《高等数学》全程教学视频课

第37讲解非线性方程的牛顿切线法

线性方程: $ax + b = 0 (a \neq 0)$

非线性方程: f(x) = 0(其中 f(x) 不具有 ax + b 的形式)

若有x*使得 $f(x^*) = 0$,则称 x^* 为方程f(x) = 0的根 ,或称为 函数f(x) 的零点 .

例如,三次方程 $x^3 + mx - n = 0$

$$x = \sqrt[3]{\frac{n}{2} + \sqrt{\frac{n^2}{4} + \frac{m^3}{27}}} - \sqrt[3]{-\frac{n}{2} + \sqrt{\frac{n^2}{4} + \frac{m^3}{27}}}$$

$a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n = 0 \ (a_0 \neq 0)$

五次及五次以上的代数方程不存在一般形式的根式解!

阿贝尔[挪] (Niels Henrik Abel)

伽罗瓦[法] (Évariste Galois)

求方程f(x) = 0实根

两种情形

可求精确根 (根的形式可能很复杂)

一 无法求精确根 → 求近似根

● 求近似根方法

区间收缩法: (1) 确定初始含根区间; (2) 收缩含根区间.

二分法

牛顿法思想及迭代公式

牛顿法的收敛性

● 简单迭代法的基本思想

将方程f(x) = 0变换为一个等价形式 $x = \varphi(x)$,构造迭代格式 $x_{k+1} = \varphi(x_k),$

其中 $\varphi(x)$ 称为<mark>迭代函数, $x = \varphi(x)$ 也称为不动点方程.</mark> 对给定的初值 x_0 , 由迭代格式得到的序列 $\{x_k\}$ 称为<mark>迭代序列</mark>.

对于连续函数 $\varphi(x)$, 如果迭代序列 $\{x_k\}$ 收敛于 x^* , 那么有

$$x^* = \lim_{k \to \infty} x_{k+1} = \lim_{k \to \infty} \varphi(x_k) = \varphi(x^*) \longrightarrow f(x^*) = 0$$

例1 通过变换方程 $x^3 - x - 1 = 0$ 构造不同迭代格式,通过选取合适的初值,比较不同迭代格式的收敛性.

变换方程,得到三种不动点方程:

$$(1) x = (x+1)^{\frac{1}{3}}$$

$$(2) x = \frac{1+x}{x^2}$$

$$(3) x = \frac{1}{x^2 - 1}$$

k	$(1) x_{k+1} = (x_k + 1)^{\frac{1}{2}}$	$(2)x_{k+1} = \frac{1+x_k}{x_k^2}$	$(3)x_{k+1} = \frac{1}{x_k^2 - 1}$
0	1.5	1.5	1.5
1	1.357209	1.111111	0.8
2	1.330861	1.710000	-2.77777
3	1.325884	0.926781	0.148897
4	1.324939	2.243253	-1.022673
5	1.324760	0.644502	21.805462
6	1.324726	3.959001	0.0021075
7	1.324719	0.316390	-1.000004
8	1.324718	13.150394	112564.02
	收敛	发散	发散

● 牛顿迭代法的基本思想及迭代公式

原理:将非线性方程线性化

设 f(x) 在其零点 x^* 附近连续可微 , x_0 是 f(x) = 0 的近似根 , 在 x_0 附近用 f(x) 的一阶泰勒多项式近似 f(x) ,有

$$f(x) \approx p_1(x) = f(x_0) + f'(x_0)(x - x_0)$$

当 $f'(x_0) \neq 0$ 时,可以取线性方程 $p_1(x) = 0$ 的根

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

作为x*的第1次近似值.

同理,当 $f'(x_1) \neq 0$ 时,有 $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$ x^* 的第2次近似值 依次类推,当 $f'(x_k) \neq 0$ 时,有

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, k = 0,1,2,\cdots.$$

作为 x^* 的第 k 次近似值.

牛顿迭代公式

迭代函数:
$$\varphi(x) = x - \frac{f(x)}{f'(x)}$$
.

条件: f(x) 在 x^* 附近连续可微且 $f'(x) \neq 0$.

例2 用牛顿法求方程 $x^2-2=0$ 的正根,即求 $\sqrt{2}$ 的近似值.

