

Tema 2: Distribuciones de carga. Capacidad y energía electrostática

- 1. Densidades de carga.
- 2. Ley de Gauss: aplicaciones.
- 3. Propiedades electrostáticas de los conductores.
- 4. Condensadores y dieléctricos.
- 5. Energía del campo eléctrico

1

Densidades de carga

Cargas puntuales

$$\vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} \vec{u}_r$$

Distribución continua de cargas

$$d\vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{dq}{r^2} \vec{u}_{\rm r}$$

Ppo. Superposición (sumatorio)

$$\vec{E} = \sum_{i} \vec{E}_{i} = \sum_{i} \frac{1}{4\pi\varepsilon_{0}} \frac{q_{i}}{r_{i}^{2}} \vec{u}_{r_{i}}$$

Ppo. Superposición (integración)

$$\vec{E} = \frac{1}{4\pi\varepsilon_0} \int \frac{dq}{r^2} \, \vec{u}_{\mathbf{r}}$$

2

Densidades de carga

Cargas puntuales

$$V = \frac{1}{4\pi\varepsilon_0} \frac{q}{r}$$

Distribución continua de cargas

$$dV = \frac{1}{4\pi\varepsilon_0} \frac{dq}{r}$$

Ppo. Superposición (sumatorio)

$$V = \sum V_i = \sum_i \frac{1}{4\pi\varepsilon_0} \frac{q_i}{r_i}$$

Ppo. Superposición (integración)

$$V = \frac{1}{4\pi\varepsilon_0} \int \frac{dq}{r}$$

3

Densidades de carga

Densidad lineal (C/m)

$$\lambda = \frac{dq}{dL}$$
 $dq = \lambda dL$

Densidad superficial (C/m^2)

$$\sigma = \frac{dq}{dS} \quad dq = \sigma \, dS$$

Densidad volúmica (C/m³)
$$\rho = \frac{dq}{dV} \quad dq = \rho \, dV$$

1,0

Densidades de carga

Distribución lineal de carga λ : densidad lineal de carga

5

Densidades de carga

 σ : densidad superficial de carga $\sigma = \frac{\mathrm{dq}}{\mathrm{dS}}$ $dq = \sigma \, dS$

$$\vec{\mathbf{E}} = \int_{S} \frac{1}{4\pi\varepsilon_0} \frac{dq}{r^2} \vec{\mathbf{u}}_r = \int_{S} \frac{1}{4\pi\varepsilon_0} \frac{\sigma dS}{r^2} \vec{\mathbf{u}}_r \qquad V = \frac{1}{4\pi\varepsilon_0} \int_{S} \frac{\sigma dS}{r}$$

6

Densidades de carga

 $\rho \text{: densidad volum\'etrica de carga } \rho = \frac{dq}{dV}$

$$dq = \rho \, dV$$

dV : diferencial de volumen

$$V = \frac{1}{4\pi\varepsilon_0} \int_{V} \frac{\rho dV}{r}$$

$$\vec{\boldsymbol{E}} = \int_{V} \frac{1}{4\pi\epsilon_0} \frac{dq}{r^2} \vec{\boldsymbol{u}}_r = \int_{V} \frac{1}{4\pi\epsilon_0} \frac{\rho dV}{r^2} \vec{\boldsymbol{u}}_r$$

7

Flujo del campo eléctrico

Campo eléctrico uniforme y superficie plana perpendicular

Flujo del campo eléctrico

Campo eléctrico uniforme y superficie plana inclinada

$$\Phi_E = ES_1 = ES\cos\theta$$

$$\Phi_{\scriptscriptstyle E} = \vec{E} \cdot \vec{S}$$

9

Flujo del campo eléctrico

Caso más general:

$$d\Phi_E = \vec{E} \cdot d\vec{S}$$

$$\Phi_E = \int_S \vec{E} \cdot d\vec{S}$$

10

Flujo del campo eléctrico

SUPERFICIE CERRADA (criterio de signos):

El flujo total puede ser positivo (saliente), negativo (entrante) o cero.

11

Flujo del campo eléctrico

12

"El flujo eléctrico neto a través de cualquier superficie cerrada es proporcional a la carga neta encerrada por la superficie".

$$\Phi_E = \oint_{S} \vec{E} \cdot d\vec{S} = \frac{q_{encerrada}}{\mathcal{E}_0}$$

Karl Friedrich Gauss (1777-

13

13

Ley de Gauss

$$\Phi_{\scriptscriptstyle E} = \frac{q_{\scriptscriptstyle 1} + q_{\scriptscriptstyle 2}}{\varepsilon_{\scriptscriptstyle 0}}$$

14

En Electrostática la Ley de Gauss es equivalente a la Ley de Coulomb.

