Millores d'eficiència en programes recursius i iteratius

R. Ferrer i Cancho

Universitat Politècnica de Catalunya

PRO2 (curs 2010-2011) Versió 0.4

Avís: aquesta presentació no pretén ser un substitut dels apunts oficials de l'assignatura.

On som?

- ► Tema 5: Programació recursiva
- 9a sessió

Avui

- Més exemples d'immersions d'eficiència en algorismes recursius (sobre tipus abstractes de dades)
- Millores d'eficiència en algorismes iteratius.

Immersions d'eficiència sobre arbre, piles, cues i llistes Arbres equilibrats

Millores d'eficiència d'algorismes iteratius

Càlcul de la funció exponencial mitjançant la sèrie de Taylor Càlcul de la funció cosinus mitjançant la sèrie de Taylor

Determinar si dos arbres son equilibrats

Un arbre és equilibrat si i només si:

- Els arbres fills són equilibrats.
- La diferència d'alçades dels subarbres fills no supera la unitat.

```
bool equilibrat(const BinTree<int> &a) {
    // Pre: cert

// Post: el valor retornat indica si a es un arbre equilibrat
}
```

Concepte d'arbre equilibrat: clau en estructures de dades avancades.

Implementació l

```
bool equilibrat(const BinTree<int> &a) {
   // Pre: cert
   bool b1:
   if (a.empty()) b1 = true;
   else {
      b1 = equilibrat(a.left());
      bool b2 = equilibrat(a.right());
      int h1 = alcada(a.left()):
      // HI1 : h1 es l'alçada del fill esquerre d'a
      int h2 = alcada(a.right());
      // HI2 : h2 es l'alçada de fill dret d'a
      b1 = (abs(h1 - h2) \le 1) and b1 and b2;
   return b1:
   // Post: el valor retornat indica si a es un arbre equilibrat
```

Implementació II

Suposem que ja tenim implementada la funció

```
int alcada(const BinTree<int> &a) {
   // Pre: cert

   // Post: el valor retornat es la longitud del camí més llarg de l'arrel
   // a una fulla de l'arbre a
}
```

Anàlisi de l'eficiència

- Problemes d'eficiència? (anàlisi de l'arbre de crides)
- Quin és el cost de l'algorisme?
- Millores d'eficiència:
 - Millorant el codi seguint l'esquema de la implementació proposada.
 - Reenginyeria (immersió).

Solució: immersió d'eficiència

Retornar + informació per evitar càlculs redundants

```
pair<bool, int> i_equilibrat(const BinTree<int> &a) {
    // Pre: cert

    // Post: en el valor retornat
    // - "first" indica si a es un arbre equilibrat
    // - "second" conté l'alçada de l'arbre
}
```

Implementació de la funció d'immersió

```
pair < bool. int > i equilibrat (const BinTree < int > &a) {
   // Pre: cert
   pair <bool, int > e;
   if (a.emptv()) {
      e.first = true;
     e.second = 0:
   else {
      pair<bool, int> e1 = i_equilibrat(a.left());
             // HI1: e1.first indica si el fill esquerre d'a es un arbre equilibrat
                        el.second en conté l'alcada
      pair<bool, int> e2 = i_equilibrat(a.right());
             // HI2: e2.first indica si el fill dret d'a es un arbre equilibrat
                        e2.second en conté l'alcada
      e.first = (abs(e1.second - e2.second) <= 1) and
                e1.first and e2.first:
      e.second = 1 + max(e1.second, e2.second);
   return e;
   // Post: en el valor retornat
         - "first" indica si A es un arbre equilibrat
   11
            - "second" conté l'alçada de l'arbre
```

Millora d'eficiència addicional?

