6.6 MaximallyFlat(Binomial or Butterworth) and Chebychev(EqualRipple) filters

Module:6 Microwave Passive circuits

Course: BECE305L - Antenna and Microwave Engineering

-Dr Richards Joe Stanislaus

Assistant Professor - SENSE

Email: richards.stanislaus@vit.ac.in

Module:6 Microwave Passive circuits <u>7</u> hours

• T junction and resistive power divider, Wilkinson power divider, branch line coupler (equal & unequal), Rat Race Coupler, Filter design: Low pass filter (Butterworth and Chebyshev) - Richards transformation and stepped impedance methods.

Source of the contents: Pozar

2. FILTER DESIGN BY THE INSERTION LOSS METHOD: Characterization by Power loss ratio

- Insertion loss method: a filter response is defined by its insertion loss, or power loss ratio, P_{LR} :
- $P_{LR} = \frac{Power\ available\ from\ source}{Power\ delivered\ to\ the\ load} = \frac{P_{inc}}{P_{load}} = \frac{1}{1 |\Gamma(\omega)|^2}$
- This quantity is reciprocal of $|S_{12}|^2$ if both load and source are matched.
- Insertion loss (IL)= $10 \log_{10} P_{LR}$
- $|\Gamma(\omega)|^2$ is an even function of ω . It can be expressed as polynomials M and N in ω^2 : $|\Gamma(\omega)|^2 = \frac{M(\omega^2)}{M(\omega^2) + N(\omega^2)}$
- $P_{LR} = 1 + \frac{M(\omega^2)}{N(\omega^2)}$ Reflection ratio is also constrained.

2.1 Characterization by Power loss ratio: a) Maximally flat (Binomial or Butterworth response)

- Provides flattest possible passband response for given filter complexity.
- Low pass filter, it is specified by

$$P_{LR} = 1 + k^2 \left(\frac{\omega}{\omega_c}\right)^{2N}$$

- N is order of the filter and ω_c is cutoff frequency.
- Pass band extends from $\omega = 0$ to $\omega = \omega_c$
- At the edge, the power loss ratio is $1 + k^2$ (If -3dB point, k = 1)

2.1 Characterization by Power loss ratio: a) Maximally flat (Binomial or Butterworth response)

- For $\omega > \omega_c$, attenuation increases monotonically with frequency.
- For $\omega \gg \omega_c$, $P_{LR} \approx k^2 \left(\frac{\omega}{\omega_c}\right)^{2N}$ (Insertion loss increases at rate of 20dB/decade
- Like binomial response, for multisection quarter-wave matching transformer, the first (2N-1) derivatives are zero at $\omega=0$.

2.1 Characterization by Power loss ratio:b) Equal ripple (Chebyshev)

 Chebyshev polynomial is used to specify insertion loss Nth order low pass filter as

$$P_{LR} = 1 + k^2 T_N^2 \left(\frac{\omega}{\omega_c}\right)$$

2.1 Characterization by Power loss ratio:b) Equal ripple (Chebyshev)

 Chebyshev polynomial is used to specify insertion loss Nth order low pass filter as

$$P_{LR} = 1 + k^2 T_N^2 \left(\frac{\omega}{\omega_c}\right)$$

Results in a sharper cutoff but with ripples in passband

Ripple amplitude $1 + k^2$, with $T_N(x)$ oscillates between ± 1 for $|x|^2 < 1$

• Thus Passband ripple level are dependent on k^2

2.1 Characterization by Power loss ratio:b) Equal ripple (Chebyshev)

 Chebyshev polynomial is used to specify insertion loss Nth order low pass filter as

$$P_{LR} = 1 + k^2 T_N^2 \left(\frac{\omega}{\omega_c}\right)$$

Results in a sharper cutoff but with ripples in passband

Ripple amplitude $1 + k^2$, with $T_N(x)$ oscillates between ± 1 for $|x|^2 < 1$

- Thus Passband ripple level are dependent on k^2
- For large x, $T_n(x) \approx \frac{1}{2}(2x)^N$ For $\omega \gg \omega_c$, insertion loss $P_{LR} \approx \frac{k^2}{4} \left(\frac{2\omega}{\omega_c}\right)^{2N}$ Chebyshev case> $\frac{2^{2N}}{4}$ times binomial casd
- This also increases at 20N dB/decade

- Consider 2 element Low pass filter prototype
- Normalized element values L and C for maximally flat response.

