Fundamentals of Deep Learning

Mohammed Almelabi

End-to-end process

- Data ingestion
- Data cleaning
- Data preparation
- Exploratory data analysis
- Network design and training the model
- Check the accuracy and iterate
- Initial Model is created
- Model is deployment

Motivation behind Neural Network

Layers in a Neural Network

- A basic Neural Network architecture consists of predominantly three layers:
- Input layer
- Hidden layers
- Output layer

Hyperparameters

- The learning rate
- Number of hidden layers in the network
- Number of neurons in each layer
- Activation function
- Number of epoch
- Batch size
- Dropout
- Network weight

Bias term

- Bias is just like adding an intercept value to a linear equation
- It is an extra or additional parameter in a network

Activation functions

- Sigmoid function
- Tanh function
- Rectified Linear Unit or ReLU
- Softmax function

Sigmoid function

 The Sigmoid function is used if the output value of a neuron is between 0 and 1.

$$S(x) = \frac{1}{1 + e^{-x}} = \frac{e^x}{e^x + 1}$$

Tanh function

- Tangent hyperbolic function or tanh is a differentiable hyperbolic function.
- It is a scaled version of the Sigmoid function.
 It is a smooth function, and its input values are in the range of -1 to +1.
- A tanh function is generally used in the hidden layers. It makes the mean closer to zero which makes the training easier for the next layer in the network.

Tanh function

Rectified Linear Unit or ReLU

- The most popular activation function
- F(x) = max(0, x)
- It will give output as x if positive otherwise it will produce 0

Softmax function

- The softmax function is used in the final layer to generate an output.
- The output can be a final classification of an image for distinct categories.
- It calculates the probabilities for each of the target classes over all the possibilities.
- It is good for multiclass classification problems.

Activation functions

 There are other activation functions like Leaky ReLU, ELU.

AF	Value	Positive	Challenges
Sigmoid	[0,1]	1-Nonlinear2-Continuousdifferentiable	Output non-zero centerd
Tanh	[-1,1]	Gradient is stronger	Vanishing gradient
ReLU	[0,inf]	Easy to compute	Used only in hidden layers
Leaky ReLU	Max(0,x)	A variant of ReLU	Cannot be use for complex classification
ELU	[0,inf]	Alternative to ReLU	Can blow up the activations
Softmax	Calculates probabilites	Used in output layer	

Learning rate

- Learning rate defines the corrective steps which a model takes to reduce the errors.
- Learning rate governs the adjustments to be made to the weights during training of the network.
- In most of the cases, having a learning rate of 0.01 is acceptable.

Backpropagation

 Learning rate defines the size of the corrective steps to reduce the error, backpropagation is used to adjust the connection weights.

Overfitting

- if the network is working well on the training dataset but not so great on unseen dataset, it is called overfitting.
- To tackle overfitting, you can train your network with more training data. Or reduce the networks' complexity.
- Batch normalization and Dropout are two other techniques to mitigate the problem of overfitting

Gradient descent

 Gradient descent is used to find the global minimum or global maximum of a function. It is a highly used optimization technique.

Loss functions

- Loss is the measure of our model's accuracy.
- It is the difference of actual and predicted values.
- Different loss functions for regression and classification problems.

Loss Function	Equation for the Loss	Used for
Cross-entropy	-y(log(p) + (1-y) log(1-p))	Classification
Hinge loss	$\max(0, 1-y *f(x))$	Classification
Absolute error	y - f(x)	Regression
Squared error	$(y - f(x))^2$	Regression
Huber loss	Ploss $L_{\delta} = \frac{1}{2} (y - f(x))^2, \text{ if } y - f(x) <= \delta$ $\text{else } \delta y - f(x) - \frac{1}{2} \delta^2$	

Deep Learning libraries

- TensorFlow developed by Google is arguably one of the most popular and widely used.
- Keras is one of the easiest Deep Learning frameworks for starters.
- PyTorch developed by Facebook, one of the popular Deep Learning libraries. It allows data parallelism and distributed learning models.
- Sonnet is developed using TF. Sonnet is designed for complex Neural Network applications and architectures.
- MXNet highly scalable Deep Learning tool

How to learn it?

- Deep Learning is a continuous learning experience that requires discipline, and commitment.
- Stay focused and disciplined.