RECEIVED

2 1 CCT 2004

PCT

WIPO

01.09.2004

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2003年 8月29日

出 願 番 号 Application Number:

特願2003-209839

[ST. 10/C]:

[JP2003-209839]

出 願 人
Applicant(s):

東洋紡績株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許Comm

特許庁長官 Commissioner, Japan Patent Office 2004年10月 7日

1) 11]

【書類名】

特許願

【整理番号】

CN03-0561

【提出日】

平成15年 8月29日

【あて先】

特許庁長官 殿

【国際特許分類】

A61M 1/16

A61M 1/18

B01D 69/08

B01D 71/68

【発明者】

【住所又は居所】

滋賀県大津市堅田二丁目1番1号 東洋紡績株式会社

総合研究所内

【氏名】

馬淵 公洋

【発明者】

【住所又は居所】 大阪府大阪市北区堂島浜二丁目2番8号 東洋紡績株式

会社内

【氏名】

玉村 憲幸

【発明者】

【住所又は居所】 滋賀県大津市堅田二丁目1番1号 東洋紡績株式会社

総合研究所内

【氏名】

櫻井 秀彦

【発明者】

【住所又は居所】 滋賀県大津市堅田二丁目1番1号 東洋紡績株式会社

総合研究所内

【氏名】

門田 典子

【発明者】

【住所又は居所】

滋賀県大津市堅田二丁目1番1号 東洋紡績株式会社

総合研究所内

【氏名】

小山 伸也

【発明者】

【住所又は居所】 大阪府大阪市北区堂島浜二丁目2番8号 東洋紡績株式

会社内

【氏名】 柴野 博史

【発明者】

【住所又は居所】 滋賀県大津市堅田二丁目1番1号 東洋紡績株式会社

総合研究所内

【氏名】 久世 勝朗

【発明者】

【住所又は居所】 大阪府大阪市北区堂島浜二丁目2番8号 東洋紡績株式

会社内

【氏名】 野瀬 克彦

【特許出願人】

【識別番号】 000003160

【氏名又は名称】 東洋紡績株式会社

【代表者】 津村 準二

【代理人】

【識別番号】 100123423

【弁理士】

【氏名又は名称】 柿澤 紀世雄

【手数料の表示】

【予納台帳番号】 204309

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 要約書 1

【プルーフの要否】 要

【曹類名】 明細書

【発明の名称】 高透水性中空糸膜型血液浄化器

【特許請求の範囲】

【請求項1】 親水性高分子を含有する疎水性高分子中空糸膜において、該親水性高分子の中空糸膜よりの溶出が10ppm以下であり、かつ該親水性高分子の中空糸膜の外表面における存在割合が25~50質量%であり、さらにバースト圧が0.5MPa以上の中空糸膜よりなる血液浄化器であり、該血液浄化器の透水率が150ml/m2/hr/mmHg以上であることを特徴とする高透水性中空糸膜型血液浄化器。

【請求項2】 前記中空糸膜外表面の開孔率が8~25%であることを特徴とする請求項1に記載の高透水性中空糸膜型血液浄化器。

【請求項3】 前記中空糸膜外表面における平均孔面積が0.3~1.0 μ m 2 であることを特徴とする請求項1あるいは2に記載の高透水性中空糸型血液浄化器。

【請求項4】 前記中空糸膜の偏肉度が0.6以上であることを特徴とする請求項1~3のいずれかに記載の高透水性中空糸型血液浄化器。

【請求項5】 前記中空糸膜の膜厚が10~50μmであることを特徴とする請求項1~4のいずれかに記載の高透水性中空糸型血液浄化器。

【請求項6】 前記疎水性高分子に対する親水性高分子の質量割合が1~20質量%であることを特徴とする請求項1~5のいずれかに記載の高透水性中空糸膜型血液浄化器。

【請求項7】 前記親水性高分子がポリビニルピロリドンであることを特徴とする請求項1~6のいずれかに記載の高透水性中空糸膜型血液浄化器。

【請求項8】 前記親水性高分子は架橋され水に不溶化していることを特徴とする請求項1~7のいずれかに記載の高透水性中空糸膜型血液浄化器。

【発明の詳細な説明】

$[0\ 0\ 0\ 1\]$

【発明の属する技術分野】

本発明は安全性およびモジュール組み立て性に優れた、慢性腎不全の治療に用

[0002]

【従来の技術】

腎不全治療などにおける血液浄化療法では、血液中の尿毒素、老廃物を除去する目的で、天然素材であるセルロース、またその誘導体であるセルロースジアセテート、セルローストリアセテート、合成高分子としてはポリスルホン、ポリメチルメタクリレート、ポリアクリロニトリルなどの高分子を用いた透析膜や限外ろ過膜を分離材として用いた血液透析器、血液ろ過器あるいは血液透析ろ過器などのモジュールが広く使用されている。特に中空糸型の膜を分離材として用いたモジュールは体外循環血液量の低減、血中の物質除去効率の高さ、さらにモジュール生産時の生産性などの利点から透析器分野での重要度が高い。

[0003]

中空糸膜を用いた透析モジュールは、通常中空糸内空部に血液を流し、外側部に透析液を向流で流し、血液から透析液への拡散に基づく物質移動により尿素、クレアチニンなどの低分子量物質を血中から除くことを主眼としている。さらに、長期透析患者の増加に伴い、透析合併症が問題となり、近年では透析による除去対象物質は、尿素、クレアチニンなどの低分子量物質のみではなく、分子量数千の中分子量から分子量1~2万の高分子量の物質まで拡大し、これらの物質をも除去できることが血液浄化膜に要求されている。特に、分子量11700のβ2ミクログロブリンは手根管症候群の原因物質であることがわかっており除去ターゲットとなっている。このような高分子量物質除去の治療に用いられる膜を得るためには、従来の透析膜より膜の細孔径を大きくしたり、細孔数を増やしたり、空孔率を上げたり、膜厚を薄くし膜の透水率を上げるのが好ましい。

[0004]

ところが、透水率を上げるには、上記したごとく従来の透析膜より膜の細孔径を大きくしたり、細孔数を増やしたり、空孔率を上げたり、膜厚を薄くする等の改善が必要である。この改善を行うと親水性高分子の溶出が多くなり、かつ膜強度が低下するという課題が生ずる。親水性高分子の溶出が多くなると人体に取り異物である親水性高分子の長期透析時の体内蓄積が増え副作用や合併症等を引き

[0005]

血液リークを抑制する手段としては、芯剤を従来の有機溶剤含有水溶液中の有機溶剤濃度をさらに下げ、ノズル吐出後の気相通過時間及び芯剤濃度の適正な範囲を見出す技術が開示されている。(例えば、特許文献1参照)。すなわち、透水性をコントロールしつつ膜内面に薄い緻密層を形成させる方法である。しかし、膜内面の緻密層の形成状態は透水性に顕著に影響し、透水性能の範囲を狭く設定するのが困難となる。

[0006]

更に、前記した膜の細孔径を大きくしたり、細孔数を増やしたり、空孔率を上げたりすることは膜の外表面の親水性高分子の存在量が多くなり、このことにより、透析液に含まれるエンドトキシン(内毒素)が血液側へ浸入する可能性が高まり、発熱等の副作用を引き起こすことにつながるとか、膜を乾燥させた時に膜外表面に存在する親水性高分子が介在し中空糸膜同士がくっつき(固着)し、モジュール組み立て性が悪化する等の課題を引き起こす。

[0007]

上記した課題の内、エンドトキシン(内毒素)が血液側へ浸入する課題に関しては、エンドトキシンが、その分子中に疎水性部分を有しており、疎水性材料へ吸着しやすいという特性を利用した方法が開示されている。(例えば、特許文献2参照)。すなわち、中空糸膜の外表面における疎水性高分子に対する親水性高分子の比率を5~25質量%にすることにより達成できることが開示されている。確かに、該方法はエンドトキシンの血液側への浸入を抑える方法としては好ましい方法ではあるが、この特性を付与するには、膜の外表面に存在する親水性高分子を洗浄で除去する必要があり、この洗浄に多大の処理時間を要し、経済的に不利であるという課題を有する。例えば、上記した特許の実施例では、60℃の温水によるシャワー洗浄および110℃の熱水での洗浄をそれぞれ1時間づつ掛けて行われている。また、膜の外表面に存在する親水性高分子量を低くすること

