Optimization II Homework 4 Solution

Lu Tuxun tlu32@jhu.edu

February 22, 2022

Problem 1

T =

6×6 table

\ n	2	3	4	5	6	7
m \						
2	0.66695	0.49979	0.40014	0.33348	0.28561	0.24988
3	0.50006	0.29984	0.19976	0.14281	0.10732	0.083268
4	0.40005	0.19972	0.11433	0.071479	0.047723	0.033261
5	0.3336	0.14288	0.071552	0.039695	0.023851	0.015121
6	0.28546	0.10737	0.047567	0.023827	0.013006	0.0075634
7	0.25017	0.083258	0.033272	0.015156	0.0075613	0.0041151

To compute the probability of a matrix A such that A has saddle point(s). We first assume A_{i^*,j^*} is a saddle point.

Then according to the definition of saddle point, $A_{i,j^*} < A_{i^*,j^*} < A_{i^*,j}$. This is true iff A_{i^*,j^*} is the mth element in a ordered set containing all elements from row i and column j. There are (m+n-1) elements in the set, therefore, The probability to select A_{i^*,j^*} is $\frac{1}{m+n-1}$.

Next, we need to determine the rest elements to fill in row i and column j. Since choosing the elements for row or column automatically determines the other one, the probability is $\binom{m+n-2}{m-1}^{-1}$.

Lastly, since every element in the matrix have equal probability to be a saddle point, we need to multiply the probability of one element be a saddle point by mn.

Therefore, the probability for matrix A to have saddle point(s) is:

$$P = mn \frac{1}{m+n-1} \binom{m+n-2}{m-1}^{-1}$$
$$= \frac{m!n!}{(m+n-1)!}$$

When m=2, the formula becomes:

$$P = \frac{2n!}{(n+1)!}$$

When m = 3, the formula becomes:

$$P = \frac{6n!}{(n+2)!}$$

Problem 2

```
M = [1 -3 6 -9 10;
    -8 6 4 2 -12;
     6 -2 8 -2 -1];
[pMefirst,qMefirst,pYoufirst,qYoufirst] = matrixgame(M)
v1 = expectedValue(pMefirst,qMefirst,M)
v2 = expectedValue(pYoufirst,qYoufirst,M)
v3 = expectedValue(pMefirst,qYoufirst,M)
v4 = expectedValue(pYoufirst,qMefirst,M)
pMefirst =
                    qMefirst =
                                        pYoufirst =
                                                            qYoufirst =
                              0
                                                     0
                                                                            0
                                                     0
                                                                            0
   0.0667
                              0
    0.9333
                              0
                                                                            0
                                                                       0.7333
                                                                       0.2667
v1 =
                    v2 =
                                           v3 =
                                                                 v4 =
   -1.7333
                       -1.7333
                                             -1.7333
                                                                     -1
M = [1 -3 6 -9 10;
    -8 6 4 2 -12;
     10 12 8 11 20];
[pMefirst,qMefirst,pYoufirst,qYoufirst] = matrixgame(M)
v1 = expectedValue(pMefirst,qMefirst,M)
v2 = expectedValue(pYoufirst,qYoufirst,M)
v3 = expectedValue(pMefirst,qYoufirst,M)
v4 = expectedValue(pYoufirst,qMefirst,M)
                                                                qYoufirst =
pMefirst =
                    qMefirst =
                                          pYoufirst =
         0
                                                                            0
                              0
                                                     0
         0
                              0
                                                     0
                                                                            0
        1
                                                     1
                                                                            1
                              1
                              0
                                                                            0
                              0
                                                                            0
                     v2 =
                                           v3 =
                                                                  v4 =
v1 =
   8
                        8
                                              8
                                                                     8
```