974 Figure 5437: DNA330885, AK055618, 235022_at	Figure 5492: DNA331692, 979330.2, 235425_at
Figure 5438: PRO86047	Figure 5493: PRO86687
Figure 5439: DNA331688, 404157.1, 235052_at	Figure 5494: DNA257872, DNA257872, 235457_at
Figure 5440: PRO86683	Figure 5495: DNA330906, NP_116171.2, 235458_at
Figure 5441: DNA331689, 996962.6, 235056_at	Figure 5496: PRO86067
Figure 5442: PRO86684	Figure 5497: DNA257302, DNA257302, 235463 s.at
Figure 5443: DNA328143, AK054678, 235061_at	Figure 5498: DNA330907, 7692322.1, 235469_at
Figure 5444: PRO84048	Figure 5499: PRO86068
Figure 5445: DNA330888, 7687712.2, 235088_at	Figure 5500: DNA331693, 203586.1, 235508_at
Figure 5446: PRO69581	Figure 5501: PRO86688
Figure 5447: DNA330889, AK055762, 235096_at	Figure 5502: DNA330909, 229234.17, 235523_at
Figure 5448: PRO86050	Figure 5503: PRO86070
Figure 5449: DNA193891, DNA193891, 235099_at	Figure 5504: DNA304793, NP_443173.1, 235574_at
Figure 5450: PRO23309	Figure 5505: PRO71205
Figure 5451A-B: DNA330890, AB058722, 235106_at	Figure 5506: DNA330910, 032253.1, 235581_at
Figure 5452: DNA330891, AK027315, 235113_at	Figure 5507: PRO86071
Figure 5453: PRO86052	Figure 5508: DNA330911, 1446080.1, 235607_at
Figure 5454: DNA328146, BC019239, 235117_at	Figure 5509: PRO86072
Figure 5455: PRO84051	Figure 5510: DNA330912, 984873.1, 235609_at
Figure 5456: DNA330892, 198067.4, 235136_at	Figure 5511: PRO86073
Figure 5457: PRO86053	Figure 5512: DNA331694, 222666.9, 235643_at
Figure 5458: DNA330893, 337392.1, 235157_at	Figure 5513: PRO86689
Figure 5459: PRO86054	Figure 5514: DNA331695, 350462.1, 235652_at
Figure 5460: DNA329486, 1058246.1, 235175_at	Figure 5515: PRO86690

Figure 5516: DNA330915, 238456.7, 235662_at	Figure 5572: PRO86099
Figure 5517: PRO86076	Figure 5573: DNA259749, DNA259749, 236782_at
Figure 5518: DNA330916, 234580.1, 235670_at	Figure 5574: DNA329491, 211743.1, 236787_at
Figure 5519: PRO86077	Figure 5575: PRO85052
Figure 5520: DNA330917, 238496.1, 235696_at	Figure 5576: DNA330939, 214517.1, 236796_at
Figure 5521: PRO86078	Figure 5577: PRO86100
Figure 5522: DNA330918, 250552.1, 235699_at	Figure 5578: DNA330940, 211136.19, 236832_at
Figure 5523: PRO86079	Figure 5579: PRO86101
Figure 5524: DNA330919, 423261.6, 235739_at	Figure 5580: DNA330941, 399601.2, 236836_at
Figure 5525: PRO86080	Figure 5581: PRO86102
Figure 5526: DNA330920, 249518.17, 235783_at	Figure 5582: DNA330942, 337215.1, 236907_at
Figure 5527: PRO86081	Figure 5583: PRO86103
Figure 5528: DNA330921, 246858.18, 235816_s_at	Figure 5584: DNA330943, 1042935.2, 237009_at
Figure 5529: PRO86082	Figure 5585: PRO86104
Figure 5530: DNA330922, 1447139.1, 235907_at	Figure 5586: DNA330944, 218030.2, 237180_at
Figure 5531: PRO86083	Figure 5587: PRO86105
Figure 5532: DNA330923, 981520.1, 235940_at	Figure 5588: DNA330945, 334209.1, 237181_at
Figure 5533: PRO86084	Figure 5589: PRO86106
Figure 5534: DNA330924, 237828.3, 235984_at	Figure 5590A-B: DNA226536, TFRC, 237215_s_at
Figure 5535: PRO86085	Figure 5591: PRO36999
Figure 5536: DNA330925, 257787.1, 235985_at	Figure 5592: DNA330946, 023719.1, 237626_at
Figure 5537: PRO86086	Figure 5593: PRO86107
Figure 5538: DNA330926, 1446421.2, 236079_at	Figure 5594: DNA331698, 341647.1, 237741_at
Figure 5539: PRO86087	Figure 5595: PRO86693
Figure 5540: DNA330927, 1499766.1, 236156_at	Figure 5596: DNA330948, 305319.1, 237746_at
Figure 5541: PRO86088	Figure 5597: PRO86109
Figure 5542A-E: DNA328165, 327340.35, 236172_at	Figure 5598: DNA330949, 089765.7, 237759_at
Figure 5543: PRO38220	Figure 5599: PRO86110
Figure 5544: DNA330928, 227714.1, 236180_at	Figure 5600: DNA331699, 983684.2, 237953_at
Figure 5545: PRO86089	Figure 5601: PRO86694
Figure 5546: DNA329489, 338163.1, 236280_at	Figure 5602: DNA330951, 253376.3, 238012_at
Figure 5547: PRO85050	Figure 5603: PRO86112
Figure 5548: DNA257767, DNA257767, 236285_at	Figure 5604A-B: DNA330952, 333610.10,
Figure 5549: DNA288255, 236339.1, 236295_s_at	238021_s_at
Figure 5550: PRO70016	Figure 5605: PRO86113
Figure 5551: DNA331696, 215451.1, 236338_at	Figure 5606: DNA330953, BC019600, 238063_at
Figure 5552: PRO86691	Figure 5607: DNA331700, 983399.1, 238082_at
Figure 5553: DNA329490, 267918.1, 236347_at	Figure 5608: PRO86695
Figure 5554: PRO85051	Figure 5609: DNA330955, 311471.1, 238303_at
Figure 5555: DNA330930, 407665.1, 236379_at	Figure 5610: PRO86115
Figure 5556: PRO86091	Figure 5611: DNA330956, 329762.1, 238311_at
Figure 5557: DNA331697, 342862.1, 236419_at	Figure 5612: PRO86116
Figure 5558: PRO86692	Figure 5613: DNA329493, 337072.5, 238423_at
Figure 5559: DNA330932, 231907.4, 236470_at	Figure 5614: PRO85054 Figure 5615: DNA108695, DNA108695, 238508_at
Figure 5560: PRO86093	
Figure 5561: DNA330933, 407881.1, 236506_at	Figure 5616: PRO9743 Figure 5617: DNA330957, 003538.1, 238509_at
Figure 5562: PRO86094	O Company of the Comp
Figure 5563: DNA330934, 406491.1, 236595_at	Figure 5618: PRO86117 Figure 5619: DNA330958, 370339.1, 238541_at
Figure 5564: PRO86095	Figure 5620: PRO86118
Figure 5565: DNA330935, 229915.1, 236610_at	Figure 5621: DNA330959, 358161.17, 238545_at
Figure 5566: PRO86096 Figure 5567A-C: DNA330936, 351043.1, 236641_at	Figure 5622: PRO86119
Figure 5568: PRO86097	Figure 5623: DNA260158, DNA260158, 238551_at
Figure 5569: DNA330937, 205124.1, 236645_at	Figure 5624: DNA329495, 1447201.1, 238581_at
Figure 5570: PRO86098	Figure 5625: PRO85056
Figure 5571: DNA330938, 7688127.1, 236668_at	Figure 5626: DNA329496, AK056126, 238600_at
1 10010 001 11 DI 11 1000000, 1000101.11, 100000 mt	

Figure 5627: PRO85057	Figure 5683: PRO84103
Figure 5628: DNA329497, 232064.1, 238619_at	Figure 5684: DNA330983, 305289.1, 239448_at
Figure 5629: PRO85058	Figure 5685: PRO86142
Figure 5630: DNA330960, 001782.1, 238633_at	Figure 5686: DNA330984, 015432.1, 239476_at
Figure 5631: PRO86120	Figure 5687: PRO86143
Figure 5632: DNA330961, 903323.1, 238651_at	Figure 5688: DNA330985, 317098.1, 239494_at
Figure 5633: PRO86121	Figure 5689: PRO86144
Figure 5634A-B: DNA329499, 332504.1, 238778.at	Figure 5690: DNA330986, 215812.1, 239533_at
Figure 5635: PRO85060	Figure 5691: PRO86145
Figure 5636: DNA330962, 336371.2, 238893_at	Figure 5692: DNA330987, 116344.1, 239655_at
Figure 5637: PRO86122	Figure 5693: PRO86146
Figure 5638A-B: DNA330963, 241110.10, 238910.at	Figure 5694: DNA330988, 333476.1, 239680_at
Figure 5639: PRO86123	Figure 5695: PRO86147
Figure 5640: DNA331701, 337114.1, 238913_at	Figure 5696: DNA330989, 298825.1, 239695_at
Figure 5641: PRO86696	Figure 5697: PRO86148
Figure 5642: DNA330965, NP_443111.2, 238960_s_at	Figure 5698: DNA330990, 004652.1, 239721_at
Figure 5644: PNA 220066 212271 1 222027 at	Figure 5699: PRO86149 Figure 5700: DNA330991, 017874.1, 239757_at
Figure 5644: DNA330966, 213271.1, 238987 at	=
Figure 5645: PRO86126	Figure 5701: PRO86150 Figure 5702: DNA330992, AK027783, 239771_at
Figure 5646: DNA330967, 1499563.1, 238996_x_at Figure 5647: PRO86127	Figure 5703: PRO86151
Figure 5648: DNA330968, 005876.1, 239002_at	Figure 5703: 1 R080131 Figure 5704: DNA330993, 1439890.1, 239803 at
Figure 5649: PRO86128	Figure 5705: PRO86152
Figure 5650: DNA328194, 998827.1, 239049_at	Figure 5706: DNA330994, NP_115730.1, 239824_s_at
Figure 5651: PRO84097	Figure 5707: PRO86153
Figure 5652: DNA331702, 406864.3, 239062_at	Figure 5708A-C: DNA330995, 233142.9, 239897_at
Figure 5653: PRO86697	Figure 5709: PRO84857
Figure 5654: DNA330970, 026912.1, 239081_at	Figure 5710: DNA258952, DNA258952, 239901_at
Figure 5655: PRO86130	Figure 5711: DNA257698, DNA257698, 240070_at
Figure 5656: DNA330971, 413731.1, 239096_at	Figure 5712: DNA328206, 1384214.3, 240277_at
Figure 5657: PRO86131	Figure 5713: PRO84109
Figure 5658A-B: DNA330972, 141588.42, 239133_at	Figure 5714: DNA330996, 144353.1, 240347_at
Figure 5659: PRO86132	Figure 5715: PRO86154
Figure 5660: DNA330973, NP_003328.1, 239163_at	Figure 5716: DNA331703, 314831.10, 240452_at
Figure 5661: PRO10751	Figure 5717: PRO86698
Figure 5662: DNA330974, 348211.8, 239219_at	Figure 5718: DNA330998, 979930.1, 240665_at
Figure 5663: PRO86133	Figure 5719: PRO86156
Figure 5664: DNA330975, 207267.3, 239278_at	Figure 5720: DNA330999, 1454193.1, 240830_at
Figure 5665: PRO86134	Figure 5721: PRO86157
Figure 5666: DNA330976, 023223.1, 239328_at	Figure 5722: DNA331000, 7693121.3, 240890_at
Figure 5667: PRO86135	Figure 5723: PRO86158
Figure 5668: DNA329501, 205323.1, 239331_at	Figure 5724: DNA331704, CARS, 240983_s_at
Figure 5669: PRO85062	Figure 5725: PRO86699
Figure 5670: DNA330977, 996962.2, 239364_at	Figure 5726: DNA329504, 197187.1, 241365_at
Figure 5671: PRO86136	Figure 5727: PRO85065
Figure 5672: DNA330978, 039840.1, 239376_at	Figure 5728: DNA331001, 1499887.1, 241370_at
Figure 5673: PRO86137	Figure 5729: PRO86159
Figure 5674: DNA330979, 407730.7, 239388_at	Figure 5730: DNA331002, 231340.1, 241435_at
Figure 5675: PRO86138	Figure 5731: PRO86160
Figure 5676: DNA330980, 1134871.2, 239401_at	Figure 5732: DNA331003, 391185.30, 241495_at
Figure 5677: PRO86139	Figure 5733: PRO86161
Figure 5678: DNA330981, 406409.1, 239404_at	Figure 5734: DNA331004, 314498.1, 241505.at
Figure 5679: PRO86140	Figure 5735: PRO86162
Figure 5680: DNA330982, 980479.1, 239413_at	Figure 5736: DNA331005, 197725.1, 241722_x_at
Figure 5681: PRO86141	Figure 5737: PRO86163
Figure 5682: DNA328200, 405394.1, 239442_at	Figure 5738: DNA329505, BC017102, 241734_at

Figure 5739: DNA331006, 193718.1, 241740_at	Figure 5795: PRO86701
Figure 5740: PRO86164	Figure 5796: DNA331707, 330870.5, 242625_at
Figure 5741: DNA331007, 405858.1, 241756_at	Figure 5797: PRO86702
Figure 5742: PRO86165	Figure 5798: DNA331030, 407930.2, 242648_at
Figure 5743: DNA331705, 428179.1, 241775_at	Figure 5799: PRO86188
Figure 5744: PRO86700	Figure 5800: DNA331031, 405967.1, 242669_at
Figure 5745: DNA 195721, DNA 195721, 241819_at	Figure 5801: PRO86189
Figure 5746: DNA331009, 222011.1, 241824_at	Figure 5802A-C: DNA331708, NP_006258.2,
Figure 5747: PRO86167	242712_x_at
Figure 5748: DNA331010, 218800.1, 241843.at	Figure 5803: PRO86703
Figure 5749: PRO86168	Figure 5804A-C: DNA331033, AF330045, 242722.at
Figure 5750: DNA331011, 979953.1, 241859_at	Figure 5805: PRO86191
Figure 5751: PRO86169	Figure 5806: DNA331034, 7689086.1, 242735_x_at
Figure 5752: DNA331012, 030070.1, 241869_at	Figure 5807: PRO86192
Figure 5753: PRO86170	Figure 5808: DNA331035, 210512.1, 242783_at
Figure 5754: DNA331013, 406509.1, 241924_at	Figure 5809: PRO86193
Figure 5755: PRO86171	Figure 5810: DNA331036, 360991.1, 242836_at
Figure 5756: DNA329506, NP_387510.1, 241937_s_at	Figure 5811: PRO86194
Figure 5757: PRO85067	Figure 5812: DNA328224, 028975.1, 242859_at
Figure 5758: DNA331014, 1447958.2, 241985_at	Figure 5813: PRO84127
Figure 5759: PRO86172	Figure 5814: DNA331037, 206873.1, 242890_at
Figure 5760: DNA331015, 109159.1, 242031.at	Figure 5815: PRO86195
Figure 5761: PRO86173	Figure 5816: DNA331709, 017276.1, 242903_at
Figure 5762: DNA331016, 229438.1, 242051_at	Figure 5817: PRO86704
Figure 5763: PRO86174	Figure 5818: DNA331710, 227540.15, 242960_at
Figure 5764: DNA328213, 419856.5, 242059_at	Figure 5819: PRO86705
Figure 5765: PRO84116	Figure 5820: DNA331711, 427600.1, 243006_at
Figure 5766: DNA331017, 409906.7, 242060_x_at	Figure 5821: PRO86706
Figure 5767: PRO86175	Figure 5822: DNA331041, 982079.2, 243030_at
Figure 5768: DNA331018, 355930.1, 242110_at	Figure 5823: PRO86199
Figure 5769: PRO86176	Figure 5824: DNA331042, 019764.1, 243037_at
Figure 5770: DNA331019, 234788.2, 242245_at	Figure 5825: PRO86200
Figure 5771: PRO86177	Figure 5826: DNA331043, 005042.1, 243134_at
Figure 5772: DNA331020, 403459.1, 242261.at	Figure 5827: PRO86201
Figure 5773: PRO86178	Figure 5828: DNA331044, 226264.10, 243154_at
Figure 5774: DNA331021, 017309.1, 242268_at	Figure 5829: PRO86202
Figure 5775: PRO86179	Figure 5830: DNA331045, 066434.1, 243222_at
Figure 5776: DNA331022, BC009627, 242304_at	Figure 5831: PRO86203
Figure 5777: DNA331023, 119753.1, 242362_at	Figure 5832: DNA331712, 005752.1, 243271_at
Figure 5778: PRO86181	Figure 5833: PRO86707
Figure 5779: DNA331024, 028992.1, 242388_x_at	Figure 5834: DNA331047, BC020624, 243362_s_at
Figure 5780: PRO86182	Figure 5835: DNA331048, 7688599.1, 243366.s_at
Figure 5781: DNA328220, 239839.1, 242405_at	Figure 5836: PRO86206
Figure 5782: PRO84123	Figure 5837: DNA331049, 402027.4, 243395_at
Figure 5783: DNA331025, 127891.1, 242457_at	Figure 5838: PRO86207
Figure 5784: PRO86183	Figure 5839: DNA331713, 982999.2, 243423_at
Figure 5785: DNA328221, 221374.1, 242471_at	Figure 5840: PRO86708
Figure 5786: PRO84124	Figure 5841: DNA331051, 306804.1, 243469_at
Figure 5787: DNA257874, DNA257874, 242517_at	Figure 5842: PRO86209
Figure 5788: DNA331026, 014632.1, 242518_at	Figure 5843: DNA331714, 332965.1, 243496_at
Figure 5789: PRO86184	Figure 5844: PRO86709
Figure 5790: DNA331027, 053796.1, 242560_at	Figure 5845: DNA331053, 243689.1, 243509_at
Figure 5791: PRO86185	Figure 5846: PRO86211
Figure 5792: DNA331028, 7693434.1, 242606_at	Figure 5847: DNA331715, 7683458.1, 243514_at
Figure 5793: PRO86186	Figure 5848: PRO86710
Figure 5794: DNA331706, 351474.1, 242617_at	Figure 5849: DNA331055, 1512996.3, 243561_at
-	

Figure 5850: PRO86213	Figure 5904: PRO86712
Figure 5851: DNA258957, DNA258957, 243631_at	Figure 5905: DNA331718, AK024409, DNA92232_at
Figure 5852: DNA331056, 218946.1, 243759_at	Figure 5906: PRO86713
Figure 5853: PRO86214	Figure 5907: DNA96866, DNA96866, DNA96866_at
Figure 5854: DNA194184, DNA194184, 243764_at	Figure 5908: PRO6015
Figure 5855: PRO23576	Figure 5909: DNA331073, BC011775, DNA101926_at
Figure 5856: DNA331057, 031316.1, 243888_at	Figure 5910: PRO86229
Figure 5857: PRO86215	Figure 5911: DNA108670, DNA108670,
Figure 5858: DNA331058, 400813.1, 243918_at	DNA108670_at
Figure 5859: PRO86216	Figure 5912: PRO7171
Figure 5860: DNA331059, 035870.32, 243934_at	Figure 5913: DNA304467, BC004535, DNA108688_at
Figure 5861: PRO86217	Figure 5914: PRO71043
Figure 5862: DNA210271, DNA210271, 243999_at	Figure 5915A-B: DNA108728, DNA108728,
Figure 5863: PRO33803	DNA108728_at
Figure 5864A-B: DNA331060, 406931.1, 244008_at	Figure 5916: PRO9741
Figure 5865: PRO86218	Figure 5917: DNA329215, ICOS, DNA108917_at
Figure 5866: DNA331061, 198683.4, 244026_at	Figure 5918: PRO7424
Figure 5867: PRO86219	Figure 5919: DNA331719, BC002424, DNA143288_at
Figure 5868: DNA331062, BC021973, 244052_at	Figure 5920: PRO12705
Figure 5869: PRO23771	Figure 5921A-B: DNA150956, HUMORFKG1P,
Figure 5870: DNA331716, 212607.1, 244267_at	DNA150956_at
Figure 5871: PRO86711	Figure 5922: DNA330417, APOL6, DNA164989_at
Figure 5872: DNA331064, 006039.1, 244313_at	Figure 5923: PRO21341
Figure 5873: PRO86221	Figure 5924: DNA329483, AF384857, DNA166819_at
Figure 5874: DNA108738, DNA108738, 244321_at	Figure 5925: PRO20110
Figure 5875: PRO9822	Figure 5926: DNA26842, DNA26842, P_Z64949_at
Figure 5876: DNA331065, 341348.1, 244382.at	Figure 5927: PRO180 Figure 5928: DNA304468, NP_077300.1, P_Z93700_at
Figure 5877: PRO86222	Figure 5929: PRO71044
Figure 5878: DNA331066, 207228.1, 244443.at	Figure 5930: DNA39423, DNA39423, P_X52252_at
Figure 5879: PRO86223	Figure 5931: PRO271
Figure 5880: DNA328239, 331922.4, 244450.at Figure 5881: PRO84142	Figure 5932: DNA330262, GW112, P.Z64962_at
Figure 5882: DNA331067, 164869.1, 244599_at	Figure 5933: PRO85493
Figure 5883: PRO86224	Figure 5934: DNA331074, AF252257, P_A37030_at
Figure 5884: DNA331068, 337465.1, 244677_at	Figure 5935: DNA60764, DNA60764, P_A46906_at
Figure 5885: PRO86225	Figure 5936: PRO1265
Figure 5886: DNA329512, 336575.1, 244780_at	Figure 5937: DNA331720, AF289594, P_A37063_at
Figure 5887: PRO85073	Figure 5938: PRO86714
Figure 5888: DNA331069, 008651.1, 244798_at	Figure 5939: DNA331721, BC017876, P_A37079_at
Figure 5889: PRO86226	Figure 5940: PRO71045
Figure 5890: DNA331070, 393412.1, 244801_at	Figure 5941: DNA76401, DNA76401, P_A37126_at
Figure 5891: PRO86227	Figure 5942: PRO1575
Figure 5892: DNA331071, 343563.1, 244869.at	Figure 5943: DNA304475, NP_116246.1, P_A37128_at
Figure 5893: PRO86228	Figure 5944: PRO71049
Figure 5894A-B: DNA254566, BAA11502.1,	Figure 5945: DNA66480, HSAPO1, NM_000043_at
D80007_at	Figure 5946: PRO1207
Figure 5895: PRO49669	Figure 5947: DNA88195, CD3G, NM_000073_at
Figure 5896: DNA328961, BC011049, DNA36995_at	Figure 5948: PRO2693
Figure 5897: PRO84667	Figure 5949: DNA325712, CDK4, NM_000075_at
Figure 5898A-B: DNA331072, AB046821,	Figure 5950: PRO82194
DNA53991_at	Figure 5951: DNA329934, BC013083, NM_000099_at
Figure 5899: DNA327200, KSP37, DNA59602_at	Figure 5952: PRO2721
Figure 5900: PRO1065	Figure 5953A-B: DNA331722, HUMFVA,
Figure 5901: DNA327205, GBP5, DNA61875_at	NM_000130_at
Figure 5902: PRO83478	Figure 5954: PRO36374
Figure 5903: DNA331717, BC020203, DNA71289_at	Figure 5955: DNA331723, U66095, NM_000161_at

Figure 5956: PRO86715 Figure 5999: PRO65 Figure 5957: DNA227668, HUMGLYKINB, Figure 6000A-B: DNA331732, HSCCR5AB2, NM_000167_at NM_000579_at Figure 5958: PRO38131 Figure 6001: PRO25194 Figure 5959A-D: DNA331724, HSGLA, Figure 6002: DNA290585, NP_000573.1, NM_000169_at NM_000582_f_at Figure 5960: DNA331725, BC006342, NM_000175_at Figure 6003: PRO70536 Figure 5961: DNA150823, NP_000185.1, Figure 6004: DNA216500, NP_000575.1, NM_000194_at NM_000584_at Figure 5962: PRO12810 Figure 6005: PRO34252 Figure 5963: DNA331726, HUMICAMA1A, Figure 6006: DNA36712, HUMIL3, NM_000588_at NM_000201_at Figure 6007: PRO67 Figure 5964: PRO86716 Figure 6008A-B: DNA331733, AF361105, Figure 5965A-B: DNA88419, HSINTA6R, NM_000590_at NM_000210_at Figure 6009: DNA331734, BC014081, NM_000593_at Figure 5966: PRO2339 Figure 6010: PRO36996 Figure 5967: DNA88428, HUMLAP, NM_000211_at Figure 6011A-B: DNA331735, AY066019, Figure 5968: PRO2787 NM_000594_at Figure 5969: DNA226014, NP_000230.1, Figure 6012A-B: DNA331736, AY070490, NM_000239_at NM_000595_at Figure 5970: PRO36477 Figure 6013: DNA331737, BC009902, NM_000597_at Figure 5971: DNA97287, NP_000240.1, Figure 6014: PRO2587 NM_000249_at Figure 6015: DNA217246, NP_000591.1, Figure 5972: PRO3634 NM_000600_at Figure 5973: DNA88554, NP_000241.1, Figure 6016: PRO34288 NM_000250_at Figure 6017: DNA331075, NP_000601.2, Figure 5974: PRO2839 NM_000610_at Figure 5975: DNA331727, BC008015, NM_000269_at Figure 6018: PRO86231 Figure 5976: PRO37534 Figure 6019A-C: DNA331738, AF375790, Figure 5977A-E: DNA331728, PTEN4, NM_000314_at NM_000619_at Figure 5978: DNA83020, NP_000349.1, Figure 6020A-B: DNA220752, ITGAM, NM_000358_at NM_000632_at Figure 5979: PRO2561 Figure 6021: PRO34730 Figure 5980: DNA227081, EGR2, NM_000399_at Figure 6022A-B: DNA97288, HUMBCL2C, Figure 5981: PRO37544 NM_000633_at Figure 5982: DNA76512, HSIL2REC, NM_000417_at Figure 6023: PRO3635 Figure 5983: PRO2020 Figure 6024: DNA331739, A12178, NM_000636_at Figure 5984: DNA76514, HSIL4R, NM_000418_at Figure 6025: PRO86720 Figure 5985: PRO2540 Figure 6026: DNA331740, HUMHPC, NM_000639_at Figure 5986: DNA329522, NP_000433.2, Figure 6027: PRO1208 NM_000442_at Figure 6028: DNA329000, HSU03905, NM_000647_at Figure 5987: PRO85080 Figure 6029: PRO84690 Figure 5988: DNA188732, NP_000475.1, Figure 6030: DNA328253, NP_004029.1, NM_000484_at NM_000699_at Figure 5989: PRO25302 Figure 6031: PRO84149 Figure 5990: DNA331729, AF281258, NM_000517_at Figure 6032: DNA89242, ANXA1, NM_000700_at Figure 5991: DNA331730, BC014514, NM_000527_at Figure 6033: PRO2907 Figure 5992: PRO2915 Figure 6034: DNA88194, CD3E, NM_000733_at Figure 5993: DNA331731, HSASM2MR, Figure 6035: PRO2220 NM_000543_at Figure 6036: DNA329975, PRO2325, NM_000791_at Figure 5994: DNA76516, IL6R, NM_000565_at Figure 6037: DNA331741, BC003097, NM_000873_at Figure 5995: PRO2022 Figure 6038: PRO86721 Figure 5996: DNA36718, HUMIL10, NM_000572_at Figure 6039: DNA331076, HSIFNABR, Figure 5997: PRO73 NM_000874_at Figure 5998: DNA324158, NP_000567.1, Figure 6040: PRO86232 NM_000576_at Figure 6041A-B: DNA83101, NP_000868.1,

Figure 6086: PRO86723 NM_000877_at Figure 6087: DNA188346, FLT3LG, NM_001459_at Figure 6042: PRO2590 Figure 6043A-B: DNA76508, A07795, NM_000878_at Figure 6088: PRO21766 Figure 6089: DNA227173, HSU93049, NM_001465_at Figure 6044: PRO2538 Figure 6090: PRO37636 Figure 6045: DNA36714, NP_000870.1, Figure 6091A-B: DNA331747, GABBR1, NM_000879_at NM_001470_at Figure 6046: PRO69 Figure 6047A-B: DNA88417, HSINTALA, Figure 6092: PRO86724 Figure 6093A-B: DNA76503, IL10RA, NM_001558_at NM_000885_at Figure 6094: PRO2536 Figure 6048: PRO2337 Figure 6095A-B: DNA227750, IL12RB2, Figure 6049: DNA88433, HUMINTB7A, NM_001559_at NM_000889_at Figure 6096: PRO38213 Figure 6050: PRO2346 Figure 6097: DNA76556, HSU03397, NM_001561_at Figure 6051: DNA226053, NP_000908.1, Figure 6098: PRO2023 NM_000917_at Figure 6099: DNA82362, CXCL10, NM_001565_at Figure 6052: PRO36516 Figure 6100: PRO1718 Figure 6053A-B: DNA331742, BC018127, Figure 6101: DNA227013, NP_001560.1, NM_000919_at Figure 6054: PRO86722 NM_001569_at Figure 6055: DNA227709, PTGER2, NM_000956_at Figure 6102: PRO37476 Figure 6103: DNA331748, BC009799, NM_001657_at Figure 6056: PRO38172 Figure 6057: DNA226195, NP_000949.1, Figure 6104: PRO46 Figure 6105: DNA150716, HSZNFNPRA, NM_000958_at NM_001706_at Figure 6058: PRO36658 Figure 6059: DNA327639, TCN1, NM_001062_at Figure 6106: PRO12790 Figure 6107: DNA331077, HUMBGPAB, Figure 6060: PRO83640 NM_001712_at Figure 6061A-B: DNA150748, ADCY7, NM_001114_at Figure 6108: PRO86233 Figure 6062: PRO12446 Figure 6109: DNA150718, NP_001727.1, Figure 6063: DNA171404, HSU45878, NM_001165_at NM_001736_at Figure 6064: PRO20132 Figure 6110: PRO12435 Figure 6111A-B: DNA226387, HSCYCLF, Figure 6065: DNA331743, AAA19687.1, NM_001168_at NML001761_at Figure 6112: PRO36850 Figure 6066: PRO12242 Figure 6113: DNA329002, CCT6A, NM_001762_at Figure 6067A-B: DNA325972, BC018739, Figure 6114: PRO4912 NM_001211_at Figure 6115: DNA226380, HSCD37, NM_001774_at Figure 6068: PRO82417 Figure 6116: PRO4695 Figure 6069: DNA287267, CCNA2, NM_001237_at Figure 6117: DNA331749, D84277, NM_001775_at Figure 6070: PRO37015 Figure 6118: PRO86725 Figure 6071: DNA196674, D86042, NM_001243_at Figure 6119: DNA88199, HUMMEMGL1, Figure 6072: PRO2938 NML001778_at Figure 6073: DNA325568, BC017575, NM_001274_at Figure 6120: PRO2696 Figure 6074: PRO12187 Figure 6121: DNA226436, CD69, NM_001781_at Figure 6075: DNA226177, CCR1, NM_001295_at Figure 6122: PRO36899 Figure 6076: PRO36640 Figure 6123: DNA331750, A23013, NM_001803_at Figure 6077: DNA331744, CTSW, NM_001335_at Figure 6124: PRO2496 Figure 6078: PRO1574 Figure 6125: DNA151798, NP_001797.1, Figure 6079: DNA93466, HUMEDG, NM_001400_at NM_001806_at Figure 6080: PRO4936 Figure 6126: PRO12186 Figure 6081: DNA331745, HSU77085, NM_001423_at Figure 6127: DNA227232, SLC31A1, NM_001859_at Figure 6082: PRO12467 Figure 6128: PRO37695 Figure 6083A-C: DNA151167, HSABP280, Figure 6129: DNA331751, S68134, NM_001881_at NML001456_at Figure 6130: PRO86726 Figure 6084: PRO12867 Figure 6085A-C: DNA331746, AF043045, Figure 6131: DNA331078, NP_001894.1, NML001903_at NM_001457_at

Figure 6132: PRO86234 Figure 6179: DNA227014, NP_002190.1, NM_002199_at Figure 6133: DNA331752, BC010240, NM_001908_at Figure 6180: PRO37477 Figure 6134: PRO86727 Figure 6181A-B: DNA88427, HSFNRB, Figure 6135: DNA225810, HSCATHL, NM_001912_at Figure 6136: PRO36273 NM_002211_at Figure 6182: PRO2786 Figure 6137: DNA83048, DEFA4, NM_001925_at Figure 6183: DNA103215, NP_002210.1, Figure 6138: PRO2057 Figure 6139: DNA88215, NP_001919.1, NM_002219_at NM_001928_at Figure 6184: PRO4545 Figure 6185: DNA331758, S82269, NM_002222_at Figure 6140: PRO2703 Figure 6186: PRO86731 Figure 6141: DNA196562, HSPCHDP7, Figure 6187: DNA331759, BC002646, NM_002228_at NM_001935_at Figure 6142: PRO25042 Figure 6188: PRO4671 Figure 6189: DNA331760, BC009466, NM_002229_at Figure 6143: DNA226871, NP_001942.1, Figure 6190: PRO4650 NM_001951_at Figure 6191A-B: DNA331761, AF305731S5, Figure 6144: PRO37334 NM_002250_at Figure 6145: DNA227332, NP_001943.1, Figure 6192: DNA150971, KLRB1, NM_002258_at NM_001952_at Figure 6193: PRO12564 Figure 6146: PRO37795 Figure 6194: DNA326343, BC003572, NM_002265_at Figure 6147: DNA225661, ECGF1, NM_001953_at Figure 6195: PRO82739 Figure 6148: PRO36124 Figure 6196: DNA288243, LAG3, NM_002286_at Figure 6149: DNA273174, HSEF1DELA, Figure 6197: PRO36451 NM_001960_at Figure 6198A-B: DNA188301, LIF, NM_002309_at Figure 6150: PRO61211 Figure 6199: PRO21834 Figure 6151: DNA150779, HUMETR103, Figure 6200A-B: DNA331762, HUMLYTOXBB, NM_001964_at NM_002341_at Figure 6152: PRO12798 Figure 6201: DNA88666, NP_002334.1, Figure 6153: DNA331753, HUMENOG, NML002343_at NM_001975_at Figure 6202: PRO2892 Figure 6154: PRO38010 Figure 6203: DNA227150, LY6E, NM_002346_at Figure 6155: DNA331754, BC002464, NM_001992_at Figure 6204: PRO37613 Figure 6156: PRO86728 Figure 6205: DNA327255, BC001061, NM_002394_at Figure 6157: DNA331755, D83920, NM_002003_at Figure 6206: PRO57298 Figure 6158: PRO86729 Figure 6207: DNA150937, HSU94352, NM_002405_at Figure 6159: DNA226881, HUMERGBFLI, Figure 6208: PRO11598 NM_002017_at Figure 6209: DNA82376, CXCL9, NM_002416_at Figure 6160: PRO37344 Figure 6210: PRO1723 Figure 6161: DNA88332, FVT1, NM_002035_at Figure 6211: DNA103283, MNDA, NM_002432_at Figure 6162: PRO2753 Figure 6212: PRO4613 Figure 6163: DNA225979, G1P3, NM_002038_at Figure 6213: DNA103525, NP_002457.1, Figure 6164: PRO36442 NM_002466_at Figure 6165: DNA331756, BC002666, NM_002053_at Figure 6214: PRO4852 Figure 6166: PRO12478 Figure 6215A-B: DNA331763, AF058696, Figure 6167: DNA88374, GZMK, NM_002104_at Figure 6168: PRO2768 NM_002485_at Figure 6169: DNA228014, ICAM3, NM_002162_at Figure 6216: PRO36001 Figure 6217: DNA103382, HSU49395, NM_002561_at Figure 6170: PRO38477 Figure 6171: DNA331757, A17548, NM_002167_at Figure 6218: PRO4711 Figure 6219A-B: DNA88331, HSFUR, NM_002569_at Figure 6172: PRO86730 Figure 6173: DNA76517, IL7R, NM_002185_at Figure 6220: PRO2752 Figure 6221: DNA103488, PCNA, NM_002592_at Figure 6174: PRO2541 Figure 6222: PRO4815 Figure 6175: DNA188271, NP_002179.1, Figure 6223: DNA328587, NP_002612.1, NM_002188_at NM_002621_at Figure 6176: PRO21795 Figure 6224: PRO2854 Figure 6177: DNA226396, IL15RA, NM_002189_at Figure 6225: DNA331764, NP_071438.1, Figure 6178: PRO36859

