Confined Quantum Random Walk

A combinatorial approach

Group 1

Mentees. N.M.Đức H.T.K.Linh N.D.Tân Head Mentors. L.T.Kiên V.C.Đ.Phương Mentors. P.N.Duy Đ.H.Đăng P.N.T.Minh

MaSSP - Math and Science Summer Program, 2024

- 1 Introduction
 - Classical random walk
 - Quantum random walk
- 2 A curious case of Creutz ladder
 - Quantum random walk on a lattice
 - Introducing randomness into the model
- 3 Visualization
- 4 Conclusion

- Introduction
 - Classical random walk
 - Quantum random walk
- 2 A curious case of Creutz ladder
 - Quantum random walk on a lattice
 - Introducing randomness into the model
- 3 Visualization
- 4 Conclusion

Classical random walk

Random walk (RW) is an ubiquitious process in physics.

Figure: Classical random walk in one dimension

Master equation

$$P(d, t + 1) = p_R P(d - 1, t) + p_L P(d + 1, t).$$

Classical random walk

Figure: Number of paths to reach d=-1 after 3 turns

■ The probability that the particle reaches distance *d* starting from the origin after *T* turns:

$$P(d,T) = {T \choose \frac{T+d}{2}} p_R^{\frac{T+d}{2}} p_L^{\frac{T-d}{2}}.$$

Classical random walk

- The particle dispersion rate can be described by the variance with respect to (wrt) time $\langle d^2 \rangle(T)$. In the classical walk, we have $\langle d^2 \rangle(T) = O(T)$ (diffusive regime).
- Quantum random walk can have a better scaling, for example $O(T^2)$ (ballistic regime). In this project, we will investigate a quantum random walk on the Creutz ladder, which has some interesting properties.

Quantum random walk

- Instead of the probability P, we work with the system wave function $|\psi\rangle$ (which is a vector in a Hilbert space). Furthermore, the coin is no longer classical but **a quantum coin**.
- The time evolution of the system is described by

$$|\psi_T\rangle = (\hat{S}\hat{C})^T |\psi_0\rangle.$$

• Coin tossing is represented by the **coin flip operator** \hat{C} . The **shifting operator** \hat{S} describes how the particle moves depending on the coin state.

- 1 Introduction
 - Classical random walk
 - Quantum random walk
- 2 A curious case of Creutz ladder
 - Quantum random walk on a lattice
 - Introducing randomness into the model
- 3 Visualization
- 4 Conclusion

The Creutz ladder

Figure: Creutz ladder with threading reduced magnetic flux

The system is described by the Hamiltonian

$$\hat{\mathcal{H}}_{\mathsf{Creutz}} \ = \sum_{i} \left[\left(\hat{c}_{j+1,r}^{\dagger} \hat{c}_{j,r} - \hat{c}_{j+1,b}^{\dagger} \hat{c}_{j,b} \right) + \left(\hat{c}_{j+1,r}^{\dagger} \hat{c}_{j,b} - \hat{c}_{j+1,b}^{\dagger} \hat{c}_{j,r} \right) + \ \mathsf{H.c.} \ \right].$$

■ After Fourier transforming \hat{H} into the momentum space k, its eigenvalues are found to be independent of k.

$$\lambda_n(k) = \pm 2.$$

Localization of Wannier functions

■ Deducing its corresponding eigenvector $|g_n(k)\rangle$, one can imply that the particle is localized by constructing the **Wannier** functions

$$|w_n(j)\rangle = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} dk \, e^{ik \cdot j} |g_n(k)\rangle.$$

■ The Wannier functions are localized at the 0-th and 1-st unit cell. Since the energy bands $\lambda_n(k)$ are flat (independent of k), the Wannier functions are also eigenstates of the Hamiltonian.

Introducing randomness into the model

Randomness in the quantum random walk is captured by the quantum coin flip operator, which we take to be the Grover G₄ coin

$$G_4 = \frac{1}{2} \begin{bmatrix} -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 1 & -1 & 1 \\ 1 & 1 & 1 & -1 \end{bmatrix}.$$

Introducing randomness into the model

Figure: The quantum system consisting of the Grover G_4 coin space and the lattice space

For example, moving from 4 to 2 at *i*-th site is captured in the term $|i+1,2B\rangle\langle i,4R|$ in \hat{S} .

Observing confinement from combinatorial techniques

• $|\psi_n,t\rangle$ the amplitude vector of finding the particle in the *n*-th unit cell at time t, we can write an analogous master equation for the quantum particle time evolution

$$|\psi_n, t+1\rangle = F |\psi_{n-1}, t\rangle + B |\psi_{n+1}, t\rangle.$$

where F, B are the forward and backward operators respectively.

Applying the Jordan decomposition to F and B, we can prove that

$$F^4 = 0 = B^4$$
.

which hints that the particle can't move beyond |d| = 3.

Observing confinement from combinatorial techniques

■ For the even time steps *T*, the master equation can be generated by the set

$$\{FF, FB, BF, BB\}$$

	FF	FB	BF	BB
FF	0	*	0	*
FB	0	*	0	*
BF	*	0	*	0
BB	*	0	*	0

Table: Multiplication table of generators

■ Consider $t \ge 4$, we can describe the a possible particle jump sequence as such

Observing confinement from combinatorial techniques

■ We can show that for $|n_F - n_B| \ge 4$, any sequence like the one above has to equate to zero.

■ This result shows that no matter which path we departed from the origin, the particle can't escape the |d| = 3 region as hinted by the Jordan decomposition.

- 1 Introduction
 - Classical random walk
 - Quantum random walk
- 2 A curious case of Creutz ladder
 - Quantum random walk on a lattice
 - Introducing randomness into the model
- 3 Visualization
- 4 Conclusion

From Math to Code

Figure: Demonstrating the wave function as a vector

$$\begin{split} S &= \sum_{i} \Big(-\left| i-1,3R \right\rangle \left\langle i,1R \right| - \left| i+1,1R \right\rangle \left\langle i,3R \right| - \left| i-1,4B \right\rangle \left\langle i,2R \right| \\ &+ \left| i+1,2B \right\rangle \left\langle i,4R \right| + \left| i-1,3B \right\rangle \left\langle i,1B \right| + \left| i+1,1B \right\rangle \left\langle i,3B \right| \\ &+ \left| i-1,4R \right\rangle \left\langle i,2B \right| - \left| i+1,2R \right\rangle \left\langle i,4B \right| \Big). \end{split}$$

Visualization

Probability Distribution in QRW

Figure: The averaged probability of particle position after a period of time \mathcal{T} has passed

Visualization

- 1 Introduction
 - Classical random walk
 - Quantum random walk
- 2 A curious case of Creutz ladder
 - Quantum random walk on a lattice
 - Introducing randomness into the model
- 3 Visualization
- 4 Conclusion

Conclusion

- In this project, we mainly focus on studying the behavior of quantum random walk on the Creutz ladder, in which the quantum particle is entirely confined in a small region of space.
- We resolved the above statement by utilizing combinatorial methods and furthermore provided some visualizations to go hand in hand with the laid-out mathematical theory.

Thank You For Listening! We appreciate your questions and feedback.

