Graphen und biologische Netze $(WS\ 2016/17)$

Inhaltsverzeichnis

1	Vorlesung 14.10.2016	1
	1.1 Grundlagen der Graphen und biologische Netze	1
	1.2 Gleichheit von Graphen	2
	1.3 Eigenschaften von Graphen	4
	1.4 Graph-Invarianten	5
	1.5 Pfade und Zusammenhänge	5
2	Vorlesung 21.10.2016	6
3	Vorlesung 28.10.2016	7
4	Vorlesung 11.11.2016	8
5	Vorlesung 18.11.2016	9
6	Vorlesung 25.11.2016	10
7	Vorlesung 02.12.2016	11
8	Vorlesung 09.12.2016	12
9	Vorlesung 16.12.2016	13
10	Vorlesung 21.12.2016	19

1 Vorlesung 14.10.2016

1.1 Grundlagen der Graphen und biologische Netze

Graph: Knoten, Kanten (binäre Relationen)

<u>Transitivität:</u> implizite Verbindung (abhängig vom Kontext) Labeled Graphs:

- Graph: (V, E)
- Labels: L_V (Knotenlabel), L_E (Kantenlabel)

 $e \in E \Rightarrow \exists x, y \in V : x \text{ und y sind die Endpunkte von e}$

<u>Knoten-Labelfunktion</u> α : $\alpha: V \to L_V: v \mapsto \alpha(v)$ <u>Kanten-Labelfunktion</u> β : $\beta: E \to L_E: e \mapsto \beta(e)$

ungerichtete Graphen

- Kante ist eine Menge von 2 (verschiedenen) Knoten
- $e = \{x,y\} = \{y,x\} \rightarrow$ Reihenfolge egal
- $E \subseteq V^{(2)} \to$ Kante ist Teilmenge von 2 Knoten

gerichtete Graphen

- Kante ist ein geordnetes Paar von 2 (verschiedenen) Knoten
- e = (x, y) entspricht $x \to y$, (y, x) entspricht $y \to x$
- $E \subseteq V \times V$
- gerichtete Kante besteht aus head (in Pfeilrichtung) und tail

Funktionen gerichteter Graphen:

 $h: E \to V: e \mapsto head(e)$ $t: E \to V: e \mapsto tail(e)$

Graphen in denen Kanten zwei verschiedenen Endpunkte haben **UND** zu jeden Paar von Kanten höchstens eine Kante gehört hießen <u>EINFACH</u> oder <u>SIMPLE</u> im gerichteten Fall:

trotzdem einfacher Graph!

 $\overset{\text{erst:}}{\mathsf{X}} \bigvee \mathsf{Y}$

ist Multigraph

Loops:

Abbildung 1: links: gerichtet; rechts: ungerichtet

⇒ einfacher Graph mit Loops

Durch Unterteilung der Kanten in Multigraphen kann eine Transformation in Graphen erzeugt werden:

- ungerichtet: zweifache Unterteilung mittels zweier Knoten
- gerichtet: einfache Unterteilung mittels Knoten

1.2 Gleichheit von Graphen

als labeled graphs: $G_1=G_2=G_4\neq G_3$

 \Rightarrow 2 Graphen $G_1=(V_1, E_1)$ und $G_2=(V_2, E_2)$ sind isomorph wenn es einen bijektive Abbildung¹ $\pi: V_1 \to V_2$ gibt, sodass $\{x, y\} \in E_1 \Leftrightarrow \{\pi(x), \pi(y)\} \in E_1$

¹https://de.wikipedia.org/wiki/Bijektive_Funktion

bijektive Abbildung: jedes Element von

1. wird zu genau einem Element von 2. zugeordnet

$$\pi(a) = w, \pi(b) = u, \pi(c) = x, \pi(d) = v$$

 \rightarrow hier ergibt bijektive Abbildung keinen Isomorpismus, da Bild(d) und Bild(c) Kante haben, jedoch v und x keine Kante haben

Durch folgende bijektive Abbildung wird aber Isomorphie erreicht:

$$\pi(a) = w, \pi(b) = x, \pi(c) = u, \pi(d) = v$$

Bezogen auf die Labels kann es mehrere mögliche Isomorphien geben.

