TDM/BE - PROBAS/STATS - 1MFEE

Introduction

La vitesse du vent peut être modélisée par une variable aléatoire Y de loi de Weibull $\mathcal{W}(\theta,p)$ comme illustré sur la figure ci-dessous issue de $[3]^1$. L'objectif de ce BE est tout d'abord d'étudier certaines propriétés d'un estimateur du paramètre θ (pour p connu) construit à partir de n données $x_1,...,x_n$ de loi de Weibull $\mathcal{W}(\theta,p)$. Dans un second temps, on s'intéressera à un test statistique permettant de décider si on est dans une période de vent calme correspondant à $\theta < 1 \text{m s}^{-1}$ ou à une période de vent fort correspondant à $\theta > 1 \text{m s}^{-1}$.

Figure 1: Histogramme de la vitesse du vent comparé à la densité de Weibull (figure extraite de [3]).

¹Certaines propriétés de la loi de Weibull sont données à la fin de cet énoncé.

Travail à effectuer

1. Génération d'un signal test

- (a) Écrire une fonction $Y = \text{genere}(\theta, p, N, K)$ qui renvoie une matrice Y de taille $N \times K$, dont chaque colonne contient une réalisation du signal $\mathbf{y} = (y_1, \dots, y_N)^T$ de loi de Weibull $\mathcal{W}(\theta, p)$:
 - Pour effectuer cette génération, on utilisera le fait que si $F(x;\theta,p)$ est la fonction de répartition de cette loi de Weibull et que X est une variable aléatoire de loi uniforme sur l'intervalle]0,1[, alors $Y=F^{-1}(X;\theta,p)$ suit la loi de Weibull $\mathcal{W}(\theta,p)$;
 - Les paramètres d'entrée sont θ et p: paramètres de la loi de Weibull, N: nombre de points d'un signal observé, K: nombre de signaux observés;
 - Pour générer les réalisations du signal, on utilisera la fonction rand (M, N) de Matlab qui génère une matrice X de taille $M \times N$ constituée de réalisations indépendantes d'une loi uniforme sur l'intervalle]0,1[et on appliquera la fonction $Y=F^{-1}(X;\theta,p)$.
- (b) Tester cette fonction avec $N=10000,\,K=1,\,\theta_0=3.3$ et p=1.5. Vérifier que l'histogramme des données générées est en accord avec la densité de la loi de Weibull à l'aide de la fonction histfit. Déterminer la moyenne et la variance des données générées à l'aide des fonctions mean et var et comparer avec les valeurs théoriques.
- (c) Générer une matrice de données avec $N=1000,\,K=500,\,\theta_0=3.3$ et p=1.5. Afficher une réalisation du signal ${\pmb y}$ (c'est-à-dire une colonne de la matrice Y) et tracer ensuite la moyenne et la variance des colonnes de Y à l'aide des fonctions mean et var. Comparer avec les résultats obtenus à la question précédente et commenter.

2. Estimation statistique

(a) Etude théorique : montrer que l'estimateur du maximum de vraisemblance de θ construit à partir des observations $y_1, ..., y_N$ est défini par

$$\widehat{\theta}_{\text{MV}} = \left(\frac{1}{N} \sum_{i=1}^{N} Y_i^p\right)^{1/p}.$$

Comme cet estimateur n'est pas simple à étudier, on s'intéresse plutôt à $a=\theta^p$. En appliquant le principe d'invariance fonctionnelle, on obtient l'estimateur du maximum de vraisemblance de a

$$\widehat{a}_{\text{MV}} = \frac{1}{N} \sum_{i=1}^{N} Y_i^p.$$

- (b) Etude théorique : montrez que
 - \hat{a}_{MV} est un estimateur non-biaisé de $a = \theta^p$, c'est-à-dire

$$E\left[\widehat{a}_{MV}\right] = a$$

• la variance de \widehat{a}_{MV} est définie par

$$\operatorname{var}\left[\widehat{a}_{\mathrm{MV}}\right] = \frac{a^2}{N}$$

- \widehat{a}_{MV} est l'estimateur efficace de a, c'est-à-dire que sa variance est égale à la borne de Cramér-Rao des estimateurs non-biaisés de a.
- (c) Ecrire une fonction alpha_est= estimateur_mv (Y, p, N, K), qui renvoie l'estimateur $\widehat{a}_{\mathrm{MV}}$ pour chacune des K réalisations de $y=(y_1,\ldots,y_N)^T$, à partir de la matrice Y construite à la question 1. On obtient alors K valeurs de $\widehat{a}_{\mathrm{MV}}$, notées $(\widehat{a}_{\mathrm{MV}}(k))_{k=1,\ldots,K}$.

