Information Theory and Related Fileds

Lecture 2: Source Coding

Lei Yu

Nankai University

Online Short Course at Beijing Normal University

Outline

- 1 (Lossless) Source Coding
- Preliminary: Asymptotic Equipartition Property
- Proof of Source Coding Theorem
- 4 Lossy Source Coding

Outline

- 1 (Lossless) Source Coding
- 2 Preliminary: Asymptotic Equipartition Property
- 3 Proof of Source Coding Theorem
- 4 Lossy Source Coding

Recall: Source-Channel Coding Theorem

Theorem ([Shannon'48])

Consider discrete memoryless source S and discrete memoryless channel $P_{Y|X}$. There is a sequence of encoder-decoder pairs (f_n,g_n) such that $\mathbb{P}(S^n \neq \hat{S}^n) \to 0$ (as $n \to \infty$) if $H(S) < C(P_{Y|X})$, and only if $H(S) \le C(P_{Y|X})$.

• Throughout this course, $[x] := \{1, 2, ..., \lfloor x \rfloor\}$

- Throughout this course, $[x] := \{1, 2, ..., \lfloor x \rfloor\}$
- A noiseless rate-R channel is $M \mapsto M$ for any r.v. $M \in [2^{nR}]$.
 - That is, the output is always identical to the input.
 - ► The rate is the exponent of the size of the range of the input.

- Throughout this course, $[x] := \{1, 2, ..., \lfloor x \rfloor\}$
- A noiseless rate-R channel is $M \mapsto M$ for any r.v. $M \in [2^{nR}]$.
 - That is, the output is always identical to the input.
 - ► The rate is the exponent of the size of the range of the input.
- For this case, $f: S^n \to [2^{nR}]$ and $g: [2^{nR}] \to \hat{S}^n$ are respectively also called source encoder and source decoder, and R is also called the rate of (f,g).

- Throughout this course, $[x] := \{1, 2, ..., \lfloor x \rfloor\}$
- A noiseless rate-R channel is $M \mapsto M$ for any r.v. $M \in [2^{nR}]$.
 - That is, the output is always identical to the input.
 - ► The rate is the exponent of the size of the range of the input.
- For this case, $f: \mathcal{S}^n \to [2^{nR}]$ and $g: [2^{nR}] \to \hat{\mathcal{S}}^n$ are respectively also called source encoder and source decoder, and R is also called the rate of (f,g).
- Essence of source coding (quantization): Represent a source S^n by another source \hat{S}^n such that the range of \hat{S}^n is no larger than 2^{nR} and moreover, $\mathbb{P}(S^n \neq \hat{S}^n) \to 0$.

←□ → ←□ → ← 亘 → □ ● の へ ○

Source Coding Theorem

As a special case of the source-channel coding theorem, Shannon showed:

Source Coding Theorem

As a special case of the source-channel coding theorem, Shannon showed:

Theorem (Source Coding [Shannon'48])

Consider a discrete memoryless source S and a noiseless rate-R channel. There is a sequence of encoder-decoder pairs (f_n, g_n) such that $\mathbb{P}(S^n \neq \hat{S}^n) \to 0$ (as $n \to \infty$) if H(S) < R, and only if $H(S) \le R$.

Source Coding Theorem

As a special case of the source-channel coding theorem, Shannon showed:

Theorem (Source Coding [Shannon'48])

Consider a discrete memoryless source S and a noiseless rate-R channel. There is a sequence of encoder-decoder pairs (f_n,g_n) such that $\mathbb{P}(S^n \neq \hat{S}^n) \to 0$ (as $n \to \infty$) if H(S) < R, and only if $H(S) \le R$.

We next prove this theorem.

Outline

- (Lossless) Source Coding
- 2 Preliminary: Asymptotic Equipartition Property
- 3 Proof of Source Coding Theorem
- 4 Lossy Source Coding

• Throughout this course, $\log := \log_2$.

- Throughout this course, $\log := \log_2$.
- Consider a memoryless source S. The first n symbols $S^n \sim P_S^{\otimes n}$.

- Throughout this course, $\log := \log_2$.
- Consider a memoryless source S. The first n symbols $S^n \sim P_S^{\otimes n}$.
- The self-information for S^n is the r.v.

$$-\log P_S^{\otimes n}(S^n) = \sum_{i=1}^n -\log P_S(S_i)$$

where $\iota(S_i) := -\log P_S(S_i)$ are i.i.d.

- Throughout this course, $\log := \log_2$.
- Consider a memoryless source S. The first n symbols $S^n \sim P_S^{\otimes n}$.
- The self-information for S^n is the r.v.

$$-\log P_S^{\otimes n}(S^n) = \sum_{i=1}^n -\log P_S(S_i)$$

where $\iota(S_i) := -\log P_S(S_i)$ are i.i.d.

By Law of Large Numbers (LLN), we obtain

Theorem (AEP)

$$-\frac{1}{n}\log P_S^{\otimes n}(S^n) \to H(S)$$
 in probability.

