Lecture 12

Decision trees

https://github.com/dalcimar/MA28CP-Intro-to-Machine-Learning
UTFPR - Federal University of Technology - Paraná
https://www.dalcimar.com/

Machine learning pipeline

Python Machine Learning by Sebastian Raschka

Topics

- Intro to decision trees
- 2. Recursive and divide & conquer strategy
- 3. Types of decision trees
- 4. Splitting criteria
- 5. Gini & Entropy vs misclassification error
- 6. Improvements & dealing with overfitting
- 7. Code example

Decision tree terminology

Decision tree as rulersets

IF ______

2-1--: 2-1----

THEN _____

Decision tree pipeline

Conjunto de treinamento

ld	E Credor	Estado Civil	Salário	Calote
1	Sim	Solteiro	125K	Não
2	Não	Casado	100K	Não
3	Não	Solteiro	70K	Não
4	Sim	Casado	120K	Não
5	Não	Divorciado	95K	Sim
6	Não	Casado	60K	Não
7	Sim	Divorciado	220K	Não
8	Não	Solteiro	85K	Sim
9	Não	Casado	75K	Não
10	Não	Solteiro	90K	Sim

Conjunto de teste

ld	E Credor	Estado Civil	Salário	Calote
11	Não	Casado	80K	?
12	Não	Solteiro	100K	?
13	Sim	Solteiro	100K	?
14	Não	Casado	120K	?
15	Sim	Solteiro	80K	?

Training

- Works on categorical (binary, nominal or ordinal) and
- Works also with numeric (continuos) attributes

Id	E	Estado	Salário	Calote
	Credor	Civil		
1	Sim	Solteiro	125K	Não
2	Não	Casado	100K	Não
3	Não	Solteiro	70K	Não
4	Sim	Casado	120K	Não
5	Não	Divorciado	95K	Sim
6	Não	Casado	60K	Não
7	Sim	Divorciado	220K	Não
8	Não	Solteiro	85K	Sim
9	Não	Casado	75K	Não
10	Não	Solteiro	90K	Sim

Atributos de Decisão Credor Sim Não Não Estado Casado Solteiro, Divorciado Renda Não < 80K > 80K Não Sim

Dados de Treinamento

Modelo: Árvore de Decisão

Training

ld	E Credor	Estado Civil	Salário	Calote
1	Sim	Solteiro	125K	Não
2	Não	Casado	100K	Não
3	Não	Solteiro	70K	Não
4	Sim	Casado	120K	Não
5	Não	Divorciado	95K	Sim
6	Não	Casado	60K	Não
7	Sim	Divorciado	220K	Não
8	Não	Solteiro	85K	Sim
9	Não	Casado	75K	Não
10	Não	Solteiro	90K	Sim

Diferentes árvores podem ser ajustadas para os mesmos dados !

Decision tree on Iris dataset (2 features)

Figure 6-2. Decision Tree decision boundaries

Decision tree on Iris dataset (2 features)

Decision tree on Iris dataset (4 features)

Growing depth process

Tree depth overfitting

Figure 6-3. Regularization using min_samples_leaf

Animations

Amazing animation of decision tree

http://www.r2d3.us/visual-intro-to-machine-learning-part-1/

Topics

- Intro to decision trees
- 2. Recursive and divide & conquer strategy
- 3. Types of decision trees
- 4. Splitting criteria
- 5. Gini & Entropy vs misclassification error
- 6. Improvements & dealing with overfitting
- 7. Code example

Recursion / Recursive Algorithms

What does this function do?

```
1 def some_fun (x):
2    if x == []:
3       return 0
4    else:
5     return 1 + some_fun (x[1:])
```

Divide & Conquer Algorithms: Quicksort

```
def quicksort(array):
       if len(array) < 2:
            return array
       else:
            pivot = array[0]
6
            smaller, bigger = [], []
            for ele in array[1:]:
                if ele <= pivot:
                    smaller.append(ele)
9
10
                else:
11
                    bigger.append(ele)
            return quicksort(smaller) + [pivot] + quicksort(bigger)
12
```

Divide & Conquer Algorithms: Quicksort

```
1 def quicksort(array):
       if len(array) < 2:
           return array
       else:
           pivot = array[0]
           smaller, bigger = [], []
           for ele in array[1:]:
               if ele <= pivot:
                   smaller.append(ele)
10
               else:
11
                   bigger.append(ele)
12
           return quicksort(smaller) + [pivot] + quicksort(bigger)
```

Time complexity of quicksort

O(n log n)

```
def quicksort(array):
        if len(array) < 2:
            return array
 4
       else:
            pivot = array[0]
            smaller, bigger = [], []
 6
            for ele in array[1:]:
                if ele <= pivot:
8
9
                    smaller.append(ele)
10
                else:
                    bigger.append(ele)
11
12
            return quicksort(smaller) + [pivot] + quicksort(bigger)
```

