MATH 4620 Exercise Set

For the 7th Edition

HW 1

IV.18 # 12, 20, 38, 41, 46, 50, 55, 56

IV.19 # 23, 26, 29

HW 2

IV.20 # 10, 14, 28, 29

IV.21 # 5

IV.22 # 14, 16, 24, 27, 31

IV.23 # 34, 35

HW 3

Compute the product

$$(0\iota + 1(123) + 0(132) + 0(12) + 1(13) + 1(23))(1\iota + 1(123) + 0(132) + 1(12) + 0(13) + 1(23))$$

in the group ring \mathbb{Z}_2S_3 .

IV.24 # 16, 17

V.26 # 17, 18, 22

(Second isomorphism theorem for rings) Let M and N be ideals of a ring R and let

$$M + N = \{m + n \mid m \in M, n \in N\}.$$

Show that M+N is an ideal of R and that (M+N)/N is naturally isomorphis to $M/(M\cap N)$. (Use Theorem 34.5 to help you.)

Third isomorphism theorem for rings) Let M and N be ideals of a ring R such that $M \leq N$. Show that there is a natural isomorphism mapping R/N onto (R/M)/(N/M). (Use Theorem 34.7 to help you.)

V.27 # 35, 36, 37, 38

HW 4

IV.25 # 6, 12, 16

Let R be a ring with unit element. Using its elements we define a ring R by defining $a \oplus b = a + b + 1$, and $a \cdot b = ab + a + b$, where $a, b \in R$ and where the addition and multiplication on the right-hand side of these relations are those of R.

- (a) Prove that \widetilde{R} is a ring under operations \oplus and \cdot .
- (b) What acts as the zero-element of \widetilde{R} ?
- (c) What acts as the unit-element of \widetilde{R} ?
- (d) Prove that R is isomorphic to \widetilde{R} .

VI.29 #5, 24, 31, 32, 34

Dr. Frey's Bonus (but required) Fun Problems (These problems go together.)

- 1. Show that the polynomial $x^3 + x^2 2x 1$ is irreducible over \mathbb{Q} .
- 2. Show that $2\cos(2\pi/7)$ satisfies $x^3 + x^2 2x 1 = 0$. (Hint: Use the fact that $2\cos(2\pi/7) = e^{2\pi i/7} + e^{-2\pi i/7}$.)
- 3. Show that it is impossible to construct a regular septagon by straightedge and compass.

Dr. Frey's Bonus (but required) Fun Problems (These problems go together.)

- 1. Construct a field with 64 elements as we did in class (with the conversion table between additive and multiplicative elements).
- 2. Construct a field with 49 elements as we did in class (with the conversion table between additive and multiplicative elements).
- 3. Suppose that F is a field of order 1024 and $F^* = \langle \alpha \rangle$. List the elements of each subfield of F.

HW 10

Dr. Frey's Fun (but required) Bonus Questions:

- 1. Find G(K, F) where $K = \mathbb{Q}\left(\sqrt{2}, \sqrt[3]{2}, e^{\frac{2\pi i}{3}}\right)$ and $F = \mathbb{Q}$.
- 2. Calculate the splitting field and the Galois group of the polynomial $f(x) = x^4 + x^2 + 1$ over \mathbb{Q} . To what familiar group is the Galois group isomorphic? Show the correspondence between subgroups and intermediate fields noting which subfields are normal and which are not.
- 3. Calculate the splitting field and the Galois group of the polynomial $f(x) = x^3 2$ over \mathbb{Q} . To what familiar group is the Galois group isomorphic? Show the correspondence between subgroups and intermediate fields noting which subfields are normal and which are not.
- 4. Show that the Galois group of the polynomial $f(x) = x^5 10x^4 + 2x^3 24x^2 + 2$ over \mathbb{Q} is S_5 . Is the equation f(x) = 0 solvable by radicals?

HW 11

IX.45 #10, 25, 26, 30

IX.46 #2, 4, 12, 17

IX.47 #6

IX.49 #6