は、エンドトキシンの血液側への浸入を抑える点では好ましいことであるが、外表面の親水性が低くなるため、モジュール組み立て後に組み立てのために乾燥した中空糸膜束を湿潤状態に戻す際に、湿潤のために用いる生理食塩水との馴染みが低くなるので、該湿潤操作の折の空気の追い出し性および濡れ性であるプライミング性が低下すると言う課題の発生につながるので好ましくない。この点を改良する方法として、例えばグリセリン等の親水性化合物を配合する方法が開示されている。(例えば、特許文献3、4参照)。しかし、該方法は適正な配合濃度範囲を逸脱すると親水性化合物が透析時の異物として働き、かつ該親水性化合物は光劣化等の劣化を受けやすいため、モジュールの保存安定性等に悪影響をおよぼすという課題を有する。また、モジュール組み立てにおいて中空糸膜束をモジュールに固定する時の接着剤の接着阻害を引き起こすという課題もある。

[0008]

上記したもう一つの課題である中空糸膜同士の固着を回避する方法としては、膜の外表面の開孔率を25%以上にする方法が開示されている。(例えば、特許文献5参照)。確かに、該方法は固着を回避する方法としては好ましい方法であるが、開孔率が高いために膜強度が低くなり前記した血液リークの課題につながるという問題を有している。また、膜の外表面の開孔率や孔面積を特定値化した方法が開示されている。(例えば、特許文献6参照)。該方法は透水率が低いという課題を有している。

[0009]

【特許文献1】

特開2000-107577号公報(第2頁 特許請求の範囲)

【特許文献2】

特開2000-254222号公報(第2頁~第7頁 発明の詳細な説明)

【特許文献3】

特開平2001-190934号公報(第2頁 特許請求の範囲)

【特許文献4】

特許3193262号公報(第2頁~第5頁 発明の詳細な説明)

特開2001-38170号公報(第2頁 特許請求の範囲)

【特許文献6】

特開2000-140589号公報(第2頁 特許請求の範囲)

[0010]

【発明が解決しようとする課題】

本発明は、安全性およびモジュール組み立て性に優れた、慢性腎不全の治療に用いる高透水性能を有する医療用中空糸型血液浄化器を提供することにある。

[0011]

【課題を解決するための手段】

本発明は、親水性高分子を含有する疎水性高分子中空糸膜において、該親水性高分子の中空糸膜よりの溶出が10ppm以下であり、かつ該親水性高分子の中空糸膜の外表面における存在割合が25~50質量%であり、さらにバースト圧が0.5MPa以上の中空糸膜よりなる血液浄化器であり、該血液浄化器の透水率が150ml/m2/hr/mmHg以上であることを特徴とする高透水性中空糸膜型血液浄化器である。

[0012]

【発明の実施の形態】

本発明に用いる中空糸膜は、親水性高分子を含有する疎水性高分子で構成されているところに特徴を有する。本発明における疎水性高分子の素材としては、再生セルロース、セルロースアセテート、セルローストリアセテートなどのセルロース系、ポリスルホンやポリエーテルスルホンなどのポリスルホン系、ポリアクリロニトリル、ポリメチルメタクリレート、エチレンビニルアルコール共重合体などが上げられるが、透水性が150ml/m2/hr/mmHg以上の中空糸を得ることが容易なセルロース系やポリスルホン系が好ましく、膜厚を薄くすることが容易なためセルロース系ではセルロースジアセテートやセルローストリアセテート、ポリスルホン系ではポリエーテルスルホンが特に好ましい。

[0013]

本発明に用いられる親水性高分子としては、特に限定されることなく用いられ

るが、疎水性高分子と溶液中でミクロな相分離構造を形成するものが好ましく用いられる。ポリエチレングリコール、ポリビニルアルコール、カルボキシルメチルセルロース、ポリビニルピロリドン等を挙げる事ができるが、請求項7に記載のごとく安全性や経済性よりポリビニルピロリドンを用いるのが好ましい実施態様である。

[0014]

本発明における疎水性高分子に対する親水性高分子の膜中の構成割合は、中空糸膜に十分な親水性や、高い含水率を付与できる範囲であれば良く、請求項6に記載のごとく、疎水性高分子に対する親水性高分子の質量割合で1~20質量%が好ましい。疎水性高分子に対する親水性高分子の質量割合が少なすぎる場合、膜の親水性付与効果が不足する可能性があるため、該質量割合は、2質量%以上がより好ましい。一方、該質量割合が多すぎると、親水性付与効果が飽和し、かつ親水性高分子の膜からの溶出量が増大し、後述の親水性高分子の膜からの溶出量が10ppmを超える場合がある。したがって、より好ましくは18質量%以下、さらに好ましくは14質量%以下、よりさらに好ましくは10質量%以下、特に好ましくは6質量%以下である。

[0015]

本発明においては、前記した親水性高分子の中空糸膜よりの溶出量が10ppm以下にするのが好ましい。該溶出量が10ppmを超えた場合は、この溶出する親水性高分子による長期透析による副作用や合併症が起こることがある。該特性を満足させる方法は限定無く任意であるが、例えば、疎水性高分子に対する親水性高分子の構成割合を上記の範囲にしたり、中空糸膜の製膜条件を最適化する等により達成できる。より好ましい親水性高分子の溶出量は8ppm以下、さらに好ましくは6ppm以下、よりさらに好ましくは4ppm以下である。

[0016]

さらに、請求項8に記載のごとく、親水性高分子を架橋することにより不溶化することが好ましい実施態様である。架橋方法や架橋度合い等は限定無く任意である。例えば、架橋方法としては、γ線、電子線、熱、化学的架橋などが挙げられるが、中でも、開始剤などの残留物が残らず、材料浸透性が高い点で、γ線や

電子線による架橋が好ましい。本発明では、モジュールに脱気したRO水を液密に 充填、密封し、10kGy~60kGyのγ線を照射するのが好ましい。γ線照射 量が少なすぎると架橋が不十分になり溶出物量が増えることがあるため、15k Gy以上のγ線を照射するのが好ましい。γ線照射量が多すぎると、疎水性高分 子、親水性高分子、ハウジングケース、ウレタン樹脂が分解・劣化する可能性が あるため、50kGy以下がより好ましい。さらに好ましくは40kGy以下、 よりさらに好ましくは30kGy以下である。ここで、脱気したRO水とは、室 温~50℃に加温し、-500~-760mmHgに減圧した状態で15分~2 時間撹拌したRO水を意味する。脱気されていない水を用いると、水中の溶存酸 素により膜構成材料が酸化劣化し溶出物が増えることがある。

[0017]

本発明における不溶化とは、架橋後の膜をジメチルホルムアミドに浸漬したときの溶解性をいう。すなわち、架橋後の膜1.0gを取り、100mlのジメチルホルムアミドに溶解し不溶分の有無を目視観察し判定される。モジュールに液が充填されたモジュールの場合は、まず充填液を抜き、つぎに透析液側流路に純水を500ml/minで5分間流した後、血液側流路に同じように純水を200ml/minで5分間流す。最後に血液側から透析液側に膜を透過するように200ml/minの純水を通液し洗浄処理を終了する。得られたモジュールより中空糸膜を取り出し、フリーズドライしたものを不要成分測定用サンプルとする。乾燥中空糸膜モジュールの場合も、同様の洗浄処理を行い測定用サンプルとする。

[0018]

本発明においては、上記した親水性高分子の中空糸膜の外表面における存在割合が25~50質量%であるのが好ましい。外表面の親水性高分子の存在割合が25質量%未満では膜全体、特に膜内表面の親水性高分子の存在割合が低くなりすぎ、血液適合性や透過性能の低下が起こる可能性がある。また乾燥膜の場合、プライミング性が低下することがある。血液透析器を血液浄化療法に使用する時には、生理食塩水などを血液透析器の中空糸膜内外部に流すことにより、湿潤化および泡抜きを行う必要がある。このプライミング操作において、中空糸膜の真

円度や端部の潰れ、変形、膜素材の親水性などが、プライミング性に影響を与えると考えられるが、疎水性高分子と親水性高分子からなる中空糸膜であって乾燥膜モジュールの場合には、中空糸膜の親疎水バランスがプライミング性に大きく影響する。したがって、より好ましい親水性高分子の存在割合は27質量%以上、さらに好ましくは30質量%以上である。外表面の親水性高分子の存在割合が50質量%を超すと透析液に含まれるエンドトキシン(内毒素)が血液側へ浸入する可能性が高まり、発熱等の副作用を引き起こすことにつながるとか、膜を乾燥させた時に膜外表面に存在する親水性高分子が介在し中空糸膜同士がくっつき(固着し)、モジュール組み立て性が悪化する等の課題を引き起こす可能性がある。したがって、より好ましい存在割合は47質量%以下、さらに好ましくは45質量%以下である。

[0019]

