Advanced Calculus II

Ji, Yong-hyeon

November 13, 2024

We cover the following topics in this note.

- Convergence of Sequences
- Inequality Rule for Reals
- Algebraic Property of Limit of Sequence

Sequence

Definition. Let $A \subseteq \mathbb{N}$ and $X \subseteq \mathbb{R}$. A **sequence** is a function

$$a:A\to X$$
,

with domain A and range in X.

Remark. A function *a* is a real sequence if

$$\begin{array}{cccc} a & : & \mathbb{N} & \longrightarrow & \mathbb{R} \\ & n & \longmapsto & a(n) =: a_n \end{array}$$

for $n = 1, 2, \dots$. We write

$$\{a_n\}_{n=1}^{\infty}$$
, $\{a_n\}_{n\in\mathbb{N}}$, $(a_n)_{n\in\mathbb{N}}$, or $\langle a_n\rangle_{n\in\mathbb{N}}$.

Convergence of Sequence

Definition. A real sequence $\{a_n\}_{n=1}^{\infty} (\subseteq \mathbb{R})$ is said to **converge** to $L \in \mathbb{R}$ if and only if

$$\forall \varepsilon > 0, \ \exists N_{\varepsilon} \in \mathbb{N} \text{ such that } \left[n \geq N_{\varepsilon} \implies |a_n - L| < \varepsilon \right].$$

Remark. A real number $L \in \mathbb{R}$ is called **the limit**. When a sequence $\{a_n\}_{n=1}^{\infty}$ has the limit L, we will use the notation

$$\lim_{n\to\infty} a_n = L \quad \text{or} \quad a_n \to L \text{ as } n \to \infty.$$

That is,

$$\lim_{n\to\infty}a_n=L\iff\forall\varepsilon>0:\exists N\in\mathbb{N}:\left[n\geq N\implies|a_n-L|<\varepsilon\right].$$

Note. If a sequence has a limit, we say that the sequence is **convergent**; if it has no limit, we say that the sequence is **divergent**.

Example. Consider the sequence defined by $a_n = 1/n$ for each $n \in \mathbb{N}$. Prove that

$$\lim_{n\to\infty}a_n=\lim_{n\to\infty}\frac{1}{n}=0.$$

Proof. Let $\varepsilon > 0$. By the Archimedean property, we obtain

$$\exists N_{\epsilon} \in \mathbb{N} \quad \text{s.t.} \quad 1 < \epsilon \cdot N_{\epsilon}, \text{ i.e., } \frac{1}{N_{\epsilon}} < \epsilon.$$

Assume that $n \ge N_{\epsilon}$ then

$$|a_n - 0| = \left| \frac{1}{n} \right| = \frac{1}{n} \le \frac{1}{N_{\epsilon}} < \varepsilon.$$

Hence
$$\lim_{n\to\infty} \frac{1}{n} = 0$$
.

Example. Consider the sequence defined by $b_n = 1 - (-1)^n$ for all $n \in \mathbb{N}$. Prove that b_n does not converge.

Proof. Suppose that $\{b_n\}_{n=1}^{\infty}$ converges to $\beta \in \mathbb{R}$. Let $\varepsilon \in (0,2)$. Then if $n \geq N_{\varepsilon}$,

$$|b_n - \beta| = |b_n - b_{n+1} + b_{n+1} - \beta|$$

$$\leq |b_n - b_{n+1}| + |b_{n+1} - \beta|$$

$$= 2 + |b_{n+1} - \beta|$$

Absolute Value in Reals

Definition. Let $x \in \mathbb{R}$. A **absolute value** |x| of x is defined by

$$|x| := \begin{cases} x & : x \ge 0 \\ -x & : x < 0 \end{cases}$$

Proposition. *Let* x, $y \in \mathbb{R}$.

(a)
$$|x| = |-x| = \sqrt{x^2}$$

(b)
$$|xy| = |x||y|$$

(c) For each r > 0,

$$|x| < r \iff -r < x < r$$

(d)

$$\delta < |x| \iff \delta < x \text{ or } x < -\delta$$

- (e) $-|x| \le x \le |x|$
- (f) (Triangle Inequality)

$$|x+y| \le |x| + |y|$$

Proof. (a)

Boundedness of Sequence

Definition. Let $\{a_n\}$ is a real sequence. $\{a_n\}$ is said to be **bounded** when

 $\exists M \in \mathbb{R} \text{ such that } \forall n \in \mathbb{N}, |a_n| \leq M.$

Proposition. A convergent sequence is bounded.

Proof. Let $\lim_{n\to\infty} a_n = L$. For $\varepsilon = 1$, $\exists N \in \mathbb{N}$ such that $n \geq N \implies |a_n - L| < 1$. Then we see that

$$|a_n| = |a_n - L + L| \le |a_n - L| + |L| < 1 + |L|$$
.

Let $M := \max \{|a_1|, |a_2|, \dots, |a_{N-1}|, 1 + |L|\}$. Then

 $|a_n| \leq M$

for all $n \in \mathbb{N}$. That is, $\{a_n\}$ is bounded.

References

- [1] 수학의 즐거움, Enjoying Math. "수학 공부, 기초부터 대학원 수학까지, 6. 해석학 개론 (c) 수열의 수렴성." YouTube Video, 26:29. Published September 20, 2019. URL: https://www.youtube.com/watch?v=jwLfzJyIxmU.
- [2] 수학의 즐거움, Enjoying Math. "수학 공부, 기초부터 대학원 수학까지, 7. 해석학 개론 (d) 극한 정리" YouTube Video, 26:46. Published September 26, 2019. URL: https://www.youtube.com/watch?v=1TRD34QbIaw.