В.Ю.Протасов, мех-мат МГУ, 2020

II. Дифференцирование в нормированных пространствах. Производные Гато и Фреше. Производные высших порядков. Экстремальные задачи для дифференцируемых функций. Необходимое условие локального минимума. Уравнения Эйлера-Лагранжа

1. Дифференцирование в нормированных пространствах

Определение 1 Пусть X, Y – нормированные пространства, $G \subset X$, $x \in \text{int } G$, $h \in X$. Вариацией по Лагранжу отображения $F : G \to Y$ в точке x по направлению h называется предел $\delta_F(x,h) = \lim_{t\to 0} \frac{F(x+th) - F(x)}{t}$.

Отображение называется $\partial u \phi \phi$ еренцируемым по Лагранжу в точке x, если вариация по Лагранжу в данной точке существует по любому направлению $h \in X$. Следующая теорема является обобщением теоремы Ферма на нормированные пространства.

Теорема 1 (Теорема Ферма для нормированных пространств). Если $x \in \text{int } G \subset X$ – точка локального минимума функции $f: G \to \mathbb{R}$, и функция f дифференцируема по Лагранжу в этой точке, то $\delta_f(x,h) = 0$ для любого $h \in X$.

Доказательство. Для любого h рассмотрим функцию $F_h(t) = f(x+th)$. Так как $0 \in \text{locmin } F_h$, то $F'_h(0) = 0$. Остаётся заметить, что $F'_h(0) = \delta_F(x,h)$.

Теперь мы можем обобщить два главных свойства выпуклых функций на произвольные нормированные пространства. Лемма 1.2 не меняется вовсе, ни формулировка ни доказательство: для выпуклой задачи каждый локальный минимум является её абсолютным минимумом. Лемма 1.3 теперь переформулируется так:

Предложение 1 Если задача выпукла, функция f дифференцируема по Лагранжу в точке $x \in \text{int } G$ и $\delta_f(x,h) = 0$ для всех $h \in X$, то эта точка даёт абсолютный минимум.

Доказательство. Предположим, что существует точка $y \in G$, для которой f(y) < f(x). Проведем прямую через точки x и y: $\{x+th \mid t \in \mathbb{R}\}$, где h=y-x. Ограничение функции f на эту прямую является выпуклой функцией одной переменной, её производная в точке x равна $\delta_f(x,h)=0$, следовательно (лемма 1.3), абсолютный минимум этой функции на прямой достигается в точке x, а значит $f(y) \geq f(x)$.

Определение 2 Отображение $F: G \to Y$, где $G \subset X$, называется дифференцируемым по Гато в точке $x \in \text{int } G$, если оно дифференцируемо по Лагранжу в этой точке и существует линейный непрерывный оператор $A: X \to Y$ такой, что $\delta_F(x,h) = Ah$. Оператор A называется производной по Гато отображения F в точке x.

Следствие 1 В условиях теоремы 1 функция f дифференцируема по Гато в точке x, u производная по Гато равна нулю.

Определение 3 Отображение $F: G \to Y$, где $G \subset X$, называется дифференцируемым по Фреше в точке $x \in \text{int } G$, если существует линейный непрерывный оператор $A: X \to Y$ такой, что F(x+h) = F(x) + Ah + o(h), $h \to 0$, $h \in X$. Оператор A называется производной по Фреше отображения F в точке x и обозначается A = F'(x).

Таким образом, F(x+h) = F(x) + F'(x)[h] + o(h), $h \to 0$. Из этого следует, что функция, дифференцируемая по Фреше в точке x, непрерывна в x. Для дифференцируемости по Гато это может не выполняться (пример 2). Заметим, что производная по Фреше, если существует, однозначно определена. В противном случае, если найдутся два оператора A_1, A_2 , для которых выполнено соотношение $F(x+h) = F(x) + A_i[h] + o(h)$, $h \to 0$, i = 1, 2, то, вычитая, получим, $(A_1 - A_2)[h] = o(h)$, $h \to 0$. Последнее означает, что $A_1 = A_2$. Иначе было бы $(A_1 - A_2)[\tilde{h}] \neq 0$ для некоторого $\tilde{h} \in X$, и тогда $t (A_1 - A_2)[\tilde{h}] = (A_1 - A_2)[t\tilde{h}] = o(t)$, $t \to 0$, что невозможно.

