实验名称 数组1:数值型数组

学号	姓名
ナケ	江 1

一、实验目的

- 1.掌握数值型数组定义、初始化及数组元素引用语法。
- 2. 学会运用循环技术处理数组问题。
- 3.掌握与数组想关的经典算法。

二、预习并回答问题

., , , , , , , , , , , , , , , , , , ,	•, —
1. C语言中,数组名代表	<u> </u>
2.在 C 语言中,一个 a[1	n][n]的数组,其行下标的下限是,上限是。
3.在 C 语言中, 二维数线	且元素在内存中的存放次序是。
4.若二维数组 a 有 m 列	,则数组元素 a[i][j] 是数组中的第数(从 1
计数),在a[i][j]之前的	数组元素个数为个。
5.以下对一维整型数组;	n的正确说明是。
A. int a(10);	B.int $n=10,a[n]$;
C. int n;	D. #define SIZE 10
scanf("%d",&n);	int a[SIZE];
int a[n];	
6.若有说明: int a[][4]={	0,0};则下面不正确的叙述是。
A. 数组 a 的每个元素都	可得到初值0
B.二维数组 a 的第一维是	大小为 1
C. 因为二维数组 a 中第	二维大小的值除以初值个数的商为 1, 故数组 a 的行数为 1
D.只有元素 a[0][0]和 a[0)][1]可得到初值 0,其余元素均得不到初值 0
7.以下不能对二维数组;	u进行正确初始化的语句是。
A. int $a[2][3]=\{0\}$;	
B.int a[][3]={{1,2},{0}};	
C. int a[2][3]= $\{\{1,2\},\{3,4\}\}$	1},{5,6}};
D.int a[][3]={1,2,3,4,5,6}	;

三、实验内容

```
1.分析下列程序运行结果,并上机验证。
main()
{ int a[]=\{4,0,2,3,1,9,5,7\},i,j,t;
printf(" Before sorted:\n ");
for(i=0;i<8;i++) printf("%6d",a[i]);
/*以下为排序段*/
for(i=1;i<8;i++)
{ t=a[i],j=i-1;
 while(j \ge 0 \& t < a[j]) a[j+1] = a[j], j--;
 a[j+1]=t;
}
/*排序结束*/
printf(" After sorted:\n ");
for(i=0;i<8;i++) printf("%6d",a[i]);
分析程序运行过程,选择该程序的正确功能。。
A. 对数组 a 进行插入排序(升序) B. 对数组 a 进行插入排序(降序)
C. 对数组 a 进行选择排序(升序) D. 对数组 a 进行选择排序(降序)
【对排序段的分析】
第①次循环后, a 数组的值是:
第②次循环后, a 数组的值是:
第③次循环后, a 数组的值是:
第④次循环后, a 数组的值是:
第⑤次循环后, a 数组的值是:
第⑥次循环后, a 数组的值是:
第⑦次循环后, a 数组的值是:
```

2.设数组 a 包含 10 个整型元素,下面程序的功能是求出 a 中各相邻两个元素的和,并将这些和存在数组 b 中,按每行 3 个元素的形式输出。请填空。

#include <stdio.h> main() { int a[10],b[10],i; for(i=0;i<10;i++) scanf("%d",&a[i]); $for(\underline{(1)}; i<10; i++)$ (2) for(i=1;i<10;i++){ printf("%3d",b[i]); $if(\underline{(3)} = =0) printf("\n"); }$ } (2) 3.下面程序的功能是输入5个整数,找出最大数和最小数所在位置,并把二者对 调, 然后输出调整后的5个数。 #include <stdio.h> main() { int a[5], i, j, k, max, min; for(i=0; i<5; i++) scanf("%d",&a[i]);min=a[0];for(i=1;i<5;i++) if(a[i]<min) { min=a[i]; ___(4) __;} max=a[0];for(i=1;i<5;i++) $if(a[i]>max) \{ max=a[i]; __(5) _; \}$ (6) printf("\nThe position of min is:%3d\n",k); printf("\nThe position of max is:%3d\n",j); for(i=1;i<5;i++) printf("%5d",a[i]); } (6)

```
4.设数组 a 中的元素均为正整数,以下程序求 a 中偶数的个数和偶数的平均值。
#include <stdio.h>
main()
{ int a[10]=\{1,2,3,4,5,6,7,8,9,10\};
 int k,s,i;
 float ave;
  for(k=s=i=0;i<10;i++)
  \{ if(a[i]\%2) (7) ; \}
   s+= (8);
   k++;
  }
 if(k) {ave=s/k;printf("%d,%f\n",k,ave); }
}
 (7)
 (8)
5.以下程序是求矩阵 a、b 的和,结果存入矩阵 c 中并按矩阵形式输出。
#include <stdio.h>
main()
{ int a[3][4]={\{3,-2,7,5\},\{1,0,4,-3\},\{6,8,0,2\}\};
 int b[3][4]=\{\{-2,0,1,4\},\{5,-1,7,6\},\{6,8,0,2\}\};
 int i,j,c[3][4];
  for(i=0;i<3;i++)
 for(j=0;j<4;j++)
  c[i][j] = (9);
 for(i=0;i<3;i++)
   \{ for(j=0;j<4;j++) \}
     printf("%3d",c[i][j]);
     (10);
    }
  }
```

7.定义含有 10 个元素的数组, 将数组中的值按逆序重新存放后输出。例如,原来 数 组 中 的 值 顺 序 为 8,9,5,16,1,5,1,3,9,11。 要 求 将 数 组 中 的 值 改 为 11,9,3,1,5,1,16,5,9,8。

【源程序】

键盘输入 10 个互不 程序】	相同的整数并存	放在一维数组中	ı,删除下标为 l	x的元素。

10.从键盘输入10个学生的成绩,包	 東用"冼择排序法"	将成绩由高到低排序后输
出。【源程序】	2/13 /231311/3 12	14)WeX ELIZATION 111/1 /E 1114

11. 编写程序, 求一个 5×5 矩阵的转置矩阵。假设转置前的矩阵存放于 a 数组中,转置后的矩阵存放于 b 数组中。提示:转置矩阵是原来矩阵的行变为列,列变为行。

例如,矩阵
$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$
的转置矩阵为 $\begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$

【源程序】

12. 编写程序,分别计算 5×5 矩阵的两条对角线元素之和。要求每行每列元素值
由随机函数 rand 产生,且为 1 至 20 中的整数。
【源程序】
▼ 分水/(土/ J * 】