

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DE TELECOMUNICACIÓN

GRADO EN SISTEMAS DE TELECOMUNICACIÓN

TRABAJO FIN DE GRADO

ESTABILIZACIÓN DE UN DRONE USANDO FPGAs LIBRES

Autor: Eloy Navarro Morales

Tutor: José María Cañas Plaza

Cotutor: Juan Ordoñez Cerezo

Curso académico 2018/2019

Índice

1.	Intro	troducción 3					
	1.1.	Aplicaciones para drones	3				
	1.2. Sistemas básicos del drone						
		1.2.1. Hardware	3				
		1.2.2. Software	4				
	1.3.	FPGA	4				
		1.3.1. Concepto	4				
		1.3.2. Aplicaciones	4				
		1.3.3. FPGAs Libres	4				
	1.4.	Sistemas de control	4				
		1.4.1. Bucle abierto	4				
		1.4.2. Bucle cerrado	4				
2.	Obje	bjetivos					
	2.1.	Objetivo principal	4				
	2.2. Requisitos		4				
		2.2.1. Estabilización de un drone de bajo coste	4				
		2.2.2. Diseño de un sistema de control basado en FPGAs libres	4				
		2.2.3. Diseño de electrónica periférica para comunicaciones entre PC, Drone y					
		Electrónica de control	4				
		2.2.4. Implementación de librería de control del drone para PC	4				
		2.2.5. Software	5				
	2.3.	Metodología	5				
	2.4.	Plan de trabajo	5				
3.	Arqı	Arquitectura del sistema					
	3.1.	Estación de tierra	5				
		3.1.1. Descripción	5				
		3.1.2. Objetivo	5				
		3.1.3. Subsistemas	5				
		3.1.4. Interfaces externos	5				
		3.1.5. Interfaces internos	6				
	3.2.	Sistemas embarcados	6				

		3.2.1.	Descripción	6		
		3.2.2.	Objetivo	6		
		3.2.3.	Subsistemas	6		
		3.2.4.	Interfaces externos	6		
		3.2.5.	Interfaces internos	6		
4. Algoritmos de control						
	4.1.	Contro	oles de bucle abierto	7		
		4.1.1.	Directo	7		
		4.1.2.	Pre-énfasis	7		
	4.2.	Contro	oles de bucle cerrado	7		
		4.2.1.	PID en plano vertical retroalimentado	7		
		4.2.2.	PIDs en plano horizontal retroalimentados	7		
5.	5. Experimentos					
	5.1.	Eachin	ne E010	7		
	5.2.	Syma 2	X5C en Bucle abierto	7		
6.	Trabajo futuro					
	6.1.	Mejora	as hardware	7		
	6.2.	Mejora	as software	7		
	6.3.	Cambio	ios a mejor en la arquitectura del sistema	7		
7.	7. C	onclusi	iones	7		
8.	8. B	ibliogra	afía	7		

1. Introducción

- 1.1. Aplicaciones para drones
- 1.2. Sistemas básicos del drone
- 1.2.1. Hardware

Comunicaciones

Electrónica de Control

Drivers

- 1.2.2. Software
- 1.3. FPGA
- 1.3.1. Concepto
- 1.3.2. Aplicaciones
- 1.3.3. FPGAs Libres
- 1.4. Sistemas de control
- 1.4.1. Bucle abierto
- 1.4.2. Bucle cerrado

2. Objetivos

2.1. Objetivo principal

Controlar un drone de bajo coste usando un PC y FPGAs libres.

2.2. Requisitos

- 2.2.1. Estabilización de un drone de bajo coste
- 2.2.2. Diseño de un sistema de control basado en FPGAs libres
- 2.2.3. Diseño de electrónica periférica para comunicaciones entre PC, Drone y Electrónica de control
- 2.2.4. Implementación de librería de control del drone para PC

Parámetros reconfigurables

Control de Posición

Control de Trayectoria

2.2.5. Software

2.3. Metodología

Diseño, Implementación, test, análisis de resultados, informes y feedback vía mail y conferencia.

2.4. Plan de trabajo

Se inicia el proyecto con un control teledirigido directo del drone.

Se procede a diseñar todo el sistema para un control en bucle abierto.

Se continúa con la electrónica y software necesarios para cerrar un eje.

Se amplía el sistema para controlar los 3 ejes principales.

3. Arquitectura del sistema

3.1. Estación de tierra

3.1.1. Descripción

3.1.3. Subsistemas

3.1.2. Objetivo

Radio

Procesador principal FPGA					
Procesador secundario ATMEL					
3.1.4. Interfaces externos					
Enlaces Radio					
USB					
Programación					
3.1.5. Interfaces internos					
SPI					
RS232					
3.2. Sistemas embarcados					
3.2.1. Descripción					
3.2.2. Objetivo					
3.2.3. Subsistemas					
Radio					
Procesador					

Sensores

3.2.4. Interfaces externos

Radio

Programación

3.2.5. Interfaces internos

I2C

SPI

4. Algoritmos de control

- 4.1. Controles de bucle abierto
- 4.1.1. Directo
- 4.1.2. Pre-énfasis
- 4.2. Controles de bucle cerrado
- 4.2.1. PID en plano vertical retroalimentado
- 4.2.2. PIDs en plano horizontal retroalimentados

5. Experimentos

- **5.1. Eachine E010**
- 5.2. Syma X5C en Bucle abierto
- 6. Trabajo futuro
- 6.1. Mejoras hardware
- 6.2. Mejoras software
- 6.3. Cambios a mejor en la arquitectura del sistema
- 7. 7. Conclusiones
- 8. 8. Bibliografía