### **Refine Search**

### Search Results -

| Terms                                                | Documents |
|------------------------------------------------------|-----------|
| L1 same (slave or (I adj1 O) or (input adj1 output)) | 43        |

US Pre-Grant Publication Full-Text Database US Patents Full-Text Database US OCR Full-Text Database

Database:

EPO Abstracts Database
JPO Abstracts Database
Derwent World Patents Index
IBM Technical Disclosure Bulletins

Search:











### Search History

DATE: Tuesday, January 25, 2005 Printable Copy Create Case

Set Name Query side by side

Hit Count Set Name result set

DB=PGPB, USPT, USOC; PLUR=YES; OP=OR

<u>L2</u> L1 same (slave or (I adj1 O) or (input adj1 output))

43 <u>L2</u>

<u>L1</u> (transaction or task or job) near3 reorder\$3

320 <u>L1</u>

**END OF SEARCH HISTORY** 

### **Refine Search**

Search Results -

| Terms | Documents |
|-------|-----------|
| L2    | 0         |

US Patents Full-Text Database

US Pre-Grant Publication Full-Text Database

US OCR Full-Text Database

Database:

EPO Abstracts Database

JPO Abstracts Database Derwent World Patents Index

**IBM Technical Disclosure Bulletins** 

Search:











### **Search History**

DATE: Tuesday, January 25, 2005 Printable Copy Create Case

| Set Name Query side by side                                   | Hit Count | Set Name<br>result set |
|---------------------------------------------------------------|-----------|------------------------|
| DB=EPAB,JPAB,DWPI,TDBD; PLUR=YES; OP=OR                       |           |                        |
| <u>L3</u> L2                                                  | 0         | <u>L3</u>              |
| DB=PGPB, USPT, USOC; PLUR=YES; OP=OR                          |           |                        |
| <u>L2</u> L1 same (slave or (I adj1 O) or (input adj1 output) | ) 43      | <u>L2</u>              |
| <u>L1</u> (transaction or task or job) near3 reorder\$3       | 320       | <u>L1</u>              |

**END OF SEARCH HISTORY** 

### Refine Search

### Search Results -

| Terms     | Documents |
|-----------|-----------|
| L2 and L4 | 12        |

US Pre-Grant Publication Full-Text Database US Patents Full-Text Database US OCR Full-Text Database

Database:

EPO Abstracts Database
JPO Abstracts Database
Derwent World Patents Index
IBM Technical Disclosure Bulletins

Search:











### **Search History**

DATE: Tuesday, January 25, 2005 Printable Copy Create Case

| Set Namside by sid |                                                            | Hit Count Set Name result set |           |  |
|--------------------|------------------------------------------------------------|-------------------------------|-----------|--|
| DB=P               | GPB, USPT, USOC; PLUR=YES; OP=OR                           |                               |           |  |
| <u>L5</u>          | 12 and L4                                                  | 12                            | <u>L5</u> |  |
| <u>L4</u>          | 710/110,107,263,41,53,311;709/100,208;714/47;711/151.ccls. | 3919                          | <u>L4</u> |  |
| DB=E               | PAB,JPAB,DWPI,TDBD; PLUR=YES; OP=OR                        |                               |           |  |
| <u>L3</u>          | L2                                                         | 0                             | <u>L3</u> |  |
| DB=Pc              | GPB, USPT, USOC; PLUR=YES; OP=OR                           |                               | •         |  |
| <u>L2</u>          | L1 same (slave or (I adj1 O) or (input adj1 output))       | 43                            | <u>L2</u> |  |
| <u>L1</u>          | (transaction or task or job) near3 reorder\$3              | 320                           | <u>L1</u> |  |

**END OF SEARCH HISTORY** 





IEEE HOME | SEARCH IEEE | SHOP | WEB ACCOUNT | CONTACT IEEE

Publications/Services Standards Conferences Careers/Jobs



Welcome **United States Patent and Trademark Office** » Se. FAQ Terms IEEE Peer Review **Quick Links** Welcome to IEEE Xplore® Your search matched 0 of 1121826 documents. O- Home A maximum of 500 results are displayed, 15 to a page, sorted by Relevance — What Can Descending order. I Access? O- Log-out **Refine This Search:** You may refine your search by editing the current search expression or enterior **Tables of Contents** new one in the text box. Journals Search (transaction or task or job) and reorder\* and process & Magazines ☐ Check to search within this result set ( )- Conference **Proceedings Results Key:** ( )- Standards **JNL** = Journal or Magazine **CNF** = Conference **STD** = Standard Search O By Author O- Basic **Results:** No documents matched your query. O- Advanced C CrossRef **Member Services** O- Join IEEE O- Establish IEEE Web Account — Access the **IEEE Member** Digital Library IEEE Enterprise O- Access the **IEEE Enterprise** File Cabinet

Print Format

Home | Log-out | Journals | Conference Proceedings | Standards | Search by Author | Basic Search | Advanced Search | Join IEEE | Web Account |
New this week | OPAC Linking Information | Your Feedback | Technical Support | Email Alerting | No Robots Please | Release Notes | IEEE Online
Publications | Help | FAQ | Terms | Back to Top

