Содержание

Ι	Ин	нтеграл по мере	7
1	Инт	геграл ступенчатой функции	8
	1.1	Свойства	8
2	Инт	геграл неотрицательной измеримой функции	9
	2.1	Свойства	9
3	Сум	ммируемая функция	10
	3.1	Свойство	10
4	Инт	геграл суммируемой функции	11
	4.1	Свойства	11
5	Про	остейшие свойства интеграла Лебега	12
	5.1	Доказательство	12
	5.2	Доказательство	12
	5.3	Доказательство	12
	5.4	Доказательство	13
	5.5	Доказательство	13
	5.6	Доказательство	13
6	Сче	етная аддитивность интеграла (по множеству)	14
	6.1	Лемма	14
		6.1.1 Hovepower away	1.4

	6.2	Теорема	14
		6.2.1 Доказательство	14
	6.3	Следствие	15
	6.4	Следствие 2	15
ΙΙ	Π	редельный переход под знаком интеграла	16
7	Teo	рема Леви	17
	7.1	Доказательство	17
8	Лин	нейность интеграла Лебега	18
	8.1	Доказательство	18
	8.2	Следствие	18
		8.2.1 Доказательство	18
9	Teo	рема об интегрировании положительных рядов	19
	9.1	Доказательство	19
	9.2	Следствие	19
		9.2.1 Доказательство	19
10	Абс	олютная непрерывность интеграла	20
	10.1	Доказательство	20
	10.2	Следствие	20
11	02.0	3.2020	21
	11.1	Теорема Лебега о мажорированной сходимости	21

11.1.1 Доказательство	21
11.2 Теорема Лебега о мажорированной сходимости почти везде	22
11.2.1 Доказательство	22
11.3 Теорема Фату	22
11.3.1 Замечание	22
11.3.2 Доказательство	22
11.3.3 Следствие	23
11.3.4 Следствие 2	23
III Произведение мер	24
12 Произведение мер	25
13 Теорема о произведении мер	26
13 Теорема о произведении мер 13.1 Доказательство	26
13.1 Доказательство	26
13.1 Доказательство	26 26
13.1 Доказательство	26 26 26
13.1 Доказательство	26 26 26 27
13.1 Доказательство 13.2 Замечание 13.3 Дополнительная теорема (без доказательства) 14 Сечения множества 15 Принцип Кавальери	26 26 27 28
13.1 Доказательство 13.2 Замечание 13.3 Дополнительная теорема (без доказательства) 14 Сечения множества 15 Принцип Кавальери 15.1 Замечание	26 26 26 27 28

16 Совпадение определенного интеграла и интеграла Лебега	30
16.1 Доказательство	. 30
16.2 Замечание	. 30
17 Теорема Тонелли	31
17.1 Доказательство	. 31
18 Теорема Фубини	33
18.0.1 Следствие	. 33
19 Какая-то нужная штука для лекции 02.03.2020, потом удалю	34
IV Замена переменных в интеграле	35
20 Образ меры при отображении	36
20.1 Замечание 1	. 36
20.2 Замечание 2	. 36
21 Взвешенный образ меры	37
22 Теорема о вычислении интеграла по взвешенному образу меры	38
22.1 Замечание	. 38
22.2 Доказательство	. 38
22.3 Следствие	. 38
23 Плотность одной меры по отношению к другой	39
23.1. Заменание	30

24	Критерий плотности	40
	24.0.1 Доказательство	40
25	Единственность плотности	41
	25.0.1 Доказательство	41
	25.1 Следствие	41
26	Лемма об образе малых кубических ячеек	42
	26.0.1 Доказательство	42
27	Теорема об образе меры Лебега при диффеоморфизме	43
	27.1 Лемма	43
	27.2 Теорема	43
	27.2.1 Доказательство	43
28	Теорема о гладкой замене переменной в интеграле Лебега	46
	28.1 Доказательство	46
29	Сферические координаты в \mathbb{R}^m	47
30	Формула для Бета-функции	48
	30.0.1 Доказательство	48
31	Объем шара в \mathbb{R}^m	49
\mathbf{V}	Функция распределения	50
32	Теорема о вычислении интеграла по мере Бореля—Стилтьеса (с леммой)	51

32.1 Определение	51
32.2 Лемма	51
32.2.1 Доказательство	51
32.3 Теорема	51
32.3.1 Доказательство	52
32.3.2 Следствие	52
VI Ряды Фурье	53
33 Интегральные неравенства Гельдера и Минковского	54
34 Интеграл комплекснозначной функции	55
34.1 Вывод	55
35 Пространство $L^p(E,\mu)$	56
36 Существенный супремум	57
36.1 Свойства	57
36.1.1 Доказательство	57
37 Пространство $L^{\infty}(E,\mu)$	5 8
37.1 Замечание	58
37.2 Теорема	59
37.9.1. Показалоти стро	50

Часть І

Интеграл по мере

1 Интеграл ступенчатой функции

 $f = \sum_{k=1}^{n} \lambda_k \cdot \chi_{E_k}, \ f \geqslant 0$, где $E_k \in \mathcal{A}$ — допустимое разбиение, тогда интеграл ступенчатой функции f на множестве X есть

$$\int\limits_X f d\mu = \int\limits_X f(x) d\mu(x) = \sum_{k=1}^n \lambda_k \mu E_k$$

Дополнительно будем считать, что $0 \cdot \infty = \infty \cdot 0 = 0$.

1.1 Свойства

• Интеграл не зависит от допустимого разбиения:

$$f = \sum \alpha_j \chi_{F_j} = \sum_{k,j} \lambda_k \chi_{E_k \cap F_j}, \text{ тогда } \int F = \sum \lambda_k \mu E_k = \sum_k \lambda_k \sum_j \mu(E_k \cap F_j) = \sum \alpha_j \mu F_i = \int F;$$

$$\bullet \ f \leqslant g, \ \text{to} \ \int\limits_X f d\mu \leqslant \int\limits_X g d\mu.$$

2 Интеграл неотрицательной измеримой функции

 $f\geqslant 0,$ измерима, тогда интеграл неотрицательной измеримой функции fесть

$$\int\limits_X f d\mu = \sup_{\substack{g\text{ - ctyp.}\\0\leqslant g\leqslant f}} \Biggl(\int\limits_X g d\mu\Biggr).$$

2.1 Свойства

- Для ступенчатой функции f (при $f \geqslant 0$) это определение даёт тот же интеграл, что и для ступенчатой функции;
- $0 \leqslant \int_X f \leqslant +\infty;$
- $0 \leqslant g \leqslant f, \ g$ ступенчатая, f измеримая, тогда $\int\limits_X g \leqslant \int\limits_X f.$

3 Суммируемая функция

f — измеримая, f_+ и f_- — срезки, тогда если $\int\limits_X f_+$ или $\int\limits_X f_-$ — конечен, тогда интеграл суммируемой функции есть

$$\int\limits_X f d\mu = \int\limits_X f_+ - \int\limits_X f_-.$$

Если
$$\int\limits_X f \neq \pm \infty$$
, то говорят, что $f-cуммируемая$, а также $\int |f|$ — конечен $(|f| = f_+ + f_-)$.

3.1 Свойство

Если $f \geqslant 0$ — измерима, то это определение даёт тот же интеграл, что и интеграл измеримой неотрицательной функции.

4 Интеграл суммируемой функции

 $E \subset X$ — измеримое множество, f — измеримо на X, тогда интеграл f по множеству E есть

$$\int\limits_E f d\mu \coloneqq \int\limits_X f \chi_E d\mu.$$

f — суммируемая на Eесли $\int\limits_{E}\,f$ + – и $\int\limits_{E}\,f_{-}$ — конечны одновременно.

4.1 Свойства

•
$$f = \sum \lambda_k \chi_{E_k}$$
, to $\int_E f = \sum \lambda_k \mu(E_k \cap E)$;

•
$$f \geqslant 0$$
 — измерима, тогда $\int\limits_E f d\mu = \sup_{\substack{g \text{- ступ.} \\ 0 \leqslant g \leqslant f}} \Biggl(\int\limits_X g d\mu \Biggr).$

 (X, A, μ) — произвольное пространство с мерой.

 $\mathcal{L}^0(X)$ — множество измеримых почти везде конечных функций.

5 Простейшие свойства интеграла Лебега

1. Монотонность:

$$f \leqslant g \Rightarrow \int_{E} f \leqslant \int_{E} g.$$

5.1 Доказательство

$$\bullet \sup_{\substack{\widetilde{f} \text{ - CTYII.} \\ 0 \leqslant \widetilde{f} \leqslant f}} \left(\int_X \widetilde{f} d\mu \right) \leqslant \sup_{\substack{\widetilde{g} \text{ - CTYII.} \\ 0 \leqslant \widetilde{g} \leqslant g}} \left(\int_X \widetilde{g} d\mu \right);$$

• f и g — произвольные, то работаем со срезками, и $f_+ \leqslant g_+$, а $f_- \geqslant g_-$, тогда очевидно и для интегралов.

$$2. \int_{E} 1 \cdot d\mu = \mu E, \int_{E} 0 \cdot d\mu = 0.$$

5.2 Доказательство

По определению.

