Mecánica computacional - Trabajo Práctico 2

FILARDI, Esteban; VICTORIO, Franco

1) En los dos casos se usa:

$$\psi = x + 1$$

$$N_m(x) = \sin(m\pi x)$$

El error utilizado es:

$$error = \frac{||x_{aprox} - x_{exacta}||_2}{||x_{exacta}||_2}$$

evaluando en 1000 puntos equiespaciados en [0,1].

Colocación puntual: usando M puntos equiespaciados y en el interior del dominio (para M=2 los puntos $\frac{1}{3}$ y $\frac{2}{3}$, por ejemplo), se obtienen los siguientes resultados:

\mathbf{M}	Error	Proporción mejora
1	5.1067e-01	
2	1.6125e-01	3.1670
4	4.1164e-02	3.9173
8	9.1047e-03	4.5212
16	1.8320e-03	4.9697
32	3.4760e-04	5.2706

Galerkin: con el método de Galerkin se obtienen los siguientes resultados:

\mathbf{M}	Error	Proporción mejora
1	9.4531e-03	
2	2.8715e-03	3.2921
4	6.8859e-04	4.1701
8	1.4254e-04	4.8309
16	2.7272e-05	5.2267
32	5.0146e-06	5.4384

A continuación se muestran las gráficas para ambos métodos en el caso ${\cal M}=2$:

2) La solución exacta al problema dado es:

$$\phi(x) = \frac{1 + \sin(1) - \cos(1)}{\cos(1) + \sin(1)} \sin(x) + \cos(x) - 1$$

Usando el método de los resiudos ponderados puede obtenerse una solución aproximada de la forma $\psi + \sum_{m=1}^M a_m N_m$. Dado que hay una condición Dirichlet y una Neumann, la primera se satisface haciendo $\psi = 0$ y $N_m|_{x=0} = 0$. La condición Neumann se incluye en el residuo:

$$R_{\Omega} = \frac{\mathrm{d}^2 \hat{\phi}}{\mathrm{d}x^2} + \hat{\phi} + 1$$

$$R_{\Gamma} = \hat{\phi} + \frac{\mathrm{d}^2 \hat{\phi}}{\mathrm{d}x^2}$$

Usando Galerkin, se llega a:

$$K_{lm} = \int_0^1 \frac{\mathrm{d}N_l}{\mathrm{d}x} \frac{\mathrm{d}N_m}{\mathrm{d}x} \mathrm{d}x + \int_0^1 N_l N_m \mathrm{d}x \int_0^1 \mathrm{d}x - [N_l N_m]_{x=1}$$

$$f_l = -\int_0^1 N_l \mathrm{d}x$$

Utilizando $N_m = x^m$ para $m = 1, 2, \dots$ como funciones de forma se obtienen las siguientes gráficas:

