A MONTE CARLO GRAVITY MODEL ANALYSIS OF OD VOLUMES

Gregory S. Macfarlane Candace Brakewood Jamie M. Fischer Alex Poznanski

School of Civil and Environmental Engineering and School of Economics

PROJECT OUTCOMES

OUTLINE

THE MODEL

Gravity Models

Assumed Parameter Values

SIMULATION RESULTS

Solution Space

Predictions

PROJECT OUTCOMES

PROJECT OUTCOMES

GRAVITY MODELS

The gravity model is perhaps the most common trip distribution model,

$$T_{ij} = \frac{P_i[A_j f_{ij} k_{ij}]}{\sum_{n=1}^{m} A_j f_{ij} k_{ij}}$$
(1)

 T_{ij} Trips from i to j

 P_i Origins at i

 A_j Destinations at j

 f_{ij} Travel cost function.

 k_{ij} Empirical adjustment factor.

OUR MODEL

We use a particular negative exponential cost function described by Meyer and Miller,

$$T_{ij} = \frac{P_i A_j t_{ij}^{-b}}{\sum_{j=1}^N A_j t_{ij}^{-b}}$$
 (2)

 t_{ij} is the holistic "travel cost" between i and j.

The negative exponent assures a diminishing marginal cost of travel time, and is typically estimated (we make a conservative assumption of b = 1). We replace k with an iterative solution mechanism.

TRAVEL COST COMPONENTS

The travel time is

$$t_{ij} = \frac{d_{ij}}{s} + \lambda W_{ij} \tag{3}$$

 d_{ij} Distance between i and j

s System average speed

 λ Transfer penalty

 W_{ij} Transfer time between i and j

ASSUMED PARAMETER VALUES

MONTE CARLO SIMULATION

We take 5,000 random draws from the assumed parameter distributions and run the gravity model.

RESULTS

	Std. Dev.	Mean	25 th pctl	75 th pctl	Most Likely
W-S	25.33	82.50	50.81	153.14	75.88
W-N	22.34	71.67	45.83	136.93	67.69
E-S	20.42	67.14	42.35	125.92	63.66
E-N	17.96	57.83	39.15	118.25	49.82
S-W	25.36	80.88	49.28	152.92	74.16
S-E	19.79	63.49	39.69	123.18	59.31
N-W	21.19	67.36	39.11	121.73	63.48
N-E	16.76	52.88	35.66	108.11	50.51

PROJECT OUTCOMES

An independent goal of this project was to improve our own literacy and skill in open-source and academic software. We used the following programs and systems:

R

knitr

FALEX

GitHub

Publicly hosted on GitHub as GT_TranspoComp/Transit