Příklad (1.1)

Nalezněte všechna celá čísla x splňující $x^2 + 5x \equiv 0 \pmod{19}$.

Řešení

Upravíme levou stranu: $x(x+5) \equiv 0 \pmod{19}$. Víme, že počítat modulo 19 znamená počítat v \mathbb{Z}_{19} a že \mathbb{Z}_{19} je těleso (tj. i obor), tedy součin dvou čísel je 0, pokud je jedno z nich nulové. Tedy buď $x \equiv 0 \pmod{19}$ nebo $x+5 \equiv 0 \pmod{19}$ (to lze ještě upravit na $x \equiv -5 \pmod{19}$). Tudíž z definice modulárního počítání je výsledek:

$$x \in \{19k | k \in \mathbb{Z}\} \cup \{19k - 5 \in \mathbb{Z}\}.$$

Příklad (1.2)

Pomocí rozšířeného Euklidova algoritmu určete $\mathrm{NSD}(325,123)$ a příslušné Bézoutovy koeficienty.

Řešení

Prostě budeme postupovat podle algoritmu:

$$\begin{pmatrix} 325 & 123 & 79 & 44 & 35 & 9 & 8 & 1 & 0 \\ 1 & 0 & 1 & -1 & 2 & -3 & 11 & -14 & - \\ 0 & 1 & -2 & 3 & -5 & 8 & -29 & 37 & - \end{pmatrix}$$

Čísle přečteme z posledního sloupce, kde není nula v prvním řádku:

$$NSD(325, 123) = 1 = 325 \cdot 37 - 14 \cdot 123.$$

Příklad (1.3)

Označme $\varphi = \frac{1}{2}(\sqrt{5} + 1)$. Dokažte, že množina $R_1 = a + b\varphi|a, b \in \mathbb{Z}$ tvoří podobor tělesa reálných čísel.

$D\mathring{u}kaz$

Stačí ukázat, že R_1 obsahuje jednotku, nulu a je uzavřená na sčítání, opačný prvek a násobení, protože jejich vlastnosti pak plynou z toho, že \mathbb{R} je těleso^a. Jednotka a nula v reálných číslech jsou zřejmě 1 a 0, které jsou tvaru $1 + 0\varphi \in R_2$ a $0 + 0\varphi \in R_2$.

Uzavřená na opačný prvek rozhodně je, protože pokud $a, b \in \mathbb{Z}$, tak zřejmě $-a, -b \in \mathbb{Z}$ a $-(a+b\varphi) = -a-b\varphi \in R_2$. Stejně tak součet (z asociativity + na \mathbb{R}): $a, b, c, d \in \mathbb{Z} \implies a+c, b+d \in \mathbb{Z}$ a $(a+b\varphi)+(c+d\varphi)=(a+c)+(b+d)\varphi \in R_2$. Největší problém je asi násobení, tedy $\forall a, b, c, d \in \mathbb{Z}$:

$$\left(a + b\frac{1}{2}(\sqrt{5} + 1)\right) \cdot \left(c + d\frac{1}{2}(\sqrt{5} + 1)\right) = ac + (ad + bc) \cdot \frac{1}{2}(\sqrt{5} + 1) + bd\frac{1}{4}(5 + 2\sqrt{1} + 1) =$$

$$= (ac + bd) + (ad + bc + bd) \cdot \frac{1}{2}(\sqrt{5} + 1) \in R_2,$$

jelikož $ac + bd, ad + bc + bd \in \mathbb{Z}$.

 $[^]a$ Ještě je samozřejmě potřeba dokázat, že $R_2 \subseteq \mathbb{R}$, ale to je možná příliš jasné i na poznámku pod čarou.

Příklad (1.4)

Dokažte, že R_1 z předchozího bodu není isomorfní podoboru $R_2 = \{a + b\sqrt{2} | a, b \in Z\} \leq \mathbb{R}$.

Důkaz (Sporem)

Nechť tedy existuje isomorfismus $h: R_1 \to R_2$. Odhadneme (z následujícího výpočtu a z toho, jak se neisomorfismus standardně dokazuje), že nás zajímá ku příkladu obraz $(1-2\varphi)^2 \in R_1$. Podle výpočtu v předchozím příkladu je

$$(1-2\varphi)^2 = (a \cdot a + b \cdot b) + (a \cdot b + b \cdot a + b \cdot b)\varphi = (1^2 + (-2)^2) + (1 \cdot (-2) + (-2) \cdot 1 + (-2)^2)\varphi = 5.$$

Izomorfismus součtu je součet isomorfismů, tedy levou stranu zobrazíme jako (zřejmě $R_1 \ni 1 = 1 \in R_2$, tedy h(1) = 1):

$$h(5) = h(1+1+1+1+1) = h(1) + h(1) + h(1) + h(1) + h(1) = 1 + 1 + 1 + 1 + 1 = 5.$$

Stejně tak, protože isomorfismus součinu je součin isomorfismů, můžeme zobrazit pravou stranu $(c, d \in \mathbb{Z})$:

$$h\left((1-2\varphi)^2\right) = h\left(1-2\varphi\right) \cdot h\left(1-2\varphi\right) = \left(c+d\sqrt{2}\right)^2.$$

A jelikož h je isomorfismus, tedy bijekce, tak si obrazy musí být rovny:

$$(c+d\sqrt{2})^2 = c^2 + 2cd\sqrt{2} + 2d^2 = 5.$$

Teď c=0, ale pak $5=\left(d\sqrt{2}\right)^2=2d^2$, tj. $\mathbb{Q}\setminus\mathbb{Z}\ni\frac{5}{2}=d^2\in\mathbb{Z}$, což je spor, nebo d=0, ale pak $5=c^2$, tj. $\mathbb{Z}\ni c=\sqrt{5}\in\mathbb{R}\setminus\mathbb{Q}$, což je taktéž spor^a. Poslední možnost je tedy $c\neq 0\neq d$:

 a Že je $\sqrt{5}$ (resp. $\sqrt{2}$ dále) iracionální dokážeme např. sporem: vyjádřením ve tvaru zlomku v základním tvaru, umocněním na druhou a pak ukázáním, že 5 (resp. 2) musí dělit čitatel i jmenovatel, což je ve sporu se základním tvarem.