

CONDICIONAMIENTO Y ESTABILIDAD

ALAN REYES-FIGUEROA MÉTODOS NUMÉRICOS II

(AULA 04) 14.JULIO.2022

En abstracto, un problema numérico es una función $f: X \to Y$ entre espacios normados. (X =espacio de datos, Y =espacio de soluciones).

En abstracto, un problema numérico es una función $f: X \to Y$ entre espacios normados. (X = espacio de datos, Y = espacio de soluciones). f es generalmente no lineal, pero la mayoría de las veces es continua.

En abstracto, un problema numérico es una función $f: X \to Y$ entre espacios normados. (X = espacio de datos, Y = espacio de soluciones). f es generalmente no lineal, pero la mayoría de las veces es continua. Nos interesa el comportamiento de un problema f en un punto de datos particular $\mathbf{x} \in X$ La combinación de un problema f con datos prescritos \mathbf{x} es llamada una **instancia** del problema.

En abstracto, un problema numérico es una función $f: X \to Y$ entre espacios normados. (X = espacio de datos, Y = espacio de soluciones). f es generalmente no lineal, pero la mayoría de las veces es continua. Nos interesa el comportamiento de un problema f en un punto de datos particular $\mathbf{x} \in X$ La combinación de un problema f con datos prescritos \mathbf{x} es llamada una **instancia** del problema.

Definición

Un problema (instancia) **bien condicionado** es un problema con la propiedad de que toda pequeña perturbación de \mathbf{x} conduce sólo a pequeños cambios en $f(\mathbf{x})$. Un problema **mal condicionado** es un problema con la propiedad de que una pequeña perturbación de \mathbf{x} conduce a un gran cambio en $f(\mathbf{x})$.

Definición

Sea $\delta \mathbf{x}$ una pequeña perturbación de \mathbf{x} y sea $\delta f = f(\mathbf{x} + \delta \mathbf{x}) - f(\mathbf{x})$. El **número de condición absoluta** $\widehat{\kappa} = \widehat{\kappa}(\mathbf{x})$ del problema f en \mathbf{x} se define como

$$\widehat{\kappa}(\mathbf{X}) = \lim_{\delta \to 0} \sup_{||\delta \mathbf{X}|| \le \delta} \frac{||\delta f||}{||\delta \mathbf{X}||}.$$

Definición

Sea $\delta \mathbf{x}$ una pequeña perturbación de \mathbf{x} y sea $\delta f = f(\mathbf{x} + \delta \mathbf{x}) - f(\mathbf{x})$. El **número de condición absoluta** $\widehat{\kappa} = \widehat{\kappa}(\mathbf{x})$ del problema f en \mathbf{x} se define como

$$\widehat{\kappa}(\mathbf{X}) = \lim_{\delta \to 0} \sup_{||\delta \mathbf{X}|| < \delta} \frac{||\delta f||}{||\delta \mathbf{X}||}.$$
 (1)

Generalmente escribiremos (1) como

$$\widehat{\kappa}(\mathbf{x}) = \sup_{\delta \mathbf{x}} \frac{||\delta f||}{||\delta \mathbf{x}||}.$$
 (2)

en el entendido de que $\delta \mathbf{x}$ y δf son infinitesimales.

Definición

Sea $\delta \mathbf{x}$ una pequeña perturbación de \mathbf{x} y sea $\delta f = f(\mathbf{x} + \delta \mathbf{x}) - f(\mathbf{x})$. El **número de condición absoluta** $\widehat{\kappa} = \widehat{\kappa}(\mathbf{x})$ del problema f en \mathbf{x} se define como

$$\widehat{\kappa}(\mathbf{X}) = \lim_{\delta \to 0} \sup_{||\delta \mathbf{X}|| < \delta} \frac{||\delta f||}{||\delta \mathbf{X}||}.$$
 (1)

Generalmente escribiremos (1) como

$$\widehat{\kappa}(\mathbf{x}) = \sup_{\delta \mathbf{x}} \frac{||\delta f||}{||\delta \mathbf{x}||}.$$
 (2)

en el entendido de que $\delta \mathbf{x}$ y δf son infinitesimales.

Si f es diferenciable, podemos evaluar el número de condición por medio de la derivada de f. La definición de la derivada nos da, en primer orden, $\delta f \approx Df(\mathbf{x}) \, \delta \mathbf{x}$, (igualdad en el límite $||\delta \mathbf{x}|| \to 0$). Así, el número de condición absoluta se convierte en $\widehat{\kappa}(\mathbf{x}) = ||Df(\mathbf{x})||$.

Definición

Sea $\delta \mathbf{x}$ una pequeña perturbación de \mathbf{x} y sea $\delta f = f(\mathbf{x} + \delta \mathbf{x}) - f(\mathbf{x})$. El **número de condición relativa** $\kappa = \kappa(\mathbf{x})$ del problema f en \mathbf{x} se define como

$$\kappa(\mathbf{x}) = \lim_{\delta \to 0} \sup_{||\delta \mathbf{x}|| < \delta} \left(\frac{||\delta f||}{||f(\mathbf{x})||} \middle/ \frac{||\delta \mathbf{x}||}{||\mathbf{x}||} \right) = \lim_{\delta \to 0} \sup_{||\delta \mathbf{x}|| < \delta} \frac{||\delta f|| \, ||\mathbf{x}||}{||f(\mathbf{x})|| \, ||\delta \mathbf{x}||}. \tag{3}$$

Definición

Sea $\delta \mathbf{x}$ una pequeña perturbación de \mathbf{x} y sea $\delta f = f(\mathbf{x} + \delta \mathbf{x}) - f(\mathbf{x})$. El **número de condición relativa** $\kappa = \kappa(\mathbf{x})$ del problema f en \mathbf{x} se define como

$$\kappa(\mathbf{x}) = \lim_{\delta \to 0} \sup_{||\delta \mathbf{x}|| < \delta} \left(\frac{||\delta f||}{||f(\mathbf{x})||} \middle/ \frac{||\delta \mathbf{x}||}{||\mathbf{x}||} \right) = \lim_{\delta \to 0} \sup_{||\delta \mathbf{x}|| < \delta} \frac{||\delta f|| \, ||\mathbf{x}||}{||f(\mathbf{x})|| \, ||\delta \mathbf{x}||}. \tag{3}$$

o asumiendo nuevamente que $\delta \mathbf{x}$ y δf son infinitesimales

$$\kappa(\mathbf{x}) = \sup_{\delta \mathbf{x}} \frac{||\delta f|| \, ||\mathbf{x}||}{||f(\mathbf{x})|| \, ||\delta \mathbf{x}||}. \tag{4}$$

Definición

Sea $\delta \mathbf{x}$ una pequeña perturbación de \mathbf{x} y sea $\delta f = f(\mathbf{x} + \delta \mathbf{x}) - f(\mathbf{x})$. El **número de condición relativa** $\kappa = \kappa(\mathbf{x})$ del problema f en \mathbf{x} se define como

$$\kappa(\mathbf{x}) = \lim_{\delta \to 0} \sup_{||\delta \mathbf{x}|| < \delta} \left(\frac{||\delta f||}{||f(\mathbf{x})||} \middle/ \frac{||\delta \mathbf{x}||}{||\mathbf{x}||} \right) = \lim_{\delta \to 0} \sup_{||\delta \mathbf{x}|| < \delta} \frac{||\delta f|| \, ||\mathbf{x}||}{||f(\mathbf{x})|| \, ||\delta \mathbf{x}||}. \tag{3}$$

o asumiendo nuevamente que $\delta \mathbf{x}$ y δf son infinitesimales

$$\kappa(\mathbf{x}) = \sup_{\delta \mathbf{x}} \frac{||\delta f|| \, ||\mathbf{x}||}{||f(\mathbf{x})|| \, ||\delta \mathbf{x}||}. \tag{4}$$

Si f es diferenciable, esta cantidad se expresa como $\kappa(\mathbf{x}) = \frac{||Df(\mathbf{x})||}{||f(\mathbf{x})||/||\mathbf{x}||}$.

