Regresja Liniowa

KNSM "Gauss"

Lato 2025

Ogólna postać modelu liniowego

Model liniowy przewiduje wartość poprzez obliczenie ważonej sumy cech wejściowych oraz składnika wolnego:

$$\hat{y}^{(i)} = \theta_0 + \theta_1 x_1^{(i)} + \theta_2 x_2^{(i)} + \dots + \theta_n x_n^{(i)}.$$

- $\hat{y}^{(i)}$: Przewidywana wartość dla *i*-tej instancji.
- n: Liczba cech.
- $x_i^{(i)}$: Wartość *j*-tej cechy dla *i*-tej instancji.
- ▶ θ_j : Parametry modelu (w tym składnik wolny θ_0 oraz wagi $\theta_1, \theta_2, \dots, \theta_n$).
- ightharpoonup Zakładamy,że $\forall_{j=1,2,\dots,m} x_0^{(j)} = 1$.

Postać wektorowa

Przewidywanie dla *i*-tej instancji można zapisać w zwartej postaci wektorowej:

$$\hat{y}^{(i)} = \theta \cdot x^{(i)}.$$

- \triangleright θ : Wektor parametrów (składnik wolny + wagi).
- > $x^{(i)}$: Wektor cech dla *i*-tej instancji (z $x_0^{(i)} = 1$ dla składnika wolnego).
- \bullet $\theta \cdot x^{(i)}$: Iloczyn skalarny wektorów θ i $x^{(i)}$.

Notacja macierzowa

Jeśli θ jest wektorem i X jest macierzą:

$$\hat{y} = X\theta$$
.

- ŷ: Wektor przewidywań dla wszystkich instancji.
- X: Macierz cech (każdy wiersz odpowiada instancji).
- ightharpoonup heta: Wektor parametrów (składnik wolny + wagi).

Uczenie modelu

Uczenie polega na znalezieniu parametrów θ , które minimalizują błąd predykcji.

Miara wydajności: Błąd Średniokwadratowy (MSE)

MSE =
$$\frac{1}{m} \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)})^2$$
.

- m: Liczba próbek.
- $\hat{y}^{(i)}$: Przewidywanie dla *i*-tej instancji.
- \triangleright $y^{(i)}$: Rzeczywista wartość dla i-tej instancji.
- Minimalizowanie MSE minimalizuje również RMSE.

Minimalizacja MSE

Aby znaleźć optymalne parametry $\hat{\theta}$, minimalizujemy MSE:

Używamy Równania Normalnego (rozwiązanie analityczne):

$$\hat{\theta} = (X^T X)^{-1} X^T y.$$

 Używanie algorytmów optymalizacji (np. gradientu prostego) jest tutaj nieoptymalne, wrór analityczny jest szybszy.

Wyprowadzenie Równania Normalnego

Minimalizujemy MSE w postaci macierzowej:

$$MSE = \frac{1}{m}(X\theta - y)^{T}(X\theta - y).$$

Rozwijamy wyrażenie:

$$MSE = \frac{1}{m} \left[\theta^T X^T X \theta - 2 \theta^T X^T y + y^T y \right].$$

Pochodna względem θ :

$$\frac{\partial \mathsf{MSE}}{\partial \theta} = \frac{2}{m} (X^T X \theta - X^T y) = 0.$$

Rozwiązanie dla θ :

$$X^T X \theta = X^T y \implies \hat{\theta} = (X^T X)^{-1} X^T y.$$