Problems for this assignment: 2.1, 2.3, 2.4, and 2.5(b), (d).

2.1 (2 points) As illustrated in Figure P2.1, we are given a smooth function h(x) over interval [0, 1] where any point x in the interval is associated with a shaded region. The problem we consider here is to find the "sweet spot" x^* in interval [0, 1] at which the area of the shaded region reaches maximum.

Figure P2.1 for Problem 2.1.

(a) Formulate the problem as a standard constrained minimization problem (i.e. in the form of Eq. (1.1)).

Solution

Clearly, the area of the shaded region in Fig. P2.1 is equal to $x \cdot h(x)$ where $x \in [0,1]$. Therefore, the problem at hand can be formulated as a constrained minimization problem

minimize
$$-x \cdot h(x)$$

subject to: $0 \le x \le 1$

or, in standard problem formulation as

minimize
$$-x \cdot h(x)$$

subject to: $c_1(x) = -x \le 0$
 $c_2(x) = x - 1 \le 0$

(b) Suppose function h(x) represents the straight line connecting point $\begin{bmatrix} 0 & 1 \end{bmatrix}^T$ and $\begin{bmatrix} 1 & 0 \end{bmatrix}^T$. Solve the problem obtained from part (a). A *numerical* solution is required.

Solution

Function h(x) in this case assumes the form h(x) = -x + 1 and hence the objective function is given by

$$f(x) = -x \cdot h(x) = x^2 - x = (x - 0.5)^2 - 0.25$$

which reaches its absolute minimum at $x^* = 0.5$. Since x^* also satisfies the constraints, it is the solution point. \blacksquare

(c) Solve the problem obtained from part (a) where $h(x) = x^2 - 2x + 1$. A numerical solution is required.

Solution

The objective function in this case is given by

$$f(x) = -x \cdot h(x) = -x^3 + 2x^2 - x$$

whose Ist-order derivative is equal to $f^{'}(x) = -3x^2 + 4x - 1$. By setting $f^{'}(x) = 0$ and solving the equation, we obtain two candidate points: $x_1 = \frac{1}{3}$ and $x_2 = 1$. The 2nd-order derivative of f(x) is found to be $f^{''}(x) = -6x + 4$, hence $f^{''}(x_1) > 0$ and $f^{''}(x_2) < 0$, so x_1 is the minimizer of the corresponding unstrained problem. Since $x_1 = \frac{1}{3}$ also satisfies the constraints, we conclude that

$$x_1 = \frac{1}{3}$$
 is the solution point.

(d) For an arbitrary h(x), derive an equation that the sweet spot x^* must satisfy.

Solution

By inspection we know that the end points of the unit interval cannot be the sweet spot because the shaded area for point x = 0 and x = 1 is zero. Therefore, the minimizer must lie strictly inside interval [0, 1]. Consequently, the Ist-order derivative of the objective function at the sweet spot must be zero, namely,

$$h(x) + x \cdot h'(x) = 0$$

2.3 (3 points) Compute gradient and Hessian of the functions given below.

(a)
$$f(x_1, x_2) = x_1^2 - 2x_2 \sin x_1 + 100$$

Solution

The gradient is given by

$$\nabla f(x_1, x_2) = \begin{bmatrix} 2x_1 - 2x_2 \cos x_1 \\ -2\sin x_1 \end{bmatrix}$$

and Hessian is given by

$$\nabla^2 f(x_1, x_2) = \begin{bmatrix} 2 + 2x_2 \sin x_1 & -2\cos x_1 \\ -2\cos x_1 & 0 \end{bmatrix}$$

(b) $f(x) = \frac{1}{2}x^T H x + x^T b + \kappa$ where $H \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^{n \times 1}$, and $\kappa \in \mathbb{R}^{1 \times 1}$ are known data.

Solution

Let us denote matrix H in terms of columns and rows as

$$m{H} = egin{bmatrix} m{h}_1 & m{h}_2 & \cdots & m{h}_n \end{bmatrix}$$
 and $m{H} = egin{bmatrix} \hat{m{h}}_1^T \\ \hat{m{h}}_2^T \\ \vdots \\ \hat{m{h}}_n^T \end{bmatrix}$

and denote b as

$$\boldsymbol{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

By definition, the partial derivative $\frac{\partial f(x)}{\partial x_i}$ is obtained by taking the limit

$$\frac{\partial f(\mathbf{x})}{\partial x_i} = \lim_{\delta \to 0} \frac{f(\mathbf{x} + \delta \mathbf{e}_i) - f(\mathbf{x})}{\delta}$$
 where \mathbf{e}_i is the ith column of the identity matrix

