

CPSC 340 – Tutorial 5

Michael Liu mfliu@students.cs.ubc.ca

Slides courtesy of Shahriar Shayesteh Template from Lironne Kurzman

University of British Columbia

October 13th, 2021

Agenda

Gradient Descent

Motivation

Recall the loss function for linear least squares

$$f(w) = \|Xw - y\|_2^2 = \sum_{i=1}^n (w^T x_i - y_i)^2$$

· The gradient of this function is

$$\nabla f(w) = X^T X w - X^T y$$

By setting the gradient to 0, we arrive at the normal equations

$$X^T X w = X^T y$$

• Solving this gives us the value(s) of w that minimize the loss

Motivation

$$X^T X w = X^T y$$

- How long does it take to solve this linear system of d equations?
 - Answer: $O(nd^2 + d^3)$
- What if d is large (e.g. d > n)?
 - Solving the normal equations might take a long time!

Gradient Descent for Finding a Local Minimum

- Start with some initial guess w^0
- Generate new guess by moving in the negative gradient direction

$$w^{1} = w^{0} - \alpha^{0} \nabla f(w^{0})$$

- This decreases f if the "step size" α^0 is small enough
- Usually, we decrease α^0 if it increases f
- Repeat to successively refine the guess

$$w^{t+1} = w^t - \alpha^t \nabla f(w^t)$$

- Stop if not making progress (when we are very close to a local minimum)
 - E.g. $\|\nabla f(w^t)\| \le \epsilon$ for some small ϵ

Initializing Gradient Descent

Pick a random initial value for the parameters

$$w^{0} = [w_{1}^{0}, w_{2}^{0}, ..., w_{d}^{0}]^{T}$$

· Recall the definition of the gradient

$$\nabla_{\mathbf{w}} f(\mathbf{w}) = \left[\frac{\partial f(\mathbf{w})}{\partial w_1}, \frac{\partial f(\mathbf{w})}{\partial w_2}, \dots, \frac{\partial f(\mathbf{w})}{\partial w_d} \right]$$

• Initialize the gradient function by plugging in w^0

$$\nabla_{\mathbf{w}} f(\mathbf{w}^{\,0}) = \left[\frac{\partial f(\mathbf{w}^{\,0})}{\partial w_1}, \frac{\partial f(\mathbf{w}^{\,0})}{\partial w_2}, \dots, \frac{\partial f(\mathbf{w}^{\,0})}{\partial w_d} \right]^T$$

Running Gradient Descent

- Calculate the step for each feature as:step = gradient * learning rate
- Calculate new parameters as:
 new params = old params step
- Repeat gradient update, step, and parameter update until gradient is almost 0

One Step of Gradient Descent, Graphically