3.
$$\mu E$$
 = 0, f — измерима, тогда $\int\limits_{E}f$ = 0.

5.3 Доказательство

- \bullet f ступенчатая, то по определению интеграла для ступенчатых функций получаем 0;
- $f \geqslant 0$ измеримая, то по определению интеграла для измеримых неотрицательных функций также получаем 0;
- f любая, то разбиваем на срезки f_+ и f_- и снова получаем 0.

4. (a)
$$\int -f = -\int f;$$

(b)
$$\forall c > 0 : \int cf = c \int f$$
.

5.4 Доказательство

- $(-f)_+ = f_- \text{ и } (-f)_= f_+ \text{ и } \int -f = f_- f_+ = \int f.$
- $f\geqslant 0$ очевидно, $\sup_{\substack{g\text{ cryn.}\\0\leqslant g\leqslant cf}}\left(\int g\right)$ = $\sup_{\substack{g\text{ cryn.}\\0\leqslant g\leqslant f}}\left(\int g\right)$.
- 5. Пусть существует $\int\limits_E f d\mu$, тогда $\left|\int\limits_E f\right| \leqslant \int\limits_E |f|.$

5.5 Доказательство

$$\begin{aligned} -|f| &\leqslant f \leqslant |f|, \\ -\int\limits_{E} |f| &\leqslant \int\limits_{E} f \leqslant \int\limits_{E} |f|. \end{aligned}$$

6. f — измерима на $E,\,\mu E<+\infty,\,\,\forall x\in E:a\leqslant f(x)\leqslant b.$ Тогда $a\mu E\leqslant \int\limits_E f\leqslant b\mu E.$

5.6 Доказательство

$$\int\limits_{E}a\leqslant\int\limits_{E}f\leqslant\int\limits_{E}b,$$

$$a\mu E\leqslant\int\limits_{E}f\leqslant b\mu E.$$

6 Счетная аддитивность интеграла (по множеству)

6.1 Лемма

A = $\bigsqcup A_i,$ где A, A_i — измеримы, $g\geqslant 0$ — ступенчатые. Тогда

$$\int_{A} gd\mu = \sum_{i=1}^{+\infty} \int_{A_{i}} gd\mu.$$

6.1.1 Доказательство

$$g = \sum \lambda_k \chi_{E_k}$$
.

$$\int_{A} g d\mu = \sum \lambda_k \mu(A \cap E_k) = \sum_k \lambda_k \sum_i \mu(A_i \cap E_k) = \sum_i \left(\sum_k \lambda_k \mu(A_i \cap E_k)\right) = \sum_i \int_{A_i} g d\mu.$$

6.2 Теорема

 $f:C o \overline{R},\, f\geqslant 0$ — измеримая на $A,\, A$ — измерима, A = $\bigsqcup A_i,\,$ все A_i — измеримы. Тогда

$$\int_{A} f d\mu = \sum_{i} \int_{A_{i}} f d\mu$$

6.2.1 Доказательство

• <

$$g$$
 — ступенчатая, $0\leqslant g\leqslant f$, тогда $\int\limits_A g=\sum\limits_{A_i}\int\limits_{A_i}g\leqslant\sum\limits_{A_i}\int\limits_{A_i}f.$ Осталось перейти к sup.

• >

$$A = A_1 \sqcup A_2, \ \sum \lambda_k \chi_{E_k} = g_1 \leqslant f \chi_{A_1}, \ g_2 \leqslant f \cdot \chi_{A_2} = \sum \lambda_k \chi_{E_k}, \ g_1 + g_2 \leqslant f \cdot \chi_{A_2} = \sum \lambda_k \chi_{E_k}, \ g_1 + g_2 \leqslant f \cdot \chi_{A_2} = \sum \lambda_k \chi_{E_k}, \ g_1 + g_2 \leqslant f \cdot \chi_{A_2} = \sum \lambda_k \chi_{E_k}, \ g_1 + g_2 \leqslant f \cdot \chi_{A_2} = \sum \lambda_k \chi_{E_k}, \ g_1 + g_2 \leqslant f \cdot \chi_{A_2} = \sum \lambda_k \chi_{E_k}, \ g_1 + g_2 \leqslant f \cdot \chi_{A_2} = \sum \lambda_k \chi_{E_k}, \ g_1 + g_2 \leqslant f \cdot \chi_{A_2} = \sum \lambda_k \chi_{E_k}, \ g_1 + g_2 \leqslant f \cdot \chi_{A_2} = \sum \lambda_k \chi_{E_k}, \ g_1 + g_2 \leqslant f \cdot \chi_{A_2} = \sum \lambda_k \chi_{E_k}, \ g_1 + g_2 \leqslant f \cdot \chi_{A_2} = \sum \lambda_k \chi_{E_k}, \ g_1 + g_2 \leqslant f \cdot \chi_{A_2} = \sum \lambda_k \chi_{E_k}, \ g_1 + g_2 \leqslant f \cdot \chi_{A_2} = \sum \lambda_k \chi_{E_k}, \ g_1 + g_2 \leqslant f \cdot \chi_{A_2} = \sum \lambda_k \chi_{E_k}, \ g_1 + g_2 \leqslant f \cdot \chi_{A_2} = \sum \lambda_k \chi_{E_k}, \ g_1 + g_2 \leqslant f \cdot \chi_{A_2} = \sum \lambda_k \chi_{E_k}, \ g_1 + g_2 \leqslant f \cdot \chi_{A_2} = \sum \lambda_k \chi_{E_k}, \ g_1 + g_2 \leqslant f \cdot \chi_{A_2} = \sum \lambda_k \chi_{E_k}, \ g_1 + g_2 \leqslant f \cdot \chi_{A_2} = \sum \lambda_k \chi_{E_k}, \ g_1 + g_2 \leqslant f \cdot \chi_{A_2} = \sum \lambda_k \chi_{E_k}, \ g_1 + g_2 \leqslant f \cdot \chi_{A_2} = \sum \lambda_k \chi_{E_k}, \ g_1 + g_2 \leqslant f \cdot \chi_{A_2} = \sum \lambda_k \chi_{E_k}, \ g_1 + g_2 \leqslant f \cdot \chi_{A_2} = \sum \lambda_k \chi_{E_k}, \ g_2 \leqslant f \cdot \chi_{A_2} = \sum \lambda_k \chi_{E_k}, \ g_2 \leqslant f \cdot \chi_{A_2} = \sum \lambda_k \chi_{E_k}, \ g_2 \leqslant f \cdot \chi_{A_2} = \sum \lambda_k \chi_{E_k}, \ g_2 \leqslant f \cdot \chi_{A_2} = \sum \lambda_k \chi_{E_k} = g_2 \leqslant f \cdot \chi_{A_2} = g_$$

$$\int\limits_{A_1} g_1 + \int\limits_{A_2} g_2 = \int\limits_{A} g_1 + g_2.$$

переходим к $\sup q_1$ и q_2

$$\int_{A_1} f + \int_{A_2} f \leqslant \int_A f$$

по индукции разобьём для $A=A_1\sqcup A_2\sqcup\ldots\sqcup A_n,\, A=\bigsqcup_{i=1}^{+\infty}A_i$ и $A=A_1\sqcup A_2\sqcup\ldots\sqcup A_n\sqcup B_n,$ где $B_n=\bigsqcup_{i\geqslant n+1}A_i,$ тогда

$$\int\limits_{A}\geqslant\sum_{i=1}^{n}\int\limits_{A_{i}}f+\int\limits_{B}f\geqslant\sum_{i=1}^{n}\int\limits_{A_{i}}f\Rightarrow\int\limits_{A}f\geqslant\sum_{i=1}^{+\infty}\int\limits_{A_{i}}f$$

6.3 Следствие

$$f\geqslant 0$$
 — измеримая, $\nu:\mathcal{A} o\overline{\mathbb{R}}_+,\ \nu E=\int\limits_E fd\mu.$ Тогда u — мера.

6.4 Следствие 2

$$A=\bigsqcup_{i=1}^{+\infty}A_i,\ f$$
— суммируемая на $A,$ тогда

$$\int\limits_A f = \sum\limits_i \int\limits_{A_i} f.$$

Часть II

Предельный переход под знаком интеграла

7 Теорема Леви

 $(X, \mathcal{A}, \mu), f_n$ — измерима, $\forall n : 0 \le f_n(x) \le f_{n+1}(x)$ при почти всех x.

 $f(x) = \lim_{n \to +\infty} f_n(x)$ при почти всех x. Тогда

$$\lim_{n\to+\infty}\int\limits_X f_n(x)d\mu=\int\limits_X fd\mu.$$

7.1 Доказательство

f — измерима как предел измеримых функций.

 $f_n(x) \leqslant f(x)$ почти везде, тогда $\forall n: \int\limits_X f_n(x) d\mu \leqslant \int\limits_X f d\mu$, откуда следует, что и предел интегралов не превосходит интеграл предела.