Как связана производная по Фреше с вариацией по Лагранжу? Имеем

$$\delta_F(x,h) = \lim_{t \to 0} \frac{F(x+th) - F(x)}{t} = \lim_{t \to 0} \frac{F'(x)[th] + o(th)}{t} = F'(x)[h].$$

Следовательно, отображение, дифференцируемое по Фреше, дифференцируемо и по Лагранжу. Более того, так как ого вариация по Лагранжу равна $\delta_F(x,h) = Ah$, где A = F'(x), то приходим к выводу, что отображение, дифференцируемое по Фреше, дифференцируемо и по Гато (с той же производной). Итак,

$$\Phi$$
реше \Rightarrow Гато \Rightarrow Лагранж

Обратные импликации не выполняются, как показывают следующие примеры:

Пример 1 Функция $F: \mathbb{R}^2 \to \mathbb{R}$, заданная формулой $F(x_1, x_2) = (x_1^2 x_2)^{1/3}$, дифференцируема по Лагранжу в точке x = (0,0): $\delta_F(x,h) = (h_1^2 h_2)^{1/3}$. Если $e_1 = (1,0), e_2 = (0,1)$, то $\delta_F(x,e_1) = \delta_F(x,e_2) = 0$. Однако, $\delta_F(x,e_1+e_2) = 1$. Если отображение дифференцируемо по Гато, то $\delta_F(x,h)$ линейно зависит от h. Значит, должно выполняться $\delta_F(x,e_1+e_2) = \delta_F(x,e_1) + \delta_F(x,e_2)$, что неверно. Поэтому F не дифференцируемо по Гато.

Пример 2 Функция $F: \mathbb{R}^2 \to \mathbb{R}$, заданная формулой

$$F(x) = \begin{cases} 1, & x_2 = x_1^2, x_1 \neq 0 \\ 0, & \text{иначе} \end{cases}$$

дифференцируема по Лагранжу в точке x = (0,0): $\delta_F(x,h) = 0$ для любого $h \in \mathbb{R}^2$. Значит, она дифференцируема и по Гато, её производная по Гато равна 0. Но по Фреше она не дифференцируема, так как она разрывна в точке x.

Класс функций, дифференцируемых по Фреше в точке x обозначим $\mathcal{D}(x)$, а дифференцируемых в каждой точке области G – через $\mathcal{D}(G)$. Далее, если не оговорено обратное, под дифференцируемыми функциями мы будем понимать именно дифференцируемые по Фреше.

Всплески применяются в инженерных задачах теории обработки информации, при численном решении дифференциальных уравнений, в некоторых теоретических задачах теории приближений и теории функций. Наиболее популярной системой для разложений функций в L_2 всегда была тригонометрическая система Фурье $\{e^{2\pi int}\}_{n\in\mathbb{Z}}$. Однако, одна имеет ряд существенных недостатков: 1) она рассчитана на периодические функции; 2) она не локализована, т.е. функции этой системы не убывают при $t \to \infty$. С первым недостатком люди давно научились справляться с помощью разного рада периодизаций, и т.д. Второй оказался куда более сложным. Прежде, чем решать эту проблему, мы строго ее сформулируем.

2. Простейшая задача вариационного исчисления. Уравнения Эйлера-Лагранжа.

Простейшей задачей вариационного исчисления называется следующая задача:

$$\begin{cases}
\mathcal{J}(x) = \int_{t_0}^{t_1} L(t, x, \dot{x}) dt & \to \min, \\
x \in C^1([t_0, t_1], \mathbb{R}^n), \\
x(t_0) = x_0, \quad x(t_1) = x_1,
\end{cases} \tag{1}$$

где $x(t) = (x_1(t), \dots, x_n(t))$ – непрерывно-дифференцируемая вектор-функция из отрезка $[t_0, t_1]$ в \mathbb{R}^n , $x_0, x_1 \in \mathbb{R}^n$ – заданные точки (граничные условия), $L \in C$ ($[t_0, t_1] \times \mathbb{R}^n \times \mathbb{R}^n$, \mathbb{R}) – заданная функция, называемая *интегрантом*. Таким образом, среди всех непрерывно-дифференцируемых функций, принимающих данные значения на концах отрезка, найти такую, которая доставляет минимум интегральному функционалу $\mathcal{J}(x)$. Функции $x \in C^1$ ($[t_0, t_1], \mathbb{R}^n$), удовлетворяющие данным граничным условиям, будем называть $\partial onycmumumum$.

