CEATEC Japan 2010

Webサービス, クラウドの先へ: サービスコンピューティングが拓く世界エンタープライズにおけるクラウドコンピューティングの適用可能性

クラウドがもたらす 次世代情報システムのアーキテクチャ

青山幹雄

南山大学情報理工学部 ソフトウェア工学科 mikio.aoyama@nifty.com http://www.nise.org/

We are NISE: Network Information and Software Engineering 2010年 10月 7日

プロローグ クラウドは<u>大ブームだが</u>...

またか... Webサービス, SOA,... 当社は,まだ, クラサバ... 世の中はクラウドが 大ブームのようだが, わが社への導入は どうなっているのかね?

現在のシステムに クラウドを どう取り込めば いいか?

シナリオ

- ☞クラウドの進化と特性
- **▽**クラウド時代の情報システム
- ② 次世代情報システムアーキテクチャ
- 一今後の課題
- でまとめ

クラウドの進化と特性 クラウドの3段階進化モデル

- ☞クラウドの進化モデル[Bittman(Gartner) 2008]
- ☞第3段階: 水平連携(Horizontal Federation)
 - ●サービスブローカが鍵

<u>クラウド統合(クラウドインテグレーション)</u> クラウド間, クラウドとオンプレミスの連携 による価値,負荷耐力,経済性などの向上 主役: サービスブローカ

第3段階水平連携 (2012年)

メガプロバイダ+エコシステム (PaaS(Azure, Force.com, Google App Engine) 上にISVがSaaSとして 集積): ベンダ固有アーキテクチャ 主役: エコシステム

第2段階 垂直サブラ チェイン (2010年

現在の状況?

エンタープライズ

クラウド?

第1段階 モノリシック <u>単独メガプロバイダ(Amazon, Google, 他)</u> ベンダ固有アーキテクチャ 主役: メガプロバイダ

参考文献: T. J. Bittman, The Evolution of the Cloud Computing Market, Gartner, Nov. 2008.

クラウドの進化と特性 サービスからクラウドへの進化

- **☞Web上のサービス基盤の進化: クラウド=サービス化+仮想化**
 - **▼サービス開発: Webサービス/SOA(Service-Oriented Architecture)**
 - サービス提供:サービスの集約 ⇒ SaaS ⇒ クラウドコンピューティング
 - ♥新たなサービス基盤: SNS基盤の提供

クラウドの進化と特性 クラウドエコシステムの台頭

♥戦略に基づくサービス提供のプラットフォーム化

		ービス	Google	Amazon	Microsoft	Salesforce
Saas	マーケット プレイス		Apps Marketplace		Pinpoint	App Exchange
	ビジネスアプリ		Apps		Dynamic CRM Live	SFA, CRM
	個人アプリ		Gmail, Docs	(Amazon)	Office Live, Hotmail	
	開発言語		Java, Python	任意	ASP.NET, PHP	Apex, Java
P	アプリホスト		App Engine			Force. com
a a S	サービス統合		(OpenSocial)	SNS, SQS	AppFabric (ESB)	
	開発支援		_		(Visual Studio)	Visual force
	課金, 会計		<u> </u>	FPS, DevPay	<u> </u>	
l a a S	DB	SQL		Amazon RDB	SQL Azure	RDB
	MS	NoSQL	BigTable	SimpleDB	Azure Storage	_
	ス	トレージ	GFS	S3, EBS	_	_
	OS		Linux	任意(Linux, Win)	Windows	独自OS
	プロセッサ			EC2	<u> </u>	_

EC2:Elastic Computing Cloud, S3:Simple Storage Service, EBS:Elastic Block Store, FPS:Flexible Payment Service, SNS:Simple Notification Service, SQS:Simple Queue Service

クラウドの進化と特性 クラウドの特性

☞クラウドの特性: NIST Cloud Definition Framework

ハイブリッドクラウド 配置 プライベートクラウド パブリッククラウド モデル SaaS (Software as a Service) サービス モデル PaaS (Platform as a Service) クラウド特有 (SPI) laaS (Infrastructure as a Service) オンデマンド ゼルフサービス(On Demand Sel-Service) 本質 特性 広帯域アクセス(Broad Network Access) <u>エラスティシティ(Rapid Elasticity)</u>

