1. Banach Space

A Banach space is a complete normed space. The definition of a complete normed space is as follows:

(1) Vector Spaces

A vector space (or a linear space) over \mathbb{R} is a set of objects (called vectors) which can be added together or multiplied by scalars in \mathbb{R} .

More formally, a vector space V over \mathbb{R} is a set V with two operations: *vector addition* and *scalar multiplication*. With these operations given, the vector space V must satisfy the following axioms:

For each $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $\alpha, \beta \in \mathbb{R}$

A1 (Associativity of addition): $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$

A2 (Commutativity of addition): $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$

A3 (Identity element of addition): There exists an element $\mathbf{0} \in V$, called the zero vector, such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$ for all $\mathbf{u} \in V$

A4 (Inverse elements of addition): For every $\mathbf{u} \in V$, there exists an element $-\mathbf{u} \in V$, called the additive inverse of \mathbf{u} , such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$

A5 (Compatibility of scalar multiplication with field multiplication): $\alpha(\beta \mathbf{v}) = (\alpha \beta) \mathbf{v}$

A6 (Identity element of scalar multiplication): $1\mathbf{u} = \mathbf{u}$, where 1 denotes the multiplicative identity in \mathbb{R}

A7 (Distributivity of scalar multiplication with respect to vector addition): $\alpha(\mathbf{u} + \mathbf{v}) = \alpha \mathbf{u} + \alpha \mathbf{v}$

A8 (Distributivity of scalar multiplication with respect to field addition): $(\alpha + \beta)\mathbf{u} = \alpha\mathbf{u} + \beta\mathbf{u}$

(2) Norms on vector spaces

Let V be a vector space over \mathbb{R} . A *norm* $\|\cdot\|$: V $\to \mathbb{R}$ on the vector space V is a function satisfying the following.

Given $\mathbf{u}, \mathbf{v} \in V$ and $\alpha \in \mathbb{R}$,

- (i) $\|\mathbf{u}\| \ge 0$, the equality holds if and only if $\mathbf{u} = \mathbf{0}$
- (ii) $\| \alpha \mathbf{u} \| = |\alpha| \| \mathbf{u} \|$
- (iii) $\| \mathbf{u} + \mathbf{v} \| \le \| \mathbf{u} \| + \| \mathbf{v} \|$

A vector space with norm is called a *normed vector space*.

(3) Convergent sequences, Cauchy sequences

Let (u_n) be a sequence in a vector space V over \mathbb{R} .

Then,

 u_n is convergent: \Leftrightarrow there exists some $u \in V$ such that for each $\epsilon > 0$, there exists some

 $N \in \mathbb{N} \text{ such that } n \geq N \text{ implies } \parallel u_n - u \parallel < \epsilon$

In this case, we denote $\lim_{n\to\infty} u_n = u$

 $u_n \text{ is } \textit{Cauchy} \text{:} \Longleftrightarrow \text{for each } \epsilon > 0 \text{, there exist some } N \in \mathbb{N} \text{ such that } m,n \geq N$ $\text{implies } \parallel u_m - u_n \parallel < \epsilon$

(4) Banach Space

A vector space V over \mathbb{R} is called to be *complete* if every Cauchy sequence is convergent.

A complete normed vector space is also called a Banach space.

2. Closed sets

Given $\mathbf{x} \in V$ and $\varepsilon > 0$, the set $B(\mathbf{x}, \varepsilon) = \{\mathbf{y} \in V \mid \|\mathbf{y} - \mathbf{x}\| < \varepsilon\}$ is called an *open ball* centered at \mathbf{x} with radius ε .

A subset U of a vector space V is called to be *open*

if for every $\mathbf{x} \in U$, there is an open ball $B(\mathbf{x}, \varepsilon)$ centered at \mathbf{x} , which is contained in U.

That is, $\mathbf{x} \in \mathbf{B}(\mathbf{x}, \varepsilon) \subset \mathbf{U}$

A subset M of V is called to be *closed* if $M^C := V - M$ is open.

Each closed subset M of V satisfies the following property:

If (\textbf{u}_n) is a convergent sequence in M and $\lim_{n \to \infty} \textbf{u}_n = \textbf{u}$, then $\textbf{u} \in M$

3. Operators

Let M and Y be sets. An *operator* A: $M \rightarrow Y$ associates to each point u in M to a point v in Y denoted by v=Au.

The set M is called the *domain* of A, we also write M=D(A).

The set $A(M) := \{v \in Y | v = Au \text{ for some } u \in M\}$ is called the *range* of A.

Operators are also called functions.

