ME 4001 Engineering Management Summer '06
1 c) Poliabilit : II and lilit H + it
1 c) Reliability: The probability that an item will perform a required function under stated conditions for a stated time.
stated conditions for a stated time.
K- N
$Q = \frac{9}{N}$
R(t)+Q(t)=1
Feiluse Pata: The made of Pailuse it
tailure Rate: The number of failures per unit
Sal Part 1800 N
$\lambda(t) = \frac{\text{dist}}{x} x = N - y$
$\lambda(t) = \frac{\text{dist}}{x} \qquad x = N - y$ $\lambda(t) = \frac{\text{dist}}{x} \qquad N = \frac{\text{dist}}{x} \qquad 1$ $N = \frac{\text{dist}}{x} \qquad 1 = \frac{\text{dist}}{x}$
$= \frac{f(t)}{R(t)} = \frac{dl}{dt}$ $R(t)$
RCC 7
•
Failure Density Function: The number of failures
per unit time expressed as a fraction of
per unit time expressed as a fraction of the original population: f(t) = (ayat) / N
$y = N S_0 f(t) dt$
$Q = \int_{0}^{t} f(t) dt$
=> R = 1- So f(t) dt
$f(t) = \frac{da}{dt} = -\frac{dR}{dt}$

ME4001 Engineering Management Summer '06 1a) \ \ = 0.0143 $\int_{\mathbb{R}} (t) = t \lambda e^{\lambda t}$ R(100) = e = 0.24 24% @t=250 RA = 0-9 Rg = 0.85 Ra = 0.95 Rcz = 0.98 903 = 0.9 Prob. all 3 working: 0.8374 (Rc, xRcz x Rcz) Rob. C, Cz working: 0.0931 (Rc, xRcz xQcs) Prob. C.C. working: 0.0171 (RC, x RC3 x QC2) Prob. C2, C3 working: 000441 (Re xRex x Qc,) Rc = 0.9912 RSYS = RAXRBXRC = 0.759 $MTBF = \int_{0}^{t} R(t) dt$ $= -\frac{1}{\lambda} e^{-\lambda t}$ $= 31.926 e^{-0.000031322t}$ R(250) = 0.9922 = ex250 - lu (0.9922) = 2250 1 = 0.000031322 @t=250 = 31,677h.

ME4001 Engineering Management Summer '05 (6b) $f(t) = \frac{2}{a} - \frac{2t}{a^2}$ $Q(t) = S_0^t f(t) dt$ $\frac{2}{c} - \frac{2t}{c^2}$ $1 - \frac{2t}{c^2} - \frac{t^2}{c^2}$ $\lambda(t) = f(t) =$ Expected no. of operating hours = R(t) x Total Time a = 10 $R(t) = 1 - \frac{t}{5} + \frac{t^2}{100}$ R(2) = 0.64 (or So RCt) dt) Expected no. of operating hours = 1.28 years = 11,182.1 hours

ME 4001 Engineering Management Summer '04 5a) Reliability: The probability that an item will perform the required task under stated conditions for a stated period of time. R(t) + Q(t) = 1 Failure Density Function: The number of failures per unit time expressed as a fraction of the original population f(t) = (ds/dt)/N $y = N S_0 f(t) dt$ $Q(t) = S_0 f(t) dt$ $f(t) = \frac{de}{dt} = -\frac{de}{dt}$ Failure Rate: The number of failures per unit time expressed as a fraction of the original survivors. $\lambda(t) = \frac{(ay_{At})}{x}, \quad x = N - y$ $\lambda(t) = \frac{(dy_{At})}{1 - y_{N}}$ $\lambda(t) = f(t)$ R(t) MTBF: The mean number of component hours between breakdowns. MTRF = So R(t) dt 5×104 f(t) = constant = s(E)

ME 4001 Engineering Management Summer '04
56) Mean lifetime = 7,500 hrs S = 250 hrs Max. no. of returns 41%
$z = 2.327 = -(x-u) \Rightarrow x = 6918.25 hows$
@ 6,500 hours
Z = -(-1000) = 4
R= 0.9997
Q = 0.00003
0.03 failures 1000 parts
Cost per 1000 sales = €0.90