Data Analysis and Knowledge Discovery Unsupervised Learning 2

Jari Björne

University of Turku
Department of Computing
jari.bjorne@utu.fi

Outline

- Clustering Application: DNA Microarrays
- 2 Clustering Application: Phylogenetics
- 3 Anomaly Detection
- 4 Rule Mining

Section 1

Clustering Application: DNA Microarrays

DNA Microarrays

- A DNA microarray is a grid of tiny DNA spots (probes) "printed" on a solid (e.g. glass) surface, the chip
- Microarrays are used to measure the expression levels of large numbers of genes (e.g. from a tissue sample)
- \bullet The DNA samples are labeled with a fluorescent label \to The more labeled DNA bound to a probe spot, the brighter the light
- Labeling different samples with different colors allows comparative expression analyses on a single chip. Usually two samples are compared, the test sample (with e.g. a drug) and a normal baseline sample.

A Typical Microarray Experiment

Source: Wikimedia Commons

DNA Microarrays and Clustering

- When multiple conditions (e.g. drugs) are tested using a set of microarrays, the result is an $M \times N$ matrix
 - Each column is one experiment (one microarray).
 - Each row is the probe spots (genes) of a single microarray.
- Both the experiments and genes can be clustered
 - Experiments: with similarity between all genes in different experiments
 - Genes: with similarity of expression level across all experiments
- Dendrograms can be used to visualize both clusterings

Clustering and Dendrograms for a Set of DNA Microarrays

Microarray data analysis

Section 2

Clustering Application: Phylogenetics

Phylogenetics

- Phylogenetics is the study of evolutionary history and relationships.
- A phylogenetic tree is a dendrogram showing the speciation from the last common ancestor.
- Traditionally taxonomy was largely based on the morphology of organisms, but genetics is more important today.

A Phylogenetic Tree

PHYLOGENETIC TREE

Computational Phylogenetics

- Phylogenetic trees can be constructed using bioinformatics datasets, such as the sequenced genomes of the species.
- The closer two species are at the genomic level, the closer they are in the evolutionary phylogenetic tree.
- ullet Genomic datasets are complex and there are different ways of constructing and interpreting them o constructed trees may differ

Clustering Based Phylogenetic Trees

Source: Zhong, Chaofang & Han, Maozhen & Yang, Pengshuo & Chen, Chaoyun & Yu, Hui & Wang, Lusheng & Ning, Kang. (2019). Comprehensive Analysis Reveals the Evolution and Pathogenicity of Aeromonas, Viewed from Both Single Isolated Species and Microbial Communities. mSystems. 4. 10.1128/mSystems.00252-19.

Section 3

Anomaly Detection

Anomaly Detection

- Anomaly detection means detection of rare outliers which differ significantly from the rest of the data
- Anomalies can indicate medical problems, a mechanical failure or a cybersecurity intrusion.
- Anomaly detection is based on detecting values outside the regular distribution of the data.

Source: Amazon CloudWatch User Guide

Types of Time Series Anomalies

Source: Andrew Maguire,

https://andrewm4894.com/2020/10/19/different-types-of-time-series-anomalies/

Anomaly Detection

- Supervised anomaly detection requires labeled data for normal and abnormal cases. Very unbalanced data makes it a difficult approach.
- Semi-supervised anomaly detection is usually based on a model of normal behaviour which analyses the probability of a data point being within the normal range.
- Unsupervised anomaly detection methods are the most widely used approaches.

Anomaly Detection Methods

- Statistical
- Bayesian Networks
- Hidden Markov Models
- Clustering
- Deviations from association rules and frequent itemsets
- Classifiers (supervised)
- . . .

- Deviation analysis is a form of subgroup discovery.
- In contrast to association analysis there is usually some target property given.
- The goal is to find subgroups of the populations that are statistically most interesting, that is,
 - they are as large as possible and
 - deviate from the whole population with respect to the property of interest as much as possible.

Example. 10% of customers in the database have bought product A, but 30% of customers in the subgroup *female & married* have bought product A.

The ingredients of deviation analysis are

- a target measure and a verification test serving as a filter for irrelevant or patterns,
- a quality measure to rank subgroups (often the same as the target measure) and
- a search method that enumerates candidates subgroups systematically.

Example.

- Assume we are interested in identifying subgroups of churners in our customer database with *N* customers.
- Assume that a proportion of p_0 customers in the whole database are churners.
- Consider a subgroup (for instance male & under 30).
- Assume that in this subgroup the proportion of churners p.
- If p highly deviates from p_0 this seems to be an indicator for a subgroup with different (churn) behaviour.
- But how much must p deviate from p₀ in order to consider the effect as significant?

