Linear Algebra

Arthur J. Redfern

<u>arthur.redfern@utdallas.edu</u>

Jan 16, 2019

Jan 23, 2019

Outline

- Motivation
- Vector spaces
- Matrix operations
- Matrix decompositions
- Matrix transforms
- Layers built from linear transforms
- References

Disclaimer

- This set of slides is more accurately titled "A brief refresher of a subset of linear algebra for people already somewhat familiar with the topic followed by it's specific application to xNN related items needed by the rest of the course"
- However, that's not very catchy so we'll just stick with "Linear algebra"
- In all seriousness, recognize that linear algebra is a very broad and deep topic that has and will continue to occupy many lifetimes of work; if interested in learning more, please consult the references to open a window into a much larger world

Motivation

Pre Processing

- Pre processing methods simplify feature extraction and prediction
- Understanding linear transformations is a key to understanding many popular pre processing methods
- Example pre processing methods
 - Discrete Fourier transform
 - Principal component analysis

Feature Extraction And Prediction

- CNNs are compositions of nonlinear functions (layers)
 - $y = f_{D-1}(...(f_2(f_1(f_0(x, h_0), h_1), h_2), ...), h_{D-1})$
- Linear function with trainable parameters are a component of key layer types that control the network mapping from data space to feature space to information space
- Examples layers that include linear functions
 - Dense layers with single and multiple inputs
 - CNN style 2D convolution layers
 - RNN layers
 - Attention based layers
 - Average pooling layers

Vector Spaces

Preliminaries

- Notation
 - Scalars are not bold
 - Vectors are bold lower case
 - Matrices and tensors are bold upper case
 - Indices start at 0 and go from 0, ..., size − 1

Set

• A collection of distinct objects

Field

• A set with well defined addition and multiplication operations

•	Associativity	/ :	a + ((b + c)) = ((a + b)) + c aı	nd a	(bc) =	(a b) c
---	---------------	------------	-------	---------	-------	---------	----------	------	-----	-----	------	-----

• Commutativity:
$$a + b = b + a$$
 and $a b = b$ a

• Additive identity:
$$a + 0 = a$$

• Additive inverse:
$$a + (-a) = 0$$

• Distributivity:
$$a (b + c) = (a b) + (a c)$$

- Elements of fields are generally referred to as scalars
- Examples: R (real scalars), C (complex scalars)

Vector

- K tuple of scalars
- Always a column
- Denoted by the field raised to the size
 - FK
- Examples: R^K and C^K

Matrix

- M x K tuple of scalars
- Collection of K vectors of size M x 1 arranged in columns
 - Leads to column space and right null space
 - What can matrix vector multiplication reach and what can it not
 - Visualize using outer product of matrix vector multiplication
- Collection of M vectors of size K x 1 transposed and arranged as rows
 - Leads to row space and left null space
 - What can vector matrix multiplication reach and what can it not
 - Visualize using outer product of vector matrix multiplication

Tensor

- K₀ x ... x K_{D-1} array of scalars
- Ordering
 - Last dimension is contiguous in memory
 - Working from right to left goes from closest to farthest spacing in memory
 - Feature maps: batch x channel x row x column (sometimes referred to as NCHW ordering)
 - Filter coefficients: output channel x input channel x row x col

Function

- Mapping f: $X \rightarrow Y$ from domain to co domain
 - Injective: one to one; each y produced by at most one x
 - Surjective: onto; each y produced by at least one x
 - Bijective: one to one and onto (invertible)
- An infinite set is
 - Countably infinite if there's a bijection between the natural numbers and elements of the set
 - Un countably infinite if there's not

Vector Space

- Set of vectors and linear combinations of those vectors
- Satisfy

• Associativity:
$$\mathbf{x} + (\mathbf{y} + \mathbf{z}) = (\mathbf{x} + \mathbf{y}) + \mathbf{z}$$

• Commutativity:
$$x + y = y + x$$

• Additive identity:
$$x + 0 = x$$

• Additive inverse:
$$x + (-x) = 0$$

• Multiplicative compatibility:
$$a (b x) = b (a x)$$

• Distributivity:
$$(a + b)(x + y) = a x + a y + b x + b y$$

• Examples: R^K, C^K, R^{K_0 x ... x K_D-1}

Vector Space

• Span

- The span of a set of vectors $\{\mathbf{x}_0, ..., \mathbf{x}_{N-1}\}$ is the set of all finite linear combinations of the vectors
- Vectors **x** in the span can be written as $\mathbf{x} = \mathbf{a}_0 \mathbf{x}_0 + ... + \mathbf{a}_{N-1} \mathbf{x}_{N-1}$
- The span of a set of vectors is a vector space

Rank

- The rank of a matrix **X** is the dimension of the vector space generated by the span of the column vectors forming the matrix
- It is the same as the dimension of the space spanned by the rows of X

Vector Space

Linear independence

- A set of vectors is linearly dependent if at least 1 vector in the set is a linear combination of the others
- A set of vectors is linearly independent if no vector in the set can be written as a linear combination of the others

Basis

A basis for a vector space V is any linearly independent set of vectors that span V

• Dimension

- The dimension of a vector space V is the number of vectors required to form a basis of V
- Only finite dimensional vector spaces are considered here

Normed Vector Space

- A vector space with a notion of distance
- A norm maps an element of the vector space to a scalar
- Satisfies

```
    Non negativity: ||x|| ≥ 0 and ||x|| = 0 iff x = 0
    Absolute scalability: ||a x|| = |a| ||x||
```

• Triangle inequality: $||x + y|| \le ||x|| + ||y||$

- Example: I_p norm (common p = 1, 2 and ∞)
 - $||\mathbf{x}||_p = (\Sigma_n(|x(n)|^p))^{1/p}, p \ge 1$

