

Predicción de Precios de Viviendas

<u>Machine Learning</u>

ÍNDICE

- 1.¿Cómo tasar una vivienda de forma precisa y objetiva?
- 2. Propuesta de valor
- 3. Flujo de trabajo
- 4.En búsqueda del mejor modelo
- 5. Variables de interpretación de datos
- 6. Simulador de precios en tiempo real
- 7.¿Qué decisiones nos permite tomar este modelo?
- 8. Resumen del proyecto

¿Cómo tasar una vivienda de forma precisa y objetiva?

La valoración de inmuebles = proceso complejo y subjetivo

Un error en la tasación puede significar pérdidas económicas

Necesidad: Crear una herramienta que ofrezca una valoración rápida, objetiva y basada en datos

Propuesta de Valor

- Desarrollar un modelo de <u>Machine Learning</u> capaz de predecir el precio de venta (SalePrice) de una vivienda a partir de sus características.
- Dataset Utilizado: Ames Housing Dataset, con 1460 registros y 79 características por vivienda.
- Herramientas: Python, Pandas, Scikit-Learn y XGBoost.

Flujo de trabajo

Análisis y Limpieza de Datos

Preprocesamiento e Ingeniería de Características

Entrenamiento de Modelos

Evaluación y Selección

Interpretación y Despliegue

Modelo óptimo

En Búsqueda del Mejor Algoritmo

Variables de Mayor Impacto

Simulador de Precios en Tiempo Real

¿Qué Decisiones nos Permite Tomar Este Modelo?

AGENCIAS INMOBILIARIAS

- Fijar precios de salida competitivos y basados en datos
- 2 Identificar propiedades infravaloradas
- Asesorar a clientes sobre qué reformas más valor

COMPRADORES VENDEDORES

- Obtener una segunda opinión objetiva sobre el precio de una propiedad
- Tener una base más sólida para la negociación

Resumen del Proyecto

Se ha construido con éxito un modelo (XGBoost) capaz de predecir precios de viviendas con un error promedio de ~\$15,800

Modelo	Error Absoluto Medio (MAE)	R2 Score (Varianza explicada)
Random Forest (Base)	-\$17,900	-88%
Random Forest (Optimizado)	-\$17,100	-89%
XGBoost Regressor (Final)	-\$15,800	-90%

Resumen del Proyecto

Se ha construido con éxito un modelo (XGBoost) capaz de predecir precios de viviendas con un error promedio de ~\$15,800

Modelo	Accuracy (Precisión Global)	AUC Score	
Regresión Logística (Lasso)	~91,5%	~0,97	
XGBoost Classifier	~92,5%	~0,98	

¡Muchas Gracias!

https://github.com/YairNRojas

www.linkedin.com/in/yairrojas