<u>リソースプーリング(Resource Pooling)</u>

従量サービス(Measured Service)

共通 特性

ーラビリデ<u>ょ(Massive Scale)</u>

レジリエント(Resilient Computing)

均質性(Homogeneity)

地理分散(Geographic Distribution)

仮想化(Virtualization)

サービス指向(Service Orientation)

低コストソフトウェア(Low Cost Software)

高セキュリティ(Advanced Security)

参考文献: P. Mell, et al.(eds), Efficiency and Security Using the Cloud Computing Paradigm, NIST, 2009.

クラウド時代の情報システム

当社のトップから IT投資を抜本的に見直せ と言われている。 今以上の顧客サービス を半分のコストで実現せよ と言われているのだよ。

クラウド時代の情報システム 情報システムのビジネス効果の見直し

- ☞情報システムのビジネス効果の見直し(ITの投資効果?)
 - ◆ITが競争領域と非競争領域に分化
- ☞基盤のコモディティ化とビジネスマネジメントの強化
 - ・情報システムのモジュール化⇔プラットフォーム化の束縛

競争領域 パフォーマンス主導 [他社と差別化] ビジネスプロセスマネジメント[カスタムソフトウェア] (コアビジネス(ERP), ビジネス統合管理)

アプリケーションソフトウェア[パッケージカスタマイズ] (ERP, CRM, SCM, HRM, ほか)

非競争領域 コスト主導 [低コストで実現] ソフトウェアプラットフォーム[オープンソース] (OS: Linux/Windows, DB: MySQL, ミドルウェア)

ハードウェアプラットフォーム[標準ハードウェア] (コンピュータ: Intel, ネットワーク: Cisco, Web)

参考文献: N. G. Carr, Does It Matter?, Harvard Business School Press, 2004 [清川 幸美(訳), ITにお金を使うのは、もうおやめなさい,ランダムハウス講談社, 2005].

クラウド時代の情報システム クラウド化のインパクト: アジリティ(俊敏性)と経済性

- 情報システムへの要求の変化がクラウドを生んだ
 - ■情報システムのビジネスモデルと処理モデルの両面

情報システム要求の変化

ビジネス要求の変化

- ・ビジネス価値向上
- •高信頼性
- ・低コスト
- ・変化への俊敏な対応

情報システムと <u>Webの融合</u> •Webデータ処理 (非構造的(メール),半構 造的(Webページ)) •大量データ 価値とコストの分離(高価値ではコスト)・システムのアジャイル化

大量の 非構造的 データ 処理 <u>クラウドのもたらすインパクト</u>

クラウドのビジネスモデル ・サービスプール (超低価格化) ・オンデマンド (エラスティシティ)

> <u>クラウドの処理モデル</u>
> ・非構造的データの ファイルシステム (分散KVS) ・非構造的データ処理 (MapReduce)

クラウド時代の情報システム クラウドのもたらす新たなシステム特性

- ☞プラットフォーム階層分離:ハードウェアからアプリケーションまで
 - SPI: SaaS (Software), PaaS (Platform), laaS (Infrastructure)
- ☞ 直接結合性/即時性: プロバイダがコンシューマ/ビジネスに直結
 - オンデマンドサービス提供
- ☞エラスティシティ(伸縮性: ダイナミックなアップ/ダウンスケール)
 - **♥ サービスプーリング**
- - **単一コードベース(Salesforce.com, Google Gmail)**

 - セキュリティ
- ❤新たなトランザクション処理モデル
 - 非ACIDトランザクションモデル(BASE: Basically Available, Soft-state, Eventually consistent)

テナント: A社 テナント: B社 ユーザB3 ユーザA1 ユーザB1

PssS: SaaSプラットフォーム (例: SalesforceのForce.com)

All Rights Reserved, Copyright Mikio Aoyama, 201

次世代情報システムアーキテクチャ クラウドを活用した情報システムアーキテクチャ

- ☞クラウド化: 既存システムのクラウドへの移行
- ☞クラウド統合: 既存システムとクラウド/サービスの統合
- ☞クラウド開発:クラウド上のソフトウェア/サービス開発と統合/提供