Normed Vector Space

- The matrix norm induced by the I_p vector norm for a M x K matrix **H** is
 - $|| H ||_p = \sup_{x \neq 0} || H x ||_p / || x ||_p$
 - The l₁ induced matrix norm is the maximum absolute column sum of **H**
 - The l₂ induced matrix norm is the largest singular value of **H**
 - The Im induced matrix norm is the maximum absolute row sum of H
- The matrix norm expressed as a vector norm applied first across columns then to the resulting vector is
 - $| | \mathbf{H} | |_{p,q} = (\Sigma_k (\Sigma_m | H(m, k) |^p)^{q/p})^{1/q}, 1 \le p, q \le \infty$
 - If p = q = 1 then the matrix norm is the absolute value of all matrix entries
 - If p = q = 2 then the matrix norm is the square root of the sum of the squares of all matrix entries and referred to as the Frobenius norm
 - If $p = q = \infty$ then the matrix norm is the maximum of the absolute value of all matrix entries

Inner Product Space

- A vector space with a notion of distance and angle
- An inner product maps 2 elements of a vector space to a scalar
- Satisfies
 - Positive definiteness: $\langle \mathbf{x}, \mathbf{x} \rangle \ge 0$ and $\langle \mathbf{x}, \mathbf{x} \rangle = 0$ iff $\mathbf{x} = 0$
 - Conjugate symmetry: $\langle x, y \rangle = \text{conj}(\langle y, x \rangle)$
 - Linearity: $\langle a x, y \rangle = a \langle x, y \rangle$ and $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$
- Inner products induce norms on a vector space
 - But not all norms have associated inner products (e.g., l∞)
- Example: dot product
 - $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x} \cdot \mathbf{y} = \mathbf{x}^H \mathbf{y} = \sum_n (\operatorname{conj}(\mathbf{x}(n)) \mathbf{y}(n)) = ||\mathbf{x}||_2 ||\mathbf{y}||_2 \cos(\theta)$

Inner Product Space

- Matrix inner product is the Frobenius inner product
 - $\langle \mathbf{H}, \mathbf{G} \rangle_{F} = \Sigma_{m} \Sigma_{k} \operatorname{conj}(\mathbf{H}(m, k)) G(m, k)$
 - If the matrices were flattened by stacking the rows or columns end to end then the Frobenius inner product would be equivalent to the vector dot product

Matrix Operations

Transpose

- Definition
 - The transpose of matrix **A** with entries A(m, k) is matrix A^T with entries conj(A(k, m))
 - Also referred to as the Hermitian adjoint
- Properties
 - $C^{T} = (A + B)^{T} = A^{T} + B^{T}$
 - $C^{T} = (A B)^{T} = B^{T} A^{T}$

Addition

- Definition
 - C = A + B where C(m, k) = A(m, k) + B(m, k)

Multiplication – Matrix Scalar

- Definition
 - C = a B where C(m, k) = a B(m, k)

Multiplication – Matrix Vector

Matrix vector multiplication

- Definition
 - $\mathbf{c} = \mathbf{A} \mathbf{b}$ where $c(m) = \Sigma_k A(m, k) b(k)$

$$\bullet \begin{bmatrix} c(0) \\ \vdots \\ c(M-1) \end{bmatrix} = \begin{bmatrix} A(0,0) & \cdots & A(0,K-1) \\ \vdots & & \vdots \\ A(M-1,0) & \cdots & A(M-1,K-1) \end{bmatrix} \begin{bmatrix} b(0) \\ \vdots \\ b(K-1) \end{bmatrix}$$

- Comments
 - M (output dimension), K (input dimension) is setting up for BLAS notation
 - Inner product of matrix row and vector input to produce each output

Multiplication – Matrix Vector

Matrix vector multiplication

Arithmetic intensity

```
    Compute = MK (MACs = multiply accumulates)
    Data movement = K + MK + M (elements)
    Ratio = (MK)/(K + MK + M) (consider M and K large)
    ≈ 1 (memory wall)
```

- Implementation preview
 - If you want to make matrix vector multiplication run fast, you need to build a fast memory subsystem
 - Typically not an efficient thing to do from an operation per power perspective

Multiplication – Matrix Matrix

Matrix matrix multiplication

Definition

• C = A B where $C(m, n) = \Sigma_k A(m, k) B(k, n)$

$$\bullet \begin{bmatrix} \mathsf{C}(0,0) & \cdots & \mathsf{C}(0,\mathsf{N}-1) \\ \vdots & & \vdots \\ \mathsf{C}(\mathsf{M}-1,0) & \cdots & \mathsf{C}(\mathsf{M}-1,\mathsf{N}-1) \end{bmatrix} = \begin{bmatrix} \mathsf{A}(0,0) & \cdots & \mathsf{A}(0,\mathsf{K}-1) \\ \vdots & & \vdots \\ \mathsf{A}(\mathsf{M}-1,0) & \cdots & \mathsf{A}(\mathsf{M}-1,\mathsf{K}-1) \end{bmatrix} \begin{bmatrix} \mathsf{B}(0,0) & \cdots & \mathsf{B}(0,\mathsf{N}-1) \\ \vdots & & \vdots \\ \mathsf{B}(\mathsf{K}-1,0) & \cdots & \mathsf{B}(\mathsf{K}-1,\mathsf{N}-1) \end{bmatrix}$$

Comments

- M (output dimension), K (input dimension), N (number of inputs and outputs) is setting up for BLAS notation
- Can view as matrix vector multiplication applied to multiple inputs stacked next to each other (in the N dimension) with matrix vector multiplication as a special case with N = 1
- A discussion of different computational options for matrix multiplication (inner product based, outer product based, block based, Strassen style) will be deferred to the implementation section

Multiplication – Matrix Matrix

Matrix vector multiplication

Arithmetic intensity

```
    Compute = MNK (MACs)
    Data movement = KN + MK + MN (elements)
    Ratio = (MNK)/(KN + MK + MN) (cube in num, squares in den)
    = N³/(3*N²) (special case M = N = K)
    = N/3 (ratio maxed with sq matrix)
```

