Multivariable Calculus: Tutorial 10

Logan Pachulski

April 29th, 2019

Progress Update

Over the past week I have been introduced to:

- Vector fields
- Gradient fields
- Suppose the state of the sta

L. Pachulski 18.02 Tutorial 10

Vector fields

A vector field is a function that takes in a coordinate and spits out a vector; in this chapter, we refer to any vector field that takes in an (x, y) coordinate and returns a \mathbf{i}, \mathbf{j} vector. Consinder the following constant vector field:

This field has $F = \mathbf{i} + \frac{1}{2}\mathbf{j}$.

L. Pachulski 18.02 Tutorial 10

3 / 6

Gradient fields

A gradient field is a vector field where the function is defined as the gradient of some function that exists in 3-space: Consider the function $f(x,y) = \log(\sqrt{x^2 + y^2})$; thus the gradient field has formula

$$\nabla f = \frac{x}{x^2 + y^2} \mathbf{i} + \frac{y}{x^2 + y^2} \mathbf{j}$$

The line integral (which we shall talk about next) has remarkable properties under gradient functions, including path independence.

L. Pachulski 18.02 Tutorial 10 April 29th, 2019

Line integral

The purpose of the line integral is to calculate the work done to a particle along a trajectory by a vector field; the vector field may provide some assistance/resistance that we shall calculate using the formula

$$W = \int_{C} F \cdot dr$$

Line integral example

Suppose you want to find the work done by the constant vector field $F = \mathbf{i} + \frac{1}{2}\mathbf{j}$ on a particle moving from (0,1) to (1,1) in a straight line. We see that

$$W = \int_C 1 dx + \frac{1}{2} dy$$

We shall parametrize and let x = x, y = 1, dx = dx, dy = 0 over the domain [0,1]. Then

$$\cdots = \int_0^1 dx = 1.$$

Parametrization enables complicated paths.

◆ロト ◆個ト ◆差ト ◆差ト を めらぐ

April 29th, 2019

L. Pachulski 18.02 Tutorial 10