Filing Date: October 1, 2004 First Named Inventor: Huai Lin

Amendments to the Claims

This listing of claims will replace all prior versions and listings of claims in the application.

Listing of Claims

- 1. (Cancelled)
- 2. (Cancelled)
- 3. (Currently amended) The A system for controlling a permanent magnet electric motor (12) according to claim 1, comprising:

a motor controller (16), said motor controller (16) using phase currents of the permanent magnet electric motor (12) at a preset speed ω to generate voltage-controlling signals used to obtain changes in torque T of the permanent magnet electric motor (12); and

a power stage (14), said power stage (14) receiving the voltage-controlling signals from the motor controller (16) and feeding them back to the permanent magnet electric motor (12), wherein said motor controller (16) is a park vector rotator unit that generates continuously rotating angles.

- 4. (Currently amended) The system for controlling a permanent magnet electric motor according to any one of elaims 1 to claim 3, said system continuously responding to changes of the preset speed and torque of the permanent magnet electric motor (12) as well as to changes in ambient conditions.
 - 5. (Cancelled)
 - 6. (Cancelled)

Filing Date: October 1, 2004 First Named Inventor: Huai Lin

7. (Cancelled)

8. (Currently amended) The A method for controlling a permanent magnet electric motor according to claim 7 (12) comprising:

determining a current of each phase of the permanent magnet electric motor (12) at a preset speed ω ;

obtaining voltage controlling signals at the preset speed ω in relation to changes in torque of the permanent magnet electric motor (12); and

feeding the voltage controlling signal back to the permanent magnet electric motor (12); computing a current torque T of the permanent magnet electric motor (12);

wherein said computing a current torque T comprises rotating the currents of each phase of the permanent magnet electric motor by an angle $-\theta_n$ to output two currents I_d and I_q , according to the following relations on a d-q axis fixed on a rotor axis of the permanent magnet electric motor (12):

$$I_d = 2/3 \text{ x } [i_a \text{ x } \cos(\theta_n) + i_b \text{ x } \cos(\theta_n + 120^\circ) + i_c \text{ x } \cos(\theta_n - 120^\circ)] \text{ and}$$

$$I_q = 2/3 \text{ x } [i_a \text{ x } \sin(\theta_n) + i_b \text{ x } \sin(\theta_n + 120^\circ) + i_c \text{ x } \sin(\theta_n - 120^\circ)].$$

9. (Currently amended) The A method for controlling a permanent magnet electric motor (12) according to claim 6 comprising:

determining a current of each phase of the permanent magnet electric motor (12) at a preset speed ω;

obtaining voltage controlling signals at the preset speed ω in relation to changes in torque of the permanent magnet electric motor (12); and

feeding the voltage controlling signal back to the permanent magnet electric motor (12), wherein said determining a current of each phase of the permanent magnet electric motor (12) comprising measuring a current of two phases thereof and calculating a current of a third phase using the relation: $\sum_{three \ phases} i = 0;$

wherein said obtaining voltage controlling signals comprises:

Filing Date: October 1, 2004 First Named Inventor: Huai Lin

computing a current rotating angle θ_{n+1} ; computing two voltage outputs V_q and V_d ; and rotating the voltage outputs V_q and V_d by the angle θ_{n+1} .

- 10. (Previously presented) The method for controlling a permanent magnet electric motor according to claim 9, wherein said computing a current rotating angle θ_{n+1} is done using a current torque T and a preset speed ω of the permanent magnet electric motor (12) with the formula $\theta_{n+1} = \theta_n + k_1 \times \omega + k_2 \times T$ where k_1 and k_2 are constants.
- 11. (Previously presented) The method for controlling a permanent magnet electric motor according to claim 10, wherein said computing two voltage outputs V_q and V_d comprises:

computing the voltage output V_q on a d-q axis fixed on a rotor axis: $V_q = PI(I^* - I_d) + k_3 \times I_q$ where k_3 is a constant, "PI" referring to a proportional and integral operator, defined as follows: $PI(x) = ax + b \int x \, dt$ where a and b are constants and integration is over time; and

computing the voltage output V_d , according to the following equation on the d-q axis fixed on the rotor axis: $V_d = k_5 \times I_d + k_4 \times I_q \times \omega$ where k_4 and k_5 are constants.