- Implementation preview
 - If you want to make matrix mult run fast, if it's possible choose a large matrix size such that you get multiple ops per element of data moved
- Why are bubbles spherical? Min surface area per volume enclosed
 - Think of surface area as data movement and volume as MACs

Inversion

- Square
 - A K x K square matrix **A** has an inverse matrix $\mathbf{B} = \mathbf{A}^{-1}$ when the column vectors comprising **B** are linearly independent
 - $AB = BA = I_{K}$
 - Properties
 - $(A^T)^{-1} = (A^{-1})^T$
 - $(A^{-1})^{-1} = A$
 - $(A B)^{-1} = B^{-1} A^{-1}$
 - Diagonal
 - Invertible if diagonal entries are non zero
 - B(k, k) = 1/A(k, k)

Inversion

- Non square
 - A M x K matrix A
 - When the rank of **A** is M then **A** has a right inverse **B** such that $\mathbf{A} \mathbf{B} = \mathbf{I}_{M}$
 - When the rank of **A** is K then **A** has a left inverse **B** such that **B** $A = I_K$
- Unitary
 - A K x K unitary matrix **U** has orthogonal unit norm columns
 - $U^H U = U U^H = I_K$
 - Unitary matrices preserve inner products (U x, U y) = (x, y)
- Orthogonal
 - A K x K orthogonal matrix **Q** has orthogonal unit norm columns with only real valued elements
 - $\mathbf{Q}^{\mathsf{T}} \mathbf{Q} = \mathbf{Q} \mathbf{Q}^{\mathsf{T}} = \mathbf{I}_{\mathsf{K}}$
 - Orthogonal matrices preserve inner products (Qx, Qy) = (x, y)

Hadamard or Schur Product

- Definition
 - $C = A \odot B$ where C(m, k) = A(m, k) B(m, k)
- Comments
 - Can be thought of as a point wise or element wise product
 - Used in many FFT algorithms for twiddle factor multiplication
 - Used to combine a gate ([0, 1] limited vector) with an input or output

Kronecker Product

- Definition
 - $C = A \otimes B$ where C(m, k) = A(m, k) B
- Comments
 - Generalizes vector outer products to matrix outer products
 - Not commutative in general

Vectorization

- Definition
 - y = vec(A) where y is formed from stacking columns of A
- Identities

```
• vec(A B C) = (C^T \bigotimes A) vec(B)
= (I_N \bigotimes A B) vec(C)
= (B^T C^T \bigotimes I_K) vec(A)
```

Trace

- Definition
 - The trace of a K x K matrix **A** is the sum of the elements on the principal diagonal
- Comments
 - The trace is also equal to the sum of the eigenvalues of A

Determinant

- Definition
 - The determinant of a K x K matrix **A** is the product of the matrix eigenvalues
- Comments
 - Can be thought of as the volume of a polytope defined by the column vectors of A

Matrix Decompositions

Eigen Decomposition

- An eigenvector \mathbf{v} of a K x K matrix \mathbf{A} is a nonzero vector that satisfies $\mathbf{A} \mathbf{v} = \lambda \mathbf{v}$
 - λ is a scalar referred to as the associated eigenvalue
 - Matrix **A** simply scales the eigen vector \mathbf{v} but does not change it's direction
- If A has K linearly independent eigenvectors then A can be factored as A = Q D Q⁻¹
 - **Q** is an orthogonal matrix with eigenvectors as columns
 - **D** is a diagonal matrix with associated eigenvalues as diagonal elements
 - The eigen decomposition is frequently calculated via a power method and deflation
- Given an eigen decomposition of A it's straightforward to find A⁻¹ and Aⁿ
 - A^{-1} = $(Q D Q^{-1})^{-1}$, this exploits the inversion formula for orthogonal and diagonal = $Q D^{-1} Q^{-1}$, matrices and products of matrices
 - A^n = $(Q D Q^{-1})^n$ = $Q D^n Q^{-1}$

Singular Value Decomposition

- The SVD of a M x K matrix A is the weighted outer product A = U S V^H
 - **U** is a M x M orthogonal matrix
 - **S** is a M x K diagonal matrix is singular values
 - **V**^H is a K x K orthogonal matrix
- The columns of **U** are the eigenvectors of $\mathbf{A} \mathbf{A}^{H} = \mathbf{U} \mathbf{S} \mathbf{V}^{H} \mathbf{V} \mathbf{S}^{H} \mathbf{U}^{H} = \mathbf{U} \mathbf{S} \mathbf{S}^{H} \mathbf{U}^{H}$
 - Let $\mathbf{Q} = \mathbf{U}$, $\mathbf{D} = \mathbf{S} \mathbf{S}^{H}$ and $\mathbf{Q}^{-1} = \mathbf{U}^{H}$ in the eigen decomposition
 - Initial columns corresponding to nonzero singular values span the column space of A
 - Last columns corresponding to zero singular values span the left null space of A
- The number of nonzero singular values is the rank of **A** and the ratio of the largest to smallest singular value is the condition number of **A**
- The columns of V^H are the eigenvectors of A^H $A = V S^H U^H U S V^H = V S^H S V^H$
 - Let $\mathbf{Q} = \mathbf{V}$, $\mathbf{D} = \mathbf{S}^H \mathbf{S}$ and $\mathbf{Q}^{-1} = \mathbf{V}^H$ in the eigen decomposition
 - Initial columns corresponding to nonzero singular values span the row space of A
 - Last columns corresponding to zero singular values span the null space of A

Matrix Transforms

Linear

- Important to understand matrices in the context of linear maps (transforms)
 - Every linear map can be represented as a matrix
 - Every matrix represents a linear map
- T: V₁ → V₂ is a linear map between vector spaces V₁ and V₂
 - Let \mathbf{x} and \mathbf{y} be vectors in V_1 and a be a scalar
 - Then T satisfies the following properties
 - Additivity: T(x + y) = T(x) + T(y)
 - Homogeneity: T(a x) = a T(x)

