Gerçek Zamanlı İşletim Sistemi Kavramları

Bu ders, gerçek zamanlı işletim sistemi (RTOS) kavramlarına odaklanarak Linux'ın gerçek zamanlı çekirdek ve ilgili araçlarla nasıl kullanıldığını detaylı bir şekilde ele alacaktır.

1. Linux'ta Gerçek Zamanlı Çekirdek (PREEMPT-RT)

Avantajları ve Dezavantajları

Avantajları:

- Düşük Gecikme: Daha hızlı ve tahmin edilebilir tepki süreleri sağlar.
- Esneklik: Hem gerçek zamanlı hem de geleneksel iş yükleri için uygundur.
- **Topluluk Desteği**: Sürekli geliştirilen ve desteklenen açık kaynak bir projedir.

Dezavantajları:

- **Performans Kayıpları**: Yüksek preemption seviyesi nedeniyle, bazı geleneksel iş yüklerinde performans düşüşü yaşanabilir.
- Uyumluluk Sorunları: Tüm donanımlar veya sürücüler RT yaması ile uyumlu olmayabilir.
- Yapılandırma Zorluğu: Yüksek seviyede uzmanlık gerektirebilir.

PREEMPT-RT'nin bu avantaj ve dezavantajları, kullanım senaryolarına bağlı olarak dikkatlice değerlendirilmelidir.

Gerçek zamanlı Linux, belirli işlerin belirli süreler içinde tamamlanmasını garanti eden bir sistemdir. PREEMPT-RT, Linux'ı gerçek zamanlı hale getirmek için geliştirilmiş bir yama setidir.

Temel Kavramlar

- Deterministik Davranış: Sistem, her zaman tahmin edilebilir sürelerde yanıt verir.
- **Preemption (Kesme)**: İşlemcide çalışan bir işlem, daha yüksek öncelikli bir işlem geldiğinde kesilebilir.
- **Kernel Space vs User Space**: Gerçek zamanlı işler genellikle kernel seviyesinde gerçekleştirilir.

PREEMPT-RT Kullanımı

PREEMPT-RT, standart Linux çekirdeğine eklenerek daha iyi bir zamanlama ve daha düşük gecikme sağlar. PREEMPT-RT'yi etkinleştirmek için aşağıdaki adımlar izlenebilir:

1. PREEMPT-RT Yamalarını Yükleyin:

- o PREEMPT-RT yamalarını Linux çekirdeği ile uyumlu olarak indirin:
- wget
 https://mirrors.edge.kernel.org/pub/linux/kernel/projects/rt/<version>/patch version>-rtXX.patch

2. Linux Çekirdeği Kaynak Kodunu İndirin:

- Çekirdek kaynak kodunu alıp yama ile entegre edin:
- o git clone https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
- cd linux
- o patch -p1 < ../patch-<version>-rtXX.patch

3. Konfigürasyon Yapın:

- "make menuconfig" ile yapılandırma ekranını açın ve "Fully Preemptible Kernel (RT)" seçeneğini etkinleştirin:
- o make menuconfig

4. Çekirdeği Derleyin ve Yükleyin:

- o Yeni çekirdeği derleyip sisteme yükleyin:
- make -j\$(nproc)
- o sudo make modules_install
- sudo make install

5. Sistemi Yeni Çekirdek ile Başlatın:

o Sistem başlatma yöneticisinde (GRUB) yeni çekirdeği seçerek yeniden başlatın.

6. Doğrulama Yapın:

- Çekirdeğin yüklendiğini doğrulamak için:
- o uname -r

PREEMPT-RT içeren bir sürüm numarası görmelisiniz. standart Linux çekirdeğine eklenerek daha iyi bir zamanlama ve daha düşük gecikme sağlar.

2. Gerçek Zamanlı Linux Ayarları ve Kullanım Alanları

Kullanım Alanları

- Endüstriyel Otomasyon: Robotik sistemler, üretim hatları ve sensör bazlı uygulamalar için gerçek zamanlı Linux kullanılabilir. Örneğin, bir otomotiv fabrikasında robotik kolların hassas bir şekilde senkronize çalışması gereklidir.
- Ses ve Video Akışı: Canlı yayın platformlarında veya ses işleme yazılımlarında düşük gecikmeli medya işleme önemli bir rol oynar. Örneğin, müzik prodüksiyonunda gecikmesiz bir ses kaydı sağlanabilir.
- Medikal Cihazlar: Kalp atış monitörleri gibi anlık veri işleme gereksinimi olan cihazlar gerçek zamanlı Linux'a dayanır.
- **Telekomünikasyon**: Baz istasyonlarının veri paketlerini işlemeye yönelik düşük gecikme gereksinimleri için.

• **Havacılık ve Uzay**: Uçak kontrol sistemlerinde veya uydu iletişimlerinde gerçek zamanlı Linux tercih edilir. Örneğin, uçak içi eğlence sistemleri.

Temel Ayarlar

• CPU Frekans Sabitleme: Gücünüzü maksimum performans için ayarlayın:

Örnek; sudo cpufreq-set -g performance

• Öncelikli Görevler: Belirli bir süreci gerçek zamanlı yapmak:

Örnek; chrt -f 99 <PID>

3. Real-Time Süreçlerin Planlanması ve Önceliklendirilmesi

Linux'ta süreç planlama, gerçek zamanlı öncelikler kullanılarak yapılabilir.

