Insper

SuperComputação

Aula 5 - Introdução e SIMD

2019 - Engenharia

Igor Montagner, Luciano Soares <igorsm1@insper.edu.br>

Arquiteturas modernas de CPU

Images not intended to reflect actual die sizes

	64-bit Intel® Xeon® processor	Intel® Xeon® processor 5100 series	Intel® Xeon® processor 5500 series	Intel® Xeon® processor 5600 series	Intel® Xeon® processor E5-2600 series	Intel® Xeon Phi™ Co-processor 5110P	
Frequency	3.6GHz	3.0GHz	3.2GHz	3.3GHz	2.7GHz	1053MHz	
Core(s)	1	2	4	6	8	60	
Thread(s)	2	2	8	12	16	240	
SIMD width	128 (2 clock)	128 (1 clock)	128 (1 clock)	128 (1 clock)	256 (1 clock)	512 (1 clock)	

Instruction pipelining

- Não reduz latência de uma tarefa
- Aumenta a taxa de execução de tarefas

Instr. No.	Pipeline Stage						
1	IF	ID	EX	MEM	WB		
2		IF	ID	EX	МЕМ	WB	
3			IF	ID	EX	МЕМ	WB
4				IF	ID	EX	МЕМ
5					IF	ID	EX
Clock Cycle	1	2	3	4	5	6	7

Legend:

IF: Instruction Fetch

ID: Instruction Decode

EX: Execute

MEM:Memory Access

WB: Register Write Back

Instruction pipelining

• Paralelismo em nível de instrução!

	IF	ID	EX	MEM	WB				
	IF	ID	EX	MEM	WB				
	i	IF	ID	EX	MEM	WB			
*	t	IF	ID	EX	MEM	WB			
	· · ·		IF	ID	EX	MEM	WB		
			IF	ID	EX	MEM	WB		
				IF	ID	EX	MEM	WB	
				IF	ID	EX	MEM	WB	
					IF	ID	EX	MEM	WB
					IF	ID	EX	MEM	WB

Instruction pipelining

Base para as vulnerabilidades Spectre e Meltdown

Single Instruction Multiple Data (SIMD)

- Processamento de itens de dados em conjunto
- Operações aritméticas básicas
- Operações comuns mais complexas

Single Instruction Multiple Data (SIMD)

Suporte a vetores cada vez maiores

Arquiteturas modernas de CPU

- Menos velocidade de clock
- Mais núcleos
- Mais trabalho efetuado por clock (pipelining)
- Vetorização (SIMD)

Código

Arquivo: tarefa1.cpp

Sem SIMD

```
leaq 1600(%rdi), %rdx
xorl %eax, %eax
.L2:
   addl (%rdi), %eax
   addq $4, %rdi
   cmpq %rdx, %rdi
   jne .L2
   cltq
   ret
```

Com -ftree-vectorize -mavx

```
vpxor %xmm0, %xmm0, %xmm0
          1600(%rdi), %rax
  leag
.L2:
  vpaddd (%rdi), %xmm0, %xmm0
  addq
          $16, %rdi
  cmpq
          %rdi, %rax
  jne .L2
  vpsrldq $8, %xmm0, %xmm1
  vpaddd %xmm1, %xmm0, %xmm0
  vpsrldq $4, %xmm0, %xmm1
  vpaddd
          %xmm1, %xmm0, %xmm0
  vmovd
          %xmm0, %eax
  cltq
  ret
```

De onde vem os ganhos de desempenho na versão vetorizada automaticamente?

De onde vem os ganhos de desempenho na versão vetorizada automaticamente?

- Número menor de instruções executadas
- Número menor de pulos
 - Instruções J^* estragam o pipeline da CPU
- 4 somas pelo preço de uma

Tarefa 2

- Objetivos:
 - Explorar o funcionamento do autovetorizador
 - Estudar técnicas de medição de tempo
- Criem do zero um programa e verifique se a autovetorização traz ganhos de desempenho.

Tarefa 3

- Objetivo: comparar desempenho de código vetorizado com código "normal"
 - Funções usadas nas aulas anteriores
 - Pequeno relatório em Jupyter Notebook

Referências

• Livros:

 Hager, G.; Wellein, G. Introduction to High Performance Computing for Scientists and Engineers. 1^a Ed. CRC Press, 2010.

• Artigos:

- Firasta, Nadeem, Mark Buxton, Paula Jinbo, Kaveh Nasri, and Shihjong Kuo. "Intel AVX: New frontiers in performance improvements and energy efficiency." *Intel white paper* 19 (2008): 20.
- Jeong, Hwancheol, Sunghoon Kim, Weonjong Lee, and Seok-Ho Myung. "Performance of SSE and AVX instruction sets." *arXiv preprint arXiv:1211.0820* (2012).

Internet:

- https://monoinfinito.wordpress.com/series/vectorization-in-gcc/
- https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vect or-extensions
- https://software.intel.com/en-us/isa-extensions
- https://tech.io/playgrounds/283/sse-avx-vectorization/autovectorization
- https://software.intel.com/sites/landingpage/IntrinsicsGuide/
- https://www.codeproject.com/Articles/874396/Crunching-Numbers-with-AVXand-AVX

Insber

Insper

www.insper.edu.br