Definición

Sea $\delta \mathbf{x}$ una pequeña perturbación de \mathbf{x} y sea $\delta f = f(\mathbf{x} + \delta \mathbf{x}) - f(\mathbf{x})$. El **número de condición relativa** $\kappa = \kappa(\mathbf{x})$ del problema f en \mathbf{x} se define como

$$\kappa(\mathbf{x}) = \lim_{\delta \to 0} \sup_{||\delta \mathbf{x}|| < \delta} \left(\frac{||\delta f||}{||f(\mathbf{x})||} \middle/ \frac{||\delta \mathbf{x}||}{||\mathbf{x}||} \right) = \lim_{\delta \to 0} \sup_{||\delta \mathbf{x}|| < \delta} \frac{||\delta f|| \, ||\mathbf{x}||}{||f(\mathbf{x})|| \, ||\delta \mathbf{x}||}. \tag{3}$$

o asumiendo nuevamente que $\delta \mathbf{x}$ y δf son infinitesimales

$$\kappa(\mathbf{x}) = \sup_{\delta \mathbf{x}} \frac{||\delta f|| \, ||\mathbf{x}||}{||f(\mathbf{x})|| \, ||\delta \mathbf{x}||}. \tag{4}$$

Si f es diferenciable, esta cantidad se expresa como $\kappa(\mathbf{x}) = \frac{||Df(\mathbf{x})||}{||f(\mathbf{x})||/||\mathbf{x}||}$.

Con estas definiciones, ya podemos decir que un problema es bien condicionado si κ es pequeño (e.g., 1, 10, 10²), o mal condicionado si κ es grande (e.g., 10⁶, 10¹⁶).

Ejemplo: Considere el problema de calcular \sqrt{x} , para x > 0. El jacobiano de $f: x \to \sqrt{x}$ es la derivada $Df(x) = f'(x) = \frac{1}{2\sqrt{x}}$,

Ejemplo: Considere el problema de calcular \sqrt{x} , para x > 0. El jacobiano de $f: x \to \sqrt{x}$ es la derivada $Df(x) = f'(x) = \frac{1}{2\sqrt{x}}$, por lo que tenemos

$$\kappa(x) = \frac{||Df(x)||}{||f(x)||/||x||} =$$

Ejemplo: Considere el problema de calcular \sqrt{x} , para x > 0. El jacobiano de $f: x \to \sqrt{x}$ es la derivada $Df(x) = f'(x) = \frac{1}{2\sqrt{x}}$, por lo que tenemos

$$\kappa(x) = \frac{||Df(x)||}{||f(x)||/||x||} = \frac{1/2\sqrt{x}}{\sqrt{x}/x}$$

Ejemplo: Considere el problema de calcular \sqrt{x} , para x > 0. El jacobiano de $f: x \to \sqrt{x}$ es la derivada $Df(x) = f'(x) = \frac{1}{2\sqrt{x}}$, por lo que tenemos

$$\kappa(x) = \frac{||Df(x)||}{||f(x)||/||x||} = \frac{1/2\sqrt{x}}{\sqrt{x}/x} = \frac{1}{2},$$

de modo que este es un problema bien condicionado.

Ejemplo: Considere el problema de calcular \sqrt{x} , para x > 0. El jacobiano de $f: x \to \sqrt{x}$ es la derivada $Df(x) = f'(x) = \frac{1}{2\sqrt{x}}$, por lo que tenemos

$$\kappa(x) = \frac{||Df(x)||}{||f(x)||/||x||} = \frac{1/2\sqrt{x}}{\sqrt{x}/x} = \frac{1}{2},$$

de modo que este es un problema bien condicionado.

Ejemplo: Considere ahora el problema de obtener el escalar $f(\mathbf{x}) = x_1 - x_2$ del vector $\mathbf{x} = (x_1, x_2)^T \in \mathbb{R}^2$. Para simplificar, usamos la norma ∞ en el espacio de datos \mathbb{R}^2 .

Ejemplo: Considere el problema de calcular \sqrt{x} , para x > 0. El jacobiano de $f: x \to \sqrt{x}$ es la derivada $Df(x) = f'(x) = \frac{1}{2\sqrt{x}}$, por lo que tenemos

$$\kappa(x) = \frac{||Df(x)||}{||f(x)||/||x||} = \frac{1/2\sqrt{x}}{\sqrt{x}/x} = \frac{1}{2},$$

de modo que este es un problema bien condicionado.

Ejemplo: Considere ahora el problema de obtener el escalar $f(\mathbf{x}) = x_1 - x_2$ del vector $\mathbf{x} = (x_1, x_2)^T \in \mathbb{R}^2$. Para simplificar, usamos la norma ∞ en el espacio de datos \mathbb{R}^2 . El jacobiano de f es

$$Df(\mathbf{x}) = \begin{pmatrix} 1 & -1 \end{pmatrix}$$

Ejemplo: Considere el problema de calcular \sqrt{x} , para x > 0. El jacobiano de $f: x \to \sqrt{x}$ es la derivada $Df(x) = f'(x) = \frac{1}{2\sqrt{x}}$, por lo que tenemos

$$\kappa(x) = \frac{||Df(x)||}{||f(x)||/||x||} = \frac{1/2\sqrt{x}}{\sqrt{x}/x} = \frac{1}{2},$$

de modo que este es un problema bien condicionado.

Ejemplo: Considere ahora el problema de obtener el escalar $f(\mathbf{x}) = x_1 - x_2$ del vector $\mathbf{x} = (x_1, x_2)^T \in \mathbb{R}^2$. Para simplificar, usamos la norma ∞ en el espacio de datos \mathbb{R}^2 . El jacobiano de f es

$$Df(\mathbf{x}) = \begin{pmatrix} 1 & -1 \end{pmatrix} \quad \Rightarrow \quad ||Df(\mathbf{x})||_{\infty} = 2.$$

Ejemplo: Considere el problema de calcular \sqrt{x} , para x > 0. El jacobiano de $f: x \to \sqrt{x}$ es la derivada $Df(x) = f'(x) = \frac{1}{2\sqrt{x}}$, por lo que tenemos

$$\kappa(x) = \frac{||Df(x)||}{||f(x)||/||x||} = \frac{1/2\sqrt{x}}{\sqrt{x}/x} = \frac{1}{2},$$

de modo que este es un problema bien condicionado.

