Пряма на площині

Нехай на площині задано декартову прямокутну систему координат xOy і деяку лінію L.

Рівняння G(x, y) = 0, що зв'язує дві змінні x і y, називається рівнянням лінії L в обраній системі координат, якщо координати будь-якої точки цієї лінії L задовольняють рівняння, а будь-які інші координати точок, що не належать лінії L, не задовольняють зазначене рівняння.

Нагадаємо, що лінія на площині ϵ прямою тоді і тільки тоді, коли її рівняння ϵ лінійним стосовно декартової системи координат.

Знайти рівняння прямої — це означає записати залежність між координатами x, y довільної точки прямої (M(x; y) — поточна точка) і параметрами, які визначають розміщення прямої стосовно системи координат. Залежно від заданих параметрів можна отримати різні рівняння прямої.

Рівняння прямої, яка проходить через задану точку паралельно до заданого вектора

Означення. Ненульовий вектор, паралельний до прямої, називається напрямним вектором прямої.

Нехай пряма l проходить через точку $M_0(x_0;y_0)$ паралельно до заданого вектора $\vec{s}(m;n)$. Якщо M(x;y) — довільна точка прямої, то вектор $\overline{M_0M}(x-x_0;y-y_0)$ паралельний до вектора $\vec{s}(m;n)$, а координати цих векторів пропорційні. Тому

$$\frac{x - x_0}{m} = \frac{y - y_0}{n}$$

- рівняння прямої l, яке називається *канонічним рівнянням прямої*.

Прирівнявши відношення з канонічного рівняння прямої до деякого параметра t , отримаємо $\frac{x-x_0}{m}=\frac{y-y_0}{n}=t$, або

$$\begin{cases} x = x_0 + mt, \\ y = y_0 + nt \end{cases}$$

- параметричне рівняння прямої l.

З канонічного рівняння прямої одержуємо

$$y - y_0 = \frac{n}{m}(x - x_0).$$

Позначимо $\frac{n}{m} = k$. Тоді рівняння запишемо у вигляді

$$y - y_0 = k(x - x_0)$$

– рівняння прямої з кутовим коефіцієнтом.

Якщо пряма l проходить через точку $M_{\,_0}(0;b)$, то рівняння запишеться у вигляді y-b=k(x-0) , тобто

$$y = kx + b$$
,

де $k = tg\alpha$, α — кут нахилу прямої до додатного напряму осі Ox, b — відрізок, який пряма відтинає на осі Oy.

Рівняння прямої, що проходить через дві точки

Нехай пряма l проходить через точки $M_1(x_1; y_1)$ та $M_2(x_2; y_2)$.

Тоді вектор $\overrightarrow{M_1M_2}(x_2-x_1;y_2-y_1)$ буде напрямним вектором прямої l. Запишемо канонічне рівняння цієї прямої, врахувавши, що пряма проходить через точку $M_1(x_1;y_1)$. Одержимо

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1}$$

– рівняння прямої, що проходить через дві точки.

Запишемо рівняння прямої, що проходить через точки розміщені на осях координат, тобто $M_1(a;0)$, $M_2(0;b)$. Тоді $\frac{x-a}{-a} = \frac{y}{b}$, або

$$\frac{x}{a} + \frac{y}{b} = 1$$

– рівняння прямої у відрізках.

Рівняння прямої, що проходить через задану точку перпендикулярно до заданого вектора

Означення. Вектор, перпендикулярний до прямої, називається нормальним вектором прямої.

Нехай пряма проходить через точку $M_0(x_0; y_0)$ і вектор $\vec{n}(A; B)$ є нормальним вектором цієї прямої.

