Вопросы к экзамену по Теории Графов и Комбинаторным Алгоритмам 3 семестр

Данил Заблоцкий 16 января 2024 г.

Содержание

1	Определение графа. Примеры графов. Степени вершин графа. Лемма о рукопожатиях.	2
2	Маршруты, цепи, циклы. Лемма о выделении простой цепи. Лемма об объединении простых цепей.	4
3	Эйлеровы циклы. Критерий существования эйлерова цикла (теорема Эйлера).	6
4	Гамильтоновы циклы. Достаточные условия существования гамильтонова цикла (теоремы Оре и Дирака).	8
5	Изоморфизм графов. Помеченные и непомеченные графы. Теорема о числе помеченных n -вершинных графов.	9
6	Проблема изоморфизма. Инварианты графа. Примеры.	11
7	Связные и несвязные графы. Лемма об удалении ребра. Оценки числа ребер связного графа.	ı- 12
8	Плоские и планарные графы. Графы Куратовского. Формула Эйлера для плоских графов.	15

1 Определение графа. Примеры графов. Степени вершин графа. Лемма о рукопожатиях.

Определение 1 (Неориентированный граф, вершины и ребра графа). *Неориентированный граф* — пара множеств G = (V, E), где

V – непустое конечное множество,

E – множество, состоящее из неупорядоченных пар элементов из V.

Элементы множества V называются $\epsilon epuunamu$, а элементы E – $pe\delta pamu$ графа.

Примечание. Если $u, v \in V, \{u, v\} \in E$, то будем записывать

$$e = uv (= vu)$$

и говорить, что вершины u и v cменны, вершина u и ребро v – uниu-dентны

Определение 2 (Степень вершины). *Степенью вершины v* называется число инцидентных ей ребер.

Обозначение:
$$d(v) (deg(v))$$

Пример. deg(v) = 3

Пример. Пустой граф – граф без ребер: O_n .

Пример. Полный граф – граф, любая пара которого смежна: K_n .

Примечание.

$$|E| = C_n^2 = \frac{n(n-1)}{2}$$
 — число ребер.

Пример. Двудольный граф — граф, вершины которого разбиты на 2 непересекающиеся части (доли) так, что любое ребро ведет из одной доли в другую.

Если любая вершина одной доли смежна с любой вершиной другой доли, то такой граф называется nonhum deydonuhum.

Полный двудольный граф с долями размера p и q обозначают: $K_{p,q},$

$$|E| = p \cdot q$$
.

Пример. 3 везда — полный двудольный граф $K_{1,q}$: одна доля состоит из одной вершины, а из нее веером расходятся лучи.

Пример. Графы многогранников

Лемма 1 (О рукопожатиях). Пусть G = (V, E) — произвольный граф. Сумма степеней всех вершин графа G — четное число, равное удвоенному количеству его ребер:

$$\sum_{v \in V} deg_G(v) = 2|E| \tag{1}$$

- 1. Если |E| = 0, то формула 1 верно.
- 2. Предположим, что формула 1 верна для любого графа, в котором число ребер $\leq m$, где $m \geq 0$.
- 3. Пусть |E|=m+1. Выберем произвольное ребро e=uv и удалим его из графа G. Получим граф G'=(V,E'), где |E'|=m.

По предположению индукции для графа G' формула 1 верна:

$$\sum_{v \in V} deg_{G'}(v) = 2|E'| = 2m.$$

Вернем ребро e = uv:

$$\sum_{v \in V} deg_G(v) = \sum_{v \in V} deg_{G'}(v) + 2 = 2m + 2 = 2(m+1) = 2|E|.$$

2 Маршруты, цепи, циклы. Лемма о выделении простой цепи. Лемма об объединении простых цепей.

Определение 3 (Маршрут). Mapupymom, соединяющим вершины u и v ((u,v)-маршрут), называется чередующаяся последовательность вершин и ребер вида

$$(u = v_1, e_1, v_2, \dots, v_k, e_k, v_{k+1} = v)$$

такая, что $e_i = v_i v_{i+1}$, $i = \overline{1, k}$.

