Linear averaging and flow dynamics

Giacomo Como, DISMA, Politecnico di Torino Fabio Fagnani, DISMA, Politecnico di Torino

Community of individuals

Interpersonal influence \Rightarrow Learning process \Rightarrow Social power Consensus

- J.R.P. French, A Formal Theory of Social Power, Psychological Review 63, 1956.
- M.H. DeGroot, Reaching a Consensus, Journal of the American Statistical Association 69, 1974.

 $\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$ weighted directed graph representing a social network

- $(i, j) \in \mathcal{E}$ if i is influenced by j
- W_{ii} strength of this influence
- $P_{ij} = w_i^{-1} W_{ij} \ (w_i = \sum_k W_{ik})$ normalized weight matrix

 $\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$ weighted directed graph representing a social network

- $(i, j) \in \mathcal{E}$ if i is influenced by j
- W_{ii} strength of this influence
- $P_{ii} = w_i^{-1} W_{ii} \ (w_i = \sum_k W_{ik})$ normalized weight matrix

- ightharpoonup Each agent $i \in \mathcal{V}$ has an initial opinion on some fact or event $x_i(0) \in \mathbb{R}$.
- Learning model: agents modify their opinion in time averaging the opinions of their neighbors:

$$x_i(t+1) = \sum_j P_{ij}x_j(t)$$

Linear averaging dynamics

 $\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$ weighted directed graph representing a social network

- $(i, j) \in \mathcal{E}$ if i is influenced by j
- W_{ii} strength of this influence
- $P_{ii} = w_i^{-1} W_{ii} \ (w_i = \sum_k W_{ik})$ normalized weight matrix

- ightharpoonup Each agent $i \in \mathcal{V}$ has an initial opinion on some fact or event $x_i(0) \in \mathbb{R}$.
- Learning model: agents modify their opinion in time averaging the opinions of their neighbors:

$$x_i(t+1) = \sum_j P_{ij}x_j(t)$$

Linear averaging dynamics

▶ Compact notation $x(t) \in \mathbb{R}^n$:

$$x(t+1) = Px(t)$$
$$x(t) = Ptx(0)$$

 $\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$ weighted directed graph representing a social network

- $(i, j) \in \mathcal{E}$ if i is influenced by j
- W_{ii} strength of this influence
- $P_{ii} = w_i^{-1} W_{ii} \ (w_i = \sum_k W_{ik})$ normalized weight matrix

- ightharpoonup Each agent $i \in \mathcal{V}$ has an initial opinion on some fact or event $x_i(0) \in \mathbb{R}$.
- Learning model: agents modify their opinion in time averaging the opinions of their neighbors:

$$x_i(t+1) = \sum_j P_{ij}x_j(t)$$

Linear averaging dynamics

▶ Compact notation $x(t) \in \mathbb{R}^n$:

$$x(t+1) = Px(t)$$
$$x(t) = P^t x(0)$$

Behavior when $t \to +\infty$?

- ightharpoonup A dynamical system: Ω set, $f:\Omega\to\Omega$ map,
- $\triangleright x(0) \in \Omega$ initial condition
- Evolution:

$$x(0) \mapsto x(1) = f(x(0)) \mapsto x(2) = f(x(1)) \dots$$

More formally, x(t) is the sequence defined recursively by

$$x(t+1)=f(x(t))$$

- ightharpoonup A dynamical system: Ω set, $f:\Omega\to\Omega$ map,
- $\triangleright x(0) \in \Omega$ initial condition
- Evolution:

$$x(0) \mapsto x(1) = f(x(0)) \mapsto x(2) = f(x(1)) \dots$$

More formally, x(t) is the sequence defined recursively by

$$x(t+1)=f(x(t))$$

 \triangleright x_0 equilibrium if $f(x_0) = x_0$;

$$x(0) = x_0 \Rightarrow x(t) = x_0 \ \forall t$$

- \blacktriangleright A dynamical system: Ω set, $f:\Omega\to\Omega$ map,
- $\triangleright x(0) \in \Omega$ initial condition
- Evolution: x(t) is the sequence defined recursively by

$$x(t+1)=f(x(t))$$

 \triangleright x_0 equilibrium if $f(x_0) = x_0$;

$$x(0) = x_0 \implies x(t) = x_0 \ \forall t$$

 Ω metric space (e.g. $\Omega = \mathbb{R}^n$), f continuous:

If
$$\lim_{t\to +\infty} x(t) = \bar{x} \implies f(\bar{x}) = \bar{x}$$
 (equilibrium)

- \blacktriangleright A dynamical system: Ω set, $f:\Omega\to\Omega$ map,
- $\triangleright x(0) \in \Omega$ initial condition
- Evolution: x(t) is the sequence defined recursively by

$$x(t+1)=f(x(t))$$

 \triangleright x_0 equilibrium if $f(x_0) = x_0$;

$$x(0) = x_0 \implies x(t) = x_0 \ \forall t$$

 Ω metric space (e.g. $\Omega = \mathbb{R}^n$), f continuous:

If
$$\lim_{t \to +\infty} x(t) = \bar{x} \; \Rightarrow \; f(\bar{x}) = \bar{x} \; ext{(equilibrium)}$$

Proof:

- \blacktriangleright A dynamical system: Ω set, $f:\Omega\to\Omega$ map,
- $\triangleright x(0) \in \Omega$ initial condition
- Evolution: x(t) is the sequence defined recursively by

$$x(t+1)=f(x(t))$$

 \triangleright x_0 equilibrium if $f(x_0) = x_0$;

$$x(0) = x_0 \implies x(t) = x_0 \ \forall t$$

 Ω metric space (e.g. $\Omega = \mathbb{R}^n$), f continuous:

If
$$\lim_{t\to +\infty} x(t) = \bar{x} \implies f(\bar{x}) = \bar{x}$$
 (equilibrium)

Proof:
$$x(t) \to \bar{x} \Rightarrow x(t+1) = f(x(t)) \to f(\bar{x})$$

But $x(t+1) \to \bar{x}$. Hence, $f(\bar{x}) = \bar{x}$

Recap of PF theory for stochastic matrices

 $\mathcal{G} = (\mathcal{V}, \mathcal{E}, W), P = D^{-1}W$ normalized weight matrix

Theorem (Spectral properties of stochastic matrices)

- Dominant eigenvalue $\lambda_P = 1$, P1 = 1,
- Invariant distributions $\{\pi \in \mathbb{R}^n_+, \ \mathbb{1}'\pi = 1, \ P'\pi = \pi\}$ form a simplex in $\mathbb{R}^{\mathcal{V}}$ with s_G vertices.
- For every sink component with nodes W, there exists an invariant distribution π such that $\pi_i > 0$ if and only if $i \in \mathcal{W}$.
- The invariant distribution is unique if and only if $s_{\mathcal{C}} = 1$.
- If G is strongly connected, then 1 is simple and $\pi_i > 0$ for all i;
- \triangleright If \mathcal{G} is strongly connected and aperiodic, then every eigenvalue $\mu \neq 1$ is s.t. $|\mu| < 1$.

