Risk and Decision-Making for Data Science and Al

Week 6 Lab 5 Answers

Question 1: Absolute Vs Relative Risk

- a) Probability of non-bacon eaters who died from Disease A: $\frac{24}{60} = 0.4$ or 40% Probability of bacon eaters who died from Disease A: $\frac{10}{40} = 0.25$ or 25% Relative risk $\frac{0.4}{0.25} = 1.6$ Relative risk increase = (1 1.6) * 100 = 60%
- b) Probability of non-bacon eaters who died from Disease A: $\frac{24}{60} = 0.4$ or 40% Probability of bacon eaters who died from Disease A: $\frac{10}{40} = 0.25$ or 25% Absolute risk increase = 0.4 0.25 = 0.15 or 15%

Question 2: Utility, Expected Utility and Optimal decision

a) First, we calculate win and lose utilities.

Win utility =
$$10000 - 100 = 9900$$

Lose utility = -100

Then we calculate the expected utility to determine the total expected utility:

Expected utility of win =
$$9900 * \frac{1}{36} = 275$$

Expected utility of lose = $-100 * \frac{35}{36} = -97.22$
Total expected utility of playing = $275 - 97.22 = 177.78$

b) Total utility of playing = 177.78 Total utility of not playing = 0

The optimal decision is for Mr. West to play the game since this maximises total expected utility.

Question 3: Influence Diagram and Decision Tree

a)

Using Agena

Risk and Decision-Making for Data Science and Al Week 6 Lab 5 Answers

Node Probability Table

NPT Editing Mode Partitioned Expression V

Select the required parents from the list on the left and add them to the list on the right. The list on the right will contain the parents involved in the partitioned table. The order of the parents determines the configuration of states in the table below.

Enter a formula for each partition by double-clicking the cell.

Win False True False True Expressions Arithmetic(0.0) Arithmetic(250.0) Arithmetic(250.0)	Play	l l	lo .	Yes	
Expressions Arithmetic(0.0) Arithmetic(0.0) Arithmetic(-50.0) Arithmetic(350.0)	Win	False	True	False	True
expressions Analineac(0.0) Analineac(550.0)	Expressions	Arithmetic(0.0)	Arithmetic(0.0)	Arithmetic(-50.0)	Arithmetic(350.0)

Risk and Decision-Making for Data Science and Al Week 6 Lab 5 Answers

Assign Decision, Chance	e, and Utility Nodes 🕢				
Win [Win]		>	Decision nodes:		
		<	Play [Play]		
		>	Observable chance nodes:		
		<			
		<u> </u>	Utility node:		
			Utility [Utility]		
Calculation 🕡					
Utility calculated as: 🕡	ss_mean		Continuous simulation: 🕡	Full	~
Skip re-calculation: 🕡					
Evaluation 🕢					
Utility selection policy:	Maximise	~	Rounding precision: 🕡	2	~
Simplify DT: 🕡	O		Highlight optimal decisions:		
Report file location:	of London\Teaching\ECS7005P 2	New Bayesian Network0.html	Choose		
Play	0 0 (es 150				

Using Genie:

Risk and Decision-Making for Data Science and Al Week 6 Lab 5 Answers

Using Python:

Risk and Decision-Making for Data Science and Al

Week 6 Lab 5 Answers

So the optimal decision is to play