MINES PARISTECH - ÉQUIPE DE GÉOSTATISTIQUE

Support Vector Machines

Marine Demangeot

Support Vector Machines

- Supervised learning algorithm
- Original SVM algorithm invented by Vladimir Vapnik (1990's)

Sommaire

Data linearly separable

Data non linearly separable

Overlapping class distributions

Model

- input : $x_1, ..., x_n \in \mathbb{R}^2$ $x_i = (x_{i,(1)}, x_{i,(2)})$
- **output** : $y_1, ..., y_n \in \{-1, 1\}$: two-class classification problem

The training data set is linearly separable in the (two-dimensional) data space

$$\iff$$
 $\exists (w,b) \in \mathbb{R}^2 \times \mathbb{R} \text{ s.t. } \forall i \in [1;n]$:

$$y_i = g\left[w^t x_i + b\right]$$

with
$$g(z) = \begin{cases} 1 & \text{if } z \ge 0 \\ -1 & \text{if } z < 0 \end{cases}$$

Separating hyperplan

FIGURE - Binary discrimination

- $D(w,b) = \{x \in \mathbb{R}^2 : w^t x + b = 0\}$ decision boundary
- $h_i = \frac{|w^t x_i + b|}{\|w\|_2}$

Multiple separating hyperplanes

• $\forall k > 0$, $g[w^t x_i + b] = g[k \cdot w^t x_i + k \cdot b]$

FIGURE – Binary discrimination : multiple solutions

Optimal separating hyperplan

FIGURE - Confidence about discrimination

Optimal separating hyperplan

FIGURE

FIGURE

- 1. margin : $h(w,b) = \min_{i=1...,n} h_i$ 2. arg max $\{h(w,b)\}$

maximum margin solution

Optimization problem

$$h_i = \frac{|w^t x_i + b|}{\|w\|_2} = \frac{y_i(w^t x_i + b)}{\|w\|_2}$$

$$\underset{w,b}{\operatorname{arg\,max}} \quad \left\{ \frac{1}{\|w\|_2} \underbrace{\min_{j=1...,n} \left(y_i \left[w^t x_i + b \right] \right)}_{\widehat{h}} \right\}$$
 (1)

s.t.
$$y_i[w^tx_i+b] \ge \widehat{h}, \qquad i=1,\ldots,n$$

Primal optimization problem

Scaling contraint : $\hat{h} = 1$

i.e. $y_i(w^t x_i + b) = 1$ for the point *i* that is closest to D(w, b).

Primal optimization problem:

$$\underset{w,b}{\operatorname{arg\,min}} \quad \frac{1}{2} \|w\|_2^2$$

(2)

s.t.
$$y_i[w^t x_i + b] \ge 1, \quad i = 1,...,n$$

→ minimizing a convex quadratic function subject to a set of linear inequality

constraints

Lagrangian function

We want to minimize:

$$\mathcal{L}(w, b, \alpha) = \frac{1}{2} \|w\|_{2}^{2} - \sum_{i=1}^{n} \alpha_{i} \{ y_{i} [w^{t} x_{i} + b] - 1 \}$$

•
$$\alpha = (\alpha_1, \ldots, \alpha_n)^t$$

Thus,

$$\begin{cases} \nabla_{w}\mathcal{L}(w,b,\alpha) = 0 & \Rightarrow & w = \sum_{i=1}^{n} \alpha_{i} y_{i} x_{i} \\ \frac{\delta}{\delta b}\mathcal{L}(w,b,\alpha) = 0 & \Rightarrow & \sum_{i=1}^{n} \alpha_{i} y_{i} = 0 \end{cases}$$

Lagrange duality

Dual optimization problem:

$$\underset{\alpha}{\operatorname{arg\,max}} \quad \frac{1}{2} \sum_{i,j=1}^{n} y_{i} y_{j} \alpha_{i} \alpha_{j} x_{i}^{t} x_{j}$$

$$s.t. \qquad \alpha_{i} \geq 0, \qquad i = 1, ..., n$$

$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$
(3)

→ minimizing a convex quadratic function subject to a set of linear inequality constraints

Finding
$$\alpha^*$$
, we have :
$$\begin{cases} w^* &=& \sum_{i=1}^n \alpha_i^* y_i x_i \\ b^* &=& -\frac{\max\limits_{i:y_i=-1}^m w^{*t} x_i + \min\limits_{i:y_i=1}^m w^{*t} x_i}{2} \end{cases}$$

Prediction

new point input : x_{n+1}

$$y_{n+1} = g[w^*t_{n+1} + b^*]$$

$$= g[(\sum_{i=1}^n \alpha_i^* y_i x_i)^t x_{n+1} + b^*]$$

$$= g[\sum_{i=1}^n \alpha_i^* y_i x_i^t x_{n+1} + b^*]$$
where $\alpha_i = 0$ if $y_i (w^t x_i + b) > 1$

$$= g[\sum_{i \in \mathcal{S}}^n \alpha_i^* y_i [x_i^t x_{n+1}] + b^*]$$

with $\mathcal{S} = \{i : y_i(w^t x_i + b) = 1\}$ where x_i is called a **support vector**

→ memory efficient: once the model is training, only a subset of the training data, the support vectors, i.e. the points lying on the optimal margins, are used to calculate the output for a new point input.