• >

•

Достаточно доказать, что для любой ступенчатой функции $g:0\leqslant g\leqslant f$ верно $\lim\limits_V\int\limits_V f_n\geqslant \int\limits_V g.$

Достаточно доказать, что $\forall c \in (0,1)$ верно $\lim_X \int_X f_n \geqslant c \int_X g$.

$$E_n := X (f_n \geqslant cg), E_n \subset E_{n+1} \subset \dots$$

 $\bigcup E_n = X$, т.к. c < 1, то cg(x) < f(x), $f_n(x) \to f(x) \Rightarrow f_n$ попадёт в "зазор" cg(x) < f(x).

$$\int\limits_X f_n \geqslant \int\limits_{E_n} f_n \geqslant \int\limits_{E_n} cg = c \int\limits_{E_n} g,$$

 $\lim_{n\to +\infty}\int\limits_X f_n\geqslant \lim_{n\to +\infty}c\int\limits_{E_n}g=c\int\limits_X g, \text{ потому что это непрерывность снизу меры }A\mapsto \int\limits_A g.$

8 Линейность интеграла Лебега

Пусть $f,\,g$ — измеримы на $E,\,f\geqslant 0,\,g\geqslant 0.$ Тогда $\int\limits_E f+g=\int\limits_E f+\int\limits_E g.$

8.1 Доказательство

Если f, g — ступенчатые, то очевидно.

Разберём общий случай. Существуют ступенчатые функции $f_n: 0 \le f_n \le f_{n+1} \le \ldots \le f$, и $g_n: 0 \le g_n \le g_{n+1} \le \ldots \le g$, и $f_n(x) \to f(x)$ и $g_n(x) \to g(x)$. Тогда

$$\int\limits_E f_n+g_n=\int\limits_E f_n+\int\limits_E g_n,$$
 сделаем предельный переход, значит при $n\to +\infty$
$$\int\limits_E f+g=\int\limits_E f+\int\limits_E g$$

8.2 Следствие

Пусть f, g — суммируемые на множестве E, тогда f+g тоже суммируема и $\int\limits_E f+g=\int\limits_E f+\int\limits_E g.$

8.2.1 Доказательство

$$(f+q)_{+} \leq |f+q| \leq |f| + |q|.$$

$$h \coloneqq f + g$$
,

$$h_+ - h_- = f_+ - f_- + g_+ - g_-,$$

$$h_+ + f_- + g_- = h_- + f_+ + g_+,$$

$$\int h_{+} + \int f_{-} + \int g_{-} = \int h_{-} + \int f_{+} \int g_{+},$$

$$\int h_{+} - \int h_{-} = \int f_{+} - \int f_{-} + \int g_{+} - \int g_{-}, \text{ тогда}$$

$$\int h = \int f + \int g.$$

9 Теорема об интегрировании положительных рядов

 $u_n \geqslant 0$ почти везде, измеримы на E. Тогда

$$\int_{E} \left(\sum_{i=1}^{+\infty} u_n \right) d\mu = \sum_{n=1}^{+\infty} \int_{E} u_n d\mu.$$

9.1 Доказательство

Очевидно по теореме Леви.

$$S(x) = \sum_{n=1}^{+\infty} u_n(x)$$
 и $p \le S_N \le S_{N+1} \le \dots$ и $S_N \to S(X)$.

$$\lim_{n\to +\infty}\int\limits_E S_N=\int\limits_E S,$$

$$\lim_{n\to+\infty}\sum_{k=1}^n\int\limits_E u_k(x)=\int\limits_E S(x)d\mu.$$

9.2 Следствие

$$u_n$$
 — измеримая функция, $\sum\limits_{n=1}^{+\infty}\int\limits_{E}|u_n|<+\infty.$ Тогда

$$\sum u_n$$
 — абсолютно сходится почти везде на E .

9.2.1 Доказательство

$$S(x) = \sum_{n=1}^{+\infty} |u_n(x)|$$

$$\int\limits_E S(x) = \sum_{n=1}^{+\infty} \int |u_n(x)| < +\infty, \text{ значит } S(x) \text{ конечна почти всюду}.$$

10 Абсолютная непрерывность интеграла

f — суммируемая функция, тогда верно:

$$\forall \varepsilon > 0: \exists \delta > 0: \forall E \in \mathcal{A}: \mu E < \delta: \left| \int\limits_{E} f \right| < \varepsilon$$

.

10.1 Доказательство

$$X_n = X (f \geqslant n), X_n \supset X_{n+1} \supset \dots$$
 и $\mu \left(\bigcap_{n=1}^{+\infty} X_n\right) = 0.$

Тогда $\forall \varepsilon > 0 : \exists n_{\varepsilon} : \int\limits_{X_{n_{\varepsilon}}} |f| < \frac{\varepsilon}{2} \ (A \mapsto \int\limits_{A} |f|$ — мера, тогда $\int\limits_{\bigcap X_{n}} |f| = 0$ и по непрерывности меры сверху).

$$δ \coloneqq \frac{\varepsilon}{2n_{\varepsilon}}, \text{ берём } E : \mu E < \delta.$$

$$\left| \int\limits_{E} f \right| \leqslant \int\limits_{E} |f| = \int\limits_{E \cap X_{n_{\varepsilon}}} |f| + \int\limits_{E \smallsetminus X_{n_{\varepsilon}}} |f| \leqslant \int\limits_{X_{n_{\varepsilon}}} |f| + n_{\varepsilon} \mu E < \frac{\varepsilon}{2} + n_{\varepsilon} \frac{\varepsilon}{2n_{\varepsilon}} = \varepsilon.$$

10.2 Следствие

 e_n — измеримое множество, $\mu e_n \to 0, \, f$ — суммируемая. Тогда $\int\limits_{e_n} f \to 0.$

$11 \quad 02.03.2020$

 $f_n \Rightarrow f$ по мере то же самое, что и $\mu X(|f_n - f| \geqslant \varepsilon) \to 0$. Ещё есть способ $\int\limits_X |f_n - f| d\mu \to 0$. Можно ли вывести хоть какую-нибудь импликацию.

$$\Rightarrow$$
 нельзя, пример: $f_n(x) = \frac{1}{nx}$ в (\mathbb{R}, λ), тогда $f_n \Rightarrow 0$ по мере. а $\int \left| \frac{1}{nx} \right| d\mu = +\infty$.

$$\Leftarrow$$
 можно: $\mu X(|f_n - f| \geqslant \varepsilon) = \int\limits_{x_n} 1 d\mu \leqslant \int\limits_{x_n} \frac{|f_n - f|}{\varepsilon} d\mu \leqslant \frac{1}{\varepsilon} \int\limits_{X} |f_n - f| \to 0.$

Хотим доказать подобие $f_n \to f$, то $\int f_n \to \int f$.

11.1 Теорема Лебега о мажорированной сходимости

 $f_n,\,f$ — измеримые, почти везде конечные функции. $f_n \Longrightarrow_{\mu} f.$ Также существует g, что:

- 1. $\forall n: |f_n| \leqslant g$ почти везде;
- 2. g суммируема на X (g мажоранта).

Тогда
$$\int\limits_X |f_n-f| d\mu \to 0$$
, и тем более $\int\limits_X f_n \to \int\limits_X f$.

11.1.1 Доказательство

 f_n — суммируема в силу первого утверждения про g, f — суммируема по следствию теоремы Рисса. Тем более $\left| \int\limits_V f_n - \int\limits_V f \right| \leqslant \left| \int\limits_V f_n - f \right| \leqslant \int\limits_V |f_n - f|.$

1. $\mu X < +\infty$. Фиксируем $\varepsilon > 0$. $X_n \coloneqq X(|f_n - f| \ge \varepsilon), \ \mu X_n \to 0$.

$$\int\limits_X |f_n-f| = \int\limits_{x_n} + \int\limits_{x_n^c} \leqslant \int\limits_{x_n} 2g + \int\limits_{x_n^c} \varepsilon_0 \leqslant \int\limits_{x_n} 2g + \int\limits_x \varepsilon < \varepsilon (1+\mu X). \ (\text{при больших } n \text{ выражение } \int\limits_{x_n} 2g \leqslant \varepsilon).$$

2. $\mu X = +\infty$, $\varepsilon > 0$.

Утверждение:
$$\exists A$$
 — измеримое, μA — конечное, $\int\limits_{X \smallsetminus A} g < \varepsilon$.

Доказательство

$$\int G = \sup \left\{ \int g_n : h - \text{ступенчатая функция} 0 \leqslant h \leqslant g \right\}$$

$$\exists h_0 : \int\limits_X g - \int\limits_X h_0 < \varepsilon, \ A \coloneqq \text{supp } h_0. \ \text{(где supp } - \text{ носитель (support)})$$

$$\int\limits_{X\smallsetminus A}g+\int\limits_Ag-h_0<\varepsilon.$$

$$\int\limits_X|f_n-f|=\int\limits_A+\int\limits_{X\smallsetminus A}\leqslant\int\limits_A|f_n-f|+2\varepsilon<3\varepsilon$$
 при больших $n.$

11.2 Теорема Лебега о мажорированной сходимости почти везде

 $(X, \mathcal{A}, \mu), f_n, f$ — измеримые, $f_n \to f$ — почти везде.