That is, for any $\epsilon > 0$, $\mathbb{P}\left\{\left|-\frac{1}{n}\log P_S^{\otimes n}(S^n) - H(S)\right| \le \epsilon\right\} \to 1 \text{ as } n \to \infty$.

Typical Set

Definition

The (weakly) typical set $\mathcal{A}^{(n)}_{\epsilon}(P_S)$ (or shortly, $\mathcal{A}^{(n)}_{\epsilon}$) with respect to P_S is the set of sequences $s^n \in \mathcal{S}^n$ such that

$$\left|-\frac{1}{n}\log P_S^{\otimes n}(s^n)-H(S)\right|\leq \epsilon.$$

Properties of Typical Set

Fact

- $1. \ \text{For any} \ s^n \in \mathcal{A}^{(n)}_{\epsilon}, \ 2^{-n(H(S)+\epsilon)} \leq P_S^{\otimes n}(s^n) \leq 2^{-n(H(S)-\epsilon)}.$
- 2. $P_S^{\otimes n}(\mathcal{A}_{\epsilon}^{(n)}) > 1 \epsilon$ for sufficiently large n.
- 3. $|\mathcal{A}_{\epsilon}^{(n)}| \leq 2^{n(H(S)+\epsilon)}$.
- 4. $|\mathcal{A}_{\epsilon}^{(n)}| \ge (1 \epsilon)2^{n(H(S) \epsilon)}$ for sufficiently large n.

Properties of Typical Set

Fact

- 1. For any $s^n \in \mathcal{A}^{(n)}_{\epsilon}$, $2^{-n(H(S)+\epsilon)} \le P_S^{\otimes n}(s^n) \le 2^{-n(H(S)-\epsilon)}$.
- 2. $P_S^{\otimes n}(\mathcal{A}_{\epsilon}^{(n)}) > 1 \epsilon$ for sufficiently large n.
- 3. $|\mathcal{A}_{\epsilon}^{(n)}| \leq 2^{n(H(S)+\epsilon)}$.
- 4. $|\mathcal{A}_{\epsilon}^{(n)}| \ge (1 \epsilon)2^{n(H(S) \epsilon)}$ for sufficiently large n.

Proof: 1. By definition. 2. By the AEP. 3.

$$\begin{split} 1 &= \sum_{s^n \in \mathcal{S}^n} P_S^{\otimes n}(s^n) \geq \sum_{s^n \in \mathcal{A}_{\epsilon}^{(n)}} P_S^{\otimes n}(s^n) \\ &\geq \sum_{s^n \in \mathcal{A}_{\epsilon}^{(n)}} 2^{-n(H(S) + \epsilon)} = 2^{-n(H(S) + \epsilon)} |\mathcal{A}_{\epsilon}^{(n)}| \end{split}$$

4. By Statement 2,

$$1 - \epsilon < \sum_{s^n \in \mathcal{A}_{\epsilon}^{(n)}} P_S^{\otimes n}(s^n)$$

$$\leq \sum_{s^n \in \mathcal{A}_{\epsilon}^{(n)}} 2^{-n(H(S) - \epsilon)} = 2^{-n(H(S) - \epsilon)} |\mathcal{A}_{\epsilon}^{(n)}|$$

Concentration of A Memoryless Source

The typical set $\mathcal{A}_{\epsilon}^{(n)}$ is a high-probability set of size no larger than $2^{n(H(S)+\epsilon)}$.

Concentration of A Memoryless Source (cont.)

Is there a high-probability set having size smaller than $2^{n(H(S)-\epsilon)}$ (for some $\epsilon>0$)?

Concentration of A Memoryless Source (cont.)

Is there a high-probability set having size smaller than $2^{n(H(S)-\epsilon)}$ (for some $\epsilon>0$)?

Theorem (Smallest High-probability Sets)

Let S_1, S_2, \dots be i.i.d. $\sim P_S$. If $P_S^{\otimes n}(\mathcal{B}_n) > 1 - \delta$ for $0 < \delta < 1$, then for any $\epsilon > 0$,

 $|\mathcal{B}_n| \geq 2^{n(H(S)-\epsilon)}$ for sufficiently large n.

Lei Yu (NKU)

Concentration of A Memoryless Source (cont.)

Is there a high-probability set having size smaller than $2^{n(H(S)-\epsilon)}$ (for some $\epsilon>0$)?

Theorem (Smallest High-probability Sets)

Let S_1, S_2, \dots be i.i.d. $\sim P_S$. If $P_S^{\otimes n}(\mathcal{B}_n) > 1 - \delta$ for $0 < \delta < 1$, then for any $\epsilon > 0$,

$$|\mathcal{B}_n| \geq 2^{n(H(S)-\epsilon)}$$
 for sufficiently large n .

