MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 4 - JANUARY 2017 SOLUTION KEY

Team Round - continued

D) Given:
$$S = x^2 + 4xy + 9y^2 + 4x + 18y + 2017$$

Recall:
$$(A+B+C)^2 = A^2 + B^2 + C^2 + 2AB + 2AC + 2BC$$

Since there is an xy-term, we assume that the expression can be written in a form involving the square of a trinomial in x; in fact, the trinomial would have to be (x + 2y + 2) to insure the correct coefficients for x^2 and xy. Proceeding with this assumption,

$$(x+2y+2)^2 = \underline{x^2} + 4y^2 + 4 + \underline{4xy} + \underline{4x} + 8y$$
 and the underlined terms are accounted for.

The mismatched terms are $4y^2 + 8y + 4$. We need an additional $5y^2$, so we formulate an additional term of $5(y+c)^2$, where c is a constant to be determined.

Since $5(y+c)^2 = 5y^2 + 10cy + 5c^2$, the y-coefficient will be matched if $10c + 8 = 18 \Rightarrow c = 1$.

Now $(x+2y+2)^2 + 5(y+1)^2$ matches S except for the constant and adding <u>2008</u> produces a perfect match.

Since $(x+2y+2)^2 + 5(y+1)^2 \ge 0$, for all real numbers x and y,

$$(x+2y+2)^2 + 5(y+1)^2 + 2008$$
 has a *minimum* value of **2008** when $(x, y) = (0, -1)$.

E)
$$\overline{DE} \parallel \overline{BC} \Rightarrow \theta = 45^{\circ} \Rightarrow DE = EC$$

As corresponding sides, $\triangle ADE \sim \triangle ABC \Rightarrow \frac{AE}{AC} = \frac{DE}{BC}$.

Switching the means in the proportion, $\frac{AE}{DF} = \frac{AC}{RC}$.

Adding "1" to both sides of the proportion,

$$\frac{AE}{DE} + \boxed{\frac{DE}{DE}} = \frac{AC}{BC} + \boxed{\frac{BC}{BC}} \Rightarrow \frac{AE + DE}{DE} = \frac{AC + BC}{BC}$$

Since
$$DE = EC$$
, we have $\frac{AC}{DE} = \frac{AC + BC}{BC}$

Cross multiplying, $DE(AC + BC) = AC \cdot BC$.

Now the magic!

Divide both sides by
$$AC \cdot BC \cdot DE$$
 and we have $\frac{AC + BC}{AC \cdot BC} = \frac{1}{BC} + \frac{1}{AC} = \frac{1}{DE}$.

Therefore, we just take the reciprocal of the given dimension! $\frac{2}{\sqrt{5}+1} \cdot \frac{\sqrt{5}-1}{\sqrt{5}-1} = \frac{\sqrt{5}-1}{2}$.

В