Model V3.2

≔ Tags	112-2 Oblivious Routing	
Datum	@4. März 2024	
© Präsentation	https://docs.google.com/presentation/d/1SNR6h9RAr6sjFPT4PI4MXJaHZKR5mn1nka4y3PGCEOM/edit#	
Status	Im Gange	

Aussage des Lehrers

 $\textbf{Input}: \text{Given a Demand Matrix } DM_1$

Output: Routing ϕ (Fraction of demand entering vertex)

- 1. Find the best routing ϕ_1 of DM_1
- 2. Find the worst demand matrix DM_2 of the routing ϕ_1

- 3. Find the best routing ϕ_2 of $DM_1 \bigcup DM_2$
- 4. Iteration until it meet the cutoff condition

ှိုင်း Approach

Input : A demand Matrix
Output : Routing
(Fraction of demand
entering vertex)

Best routing: Minimize maximum link ultialization **Worst demand matrix**: Maximum maximum link ultialization

Pseudo code

```
Algorithm 1: main algorithm
  Input: Demand matrix DM
  Output: Routing \phi_{best} (Fraction of demand)
1 Initialization : D = \{DM\}, DM_{worst} = 0;
  // D is the set of demand matrix
2 while not meet the cutoff condition do
      D = D \cup \mathrm{DM}_{worst};
3
      Find the best routing \phi of D; // The First model
      \phi_{best} = \phi;
5
      Find the worst demand matrix DM_{worst} of \phi_{best} // The
6
          second model
7 end
8 return \phi_{best}
```

Finden Sie größe Routing ϕ

Finding the link weight and traffic splitting ratio to minimize the maximum link ultilization

Given set of demand matrix *D*, find the fraction of demands that minimizing the maximum link ultilization.

Variable

 α The maximum link ultilization of all the demand matrix in D

 $\phi_t(e)$ Routing fraction for edge e=(u, v) to vertex t

For PD(Per-destination) routing in IP network

The first model

Indicate

D The set of demand matrix

e=(u,v)∈E Edges form vertex u to vertex v

dist Demand form s to t of DM(i)

fsi Traffic from vertex s to t of DM(i)

ce Link capacity of the edge e

he Header node of the edge e

 E_n^{OUT} Set includes all the edge from vertex n

 \widetilde{N}_n Set includes all the neighbor vertexs of vertex n

Indicate

D	The set of demand matrix
$e=(u,v)\in E$	Edges form vertex \boldsymbol{u} to vertex \boldsymbol{v}
d_{st}^i	Demand from s to t of $i-th$ DM in ${\it D}$
f^i_{st}	Traffic from vertex s to t of $i-th$ DM in ${\it D}$
c_e	Link capacity of the edge \boldsymbol{e}
h_e	Header node of the edge \boldsymbol{e}
$E_n^{ m OUT}$	Set includes all the edge from vertex n
\widetilde{N}_n	Set includes all the neighbor vertexs of vertex \boldsymbol{n}

Variable

lpha The maximum link ultilization of all the demand matrix in $\it D$

 $\phi_t(e)$ Routing fraction for edge e=(u,v) to vertex t

Objective function

Minimize the maximum link ultilization lpha

 $\min \alpha$

Constraints

$$0 \leq \alpha \leq 1 \text{ (Decision variable constraint)} \\ 0 \leq \phi_{st}(e) \leq 1 \text{ , } \forall e \in E \text{ (Decision variable constraint)} \\ \sum_{t \in N} \frac{f_{h_e t}^i \phi_t(e)}{c(e)} \leq \alpha \text{ , } \forall e \in E, 1 \leq i \leq |D| \text{(Link capacity constraint)} \\ \sum_{e \in E_n^{\text{OUT}}} \phi_t(e) = 1, \forall n, t \in N, n \neq t \text{(Flow conservation)} \\ \sum_{e \in E_t^{\text{OUT}}} \phi_t(e) = 1, \forall t \in N \text{(Flow conservation)} \\ f_{nt}^i = \sum_{j \in \widetilde{N}_n} f_{jt}^i \phi_t((j,n)) + d_{nt}^i, \ \forall n, t \in N, n \neq t, 1 \leq i \leq |D| \text{(Flow conservation)} \\ \end{cases}$$

