Math 307: Homework 08

Due Wednesday, October 8 (at the beginning of class). This homework is based on sections 2.2 and 2.3

Problem 1. Determine which of the following sets of vectors are subspaces of \mathbb{R}^3 .

(a)
$$\left\{ \begin{bmatrix} x \\ y \\ y - 4x \end{bmatrix} : x, y \in \mathbb{R} \right\}$$

(b)
$$\left\{ \begin{bmatrix} y+z+1\\y\\z \end{bmatrix} : y,z \in \mathbb{R} \right\}$$

(c)
$$\left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : x, y \in \mathbb{R} \text{ and } z = x + y \right\}$$

Problem 2. Is
$$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
 in Span $\left\{ \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \end{bmatrix} \right\}$?

Problem 3. Let V be a vector space and let $v_1, \ldots, v_n \in V$. Verify that $\mathrm{Span}(v_1, \ldots, v_n)$ is a linear subspace. (Hint: there are three conditions that you need to check.)

Problem 4. Is
$$\begin{bmatrix} 1 \\ -5 \\ -3 \end{bmatrix}$$
 in Span $\left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} \right\}$?

Problem 5. Determine if the vectors
$$\begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}$$
, $\begin{bmatrix} -1 \\ -1 \\ 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$ span \mathbb{R}^4 .

Problem 6. Determine whether the given vectors are linearly independent or linearly dependent.

(a)
$$\begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
, $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$

(b)
$$\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

$$\begin{array}{cc}
\begin{pmatrix} 6 \\ -4 \\ 2 \end{pmatrix}, \begin{bmatrix} -9 \\ 6 \\ -3 \end{bmatrix}
\end{array}$$

(d)
$$\begin{bmatrix} 0 \\ 4 \\ -1 \end{bmatrix}$$
, $\begin{bmatrix} 1 \\ 5 \\ -3 \end{bmatrix}$, $\begin{bmatrix} 1 \\ -3 \\ -1 \end{bmatrix}$

Problem 7. Show that $\begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 5 \\ 4 \end{bmatrix}$ form a basis for \mathbb{R}^2

Problem 8. Show that
$$\begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix}$$
, $\begin{bmatrix} 0 \\ -1 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$ form a basis for \mathbb{R}^3 .

Problem 9. Let A be an $n \times n$ matrix. Prove (or at least explain convingingly) why $\det(A^{\top}) = \det(A)$ (*Hint: think about Theorem 31 from lecture 9.*)

Problem 10. Show that

$$\begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$

do not form a basis for \mathbb{R}^3 .

Problem 11 (Extra credit). Let $A = (a_{ij})$ be a lower triangular $n \times n$ matrix. Using induction, prove that determinant of A is the product of its diagonal entries (i.e., that $\det(A) = a_{11}a_{22} \cdots a_{nn}$).

1