

1 – Complete a tabela abaixo com os valores de n e com a quantidade de bytes totais de cada memória. Nessa tabela, a letra n indica a quantidade de bits disponíveis para endereços de memória e a letra m indica a quantidade de bits por célula de memória. Observe a primeira linha como exemplo:

2 ⁿ x m	n	m	Bytes
2K x 16	11	16	4096 ou 4K
64K x 8	16	8	65536 ou 64K
16K x 32	14	32	65536 ou 64K
96K x 12	17	12	196608 ou 192K
1K x 4	10	4	512 ou 1K

OBS: K equivale a 1024

2 – Imagine que um chip para uma memória RAM foi projetado com 128 células de 8 bits cada, quantos chips serão necessários para montar uma memória de 2048 bytes?

- 3 Um circuito integrado que implementa uma memória RAM tem uma capacidade de 1024 palavras de 8 bits cada. Pede-se :
- a) Quantos bits de endereço são necessários nesse chip?

 $2^10 = 1024$ bits, ou seja, **10 bits**

b) Quantos chips são necessários para construir uma memória de 16K x 16?

4 - Imagine que voce precisa armazenar no mínimo 535 palavras e o maior numero que voce precisa armazenar é 2209. Quantos bits de endereçamento e qual a largura em bits mínima que deve possuir esta memória?

 $2^10 = 1024$ bits, ou seja, **10 bits de endereçamento**

 $2^{12} = 4096$ bits, ou seja, **mínimo 12 bits de largura**