RL and GAN for Sentence Generation and Chat-bot Hung-yi Lee

Outline

- Policy Gradient
- SeqGAN
 - Two techniques: MCMC, partial
 - Experiments: SeqGAN and dialogue
- Original GAN
 - MadliGAN
 - Gumbel

Review: Chat-bot

 Sequence-to-sequence learning $A: \Delta \Delta \Delta$ output Training data: sentence A: 000 Encoder Generator B: XXX $A: \Delta \Delta \Delta$ history Input information sentence A: 000 B: XXX

Review: Encoder to generator **Encoder** 嗎 我 很 好 你 好

Hierarchical Encoder

Review: Generator

can be different with attention mechanism

Review: Training Generator

Review: Training Generator

Training data: (h, \hat{x})

$$C = \sum_{t} C_{t}$$

generator output

h: input sentence and history/context

 \hat{x} : correct response (word sequence)

 \hat{x}_t : t-th word, $\hat{x}_{1:t}$: first t words of \hat{x}

$$C_t = -log P_{\theta}(\hat{x}_t | \hat{x}_{1:t-1}, h)$$

$$C = -\sum_{t} log P(\hat{x}_{t} | \hat{x}_{1:t-1}, h)$$

$$= -logP(\hat{x}_1|h)P(\hat{x}_t|\hat{x}_{1:t-1},h)$$

$$\cdots P(\hat{x}_T | \hat{x}_{1:T-1}, h)$$

$$= -logP(\hat{x}|h)$$

Maximizing the likelihood of generating \hat{x} given h

RL for Sentence Generation

Jiwei Li, Will Monroe, Alan Ritter, Michel Galley, Jianfeng Gao, Dan Jurafsky, "Deep Reinforcement Learning for Dialogue Generation", EMNLP 2016

Introduction

https://image.freepik.com/free-vector/variety-of-human-avatars_23-2147506285.jpg http://www.freepik.com/free-vector/variety-of-human-avatars_766615.htm

Machine obtains feedback from user

Chat-bot learns to maximize the expected reward

Maximizing Expected Reward

$$\bar{R}_{\theta} = \sum_{h} \underline{P(h)} \sum_{x} R(h, x) \underline{P_{\theta}(x|h)}$$
Randomness in generator

Probability that the input/history is h

Maximizing Expected Reward

$$\bar{R}_{\theta} = \sum_{h} P(h) \sum_{x} R(h, x) P_{\theta}(x|h) = E_{h \sim P(h)} \left[E_{x \sim P_{\theta}(x|h)} [R(h, x)] \right]$$

$$= E_{h \sim P(h), x \sim P_{\theta}(x|h)} [R(h, x)] \approx \frac{1}{N} \sum_{i=1}^{N} R(h^{i}, x^{i}) \quad \text{Where is } \theta ?$$
Sample: $(h^{1}, x^{1}), (h^{2}, x^{2}), \cdots, (h^{N}, x^{N})$

Policy Gradient

$$\frac{dlog(f(x))}{dx} = \frac{1}{f(x)} \frac{df(x)}{dx}$$

$$\bar{R}_{\theta} = \sum_{h} P(h) \sum_{x} R(h, x) P_{\theta}(x|h) \approx \frac{1}{N} \sum_{i=1}^{N} R(h^{i}, x^{i})$$

$$\nabla \bar{R}_{\theta} = \sum_{h} P(h) \sum_{x} R(h, x) \nabla P_{\theta}(x|h) \approx \frac{1}{N} \sum_{i=1}^{N} R(h^{i}, x^{i}) \nabla \log P_{\theta}(x|h)$$

$$= \sum_{h} P(h) \sum_{x} R(h, x) P_{\theta}(x|h) \frac{\nabla P_{\theta}(x|h)}{P_{\theta}(x|h)}$$

$$= \sum_{h} P(h) \sum_{x} R(h, x) P_{\theta}(x|h) \nabla log P_{\theta}(x|h)$$

$$= E_{h \sim P(h), x \sim P_{\theta}(x|h)} [R(h, x) \nabla log P_{\theta}(x|h)]$$

Policy Gradient

Gradient Ascent

$$\theta^{new} \leftarrow \theta^{old} + \eta \nabla \bar{R}_{\theta^{old}}$$

$$\nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{i=1}^{N} R(h^{i}, x^{i}) \nabla log P_{\theta}(x^{i} | h^{i})$$