Ejemplo: Considere ahora el problema de obtener el escalar $f(\mathbf{x}) = x_1 - x_2$ del vector $\mathbf{x} = (x_1, x_2)^T \in \mathbb{R}^2$. Para simplificar, usamos la norma ∞ en el espacio de datos \mathbb{R}^2 . El jacobiano de f es

$$Df(\mathbf{x}) = \begin{pmatrix} 1 & -1 \end{pmatrix} \quad \Rightarrow \quad ||Df(\mathbf{x})||_{\infty} = 2.$$

Entonces, el número de condición es

$$\kappa(\mathbf{x}) = \frac{||Df(\mathbf{x})||}{||f(\mathbf{x})||/||\mathbf{x}||} =$$

Ejemplo: Considere el problema de calcular \sqrt{x} , para x > 0. El jacobiano de $f: x \to \sqrt{x}$ es la derivada $Df(x) = f'(x) = \frac{1}{2\sqrt{x}}$, por lo que tenemos

$$\kappa(x) = \frac{||Df(x)||}{||f(x)||/||x||} = \frac{1/2\sqrt{x}}{\sqrt{x}/x} = \frac{1}{2},$$

de modo que este es un problema bien condicionado.

Ejemplo: Considere ahora el problema de obtener el escalar $f(\mathbf{x}) = x_1 - x_2$ del vector $\mathbf{x} = (x_1, x_2)^T \in \mathbb{R}^2$. Para simplificar, usamos la norma ∞ en el espacio de datos \mathbb{R}^2 . El jacobiano de f es

$$Df(\mathbf{x}) = (1 \quad -1) \quad \Rightarrow \quad ||Df(\mathbf{x})||_{\infty} = 2.$$

Entonces, el número de condición es

$$\kappa(\mathbf{x}) = \frac{||Df(\mathbf{x})||}{||f(\mathbf{x})||/||\mathbf{x}||} = \frac{2 \max\{|x_1|, |x_2|\}}{|x_1 - x_2|}.$$

Esta cantidad es grande si $|x_1 - x_2| \approx 0 \implies$, el problema mal condicionado si $x_1 \approx x_2$.

Otros problemas mal condicionados:

- Calcular las raíces de un polinomio.
- Resolver un sistema de ecuaciones lineales.
- Hallar los autovalores de una matriz no simétrica.

Otros problemas mal condicionados:

- Calcular las raíces de un polinomio.
- Resolver un sistema de ecuaciones lineales.
- Hallar los autovalores de una matriz no simétrica.

Ejemplo:

El problema de calcular los autovalores de una matriz no simétrica, es a menudo mal acondicionado. Consideremos las matrices

$$A = \begin{pmatrix} 1 & 1000 \\ 0 & 1 \end{pmatrix}$$
 y $A' = \begin{pmatrix} 1 & 1000 \\ 0.001 & 1 \end{pmatrix}$.

Otros problemas mal condicionados:

- Calcular las raíces de un polinomio.
- Resolver un sistema de ecuaciones lineales.
- Hallar los autovalores de una matriz no simétrica.

Ejemplo:

El problema de calcular los autovalores de una matriz no simétrica, es a menudo mal acondicionado. Consideremos las matrices

$$A = \begin{pmatrix} 1 & 1000 \\ 0 & 1 \end{pmatrix}$$
 y $A' = \begin{pmatrix} 1 & 1000 \\ 0.001 & 1 \end{pmatrix}$.

Los autovalores de A son $\lambda = 1$ con multiplicidad 2.

Otros problemas mal condicionados:

- Calcular las raíces de un polinomio.
- Resolver un sistema de ecuaciones lineales.
- Hallar los autovalores de una matriz no simétrica.

Ejemplo:

El problema de calcular los autovalores de una matriz no simétrica, es a menudo mal acondicionado. Consideremos las matrices

$$A = \begin{pmatrix} 1 & 1000 \\ 0 & 1 \end{pmatrix}$$
 y $A' = \begin{pmatrix} 1 & 1000 \\ 0.001 & 1 \end{pmatrix}$.

Los autovalores de A son $\lambda=1$ con multiplicidad 2. Los autovalores de A' son $\lambda_1=0$ y $\lambda_2=2$.

Se puede mostrar que si A es una matriz simétrica (o una matriz normal), entonces sus autovalores están bien condicionados.

Se puede mostrar que si A es una matriz simétrica (o una matriz normal), entonces sus autovalores están bien condicionados.

Por otro lado, se puede demostrar que si λ y $\lambda + \delta\lambda$ son los correspondientes autovalores de A y $A + \delta A$,

Se puede mostrar que si A es una matriz simétrica (o una matriz normal), entonces sus autovalores están bien condicionados.

Por otro lado, se puede demostrar que si λ y $\lambda+\delta\lambda$ son los correspondientes autovalores de A y $A+\delta A$, entonces $|\delta\lambda|<||\delta A||_2$, con igualdad si δA es un múltiplo de la matriz identidad (ejercicio 26.3). Por lo tanto, el número de condición absoluta del problema de valores propios simétricos es $\widehat{\kappa}=$ 1, si se miden las perturbaciones en la norma 2, y el número de condición relativa es $\kappa=||A||_2/|\lambda|$.

Condición del producto matriz-vector:

Sea $A \in \mathbb{C}^{m \times n}$ y considere el problema de calcular $A\mathbf{x}$ para un vector $\mathbf{x} \in \mathbb{R}^n$.

Condición del producto matriz-vector:

Sea $A \in \mathbb{C}^{m \times n}$ y considere el problema de calcular $A\mathbf{x}$ para un vector $\mathbf{x} \in \mathbb{R}^n$. Vamos a determinar un número de condición correspondiente a perturbaciones de \mathbf{x} pero no de A.

Condición del producto matriz-vector:

Sea $A \in \mathbb{C}^{m \times n}$ y considere el problema de calcular $A\mathbf{x}$ para un vector $\mathbf{x} \in \mathbb{R}^n$. Vamos a determinar un número de condición correspondiente a perturbaciones de \mathbf{x} pero no de A. Sea $||\cdot||$ una norma vectorial arbitraria, y su respectiva norma matricial inducida. Trabajando directamente con la definición de κ ,

Condición del producto matriz-vector:

Sea $A \in \mathbb{C}^{m \times n}$ y considere el problema de calcular $A\mathbf{x}$ para un vector $\mathbf{x} \in \mathbb{R}^n$. Vamos a determinar un número de condición correspondiente a perturbaciones de \mathbf{x} pero no de A. Sea $||\cdot||$ una norma vectorial arbitraria, y su respectiva norma matricial inducida. Trabajando directamente con la definición de κ , entonces

$$\kappa(\mathbf{x}) = \sup_{\delta \mathbf{x}} \Big(\frac{||A(\mathbf{x} + \delta \mathbf{x}) - A\mathbf{x}||}{||A\mathbf{x}||} / \frac{||\delta \mathbf{x}||}{||\mathbf{x}||} \Big) = \sup_{\delta \mathbf{x}} \Big(\frac{||A(\delta \mathbf{x})||}{||\delta \mathbf{x}||} / \frac{||A\mathbf{x}||}{||\mathbf{x}||} \Big).$$

Condición del producto matriz-vector:

Sea $A \in \mathbb{C}^{m \times n}$ y considere el problema de calcular $A\mathbf{x}$ para un vector $\mathbf{x} \in \mathbb{R}^n$. Vamos a determinar un número de condición correspondiente a perturbaciones de \mathbf{x} pero no de A. Sea $||\cdot||$ una norma vectorial arbitraria, y su respectiva norma matricial inducida. Trabajando directamente con la definición de κ , entonces

$$\kappa(\mathbf{x}) = \sup_{\delta \mathbf{x}} \Big(\frac{||A(\mathbf{x} + \delta \mathbf{x}) - A\mathbf{x}||}{||A\mathbf{x}||} / \frac{||\delta \mathbf{x}||}{||\mathbf{x}||} \Big) = \sup_{\delta \mathbf{x}} \Big(\frac{||A(\delta \mathbf{x})||}{||\delta \mathbf{x}||} / \frac{||A\mathbf{x}||}{||\mathbf{x}||} \Big).$$

