Single-thread Performance Evaluation of the latest Intel Platforms

May 10, 2016

May 10, 2010

(Application Scalability and Dorformance Group NCAD)

Youngsung Kim

(Application Scalability and Performance Group, NCAR)

Test Platforms and a compiler

KNL	CPU Model Name : Intel(R) Xeon Phi(TM) CPU 7250 @ 1.40GHz Compiler : ifort (IFORT) 17.0.0 20160315
SNB	
	CPU Model Name: Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz Compiler: ifort (IFORT) 17.0.0 20160315
HSW	
	CPU Model Name: Intel(R) Xeon(R) CPU E7-8890 v3 @ 2.50GHz Compiler: ifort (IFORT) 17.0.0 20160315
KNC	
	CPU Model Name : Genuine Intel(R) CPU @ 2.60GHz Compiler : ifort (IFORT) 17.0.0 20160315

Climate KGen Kernels

- * Available from https://github.com/NCAR/kernelOptimization
- * Extracted using KGen(https://github.com/NCAR/KGen) from CESM, HOMME, PORT(RRTMG), and MPAS
- (0) ./advance clubb core
- (1) ./CLUBB adv clubb core/kernel
- (2) ./CLUBB adv windm edsclrm/kernel
- (3) ./CLUBB pdf closure/kernel
- (4) ./CLUBB_pdf_closure_execution_part/kernel
- (5) ./homme/homme div sphere
- (6) ./homme/homme grad sphere
- (7) ./homme/homme_laplace_sphere_wk/homme_lap lace sphere wk
- (8) ./homme/homme laplace sphere wk/homme lap lace sphere wk2
- (9) ./homme/homme_laplace_sphere_wk/homme_lap
- lace sphere wk3
- (10) ./limiter optim iter full (11) ./MG2 CAM5 INTEL
- (12) ./MG2r/opt
- (13) ./MG2r/opt2 (36) ./remap q ppm (14) ./MG2r/opt3 (37) ./vlaplace sphere wk
- (15) ./MG2r/opt4
- (16) ./MG2r/orig (39) ./WACCM/imp sol
- (17) ./MPAS rrtmg lw/kernel (18) ./POP_comp_co3terms
- (19) ./POP merged streamfunction

- (20) ./port/port binterp (21) ./port/rrtmg lw cldprmc
- (22) ./port/rrtmg lw inatm
- (23) ./port/rrtmg lw rad
- (24) ./port/rrtmg lw rtrnmc
- (25) ./port/rrtmg lw setcoef (26) /port/rrtmg sw cldprmc
- (27) ./port/rrtmg sw inatm
- (28) ./port/rrtmg sw rad (29) ./port/rrtmg sw reftra
- (30) ./port/rrtmg sw setcoef
- (31) /port/rrtmg sw spcvmc (32) ./port/rrtmg sw taumols
- (33) ./port/rrtmg sw vrtqdr
- (34) ./preq hydrostatic (35) ./preq omega ps
- (38) ./vorticity sphere
- (40) ./WACCM/lu fac

How to rerun the tests:

- >> git clone https://github.com/NCAR/kernelOptimization.git
- >> cd kernelOptimization
- >> git checkout [snb_tag_org|hsw_tag_org|knc_tag_org|knl_tag_org]
- >> ./scripts/test_kernels.py .

NOTE: It is assumed that you are on one of test platforms.

You may need to modify Makefile(s) to fit to your test env.

Raw test results for this report are available:

>> cd testdata/May_05_2016

Performance Comparison to HSW (Single Thread)

./homme/homme laplace sphere wk/homme laplace spher 1.00 1.0 Relative performance to HSW 0.66 0.30 0.14 0.0 **HSW** KNC **KNL SNB** platform (single thread)

Cluster Analysis with Linux "perf stat" H/W counters