- ▶ Dynamical system with $\Omega = \mathbb{R}^n$, f(x) = Px
- Evolution from the initial condition x(0): $x(t) = P^t x(0)$
- Equilibria: $Px_0 = x_0$, right eigenvectors of P relative to the dominant eigenvalue 1
- Consensus vectors $\alpha 1$ are always equilibria
- If $s_G = 1$, the only equilibria are the consensus vectors.

- ▶ Dynamical system with $\Omega = \mathbb{R}^n$, f(x) = Px
- Evolution from the initial condition x(0): $x(t) = P^t x(0)$
- Equilibria: $Px_0 = x_0$, right eigenvectors of P relative to the dominant eigenvalue 1
- \triangleright Consensus vectors $\alpha 1$ are always equilibria
- If $s_G = 1$, the only equilibria are the consensus vectors.
- **IMPORTANT**: for any invariant distribution π

$$\pi'x(t+1) = \pi'Px(t) = \pi'x(t) \ \forall t \ \Rightarrow \ \pi'x(t) = \pi'x(0) \ \forall t$$

The quantity $\pi' x(t)$ is a motion invariant.

$$x(t)=P^tx(0)$$

Suppose that for a given x(0), $x(t) \to \bar{x}$ for $t \to +\infty$

Then,

$$x(t) = P^t x(0)$$

Suppose that for a given x(0), $x(t) \to \bar{x}$ for $t \to +\infty$

Then,

- $ightharpoonup \bar{x}$ is an equilibrium.
- $\pi'\bar{x} = \pi'x(0)$ for every invariant distribution π

$$x(t) = P^t x(0)$$

Suppose that for a given x(0), $x(t) \to \bar{x}$ for $t \to +\infty$

Then,

- \bar{x} is an equilibrium.
- $\pi'\bar{x} = \pi'x(0)$ for every invariant distribution π Proof: $\pi' x(t) \to \pi' \bar{x}$, $\pi' x(t) = \pi' x(0) \ \forall t$. Hence, $\pi' \bar{x} = \pi' x(0)$.

$$x(t) = P^t x(0)$$

Suppose that for a given x(0), $x(t) \to \bar{x}$ for $t \to +\infty$

Then.

- $ightharpoonup \bar{x}$ is an equilibrium.
- $\pi'\bar{x} = \pi'x(0)$ for every invariant distribution π Proof: $\pi' x(t) \to \pi' \bar{x}$, $\pi' x(t) = \pi' x(0) \ \forall t$. Hence, $\pi' \bar{x} = \pi' x(0)$.
- When $s_G = 1$, $x(t) \rightarrow \bar{x} = \alpha \mathbb{1}$ and

$$\alpha = \pi'\bar{x} = \pi'x(0) = \sum_{k \in \mathcal{V}} \pi_k x_k(0)$$

where π is the only invariant distribution of P

$$x(t) = P^t x(0)$$

When does it converge?

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$$
 2-line simple graph:

$$\bigcirc$$

$$W = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$$
 2-line simple graph:

$$W = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$x(0) = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}, \ x(1) = Px(0) = \begin{pmatrix} \beta \\ \alpha \end{pmatrix}$$

 $\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$ 2-line simple graph:

$$W = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$x(0) = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}, \ x(1) = Px(0) = \begin{pmatrix} \beta \\ \alpha \end{pmatrix}$$

$$t \text{ even } x(t) = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}, \quad t \text{ odd } x(t) = \begin{pmatrix} \beta \\ \alpha \end{pmatrix}$$

If $\alpha \neq \beta$, no convergence!

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$$
 2-line simple graph:

$$W = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$x(0) = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}, \ x(1) = Px(0) = \begin{pmatrix} \beta \\ \alpha \end{pmatrix}$$

$$t \text{ even } x(t) = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}, \quad t \text{ odd } x(t) = \begin{pmatrix} \beta \\ \alpha \end{pmatrix}$$

If $\alpha \neq \beta$, no convergence!

The graph above is not aperiodic....

Asymptotics of French-De Groot learning model

Theorem

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$$
 strongly connected, aperiodic. $x(t) = P^t x(0)$

$$\lim_{t\to+\infty} x(t) = \alpha \mathbb{1}$$

with

$$\alpha = \pi' x(0) = \sum_{k} \pi_{k} x_{k}(0) \quad \forall i$$

where $\pi = P'\pi$ is the unique invariant distribution of P.

Asymptotics of French-De Groot learning model

Theorem

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$$
 strongly connected, aperiodic. $x(t) = P^t x(0)$

$$\lim_{t\to+\infty} x(t) = \alpha \mathbb{1}$$

with

$$\alpha = \pi' x(0) = \sum_{k} \pi_{k} x_{k}(0) \quad \forall i$$

where $\pi = P'\pi$ is the unique invariant distribution of P.

- All opinions converge to a common value: CONSENSUS
- ▶ The consensus value $\pi'x(0)$ is a convex combination of the original opinions weighted by the invariant distribution centralities of the various agents.
- The invariant distribution centrality is a measure of the social power of an agent in the French-De Groot learning process.

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$$

$$P = \begin{pmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 1/4 & 0 & 1/4 & 1/4 & 1/4 \\ 1/3 & 1/3 & 0 & 1/3 & 0 \\ 0 & 1/2 & 1/2 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$

$$x(t) = P^{t}x(0), x(0) = (0, 1, 2, 5, 3)$$

$$\lim_{t \to +\infty} x(t)?$$

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$$

$$P = \begin{pmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 1/4 & 0 & 1/4 & 1/4 & 1/4 \\ 1/3 & 1/3 & 0 & 1/3 & 0 \\ 0 & 1/2 & 1/2 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$

$$x(t) = P^t x(0), x(0) = (0, 1, 2, 5, 3)$$

$$\lim_{t \to +\infty} x(t)?$$

- G is strongly connected and aperiodic
- $\lim_{t \to +\infty} x_i(t) = \pi' x(0) \text{ for every } i$

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$$

$$P = \begin{pmatrix} 0 & 1/2 & 1/2 & 0 & 0 \\ 1/4 & 0 & 1/4 & 1/4 & 1/4 \\ 1/3 & 1/3 & 0 & 1/3 & 0 \\ 0 & 1/2 & 1/2 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$

$$x(t) = P^{t}x(0), x(0) = (0, 1, 2, 5, 3)$$

$$\lim_{t \to +\infty} x(t)?$$

- G is strongly connected and aperiodic
- $\lim_{t\to +\infty} x_i(t) = \pi' x(0)$ for every i
- \triangleright \mathcal{G} is undirected, unweighted \Rightarrow $\pi = (1/6, 1/3, 1/4, 1/6, 1/12)$
- $\pi' x(0) =$ 1/3 + 1/2 + 5/6 + 1/4 = 23/12

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$$

$$P = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1/3 & 1/3 & 1/3 \\ 1/2 & 1/2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$

$$x(t) = P^{t}x(0), x(0) = (0, 1, 2, 5, 3)$$

$$\lim_{t \to +\infty} x(t)?$$

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$$

$$P = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1/3 & 1/3 & 1/3 \\ 1/2 & 1/2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$

$$x(t) = P^{t}x(0), x(0) = (0, 1, 2, 5, 3)$$

$$\lim_{t \to +\infty} x(t)?$$

- $\triangleright \mathcal{G}$ str. conn. and aperiodic
- $\lim_{t\to +\infty} x_i(t) = \pi' x(0) \text{ for every } i$
- Computation of π :

