Ordinary Least Squares (Linear) Regression

Department of Political Science and Government Aarhus University

February 17, 2015

1 OLS

2 Goodness-of-Fit

3 Inference

1 OLS

2 Goodness-of-Fit

3 Inference

Uses of Regression

Description

2 Prediction

3 Causal Inference

Descriptive Inference

- We want to understand a population of cases
- We cannot observe them all, so:
 - Draw a representative sample
 - Perform mathematical procedures on sample data
 - 3 Use assumptions to make inferences about population
 - Express uncertainty about those inferences based on assumptions

Parameter Estimation

- \blacksquare We want to observe population parameter θ
- If we obtain a representative sample of population units:
 - \blacksquare Our sample statistic $\hat{\theta}$ is an unbiased estimate of θ
 - Our sampling procedure dictates how uncertain we are about the value of θ

An Example

- We want to know \bar{Y} (population mean)
- Our *estimator* is the sample mean formula which produces the sample *estimate* \bar{y} :

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i \tag{1}$$

■ The *sampling variance* is our uncertainty:

$$Var(\bar{y}) = \frac{s^2}{n} \tag{2}$$

where s^2 = sample element variance

Uncertainty

- We never know θ
- lacksquare Our $\hat{ heta}$ is an estimate that may not equal heta
 - Unbiased due to Law of Large Numbers
 - For \bar{y} : $N(Y, \sigma^2)$
- The size of sampling variance depends on:
 - Element variance
 - Sample size!
- Note: $SE(\bar{y}) = \sqrt{Var(\bar{y})}$
- We may want to know $\hat{\theta}$ per se, but we are mostly interested in it as an estimate of θ

Everything that goes into descriptive inference

- Everything that goes into descriptive inference
- Plus, philosophical assumptions

- Everything that goes into descriptive inference
- Plus, philosophical assumptions
- Plus, randomization or perfectly specified model

Questions about philosophical assumptions?

Estimating Unit-level Causal Effect

- Estimating Unit-level Causal Effect
- Ratio of Cov(X, Y) and Var(X)

- Estimating Unit-level Causal Effect
- 2 Ratio of Cov(X, Y) and Var(X)
- Minimizing residual sum of squares (SSR)

- Estimating Unit-level Causal Effect
- Ratio of Cov(X, Y) and Var(X)
- Minimizing residual sum of squares (SSR)
- 4 Line (or surface) of best fit

- Y is continuous
- lacksquare X is a randomized treatment indicator/dummy (0,1)
- How do we know if the treatment X had an effect on Y?

- Y is continuous
- lacksquare X is a randomized treatment indicator/dummy (0,1)
- How do we know if the treatment X had an effect on Y?
- Look at mean-difference: $E[Y_i|X_i = 1] - E[Y_i|X_i = 0]$

Three Equations

■ Population: $Y = \beta_0 + \beta_1 X$ (+ ϵ)

2 Sample estimate: $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$

3 Unit:

$$y_i = \hat{\beta}_0 + \hat{\beta}_1 x_i + e_i$$

= $\bar{y}_{0i} + (y_{1i} - y_{0i}) x_i + (y_{0i} - \bar{y}_{0i})$

- Mean difference $(E[Y_i|X_i=1]-E[Y_i|X_i=0])$ is the regression line slope
- Slope (β) defined as $\frac{\Delta Y}{\Delta X}$

- Mean difference $(E[Y_i|X_i=1]-E[Y_i|X_i=0])$ is the regression line slope
- Slope (β) defined as $\frac{\Delta Y}{\Delta X}$

$$\Delta Y = E[Y_i|X=1] - E[Y_i|X=0]$$

$$\Delta X = 1 - 0 = 1$$

Systematic versus unsystematic component of the data

- Systematic: Regression line (slope)
 - Linear regression estimates the conditional means of the population data (i.e., E[Y|X])
- Unsystematic: Error term is the deviation of observations from the line
 - The difference between each value y_i and \hat{y}_i is the residual: e_i
 - OLS produces an estimate of the relationship between X and Y that minimizes the residual sum of squares

Why are there residuals?

