Name:

ID number:

Question 1	Question 2

Question 1(4pts):

Consider the graph M with 5 vertices. Its adjacency matrix is shown below and we assume the cost of each edge is 1. Which of the following is true? (Write down your answer in the above box.)

$$M = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$

- (A) Graph M has no minimum spanning tree.
- (B) Graph M has a unique minimum spanning trees of cost 4.
- (C) Graph M has 3 minimum spanning trees of cost 4.
- (D) Graph M has 3 spanning trees of different costs.

Question 2(4pts):

In the figure below, using Prim's algorithm to compute the MST(suppose we start from vertex "0"), select the edges we will not choose. (Write down your answer in the above box.)

- (A) (3,4)
- (B) (3,6)
- (C) (4,5)
- (D) (4,6)
- (E) All of the above.

Question 3(4pts):

Write down the sequence of edges added to the minimum spanning tree using Kruskal's algorithm. (You can randomly choose one edge if you meet two edges with the same weight.)

Question 4(6pts):

Given a long sequence S of n characters, find an efficient way to detect whether it contains a subsequence S' with m characters. Characters in S' may not be consecutive in S, but they must follow the same order. For example,

is in

- 1) Please give an efficient algorithm (less than $O(n^2)$) for this problem. (Both natural language and psedo-code are okay to show your answer)
- 2) What is the time complexity of your algorithm?