Project

- Project presentation
 - ▶ Time:
 - > 7pm, Jan. 13 (Thu)
 - ▶ 6pm, Jan. 14 (Fri)
 - Classroom: SIST 1A-106
 - ► Each group has ≤ 8 minutes for presentation
 - Schedule: TBA

- Project submission
 - Report
 - Due: 11:59pm, Jan. 14 (Fri)
 - Submission link at BB -> Project-> Project Report Submission
 - Format: PDF, academic paper, no page requirement
 - Each group only needs to submit once
 - Source code
 - ▶ In a zip file
 - Do not include external libraries

Project

- At the end of your final presentation and report
 - List the external resources (e.g., code, lib, tools) that you use
 - Explain how/why you use them

- Grading
 - relevance to this course
 - substance, soundness, novelty
 - quality of the report and presentation

Final Exam

- Time
 - ▶ 10:30-12:10, Jan. 5 (Wed)
- Location
 - ▶ 教学中心202, 203
- Format
 - Closed-book. You can bring an A4-size cheat sheet and nothing else.
 - ▶ 10 multiple-choices, 4 problems
- Grade
 - ▶ 25% of the total grade
- ▶ F2018 final exam paper will be available at:
 - ▶ Blackboard menu → Previous Exams → Fall 2018 Final Exam

Final Review

Disclaimer

- ▶ Topics covered in this review may not appear in the exam.
- ▶ Topics not covered in this review may appear in the exam.

Probabilistic temporal models

- Markov models
 - Markov assumption, Transition model
- Hidden Markov models
 - Transition model (states) + emission model (evidence)
 - Filtering: $P(X_t|e_{1:t})$
 - Forward algorithm
 - Most likely explanation: $argmax_{x_{1:t}}P(x_{1:t}|e_{1:t})$
 - Viterbi algorithm
- Dynamic Bayes networks
- Approximate inference by particle filtering
 - ▶ Propagate forward → Weight → Resample

Markov Decision Processes

- Markov Decision Process
 - States S, Actions A, Transitions P(s'|s,a), Rewards R(s,a,s')
- Quantities:
 - Policy, Utility, Values, Q-Values
- Solve MDP
 - Bellman equation
 - Value iteration
 - Policy iteration
 - Policy evaluation + Policy improvement

Reinforcement Learning

- Reinforcement learning
 - MDP without knowing T and R
 - Offline planning vs. online learning
- Model-based learning
- Model-free learning
 - Policy evaluation: Temporal Difference Learning
 - Exponential moving average
 - Computing q-values/policy: Q-Learning
- Exploration vs. Exploitation
 - Random exploration, exploration function
- Approximate Q-Learning
 - Feature-based representation of states

Supervised machine learning

- To learn an unknown target function f from labeled examples
- Classification (f with discrete output value)
 - Naïve Bayes
 - Maximum likelihood estimation
 - Generalization and overfitting, smoothing
 - Perceptron (linear classifier), neural networks
 - Gradient descent, back-propagation
- Regression (f with continuous output value)
 - ▶ Linear regression, minimizing summed squared error

Unsupervised machine learning

- K-means
 - Clustering
 - Iteration:
 - Assign each data instance to closest center
 - Assign each center to the average of its assigned data points

Natural Language Parsing

- Sequence labeling: HMM, MEMM, CRF
- Parsing
 - Context-free grammars
 - ▶ Terminals, Non-terminals, Start symbol, Production rules
 - Rules may have probabilities
 - Sentence generation/parsing
 - Parsing: CYK
 - Convert to Chomsky normal form
 - Dynamic programming: bottom-up table filling
 - Probabilistic CYK: also fill probabilities of best partial parses
 - Regular grammars, dependency grammars

The Road Forward

The Road Forward – SIST Courses

- Undergraduate
 - CS172 Computer vision I
 - CS173 Data Mining
 - CS182 Introduction to Machine Learning
 - CS183 Introduction to Robotics
- Graduate
 - CS280 Deep Learning
 - CS282 Machine Learning
 - CS243 Introduction to Algorithmic Game Theory
 - CS272 Computer Vision II
 - CS274A Natural Language Processing
 - CS284 Simultaneous Localization and Mapping
 - CS286 Al for Science and Engineering
 - SI232 Subspace Learning
 - SI252 Reinforcement Learning
- More to come...

The Road Forward - Research

- Learning recent developments in AI from top conferences
 - AI: IJCAI, AAAI
 - Caution: not top in ML, NLP, CV
 - ML: NIPS, ICML, ICLR
 - NLP: ACL, EMNLP, NAACL
 - CV: CVPR, ICCV, ECCV
 - Other: KDD, AAMAS, UAI, SIGIR, ...
- A good (but not perfect) way to judge a publication venue
 - Google Scholar Metrics
- Participating in research projects...

That's all!