Нехай M(x;y) — довільна точка прямої. Вектор $\overrightarrow{M_0M}(x-x_0;y-y_0)$ перпендикулярний до вектора $\overrightarrow{n}(A;B)$, скалярний добуток цих векторів дорівнює нулю, тому

$$A(x-x_0) + B(y-y_0) = 0$$

– рівняння прямої, що проходить через задану точку перпендикулярно до заданого вектора

Нормальне рівняння прямої

Означення. Перпендикуляр, опущений з початку координат на пряму, називається *нормаллю* цієї прямої.

Нехай довжина нормалі p і нормаль утворює кут α з додатним напрямом осі Ox . Нехай P — основа нормалі.

Тоді вектор $\overrightarrow{OP}(p\cos\alpha;p\sin\alpha)$ і, відповідно, точка $P(p\cos\alpha;p\sin\alpha)$. Запишемо рівняння прямої, що проходить через точку P, перпендикулярно до вектора \overrightarrow{OP}

$$p\cos\alpha(x-p\cos\alpha)+p\sin\alpha(y-p\sin\alpha)=0$$
.

Поділимо це рівняння на р і розкриємо дужки, тоді

$$x\cos\alpha - p\cos^2\alpha + y\sin\alpha - p\sin^2\alpha = 0,$$

$$x\cos\alpha + y\sin\alpha - p(\cos^2\alpha + \sin^2\alpha) = 0.$$

Оскільки $\cos^2 \alpha + \sin^2 \alpha = 1$, то

$$x\cos\alpha + y\sin\alpha - p = 0$$

– нормальне рівняння прямої.

Зауважимо, що нормальне рівняння прямої має такі властивості:

- сума квадратів коефіцієнтів біля x та y дорівнює одиниці;
- вільний член цього рівняння від'ємний.

Загальне рівняння прямої

В рівнянні прямої, що проходить через задану точку перпендикулярно до заданого вектора

$$A(x-x_0) + B(y-y_0) = 0$$
,

розкриємо дужки. Тоді $Ax - Ax_0 + By - By_0 = 0$.

Позначимо $-Ax_0 - By_0 = C$. Отже,

$$Ax + By + C = 0$$

– загальне рівняння прямої.

Нагадаємо, що вектор $\vec{n}(A;B)$ є нормальним вектором цієї прямої. Оскільки вектор $\vec{s}(-B;A)$ є перпендикулярним до вектора $\vec{n}(A;B)$ (бо скалярний добуток $(\vec{n},\vec{s})=0$), то вектор

$$\vec{s}(-B;A)$$

— напрямний вектором прямої Ax + By + C = 0.

Розглянемо випадки, коли загальне рівняння прямої ϵ неповним.

- 1. Якщо C=0, то точка O(0;0) задовольняє рівняння прямої Ax+By=0, тому пряма проходить через початок координат.
- 2. Якщо A = 0, то напрямним вектором прямої By + C = 0 буде вектор $\vec{s}(-B; 0)$, який паралельний до осі Ox, тому пряма паралельна до осі Ox.
- 3. Якщо B = 0, то напрямним вектором прямої Ax + C = 0 буде вектор $\vec{s}(0; A)$, який ϵ паралельним до осі Oy, тому пряма паралельна до осі Oy.
- 4. Якщо A = C = 0, то пряма By = 0 ϵ паралельною до осі Ox і проходить через початок координат, тому ця пряма збігається з віссю Ox.
- 5. Якщо B = C = 0, то пряма Ax = 0 є паралельною до осі Oy і проходить через початок координат, тому ця пряма збігається з віссю Oy.

Зведення загального рівняння прямої до нормального вигляду

Нехай задано загальне рівняння прямої Ax + By + C = 0, зведемо його до нормального вигляду. Домножимо рівняння на число $\mu \neq 0$. Таке число називають нормувальним множником. Отримаємо рівняння $\mu Ax + \mu By + \mu C = 0$. Для того, щоб рівняння стало нормальним, треба, щоб виконувалися дві умови: вільний член цього рівняння повинен бути від'ємним, тобто $\mu C < 0$, і сума квадратів коефіцієнтів біля x та y повинна дорівнювати одиниці, тобто $(\mu A)^2 + (\mu B)^2 = 1$. Тоді

$$\mu = \pm \frac{1}{\sqrt{A^2 + B^2}}$$
,

причому знак перед дробом вибираємо так, щоб він був протилежним до знака вільного члена C. Тобто

$$\frac{Ax + By + C}{\pm \sqrt{A^2 + B^2}} = 0$$

нормальне рівняння прямої.