Why are there residuals?

- Omitted variables
- Measurement error
- Fundamental randomness

- Mean difference $(E[Y_i|X_i=1]-E[Y_i|X_i=0])$ is the regression line slope
- Slope (β) defined as $\frac{\Delta Y}{\Delta X}$

$$\Delta Y = E[Y_i|X=1] - E[Y_i|X=0]$$

$$\Delta X = 1 - 0 = 1$$

- Mean difference $(E[Y_i|X_i=1]-E[Y_i|X_i=0])$ is the regression line slope
- Slope (β) defined as $\frac{\Delta Y}{\Delta X}$

$$\Delta Y = E[Y_i|X=1] - E[Y_i|X=0]$$

$$\Delta X = 1 - 0 = 1$$

- How do we know if this is a significant difference?
 - We'll come back to that

Estimating Unit-level Causal Effect

Ways of Thinking About OLS

- Estimating Unit-level Causal Effect
- Ratio of Cov(X, Y) and Var(X)

Bivariate Regression II

- Y is continuous
- X is continuous (and randomized)
- How do we know if the treatment X had an effect on Y?
 - Correlation coefficient (ρ)
 - Regression coefficient (slope; β_1)

Correlation Coefficient (ρ)

 Measures how well a scatterplot is represented by a straight (non-horizontal) line

Correlation Coefficient (ρ)

 Measures how well a scatterplot is represented by a straight (non-horizontal) line

Correlation Coefficient (ρ)

- Measures how well a scatterplot is represented by a straight (non-horizontal) line
- Formal definition: $\frac{Cov(X,Y)}{\sigma_X\sigma_y}$
- As a reminder:

$$Cov(x,y) = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

$$s_x = \sqrt{\sum_{i=1}^n (x_i - \bar{x})^2}$$

OLS Coefficient $(\beta_1)^1$

■ Measures ΔY given ΔX

¹Multivariate formula involves matrices; Week 20

OLS Coefficient $(\beta_1)^1$

- Measures ΔY given ΔX
- Formal definition: $\frac{Cov(X,Y)}{Var(X)}$
- As a reminder:

•
$$Cov(x, y) = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

$$Var(x) = \sum_{i=1}^{n} (x_i - \bar{x})^2$$

OLS Coefficient $(\beta_1)^1$

- Measures ΔY given ΔX
- Formal definition: $\frac{Cov(X,Y)}{Var(X)}$
- As a reminder:

•
$$Cov(x, y) = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

$$Var(x) = \sum_{i=1}^{n} (x_i - \bar{x})^2$$

 $\hat{\rho}$ and $\hat{\beta}_1$ are just scaled versions of $\widehat{Cov}(x,y)$

¹Multivariate formula involves matrices; Week 20

 \blacksquare Do we need variation in X?

- \blacksquare Do we need variation in X?
 - Yes, otherwise dividing by zero

- \blacksquare Do we need variation in X?
 - Yes, otherwise dividing by zero
- \square Do we need variation in Y?
 - No, $\hat{\beta}_1$ can equal zero

- \blacksquare Do we need variation in X?
 - Yes, otherwise dividing by zero
- \square Do we need variation in Y?
 - No, $\hat{\beta}_1$ can equal zero

- \blacksquare Do we need variation in X?
 - Yes, otherwise dividing by zero
- 2 Do we need variation in Y?
 - No, $\hat{\beta}_1$ can equal zero
- 3 How many observations do we need?