Linear

- 4 fundamental subspaces
 - The column space, image or range of T is the vector subspace of V_2 comprising all vectors T can produce and is denoted by range(T) = $\{T(\mathbf{x}) \in V_2 : \mathbf{x} \in V_1\}$
 - The null space or right null space of T is the vector subspace of V_1 comprising all vectors T maps to **0** and is denoted by null(T) = $\{x \in V_1: T(x) = 0\}$
 - The row space or co image of T is the vector subspace of V_1 comprising all vectors T^T can produce and is denoted by range(T^T) = { $T^T(\mathbf{y}) \in V_1$: $\mathbf{y} \in V_2$ }
 - The left null space or co kernel of T is the vector subspace of V_2 comprising all vectors T^T maps to $\mathbf{0}$ and is denoted by $\text{null}(T^T) = \{ \mathbf{y} \in V_2 : T^T(\mathbf{y}) = \mathbf{0} \}$
- Consider the linear transformation between finite dimensional vector spaces y = A x
 - A is a M x K matrix representing linear map T, x is a length K input and y is a length M output
 - The range of **A** is the vector space formed by the span of the column vectors of **A**
 - The number of linearly independent columns of **A** is the rank of **A** and satisfies rank(**A**) \leq min(M, K)

Affine

- An affine transformation is a linear transformation + an offset or bias
 - y = Ax + b
- Can be implemented as a linear transformation augmented with a nonzero constant input
 - y = Ax + b = [Ab] [x; 1] = A_{aug} x_{aug}
 - Note the input dimension has increased from K to K + 1
- Many xNN layers take the form of an affine transformation followed by a nonlinearity

Compositions

- Multiple linear transformations can be composed into a single linear transformation
 - $y = A_{D-1} ... A_1 A_0 x$ = A x, where $A = A_{D-1} ... A_1 A_0$
- Comments
 - A reason why nonlinearities are included in xNNs
 - Otherwise there would be no depth

Principal Component Analysis

Note

• Some of this is dependent on probability for parts of the understanding

Setup

- M x K data matrix X
- Each row is a different trial (ex: point in time)
- Each column is a different measurement from that trial (ex: different stock)
- Columns are normalized to 0 mean
- Columns are potentially linearly correlated

Goal

- Linearly transform to a new M x K matrix Y via a K x K matrix Q by Y = X Q
- Q is chosen such that columns of Y are orthogonal and ordered from largest to smallest variance
- For dimensionality reduction keep first L < K columns

Principal Component Analysis

- Mechanics for finding Q
 - Decompose X via the SVD as X = U S V^T
 - Select $\mathbf{Q} = \mathbf{V}$ such that $\mathbf{Y} = \mathbf{X} \mathbf{Q} = \mathbf{U} \mathbf{S} \mathbf{V}^{\mathsf{T}} \mathbf{V} = \mathbf{U} \mathbf{S}$
- Example
 - Statistical arbitrage (e.g., SPY, MDY and IJR)
 - Stock 0 time series in col 0, stock 1 time series in col 1, ..., stock K-1 time series in col K-1
 - 0 th principal component for trend trading (you would keep this for feature extract)
 - K-1 th principal component for stat arb (throw away for feature extract)

Discrete Fourier Transform

- The DFT is a linear transformation from domain to 1/domain via a projection onto a complex exponential basis: $y(k) = (1/sqrt(K)) \sum_{n} x(n) e^{-i(2\pi/K)nk}$
 - k = 0, ..., K 1 and n = 0, ..., K 1
 - Example domains: time to 1/time = frequency
- Equivalent to a K x K DFT matrix \mathbf{F}_{K} that transforms input vectors \mathbf{x} to output vectors \mathbf{y}
 - $y = F_K x$ where $F_K(a, b) = (1/sqrt(K)) e^{-i(2\pi/K)ab}$
 - \mathbf{F}_{K} is a unitary matrix so it's invertible (conj transpose = inverse, called the IDFT)
 - Output is typically circular complex Gaussian (will discuss implications later)
 - Efficient implementations are possible
 - O(K log K) for fast Fourier transform (FFT)
 - Vs O(K²) for DFT

Discrete Fourier Transform

- Use: data transformation
 - Sometimes it's easier to do feature extraction in the frequency domain vs time domain
 - Common example of this is speech to text
 - DFTs are used for creating MFCCs
 - Unitary so invertible (no information lost (until you read the next bullet point))
 - Effectively lets the network decide what data to keep and what data to throw away
- Use: dimensionality reduction
 - The DFT frequently concentrates the majority of information in naturally occurring signals to L < K basis components
 - A common dimensionality reduction strategy is to keep the L main components and get rid of the rest

- Common types of filtering / convolution
 - 1D
 - 2D
 - CNN style 2D
- Common methods for speeding up filtering / convolution for various cases
 - Frequency domain
 - Winograd
- This set of slides will only consider CNN style 2D convolution in the time domain
 - 1D and 2D convolution can be viewed as special cases
 - Tensor to matrix lowering for computation is also included

- Input feature maps
 - 3D tensor
 - N_i inputs x L_r rows x L_c cols
- Filter coefficients
 - 4D tensor
 - N_o outputs x N_i inputs x F_r rows x F_c cols
- Output feature maps
 - 3D tensor
 - N_o outputs x M_r rows x M_c cols

An illustration of the input features used by CNN style 2D convolution with 3x3 filters to produce each output feature

- An example showing CNN style 2D convolution is matrix matrix multiplication using 2 x 5 x 5 input feature maps, 3 x 2 x 3 x 3 filters and 3 x 3 x 3 output feature maps
- This sequence of figures illustrates the specific set of inputs and filter coefficients used to generate each output