Esto es

$$\kappa(\mathbf{x}) = ||A|| \frac{||\mathbf{x}||}{||A\mathbf{x}||}.$$
 (5)

Condición del producto matriz-vector:

Sea $A \in \mathbb{C}^{m \times n}$ y considere el problema de calcular $A\mathbf{x}$ para un vector $\mathbf{x} \in \mathbb{R}^n$. Vamos a determinar un número de condición correspondiente a perturbaciones de \mathbf{x} pero no de A. Sea $||\cdot||$ una norma vectorial arbitraria, y su respectiva norma matricial inducida. Trabajando directamente con la definición de κ , entonces

$$\kappa(\mathbf{x}) = \sup_{\delta \mathbf{x}} \Big(\frac{||A(\mathbf{x} + \delta \mathbf{x}) - A\mathbf{x}||}{||A\mathbf{x}||} / \frac{||\delta \mathbf{x}||}{||\mathbf{x}||} \Big) = \sup_{\delta \mathbf{x}} \Big(\frac{||A(\delta \mathbf{x})||}{||\delta \mathbf{x}||} / \frac{||A\mathbf{x}||}{||\mathbf{x}||} \Big).$$

Esto es

$$\kappa(\mathbf{x}) = ||\mathbf{A}|| \frac{||\mathbf{x}||}{||\mathbf{A}\mathbf{x}||}.$$
 (5)

Suponga en el cálculo anterior que A es una matriz cuadrada y no singular. Entonces podemos usar el hecho de que $||\mathbf{x}||/||A\mathbf{x}|| \le ||A^{-1}||$ en (5) para hallar una cota para κ :

$$\kappa(\mathbf{x}) \le ||A|| \, ||A^{-1}||.$$
 (6)

o escribir

$$\kappa(\mathbf{x}) = \alpha ||\mathbf{A}|| ||\mathbf{A}^{-1}||, \quad \text{con } \alpha = \frac{||\mathbf{x}||}{||\mathbf{A}\mathbf{x}||} / ||\mathbf{A}^{-1}||.$$
 (7)

Para ciertas elecciones de **x**, se tiene $\alpha = 1$ y, en consecuencia, $\kappa = ||A|| \, ||A^{-1}||$.

o escribir

$$\kappa(\mathbf{x}) = \alpha ||\mathbf{A}|| ||\mathbf{A}^{-1}||, \quad \text{con } \alpha = \frac{||\mathbf{x}||}{||\mathbf{A}\mathbf{x}||} / ||\mathbf{A}^{-1}||.$$
 (7)

Para ciertas elecciones de ${\bf x}$, se tiene $\alpha={\bf 1}$ y, en consecuencia, $\kappa=||A||\,||A^{-1}||$. Por ejemplo, si $||\cdot||=||\cdot||_2$, esto ocurrirá siempre que ${\bf x}$ sea múltiplo del mínimo vector singular derecho de A.

o escribir

$$\kappa(\mathbf{x}) = \alpha ||\mathbf{A}|| ||\mathbf{A}^{-1}||, \quad \text{con } \alpha = \frac{||\mathbf{x}||}{||\mathbf{A}\mathbf{x}||} / ||\mathbf{A}^{-1}||.$$
 (7)

Para ciertas elecciones de \mathbf{x} , se tiene $\alpha=1$ y, en consecuencia, $\kappa=||A||\,||A^{-1}||$. Por ejemplo, si $||\cdot||=||\cdot||_2$, esto ocurrirá siempre que \mathbf{x} sea múltiplo del mínimo vector singular derecho de A.

De hecho, A no tiene por qué ser cuadrada. Si $A \in \mathbb{C}^{m \times n}$ con m > n, es de rango completo, las ecuaciones (6) y (7) se mantienen con A^{-1} reemplazada por la pseudoinversa A^+ .

o escribir

$$\kappa(\mathbf{x}) = \alpha ||\mathbf{A}|| ||\mathbf{A}^{-1}||, \quad \text{con } \alpha = \frac{||\mathbf{x}||}{||\mathbf{A}\mathbf{x}||} / ||\mathbf{A}^{-1}||.$$
 (7)

Para ciertas elecciones de ${\bf x}$, se tiene $\alpha={\bf 1}$ y, en consecuencia, $\kappa=||A||\,||A^{-1}||.$ Por ejemplo, si $||\cdot||=||\cdot||_2$, esto ocurrirá siempre que ${\bf x}$ sea múltiplo del mínimo vector singular derecho de A.

De hecho, A no tiene por qué ser cuadrada. Si $A \in \mathbb{C}^{m \times n}$ con m > n, es de rango completo, las ecuaciones (6) y (7) se mantienen con A^{-1} reemplazada por la pseudoinversa A^+ .

¿Qué pasa con el problema inverso: dada A, calcular $A^{-1}\mathbf{b}$ a partir de la entrada \mathbf{b} ?

o escribir

$$\kappa(\mathbf{x}) = \alpha ||\mathbf{A}|| ||\mathbf{A}^{-1}||, \quad \text{con } \alpha = \frac{||\mathbf{x}||}{||\mathbf{A}\mathbf{x}||} / ||\mathbf{A}^{-1}||.$$
 (7)

Para ciertas elecciones de ${\bf x}$, se tiene $\alpha={\bf 1}$ y, en consecuencia, $\kappa=||{\bf A}||\,||{\bf A}^{-1}||.$ Por ejemplo, si $||\cdot||=||\cdot||_2$, esto ocurrirá siempre que ${\bf x}$ sea múltiplo del mínimo vector singular derecho de ${\bf A}$.

De hecho, A no tiene por qué ser cuadrada. Si $A \in \mathbb{C}^{m \times n}$ con m > n, es de rango completo, las ecuaciones (6) y (7) se mantienen con A^{-1} reemplazada por la pseudoinversa A^+ .

¿Qué pasa con el problema inverso: dada A, calcular $A^{-1}\mathbf{b}$ a partir de la entrada \mathbf{b} ? Es idéntico al problema que acabamos de considerar, excepto que A se reemplaza por A^{-1} .

o escribir

$$\kappa(\mathbf{x}) = \alpha ||\mathbf{A}|| ||\mathbf{A}^{-1}||, \quad \text{con } \alpha = \frac{||\mathbf{x}||}{||\mathbf{A}\mathbf{x}||} / ||\mathbf{A}^{-1}||.$$
 (7)

Para ciertas elecciones de ${\bf x}$, se tiene $\alpha={\bf 1}$ y, en consecuencia, $\kappa=||A||\,||A^{-1}||.$ Por ejemplo, si $||\cdot||=||\cdot||_2$, esto ocurrirá siempre que ${\bf x}$ sea múltiplo del mínimo vector singular derecho de A.

De hecho, A no tiene por qué ser cuadrada. Si $A \in \mathbb{C}^{m \times n}$ con m > n, es de rango completo, las ecuaciones (6) y (7) se mantienen con A^{-1} reemplazada por la pseudoinversa A^+ .