Could be measured with the z-score

$$z = \frac{np_0 - np}{\sqrt{n p_0(1-p_0)}} = \frac{\sqrt{n(p-p_0)}}{\sqrt{p_0(1-p_0)}},$$

the difference between the expected number of churners (np_0) in the subgroup and the true number of churners (np) in the subgroup, divided by the variance $\sqrt{n\,p_0(1-p_0)}$ (of the underlying binomial distribution, assuming that the customers in the subgroup are picked randomly with replacement).

- Overall depending on the case there are many possible statistical tests, such as Chi2-test, Kolmogorov-Smirnov, weighted relative accuracy, etc...
- Another measure is the weighted relative accuracy

$$WRAcc = (p - p_0) \cdot \frac{n}{N}.$$

Section 4

Rule Mining

Association rule mining

- Association rule induction: Originally designed for market basket analysis.
- Aims at finding patterns in the shopping behaviour of customers of supermarkets, mail-order companies, on-line shops etc.
- More specifically:
 Find sets of products that are frequently bought together.
- Example of an association rule:
 If a customer buys bread and wine,
 then she/he will probably also buy cheese.

Association rule mining

- Possible applications of found association rules:
 - Improve arrangement of products in shelves, on a catalog's pages.
 - Support of cross-selling (suggestion of other products), product bundling.
 - o Finding business rules and detection of data quality problems.
 - o ...

Association rule mining

- transaction database:
 - {wine, bread, butter, cheese, jam }
 - 2 {steak, beer, mustard, sausage }
 - {diapers, baby food, beer, mustard }
 - {bread, cheese, wine, olives, dried ham }
 - {sausage, mustard, corn, coals }
- each product is an item
- item set: subset of the set of all items
- item sets ordered by frequency
 - {mustard}:3 {wine}:2, {bread}:2, {cheese}:2, {beer}:2, {sausage}:2 {mustard}:2, {butter}:1, {jam}:1...
 - { wine, bread}:2, {wine, cheese}:2, {bread, cheese}:2, {mustard, sausage}:2, {wine, butter}:1,...
 - 3 {wine, bread, cheese}:2, {wine, bread, butter}:1...
 - **4** ...
- Association rules: $\{\text{wine, bread}\} \rightarrow \{\text{cheese}\}, \{\text{sausage}\} \rightarrow \{\text{mustard}\}$

Association rules

- $A \rightarrow B$ (If A then B) does not imply $B \rightarrow A$
 - transaction database:
 - {pea soup, mustard, onions}
 - {pea soup, mustard, bread, butter}
 - 3 {sausage, mustard, beer, coals}
 - 4 {sausage, mustard, ketchup, french fries}
 - f {pea soup, mustard, milk, joghurt}
 - \$\{\begin{aligned}
 \begin{aligned}
 \begin
 - $\{sausage\} \rightarrow \{mustard\}$ rule correct in all cases
 - $\{mustard\} \rightarrow \{sausage\} not!$

Association rules

- Assessing the quality of association rules:
 - Support of an item set:

Proportion of transactions (shopping baskets/carts) that contain the item set.

• Support of an association rule $X \rightarrow Y$:

Either: Support of $X \cup Y$:

(more common: rule is correct)

Or: Support of X

(more plausible: rule is applicable)

• Confidence of an association rule $X \rightarrow Y$:

The percentage of all transactions satisfying X that also satisfy Y.

Support of $X \cup Y$ divided by support of X (estimate of $P(Y \mid X)$).

Association rules

- Two step implementation of the search for association rules:
 - Find the frequent item sets (also called large item sets),
 i.e., the item sets that have at least a user-defined minimum support.
 - Form rules using the frequent item sets found and select those that have at least a user-defined minimum confidence.

Finding frequent item sets

Subset lattice and a prefix tree for five items:

- It is not possible to determine the support of all possible item sets, because their number grows exponentially with the number of items.
- Efficient methods to search the subset lattice are needed.

Item set trees

A (full) item set tree for the five items a, b, c, d, and e.

- Based on a global order of the items.
- The item sets counted in a node consist of
 - o all items labeling the edges to the node (common prefix) and
 - o one item following the last edge label.

Item set tree pruning

In applications item set trees tend to get very large, so pruning is needed.

Structural Pruning:

- Make sure that there is only one counter for each possible item set.
- Explains the unbalanced structure of the full item set tree.

Size Based Pruning:

- Prune the tree if a certain depth (a certain size of the item sets) is reached.
- o Idea: Rules with too many items are difficult to interpret.

Support Based Pruning:

- o No superset of an infrequent item set can be frequent.
- No counters for item sets having an infrequent subset are needed.

Searching the subset lattice

Boundary between frequent (blue) and infrequent (white) item sets:

- Apriori: Breadth-first search (item sets of same size).
- Eclat: Depth-first search (item sets with same prefix).

