Name:			
Danie.			

Show all work clea	rly and in order.	Please box your	answers. 10 minutes.
--------------------	-------------------	-----------------	----------------------

- 1. What is the dimension of a vector space?
 - A. The number of possible bases for the vector space.
 - B. The set of all vectors in the vector space.
 - C. The number of vectors in the vector space.
 - D. The span of all the vectors in the vector space.
 - E. The number of vectors in the span of any set of vectors in the vector space.
 - F. The number of vectors in a basis of the vector space.
 - G. None of the above.
- 2. The dimension of the kernel of a linear transformation $T:\mathbb{R}^{90}\to\mathbb{R}^{10}$ is equal to 5. What is the rank(T)?
 - A. 5
 - B. 95
 - C. 80
 - D. 85
 - E. 0
 - F. 10
- 3. The dimension of the image of a linear transformation $T:\mathbb{R}^{90}\to\mathbb{R}^{10}$ is equal to 5. What is the dimension of the kernel of T?
 - A. 5
 - B. 95
 - C. 80
 - D. 85
 - E. 0
 - F. 10
- 4. Let B be a $n \times n$ matrix. Suppose **x** is in the null space of B then
 - A. $B\mathbf{x} = \mathbf{0}$
 - B. \mathbf{x} must be the zero vector
 - C. $B\mathbf{x} = \mathbf{y}$ where $\mathbf{y} \neq 0$
 - D. None of the above.
- 5. Suppose that A and B are $n \times n$ matrices. Show that if **x** is in the null space of B then **x** is in the null space of AB.