Fact

Typical sets are smallest high-probability sets. The smallest size is roughly $2^{nH(S)}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ り<0</p>

12 / 35

Proof of Smallest High-probability Sets

By the inclusion-exclusion principle,

$$\begin{split} P_S^{\otimes n}(\mathcal{A}_{\epsilon}^{(n)} \cap \mathcal{B}_n) &= P_S^{\otimes n}(\mathcal{A}_{\epsilon}^{(n)}) + P_S^{\otimes n}(\mathcal{B}_n) - P_S^{\otimes n}(\mathcal{A}_{\epsilon}^{(n)} \cup \mathcal{B}_n) \\ &\geq 1 - \epsilon + 1 - \delta - 1 \\ &= 1 - \epsilon - \delta. \end{split}$$

On the other hand.

$$\begin{split} P_S^{\otimes n}(\mathcal{A}_{\epsilon}^{(n)} \cap \mathcal{B}_n) &= \sum_{s^n \in \mathcal{A}_{\epsilon}^{(n)} \cap \mathcal{B}_n} P_S^{\otimes n}(s^n) \leq \sum_{s^n \in \mathcal{A}_{\epsilon}^{(n)} \cap \mathcal{B}_n} 2^{-n(H(S) - \epsilon)} \\ &= |\mathcal{A}_{\epsilon}^{(n)} \cap \mathcal{B}_n| 2^{-n(H(S) - \epsilon)} \\ &\leq |\mathcal{B}_n| 2^{-n(H(S) - \epsilon)}. \end{split}$$

Therefore,

$$|\mathcal{B}_n| \ge (1 - \epsilon - \delta)2^{n(H(S) - \epsilon)} = 2^{n(H(S) - \epsilon + o(1))}.$$

← 4 回 ト 4 回 ト 4 亘 ト ○ 亘 ・ 夕久 ○

AEP for Continuous Sources

Definition

The (weakly) typical set $\mathcal{A}_{\epsilon}^{(n)}(P_S)$ (or shortly, $\mathcal{A}_{\epsilon}^{(n)}$) with respect to continuous distribution P_S (with PDF P_S) is the set of sequences $s^n \in \mathcal{S}^n$ such that

$$\left| -\frac{1}{n} \log p_S^{\otimes n}(s^n) - h(S) \right| \le \epsilon,$$

where $p_S^{\otimes n}(s^n) = \prod_{i=1}^n p_S(s_i)$. Recall that $h(S) = -\int p_S(s) \log p_S(s) ds$.

Fact: 1. For any $s^n \in \mathcal{A}^{(n)}_{\epsilon}$, $2^{-n(h(S)+\epsilon)} \le p_S^{\otimes n}(s^n) \le 2^{-n(h(S)-\epsilon)}$.

- 2. (AEP) $P_S^{\otimes n}(\mathcal{A}_{\epsilon}^{(n)}) \to 1 \text{ as } n \to \infty.$
- 3. $\operatorname{Vol}(\mathcal{A}_{\epsilon}^{(n)}) \leq 2^{n(h(S)+\epsilon)}$.
- 4. $\operatorname{Vol}(\mathcal{A}_{\epsilon}^{(n)}) \geq (1 \epsilon)2^{n(h(S) \epsilon)}$ for sufficiently large n.
- 5. The set $\mathcal{A}^{(n)}_{\epsilon}$ is the smallest volume set with probability $\geq 1-\epsilon$, to first order in the exponent.

<□ > <□ > <□ > < □ > < □ > < □ > □ ≥ < ○ < ○

Joint AEP

Definition

The (weakly) joint typical set $\mathcal{A}^{(n)}_{\epsilon}(P_{S\hat{S}})$ (or shortly, $\mathcal{A}^{(n)}_{\epsilon}$) with respect to $P_{S\hat{S}}$ is the set of $(s^n,\hat{s}^n)\in\mathcal{S}^n\times\hat{\mathcal{S}}^n$ such that

$$\left| -\frac{1}{n} \log P_S^{\otimes n}(s^n) - H(S) \right| \le \epsilon$$

$$\left| -\frac{1}{n} \log P_{\hat{S}}^{\otimes n}(\hat{s}^n) - H(\hat{S}) \right| \le \epsilon$$

$$\left| -\frac{1}{n} \log P_{\hat{S}\hat{S}}^{\otimes n}(s^n, \hat{s}^n) - H(S, \hat{S}) \right| \le \epsilon.$$

(For continuous distributions, replace P with p and H with h.)

Fact: 1. (Joint AEP) $P_{S\hat{S}}^{\otimes n}(\mathcal{A}_{\epsilon}^{(n)}) \to 1$ as $n \to \infty$.

- 2. $|\mathcal{A}_{\epsilon}^{(n)}| < 2^{n(H(S,\hat{S})+\epsilon)}$
- 3. $|\mathcal{A}_{\epsilon}^{(n)}| \ge (1 \epsilon) 2^{n(H(S, \hat{S}) \epsilon)}$ for sufficiently large n.

Outline

- (Lossless) Source Coding
- 2 Preliminary: Asymptotic Equipartition Property
- Proof of Source Coding Theorem
- 4 Lossy Source Coding

Achievability Part ("If" Part)

• Partition S^n into the typical set $\mathcal{A}^{(n)}_{\epsilon}$ and its complement $\mathcal{A}^{(n)\,c}_{\epsilon}$.

