

Statistical Inferences
Point/Interval

Lecture 17

Inference for One Population Mean

STAT 8010 Statistical Methods I September 30, 2019

Whitney Huang Clemson University

Statistical Inference

For the rest of the semester, we will focus on conducting statistical inferences for the following tasks:

- Estimating one population mean
- Comparing two population means
- Comparing more than two population means
- Estimating population proportions
- Estimating relationship between response variable and predictors

Statistical Science: Use Sample to Learn About the Population

Population Mean

CLEMS

UNIVERSITY

• We use parameters to describe the population **Example:** mean (μ_X) ; variacen (σ_X^2)

• We use statistics of a sample (given that the sampling was done properly) to infer the population **Example:** sample mean (\bar{X}) ; sample variance (s_Y^2)

Statistical Inferences

Estimating One Population Mean

Statistical Interences

Point/Interval Estimation

Goal: To estimate the population mean using a (representative) sample:

- The sample mean, $\bar{X}_n = \frac{\sum_{i=1}^n X_i}{n}$, is a reasonable point estimate of the population mean μ_X
- Need to quantify the level of uncertainty of the point estimate

 Interval estimation
- Need to figure out the sampling distribution of \bar{X}_n in order to construct interval estimates \Rightarrow Central Limit Theorem (CLT)

Central Limit Theorem (CLT)

Statistical Inferences

Point/Interval Estimation

CLT

The sampling distribution of \bar{X}_n will become approximately normally distributed as the sample size (n) becomes "large", regardless of the shape of the population distribution!

Let X_1, X_2, \cdots, X_n be a random sample from a population X with $\mu = \mathbb{E}[X]$ and $\sigma^2 = \text{Var}[X]$. Then $\bar{X}_n = \frac{\sum_{i=1}^n X_i}{n} \stackrel{d}{\to} \mathsf{N}(\mu, \frac{\sigma^2}{n})$ as $n \to \infty$.

CLT In Action

- Generate 100 (n) random numbers from an Exponential distribution (population distribution)
- Compute the sample mean of these 100 random numbers
- Repeat this process 120 times

Inference for One Population Mean

Statistical Inferences

oint/Interval estimation

CLT: Sample Size (n) and the Normal Approximation

Inference for One

Why CLT is important?

CLT tells us the distribution of our estimator

$$\bar{X}_n \approx \mathrm{N}(\mu, \frac{\sigma^2}{n})$$

- ullet The distribution of $ar{X}_n$ is center around the true mean μ
- The variance of \bar{X}_n is decrease with n
- With normality approximation of the sampling distribution of \bar{X}_n , we can perform interval estimation about μ
- Applications: Confidence Interval, Hypothesis testing

Statistical Inferences

Confidence Intervals (CIs) for μ

Statistical Inferences

stimation

- Let's assume we know the population σ^2 (will relax this assumption later on)
- $(1 \alpha) \times 100\%$ CI for μ :

$$\left[\bar{X}_n - z_{(1-\frac{\alpha}{2})} \frac{\sigma}{\sqrt{n}}, \bar{X}_n + z_{(1-\frac{\alpha}{2})} \frac{\sigma}{\sqrt{n}}\right],$$

where $z_{(1-\frac{\alpha}{2})}$ is the $1-\frac{\alpha}{2}$ percentile of $Z\sim N(0,1)$

• $\frac{\sigma}{\sqrt{n}}$ is the standard error of \bar{X}_n , that is, the standard deviation of its sampling distribution

Statistical Inference

oint/Interval

For any $\alpha \in (0,1)$:

$$\mathbb{P}\left(\bar{X}_n - z_{(1-\frac{\alpha}{2})} \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{X}_n + z_{(1-\frac{\alpha}{2})} \frac{\sigma}{\sqrt{n}}\right)$$

$$= \mathbb{P}\left(-z_{(1-\frac{\alpha}{2})} \frac{\sigma}{\sqrt{n}} \le \bar{X}_n - \mu \le z_{(1-\frac{\alpha}{2})} \frac{\sigma}{\sqrt{n}}\right)$$

$$= \mathbb{P}\left(-z_{(1-\frac{\alpha}{2})} \le \frac{\bar{X}_n - \mu}{\frac{\sigma}{\sqrt{n}}} \le z_{(1-\frac{\alpha}{2})}\right)$$

$$= \mathbb{P}\left(-z_{(1-\frac{\alpha}{2})} \le Z \le z_{(1-\frac{\alpha}{2})}\right)$$

$$= 1 - \frac{\alpha}{2} - \frac{\alpha}{2} = 1 - \alpha$$

Making Sense of Confidence Intervals Cont'd

UNIVERSITY

Statistical interence

Point/Interval Estimation

