

Ex 2)
$$W = (V, +, \cdot)$$
 i subspace

i) $\overrightarrow{O} \in W$

ii) $\forall u, w \in W \Rightarrow \forall u + w \in W$

iii) $\forall w \in R, \forall u \in W \Rightarrow \forall u \in W$

Obs: $W \in LI = [W] = V$
 $C_1 W_1 + C_2 W_2 + ... + C_K W_K = N$
 $Ex 3) (R^2, +, \cdot)$

subspaces Triviais: $1\overrightarrow{O} = R^2$

Não, pais $\overrightarrow{O} = (0, 0) \notin S_1$

2) $S_2 = S(x, y) \in R^2 / y = 0 = S_2$

ii) $\overrightarrow{O} = (0, 0) \in S_2$

iii) $x \in R$
 $x \in S_2$
 $x \in S_3$
 $x \in S_4$
 $x \in S_4$

ii)
$$U = (x_1, y_1)$$
, $\nabla = (x_1, y_1) \in S_3$
 $\Rightarrow U + \nabla = (x_1 + x_1, y_1 + y_2) \in S_3$, $pai = 20$
 $\Rightarrow (x_1 + x_2) + (y_1 + y_2) = 0 + 0 = 0$
iii) $\forall x \in \mathbb{R}$, $U = (x_1, y_1) \in S_3 \Rightarrow x_1 + y_2 = 0$
Note que $\Rightarrow u = (x_1, x_2) \in S_3$, $pai = 20$
 $\Rightarrow (x_1 + axy_1) = ax (x_1 + y_2) = ax (0 = 0)$
 $\Rightarrow (x_1 + axy_2) = ax (x_1 + y_2) = ax (0 = 0)$
 $\Rightarrow (x_1 + axy_2) = ax (x_1 + y_2) = ax (0 = 0)$
 $\Rightarrow (x_1 + axy_2) = ax (x_1 + y_2) = ax (0 = 0)$
 $\Rightarrow (x_1 + axy_2) = ax (x_1 + y_2) = ax (0 = 0)$
 $\Rightarrow (x_1 + axy_2) = ax (x_1 + y_2) = ax (0 = 0)$
 $\Rightarrow (x_1 + axy_2) = ax (x_1 + y_2) = ax (0 = 0)$
 $\Rightarrow (x_1 + axy_2) = ax (x_1 + y_2) = ax (0 = 0)$
 $\Rightarrow (x_1 + axy_2) = ax (x_1 + y_2) = ax (0 = 0)$
 $\Rightarrow (x_1 + axy_2) = ax (x_1 + y_2) = ax (0 = 0)$
 $\Rightarrow (x_1 + axy_2) = ax (x_1 + y_2) = ax (0 = 0)$
 $\Rightarrow (x_1 + axy_2) = ax (x_1 + y_2) = ax (0 = 0)$
 $\Rightarrow (x_1 + axy_2) \in S_3 \Rightarrow x_1 + y_2 = 0$
 $\Rightarrow (x_1 + y_2) = ax (x_1 + y_2) = ax (0 = 0)$
 $\Rightarrow (x_1 + x_2) + (x_1 + y_2) = ax (0 = 0)$
 $\Rightarrow (x_1 + x_2) + (x_1 + y_2) = ax (0 = 0)$
 $\Rightarrow (x_1 + y_2) \in S_3 \Rightarrow x_1 + y_2 = 0$
 $\Rightarrow (x_1 + y_2) = ax (x_1 + y_2) = ax (0 = 0)$
 $\Rightarrow (x_1 + y_2) = ax (x_1 + y_2) = ax (0 = 0)$
 $\Rightarrow (x_1 + y_2) = ax (x_1 + y_2) = ax (0 = 0)$
 $\Rightarrow (x_1 + y_2) = ax (x_1 + y_2) = ax (0 = 0)$
 $\Rightarrow (x_1 + y_2) \in S_3 \Rightarrow x_1 + y_2 = 0$
 $\Rightarrow (x_1 + y_2) \in S_3 \Rightarrow x_1 + y_2 = 0$
 $\Rightarrow (x_1 + y_2) \in S_3 \Rightarrow x_1 + y_2 = 0$
 $\Rightarrow (x_1 + y_2) \in S_3 \Rightarrow x_1 + y_2 = 0$
 $\Rightarrow (x_1 + y_2) \in S_3 \Rightarrow x_1 + y_2 = 0$
 $\Rightarrow (x_1 + y_2) \in S_3 \Rightarrow x_1 + y_2 = 0$
 $\Rightarrow (x_1 + y_2) \in S_3 \Rightarrow x_1 + y_2 = 0$
 $\Rightarrow (x_1 + y_2) \in S_3 \Rightarrow x_1 + y_2 = 0$
 $\Rightarrow (x_1 + y_2) \in S_3 \Rightarrow x_1 + y_2 = 0$
 $\Rightarrow (x_1 + y_2) \in S_3 \Rightarrow x_1 + y_2 = 0$
 $\Rightarrow (x_1 + y_2) \in S_3 \Rightarrow x_1 + y_2 = 0$
 $\Rightarrow (x_1 + y_2) \in S_3 \Rightarrow x_1 + y_2 = 0$
 $\Rightarrow (x_1 + y_2) \in S_3 \Rightarrow x_1 + y_2 = 0$
 $\Rightarrow (x_1 + y_2) \in S_3 \Rightarrow x_1 + y_2 = 0$
 $\Rightarrow (x_1 + y_2) \in S_3 \Rightarrow x_1 + y_2 = 0$
 $\Rightarrow (x_1 + y_2) \in S_3 \Rightarrow x_1 + y_2 = 0$
 $\Rightarrow (x_1 + y_2) \in S_3 \Rightarrow x_1 + y_2 = 0$
 $\Rightarrow (x_1 + y_2) \in S_3 \Rightarrow x_1 + y_2 = 0$
 $\Rightarrow (x_1 + y_2) \in S_3 \Rightarrow x_1 + y_2 = 0$
 $\Rightarrow (x_1 + y_2) \in S_3 \Rightarrow x_1 + y_2 = 0$
 $\Rightarrow (x_1 + y_2) \in S_3 \Rightarrow x_$

Note que [B] = S e B e' L· I => B e' via $Obs:(R^2,+,-) \Longrightarrow dem(R^2)=2$ B1= 37, 3 & B2=3(1,1), (0,-3)} são boses do \mathbb{R}^{2} $[B_{i}] = \mathbb{R}^{2} \times B_{i} \times L.T.$ C1 ~1+ 62 ~2 = (x,4) 3=(,) 3= (,)