- \blacksquare Do we need variation in X?
 - Yes, otherwise dividing by zero
- 2 Do we need variation in Y?
 - No, $\hat{\beta}_1$ can equal zero
- 3 How many observations do we need?
 - $n \ge k$, where k is number of parameters to be estimated

Calculations

x_i	y_i	$x_i - \bar{x}$	$y_i - \bar{y}$	$(x_i-\bar{x})(y_i-\bar{y})$	$(x_i - \bar{x})^2$
1	1	?	?	?	?
2	5	?	?	?	?
3	3	?	?	?	?
4	6	?	?	?	?
5	2	?	?	?	?
6	7	?	?	?	?

■ Simple formula: $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$

- Simple formula: $\hat{\beta}_0 = \bar{y} \hat{\beta}_1 \bar{x}$
- Intuition: OLS fit always runs through point (\bar{x}, \bar{y})

- Simple formula: $\hat{\beta}_0 = \bar{y} \hat{\beta}_1 \bar{x}$
- Intuition: OLS fit always runs through point (\bar{x}, \bar{y})
- **Ex.**: $\hat{\beta}_0 = 4 0.6857 * 3.5 = 1.6$

- Simple formula: $\hat{\beta}_0 = \bar{y} \hat{\beta}_1 \bar{x}$
- Intuition: OLS fit always runs through point (\bar{x}, \bar{y})
- **Ex.**: $\hat{\beta}_0 = 4 0.6857 * 3.5 = 1.6$
- $\hat{y} = 1.6 + 0.6857\hat{x}$

Ways of Thinking About OLS

- Estimating Unit-level Causal Effect
- Ratio of Cov(X, Y) and Var(X)

Ways of Thinking About OLS

- Estimating Unit-level Causal Effect
- 2 Ratio of Cov(X, Y) and Var(X)
- Minimizing residual sum of squares (SSR)

OLS Minimizes SSR

- Total Sum of Squares (SST): $\sum_{i=1}^{n} (y_i \bar{y})^2$
- We can partition SST into two parts (ANOVA):
 - Explained Sum of Squares (SSE)
 - Residual Sum of Squares (SSR)
- \blacksquare SST = SSE + SSR
- OLS is the line with the lowest SSR

Questions about OLS calculations?

Are Our Estimates Any Good?

Yes, if:

- Works mathematically
- Causally valid theory
- 3 Linear relationship between X and Y
- 4 X is measured without error
- 5 No missing data (or MCAR; see Lecture 5)
- 6 No confounding

Linear Relationship

- If linear, no problems
- If non-linear, we need to transform
 - Power terms (e.g., x^2 , x^3)
 - \blacksquare log (e.g., log(x))
 - Other transformations
 - If categorical: convert to set of indicators
 - Multivariate interactions (next week)

Coefficient Interpretation Activity

- Four types of variables:
 - Indicator (0,1)Categorical

 - 3 Ordinal4 Interval
- How do we interpret a coefficient on each of these types of variables?

■ Effect β_1 is constant across values of x

- Effect β_1 is constant across values of x
- That is not true when there are:
 - Interaction terms (next week)
 - Nonlinear transformations (e.g., x^2)
 - Nonlinear regression models (e.g., logit/probit)

- Effect β_1 is constant across values of x
- That is not true when there are:
 - Interaction terms (next week)
 - Nonlinear transformations (e.g., x^2)
 - Nonlinear regression models (e.g., logit/probit)
- Interpretations are sample-level
 - Sample representativeness determines generalizability

- Effect β_1 is constant across values of x
- That is not true when there are:
 - Interaction terms (next week)
 - Nonlinear transformations (e.g., x^2)
 - Nonlinear regression models (e.g., logit/probit)
- Interpretations are sample-level
 - Sample representativeness determines generalizability
- Remember uncertainty
 - These are *estimates*, not population parameters

Measurement Error in Regressor(s)

We want effect of x, but we observe x^* , where $x = x^* + w$:

$$y = \beta_0 + \beta_1 x^* + \epsilon$$

= $\beta_0 + \beta_1 (x - w) + \epsilon$
= $\beta_0 + \beta_1 x + (\epsilon - \beta_1 w)$
= $\beta_0 + \beta_1 x + v$