Определение 4 (Замкнутый маршрут). Маршрут называется *замкну- тым*, если первая вершина совпадает с последней, то есть

$$v_1 = v_{k+1}.$$

Определение 5 (Цепь, простая цепь). Маршрут называется *цепью*, если в нем все ребра различны и *простой цепью*, если в нем все вершины различны (за исключением, быть может, первой и последней).

Определение 6 (Цикл, простой цикл). Замкнутая цепь называется иик-лом, а замкнутая простая цепь — простым uuk-лом.

Лемма 2 (О выделении простой цепи). Всякий незамкнутый (u, v)-маршрут содержит простую (u, v)-цепь.

Доказательство.

- 1. Если все вершины (u,v)-маршрута различны, то (u,v) простая цепь.
- 2. Пусть v_i первая из вершин, имеющая в нем повторение, а v_j последнее повторение.

 $(v_1, v_2, \ldots, v_{i-1}, v_i, v_{j+1}, \ldots)$ — заменим на более короткий, исключив цикл. Если в более коротком маршруте еще есть повторяющиеся вершины, то поступаем также.

В конце концов получим незамкнутый (u,v)-маршрут, в котором все вершины различны, то есть простой цикл.

2 МАРШРУТЫ, ЦЕПИ, ЦИКЛЫ. ЛЕММА О ВЫДЕЛЕНИИ 5 ПРОСТОЙ ЦЕПИ. ЛЕММА ОБ ОБЪЕДИНЕНИИ ПРОСТЫХ ЦЕПЕЙ.

Лемма 3 (Об объединении простых цепей). Объединение двух несовпадающих простых (u, v)-цепей содержит простой цикл.

Доказательство. Предположим, что $P = (u_1, \ldots, u_{k+1}), \ Q = (v_1, \ldots, v_{l+1})$ – две несовпадающие простые цепи:

$$u = u_1 = v_1, \quad v = u_{k+1} = v_{l+1},$$

Предположим, что u_{r+1} и v_{r+1} – первые несовпадающие вершины этих цепей, а u_s = v_t – первые совпадающие за v_{r+1} и u_{r+1} . Тогда

$$(u_r,u_s)$$
 – фрагмент P – образуют простой цикл. –

3 Эйлеровы циклы. Критерий существования эйлерова цикла (теорема Эйлера).

Определение 7 (Эйлеров цикл). Пусть G = (V, E) – произвольный граф (мультиграф). Цикл в графе G называется эйлеровым, если он содержит все ребра графа.

Определение 8 (Эйлеров граф). Граф называется *эйлеровым*, если в нем есть эйлеров цикл.

Теорема 1 (Эйлер, 1736). В связном графе G = (V, E) существует эйлеров цикл \Leftrightarrow все вершины графа G четны (то есть имеют четную степень).

Доказательство.

- → (необходимость)
 - Пусть граф G эйлеров. Эйлеров цикл, проходя через каждую вершину графа, входит в нее по одному ребру и выходт по другому. Значит каждая вершина должна быть инцидентна четному числу ребер.
- ← (достаточность)

Пусть G – связен, все его вершины имеют четную степень.

Рассмотрим следующий алгоритм и докажем, что он обязательно построит эйлеров цикл.

Примечание (Алгоритм построения эйлерова цикла). Рассмотрим произвольную вершину v_0 и построим из нее маршрут C_0 .

Пройденные вершины запоминаем, а ребра удаляем. Действуем так до тех пор, пока не получим граф G_1 , в котором нет ребер инцидентных очередной вершине маршрута C_0 .

Если C_0 содержит все ребра графа G, то он и есть эйлеров цикл и все доказано.

В противном случае, в силу связности графа G в цикле C_0 найдется вершина v_1 , инцидентная некоторому ребру графа G_1 . Начинаем стоить из нее (v_1) цикл C_1 в графе G_1 .

Если все циклы C_0 и C_1 содержат все ребра графа G_1 , то алгоритм завершает работу.

