

MEDICIONES

PUENTE DE WHEATSTONE

AMPLIFICADORES OPERACIONALES

SISTEMAS DE INSTRUMENTACIÓN

SISTEMAS DE INSTRUMENTACIÓN

La instrumentación en general, trata los sistemas integrados cuya finalidad es medir magnitudes físicas de un sistema externo, elaborar la información asociada a ellas y presentarla a un operador.

SISTEMAS DE INSTRUMENTACIÓN

La instrumentación en general, trata los sistemas integrados cuya finalidad es medir magnitudes físicas de un sistema externo, elaborar la información asociada a ellas y presentarla a un operador.

SISTEMAS DE INSTRUMENTACIÓN

Esquema típico de un sistema de instrumentación

SISTEMAS DE INSTRUMENTACIÓN

Esquema típico de un sistema de instrumentación

SISTEMAS DE INSTRUMENTACIÓN

Esquema típico de un sistema de instrumentación

SISTEMAS DE INSTRUMENTACIÓN Y CONTROL

Si se requiriese efectuar el control de un proceso, además de la medición de las magnitudes físicas deberá realizarse la actuación sobre ciertas magnitudes del mismo.

SISTEMAS DE INSTRUMENTACIÓN Y CONTROL

Si se requiriese efectuar el control de un proceso, además de la medición de las magnitudes físicas deberá realizarse la actuación sobre ciertas magnitudes del mismo.

SISTEMAS DE INSTRUMENTACIÓN Y CONTROL

Si se requiriese efectuar el control de un proceso, además de la medición de las magnitudes físicas deberá realizarse la actuación sobre ciertas magnitudes del mismo.

SISTEMAS DE INSTRUMENTACIÓN Y CONTROL

Sensor

Acondicionamiento o conformación de la señal

Telemetría

Sistemas 4-20 mA (*)

Conversión A/D

Procesamiento

Visualización

Registro

Actuación

(*) ANSI/ISA-50.1-1982 (R1992) "Compatibility of Analog Signal for Electronic Industrial Process Instruments"

TRANSDUCTORES E INSTRUMENTACIÓN

SENSOR

Dispositivo capaz de detectar estímulos físicos (calor, luz, fuerza, movimiento) y da origen a una respuesta determinada que es capaz de cuantificarse.

TRANSDUCTOR

Está definido como un dispositivo que convierte un tipo de energía en otro. Ejemplos típicos son el altavoz (o parlante) y los materiales piezoeléctricos.

En el ámbito de la instrumentación y control, estas definiciones muchas veces generan confusión, pues incluso algunos autores también refieren **DETECTOR** como sinónimo de sensor.

Para no aumentar dicha confusión, aceptaremos estas definiciones como una sola, prefiriendo la palabra *transductor* debido a las aplicaciones que se verán.

CLASIFICACIÓN DE LOS TRANSDUCTORES

ACTIVOS

Generan energía eléctrica a partir de la magnitud física que actúa sobre ellos

PASIVOS

Necesitan una fuente de energía eléctrica externa para poner de manifiesto las variaciones de las magnitudes que detectan

TRANSDUCTORES DE ESFUERZO Y DEFORMACIÓN

Elasticidad de los materiales - Ley de Hooke

$$\varepsilon = \frac{\Delta \ell}{\ell} = \left[\frac{\mu m}{mm}\right]$$

$$\sigma = \frac{F}{A} = \left\lceil \frac{kg}{mm^2} \right\rceil$$

$$\mathsf{E} = \frac{\Delta \sigma}{\Delta \epsilon} \quad \text{M\'odulo de Young}$$

TRANSDUCTORES DE ESFUERZO Y DEFORMACIÓN

GALGA EXTENSOMÉTRICA

Metálicas

Economía Precisión alta Sensibilidad baja

Semiconductoras

Sensibilidad mayor Menor precisión Mayor dependencia de la temperatura

TRANSDUCTORES DE ESFUERZO Y DEFORMACIÓN

GALGA EXTENSOMÉTRICA

$$R = \rho \frac{\ell}{A}$$

$$k = \frac{\frac{\Delta R}{R}}{\frac{\Delta \ell}{\ell}}$$

Factor de la galga

Tipo de galga Característica	Metálicas	Semiconductoras	
Precisión [%]	0,1	1	
Factor	2	50 a 200	
Alargamiento [μm/m]	20.000 x 10 ⁻⁶	5.000 x 10 ⁻⁶	
Resistencia nominal $[\Omega]$	120; 350; 600; 1.000	120	

TRANSDUCTORES DE ESFUERZO Y DEFORMACIÓN

GALGA EXTENSOMÉTRICA - Aplicación

Una sola resistencia variable

$$U_{AB} = \frac{Uf \cdot x}{4\left(1 + \frac{x}{2}\right)} = \frac{Uf \frac{\Delta R}{R}}{4 + 2\frac{\Delta R}{R}} = \frac{Uf \cdot k \cdot \epsilon}{4 + 2 \cdot k \cdot \epsilon} \approx \frac{Uf \cdot k \cdot \epsilon}{4}$$

TRANSDUCTORES DE ESFUERZO Y DEFORMACIÓN

GALGA EXTENSOMÉTRICA - Aplicación

Dos resistencias variables

$$U_{AB} = \frac{Uf \cdot x}{2\left(1 + \frac{x}{2}\right)} = \frac{Uf \frac{\Delta R}{R}}{2 + \frac{\Delta R}{R}} = \frac{Uf \cdot k \cdot \epsilon}{2 + k \cdot \epsilon} \approx \frac{Uf \cdot k \cdot \epsilon}{2}$$

¿Cómo se analizaría si las cuatro resistencias fuesen variables? ¿Se puede hacer en este caso? Si no, ¿en qué otro?