¿Qué pasa con el problema inverso: dada A, calcular $A^{-1}\mathbf{b}$ a partir de la entrada \mathbf{b} ? Es idéntico al problema que acabamos de considerar, excepto que A se reemplaza por A^{-1} .

Resumimos esto en el siguiente resultado.

Teorema

Sea $A \in \mathbb{C}^{n \times n}$ no singular y considere la ecuación $A\mathbf{x} = \mathbf{b}$. El problema de calcular \mathbf{b} , dado \mathbf{x} , tiene número de condición

$$\kappa(\mathbf{x}) = ||A|| \frac{||\mathbf{x}||}{||\mathbf{b}||} \le ||A|| \, ||A^{-1}||,$$
(8)

con respecto a las perturbaciones de x.

El problema de calcular x, dado b, tiene número de condición

$$\kappa(\mathbf{b}) = ||A^{-1}|| \frac{||\mathbf{b}||}{||\mathbf{x}||} \le ||A|| \, ||A^{-1}||,$$
(9)

con respecto a las perturbaciones de **b**.

Si $||\cdot|| = ||\cdot||_2$, entonces la igualdad se mantiene en (8) si **x** es un múltiplo del mínimo vector singular derecho de A, y la igualdad se cumple en (9) si **b** es un múltiplo del mayor vector singular izquierdo de A.

Definición

El producto $\kappa(A) = ||A|| \, ||A^{-1}||$ se llama el **número de condición** de la matriz A.

Cuando $\kappa(A)$ es pequeño, se dice que A está bien condicionada; si $\kappa(A)$ es grande, decimos que A está mal condicionada.

En el caso en que A es singular, escribimos $\kappa(A) = \infty$.

Definición

El producto $\kappa(A) = ||A|| \, ||A^{-1}||$ se llama el **número de condición** de la matriz A.

Cuando $\kappa(A)$ es pequeño, se dice que A está bien condicionada; si $\kappa(A)$ es grande, decimos que A está mal condicionada.

En el caso en que A es singular, escribimos $\kappa(\mathsf{A}) = \infty$.

En el caso de la 2-norma $||\cdot||=||\cdot||_2$, entonces $||A||=\sigma_1$ y $||A^{-1}||=\frac{1}{\sigma_m}$.

Definición

El producto $\kappa(A) = ||A|| \, ||A^{-1}||$ se llama el **número de condición** de la matriz A.

Cuando $\kappa(A)$ es pequeño, se dice que A está **bien condicionada**; si $\kappa(A)$ es grande, decimos que A está **mal condicionada**.

En el caso en que A es singular, escribimos $\kappa(\mathsf{A}) = \infty$.

En el caso de la 2-norma $||\cdot||=||\cdot||_2$, entonces $||A||=\sigma_1$ y $||A^{-1}||=\frac{1}{\sigma_m}$. Entonces

$$\kappa(\mathsf{A}) = \frac{\sigma_1}{\sigma_m}.\tag{10}$$

en la 2-norma.

Definición

El producto $\kappa(A) = ||A|| \, ||A^{-1}||$ se llama el **número de condición** de la matriz A.

Cuando $\kappa(A)$ es pequeño, se dice que A está **bien condicionada**; si $\kappa(A)$ es grande, decimos que A está **mal condicionada**.

En el caso en que A es singular, escribimos $\kappa(\mathsf{A}) = \infty$.

En el caso de la 2-norma $||\cdot||=||\cdot||_2$, entonces $||A||=\sigma_1$ y $||A^{-1}||=\frac{1}{\sigma_m}$. Entonces

$$\kappa(A) = \frac{\sigma_1}{\sigma_m}.$$
 (10)

en la 2-norma. La relación σ_1/σ_m puede interpretarse como la excentricidad de la hiperelipse que es la imagen de la esfera unitaria de $S^1 \subset \mathbb{R}^n$ bajo A.

Para una matriz rectangular $A \in \mathbb{R}^{m \times n}$, m > n, de rango completo, el número de condición se define en términos de la pseudoinversa: $\kappa(A) = ||A|| \, ||A^+||$.

Para una matriz rectangular $A \in \mathbb{R}^{m \times n}$, m > n, de rango completo, el número de condición se define en términos de la pseudoinversa: $\kappa(A) = ||A|| \, ||A^+||$. Como A^+ está motivado por problemas de mínimos cuadrados, esta definición es más útil en el caso $||\cdot|| = ||\cdot||_2$, donde tenemos

$$\kappa(A) = \frac{\sigma_1}{\sigma_n}.\tag{11}$$

Para una matriz rectangular $A \in \mathbb{R}^{m \times n}$, m > n, de rango completo, el número de condición se define en términos de la pseudoinversa: $\kappa(A) = ||A|| \, ||A^+||$. Como A^+ está motivado por problemas de mínimos cuadrados, esta definición es más útil en el caso $||\cdot|| = ||\cdot||_2$, donde tenemos

$$\kappa(A) = \frac{\sigma_1}{\sigma_n}.$$
 (11)

Pregunta: En el teorema anterior, fijamos A y perturbamos los vectores **x** o **b**. ¿Qué ocurre si ahora perturbamos A?

Para una matriz rectangular $A \in \mathbb{R}^{m \times n}$, m > n, de rango completo, el número de condición se define en términos de la pseudoinversa: $\kappa(A) = ||A|| \, ||A^+||$. Como A^+ está motivado por problemas de mínimos cuadrados, esta definición es más útil en el caso $||\cdot|| = ||\cdot||_2$, donde tenemos

$$\kappa(A) = \frac{\sigma_1}{\sigma_n}.$$
 (11)

Pregunta: En el teorema anterior, fijamos *A* y perturbamos los vectores **x** o **b**. ¿Qué ocurre si ahora perturbamos *A*?

Dejamos fijo **b** y consideramos el comportamiento del problema $A \to \mathbf{x} = A^{-1}\mathbf{b}$, cuando A se perturba por un infinitesimal δA .

Para una matriz rectangular $A \in \mathbb{R}^{m \times n}$, m > n, de rango completo, el número de condición se define en términos de la pseudoinversa: $\kappa(A) = ||A|| \, ||A^+||$. Como A^+ está motivado por problemas de mínimos cuadrados, esta definición es más útil en el caso $||\cdot|| = ||\cdot||_2$, donde tenemos

$$\kappa(A) = \frac{\sigma_1}{\sigma_n}.$$
 (11)

Pregunta: En el teorema anterior, fijamos *A* y perturbamos los vectores **x** o **b**. ¿Qué ocurre si ahora perturbamos *A*?

Dejamos fijo **b** y consideramos el comportamiento del problema $A \to \mathbf{x} = A^{-1}\mathbf{b}$, cuando A se perturba por un infinitesimal δA . Entonces **x** debe cambiar por un infinitesimal $\delta \mathbf{x}$, donde

$$(\mathbf{A} + \delta \mathbf{A})(\mathbf{x} + \delta \mathbf{x}) = \mathbf{b}.$$

Para una matriz rectangular $A \in \mathbb{R}^{m \times n}$, m > n, de rango completo, el número de condición se define en términos de la pseudoinversa: $\kappa(A) = ||A|| \, ||A^+||$. Como A^+ está motivado por problemas de mínimos cuadrados, esta definición es más útil en el caso $||\cdot|| = ||\cdot||_2$, donde tenemos

$$\kappa(A) = \frac{\sigma_1}{\sigma_n}.$$
 (11)

Pregunta: En el teorema anterior, fijamos *A* y perturbamos los vectores **x** o **b**. ¿Qué ocurre si ahora perturbamos *A*?