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$$

$$P = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1/3 & 1/3 & 1/3 \\ 1/2 & 1/2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$

$$x(t) = P^{t}x(0), x(0) = (0, 1, 2, 5, 3)$$

$$\lim_{t\to+\infty} x(t)?$$

- $\triangleright \mathcal{G}$ str. conn. and aperiodic
- $\lim_{t\to +\infty} x_i(t) = \pi' x(0) \text{ for every } i$
- ightharpoonup Computation of π :

$$\begin{cases} \pi_1 &= \pi_3/2 \\ \pi_2 &= \pi_1 + \pi_3/2 + \pi_5 \\ \pi_3 &= \pi_2/3 + \pi_4 \\ \pi_5 &= \pi_4 = \pi_2/3 \end{cases}$$

$$\pi = (1/8, 3/8, 1/4, 1/8, 1/8)$$

$$\pi'x(0) = 1/2 + 1/2 + 5/8 + 3/8 = 2$$

- ▶ Social network $\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$ str. connected aperiodic
- ▶ The initial opinion is a noisy measurement of a true variable μ :

$$x_i(0) = \mu + N_i$$
, N_i independent r.v. $\mathbb{E}[N_i] = 0 \operatorname{Var}(N_i) = \sigma^2$

French-De Groot learning model x(t+1) = Px(t)

- ▶ Social network $\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$ str. connected aperiodic
- ▶ The initial opinion is a noisy measurement of a true variable μ :

$$x_i(0) = \mu + N_i$$
, N_i independent r.v. $\mathbb{E}[N_i] = 0 \operatorname{Var}(N_i) = \sigma^2$

- French-De Groot learning model x(t+1) = Px(t)
- $\blacktriangleright x_i(t) \rightarrow \pi' x(0) = \sum_k \pi_k (\mu + N_k) = \mu + \sum_k \pi_k N_k$

- ▶ Social network $\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$ str. connected aperiodic
- ▶ The initial opinion is a noisy measurement of a true variable μ :

$$x_i(0) = \mu + N_i$$
, N_i independent r.v. $\mathbb{E}[N_i] = 0 \operatorname{Var}(N_i) = \sigma^2$

- French-De Groot learning model x(t+1) = Px(t)
- \blacktriangleright $x_i(t) \rightarrow \pi' x(0) = \sum_k \pi_k(\mu + N_k) = \mu + \sum_k \pi_k N_k$
- $\triangleright \operatorname{Var}(\sum \pi_k N_k) = \sigma^2 \sum \pi_k^2$ \mathcal{G} strongly connected, $\pi_i > 0$ for all i, then, $\sum \pi_k^2 < \sum \pi_k = 1$.

- ▶ Social network $\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$ str. connected aperiodic
- ▶ The initial opinion is a noisy measurement of a true variable μ :

$$x_i(0) = \mu + N_i$$
, N_i independent r.v. $\mathbb{E}[N_i] = 0 \operatorname{Var}(N_i) = \sigma^2$

- French-De Groot learning model x(t+1) = Px(t)
- \blacktriangleright $x_i(t) \rightarrow \pi' x(0) = \sum_k \pi_k(\mu + N_k) = \mu + \sum_k \pi_k N_k$
- $\triangleright \operatorname{Var}(\sum \pi_k N_k) = \sigma^2 \sum \pi_k^2$ \mathcal{G} strongly connected, $\pi_i > 0$ for all i, then, $\sum \pi_k^2 < \sum \pi_k = 1$.
 - $Var(\sum \pi_k N_k) < \sigma^2$ Crowd is wiser than a single!

Wisdom of crowds and wise societies

- ▶ Social network $\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$ str. connected aperiodic
- ▶ The initial opinion is a noisy measurement of a true variable μ :

$$x_i(0) = \mu + N_i$$
, N_i independent r.v. $\mathbb{E}[N_i] = 0 \text{ Var}(N_i) = \sigma^2$

- French-De Groot learning model x(t+1) = Px(t)
- \blacktriangleright $x_i(t) \rightarrow \pi' x(0) = \sum_k \pi_k(\mu + N_k) = \mu + \sum_k \pi_k N_k$
- $\triangleright \operatorname{Var}(\sum \pi_k N_k) = \sigma^2 \sum \pi_k^2$ \mathcal{G} strongly connected, $\pi_i > 0$ for all i, then, $\sum \pi_k^2 < \sum \pi_k = 1$. $\operatorname{Var}(\sum \pi_k N_k) < \sigma^2$ Crowd is wiser than a single!
- Asymptotic wisdom: $\lim_{n \to +\infty} \pi' x(0) = \mu \Leftrightarrow \lim_{n \to +\infty} \max_k \pi_k = 0$ (Golub and Jackson, 2010)

The many applications of averaging dynamics

- ► A simple model for opinion fusion, social power, and consensus formation
- ▶ The basis of many distributed algorithms
 - Decentralized computation in sensor networks
 - Load balancing in computer networks
 - Clock syncronization
 - Relative localization
 - Coordination dynamics of robot networks.

Asymptotics of French-De Groot learning model

Theorem

 $\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$ strongly connected, aperiodic. $x(t) = P^t x(0)$

$$\lim_{t\to+\infty} x(t) = \alpha \mathbb{1}$$

with

$$\alpha = \pi' x(0) = \sum_{k} \pi_{k} x_{k}(0) \quad \forall i$$

where $\pi = P'\pi$ is the unique invariant distribution of P.

We are left with proving convergence.

All remaining facts follow from previous arguments.

Asymptotics of French-De Groot learning model

Theorem

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$$
 strongly connected, aperiodic. $x(t) = P^t x(0)$

$$\lim_{t\to+\infty} x(t) = \alpha \mathbb{1}$$

with

$$\alpha = \pi' x(0) = \sum_{k} \pi_{k} x_{k}(0) \quad \forall i$$

where $\pi = P'\pi$ is the unique invariant distribution of P.

We are left with proving convergence.

All remaining facts follow from previous arguments.

There are extensions for more general graphs.