TRANSDUCTORES DE ESFUERZO Y DEFORMACIÓN

GALGA EXTENSOMÉTRICA - Aplicación

Aplicación típica de cuatro resistencias variables

TRANSDUCTORES DE ESFUERZO Y DEFORMACIÓN

GALGA EXTENSOMÉTRICA - Aplicación

Compensación por temperatura

Si la temperatura de las galgas aumenta, R cambia en la misma proporción en ambas, con lo que el equilibrio en reposo se mantiene

TRANSDUCTORES DE ESFUERZO Y DEFORMACIÓN

GALGA EXTENSOMÉTRICA - Aplicación

Compensación de la longitud de los conductores de conexión

$$[R(1+x)+R_c]\cdot R = (R+R_c)\cdot R$$

¿Qué ocurre en reposo (x = 0)?

Similarmente al caso anterior, si la longitud de los cables de conexión cambian, Rc cambia en los tres conductores a la vez, con lo que el equilibrio en reposo se mantiene

TRANSDUCTORES DE TEMPERATURA **TERMOCUPLA** (TERMOPAR)

Efecto SEEBECK

ΔU [mV] en el extremo frío

Materiales de unión	Rango típico de temperatura de aplicación (°C)	Variación de la tensión en el rango (mV)	Designación ANSI
Platino-6% rodio/platino-30% rodio	38 a 1800	13.6	В
Tungsteno-5% renio/tungsteno-26% renio	0 a 2300	37.0	(C)
Cromel/constantan	0 a 982	75.0	E
Hierro/constantan	-184 a 760	50.0	J
Cromel/alumel	-184 a 1260	56.0	K
Platino/platino-13% rodio	0 a 1593	18.7	R
Platino/platino-10% rodio	0 a 1538	16.0	S
Cobre/constantan	-184 a 400	26.0	T

TRANSDUCTORES DE TEMPERATURA **TERMOCUPLA** (TERMOPAR)

TRANSDUCTORES DE TEMPERATURA **TERMOCUPLA** (TERMOPAR)

TRANSDUCTORES DE TEMPERATURA **TERMOCUPLA** (TERMOPAR)

Aplicación elemental típica

Esquema eléctrico

TRANSDUCTORES DE TEMPERATURA **TERMORRESISTORES (RTD)**

Aprovechan las características de variación de la resistividad de diferentes materiales en función de la temperatura (cobre, níquel o platino).

si la relación R-T no es lineal

$$\mathsf{R}_\mathsf{T} = \mathsf{R}_0 \; (1 + \alpha \mathsf{T} + \beta \mathsf{T}^2 + \delta \mathsf{T}^3 + \ldots)$$

Comparación de los coeficientes de temperatura de diferentes materiales para RTD

Material Rango de temperatura (°C)		TC (%/°C)@25°C	
Platino	-200 a +850	0.39	
Niquel	-80 a +320	0.67	
Cobre	-200 a +260	0.38	
Níquel-hierro	-200 a + 260	0.46	

TRANSDUCTORES DE TEMPERATURA **TERMORRESISTORES (RTD)**

Las RTD de platino (Pt100) son las preferidas cuando se requiere exactitud y linealidad.

Según la aplicación, pueden utilizarse con un puente de Wheatstone (como los ya vistos) o alimentadas por una fuente de corriente y conexiones de tres o cuatro terminales (más común).

TRANSDUCTORES DE TEMPERATURA **TERMISTORES**

Aprovechan la fuerte dependencia de funcionamiento que presentan los semiconductores con la temperatura.

A diferencia de los metales utilizados en la fabricación de los RTD, la resistencia que presentan los materiales que conforman los termistores decrece al aumentar la temperatura desde aproximadamente -100°C a +300°C (termistores NTC).

Una aproximación general utilizada frecuentemente:

$$R_{T} = A \cdot e^{\beta \left(\frac{1}{T}\right)} \quad R_{T} = R_{0} \cdot e^{\beta \left(\frac{1}{T} - \frac{1}{T_{0}}\right)}$$

 R_{T} : resistencia del termistor en Ω @ T en [K]

A: coeficiente del termistor en Ω

β: constante de ajuste de curva (entre 2000 y 4000 en [K])

 R_0 : resistencia del termistor en Ω @ T_0 en [K]

PUENTE DE WHEATSTONE + AMPLIFICADOR DIFERENCIAL Una sola resistencia variable

$$u_a = \frac{(1+x)}{(2+x)} U_f$$

$$u_b = \frac{U_f}{2}$$

$$R_a = \frac{(1+x)}{(2+x)}R$$

$$R_b = \frac{R}{2}$$

$$u_{s} = \frac{x}{\left((2+x)(1+x)\frac{R}{R_{r}} + (2+x)\right)} \frac{R_{r}}{R} U_{f}$$

$$u_s \approx \frac{R_r}{2R} \frac{x}{\left(1 + \frac{R}{R_r}\right)} U_f$$
 si $x \ll 1$

PUENTE DE WHEATSTONE + AMPLIFICADOR DIFERENCIAL Las cuatro resistencias variables

$$u_a = \frac{U_f}{2}(1+x)$$
 $u_b = \frac{U_f}{2}(1-x)$

$$R_a = R_b = \frac{R}{2}$$

$$u_b = \frac{U_f}{2}(1-x)$$

$$u_s = 2\frac{R_r}{R}U_f x$$

TRANSDUCTORES E INSTRUMENTACIÓN W NACIONAL NACIO

RESUMEN

- > Medidores
- Sistemas de instrumentación
- > Transductor
- Transductores de esfuerzo y deformación (galga extensométrica)
- Transductores de temperatura (termocupla, RTD, termistor)
- ➤ Puente de Wheatstone + Amplificador diferencial