Goodness-of-fit Measures to Compare Observed and Simulated Values with hydroGOF

Mauricio Zambrano-Bigiarini

Aug 2011

1 Installation

Installing hydroGOF:

> install.packages("hydroGOF")

2 Setting Up the Environment

- 1. Loading the hydroGOF library, which contains data and functions used in this analysis.
 - > library(hydroGOF)
- 2. Loading observed streamflows of the Ega River (Spain), with daily data from 1961-Jan-01 up to 1970-Dec-31
 - > require(zoo)
 > data(EgaEnEstellaQts)
 > obs <- EgaEnEstellaQts</pre>
- 3. Generating a simulated daily time series, initially equal to the observed values (simulated values are usually read from the output files of the hydrological model)
 - > sim <- obs
- 4. Computing the numeric goodness-of-fit measures for the "best" (unattainable) case
 - > gof(sim=sim, obs=obs)

		[,1]
ME		0
MAE		0
MSE		0
RMSE		0
${\tt NRMSE}$	%	0
PBIAS	%	0

RSR	0
rSD	1
NSE	1
mNSE	1
rNSE	1
d	1
md	1
rd	1
ср	1
r	1
R2	1
bR2	1
KGE	1
VE	1

5. Randomly changing the first 2000 elements of 'sim', by using a normal distribution with mean 10 and standard deviation equal to 1 (default of 'rnorm').

```
> sim[1:2000] <- obs[1:2000] + rnorm(2000, mean=10)
```

6. Plotting the graphical comparison of 'obs' against 'sim', along with the numeric goodness-of-fit measures for the daily and monthly time series

> ggof(sim=sim, obs=obs, ftype="dm", FUN=mean)

3 Removing Warm-up Period

1. Using the first two years (1961-1962) as warm-up period, and removing the corresponding observed and simulated values from the computation of the goodness-of-fit measures:

> ggof(sim=sim, obs=obs, ftype="dm", FUN=mean, cal.ini="1963-01-01")

2. Verification of the goodness-of-fit measures for the daily values after removing the warm-up period:

```
> sim <- window(sim, start=as.Date("1963-01-01"))
> obs <- window(obs, start=as.Date("1963-01-01"))
> gof(sim, obs)
```

		[,1]
ME		4.34
MAE		4.34
MSE		43.89
RMSE		6.62
NRMSE	%	36.40
PBIAS	%	29.20
RSR		0.36
rSD		1.04
NSE		0.87
mNSE		0.63
rNSE		-0.51
d		0.97
md		0.81
rd		0.64
ср		0.44
r		0.96
R2		0.93
bR2		0.83
KGE		0.70
VE		0.71

4 Analysis of the Residuals

1. Computing the daily residuals (even if this is a dummy example, it is enough for illustrating the capability)

```
> r <- sim-obs
```

- 2. Summarizing and plotting the residuals (it requires the hydroTSM package):
 - > library(hydroTSM)
 - > smry(r)

```
Index
         1963-01-01
                       0.0000
Min.
                       0.0000
1st Qu.
        1964-12-31
Median
         1966-12-31
                       0.0000
Mean
         1966-12-31
                       4.3440
3rd Qu. 1968-12-30
                       9.7870
         1970-12-31
                      12.9700
Max.
IQR
               <NA>
                       9.7871
sd
               <NA>
                       5.0025
               <NA>
                       1.1515
CV
               <NA>
                       0.3189
Skewness
               <NA>
                      -1.8278
Kurtosis
NA's
               <NA>
                       2.0000
               <NA> 2922.0000
```

> # daily, monthly and annual plots, boxplots and histograms
> hydroplot(r, FUN=mean)

```
1963-01-01 1964-01-01 1965-01-01 1966-01-01 1967-01-01 1968-01-01 1969-01-01 10.030561 10.002206 9.999941 4.721084 0.000000 0.000000 0.000000 1970-01-01 0.000000
```


3. Seasonal plots and boxplots

> # daily, monthly and annual plots, boxplots and histograms
> hydroplot(r, FUN=mean, pfreq="seasonal")

This tutorial was built under:

- [1] "x86_64-redhat-linux-gnu (64-bit)"
- [1] "R version 2.15.0 (2012-03-30)"
- [1] "hydroGOF 0.3-4"