SIGTACS Lecture Series on Galois Theory

Spring 2017

Lecture 1: January 17

Lecturer: Himanshu Shukla Scribe: Siddharth Agrawal

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

1.1 Ideals

From henceforth R will denote a commutative ring with the multiplicative identity.

Definition 1.1 A set $I \subseteq R$ is an ideal of R if:

- I is a subgroup of R under addition.
- $\forall r \in R, r \bullet I \subseteq I$

Here is a list of few basic definitions from ring theory

- An ideal is said to be *proper* if $I \subsetneq R$.
- A proper ideal I is said to be a **Maximal** if for an ideal J of R, $I \nsubseteq J$ then J = R.
- An ideal P is said to be prime if

$$\alpha \bullet \beta \in P \Rightarrow \alpha \in P \mid \beta \in P$$

Lemma. $R \setminus I$ is a field or an integral domain *iff* I is a maximal ideal or I is a prime ideal respectively.

1.2 Module

A module can be thought of as a vector space over a ring (instead of a field). **Definition.** A module M over a ring R is such that $\exists \varphi : R \times M \to M$ satisfying:

-
$$r_1(r_2 \bullet m) = (r_1r_2) \bullet m$$

$$- (r_1 + r_2) \bullet m = r_1 \bullet m + r_2 \bullet m$$

$$-r \bullet (m_1 + m_2) = r \bullet m_1 + r \bullet m_2$$

Example: Every ideal is a module over its underlying ring.

1.3 Extensions of Fields

If a field $F \subset E$, then E is said to be an *extension* of F. It is trivial to see that E forms a vector space over the field F. Depending on the finiteness of the basis of this vector space, we have *finite* or *infinite* extensions. $(\overline{\mathbb{Q}} : \mathbb{Q}) := \overline{\mathbb{Q}}$ is an extension of \mathbb{Q} .

[E:F]:= dimension of the vector space E over the field F.

Note. Integral Domain \supset Unique Factorisation Domain \supset Principle Ideal Domain \supset Euclidean Domain \supset Field

Definition. R is a Euclidean domain if \exists a map $\varphi: R \to Z_+$ such that $\forall a, b \in R, b \neq 0, \exists q, r$ such that

$$a = bq + r$$
, $\varphi(b) > \varphi(r)$ or $r = 0$

Example: F[x] is a Euclidean domain.

Definition. R is a principle ideal domain (PID) if $\forall p, q \in R, \exists x, y \text{ s.t.}$,

$$px + qy = gcd(p, q)$$

Note: If R is a PID, but not a Euclidean domain, then we don't have a algorithm to find these x and y values, although it is proven that they must exist.

Let $\alpha \in E \supseteq F$, then α is called *algebraic* over F if $\exists (a_0, a_1, ..., a_n) \in \mathbb{F}_{n+1}$ s.t.,

$$a_0 + a_1 \alpha + \dots + a_n \alpha^n = 0$$

i.e. $\exists p(x) \in F[x] \text{ s.t. } p(\alpha) = 0.$

An extension E of a field F is said to be algebraic if every element of E is algebraic over F.

Let $\varphi: F[X] \to E, X \mapsto \alpha$

Observation. α is algebraic *iff* φ has a non-trivial kernel.

Now, by the second isomorphism theorem,

$$\frac{F[X]}{ker(\varphi)} \cong F[\alpha]$$

. Since F[X] is a Euclidean domain. therefore F[X] is definitely a PID. Also, $ker(\varphi)$ is an ideal under all circumstances. Therefore, $ker(\varphi)$ has to be a principle ideal of F[X],

$$\Rightarrow \exists p(X) \in F[X] \ s.t. \ ker(\varphi) = (p(X))$$

Claim. p(X) is unique and irreducible, & $p(\alpha) = 0$. (Proof left as an Exercise)

Proposition. If E is finite over F, then E is algebraic over F. *Proof:* $\forall \alpha \in E, \exists n \text{ s.t. } 1, \alpha,, \alpha^n$ is linearly dependant.

Theorem. Let $K \subseteq F \subseteq E$ be fields, then

$$[F:K][E:F] = [E:K]$$

Note: We have not assumed anything regarding the finiteness of F and E as extensions, i.e. this theorem is valid even for infinite bases.

If (α_i) , $i \in I$ is an infinite basis of a vector space E over a field F, then

$$\forall \beta \in E, \ \beta = \sum_{i \in I} c_i \alpha_i, \ where \ only \ finitely \ many \ c_i \neq 0$$

Let $K(\alpha)$ be the smallest field containing α nad K, i.e. it is the smallest extension of the field K that contains α .

$$\textbf{Proposition.} \ \ (\mathrm{i}) \ K[\alpha] = K(\alpha) \qquad \qquad (\mathrm{ii}) \ [K(\alpha):K] = deg(Irr(\alpha,K,X))$$