Ley de Gauss

Demostración:

$$\Phi_E = \oint_S \vec{E} \cdot d\vec{S} = \frac{q_{enc}}{\varepsilon_0}$$

$$\vec{E}$$
 • simetrías para definir la s. gauss.

$$d\Phi_E = \vec{E} \cdot d\vec{S} = ...(\vec{E}, d\vec{S} \text{ paralelo })... = E dS$$

$$\oint_{S} \vec{E} \cdot d\vec{S} = \oint_{S} E \, dS = \dots E \text{ constante...} =$$

$$= E \oint_{S} dS = E \, 4\pi r^{2}$$

$$= E \oint_{S} dS = E 4\pi r^{2}$$

$$E 4\pi r^{2} = \frac{q}{\varepsilon_{0}}$$

$$\vec{E} = \frac{1}{4\pi \varepsilon_{0}} \frac{q}{r^{2}} \vec{u}_{r}$$

15

Ley de Gauss

Aplicaciones

"gaussiana"

En distribuciones continuas de carga con elevada simetría la Ley de Gauss nos permite calcular fácilmente el módulo del campo eléctrico.

$$\Phi_E = \oint_{S} \vec{E} \cdot d\vec{S} = \frac{q_{enc}}{\mathcal{E}_0}$$

escoger superficie gaussiana apropiada en cada caso:

- E constante
- \vec{E}, \vec{dS} paralelos o perpendiculares entre sí

Aplicaciones: plano indefinido cargado

 σ uniforme

17

17

Ley de Gauss

ejercicio/ Campo creado por dos planos indefinidos cargados, separados una distancia *d*, con igual densidad de carga pero de signo opuesto.

18

Aplicaciones: carga lineal indefinida

$$\oint_{\text{sup.cil.}} \vec{\boldsymbol{E}} \cdot d\vec{\boldsymbol{S}} = \frac{\lambda L}{\epsilon_0}$$

Ē//d**Š**

$$E2\pi rL = \frac{\lambda L}{\epsilon_0}$$

$$\mathsf{E} = \frac{\lambda}{2\pi\epsilon_0 \mathsf{r}} (\mathsf{m\'odulo})$$

19

19

Ley de Gauss

Aplicaciones: corteza esférica cargada

$$r < R$$
$$r < R \rightarrow \Phi = 0 \rightarrow$$

$$\vec{\textbf{E}}_{int} = 0 \rightarrow V = cte$$

$$r \ge R \to \int_{S_{ext}} \vec{\mathbf{E}} \cdot d\vec{\mathbf{S}}$$

$$=\mathbf{E}\cdot 4\pi \mathbf{r}^2 = \frac{\mathbf{Q}}{\varepsilon_0}$$

$$r \ge R$$

$$r \ge R \to \int_{S_{ext}} \vec{E} \cdot d\vec{S}$$

$$= E \cdot 4\pi r^2 = \frac{Q}{\varepsilon_0} \to$$

$$E_{ext} = \frac{Q}{4\pi\varepsilon_0 r^2}$$
20

Aplicaciones: corteza esférica cargada

Aplicaciones. Con teza esperimento del potencial eléctrico. $V_P = -\int_{ref}^P \vec{E} \cdot d\vec{l} \ (V_{ref} = 0)$

$$V_{P} = -\int_{ref}^{P} \vec{E} \cdot d\vec{l} \ (V_{ref} = 0)$$

$$r < R$$
 $V_{\text{int}} = -\int \vec{E}_{\text{int}} \cdot d\vec{l} = C_1$

Condiciones:

•origen de potenciales
$$V_{\infty} = 0 \Rightarrow C_2 = 0$$

•continuidad en la frontera

$$V_{\rm int}(r=R) = V_{\rm ext}(r=R) \Rightarrow C_1 = \frac{Q}{4\pi\varepsilon_0 R}$$

$$V_{\rm int} = \frac{Q}{4\pi\varepsilon_0 R}; V_{\rm ext} = \frac{Q}{4\pi\varepsilon_0 r}$$

21

21

Ley de Gauss

Aplicaciones: corteza esférica cargada (cont.)

Aplicaciones: distribución esférica de carga

23

Conductores en equilibrio electrostático

Conductor en Equilibrio = no corrientes

Campo nulo en el interior.

 $\rho = 0$ V = cte s

Densidad volumétrica de carga nula.

Toda la carga está en la superficie.

Al ser nulo el campo eléctrico, el potencial electrostático es constante (Volumen y superficie equipotenciales).

El campo eléctrico en puntos próximos al conductor es perpendicular a la superficie.

