αναλυτική χημεία

Καλλιακμάνη

9.11.2021

1N-ΣΤΠ_01

Δειγματοληψία

Δειγματοληψία ονομάζεται η διεργασία παραλαβής ενός μικρού κλάσματος ενός υλικού απο τη συνολική ποσότητά του, του οποίου η χημική σύσταση είναι ίδια με τη μέση σύσταση του συνόλου του υλικού

αλλιώς

Δειγματοληψία ονομάζεται η διαδικασία επιλογής μερους ενός προς εξέταση υλικού με τέτοιο τρόπο ώστε το δείγμα να είναι αντιπροσωπευτικό και να παρέχει πληροφορίες για το υλικό

τύποι υλικών

- βιομηχανικά προϊόντα (γραμμη παραγωγής)
- γεωργικά προϊόντα (στον αγρό)
- γεωλογικά και εδαφολογικά υλικά (καρότα)
- περιβαλλοντικά υλικά
- βιολογικά υλικά (παρακέντηση, απόξεση)
- αρχαιολογικά υλικά
- τρόφιμα
- υλικά εγκληματολογικού ενδιαφέροντος

χρήσιμοι ορισμοί

- δειγμα (sample): το μέρος ενός υλικού που επιλέγεται ως αντιπροσωπευτικό του συνόλου
- υπόδειγμα(sub-sample): το μέρος ενός δείγματος που έχει επιλεγεί με τέτοιο τρό πο ώστε η υπό μέτρηση ιδιότητα να είναι η ίδια όπως και στο δείγμα
- εργαστηριακό δείγμα(laboratory sample): το δείγμα που αποστέλεται στο εργαστήριο για ανάλυση
- αντιδείγμα (anti-sample): το ένα από τα δύο μέρη στα οποία χωρίζεται το αρχικό εργαστηριακό δείγμα και το οποίο δεν αναλύεται αλλά φυλάσσεται ως μάρτυρας
- δείγμα δοκιμής(test sample): το υλικό στο οποίο θα εκτελεστεί η δοκιμή (μπορεί να είναι όλο το εργαστηριακό δείγμα ή υπόδειγμά του)
- μέρος δοκιμής(test portion):υπόδειγμα του δείγματος δοκιμής στο οποίο εκτελείται η τελική μέτρηση

παράμετροι δειγματοληψίας

- το είδος και οι ιδιότητες του υποεξέταση υλικού (φυσική κατάσταση, ομοιογένεια, στατικότητα, συνεχές ή διακριτό)
- ο τύπος του δείγματος που απαιτέιται για τη συγκεκριμένη μέθοδο πράγμα που καθορίζει το σχήμα της δειγματοληψίας (τυχαία, στρωματοποιημένη, σύνθετη)

παράμετροι δειγματοληψίας

- 3. ειδικές παράμετροι για το δείγμα (επάρκεια δειγμάτων, αβεβαιότητα δειγματοληψίας, αριθμός δειγμάτων σε μη ομοιγενή δειγματοληψία, υποδειγματοληψία)
- 4. η σταθερότητα του δείγματος (όταν το δείγμα αναλύεται πρέπει να διατηρεί τις ιδιότητες που είχε κατα τη δειγματοληψία)
- 5. ο τρόπος χειρισμού των δειγμάτων
 - συντήρηση και ασφάλεια του δείγματος
 - ασφάλεια και υγιεινή του προσωπικού
 - ταυτοποίηση και ιχνηλασιμότητα του δείγματος
 - ύπαρξη τεκμηρίωσης όλων των ενεργειών ώστε η διαδικασία να μπορεί να αναπαραχθεί

Για την έρευνα συλλέχθηκαν ποσοτικά στοιχεία μέσω ηλεκτρονικών ερωτηματολογίων (περίοδος 4-30 Ιουλίου 2019), προσαρμοσμένων στους δύο πληθυσμούς - γυναίκες (299 αξιοποιήσιμες απαντήσεις) και επιχειρήσεις (107 αξιοποιήσιμες απαντήσεις). Επιπλέον, συλλέχθηκαν ποιοτικά στοιχεία μέσω τριών focus groups (15, 17 & 18 Ιουλίου 2019) στα οποία συμμετείχαν συνολικά 25 γυναίκες και συγκεκριμένα: (α) γυναίκες σε αρχικά στάδια της επαγγελματικής σταδιοδρομίας τους - «focus group γυναικών», (β) γυναίκες σε πγετικές θέσεις - «focus group προτύπων» και (γ) στελέχη Διοίκησης Ανθρώπινου Δυναμικού - «focus group επιχειρήσεων».

σφάλμα

ως <u>σφάλμα</u> ορίζουμε το μέγεθος της αβεβαιότητας που προκύπτει από κάθε φυσική μέτρηση.

Τα σφάλαμτα μπορεί να είναι

- 1. προσδιορίσιμα ή συστηματικά (systematic errors) μπορούν να μετρηθούν και να υπολογιστούν.
- 2. <u>μη προσδιορίσιμα ή τυχαία</u> (random errors) μπορούν να ταυτοποιηθούν αλλά κυμαίνονται κατά τυχαίο τρόπο

ανάλυση συστηματικών σφαλμάτων

προέλευση συστηματικών σφαλμάτων

- 1. προσωπικά σφάλματα (επανέλεγχος)
- 2. ενόργανα σφάλματα (σωστή βαθμονόμηση)
- 3. σφάλματα μεθόδου(ανάλυση πρότυπων δειγμάτων, ανεξάρτητη ανάλυση, προσδιορισμός τυφλού δείγματος, μεταβολή μεγέθους δείγματος

τύποι συστηματικών σφαλμάτων

- 1. Σταθερά
- 2. Αναλογικά

τυχαίο και συστηματικό σφάλμα

χωρίς συστηματικό - μικρό τυχαίο υψηλή εγκυρότητα υψηλή ακρίβεια

με συστηματικόμικρό τυχαίο χαμηλή εγκυρότητα υψηλή ακρίβεια

χωρίς συστηματικόμεγάλο τυχαίο υψηλή εγκυρότητα χαμηλή ακρίβεια

με συστηματικόμεγάλο τυχαίο χαμηλή εγκυρότητα χαμηλή ακρίβεια

ορισμοί στατιστικών παραμέτρων

η μέση τιμή, η αριθμητική μέση τιμή και ο μέσος όρος χ (Mean): η αριθμητική τιμή που αποκτήθηκε με διαίρεση του αθροίσματος των τιμών μιας σειράς μετρήσεων προς τον αριθμό των μετρήσεων

$$\overline{X} = \frac{\sum X}{N}$$

η διάμεση τιμή X (median): μιας σειράς μετρήσεων είναι το αποτέλεσμα γύρω από το οποίο κατανέμονται εξίσου όλες οι άλλες τιμές, δηλαδή οι μισές τιμές είναι μεγαλύτερες και οι μισές μικρότερες απο τη διάμεση τιμή

Median (Middle) Mode (Most)

The number which is in the middle or the middle value.

11 7 11 18 9 7 6 23 7 6777911111823

Median: 9

The number that appears the most.

11 7 11 18 9 7 6 23 7 6777911111823

Mode: 7

Mean (Average)

The total of the numbers divided by how many numbers there are.

11 7 11 18 9 7 6 23 7

11+7+11+18+9+7+6+23+7=99

99/9 = 11

Mean: 11

Range (Difference)

The difference between the largest and the smallest number.

11 7 11 18 9 7 6 23 7

Large: 23 Small: 6

23 - 6 = 17

Range: 17

ακρίβεια-επαναληψιμότητα

Ο όρος ακρίβεια (accuracy) σημαίνει την εγγύτητα μια μέτρησης προς την αποδεκτή τιμή και εκφράζεται με όρους σφάλματος

Επαναληψιμότητα (precision) ορίζεται ως η συμφωνία μεταξύ των αριθμητικών τιμών δύο ή περισσότερων μετρήσεων που έγιναν με τον ίδιο τρόπο

Το <u>εύρος</u> w (range)σε μια σειρά δεδομένων είναι η διαφορά μεταξύ της μεγαλύτερης και της μικρότερης τιμής

μέτρηση της ακρίβειας

Η ακρίβεια μέτρησης συχνά περιγράφεται με

• το απόλυτο σφάλμα Ε

$$E = x_i - \mu$$

χ_i: μέτρηση

μ: αποδεκτή ή πραγματική τιμή

• το σχετικό σφάλμα E_r

$$E_r = E*100/\mu$$

Ακρίβεια και επαναληψιμότητα

Ακρίβεια (Accuracy): δείχνει πόσο κοντά στην αληθινή τιμή είναι το αποτέλεσμα μιας μέτρησης

Επαναληψιμότητα (Precision): δείχνει πόσο κοντά μεταξύ τους είναι τα αποτελέσματα των μετρήσεων

Καλή ακρίβεια Καλή επαναληψιμότητα

Κακή ακρίβεια Καλή επαναληψιμότητα

Κακή ακρίβεια Κακή επαναληψιμότητα

μέτρηση της επαναληψιμότητας

- Απόκλιση από τη μέση τιμή (deviation) x_i=x
- Εύρος (range) w=x_{max}-x_{min}
- Τυπική απόκλιση (standard deviation) σ
- Διακύμανση σ²

Standard Deviation Examples Standard Deviation = $\sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$ (σ)

τυπική απόκλιση σ

Standard Deviation

κατανομή Gauss

	Х	x^2				
	15	225				
	9	81				
	23	529				
	12	144				
	17	289				
	76	1268				
		₩	77			
	$\bar{r} =$	$\frac{\sum x}{n} =$	/b — =	15.2		
		n	5	10.2		
	T ~ 2	(∇x)	2	1268	$(76)^2$	1
$\sigma = \frac{1}{2}$	$\sum x^2$	$\left(\frac{\sum x}{x}\right)$	=	_		
V	n	$\setminus n$	V	5	$-\sqrt{5}$	
	F2 6	(15 2	$\frac{1}{12}$	2526	221 (
$=\sqrt{2}$	<u> </u>	(15.2	$J^2 = \chi$	255.0	- 231.0)4
$=\sqrt{2}$	2.56 =	4.75				

η: αριθμός μετρήσεων

χ: τιμή μέτρησης

¬x: μέση τιμή (mean)

σ: τυπική απόκλιση

Σ: σύνολο