MODELLI MATEMATICI PER LE EPIDEMIE ESAMI DI STATO 2019-2020

Fantuzzi Giulio

Liceo scientifico G.Galilei classe 5 AS

L'idea di base

Come evolve il contagio nel corso dei giorni?

Alla ricerca di una formula

$$I(0) = 1$$

 $I(1) = 1 \cdot 3 + 1 = 4$
 $I(2) = 4 \cdot 3 + 4 = 16$

Siano:

- I(t) il numero di persone infette al giorno t
- ullet λ il numero di contagi al giorno (per ogni infetto)

E' possibile trovare una formula che descriva il modello?

Alla ricerca di una formula

$$I(0) = 1$$

 $I(1) = 1 \cdot 3 + 1 = 4$
 $I(2) = 4 \cdot 3 + 4 = 16$

Siano:

- I(t) il numero di persone infette al giorno t
- ullet λ il numero di contagi al giorno (per ogni infetto)

E' possibile trovare una formula che descriva il modello?

$$I(t) = I(t-1) \cdot \lambda + I(t-1)$$

Funzione esponenziale

Alcuni passaggi algebrici:

$$I(t) = I(t-1) \cdot \lambda + I(t-1)$$

Funzione esponenziale

Alcuni passaggi algebrici:

$$I(t) = I(t-1) \cdot \lambda + I(t-1)$$

= $I(t-1) \cdot (\lambda + 1)$

Funzione esponenziale

Alcuni passaggi algebrici:

$$I(t) = I(t-1) \cdot \lambda + I(t-1)$$

= $I(t-1) \cdot (\lambda + 1)$

ma

$$I(t-1) = I(t-2) \cdot (\lambda+1)$$

$$= I(t-3) \cdot \underbrace{(\lambda+1) \cdot (\lambda+1)}_{=(\lambda+1)^2}$$

$$= I(t-4) \cdot \underbrace{(\lambda+1) \cdot (\lambda+1) \cdot (\lambda+1)}_{=(\lambda+1)^3}$$

Funzione esponenziale

Alcuni passaggi algebrici:

$$I(t) = I(t-1) \cdot \lambda + I(t-1)$$
$$= I(t-1) \cdot (\lambda + 1)$$

ma

$$I(t-1) = I(t-2) \cdot (\lambda+1)$$

$$= I(t-3) \cdot \underbrace{(\lambda+1) \cdot (\lambda+1)}_{=(\lambda+1)^2}$$

$$= I(t-4) \cdot \underbrace{(\lambda+1) \cdot (\lambda+1) \cdot (\lambda+1)}_{=(\lambda+1)^3}$$

Per ricorsione si arriva a:

$$I(t) = I(0) \cdot (\lambda + 1)^t$$

Il grafico

Il superamento del modello esponenziale

$$N = I(t) + S(t)$$

Si aggiusta il modello esponenziale:

$$I(t+1) - I(t) = \lambda \cdot I(t) \cdot \frac{S(t)}{N}$$

Il superamento del modello esponenziale

$$N = I(t) + S(t)$$

Si aggiusta il modello esponenziale:

$$I(t+1) - I(t) = \lambda \cdot I(t) \cdot \frac{S(t)}{N}$$

Considerando il tempo come variabile continua:

$$I(t + \Delta t) - I(t) = \lambda \cdot \Delta t \cdot I(t) \cdot \frac{S(t)}{N}$$

Il superamento del modello esponenziale

$$N = I(t) + S(t)$$

Si aggiusta il modello esponenziale:

$$I(t+1) - I(t) = \lambda \cdot I(t) \cdot \frac{S(t)}{N}$$

Considerando il tempo come variabile continua:

$$I(t + \Delta t) - I(t) = \lambda \cdot \Delta t \cdot I(t) \cdot \frac{S(t)}{N}$$

Dividendo per Δt e passando al limite per $\Delta t \rightarrow 0$:

$$I'(t) = \lambda \cdot I(t) \cdot \frac{S(t)}{N} = \lambda \cdot I(t) \cdot \left(1 - \frac{I(t)}{N}\right)$$

Risoluzione dell'equazione differenziale

Equazione differenziale (a variabili separabili):

$$I' = \lambda \cdot I \cdot \left(1 - \frac{I}{N}\right)$$

Risoluzione dell'equazione differenziale

Equazione differenziale (a variabili separabili):

$$I' = \lambda \cdot I \cdot \left(1 - \frac{I}{N}\right)$$

Separazione delle variabili:

1

$$\frac{dI}{dt} = \lambda I \left(1 - \frac{I}{N} \right)$$

2

$$\int \frac{1}{I\left(1 - \frac{I}{N}\right)} dI = \int \lambda dt$$

Risoluzione dell'equazione differenziale

Applicazione del metodo delle razionali fratte:

$$\frac{1}{I\left(1-\frac{I}{N}\right)} = \frac{A}{I} + \frac{B}{\left(1-\frac{I}{N}\right)} \quad \Rightarrow \quad A = 1, \ B = \frac{1}{N}$$

Risoluzione dell'equazione differenziale

Applicazione del metodo delle razionali fratte:

$$\frac{1}{I\left(1-\frac{I}{N}\right)} = \frac{A}{I} + \frac{B}{\left(1-\frac{I}{N}\right)} \quad \Rightarrow \quad A = 1, \ B = \frac{1}{N}$$

Risoluzione dell'integrale:

$$\int \left(\frac{1}{I} + \frac{1}{N - I}\right) dI = \lambda t + c$$

$$\ln \left(\frac{I}{N - I}\right) = \lambda t + c$$

$$I = \frac{Ne^{\lambda t}e^{c}}{N + e^{\lambda t}e^{c}}$$

Funzione logistica

Determinazione della costante e^c in relazione a I(0)

$$I(0) = \frac{Ne^c}{N + e^c} \Rightarrow e^c = \frac{I(0)N}{N - I(0)}$$

Funzione logistica

Determinazione della costante e^c in relazione a I(0)

$$I(0) = \frac{Ne^c}{N + e^c} \Rightarrow e^c = \frac{I(0)N}{N - I(0)}$$

$$I(t) = \frac{I(0) \cdot N \cdot e^{\lambda t}}{N - I(0) + I(0) \cdot e^{\lambda t}}$$

Dove:

- I(t): numero di infetti al giorno t
- *I*(0): numero iniziale di infetti
- N: popolazione totale
- λ : numero di contagi al giorno (per ogni infetto)

Il grafico

II modello

$$N = I(t) + S(t) + R(t)$$

Il modello

$$N = I(t) + S(t) + R(t)$$

$$\begin{cases} S(t+1) - S(t) &= -\lambda \cdot I \cdot \frac{S}{N} \\ I(t+1) - I(t) &= \lambda \cdot I \cdot \frac{S}{N} - \gamma \cdot I \\ &= \lambda \cdot I \cdot \left(\frac{S}{N} - \frac{\gamma}{\lambda}\right) \end{cases}$$

- λ : numero di contagi al giorno (per ogni infetto)
- γ : $\frac{1}{durata\ malattia}$

Il fattore ρ_0

Spesso si sente parlare di fattore ρ_0 . Cos'è?

- ullet ho_0 : numero di contagi (per ogni infetto) durante tutta la durata della malattia

Spesso si sente parlare di fattore ρ_0 . Cos'è?

- ρ_0 : numero di contagi (per ogni infetto) durante tutta la durata della malattia
- $\rho = \frac{S}{N} \cdot \rho_0$

SE ho < 1 IL CONTAGIO RECEDE!

II grafico

- FASE ESPONENZIALE ($\rho > 1$)
- **2** PICCO DEL CONTAGIO ($\rho \approx 1$)

f 3 RECESSIONE DEL CONTAGIO (
ho < 1)

Come si può abbassare il fattore
$$\rho$$
? $\left(\rho = \frac{S}{N} \cdot \frac{\lambda}{\gamma} \right)$

Come si può abbassare il fattore
$$\rho$$
? $\left(
ho = \frac{\mathcal{S}}{\mathcal{N}} \cdot \frac{\lambda}{\gamma} \right)$

- Aumentare $\gamma \rightarrow$ diminuire i tempi di guarigione:
 - -NUOVI FARMACI

Come si può abbassare il fattore
$$\rho$$
? $\left(
ho = \frac{\mathcal{S}}{\mathcal{N}} \cdot \frac{\lambda}{\gamma} \right)$

- Aumentare γo diminuire i tempi di guarigione:
 - -NUOVI FARMACI
- Diminuire $\lambda \to \text{diminuire i contagi giornalieri:}$
 - -STARE A CASA
 - -USARE LE MASCHERINE
 - -LAVARSI LE MANI

Come si può abbassare il fattore
$$\rho$$
? $\left(
ho = \frac{\mathcal{S}}{\mathcal{N}} \cdot \frac{\lambda}{\gamma} \right)$

- ullet Aumentare γo diminuire i tempi di guarigione:
 - -NUOVI FARMACI
- Diminuire $\lambda \rightarrow$ diminuire i contagi giornalieri:
 - -STARE A CASA
 - -USARE LE MASCHERINE
 - -LAVARSI LE MANI
- Aumentare i risolti (R) \rightarrow VACCINO

Il modello

II mode<u>llo</u>

- ullet è la probabilità giornaliera di perdere l'immunità
- I RISOLTI POSSONO RICONTRARRE IL VIRUS!

