CIRank 2.0. Руководство пользователя

Программа ClRank 2.0 состоит из двух файлов: clrank.exe и clrank gamma.exe.

Программа clrank.exe предназначена для вычисления множества максимальных промежутков. Программа clrank_gamma.exe предназначена для получения дополнительной информации: значений параметра γ и значений величины δ_{\min} для нескольких интересующих промежутков.

Программа clrank.exe принимает на вход 2 файла: input.csv и input.txt. Входной файл input.csv содержит исходные данные в формате CSV. Входной файл input.txt содержит входные параметры для программы. Программа выводит результаты вычислений в файл output.html в формате HTML.

Программа clrank_gamma.exe принимает на вход 3 файла: input.csv, input.txt и input_gamma.txt. Входной файл input_gamma.txt содержит список интересующих промежутков. Программа выводит результаты вычислений в файл output_gamma.html в формате HTML.

Входной файл в формате CSV

Входной файл в формате CSV имеет имя input.csv.

Записи в файле разделяются символами конца строки (CRLF). После последней записи могут идти и могут не идти символы CRLF.

Все записи должны состоять из трёх полей. Поля записи разделяются символом «точка с запятой» (;).

В качестве первой записи должен быть заголовок, состоящий из полей: «Категория», «Частота», «Ранг». Регистр в заголовке важен, кодировка Windows-1251.

В следующих записях поле «Частота» должно содержать вещественное положительное число (разделитель целой и дробной части — запятая (,)). Поле «Ранг» должно содержать натуральное число.

Значения поля «Ранг» должны быть $1, 2, 3, \dots$ Значения поля «Частота» должны идти по возрастанию.

Входной файл с входными параметрами

Входной файл с входными параметрами имеет имя input.txt.

Этот файл должен содержать три числа: $\delta_0 \nu_0 x$.

 δ_0 — пороговое значение для половины минимальной высоты полосы, содержащей все точки промежутка — максимально допустимое отклонение точки от прямой (вещественное неотрицательное число).

 v_0 — допустимое количество аномальных точек (целое неотрицательное число).

x — код функциональной зависимости (1 или 2).

Используется функциональная зависимость

$$\ln w \cong -\gamma \ln R + c \equiv -\gamma \ln \left(\frac{N-r}{r}\right) + c.$$

Если x = 1, то применяется модифицированный В.П. Масловым закон Ципфа I: N = n + 1.

Если x = 2, то применяется модифицированный В.П. Масловым закон Ципфа II: N = 2n + 1.

Входной файл с интересующими промежутками

Входной файл с интересующими промежутками имеет имя input gamma.txt.

Этот файл содержит список промежутков, для которых требуется вычислить значение параметра γ и величину δ_{\min} , в произвольном порядке.

Промежуток — это пара a b, где a и b — это ранги точек. В промежутке должно быть не менее трёх точек.

Выходной файл с множеством максимальных промежутков в формате HTML

Выходной файл с множеством максимальных промежутков имеет имя output.html. Выходной файл содержит таблицу с входными данными и входные параметры. Далее следует множество максимальных промежутков.

Выходной файл со значениями параметра γ и значениями величины δ_{\min} в формате HTML

Выходной файл со значениями параметра γ и значениями величины δ_{\min} имеет имя output gamma.html.

Выходной файл содержит таблицу с входными данными и входные параметры.

Далее следует таблица со значениями параметра γ для каждого из интересующих промежутков при $0, 1, ..., \nu_0$ аномальных точек.

Далее следует таблица со значениями величины δ_{\min} для каждого из интересующих промежутков при $0, 1, ..., \nu_0$ аномальных точек.

Рекомендации к использованию

Обратите внимание, что точка с рангом 1 находится на графике правее всех, то есть точки на графике идут справа налево.

Программа выдаёт множество максимальных промежутков, а не разбиение, потому что разбиение невозможно определить однозначно. Выбор конкретного разбиения остаётся за пользователем (здесь пользователь может использовать априорную информацию).

Рекомендуется вычислять множество максимальных промежутков при разных значениях параметров. Вначале положите ν_0 равным 0. Затем получите множество максимальных промежутков. Исключите не интересующие промежутки. Можете получить конкретное разбиение данных на кластеры. Далее возьмите ν_0 , равное 1. Найдите множество максимальных промежутков. Сравните полученное ранее разбиение с множеством максимальных промежутков. Если кластеры значительно увеличились, то, значит, стоит пересмотреть разбиение, увеличив некоторые кластеры. Если промежутки увеличились на 1, то можно оставить промежутки прежними.

Рекомендуется вычислять значение параметра γ с некоторым количеством аномальных точек, так как небольшое количество точек может существенно повлиять на значение параметра γ .

Пример

Приведём пример применения программы. На рисунке цветом выделено разбиение данных на кластеры, приведённое в статье М.А. Гузева и Е.В. Черныш. Это разбиение было найдено вручную. Фигурными скобками выделено множество максимальных промежутков, выданное программой ($\delta_0 = 0.03$, $\nu_0 = 0$).

Отметим, что разбиение, приведённое в данной статье, отличается от множества максимальных промежутков. Таким образом, программа позволяет избавиться от субъективности при нахождении разбиения.

