Rank-74099 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^2 X_1 + X_0^2 X_2 + X_0^2 X_3 + X_1^2 X_2 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0) The point rank of the equation over $\mathrm{GF}(4)$ is 1498835545

General information

Number of lines	2
Number of points	17
Number of singular points	1
Number of Eckardt points	0
Number of double points	1
Number of single points	8
Number of points off lines	8
Number of Hesse planes	0
Number of axes	0
Type of points on lines	5^{2}
Type of lines on points	$2, 1^8, 0^8$

Singular Points

The surface has 1 singular points:

$$0: P_2 = \mathbf{P}(0,0,1,0) = \mathbf{P}(0,0,1,0)$$

The 2 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{340} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{340} = \mathbf{Pl}(0, 0, 0, 1, 0, 0)_9$$

$$\ell_1 = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{356} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{356} = \mathbf{Pl}(0, 1, 0, 0, 0, 0)_1$$

Rank of lines: (340, 356)

Rank of points on Klein quadric: (9, 1)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 1 Double points:

The double points on the surface are:

$$P_3 = (0,0,0,1) = \ell_0 \cap \ell_1$$

Single Points

The surface has 8 single points:

The single points on the surface are:

$$0: P_1 = (0, 1, 0, 0)$$
 lies on line ℓ_0

$$1: P_2 = (0,0,1,0)$$
 lies on line ℓ_1

$$2: P_{26} = (0, 1, 0, 1)$$
 lies on line ℓ_0

$$3: P_{30} = (0, 2, 0, 1)$$
 lies on line ℓ_0

4:
$$P_{34} = (0, 3, 0, 1)$$
 lies on line ℓ_0

The single points on the surface are:

 $5: P_{38} = (0,0,1,1)$ lies on line ℓ_1

6: $P_{53} = (0, 0, 2, 1)$ lies on line ℓ_1

7: $P_{69} = (0,0,3,1)$ lies on line ℓ_1

Points on surface but on no line

The surface has 8 points not on any line:

The points on the surface but not on lines are:

 $0: P_0 = (1, 0, 0, 0)$

 $1: P_4 = (1, 1, 1, 1)$

 $2: P_{12} = (1, 1, 1, 0)$

 $3: P_{23} = (1,0,0,1)$

 $4: P_{32} = (2, 2, 0, 1)$

 $5: P_{37} = (3, 3, 0, 1)$

 $6: P_{55} = (2, 0, 2, 1)$

7: $P_{72} = (3, 0, 3, 1)$

Line Intersection Graph

$$\begin{array}{c|c} 0 \ 1 \\ \hline 0 \ 0 \ 1 \\ 1 \ 1 \ 0 \end{array}$$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1
in point	P_3

Line 1 intersects

Line	ℓ_0
in point	P_3

The surface has 17 points: The points on the surface are:

$0: P_0 = (1, 0, 0, 0)$	$6: P_{23} = (1,0,0,1)$	$12: P_{38} = (0, 0, 1, 1)$
$1: P_1 = (0, 1, 0, 0)$	$7: P_{26} = (0, 1, 0, 1)$	13: $P_{53} = (0, 0, 2, 1)$
$2: P_2 = (0,0,1,0)$	$8: P_{30} = (0, 2, 0, 1)$	$14: P_{55} = (2, 0, 2, 1)$
$3: P_3 = (0,0,0,1)$	9: $P_{32} = (2, 2, 0, 1)$	$15: P_{69} = (0, 0, 3, 1)$
$4: P_4 = (1, 1, 1, 1)$	$10: P_{34} = (0,3,0,1)$	16: $P_{72} = (3, 0, 3, 1)$
$5: P_{12} = (1, 1, 1, 0)$	$11: P_{37} = (3, 3, 0, 1)$	