Schreibweise: $G \simeq H$ (G ist isomorph zu H) mit $G \to^{\pi} H, G \leftarrow^{-\pi} H$ sodass π isomorph ist

Reflexivität: Ein Graph ist zu sich selbst immer isomorph: $G \simeq G$ Symmetrie: $G \simeq H \Leftrightarrow H \simeq G$ Transitivität: $G \simeq H, H \simeq K \Rightarrow G \simeq K$

 \simeq ist eine Äquivalenz
relation \to Isomorphie teilt Graphen in Klassen ein (Isomorphie
klassen)

Nebenbemerkung: Labeled Graphen?

Zusätliche Bedingung benötigt: $\lambda(\pi(x)) = \lambda(x) \to \text{Labels müssen erhalten bleiben!}$

Testen auf Gleichheit

Gegeben: $G_1=(V_1, E_1), G_2=(V_2, E_2)$ Frage: Sind die Graphen isomorph?

Grundbedingungen:

1. $|V_1| = |V_2| \rightarrow$ gleiche Anzahl von Knoten

2. $|E_1| = |E_2| \rightarrow$ gleiche Anzahl von Kanten

Eigenschaften von Graphen

Nachbarknoten von v
: $N(v):=\{y\in V|\{v,y\}\in E\}$

deg(v) := |N(v)|

$$\begin{split} \delta(G) &:= \min_{v \in V} deg(v) \\ \Delta(G) &:= \max_{v \in V} deg(v) \end{split}$$

<u>Def:</u> Ein Graph heißt **REGULÄR** wenn $\Delta(G) = \delta(G)$ (wenn alle Knoten gleichen Grad haben)

Gradfolge von G:

 $\mathcal{F} = (n_0, n_1, n_2, \dots, n_{|V|-1}) \text{ mit } n_k := |\{x \in V | deg(x) = k\}|$

 $\delta(G) \ge 0$

 $\Delta(G) < |V| - 1$

Beispiel:

0 1 2 3 4 F= (0 4 0 0 1)

 $F = (0 \ 4 \ 0 \ 0)$

bei Isomorphie: $\mathcal{F}_1 = \mathcal{F}_2 \to \text{Isomorphismus } \pi$ erhält Grad der Knoten!

1.4 Graph-Invarianten

Eigenschaften, die unter Isomorphie erhalten bleiben

 \mathcal{G} ... Menge aller Graphen

F...ist ein Graph invariant wenn

$$F: \mathcal{G} \to X \tag{1}$$

die Eigenschaft hat, dass

$$G \simeq H \Rightarrow F(G) = F(H)$$
 (2)

Invarianten bis jetzt: |V|, |E|, Gradfolge \mathcal{F}

Wenn $F(G) \neq F(H)$ für irgendeine Grapheninvariante $\Rightarrow G \neg \simeq H$

1.5 Pfade und Zusammenhänge

Kantenzug: Folge von Kanten in G" $\overline{x_o, e_1, x_1, e_2, x_2, \dots, e_l, x_l}$ sodass $e_i := \{x_{i-1}, x_i\}$

Beispiel:

Weg: Kantenzug sodass $e_i \neq e_j$ für $i \neq j$ (keine Kante doppelt verwenden)

<u>Pfad:</u> Kantenzug sodass $x_i \neq x_j$ für $(i, j) \neq (0, l)$ mit 0=Startknoten und l=Endknoten des Pfades (keinen Knoten mehrfach bis auf x_0, x_l)

- offen: $x_o \neq x_e$
- \bullet geschlossen: $x_0=x_e$ (nur hier 1 Knoten doppelt benutzt!)

<u>Definition:</u> G ist zusammenhängend wenn es zwischen je zwei Knoten x,y \in V einen Kantenzug gibt

Frage:

- 1. Ist Zusammenhang eine Grapheninvariante?
- 2. Kann man in der Definition Kantenzug durch Weg, Pfad oder Kreis ersetzt?

2 Vorlesung 21.10.2016

3 Vorlesung 28.10.2016

4 Vorlesung 11.11.2016

5 Vorlesung 18.11.2016

6 Vorlesung 25.11.2016

7 Vorlesung 02.12.2016

8 Vorlesung 09.12.2016

9 Vorlesung 16.12.2016

Metrik:

1. $d_{uu} = 0$

 $2. d_{uv} = 0 \Rightarrow u = v$

 $3. \ d_{uv} = d_{vu}$

4. $d_{uv} + d_{vw} \ge d_{uw}$ (Dreiecksungleichung)

Pseudometrik: -,1,2,3

Metrik: 0,1,2,3

Distanzfunktion: 1,2

4-Punkte-Bedingung:

Eine Distanzfunktion d ist eine additive (Baum) Metrik wenn je vier Punkte so geordnet werden können, daß:

 $d_{xy} + d_{uv} \le d_{xu} + d_{yv} = d_{xv} + d_{yu} \Leftrightarrow \forall x,y,u,v \text{ gilt:}$

 $d_{xy} + d_{uv} \le max\{d_{xu} + d_{yv}, d_{xv} + d_{yu}\}$

Isolations index:

Isolations index:
$$l(e) = \alpha(A|B) = \max(0, \min_{\substack{x,y \in A \\ u,v \in B}} \frac{1}{2} [\max\{d_{xu} + d_{yv}, d_{xv} + d_{yu}\} - (d_{xy} + d_{uv})])$$

=Länge der Baumkante, die A,B trennt oder ≤ 0 wenn A|B keine Teilbäume bestimmt.

Wenn d eine additive Distanzfunktion:

- $\alpha(A|B) \geq 0$
- A|B entspricht einer Kante im Baum $\Leftrightarrow \alpha(A|B) > 0$

Splitpseudometrik:

$$\delta_{A|B}(x,y) = \begin{cases} 1 : x \in A, y \in B \\ 1 : x \in B, y \in A \\ 0 : x, y \in A \\ 0 : x, y \in B \end{cases}$$
 (3)

x,y durch A|B getrennt $\Leftrightarrow \delta_{A|B}(x,y) = 1$

$$d_T(x,y) = \sum_{(A|B)\in\Sigma(T)} \alpha(A|B) \cdot \delta_{A|B}(x,y)$$

Genau die splits entlang des Pfades von x und y trennen x,y

Splits $\Sigma(T) \to \mathbf{Baum}$

wir wissen $\Sigma(T)$ ist kompatible

 $A|B,C|D \in \Sigma(T)$ dann mindestens einer der vier Durchschnitte:

 $A \cap C, A \cap D, B \cap C, B \cap D$ leer

jeder split-Teil <u>GENAU</u> eine der Mengen

Frage: Wie können Isolationsindizes, schnell und und alle Möglichkeiten durchzuprobieren, erzeugt werden?

Lösung: effiziente Berechnung von $\alpha(A|B) > 0$

Idee: erweitere X schrittweise

$$|A|, |B| = 1$$

$$X' \leftarrow X \cup \{w\}$$

$$A \cup B = X$$

in X':

- $X|\{w\}$
- $A \cup \{w\}|B$
- $B \cup \{w\} | A$

$$\begin{split} \beta_{xy|uv} &:= \frac{1}{2} max \{d_{xu} + d_{yv}, d_{xv} + d_{yu}\} - (d_{xy} + d_{uv}) \\ \text{erster Fall:} \\ \alpha(\{x\}|X) &= \min_{u,v \in X} \beta_{ww|uv} = \min_{u,v \in X} \frac{1}{2} (d_{wu} + d_{wv} - d_{uv}) \\ \text{zweiter Fall:} \end{split}$$

$$\alpha(A|B) = \min_{x,y \in A} \beta_{xy|uv}$$

$$\alpha(A \cup \{w\}|B) = \min\{\min_{\substack{x,y \in A \\ u,v \in B}} \beta_{xy|uv}, \min_{\substack{y \in A \\ u,v \in B}} \beta_{yw|uv}, \min_{\substack{x \in A \\ u,v \in B}} \beta_{xw|uv}\}$$

$$\Rightarrow \alpha(A \cup \{w\}|B) \le \alpha(A|B)$$

Also: wenn $\alpha(A|B) \leq 0 \Rightarrow \alpha(A \cup \{w\}|B)$ auch ≤ 0

 \Rightarrow nur Splits auf X mit $\alpha(A|B) > 0$ müssen erwartet werden

Wenn d additiv \Rightarrow Baum \Rightarrow splits $\Sigma(T)$ kompatibel \Rightarrow es gibt nicht mehr als 2|X| splits

 \Rightarrow Die Isolationsindizes aller Splits mit $\alpha(A|B) > 0$ können in $\mathcal{O}(|x|^5)$ berechnet werden:

|x| Erweiterungsschritte für $\mathcal{O}(|x|)$ splits mit Aufwand $\mathcal{O}(|x|^3)$

Theorem: [Bandelt, Dress]

Sei d eine Peusometrik auf X. Dann gibt es eine Pseudometrik d^0 auf X sodaß $d(x,y) = \sum_{\alpha} \alpha(A|B) \cdot \delta v_{\alpha}(x,y) + d^0(x,y)$

$$d(x,y) = \sum_{A|B} \underbrace{\alpha(A|B)}_{*} \cdot \delta_{A|B}(x,y) + d^{0}(x,y)$$

$$* \alpha(A|B) = 0 \text{ wenn } \min_{\substack{x,y \in A \\ y,y \in B}} \beta_{xy|uv} < 0$$

außerdem gilt: $\Sigma(d) = \{(A|B)\}$

alpha(A|B) > 0 hat höchstens $\mathcal{O}(|x|^2)$ Elemente

alle $\alpha(A|B) > 0$ können in $\mathcal{O}(|x|^6)$ Elemente berechnet werden.