 $R(h^i, x^i)$ is positive

After updating θ , $P_{\theta}(x^{i}|h^{i})$ will increase

 $R(h^i, x^i)$ is negative

After updating θ , $P_{\theta}(x^{i}|h^{i})$ will decrease

Implementation

Encoder tor Human

Maximum Likelihood Reinforcement Learning

Objective

 $\frac{1}{N} \sum log P_{\theta}(\hat{x}^i | h^i)$

 $\frac{1}{N} \sum R(h^i, x^i) log P_{\theta}(x^i | h^i)$

Function

 $\frac{1}{N} \sum \nabla log P_{\theta}(\hat{x}^i | h^i)$

 $\frac{1}{N} \sum R(h^i, x^i) \nabla log P_{\theta}(x^i | h^i)$

Gradient **Training**

Data

 $\{(h^1, \hat{x}^1), \dots, (h^N, \hat{x}^N)\}$ $R(h^i, \hat{x}^i) = 1$

 $\{(h^1, x^1), \dots, (h^N, x^N)\}$ Sampling as training data weighted by $R(h^i, x^i)$

Implementation

 θ^0 can be well pretrained from $\{(h^1, \hat{x}^1), \dots, (h^N, \hat{x}^N)\}$

$$(h^1, x^1)$$
 $R(h^1, x^1)$

$$(h^2, x^2)$$
 $R(h^2, x^2)$

$$(h^N, x^N)$$
 $R(h^N, x^N)$

New Objective:

$$\frac{1}{N} \sum_{i=1}^{N} R(h^{i}, x^{i}) log P_{\theta}(x^{i} | h^{i})$$

$$\theta^{t+1} \leftarrow \theta^t + \eta \nabla \bar{R}_{\theta^t}$$

$$\frac{1}{N} \sum_{i=1}^{N} R(h^{i}, x^{i}) \nabla log P_{\theta^{t}}(x^{i}|h^{i})$$

Add a Baseline

If $R(h^i, x^i)$ is always positive

$$\frac{1}{N} \sum_{i=1}^{N} R(h^{i}, x^{i}) log \nabla P_{\theta}(x^{i} | h^{i})$$

Add a Baseline

If
$$R(h^i, x^i)$$
 is always positive
$$\frac{1}{N} \sum_{i=1}^N R(h^i, x^i) log \nabla P_{\theta}(x^i | h^i) \longrightarrow \frac{1}{N} \sum_{i=1}^N (R(h^i, x^i) - b) log \nabla P_{\theta}(x^i | h^i)$$

There are several ways to obtain the baseline b.

Alpha GO style training!

Let two agents talk to each other

How old are you?

How old are you?

I am 16.

See you.

I though you were 12.

Using a pre-defined evaluation function to compute R(h,x)

Example Reward

• The final reward R(h,x) is the weighted sum of three terms $r_1(h,x)$, $r_2(h,x)$ and $r_3(h,x)$

Example Results

Baseline mutual information model (Li et al. 2015)	Proposed reinforcement learning model

Reinforcement learning?

Reinforcement learning?

reward:

R("BAA", reference)

Marc'Aurelio Ranzato, Sumit Chopra, Michael Auli, Wojciech Zaremba, "Sequence Level Training with Recurrent Neural Networks", ICLR, 2016

The action we take influence the observation in the next step

Reinforcement learning?

- One can use any advanced RL techniques here.
- For example, actor-critic
 - Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Anirudh Goyal, Ryan Lowe, Joelle Pineau, Aaron Courville, Yoshua Bengio. "An Actor-Critic Algorithm for Sequence Prediction." ICLR, 2017.