Measurement Error in Regressor(s)

- Produces attenuation: as measurement error increases, $\beta_1 \rightarrow 0$
- Our coefficients fit the observed data
- But they are biased estimates of our population equation
 - This applies to all $\hat{\beta}$ in a multivariate regression
 - Direction of bias is unknown

Measurement Error in Y

- Not necessarily a problem
- If random (i.e., uncorrelated with x), it costs us precision
- If systematic, who knows?!
- If *censored*, see Lectures 11 and/or 12

Missing Data

- Missing data can be a big problem
- We will discuss it in Lecture 5

Confounding (Selection Bias)

- If x is not randomly assigned, potential outcomes are not independent of x
- Other factors explain why a unit i received their particular value x_i

In matching, we obtain this conditional independence by comparing units that are identical on all confounding variables

Omitted Variables

$$\underbrace{E[Y_i|X_i=1] - E[Y_i|X_i=0] =}_{\text{Naive Effect}}$$

$$\underbrace{E[Y_{1i}|X_i=1] - E[Y_{0i}|X_i=1]}_{\text{Treatment Effect on Treated (ATT)}} + \underbrace{E[Y_{0i}|X_i=1] - E[Y_{0i}|X_i=0]}_{\text{Selection Bias}}$$

Omitted Variable Bias

We want to estimate:

$$Y = \beta_0 + \beta_1 X + \beta_2 Z + \epsilon$$

■ We actually estimate:

$$\tilde{y} = \tilde{\beta}_0 + \tilde{\beta}_1 x + \epsilon
= \tilde{\beta}_0 + \tilde{\beta}_1 x + (0 * z) + \epsilon
= \tilde{\beta}_0 + \tilde{\beta}_1 x + \nu$$

lacksquare Bias: $ilde{eta}_1=\hat{eta}_1+\hat{eta}_2 ilde{\delta}_1$, where $ilde{z}= ilde{\delta}_0+ ilde{\delta}_1x$

Size and Direction of Bias

■ Bias: $\tilde{\beta}_1 = \hat{\beta}_1 + \hat{\beta}_2 \tilde{\delta}_1$, where $\tilde{z} = \tilde{\delta}_0 + \tilde{\delta}_1 x$

$$Corr(x,z) < 0$$
 $Corr(x,z) > 0$
 $\beta_2 < 0$ Positive Negative $\beta_2 > 0$ Negative Positive

Aside: Three Meanings of "Endogeneity"

Formally endogeneity is when $Cov(X, \epsilon) \neq 0$

- Measurement error in regressors
- 2 Omitted variables associated with included regressors
 - "Specification error"
 - Confounding
- 3 Lack of temporal precedence

Example: Englebert

What is his research question?

What is his theory? What does the graph look like?

■ What is his analysis?

Common Conditioning Strategies

Common Conditioning Strategies

Condition on nothing ("naive effect")

Common Conditioning Strategies

- Condition on nothing ("naive effect")
- Condition on some variables

Common Conditioning Strategies

- Condition on nothing ("naive effect")
- Condition on some variables
- Condition on all observables

Common Conditioning Strategies

- Condition on nothing ("naive effect")
- Condition on some variables
- Condition on all observables

Which of these are good strategies?

- Use theory to build causal modelsOften, a causal graph helps
 - Treeli, a causar graph her
- Some guidance:

- Use theory to build causal models
 - Often, a causal graph helps
- Some guidance:
 - Include confounding variables

- Use theory to build causal models
 - Often, a causal graph helps
- Some guidance:
 - Include confounding variables

- Use theory to build causal models
 - Often, a causal graph helps
- Some guidance:
 - Include confounding variables
 - Do not include post-treatment variables

Post-treatment Bias

- We usually want to know the total effect of a cause
- If we include a mediator, D, of the $X \rightarrow Y$ relationship, the coefficient on X:
 - Only reflects the direct effect
 - Excludes the **indirect** effect of X through M
- So don't control for mediators!