Copyright © 2004 IEEE — All rights reserved

IEEE HOME | SEARCH IEEE | SHOP | WEB ACCOUNT | CONTACT IEEE



Membership Publications/Services Standards Conferences Careers/Jobs Welcome **United States Patent and Trademark Office** FAQ Terms IEEE Peer Review Quick Links ٥ Welcome to IEEE Xplores Your search matched 1 of 1121826 documents. O- Home A maximum of 500 results are displayed, 15 to a page, sorted by Relevance C)- What Can **Descending** order. I Access? ( )- Log-out **Refine This Search:** You may refine your search by editing the current search expression or enterior **Tables of Contents** new one in the text box. — Journals Search (transaction or task or job) and reorder\* and process & Magazines Check to search within this result set )- Conference **Proceedings Results Key:** Standards JNL = Journal or Magazine CNF = Conference STD = Standard Search By Author 1 Annihilation-reordering look-ahead pipelined CORDIC-based RLS C Basic adaptive filters and their application to adaptive beamforming Jun Ma; Parhi, K.K.; Deprettere, E.F.; O- Advanced Signal Processing, IEEE Transactions on [see also Acoustics, Speech, and Sigr CrossRef Processing, IEEE Transactions on], Volume: 48, Issue: 8, Aug. 2000 Pages: 2414 - 2431 Member Services ( )- Join IEEE [Abstract] [PDF Full-Text (384 KB)] O- Establish IEEE Web Account Access the **IEEE Member Digital Library** IEEE Enterprise Access the

Print Format

IEEE Enterprise File Cabinet

Home | Log-out | Journals | Conference Proceedings | Standards | Search by Author | Basic Search | Advanced Search | Join IEEE | Web Account |
New this week | OPAC Linking Information | Your Feedback | Technical Support | Email Alerting | No Robots Please | Release Notes | IEEE Online
Publications | Help. | FAQ | Terms | Back to Top

Copyright © 2004 IEEE — All rights reserved

| EEE HOME      |
|---------------|
| SEARCH IEEE   |
| I SHOP I      |
| WEB ACCOUNT   |
| I CONTACT IEE |

Membership Publications/Services Standards Conferences Careers/Jobs

Welcome
United States Patent and Trademark Office



Welcome to IEEE Xplore O What Can CHome I Access?

Help

FAQ Terms

**IEEE Peer Review** 

**Quick Links** 

O Log-out

### Tables of Contents

Standards Conference Proceedings Journals& Magazines

### Search

O By Author O Basic

CrossRef Advanced

## Member Services

C Join IEEE

O Establish IEEE Web Account

Access the IEEE Member Digital Library

**IEEE Enterprise** 

DOWNLOAD CITATION

Request Permissions

RIGHTSLINKS

Search Results [PDF FULL-TEXT 384 KB]

# beamforming based RLS adaptive filters and their application to adaptive Annihilation-reordering look-ahead pipelined CORDIC-

Jun Ma Parhi, K.K. Deprettere, E.F

This paper appears in: Signal Processing, IEEE Transactions on [see also Dept. of Electr. & Comput. Eng., Minnesota Univ., Minneapolis, MN, USA;

Acoustics, Speech, and Signal Processing, IEEE Transactions on]

Publication Date: Aug. 2000

On page(s): 2414 - 2431

Volume: 48 , Issue: 8

ISSN: 1053-587X

CODEN: ITPRED Reference Cited: 56

Inspec Accession Number: 6669110

### Abstract:

existing relaxed look-ahead, the annihilation-reordering look-ahead does not depend on the statistical properties of the input samples. It is an exact look-ahead based on technique for pipelining of Givens rotation (or CORDIC)-based adaptive filters. Unlike the CORDIC arithmetic, which is known to be numerically stable. The conventional look-The novel annihilation-**reordering** look-ahead technique is proposed as an attractive

eee

þe

C O

б

| IEEE HO     |
|-------------|
| HOME ! S    |
| EARCH IEEE  |
| _           |
| SHOP I WEB  |
| B ACCOUNT   |
| CONTACT IEE |

|                           |                                                                                               | •                                               |
|---------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------|
| IEEE HOME   SEARCH IEEE   | IEEE   SHOP   WEB ACCOUNT   CONTACT IEEE                                                      |                                                 |
| Membership Publica        | Publications/Services Standards Conferences Careers/Jobs                                      | <b></b>                                         |
| IEEE >                    | Welcome Welcome Welcome The states Patent and Trademark Office                                | LEE - Xolora®  Million Bocaments  Million Users |
| Help FAQ Terms IEE        | IEEE Peer Review Quick Links 🛱 ** ABS*                                                        | ABSTRACT PLUS                                   |
| Welcome to IEEE Xplore®   |                                                                                               |                                                 |
| Q Home                    | Search Results [PDF FULL-TEXT 384 KB] DOWNLOAD CITATION                                       |                                                 |
| - What Can<br>I Access?   | Request Permissions  RIGHTS LINKY                                                             | <del></del> ,                                   |
| Tables of Contents        |                                                                                               |                                                 |
| O- Journals & Magazines   | Annihilation-reordering look-ahead pipelined CORDIC-                                          | Ċ.                                              |
| Conference<br>Proceedings | based RLS adaptive filters and their application to adapt                                     | daptive                                         |
| ○ Standards               | Jun Ma Parhi, K.K. Deprettere, E.F.                                                           | Aunia                                           |
| Search                    |                                                                                               | par arang                                       |
| O- By Author              | Acoustics, Speech, and Signal Processing, IEEE Transactions on]                               |                                                 |
| O Basic                   | Publication Date: Aug. 2000                                                                   |                                                 |
| CimesRaf                  | On page(s): 2414 - 2431                                                                       |                                                 |
| Manilar Sorvices          | Volume: 48 , Issue: 8 ISSN: 1053-587X                                                         |                                                 |
| O - I - I - I             | Reference Cited: 56                                                                           | ÷                                               |
| C Join IEEE               | CODEN: ITPRED                                                                                 |                                                 |
| Web Account               | Inspec Accession Number: 6669110                                                              |                                                 |
| Access the IEEE Member    | Abstract: The novel annihilation-reordering look-sheed technique is proposed to an attention  |                                                 |
| Digital Library           | technique for pipelining of Givens rotation (or CORDIC)-based adaptive filters. Unlike the    | Unlike the                                      |
| IEEE Enterprise           | the statistical properties of the input samples. It is an exact look-ahead does not depend on | depend on                                       |

existing relaxed look-ahead, the annihilation-reordering look-ahead does not depend on the statistical properties of the input samples. It is an exact look-ahead based on CORDIC arithmetic, which is known to be numerically stable. The conventional look-

**:** 

eee

e eee

**0**2 æ ch

ch b

ဂ

þe

þe

be

... С С

eee

ahead is based on multiply-add arithmetic. The annihilation-reordering look-ahead are analyzed and compared. The proposed architectures can be operated at arbitrarily canceller (GSC) realization are presented. The complexity of the pipelined architectures variance (LCMV) adaptive beamforming algorithms. Both QR decomposition-based adaptive filters are then employed to develop high-speed linear constraint minimum studied and proved for the proposed architectures. The pipelined CORDIC-based RLS degrading the filter convergence behavior. Stability under finite-precision arithmetic are ahead is employed to develop fine-grain pipelined QR decomposition-based RLS adaptive CORDIC arithmetic-based processors high sample rate and consist of only Givens rotations, which can be scheduled onto minimum variance distortionless response (MVDR) realization and generalized sidelobe pipelined architectures can be operated at **arbitrarily** high sample rate without filters. Both QRD-RLS and inverse QRD-RLS algorithms are considered. The proposed including pipelining, block processing, and incremental block processing are presented Parallelism in the transformed algorithm is explored and different implementation styles equivalent orthogonal concurrent one by creating additional concurrency in the algorithm. technique transforms an orthogonal sequential adaptive filtering algorithm into an Their complexities are also studied and compared. The annihilation-**reordering** look-

## Index Terms:

arithmetic numerically stable look-ahead orthogonal concurrent filtering algorithm orthogona adaptive filters sequential adaptive filtering algorithm <u>sidelobe canceller \_high sample rate \_incremental block processing \_inverse QRD-RLS algorithm</u> convergence fine-grain pipelined QR decomposition finite-precision arithmetic generalized reordering look-ahead pipelined filter block processing complexities exact look-ahead filter Givens rotation pipeline arithmetic recursive estimation CORDIC arithmetic CORDIC-based RLS adaptive filters convergence of numerical methods digital filters least squares approximations parallel algorithms inear constraint minimum variance minimum variance distortionless response adaptive signal processing array signal processing computational complexity LCMV adaptive beamforming algorithms pipelined architectures QRD-RLS algorithm annihilationmultiply-add

# Documents that cite this document

Select link to view other documents in the database that cite this one

## Reference list:

1,K. K. Parhi, "Algorithm transformation techniques for concurrent processors," *Proc*. Abstract] [PDF Full-Text (1288KB) *lEEE*, vol. 77, pp. 1879-1895, Dec. 1989.

eee

be

be

б

O

digital filters—Part II: Pipelined incremental block filtering," IEEE Trans. Acoust., Speech, 3, K. K.Parhi and D. G.Messerschmitt, "Pipeline interleaving and parallelism in recursive [Abstract] [PDF Full-Text (1404KB)] Signal Processing, vol. 37, pp. 1099-1117, July 1989.

4, P. M. Kogge, "Parallel solution of recurrence problems," IBM J. Res. Develop., vol. 18, pp. 138-148, Mar. 1974. Buy Via Ask\*IEEE

Syst., Signal Process., vol. 3, no. 3, pp. 267-297, 1984. 5, H. H. Loomis and B. Sinha, "High speed recursive digital filter realization," Circuits [Buy Via Ask\*IEEE]

[Abstract] [PDF Full-Text (1128KB)] recursive digital filtering," IEEE Tran. Circuits Syst., vol. 36, pp. 813-829, June 1989. K. K. Parhi and D. G. Messerschmitt, "Concurrent architectures for two-dimensional

7, G. Fettweis and H. Meyr, "Parallel Viterbi decoding by breaking the compare-select feedback bottleneck," *IEEE Trans. Commun.*, vol. 37, pp. 785-790, Aug. 1989. [Abstract] [PDF Full-Text (508KB)]

8, H. D. Lin and D. G. Messerschmitt, "Finite state machine has unlimited concurrency," IEEE Trans. Circuits Syst., vol. 38, pp. 465-475, May 1991. [Abstract] [PDF Full-Text (992KB)]

9, K. K. Parhi, "Pipelining in dynamic programming architectures," IEEE Trans. Signal *Processing*, vol. 39, pp. 1442-1450, June 1991. [Abstract] [PDF Full-Text (524KB)]

vol. 38, pp. 745-754, July 1991. 10, K. K.Parhi, "Pipelining in algorithms with quantizer loops," IEEE Trans. Circuits Syst., [Abstract] [PDF Full-Text (568KB)]

eee

be

a

be

N. R.Shanbhag and K. K.Parhi, Pipelined Adaptive Digital Filters Boston, MA: Kluwer,

[Buy Via Ask\*IEEE]

and their application to ADPCM coder," IEEE Trans. Circuits Syst. II, vol. 40, pp. 753-766, Dec. 1993 N. R.Shanbhag and K. K.Parhi, "Relaxed look-ahead pipelined LMS adaptive filters

