DİNAMİK PROGRAMLAMA

Bütün parametrelerin önceden bilinmesi gerekiyor.

Binom Sabitlerinin Hesaplanması

$$\binom{n}{k} \begin{cases} 1 & k = n \text{ veya } k = 0 \text{ ise} \\ \binom{n-k}{k-1} + \binom{n-1}{k} & 0 < k < n \end{cases}$$

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$
 // Çok hızlı artan fonksiyon

$$n! \sim \sqrt{2\pi} \cdot n^{(\frac{n+1}{2})} e^{-n}$$
 // Stirling Formülü

$$\lim_{n\to\infty} \frac{n!}{\sqrt{2\pi} \cdot n^{(\frac{n+1}{2})}} e^{-n} = 1$$
 // Alt sınırı bulmamızı sağlayacak

En iyi durum arada 2 farkın olduğu durum. Burada en iyi durumu düşünüyoruz Ω(2ⁿ)

LCS (En uzun ortak alt katar problemi)

2 string ver ortak katar bulmaya çalış

```
LCS(A,B)
for i=0 to m
        len(i,0)
for j=0 to n
        len(0,j)=0
for i=1 to m
        for j=1 to n
                if a_i=b_i then
                         len(i,j)=len(i-1,j-1)+1
                         prev(i.j)='K'
                end
                else if len(i-1,j) \ge len(i,j-1)
                         len(i,j)=len(i-1,j)
                         prev(i,j)='\uparrow'
                end
                else
                         len(i,j)=len(i,j-1)
                         prev(i,j)='\leftarrow'
                 end
                return len,prev
```

Örnek

president, providence

	0	1	2	3	4	5	6	7	8	9	10
	0	p	r	0	V	i	d	e	n	c	e
0	0	0	0	0	0	0	0	0	0	0	0
p	0	1 K	1←	1←	1←	1←	1←	1←	1←	1←	1 ←
r	0	1 ↑	2	2 ←	2 ←	2 ←	2 ←	2 ←	2 ←	2 ←	2 ←
e	0	1 ↑	2 ↑	2 ↑	2 ↑	2 ↑	2 ↑	3 K	3←	3←	3 ►
S	0	1 ↑	2 ↑	2 ↑	2 ↑	2 ↑	2 ↑	←	←		↑
i	0	1 ↑	2 ↑	2 ↑	2 ↑	3 K	3←	3←	3←	3←	3←
d	0	1	2 ↑	2 ↑	2 ↑	3↑	4 K	4 ←	4 ←	4←	4←
e	0	1	2 ↑	2 ↑	2 ↑	3↑	4 ↑	5 K	5←	5←	5←
n	0	1	21	21	21	3 ↑	4 ↑	5 ↑	6 K	6←	6←
t	0	1	2 ↑	2	2 ↑	3 ↑	4 ↑	5 ↑	6 ↑	6 ↑	6 ↑
	r e s i d e	0 0 0 p 0 r 0 e 0 d 0 e 0 n 0	0 p 0 0 0 p 0 1 \(\bar{r} \) 0 1 \(\bar{r} \) 0 1 \(\bar{r} \) 0 1 \(\bar{r} \) 0 1 \(\bar{r} \) 0 1 \(\bar{r} \) 0 1 \(\bar{r} \) 0 1 \(\bar{r} \) 0 1 \(\bar{r} \) 0 1 \(\bar{r} \) 0 1 \(\bar{r} \) 0 1 \(\bar{r} \) 0 1 \(\bar{r} \) 0 1 \(\bar{r} \) 0 1 \(\bar{r} \) 0 1 \(\bar{r} \)	0 p r 0 0 0 0 0 p 0 1 1← r 0 1↑ 2 e 0 1↑ 2 ↑ i 0 1↑ 2 ↑ d 0 1↑ 2 ↑ e 0 1↑ 2 ↑ n 0 1↑ 2 ↑	0 p r 0 0 0 0 0 0 0 0 0 0 p 0 1 1← 1← r 0 1↑ 2 2← e 0 1↑ 2↑ 2↑ i 0 1↑ 2↑ 2↑ d 0 1↑ 2↑ 2↑ e 0 1↑ 2↑ 2↑ n 0 1↑ 2↑ 2↑	0 p r 0 v 0 0 0 0 0 0 0 p 0 1 1← 1← 1← r 0 1↑ 2 2← 2← e 0 1↑ 2↑ 2↑ 2↑ i 0 1↑ 2↑ 2↑ 2↑ d 0 1↑ 2↑ 2↑ 2↑ e 0 1↑ 2↑ 2↑ 2↑ n 0 1↑ 2↑ 2↑ 2↑	0 p r 0 v i 0 0 0 0 0 0 0 0 p 0 1 1 ← 1 ← 1 ← 1 ← r 0 1 ↑ 2 2 ← 2 ← 2 ← e 0 1 ↑ 2 ↑ 2 ↑ 2 ↑ 2 ↑ i 0 1 ↑ 2 ↑ 2 ↑ 2 ↑ 2 ↑ i 0 1 ↑ 2 ↑ 2 ↑ 2 ↑ 3 ↑ d 0 1 ↑ 2 ↑ 2 ↑ 2 ↑ 3 ↑ e 0 1 ↑ 2 ↑ 2 ↑ 2 ↑ 3 ↑ n 0 1 ↑ 2 ↑ 2 ↑ 3 ↑	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 p r 0 v i d e 0 0 0 0 0 0 0 0 0 0 0 1 1 ← 1 ← 1 ← 1 ← 1 ← 1 ← 1 ← 1 ← 2 ← 2 ← 2 ← 2 ← 2 ← e 0 1 ↑ 2 ↑ 2 ↑ 2 ↑ 2 ↑ 2 ↑ 3 ↑ i 0 1 ↑ 2 ↑ 2 ↑ 2 ↑ 2 ↑ 3 ↑ 4 ← e 0 1 ↑ 2 ↑ 2 ↑ 2 ↑ 3 ↑ 4 ↑ 5 ↑ n 0 1 ↑ 2 ↑ 2 ↑ 2 ↑ 3 ↑ 4 ↑ 5 ↑	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Okları takip edip sadece çaprazları alıyoruz ; priden