- Use theory to build causal models
 - Often, a causal graph helps
- Some guidance:
 - Include confounding variables
 - Do not include post-treatment variables

- Use theory to build causal models
 - Often, a causal graph helps
- Some guidance:
 - Include confounding variables
 - Do not include post-treatment variables
 - Do not include *colinear* variables

Minimum Mathematical Requirements

- \blacksquare Do we need variation in X?
 - Yes, otherwise dividing by zero
- 2 Do we need variation in Y?
 - No, $\hat{\beta}_1$ can equal zero
- 3 How many observations do we need?
 - $n \ge k$, where k is number of parameters to be estimated

Minimum Mathematical Requirements

- \blacksquare Do we need variation in X?
 - Yes, otherwise dividing by zero
- 2 Do we need variation in Y?
 - No, $\hat{\beta}_1$ can equal zero
- 3 How many observations do we need?
 - $n \ge k$, where k is number of parameters to be estimated
- Can we have highly correlated regressors?

Minimum Mathematical Requirements

- \blacksquare Do we need variation in X?
 - Yes, otherwise dividing by zero
- 2 Do we need variation in Y?
 - No, $\hat{\beta}_1$ can equal zero
- 3 How many observations do we need?
 - $n \ge k$, where k is number of parameters to be estimated
- Can we have highly correlated regressors?
 - Generally no (due to multicollinearity)

What goes in our regression?

- Use theory to build causal models
 - Often, a causal graph helps
- Some guidance:
 - Include confounding variables
 - Do not include post-treatment variables
 - Do not include *colinear* variables

What goes in our regression?

- Use theory to build causal models
 - Often, a causal graph helps
- Some guidance:
 - Include confounding variables
 - Do not include post-treatment variables
 - Do not include *colinear* variables
 - Including irrelevant variables costs certainty

What goes in our regression?

- Use theory to build causal models
 - Often, a causal graph helps
- Some guidance:
 - Include confounding variables
 - Do not include post-treatment variables
 - Do not include *colinear* variables
 - Including irrelevant variables costs certainty
 - Including variables that affect Y alone increases certainty

Questions about specification?

Multivariate Regression Interpretation

- All our interpretation rules from earlier still apply in a multivariate regression
- Now we interpret a coefficient as an effect "all else constant"
- Generally, not good to give all coefficients a causal interpretation
 - Think "forward causal inference"
 - We're interested in the $X \rightarrow Y$ effect
 - All other coefficients are there as "controls"

From Line to Surface I

- In simple regression, we estimate a **line**
- In multiple regression, we estimate a **surface**
- Each coefficient is the *marginal effect*, all else constant (at mean)
- This can be hard to picture in your mind

From Line to Surface II

From Line to Surface II

From Line to Surface II

Are Our Estimates Any Good?

Yes, if:

- Works mathematically
- Causally valid theory
- 3 Linear relationship between X and Y
- 4 X is measured without error
- 5 No missing data (or MCAR; see Lecture 5)
- 6 No confounding

OLS is **BLUE**

- BLUE: Best Linear Unbiased Estimator
- Gauss Markov Assumptions:
 - Linearity in parameters
 - 2 Random sampling
 - 3 No multicollinearity
 - 4 Exogeneity $(E[\epsilon|\mathbf{X}] = 0)$
 - 5 Homoskedasticity ($Var(\epsilon|\mathbf{X}) = \sigma^2$)
- Assumptions 1–4 prove OLS is unbiased
- Assumption 5 proves OLS is the best estimator

Squared vs. Absolute Errors

- Conventionally use Sum of Squared Errors
- Using absolute errors is also unbiased
- Sum of Squared Errors:
 - more heavily weights outliers
 - has a smaller variance
- Thus OLS is BestLUE

1 OLS

2 Goodness-of-Fit

3 Inference

Goodness-of-Fit

■ We want to know: "How good is our model?"