[Abstract] [PDF Full-Text (1056KB)]

14, N. R.Shanbhag and K. K.Parhi, "A pipelined adaptive lattice filter architecture," IEEE [Abstract] [PDF Full-Text (1176KB)] Trans. Signal Processing, vol. 41, pp. 1925-1939, May 1993.

low-power speech coding applications," IEEE Trans. Circuits Syst. II, pp. 347-349, May N. R.Shanbhag and K. K.Parhi, "A pipelined adaptive differential vector quantizer for

[Buy Via Ask\*IEEE]

[Abstract] [PDF Full-Text (300KB)] decoder," in Proc. Int. Symp. Circuits Syst., May 1992, pp. 1499-1502 16, N. R.Shanbhag and K. K.Parhi, "A high-speed architecture for ADPCM coder and

1997, pp. 131-140. filtering using matrix lookahead," in Proc. IEEE Workshop Signal Process. Syst., Nov. 17, J. Ma, E. F. Deprettere, and K. K.Parhi, "Pipelined CORDIC based QRD-RLS adaptive

[Abstract] [PDF Full-Text (400KB)]

pp. 245-248. extraction for QRD-RLS adaptive filtering," in Proc. Int. Symp. Circuits Syst., May 1998, 18, J. Ma, K. K. Parhi, and E. F. Deprettere, "High-speed CORDIC based parallel weight

[Abstract] [PDF Full-Text (332KB)]

19, J.Ma, K. K.Parhi, and E. F.Deprettere, "Pipelined CORDIC based QRD-MVDR adaptive

eee

б

က (၁

ģ

beamforming," in Proc. Int. Conf. Acoust., Speech, Signal Process., May 1998, pp. 3025-

[Abstract] [PDF Full-Text (344KB)]

- 20, 3, May 1999, pp. 49-53. [Buy Via Ask\*IEEE] least-squares lattice adaptive filter architectures," in Proc. Int. Symp. Circuits Syst., vol. Z. Chi, J. Ma, and K. K. Parhi, "Pipelined QR decomposition based multi-channe
- [Buy Via Ask\*IEEE] S.Haykin, Adaptive Filter Theory Englewood Cliffs, NJ: Prentice-Hall, 1996
- Comput., pp. 330-334, Sept. 1959. 22, J. E. Volder, "The CORDIC trigonometric computing technique," IEEE Trans. Electron. [Buy Via Ask\*IEEE]
- Processing Mag., no. 7, pp. 16-35, July 1992. [Abstract] [PDF Full-Text (1988KB)] 23, Y. H. Hu, "Cordic-based VLSI architectures for digital signal processing," IEEE Signal
- Comput. Arith., June 1993, pp. 130-137. 24, G. J. Hekstra and E. F.Deprettere, "Floating point CORDIC," in Proc. 11th Symp. Abstract] [PDF Full-Text (540KB)]
- [Abstract] [PDF Full-Text (716KB)] Processors, July 1997, pp. 53-64. Jacobi specific dataflow processor," in Proc. IEEE Int. Conf. Appl. Specific Syst., Arch., E. Rijpkema, G. Hekstra, E. Deprettere, and J.Ma, "A strategy for determining
- Proc. SPIE: Real Time Signal Process. VI, vol. 431, 1983, pp. 105-112. J. G. McWhirter, "Recursive least-squares minimization using a systolic array," in [Buy Via Ask\*IEEE]
- 27, W. M. Gentleman and H. T.Kung, "Matrix triangularization by systolic arrays," in Proc. SPIE: Real-Time Signal Process. IV, 1981, pp. 298-303. [Buy Via Ask\*IEEE]
- 28, T. J. Shepherd, J. G.McWhirter, and J. E.Hudson, "Parallel weight extraction from a

þe

þ

C a

Oxford, U.K.: Clarendon, 1990, pp. 775-790. systolic adaptive beamformer," Mathematics in Signal Processing II, J. G.McWhirter, Ed [Buy Via Ask\*IEEE]

- 29, J. G. McWhirter and T. J.Shepherd, "Systolic array processor for MVDR beamforming," *Proc. Inst. Elect. Eng.*, vol. 136, pp. 75-80, Apr. 1989. [Abstract] [PDF Full-Text (372KB)]
- design," IEEE J. Solid-State Circuits, vol. 27, pp. 473-484, Apr. 1992 [Abstract] [PDF Full-Text (1148KB)] 30, A. P. Chandrakasan, S.Sheng, and R. W.Broderson, "Low-power CMOS digital
- tangent rotations (STAR)," IEEE Trans. Signal Processing, vol. 40, pp. 2591-2604, Oct. 1996. 31, K. J. Raghunath and K. K.Parhi, "Pipelined RLS adaptive filtering using scaled

[Abstract] [PDF Full-Text (1072KB)]

arbitrarily high speeds," in Proc. Int. Conf. Acoust. Speech, Signal Processing, vol. ASSP-35, 1987, pp. 1398-1401. [Buy Via Ask\*IEEE] T. H. Y.Meng, E. A.Lee, and D. G.Messerschmitt, "Least-squares computation at

[Buy Via Ask\*IEEE] Univ. Press, 1989. G. H.Golub and C. F. V.Loan, Matrix Computation Baltimore, MD: Johns Hopkins

approach for QRD-based recursive least squares estimation," IEEE Tran. Signal [Abstract] [PDF Full-Text (324KB)] Processing, vol. 41, pp. 1405-1409, Mar. 1993. S. F. Hsieh, K. J. R.Liu, and K.Yao, "A unified square-root-free Givens rotation