NM_003332_at NM_002624_at Figure 6271: DNA331771, HSU76367, NM_003355_at Figure 6226: PRO86732 Figure 6272: PRO86733 Figure 6227: DNA227067, HSPKCB1A, Figure 6273: DNA151906, HSUNG, NM_003362_f_at NM_002738_at Figure 6274: PRO12214 Figure 6228: PRO37530 Figure 6275: DNA103380, HUMVDAC1X, Figure 6229: DNA227090, NP_002750.1, NM_003374_at NML002759_at Figure 6230: PRO37553 Figure 6276: PRO4710 Figure 6231: DNA88626, HUMSAPABCD, Figure 6277: DNA225992, NP-003374.1, NM_003383_at NM_002778_at Figure 6232: PRO2875 Figure 6278: PRO36455 Figure 6233: DNA329098, BC007897, NM_002808_at Figure 6279: DNA227330, NP_003443.1, Figure 6234: PRO84749 NM_003452_at Figure 6280: PRO37793 Figure 6235: DNA326853, NP_002818.1, Figure 6281: DNA93449, AF025375, NM_003467_at NM_002827_at Figure 6282: PRO4516 Figure 6236: PRO38066 Figure 6283: DNA331772, BC010022, NM_003504_at Figure 6237: DNA88607, NP_002892.1, Figure 6284: PRO71058 NM_002901_at Figure 6285: DNA331773, AF123318, NM_003550_at Figure 6238: PRO2863 Figure 6286: PRO86734 Figure 6239: DNA331765, AF294009, NM_002934_at Figure 6287: DNA331079, AF036342, NM_003650_at Figure 6240: PRO2444 Figure 6288: PRO1191 Figure 6241: DNA331766, AF043339, NM_002983_at Figure 6289: DNA328260, AF305428, NM_003661_at Figure 6242: DNA51778, HSHC21, NM_002984_at Figure 6290; PRO84152 Figure 6243: PRO80 Figure 5291: DNA151802, AB004066, NM_003670_at Figure 6244: DNA330124, CCL22, NM_002990_at L'igure 6292: PRO12890 Figure 6245: PRO34107 Figure 6293: DNA227213, NP-003671.1, Figure 6246: DNA227788, NP_002995.1, NM_003680_at NM_003004_at Figure 6294: PRO37676 Figure 6247: PRO38251 Figure 6295: DNA331774, AK001769, NM_003730_at Figure 6248: DNA329005, IISUG5017, NM_003037_at Figure 6296: PRO86735 Figure 62-19: PKO12612 Figure 6297: DNA150433, AB005043, NM_003745_at Figure 6250: DNA196489, HUMMCT, NM_003051_at Figure 6298: PRO12771 Figure 6251: PRO24980 Figure 6299: DNA328377, NP_003759.1, Figure 6252A-B: DNA103542, HSLR11, NM_003768_at NM_003105_at Figure 6300: PRO84232 Figure 6253: PRO4869 Figure 6301: DNA194746, HSM800355, Figure 6254: DNA331767, D78130, NM_003129_at NM_003798_at Figure 6255: PRO37946 Figure 6256: DNA328259, AF029311, NM_003150_at Figure 6302: DNA196431, AF064090, NM_003807_at Figure 6303: PRO5810 Figure 6257: DNA227447, HSTCF1C, NM_003202_at Figure 6304: DNA61870, HSU57059, NM_003810_at Figure 6258: PRO37910 Figure 6305: PRO1096 Figure 6259A-B: DNA226536, HSTRR, Figure 6306A-B: DNA200236, NP_003807.1, NM_003234_at NM_003816_at Figure 6260: PRO36999 Figure 6307: PRO34137 Figure 6261A-B: DNA83176, TGFBR3, Figure 6308: DNA331775, BC000334, NM_003824_at NM_003243_at Figure 6262: PRO2620 Figure 6309: PRO4801 Figure 6263: DNA103532, TM7SF1, NM_003272_at Figure 6310: DNA331080, NP_003835.2, Figure 6264: PRO4859 NM_003844_at Figure 6311: PRO86235 Figure 6265A-B: DNA103585, HUMTOPI, Figure 6312: DNA225550, IL18RAP, NM_003853_at NM_003286_at Figure 6266: PRO4909 Figure 6313: PRO36013 Figure 6314: DNA103451, IL18R1, NM_003855_at Figure 6267: DNA331768, BC007935, NM_003316_at Figure 6315: PRO4778 Figure 6268: PRO22907 Figure 6316: DNA151011, AF037989, NM_003877_at Figure 6269: DNA331769, AF065241, NM_003329_at Figure 6270A-B: DNA331770, AF019563, Figure 6317: PRO12839

Figure 6318: DNA331776, IER3, NM_003897_at NM_004573_at Figure 6319: PRO84760 Figure 6362: PRO12198 Figure 6320A-B: DNA150765, SLC7A6, Figure 6363: DNA328262, HSU57094, NM_004580_at NM_003983_at Figure 6364: PRO84153 Figure 6321: PRO12458 Figure 6365: DNA331781, HSU77035, NM_004591_at Figure 6322: DNA88308, HUMFCREA, Figure 6366: PRO1724 Figure 6367: DNA331782, HUMVAIPR, NM_004106_at Figure 6323: PRO2739 NM_004624_at Figure 6324A-B: DNA331777, AF200219S2, Figure 6368: DNA329984, WRB, NM_004627_at NML004107_at Figure 6369: PRO11656 Figure 6325: DNA227133, GBP2, NM_004120_at Figure 6370: DNA329119, NP_004633.1, Figure 6326: PRO37596 NML004642_at Figure 6327: DNA83091, HUMSP13E, NM_004131_at Figure 6371: PRO4550 Figure 6372: DNA328578, NP_004656.2, Figure 6328: PRO2081 Figure 6329A-B: DNA151108, SREBF1, NM_004665_at NM_004176_at Figure 6373: PRO7426 Figure 6330: PRO12105 Figure 6374: DNA331783, BC011726, NM_004706_at Figure 6331: DNA218676, AF125304, NM_004195_at Figure 6375: PRO86737 Figure 6332: PRO34454 Figure 6376: DNA218284, AF053004, NM_004843_at Figure 6333: DNA103394, HSU81800, NM_004207_at Figure 6377: PRO34336 Figure 6334: PRO4722 Figure 6378: DNA151017, AB005047, NM_004844_at Figure 6335: DNA329533, BC018782, NM_004221_at Figure 6379: PRO12841 Figure 6336: PRO85085 Figure 6380A-B: DNA150447, AB011098, Figure 6337: DNA331778, AK027513, NM_004265_at NM_004863_at Figure 6338: PRO86736 Figure 6381: PRO12256 Figure 6339: DNA151142, NP_004321.1, Figure 6382: DNA88295, HUMERP72H, NM_004330_at NM_004911_at Figure 6340: PRO12110 Figure 6383: PRO2733 Figure 6341: DNA227303, NP_004322.1, Figure 6384: DNA331784, AB001325, NM_004925_at NM_004331_at Figure 6385: PRO3802811 Figure 6342: PRO37766 Figure 6386A-B: DNA331785, DSC1, NM_004948_at Figure 6343: DNA287240, BST2, NM_004335_at Figure 6387: PRO36355 Figure 6344: PRO29371 Figure 6388: DNA227563, NP_004946.1, Figure 6345: DNA225910, NP_004336.1, NM_004955_at NM_004345_at Figure 6389: PRO38026 Figure 6346: PRO36373 Figure 6390: DNA331786, HUMSTPK13, Figure 6347: DNA331779, CASP3, NM_004346_at NM_005030_at Figure 6348: PRO12832 Figure 6391: PRO86738 Figure 6349A-B: DNA326191, NP_004351.1, Figure 6392: DNA329011, BCL3, NM_005178_at NM_004360_at Figure 6393: PRO4785 Figure 6350: PRO2672 Figure 6394: DNA331787, AF213050, NM_005192_at Figure 6351A-C: DNA150729, HSU47741, Figure 6395: PRO86739 NM_004380_at Figure 6396: DNA103330, HUMPOPSTK, Figure 6352: PRO12147 NM_005204_at Figure 6353A-B: DNA151420, S40832, Figure 6397: PRO4660 NM_004430_at Figure 6398: DNA331788, HUMIGCTL3, Figure 6354: PRO12876 NM_005214_at Figure 6355A-B: DNA218283, EPHB6, Figure 6399: DNA325060, NP_004075.1, NM_004445_at NM_005217_at Figure 6356: PRO34335 Figure 6400: PRO2570 Figure 6357: DNA331780, BC003110, NM_004512_at Figure 6401: DNA331789, HSCFOS, NM_005252_at Figure 6358: PRO4843 Figure 6402: DNA304668, HSPA1A, NM_005346_at Figure 6359: DNA150935, NP_004547.1, Figure 6403: PRO71095 NM_004556_at Figure 6404: DNA331790, HUMCMYBA, Figure 6360: PRO12155 NM_005375.at Figure 6361A-B: DNA151831, NP_004564.1, Figure 6405: DNA227376, NP_005393.1,

NM_005822_at NM_005402_at Figure 6451: PRO11599 Figure 6406: PRO37839 Figure 6452: DNA329538, BC001731, NM_005898_at Figure 6407: DNA331791, BC005292, NM_005409_at Figure 6453: PRO85088 Figure 6408: PRO19838 Figure 6454: DNA324110, MDH1, NM_005917_at Figure 6409: DNA329319, TOSO, NM_005449_at Figure 6455: PRO4918 Figure 6410: PRO1607 Figure 6456: DNA328266, NP_005993.1, Figure 6411A-B: DNA189702, AF047348, NM_006002_at NM_005503_at Figure 6457: PRO12125 Figure 6412: PRO22775 Figure 6458: DNA150941, NP_006012.1, Figure 6413: DNA150989, HSP27, NM_005532_at NM_006021_at Figure 6414: PRO12569 Figure 6459: PRO12548 Figure 6415A-C: DNA331792, HUMOP18A, Figure 6460: DNA227138, NP_006045.1, NM_005563_at Figure 6416: DNA97285, LDHA, NM_005566_at NM_006054_at Figure 6417: PRO3632 Figure 6461: PRO37601 Figure 6462: DNA88614, HSRING6, NM_006120_at Figure 6418: DNA225675, LMAN1, NM_005570_at Figure 6463: PRO2867 Figure 6419: PRO36138 Figure 6464: DNA331795, NP_006129.2, Figure 6420: DNA331793, AF148645, NM_005614_at NM_006138_at Figure 6421: PRO37938 Figure 6465: PRO81984 Figure 6422: DNA331794, BC001263, NM_005627_at Figure 6466: DNA331796, HUMCD284, Figure 6423: PRO86741 Figure 6424: DNA226500, NP_005619.1, NM_006139_at Figure 6467: DNA330114, GPR19, NM_006143_at NM_005628_at Figure 6468: PRO4946 Figure 6425: PRO36963 Figure 6469: DNA88372, HUMHFSP, NM_006144_at Figure 6426A-B: DNA227206, NP_005648.1, Figure 6470: PRO2312 NM_005657_at Figure 6471: DNA103526, HSU10485, NM_006152_at Figure 6427: PRO37669 Figure 6472: PRO4853 Figure 6428: DNA323937, NP-005689.2, Figure 6473: DNA331797, BC020544, NM_006159_at NM_005698_at Figure 6474: PRO2520 Figure 6429: PRO80670 Figure 6475: DNA151049, S74017, NM_006164_at Figure 6430: DNA331081, NP_005714.2, Figure 6476: PRO12170 NM_005723_at Figure 6477A-B: DNA151841, HUMA20, Figure 6431: PRO4845 NM_006290_at Figure 6432: DNA304459, PPIF, NM_005729_at Figure 6478: PRO12904 Figure 6433: PRO37073 Figure 6479: DNA331798, TSG101, NM_006292_at Figure 6434A-B: DNA331082, AF057299, NM_005732_at Figure 6480: PRO86742 Figure 6481: DNA83109, HUMIIP, NM_006332_at Figure 6435: PRO86236 Figure 6436: DNA88541, PBEF, NM_005746_at Figure 6482: PRO2592 Figure 6437: PRO2834 Figure 6483: DNA331799, AY034481, NM_006372_at Figure 6438: DNA329014, EBI3, NM_005755_at Figure 6484: PRO83688 Figure 6485: DNA329540, UBD, NM_006398_at Figure 6439: PRO9998 Figure 6440: DNA93548, NP_005758.1, Figure 6486: PRO85090 Figure 6487: DNA331800, BC007107, NM_006406_at NM_005767_at Figure 6441: PRO4929 Figure 6488: PRO12111 Figure 6489: DNA331801, BC012589, NM_006419_at Figure 6442: DNA331083, NP_005759.2, Figure 6490: PRO21708 NM_005768_at Figure 6491: DNA227795, CCT7, NM_006429_at Figure 6443: PRO86237 Figure 6492: PRO38258 Figure 6444: DNA193866, AF081675, NM_005810_at Figure 6493: DNA329225, BC005926, NM_006495_at Figure 6445: PRO23288 Figure 6446: DNA75525, GPA33, NM_005814_at Figure 6494: PRO84833 Figure 6495: DNA327702, AF074002, NM_006499_at Figure 6447: PRO2524 Figure 6496: PRO83684 Figure 6448A-B: DNA88650, TACTILE, Figure 6497: DNA151804, RELB, NM_006509_at NM_005816_at Figure 6498: PRO12188 Figure 6449: PRO2460 Figure 6499A-B: DNA331802, AF012108, Figure 6450: DNA150959, NP-005813.1,

NM_006534_at Figure 6544: PRO23937 Figure 6500: PRO86743 Figure 6545: DNA331086, AB027467, NM_012112_at Figure 6501: DNA93439, HSY13248, NM_006564_at Figure 6546: PRO86239 Figure 6502: PRO4515 Figure 6547A-B: DNA226290, HSU28811, Figure 6503: DNA227751, NP_006557.1, NM_012201_at NM_006566_at Figure 6548: PRO36753 Figure 6504: PRO38214 Figure 6549: DNA227143, NP_036400.1, Figure 6505: DNA227126, NP_006559.1, NM_012268_at NM_006568_at Figure 6550: PRO37606 Figure 6506: PRO37589 Figure 6551A-B: DNA150955, NP_036420.1, Figure 6507: DNA331803, AF116456, NM_006573_at NM_012288_at Figure 6508: PRO738 Figure 6552: PRO12559 Figure 6509: DNA331804, BC001572, NM_006579_at Figure 6553: DNA331811, AF083247, NM_012328_at Figure 6554: PRO1471 Figure 6510: PRO12082 Figure 6511: DNA324740, NP_006577.1, Figure 6555A-B: DNA227255, STAG3, NM_006586_at NM_012447_at Figure 6512: PRO81365 Figure 6556: PRO37718 Figure 6513: DNA331805, HSM801976, Figure 6557: DNA304476, NP_036585.1, NM_006620_at NM_012453_at Figure 6514: PRO86744 Figure 6558: PRO1125 Figure 6515: DNA328544, HSFIBLP, NM_006682_at Figure 6559: DNA88510, HSNKG5, NM_012483_at Figure 6516: PRO84347 Figure 6560: PRO2822 Figure 6561: DNA103418, AF032862, NM_012484_at Figure 6517: DNA227035, HUMHUMCM5, NM_006739_at Figure 6562: PRO4746 Figure 6518: PRO37498 Figure 6563: DNA88189, HUMCD24B, Figure 6519: DNA227512, NP_006736.1, NM_013230_at NM_006745_at Figure 6564: PRO2690 Figure 6520: PRO37975 Figure 6565: DNA331812, BC019883, NM_013269_at Figure 6521A-B: DNA331806, AB005666, Figure 6566: PRO86749 NM_006747_at Figure 6567: DNA103481, HUMAUANTIG, NM_013285_at Figure 6522: PRO86745 Figure 6523: DNA227416, NP_006745.1, Figure 6568: PRO4808 Figure 6569: DNA196426, H963, NM_013308_at NM_006754_at Figure 6570: PRO24924 Figure 6524: PRO37879 Figure 6525: DNA331807, HSU30498, NM_006762_at Figure 6571A-B: DNA329017, AF035947, NML013324_at Figure 6526: PRO86746 Figure 6527: DNA227190, NP.006830.1, Figure 6572: PRO84692 NML006839_at Figure 6573: DNA150648, HIG2, NM_013332_at Figure 6528: PRO37653 Figure 6574: PRO11576 Figure 6529: DNA150812, RTVP1, NM_006851_at Figure 6575A-B: DNA331813, AF213467, NM_013448_at Figure 6530: PRO12481 Figure 6531: DNA331808, HSU82278, NM_006866_at Figure 6576: PRO86750 Figure 6532: PRO86747 Figure 6577: DNA304461, HSPC067, NM_014158_at Figure 6533: DNA103221, NP_006866.1, Figure 6578: PRO71039 NM_006875_at Figure 6579: DNA331814, BC009642, NM_014164_at Figure 6534: PRO4551 Figure 6580: PRO86751 Figure 6581: DNA330374, ORMDL2, NM_014182_at Figure 6535: DNA328271, ZWINT, NM_007057_at Figure 6536: PRO81868 Figure 6582: PRO23321 Figure 6537: DNA331809, NP_009046.1, Figure 6583: DNA88203, CD5, NM_014207_at NM_007115_at Figure 6584: PRO2698 Figure 6585A-B: DNA331815, AF135372, Figure 6538: PRO86748 Figure 6539: DNA103587, HSMRL3R, NM_007208_at NM_014232_at Figure 6586: DNA331816, BC003067, NM_014330_at Figure 6540: PRO4911 Figure 6541: DNA330180, TRC8, NM_007218_at Figure 6587: PRO12543 Figure 6542: PRO85428 Figure 6588: DNA331817, NP-055154.2, Figure 6543: DNA331810, HSU64805, NM_007295_at NM_014339_at

Figure 6589: PRO86240 Figure 6630: DNA 196569, NP_056957.1, Figure 6590: DNA227233, NP_055157.1, NM_015873_at Figure 6631: PRO19859 NM_014342_at Figure 6632: DNA150865, LOC51596, NM_015921_at Figure 6591: PRO37696 Figure 6592: DNA227351, AF191020, NM_014367_at Figure 6633: PRO11587 Figure 6634: DNA150832, NP_057019.2, Figure 6593: PRO37814 NML015935_at Figure 6594: DNA331088, NP-055252.2, NM_014437_at Figure 6635: PRO12491 Figure 6595: PRO80674 Figure 6636: DNA331089, NP_057143.1, Figure 6596: DNA330084, SIT, NM_014450_at NM_016059_at Figure 6597: PRO9895 Figure 6637: PRO4984 Figure 6638: DNA331818, AF151899, NM_016072_at Figure 6598: DNA324198, NP_055400.1, Figure 6639: PRO793 NM_014585_at Figure 6640: DNA328663, AK001280, NM_016073_at Figure 6599: PRO37675 Figure 6641: PRO36183 Figure 6600A-B: DNA151879, NP_055463.1, Figure 6642: DNA331819, BC006807, NM_016077_at NM_014648_at Figure 6643: PRO38080 Figure 6601: PRO12743 Figure 6644: DNA150661, LOC51030, NM_016078_at Figure 6602: DNA194805, NP_055500.1, Figure 6645: PRO12398 NM_014685_at Figure 6646: DNA329292, AF085360, NM_016101_at Figure 6603: PRO24075 Figure 6647: PRO84882 Figure 6604A-B: DNA150467, AB018335, Figure 6648: DNA329923, HSPC035, NM_016127_at NM_014698_at Figure 6649: PRO85237 Figure 6605: PRO12272 Figure 6650: DNA304832, NP_057327.1, Figure 6606A-B: DNA194778, KIAA0152, NM_016243_at NM_014730_at Figure 6651: PRO71239 Figure 6607: PRO24056 Figure 6652: DNA328831, AF126780, NM_016245_at Figure 6608A-B: DNA277809, KIAA0275, Figure 6653: PRO233 NM_014767_at Figure 6654: DNA328513, AF151895, NM_016283_at Figure 6609: PRO64556 Figure 6655: PRO37815 Figure 6610A-B: DNA227353, SEC24D, Figure 6656: DNA304781, LOC51184, NM_016301_at NM_014822_at Figure 6657: PRO71191 Figure 6611: PRO37816 Figure 6658: DNA331820, BC001144, NM_016306_at Figure 6612: DNA93507, NP_055694.1, Figure 6659: PRO1080 NM_014879_at Figure 6660: DNA331821, AK023410, NM_016354_at Figure 6613: PRO4948 Figure 6661: PRO86752 Figure 6614A-B: DNA150954, KIAA0022, Figure 6662: DNA330390, AF178985, NM_016546_at NM_014880_at Figure 6663: PRO85599 Figure 6615: PRO12558 Figure 6664: DNA331822, AF318357, NM_016553_at Figure 6616A-B: DNA227293, DNA227293, Figure 6665: PRO86753 NM_014883_at Figure 6666: DNA227298, NP_057649.1, Figure 6617: PRO37756 NM_016565_at Figure 6618: DNA150805, FAM3C, NM_014888_at Figure 6667: PRO37761 Figure 6619: PRO11583 Figure 6668: DNA327869, NRN1, NM_016588_at Figure 6620A-B: DNA194837, NP_055714.1, Figure 6669: PRO1898 NM_014899_at Figure 6670: DNA331823, AK027682, NM_017424_at Figure 6621: PRO24100 Figure 6622A-B: DNA304464, CHSY1, Figure 6671: PRO86754 Figure 6672: DNA225694, FLJ20005, NM_017617_at NM_014918_at Figure 6673: PRO36157 Figure 6623: PRO71042 Figure 6674: DNA326385, NP_060117.2, Figure 6624: DNA330103, MD-2, NM_015364_at NM_017647_at Figure 6625: PRO19671 Figure 6626: DNA150872, NP_056202.1, Figure 6675: PRO82778 Figure 6676: DNA287206, FLJ20073, NM_017654_at NM_015387_at Figure 6677: PRO69488 Figure 6627: PRO12814 Figure 6628: DNA328590, BC001232, NM_015864_at Figure 6678: DNA227294, FLJ20303, NM_017755_at Figure 6679: PRO37757 Figure 6629: PRO84375

Figure 6680: DNA226646, NP_060352.1,

NM_017882_at

Figure 6681: PRO37109

Figure 6682: DNA331824, BC010907, NM_017906_at

Figure 6683: PRO86755

Figure 6684: DNA330537, HELLS, NM_018063_at

Figure 6685: PRO81892

Figure 6686: DNA328628, BC011983, NM_018072_at

Figure 6687: PRO84406

Figure 6688: DNA328841, BC003082, NM_018087_at

Figure 6689: PRO84575

Figure 6730: DNA327199, DJ971N18.2,

NM_021156_at

Figure 6731: PRO83475

Figure 6732: DNA227276, NP_005702.1,

NML021618_at

Figure 6733: PRO37739

Figure 6734A-B: DNA331832, AF051850,

NM_021738_at

Figure 6735: PRO86758

Figure 6736: DNA331833, AF269133, NM_021798_at

Figure 6737: PRO86759

HUMKG1BB_at Figure 6822: PRO82665 Figure 6823A-B: DNA287330, AB032991, Figure 6776: PRO86762 AB032991_at Figure 6777A-B: DNA331842, BC004375, Figure 6824: DNA331848, 1510819.1, P_X99863_at AF261758_at Figure 6825: PRO86764 Figure 6778: PRO38492 Figure 6826: DNA331849, HSINSP4BP, Figure 6779: DNA331095, NP_005216.1, HUME2F_at HSINSP4BP_at Figure 6780: PRO86245 Figure 6827: PRO66285 Figure 6781: DNA331843, AF202723, AB014568_at Figure 6782: DNA159542, DNA159542, Figure 6828A-B: DNA331850, HSA237724, HUMMAC30X_at HSA237724_at Figure 6829: DNA328049, 981676.1, HSM800856_at Figure 6783: DNA331844, BC009267, Figure 6830: PRO83963 **HUMLAMBBA_at** Figure 6831: DNA331851, AK027334, P_A51904_at Figure 6784: PRO82888 Figure 6785: DNA331096, S75881, P_V84330_at Figure 6832: PRO23392 Figure 6833: DNA193996, DNA193996, P_A40502_at Figure 6786: PRO86246 Figure 6834: PRO23400 Figure 6787: DNA287239, AF212242, AK024843 at Figure 6835: DNA194019, DNA194019, AK000004_at Figure 6788: PRO38497 Figure 6836: PRO23421 Figure 6789: DNA154390, DNA154390, Figure 6837: DNA194063, DNA194063, P_V84608_at HUMP13KIN_at Figure 6838: PRO23460 Figure 6790: DNA151247, DNA151247, P_V43601_at Figure 6839: DNA83046, NP_000565.1, P_X30170_at Figure 6791: PRO11643 Figure 6840: PRO2569 Figure 6792: DNA329950, MGC5576, P_V43613_at Figure 6841: DNA331852, 985629.1, P.Z59467.at Figure 6793: PRO11558 Figure 6842: PRO86765 Figure 6794: DNA161927, DNA161927, P.Z29229_at Figure 6843: DNA195915, DNA195915, P_X85020_at Figure 6795: DNA155316, DNA155316, P_A09058_at Figure 6796: DNA329026, AF230200, AK021966_at Figure 6844: DNA331853, BC001305, AK027031_at Figure 6845: PRO23769 Figure 6797A-B: DNA228052, DNA228052, Figure 6846A-B: DNA328720, NP_078800.2, AB006624_at P_X35729_at Figure 6798: PRO38515 Figure 6847: PRO84476 Figure 6799: DNA161913, DNA161913, Figure 6848: DNA194679, BAA05062.1, HSM800208_at HUMORFT_at Figure 6800: DNA331845, AK027432, Figure 6849: PRO23989 HSM800284_at Figure 6850: DNA331854, AF244129, AF244129_at Figure 6801: PRO86763 Figure 6851: PRO86766 Figure 6802: DNA329430, SPPL2A, AX027882_at Figure 6852: DNA 194766, DJ434O14.3, Figure 6803: PRO38524 HS434O143_at Figure 6804: DNA151422, DNA151422, P_X04312_at Figure 6853: PRO24046 Figure 6805: PRO11792 Figure 6854: DNA331855, BLP1, P.Z98236_at Figure 6806: DNA228066, NP_079431.1, Figure 6855: PRO85742 AK021910_at Figure 6856: DNA330358, BC008904, AX011617_at Figure 6807: PRO38529 Figure 6857: PRO85574 Figure 6808A-C: DNA330360, FYCO1, AK023397_at Figure 6858: DNA330380, FLJ12436, AK022498 at Figure 6809: PRO85576 Figure 6859: PRO85592 Figure 6810: DNA287185, DNA287185, P_V84564_at Figure 6811: PRO37492 Figure 6860: DNA328288, NP_073591.1, Figure 6812: DNA331846, AF272741, AK022938_at HUMTCBYY_at Figure 6861: PRO69876 Figure 6813: DNA331097, AK027322, AX041977_at Figure 6862: DNA196036, DNA196036, Figure 6814: PRO86247 AI471699_RC_at Figure 6863: DNA331098, AY052405, AX047348_at Figure 6815: DNA151756, DNA151756, P_X84947_at Figure 6864: PRO86248 Figure 6816: PRO12037 Figure 6865A-B: DNA331099, AB058685, Figure 6817: DNA151761, DNA151761, P_X84970_at AX048187_at Figure 6818: PRO12039 Figure 6866: DNA331100, BC021238, P_X84987_at Figure 6819: DNA331847, BC008330, AK026632_at Figure 6867: PRO86249 Figure 6820: PRO38556

Figure 6821: DNA326258, MGC2941, AK026537 at

Figure 6868: DNA331101, NP_114143.1, 250446.2_at

PCT/US2003/035971 WO 2004/047728

Figure 6916: DNA331104, NP_066280.1, Figure 6869: PRO86250 NM_021000_f_at Figure 6870: DNA331856, BC022522, 237658.8_at Figure 6917: PRO86252 Figure 6871: PRO71209 Figure 6918A-B: DNA274893, NP_006282.1, Figure 6872: DNA106360, DNA106360, 164869.1_at NM_006291_at Figure 6873: DNA155526, DNA155526, 251178.1_at Figure 6919: PRO62634 Figure 6874: DNA331102, NP_116052.1, 481267.1_at Figure 6920: DNA271455, LOC51339, NM_016651_at Figure 6875: PRO86251 Figure 6876: DNA196289, DNA196289, 230230.2_at Figure 6921: PRO59751 Figure 6877: DNA323696, BC015160, 428335.22_at Figure 6922: DNA329172, GFI1, NM_005263_at Figure 6923: PRO84796 Figure 6878: DNA326749, NP_116101.1, Figure 6924: DNA331860, BC010940, NM_004833_at DNA167237_at Figure 6879: PRO23238 Figure 6925: PRO86770 Figure 6926: DNA329274, AF187064, NM_014380_at Figure 6880: DNA210391, DNA210391, P_X85039_at Figure 6927: PRO84870 Figure 6881: PRO34886 Figure 6928A-B: DNA328535, NP_009147.2, Figure 6882: DNA331103, NP_009125.1, NM_007194_at NM_007216_at Figure 6929: PRO60044 Figure 6883: PRO34956 Figure 6930: DNA331861, MAP2K6, NM_002758_at Figure 6884: DNA331857, SIRPB2, NM_018556_at Figure 6931: PRO86771 Figure 6885: PRO86767 Figure 6932: DNA331105, NP_009012.1, Figure 6886: DNA254406, NP_060854.1, NM_007081_at NM_018384_at Figure 6933: PRO86253 Figure 6887: PRO49516 Figure 6934: DNA256257, LAMP3, NM_014398_at Figure 6888A-B: DNA331858, ABCA7, Figure 6935: PRO51301 NM_019112_at Figure 6936: DNA256033, NP_060164.1, Figure 6889: PRO86768 NM_017694_at Figure 6890: DNA255704, NP_057570.1, Figure 6937: PRO51081 NM_016486_at Figure 6938A-B: DNA331106, NP_065107.1, Figure 6891: PRO50764 NM_020374_at Figure 6892: DNA331859, AF267245, NM_016523_at Figure 6939: PRO86254 Figure 6893: PRO86769 Figure 6940A-B: DNA254789, LOC51696, Figure 6894: DNA254470, HSU11050, NM_002497_at NM_016217_at Figure 6895: PRO49578 Figure 6941: PRO49887 Figure 6896A-B: DNA256461, HSAJ6266, Figure 6942A-B: DNA254376, AB023180, NM_007086_at NM_014963_at Figure 6897: PRO51498 Figure 6943: PRO49486 Figure 6898: DNA330480, FLJ10808, NM_018227_at Figure 6944: DNA254129, ARMET, NM_006010_at Figure 6899: PRO85677 Figure 6945: PRO49244 Figure 6900: DNA328669, NP_005882.1, Figure 6946: DNA331862, AX008892, NM_005484_at NM_005891_at Figure 6947: PRO86772 Figure 6901: PRO84441 Figure 6948: DNA256407, HSA249248, Figure 6902: DNA254777, CORO1C, NM_014325_at Figure 6903: PRO49875 NM_014373_at Figure 6904A-B: DNA329991, TIMELESS, Figure 6949: PRO51448 Figure 6950A-C: DNA256495, HSU33841, NM_003920_at NM_000051_at Figure 6905: PRO85284 Figure 6906: DNA255161, IFRG28, NM_022147_at Figure 6951: PRO51531 Figure 6952: DNA330384, FLJ20647, NM_017918_at Figure 6907: PRO50241 Figure 6908: DNA327812, IFI44, NM_006417_at Figure 6953: PRO51129 Figure 6954: DNA331863, AK000318, NM_017760_at Figure 6909: PRO83773 Figure 6955: PRO86773 Figure 6910: DNA304716, CDKN1A, NM_000389_at Figure 6956: DNA256533, NP_006105.1, Figure 6911: PRO71142 NM_006114_at Figure 6912: DNA328431, HSCKSHS1, Figure 6957: PRO51565 NM_001826_at Figure 6958A-B: DNA287273, AF092563, Figure 6913: PRO45093 NM_006444_at Figure 6914: DNA269926, HSCDC2R, NM_001786_at Figure 6959: PRO69545

Figure 6915: PRO58324

Figure 7004: DNA331870, AK001274, NM_017613_at Figure 6960: DNA256295, DNA256295, Figure 7005: PRO86776 NM_002319_at Figure 7006: DNA287221, LOC51191, NM_016323_at Figure 6961: PRO51339 Figure 6962A-C: DNA331864, HSA303086, Figure 7007: PRO69500 NM_002266_at Figure 7008: DNA331871, BC017842, NM_004851_at Figure 6963: DNA254350, AF002697, NM_004052_at Figure 7009: PRO86777 Figure 7010: DNA260982, NP_060819.1, Figure 6964: PRO49461 Figure 6965: DNA255010, NP_061869.1, NM_018349_at NM_018996_at Figure 7011: PRO54728 Figure 6966: PRO50099 Figure 7012: DNA329033, NP_005375.1, Figure 6967: DNA329900, HUMA1SBU, NM_005384_at NM_002914_at Figure 7013: PRO84700 Figure 6968: PRO81549 Figure 7014: DNA271095, AF091433, NM_004702_at Figure 7015: PRO59418 Figure 6969: DNA323838, CDKN2C, NM_001262_at Figure 7016: DNA297387, NP_003494.1, Figure 6970: PRO59546 NM_003503_at Figure 6971: DNA271093, CNK, NM_004073_at Figure 7017: PRO58394 Figure 6972: PRO59417 Figure 7018: DNA331872, AF099644, NM_001255_at Figure 6973: DNA331108, NP_005265.1, Figure 7019: PRO86778 NML005274_at Figure 7020: DNA331873, PTPN7, NM_002832_at Figure 6974: PRO10780 Figure 7021: PRO69609 Figure 6975: DNA290234, RGS2, NM_002923_at Figure 7022: DNA269750, NP_002919.1, Figure 6976: PRO70333 NM_002928_at Figure 6977: DNA275015, HSU31383, NM_004125_at Figure 7023: PRO58159 Figure 6978: PRO62743 Figure 6979: DNA256854, HSU76638, NM_000465_at Figure 7024: DNA268036, AB023416, NM_013258_at Figure 7025: PRO57311 Figure 6980: PRO51785 Figure 7026: DNA270522, NP_006013.1, Figure 6981: DNA331865, IRF7, NM_004031_at NM_006022_at Figure 6982: PRO86774 Figure 7027: PRO58899 Figure 6983: DNA255271, EMR2, NM_013447_at Figure 7028: DNA330057, MT1G, NM_005950_at Figure 6984: PRO50348 Figure 6985: DNA331866, AB020970, NM_022154_at Figure 7029: PRO85337 Figure 7030A-B: DNA331113, NP_005914.1, Figure 6986: DNA331867, AF058762, NM_003857_at NM_005923_at Figure 6987A-B: DNA331109, NP_005155.1, NM_005164_at Figure 7031: PRO60244 Figure 7032: DNA331874, BC002847, NM_016103_at Figure 6988: PRO50662 Figure 7033: PRO84581 Figure 6989: DNA331110, NP_057563.3, Figure 7034: DNA269791, NP_001168.1, NM_016479_at NM_001177.at Figure 6990: PRO86256 Figure 7035: PRO58197 Figure 6991: DNA254276, HSPC154, NM_014177_at Figure 7036: DNA331114, AF291719, NM_007182_at Figure 6992: PRO49387 Figure 7037: PRO86258 Figure 6993: DNA287241, LAP3, NM_015907_at Figure 7038: DNA329580, HSU78170, NM_005825_at Figure 6994: PRO69516 Figure 6995A-B: DNA331111, NP_004229.1, Figure 7039: PRO85114 Figure 7040: DNA281436, NP_003286.1, NM_004238_at NM_017627_at Figure 6996: PRO86257 Figure 7041: PRO66275 Figure 6997: DNA255261, NP_060262.1, Figure 7042: DNA331875, CDC25B, NM_021874_at NM_017792_at Figure 6998: PRO50338 Figure 7043: PRO83123 Figure 7044: DNA331876, BC005912, NM_002001_at Figure 6999A-B: DNA331868, HSM802180, Figure 7045: PRO2280 NM_017631_at Figure 7000: DNA331869, NP_067024.1, Figure 7046: DNA256737, FLJ20406, NM_017806_at Figure 7047: PRO51671 NM_021201_at Figure 7048: DNA255432, NP_060283.1, Figure 7001: PRO50191 Figure 7002A-B: DNA255846, NP_057424.1, NM_017813_at Figure 7049: PRO50499 NM_016340_at Figure 7050A-B: DNA254262, NP_055197.1, Figure 7003: PRO50900

NM_014382_at Figure 7095: DNA270415, GNA15, NM_002068_at Figure 7096: PRO58796 Figure 7051: PRO49373 Figure 7052: DNA331877, HUMHMGAB, Figure 7097: DNA331881, AK023223, NM_016131_at NM_000859_at Figure 7098: PRO10928 Figure 7099: DNA270059, NP_003920.1, Figure 7053: DNA328901, BC002748, NM_017866_at NM_003929_at Figure 7054: PRO84622 Figure 7100: PRO58452 Figure 7055: DNA254416, NP_060915.1, NM_018445_at Figure 7101: DNA273487, RAB33A, NM_004794_at Figure 7056: PRO49526 Figure 7102: PRO61470 Figure 7057: DNA331115, AF221521, NM_020524_at Figure 7103: DNA326306, NP.066960.1, Figure 7058: PRO86259 NM_021137_at Figure 7059: DNA255326, AF055993, NM_003864_at Figure 7104: PRO62566 Figure 7060: PRO50396 Figure 7105: DNA287378, AF244135, NM_018428_at Figure 7061A-C: DNA328498, AF285167, Figure 7106: PRO69637 Figure 7107: DNA327879, MDA5, NM_022168_at NM_005502_at Figure 7062: PRO84320 Figure 7108: PRO83818 Figure 7063: DNA331878, AF246240, NM_018480_at Figure 7109A-B: DNA327674, NP_002739.1, Figure 7064: PRO86779 NM_002748_at Figure 7065: DNA331879, AK021999, NM_022765_at Figure 7110: PRO83661 Figure 7066: PRO86780 Figure 7111: DNA331882, AB030251, NM_013277_at Figure 7067: DNA255135, AB016068, NM_005857_at Figure 7112: PRO86781 Figure 7068: PRO50216 Figure 7113: DNA254518, LOC51713, NM_016270_at Figure 7069: DNA331116, NP_060656.1, Figure 7114: PRO49625 NM_018186_at Figure 7115: DNA256561, CRTAM, NM_019604_at Figure 7070: PRO86260 Figure 7116: PRO51592 Figure 7071: DNA237817, HSU33286, NM_001316_at Figure 7117: DNA331883, AF096290, NM_003645_at Figure 7072: PRO38923 Figure 7118: PRO51139 Figure 7073A-B: DNA329904, AF203032, Figure 7119: DNA255215, AF207600, NM_018638_at NM_021076_at Figure 7120: PRO50294 Figure 7074: PRO85221 Figure 7121A-B: DNA256807, FAM8A1, Figure 7075: DNA329583, AD24, NM_022451_at NM_016255_at Figure 7076: PRO85117 Figure 7122: PRO51738 Figure 7077: DNA331117, NP_065170.1, Figure 7123: DNA260974, TRIM22, NM_006074_at NM_020437_at Figure 7124: PRO54720 Figure 7078: PRO86261 Figure 7125: DNA330443, PRO2037, NM_018616_at Figure 7079: DNA254710, FLJ20637, NM_017912_at Figure 7126: PRO2037 Figure 7080: PRO49810 Figure 7127: DNA331119, NP_005433.2, Figure 7081: DNA331880, HSIFI56R, NM_001548_at NM_005442_at Figure 7082: PRO59911 Figure 7128: PRO50745 Figure 7083A-B: DNA270323, HSU34605, Figure 7129: DNA254274, NP_073573.1, NM_012420_at NM_022736_at Figure 7084: PRO58710 Figure 7130: PRO49385 Figure 7085: DNA287224, ISG15, NM_005101_at Figure 7131: DNA255088, HUMTK, NM_003258_at Figure 7086: PRO69503 Figure 7132: PRO50174 Figure 7087: DNA269922, HSISG20GN, Figure 7133: DNA255113, FLJ22693, NM_022750_at NM_002201_at Figure 7134: PRO50195 Figure 7088: PRO58320 Figure 7135: DNA331884, BC008870, NM_017606_at Figure 7089: DNA331118, NP_201569.1, Figure 7136: PRO49604 Figure 7137: DNA331885, MRPL35, NM_016622_at NM_003672_at Figure 7090: PRO86262 Figure 7138: PRO86782 Figure 7091: DNA272655, HSCKSHS2, Figure 7139: DNA272245, NP_055301.1, NM_014486_f_at NM_001827_at Figure 7092: PRO60781 Figure 7140: PRO60507 Figure 7093A-B: DNA329160, NP_002821.1, Figure 7141A-D: DNA331886, AF051160, NM_002830_at NM_003463_at Figure 7094: PRO84789 Figure 7142: DNA330877, HKE2, NM_014260_at