Goodness-of-Fit

- We want to know: "How good is our model?"
- We can answer: "How well does our model fit the observed data?"

Goodness-of-Fit

- We want to know: "How good is our model?"
- We can answer: "How well does our model fit the observed data?"
- Is this what we want to know?

Correlation

- Definition: $Corr(x, y) = \hat{r}_{x,y} = \frac{Cov(x,y)}{(n-1)s_x s_y}$
- Slope $\hat{\beta}_1$ and correlation $\hat{r}_{x,y}$ are simply different scalings of Cov(x,y)
- Interpretation: How well the bivariate relationship is summarized by a cloud of points?
- Units: none (range -1 to 1)

Coefficient of Determination (R^2)

- Definition: $R^2 = \hat{r}_{x,y}^2 = \frac{SSE}{SST} = 1 \frac{SSR}{SST}$
- Interpretation: How much of the total variation in *y* is explained by the model?
- But, R^2 increases simply by adding more variables
- So, Adjusted- $R^2 = R^2 (1 R^2) \frac{k}{n-k-1}$, where k is number of regressors
- Units: none (range 0 to 1)

Standard Error of the Regression (SER)

- \blacksquare "Root mean squared error" or just σ
- Definition: $\hat{\sigma} = \sqrt{\frac{SSR}{n-p}}$, where p is number of parameters estimated
- Interpretation: How far, on average, are the observed y values from their corresponding fitted values \hat{y}
 - \blacksquare sd(y) is how far, on average, a given y_i is from \bar{y}
 - lacksquare σ is how far, on average, a given y_i is from \hat{y}_i
- Units: same as y (range 0 to sd(y))

The F-test

- Definition: Test of whether any of our coefficients differ from zero
 - In a bivariate regression, $F = t^2$
- Interpretation: Do any of the coefficients differ from zero?
 - Not a very interesting measure
- Units: none (range 0 to ∞)

. reg growth lcon

Source	SS	df	MS		Number of obs =	14
					F(1, 42) = 0.0	9
Model	.000038348	1 .000	038348		Prob > F = 0.761	15
Residual	.017255198	42 .000	410838		R-squared = 0.002	22
					Adj R-squared = -0.021	15
Total	.017293546	43 .000	402175		Root MSE = $.0202$	27
growth	Coef.	Std. Err.	t	P> t	[95% Conf. Interval	LT
lcon	0017819	.0058325	-0.31	0.761	0135524 .009988	36
cons	.0158988	.0390155	0.41	0.686	0628376 .094635	5.3

The F-test for nested models

Can use an F-test to compare fit of two nested models?

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 \\ \hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots$$

- Reduced model is nested within expanded model
- Interpretation: Does adding additional variables significantly reduce SSR?

. nestreg: reg growth lcon (lconsq)

+							+
		Block	Residual			Change	
Block	F	df	df	Pr > F	R2	in R2	
+							-
1	0.09	1	42	0.7615	0.0022		
2	7.98	1	41	0.0073	0.1649	0.1626	
+							+

Questions about model fit?

1 OLS

2 Goodness-of-Fit

3 Inference

Inference from Sample to Population

- lacksquare We want to know population parameter heta
- lacksquare We only observe sample estimate $\hat{ heta}$
- We have a guess but are also uncertain

Inference from Sample to Population

- \blacksquare We want to know population parameter θ
- lacksquare We only observe sample estimate $\hat{ heta}$
- We have a guess but are also uncertain

- What range of values for θ does our $\hat{\theta}$ imply?
- Are values in that range large or meaningful?

How Uncertain Are We?

