HIERARCHICAL CLUSTERING

Hierarchical clustering is a type of unsupervised learning method used in data analysis to group similar objects into clusters based on their similarities. Unlike partitioning methods like k-means, hierarchical clustering does not require predefining the number of clusters. Instead, it creates a hierarchy of clusters that can be visualized as a tree-like diagram called a dendrogram.

TYPES OF HIERARCHICAL CLUSTERING

- 1. Agglomerative (Bottom-Up):
- · Starts with each data point as its own cluster.
- Gradually merges clusters that are closest together based on a distance metric.
- Continues until all points are merged into a single cluster.
- 2. Divisive (Top-Down):
- Starts with all data points in a single cluster.
- Recursively splits the clusters into smaller ones based on differences.
- Continues until each data point is in its own cluster.

Ques. Consider data points given. Apply single linkage algorithm (agglomerative method) construct hierarchical clustering.

OBJECTS	Χ	Υ
0	1	4
1	2	8
2	5	10
3	12	18
4	14	28

Sol:-

STEP 1: Find all the distances between all the points

Distance between 0 and 1

Distance =
$$\sqrt{((x2-x1)^2 + (y2-y1)^2)}$$

= $\sqrt{((2-1)^2 + (8-4)^2)}$
= $\sqrt{17}$ = 4.12

Cluster	0	1	2	3	4
0		4.12	7.21	17.80	27.29
1			3.60	14.14	23.32
2				10.63	20.12
3					10.19
4					

STEP 2: In the agglomerative table, the minimum distance is 3.60. Therefore, the cluster 1 and 2 are merged together.

Cluster	{1,2}	0	3	4
{1,2}		4.12	10.63	20.12
0			17.80	27.29
3				10.19
4				

Find distance from {1,2} to difference points from {1,2} to 0

- Minimum of { (1,0),(2,0) }
- Minimum of { 4.12, 7.21 } = 4.12

STEP 3 : The minimum distance in the agglomerative table is 4.12. Therefore, cluster {1,2} and 0 are merged together.

Cluster	{0,1,2}	3	4
{0,1,2}		10.63	20.12
3			10.19
4			

STEP 4: In the agglomerative table the minimum distance is 10.19. Therefore cluster 3 and 4 are merged together.

Cluster	{0,1,2}	{3,4}	
{0,1,2}		10.63	
{3,4}			

<u>Dendrogram :-</u>