Figure 7143: PRO86040 Figure 7189: DNA256233, DNA256233, Figure 7144: DNA295327, IL21, NM_021803_at AB017268_f_at Figure 7145: PRO70773 Figure 7190: PRO51278 Figure 7146: DNA287178, HSU52513, NM_001549_at Figure 7191A-B: DNA255448, BAA92554.1, Figure 7147: PRO69467 AB037737_at Figure 7148: DNA327661, HUMIFI16A, Figure 7192: PRO50515 Figure 7193A-B: DNA255619, AF054589, NM_005531_at Figure 7149: PRO83652 AF054589_at Figure 7150A-B: DNA329036, HSU63738, Figure 7194: PRO50682 NM_002460_at Figure 7195: DNA331123, AF062649, AF062649 f_at Figure 7151: PRO84703 Figure 7196: PRO86266 Figure 7152: DNA273523, NP_002154.1, Figure 7197A-B: DNA331893, AB058697, NM_002163_at AK001581_at Figure 7153: PRO61504 Figure 7198: DNA331894, HSM802273, AB032963_at Figure 7154: DNA331887, AF002822, NM_004701_at Figure 7199: DNA331895, HUMTLEIV, AB033087_at Figure 7155: PRO82442 Figure 7200: PRO86785 Figure 7156: DNA331888, AF022109, NM_001254_at Figure 7201A-B: DNA329039, DORFIN, Figure 7157: PRO60595 AK027070_at Figure 7158: DNA273535, AB011421, NM_004226_at Figure 7202: PRO84706 Figure 7159: PRO61515 Figure 7203: DNA255040, CAB55998.1, Figure 7160: DNA275012, NMI, NM_004688_at HSM801103_at Figure 7161: PRO62740 Figure 7204: PRO50128 Figure 7162: DNA331120, NP_008976.1, Figure 7205: DNA328509, NP_006739.1, NM_007045_at HSU44403_at Figure 7163: PRO86263 Figure 7206: PRO57996 Figure 7164: DNA331889, AF182076, NM_015710_at Figure 7207: DNA254338, HUMPLT, HUMPLT_at Figure 7165: PRO84173 Figure 7208: PRO49449 Figure 7166: DNA331890, AF095287, Figure 7209: DNA331896, AF067008, NM_001363_at NM_004219_f_at Figure 7210: PRO49881 Figure 7167: PRO81319 Figure 7211: DNA331897, BC008843, AB007915_at Figure 7168: DNA331121, AF175306, NM_014288_at Figure 7212: PRO86786 Figure 7169: PRO86264 Figure 7213: DNA331124, NP_079430.1, Figure 7170: DNA327858, AF120334, NM_012341_at AB018353_at Figure 7171: PRO83800 Figure 7214: PRO86267 Figure 7172: DNA331122, NP_005728.2, Figure 7215A-B: DNA330736, AB033044, NM_005737_at AB033044_at Figure 7173: PRO86265 Figure 7216A-B: DNA331125, AB037815, Figure 7174: DNA289528, ARL3, NM_004311_at AB037815_at Figure 7175: PRO70286 Figure 7217A-B: DNA331898, AF058925, Figure 7176: DNA270526, HUMLYGDI, AF058925_at NM_001175_at Figure 7218: PRO86787 Figure 7177: PRO58903 Figure 7219: DNA331126, AF078867, AF078866.at Figure 7178: DNA271931, NP_005745.1. Figure 7220: PRO86269 NM_005754_at Figure 7221: DNA254836, BAA91233.1, Figure 7179: PRO60207 AK000529_at Figure 7180: DNA329123, RANBP1, NM_002882_at Figure 7222: PRO49931 Figure 7181: PRO84765 Figure 7223: DNA88277, NP_006721.1, AK027197_at Figure 7182A-B: DNA331891, HSM800983, Figure 7224: PRO2724 NM_014922_at Figure 7225: DNA331899, 1399286.1, Figure 7183: DNA331892, BC019255, NM_006452_at AW290940_RC_at Figure 7184: PRO84240 Figure 7226: PRO86788 Figure 7185: DNA329587, AF192466, NM_012124_at Figure 7227: DNA256872, HSM801990, Figure 7186: PRO85121 HSM801990_at Figure 7187A-B: DNA329248, AB002359, Figure 7228A-B: DNA254192, HUMKIAAK, AB002359_at HUMKIAAK_at Figure 7188: DNA254668, AB002437, AB002437_at Figure 7229: DNA331900, BIN2, NM_016293_at

Figure 7230: PRO86789 Figure 7271: PRO85129 Figure 7231A-B: DNA256731, BAA83028.1, Figure 7272: DNA254228, NP_079236.1, AB028999_at AK021791_at Figure 7232: PRO51665 Figure 7273: PRO49340 Figure 7233: DNA331901, HSM801036, AB029015_at Figure 7274: DNA331904, AK023431, AF298880_at Figure 7234A-B: DNA331127, BAA86477.1, Figure 7275: PRO86791 AB032989_at Figure 7276: DNA329078, AF214006, HSM801679_at Figure 7235: PRO86270 Figure 7277: PRO23253 Figure 7236A-B: DNA254672, BAA92652.1, Figure 7278: DNA256784, FLJ22104, AK025757_at AB037835_at Figure 7279: PRO51716 Figure 7237: PRO49773 Figure 7280: DNA331905, AK001823, Figure 7238A-C: DNA331128, NP_065892.1, HSM801648_at Figure 7281: PRO86792 AB040884_at Figure 7239: PRO84841 Figure 7282: DNA329044, NP_064562.1, Figure 7240: DNA269976, AAC14260.1, AK025265_at AF039023_at Figure 7283: PRO84709 Figure 7241: PRO58372 Figure 7284: DNA331906, HSA227916, Figure 7242: DNA331129, HSA227869, NM_001530_at HSA227869_r_at Figure 7285: DNA330023, GADD45A, NM_001924_at Figure 7243: DNA256422, HSA227900, Figure 7286: PRO85308 HSA227900_at Figure 7287A-B: DNA272191, RSN, NM_002956_at Figure 7244: DNA331902, BC014522, Figure 7288: PRO60456 HSSOM172M_at Figure 7289: DNA328418, HUMG0S24A, Figure 7245: PRO86790 NM_003407_at Figure 7246: DNA329040, BC001356, HSU72882_at Figure 7290: PRO84261 Figure 7247: PRO84707 Figure 7291: DNA331133, HSU63830, NM_004180_at Figure 7248: DNA331130, AAK50430.1, Figure 7292: PRO86274 HUMTI227HC_at Figure 7293: DNA271310, DUSP8, NM_004420_at Figure 7249: PRO86272 Figure 7294: PRO59617 Figure 7250A-B: DNA331131, HSA223948, Figure 7295: DNA331907, AKAP7, NM_004842_at AY013288_at Figure 7296: PRO63228 Figure 7251: DNA326056, NP_072088.1, Figure 7297: DNA287203, NP_006182.1, AY007810_at NM_006191_at Figure 7252: PRO82491 Figure 7298: PRO69487 Figure 7253: DNA329041, HSM800399, AF132199_at Figure 7299: DNA274783, HSU26424, NM_006281_at Figure 7254: DNA255780, AK022209, AK022209 at Figure 7300: PRO62549 Figure 7255: PRO50835 Figure 7301A-B: DNA255281, NP_006380.1, Figure 7256: DNA254922, AK022604, AK022604_at NM_006389_at Figure 7257: PRO50012 Figure 7302: PRO50357 Figure 7258: DNA330432, FLJ23235, AK026888_at Figure 7303: DNA328712, NP_006501.1, Figure 7259: PRO85636 NM_006510_at Figure 7260A-B: DNA256299, AB051489, Figure 7304: PRO84469 AB051489_at Figure 7305: DNA331908, AF161440, NM_012111_at Figure 7261: DNA331903, BC015380, HSM801707_at Figure 7306: DNA330065, STK18, NM_014264_at Figure 7262: DNA255626, HSM802849, Figure 7307: PRO85345 HSM802849_at Figure 7308: DNA152148, DNA152148, Figure 7263: PRO50690 HSP1CDC21_at Figure 7264: DNA331132, NP_115524.1, Figure 7309: PRO10290 HSM801796_at Figure 7310: DNA329925, HSBP1, NM_001537_at Figure 7265: PRO86273 Figure 7311: PRO85239 Figure 7266: DNA255964, NP_079113.1, Figure 7312: DNA331909, HSCFANT, NM_002964_at AK025125_at Figure 7313: PRO86795 Figure 7267: PRO51015 Figure 7314: DNA329139, NP_003893.2, Figure 7268: DNA255465, AK024313, AK024313_at NM_003902_at Figure 7269: PRO50532 Figure 7315: PRO84774 Figure 7270: DNA329597, AK022178, AK022178_at Figure 7316: DNA331910, HSSEC232, NM_006363_at

Figure 7317: PRO86796 Figure 7362: PRO63009 Figure 7318: DNA329047, BATF, NM_006399_at Figure 7363: DNA254157, HSU13045, NM_005254_at Figure 7364: PRO49271 Figure 7319: PRO58425 Figure 7365A-B: DNA124122, RBL2, NM_005611_at Figure 7320: DNA274167, AF026166, NM_006431_at Figure 7366: PRO6323 Figure 7321: PRO62097 Figure 7367: DNA330776, TOB1, NM_005749_at Figure 7322: DNA254572, NP_006576.1, Figure 7368: PRO58014 NM_006585_at Figure 7369: DNA326980, AF140598, NM_014248_at Figure 7323: PRO49675 Figure 7370: PRO83289 Figure 7324A-B: DNA331911, AB003334, Figure 7371: DNA271608, HUMRSC419, NM_006644_at NM_014670_at Figure 7325: PRO86797 Figure 7372: PRO59895 Figure 7326: DNA331912, BC009405, NM_013411_at Figure 7327: PRO86798 Figure 7373: DNA272928, HUMORFKG1F, Figure 7328: DNA255289, MELK, NM_014791_at NML014764_at Figure 7329: PRO50363 Figure 7374: PRO61012 Figure 7375: DNA290235, NP_057121.1, Figure 7330A-B: DNA331913, BAB21784.1, NM_016037_at NML015383_at Figure 7376: PRO70335 Figure 7331: PRO86799 Figure 7332: DNA329148, LOC51042, NM_015871_at Figure 7377: DNA331135, HUMKG1DD, HUMKG1DD_at Figure 7333: PRO84782 Figure 7378A-B: DNA330119, AF226044, Figure 7334: DNA326221, AF125098, NM_016095_at HUMKIAAQ_at Figure 7335: PRO82634 Figure 7379: PRO85381 Figure 7336: DNA331914, BC009398, Figure 7380: DNA331137, HS24P52, HUMP1CDC47_at HUMHSP70H_at Figure 7337: PRO86800 Figure 7338A-B: DNA328312, HUMAREB6, Figure 7381: PRO86278 Figure 7382A-B: DNA269805, NP_001263.1, HUMAREB6_at NM_001272_at Figure 7339: PRO84180 Figure 7383: PRO58209 Figure 7340: DNA325941, HSPCA, HSHSP90R_at Figure 7384: DNA270689, HSGATA3R, Figure 7341: PRO82388 NM_002051_at Figure 7342: DNA328483, VIT1, NM_000179_at Figure 7343: PRO84309 Figure 7385: PRO59053 Figure 7386: DNA331919, HUMCFA, NM_002965_at Figure 7344: DNA271847, HUMDNAJHOM, NM_001539_at Figure 7387: PRO80648 Figure 7345: PRO60127 Figure 7388A-B: DNA304800, NP_004146.1, NM_004155_at Figure 7346: DNA331915, BC001786, NM_002014_at Figure 7389: PRO69458 Figure 7347: PRO59262 Figure 7390: DNA273418, AAG01157.1, Figure 7348: DNA331916, HUMMIF, NM_002415_at Figure 7349: DNA331917, PHF1, NM_002636_at NM_004301_at Figure 7391: PRO61417 Figure 7350: PRO86802 Figure 7392: DNA330066, MLLT3, NM_004529_at Figure 7351: DNA329604, SRP54, NM_003136_at Figure 7393: PRO85346 Figure 7352: PRO85134 Figure 7394: DNA270733, S46622, NM_005605_at Figure 7353A-B: DNA331134, NP_003381.1, NM_003390_at Figure 7395: PRO59094 Figure 7354: PRO86275 Figure 7396: DNA331138, NP_005997.2, Figure 7355A-B: DNA290265, ZNF91, NM_006006_at NM_003430_f_at Figure 7397: PRO86279 Figure 7356: PRO70395 Figure 7398: DNA331139, NP_006865.1, Figure 7357A-C: DNA331918, AF009425, NM_006874_at NM_004338_at Figure 7399: PRO81172 Figure 7358: PRO86803 Figure 7400: DNA331920, AF090950, NM_015675_at Figure 7359: DNA254582, NP_004626.1, Figure 7401: PRO84384 Figure 7402: DNA329050, MRPS17, NM_015969_at NM_004635_at Figure 7403: PRO84712 Figure 7360: PRO49685 Figure 7361A-B: DNA275334, NP_112162.1, Figure 7404A-B: DNA329122, GS3955, NM_004749_at NM_021643_at

Figure 7452: PRO86283 Figure 7405: PRO84764 Figure 7453A-B: DNA331926, BAB13449.1, Figure 7406: DNA331921, 244055.1, AF320911_at AB046843_at Figure 7407: PRO86804 Figure 7454: PRO51258 Figure 7408: DNA331922, AK026275, AK026275_at Figure 7455: DNA255197, DNA255197, P.Z50392_at Figure 7409: PRO86805 Figure 7456: PRO50276 Figure 7410A-B: DNA254516, AF288399, Figure 7457: DNA328010, NP_149016.1, AF288399_at HSM801092_at Figure 7411: PRO49623 Figure 7458: PRO83928 Figure 7412: DNA328313, NP_115579.1, Figure 7459: DNA262805, DNA262805, AK025076_at HSM800425_at Figure 7413: PRO84181 Figure 7460: DNA331146, 1400830.1, Figure 7414: DNA327865, NP_079105.1, **HUMINLTRA_at** AK026315_at Figure 7461: PRO86284 Figure 7415: PRO83806 Figure 7462: DNA328317, cig5, AF026941_at Figure 7416: DNA294813, NP_444283.1, P_T67134_at Figure 7463: PRO69493 Figure 7417: PRO70763 Figure 7464: DNA331147, NP_079104.1, Figure 7418A-B: DNA254706, AB046851, AF131768_at AB046851_at Figure 7465: PRO86285 Figure 7419: DNA329052, NP_078801.1, Figure 7466: DNA255770, DNA255770, AK022106_at AK026237_at Figure 7467A-C: DNA254412, EVI5, AF008915_at Figure 7420: PRO84714 Figure 7468: PRO49522 Figure 7421: DNA256890, BC008988, P_Z00467_at Figure 7469: DNA331148, 978273.10, AK023244_at Figure 7422: PRO51824 Figure 7470: PRO86286 Figure 7423: DNA256291, FLJ21032, AK024685_f_at Figure 7471: DNA330532, AK026279, AK026279 at Figure 7424: PRO51335 Figure 7472: PRO85719 Figure 7425: DNA331923, HSUCP2X12, P_C69111_at Figure 7473: DNA330388, FLJ23468, AK027121_at Figure 7426: DNA213665, DNA213665, P.X30166_at Figure 7474: PRO85597 Figure 7427: PRO35126 Figure 7475: DNA331927, AK026969, AK026969_at Figure 7428: DNA331140, 332752.10, AK023798_at Figure 7476: PRO86807 Figure 7429: PRO86280 Figure 7477: DNA330447, FLJ22757, AK026410_at Figure 7430A-B: DNA331141, BAB13420.1, Figure 7478: PRO85648 AB046814_at Figure 7479: DNA324984, FLJ12298, AK022360 at Figure 7431: PRO86281 Figure 7480: PRO81578 Figure 7432: DNA331924, BC004932, AK024551_at Figure 7481: DNA331149, 7697327.1, HSM802839_at Figure 7433: PRO21434 Figure 7482: PRO86287 Figure 7434A-B: DNA256267, AB046838, Figure 7483A-B: DNA256267, DNA256267, AB046838_at AK023113_at Figure 7435: DNA327954, BAL, P_D00629_at Figure 7484: PRO51311 Figure 7436: PRO83879 Figure 7485: DNA331150, BC017725, 1387341.2_at Figure 7437: DNA255798, FLJ12377, AK022439_at Figure 7486: PRO86288 Figure 7438: PRO50853 Figure 7487: DNA257606, DNA257606, 428093.1 at Figure 7439: DNA330389, FLJ12888, AK022950_at Figure 7488: DNA258375, AF283301, 413231.5_at Figure 7440: PRO85598 Figure 7489: PRO52516 Figure 7441: DNA330086, FLJ12973, AK023035_at Figure 7490: DNA331928, AK027419, 154551.10 at Figure 7442: PRO85360 Figure 7491: PRO86808 Figure 7443: DNA331142, NP_116325.1, P_Z98137_at Figure 7492: DNA328319, BC019562, 411364.2 at Figure 7444: PRO51781 Figure 7493: DNA290812, DNA290812, Figure 7445: DNA329384, BC008502, P.Z33372_at 220495.3_CON_at Figure 7446: PRO84960 Figure 7494: PRO70559 Figure 7447A-B: DNA331143, NP_149075.2, Figure 7495: DNA304799, BC022410, 337588.1 at AK022613_at Figure 7496: PRO52633 Figure 7448: PRO86282 Figure 7497: DNA257403, DNA257403, 012814.1_at Figure 7449: DNA331925, 424693.10, AK022231_at Figure 7498: DNA304820, NP_115940.1, 317557.1_at Figure 7450: PRO86806 Figure 7499: PRO47351 Figure 7451: DNA331144, NP_078834.1, Figure 7500: DNA331929, BC019246, AK023982_at

441855.8_CON_at Figure 7545: DNA304817, BC015532, 211436.3 at Figure 7546: PRO71224 Figure 7501: PRO83338 Figure 7502: DNA260581, DNA260581, 127987.6_at Figure 7547: DNA260313, DNA260313, 1098929.1 at Figure 7503: PRO54507 Figure 7548: PRO54242 Figure 7504: DNA257576, DNA257576, 334945.2_at Figure 7549A-B: DNA328325, NP_061142.1, Figure 7505: DNA304819, BC004398, 202113.2_at 445188.4_at Figure 7506: DNA304794, FBXO30, 222128.1 at Figure 7550: PRO84190 Figure 7507: PRO71206 Figure 7551A-B: DNA304800, SERPINB9, Figure 7508: DNA259323, DNA259323, 022997.1_at 354740.1_at Figure 7509: PRO53256 Figure 7552: PRO69458 Figure 7510: DNA304796, MED8, 237428.13_at Figure 7553: DNA331156, 118180.1, 118180.1_at Figure 7511: PRO71208 Figure 7554: PRO86294 Figure 7512: DNA259615, DNA259615, 1000203.1_at Figure 7555: DNA287659, AK027790, 406833.1_at Figure 7513: DNA304805, AK027628, 475113.7_at Figure 7556: PRO69903 Figure 7514: PRO69531 Figure 7557: DNA331931, 092555.3, 092555.4_at Figure 7515: DNA304793, GBP4, 206425.2.at Figure 7558: PRO86810 Figure 7516: PRO71205 Figure 7559: DNA331157, NP_439896.1, 022541.5_at Figure 7560: PRO86295 Figure 7517: DNA331151, 018033.1, Figure 7561: DNA260573, DNA260573, 899597.1_at 018033.1_CON_at Figure 7562: PRO54499 Figure 7518: PRO86289 Figure 7563: DNA260157, DNA260157, 236833.1_at Figure 7519: DNA304068, AK057631, 1091656.1_at Figure 7564: PRO54086 Figure 7520: PRO71035 Figure 7521: DNA257714, EPSTI1, 337352.17_at Figure 7565: DNA174145, DNA174145, 100083.2.at Figure 7566: PRO35770 Figure 7522: PRO52268 Figure 7523: DNA304798, NP_443097.1, 246119.7_at Figure 7567: DNA260167, DNA260167, 264556.1_at Figure 7568A-B: DNA331932, 239260.1, 239260.1 at Figure 7524: PRO71210 Figure 7569: PRO86811 Figure 7525; DNA258721, DNA258721, 197627.1_at Figure 7526A-B: DNA257461, NP_113607.1, Figure 7570: DNA260031, DNA260031, 161526.1_at Figure 7571: DNA258907, DNA258907, 347940.2 at 086533.1_at Figure 7572: PRO52840 Figure 7527: PRO52040 Figure 7528: DNA331152, 1042156.3, 1042156.3 at Figure 7573: DNA257455, DNA257455, 977723.3 at Figure 7529: PRO86290 Figure 7574: PRO52035 Figure 7575: DNA304807, BC014978, 005415.2_at Figure 7530: DNA331153, 004052.1, 004052.1.at Figure 7576: PRO71216 Figure 7531: PRO86291 Figure 7577: DNA258864, DNA258864, 331965.1 at Figure 7532: DNA331930, AK054582, 978231.1_at Figure 7578: DNA304811, 428051.2, 428051.2.at Figure 7533: PRO86809 Figure 7534: DNA259587, DNA259587, 220866.1 at Figure 7579: PRO71220 Figure 7535: DNA106195, DNA106195, 359193.13.at Figure 7580: DNA257389, FLJ14906, 987098.1_at Figure 7536: DNA331154, 212376.1, 212376.1 at Figure 7581: PRO51974 Figure 7582: DNA331158, 130352.1, 130352.1_at Figure 7537: PRO86292 Figure 7538: DNA331155, 112652.1, 112652.1.at Figure 7583: PRO86296 Figure 7584: DNA258951, DNA258951, 222361.1_at Figure 7539: PRO86293 Figure 7540: DNA304806, BC019022, 983343.1_at Figure 7585: DNA331159, NP_077291.1, Figure 7541: PRO71215 411426.29_at Figure 7542: DNA262708, DNA262708, Figure 7586: PRO86297 118516.1_RC_at Figure 7587: DNA257784, DNA257784, 481853.1 at Figure 7543: DNA259475, DNA259475, 239162.1 at Figure 7588: DNA331933, AF272148, 074299.1 at Figure 7544: DNA269148, DNA269148, 411192.2_at Figure 7589: PRO86812

BRIEF DESCRIPTION OF THE DRAWINGS

In the list of figures for the present application, specific cDNA sequences which are differentially expressed in differentiated macrophages as compared to normal undifferentiated monocytes are individually identified with a specific alphanumerical designation. These cDNA sequences are differentially expressed in monocytes that are specifically treated as described in Example 1 below. If start and/or stop codons have been identified in a cDNA sequence shown in the attached figures, they are shown in bold and underlined font, and the encoded polypeptide is shown in the next consecutive figure.

The Figures 1-7589 show the nucleic acids of the invention and their encoded PRO polypeptides. Also included, for convenience is a List of Figures, which gives the figure number and the corresponding DNA or PRO number.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

I. <u>Definitions</u>

5

10

15

20

25

30

35

40

The terms "PRO polypeptide" and "PRO" as used herein and when immediately followed by a numerical designation refer to various polypeptides, wherein the complete designation (i.e., PRO/number) refers to specific polypeptide sequences as described herein. The terms "PRO/number polypeptide" and "PRO/number" wherein the term "number" is provided as an actual numerical designation as used herein encompass native sequence polypeptides and polypeptide variants (which are further defined herein). The PRO polypeptides described herein may be isolated from a variety of sources, such as from human tissue types or from another source, or prepared by recombinant or synthetic methods. The term "PRO polypeptide" refers to each individual PRO/number polypeptide disclosed herein. All disclosures in this specification which refer to the "PRO polypeptide" refer to each of the polypeptides individually as well as jointly. For example, descriptions of the preparation of, purification of, derivation of, formation of antibodies to or against, administration of, compositions containing, treatment of a disease with, etc., pertain to each polypeptide of the invention individually. The term "PRO polypeptide" also includes variants of the PRO/number polypeptides disclosed herein.

A "native sequence PRO polypeptide" comprises a polypeptide having the same amino acid sequence as the corresponding PRO polypeptide derived from nature. Such native sequence PRO polypeptides can be isolated from nature or can be produced by recombinant or synthetic means. The term "native sequence PRO polypeptide" specifically encompasses naturally-occurring truncated or secreted forms of the specific PRO polypeptide (e.g., an extracellular domain sequence), naturally-occurring variant forms (e.g., alternatively spliced forms) and naturally-occurring allelic variants of the polypeptide. In various embodiments of the invention, the native sequence PRO polypeptides disclosed herein are mature or full-length native sequence polypeptides comprising the full-length amino acids sequences shown in the accompanying figures. Start and stop codons are shown in bold font and underlined in the figures. However, while the PRO polypeptide disclosed in the accompanying figures are shown to begin with methionine residues designated herein as amino acid position 1 in the figures, it is conceivable and possible that other methionine residues located either upstream or downstream from the amino acid position 1 in the figures may be employed as the starting amino acid residue for the PRO polypeptides.

The PRO polypeptide "extracellular domain" or "ECD" refers to a form of the PRO polypeptide which is essentially free of the transmembrane and cytoplasmic domains. Ordinarily, a PRO polypeptide

ECD will have less than 1% of such transmembrane and/or cytoplasmic domains and preferably, will have less than 0.5% of such domains. It will be understood that any transmembrane domains identified for the PRO polypeptides of the present invention are identified pursuant to criteria routinely employed in the art for identifying that type of hydrophobic domain. The exact boundaries of a transmembrane domain may vary but most likely by no more than about 5 amino acids at either end of the domain as initially identified herein. Optionally, therefore, an extracellular domain of a PRO polypeptide may contain from about 5 or fewer amino acids on either side of the transmembrane domain/extracellular domain boundary as identified in the Examples or specification and such polypeptides, with or without the associated signal peptide, and nucleic acid encoding them, are contemplated by the present invention.

5

10

15

20

25

30

35

40

The approximate location of the "signal peptides" of the various PRO polypeptides disclosed herein are shown in the present specification and/or the accompanying figures. It is noted, however, that the C-terminal boundary of a signal peptide may vary, but most likely by no more than about 5 amino acids on either side of the signal peptide C-terminal boundary as initially identified herein, wherein the C-terminal boundary of the signal peptide may be identified pursuant to criteria routinely employed in the art for identifying that type of amino acid sequence element (e.g., Nielsen et al., Prot. Eng. 10:1-6 (1997) and von Heinje et al., Nucl. Acids. Res. 14:4683-4690 (1986)). Moreover, it is also recognized that, in some cases, cleavage of a signal sequence from a secreted polypeptide is not entirely uniform, resulting in more than one secreted species. These mature polypeptides, where the signal peptide is cleaved within no more than about 5 amino acids on either side of the C-terminal boundary of the signal peptide as identified herein, and the polynucleotides encoding them, are contemplated by the present invention.

"PRO polypeptide variant" means an active PRO polypeptide as defined above or below having at least about 80% amino acid sequence identity with a full-length native sequence PRO polypeptide sequence as disclosed herein, a PRO polypeptide sequence lacking the signal peptide as disclosed herein, an extracellular domain of a PRO polypeptide, with or without the signal peptide, as disclosed herein or any other fragment of a full-length PRO polypeptide sequence as disclosed herein. Such PRO polypeptide variants include, for instance, PRO polypeptides wherein one or more amino acid residues are added, or deleted, at the N- or C-terminus of the full-length native amino acid sequence. Ordinarily, a PRO polypeptide variant will have at least about 80% amino acid sequence identity, alternatively at least about 81% amino acid sequence identity, alternatively at least about 82% amino acid sequence identity, alternatively at least about 83% amino acid sequence identity, alternatively at least about 84% amino acid sequence identity, alternatively at least about 85% amino acid sequence identity, alternatively at least about 86% amino acid sequence identity, alternatively at least about 87% amino acid sequence identity, alternatively at least about 88% amino acid sequence identity, alternatively at least about 89% amino acid sequence identity, alternatively at least about 90% amino acid sequence identity, alternatively at least about 91% amino acid sequence identity, alternatively at least about 92% amino acid sequence identity, alternatively at least about 93% amino acid sequence identity, alternatively at least about 94% amino acid sequence identity, alternatively at least about 95% amino acid sequence identity, alternatively at least about 96% amino acid sequence identity, alternatively at least about 97% amino acid sequence identity, alternatively at least about 98% amino acid sequence identity and alternatively at least about 99% amino acid sequence identity to a full-length native sequence PRO polypeptide sequence as disclosed herein, a

PRO polypeptide sequence lacking the signal peptide as disclosed herein, an extracellular domain of a PRO polypeptide, with or without the signal peptide, as disclosed herein or any other specifically defined fragment of a full-length PRO polypeptide sequence as disclosed herein. Ordinarily, PRO variant polypeptides are at least about 10 amino acids in length, alternatively at least about 20 amino acids in length, alternatively at least about 40 amino acids in length, alternatively at least about 50 amino acids in length, alternatively at least about 60 amino acids in length, alternatively at least about 70 amino acids in length, alternatively at least about 80 amino acids in length, alternatively at least about 90 amino acids in length, alternatively at least about 100 amino acids in length, alternatively at least about 150 amino acids in length, alternatively at least about 200 amino acids in length, alternatively at least about 200 amino acids in length, alternatively at least about 300 amino acids in length, or more.

"Percent (%) amino acid sequence identity" with respect to the PRO polypeptide sequences identified herein is defined as the percentage of amino acid residues in a candidate sequence that are identical with the amino acid residues in the specific PRO polypeptide sequence, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity. Alignment for purposes of determining percent amino acid sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, BLAST-2, ALIGN or Megalign (DNASTAR) software. Those skilled in the art can determine appropriate parameters for measuring alignment, including any algorithms needed to achieve maximal alignment over the full length of the sequences being compared. For purposes herein, however, % amino acid sequence identity values are generated using the sequence comparison computer program ALIGN-2, wherein the complete source code for the ALIGN-2 program is provided in Table 1 below. The ALIGN-2 sequence comparison computer program was authored by Genentech, Inc. and the source code shown in Table 1 below has been filed with user documentation in the U.S. Copyright Office, Washington D.C., 20559, where it is registered under U.S. Copyright Registration No. TXU510087. The ALIGN-2 program is publicly available through Genentech, Inc., South San Francisco, California or may be compiled from the source code provided in Table 1 below. The ALIGN-2 program should be compiled for use on a UNIX operating system, preferably digital UNIX V4.0D. All sequence comparison parameters are set by the ALIGN-2 program and do not vary.

In situations where ALIGN-2 is employed for amino acid sequence comparisons, the % amino acid sequence identity of a given amino acid sequence A to, with, or against a given amino acid sequence B (which can alternatively be phrased as a given amino acid sequence A that has or comprises a certain % amino acid sequence identity to, with, or against a given amino acid sequence B) is calculated as follows:

100 times the fraction X/Y

35

40

5

10

15

20

25

30

where X is the number of amino acid residues scored as identical matches by the sequence alignment program ALIGN-2 in that program's alignment of A and B, and where Y is the total number of amino acid residues in B. It will be appreciated that where the length of amino acid sequence A is not equal to the length of amino acid sequence B, the % amino acid sequence identity of A to B will not equal the % amino acid sequence identity of B to A. As examples of % amino acid sequence identity calculations using this

method, Tables 2 and 3 demonstrate how to calculate the % amino acid sequence identity of the amino acid sequence designated "Comparison Protein" to the amino acid sequence designated "PRO", wherein "PRO" represents the amino acid sequence of a hypothetical PRO polypeptide of interest, "Comparison Protein" represents the amino acid sequence of a polypeptide against which the "PRO" polypeptide of interest is being compared, and "X, "Y" and "Z" each represent different hypothetical amino acid residues.

5

10

15

20

25

30

35

Unless specifically stated otherwise, all % amino acid sequence identity values used herein are obtained as described in the immediately preceding paragraph using the ALIGN-2 computer program. However, % amino acid sequence identity values may also be obtained as described below by using the WU-BLAST-2 computer program (Altschul et al., Methods in Enzymology 266:460-480 (1996)). Most of the WU-BLAST-2 search parameters are set to the default values. Those not set to default values, i.e., the adjustable parameters, are set with the following values: overlap span = 1, overlap fraction = 0.125, word threshold (T) = 11, and scoring matrix = BLOSUM62. When WU-BLAST-2 is employed, a % amino acid sequence identity value is determined by dividing (a) the number of matching identical amino acid residues between the amino acid sequence of the PRO polypeptide of interest having a sequence derived from the native PRO polypeptide and the comparison amino acid sequence of interest (i.e., the sequence against which the PRO polypeptide of interest is being compared which may be a PRO variant polypeptide) as determined by WU-BLAST-2 by (b) the total number of amino acid residues of the PRO polypeptide of interest. For example, in the statement "a polypeptide comprising an the amino acid sequence A which has or having at least 80% amino acid sequence identity to the amino acid sequence B", the amino acid sequence A is the comparison amino acid sequence of interest and the amino acid sequence B is the amino acid sequence of the PRO polypeptide of interest.

Percent amino acid sequence identity may also be determined using the sequence comparison program NCBI-BLAST2 (Altschul et al., Nucleic Acids Res. 25:3389-3402 (1997)). The NCBI-BLAST2 sequence comparison program may be downloaded from http://www.ncbi.nlm.nih.gov or otherwise obtained from the National Institute of Health, Bethesda, MD. NCBI-BLAST2 uses several search parameters, wherein all of those search parameters are set to default values including, for example, unmask = yes, strand = all, expected occurrences = 10, minimum low complexity length = 15/5, multi-pass e-value = 0.01, constant for multi-pass = 25, dropoff for final gapped alignment = 25 and scoring matrix = BLOSUM62.

In situations where NCBI-BLAST2 is employed for amino acid sequence comparisons, the % amino acid sequence identity of a given amino acid sequence A to, with, or against a given amino acid sequence B (which can alternatively be phrased as a given amino acid sequence A that has or comprises a certain % amino acid sequence identity to, with, or against a given amino acid sequence B) is calculated as follows:

100 times the fraction X/Y

where X is the number of amino acid residues scored as identical matches by the sequence alignment program NCBI-BLAST2 in that program's alignment of A and B, and where Y is the total number of amino acid residues in B. It will be appreciated that where the length of amino acid sequence A is not equal to the

length of amino acid sequence B, the % amino acid sequence identity of A to B will not equal the % amino acid sequence identity of B to A.

5

10

15

20

25

30

35

40

"PRO variant polynucleotide" or "PRO variant nucleic acid sequence" means a nucleic acid molecule which encodes an active PRO polypeptide as defined below and which has at least about 80% nucleic acid sequence identity with a nucleotide acid sequence encoding a full-length native sequence PRO polypeptide sequence as disclosed herein, a full-length native sequence PRO polypeptide sequence lacking the signal peptide as disclosed herein, an extracellular domain of a PRO polypeptide, with or without the signal peptide, as disclosed herein or any other fragment of a full-length PRO polypeptide sequence as disclosed herein. Ordinarily, a PRO variant polynucleotide will have at least about 80% nucleic acid sequence identity, alternatively at least about 81% nucleic acid sequence identity, alternatively at least about 82% nucleic acid sequence identity, alternatively at least about 83% nucleic acid sequence identity, alternatively at least about 84% nucleic acid sequence identity, alternatively at least about 85% nucleic acid sequence identity, alternatively at least about 86% nucleic acid sequence identity, alternatively at least about 87% nucleic acid sequence identity, alternatively at least about 88% nucleic acid sequence identity, alternatively at least about 89% nucleic acid sequence identity, alternatively at least about 90% nucleic acid sequence identity, alternatively at least about 91% nucleic acid sequence identity, alternatively at least about 92% nucleic acid sequence identity, alternatively at least about 93% nucleic acid sequence identity, alternatively at least about 94% nucleic acid sequence identity, alternatively at least about 95% nucleic acid sequence identity, alternatively at least about 96% nucleic acid sequence identity, alternatively at least about 97% nucleic acid sequence identity, alternatively at least about 98% nucleic acid sequence identity and alternatively at least about 99% nucleic acid sequence identity with a nucleic acid sequence encoding a fulllength native sequence PRO polypeptide sequence as disclosed herein, a full-length native sequence PRO polypeptide sequence lacking the signal peptide as disclosed herein, an extracellular domain of a PRO polypeptide, with or without the signal sequence, as disclosed herein or any other fragment of a full-length PRO polypeptide sequence as disclosed herein. Variants do not encompass the native nucleotide sequence.

Ordinarily, PRO variant polynucleotides are at least about 30 nucleotides in length, alternatively at least about 60 nucleotides in length, alternatively at least about 90 nucleotides in length, alternatively at least about 120 nucleotides in length, alternatively at least about 180 nucleotides in length, alternatively at least about 210 nucleotides in length, alternatively at least about 240 nucleotides in length, alternatively at least about 270 nucleotides in length, alternatively at least about 300 nucleotides in length, alternatively at least about 450 nucleotides in length, alternatively at least about 600 nucleotides in length, alternatively at least about 600 nucleotides in length, alternatively at least about 900 nucleotides in length, or more.

"Percent (%) nucleic acid sequence identity" with respect to PRO-encoding nucleic acid sequences identified herein is defined as the percentage of nucleotides in a candidate sequence that are identical with the nucleotides in the PRO nucleic acid sequence of interest, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity. Alignment for purposes of determining percent nucleic acid sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, BLAST-2, ALIGN or Megalign (DNASTAR) software. For purposes herein, however, % nucleic acid sequence identity values are generated using the sequence comparison computer program ALIGN-2, wherein the complete source code

for the ALIGN-2 program is provided in Table 1 below. The ALIGN-2 sequence comparison computer program was authored by Genentech, Inc. and the source code shown in Table 1 below has been filed with user documentation in the U.S. Copyright Office, Washington D.C., 20559, where it is registered under U.S. Copyright Registration No. TXU510087. The ALIGN-2 program is publicly available through Genentech, Inc., South San Francisco, California or may be compiled from the source code provided in Table 1 below. The ALIGN-2 program should be compiled for use on a UNIX operating system, preferably digital UNIX V4.0D. All sequence comparison parameters are set by the ALIGN-2 program and do not vary.

