

Desafío entregable 5 (Clase 9 y 10)

"Funciones"

1) Realiza una función llamada area_rectangulo() que devuelva el área del rectángulo a partir de una base y una altura. Calcula el área de un rectángulo de 15 de base y 10 de altura

B área de un rectángulo se obtiene al multiplicar la base por la altura.

Respuesta

Genero la función solicitada para el rectángulo:

def area_rectangulo (base, altura):
area_rect = base*altura
return area_rect

Defino y asigno las variables que conforman el rectángulo, y la función anterior:

base = 15 altura = 10

Calculamos el área y lo mostramos:

print(f"Un rectangulo de {base} de base y {altura} de altura tiene {area_rectangulo(base,altura)} de area.")

2) Realiza una función llamada area_circulo() que devuelva el área de un círculo a partir de un radio. Calcula el área de un círculo de 5 de radio

Ayuda: El área de un círculo se obtiene al elevar el radio a dos y multiplicando el resultado por el número pi. Puedes utilizar el valor 3.14159 como pi o importarlo del módulo math.

Respuesta

Importo la librería para hacer uso de "pi": import math

Genero la función solicitada para el círculo: def area_circulo (radio): area_circ = math.pi*(radio**2) return area circ

Defino y asigno la variable que conforman el círculo, y la función anterior: **radio = 5**

Calculamos el área y lo mostramos, limitado a 2 decimales: print(f"Un círculo de {radio} de radio tiene {area_circulo(radio):.2f} de area.")

- 3) Realiza una función llamada relacion() que a partir de dos números cumpla lo siguiente:
 - 1. Si el primer número es mayor que el segundo, debe devolver 1.
 - 2. Si el primer número es menor que el segundo, debe devolver -1.
 - 3. Si ambos números son iguales, debe devolver un 0.

Comprueba la relación entre los números: '5 y 10', '10 y 5' y '5 y 5'

```
Respuesta
        # Definimos la función con las consignas del ejercicio:
        def relacion(num_1, num_2):
         if num 1 > num 2:
           valor a devolver = 1
         elif num 1 < num 2:
           valor_a_devolver = -1
         elif num 1 == num 2:
           valor_a_devolver = 0
         return valor a devolver
        # Probamos las 3 relaciones del enunciado:
        # Para simpleza, creo una lista de numeros con 3 elementos, los cuales son una sublista (parejas de
        numeros):
        listado_numeros = [[5,10],[10,5],[5,5]]
        # Aplicamos "for" para recorrer la lista, y mostrar el resultado de la relacion
        for pares_numeros in listado_numeros:
         print (f"El 1er y 2do número, '{pares_numeros[0]}' y '{pares_numeros[1]}' devuelve el valor de
        '{relacion(pares_numeros[0],pares_numeros[1])}' de la funcion 'relacion'.")
```


4) Realiza una función llamada intermedio() que a partir de dos números, devuelva su punto intermedio:

Ayuda: El número intermedio de dos números corresponde a la suma de los dos números dividida entre 2

Comprueba el punto intermedio entre -12 y 24

Respuesta

Definimos la función del enunciado:

def intermedio (num_1, num_2): promedio = (num_1+num_2)/2 return promedio

Definimos y asignamos las variables a comprobar:

numero_1 = -12 numero_2 = 24

Calculamos el valor intermedio (promedio de ambos números). Por defecto lo dejamos como "float", en caso de haber decimales:

print(f"Un valor intermedio de {numero_1} y {numero_2} es: {intermedio(numero_1,numero_2)}")

- 5) Realizá una función llamada recortar() que reciba tres parámetros. El primero es el número a recortar, el segundo es el límite inferior y el tercero el límite superior. La función tendrá que cumplir lo siguiente:
 - 1. Devolver el límite inferior si el número es menor que éste
 - 2. Devolver el límite superior si el número es mayor que éste.
 - 3. Devolver el número sin cambios si no se supera ningún límite.

Comprueba el resultado de recortar 15 entre los límites 0 y 10

Respuesta

Definimos la función recortar:

def recortar (num_recortar, lim_inferior, lim_superior):
if num_recortar < lim_inferior and num_recortar < lim_superior:
 valor_a_devolver = lim_inferior
elif num_recortar > lim_inferior and num_recortar > lim_superior:
 valor_a_devolver = lim_superior
elif num_recortar >= lim_inferior and num_recortar <= lim_superior:
 valor_a_devolver = num_recortar
return valor_a_devolver

Definimos las variables a comprobar:

numero_recortar = 15 limite_inferior = 0 limite_superior = 10

Mostramos el resultado para el caso a comprobar:

print(f"La función recortar, considerando a {numero_recortar} como el número a recortar y {limite_inferior} y {limite_superior}, como límites inferior y superior, da como resultado: {recortar (numero_recortar, limite_inferior, limite_superior)}.")

- 6) Realiza una función separar() que tome una lista de números enteros y devuelva dos listas ordenadas. La primera con los números pares, y la segunda con los números impares:
- Ayuda: Para ordenar una lista automáticamente puedes usar el método .sort()

Respuesta # Definimos la función separar: def separar(lista): # Creo lista vacía para alojar luego los valores pares e impares: pares=[] impares=∏ # Evalúo cada elemento de la lista y defino si es par o no, para anidarlo a la lista correspondiente: for elemento in lista: if elemento%2==0: pares.append(elemento) else: impares.append(elemento) # Una vez generadas las listas, las ordenamos con "sort()": pares.sort() impares.sort() # Mostramos el resultado final de listas pares e impares, ambas ordenadas : print(f"La lista {lista} tiene las lista pares e impares ordenadas siguientes: \nPares: {pares} \nImpares: {impares}") # Comprobamos según la la lista a evaluar: $lista_evaluar = [6,5,2,1,7]$

separar(lista_evaluar)