

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 A

AD-A132 969

ADF310308

AD

MEMORANDUM REPORT ARBRL-MR-03299

COMPARISON OF TDNOVA RESULTS WITH AN ANALYTIC SOLUTION

Frederick W. Robbins

July 1983

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND
BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND

Approved for public release; distribution unlimited.

83 09 09 0**08**OTIC FILE COPY

Destroy this report when it is no longer needed. Do not return it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service, U. S. Department of Commerce, Springfield, Virginia 22161.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION P	AGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2	. GOVY ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
MEMORANDUM REPORT ARBRL-MR-03299	11-A132 96	9
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
COMPARISON OF TDNOVA RESULTS WITH AN SOLUTION	N ANALYTIC	October 1980-September 1981
SOLUTION		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a)		8. CONTRACT OR GRANT NUMBER(*)
Frederick W. Robbins		S. CONTRACT ON GRANT NUMBER(5)
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK
US Army Ballistic Research Laborator	ry	AREA & WORK UNIT NUMBERS
ATTN: DRDAR-BLI		1L162618AH43
Aberdeen Proving Ground, MD 21005		
11. CONTROLLING OFFICE NAME AND ADDRESS US Army Armament Research and Develo	opment Command	12. REPORT DATE
US Army Ballistic Research Laborator		July 1983
Aberdeen Proving Ground, MD 21005		31
14. MONITORING AGENCY NAME & ADDRESS(If different	from Controlling Office)	15. SECURITY CLASS. (of this report)
		UNCLASSIFIED
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
Is DISTRIBUTION STATSMENT (of this Boson)		
16. DISTRIBUTION STATEMENT (of this Report)		
Approved for public release; distrib	oution unlimited	1
		· · · · <u>- · · · · · · · · · · · · · · ·</u>
17. DISTRIBUTION STATEMENT (of the abstract entered in	Block 20, if different from	m Report)
		<u> </u>
16. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and	identify by block number)	
Interior Ballistics TDNOVA Guns Lagrans		
Guns Lagrang Computer Codes	ge .	
NOVA		
20. ABSTRACT (Cantibue as reverse side if necessary and		
Presently, two-dimensional, two		
are being developed. One such code		
simulations of TDNOVA are compared to dimensional problem in order to prov		
cost of running the code. The probl		
burned at time-zero and was solved a		
The differences between the analytic	solution and T	DNOVA are on the order of

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)
0.1% for pressure, velocity, distances, and time. The calculations cost as
little as \$1.00 for a complete solution, requiring 2.27 cp seconds execution
time on a CDC 7600 computer system.
·

INCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

TABLE OF CONTENTS

		Page
	LIST OF ILLUSTRATIONS	. 5
	LIST OF TABLES	. 7
I.	INTRODUCTION	. 9
II.	CODE STRUCTURE	. 10
ıı.	DESCRIPTION OF THE PROBLEM	. 10
IV.	RESULTS	. 12
v.	CONCLUSIONS	. 16
	A CK NOWLEDGMENTS	. 21
	REFERENCES	. 22
	DISTRIBUTION LIST	. 23

LIST OF ILLUSTRATIONS

Figure		Page
1	Lagrange Gun - Initial Conditions	10
2	Lagrange Gun - Love and Pidduck Pressure Profiles	12
3	Initial Mesh Distribution - Lagrange Gun	15
4	Lagrange Gun Comparison of TDNOVA 16x3 2D Run with Love and Pidduck Analytic Solution	. 16
5	Lagrange Gun Comparison of TDNOVA 16xN Q2D Run with Love and Pidduck Analytic Solution	. 17
6	Lagrange Gun Comparison of TDNOVA 63x3 2D Run with Love and Pidduck Analytic Solution	. 18
7	Expanded View of First Three Tableaus of TDNOVA 63x3 2D Run with Love and Pidduck Analytic Solution	. 19
8	Pressure, Velocity, and Travel - Comparison of TDNOVA 16xN Q2D Run with Love and Pidduck Analytic Solution	. 20

PRECEDING PAGE MANE-NOT FILMED

LIST OF TABLES

Table		Page
1	Love and Pidduck: Analytic Solution to Lagrange Gun	11
2	TDNOVA Results when Projectile Reaches the Muzzle	13
3	TDNOVA Regults at Projectile Rage	14

I. INTRODUCTION

Past attempts to simulate two-phase flow phenomena in cased ammunition have been very successful using available one-dimensional, two-phase flow interior ballistic codes, such as NOVA. However, high performance, bagged-charge artillery simulations have been only partially successful. This has led to the development of a two-phase flow, fully two-dimensional, axisymmetric, inviscid interior ballistic computer code, TDNOVA which allows specific treatment of configural complexities associated with the charge/chamber interfaces. To test the initial version of the code for accuracy and efficiency of its numerical schemes, a solution to the problem solved analytically by Love and Pidduck was obtained numerically with TDNOVA. This approach follows that of Schmitt and Mann. 5

In the problem solved by Love and Pidduck, "It is supposed that a given mass of gas, which is initially in a uniform state, is contained in a segment of a tube of uniform section. At one end the segment of the tube is bounded by a fixed transverse section, and at the other end the tube is closed by a piston of given mass, which is initially at rest and is free to move along the tube without resistance. It is required to find the subsequent states of the gas and the motion of the piston." Love and Pidduck referred to this as the Lagrange problem, therefore the term "Lagrange gun."

