Практическая работа №1

Выполнил студент: Хрусталев А.А. Группа R3235

Преподаватели: Каканов М.А. Астафьев О.А.

Цель и задачи лабораторной работы

Цель: Необходимо по данным с мобильных сенсоров при помощи прикладных алгоритмов машинного обучения предсказать активность человека по шести классам движений:

- Движется по прямой
- Движется вверх (например, движение по лестнице вверх)
- Движется вниз (например, движение по лестнице вниз)
- Сидит
- Стоит
- Лежит

Задачи:

- Протестировать различные модели классификации
- Выведите отчет о классификации, сравнив предсказания (yhat) с базовой истиной (test_y), на основе которого найти самую эффективную модель
- Найти отличия между показателями precision и recall
- Дать определение показателю F1

Ход работы

DATALORE

```
# Импорт библиотек
import os
import numpy as np
import pandas as pd
# Считывание данных
def read_data(path, filename):
    return pd.read_csv(os.path.join(path, filename))
# df - массив данных
df = read_data('/data/notebook_files', 'train.csv')
df.head()
# Загружаем полный набор данных
def load_dataset(label_dict):
    train_X = read_data('/data/notebook_files', 'train.csv').values[:,:-2]
    train_y = read_data('/data/notebook_files', 'train.csv')['Activity']
    train_y = train_y.map(label_dict).values
    test_X = read_data('/data/notebook_files', 'test.csv').values[:,:-2]
    test_y = read_data('/data/notebook_files', 'test.csv')
    test_y = test_y['Activity'].map(label_dict).values
    return(train_X, train_y, test_X, test_y)
label_dict = {'WALKING':0, 'WALKING_UPSTAIRS':1, 'WALKING_DOWNSTAIRS':2, 'SITTING':3,
'STANDING':4, 'LAYING':5}
```

```
train_X, train_y, test_X, test_y = load_dataset(label_dict)
# https://tproger.ru/translations/scikit-learn-in-python/
# Выбор модели обучения
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
LDA_model = LinearDiscriminantAnalysis()
KNN_model = KNeighborsClassifier()
GNB_model = GaussianNB()
DTC_model = DecisionTreeClassifier()
SVC_model = SVC()
# Обучение модели
LDA_model.fit(train_X, train_y)
KNN_model.fit(train_X, train_y)
GNB_model.fit(train_X, train_y)
DTC_model.fit(train_X, train_y)
SVC_model.fit(train_X, train_y)
# Прогнозирование модели
LDA_prediction = LDA_model.predict(test_X)
KNN_prediction = KNN_model.predict(test_X)
GNB_prediction = GNB_model.predict(test_X)
DTC_prediction = DTC_model.predict(test_X)
SVC_prediction = SVC_model.predict(test_X)
# Оценка модели
from sklearn.metrics import classification_report
target_names = ['Walking', 'Walking Upstairs', 'Walking Downstairs', 'Sitting',
'Standing', 'Laying']
print("\n\n===LDA===\n")
print(classification_report(test_y, LDA_prediction, target_names=target_names))
print("\n\n===KNN===\n")
print(classification_report(test_y, KNN_prediction, target_names=target_names))
print("\n\n===GNB===\n")
print(classification_report(test_y, GNB_prediction, target_names=target_names))
print("\n\n===DTC===\n")
print(classification_report(test_y, DTC_prediction, target_names=target_names))
print("\n\n===SVC===\n")
print(classification_report(test_y, SVC_prediction, target_names=target_names))
```

Результат вывода программы

```
===LDA===

precision recall f1-score support
```

Walking	0.98	0.99	0.98	496
Walking Upstairs	0.96	0.98	0.97	471
Walking Downstairs	1.00	0.96	0.98	420
Sitting	0.95	0.88	0.92	491
Standing	0.90	0.96	0.93	532
Laying	1.00	1.00	1.00	537
accuracy			0.96	2947
macro avg	0.96	0.96	0.96	2947
weighted avg	0.96	0.96	0.96	2947
===KNN===				
	precision	recall	f1-score	support
Walking	0.85	0.98	0.91	496
Walking Upstairs	0.89	0.90	0.90	471
Walking Downstairs	0.95	0.79	0.86	420
Sitting	0.91	0.79	0.85	491
Standing	0.83	0.93	0.88	532
Laying	1.00	0.99	1.00	537
accuracy			0.90	2947
macro avg	0.91	0.90	0.90	2947
weighted avg	0.91	0.90	0.90	2947
===GNB===				
	precision	recall	f1-score	support
Walking	0.82	0.84	0.83	496
Walking Upstairs	0.76	0.96	0.84	471
Walking Downstairs	0.83	0.61	0.70	420
Sitting	0.58	0.75	0.65	491
Standing	0.80	0.86	0.83	532
Laying	0.96	0.60	0.74	537
. 0				
accuracy			0.77	2947
macro avg	0.79	0.77	0.77	2947
weighted avg	0.79	0.77	0.77	2947
9				
===DTC===				
===DTC===				
===DTC===	precision	recall	f1-score	support
===DTC===	precision	recall	f1-score	support

Walking	0.82	0.89	0.85	496
Walking Upstairs	0.82	0.76	0.79	471
Walking Downstairs	0.86	0.85	0.86	420
Sitting	0.84	0.77	0.80	491
Standing	0.80	0.86	0.83	532
Laying	1.00	1.00	1.00	537
accuracy			0.86	2947
macro avg	0.86	0.85	0.85	2947
weighted avg	0.86	0.86	0.86	2947
===SVC===				
	precision	recall	f1-score	support
Walking	0.94	0.98	0.96	496
Walking Upstairs	0.93	0.96	0.94	471
Walking Downstairs	0.99	0.91	0.95	420
Sitting	0.94	0.89	0.91	491
Standing	0.91	0.95	0.93	532
Laying	1.00	1.00	1.00	537
accuracy			0.95	2947
macro avg	0.95	0.95	0.95	2947
weighted avg	0.95	0.95	0.95	2947

По показателю "f1-score" видно, что LDA - наиболее эффективная модель для данной задачи.

Вывод

В ходе лабораторной работы обучены пять моделей классификации и выявлена самая эффективная (LDA), изучены параметры по которым можно оценить успешность модели (precision=TP/(TP+FP), recall=TP/(TP+FN), F1=w_avg(precision, recall)).