## Ex8.1 Strengthen Some Results in the Text.

Ex8.2 
$$0 \to \mathcal{O}_X \to \mathcal{E} \to \mathcal{E}' \to 0$$
.

X:: variety of dimension n over k,  $\mathcal{E}$ :: locally free sheaf of rank > n,  $V^\# \subset \Gamma(X,\mathcal{E})$ :: k-vector space of global sections which generate  $\mathcal{E}$  とする. X:: variety より X:: connected なので  $\mathcal{E}$  の rank は X 全体で一定である. rank  $\mathcal{E} = r(> n)$  としておこう.

## 主張 Ex8.2.1

ある  $s \in V$  について次が成立する.

$$\forall x \in X, \quad s_x \notin \mathfrak{m}_x \mathcal{E}_x.$$

- ■Convensions and Notations. X の closed point 全体を  $X^+$  と書く. Ex3.14 より, これは dense in X. また,  $d=\dim_k V^\#, V=\mathbb{P}^{d-1}_k$  とし,  $V^+=(V^\#-\{0\})/k^*$  を V の closed points と同一視する. この同一視の仕方は Prop7.7 や dual projective space と同じである.  $\dim_k V^\#-1=\dim V$  に注意.  $V^\#$  の subspace も同様に V の subspace とみなす.
- **Definition of**  $B, B^+$ .  $B \subset X \times_k V$  を次のように置く.

$$B = \bigcap_{s \in V^{\#}} \operatorname{pr}_{1}^{-1}(\{x \in X \mid s_{x} \in \mathfrak{m}_{x} \mathcal{E}_{x}\}).$$

B は  $X \times V$  の closed subscheme である. ({} 部分が closed であることは Ex2.16 を参照.) B には reduced structure を与えておく.  $\operatorname{pr}_1|_B: B \to X$  を  $p_1$  と略す. B の closed points  $:: B^+$  は次のよう な集合である.

$$B^+ = \{(x, s) \in X^+ \oplus V^+ \mid s_x \in \mathfrak{m}_x \mathcal{E}_x\}.$$

- ■Plot. 主張は、 $\operatorname{pr}_2(B) \not\supseteq V^+$  と言い換えられる.(詳細は後ほど.)これには B の次元が V の次元 より小さいことを言えば良い.B の次元は  $\operatorname{Ex} 3.22$  の結果を用いればその fiber ::  $B_x$  から計算できる.全ての  $x \in X$  について  $\dim B_x$  を計算することは難しい.しかし少し妥協して, $x \in X^+$  についての  $\dim B_x$  を計算することは出来る.この場合でも  $\operatorname{Ex} 3.22$ c の結果を用いて  $\dim B_x$  が計算できる.
- **Definition of**  $\phi_x$ .  $x \in X$  について次の写像を考える.

$$\phi_x: V^\# \to \mathcal{E}_x \otimes_k k(x)$$

$$s \mapsto s_x \otimes 1$$

これが k-linear map であることは明らか.  $k(x) := \mathcal{O}_x/\mathfrak{m}_x$  より  $\mathcal{E}_x \otimes_k k(x) \cong \mathcal{E}_x/\mathfrak{m}_x \mathcal{E}_x$ . このことと  $\phi_x$  の定義の仕方から, $\ker \phi_x = \{s \in V^\# \mid s_x \in \mathfrak{m}_x \mathcal{E}_x\}$ .

 $\blacksquare \phi_x$  for  $x \in X^+$ . この段落では  $x \in X^+$  とする、すると  $k(x) = k^{\dagger 1}$  なので  $\mathcal{E}_x \otimes_k k(x) \cong \mathcal{E}_x$ . また  $\mathcal{E}_x \otimes_k k(x) \cong \mathcal{E}_x / \mathfrak{m}_x \mathcal{E}_x$ . さらに  $V^\#$  :: global generators of  $\mathcal{E}$  であるから, $\phi_x$  は surjective. なので

$$k(x) = \frac{S^{-1}(A/\mathfrak{a})}{S^{-1}(\mathfrak{m}/\mathfrak{a})} \cong S^{-1}\left(\frac{A/\mathfrak{a}}{\mathfrak{m}/\mathfrak{a}}\right) \cong S^{-1}(A/\mathfrak{m}).$$

 $A/\mathfrak{m}\cong k$  は体だから、これは  $k(x)\cong k$ .