It should be pointed out that TDNOVA was designed to start with two phases present (a propellant and ambient gas). Since the Lagrange gun simulation has only one phase present at the initial time, minor modifications had to be made to the code. P. S. Gough, the developer of the code, made the necessary changes. The comparison of an analytic solution for the all-burnt case to the numerical solution of TDNOVA, of course, does not validate any of the physics associated with the two-phase flow but does provide information on the numerical schemes and code efficiency.

¹F. W. Robbins, J. A. Kudzal, J. A. McWilliams, and P. S. Gough, "Experimental Determination of Stick Charge Flow Resistance," 17th JANNAF Combustion Meeting, CPIA Publication 329, Volume II, pp. 97-118, November 1980.

²P. S. Gough, "The NOVA Code: A User's Manual. Volume 1. Description and Use," IHCR 80-8, Naval Ordnance Station, Indian Head, MD, December 1980.

³P. S. Gough, "A Two-Dimensional Model of the Interior Ballistics of Bagged Artillery Charges," ARBRL-CR-00452, USA ARRADCOM, Ballistic Research Laboratory, Aberdeen Proving Ground, MD, April 1981 (AD A100751).

⁴A. E. A. Love and F. B. Pidduck, "Lagrange Ballistic Problem," Phil. Trans. Roy. Soc., Volume 222, pp. 167-226, 1921-22.

⁵J. A. Schmitt and T. L. Mann, "An Evaluation of the Alpha Code in its One-Phase Mode," ARBRL-MR-03081, USA ARRADCOM, Ballistic Research Laboratory, Aberdeen Proving Ground, MD, April 1981 (AD A098037).

II. CODE STRUCTURE

TDNOVA in its normal mode considers the propellant package as a twophase, two-dimensional region surrounded by one-phase (gas) regions of onedimensional and lumped-parameter character, with a two-phase, one-dimensional central ignition system (centercore). As the propellant is ignited and burns and the radial pressure gradients decay below some user specified value, the code transforms the two-dimensional, two-phase representation of the propellant package to a one-dimensional, two-phase flow, with area change, representation. This resulting system of parallel, coupled, one-dimensional treatments of propellant charge, ullage, and centercore igniter is referred to as a quasi-two-dimensional representation. The availability of these two representations allows treatment of the Love and Pidduck problem in both the two-dimensional (2D) and quasi-two-dimensional (Q2D) modes. This procedure is appropriate because there are separate areas of coding used for each mode. Of course, the Q2D representation of this problem is just a one-dimensional solution since the ullage and centercore regions are represented as having zero thickness and the gas is assumed to be inviscid. The partial differential equations governing conservation of mass, momentum and energy, along with the necessary algebraic relations and boundary conditions, can be found in Reference 3.

III. DESCRIPTION OF THE PROBLEM

The problem parameters are illustrated in Figure 1 and entail a projectile mass of 50 kg, a charge mass of 12 kg, a projectile travel of 6 m, an initial chamber volume of $0.0300~\text{m}^3$, a diameter of 150 mm, an initial pressure of 621.09 MPa, a molecular weight of 23.80 g/g-mol, a covolume of 1000 mm³/g, and a ratio of specific heats of 1.220.

This specific problem was solved analytically by Pidduck using Love's formulation and the solution is tabulated for selected times up to projectile exit. The times were chosen such that the rarefaction wave was at a midpoint of the chamber or at either boundary (Table 1). Plots of these data are given in Figure 2.

Figure 1. Lagrange Gun - Initial Conditions

TDNOVA was run with three mesh configurations, 16x3, 16x7, and 63x3 (axial by radial mesh points), for both modes of calculation, i.e., fully twodimensional (2D) and quasi-two-dimensional (Q2D), which is, in this case, equivalent to a one-dimensional solution (Figure 3). It should be noted that for the Q2D configuration, the 63x3, 16x3, and 16x7 meshes are converted