Support vectors

FIGURE - Support vectors

Support Vector Machines

Sommaire

- Data linearly separable
- Data non linearly separable
- Overlapping class distributions

An example of non linear separability

FIGURE

$$\Phi(x) = (x_{(1)}, x_{(2)}, x_{(1)}x_{(2)})$$
: feature mapping

Model

- input : $x_1, \ldots, x_n \in \mathbb{R}^d$
- **output** : $y_1, ..., y_n \in \{-1, 1\}$: two-class classification problem

The training data set is linearly separable in the featuring space

$$\iff$$
 $\exists (w,b) \in \mathbb{R}^d \times \mathbb{R} \text{ s.t. } \forall i \in [1;n]$:

$$y_i = g\left[w^t\Phi(x_i) + b\right]$$

- \rightarrow replace x_i by $\Phi(x_i)$ in the primal or dual optimization problem.
- $\Phi(x_i)$ may be very expensive to calculate.

Kernels

Let Φ a feature mapping.

The corresponding Kernel is:

$$K(x;z) = \Phi(x)^t \Phi(z), \quad \forall x, z \in \mathbb{R}^d$$

K may be very inexpensive to calculate.

ex:
$$K(x,z) = (x^t z)^2 = \sum_{l,m=1}^d (x_{(l)} x_{(m)}) (z_{(l)} z_{(m)}) = \Phi(x)^t \Phi(z)$$

where
$$\Phi(x)^t = (x_{(I)}x_{(m)})_{1 \le I,m \le d}$$

Calculating time
$$\begin{cases} K(x,z) & : & O(d) \text{ time} \\ \Phi(x) & : & O(d^2) \text{ time} \end{cases}$$

We can replace, in the dual optimization problem, $x_i^t x_i$ by $K(x_i, x_i)$

Kernels

So we can get SVMs to learn in the high dimensional feature space but without ever having to explicitly find or represent vectors $\Phi(x)$, just specifying K. But how to know if the chosen function K is a valid kernel for your optimization problem?

Let
$$x_1, \ldots, x_n \in \mathbb{R}^d$$

Kernel matrix: $K = (K_{i,j})_{1 \le i,j \le n}$ where $K_{i,j} = K(x_i, x_j)$

Theorem (Mercer)

Let $K : \mathbb{R}^n \times \mathbb{R}^n$ be given.

K is a valid (Mercer) kernel if and only if, for any $x_1,...,x_n \in \mathbb{R}^d$, $n < \infty$, the corresponding kernel matrix is symmetric positive semi-definite.

- Gaussian kernel : $K(x,z) = \left(-\frac{\|x-z\|^2}{2\sigma^2}\right)$
- Polynomial kernel : $K(x,z) = (x^t z)^p$

 σ and p must be chosen

Example of discrimination with gaussian kernel

Sommaire

- Data linearly separable
- Data non linearly separable
- Overlapping class distributions

Outliers

FIGURE - Outliers

FIGURE - Slack variables

→ We want to allow some of the training points to be misclassified

slack variables :

$$\xi_{i} = \begin{cases} 0 & \text{if } y_{i}(w^{t}\Phi(x_{i}) + b) \ge 1\\ 1 - y_{i}(w^{t}\Phi(x_{i}) + b) > 0 & \text{if } y_{i}(w^{t}\Phi(x_{i}) + b) < 1 \end{cases}$$

When x_i is on the *wrong side* of the margin, the penalty ξ_i increases with the distance from that boundary

Optimization problem with regularization

Primal optimization problem:

$$\underset{w,b}{\operatorname{arg\,min}} \quad \frac{1}{2} \|w\|_{2}^{2} + C \sum_{i=1}^{n} \xi_{i}$$

$$s.t. \quad y_{i} [w^{t} \Phi(x_{i}) + b] \ge 1 - \xi_{i}, \quad i = 1, ..., n$$

$$\xi_{i} \ge 0, \quad i = 1, ..., n$$
(4)

C > 0 controls the **trade-off** between **minimizing training errors** (i.e. ensuring that most slack variables are null) and **controlling the model complexity** (i.e. making the margin large). Increasing C gives more importance to the minimizing training errors goal.

C must be chosen

Dual optimization problem:

arg max
$$\sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} y_{i} y_{j} \alpha_{i} \alpha_{j} K(x_{i}, x_{j})$$
s.t.
$$0 \le \alpha_{i} \le C, \qquad i = 1, ..., n$$

$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$
 (5)

Finding α^* , we can calculate w^* and b^* .

- x_i is a support vector $\iff y_i(w^tx_i+b)=1-\xi_i$
- only support vectors contribute to the predictive model

$$\alpha_i < C \Rightarrow \xi_i = 0 : x_i$$
 lie on the margin $\alpha_i = C \Rightarrow \xi_i > 0 : x_i$ lie inside the margins and can be correctly classified $(\xi_i \le 1)$ or misclassified $(\xi_i > 1)$

Model selection

To select the model: compute, with the validation data set, the confusion matrix when the following parameters are varying:

- kernel type : gaussian, polynomial...
- parameters of the kernel : p, σ
- C

Conclusion

- Convex optimization: the solution is the global minimum not a local minimum
- Effective in high dimensional spaces (but curse of dimensionality problem remains)
- Use a subset of training points in the decision function (memory efficient)
- Different kernel functions can be specified for the decision function

C

- Do not directly provide probability estimates (these are calculated using an expensive five-fold cross-validation)
- It doesn't perform well, when we have large data set because the required training time is higher

Conclusion

Other possibilities:

- Multiclass SVMs (when y has more than two labels)
- SVMs for regression (when y is a continuous variable)

Bibliography

- Andrew Ng's lecture notes
- Bishop, C. (2007). Pattern Recognition and Machine Learning (Information Science and Statistics), 1st edn. 2006. corr. 2nd printing edn. Springer, New York.
- Scikit learn Support Vector Machines