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$$
 strongly connected, aperiodic. $x(t) = P^t x(0)$

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$$
 strongly connected, aperiodic. $x(t) = P^t x(0)$

►
$$M = P - 1\pi'$$

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$$
 strongly connected, aperiodic. $x(t) = P^t x(0)$

$$M = P - 1\pi'$$

$$M^{2} = (P - 1\pi')(P - 1\pi')$$

$$= P^{2} - 1\pi'P - P1\pi' + 1\pi'1\pi'$$

$$= P^{2} - 1\pi' - 1\pi' + 1\pi'$$

$$= P^{2} - 1\pi'$$

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$$
 strongly connected, aperiodic. $x(t) = P^t x(0)$

- $M = P 1\pi'$
- $M^t = P^t 1\pi'$

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$$
 strongly connected, aperiodic. $x(t) = P^t x(0)$

- $M = P 1\pi'$
- $M^t = P^t 1\pi'$
- Eigenvalues of M:

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$$
 strongly connected, aperiodic. $x(t) = P^t x(0)$

- $M = P 1 \pi'$
- $M^t = P^t 1\pi'$
- Eigenvalues of M:
 - $M1 = P1 1\pi'1 = 1 1 = 0$. $\pi'M = 0$

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$$
 strongly connected, aperiodic. $x(t) = P^t x(0)$

- $M = P 1 \pi'$
- $M^t = P^t 1\pi'$
- Eigenvalues of M:
 - $M1 = P1 1\pi'1 = 1 1 = 0$. $\pi'M = 0$
 - $Mx = \lambda x$ with $\lambda \neq 0$ and $x \neq 0$ $0 = \pi' M x = \lambda \pi' x$, hence $\pi' x = 0$ and M x = P x.

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$$
 strongly connected, aperiodic. $x(t) = P^t x(0)$

- $M = P 1\pi'$
- $M^t = P^t 1\pi'$
- Eigenvalues of M:
 - $M1 = P1 1\pi'1 = 1 1 = 0$. $\pi'M = 0$
 - $Mx = \lambda x$ with $\lambda \neq 0$ and $x \neq 0$ $0 = \pi' M x = \lambda \pi' x$, hence $\pi' x = 0$ and M x = P x.
 - $Px = \lambda x$

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$$
 strongly connected, aperiodic. $x(t) = P^t x(0)$

- $M = P 1\pi'$
- $M^t = P^t 1\pi'$
- Eigenvalues of M:
 - $M1 = P1 1\pi'1 = 1 1 = 0$. $\pi'M = 0$
 - $Mx = \lambda x$ with $\lambda \neq 0$ and $x \neq 0$ $0 = \pi' M x = \lambda \pi' x$, hence $\pi' x = 0$ and M x = P x,
 - $Px = \lambda x$
 - $\pi' x = 0$ implies $x \neq \alpha 1$. Hence $\lambda \neq 1$

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$$
 strongly connected, aperiodic. $x(t) = P^t x(0)$

- $M = P 1\pi'$
- $M^t = P^t 1\pi'$
- Eigenvalues of M:
 - $M1 = P1 1\pi'1 = 1 1 = 0$. $\pi'M = 0$
 - $Mx = \lambda x$ with $\lambda \neq 0$ and $x \neq 0$ $0 = \pi' M x = \lambda \pi' x$, hence $\pi' x = 0$ and M x = P x,
 - $Px = \lambda x$
 - $\pi' x = 0$ implies $x \neq \alpha 1$. Hence $\lambda \neq 1$
 - \triangleright \mathcal{G} str. connected, aperiodic yields $|\lambda| < 1$

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$$
 strongly connected, aperiodic. $x(t) = P^t x(0)$

- $M = P 1\pi'$
- $M^t = P^t 1\pi'$
- Eigenvalues of M:

$$M1 = P1 - 1\pi'1 = 1 - 1 = 0, \pi'M = 0$$

- $Mx = \lambda x$ with $\lambda \neq 0$ and $x \neq 0$ $0 = \pi' M x = \lambda \pi' x$, hence $\pi' x = 0$ and M x = P x,
- $Px = \lambda x$
- $\pi' x = 0$ implies $x \neq \alpha 1$. Hence $\lambda \neq 1$
- \triangleright \mathcal{G} str. connected, aperiodic yields $|\lambda| < 1$
- $\lambda \in \sigma(M) \Rightarrow |\lambda| < 1$

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$$
 strongly connected, aperiodic. $x(t) = P^t x(0)$

- $M = P 1 \pi'$
- $M^t = P^t 1\pi'$
- $\lambda \in \sigma(M) \Rightarrow |\lambda| < 1$

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$$
 strongly connected, aperiodic. $x(t) = P^t x(0)$

- $M = P 1\pi'$
- $M^t = P^t 1\pi'$
- $\lambda \in \sigma(M) \Rightarrow |\lambda| < 1$
- General fact: if M is a squared matrix with all eigenvalues λ such that $|\lambda| < 1$, then $M^t \to 0$ (proof using Jordan form)

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$$
 strongly connected, aperiodic. $x(t) = P^t x(0)$

- $M = P 1\pi'$
- $M^t = P^t 1\pi'$
- $\lambda \in \sigma(M) \Rightarrow |\lambda| < 1$
- General fact: if M is a squared matrix with all eigenvalues λ such that $|\lambda| < 1$, then $M^t \to 0$ (proof using Jordan form)
- $M^t = P^t 1\pi' \to 0 \Rightarrow P^t x(0) 1\pi' x(0) \to 0$ Hence, $P^t x(0) \rightarrow (\pi' x(0)) \mathbb{1}$

Contractive properties of stochastic matrices

Contractive properties of stochastic matrices

Q stochastic matrix: $Q_{ij} \geq 0$, $\sum_{i} Q_{ij} = 1$ for every i.

Consider a vector x and y = Qx.

Contractive properties of stochastic matrices

Q stochastic matrix: $Q_{ij} \geq 0$, $\sum_{i} Q_{ij} = 1$ for every i.

Consider a vector x and y = Qx.

$$y_i = \sum_{j} Q_{ij} x_j \begin{cases} \leq \sum_{j} Q_{ij} x_{\text{max}} = x_{\text{max}} \\ \geq \sum_{j} Q_{ij} x_{\text{min}} = x_{\text{min}} \end{cases}$$

Contractive properties of stochastic matrices

Q stochastic matrix: $Q_{ij} \geq 0$, $\sum_{i} Q_{ij} = 1$ for every i.

Consider a vector x and y = Qx.

$$y_{i} = \sum_{j} Q_{ij} x_{j} \begin{cases} \leq \sum_{j} Q_{ij} x_{\max} = x_{\max} \\ \geq \sum_{j} Q_{ij} x_{\min} = x_{\min} \end{cases}$$
$$\Rightarrow x_{\min} \leq y_{\min} \leq y_{\max} \leq x_{\max}$$

Contractive properties of stochastic matrices

Q stochastic matrix: $Q_{ij} \geq 0$, $\sum_{i} Q_{ij} = 1$ for every i.

Consider a vector x and v = Qx.

$$y_{i} = \sum_{j} Q_{ij} x_{j} \begin{cases} \leq \sum_{j} Q_{ij} x_{\max} = x_{\max} \\ \geq \sum_{j} Q_{ij} x_{\min} = x_{\min} \end{cases}$$
$$\Rightarrow x_{\min} \leq y_{\min} \leq y_{\max} \leq x_{\max}$$
$$\Rightarrow y_{\max} - y_{\min} \leq x_{\max} - x_{\min}$$

Contractive properties of stochastic matrices

Q stochastic matrix: $Q_{ij} \geq 0$, $\sum_{i} Q_{ij} = 1$ for every i.

Consider a vector x and v = Qx.