TABLE 1. LOVE & PIDDUCK: ANALYTIC SOLUTION TO LAGRANGE GUN

	t=0.00	04772	t=0.000	09544	t=0.00	1479	t=0.00	2117	t=0.00	2898	t=0.00	859	t=0.00	515~	t=0.00	7137	t=0.016	023
	P=6155		P≈5693		P=5015		P=4146		P=3218		P=2388		P=1664		P=1066		P=629.	
	V=99.6	4	V×187.	7	V=275.4	4	V=371.	8	V=466.	2	V=550.4	•	V=632.	5	V=718.	3	V=801.	3
	a= 0.1	8	a= 0.4	40	a= 0.	12	a= 0.	332	a= 0.:	303	a= 0.	332	a= 0.	356	a= 0.	331	a= 0.3	312
y _o	y	P	y	p	y	P	y	P	y	p	y	P	y	P	y	P	y	P
O(breech)	0	6333	0	6333	0	5171	0	4169	0	3316	0	2610	o	1728	ø	1086	0	650.0
16.98	16.98	6333	17.06	6208	18.81	5170	21.20	4168	24.30	3316	28.08	2568	36.11	1727	49.93	1085	71.84	649.7
33.95	33.95	6333	34.41	6074	37.62	5168	42.38	4166	48.26	3314	56.38	2532	72.24	1725	99.89	1083	143.8	648.6
50.93	50.93	6333	51.69	5958	56.45	5164	65.60	4163	72.39	3312	84.84	2491	108.4	1721	150.1	1080	216.0	646.8
67.91	67.91	6333	69.28	5836	75.28	5159	84.78	4158	96.52	3309	113.6	2448	144.5	1715	200.2	1076	288.7	644.3
84.88	84.88	6333	87.06	5712	94.12	5152	106.0	4152	120.6	3304	142.8	2404	180.6	1708	250.5	1071	361.8	641.0
101.9	101.9	6196	105.0	5589	113.1	5040	127.2	4145	144.4	3241	172.4	2358	218.1	1676	301.0	1065	436.0	632.1
118.8	119.2	6059	123.3	5465	132.3	4929	148.4	4136	169.0	3174	202.3	2310	255.9	1643	351.7	1058	511.2	620.1
135.8	136.0	5923	141.6	5342	151.7	4818	169.6	4126	193.0	3109	232.6	2262	293.7	1609	402.6	1050	587.0	607.4
152.8	154.3	5787	160.2	5220	171.3	4707	190.7	4115	218.4	3041	263.2	2212	332.0	1574	453.9	1041	663.9	594.9
169.8	172.2	5651	179.0	5097	191.2	4599	212.0	4102	245.2	2970	294.1	2162	371.9	1535	505.4	1030	714.7	581.6

internally by the code to a 63xl or 16xl mesh at time zero. This can be seen in Table 2 where the 16x3 Q2D run and 16x7 Q2D run are seen to be identical except for the cost figures, which contain the conversion from a 16x7 mesh to a 16x1 mesh. In subsequent tables and figures the 16x3 and 16x7 Q2D runs are referred to as 16xN.

All the calculations were performed such that tableaus of all the variables were printed out at the exact times reported by Pidduck and at muzzle exit. The values given without parentheses on subsequent plots are calculated values from TDNOVA and those with parentheses are from the table by Love and Pidduck, the percent difference being the percent difference between the calculated and analytic pressure values.

t = time from beginning of motion in seconds,
P = pressure in kg./cm² of cordite gas filling the space behind the projectile with uniform density.
V = velocity of projectile in m./sec.

 $[\]alpha$ = coefficient necessary to make $\frac{1}{2}$ (M+ α C) V^2 equal to work of uniform adiabatic expansion.

y = initial distance of a plane of particles from the breech in cm.
y = distance of same particles at time t.
p = pressure in kg./cm².

^{*}Phil. Trans. Roy. Soc. Vol. 222, 1921-22, TABLE 1.

IV. RESULTS

It is seen that the 16x3 Q2D run is in close agreement with the analytical solution. Only marginal further improvement is therefore obtained with the 63x3 2D run. The results indicate that both the Q2D and the 2D algorithms are reasonably accurate, at least for this simple problem. The relative cost figures for the 16x3 Q2D and the 63x3 2D runs illustrate the potential economy inherent in conversion from a fully 2D to Q2D representation, at a suitable point, in more complex ballistic simulations.

Figure 2. Lagrange Gun - Love and Pidduck Pressure Profiles

In Table 3 the % Diff columns need some explanation. The first of the three numbers in the % Diff box for one time is the percent difference between the $16 \times N$ Q2D and the 63×3 2D. The next number in the % Diff box is the percent difference between the $16 \times N$ Q2D and the analytic solution, and the last entry is the percent difference between the 63×3 2D and the analytic solution. Table 3 summarizes the difference between a $16 \times N$ Q2D, 63×3 2D and the analytic solution, all at the base of the projectile at the tabulated times of Love and Pidduck. These times occur when the rarefaction wave is at

TABLE 2. TDNOVA RESULTS WHEN PROJECTILE REACHES THE MUZZLE

Mesh	Mode	Exit Time (msec)	% Diff*	Gas Velocity m/s	% Diff*	Gas Pressure MPa	% Diff	# Steps	CPU Seconds	\$ P6
16x3	ήςρ	10.5833	0.030	807.86	0.027	54.401	0.390	103	1.996	\$.93
16x7	02D	10.5833	0.030	807.86	0.027	54.401	0.390	103	2.201	\$ 1.03
63x3	02D	10.5782	0.017	808.49	0.098	54.407	0.400	405	22.010	86.6 \$
16x3	2D	10.5799	0.001	808.46	0.095	54.441	0.465	007	11.636	\$ 5.28
16x7	2D	10.5813	0.012	808.29	0.073	54.487	0.548	1111	60.279	\$27.24
63x3	2D	10.5779	0.020	808.53	0.103	54.408	0.402	515	59.558	\$26.97
Analytic	tic	10.58		807.7		54.19				

