SAUVAN POIKKILEIKKAUKSEN JÄNNITYSKENTTÄ

Tasainen σ -kenttä $\sigma = \frac{N}{A}$

KESKIMÄÄRÄINEN NORMAALIJÄNNITYS

$$\sigma = \frac{N}{A}$$

EPÄTASAINEN σ-KENTTÄ SYNTYY MM. SEURAAVISSA TAPAUKSISSA:

- Materiaali on epähomogeeninen (sauvalla on syinen rakenne).
 - Sauvan poikkileikkaus vaihtelee pituussuunnassa paljon.
 - Pienelle alueelle jakaantuneen kuormituksen lähellä.

SAUVAN POIKKILEIKKAUKSEN JÄNNITYSKENTTÄ

LAUSE: Tasaisen σ-kentän resultantti N vaikuttaa poikkileik-kauksen pintakeskiössä.

TODISTUS:

$$\begin{array}{c}
X \\
 & N = \int_{A} \sigma dA = \sigma \int_{A} dA = \sigma A \\
\uparrow \sigma - \text{kenttä tasainen}
\end{array}$$

 \uparrow \uparrow PK: n y – koord.

pintakeskiön määritelmä 1

$$\Rightarrow$$
 $\mathbf{N} \cdot \mathbf{y}_{\mathbf{N}} = \mathbf{N} \cdot \mathbf{y}_{\mathbf{0}} \Rightarrow \mathbf{y}_{\mathbf{N}} = \mathbf{y}_{\mathbf{0}}$

Samoin näytetään, että
$$z_N = z_0$$
 \therefore $Q \equiv PK$

VENYMÄN JA SIIRTYMÄN YHTEYS

SIIRTYMÄFUNKTIO:

Siirtymäfunktio u(x) ilmaisee kohdassa x olevan poikkileikkauksen x-suuntaisen siirtymän.

KINEMAATTINEN YHTÄLÖ:

$$\Delta(dx) = dx' - dx = [x + dx + u(x + dx) - x - u(x)] - dx$$

$$\Delta(dx) = u(x + dx) - u(x) = du$$

$$\epsilon = \frac{\Delta(dx)}{dx}$$

Kinemaattinen yhtälö:

$$\varepsilon = \frac{du}{dx}$$

SIIRTYMÄN MÄÄRITYS

 x_0 on vertailupoikkileikkaus, jonka siirtymä $u_0 = u(x_0)$ tunnetaan

$$du = \epsilon dx \quad \Rightarrow \quad \int_{u_0}^{u(x)} du = \int_{x_0}^{x} \epsilon dx \quad \Rightarrow \quad u(x) - u_0 = \int_{x_0}^{x} \epsilon dx$$

Hooken laki: $\sigma = E \epsilon$

Normaalijännitys tasan jakaantunut: $\sigma = \frac{N}{A}$

Siirtymä:

$$u(x) = u_0 + \int_{x_0}^{x} \frac{N}{EA} dx$$

Sauvan pituuden muutos:

$$\Delta L = u(b) - u(a) = u_0 + \int_{x_0}^{b} \frac{N}{EA} dx - u_0 - \int_{x_0}^{a} \frac{N}{EA} dx = \int_{a}^{x_0} \frac{N}{EA} dx + \int_{x_0}^{b} \frac{N}{EA} dx$$

Pituuden muutos:

$$\Delta L = \int_{a}^{b} \frac{N}{EA} dx$$

HYPERSTAATTINEN VETO/PURISTUS

VOIMAMENETELMÄ

Esimerkki: Määritä oheisen molemmista päistään jäykästi kiinnitetyn sauvan normaalivoimakuva ja vaakasiirtymä pisteen C kohdalla.

Vapakappalekuva

Ratkaisu:

Tasapaino vaakasuunnassa ⇒

$$-N_A + F + N_B = 0$$
 \Rightarrow

$$N_A - N_B = F \tag{1}$$

Yhteensopivuusehto: Sauvan pituudenmuutos on nolla.

$$\Delta L_{AB} = 0 \implies$$

$$\frac{N_A a}{E A} + \frac{N_B b}{E A} = 0$$
 (2)

Yhtälöparin (1) - (2) ratkaisuksi tulee

josta seuraa yllä esitetty normaalivoimakuva.

Siirtymä kohdassa C on kaavan (2) ensimmäinen termi

$$u_C = \frac{(b/L)Fa}{EA} \Rightarrow$$

$$u_C = \frac{Fab}{EAL}$$

SIIRTYMÄMENETELMÄ

Veto/puristussauvan jousivakio

$$N = k \cdot u$$

$$k = \frac{EA}{L}$$

Esimerkki: Määritä oheisen molemmista päistään jäykästi kiinnitetyn sauvan vaakasiirtymä pisteen C kohdalla ja laske sen jälkeen osien AC ja CB normaalivoimat.

Ratkaisu:

Sauvajousielementtien jousivakiot:

$$k_1 = \frac{EA}{a}$$
 $k_2 = \frac{EA}{b}$

Elementit ja solmu C:

Solmun C tasapaino: $F - k_1 u_c - k_2 u_c = 0 \implies u_c = \frac{F}{k_1 + k_2}$

$$k_1 + k_2 = EA\left(\frac{1}{a} + \frac{1}{b}\right) = \frac{EAL}{ab} \implies u_C = \frac{Fab}{EAL}$$

$$N_A = k_1 u_c = \frac{b}{L} F$$

Normaalivoimat:
$$N_A = k_1 u_c = \frac{b}{L} F$$
 $N_B = -k_2 u_c = -\frac{a}{L} F$

SAUVAN LÄMPÖJÄNNITYKSET

Vapaa lämpölaajeneminen ei aiheuta jännityksiä. Lämpöjännityksiä syntyy, jos lämpölaajeneminen on kokonaan tai osittain estetty!

VAKIOSAUVA:

Lämpenemisestä aiheutuva pituudenmuutos

$$\Delta L_T = \alpha L \Delta T$$

Normaalivoimasta aiheutuva pituudenmuutos

$$\Delta L_{N} = \frac{NL}{EA}$$

KOKONAISPITUUDENMUUTOS:

$$\Delta L = \alpha L \Delta T + \frac{NL}{E A}$$

Vastaava kokonaisvenymä on $\varepsilon = \frac{\Delta L}{L} = \alpha \Delta T + \frac{N}{FA} \implies$

KOKONAISVENYMÄ:

$$\varepsilon = \alpha \, \Delta T + \frac{\sigma}{E}$$

YLEINEN TAPAUS:

Kokonaisvenymä voi vaihdella sauvan suunnassa eli $\alpha = \alpha(x)$, $\Delta T = \Delta T(x)$, $\sigma = \sigma(x)$ ja E = E(x). Pituudenmuutos lasketaan integroimalla kaavasta

$$\Delta L = \int_{0}^{L} \left(\alpha \, \Delta T + \frac{\sigma}{E} \, \right) dx$$