Eksamen på Økonomistudiet sommeren 2017 Sandsynlighedsteori og Statistik

2. årsprøve

21. august, 2017

(3-timers prøve med hjælpemidler)

Dette eksamenssæt består af 5 sider (forsiden inklusiv).

Opgaven består af tre delopgaver, som alle skal besvares. De tre opgaver kan regnes uafhængigt af hinanden. Opgave 1 og 2 indgår tilsammen med samme vægt som opgave 3.

Opgave 1

X og Y er uafhængige stokastiske variable fordelt på 0 og 1.

$$P(X=0)=0.3$$
; $P(X=1)=0.7$ og $P(Y=0)=0.4$; $P(X=1)=0.6$. (OBS $P(Y=1)$)

1. Angiv den simultane fordeling for (X,Y).

	Y=0	Y=1
X=0	0,12	0,18
X=1	0,28	0,42

$$X=1$$
 | 0,28 | 0,42 |
Lad nu $Z_1 = X + Y$ og $Z_2 = X - Y$

2. Udregn den betingede middelværdi og den betingede varians af X givet $Z_1 = 1$, dvs. udregn $E(X|Z_1 = 1)$ og $V(X|Z_1 = 1)$.

$$P(X = 0|X + Y = 1) = \frac{P(X = 0, X + Y = 1)}{P(X + Y = 1)} = \frac{P(X = 0, Y = 1)}{P(X + Y = 1)} = \frac{0.18}{0.28 + 0.18} = 0.39$$

$$P(X = 1|X + Y = 1) = \dots 0,61$$

$$E=0*0.39+1*0.61=0.61$$

$$E^2 = 0^2 * 0.39 + 1^2 * 0.61 = 0.61$$

$$V=0.61-0.61^2=0.23$$

3. Udregn middelværdi og varians af Z_1 og Z_2 .

0	0,12	
1	0,46	
2	0,42	

-1	0,18	
0	0,54	
1	0,28	

$$E(Z_1) = 1,3$$
 $V(Z_1) = 0,45$ $E(Z_2) = 0,1$ $V(Z_2) = 0,45$

4. Er Z_1 og Z_2 uafhængige? Begrund svaret.

$$P(Z_1 = 0, Z_2 = -1) = P(X + Y = 0, X - Y = -1) = 0.$$
Så afhængige

Opgave 2

Forretning A's månedlige omsætning i 1.000 kr. kan beskrives med en normalfordeling med middelværdi 50 og en spredning (standard afvigelse) på 5.

Tilsvarende kan den månedlige omsætning hos konkurrenten B beskrives med en normalfordeling der har middelværdi 52 og også en spredning på 5.

De to forretninger er konkurrenter og deres korrelationskoefficient er på -0,5.

Så vi har at $X \sim N(50, 5^2)$ $Y \sim N(52, 5^2)$. Hvor X og Y repræsenterer omsætningen hos henholdsvis A og B. korrelationskoefficienten $\rho = -0, 5$

$$\rho = \frac{cov(X, Y)}{\sqrt{V(X) * V(Y)}} = -0, 5.$$

1. Angiv et symmetrisk interval omkring 50, hvor omsætningen fra forretning A med 95% vil ligge.

2. Angiv fordelingen for Z.

$$V(Z) = V(X + Y) = V(X) + V(Y) + 2 * cov(X, Y) = V(X) + V(Y) + 2 * (-0, 5) * \sqrt{V(X) * V(Y)} = 5^2 + 5^2 - 5^2 = 5^2.$$
 Så $Z \sim N(102, 5^2)$

3. Udregn P(Z>110)=0.05 (Brug Excel)

I de sidste 12 måneder er det registreret at antallet af måneder hvor det samlede salg overstiger 110 er 5.

T=antal måneder der overstiger 110. T bliver BIN(12;0,05)

4. Hvad er sandsynligheden for at dette indtræffer. Begrund dine udregninger.

$$P(T=>5)=1-P(T<=4)=0,000184$$

Opgave 3

Blandt gæster i det københavnske natteliv, har der igennem længere tid været en diskussion om, hvor man hurtigst kunne praje en taxa fra.