* From Love and Pidduck

TABLE 3. TONOVA RESULTS AT PROJECTILE BASE

Mode	Time S	Pressure MPa	: Diff	Velocity m/s	°, Diff	Distance from Breech cm	• Diff	Max. Diff
16 x N Q2D	.0004772	554.3	0.00	98.92	010	172.2	0.0	
63 x 3 20	1	554.3	018	98.91	.723	172.2	0.0	
Analytic		554.2	.018	99.64	. 732	172.2	0.0	. 732
16 x N Q2D	.0009544	500.0	0.00	187.7	0.0	179.1	0.0	
63 x 3 2D		500.0	020	187.7	0.0	179.1	059	059
Analytic		499.9	020	187.7	0.0	179.0	059	
16 x N Q2D	.001479	451.0	0.0	275.7	0.0	191.3	0,0	
63 x 3 2D		451.0	0.0	275.7	109	191.3	- ,052	109
Analytic		451.0	0.0	275.4	109	191.2	052	
16 x N Q2D	.002117	395.7	-1.198	371.5	054	212.0	0.0	
63 x 3 2D		400.5	1.641	371.7	.081	212.0	0.0	1.641
Analytic		402.3	.447	371.8	.027	212.0	0.0	
16 x N Q2D	.002898	291.9	034	465.8	. 086	244.9	0.0	
63 x 3 2D	<u>{</u>	291.8	206	466.2	.086	244.9	.122	206
Analytic		291.3	172	466.2	0.0	245.2	.122	
16 x N Q2D	.003859	212.5	047	550.2	.073	293.9	. 034	
63 x 3 2D		212.4	236	550.6	.036	294.0	.068	236
Analytic		212.0	189	550.4	036	294.1	.034	
16 x N Q2D	.005154	151.2	062	632.1	.047	370.8	.027	
63 x 3 2D	j	151.1	465	632.4	.063	370.9	. 296	456
Analytic		150.5	399	632.5	.016	371.9	. 269	
16 x N Q2D	.007137	99.73	1.062	718.3	.083	505.3	.020	
63 x 3 2D		100.8	1.257	718.9	0.0	505.4	.020	1.257
Analytic		101.0	.198	718.3	084	505.4	0.0	
16 x N Q2D	.01023	57.34	087	800.9	.100	741.4	. 054	
63 x 3 2D		57.29	526	801.7	.050	741.8	.040	526
Analytic		57.04	438	801.3	050	741.7	015	
16 x 3 Q2D	10.5833	54.40	.018	807.9	.074	769.8		
63 x 3 2D	10.5779	54.41	386	808.5	025	769.8		
Analytic	10.58	54.19	406	807.7	.025	769.8		406

the midpoint or at either boundary. The points when the rarefaction waves meet the boundary turn out to be numerically the points of greatest difference. The percent pressure differences at 2.117 ms and at 7.137 ms (when the rarefaction wave reaches the base of the projectile) for the 16xN Q2D mesh are further from the analytic solution than the 63x3 2D solution. The overall effect of these differences seems to be damped out over the entire ballistic cycle up to projectile exit in the sense that the ballistic parameters at muzzle exit are closer to the analytic solution. See Table 2 for examples of both 16x and 63x meshes.

THE REAL PROPERTY OF THE PERSON OF THE PERSO

Figure 3. Initial Mesh Distribution - Lagrange Gun

Figures 4 and 5 are plots of pressure versus distance at specified times of the analytic solution against the $16x3\ 2D$ and $16xN\ Q2D\ TDNOVA$ runs, showing the excellent agreement for both the 2D and Q2D solution techniques with the same mesh size. Again note the small perturbation when the rarefaction wave reaches the breech (0 distance), which again gets damped out over the entire ballistic cycle.

Figure 6 is a plot of the spatially distributed analytic solution at different times, as in Figures 4 and 5, against the TDNOVA solution for a 63x3 2D run. The agreement is excellent.

In Figure 7, the first three times from Figure 6 are plotted on an expanded scale to look at the area where the derivative of pressure with respect to distance has a discontinuity because the rarefaction wave has not progressed all the way back into the undisturbed gas. The discontinuity is captured well with only about 0.2% difference at the discontinuity between the analytic and TDNOVA solution with the fine grid (63X3 2D). With the coarse grid (16XN Q2D), the error is larger, about 0.7%. In both simulations, a mesh point occurs at the slope discontinuity.

Figure 8 is a synopsis of the pressure at the base of the projectile, the velocity of the projectile, and the distance the projectile has traveled, all as functions of time, both for the analytic solution and a TDNOVA 16XN Q2D run. Again the agreement is excellent.

V. CONCLUSIONS

It is concluded that both the fully 2D and Q2D algorithms of TDNOVA yield results which are in close agreement with a specific analytic solution of the Lagrange problem. The differences between the analytic solution and TDNOVA are of the order of 0.1% for pressure, velocity, distance, and time except at times when the rarefaction wave intersects a solid boundary in which case the discrepancy is as much as 1.6% for a mesh of 16 axial points.

Figure 4. Lagrange Gun Comparison of TDNOVA 16x3 2D Run with Love and Pidduck Analytic Solution

Figure 5. Lagrange Gun Comparison of TDNOVA 16xN Q2D Run with Love and Pidduck Analytic Solution

Figure 6. Lagrange Gun Comparison of TDNOVA 63x3 2D Run with Love and Pidduck Analytic Solution

Figure 7. Expanded View of First Three Tableaus of TDNOVA 63x3 2D Run with Love and Pidduck Analytic Solution

Figure 8. Pressure, Velocity, and Travel - Comparison of TDNOVA $16 \times N$ Q2D Run with Love and Pidduck Analytic Solution

ACK NOWLEDGMENTS

The author wishes to thank Dr. P. S. Gough for performing minor modifications needed to TDNOVA to run the Lagrange problem. Appreciation is also expressed to Mr. A. W. Horst and Dr. J. A. Schmitt for helpful discussions and guidance.

