

Programación II

Segundo examen parcial Licenciatura en Actuaría Semestre 2023-2024B

Alumno:		
	14 de abril de 2024	

Instrucciones:

• Duración: 2 horas.

• Inicio de la prueba: 11:00 horas.

- Puedes consultar las notas y las soluciones de tus prácticas, siempre y cuando estas se encuentren descargadas o en una memoria USB.
- Resuelve cada ejercicio utilizando únicamente funciones y estructuras presentadas en clase.
- Crear un Notebook de python (archivo con extensión ".ipynb") con las soluciones correspondientes a cada pregunta, señalar adecuadamente en el notebook la solución de cada pregunta.
- El Notebook de Python se debe nombrar de la siguiente manera:

$TuNombre_TuPrimerApellido_Programaci\'onDos_EP2$

- Enviar el Notebook de Python al correo pablo.jorge@aulavirtual.umar.mx en el asunto escribe: "Segundo examen parcial Programación Dos". No olvides adjuntar el archivo, de otra forma el examen no será tomado en cuenta.
- Después de las 1:00 horas por cada 5 minutos de retraso al enviar tu archivo se tendrá una penalización de 0.75 puntos menos sobre la calificación final del examen.

Ejercicio 1 (10 puntos).

- 1.1. Escribe un programa en Python para estimar el valor del área entre las gráficas de dos funciones f y g en un intervalo [a,b]. La aproximación se debe realizar bajo el siguiente algoritmo:
 - 1. Definir las funciones f(x) y g(x)
 - 2. Definir el dominio [a, b]
 - 3. Para realizar las gráficas de las funciones f y g, así como para determinar el valor máximo y mínimo de cada función en el intervalo [a,b] utilice una partición homogénea de longitud mínimo 10000.

4. Generar n puntos aleatorios (x, y) uniformemente distribuidos en el rectángulo:

$$[a,b] \times \left[\min_{x \in [a,b]} \{f(x), g(x)\}, \max_{x \in [a,b]} \{f(x), g(x)\} \right]$$

- 5. Determinar la cantidad de puntos (x, y) que se encuentran entre las gráficas de las funciones f y g.
- 6. Calcular el área total:

$$A_{\text{total}} = (b - a) \cdot \left(\max_{x \in [a,b]} \{ f(x), g(x) \} - \min_{x \in [a,b]} \{ f(x), g(x) \} \right)$$

7. Calcular la proporción del total de puntos (x, y) generados que se encuentran entre las gráficas de f y g:

$$p = \frac{\text{Cantidad de puntos entre las gráficas de } f \text{ y } g}{n}$$

8. Estimar el área entre las funciones de f y g:

Area_entre_graficas
$$\approx p \cdot A_{\text{total}}$$

- 9. Imprimir el área entre las gráficas de las funciones f y g mediante un mensaje adecuado.
- 1.2. Utiliza matplotlib para realizar un bosquejo de las gráficas de las funciones f y g en el intervalo [a,b] así como de los puntos generados aleatoriamente y del área comprendida entre las gráficas de las funciones en cuestión.

Método Montecarlo. Área entre las gráficas de dos funciones

Método Montecarlo. Área entre las gráficas de dos funciones

Método Montecarlo. Área entre las gráficas de dos funciones

Método Montecarlo. Área entre las gráficas de dos funciones

Método Montecarlo. Área entre las gráficas de dos funciones

Método Montecarlo. Área entre las gráficas de dos funciones

Método Montecarlo. Área entre las gráficas de dos funciones

Método Montecarlo. Área entre las gráficas de dos funciones