Il grafico e lo smorzamento dovuto a ξ

Che effetto ha ξ sull'andamento del grafico?

Il grafico e lo smorzamento dovuto a ξ

Il grafico e l'andamento stagionale dovuto a λ

 λ può variare a seconda della stagione. Qual è l'effetto sul grafico?

Il grafico e l'andamento stagionale dovuto a λ

Un'equazione differenziale molto simile alle precedenti

- Radioattività: Scoperta di Henri Bequerel (1896)
- I nuclei con $\mathbb{Z} > 83$ sono instabili e decadono
- Il decadimento è un evento casuale, ma si può prevedere l'andamento

Un'equazione differenziale molto simile alle precedenti

- Radioattività: Scoperta di Henri Bequerel (1896)
- I nuclei con $\mathbb{Z} > 83$ sono instabili e decadono
- Il decadimento è un evento casuale, ma si può prevedere l'andamento

MODELLO ESPONENZIALE $I(t) = I(0) \cdot (\lambda + 1)^t$

$$N(t) = N(0) \cdot e^{-\lambda t}$$

Un'equazione differenziale molto simile alle precedenti

- Radioattività: Scoperta di Henri Bequerel (1896)
- I nuclei con $\mathbb{Z} > 83$ sono instabili e decadono
- Il decadimento è un evento casuale, ma si può prevedere l'andamento

MODELLO ESPONENZIALE

$$I(t) = I(0) \cdot (\lambda + 1)^t$$

DECADIMENTO RADIOATTIVO

$$N(t) = N(0) \cdot e^{-\lambda t}$$

 \triangle N(t): nuclei radioattivi all'istante t

Un'equazione differenziale molto simile alle precedenti

- Radioattività: Scoperta di Henri Bequerel (1896)
- I nuclei con $\mathbb{Z} > 83$ sono instabili e decadono
- Il decadimento è un evento casuale, ma si può prevedere l'andamento

MODELLO ESPONENZIALE

$$I(t) = I(0) \cdot (\lambda + 1)^t$$

- \bigcirc I(t):numero di infetti al giorno t
- I(0):numero iniziale di infetti

$$N(t) = N(0) \cdot e^{-\lambda t}$$

- \bigcirc N(t): nuclei radioattivi all'istante t
- N(0): nuclei radioattivi iniziali

Un'equazione differenziale molto simile alle precedenti

- Radioattività: Scoperta di Henri Bequerel (1896)
- I nuclei con $\mathbb{Z} > 83$ sono instabili e decadono
- Il decadimento è un evento casuale, ma si può prevedere l'andamento

MODELLO ESPONENZIALE

$$I(t) = I(0) \cdot (\lambda + 1)^t$$

- \bigcirc I(t):numero di infetti al giorno t
- $oldsymbol{\emptyset}$ λ : costante di contagi giornalieri

$$N(t) = N(0) \cdot e^{-\lambda t}$$

- \bigcirc N(t): nuclei radioattivi all'istante t
- N(0): nuclei radioattivi iniziali
- \bigcirc λ : costante di decadimento

Un'equazione differenziale molto simile alle precedenti

- Radioattività: Scoperta di Henri Bequerel (1896)
- I nuclei con $\mathbb{Z} > 83$ sono instabili e decadono
- Il decadimento è un evento casuale, ma si può prevedere l'andamento

MODELLO ESPONENZIALE

$$I(t) = I(0) \cdot (\lambda + 1)^t$$

- \bigcirc I(t):numero di infetti al giorno t
- I(0):numero iniziale di infetti
- \bigcirc λ : costante di contagi giornalieri
- $\lim_{t\to+\infty}I(t)=+\infty$

$$N(t) = N(0) \cdot e^{-\lambda t}$$

- \bigcirc N(t): nuclei radioattivi all'istante t
- N(0): nuclei radioattivi iniziali
- \bigcirc λ : costante di decadimento
 - $\lim_{t\to+\infty} N(t) = 0$