Data Center Management

Cloud Computing

Outline

- Data center overview
- Virtual machine management
 - Consolidation
 - Migration
- Storage system
- Network system
- Dynamic provisioning
- Power management

VM MANAGEMENT

VM life cycle

VM consolidation

- Increase system utilization
 - VM consolidation is the way to share power/hardware/...
 - Hardware is getting cheaper, electricity is not
- Main challenge: memory system
 - Memory reclamation
 - Memory sharing
 - Memory compression

Memory overcommit

- Suppose each VM requests 4G RAM
 - But it usually uses 2.5 G RAM
- Suppose host machine has 48 G RAM
 - It can only support 12 VMs (48/4=12)
 - With memory overcommit it can suppose 19 VMs
 - The memory saved is 19*4-48 = 24G

Memory overcommit

- Memory is a non-renewable resource
- Secondary storage is really slow.
 - Many millions of CPU cycles in one disk seek
 - Process in guest accesses non-resident memory
- Memory reclaim
 - Which VM/process/page to reclamation?
- Memory sharing
 - Which pages can be shared?

Memory reclamation

- Problem: when the physical memory is not enough, host machine (VMM) needs to reclaim memory from VMs
 - Which VM to reclaim?
 - Which pages to reclaim?
 - Double paging problem
- Solutions
 - Asynchronized page fault
 - Ballooning technique

Asynchronous page fault

- Host memory overcommit may cause guest memory to be swapped.
- When guest vCPUs access memory swapped out by a host its execution is suspended until memory is swapped back.
- Asynchronous page fault is a way to try and use guest vCPU more efficiently by allowing it to execute other tasks while page is brought back into memory.

Transparent page sharing

- Multiple VMs share the same page
 - The content of the page are the same to all the VMs
 - Many system (OS) memory are the same

Ballooning

- Ballooning v A balloon is a pseudo-device driver to guest OS v Memory reclamation steps
- When host needs to reclaim memory from the guest OS, it inflates the balloon.
- Balloon requests memory in guest OS
- Guest OS needs to page out guest memory to satisfy the request.
- The requested memory by the balloon is reclaimed by the host.

Decide identical pages

- If there are N pages per VM and there are k VMs, the number of comparison will be $O(N^2k^2)$.
- Memory comparison of two pages is expensive.
 - Binary string comparison of two size *m* data, where *m* is the page size.
- Using hashing
 - Pages with the same hashcode may be identical.
 - Pages with different hashcodes must be different.
 - Reduce the unnecessary page comparisons.

What is VM migration?

Moving a VM from one physical machine to another one

 Cold migration: VM stops to execute any currently working program and convite current states to the

machine where the VM n

 Live migration: During the migration process, the execution in VM might go on without stopping the execution of programs.

Why VM migration?

- Consolidate resources
- Load balance
- System maintenance
- Performance improvement
- User's carte blanche of VM
- Why live migration?
 - •
 - •

What to migrate?

- The VM status needs be moved to new physical machine
 - Register, memory, hard disk, ...
 - Data in cache are usually flushed before migration
 - Data in hard disk may not be attached to the physical machine
- VM managing information.
 - Virtualized hardware info.

Problems of migration

- Performance of server migration
 - The system state includes memory, cache, register,...
 - The memory size can be very large
 - Minimize the downtime
- The data/storage migration
 - Block device migration
 - NAS(Network-attached storage) redirection
- The network migration
 - Maintain the network connection
 - Maintain the LAN structure

Two major concerns

- 1. Downtime: the period during which the service is unavailable due to there being no currently executing instance of the VM
 - This period will be directly visible to clients of the VM as service interruption.
- 2. Total migration time: the duration between when migration is initiated and when the original VM may be finally discarded.
 - The source host may potentially be taken down for maintenance, upgrade or repair.

Migration methods

- Stop-and-copy (S-C)
- Demand-migration (D-M)
- Iterative precopy (I-P)

Stop and copy

- Procedure
 - Stop source VM
 - 2. Copy all pages over the network
 - 3. Start destination VM
- Longest service downtime
- Shortest migration duration

Demand migration

- Procedure
 - 1. Copy over critical OS structures
 - 2. Start destination VM
 - 3. Page faults trigger network copy
- Shortest Service Downtime
- Longest Migration Duration

Iterative precopy

- Procedure
 - 1. Iteratively copy pages over network
 - 2. Keep copying dirtied pages until threshold
 - 3. At threshold, stop source VM, copy remaining pages, start destination VM
- Balances service downtime and migration duration
- Method used by VMware/Xen

Live migration

- Relocation strategy :
 - 1. Pre-migration process
 - 2. Reservation process
 - 3. Iterative pre-copy
 - 4. Stop and copy
 - 5. Commitment

Live Migration Technique

Example: Live migration

Pre-copy migration: Round 1

Host A

Host B

Example: Live migration

Pre-copy migration: Round 2

Host A

Host B

Example: Live migration

Stop and copy: Final Round

26

Problems

- Migration of block devices
 - Some harddisk is still attached on host
 - Massive data to migrate
- Network forwarding/redirecting/tunneling
 - Ongoing network transmissions.
 - Migration over WAN*
- Hardware devices
 - Some data in hardware buffer need be migrated too.
 - Hardware assistant virtualization.