Now we compute

$$f(\boldsymbol{x} + \delta \boldsymbol{e}_{i}) = \frac{1}{2} \boldsymbol{x}^{T} \boldsymbol{H} \boldsymbol{x} + \frac{1}{2} \delta \boldsymbol{e}_{i}^{T} \boldsymbol{H} \boldsymbol{x} + \frac{1}{2} \delta \boldsymbol{x}^{T} \boldsymbol{H} \boldsymbol{e}_{i} + \frac{1}{2} \delta^{2} \boldsymbol{e}_{i}^{T} \boldsymbol{H} \boldsymbol{e}_{i} + \boldsymbol{x}^{T} \boldsymbol{b} + \delta \boldsymbol{e}_{i}^{T} \boldsymbol{b} + \kappa$$

$$= \frac{1}{2} \boldsymbol{x}^{T} \boldsymbol{H} \boldsymbol{x} + \frac{1}{2} \delta \hat{\boldsymbol{h}}_{i}^{T} \boldsymbol{x} + \frac{1}{2} \delta \boldsymbol{h}_{i}^{T} \boldsymbol{x} + \frac{1}{2} \delta^{2} h_{i,i} + \boldsymbol{x}^{T} \boldsymbol{b} + \delta b_{i} + \kappa$$

$$= f(\boldsymbol{x}) + \frac{1}{2} \delta \left(\hat{\boldsymbol{h}}_{i}^{T} + \boldsymbol{h}_{i}^{T} \right) \boldsymbol{x} + \frac{1}{2} \delta^{2} h_{i,i} + \delta b_{i}$$

Hence

$$\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}_i} = \lim_{\delta \to 0} \frac{f(\mathbf{x} + \delta \mathbf{e}_i) - f(\mathbf{x})}{\delta} = \frac{1}{2} (\hat{\mathbf{h}}_i^T + \mathbf{h}_i^T) \mathbf{x} + b_i$$

which leads to

$$\nabla f(\mathbf{x}) = \frac{1}{2} (\mathbf{H} + \mathbf{H}^T) \mathbf{x} + \mathbf{b}$$

If H is symmetric, then

$$\nabla f(\mathbf{x}) = \mathbf{H}\mathbf{x} + \mathbf{b}$$

Using the result obtained above, the Hessian can be computed by definition as

$$\nabla^2 f(\mathbf{x}) = \nabla \left(\nabla f(\mathbf{x})^T \right) = \nabla \left(\frac{1}{2} \mathbf{x}^T (\mathbf{H} + \mathbf{H}^T) \right) = \frac{1}{2} (\mathbf{H} + \mathbf{H}^T)$$

If H is symmetric, then we have

$$\nabla^2 f(\mathbf{x}) = \mathbf{H}$$

(c) $f(\theta) = \frac{1}{N} \sum_{i=1}^{N} \ln \left(1 + e^{-\theta^T x_i} \right)$ where variable $\theta \in R^{n \times 1}$, $\ln(\cdot)$ denotes natural logarithm, and $\{x_i \text{ for } i = 1, 2, ..., N\}$ with $x_i \in R^{n \times 1}$ is a known data set.

Solution

The gradient of $f(\theta)$ is given by

$$\nabla f(\boldsymbol{\theta}) = -\frac{1}{N} \sum_{i=1}^{N} \frac{e^{-\boldsymbol{\theta}^{T} \boldsymbol{x}_{i}}}{1 + e^{-\boldsymbol{\theta}^{T} \boldsymbol{x}_{i}}} \boldsymbol{x}_{i}$$

from which the Hessian can be evaluated as

$$\nabla^{2} f(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} \frac{e^{-\boldsymbol{\theta}^{T} \boldsymbol{x}_{i}}}{1 + e^{-\boldsymbol{\theta}^{T} \boldsymbol{x}_{i}}} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T} - \frac{1}{N} \sum_{i=1}^{N} \frac{e^{-2\boldsymbol{\theta}^{T} \boldsymbol{x}_{i}}}{(1 + e^{-\boldsymbol{\theta}^{T} \boldsymbol{x}_{i}})^{2}} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T} = \frac{1}{N} \sum_{i=1}^{N} \frac{e^{-\boldsymbol{\theta}^{T} \boldsymbol{x}_{i}}}{(1 + e^{-\boldsymbol{\theta}^{T} \boldsymbol{x}_{i}})^{2}} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{T}$$

2.4 (3 points) Point x is called a *stationary point* of function f(x) if $\nabla f(x) = 0$. Find and classify the stationary points of the following functions as minimizer, maximizer, or none of the above (in that case the stationary point is called a *saddle point*):