クラウド化: 既存システムのクラウド移行 クラウドに適した部分の特定と期待効果 クラウド化(サービス化)技術 クラウド(サービス)開発技術 新しい情報処理モデル (トランザクション処理, etc)

既存システム(オンプレミス) クラウド化(サービス化)

クラウド(サービス)の統合と提供

クラウド(サービス)統合 統合ユースケース クラウド統合技術

<u>クラウドサービス提供</u> QoS/SLA, セキュリティ サービス提供技術(マルチテナント, メタデータ)

次世代情報システムアーキテクチャ クラウド統合: クラウドの多様なユースケース

- プコンシューマサービス 多様なユースケースのもたらす機会と課題
 - (パブリック/プライベート)クラウド⇒コンシューマ
- - クラウド⇒エンタープライズ⇒コンシューマ
- インタークラウド/インターエンタープライズ
 - ◆ クラウド⇒エンタープライズ⇒クラウド⇒エンタープライズ

既存システム

プライベートクラウ

▽パブリッククラウド

パブリックサービスコンシューマ

参考文献: Cloud Computing Uses Cases, White Paper, V. 4.0, Jul. 2010.

(オンプレミス)

次世代情報システムアーキテクチャ クラウド統合: クラウドのアーキテクチャと処理モデル

ギャップ

半構造的 非構造的 データ (ファイル) クラウドコンピューティング

・アーキテクチャ: 分散データフロー

·UI: Web,

・非ACID/長寿命トランザクション

NoSQL DB

動的負荷

動的リンク

分散アーキテクチャ (分散処理,集中制御) アーキテクチャ ギャップ

非集中アーキテクチャ (分散処理,分散制御)

クライアント/サーバ (状態を持つ)

・アーキテクチャ: MVC

UI: Web/GUI

·ACIDトランザクション、 -SQL DB

動的発見

構造的

データ (RDB)

Webサービス(SOA)

(状態を持たない)

・アーキテクチャ: パブリッシュ/ サブスクライブ

UI: Web

・ACIDトランザクション,

SQL DB

次世代情報システムアーキテクチャ クラウド統合:SOA参照モデル [L.-J. Zhangら]

- ●参照アーキテクチャ: S3(Service-Oriented Solution Stack)
 - SOAによるソリューションの階層参照アーキテクチャ: 9層

参考文献: A. Arsanjani, et al., S3:A Service oriented Reference Architecture, IEEE IT Pro, May/Jun. 2007, pp. 10-17. All Rights Reserved, Copyright Mikio Aoyama, 2010

次世代情報システムアーキテクチャクラウド統合: サービス連携モデル

- ☞オーケストレーション(Orchestration): 組織内ビジネスプロセス
 - ●単一制御モデル: ワークフロー
 - 例: (WS-) BPEL (Web Services Business Process Execution Language)
- プコレオグラフィ(Choreography: 振付け): 組織間ビジネスプロセス

 - ⊌ブローカ

次世代情報システムアーキテクチャ クラウド統合: SOAによるクラウド統合

- **▼SOAによるクラウド間/クラウド・オンプレミス間水平連携**
 - <mark>● メッセージ形式: Webサービス標準(WSDL, SOAP/REST)</mark>

 - **d ESB(Enterprise Service Bus) [Publish/Subscribe+メタデータ]**
- ☞統合における問題: 相互運用性
 - プーキテクチャミスマッチ ⇒ 振舞いの整合
 - ♥例: Salesforce.comのoutbound message: トランザクション処理 単位にメッセージ送信
 - メッセージ/データ形式ミスマッチ ⇒ メッセージ変換

 - 制約/非標準性: プログラミング言語の制約

次世代情報システムアーキテクチャ クラウド統合: SOAによるクラウド統合の技術課題

- **☞SOAによるアーキテクチャミスマッチの調整[Integration as a S]**
 - ▼ブローカによる振舞い,機能粒度の調整: コレオグラフィ(Choreography)
 - ✓ Webサービス標準インタフェース: SOAP/REST

