Dynamics of Automorphisms of F_n

Robin Truax • Summer 2023

Contents

1 Meeting with Katy, July 7th

1

1 Meeting with Katy, July 7th

Definition 1 (Primitive Elements). Consider a free group F_n with standard basis x_1, \ldots, x_n . A primitive element is an element y such that there exists a basis y, y_2, \ldots, y_n for F_n .

Example 2 (Examples of Primitive Elements). In the notation given above,

- 1. x_1x_2 is a primitive element, since $\{x_1x_2, x_2, \ldots, x_n\}$ is a basis for F_n .
- 2. x_1^2 is not a primitive element. To see why, consider a group homomorphism $\phi: F_n \to G$. Then, if there existed a basis $\{x_1^2, y_2, \ldots, y_n\}$ for F_n , these elements would satisfy the universal property for free groups for F_n ; that is, for any group G and list $g_1, \ldots, g_n \in G$, there exists a unique homomorphism such that $\phi(x_1^2) = g_1$ and $\phi(y_i) = g_i$. Yet this is not possible, for if $G = \mathbb{Z}_2$, then $\phi(x_1^2) = 2\phi(x_1) = 0$. Thus, the basis fails to satisfy the universal property for the list $g_1 = \cdots = g_n = 1$.

Problem 3 (Classifying Primitive Elements). Let $X = \{a_1, \ldots, a_n\} \subseteq F_n$ and $H = \langle a_1, \ldots, a_n \rangle = \langle X \rangle$. Does H contain a primitive element?

The answer is related to Whitehead's algorithm, which addresses this problem:

Problem 4 (Automorphisms on Sets of *n* Words). Suppose that $U = \{u_1, \ldots, u_m\}$ and $V = \{v_1, \ldots, v_m\}$ are two sets of words in F_n . Then, does there exist $\phi \in \operatorname{Aut}(F_n)$ such that $\phi(U) = V$.

Of course, this is trivial for m=1, but is immediately more complicated for m>1.