Существует такая g, что:

- 1. $|f_n| ≤ g$ почти везде;
- 2. g суммируема.

11.2.1 Доказательство

 f_n, f — суммируемая, тем более — как и раньше.

 $h_n\coloneqq\sup(|f_n-f|,|f_{n+1}-f|,\ldots),\;h_n$ убывает. $0\leqslant h_n\leqslant 2g.$

 $\lim_{n\to+\infty} h_n(x) = \overline{\lim} |f_n - f| = 0$ почти везде.

 $2g-h\geqslant 0$, возрастают, тогда по теореме Леви $\int\limits_X 2g-h o \int\limits_X 2g$, значит $\int\limits_X h_n o 0$, тогда $\int\limits_X |f_n-f|\leqslant \int\limits_X h_n o 0$.

11.3 Теорема Фату

 $(X, \mathcal{A}, \mu, f_n \geqslant 0$ — измеримые, $f_n \to f$ почти везде. Если $\exists C > 0$, что $\forall n : \int\limits_X f_n \leqslant C$, то $\int\limits_X f \leqslant C$.

11.3.1 Замечание

Вообще говоря $\int\limits_X f_n \neq \int\limits_X f.$

11.3.2 Доказательство

$$g_n = \int (f_n, f_{n+1}, \ldots).$$

 g_n возрастает, $g_n \to f$ почти везде. $\lim g_n$ = $\underline{\lim} f_n$ = f почти везде.

$$\int\limits_X g_n \leqslant \int\limits_X f_n \leqslant C, \text{ тогда } \int\limits_X F \leqslant C.$$

Примерчик

 $f_n = n \cdot \chi_{[0,\frac{1}{n}]} \to 0$ почти везде.

$$\int_{\mathbb{R}} f_n = 1, \int f = 0.$$

Положительность важна:

$$f_n\geqslant 0,$$
 тогда \int $-f_n\leqslant -1,$ но \int f = $0\geqslant -1.$

11.3.3 Следствие

$$f_n \underset{\mu}{\Longrightarrow} f \ (f_{n_k} \to f).$$

11.3.4 Следствие 2

 $f_n \geqslant 0$, измеримая. Тогда

$$\int\limits_X \underline{\lim} f_n \leqslant \underline{\lim} \int\limits_X f_n.$$

Доказательство

$$\int\limits_X g_n \leqslant \int\limits_X f_n \leqslant C.$$

Берём n_k

$$\underline{\lim} \left(\int_{X} f_{n} \right) = \lim_{k \to +\infty} \left(\int_{X} f_{n_{k}} \right).$$

$$\int_{X} f_{n_{k}} \to \lim \left(\int_{X} f_{n} \right), \text{ a } \int_{X} g_{n} \to \int_{X} \underline{\lim} f_{n}.$$

Часть III

Произведение мер

12 Произведение мер

 (X, \mathcal{A}, μ) и (Y, \mathcal{B}, ν) — пространства с мерой.

 $\mathcal{A} \times \mathcal{B} = \{A \times B, A \in \mathcal{A}, B \in \mathcal{B}\}$ — семейство подмножеств в $X \times Y$.

 \mathcal{A}, \mathcal{B} — полукольца, значит и $\mathcal{A} \times \mathcal{B}$ — полукольцо.

 $\mathcal{A} \times \mathcal{B}$ — полукольцо *измеримых прямоугольников* (на самом деле это не всегда так).

Тогда введём меру на $A \times B - \mu_0(A \times B) = \mu(A) \cdot \nu(B)$.

Обозначим $(X \times Y, A \otimes B, \mu \times \nu)$ как произведение пространств с мерой.

13 Теорема о произведении мер

- 1. μ_0 мера на полукольце $\mathcal{A} \times \mathcal{B}$;
- 2. $\mu, \nu \sigma$ -конечное, значит $\mu_0 \sigma$ -конечное.

13.1 Доказательство

1. Проверим счётную аддитивность μ_0 . $\chi_{A\times B}(x,y)=\chi_A(x)\cdot\chi_B(y),\ (x,y)\in X\times Y.$

$$P=\bigsqcup_{\mathrm{cy.}}P_k$$
 — измеримые прямоугольники. $P=A\times B$ и $P_k=A_k\times B_k,\ \chi_P=\sum\chi_{P_k}.$

$$\chi_A(x)\chi_B(y) = \sum_k \chi_{A_k}(x)\chi_{B_k}(y)$$
. Интегрируем по ν (по пространству Y).

$$\chi_A(x) \cdot \nu(B) = \sum \chi_{A_k}(x) \nu(B_k)$$
. Интегрируем по μ .

$$\mu A \cdot \nu B = \sum \mu A_k \cdot \nu B_k.$$

2. $X=\bigcup X_k,\,Y=\bigcup Y_j,$ где μX_k и νY_j — конечные, $X\times Y=\bigcup_{k,j}X_k\times Y_j.$

$$(\mathbb{R}^m,\mathcal{M}^m,\lambda_m)$$
 и $(\mathbb{R}^n,\mathcal{M}^n,\lambda_n)$.

$$(X \times Y, \mathcal{A} \otimes \mathcal{B}, \mu_0)$$
, где $\mathcal{A} \times \mathcal{B}$ — полукольцо.

Запускаем теорему о продолжении меры.

$$ightarrow$$
 $(X imes Y, \mathcal{A} \otimes \mathcal{B}, \mu)$, где $\mathcal{A} imes \mathcal{B} - \sigma$ -алгебра.

 $\mu, \nu - \sigma$ -конечная, следовательно продолжение определено однозначно.

13.2 Замечание

Произведение мер ассоциативно.

13.3 Дополнительная теорема (без доказательства)

 λ_{m+n} есть произведение мер λ_m и λ_n .

14 Сечения множества

 $X,\ Y$ и $C \subset X \times Y,\ C_x = \{y \in Y : (x,y) \in C\} \subset Y$ — сечение множества C, аналогично определим $C^y = \{x \in X : (x,y) \in C\}.$

Допустимы объедения, пересечения и т.п.

15 Принцип Кавальери

 (X, \mathcal{A}, μ) и (Y, \mathcal{B}, ν) , а также $\mu, \nu - \sigma$ -конечные и полные.

 $m = \mu \times \nu, C \in \mathcal{A} \otimes \mathcal{B}$. Тогда:

- 1. при почти всех $x \in X$ сечение $C_x \in \mathcal{B}$;
- 2. $x \mapsto \nu(C_x)$ измерима (почти везде) на X;
- 3. $mC = \int_{Y} \nu(C_x) d\mu(x)$.

15.1 Замечание

- 1. C измеримая ≠ что $∀x : C_x$ измеримое.
- 2. $\forall x, \, \forall y, \, C_x, \, C^y$ измеримы \Rightarrow что C измеримо (пример можно взять из Серпинскиго).

15.2 Доказательство

D-класс множеств $X\times Y,$ для который принцип Кавальери верен.

1.
$$D \times \mathcal{B} \subset D$$
, $C = A \times B$, $C_x = \begin{cases} B & x \in A \\ & & \\ \varnothing & x \notin A \end{cases}$

$$x \longmapsto C_x : \nu B \cdot \chi_A(x).$$

$$\int\limits_{V}\nu B\chi_{A}(x)d\mu(x)=\mu A\cdot\nu B=mC.$$

2. E_i — дизъюнктные, $E_i \in D$. Тогда $\bigsqcup E_i \in D$.

 $(E_i)_x$ — измеримые при почти всех x.

При почти всех x все сечения $(E_i)_x$, $i=1,2,\ldots$ измеримые.

 E_x = $\bigsqcup (E_i)_x$ — измеримые при почти всех x.

 $u E_x$ = $\sum
u (E_i)_x$, значит $x \mapsto
u E_x$ измеримая функция.

$$\int_{Y} \nu E_x d\mu = \int_{Y} \sum_{Y} \nu(E_i)_x d\mu = \sum_{Y} \int_{Y} \nu(E_i)_x d\mu = \sum_{Y} mE_i = mE$$

3.
$$E_i \in D, \ldots \supset E_i \supset E_{i+1} \supset \ldots, \ E = \bigcap_{i=1}^{+\infty} E_i, \ mE_i < +\infty.$$
 Тогда $E \in D.$

$$\int\limits_V \nu(E_i)_x d\mu = mE_i < +\infty \Rightarrow \nu(E_i)_x - \text{почти везде конечны}.$$

$$(E_i)_x \supset (E_{i+1})_x \supset \ldots, E_x = \bigcap_{i=1}^{+\infty} (E_i)_x \Rightarrow E_x$$
 — измеримое при почти всех x .

При почти всех x (для тех x, для который $\nu(E_i)_x$ — конечные сразу все i или при i = 1), поэтому можно утверждать, что $\nu E_x = \lim_{i \to +\infty} \nu(E_i)_x \Rightarrow x \mapsto \nu E_X$ — измерима.

$$\int\limits_X \nu E_x d\mu = \int\limits_X \lim (\nu E_i)_x = \lim_{i \to +\infty} \int\limits_X \nu(E_i)_x d\mu = \lim m E_i = m E \text{ (по непрерывности сверху меры } m\text{)}.$$

Перестановка пределов доказывается из теоремы Лебега, которую ещё не доказывали $|\nu(E_i)_x| \le \nu(E_1)_x$ — суммируемая функция.