- Our uncertainty depends on sampling procedures
- Most importantly, sample size
 - \blacksquare As $n \to \infty$, uncertainty $\to 0$
- We typically summarize our uncertainty as the standard error

Standard Errors (SEs)

- Definition: "The standard error of a sample estimate is the average distance that a sample estimate $(\hat{\theta})$ would be from the population parameter (θ) if we drew many separate random samples and applied our estimator to each."
- In bivariate regression: $Var(\hat{\beta}_1) = \frac{\frac{1}{n-2}SSR}{SST_x}$
- Thus, SE is a ratio of unexplained variance in y (weighted by sample size) and variance in x
- Units: same as coefficient $(\frac{y}{x})$

What affects size of SEs?

- Larger variance in x means smaller SEs
- More unexplained variance in y means biggerSEs
- More observations reduces the numerator, thus smaller SEs
- Other factors:
 - Homoskedasticity
 - Clustering
- Interpretation:
 - Large SE: Uncertain about population effect size
 - Small SE: Certain about population effect size

Ways to Express Our Uncertainty

- Standard Error
- 2 Confidence interval
- ₃ *t*-statistic
- p-value

. reg growth lcon

Source	SS	df	MS		Number of obs = 4	4
					F(1, 42) = 0.0	9
Model	.000038348	1 .000	038348		Prob > F = 0.761	5
Residual	.017255198	42 .000	410838		R-squared = 0.002	2
+-					Adj R -squared = -0.021	5
Total	.017293546	43 .000	402175		Root MSE = .0202	7
						_
growth	Coef.	Std. Err.	t	P> t	 [95% Conf. Interval	-]
growth					E/V	-] -
					E/V	_
						- 6

Confidence Interval (CI)

- Definition: Were we to repeat our procedure of sampling, applying our estimator, and calculating a confidence interval repeatedly from the population, a fixed percentage of the resulting intervals would include the true population-level slope.
- Interpretation: If the confidence interval overlaps zero, we are uncertain if β differs from zero

Confidence Interval (CI)

- A CI is simply a range, centered on the slope
- Units: Same scale as the coefficient $(\frac{y}{x})$
- We can calculate different Cls of varying confidence
 - Conventionally, $\alpha = 0.05$, so 95% of the CIs will include the β

t-statistic

- A measure of how large a coefficient is relative to our uncertainty about its size
- Typically used to test a formal null hypothesis:
 - lacksquare No effect null: $t_{\hat{eta_1}} = rac{\hat{eta_1}}{\mathit{SE}_{\hat{eta_1}}}$
 - Any other null: $\frac{\hat{\beta}_1 \alpha}{SE_{\hat{\beta}_1}}$, where α is our null hypothesis effect size

t-statistic

- A measure of how large a coefficient is relative to our uncertainty about its size
- Typically used to test a formal null hypothesis:
 - No effect null: $t_{\hat{\beta_1}} = \frac{\hat{\beta_1}}{SE_{\hat{\beta_1}}}$
 - Any other null: $\frac{\hat{\beta}_1 \alpha}{SE_{\hat{\beta}_1}}$, where α is our null hypothesis effect size
- Note: The *t*-statistic from a *t*-test of mean-difference is the same as the *t*-statistic from a *t*-test on an OLS slope for a dummy covariate

p-value

- A summary measure in a hypothesis test
- General definition: "the probability of a statistic as extreme as the one we observed, if the null hypothesis was true, the statistic is distributed as we assume, and the data are as variable as observed"
- Definition in a regression context: "the probability of a slope as large as the one we observed . . ."

The p-value is not:

- The probability that a hypothesis is true or false
- A reflection of our confidence or certainty about the result
- The probability that the true slope is in any particular range of values
- A statement about the importance or substantive size of the effect

Significance

Substantive significance

Statistical significance

Significance

- Substantive significance
 - Is the effect size (or range of possible effect sizes) important in the real world?

Statistical significance

Significance

- Substantive significance
 - Is the effect size (or range of possible effect sizes) important in the real world?

- Statistical significance
 - Is the effect size (or range of possible effect sizes) larger than a predetermined threshold?
 - Conventionally, $p \le 0.05$

Questions about inference?