(a)
$$f(x) = 2x_1^2 + x_2^2 - 2x_1x_2 + 2x_1^3 + x_1^4$$

Solution

We write the objective function in question as

$$f(x) = 2x_1^2 + x_2^2 - 2x_1x_2 + 2x_1^3 + x_1^4$$

$$= x_1^2(x_1^2 + 2x_1 + 1) + (x_1^2 - 2x_1x_2 + x_2^2)$$

$$= x_1^2(x_1 + 1)^2 + (x_1 - x_2)^2$$

from which we see it is always nonnegative. By setting its gradient to zero, i.e.,

$$\nabla f(\mathbf{x}) = \begin{bmatrix} 4x_1^3 + 6x_1^2 + 4x_1 - 2x_2 \\ 2x_2 - 2x_1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

we obtain

$$x_2 = x_1$$

$$4x_1^3 + 6x_1^2 + 2x_1 - 2x_2 = 0$$

that leads to an equation we shall solve:

$$2x_1^3 + 3x_1^2 + x_1 = 0$$

The solutions of the above equation are 0, -0.5, and -1, this in combination with $x_2 = x_1$ gives three stationary points of the objective function as

$$\mathbf{x}_a = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \ \mathbf{x}_b = \begin{bmatrix} -0.5 \\ -0.5 \end{bmatrix}, \ \mathbf{x}_c = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

To proceed, we compute the Hessian of the objective function

$$\nabla^2 f(\mathbf{x}) = \begin{bmatrix} 12x_1^2 + 12x_1 + 4 & -2 \\ -2 & 2 \end{bmatrix}$$

At x_a ,

$$\nabla^2 f(\mathbf{x}_a) = \begin{bmatrix} 4 & -2 \\ -2 & 2 \end{bmatrix}$$

which is positive definite because both eigenvalues, 5.2361 and 0.7639, are positive. Hence x_a safisfies the 2^{nd} -order sufficient conditions and it is a minimizer.

At x_b ,

$$\nabla^2 f(\mathbf{x}_b) = \begin{bmatrix} 1 & -2 \\ -2 & 2 \end{bmatrix}$$

which is indefinite because its eigenvalues, 3.5616 and -0.5616, have mixed signs. Hence x_b is neither a minimizer nor a maximize (called a saddle point).

At x_c ,

$$\nabla^2 f(\mathbf{x}_c) = \begin{bmatrix} 4 & -2 \\ -2 & 2 \end{bmatrix}$$

which is identical to $\nabla^2 f(x_a)$ and is known to be positive definite. Hence x_c satisfies the 2nd-order sufficient conditions and it is a minimizer.

(b)
$$f(x) = x_1^2 x_2^2 - 4x_1^2 x_2 + 4x_1^2 + 2x_1 x_2^2 + x_2^2 - 8x_1 x_2 + 8x_1 - 4x_2$$

Solution

We express the objective function in a more compact form as

$$f(\mathbf{x}) = x_1^2 x_2^2 - 4x_1^2 x_2 + 4x_1^2 + 2x_1 x_2^2 + x_2^2 - 8x_1 x_2 + 8x_1 - 4x_2$$

$$= x_1^2 (x_2 - 2)^2 + 2x_1 (x_2 - 2)^2 + (x_2 - 2)^2 - 4$$

$$= (x_1 + 1)^2 (x_2 - 2)^2 - 4$$

It immediately follows that the minimum value of the objective function is -4.

The gradient of the objective function is given by

$$\nabla f(\mathbf{x}) = \begin{bmatrix} 2(x_1+1)(x_2-2)^2 \\ 2(x_1+1)^2(x_2-2) \end{bmatrix}$$

By setting the gradient to zero, the stationary points of f(x) are found to be

$$x^* = \begin{bmatrix} x_1 \\ 2 \end{bmatrix}$$
 with x_1 arbitrary

and

$$x^{**} = \begin{bmatrix} -1 \\ x_2 \end{bmatrix}$$
 with x_2 arbitrary.

Clearly, at any stationary point characterized above the objective function assumes its minimum value −4, we conclude that all stationary points are global minimizers. ■

(c)
$$f(x) = (x_1^2 - x_2)^2 + x_1^5$$

Solution

We compute its gradient and Hessian

$$\nabla f(\mathbf{x}) = \begin{bmatrix} 4x_1(x_1^2 - x_2) + 5x_1^4 \\ -2(x_1^2 - x_2) \end{bmatrix}, \quad \nabla^2 f(\mathbf{x}) = \begin{bmatrix} 12x_1^2 - 4x_2 + 20x_1^3 & -4x_1 \\ -4x_1 & 2 \end{bmatrix}$$

By setting $\nabla f(x) = 0$, we obtain $x^* = 0$ as the only stationary point for the objective function. At x^* , the Hessian becomes

$$\nabla^2 f(\mathbf{x}^*) = \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix}$$

which is positive semidefinite. This means we need a further analysis before making conclusions.

