## PTP4 Zusammenfassung Theoretische Quantenmechanik Professor Matthias Bartelmann

## Sommersemester 2017 Heidelberg

Ende des 19. Jahrhunderts beschrieb Physik ueberzeugend die bekannten Wechselwirkungen:

- Graviation in klassischer Mechanik durch Newton, Lagrange, Hamilton
- Elektromagnetismus durch Maxwell'sche Gleichungen
- Thermodynamik

Ungeklaerte Fragen:

- Widerspruch Galilei-Invarianz in kl. Mechanik (Geschwindigkeiten addiert) und Maxwell Elektrodynamik (Lichtgeschwindigkeit Obergrenze) aufgeloest durch Lorentz Invarianz in Einsteins spezieller Relativitaetstheorie
- Stabilitaet der Atome (im Rutherford Modell) nicht erklaerbar
- diskrete Spektrallinien nicht erklaerbar
- Schwarzkoerperstrahlung nicht beschreibbar (UV-Katastrophe)

Hohlraumstrahlung: Stehende Wellen im Hohlraum: Moden Es sind  $\frac{L}{\lambda}$  Wellen auf Strecke L moeglich

Anzahl abschaetzen:

Kugel  $(V_{Kugel} = \frac{4}{3} * \pi * r^3)$ 

Zwei Polarisationsrichtungen: E und B Feld bringt Faktor zwei

Radius ist  $\frac{L}{\lambda}$   $N(\lambda) = 2 * \frac{4}{3} * \pi * (\frac{L}{\lambda})^3$ 

- Relativistische Energie-Impuls-Beziehung:  $E = \sqrt{p^2c^2 + m^2c^4}$
- Dispersions relation:  $k = \frac{\omega}{c}$

- Kreisfrequenz:  $\omega = 2 * \pi * \nu$
- Wellenlaenge:  $\lambda = \frac{2*\pi}{k}$

Kommutator:  $[\hat{A}, \hat{B}] := \hat{A}\hat{B} - \hat{B}\hat{A}$ 

Einsoperator:  $\hat{I} = \sum_{n} |a_n\rangle \langle a_n| + \int |a\rangle \langle a| da$ 

Dichteoperator:  $\hat{\rho} = \sum_{n} p_n |n\rangle \langle n|$ 

Zeitentwicklungsoperator:  $\hat{U}(t, t_0) | \psi(t_0) \rangle = | \psi(t) \rangle$ 

Zeitentwicklungsoperator:  $\hat{U}(t) = exp(-\frac{i}{\hbar}\hat{H}t)$ 

Heisenberg-Gleichung:  $i\hbar \frac{d}{dt}\hat{A}_{H} = \left[\hat{A}_{H}, \hat{H}_{H}\right] + i\hbar \left(\partial_{t}\hat{A}\right)_{H}$ 

Zeitabhaengiger Operator:  $\hat{A}_H(t) := \hat{U}^{-1}(t,t_0) \hat{A} \hat{U}(t,t_0)$ 

Translations operator:  $\hat{T}_{\vec{a}} = \exp\left(-\frac{i}{\hbar}\vec{a}\cdot\hat{\vec{p}}\right)$ 

Dyson Reihe:  $\hat{U}(t, t_0) = Texp\left(-\frac{i}{\hbar} \int_{t_0}^t \hat{H}(t')dt'\right)$ 

Wechselwirkungsbild:  $i\hbar \frac{d}{dt} |\psi(t)\rangle_I = \hat{V}_I |\psi(t)\rangle_I$ 

Stoeroperator:  $\hat{V}_I(t) := \hat{U}_0^{-1} \hat{V} \hat{U}_0$ 

ToDo:

6 Axiome

Rabi-Oszillationen

Stoermatrix

 $\begin{aligned} &Ortsoperator \ \hat{x} = \left\{ \begin{array}{ll} x & (Ortsdarstellung) \\ i\hbar\nabla_p & (Impulsdarstellung) \end{array} \right. \\ &Impulsoperator \ \hat{p} = \left\{ \begin{array}{ll} -i\hbar\nabla_x & (Ortsdarstellung) \\ p & (Impulsdarstellung) \end{array} \right. \end{aligned}$ 

Kommutator Ort & Impuls:  $[\hat{x}_i, \hat{p}_j] = -i\hbar [x_i, \partial_j] = i\hbar \delta_{ij}$ 

Zeitunabhaengige Schroedinger-Gleichung:  $\hat{H}\phi(x) = E\phi(x)$ 

Randbedingungen

Energieeigenwerte des HOC:  $E_n = \hbar\omega \left(n + \frac{1}{2}\right)\dagger$ 

Absteigeoperator:  $\hat{a} := \frac{1}{\sqrt{2}}(u + \partial_u)$ 

Aufsteigeoperator:  $\hat{a}^{\dagger} := \frac{1}{\sqrt{2}}(u - \partial_u)$ 

Anzahl<br/>operator  $\hat{N}$ 

Exponential funktion hoch Wirkung

Pfadintegral

Quantensysteme

Paritaets operator:  $\hat{P}\psi(\vec{x}) = \psi(-\vec{x})$ 

 ${\bf Translation soperator}$ 

 ${\bf Kugelflae chenfunktionen}$