Redes

Hashimoto

Questão 1

- 1. Física: Transferência de dados brutos, converte sinais em bits e vise-versa e os envia, não faz correção de erros.
- 2. Enlace: Conecta 1e3,usa MAC, estabelece protocolo utilizado, pode corrigir erros.
- 3. Rede: Endereça pacotes, converte IP em MAC, decide se o pacote deve ser roteado ou não.
- 4. Transporte: Organiza pacotes (junta na ordem certa), pode se orientar de acordo com o protocolo.
- 5. Sessão: Estabelece uma forma de transmitir dados entre duas aplicações, corrigue erros.
- 6. Apresentação: Comprime e/ou Criptografa os dados.
- 7. Aplicação: Escolhe aplicações e protocolos para serem usados.

Questão 2

Um domínio de broadcast é um segmento lógica de uma rede de computadores em que um aparelho conectado à rede é capaz de se comunicar com outro aparelho conectado à rede sem a necessidade de utilizar um dispositivo de roteamento.

Um domínio de colisão é uma área lógica onde os pacotes podem colidir uns contra os outros.

Domínios de Rede/Broadcast:

- PC1, Switch S1, PC2, Roteador R1
- PC3, Roteador R1
- Roteador R1, Roteador R2
- PC4, HUB H1, PC5, Roteador R2

Domínios de Colisão:

- PC1, Switch S1
- PC2, Switch S1
- Switch S1, Roteador R1
- Roteador R1, PC3
- Roteador R1, Roteador R2
- PC4, HUB H1, PC5, Roteador R2

Questão 4

N	MAC ORIG	IP ORIG	MAC DEST	IP DEST
1	A	A	R1	В
2	R1	A	R2	В
3	R2	A	В	В
4	В	В	R2	A
5	A	В	R1	A
6	R1	В	A	A

- 1. A manda mensagem para o R1.
- 2. R1 manda mensagem para R2.
- 3. R2 manda mensagem para B.
- 4. B manda ACK para R2.
- 5. R2 manda ACK para R1.
- 6. R1 manda ACK para A.

N	MAC ORIG	IP ORIG	MAC DEST	IP DEST
1	A	A	R1	В
2	R1	R1	R2	В
3	R2	R1	В	В
4	В	В	R2	R1
5	A	В	R1	R1
6	R1	В	A	A

- 1. A manda mensagem para o R1.
- 2. R1 manda mensagem para R2.
- 3. R2 manda mensagem para B.
- 4. B manda ACK para R2.
- 5. R2 manda ACK para R1.
- 6. R1 manda ACK para A.

Questão 6

Segundo RFC793: A manda um Syn para B a fim de começar uma conexão, então B manda um ACK (confirmando o Syn) e um Syn, e assim A responde com um ACK para o Syn e a conexão é estabelecida.

Questão 7

MDI e MDI-Xsão formas de ordenar as entradas dos fios (que estão dentro dos cabos), a diferença entre elas é que TX + e - trocam de lugar com RX + e -, e vice-versa.

Questão 8

- A <-> S1: Straight
- S1 <-> S2: Cross
- S2 <-> R1: Straight
- R1 <-> R2: Cross
- R2 <-> B: Cross

1. Broadcast

Rede: 177.32.168.216

 $Host:\ 177.32.168.217\ \hbox{--}\ 177.32.168.212$

Broadcast: 177.32.168.223

Cálculos:

223 = 0b 1101 1111 248 = 0b 1111 10001101 1000 = 216

2. Host

Rede: 204.20.128.0

Host: 204.20.128.1 - 204.10.191.254

Broadcast: 204.10.191.255

Cálculos:

18 = 8 + 8 + 2

 $143 = 0b \ 1000 \ 1111$

 $1000\ 0000 = 128$

 $1011\ 1111 = 191$

3. Host

Rede: 36.72.0.0

 $\begin{array}{l} {\rm Host:\ 36.72.0.1\ -\ 36.73.255.254} \\ {\rm Broadcast:\ 36.73.255.255} \end{array}$

4. Rede

Rede: 7.26.0.64

 $\begin{array}{l} {\rm Host:} \ 7.26.0.65 - 7.26.0.126 \\ {\rm Broadcast:} \ 7.26.0.127 \end{array}$

Cálculos:

26 = 8 + 8 + 8 + 2

 $64 = 0b \ 0100 \ 0000$

5. Broadcast

Rede: 200.201.173.184

Host: 200.201.173.183 - 200.201.173.186

Broadcast: 200.201.173.187

Cálculos:

252 = 0b 1111 1100187 = 0b 1011 1011

 $1011\ 1000 = 184$

1. Mesma rede

224 = 0b 111 0 0000 154 = 0b 100 1 1010158 = 0b 100 1 1110

2. Mesma rede

248 = 0b 1111 1 000 142 = 0b 1000 1 110137 = 0b 1000 1 001

3. Mesma Rede

 $\begin{array}{l} 10 = 8{+}2\\ \text{.} \qquad 0\text{b}\ 11\ 00\ 0000\\ 45 = 0\text{b}\ 00\ 10\ 1010\\ 12 = 0\text{b}\ 00\ 00\ 1100 \end{array}$

Obs: Os números antes o byte onde a máscara corta são iguais, por isso não é necessário verificar.

Cheat Table

$2^2 - 2$	=	2	\rightarrow	/30
$2^3 - 2$	=	6	\rightarrow	/29
$2^4 - 2$	=	14	\rightarrow	/28
$2^5 - 2$	=	30	\rightarrow	/27
$2^6 - 2$	=	62	\rightarrow	/26
$2^7 - 2$	=	126	\rightarrow	/25
$2^8 - 2$	=	254	\rightarrow	/24
$2^9 - 2$	=	510	\rightarrow	/23
$2^{10} - 2$	=	1022	\rightarrow	/22
$2^{11} - 2$	=	2046	\rightarrow	/21

Olhando nossa Cheat Table, precisamos de:

- **25 hosts:** /27 (sobram 5)
- **60 hosts:** /26 (sobram 2)
- **120 hosts:** /25 (sobram 6) [x2]
- **500 hosts:** /23 (sobram 10) [x2]

Podemos dividir nosso /8 em /9, /10, /11, ... /20, /21, /22 e /22. Vamos usar o primeiro /22 para gerar os dois /23 que precisamos. Vamos usar o segundo /22 para gerar dois /25, um /26 e um /27 (e sobram /27, /25, /23).

Segue um pequeno mapa:

Considerando apenas os endereços que precisamos:

- **/23**: 187.0.0.0 187.0.1.225
- **/23**: 187.0.2.0 187.0.3.225
- **/25**: 187.0.4.0 187.0.4.127
- **/26**: 187.0.5.0 187.0.5.63
- **/27**: 187.0.5.64 187.0.5.95

RIP e OSPF são Interior Gateway Protol (IGP) e BGP é de Exterior Gateway Protocol (EGP).

Questão 13

Convertendo para unidade padrão:

$$64KB = 64*1024*8 = 524\ 288\ bits$$

$$32KB = 32*1024*8 = 262\ 144\ bits$$

$$15ms = 0.015s$$

Se todos mandam pacotes ao mesmo tempo:

$$524\ 288\ bits*3+262\ 144\ bits*2$$

$$1\ 626\ 864\ bits+524\ 288\ bits$$

$$2\ 151\ 152\ bits$$

Dividindo pela latência:

Dividindo por 8 ou 1024 para mudar a unidade:

```
143\ 410\ 133, 333\dots\ bits/s

17\ 926\ 266, 666\dots\ B/s

17\ 506, 119\ 791\ 666\dots\ KB/s

17, 095\ 820\ 109\ 049\dots\ MB/s
```

- \bullet Sequence Number: É o número do 1
o byte da mensagem que está sendo enviado nesse pacote.
- Acknowledment: É o número do próximo byte que espera receber, confirmando o recebimento de todos os anteriores.
- Window Size: O tamanho da janela, quantidade de pacotes que são enviados por vez.

• Flags:

- URG: A mensagem é urgente, então deve ser enviada para a aplicação imediatamente.
- ACK: Marca que o campo ACK contém informação válida.
- PSH: Recebe prioridade (menor que urgente) para o tratamento da mensagem.
- RST: Encerra abruptamente a conexão nos dois lados.
- SYN: Tenta iniciar uma conexão.
- FIN: Encerra a conexão normalmente por um lado.

Questão 15

Uma mensagem TCP é dividida em vários pacotes e o número de sequenciamento de cada pacote é o mesmo do 10 byte enviado nesse pacote. Considerando Window Size como 1:

Alice manda um pacote de sequencia X e tamanho N para Bob. Bob recebe e manda um pacote com ACK X+N Alice manda o próximo pacote de sequencia X+N e tamanho M Bob recebe e manda um pacote com ACK X+N+M

Questão 16

Quando o timeout expira sem receber um ACK correspondente, retransmite o pacote e redefine o tamanho da janela para 1, voltando para slow start.

