ECE2050 Homework 7

Due: April 18, 2025

Q1 For the serial in/serial out shift register, determine the data-output waveform for the data-input and clock waveforms below. Assume that the register is initially cleared.

Q2 The shift register below has $SHIFT/\overline{LOAD}$ and CLK inputs as shown in part (b). The serial data input (SER) is a 1. The parallel data inputs are $D_0=1, D_1=0, D_2=1$, and $D_3=0$ as shown. Develop the data-output waveform in relation to the inputs.

Q3 The truth table of a 74HC195 4-bit shift register is shown below. Its input \overline{CLR} is asynchronous. Develop the outputs Q_0 , Q_1 , Q_2 and Q_3 waveforms in relation to the inputs.

Inputs					Outputs					
SH/LD	J	\overline{K}	D_0	<i>D</i> ₁	D_2	D_3	Q_0	Q_1	Q_2	Q_3
0	X	X	d_0	d_1	d_2	d_3	d_0	d_1	d_2	d_3
1 ,	1	1	X	X	X	X	1	q_0	q_1	q ₂
1	1.	0)	X	X	X	X	$\overline{q_0}$	q_0	q_1	q_2
1	0	1	X	X	X	X	90	q_0	q_1	q ₂
1	0	0	X	X	X	X	0	90	q_1	q_2

Q4 Use two 4-bit bidirectional universal shift registers below to form an 8-bit bidirectional universal shift register. Show the required connections.

Q5 Draw the logic diagram for a modulus-10 Johnson counter. Show the timing diagram and write the sequence in tabular form.

Clock Pulse	Q.	Q,	Qz	Qz	Qy
0	0	0	0	0	0
ı	1	0	0	0	0
2	1		0	0	0
3	ı	1	(0	D
4	١	1	ſ	١	0
5	(1		1	
6	0	1	1	(1
7	0	0	١	1	
8	0	0	O	١	
9	0	0	0	0	l

Q6 If we push the button labeled as "push" in the figure, what are the outputs of the ROW encoder and COLUMN encoder?

Row encoder D0D1D2: 100

Column encoder D3D4D5: 000

Q7 The following figure shows a 4-bit bidirectional shift register. A HIGH on the RIGHT/LEFT control input allows data bits inside the register to be shifted to the right, and a LOW enables data bits inside the register to be shifted to the left.

Determine the state of the shift register above after each clock pulse for the given RIGHT/LEFT control input waveform shown below. Assume that $Q_0=1,\ Q_1=1,\ Q_2=0$, and $Q_3=1$ and that the serial data-input line is LOW.

CLK	Q_0	Q_1	Q_2	Q_3
0	1	1	0	1
1	0	1	1	0
2	0	0	1	1
3	0	1	1	0
4	1	1	0	0
5	1	0	0	0
6	0	1	0	0
7	0	0	1	0
8	0	1	0	0