2

- (d) Représenter graphiquement les valeurs $(\widehat{a}_{MV}(k))_{k=1,\dots,K}$ ainsi que leur moyenne et leur variance et comparer avec les valeurs théoriques.
- 3. **Détection** On cherche à étudier les performances d'un test statistique qui permet de détecter si les données y_i correspondent à un vent calme $(a = a_0 < 1ms^{-1})$ ou pas $(a = a_1 > 1ms^{-1})$. Pour simplifier, on supposera dans ce BE que les valeurs de a_0 et a_1 sont connues.
 - (a) Etude théorique : montrez que si Y_i suit une loi de Weibull $\mathcal{W}(\theta,p)$, alors $Z_i = \frac{2}{a}Y_i^p$ suit une loi du chi2 à 2 degrés de liberté, i.e., $Z_i \sim \chi_2^2$.

Les deux hypothèses associées à la détection d'un vent calme sont alors définies par

$$H_0: \quad a = a_0 \qquad H_1: \quad a = a_1 > a_0$$
 (1)

- (b) Etude théorique : montrez que
 - la statistique de test issue du théorème de Neyman-Pearson associée à ces deux hypothèses s'écrit

$$T\left(\boldsymbol{Y}\right) = \sum_{i=1}^{N} Y_{i}^{p}.$$

• pour une probabilité de fausse alarme α , la région critique du test (zone de rejet de H_0) est définie par

$$R_{\alpha} = \left\{ \boldsymbol{y} \in \mathbb{R}^{N} | T\left(\boldsymbol{y}\right) > \lambda_{\alpha} \right\}. \tag{2}$$

• le seuil de décision s'écrit

$$\lambda_{\alpha} = \frac{a_0}{2} G_{2N}^{-1} \left(1 - \alpha \right) \tag{3}$$

où G_{2N}^{-1} est l'inverse de la fonction de répartition d'une loi du chi2 à 2N degrés de liberté (une loi χ^2_{2N}). On montre également que la probabilité de non-détection (ou risque de 2ème espèce) du test s'exprime sous la forme suivante

$$\beta = G_{2N} \left(\frac{2\lambda_{\alpha}}{a_1} \right)$$

où ${\cal G}_{2N}$ est la fonction de répartition d'une loi du chi2 à 2N degrés de liberté.

On souhaite tracer les courbes théoriques de la puissance du test $\pi=1-\beta$ en fonction de la probabilité de fausse alarme α , puis retrouver ces courbes par simulations.

(c) En utilisant les fonctions chi2inv et chi2cdf, écrire une fonction

$$\pi$$
 = pi theorique (a_0, a_1, L)

qui renvoie la puissance théorique π du test pour $\alpha \in \{0.01, 0.02, \dots, 0.98, 0.99\}$ en fonction des paramètres a_0 , a_1 et L=2N. Tracer les courbes obtenues pour $a_0=0.9$, $a_1=1.5$ et différentes valeurs de N ($N \in \{10, 20, 50\}$). Tracer les courbes obtenues pour $a_0=0.9$, N=20 et différentes valeurs de a_1 ($a_1 \in \{1.2, 1.5, 2\}$). Commenter les résultats obtenus.

- (d) On cherche maintenant à retrouver ces résultats par simulation. Puisque a_0 est un paramètre connu, on peut déterminer le seuil du test λ_{α} pour toute valeur de α en utilisant (3). Pour estimer la puissance du test, il suffit donc d'estimer la probabilité $P[\text{Rejeter } H_0 \mid H_1 \text{ vraie}]$. Pour cela
 - Ecrire une fonction qui génère K réalisations de signaux de longueur N associés à l'hypothèse H_1 du test (1).
 - Écrire une fonction

$$\hat{\pi} = \text{pi_estimee}(a_0, a_1, L, K)$$

qui renvoie la puissance estimée $\hat{\pi}$ du test pour $\alpha \in \{0.01, 0.02, \dots, 0.99\}$, en fonction de a_0, a_1, L , et du nombre de simulations K. La puissance sera estimée à l'aide des signaux associés à l'hypothèse H_1 générés à la question précédente. Superposer la courbe COR théorique obtenue avec la fonction pi_theorique et la courbe COR estimée $\hat{\pi}$ avec $a_0 = 0.9, a_1 = 1.5, N = 20$ et K = 50000 ou K = 1000. Commenter.

- 4. **Analyse d'un fichier de données** On désire dans cette partie analyser un fichier de données contenant des mesures de vitesse de vent.
 - (a) Charger le fichier wind.mat et représenter graphiquement les mesures de vitesse de vent contenues dans le vecteur test.
 - (b) À l'aide de la fonction wblfit, déterminer des estimées des paramètres θ et p associées à ce vecteur de données (notées $\widehat{\theta}$ et \widehat{p}) obtenues à l'aide de la méthode du maximum de vraisemblance.

On désire vérifier qu'il est raisonnable de penser que les données du vecteur test sont distribuées suivant une loi de Weibull $\mathcal{W}\left(\widehat{\theta},\widehat{p}\right)$ à l'aide d'un test de Kolmogorov.