- 1: $\{a, d, e\}$
- 2: $\{b, c, d\}$
- 3: $\{a, c, e\}$
- 4: $\{a, c, d, e\}$
- 5: $\{a, e\}$
- 6: $\{a, c, d\}$
- 7: $\{b, c\}$
- 8: $\{a, c, d, e\}$
- 9: $\{c, b, e\}$
- 10: $\{a, d, e\}$
 - Example transaction database with 5 items and 10 transactions.
 - Minimum support: 30%, i.e., at least 3 transactions must contain the item set.
 - ullet All one item sets are frequent o full second level is needed.

a: 7 | b: 3 | c: 7 | d: 6 | e: 7

```
1: \{a,d,e\}

2: \{b,c,d\}

3: \{a,c,e\}

4: \{a,c,d,e\} b: 0 | c: 4 | d: 5 | e: 6 c: 3 | d: 1 | e: 1 d: 4 | e: 4 e: 4

5: \{a,e\}

6: \{a,c,d\}

7: \{b,c\}

8: \{a,c,d,e\}
```

- 9: $\{c, b, e\}$ 10: $\{a, d, e\}$
 - Determining the support of item sets: For each item set traverse the database and count the transactions that contain it (highly inefficient).
 - Better: Traverse the tree for each transaction and find the item sets it contains (efficient: can be implemented as a simple double recursive procedure).

- Minimum support: 30%, i.e., at least 3 transactions must contain the item set.
- Infrequent item sets: $\{a,b\}$, $\{b,d\}$, $\{b,e\}$.
- The subtrees starting at these item sets can be pruned.

 Generate candidate item sets with 3 items (parents must be frequent).

- Before counting, check whether the candidates contain an infrequent item set.
 - An item set with k items has k subsets of size k-1.
 - The parent is only one of these subsets.

- The item sets $\{b, c, d\}$ and $\{b, c, e\}$ can be pruned, because
 - \circ $\{b, c, d\}$ contains the infrequent item set $\{b, d\}$ and
 - $\circ \{b, c, e\}$ contains the infrequent item set $\{b, e\}$.
- Only the remaining four item sets of size 3 are evaluated.

- Minimum support: 30%, i.e., at least 3 transactions must contain the item set.
- Infrequent item set: $\{c, d, e\}$.

- Generate candidate item sets with 4 items (parents must be frequent).
- Before counting, check whether the candidates contain an infrequent item set.

- The item set $\{a, c, d, e\}$ can be pruned, because it contains the infrequent item set $\{c, d, e\}$.
- Consequence: No candidate item sets with four items.
- Fourth access to the transaction database is not necessary.

- 1: $\{a, d, e\}$
- 2: $\{b, c, d\}$
- 3: $\{a, c, e\}$
- 4: $\{a, c, d, e\}$
- 5: $\{a, e\}$
- 6: $\{a, c, d\}$
- 7: $\{b, c\}$
- 8: $\{a, c, d, e\}$
- 9: $\{c, b, e\}$
- 10: $\{a, d, e\}$

a: 7 b: 3 c: 7 d: 6 e: 7

- Form a transaction list for each item. Here: bit vector representation.
 - o grey: item is contained in transaction
 - white: item is not contained in transaction
- Transaction database is needed only once (for the single item transaction lists).

```
1: \{a, d, e\}
                                                a: 7 | b: 3 | c: 7 | d: 6 | e: 7
 2: \{b, c, d\}
 3: \{a, c, e\}
4: \{a, c, d, e\} b: 0 | c: 4 | d: 5
 5: \{a, e\}
 6: \{a, c, d\}
 7: \{b, c\}
 8: \{a, c, d, e\}
 9: \{c, b, e\}
10: \{a, d, e\}
```

- Intersect the transaction list for item *a* with the transaction lists of all other items.
- Count the number of set bits (containing transactions).
- The item set $\{a, b\}$ is infrequent and can be pruned.

- Intersect the transaction list for $\{a, c\}$ with the transaction lists of $\{a, x\}$, $x \in \{d, e\}$.
- Result: Transaction lists for the item sets $\{a, c, d\}$ and $\{a, c, e\}$.

- Intersect the transaction list for $\{a, c, d\}$ and $\{a, c, e\}$.
- Result: Transaction list for the item set $\{a, c, d, e\}$.
- With Apriori this item set could be pruned before counting, because it was known that $\{c, d, e\}$ is infrequent.

- Backtrack to the second level of the search tree and intersect the transaction list for $\{a, d\}$ and $\{a, e\}$.
- Result: Transaction list for $\{a, d, e\}$.

