

Introduction to Computer Systems More on Numbers: Representing Real Numbers

Lecture Objectives

To introduce how real numbers are represented in computer systems, and to explain some of the limitations of floating point representations

Lecture Outline

More on Numbers:

- Binary Arithmetic using 2's Complement
- Fixed Point Decimal to Binary
- Fixed Point Binary to Decimal
- Fixed Point Arithmetic
- Floating Point Numbers
- Numerical Precision

Binary Arithmetic - Observations

- Add a "sign" bit assume on the left
- ightharpoonup Then +5 = 0101 and -5 = 1101
- We know that +5 + -5 = 0, so this should hold in binary!
- But:

0 1 0 1 1 1 0 1 **1** 0 0 **1** 0

We need to Fix It!

We need to be a bit smarter about this ...

Binary Arithmetic - 2's Complement

- In 2's Complement the convention is:
 - All positive numbers start with 0
 - All negative numbers start with 1
 - Negation is achieved by:
 - Flipping all the bits
 - ◆ Adding 1 to the least significant (right-most)
 - Lets see the same example again:
 - +5 = 0101 and -5 = 1011 (in 2C notation)

→ 0101 - 5 → 1011 10000 will be

How about Binary Arithmetic? Subtraction etc.

This carry will be discarded

How Real Numbers are Represented?

How do we represent real numbers in computer systems?

Two of the common ways to achieve this are:

- Fixed Point: binary point is fixed e.g.1101101.000100101
- ◆ Floating Point: binary point floats to the right of the most significant 1 and an exponent is used e.g. 1.101101000100101 x 2⁶
- IEEE 754 https://en.wikipedia.org/wiki/IEEE_754

flocing of the first

Fixed Point Decimal-to-Binary

- Integer part convert as before (repeated division by 2)
- Non-integer part follows the opposite process
- Repeated multiplication by 2, keeping integer part:

$$0.537 \times 2 = 1.074$$

$$0.074 \times 2 = 0.148$$

$$0.148 \times 2 = 0.296$$

$$0.296 \times 2 = 0.592$$

$$0.592 \times 2 = 1.184$$

$$0.184 \times 2 = 0.368$$
So $0.537_{10} = 0.100010_{2}$

0.625?

0.512?

Fixed Point Binary-to-Decimal

Allocate subset of bits to integer part, and the remainder to the non-integer part.

For example, 4+4 bits:

1101.0101

$$1x2^{3} + 1x2^{2} + 0x2^{1} + 1x2^{0} + 0x2^{-1} + 1x2^{-2} + 0x2^{-3} + 1x2^{-4}$$

$$= 8 + 4 + 0 + 1 + 0.0 + 0.25 + 0.0 + 0.0625$$

$$= 13.3125$$

- **◆** 101.110?
- 010.001?

00010.100

Fixed Point Arithmetic

- Everything is the same as for whole numbers
- Example: 01001.010 00010.100
- Take 2C and add:

◆ 10110.101 - 00110.010 ?

Decimal Fractions (Base 10)

$$e g$$
. $\Rightarrow 42 \cdot 625$
 $4 \times 10 + 2 \times 1 + 6 + 2 \cdot 1000$
 $= 42625 \times 10^{-3}$
 $= 42625 \times 10^{-3}$
 $= 42625 \times 10^{-3}$

Infinite Decimal Fractions (Base 10)

e.g.
$$\frac{1}{3} = 0.33333333...$$

If only fixed number of decimal places allowed, the rest is lost e.g. four places:

Binary Fractions (Base 2)

Floating Point Representation (for fractions)

General principle

- like "scientific notation", but in binary

Numbers represented as: ±m*2°

Sign (±)	Mantissa (M)	Exponent (e)
1 bit 0 for + 1 for —	Actual significant digits	2s complement signed binary Shows where binary point goes

