2015年第47屆國際化學奧林匹亞競賽

國內初選筆試解答

一、單選題

1. B	2. D	3. E	4. B	5. B
6. C	7. A	8. E	9. B	10. A
11. D	12. A	13. C	14. B	15. A
16. E	17. C	18. C	19. E	20. D
21. D	22. A	23. B	24. D	25. A
26. D	27. C	28. D	29. E	30. E
31. B	32. C			

二、多選題

		33. B E	34. BCDE	35. ABD
36. ABCD	37. ADE	38. ABC	39. CDE	40. CD
41. AD	42. AE	43. BD	44. AC	45. ABE
46. CE	47. BE	48. BCE		

三、非選擇題

1.

(A)
$$C_6H_{12}O_6 \rightarrow 2 C_2H_5OH + 2 CO_2$$
 (2%)

(B)
$$n_{total} = \frac{750 \times 4.6\% \times 0.80}{46} = 0.60 \text{ mol}$$
 (2%)

(C) Ideal gas law:
$$P(CO_2) = \frac{n_g RT}{V_g} = \frac{n_g \times 0.082 \times 298}{(800 - 750) \times 10^{-3}} = 489 n_g$$
 (3%)

Henry's law:
$$P(CO_2) = 30 \times (n_{aq}/0.75) = 40 n_{aq}; n_g + n_{aq} = n_{total}$$

 $489 n_g = 40 n_{aq} = 40 \times (0.60 - n_g); n_g = 0.045 \text{ mol}; P(CO_2) = 489 n_g = 22 \text{ atm}$

(D)
$$n_{aq} = 0.60 - 0.045 = 0.555 \text{ mol}; [CO_2] = 0.555/0.75 = 0.74 \text{ M}$$
 (3%)

2.

(A)
$$x = 2$$

(B)
$$a + b + d + e = 19$$

$$(C)R_2O_4^{2-}$$

(D)0.96 莫耳

解析:(1)假設 $R_xO_4^{2-}$ 中 R 的氧化數為 y,由題意得知

$$\mathbf{x} \times \mathbf{y} + (-2) \times 4 = -2 \cdots \Phi$$

 $0.3 \times \mathbf{x} \times (4 - \mathbf{y}) = 0.6 \cdots \Phi$

由の和の可得 x = 2, y = 3。

(2)因此,平衡後的方程式為 $5~R_2O_4{}^{2-}+2~MnO_4{}^{-}+16~H^+ \rightarrow 10~RO_2+2~Mn^{2+}+8~H_2O$ a+b+d+e=5+2+10+2=19。

(3) R 的氧化數由+3 $(R_2O_4^{2-})$ 增加為+4 (RO_2) ,所以 $R_2O_4^{2-}$ 為還原劑。

$$(1)\frac{16}{10}\times0.6=0.96$$
 莫耳。

3. (A)

$$PV = nRT$$

$$n = PV/RT$$

在固定體積: $n \propto P/T$

反應前莫耳數(F_2): 反應後莫耳數(MF_x) = 1140/(27+273): 760/(327+273)

$$= 1.5/300 : 1.0/600$$

$$= 3 : 1$$

3 莫耳 F_2 產生 1 莫耳 $MF_x \rightarrow x = 6$

(B)
$$PV = nRT = \frac{W}{M}RT$$

$$M = \frac{W}{V} \frac{RT}{P} = d \frac{RT}{P}$$

 $MF_6 = 2.97 \times 0.082 \times (327 + 273)/1.0 = 146.1$

(C) $MF_6 = 146.1$

$$M = 146.2 - 19.0 \times 6 = 32.1$$

4.

