NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR MEKANIKK, TERMO- OG FLUIDDYNAMIKK

Faglig kontakt under eksamen:

Navn: Iver Brevik Tlf.: 73 59 35 55

KONTINUASJONSEKSAMEN I FAG SIO 1009 – FLUIDMEKANIKK FOR FAK. F (Linje Fysikk og matematikk)

Dato: 7. august 1999 Tid: kl. 0900 – 1400

Hjelpemidler: B2 - Typegodkjent kalkulator, med tomt minne, i henhold til liste

utarbeidet av NTNU. Trykte hjelpemidler:

Formelsamling i matematikk

Formelliste, vedheftet oppgavesettet.

I et basseng med saltvann øker saltinnholdet (saliniteten) med dybden. Anta at tettheten ρ (z) dermed øker lineært med dybden, etter formelen

$$\rho(z) = \rho_o(1-kz).$$

Her er nivået z = 0 den frie overflate, ρ_0 er tettheten ved denne overflate, og k er en gitt positiv konstant. Tyngdens akselerasjon er g. Se bort fra atmosfæretrykket.

(a)Vis, for eksempel ved å starte med Eulers ligning, at det hydrostatiske trykket er

$$p(z) = -\gamma_o z \left(1 - \frac{1}{2}kz\right)$$
, hvor $\gamma_o = \rho_o g$.

(b) Figuren viser en kvadratisk luke AB, med sidekant h, som er hengslet i nedre sidekant B. Hvor stor må kraften K minst være for at luka ikke skal åpne seg? Hint: Ta momentbalansen omkring B, idet du innfører koordinaten x fra B opp til et vilkårlig punkt på luka. Sett im p = p(x).

Oppgave 2

Gitt en horisontal vannstråle med bredde H_o hvor hastigheten er V_o , konstant over strålens tverrsnitt. Strålen er plan, dvs. dens utstrekning antas uendelig innover i papirplanet (i z-retningen). Atmosfæretrykket er p_o . Se bort fra tyngdekraften. Vannets viskositet neglisjeres.

Hvor stort er trykket p inne i strålen? Begrunn svaret. Strålen treffer en vertikal plate A-A' som skyves mot venstre med konstant hastighet W (se figur 1). Hvor stor er den horisontale kraft F_{plate} vannet utøver mot platen? Regn per lengdeenhet i z-retningen.

Platen A – A' antas så å være i ro, men holdes i posisjon slik at den danner en vinkel α med x-aksen (figur 2). Den treffes av samme horisontale vannstråle som før. Hva er nå x- og y-komponentene av den kraft \vec{F}_{plate} (per enhet i z-retningen) som vannet utøver mot platen?

3

(c) Når vannstrålen i figur 2 treffer platen deler den seg i to grenstrømmer, parallelt med platen. Finn grenstrømmenes høyder H_1 og H_2 .

Oppgave 3

En igloo har form av en halvsylinder med radius R. Se bort fra veggtykkelsen, og se bort fra luftas tyngde og viskositet. Lufta har tettheten ρ. Det blåser en konstant vind på tvers mot iglooen, med opprinnelig hastighet V_∞. Legg origo i punktet O.

(a) Luftas hastighetskomponenter på utsiden (r ≥ R) er

$$V_r = V_{\infty} \left(1 - \frac{R^2}{r^2} \right) \cos \theta$$
, $V_{\theta} = -V_{\infty} \left(1 + \frac{R^2}{r^2} \right) \sin \theta$.

Finn herav hastighetspotensialet ϕ og strømfunksjonen Ψ på utsiden.

- (b) Anta at det er to små åpninger i veggen, én på baksiden ved I_1 (θ = 0) og én på forsiden ved I_2 (θ = 180°), og at veggen ellers er tett. Finn trykket p_{in} inne i iglooen.
- (c) Finn den vertikale nettokraft F_y (per lengdeenhet i z-retningen) som lufta utøver mot iglooen.
- (d) Anta så at det lages et tredje hull i veggen, i posisjon I_3 ($\theta = 90^{\circ}$). Forklar kvalitativt hvilken luftstrømning som oppstår inne i iglooen.

