TEOREMA FUBINI.

Fix
$$f: [a, b] \neq [c,d] \rightarrow IR$$
 continuo. Atuneo.

$$Sa(Sef(x,y)dy)dx$$

$$Sa(Sef(x,y)dy)dx$$

Exemple

File
$$f: [0,1] \times [12] \to 1R$$
 $f(x,y) = x^2y + y^2$
 $I = S_{[0,1] + [1,2]}$ $f(x,y) dx dy = S_0^1 \left(S_1^2 x^2 y + y^2 dy \right) dx$
 $= S_0^1 \left(\frac{x^2 y^2}{2} + \frac{y^3}{3} \right) \begin{vmatrix} y^2 2 \\ y^2 1 \end{vmatrix}$
 $= S_0^1 \left(2 x^2 + \frac{8}{3} - \frac{x^2}{2} - \frac{1}{3} \right) dx = \frac{8}{2} \cdot \frac{1}{8} + \frac{7}{3} = \frac{17}{6}$
 $I = S_1^2 \left(S_0(x^2 y + y^2) dx \right) dy = S_1^2 \frac{y^2}{3} + y^2 dy = \frac{17}{3} = \frac{17}{6}$
 $= \frac{y^2}{3} + \frac{y^3}{3} + \frac{17}{6} = \frac{17}{6} = \frac{17}{6}$

- 1) $\int_{C_{0},1]\times L(9^{2})} e^{x} y^{3} dx dy$
- 2) S Co1) + Co3 $(1+++y)^2$
 - 3) Scottoft cos(++y) d+ dy
 - 4) Sto, \(\frac{1}{2} \) \(\tau(1,2) \)
- 5) $\int_{[01]+[02]+[0,3]}^{2} \chi_{y}^{2} + \chi_{z}^{3} d\chi dy dz$
- 6) S [0,2) + [0, #] + [1,2] et ming . z³ dx dydz.
- 7) Fix f: [45] + IR Continue, g: [c,d] -> IR continue n'
 h: Tab) + [c,d] -> IR. Anatali' ei (unde h(4,y) = f(6) g(7))

Stubsxied] h(4,9) d+dy = Saflalda. Se g(y)dy.

8) The h: [06] * (cd) ->1Rap

J 2h ri este continua. Atunce,

 $SS \frac{\partial^2 h}{\partial x^2 y} (x,y) dxdy = h(a,c) - h(a,d) + h(c,b) + h(b,d)$ Ea,b) + ced + h(b,d)