中空糸膜の外表面における親水性高分子の存在割合を上記した範囲にする方法として、例えば、疎水性高分子に対する親水性高分子の構成割合を前記した範囲にしたり、中空糸膜の製膜条件を最適化する等により達成できる。また、製膜された中空糸膜を洗浄することも有効な方法である。製膜条件としては、ノズル出口のエアーギャップ部の湿度調整、延伸条件、凝固浴の温度、凝固液中の溶媒と非溶媒との組成比等の最適化が、また、洗浄方法としては、温水洗浄、アルコール洗浄および遠心洗浄等が有効である。該方法の中で、製膜条件としては、エアギャップ部の湿度および外部凝固液中の溶媒と非溶媒との組成比の最適化が、洗浄方法としてはアルコール洗浄が特に有効である。

[0020]

エアギャップ部は外気を遮断するための部材で囲むのが好ましく、エアギャップ内部の湿度は、紡糸原液組成とノズル温度、エアギャップ長、外部凝固浴の温度、組成により調整するのが好ましい。例えば、ポリエーテルスルホン/ポリビニルピロリドン/ジメチルアセトアミド/R0水=10~25/0.5~12.5/52.5~89.5/0~10.0からなる紡糸原液を30~60℃のノズルから吐出し、100~1000mのエアギャップを通過し、濃度0~70質量%、温度50~80℃の外部凝固浴に導く場合、エアギャップ部の絶対湿度は0

. 01~0.3 kg/kg乾燥空気となる。エアギャップ部の湿度をこのような 範囲に調整することで、外表面開孔率および外表面平均孔面積、外表面親水性高 分子含有率を適正な範囲にコントロールすることが可能となる。

[0021]

内部凝固液としては、0~80質量%のジメチルアセトアミド (DMAc) 水溶 液が好ましい。内部凝固液濃度が低すぎると、血液接触面の緻密層が厚くなるた め、溶質透過性が低下する可能性がある。より好ましい外部凝固液濃度は15質 量%以上、さらに好ましくは25質量%以上、よりさらに好ましくは30質量% 以上である。また内部凝固液濃度が高すぎると、緻密層の形成が不完全になりや すく、分画特性が低下する可能性がある。より好ましい外部凝固液濃度は70質 量%以下、さらに好ましくは60質量%以下、よりさらに好ましくは50質量% 以下である。外部凝固液は0~50質量%のDMAc水溶液を使用するのが好まし い。外部凝固液濃度が高すぎる場合は、外表面開孔率および外表面平均孔面積が 大きくなりすぎ、透析使用時エンドトキシンの血液側への逆流入の増大や、バー スト圧の低下を起こす可能性がある。したがって、外部凝固液濃度は、より好ま しくは40質量%以下、さらに好ましくは30質量%以下、よりさらに好ましく は25質量%以下である。また、外部凝固液濃度が低すぎる場合には、紡糸原液 から持ち込まれる溶媒を希釈するために大量の水を使用する必要があり、また廃 液処理のためのコストが増大する。そのため、外部凝固液濃度の下限はより好ま しくは3質量%以上、さらに好ましくは5質量%以上である。

[0022]

本発明の中空糸膜の製造において、完全に中空糸膜構造が固定される以前に実質的に延伸をかけないことが好ましい。実質的に延伸を掛けないとは、ノズルから吐出された紡糸原液に弛みや過度の緊張が生じないように紡糸工程中のローラー速度をコントロールすることを意味する。吐出線速度/凝固浴第一ローラー速度比(ドラフト比)は0.7~1.8が好ましい範囲である。前記比が0.7未満では、走行する中空糸膜に弛みが生じ生産性の低下につながることがあるので、ドラフト比は0.8以上がより好ましく、0.9以上がさらに好ましく、0.9以上がよりさらに好ましく、0.9以上がさらに好ましく、0.9以上がよりさらに好ましく、0.9以上がよりさらに好ましく、0.9以上がよりさらに好ましい。1.8を超える場合には中空糸膜の緻密層が裂

けるなど膜構造が破壊されることがある。そのため、ドラフト比は、より好ましくは1.7以下、さらに好ましくは1.6以下、よりさらに好ましくは1.5以下、特に好ましくは1.4以下である。ドラフト比をこの範囲に調整することにより細孔の変形や破壊を防ぐことができ、膜孔への血中タンパクの目詰まりを防ぎ経時的な性能安定性やシャープな分画特性を発現することが可能となる。

[0023]

水洗浴を通過した中空糸膜は、湿潤状態のまま綛に巻き取り、3, 000~20, 0000本の束にする。ついで、得られた中空糸膜束を洗浄し、過剰の溶媒、親水性高分子を除去する。中空糸膜束の洗浄方法として、本発明では、00~100~

- (1) 熱水洗浄の場合は、中空糸膜束を過剰のR0水に浸漬し70~90℃で1 5~60分処理した後、中空糸膜束を取り出し遠心脱水を行う。この操作をR0 水を更新しながら3、4回繰り返して洗浄処理を行う。
- (2) 加圧容器内の過剰のR0水に浸漬した中空糸膜束を121℃で2時間程度 処理する方法をとることもできる。
- (3) エタノールまたはイソプロパノール水溶液を使用する場合も、(1) と同様の操作を繰り返すのが好ましい。
- (4) 遠心洗浄器に中空糸膜束を放射状に配列し、回転中心から40℃~90℃ の洗浄水をシャワー状に吹きつけながらトータル時間として30分~5時間遠心 洗浄することも好ましい洗浄方法である。

前記洗浄方法を2つ以上組み合わせて行ってもよい。いずれの方法においても、 処理温度が低すぎる場合には、洗浄回数を増やす等が必要になりコストアップに 繋がることがある。また、処理温度が高すぎると親水性高分子の分解が加速し、 逆に洗浄効率が低下することがある。上記洗浄を行うことにより、外表面親水性 高分子の存在率の適正化を行い、固着抑制や溶出物の量を減ずることが可能とな る。

[0024]

なお、上記した親水性高分子の中空糸膜の外表面における存在割合は、後述の

ごとく表面濃度はESCA法で測定し算出したものであり、中空糸膜の最表層部分(表層からの深さ数Å~数十Å)の存在割合の絶対値を求めたものである。

[0025]

本発明のもう1つの特徴は、バースト圧が0.5MPa以上の中空糸膜よりな る血液浄化器であり、該血液浄化器の透水率が150ml/m2/hr/mmH g以上であることが必要である。バースト圧が 0.5MPa未満では後述するよ うな血液リークに繋がる潜在的な欠陥を検知することができなくなる。また、透 水率が150ml/m2/hr/mmHg未満では透析効率が低下する。透析効 率を上げるためには細孔径を大きくしたり、細孔数を増やしたりするが、そうす ると膜強度が低下したり欠陥ができるといった問題が生じやすくなる。しかし本 発明の中空糸膜では、外表面の孔径を最適化することにより支持層部分の空隙率 を最適化し、溶質透過抵抗と膜強度をバランスさせたものである。より好ましい 透水率の範囲は200ml/m2/hr/mmHg以上、さらに好ましくは30 0ml/m2/hr/mmHg以上、特に好ましくは400ml/m2/hr/ mmHg以上、最も好ましくは500ml/m2/hr/mmHg以上である。 また、透水率が高すぎる場合、血液透析時の除水コントロールがしにくくなるた め、2000ml/m2/hr/mmHg以下が好ましい。より好ましくは18 00ml/m2/hr/mmHg以下、さらに好ましくは1500ml/m2/ hr/mmHg以下、よりさらに好ましくは1300ml/m2/hr/mmH g以下、特に好ましくは1000ml/m2/hr/mmHg以下である。

[0026]

本発明者らは、血液浄化器に用いられる中空糸膜の物理的性質を検討した。通常、血液浄化に用いるモジュールは、製品となる最終段階で、中空糸やモジュールの欠陥を確認するため、中空糸内部あるいは外部をエアーによって加圧するリークテストを行う。加圧エアーによってリークが検出されたときには、モジュールは不良品として、廃棄あるいは欠陥を修復する作業がなされる。このリークテストのエアー圧力は血液透析器の保証耐圧(通常500mmHg)の数倍であることが多い。しかしながら、特に高い透水性を持つ中空糸型血液浄化膜の場合、通常の加圧リークテストで検出できない中空糸の微小な傷、つぶれ、裂け目などが

、リークテスト後の製造工程(主に滅菌や梱包)、輸送工程、あるいは臨床現場での取り扱い(開梱や、プライミングなど)時に、中空糸の切断やピンホールの発生につながり、ひいては治療時に血液がリークする等のトラブルの元になっていることを本発明者らは見出した。上記事象に関して鋭意検討したところ、臨床使用時の中空糸の切断やピンホールの発生につながる潜在的な糸の欠陥は、通常の加圧エアーリークテストにおける圧力では検出することができず、より高い圧力が必要であり、また中空糸膜の偏肉発生を抑えることが、上記した潜在的な欠陥の発生抑制に対して有効であることを見出し、本発明にいたった。

