3.3.4. Эффект Холла в полупроводниках.

Абакшин В.С. Б05-207

24 июня 2024 г.

Цель работы: измерение подвижности и концентрации носителей заряда в полупроводниках.

В работе используются: электромагнит с источником питания, амперметр, милливеберметр, реостат, источник питания, цифровой вольтметр, образцы легированного германия.

Описание работы

Рис. 1: Схема установки

Схема для измерения ЭДС Холла представлена на рисунке. В зазоре электромагнита создаётся постоянное магнитное поле, величину которого можно менять регуляторами источника питания электромагнита. Градуировка магнита проводится при помощи милливеберметра.

Образец из легированного германия, смонтированный в специальном держателе, подключается к источнику питания. При замыкании K_2 вдоль длинной стороны образца течёт ток, величина которого регулируется реостатом R и измеряется миллиамперметром. В образце, помещённом в зазор, возникает разность потенциалов U_{34} , которая измеряется с помощью цифрового вольтметра. Влияние омического падения напряжения исключается измерением напряжения U_0 между 3 и 4 в отсутствие магнитного поля. По знаку $\mathcal{E} = U_{34} \pm U_0$ можно определить характер проводимости – электронный или дырочный, зная направление тока в образце и направление магнитного поля.

Померив ток I_{35} в образце и напряжение U_{35} между контактами 3 и 5 в отсутствие магнитного поля можно рассчитать проводимость материала по формуле

$$\sigma = \frac{IL_{35}}{U_{35}al},$$

где L_{35} – расстояние между контактами 3 и 5, а a и l – толщина и ширина образца.

Ход работы и обработка результатов

1) Проградуируем электромагнит. Определим связь между индукцией B магнитного поля в зазоре электромагнита и током I_M через обмотку сняв зависимость потока $\Phi=BSN$, пронизывающего пробную катушку, находящуюся в зазоре, от тока I_M . Значение $SN=72~{\rm cm}^2\cdot$ вит. Построим график зависимости

1 '	l	l					l	$\sigma_I = 0.01$
Ф, мВб	0.12	1.8	3.7	5.2	6.5	7.3	7.9	$\sigma_{\Phi} = 0.05$
В, Тл	0.02	0.25	0.51	0.72	0.90	1.01	1.10	$\sigma_B = 0.007$

Таблица 1: Измерение магнитной индукции при различных значениях $I_{\rm магн}$ (градуировка)

B = f(I):

Рис. 2: Зависимость B=f(I)

2) Проведём измерение ЭДС Холла. Для этого вставим образец в зазор выключенного электромагнита и определим U_0 между контактами 3 и 4 при минимальном токе через образец. Включим электромагнит и снимем зависимость $U_{34} = f\left(I_M\right)$ от тока I_M при постоянном токе через образец. При максимальном токе также проведём измерения при другом направлении магнитного поля.

	U_{34},mkB при $I_{\mathrm{marh}}=I_i,\mathrm{A}$							
$I_{\text{обр}}, \text{mA}$	$I_0 = 0$	$I_1=0.27$	$I_2=0.54$	$I_3 = 0.81$	$I_4=1.08$	$I_5=1.35$	$I_6 \approx 1.55$	
0.14	5	-1	-7	-13	-17.5	-20.5	-22	
0.34	10	-2.5	-18	-31.5	-43	-50	-54	
0.5	16	-3	-25	-45.5	-62	-72.5	-78	
0.6	20	-4	-30	-55	-75.5	-87.5	-94	
0.7	23	-4	-35	-64	-87.5	-102	-110	
0.85	28	-6	-42	-77.5	-106	-124	-133	
0.85	38	72	109	143.5	171.5	189	197	

Таблица 2: Измерение ЭДС Холла

Построим графики $U_{\text{Холл}}=f(B)$ для всех значений токов через образец: Запишем полученные коэффициенты $\frac{dU}{dB}$ в таблицу.

Рис. 3: Зависимость $U_{X_{OJJJ}} = f(B)$

$I_{\text{обр}}, \text{mA}$	0.14	0.34	0.5	0.6	0.7	0.85
$k, \frac{\text{MKB}}{\text{T}_{\text{T}}}$	-25.40	-61.95	-91.08	-109.75	-128.70	-155.40
σ_k	0.51	0.68	1.21	1.80	1.71	1.73

Таблица 3: Значения коэффициента $\frac{dU}{dB}$ при различных значениях $I_{\text{обр}}$

- 3) Также определим знак носителей в образце. Узнаем направление тока в образце и в электромагните, с помощью последнего определим направление магнитного поля. Из картинки видно, что носители заряда в экспериментальном проводнике электроны.
 - 4) Рассчитаем значение параметра R_H . Для этого построим график k=f(I) и найдем его наклон.

$$R_H = h \cdot \frac{dU/dB}{I} = h \cdot \frac{k}{I} = (-403, 9 \pm 13, 7) \frac{\text{cm}^3}{\text{K}_{\text{J}}} \ (\varepsilon = 3.4\%)$$

где h=2,2 мм — толщина образца.

Значение отрицательное, так как носители заряда в нашем случае — электроны. Теперь рассчитаем концентрацию носителей заряда:

$$R_H = \frac{1}{nq} \rightarrow n = \frac{1}{qR_H} = (1.55 \pm 0.05) \cdot 10^{16} \ \mathrm{cm}^{-3}$$

5) При токе $I=1,00\pm0,01$ мА измеряем падение напряжения между концами 3 и 5: $U_{35}=1,73\pm0,01$ мВ. Характеристики образца: $L_{35}=3$ мм, a=2.2 мм, l=2.5 мм.

Считаем удельную проводимость и удельное сопротивление:

$$\sigma = \frac{IL_{35}}{U_{25}al} = 315.3 \pm 3.5 \ (\text{Om} \cdot \text{m})^{-1} \approx 3.15 \ (\text{Om} \cdot \text{cm})^{-1}$$

$$\rho = \frac{1}{\sigma} = (3.17 \pm 0.03) \cdot 10^{-3} \text{ Om} \cdot \text{m} \approx 0.32 \text{ Om} \cdot \text{cm}$$

Рис. 4: Определение носителей заряда

Рис. 5: Зависимость k = f(I)

Вычислим подвижность носителей заряда:

$$b = \frac{\sigma}{en} = (1.27 \pm 0.05) \cdot 10^3 \frac{\text{cm}^2}{\text{B} \cdot \text{c}} \ (\varepsilon = 3.6\%)$$

Результаты и выводы

В данной лабораторной работе были исследованы эффект Холла на полупроводнике из легированного германия и свойства самого полупроводника. Вот все основные результаты:

- $R_H = (-403, 9 \pm 13, 7) \frac{\text{cm}^3}{\text{K}_{\text{M}}} (\varepsilon = 3.4\%)$
- Носителями заряда в экспериментальном проводнике являются электроны

- Проводимость полупроводника: $\sigma = 315.3 \pm 3.5 \; (\mathrm{Om} \cdot \mathrm{m})^{-1} \; (\varepsilon = 1.1\%)$

С табличными значениями результаты практически не сходятся, вероятно из-за неизвестного количества примесей в образце полупроводника.