Math 255B Lecture 12 Notes

Daniel Raban

February 3, 2020

1 Extending Symmetric Operators to Self-Adjoint Operators

1.1 Graph of the adjoint of a symmetric operator

Suppose we have a closed, symmetric, densely defined operator $S: D(S) \to H$. We introduced the **deficiency subspaces** $D_{\pm} = (\operatorname{Im}(S \pm i))^{\perp} = \ker(S^* \mp i)$ and the graphs $\widehat{D}_{\pm} = G(S^*)|_{D_{\pm}}$.

Last time, were proving the following theorem.

Theorem 1.1. Let S be closed, symmetric, and densely defined. Then

$$G(S^*) = G(S) \oplus \widehat{D}_+ \oplus \widehat{D}_-,$$

where the direct sum is orthogonal.

Proof. It remains to show that if $(y, S^*y) \perp G(S)$, \widehat{D}_{\pm} , then y = 0.

First, if $(y, S^*y) \perp G(S)$, then $\langle (y, S^*y), (x, Sx) \rangle = 0$ for all $x \in D(S)$. Then $\langle Sx, S^*y \rangle + \langle x, y \rangle = 0$ for all $x \in D(S)$. So $S^*y \in D(S^*)$ and $S^*(S^*y) = -y$. So $((S^*)^2 + 1)y = 0$. We get $(S^* - i)(S^* + i)y = 0$, so $(S^* + i)y \in D_+$.

If $\langle y, S^*y \rangle \perp \widehat{D}_+$, then $\langle (y, S^*y), (x, ix) \rangle = 0$ for all $x \in D_+$. We get $\langle y, x \rangle + \langle S^*y, ix \rangle = 0$, so $-i \langle (S^* + i)y, x \rangle = 0$ for all $x \in D_+$. So $(S^* + i)y = 0$.

Similarly, $(S^*-i)y \in D_-$ (changing the order in the factorization). Then $(y, S^*y) \perp D_-$, so $(S^*-i)y = 0$. So we get y = 0.

1.2 Conditions for extending symmetric operators

Corollary 1.1. A symmetric, closed operator $S: D(S) \to H$ is self-adjoint if and only if the deficiency indices $n_+ = n_- = 0$, or equivalently, $\text{Im}(S \pm i) = H$. Equivalently, the Cayley transform of S is unitary: $H \to H$.

In general, we have the following:

Corollary 1.2. A symmetric, closed operator $D: D(S) \to H$ has a self-adjoint extension if and only if the Cayley transform T can be extended to a unitary map: $H \to H$.

Proof. This follows from our correspondence between symmetric operators and their Cayley transforms. \Box

Using the full strength of this result we have proven, we get the original result of von Neumann's extension theory.

Theorem 1.2 (von Neumann). A closed, densely defined, symmetric operator $S: H \to H$ has a self-adjoint extension if and only if the deficiency indices are equal.

Proof. Assume first that T can be extended to a unitary map $U: H \to H$ (so $U|_{\text{Im}(S-i)} = T$). Write $H = D(T) \oplus D_-$ and $H = \text{Im}(T) \oplus D_+$ (orthogonal decompositions). It follows that $U|_{D^-}: D_- \to D_+$ is a bijection, so the deficiency indices are equal: $n_- = n_+$.

Conversely, assume that $n_- = n_+$. Let $(e_j^+)_{j \in J}, (e_j^-)_{j \in J}$ be orthonormal bases for D_+ and D_- , respectively. Let $T_1: D_- \to D_+$ take $\sum_{j \in J} x_j e_j^- \mapsto \sum_{j \in J} x_j e_j^+$. T_1 is unitary, so the map $U: H \to H$ sending $(y+z) \mapsto Ty + T_1y$ (where $y \in D(T), z \in D_-$) is a unitary extension of T.

Remark 1.1. We say that closed, symmetric operator S is **maximal** if it has no strict symmetric extension. If S is self-adjoint, it is maximal. In general, S is maximal if and only if at least one of the deficiency indices equals S.

1.3 Example: Extending the Schrödinger operator

Example 1.1. The Schrödinger operator: $H = L^2(\mathbb{R}^n)$, and $P = -\Delta + V(x)$, where $V \in L^2_{loc}(\mathbb{R}^n; \mathbb{R})$. Equipped with the domain $C_0^{\infty}(\mathbb{R}^n)$, P becomes symmetric and densely defined

We claim that P has a self-adjoint extension. We have to check that $n_+ = \dim \ker(P^* - i) = \dim \ker(P^* + i) = n_-$. Here, $D(P^*) = \{u \in L^2 : Pu \in L^2\}$, where Pu is taken in the sense of distributions; $V_u \in L^1_{loc}$, so it makes sense as a distribution. The complex conjugation map $\Gamma: L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$ sending $u \mapsto \overline{u}$ satisfies: $\Gamma(D(P^*)) \subseteq D(P^*)$ and $[\Gamma, P^*] = 0$. Since $\Gamma: D_- \to D_+$ is a bijection, the deficiency indices are equal. (Here, we use that P is real.)