[Buy Via Ask\*IEEE] Applicat., vol. 13, pp. 215-218, 1974. S. Hammarling, "A note on modifications to Givens plane rotation," J. Inst. Math.

squares problems on systolic arrays," SIAM J. Sci. Stat. Comput., vol. 13, pp. 716-733, Sept. 1987. 36, J. L. Barlow and I. C. F.Ipsen, "Scaled Givens rotations for solution of linear least-

O

œ,

eee

c e

- and architectures for QRD-based adaptive signal processing," IEEE Trans. Signal Processing, vol. 42, pp. 2455-2469, Sept. 1994. [Abstract] [PDF Full-Text (948KB)] E. Franrzeskakis and K. J. R.Liu, "A class of square-root and division free algorithms
- Speech, Signal Processing, vol. 38, pp. 631-653, Apr. 1990. 38, J. M. Cioffi, "The fast adaptive ROTOR's RLS algorithm," IEEE Trans. Acoust., [Abstract] [PDF Full-Text (1472KB)]
- retiming," in Proc. Third Caltech Conf. VLSI Pasadena, CA, Mar. 1983, pp. 87-116 [Buy Via Ask\*IEEE] C. E. Leiserson, F. Rose, and J. Saxe, "Optimizing synchronous circuitry by
- synthesis," J. VLSI Signal Process., vol. 9, pp. 121-143, 1995 40, K. K. Parhi, "High-level algorithm and architecture transformations for DSP Buy Via Ask\*IEEE]
- Part II, vol. 4, no. 2, pp. 133-201, 1993. design," Int. J. High-Speed Electronics; Special Issue on Massively Parallel Computing— 41, E. F. Deprettere, P.Held, and P.Wielage, "Model and methods for regular array [Buy Via Ask\*IEEE]
- vol. 37, pp. 760-763, May 1989. precision systolic array implementation," IEEE Trans. Acoust. Speech, Signal Processing, H. Leung and S. Haykin, "Stability of recursive QRD-LS algorithms using finite-
- [Abstract] [PDF Full-Text (304KB)]
- equalization," J. VLSI Signal Process., vol. 14, pp. 67-74, 1996 43, M. Moonen and E. F. Deprettere, "A fully pipelined RLS-based array for channel [Buy Via Ask\*IEEE]
- modulus signal," in Proc. Int. Conf. Acoust., Speech, Signal Process., 1986, pp. 2523-44, R. Gooch and J. Lundell, "The CM array: An adaptive beamformer for constant
- Buy Via Ask\*IEEE

eee

þe

a

be

41, pp. 20-30, 1993. filtering based upon an inverse QR decomposition," IEEE Trans. Signal Processing, vol. 46, S. T. Alexander and A. L.Ghirnikar, "A method for recursive least squares adaptive

[Abstract] [PDF Full-Text (804KB)]

47, S. P. Applebaum and D. J.Chapman, "Adaptive arrays with main beam constraints," *IEEE Trans. Antennas Propagat.*, vol. AP-24, pp. 650-662, Sept. 1976. [Buy Via Ask\*IEEE]

architecture for adaptive digital beamforming," Proc. IEEE, vol. 55, pp. 2143-2159, Dec. B. Widrow, P. E. Mantey, L. J. Griffiths, and B. B.Goode, "A novel algorithm and

[Buy Via Ask\*IEEE]

49, R.Monzingo and T.Miller, Introduction to Adaptive Array New York: Wiley, 1980. [Buy Via Ask\*IEEE

50, Proc. IEEE, vol. 60, pp. 926-935, Aug. 1972. Buy Via Ask\*IEEE O. L. Frost, III, "An algorithm for linearly constrained adaptive array processing,"

926, 1969. algorithm for solving linear least squares problems," Math. Comput., vol. 23, pp. 917-R. L. Hanson and C. L. Lawson, "Extensions and applications of the Householder

Buy Via Ask\*IEEE

52, L. J. Griffiths and C. W.Jim, "An alternative approach to linearly constrained adptive beamforming," IEEE Trans. Antennas Propagat., vol. AP-30, pp. 27-34, Jan. 1982. [Buy Via Ask\*IEEE]

filtering," IEEE Acoust., Speech, Signal Processing Mag., vol. 5, pp. 4-24, Apr. 1988 B. D. V.Veen and K. M.Buckley, "Beamforming: A versatile approach to spatial [PDF Full-Text (2092KB)]

bе

ဂ e

1995. 55, J. Götze and G.Hekstra, "An algorithm and architecture based on orthonormal \$\mu\$-rotations for computing the symmetric EVD," Integr. VLSI J., vol. 20, pp. 21-39,

[CrossRef] [Buy Via Ask\*IEEE]

Adv. Signal Process. Alg., Arch., Implement. VIII, July 1998, pp. 406-416. CORDIC based IIR digital filters using fast orthonormal \$\mu\$ -rotations," in Proc. SPIE 56, J. Ma, K. K. Parhi, G. J. Hekstra, and E. F.Deprettere, "Efficient implementations of [Buy Via Ask\*IEEE]

Search Results [PDF FULL-TEXT 384 KB] DOWNLOAD CITATION

Home | Log-out | Journals | Conference Proceedings | Standards | Search by Author | Basic Search | Advanced Search | Join IEEE | Web Account | New this week | OPAC Linking Information | Your Feedback | Technical Support | Email Alerting | No Robots Please | Release Notes | IEEE Online Publications | Help | FAQ| Terms | Back to Top

Copyright © 2004 IEEE — All rights reserved

Ъ

ģ

þ

eee

### **Hit List**



Search Results - Record(s) 1 through 10 of 12 returned.