In situations where ALIGN-2 is employed for nucleic acid sequence comparisons, the % nucleic acid sequence identity of a given nucleic acid sequence C to, with, or against a given nucleic acid sequence D (which can alternatively be phrased as a given nucleic acid sequence C that has or comprises a certain % nucleic acid sequence identity to, with, or against a given nucleic acid sequence D) is calculated as follows:

10

15

20

25

30

35

40

100 times the fraction W/Z

where W is the number of nucleotides scored as identical matches by the sequence alignment program ALIGN-2 in that program's alignment of C and D, and where Z is the total number of nucleotides in D. It will be appreciated that where the length of nucleic acid sequence C is not equal to the length of nucleic acid sequence D, the % nucleic acid sequence identity of C to D will not equal the % nucleic acid sequence identity of D to C. As examples of % nucleic acid sequence identity calculations, Tables 4 and 5, demonstrate how to calculate the % nucleic acid sequence identity of the nucleic acid sequence designated "Comparison DNA" to the nucleic acid sequence designated "PRO-DNA", wherein "PRO-DNA" represents a hypothetical PRO-encoding nucleic acid sequence of interest, "Comparison DNA" represents the nucleotide sequence of a nucleic acid molecule against which the "PRO-DNA" nucleic acid molecule of interest is being compared, and "N", "L" and "V" each represent different hypothetical nucleotides.

Unless specifically stated otherwise, all % nucleic acid sequence identity values used herein are obtained as described in the immediately preceding paragraph using the ALIGN-2 computer program. However, % nucleic acid sequence identity values may also be obtained as described below by using the WU-BLAST-2 computer program (Altschul et al., Methods in Enzymology 266:460-480 (1996)). Most of the WU-BLAST-2 search parameters are set to the default values. Those not set to default values, i.e., the adjustable parameters, are set with the following values: overlap span = 1, overlap fraction = 0.125, word threshold (T) = 11, and scoring matrix = BLOSUM62. When WU-BLAST-2 is employed, a % nucleic acid sequence identity value is determined by dividing (a) the number of matching identical nucleotides between the nucleic acid sequence of the PRO polypeptide-encoding nucleic acid molecule of interest having a sequence derived from the native sequence PRO polypeptide-encoding nucleic acid and the comparison nucleic acid molecule of interest (i.e., the sequence against which the PRO polypeptide-encoding nucleic acid molecule of interest is being compared which may be a variant PRO polynucleotide) as determined by WU-BLAST-2 by (b) the total number of nucleotides of the PRO polypeptide-encoding nucleic acid molecule of interest. For example, in the statement "an isolated nucleic acid molecule comprising a nucleic acid sequence A which has or having at least 80% nucleic acid sequence identity to the nucleic acid sequence B", the nucleic acid sequence A is the comparison nucleic acid molecule of interest and the nucleic

acid sequence B is the nucleic acid sequence of the PRO polypeptide-encoding nucleic acid molecule of interest.

Percent nucleic acid sequence identity may also be determined using the sequence comparison program NCBI-BLAST2 (Altschul et al., Nucleic Acids Res. 25:3389-3402 (1997)). The NCBI-BLAST2 sequence comparison program may be downloaded from http://www.ncbi.nlm.nih.gov or otherwise obtained from the National Institute of Health, Bethesda, MD. NCBI-BLAST2 uses several search parameters, wherein all of those search parameters are set to default values including, for example, unmask = yes, strand = all, expected occurrences = 10, minimum low complexity length = 15/5, multi-pass e-value = 0.01, constant for multi-pass = 25, dropoff for final gapped alignment = 25 and scoring matrix = BLOSUM62.

In situations where NCBI-BLAST2 is employed for sequence comparisons, the % nucleic acid sequence identity of a given nucleic acid sequence C to, with, or against a given nucleic acid sequence D (which can alternatively be phrased as a given nucleic acid sequence C that has or comprises a certain % nucleic acid sequence identity to, with, or against a given nucleic acid sequence D) is calculated as follows:

100 times the fraction W/Z

5

10

15

20

25

30

35

40

where W is the number of nucleotides scored as identical matches by the sequence alignment program NCBI-BLAST2 in that program's alignment of C and D, and where Z is the total number of nucleotides in D. It will be appreciated that where the length of nucleic acid sequence C is not equal to the length of nucleic acid sequence D, the % nucleic acid sequence identity of C to D will not equal the % nucleic acid sequence identity of D to C.

In other embodiments, PRO variant polynucleotides are nucleic acid molecules that encode an active PRO polypeptide and which are capable of hybridizing, preferably under stringent hybridization and wash conditions, to nucleotide sequences encoding a full-length PRO polypeptide as disclosed herein. PRO variant polypeptides may be those that are encoded by a PRO variant polynucleotide.

"Isolated," when used to describe the various polypeptides disclosed herein, means polypeptide that has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials that would typically interfere with diagnostic or therapeutic uses for the polypeptide, and may include enzymes, hormones, and other proteinaceous or non-proteinaceous solutes. In preferred embodiments, the polypeptide will be purified (1) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (2) to homogeneity by SDS-PAGE under non-reducing or reducing conditions using Coomassie blue or, preferably, silver stain. Isolated polypeptide includes polypeptide in situ within recombinant cells, since at least one component of the PRO polypeptide natural environment will not be present. Ordinarily, however, isolated polypeptide will be prepared by at least one purification step.

An "isolated" PRO polypeptide-encoding nucleic acid or other polypeptide-encoding nucleic acid is a nucleic acid molecule that is identified and separated from at least one contaminant nucleic acid molecule with which it is ordinarily associated in the natural source of the polypeptide-encoding nucleic acid. An isolated polypeptide-encoding nucleic acid molecule is other than in the form or setting in which it is found in nature. Isolated polypeptide-encoding nucleic acid molecules therefore are distinguished from the

specific polypeptide-encoding nucleic acid molecule as it exists in natural cells. However, an isolated polypeptide-encoding nucleic acid molecule includes polypeptide-encoding nucleic acid molecules contained in cells that ordinarily express the polypeptide where, for example, the nucleic acid molecule is in a chromosomal location different from that of natural cells.

The term "control sequences" refers to DNA sequences necessary for the expression of an operably linked coding sequence in a particular host organism. The control sequences that are suitable for prokaryotes, for example, include a promoter, optionally an operator sequence, and a ribosome binding site. Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers.

5

10

15

20

25

30

35

40

Nucleic acid is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation. Generally, "operably linked" means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is accomplished by ligation at convenient restriction sites. If such sites do not exist, the synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice.

The term "antibody" is used in the broadest sense and specifically covers, for example, single anti-PRO monoclonal antibodies (including agonist, antagonist, and neutralizing antibodies), anti-PRO antibody compositions with polyepitopic specificity, single chain anti-PRO antibodies, and fragments of anti-PRO antibodies (see below). The term "monoclonal antibody" as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally-occurring mutations that may be present in minor amounts.

"Stringency" of hybridization reactions is readily determinable by one of ordinary skill in the art, and generally is an empirical calculation dependent upon probe length, washing temperature, and salt concentration. In general, longer probes require higher temperatures for proper annealing, while shorter probes need lower temperatures. Hybridization generally depends on the ability of denatured DNA to reanneal when complementary strands are present in an environment below their melting temperature. The higher the degree of desired homology between the probe and hybridizable sequence, the higher the relative temperature which can be used. As a result, it follows that higher relative temperatures would tend to make the reaction conditions more stringent, while lower temperatures less so. For additional details and explanation of stringency of hybridization reactions, see Ausubel et al., Current Protocols in Molecular Biology, Wiley Interscience Publishers, (1995).

"Stringent conditions" or "high stringency conditions", as defined herein, may be identified by those that: (1) employ low ionic strength and high temperature for washing, for example 0.015 M sodium chloride/0.0015 M sodium citrate/0.1% sodium dodecyl sulfate at 50°C; (2) employ during hybridization a denaturing agent, such as formamide, for example, 50% (v/v) formamide with 0.1% bovine serum albumin/0.1% Ficoll/0.1% polyvinylpyrrolidone/50mM sodium phosphate buffer at pH 6.5 with 750 mM sodium chloride, 75 mM sodium citrate at 42°C; or (3) employ 50% formamide, 5 x SSC (0.75 M NaCl,

0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5 x Denhardt's solution, sonicated salmon sperm DNA (50 µg/ml), 0.1% SDS, and 10% dextran sulfate at 42°C, with washes at 42°C in 0.2 x SSC (sodium chloride/sodium citrate) and 50% formamide at 55°C, followed by a high-stringency wash consisting of 0.1 x SSC containing EDTA at 55°C.

5

10

15

20

25

30

35

40

"Moderately stringent conditions" may be identified as described by Sambrook et al., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Press, 1989, and include the use of washing solution and hybridization conditions (e.g., temperature, ionic strength and %SDS) less stringent that those described above. An example of moderately stringent conditions is overnight incubation at 37°C in a solution comprising: 20% formamide, 5 x SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5 x Denhardt's solution, 10% dextran sulfate, and 20 mg/ml denatured sheared salmon sperm DNA, followed by washing the filters in 1 x SSC at about 37-50°C. The skilled artisan will recognize how to adjust the temperature, ionic strength, etc. as necessary to accommodate factors such as probe length and the like.

The term "epitope tagged" when used herein refers to a chimeric polypeptide comprising a PRO polypeptide fused to a "tag polypeptide". The tag polypeptide has enough residues to provide an epitope against which an antibody can be made, yet is short enough such that it does not interfere with activity of the polypeptide to which it is fused. The tag polypeptide preferably also is fairly unique so that the antibody does not substantially cross-react with other epitopes. Suitable tag polypeptides generally have at least six amino acid residues and usually between about 8 and 50 amino acid residues (preferably, between about 10 and 20 amino acid residues).

As used herein, the term "immunoadhesin" designates antibody-like molecules which combine the binding specificity of a heterologous protein (an "adhesin") with the effector functions of immunoglobulin constant domains. Structurally, the immunoadhesins comprise a fusion of an amino acid sequence with the desired binding specificity which is other than the antigen recognition and binding site of an antibody (i.e., is "heterologous"), and an immunoglobulin constant domain sequence. The adhesin part of an immunoadhesin molecule typically is a contiguous amino acid sequence comprising at least the binding site of a receptor or a ligand. The immunoglobulin constant domain sequence in the immunoadhesin may be obtained from any immunoglobulin, such as IgG-1, IgG-2, IgG-3, or IgG-4 subtypes, IgA (including IgA-1 and IgA-2), IgE, IgD or IgM.

"Active" or "activity" for the purposes herein refers to form(s) of a PRO polypeptide which retain a biological and/or an immunological activity of native or naturally-occurring PRO, wherein "biological" activity refers to a biological function (either inhibitory or stimulatory) caused by a native or naturally-occurring PRO other than the ability to induce the production of an antibody against an antigenic epitope possessed by a native or naturally-occurring PRO and an "immunological" activity refers to the ability to induce the production of an antibody against an antigenic epitope possessed by a native or naturally-occurring PRO.

The term "antagonist" is used in the broadest sense, and includes any molecule that partially or fully blocks, inhibits, or neutralizes a biological activity of a native PRO polypeptide disclosed herein. In a similar manner, the term "agonist" is used in the broadest sense and includes any molecule that mimics a biological activity of a native PRO polypeptide disclosed herein. Suitable agonist or antagonist molecules

specifically include agonist or antagonist antibodies or antibody fragments, fragments or amino acid sequence variants of native PRO polypeptides, peptides, antisense oligonucleotides, small organic molecules, etc. Methods for identifying agonists or antagonists of a PRO polypeptide may comprise contacting a PRO polypeptide with a candidate agonist or antagonist molecule and measuring a detectable change in one or more biological activities normally associated with the PRO polypeptide.

5

10

15

20

25

30

35

40

"Treatment" refers to both therapeutic treatment and prophylactic or preventative measures, wherein the object is to prevent or slow down (lessen) the targeted pathologic condition or disorder. Those in need of treatment include those already with the disorder as well as those prone to have the disorder or those in whom the disorder is to be prevented.

"Chronic" administration refers to administration of the agent(s) in a continuous mode as opposed to an acute mode, so as to maintain the initial therapeutic effect (activity) for an extended period of time. "Intermittent" administration is treatment that is not consecutively done without interruption, but rather is cyclic in nature.

"Mammal" for purposes of treatment refers to any animal classified as a mammal, including humans, domestic and farm animals, and zoo, sports, or pet animals, such as dogs, cats, cattle, horses, sheep, pigs, goats, rabbits, etc. Preferably, the mammal is human.

Administration "in combination with" one or more further therapeutic agents includes simultaneous (concurrent) and consecutive administration in any order.

"Carriers" as used herein include pharmaceutically acceptable carriers, excipients, or stabilizers which are nontoxic to the cell or mammal being exposed thereto at the dosages and concentrations employed. Often the physiologically acceptable carrier is an aqueous pH buffered solution. Examples of physiologically acceptable carriers include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid; low molecular weight (less than about 10 residues) polypeptide; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, arginine or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; salt-forming counterions such as sodium; and/or nonionic surfactants such as TWEENTM, polyethylene glycol (PEG), and PLURONICSTM.

"Antibody fragments" comprise a portion of an intact antibody, preferably the antigen binding or variable region of the intact antibody. Examples of antibody fragments include Fab, Fab', F(ab')₂, and Fv fragments; diabodies; linear antibodies (Zapata et al., <u>Protein Eng.</u> 8(10): 1057-1062 [1995]); single-chain antibody molecules; and multispecific antibodies formed from antibody fragments.

Papain digestion of antibodies produces two identical antigen-binding fragments, called "Fab" fragments, each with a single antigen-binding site, and a residual "Fc" fragment, a designation reflecting the ability to crystallize readily. Pepsin treatment yields an F(ab')₂ fragment that has two antigen-combining sites and is still capable of cross-linking antigen.

"Fv" is the minimum antibody fragment which contains a complete antigen-recognition and - binding site. This region consists of a dimer of one heavy- and one light-chain variable domain in tight, non-covalent association. It is in this configuration that the three CDRs of each variable domain interact to define an antigen-binding site on the surface of the V_{H} - V_{L} dimer. Collectively, the six CDRs confer antigen-

binding specificity to the antibody. However, even a single variable domain (or half of an Fv comprising only three CDRs specific for an antigen) has the ability to recognize and bind antigen, although at a lower affinity than the entire binding site.

5

10

15

20

25

30

35

The Fab fragment also contains the constant domain of the light chain and the first constant domain (CH1) of the heavy chain. Fab fragments differ from Fab' fragments by the addition of a few residues at the carboxy terminus of the heavy chain CH1 domain including one or more cysteines from the antibody hinge region. Fab'-SH is the designation herein for Fab' in which the cysteine residue(s) of the constant domains bear a free thiol group. F(ab')₂ antibody fragments originally were produced as pairs of Fab' fragments which have hinge cysteines between them. Other chemical couplings of antibody fragments are also known.

The "light chains" of antibodies (immunoglobulins) from any vertebrate species can be assigned to one of two clearly distinct types, called kappa and lambda, based on the amino acid sequences of their constant domains.

Depending on the amino acid sequence of the constant domain of their heavy chains, immunoglobulins can be assigned to different classes. There are five major classes of immunoglobulins: IgA, IgD, IgE, IgG, and IgM, and several of these may be further divided into subclasses (isotypes), e.g., IgG1, IgG2, IgG3, IgG4, IgA, and IgA2.

"Single-chain Fv" or "sFv" antibody fragments comprise the V_H and V_L domains of antibody, wherein these domains are present in a single polypeptide chain. Preferably, the Fv polypeptide further comprises a polypeptide linker between the V_H and V_L domains which enables the sFv to form the desired structure for antigen binding. For a review of sFv, see Pluckthun in <u>The Pharmacology of Monoclonal Antibodies</u>, vol. 113, Rosenburg and Moore eds., Springer-Verlag, New York, pp. 269-315 (1994).

The term "diabodies" refers to small antibody fragments with two antigen-binding sites, which fragments comprise a heavy-chain variable domain (V_H) connected to a light-chain variable domain (V_L) in the same polypeptide chain $(V_{H^-}V_L)$. By using a linker that is too short to allow pairing between the two domains on the same chain, the domains are forced to pair with the complementary domains of another chain and create two antigen-binding sites. Diabodies are described more fully in, for example, EP 404,097; WO 93/11161; and Hollinger et al., <u>Proc. Natl. Acad. Sci. USA</u>, 90:6444-6448 (1993).

An "isolated" antibody is one which has been identified and separated and/or recovered from a component of its natural environment. Contaminant components of its natural environment are materials which would interfere with diagnostic or therapeutic uses for the antibody, and may include enzymes, hormones, and other proteinaceous or nonproteinaceous solutes. In preferred embodiments, the antibody will be purified (1) to greater than 95% by weight of antibody as determined by the Lowry method, and most preferably more than 99% by weight, (2) to a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or (3) to homogeneity by SDS-PAGE under reducing or nonreducing conditions using Coomassie blue or, preferably, silver stain. Isolated antibody includes the antibody in situ within recombinant cells since at least one component of the antibody's natural environment will not be present. Ordinarily, however, isolated antibody will be prepared by at least one purification step.

An antibody that "specifically binds to" or is "specific for" a particular polypeptide or an epitope on a particular polypeptide is one that binds to that particular polypeptide or epitope on a particular polypeptide without substantially binding to any other polypeptide or polypeptide epitope.

The word "label" when used herein refers to a detectable compound or composition which is conjugated directly or indirectly to the antibody so as to generate a "labeled" antibody. The label may be detectable by itself (e.g. radioisotope labels or fluorescent labels) or, in the case of an enzymatic label, may catalyze chemical alteration of a substrate compound or composition which is detectable.

5

10

15

20

25

30

35

40

By "solid phase" is meant a non-aqueous matrix to which the antibody of the present invention can adhere. Examples of solid phases encompassed herein include those formed partially or entirely of glass (e.g., controlled pore glass), polysaccharides (e.g., agarose), polyacrylamides, polystyrene, polyvinyl alcohol and silicones. In certain embodiments, depending on the context, the solid phase can comprise the well of an assay plate; in others it is a purification column (e.g., an affinity chromatography column). This term also includes a discontinuous solid phase of discrete particles, such as those described in U.S. Patent No. 4,275,149.

A "liposome" is a small vesicle composed of various types of lipids, phospholipids and/or surfactant which is useful for delivery of a drug (such as a PRO polypeptide or antibody thereto) to a mammal. The components of the liposome are commonly arranged in a bilayer formation, similar to the lipid arrangement of biological membranes.

A "small molecule" is defined herein to have a molecular weight below about 500 Daltons.

The term "immune related disease" means a disease in which a component of the immune system of a mammal causes, mediates or otherwise contributes to a morbidity in the mammal. Also included are diseases in which stimulation or intervention of the immune response has an ameliorative effect on progression of the disease. Included within this term are immune-mediated inflammatory diseases, non-immune-mediated inflammatory diseases, infectious diseases, immunodeficiency diseases, neoplasia, etc.

The term "T cell mediated disease" means a disease in which T cells directly or indirectly mediate or otherwise contribute to a morbidity in a mammal. The T cell mediated disease may be associated with cell mediated effects, lymphokine mediated effects, etc., and even effects associated with B cells if the B cells are stimulated, for example, by the lymphokines secreted by T cells.

Examples of immune-related and inflammatory diseases, some of which are immune or T cell mediated, which can be treated according to the invention include systemic lupus erythematosis, rheumatoid arthritis, juvenile chronic arthritis, spondyloarthropathies, systemic sclerosis (scleroderma), idiopathic inflammatory myopathies (dermatomyositis, polymyositis), Sjögren's syndrome, systemic vasculitis, sarcoidosis, autoimmune hemolytic anemia (immune pancytopenia, paroxysmal nocturnal hemoglobinuria), autoimmune thrombocytopenia (idiopathic thrombocytopenic purpura, immune-mediated thrombocytopenia), thyroiditis (Grave's disease, Hashimoto's thyroiditis, juvenile lymphocytic thyroiditis, atrophic thyroiditis), diabetes mellitus, immune-mediated renal disease (glomerulonephritis, tubulointerstitial nephritis), demyelinating diseases of the central and peripheral nervous systems such as multiple sclerosis, idiopathic demyelinating polyneuropathy or Guillain-Barré syndrome, and chronic inflammatory demyelinating polyneuropathy, hepatobiliary diseases such as infectious hepatitis (hepatitis A, B, C, D, E and other non-hepatotropic viruses), autoimmune chronic active hepatitis, primary biliary cirrhosis,

granulomatous hepatitis, and sclerosing cholangitis, inflammatory bowel disease (ulcerative colitis: Crohn's disease), gluten-sensitive enteropathy, and Whipple's disease, autoimmune or immune-mediated skin diseases including bullous skin diseases, erythema multiforme and contact dermatitis, psoriasis, allergic diseases such as asthma, allergic rhinitis, atopic dermatitis, food hypersensitivity and urticaria, immunologic diseases of the lung such as eosinophilic pneumonias, idiopathic pulmonary fibrosis and hypersensitivity pneumonitis, transplantation associated diseases including graft rejection and graft -versus-host-disease. Infectious diseases including viral diseases such as AIDS (HIV infection), hepatitis A, B, C, D, and E, herpes, etc., bacterial infections, fungal infections, protozoal infections and parasitic infections.

5

10

15

20

25

30

35

40

The term "effective amount" is a concentration or amount of a PRO polypeptide and/or agonist/antagonist which results in achieving a particular stated purpose. An "effective amount" of a PRO polypeptide or agonist or antagonist thereof may be determined empirically. Furthermore, a "therapeutically effective amount" is a concentration or amount of a PRO polypeptide and/or agonist/antagonist which is effective for achieving a stated therapeutic effect. This amount may also be determined empirically.

The term "cytotoxic agent" as used herein refers to a substance that inhibits or prevents the function of cells and/or causes destruction of cells. The term is intended to include radioactive isotopes (e.g., I¹³¹, I¹²⁵, Y⁹⁰ and Re¹⁸⁶), chemotherapeutic agents, and toxins such as enzymatically active toxins of bacterial, fungal, plant or animal origin, or fragments thereof.

A "chemotherapeutic agent" is a chemical compound useful in the treatment of cancer. Examples of chemotherapeutic agents include adriamycin, doxorubicin, epirubicin, 5-fluorouracil, cytosine arabinoside ("Ara-C"), cyclophosphamide, thiotepa, busulfan, cytoxin, taxoids, e.g., paclitaxel (Taxol, Bristol-Myers Squibb Oncology, Princeton, NJ), and doxetaxel (Taxotere, Rhône-Poulenc Rorer, Antony, France), toxotere, methotrexate, cisplatin, melphalan, vinblastine, bleomycin, etoposide, ifosfamide, mitomycin C, mitoxantrone, vincristine, vinorelbine, carboplatin, teniposide, daunomycin, carminomycin, aminopterin, dactinomycin, mitomycins, esperamicins (see U.S. Pat. No. 4,675,187), melphalan and other related nitrogen mustards. Also included in this definition are hormonal agents that act to regulate or inhibit hormone action on tumors such as tamoxifen and onapristone.

A "growth inhibitory agent" when used herein refers to a compound or composition which inhibits growth of a cell, especially cancer cell overexpressing any of the genes identified herein, either in vitro or in vivo. Thus, the growth inhibitory agent is one which significantly reduces the percentage of cells overexpressing such genes in S phase. Examples of growth inhibitory agents include agents that block cell cycle progression (at a place other than S phase), such as agents that induce G1 arrest and M-phase arrest. Classical M-phase blockers include the vincas (vincristine and vinblastine), taxol, and topo II inhibitors such as doxorubicin, epirubicin, daunorubicin, etoposide, and bleomycin. Those agents that arrest G1 also spill over into S-phase arrest, for example, DNA alkylating agents such as tamoxifen, prednisone, dacarbazine, mechlorethamine, cisplatin, methotrexate, 5-fluorouracil, and ara-C. Further information can be found in The Molecular Basis of Cancer, Mendelsohn and Israel, eds., Chapter 1, entitled "Cell cycle regulation, oncogens, and antineoplastic drugs" by Murakami et al. (WB Saunders: Philadelphia, 1995), especially p. 13.

The term "cytokine" is a generic term for proteins released by one cell population which act on another cell as intercellular mediators. Examples of such cytokines are lymphokines, monokines, and

traditional polypeptide hormones. Included among the cytokines are growth hormone such as human growth hormone, N-methionyl human growth hormone, and bovine growth hormone; parathyroid hormone; thyroxine; insulin; proinsulin; relaxin; prorelaxin; glycoprotein hormones such as follicle stimulating hormone (FSH), thyroid stimulating hormone (TSH), and luteinizing hormone (LH); hepatic growth factor; fibroblast growth factor; prolactin; placental lactogen; tumor necrosis factor-α and -β; mullerian-inhibiting substance; mouse gonadotropin-associated peptide; inhibin; activin; vascular endothelial growth factor; integrin; thrombopoietin (TPO); nerve growth factors such as NGF-β; platelet-growth factor; transforming growth factors (TGFs) such as TGF-α and TGF-β; insulin-like growth factor-I and -II; erythropoietin (EPO); osteoinductive factors; interferons such as interferon-α, -β, and -γ, colony stimulating factors (CSFs) such as macrophage-CSF (M-CSF); granulocyte-macrophage-CSF (GM-CSF); and granulocyte-CSF (G-CSF); interleukins (ILs) such as IL-1, IL-1α, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-11, IL-12; a tumor necrosis factor such as TNF-α or TNF-β; and other polypeptide factors including LIF and kit ligand (KL). As used herein, the term cytokine includes proteins from natural sources or from recombinant cell culture and biologically active equivalents of the native sequence cytokines.

5

10

15

20

25

As used herein, the term "immunoadhesin" designates antibody-like molecules which combine the binding specificity of a heterologous protein (an "adhesin") with the effector functions of immunoglobulin constant domains. Structurally, the immunoadhesins comprise a fusion of an amino acid sequence with the desired binding specificity which is other than the antigen recognition and binding site of an antibody (*i.e.*, is "heterologous"), and an immunoglobulin constant domain sequence. The adhesin part of an immunoadhesin molecule typically is a contiguous amino acid sequence comprising at least the binding site of a receptor or a ligand. The immunoglobulin constant domain sequence in the immunoadhesin may be obtained from any immunoglobulin, such as IgG-1, IgG-2, IgG-3, or IgG-4 subtypes, IgA (including IgA-1 and IgA-2), IgE, IgD or IgM.

As used herein, the term "inflammatory cells" designates cells that enhance the inflammatory response such as mononuclear cells, eosinophils, macrophages, and polymorphonuclear neutrophils (PMN).

Table 1

```
/*
5
       * C-C increased from 12 to 15
       * Z is average of EQ
       * B is average of ND
       * match with stop is _M; stop-stop = 0; J (joker) match = 0
10
                                    /* value of a match with a stop */
       #define _M
                  day[26][26] = {
       int
              ABCDEFGHIJKLMNOPQRSTUVWXYZ*/
                  { 2, 0,-2, 0, 0,-4, 1,-1,-1, 0,-1,-2,-1, 0,_M, 1, 0,-2, 1, 1, 0, 0,-6, 0,-3, 0},
       /* A */
15
                   { 0, 3,-4, 3, 2,-5, 0, 1,-2, 0, 0,-3,-2, 2,_M,-1, 1, 0, 0, 0, 0, 0,-2,-5, 0,-3, 1},
       /* B */
                    \{-2, -4, 15, -5, -5, -4, -3, -3, -2, 0, -5, -6, -5, -4, \underline{M}, -3, -5, -4, 0, -2, 0, -2, -8, 0, 0, -5\}, 
       /* C */
                   { 0, 3,-5, 4, 3,-6, 1, 1,-2, 0, 0,-4,-3, 2,_M,-1, 2,-1, 0, 0, 0,-2,-7, 0,-4, 2},
       /* D */
                   { 0, 2,-5, 3, 4,-5, 0, 1,-2, 0, 0,-3,-2, 1,_M,-1, 2,-1, 0, 0, 0,-2,-7, 0,-4, 3},
       /* E */
                   {-4,-5,-4,-6,-5, 9,-5,-2, 1, 0,-5, 2, 0,-4, M,-5,-5,-4,-3,-3, 0,-1, 0, 0, 7,-5},
20
       /* F */
                   \{1, 0, -3, 1, 0, -5, 5, -2, -3, 0, -2, -4, -3, 0, M, -1, -1, -3, 1, 0, 0, -1, -7, 0, -5, 0\},\
       /* G */
                   {-1, 1,-3, 1, 1,-2,-2, 6,-2, 0, 0,-2,-2, 2,_M, 0, 3, 2,-1,-1, 0,-2,-3, 0, 0, 2},
       /* H */
                   \{-1, -2, -2, -2, 1, -3, -2, 5, 0, -2, 2, 2, 2, -2, M, -2, -2, -1, 0, 0, 4, -5, 0, -1, -2\},\
       /* I */
                   /* J */
                   {-1, 0,-5, 0, 0,-5,-2, 0,-2, 0, 5,-3, 0, 1,_M,-1, 1, 3, 0, 0, 0,-2,-3, 0,-4, 0}
       /* K */
25
                   {-2,-3,-6,-4,-3, 2,-4,-2, 2, 0,-3, 6, 4,-3, M,-3,-2,-3,-3,-1, 0, 2,-2, 0,-1,-2}, {-1,-2,-5,-3,-2, 0,-3,-2, 2, 0, 0, 4, 6,-2, M,-2,-1, 0,-2,-1, 0, 2,-4, 0,-2,-1},
        /* L */
        /* M */
                   { 0, 2,-4, 2, 1,-4, 0, 2,-2, 0, 1,-3,-2, 2,_M,-1, 1, 0, 1, 0, 0,-2,-4, 0,-2, 1},
        /* N */
                   /* O */
                   \{1,-1,-3,-1,-1,-5,-1,0,-2,0,-1,-3,-2,-1,M,6,0,0,1,0,0,-1,-6,0,-5,0\},
        /* P */
30
                   \{0, 1, -5, 2, 2, -5, -1, 3, -2, 0, 1, -2, -1, 1, M, 0, 4, 1, -1, -1, 0, -2, -5, 0, -4, 3\},
        /* O */
                   {-2, 0,-4,-1,-1,-4,-3, 2,-2, 0, 3,-3, 0, 0, M, 0, 1, 6, 0,-1, 0,-2, 2, 0,-4, 0},
        /* R */
                   {1,0,0,0,0,0,-3,1,-1,-1,0,0,-3,-2,1,_M,1,-1,0,2,1,0,-1,-2,0,-3,0},
        /* S */
                   { 1, 0,-2, 0, 0,-3, 0,-1, 0, 0, 0,-1,-1, 0,_M, 0,-1,-1, 1, 3, 0, 0,-5, 0,-3, 0},
        /* T */
                    /* U */
 35
                    { 0,-2,-2,-2,-1,-1,-2, 4, 0,-2, 2, 2,-2,_M,-1,-2,-2,-1, 0, 0, 4,-6, 0,-2,-2}
        /* V */
                    {-6,-5,-8,-7,-7, 0,-7,-3,-5, 0,-3,-2,-4,-4,_M,-6,-5, 2,-2,-5, 0,-6,17, 0, 0,-6},
        /* W */
                    /* X */
                    {-3,-3, 0,-4,-4, 7,-5, 0,-1, 0,-4,-1,-2,-2,_M,-5,-4,-4,-3,-3, 0,-2, 0, 0,10,-4},
        /* Y */
                    { 0, 1,-5, 2, 3,-5, 0, 2,-2, 0, 0,-2,-1, 1, M, 0, 3, 0, 0, 0, 0, 0,-2,-6, 0,-4, 4}
 40
        /* Z */
        };
```

45

50

Table 1 (cont')

```
*/
       #include <stdio.h>
 5
       #include <ctype.h>
       #define MAXJMP
                                     16
                                              /* max jumps in a diag */
       #define MAXGAP
                                     24
                                              /* don't continue to penalize gaps larger than this */
       #define JMPS
                                     1024
                                              /* max jmps in an path */
10
       #define MX
                                    4
                                              /* save if there's at least MX-1 bases since last jmp */
                                              /* value of matching bases */
       #define DMAT
                                    3
       #define DMIS
                                    0
                                              /* penalty for mismatched bases */
       #define DINSO
                                    8
                                              /* penalty for a gap */
15
       #define DINS1
                                    1
                                              /* penalty per base */
       #define PINSO
                                              /* penalty for a gap */
                                    8
       #define PINS1
                                              /* penalty per residue */
       struct jmp {
20
                 short
                                    n[MAXJMP];
                                                        /* size of jmp (neg for dely) */
                 unsigned short
                                    x[MAXJMP];
                                                        /* base no. of jmp in seq x */
       };
                                                        /* limits seq to 2^16 -1 */
       struct diag {
25
                 int
                                     score;
                                                        /* score at last jmp */
                 long
                                    offset;
                                                        /* offset of prev block */
                 short
                                                        /* current jmp index */
                                    ijmp;
                 struct jmp
                                                        /* list of jmps */
                                    jp;
       };
30
       struct path {
                 int
                                              /* number of leading spaces */
                 short
                           n[JMPS]; /* size of jmp (gap) */
                           x[JMPS];/* loc of jmp (last elem before gap) */
                 int
35
       };
       char
                           *ofile;
                                                        /* output file name */
                           *namex[2];
       char
                                                        /* seq names: getseqs() */
       char
                           *prog;
                                                        /* prog name for err msgs */
40
       char
                           *seqx[2];
                                                        /* seqs: getseqs() */
                                                        /* best diag: nw() */
                           dmax;
       int
       int
                           dmax0;
                                                        /* final diag */
       int
                           dna:
                                                        /* set if dna: main() */
                                                        /* set if penalizing end gaps */
       int
                           endgaps;
45
       int
                           gapx, gapy;
                                                        /* total gaps in seqs */
                                                        /* seq lens */
       int
                           len0, len1;
       int
                          ngapx, ngapy;
                                                        /* total size of gaps */
       int
                                                        /* max score: nw() */
                           smax;
       int
                           *xbm:
                                                        /* bitmap for matching */
50
       long
                           offset;
                                                        /* current offset in jmp file */
       struct
                 diag
                                                        /* holds diagonals */
                           *dx;
       struct
                 path
                           pp[2];
                                                        /* holds path for segs */
       char
                           *calloc(), *malloc(), *index(), *strcpy();
55
       char
                           *getseq(), *g_calloc();
```

Table 1 (cont')

```
/* Needleman-Wunsch alignment program
        * usage: progs file1 file2
 5
           where file1 and file2 are two dna or two protein sequences.
           The sequences can be in upper- or lower-case an may contain ambiguity
           Any lines beginning with ';', '>' or '<' are ignored
           Max file length is 65535 (limited by unsigned short x in the jmp struct)
           A sequence with 1/3 or more of its elements ACGTU is assumed to be DNA
10
           Output is in the file "align.out"
        * The program may create a tmp file in /tmp to hold info about traceback.
        * Original version developed under BSD 4.3 on a vax 8650
15
       #include "nw.h"
       #include "day.h"
       static
                  _{dbval[26]} = {
                  1,14,2,13,0,0,4,11,0,0,12,0,3,15,0,0,0,5,6,8,8,7,9,0,10,0
20
       };
       static
                  _{pbval[26]} = {
                  1, 2|(1<<('D'-'A'))|(1<<('N'-'A')), 4, 8, 16, 32, 64,
                  128, 256, 0xFFFFFFF, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14,
25
                  1<<15, 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22,
                  1<23, 1<24, 1<25[(1<<('E'-'A'))](1<<('Q'-'A'))
       };
       main(ac, av)
                  main
30
                  int
                            ac;
                  char
                            *av[];
        {
                  prog = av[0];
35
                  if (ac!=3) {
                            fprintf(stderr,"usage: %s file1 file2\n", prog);
                            fprintf(stderr,"where file1 and file2 are two dna or two protein sequences.\n"); fprintf(stderr,"The sequences can be in upper- or lower-case\n");
                            fprintf(stderr, "Any lines beginning with ';' or '<' are ignored\n");
40
                            fprintf(stderr,"Output is in the file \"align.out\"\n");
                            exit(1);
                  namex[0] = av[1];
                  namex[1] = av[2];
45
                  seqx[0] = getseq(namex[0], \&len0);
                  seqx[1] = getseq(namex[1], &len1);
                  xbm = (dna)? _dbval : _pbval;
                  endgaps = 0;
                                                           /* 1 to penalize endgaps */
50
                  ofile = "align.out";
                                                 /* output file */
                                      /* fill in the matrix, get the possible jmps */
                  nw();
                  readjmps();
                                      /* get the actual jmps */
                  print();
                                      /* print stats, alignment */
55
                  cleanup(0);
                                      /* unlink any tmp files */
       }
```

```
/* do the alignment, return best score: main()
         * dna: values in Fitch and Smith, PNAS, 80, 1382-1386, 1983
         * pro: PAM 250 values
 5
         * When scores are equal, we prefer mismatches to any gap, prefer
         * a new gap to extending an ongoing gap, and prefer a gap in seqx
         * to a gap in seq y.
         */
        nw()
10
                   nw
        {
                   char
                                         *px, *py;
                                                              /* seqs and ptrs */
                                         *ndely, *dely;
                                                              /* keep track of dely */
                   int
                                                              /* keep track of delx */
                   int
                                         ndelx, delx;
15
                   int
                                         *tmp;
                                                              /* for swapping row0, row1 */
                                                              /* score for each type */
                                         mis;
                   int
                                                              /* insertion penalties */
                   int
                                         ins0, ins1;
                   register
                                         id;
                                                              /* diagonal index */
                   register
                                                              /* jmp index */
                                                              /* score for curr, last row */
20
                   register
                                         *col0, *col1;
                   register
                                                              /* index into segs */
                                         xx, yy;
                   dx = (struct diag *)g_calloc("to get diags", len0+len1+1, sizeof(struct diag));
25
                   ndely = (int *)g_calloc("to get ndely", len1+1, sizeof(int));
                   dely = (int *)g_calloc("to get dely", len1+1, sizeof(int));

col0 = (int *)g_calloc("to get col0", len1+1, sizeof(int));

col1 = (int *)g_calloc("to get col1", len1+1, sizeof(int));
                   ins0 = (dna)? DINS0: PINS0;
30
                   ins1 = (dna)? DINS1: PINS1;
                   smax = -10000;
                   if (endgaps) {
                              for (col0[0] = dely[0] = -ins0, yy = 1; yy \le len1; yy++) {
35
                                         col0[yy] = dely[yy] = col0[yy-1] - ins1;
                                         ndely[yy] = yy;
                              col0[0] = 0;
                                                   /* Waterman Bull Math Biol 84 */
40
                   else
                              for (yy = 1; yy \le len1; yy++)
                                         dely[yy] = -ins0;
                   /* fill in match matrix
45
                   for (px = seqx[0], xx = 1; xx \le len0; px++, xx++) {
                              /* initialize first entry in col
                              if (endgaps) {
50
                                         if(xx == 1)
                                                   col1[0] = delx = -(ins0+ins1);
                                         else
                                                   col1[0] = delx = col0[0] - ins1;
                                         ndelx = xx;
55
                              else {
                                         col1[0] = 0;
                                        delx = -ins0;
                                        ndelx = 0;
60
                             }
```