Let $\delta = \begin{bmatrix} \delta_1 & \delta_2 \end{bmatrix}^T$ with δ_1 and δ_2 small in magnitude but otherwise arbitrary. We compute

$$f(x^* + \delta) - f(x^*) = f(\delta) = (\delta_1^2 - \delta_2) + \delta_1^5$$

hence

$$f(\mathbf{x}^* + \boldsymbol{\delta}) - f(\mathbf{x}^*) > 0$$
 when $\delta_2 = \delta_1^2$ and $\delta_1 > 0$
 $f(\mathbf{x}^* + \boldsymbol{\delta}) - f(\mathbf{x}^*) < 0$ when $\delta_2 = \delta_1^2$ and $\delta_1 < 0$

i.e.,

$$f(\mathbf{x}^* + \boldsymbol{\delta}) > f(\mathbf{x}^*)$$
 when $\delta_2 = \delta_1^2$ and $\delta_1 > 0$
 $f(\mathbf{x}^* + \boldsymbol{\delta}) < f(\mathbf{x}^*)$ when $\delta_2 = \delta_1^2$ and $\delta_1 < 0$

Based on above analysis, we conclude that x^* is neither a minimizer nor a maximizer and hence is a saddle point. \blacksquare

2.5 (2 points) Function f(x) is convex in a region if its Hessian is positive semidefinite in that region. Function f(x) is concave if -f(x) is convex. Determine whether the following functions are convex or concave or else:

(b)
$$f(x) = x_1^2 + 2x_2^2 + 2x_3^2 + x_4^2 - x_1x_2 + x_1x_3 - 2x_2x_4 + x_1x_4$$

Solution

The Hessian of f(x) is found to be

$$\nabla^2 f(\mathbf{x}) = \begin{bmatrix} 2 & -1 & 1 & 1 \\ -1 & 4 & 0 & -2 \\ 1 & 0 & 4 & 0 \\ 1 & -2 & 0 & 2 \end{bmatrix}$$

whose eigenvalues are equal to 5.8192, 4.2427, 1.3281, and 0.6099. Since all eigenvalues of the Hessian are positive, $\nabla^2 f(x)$ is positive definite and hence f(x) is a convex function.

(d)
$$f(\hat{w}) = \frac{1}{N} \sum_{i=1}^{N} \ln(1 + e^{-y_i \hat{w}^T \hat{x}_i})$$
 where variable $\hat{w} \in R^{n \times 1}$, $\ln(\cdot)$ denotes natural logarithm,

 $\hat{\boldsymbol{x}}_i \in R^{n \times 1}$ and $y_i \in R^{1 \times 1}$ are known data.

Solution

The function is question is practically the same as the one in Prob. 2.3c. By following the solution of Prob. 2.3c, the Hessian of $f(\hat{w})$ is is found to be

$$\nabla^2 f(\hat{w}) = \frac{1}{N} \sum_{i=1}^{N} \frac{y_i^2 e^{-y_i \hat{w}^T \hat{x}_i}}{(1 + e^{-y_i \hat{w}^T \hat{x}_i})^2} \hat{x}_i \hat{x}_i^T$$

We show $\nabla^2 f(\hat{w})$ is positive semidefinite by proving that $v^T \nabla^2 f(\hat{w}) v \ge 0$ for any v:

$$\mathbf{v}^{T} \nabla^{2} f(\hat{\mathbf{w}}) \mathbf{v} = \mathbf{v}^{T} \left(\frac{1}{N} \sum_{i=1}^{N} \frac{y_{i}^{2} e^{-y_{i} \hat{\mathbf{w}}^{T} \hat{\mathbf{x}}_{i}}}{(1 + e^{-y_{i} \hat{\mathbf{w}}^{T} \hat{\mathbf{x}}_{i}})^{2}} \hat{\mathbf{x}}_{i} \hat{\mathbf{x}}_{i}^{T} \right) \mathbf{v}$$

$$= \frac{1}{N} \sum_{i=1}^{N} \frac{y_{i}^{2} e^{-y_{i} \hat{\mathbf{w}}^{T} \hat{\mathbf{x}}_{i}}}{(1 + e^{-y_{i} \hat{\mathbf{w}}^{T} \hat{\mathbf{x}}_{i}})^{2}} \mathbf{v}^{T} \hat{\mathbf{x}}_{i} \hat{\mathbf{x}}_{i}^{T} \mathbf{v}$$

$$= \frac{1}{N} \sum_{i=1}^{N} \frac{y_{i}^{2} e^{-y_{i} \hat{\mathbf{w}}^{T} \hat{\mathbf{x}}_{i}}}{(1 + e^{-y_{i} \hat{\mathbf{w}}^{T} \hat{\mathbf{x}}_{i}})^{2}} \left(\mathbf{v}^{T} \hat{\mathbf{x}}_{i} \right)^{2} \ge 0$$

Therefore, function $f(\hat{w})$ is convex.