Computerpraktikum Algebra

Thema 4 - Graphen und Lie-Algebren

Pascal Bauer, Raphael Millon, Florian Haas Sommersemester 2020

Table of contents

1 Theorie

2 Showcase

3 Ausgesuchte Codebeispiele

Theorie

- Wir betrachten Dynkin-Diagramme und die daraus konstuierbaren Gruppen.
- Dynkin-Diagramm sind spezielle Graphen, mit eventuell mehrfachen gerichteten Kanten.

Theorie

- Zu einem Graphen Γ kann eine Matrix $A(\Gamma) = (a_{ij})_{1 \le i,j \le n}$ wie folgt definiert werden:
- 1. Setze $a_{ii} = 2$ auf der gesamten Diagonalen.
 - 2. Setze $a_{ij} = 0$, falls $i \neq j$ und die Ecken i und j nicht verbunden sind.
 - 3. Setze $a_{ij}^{ij}=a_{ji}=-1$, falls $i\neq j$ und die Ecken i und j einfach verbunden sind. 4. Setze $a_{ij}=-d,\ a_{ji}=-1$, falls $i\neq j$ und die Ecken i und j d-fach in Richtung i
 - verbunden sind
- Für F₄ ergibt sich zum Beispiel

$$A(F_4) = \begin{pmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -2 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{pmatrix}.$$

• Somit kodieren sich Γ und $A(\Gamma)$ gegenseitig.

Theorie

- Für festes Γ definieren wir nun für $1 \le i \le n$ lineare Abbildungen gegeben durch $w_i(e_j) := e_j a_{ij}e_i$ oder äquivalent $M_{\mathbb{Q}}(w_i) = I_n E_{ii}A(\Gamma)$.
- Da $M_{\mathbb{Q}}(w_i)^2 = I_n 2E_{ii}A(\Gamma) + (E_{ii}A(\Gamma))^2 = I_n$ ist die Abbildung $w_i \in GL_n(\mathbb{Q})$ und insbesondere diagonalisierbar mit Eigenwerten $\in \{-1,1\}$.
- Jede Abbildung w_i beschreibt also eine Spiegelung.
- In unserem Projekt betrachteten wir die von allen w_i erzeugte Gruppe $W = \langle w_1, \dots, w_n \rangle \subseteq GL_n(\mathbb{Q}).$
- Zudem wird $\Phi=\{w(e_j)\mid w\in W, 1\leq j\leq n\}$ berechnet. Insbesondere ist Φ genau dann endlich wenn auch W endlich ist.

Showcase

Graph	A_1	A_2	A_3	A_4	A_5	A_6	A_7	A_8
$ \Phi $	2	6	12	20	30	42	56	72
W	2	6	24	120	720	5040	40320	362880
Graph	_	B_2	B_3	B_4	B_5	B_6	B_7	B_8
$ \Phi $	-	8	18	32	50	72	98	128
W	-	8	48	384	3840	46080	645120	10321920
Graph	_	C_2	C_3	C_4	C_5	C_6	C_7	C_8
$ \Phi $	-	8	18	32	50	72	98	128
W	-	8	48	384	3840	46080	645120	10321920
Graph	_	_	_	D_4	D_5	D_6	D_7	D_8
$ \Phi $	-	-	-	24	40	60	84	112
W	-	-	-	192	1920	23040	322560	5160960
Graph	_	_	_	_	_	E_6	E_7	E_8
$ \Phi $	-	-	-	-	-	72	126	240
W	-	-	-	-	-	51840	2903040	696729600
Graph	_	G_2	_	F_4	_	_	_	_
$ \Phi $	-	12	-	48	-	-	-	-
W	-	12	-	1152	-	-	-	-

Codebeispiele

Unser Code ist Open-Source verfügbar auf Github:

https://github.com/raphaelMi/computerpraktikum-algebra

Implementiert haben wir vier Funktionen:

- gmat(X, n)
- glin(graph_matrix)
- gphi(linear_function_matrices)
- gw(linear_function_matrices)

Codebeispiele gmat

```
# Generate matrix A(gamma)
for i in [1..n] do
        row := [];
        for j in [1..n] do
                if i = j then
                       row[j] := 2;
                else
                        row[j] := grel(X, n, i, j);
                fi;
        od;
        mat[i] := row;
od;
```

Codebeispiele glin

```
for i in [1..n] do
       w_i := []; # Matrix for linear function w_i
       for k in [1..n] do
               row := []; # Row of w_i matrix
               for j in [1..n] do
                       if k = j then # Compute the unity vector e j
                               e_j := 1;
                       else
                               e i := 0;
                       fi
                       if k = i then # Compute the unity vector e_i
                               e_i := 1;
                       else
                               e_i := 0;
                       fi;
                       row[j] := e_j - mat[i][j] * e_i; # Fill the matrix element-wise with the formula specified in the excersise
               od;
               w_i[k] := row;
       od;
```

Codebeispiele gphi

```
# Initialize phi with e i
for i in [1..n] do
        e i := [];
        for j in [1..n] do
                if i = j then # Generate the e_i
                        e i[j] := 1;
                else
                       e i[j] := 0;
                fi;
        od;
        AddSet(phi, e i);
od;
```

Codebeispiele gphi

```
last count := Length(phi); # Monitoring the count of phi
# Now we'll call phi on the elements (my multiplying the matrices) with each other until no new elements get added
while true do
        for ph in Iterator(phi) do
                for j in [1..n] do
                        AddSet(phi, matrices[j] * ph);
                od;
        od;
        # Check whether new elements got added
        if last count = Length(phi) then
                break; # No new elements, break here
        else
                last count := Length(phi);
        fi:
od;
```

Codebeispiele gw

```
additions := Immutable(w); # Elements that got added with the last iteration
newAdditions := Set([]); # Monitor the new elements that got added
while not Length(additions) = 0 do # Loop until no new elements got added
        for w1 in Iterator(additions) do
                for w2 in Iterator(w) do
                        prod := w1*w2; # Multiply the new matrices to the current set w
                                if not prod in w then
                                    AddSet(w, prod);
                                    AddSet(newAdditions, prod); # If the matrix is not in w, save it here
                                fi:
                od:
        od:
        additions := Immutable(newAdditions); # The additions of this iterations are the new additions
        newAdditions := Set([]); # Reset those
od:
```

Fragen ... und Antworten

```
presentation_running := true;
while presentation_running do
present();
od;
process_questions();
```