Мы доказали, что если $A_{ij} \in \mathcal{A} \times \mathcal{B}$, то $\bigcap_{j} \left(\bigcup_{i} A_{ij}\right) \in D$. $mE = \inf\left(\sum_{i} mP_{k}, \ E \subset \bigcup_{i} P_{k}\right)$.

4.
$$mE=0\Rightarrow E\in D.$$
 $H=\bigcap_{i}\bigcup_{j}P_{ij},\ mH=0\ (P_{ij}\in\mathcal{A}\times\mathcal{B}),\ \text{тогда}\ E\subset H\ (H\in D).$

$$0=mH=\int\limits_X \nu H_x d\mu\Rightarrow \nu H_x=0$$
 при почти всех x , но E_x \subset H_x \Rightarrow при почти всех x νE_x $=$ 0 , значит и
$$\int \nu E_x=0=mE.$$

5.
$$C \in \mathcal{A} \otimes \mathcal{B}, \ mC < +\infty \Rightarrow C \in D.$$

Для множества C существует множество e, что me=0 и $H=\bigcap\bigcup P_{ij}$ и $C=H\smallsetminus e$, $C_x=H_x\smallsetminus e_x$ и mC=mH.

 νe_x = 0 при почти всех x, значит νC_x = νH_x – νe_x при почти всех x.

$$\int\limits_{Y} \nu C_x d\mu = \int\limits_{Y} \nu H_x - \nu e_x = \int\limits_{Y} \nu H_x - \int\limits_{Y} \nu e_x = mH = mC.$$

6. C — произвольное, m-измеримое множество, $X = \bigsqcup X_k$ и $Y = \bigsqcup Y_j$, тогда $C = \bigsqcup_{i,j} (C \bigcap (X_i \times Y_j)) \in D$ по пункту 2. $(\mu X_k, \, \mu Y_j$ — конечные).

15.3 Следствие

$$C \in Q \otimes B, P_1(C) \coloneqq \{x : C_x \neq \emptyset\},$$
 тогда если $P_1(C)$ — измеримое в X , тогда $mC = \int\limits_{P_1(C)} \nu C_x d\mu x.$

15.4 Замечание

Из того, что C измеримое \Rightarrow что его проекция измерима.

16 Совпадение определенного интеграла и интеграла Лебега

$$f:[a,b] o \mathbb{R}$$
, непрерывное. Тогда $\int\limits_a^b f(x)dx = \int\limits_{[a,b]} fd\lambda_1.$

16.1 Доказательство

Достаточно доказать для $f \geqslant 0$.

$$f$$
 — непрерывно \Rightarrow C = $\Pi\Gamma(f,[a,b])$ измеримо в \mathbb{R}^2 (почти очевидно).

$$C_x$$
 = $[0, f(x)]$ (или Ø) \Rightarrow измеримость $\lambda_1 C_x$ = $f(x)$.

$$\int_{a}^{b} f(x)dx = \lambda_{2} \left(\Pi\Gamma \left(f, [a, b] \right) \right) = \int_{[a, b]} f(x)d\lambda_{1}(x).$$

16.2 Замечание

$$f\geqslant 0$$
 измеримое, значит $\lambda_2\Pi\Gamma(f,[a,b])=\int\limits_{[a,b]}f(x)d\lambda_2(x).$

$$f: X \times Y \to \overline{\mathbb{R}}, \ C \in X \times Y, \ C_x, \ f_x: C_x \to \mathbb{R}, \ \text{т.e.} \ y \mapsto f(x,y), \$$
аналогично $f^y: C^y \to \overline{\mathbb{R}}.$

17 Теорема Тонелли

 $(X, \mathcal{A}, \mu), (Y, \mathcal{B}, \nu)$ и $\mu, \nu - \sigma$ -конечные и полные, а также $m = \mu \times \nu$.

 $f: X \times Y \to \overline{\mathbb{R}}, \ f \geqslant 0$, измеримая. Тогда

- 1. при почти всех x функция f_x измерима почти везде на Y (аналогично при почти всех y функция f^y также измерима на X);
- 2. $x \mapsto \varphi(x) = \int_{Y} f_{x}(y) d\nu(y) = \int_{Y} f(x,y) d\nu(y)$ измерима почти везде на X (аналогично $y \mapsto \psi(y) = \int_{X} f(x,y) d\mu(x)$ измерима почти везде на Y);

3.
$$\int_{X\times Y} f(x,y)d\mu = \int_{Y} \left(\int_{X} f(x,y)d\mu(x) \right) d\nu(y) = \int_{X} \left(\int_{Y} f(x,y)d\nu(y) \right) d\mu(x).$$

17.1 Доказательство

1. $f = \chi_c, C \in X \times Y$, измеримая. $f_x = \chi_{C_x}(y)$. C_x — измеримое при почти всех $x \Rightarrow f_x$ — измеримая при почти всех x.

$$\varphi(x) = \int\limits_{V} \chi_{C_x}(y) d\nu(y) = \nu(C_x) \ (x \mapsto \nu C_x$$
 — измерима по принципу Кавальери).

$$\int\limits_X \varphi(x) = \int\limits_X \nu C_X = mC = \int\limits_{X\times Y} \chi_C dm.$$

 $2. \ f = \sum_{k \in \mathbb{N}} a_k \chi_{C_k}, \ f \geqslant 0.$

$$f_x = \sum a_k \chi_{(C_k)_x}(y).$$

 $x \mapsto \int f_x(y) d\nu(y) = \sum a_k \nu(C_k)_x$ — измеримая (отдельные слагаемые — измеримые, значит и вся сумма измеримая).

$$\int_{X} \left(\int_{Y} f_{x}(y) d\nu \right) d\mu = \sum_{X} a_{k} \int_{X} \nu(C_{k})_{x} d\mu = \sum_{X} a_{k} m C_{k} = \int_{X \times Y} f dm$$

3. $f \geqslant 0, g_n$ — ступенчатые, что ... $\leqslant g_n \leqslant g_{n+1} \leqslant \ldots, \lim_{n \to +\infty} g_n = f$.

 $f_x = \lim_{n \to +\infty} (g_n)_x$ — измерима как предел измеримых функций.

$$\varphi(x) = \int\limits_Y f_x(y) d\nu(y) = \lim_{n \to +\infty} \int\limits_Y g_n d\nu = \lim_{n \to +\infty} \varphi_n(x)$$
, значит $\varphi(x)$ измерима из-за измеримости φ_n (Теорема Леви).

$$g_n \leqslant g_{n+1} \leqslant \ldots \Rightarrow \varphi_n(x) \leqslant \varphi_{n+1}(x) \leqslant \ldots$$

$$\int\limits_X \varphi(x) = \lim_{n \to +\infty} \int\limits_X \varphi_n(x) = \lim_{n \to X \times Y} \int\limits_{X \times Y} g_n dm = \int\limits_{X \times Y} f dm \; (\text{по теореме Леви})$$

Везде должна быть приговорка "при почти всех x".

18 Теорема Фубини

 $(X, \mathcal{A}, \mu), (Y, \mathcal{B}, \nu)$ и $\mu, \nu - \sigma$ -конечные и полные.

 $f: X \times Y \to \overline{\mathbb{R}}$, суммируемая. Тогда

- 1. при почти всех x функция f_x суммируемая почти везде на Y (аналогично при почти всех y функция f^y также измерима на X).
- 2. $x \mapsto \varphi(x) = \int\limits_Y f_x(y) d\nu(y) = \int\limits_Y f(x,y) d\nu(y)$ суммируемая почти везде на X (аналогично $y \mapsto \psi(y) = \int\limits_X f(x,y) d\mu(x)$ суммируемая почти везде на Y).

3.
$$\int_{X\times Y} f(x,y)d\mu = \int_{Y} \left(\int_{X} f(x,y)d\mu(x)\right) d\nu(y) = \int_{X} \left(\int_{Y} f(x,y)d\nu(y)\right) d\mu(x)$$

без доказательства

18.0.1 Следствие

$$\int_{C} f = \int_{X \times Y} f \chi_{C} = \int_{X} \left(\int_{Y} f \cdot \chi_{C} \right) d\mu = \int_{P_{1}(C)} \left(\int_{C_{x}} f(x, y) d\nu(y) \right) d\mu(x).$$

 $P_1(C)$ — проекция, измеримая, $\{x: C_x \neq \emptyset\}$.

