Übungen zur Vorlesung Differentialgeometrie I

Blatt 10

Aufgabe 38. (4 Punkte)

Zeige, dass der Graph von $|x|^{\alpha}$ für $\alpha \in (1,2)$ keine Tubenumgebung um die Null hat. Dies zeigt, dass die Bedingung $\partial \Omega \in C^k$ für $k \geq 2$ für die Tubenumgebung scharf ist.

Aufgabe 39. (Dritte Fundamentalform) (4 Punkte)

Sei $\Omega \subset \mathbb{R}^2$ und $X \in C^2(\Omega, \mathbb{R}^3)$ eine parametrisierte Fläche. Seien g_{ij} und h_{ij} die erste und zweite Fundamentalform von X, S dessen Weingartenabbildung und K und H die Gaußsche und mittlere Krümmung. Die dritte Fundamentalform des parametrisierten Flächenstücks ist durch

$$b := \langle D\nu, D\nu \rangle$$
 und $b_{ij} = b(e_i, e_j)$

definiert.

(i) Zeige, dass b(v, w) = g(Sv, Sw) für alle $v, w \in \mathbb{R}^2$ in ganz Ω gilt und folgere

$$b_{ij} - Hh_{ij} + Kg_{ij} = 0.$$

Hinweis: Verwende entweder eine Basis aus Eigenvektoren von S oder den Satz von Cayley–Hamilton und Theorie über charakteristische Polynome von linearen Abbildungen $\mathbb{R}^2 \to \mathbb{R}^2$.

Sei nun X eine Minimalfläche.

(ii) Zeige: Ist K nirgends Null, so erfüllt $\nu:\Omega\to\mathbb{S}^2\subset\mathbb{R}^3$ für eine geeignete Funktion $\lambda>0$

$$\langle D\nu \langle v \rangle, D\nu \langle w \rangle \rangle = \lambda^2 g(v, w)$$

auf Ω .

(iiii) Sei $\pi_-: \mathbb{S}^2 \setminus \{-e_3\} \to \mathbb{R}^2$ die stereographische Projektion vom Südpol, vgl. Blatt 4, Aufgabe 12. Ist $\nu(w) = e_3$, so gibt es eine Umgebung W von w, so dass $\varphi = \pi_- \circ \nu : W \to \varphi(W)$ ein Diffeomorphismus ist, und $\tilde{X} = X \circ \varphi^{-1}$ ist konform parametrisiert.

Aufgabe 40. (4 Punkte)

Eine Funktion $f: \mathbb{R}^{n+1} \to \mathbb{R}$ heißt eigentlich, falls $f^{-1}(K)$ kompakt für alle $K \in \mathbb{R}^{n+1}$ ist. Für $A \in \mathbb{R}^{n+1}$ sei $A_{\delta} := \bigcup_{x \in A} \overline{B_{\delta}(x)}$. Für nichtleere Mengen $A, A' \in \mathbb{R}^{n+1}$ definiere den Hausdorffabstand durch

$$d_{\mathcal{H}}(A, A') := \inf\{\delta \ge 0 : A \subseteq A'_{\delta} \text{ und } A' \subseteq A_{\delta}\}.$$

Sei nun $f: \mathbb{R}^{n+1} \to \mathbb{R}$ eine eigentliche Funktion und seien $f_{\varepsilon}: \mathbb{R}^{n+1} \to \mathbb{R}$ durch Faltungen mit einem Friedrichschen Glättungskern entstandene glatte Approximationen. Gelte $Df(x) \neq 0$ für alle $x \in \mathbb{R}^{n+1}$ mit f(x) = 0.

- (i) Zeige, dass $M_{\varepsilon} := f_{\varepsilon}^{-1}(\{0\})$ für alle $\varepsilon > 0$ eine C^1 -Untermannigfaltigkeit von \mathbb{R}^{n+1} ist.
- (ii) Untersuche nun die folgenden Konvergenzen von M_{ε} gegen $M:=f^{-1}(\{0\})$ für $\varepsilon \searrow 0$:
 - Konvergenz im Hausdorffabstand.
 - Konvergenz in einer lokalen Graphendarstellung.
 - \bullet Konvergenz der Normalen, Metrik und zweiten Fundamentalform.

Welche zusätzlichen Regularitätsannahmen $(f \in C^k, k \in \mathbb{N})$ sind dafür nötig?

Definiere insbesondere auch, in welchem Sinn die Konvergenz jeweils zu verstehen ist.

Aufgabe 41. (4 Punkte) Sei $M \subset \mathbb{R}^{n+1}$ eine n-dimensionale, kompakte C^2 -Untermannigfaltigkeit mit äußerer Normalen ν . Zeige, dass es einen Punkt $p \in M$ mit $h_{ij}(p) > 0$ gibt.

Zusatz: Bezeichnet diam M den Durchmesser von M in \mathbb{R}^{n+1} , so gibt es $p \in M$, so dass $h_{ij}(p) \geq$ $\frac{1}{\operatorname{diam} M} g_{ij}$ gilt.

Hinweis: Es darf die folgende Aussage der algebraischen Topologie verwendet werden: Ist M wie in der Aufgabe und zusätzlich zusammenhängend, so besteht $\mathbb{R}^{n+1} \setminus M$ aus genau zwei Zusammenhangskomponenten.

Abgabe: Bis Donnerstag, 18.01.2018, 10.00 Uhr, in die Mappe vor Büro F 402.