Put $x_{\text{max}} = \max x_i$, $x_{\text{min}} = \min x_i$.

$$y_{i} = \sum_{j} Q_{ij} x_{j} \begin{cases} \leq \sum_{j} Q_{ij} x_{\max} = x_{\max} \\ \geq \sum_{j} Q_{ij} x_{\min} = x_{\min} \end{cases}$$
$$\Rightarrow x_{\min} \leq y_{\min} \leq y_{\max} \leq x_{\max}$$
$$\Rightarrow y_{\max} - y_{\min} \leq x_{\max} - x_{\min}$$

Not yet a real contraction... we have not used connectivity and aperiodicity so far!

Lemma

Let Q be a stochastic matrix for which there exist $\alpha > 0$ and an index k such that $Q_{ik} > \alpha$ for all i. Then, v = Qx satisfies

$$y_{\text{max}} - y_{\text{min}} \le (1 - \alpha)(x_{\text{max}} - x_{\text{min}})$$

$$y_i = \sum_{j} Q_{ij} x_j = \sum_{j} Q_{ij} (x_j - x_{\min}) + \sum_{j} Q_{ij} x_{\min}$$

$$\geq \alpha (x_k - x_{\min}) + x_{\min} = \alpha x_k + (1 - \alpha) x_{\min}$$

$$y_i = \sum_{j} Q_{ij} x_j = \sum_{j} Q_{ij} (x_j - x_{\max}) + \sum_{j} Q_{ij} x_{\max}$$

$$\leq \alpha (x_k - x_{\max}) + x_{\max} = \alpha x_k + (1 - \alpha) x_{\max}$$

Lemma

Let Q be a stochastic matrix for which there exist $\alpha > 0$ and an index k such that $Q_{ik} \geq \alpha$ for all i. Then, y = Qx satisfies

$$y_{\text{max}} - y_{\text{min}} \le (1 - \alpha)(x_{\text{max}} - x_{\text{min}})$$

For every node *i*:

$$y_i \ge \alpha x_k + (1 - \alpha) x_{\min}$$

 $v_i \le \alpha x_k + (1 - \alpha) x_{\max}$

Lemma

Let Q be a stochastic matrix for which there exist $\alpha > 0$ and an index k such that $Q_{ik} > \alpha$ for all i. Then, v = Qx satisfies

$$y_{\max} - y_{\min} \le (1 - \alpha)(x_{\max} - x_{\min})$$

For every node *i*:

$$y_i \ge \alpha x_k + (1 - \alpha) x_{\min}$$

 $y_i \le \alpha x_k + (1 - \alpha) x_{\max}$

Putting these two inequalities together gives:

$$y_{\text{max}} - y_{\text{min}} \le \alpha x_k + (1 - \alpha) x_{\text{max}} - \alpha x_k - (1 - \alpha) x_{\text{min}}$$
$$= (1 - \alpha) (x_{\text{max}} - x_{\text{min}}),$$

$$G = (V, E, W), P_{ij} = w_i^{-1} W_{ij}, x(t) = P^t x(0)$$

$$G = (V, E, W), P_{ij} = w_i^{-1} W_{ij}, x(t) = P^t x(0)$$

$$[x_{\max}(t+1) - x_{\min}(t+1)] \le (1-\alpha)[x_{\max}(t) - x_{\min}(t)]$$
$$[x_{\max}(t) - x_{\min}(t)] \le (1-\alpha)^t[x_{\max}(0) - x_{\min}(0)]$$

$$\lim_{t\to+\infty} [x_{\max}(t)-x_{\min}(t)]=0$$

$$G = (V, E, W), P_{ij} = w_i^{-1} W_{ij}, x(t) = P^t x(0)$$

$$[x_{\max}(t+1) - x_{\min}(t+1)] \le (1-\alpha)[x_{\max}(t) - x_{\min}(t)]$$
$$[x_{\max}(t) - x_{\min}(t)] \le (1-\alpha)^{t}[x_{\max}(0) - x_{\min}(0)]$$

- $\lim_{t \to \infty} \left[x_{\max}(t) x_{\min}(t) \right] = 0$
- \triangleright $x_{\min}(t) < x_{\min}(t+1) \le x_{\max}(t+1) \le x_{\max}(t)$ monotonicity

$$\lim_{t\to+\infty} x_{\max}(t) = \bar{x} = \lim_{t\to+\infty} x_{\min}(t)$$

$$G = (V, E, W), P_{ij} = w_i^{-1} W_{ij}, x(t) = P^t x(0)$$

$$[x_{\max}(t+1) - x_{\min}(t+1)] \le (1-\alpha)[x_{\max}(t) - x_{\min}(t)]$$
$$[x_{\max}(t) - x_{\min}(t)] \le (1-\alpha)^{t}[x_{\max}(0) - x_{\min}(0)]$$

- $\lim_{t \to \infty} \left[x_{\max}(t) x_{\min}(t) \right] = 0$
- \triangleright $x_{\min}(t) < x_{\min}(t+1) \le x_{\max}(t+1) \le x_{\max}(t)$ monotonicity

$$\lim_{t \to +\infty} x_{\max}(t) = \bar{x} = \lim_{t \to +\infty} x_{\min}(t) \Rightarrow \lim_{t \to +\infty} x_i(t) = \bar{x} \ \forall i \text{ consensus}$$

 $\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$ strongly connected, aperiodic.

When P satisfies the assumption of the Lemma: $P_{ik} \geq \alpha \ \forall i$?

 $\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$ strongly connected, aperiodic.

When P satisfies the assumption of the Lemma: $P_{ik} \ge \alpha \ \forall i$?

There must exist a *global influencer*, a node to which all others are directly connected!

This is a quite strong assumption!

However,

Lemma

 $\mathcal{G} = (\mathcal{V}, \mathcal{E}, P)$ strongly connected, aperiodic. There exists $m \in \mathbb{N}$ such that $P_{ii}^m > 0$ for every i, j.

The alternative proof

- ▶ There exists $m \in \mathbb{N}$ such that $P_{ij}^m > 0$ for every i, j.
- $Put \alpha = \min_{ij} P_{ij}^m.$

The alternative proof

- ▶ There exists $m \in \mathbb{N}$ such that $P_{ij}^m > 0$ for every i, j.
- $Put \alpha = \min_{ij} P_{ij}^m.$
- ightharpoonup Apply the Contraction lemma to P^m :

- ▶ There exists $m \in \mathbb{N}$ such that $P_{ii}^m > 0$ for every i, j.
- $Put \alpha = \min_{ij} P_{ii}^m.$
- \triangleright Apply the Contraction lemma to P^m :
 - $[x_{\max}(tm) x_{\min}(tm)] \le (1-\alpha)^t [x_{\max}(0) x_{\min}(0)]$

- ▶ There exists $m \in \mathbb{N}$ such that $P_{ii}^m > 0$ for every i, j.
- $Put \alpha = \min_{ij} P_{ii}^m.$
- \triangleright Apply the Contraction lemma to P^m :
 - $[x_{\max}(tm) x_{\min}(tm)] \le (1-\alpha)^t [x_{\max}(0) x_{\min}(0)]$
 - $\lim_{t \to +\infty} [x_{\max}(tm) x_{\min}(tm)] = 0$

