Benedikt Magnusson — bsm@hi.is

March 31, 2020

Theorem 0.1. Let A denote the uniform algebra of continuous functions on $\overline{\mathbb{B}}$ which are holomorphic on \mathbb{B} . Assume $E = E_1 \cup E_2$ is a disjoint union of a interpolation set E_1 and a set E_2 such that for every $\mu \in A^{\perp}$ and every $g \in A$

$$\int_{E_2} g \, d\mu = 0.$$

Then for $f \in C(E)$ satisfying

$$\int_{E_2} f \, d\mu = 0 \qquad \text{for every } \mu \in A^{\perp}. \tag{1}$$

there exists $F \in A$ such that $F|_E = f$.

Proposition 0.2. If $E_2 = \mathbb{S} \cap M$ is the intersection of the unit sphere and an analytic subset [1, Chapter I.8] M of $\{|z| < r\}$, r > 1 then E_2 satisfies (1).

Proof. First note that since $\{|z| < r\}$ is a domain of holomorphy the set M can be defined by global functions. I.e. there are $f_1, \ldots, f_m \in \mathcal{O}(\{|z| < r\})$ such that

$$M = \{z; f_1(z) = f_2(z) = \dots = f_m(z) = 0\},\$$

and since r > 1 the f_j 's are in A. Fix $\mu \in A^{\perp}$ and define $\mu_j = f_j \mu$ for $j = 1, \ldots, m$. Note that μ_j is in A^{\perp} since for $g \in A$,

$$\int g \, d\mu_j = \int g \cdot f_j \, d\mu = 0$$

because $g \cdot f_j \in A$. Define $\mu_M = \mu - \sum_{j=1}^m \mu_j$ and note firstly that $\mu_M \in A^{\perp}$,

since μ and μ_j are in A^{\perp} , and secondly that $\mu_M(E_2) = 0$.

$$\begin{split} &\int_{E_2} g \, d\mu \\ &= \int_{E_2} g - g \left(\sum_{j=1}^m f_j \right) \, d\mu \qquad \qquad \text{(since the f_j's are 0 on E_2)} \\ &= \int_{\mathbb{S}} g - g \left(\sum_{j=1}^m f_j \right) \, d\mu - \int_{\mathbb{S}\backslash E_2} g - g \left(\sum_{j=1}^m f_j \right) \, d\mu \\ &= - \int_{\mathbb{S}\backslash E_2} g - g \left(\sum_{j=1}^m f_j \right) \, d\mu \\ &= - \int_{\mathbb{S}\backslash E_2} g \left(1 - \sum_{j=1}^m f_j \right) \, d\mu \\ &= - \int_{\mathbb{S}\backslash E_2} g \, d\mu_M \\ &= - \int_{\mathbb{S}} g \, d\mu_M \qquad \qquad \text{(since $\mu_M(E_2) = 0$)} \\ &= 0 \qquad \qquad \text{(since $\mu_M(E_2) = 0$)} \end{split}$$

References

[1] K. Fritzsche and H. Grauert, From holomorphic functions to complex manifolds, vol. 213 of Graduate Texts in Mathematics, Springer-Verlag, New York, 2002.