19 Какая-то нужная штука для лекции 02.03.2020, потом удалю

 $B(0,1) \subset \mathbb{R}^m$, Хотим найти $\lambda_m B(0,1) = \alpha_m$.

$$\lambda_m B(0,R) = \alpha_m \cdot R^M.$$

$$x_1^2 + x_2^2 + \ldots + x_m^2 \le 1.$$

интеграл обычного кружочка: $\int \chi_B d\lambda_2 = \int\limits_{-1}^1 \int\limits_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} 1 dy dy dx = \int\limits_{-1}^1 2\sqrt{1-x^2} dx = \pi$

$$\alpha_m = \int_{\mathbb{R}^m} \chi_B = \int_{-1}^1 \left(\int_{B(0,\sqrt{1-x_1^2}) \subset \mathbb{R}^{m-1}} 1 d\nu \right) dx_1 = \int_{-1}^1 (1-x_1^2)^{\frac{m-1}{2}} \alpha_{m-1} dx_1.$$

$$B(x,y) = \int_{0}^{1} t^{x-1} (1-t)^{y-1} dt.$$

$$B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}, \ \Gamma(n) = (n-1)!, \ \Gamma(x+1) = \Gamma(x) \cdot x.$$

Тогда объём шара в \mathbb{R}^m равен $\alpha_{m-1}2\int\limits_0^1 (1-t)^{\frac{m-1}{2}}t^{-\frac{1}{2}}dt=B(\frac{1}{2},\frac{m+1}{2})\alpha_{m-1}$. Тогда объём шара можно переписать как $\frac{\Gamma(\frac{1}{2})\Gamma(\frac{m+1}{2})}{\Gamma(\frac{m}{2}+1)\alpha_{m-1}}$.

Часть IV

Замена переменных в интеграле

20 Образ меры при отображении

 (X, A, μ) и (Y, B,) (пространство и алгебру изобрели, а меру нет).

$$\Phi: X \to Y, \ \forall B \in \mathcal{B} \ \Phi^{-1}(B)$$
 — измеримо ($\in \mathcal{A}$).

 $\nu: \mathcal{B} \to \overline{\mathbb{R}}, E \in \mathcal{B}, \nu E \coloneqq \mu(\Phi^{-1}(E))$ — это мера на \mathcal{B} , а также образ меры μ при отображении Φ .

20.1 Замечание 1

$$\nu E = \int_{\Phi^{-1}(E)} 1d\mu.$$

$$\nu\left(\bigsqcup B_i\right) = \mu\left(\Phi^{-1}\left(\bigsqcup B_i\right)\right) = \mu\left(\bigsqcup\Phi^{-1}(B_i)\right) = \sum \mu\Phi^{-1}(B_i) = \sum \nu B_i.$$

20.2 Замечание 2

f — измерима относительна $\mathcal{B},$ тогда $f\circ\Phi$ — измерима относительна $\mathcal{A}.$

$$X\left(f\left(\Phi(x)\right) < a\right) = \Phi^{-1}\left(Y(f < a)\right).$$

21 Взвешенный образ меры

 $\omega:X o\overline{\mathbb{R}},\,\omega\geqslant0,$ измеримая.

Тогда $\nu(B)\coloneqq\int\limits_{\Phi^{-1}(B)}\omega d\mu$ — мера, которая назначает *взвешенный образ меры* μ , где ω — её вес.

22 Теорема о вычислении интеграла по взвешенному образу меры

 $\Phi: X \to Y$ — измеримое отображение, $\omega: X \to \overline{\mathbb{R}}, \ \omega \geqslant 0$ —измеримая на $X.\ \nu$ — взвешенный образ меры μ (ω — её вес). Тогда

 $\forall f\geqslant 0$ — измеримой на Y верно, что $f\circ\Phi$ — измерима на X и выполняется следующее свойство:

$$\int\limits_{Y} f(y)d\nu(y) = \int\limits_{X} f(\Phi(x))\omega(x)d\mu(x).$$

22.1 Замечание

То же верно для случая f — суммируемая.

22.2 Доказательство

1.
$$f=\chi_B,\ B\in\mathcal{B}.$$
 Тогда $(f\circ\Phi)\,(x)=egin{cases} 1&\Phi(X)\in B\\ 0&\Phi(x)\notin B \end{cases}=\chi_{\Phi^{-1}(B)}.$ Доказывать нечего $\odot: \nu B=\int\limits_{\Phi(B)}\omega d\mu;$

- $2.\ f$ ступенчатая, для каждой ступеньки правда, и по линейности интеграла получаем результат;
- 3. $f \geqslant 0$ измеримая. Теорема об аппроксимизации измеримых функций ступенчатыми плюс предельный переход по теореме Леви;
- 4. f измеримая, значит |f| всё верно.

22.3 Следствие

$$f$$
 — суммируема на Y , $B \in \mathcal{B}$, $\int_{B} f d\nu(y) = \int_{\Phi^{-1}} (B) (f \circ \Phi) w d\mu$.

Частный случай: X = Y, $\mathcal{A} = \mathcal{B}$, $\Phi = \mathrm{id}$, $\omega \geqslant 0$ — измерима.

23 Плотность одной меры по отношению к другой

$$u B = \int\limits_{B} \omega(x) d\mu(x),$$
 тогда ω — плотность меры ν относительно меры μ .

23.1 Замечание

$$\int\limits_X f(x)d\nu(x) = \int\limits_X f(x)\omega(x)d\mu(x).$$

24 Критерий плотности

 $(X,\mathcal{A},\mu),\, \nu$ — ещё одна мера на $\mathcal{A},\, \omega\geqslant 0$ — измеримая. Тогда

 $\omega - \text{плотность } \nu \text{ относительно } \mu \Longleftrightarrow \forall A \in \mathcal{A} \text{ верно: } \inf_{A} \omega \cdot \mu A \leqslant \nu A \leqslant \sup_{A} \omega \cdot \mu A \text{ (0} \cdot \infty = 0).$

24.0.1 Доказательство

- ullet \to Очевидно (интеграл μA обладает этими свойствами из-за плотностей);
- \Leftarrow Считаем, что $\omega > 0$. Для $\omega = 0$ получаем: $e := X(\omega = 0)$, $\nu e = 0 = \int_e \omega d\mu$, тогда $\nu(A) = \int_A \omega d\mu = 0$. Теперь пусть $\omega > 0$, то $q \in (0,1)$. $A_j := A(q^j \leqslant \omega \leqslant q^{j-1})$, $j \in \mathbb{Z}$, $A = \bigsqcup_{j \in \mathbb{Z}} A_j$. $q^j \mu A_j \leqslant \nu A_j \leqslant q^{j-1} \mu A_j.$

$$q^{j}\mu A_{j}\leqslant \int\limits_{A_{j}}\omega d\mu\leqslant q^{j-1}\mu A_{j}.$$

$$q\int\limits_A\omega d\mu=q\sum\int\limits_{A_j}\leqslant\sum q^j\mu A_j\leqslant \nu A\leqslant\frac{1}{q}\sum q^j\mu A_j\leqslant\frac{1}{q}\int\limits_A\omega.$$

Устремим $q \to 1$ и получим доказательство равенства.

25 Единственность плотности

 $f,\,g$ — суммируемые на $X,\,\forall A$ — измеримых верно: $\int\limits_A f=\int\limits_a g.$ Тогда f = g почти везде.

25.0.1 Доказательство

$$h=f-g,\ \forall A$$
 — измеримых, $\int_A h=0.$ $A_+=X(h\geqslant 0),\ A_-=X(h<0),\ A_+\bigcap A_-=\varnothing.$ $\int_{A_+} |h|=\int_{A_+} h=0.$ $\int_{A_-} |h|=-\int_{A_-} h=0.$ $X=A_+\bigsqcup A_-,\ \int_X |h|=0,\ \text{тогда}\ h=0.$

25.1 Следствие

Плотность ν относительно ν определена однозначно с точностью до μ почти везде.

26 Лемма об образе малых кубических ячеек

 $\Phi: O \subset \mathbb{R}^m \to \mathbb{R}^m, a \in O.$ Φ — дифференцируема G в окрестности точки $a, \det \Phi'(a) \neq 0.$ Пусть $c > |\det \Phi'(a)|.$

Тогда существует такое $\delta > 0$, что для любого куба $Q \subset B(a, \delta)$, $a \in Q$ верно, что $c \cdot \lambda Q > \lambda \Phi(Q)$.

26.0.1 Доказательство

 $L \coloneqq \Phi'(a)$ — обратимое линейное отображение.

$$\Phi(x) = \Phi(a) + L(x-a) + o(x-a).$$

 $a + L^{-1}(\Phi(x) - \Phi(a)) = x + o(x - a)$ (увеличили в константу, поэтому о маленькое остаётся о маленьким).

 $\forall \varepsilon > 0$ можно записать шар $B_{\varepsilon}(a)$, что при $x \in B_{\varepsilon}(a) |\psi(x) - x| < \frac{\varepsilon}{\sqrt{m}} |x - a|$.

 $Q \subset B_{\varepsilon}, \ a \in Q$ — куб со стороной h, при $x \in Q : |\psi(x) - x| < \varepsilon h. \ |x_i - a_i| \leqslant h.$

 $x, y \in Q$, тогда $|\psi(x)_i - \psi(y)_i| = |\psi(x)_i - x_i| + |\psi(y)_i - y_i| + |x_i - y_i| \le |\psi(x) - x| + |\psi(y) - y| + h < (1 + 2\varepsilon)h$.