- ▶ There exists $m \in \mathbb{N}$ such that $P_{ii}^m > 0$ for every i, j.
- $Put \alpha = \min_{ij} P_{ii}^m.$
- \triangleright Apply the Contraction lemma to P^m :
 - $[x_{\max}(tm) x_{\min}(tm)] \le (1-\alpha)^t [x_{\max}(0) x_{\min}(0)]$
 - $\lim_{t \to -\infty} \left[x_{\max}(tm) x_{\min}(tm) \right] = 0$
- $x_{\min}(t) \le x_{\min}(t+1) \le x_{\max}(t+1) \le x_{\max}(t)$ monotonicity

- ▶ There exists $m \in \mathbb{N}$ such that $P_{ii}^m > 0$ for every i, j.
- ightharpoonup Put $\alpha = \min_{ii} P_{ii}^m$.
- \triangleright Apply the Contraction lemma to P^m :
 - $[x_{\max}(tm) x_{\min}(tm)] \le (1-\alpha)^t [x_{\max}(0) x_{\min}(0)]$
 - $\lim_{t \to -\infty} \left[x_{\max}(tm) x_{\min}(tm) \right] = 0$
- $x_{\min}(t) \le x_{\min}(t+1) \le x_{\max}(t+1) \le x_{\max}(t)$ monotonicity
- $ightharpoonup \Rightarrow \lim_{t \to +\infty} x_i(t) = \bar{x}$

Extensions of the main theorem

 $\mathcal G$ possesses a globally reachable connected component $\mathcal C_0$ (equivalently, the condensation graph has just one sink $s_{\mathcal G}=1$) that is aperiodic.

- ▶ Global reachability: Fix $k \in C_0$. For every i, $P_{ik}^{m_i} > 0$ for some m_i .
- ▶ Aperiodicity lemma $P_{kk}^q > 0$ for every $q \ge m$
- $P_{ik}^s > 0$ for every i, where $s = \max m_i + m$.
- Apply the contractive lemma again!

The most general result

Theorem

If G = (V, E, W) possesses a globally reachable aperiodic component C_0 , then

$$\lim_{t\to +\infty} x_i(t) = \pi' x(0) \quad \forall i$$

where $\pi = P'\pi$ is the invariant measure centrality of the graph

 π has support only on the globally reachable component.

The opinions of agents not belonging to the globally reachable component have no influence on the final consensus value.

A remark

$$P^t \rightarrow 1\pi'$$

Namely, P^t converges to a matrix where the rows are all the same, equal to the invariant distribution centrality π .

The most general result

No further generalization is possible:

No influence between nodes in C' and C''.

Nodes in C' and C'' (if the components are aperiodic) will reach separated consensus depending on their own initial opinions.

No global consensus

The most general result

- ▶ Lack of periodicity \Rightarrow no convergence.
- More than one sink in the condensation graph ⇒ no consensus.

Example

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$$

$$P = ???$$

$$x(t) = P^{t}x(0), x(0) = (0, 1, 2, 5, 3)$$

$$\lim_{t \to +\infty} x(t)?$$

Example

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$$

 $ightharpoonup \mathcal{G}$ has an aperiodic globally reachable component

$$P = ???$$

$$x(t) = P^{t}x(0), x(0) = (0, 1, 2, 5, 3)$$

$$\lim_{t \to +\infty} x(t)?$$

Example

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$$

$$P = ???$$

$$x(t) = P^{t}x(0), x(0) = (0, 1, 2, 5, 3)$$

$$\lim_{t \to +\infty} x(t)?$$

- G has an aperiodic globally reachable component
- $\lim_{t\to+\infty} x_i(t) = \pi' x(0) \text{ for every } i$
- $\pi = (1/3, 1/3, 1/3, 0, 0)$
- $\pi' x(0) = 1$

Other applications of the linear averaging dynamics

The basis of many distributed algorithms

- Decentralized computation in sensor networks
- Load balancing in computer networks
- Clock syncronization
- Relative localization
- Coordination dynamics of robot networks.

Other applications of the linear averaging dynamics

The basis of many distributed algorithms

- Decentralized computation in sensor networks
- Load balancing in computer networks
- Clock syncronization
- Relative localization
- Coordination dynamics of robot networks.

 $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ set of units (sensors) connected through a network

 $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ set of units (sensors) connected through a network

Goal: compute some global function $f(x_i | i \in V)$

 $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ set of units (sensors) connected through a network

Goal: compute some global function $f(x_i | i \in \mathcal{V})$

Constraints:

- no supervision, decentralized design;
- use only the available communication links;
- time and computation complexity scaling well w.r. to size $n = |\mathcal{V}|$;

 $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ set of units (sensors) connected through a network

Goal: compute some global function $f(x_i | i \in \mathcal{V})$

Examples:

 x_i internal state (e.g. level of energy) or the result of a measurement (temperature, presence detection, fire detection)

 $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ set of units (sensors) connected through a network

Goal: compute some global function $f(x_i | i \in \mathcal{V})$

Examples:

 x_i internal state (e.g. level of energy) or the result of a measurement (temperature, presence detection, fire detection)

f computing some statistics of the data:

- ightharpoonup average value $\bar{x} = n^{-1} \sum x_i$
- ightharpoonup variance $n^{-1}\sum_{i}(x_i-\bar{x})^2$
- $\max x_i$, $\min x_i$
- fraction of nodes s.t. $x_i \ge \alpha$

 $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ undirected str. connected, $i \in \mathcal{V} \to x_i$ state

Goal: compute $\bar{x} = n^{-1} \sum x_i$

 $\mathcal{G}=(\mathcal{V},\mathcal{E})$ undirected str. connected, $i\in\mathcal{V}\to x_i$ state Goal: compute $\bar{x}=n^{-1}\sum x_i$ Idea: use averaging dynamics.

 $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ undirected str. connected, $i \in \mathcal{V} \to x_i$ state Goal: compute $\bar{x} = n^{-1} \sum x_i$ Idea: use averaging dynamics.

W adjacency matrix of \mathcal{G} , $P = (D^{-1}W + I)/2$

 $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ undirected str. connected, $i \in \mathcal{V} \to x_i$ state

Goal: compute $\bar{x} = n^{-1} \sum x_i$ Idea: use averaging dynamics.

W adjacency matrix of \mathcal{G} , $P = (D^{-1}W + I)/2$

Important remark: in this case, there is not an a-priori choice for the matrix P: this just becomes a *design* choice.

Given an $n \times n$ matrix P, we can consider the associated graph $\mathcal{G}_P = (\mathcal{V}, \mathcal{E})$ where

$$V = \{1, ..., n\}, \ \mathcal{E} = \{(i, j) | P_{ij} > 0\}$$

Notice that, with the choice above, $G_P = G \cup \{selfloops\}$: to implement P we only need to communicate along the edges of the graph G; use of self-loops is not an issue.

 $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ undirected str. connected, $i \in \mathcal{V} \to x_i$ state Goal: compute $\bar{x} = n^{-1} \sum x_i$ Idea: use averaging dynamics.