[0027]

本発明におけるバースト圧とは、中空糸をモジュールにしてからの中空糸膜の耐圧性能の指標で、中空糸膜内側を気体で加圧し、加圧圧力を徐々に上げていき、中空糸が内部圧に耐えきれずに破裂(バースト)したときの圧力である。バースト圧は高いほど使用時の中空糸膜の切断やピンホールの発生が少なくなるので 0.5 MP a以上が好ましく、0.5 5 MP a以上がさらに好ましく、0.6 MP a以上がよりさらに好ましい。バースト圧が 0.5 MP a未満では潜在的な欠陥を有している可能性がある。また、バースト圧は高いほど好ましいが、バースト圧を高めることに主眼に置き、膜厚を上げたり、空隙率を下げすぎると所望の膜性能を得ることができなくなることがある。したがって、血液透析膜として仕上げる場合には、バースト圧は 2.0 MP a未満が好ましい。より好ましくは、1.7 MP a未満、さらに好ましくは 1.5 MP a未満、よりさらに好ましくは 1.3 MP a未満、特に好ましくは 1.0 MP a未満である。

[0028]

本発明は、従来公知の膜強度等のマクロな特性により支配される血液リーク特性では長期透析における中空糸膜の安全性が十分に証明することができないという知見に基づいて見出したものである。すなわち、長期透析における血液リークの安全性を確保するには、マクロな特性に加え、上記したような潜在的な欠陥による欠点を含めた評価の確立について鋭意検討して本発明を完成したものである

[0029]

本発明における偏肉度とは、中空糸膜モジュール中の100本の中空糸膜断面を観察した際の膜厚の偏りのことであり、最大値と最小値の比で示す。本発明では、請求項4に記載のごとく、100本の中空糸の最小の偏肉度は0.6以上であることを特徴とする。100本の中空糸に1本でも偏肉度0.6未満の中空糸が含まれると、その中空糸が臨床使用時のリーク発生となることがあるので、本発明の偏肉度は平均値でなく、100本の最小値を表す。偏肉度は高いほうが、膜の均一性が増し、潜在欠陥の顕在化が抑えられバースト圧が向上するので、より好ましくは0.7以上、さらに好ましくは0.8以上、よりさらに好ましくは0.8以上である。偏肉度が低すぎると、潜在欠陥が顕在化しやすく、前記バースト圧が低くなり、血液リークが起こりやすくなる。

[0030]

中空糸膜の膜厚は 10μ m以上 60μ m以下が好ましい。 60μ mを超えると、透水性は高くても、移動速度の遅い中~高分子量物質の透過性が低下することがある。膜厚は薄い方が物質透過性が高まり、 55μ m以下がより好ましく、 50μ m以下がさらに好ましく、よりさらに好ましくは 47μ m以下である。また、膜厚が 10μ m未満では、膜強度が低く偏肉度を0.6以上としても、バースト圧が低くなることがある。そのため、膜厚は 20μ m以上がより好ましく、さらに好ましくは 25μ m以上、よりさらに好ましくは 30μ m以上、特に好ましくは 35μ m以上である。

[0031]

本発明は、血液浄化用中空糸膜に好適に使用でき、特に血液透析や血液透析濾過 、血液濾過など、腎不全患者の治療に用いる中空糸膜として好適である。

[0032]

このような血液浄化器に用いる中空糸膜の製造方法としては、前記した組成の疎水性高分子と親水性高分子との配合物を、該配合物を溶解する溶媒に溶解した溶液を用い、乾湿式法により製造される。前記したバースト圧を0.5MPa以上にするためには前記したごとく中空糸膜の偏肉度を0.6以上にすることが有効であり好ましい実施態様である。該偏肉度を0.6以上にするための達成手段は、例えば、製膜溶液の吐出口であるノズルのスリット幅を厳密に均一にすること

が好ましい。中空糸膜の紡糸ノズルは、一般的に、紡糸原液を吐出する環状部と、その内側に中空形成剤となる芯液吐出孔を有するチュープインオリフィス型ノズルが用いられるが、スリット幅とは、前記紡糸原液を吐出する外側環状部の幅をさす。このスリット幅のばらつきを小さくすることで、紡糸された中空糸膜の偏肉を減らすことができる。具体的にはスリット幅の最大値と最小値の比が1.00以上1.11以下とし、最大値と最小値の差を10μm以下とすることが好ましく、7μm以下とすることがより好ましく、さらに好ましくは5μm以下、よりさらに好ましくは3μm以下である。また、ノズル温度を最適化する、ノズル温度は20~100℃が好ましい。20℃未満では室温の影響を受けやすくなりノズル温度が安定せず、紡糸原液の吐出斑が起こることがある。そのため、ノズル温度は30℃以上がより好ましく、35℃以上がさらに好ましく、40℃以上がよりさらに好まし、35℃以上がさらに好ましく、40℃以上がよりさらに好ましい。また100℃を超えると紡糸原液の粘度が下がりすぎ吐出が安定しなくなることがあるし、親水性高分子の熱劣化・分解が進行する可能性がある。よって、ノズル温度は、より好ましくは90℃以下、さらに好ましくは80℃以下、よりさらに好ましくは70℃以下である。

[0033]

さらに、バースト圧を高くする方策として、中空糸膜表面の傷や異物および気 泡の混入を少なくし潜在的な欠陥を低減するのも有効な方法である。傷発生を低 減させる方法としては、中空糸膜の製造工程のローラーやガイドの材質や表面粗 度を最適化する、モジュールの組み立て時に中空糸膜束をモジュール容器に挿入 する時に容器と中空糸膜との接触あるいは中空糸膜同士のこすれが少なくなるよ うな工夫をする等が有効である。本発明では、使用するローラーは中空糸膜がス リップして中空糸膜表面に傷が付くのを防止するため、表面が鏡面加工されたも のを使用するのが好ましい。また、ガイドは中空糸膜との接触抵抗をできるだけ 避ける意味で、表面が梨地加工されたものやローレット加工されたものを使用す るのが好ましい。中空糸膜束をモジュール容器に挿入する際には、中空糸膜束を 直接モジュール容器に挿入するのではなく、中空糸膜との接触面が例えばエンボ ス加工されたフィルムを中空糸膜束に巻いたものをモジュール容器に挿入し、挿 入した後、フィルムのみモジュール容器から抜き取る方法を用いるのが好ましい

[0034]

中空糸膜への異物の混入を抑える方法としては、異物の少ない原料を用いる、 製膜用の紡糸原液をろ過し異物を低減する方法等が有効である。本発明では、中 空糸膜の膜厚よりも小さな孔径のフィルターを用いて紡糸原液をろ過するのが好 ましく、具体的には均一溶解した紡糸原液を溶解タンクからノズルまで導く間に 設けられた孔径10~50μmの焼結フィルターを通過させる。ろ過処理は少な くとも1回行えば良いが、ろ過処理を何段階かにわけて行う場合は後段になるに 従いフィルターの孔径を小さくしていくのがろ過効率およびフィルター寿命を延 ばす意味で好ましい。フィルターの孔径は10~45μmがより好ましく、10 $\sim 40 \, \mu \, \text{m}$ がさらに好ましく、 $10 \sim 35 \, \mu \, \text{m}$ がよりさらに好ましい。フィルタ ー孔径が小さすぎると背圧が上昇し、定量性が落ちることがある。また、気泡混 入を抑える方法としては、製膜用のポリマー溶液の脱泡を行うのが有効である。 紡糸原液の粘度にもよるが、静置脱泡や減圧脱泡を用いることができる。段落 0 017に記載の紡糸原液を用いる場合には、溶解タンク内を-100~-760 mmHgに減圧した後タンク内を密閉し5分~30分間静置する。この操作を数 回繰り返し脱泡処理を行う。減圧度が低すぎる場合には、脱泡の回数を増やす必 要があるため処理に長時間を要することがある。また減圧度が高すぎると、系の 密閉度を上げるためのコストが高くなることがある。トータルの処理時間は5分 ~5時間とするのが好ましい。処理時間が長すぎると、減圧の効果により親水性 高分子が分解、劣化することがある。処理時間が短すぎると脱泡の効果が不十分 になることがある。

[0035]

また、本発明においては、請求項2に記載のごとく、中空糸膜外表面の開孔率 が8~25%であることや、中空糸膜外表面における開孔部の平均孔面積が0. $3\sim1$. $0~\mu$ m 2 であることが前記した特性を付与するために有効であり、好ましい実施態様である。開孔率が8%未満や平均孔面積は0. $3~\mu$ m 2 の場合には、透水率が低下する可能性がある。そのため、開孔率は9%以上がより好ましく、10%以上がさらに好ましい。平均孔面積は0. $4~\mu$ m 2 がより好ましく、0