- An example showing CNN style 2D convolution is matrix matrix multiplication using 2 x 5 x 5 input feature maps, 3 x 2 x 3 x 3 filters and 3 x 3 x 3 output feature maps
- This sequence of figures illustrates the specific set of inputs and filter coefficients used to generate each output

- An example showing CNN style 2D convolution is matrix matrix multiplication using 2 x 5 x 5 input feature maps, 3 x 2 x 3 x 3 filters and 3 x 3 x 3 output feature maps
- This sequence of figures illustrates the specific set of inputs and filter coefficients used to generate each output

- An example showing CNN style 2D convolution is matrix matrix multiplication using 2 x 5 x 5 input feature maps, 3 x 2 x 3 x 3 filters and 3 x 3 x 3 output feature maps
- This sequence of figures illustrates the specific set of inputs and filter coefficients used to generate each output

- An example showing CNN style 2D convolution is matrix matrix multiplication using 2 x 5 x 5 input feature maps, 3 x 2 x 3 x 3 filters and 3 x 3 x 3 output feature maps
- This sequence of figures illustrates the specific set of inputs and filter coefficients used to generate each output

. . .

- An example showing CNN style 2D convolution is matrix matrix multiplication using 2 x 5 x 5 input feature maps, 3 x 2 x 3 x 3 filters and 3 x 3 x 3 output feature maps
- This sequence of figures illustrates the specific set of inputs and filter coefficients used to generate each output

- An example showing CNN style 2D convolution is matrix matrix multiplication using 2 x 5 x 5 input feature maps, 3 x 2 x 3 x 3 filters and 3 x 3 x 3 output feature maps
- This sequence of figures illustrates the specific set of inputs and filter coefficients used to generate each output

- An example showing CNN style 2D convolution is matrix matrix multiplication using 2 x 5 x 5 input feature maps, 3 x 2 x 3 x 3 filters and 3 x 3 x 3 output feature maps
- This sequence of figures illustrates the specific set of inputs and filter coefficients used to generate each output

- An example showing CNN style 2D convolution is matrix matrix multiplication using 2 x 5 x 5 input feature maps, 3 x 2 x 3 x 3 filters and 3 x 3 x 3 output feature maps
- This sequence of figures illustrates the specific set of inputs and filter coefficients used to generate each output

- An example showing CNN style 2D convolution is matrix matrix multiplication using 2 x 5 x 5 input feature maps, 3 x 2 x 3 x 3 filters and 3 x 3 x 3 output feature maps
- This sequence of figures illustrates the specific set of inputs and filter coefficients used to generate each output

- An example showing CNN style 2D convolution is matrix matrix multiplication using 2 x 5 x 5 input feature maps, 3 x 2 x 3 x 3 filters and 3 x 3 x 3 output feature maps
- This sequence of figures illustrates the specific set of inputs and filter coefficients used to generate each output

. . .

- An example showing CNN style 2D convolution is matrix matrix multiplication using 2 x 5 x 5 input feature maps, 3 x 2 x 3 x 3 filters and 3 x 3 x 3 output feature maps
- This sequence of figures illustrates the specific set of inputs and filter coefficients used to generate each output

- An example showing CNN style 2D convolution is matrix matrix multiplication using 2 x 5 x 5 input feature maps, 3 x 2 x 3 x 3 filters and 3 x 3 x 3 output feature maps
- This sequence of figures illustrates the specific set of inputs and filter coefficients used to generate each output

- An example showing CNN style 2D convolution is matrix matrix multiplication using 2 x 5 x 5 input feature maps, 3 x 2 x 3 x 3 filters and 3 x 3 x 3 output feature maps
- This sequence of figures illustrates the specific set of inputs and filter coefficients used to generate each output

- An example showing CNN style 2D convolution is matrix matrix multiplication using 2 x 5 x 5 input feature maps, 3 x 2 x 3 x 3 filters and 3 x 3 x 3 output feature maps
- This sequence of figures illustrates the specific set of inputs and filter coefficients used to generate each output

- An example showing CNN style 2D convolution is matrix matrix multiplication using 2 x 5 x 5 input feature maps, 3 x 2 x 3 x 3 filters and 3 x 3 x 3 output feature maps
- This sequence of figures illustrates the specific set of inputs and filter coefficients used to generate each output

- An example showing CNN style 2D convolution is matrix matrix multiplication using 2 x 5 x 5 input feature maps, 3 x 2 x 3 x 3 filters and 3 x 3 x 3 output feature maps
- This sequence of figures illustrates the specific set of inputs and filter coefficients used to generate each output

. . .

- An example showing CNN style 2D convolution is matrix matrix multiplication using 2 x 5 x 5 input feature maps, 3 x 2 x 3 x 3 filters and 3 x 3 x 3 output feature maps
- This sequence of figures illustrates the specific set of inputs and filter coefficients used to generate each output

- Note that 2D correlation is typically used instead of 2D convolution
 - Equivalent with a flip of the filter and indexing change
 - But will still refer to it at CNN style 2D convolution and not CNN style 2D correlation
- Mathematically it's 6 loops (listed from common outer to inner)

$$n_0 = 0, ..., N_0 - 1$$

$$m_r = 0, ..., L_r - F_r = M_r - 1$$

$$m_c = 0, ..., L_c - F_c = M_c - 1$$

$$n_i = 0, ..., N_i - 1$$

$$f_r = 0, ..., F_r - 1$$

$$f_c = 0, ..., F_c - 1$$

- For each n_o, m_r and m_c
 - $Y(n_0, m_r, m_c) = \sum_{n_i} \sum_{f_r} \sum_{f_c} H(n_0, n_i, f_r, f_c) X(n_i, m_r + f_r, m_c + f_c)$