W adjacency matrix of \mathcal{G} , $P = (D^{-1}W + I)/2$

$$x(t+1) = Px(t), x(0)_i = x_i$$

 $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ undirected str. connected, $i \in \mathcal{V} \to x_i$ state Goal: compute $\bar{x} = n^{-1} \sum x_i$ Idea: use averaging dynamics.

W adjacency matrix of \mathcal{G} , $P = (D^{-1}W + I)/2$

$$x(t+1) = Px(t), x(0)_i = x_i$$

$$x(t+1)_i = \frac{1}{2}x(t)_i + \frac{1}{2w_i}\sum_{j\in N_i}x(t)_j$$

 $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ undirected str. connected, $i \in \mathcal{V} \to x_i$ state Goal: compute $\bar{x} = n^{-1} \sum x_i$ Idea: use averaging dynamics.

W adjacency matrix of \mathcal{G} , $P = (D^{-1}W + I)/2$

$$x(t+1) = Px(t), \ x(0)_i = x_i$$

 $\mathcal{G}_P = \mathcal{G} \cup \{selfloops\} \text{ str. connected, aperiodic}$

 $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ undirected str. connected, $i \in \mathcal{V} \to x_i$ state Goal: compute $\bar{x} = n^{-1} \sum x_i$ Idea: use averaging dynamics.

W adjacency matrix of \mathcal{G} , $P = (D^{-1}W + I)/2$

$$x(t+1) = Px(t), \ x(0)_i = x_i$$

 $\mathcal{G}_P = \mathcal{G} \cup \{selfloops\} \text{ str. connected, aperiodic}$

$$\Rightarrow$$
 $x(t)_i \rightarrow x^* = \sum \pi_j x_j$ $\pi_j = w_j/|\mathcal{E}|$ centrality

$$((D^{-1}W)'\pi = \pi \Leftrightarrow P'\pi = \pi)$$

 $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ undirected str. connected, $i \in \mathcal{V} \to x_i$ state Goal: compute $\bar{x} = n^{-1} \sum x_i$ Idea: use averaging dynamics.

W adjacency matrix of \mathcal{G} , $P = (D^{-1}W + I)/2$

$$x(t+1) = Px(t), \ x(0)_i = x_i$$

 $\mathcal{G}_P = \mathcal{G} \cup \{selfloops\} \text{ str. connected, aperiodic}$

$$\Rightarrow$$
 $x(t)_i o x^* = \sum \pi_j x_j \qquad \pi_j = w_j/|\mathcal{E}|$ centrality

$$((D^{-1}W)'\pi = \pi \Leftrightarrow P'\pi = \pi)$$

 $x^* = \bar{x} \Leftrightarrow \mathcal{G}$ is regular

 $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ undirected str. connected, $i \in \mathcal{V} \to x_i$ state Goal: compute $\bar{x} = n^{-1} \sum x_i$ Idea: use averaging dynamics.

W adjacency matrix of \mathcal{G} , $P = (D^{-1}W + I)/2$

$$x(t+1) = Px(t), \ x(0)_i = x_i$$

 $\mathcal{G}_P = \mathcal{G} \cup \{selfloops\} \text{ str. connected, aperiodic}$

$$\Rightarrow$$
 $x(t)_i o x^* = \sum \pi_j x_j \qquad \pi_j = w_j/|\mathcal{E}|$ centrality

$$((D^{-1}W)'\pi = \pi \Leftrightarrow P'\pi = \pi)$$

 $x^* = \bar{x} \Leftrightarrow \mathcal{G}$ is regular What if \mathcal{G} is not regular?

 $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ undirected str. connected, $i \in \mathcal{V} \to x_i$ state

Goal: compute $\bar{x} = n^{-1} \sum x_i$

Possible solutions:

Use P as follows:

$$\begin{cases} x(t+1) = Px(t), & x(0)_i = x_i/w_i \\ y(t+1) = Py(t), & y(0)_i = 1/w_i \end{cases}$$

Check (exercise): $\frac{x(t)_i}{v(t)_i} \rightarrow \bar{x}$

 $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ undirected str. connected, $i \in \mathcal{V} \to x_i$ state

Goal: compute $\bar{x} = n^{-1} \sum x_i$

Possible solutions:

Use P as follows:

$$\begin{cases} x(t+1) = Px(t), & x(0)_i = x_i/w_i \\ y(t+1) = Py(t), & y(0)_i = 1/w_i \end{cases}$$

Check (exercise): $\frac{x(t)_i}{v(t)} \rightarrow \bar{x}$

▶ Find Q stochastic symmetric s.t. $\mathcal{G}_Q \subseteq \mathcal{G} \cup \{\text{selfloops}\}, \mathcal{G}_Q$ aperiodic (exercise)

$$x(t+1) = Qx(t), x(0)_i = x_i, x(t)_i \rightarrow \bar{x}$$

 $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ set of units (sensors) connected through a network

Goal: compute $\bar{x} = n^{-1} \sum x_i$

Using average consensus algorithms:

- no supervision, decentralized design;
- use only the available communication links;

 $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ set of units (sensors) connected through a network

Goal: compute $\bar{x} = n^{-1} \sum x_i$

Using average consensus algorithms:

- no supervision, decentralized design;
- use only the available communication links;
- time and computation complexity?;

Speed of convergence, performance

Speed of convergence

$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$
 str. connected, $P = (D^{-1}W + I)/2$
 $x(t+1) = Px(t), \quad x(t) \to \mathbb{I}(\pi'x(0))$

How fast x(t) converges to consensus?

Speed of convergence, performance

Speed of convergence

$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$
 str. connected, $P = (D^{-1}W + I)/2$

$$x(t+1) = Px(t), \quad x(t) \rightarrow \mathbb{1}(\pi'x(0))$$

How fast x(t) converges to consensus?

Theorem

 \mathcal{G} undirected str. connected. $P = (D^{-1}W + I)/2$.

• Eigenvalues of P: $1 = \lambda_1 > \lambda_2 \geq \cdots > \lambda_n > 0$

$$||x(t) - \mathbb{1}\pi'x(0)||_2 \le \sqrt{\frac{\max \pi_i}{\min \pi_i}} \lambda_2^t ||x(0)||_2$$

Speed of convergence and computational complexity

$$||x(t) - 1\pi'x(0)||_2 \le \frac{\max \sqrt{\pi_i}}{\min \sqrt{\pi_i}} \lambda_2^t ||x(0)||_2$$

Speed of convergence and computational complexity

$$||x(t) - \mathbb{1}\pi'x(0)||_2 \leq \frac{\max\sqrt{\pi}_i}{\min\sqrt{\pi}_i}\lambda_2^t||x(0)||_2$$

$$\sqrt{\frac{\max\pi_i}{\min\pi_i}}\lambda_2^t \leq \epsilon \Leftrightarrow t \geq \frac{\log(\epsilon^{-1}\max\pi_i/\min\pi_i)}{2\log\lambda_2^{-1}}$$