Определение 4 Допустимая функция $\hat{x} \in C^1([t_0,t_1],\mathbb{R}^n)$ доставляет слабый локальный минимум в задаче (1), если существует $\varepsilon > 0$ такой, что $\mathcal{J}(x) \geq \mathcal{J}(\hat{x})$ для любой допустимой функции x, удовлетворяющей условию $\|x - \hat{x}\|_{C^1[t_0,t_1]} < \varepsilon$. Термин слабый относится к метрике пространства C^1 , которая определяет окрестность для данного локального минимума. Таким образом, точка \hat{x} доставляет слабый локальный минимум, если для всех допустимых x, расположенных достаточно близко от \bar{x} в метрике пространства C^1 , имеем $\mathcal{J}(x) \geq \mathcal{J}(\hat{x})$. Следующая теорема даёт необходимые условия слабого локального минимума.

Теорема 2 Предположим, что в задаче (1) функции L, L_x и $L_{\dot{x}}$ непрерывны. Если функция \hat{x} доставляет слабый локальный минимум, то выполнено уравнение Эйлера-Лагранжа:

$$\frac{d}{dt} L_{\dot{x}}(t, \hat{x}, \dot{\hat{x}}) = L_{x}(t, \hat{x}, \dot{\hat{x}}). \tag{2}$$

Любое решение $\hat{x}(t)$ уравнения (2) называется экстремалью. Уравнение (2) является фактически системой из n уравнений $\frac{d}{dt}L_{\dot{x}_i}=L_{x_i}$, $i=1,\ldots,n$. Таким образом, для поиска экстремали имеется система из n дифференциальных уравнений второго порядка и 2n граничных условий $x(t_0)=x_0, x(t_1)=x_1$ (т.е., $x_i(t_0)=x_{0i}, x_i(t_1)=x_{1i}$ $i=1,\ldots,n$). Согласно теореме 2 любая функция, доставляющая слабый локальный минимум, является экстремалью. Но, вообще говоря, не наоборот. Мы докажем теорему 2 в случае n=1. Многомерный случай полностью аналогичен, мы оставляем его читателю. Доказательство состоит из двух лемм. Пространство функций из $C^1[t_0,t_1]$, удовлетворяющих условию $h(t_0)=h(t_1)=0$ будем обозначать $C_0^1[t_0,t_1]$ или просто C_0^1 .

Лемма 1 Если функции L, L_x и $L_{\dot{x}}$ непрерывны, то для любой функции $h \in C^1_0[t_0, t_1]$ имеем

$$\delta_{\mathcal{J}}(x,h) = \int_{t_0}^{t_1} \left(L_x h + L_{\dot{x}} \dot{h} \right) dt.$$

Доказательство. Так как частные производные L_x и $L_{\dot{x}}$ непрерывны, то функция $\varphi(\lambda) = L(t, x + \lambda h, \dot{x} + \lambda \dot{h})$ дифференцируема по λ . Пользуясь правилом дифференцирования функции многих переменных и дифференцированием интеграла по параметру, имеем

$$\delta_{\mathcal{J}}(x,h) = \lim_{\lambda \to 0} \frac{\mathcal{J}(x+\lambda h) - \mathcal{J}(x)}{\lambda} = \int_{t_0}^{t_1} \lim_{\lambda \to 0} \left(\frac{L(t,x+\lambda h,\dot{x}+\lambda \dot{h}) - L(t,x,\dot{x})}{\lambda} \right) dt =$$

$$\int_{t_0}^{t_1} \frac{d}{d\lambda} L(t,x+\lambda h,\dot{x}+\lambda \dot{h}) \Big|_{\lambda=0} dt = \int_{t_0}^{t_1} \left(L_x h + L_{\dot{x}} \dot{h} \right) dt.$$

Лемма 2 (Дюбуа-Реймона). Пусть $a(t),b(t)\in C[t_0,t_1]$ и для любой функции $h\in C^1_0[t_0,t_1]$ имеем

$$\int_{t_0}^{t_1} \left(a(t) h(t) + b(t) \dot{h}(t) \right) dt = 0.$$

Тогда функция b(t) непрерывно дифференцируема $u\ b'(t)=a(t)$.