- For each n_o, m_r and m_c
 - $Y(n_o, m_r, m_c) = \sum_{n_i} \sum_{f_r} \sum_{f_c} H(n_o, n_i, f_r, f_c) X(n_i, m_r + f_r, m_c + f_c)$
- Can be viewed as an inner product (by expanding the summations)
 - Of a vector formed from N_i F_r F_c filter coefficients
 - With a vector formed from F_r F_c elements of each N_i input feature maps
 - To produce a single output at the corresponding row col of an output feature map
- Repeated
 - For all row col values of the output feature map using the same filter coefficients
 - For all output feature map channels using different filter coefficients for each output feature map channel

- High performance implementations of CNN style 2D convolution do not explicitly use 6 loops (but compute the same thing)
- The key realization is that CNN style 2D convolution can be written as matrix multiplication: $Y^{2D} = H^{2D} X^{2D}$
 - H^{2D} = reshape 4D filter coefficient tensor to 2D matrix
 - Trivial, nothing actually needs to be reshaped in practice
 - X^{2D} = form 3D input feature map tensor into 2D Toeplitz style filtering matrix
 - This is the key
 - Will generate blocks of this on the fly as each input is repeated $\sim F_r F_c$ times
 - Y^{2D} = compute 2D matrix of output feature maps
 - Matrix matrix multiplication is efficient in hardware
 - Trivial to reshape to 3D output feature map tensor, nothing actually needs to be done in practice

- Starting point / reminder
- Input feature maps
 - 3D tensor
 - N_i inputs x L_r rows x L_c cols
- Filter coefficients
 - 4D tensor
 - N_o outputs x N_i inputs x F_r rows x F_c cols
- Output feature maps
 - 3D tensor
 - No outputs x Mr rows x Mc cols

- CNN style 2D convolution written as matrix matrix multiplication
 - Output feature maps (each box is 1 x M_c elements)
 - Filter coefficients (each box is 1 x F_c elements)
 - Input feature maps (ordering not shown)

(Ni Fr Fc) x (Mr Mc) Input feature map 0 Toeplitz style filtering matrix Input feature map 1 Toeplitz style filtering matrix Input feature map Ni-1 Toeplitz style filtering matrix

- An example showing CNN style 2D convolution is matrix matrix multiplication using 2 x 5 x 5 input feature maps, 3 x 2 x 3 x 3 filters and 3 x 3 x 3 output feature maps
- This figure illustrates memory addresses (specifically offsets to the initial pointer for each array)
- The next page shows where the memory addresses go in matrix matrix multiplication

 0
 1
 2
 3
 4
 5
 6
 7
 8

 9
 10
 11
 12
 13
 14
 15
 16
 17

 18
 19
 20
 21
 22
 23
 24
 25
 26

Output feature map memory addresses (note vectorization)

Filter coefficient memory addresses (note vectorization)

- Main figure is matrix form
- Small figure is convolution form from previous page for reference

Input feature map memory addresses (note Toeplitz filtering matrix structure)

0	1	2	5	6	7	10	11	12
1	2	3	6	7	8	11	12	13
2	3	4	7	8	9	12	13	14
5	6	7	10	11	12	15	16	17
6	7	8	11	12	13	16	17	18
7	8	9	12	13	14	17	18	19
10	11	12	15	16	17	20	21	22
11	12	13	16	17	18	21	22	23
12	13	14	17	18	19	22	23	24
25	26	27	30	31	32	35	36	37
26	27	28	31	32	33	36	37	38
27	28	29	32	33	34	37	38	39
30	31	32	35	36	37	40	41	42
31	32	33	36	37	38	41	42	43
32	33	34	37	38	39	42	43	44
35	36	37	40	41	42	45	46	47
36	37	38	41	42	43	46	47	48
37	38	39	42	43	44	47	48	49

- Limiting cases illustrated via depth wise separable convolution that splits CNN style 2D convolution into 2 layers
 - Traditional 2D convolution followed by CNN style 2D convolution with 1 x 1 filters
 - Less generality of either vs original, but 1 extra level of depth
- Traditional 2D convolution to mix across space $(N_i = N_o = 1)$
 - Can also get small values of N_i and N_o via grouping
 - Equivalent to vector matrix multiplication
 - Note that K dimension reduces from $(N_i F_r F_c)$ to $(F_r F_c)$
- CNN style 2D convolution with 1 x 1 filters to mix across channel
 - Equivalent to standard matrix matrix multiplication
 - Note that K dimension reduces from (N_i F_r F_c) to N_i

2 3

CNN Style 2D Convolution

Output feature map memory addresses (note vectorization)

Filter coefficient memory addresses (note vectorization)

- Traditional convolution
- Equivalent to vector matrix multiplication

38 | 39 | 42 | 43

5 6

10 11

48 49

44 | 47

An illustration of the input features used by traditional 2D convolution with 3x3 filters (equivalent to fully grouped CNN style 2D convolution with 3x3 filters) to produce each output feature

 0
 1

 2
 3

 4
 5

Output feature map memory addresses (note vectorization)

Filter coefficient memory addresses (note vectorization)

- CNN style 2D convolution with 1x1 filters
- Equivalent to pure matrix matrix multiplication

An illustration of the input features used by CNN style 2D convolution with 1x1 filters to produce each output feature

Memory

- Formulas
 - Input feature maps: N_i L_r L_c
 Output feature maps: N_o M_r M_c
 Filter coefficients: N_i N_o F_r F_c
- Early in the network feature map memory tends to dominate
- Deeper in the network filter coefficient memory tends to dominate

• Compute

- Formula for MACs
 - $(N_o) (M_r M_c) (N_i F_r F_c) = (N_o M_r M_c) (N_i F_r F_c)$ = (number of outputs) (number of input MACs per output)
- Tends to be highest in the beginning of the network
 - If $(M_r M_c)$ is more aggressively reduced than $(N_i N_o)$ is increased
- Scaling the input size by 1/2 in rows and cols ~ reduces compute by 1/4

- Arithmetic intensity
 - Compute $= N_i N_o F_r F_c M_r M_c$ (MACs) • Data movement $= N_i L_r L_c + N_o M_r M_c + N_i N_o F_r F_c$ (elements)
 - Ratio = compute / data movement

