December 1992

File Number

3358

CMOS Synchronous Programmable 4-Bit Counters

CD40160BMS, CD40161BMS, CD40162BMS and CD40163BMS are 4-bit synchronous programmable counters. The CLEAR function of the CD40162BMS and CD40163BMS is synchronous and a low level at the CLEAR input sets all four outputs low on the next positive CLOCK edge. The CLEAR function of the CD40160BMS and CD40161BMS is asychronous and a low level at the CLEAR input sets all four outputs low regardless of the state of the CLOCK, LOAD, or ENABLE inputs. A low level at the LOAD input disables the counter and causes the output to agree with the setup data after the next CLOCK pulse regardless of the conditions of the ENABLE inputs.

The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications without additional gating. Instrumental in accomplishing this function are two count-enable inputs and a carry output (COUT). Counting is enabled when both PE and TE inputs are high. The TE input is fed forward to enable COUT. This enabled output produces a positive output pulses with a duration approximately equal to the positive portion of the Q1 output. This positive overflow carry pulse can be used to enable successive cascaded stages. Logic transitions at the PE or TE inputs may occur when the clock is either high or low.

The CD40160BMS through CD40163BMS types are functionally equivalent to and pin-compatible with the TTL counter series 74LS160 through 74LS163 respectively.

The CD40160BMS, CD40161BMS, CD40162BMS and CD40163BMS are supplied in these 16 lead outline packages:

CD40160 CD40161 CD40162 CD40163

Braze Seal DIP	H4W	H4X	H4X	H4W
Frit Seal DIP	H1F	H1F	H1L	H1F
Ceramic Flatpack	H6P	H6W	H6P	H6W

Features

- High-Voltage Types (20V Rating)
- CD40160BMS Decade with Asynchronous Clear
- CD40161BMS Binary with Asynchronous Clear
- CD40162BMS Decade with Synchronous Clear
- CD40163BMS Binary with Synchronous Clear
- Internal Look-Ahead for Fast Counting
- · Carry Output for Cascading
- · Synchronously Programmable
- Clear Asynchronous Input (CD40160BMS, CD40161BMS)
- Clear Synchronous Input (CD40162BMS, CD40163BMS)
- Synchronous Load Control Input
- . Low Power TTL Compatibility
- Standardized Symmetrical Output Characteristics
- 100% Tested for Quiescent Current at 20V
- Maximum Input Current of 1μA at 18V Over Full Package Temperature Range; 100nA at 18V and +25°C
- Noise Margin (Over Full Package Temperature Range):
 - 1V at VDD = 5V
 - 2V at VDD = 10V
 - 2.5V at VDD = 15V
- 5V, 10V and 15V Parametric Ratings
- Meets All Requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

Applications

- Programmable Binary and Decade Counting
- Counter Control/Timers
- Frequency Dividing

Pinout

CD40160BMS, CD40161BMS, CD40162BMS, CD40163BMSTOP VIEW

Functional Diagram

Absolute Maximum Ratings

DC Supply Voltage Range, (VDD) ... -0.5V to +20V (Voltage Referenced to VSS Terminals) Input Voltage Range, All Inputs ... -0.5V to VDD +0.5V DC Input Current, Any One Input. ... $\pm 10\text{mA}$ Operating Temperature Range ... -55°C to +125°C Package Types D, F, K, H Storage Temperature Range (TSTG) ... -65°C to +150°C Lead Temperature (During Soldering) ... +265°C At Distance 1/16 \pm 1/32 Inch (1.59mm \pm 0.79mm) from case for 10s Maximum

Reliability Information

Thermal Resistance	θ_{ia}	$\theta_{\sf ic}$
Ceramic DIP and FRIT Package	80°C/W	20°C/W
Flatpack Package	70°C/W	20°C/W
Maximum Package Power Dissipation (PD		
For $T_A = -55^{\circ}C$ to $+100^{\circ}C$ (Package Type	oe D, F, K)	500mW
For $T_A = +100^{\circ}$ C to $+125^{\circ}$ C (Package T	Type D, F, K)	Derate
Linear	ity at 12mW	/OC to 200mW
Device Dissipation per Output Transistor.		100mW
For T _A = Full Package Temperature Rar	nge (All Pacl	kage Types)
Junction Temperature		+175 ⁰ C