SeqGAN

Lantao Yu, Weinan Zhang, Jun Wang, Yong Yu, "SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient", AAAI, 2017

Jiwei Li, Will Monroe, Tianlin Shi, Sébastien Jean, Alan Ritter, Dan Jurafsky, "Adversarial Learning for Neural Dialogue Generation", arXiv preprint, 2017

Basic Idea — Sentence Generation

Sampling from RNN at each time step also provides randomness

Algorithm – Sentence Generation

- Initialize generator Gen and discriminator Dis
- In each iteration:
 - Sample real sentences x from database
 - Generate sentences \tilde{x} by Gen
 - Update Dis to increase Dis(x) and decrease $Dis(\tilde{x})$

Basic Idea — Chat-bot

Training data:

Algorithm — Chat-bot

A: 000

h

B: XXX

X

Α: Δ Δ Δ

- Initialize generator Gen and discriminator Dis
- In each iteration:
 - Sample real history h and sentence x from database
 - Sample real history h' from database, and generate sentences \tilde{x} by Gen(h')
 - Update Dis to increase Dis(h, x) and decrease $Dis(h', \tilde{x})$

Reinforcement Learning

- Consider the output of discriminator as reward
 - Update generator to increase discriminator = to get maximum reward

$$\nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{i=1}^{N} \frac{\text{reward}}{D(h^{i}, x^{i})} - b) \nabla log P_{\theta}(x^{i} | h^{i})$$
Discriminator Score

- Different from typical RL
 - The discriminator would update

Reward for Every Generation Step

$$\nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{i=1}^{N} (D(h^{i}, x^{i}) - b) \nabla log P_{\theta}(x^{i} | h^{i})$$

$$h^i$$
 = "What is your name?" $D(h^i, x^i) - b$ is negative x^i = "I don't know" Update θ to decrease $\log P_{\theta}(x^i|h^i)$ $\log P_{\theta}(x^i|h^i) = \log P(x_1^i|h^i) + \log P(x_2^i|h^i, x_1^i) + \log P(x_3^i|h^i, x_{1:2}^i)$ $P("I"|h^i)$

$$h^i$$
 = "What is your name?" $D(h^i, x^i) - b$ is positive x^i = "I am John" Update θ to increase $\log P_{\theta}(x^i|h^i)$ $\log P_{\theta}(x^i|h^i) = \log P(x_1^i|h^i) + \log P(x_2^i|h^i, x_1^i) + \log P(x_3^i|h^i, x_{1:2}^i)$

$$P("I"|h^i)$$

Reward for Every Generation Step

$$h^{i} = \text{``What is your name?''} \qquad x^{i} = \text{``I don't know''}$$

$$log P_{\theta}\left(x^{i}|h^{i}\right) = log \underline{P}\left(x_{1}^{i}|h^{i}\right) + log \underline{P}\left(x_{2}^{i}|h^{i},x_{1}^{i}\right) + log \underline{P}\left(x_{3}^{i}|h^{i},x_{1:2}^{i}\right)$$

$$P\left("I"|h^{i}\right) \quad P\left("don't"|h^{i},"I"\right) \quad P\left("know"|h^{i},"I \ don't"\right)$$

$$\nabla \overline{R}_{\theta} \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{T} \left(Q\left(h^{i},x_{1:t}^{i}\right) - b\right) \nabla log P_{\theta}\left(x_{t}^{i}|h^{i},x_{1:t-1}^{i}\right)$$

- Method 1. Monte Carlo (MC) Search
- Method 2. Discriminator For Partially Decoded Sequences

Monte Carlo Search

• How to estimate $Q(h^i, x_{1:t}^i)$?

$$Q("What is your name?","I")$$
 $h^i x_1^i$

A roll-out generator for sampling is needed

$$x^A = I \text{ am John}$$
 $D(h^i, x^A) = 1.0$ $D(h^i, x^B) = 0.1$ $D(h^i, x^C) = 0.1$

avg

Rewarding Partially Decoded Sequences

- Training a discriminator that is able to assign rewards to both fully and partially decoded sequences
 - Break generated sequences into partial sequences

h="What is your name?", x="I don't"

h="What is your name?", x="I"

Teacher Forcing

- The training of generative model is unstable
 - This reward is used to promote or discourage the generator's own generated sequences.
 - Usually It knows that the generated results are bad, but does not know what results are good.
- Teacher Forcing

```
Training Data for SeqGAN: \{(h^1,x^1),\dots,(h^N,x^N)\}
Obtained by sampling weighted by D(h^i,x^i)
Adding more Data: \{(h^1,\hat{x}^1),\dots,(h^N,\hat{x}^N)\} Real data Consider D(h^i,\hat{x}^i)=1
```

Experiments in paper

- Sentence generation: Synthetic data
 - Given an LSTM
 - Using the LSTM to generate a lot of sequences as "real data"
 - Generator learns from the "real data" by different approaches
 - Generator generates some sequences
 - Using the LSTM to compute the negative log likelihood (NLL) of the sequences
 - Smaller is better

Experiments in paper - Synthetic data

Algorithm	Random	MLE	SS	PG-BLEU	SeqGAN
NLL		9.038	8.985	8.946	8.736
<i>p</i> -value	$< 10^{-6}$	$< 10^{-6}$	$< 10^{-6}$	$< 10^{-6}$	

Experiments in paper

- Real data

Table 2: Chinese poem generation performance comparison.