$$P_{LR} = 1 + k^2 \left(\frac{\omega}{\omega_c}\right)^{2N}$$

- Consider 2 element Low pass filter prototype
- Normalized element values L and C for maximally flat response.

$$P_{LR} = 1 + k^2 \left(\frac{\omega}{\omega_c}\right)^{2N}$$

- Source impedance of 1Ω and cutoff frequency $\omega_c=1$ rad/sec
- Desired loss ratio for N = 4,

$$P_{LR} = 1 + \omega^4$$

- Consider 2 element Low pass filter prototype
- Normalized element values L and C for maximally flat response.

$$P_{LR} = 1 + k^2 \left(\frac{\omega}{\omega_c}\right)^{2N}$$

- Source impedance of 1Ω and cutoff frequency $\omega_c = 1$ rad/sec
- Desired loss ratio for N=4,

$$P_{LR} = 1 + \omega^4$$

- Input impedance of this filter $Z_{in} = j\omega L + \frac{R(1-j\omega RC)}{1+\omega^2R^2C^2}$
- $P_{LR} = 1 + \frac{1}{4R^2} [(1-R)^2 + (R^2C^2 + L^2R^2 2LCR^2)\omega^2 + L^2C^2R^2\omega^4]$

•
$$P_{LR} = 1 + \omega^4$$
 $Z_{in} = j\omega L + \frac{R(1 - j\omega RC)}{1 + \omega^2 R^2 C^2}$

•
$$P_{LR} = 1 + \omega^4$$
 $Z_{in} = j\omega L + \frac{R(1 - j\omega RC)}{1 + \omega^2 R^2 C^2}$
• $P_{LR} = 1 + \frac{1}{4R^2} [(1 - R)^2 + (R^2 C^2 + L^2 R^2 - 2LCR^2)\omega^2 + L^2 C^2 R^2 \omega^4]$

•
$$P_{LR} = 1 + \omega^4$$
 $Z_{in} = j\omega L + \frac{R(1-j\omega RC)}{1+\omega^2 R^2 C^2}$

•
$$P_{LR} = 1 + \frac{1}{4R^2} [(1-R)^2 + (R^2C^2 + L^2R^2 - 2LCR^2)\omega^2 + L^2C^2R^2\omega^4]$$

- This is expression of polynomial in ω^2
- R=1 since $P_{LR}=1$ for $\omega=0$

•
$$P_{LR} = 1 + \omega^4$$
 $Z_{in} = j\omega L + \frac{R(1-j\omega RC)}{1+\omega^2 R^2 C^2}$

•
$$P_{LR} = 1 + \frac{1}{4R^2} [(1-R)^2 + (R^2C^2 + L^2R^2 - 2LCR^2)\omega^2 + L^2C^2R^2\omega^4]$$

- This is expression of polynomial in ω^2
- R=1 since $P_{LR}=1$ for $\omega=0$
- Coefficient of ω^2 must vanish

$$C^2 + L^2 - 2LC = (C - L)^2 = 0$$

•
$$P_{LR} = 1 + \omega^4$$
 $Z_{in} = j\omega L + \frac{R(1-j\omega RC)}{1+\omega^2 R^2 C^2}$

•
$$P_{LR} = 1 + \frac{1}{4R^2} [(1-R)^2 + (R^2C^2 + L^2R^2 - 2LCR^2)\omega^2 + L^2C^2R^2\omega^4]$$

- This is expression of polynomial in ω^2
- R=1 since $P_{LR}=1$ for $\omega=0$
- Coefficient of ω^2 must vanish

$$C^2 + L^2 - 2LC = (C - L)^2 = 0$$

• The L=C. For coefficient of ω^4 to be unity,

$$\frac{1}{4}L^2C^2 = \frac{1}{4}L^4 = 1 \qquad L = C = \sqrt{2}$$

•
$$P_{LR} = 1 + \omega^4$$
 $Z_{in} = j\omega L + \frac{R(1-j\omega RC)}{1+\omega^2 R^2 C^2}$

•
$$P_{LR} = 1 + \frac{1}{4R^2} [(1 - R)^2 + (R^2C^2 + L^2R^2 - 2LCR^2)\omega^2 + L^2C^2R^2\omega^4]$$

- L = C = $\sqrt{2}$
- Procedure can be extended to find the element values for filters with arbitrary N elements.