	∠: NaOH _(aq)	$T: CH_3C(O)OC_2H_5$	戊:CH ₃ CO ₂ H
$ \mp : C_2H_5C1 $			
	丙:NH ₃	$ \Box : H_3C(O)NHC_2H_5 $	庚: 乙醇

部分選擇顯詳解

- 一、單選題
- 1. 因等體積混合,濃度需減半。

$$\text{HA} + \text{H}_2\text{O} \rightarrow \text{H}_3\text{O}^+ + \text{A}^-; \quad K_a = \frac{x(0.020 + x)}{(0.020 - x)} = 0.030; \quad x = [\text{H}_3\text{O}^+] = 0.010 \text{ M}$$

- 2. (1) $M^{3+} + 3e \rightarrow M$; (2) $M^{2+} + 2e \rightarrow M$; (3) $M^{3+} + e \rightarrow M^{2+}$; $\Delta G^{\circ} = -nFE^{\circ}$ (3) = (1) - (2); $-FE_3^{\circ} = -3FE_1^{\circ} - (-2FE_2^{\circ})$; $E_3^{\circ} = 3E_1^{\circ} - 2E_2^{\circ} = +0.70 \text{ V}$
 - $(3) (1) (2), -FE_3 -3FE_1 (-2FE_2), E_3 3E_1 2E_2 +0.$
- 3. 蒸氣壓 → 時,代表分子間作用力 ↑ 其他 4 種 ↑ 時,代表分子間作用力亦 ↑
- 4. $C_2H_5OH(l) + 3 O_2(g) \rightarrow 2 CO_2(g) + 3 H_2O(g)$; 轉移電子數 n = 12 $\Delta G^\circ = -nFE^\circ$; $E^\circ = 1320000/(12 \times 96500) = 1.14 V$
- 5. $P_4 + 3 OH^- + 3 H_2O \rightarrow PH_3 + 3 H_2PO_2^-$
- 6. BaCO₃ 為鹼性鹽類 (因 CO₃²⁻); 加酸會增加它的溶解度
- 7. 緩衝溶液具大的緩衝容量是要濃度越大越好,以及 pH 越接近 pKa 越好。
- 8. 理想溶液混合時會不會有熱能的變化, A, B, C, D 選項都是理想溶液的性質。
- 9. $Na_2O_2 \times KH$ 和 AgCl 是離子化合物,而 SiO_2 是聚合物,他們均只表示物質的組成,不能表示物質的一個分子。
- 10. (A) 2 Fe³⁺ + Fe → 3 Fe²⁺,符合題意要求。
 - (B) Fe + 6 HNO₃ \rightarrow Fe(NO₃)₃ + 3 NO₂↑ + 3 H₂O \circ
 - (C) Fe + 2 HCl \rightarrow FeCl₂ + H₂ \circ
 - (D) Fe 與 ZnSO4 沒有反應。
 - (E) Fe 與 Mg(NO₃)₂ 沒有反應。
- 11. (A) 金屬元素只能當還原劑,但是非金屬元素可當氧化劑也可當還原劑。
 - (B) 氧化還原的強弱與得失電子的難易有關,與得失電子的多寡無關。
 - (C) 也可以是氧化,如氧化 NaCl 變成 Cl2。
 - (D) 金屬陽離子被還原,可還原成氧化數較低的金屬陽離子,不一定變成金屬元素,符合題意要求。
 - (E) 非金屬離子也可被還原,如 $2 H^+ + 2 e \rightarrow H_2$ 。

- 12. 鈉與飽和 NaOH 水溶液的反應為 $2 \text{ Na} + 2 \text{ H}_2\text{O} \rightarrow 2 \text{ NaOH} + \text{H}_2$,其現象與鈉和純水的反應現象相同,所以(D)正確。其餘因為 NaOH 的溶液為飽和,所以(B)(C)正確,而(A)不正確。
- 13. (A) Na_2O_2 的陽、陰離子分別為 Na^+ 、 O_2^{2-} ,其各數比為 2:1。
 - (B) $2 \text{ Na}_2\text{O}_2 + 2 \text{ H}_2\text{O} \rightarrow 4 \text{ NaOH} + \text{O}_2$; $2 \text{ Na}_2\text{O}_2 + 2 \text{ CO}_2 \rightarrow 2 \text{ Na}_2\text{CO}_3 + \text{O}_2$ 生成相同量的 O_2 時,消耗的水和 CO_2 莫耳數相等,但質量不等。
 - (C)此二反應, 2 莫耳 Na_2O_2 皆產生 1 莫耳 O_2 , 因此兩者電子轉移的數目相等。
 - (D) Na_2O_2 可作為漂白劑是因為其強氧化能力,而 SO_2 易與有色物質化合生成無色不穩定的物質,故原理不同。
 - (E) Na₂O₂ 與 CO₂ 反應時, Na₂O₂ 既是氧化劑也是還原劑。
- 14. 同濃度下,與 OH¯ 的反應能力順序為 H+ > Al³+ > Mg²+。但在強鹼下,Al(OH)₃ 會再溶解;Al³+ → Al(OH)₃(s) → AlO₂⁻(aq)。
- 15. 活性越強的金屬常以化合物形態存在於自然界,加上不易被還原成金屬,所以生產和被使用的時間就越晚。
- 16. 氯水和酸性 $KMnO_4$ 溶液皆可以氧化 Fe^{2+} 變成 Fe^{3+} ,但 $KMnO_4$ 溶液本身為紫色,會干擾 觀察溶液顏色的變化。