 $<sup>^{\</sup>dagger 1}$  X:: variety より,k:: algebraically closed field かつ X:: finite type / k.  $A=k[x_1,\ldots,x_n]$ , $\mathfrak{a}\subseteq A$  とし, $\mathfrak{m}/\mathfrak{a}\in\operatorname{Spec} A/\mathfrak{a}\subseteq X$  が x に対応する極大イデアルだとする.ここで  $\mathfrak{m}$  は A の極大イデアル. $S=A-\mathfrak{m}$  とすると

 $x \in X^+$  について dim ker  $\phi_x$  が分かる.

$$\dim_k \ker \phi_x = \dim_k V^\# \otimes_k k(x) - \dim_k \mathcal{E}_x = \dim_k V^\# - r.$$

■Dimension of fiber ::  $\dim B_x$ .  $p_1$  についての  $x \in X^+$  の fiber ::  $B_x$  の base space は,Ex3.10 より, $\operatorname{sp} B_x \approx p_1^{-1}(x)$ . したがって次が分かる.

$$\operatorname{sp} B_x \cap \operatorname{sp} B^+ \approx p_1^{-1}(x) \cap \operatorname{sp} B^+ = \{x\} \times \ker \phi_x.$$

ここで  $\times$  は集合としての直積を表す. よって  $B_x$  の次元が分かる  $^{\dagger 2}$ .

$$\dim B_x = \dim_k \ker \phi_x - 1 = \dim_k V^\# - r - 1 = \dim V - r.$$

 $\blacksquare p_1$ :: closed map.  $V \to \operatorname{Spec} k$  は projective であり、 $V,\operatorname{Spec} k$  共に noetherian であるからこの射は proper. よって universally closed である.

$$\begin{array}{c|c} X \times_k V & \longrightarrow V \\ & & & & & \\ \operatorname{pr}_1 & & & & & \\ \operatorname{pr}_1 & & & & & \\ X & \longrightarrow & \operatorname{Spec} k \end{array}$$

B:: closed なので B の closed subset は X でも closed. したがって  $p_1 = \operatorname{pr}_1|_B$ :: closed map.

- $\blacksquare p_1(B) = X$  or  $B = \emptyset$ .  $p_1(B) \supseteq X^+$  とする. すると  $p_1(B)$  :: closed より  $p_1(B) \supseteq \operatorname{cl}_X(X^+) = X$ . 次に  $p_1(B) \not\supseteq X^+$  とする. すると上で述べたこと(全ての  $x \in X^+$  について  $\dim p_1^{-1}(x)$  が等しいこと)から,結局  $p_1(B) \cap X^+ = \emptyset$  が分かる.  $p_1(B)$  が空でないと仮定しよう. すると  $p_1$  :: closed map より, $x \in p_1(B)$  なら  $\operatorname{cl}_X(\{x\}) \subseteq p_1(B)$ .  $\operatorname{cl}_X(\{x\})$  は closed point を含むので矛盾が生じる. よって  $p_1(B) \not\supseteq X^+$  ならば  $p_1(B) = \emptyset$ . これは  $B = \emptyset$  を意味し,さらにこれは 0 を除く全ての  $V^\#$  の元が claim の条件を満たすことを意味する. 以下, $B \neq \emptyset$  と仮定する.
- ■B :: irreducible. 以上から B :: irreducible が分かる. 実際, B が二つの閉集合  $C_1, C_2 (\neq \emptyset, X)$  の 和であったとすると,  $p_1(B) = X$  より,

$$X = p_1(C_1) \cup p_1(C_2).$$

一方, X:: irreducible. よって矛盾が生じ, B:: irreducible が示される.

■Dimension of B. B:: integral & finite type/k (  $\implies$  variety/k) なので,Ex3.22c から次が成り 立つ:  $x \in U$  ならば dim  $B_x = \dim B - \dim X$ ,となる U:: open dense subset in X が存在する。U:: non-empty open subset と  $X^+$ :: dense から, $U \cap X^+ \neq \emptyset$ . $x \in X^+$  であるときの及び開集合 dim  $B_x$  が既に分かっているから,dim B も分かる.

$$\dim B = \dim B_x + \dim X = \dim V - r + n.$$

r > n なので、 $\dim B < \dim V$ .

 $<sup>^{\</sup>dagger 2}$  closed subscheme of B :: C について  $\dim C = \dim C \cap B^+$  を示す。 $C \cap B^+ \subset C$  より  $\dim C \geq \dim C \cap B^+$  は明らか。 $d = \dim C$  とし,C の irreducible closed subset が成す真の極大上昇鎖をとる。 $Z_0 \subsetneq \cdots \subsetneq Z_d$ . closed immersion  $\Longrightarrow$  finite type に注意すると, $Z_i$  :: finite type/k. なので  $\operatorname{Ex3.14}$  より  $Z_i \cap B^+$  :: dense in  $Z_i$ . したがって  $Z_i \cap B^+ = Z_j \cap B^+ \Longrightarrow Z_i = Z_j$  となり, $Z_0 \cap B^+ \subsetneq \cdots \subsetneq Z_d \cap B^+$  は  $B^+$  の irreducible closed subset が成す真の上昇鎖。以上から  $\dim C \leq \dim C \cap B^+$  も成り立つ。

- ■ $\operatorname{pr}_2(B)\supseteq V^+\implies \dim B\ge \dim V.$   $\operatorname{pr}_2(B)\supseteq V^+$  としよう.  $B^+$  の場合と同様に  $\dim V^+=\dim V.$  ch I, Ex1.10 より,  $\dim U=\dim V$  を満たす affine open subset of V::U がとれる. 適当に  $\operatorname{pr}_1(B)$  からも affine open subset ::U' をとると, X,V 共に finite type /k だから, ch I, Ex3.15 (Products of Affine Varieties) が使える. よって  $\dim U\times U'=\dim U+\dim U'\ge \dim U=\dim V.$   $U\times_k U'\subset B$  だから  $\dim B\ge \dim V$
- ■Complete proof of the claim. 今はこれの対偶が成立する. すなわち,  $s \in V^+ \mathrm{pr}_2(B)$  が存在する. この s と任意の  $x \in X$  について  $s_x \not\in \mathfrak{m}_x \mathcal{E}_x$  が成り立つ.
- $\blacksquare$ An exact sequence.  $\Phi$  を以下で定める.

$$\Phi: \quad \mathcal{O}_X \quad \to \quad \mathcal{E}$$
$$\langle U, \sigma \rangle \quad \mapsto \quad \langle U, (s|_U) \cdot \sigma \rangle$$

これの  $x \in X$  における stalk を見ると, $\Phi_x : \sigma_x \mapsto s_x \cdot \sigma_x$  と成っている. $\mathcal{E}_x \cong \mathcal{O}_x^{\oplus r}$  かつ  $\mathcal{O}_x$  :: domain より, $\operatorname{Ann}(\mathcal{E}_x) = 0$ .そして  $s_x \notin \mathfrak{m}_x \mathcal{E}_x$  から, $s_x \neq 0$ .なので  $\Phi_x$  は,したがって  $\Phi$  は injective.よって  $\mathcal{E}' = \operatorname{coker} \Phi$  とおくと以下は exact sequence.

$$0 \to \mathcal{O}_X \to \mathcal{E} \to \mathcal{E}' \to 0.$$

**■** $\mathcal{E}'$  :: locally free.  $\mathcal{E}'$  が locally free であることを示そう. Ex5.7b から、任意の点における stalk が free であることを示せば十分. 以下、 $\mathcal{E}_x = \mathcal{O}_x^{\oplus r}$  ( $\cong$  でなく =) とする. 点  $x \in X$  について

$$s_x = (s_x^{(i)})_i \in \mathcal{O}_x^{\oplus r} = \mathcal{E}_x$$

とする.  $s_x \not\in \mathfrak{m}_x \mathcal{E}_x = \mathfrak{m}_x^{\oplus r}$  から,ある i について  $s_x^{(i)} \not\in \mathfrak{m}_x$ . すなわち  $s_x^{(i)}$  :: unit.ここでは i=0 とし,

$$u = (s_x^{(0)})^{-1} s_x = \left(1, s_x^{(2)} (s_x^{(0)})^{-1}, \dots, s_x^{(r)} (s_x^{(0)})^{-1}\right) \in s_x \mathcal{O}_x$$

と置く、すると  $\mathcal{E}'_x \cong \mathcal{E}_x / \operatorname{im} \Phi_x = \mathcal{O}_x^{\oplus r} / s_x \mathcal{O}_x$  は次の写像で  $\mathcal{O}_x^{\oplus r-1}$  と同型.

$$\mathcal{O}_x^{\oplus r}/s_x \mathcal{O}_x \to 0 \oplus \mathcal{O}_x^{\oplus r-1} 
(t^{(j)})_j \mod s_x \mathcal{O}_x \mapsto (t^{(j)})_j - t^{(0)} u$$

well-defined であることは明らか、逆写像は次のもの、

$$\begin{array}{ccc}
\mathcal{O}_x^{\oplus r-1} & \to & \mathcal{O}_x^{\oplus r}/s_x \mathcal{O}_x \\
t & \mapsto & (0 \oplus t) \bmod s_x \mathcal{O}_x
\end{array}$$

- Ex8.3 Product Schemes.
- Ex8.4 Complete Intersections in  $\mathbb{P}^n$ .
- Ex8.5 Blowing Up a Nonsingular Subvariety.
- Ex8.6 The Infinitesimal Lifting Property.
- Ex8.7 Classifying Infinitesimal Extension: One Case.
- Ex8.8 Plurigenera and Hodge Numbers are Birational Invariants.