Monday, August 28, 2017 3:06 PM

17 3:06 PM	
/ - $$ - $$	AERMYN
UERMXN; ZER	$\mathbb{R}^{m \times n}$, $\mathbb{V} \in \mathbb{R}^{n \times n}$
M > M	
A	
i ma se	Pul imege
Reduced SVD:	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
hm: (Existence and Unique he	a), Every matrix
hm: (Existence and Uniquehe A EC MXN has a SVD.	The singular

values are uniquely determined. If A is square and or and distinct, the left and right Singular vectors suit and svil are uniquely determined up to a complex sign.

Properties:

D. Rank (A) = # of zwnzero Singala Values.

$$A^{*}A = V \Sigma^{*} U \Sigma V^{*}$$

$$= V \Sigma^{*} \Sigma V^{*} = V (^{\alpha})^{*} V^{*}$$

$$||A||_{L^{\infty}} = \left(\frac{x}{z}\sigma_{i}^{2}\right)^{\frac{1}{2}} + W.$$

$$| \Delta \varphi + (\Delta) | = \prod_{i=1}^{m} \alpha_i \quad \text{if } \Delta \in \mathbb{R}^{m \times m}$$

Gauszian Elimination.

$$\begin{array}{c|c} & & & \\ & & & \\ & & \times \times \times \times \end{array}$$

$$\vec{l}_{k} = \begin{bmatrix} \vec{l} & \vec{l} &$$

1... L, L, A = () < upper

 $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix}$ $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix}$ $A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{bmatrix}$ $A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{bmatrix}$ $A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{bmatrix}$ $A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \end{bmatrix}$