

BOISE STATE UNIVERSITY

CS 533 INTRO TO DATA SCIENCE

Instructor: Jun Zhuang

Source: https://cs533.ekstrandom.net/f22/

DESCRIBING DATA

Data and Dataset

Data

Data set

Data sets

Many definitions, see the reading.

A set of data that is

- Collected or curated
- For a purpose
- Mostly ready-to-use
- Documented

Where does it come from? Where does it go?

What We Need To Know

- How much data do we have?
- What kind(s) of data do we have?
- What is the data about?
- How was the data collected?
- How was the data recorded?
- What biases might the data have?
- What do we know about the data generating process?

Reading discusses more!

Wrapping Up

Data sets arise from curating or collecting data, resulting from observations, for a purpose.

There are layers between what we want to study and the data we have.

Do the reading!

DESCRIPTIVE STATISTICS

Statistic

A statistic is a value computed from a collection of data

Often summarizes (observations of) a variable

Descriptive Questions

- Where is the variable centered?
 - How large does it tend to be?
 - Called meaure of central tendency
- How spread out is it?

Mean

The **mean** \bar{x} of a series $x_1, x_2, ..., x_n$ is

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

This is a measure of central tendency

Often informally called 'average', but average is not specific

Pts	
8	
15	
0	
45	
8	
7	
0	
2	
0	
2	

 $\overline{x} = 8.7$

What is a Mean?

What does the mean measure?

- If every instance had the same value, what would it be?
 - "Points per player"

How do you change it?

- Increase total (score more points)
- It doesn't matter where one person can do all of it!

Spread - Variance and Standard Deviation

How spread out are the values?

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x - \bar{x})^2}{n - 1}}$$

This is the sample standard deviation – used for empirical data. The sample variance is s^2

What is Variance?

What does variance measure?

- The mean squared distance from the mean
 - If mean is center, how far away do values tend to be?
 - If mean is expectation, how far off does it tend to be?
 - Square penalizes large differences more

Standard deviation translates back to original units

Computing Statistics

Pandas:

- Series.mean()
- Series.std()
- Series.var()

Note: np.std and np.var compute population std and var, not sample

Change with ddof=1

Outliers

Outliers are particularly large or small values

Outliers draw the mean towards them! (also affect SD)

Median

What value divides upper half from lower half?

- Sort values
- Pick middle one
 - If even number: take mean of middle 2

0 0 0 2 2 7 8 8 15 45

How to increase? Increase small values.

Pts	
8	
15	
0	
45	
8	
7	
0	
2	
0	
2	
~ .	

Spread – Range and IQR

The **range** is max – min

The **inter-quartile range** is distance between 1st and 3rd quartiles (width of "middle 50%")

0 0 0 2 2 | 7 8 8 15 45

Quick Summary

```
>>> movie info['count'].describe()
         59047.000000
count
           423.393144
mean
std
          2477.885821
min
             1.000000
25%
             2.000000
50%
             6.000000
75%
            36.000000
         81491.000000
max
Name: count, dtype: float64
```

Mean, Median, and Skew

Mean works well for **centered** values

- No excessively large or small values
 - $\bar{x} \approx \tilde{x}$
- Critical for computation and prediction
- Total (and mean) deviation is 0

Median more robust to outliers

- Good for heavily-skewed data, large outliers
- Divides high/low, but limited for prediction

What question do we want to answer?

If we distributed the points equally, how many would each have?

If we randomly selected a player, are they equally likely to have more or less points?

Mode

The most common value

- doesn't work great for continuous values
- fantastic for categorical variables!

Pts
8
15
0
45
8
7
0
2
0
2
0

Wrapping Up

Mean and median describe where a value tends to be.

Standard deviation, variance, range, and IQR measure how spread out it is.

Mean-based computationally useful; median-based robust to outliers.

GROUPS AND AGGREGATES

Data Frame

In [8]:

ratings

Out[8]:

	userld	movield	rating	timestamp
0	1	296	5.0	1147880044
1	1	306	3.5	1147868817
2	1	307	5.0	1147868828
3	1	665	5.0	1147878820
4	1	899	3.5	1147868510
25000090	162541	50872	4.5	1240953372
25000091	162541	55768	2.5	1240951998
25000092	162541	56176	2.0	1240950697
25000093	162541	58559	4.0	1240953434
25000094	162541	63876	5.0	1240952515

25000095 rows × 4 columns

Aggregates

What's the mean rating?

```
ratings['rating'].mean()
```

- Use data frame
- Select column rating
- Compute mean

Aggregate Functions

Many aggregates:

- mean
- median
- mode
- min / max
- sum
- count
- std (standard deviation)
- var (variance)

All are **methods** on pandas Series.