Доказательство. Пусть A(t) – любая первообразная функции a(t), т.е., $A(t) = \int_{t_0}^t a(\tau) \, d\tau + K$. Интегрируя по частям, имеем

$$0 = \int_{t_0}^{t_1} \left(a(t) h(t) + b(t) \dot{h}(t) \right) dt = A(t)h(t) \Big|_{t_0}^{t_1} + \int_{t_0}^{t_1} \left(-A(t) + b(t) \right) \dot{h}(t) dt.$$

Теперь учитываем, что $h(t_0) = h(t_1) = 0$:

$$\int_{t_0}^{t_1} \left(-A(t) + b(t) \right) \dot{h}(t) dt = 0.$$

Это равенство выполнено для любой функции $h \in C_0^1[t_0,t_1]$. Выберем теперь нужную функцию h. Для этого подберем константу K таким образом, чтобы интеграл функции -A(t)+b(t) по отрезку $[t_0,t_1]$ был равен нулю. Тогда функция $h(t)=\int_{t_0}^t \left(-A(\tau)+b(\tau)\right)d\tau$ принадлежит $C_0^1[t_0,t_1]$, и при этом

$$\int_{t_0}^{t_1} \left(-A(t) + b(t) \right) \dot{h}(t) dt = \int_{t_0}^{t_1} \left(-A(t) + b(t) \right)^2 dt = 0.$$

Следовательно, $b(t) \equiv A(t)$. Поэтому $b \in C^1[t_0, t_1]$ и b'(t) = a(t).

Доказательство теоремы 2. Если \bar{x} — точка локального минимума функционала $\mathcal{J}(x)$ в пространстве $C_0^1[t_0,t_1]$ то, согласно теореме 2.1 (лекция 2), $\delta_{\mathcal{J}}(\bar{x},h)=0$ для любой функции $h\in C_0^1[t_0,t_1]$. Применяя теперь лемму 1, а затем лемму 2 для $a=L_x,\,b=L_{\dot{x}},$ завершаем доказательство.

Применив теперь предложение 2.1, получаем

Следствие 2 Если интегрант в простейшей задаче является выпуклым функционалом от x, m.e.,

$$L\Big(\,t\,,\,(1-\lambda)x+\lambda y\,,\,(1-\lambda)\dot{x}+\lambda\dot{y}\,\Big)\quad\leq\quad(1-\lambda)\,L(t,x,\dot{x})\;+\;\lambda\,L(t,y,\dot{y})$$

для любых допустимых $x, y \in C^1[t_0, t_1]$ в любой точке $t \in [t_0, t_1]$, то уравнение Эйлера-Лагранжа является достаточным условием абсолютного минимума.

В некоторых частных случаях уравнение Эйлера-Лагранжа может быть сведено у уравнению первого порядка. Введем ещё два определения: интеграла импульса $p(t) = L_{\dot{x}}$ и интеграла энергии $H(t) = \dot{x} \, L_{\dot{x}} - L$.

Предложение 2 Если интегрант L(t) не зависит явно от \dot{x} , т.е., $L(t,x,\dot{x})=L(t,x)$, то уравнение Эйлера-Лагранжа равносильно уравнению $\hat{L}_x(t)\equiv 0$.

Если интегрант L(t) не зависит явно от x, то уравнение Эйлера-Лагранжа равносильно уравнению $\hat{p}(t) = \hat{L}_{\dot{x}}(t) \equiv \text{const.}$

Если интегрант L(t) не зависит явно от t, то из уравнения Эйлера-Лагранжа следует, что $\hat{H}(t) = \hat{L}_{\dot{x}}\dot{\hat{x}} - L \equiv \text{const.}$ Если известно, что экстремаль \hat{x} не является тождественной константой ни на каком интервале, то верно и обратное: из уравнения $\hat{H} \equiv \text{const.}$ следует уравнение Эйлера-Лагранжа.

Доказательство. Первые два пункта очевидны, докажем третий. Имеем

$$H' = \frac{d}{dt} (L_{\dot{x}}) \dot{x} + L_{\dot{x}} \ddot{x} - L_{x} \dot{x} - L_{\dot{x}} \ddot{x} = (\frac{d}{dt} L_{\dot{x}} - L_{x}) \dot{x}.$$

Поэтому из уравнения Эйлера-Лагранжа следует, что $\hat{H}'\equiv 0$, т.е., $\hat{H}\equiv {\rm const.}$ Если функция $\dot{\hat{x}}(t)$ не обращается в ноль ни на каком интервале, то функция $\frac{d}{dt}\,\hat{L}_{\dot{x}}-\hat{L}_x$ равна нулю на всюду плотном подмножестве отрезка $[t_0,t_1]$, а значит (в силу непрерывности), и на всём отрезке.