. $5 \mu m 2$ がさらに好ましく、0. $6 \mu m 2$ がよりさらに好ましい。また、膜を乾燥させた時に膜外表面に存在する親水性高分子が介在し中空糸膜同士が固着し、モジュール組み立て性が悪化する等の課題を引き起こす。逆に開孔率が25% を超えたり、平均孔面積が1. $0 \mu m 2$ を超える場合には、バースト圧が低下することがある。そのため、開孔率は23%以下がより好ましく、20%以下がさらに好ましく、17%以下がよりさらに好ましく、特に好ましくは15%以下である。平均孔面積は $0.95\mu m 2$ 以下がより好ましく、 $0.90\mu m 2$ 以下がさらに好ましい。

[0037]

本発明において、膜中の疎水性高分子に対する親水性高分子の質量割合は1~20質量%であることが好ましい。親水性高分子の質量割合が前記範囲であれば、血液浄化に使用した場合、使用前の通常のプライミング操作による濡れ性に問題なく、親疎水バランスが良好であることより血液適合性も良好となる。さらに、透析液側からのエンドトキシンの浸入をも疎水性部分の存在により防ぐことが可能となる。前記質量割合は、より好ましくは2質量%以上、さらに好ましくは3質量%以上である。また、18質量%以下がより好ましく、15質量%以下がさらに好ましく、12質量%以下がよりさらに好ましく、9質量%が特に好ましい。

[0038]

膜中の疎水性高分子に対する親水性高分子の質量割合を上記範囲にコントロールする具体的手段として、例えば、紡糸原液中の疎水性高分子と親水性高分子の組成比を95:5~67:33にしたり、外部凝固液の条件を5~40質量%に調製したり、製膜後に熱水洗浄やアルコール洗浄を施すことにより達成することが可能である。

[0039]

本発明においては、前記した親水性高分子の中空糸膜の外表面における存在割合の最適化とバースト圧との最適化前記したような課題を解決すべく別個の技術として鋭意検討を進め本発明に至ったものであるが、驚くべきことに一見無関係に見える両技術を同時に実行することにより下記のような予想外の相乗効果があ

[0040]

【実施例】

以下、本発明の有効性を実施例を挙げて説明するが、本発明はこれらに限定されるものではない。なお、以下の実施例における物性の評価方法は以下の通りである。

[0041]

1. 透水率

透析器の血液出口部回路(圧力測定点よりも出口側)を鉗子により流れを止め全 濾過とする。37℃に保温した純水を加圧タンクに入れ、レギュレーターにより 圧力を制御しながら、37 で高温槽で保温した透析器へ純水を送り、透析液側から流出したろ液質量を1/100 g まで測定する。膜間圧力差(TMP)は TMP= (Pi+Po)/2

とする。ここでPiは透析器入り口側圧力、Poは透析器出口側圧力である。TMPを4点変化させろ過流量を測定し、それらの関係の傾きから透水性(ml/hr/mmHg)を算出する。このときTMPと濾過流量の相関係数は0.999以上でなくてはならない。また回路による圧力損失誤差を少なくするために、TMPは100mmHg以下の範囲で測定する。中空糸膜の透水性は膜面積と透析器の透水性から算出する。

UFR(H) = UFR(D) / A

ここでUFR(H)は中空糸膜の透水性(m1/m2/hr/mmHg)、UFR(D)は透析器の透水性(mL/hr/mmHg)、Aは透析器の膜面積(m2)である。

[0042]

2. 膜面積の計算

透析器の膜面積は中空糸の内径基準として求めた。

 $A = n \times \pi \times d \times L$

ここで、nは透析器内の中空糸本数、πは円周率、dは中空糸の内径(m)、Lは透析器内の中空糸の有効長(m)である。

[0043]

3. バースト圧

約10000本の中空糸膜よりなるモジュールの透析液側を水で満たし栓をする。血液側から室温で乾燥空気または窒素を送り込み1分間に0.5MPaの割合で加圧していく。圧力を上昇させ、中空糸膜が加圧空気によって破裂(バースト)し、透析液側に満たした液に気泡が発生した時の空気圧をバースト圧とした。

[0044]

4. 偏肉度

中空糸100本の断面を200倍の投影機で観察する。一視野中最も膜厚差がある一本の糸断面について、最も厚い部分と最も薄い部分の厚さを測定した。

偏肉度=最薄部/最厚部

偏肉度=1で膜厚が完璧に均一となる。

[0045]

5. 親水性高分子の溶出量

親水性高分子としてポリビニルピロリドンを用いた場合の測定法を例示する。 透析型人工腎臓装置製造基準に定められた方法で抽出し、該抽出液中のポリビニ ルピロリドンを比色法で定量した。

すなわち、中空糸膜 1 g に純水 1 0 0 m 1 を加え、7 0 0 で 1 時間抽出した。得られた抽出液 2 . 5 m 1 に、0 . 2 モルクエン酸水溶液 1 . 2 5 m 1 、0 . 0 0 6 規定のヨウ素水溶液 0 . 5 m 1 を加えよく混合し、室温で 1 0 分間放置した後に 4 7 0 1 m での吸光度を測定した。定量は標品のポリビニルピロリドンを用いて上記方法に従い求めた検量線にて行った。

湿潤中空糸膜モジュールの場合は、モジュールの透析液側流路にRO水を500ml/minで5分間通液し、ついで血液側流路に200ml/minで通液した。その後血液側から透析液側に200ml/minでろ過をかけながら3分間通液した後にフリーズドライをして乾燥膜を得て、該乾燥膜を用いて上記定量を行った。

[0046]

6. 親水性高分子の外表面における存在割合

親水性高分子の疎水性高分子に対する存在割合は、X線光電子分光法(ESCA法)で求めた。疎水性高分子としてポリスルホン系高分子を、親水性高分子としてポリビニルピロリドンを用いた場合の測定法を例示する。

中空糸膜1本を試料台に貼り付けてX線光電子分光法(ESCA法)で測定を 行った。測定条件は次に示す通りである。

測定装置:アルバック・ファイ ESCA5800

励起X線:MgKα線

X線出力: 14kV, 25mA

光電子脱出角度: 45°

分析径:400μmφ

パスエネルギー:29.35eV

分解能: 0. 125 e V/s t e p

真空度:約10-7Pa以下

窒素の測定値(N)と硫黄の測定値(S)から、次の式により表面でのPVP含有比率を算出した。

<PVP添加PES膜の場合>

PVP含有比率(Hpvp) [%]

 $= 100 \times (N \times 1111) / (N \times 111 + S \times 232)$

<PVP添加PSf膜の場合>

PVP含有比率(Hpvp) [%]

 $= 100 \times (N \times 111) / (N \times 111 + S \times 442)$

[0047]

7. 膜中の親水性高分子の質量割合

親水性高分子としてPVPを用いた場合の測定法を例示する。サンプルを、真空乾燥器を用いて、80 \mathbb{C} で48 時間乾燥させ、60 \mathbb{C} 0 \mathbb

PVPの質量割合(質量%)=窒素含有量(質量%)×111/14 【0048】

8. 中空糸膜外表面の開孔率

中空糸膜外表面を10,000倍の電子顕微鏡で観察し写真(SEM写真)を撮影する。その画像を画像解析処理ソフトで処理して中空糸膜外表面の開孔率を求めた。画像解析処理ソフトは、例えばImage Pro Plus (Media Cybernetics, Inc.)を使用して測定する。取り込んだ画像を孔部と閉塞部が識別されるように強調・フィルタ操作を実施する。その後、孔部をカウントし、孔内部に下層のポリマー鎖が見て取れる場合には孔を結合して一孔とみなしてカウントする。測定範囲の面積(A)、および測定範囲内の孔の面積の累計(B)を求めて開孔率(%)=B/A×100で求めた。これを10根野実施してその平均を求めた。初期操作としてスケール設定を実施するものと

[0049]

9. 中空糸膜外表面の開孔部の平均孔面積

前項と同様にカウントし、各孔の面積を求めた。また、カウント時には測定範囲 境界上の孔は除外した。これを10視野実施してすべての孔面積の平均を求めた

[0050]

10. 中空糸膜の膜厚み

倍率200倍の投影機で中空糸膜の断面を投影し、各視野内で最大、最小、中程度の大きさの中空糸の内径(A)および外径(B)を測定し、各中空糸の膜厚を次式で求め、

膜厚= (B-A) / 2

3視野15個の中空糸の膜厚の平均を算出した。

[0051]