Achievability Part ("If" Part)

- ullet Partition \mathcal{S}^n into the typical set $\mathcal{A}^{(n)}_\epsilon$ and its complement $\mathcal{A}^{(n)\,c}_\epsilon$.
- Index $\mathcal{A}^{(n)}_{\epsilon}$ by 1,2,...,L, and hence, $\mathcal{A}^{(n)}_{\epsilon}=\{s^n(1),s^n(2),...,s^n(L)\}$, where $L=|\mathcal{A}^{(n)}_{\epsilon}|$.

Achievability Part ("If" Part)

- ullet Partition \mathcal{S}^n into the typical set $\mathcal{A}^{(n)}_\epsilon$ and its complement $\mathcal{A}^{(n)\,c}_\epsilon$.
- Index $\mathcal{A}^{(n)}_{\epsilon}$ by 1,2,...,L, and hence, $\mathcal{A}^{(n)}_{\epsilon}=\{s^n(1),s^n(2),...,s^n(L)\}$, where $L=|\mathcal{A}^{(n)}_{\epsilon}|$.
- Consider the following coding scheme.
 - ► Encoder: If $s^n \in \mathcal{A}_{\epsilon}^{(n)}$, send the index i of s^n ; otherwise, send 1.
 - ▶ Decoder: Reconstruction $s^n(i)$

Analysis of Achievability

Calculation of probability of error:

- If $S^n \in \mathcal{A}^{(n)}_{\epsilon}$, then reconstruction is exactly S^n (no error).
- ullet Denoting the reconstruction as \hat{S}^n and $\mathrm{error} := \left\{ S^n
 eq \hat{S}^n \right\}$, we have

$$\begin{split} \mathbb{P}(\text{error}) &= \mathbb{P}(S^n \in \mathcal{A}_{\epsilon}^{(n)}) \mathbb{P}(\text{error}|S^n \in \mathcal{A}_{\epsilon}^{(n)}) \\ &+ \mathbb{P}(S^n \notin \mathcal{A}_{\epsilon}^{(n)}) \mathbb{P}(\text{error}|S^n \notin \mathcal{A}_{\epsilon}^{(n)}) \\ &\leq 0 + \mathbb{P}(S^n \notin \mathcal{A}_{\epsilon}^{(n)}) \\ &\to 0 \end{split}$$

Analysis of Achievability

Calculation of probability of error:

- If $S^n \in \mathcal{A}^{(n)}_{\epsilon}$, then reconstruction is exactly S^n (no error).
- Denoting the reconstruction as \hat{S}^n and $\operatorname{error} := \left\{ S^n \neq \hat{S}^n \right\}$, we have

$$\begin{split} \mathbb{P}(\text{error}) &= \mathbb{P}(S^n \in \mathcal{A}_{\epsilon}^{(n)}) \mathbb{P}(\text{error}|S^n \in \mathcal{A}_{\epsilon}^{(n)}) \\ &+ \mathbb{P}(S^n \notin \mathcal{A}_{\epsilon}^{(n)}) \mathbb{P}(\text{error}|S^n \notin \mathcal{A}_{\epsilon}^{(n)}) \\ &\leq 0 + \mathbb{P}(S^n \notin \mathcal{A}_{\epsilon}^{(n)}) \\ &\to 0 \end{split}$$

Calculation of rate: $\frac{1}{n}\log |\mathcal{R}^{(n)}_{\epsilon}| \leq H(S) + \epsilon$ which is arbitrarily close to H(S) (by letting $\epsilon \to 0$)

Converse Part ("Only If" Part)

Lemma (Fano's inequality [Cover-Thomas' book])

Given two random variables X and Y, let $\hat{X} = g(Y)$ be any estimator of X given Y and let $\epsilon = \mathbb{P}(X \neq \hat{X})$ be the probability of error. Then

$$H(X|Y) \leq H(X|\hat{X}) \leq H_2(\epsilon) + \epsilon \log |X|.$$

This inequality can be weakened to

$$H(X|Y) \le 1 + \epsilon \log |X|.$$

Lei Yu (NKU)

Converse Part (cont.)

Proof of Converse: For a pair of rate-R encoder-decoder (f_n, g_n) , denote $M_n = f_n(S^n)$ and $\hat{S}^n = g_n(M_n)$. Denote $\epsilon_n = \mathbb{P}(S^n \neq \hat{S}^n)$. We then have

$$\log 2^{nR} \ge H(M_n)$$
 maximum entropy
 $\ge I(S^n; M_n)$
 $= H(S^n) - H(S^n|M_n)$
 $\ge nH(S) - (1 + \epsilon_n \log |S^n|)$ Fano's inequality

Converse Part (cont.)