Diskussionen går på, om der er forskel på punkt A og B mht. den tid det tager at vente på, at en fri taxa ankommer.

Man beslutter derfor, at foretage en række målinger af ventetiden i min. til den næste frie taxa ankommer.

punkt	antal målinger	sum af ventetider	gns af ventetider
A	15	17,91	1,19
В	17	7,36	0,43

Der opstilles f

ølgende model:

 X_i = Ventetid til næste frie taxa ved punkt A. i=1,2,......15.

 Y_i = Ventetid til næste frie taxa ved punkt B. i=1,2,.....17.

Alle målinger antages at være uafhængige.

 X_i er $eksp(\lambda_1)$ og Y_i er $eksp(\lambda_2)$

dvs. at tætheden for X er $f(x) = \lambda_1 \exp(-\lambda_1 x)$ og tæthed for Y er $g(y) = \lambda_2 \exp(-\lambda_2 y)$

- 1. Angiv middelværdierne for X og Y
- 2. Opskriv likelihood funktionen $L(\lambda_1, \lambda_2)$ og vis at log-likelihood funktionen $log[L(\lambda_1, \lambda_2)]$ bliver

$$15\ln(\lambda_1) - \lambda_1 \sum_{i=1}^{15} X_i + 17\ln(\lambda_2) - \lambda_2 \sum_{i=1}^{17} Y_i$$

Angiv scorefunktionerne og Hesse-matricen.

Udregn MLE (maksimumlikelihood estimaterne) for λ_1 og λ_2

$$\lambda_1: \tfrac{15}{\lambda_1}\text{-}\sum_{i=1}^{15} X_i \qquad \lambda_2: \tfrac{17}{\lambda_2} \ \text{-}\!\sum_{i=1}^{17} Y_i$$

$$\frac{15}{\lambda_1}$$
- $\sum_{i=1}^{15} X_i = 0$ giver $\hat{\lambda}_1 = \frac{15}{\sum_{i=1}^{15} X_i} = \frac{1}{X}$

$$\hat{\lambda}_1 = \frac{1}{1,19} = 0.84$$
 $\hat{\lambda}_2 = \frac{1}{0.43} = 2.31$

$$\mathbf{H} = \begin{bmatrix} \frac{-15}{\lambda_1^2} & 0\\ 0 & \frac{-17}{\lambda_2^2} \end{bmatrix} = \begin{bmatrix} H_1 & 0\\ 0 & H_2 \end{bmatrix}$$

3. Udregn et konfidensinterval for λ_1 .

$$E(-H_1) = \frac{15}{\lambda_1^2} E(-H_1)^{-1} = \frac{\lambda_1^2}{15}$$
$$0.84 + -1.96 * \sqrt{\frac{0.84^2}{15}} [0.41 - 1.26]$$

4. Det antages nu at $\lambda_1=\lambda_2$. Den fælles parameter kaldes λ

Opskriv likelihood funktionen $L(\lambda)$ samt log-likelihood funktionen $log[L(\lambda)]$.

Udregn MLE for λ som kaldes $\hat{\lambda}$

$$\widehat{\lambda} = \frac{15+17}{\sum_{i=1}^{17} Y_i + \sum_{i=1}^{15} X_i} = 1,27$$

- 5. Angiv den approksimative fordeling for $\widehat{\lambda}$ normalfordelt med den rigtige middelværdi og varians $\frac{\lambda^2}{15+17}$
- 6. Test $H_0: \lambda_1 = \lambda_2 = (\lambda) \mod H_A: H_0^C$.

Ved brug af et likelihood ratio test.

15	17,91	0,84	-17,66
17	7,36	2,31	-2,77
32	25,27	1,27	-24,44

test=(-17,66-2,77)-24,44 ganget med 2=ca 8 klart signifikant

7. Giv en samlet konklusion.