11. エンドトキシン濃度

エンドトキシン濃度200EU/Lの透析液をモジュールの透析液入り口より流速500ml/minで送液し、中空糸膜の外側から内側へエンドトキシンを含有する透析液をろ過速度15ml/minで2時間ろ過を行い、中空糸膜の外側から中空糸膜の内側へろ過された透析液を貯留し、該貯留液のエンドトキシン濃度を測定した。エンドトキシン濃度はリムルスESIIテストワコー(和光純薬工業社製)を用い、取り説の方法(ゲル化転倒法)に従って分析を行った。

[0052]

12.血液リークテスト

生食にてプライミングしたモジュールを用いて、クエン酸を添加して凝固を抑制した37℃の牛血液を、血液浄化器に200ml/minで送液し、20ml/minの割合で血液をろ過する。このとき、ろ液は血液に戻し、循環系とする。60分後に血液浄化器のろ液を採取し、赤血球のリークに起因する赤色を目視で観察する。この血液リーク試験を各実施例、比較例ともに30本の血液浄化器を用い、血液リークしたモジュール数を調べる。

[0053]

13. 中空糸膜の固着性

中空糸約10,000本を束ね、30mm ϕ ~35mm ϕ のモジュールケースに装てんし、2液系ポリウレタン樹脂にて封止してモジュールを作成した。各水準5本リークテストを実施し、ウレタン樹脂封止不良となったモジュールの本数をカウントした。

[0054]

(実施例1)

ポリエーテルスルホン(住化ケムテックス社製、スミカエクセル5200P)1 7質量%、ポリビニルピロリドン(BASF社製コリドンK-90)25質量% 、ジメチルアセトアミド(DMAc) 7 7. 5 質量%、R0水 3 質量%を 5 0 ℃で 均一に溶解し、ついで真空ポンプを用いて系内を-500mmHgまで減圧した 後、溶媒等が蒸発して製膜溶液組成が変化しないように直ぐに系内を密閉し15 分間放置した。この操作を3回繰り返して製膜溶液の脱泡を行った。製膜溶液を 30μm、15μmの2種の焼結フィルターに順に通した後、80℃に加温した チューブインオリフィスノズルから中空形成剤として予めー700mmHgで3 0分間脱気処理した60質量%DMAc水溶液を用いて吐出、紡糸管により外気 と遮断された400mmの乾式部を通過後、60℃の20質量%DMAc水溶液 中で凝固させ、湿潤状態のまま綛に捲き上げた。使用したチューブインオリフィ スノズルのノズルスリット幅は、平均60μmであり、最大61μm、最小59 μm、スリット幅の最大値、最小値の比は1.03、製膜溶液のドラフト比は1 . 06、乾式部の絶対湿度は0.21kg/kg乾燥空気であった。該中空糸膜 約10,000本の束の周りに中空糸束側表面がエンボス加工されたポリエチレ ン製のフィルムを巻きつけた後80℃の熱水中で30分間×4回洗浄し、洗浄終 了後40℃の窒素雰囲気中で乾燥処理を行った。紡糸工程中、中空糸膜が接触す るローラーは表面が鏡面加工されたもの、ガイドはすべて表面が梨地加工された ものを使用した。得られた中空糸膜の内径は198.5μm、膜厚は28.5μm であった。中空糸膜中の親水性高分子の質量割合を測定したところ、4.3質量 %であった。このようにして得られた中空糸膜を用いて血液浄化器を組み立て、

リークテストを行った結果、中空糸同士の固着に起因するような接着不良は認められなかった。該血液浄化器内にRO水を充填し25kGyの吸収線量でγ線を照射し架橋処理を行った。γ線照射後の血液浄化器より中空糸膜を切り出し、溶出物試験に供したところ、PVP溶出量は8ppmであり問題ないレベルであった。該血液浄化器に、0.1MPaの圧力で加圧空気を充填し、10秒間の圧力降下が30mmAq以下のリークテスト合格品を以後の試験に用いた。また、血液浄化器より中空糸膜を取り出し、外表面を顕微鏡にて観察したところ傷等の欠陥は観察されなかった。また、クエン酸加新鮮牛血を血液流量200ml/min、ろ過速度10ml/minで血液浄化器に流したが、血球リークはみられなかった。中空糸外側から中空糸内側にろ過されたエンドトキシンは検出限界以下であり、問題ないレベルであった。その他の分析結果を表1に示した。

[0055]

(比較例1)

実施例1と同じ製膜溶液をフィルターを通過させないこと、および洗浄しないこと以外は実施例1と同様にして湿潤中空糸膜束を得た。このようにして得られた中空糸膜を用いて、血液浄化器を組み立てた。該血液浄化器内にR0水を充填し25kGyの吸収線量でγ線を照射し架橋処理を行った。得られた中空糸膜の内径は199.3μm、膜厚は28.7μmであった。中空糸膜中の親水性高分子の質量割合を測定したところ、7.3質量%であった。γ線照射後の血液浄化器より中空糸膜を取り出し、顕微鏡にて観察したところ、未溶解成分の混入と思われるこぶ状の欠陥が観察されたものがあった。該血液浄化器に、0.1MPaの圧力で加圧空気を充填し、10秒間の圧力降下が30mmAq以下のモジュールを試験に用いた。牛血液を用いた血液リークテストではモジュール30本中、3本に血球リークがみられた。偏肉度、バースト圧が低いことから薄膜部の強度不足及び/又は欠陥があったものと思われる。エンドトキシン透過試験の結果、中空糸内側に透過したエンドトキシンが観察された。この原因としては、洗浄を行わなかったため、中空糸膜外表面のPVP存在割合が増加し、エンドトキシンが通過し易くなったものと思われる。その他の分析結果を表1に示した。

[0056]

(比較例2)

ポリエーテルスルホン(住化ケムテックス社製、スミカエクセル5200P) 1 6質量%、ポリビニルピロリドン(BASF社製コリドンK-90)6質量%、 ジメチルアセトアミド (DMAc) 75質量%、水3質量%を50℃で溶解し、つ いで真空ポンプを用いて系内を-500mmHgまで減圧した後、溶媒等が揮発 して製膜溶液組成が変化しないように直ぐに系内を密閉し15分間放置した。こ の操作を3回繰り返して製膜溶液の脱泡を行った。この製膜溶液を30μmのフ ィルターに通した後、60℃に加温したチューブインオリフィスノズルから中空 形成剤として予めー700mmHgで2時間脱気処理した30質量%DMAc水 溶液を用いて同時に吐出、紡糸管により外気と遮断された600mmの乾式部を 通過後、濃度10質量%、60℃のDMAc水溶液中で凝固させた。使用したチ ユーブインオリフィスノズルのノズルスリット幅は、平均100μmであり、最 大110μm、最小90μm、スリット幅の最大値、最小値の比は1.22、ド ラフト比は2. 41、乾式部の絶対湿度は0. 11kg/kg乾燥空気であった 。得られた中空糸膜は40℃の水洗槽を45秒間通過させ溶媒と過剰の親水性高 分子を除去した後、湿潤状態のまま巻き上げ空気中で50℃で乾燥した。得られ た中空糸膜の内径は197.8μm、膜厚は29.2μmであった。中空糸膜中 の親水性高分子の質量割合を測定したところ、88質量%であった。このように して得られた中空糸膜を用いて、血液浄化器を組み立てた。該血液浄化器に純水 を充填した状態で25 k G y の吸収線量で y 線を照射し架橋処理を行った。 y 線 照射後の血液浄化器より中空糸膜を切り出し、溶出物試験に供したところ、PV P 溶出量は12ppmであった。中空糸膜の洗浄不良が考えられた。該血液浄化 器に、0.1MPaの圧力で加圧空気を充填し、10秒間の圧力降下が30mm Aq以下のモジュールを試験に用いた。牛血液を用いた血液リークテストではモ ジュール30本中、2本に血球リークがみられた。偏肉度が小さいことと外表面 孔径が大きすぎることより、ピンホールの発生及び/または破れが発生したもの と思われる。エンドトキシン透過試験の結果、中空糸外側から中空糸内側にろ過 されたエンドトキシンが検出された。外表面PVP量が多く、開孔率も大きいた めエンドトキシンが透過し易くなったものと推測する。その他の分析結果を表1

に示した。

[0057]

(実施例2)

