The group G is isomorphic to the group labelled by [16, 4] in the Small Groups library. Ordinary character table of $G \cong C4 : C4$:

	1a	4a	4b	2a	2b	4c	4d	4e	2c	4f
χ_1	1	1	1	1	1	1	1	1	1	1
χ_2	1	-1	-1	1	1	1	-1	-1	1	1
χ_3	1	-1	1	1	1	-1	-1	1	1	-1
χ_4	1	1	-1	1	1	-1	1	-1	1	-1
χ_5	1	-E(4)	-1	1	-1	E(4)	E(4)	1	-1	-E(4)
χ_6	1	E(4)	-1	1	-1	-E(4)	-E(4)	1	-1	E(4)
χ_7	1	-E(4)	1	1	-1	-E(4)	E(4)	-1	-1	E(4)
χ_8	1	E(4)	1	1	-1	E(4)	-E(4)	-1	-1	-E(4)
χ_9	2	0	0	-2	2	0	0	0	-2	0
χ_{10}	2	0	0	-2	-2	0	0	0	2	0

Trivial source character table of $G \cong C4$: C4 at p = 2:

•													
Normalisers N_i	N_1	N_2	N_3	N_4	N_5	N_6	N_7	N_8	N_9	N_{10}	N_{11}	N_{12}	N_{13}
p-subgroups of G up to conjugacy in G	P_1	P_2	P_3	P_4	P_5	P_6	P_7	P_8	P_9	P_{10}	P_{11}	P_{12}	P_{13}
Representatives $n_j \in N_i$	1a	1 <i>a</i>	1a	1 <i>a</i>									
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 2 \cdot \chi_9 + 2 \cdot \chi_{10}$	16	0	0	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 2 \cdot \chi_9 + 0 \cdot \chi_{10}$	8	8	0	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	8	0	8	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 2 \cdot \chi_{10}$	8	0	0	8	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	4	4	4	4	4	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	4	0	4	0	0	4	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	4	0	4	0	0	0	4	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10}$	4	4	0	0	0	0	0	2	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10}$	4	4	0	0	0	0	0	0	2	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	2	2	2	2	2	2	2	0	0	2	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	2	2	2	2	2	0	0	2	0	0	2	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	2	2	2	2	2	0	0	0	2	0	0	2	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10}$	1	1	1	1	1	1	1	1	1	1	1	1	1

```
P_1 = Group([()]) \cong 1
P_2 = Group([(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16)]) \cong C2
P_3 = Group([(1,4)(2,7)(3,9)(5,11)(6,12)(8,14)(10,15)(13,16)]) \cong C2
P_4 = Group([(1,11)(2,14)(3,15)(4,5)(6,16)(7,8)(9,10)(12,13)]) \cong C2
P_6 = Group([(1,3,4,9)(2,6,7,12)(5,10,11,15)(8,13,14,16),(1,4)(2,7)(3,9)(5,11)(6,12)(8,14)(10,15)(13,16)]) \cong C4
P_7 = Group([(1,10,4,15)(2,13,7,16)(3,11,9,5)(6,14,12,8),(1,4)(2,7)(3,9)(5,11)(6,12)(8,14)(10,15)(13,16)]) \cong C4
P_8 = Group([(1,2,5,8)(3,12,10,16)(4,7,11,14)(6,15,13,9),(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16)]) \cong C4
P_9 = Group([(1, 12, 5, 16)(2, 15, 8, 9)(3, 7, 10, 14)(4, 6, 11, 13), (1, 5)(2, 8)(3, 10)(4, 11)(6, 13)(7, 14)(9, 15)(12, 16)]) \cong C4
P_{11} = Group([(1,4)(2,7)(3,9)(5,11)(6,12)(8,14)(10,15)(13,16),(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,2,5,8)(3,12,10,16)(4,7,11,14)(6,15,13,9)]) \cong C4 \times C2
P_{12} = Group([(1,4)(2,7)(3,9)(5,11)(6,12)(8,14)(10,15)(13,16),(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,12,5,16)(2,15,8,9)(3,7,10,14)(4,6,11,13)]) \cong C4 \times C2
N_3 = Group([(1,2,5,8)(3,12,10,16)(4,7,11,14)(6,15,13,9),(1,3,4,9)(2,6,7,12)(5,10,11,15)(8,13,14,16),(1,4)(2,7)(3,9)(5,11)(6,12)(8,14)(10,15)(13,16),(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16)]) \cong \mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf{C4}:\mathbf
N_7 = Group([(1,10,4,15)(2,13,7,16)(3,11,9,5)(6,14,12,8),(1,4)(2,7)(3,9)(5,11)(6,12)(8,14)(10,15)(13,16),(1,2,5,8)(3,12,10,16)(4,7,11,14)(6,15,13,9)]) \cong C4:C4
```

 $N_{10} = Group([(1,3,4,9)(2,6,7,12)(5,10,11,15)(8,13,14,16),(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,4)(2,7)(3,9)(5,11)(6,12)(8,14)(10,15)(13,16),(1,2,5,8)(3,12,10,16)(4,7,11,14)(6,15,13,9)]) \cong C4:C4$ $N_{11} = Group([(1,2,5,8)(3,12,10,16)(4,7,11,14)(6,15,13,9),(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,4)(2,7)(3,9)(5,11)(6,12)(8,14)(10,15)(13,16),(1,3,4,9)(2,6,7,12)(5,10,11,15)(8,13,14,16)]) \cong C4:C4$ $N_{12} = Group([(1,2,5,16)(2,15,8,9)(3,7,10,14)(4,6,11,13),(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,4)(2,7)(3,9)(5,11)(6,12)(8,14)(10,15)(13,16),(1,2,5,8)(3,12,10,16)(4,7,11,14)(6,15,13,9)]) \cong C4:C4$ $N_{13} = Group([(1,2,5,8)(3,12,10,16)(4,7,11,14)(6,15,13,9),(1,3,4,9)(2,6,7,12)(5,10,11,15)(8,13,14,16),(1,5)(2,8)(3,10)(4,11)(6,13)(7,14)(9,15)(12,16),(1,4)(2,7)(3,9)(5,11)(6,12)(8,14)(10,15)(13,16),(1,2,5,8)(3,12,10,16)(4,7,11,14)(6,15,13,9)]) \cong C4:C4$