Table 1 (cont')

```
...nw
                          for (py = seqx[1], yy = 1; yy <= len1; py++, yy++) {
    mis = col0[yy-1];
 5
                                    if (dna)
                                              mis += (xbm[*px-'A']&xbm[*py-'A'])? DMAT : DMIS;
                                     else
                                              mis += _day[*px-'A'][*py-'A'];
10
                                    /* update penalty for del in x seq;
                                     * favor new del over ongong del
                                     * ignore MAXGAP if weighting endgaps
                                    if (endgaps | ndely[yy] < MAXGAP) {
15
                                              if (col0[yy] - ins0 >= dely[yy]) {
                                                        dely[yy] = col0[yy] - (ins0+ins1);
                                                        ndely[yy] = 1;
                                              } else {
                                                        dely[yy] = ins1;
20
                                                        ndely[yy]++;
                                              }
                                    } else {
                                              if (col0[yy] - (ins0+ins1) >= dely[yy]) {
                                                        dely[yy] = col0[yy] - (ins0+ins1);
25
                                                        ndely[yy] = 1;
                                              } else
                                                        ndely[yy]++;
                                    }
                                    /* update penalty for del in y seq;
30
                                     * favor new del over ongong del
                                    if (endgaps | ndelx < MAXGAP) {
                                              if (coll[yy-1] - ins0 >= delx) {
35
                                                        delx = col1[yy-1] - (ins0+ins1);
                                                        ndelx = 1;
                                              } else {
                                                        delx -= ins1;
                                                        ndelx++;
40
                                    } else {
                                              if (col1[yy-1] - (ins0+ins1) >= delx) {
                                                        delx = col1[yy-1] - (ins0+ins1);
                                                        ndelx = 1;
45
                                              } else
                                                        ndelx++;
                                    }
                                    /* pick the maximum score; we're favoring
50
                                     * mis over any del and delx over dely
55
```

```
...nw
                                      id = xx - yy + len1 - 1;
                                       if (mis >= delx && mis >= dely[yy])
 5
                                                 col1[yy] = mis;
                                       else if (delx >= dely[yy]) {
                                                 col1[yy] = delx;
                                                 ij = dx[id].ijmp;
                                                 if (dx[id].jp.n[0] && (!dna || (ndelx >= MAXJMP))
                                                 && xx > dx[id].jp.x[ij]+MX) | mis > dx[id].score+DINS0)) {
10
                                                           dx[id].ijmp++;
                                                           if (++ij >= MAXJMP) {
                                                                      writejmps(id);
                                                                      ij = dx[id].ijmp = 0;
15
                                                                      dx[id].offset = offset;
                                                                      offset += sizeof(struct jmp) + sizeof(offset);
                                                           }
                                                 dx[id].jp.n[ij] = ndelx;
20
                                                 dx[id].jp.x[ij] = xx;
                                                 dx[id].score = delx;
                                       else {
                                                 col1[yy] = dely[yy];
                                                 ij = dx[id].ijmp;
25
                  if (dx[id].jp.n[0] && (!dna || (ndely[yy] >= MAXJMP)
                                                 && xx > dx[id].jp.x[ij]+MX) \parallel mis > dx[id].score+DINS0)) {
                                                           dx[id].ijmp++;
                                                           if (++ij >= MAXJMP) {
30
                                                                      writejmps(id);
                                                                      ij = dx[id].ijmp = 0;
                                                                      dx[id].offset = offset;
                                                                      offset += sizeof(struct jmp) + sizeof(offset);
                                                           }
35
                                                 dx[id].jp.n[ij] = -ndely[yy];
                                                 dx[id].jp.x[ij] = xx;
                                                 dx[id].score = dely[yy];
40
                                       if (xx == len0 && yy < len1) {
                                                 /* last col
                                                 if (endgaps)
                                                           col1[yy] = ins0+ins1*(len1-yy);
45
                                                 if (col1[yy] > smax) {
                                                           smax = col1[yy];
                                                           dmax = id;
                                                 }
                                       }
50
                            if (endgaps && xx < len0)
                                       col1[yy-1] = ins0+ins1*(len0-xx);
                            if (col1[yy-1] > smax) {
                                       smax = col1[yy-1];
55
                                       dmax = id:
                            tmp = col0; col0 = col1; col1 = tmp;
                  (void) free((char *)ndely);
                  (void) free((char *)dely);
(void) free((char *)col0);
(void) free((char *)col1);
60
                                                                     }
```

PCT/US2003/035971

```
* print() -- only routine visible outside this module
 5
        * static:
         * getmat() -- trace back best path, count matches: print()
         * pr_align() -- print alignment of described in array p[]: print()
        * dumpblock() -- dump a block of lines with numbers, stars: pr_align()
        * nums() -- put out a number line: dumpblock()
10
        * putline() -- put out a line (name, [num], seq, [num]): dumpblock()
         * stars() - -put a line of stars: dumpblock()
         * stripname() - strip any path and prefix from a sequame
15
       #include "nw.h"
        #define SPC
                           3
       #define P_LINE
                           256
                                     /* maximum output line */
20
        #define P_SPC
                                     /* space between name or num and seq */
        extern
                 _day[26][26];
       int
                 olen;
                                     /* set output line length */
       FILE
                                     /* output file */
                  *fx;
25
       print()
                 print
        {
                 int
                           lx, ly, firstgap, lastgap;
                                                          /* overlap */
30
                 if ((fx = fopen(ofile, "w")) == 0) {
                           fprintf(stderr,"%s: can't write %s\n", prog, ofile);
                           cleanup(1);
35
                 fprintf(fx, "<first sequence: %s (length = %d)\n", namex[0], len0);
                 fprintf(fx, "<second sequence: %s (length = %d)\n", namex[1], len1);
                 olen = 60;
                 lx = len0;
                 ly = len1;
40
                 firstgap = lastgap = 0;
                 if (dmax < len1 - 1) {
                                                /* leading gap in x */
                           pp[0].spc = firstgap = len1 - dmax - 1;
                           ly = pp[0].spc;
45
                 else if (dmax > len1 - 1) {
                                               /* leading gap in y */
                           pp[1].spc = firstgap = dmax - (len1 - 1);
                           lx = pp[1].spc;
                 if (dmax0 < len0 - 1) {
                                                /* trailing gap in x */
50
                           lastgap = len0 - dmax0 - 1;
                           lx -= lastgap;
                 else if (dmax0 > len0 - 1) { /* trailing gap in y */
                           lastgap = dmax0 - (len0 - 1);
55
                           ly -= lastgap;
                 getmat(lx, ly, firstgap, lastgap);
                 pr_align();
       }
60
```

```
* trace back the best path, count matches
       */
       static
 5
                                                                                                                      getmat
       getmat(lx, ly, firstgap, lastgap)
                                                         /* "core" (minus endgaps) */
                           lx, ly;
                int
                                                         /* leading trailing overlap */
                int
                           firstgap, lastgap;
                                     nm, i0, i1, siz0, siz1;
10
                 int
                                     outx[32];
                 char
                                     pct;
                 double
                                     n0, n1;
                 register
                                     *p0, *p1;
                 register char
15
                 /* get total matches, score
                 i0 = i1 = siz0 = siz1 = 0;
                 p0 = seqx[0] + pp[1].spc;
                 p1 = seqx[1] + pp[0].spc;
20
                 n0 = pp[1].spc + 1;
                 n1 = pp[0].spc + 1;
                  nm = 0;
                  while (*p0 && *p1) {
25
                           if (siz0) {
                                      p1++;
                                      n1++;
                                      siz0--;
30
                            else if (siz1) {
                                      p0++;
                                      n0++;
                                      siz1--;
35
                            else {
                                      if (xbm[*p0-'A']&xbm[*p1-'A'])
                                                 nm++;
                                      if (n0 \mapsto = pp[0].x[i0])
                                                 siz0 = pp[0].n[i0++];
 40
                                      if (n1++ == pp[1].x[i1])
                                                 siz1 = pp[1].n[i1++];
                                      p0++;
                                      p1++;
 45
                            }
                  /* pct homology:
                   * if penalizing endgaps, base is the shorter seq
                   * else, knock off overhangs and take shorter core
 50
                  if (endgaps)
                            lx = (len0 < len1)? len0 : len1;
                             lx = (lx < ly)? lx : ly;
 55
                   pct = 100.*(double)nm/(double)lx;
                  fprintf(fx, "\n");
fprintf(fx, "<%d match%s in an overlap of %d: %.2f percent similarity\n",
                             nm, (nm == 1)? "": "es", lx, pct);
 60
```

```
...getmat
                 fprintf(fx, "<gaps in first sequence: %d", gapx);
                 if (gapx) {
                            (void) sprintf(outx, " (%d %s%s)",
 5
                                      ngapx, (dna)? "base": "residue", (ngapx == 1)? "": "s");
                            fprintf(fx,"%s", outx);
                  fprintf(fx, ", gaps in second sequence: %d", gapy);
10
                  if (gapy) {
                            (void) sprintf(outx, " (%d %s%s)",
                                      ngapy, (dna)? "base": "residue", (ngapy == 1)? "": "s");
                            fprintf(fx,"%s", outx);
                  if (dna)
15
                            fprintf(fx,
                            "\n<score: %d (match = %d, mismatch = %d, gap penalty = %d + %d per base)\n",
                            smax, DMAT, DMIS, DINSO, DINS1);
                  else
20
                             "\n<score: %d (Dayhoff PAM 250 matrix, gap penalty = %d + %d per residue)\n",
                            smax, PINSO, PINS1);
                  if (endgaps)
                            fprintf(fx,
                             "<endgaps penalized. left endgap: %d %s%s, right endgap: %d %s%s\n",
25
                            firstgap, (dna)? "base": "residue", (firstgap == 1)? "": "s", lastgap, (dna)? "base": "residue", (lastgap == 1)? "": "s");
                  else
                             fprintf(fx, "<endgaps not penalized\n");
30
                                                 /* matches in core -- for checking */
         static
                            nm;
                                                 /* lengths of stripped file names */
                            lmax;
         static
                                                 /* jmp index for a path */
         static
                             ij[2];
                                                 /* number at start of current line */
                            nc[2];
         static
                                                 /* current elem number -- for gapping */
                            ni[2];
35
         static
         static
                             siz[2];
                                                 /* ptr to current element */
         static char
                             *ps[2];
                                                  /* ptr to next output char slot */
         static char
                             *po[2];
                            out[2][P_LINE];
                                                 /* output line */
         static char
                             star[P_LINE];
                                                  /* set by stars() */
40
         static char
         * print alignment of described in struct path pp[]
45
        static
                                                                                                                pr_align
        pr_align()
                                                  /* char count */
                   int
                                       nn;
                   int
                                       more;
50
                   register
                   for (i = 0, lmax = 0; i < 2; i++) {
                             nn = stripname(namex[i]);
                             if (nn > lmax)
55
                                       lmax = nn;
                             nc[i] = 1;
                             ni[i] = 1;
                             siz[i] = ij[i] = 0;
 60
                             ps[i] = seqx[i];
                             po[i] = out[i];
                                                                       }
```

```
...pr_align
                 for (nn = nm = 0, more = 1; more;)
                           for (i = more = 0; i < 2; i++) {
 5
                                      * do we have more of this sequence?
                                      */
                                     if (!*ps[i])
                                                continue;
10
                                      more++;
                                     if (pp[i].spc) {
                                                      /* leading space */
                                                *po[i]++='';
15
                                                pp[i].spc--;
                                                         /* in a gap */
                                      else if (siz[i]) {
                                                *po[i]++='-';
                                                siz[i]--;
20
                                      else {
                                                         /* we're putting a seq element
                                                *po[i] = *ps[i];
                                                if (islower(*ps[i]))
25
                                                         *ps[i] = toupper(*ps[i]);
                                                po[i]++;
                                                ps[i]++;
30
                                                * are we at next gap for this seq?
                                                */
                                                if (ni[i] == pp[i].x[ij[i]]) \{
                                                          * we need to merge all gaps
35
                                                          * at this location
                                                         siz[i] = pp[i].n[ij[i]++];
                                                          while (ni[i] = pp[i].x[ij[i]])
                                                                   siz[i] \leftarrow pp[i].n[ij[i]++];
40
                                                ni[i]++;
                                      }
                           if (++nn == olen | !more && nn) {
45
                                      dumpblock();
                                      for (i = 0; i < 2; i++)
                                               po[i] = out[i];
                                      nn = 0;
                           }
50
                 }
       }
        * dump a block of lines, including numbers, stars: pr_align()
55
       static
       dumpblock()
                 dumpblock
       {
60
                 register i;
                 for (i = 0; i < 2; i++)
                           po[i] - = '0';
```

Table 1 (cont')

...dumpblock (void) putc('\n', fx); 5 for (i = 0; i < 2; i++) { if (*out[i] && (*out[i] != ' ' || *(po[i]) != ' ')) { if (i == 0)nums(i); **if** (i = 0 && *out[1]) 10 stars(); putline(i); if (i = 0 & *out[1])fprintf(fx, star); if (i == 1)15 nums(i); } } } 20 * put out a number line: dumpblock() */ static nums nums(ix) 25 /* index in out[] holding seq line */ int ix; nline[P_LINE]; char register i, j; register char *pn, *px, *py; 30 for $(pn = nline, i = 0; i < lmax+P_SPC; i++, pn++)$ *pn = ' '; for $(i = nc[ix], py = out[ix]; *py; py++, pn++) {$ if (*py == ' ' || *py == '-') 35 *pn = ' '; else { if (i%10 = 0 || (i = 1 && nc[ix] != 1)) { j = (i < 0)? -i : i;for (px = pn; j; j /= 10, px-)40 px = j%10 + '0';if (i < 0)*px = '-'; else 45 *pn = ' '; i++; } *pn = '0';50 nc[ix] = i;for (pn = nline; *pn; pn++)(void) putc(*pn, fx); (void) putc('\n', fx); } 55 * put out a line (name, [num], seq, [num]): dumpblock() static

{

60

putline(ix)

int

ix;

putline

Table 1 (cont')

...putline

```
int
                 register char
 5
                                      *px;
                 for (px = namex[ix], i = 0; *px && *px != ':'; px++, i++)
                 (void) putc(*px, fx);
for (; i < lmax+P_SPC; i++)
10
                           (void) putc('', fx);
                 /* these count from 1:
                  * ni[] is current element (from 1)
                  * nc[] is number at start of current line
15
                  for (px = out[ix]; *px; px++)
                            (void) putc(*px&0x7F, fx);
                  (void) putc('\n', fx);
       }
20
         * put a line of stars (seqs always in out[0], out[1]): dumpblock()
        static
25
        stars()
                  stars
        {
                                       *p0, *p1, cx, *px;
                  register char
30
                  if (!*out[0] || (*out[0] == '' && *(po[0]) == '') ||
                     !*out[1] || (*out[1] = '' && *(po[1]) == '"))
                  px = star;
35
                  for (i = lmax+P\_SPC; i; i-)
                             *px++='';
                  for (p0 = out[0], p1 = out[1]; *p0 && *p1; p0++, p1++) {
                            if (isalpha(*p0) && isalpha(*p1)) {
 40
                                       if (xbm[*p0-'A']&xbm[*p1-'A']) {
                                                 cx = '*';
                                                 nm++;
 45
                                       else if (!dna && _day[*p0-'A'][*p1-'A'] > 0)
                                                 cx = '.';
                                       else
                                                 cx = ' ';
 50
                             }
                             else
                                       cx = ' ';
                             *px++=cx;
                   *px++ = 'n';
 55
                   *px = '0';
         }
```

60

```
* strip path or prefix from pn, return len: pr_align()
 5
       static
       stripname(pn)
                  stripname
                                       /* file name (may be path) */
                  char
                            *pn;
                  register char
                                       *px, *py;
10
                 py = 0;
for (px = pn; *px; px++)
if (*px == '/')
py =
                                       py = px + 1;
15
                  if (py)
                  (void) strcpy(pn, py);
return(strlen(pn));
20
        }
25
 30
 35
 40
 45
 50
  55
  60
```

```
* cleanup() -- cleanup any tmp file
         * getseq() -- read in seq, set dna, len, maxlen
 5
         * g_calloc() -- calloc() with error checkin
         * readjmps() -- get the good jmps, from tmp file if necessary
         * writejmps() -- write a filled array of jmps to a tmp file: nw()
         */
        #include "nw.h"
10
        #include <sys/file.h>
                   *jname = "/tmp/homgXXXXXX";
        char
                                                                          /* tmp file for jmps */
        FILE
15
        int
                   cleanup();
                                                                          /* cleanup tmp file */
        long
                   lseek();
         * remove any tmp file if we blow
20
         */
                                                                                                                                 cleanup
        cleanup(i)
                   int
                              i;
        {
                   if (fj)
25
                              (void) unlink(jname);
                   exit(i);
        }
         * read, return ptr to seq, set dna, len, maxlen * skip lines starting with ';', '<', or '>'
30
         * seq in upper or lower case
         */
        char
35
        getseq(file, len)
                                                                                                                                 getseq
                              *file;
                                         /* file name */
                   char
                   int
                              *len;
                                        /* seq len */
        {
                   char
                                         line[1024], *pseq;
40
                   register char
                                         *px, *py;
                   int
                                         natgc, tlen;
                   FILE
                                         *fp;
                   if ((fp = fopen(file,"r")) == 0) {
45
                              fprintf(stderr,"%s: can't read %s\n", prog, file);
                              exit(1);
                   tlen = natgc = 0;
                   while (fgets(line, 1024, fp)) {
    if (*line == ';' || *line == '<' || *line == '>')
50
                                        continue;
                              for (px = line; *px != '\n'; px++)
if (isupper(*px) || islower(*px))
                                                   tlen++;
55
                   if ((pseq = malloc((unsigned)(tlen+6))) == 0) {
                              fprintf(stderr,"%s: malloc() failed to get %d bytes for %s\n", prog, tlen+6, file);
60
                   pseq[0] = pseq[1] = pseq[2] = pseq[3] = \0;
```

PCT/US2003/035971

```
...getseq
                  py = pseq + 4;
                  *len = tlen;
 5
                  rewind(fp);
                  while (fgets(line, 1024, fp)) {
    if (*line == ';' || *line == '<' || *line == '>')
                                      continue;
10
                            for (px = line; *px != 'n'; px++) {
                                      if (isupper(*px))
                                                 *py++ = *px;
                                      else if (islower(*px))
                                      *py++ = toupper(*px);
if (index("ATGCU",*(py-1)))
15
                                                 natgc++;
                            }
                  *py++ = '\0';
20
                  *py = '0';
                  (void) fclose(fp);
                  dna = natgc > (tlen/3);
                  return(pseq+4);
        }
25
        char
                                                                                                                          g_calloc
        g_calloc(msg, nx, sz)
                                                 /* program, calling routine */
                  char
                            *msg;
                                                /* number and size of elements */
                  int
                            nx, sz;
30
        {
                                      *px, *calloc();
                  char
                  if ((px = calloc((unsigned)nx, (unsigned)sz)) == 0) {
                            if (*msg) {
                                      fprintf(stderr, "%s: g_calloc() failed %s (n=%d, sz=%d)\n", prog, msg, nx, sz);
35
                  return(px);
40
        }
        * get final jmps from dx[] or tmp file, set pp[], reset dmax: main()
45
        readjmps()
                  readjmps
        {
                  int
                                      fd = -1;
                                      siz, i0, i1;
                  int
50
                  register i, j, xx;
                  if (fj) {
                            (void) fclose(fj);
                            if ((fd = open(jname, O_RDONLY, 0)) < 0) {
55
                                       fprintf(stderr, "%s: can't open() %s\n", prog, jname);
                                       cleanup(1);
                            }
                  for (i = i0 = i1 = 0, dmax0 = dmax, xx = len0; ; i++) {
60
                            while (1) {
                                      for (j = dx[dmax].ijmp; j \ge 0 && dx[dmax].jp.x[j] \ge xx; j-)
```

Table 1 (cont')

...readjmps

```
if (j < 0 && dx[dmax].offset && fj) {
                                                 (void) lseek(fd, dx[dmax].offset, 0);
 5
                                                 (void) read(fd, (char *)&dx[dmax].jp, sizeof(struct jmp));
                                                 (void) read(fd, (char *)&dx[dmax].offset, sizeof(dx[dmax].offset));
                                                 dx[dmax].ijmp = MAXJMP-1;
                                       else
10
                                                 break;
                            if (i >= JMPS) {
                                       fprintf(stderr, "%s: too many gaps in alignment\n", prog);
                                       cleanup(1);
                            if (j >= 0) {
15
                                       siz = dx[dmax].jp.n[j];
                                       xx = dx[dmax].jp.x[j];
                                       dmax += siz;
20
                                      if (siz < 0) {
                                                                      /* gap in second seq */
                                                 pp[1].n[i1] = -siz;
                                                 xx += siz;
                                                 /* id = xx - yy + len1 - 1
                                                  */
25
                                                 pp[1].x[i1] = xx - dmax + len1 - 1;
                                                 gapy++;
                                                 ngapy -= siz;
        /* ignore MAXGAP when doing endgaps */
                                                 siz = (-siz < MAXGAP || endgaps)? -siz : MAXGAP;
30
                                                 i1++;
                                       else if (siz > 0) { /* gap in first seq */
                                                 pp[0].n[i0] = siz;
                                                 pp[0].x[i0] = xx;
35
                                                 gapx++;
                                                 ngapx += siz;
       /* ignore MAXGAP when doing endgaps */
                                                 siz = (siz < MAXGAP || endgaps)? siz : MAXGAP;
                                                 i0++;
40
                                      }
                            else
                                       break;
                  }
45
                  /* reverse the order of jmps
                  for (j = 0, i0--; j < i0; j++, i0--)
                            i = pp[0].n[j]; pp[0].n[j] = pp[0].n[i0]; pp[0].n[i0] = i; i = pp[0].x[j]; pp[0].x[j] = pp[0].x[i0]; pp[0].x[i0] = i;
50
                  for (j = 0, i1-; j < i1; j++, i1-)
                            i = pp[1].n[j]; pp[1].n[j] = pp[1].n[i1]; pp[1].n[i1] = i;
                            i = pp[1].x[j]; pp[1].x[j] = pp[1].x[i1]; pp[1].x[i1] = i;
55
                  if (fd >= 0)
                            (void) close(fd);
                  if (fj) {
                            (void) unlink(jname);
60
                            fj = 0;
                            offset = 0;
                 }
                                                           }
```

```
* write a filled jmp struct offset of the prev one (if any): nw()
 5
         writejmps(ix)
                      writejmps
         {
10
                      char
                                    *mktemp();
                      if (!fj) {
                                    if (mktemp(jname) < 0) {
    fprintf(stderr, "%s: can't mktemp() %s\n", prog, jname);</pre>
                                                 cleanup(1);
15
                                   if ((fj = fopen(jname, "w")) == 0) {
    fprintf(stderr, "%s: can't write %s\n", prog, jname);
20
                                    }
                       (void) fwrite((char *)&dx[ix].jp, sizeof(struct jmp), 1, fj);
(void) fwrite((char *)&dx[ix].offset, sizeof(dx[ix].offset), 1, fj);
25
```

Table 2

5 PRO XXXXXXXXXXXXXXX (Length = 15 amino acids)

Comparison Protein XXXXXYYYYYYYY (Length = 12 amino acids)

% amino acid sequence identity =

(the number of identically matching amino acid residues between the two polypeptide sequences as

determined by ALIGN-2) divided by (the total number of amino acid residues of the PRO polypeptide) =

5 divided by 15 = 33.3%

Table 3

15 PRO XXXXXXXXXX (Length = 10 amino acids)

Comparison Protein XXXXXYYYYYYZZYZ (Length = 15 amino acids)

% amino acid sequence identity =

(the number of identically matching amino acid residues between the two polypeptide sequences as

determined by ALIGN-2) divided by (the total number of amino acid residues of the PRO polypeptide) =

5 divided by 10 = 50%

Table 4

25 PRO-DNA NNNNNNNNNNNNN (Length = 14 nucleotides)

Comparison DNA NNNNNNLLLLLLLLLL (Length = 16 nucleotides)

% nucleic acid sequence identity =

30 (the number of identically matching nucleotides between the two nucleic acid sequences as determined by ALIGN-2) divided by (the total number of nucleotides of the PRO-DNA nucleic acid sequence) = 6 divided by 14 = 42.9%

Table 5

35

PRO-DNA NNNNNNNNNN (Length = 12 nucleotides)

Comparison DNA NNNNLLLVV (Length = 9 nucleotides)

% nucleic acid sequence identity =

40

(the number of identically matching nucleotides between the two nucleic acid sequences as determined by ALIGN-2) divided by (the total number of nucleotides of the PRO-DNA nucleic acid sequence) = 4 divided by 12 = 33.3%

II. Compositions and Methods of the Invention

A. Full-Length PRO Polypeptides

5

10

15

20

25

30

35

40

The present invention provides newly identified and isolated nucleotide sequences encoding polypeptides referred to in the present application as PRO polypeptides. In particular, cDNAs encoding various PRO polypeptides have been identified and isolated, as disclosed in further detail in the Examples below. However, for sake of simplicity, in the present specification the protein encoded by the full length native nucleic acid molecules disclosed herein as well as all further native homologues and variants included in the foregoing definition of PRO, will be referred to as "PRO/number", regardless of their origin or mode of preparation.

As disclosed in the Examples below, various cDNA clones have been disclosed. The predicted amino acid sequence can be determined from the nucleotide sequence using routine skill. For the PRO polypeptides and encoding nucleic acids described herein, Applicants have identified what is believed to be the reading frame best identifiable with the sequence information available at the time.

B. PRO Polypeptide Variants

In addition to the full-length native sequence PRO polypeptides described herein, it is contemplated that PRO variants can be prepared. PRO variants can be prepared by introducing appropriate nucleotide changes into the PRO DNA, and/or by synthesis of the desired PRO polypeptide. Those skilled in the art will appreciate that amino acid changes may alter post-translational processes of the PRO, such as changing the number or position of glycosylation sites or altering the membrane anchoring characteristics.

Variations in the native full-length sequence PRO or in various domains of the PRO described herein, can be made, for example, using any of the techniques and guidelines for conservative and non-conservative mutations set forth, for instance, in U.S. Patent No. 5,364,934. Variations may be a substitution, deletion or insertion of one or more codons encoding the PRO that results in a change in the amino acid sequence of the PRO as compared with the native sequence PRO. Optionally, the variation is by substitution of at least one amino acid with any other amino acid in one or more of the domains of the PRO. Guidance in determining which amino acid residue may be inserted, substituted or deleted without adversely affecting the desired activity may be found by comparing the sequence of the PRO with that of homologous known protein molecules and minimizing the number of amino acid sequence changes made in regions of high homology. Amino acid substitutions can be the result of replacing one amino acid with another amino acid having similar structural and/or chemical properties, such as the replacement of a leucine with a serine, i.e., conservative amino acid replacements. Insertions or deletions may optionally be in the range of about 1 to 5 amino acids. The variation allowed may be determined by systematically making insertions, deletions or substitutions of amino acids in the sequence and testing the resulting variants for activity exhibited by the full-length or mature native sequence.

PRO polypeptide fragments are provided herein. Such fragments may be truncated at the N-terminus or C-terminus, or may lack internal residues, for example, when compared with a full length native

protein. Certain fragments lack amino acid residues that are not essential for a desired biological activity of the PRO polypeptide.

PRO fragments may be prepared by any of a number of conventional techniques. Desired peptide fragments may be chemically synthesized. An alternative approach involves generating PRO fragments by enzymatic digestion, e.g., by treating the protein with an enzyme known to cleave proteins at sites defined by particular amino acid residues, or by digesting the DNA with suitable restriction enzymes and isolating the desired fragment. Yet another suitable technique involves isolating and amplifying a DNA fragment encoding a desired polypeptide fragment, by polymerase chain reaction (PCR). Oligonucleotides that define the desired termini of the DNA fragment are employed at the 5' and 3' primers in the PCR. Preferably, PRO polypeptide fragments share at least one biological and/or immunological activity with the native PRO polypeptide disclosed herein.

In particular embodiments, conservative substitutions of interest are shown in Table 6 under the heading of preferred substitutions. If such substitutions result in a change in biological activity, then more substantial changes, denominated exemplary substitutions in Table 6, or as further described below in reference to amino acid classes, are introduced and the products screened.

Table 6

	Original	Exemplary	Preferred
	Residue	Substitutions	Substitutions
20	Ala (A)	val; leu; ile	val
	Arg (R)	lys; gln; asn	lys
	Asn (N)	gln; his; lys; arg	gln
	Asp (D)	glu	glu
	Cys (C)	ser	ser
	Gln (Q)	asn	asn
	Glu (E)	asp	asp
	Gly (G)	pro; ala	ala
30	His (H)	asn; gln; lys; arg	arg
	Ile (I)	leu; val; met; ala; phe;	
		norleucine	leu
	Leu (L)	norleucine; ile; val;	
		met; ala; phe	ile
35	Lys (K)	arg; gln; asn	arg
	Met (M)	leu; phe; ile	leu
	Phe (F)	leu; val; ile; ala; tyr	leu
	Pro (P)	ala	ala
	Ser (S)	thr	thr
40	Thr (T)	ser	ser
	Trp (W)	tyr; phe	tyr
	Tyr (Y)	trp; phe; thr; ser	phe
	Val (V)	ile; leu; met; phe;	
		ala; norleucine	leu

Substantial modifications in function or immunological identity of the PRO polypeptide are accomplished by selecting substitutions that differ significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain. Naturally occurring residues are divided into groups based on common side-chain properties:

(1) hydrophobic: norleucine, met, ala, val, leu, ile;

5

10

15

45

- (2) neutral hydrophilic: cys, ser, thr;
- (3) acidic: asp, glu;
- (4) basic: asn, gln, his, lys, arg;
- (5) residues that influence chain orientation: gly, pro; and
- (6) aromatic: trp, tyr, phe.

5

10

15

20

25

30

35

Non-conservative substitutions will entail exchanging a member of one of these classes for another class. Such substituted residues also may be introduced into the conservative substitution sites or, more preferably, into the remaining (non-conserved) sites.

The variations can be made using methods known in the art such as oligonucleotide-mediated (site-directed) mutagenesis, alanine scanning, and PCR mutagenesis. Site-directed mutagenesis [Carter et al., Nucl. Acids Res., 13:4331 (1986); Zoller et al., Nucl. Acids Res., 10:6487 (1987)], cassette mutagenesis [Wells et al., Gene, 34:315 (1985)], restriction selection mutagenesis [Wells et al., Philos. Trans. R. Soc. London SerA, 317:415 (1986)] or other known techniques can be performed on the cloned DNA to produce the PRO variant DNA.

Scanning amino acid analysis can also be employed to identify one or more amino acids along a contiguous sequence. Among the preferred scanning amino acids are relatively small, neutral amino acids. Such amino acids include alanine, glycine, serine, and cysteine. Alanine is typically a preferred scanning amino acid among this group because it eliminates the side-chain beyond the beta-carbon and is less likely to alter the main-chain conformation of the variant [Cunningham and Wells, Science, 244: 1081-1085 (1989)]. Alanine is also typically preferred because it is the most common amino acid. Further, it is frequently found in both buried and exposed positions [Creighton, The Proteins, (W.H. Freeman & Co., N.Y.); Chothia, J. Mol. Biol., 150:1 (1976)]. If alanine substitution does not yield adequate amounts of variant, an isoteric amino acid can be used.

C. Modifications of PRO

Covalent modifications of PRO are included within the scope of this invention. One type of covalent modification includes reacting targeted amino acid residues of a PRO polypeptide with an organic derivatizing agent that is capable of reacting with selected side chains or the N- or C- terminal residues of the PRO. Derivatization with bifunctional agents is useful, for instance, for crosslinking PRO to a water-insoluble support matrix or surface for use in the method for purifying anti-PRO antibodies, and vice-versa. Commonly used crosslinking agents include, e.g., 1,1-bis(diazoacetyl)-2-phenylethane, glutaraldehyde, N-hydroxysuccinimide esters, for example, esters with 4-azidosalicylic acid, homobifunctional imidoesters, including disuccinimidyl esters such as 3,3'-dithiobis(succinimidylpropionate), bifunctional maleimides such as bis-N-maleimido-1,8-octane and agents such as methyl-3-[(p-azidophenyl)dithio]propioimidate.

Other modifications include deamidation of glutaminyl and asparaginyl residues to the corresponding glutamyl and aspartyl residues, respectively, hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of seryl or threonyl residues, methylation of the α -amino groups of lysine, arginine, and histidine side chains [T.E. Creighton, <u>Proteins: Structure and Molecular Properties</u>, W.H. Freeman & Co., San Francisco, pp. 79-86 (1983)], acetylation of the N-terminal amine, and amidation of any C-terminal carboxyl group.

Another type of covalent modification of the PRO polypeptide included within the scope of this invention comprises altering the native glycosylation pattern of the polypeptide. "Altering the native glycosylation pattern" is intended for purposes herein to mean deleting one or more carbohydrate moieties found in native sequence PRO (either by removing the underlying glycosylation site or by deleting the glycosylation by chemical and/or enzymatic means), and/or adding one or more glycosylation sites that are not present in the native sequence PRO. In addition, the phrase includes qualitative changes in the glycosylation of the native proteins, involving a change in the nature and proportions of the various carbohydrate moieties present.

5

10

15

20

25

30

35

40

Addition of glycosylation sites to the PRO polypeptide may be accomplished by altering the amino acid sequence. The alteration may be made, for example, by the addition of, or substitution by, one or more serine or threonine residues to the native sequence PRO (for O-linked glycosylation sites). The PRO amino acid sequence may optionally be altered through changes at the DNA level, particularly by mutating the DNA encoding the PRO polypeptide at preselected bases such that codons are generated that will translate into the desired amino acids.

Another means of increasing the number of carbohydrate moieties on the PRO polypeptide is by chemical or enzymatic coupling of glycosides to the polypeptide. Such methods are described in the art, e.g., in WO 87/05330 published 11 September 1987, and in Aplin and Wriston, <u>CRC Crit. Rev. Biochem.</u>, pp. 259-306 (1981).

Removal of carbohydrate moieties present on the PRO polypeptide may be accomplished chemically or enzymatically or by mutational substitution of codons encoding for amino acid residues that serve as targets for glycosylation. Chemical deglycosylation techniques are known in the art and described, for instance, by Hakimuddin, et al., Arch. Biochem. Biophys., 259:52 (1987) and by Edge et al., Anal. Biochem., 118:131 (1981). Enzymatic cleavage of carbohydrate moieties on polypeptides can be achieved by the use of a variety of endo- and exo-glycosidases as described by Thotakura et al., Meth. Enzymol., 138:350 (1987).

Another type of covalent modification of PRO comprises linking the PRO polypeptide to one of a variety of nonproteinaceous polymers, e.g., polyethylene glycol (PEG), polypropylene glycol, or polyoxyalkylenes, in the manner set forth in U.S. Patent Nos. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192 or 4,179,337.

The PRO of the present invention may also be modified in a way to form a chimeric molecule comprising PRO fused to another, heterologous polypeptide or amino acid sequence.

In one embodiment, such a chimeric molecule comprises a fusion of the PRO with a tag polypeptide which provides an epitope to which an anti-tag antibody can selectively bind. The epitope tag is generally placed at the amino- or carboxyl- terminus of the PRO. The presence of such epitope-tagged forms of the PRO can be detected using an antibody against the tag polypeptide. Also, provision of the epitope tag enables the PRO to be readily purified by affinity purification using an anti-tag antibody or another type of affinity matrix that binds to the epitope tag. Various tag polypeptides and their respective antibodies are well known in the art. Examples include poly-histidine (poly-his) or poly-histidine-glycine (poly-his-gly) tags; the flu HA tag polypeptide and its antibody 12CA5 [Field et al., Mol. Cell. Biol., 8:2159-2165 (1988)]; the c-myc tag and the 8F9, 3C7, 6E10, G4, B7 and 9E10 antibodies thereto [Evan et al.,

Molecular and Cellular Biology, 5:3610-3616 (1985)]; and the Herpes Simplex virus glycoprotein D (gD) tag and its antibody [Paborsky et al., Protein Engineering, 3(6):547-553 (1990)]. Other tag polypeptides include the Flag-peptide [Hopp et al., BioTechnology, 6:1204-1210 (1988)]; the KT3 epitope peptide [Martin et al., Science, 255:192-194 (1992)]; an alpha-tubulin epitope peptide [Skinner et al., J. Biol. Chem., 266:15163-15166 (1991)]; and the T7 gene 10 protein peptide tag [Lutz-Freyermuth et al., Proc. Natl. Acad. Sci. USA, 87:6393-6397 (1990)].

In an alternative embodiment, the chimeric molecule may comprise a fusion of the PRO with an immunoglobulin or a particular region of an immunoglobulin. For a bivalent form of the chimeric molecule (also referred to as an "immunoadhesin"), such a fusion could be to the Fc region of an IgG molecule. The Ig fusions preferably include the substitution of a soluble (transmembrane domain deleted or inactivated) form of a PRO polypeptide in place of at least one variable region within an Ig molecule. In a particularly preferred embodiment, the immunoglobulin fusion includes the hinge, CH2 and CH3, or the hinge, CH1, CH2 and CH3 regions of an IgG1 molecule. For the production of immunoglobulin fusions see also US Patent No. 5,428,130 issued June 27, 1995.