Questão 17

O fast retransmit do TCP padrão funciona retransmitindo o pacote quando recebe um ACK duplicado 3 vezes (total de 4 ACKs iguais).

- Slow Start: Funciona enquando cwnd < threshold, cwnd duplica a cada ACK recebido.
- Congestion Avoidance: Funciona quando cwnd >= threshold, cwnd aumenta em 1 a cada ACK recebido.
- Em caso de 3 ACKs duplicados é feito threshold := cwnd/2 e cwnd := threshold.
- Em caso de timeout é feito threshold := cwnd/2 e cwnd := 1. (Obs: estamos em slow start.)

Questão 19

O comportamento serrilhado ocorre porque quando está em modo *Congestion Avoidance*, o tamanho da janela vai crescendo linearmente e quando ocorre um erro cai para metade.

Isso é importante para TCP, pois esse comportamento é simples de ser implementado e busca maximizar a quantidade de dados transmitidos, evitando os congestionamentos.

Questão 20

- A envia os pacotes 1 até 8 para B.
- **B** recebe os pacotes 2 até 9 em qualquer ordem, e manda seus respectivos ACKs para **A**.
- ACKs 2 e 3 se perdem.
- A recebe ACKs 4 até 9 em qualquer ordem.
- A envia os próximos pacotes 9 até 17 para B (Obs: tamanho da janela aumentou em 1).

Questão 21

Um Sistema Autônomo é um conjunto de redes, ou uma única rede, que além de estar sob uma gestão comum tem características e políticas de roteamento comuns.

	Requisição	Resposta
MAC DEST	11111111	MAC A
MAC ORIG	MAC A	MAC B
Controle	controle	controle
Cabeçalho		
IP DEST	IP B	IP B
MAC DEST	?	?
ORIG	IP A	IP A
MAC ORIG	MAC A	MAC A
CRC	CRC	CRC

Questão 23

Carrier Sense Multiple Access with Collision Detection é um algoritmo para prevenir, detectar e tratar colisões em redes Ethernet.

Algoritmo:

Mandar Frame:

- . Se não tem frame pronto, espera ter um frame pronto.
- . Se o meio está ocupado, espera ficar desocupado.
- . Começa a transmitir o frame e monitore para detectar colisão.
- . Se ocoreu colisão, pule para :Colisão Detectada.
- . Resete 'contador de retransmissão' e complete a transmissão do frame.

Colisão Detectada:

- . Continue a transmissão, mas com o 'Jam Signal' (*) até um tempo mínimo.
- . Incremete 'contador de retransmissão'.
- . Se 'contador de retransmissão' >= 'Máximo de Tentativas', aborte.
- . Calcule um número aleatório e espere esse tempo.
- . Tente transmitir o frame de novo.
- (*): isso é para avisar aos outros da rede que ocorreu colisão.

Encapsulamento é quando uma coisa A, engloba uma coisa B e pode ou não adicionar outras coisas (geralmente adiciona). Em redes, acontece quando uma informação passa de uma camada para outra: a informação da camada mais alta passa a ser um campo para a camada mais baixa.

Um exemplo: temos um pacote TCP e quando vamos fazer um pacote Ethernet usamos o pacote TCP inteiro como dados para o pacote Ethernet.

Questão 25

Um protocolo são vários conjuntos de ações que são estabelecidas para atingir um objetivo, em outras palavras são comportamentos acordados necessários para uma troca de informações.

Questão 26

- Atraso de transmissão: é o tempo necessário para transmitir cada bit do pacote.
- Atraso de fila: é o tempo que o pacote está em espera em fila antes de ser processado.
- Atraso de processamento: é o tempo necessário para ler o cabeçalho do pacote, checar integridade dos dados, e determinar para onde deve ser encaminhado.
- Atraso de propagação: é o tempo que leva para o pacote viajar de um nó para outro da rede.

Questão 27

Uma possibilidade é ter muitas consultas ao banco de dados em um pequeno espaço de tempo, gerando um "gargalo" (por atraso de fila e/ou processamento) nos últimos nós da loja, que estão conectados à fibra ótica. Uma solução para esse problema seria adicionar mais nós conectados à fibra ótica.

Outro motivo seria a grande distância entre a loja e o banco de dados, levando a altos atrasos de propagação. Uma solução seria mover o banco de dados para um local mais próximo da loja.

Uma maneira relativamente fácil de saber se é uma ou outra é esperar um momento onde a rede não está sendo usada e pingar o banco de dados. Se o ping demorar muito, mesmo com a rede sem uso, então há um grande atraso de propagação.