В противном случае, в одном из циклов C_0, C_1 найдется вершина v_2 , инцидентная какому-то ребру графа G_2 . Строим из нее цикл C_2 в графе G_2 и так далее.

В конце концов, получим, что после построения цикла C_k , оставшийся граф G_{k+1} пуст \Rightarrow в построенных циклах все ребра G. Тогда контруируем в графе G эйлеров цикл из ребер построенных циклов.

4 Гамильтоновы циклы. Достаточные условия существования гамильтонова цикла (теоремы Оре и Дирака).

Определение 9 (Гамильтонов цикл, граф). Пусть G = (V, E) — обыкновенный граф, |V| = n. Простой цикл в графе G называется *гамильтоновым*, если он проходит по всем вершинам графа.

Граф называется $\it гамильтоновым, если он содержит гамильтонов цикл.$

Определение 10 (Гамильтонова цепь). Цепь в графе G называется $\it га \it мильтоновой$, если она проходит по всем вершинам графа.

Теорема 2 (Оре, 1960). Пусть $n \ge 3$. Если в n-вершинном графе G для любой пары несмежных вершин u,v выполнено условие

$$deg(u) + deg(v) \ge n$$
,

то граф – гамильтонов.

Доказательство. От противного. Предположим, что граф G удовлетворяет условию теоремы, но G – негамильтонов.

Соединив любые две несмежные вершины графа ребром, мы вновь получим граф, удовлетворяющий условию теоремы. Поскольку полный граф гамильтонов, то существует мауксимальный негамильтонов граф G^* , удовлетворяющий условию теоремы.

Это значит, что соединив две несмежные вершины графа G^* ребром, мы получим гамильтонов цикл. Поэтому любые две вершины графа G^* соединены гамильтоновой цепью.

Выберем в G^* пару несмежных вершин v_1, v_n и пусть $(v_1, v_2, \ldots, v_{n-1}, v_n)$ – гамильтонова цепь в G^* .

Если в графе G^* вершины v_1 и v_i – смежные, то вершины v_{i-1} и v_n не могут быть смежными, иначе в G^* существовал бы гамильтонов цикл

$$(v_1, v_i, v_n, v_{i-1}, v_1),$$

Отсюда следует, что

$$deg(v_n) \leq n - 1 - deg(v_1).$$

Следовательно, $deg(v_1) + deg(v_n) \le n - 1$ — противоречие с условием.

Теорема 3 (Дирак, 1953). Пусть $n \ge 3$. Если в n-вершинном графе G для любой вершины выполнено условие

$$deg(v) \geqslant \frac{n}{2},$$

то граф – гамильтонов.

Доказательство. Теорема Дирака следует из теоремы Оре.

5 Изоморфизм графов. Помеченные и непомеченные графы. Теорема о числе помеченных *n*-вершинных графов.

Определение 11 (Изоморфные графы). Графы $G = (V_G, E_G)$, $H = (V_H, E_H)$ называются *изоморфными*, если между множествами из вершин существует взаимооднозначное соответствие

$$\phi: V_G \to V_H$$
,

сохраняющее сменность, то есть $\forall u, v \in V_G$

$$uv \in E_G \Leftrightarrow \phi(u)\phi(v) \in E_H$$
.

Обозначение: $G \cong H$

5 ИЗОМОРФИЗМ ГРАФОВ. ПОМЕЧЕННЫЕ И НЕПОМЕЧЕННЫЕ 9 ГРАФЫ. ТЕОРЕМА О ЧИСЛЕ ПОМЕЧЕННЫХ n-ВЕРШИННЫХ ГРАФОВ.

Определение 12 (Помеченный граф). Граф называется *помеченным*, если его вершины отличаются одна от другой какими-то метками.

3 разных помеченных графа

2 одинаковых помеченных графа

Теорема 4 (О числе помеченных n-вершинных графах). Число p_n различных помеченных n-вершинных графов с фиксированным множеством вершин равно

 $2^{\frac{n(n-1)}{2}}$.