T. Fulini

Fix $g, h: \Gamma ab \rightarrow IR$ continue $cu g \leq h$, $\begin{bmatrix} g, h = f(x, y) \mid + \sigma \Gamma a, b \Rightarrow y \in \Gamma g(y), h(x) \end{cases} f(x)$ $\begin{cases} f, h \rightarrow IR \text{ continua} \text{ atunei} \end{cases}$ $\begin{cases} f, h \rightarrow IR \text{ continua} \text{ atunei} \end{cases}$ $\begin{cases} f, h \rightarrow IR \text{ continua} \text{ atunei} \end{cases}$ $\begin{cases} f, h \rightarrow IR \text{ continua} \text{ atunei} \end{cases}$ $\begin{cases} f, h \rightarrow IR \text{ continua} \text{ atunei} \end{cases}$ $\begin{cases} f, h \rightarrow IR \text{ continua} \text{ atunei} \end{cases}$ $\begin{cases} f, h \rightarrow IR \text{ continua} \text{ atunei} \end{cases}$ $\begin{cases} f, h \rightarrow IR \text{ continua} \text{ atunei} \end{cases}$ $\begin{cases} f, h \rightarrow IR \text{ continua} \text{ atunei} \end{cases}$ $\begin{cases} f, h \rightarrow IR \text{ continua} \text{ atunei} \end{cases}$ $\begin{cases} f, h \rightarrow IR \text{ continua} \text{ atunei} \end{cases}$ $\begin{cases} f, h \rightarrow IR \text{ continua} \text{ atunei} \end{cases}$ $\begin{cases} f, h \rightarrow IR \text{ continua} \text{ atunei} \end{cases}$ $\begin{cases} f, h \rightarrow IR \text{ continua} \text{ atunei} \end{cases}$ $\begin{cases} f, h \rightarrow IR \text{ continua} \text{ atunei} \end{cases}$ $\begin{cases} f, h \rightarrow IR \text{ continua} \text{ atunei} \end{cases}$ $\begin{cases} f, h \rightarrow IR \text{ continua} \text{ atunei} \end{cases}$ $\begin{cases} f, h \rightarrow IR \text{ continua} \text{ atunei} \end{cases}$ $\begin{cases} f, h \rightarrow IR \text{ continua} \text{ atunei} \end{cases}$ $\begin{cases} f, h \rightarrow IR \text{ continua} \text{ atunei} \end{cases}$ $\begin{cases} f, h \rightarrow IR \text{ continua} \text{ atunei} \end{cases}$ $\begin{cases} f, h \rightarrow IR \text{ continua} \text{ atunei} \end{cases}$ $\begin{cases} f, h \rightarrow IR \text{ continua} \text{ atunei} \end{cases}$ $\begin{cases} f, h \rightarrow IR \text{ continua} \text{ atunei} \end{cases}$ $\begin{cases} f, h \rightarrow IR \text{ continua} \text{ atunei} \end{cases}$ $\begin{cases} f, h \rightarrow IR \text{ continua} \text{ atunei} \end{cases}$ $\begin{cases} f, h \rightarrow IR \text{ continua} \text{ atunei} \end{cases}$ $\begin{cases} f, h \rightarrow IR \text{ continua} \text{ atunei} \end{cases}$ $\begin{cases} f, h \rightarrow IR \text{ continua} \text{ atunei} \end{cases}$ $\begin{cases} f, h \rightarrow IR \text{ continua} \text{ atunei} \end{cases}$ $\begin{cases} f, h \rightarrow IR \text{ continua} \text{ atunei} \end{cases}$ $\begin{cases} f, h \rightarrow IR \text{ continua} \text{ atunei} \end{cases}$ $\begin{cases} f, h \rightarrow IR \text{ continua} \text{ atunei} \end{cases}$ $\begin{cases} f, h \rightarrow IR \text{ continua} \text{ atunei} \end{cases}$ $\begin{cases} f, h \rightarrow IR \text{ continua} \text{ atunei} \end{cases}$ $\begin{cases} f, h \rightarrow IR \text{ continua} \text{ atunei} \end{cases}$ $\begin{cases} f, h \rightarrow IR \text{ continua} \text{ atunei} \end{cases}$ $\begin{cases} f, h \rightarrow IR \text{ continua} \text{ atunei} \end{cases}$ $\begin{cases} f, h \rightarrow IR \text{ continua} \text{ atunei} \end{cases}$ $\begin{cases} f, h \rightarrow IR \text{ continua} \text{ atunei} \end{cases}$ $\begin{cases} f, h \rightarrow IR \text{ continua} \text{ atunei} \end{cases}$ $\begin{cases} f, h \rightarrow IR \text{ continua} \text{ atunei} \end{cases}$ $\begin{cases} f, h \rightarrow IR \text{ continua} \text{ atunei} \end{cases}$ $\begin{cases} f, h \rightarrow IR \text{ continua} \text{ atunei} \end{cases}$ $\begin{cases} f, h \rightarrow IR \text{ continua} \text{ atunei} \end{cases}$ $\begin{cases} f, h \rightarrow IR \text{ continua} \text{ atunei} \end{cases}$ $\begin{cases} f, h$

