

第三章 组合逻辑电路

注:标*号的部分仅做参考了解,不要求掌握。

本章要点

- 组合逻辑电路的定义
- 组合逻辑电路的分析
- 组合逻辑电路的设计
- 常见组合逻辑功能电路

本章学习目标

- 掌握组合逻辑电路的分析方法和步骤。
- 掌握组合逻辑电路的<u>设计方法和步骤</u>,根据器件选型要求 设计<u>最简逻辑电路</u>。
- 掌握主要的组合逻辑电路功能,掌握<u>译码器</u>、数据选择器、加法器、减法器、比较器等。
- 了解组合逻辑电路的延时特点

组合逻辑电路的定义

逻辑电路

组合逻辑电路

现时的输出仅取决于现时的输入

时序逻辑电路

除与现时输入有关外 还与电路的原状态有 关

组合逻辑电路的分析

基本思想:

分析方法和步骤:

- 1. 由给定的逻辑图写出逻辑关系表达式。
- 2. 对逻辑表达式进行必要的<u>化简</u>,列出输入输出<u>真</u> <u>值表</u>。
- 3. 概括出<u>电路功能</u>的结论。

示例

例:分析图示组合逻辑电路的逻辑功能。

解:

1.逐级推导

$$P_1 = \overline{AB},$$

$$P_2 = \overline{BC},$$

$$P_3 = \overline{AC}$$

2.写出逻辑表达式

$$F = \overline{P_1 \cdot P_2 \cdot P_3} = \overline{AB} \cdot \overline{BC} \cdot \overline{AC} = AB + BC + AC$$

$$F = AB + BC + AC$$

3.列出真值表

A	В	C	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

4.分析功能

通过观察分析真值表, 电路表示了一种"少数服从 多数"的逻辑关系。

因此可以将该电路概括

例2:分析下图的逻辑功能。

① 写出函数表达式

$$S_i = A_i \oplus B_i \oplus C_i$$

$$C_{i+1} = (A_i \oplus B_i)C_i + A_iB_i$$

代入整理后,两输出为:

$$S_{i} = A_{i} \oplus B_{i} \oplus C_{i}$$

$$= \overline{ABC}_{i} + A\overline{BC}_{i} + A\overline{BC}_{i} + ABC_{i}$$

$$C_{i+1} = (A_{i} \oplus B_{i})C_{i} + A_{i}B_{i}$$

$$= \overline{ABC}_{i} + A\overline{BC}_{i} + A_{i}B_{i}$$

③ 分析功能

功能: S_i 为 $A \setminus B \setminus C_i$ 之和, C_{i+1} 为三个数之和产生的进位。

一位全加器

② 列真值表

	, ,	•		
\overline{A}	В	C_i	S_i	C_{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

组合逻辑电路分析小结

- 1. 电路→逻辑表达式;
- 2. 化简,列出真值表;
- 3. 概括结论。

半加运算不考虑从低位来的进位。

半加器

A----加数; B----被加数; S----本位和; C----进位。

逻辑函数

$$S = \overline{AB} + A\overline{B} = A \oplus B$$

$$C = AB$$

A B		=1	- S
D		<u>&</u> _	- <i>C</i>
	<u>逻</u> 辑	冬	

	具值表					
A	В	C	S			
0	0	0	0			
0	1	0	1			
1	0	0	1			
1	1	1	0			

全加器

相加过程中, 既考虑加数、被加数又考虑低位的进位位。

4位二进制全加器

半加器构成全加器

减法器

一位半减器与全减器

例3:分析下图的逻辑功能。

使能电路:

1. 利用与非门(或其他逻辑门)设计选通电路。

*简单门结构选通电路

组合逻辑电路的设计

基本思想:

设计原则:

最佳设计主要考虑问题有:

- ① 所用的逻辑器件数目最少,器件的种类最少,且器件之间的连线最简单。这样的电路称"最小化"电路。
- ② 满足速度要求,应使级数尽量少,以减少门电路的延迟。
- ③ <u>功耗小</u>,工作<u>稳定可靠</u>。

设计步骤

1. <u>逻辑抽象</u>:

指定实际问题的逻辑符号与含义,列出真值表。

2. 选择器件类型:

根据任务和现有条件选择采用合适的器件。

3. 写出逻辑表达式:

用逻辑代数或卡诺图对逻辑表达式进行化简,并变换成与器件对应的最简表达式。

4. 画出逻辑电路图。

例3:设计一个一位二进制全减器。

① 逻辑抽象。

全减器有三个输入变量:被减数 A_n 、减数 B_n 、低位向本位的借位 C_n ;有两个输出变量:本位差 D_n 、本位向高位的借位 C_{n+1} 。

列真值表:

A_n	B_n	C_{n}	C_{n+1}	$D_{ m n}$
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

② 选器件。

这里分别选用异或门、 与或非门来实现(以比较 不同的实现电路)

③写逻辑表达式。

画出 C_{n+1} 和 D_n 的K图,根据选用的器件将 C_{n+1} 、 D_n 分别化简

为相应的函数式。

$\overline{A_n}$	B_n	C_{n}	C_{n+1}	$D_{ m n}$
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

	⁸ 00	01	11	10	
0	0	1	0	0	
1	1	1	1	0	

1.当用"与或非"门实 现电路时,写出相应 的函数式为:

$$D_{n} = \overline{\overline{A}_{n}} \overline{B}_{n} \overline{C}_{n} + \overline{A}_{n} B_{n} C_{n} + A_{n} B_{n} \overline{C}_{n} + A_{n} \overline{B}_{n} C_{n}$$

$$C_{n+1} = \overline{\overline{B}_n \overline{C}_n + A_n \overline{C}_n + A_n \overline{B}_n}$$

③ 写逻辑表达式。

2.当用异或门实现电路时, 写出相应的函数式为:

$$D_{n} = A_{n} \oplus B_{n} \oplus C_{n}$$

$$C_{n+1} = \overline{A}_{n} \overline{B}_{n} C_{n} + \overline{A}_{n} B_{n} \overline{C}_{n} + B_{n} C_{n}$$

$$= \overline{A}_{n} (B_{n} \oplus C_{n}) + B_{n} C_{n}$$

$$= \overline{A}_{n} (B_{n} \oplus C_{n}) \cdot \overline{B}_{n} C_{n}$$

AB	ⁿ 00	01	11	10	
0	0	1	0	0	
1	1	1	1	0	C_{n+1}

AB	00	01	11	10	
0	0	1	0	1	
1	1	0	1	0	D_n

24

④ 画出逻辑电路图

(转下页)

$$D_{n} = \overline{\overline{A_{n}}} \overline{\overline{B_{n}}} \overline{\overline{C}_{n}} + \overline{\overline{A_{n}}} B_{n} C_{n} + A_{n} B_{n} \overline{\overline{C}_{n}} + A_{n} \overline{\overline{B}_{n}} C_{n}$$

$$C_{n+1} = \overline{\overline{B}_n \overline{C}_n + A_n \overline{C}_n + A_n \overline{B}_n}$$

电子工程学院

(a) 数字电路与逻辑设计

(*b*)

示例

例4:用门电路设计一个将8421 BCD码转换为余3码的变换电路。

① 分析题意,逻辑抽象列真值表。

该电路输入为8421 BCD码,输出为余3码,因此它是一个四输入、四输出的码制变换电路。

根据两种BCD码的编码关系,列出真值表。由于8421 BCD码不会出现1010~1111这六种状态,因此把它视为无关项。

② 选择器件,写出输出函数表达式。

题目没有具体指定用哪一种门电路,因此可以从门电路的数量、 种类、速度等方面综合折衷考虑,选择最佳方案。

\overline{A}	\boldsymbol{B}	\boldsymbol{C}	D	E_3	E_2	E_1	E_0
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	
1	0	1	0	X	X	X	X
1	0	1	1	X	X	X	X
1	1	0	0	X	X	X	X
1	1	0	1	X	××××	×	X
1	1	1	0	× × × × ×	X	X	0 × × × × ×
1	1	1	1	X	X	X	X

\overline{A}	В	C	D	E_3	E_2	E_1	E_0
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0
1	0	1	0	X	X	X	X
1	0	1	1	X	X	X	X
1	1	0	0	X	\times	\times	X
1	1	0	1	× × × × ×	×	\times	X
1	1	1	0	X	×	\times	X
1	1	1	1	×	×	X	×

画K图、写表达式:

$$E_{3} = A + BC + BD = \overline{A \cdot BC \cdot BD}$$

$$E_{1} = B\overline{C}\overline{D} + \overline{B}C + \overline{B}D = B(\overline{C} + D) + \overline{B}(C + D) = B \oplus (C + D)$$

$$E_{1} = \overline{C}\overline{D} + CD = C \otimes D = C \oplus \overline{D}$$

$$E_{0} = \overline{D}$$

	3 00	01	11	10	
00			X	1	
01		1	X	1	
11		1	X	X	
10		1	X	X	
E_3					

③ 画逻辑电路。

$$E_3 = A + BC + BD = \overline{A \cdot BC \cdot \overline{BD}}$$

$$E_2 = B\overline{C}\overline{D} + \overline{B}C + \overline{B}D = B(\overline{C} + \overline{D}) + \overline{B}(C + D) = B \oplus (C + D)$$

$$E_{1} = \overline{C}\overline{D} + CD = C \otimes D = C \oplus \overline{D}$$

$$E_{\rm o} = \overline{D}$$

8421 BCD码转换为余3码的电路

组合电路设计的小结

- 1) 正确建立给定问题的逻辑描述是关键;
- 2) 工程考量,指标兼顾:电路简单,器件多见门类少,级数少,功耗小等;
- 3) 不同的逻辑表达式可能功能相同,如

$$F(A, B, C, D) = B\overline{C} + \overline{ABC} + \overline{ABD}$$

$$F(A,B,C,D) = BC + ABC + ACD$$

常见组合逻辑电路

- 加法器全加器、半加器;一位、多位预算
- 减法器 全减器、半减器;一位、多位运算
- 译码器
- 编码器
- 数据选择器
- 数据分配器
- 数码比较器

全班有62名同学,需几位二进制代码才能表示?