Пример 3 (Пример Гильберта). Рассмотрим задачу

$$\begin{cases} J(x) = \int_{0}^{1} t^{2/3} \dot{x}^{2} dt & \to \min; \\ x(0) = 0, \ x(1) = 1. \end{cases}$$
 (3)

Так как интегрант не зависит явно от x, то уравнение Эйлера-Лагранжа дает $\frac{d}{dt}L_{\dot{x}}=0$, откуда $L_{\dot{x}}=$ const, следовательно $2t^{2/3}\dot{x}=c$. Единственное решение этого дифференциального уравнения, удовлетворяющее начальным условиям, $\hat{x}(t)=t^{1/3}$. Докажем, что $\hat{x}\in$ absmin. Для любой допустимой вариации $h\in C_0^1[0,1]$ имеем

$$J(\hat{x}+h) - J(\hat{x}) = \int_0^1 [t^{2/3}(\dot{\hat{x}}+\dot{h})^2 - t^{2/3}\dot{\hat{x}}^2] dt = \int_0^1 [2t^{2/3}\dot{\hat{x}}\dot{h} + t^{2/3}\dot{h}^2] dt \ge$$

$$\int_0^1 2t^{2/3}\dot{\hat{x}}\dot{h} dt = \int_0^1 2t^{2/3}\frac{1}{3}t^{-2/3}\dot{h} dt = \frac{2}{3}(h(1) - h(0)) = 0.$$

Таким образом, \hat{x} доставляет абсолютный минимум. Тем не менее, эта функция не является экстремалью, поскольку она не принадлежит $C^1[0,1]$. Поэтому, в данной задаче вообще нет допустимых экстремалей. Этот пример показывает, что в некоторых случаях пространство C^1 слишком узко для решения простейшей задачи, и имеет смысл искать экстремали в более широких пространствах, например в пространствах Соболева.

Пример 4 (Задача о минимальной площади поверхности вращения). Общая задача Лагранжа-Плато состоит в нахождении поверхности минимальной площади, содержащей заданное компактное множество в \mathbb{R}^3 . Мы рассмотрим случай, когда это множество – два круга радиусом 1, причем отрезок между их центрами равен 2a и перпендикулярен плоскостям кругов. Мы ограничимся только поверхностями вращения (что выглядит естественно, но не так просто обосновывается). Если поверхность образована вращением графика функции x(t) такой, что x(-a) = x(a) = 1, вокруг оси абсцисс, то задача формализуется в виде:

$$\begin{cases} J(x) = \int_{-a}^{a} 2\pi x \sqrt{1 + \dot{x}^2} dt \to \min; \\ x(-a) = x(a) = 1. \end{cases}$$
 (4)

Рис. 1:

Так как интегрант не зависит явно от t, можем воспользоваться интегралом энергии: $H=\dot{x}L_{\dot{x}}-L=\mathrm{const.}$ Вычислив производные и проделав очевидные преобразования, получаем $\frac{x}{\sqrt{1+\dot{x}^2}}=c$, откуда $\frac{dx}{\sqrt{\left(\frac{x}{c}\right)^2-1}}=dt$. С помощью замены $x=c\operatorname{ch}\tau$, находим

решение данного дифференциального уравнения, удовлетворяющее начальным условия $\hat{x}(t) = c \operatorname{ch}\left(\frac{t}{c}\right)$. Остается найти параметр c из краевого условия $\hat{x}(a) = 1$ (условие $\hat{x}(-a) = 1$ будет тогда выполнено в силу чётности функции). Обозначив $s = \frac{a}{c}$, получаем уравнение $\operatorname{ch} s = \frac{s}{a}$. Пусть число a_0 таково, что прямая $y = \frac{s}{a_0}$ касается графика функции $y = \operatorname{ch} s$ (рис. 2). Имеем $a_0 = 0.662\ldots$ При каждом $a < a_0$ прямая пересека-

Рис. 2:

ет график в двух точках, поэтому существует два значения параметра c, т.е., задача имеет две допустимые экстремали. При $a=a_0$ экстремаль единственна, а при $a>a_0$ экстремалей нет. Последнее объясняется тем, что при $a>a_0$ площадь любой поверхности вращения становится больше суммы площадей двух кругов радиусом 1, поэтому минимальная поверхность "распадается" в объединение двух кругов. В случае $a<a_0$ из двух экстремалей абсолютный минимум дает одна, соответствующая меньшему из двух значений c, т.е., меньшему корню уравнения $c \operatorname{ch}\left(\frac{a}{c}\right)=1$; вторая не доставляет даже локального минимума. Это мы доказывать не будем.