Proof of Converse: For a pair of rate-R encoder-decoder (f_n, g_n) , denote $M_n = f_n(S^n)$ and $\hat{S}^n = g_n(M_n)$. Denote $\epsilon_n = \mathbb{P}(S^n \neq \hat{S}^n)$. We then have

$$\log 2^{nR} \ge H(M_n)$$
 maximum entropy
 $\ge I(S^n; M_n)$
 $= H(S^n) - H(S^n|M_n)$
 $\ge nH(S) - (1 + \epsilon_n \log |S^n|)$ Fano's inequality

So,

$$R \ge H(S) - \frac{1}{n} - \epsilon_n \log |S|.$$

Since $\epsilon_n \to 0$ as $n \to \infty$, taking $\lim_{n \to \infty}$, we then have

$$R \ge H(S)$$
.

Converse Part (cont.)

Proof of Converse: For a pair of rate-R encoder-decoder (f_n, g_n) , denote $M_n = f_n(S^n)$ and $\hat{S}^n = g_n(M_n)$. Denote $\epsilon_n = \mathbb{P}(S^n \neq \hat{S}^n)$. We then have

$$\begin{split} \log 2^{nR} &\geq H(M_n) & \text{maximum entropy} \\ &\geq I(S^n; M_n) \\ &= H(S^n) - H(S^n|M_n) \\ &\geq nH(S) - \left(1 + \epsilon_n \log |S^n|\right) & \text{Fano's inequality} \end{split}$$

So,

$$R \ge H(S) - \frac{1}{n} - \epsilon_n \log |S|.$$

Since $\epsilon_n \to 0$ as $n \to \infty$, taking $\lim_{n \to \infty}$, we then have

$$R > H(S)$$
.

(Here we assume $|S| < \infty$, but this assumption can be removed by using information-spectral method instead [Han's book])

Outline

- (Lossless) Source Coding
- 2 Preliminary: Asymptotic Equipartition Property
- 3 Proof of Source Coding Theorem
- 4 Lossy Source Coding

 When transmitting a image/video, a certain level of distortion is usually allowed.

- When transmitting a image/video, a certain level of distortion is usually allowed.
- A distortion function is a mapping

$$d: \mathcal{S} \times \hat{\mathcal{S}} \to [0, \infty)$$

A distortion function is said to be bounded if $\sup_{s,\hat{s}} d(s,\hat{s}) < \infty$.

- When transmitting a image/video, a certain level of distortion is usually allowed.
- A distortion function is a mapping

$$d: \mathcal{S} \times \hat{\mathcal{S}} \to [0, \infty)$$

A distortion function is said to be bounded if $\sup_{s,\hat{s}} d(s,\hat{s}) < \infty$.

- Examples:
 - ► Hamming distortion: $d(s, \hat{s}) = \begin{cases} 0 & s = \hat{s} \\ 1 & s \neq \hat{s} \end{cases}$
 - Squared-error distortion: $d(s, \hat{s}) = (s \hat{s})^2$

- When transmitting a image/video, a certain level of distortion is usually allowed.
- A distortion function is a mapping

$$d: \mathcal{S} \times \hat{\mathcal{S}} \to [0, \infty)$$

A distortion function is said to be bounded if $\sup_{s,\hat{s}} d(s,\hat{s}) < \infty$.

- Examples:
 - ► Hamming distortion: $d(s, \hat{s}) = \begin{cases} 0 & s = \hat{s} \\ 1 & s \neq \hat{s} \end{cases}$
 - Squared-error distortion: $d(s, \hat{s}) = (s \hat{s})^2$
- The distortion between sequences s^n and \hat{s}^n is defined by

$$d(s^n, \hat{s}^n) = \frac{1}{n} \sum_{i=1}^n d(s_i, \hat{s}_i).$$

Rate-Distortion Function

• A rate-distortion pair (R, D) is said to be achievable if there exists a sequence of rate-R encoder and decoder (f_n, g_n) such that

$$\limsup_{n\to\infty} \mathbb{E}d(S^n, g_n(f_n(S^n))) \le D.$$

Rate-Distortion Function

• A rate-distortion pair (R, D) is said to be achievable if there exists a sequence of rate-R encoder and decoder (f_n, g_n) such that

$$\lim_{n\to\infty} \mathbb{E}d(S^n, g_n(f_n(S^n))) \le D.$$

• The (operational) rate-distortion function $R_{\rm op}(D)$ is the infimum of rates R such that (R,D) is achievable.

