Lista de Exercícios - Álgebra Linear - Física

1 Sistemas Lineares e Álgebra de Matrizes

Exercício 1.1. Resolva os seguintes sistemas lineares:

1.
$$\begin{cases} x + y + z = 1 \\ x - y + 2z = 2 \\ x + 6y + 3z = 3 \end{cases}$$

2.
$$\begin{cases} x + y + z = 1 \\ x - y + z = -2 \\ 2y = 3 \end{cases}$$

3.
$$\begin{cases} x - y + 2z - t = 0 \\ 3x + y + 3z + t = 0 \\ x - y - z - 5t = 0 \end{cases}$$

4.
$$\begin{cases} 3x + 2y - 12z = 0 \\ x - y + z = 0 \\ 2x - 3y + 5z = 0 \end{cases}$$

Exercício 1.2. Considere os sistemas lineares dados no exercício anterior. Escreva cada um desse sistema linear na forma matricial, e resolva a equação matricial.

Exercício 1.3. Seja $T: \mathbb{R} \to M_{2\times 2}(\mathbb{R})$ uma função dada por

$$T(\alpha) = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}.$$

Tal função é chamada de transformação de rotação. Mostre que

1.
$$T(\alpha)T(\beta) = T(\alpha + \beta)$$

2.
$$T(-\alpha) = T(\alpha)^t$$

Exercício 1.4. Mostre que a soma de duas matrizes simétricas é uma matriz simétrica. O produto entre duas matrizes simétricas é simétricas?

Exercício 1.5. Mostre também que a soma de duas matrizes anti-simétricas é uma matriz anti-simétrica. O produto entre duas matrizes anti-simétricas é anti-simétrica?

Exercício 1.6. Seja A uma matriz de ordem n. Se $A \neq 0$, então $A^2 \neq 0$? Se a afirmação for verdadeira, então demonstre. Caso contrário exiba um contra-exemplo.

Exercício 1.7. Existe uma matriz inversível A tal que $A^2 = 0$? Justifique.

2 Espaço Vetorial

Exercício 2.1. Mostre que o conjunto dos complexos $\mathbb C$ é um espaço vetorial sobre $\mathbb R$, com soma e multiplicação usuais. Mostre também que $\mathbb C$ é um espaço vetorial sobre $\mathbb C$, com soma e multiplicação usuais.

Exercício 2.2. Mostre que \mathbb{R}^n é um espaço vetorial sobre \mathbb{R} , com soma e multiplicação usuais.

Exercício 2.3. Seja $V = \mathbb{R}^2$. Defina as seguinte operações:

Soma:
$$(x_1, y_1) + (x_2, y_2) = (2x_1 - 2y_1, -x_1 + y_1)$$

Multiplicação por escalar: $\lambda(x_1, y_1) = (3\lambda y, -\lambda x)$

 $V \not e um \ espaço \ vetorial \ sobre \ \mathbb{R} \ com \ essas \ operações?$

Exercício 2.4. Mostre que o conjunto das funções diferenciáveis é um subespaço do espaço de funções.

Exercício 2.5. Verifique se os seguintes conjuntos são subespaços

- 1. $W = \{(x, y, z) \in \mathbb{R}^3 : x = 0\} \ de \ \mathbb{R}^3$
- 2. $W = \{(x, y, z) \in \mathbb{R}^3 : x = 1\} \ de \ \mathbb{R}^3$
- 3. $W = \{(x, y, z) \in \mathbb{R}^3 : x \in \mathbb{Z}\} \ de \ \mathbb{R}^3$
- 4. $W = \{(x, y, z) \in \mathbb{R}^3 : y \text{ \'e irracional } \} de \mathbb{R}^3$
- 5. $W = \{(x, y, z) \in \mathbb{R}^3 : x 3z = 0\} \ de \ \mathbb{R}^3$
- 6. $W = \{ f(t) : f(t) > 0, \forall t \in \mathbb{R} \} \ de \ P(\mathbb{R})$
- 7. $W = \{f(t): f(t) + f'(t) = 0\} de P(\mathbb{R})$
- 8. $W = \{f(t) : f(0) = 0\} de C(I)$

Exercício 2.6. Sejam V um espaço vetorial sobre \mathbb{R} e U e V subespaços de V. Se a seguinte afirmação for verdadeira, demonstre. Caso contrário, forneça um contra-exemplo.

- 1. $U \cap V$ é um subespaço de V.
- 2. $U \cup V$ é um subespaço de V.
- 3. U + V é um subespaço de V.

Exercício 2.7. Sejam U e V subespaços de \mathbb{R}^3 , dados por $U = \{(x, y, z) \in \mathbb{R}^3 : x + y = 0\}$ e $V = \{(x, y, z) \in \mathbb{R}^3 : x = 0\}$. Determine o subespaço $U \cap V$ e seu gerador.

Exercício 2.8. Sejam U e V subespaços de W. Mostre que $W=U\oplus V$ se, e somente se, cada vetor $w\in W$ admite única decomposição w=u+v, com $u\in U$ e $v\in V$.

Exercício 2.9. Mostre que o espaço das matrizes de ordem n pode ser escrito como soma direta entre $S = \{A \in M_{n \times n}(\mathbb{R}) : A^t = A\}$ e $T = \{A \in M_{n \times n}(\mathbb{R}) : A^t = -A\}$.

Exercício 2.10. Mostre que o espaço das funções poder ser escrito como soma direta entre o conjunto das funções pares e ímpares.

Exercício 2.11. Sejam W espaço vetorial, $U = \{u_1, \dots, u_n\} \subseteq W$ e $V = \{v_1, \dots, v_n\} \subseteq W$. Mostre que

- 1. $U \subseteq [U]$.
- 2. Se $U \subseteq V$, então $[U] \subseteq [V]$.
- 3. [U] = [[U]].
- 4. $[U \cup V] = [U] + [V]$.

Exercício 2.12. Verifique se o conjunto abaixo é uma base para o espaço de matrizes $M_{2\times 2}(\mathbb{R})$

$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix} \right\}$$

Exercício 2.13. Verifique se o conjunto abaixo é uma base para \mathbb{R}^3

$$\{(1,1,1),(1,0,1),(1,0,-2)\}$$

Exercício 2.14. Mostre que se o conjunto $\{u, v, w\}$ é L.I, então $\{u + v, u + w, v + w\}$ também é um conjunto L.I.

Exercício 2.15. Mostre que todo conjunto U de um espaço vetorial V que contém o vetor nulo é um cojunto L.D.

Exercício 2.16. Mostre que se $U = \{u\} \subset V$, com $u \neq 0_v$, então U é L.I.