Sheet1

N	algo	page	•
0	difinition Une grammaire récursive à gauche	61	
	Construction d'une grammaire non immédiatement récursive à gauche		
	équivalente		58
	Construction d'une grammaire non récursive à gauche équivalente		62
	Construction d'une grammaire factorisée à gauche équivalente		67
	Construction d'une grammaire propre équivalente à une grammaire	69_70	
	4.3 "Déterminisation" d'un AEFND	97_100	
	4.3.2 Cas général : : l'AEFND contient des e transition	+	105
	Déterminisation d'un AEFND avec des e – transitions		106
8	Minimisation d'un AEFD		110
9	Système d'équations		124
	Expression régulière associée à un AEFD		122
	Algorithme de construction de l'automate à pile		143
12	Algorithme de construction de PREMIER (X)		152
13	Algorithme de construction de SUIVANT (X)		154
14	5.3 Construction de la table d'analyse		157