LES SUITES E01C

EXERCICE N°4 (Le corrigé)

- (u_n) est la suite arithmétique de premier terme $u_1 = -80$ et de raison r = 10.
- 1) Pour tout entier nature $n \neq 0$, exprimer u_{n+1} en fonction de u_n et r.

Pour $n \in \mathbb{N}^*$, $u_{n+1} = u_n + r$ $u_{n+1} = u_n + 10$

- 2) Calculer les termes u_2 , u_3 et u_4 .
- $u_{2} = u_{1} + r = -80 + 10$ $u_{2} = -70$ $u_{3} = u_{2} + r = -70 + 10$ $u_{3} = -60$ $u_{4} = u_{3} + r = -60 + 10$ $u_{4} = -50$
- 3) Pour tout entier $n \neq 0$, exprimer u_n en fonction de n.

Pour $n \in \mathbb{N}^*$, $u_n = u_1 + (n-1)r$

Car le premier terme de la suite est u_1

- 4) Donner alors les valeurs de u_7 , u_{10} et u_{14} .
- $u_{7} = -80 + 10 \times (7 1)$ $u_{7} = -20$ $u_{10} = -80 + 10 \times (10 1)$ $u_{10} = 10$ $u_{14} = -80 + 10 \times (14 1)$ $u_{14} = 50$
- 5) Quel est le rang du terme égal à 80 ? Justifier.

Notons *n* le rang cherché.

On peut écrire :

$$u_n = 80$$

Les équations suivantes sont équivalentes :

$$u_n = 80$$
 $-80 + 10$

$$-80+10(n-1) = 80$$

$$-80+10(n-1)+80 = 80+80$$

$$10(n-1) = 160$$

$$\frac{10(n-1)}{10} = \frac{160}{10}$$

$$n-1 = 16$$

$$n-1+1 = 16+1$$

$$n = 17$$