Відстань від точки до прямої

Нехай на площині задано пряму l нормальним рівнянням $x\cos\alpha + y\sin\alpha - p = 0$. Знайдемо відстань d від точки $M_0(x_0;y_0)$ до цієї прямої.

Проведемо через точку $M_0(x_0;y_0)$ пряму l_1 , яка паралельна до прямої l. Оскільки прямі паралельні, то їхні нормалі p і p_1 утворюють однакові кути α з додатним напрямом осі Ox. Крім того, $p_1=p+d$, якщо точка $M_0(x_0,y_0)$ і початок координат O(0;0) лежать по різні сторони від прямої l, і $p_1=p-d$, якщо $M_0(x_0;y_0)$ і O(0;0) лежать по одну сторону від цієї прямої. Тому нормальним рівнянням прямої l_1 буде

$$x\cos\alpha + y\sin\alpha - (p\pm d) = 0$$
.

Оскільки точка $M_0(x_0; y_0)$ належить прямій l_1 , то її координати задовольняють рівняння цієї прямої, тому

$$x_0 \cos \alpha + y_0 \sin \alpha - (p \pm d) = 0.$$

Звідси

$$\pm d = x_0 \cos \alpha + y_0 \sin \alpha - p$$
.

Оскільки відстань $d \ge 0$, то

$$d = x_0 \cos \alpha + y_0 \sin \alpha - p$$

– формула відстані від точки $M_0(x_0; y_0)$ до прямої

$$x\cos\alpha + y\sin\alpha - p = 0$$
.

Якщо пряма l задана загальним рівнянням Ax+By+C=0, то спочатку зводимо його до нормального вигляду $\dfrac{Ax+By+C}{\pm\sqrt{A^2+B^2}}=0$. Тоді

$$d = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}$$

-формула відстані від точки $M_0(x_0; y_0)$ до прямої Ax + By + C = 0

Кут між прямими

а) Нехай дві прямі на площині задані канонічними рівняннями, тобто $l_1: \frac{x-x_1}{m_1} = \frac{y-y_1}{n_1},$ $l_2: \frac{x-x_2}{m_2} = \frac{y-y_2}{n_2}.$

Кут α між прямими l_1 та l_2 дорівнює куту між їхніми напрямними векторами $\vec{s}_1(m_1;n_1)$ та $\vec{s}_2(m_2;n_2)$. Тому

$$\cos \alpha = \cos(\vec{s}_1, \vec{s}_2) = \frac{(\vec{s}_1, \vec{s}_2)}{|\vec{s}_1| \cdot |\vec{s}_2|} = \frac{m_1 m_2 + n_1 n_2}{\sqrt{m_1^2 + n_1^2} \sqrt{m_2^2 + n_2^2}},$$

отже, кут між прямими, заданими канонічними рівняннями, обчислюється за формулою

$$\cos\alpha = \frac{m_1 m_2 + n_1 n_2}{\sqrt{m_1^2 + n_1^2} \sqrt{m_2^2 + n_2^2}} \ .$$

Зауважимо таке: якщо $\cos \alpha > 0$, то знаходимо гострий кут між прямими, якщо ж $\cos \alpha < 0$, то знайдемо тупий кут між прямими.

Для того, щоб прямі l_1 та l_2 були паралельними, необхідно, щоб їхні напрямні вектори були паралельними, а тому координати векторів повинні бути пропорційними. Тому

$$\frac{m_1}{m_2} = \frac{n_1}{n_2}$$

- умова паралельності прямих, заданих канонічними рівняннями.

