Component Data Sheet ANGRYVIPER Team

Summary - Timestamper

Name	timestamper
Worker Type	Application
Version	v1.3
Release Date	February 2018
Component Library	ocpi.assets.util_comps
Workers	timestamper.hdl
Tested Platforms	xsim, isim, modelsim, Matchstiq-Z1(PL)

Functionality

The Timestamper component inputs complex IQ data and outputs complex IQ data prepended with a timestamp. One timestamp is sent for each data message produced on the output.

Worker Implementation Details

timestamper.hdl

A timing diagram of the output interface for this component can be seen in Figure 1.

Timestamps are provided as an input to the component on the time interface. The timestamp is a 64 bit number with the first 32 bits corresponding to seconds and the last 32 bits corresponding to fractional seconds. When a valid message is detected on the input, the timestamp is registered by the component and given on the output interface. Timestamps and data are given on the output interface using different opcodes.

The time interface from which the timestamps are generated originates from the OpenCPI time server, which is instanced as part of the platform worker. Furthermore, an additional component (time client) is dynamically instanced by the framework for all components which declare time interfaces. The time client communicates with the time server and produces the time interface seen by the component.

Figure 1: Timestamper Output Timing Diagram

Component Data Sheet ANGRYVIPER Team

Block Diagrams

Top level

Source Dependencies

timestamper.hdl

 $\bullet \ ocpiassets/components/util_comps/timestamper.hdl/timestamper.vhd \\$

Component Spec Properties

Name	Type	SequenceLength	ArrayDimensions	Accessibility	Valid Range	Default	Usage
enable	Bool	-	-	Writable, Readable	Standard	true	Enable or bypass timestamper

Worker Properties

There are no worker implementation-specific properties for this component

Component Ports

Name	Producer	Protocol	Optional	Usage	
in	false	iqstream_protocol	false	-	Signed complex samples
out	true	iqstream_protocol_with_sync	false	-	Signed complex samples with timestamps

Worker Interfaces

timestamper.hdl

Type	Name	DataWidth	Advanced	Usage
StreamInterface	in	32	numberOfOpcodes=256	Signed complex samples
StreamInterface	out	32	numberOfOpcodes=256	Signed complex samples with timestamps
TimeInterface	time	-	SecondsWidth=32 FractionWidth=32	Time interface provided from Time Server

Component Data Sheet ANGRYVIPER Team

Control Timing and Signals

The Timestamper HDL worker uses the clock from the Control Plane and standard Control Plane signals.

Latency	I
3]

Data presented on the input appears on the output 3 clock cycles later. 2 of the 3 clock cycles consist of a time message

Performance and Resource Utilization

timestamper.hdl

Table 1: Worker Build Configuration "0"

OpenCPI Target	Tool	Version	Device	Registers	LUTs	Fmax (MHz)	Memory/Special Function
stratix4	Quartus	15.1.0	EP4SGX230KF40C2	182	184	N/A	N/A
virtex6	ISE	14.7	6vlx240tff1156-1	179	344	333.444	N/A
zynq	Vivado	2017.1	xc7z020clg484-1	181	156	191.681	N/A
zynq_ise	ISE	14.7	7z020clg484-1	180	356	353.982	N/A

Test and Verification

Two test cases are implemented to validate the Timestamper component:

- 1) Bypass mode
- 2) Normal mode

For both cases, the input file is a series of 8 ramps with 32-bit values ranging from 0 to 512.

For case 1, the input data is forwarded to the output port. For verification, the output file is byte-wise compared to the input file.

For case 2, the expected output waveform is the identical ramp with timestamps inserted before each data message. For verification, the timestamps are extracted and checked for incrementing values