Лабораторная работа 2.4.1 Определение теплоты испарения жидкости

Выполнил Жданов Елисей Б01-205

1 Цель работы:

- 1) Измерение давления насыщенного пара жидкости при разной температуре
- 2) Вычисление по полученным данным теплоты испарения с помощью уравнения Клапейрона–Клаузиуса

2 Оборудование:

Термостат

Герметический сосуд, заполненный исследуемой жидкостью

Отсчетный микроскоп

3 Теоретическая справка

Для определения теплоты испарения будет использован косвенный метод, основанный на формуле Клапейрона–Клаузиуса.

$$\frac{dP}{dT} = \frac{L}{T\left(V_2 - V_1\right)}$$

Вследствие высокой плотности воды положим изменение объемов равным(считая при атмосферном давлении пар идеальным газом).

$$V = \frac{RT}{P}$$

Подставляя выражение в уравнение Клапейрона-Клаузиуса, получим

$$L = \frac{RT^2}{P} \cdot \frac{dP}{dT} = -R\frac{d(\ln P)}{d(1/T)}$$

Буду строить зависимость ln(P) от 1/T для нахождения L из коэффициента наклона прямой

4 Экспериментальная установка

Над ртутью находится насыщенный пар (перед заполнением прибора воздух из него был откачан). Давление насыщенного пара определяется по манометру, соединенному с исследуемым объемом.

5 Измерения, Обработка

1) Разность уровней в манометре:

$$\Delta h = 29.59 + 7.92 = (37.51 \pm 0.09)$$
 MM. pt. ct.

Температура в наччальный момент

$$T = 20.16^{\circ}C$$

2) Запишем показания приборов при нагреве жидкости

T, °C	h_1 , MM
20.16	0.00
22.32	2.86
24.30	5.91
26.30	9.22
28.26	12.78
30.26	16.63
32.24	20.95
34.23	25.72
36.23	30.88
38.22	36.28
40.22	42.08

Аналогично охлаждение

T, °C	h_1 , MM
40.22	42.08
38.05	35.78
36.02	30.52
34.09	25.58
32.04	20.56
30.02	16.51
28.02	12.33
26.02	9.16
23.96	5.81
22.25	2.85
20.12	0.09

4) Формула для пересчета давления

$$\Delta P = \rho g(x_2^{(0)} - x_2^{(0)} + 2(x_2 - x_2^{(0)}))$$

При калибровке прибора

$$x_2^{(0)}=0$$

Поэтому

$$\Delta P = \rho g (\Delta h + 2 x_2)$$

4) Построю 2 графика соответствующие нагреву и охлаждению

Буду строить зависимость $ln(P/P_0)$ от $1/{\rm T}$ для нахождения L из коэффициента наклона прямой, принимая за P_0 величину ρg

Аппроксимация МНК для нагрева

$$y = (22.04 \pm 0.14) - (5398 \pm 44) \cdot x$$

Для охлаждения

$$y = (21.90 \pm 0.18) - (5352 \pm 55) \cdot x$$

$$a = \frac{\langle x_i y_i \rangle - \langle x \rangle \langle y_i \rangle}{\langle x_i^2 \rangle - \langle x_i \rangle^2}$$

$$b = < v_i > -a < N_i >$$

Их погрешности

$$S_a^2 = \frac{\langle x_i^2 \rangle}{\langle x_i^2 \rangle - \langle x_i \rangle^2} \cdot \frac{\langle b_i - b \rangle^2}{n - 2}$$

Соответствующие L нагрева

$$L_{\mathrm{Harp}} = (44900 \pm 400) \frac{\mathrm{Дж}}{\mathrm{моль}}$$

Охлаждения

$$L_{\text{ОХЛ}} = (44500 \pm 500) \frac{\text{Дж}}{\text{МОЛЬ}}$$

6 Вывод

Как видно, точность измерений при охлаждении получается ниже, чем при нагреве. Сам процесс замера при охлаждении более сложен по сравнению с нагревом, поскольку из-за гистерезиса выпуклости поверхностного натяжения на конце ртути сложно правильно находить манометрическую высоту столба. Поэтому при охлаждении были попытки проводить измерения, сначала опуская температуру немного ниже положенной, с последующим подогревом для образования устойчивой постоянной выпуклости. Также очевидно, что точность определяется характеристиками манометра, а значит почти не связана с теоретической методикой.

Тем не менее, результаты согласуются в пределах погрешностей.

Табличная молярная теплота парообразования спирта составляет 41800 Дж/моль.

7 Ресурсы

Расчет по МНК: метод-наименьших-квадратов.рф