Model

 $\min \alpha$ (Minimize maximum link ultilization)

$$\begin{split} \sum_{e \in E_n^{\text{OUT}}} \phi_t(e) &= 1, \forall n, t \in N, n \neq t \\ \sum_{e \in E_t^{\text{OUT}}} \phi_t(e) &= 1, \forall t \in N \\ f_{nt}^i &= \sum_{j \in \widetilde{N}_n} f_{jt}^i \phi_t((j,n)) + d_{nt}^i, \forall n, t \in N, n \neq t, 1 \leq i \leq |D| \\ \sum_{t \in N} \frac{f_{h_e t}^i \phi_t(e)}{c(e)} &\leq \alpha \ , \ \forall e \in E, 1 \leq i \leq |D| \\ 0 &\leq \phi_t(e) \leq 1 \ , \forall e \in E \end{split} \qquad \text{(Decision variable constraint)}$$

 $\min \alpha$ (Minimize maximum link ultilization)

$$\sum_{e \in E_n^{\text{OUT}}} \phi_t(e) = 1, \forall n, t \in N, n \neq t$$

$$\sum_{e \in E_t^{\text{OUT}}} \phi_t(e) = 1, \forall t \in N$$

$$f_{nt}^i = \sum_{j \in \tilde{N}_n} f_{jt}^i \phi_t((j,n)) + d_{nt}^i, \forall n, t \in N, n \neq t, 1 \leq i \leq |D| \qquad \text{(Flow conservation)}$$

$$\sum_{t \in N} \frac{f_{h_e t}^i \phi_t(e)}{c(e)} \leq \alpha \ , \ \forall e \in E, 1 \leq i \leq |D| \qquad \text{(Link capacity constraint)}$$

$$0 \leq \phi_t(e) \leq 1 \ , \forall e \in E \qquad \text{(Decision variable constraint)}$$

$$0 \leq \alpha \leq 1 \qquad \text{(Decision variable constraint)}$$

Find the worst demand matrix of routing ϕ

Find the demand matrix maximizing the maximum link ultilization with given routing ϕ

Given routing (Fracttion of demand) φ, find the demand matrix maximizing maximum link ultilization with routing φ.

Variable

ρ The minimum link ultilization of the demand matrix DM

DM The worstcase demand matrix of given routing φ

dst Demand form s to t

For PD(Per-destination) routing in IP network

The second model

Indicate

 $\phi(e)$ Given routing / fraction of traffic to vertex t on the edge e

e=(u,v)∈E Edges form vertex u to vertex v

fst Traffic from vertex s to t

ce Link capacity of the edge e

he Header node of the edge e

En Set includes all the edge from vertex n

Nn Set includes all the neighbor vertexs of vertex n

Indicate

$\phi_t(e)$	Given routing
$e=(u,v)\in E$	Edges form vertex \boldsymbol{u} to vertex \boldsymbol{v}
f_{st}	Traffic from vertex s to t
c_e	Link capacity of the edge \boldsymbol{e}
h_e	Header node of the edge \boldsymbol{e}
$E_n^{ m OUT}$	Set includes all the edge from vertex n
\widetilde{N}_n	Set includes all the neighbor vertexs of vertex n

Variable

DM The worstcase demand matrix of given routing ϕ

ho The mnimum link ultilization of the demand matrix DM

 $d_{st}\;$ Demand from s to t

Objective function

Maximize the maximum link ultilization lpha

 $\max \rho$

Constraints

$$0 \leq
ho \leq 1 ext{ (Decision variable constraint)} \
ho \leq \sum_{t \in N} rac{f_{h_e t} \phi_t(e)}{c(e)} \leq lpha \;, \; orall e \in E(ext{Link capacity constraint)} \ f_{nt} = \sum_{j \in \widetilde{N}_n} f_{jt} \phi_t((j,n)) + d_{nt}, \; orall n, t \in N, n
eq t(ext{Flow conservation})$$

Model

 $\max \rho$ (Maximize minimum link ultilization)

$$\begin{split} f_{nt} &= \sum_{j \in \widetilde{N}_n} f_{jt} \phi_t((j,n)) + d_{nt}, \forall n, t \in N, n \neq t \\ \rho &\leq \sum_{t \in N} \frac{f_{h_e t} \phi_t(e)}{c(e)} \leq \alpha, \forall e \in E \\ 0 &\leq \rho \leq 1 \end{split} \qquad \text{(Link capacity constraint)}$$

 $\max \rho$ (Maximize minimum link ultilization)

$$f_{nt} = \sum_{j \in \tilde{N}_n} f_{jt} \phi_t((j,n)) + d_{nt}, \forall n, t \in N, n \neq t$$
 (Flow conservation)

$$\rho \leq \sum_{t \in N} \frac{f_{h_e t} \phi_t(e)}{c(e)} \leq \alpha, \forall e \in E$$
 (Link capacity constraint)

$$0 \leq \rho \leq 1$$
 (Decision variable constraint)