 $\psi(Q)$ — содержится в кубе со стороной $(1+2\varepsilon)h$, тогда $\lambda\psi(Q)\leqslant (1+2\varepsilon)^m\lambda Q$.

 $\lambda \Phi(Q) \le (1 + 2\varepsilon)^m |\det L| \lambda Q < C\lambda Q.$

Берём $\varepsilon: (1+2\varepsilon)|\det L| < C$, где δ — радиус $B_{\varepsilon}(a)$.

$$\lambda A = \inf_{G \text{ - открытое}, A \subset G} \lambda G$$

27 Теорема об образе меры Лебега при диффеоморфизме

27.1 Лемма

 $f: \underset{\text{откр.}}{O} \subset \mathbb{R}^m \to \mathbb{R}, \ O$ — непрерывное. A — измеримое, $A \subset Q \subset \overline{Q} \subset O$.

Тогда
$$\int\limits_{A\subset G\text{открытое}} \left(\lambda(G)\sup_G f\right) = \lambda A\sup_A f.$$

Без доказательства.

27.2 Теорема

 $\Phi:O\subset\mathbb{R}^m\to\mathbb{R}^m$ — диффеоморфизм. $A\in\mathcal{M}^m,\,A\subset O.$ Тогда

$$\lambda\Phi(A) = \int_A |\det \Phi'(a)| d\lambda.$$

27.2.1 Доказательство

 $\nu A \coloneqq \lambda \Phi(A)$. Верно ли, что $J_{\Phi}(x) \coloneqq |\det \Phi'(x)|$ — это плотность ν по отношению к μ .

Достаточно проверить, что $\forall A$ верно: $\inf_A J_\Phi \cdot \lambda A \leqslant \nu A \leqslant \sup_A J_\Phi \cdot \lambda A$.

Достаточно проверить правое неравенство. Левое — правое для Φ^{-1} и \widetilde{A} = $\Phi(A)$.

$$\lambda \Phi^{-1}(\widetilde{A}) \leqslant \sup J_{\Phi^{-1}} \cdot \lambda \widetilde{A}.$$

 $\lambda A \leq \sup \left| \det(\Phi^{-1})' \right| \lambda \Phi(A).$

$$\sup \frac{1}{|\det \Phi'|}$$

$$\frac{1}{\inf|\det\Phi'|}$$

- 1. A кубическая ячейка, $\overline{A} \subset O$. От противного: пусть оказалось, что $\lambda Q \sup J_{\Phi} < \nu Q$. Возьмём $c > \sup_Q J_{\Phi}$, так, что $\lambda Q \cdot c < \nu Q$. Значит существует такая часть Q_i , что $\lambda Q_i \cdot c < \nu Q_i$. $\lambda Q_n \cdot c < nuQ_n$, $a = \bigcap \overline{Q_n}$, накроем точку a этим кубиков. $c > |\det \Phi'(a)|$, тогда $\nu Q_n = \lambda \Phi(Q_n)$. Получили, что $\lambda \Phi(Q_n) > c\lambda Q_n$, а по лемме нужно наоборот.
- 2. Оценка $\nu A \leqslant \sup J_{\Phi} \lambda A$, верна для случая, когда A открытое множество.

$$\nu Q \leqslant \sup_{A} J_{\Phi} \lambda Q.$$

Суммируя по Q: $\nu A \leqslant \sup_{A} J_{\Phi} \lambda A$.

Что было в лемме (и что мы потеряли):

$$\inf_{A\subset G}\left(\lambda G\cdot \sup_G f\right)=\lambda A\cdot \sup_A f.$$

G — открытое, тогда

$$\nu G \leqslant \sup_{G} J_{\Phi} \cdot \lambda G.$$

$$\nu A\leqslant \nu G\leqslant \lambda\lambda A\sup_A f.$$

 $\forall A \in \mathcal{M}^m, \ \Phi(A)$ — измерима

$$\lambda\Phi(A) = \int\limits_A |\det\Phi'(x)| \, d\lambda(x).$$

$$\Phi:X\to Y$$

$$\nu(E) = \int -\Phi^{-1}(E)\omega d\mu.$$

$$E = \Phi(A)$$
.

28 Теорема о гладкой замене переменной в интеграле Лебега

 $\Phi: O \subset \mathbb{R}^m \to \mathbb{R}^m$ — диффеоморфизм, f — измеримое, $f \geqslant 0$, $\mathcal{O} = \Phi(O)$. Тогда

$$\int_{\mathcal{O}} f(y)dy = \int_{\mathcal{O}} f(\Phi(x)) |\det \Phi'(x)| dx.$$

То же верно для суммируемой функции f.

28.1 Доказательство

Следует из теоремы об образе меры Лебега.

29 Сферические координаты в \mathbb{R}^m

 $r^{m-1}sin^{m-2}\varphi_1\sin^{m-3}\varphi_2\ldots\sin\varphi_{m-2}$ — это Якобиан.

```
r — расстояние от центра до точки \varphi_1, \, \varphi_2, \, \ldots, \, \varphi_{m-1} — соответствующие углы, определяются по индукции на меньшие подпространства. x_1 = r \cos \varphi_1; x_2 = r \sin \varphi_1 \cos \varphi_2; \vdots x_m = r \sin \varphi_1 \sin \varphi_2 \ldots \sin \varphi_{m-1}. x_1, \ldots, x_m. Выразим последние две переменные через угол \varphi_{m-1} и какое-то расстояние \rho_{m-1}. x_1, \ldots, x_{m-2}, \, \rho_{m-1}, \, \varphi_{m-1}, \, \text{тогда} x_{m-1} = \rho_{m-1} \cos \varphi_{m-1}, \, \text{а} \, x_m = \rho_{m-1} \sin \varphi_{m-1}. x_{m-2} = \rho_{m-2} \cos \varphi_{m-2}. \vdots Пусть осталось только x_1, тогда x_1 = r \cos \varphi_1 и \rho_2 = r \sin \varphi_1, т.е. \rho_1 = r. \int dx_1 \ldots dx_m = \int \rho_{m-1} dx_1 \ldots dx_{m-2} d\rho_{m-1} d\varphi_{m-1} = \int \rho_{m-2}^2 \sin \varphi_{m-2} dx_1 \ldots dx_{m-3} d\rho_{m-2} d\varphi_{m-2} d\varphi_{m-1} = \int \rho_{m-3}^3 \sin^2 \varphi_{m-3} \sin \varphi_{m-2} dx_1 \ldots = \int r^{m-1} \sin^{m-2} \varphi_1 \sin^{m-3} \varphi_2 \ldots \sin \varphi_{m-2} \ldots
```

30 Формула для Бета-функции

$$B(s,t) = \int_{0}^{1} x^{s-1} (1-x)^{t-1} dx = \frac{\Gamma(s)\Gamma(t)}{\Gamma(s+t)}.$$

30.0.1 Доказательство

По определению гаммы-функции:

$$\Gamma(s)\Gamma(t) = \int_{0}^{+\infty} x^{s-1} e^{x} \left(\int_{0}^{+\infty} y^{t-1} e^{-y} dy \right) dx = \int_{0}^{+\infty} x^{s-1} e^{-x} \int_{X} (u-x)^{t-1} e^{-u+x} du dx,$$
где $y = u-x,$

$$\int_{0}^{+\infty} du \int_{0}^{u} dx x^{s-1} (u-x)^{t-1} e^{-u},$$
 заменим $x = uv$ и получим

$$\int_{0}^{+\infty} du \int_{0}^{1} dv u^{s-1} v^{s-1} u^{t-1} (1-v)^{t-1} u e^{-u} = \int_{0}^{+\infty} du u^{s+t-1} e^{-u} \int_{0}^{1} v^{s-1} (1-v)^{t-1} dv = \Gamma(s+t) B(s,t).$$

31 Объем шара в \mathbb{R}^m

$$\lambda_m B\big(0,R\big) = \int\limits_{x_1^2+\ldots+x_m^2=R^2} 1 dx,$$
 введём сферические координаты.

$$\int\limits_0^R dr \int\limits_0^\pi d\varphi_1 \dots \int\limits_0^\pi d\varphi_{m-2} \int\limits_0^{2\pi} d\varphi_{m-1} r^{m-1} \sin^{m-2}\varphi_1 \sin^{m-3}\varphi_2 \dots \sin\varphi_{m-2}, \text{ а дальше воспользуемся бетой-функцией}.$$

Пример как вычислять sin в какой-то степени:

$$\int_{0}^{\pi} (\sin \varphi_{k})^{m-1-k} = 2 \int_{0}^{\pi/2} t^{\frac{m-1-k}{2} - \frac{1}{2}} (1-t)^{-0.5} dt = B\left(\frac{m-k}{2}, \frac{1}{2}\right) = \frac{\Gamma\left(\frac{m-k}{2}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{m-k}{2} + \frac{1}{2}\right)}.$$

Часть V

Функция распределения

32 Теорема о вычислении интеграла по мере Бореля—Стилтьеса (с леммой)

32.1 Определение

 $(X, \mathcal{O}, \mu), h: X \to \overline{\mathbb{R}}$ — измеримая, пространство конечное.