REFERENCES

- 1. F. W. Robbins, J. A. Kudzal, J. A. McWilliams, and P. S. Gough, "Experimental Determination of Stick Charge Flow Resistance," 17th JANNAF Combustion Meeting, CPIA Publication 329, Volume II, pp. 97~118, November 1980.
- 2. P. S. Gough, "The NOVA Code: A User's Manual. Volume 1. Description and Use," IHCR 80-8, Naval Ordnance Station, Indian Head, MD, December 1980.
- 3. P. S. Gough, "A Two-Dimensional Model of the Interior Ballistics of Bagged Artillery Charges," ARBRL-CR-00452, USA ARRADCOM, Ballistic Research Laboratory, Aberdeen Proving Ground, MD, April 1981 (AD A100751).
- 4. A. E. A. Love and F. B. Pidduck, "Lagrange Ballistic Problem," Phil. Trans. Roy. Soc., Volume 222, pp. 167-226, 1921-22.
- 5. J. A. Schmitt and T. L. Mann, "An Evaluation of the Alpha Code in its One-Phase Mode," ARBRL-MR-03081, USA ARRADCOM, Ballistic Research Laboratory, Aberdeen Proving Ground, MD, April 1981 (AD A098037).

No. Of		No. Of	
Copies	Organization	Copies	Organization
12	Administrator	3	Commander
	Defense Technical Info Center		US Army Materiel Development
	ATTN: DTIC-DDA		and Readiness Command
	Cameron Station		ATTN: DRCDMD-ST
	Alexandria, VA 22314		DCRSF-E, Safety Office DRCDE-DW
1	Office of the Under Secretary		5001 Eisenhower Avenue
	of Defense		Alexandria, VA 22333
	Research & Engineering		•
	ATTN: R. Thorkildsen	13	Commander
	Washington, DC 20301		US Army Armament R&D Command
	•		ATTN: DRDAR-TD, A. Moss
1	HQDA/SAUS-OR, D. Hardison		DRDAR-TSS (2 cys)
	Washington, DC 20301		DRDAR-TDC
	- '		D. Gyorog
1	HQDA/DAMA-ZA		DRDAR-LCA
	Washington, DC 20310		J. Lannon
			A. Beardell
1	HQDA, DAMA-CSM, E. Lippi		D. Downs
	Washington, DC 20310		S. Einstein
			L. Schlosberg
1	HQDA/SARDA		S. Westley
	Washington, DC 20310		S. Bernstein
			P. Kemmey
1	Commandant		C. Heyman
	US Army War College		Dover, NJ 07801
	ATTN: Library-FF229		
	Carlisle Barracks, PA 17013	9	Commander
			US Army Armament R&D Command
1	Commander		ATTN: DRDAR-SCA, L. Stiefel
	US Army BMD Advanced Tech Cntr		B. Brodman
	P. O. Box 1500	•	DRDAR-LCB-I, D. Spring
	Huntsville, AL 35804		DRDAR-LCE, R. Walker
			DRDAR-LCU-CT
1	Chairman		E. Barrieres
	DOD Explosives Safety Board		R. Davitt
	Room 856-C		DRDAR-LCU-CV
	Hoffman Bldg. 1		C.Mandala
	2461 Eisenhower Avenue		E. Moore
	Alexandria, VA 22331		DRDAR-LCM-E
			S. Kaplowitz
			Dover, NJ 07801

Ţ.

No. Of		No. Of	
Copies	Organization	Copies	Organization
		5	Commander
1	Commander		US Army Armament Materiel
	US Army Armament R&D Command		Readiness Command
	ATTN: DRDAR-QAR,		ATTN: DRSAR-LEP-L
	J. Rutkowski		DRSAR-LC, L. Ambrosini
	Dover, NJ 07801		DRSAR-IRC, G. Cowan
5	Project Manager		DRSAR-LEM, W. Fortune R. Zastrow
	Cannon Artillery Weapons		Rock Island, IL 61299
	System		
	ATTN: DRCPM-CW,	1	Commander
	F. Menke		US Army Watervliet Arsenal
	DR CPM-CWW		ATTN: SARWV-RD, R. Thierry
	H. Noble		Watervliet, NY 12189
	DR CPM-CWS		•
	M. Fisette	1	Director
	DRCPM-CWA		US Army ARRADCOM Benet
	R. DeKleine		Weapons Laboratory
	H. Hassmann		ATTN: DRDAR-LCB-TL
	Dover, NJ 07801		Watervliet, NY 12189
2	Project Manager	1	Commander
	Munitions Production Base		US Army Aviation Research
	Modernization and Expansion		and Development Command
	ATTN: DRCPM-PMB, A. Siklosi		ATTN: DRDAV-E
	SARPM-PBM-E, L. Laibson		4300 Goodfellow Blvd.
	Dover, NJ 07801		St. Louis, MO 63120
3	Project Manager	1	Commander
-	Tank Main Armament System	•	US Army Mobility Equipment
	ATTN: DRCPM-TMA, K. Russell		Command
	DRCPM-TMA-105		4300 Goodfellow Blvd.
	DRCPM-TMA-120		St. Louis, MO 63120
	Dover, NJ 07801		
	•	1	Director
3	Commander		US Army Air Mobility Research
	US Army Armament R&D Command		And Development Laboratory
	ATTN: DRDAR-LCW-A		Ames Research Center
	M.Salsbury		Moffett Field, CA 94035
	DRDAR-LCS		
	DRDAR-LC, J. Frasier	1	Commander
	Dover, NJ 07801		US Army Communications
			Research and Development
			Command
			ATTN: DRSEL-ATDD
			Fort Monmouth, NJ 07703