Oppgave 4 (halv vekt)

Gitt det komplekse potensial

$$w(z)=Uz^{\pi/a}$$

hvor U(>0) er en gitt hastighet, og α en gitt vinkel i området $0 < \alpha < \pi$.

- (a) Sett $z = re^{i\theta}$, finn hastighetspotensialet Φ og strømfunksjonen Ψ som funksjon av r og θ , og skisser strømlinjebildet når $0 < \theta < \alpha$.
- (b) Benytt formelen

$$V^2 = \frac{dw}{dz} \cdot \frac{d\overline{w}}{d\overline{z}}$$

til å finne fluidets fart V. Har strømningen et stagnasjonspunkt?

a) Ubsiden:

 $V_{p} = V_{\infty} \left(1 - \frac{R^2}{\hbar^2}\right) \cos \theta$, $V_{\phi} = -V_{\phi} \left(1 + \frac{R^2}{\hbar^2}\right) \sin \theta$

At $V_R = \frac{\partial \Phi}{\partial r}$ eller $V_D = \frac{1}{r} \frac{\partial \Phi}{\partial \theta}$ fines used interesym

 $= V_{op} \left(R + \frac{R^2}{R} \right) \cos \theta$

Tilwanende, av Vo = - Dr eller Vr = 12 de finnes

里= Voo(1- 12) SiuD

4) For poternalshopming en Bernoullis konstant den samme overalt Achi Pro + 1 2 /2 = P(P,0) + 1 /2 (P,0)

Imsething as Vo (R,D) = -2 Vo sin 0 gir p(R,0) = po + 20 Vo (1-45in D) Nar 0 = 0 eller 180° blir p = pin = po + 129 Va. Overtykk

Fy = \ \ \ (Poo + \frac{1}{2} \rangle V_o^2) - [Po + \frac{1}{2} \rangle V_o^2 (1-4 \sin^2 \text{\text{\text{0}}})] \} \sin \text{\text{Sin \text{\text{\text{0}}}} - Ra\text{\text{\text{0}}}

= 28 Vo R Sin 0 = \$ 9 Vo R Lathurgt.

The expre hell and 0 = 90°:

Piu (0 = 0, 11) = pa + 128 Vo2, overlyne i fold to ahorform Pin (0 = 1) = po - 2 p Vo, underhyle

Laurest tryke wed taket inne i igloven. Dufor stromming inn gjennom apringue and 0 = 0,11 og ut gjennom apringum Losning Oppgave 4

ω(z) = U z.

Da $\omega = \Phi + i \Psi$ og z = he tas $\Phi + i \Psi = U_{R} \cdot e = U_{R}^{\pi/a} \left(\cos \frac{\pi \theta}{a} + i \sin \frac{\pi \theta}{a} \right)$ 3:

 $\Phi = U_{r} \cos \frac{\pi \theta}{a}$ $\Phi = U_{r} \sin \frac{\pi \theta}{a}$

V = dw . dw -

Deriverer den gike formel: du = UT &

Tan den kompletes høyregerfe: $\omega(\overline{z}) = U \overline{z}^{17/d}$, som gin $d\overline{\omega}(\overline{z}) = U_{11} = \overline{z}^{11/d}$.

Also $V = \frac{dw}{dz} \cdot \frac{d\overline{w}}{d\overline{z}} = \left(\frac{\overline{U_{\overline{1}}}}{d}\right)^{2} \left(z\overline{z}\right)^{2} = \left(\frac{\overline{U_{\overline{1}}}}{d}\right)^{2} \left(z\overline{z}\right)^{2}$

Fact $V = \frac{O_{11}}{\alpha} \cdot r$

Da $\alpha < \pi$ er $\pi - 1 > 0$, og stagnegjørspunklet V = 0