Школа естественно-математической направленности «Физтех-лицей» им. П.Л. Капицы

Сентябрьская олимпиада

Долгопрудный, 2015

Письменный тур

Задача 1. Как с помощью прямоугольной плитки размером 7×9 см начертить на листе бумаги отрезок, длина которого 1 см?

Решение (автор — Андрей Захаров).

Начертим отрезок длиной 28 см (7×4) :

Затем, начиная с другого конца, отрезок длиной 27 см (9×3) :

Разница в их длинах и есть 1 см.

Задача 2. Составьте из цифр 1, 2, 3, 4, 5, 6, 7, 8, 9 магический квадрат, то есть разместите их в таблице 3×3 так, чтобы суммы чисел по строкам, столбцам и двум диагоналям были одинаковы.

Решение (автор — Матвей Пак).

2	7	6
9	5	1
4	3	8

Задача 3. У Пети в кармане несколько монет. Если Петя наугад вытащит из кармана 3 монеты, среди них обязательно найдётся монета в 1 рубль. Если Петя наугад вытащит 4 монеты из кармана, среди них обязательно найдётся монета в 2 рубля. Петя вытащил из кармана 5 монет. Назовите эти монеты (и обоснуйте свой ответ).

Решение (автор — Валентин Коновалов).

Мы знаем, что в худшем случае Пете придётся вытащить 3 монеты, чтобы достать 1 рубль. Значит, первые две попытки ему могут попасться другие монеты. Из этого следует, что 2 монеты не 1-рублёвые. Мы также знаем, что в худшем случае ему придётся вытащить 4 монеты, чтобы достать 2-рублёвую. Значит, кроме 2-рублёвых монет должны быть не больше 3 монет не 2-рублёвых. 3+2=5 монет всего. Соответственно Петя вытащит 2 монеты в 2 рубля и 3 монеты в 1 рубль.

Задача 4. Подряд записаны числа 1, 2, 3, ... 2000. Первое, третье, пятое и т.д. по очереди вычеркивают. Из оставшихся 1000 чисел снова вычеркивают первое, третье, пятое и т.д. Так делают, пока не останется одно число. Что это за число?

Решение.

Вычеркнем в первый раз. Останутся числа, которые делятся на 2- ровно $1000\,$ чисел.

Вычеркнем второй раз. Останутся числа, которые делятся на 4- ровно 500 чисел.

Вычеркнем третий раз. Останутся числа, которые делятся на 8 — ровно 250 чисел.

Вычеркнем четвёртый раз. Останутся числа, которые делятся на 16 - ровно 125 чисел.

Вычеркнем пятый раз. Останутся числа, которые делятся на 32 — ровно 62 числа (т.к. последнее не делится на 62).

Вычеркнем шестой раз. Останутся числа, которые делятся на 64- ровно 31 число.

Вычеркнем седьмой раз. Останутся числа, которые делятся на 128- ровно 15 чисел.

Вычеркнем восьмой раз. Останутся числа, которые делятся на 256- ровно 7 чисел.

Вычеркнем девятый раз. Останутся числа, которые делятся на 512- ровно 3 числа.

Вычеркнем десятый раз. Останутся числа, которые делятся на 1024- ровно 1 число.

Очевидно, в первоначальном наборе чисел это 1024.

Задача 5. Лист бумаги согнули вдвое по прямой и прокололи иголкой в двух местах, а потом развернули и получили 4 отверстия. Положения трёх из них указаны на рисунке. Где может находиться 4-е отверстие?

Решение. На рисунке три пары точек, значит, ось симметрии (линию, по которой лист сложили) можно провести тремя способами, и отметить недостающий прокол:

Задача 6. За 25 бубликов заплатили столько рублей, сколько бубликов можно купить на один рубль. Сколько стоит один бублик?