D. Preparation of PRO

5

10

15

20

25

30

35

40

The description below relates primarily to production of PRO by culturing cells transformed or transfected with a vector containing PRO nucleic acid. It is, of course, contemplated that alternative methods, which are well known in the art, may be employed to prepare PRO. For instance, the PRO sequence, or portions thereof, may be produced by direct peptide synthesis using solid-phase techniques [see, e.g., Stewart et al., Solid-Phase Peptide Synthesis, W.H. Freeman Co., San Francisco, CA (1969); Merrifield, J. Am. Chem. Soc., 85:2149-2154 (1963)]. In vitro protein synthesis may be performed using manual techniques or by automation. Automated synthesis may be accomplished, for instance, using an Applied Biosystems Peptide Synthesizer (Foster City, CA) using manufacturer's instructions. Various portions of the PRO may be chemically synthesized separately and combined using chemical or enzymatic methods to produce the full-length PRO.

1. Isolation of DNA Encoding PRO

DNA encoding PRO may be obtained from a cDNA library prepared from tissue believed to possess the PRO mRNA and to express it at a detectable level. Accordingly, human PRO DNA can be conveniently obtained from a cDNA library prepared from human tissue, such as described in the Examples. The PRO-encoding gene may also be obtained from a genomic library or by known synthetic procedures (e.g., automated nucleic acid synthesis).

Libraries can be screened with probes (such as antibodies to the PRO or oligonucleotides of at least about 20-80 bases) designed to identify the gene of interest or the protein encoded by it. Screening the cDNA or genomic library with the selected probe may be conducted using standard procedures, such as described in Sambrook et al., Molecular Cloning: A Laboratory Manual (New York: Cold Spring Harbor Laboratory Press, 1989). An alternative means to isolate the gene encoding PRO is to use PCR methodology [Sambrook et al., supra; Dieffenbach et al., PCR Primer: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1995)].

The Examples below describe techniques for screening a cDNA library. The oligonucleotide sequences selected as probes should be of sufficient length and sufficiently unambiguous that false positives

are minimized. The oligonucleotide is preferably labeled such that it can be detected upon hybridization to DNA in the library being screened. Methods of labeling are well known in the art, and include the use of radiolabels like ³²P-labeled ATP, biotinylation or enzyme labeling. Hybridization conditions, including moderate stringency and high stringency, are provided in Sambrook et al., <u>supra</u>.

Sequences identified in such library screening methods can be compared and aligned to other known sequences deposited and available in public databases such as GenBank or other private sequence databases. Sequence identity (at either the amino acid or nucleotide level) within defined regions of the molecule or across the full-length sequence can be determined using methods known in the art and as described herein.

5

10

15

20

25

30

35

40

Nucleic acid having protein coding sequence may be obtained by screening selected cDNA or genomic libraries using the deduced amino acid sequence disclosed herein for the first time, and, if necessary, using conventional primer extension procedures as described in Sambrook et al., supra, to detect precursors and processing intermediates of mRNA that may not have been reverse-transcribed into cDNA.

2. Selection and Transformation of Host Cells

Host cells are transfected or transformed with expression or cloning vectors described herein for PRO production and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences. The culture conditions, such as media, temperature, pH and the like, can be selected by the skilled artisan without undue experimentation. In general, principles, protocols, and practical techniques for maximizing the productivity of cell cultures can be found in Mammalian Cell Biotechnology: a Practical Approach, M. Butler, ed. (IRL Press, 1991) and Sambrook et al., supra.

Methods of eukaryotic cell transfection and prokaryotic cell transformation are known to the ordinarily skilled artisan, for example, CaCl₂, CaPO₄, liposome-mediated and electroporation. Depending on the host cell used, transformation is performed using standard techniques appropriate to such cells. The calcium treatment employing calcium chloride, as described in Sambrook et al., supra, or electroporation is generally used for prokaryotes. Infection with Agrobacterium tumefaciens is used for transformation of certain plant cells, as described by Shaw et al., Gene, 23:315 (1983) and WO 89/05859 published 29 June 1989. For mammalian cells without such cell walls, the calcium phosphate precipitation method of Graham and van der Eb, Virology, 52:456-457 (1978) can be employed. General aspects of mammalian cell host system transfections have been described in U.S. Patent No. 4,399,216. Transformations into yeast are typically carried out according to the method of Van Solingen et al., J. Bact., 130:946 (1977) and Hsiao et al., Proc. Natl. Acad. Sci. (USA), 76:3829 (1979). However, other methods for introducing DNA into cells, such as by nuclear microinjection, electroporation, bacterial protoplast fusion with intact cells, or polycations, e.g., polybrene, polyornithine, may also be used. For various techniques for transforming mammalian cells, see Keown et al., Methods in Enzymology, 185:527-537 (1990) and Mansour et al., Nature, 336:348-352 (1988).

Suitable host cells for cloning or expressing the DNA in the vectors herein include prokaryote, yeast, or higher eukaryote cells. Suitable prokaryotes include but are not limited to eubacteria, such as Gram-negative or Gram-positive organisms, for example, Enterobacteriaceae such as *E. coli*. Various *E. coli*

strains are publicly available, such as E. coli K12 strain MM294 (ATCC 31,446); E. coli X1776 (ATCC 31,537); E. coli strain W3110 (ATCC 27,325) and K5 772 (ATCC 53,635). Other suitable prokaryotic host cells include Enterobacteriaceae such as Escherichia, e.g., E. coli, Enterobacter, Erwinia, Klebsiella, Proteus, Salmonella, e.g., Salmonella typhimurium, Serratia, e.g., Serratia marcescans, and Shigella, as well as Bacilli such as B. subtilis and B. licheniformis (e.g., B. licheniformis 41P disclosed in DD 266,710 published 12 April 1989), Pseudomonas such as P. aeruginosa, and Streptomyces. These examples are illustrative rather than limiting. Strain W3110 is one particularly preferred host or parent host because it is a common host strain for recombinant DNA product fermentations. Preferably, the host cell secretes minimal amounts of proteolytic enzymes. For example, strain W3110 may be modified to effect a genetic mutation in the genes encoding proteins endogenous to the host, with examples of such hosts including E. coli W3110 strain 1A2, which has the complete genotype tonA; E. coli W3110 strain 9E4, which has the complete genotype tonA ptr3; E. coli W3110 strain 27C7 (ATCC 55,244), which has the complete genotype tonA ptr3 phoA E15 (argF-lac)169 degP ompT kanr; E. coli W3110 strain 37D6, which has the complete genotype tonA ptr3 phoA E15 (argF-lac)169 degP ompT rbs7 ilvG kan'; E. coli W3110 strain 40B4, which is strain 37D6 with a non-kanamycin resistant degP deletion mutation; and an E. coli strain having mutant periplasmic protease disclosed in U.S. Patent No. 4,946,783 issued 7 August 1990. Alternatively, in vitro methods of cloning, e.g., PCR or other nucleic acid polymerase reactions, are suitable.

5

10

15

20

25

30

35

40

In addition to prokaryotes, eukaryotic microbes such as filamentous fungi or yeast are suitable cloning or expression hosts for PRO-encoding vectors. Saccharomyces cerevisiae is a commonly used lower eukaryotic host microorganism. Others include Schizosaccharomyces pombe (Beach and Nurse, Nature, 290: 140 [1981]; EP 139,383 published 2 May 1985); Kluyveromyces hosts (U.S. Patent No. 4,943,529; Fleer et al., Bio/Technology, 9:968-975 (1991)) such as, e.g., K. lactis (MW98-8C, CBS683, CBS4574; Louvencourt et al., J. Bacteriol., 154(2):737-742 [1983]), K. fragilis (ATCC 12,424), K. bulgaricus (ATCC 16,045), K. wickeramii (ATCC 24,178), K. waltii (ATCC 56,500), K. drosophilarum (ATCC 36,906; Van den Berg et al., Bio/Technology, 8:135 (1990)), K. thermotolerans, and K. marxianus; yarrowia (EP 402,226); Pichia pastoris (EP 183,070; Sreekrishna et al., J. Basic Microbiol., 28:265-278 [1988]); Candida; Trichoderma reesia (EP 244,234); Neurospora crassa (Case et al., Proc. Natl. Acad. Sci. USA, 76:5259-5263 [1979]); Schwanniomyces such as Schwanniomyces occidentalis (EP 394,538 published 31 October 1990); and filamentous fungi such as, e.g., Neurospora, Penicillium, Tolypocladium (WO 91/00357 published 10 January 1991), and Aspergillus hosts such as A. nidulans (Ballance et al., Biochem. Biophys. Res. Commun., 112:284-289 [1983]; Tilburn et al., Gene, 26:205-221 [1983]; Yelton et al., Proc. Natl. Acad. Sci. USA, 81: 1470-1474 [1984]) and A. niger (Kelly and Hynes, EMBO J., 4:475-479 [1985]). Methylotropic yeasts are suitable herein and include, but are not limited to, yeast capable of growth on methanol selected from the genera consisting of Hansenula, Candida, Kloeckera, Pichia, Saccharomyces, Torulopsis, and Rhodotorula. A list of specific species that are exemplary of this class of yeasts may be found in C. Anthony, The Biochemistry of Methylotrophs, 269 (1982).

Suitable host cells for the expression of glycosylated PRO are derived from multicellular organisms. Examples of invertebrate cells include insect cells such as Drosophila S2 and Spodoptera Sf9, as well as plant cells. Examples of useful mammalian host cell lines include Chinese hamster ovary (CHO) and COS cells. More specific examples include monkey kidney CV1 line transformed by SV40 (COS-7, ATCC

CRL 1651); human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham et al., J. Gen Virol., 36:59 (1977)); Chinese hamster ovary cells/-DHFR (CHO, Urlaub and Chasin, Proc. Natl. Acad. Sci. USA, 77:4216 (1980)); mouse sertoli cells (TM4, Mather, Biol. Reprod., 23:243-251 (1980)); human lung cells (W138, ATCC CCL 75); human liver cells (Hep G2, HB 8065); and mouse mammary tumor (MMT 060562, ATCC CCL51). The selection of the appropriate host cell is deemed to be within the skill in the art.

3. Selection and Use of a Replicable Vector

5

10

15

20

25

30

35

40

The nucleic acid (e.g., cDNA or genomic DNA) encoding PRO may be inserted into a replicable vector for cloning (amplification of the DNA) or for expression. Various vectors are publicly available. The vector may, for example, be in the form of a plasmid, cosmid, viral particle, or phage. The appropriate nucleic acid sequence may be inserted into the vector by a variety of procedures. In general, DNA is inserted into an appropriate restriction endonuclease site(s) using techniques known in the art. Vector components generally include, but are not limited to, one or more of a signal sequence, an origin of replication, one or more marker genes, an enhancer element, a promoter, and a transcription termination sequence. Construction of suitable vectors containing one or more of these components employs standard ligation techniques which are known to the skilled artisan.

The PRO may be produced recombinantly not only directly, but also as a fusion polypeptide with a heterologous polypeptide, which may be a signal sequence or other polypeptide having a specific cleavage site at the N-terminus of the mature protein or polypeptide. In general, the signal sequence may be a component of the vector, or it may be a part of the PRO-encoding DNA that is inserted into the vector. The signal sequence may be a prokaryotic signal sequence selected, for example, from the group of the alkaline phosphatase, penicillinase, lpp, or heat-stable enterotoxin II leaders. For yeast secretion the signal sequence may be, e.g., the yeast invertase leader, alpha factor leader (including Saccharomyces and Kluyveromyces are factor leaders, the latter described in U.S. Patent No. 5,010,182), or acid phosphatase leader, the C. albicans glucoamylase leader (EP 362,179 published 4 April 1990), or the signal described in WO 90/13646 published 15 November 1990. In mammalian cell expression, mammalian signal sequences may be used to direct secretion of the protein, such as signal sequences from secreted polypeptides of the same or related species, as well as viral secretory leaders.

Both expression and cloning vectors contain a nucleic acid sequence that enables the vector to replicate in one or more selected host cells. Such sequences are well known for a variety of bacteria, yeast, and viruses. The origin of replication from the plasmid pBR322 is suitable for most Gram-negative bacteria, the 2µ plasmid origin is suitable for yeast, and various viral origins (SV40, polyoma, adenovirus, VSV or BPV) are useful for cloning vectors in mammalian cells.

Expression and cloning vectors will typically contain a selection gene, also termed a selectable marker. Typical selection genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g., ampicillin, neomycin, methotrexate, or tetracycline, (b) complement auxotrophic deficiencies, or (c) supply critical nutrients not available from complex media, e.g., the gene encoding D-alanine racemase for *Bacilli*.

An example of suitable selectable markers for mammalian cells are those that enable the identification of cells competent to take up the PRO-encoding nucleic acid, such as DHFR or thymidine kinase. An appropriate host cell when wild-type DHFR is employed is the CHO cell line deficient in DHFR

activity, prepared and propagated as described by Urlaub et al., <u>Proc. Natl. Acad. Sci. USA</u>, 77:4216 (1980). A suitable selection gene for use in yeast is the *trp*1 gene present in the yeast plasmid YRp7 [Stinchcomb et al., <u>Nature</u>, 282:39 (1979); Kingsman et al., <u>Gene</u>, 7:141 (1979); Tschemper et al., <u>Gene</u>, 10:157 (1980)]. The *trp*1 gene provides a selection marker for a mutant strain of yeast lacking the ability to grow in tryptophan, for example, ATCC No. 44076 or PEP4-1 [Jones, <u>Genetics</u>, 85:12 (1977)].

5

10

15

20

25

30

35

Expression and cloning vectors usually contain a promoter operably linked to the PRO-encoding nucleic acid sequence to direct mRNA synthesis. Promoters recognized by a variety of potential host cells are well known. Promoters suitable for use with prokaryotic hosts include the β-lactamase and lactose promoter systems [Chang et al., Nature, 275:615 (1978); Goeddel et al., Nature, 281:544 (1979)], alkaline phosphatase, a tryptophan (trp) promoter system [Goeddel, Nucleic Acids Res., 8:4057 (1980); EP 36,776], and hybrid promoters such as the tac promoter [deBoer et al., Proc. Natl. Acad. Sci. USA, 80:21-25 (1983)]. Promoters for use in bacterial systems also will contain a Shine-Dalgarno (S.D.) sequence operably linked to the DNA encoding PRO.

Examples of suitable promoting sequences for use with yeast hosts include the promoters for 3-phosphoglycerate kinase [Hitzeman et al., <u>J. Biol. Chem.</u>, 255:2073 (1980)] or other glycolytic enzymes [Hess et al., <u>J. Adv. Enzyme Reg.</u>, 7:149 (1968); Holland, <u>Biochemistry</u>, 17:4900 (1978)], such as enolase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase.

Other yeast promoters, which are inducible promoters having the additional advantage of transcription controlled by growth conditions, are the promoter regions for alcohol dehydrogenase 2, isocytochrome C, acid phosphatase, degradative enzymes associated with nitrogen metabolism, metallothionein, glyceraldehyde-3-phosphate dehydrogenase, and enzymes responsible for maltose and galactose utilization. Suitable vectors and promoters for use in yeast expression are further described in EP 73,657.

PRO transcription from vectors in mammalian host cells is controlled, for example, by promoters obtained from the genomes of viruses such as polyoma virus, fowlpox virus (UK 2,211,504 published 5 July 1989), adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, hepatitis-B virus and Simian Virus 40 (SV40), from heterologous mammalian promoters, e.g., the actin promoter or an immunoglobulin promoter, and from heat-shock promoters, provided such promoters are compatible with the host cell systems.

Transcription of a DNA encoding the PRO by higher eukaryotes may be increased by inserting an enhancer sequence into the vector. Enhancers are cis-acting elements of DNA, usually about from 10 to 300 bp, that act on a promoter to increase its transcription. Many enhancer sequences are now known from mammalian genes (globin, elastase, albumin, α-fetoprotein, and insulin). Typically, however, one will use an enhancer from a eukaryotic cell virus. Examples include the SV40 enhancer on the late side of the replication origin (bp 100-270), the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers. The enhancer may be spliced into the vector at a position 5' or 3' to the PRO coding sequence, but is preferably located at a site 5' from the promoter.

Expression vectors used in eukaryotic host cells (yeast, fungi, insect, plant, animal, human, or nucleated cells from other multicellular organisms) will also contain sequences necessary for the termination of transcription and for stabilizing the mRNA. Such sequences are commonly available from the 5' and, occasionally 3', untranslated regions of eukaryotic or viral DNAs or cDNAs. These regions contain nucleotide segments transcribed as polyadenylated fragments in the untranslated portion of the mRNA encoding PRO.

5

10

15

20

25

30

35

40

Still other methods, vectors, and host cells suitable for adaptation to the synthesis of PRO in recombinant vertebrate cell culture are described in Gething et al., Nature, 293:620-625 (1981); Mantei et al., Nature, 281:40-46 (1979); EP 117,060; and EP 117,058.

4. Detecting Gene Amplification/Expression

Gene amplification and/or expression may be measured in a sample directly, for example, by conventional Southern blotting, Northern blotting to quantitate the transcription of mRNA [Thomas, Proc. Natl. Acad. Sci. USA, 77:5201-5205 (1980)], dot blotting (DNA analysis), or in situ hybridization, using an appropriately labeled probe, based on the sequences provided herein. Alternatively, antibodies may be employed that can recognize specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes. The antibodies in turn may be labeled and the assay may be carried out where the duplex is bound to a surface, so that upon the formation of duplex on the surface, the presence of antibody bound to the duplex can be detected.

Gene expression, alternatively, may be measured by immunological methods, such as immunohistochemical staining of cells or tissue sections and assay of cell culture or body fluids, to quantitate directly the expression of gene product. Antibodies useful for immunohistochemical staining and/or assay of sample fluids may be either monoclonal or polyclonal, and may be prepared in any mammal. Conveniently, the antibodies may be prepared against a native sequence PRO polypeptide or against a synthetic peptide based on the DNA sequences provided herein or against exogenous sequence fused to PRO DNA and encoding a specific antibody epitope.

5. Purification of Polypeptide

Forms of PRO may be recovered from culture medium or from host cell lysates. If membrane-bound, it can be released from the membrane using a suitable detergent solution (e.g. Triton-X 100) or by enzymatic cleavage. Cells employed in expression of PRO can be disrupted by various physical or chemical means, such as freeze-thaw cycling, sonication, mechanical disruption, or cell lysing agents.

It may be desired to purify PRO from recombinant cell proteins or polypeptides. The following procedures are exemplary of suitable purification procedures: by fractionation on an ion-exchange column; ethanol precipitation; reverse phase HPLC; chromatography on silica or on a cation-exchange resin such as DEAE; chromatofocusing; SDS-PAGE; ammonium sulfate precipitation; gel filtration using, for example, Sephadex G-75; protein A Sepharose columns to remove contaminants such as IgG; and metal chelating columns to bind epitope-tagged forms of the PRO. Various methods of protein purification may be employed and such methods are known in the art and described for example in Deutscher, Methods in Enzymology, 182 (1990); Scopes, Protein Purification: Principles and Practice, Springer-Verlag, New York (1982). The purification step(s) selected will depend, for example, on the nature of the production process used and the particular PRO produced.

E. <u>Tissue Distribution</u>

5

10

15

20

25

30

35

The location of tissues expressing the PRO can be identified by determining mRNA expression in various human tissues. The location of such genes provides information about which tissues are most likely to be affected by the stimulating and inhibiting activities of the PRO polypeptides. The location of a gene in a specific tissue also provides sample tissue for the activity blocking assays discussed below.

As noted before, gene expression in various tissues may be measured by conventional Southern blotting, Northern blotting to quantitate the transcription of mRNA (Thomas, *Proc. Natl. Acad. Sci. USA*, 77:5201-5205 [1980]), dot blotting (DNA analysis), or *in situ* hybridization, using an appropriately labeled probe, based on the sequences provided herein. Alternatively, antibodies may be employed that can recognize specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes.

Gene expression in various tissues, alternatively, may be measured by immunological methods, such as immunohistochemical staining of tissue sections and assay of cell culture or body fluids, to quantitate directly the expression of gene product. Antibodies useful for immunohistochemical staining and/or assay of sample fluids may be either monoclonal or polyclonal, and may be prepared in any mammal. Conveniently, the antibodies may be prepared against a native sequence of a PRO polypeptide or against a synthetic peptide based on the DNA sequences encoding the PRO polypeptide or against an exogenous sequence fused to a DNA encoding a PRO polypeptide and encoding a specific antibody epitope. General techniques for generating antibodies, and special protocols for Northern blotting and *in situ* hybridization are provided below.

F. Antibody Binding Studies

The activity of the PRO polypeptides can be further verified by antibody binding studies, in which the ability of anti-PRO antibodies to inhibit the effect of the PRO polypeptides, respectively, on tissue cells is tested. Exemplary antibodies include polyclonal, monoclonal, humanized, bispecific, and heteroconjugate antibodies, the preparation of which will be described hereinbelow.

Antibody binding studies may be carried out in any known assay method, such as competitive binding assays, direct and indirect sandwich assays, and immunoprecipitation assays. Zola, *Monoclonal Antibodies: A Manual of Techniques*, pp.147-158 (CRC Press, Inc., 1987).

Competitive binding assays rely on the ability of a labeled standard to compete with the test sample analyte for binding with a limited amount of antibody. The amount of target protein in the test sample is inversely proportional to the amount of standard that becomes bound to the antibodies. To facilitate determining the amount of standard that becomes bound, the antibodies preferably are insolubilized before or after the competition, so that the standard and analyte that are bound to the antibodies may conveniently be separated from the standard and analyte which remain unbound.

Sandwich assays involve the use of two antibodies, each capable of binding to a different immunogenic portion, or epitope, of the protein to be detected. In a sandwich assay, the test sample analyte is bound by a first antibody which is immobilized on a solid support, and thereafter a second antibody binds to the analyte, thus forming an insoluble three-part complex. See, e.g., US Pat No. 4,376,110. The second antibody may itself be labeled with a detectable moiety (direct sandwich assays) or may be measured using

an anti-immunoglobulin antibody that is labeled with a detectable moiety (indirect sandwich assay). For example, one type of sandwich assay is an ELISA assay, in which case the detectable moiety is an enzyme.

For immunohistochemistry, the tissue sample may be fresh or frozen or may be embedded in paraffin and fixed with a preservative such as formalin, for example.

G. <u>Cell-Based Assays</u>

5

10

15

20

25

30

35

40

Cell-based assays and animal models for immune related diseases can be used to further understand the relationship between the genes and polypeptides identified herein and the development and pathogenesis of immune related disease.

In a different approach, cells of a cell type known to be involved in a particular immune related disease are transfected with the cDNAs described herein, and the ability of these cDNAs to stimulate or inhibit immune function is analyzed. Suitable cells can be transfected with the desired gene, and monitored for immune function activity. Such transfected cell lines can then be used to test the ability of poly- or monoclonal antibodies or antibody compositions to inhibit or stimulate immune function, for example to modulate T-cell proliferation or inflammatory cell infiltration. Cells transfected with the coding sequences of the genes identified herein can further be used to identify drug candidates for the treatment of immune related diseases.

In addition, primary cultures derived from transgenic animals (as described below) can be used in the cell-based assays herein, although stable cell lines are preferred. Techniques to derive continuous cell lines from transgenic animals are well known in the art (see, e.g., Small et al., Mol. Cell. Biol. 5: 642-648 [1985]).

One suitable cell based assay is the mixed lymphocyte reaction (MLR). Current Protocols in Immunology, unit 3.12; edited by J E Coligan, A M Kruisbeek, D H Marglies, E M Shevach, W Strober, National Institutes of Health, Published by John Wiley & Sons, Inc. In this assay, the ability of a test compound to stimulate or inhibit the proliferation of activated T cells is assayed. A suspension of responder T cells is cultured with allogeneic stimulator cells and the proliferation of T cells is measured by uptake of tritiated thymidine. This assay is a general measure of T cell reactivity. Since the majority of T cells respond to and produce IL-2 upon activation, differences in responsiveness in this assay in part reflect differences in IL-2 production by the responding cells. The MLR results can be verified by a standard lymphokine (IL-2) detection assay. Current Protocols in Immunology, above, 3.15, 6.3.

A proliferative T cell response in an MLR assay may be due to direct mitogenic properties of an assayed molecule or to external antigen induced activation. Additional verification of the T cell stimulatory activity of the PRO polypeptides can be obtained by a costimulation assay. T cell activation requires an antigen specific signal mediated through the T-cell receptor (TCR) and a costimulatory signal mediated through a second ligand binding interaction, for example, the B7 (CD80, CD86)/CD28 binding interaction. CD28 crosslinking increases lymphokine secretion by activated T cells. T cell activation has both negative and positive controls through the binding of ligands which have a negative or positive effect. CD28 and CTLA-4 are related glycoproteins in the Ig superfamily which bind to B7. CD28 binding to B7 has a positive costimulation effect of T cell activation; conversely, CTLA-4 binding to B7 has a T cell deactivating effect. Chambers, C. A. and Allison, J. P., Curr. Opin. Immunol. (1997) 2:396. Schwartz, R. H., Cell (1992) 71:1065; Linsey, P. S. and Ledbetter, J. A., Annu. Rev. Immunol. (1993) 11:191; June, C. H.

et al, Immunol. Today (1994) 15:321; Jenkins, M. K., Immunity (1994) 1:405. In a costimulation assay, the PRO polypeptides are assayed for T cell costimulatory or inhibitory activity.

Direct use of a stimulating compound as in the invention has been validated in experiments with 4-1BB glycoprotein, a member of the tumor necrosis factor receptor family, which binds to a ligand (4-1BBL) expressed on primed T cells and signals T cell activation and growth. Alderson, M. E. et al., J. Immunol. (1994) 24:2219.

The use of an agonist stimulating compound has also been validated experimentally. Activation of 4-1BB by treatment with an agonist anti-4-1BB antibody enhances eradication of tumors. Hellstrom, I. and Hellstrom, K. E., *Crit. Rev. Immunol.* (1998) 18:1. Immunoadjuvant therapy for treatment of tumors, described in more detail below, is another example of the use of the stimulating compounds of the invention.

Alternatively, an immune stimulating or enhancing effect can also be achieved by administration of a PRO which has vascular permeability enhancing properties. Enhanced vascular permeability would be beneficial to disorders which can be attenuated by local infiltration of immune cells (e.g., monocytes, eosinophils, PMNs) and inflammation.

On the other hand, PRO polypeptides, as well as other compounds of the invention, which are direct inhibitors of T cell proliferation/activation, lymphokine secretion, and/or vascular permeability can be directly used to suppress the immune response. These compounds are useful to reduce the degree of the immune response and to treat immune related diseases characterized by a hyperactive, superoptimal, or autoimmune response. This use of the compounds of the invention has been validated by the experiments described above in which CTLA-4 binding to receptor B7 deactivates T cells. The direct inhibitory compounds of the invention function in an analogous manner. The use of compound which suppress vascular permeability would be expected to reduce inflammation. Such uses would be beneficial in treating conditions associated with excessive inflammation.

Alternatively, compounds, e.g., antibodies, which bind to stimulating PRO polypeptides and block the stimulating effect of these molecules produce a net inhibitory effect and can be used to suppress the T cell mediated immune response by inhibiting T cell proliferation/activation and/or lymphokine secretion. Blocking the stimulating effect of the polypeptides suppresses the immune response of the mammal. This use has been validated in experiments using an anti-IL2 antibody. In these experiments, the antibody binds to IL2 and blocks binding of IL2 to its receptor thereby achieving a T cell inhibitory effect.

H. Animal Models

5

10

15

20

25

30

35

The results of the cell based in vitro assays can be further verified using in vivo animal models and assays for T-cell function. A variety of well known animal models can be used to further understand the role of the genes identified herein in the development and pathogenesis of immune related disease, and to test the efficacy of candidate therapeutic agents, including antibodies, and other antagonists of the native polypeptides, including small molecule antagonists. The in vivo nature of such models makes them predictive of responses in human patients. Animal models of immune related diseases include both non-recombinant and recombinant (transgenic) animals. Non-recombinant animal models include, for example, rodent, e.g., murine models. Such models can be generated by introducing cells into syngeneic mice using

standard techniques, e.g., subcutaneous injection, tail vein injection, spleen implantation, intraperitoneal implantation, implantation under the renal capsule, etc.

Graft-versus-host disease occurs when immunocompetent cells are transplanted into immunosuppressed or tolerant patients. The donor cells recognize and respond to host antigens. The response can vary from life threatening severe inflammation to mild cases of diarrhea and weight loss. Graft-versus-host disease models provide a means of assessing T cell reactivity against MHC antigens and minor transplant antigens. A suitable procedure is described in detail in Current Protocols in Immunology, above, unit 4.3.

5

10

15

20

25

30

35

40

An animal model for skin allograft rejection is a means of testing the ability of T cells to mediate in vivo tissue destruction and a measure of their role in transplant rejection. The most common and accepted models use murine tail-skin grafts. Repeated experiments have shown that skin allograft rejection is mediated by T cells, helper T cells and killer-effector T cells, and not antibodies. Auchincloss, H. Jr. and Sachs, D. H., Fundamental Immunology, 2nd ed., W. E. Paul ed., Raven Press, NY, 1989, 889-992. A suitable procedure is described in detail in Current Protocols in Immunology, above, unit 4.4. Other transplant rejection models which can be used to test the compounds of the invention are the allogeneic heart transplant models described by Tanabe, M. et al, Transplantation (1994) 58:23 and Tinubu, S. A. et al, J. Immunol. (1994) 4330-4338.

Animal models for delayed type hypersensitivity provides an assay of cell mediated immune function as well. Delayed type hypersensitivity reactions are a T cell mediated in vivo immune response characterized by inflammation which does not reach a peak until after a period of time has elapsed after challenge with an antigen. These reactions also occur in tissue specific autoimmune diseases such as multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE, a model for MS). A suitable procedure is described in detail in Current Protocols in Immunology, above, unit 4.5.

EAE is a T cell mediated autoimmune disease characterized by T cell and mononuclear cell inflammation and subsequent demyelination of axons in the central nervous system. EAE is generally considered to be a relevant animal model for MS in humans. Bolton, C., *Multiple Sclerosis* (1995) 1:143. Both acute and relapsing-remitting models have been developed. The compounds of the invention can be tested for T cell stimulatory or inhibitory activity against immune mediated demyelinating disease using the protocol described in *Current Protocols in Immunology*, above, units 15.1 and 15.2. See also the models for myelin disease in which oligodendrocytes or Schwann cells are grafted into the central nervous system as described in Duncan, I. D. *et al*, *Molec. Med. Today* (1997) 554-561.

Contact hypersensitivity is a simple delayed type hypersensitivity in vivo assay of cell mediated immune function. In this procedure, cutaneous exposure to exogenous haptens which gives rise to a delayed type hypersensitivity reaction which is measured and quantitated. Contact sensitivity involves an initial sensitizing phase followed by an elicitation phase. The elicitation phase occurs when the T lymphocytes encounter an antigen to which they have had previous contact. Swelling and inflammation occur, making this an excellent model of human allergic contact dermatitis. A suitable procedure is described in detail in Current Protocols in Immunology, Eds. J. E. Cologan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach and W. Strober, John Wiley & Sons, Inc., 1994, unit 4.2. See also Grabbe, S. and Schwarz, T, Immun. Today 19 (1): 37-44 (1998).

An animal model for arthritis is collagen-induced arthritis. This model shares clinical, histological and immunological characteristics of human autoimmune rheumatoid arthritis and is an acceptable model for human autoimmune arthritis. Mouse and rat models are characterized by synovitis, erosion of cartilage and subchondral bone. The compounds of the invention can be tested for activity against autoimmune arthritis using the protocols described in *Current Protocols in Immunology*, above, units 15.5. See also the model using a monoclonal antibody to CD18 and VLA-4 integrins described in Issekutz, A.C. et al., Immunology (1996) 88:569.

5

10

15

20

25

30

35

40

A model of asthma has been described in which antigen-induced airway hyper-reactivity, pulmonary eosinophilia and inflammation are induced by sensitizing an animal with ovalbumin and then challenging the animal with the same protein delivered by aerosol. Several animal models (guinea pig, rat, non-human primate) show symptoms similar to atopic asthma in humans upon challenge with aerosol antigens. Murine models have many of the features of human asthma. Suitable procedures to test the compounds of the invention for activity and effectiveness in the treatment of asthma are described by Wolyniec, W. W. et al, Am. J. Respir. Cell Mol. Biol. (1998) 18:777 and the references cited therein.

Additionally, the compounds of the invention can be tested on animal models for 'psoriasis like diseases. Evidence suggests a T cell pathogenesis for psoriasis. The compounds of the invention can be tested in the scid/scid mouse model described by Schon, M. P. et al, Nat. Med. (1997) 3:183, in which the mice demonstrate histopathologic skin lesions resembling psoriasis. Another suitable model is the human skin/scid mouse chimera prepared as described by Nickoloff, B. J. et al, Am. J. Path. (1995) 146:580.

Recombinant (transgenic) animal models can be engineered by introducing the coding portion of the genes identified herein into the genome of animals of interest, using standard techniques for producing transgenic animals. Animals that can serve as a target for transgenic manipulation include, without limitation, mice, rats, rabbits, guinea pigs, sheep, goats, pigs, and non-human primates, e.g., baboons, chimpanzees and monkeys. Techniques known in the art to introduce a transgene into such animals include pronucleic microinjection (Hoppe and Wanger, U.S. Patent No. 4,873,191); retrovirus-mediated gene transfer into germ lines (e.g., Van der Putten et al., Proc. Natl. Acad. Sci. USA 82, 6148-615 [1985]); gene targeting in embryonic stem cells (Thompson et al., Cell 56, 313-321 [1989]); electroporation of embryos (Lo, Mol. Cel. Biol. 3, 1803-1814 [1983]); sperm-mediated gene transfer (Lavitrano et al., Cell 57, 717-73 [1989]). For review, see, for example, U.S. Patent No. 4,736,866.

For the purpose of the present invention, transgenic animals include those that carry the transgene only in part of their cells ("mosaic animals"). The transgene can be integrated either as a single transgene, or in concatamers, e.g., head-to-head or head-to-tail tandems. Selective introduction of a transgene into a particular cell type is also possible by following, for example, the technique of Lasko et al., Proc. Natl. Acad. Sci. USA 89, 6232-636 (1992).

The expression of the transgene in transgenic animals can be monitored by standard techniques. For example, Southern blot analysis or PCR amplification can be used to verify the integration of the transgene. The level of mRNA expression can then be analyzed using techniques such as *in situ* hybridization, Northern blot analysis, PCR, or immunocytochemistry.

The animals may be further examined for signs of immune disease pathology, for example by histological examination to determine infiltration of immune cells into specific tissues. Blocking

experiments can also be performed in which the transgenic animals are treated with the compounds of the invention to determine the extent of the T cell proliferation stimulation or inhibition of the compounds. In these experiments, blocking antibodies which bind to the PRO polypeptide, prepared as described above, are administered to the animal and the effect on immune function is determined.

Alternatively, "knock out" animals can be constructed which have a defective or altered gene encoding a polypeptide identified herein, as a result of homologous recombination between the endogenous . gene encoding the polypeptide and altered genomic DNA encoding the same polypeptide introduced into an embryonic cell of the animal. For example, cDNA encoding a particular polypeptide can be used to clone genomic DNA encoding that polypeptide in accordance with established techniques. A portion of the genomic DNA encoding a particular polypeptide can be deleted or replaced with another gene, such as a gene encoding a selectable marker which can be used to monitor integration. Typically, several kilobases of unaltered flanking DNA (both at the 5' and 3' ends) are included in the vector [see e.g., Thomas and Capecchi, Cell, 51:503 (1987) for a description of homologous recombination vectors]. The vector is introduced into an embryonic stem cell line (e.g., by electroporation) and cells in which the introduced DNA has homologously recombined with the endogenous DNA are selected [see e.g., Li et al., Cell, 69:915 (1992)]. The selected cells are then injected into a blastocyst of an animal (e.g., a mouse or rat) to form aggregation chimeras [see e.g., Bradley, in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, E. J. Robertson, ed. (IRL, Oxford, 1987), pp. 113-152]. A chimeric embryo can then be implanted into a suitable pseudopregnant female foster animal and the embryo brought to term to create a "knock out" animal. Progeny harboring the homologously recombined DNA in their germ cells can be identified by standard techniques and used to breed animals in which all cells of the animal contain the homologously recombined DNA. Knockout animals can be characterized for instance, for their ability to defend against certain pathological conditions and for their development of pathological conditions due to absence of the polypeptide.

I. ImmunoAdjuvant Therapy

5

10

15

20

25

30

35

40

In one embodiment, the immunostimulating compounds of the invention can be used in immunoadjuvant therapy for the treatment of tumors (cancer). It is now well established that T cells recognize human tumor specific antigens. One group of tumor antigens, encoded by the MAGE, BAGE and GAGE families of genes, are silent in all adult normal tissues, but are expressed in significant amounts in tumors, such as melanomas, lung tumors, head and neck tumors, and bladder carcinomas. DeSmet, C. et al., (1996) Proc. Natl. Acad. Sci. USA, 93:7149. It has been shown that costimulation of T cells induces tumor regression and an antitumor response both in vitro and in vivo. Melero, I. et al., Nature Medicine (1997) 3:682; Kwon, E. D. et al., Proc. Natl. Acad. Sci. USA (1997) 94: 8099; Lynch, D. H. et al, Nature Medicine (1997) 3:625; Finn, O. J. and Lotze, M. T., J. Immunol. (1998) 21:114. The stimulatory compounds of the invention can be administered as adjuvants, alone or together with a growth regulating agent, cytotoxic agent or chemotherapeutic agent, to stimulate T cell proliferation/activation and an antitumor response to tumor antigens. The growth regulating, cytotoxic, or chemotherapeutic agent may be administered in conventional amounts using known administration regimes. Immunostimulating activity by the compounds of the invention allows reduced amounts of the growth regulating, cytotoxic, or chemotherapeutic agents thereby potentially lowering the toxicity to the patient.

