Name of the student:	Tanmay Prashant Rane	Roll No.	8031	
Practical Number:	5	Date of Practical:		
Relevant CO's		-		
	At the end of the course st like hadoop and NoSQL to	solve big data relate	ed problems.	
Sign here to indicate th	at you have read all the releva	nt material provided	Sign:	
before attempting this practical				

Practical grading using Rubrics

Indicator	Very Poor	Poor	Average	Good	Excellent
Timeline More than a		NA	NA	NA	Early or on
(2)	session late				time (2)
	(0)				
Code de-	N/A	Very poor	Poor code	Design with	Accurate
sign (2)		code design	design with	good coding	design
		with no	very com-	standards	with bet-
		comments	ments and	(1.5)	ter coding
		and indenta-	indentation		satndards (2)
		tion(0.5)	(1)		
Performance	Unable to	Able to	Able to	Able to	Able to
(4)	perform the	partially	perform the	perform the	perform the
	experiment perform the		experiment	experiment	experiment
	(0) experiment		for certain	considering	considering
		(1)	use cases (2)	most of the	all use cases
				use cases (3)	(4)
Postlab (2)	No Execu-	N/A	Partially Exe-	N/A	Fully Ex-
	tion(0)		cuted (1)		ecuted
					(2)

Total Marks (10)	Sign of instructor with date

Course title: Big Data Analytics

Practical

Course title: Big Data Analytics Course term: 2019-2020

Problem Statement: Perform CRUD operations in MongoDB

Theory: Explain different CRUD Operations

Create Operations

Create or insert operations add new documents to a collection. If the collection does not currently exist, insert operations will create the collection.

MongoDB provides the following methods to insert documents into a collection:

```
db.collection.insertOne() New in version 3.2
```

db.collection.insertMany() New in version 3.2

In MongoDB, insert operations target a single collection. All write operations in MongoDB are atomic on the level of a single document.

Read operations retrieves documents from a collection; i.e. queries a collection for documents. MongoDB provides the following methods to read documents from a collection:

db.collection.find()

You can specify query filters or criteria that identify the documents to return.

```
db.users.find( ← collection
{ age: { $gt: 18 } }, ← query criteria
{ name: 1, address: 1 } ← projection
}.limit(5) ← cursor modifier
```

Query Documents

Query on Embedded/Nested Documents

Query an Array

Query an Array of Embedded Documents

Update Operations: Update operations modify existing documents in a collection. MongoDB provides the following methods to update documents of a collection:

db.collection.updateOne() New in version 3.2

db.collection.updateMany() New in version 3.2

db.collection.replaceOne() New in version 3.2

In MongoDB, update operations target a single collection. All write operations in MongoDB are **atomic** on the level of a single document.

You can specify criteria, or filters, that identify the documents to update. These **filters** use the same syntax as read operations.

Delete Operations

Delete operations remove documents from a collection. MongoDB provides the following methods to delete documents of a collection:

db.collection.deleteOne()

db.collection.deleteMany()

In MongoDB, delete operations target a single collection. All write operations in MongoDB are atomic on the level of a single document.

You can specify criteria, or filters, that identify the documents to remove. These filters use the same syntax as read operations.

Code:

Code of CRUD operations in MongoDB

1. Create documents for following data in collection called media.

Туре	Title	ISBN	Publisher	Author
Book	Def. guide	978-1-482-0	Apress	"Hows, David","Plugge,Eelco","Membrey,
				Peter","Hawkins, Tim"
Book	A text book	978-2-482-0	Foundation	"Nasir, S.F.B","Srimani,P.K"
	on automata		books	
	theory			
Book	MongoDB in	978-3-482-0	Manning	"Banker, Kyle"
	Action		Publica-	
			tion	
Book	NoSQL for	978-4-482-0	Wiley	"Fowler, Adam"
	dummies			
Book	Big Data An-	978-5-482-0	Wiley	"Shankarmani, Radha"
	alytics			

code for creating documents:

- 0) mongo
- 0) use mydb
- 0) db.createCollection("media")
- 1) db.media.insertMany([
- ... { Type: "Book", Title: "Def.guide", ISBN: "978-1-482-0", Publisher: "Apress", Author:

["Hows,David","Plugge,Eelco","Membrey,Peter","Hawkins,Tim"]},

- ... { Type: "Book", Title: "A text book on automata theory", ISBN: "978-2-482-0", Publisher: "Foundation books", Author: ["Nasir,S.F.B", "Srimani,P.K"]},
- ... { Type: "Book", Title: "MongodDB in Action", ISBN: "978-3-482-0", Publisher: "Manning Publication", Author: ["Banker Kyle"]}.
- ["Banker,Kyle"]},
 ... { Type: "Book", Title: "NoSQL for dummies", ISBN: "978-4-482-0", Publisher: "Wiley", Author:
 ["Fowler,Adam"]},
- ... { Type: "Book", Title: "Big Data Analytics", ISBN: "978-5-482-0", Publisher: "Wiley", Author: ["Shankarmani,Radha"]}

...]`

2. Insert a document with type=CD, Artist=Nirvana, Title=Never Mind, Tracklist=[Track:1,Title:Smells Like Teen Spirit,length:5:02,Track:2,Title:In Bloom,length:4:15] in same collection named media.

Query Code

2) db.media.insertOne({ Type: "CD", Artist: "Nirvana", Title: "Never Mind", Tracklist: [{ Track: 1,Title: "Smells like Teen Spirit", length: "5:02"}, { Track: 2, Title: "In Bloom", length: "4:15" }]})

3. Find all documents in collection named media.

Query Code

3)db.media.find({})

4. Find documents where publisher is Wiley

Query Code

4)db.media.find({Publisher:"Wiley"})

5. Find titles of CDs whose artist is Nirvana.
<pre>Query Code 5)db.media.find({Artist:"Nirvana",Type:"CD"},{Title:1,_id:0})</pre>
6. Find all documents sorted in descending order.
<pre>Query Code 6)db.media.find({}).sort({Title:-1})</pre>
7. Find only 3 documents of book type.
Query Code 7)db.media.find({Type:"Book"}).limit(3)
8. Find last 3 documents from collection named media
Query Code 8)db.media.find().skip(db.media.count() - 3)

Course title: Big Data Analytics

PostLab:

Compute customerwise total amount on given dataset using map reduce for the customers with status as "A" and store this result in a document called Order_total.

code for mapreduce function of MongoDB

Calculate number of times the site has been visited using mapreduce in MongoDB on given dataset.

Code for the question

```
1) mongoimport -- jsonArray --db mydb --collection postlab --file
"/media/tanmay/Data/SEM-8/BDA/EXP5/MongoMapreducedata"
2)MongoDB Enterprise > var f1 = function(){
... emit(this.cust_id,this.price);
... };
3)MongoDB Enterprise > var reduce = function(CustId, Prices){
... return Array.sum(Prices);
... };
4)MongoDB Enterprise > db.postlab.mapReduce(
... f1.
... reduce,
... {query:{status:"A"},out:"map_reduce_postlab"}
...)
5)db.map_reduce_postlab.find({})
{ " id": "A123", "value": 750 }
{ "_id" : "B212", "value" : 200 }
1)MongoDB Enterprise > db.postlab2.insertMany([
... {"url": "www.google.com", "date": ISODate("2016-02-17T05:33:17.073Z"), "trash_data": 5},
... {"url": "www.frcrce.ac.in", "date": ISODate("2016-02-17T05:33:17.075Z"), "trash data": 13},
... {"url": "www.google.com", "date": ISODate("2016-02-17T05:33:17.075Z"), "trash_data": 1},
... {"url": "www.frcrce.ac.in", "date": ISODate("2016-02-17T05:33:17.075Z"), "trash_data": 69},
... {"url": "www.fragnel.edu.in", "date": ISODate("2016-02-17T05:33:17.076Z"), "trash data": 256}
...])
2)MongoDB Enterprise > var mapf = function(){ emit(this.url,1); };
3)MongoDB Enterprise > var redf = function(URL, Visited){ return Array.sum(Visited); };
4)MongoDB Enterprise > db.postlab2.mapReduce( mapf, redf, {out:"map reduce postlab2"})
5)MongoDB Enterprise > db.map_reduce_postlab2.find({})
O/P:
{ "_id" : "www.fragnel.edu.in", "value" : 1 }
{ "_id" : "www.frcrce.ac.in", "value" : 2 }
{ "_id" : "www.google.com", "value" : 2 }
```