4. The Banach Fixed Point Theorem

We assume that:

- (a) M is a closed nonempty set in the Banach space X over \mathbb{R} , and
- (b) the operator A: $M \rightarrow M$ is k contractive, i. e., by definition,

 $\| Au - Av \| \le k \| u - v \|$ for all $u, v \in M$, and fixed $k, 0 \le k < 1$.

Then the following hold true:

(i) Existence and uniqueness. The equation Au = u has exactly one solution u,

i.e., the operator A has exactly one fixed point u on the set M.

(ii) Convergence of the iteration method.

For each given $u_0 \in M$, the sequence (u_n) defined recursively

by $u_{n+1} = Au_n$, n = 0,1,... converges to the unique solution u of the equation Au = u

Proof)

Step 1: We show first that (u_n) is a Cauchy sequence.

Let
$$n=1,2,...$$
 Since $||Au - Av|| \le k ||u - v||$ for all $u, v \in M$, we have

$$\parallel \mathbf{u}_{n+1} - \mathbf{u}_{n} \parallel = \parallel \mathbf{A}\mathbf{u}_{n} - \mathbf{A}\mathbf{u}_{n-1} \parallel \leq \mathbf{k} \parallel \mathbf{u}_{n} - \mathbf{u}_{n-1} \parallel = \mathbf{k} \parallel \mathbf{A}\mathbf{u}_{n-1} - \mathbf{A}\mathbf{u}_{n-2} \parallel$$

$$\leq \mathbf{k}^2 \parallel \mathbf{u}_{n-1} - \mathbf{u}_{n-2} \parallel \leq \cdots \leq \mathbf{k}^n \parallel \mathbf{u}_1 - \mathbf{u}_0 \parallel$$

Now let n=0,1,... and m=1,2,... The triangular inequality and the sum formula for the geometric series yield

$$\| u_n - u_{n+m} \| = \| (u_n - u_{n+1}) + (u_{n+1} - u_{n+2}) + \dots + (u_{n+m-1} - u_{n+m}) \|$$

$$\leq \parallel u_n - u_{n+1} \parallel + \parallel u_{n+1} - u_{n+2} \parallel + \cdots + \parallel u_{n+m-1} - u_{n+m} \parallel$$

$$\leq (\mathbf{k}^{\mathbf{n}} + \mathbf{k}^{\mathbf{n}+1} + \cdots + \mathbf{k}^{\mathbf{n}+\mathbf{m}-1}) \parallel \mathbf{u}_1 - \mathbf{u}_0 \parallel$$

$$\leq \, \mathbf{k}^{\mathbf{n}}(1+\mathbf{k}+\mathbf{k}^2+\cdots) \parallel \mathbf{u}_1 - \mathbf{u}_0 \parallel$$

$$= \mathbf{k}^{\mathbf{n}} (1 - \mathbf{k})^{-1} \parallel \mathbf{u}_1 - \mathbf{u}_0 \parallel$$

It follows from $0 \le k < 1$ that $k^n \to 0$ as $n \to \infty$. Hence the sequence (u_n) is Cauchy.

Since X is a Banach space, the Cauchy sequence (u_n) converges, i.e.,

$$u_n \to u \text{ as } n \to \infty$$

Step 2: We show that the limit point u is a solution of the equation Au = u.

From $u_0 \in M$ and $u_1 = Au_1$ with A: $M \to M$, we get $u_1 \in M$. Similarly, by induction,

$$u_n \in M$$
 for all $n = 0,1,...$

Since the set M is closed, we obtain $u \in M$

,and hence $Au \in M$. By $||Au - Av|| \le k ||u - v||$ for all $u, v \in M$, we have

$$\begin{split} \parallel u - Au \parallel = \parallel \lim_{n \to \infty} u_{n+1} - Au \parallel = \parallel \lim_{n \to \infty} Au_n - Au \parallel = \lim_{n \to \infty} \parallel Au_n - Au \parallel \\ & \leq \lim_{n \to \infty} k \parallel u_n - u \parallel = 0 \end{split}$$

Hence Au = u, proving (2).

Step 3: We show the uniqueness of the solution u of Au = u. Suppose u and v are solutions.

Then
$$Au=u$$
 and $Av=v$. It follows that $\parallel u-v\parallel=\parallel Au-Av\parallel\leq k\parallel u-v\parallel$.

If
$$\|\mathbf{u} - \mathbf{v}\| \neq 0$$
, then $1 \leq k$, a contradiction. Hence $\|\mathbf{u} - \mathbf{v}\| = 0$.

Therefore u = v, proving (1).