Lossy Source Coding Theorem

Theorem (Lossy Source Coding [Shannon'48])

Consider a discrete memoryless source S and a bounded distortion function d. Then.

$$R_{\mathrm{op}}(D) = R(D) := \min_{P_{\hat{S}|S}: \mathbb{E}d(S,\hat{S}) \leq D} I(S;\hat{S}).$$

Example: Binary Source

Fact

The rate-distortion function for a Bern(p) source with Hamming distortion is given by

$$R(D) = \begin{cases} H_2(p) - H_2(D) & 0 \le D \le \min\{p, 1 - p\} \\ 0 & D > \min\{p, 1 - p\} \end{cases}$$

Figure: (left) optimal $P_{S\hat{S}}$ for Bern(p), and (right) R(D) for $Bern(\frac{1}{2})$

Lei Yu (NKU) In

Example: Gaussian Source

Fact

The rate-distortion function for a $\mathcal{N}(0,\sigma^2)$ source with squared-error distortion is given by

$$R(D) = \begin{cases} \frac{1}{2}\log\frac{\sigma^2}{D} & 0 \leq D \leq \sigma^2 \\ 0 & D > \sigma^2 \end{cases}.$$

Figure: (left) optimal $P_{S\hat{S}}$ for $\mathcal{N}(0, \sigma^2)$, and (right) R(D) for $\mathcal{N}(0, 1)$

Intuition for Gaussian Source

- For $S \sim \mathcal{N}(0, \sigma^2)$, $h(S) = \frac{1}{2} \log(2\pi e \sigma^2)$. So, $\mathcal{R}_{\epsilon}^{(n)} = \left\{ s^n : \left| \frac{1}{n} \sum_{i=1}^n s_i^2 \sigma^2 \right| \leq \epsilon' \right\}$ where $\epsilon' = \frac{2\sigma^2}{\log e} \epsilon$.
- ullet That is, S^n is concentrated on a thin spherical shell (or a ball) of radius around $\sqrt{n}\sigma$

27 / 35

Lei Yu (NKU) Information Theory

Intuition for Gaussian Source

- For $S \sim \mathcal{N}(0, \sigma^2)$, $h(S) = \frac{1}{2} \log(2\pi e \sigma^2)$. So, $\mathcal{R}_{\epsilon}^{(n)} = \left\{ s^n : \left| \frac{1}{n} \sum_{i=1}^n s_i^2 \sigma^2 \right| \le \epsilon' \right\}$ where $\epsilon' = \frac{2\sigma^2}{\log e} \epsilon$.
- ullet That is, S^n is concentrated on a thin spherical shell (or a ball) of radius around $\sqrt{n}\sigma$
- Covering a radius- $\sqrt{n}\sigma$ ball by radius- $\sqrt{n}D$ balls: The number of small balls is at least $\frac{\operatorname{Vol}(\operatorname{Ball}_{\sqrt{n}\sigma})}{\operatorname{Vol}(\operatorname{Ball}_{\sqrt{n}D})} = \frac{\left(\sqrt{n}\sigma\right)^n}{\left(\sqrt{n}D\right)^n} = 2^{n\cdot\frac{1}{2}\log\frac{\sigma^2}{D}}$

Proof of Converse Part (i.e., $R_{op}(D) \ge R(D)$)

For a pair of rate-R encoder-decoder (f_n,g_n) , denote $M_n=f_n(S^n)$ and $\hat{S}^n=g_n(M_n)$. Obviously, $S^n \leftrightarrow M_n \leftrightarrow \hat{S}^n$. We then have

$$\begin{split} nR &\geq H(M_n) \qquad \text{maximum entropy} \\ &\geq I(S^n; M_n) \geq I(S^n; \hat{S}^n) \qquad \text{DPI for mutual information} \\ &= H(S^n) - H(S^n | \hat{S}^n) \\ &= \sum_{i=1}^n H(S_i) - \sum_{i=1}^n H(S_i | \hat{S}^n, S^{i-1}) \qquad \text{chain rule} \\ &\geq \sum_{i=1}^n H(S_i) - \sum_{i=1}^n H(S_i | \hat{S}_i) \qquad \text{conditioning reduces entropy} \\ &= \sum_{i=1}^n I(S_i; \hat{S}_i) \end{split}$$

Proof of Converse Part (cont.)

$$nR \ge \sum_{i=1}^{n} I(S_i; \hat{S}_i) \qquad \text{copy from last slide}$$

$$\ge \sum_{i=1}^{n} R\left(\mathbb{E}[d(S_i, \hat{S}_i)]\right) \qquad \text{definition of function } R(D)$$

$$= n\left(\frac{1}{n}\sum_{i=1}^{n} R\left(\mathbb{E}[d(S_i, \hat{S}_i)]\right)\right)$$

$$\ge nR\left(\frac{1}{n}\sum_{i=1}^{n} \mathbb{E}[d(S_i, \hat{S}_i)]\right) \qquad R(D) \text{ is convex}$$

$$= nR\left(\mathbb{E}[d(S^n, \hat{S}^n)]\right)$$

$$\ge nR(D) \qquad R(D) \text{ is nonincreasing}$$

Proof of Achievability Part (i.e., $R_{op}(D) \leq R(D)$)