Choice of Representations

Floating Point Representation in Java

S		Offset e	Mantissa m	
Sign 0, 1 fo	r +,	Exponent 2's complement signed binary	Mantissa Leading mantissa bit (1.) eft out	

- take bits of m
- put "1." at start, so normalized
- move binary point right e places
- (or left for negative e)
- note e is stored with an "offset" added to it

Java Types for Floating Point

No of Bits					
Туре	Sign	Mantissa	Exponent	Total	Bytes
float		23	8	32	4
double	1	52	11	64	8

52 bit mantissa: $2^{53} \neq 8 \times 10^{15}$ 2 3 3 5 0 2 4 2 5 3

We get 15 significant decimal digits in double data type.

5+127=132

Java Types for Floating Point

Sign -4 + offset 127 = 0 for + 123 e + 127

0

Mantissa
Without the leading 1.

Rounded Up Rounding Error!

Money as Floating Point?

Floating Point value for amount in pounds with pence as fraction?

Not a good practice!

Pence need infinite binary fractions e.g. 10p is 0.0001100110011001100...

so we get rounding errors

Always use int or long (or BigInteger) for money.

Factorial with Double

```
/**
* Calculate factorial.
* requires: 0 <= n
* @param n number whose factorial is to be calculated
* @return factorial of n
                                            n, n!
*/
                                            165, 5.423910666131586E295
public static double dfact(int n){
                                             166, 9.003691705778433E297
         double a = 1;
                                            167, 1.5036165148649983E300
         for (int i = 1; i \le n; i++){
                                             168, 2.526075744973197E302
                   a = a * i;
                                             169, 4.2690680090047027E304
                                             170, 7.2574156<u>15</u>307994E306
                                             171, Infinity
         return a;
                                             172, Infinity
                                            173, Infinity
                                             174, Infinity
```

Accuracy Issues - Even in Double Floating Point

n = 170

n! = 7.257415615307994E306

= 725741561530799**4**£291

This digit is wrong!

291 more digits after it

Windows calculator says:

7.25741561530799**8**9673967282111293e+306

- Floating point arithmetic loses accuracy in least significant digits.
- Most significant, and overall size, are OK.

Why is 171! too big?

170!
$$\approx$$
 7.2 × 10³⁰;
171! \approx 171×7.2 × 10³⁰;
 \approx 1231 × 10³⁰;
Needs binary exponent \approx 1030 > 1024 ≠ 2¹⁰;
Exponent too big to fit in 11 bits (signed) for Java double

Floating Point Overflow

In Java:

If result is too big for datatype,

it's a special value **POSITIVE_INFINITY**

More precisely:

Float.POSITIVE_INFINITY

or

Double.POSITIVE_INFINITY

Other special values:

If too big but negative: **NEGATIVE_INFINITY**

Indistinguishable from 0 but known to be negative: -0.0

Impossible number (e.g. Sqrt(-1)) NaN

"Not a Number"

These special values allow you to check for overflow in a program

- unlike the case for integer arithmetic

Summary – Java Floating Point

- It normalizes where possible
- \checkmark Unnormalised for smallest numbers (offset e = o)
- Special representations for NaN etc.
 - Details in API for:
 - java.lang.Float.intBitsToFloat
 - java.lang.Double.longBitsToDouble

Numerical Precision

Fixed point is convenient and intuitive but has two problems

1) Numerical precision

 Only values that are an integer multiple of the smallest power of two can be represented exactly

2) Numerical range

- Increased precision of non-integer part is at the expense of numerical range
- Floating point representation effectively addresses these issues.

Summary - Numbers

- Representing numbers in the computer
 - Whole numbers in binary and hexadecimal notation
 - Positive real numbers in fixed-point binary
- Binary arithmetic is like decimal arithmetic
 - Our lack of binary practice makes it hard!
- Negative numbers are tricky things
 - But we can use a few of our own tricks 2C
- Floating point is an alternative, but is very unnatural for us!