Project 3D data onto a 2D subspace

TOTAL POINTS 6

	_					- 4
1	(J	ue	eti	ın	n	1

For a vector $x=[6\ 0\ 0]$ and the subspace U spanned by the basis vectors $b_1=[1\ 1\ 1]$ and $b_2=[0\ 1\ 2]$, which of the following statements are true?

You can use the formula slide that comes with the corresponding lecture.

4/4	4 points
	The coordinates of the projected point with respect to $\mathbf{b}_1, \mathbf{b}_2$ are $[0\ 0]$.
~	The projection of ${\bf x}$ onto ${\bf U}$ is $[5\ 2\ -1]$
	The projection matrix is $[0\ 0\ 0]$, $[0\ 1\ 2]$, $[0\ 2\ 4]$
V	The projection matrix is $1/6$ [[5 2 -1], [2 2 2], [-1 2 5]]
	The projection matrix is not symmetric.
~	The projection matrix is symmetric.
	The projection of ${\bf x}$ onto ${\bf U}$ is $[0\ 0\ 0]$
V	The coordinates of the projected point with respect to $\mathbf{b}_1, \mathbf{b}_2$ are $[5\ -3]$.
	The rank of the projection matrix is 1.
20	uestion 2

2.Question 2

Project $[3\ 2\ 2]$ onto the subspace spanned by $[1\ 0\ 0]$ and $[0\ 1\ 1]$

You can use the formula slide that comes with the corresponding lecture.

1 / <u>1</u> point

° [2 1 1]

[3 2 2]

° [2 1 2]

° [644]

3. Question 3

- 1. Project $[12\ 0\ 0]$ onto the subspace U1 spanned by $[1\ 1\ 1]$, $[0\ 1\ 2]$
- 2. Project the result from 1. onto the subspace spanned by

[$-10\sqrt{6}$ $-4\sqrt{6}$ $2\sqrt{6}$]. What is the final projection?

Hint: For step 2. you do not necessarily need to compute anything.

You can use the formula slide that comes with the corresponding lecture.

1 / <u>1</u> point

$$^{\circ}$$
 [5 2 $\sqrt{6}$ -1 $\sqrt{6}$]