	Name:	
	Student number: Studen	nt email:
	Deadline December 6th right before the final exact your file in the main office. (I will not accept the C	
1 Tr	rue or False	
• For the	ne following questions, write True or False	
1. if I	${f B}$ is a symmetric matrix,	
	$\frac{\partial \mathbf{x}^{\top} \mathbf{B} \mathbf{x}}{\partial \mathbf{x}} = 2 \mathbf{B} \mathbf{x}$	
	Answer:	
2. For	or hermitian matrices with real numbers, $\mathbf{A} \neq \mathbf{A}^{\dagger}$.	
	Answer	:
3. Th	he multiplication of two matrices commutes, meaning	AB = BA.
	Answer:	:
4. Ca	an we use the gradient to search the maximum of a fu	nction?
	Answer:	:
5. Th	he half-life time of a second order reaction does not de	epend on the initial concentration.
	Answer	
6. For	or a linear set of equations $(\mathbf{A} \mathbf{x} = \mathbf{y})$, where we have	e more equations than variables, meaning

matrix **A** has n-rows and m-columns and n > m, can we do matrix inversion to solve for **x**?

7. Is the matrix **A** an orthogonal matrix?

$$\mathbf{A} = \frac{1}{3} \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & 1 \end{pmatrix}$$

Answer:____

8. Are the eigenvalues of the following matrix **A** real?

$$\mathbf{A} = \begin{pmatrix} 1 & i & i-i \\ -i & 0 & -i+1 \\ 1+i & -1-i & 3 \end{pmatrix}$$

Answer:____

9. Is the following matrix **A** a singular martix?

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 2 \\ 1 & 2 & 2 \\ 3 & 2 & -1 \end{pmatrix}$$

Answer:____

10. Is \mathbf{A}^{-1} the correct inverse of \mathbf{A} ?

$$\mathbf{A}^{-1} = \begin{pmatrix} 5 & 2 \\ -7 & -3 \end{pmatrix} \quad \mathbf{A} = \begin{pmatrix} 3 & 2 \\ -7 & 5 \end{pmatrix}$$

(1)

Answer:____

2 Pencil and Paper Questions

- Answer the following questions.
 - 1. What is the following derivative equal to

$$\frac{\partial (\mathbf{x}^{\top} \mathbf{a})^{\top}}{\partial \mathbf{x}} = ?$$

Answer:____

2. What is the following derivative equal to when W is a symmetric matrix?

$$\frac{\partial \ \left((\mathbf{x}^\top - \mathbf{s})^\top \, \mathbf{W} (\mathbf{x}^\top - \mathbf{s}) \right)}{\partial \, \mathbf{x}}$$

Answer:____

3. How many rows and columns does the Jacobian of $F(\mathbf{x})$ has?

$$F(\mathbf{x}) = \begin{bmatrix} f_1(x_1, x_2, x_3) \\ f_2(x_1, x_2, x_3) \end{bmatrix}$$

Answer:____

4. Compute the Taylor expansion of $f(x) = x^3 - 10x^2 + 6$ at x = 3.

Answer:____

5. Let's assume \mathbf{x} is an eigenvector of the matrix \mathbf{A} with the eigenvalue λ . What is $\mathbf{x}^{\top} \mathbf{A} \mathbf{x}$ equal to ?

Answer:____

6. What type of matrices have real eigenvalues?

Answer:____

7. Compute the eigenvalues and eigenvectors for the matrix ${\bf A}.$

$$\mathbf{A} = \begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix}$$

Answer:____

8. What are the eigenvalues and eigenvectors for the matrix \mathbf{A} .

$$\mathbf{A} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

Answer:____

9. Explain why for the least square problem we set $\frac{\partial \mathcal{L}(\mathbf{w})}{\partial \mathbf{w}} = 0$. $\mathcal{L}(\mathbf{w})$ is the mean square error function.

Answer:_____

10. What is the rate law of a second order reaction, choose the correct option(s).

$$\mathbf{A)} \ r = k[\mathbf{A}]^2$$

B)
$$r = k[A]^{\frac{1}{2}}[B]^{\frac{1}{2}}[C]$$

C)
$$r = k[A]^2[B]$$

$$\mathbf{D)} \ r = k[\mathbf{A}][\mathbf{B}]$$

E)
$$r = k[A]^{\frac{1}{2}}[B]^{\frac{1}{2}}$$

Answer:____