No. Of Copies	Organization	No. Of Copies	Organization
1	Commander US Army Electronics Research and Development Command Technical Support Activity ATTN: DELSD-L	1	Project Manager Fighting Vehicle Systems ATTN: DRCPM-FVS Warren, MI 48090
	Fort Monmouth, NJ 07703	1	Director US Army TRADOC Systems Analysis Activity
l	Commander US Army Harry Diamond Lab. ATTN: DELHD-TA-L 2800 Powder Mill Road Adelphi, MD 20783		ATTN: ATAA-SL White Sands Missile Range NM 88002
2	Commander US Army Missile Command ATTN: DRSMI-R DRSMI-YDL	i	Project Manager M-60 Tank Development ATTN: DRCPM-M60TD Warren, MI 48090
	Redstone Arsenal, AL 35898	1	Commander US Army Training & Doctrine
1	Commander US Army Natick Research and Development Command ATTN: DRDNA-DT, D. Sieling Natick, MA 01762	2	Command ATTN: ATCD-A, NAJ Williams Fort Monroe, VA 23651 Commander
1	Commander US Army Tank Automotive Command ATTN: DRSTA-TSL Warren, MI 48090	Ī	US Army Materials and Mechanics Research Center ATTN: DRXMR-ATL Tech Library Watertown, MA 02172
1	US Army Tank Automotive Materiel Readiness Command ATTN: DRSTA-CG Warren, MI 48090 Project Manager Improved TOW Vehicle	1	Commander US Army Research Office ATTN: Tech Library P. O. Box 12211 Research Triangle Park, NC 27709
	ATTN: DRCPM-ITV US Army Tank Automotive Command Warren, MI 48090	1	Commander US Army Mobility Equipment Research & Development Command ATTN: DRDME-WC Fort Belvoir, VA 22060
1	Program Manager M1 Abrams Tank System ATTN: DRCPM-GMC-SA Warren, MI 48090	1	Commander US Army Logistics Mgmt Ctr Defense Logistics Studies Fort Lee, VA 23801

No. Of		No. Of	
Copies	Organization	Copies	Organization
2	Commandant US Army Infantry School ATTN: ATSH-CD-CSO-OR Fort Benning, GA 31905	3	Commandant US Army Armor School ATTN: ATZK-CD-MS M. Falkovitch
l	US Army Armor & Engineer Board		Armor Agency Fort Knox, KY 40121
	ATTN: STEBB-AD-S Fort Knox, KY 40121	1	Chief of Naval Materiel Department of the Navy ATTN: J. Amlie
1	Commandant US Army Aviation School ATTN: Aviation Agency	I	Washington, DC 20360 Office of Naval Research
1	Fort Rucker, AL 36360 Commandant		ATTN: Code 473, R. S. Miller 800 N. Quincy Street Arlington, VA 22217
	Command and General Staff College Fort Leavenworth, KS 66027	2	Commander Naval Sea Systems Command ATTN: SEA-62R, J. W. Murrin
1	Commandant US Army Special Warfare School ATTN: Rev & Tng Lit Div Fort Bragg, NC 28307		R. Beauregard National Center, Bldg. 2 Room 6E08 Washington, DC 20360
ì	Commandant US Army Engineer School ATTN: ATSE-CD Ft. Belvoir, VA 22060	1	Commander Naval Air Systems Command ATTN: NAIR-954-Tech Lib Washington, DC 20360
l	Commander US Army Foreign Science & Technology Center ATTN: DRXST-MC-3 220 Seventh Street, NE Charlottesville, VA 22901	1	Strategic Systems Project Office Dept. of the Navy Room 901 ATTN: J. F. Kincaid Washington, DC 20376
1	President US Army Artillery Board Ft. Sill, OK 73504	1	Assistant Secretary of the Navy (R, E, and S) ATTN: R. Reichenbach Room 5E787 Pentagon Bldg.
l	Commandant US Army Field Artillery School ATTN: ATSF-CO-MW, B. Willis Ft. Sill, OK 73503	1	Washington, DC 20350 Naval Research Lab Tech Library Washington, DC 20375