☐ 1. Document ID: US 6820151 B2

Using default format because multiple data bases are involved.

L5: Entry 1 of 12

File: USPT

Nov 16, 2004

US-PAT-NO: 6820151

DOCUMENT-IDENTIFIER: US 6820151 B2

TITLE: Starvation avoidance mechanism for an I/O node of a computer system

DATE-ISSUED: November 16, 2004

INVENTOR-INFORMATION:

NAME

CITY

STATE ZIP CODE COUNTRY

Ennis; Stephen C.

Austin

US-CL-CURRENT: 710/240; 710/309, 710/40, 710/5, 710/52, 710/53, 710/6

Full Title Citation Front Review Classification Date Reference Seguences Attachmatics Claims KWIC Draw De 2. Document ID: US 6760792 B1

TX

L5: Entry 2 of 12

File: USPT

Jul 6, 2004

US-PAT-NO: 6760792

DOCUMENT-IDENTIFIER: US 6760792 B1

TITLE: Buffer circuit for rotating outstanding transactions

Full Title Citation Front Review Classification Date Reference Sequences Attachments Claims KMC Draw De

☐ 3. Document ID: US 6760791 B1

L5: Entry 3 of 12

File: USPT

Jul 6, 2004

US-PAT-NO: 6760791

DOCUMENT-IDENTIFIER: US 6760791 B1

TITLE: Buffer circuit for a peripheral interface circuit in an I/O node of a

computer system

h b g ee e f e b .e e ef b



h e b b g e e e f b e

L5: Entry 8 of 12

File: USPT

Nov 30, 1999

US-PAT-NO: 5996036

DOCUMENT-IDENTIFIER: US 5996036 A

TITLE: Bus transaction reordering in a computer system having unordered slaves

Full Title Citation Front Review Classification Date Reference Seguences Attachments Claims KWWC Draw Date Provided Prov

US-PAT-NO: 5949981

DOCUMENT-IDENTIFIER: US 5949981 A

TITLE: Deadlock avoidance in a bridge between a split transaction bus and a single

envelope bus

Full Title Citation Front Review Classification Date Reference Sequences Attachments Claims ROWC Draw De

10. Document ID: US 5933612 A

L5: Entry 10 of 12 File: USPT Aug 3, 1999

US-PAT-NO: 5933612

DOCUMENT-IDENTIFIER: US 5933612 A

TITLE: Deadlock avoidance in a split-bus computer system

| Full T | itle Citation | Front    | Review                                  | Classification | Date        | Reference                               | Sequence | ellasin | ents Claims | KWIC   | Draw De                                |
|--------|---------------|----------|-----------------------------------------|----------------|-------------|-----------------------------------------|----------|---------|-------------|--------|----------------------------------------|
|        |               |          | *************************************** |                | ntonenament | *************************************** |          |         |             |        | and the second state of the second and |
| Clear  | Genera        | ate Coll | ection 🌣                                | Print          | F           | wd Refs                                 | Bkv      | /d Refs | Gener       | ate O/ | \CS                                    |
| li     |               |          |                                         |                |             |                                         |          |         |             |        |                                        |
|        | Terms         | · -      |                                         |                | <u> </u>    | ocument                                 | S        |         |             |        |                                        |
|        | L2 and L4     |          |                                         | ·              |             |                                         |          |         |             | 12     |                                        |

Display Format: - Change Formates

Previous Page Next Page Go to Doc#

е

Feb 10, 2004

First Hit Fwd Refs Previous Doc Next Doc Go to Doc#

Generate Collection Print

L5: Entry 5 of 12

US-PAT-NO: RE38428

DOCUMENT-IDENTIFIER: US RE38428 E

TITLE: Bus transaction reordering in a computer system having unordered slaves

File: USPT

DATE-ISSUED: February 10, 2004

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Kelly; James D. Scotts Valley CA Regal; Michael L. Pleasanton CA

ASSIGNEE-INFORMATION:

NAME . CITY STATE ZIP CODE COUNTRY TYPE CODE

Apple Computer, Inc. Cupertino CA 02

APPL-NO: 10/ 006939 [PALM]
DATE FILED: November 30, 2001

REISSUE-DATA:

US-PAT-NO DATE-ISSUED APPL-NO DATE-FILED

05996036 November 30, 1999 779632 January 7, 1997

PARENT-CASE:

.Iadd.This application is a continuation-in-part of U.S. patent application Ser. No. 08/432,622, filed May 2, 1995, now abandoned..Iaddend.

INT-CL: [07]  $\underline{G06} + \underline{9/46}$ ,  $\underline{G06} + \underline{13/36}$ ,  $\underline{G11} + \underline{C} + \underline{7/00}$ 

US-CL-ISSUED: 710/110; 710/107, 709/208, 370/402 US-CL-CURRENT: 710/110; 370/402, 709/208, 710/107

FIELD-OF-SEARCH: 710/110, 710/107, 710/263, 710/41, 710/52, 710/311, 709/100,

709/208, 714/47, 711/151, 370/402

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

Search Selected Search ALL Gear

PAT-NO ISSUE-DATE PATENTEE-NAME US-CL

 $\square$  4181974 January 1980 Lemay et al.