译码器

译码是将某个二进制编码翻译成电路的某种状态,是将输入的某个二进制编码与电路输出的某种状态相对应。

MSI译码器的基本结构

分类:

- •二进制译码器
- •BCD译码器
- ●显示译码器

(1) 二进制译码器 (Binary decoder)

将n个输入的组合码译成2n种电路状态。也叫n---2n译码器

译码器的输入:一组二进制代码

译码器的输出:一组高低电平信号

常用二进制译码器举例:

2-4译码器

的输出函数分别为: $Y_0 = \overline{A_1 A_0} \qquad Y_1 = \overline{A_1 A_0}$

当E=0时, 2-4译码器

$$Y_2 = \overline{A_1} \overline{\overline{A_0}}$$
 $Y_3 = \overline{A_1} \overline{A_0}$

$$Y_i = \overline{m_i}$$

\overline{E}	A_1	A_0	$\overline{\boldsymbol{Y}_{\!0}}$	$\overline{\boldsymbol{Y}_{1}}$	$\overline{Y_2}$	$\overline{\boldsymbol{Y}_{3}}$				
1	X	X	1	1	1	1				
0	0	0	0	1	1	1				
0	0	1	1	0	1	1				
0	1	0	1	1	0	1				
0	1	1	1	1	1	0				

功能表

考虑E,输 出函数有:

Е	Yi			
0	$\overline{m_i}$			
1	1			

$$Y_{i} = \overline{Em_{i}} + E = E + \overline{m_{i}} = \overline{Em_{i}}$$

$$Y_{i} = \overline{Em_{i}} (i = 0, 1, 2, 3)$$

*3-8译码器74LS138

3-8译码器逻辑符号

译码输出,低电平有效

功能表

	771101人											
E_1	$E_{2A}+E_{2B}$	A_2	A_1	A_{o}	$oldsymbol{ar{Y}}_0$	\overline{Y}_1	\overline{Y}_2	$ar{Y}_3$	$ar{Y}_4$	$oldsymbol{ar{Y}}_{5}$	\overline{Y}_6	\overline{Y}_7
0	×	×	×	×	1	V -	<u></u>	<u> </u>	1	1	1	1
×	1	×	×	×	1	$Y_0 =$	A ₂ E	- A	<u> </u>		1	1
1	0	0	0	0	0	1	Y ₁ =	- A ₂ /	Δ ₁ Α			1
1	0	0	0	1	1	0	1	Y ₂ =	: A _ A	A_A.		
1	0	0	1	0	1	1	0	1	Y ₃ =	\mathbf{A}_{2}	1 1 A α	
1	0	0	1	1	1		_			Y ₄ =	=A ₂	A_1A
1	0	1	0	0	1	Y	$r_5 = F$	Α _c Α. -	ıA _n	Z,	1	1
1	0	1	0	1	1	1	Y	6=E	_	Ā		1
1	0	1	1	0	1	1	1	Y	₇ = A	A_2A_1	A_0	1
1	0	1	1	1	1	1	1	1	1	1	1	0

$$Y_i = \overline{Em_i}$$
 $(i = 0 \sim 7)$

$$E = E_1 \cdot \overline{E_{2A} + E_{2B}} = E_1 \cdot \overline{E_{2A}} \cdot \overline{E_{2B}}$$

*3-to-8 译码器内部等效电路——低电平输出有效

译码器应用: 计算机外设地址译码

译码器应用: 寄存器的地址译码

译码器应用: 存储空间地址译码

*(2) 二-十进制译码器 (BCD译码器)

将输入的一位BCD码(四位二进制数)译成10种不同的电路状态。

* (3) 显示译码器

在数字系统中,常常需要将运算结果用人们习惯的十进制显示出来,这就要用到显示译码器。

显示译码器是用来驱动显示器件,以显示数字或字符的 MSI部件。

显示译码器随显示器件的类型而异,与辉光数码管相配的是BCD十进制译码器,而常用的发光二极管(LED)数码管、 液晶数码管、荧光数码管等是由7个或8个字段构成字形的, 因而与之相配的有BCD七段或BCD八段显示译码器。