- 12. (Previously presented) The method for controlling a permanent magnet electric motor according to claim 10, wherein said obtaining voltage controlling signals comprises obtaining three voltage controlling signals V_a , V_b and V_c according to the following equations: $V_a = V_d \ x \ \cos(\theta_{n+1}) + V_q \ x \ \sin(\theta_{n+1}), \ V_b = V_d \ x \ \cos(\theta_{n+1} + 120^\circ) + V_q \ x \ \sin(\theta_{n+1} + 120^\circ)$ and $V_c = V_d \ x \ \cos(\theta_{n+1} 120^\circ) + V_q \ x \ \sin(\theta_{n+1} 120^\circ)$.
- 13. (Previously presented) The method for controlling a permanent magnet electric motor according to claim 5, wherein constants are set based on a number of parameters selected in the group comprising a sampling rate of a computer to be used, conditions of a power drive, sensitivity of current sensors used for current measurements and characteristics of the permanent magnet electric motor (12).

Filing Date: October 1, 2004 First Named Inventor: Huai Lin

14. (Previously presented) A circuit for controlling a permanent magnet threephases electric motor provided with a rotor and a stator, comprising:

a rotator allowing rotation of current signals of the phases of the permanent magnet electric motor (12) from a stationary frame to two decoupled current components in a rotor synchronous frame along a direct axis (I_d) and a quadrature axis (I_g) respectively;

a proportional and integral operator for deriving a voltage (V_q) along the quadrature axis and a voltage (V_d) along the direct axis;

a rotator allowing rotating the voltages V_q and V_d back from the rotor synchronous frame to the stationary frame to yield terminal voltages V_a , V_b and V_c of the permanent magnet electric motor;

wherein a current rotating angle θ_{n+1} is computed using a current torque T and a preset speed ω of the permanent magnet electric motor with a formula as follows: $\theta_{n+1} = \theta_n + k_1 \times \omega + k_2 \times T$ where k_1 and k_2 are constants.

15. (Previously presented) A method for controlling a permanent magnet threephases electric motor provided with a rotor and a stator, comprising:

rotating current signals of the phases of the permanent magnet electric motor (12) from a stationary frame to two decoupled current components in a rotor synchronous frame along a direct axis (I_d) and a quadrature axis (I_q) respectively;

deriving a voltage (Vq) along the quadrature axis therefrom;

deriving a voltage (V_d) along the direct axis;

rotating the voltages V_q and V_d back from the rotor synchronous frame to the stationary frame to yield terminal voltages V_a , V_b and V_c of the permanent magnet electric motor;

wherein a current rotating angle θ_{n+1} is computed using a current torque T and a preset speed ω of the permanent magnet electric motor (12) with a formula as follows: $\theta_{n+1} = \theta_n + k_1 \times \omega + k_2 \times T$ where k_1 and k_2 are constants.

16. (Previously presented) A method for controlling a permanent magnet electric motor having three-phases each supporting a current i_a, i_b and i_c respectively, comprising:

Filing Date: October 1, 2004 First Named Inventor: Huai Lin

determining the currents i_a , i_b and i_c ;
 rotating the currents i_a , i_b and i_c by an angle $-\theta_n$ to yield currents I_d and I_q ;
 computing a current torque of the permanent magnet electric motor (12);
 computing a current rotating angle θ_{n+1} ;
 computing a voltage output V_q ;
 computing a voltage output V_d ;
 rotating the voltages V_q and V_d by the rotating angle θ_n+1 to yield three voltage controlling signals V_a , V_b and V_c ; and

applying the voltage controlling signals V_a , V_b and V_c to the permanent magnet electric motor;

wherein a current rotating angle θ_{n+1} is computed using the current torque T and a preset speed ω of the permanent magnet electric motor (12) with a formula as follows: $\theta_{n+1} = \theta_n + k_1 \times \omega + k_2 \times T$ where k_1 and k_2 are constants.