Definition

The distortion-typical set $\mathcal{A}_{d,\epsilon}^{(n)}(P_{S\hat{S}})$ (or shortly, $\mathcal{A}_{d,\epsilon}^{(n)}$) with respect to $P_{S\hat{S}}$ is the set of $(s^n, \hat{s}^n) \in \mathcal{S}^n \times \hat{\mathcal{S}}^n$ such that

$$\begin{split} \left| -\frac{1}{n} \log P_{S}^{\otimes n}(s^{n}) - H(S) \right| &\leq \epsilon \\ \left| -\frac{1}{n} \log P_{\hat{S}}^{\otimes n}(\hat{s}^{n}) - H(\hat{S}) \right| &\leq \epsilon \qquad \text{jointly typical} \\ \left| -\frac{1}{n} \log P_{S\hat{S}}^{\otimes n}(s^{n}, \hat{s}^{n}) - H(S, \hat{S}) \right| &\leq \epsilon \\ \left| d(s^{n}, \hat{s}^{n}) - \mathbb{E}d(S, \hat{S}) \right| &\leq \epsilon. \end{split}$$

Proof of Achievability Part (i.e., $R_{op}(D) \leq R(D)$)

Definition

The distortion-typical set $\mathcal{A}_{d,\epsilon}^{(n)}(P_{S\hat{S}})$ (or shortly, $\mathcal{A}_{d,\epsilon}^{(n)}$) with respect to $P_{S\hat{S}}$ is the set of $(s^n,\hat{s}^n)\in\mathcal{S}^n\times\hat{\mathcal{S}}^n$ such that

$$\left| -\frac{1}{n} \log P_{S}^{\otimes n}(s^{n}) - H(S) \right| \le \epsilon$$

$$\left| -\frac{1}{n} \log P_{\hat{S}}^{\otimes n}(\hat{s}^{n}) - H(\hat{S}) \right| \le \epsilon \qquad \text{jointly typical}$$

$$\left| -\frac{1}{n} \log P_{S\hat{S}}^{\otimes n}(s^{n}, \hat{s}^{n}) - H(S, \hat{S}) \right| \le \epsilon$$

$$\left| d(s^{n}, \hat{s}^{n}) - \mathbb{E}d(S, \hat{S}) \right| \le \epsilon.$$

Fact: 1. (Joint AEP) $P_{c\hat{c}}^{\otimes n}(\mathcal{A}_{d\hat{c}}^{(n)}) \to 1$ as $n \to \infty$.

2. [Cover–Thomas' book] Let $(S''', \hat{S}''') \sim P_S^{\otimes n} \otimes P_{\hat{S}}^{\otimes n}$. For sufficiently large n,

$$(1-\epsilon)2^{-n\left(I(S;\hat{S})+3\epsilon\right)} \le \mathbb{P}\left\{ (S^m, \hat{S}^m) \in \mathcal{A}_{d,\epsilon}^{(n)} \right\} \le 2^{-n\left(I(S;\hat{S})-3\epsilon\right)}.$$

• Let $P_{\hat{S}|S}$ attain $R(D) = \min_{P_{\hat{S}|S}: \mathbb{E}d(S,\hat{S}) \leq D} I(S;\hat{S})$. Let R be any number $> I(S;\hat{S}) + 3\epsilon = R(D) + 3\epsilon$.

- Let $P_{\hat{S}|S}$ attain $R(D) = \min_{P_{\hat{S}|S}: \mathbb{E}d(S, \hat{S}) \leq D} I(S; \hat{S})$. Let R be any number $> I(S; \hat{S}) + 3\epsilon = R(D) + 3\epsilon$.
- **Generation of codebook:** Randomly generate 2^{nR} sequences (codewords) \hat{S}^n drawn i.i.d. $\sim P_{\hat{S}}^{\otimes n}$. Index them by $i \in [2^{nR}]$. Denote $C := \left\{ \hat{S}^n(1), \hat{S}^n(2), ..., \hat{S}^n(2^{nR}) \right\}$, which is called (random) codebook. Reveal this codebook to the encoder and decoder.

Lei Yu (NKU) Information Theory BNU 31/35

- Let $P_{\hat{S}|S}$ attain $R(D) = \min_{P_{\hat{S}|S}: \mathbb{E}d(S, \hat{S}) \leq D} I(S; \hat{S})$. Let R be any number $> I(S; \hat{S}) + 3\epsilon = R(D) + 3\epsilon$.
- **Generation of codebook:** Randomly generate 2^{nR} sequences (codewords) \hat{S}^n drawn i.i.d. $\sim P_{\hat{S}}^{\otimes n}$. Index them by $i \in [2^{nR}]$. Denote $C := \left\{\hat{S}^n(1), \hat{S}^n(2), ..., \hat{S}^n(2^{nR})\right\}$, which is called (random) codebook. Reveal this codebook to the encoder and decoder.
- **Encoding:** Encode S^n by i if there exists an i such that $(S^n, \hat{S}^n(i)) \in \mathcal{A}^{(n)}_{d,\epsilon}$. If there is more than one such i, send any one of them. If there is no such i, let i=1 and declare an error. Thus, nR bits suffice to describe the index i of the jointly typical codeword.