Display Decoder

——Seven-segment display

Common Cathode (共阴极)

* (3) 显示译码器

Display Decoder

——Seven-segment display

Common Anode (共阳极)

*共阴极8421BCD七段译码器真值表

	输	入				输		出			字 形
D	C	В	\boldsymbol{A}	F_a	F_b	F_c	F_d	F_{ϵ}	F_f	F_{g}	
0	0	0	0	1	1	1	1	1	1	0	• _
0	0	0	1	0	1	1	0	0	0	0	
0	0	1	0	1	1	0	1	1	0	. 1	
0	0	1	1	1	1	1	1	0	0	1	
0	1	0	0	0	1	, 1	0	0	1	1	-
0	1	0,	1	1	0	1	1	0	1	1	
0	1	1	0	1	0	1	1	1	1	1	 - -
0	1	1	1	1	1	1	0	0	0	0	_
1	0	0	0	1	1	1	1	1	1	1	
1	0	0	1	1	1	1	1	0	1	1	

编码器

- 在数字电路中用二进制代码表示有关的信号称为二进制编码,实现编码操作的电路就是编码器。
 - 二进制编码器
 - BCD编码器
 - 优先编码器

(1)二进制编码器

用*n*位二进制代码对*N=2ⁿ*个一般信号进行编码的电路,叫做二进制编码器。

*8线—3线编码器

	输入						输 出			
I_0	I_1	I_2	I_3	I_4	I_5	I_6	I_7	F_2	F_1	$\boldsymbol{F_0}$
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

*优先编码器

- 与普通编码器不同,优先编码器允许多个输入信号同时有效,但它只按其中优先级别最高的有效输入信号编码,对级别较低的输入信号不予理睬。
- 优先编码器常用于优先中断系统和键盘编码。
- 常用的优先编码器有10线-4线、8线-3线。

No	·			输		入					输		出	
110	E_1	7	6	5	4	3	2	1	0	C	В	A	CS	E_0
1	1	×	×	×	×	×	×	×	×	1	1	1	1	1
2	0	1	1	1	1	1	1	1	1	1	1	1	1	0
3	0	0	×	×	×	×	×	×	×	0	0	0	0	1
4	0	1	0	X	×	×	×	×	×	0	0	1	0	1
5	0	1	1	0	×	×	×	×	×	0	1	0	0	1
6	0	1	1	1	0	×	×	×	×	0	1	1	0	1
7	0	1	1	1	1	0	×	×	×	1	0	0	0	1
8	0	1	1	1	1	1	0	×	×	1	0	1	0	1
9	0	1	.1	1	1	1	1	0	×	1	1	0	0	1
10	0	1	1	1	1	1	1	1	0	1	1	1	0	1

数据选择器 (Multiplexer, 简称MUX)

数据选择器又称多路选择器。它有n位地址输入、2n位数据输入、1位输出。

每次在地址输入的控制下,从多路输入数据中选择一路输出,其功能类似于一个单刀多掷开关。

常用数据选择器举例

*4选1数据选择器

4选1 MUX的逻辑符号

4选1 MUX功能表

E	A_1	A_0	Y
0	0	0	D_0
0	0	1	D_1
0	1	0	D_2
0	1	1	D_3
1	X	×	0

当E=0时,4选1 MUX的逻辑功能还可以用表达式表示:

$$Y = \overline{A_1} \overline{A_0} D_0 + \overline{A_1} A_0 D_1 + A_1 \overline{A_0} D_2 + A_1 A_0 D_3 = \sum_{i=0}^{3} m_i D_i$$

数据选择器的应用

数据选择器的应用很广,典型应用有:

- ① 作数据选择,以实现多路信号分时传送。
- ②实现组合逻辑函数。
- ③ 在数据传输时实现并一串转换。
- ④ 产生序列信号。

比较器

*(1)一位数值比较器功能表

输	入	输出				
\boldsymbol{A}	В	A>B	A=B	A < B		
0	0	0	(1)	0		
0	1	0	0	1		
1	0		0	0		
1	1	0	(1)	0		

"
$$A > B$$
" = $A\overline{B}$

" $A = B$ " = $\overline{AB} + AB$

" $A < B$ " = \overline{AB}

*(2)四位数值比较器

比较原则:

- A. 先从高位比起,高位大的数值一定大。
- B. 若高位相等,则再比较低位数,最终结果由低位的比较结果决定。

组合逻辑电路中的竞争与冒险

在组合电路中,某一输入变量经不同途径传输后,到达电路中某一会合点的时间有先有后,这种现象称为<mark>竞争。</mark>

由于竞争而使电路输出发生瞬时错误的现象称为冒险。

注意: 竞争是经常发生的, 但不一定都会产生毛刺。

作业

- 3-3
- *(3-4)
- 3-5 (b)
- 3-7
- 3-9

本章完,谢谢大家!