Санкт-Петербургский Национальный Исследовательский Университет ИТМО Факультет Программной Инженерии и Компьютерной Техники

Вариант №3003 Лабораторная работа №3 По дисциплине Базы Данных

Выполнил студент группы Р3114: Бердибоев Комилжон

Преподаватель: Кривоносов Егор Дмитриевич

1. Текст задания

Для отношений, полученных при построении предметной области из лабораторной работы №1, выполните следующие действия:

- Опишите функциональные зависимости для отношений полученной схемы (минимальное множество);
- Приведите отношения в 3NF (как минимум). Постройте схему на основеNF (как минимум).
- Опишите изменения в функциональных зависимостях, произошедшие после преобразования в 3NF (как минимум). Постройте схему на основеNF;
- Преобразуйте отношения в BCNF. Докажите, что полученные отношения представлены в BCNF. Если ваша схема находится уже в BCNF, докажите это;
- Какие денормализации будут полезны для вашей схемы? Приведите подробное описание.

Придумайте триггер и связанную с ним функцию, относящиеся к вашей предметной области, согласуйте их с преподавателем и реализуйте на языке PL/pgSQL.

2. Функциональные зависимости

person_id → name person_id → interests dance_id → name building id → name

```
building_id → dimension

floor_id → name

composition_id → name

composition_id → tools

person_id → name

type_of_composition_id → level

type_of_composition_id → view

type_of_composition_id → complexity
```

3. Нормальные формы

1НФ: отношение находится в 1НФ.

Доказательство:

- В таблице нет дублирующихся строк
- В столбце хранятся данные одного типа
- В каждой ячейке хранятся атомарные значения

2НФ: отношение находится в 2НФ.

Доказательство:

- Таблица находится в 1НФ
- Все неключевые атрибуты в полной функциональной зависимости

Пример таблицы person – R

Ключ person $id - A_1$

Атрибуты name, interests $-A_2$, A_3

 $A_1 -> A_2$

 $A_1 -> A_3$

Но нет зависимости вида $A_3 -> A_2$

3НФ: отношение находится в 3НФ.

Доказательство:

- Таблица находится в 2НФ
- В таблице неключевые столбцы не зависят от неключевых столбцов(то есть нет транзитивно функциональной зависимости).

Пример таблицы type_of_composition – R

Атрибуты level, view, complexity – A_1 , A_2 , A_3

В этой таблице нет зависимости вида:

 $A_1 -> A_2$

 $A_2 -> A_3$

4. BCNF

BCNF: отношение находится в BCNF.

Доказательство:

- Таблица находится в 3НФ
- В таблице ключевые атрибуты составного ключа не зависят от неключевых атрибутов

Есть таблицы которые содержат составные ключевые атрибуты, но не содержат не ключевые атрибуты.

5. Возможная денормализация

В таблицу Composition можно добавить столбцы type_of_composition_level, type_of_composition_view и type_of_composition_complexity чтобы хранить описание композиции в самой таблице, а не в отдельной. Это может позволить избежать соединений с таблицей type_of_composition при получении информации о уровне, вида и сложности.

6. Функция

create or replace function avg_compositions_of_building() returns trigger as \$\$ declare

count_of_composition real;

count_of_building real;

avg_of_composition real;

begin

select count(composition_id) into count_of_composition from composition where person_id = 1;

select count(building_id) into count_of_building from building; select count_of_composition / count_of_building into avg_of_composition;

raise notice 'Среднее количество композиций по музеям которые нарисовала Итания = % ', avg_of_composition;

return NEW;

end;

\$\$ language plpgsql;

create trigger get_avg_compositions_of_building
after insert on composition
for each row
execute procedure avg_compositions_of_building();

7. Вывод

В ходе выполнения данной лабораторной работы я познакомился с такими понятиями как нормализация и денормализация. Узнал что существуют различные нормальные формы.