Доказательство. В помеченном n-вершинном графе G можно перенумеровать все пары вершин (таких пар всего $C_n^2 = \frac{n(n-1)}{2}$) и поставить графу G взаимно однозначное соответствие его характеристический вектор длины $k = \frac{n(n-1)}{2}, i$ -ая компонента которого равна

 e_i = $\left\{ egin{array}{ll} 1, \ \mbox{если пара вершин с номером } i \ \mbox{сменна} \\ 0, \ \mbox{в противном случае} \end{array} \right.$

Пример.
$$e = \begin{pmatrix} 1 & 0 & 1 & 1 & 1 & 1 & 1 \\ e_1 & e_2 & e_3 & e_4 & e_5 & e_6 \end{pmatrix}$$

Тогда p_n равно числу булевых векторов длины $k = \frac{n(n-1)}{2}$, то есть

$$p_n = 2^k = 2^{\frac{n(n-1)}{2}}.$$

Проблема изоморфизма. Инварианты графа. 6 Примеры.

Определение 13 (Инвариант графа). Инвариант графа G = (V, E) – это число, набор чисел, функция или свойство связанные с графом и принимающие одно и то же значение на любом графе, изоморфном G, то есть

$$G \cong H \Rightarrow i(G) = i(G)$$
.

Инвариант i называется nолным, если

$$i(G) = i(H) \Rightarrow G \cong H$$
.

Обозначение: i(G)

Пример.

- 1. n(G) число вершин.
- 2. m(G) число ребер.
- 3. $\delta(G)$ min степень.
- 4. $\Delta(G)$ max степень.
- 5. $\phi(G)$ плотность графа G наибольшее число попарно сменных вершин.
- 6. $\varepsilon(G)$ неплотность наибольшее число попарно несменных вер-
- 7. ds(G) вектор степеней (или степенная последовательность) последовательность степеней всех вершин, выписанная в порядке неубывания.
- 8. $\chi(G)$ хроматическое число наименьшее число χ , для которого граф имеет правильную χ -раскраску множества вершин (правильная раскраска - раскраска, при которой смежные вершины имеют разный цвет).

$$n(Q_4) = 4$$
 $\phi(Q_4) = 3$
 $m(Q_4) = 5$ $\varepsilon(Q_4) = 2$
 $\delta(Q_4) = 2$ $ds(Q_4) = (2, 2, 3, 3)$
 $\Delta(Q_4) = 3$ $\chi(Q_4) = 3$

7 Связные и несвязные графы. Лемма об удалении ребра. Оценки числа ребер связного графа.

Определение 14 (Соединимые вершины, связный граф). Две вершины u, v графа G называются $coe \partial u н u m b m u$, если в $G \exists (u, v)$ -маршрут.

Граф называется ceязным, если в нем любые две вершины соединимы.

Замечание. Тривиальный граф считается связным.

Определение 15 (Циклическое, ациклическое ребро). Ребро e называется ииклическим, если оно принадлежит некоторому циклу, и auukлическим – в противном случае.

Лемма 4 (Об удалении ребра). Пусть G = (V, E) – связный граф, $e \in E$.

- 1. Если e циклическое ребро, то граф G e связен.
- 2. Если e ациклическое, то граф G e имеет ровно две компоненты связности.

Доказательство.

1. Пусть e = (u, v) — циклическое, входит в цикл C, который можно рассмотреть как объединение ребра e и (u, v)-цепи P.

Чтобы доказать, что G – e – связен, нужно доказать, что любые

7 СВЯЗНЫЕ И НЕСВЯЗНЫЕ ГРАФЫ. ЛЕММА ОБ УДАЛЕНИИ 12 РЕБРА. ОЦЕНКИ ЧИСЛА РЕБЕР СВЯЗНОГО ГРАФА.

его две вершины соединимы.

Рассмотрим две произвольные вершины, назовем их s и t. Так как по условию G – связный, то \exists (s,t)-маршрут.

Если этот (s,t)-маршрут проходит по ребру e, то заменим в нем ребро e на (u,v)-цепь P, получили новый (s,t)-маршрут, не проходящий по $e\Rightarrow G-e$ – связен.

