

Inversions

Write a program that, given a permutation P of the set $\{1, \ldots, n\}$, computes the number of pairs (i, j) such that $1 \le i < j \le n$ and P[i] > P[j] (such a pair is called an inversion in P).

Your program should work in time $O(n \log n)$ on a randomly chosen permutation.

Input

The first line contains integer z ($1 \le z \le 2 \cdot 10^9$) – the number of data sets. Each data set is as follows:

The first line contains the number n ($1 \le n \le 10000$) denoting the size of the permutation P. The second line contains n consecutive entries of the permutation P, separated by a space.

Output

The number of inversions in P.

Example

For the input:	the output is:
5	0
3	3
1 2 3	12
3	0
3 2 1	1
10	
1 4 2 5 3 9 10 8 7 6	
2	
1 2	
2	
2 1	

Task O: Inversions Page 1/1