HIGH BRIGHTNESS AND HIGH AVERAGE CURRENT PERFORMANCE OF THE CORNELL ERL INJECTOR

Bruce Dunham, for the Cornell ERL Team
August 27, 2013

Outline

- Overview
- High Brightness Results
- High Power Operations and Results
- Conclusion

ERL @ Cornell

- Our long-term goal is to build an ERL-based x-ray light source to replace our existing machine (CESR/CHESS).
- Our proposal is complete and ready to go . . .
- In the meantime, we are working on prototypes for the injector, SRF cavities, and undulators, plus gun and cathode R&D

Cornell ERL Injector

ERL Injector Prototype: Achievements to date:

- > 75 mA average current @ 4 MeV
- > 0.3 μm emittance @ 77 pC, 8 MeV

Injector Requirements

Parameter	Metric	Status	Notes
Average Current	100 mA		75 mA (1300 MHz)
Bunch Charge	77 pC		Pulsed mode (50 MHz)
Energy	5 to 15 MeV		14 MeV max (due to cryo limits)
Laser Power	> 20 W		> 60 W at 520 nm (1300 MHz)
Laser Shaping	beer can dist.		Adequate for now
Gun Voltage	500-600 kV		Currently operating at 350 kV
Emittance	< 2 μm (norm, rms)		Ultimate ERL goal 0.3 μm, with merger
Operational Lifetime	> 1 day		Recent improvements with new cathodes

Emittance Measurement Results

Cornell Laboratory for Accelerator-based Emittance Measurement System (EMS)

Leave the slits stationary and scan the beam across them. Can measure charge ranges from 0.1 pC up to 100 pC. Measurements take ~10 seconds.

This turns our injector into an analog computer for performing multi-parameter optimizations.

By adding a deflection cavity after the slits, we can also do slice emittance measurements

Goals

Goals for Experiment

- Measure low emittances at the end of the merger
 - Emittances ≤ 0.3 micron
 - Bunch Length \leq 3 ps
 - Energy Spread ~ 1e-3
- Demonstrate $\varepsilon_{n,x} \propto \sqrt{q}$, take 19 pC and 77 pC data, corresponds to 25 and 100 mA
- Demonstrate agreement between measurement and simulation

Baseline Emittance

Baseline Measurement at 'zero' charge

Three methods for comparison

Measurement	Horizontal Emittance [microns]	Vertical Emittance [microns]
Solenoid Scan after the gun (350kV)	0.12	0.11
Projected emittance (EMS) in merger(8 MeV)	0.11	0.12
Slice emittance (EMS) in merger (8 MeV)	0.11	N/A

Emittance Results – Projected

Projected Emittance for 19 (77) pC: <u>Vertical Phase Space</u>

Data Type	en(100%) [microns]	en(90%) [microns]
Projected (EMS)	0.20(0.40)	0.14(0.29)
GPT	0.16(0.37)	0.11(0.25)

Horizontal Phase Space

Data Type	en(100%) [microns]	en(90%) [microns]
Projected (EMS)	0.33(0.69)	0.23(0.51)
GPT	0.31 (0.72)	0.19(0.44)

*C Guilliford, et al, PRST-AB 16, 073401 (2013)

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE) Slice Emittance and Bunch Length

GPT – Machine Interface

GPT Virtual Accelerator GUI: load machine settings, load optimizer settings, save/restore, independently simulate machine in (near) real time

High Current Results

High Current Operation

What is important for running high currents?

- Halo is a major problem (tuning, radiation shielding and machine protection)
- Beam dump monitoring and protection
- Fast shutdown want to block the laser before anything else trips . . .
- Catching transients (due to FE, ions, scattering, ...) for troubleshooting
- RF trips (mostly due to coupler arcs)
- Feedback for bunch charge, laser position and beam orbit
- Current measurement
- Measurements of RF response to the beam, HOM's
- Monitoring HV power supply ripple and frequency response
- Vacuum monitoring, fast and slow
- Personnel protection
- Overall machine stability

Dynamic Range and Halo

A viewer with a hole for imaging halo

High Currents - GaAs

Key developments

- Improvements to the laser (higher power)
- Feedback system on the laser
- Minimization of RF trips (mainly couplers)
- Minimizing radiation losses due to halo
- Improved beam dump diagnostics

Highest ever average current from a GaAs photocathode!

Cornell Laboratory for Accelerator-based $High\ Currents-Na_2KSb$ Sciences and Education (CLASSE)

Using a Na₂KSb photocathode, ran over 8 hours at 65 mA (2000 C) with a 2.6 day 1/e cathode lifetime. Reached as high as 75 mA for a short time.

*L. Cultrera, et al., Appl. Phys. Lett., in publication

*B. Dunham, et al., Appl. Phys. Lett., 102, 034105 (2013)

Lessons Learned

- High average currents with good lifetime from a photocathode are a reality
- Low emittance (near thermal) beams (with reasonable bunch charge) from a DC gun/SRF booster are a reality
- Extremely high DC voltages are not necessary to achieve our requirements (350 kV okay)
- Space charge simulations + genetic optimizations match experiments accurately
- Halo/beam loss can be maintained below 1 part in 10⁷ to 10⁸
- Cathodes are still the key for any photoemission gun

Conclusion

Just in the last year . . .

- Average current of 75 mA from a photoinjector demonstrated – new record!
- Demonstrated feasibility of high current CW operation (65 mA for >8 hours from a single cathode spot)
- Emittance specification achieved

DC photoemission guns with SRF boosters provide proven performance for high average current, high-brightness beams for moderate bunch charge applications

Acknowledgements

This work is supported by the National Science Foundation grant DMR-0807731

and Department of Energy grant DE-SC0003965