CSC 355 Database Systems Lecture 13

Eric J. Schwabe
School of Computing, DePaul University
Spring 2020

Today:

- Relational Database Design
 - Lossless join property
 - Third Normal Form (3NF)
 - Minimal basis
 - Algorithm for 3NF decomposition

Relational Database Design

- Starting with $R(A_1, A_2, ..., A_n)$, the decomposition $D = \{R_1, R_2, ..., R_m\}$ should satisfy the following conditions:
 - 1. The union of the R_i's is R
 - 2. Each of the R_i's is in BCNF
 - 3. D has the dependency preservation property
 - 4. D has the lossless join property

Lossless Join Property

- 4. For every relation state r of R, the natural join of the restrictions of r to the relations R_1 , R_2 , ..., R_m in the decomposition is r itself
- ◆ If we decompose and then join back the resulting relations, we get the original relation state no *spurious tuples* are added
 - Not all decompositions have this property!

Binary Lossless Join Test

- $D = \{R_1, R_2\}$ has the lossless join property if and only if one or both of the following hold:
 - 1. $(R_1 \cap R_2) \rightarrow (R_1 R_2)$ can be derived from F
 - 2. $(R_1 \cap R_2) \rightarrow (R_2 R_1)$ can be derived from F
- That is, if and only if the intersection between the two sets of attributes is a superkey in one of the relations...

General Test for Lossless Join

- 1. Create a matrix S with a row i for each R_i and a column for j for each A_i
- 2. Set each $S(i,j) = "b_{ij}"$
- 3. For each entry (i,j)

If relation R_i includes A_j , then set $S(i,j) = "a_j"$

4. Repeat the following loop until there are no changes to S:

For each $X \rightarrow Y$ in F

For all rows in S that have the same symbols in all columns in X, set all of the columns in Y in those rows to agree as follows: If any row has a_j for the columns, set all rows to that same a_j If not, choose one of the b_{ij} s and set all rows to that same b_{ii}

5. If any row has all a_j's, return true (D has lossless join); if not, return false D does not have lossless join).

BCNF

- A relation R is in Boyce-Codd Normal Form (BCNF) if for every non-trivial functional dependency X→Y in R, X is a superkey
 - "Every determinant must contain a candidate key"
 - A relation in BCNF will not have any redundancy, since every functional dependency in the relation will have a superkey as its determinant

3NF

- A relation R is in Third Normal Form (3NF) if for every non-trivial functional dependency X→{A} in R, either X is a superkey or A is a prime attribute
 - This is a weaker condition than BCNF, since X doesn't have to be a superkey if A is prime
 - 3NF may allow some redundancy if there is more than one candidate key

BCNF vs. 3NF

- Every relation in BCNF is in 3NF
- Not every relation in 3NF is in BCNF
 - In a 3NF relation, a prime attribute may be determined by something that is not a superkey, but BCNF will not allow that
 - 3NF and BCNF conditions are equivalent if there is only one candidate key in the relation

Example

- \bullet R(A, B, C, D)
- $F = \{ A,C \rightarrow B ; A,C \rightarrow D ; D \rightarrow C \}$
 - Identify candidate keys, prime attributes
 - Is R in BCNF? Is it in 3NF?
 - Construct a BCNF decomposition...
 - ...but how do we construct 3NF decompositions?

Minimal Basis

- A minimal basis of F is a set G that is equivalent to F and is "as small as possible":
 - 1. The right side of every dependency is a single attribute
 - 2. No $X \rightarrow A$ can be replaced with $Y \rightarrow A$, where Y is a proper subset of X, and still be equivalent to F
 - 3. No X→A can be removed and still be equivalent to F

Constructing a Minimal Basis

- Start with a set of functional dependencies...
 - 1. Split each $X \rightarrow Z$ into an equivalent set with only one attribute on the right side of each f.d.
 - 2. For each $X \rightarrow \{a\}$, replace it with $Y \rightarrow \{a\}$ (where Y is a proper subset of X) as long as the resulting set is equivalent
 - 3. Remove every $X \rightarrow \{a\}$ that can be removed as long as the resulting set is equivalent

3NF Decomposition Algorithm

- 1. Find a minimal basis G of F
- 2. For each set X that appears as the determinant of some functional dependency in G:
 - Find all k dependencies of the form $X \rightarrow A_i$ in G, and create a relation in D with the attributes in X and $A_1, ..., A_k$.
- 3. If none of the relations in D contains a candidate key of R, find a candidate key K of R and create a relation in D whose attributes are the attributes of K.
- 4. Remove any redundant relations. (A relation Q_1 in D is redundant if all of its attributes are included in another relation Q_2 in D.)

Comparison of Algorithms

- Decomposition into BCNF relations:
 - No redundancy left in relations
 - Dependency preservation is not guaranteed
 - Lossless join is guaranteed
- Decomposition into 3NF relations:
 - Some redundancy may remain in relations that have multiple candidate keys
 - Dependency preservation is guaranteed
 - Lossless join is guaranteed

Next Time:

- Finish Relational Database Design
- Introduction to Triggers