Modéliser le comportement des systèmes mécaniques dans le but d'établir une loi de comportement ou de déterminer des actions mécaniques en utilisant le PFD

Chapitre 3 - Application du Principe Fondamental de la Dynamique

l'Ingénieur

Activation

Assistance pour le maniement de charges dans l'industrie

Concours Centrale Supelec TSI 2017

Savoirs et compétences :

- □ Mod2.C17.SF1 : déterminer le torseur dynamique d'un solide, ou d'un ensemble de solides, par rapport à un autre solide
- Res1.C2 : principe fondamental de la dynamique

Mise en situation - Assurer le mouvement vertical

L'exosquelette est un appareil qui apporte à un être humain des capacités qu'il ne possède pas ou qu'il a perdues à cause d'un accident. Ce type d'appareil peut permettre à une personne de soulever des charges lourdes et diminuer considérablement les efforts à fournir sans la moindre fatigue. Après avoir revêtu un exosquelette adapté à sa morphologie et à sa taille, l'utilisateur peut faire ses mouvements en bénéficiant d'une grande fluidité.

Objectif Proposer un modèle de connaissance des éléments réalisant l'exigence fonctionnelle « assurer le mouvement vertical » puis valider les performances attendues listées par le cahier des charges.

Élaboration du modèle dynamique

Objectif Dimensionner le moteur situé au niveau d'un genou permettant à l'exosquelette de soulever une masse de 60 kg de la position accroupie à la position debout.

Ces calculs visent à déterminer l'équation dynamique qui permet d'obtenir le couple moteur (minimal) en fonction des caractéristiques géométriques et massique de la charge à soulever ainsi que des conditions d'utilisation. Le modèle d'étude est celui représenté à la figure suivante correspondant au modèle d'étude plan position fléchie.

Hypothèses:

- L'étude est modélisable dans le plan.
- Toutes les liaisons sont supposées parfaites.
- Les inerties des pièces sont négligées sauf la masse de la charge à soulever.
- L'angle α entre la charge transportée et la verticale $\overrightarrow{z_0}$ reste constant.
- G₄, centre de gravité de la charge transportée (4), reste en permanence à la verticale du point A d'appui au sol.

Données:

1

- $O_1 G_4 = \lambda(t) \overrightarrow{z_0} L \cos \theta_{10} \overrightarrow{y_0}$;
- Accélération de la pesanteur $g = 9.81 \,\mathrm{m \, s^{-2}}$;
- Longueur de la cuisse $l_1 = 43,1$ cm.
- Longueur de la jambe $l_2 = 43,3$ cm.
- Longueur de l'articulation de la cheville à la plante arrière du pied $l_3 = 6.9 \,\mathrm{cm}$.
- Longueur de la plante arrière du pied au point d'appui sur le sol $l_4 = 13$ cm.
- Longueur $\overrightarrow{O_0O_1} = L\overrightarrow{y_1}$ avec L = 51.8 cm.
- Rapport de réduction : $r = \frac{1}{2}$

On note E={cuisse(2)+charge transportée(4)}.

Question 1 Donner qualitativement le mouvement de 4 par rapport à 0. Tracer le graphe de structure du système.

Question 2 Déterminer $\overrightarrow{\sigma(O_1, E/0)} \cdot \overrightarrow{x_0}$ en fonction de m_4 , $\dot{h}(t)$, L et $\cos \theta_{10}$.

Question 3 Déduire $\overrightarrow{\delta(O_1, E/0)} \cdot \overrightarrow{x_0}$ en fonction de m_4 , $\ddot{h}(t)$, L et $\cos \theta_{10}$.

La loi d'évolution de la vitesse de la hanche est donnée à la figure suivante.

Question 4 Déterminer l'expression littérale du couple C_r exercé par l'arbre de sortie du réducteur sur le genou imposé par la loi d'évolution de la hanche et calculer numériquement ce couple pour une valeur de θ_{10} égale à 54,5° correspondant à la valeur maximale du couple.

Question 5 Calculer le couple C_m au niveau de l'arbre moteur du genou en prenant un facteur de perte $\eta = 0,75$ (estimé à l'aide du modèle multiphysique).

Question 6 Expliquer en moins de 5 lignes comment estimer un rendement à partir d'un modèle multiphysique.

Validation du dimensionnement du moteur

Objectif Vérifier que le moteur choisi convient pour une utilisation intensive comprenant 4 cycles par minute de descente suivie d'une montée.

Le cycle suivant obtenu à l'aide du modèle multiphysique de représente l'évolution du couple moteur, et ce en tenant compte du moment d'inertie du rotor, sur un cycle de période $T=15\,\mathrm{s}$.

Quatre phases sont définies sur cette période :

• phase 1 pour $0 \le t < 2$ s, valeur efficace du couple moteur $C_1 = 0.838$ Nm;

- phase 2 pour $2 \le t < 4$ s, couple moteur constant $C_2 = -0.912$ Nm;
- phase 3 pour $4 \le t < 6$ s, valeur efficace du couple moteur $C_3 = 0.838$ Nm;
- phase 4 pour $6 \le t < 15$ s, couple moteur nul.

Question 7 Préciser à quels mouvements correspondent les 4 phases de ce cycle.

Le couple efficace est également appelé couple thermiquement équivalent, il est défini par : $C_{\rm eff}$ =

$$\sqrt{\frac{1}{T}\int_{0}^{T}c(t)^{2}\mathrm{d}t}$$
. On a aussi $C_{\mathrm{eff}}=\sqrt{\frac{1}{T}\sum_{i=1}^{n}C_{i,\mathrm{eff}}^{2}T_{i}}$

Question 8 Calculer la valeur efficace du couple moteur du genou pour ce cycle périodique de 15 s.

Retour sur l'objectif

Le couple moteur varie entre $-1,156\,\mathrm{Nm}$ et $0,596\,\mathrm{Nm}$. Les caractéristiques du moteur choisi sont :

- vitesse à vide de 3120 tr min⁻¹ pour une alimentation nominale en amont de l'onduleur de 36 V;
- couple permanent admissible de 0,560 Nm;
- pente de la courbe de la vitesse en fonction du couple de $423 \, \text{tr} \, \text{min}^{-1} \, \text{N}^{-1} \, \text{m}^{-1}$.

De plus une étude cinématique précédente a montré que le moteur permettant d'actionner le moteur doit pouvoir atteindre une vitesse de $2200\,\mathrm{tr\,min^{-1}}$.

Question 9 Conclure quant au choix de ce moteur au regard de la valeur maximale de la vitesse angulaire calculée lors d'une étude précédente et du couple efficace calculé à la question précédente et compléter le schéma bilan.

Éléments de corrigé :

- 1. $\overrightarrow{\sigma(O_1, E/0)} \cdot \overrightarrow{x_0} = -L m_4 \cos \theta_{10} \dot{h}(t)$.
- 3. $\overrightarrow{\delta(O_1, E/0)} \cdot \overrightarrow{x_0} = -Lm_4 \cos \theta_{10} \ddot{h}(t)$.
- 4. $C_r = -m_4 L \cos \theta_{10} (g + \ddot{h}(t)) \simeq 190,5 \,\text{Nm}.$
- 5. $C_m \simeq 2,12 \text{ Nm}$.
- 6. ...
- 7. ...
- 8. $C_{\text{eff}} \simeq 0,546 \,\text{Nm}.$

Problématique Le moteur pré-choisi permet d'assurer le fonctionnement de l'exosquelette ? Domaine de la modélisation Domaine du client Résolution Cinématique Moteur choisi

2