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

				GROUP A		LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS (NOTE 1)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VDI	D or GND	1	+25 ^o C	-	10	μΑ
				2	+125 ^o C	-	1000	μΑ
		VDD = 18V, VIN = VDI	D or GND	3	-55 ⁰ C	-	10	μΑ
Input Leakage Current	IIL	VIN = VDD or GND	VDD = 20	1	+25 ^o C	-100	-	nA
				2	+125 ⁰ C	-1000	-	nA
			VDD = 18V	3	-55 ⁰ C	-100	-	nA
Input Leakage Current	IIH	VIN = VDD or GND	VDD = 20	1	+25 ^o C	-	100	nA
			VDD = 18V		+125 ^o C	-	1000	nA
					-55 ⁰ C	-	100	nA
Output Voltage	VOL15	VDD = 15V, No Load		1, 2, 3	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH15	VDD = 15V, No Load (Note 3)	1, 2, 3	+25°C, +125°C, -55°C	14.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.4	4V	1	+25 ^o C	0.53	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0	.5V	1	+25 ^o C	1.4	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1	.5V	1	+25 ^o C	3.5	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.6	6V	1	+25 ^o C	-	-0.53	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.5	5V	1	+25 ^o C	-	-1.8	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9	.5V	1	+25 ^o C	-	-1.4	mA
Output Current (Source)	IOH15	VDD = 15V, VOUT = 1	3.5V	1	+25°C	-	-3.5	mA
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10µ	ιA	1	+25 ^o C	-2.8	-0.7	V
P Threshold Voltage	VPTH	VSS = 0V, IDD = 10μA	1	1	+25 ^o C	0.7	2.8	V
Functional	F	VDD = 2.8V, VIN = VD	D or GND	7	+25 ^o C	VOH>	VOL <	V
		VDD = 20V, VIN = VDI	D or GND	7	+25 ⁰ C	VDD/2	VDD/2	
		VDD = 18V, VIN = VDI	D or GND	8A	+125 ^o C	1		
		VDD = 3V, VIN = VDD	or GND	8B	-55 ⁰ C			
Input Voltage Low (Note 2)	VIL	VDD = 5V, VOH > 4.5V, VOL < 0.5V		1, 2, 3	+25°C, +125°C, -55°C	-	1.5	V
Input Voltage High (Note 2)	VIH	VDD = 5V, VOH > 4.5V, VOL < 0.5V		1, 2, 3	+25°C, +125°C, -55°C	3.5	-	V
Input Voltage Low (Note 2)	VIL	VDD = 15V, VOH > 13 VOL < 1.5V	.5V,	1, 2, 3	+25°C, +125°C, -55°C	-	4	V
Input Voltage High (Note 2)	VIH	VDD = 15V, VOH > 13 VOL < 1.5V	.5V,	1, 2, 3	+25°C, +125°C, -55°C	11	-	V

NOTES: 1. All voltages referenced to device GND, 100% testing being implemented.

^{3.} For accuracy, voltage is measured differentially to VDD. Limit is 0.050V max.

^{2.} Go/No Go test with limits applied to inputs.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

			GROUP A		LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS (NOTE 1, 2)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Propagation Delay	TPHL1	VDD = 5V, VIN = VDD or GND	9	+25 ⁰ C	-	400	ns
Clock to Q	TPLH1		10, 11	+125°C, -55°C	-	540	ns
Propagation Delay	TPHL2	VDD = 5V, VIN = VDD or GND	9	+25 ⁰ C	-	450	ns
Clock to COut	TPLH2		10, 11	+125°C, -55°C	-	608	ns
Propagation Delay	TPHL3	VDD = 5V, VIN = VDD or GND	9	+25 ⁰ C	-	250	ns
TE to COut	TPLH3		10, 11	+125°C, -55°C	-	338	ns
Propagation Delay	TPHL4	VDD = 5V, VIN = VDD or GND	9	+25 ⁰ C	-	500	ns
CD40160BMS, CD40161BMS Clear to Q			10, 11	+125 ^o C, -55 ^o C	-	675	ns
Transition Time	TTHL	VDD = 5V, VIN = VDD or GND	9	+25 ⁰ C	-	200	ns
	TTLH		10, 11	+125°C, -55°C	-	270	ns
Maximum Clock Input Fre-	FCL	VDD = 5V, VIN = VDD or GND	9	+25 ⁰ C	2	-	MHz
quency			10, 11	+125°C, -55°C	1.48	-	MHz

NOTES:

- 1. CL = 50pF, RL = 200K, Input TR, TF < 20ns.
- 2. -55°C and $+125^{\circ}\text{C}$ limits guaranteed, 100% testing being implemented.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 5V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	5	μΑ
				+125 ^o C	-	150	μΑ
		VDD = 10V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	10	μΑ
				+125 ^o C	-	300	μΑ
		VDD = 15V, VIN = VDD or GND	1, 2	-55°C, +25°C	ı	10	μΑ
				+125 ^o C	-	600	μΑ
Output Voltage	VOL	VDD = 5V, No Load	1, 2	+25°C, +125°C, - 55°C	-	50	mV
Output Voltage	VOL	VDD = 10V, No Load	1, 2	+25°C, +125°C, - 55°C	-	50	mV
Output Voltage	VOH	VDD = 5V, No Load	1, 2	+25°C, +125°C, - 55°C	4.95	-	٧
Output Voltage	VOH	VDD = 10V, No Load	1, 2	+25°C, +125°C, - 55°C	9.95	-	٧
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.4V	1, 2	+125 ^o C	0.36	-	mA
				-55 ⁰ C	0.64	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0.5V	1, 2	+125°C	0.9	-	mA
				-55 ^o C	1.6	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1.5V	1, 2	+125 ⁰ C	2.4	-	mA
				-55 ^o C	4.2	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.6V	1, 2	+125 ⁰ C	-	-0.36	mA
				-55 ⁰ C	-	-0.64	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.5V	1, 2	+125 ^o C	1	-1.15	mA
				-55 ⁰ C	1	-2.0	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9.5V	1, 2	+125 ⁰ C	-	-0.9	mA
				-55 ⁰ C	-	-1.6	mA

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

				LIM	IITS		
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Output Current (Source)	IOH15	VDD =15V, VOUT = 13.5V	1, 2	+125 ⁰ C	-	-2.4	mA
				-55 ⁰ C	ı	-4.2	mA
Input Voltage Low	VIL	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, - 55°C	-	3	V
Input Voltage High	VIH	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, - 55°C	7	-	V
Propagation Delay	TPHL1	VDD = 10V	1, 2, 3	+25°C	=	160	ns
Clock to Q	TPLH1	VDD = 15V	1, 2, 3	+25°C	-	120	ns
Propagation Delay	TPHL2	VDD = 10V	1, 2, 3	+25 ^o C	-	190	ns
Clock to C Out	TPLH2	VDD = 15V	1, 2, 3	+25 ^o C	-	140	ns
Propagation Delay	TPHL3	VDD = 10V	1, 2, 3	+25 ^o C	-	110	ns
TE to C Out	TPLH3	VDD = 15V	1, 2, 3	+25 ⁰ C	-	80	ns
Propagation Delay	TPHL4	VDD = 10V	1, 2, 3	+25 ^o C	-	220	ns
CD40160BMS, CD40161BMS Clear to Q		VDD = 15V	1, 2, 3	+25 ^o C	-	160	ns
Transition Time	TTHL	VDD = 10V	1, 2, 3	+25°C	-	100	ns
	TTLH	VDD = 15V	1, 2, 3	+25°C	-	80	ns
Maximum Clock Input Fre-	FCL	VDD = 10V	1, 2, 3	+25°C	5.5	-	MHz
quency		VDD = 15V	1, 2, 3	+25 ^o C	8	-	MHz
Maximum Clock Rise or	TRCL	VDD = 5V	1, 2, 3, 4	+25°C	-	200	μs
Fall Time	TFCL	VDD = 10V	1, 2, 3, 4	+25 ^o C	=	70	μs
		VDD = 15V	1, 2, 3, 4	+25 ^o C	-	15	μs
Minimum Data Hold Time	TH	VDD = 5V	1, 2, 3	+25°C	-	0	ns
Clock Operation		VDD = 10V	1, 2, 3	+25 ^o C	-	0	ns
		VDD = 15V	1, 2, 3	+25 ⁰ C	-	0	ns
Minimum Clock Pulse	TW	VDD = 5V	1, 2, 3	+25 ^o C	i	170	ns
Width Clock Operation		VDD = 10V	1, 2, 3	+25 ⁰ C	-	70	ns
Glook Operation		VDD = 15V	1, 2, 3	+25 ^o C	i	50	ns
Minimum Setup Time	TS	VDD = 5V	1, 2, 3	+25°C	-	240	ns
Data to Clock		VDD = 10V	1, 2, 3	+25°C	-	90	ns
		VDD = 15V	1, 2, 3	+25 ^o C	-	60	ns
Minimum Setup Time	TS	VDD = 5V	1, 2, 3	+25°C	-	240	ns
Load to Clock		VDD = 10V	1, 2, 3	+25 ^o C	-	90	ns
		VDD = 15V	1, 2, 3	+25 ^o C	-	60	ns
Minimum Setup Time PE	TS	VDD = 5V	1, 2, 3	+25°C	-	340	ns
to TE to Clock		VDD = 10V	1, 2, 3	+25 ^o C	-	140	ns
		VDD = 15V	1, 2, 3	+25 ^o C	-	100	ns
Minimum Clear Pulse	TW	VDD = 5V	1, 2, 3	+25 ^o C	-	170	ns
Width (CD40160BMS, CD40161BMS)		VDD = 10V	1, 2, 3	+25 ^o C	-	70	ns
,		VDD = 15V	1, 2, 3	+25 ^o C	-	50	ns
Minimum Setup Time Clear to Clock	TS	VDD = 5V	1, 2, 3	+25°C	-	340	ns
(CD40162BMS,		VDD = 10V	1, 2, 3	+25 ^o C	-	140	ns
CD40163BMS)		VDD = 15V	1, 2, 3	+25 ⁰ C	-	100	ns
Minimum Hold Time	TH	VDD = 5V	1, 2, 3	+25 ^o C	-	0	ns
Clear to Clock (CD40162BMS,		VDD = 10V	1, 2, 3	+25°C	-	0	ns
CD40163BMS)		VDD = 15V	1, 2, 3	+25°C	-	0	ns

