Pipeline Architecture for Crypto Liquidity Prediction

1. Data Ingestion

Source: CSV (<u>Dataset</u>)

• Tools: pandas, requests, SQLAlchemy

• Output: Raw data frame

2. Data Preprocessing • Handling missing values • Outlier detection and removal

• Feature engineering: o volatility = abs(returns)

Scaling (if required)

Tools: pandas, numpy, scikit-learn

3. Feature Selection

- Select key numerical features:
 - o price, market_cap, volume_24h, returns, volatility
- Optional: correlation analysis or feature importance

4. Model Training

- Model used: Random Forest Regressor (or XGBoost, Linear Regression)
- · Training pipeline:
 - train_test_split model.fit(X_train, y_train)
- Tools: scikit-learn, joblib (for model saving)

5. Model Evaluation

• Metrics: RMSE, MAE, R² score

Validation: Cross-validation (e.g., KFold)

Save best model using joblib.dump()

- 6. Model Deployment Deployment Framework: Streamlit
 - Frontend UI: User inputs price, volume, market cap, returns

- Backend: Loads model, makes predictions
- · Bonus: Add author info, social links, hover effects, and branding

Technologies Used

Component	Tool
Data Processing	pandas, numpy
Modeling	scikit-learn, joblib
Deployment	Streamlit
Visualization	Matplotlib / Seaborn (for EDA)

Diagram Overview