Count and Length

Total size of series, including missing values:

- series.size
- len(series)

Number of values, not including missing data:

• series.count()

Quantiles

```
series.quantile(p)
```

- $0 \le p \le 1$ (also written $p \in [0,1]$)
- Value p of the way from min to max in sorted order
 - 0 min
 - 1 max
 - 0.5 median

Grouped Aggregates

Remember: # of ratings per movie could be a movie variable?

```
ratings.groupby('movieId')['rating'].count()
```

Yields a Series:

- indexed by movield
- Values are # of ratings per movie
- We're only aggregating one series
 - If we did the other way, we wouldn't have a movieid to group by!

Sorting

Sometimes we want to sort data:

sort_values(col) re-sorts the data

Sometimes we just need that to get the largest or smallest:

- nlargest(n, col) gets n rows with largest values of col
- nsmallest(n, col) gets the smallest

Joining

Joining two frames lets us combine data

- Simplest: join on common index
- set_index sets the index
- join joins two frames (by default on their indexes)
 - Can specify join columns

More later (including in readings)

Aggregating Aggregates

Our movie-level rating statistics are just more variables!

That can be aggregated.

Practice: compute the mean # of ratings per movie

Wrapping Up

Aggregates combine a series or array into a single value

Can compute over whole series, or over groups.

Join combines frames

DESCRIBING DISTRIBUTIONS

What Questions?

- What is the average value?
 - Mean, median
- How spread out is the data?
 - Standard deviation, IQR
- Is it skewed?
- What does it look like?

Numeric Descriptions

Previous video!

```
>>> numbers.describe()
         10000.000000
count
              5.006208
mean
std
             0.998461
min
              1.410392
25%
             4.330468
50%
             4.990636
75%
              5.678746
              9.081399
max
dtype: float64
```

Histograms

>>> plt.hist(numbers, bins=25)

This data is *symmetrical* (not skewed)

Shows how common different values are

X-axis: values

Y-axis: frequency (count or relative)

Bins controls division points Pick for clarity and integrity!

import matplotlib.pyplot as plt

Real Data – Average Movie Rating

```
>>> movie_info['mean'].describe()
         59047.000000
count
             3.071374
mean
std
             0.739840
min
             0.500000
25%
             2.687500
50%
             3.150000
75%
             3.500000
             5.000000
max
Name: mean, dtype: float64
```

Slight left skew

- Mean less than median
- Longer tail on the left of the histogram

>>> plt.hist(movie_info['mean'])

Real Data – Movie Rating Count

```
>>> movie_info['count'].describe()
         59047,000000
count
           423,393144
mean
std
          2477.885821
min
             1.000000
25%
             2.000000
50%
             6.000000
75%
            36.000000
         81491.000000
max
Name: count, dtype: float64
```

>>> plt.hist(movie_info['mean'], bins=100)

Very strong right skew

- Mean much greater than median
- Most movies have far fewer ratings than mean!
- Hard to really see in a histogram

Alternate Histogram

```
hist = movie_info['count'].value_counts()
plt.scatter(hist.index, hist)
plt.yscale('log')
plt.ylabel('Number of Movies')
plt.xscale('log')
plt.xlabel('Number of Ratings')
```

- Points rather than bars
- One point per rating count
- Plotted on logarithmic axis
- The mode is 1 (10°)

Power law distribution (almost)

Artifact

Movie mean rating, more bins

- Certain values more common!
 - 1, 2, 3, 4, 5, 2.5, 3.5...
- These are exact rating values
 - Because so many movies have only one rating!

```
>>> plt.hist(movie_info['mean'], bins=50)
```


Cumulative Distribution

>>> sns.ecdfplot(movie_info['count'])

Shows how observations accumulate as we go through the range of values.

This data is super skewed...

import seaborn as sns

Cumulative Distribution

Shows how observations accumulate as we go through the range of values.

Log scaling: accumulation as we increase order of magnitude.

Approximately ½ of movies have 10 or fewer ratings.

- Useful for seeing skewed data
- Useful for comparing distributions
- Obscures mean, median, etc.

Categorical Distributions

Categorical distributions with bar charts

```
spec_counts = penguins['species'].value_counts()
plt.bar(spec_counts.index, spec_counts)
plt.xlabel('Species')
plt.ylabel('# of Penguins')
```

Adelie is most common

Wrapping Up

• In this section, we learn how to describe and visualize a distribution.

SOURCES AND BIAS

Estimating

Goal: estimate the value of a parameter

- True value in the world or population
- Estimated by a statistic

Example: estimate approval of our company

- Parameter: net approval (% of people who have a positive opinion)
- Statistic: % of a sample of people who say they have a positive opinion
- Goal: statistic is approximately parameter

A Few Sources of Bias

Selection bias

Some people more likely to be contacted

Response bias

Some people are more likely to respond

Measurement bias

Measurement skews one way or another

Non-Uniform Bias

Bias may not affect all groups equally

- Under-representation
- Over-representation
- Measurement skews
 - E.g. standardized test scores reflect socio-economic status

Documenting

Clearly and fully document data collection process!

- See Datasheets for Datasets reading
- Enables further and future analysis of collection process!
- Helps future users assess if biases affect their problem

Wrapping Up

Goal is for data to accurately reflect population, and statistics to approximate parameters.

Various sources of bias can impede this.