Planlama Politikaları

• SCHED_FIFO: İlk giren ilk çıkar.

• SCHED_RR: Yuvarlak robin.

Örnek Kod

Bir sürecin planlama politikasını kontrol etme ve değiştirme:

```
import os
import subprocess

# Süreç ID'sini al
pid = os.getpid()

# Süreç önceliğini belirle
subprocess.run(["chrt", "-f", "99", str(pid)])
```

4. RT Çekirdek Derleme ve Yükleme

PREEMPT-RT yamalı bir çekirdek derlemek için adımlar:

Adımlar

- 1. Kaynak Kodlarını Alın:
- 2. git clone https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
- 3. PREEMPT-RT Yamasını Ekleyin:
- 4. patch -p1 < patch-<version>.patch
- 5. Çekirdeği Derleyin ve Kurun:
- 6. make menuconfig
- 7. make -j\$(nproc)
- 8. sudo make modules_install
- 9. sudo make install

Sık Karşılaşılan Sorunlar ve Çözümleri

- 1. "Hatalı Yama Uygulaması":
 - o **Sorun**: Yama uygularken "hunk failed" hatası alabilirsiniz.
 - Çözüm: Yamayı doğru sürümle eşleştirdiğinizden emin olun. Ayrıca yamayı uygulamadan önce "git status" ile dosya durumunu kontrol edin.
- 2. git reset --hard
- 3. patch-p1 < patch-<version>.patch
- 4. "Derleme Hataları":
 - o **Sorun**: Derleme sırasında "missing dependency" hataları ile karşılaşabilirsiniz.
 - o Çözüm: Tüm gerekli paketlerin kurulu olduğundan emin olun:
 - o sudo apt-get install build-essential libncurses-dev bison flex libssl-dev
- 5. "Çekirdeğin GRUB'da Görünmemesi":
 - o **Sorun**: Yeni çekirdek GRUB menüsünde görünmüyorsa.
 - o **Çözüm**: GRUB'u güncelleyin ve yeniden başlatın:
 - o sudo update-grub
 - o sudo reboot
- 6. "Sistem Çökmesi":
 - o **Sorun**: Yeni çekirdekle sistem başlatılamıyorsa.
 - Çözüm: GRUB üzerinden eski bir çekirdeği seçerek başlatın ve yeni çekirdeğin yapılandırmasını gözden geçirin.

5. Performans Ölçüm Araçları ve Gecikme Testi

Gecikme Testi İçin "cyclictest"

"cyclictest" aracı, sistemin gerçek zamanlı görevler için ne kadar hızlı tepki verebildiğini ölçmek için kullanılır.

Kurulum

"cyclictest" aracı aşağıdaki gibi kurulabilir:

sudo apt install rt-tests

Kullanım

Temel bir gecikme testi için örnek komut:

sudo cyclictest -t1 -p99 -n -i100 -l10000

Bu komut:

- -t1: Tek bir iş parçacığı oluşturur.
- -p99: İşlem önceliğini 99 olarak ayarlar (yüksek öncelik).
- -n: Gerçek zamanlı modda çalışır.
- -i100: İşlem aralığını 100 mikro saniye olarak belirler.
- -l10000: 10.000 döngü boyunca test yapar.

Çıktı Örneği

/dev/cpu_dma_latency set to 0us

policy: fifo: loadavg: 0.00 0.00 0.00 1/80 3442

T: 0 (3442) P:99 I:100 C: 10000 Min: 5 Act: 10 Avg: 12 Max: 25

- Min: Minimum gecikme (mikrosaniye).
- Act: Son ölçülen aktif gecikme.
- Avg: Ortalama gecikme.
- Max: Maksimum gecikme.

Sonuçların Yorumlanması

- **Min ve Avg Değerleri**: Sisteminizin normal çalışma koşullarında gecikme performansını gösterir. Düşük değerler, iyi bir performansı ifade eder.
- Max Değeri: Nadiren meydana gelen en kötü senaryodaki gecikmeyi temsil eder. Bu değer, gerçek zamanlı görevlerin kritik zaman sınırlarını aşıp aşmayacağını belirlemek için önemlidir.
- Öneri: Max değeri yüksekse, sisteminizde aşağıdaki optimizasyonları gözden geçirin:
 - 1. **Gerçek Zamanlı Ayarları Kontrol Edin**: CPU frekans sabitlemesi veya öncelikli işlem ayarları yapılmış mı?

- 2. **Arka Plan İşlemlerini Azaltın**: Sistem kaynaklarını tüketen gereksiz hizmetleri devre dışı bırakın.
- 3. **Donanım Uyumunu Gözden Geçirin**: RT çekirdek ile kullanılan donanımın gerçek zamanlı performansı desteklediğinden emin olun.

Daha İleri Testler

"cyclictest" çıktısının görselleştirilmesi veya loglanması daha ayrıntılı analiz için değerlendirilebilir. Örneğin:

sudo cyclictest -t2 -p90 -n -i200 -l5000 > cyclictest_output.txt

Gecikme Testi İçin "cyclictest"

"cyclictest" aracı gecikmeyi ölçmek için kullanılabilir.

Kurulum

sudo apt install rt-tests

Kullanım

sudo cyclictest -t1 -p99 -n -i100 -l10000

Bu komut, 10.000 tekrar için gecikme ölçümü yapar.