J. Screening Assays for Drug Candidates

Screening assays for drug candidates are designed to identify compounds that bind to or complex with the polypeptides encoded by the genes identified herein or a biologically active fragment thereof, or otherwise interfere with the interaction of the encoded polypeptides with other cellular proteins. Such screening assays will include assays amenable to high-throughput screening of chemical libraries, making them particularly suitable for identifying small molecule drug candidates. Small molecules contemplated include synthetic organic or inorganic compounds, including peptides, preferably soluble peptides, (poly)peptide-immunoglobulin fusions, and, in particular, antibodies including, without limitation, poly- and monoclonal antibodies and antibody fragments, single-chain antibodies, anti-idiotypic antibodies, and chimeric or humanized versions of such antibodies or fragments, as well as human antibodies and antibody fragments. The assays can be performed in a variety of formats, including protein-protein binding assays, biochemical screening assays, immunoassays and cell based assays, which are well characterized in the art. All assays are common in that they call for contacting the drug candidate with a polypeptide encoded by a nucleic acid identified herein under conditions and for a time sufficient to allow these two components to interact.

In binding assays, the interaction is binding and the complex formed can be isolated or detected in the reaction mixture. In a particular embodiment, the polypeptide encoded by the gene identified herein or the drug candidate is immobilized on a solid phase, e.g., on a microtiter plate, by covalent or non-covalent attachments. Non-covalent attachment generally is accomplished by coating the solid surface with a solution of the polypeptide and drying. Alternatively, an immobilized antibody, e.g., a monoclonal antibody, specific for the polypeptide to be immobilized can be used to anchor it to a solid surface. The assay is performed by adding the non-immobilized component, which may be labeled by a detectable label, to the immobilized component, e.g., the coated surface containing the anchored component. When the reaction is complete, the non-reacted components are removed, e.g., by washing, and complexes anchored on the solid surface are detected. When the originally non-immobilized component carries a detectable label, the detection of label immobilized on the surface indicates that complexing occurred. Where the originally non-immobilized component does not carry a label, complexing can be detected, for example, by using a labelled antibody specifically binding the immobilized complex.

If the candidate compound interacts with but does not bind to a particular protein encoded by a gene identified herein, its interaction with that protein can be assayed by methods well known for detecting protein-protein interactions. Such assays include traditional approaches, such as, cross-linking, co-immunoprecipitation, and co-purification through gradients or chromatographic columns. In addition, protein-protein interactions can be monitored by using a yeast-based genetic system described by Fields and co-workers [Fields and Song, Nature (London) 340, 245-246 (1989); Chien et al., Proc. Natl. Acad. Sci. USA 88, 9578-9582 (1991)] as disclosed by Chevray and Nathans, Proc. Natl. Acad. Sci. USA 89, 5789-5793 (1991). Many transcriptional activators, such as yeast GALA, consist of two physically discrete modular domains, one acting as the DNA-binding domain, while the other one functioning as the transcription activation domain. The yeast expression system described in the foregoing publications (generally referred to as the "two-hybrid system") takes advantage of this property, and employs two hybrid proteins, one in which the target protein is fused to the DNA-binding domain of GALA, and another, in which candidate

activating proteins are fused to the activation domain. The expression of a GAL1-lacZ reporter gene under control of a GAL4-activated promoter depends on reconstitution of GAL4 activity via protein-protein interaction. Colonies containing interacting polypeptides are detected with a chromogenic substrate for β-galactosidase. A complete kit (MATCHMAKERTM) for identifying protein-protein interactions between two specific proteins using the two-hybrid technique is commercially available from Clontech. This system can also be extended to map protein domains involved in specific protein interactions as well as to pinpoint amino acid residues that are crucial for these interactions.

5

10

15

20

25

30

35

In order to find compounds that interfere with the interaction of a gene identified herein and other intra- or extracellular components can be tested, a reaction mixture is usually prepared containing the product of the gene and the intra- or extracellular component under conditions and for a time allowing for the interaction and binding of the two products. To test the ability of a test compound to inhibit binding, the reaction is run in the absence and in the presence of the test compound. In addition, a placebo may be added to a third reaction mixture, to serve as positive control. The binding (complex formation) between the test compound and the intra- or extracellular component present in the mixture is monitored as described above. The formation of a complex in the control reaction(s) but not in the reaction mixture containing the test compound indicates that the test compound interferes with the interaction of the test compound and its reaction partner.

K. Compositions and Methods for the Treatment of Immune Related Diseases

The compositions useful in the treatment of immune related diseases include, without limitation, proteins, antibodies, small organic molecules, peptides, phosphopeptides, antisense and ribozyme molecules, triple helix molecules, etc. that inhibit or stimulate immune function, for example, T cell proliferation/activation, lymphokine release, or immune cell infiltration.

For example, antisense RNA and RNA molecules act to directly block the translation of mRNA by hybridizing to targeted mRNA and preventing protein translation. When antisense DNA is used, oligodeoxyribonucleotides derived from the translation initiation site, e.g., between about -10 and +10 positions of the target gene nucleotide sequence, are preferred.

Ribozymes are enzymatic RNA molecules capable of catalyzing the specific cleavage of RNA. Ribozymes act by sequence-specific hybridization to the complementary target RNA, followed by endonucleolytic cleavage. Specific ribozyme cleavage sites within a potential RNA target can be identified by known techniques. For further details see, e.g., Rossi, Current Biology 4, 469-471 (1994), and PCT publication No. WO 97/33551 (published September 18, 1997).

Nucleic acid molecules in triple helix formation used to inhibit transcription should be single-stranded and composed of deoxynucleotides. The base composition of these oligonucleotides is designed such that it promotes triple helix formation via Hoogsteen base pairing rules, which generally require sizeable stretches of purines or pyrimidines on one strand of a duplex. For further details see, e.g., PCT publication No. WO 97/33551, supra.

These molecules can be identified by any or any combination of the screening assays discussed above and/or by any other screening techniques well known for those skilled in the art.

L. Anti-PRO Antibodies

5

10

15

20

25

30

35

40

The present invention further provides anti-PRO antibodies. Exemplary antibodies include polyclonal, monoclonal, humanized, bispecific, and heteroconjugate antibodies.

1. Polyclonal Antibodies

The anti-PRO antibodies may comprise polyclonal antibodies. Methods of preparing polyclonal antibodies are known to the skilled artisan. Polyclonal antibodies can be raised in a mammal, for example, by one or more injections of an immunizing agent and, if desired, an adjuvant. Typically, the immunizing agent and/or adjuvant will be injected in the mammal by multiple subcutaneous or intraperitoneal injections. The immunizing agent may include the PRO polypeptide or a fusion protein thereof. It may be useful to conjugate the immunizing agent to a protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins include but are not limited to keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. Examples of adjuvants which may be employed include Freund's complete adjuvant and MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate). The immunization protocol may be selected by one skilled in the art without undue experimentation.

2. Monoclonal Antibodies

The anti-PRO antibodies may, alternatively, be monoclonal antibodies. Monoclonal antibodies may be prepared using hybridoma methods, such as those described by Kohler and Milstein, Nature, 256:495 (1975). In a hybridoma method, a mouse, hamster, or other appropriate host animal, is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes may be immunized in vitro.

The immunizing agent will typically include the PRO polypeptide or a fusion protein thereof. Generally, either peripheral blood lymphocytes ("PBLs") are used if cells of human origin are desired, or spleen cells or lymph node cells are used if non-human mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell [Goding, Monoclonal Antibodies: Principles and Practice, Academic Press, (1986) pp. 59-103]. Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovine and human origin. Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells may be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine ("HAT medium"), which substances prevent the growth of HGPRT-deficient cells.

Preferred immortalized cell lines are those that fuse efficiently, support stable high level expression of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. More preferred immortalized cell lines are murine myeloma lines, which can be obtained, for instance, from the Salk Institute Cell Distribution Center, San Diego, California and the American Type Culture Collection, Manassas, Virginia. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies [Kozbor, J. Immunol., 133:3001 (1984); Brodeur et al.,

Monoclonal Antibody Production Techniques and Applications, Marcel Dekker, Inc., New York, (1987) pp. 51-63].

The culture medium in which the hybridoma cells are cultured can then be assayed for the presence of monoclonal antibodies directed against PRO. Preferably, the binding specificity of monoclonal antibodies produced by the hybridoma cells is determined by immunoprecipitation or by an *in vitro* binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA). Such techniques and assays are known in the art. The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson and Pollard, Anal. Biochem., 107:220 (1980).

5

10

15

20

25

30

35

After the desired hybridoma cells are identified, the clones may be subcloned by limiting dilution procedures and grown by standard methods [Goding, <u>supra</u>]. Suitable culture media for this purpose include, for example, Dulbecco's Modified Eagle's Medium and RPMI-1640 medium. Alternatively, the hybridoma cells may be grown *in vivo* as ascites in a mammal.

The monoclonal antibodies secreted by the subclones may be isolated or purified from the culture medium or ascites fluid by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.

The monoclonal antibodies may also be made by recombinant DNA methods, such as those described in U.S. Patent No. 4,816,567. DNA encoding the monoclonal antibodies of the invention can be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies). The hybridoma cells of the invention serve as a preferred source of such DNA. Once isolated, the DNA may be placed into expression vectors, which are then transfected into host cells such as simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. The DNA also may be modified, for example, by substituting the coding sequence for human heavy and light chain constant domains in place of the homologous murine sequences [U.S. Patent No. 4,816,567; Morrison et al., supra] or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide. Such a non-immunoglobulin polypeptide can be substituted for the constant domains of an antibody of the invention, or can be substituted for the variable domains of one antigencombining site of an antibody of the invention to create a chimeric bivalent antibody.

The antibodies may be monovalent antibodies. Methods for preparing monovalent antibodies are well known in the art. For example, one method involves recombinant expression of immunoglobulin light chain and modified heavy chain. The heavy chain is truncated generally at any point in the Fc region so as to prevent heavy chain crosslinking. Alternatively, the relevant cysteine residues are substituted with another amino acid residue or are deleted so as to prevent crosslinking.

In vitro methods are also suitable for preparing monovalent antibodies. Digestion of antibodies to produce fragments thereof, particularly, Fab fragments, can be accomplished using routine techniques known in the art.

3. Human and Humanized Antibodies

5

10

15

20

25

30

35

The anti-PRO antibodies of the invention may further comprise humanized antibodies or human antibodies. Humanized forms of non-human (e.g., murine) antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab')2 or other antigen-binding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin. Humanized antibodies include human immunoglobulins (recipient antibody) in which residues from a complementary determining region (CDR) of the recipient are replaced by residues from a CDR of a nonhuman species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity and capacity. In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies may also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin [Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-329 (1988); and Presta, Curr. Op. Struct. Biol., 2:593-596 (1992)].

Methods for humanizing non-human antibodies are well known in the art. Generally, a humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. These non-human amino acid residues are often referred to as "import" residues, which are typically taken from an "import" variable domain. Humanization can be essentially performed following the method of Winter and co-workers [Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science, 239:1534-1536 (1988)], by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. Accordingly, such "humanized" antibodies are chimeric antibodies (U.S. Patent No. 4,816,567), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies.

Human antibodies can also be produced using various techniques known in the art, including phage display libraries [Hoogenboom and Winter, J. Mol. Biol., 227:381 (1991); Marks et al., J. Mol. Biol., 222:581 (1991)]. The techniques of Cole et al. and Boerner et al. are also available for the preparation of human monoclonal antibodies (Cole et al., Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, p. 77 (1985) and Boerner et al., J. Immunol., 147(1):86-95 (1991)]. Similarly, human antibodies can be made by introducing of human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans in all respects, including gene rearrangement, assembly, and antibody repertoire. This approach is described, for example, in U.S. Patent Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661,016, and in the following scientific publications: Marks et al., Bio/Technology 10, 779-783 (1992); Lonberg et al., Nature 368 856-859 (1994);

Morrison, Nature 368, 812-13 (1994); Fishwild et al., Nature Biotechnology 14, 845-51 (1996); Neuberger, Nature Biotechnology 14, 826 (1996); Lonberg and Huszar, Intern. Rev. Immunol. 13 65-93 (1995).

The antibodies may also be affinity matured using known selection and/or mutagenesis methods as described above. Preferred affinity matured antibodies have an affinity which is five times, more preferably 10 times, even more preferably 20 or 30 times greater than the starting antibody (generally murine, humanized or human) from which the matured antibody is prepared.

4. Bispecific Antibodies

5

10

15

20

25

30

35

40

Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens. In the present case, one of the binding specificities is for the PRO, the other one is for any other antigen, and preferably for a cell-surface protein or receptor or receptor subunit.

Methods for making bispecific antibodies are known in the art. Traditionally, the recombinant production of bispecific antibodies is based on the co-expression of two immunoglobulin heavy-chain/light-chain pairs, where the two heavy chains have different specificities [Milstein and Cuello, Nature, 305:537-539 (1983)]. Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of ten different antibody molecules, of which only one has the correct bispecific structure. The purification of the correct molecule is usually accomplished by affinity chromatography steps. Similar procedures are disclosed in WO 93/08829, published 13 May 1993, and in Traunecker et al., EMBO J., 10:3655-3659 (1991).

Antibody variable domains with the desired binding specificities (antibody-antigen combining sites) can be fused to immunoglobulin constant domain sequences. The fusion preferably is with an immunoglobulin heavy-chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It is preferred to have the first heavy-chain constant region (CH1) containing the site necessary for light-chain binding present in at least one of the fusions. DNAs encoding the immunoglobulin heavy-chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co-transfected into a suitable host organism. For further details of generating bispecific antibodies see, for example, Suresh et al., Methods in Enzymology, 121:210 (1986).

According to another approach described in WO 96/27011, the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers which are recovered from recombinant cell culture. The preferred interface comprises at least a part of the CH3 region of an antibody constant domain. In this method, one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains (e.g. tyrosine or tryptophan). Compensatory "cavities" of identical or similar size to the large side chain(s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller ones (e.g. alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homodimers.

Bispecific antibodies can be prepared as full length antibodies or antibody fragments (e.g. F(ab')₂ bispecific antibodies). Techniques for generating bispecific antibodies from antibody fragments have been described in the literature. For example, bispecific antibodies can be prepared can be prepared using

chemical linkage. Brennan et al., Science 229:81 (1985) describe a procedure wherein intact antibodies are proteolytically cleaved to generate F(ab')₂ fragments. These fragments are reduced in the presence of the dithiol complexing agent sodium arsenite to stabilize vicinal dithiols and prevent intermolecular disulfide formation. The Fab' fragments generated are then converted to thionitrobenzoate (TNB) derivatives. One of the Fab'-TNB derivatives is then reconverted to the Fab'-thiol by reduction with mercaptoethylamine and is mixed with an equimolar amount of the other Fab'-TNB derivative to form the bispecific antibody. The bispecific antibodies produced can be used as agents for the selective immobilization of enzymes.

5

10

15

20

25

30

35

40

Fab' fragments may be directly recovered from *E. coli* and chemically coupled to form bispecific antibodies. Shalaby *et al.*, J. Exp. Med. 175:217-225 (1992) describe the production of a fully humanized bispecific antibody F(ab')₂ molecule. Each Fab' fragment was separately secreted from *E. coli* and subjected to directed chemical coupling *in vitro* to form the bispecific antibody. The bispecific antibody thus formed was able to bind to cells overexpressing the ErbB2 receptor and normal human T cells, as well as trigger the lytic activity of human cytotoxic lymphocytes against human breast tumor targets.

Various technique for making and isolating bispecific antibody fragments directly from recombinant cell culture have also been described. For example, bispecific antibodies have been produced using leucine zippers. Kostelny et al., J. Immunol. 148(5):1547-1553 (1992). The leucine zipper peptides from the Fos and Jun proteins were linked to the Fab' portions of two different antibodies by gene fusion. The antibody homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers. The "diabody" technology described by Hollinger et al., Proc. Natl. Acad. Sci. USA 90:6444-6448 (1993) has provided an alternative mechanism for making bispecific antibody fragments. The fragments comprise a heavy-chain variable domain (V_H) connected to a light-chain variable domain (V_L) by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the V_H and V_L domains of one fragment are forced to pair with the complementary V_L and V_H domains of another fragment, thereby forming two antigen-binding sites. Another strategy for making bispecific antibody fragments by the use of single-chain Fv (sFv) dimers has also been reported. See, Gruber et al., J. Immunol. 152:5368 (1994). Antibodies with more than two valencies are contemplated. For example, trispecific antibodies can be prepared. Tutt et al., J. Immunol. 147:60 (1991).

Exemplary bispecific antibodies may bind to two different epitopes on a given PRO polypeptide herein. Alternatively, an anti-PRO polypeptide arm may be combined with an arm which binds to a triggering molecule on a leukocyte such as a T-cell receptor molecule (e.g. CD2, CD3, CD28, or B7), or Fc receptors for IgG (FcγR), such as FcγRI (CD64), FcγRII (CD32) and FcγRIII (CD16) so as to focus cellular defense mechanisms to the cell expressing the particular PRO polypeptide. Bispecific antibodies may also be used to localize cytotoxic agents to cells which express a particular PRO polypeptide. These antibodies possess a PRO-binding arm and an arm which binds a cytotoxic agent or a radionuclide chelator, such as EOTUBE, DPTA, DOTA, or TETA. Another bispecific antibody of interest binds the PRO polypeptide and further binds tissue factor (TF).

5. <u>Heteroconjugate Antibodies</u>

Heteroconjugate antibodies are also within the scope of the present invention. Heteroconjugate antibodies are composed of two covalently joined antibodies. Such antibodies have, for example, been

proposed to target immune system cells to unwanted cells [U.S. Patent No. 4,676,980], and for treatment of HIV infection [WO 91/00360; WO 92/200373; EP 03089]. It is contemplated that the antibodies may be prepared *in vitro* using known methods in synthetic protein chemistry, including those involving crosslinking agents. For example, immunotoxins may be constructed using a disulfide exchange reaction or by forming a thioether bond. Examples of suitable reagents for this purpose include iminothiolate and methyl-4-mercaptobutyrimidate and those disclosed, for example, in U.S. Patent No. 4,676,980.

6. <u>Bffector Function Engineering</u>

5

10

15

20

25

30

35

40

It may be desirable to modify the antibody of the invention with respect to effector function, so as to enhance, e.g., the effectiveness of the antibody in treating cancer. For example, cysteine residue(s) may be introduced into the Fc region, thereby allowing interchain disulfide bond formation in this region. The homodimeric antibody thus generated may have improved internalization capability and/or increased complement-mediated cell killing and antibody-dependent cellular cytotoxicity (ADCC). See Caron et al., J. Exp Med., 176: 1191-1195 (1992) and Shopes, J. Immunol., 148: 2918-2922 (1992). Homodimeric antibodies with enhanced anti-tumor activity may also be prepared using heterobifunctional cross-linkers as described in Wolff et al. Cancer Research, 53: 2560-2565 (1993). Alternatively, an antibody can be engineered that has dual Fc regions and may thereby have enhanced complement lysis and ADCC capabilities. See Stevenson et al., Anti-Cancer Drug Design, 3: 219-230 (1989).

7. <u>Immunoconjugates</u>

The invention also pertains to immunoconjugates comprising an antibody conjugated to a cytotoxic agent such as a chemotherapeutic agent, toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a radioconjugate).

Chemotherapeutic agents useful in the generation of such immunoconjugates have been described above. Enzymatically active toxins and fragments thereof that can be used include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from *Pseudomonas aeruginosa*), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, *Aleurites fordii* proteins, dianthin proteins, *Phytolaca americana* proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin, and the tricothecenes. A variety of radionuclides are available for the production of radioconjugated antibodies. Examples include ²¹²Bi, ¹³¹I, ¹³¹In, ⁹⁰Y, and ¹⁸⁶Re.

Conjugates of the antibody and cytotoxic agent are made using a variety of bifunctional protein-coupling agents such as N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). For example, a ricin immunotoxin can be prepared as described in Vitetta et al., Science, 238: 1098 (1987). Carbon-14-labeled 1-isothiocyanatobenzyl-3-methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See WO94/11026.

In another embodiment, the antibody may be conjugated to a "receptor" (such streptavidin) for utilization in tumor pretargeting wherein the antibody-receptor conjugate is administered to the patient, followed by removal of unbound conjugate from the circulation using a clearing agent and then administration of a "ligand" (e.g., avidin) that is conjugated to a cytotoxic agent (e.g., a radionucleotide).

8. <u>Immunoliposomes</u>

5

10

15

20

25

30

35

The antibodies disclosed herein may also be formulated as immunoliposomes. Liposomes containing the antibody are prepared by methods known in the art, such as described in Epstein *et al.*, <u>Proc. Natl. Acad. Sci. USA</u>, <u>82</u>: 3688 (1985); Hwang *et al.*, <u>Proc. Natl. Acad. Sci. USA</u>, <u>77</u>: 4030 (1980); and U.S. Pat. Nos. 4,485,045 and 4,544,545. Liposomes with enhanced circulation time are disclosed in U.S. Patent No. 5,013,556.

Particularly useful liposomes can be generated by the reverse-phase evaporation method with a lipid composition comprising phosphatidylcholine, cholesterol, and PEG-derivatized phosphatidylethanolamine (PEG-PE). Liposomes are extruded through filters of defined pore size to yield liposomes with the desired diameter. Fab' fragments of the antibody of the present invention can be conjugated to the liposomes as described in Martin et al., J. Biol. Chem., 257: 286-288 (1982) via a disulfide-interchange reaction. A chemotherapeutic agent (such as Doxorubicin) is optionally contained within the liposome. See Gabizon et al., J. National Cancer Inst., 81(19): 1484 (1989).

M. Pharmaceutical Compositions

The active PRO molecules of the invention (e.g., PRO polypeptides, anti-PRO antibodies, and/or variants of each) as well as other molecules identified by the screening assays disclosed above, can be administered for the treatment of immune related diseases, in the form of pharmaceutical compositions.

Therapeutic formulations of the active PRO molecule, preferably a polypeptide or antibody of the invention, are prepared for storage by mixing the active molecule having the desired degree of purity with optional pharmaceutically acceptable carriers, excipients or stabilizers (Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. [1980]), in the form of lyophilized formulations or aqueous solutions. Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride, benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and mcresol); low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, histidine, arginine, or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugars such as sucrose, mannitol, trehalose or sorbitol; salt-forming counter-ions such as sodium; metal complexes (e.g., Zn-protein complexes); and/or non-ionic surfactants such as TWEENTM, PLURONICSTM or polyethylene glycol (PEG).

Compounds identified by the screening assays disclosed herein can be formulated in an analogous manner, using standard techniques well known in the art.

Lipofections or liposomes can also be used to deliver the PRO molecule into cells. Where antibody fragments are used, the smallest inhibitory fragment which specifically binds to the binding domain of the target protein is preferred. For example, based upon the variable region sequences of an antibody, peptide molecules can be designed which retain the ability to bind the target protein sequence. Such peptides can be synthesized chemically and/or produced by recombinant DNA technology (see, e.g., Marasco et al., Proc. Natl. Acad. Sci. USA 90, 7889-7893 [1993]).

The formulation herein may also contain more than one active compound as necessary for the particular indication being treated, preferably those with complementary activities that do not adversely affect each other. Alternatively, or in addition, the composition may comprise a cytotoxic agent, cytokine or growth inhibitory agent. Such molecules are suitably present in combination in amounts that are effective for the purpose intended.

The active PRO molecules may also be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacylate) microcapsules, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules) or in macroemulsions. Such techniques are disclosed in *Remington's Pharmaceutical Sciences* 16th edition, Osol, A. Ed. (1980).

The formulations to be used for *in vivo* administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes.

Sustained-release preparations or the PRO molecules may be prepared. Suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing the antibody, which matrices are in the form of shaped articles, e.g., films, or microcapsules. Examples of sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or poly(vinylalcohol)), polylactides (U.S. Pat. No. 3,773,919), copolymers of L-glutamic acid and γ-ethyl-Lglutamate, non-degradable ethylene-vinyl acetate, degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOTTM (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-(-)-3-hydroxybutyric acid. While polymers such as ethylene-vinyl acetate and lactic acid-glycolic acid enable release of molecules for over 100 days, certain hydrogels release proteins for shorter time periods. When encapsulated antibodies remain in the body for a long time, they may denature or aggregate as a result of exposure to moisture at 37°C, resulting in a loss of biological activity and possible changes in immunogenicity. Rational strategies can be devised for stabilization depending on the mechanism involved. For example, if the aggregation mechanism is discovered to be intermolecular S-S bond formation through thio-disulfide interchange, stabilization may be achieved by modifying sulfhydryl residues, lyophilizing from acidic solutions, controlling moisture content, using appropriate additives, and developing specific polymer matrix compositions.

N. Methods of Treatment

5

10

15

20

25

30

35

It is contemplated that the polypeptides, antibodies and other active compounds of the present invention may be used to treat various immune related diseases and conditions, such as T cell mediated diseases, including those characterized by infiltration of inflammatory cells into a tissue, stimulation of T-

cell proliferation, inhibition of T-cell proliferation, increased or decreased vascular permeability or the inhibition thereof.

5

10

15

20

25

30

35

40

Exemplary conditions or disorders to be treated with the polypeptides, antibodies and other compounds of the invention, include, but are not limited to systemic lupus erythematosis, rheumatoid arthritis, juvenile chronic arthritis, osteoarthritis, spondyloarthropathies, systemic sclerosis (scleroderma), idiopathic inflammatory myopathies (dermatomyositis, polymyositis), Sjögren's syndrome, systemic vasculitis, sarcoidosis, autoimmune hemolytic anemia (immune pancytopenia, paroxysmal nocturnal hemoglobinuria), autoimmune thrombocytopenia (idiopathic thrombocytopenic purpura, immune-mediated thrombocytopenia), thyroiditis (Grave's disease, Hashimoto's thyroiditis, juvenile lymphocytic thyroiditis, atrophic thyroiditis), diabetes mellitus, immune-mediated renal disease (glomerulonephritis, tubulointerstitial nephritis), demyelinating diseases of the central and peripheral nervous systems such as multiple sclerosis, idiopathic demyelinating polyneuropathy or Guillain-Barré syndrome, and chronic inflammatory demyelinating polyneuropathy, hepatobiliary diseases such as infectious hepatitis (hepatitis A, B, C, D, E and other non-hepatotropic viruses), autoimmune chronic active hepatitis, primary biliary cirrhosis, granulomatous hepatitis, and sclerosing cholangitis, inflammatory bowel disease (ulcerative colitis: Crohn's disease), gluten-sensitive enteropathy, and Whipple's disease, autoimmune or immune-mediated skin diseases including bullous skin diseases, erythema multiforme and contact dermatitis, psoriasis, allergic diseases such as asthma, allergic rhinitis, atopic dermatitis, food hypersensitivity and urticaria, immunologic diseases of the lung such as eosinophilic pneumonias, idiopathic pulmonary fibrosis and hypersensitivity pneumonitis, transplantation associated diseases including graft rejection and graft -versus-host-disease.

In systemic lupus erythematosus, the central mediator of disease is the production of auto-reactive antibodies to self proteins/tissues and the subsequent generation of immune-mediated inflammation. Antibodies either directly or indirectly mediate tissue injury. Though T lymphocytes have not been shown to be directly involved in tissue damage, T lymphocytes are required for the development of auto-reactive antibodies. The genesis of the disease is thus T lymphocyte dependent. Multiple organs and systems are affected clinically including kidney, lung, musculoskeletal system, mucocutaneous, eye, central nervous system, cardiovascular system, gastrointestinal tract, bone marrow and blood.

Rheumatoid arthritis (RA) is a chronic systemic autoimmune inflammatory disease that mainly involves the synovial membrane of multiple joints with resultant injury to the articular cartilage. The pathogenesis is T lymphocyte dependent and is associated with the production of rheumatoid factors, auto-antibodies directed against self IgG, with the resultant formation of immune complexes that attain high levels in joint fluid and blood. These complexes in the joint may induce the marked infiltrate of lymphocytes and monocytes into the synovium and subsequent marked synovial changes; the joint space/fluid if infiltrated by similar cells with the addition of numerous neutrophils. Tissues affected are primarily the joints, often in symmetrical pattern. However, extra-articular disease also occurs in two major forms. One form is the development of extra-articular lesions with ongoing progressive joint disease and typical lesions of pulmonary fibrosis, vasculitis, and cutaneous ulcers. The second form of extra-articular disease is the so called Felty's syndrome which occurs late in the RA disease course, sometimes after joint disease has become quiescent, and involves the presence of neutropenia, thrombocytopenia and splenomegaly. This can be accompanied by vasculitis in multiple organs with formations of infarcts, skin

ulcers and gangrene. Patients often also develop rheumatoid nodules in the subcutis tissue overlying affected joints; the nodules late stage have necrotic centers surrounded by a mixed inflammatory cell infiltrate. Other manifestations which can occur in RA include: pericarditis, pleuritis, coronary arteritis, intestitial pneumonitis with pulmonary fibrosis, keratoconjunctivitis sicca, and rhematoid nodules.

5

10

15

20

25

30

35

40

Juvenile chronic arthritis is a chronic idiopathic inflammatory disease which begins often at less than 16 years of age. Its phenotype has some similarities to RA; some patients which are rhematoid factor positive are classified as juvenile rheumatoid arthritis. The disease is sub-classified into three major categories: pauciarticular, polyarticular, and systemic. The arthritis can be severe and is typically destructive and leads to joint ankylosis and retarded growth. Other manifestations can include chronic anterior uveitis and systemic amyloidosis.

Spondyloarthropathies are a group of disorders with some common clinical features and the common association with the expression of HLA-B27 gene product. The disorders include: ankylosing sponylitis, Reiter's syndrome (reactive arthritis), arthritis associated with inflammatory bowel disease, spondylitis associated with psoriasis, juvenile onset spondyloarthropathy and undifferentiated spondyloarthropathy. Distinguishing features include sacroileitis with or without spondylitis; inflammatory asymmetric arthritis; association with HLA-B27 (a serologically defined allele of the HLA-B locus of class I MHC); ocular inflammation, and absence of autoantibodies associated with other rheumatoid disease. The cell most implicated as key to induction of the disease is the CD8+ T lymphocyte, a cell which targets antigen presented by class I MHC molecules. CD8+ T cells may react against the class I MHC allele HLA-B27 as if it were a foreign peptide expressed by MHC class I molecules. It has been hypothesized that an epitope of HLA-B27 may mimic a bacterial or other microbial antigenic epitope and thus induce a CD8+ T cells response.

Systemic sclerosis (scleroderma) has an unknown etiology. A hallmark of the disease is induration of the skin; likely this is induced by an active inflammatory process. Scleroderma can be localized or systemic; vascular lesions are common and endothelial cell injury in the microvasculature is an early and important event in the development of systemic sclerosis; the vascular injury may be immune mediated. An immunologic basis is implied by the presence of mononuclear cell infiltrates in the cutaneous lesions and the presence of anti-nuclear antibodies in many patients. ICAM-1 is often upregulated on the cell surface of fibroblasts in skin lesions suggesting that T cell interaction with these cells may have a role in the pathogenesis of the disease. Other organs involved include: the gastrointestinal tract: smooth muscle atrophy and fibrosis resulting in abnormal peristalsis/motility; kidney: concentric subendothelial intimal proliferation affecting small arcuate and interlobular arteries with resultant reduced renal cortical blood flow, results in proteinuria, azotemia and hypertension; skeletal muscle: atrophy, interstitial fibrosis; inflammation; lung: interstitial pneumonitis and interstitial fibrosis; and heart: contraction band necrosis, scarring/fibrosis.

Idiopathic inflammatory myopathies including dermatomyositis, polymyositis and others are disorders of chronic muscle inflammation of unknown etiology resulting in muscle weakness. Muscle injury/inflammation is often symmetric and progressive. Autoantibodies are associated with most forms. These myositis-specific autoantibodies are directed against and inhibit the function of components, proteins and RNA's, involved in protein synthesis.

Sjögren's syndrome is due to immune-mediated inflammation and subsequent functional destruction of the tear glands and salivary glands. The disease can be associated with or accompanied by inflammatory connective tissue diseases. The disease is associated with autoantibody production against Ro and La antigens, both of which are small RNA-protein complexes. Lesions result in keratoconjunctivitis sicca, xerostomia, with other manifestations or associations including bilary cirrhosis, peripheral or sensory neuropathy, and palpable purpura.

5

10

15

20

25

30

35

Systemic vasculitis are diseases in which the primary lesion is inflammation and subsequent damage to blood vessels which results in ischemia/necrosis/degeneration to tissues supplied by the affected vessels and eventual end-organ dysfunction in some cases. Vasculitides can also occur as a secondary lesion or sequelae to other immune-inflammatory mediated diseases such as rheumatoid arthritis, systemic sclerosis, etc., particularly in diseases also associated with the formation of immune complexes. Diseases in the primary systemic vasculitis group include: systemic necrotizing vasculitis: polyarteritis nodosa, allergic angiitis and granulomatosis, polyangiitis; Wegener's granulomatosis; lymphomatoid granulomatosis; and giant cell arteritis. Miscellaneous vasculitides include: mucocutaneous lymph node syndrome (MLNS or Kawasaki's disease), isolated CNS vasculitis, Behet's disease, thromboangiitis obliterans (Buerger's disease) and cutaneous necrotizing venulitis. The pathogenic mechanism of most of the types of vasculitis listed is believed to be primarily due to the deposition of immunoglobulin complexes in the vessel wall and subsequent induction of an inflammatory response either via ADCC, complement activation, or both.

Sarcoidosis is a condition of unknown etiology which is characterized by the presence of epithelioid granulomas in nearly any tissue in the body; involvement of the lung is most common. The pathogenesis involves the persistence of activated macrophages and lymphoid cells at sites of the disease with subsequent chronic sequelae resultant from the release of locally and systemically active products released by these cell types.

Autoimmune hemolytic anemia including autoimmune hemolytic anemia, immune pancytopenia, and paroxysmal noctural hemoglobinuria is a result of production of antibodies that react with antigens expressed on the surface of red blood cells (and in some cases other blood cells including platelets as well) and is a reflection of the removal of those antibody coated cells via complement mediated lysis and/or ADCC/Fc-receptor-mediated mechanisms.

In autoimmune thrombocytopenia including thrombocytopenic purpura, and immune-mediated thrombocytopenia in other clinical settings, platelet destruction/removal occurs as a result of either antibody or complement attaching to platelets and subsequent removal by complement lysis, ADCC or FC-receptor mediated mechanisms.

Thyroiditis including Grave's disease, Hashimoto's thyroiditis, juvenile lymphocytic thyroiditis, and atrophic thyroiditis, are the result of an autoimmune response against thyroid antigens with production of antibodies that react with proteins present in and often specific for the thyroid gland. Experimental models exist including spontaneous models: rats (BUF and BB rats) and chickens (obese chicken strain); inducible models: immunization of animals with either thyroglobulin, thyroid microsomal antigen (thyroid peroxidase).

Type I diabetes mellitus or insulin-dependent diabetes is the autoimmune destruction of pancreatic islet β cells; this destruction is mediated by auto-antibodies and auto-reactive T cells. Antibodies to insulin or the insulin receptor can also produce the phenotype of insulin-non-responsiveness.

Immune mediated renal diseases, including glomerulonephritis and tubulointerstitial nephritis, are the result of antibody or T lymphocyte mediated injury to renal tissue either directly as a result of the production of autoreactive antibodies or T cells against renal antigens or indirectly as a result of the deposition of antibodies and/or immune complexes in the kidney that are reactive against other, non-renal antigens. Thus other immune-mediated diseases that result in the formation of immune-complexes can also induce immune mediated renal disease as an indirect sequelae. Both direct and indirect immune mechanisms result in inflammatory response that produces/induces lesion development in renal tissues with resultant organ function impairment and in some cases progression to renal failure. Both humoral and cellular immune mechanisms can be involved in the pathogenesis of lesions.

5

10

15

20

25

30

35

40

Demyelinating diseases of the central and peripheral nervous systems, including Multiple Sclerosis; idiopathic demyelinating polyneuropathy or Guillain-Barré syndrome; and Chronic Inflammatory Demyelinating Polyneuropathy, are believed to have an autoimmune basis and result in nerve demyelination as a result of damage caused to oligodendrocytes or to myelin directly. In MS there is evidence to suggest that disease induction and progression is dependent on T lymphocytes. Multiple Sclerosis is a demyelinating disease that is T lymphocyte-dependent and has either a relapsing-remitting course or a chronic progressive course. The etiology is unknown; however, viral infections, genetic predisposition, environment, and autoimmunity all contribute. Lesions contain infiltrates of predominantly T lymphocyte mediated, microglial cells and infiltrating macrophages; CD4+ T lymphocytes are the predominant cell type at lesions. The mechanism of oligodendrocyte cell death and subsequent demyelination is not known but is likely T lymphocyte driven.

Inflammatory and Fibrotic Lung Disease, including Eosinophilic Pneumonias; Idiopathic Pulmonary Fibrosis, and Hypersensitivity Pneumonitis may involve a disregulated immune-inflammatory response. Inhibition of that response would be of therapeutic benefit.

Autoimmune or Immune-mediated Skin Disease including Bullous Skin Diseases, Erythema Multiforme, and Contact Dermatitis are mediated by auto-antibodies, the genesis of which is T lymphocyte-dependent.

Psoriasis is a T lymphocyte-mediated inflammatory disease. Lesions contain infiltrates of T lymphocytes, macrophages and antigen processing cells, and some neutrophils.

Allergic diseases, including asthma; allergic rhinitis; atopic dermatitis; food hypersensitivity; and urticaria are T lymphocyte dependent. These diseases are predominantly mediated by T lymphocyte induced inflammation, IgE mediated-inflammation or a combination of both.

Transplantation associated diseases, including Graft rejection and Graft-Versus-Host-Disease (GVHD) are T lymphocyte-dependent; inhibition of T lymphocyte function is ameliorative.

Other diseases in which intervention of the immune and/or inflammatory response have benefit are infectious disease including but not limited to viral infection (including but not limited to AIDS, hepatitis A, B, C, D, E and herpes) bacterial infection, fungal infections, and protozoal and parasitic infections (molecules (or derivatives/agonists) which stimulate the MLR can be utilized therapeutically to enhance the

immune response to infectious agents), diseases of immunodeficiency (molecules/derivatives/agonists) which stimulate the MLR can be utilized therapeutically to enhance the immune response for conditions of inherited, acquired, infectious induced (as in HIV infection), or introgenic (i.e., as from chemotherapy) immunodeficiency, and neoplasia.