h eb b cg b cc e

| 4473880        | September 1984 | Budde et al.      |
|----------------|----------------|-------------------|
| 4494193        | January 1985   | Brahm et al.      |
| 4965716        | October 1990   | Sweeney           |
| 5006982        | April 1991     | Ebersole et al.   |
| <u>5191649</u> | March 1993     | Cadambi et al.    |
| <u>5257356</u> | October 1993   | Brockmann et al.  |
| 5287477        | February 1994  | Johnson et al.    |
| 5305442        | April 1994     | Pedersen et al.   |
| <u>5307505</u> | April 1994     | Houlberg et al.   |
| 5327538        | July 1994      | Hamaguchi et al.  |
| <u>5327570</u> | July 1994      | Foster et al.     |
| <u>5333276</u> | July 1994      | Solari            |
| 5345562        | September 1994 | Chen              |
| 5355455        | October 1994   | Hilgendorf et al. |
| 5363485        | November 1994  | Nguyen et al.     |
| 5369748        | November 1994  | McFarland et al.  |
| 5375215        | December 1994  | Hanawa et al.     |
| <u>5418914</u> | May 1995       | Heil et al.       |
| 5442763        | August 1995    | Bartfai et al.    |
| <u>5469435</u> | November 1995  | Krein et al.      |
| <u>5473762</u> | December 1995  | Krein et al.      |
| 5542056        | July 1996      | Jaffa et al.      |
| 5544332        | August 1996    | Chen              |
| 5546546        | August 1996    | Bell et al.       |
| <u>5592631</u> | January 1997   | Kelly et al.      |
| 5592670        | January 1997   | Pletcher          |
| 5615343        | March 1997     | Sarangdhar et al. |
| 5680402        | October 1997   | Olnowich et al.   |
| 5682512        | October 1997   | Tetrick           |
| 5708794        | January 1998   | Parks et al.      |
| <u>5822772</u> | October 1998   | Chan et al.       |
| <u>5930485</u> | July 1999      | Kelly             |
| 5933612        | August 1999    | Kelly et al.      |
|                |                |                   |

ART-UNIT: 2181

PRIMARY-EXAMINER: Ray; Gopal C.

 $h \qquad \quad e \ b \qquad \quad b \ cg \ b \quad cc \qquad \quad e$ 

ATTY-AGENT-FIRM: Fenwick & West LLP

#### ABSTRACT:

A mechanism is provided for <u>reordering bus transactions</u> to increase bus utilization in a computer system in which a split-transaction bus is bridged to a singleenvelope bus. In one embodiment, both masters and slaves are ordered, simplifying implementation. In another embodiment, the system is more loosely coupled with only masters being ordered. Greater bus utilization is thereby achieved. To avoid deadlock, transactions begun on the split-transaction bus are monitored. When a combination of transactions would, if a predetermined further transaction were to begin, result in deadlock, this condition is detected. In the more tightly coupled system, the predetermined further transaction, if it is requested, is refused, thereby avoiding deadlock. In the more loosely-coupled system, the flexibility afforded by unordered slaves is taken advantage of to, in the typical case, reorder the transactions and avoid deadlock without killing any transaction. Where a data dependency exists that would prevent such reordering, the further transactions is killed as in the more tightly-coupled embodiment. Data dependencies are detected in accordance with address-coincidence signals generated by slave devices on a cacheline basis. In accordance with a further optimization, at least one slave device (e.g., DRAM) generates page-coincidence bits. When two transactions to the slave device are to the same address page, the transactions are reordered if necessary to ensure that they are executed one after another without any intervening transaction. Latency of the slave is thereby reduced.

19 Claims, 27 Drawing figures

Previous Doc Next Doc Go to Doc#

#### Previous Doc First Hit Fwd Refs

Next Doc

Go to Doc#

**Cenerate Collection** Print

L5: Entry 8 of 12

File: USPT

Nov 30, 1999

US-PAT-NO: 5996036

DOCUMENT-IDENTIFIER: US 5996036 A

TITLE: Bus transaction reordering in a computer system having unordered slaves

DATE-ISSUED: November 30, 1999

INVENTOR-INFORMATION:

NAME

CITY

STATE

ZIP CODE

COUNTRY

Kelly; James D.

Aptos CA

ASSIGNEE-INFORMATION:

NAME

CITY

STATE ZIP CODE

COUNTRY TYPE CODE

Apple Computers, Inc.

Cupertino CA

02

APPL-NO: 08/ 77.9632 [PALM] DATE FILED: January 7, 1997

INT-CL: [06]  $\underline{G06} \ \underline{F} \ \underline{9/46}, \ \underline{G06} \ \underline{F} \ \underline{13/36}, \ \underline{G11} \ \underline{C} \ \underline{7/00}$ 

US-CL-ISSUED: 710/110; 710/107, 709/208 US-CL-CURRENT: 710/110; 709/208, 710/107

FIELD-OF-SEARCH: 710/110, 710/107, 710/263, 710/41, 710/52, 711/151, 709/100-102,

709/208

PRIOR-ART-DISCLOSED:

U.S. PATENT DOCUMENTS

### Search Selected Search ALL

| PAT-NO         | ISSUE-DATE     | PATENTEE-NAME    | US-CL   |
|----------------|----------------|------------------|---------|
| <u>4181974</u> | January 1980   | Lemay et al.     | 364/900 |
| 4473880        | September 1984 | Budde et al.     | 364/200 |
| <u>4965716</u> | October 1990   | Sweeney          | 364/200 |
| 5006982        | April 1991     | Ebersole et al.  | 710/263 |
| <u>5191649</u> | March 1993     | Cadambi et al.   | 395/200 |
| <u>5257356</u> | October 1993   | Brockmann et al. | 395/725 |
| <u>5287477</u> | February 1994  | Johnson et al.   | 395/425 |
| <u>5327538</u> | July 1994      | Hamaguchi et al. | 395/325 |

| <u>5345562</u> | September 1994 | Chen          | 395/275 |
|----------------|----------------|---------------|---------|
| 5375215        | December 1994  | Hanawa et al. | 395/425 |
| 5473762        | December 1995  | Krein et al.  | 395/287 |
| <u>5592631</u> | January 1997   | Kelly et al.  | 395/293 |
| 5682512        | October 1997   | Tetrick       | 711/202 |
| <u>5822772</u> | October 1998   | Chan et al.   | 711/158 |

ART-UNIT: 271

PRIMARY-EXAMINER: Ray; Gopal C.

