MODELOS AVANZADOS DE COMPUTACIÓN

Relación 3

- 1. Construir un programa Post-Turing que calcule la función $f(u) = u^{-1}$ donde $u \in \{0,1\}^*$.
- 2. Construir un programa Post-Turing que dado un número u en binario calcule u+1.
- 3. Construir un programa Post-Turing que dadas dos cadenas ucv donde $u, v \in \{0, 1\}^*$ calcule si la cadena u es una subcadena de la cadena v.
- 4. Construir un programa con variables que concatene dos cadenas sobre $\{0,1\}$. Se supone que ambas cadenas están en las variables X_1 y X_2 y la salida en la variable Y.
- 5. Construir un programa con variables que dadas dos cadenas sobre $\{0,1\}$ (en las variables X_1 y X_2) calcule el número de apariciones de X_1 como subcadena de X_2 . La salida será un número en binario en Y.
- 6. Construir un programa con variables que acepte el lenguaje $L = \{w \in \{0,1\}^* \mid w = w^{-1}\}.$
- 7. Construir un programa con variables que dada una cadena $u \in \{0,1\}^*$ calcule la cadena w formada por los símbolos que ocupan las posiciones impares de u y en el mismo orden que aparecen en u.
- 8. Construir un programa con variables sobre $\{a, b\}$ que dadas dos cadenas $u_1, u_2 \in \{a, b\}^*$ calcule la cadena u cuyo número verifica $Z(u) = Z(u_1) + Z(u_2)$ (es decir hacer la suma de números representados por cadenas de caracteres sobre $\{a, b\}$.
- 9. Considerar un lenguage Post Turing para programas con varias cintas. Hay un número finito de cintas y en cada momento una de ellas está activa, inicialmente la primera. Hay dos instrucciones UP and DOWN que se mueven a la cinta superior e inferior respectivamente. Demostrar que todo cálculo realizado por un programa Post Turing con varias cintas, puede realizarse con un programa Post Turing con una sola cinta.
- 10. Dado el siguiente programa con variables:

IF X ENDS 0 GOTO A
IF X ENDS 1 GOTO B
HALT

[A] $X \leftarrow X$ - $Y \leftarrow 0Y$ IF X ENDS 0 GOTO A IF X ENDS 1 GOTO B

HALT

 $[B] \quad X \leftarrow X -$

 $Y \leftarrow 1Y$

IF X ENDS 0 GOTO A

IF X ENDS 1 GOTO B

HALT

construir un programa Post-Turing equivalente (se pueden usar macros).

11. Dado el siguiene programa Post-Turing

LEFT

[C] RIGHT

IF # GOTO E

IF 0 GOTO A

IF 1 GOTO C

[A] PRINT #

IF # GOTO C

[E] HALT

construir una MT equivalente.

12. Dada la MT $M = (\{q_0, q_1, q_2, q_3, q_4\}, \{0, 1\}, \{0, 1, X, Y, \#\}, \delta, q_0, \#, \{q_4\})$ donde las transiciones no nulas son las siguientes:

$$\delta(q_0, 0) = (q_1, X, D)$$
 $\delta(q_0, Y) = (q_3, Y, D)$

$$\delta(q_1, 0) = (q_1, 0, D)$$
 $\delta(q_1, 1) = (q_2, Y, I)$

$$\delta(q_1, Y) = (q_1, Y, D)$$
 $\delta(q_2, 0) = (q_2, 0, I)$

$$\delta(q_2, X) = (q_0, X, D) \quad \delta(q_2, Y) = (q_2, Y, I)$$

$$\delta(q_3, Y) = (q_3, Y, D)$$
 $\delta(q_3, \#) = (q_4, \#, D)$

construir un programa con variables equivalente (se pueden usar macros).

13. Construir un programa con variables numéricas que calcule $f(x_1, x_2) = x_1 + x_2$ y otro que calcule $f(x_1, x_2) = x_1 x_2$.

- 14. Escribir un programa con variables numéricas que calcule f(x)=1 si x es par y 0 en caso contrario.
- 15. Escribir un programa con variables numéricas que f(x)=1 si x es primo y 0 en caso contrario.
- 16. Escribir un programa con variables numéricas que calcule f(x) = y donde y = N(C(x) 1) donde Z y C son las codificaciones sobre un alfabeto de n símbolos.
- 17. Escribir un programa con variables numéricas que calcule f(x) = y donde $y = N(a_i C(x))$ donde Z y C son las codificaciones sobre un alfabeto de n símbolos.