31 / 35

Lei Yu (NKU) Information Theory

- Let $P_{\hat{S}|S}$ attain $R(D) = \min_{P_{\hat{S}|S}: \mathbb{E}d(S,\hat{S}) \leq D} I(S;\hat{S})$. Let R be any number $> I(S;\hat{S}) + 3\epsilon = R(D) + 3\epsilon$.
- **Generation of codebook:** Randomly generate 2^{nR} sequences (codewords) \hat{S}^n drawn i.i.d. $\sim P_{\hat{S}}^{\otimes n}$. Index them by $i \in [2^{nR}]$. Denote $C := \left\{\hat{S}^n(1), \hat{S}^n(2), ..., \hat{S}^n(2^{nR})\right\}$, which is called (random) codebook. Reveal this codebook to the encoder and decoder.
- **Encoding:** Encode S^n by i if there exists an i such that $(S^n, \hat{S}^n(i)) \in \mathcal{A}^{(n)}_{d,\epsilon}$. If there is more than one such i, send any one of them. If there is no such i, let i=1 and declare an error. Thus, nR bits suffice to describe the index i of the jointly typical codeword.
- **Decoding:** The reconstruction is $\hat{S}^n(i)$.

Calculation of Probability of Error

Lemma ([Cover–Thomas' book])

If
$$R > I(S; \hat{S}) + 3\epsilon$$
, then $\mathbb{P}_{S^n, C}(\text{error}) \to 0$ as $n \to 0$.

Intuition behind this lemma:

- Observe that S^n and $\hat{S}^n(1), \hat{S}^n(2), ..., \hat{S}^n(2^{nR})$ are independent, and hence, $\mathbb{P}\left\{(S^n, \hat{S}^n(i)) \in \mathcal{A}_{d,\epsilon}^{(n)}\right\} \approx 2^{-nI(S;\hat{S})}$ for all $i \in [2^{nR}]$.
- So, the averaged number of codewords $\hat{S}^n(i)$ such that $(S^n, \hat{S}^n(i)) \in \mathcal{A}_{d,\epsilon}^{(n)}$ is $2^{n(R-I(S;\hat{S}))}$ which is exponentially large when $R > I(S;\hat{S})$.

• On one hand, by the lemma above, with high probability, no error occurs, i.e., $(S^n, \hat{S}^n(i)) \in \mathcal{H}_{d,\epsilon}^{(n)}$.

- On one hand, by the lemma above, with high probability, no error occurs, i.e., $(S^n, \hat{S}^n(i)) \in \mathcal{A}_{d,\epsilon}^{(n)}$.
- On the other hand, if no error, then by definition of distortion-typical sets and by the choice of $P_{\hat{S}|S}$,

$$d(S^n, \hat{S}^n(i)) \le \mathbb{E}d(S, \hat{S}) + \epsilon \le D + \epsilon. \tag{1}$$

- On one hand, by the lemma above, with high probability, no error occurs, i.e., $(S^n, \hat{S}^n(i)) \in \mathcal{A}_{d,\epsilon}^{(n)}$.
- On the other hand, if no error, then by definition of distortion-typical sets and by the choice of $P_{\hat{S}|S}$,

$$d(S^n, \hat{S}^n(i)) \le \mathbb{E}d(S, \hat{S}) + \epsilon \le D + \epsilon. \tag{1}$$

• So, (1) holds with high probability, and hence,

$$\mathbb{E}_{S^n,C}\left[d(S^n,\hat{S}^n(i))\right] \le D + 2\epsilon. \tag{2}$$

That is, $(R(D)+3\epsilon,D+2\epsilon)$ is achievable, i.e., $R_{\rm op}(D) \leq R(D)$ (by letting $\epsilon \to 0$).

- On one hand, by the lemma above, with high probability, no error occurs, i.e., $(S^n, \hat{S}^n(i)) \in \mathcal{A}_{d,\epsilon}^{(n)}$.
- On the other hand, if no error, then by definition of distortion-typical sets and by the choice of $P_{\hat{S}|S}$,

$$d(S^n, \hat{S}^n(i)) \le \mathbb{E}d(S, \hat{S}) + \epsilon \le D + \epsilon. \tag{1}$$

• So, (1) holds with high probability, and hence,

$$\mathbb{E}_{S^n,C}\left[d(S^n,\hat{S}^n(i))\right] \le D + 2\epsilon. \tag{2}$$

That is, $(R(D)+3\epsilon,D+2\epsilon)$ is achievable, i.e., $R_{\rm op}(D) \leq R(D)$ (by letting $\epsilon \to 0$).

• Removing randomness of codebook: Since (2) holds on average over C, there must exist a fixed codebook c such that $\mathbb{E}_{S^n}\left[d(S^n,\hat{S}^n(i))|C=c\right] \leq D+2\epsilon$.

References

- Shannon, C. E. (1948). A mathematical theory of communication. The Bell system technical journal, 27(3), 379-423.
- ② Cover, T. M. (1999). Elements of information theory. John Wiley & Sons.
- Han, T. S. (2002). Information-spectrum methods in information theory. Springer Science & Business Media.

Thank you for your attention!