Algorithm	Human score	<i>p</i> -value	BLEU-2	p-value
MLE	0.4165	0.0034	0.6670	$< 10^{-6}$
SeqGAN	0.5356	0.0054	0.7389	< 10
Real data	0.6011		0.746	

Table 3: Obama political speech generation performance.

Algorithm	BLEU-3	<i>p</i> -value	BLEU-4	<i>p</i> -value
MLE SeqGAN	0.519 0.556	$< 10^{-6}$	0.416 0.427	0.00014

Table 4: Music generation performance comparison.

Algorithm	BLEU-4	<i>p</i> -value	MSE	p-value
MLE	0.9210	$< 10^{-6}$	22.38	0.00034
SeqGAN	0.9406	< 10	20.62	0.00054

Results - Chat-bot

Setting	adver-win	adver-lose
single-turn	0.62	0.18
multi-turn	0.72	0.10

Input	tell me how long have you had this falling sickness ?
Vanilla-MLE	i 'm not a doctor .
Vanilla-Sample	well everything you did was totally untrue.
REINFORCE	i don 't know how long it 's been .
REGS Monte Carlo	A few months, I guess.
Input	so i had the doctors test sammy 's response to conditioning .
Vanilla-MLE	sammy wrote the test sammy wrote the test.
Vanilla-Sample	objects pick objects up objects objects objects objects
REINFORCE	i 'm not sure that 's relevant .
REGS Monte Carlo	so he took the pills .
Input	what are you going to do ?
Vanilla-MLE	i 'm going to the movies .
Vanilla-Sample	get him outta here first !
	8
REINFORCE	i 'm going to get you .
REINFORCE REGS Monte Carlo	Ç
	i 'm going to get you . i 'm going to get you a new car . they fear your power your intellect .
REGS Monte Carlo	i 'm going to get you . i 'm going to get you a new car .
REGS Monte Carlo Input	i 'm going to get you . i 'm going to get you a new car . they fear your power your intellect .
REGS Monte Carlo Input Vanilla-MLE	i 'm going to get you . i 'm going to get you a new car . they fear your power your intellect . you 're the only one who knows what 's going on .

To Learn More ...

Algorithm – MaliGAN

Maximum-likelihood Augmented Discrete GAN

- Initialize generator Gen and discriminator Dis
- In each iteration:
 - Sample real sentences x from database
 - Generate sentences \tilde{x} by Gen
 - Update Dis to maximize

$$\sum_{x} log D(x) + \sum_{\tilde{x}} log (1 - D(\tilde{x}))$$

Update Gen by gradient

$$\frac{1}{N} \sum_{i=1}^{N} \left(\frac{r_D(x^i)}{\sum_{i=1}^{N} r_D(x^i)} - b \right) \nabla log P_{\theta}(x^i) \qquad r_D(x^i) = \frac{D(x^i)}{1 - D(x^i)}$$

$$r_D(x^i) = \frac{D(x^i)}{1 - D(x^i)}$$

$$D(h^i, x^i)$$

To learn more

- Professor forcing
 - Alex Lamb, Anirudh Goyal, Ying Zhang, Saizheng Zhang, Aaron Courville, Yoshua Bengio, "Professor Forcing: A New Algorithm for Training Recurrent Networks", NIPS, 2016
- Handling discrete output by methods other than policy gradient
 - MaliGAN, Boundary-seeking GAN
 - Yizhe Zhang, Zhe Gan, Lawrence Carin, "Generating Text via Adversarial Training", Workshop on Adversarial Training, NIPS, 2016
 - Matt J. Kusner, José Miguel Hernández-Lobato, "GANS for Sequences of Discrete Elements with the Gumbelsoftmax Distribution", arXiv preprint, 2016