- Backtrack to the first level of the search tree and intersect the transaction list for b with the transaction lists for c, d, and e.
- Result: Transaction lists for the item sets $\{b, c\}$, $\{b, d\}$, and $\{b, e\}$.
- ullet Only one item set with sufficient support o prune all subtrees.

- Backtrack to the first level of the search tree and intersect the transaction list for c with the transaction lists for d and e.
- Result: Transaction lists for the item sets $\{c, d\}$ and $\{c, e\}$.

- Intersect the transaction list for $\{c, d\}$ and $\{c, e\}$.
- Result: Transaction list for $\{c, d, e\}$.
- Infrequent item set: $\{c, d, e\}$.

- Backtrack to the first level of the search tree and intersect the transaction list for d with the transaction list for e.
- Result: Transaction list for the item set $\{d, e\}$.
- With this step the search is finished.

Frequent item sets

1 item	2 items		3 items
$\{b\}$: 30% $\{c\}^+$: 70% $\{d\}^+$: 60%	${a, c}^+: 40\%$ { ${a, d}^+: 50\%$ { ${a, e}^+: 60\%$ { ${b, c}^{+*}: 30\%$ { ${c, d}^+: 40\%$	<i>d</i> , <i>e</i> }: 40%	${a, c, d}^{+*}$: 30% ${a, c, e}^{+*}$: 30% ${a, d, e}^{+*}$: 40%

Types of frequent item sets

- Free Item Set: Any frequent item set (support is higher than the minimal support).
- Closed Item Set (marked with +): A frequent item set is called *closed* if no superset has the same support.
- Maximal Item Set (marked with *): A frequent item set is called *maximal* if no superset is frequent.

Generating association rules

For each frequent item set S:

- Consider all pairs of subsets $X, Y \subseteq S$ with $X \cup Y = S$ and $X \cap Y = \emptyset$. Common restriction: |Y| = 1, i.e. only one item in consequent (then-part).
- Form the association rule $X \rightarrow Y$ and compute its confidence.

$$conf(X \to Y) = \frac{supp(X \cup Y)}{supp(X)} = \frac{supp(S)}{supp(X)}$$

 Report rules with a confidence higher than the minimum confidence.

Generating association rules

Example:
$$S = \{a, c, e\}, X = \{c, e\}, Y = \{a\}.$$

$$conf(c, e \rightarrow a) = \frac{supp(\{a, c, e\})}{supp(\{c, e\})} = \frac{30\%}{40\%} = 75\%$$

Minimum confidence: 80%

association rule	support of all items	support of antecedent	confidence
b → c:	30%	30%	100%
$d \rightarrow a$:	50%	60%	83.3%
$e \rightarrow a$:	60%	70%	85.7%
$a \rightarrow e$:	60%	70%	85.7%
$d, e \rightarrow a$:	40%	40%	100%
$a, d \rightarrow e$:	40%	50%	80%

1 item	2 items	3 items
{a} ⁺ : 70%	$\{a,c\}^+$: 40% $\{c,e\}^+$: 40%	$\{a, c, d\}^{+*}$: 30%
{b}: 30%	$\{a,d\}^+$: 50% $\{d,e\}$: 40%	$\{a, c, e\}^{+*}$: 30%
{c} ⁺ : 70%	$\{a,e\}^+$: 60%	{ a, d, e} +*: 40%
{d} ⁺ : 60%	{b, c} ^{+*} : 30%	
{e} ⁺ : 70%	$\{c,d\}^+$: 40%	

Summary association rules

Association Rule Induction is a Two Step Process

- Find the frequent item sets (minimum support).
- Form the relevant association rules (minimum confidence).

Finding the Frequent Item Sets

- Top-down search in the subset lattice / item set tree.
- Apriori: Breadth first search; Eclat: Depth first search.
- Other algorithms: FP-growth, H-Mine, LCM, Mafia, Relim etc.
- Search Tree Pruning: No superset of an infrequent item set can be frequent.

Generating the Association Rules

- Form all possible association rules from the frequent item sets.
- Filter "interesting" association rules.

Finding frequent molecule substructures

Applications

- Finding business rules and detection of data quality problems.
 - Association rules with confidence close to 100% could be business rules.
 - Exceptions might be caused by data quality problems.
- Construction of partial classifiers.
 - Search for association rules with a given conclusion part.
 - If ..., then the customer probably buys the product.

Resources for association rule analysis

- Association rule analysis not part of standard Python machine learning packages, but some implementations of Apriori exist
- apryori: https://pypi.org/project/apyori/, see also https://stackabuse.com/ association-rule-mining-via-apriori-algorithm-in-pytho
- Another implementation: https://www.kaggle.com/datatheque/ association-rules-mining-market-basket-analysis
- see also data used in examples
- have not verified the quality of these implementations