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

					LIM	ITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Minimum Clear Removal	TREM	VDD = 5V	1, 2, 3	+25 ^o C	-	200	ns
Time (CD40160BMS,		VDD = 10V	1, 2, 3	+25 ⁰ C	-	100	ns
CD40161BMS)		VDD = 15V	1, 2, 3	+25°C	-	70	ns

NOTES:

- 1. All voltages referenced to device GND.
- 2. The parameters listed on Table 3 are controlled via design or process and are not directly tested. These parameters are characterized on initial design release and upon design changes which would affect these characteristics.
- 3. CL = 50pF, RL = 200K, Input TR, TF < 20ns.
- 4. If more than one unit is cascaded, TRCL should be made less than or equal to the sumof the transition time and the fixed propagation delay of the output of the driving stage for the estimated capacitive load.

TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIM	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VDD or GND	1, 4	+25 ⁰ C	-	25	μΑ
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10μA	1, 4	+25 ⁰ C	-2.8	-0.2	V
N Threshold Voltage Delta	ΔVTN	VDD = 10V, ISS = -10μA	1, 4	+25°C	-	±1	V
P Threshold Voltage	VTP	VSS = 0V, IDD = 10μA	1, 4	+25 ⁰ C	0.2	2.8	V
P Threshold Voltage Delta	ΔVTP	VSS = 0V, IDD = 10μA	1, 4	+25 ⁰ C	-	±1	V
Functional	F	VDD = 18V, VIN = VDD or GND	1	+25°C	VOH >	VOL <	V
		VDD = 3V, VIN = VDD or GND			VDD/2	VDD/2	
Propagation Delay Time	TPHL TPLH	VDD = 5V	1, 2, 3, 4	+25°C	-	1.35 x +25°C Limit	ns

NOTES: 1. All voltages referenced to device GND.

3. See Table 2 for +25°C limit.

2. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

4. Read and Record

TABLE 5. BURN-IN AND LIFE TEST DELTA PARAMETERS +25°C

PARAMETER	SYMBOL	DELTA LIMIT
Supply Current - MSI-2	IDD	± 1.0μA
Output Current (Sink)	IOL5	± 20% x Pre-Test Reading
Output Current (Source)	IOH5A	± 20% x Pre-Test Reading

TABLE 6. APPLICABLE SUBGROUPS

CONFO	RMANCE GROUP	MIL-STD-883 METHOD	GROUP A SUBGROUPS	READ AND RECORD
Initial Test (Pr	e Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test 1	(Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test 2	(Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note	1)	100% 5004	1, 7, 9, Deltas	
Interim Test 3	(Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note	1)	100% 5004	1, 7, 9, Deltas	
Final Test		100% 5004	2, 3, 8A, 8B, 10, 11	
Group A		Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11	
Group B	Subgroup B-5	Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas	Subgroups 1, 2, 3, 9, 10, 11
	Subgroup B-6	Sample 5005	1, 7, 9	
Group D	Group D		1, 2, 3, 8A, 8B, 9	Subgroups 1, 2 3

NOTE: 1.5% Parameteric, 3% Functional; Cumulative for Static 1 and 2.