- Alternate view of CNN style 2D convolution
 - Add together Fr x Fc CNN style 2D convolutions with 1x1 filter size
 - Reminder: CNN style convolution with 1x1 filters is pure matrix matrix multiplication
 - Input size is reduced to Mr x Mc for each with an appropriate shift / offset of the original input
 - Tradeoffs
 - Advantage of simpler input feature map matrix structure and associated data movement logic
 - Drawback of additional input feature map memory movement
 - Side benefit: useful for understanding back propagation through a CNN style 2D convolution layer

- Variant: input feature map 0 padding
 - P_I left, P_r right, P_t top, P_b bottom
 - Typically $P_1 + P_r = F_c 1$ and $P_t + P_b = F_r 1$
 - Used for same size input / output feature maps
 - Implementation key is efficient 0 insert

- Variants: input feature map up sampling
 - U_r rows, U_c cols
 - Typically called transposed convolution, fractionally strided convolution or deconvolution
 - Used in decoder style head designs
 - Implementation key is input memory reuse
 - Alternatives are bilinear and nearest neighbor interpolation

- Variants: filter coefficient up sampling
 - D_r rows, D_c cols
 - Typically called dilated or Atrous convolution
 - Used to maintain spatial resolution with large receptive field
 - Implementation key is input feature map filtering matrix row removal

- Variants: output feature map down sampling
 - S_r rows, S_c cols
 - Typically called strided convolution
 - Used to reduce spatial resolution
 - Implementation key is input feature map filtering matrix column removal
 - Alternative is pooling

Layers Built From Linear Transforms

Purpose

- You design a network to accomplish a goal
 - Don't ever lose sight of this
 - Network design is not arbitrary
 - So it always makes sense to stop and think how the operations you're including help you accomplish the goal you're trying to achieve
- Ask yourself
 - Why do xNNs include these layers?
 - How do these layers map from data to features to predictions?
 - Pay attention to how the input features are combined to generate output features
- The purpose of the next few slides is to introduce layers which include linear transformations and help build intuition on how they map from data to features to classes

- Densely connected or fully connected layer
 - y = f(Hx + v)
 - **H x** is multiplication of a M x K matrix **H** with a K x 1 input vector **x** (batching will add a dim to **x**)
 - **v** is a M x 1 bias vector
 - f is a (sub) differential pointwise nonlinearity
 - ReLU: 0 out the negative values and pass the positive unchanged
 - Sigmoid: monotonic nonlinear map to (0, 1)
 - Tanh: monotonic nonlinear map to (-1, 1)
 - ... many other options possible
 - y is a M x 1 output vector (batching will add a dim to y)
- A traditional neural network is composed of multiple densely connected layers
 - Transform from data to weak features
 - Transform from weak features to strong features
 - Transform from strong features to classes

- Some intuition of feature extraction and prediction for a densely connected layer
 - Sometimes linear classification is viewed as template matching where each row is a different template and the predicted class is the maximum output
- The inner product depends on magnitude and angle
 - Inner product definition reminder: $\langle \mathbf{a}, \mathbf{b} \rangle = ||\mathbf{a}||_2 ||\mathbf{b}||_2 \cos(\theta)$
- Each linearly extracted output feature is the inner product of a row of H and the input x
 - z(m) = H(m, :) x
 - z(m) is the extracted feature or prediction
 - **H**(m, :) is the feature extractor or predictor
 - **x** is the input

- How strong or important is a feature extractor? $||\mathbf{H}(m,:)||_2$
 - Note that the input mag contributes the same to each extracted feature $||\mathbf{x}||_2$
 - So here input magnitude only matters relative to bias
 - But input magnitude will also matter for network structures with branches that come together
 - Input magnitude will also matter when the same feature extractor is applied to different inputs
- How aligned is the feature extractor with the input? θ

• In same direction: positive feature

• Orthogonal: 0 feature

• In opposite direction: negative feature

- Intuition of bias
 - Affine transformation
 - Allows the dividing line to shift
 - Implementation as a rank 1 outer product
 - Will use bias in a constructive variant of the universal approximation proof
- Intuition of Rel U
 - Removes negatively aligned features or predictions
 - Allows depth
 - Subsequent layers combine positively aligned extracted features
- Intuition of other nonlinearities
 - Also allow depth
 - Sigmoid acts as a gate
 - Tanh acts as a positive / negative map

- Intuition of the size of K (input length) and M (output length)
 - Small K to large M
 - Different combinations of a small number of features to predict a large number of classes
 - Large K to small M
 - 1 feature or a combination of features to predict a small number of classes is now possible
 - Example: ImageNet classification and final fully connected layer size
 - Example: the game of 20 questions

- In general, for the final classification layer, it's better to have K > M
 - Classification goal is to create matrix and bias that takes K features and makes the correct 1 of the M elements at the output much larger (closer to $+ \infty$) than all the others
 - To get a feel for this consider 2 extreme cases
 - 2 features K linearly combined + bias then ReLU to predict 200 classes M
 - 200 features K linearly combined + bias then ReLU to predict 2 classes M
 - Create example features, matrices and biases for both cases
 - Look at sensitivity of the prediction to errors in the features for each
 - Can relate to matrix condition number
 - Show the condition number of K > M is always less than that of K < M
 - Now vary K and M and show diminishing returns after some point too
 - Generalize to considerations in a hierarchical head design

