INTEGER PROBLEMS

a. Consider word size w = 4 bits, Fill in the following table indicating representation of UMax_w, TMax_w, TMin_w, -1 dan 0 in hexadecimal and give its numeric value.

24-1		
23 -1		
-2^{3}	z -	8

	Hexadecimal	Numeric value (decimal)
Umax ₄	0×F	IS-
Tmax ₄	0×9	7
Tmin ₄	0 + 8	-8
-1	0 x (~1
0	0 K 0	0

b. Suppose that x and y have byte value. Fill in the following table indicating the byte values of the different C expression. Also give its unsigned and two's complement representations (in decimal)

u	8x	=	0	00

X (binary)	y (binary)	Operation	Binary	Unsigned	Two's comp
1010	0101	(x+y)	1111	15	-1
1111	0100	(y&x) + ~x	0100	4	4
1001	1000	(x^x) y	1000	8	-8
1000	0000	x && (y-x)	0000	0	0
0110	1001	x & !y	0110	6	6
0110	0011	x && ~y	0000	O	0

9110

c. Consider the following C functions:

```
int fun1 (unsigned word) {
    return (int) ((word << 27) >> 27);
}
int fun2 (unsigned word) {
    return ((int) word << 27) >> 27;
}
```

Assume these are executed on a machine with a 32-bit word size that uses two's-complement arithmetic. Assume also that right shifts of signed values are performed arithmetically, while right shifts of unsigned values are performed logically. Fill in the following table showing the effect of these functions for several example arguments. You will find it more convenient to work with a hexadecimal representation. Just remember that hex digit 8 through F have their most significant bit equal to 1.

W	fun1(w)	fun2(w)
15	0×F	0x F
16	0 x 10	0xFFFFFF0
31	0× 1F	0x FFFFFFF
32	O x D	Ø×0