•
$$P_{LR} = 1 + \omega^4$$
 $Z_{in} = j\omega L + \frac{R(1-j\omega RC)}{1+\omega^2 R^2 C^2}$

•
$$P_{LR} = 1 + \frac{1}{4R^2} [(1-R)^2 + (R^2C^2 + L^2 - 2LCR^2)\omega^2 + L^2C^2R^2\omega^4]$$

- L = C = $\sqrt{2}$
- Procedure can be extended to find the element values for filters with arbitrary N elements.
- For normalized low pass design, source impedance is 1Ω and cutoff frequency ω_c rad/sec
- Element values for ladder type circuit are given

• Element values for ladder type circuit are given with $g_0=1$, $\omega_c=1$, N=1 to 10.

N	g_1	g_2	g_3	g_4	<i>g</i> 5	g 6	g 7	<i>g</i> ₈	g 9	g 10	<i>g</i> ₁₁
1	2.0000	1.0000									
2	1.4142	1.4142	1.0000								
3	1.0000	2.0000	1.0000	1.0000							
4	0.7654	1.8478	1.8478	0.7654	1.0000						
5	0.6180	1.6180	2.0000	1.6180	0.6180	1.0000					
6	0.5176	1.4142	1.9318	1.9318	1.4142	0.5176	1.0000				
7	0.4450	1.2470	1.8019	2.0000	1.8019	1.2470	0.4450	1.0000			
8	0.3902	1.1111	1.6629	1.9615	1.9615	1.6629	1.1111	0.3902	1.0000		
9	0.3473	1.0000	1.5321	1.8794	2.0000	1.8794	1.5321	1.0000	0.3473	1.0000	
10	0.3129	0.9080	1.4142	1.7820	1.9754	1.9754	1.7820	1.4142	0.9080	0.3129	1.0000

Source: Reprinted from G. L. Matthaei, L. Young, and E. M. T. Jones, *Microwave Filters, Impedance-Matching Networks, and Coupling Structures*, Artech House, Dedham, Mass., 1980, with permission.

- g_0 is generator impedance is 1
- g_{N+1} is at the load impedance for a filter having N reactive elements
- Series $g_0 = generator\ resistance\ /\ generator\ conductance$

• Element values for ladder type circuit are given

Prototype beginning with shunt element

Prototype beginning with series element

- g_0 is generator impedance is 1
- g_{N+1} is at the load impedance for a filter having N reactive elements
- Series

```
g_0 = generator\ resistance\ /\ generator\ conductance
g_k\ (k=1\ to\ N) = inductance\ for\ series\ inductors
capacitance\ for\ shunt\ capacitors
```

• Element values for ladder type circuit are given

Prototype beginning with shunt element

Prototype beginning with series element

- g_0 is generator impedance is 1
- g_{N+1} is at the load impedance for a filter having N reactive elements
- Series

```
g_0 = generator\ resistance\ /\ generator\ conductance
g_k\ (k=1\ to\ N) = inductance\ for\ series\ inductors
capacitance\ for\ shunt\ capacitors
g_{N+1} = load\ resistance\ if\ g_N\ is\ a\ shunt\ capacitor
load\ conductance\ if\ g_N\ is\ a\ series\ inductor
```

Element values for ladder type circuit are given

Prototype beginning with shunt element

Prototype beginning with series element

- Both the circuits will give same response.
- Attenuation characteristics for various N vs Frequency
- For N>10,
 Two lower order filters in cascade are used.


```
• \omega_c=1~rad/sec
Power loss ratio: P_{LR}=1+k^2T_N^2(\omega)
1+k^2: ripple level in passband
```

- $\omega_c=1~rad/sec$ Power loss ratio: $P_{LR}=1+k^2T_N^2(\omega)$ $1+k^2$: ripple level in passband
- Chebyshev polynomial property: $T_N(0) = \begin{cases} 0 & \text{for } N \text{ odd,} \\ 1 & \text{for } N \text{ even,} \end{cases}$

•

- $\omega_c=1~rad/sec$ Power loss ratio: $P_{LR}=1+k^2T_N^2(\omega)$ $1+k^2$: ripple level in passband
- Chebyshev polynomial property: $T_N(0) = \begin{cases} 0 & \text{for } N \text{ odd,} \\ 1 & \text{for } N \text{ even,} \end{cases}$
- Filter will have the power loss ratio $P_{LR}=1$ at $\omega=0$ for N odd $P_{LR}=1+k^2$ at $\omega=0$ for N even