Для того, щоб прямі l_1 та l_2 були перпендикулярними, необхідно, щоб їхні напрямні вектори були перпендикулярними, тому скалярний добуток $(\vec{s}_1, \vec{s}_2) = 0$, тобто

$$m_1 m_2 + n_1 n_2 = 0$$

- умова перпендикулярності прямих, заданих канонічними рівняннями.
- б) Нехай дві прямі на площині задані загальними рівняннями, тобто $l_1:A_1x+B_1y+C_1=0$ і $l_2:A_2x+B_2y+C_2=0$.

Кут α між прямими l_1 та l_2 дорівнює куту між їхніми нормальними векторами $\vec{n}_1(A_1;B_1)$ та $\vec{n}_2(A_2;B_2)$

Тому

$$\cos \alpha = \cos(\vec{n}_1, \vec{n}_2) = \frac{(\vec{n}_1, \vec{n}_2)}{|\vec{n}_1| \cdot |\vec{n}_2|} = \frac{A_1 A_2 + B_1 B_2}{\sqrt{A_1^2 + B_1^2} \sqrt{A_2^2 + B_2^2}}.$$

Отже, кут між прямими, заданими загальними рівняннями, обчислюють за формулою

$$\cos \alpha = \frac{A_1 A_2 + B_1 B_2}{\sqrt{A_1^2 + B_1^2} \sqrt{A_2^2 + B_2^2}}.$$

Якщо прямі l_1 та l_2 паралельні, то координати їхніх нормальних векторів пропорційні, тобто

$$\frac{A_1}{A_2} = \frac{B_1}{B_2}$$

- умова паралельності прямих, заданих загальними рівняннями.

Якщо прямі l_1 та l_2 перпендикулярні, то скалярний добуток їхніх нормальних векторів дорівнює нулю, тобто

$$A_1 A_2 + B_1 B_2 = 0$$

- умова перпендикулярності прямих, заданих загальними рівняннями.
- в) Нехай дві прямі на площині задані рівняннями з кутовими коефіцієнтами, тобто $l_1:y=k_1x+b_1$ і $l_2:y=k_2x+b_2$.

Нехай пряма l_1 утворює кут α_1 з додатним напрямом осі Ox, пряма l_2 кут α_2 , відповідно. Очевидно, що $\lg \alpha_1 = k_1$ і $\lg \alpha_2 = k_2$. Якщо α — кут між прямими l_1 та l_2 , то $\alpha_2 = \alpha + \alpha_1$, оскільки зовнішній кут трикутника дорівнює сумі двох внутрішніх кутів, не суміжних з ним. Тому $\alpha = \alpha_2 - \alpha_1$, тоді

$$tg\alpha = tg(\alpha_2 - \alpha_1) = \frac{tg\alpha_2 - tg\alpha_1}{1 + tg\alpha_1 \cdot tg\alpha_2} = \frac{k_2 - k_1}{1 + k_1k_2}.$$

Отже, кут між прямими, заданими рівняннями з кутовим коефіцієнтом, обчислюють за формулою

$$tg\alpha = \frac{k_2 - k_1}{1 + k_1 k_2}.$$

Якщо прямі l_1 та l_2 паралельні, то $\alpha=0$, тоді $\operatorname{tg}\alpha=0$, тобто

$$k_1 = k_2$$

– умова паралельності прямих, заданих рівняннями з кутовим коефіцієнтом.

Якщо прямі l_1 та l_2 перпендикулярні, то $\alpha=90^{\circ}$, тоді $\lg \alpha$ не існує, тобто $1+k_1k_2=0$. Отже,

$$k_2 = -\frac{1}{k_1}$$

- умова перпендикулярності прямих, заданих рівняннями з кутовим коефіцієнтом.