Speed of convergence, performance

Speed of convergence, performance

Speed of convergence and computational complexity

$$||x(t) - \mathbb{1}\pi'x(0)||_2 \le \frac{\max\sqrt{\pi_i}}{\min\sqrt{\pi_i}}\lambda_2^t||x(0)||_2$$

$$\sqrt{\frac{\max\pi_i}{\min\pi_i}}\lambda_2^t \le \epsilon \Leftrightarrow t \ge \frac{\log(\epsilon^{-1}\max\pi_i/\min\pi_i)}{2\log\lambda_2^{-1}}$$

► Convergence time: $\tau_{conv}(\epsilon) := \frac{\log(\epsilon^{-1} \max \pi_i / \min \pi_i)}{2 \log \lambda_o^{-1}}$ $\log \lambda_2^{-1} \sim 1 - \lambda_2$ spectral gap (for $\lambda_2 \to 1$)

Speed of convergence, performance

Speed of convergence and computational complexity

$$||x(t) - \mathbb{1}\pi'x(0)||_2 \le \frac{\max \sqrt{\pi_i}}{\min \sqrt{\pi_i}} \lambda_2^t ||x(0)||_2$$
$$\sqrt{\frac{\max \pi_i}{\min \pi_i}} \lambda_2^t \le \epsilon \Leftrightarrow t \ge \frac{\log(\epsilon^{-1} \max \pi_i / \min \pi_i)}{2 \log \lambda_2^{-1}}$$

- ► Convergence time: $\tau_{conv}(\epsilon) := \frac{\log(\epsilon^{-1} \max \pi_i / \min \pi_i)}{2 \log \lambda_o^{-1}}$ $\log \lambda_2^{-1} \sim 1 - \lambda_2$ spectral gap (for $\lambda_2 \to 1$)
- Computation complexity per node: $\gamma(\epsilon) = \frac{\tau_{conv}(\epsilon)|\mathcal{E}|}{|\mathcal{V}|}$

Performance comparison

$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$
 family of graphs with increasing size $n = |\mathcal{V}|$

	$1-\lambda_2$	$ au_{conv}$	diam	γ
Line, cycle	C/n^2	Cn ²	Cn	Cn ²
d-dimensional Grids	Cn ^{2/d}	n ^{2/d}	$Cn^{1/d}$	Cdn ^{2/d}
Complete	1/2	1	1	Cn
Expanders	С	C log n	C log n	C log n

Performance comparison

$$\mathcal{G} = (\mathcal{V}, \mathcal{E})$$
 family of graphs with increasing size $n = |\mathcal{V}|$

	$1-\lambda_2$	$ au_{conv}$	diam	γ
Line, cycle	C/n^2	Cn ²	Cn	Cn ²
d-dimensional Grids	Cn ^{2/d}	n ^{2/d}	$Cn^{1/d}$	Cdn ^{2/d}
Complete	1/2	1	1	Cn
Expanders	С	C log n	$C \log n$	C log n

Expanders ⊇ Random graphs, Barabasi, Small world

Network flow dynamics

- Models of transport phenomena
- ► They find applications in several fields: infrastructure networks, epidemiology, ecology, pharmacokinetics
- ▶ In some of the literature they are referred to as compartmental systems

Network flow dynamics

 $\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$ physical network

- \triangleright \mathcal{V} cells containing a homogeneous mass of some matter,
- \triangleright E physical constraints: the matter can flow directly from cell i to cell *i* if $(i, j) \in \mathcal{E}$,
- \triangleright $y_i(t)$ mass present in node i at time t.
- $ightharpoonup f_{ii}(t)$ mass flowing from i to j at time t $(f_{ii}(t) = 0 \text{ if } (i,j) \notin \mathcal{E})$

Mass conservation law prescribes that

$$y_i(t+1) = y_i(t) + \sum_j f_{ji}(t) - \sum_j f_{ij}(t)$$

$$y_i(t+1) = y_i(t) + \sum_j f_{ji}(t) - \sum_j f_{ij}(t)$$

We study the *linear* case: $f_{ii}(t) = y_i(t)P_{ii}$ where $P = D^{-1}W$.

$$y_i(t+1) = y_i(t) + \sum_j f_{ji}(t) - \sum_j f_{ij}(t)$$

We study the *linear* case: $f_{ii}(t) = y_i(t)P_{ii}$ where $P = D^{-1}W$. The amount of matter flowing from i to j is proportional to the amount present in i.

$$y_i(t+1) = y_i(t) + \sum_j y_j(t) P_{ji} - \sum_j y_i(t) P_{ij} = \sum_j y_j(t) P_{ji}$$

$$y_i(t+1) = y_i(t) + \sum_j f_{ji}(t) - \sum_j f_{ij}(t)$$

We study the *linear* case: $f_{ii}(t) = y_i(t)P_{ii}$ where $P = D^{-1}W$. The amount of matter flowing from i to j is proportional to the amount

present in i.

$$y_i(t+1) = y_i(t) + \sum_j y_j(t) P_{ji} - \sum_j y_i(t) P_{ij} = \sum_j y_j(t) P_{ji}$$

Compact notation:

$$y(t+1) = P'y(t)$$

- Equilibria: P'y = y eigenvectors of P' of eigenvalue 1
- Invariant distributions are equilibria (this is why they are called invariant!)
- $\mathbb{1}'y(t+1) = \mathbb{1}'P'y(t) = \mathbb{1}'y(t)$ Total mass is a motion invariant

 $\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$ strongly connected, aperiodic.

 $P = D^{-1}W$, $\pi = P'\pi$ invariant distribution centrality

 $\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$ strongly connected, aperiodic.

 $P = D^{-1}W$, $\pi = P'\pi$ invariant distribution centrality

The only equilibria are scalar multiples of π : $y = a\pi$.

 $\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$ strongly connected, aperiodic.

 $P = D^{-1}W$, $\pi = P'\pi$ invariant distribution centrality

The only equilibria are scalar multiples of π : $y = a\pi$.

$$\lim_{t\to +\infty} P^t = \mathbb{1}\pi'$$

$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$$
 strongly connected, aperiodic.

$$P = D^{-1}W$$
, $\pi = P'\pi$ invariant distribution centrality

The only equilibria are scalar multiples of π : $y = a\pi$.

$$\lim_{t \to +\infty} P^t = \mathbb{1}\pi'$$

$$\lim_{t \to +\infty} y(t) = \lim_{t \to +\infty} P'^t y(0) = \pi \mathbb{1}' y(0)$$

Asymptotically, mass distributes according to π

Continuous time dynamics models

The linear averaging and the linear network flow dynamics on a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$ have an analogue in continuous time:

$$\dot{x} = -Lx, \qquad \dot{y} = -L'y$$

where L = D - W is the Laplacian of \mathcal{G} .

Theorem

Let $\mathcal{G} = (\mathcal{V}, \mathcal{E}, W)$ be a graph and let L be its Laplacian. If $s_{\mathcal{G}} = 1$, then

$$\lim_{t \to +\infty} x(t) = \mathbb{1}\overline{\pi}'x(0) \tag{1}$$

$$\lim_{t \to +\infty} y(t) = \overline{\pi} \mathbb{1}' y(0) \tag{2}$$

where $\overline{\pi}$ is the unique Laplace invariant probability distribution of \mathcal{G} $(L'\overline{\pi} = 0, \ 1'\overline{\pi} = 1).$