An ML Tool to Detect Heart Disease

CIND-820: Big Data Analytics Project Robert M. Pineau 941-049-371

Supervisor: Dr. Ceni Babaoglu

December 8th, 2022

Toronto Metropolitan University

Why Heart Disease?

365 x 24 x 14

Every hour, 14 adults die in Canada due to heart disease

The Data:

https://ieee-dataport.org/open-access/heart-disease-dataset-comprehensive

Heart Disease Dataset Attribute Description

S.No.	Attribute	Code given	Unit	Data type
1	age	Age	in years	Numeric
2	sex	Sex	1, 0	Binary
3	chest pain type	chest pain type	1,2,3,4	Nominal
4	resting blood pressure	resting bp s	in mm Hg	Numeric
5	serum cholesterol	cholesterol	in mg/dl	Numeric
6	fasting blood sugar	fasting blood sugar	1,0 > 120 mg/dl	Binary
7	resting electrocardiogram results	resting ecg	0,1,2	Nominal
8	maximum heart rate achieved	max heart rate	71–202	Numeric
9	exercise induced angina	exercise angina	0,1	Binary
10	oldpeak =ST	oldpeak	depression	Numeric
11	the slope of the peak exercise ST segment	ST slope	0,1,2	Nominal
12	class	target	0,1	Binary

Phase-1:

Nominal/Binary Attribute Distribution

Distribution for attribute 'ExerciseAngina':

Distribution for attribute 'Target': Without Heart Disease

Distribution for attribute 'ChestPainType':

Distribution for attribute 'RestingECG':

Distribution for attribute 'ST_Slope':

Distribution for Class Variable Before and After SMOTE Original Data-Set: Original Data-Set, After SMOTE: Without Heart Disease 44.7% 50.0% Has Heart Disease Has Heart Disease Has Heart Disease

Results of Initial Tests sorted by Accuracy (Top 10)

ML Model	Data-Set	Accuracy	FNR
Random Forest(RF)	Normalized, After SMOTE	86.58%	13.37%
Random Forest(RF)	Original, After SMOTE	86.48%	13.46%
Random Forest(RF)	Outliers Addressed, After ONEHOT, After SMOTE	86.29%	13.66%
Random Forest(RF)	Original, After ONEHOT, After SMOTE	86.19%	13.76%
XG Boost(XGB)	Original, After ONEHOT, After SMOTE	86.18%	13.76%
Random Forest(RF)	Original, After ONEHOT	86.13%	14.12%
Random Forest(RF)	Outliers Addressed	86.02%	14.21%
Random Forest(RF)	Normalized	86.02%	14.22%
Logistic Regression(LR)	Outliers Addressed, After ONEHOT, After SMOTE	85.99%	13.95%
Random Forest(RF)	Original Original	85.91%	14.41%

Results of Secondary Validation sorted by Accuracy (Top 10)

Random Forest(RF)	Original, After ONEHOT, After SMOTE	89.03%	11.02%
Random Forest(RF) - Tuned	Original, After ONEHOT, After SMOTE	88.34%	11.72%
XG Boost(XGB)	Original, After ONEHOT, After SMOTE	88.24%	11.83%
Random Forest(RF)	Original, After SMOTE	88.03%	12.03%
XG Boost(XGB)	Original, After SMOTE	87.85%	12.22%
Random Forest(RF) - Tuned	Outliers Addressed, After ONEHOT, After SMOTE	87.56%	12.52%
XG Boost(XGB) - Tuned	Original, After ONEHOT, After SMOTE	87.55%	12.52%
Random Forest(RF)	Outliers Addressed, After ONEHOT, After SMOTE	87.26%	12.81%
XG Boost(XGB)	Outliers Addressed, After ONEHOT, After SMOTE	87.16%	12.92%
Logistic Regression(LR) - Tuned	Outliers Addressed, After ONEHOT, After SMOTE	87.07%	12.98%

The Best Model?

Deployment Considerations:

Cloud vs On-Premise?

Data Safety and Privacy Concerns?

Is 87% Accuracy Good Enough for a Medical based tool?

Next-Steps:

Obtain more Data?

Obtain higher quality Data?

More advanced ML Algorithms? Deep learning? Neural Networks?

Turning a trained Model into a usable tool?

Questions?