Dejamos fijo **b** y consideramos el comportamiento del problema $A \to \mathbf{x} = A^{-1}\mathbf{b}$, cuando A se perturba por un infinitesimal δA . Entonces **x** debe cambiar por un infinitesimal $\delta \mathbf{x}$, donde

$$(\mathbf{A} + \delta \mathbf{A})(\mathbf{x} + \delta \mathbf{x}) = \mathbf{b}.$$

Usando la igualdad $A\mathbf{x} = \mathbf{b}$ y eliminando el término doblemente infinitesimal $(\delta A)(\delta \mathbf{x})$,

Para una matriz rectangular $A \in \mathbb{R}^{m \times n}$, m > n, de rango completo, el número de condición se define en términos de la pseudoinversa: $\kappa(A) = ||A|| \, ||A^+||$. Como A^+ está motivado por problemas de mínimos cuadrados, esta definición es más útil en el caso $||\cdot|| = ||\cdot||_2$, donde tenemos

$$\kappa(A) = \frac{\sigma_1}{\sigma_n}.$$
 (11)

Pregunta: En el teorema anterior, fijamos *A* y perturbamos los vectores **x** o **b**. ¿Qué ocurre si ahora perturbamos *A*?

Dejamos fijo **b** y consideramos el comportamiento del problema $A \to \mathbf{x} = A^{-1}\mathbf{b}$, cuando A se perturba por un infinitesimal δA . Entonces **x** debe cambiar por un infinitesimal $\delta \mathbf{x}$, donde

$$(\mathbf{A} + \delta \mathbf{A})(\mathbf{x} + \delta \mathbf{x}) = \mathbf{b}.$$

Usando la igualdad $A\mathbf{x} = \mathbf{b}$ y eliminando el término doblemente infinitesimal $(\delta A)(\delta \mathbf{x})$, obtenemos $(\delta A)\mathbf{x} + A(\delta \mathbf{x}) = \mathbf{0}$,

Para una matriz rectangular $A \in \mathbb{R}^{m \times n}$, m > n, de rango completo, el número de condición se define en términos de la pseudoinversa: $\kappa(A) = ||A|| \, ||A^+||$. Como A^+ está motivado por problemas de mínimos cuadrados, esta definición es más útil en el caso $||\cdot|| = ||\cdot||_2$, donde tenemos

$$\kappa(A) = \frac{\sigma_1}{\sigma_n}.$$
 (11)

Pregunta: En el teorema anterior, fijamos *A* y perturbamos los vectores **x** o **b**. ¿Qué ocurre si ahora perturbamos *A*?

Dejamos fijo **b** y consideramos el comportamiento del problema $A \to \mathbf{x} = A^{-1}\mathbf{b}$, cuando A se perturba por un infinitesimal δA . Entonces **x** debe cambiar por un infinitesimal $\delta \mathbf{x}$, donde

$$(\mathbf{A} + \delta \mathbf{A})(\mathbf{x} + \delta \mathbf{x}) = \mathbf{b}.$$

Usando la igualdad $A\mathbf{x} = \mathbf{b}$ y eliminando el término doblemente infinitesimal $(\delta A)(\delta \mathbf{x})$, obtenemos $(\delta A)\mathbf{x} + A(\delta \mathbf{x}) = \mathbf{0}$, es decir, $\delta \mathbf{x} = -A^{-1}(\delta A)\mathbf{x}$.

Esta ecuación implica que $||\delta \mathbf{x}|| \le ||A^{-1}|| \, ||\delta A|| \, ||\mathbf{x}||$, o equivalentemente

$$\frac{||\delta \mathbf{x}||}{||\mathbf{x}||} / \frac{||\delta \mathbf{A}||}{||\mathbf{A}||} \le ||\mathbf{A}^{-1}|| \, ||\mathbf{A}|| = \kappa(\mathbf{A}).$$

Esta ecuación implica que $||\delta \mathbf{x}|| \le ||A^{-1}|| \, ||\delta A|| \, ||\mathbf{x}||$, o equivalentemente

$$\frac{||\delta \mathbf{x}||}{||\mathbf{x}||} / \frac{||\delta A||}{||A||} \le ||A^{-1}|| \, ||A|| = \kappa(A).$$

La igualdad en esta cota se cumple siempre que δA sea tal que

$$||A^{-1}(\delta A)\mathbf{x}|| = ||A^{-1}|| \, ||\delta A|| \, ||\mathbf{x}||,$$

Esta ecuación implica que $||\delta \mathbf{x}|| \le ||A^{-1}|| \, ||\delta A|| \, ||\mathbf{x}||$, o equivalentemente

$$\frac{||\delta \mathbf{x}||}{||\mathbf{x}||} / \frac{||\delta \mathbf{A}||}{||\mathbf{A}||} \le ||\mathbf{A}^{-1}|| \, ||\mathbf{A}|| = \kappa(\mathbf{A}).$$

La igualdad en esta cota se cumple siempre que δA sea tal que

$$||A^{-1}(\delta A)\mathbf{x}|| = ||A^{-1}|| \, ||\delta A|| \, ||\mathbf{x}||,$$

y se puede demostrar mediante el uso de normas duales (ejercicio 3.6) que para cualquier A y cualquier norma $||\cdot||$, tales perturbaciones δA existen. Esto nos lleva a lo siguiente resultado.

Esta ecuación implica que $||\delta \mathbf{x}|| \le ||A^{-1}|| \, ||\delta A|| \, ||\mathbf{x}||$, o equivalentemente

$$\frac{||\delta \mathbf{x}||}{||\mathbf{x}||} / \frac{||\delta \mathbf{A}||}{||\mathbf{A}||} \le ||\mathbf{A}^{-1}|| \, ||\mathbf{A}|| = \kappa(\mathbf{A}).$$

La igualdad en esta cota se cumple siempre que δA sea tal que

$$||A^{-1}(\delta A)\mathbf{x}|| = ||A^{-1}|| \, ||\delta A|| \, ||\mathbf{x}||,$$

y se puede demostrar mediante el uso de normas duales (ejercicio 3.6) que para cualquier A y cualquier norma $||\cdot||$, tales perturbaciones δA existen. Esto nos lleva a lo siguiente resultado.

Teorema

Sea $\mathbf{b} \in \mathbb{R}^n$ fijo y considere el problema de calcular $\mathbf{x} = \mathsf{A}^{-1}\mathbf{b}$, donde A es cuadrada y no singular. El número de condición de este problema con respecto a las perturbaciones en A es

$$\kappa = ||\mathbf{A}^{-1}|| \, ||\mathbf{A}|| = \kappa(\mathbf{A}).$$

IEEE 754 (estándar):

Representación puntual de \mathbb{R} . En un sistema de punto flotante, las brechas entre los números representados adyacentes escalan en proporción a la magnitud de los números.

IEEE 754 (estándar):

Representación puntual de \mathbb{R} . En un sistema de punto flotante, las brechas entre los números representados adyacentes escalan en proporción a la magnitud de los números.

Tenemos base= β = 2, precisión = t (t = 24 precisión simple, t = 53 precisión doble).

