Wifraction

Diffraction at a single Slut
Derivations.
Diffraction at a single Slut. Derivations. Derivations. Derivations. Derivations. Derivations. Derivations. Derivations. Derivations. Derivations.
Phase difference = 27 asino.
3) Phase difference between the waves from any two successive parts of the slit AB (n parts)
two successive parts of the slit AB (n parts)
2 (3) May = 4
Resultant amplitude at P
A = na la = rashe
6 Resultant intensity $J = R^2 = A^2 \left(\frac{\sin x}{x}\right)^2$
losition of Rhincipal maxima.
K= A Sing = A (x-x3+x5 27 7
1. Max When = 31 + 31 - 20 +
$\sqrt{\alpha} = 0$ or $\sqrt{6} = 0$

$$\frac{dI}{dx} = 0$$

of war-sind = 0

$$d = + an d = y$$
 $d = + (2n+1)\pi$
 $m = 1, 2, 3, -..., y$
 $m = 1, 2, 3, -..., y$

a sin $\theta = \pm \frac{(2n+1)}{2}$

$$\frac{1}{\sqrt{20}} \int_{-1}^{1} I_{1} = A^{2} \left(\frac{8 \ln \frac{3\pi}{2}}{2} \right)^{\frac{1}{2}} = \frac{4}{9\pi^{2}} A^{2} = \frac{A^{2}}{22} = \frac{I_{0}}{22}$$

$$\frac{3\pi}{2} \int_{-1}^{2} \frac{4}{9\pi^{2}} dx = \frac{4\pi}{22} = \frac{1}{22}$$

$$\frac{3\pi}{2} \int_{-1}^{2} \frac{4}{9\pi^{2}} dx = \frac{4\pi}{22} = \frac{4\pi}{22} = \frac{\pi}{22}$$

The first of Is of the unlensity of first secondary maximum. In about (1/22)th of intensity of central maximum. In the intensity of central maximum. In the intensity of second secondary is about (1/61)th of Is.

(because α / n is very small)

$$\xi$$
 na = A, we obtain R = A $\frac{\sin \alpha}{\alpha}$

$$\left(: \text{ For large } n, \frac{n\delta}{2} \approx \frac{(n-1)\delta}{2} \right)$$

phase of n simple harmonic vibrations of $e_{q_{|y|}}$ progression.

ilit (Single Slit Diffraction)

n a

of decreasing intensity is obtained on both the attern can be explained as follows:

th λ be propagating normally to the slit AB .

Fig. 4