- $\omega_c=1~rad/sec$ Power loss ratio: $P_{LR}=1+k^2T_N^2(\omega)$ $1+k^2$: ripple level in passband
- Chebyshev polynomial property:
- Filter will have the power loss ratio $P_{LR}=1$ at $\omega=0$ for N odd $P_{LR}=1+k^2$ at $\omega=0$ for N even

•
$$k^2 = \frac{(1-R)^2}{4R}$$
 or

•
$$R = 1 + 2k^2 \pm 2k\sqrt{1 + k^2}$$
 for N even

$$T_N(0) = \begin{cases} 0 & \text{for } N \text{ odd,} \\ 1 & \text{for } N \text{ even,} \end{cases}$$

4. Equal ripple Low Pass filter prototype (Chebyshev): 0.5dB ripple

0.5 dB Ripple											
N	<i>g</i> ₁	g_2	g_3	g_4	<i>g</i> ₅	g 6	g 7	g_8	g 9	g 10	<i>g</i> ₁₁
1	0.6986	1.0000									
2	1.4029	0.7071	1.9841								
3	1.5963	1.0967	1.5963	1.0000							
4	1.6703	1.1926	2.3661	0.8419	1.9841						
5	1.7058	1.2296	2.5408	1.2296	1.7058	1.0000					
6	1.7254	1.2479	2.6064	1.3137	2.4758	0.8696	1.9841				
7	1.7372	1.2583	2.6381	1.3444	2.6381	1.2583	1.7372	1.0000			
8	1.7451	1.2647	2.6564	1.3590	2.6964	1.3389	2.5093	0.8796	1.9841		
9	1.7504	1.2690	2.6678	1.3673	2.7239	1.3673	2.6678	1.2690	1.7504	1.0000	
10	1.7543	1.2721	2.6754	1.3725	2.7392	1.3806	2.7231	1.3485	2.5239	0.8842	1.9841

4. Equal ripple Low Pass filter prototype (Chebyshev) : 3dB ripple

3.0 dB Ripple

N	g_1	g_2	g_3	g_4	<i>g</i> ₅	g_6	g 7	g_8	g 9	g_{10}	<i>g</i> ₁₁
1	1.9953	1.0000									
2	3.1013	0.5339	5.8095								
3	3.3487	0.7117	3.3487	1.0000							
4	3.4389	0.7483	4.3471	0.5920	5.8095						
5	3.4817	0.7618	4.5381	0.7618	3.4817	1.0000					
6	3.5045	0.7685	4.6061	0.7929	4.4641	0.6033	5.8095				
7	3.5182	0.7723	4.6386	0.8039	4.6386	0.7723	3.5182	1.0000			
8	3.5277	0.7745	4.6575	0.8089	4.6990	0.8018	4.4990	0.6073	5.8095		
9	3.5340	0.7760	4.6692	0.8118	4.7272	0.8118	4.6692	0.7760	3.5340	1.0000	
10	3.5384	0.7771	4.6768	0.8136	4.7425	0.8164	4.7260	0.8051	4.5142	0.6091	5.8095

- Table for designing equal ripple low pass filters with normalized source impedance
- Cutoff frequency $\omega_c' =$ The ladder circuits:

Prototype beginning with shunt element

 $=\frac{1raa}{R_{0} = g_{0} = 1}$ $C_{1} = g_{1}$ $C_{3} = g_{3}$ Q_{N+}

Prototype beginning with series element

- Table for designing equal ripple low pass filters with normalized source impedance
- Cutoff frequency $\omega'_c = \frac{1rad}{sec}$ The ladder circuits:
- The design data depends on specified passband ripple (0.5dB or 3dB)
- Notice: Load impedance $g_{N+1} \neq 1$ for even N

- Table for designing equal ripple low pass filters with normalized source impedance
- Cutoff frequency $\omega'_c = \frac{1rad}{sec}$ The ladder circuits:
- The design data depends on specified passband ripple (0.5dB or 3dB)
- Notice: Load impedance $g_{N+1} \neq 1$ for even N
- If stopband attenuation is specified, the curves can be used to determine the necessary value of N for the ripples.

4. Equal ripple Low Pass filter prototype (Chebyshev): 0.5dB ripple Attenuation

4. Equal ripple Low Pass filter prototype (Chebyshev) : 3dB ripple attenuation