IEEE 754 (estándar):

Representación puntual de \mathbb{R} . En un sistema de punto flotante, las brechas entre los números representados adyacentes escalan en proporción a la magnitud de los números.

Tenemos base= β = 2, precisión = t (t = 24 precisión simple, t = 53 precisión doble).

La representación de un número es de la forma

$$\mathbf{X} = \left(\frac{\mathbf{m}}{\beta^{\mathsf{t}}}\right) \beta^{\mathsf{e}},$$

donde m es un número entero en el rango $\beta^{t-1} \leq m \leq \beta^t - 1$, y e es un entero arbitario. La cantidad $\frac{m}{\beta^t}$ se conoce entonces como la **mantisa**, mientras que e es el **exponente**.

La resolución de la máquina se resume tradicionalmente en un número conocido como el **épsilon de máquina**

$$\varepsilon_{maq} = \frac{1}{2}\beta^{1-t}.\tag{12}$$

La resolución de la máquina se resume tradicionalmente en un número conocido como el **épsilon de máquina**

$$\varepsilon_{maq} = \frac{1}{2}\beta^{1-t}.$$
 (12)

Este número es la mitad de la distancia entre 1 y el siguiente número de punto flotante representable.

La resolución de la máquina se resume tradicionalmente en un número conocido como el **épsilon de máquina**

$$\varepsilon_{maq} = \frac{1}{2}\beta^{1-t}.$$
 (12)

Este número es la mitad de la distancia entre 1 y el siguiente número de punto flotante representable. En un sentido relativo, este es tan grande como los espacios entre los números de punto flotante. Es decir, ε_{maq} tiene la siguiente propiedad:

$$\forall x \in \mathbb{R}$$
, existe x' representable, tal que $|x - x'| < \varepsilon_{maq}|x|$. (13)

La resolución de la máquina se resume tradicionalmente en un número conocido como el **épsilon de máquina**

$$\varepsilon_{maq} = \frac{1}{2}\beta^{1-t}.$$
 (12)

Este número es la mitad de la distancia entre 1 y el siguiente número de punto flotante representable. En un sentido relativo, este es tan grande como los espacios entre los números de punto flotante. Es decir, ε_{maq} tiene la siguiente propiedad:

$$\forall x \in \mathbb{R}, \text{ existe } x' \text{ representable, tal que } |x - x'| < \varepsilon_{maq} |x|.$$
 (13)

Denotamos por $fl: \mathbb{R} \to \mathbf{F}$ la función que da la aproximación más cercana de punto flotante a un número real. Esto es, fl(x) es el equivalente a x redondeado en el sistema de punto flotante.

La desigualdad (13) se expresa en términos de fl como

$$\forall x \in \mathbb{R}, \text{ existe } \varepsilon \text{ con} |\varepsilon| < \varepsilon_{maq} \text{ tal que } fl(x) = x(1+\varepsilon).$$
 (14)

La desigualdad (13) se expresa en términos de fl como

$$\forall x \in \mathbb{R}, \text{ existe } \varepsilon \text{ con} |\varepsilon| < \varepsilon_{maq} \text{ tal que } fl(x) = x(1+\varepsilon).$$
 (14)

Es decir, la diferencia entre un número real y su punto flotante más cercano, siempre menor que ε_{mag} (en términos relativos).

La desigualdad (13) se expresa en términos de fl como

$$\forall x \in \mathbb{R}, \text{ existe } \varepsilon \text{ con} |\varepsilon| < \varepsilon_{maq} \text{ tal que } fl(x) = x(1+\varepsilon).$$
 (14)

Es decir, la diferencia entre un número real y su punto flotante más cercano, siempre menor que ε_{maq} (en términos relativos).

Operaciones de punto flotante: Denotamos las operaciones $+, -, \cdot y \div por x \oplus y = fl(x+y), x \ominus y = fl(x-y), x \odot y = fl(x \cdot y), x \oslash y = fl(x/y).$

La desigualdad (13) se expresa en términos de fl como

$$\forall x \in \mathbb{R}, \text{ existe } \varepsilon \text{ con} |\varepsilon| < \varepsilon_{maq} \text{ tal que } fl(x) = x(1+\varepsilon).$$
 (14)

Es decir, la diferencia entre un número real y su punto flotante más cercano, siempre menor que ε_{maq} (en términos relativos).

Operaciones de punto flotante: Denotamos las operaciones $+, -, \cdot y \div por x \oplus y = fl(x+y), x \ominus y = fl(x-y), x \odot y = fl(x \cdot y), x \oslash y = fl(x/y).$

Teorema (Axioma fundamental aritmética de punto flotante)

Para todo
$$x,y \in \mathbf{F}$$
, existe ε con $|\varepsilon| < \varepsilon_{maq}$ tal que $x \odot y = (x \cdot y)(1 + \varepsilon)$. (15)

Así, cada operación aritmética en punto flotante es exacta, hasta un error relativo máximo del tamaño de ε_{mag} .

Hemos definido un problema matemático como una función $f: X \to Y$ desde un espacio vectorial X de datos a un espacio vectorial Y de soluciones.

Hemos definido un problema matemático como una función $f: X \to Y$ desde un espacio vectorial X de datos a un espacio vectorial Y de soluciones. Un algoritmo puede verse como otro mapa $\tilde{f}: X \to Y$.

Hemos definido un problema matemático como una función $f: X \to Y$ desde un espacio vectorial X de datos a un espacio vectorial Y de soluciones. Un algoritmo puede verse como otro mapa $\tilde{f}: X \to Y$.

Más precisamente, sea f es un problema, y dado un computador cuyo sistema de punto flotante satisface (15), un **algoritmo** para f (en el sentido amplio del término), y una implementación de este algoritmo en forma de programa informático.

Hemos definido un problema matemático como una función $f: X \to Y$ desde un espacio vectorial X de datos a un espacio vectorial Y de soluciones. Un algoritmo puede verse como otro mapa $\tilde{f}: X \to Y$.

Más precisamente, sea f es un problema, y dado un computador cuyo sistema de punto flotante satisface (15), un **algoritmo** para f (en el sentido amplio del término), y una implementación de este algoritmo en forma de programa informático. Dado un dato $\mathbf{x} \in X$, estos datos se redondean y se alimentan como entrada en el algoritmos \tilde{f} .

Hemos definido un problema matemático como una función $f: X \to Y$ desde un espacio vectorial X de datos a un espacio vectorial Y de soluciones. Un algoritmo puede verse como otro mapa $\tilde{f}: X \to Y$.

Más precisamente, sea f es un problema, y dado un computador cuyo sistema de punto flotante satisface (15), un **algoritmo** para f (en el sentido amplio del término), y una implementación de este algoritmo en forma de programa informático. Dado un dato $\mathbf{x} \in X$, estos datos se redondean y se alimentan como entrada en el algoritmos \tilde{f} . Al correr el programa, el resultado es una colección de números de punto flotante que pertenecen al espacio vectorial Y. Denotamos este resultado por $\tilde{f}(\mathbf{x})$.

Hemos definido un problema matemático como una función $f: X \to Y$ desde un espacio vectorial X de datos a un espacio vectorial Y de soluciones. Un algoritmo puede verse como otro mapa $\tilde{f}: X \to Y$.