17.
$$\frac{k_{327^{\circ}\text{C}}}{k_{27^{\circ}\text{C}}} = \frac{e^{-E_a/R(327+273)\text{K}}}{e^{-E_a/R(27+273)\text{K}}} = e^{-\frac{E_a}{R}\left[\frac{1}{600\text{K}} - \frac{1}{300\text{K}}\right]} = e^{9.2}$$
$$-\frac{E_a}{8.314 \text{ J/mol} \cdot \text{K}} \left[\frac{1}{600 \text{ K}} - \frac{1}{300 \text{ K}}\right] = 9.2$$
$$E_a = 9.2 \times 8.314 \text{ J/mol} \cdot \text{K} \times 600 \text{ K} = 45893 \text{ J} = 45.9 \text{ kJ/mol}$$

18. 因為 k_3 遠大於 k_1 ,反應經歷主要通過第二路徑,因此整個反應速率由第二路徑的速率決定。產物形成速率常數為 k_3 的

19. 初始SO₃ mol =
$$n_i = \frac{8.0 \text{ g}}{80.0 \text{ g/mol}} = 0.10 \text{ mol}$$

$$2SO_{3(g)} \rightleftharpoons 2SO_{2(g)} + O_{2(g)}$$

$$0.10 \qquad 0 \qquad 0$$

$$0.10-2x \qquad 2x \qquad x$$

$$PV = n_f RT$$

$$n_f = \frac{PV}{RT} = \frac{1.80 \text{ atm} \times 5.0 \text{ L}}{0.082 \text{ atm} \cdot \text{L/mol} \cdot \text{K} \times (523 + 273) \text{ K}} = 0.137 \text{ mol}$$

$$n_f = n_{SO_3} + n_{SO_2} + n_{O_2} = (0.10 - 2x) + 2x + x = 0.10 + x$$

$$x = 0.037 \text{ mol}$$

$$n_{SO_3} = 0.1 - 2x = 0.026 \text{ mol}$$
 $P_{SO_3} = 1.8 \text{ atm} \times 0.026 \text{ mol}/0.137 \text{ mol} = 0.34 \text{ atm}$
 $n_{SO_2} = 2x = 0.074 \text{ mol}$ $P_{SO_2} = 1.8 \text{ atm} \times 0.074 \text{ mol}/0.137 \text{ mol} = 0.97 \text{ atm}$
 $n_{O_2} = x = 0.037 \text{ mol}$ $P_{O_2} = 1.8 \text{ atm} \times 0.037 \text{ mol}/0.137 \text{ mol} = 0.49 \text{ atm}$
 $N_{O_2} = 1.8 \text{ atm} \times 0.037 \text{ mol}/0.137 \text{ mol} = 0.49 \text{ atm}$
 $N_{O_2} = 1.8 \text{ atm} \times 0.037 \text{ mol}/0.137 \text{ mol} = 0.49 \text{ atm}$

20. 加入催化劑會同時增加正向和逆向反應的反應速率常數,且增加的比例相同。

因此
$$k_2 > k_1$$
, $k_{-2} > k_{-1}$,且 $\frac{k_1}{k_{-1}} = \frac{k_2}{k_{-2}} = K_{\text{eq}}$ 。

