Homework 3

DATA604 Simulation and Modeling

Daniel Dittenhafer
March 6, 2016

1

Starting with $X_0 = 1$, write down the entire cycle for $X_i = 11X_{i-1} \mod(16)$

```
fn1 <- function(x0)
{
    df <- data.frame(X=c(), R=c())
    x <- x0
    continue <- TRUE

while(continue)
{
    xi <- (11 * x) %% 16
    df <- rbind(df, data.frame(X=x, R=xi))
    x <- xi

    if(xi == x0)
    {
        break
    }
}

return(df)
}</pre>
```

X	R
1	11
11	9
9	3
3	1

 $\mathbf{2}$

Using the LCG provided below: $X_i = (X_{i-1} + 12) mod(13)$, plot the pairs $(U_1.U_2), (U_2, U_3), ...$ and observe the lattice structure obtained. Discuss what you observe.

```
fn2 <- function(x0, max=100)
{
    df <- data.frame(U1=c(), U2=c())
    x <- x0

    for(i in 1:max)
    {
        xi <- (x + 12) %% 13
        df <- rbind(df, data.frame(U1=x, U2=xi))</pre>
```

```
x <- xi
}

return(df)
}
# Call the function starting at x0=1
res <- fn2(25)</pre>
```


The chart above suggests there are only 13 points, but actually the LCG cycle period is 13 and numbers are repeating.

U2
11
10
9
8
7
6
5
4
3
2
1
0
12
11

3

Implement the pseudo-random number generator:

$$X_i = 16807X_{i-1} \bmod (2^{31} - 1)$$

Using the seed 1234567, run the generator for 100,000 observations. Perform a chi-square goodness-of-fit test on the resulting PRN's. Use 20 equal-probability intervals and level $\alpha=0.05$. Now perform a runs up-and-down test with $\alpha=0.05$ on the observations to see if they are independent.

```
fnLCG3 <- function(seed = 1, n = 1)
{</pre>
```

```
rands <- rep(NA, n)
x <- seed
modVal <- (2^31 - 1)

for(i in 1:n)
{
    xi <- (16807 * x) %% (modVal)
    rands[i] <- xi
    x <- xi
}

return(rands)
}

n=100000
rn <- fnLCG3(1234567, n)</pre>
```

The first 6 generated numbers are shown below:

Chi-Square Test

```
intervals <- 20
maxRn <- max(rn)</pre>
minRn <- min(rn)
intWidth <- (maxRn - minRn) / intervals</pre>
lwr <- minRn</pre>
dfCounts <- data.frame(intID=c(), count=c())</pre>
# Bin the data ourselves, I'd quess there
# is an easier way, but this will do.
for(i in 1:intervals)
  upr <- lwr + intWidth</pre>
  inRange <- rn[lwr <= rn & rn < upr]</pre>
  dfCounts <- rbind(dfCounts, data.frame(intID=i, count=length(inRange)))</pre>
  # setup for next interval range
  lwr <- upr</pre>
}
# Do our own Chi-Squared test
Expected <- (100000 / intervals)
chi2 <- sum((dfCounts$count - Expected)^2 / Expected)</pre>
chi2
## [1] 14.7762
# Use built-in function to compare
chiTest <- chisq.test(dfCounts$count)</pre>
chiTest
```

```
## Chi-squared test for given probabilities
##
## data: dfCounts$count
## X-squared = 14.776, df = 19, p-value = 0.7367
```

The p-value = 0.7367029 is not less than $\alpha = 0.05$, therefore we don't reject the null hypothesis that the distribution is uniform.

intID	count
1	5069
2	5028
3	5044
4	5087
5	4948
6	4953
7	4937
8	4933
9	4900
10	4957
11	5088
12	4994
13	5076
14	5019
15	5002
16	5067
17	4981
18	4914
19	5062
20	4940

Runs Up-and-Down Test

Using the tseries package, we execute the Runs test (Trapletti and Hornik, 2015). First we have to construct the +/- vector. Here we simply convert to boolean.

```
s <- rep(NA, n - 1)
for(i in 1:n - 1)
{
    s[i] <- rn[i] < rn[i + 1]
}
runsTest <- runs.test(as.factor(s))
runsTest</pre>
```

```
##
## Runs Test
##
## data: as.factor(s)
## Standard Normal = 105.84, p-value < 2.2e-16
## alternative hypothesis: two.sided</pre>
```

Based on the p-value < 0.05, we reject the null hypothesis and conclude there is not evidence to support independence in the psuedo-random numbers.

4.

Give inverse-transforms, composition, and acceptance-rejection algorithms for generating from the following density:

$$f(x) = \begin{cases} \frac{3x^2}{2} & -1 \le x \le 1\\ 0 & otherwise \end{cases}$$

Inverse-Transforms

First find the indefinite integral of the probability density function:

$$F(x) = \int \frac{3x^2}{2} dx = \frac{x^3}{2}$$

Next set F(x) = R and solve for x in terms of R:

$$\frac{x^3}{2} = R$$

$$x^3 = 2R$$

$$F^-1(x) = \sqrt[3]{2R}$$

```
# Define a function of the F^-1(X)
invTfn4 <- function(r)
{
   vals <- (2 * r)^(1/3)
   return (vals)
}

# Generate the uniform psuedo-random vars
rVals <- runif(n, -1, 1)
# Convert to the desired distribution using the inverse transform method.
invTVals <- invTfn4(rVals)</pre>
```

Warning: Removed 74997 rows containing non-finite values (stat_bin).