24

Conductores en equilibrio electrostático

1. En los conductores que alcanzan la situación de equilibrio, el campo eléctrico en su interior es cero.

Si *E* fuese diferente de cero, la carga libre en la dirección del campo no estaría en reposo. Por tanto no habría equilibrio.

2. La carga de un conductor se encuentra totalmente en la superficie del conductor.

De 1, E=0 en $S_{int} \Rightarrow \Phi=0 \Rightarrow q=0$ en $S_{int} \Rightarrow q$ está en la superficie del conductor S

25

25

Conductores en equilibrio electrostático

3. La superficie de un conductor en equilibrio electrostático es una superficie equipotencial

Si no fuera equipotencial, las q se moverían de los puntos de potencial alto a los de potencial bajo, hasta que el potencial sea el mismo en toda la superficie. Si esto sucede, el conductor no está en equilibrio. Por tanto, la superficie es equipotencial.

4. El campo eléctrico en puntos próximos a la superficie del conductor es perpendicular a la superficie y su valor es:—

Como la superficie es equipotencial, y las líneas de fuerza son \bot a estas superficies \Rightarrow E es también \bot a la superficie

$$\Phi_{E} = \oint_{S} \vec{E} \cdot d\vec{S} = ES$$

$$q_{enc} = \sigma S$$

$$\vec{E} = \frac{\sigma}{\varepsilon_{0}} \vec{u}_{n}$$

26

Prop. electrostáticas de los conductores

Fenómenos de influencia electrostática

27

27

Prop. electrostáticas de los conductores

Fenómenos de influencia electrostática

28

Prop. electrostáticas de los conductores

Jaula de Faraday:

En un conductor cargado y en equilibrio electrostático, que posea una cavidad interior, la carga esta localizada sólo en la superficie exterior.

29

30

29

Prop. electrostáticas de los conductores

Fenómenos de influencia electrostática: Pantalla

Prop. electrostáticas de los conductores

Fenómenos de influencia electrostática: Pantalla

hacia fuera

31

31

Prop. electrostáticas de los conductores

■ Efecto punta: El campo eléctrico es mayor cerca de las zonas

de menor radio de curvatura

RUPTURA DEL DIELÉCTRICO

Aire: $E \sim 3 \text{ MV/m}$

32

CONDENSADORES

Condensador

dispositivo formado por dos conductores próximos con cargas de la misma magnitud y signo contrario este sistema es un dispositivo para almacenar carga y energía.

Capacidad

"cociente entre la carga de cualquiera de los conductores y la diferencia de potencial existente entre ellos."

Símbolo:

33

33

Condensador de placas plano-paralelas

CONDENSADORES

$$\Xi = \frac{\sigma}{\varepsilon_0}$$

$$\sigma = \frac{G}{A}$$

$$C = \frac{Q}{V} = \frac{\varepsilon_0 A}{d}$$

La capacidad no depende de **Q** ni de **V**

Por lo general **C** depende del tamaño, forma, geometría de los condensadores y del medio aislante que los separa

0.3 mm

34

CONDENSADORES

35

35

CONDENSADORES

ejercicio/ Capacidad de un condensador con lámina metálica en su interior

$$C_{\text{ANTES}} = \frac{Q}{V_{\text{AB}}} =$$

$$\frac{Q}{Ed} = \frac{Q}{\frac{\sigma}{\varepsilon_0}d} = \frac{\varepsilon_0 S}{d}$$

$$\begin{split} &C_{\text{DESPUÉS}} = \frac{Q}{V_{\text{AB}}} = \frac{Q}{E(d-b)} \\ &= \frac{Q}{\frac{\sigma}{\epsilon_0}(d-b)} = \frac{\epsilon_0 S}{(d-b)} \end{split}$$

36

CONDENSADORES

Asociación de condensadores: EN SERIE

$$V_a - V_m = V_1 = \frac{Q}{C_1}$$

$$V_m - V_b = V_2 = \frac{Q}{C_2}$$

$$\Delta V = V_a - V_b = \frac{Q}{C} + \frac{Q}{C}$$

$$C_{eq} = \frac{Q}{V_a - V_b}$$

$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2}$$

$$\frac{1}{C_{eq}} = \sum_{i=1}^{N} \frac{1}{C_i}$$

37

37

CONDENSADORES

Asociación de condensadores: EN PARALELO

$$Q_1 = C_1 \Delta V$$

$$Q_2 = C_2 \Delta V$$

$$\Delta V = V_a - V_b$$

$$Q = Q_1 + Q_2$$

$$\frac{Q}{V_a - V_b} = C_1 + C_2$$

38

DIELÉCTRICO HOMOGÉNEO ENTRE LAS PLACAS DE UN CONDENSADOR

La capacidad del condensador aumenta

39

39

PROPIEDADES ELECTROSTÁTICAS DE LOS DIELÉCTRICOS

CONSTANTES DIELÉCTRICAS

Material dieléctrico	Constante dieléctrica
Aire	1.00059
Aceite de transformador	2.24
Poli estireno	2.55
Papel	3.7
Baquelita	4.9
Vidrio (Pyrex)	5.6
Porcelana	7
Agua (20°)	80

40

Sustancia Polarizada

Los dipolos eléctricos se alinean de manera espontánea o debido a la acción de un campo eléctrico.

