Radioactive decay

General equation

The decay rate of a substance is proportional to the amout of the original substance, leading to the differential equation:

$$-rac{dN}{dt}=\lambda N$$

Solving this equation gives the solution:

$$N=N_0e^{-\lambda t}$$

where:

- N_0 = original amount of substance
- N = amount of substance after time t
- *t* = time
- λ = decay constant

half life - amount of time that needs to pass for half of the original substance to remain

to find half life- solve this equation for $T_{1/2}$

$$rac{N_0}{2}=N_0e^{-\lambda T_{1/2}}$$

solution:

$$T_{1/2}=rac{0.693}{\lambda}$$

if you know the half life of a decay, you can find $\boldsymbol{\lambda}$

Activity - magnitude of the decay rate

$$A=-rac{dN}{dt}=\lambda N=\lambda N_0 e^{-\lambda t}$$

Types of radioactive decay

source: table 17.3.1 of [2]

particle	description	symbol	mass	penatrating power	ionizing power	shielding
----------	-------------	--------	------	----------------------	-------------------	-----------

particle	description	symbol	mass	penatrating power	ionizing power	shielding
Alpha	helium nucleus	α	4 amu	very low	very high	paper / skin
Beta	electron	β	1/2000 amu	intermediate	intermediate	aluminum
Gamma	high energy photon	γ	energy only	very high	very low	2 inches lead

Refs

- [1]
 - https://phys.libretexts.org/Bookshelves/University_Physics/Book%3A_University_Physics_ (OpenStax)/University_Physics_III_-
 - <u>_Optics_and_Modern_Physics_(OpenStax)/10%3A_Nuclear_Physics/10.04%3A_Radioactive_Decay</u>
- [2]

https://chem.libretexts.org/Courses/can/intro/17%3A_Radioactivity_and_Nuclear_Chemis try/17.03%3A_Types_of_Radioactivity%3A_Alpha_Beta_and_Gamma_Decay