ATTY-AGENT-FIRM: Burns, Doane, Swecker & Mathis, L.L.P.

### ABSTRACT:

A mechanism is provided for reordering bus transactions to increase bus utilization in a computer system in which a split-transaction bus is bridged to a singleenvelope bus. In one embodiment, both masters and slaves are ordered, simplifying implementation. In another embodiment, the system is more loosely coupled with only masters being ordered. Greater bus utilization is thereby achieved. To avoid deadlock, transactions begun on the split-transaction bus are monitored. When a combination of transactions would, if a predetermined further transaction were to begin, result in deadlock, this condition is detected. In the more tightly coupled system, the predetermined further transaction, if it is requested, is refused, thereby avoiding deadlock. In the more loosely-coupled system, the flexibility afforded by unordered slaves is taken advantage of to, in the typical case, reorder the transactions and avoid deadlock without killing any transaction. Where a data dependency exists that would prevent such reordering, the further transactions is killed as in the more tightly-coupled embodiment. Data dependencies are detected in accordance with address-coincidence signals generated by  $\underline{ t slave}$  devices on a cacheline basis. In accordance with a further optimization, at least one slave device (e.g., DRAM) generates page-coincidence bits. When two transactions to the slave device are to the same address page, the transactions are reordered if necessary to ensure that they are executed one after another without any intervening transaction. Latency of the slave is thereby reduced.

17 Claims, 26 Drawing figures

Previous Doc Next Doc Go to Doc#

### First Hit Fwd Refs Previous Doc Next Doc Go to Doc# Generale Collection Print

L5: Entry 9 of 12 File: USPT Sep 7, 1999

US-PAT-NO: 5949981

DOCUMENT-IDENTIFIER: US 5949981 A

TITLE: Deadlock avoidance in a bridge between a split transaction bus and a single

envelope bus

DATE-ISSUED: September 7, 1999

INVENTOR-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY

Childers; Brian Alan Santa Clara CA

ASSIGNEE-INFORMATION:

NAME CITY STATE ZIP CODE COUNTRY TYPE CODE

Apple Computer, Inc. Cupertino CA 02

APPL-NO: 08/ 888113 [PALM]
DATE FILED: July 3, 1997

PARENT-CASE:

This application is a continuation of application Ser. No. 08/432,621, filed May 2, 1995, now abandoned.

INT-CL:  $[06] \underline{G06} \underline{F} \underline{13/00}$ 

US-CL-ISSUED: 395/309; 395/308, 395/287

US-CL-CURRENT: <u>710/310</u>; <u>710/107</u>

FIELD-OF-SEARCH: 395/306-309, 395/287

PRIOR-ART-DISCLOSED:

### U.S. PATENT DOCUMENTS

### Search Selected Search ALL Clear

| PAT-NO         | ISSUE-DATE     | PATENTEE-NAME     | US-CL      |
|----------------|----------------|-------------------|------------|
| 4494193        | January 1985   | Brahm et al.      | 395/200.06 |
| 5278974        | January 1994   | Lemmon et al.     | 395/550    |
| 5305442        | April 1994     | Pedersen et al.   | 395/290    |
| 5345562        | September 1994 | Chen              | 395/275    |
| <u>5355455</u> | October 1994   | Hilgendorf et al. | 395/306    |

| <u>5363485</u> | November 1994 | Nguyen et al. | 395/250  |
|----------------|---------------|---------------|----------|
| 5418914        | May 1995      | Heil et al.   | 395/293  |
| 5469435        | November 1995 | Krein et al.  | 370/85.2 |
| 5546546        | August 1996   | Bell et al.   | 395/292  |

#### FOREIGN PATENT DOCUMENTS

FOREIGN-PAT-NO

PUBN-DATE

COUNTRY

US-CL

9532475

November 1995

WO

ART-UNIT: 271

PRIMARY-EXAMINER: An; Meng-Ai T.

ASSISTANT-EXAMINER: Lefkowitz; Sumati

ATTY-AGENT-FIRM: Burns, Doane, Swecker & Mathis, L.L.P.

#### ABSTRACT:

A mechanism is provided for avoiding deadlock, in particular, a Read/Read deadlock, in a computer system in which a split-transaction bus is bridged to a single-envelope bus. In one embodiment, deadlock is avoided using a closely-coupled master and slave circuit on the split-response bus. The closely-coupled master and slave circuit operates to disallow a second deadlocking read transaction. While there is an outstanding read transaction in either the master or slave portions of the split-response bus interface, the other portion will refuse to accept, or retry, another potentially deadlocking read transaction. The invention has the advantage of being absolutely certain of avoiding the Read/Read deadlock condition with a minimum amount of circuit complexity.

8 Claims, 7 Drawing figures

Previous Doc Next Doc Go to Doc#