Решение (автор — **Алексей Руенков).** Пусть один бублик стоит x рублей. Тогда на один рубль можно купить 1:x бубликов. на 25 бубуликов потребуется $25\cdot x$ рублей.

$$1: x = 25 \cdot x$$

откуда $x = \frac{1}{5}$ рубля = 20 копеек.

Устный тур

Довывод

Задача 1. Расставьте скобки в выражении 7-6-5-4-3-2-1=0 так, чтобы получилось верное равенство.

Решение.

$$(7-6) - (5-4) - (3-2-1) = 0$$

Задача 2. Дана таблица 4×4 клетки. Расставьте семь звёздочек в клетках таблицы так, чтобы при вычёркивании любых двух строк и любых двух столбцов в оставшихся клетках была хотя бы одна звёздочка.

Решение.

Задача 3. Каких трёхзначных чисел больше: тех, у которых цифра сотен больше цифры единиц или тех, у которых цифра сотен меньше цифры единиц?

Решение. Разобъём трёхзначные числа на пары: одно число abc, а его пара — cba (например, пара 752 и 257). В каждой паре одно число относится к первой группе (цифра сотен больше цифры единиц), а другое — ко второй группе (цифра сотен меньше цифры единиц). Но некоторые числа остались без пары. Это числа вида aba (например, 737) — они не входят ни в какую группу. А ещё числа вида ab0, т.к. пара для них — двузначное число 0ba = ba. Все числа ab0 входят в группу, где цифра сотен больше цифры единиц. Значит, эта группа больше.

Задача 4. У Карлсона в шкафу стоят 5 банок малинового, 8 банок земляничного, 10 банок вишневого и 25 банок клубничного варенья. Может ли Карлсон съесть все варенье, если каждый день он хочет съедать 2 банки варенья, при этом обязательно из разных ягод?

Решение. Пусть Карлсон может сделать так, как хочет. Рассмотрим дни, когда он поедал клубничное варенье. Таких дней было 25. В пару с клубничным вареньем он мог есть любое другое варенье. Но всего другого варенья 10+8+5=23 банки! А значит, дольше 23 дней на такой своеобразной вареньевой диете Карлсон протянуть не мог. Противоречие!

Получается, что все варенье Карлсон съесть не мог. Надо меньше капризничать при поедании варенья.

Задача 5. Четыре куста малины растут в ряд. Известно, что количество ягод на соседних кустах отличается на одну. Может ли на всех кустах быть 2015 ягод?

Решение. Допустим, на первом кусте чётное кол-во ягод малины. Тогда на соседнем— нечётное (т. к. больше или меньше на одну). На третьем— чётное. На четвертом— нечётное. Всего количество ягод

будет чётное+нечётное+чётное+нечётное=чётное, то есть точно не 2015.

Допустим, на первом кусте нечётное количество ягод. Рассуждая аналогично, получим, что общее количество ягод снова чётно.

Значит, 2015 ягод получиться никак не могло.

Вывод

Задача 6. Сколько существует трёхзначных чисел, которые делятся на 3 и на 5, но не делятся на 2?

Решение. Если число делится на 3 и на 5, значит, оно делится на 15. Посчитаем, сколько таких трёхзначных чисел. Самое маленькое — 105, самое большое — 990. Всего чисел (990-105):15+1=60. Но каждое второе — чётное. Такие числа нам не подходят, потому что делятся на 2. Значит, нечётных трёхзначных чисел, которые делятся на 15, 60:2=30.

Задача 7. На столе лежат два прямоугольных пирога (см. рисунок). Как одним прямым разрезом разделить каждый пирог на две равные части? Можно пользоваться ножом, линейкой и делать засечки на пироге. «На глаз» ничего проводить нельзя, сдвигать пироги тоже.

Решение. Для решения задачи воспользуемся фактом: любая прямая линия, которая проходит через центр прямоугольника, делит его на две равные части. Чтобы найти центр каждого прямоугольника, сделаем на нём две диагональные насечки:

После того, как мы отметили два центра, осталось только провести через них прямой разрез.