<u>インタフェース整合問題</u> SOA標準インタフェースによるオン プレミス/クラウド間インタフェース整合

マルチテナント問題 シングルインスタンス/マルチ テナントのユーザ定義と管理 カスタマイズ問題 テナント毎の差異 の定義,管理

次世代情報システムアーキテクチャ

事例: Salesforce.comとGoogleのマシュアップ(1/2)

Salesforce.com 新規登録 取引先 所有者 ちえ バンダリ [変更] ウラジオストク Bnagweocrox 取引先名 南山大学 [階層の表示] ナホトカ 親取引牛 Havour 雷武 0561-89-2000 取引先番 Fax 0561-89-2000 取引先 部 独度 35.205872 経度 137.107880 住所(請求先) 日本

489-0863 愛知県 瀬戸市

画面上をクリック

■取引先名:南山大学 ■郵便番号:489-0863 ■住所:愛知県瀬戸市せいれい町27 ■電話番号:0561-89-2000 ■Fav:0561-89-2000

■年間売り上げ:123456789E8

■業種: Education ■従業員数: 3210 ■経度: 35.205872 ■緯度: 137.10788

日本

SalesforceのCRMを SalesforceのCRMを Google Mapsを用いた プレゼンテーション マッシュアップで補完

データの受け渡し

<u>相互運用性</u>の確保

メッセージブローカ

せいれい町27

Salesforce.com内の データの取得

Google Maps APIで 地図の取得

メッセージブローカの使用 タイミングの調整

店舗情報の一括送信

All Rights Reserved, Copyright Mikio Aoyama, 2010

次世代情報システムアーキテクチャ

事例: Salesforce.comとGoogleのマシュアップ(2/2)

☞アーキテクチャ整合: メッセージブローカ

Salesforce.com

メッセージ整合

(SOAP⇒String)

タイミング整合

(トランザクション⇒

ユーザ要求/応答)

- d メッセージ整合(メッセージ形式変換): SOAP⇒JSON

メッセージ整合 (String⇒XML) JSON/ HTTP 応答 サービス コンシューマ (GUI) 要求

Google Maps

参考文献: バンダリスワティ, ほか, SaaS/クラウドサービス間のメッセージ連携方法の提案と評価, 情報処理学会 第72回全国大会論文集(3), No. 1ZC-4, Mar. 2010, pp. 389-390

次世代情報システムアーキテクチャ パブリッククラウドの非機能要求の課題

- ☞非機能要求の課題: ユーザ要求に対応できるか?
- で性能
 - ₫ ネットワーク遅延, 処理遅延
- ☞SLA/信頼性
- でセキュリティ

 - 法規制: データ保全規制
- ▼コンプライアンスと内部統制
 - (J)SOX法, HIPAA[医療]. SAS70[外部監査]

Amazon EC2可用性実績 ·Amazon 公称值: 99.95% •エンタープライズサービス (Yahoo, Amazon, CNN, eBay, Walmart):実績値 [2007~2008年] 99.987% (=1Hダウン/年) 出典: K. Sripanidkulchai, et al., **Are Clouds Ready for Large Distributed Applications?**, ACM **SIGOPS Operating Systems**

Review, Vol. 44, No. 2, Apr.

2010, pp. 18-23.

参考文献: T. Mather, et al., Cloud Security and Privacy, O'Reilly, 2009 [笹井 崇司(訳), クラウドセキュリティ&プライバシー, オライリージャパン, 2010].

今後の課題

- ☞ビジネス/サービス品質のモデルとメトリクス
- 『ビジネス/サービス品質の管理モデル,管理技術,管理システムの設計方法
- **☞ビジネス/サービス品質の測定と評価の方法**
- ☞ビジネス/サービス品質の改善方法
- ▼実システムへの技術の応用や開発, 運用の経験の収集, データの収集と分析

まとめ

- ☞クラウドの進化: 単独, エコシステム, クラウド連携
- 『情報システムへの要求の変化とクラウドのもたらすインパクト
 - ●価値とコストの分離: サービスプール,オンデマンド非構造

 - →分散データフローアーキテクチャ
- ☞クラウドの利用
 - **▽** クラウドユースケース
 - ♥ SOAによるクラウド連携: サービスブローカ
 - ▼アーキテクチャミスマッチの整合

クラウド活用技術の研究開発の必要性