6.3 实验三 译码器与编码器

1. 实验介绍

在本次实验中,我们将使用 Verilog HDL 语言实现 3-8 译码器、8-3 编码器以及七段数码管的设计和仿真。

2. 实验目标

- 深入了解译码器、编码器、优先编码器原理。
- 使用 logicsim 画出译码器以及编码器实验的逻辑图。
- 学习使用 Verilog HDL 语言设计实现译码器、编码器。

3. 实验原理

1) 3-8 译码器

实现译码功能的组合逻辑电路称为译码器,它的输入是一组二进制代码,输出是一组高低电平信号。所要建模的 3-8 译码器及真值表如图 6.3.1 所示,它有三个编码输入、八个输出和二个使能输入端(G_1 , G_2)。作为译码器使用时,使能端必须满足 G_1 =1, G_2 =0。

图 6.3.1 3-8 译码器及其真值表

● 接口定义:

● XDC 文件配置:

	变量	iData[0]~[2]	iEna[0]~[1]	oData[0]~[7]
	N4 板上 的管脚	SW0~2	SW14~15	LD0~7
		(J15、L16、M13)	(V10, U11)	(H17、K15、J13、N14、
			(VIO (OII)	R18、V17、U17、U16)

2) 七段数码管译码驱动器

图 6.3.2 为所要建模的七段数码管译码驱动原理图,它由译码驱动器和荧光数码管组成。荧光数码管是分段式半导体显示器件,7个发光二极管组成7个发光段,发光二极管可以将电能转换成光能,从而发出清晰悦目的光线。本实验采用的是共阳极电路,故译码器的输出 a~g 分别加到7个阴极上。只有在阴极上呈低电平的二极管导通发光,显示0~9中相应的十进制数字。表6.3.1 所示为七段数码管译码驱动器逻辑功能真值表,四个输入和七个输出以及对应显示的字符。

图 6.3.2 七段数码管译码驱动原理图

	输	λ			输出						显示
 D ₃	D_2	D_1	D ₀	g	f	е	d	С	b	a	字符
 0	0	0	0	1	0	0	0	0	0	0	0
 0	0	0	1	1	1	1	1	0	0	1	1
 0	0	1	0	0	1	0	0	1	0	0	2
 0	0	1	1	0	1	1	0	0	0	0	3
 0	1	0	0	0	0	1	1	0	0	1	4
 0	1	0	1	0	0	1	0	0	1	0	5
 0	1	1	0	0	0	0	0	0	1	0	6
 0	1	1	1	1	1	1	1	0	0	0	7
 1	0	0	0	0	0	0	0	0	0	0	8
 1	0	0	1	0	0	1	0	0	0	0	9

表 6.3.1 七段数码管译码驱动器逻辑功能表

● 接口定义:

```
module display7(
    input [3:0] iData, //四位输入 D<sub>3</sub>~D<sub>0</sub>
    output [6:0] oData //七位译码输出 g~a
);
```

● XDC 文件配置:

变量	iData[0]~[3]	oData[0]~[6]
N4 板上	SW0~3(J15.	CA(T10)、CB(R10)、CC(K16)、CD(K13)、
的管脚	L16、M13、R15)	CE(P15)、CF(T11)、CG(L18)

3) 普通 8-3 编码器

用来完成编码工作的电路称为编码器。它可以实现对一组输入信号的二进制编码。图 6.3.3 为所要建模的普通 8-3 编码器及其真值表。它有 8 个输入以及 3 个输出,真值表中每行只有一个输入电平有效(高电平为 1,低电平为 0)。

D ₇	D ₆	D ₅	D_4	D ₃	D ₂	D_1	D ₀	Y ₂	Υ1	Υo
1	0	0	0	0	0	0	0	1	1	1
0	1	0	0	0	0	0	0	1	1	0
0	0	1	0	0	0	0	0	1	0	1
0	0	0	1	0	0	0	0	1	0	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	0	0	1	0	0	0

图 6.3.3 普通 8-3 编码器及其真值表

● 接口定义:

```
module encoder83(
    input [7:0] iData, //八位输入 D<sub>7</sub>~D<sub>0</sub>,高电平有效
    output [2:0] oData //三位编码输出 Y<sub>2</sub>~Y<sub>0</sub>
);
```

● XDC 文件配置:

变量	iData[0]~[7]	oData[0]~[2]
N4 板上的	SW0~7	LD0~2
管脚	(J15、L16、M13、R15、R17、T18、U18、R13)	(H17,K15,J13)

4) 具有优先级的 8-3 编码器

普通编码器对输入线是有限制的,即在任意一时刻所有输入线中只允许一个输入线信号有效,否则编码器将发生混乱。为解决这一问题可以采用具有优先级的编码器。图 6.3.4 为所要建模的具有优先级的 8-3 编码器及其真值表,它有八个输入端、三个输出端、一个选通输入端 EI 以及一个扩展输出端 EO。从真值表可以看出,输入输出的有效信号是低电平,在输入中,角标越大,优先级越高。

图 6.3.4 具有优先级的 8-3 编码器及其真值表

\overline{D}_0	\overline{D}_1	\overline{D}_2	\overline{D}_3	\overline{D}_4	\overline{D}_5	\overline{D}_6	\overline{D}_7	Ϋ́	\overline{Q}_{1}	\overline{Y}_0	ΕI	EO
×	×	×	×	×	×	×	×	1	1	1	1	0
1	1	1	1	1	1	1	1	1	1	1	0	0
×	×	×	×	×	×	×	0	0	0	0	0	1
×	×	×	×	×	×	0	1	0	0	1	0	1
×	×	×	×	×	0	1	1	0	1	0	0	1
×	×	×	×	0	1	1	1	0	1	1	0	1
×	×	×	0	1	1	1	1	1	0	0	0	1
×	×	0	1	1	1	1	1	1	0	1	0	1
×	0	1	1	1	1	1	1	1	1	0	0	1
0	1	1	1	1	1	1	1	1	1	1	0	1

● 接口定义:

● XDC 文件配置:

变量	iData[0]~[7]	oData[0]~[2]	iEI	οEO
N4 板上的 管脚	SW0~7 (J15、L16、M13、R15、 R17、T18、U18、R13)	LD0~2 (H17、K15、J13)	SW15 (V10)	LD15 (V11)

4. 实验步骤

- 1. 请根据图 6.3.1 和图 6.3.3 中的真值表列写 3-8 译码器和普通 8-3 编码器的逻辑表达式,并用 logicsim 画出电路原理图,验证逻辑。
- 2.新建 Vivado 工程,编写各个模块。
- 3.用 ModelSim 仿真测试各模块。
- 4. 配置 XDC 文件,综合下板,并观察实验现象。
- 5. 按照要求书写实验报告。