Molécula polar

Molécula no polar

 $\vec{p} = qd\,\vec{u}_p$

 $\vec{\tau} = \vec{p} \wedge \vec{E}$

41

41

PROPIEDADES ELECTROSTÁTICAS DE LOS DIELÉCTRICOS

DIELÉCTRICO HOMOGÉNEO ENTRE LAS PLACAS DE UN CONDENSADOR

Permitividad eléctrica relativa del dieléctrico

È

42

DIELÉCTRICO HOMOGÉNEO ENTRE LAS PLACAS DE UN CONDENSADOR

$$E_0 = \frac{\sigma_p}{\varepsilon_0}$$

$$E_d = \frac{\sigma_d}{\varepsilon_0}$$

$$E = E_0 - E_d = \frac{E_0}{\varepsilon_r}$$

 $\downarrow \downarrow$

$$\sigma_d = \sigma_p \left(1 - \frac{1}{\varepsilon_r} \right) \Rightarrow \sigma_d \leq \sigma_p$$

Si no hay dieléctrico: $\varepsilon_r = 1$, $\sigma_d = 0$

Si hay un conductor: $\varepsilon_r = \infty$, $\sigma_d = \sigma_f$

43

43

PROPIEDADES ELECTROSTÁTICAS DE LOS DIELÉCTRICOS

La capacidad del condensador aumenta

$$C = \varepsilon_{r}C_{0}$$

La diferencia de potencial y el campo eléctrico disminuyen

$$V = \frac{V_0}{\varepsilon_r}$$

$$E = \frac{E_0}{\varepsilon_r}$$

Densidad superficial de carga del dieléctrico

$$\sigma_d = \sigma_p \left(1 - \frac{1}{\varepsilon_r} \right)$$

44

CAMPO Y POTENCIAL ELÉCTRICO DE UNA *q* PUNTUAL DENTRO DE UN DIELÉCTRICO

$$\vec{F}_{12} = \frac{1}{4\pi\varepsilon} \frac{q_1 q_2}{r^2} \vec{u}_{12}$$

$$\vec{E} = \left(\frac{q}{4\pi e^2}\right) \vec{u}_r$$

$$V = \frac{q}{4\pi \varepsilon r}$$

45

45

ENERGÍA DEL CAMPO ELÉCTRICO

ENERGÍA DE UN CONDENSADOR

- Durante la carga de un condensador, se transfiere carga desde la batería hasta las placas. La batería (generador) realiza un trabajo en el proceso.
- Parte de este trabajo queda almacenado en forma de energía potencial electrostática, U.

ENERGÍA DE UN CONDENSADOR

ENERGÍA DEL CAMPO ELÉCTRICO

Condensador de capacidad C, con carga q

$$dU = Vdq = \frac{q}{C}dq$$

$$U_{Q} - U_{0} = \frac{1}{C} \int_{0}^{Q} q \, dq \quad U = \frac{1}{2} \frac{Q^{2}}{C} \quad U = \frac{1}{2} CV^{2} = \frac{1}{2} QV$$

$$U = \frac{1}{2}CV^2 = \frac{1}{2}QV$$

47

ENERGÍA DEL CAMPO ELÉCTRICO

ENERGÍA DEL CAMPO ELÉCTRICO

Para un condensador de láminas planas y paralelas

$$C = \frac{Q}{\Delta V} = \frac{\varepsilon_0 A}{d}$$

$$\Rightarrow U = \frac{1}{2}CV^2 = \frac{1}{2}(Ad)\varepsilon_0 E^2$$
DENSIDAD DE ENERGÍA

Energía por unidad de volumen (V) entre las placas del condensador

$$u_E = \frac{U}{V} = \frac{1}{2} \varepsilon_0 E^2$$

$$U = \int_{V} u_E \ dV$$
Energía eléctrica almacenada en un volumen V donde existe un campo eléctrico E

48

ENERGÍA DEL CAMPO ELÉCTRICO

ejercicio/ Tenemos una esfera metálica con carga neta q. Determina la energía almacenada en el campo eléctrico generado por la esfera.

¿A qué distancia R´ del centro de la esfera estará almacenada la mitad de la energía total?

4u