迭代公式为:
$$x_{k+1} = \frac{x_k}{2} + \frac{1}{x_k}$$
, $k = 0,1,2,\cdots$

取初始近似值为 $x_0 = 1$, 迭代1~5次的对 $\sqrt{2}$ 的近似值如下表

迭代次数k	x_k	$ x_k-\sqrt{2} $	与√2对照相同的位数
0	1	0.414213562	1
1	1.5	0.085786437	1
2	1.4166666666667	0.002453104	3
3	1.4142156862745	2.1239×10^{-6}	5
4	1.4142135623747	1.5947×10^{-12}	12

设 f(x) 满足:(1) 在[a,b] 上连续,且f(a)f(b) < 0; (2) 在[a,b] 上f'(x)及f''(x)不变号. $\longrightarrow f(x) = 0$ 在(a,b) 内有唯一的实根 x^* .

 \rightarrow 称[a,b]为根 x^* 的一个隔根区间

定理1 设f(x)在[a,b]上有二阶导数,且满足

(1)
$$f(a) < 0$$
, $f(b) > 0$;

$$(2) f'(x) > 0, x \in [a, b];$$

(3)
$$f''(x) > 0$$
, $x \in [a, b]$.

那么,方程 f(x) = 0在(a,b)内有唯一实数根 x^* ,且当取 $x_0 = b$,按牛顿迭代公式给出的点列 $\{x_n\}$ 收敛于 x^* .

● 牛顿法的误差估计

由微分中值定理得

$$f(x_n) - f(x^*) = f'(\eta)(x_n - x^*)(\eta 在 x_n 和 x^* 之间)$$

因为 $f(x^*)=0$,所以

$$x_n - x^* = \frac{f(x_n)}{f'(\eta)}$$

 $i己m = \min_{[a,b]} |f'(x)|$,则得

$$|x_n - x^*| \le \frac{|f(x_n)|}{m}.$$

$$\lim_{k \to \infty} \frac{x_{k+1} - x *}{(x * - x_k)^2} = \frac{f''(x^*)}{2f'(x^*)}$$

例3 用切线法求方程 $x^3 - 2x^2 - 4x - 7 = 0$ 的近似解, 使误差

不超过 0.01.

解: 设 $f(x) = x^3 - 2x^2 - 4x - 7$. 由图可见 方程有唯一的正实根 x^* , 且 f(3) = -10, f(4) = 9.

因为[3,4]为一隔根区间,在[3,4]上有

$$f'(x) = 3x^{2} - 4x - 4 = (3x + 2)(x - 2) > 0,$$

$$f''(x) = 6x - 4 = 2(3x - 2) > 0,$$

$$m = \min_{[3,4]} |f'(x)| = f'(3) = 11.$$

故取
$$x_0 = 4$$
, 得 $x_1 = 4 - \frac{f(4)}{f'(4)} = 4 - \frac{9}{28} = 3.68$,

$$|x_1 - x^*| \le \frac{|f(x_1)|}{m} = \frac{1.03}{11} = 0.09.$$

故 x_1 的精度不够. 再求

$$x_2 = 3.68 - \frac{f(3.68)}{f'(3.68)} = 3.68 - \frac{1.03}{21.9} = 3.63,$$

$$|x_2 - x^*| \le \frac{|f(x_2)|}{m} = \frac{0.042}{11} < 0.004 < 0.01.$$

因此得满足精度要求的近似解 $x^* \approx 3.63$.

例4 用牛顿法求解方程f(x) = 0,其中 $f(x) = \begin{cases} x^2 - x^3, & x \ge 0, \\ x^2 + x^3, & x < 0. \end{cases}$

分别选取初始点为	$x_0 = 0.4 \; \Pi$	$x_0 = 0.6.$
----------	--------------------	--------------

k	$x_k(x_0 = 0.4)$	$x_k(x_0 = 0.6)$
0	0.40000	0.600
1	0.10000	-0.600
2	0.04706	0.600
3	0.02293	-0.600
4	0.01133	0.600
5	0.00563	-0.600

牛顿迭代法

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)},$$

$$k = 0,1,2,\cdots.$$

优点:是收敛速度比较快

→ x 缺点:对初始值要求高, 并且需要计算导数

