Aviation Risk Strategy: Quantifying Safety for New Fleet Procurement

Overview

This project provides a **data-driven risk framework** using 60+ years of NTSB accident data to establish the optimal safety foundation for a new aviation division. The analysis segments risk into three measurable scores to deliver **concrete**, **actionable policies** for fleet procurement and operational deployment, minimizing liability and catastrophic loss.

Final Notebook: [Link to your final Aviation.ipynb file here]

Stakeholder Presentation: [Link to your Final Presentation PDF here]

Business Understanding

Stakeholder and Key Business Questions

- **Primary Stakeholder:** Head of the Aviation Division.
- Goal: To establish the lowest-risk operational and equipment profile possible at launch.

Key Business Questions

- 1. Procurement (R2): Which manufacturer offers the lowest inherent fatal risk?
- 2. **Operations (R3 Frequency):** Where do we focus training to prevent the most **common accidents**?
- 3. **Safety Policy (R1 Severity):** Where do we focus specialized training to mitigate the most **catastrophic consequences**?

Data Understanding and Analysis

Source of Data

The analysis uses historical civil aviation accident data from the NTSB (National Transportation Safety Board), covering the period from 1962–2023.

Description of Data

Data was cleaned and segmented using Python/Pandas to create three distinct risk metrics:

Aviation Risk Strategy: Quantifying Safety for New Fleet Procurement

Risk Score	Metric	Strategic Focus
R2 (Equipment)	Fatal Accident Rate (%) by Manufacturer.	Procurement
R3 (Frequency)	Total Count of Accidents by Phase.	High-Volume Mitigation
R1 (Severity)	Average Total Injuries per Accident by Phase.	Consequence Mitigation

Three Visualizations

The three core charts visually confirm the risk profile:

- 1. **Equipment Risk (R2) Chart:** Highlights **BOEING** as the safest manufacturer (lowest Fatal Rate).
- 2. **Operational Frequency (R3) Chart:** Identifies **LANDING** and **TAKEOFF** as the most frequent accident phases (highest count).
- 3. **Operational Severity (R1) Chart:** Identifies **CLIMB** and **MANEUVERING** as the phases with the highest average injuries (highest severity).

Conclusion

Summary of Conclusions (Three Relevant Findings)

- 1. **Procurement Policy: BOEING** is confirmed as the low-risk choice, exhibiting a Fatal Accident Rate of only **6.08%**.
- 2. **High-Frequency Priority: LANDING** and **TAKEOFF** require the highest resource allocation for **SOP development** and supervision to reduce the sheer **number** of incidents.
- 3. **High-Severity Priority: CLIMB** and **MANEUVERING** require specialized **Advanced Scenario Training** to mitigate the severe, catastrophic outcomes of rare failures.