Пусть $\forall t \in \mathbb{R}, \, \mu X(h < t) < +\infty.$

 $H(t) \coloneqq \mu X(h < t)$ — функция распределения функции h по μ $(H : \mathbb{R} \to \mathbb{R})$.

Очевидно, что H возрастает, $h: X \to \overline{\mathbb{R}}$, $\nu \coloneqq h(\mu)$, $\nu(A) = \mu(h^{-1}(A))$.

Пусть h — измеримая, тогда $\forall B \in \mathcal{B}(\mathbb{R}), h^{-1}(\mathcal{B})$ — измеримая.

 $\mu_H[a,b) = H(b-0) - H(a-0)$ — мера Бореля-Стилтьеса.

32.2 Лемма

 $h:X o\overline{\mathbb{R}}$ — измеримая, почти везде конечная.

H — функция распределения (корректно заданная), $\forall t \ \mu X(h < t) < +\infty$.

Тогда на \mathcal{B} , μ_H совпадает с $h(\mu)$.

32.2.1 Доказательство

 $\mu_h[a,b) = H(b-0) - H(a-0) = H(b) - H(a)$ — непрерывность меры снизу.

$$H(b) - H(a) = \mu X(a \le h < b) = \mu (h^{-1}[a,b]) = \nu [a,b]$$
, где $\nu = h(\mu)$

Значит μ_H = ν на \mathcal{B} .

32.3 Теорема

 $f: \mathbb{R} \to \mathbb{R}, \ge 0$, измеримое по Борелю.

 $h:X\to\overline{\mathbb{R}},$ измеримая, почти везде конечная, с функцией распределения H.

 μ_H — мера Бореля-Стилтьеса. Тогда

$$\int\limits_X f\left(h(x)\right)d\mu(x) = \int\limits_{\mathbb{R}} f(t)d\mu_H(t).$$

32.3.1 Доказательство

По теореме о взвешенном образе меры:

$$(X, \mathcal{A}, \mu), (Y = \mathbb{R}, \mathcal{B}, h(\mu)),$$

$$\Phi = h : X \to Y, \ \omega = 1.$$

$$\int\limits_{Y}f(y)d\nu=\int\limits_{X}f(\Phi(x))1d\mu(x).$$

Путь $f \geqslant 0$, измеримая, $\mathbb{R} \to \mathbb{R}$.

$$\int\limits_{\mathbb{R}^m} f(|x|) d\lambda_m = \int\limits_0^{+\infty} f(t) d\mu_H \text{ при } h(x) = |x|, \text{ где } H(r) = \mu \mathbb{R}^m (|x| < r) = \alpha_m r^m.$$

$$\mu_H[a,b) = H(b) - H(a) = \int_a^b H'(t)dt = \int_a^b m\alpha_m t^{m-1}dt.$$

$$\mu_H$$
 и мера $\nu: \nu(A) = \int\limits_{A} m\alpha_m t^{m-1} dt$, значит $\mu_h = \nu$ на \mathcal{B} .

$$\int_{0}^{+\infty} f(t) m \alpha_m t^{m-1} dt.$$

32.3.2 Следствие

Мы проверили, что g возрастает, $g \in C^1(\mathbb{R})$ и $M_g(A) = \int\limits_A g'(x) dx$.

Часть VI

Ряды Фурье

33 Интегральные неравенства Гельдера и Минковского

1. Неравенство Гёльдера:

$$p,\ q > 1,\ \frac{1}{p} + \frac{1}{q} = 1,$$
 заданы почти везде, измеримы.

$$(X, \mathcal{A}, \mu), f, g: X \to \mathbb{C} (\mathbb{R})$$
. Тогда

$$\int\limits_X |fg| d\mu \leqslant \left(\int\limits_X |f|^p\right)^{1/p} \left(\int\limits_X |g|^q\right)^{1/q}$$

2. Неравенство Минковского

$$(X, \mathcal{A}, \mu), f, g: X \to \mathbb{C}$$
 — измерима почти везде, конечна, $1 \le p < +\infty$. Тогда

$$\left(\int\limits_X |f+g|^p\right)^{1/p} \leqslant \left(\int\limits_X |f|^p\right)^{1/p} + \left(\int\limits_X |g|^p\right)^{1/p}$$

34 Интеграл комплекснозначной функции

$$(X, \mathcal{A}, \mu), f: X \to \mathbb{C}, f(x) = g(x) + ih(x).$$

f — измерима $\Longleftrightarrow g$ = $\mathrm{Re}f$ и h = $\mathrm{Im}f$ — измеримые.

f — суммируемая \iff g = $\operatorname{Re} f$ и h = $\operatorname{Im} f$ — суммируемые.

$$\int\limits_X f = \int\limits_X g + i \int\limits_X h.$$

34.1 Вывод

$$\left| \int\limits_X f d\mu \right| \leqslant \int\limits_X |f| d\mu.$$

35 Пространство $L^p(E,\mu)$

$$L^p(X,\mu),\ 1\leq p<\infty$$

$$\mathcal{L}^p(X,\mu)$$
 = $\left\{f:X \xrightarrow[\Pi.B.]{} \overline{\mathbb{R}}(\overline{\mathbb{C}}), f$ — измерима, $\int\limits_X |f|^p d\mu < +\infty \right\}$

- $\mathcal{L}^p(X,\mu)$ линейное пространство —по н. Минковского;
- Введём норму $||f|| = \left(\int\limits_X |f|^p\right)^{1/p};$
- f эквивалентно g если f(x) = g(x) при почти всех x

36 Существенный супремум

$$f: X \xrightarrow[\Pi.B.]{} \overline{\mathbb{R}}, \ \operatorname{ess\,sup} f = \inf \big\{ A \in \overline{\mathbb{R}} : f(x) \leqslant A \ \Pi.B. \big\}.$$

36.1 Свойства

- 1. $\operatorname{ess\,sup} f \leq \operatorname{sup} f$;
- 2. $f(x) \leq \operatorname{ess\,sup} f$ при почти всех x;

3.
$$\left| \int_{\mathbb{R}} fg \right| \le \operatorname{ess\,sup} |f| \cdot \int_{X} |g|.$$

36.1.1 Доказательство

- 1. Очевидно
- 2. $M = \operatorname{ess\,sup} f$ $\forall n \in \mathbb{N} \text{ верно } f(x) \leqslant M + \frac{1}{n} \text{ почти везде}.$
- 3. Очевидно $\left|\int\limits_X fg\right| \leqslant \int\limits_X |fg|,$ $|fg| \leqslant M|g|$ почти везде.

37 Пространство $L^{\infty}(E,\mu)$

$$\mathcal{L}^{\infty}(X,\mu) = \left\{ f: X \xrightarrow[\text{п.в.}]{} \mathbb{R}(\mathbb{C}), f - \text{измерима, ess sup } |f| < +\infty \right\}$$
 $f, g \in \mathcal{L}^{\infty} \Rightarrow f + g \in \mathcal{L}^{\infty}.$
 т.е. \mathcal{L}^{∞} — линейное пространство, норма $\|f\|_{\infty} = \text{ess sup } |f|.$ ess sup $|f + g| \leqslant \text{ess sup } |f| + \text{ess sup } |g|.$

37.1 Замечание

 $\|fg\|_1 \leqslant \|f\|_p \|g\|_q$ — неравенство Гёльдера (можно брать p = 1 и q = + ∞).

 $f \in \mathcal{L}^p(X,\mu), \ 1 \leqslant p \leqslant +\infty, \Rightarrow f$ — почти всюду конечно \Rightarrow можно считать, что f задана почти всюду на X и всюду конечна.

 $l^{\iota}([0,1],\lambda),\,f(x)$ = квадратная скобка $\frac{1}{\sqrt{x}},x\neq 0$ и + $\infty,\,x$ = 0.

$$\int_{0}^{1} \frac{1}{\sqrt{x}} < +\infty, \ \frac{1}{\sqrt{x}} \in L'.$$

37.2 Теорема

$$X, \mu X < +\infty, 1 \leqslant s < r \leqslant +\infty$$

Тогда

- 1. $L^r(X,\mu) \subset L^s(x,\mu)$;
- 2. $||f||_s \leq (\mu X)^{\frac{1}{s}\frac{1}{r}}$

37.2.1 Доказательство

- 1. следует из 2;
- 2. r = ∞ очевидно

$$||f||_{s} = \left(\int\limits_{X} |f|^{s}\right)^{\frac{1}{s}} \le \left(\int\limits_{X} ||f||_{\infty}^{s}\right)^{\frac{1}{s}}$$

$$|f| \le \operatorname{ess\,sup} f = ||f||_{\infty} = ||f||_{\infty} \mu X^{1/s}$$

$$\|f\|_s^s = \int\limits_X |f|^s 1 d\mu$$
 по Гёльдеру получаем неравенство

$$\left(\int\limits_X \left(|f|^s\right)^{r/s}\right)^{s/r} \left(\int\limits_X 1\right)^{\frac{r-s}{r}} = \left(\int\limits_x |f|^r\right)^{s/r} \left(\mu X\right)^{1-\frac{s}{r}}.$$