3.5: Implicit Function Theorem

Asa Royal (ajr74)

2/21/24

Remark. Intuition of one-variable implicit function theorem: Imagine we have some C^1 function y = f(x) and $f'(x_0) \neq 0$. Then locally near x_0 , we can solve for x to find the inverse function $x = f^{-1}(y)$.

Why? If $f'(x_0) \neq 0$, the function is injective in the neighborhood of x_0 . i.e. Given a value of y = f(x), we can uniquely identify an x. i.e. f^{-1} exists!

Given an implicit curve F(x,y) = c, the ICT will tell us under what conditions the curve lets us eexplicitly define y = f(x) and allows us to find f'(x)?

 $f'(x) = -\frac{F_x}{F_y}$ if $F_y \neq 0$.

Remark. Assume we have some F(x,y,z)=c level set. We can solve for z as a function of x,y at (x_0,y_0,z_0) iff $\frac{\partial F}{\partial z}(x_0,y_0,z_0)\neq 0$

Theorem 1 (IFT higher dimension). Assume we want to solve m equations for m variables z_1, \ldots, z_m at (x_0, \ldots, x_n) . Then we must have

$$\det \begin{bmatrix} \frac{\partial F_1}{\partial z_1} & \cdots & \frac{\partial F_1}{\partial z_m} \\ \vdots & & \vdots \\ \frac{\partial F_m}{\partial z_1} & \cdots & \frac{\partial F_m}{\partial z_m} \end{bmatrix} \neq 0$$

at (x_0, \ldots, x_n) . The function must be full rank! Full rank = invertible!

Remark. We can then find, e.g., $\frac{\partial u}{\partial x}$ by implicitly differentiating the m equations with respect to x and solving the set of linear equations.

Theorem 2 (inverse function theorem). Say we have functions f_1, \ldots, f_n with continuous partials. If near a given solution $\vec{x}_0, \vec{y}_0, J(f)(\vec{x}_0) \neq 0$, then the equations

$$\begin{cases} f_1(x_1, \dots, x_n) = y_1 \\ & \dots \\ f_n(x_1, \dots, x_n) = y_n \end{cases}$$

can be uniquely solved as $\vec{x} = g(\vec{y})$