21. 假設 60 mL的 A和 40 mL的 B混合形成 100 mL的理想溶液

A 在溶液中的 mole 數:
$$\frac{0.8 \text{ g/cm}^3 \times 60 \text{ cm}^3}{80.0 \text{ g/mol}} = 0.6 \text{ mol}$$

B 在溶液中的 mole 數:
$$\frac{1.2 \text{ g/cm}^3 \times 40 \text{ cm}^3}{60.0 \text{ g/mol}} = 0.8 \text{ mol}$$

$$X_{\rm A} = \frac{0.6 \text{ mole}}{0.6 \text{ mol} + 0.8 \text{ mol}} = 0.43$$
 $X_{\rm B} = \frac{0.8 \text{ mole}}{0.6 \text{ mol} + 0.8 \text{ mol}} = 0.57$

$$P_{\text{total}} = P_{\text{A}} + P_{\text{B}} = X_{\text{A}} P_{\text{A}}^{\text{o}} + X_{\text{B}} P_{\text{B}}^{\text{o}} = 0.43 \times 75.0 \text{ mmHg} + 0.57 \times 120.0 \text{ mmHg} = 100.7 \text{ mmHg}$$

22. 反應 1 的氧化電位是三個反應中最大的,因而使 Cr 金屬是在所列物種中最強的還原劑。

23. ①
$$NO_{(g)} + O_{3(g)} \rightarrow NO_{2(g)} + O_{2(g)}$$
 $\Delta H = -198.9 \text{ kJ}$

②
$$3/2O_{2(g)} \rightarrow O_{3(g)}$$
 $\Delta H = +142.3 \text{ kJ}$

②
$$O_{(g)} \rightarrow 1/2O_{2(g)}$$
 $\Delta H = -247.5 \text{ kJ}$

$$0+2+3$$

$$\mathrm{NO}_{(g)} + \mathrm{O}_{(g)} \longrightarrow \mathrm{NO}_{2(g)}$$

$$\Delta H = (-198.9 \text{ kJ}) + (142.3 \text{ kJ}) + (-247.5 \text{ kJ}) = -304.1 \text{ kJ}$$

24.
$$\pi = C_{\rm M}RT$$

$$19.7atm = C_M \times 0.082atm \cdot L/mol \cdot K \times 300 K$$

$$C_{\rm M} = 0.8 \, {\rm M}$$

$$C_{m} = \frac{C_{6}H_{12}O_{6} \text{ (mol) in 1.0 L solution}}{\text{water (kg) in 1.0 L solution}}$$

$$= \frac{0.80 \text{ mol}}{(1.05 \text{ g/L} \times 1.0 \text{ L} - 0.80 \text{ mol} \times 180 \text{ g/mol}) \times 10^{-3} \text{ g/1000 kg}} = 0.88 \text{ m}$$

$$\Delta T_f = m \times K_f = 0.88 \, m \times 1.86 \, ^{\circ}\text{C/}m = 1.64 \, ^{\circ}\text{C}$$

25. (A) 正四面體中心碳原子為 sp3 混成,無異構物。

(B)八面體,

(C)

$$HOOC$$
 $C=C$ H $HOOC$ $C=C$ H $(反式)$

(D)

(E)平面四方形,

$$H_3N$$
 NH_3 Cl NH_3 Pt Cl Pt Cl 顺式 $反式$

26. (A)乙炔經多分子聚合可產生聚乙烯;(B) 乙炔可與硫酸汞的酸性水溶液反應可得乙醛;(C)乙炔與過量溴反應可得 1,1,2,2-四溴乙烷;(E) 三分子乙炔自相聚合可產生苯

27.4種

$$(a) \qquad (b) \qquad (c) \qquad (a) \qquad (c)$$

$$CI \qquad (c)$$

$$CI \qquad (d)$$

$$(b) \qquad (d)$$

28. 氫鍵多者,沸點較高:

乙酸 C=O 可形成 1 個氫鍵, 乙酸 O-H 可形成 1 個氫鍵, 兩分子乙酸還可形成雙分子氫鍵

乙醇有兩個孤電子對可形成 2 個氫鍵,乙醇的 O-H 可形成 1 個氫鍵,氧原子的氫鍵較強 乙胺有一個孤電子對可形成 1 個氫鍵,乙胺的 N-H 可形成 1 個氫鍵,乙烯分子間無氫鍵,所 以沸點高低為 乙酸 > 乙醇 > 乙胺 > 乙烯

29. 某分子為 4 胜肽,其中有兩個為相同胺基酸,所以只有三種胺基酸。此分子氫鍵多於四個,雖只有一種官能基可形成氫鍵,但可與二級胺和 C=O 基形成氫鍵。固(E)為正確答案。

32.

$$\frac{(28\%\times0.2+67\%\times X)}{14} = 1\times0.1\times0.1 \; ; \quad X = 0.125 \; g$$

二、多選題

33. B, E

 $M_3A_2(s) \rightarrow 3 M^{2+} + 2 A^{3-}$; s = solubility; $\pi = cRT$; $c = 5.0 \times 10^{-3} M = 5s$

- (A) $s = 1.0 \times 10^{-3} \,\text{M}$ 或 100 mL 溶液中 $1.0 \times 10^{-4} \,\text{mol}$
- (B) $[M^{2+}] + [A^{3-}] = c = 5.0 \times 10^{-3} M$
- (C) $[M^{2+}] = 3.0 \times 10^{-3} M$
- (D) $[A^{3-}] = 2.0 \times 10^{-3} \text{ M}$
- (E) $K_{sp} = [M^{2+}]^3 [A^{3-}]^2 = 1.1 \times 10^{-13}$
- 34. (A) 不會有反應發生
- (B) 利用酸鹼或沉澱滴定都可得出混合物中 Mg²⁺(或 MgCl₂) 的莫耳數。
- (C) $\pi = cRT \Rightarrow c$; 總重 = m_o (已知); NaCl 質量 = x; $c \times V$ (L, 已知) = $2x/58.5 + 3(m_o x)/95.0 \Rightarrow x$
- (D) mol AgCl (從測量得知質量) = $x/58.5 + 2(m_o x)/95.0 \Rightarrow x$
- (E) E (測量值) = E°(AgCl \rightarrow Ag) 0.0592 log [Cl $^{-}$] \Rightarrow [Cl $^{-}$]; [Cl $^{-}$] \times V (L, 已知) = $x/58.5 + 2(m_o \underline{x})/95.0 \Rightarrow x$

35. A, B, D.

- (A) Rate = $(9.65/96500)/2 = 5.0 \times 10^{-4} \,\mathrm{M \cdot s^{-1}}$.
- (B) Ag 質量 = $0.060 \times 108 = 6.48$ g.
- (C) $E = 0.46 (0.0592/2) \log ([Cu^{2+}]/[Ag^{+}]^{2}) = 0.49 \text{ V}$
- (D) 0.10 + x = (1.0 2x); x = 0.30 M or 0.030 mol; $t = (0.030 \times 2 \times 96500)/9.65 = 600$ s = 10 min.
- (E) $E^{\circ} = 0.80 0.34 = 0.46 \text{ V}$; n = 2; $K = 10^{2 \times 0.46/0.0592}$.
- 37. 溶液 $X = Cl^-$;溶液 $Y = Br^-$;沉澱 Z = AgI
- (D) 正確 (E) $Ag(NH_3)_2^+(aq) + Cl^-(aq) + 2H^+(aq) \rightarrow AgCl(s) + 2NH_4^+(aq)$; 正確
- 38. 本試題應為『氯化物 ECl_n 的熔點為 -121 ℃』,印刷時遺漏負號,成為『氯化物 ECl_n 的熔點為 121 ℃』。但此錯誤不影響判斷其為分子化合物,固仍依正確答案評分。

(A)(B)(C)

AgCl 的莫耳數:57.4/143.5 = 0.4 莫耳,因此,ECl_n 為 ECl₂。由該化合物的熔點和沸點得知 E 為非金屬元素,即 E = S,(D)錯。(A)(B)(C)正確。S 可與 H 化合形成 H₂S,所以(E)錯。