- (c) Représenter sur la même figure la fonction de répartition de la loi de Weibull $\mathcal{W}\left(\widehat{\theta},\widehat{p}\right)$ évaluée aux données du fichier wind.mat (rangées par ordre croissant avec la fonction sort et notées $y_1 < y_2 < \ldots < y_N$) et la fonction de répartition empirique de ces données (tout d'abord en ne considérant que N=100 données puis avec la totalité du fichier).
- (d) Écrire une fonction qui permet de calculer les écarts E_i^+ et E_i^- définis par

$$E_i^+ = \left| \frac{i}{N} - F_{\mathbf{W}} \left(y_i; \widehat{\theta}, \widehat{p} \right) \right|, \quad E_i^- = \left| \frac{i-1}{N} - F_{\mathbf{W}} \left(y_i; \widehat{\theta}, \widehat{p} \right) \right|$$

pour i=1,...,N, où N est le nombre de données x_i du vecteur test et $F_{\mathbf{W}}\left(x_i;\widehat{\theta},\widehat{p}\right)$ est la fonction de répartition d'une loi de Weibull $\mathcal{W}\left(\widehat{\theta},\widehat{p}\right)$ (fonction wblcdf). En déduire la valeur de la statistique du test de Kolmogorov et conclure.

(e) Vérifier le résultat de la question précédente en utilisant la fonction kstest de Matlab.

References

- [1] A. C. Cohen. Maximum likelihood estimation in the Weibull distribution based on complete and on censored samples. *Technometrics*, 7(4):579–588, 1965.
- [2] A. Joarder, H. Krishna, and D. Kundu. Inferences on Weibull parameters with conventional type-I censoring. *Comput. Stat. Data Anal.*, 55(1):1–11, 2011.
- [3] M. Martin, L. V. Cremades, and J. M. Santabárbara. Analysis and modelling of time series of surface wind speed and direction. *Journal of Climatology*, 19(2):197–209, 1999.

• Loi de Weibull
$$W(\theta, p)$$

$$p > 0, \theta > 0, x \in \mathbb{R}^+$$

- densité : $f(x;\theta,p)=rac{p}{\theta}\left(rac{x}{\theta}
ight)^{p-1}\exp\left[-\left(rac{x}{\theta}
ight)^{p}
ight]\mathcal{I}_{\mathbb{R}^{+}}(x)$

- Fonction de répartition : $F(x; \theta, p) = 1 - \exp\left[-\left(\frac{x}{\theta}\right)^p\right] \mathcal{I}_{\mathbb{R}^+}(x)$

- Moyenne : $\mu = \theta \Gamma \left(1 + \frac{1}{p}\right)$

- variance : $\theta^2\Gamma\left(1+\frac{2}{p}\right)-\mu^2$

• Loi du chi2 à L degrés de liberté χ^2_L

$$L > 0, x \in \mathbb{R}^+$$

- définition : si $X_1,...,X_L$ sont L variables aléatoires indépendantes de même loi normale $\mathcal{N}(0,1)$ alors la loi de $\sum_{l=1}^L X_l^2$ est une loi du χ_L^2

- $\mathit{densit\'e}: f(x;L) = \frac{1}{2^{\frac{L}{2}}\Gamma\left(\frac{L}{2}\right)} x^{\frac{L}{2}-1} \exp\left(-\frac{x}{2}\right) \mathcal{I}_{\mathbb{R}^+}(x)$

- Moyenne : L

- variance : 2L

Estimation des paramètres d'une de loi de Weibull $\mathcal{W}(\theta, p)$ [1, 2]

Pour estimer les deux paramètres d'une loi de Weibull par la méthode du maximum de vraisemblance, il est préférable de re-paramétrer la densité en posant $a = \theta^p$. La log-vraisemblance s'écrit alors

$$\ln L(y_1, ..., y_N; a, p) = N \ln \left(\frac{p}{a}\right) + (p - 1) \sum_{n=1}^{N} \ln y_n - \frac{1}{a} \sum_{n=1}^{N} (y_n^p \ln y_n)$$

qui admet pour dérivées partielles

$$\frac{\partial \ln L(y_1, ..., y_N; a, p)}{\partial a} = -\frac{N}{a} + \frac{1}{a^2} \sum_{n=1}^{N} y_n^p
\frac{\partial \ln L(y_1, ..., y_N; a, p)}{\partial p} = \frac{N}{p} + \sum_{n=1}^{N} \ln y_n - \frac{1}{a} \sum_{n=1}^{N} (y_n^p \ln y_n).$$
(4)

En annulant ces deux dérivées partielle, on montre facilement que p est solution de l'équation

$$\frac{1}{p} = h(p) = \frac{\sum_{n=1}^{N} (y_n^p \ln y_n)}{\sum_{n=1}^{N} y_n^p} - \frac{1}{N} \sum_{n=1}^{N} \ln y_n$$

qui est une équation de point fixe $p=\frac{1}{h(p)}$ qu'on peut résoudre 1) en trouvant une solution initiale suffisamment proche de la solution recherchée ou 2) à l'aide de l'algorithme de Newton-Raphson basé sur la récursion

$$p_{k+1} = p_k - \frac{g(p_k)}{g'(p_k)}$$

où
$$g(p) = p - \frac{1}{h(p)}$$
.