

Universidad de San Carlos de Guatemala Escuela de Ciencias Físicas y Matemáticas Mecánica Cuántica 2 Diego Sarceño 201900109 28 de octubre de 2022

Hoja de Trabajo 2

Ejercicio 1

Ejercicio 2

Tomando el operador número y el estado $|\psi\rangle=\frac{1}{\sqrt{17}}|0\rangle+\frac{3}{\sqrt{17}}|1\rangle-\frac{2}{\sqrt{17}}|2\rangle-\sqrt{\frac{3}{17}}|3\rangle$, entonces, calculando el valor esperado $\langle\psi|N|\psi\rangle$, primero aplicamos $N|\psi\rangle=a^{\dagger}a\,|\psi\rangle$

$$\begin{split} a^\dagger a \left| \psi \right> &= \frac{3}{\sqrt{17}} \left| 1 \right> - 2 \sqrt{\frac{4}{17}} \left| 1 \right> - \sqrt{\frac{27}{17}} \left| 2 \right>, \\ \left< \psi | N | \psi \right> &= \left(\frac{1}{\sqrt{17}} \left< 0 \right| + \frac{3}{\sqrt{17}} \left< 1 \right| - \frac{2}{\sqrt{17}} \left< 2 \right| - \sqrt{\frac{3}{17}} \left< 3 \right| \right) \left(\frac{3}{\sqrt{17}} \left| 1 \right> - 2 \sqrt{\frac{4}{17}} \left| 1 \right> - \sqrt{\frac{27}{17}} \left| 2 \right> \right) = \frac{26}{17}. \end{split}$$

Para el Hamiltoniano, $H = \hbar\omega \left(\hat{N} + \frac{1}{2}\right)$, utilizamos la función ExpectationValue[] creada el semestre pasado para encontrar el valor esperado del Hamiltoniano, el cual es

$$\langle \psi | H | \psi \rangle = \frac{69}{34} \hbar \omega.$$

Ejercicio 3

Sabiendo que $\Delta X = \sqrt{\langle X^2 \rangle - \langle X \rangle^2}$ y $\Delta P = \sqrt{\langle P^2 \rangle - \langle P \rangle^2}$. Encontramos cada uno de los valores esperados

$$\langle X \rangle = \sqrt{\frac{\hbar}{2m\omega}} \left(\langle 5|a|5 \rangle + \langle 5|a^{\dagger}|5 \rangle \right) = 0,$$

$$\langle P \rangle = 0,$$

$$\langle X^2 \rangle = \frac{\hbar}{2m\omega} (2(5) + 1) = \frac{11\hbar}{2m\omega},$$

$$\langle P^2 \rangle = \frac{m\omega\hbar}{2} (2(5) + 1) = \frac{11m\omega\hbar}{2};$$

por lo tanto

$$(\Delta X \Delta P)_5 = \sqrt{\frac{11\hbar}{2m\omega}} \sqrt{\frac{11m\omega\hbar}{2}} = \frac{11\hbar}{2}.$$

Para $|0\rangle$, se tiene

$$\langle 0|X^2|0\rangle = \frac{\hbar}{2m\omega},$$

 $\langle 0|P^2|0\rangle = \frac{\hbar m\omega}{2}.$

Con lo que $(\Delta X \Delta P)_0 = \frac{\hbar}{2}$.

Ejercicio 4

Teniendo la energía para el oscilador cuántico $E_n = \hbar\omega (n + \frac{1}{2})$, tomando la energía del oscilador armónico $E = \frac{1}{2}m\omega^2 l^2$. Entonces, en términos de ω

$$l = \sqrt{\frac{\hbar}{m\omega}}.$$

La probabilidad fuera del límite clásico es

$$P_{out} = 1 - P_{in}$$
 \Rightarrow $P_{out} = 1 - \int_{-A_0}^{A_0} |\psi_0(x)| \, \mathrm{d}x$,

para el estado base se tiene

$$\psi_0(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} e^{-\frac{m\omega x^2}{2\hbar}};$$

por lo tanto

$$P_{out} = 1 - \left(\frac{m\omega}{\pi\hbar}\right)^{1/2} \int_{-A_0}^{A_0} e^{-\frac{m\omega x^2}{\hbar}} dx \qquad \Rightarrow \qquad P_{out} = 1 - \text{erf } 1 = 15.73\%.$$

Ejercicio 5

Dado que tenemos un oscilador armónico asimétrico el cuál unicamente se mueve en x positivas, además, la función de onda debe anularse en x = 0. Tomando las soluciones del oscilador, las únicas que son cero en el origen son aquellas impares, entonces los niveles de energía son

$$E_n = \left(2n + 1 + \frac{1}{2}\right)\hbar\omega.$$

Ejercicio 6