39. (C)(D)(E)

氦化鎵為一種 III/V 族的半導體材料,具有良好的導熱性。氦與鎵的氧化數分別為 3 和 +3,置備氦化鎵的反應產生水及鹽類,所以是酸鹼反應。

40.(C)(D)

- (A) 黄血鹽和赤血鹽的中心金屬 Fe 的氧化數分別為+2 和+3。
 - (B) 兩者的陰離子皆可當配位基。
 - (E) 黄血鹽的還原力較赤血鹽強。

41. (A)(D)

- (A) K: $[Ar]4s^1$, Cr: $[Ar]3d^54s^1$, Cu: $[Ar]3d^{10}4s^1$
- (B) He 僅符合 $1s^2$, 其餘同族元素的價電子組態為 ns^2np^6 。
- (C) 現今的原子模型,以軌域表示電子在原子核外出現的機率。
- (D) Cu 原子基態電子組態為[Ar] $3d^{10}4s^{1}$,故[Ar] $3d^{9}4s^{2}$ 為激發態,激發態回至基態會有能量(光或熱)產生。
- (E) 跳至 n=4 ⇒ 1 條, 跳至 n=3 ⇒ 2 條, 共 3 條屬紅外光。

42. (A)(E)

所有 CH_3COOH , H^+ , CH_3COO^- 的濃度稀釋後均降低,但 H^+ 濃度降低,pH 增加。離解百分 比($\frac{[CH_3COO^-(aq)]}{[CH_3COOH(aq)]} \times 100\%$)稀釋後會增加。

43. (B)(D)

- (A) 從反應速率常數的單位 $(M^{-1}s^{-1})$ 即可知是二級反應,n=2。
- (B) 初始反應速率 = $k[A]^2$ = (0.25 M⁻¹s⁻¹) x (0.2 M)² = 0.01 M s⁻¹
- (C) 對於二級反應

$$t_{1/2} = \frac{1}{k[A]} = \frac{1}{(0.25 \,\mathrm{M}^{-1} \mathrm{s}^{-1}) \times (0.2 \,\mathrm{M})} = 20 \,\mathrm{s}$$

經過一個半衰期(20秒)後,[A]會消耗一半,形成B。因此[B]按化學計量比為0.033 M。

(D) 經過1半衰期後,A的反應速率變得初始速率的1/4,因為只有一個半的[A]的殘留。

$$A = k(\frac{[A]_o}{2})^2 = \frac{1}{4}k[A]_o^2 = 0.0025 \text{ M s}^{-1}$$

(E) 若第一步的正、逆反應均非常快,則反應定律式和全反應有關, 則B的生成速率= [A]³,不符題意。

44. (A)(C)

真實氣體的 $\frac{PV}{nRT}$ 可能小於 1,因為真實氣體分子間具有作用力; $\frac{PV}{nRT} > 1$ 是因分子具有體

積。不能以 $\frac{PV}{nRT}$ = 1 來定義理想氣體。固(B)選項錯誤。

- 45. (A)(B)(E)
- (C) 生質柴油是脂肪酸和甲醇反應所得的脂類
- (D) 油脂起皂化產物稱為肥皂,洗衣精是使用長碳鏈磺酸介面活性劑。
- 46. 由①、②可知[Br2]和反應無關;由①、③可知反應速率和 [H $^+$]為一級關係;由①、⑤可知反應速率和[CH3COCH3]亦為一級關係。 $R=k[CH_3COCH_3][H^+]$,帶入任一組數據,即可得速率常數為 3.8×10^{-3} M $^{-1}$ s $^{-1}$

假設 $r_{Br_2} = k \cdot [CH_3COCH_3]^a \cdot [Br_2]^b \cdot [H^+]^c$

為 $r_{Br} = k[CH_3COCH_3][H^+]$ 屬 2 級反應

(A) 此反應的總級數為2

(B) 代入①,
$$k = \frac{1.9 \times 10^{-5}}{0.1 \times 0.05} = 3.8 \times 10^{-3} \text{M}^{-1} \cdot \text{s}^{-1}$$

(C) 此反應的速率與丙酮的濃度成正比