2 ^a Prova de F 502 – Turma A	1
Primeiro Semestre de 2008	2
03/06/2008	3
	4.
	Nota:
Nome:	RA:

Questão 1: Considere uma distribuição esférica de carga, de raio R, com densidade uniforme ρ_0 .

- a) Determine a auto-energia da distribuição.
- b) Considere agora que o elétron seja uma partícula esférica, uniformemente carregada. Supondo que a energia de repouso, mc^2 (onde m é a massa de repouso do elétron e c é a velocidade da luz no vácuo), seja de origem eletrostática, encontre uma expressão para o "raio clássico do elétron".

Questão 2: A corrente num fio de cobre, de seção reta de área igual a $2 \text{ } mm^2$, é 20 A.

- a) Qual é o módulo da densidade de corrente, J?
- b) Encontre a velocidade de deriva do portador no cobre, \vec{v} , sabendo-se que cada átomo de cobre contribui com um elétron para a condução, e que: a carga do elétron $e = -1.6 \times 10^{-19} C$, o peso atômico do Cu é 63,5, a densidade $\rho_{Cu} = 8.92 \text{ g/cm}^3$, e o número de Avogadro, $N_A = 6.02 \times 10^{23}$ átomos/mol.
- c) Compare valor encontrado em (b) com a velocidade do movimento aleatório do elétron em metais, e também com a velocidade de transmissão da informação através da corrente elétrica.

Questão 3: Um condutor cilíndrico, de raio b, contém uma cavidade cilíndrica de raio a. O eixo da cavidade é paralelo ao eixo do condutor, sendo que os dois eixos são ligados pelo vetor \vec{s} , $|\vec{s}| = s < (b-a)$. O condutor conduz corrente com densidade uniforme \vec{J} paralela ao eixo do cilindro. Encontre a indução magnética \vec{B} num ponto P externo ao condutor e separado do seu eixo pelo vetor \vec{r} .

Questão 4:

- a) Mostre que $\vec{A}_1 = -B_0 y \hat{i}$ e $\vec{A}_2 = B_0 x \hat{j}$ são possíveis potenciais vetoriais do campo uniforme $\vec{B} = B_0 \hat{k}$.
- b) Demonstre que $\vec{A}_2 \vec{A}_1$ é o gradiente de uma função ψ . Encontre o laplaciano de ψ e comente o resultado.