Más precisamente, sea f es un problema, y dado un computador cuyo sistema de punto flotante satisface (15), un **algoritmo** para f (en el sentido amplio del término), y una implementación de este algoritmo en forma de programa informático. Dado un dato $\mathbf{x} \in X$, estos datos se redondean y se alimentan como entrada en el algoritmos \tilde{f} . Al correr el programa, el resultado es una colección de números de punto flotante que pertenecen al espacio vectorial Y. Denotamos este resultado por $\tilde{f}(\mathbf{x})$.

En el mínimo caso, $\tilde{f}(\mathbf{x})$ se verá afectado por errores de redondeo (pero existen otros posibles problemas que pueden afectar $\tilde{f}(\mathbf{x})$).

Hemos definido un problema matemático como una función $f: X \to Y$ desde un espacio vectorial X de datos a un espacio vectorial Y de soluciones. Un algoritmo puede verse como otro mapa $\tilde{f}: X \to Y$.

Más precisamente, sea f es un problema, y dado un computador cuyo sistema de punto flotante satisface (15), un **algoritmo** para f (en el sentido amplio del término), y una implementación de este algoritmo en forma de programa informático. Dado un dato $\mathbf{x} \in X$, estos datos se redondean y se alimentan como entrada en el algoritmos \tilde{f} . Al correr el programa, el resultado es una colección de números de punto flotante que pertenecen al espacio vectorial Y. Denotamos este resultado por $\tilde{f}(\mathbf{x})$.

En el mínimo caso, $\tilde{f}(\mathbf{x})$ se verá afectado por errores de redondeo (pero existen otros posibles problemas que pueden afectar $\tilde{f}(\mathbf{x})$).

Así como \tilde{f} es el análogo calculado de f, otras cantidades calculadas se marcarán por tildes. Por ejemplo, la solución calculada del sistema $A\mathbf{x} = \mathbf{b}$ se denotará por $\tilde{\mathbf{x}}$.

Típicamente, \tilde{f} no es continua, pero aún así un buen algoritmo debe aproximarse al problema asociado f. Consideramos el **error absoluto** de un cálculo, $||\tilde{f}(\mathbf{x}) - f(\mathbf{x})||$, o el **error relativo**, $\frac{||\tilde{f}(\mathbf{x}) - f(\mathbf{x})||}{||f(\mathbf{x})||}$.

Típicamente, \tilde{f} no es continua, pero aún así un buen algoritmo debe aproximarse al problema asociado f. Consideramos el **error absoluto** de un cálculo, $||\tilde{f}(\mathbf{x}) - f(\mathbf{x})||$, o el **error relativo**, $\frac{||\tilde{f}(\mathbf{x}) - f(\mathbf{x})||}{||f(\mathbf{x})||}$.

Definición

Decimos que un algoritmo \tilde{f} para un problema f es **preciso** si para cada $\mathbf{x} \in X$,

$$\frac{||\tilde{f}(\mathbf{x}) - f(\mathbf{x})||}{||f(\mathbf{x})||} = O(\varepsilon_{maq}). \tag{16}$$

Típicamente, \tilde{f} no es continua, pero aún así un buen algoritmo debe aproximarse al problema asociado f. Consideramos el **error absoluto** de un cálculo, $||\tilde{f}(\mathbf{x}) - f(\mathbf{x})||$, o el **error relativo**, $\frac{||\tilde{f}(\mathbf{x}) - f(\mathbf{x})||}{||f(\mathbf{x})||}$.

Definición

Decimos que un algoritmo \tilde{f} para un problema f es **preciso** si para cada $\mathbf{x} \in X$,

$$\frac{||\tilde{f}(\mathbf{x}) - f(\mathbf{x})||}{||f(\mathbf{x})||} = O(\varepsilon_{maq}).$$
 (16)

Sin embargo, si el problema f está mal condicionado, el objetivo de precisión definido por (16) es muy ambicioso.

Típicamente, \tilde{f} no es continua, pero aún así un buen algoritmo debe aproximarse al problema asociado f. Consideramos el **error absoluto** de un cálculo, $||\tilde{f}(\mathbf{x}) - f(\mathbf{x})||$, o el **error relativo**, $\frac{||\tilde{f}(\mathbf{x}) - f(\mathbf{x})||}{||f(\mathbf{x})||}$.

Definición

Decimos que un algoritmo \tilde{f} para un problema f es **preciso** si para cada $\mathbf{x} \in X$,

$$\frac{||\tilde{f}(\mathbf{x}) - f(\mathbf{x})||}{||f(\mathbf{x})||} = O(\varepsilon_{maq}).$$
 (16)

Sin embargo, si el problema f está mal condicionado, el objetivo de precisión definido por (16) es muy ambicioso. En ese caso, es mejor dar una definición alternativa para la exactitud de un algoritmo.

Definición

Un algoritmo \hat{f} para un problema f es **estable** si para cada $\mathbf{x} \in X$,

$$\frac{||\tilde{f}(\mathbf{x}) - f(\tilde{\mathbf{x}})||}{||f(\tilde{\mathbf{x}})||} = O(\varepsilon_{maq}), \tag{17}$$

para alguna
$$\tilde{\mathbf{x}}$$
 con $\frac{||\tilde{\mathbf{x}}-\mathbf{x}||}{||\tilde{\mathbf{x}}||} = O(\varepsilon_{maq})$.

Definición

Un algoritmo \hat{f} para un problema f es **estable** si para cada $\mathbf{x} \in X$,

$$\frac{||\tilde{f}(\mathbf{x}) - f(\tilde{\mathbf{x}})||}{||f(\tilde{\mathbf{x}})||} = O(\varepsilon_{maq}), \tag{17}$$

para alguna
$$\tilde{\mathbf{x}}$$
 con $\frac{||\tilde{\mathbf{x}}-\mathbf{x}||}{||\tilde{\mathbf{x}}||} = O(\varepsilon_{maq})$.

Muchos algoritmos de álgebra lineal numérica satisfacen una condición que es a la vez más fuerte y simple que la estabilidad.

Definición

Un algoritmo \tilde{f} para un problema f es **estable** si para cada $\mathbf{x} \in X$,

$$\frac{||\tilde{f}(\mathbf{x}) - f(\tilde{\mathbf{x}})||}{||f(\tilde{\mathbf{x}})||} = O(\varepsilon_{maq}), \tag{17}$$

para alguna $\tilde{\mathbf{x}}$ con $\frac{||\tilde{\mathbf{x}}-\mathbf{x}||}{||\tilde{\mathbf{x}}||} = O(\varepsilon_{maq})$.

Muchos algoritmos de álgebra lineal numérica satisfacen una condición que es a la vez más fuerte y simple que la estabilidad.

Definición

Decimos que un algoritmo \tilde{f} para un problema f es **estable hacia atrás** (backward stable) si para cada $\mathbf{x} \in X$,

$$\tilde{f}(\mathbf{x}) = f(\tilde{\mathbf{x}}), \quad \text{para algún } \tilde{\mathbf{x}} \text{ con } \frac{||\tilde{\mathbf{x}} - \mathbf{x}||}{||\tilde{\mathbf{x}}||} = O(\varepsilon_{maq}).$$
 (18)

Obs! En cualquier aritmética de máquinas, el número ε_{maq} es una cantidad fija. Al hablar del límite $\varepsilon_{maq} \to 0$ estamos considerando una idealización de un computador. Las ecuaciones (16)-(18) hablan de la rapidez con la que la solución calculada del algoritmo \tilde{f} tiende a la solución del problema f, a medida que la precisión de la máquina se mejora (de forma hipotética).