3. Производные высших порядков

Для получения условий второго порядка в простейшей задаче, мы вначале определим вторую производную по Фреше. Пусть X, Y — нормированные пространства, $F: X \to Y$ — некоторое отображение. Обозначим также через $\mathcal{L}(X,Y)$ пространство линейных непрерывных операторов, действующих из X в Y.

Определение 5 Отображение $F: X \to Y$ является дважды дифференцируемым в точке x, если оно дифференцируемо в окрестности этой точки и отображение $x \to F'(x)$ (из пространства X в $\mathcal{L}(X,Y)$) является дифференцируемым. Производная этого отображения называется второй производной функции F в точке x.

По определению, таким образом, имеем

$$F'(x+h_1)[h_2] = F'(x)[h_2] + (F''(x)[h_1])[h_2] + o(||h_1|| \cdot ||h_2||).$$

Если функция дважды дифференцируема, то $(F''(x)[h_1])[h_2] = (F''(x)[h_2])[h_1]$ для любых $h_1, h_2 \in X$. Мы оставим этот факт без доказательства. Таким образом, вторая производная – это непрерывная симметричная билинейная форма на X: $F''[h_1, h_2] = (F''(x)[h_1])[h_2]$. Следующее предложение мы также не будем доказывать.

Предложение 3 Если отображение F дважды дифференцируемо в точке x, то $F(x+h) = F(x) + F'(x)[h] + \frac{1}{2}F''(x)[h,h] + o(\|h\|^2)$.

Симметрическая билинейная форма $Q: X \times X \to \mathbb{R}$ и соответствующая ей квадратичная форма Q(x,x) называется неотрицательно определённой (в других терминах – положительно полуопределённой, обозначение $Q \geq 0$), если $Q(x,x) \geq 0$ для всех $x \in X$. Если же Q(x,x) > 0 для всех $x \in X$, то форма называется положительно определённой (обозначение Q > 0).

Теорема 3 Если \hat{x} – точка локального минимума функции $F: X \to \mathbb{R}$, и в этой точке F дважды дифференцируема, то $F'(\hat{x}) = 0$ и $F''(\hat{x}) \geq 0$. Обратно, если $F'(\hat{x}) = 0$ и $F''(\hat{x})[h,h] \geq \alpha \|h\|^2$, то точка \hat{x} доставляет локальный минимум.

Доказательство. Если $\hat{x} \in \text{locmin}$, то $F'(\hat{x}) = 0$. Если при этом $F''(\hat{x})[h,h] < 0$ для некоторого $h \in X$, то $F''(\hat{x})[th,th] = t^2F''(\hat{x})[h,h] < 0$ при любом $t \neq 0$. При $t \to 0$ применяем предложение 3 и получаем, что $F(\hat{x}+th) < F(\hat{x})$ при малых t. Доказательство достаточности немедленно вытекает из предложения 3.

Замечание 1 В пограничном случае, когда $F'(\hat{x}) = 0$ и $F''(\hat{x}) \geq 0$, т.е., когда необходимые условия выполнены, а достаточные – нет, могут быть разные ситуации. Так, для функции $F: \mathbb{R} \to \mathbb{R}$, $F(x) = x^3$ точка $\hat{x} = 0$ не даёт локального минимума.

8

Рассмотрим теперь простейшую задачу и соответствующий функционал $\mathcal{J}(x)=\int_{t_0}^{t_1}L(t,x,\dot{x})\,dt$. Предполагая, что вторые частные производные $L_{x\,x}$, $L_{x\,\dot{x}}$, $L_{\dot{x}\,\dot{x}}$ существуют и непрерывны, получаем

$$\mathcal{J}''(x)[h,h] = \int_{t_0}^{t_1} \left(L_{xx} h^2 + 2 L_{x\dot{x}} h \dot{h} + L_{\dot{x}\dot{x}} \dot{h}^2 \right) dt.$$
 (5)

Список литературы

- [1] В.М.Алексеев, В.М.Тихомиров, С.В.Фомин, Оптимальное управление, М.: Наука. Главная редакция физико-математической литературы, 1979
- [2] В.М. Алексеев, Э.М. Галеев, В.М. Тихомиров, Сборник задач по оптимизации. Теория, примеры, задачи, М. Физматлит, 2006.
- [3] В.Ю. Протасов, Вариационное исчисление и оптимальное управление. Курс лекций, http://opu.math.msu.su/sites/default/files/main_courses/course-opu15f.pdf