Statistiques et probabilités Cours n°6

Guillaume Postic

Université Paris-Saclay, Univ. Evry Département informatique

Master 1 MIAGE - 2022/2023

Statistiques descriptives

Objectif : décrire, c'est-à-dire de résumer ou représenter, par des statistiques, les données disponibles quand elles sont nombreuses.

- Indicateurs de tendance centrale : moyenne, médiane
- Indicateurs de dispersion : variance, écart-type, IQR

Inférence statistique (1)

Ensemble des techniques permettant d'induire les caractéristiques d'un groupe général (la population) à partir de celles d'un groupe particulier (l'échantillon), en fournissant une mesure de la certitude de la prédiction : la probabilité d'erreur.

La « fluctuation d'échantillonnage » désigne la variabilité des résultats provenant de la prise d'échantillon.

Inférence statistique (2)

Exemple : estimation de la moyenne et TLC

Plus *n* est grand, plus la dispersion autour de la moyenne (*i.e.* variance ou écart type) est petite, *i.e.* moins il y a de fluctuation due à l'échantillonnage.

Test statistique : définition

Un test, ou **test d'hypothèse**, est une procédure de décision entre deux hypothèses. Il s'agit d'une démarche consistant à **rejeter ou à ne pas rejeter** une hypothèse statistique, appelée hypothèse nulle, en fonction d'un échantillon de données.

 H_0 : hypothèse nulle

 H_1 : hypothèse alternative

Test statistique : objectifs

 Inférence: comparer des indicateurs mesurés sur un échantillon à ceux d'une distribution théorique (population)

Mais aussi...

- Comparer plusieurs groupes par des indicateurs mesurés sur des échantillons
- Prédiction (p. ex., régression)

Exemple: test Z (1)

- But: comparer deux distributions par leurs moyennes
 - \circ Échantillon vs population (de paramètres μ_0 et σ)
- H_0 : les moyennes ne sont pas significativement différentes
- H₁: les moyennes sont différentes

Les fluctuations d'échantillonnage font que la moyenne de l' échantillon ne sera jamais parfaitement égale à celle de la population.

La différence observée est-elle alors

- uniquement dûe aux fluctuations d'échantillonnage?
- ou bien significative?

Exemple: mesurer l'effet d'un médicament

Exemple: test Z (2)

À partir des données, on calcule la **différence standardisée entre les deux moyennes** :

$$Z=rac{(ar{X}-\mu_0)}{\sigma}$$

Cette valeur est ce que l'on appelle la « statistique de test », ou encore « **variable de décision** » (décision de rejet ou non-rejet de H_0).

Exemple: test Z (3)

D'après le théorème de la limite centrale, les moyennes des échantillons suivent une loi normale, de moyenne μ égale à celle de la population.

Il est ainsi possible de calculer la vraisemblance d'un échantillon (probabilité d'observer un échantillon extrait de cette population), à partir de sa moyenne.

Exemple: test Z (4)

Plus un échantillon s'éloigne de la moyenne théorique

- plus Z est grand
- moins l'échantillon est vraisemblable (sous H_0)
- plus on peut rejeter H₀
- plus la différence est significative

La probabilité d'observer un tel échantillon sous H0 est appelée valeur p ou p value. Elle indique le niveau de significativité de la différence observée.

Exemple: test Z (5)

Pour pouvoir prendre la décision de rejeter ou non H_0 , c. -à-d. pour déterminer si la différence est significative ou non

- \rightarrow on choisit un **seuil de significativité** α
- → cette valeur définit ainsi une région de rejet de H₀

Test unilatéral droit

Test unilatéral gauche

Test bilatéral

Erreurs de types I et II

On compare la *p-value* à une valeur seuil : la **probabilité** α **de se tromper en rejetant** H_0 (**erreur de type I ou risque de première espèce**). Si $p < \alpha$, la différence entre les moyennes est significative (on rejette H_0).

Il est possible de calculer une **probabilité** β de se tromper en rejetant H_1 . Cela nécessite donc une seconde distribution représentant l'hypothèse alternative H_1 . La moyenne de cette seconde distribution sera arbitrairement définie. Enfin, la **puissance du test sera calculée par 1-\beta**.

Choix du test

Il se fait selon

- La question posée
 - Échantillon vs population
 - Comparaison d'échantillons
- Le type de variables
 - Quantitatives
 - Qualitatives
- Conditions d'applications
 - Normalité de la distribution
 - Taille de l'échantillon
 - Egalité des variances
 - o ...

Test de Student (1)

- But: comparer deux distributions par leurs moyennes
 - Échantillon vs population (de paramètre μ_0) (σ non-connu)
- H_0 : les moyennes ne sont pas significativement différentes
- H₁: les moyennes sont différentes

À partir des données (échantillon de taille n), on calcule un s, un estimateur du σ de la population, puis la statistique de test :

$$t=rac{Z}{s}=rac{ar{X}-\mu}{\widehat{\sigma}/\sqrt{n}}$$

La variable de décision t suit une **loi de Student à n-1 degrés de liberté** sous H_0 (théorème de Cochran).

Test de Student (2)

df: degrees of freedom

Tests non-paramétriques

- Un test paramétrique est un test pour lequel on fait une hypothèse paramétrique sur la loi des données sous H₀ (loi normale, loi de Poisson...). Les hypothèses du test concernent alors les paramètres de cette loi.
- Un test non-paramétrique est un test ne nécessitant pas d'hypothèse sur la loi des données.