- d additiv $\Rightarrow d^0 = 0$
- d^0 heißt split-primer
- d heißt total zerlegbar wenn $d^0 = 0$

allgemeine Pseudometrik auf 4 Punkten

Anzahl unabhängigen Distanzen: 6

5

Baum mit 4 Blättern: 5

$$d_{xu} + d_{xy} - d_{duy}$$

$$(l_x + a + l_u) + (l_x + b + l_y) - l_u - a - b - l_y = 2l_x$$

$$l_x = \frac{1}{2} \begin{bmatrix} d_{xu} + d_{xy} - d_{uy} \end{bmatrix}$$

$$\geq 0 \text{(Dreieck sungleichung)}$$

Split 1:

$$\begin{aligned} d_{xv} + d_{yu} - (d_{xy} + d_{uv}) &= \\ l_x + a + b + l_v \\ + l_y + a + b + l_u \\ - l_x - b - l_y \\ - l_u - b - l_v &= 2a \end{aligned}$$

Split 2:

$$d_{xu} + d_{yv} - (d_{xy} + d_{uv}) = l_x + a + l_u + l_y + a + l_v - l_x - b - l_y - l_y - b - l_u = 2(a - b) \le 2a$$

$$\begin{array}{l} \alpha(\{xy\}|\{uv\}) = a \\ \alpha(\{xu\}|\{yv\}) = b \\ \mathrm{Baum} \Rightarrow \mathrm{b}{=}0 \end{array}$$

Messung der Baumartigkeit:

Wiessung der Baumartig
$$B := \frac{1}{\binom{n}{4}} \sum_{\substack{i < j < k < l \\ i,j,k,l \in X}} \frac{b_{ijkl}}{a_{ijkl} + b_{ijkl}}$$
Mittelwerte von in der Boy

Mittelwerte von in der Box

 $B \approx Baumartig$

 $B \approx \frac{1}{2}$ völlig verrauscht, netzwerk-artig

Travelling sales person problem (TSP)

geschlossene Tour Voraussetzung

|X| > 1 (Anzahl der Städte größer 1)

Metrik d auf X gegeben

Tour: Permutation von $X:\pi$

$$L(\pi) = \sum_{i=1}^{|X|} d_{\pi(i-1)\pi(i)} \text{ (lesen als indices modulo } |X|)$$

Definition Mastertour:

Einschränkung von π auf $X'\subseteq X$ löst das TSP auf X

Wenn d eine additive Metrik (Baum) ist dann existiert eine Mastertour (optimale Lösung) die genau ein Mal um den Baum herum führt.

Eine Metrik hat die KALMANSON-Eigenschaft, wenn man X so ordnen kann, daß

$$d_{ij} + d_{kl} \le d_{ik} + d_{jl} \forall i < j < k < l$$

und

$$d_{il} + d_{jk} \le d_{ik} + d_{jl} \forall i < j < k < l$$

→ für jedes Quadrupel tauchen höchstens die Splits ij|kl, il|jk auf d ist Kalmanson ⇔ das TSP mit Distanz d einen Mastertour hat

Wenn d Kalmanson ist (zirkulär zerlegbar) \Rightarrow d splitzerlegbar (planar darstellbar)

 \neq (Umkehr falsch)

$$d = \sum_{\substack{A|B\\fast\ immer\ Kalmanson}} \alpha(A|B) \cdot \delta_{A|B} + \underbrace{\delta^0}_{\substack{Rauschen\\Primaeranteil)}}$$

Anteil der Distanz ohne phylogenetische Information:

$$\frac{\sum_{x \neq y} \delta^{\circ}(x, y)}{\sum_{x \neq y} \delta(x, y)}$$

Anten der Distanz ome phytogenetische $\sum_{x\neq y} \delta^0(x,y)$ $\sum_{x\neq y} \delta(x,y)$ (Maß für die Größe des Rauschens \to keine phylogenetische Information)

10 Vorlesung 21.12.2016