

■ kevin.jhy.ta@gmail.com | ★ kev-in-ta.github.io | ★ kev-in-ta | ★ kevinjhyta

Skills

Programming Python, C, C++, C#, MATLAB, ROS

Robotics computer vision, calibration, SLAM, machine learning, 3D reconstruction, dynamic programming & optimization **Mechatronics** lidar, radar, event cameras, visible cameras, systems modelling, thermal modelling, mechanical design, CAD

Experience

Waabi Toronto, Canada

SOFTWARE DEVELOPER Jan. 2023 - Present

• Building the next-generation safe and scalable self-driving technology.

ETH Zürich Computer Vision Lab

Zürich, Switzerland

Master Thesis May 2022 - Nov. 2022

- · Developed methods for implicitly learning sensor-agnostic uncertainty from noisy depth maps for online neural implicit SLAM.
- Fused multiple sensor observations by learning the implicit weighting from the learned uncertainty to improve neural scene reconstruction.

 Semester Thesis
 Mar. 2022 - May 2022

• Fully calibrated a perception sensor stack featuring a state-of-the-art event-based camera, a traditional frame-based camera, a MEMS LiDAR, and a spinning RADAR to enable collection of a new autonomous driving dataset for adverse conditions.

Cruise San Francisco, California

SENSOR CALIBRATION INTERN

Sep. 2021 - Feb. 2022

- Developed high accuracy calibration and signal processing for next-generation perception sensors on the Cruise Origin, a re-imagined and purpose-built autonomous vehicle platform.
- Corrected intrinsic calibrations for visible cameras, long-wave IR cameras, and indirect time-of-flight cameras to accurately address geometric distortions and reduce projective geometry errors by a factor of 10 at vendor calibration stations.
- Researched and built software tools to analyze impact of calibration errors, developing calibration verification strategies to mitigate effects on perception by limiting errors to within one pixel space.

ETH Zürich Neural Control of Movement Lab

Zürich, Switzerland

RESEARCH ASSISTANT

Oct. 2020 - Jul. 2021

• Implemented a real-time computer vision pipeline to estimate pupil size from RGB and infrared images using RANSAC-based feature extraction and ellipse fitting, achieving pupil size fits within one pixel standard deviation.

UBC Collaborative Advanced Robotics and Intelligent Systems Lab

Vancouver, Canada

MECHATRONICS RESEARCH ASSISTANT

May 2019 - Aug. 2019

- Developed individualized ML pipelines for terrain classification and user intention detection to inform more intuitive co-control schemes using
 power-assisted wheelchairs, reducing user load in adverse terrain.
- Built up sensor hardware/software for TCP/IP and Bluetooth connections with Python and C++ for kinematic data streaming at 300 Hz.

Schneider Electric Solar

Burnaby, Canada

SOLAR PREDICTIVE ANALYTICS AND MODELLING INTERN

Jan. 2018 - Aug. 2018

• Implemented ML-based anomaly detection algorithms in Python to analyze daily data logs from globally situated utility-scale inverters in a predictive reliability model, informing effective preventative maintenance on deployed utility-scale solar inverters.

Publications

K. Ta, D. Brueggemann, T. Brödermann, C. Sakaridis, and L. Van Gool, "L2E: Lasers to Events for 6-DoF Extrinsic Calibration of Lidars and Event Cameras," ArXiv pre-print (In submission to a top conference), 2022.

M. Khalili, K. Ta, J. F. Borisoff and H. F. M. Van der Loos, "Offline and Real-Time Implementation of a Personalized Wheelchair User Intention Detection Pipeline: A Case Study," IEEE International Conference on Robot & Human Interactive Communication (RO-MAN), 2021.

Education

ETH Zürich (Swiss Federal Institute of Technology)

M.Sc. in Robotics, Systems, and Control

Zürich, Switzerland Sep. 2020 - Dec. 2022

UBC (University of British Columbia)

Vancouver, Canada

B.A.Sc. in Mechanical Engineering, Mechatronics Specialization

Sep. 2014 - May 2020