Warning: Removed 2 rows containing missing values (geom_bar).


```
# Helper function for the Accept/Reject approach
myRARmethod <- function(fun, min, max)</pre>
{
  M <- 2
  accepted <- FALSE
  while(!accepted)
    # Get a random value from uniform distribtion (g(x) \text{ for } us)
    r <- runif(1, min, max)
    # Sample x from g(x) and u from U(0,1) (the uniform distribution over the unit interval)
    u <- runif(1, 0, 1)
    gx <- dunif(r, min, max)</pre>
    # Check whether or not u < f(x)/Mg(x).
    if(u < fun(r) / (M * gx))
    {
      accepted = TRUE
    }
  }
  return(r)
}
# Define a function for the PDF
Arfn4 <- function(x)</pre>
  if(-1 \le x \&\& x \le 1)
    val <- (3 * x^2) / 2
  }
  else
  {
    val = 0
  }
  return (val)
}
# Loop to generate the values
rarVals <- rep(NA, n)
for(i in 1:n)
  rarVals[i] <- myRARmethod(Arfn4, -1, 1)</pre>
}
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Composition

 $\operatorname{Hmm}.\dots$

5

Implement, test and compare different methods to generate from a N(0,1) distribution.

$$f(x) = \frac{1}{\sqrt{2\pi}}e^{\frac{-x^2}{2}}$$

Inverse Transform Method

$$F(X) = \int \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}} dx$$

It turns out the qnorm function is the inverse normal CDF function, so we'll use it.

```
normrandit <- function()
{
    u <- runif(1)
    return (qnorm(u))
}

itstats <- function(n)
{
    vals <- rep(NA, n)
    for(i in 1:n)
    {
      vals[i] <- normrandit()
    }

    return(list(values=vals, mean=mean(vals), sd=sd(vals)))
}

res <- itstats(10000)
res$mean</pre>
```

[1] -0.005543553

res\$sd

```
## [1] 1.003801
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Box-Muller Method

```
normrandbm <- function()</pre>
  u2 <- runif(2)
  v1 \leftarrow (-2 * \log(u2[1]))^(1/2) * \cos(2 * pi * u2[2])
  v2 \leftarrow (-2 * \log(u2[1]))^(1/2) * \sin(2 * pi * u2[2])
  return (c(v1, v2))
}
bmstats <- function(n)</pre>
  vals \leftarrow rep(NA, n / 2)
  for(i in seq(1, n, by=2))
    rs <- normrandbm()
     vals[i] <- rs[1]</pre>
     vals[i + 1] \leftarrow rs[2]
  return(list(values=vals, mean=mean(vals), sd=sd(vals)))
}
resBm <- bmstats(10000)</pre>
length(resBm[[1]])
```

[1] 10000

```
# Mean
```

resBm\$mean

```
## [1] 0.00486827
```

SD

resBm\$sd

[1] 1.009415

Accept Reject Method

```
normrandar <- function()</pre>
{
  continue <- TRUE
  while(continue)
    u2 <- runif(2)
    eu2 <- - log(u2)
    if(eu2[2] >= ((eu2[1] - 1)^2 / 2))
    {
      break
  }
  if(runif(1) > 0.5)
  {
    eu2 * -1
  return(u2)
}
arstats <- function(n)</pre>
{
  vals \leftarrow rep(NA, n / 2)
```

```
for(i in seq(1, n, by=2))
{
    rs <- normrandar()
    vals[i] <- rs[1]
    vals[i + 1] <- rs[2]
}

return(list(values=vals, mean=mean(vals), sd=sd(vals)))
}</pre>
```

Compare

```
dfCompare <- data.frame(method=c(), N=c(), mean=c(), sd=c(), time=c())</pre>
perfTest <- function(fun)</pre>
  dfResult <- data.frame(method=c(), N=c(), mean=c(), sd=c(), time=c())</pre>
  Ns <- c(100, 1000, 10000, 100000)
  it <- 2
  for(n in Ns)
    m <- rep(NA, it)
    s <- rep(NA, it)
    t <- rep(NA, it)
    for(i in 1:it)
      st <- system.time({ret <- fun(n)})
      #print(st)
      m[i] <- ret$mean
      s[i] \leftarrow ret\$sd
      t[i] <- st[[3]]
    dfResult <- rbind(dfResult, data.frame(method=deparse(substitute(fun)),</pre>
                                              N=n,
                                              mean=mean(m),
                                              sd=mean(s),
                                              time=mean(t)))
  }
  return (dfResult)
}
# Force less use of scientific notation
\# http://stackoverflow.com/questions/9397664/force-r-not-to-use-exponential-notation-e-g-e10
options("scipen"=100, "digits"=5)
dfCompare <- rbind(dfCompare, perfTest(itstats))</pre>
dfCompare <- rbind(dfCompare, perfTest(bmstats))</pre>
dfCompare <- rbind(dfCompare, perfTest(arstats))</pre>
```

method	N	mean	sd	time
itstats	100	0.02481	0.90215	0.010
itstats	1000	-0.01185	0.96086	0.020
itstats	10000	0.00391	1.00094	0.130
itstats	100000	-0.00350	0.99954	1.240
bmstats	100	-0.00982	0.96226	0.000

method	N	mean	sd	time
bmstats	1000	0.00911	0.99064	0.015
bmstats	10000	0.00700	1.00040	0.295
bmstats	100000	-0.00163	0.99798	30.380
arstats	100	0.47723	0.26306	0.010
arstats	1000	0.46741	0.25677	0.015
arstats	10000	0.47052	0.25735	0.320
arstats	100000	0.47091	0.25904	30.775

References

Trapletti, A. and K. Hornik. tseries: Time Series Analysis and Computational Finance. R package version 0.10-34. 2015. URL: http://CRAN.R-project.org/package=tseries.