TABLE 7. TOTAL DOSE IRRADIATION

	MIL-STD-883	TEST		READ AND	RECORD
CONFORMANCE GROUPS	METHOD	PRE-IRRAD POST-IRRAD		PRE-IRRAD	POST-IRRAD
Group E Subgroup 2	5005	1, 7, 9	Table 4	1, 9	Table 4

TABLE 8. BURN-IN AND IRRADIATION TEST CONNECTIONS

					OSCIL	LATOR
FUNCTION	OPEN	GROUND	VDD	9V \pm -0.5V	50kHz	25kHz
Static Burn-In 1 Note 1	11 - 15	1 - 10	16			
Static Burn-In 2 Note 1	11 - 15	8	1 - 7, 9, 10, 16			
Dynamic Burn-In Note 1	-	8	1, 7, 9, 10, 16	11 - 15	2 - 6	-
Irradiation Note 2	11 - 15	8	1 - 7, 9, 10, 16			

NOTE:

- 1. Each pin except VDD and GND will have a series resistor of 10K $\pm\,5\%,\,$ VDD = 18V $\pm\,0.5V$
- 2. Each pin except VDD and GND will have a series resistor of 47K \pm 5%; Group E, Subgroup 2, sample size is 4 dice/wafer, 0 failures, VDD = $10V \pm 0.5V$

Logic Diagrams

CD40160BMS AND CD40162BMS BCD DECADE COUNTERS

FIGURE 1. LOGIC DIAGRAM FOR CD40160BMS AND CD40162BMS BCD DECADE COUNTERS

Logic Diagrams (Continued)

FIGURE 2. LOGIC DIAGRAM FOR CD40161BMS AND CD40163BMS BINARY COUNTERS

TRUTH TABLE

CLOCK	CLR	LOAD	PE	TE	OPERATION
	1	0	Х	Х	Preset
	1	1	0	Х	NC
	1	1	Х	0	NC
	1	1	1	1	Count
Х	0	Х	Х	Х	Reset (CD40160BMS, CD40161BMS)
	0	Х	Х	Х	Reset (CD40162BMS, CD40163BMS)
	1	Х	Х	Х	NC (CD40162BMS, CD40163BMS)

^{1 =} High Level

X = Don't Care NC = No Change

^{0 =} Low Level

Typical Performance Characteristics

FIGURE 3. TYPICAL OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

FIGURE 5. TYPICAL OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

FIGURE 7. TYPICAL PROPAGATION DELAY TIME AS A FUNC-TION OF LOAD CAPACITANCE (CLOCK TO Q)

FIGURE 4. MIMIMUM OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

FIGURE 6. MINIMUM OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

FIGURE 8. TYPICAL TRANSISTION TIME AS A FUNCTION OF LOAD CAPACITANCE

Typical Performance Characteristics (Continued)

FIGURE 9. TYPICAL POWER DISSIPATION AS A FUNCTION OF CLOCK FREQUENCY

FIGURE 11. TIMING DIAGRAM FOR CD40161BMS AND CD40163BMS

FIGURE 12. DETAIL OF FLIP-FLOPS OF CD40160BMS AND CD40161BMS (ASYNCHRONOUS CLEAR)

FIGURE 13. DETAIL OF FLIP-FLOPS OF CD40162BMS AND CD40163BMS (SYNCHRONOUS CLEAR)

FIGURE 14. CASCADED COUNTER PACKAGES IN THE PARALLEL-CLOCKED MODE

FIGURE 15. CASCADED COUNTER PACKAGES IN THE RIPPLE-CLOCKED MODE

Chip Dimensions and Pad Layout

Dimensions and pad layout for CD40160BMSH. Dimensions and pad layout for CD40161BMS, CD40162BMSH, and CD40163BMSH are identical.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10⁻³ inch)

METALLIZATION: Thickness: 11kÅ – 14kÅ, AL.

PASSIVATION: 10.4kÅ - 15.6kÅ, Silane

BOND PADS: 0.004 inches X 0.004 inches MIN **DIE THICKNESS:** 0.0198 inches - 0.0218 inches

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site www.intersil.com

Sales Office Headquarters

NORTH AMERICA

Intersil Corporation
P. O. Box 883, Mail Stop 53-204
Melbourne, FL 32902
TEL: (321) 724 7000

TEL: (321) 724-7000 FAX: (321) 724-7240 **EUROPE**

Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111

FAX: (32) 2.724.2111

ASIA

Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310
FAX: (886) 2 2715 3029