

Grundzüge der Theoretischen Informatik, WS 21/22: Musterlösung zum 1. Präsenzblatt

Julian Dörfler

Aufgabe P1.1 (Reguläre Sprachen)

Zeigen Sie, dass die folgenden Sprachen über dem Alphabet $\{0,1\}$ regulär sind. Wenn hierbei von Zahlen als Wörtern die Rede ist, so ist x als Binärdarstellung ohne führende Nullen zu interpretieren.

- (a) $L_1 = \{0^n 10^m \mid n, m \in \mathbb{N}\}$
- (b) $L_2 = \{110, 111, 0, 010\}$
- (c) $L_3 = \{x \mid x \text{ enthält 2 bis 4 Einsen}\}$
- (d) $L_4 = \{x \mid x \text{ enthält } 101 \text{ als Substring}\}$
- (e) $L_5 = \{x \mid x \text{ ist prim und } x < 100000000000000\}$

Lösung P1.1 (Reguläre Sprachen)

(a) Die Sprache L_1 wird von folgendem endlichen Automaten erkannt und ist somit regulär:

(b) Die Sprache L_2 wird von folgendem endlichen Automaten erkannt und ist somit regulär:

(c) Die Sprache L_3 wird von folgendem endlichen Automaten erkannt und ist somit regulär:

(d) Die Sprache L_4 wird von folgendem endlichen Automaten erkannt und ist somit regulär:

(e) Die Sprache L_5 ist endlich, da sie ein Subset von $\{x \mid x < 1\,000\,000\,000\,000\,000\}$ ist. Somit können wir einen endlichen Automaten bauen, der pro Wort in der Sprache einen akzeptierenden Zustand besitzt. Dieser Automat ist ein endlicher Baum der Tiefe $\lceil \log(1\,000\,000\,000\,000\,000) \rceil$, der an jedem inneren Knoten eine ausgehende Kante mit Beschriftung 0 und eine mit Beschriftung 1 hat.

Aufgabe P1.2 (Endliche Sprachen)

Sei $L \subseteq \Sigma^*$ eine endliche Sprache. Zeigen Sie L ist regulär.

Lösung P1.2 (Endliche Sprachen)

Wir zeigen dies per Induktion über n = |L|.

Falls n=0, dann ist $L=\emptyset$. Dann wird L von jedem Automaten ohne akzeptierende Zustände akzeptiert.

Sei nun also jede endliche Sprache mit $n \in \mathbb{N}$ Elementen regulär.

Sei nun L eine endliche Sprache mit n+1 Elementen und $x \in L$. Dann hat $L_1 = L \setminus \{x\}$ noch n Elemente, ist also nach Induktionsvorraussetzung regulär. $L_2 = \{x\}$ enthält nur ein einziges Wort. Daher wird L_2 von einem endlichen Automaten erkannt, der nur ein Pfad ist. Die Transitionen entlang des Pfades sind $x_1, x_2, \ldots, x_{|x|}$ und der einzige akzeptierende Zustand ist der letzte. Da sowohl L_1 als auch L_2 regulär sind, ist somit auch $L = L_1 \cup L_2$ regulär.

Aufgabe P1.3 Konstruieren Sie die Berechnungsbäume von folgendem nichtdeterministischem Automaten für die Wörter 01010, 101, und ε :

Welche der Wörter akzeptiert der Automat, welche verwirft er? Welche Sprache erkennt der Automat?

Lösung P1.3 Der Automat akzeptiert genau die Wörter, die auf 10 enden, also die Sprache $L = \{x10 \mid x \in \{0,1\}^*\}.$

Aufgabe P1.4 (ε -Transitionen)

Konstruieren Sie zu folgendem nicht-deterministischen endlichen Automaten den Automaten ohne ε -Transitionen nach der Konstruktion im Skript. Welche Sprache wird von diesem erkannt?

Lösung P1.4 (ε -Transitionen) Die Konstruktion aus dem Skript ergibt folgenden Automaten:

Wenn wir diesen Automaten deterministisch machen und vereinfachen (dazu später mehr) ergibt sich folgender Automat:

Daran können wir ablesen, dass die Sprache $\{x \mid x \text{ enthält maximal eine } 1\}$ erkannt wird.