ポリエーテルスルホン(住化ケムテックス社製、スミカエクセル4800P) 1 8質量%、ポリビニルピロリドン (BASF社製コリドンK-90) 35質量% 、ジメチルアセトアミド (DMAc) 73.5質量%、水5質量%を50℃で溶解 し、ついで真空ポンプを用いて系内を-700mmHgまで減圧した後、溶媒等が揮 発して製膜溶液組成が変化しないように直ぐに系内を密閉し10分間放置した。 この操作を3回繰り返して製膜溶液の脱泡を行った。得られた製膜溶液を15μ m、15μmの2段のフィルターに通した後、70℃に加温したチューブインオリ フィスノズルから中空形成剤として予め-700mmHgで2時間脱気処理した5 0質量%DMAc水溶液と同時に吐出し、紡糸管により外気と遮断された300 mmのエアギャップ部を通過後、60℃の水中で凝固させた。使用したチューブ インオリフィスノズルのノズルスリット幅は、平均45μmであり、最大45. 5μ m、最小 4 4 . 5μ m、スリット幅の最大値、最小値の比は 1 . 0 2 、ドラ フト比は1.06、乾式部の絶対湿度は0.12kg/kg乾燥空気であった。 凝固浴から引き揚げられた中空糸膜は85℃の水洗槽を45秒間通過させ溶媒と 過剰の親水性高分子を除去した後巻き上げた。該中空糸膜約10,000本の束 の周りに実施例1と同様のポリエチレン製のフィルムを巻きつけた後、30℃の 40 v o 1%イソプロパノール水溶液で30分×2回浸漬洗浄した後、水に置換 し、60℃の窒素気流中で乾燥した。紡糸工程中の糸道変更のためのローラーは 表面が鏡面加工されたものを使用し、固定ガイドは表面が梨地処理されたものを 使用した。得られた中空糸膜の内径は198.5μm、膜厚は28.5μmであっ た。中空糸膜中の親水性高分子の質量割合を測定したところ、5.2質量%であ った。リークテストを行った結果、中空糸同士の固着に起因するような接着不良 は認められなかった。このようにして得られた中空糸膜を用いて、血液浄化器を 組み立てた。該血液浄化器は親水性高分子の架橋処理を行わずに以降の分析に供 した。γ線未照射の血液浄化器より中空糸膜を切り出し、溶出物試験に供したと ころ、PVP溶出量は6ppmと良好であった。また血液浄化器より中空糸膜を

取り出し、外表面を顕微鏡にて観察したところ傷等の欠陥は観察されなかった。 牛血液を用いた血液リークテストでは血球リークはみられなかった。また、エンドトキシン透過試験の結果、中空糸外側から中空糸内側にろ過されたエンドトキシンは検出限界以下であり、問題ないレベルであった。その他の分析結果を表1に示した。

[0058]

(比較例3)

ポリエーテルスルホン (住化ケムテックス社製、スミカエクセル7800P) 22質量%、ポリビニルピロリドン(BASF社製コリドンK-30)9質量% 、ジメチルアセトアミド (DMAc) 66質量%、水3質量%を50℃で溶解し、 ついで真空ポンプを用いて系内を-350mmHgまで減圧した後、溶媒等が揮発し て製膜溶液組成が変化しないように直ぐに系内を密閉し30分間放置した。この 操作を2回繰り返して製膜溶液の脱泡を行った。得られた製膜溶液を30 μm、 30 μmの2段のフィルターに通した後、50℃に加温したチューブインオリフ ィスノズルから中空形成剤として予め減圧脱気した50質量%DMAc水溶液と 同時に吐出し、紡糸管により外気と遮断された300mmのエアギャップ部を通 過後、50℃の水中で凝固させた。使用したチューブインオリフィスノズルのノ ズルスリット幅は、平均45 μ mであり、最大45.5 μ m、最小44.5 μ m 、スリット幅の最大値、最小値の比は1.02、ドラフト比は1.06、乾式部 の絶対湿度は0.07kg/kg乾燥空気であった。凝固浴から引き揚げられた 中空糸膜は40℃の水洗槽を45秒間通過させ溶媒と過剰の親水性高分子を除去 した後巻き上げた。得られた10,000本の中空糸膜束は洗浄を行わず、その まま空気雰囲気中の40℃で乾燥した。得られた中空糸膜の内径は199.5 μ m、膜厚は29.0μmであった。中空糸膜中の親水性高分子の質量割合を測定 したところ、9.6質量%であった。乾燥後の中空糸膜束には固着が観察され、 血液浄化器を組立てる際、端部接着樹脂が中空糸膜間にうまく入らず血液浄化器 を組み立てることが出来なかった。分析結果を表1に示した。

[0059]

(比較例4)

実施例1と同じ製膜溶液を30μm、15μmの2段のフィルターに通した後、 中空形成剤として予め減圧脱気した60質量%DMAc水溶液を用いて80℃に 加温したチュープインオリフィスノズルから同時に吐出し、紡糸管により外気と 遮断された400mmの長さの乾式部を通過後、70℃のRO水からなる凝固浴 中で凝固させた。使用したチューブインオリフィスノズルのノズルスリット幅は 、平均60μmであり、最大62μm、最小58μm、スリット幅の最大値、最 小値の比は1.07、ドラフト比は1.06、乾式部の絶対湿度は0.28kg /k g乾燥空気であった。凝固浴より引き揚げた中空糸膜を、次いで温度60℃ の水洗浴に45秒間浸漬した後巻き上げ、70℃の乾熱オーブンで乾燥した。得 られた中空糸膜の内径は200.2μm、膜厚は30.5μmであった。中空糸膜 中の親水性高分子の質量割合を測定したところ、7.4質量%であった。このよ うにして得られた中空糸膜を用いて血液浄化器を組み立て、エアリークテストを 行った結果、モジュール接着部より気泡が発生するものがみられた。中空糸同士 の固着に起因する接着不良を起こしたものと思われる。架橋処理を行っていない 血液浄化器より中空糸膜を切り出し、溶出物試験に供したところ、PVP溶出量 は12 p p mであった。中空糸膜の洗浄不足と親水性高分子が未架橋であること が原因と考えられた。該血液浄化器に、0.1MPaの圧力で加圧空気を充填し 、10秒間の圧力降下が30mmAq以下のモジュールを試験に用いた。牛血液 を用いた血液リークテストでは血球リークはみられなかった。また、エンドトキ シン通過テストの結果、ろ液中エンドトキシン濃度は10EU/Lであり、若干 高いレベルであった。得られた血液浄化器の分析結果を表1に示した。

[0060]

(比較例5)

ポリエーテルスルホン(住化ケムテックス社製、スミカエクセル5200P) 17質量%、ポリビニルピロリドン(BASF社製コリドンK—90)7.5質量%、ジメチルアセトアミド(DMAc)72.5質量%、水3質量%を50℃で溶解し、ついで真空ポンプを用いて系内を-500mmHgまで減圧した後、溶媒等が揮発して製膜溶液組成が変化しないように直ぐに系内を密閉し30分間放置した。この操作を3回繰り返して製膜溶液の脱泡を行った。得られた製膜溶液

をフィルターを通さずに、50℃に加温したチューブインオリフィスノズルから 中空形成剤として予め減圧脱気した75質量%DMAc水溶液と同時に吐出し、 紡糸管により外気と遮断された600mmのエアギャップ部を通過後、70℃水 中で凝固させた。使用したチューブインオリフィスノズルのノズルスリット幅は 、平均60μmであり、最大64μm、最小56μm、スリット幅の最大値、最 小値の比は1.14、ドラフト比は1.06、乾式部の絶対湿度は0.23kg /kg乾燥空気であった。得られた中空糸膜を水洗し溶媒を除去した後、約10 ,000本の束に巻き上げた。ついで、30質量%、50℃のグリセリン水溶液 に1時間浸漬した後、80℃で乾燥した。得られた中空糸膜の内径は197.8 μπ、膜厚は30.3μπであった。中空糸膜中の親水性高分子の質量割合を測定 したところ、7.7質量%であった。このようにして得られた中空糸膜束は膜表 面にグリセリンを付着させているため中空糸同士の固着はみられなかったが、組 立てた血液浄化器は端部ウレタンオリゴマー量が多く十分な安全性を保障できる ものではなかった。該血液浄化器に水を充填した状態で25kGyの吸収線量で γ線を照射した。γ線照射後の血液浄化器より中空糸膜を切り出し、溶出物試験 に供したところ、PVP溶出量は13ppmであり、中空糸膜の洗浄不足および 充填液に含まれるグリセリンの影響により親水性高分子の架橋が阻害されたもの と考えられた。該血液浄化器に、0.1MPaの圧力で加圧空気を充填し、10 秒間の圧力降下が30mmAg以下のモジュールを試験に用いた。牛血液を用い た血液リークテストではモジュール30本中、4本に血球リークがみられた。偏 肉度が小さいことと外表面孔径が大きすぎることが原因と思われた。エンドトキ シン透過試験の結果、中空糸外側から中空糸内側にろ過されたエンドトキシンは 非常に高いレベルであった。外表面開孔率および孔面積が大きいことが原因と考 えられた。その他の分析結果を表1に示した。