No. Of Copies	Organization	No. Of Copies	Organization
5	Commander Naval Surface Weapons Center ATTN: Code G33, J. L. East W. Burrell J. Johndrow Code G23, D. McClure Code DX-21 Tech Lib Dahlgren, VA 22448	6	Commander Naval Ordnance Station ATTN: P. L. Stang J. Birkett S. Mitchell C. Christensen D. Brooks Tech Library Indian Head, MD 20640
2	Commander US Naval Surface Weapons Center ATTN: J. P. Consaga C. Gotzmer	1	AFSC/SDOA Andrews AFB Washington, DC 20334
4	Indian Head, MD 20640 Commander Naval Surface Weapons Center ATTN: S. Jacobs/Code 240 Code 730 K. Kim/Code R-13	1	Program Manager AFOSR Directorate of Aerospace Sciences ATTN: L. H. Caveny Bolling AFB, DC 20332
	R. Bernecker Silver Spring, MD 20910	6	AFRPL (DYSC) ATTN: D. George J. N. Levine
2	Commanding Officer Naval Underwater Systems Center Energy Conversion Dept. ATTN: CODE 5B331, R. S. Lazar Tech Lib		B. Goshgarian D. Thrasher N. Vander Hyde Tech Library Edwards AFB, CA 93523
	Newport, RI 02840	1	AFFTC ATTN: SSD-Tech LIb
4	Commander Naval Weapons Center		Edwards AFB, CA 93523
	ATTN: Code 388, R. L. Derr C. F. Price T. Boggs	I	AFATL/DLYV Eglin AFB, FL 32542
	Info. Sci. Div. China Lake, CA 93555	1	AFATL/DLJM ATTN: W. Dittrich Eglin AFB, FL 32542
2	Superintendent Naval Postgraduate School Dept. of Mechanical Engineering ATTN: A. E. Fuhs Code 1424 Library	1	AFATA/DLD ATTN: D. Davis Eglin AFB, FL 32542 AFATL/DLDL
1	Monterey, CA 93940 AFWL/SUL Kirtland AFB, NM 87117		ATTN: O. K. Heiney Eglin AFB, FL 32542

No. Of Copies	Organization	No. Of Copies	Organization
1	AFATL ATTN: DLODL Eglin AFB, FL 32542	1	Foster Miller Associates ATTN: A. Erickson 135 Second Avenue Waltham, MA 02154
1	AFFDL ATTN: TST-Lib Wright-Patterson AFB, OH 45433	1	General Applied Sciences Lab ATTN: J. Erdos Merrick & Stewart Avenues Westbury Long Island, NY 11590
1	NASA HQ 600 Independence Avenue, SW ATTN: Code JM6, Tech Lib. Washington, DC 20546	1	General Electric Company Armament Systems Dept. ATTN: M. J. Bulman,
1	NASA/Lyndon B. Johnson Space Center ATTN: NHS-22, Library		Room 1311 Lakeside Avenue Burlington, VT 05412
	Section Houston, TX 77058	1	Hercules, Inc. Allegheny Ballistics Laboratory
1	Aerodyne Research, Inc. Bedford Research Park ATTN: V. Yousefian Bedford, MA 01730		ATTN: R. B. Miller P. O. Box 210 Cumberland, MD 21501
1	Aerojet Solid Propulsion Co. ATTN: P. Micheli Sacramento, CA 95813	l	Hercules, Inc Bacchus Works ATTN: K. P. McCarty P. O. Box 98
1	Atlantic Research Corporation ATTN: M. K. King 5390 Cherokee Avenue Alexandria, VA 22314	1	Magna, UT 84044 Herasies, Inc. Emitm Operations AFATL DLDL
1	AVCO Everett Rsch Lab ATTN: D. Stickler 2385 Revere Beach Parkway Everett, MA 02149	l	ATTN: R. L. Simmons Eglin AFB, FL 32542 IITRI
2	Calspan Corporation ATTN: Tech Library		ATTN: M. J. Klein 10 W. 35th Street Chicago, IL 60616
	P. O. Box 400 Buffalo, NY 14225	2	Lawrence Livermore Laboratory ATTN: M. S. L-355, A. Buckingham M. Finger P. O. Box 808 Livermore, CA 94550

No. Of		No. Of	
Copies	Organization	Copies	Organization
1	Olin Corporation Badger Army Ammunition Plant ATTN: R. J. Thiede Baraboo, WI 53913	1	Scientific Research Assoc., Inc. ATTN: H. McDonald P.O. Box 498 Glastonbury, CT 06033
1	Olin Corporation Smokeless Powder Operations ATTN: R. L. Cook P. O. Box 222 St. Marks, FL 32355	3	Thiokol Corporation Huntsville Division ATTN: D. Flanigan R. Glick Tech Library Huntsville, AL 35807
1	Paul Gough Associates, Inc. ATTN: P. S. Gough 1048 South Street Portsmouth, NH 03801	2	·
1	Physics International 2700 Merced Street San Leandro, CA 94577	2	P. O. Box 524 Brigham City, UT 84302
1	Princeton Combustion Research Lab., Inc. ATTN: M. Summerfield 1041 US Highway One North Princeton, NJ 08540	2	Thickol Corporation Elkton Division ATTN: R. Biddle Tech Lib. P. O. Box 241 Elkton, MD 21921
1	Southwest Research Institute ATTN: Robert E. White 8500 Culebra Road San Antonio, TX 78228	2	United Technologies Chemical Systems Division ATTN: R. Brown Tech Library P. O. Box 358
2	Rockwell International Rocketdyne Division ATTN: BA08 J. E. Flanagan J. Grey 6633 Canoga Avenue Canoga Park, CA 91304	1	Sunnyvale, CA 94086 Universal Propulsion Company ATTN: H. J. McSpadden Black Canyon Stage 1 Box 1140 Phoenix, AZ 85029
ì	Science Applications, Inc. ATTN: R. B. Edelman 23146 Cumorah Crest Woodland Hills, CA 91364	1	Veritay Technology, Inc. ATTN: E. B. Fisher P. O. Box 22 Bowmansville, NY 14026