5

10

15

20

25

30

35

40

It has been demonstrated that some human cancer patients develop an antibody and/or T lymphocyte response to antigens on neoplastic cells. It has also been shown in animal models of neoplasia that enhancement of the immune response can result in rejection or regression of that particular neoplasm. Molecules that enhance the T lymphocyte response in the MLR have utility in vivo in enhancing the immune response against neoplasia. Molecules which enhance the T lymphocyte proliferative response in the MLR (or small molecule agonists or antibodies that affected the same receptor in an agonistic fashion) can be used therapeutically to treat cancer. Molecules that inhibit the lymphocyte response in the MLR also function in vivo during neoplasia to suppress the immune response to a neoplasm; such molecules can either be expressed by the neoplastic cells themselves or their expression can be induced by the neoplasm in other cells. Antagonism of such inhibitory molecules (either with antibody, small molecule antagonists or other means) enhances immune-mediated tumor rejection.

Additionally, inhibition of molecules with proinflammatory properties may have therapeutic benefit in reperfusion injury; stroke; myocardial infarction; atherosclerosis; acute lung injury; hemorrhagic shock; burn; sepsis/septic shock; acute tubular necrosis; endometriosis; degenerative joint disease and pancreatis.

The compounds of the present invention, e.g., polypeptides or antibodies, are administered to a mammal, preferably a human, in accord with known methods, such as intravenous administration as a bolus or by continuous infusion over a period of time, by intramuscular, intraperitoneal, intracerobrospinal, subcutaneous, intra-articular, intrasynovial, intrathecal, oral, topical, or inhalation (intranasal, intrapulmonary) routes. Intravenous or inhaled administration of polypeptides and antibodies is preferred.

In immunoadjuvant therapy, other therapeutic regimens, such administration of an anti-cancer agent, may be combined with the administration of the proteins, antibodies or compounds of the instant invention. For example, the patient to be treated with a the immunoadjuvant of the invention may also receive an anti-cancer agent (chemotherapeutic agent) or radiation therapy. Preparation and dosing schedules for such chemotherapeutic agents may be used according to manufacturers' instructions or as determined empirically by the skilled practitioner. Preparation and dosing schedules for such chemotherapy are also described in *Chemotherapy Service* Ed., M.C. Perry, Williams & Wilkins, Baltimore, MD (1992). The chemotherapeutic agent may precede, or follow administration of the immunoadjuvant or may be given simultaneously therewith. Additionally, an anti-estrogen compound such as tamoxifen or an anti-progesterone such as onapristone (see, EP 616812) may be given in dosages known for such molecules.

It may be desirable to also administer antibodies against other immune disease associated or tumor associated antigens, such as antibodies which bind to CD20, CD11a, CD18, ErbB2, EGFR, ErbB3, ErbB4, or vascular endothelial factor (VEGF). Alternatively, or in addition, two or more antibodies binding the same or two or more different antigens disclosed herein may be coadministered to the patient. Sometimes, it may be beneficial to also administer one or more cytokines to the patient. In one embodiment, the PRO polypeptides are coadministered with a growth inhibitory agent. For example, the growth inhibitory agent may be administered first, followed by a PRO polypeptide. However, simultaneous administration or

administration first is also contemplated. Suitable dosages for the growth inhibitory agent are those presently used and may be lowered due to the combined action (synergy) of the growth inhibitory agent and the PRO polypeptide.

For the treatment or reduction in the severity of immune related disease, the appropriate dosage of an a compound of the invention will depend on the type of disease to be treated, as defined above, the severity and course of the disease, whether the agent is administered for preventive or therapeutic purposes, previous therapy, the patient's clinical history and response to the compound, and the discretion of the attending physician. The compound is suitably administered to the patient at one time or over a series of treatments.

For example, depending on the type and severity of the disease, about 1 μ g/kg to 15 mg/kg (e.g., 0.1-20 mg/kg) of polypeptide or antibody is an initial candidate dosage for administration to the patient, whether, for example, by one or more separate administrations, or by continuous infusion. A typical daily dosage might range from about 1 μ g/kg to 100 mg/kg or more, depending on the factors mentioned above. For repeated administrations over several days or longer, depending on the condition, the treatment is sustained until a desired suppression of disease symptoms occurs. However, other dosage regimens may be useful. The progress of this therapy is easily monitored by conventional techniques and assays.

O. Articles of Manufacture

5

10

15

20

25

30

35

40

In another embodiment of the invention, an article of manufacture containing materials (e.g., comprising a PRO molecule) useful for the diagnosis or treatment of the disorders described above is provided. The article of manufacture comprises a container and an instruction. Suitable containers include, for example, bottles, vials, syringes, and test tubes. The containers may be formed from a variety of materials such as glass or plastic. The container holds a composition which is effective for diagnosing or treating the condition and may have a sterile access port (for example the container may be an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle). The active agent in the composition is usually a polypeptide or an antibody of the invention. An instruction or label on, or associated with, the container indicates that the composition is used for diagnosing or treating the condition of choice. The article of manufacture may further comprise a second container comprising a pharmaceutically-acceptable buffer, such as phosphate-buffered saline, Ringer's solution and dextrose solution. It may further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, needles, syringes, and package inserts with instructions for use.

P. <u>Diagnosis and Prognosis of Immune Related Disease</u>

Cell surface proteins, such as proteins which are overexpressed in certain immune related diseases, are excellent targets for drug candidates or disease treatment. The same proteins along with secreted proteins encoded by the genes amplified in immune related disease states find additional use in the diagnosis and prognosis of these diseases. For example, antibodies directed against the protein products of genes amplified in multiple sclerosis, rheumatoid arthritis, or another immune related disease, can be used as diagnostics or prognostics.

For example, antibodies, including antibody fragments, can be used to qualitatively or quantitatively detect the expression of proteins encoded by amplified or overexpressed genes ("marker gene products"). The antibody preferably is equipped with a detectable, e.g., fluorescent label, and binding can be

monitored by light microscopy, flow cytometry, fluorimetry, or other techniques known in the art. These techniques are particularly suitable, if the overexpressed gene encodes a cell surface protein Such binding assays are performed essentially as described above.

In situ detection of antibody binding to the marker gene products can be performed, for example, by immunofluorescence or immunoelectron microscopy. For this purpose, a histological specimen is removed from the patient, and a labeled antibody is applied to it, preferably by overlaying the antibody on a biological sample. This procedure also allows for determining the distribution of the marker gene product in the tissue examined. It will be apparent for those skilled in the art that a wide variety of histological methods are readily available for in situ detection.

The following examples are offered for illustrative purposes only, and are not intended to limit the scope of the present invention in any way.

All patent and literature references cited in the present specification are hereby incorporated by reference in their entirety.

EXAMPLES

Commercially available reagents referred to in the examples were used according to manufacturer's instructions unless otherwise indicated. The source of those cells identified in the following examples, and throughout the specification, by ATCC accession numbers is the American Type Culture Collection, Manassas, VA.

EXAMPLE 1: Microarray analysis of stimulated T-cells

5

10

15

20

25

30

35

40

Nucleic acid microarrays, often containing thousands of gene sequences, are useful for identifying differentially expressed genes in diseased tissues as compared to their normal counterparts. Using nucleic acid microarrays, test and control mRNA samples from test and control tissue samples are reverse transcribed and labeled to generate cDNA probes. The cDNA probes are then hybridized to an array of nucleic acids immobilized on a solid support. The array is configured such that the sequence and position of each member of the array is known. For example, a selection of genes known to be expressed in certain disease states may be arrayed on a solid support. Hybridization of a labeled probe with a particular array member indicates that the sample from which the probe was derived expresses that gene. If the hybridization signal of a probe from a test (in this instance, activated CD4+ T cells) sample is greater than hybridization signal of a probe from a control (in this instance, non-stimulated CD4 + T cells) sample, the gene or genes overexpressed in the test tissue are identified. The implication of this result is that an overexpressed protein in a test tissue is useful not only as a diagnostic marker for the presence of the disease condition, but also as a therapeutic target for treatment of the disease condition.

The methodology of hybridization of nucleic acids and microarray technology is well known in the art. In one example, the specific preparation of nucleic acids for hybridization and probes, slides, and hybridization conditions are all detailed in PCT Patent Application Serial No. PCT/US01/10482, filed on March 30, 2001 and which is herein incorporated by reference.

In this experiment, CD4+ T cells were purified from a single donor using the RossetteSep™ protocol from (Stem Cell Technologies, Vancouver BC) which contains anti-CD8, anti-CD16, anti-CD19, anti-CD36 and anti-CD56 antibodies used to produce a population of isolated CD4+ T cells. Isolated CD4+

T cells were activated with an anti-CD3 antibody (used at a concentration that does not stimulate proliferation) together with either ICAM-1 or anti-CD28 antibody. At 24 or 72 hours cells were harvested, RNA extracted and analysis run on Affimax (Affymetrix Inc. Santa Clara, CA) microarray chips. Non-stimulated (resting) cells were harvested immediately after purification, and subjected to the same analysis. Genes were compared whose expression was upregulated at either of the two timepoints in activated vs. resting cells.

Below are the results of these experiments, demonstrating that various PRO polypeptides of the present invention are differentially expressed in isolated CD4 + T cells activated by anti-CD3/ICAM-1 or anti-CD3/anti-CD28 as compared to isolated resting CD4+ T cells. As described above, these data demonstrate that the PRO polypeptides of the present invention are useful not only as diagnostic markers for the presence of one or more immune disorders, but also serve as therapeutic targets for the treatment of those immune disorders.

The results of this experient are Figures 1-7589 show increase or decrease in expression upon stimulation with anti-CD3/ICAM1 and also show increase or decrease in expression upon stimulation with anti-CD3/anti-CD28. The nucleic acids and encoded proteins of Figure 946, Figure 1520, Figure 1574, Figure 1622, Figure 1816, Figure 2433, Figure 2986, Figure 3220, Figure 4120 and Figure 5421 are significantly overexpressed in isolated CD4 + T cells activated by anti-CD3/ICAM-1 or anti-CD3/anti-CD28 as compared to isolated resting CD4+ T cells.

EXAMPLE 2: Use of PRO as a hybridization probe

10

15

20

25

30

35

40

The following method describes use of a nucleotide sequence encoding PRO as a hybridization probe.

DNA comprising the coding sequence of full-length or mature PRO as disclosed herein is employed as a probe to screen for homologous DNAs (such as those encoding naturally-occurring variants of PRO) in human tissue cDNA libraries or human tissue genomic libraries.

Hybridization and washing of filters containing either library DNAs is performed under the following high stringency conditions. Hybridization of radiolabeled PRO-derived probe to the filters is performed in a solution of 50% formamide, 5x SSC, 0.1% SDS, 0.1% sodium pyrophosphate, 50 mM sodium phosphate, pH 6.8, 2x Denhardt's solution, and 10% dextran sulfate at 42°C for 20 hours. Washing of the filters is performed in an aqueous solution of 0.1x SSC and 0.1% SDS at 42°C.

DNAs having a desired sequence identity with the DNA encoding full-length native sequence PRO can then be identified using standard techniques known in the art.

EXAMPLE 3: Expression of PRO in E. coli

This example illustrates preparation of an unglycosylated form of PRO by recombinant expression in *E. coli*.

The DNA sequence encoding PRO is initially amplified using selected PCR primers. The primers should contain restriction enzyme sites which correspond to the restriction enzyme sites on the selected expression vector. A variety of expression vectors may be employed. An example of a suitable vector is pBR322 (derived from *E. coli*; see Bolivar et al., <u>Gene</u>, <u>2</u>:95 (1977)) which contains genes for ampicillin and

tetracycline resistance. The vector is digested with restriction enzyme and dephosphorylated. The PCR amplified sequences are then ligated into the vector. The vector will preferably include sequences which encode for an antibiotic resistance gene, a trp promoter, a polyhis leader (including the first six STII codons, polyhis sequence, and enterokinase cleavage site), the PRO coding region, lambda transcriptional terminator, and an argU gene.

5

10

15

20

25

30

35

40

The ligation mixture is then used to transform a selected *E. coli* strain using the methods described in Sambrook et al., <u>supra</u>. Transformants are identified by their ability to grow on LB plates and antibiotic resistant colonies are then selected. Plasmid DNA can be isolated and confirmed by restriction analysis and DNA sequencing.

Selected clones can be grown overnight in liquid culture medium such as LB broth supplemented with antibiotics. The overnight culture may subsequently be used to inoculate a larger scale culture. The cells are then grown to a desired optical density, during which the expression promoter is turned on.

After culturing the cells for several more hours, the cells can be harvested by centrifugation. The cell pellet obtained by the centrifugation can be solubilized using various agents known in the art, and the solubilized PRO protein can then be purified using a metal chelating column under conditions that allow tight binding of the protein.

PRO may be expressed in *E. coli* in a poly-His tagged form, using the following procedure. The DNA encoding PRO is initially amplified using selected PCR primers. The primers will contain restriction enzyme sites which correspond to the restriction enzyme sites on the selected expression vector, and other useful sequences providing for efficient and reliable translation initiation, rapid purification on a metal chelation column, and proteolytic removal with enterokinase. The PCR-amplified, poly-His tagged sequences are then ligated into an expression vector, which is used to transform an *E. coli* host based on strain 52 (W3110 fuhA(tonA) lon galE rpoHts(htpRts) clpP(lacIq). Transformants are first grown in LB containing 50 mg/ml carbenicillin at 30°C with shaking until an O.D.600 of 3-5 is reached. Cultures are then diluted 50-100 fold into CRAP media (prepared by mixing 3.57 g (NH₄)₂SO₄, 0.71 g sodium citrate•2H2O, 1.07 g KCl, 5.36 g Difco yeast extract, 5.36 g Sheffield hycase SF in 500 mL water, as well as 110 mM MPOS, pH 7.3, 0.55% (w/v) glucose and 7 mM MgSO₄) and grown for approximately 20-30 hours at 30°C with shaking. Samples are removed to verify expression by SDS-PAGE analysis, and the bulk culture is centrifuged to pellet the cells. Cell pellets are frozen until purification and refolding.

E. coli paste from 0.5 to 1 L fermentations (6-10 g pellets) is resuspended in 10 volumes (w/v) in 7 M guanidine, 20 mM Tris, pH 8 buffer. Solid sodium sulfite and sodium tetrathionate is added to make final concentrations of 0.1M and 0.02 M, respectively, and the solution is stirred overnight at 4°C. This step results in a denatured protein with all cysteine residues blocked by sulfitolization. The solution is centrifuged at 40,000 rpm in a Beckman Ultracentifuge for 30 min. The supernatant is diluted with 3-5 volumes of metal chelate column buffer (6 M guanidine, 20 mM Tris, pH 7.4) and filtered through 0.22 micron filters to clarify. The clarified extract is loaded onto a 5 ml Qiagen Ni-NTA metal chelate column equilibrated in the metal chelate column buffer. The column is washed with additional buffer containing 50 mM imidazole (Calbiochem, Utrol grade), pH 7.4. The protein is eluted with buffer containing 250 mM imidazole. Fractions containing the desired protein are pooled and stored at 4°C. Protein concentration is estimated by its absorbance at 280 nm using the calculated extinction coefficient based on its amino acid sequence.

The proteins are refolded by diluting the sample slowly into freshly prepared refolding buffer consisting of: 20 mM Tris, pH 8.6, 0.3 M NaCl, 2.5 M urea, 5 mM cysteine, 20 mM glycine and 1 mM EDTA. Refolding volumes are chosen so that the final protein concentration is between 50 to 100 micrograms/ml. The refolding solution is stirred gently at 4°C for 12-36 hours. The refolding reaction is quenched by the addition of TFA to a final concentration of 0.4% (pH of approximately 3). Before further purification of the protein, the solution is filtered through a 0.22 micron filter and acetonitrile is added to 2-10% final concentration. The refolded protein is chromatographed on a Poros R1/H reversed phase column using a mobile buffer of 0.1% TFA with elution with a gradient of acetonitrile from 10 to 80%. Aliquots of fractions with A280 absorbance are analyzed on SDS polyacrylamide gels and fractions containing homogeneous refolded protein are pooled. Generally, the properly refolded species of most proteins are eluted at the lowest concentrations of acetonitrile since those species are the most compact with their hydrophobic interiors shielded from interaction with the reversed phase resin. Aggregated species are usually eluted at higher acetonitrile concentrations. In addition to resolving misfolded forms of proteins from the desired form, the reversed phase step also removes endotoxin from the samples.

Fractions containing the desired folded PRO polypeptide are pooled and the acetonitrile removed using a gentle stream of nitrogen directed at the solution. Proteins are formulated into 20 mM Hepes, pH 6.8 with 0.14 M sodium chloride and 4% mannitol by dialysis or by gel filtration using G25 Superfine (Pharmacia) resins equilibrated in the formulation buffer and sterile filtered.

Many of the PRO polypeptides disclosed herein were successfully expressed as described above.

20

25

30

35

40

5

10

15

EXAMPLE 4: Expression of PRO in mammalian cells

This example illustrates preparation of a potentially glycosylated form of PRO by recombinant expression in mammalian cells.

The vector, pRK5 (see EP 307,247, published March 15, 1989), is employed as the expression vector. Optionally, the PRO DNA is ligated into pRK5 with selected restriction enzymes to allow insertion of the PRO DNA using ligation methods such as described in Sambrook et al., <u>supra</u>. The resulting vector is called pRK5-PRO.

In one embodiment, the selected host cells may be 293 cells. Human 293 cells (ATCC CCL 1573) are grown to confluence in tissue culture plates in medium such as DMEM supplemented with fetal calf serum and optionally, nutrient components and/or antibiotics. About 10 µg pRK5-PRO DNA is mixed with about 1 µg DNA encoding the VA RNA gene [Thimmappaya et al., Cell, 31:543 (1982)] and dissolved in 500 µl of 1 mM Tris-HCl, 0.1 mM EDTA, 0.227 M CaCl₂. To this mixture is added, dropwise, 500 µl of 50 mM HEPES (pH 7.35), 280 mM NaCl, 1.5 mM NaPO₄, and a precipitate is allowed to form for 10 minutes at 25°C. The precipitate is suspended and added to the 293 cells and allowed to settle for about four hours at 37°C. The culture medium is aspirated off and 2 ml of 20% glycerol in PBS is added for 30 seconds. The 293 cells are then washed with serum free medium, fresh medium is added and the cells are incubated for about 5 days.

Approximately 24 hours after the transfections, the culture medium is removed and replaced with culture medium (alone) or culture medium containing 200 μ Ci/ml ³⁵S-cysteine and 200 μ Ci/ml ³⁵S-methionine. After a 12 hour incubation, the conditioned medium is collected, concentrated on a spin filter.

and loaded onto a 15% SDS gel. The processed gel may be dried and exposed to film for a selected period of time to reveal the presence of PRO polypeptide. The cultures containing transfected cells may undergo further incubation (in serum free medium) and the medium is tested in selected bioassays.

5

10

15

20

25

30

35

40

In an alternative technique, PRO may be introduced into 293 cells transiently using the dextran sulfate method described by Somparyrac et al., Proc. Natl. Acad. Sci., 12:7575 (1981). 293 cells are grown to maximal density in a spinner flask and 700 μ g pRK5-PRO DNA is added. The cells are first concentrated from the spinner flask by centrifugation and washed with PBS. The DNA-dextran precipitate is incubated on the cell pellet for four hours. The cells are treated with 20% glycerol for 90 seconds, washed with tissue culture medium, and re-introduced into the spinner flask containing tissue culture medium, 5 μ g/ml bovine insulin and 0.1 μ g/ml bovine transferrin. After about four days, the conditioned media is centrifuged and filtered to remove cells and debris. The sample containing expressed PRO can then be concentrated and purified by any selected method, such as dialysis and/or column chromatography.

In another embodiment, PRO can be expressed in CHO cells. The pRK5-PRO can be transfected into CHO cells using known reagents such as CaPO₄ or DEAE-dextran. As described above, the cell cultures can be incubated, and the medium replaced with culture medium (alone) or medium containing a radiolabel such as ³⁵S-methionine. After determining the presence of PRO polypeptide, the culture medium may be replaced with serum free medium. Preferably, the cultures are incubated for about 6 days, and then the conditioned medium is harvested. The medium containing the expressed PRO can then be concentrated and purified by any selected method.

Epitope-tagged PRO may also be expressed in host CHO cells. The PRO may be subcloned out of the pRK5 vector. The subclone insert can undergo PCR to fuse in frame with a selected epitope tag such as a poly-his tag into a Baculovirus expression vector. The poly-his tagged PRO insert can then be subcloned into a SV40 promoter/enhancer containing vector containing a selection marker such as DHFR for selection of stable clones. Finally, the CHO cells can be transfected (as described above) with the SV40 promoter/enhancer containing vector. Labeling may be performed, as described above, to verify expression. The culture medium containing the expressed poly-His tagged PRO can then be concentrated and purified by any selected method, such as by Ni²⁺-chelate affinity chromatography.

PRO may also be expressed in CHO and/or COS cells by a transient expression procedure or in CHO cells by another stable expression procedure.

Stable expression in CHO cells is performed using the following procedure. The proteins are expressed as an IgG construct (immunoadhesin), in which the coding sequences for the soluble forms (e.g. extracellular domains) of the respective proteins are fused to an IgG1 constant region sequence containing the hinge, CH2 and CH2 domains and/or is a poly-His tagged form.

Following PCR amplification, the respective DNAs are subcloned in a CHO expression vector using standard techniques as described in Ausubel et al., <u>Current Protocols of Molecular Biology</u>, Unit 3.16, John Wiley and Sons (1997). CHO expression vectors are constructed to have compatible restriction sites 5' and 3' of the DNA of interest to allow the convenient shuttling of cDNA's. The vector used expression in CHO cells is as described in Lucas et al., <u>Nucl. Acids Res.</u> 24:9 (1774-1779 (1996), and uses the SV40 early promoter/enhancer to drive expression of the cDNA of interest and dihydrofolate reductase (DHFR). DHFR expression permits selection for stable maintenance of the plasmid following transfection.

Twelve micrograms of the desired plasmid DNA is introduced into approximately 10 million CHO cells using commercially available transfection reagents Superfect[®] (Quiagen), Dosper[®] or Fugene[®] (Boehringer Mannheim). The cells are grown as described in Lucas et al., <u>supra</u>. Approximately 3 x 10⁻⁷ cells are frozen in an ampule for further growth and production as described below.

The ampules containing the plasmid DNA are thawed by placement into water bath and mixed by vortexing. The contents are pipetted into a centrifuge tube containing 10 mL of media and centrifuged at 1000 rpm for 5 minutes. The supernatant is aspirated and the cells are resuspended in 10 mL of selective media (0.2 µm filtered PS20 with 5% 0.2 µm diafiltered fetal bovine serum). The cells are then aliquoted into a 100 mL spinner containing 90 mL of selective media. After 1-2 days, the cells are transferred into a 250 mL spinner filled with 150 mL selective growth medium and incubated at 37°C. After another 2-3 days, 250 mL, 500 mL and 2000 mL spinners are seeded with 3 x 105 cells/mL. The cell media is exchanged with fresh media by centrifugation and resuspension in production medium. Although any suitable CHO media may be employed, a production medium described in U.S. Patent No. 5,122,469, issued June 16, 1992 may actually be used. A 3L production spinner is seeded at 1.2 x 10⁶ cells/mL. On day 0, pH is determined. On day 1, the spinner is sampled and sparging with filtered air is commenced. On day 2, the spinner is sampled, the temperature shifted to 33°C, and 30 mL of 500 g/L glucose and 0.6 mL of 10% antifoam (e.g., 35%) polydimethylsiloxane emulsion, Dow Corning 365 Medical Grade Emulsion) taken. Throughout the production, the pH is adjusted as necessary to keep it at around 7.2. After 10 days, or until the viability dropped below 70%, the cell culture is harvested by centrifugation and filtering through a 0.22 µm filter. The filtrate was either stored at 4°C or immediately loaded onto columns for purification.

For the poly-His tagged constructs, the proteins are purified using a Ni-NTA column (Qiagen). Before purification, imidazole is added to the conditioned media to a concentration of 5 mM. The conditioned media is pumped onto a 6 ml Ni-NTA column equilibrated in 20 mM Hepes, pH 7.4, buffer containing 0.3 M NaCl and 5 mM imidazole at a flow rate of 4-5 ml/min. at 4°C. After loading, the column is washed with additional equilibration buffer and the protein eluted with equilibration buffer containing 0.25 M imidazole. The highly purified protein is subsequently desalted into a storage buffer containing 10 mM Hepes, 0.14 M NaCl and 4% mannitol, pH 6.8, with a 25 ml G25 Superfine (Pharmacia) column and stored at -80°C.

Immunoadhesin (Fc-containing) constructs are purified from the conditioned media as follows. The conditioned medium is pumped onto a 5 ml Protein A column (Pharmacia) which had been equilibrated in 20 mM Na phosphate buffer, pH 6.8. After loading, the column is washed extensively with equilibration buffer before elution with 100 mM citric acid, pH 3.5. The eluted protein is immediately neutralized by collecting 1 ml fractions into tubes containing 275 µl of 1 M Tris buffer, pH 9. The highly purified protein is subsequently desalted into storage buffer as described above for the poly-His tagged proteins. The homogeneity is assessed by SDS polyacrylamide gels and by N-terminal amino acid sequencing by Edman degradation.

Many of the PRO polypeptides disclosed herein were successfully expressed as described above.

EXAMPLE 5: Expression of PRO in Yeast

5

10

15

20

25

30

35

40

The following method describes recombinant expression of PRO in yeast.

First, yeast expression vectors are constructed for intracellular production or secretion of PRO from the ADH2/GAPDH promoter. DNA encoding PRO and the promoter is inserted into suitable restriction enzyme sites in the selected plasmid to direct intracellular expression of PRO. For secretion, DNA encoding PRO can be cloned into the selected plasmid, together with DNA encoding the ADH2/GAPDH promoter, a native PRO signal peptide or other mammalian signal peptide, or, for example, a yeast alpha-factor or invertase secretory signal/leader sequence, and linker sequences (if needed) for expression of PRO.

Yeast cells, such as yeast strain AB110, can then be transformed with the expression plasmids described above and cultured in selected fermentation media. The transformed yeast supernatants can be analyzed by precipitation with 10% trichloroacetic acid and separation by SDS-PAGE, followed by staining of the gels with Coomassie Blue stain.

Recombinant PRO can subsequently be isolated and purified by removing the yeast cells from the fermentation medium by centrifugation and then concentrating the medium using selected cartridge filters. The concentrate containing PRO may further be purified using selected column chromatography resins.

Many of the PRO polypeptides disclosed herein were successfully expressed as described above.

15

20

25

30

35

40

10

5

EXAMPLE 6: Expression of PRO in Baculovirus-Infected Insect Cells

The following method describes recombinant expression of PRO in Baculovirus-infected insect cells.

The sequence coding for PRO is fused upstream of an epitope tag contained within a baculovirus expression vector. Such epitope tags include poly-his tags and immunoglobulin tags (like Fc regions of IgG). A variety of plasmids may be employed, including plasmids derived from commercially available plasmids such as pVL1393 (Novagen). Briefly, the sequence encoding PRO or the desired portion of the coding sequence of PRO such as the sequence encoding the extracellular domain of a transmembrane protein or the sequence encoding the mature protein if the protein is extracellular is amplified by PCR with primers complementary to the 5' and 3' regions. The 5' primer may incorporate flanking (selected) restriction enzyme sites. The product is then digested with those selected restriction enzymes and subcloned into the expression vector.

Recombinant baculovirus is generated by co-transfecting the above plasmid and BaculoGoldTM virus DNA (Pharmingen) into *Spodoptera frugiperda* ("Sf9") cells (ATCC CRL 1711) using lipofectin (commercially available from GIBCO-BRL). After 4 - 5 days of incubation at 28°C, the released viruses are harvested and used for further amplifications. Viral infection and protein expression are performed as described by O'Reilley et al., <u>Baculovirus expression vectors</u>: <u>A Laboratory Manual</u>, Oxford: Oxford University Press (1994).

Expressed poly-his tagged PRO can then be purified, for example, by Ni²⁺-chelate affinity chromatography as follows. Extracts are prepared from recombinant virus-infected Sf9 cells as described by Rupert et al., Nature, 362:175-179 (1993). Briefly, Sf9 cells are washed, resuspended in sonication buffer (25 mL Hepes, pH 7.9; 12.5 mM MgCl₂; 0.1 mM EDTA; 10% glycerol; 0.1% NP-40; 0.4 M KCl), and sonicated twice for 20 seconds on ice. The sonicates are cleared by centrifugation, and the supernatant is diluted 50-fold in loading buffer (50 mM phosphate, 300 mM NaCl, 10% glycerol, pH 7.8) and filtered through a 0.45 μm filter. A Ni²⁺-NTA agarose column (commercially available from Qiagen) is prepared

with a bed volume of 5 mL, washed with 25 mL of water and equilibrated with 25 mL of loading buffer. The filtered cell extract is loaded onto the column at 0.5 mL per minute. The column is washed to baseline A₂₈₀ with loading buffer, at which point fraction collection is started. Next, the column is washed with a secondary wash buffer (50 mM phosphate; 300 mM NaCl, 10% glycerol, pH 6.0), which elutes nonspecifically bound protein. After reaching A₂₈₀ baseline again, the column is developed with a 0 to 500 mM Imidazole gradient in the secondary wash buffer. One mL fractions are collected and analyzed by SDS-PAGE and silver staining or Western blot with Ni²⁺-NTA-conjugated to alkaline phosphatase (Qiagen). Fractions containing the eluted His₁₀-tagged PRO are pooled and dialyzed against loading buffer.

Alternatively, purification of the IgG tagged (or Fc tagged) PRO can be performed using known chromatography techniques, including for instance, Protein A or protein G column chromatography.

Many of the PRO polypeptides disclosed herein were successfully expressed as described above.

EXAMPLE 7: Preparation of Antibodies that Bind PRO

5

10

15

20

25

30

35

This example illustrates preparation of monoclonal antibodies which can specifically bind PRO.

Techniques for producing the monoclonal antibodies are known in the art and are described, for instance, in Goding, <u>supra</u>. Immunogens that may be employed include purified PRO, fusion proteins containing PRO, and cells expressing recombinant PRO on the cell surface. Selection of the immunogen can be made by the skilled artisan without undue experimentation.

Mice, such as Balb/c, are immunized with the PRO immunogen emulsified in complete Freund's adjuvant and injected subcutaneously or intraperitoneally in an amount from 1-100 micrograms. Alternatively, the immunogen is emulsified in MPL-TDM adjuvant (Ribi Immunochemical Research, Hamilton, MT) and injected into the animal's hind foot pads. The immunized mice are then boosted 10 to 12 days later with additional immunogen emulsified in the selected adjuvant. Thereafter, for several weeks, the mice may also be boosted with additional immunization injections. Serum samples may be periodically obtained from the mice by retro-orbital bleeding for testing in ELISA assays to detect anti-PRO antibodies.

After a suitable antibody titer has been detected, the animals "positive" for antibodies can be injected with a final intravenous injection of PRO. Three to four days later, the mice are sacrificed and the spleen cells are harvested. The spleen cells are then fused (using 35% polyethylene glycol) to a selected murine myeloma cell line such as P3X63AgU.1, available from ATCC, No. CRL 1597. The fusions generate hybridoma cells which can then be plated in 96 well tissue culture plates containing HAT (hypoxanthine, aminopterin, and thymidine) medium to inhibit proliferation of non-fused cells, myeloma hybrids, and spleen cell hybrids.

The hybridoma cells will be screened in an ELISA for reactivity against PRO. Determination of "positive" hybridoma cells secreting the desired monoclonal antibodies against PRO is within the skill in the art.

The positive hybridoma cells can be injected intraperitoneally into syngeneic Balb/c mice to produce ascites containing the anti-PRO monoclonal antibodies. Alternatively, the hybridoma cells can be grown in tissue culture flasks or roller bottles. Purification of the monoclonal antibodies produced in the ascites can be accomplished using ammonium sulfate precipitation, followed by gel exclusion

chromatography. Alternatively, affinity chromatography based upon binding of antibody to protein A or protein G can be employed.

EXAMPLE 8: Purification of PRO Polypeptides Using Specific Antibodies

Native or recombinant PRO polypeptides may be purified by a variety of standard techniques in the art of protein purification. For example, pro-PRO polypeptide, mature PRO polypeptide, or pre-PRO polypeptide is purified by immunoaffinity chromatography using antibodies specific for the PRO polypeptide of interest. In general, an immunoaffinity column is constructed by covalently coupling the anti-PRO polypeptide antibody to an activated chromatographic resin.

Polyclonal immunoglobulins are prepared from immune sera either by precipitation with ammonium sulfate or by purification on immobilized Protein A (Pharmacia LKB Biotechnology, Piscataway, N.J.). Likewise, monoclonal antibodies are prepared from mouse ascites fluid by ammonium sulfate precipitation or chromatography on immobilized Protein A. Partially purified immunoglobulin is covalently attached to a chromatographic resin such as CnBr-activated SEPHAROSETM (Pharmacia LKB Biotechnology). The antibody is coupled to the resin, the resin is blocked, and the derivative resin is washed according to the manufacturer's instructions.

Such an immunoaffinity column is utilized in the purification of PRO polypeptide by preparing a fraction from cells containing PRO polypeptide in a soluble form. This preparation is derived by solubilization of the whole cell or of a subcellular fraction obtained via differential centrifugation by the addition of detergent or by other methods well known in the art. Alternatively, soluble PRO polypeptide containing a signal sequence may be secreted in useful quantity into the medium in which the cells are grown.

A soluble PRO polypeptide-containing preparation is passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of PRO polypeptide (e.g., high ionic strength buffers in the presence of detergent). Then, the column is eluted under conditions that disrupt antibody/PRO polypeptide binding (e.g., a low pH buffer such as approximately pH 2-3, or a high concentration of a chaotrope such as urea or thiocyanate ion), and PRO polypeptide is collected.

EXAMPLE 9: Drug Screening

5

10

15

20

25

30

35

This invention is particularly useful for screening compounds by using PRO polypeptides or binding fragment thereof in any of a variety of drug screening techniques. The PRO polypeptide or fragment employed in such a test may either be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly. One method of drug screening utilizes eukaryotic or prokaryotic host cells which are stably transformed with recombinant nucleic acids expressing the PRO polypeptide or fragment. Drugs are screened against such transformed cells in competitive binding assays. Such cells, either in viable or fixed form, can be used for standard binding assays. One may measure, for example, the formation of complexes between PRO polypeptide or a fragment and the agent being tested. Alternatively, one can examine the diminution in complex formation between the PRO polypeptide and its target cell or target receptors caused by the agent being tested.

Thus, the present invention provides methods of screening for drugs or any other agents which can affect a PRO polypeptide-associated disease or disorder. These methods comprise contacting such an agent with an PRO polypeptide or fragment thereof and assaying (I) for the presence of a complex between the agent and the PRO polypeptide or fragment, or (ii) for the presence of a complex between the PRO polypeptide or fragment and the cell, by methods well known in the art. In such competitive binding assays, the PRO polypeptide or fragment is typically labeled. After suitable incubation, free PRO polypeptide or fragment is separated from that present in bound form, and the amount of free or uncomplexed label is a measure of the ability of the particular agent to bind to PRO polypeptide or to interfere with the PRO polypeptide/cell complex.

Another technique for drug screening provides high throughput screening for compounds having suitable binding affinity to a polypeptide and is described in detail in WO 84/03564, published on September 13, 1984. Briefly stated, large numbers of different small peptide test compounds are synthesized on a solid substrate, such as plastic pins or some other surface. As applied to a PRO polypeptide, the peptide test compounds are reacted with PRO polypeptide and washed. Bound PRO polypeptide is detected by methods well known in the art. Purified PRO polypeptide can also be coated directly onto plates for use in the aforementioned drug screening techniques. In addition, non-neutralizing antibodies can be used to capture the peptide and immobilize it on the solid support.

This invention also contemplates the use of competitive drug screening assays in which neutralizing antibodies capable of binding PRO polypeptide specifically compete with a test compound for binding to PRO polypeptide or fragments thereof. In this manner, the antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with PRO polypeptide.

EXAMPLE 10: Rational Drug Design

5

10

15

20

25

30

35

40

The goal of rational drug design is to produce structural analogs of biologically active polypeptide of interest (i.e., a PRO polypeptide) or of small molecules with which they interact, e.g., agonists, antagonists, or inhibitors. Any of these examples can be used to fashion drugs which are more active or stable forms of the PRO polypeptide or which enhance or interfere with the function of the PRO polypeptide in vivo (c.f., Hodgson, Bio/Technology, 9: 19-21 (1991)).

In one approach, the three-dimensional structure of the PRO polypeptide, or of a PRO polypeptide-inhibitor complex, is determined by x-ray crystallography, by computer modeling or, most typically, by a combination of the two approaches. Both the shape and charges of the PRO polypeptide must be ascertained to elucidate the structure and to determine active site(s) of the molecule. Less often, useful information regarding the structure of the PRO polypeptide may be gained by modeling based on the structure of homologous proteins. In both cases, relevant structural information is used to design analogous PRO polypeptide-like molecules or to identify efficient inhibitors. Useful examples of rational drug design may include molecules which have improved activity or stability as shown by Braxton and Wells, Biochemistry, 31:7796-7801 (1992) or which act as inhibitors, agonists, or antagonists of native peptides as shown by Athauda et al., J. Biochem., 113:742-746 (1993).

It is also possible to isolate a target-specific antibody, selected by functional assay, as described above, and then to solve its crystal structure. This approach, in principle, yields a pharmacore upon which

subsequent drug design can be based. It is possible to bypass protein crystallography altogether by generating anti-idiotypic antibodies (anti-ids) to a functional, pharmacologically active antibody. As a mirror image of a mirror image, the binding site of the anti-ids would be expected to be an analog of the original receptor. The anti-id could then be used to identify and isolate peptides from banks of chemically or biologically produced peptides. The isolated peptides would then act as the pharmacore.

5

10

15

By virtue of the present invention, sufficient amounts of the PRO polypeptide may be made available to perform such analytical studies as X-ray crystallography. In addition, knowledge of the PRO polypeptide amino acid sequence provided herein will provide guidance to those employing computer modeling techniques in place of or in addition to x-ray crystallography.

The foregoing written specification is considered to be sufficient to enable one skilled in the art to practice the invention. The present invention is not to be limited in scope by the construct deposited, since the deposited embodiment is intended as a single illustration of certain aspects of the invention and any constructs that are functionally equivalent are within the scope of this invention. The deposit of material herein does not constitute an admission that the written description herein contained is inadequate to enable the practice of any aspect of the invention, including the best mode thereof, nor is it to be construed as limiting the scope of the claims to the specific illustrations that it represents. Indeed, various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description and fall within the scope of the appended claims.