2. Пусть e = uv ацикличен, очевидно, что G - e — несвязный.

Чтобы доказать, что в G-e ровно 2 компоненты связности, нужно доказать, что любая вершина ω содержится в одной компоненте c в u или v.

По условию G — связен, значит в нем \exists простая (u,ω) -цепь и простая (v,ω) -цепь. Заметим, что ребро e может входить в одну, и только в одну, из этих цепей, иначе e было бы циклическим.

Предположим, что ребро e входит в (u, ω) -цепь. Тогда вершины v и ω находятся в одной компоненте связности.

Теорема 5 (Оценки числа ребер связного графа). Если G — связный (n,m)-граф, то

$$n-1\leqslant m\leqslant \frac{n(n-1)}{2}.$$

Доказательство. Доказательство требует только нижняя оценка.

Пусть G = (V, E) – связный.

Доказывать будем индукцией по числу |E| ребер. Если |E|=m=0, то G — тривиальный граф, то есть |V|=n=1 \Rightarrow m=n-1=0. Предположим, что для графа, где |E|< m, неравенство верно. Пусть $|E|=m\geqslant 1$.

1. Если в G есть циклы, то рассмотрим какое-нибудь циклическое ребро e и удалим его из G. Тогда по лемме об удалении ребра, G – e связен, а количество ребер m – 1.

По предположению индукции, $m-1 \ge n-1 \Rightarrow m \ge n > n-1$.

2. Пусть в G нет циклов, рассмотрим произвольное ребро e, оно ациклическое, удалим его, тогда в G – e ровно две компоненты связности.

Обозначим их G_1 и G_2 .

Пусть $G_1 - (n_1, m_1)$ -граф, а $G_2 - (n_2, m_2)$ -граф. Тогда

$$m_1 \geqslant n_1 - 1$$

$$m_2 \geqslant n_2 - 1$$

(по предположению индукции, так как $m_1 < m, m_2 < m$)

Следовательно,

$$m-1=m_1+m_2\geqslant n_1-1+n_2-1=n_1+n_2-2=n-2,$$

то есть $m-1 \geqslant n-2 \Rightarrow m \geqslant n-1$.

8 Плоские и планарные графы. Графы Куратовского. Формула Эйлера для плоских графов.

Определение 16 (Плоский, планарный граф). Плоский граф – это такой граф, вершины которого являются точками плоскости, а ребра – непрерывными плоскими линиями без самопересечений, соединяющими вершины так, что никакие два ребра не имеют общих точек вне вершин.

 ${\it \Pi}$ ланарный ${\it гра} \phi$ – это граф, изоморфный некоторому плоскому графу.

Замечание. Несложно доказать, что графы $K_{3,3}$ и K_5 – непланарны.

Определение 17 (Гомеоморфные графы). Два графа называются гомеоморфными, если их можно получить из одного и того же графа с помощью разбиения ребер, то есть замены некоторых ребер простыми цепями.

Теорема 6 (Понтрягин-Куратовский). Граф планарен \Leftrightarrow он не содержит подграфов, гомеоморфных $K_{3,3}$ или K_5 .

Теорема 7 (Формула Эйлера). Для всякого связного плоского графа верна формула

$$n - m + l = 2, (2)$$

где n — число вершин, m — число ребер, l — число граней графа.

Доказательство. Рассмотрим две операции перехода от связного плоского графа G к его связному плоскому подграфу, не изменяющие величины n-m+l.

- 1. Удаление ребра, принадлежащего сразу двум граням (одно из которых может быть внешней), при этом m и l уменьшаются на 1.
- 2. Удаление висячей вершины вместе с инцидентным ребром. При этом n и m уменьшаются на 1.

Очевидно, что любой связный плоский граф, выполняя эти две операции, можно превратить в тривиальный граф, не меняя величины n-m+l, а для тривиального графа:

$$n-m+l=2.$$

Значит формула 2 верна для любого связного плоского графа. \qed