Crida a la funció d'immersió

```
bool equilibrat2(const BinTree<int> &a) {
    // Pre: cert
    pair<bool, int> e = i_equilibrat(a);
    return e.first;
    // Post: indica si a es un arbre equilibrat
}
```

Funció exponencial

Sèrie de Taylor de l'exponencial

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!} + \dots$$
 (1)

```
double exponencial(int x, int n) {
    // Pre: x > 0; n >= 0

    // Post: el valor retornat es la suma dels n primers termes de l'expansio
    // en sèrie de Taylor de e^x
}
```

Implementació I

```
double exponencial(int x, int n) {
   // Pre: x > 0; n >= 0
   double e = 0;
   int i = 0:
   // Inv: 0 <= i <= n;
   // e conté la suma dels i primers termes de l'expansio en sèrie
        de Taylor de la funció exponencial
   while (i < n) {
       int p = potencia(x, i);
       int f = factorial(i):
       e += double(p)/f;
       ++i:
   return e:
   // Post: el valor retornat es la suma dels n primers termes de l'expansio
           en sèrie de Taylor de e^x
   //
```

Implementació II

Especificació de les dues funcions auxiliars:

```
int potencia(int x, int n) {
    // Pre: n >= 0; x != 0 si n = 0

    // Post: retorna x^n
}

Definició de la Pre: evitar indeterminació 00 quan x = n = 0.
int factorial(int n) {
    // Pre: n >= 0

    // Post: retorna n!
}
```

Millora d'eficiència

Càlculs repetits (i > 0):

- A cada iteració càlcul de potencies des de zero però potencia(x, i) = x*potencia(x, i - 1)
- A cada iteració càlcul del factorial de zero però factorial(i) = i*factorial(i - 1)

Solució: reciclar càlculs (introduir noves variables locals)

Implementació (2a versió)

```
double exponencial(int x, int n) {
   // Pre: x > 0: n >= 0
   double e = 0:
   int p = 1; // p = 0
   int f = 1: // f conté 0!
   int i = 0;
   // Inv: 0 <= i <= n:
   // p conté x^i; f conté i!;
   // e conté la suma dels i primers termes de l'expansio en sèrie
        de Taylor de la funció exponencial
   while (i < n) {
       e += double(p)/f;
       p *= x;
       ++i:
       f *= i:
   return e:
   // Post: e conté la suma dels n primers termes de l'expansio en sèrie
           de Taylor de e^x
   //
                                                ◆ロ → ◆ 雨 → ◆ 重 → ◆ へ ● ・ ◆ へ ○ ○
```

Dubte

No hauria de ser?

```
while (i < n) {
    e += double(p)/f;
    p *= x;
    f *= i;
    ++i;
}</pre>
```

Pista: justificar a partir de l'invariant.

Millora d'eficiència

Problema exponencial2

- Vessaments evitables (p i f es fan massa grans)
- Variables temporals innecessaries

Solució:

Sèrie de Taylor de l'exponencial

$$e^{x} = t_0 + t_1 + t_2 + t_3 + \dots + t_n + \dots$$
 (2)

- Relació de recurrència:
 - $t_n = 1 \text{ si } n = 0$
 - $t_n = \frac{x}{n} t_{n-1} \text{ si } n > 0$

Implementació (3a versió)

```
double exponencial(int x, int n) {
  // Pre: x > 0; n >= 0
  double e = 0:
  double t = 1; // t = x^0/(0!)
   int i = 0:
  // Inv: 0 <= i <= n
  // t conté x^i/(i!);
  // e conté la suma dels i primers termes de l'expansio en sèrie
       de Taylor de la funció exponencial
  while (i < n)
      e += t:
      ++i:
      t = t*x/i:
  return e;
  // Post: el valor retornat es la suma dels n primers termes de l'expansió
  //
           en sèrie de Taylor de e^x
```

Funció cosinus

Sèrie de Taylor del cosinus

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$$
 (3)

```
double cosinus(double x, int n) {
    // Pre: n >= 0

    // Post: e conté la suma dels n primers termes de l'expansio en sèrie
    // de Taylor del cosinus de x
}
```

Pista

$$t_n = 1 \text{ si } n = 0$$

$$t_n = ...t_{n-1} \text{ si } n > 0$$

Exercicis

Discutir estratègies eficients per als problemes següents:

- Element dominador més alt d'una pila de naturals (recursiu).
- Element dominador més avançat d'una llista de naturals (iteratiu).
- Vector mitjanament ordenat (iteratiu).