No. Of Copies	Organization	No. Of Copies	Organization
1	Battelle Memorial Institute ATTN: Tech Library 505 King Avenue Columbus, OH 43201	3	Georgia Institute of Tech School of Aerospace Eng. ATTN: B. T. Zinn E. Price / W. C. Strahle Atlanta, GA 30332
1	Brigham Young University Dept. of Chemical Engineering ATTN: M. Beckstead Provo, UT 84601	1	Institute of Gas Technology ATTN: D. Gidaspow 3424 S. State Street Chicago, IL 60616
1	California Institute of Tech 204 Karman Lab Main Stop 301-46 ATTN: F. E. C. Culick 1201 E. California Street Pasadena, CA 91125	1	Johns Hopkins University Applied Physics Laboratory Chemical Propulsion Information Agency ATTN: T. Christian
1	California Institute of Tech Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, CA 91103	1	Johns Hopkins Road Laurel, MD 20707 Massachusetts Institute of Technology Dept of Mechanical
1	University of Illinois Dept of Mech Eng ATTN: H. Krier 144 MEB, 1206 W. Green St.	1	Engineering ATTN: T. Toong Cambridge, MA 02139 Pennsylvania State University
ī	Urbana, IL 61801 University of Massachusetts Dept. of Mechanical Engineering	-	Applied Research Lab ATTN: G. M. Faeth P. O. Box 30 State College, PA 16801
1	ATTN: K. Jakus Amherst, MA 01002 University of Minnesota	1	Pennsylvania State University Dept. Of Mechanical Engineering ATTN: K. Kuo
	Dept. of Mechanical Engineering ATTN: E. Fletcher Minneapolis, MN 55455	1	University Park, PA 16802 Purdue University School of Mechanical
1	Case Western Reserve University Division of Aerospace Sciences		Engineering ATTN: J. R. Osborn TSPC Chaffee Hall West Lafayette, IN 47906
	ATTN: J. Tien Cleveland, OH 44135	1	Rensselaer Polytechnic Inst. Department of Mathematics Troy, NY 12181

No. Of Copies Organization Rutgers University Dept. of Mechanical and Aerospace Engineering ATTN: S. Temkin University Heights Campus New Brunswick, NJ 08903 SRI International Propulsion Sciences Division ATTN: Tech Library 333 Ravenswood Avenue Menlo Park, CA 94025

- Stevens Institute of Technology Davidson Laboratory ATTN: R. McAlevy, III Hoboken, NJ 07030
- 2 Los Alamos National Lab ATTN: T. D. Butler, MS B216 M. Division, B. Craig P. O. Box 1663 Los Alamos, NM 87545
- University of Southern California Mechanical Engineering Dept. ATTN: OHE200, M. Gerstein Los Angeles, CA 90007
- 2 University of Utah Dept. of Chemical Engineering ATTN: A. Baer G. Flandro Salt Lake City, UT 84112
- Washington State University Dept. of Mechanical Engineering ATTN: C. T. Crowe Pullman, WA 99163

No. Of Copies Organization

Aberdeen Proving Ground

Dir, USAMSAA
ATTN: DRXSY-D
DRXSY-MP, H. Cohen
Cdr, USATECOM
ATTN: DRSTE-TO-F
STEAP-MT, S. Walton
G. Rice

D. Lacey
C. Herud

Dir, HEL
ATTN: J. Weisz
Dir, USACSL, Bldg E3526, EA
ATTN: DRDAR-CLB-PA
DRDAR-CLN
DRDAR-CLJ-L

USER EVALUATION OF REPORT

Please take a few minutes to answer the questions below; tear out this sheet, fold as indicated, staple or tape closed, and place in the mail. Your comments will provide us with information for improving future reports. 1. BRL Report Number 2. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which report will be used.) 3. How, specifically, is the report being used? (Information source, design data or procedure, management procedure, source of ideas, etc.) 4. Has the information in this report led to any quantitative savings as far as man-hours/contract dollars saved, operating costs avoided, efficiencies achieved, etc.? If so, please elaborate. 5. General Comments (Indicate what you think should be changed to make this report and future reports of this type more responsive to your needs, more usable, improve readability, etc.) 6. If you would like to be contacted by the personnel who prepared this report to raise specific questions or discuss the topic, please fill in the following information. Name: Telephone Number: Organization Address:

- FOLD HERE -

Director

US Army Ballistic Research Laboratory

ATTN: DRDAR-BLA-S

Aberdeen Proving Ground, MD 21005

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE. \$300

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO 12062 WASHINGTON, DC

POSTAGE WILL BE PAID BY DEPARTMENT OF THE ARMY

Director
US Army Ballistic Research Laboratory
ATTN: DRDAR-BLA-S
Aberdeen Proving Ground, MD 21005

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

FOLD HERE -