Exemple Fil A = { (x, y) | x = y = x | n f: A - 1R Continua data de f(xy)=xy. Se cese a) så al deseneze multimea A le) Så se concules Safity de dy. $g(x) = x^2 n' h(x) = x .$ Fie g, h: [0,1] >1R A= Tgh. ≤ y ≤ x =) x 70, y 70 x²-x ≤0 => x ∈ [g 1]. $I = S_A f(x, y) dxdy =$ $= S_0 \left(S_{\chi^2} + y dy \right) dx =$ $= \int_{0}^{1} \frac{xy^{2}}{2} |y|^{2} dx = \int_{0}^{1} \frac{x^{3}}{2} - \frac{x^{5}}{2} dx = \frac{3}{4} - \frac{1}{12} = \frac{1}{24}$ $J = S_0^1 \left(S_{01}^{1/2} \times y \, dx \right) dy = S_0^1 \left(\frac{1}{2} \right) \left(\frac{1}{2} \times y \, dy \right) dy$ $= 50 + 2 - 43 dy = \frac{4}{6} - \frac{1}{8} = \frac{1}{24}$

Bigoritie Daea Am Bau one n'
ana (ANB) = Ø, f! AUB > IR integrabilà = >

SAUB = SA f + SA.

Exelection Sá or enlealese integrala

Sa y delealese integrala

Sa y d

varfunile O(90) B(1,2) $e^{2}(2,3)$ A $P(e D(1,\frac{3}{2})$

 $OC \quad y = \frac{3}{2} \times$ $\times = 1$

BZDOBD C=BBDE AZBUC

Bncz [B,D]

 $\frac{X - 1}{3c} = \frac{y - 1}{3c} = \frac{y - 2}{3c}$ $\frac{1}{3c} = \frac{y - 2}{3c}$ $\frac{1}{3c} = \frac{y - 2}{3c}$

X = y-1 y = x+1

$$- = S_0 + \frac{2}{2} \int_{y=3}^{y=2x} dx = S_0 \left(\frac{4}{2} \right) \frac{3}{2} dx$$

$$= \frac{1}{2} \left(2 - \frac{9}{8}\right) \int_{0}^{1} x^{3} dx = \frac{7}{8} \cdot \frac{1}{4} = \frac{7}{32}$$

$$\mathbb{I}_{2} \leq \chi y d \chi d y = \int_{1}^{2} \left(\int_{\frac{3}{2}}^{\chi+1} \chi y d y \right) d \chi$$

$$= \int_{1}^{2} \frac{xy^{2}}{2} |y^{2}(x+1)| dx$$

$$= \frac{1}{2} \int_{1}^{2} x^{3} + 2x^{2} + x - \frac{9}{9} x^{3} dx$$

- 1) Sa real culese $S_A \times^2 y dx dy$ unde A exte multimea delimitata de curbele 4y=1 $++y=\frac{5}{2}$
- 2) SS (1x1+141) dxdy und A= 3 x20, 1x1+141≤13
- 3) $SS_A = \frac{1}{\sqrt{7}} d+dy$ and A este multimoa $A = \frac{1}{7} y^2 \leq 8 + \frac{1}{7} y \leq 2 + \frac{1}{7} y + 4 + \frac{1}{7} \leq 2 + \frac{1}{7}$.
- 4) SS+y d+dy unde A = { x2 sy = 3x-2}.
 A
- 4) SSx2y2 dxdy unde A= 2 0 ≤ y ≤ 1-1+1 y.
- 6) SS x dx dy D este domenail manginit de parabala y² = 2x, execul x²+y²=2x, n'

Megeta 1=2.

7) a) Fil
$$A = \{(4, t_1) \mid 47, 0, t_170 \mid \frac{44}{a_1} \mid \frac{42}{a_2} \leq 1\}$$
 unde $a_1, a_2 \geq 0$
Se est 1) onia(A)

b) Fix
$$B = \frac{1}{2}(4, \frac{1}{2}, \frac{1}{3}) | \frac{1}{2}, \frac{1}{2}, \frac{1}{3} = 0$$
 and $\frac{4}{a_1} + \frac{1}{a_3} < 1$?

unde $a_1, a_2, a_3 > 0$. Se cox: