

Research Question

We know that correlations between graduation rate and household/demographic conditions vary by region.

What household conditions are the biggest indicators for graduation rates across school districts?

How does this differ across Regions in the U.S.?

Does district-wide assessment data provide a significant improvement to a regression model?

Last Week's Steps...

Add variables to regression model (include financial information)

Determine which type of model is most appropriate – change by region, race

Measure most impactful variables for regression (Societal Implications)

Assessment data

Adding Variables to Model

Current Variables:

- Household Conditions
- Racial/Ethnic Distribution
- Finance Data

Variables to add:

- Assessment Data
- Existing state-wide graduation rates?

Assessments and Grad Rates

School District Funding

Federal Funding

State Funding

Local Funding

Defining Regions

R "State" dataset

 Categorized each district to a region (West, South, North Central, and Northeast) Data Files!

Our Repo

Our Data Directory

NHGIS District data.xlsx README.md assess.csv clean graduation data.csv finance.csv finance_data.csv grad.csv grad predom-raceP household.csv grad_raceP_household.csv grad_raceP_household_rev.csv grad_race_household.csv hh.csv public_schools.csv race.csv raceP household.csv

race household.csv

school_assess.csv

school grad race hh.csv

The data sets we actually have:

- HH Conditions (hh.csv)
- Grad Rates (grad.csv)
- Race Distribution (race.csv)
- Assessments (assess.csv)
- Financial (finance.csv)

Goal:

Create a sort of "CSV Database" where we can join data sets by LEAID before analysis

Modeling!

Current Preprocessing Steps

- 1. Made interaction terms between numeric predictors
- 2. Made dummy variables for predominant race and region
- 3. Centered and Scaled predictors
- 4. Removed predictors with near-zero variance

Linear Regression {lm}

Lasso Regression {glmnet}

Multivariate Adaptive Regression Spline {earth}

Support Vector Regression {kernlab}

Decision Tree {rpart}

Random Forest {ranger}

Gradient Boosted Trees {xgboost}

Models

Tuned parameters with 10fold cross-validation and random grid search

Last week's results

This week's results

Result Specifics

```
##
    wflow_id rank rmse
                         rsq
##
    <chr> <int> <dbl> <dbl>
## 1 xgboost 1 5.74 0.455
             2 5.79 0.445
## 2 rf
            3 6.12 0.385
## 3 mars
                4 6.36 0.332
## 4 lasso
## 5 dtree
                5 6.40 0.323
                6 6.45 0.320
## 6 lm
                7 6.47 0.325
## 7 svm
```

Model Results:

• Test RMSE: 6.77 --> 5.98

• Test R²: 0.319 --> 0.451

Model Parameters:

- Mtry = 19
- Min_n = 13
- Tree_depth = 11
- Learn_rate = 0.00565
- Sample_size = 0.960

Variable Importance for Random Forest

Next Week's Steps

Include assessment data in the model

Decide how to split our analysis by region

Interpret variable importance

Evaluate modeling techniques