Dinamik yaklaşım kullanmadan

BruteForce (Kaba Kuvvet) O(2ⁿm)

Dinamik Programlama kullanarak

 $\mathbf{O}(\mathbf{m.n})$ Eşit olup olmadığını bilmediğimiz için, eşit olursa $\mathrm{O}(\mathrm{n}^2)$

MATRİS ZİNCİR ÇARPIMI

M1 M2 M3 matrislerinin çarpımı istense

2 matris 1 yol 3 matris 2 yol 4 matris :

Özyineleme (Matris Zincir Çarpımı)

```
int MatrisSırasi (int p[], int i, int j)

if (i == j) return 0;

int k;

int min = INT_MAX;

int count;

for (k = i; k < j; k + +)

{

count = MatrisSırası(p, i, k) + MatrisSırası(p, k + 1, j) + p[i - 1]*p[k]*p[j]

if (count < min)

min = count
}

return min
```

Analiz (Matris Zincir Çarpımı)

n Adet matris var

$$\underbrace{(M_1 \times M_2 \times M_3 \cdots M_k)}_{f(k) \text{ yol var}} \cdot \underbrace{(M_{k+1} \times M_{k+2} \cdots M_n)}_{f(n-k) \text{ yol var}}$$

$$\sum_{k=1}^{n-1} f(k) \cdot f(n-k)$$

$$\frac{1}{n} \binom{2n-2}{n-1} \approx \frac{4^n}{4\sqrt{n} \cdot n^{3/2}}$$

Alt Sinir Ω $\Omega\left(\frac{4^n}{\sqrt{n}}\right)$

Üssel ifade Özyinelemeli yaklaşım

```
Dinamik Yaklaşım (Matris Zincir Çarpımı)
int MatrisSirasi(int P[], int n)
                                // 1 matris gelince 0 dönüyor
        int m[n][n];
        for (i = 1; i < n; i + +)
        m[i][i] = 0;
                for (l = 2; l < n; l + +)
                                                // 1 zincir uzunluğu
                        for (i = 1; i < n-1; i++)
                         j = i + l - 1
                        m[i][j] = INT \_MAX
                                for (k = i; k < j; k + +)
                                 q = m[i][k] + m[k+1][j] + p[i-1] \cdot p[k] \cdot p[j]
                                if (q < m[i][j])
                                         m[i][j] = q
                        }
                return m[1][n-1];
Analiz
m[i][j]
n=3 olduğunu düşünürsek
i = 1 k = 1 j = 2
m[1][2] = \min(m[1][1] + m[2][2] + p_0 \cdot p_1 \cdot p_2)
i = 2 k = 2 j = 3
m[2][3] = \min(m[2][2] + m[3][3] + p_1 \cdot p_2 \cdot p_3)
1≤
      k
            < 3
    sol taraftaki
    sayıyı ifade
ediyor
```