Time and space complexity of sorting algorithms

Algorithm	Time Complexity			Space Complexity
	Best	Average	Worst	Worst
Quicksort	$\Omega(n \log(n))$	O(n log(n))	0(n^2)	O(log(n))
Mergesort	$\Omega(n \log(n))$	O(n log(n))	O(n log(n))	0(n)
Timsort	$\Omega(n)$	O(n log(n))	O(n log(n))	0(n)
<u>Heapsort</u>	$\Omega(n \log(n))$	Θ(n log(n))	O(n log(n))	0(1)
Bubble Sort	$\Omega(n)$	0(n^2)	0(n^2)	0(1)
Insertion Sort	$\Omega(n)$	Θ(n^2)	0(n^2)	0(1)
Selection Sort	$\Omega(n^2)$	Θ(n^2)	0(n^2)	0(1)
Tree Sort	$\Omega(n \log(n))$	O(n log(n))	0(n^2)	0(n)
Shell Sort	$\Omega(n \log(n))$	$\Theta(n(\log(n))^2)$	O(n(log(n))^2)	0(1)
Bucket Sort	$\Omega(n+k)$	Θ(n+k)	0(n^2)	0(n)
Radix Sort	$\Omega(nk)$	Θ(nk)	O(nk)	0(n+k)
Counting Sort	$\Omega(n+k)$	O(n+k)	0(n+k)	0(k)
Cubesort	$\Omega(n)$	Θ(n log(n))	O(n log(n))	0(n)

Decision Tree in Pseudocode

GenerateTree(\mathcal{D}):

- if $y=1 \ \forall \ \langle \mathbf{x},\mathbf{y} \rangle \in \mathcal{D} \text{ or } y=0 \ \forall \ \langle \mathbf{x},y \rangle \in \mathcal{D}$:
 - o return Tree
- else:
 - Pick best feature x_i :
 - \mathcal{D}_0 at Child $_0: x_i = 0 \; \forall \; \langle \mathbf{x}, y \rangle \in \mathcal{D}$
 - \mathcal{D}_1 at Child $_1: x_i = 1 \ \forall \ \langle \mathbf{x}, y \rangle \in \mathcal{D}$

Figure 6-2. Decision Tree decision boundaries

return Node $(x_j, \text{GenerateTree}(\mathcal{D}_0), \text{GenerateTree}(\mathcal{D}_1))$

Time complexity decision tree

Growing the tree (fit()): $O(m*n^2log n)$

- Assuming we have continuous features and perform binary splits, the runtime of the decision tree construction is
- Sorting the values of continuous features helps with determining a decision threshold. If we have n examples, the sorting has time complexity O(n log n)
- If we have to compare sort m features, this becomes O(m*n log n)
- Sorting step up to n/2 times O(m*n²log n)

Querying the tree (**predict()**): O(log n)

depth of log₂n

Topics

- 1. Intro to decision trees
- 2. Recursive and divide & conquer strategy
- 3. Types of decision trees
- 4. Splitting criteria
- 5. Gini & Entropy vs misclassification error
- 6. Improvements & dealing with overfitting
- 7. Code example

Generic Tree Growing Algorithm

GenerateTree(\mathcal{D}):

- if $y=1 \ \forall \ \langle \mathbf{x},\mathbf{y} \rangle \in \mathcal{D} \ \text{or} \ y=0 \ \forall \ \langle \mathbf{x},y \rangle \in \mathcal{D}$:
 - o return Tree
- else:
 - Pick best feature x_i :
 - ullet \mathcal{D}_0 at $ext{Child}_0: x_j = 0 \; orall \; \langle \mathbf{x}, y
 angle \in \mathcal{D}$
 - ullet \mathcal{D}_1 at $\mathrm{Child}_1: x_j = 1 \ orall \ \langle \mathbf{x}, y
 angle \in \mathcal{D}$

return Node $(x_j, \text{GenerateTree}(\mathcal{D}_0), \text{GenerateTree}(\mathcal{D}_1))$

Generic Tree Growing Algorithm

- 1. Pick the feature that, when parent node is split, results in the largest information gain
- 2. Stop if child nodes are pure or information gain <= 0
- 3. Go back to step 1 for each of the two child nodes

How make predictions of features in dataset not sufficient to make child nodes pure?

Design choices

- What kind of variables
 - Only binary features
 - Only binary or categorical features
 - Numeric features
- How to split
 - what measurement/criterion as measure of goodness
 - binary vs multi-category split
- When to stop
 - if leaf nodes contain only examples of the same class
 - feature values are all the same for all examples
 - statistical significance test

ID3 - Iterative Dichotomizer 3

- Quinlan, J. R. 1986. Induction of Decision Trees. Mach. Learn. 1, 1 (Mar. 1986), 81-106.
- one of the earlier/earliest decision tree algorithms
- cannot handle numeric features
- Trees are **grown to their maximum size** and then a **pruning step** is usually applied to improve the ability of the tree to generalise to unseen data
- multiway tree, short and wide trees (compared to CART)
- maximizing information gain/minimizing entropy
- discrete features, binary and multi-category features

C4.5

- Ross Quinlan 1993, Quinlan, J. R. (1993). C4.5: Programming for machine learning. Morgan Kauffmann, 38, 48.
- continuous and discrete features
 - o continuous is very expensive, because must consider all possible ranges
- handles missing attributes (ignores them in gain compute)
- post-pruning (bottom-up pruning)
- Gain Ratio

CART

- Breiman, L. (1984). Classification and regression trees. Belmont, Calif: Wadsworth International Group.
- continuous and discrete features
- variance reduction in regression trees
- strictly binary splits (taller trees than ID3, C4.5)
 - binary splits can generate better trees than C4.5, but tend to be larger and harder to interpret;
 k-attributes has a ways to create a binary partitioning
- Gini impurity, twoing criteria in classification trees
- cost complexity pruning

Others

- CHAID (CHi-squared Automatic Interaction Detector); Kass, G. V. (1980). "An exploratory technique for investigating large quantities of categorical data".
 Applied Statistics. 29 (2): 119–127.
- MARS (Multivariate adaptive regression splines); Friedman, J. H. (1991).
 "Multivariate Adaptive Regression Splines". The Annals of Statistics. 19: 1
- C5.0 (patented)