- CNN style 2D convolution layer
 - $Y^{3D} = f(H^{4D} * X^{3D} + V^{3D})$
 - \mathbf{H}^{4D} * \mathbf{X}^{3D} is CNN style 2D convolution of a \mathbf{N}_0 x \mathbf{N}_i x \mathbf{F}_r x \mathbf{F}_c tensor \mathbf{H}^{4D} with a \mathbf{N}_i x \mathbf{L}_r x \mathbf{L}_c input vec \mathbf{X}^{3D}
 - V^{3D} is a $N_o \times M_r \times M_c$ bias tensor that is a constant for each output feature map
 - f is a pointwise nonlinearity as in the case of a densely connected layer with ReLU being common
 - **Y**^{3D} is a N_o x M_r x M_c output tensor
 - Batching can be thought of as adding a loop that applies this layer to multiple input / output pairs
 resulting in the addition of a dimension to X and Y after concatenation
 - **X**^{4D} is a B x N_o x M_r x M_c output tensor
 - **Y**^{4D} is a B x N_o x M_r x M_c output tensor
- A traditional CNN is composed of CNN style 2D convolution layers (in addition to other layer types and branching structures)
 - Transform from data to weak features
 - Transform from weak features to strong features

- Why use CNN style 2D convolution instead of vectorizing the input?
- Consider applying a standard neural network to an image
 - Dimensions / memory / arithmetic intensity make it unreasonable to apply normal neural network linear layer to large images
- Use CNN style 2D convolution layer instead
 - It's a less general transformations but if the input / problem has translational invariance then perhaps the loss of generality is ok
 - Very high (but not unreasonable) memory and compute for modern hardware

- Intuition of feature extraction
 - CNN style 2D convolution is a linear transformation
 - Output feature maps matrix = filter coefficient matrix * input feature maps filtering matrix
 - Matrix vector multiplication as used in a fully connected layer of a neural network had the intuition of matching features to inputs over channel
 - For CNN style 2D convolution it has the intuition of matching features to inputs over channel and space
 - How far can it see in space? For 1 layer? For repeated layers?
 - How many features does it work over?

- Intuition of bias
 - Add a constant to all elements in an output feature map
 - Can be a different constant for each output feature map
 - Affine transformation
 - Allows the dividing line to shift
 - Implementation using a rank 1 outer product
- Intuition of Rel U
 - Removes negatively aligned features or predictions
 - Allows depth
 - Subsequent layers combine positively aligned extracted features

RNN Layer

- RNN layer
 - $y_t = f(H x_t + G y_{t-1} + v)$
 - t is the current time step, t-1 is the previous time step
 - $\mathbf{H} \mathbf{x}_{t}$ is multiplication of a M x K matrix \mathbf{H} with a K x 1 input vector \mathbf{x}_{t}
 - $\mathbf{G} \mathbf{y}_{t-1}$ is multiplication of a M x M matrix \mathbf{G} with a M x 1 previous output vector \mathbf{y}_{t-1}
 - **v** is a M x 1 bias vector
 - f is a pointwise nonlinearity as in the case of a densely connected layer
 - **y**_t is a M x 1 current output vector
- A traditional RNN is composed of multiple RNN layers
 - Transform from data to weak features to strong features
 - All sorts of structural configurations: stacked, bi directional, pyramidal
 - All sorts of variants to improve memory: GRU, LSTM
 - These will be discussed in later lectures in the context of speech and language

RNN Layer

A RNN layer illustrated with feedback (left) and unwrapped in time (right)

RNN Layer

- RNN intuition
 - Current output features are dependent on features extracted from the input and features extracted from the previous output
 - So it's like a densely connected layer with the addition of a term that depends on the previous output
 - This allows for information to flow sequentially

Attention Based Layer

- Attention layer
 - **X** is a K x N input and \mathbf{h}_{m} is a K x 1 key at position m
 - $\mathbf{a}_{m}^{\mathsf{T}} = \mathbf{h}_{m}^{\mathsf{T}} \mathbf{X}$ is a 1 x N attention score for position m
 - α_m = softmax(a_m) is a N x 1 attention distribution for position m
 - $\mathbf{y}_{m} = \mathbf{X} \, \mathbf{\alpha}_{m}$ is a K x 1 output

For now think of softmax() as a function that input vectors to a probability mass function (a vector whose elements are non negative and sum to 1)

More details will be given in the calculus and probability lectures

- This is just scratching the surface of attention and there are many possibilities
 - Different scoring functions (dot product shown above)
 - Different input windows (global / soft, local / hard fixed and adaptive)
 - Breaking the input into separate values and queries for use with the key
 - Single and multi head
 - Choice of key and binding location for the output
- An attention layer frequently connects an encoder and decoder or is used in self attention for feature encoding

Attention Based Layer

- Attention intuition
 - Depending on what you're interested in you focus on different things
 - Different parts of an image for captioning
 - Different parts of a sound waveform for speech to text transduction
 - Different parts of a sentence for language to language translation
 - Attention provides a way of doing this
 - The output is a weighted combination of inputs based on a key (what you're interested in)

Average Pooling

- Average pooling maps a region of an input feature map to a single value that's the average of the elements in that region
 - Local average pooling repeats this process across the whole input feature map in a periodic pattern
 - Implicitly a down sampling mechanism
 - Occasionally used between convolutional building blocks (though max pooling is more common)
 - Global average pooling averages a whole input feature map to a single value
 - Frequently used between convolutional layers and a final densely connected layer in a classification network
 - Aggregates all spatial information, loses all spatial resolution

32	36	68	56	72	48
8	40	64	84	80	12
28	96	92	76	16	4
52	88	44	20	60	24

29	68	53
66	58	26

References

Vectors And Matrices

- Personal communication with T Lahou
- Linear algebra
 - https://www.math.ucdavis.edu/~linear/linear-guest.pdf
- Linear algebra abridged
 - http://linear.axler.net/LinearAbridged.pdf
- Essence of linear algebra
 - https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab
- The matrix cookbook
 - https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

Layers Built From Linear Transforms

- Christopher Olah's blog
 - http://colah.github.io
- A guide to convolution arithmetic for deep learning
 - https://arxiv.org/abs/1603.07285
- A critical review of recurrent neural networks for sequence learning
 - https://arxiv.org/abs/1506.00019
- Effective approaches to attention-based neural machine translation
 - https://arxiv.org/abs/1508.04025