$1 \le k < 6$ olduğunu varsayalım

$$\min \begin{cases} m[1][1] + m[2][6] + p_0 \cdot p_1 \cdot p_6 \\ m[1][2] + m[3][6] + p_0 \cdot p_2 \cdot p_6 \\ m[1][3] + m[4][6] + p_0 \cdot p_3 \cdot p_6 \\ m[1][4] + m[5][6] + p_0 \cdot p_4 \cdot p_6 \\ m[1][5] + m[6][6] + p_0 \cdot p_5 \cdot p_6 \end{cases}$$

Döngüye dönüştürüldüğünde daha hızlı çalıştığını görüyoruz $O(n^3)$

Graf üzerinde

All pairs Shortes Path (Bütün eşler arası en kısa yol) Problemi

Genel graflar için böyle bir şey yaparsam

 $C(V^2E)$ En iyi durumda E=V olur BigO'ya göre; $O(V^3)$

2.Yaklaşım

Floyd-Warshall / Dinamik Yaklaşım

Kaynaktan hedefe gidene kadar bütün düğümler $\{1, 2, 3, ... k\}$

 $d_{i,j}^{(k)} \Rightarrow$ i düğümünden j düğümüne *en kısa yol*

k aradaki düğüm sayısını ifade ediyor

k=0 ise arada hiç düğüm yok

 $d_{i,j}^{(k=0)} = w_{i,j}$ w_{i,j} i den j ye aradaki ağırlık

$$d_{i,j}^k = \begin{cases} w_{i,j} & k = 0\\ \min(d_{i,j}, d_{i,k} + d_{k,j}) & k > 0 \end{cases}$$
 k>0 en az bir düğüm

$$n \leftarrow rows$$

$$D^0 \leftarrow w$$
Kaç tane satır var
$$rows[w]$$

for
$$k=1$$
 to n

for $i=1$ to n

for $j=1$ to n

$$d_{i,j}^{k} \leftarrow \min \underbrace{(d_{i,j}^{k-1}, d_{i,k}^{k-1} + d_{k,j}^{k-1})}_{iki \ boyutlu \ dizi \ gibi \ diy jun}$$

return D^n

 $O(V^3)$ daha iyileştirilmiş

Örnek

 D^0 Birbiri arasında düğüm yokken

$$D^{0} = 2 \begin{bmatrix} 0 & 3 & \infty & \infty \\ \infty & 0 & 12 & 5 \\ 4 & \infty & 0 & -1 \\ 4 & 1 & -4 & \infty & 0 \end{bmatrix}$$

D¹En fazla bir düğüm varsa // arada ve daha kısa ise

$$D^{1} = 2 \begin{bmatrix} 0 & 3 & 15 & 8 \\ 6 & 0 & 12 & 5 \\ 3 & 0 & -5 & 0 & -1 \\ 4 & 1 & -4 & 8 & 0 \end{bmatrix}$$

 D^3 En fazla iki düğüm varsa

$$D^{2} = 2 \begin{bmatrix} 0 & 3 & 15 & 8 \\ 6 & 0 & 12 & 5 \\ 3 & 0 & -5 & 0 & -1 \\ 4 & 1 & -4 & 8 & 0 \end{bmatrix}$$

 D^3 En fazla üç düğüm varsa

$$D^{3} = 2 \begin{bmatrix} 0 & 3 & 15 & 8 \\ 6 & 0 & 12 & 5 \\ 3 & 0 & -5 & 0 & -1 \\ 4 & 1 & -4 & 8 & 0 \end{bmatrix}$$

Algoritmaya göre D^4 'de bulunabilir fakat D^3 ile aynı oalcaktır.