[0061]

(実施例3)

ポリスルホン(アモコ社製P-3500)18質量%、ポリビニルピロリドン(BASF社製K-60)9質量%、ジメチルアセトアミド (DMAc) 68質量%、水5質量%を50℃で溶解し、ついで真空ポンプを用いて系内を-300mmH

gまで減圧した後、溶媒等が揮発して製膜溶液組成が変化しないように直ぐに系 内を密閉し15分間放置した。この操作を3回繰り返して製膜溶液の脱泡を行っ た。得られた製膜溶液を 15μ m、 15μ mの2段のフィルターに通した後、40℃に加温したチューブインオリフィスノズルから中空形成剤として予め減圧脱気 した35質量%DMAc水溶液と同時に吐出し、紡糸管により外気と遮断された 600mmのエアギャップ部を通過後、50℃の水中で凝固させた。使用したチ ユーブインオリフィスノズルのノズルスリット幅は、平均60μmであり、最大 61μ m、最小 59μ m、スリット幅の最大値、最小値の比は1.03、ドラフ ト比は1.01、乾式部の絶対湿度は0.06kg/kg乾燥空気であった。凝 固浴から引き揚げられた中空糸膜は85℃の水洗槽を45秒間通過させ溶媒と過 剰の親水性髙分子を除去した後巻き上げた。該中空糸膜約10,000本の束を 純水に浸漬し、121℃×1時間オートクレーブにて洗浄処理を行った。洗浄後 の中空糸膜束の周りに実施例1と同様のポリエチレン製のフィルムを巻きつけた 後、45℃の窒素気流中で乾燥した。紡糸工程中の糸道変更のためのローラーは 表面が鏡面加工されたものを使用し、固定ガイドは表面が梨地処理されたものを 使用した。得られた中空糸膜の内径は $201.2 \mu m$ 、膜厚は $43.8 \mu m$ であ った。中空糸膜中の親水性高分子の質量割合を測定したところ、6.3質量%で あった。リークテストを行った結果、中空糸同士の固着に起因するような接着不 良は認められなかった。このようにして得られた中空糸膜を用いて、血液浄化器 を組み立てた。該血液浄化器内にRO水を充填し25kGyの吸収線量でγ線を 照射し架橋処理を行った。γ線照射後の血液浄化器より中空糸膜を切り出し、溶 出物試験に供したところ、PVP溶出量は7ppmであり問題ないレベルであっ た。該血液浄化器に、0.1MPaの圧力で加圧空気を充填し、10秒間の圧力 降下が30mmAg以下のリークテスト合格品を以後の試験に用いた。また、血 液浄化器より中空糸膜を取り出し、外表面を顕微鏡にて観察したところ傷等の欠 陥は観察されなかった。また、クエン酸加新鮮牛血を血液流量200ml/mi n、ろ過速度10ml/minで血液浄化器に流したが、血球リークはみられな かった。中空糸外側から中空糸内側にろ過されたエンドトキシンは検出限界以下 であり、問題ないレベルであった。その他の分析結果を表1に示した。

[0062]

(実施例4)

ポリスルホン(アモコ社製P-1700)17質量%、ポリビニルピロリドン(BASF社製K-60)5質量%、ジメチルアセトアミド(DMAc)68質量% 、水5質量%を50℃で溶解し、ついで真空ポンプを用いて系内を-400mm Hgまで減圧した後、溶媒等が揮発して製膜溶液組成が変化しないように直ぐに 系内を密閉し30分間放置した。この操作を3回繰り返して製膜溶液の脱泡を行 った。得られた製膜溶液を 15μ m、 15μ mの2段のフィルターに通した後、40℃に加温したチューブインオリフィスノズルから中空形成剤として減圧脱気さ れた35質量%DMAc水溶液と同時に吐出し、紡糸管により外気と遮断された 600mmのエアギャップ部を通過後、50℃の水中で凝固させた。使用したチ ュープインオリフィスノズルのノズルスリット幅は、平均60μmであり、最大 6 1 µ m、最小 5 9 µ m、スリット幅の最大値、最小値の比は 1. 0 3 、ドラフ ト比は1.01、乾式部の絶対湿度は0.07kg/kg乾燥空気であった。凝 固浴から引き揚げられた中空糸膜は85℃の水洗槽を45秒間通過させ溶媒と過 剰の親水性高分子を除去した後巻き上げた。該中空糸膜約10,000本の束を 純水に浸漬し、121℃×1時間オートクレープにて洗浄処理を行った。洗浄後 の中空糸膜束の周りにポリエチレン製のフィルムを巻きつけた後、45℃の窒素 気流中で乾燥した。紡糸工程中の糸道変更のためのローラーは表面が鏡面加工さ れたものを使用し、固定ガイドは表面が梨地処理されたものを使用した。得られ た中空糸膜の内径は201.2μm、膜厚は43.8μmであった。中空糸膜中の 親水性高分子の質量割合を測定したところ、6.1質量%であった。リークテス トを行った結果、中空糸同士の固着に起因するような接着不良は認められなかっ た。このようにして得られた中空糸膜を用いて、血液浄化器を組み立てた。該血 液浄化器内にRO水を充填し25kGyの吸収線量でy線を照射し架橋処理を行 った。γ線照射後の血液浄化器より中空糸膜を切り出し、溶出物試験に供したと ころ、PVP溶出量7ppmであり問題ないレベルであった。該血液浄化器に、 0. 1MP a の圧力で加圧空気を充填し、10秒間の圧力降下が30mmA q 以 下のリークテスト合格品を以後の試験に用いた。また、血液浄化器より中空糸膜 を取り出し、外表面を顕微鏡にて観察したところ傷等の欠陥は観察されなかった。また、クエン酸加新鮮牛血を血液流量200mL/min、ろ過速度10ml/minで血液浄化器に流したが、血球リークはみられなかった。中空糸外側から中空糸内側にろ過されたエンドトキシンは検出限界以下であり、問題ないレベルであった。その他の分析結果を表1に示した。

[0063]

【表1】

	比較例5	比較例4	比較例3	比較例2	比較例1	爽览例 4	奥施例3	爽脑例 2	突逝例1				
透水串:ml/ms/hr/mmHg	502	488	1	526	498	290	602	342	510				中本版
	0.2	0.7	1	0.3	0.2	0.6	7.0	0.6	9.0			(MPa)	ガイドーン
	0.43	0.72	ı	.0.41	0.47	0.88	0.82	0.90	0.71				庭内袋
	4	0	1	2	ω	0	0	0	0		€	9-1	A
	13	12	14	12	8	7	7	6	8		(mdd)	拉田 拉	PVP
	48	44,	67	62	51	82	29	27	33	(知量%)	存在此事	PVP	外数面
	27	21	οπ	32	19	24	ä	19	21		(%)	神工的	加茲化
	0.4	0.2	0.2	1.2	0.5	0.9	0.8	0.5	0.6	(µm³)	が開発	改計	外表面
	0	۵	8	٥	E	0	0	0	0			€	固带数
	6.1	6.3	7.7	7.4	9.6	6.2	. 8.8	7.3	4.8		(資金%)	奴隶割合	数中PVP
•	×	×	-	×	×	ß	ğ	ä	ş		5 4	トキジン	サンド
	牟	熊	瑯	콰	曲	計	褂	濉	址			#\$	益

[0064]

【発明の効果】

本発明の中空糸型血液浄化器は、安全性およびモジュール組み立て性に優れており、慢性腎不全の治療に用いる高透水性能を有する医療用中空糸型血液浄化器として好適である。

【書類名】

要約書

【要約】

【課題】 安全性およびモジュール組み立て性に優れており、慢性腎不全の治療 に用いる高透水性能を有する医療用中空糸型血液浄化器を提供する。

【解決手段】 本発明は、親水性高分子を含有する疎水性高分子中空糸膜において、該親水性高分子の中空糸膜よりの溶出が10ppm以下であり、かつ該親水性高分子の中空糸膜の外表面における存在割合が25~50質量%であり、さらにバースト圧が0.5MPa以上の中空糸膜よりなる血液浄化器であり、該血液浄化器の透水率が150ml/m2/hr/mmHg以上であることを特徴とする高透水性中空糸膜型血液浄化器である。

【選択図】 なし

特願2003-209839

出願人履歴情報

識別番号

[000003160]

1. 変更年月日 [変更理由] 1990年 8月10日

新規登録

住 所 氏 名 大阪府大阪市北区堂島浜2丁目2番8号

東洋紡績株式会社