University of California, Berkeley

IEOR 242 Fall 2021 Project

Predicting Osteoarthritis with Machine Learning

Contents

1	Introduction	2		
2	Objective	2		
3	Data Processing and Feature Engineering	2		
4	Model Analysis 4.1 Baseline Model 4.2 Logistic Regression 4.3 Clustering with Logistic Regression 4.4 Random Forest 4.5 Gradient Boosting 4.6 Ridge	3 3 3 4 4 5		
5	Interpretation	5		
6	Conclusion	5		
7	Appendix 7.1 References 7.2 Code 7.3 Data Cleaning 7 4 Models	6 6 6 33		

1 Introduction

Osteoarthritis (OA) is the most common form of arthritis of the knee that affects individuals of age 50+. OA causes the cartilage in the knee joint to gradually wears away, resulting in pain to carry out every day activities like walking. Osteoarthritis is one of the most quickly expanding chronic conditions, thanks to global ageing and the growing obesity pandemic [1]. OA, which most commonly affects knees and hips, can increase the risk of cardiovascular disease by limiting activity due to significant joint pain. It also has a detrimental impact on quality of life [2].

The damage is irreversible and treatments include physiotherapy, weight loss, painkillers, anti-inflammatory steroids, and knee replacement surgery. While risk factors for both frequent knee pain and knee OA may include old age, and overweight/obesity, not all people with these characteristics develop the condition.

Therefore early identification is critical to control the progression of the wear, which can be done by identifying the significant risk factors in data.

2 Objective

The aim of our model is to **predict if a patient will contract osteoarthritis in the next 5 years**, given physiological observations (age, body mass, knee pain, etc.) and diverse information on the patient's medical history (previous surgery, etc.).

3 Data Processing and Feature Engineering

We get data sets on the NIMH data archive website. This association conducted a ten-year long study, called the OA initiative, with almost 5,000 patients, diagnosed with OA or not. The patient's condition was observed and analyzed along the study. The aim was to better understand and prevent knee arthritis.

We had several data sets with information on each patient: general information, biomarker evolutions, serum analysis, medication information and X-ray images. For each type of information, there was one data set per year.

The data pre-processing part required several steps: Building of the outcome: At the beginning, we had one data set per year with one outcome in each data set, which was if the patient had been diagnosed with knee OA in the past year or not. Our goal was to predict, for the patients who were not sick at the beginning of the study, whether or not he/she has been diagnosed within 5 years after the beginning of the study. As this outcome was not directly available, we needed to build it with the following steps:

- Extraction of the outcome for each data set
- Creation of a new column (our final outcome) to combine the outcomes:
 - If the patient has been diagnosed at some point during the past 5 years, the final outcome is equal to 1
 - Otherwise, it is equal to 0
- Removal of the rows (patients) already sick at the beginning of the study

The next step was to see the large number of features, analyse them and figure out which ones will be the most useful. The following steps were taken before the data was set to be used in the models :

- The file had to be first converted from a .txt file to a .csv file
- The intial dimensions of the data frame was 4796 rows × 1187 columns which means there are 1187 featured. We divided the 1187 features amongst the 5 of us to manually find out which features make more sense for the analysis.
- We came down to 139 features after the manual analysis and amongst these 139 features we removed the features which had more than 25% of missing data.
- Once these are removed we came down to 121 columns and then we replaced the missing data with the most common value of the particular feature.
- Once this is done the data frame was good to go for being used in the models.
- At the end of building models, we also assigned feature importance score to all the features to understand the best 25 features and built models using just the 25 most important features to get more robust models.

4 Model Analysis

4.1 Baseline Model

Before fitting any model to the data, it is necessary to know the prediction of the baseline model. The metric used is accuracy, as the objective is to know the ratio of correctly predicted outcomes. The performance of the baseline model will be used as a reference value to compare with the other models.

The most prevalent outcome in the training set is 0 (i.e., the patient will not have OA). The performance of this prediction on the test set are as follows:

Baseli	ne Mod	lel
Accuracy	TPR	FPR
0.5554	0.0000	0.8000

4.2 Logistic Regression

Predicting if a patient will get OA or not is a classification problem. Therefore, one of the first models to apply is a logistic regression. To do so, we use dummy encoding. The best Logistic Regression model that we obtained is summarized in the following table.

Logistic	Regres	sion
Accuracy	TPR	FPR
0.5743	0.5695	0.4250

Note: At first, we used a logistic regression from statsmodels and we developed an automated algorithm to remove one-by-one the highest p-values, calculate between each removal the new accuracy, and eventually return the best one. However, at some point, we face an 'Singular matrix' error from statsmodels that we were unable to solve. Therefore, we chose to switch to sklearn library.

4.3 Clustering with Logistic Regression

We wanted to see if we could improve the performance of our model by using clustering. As the observations are patients, it makes sense to try to make clusters of patients with similar characteristics (age, sex, etc.) which could influence the likelihood to have osteoarthritis or not. **Pre-processing**: We first clean the data and transform some features into dummy variables. We also need to normalize the features, so each feature has the same weight when computing the clusters. Then, we split the data set into a training set and a testing set.

Clustering: Then, we computed clusters on the training set. To determine the number of clusters, we performed a cross-validation, looking for minimizing the WCSS. We selected k = 8 clusters, as it corresponds to a knee in the WCSS curve.

Training: We split the observations of the training set according to their cluster, to have one data frame for the observations of each cluster. We chose a Logistic Regression model. We used the **sklearn** library, as our matrix was not invertible with **statsmodels**, and **sklearn** was able to deal with them anyway. We trained separately one model on one cluster's data set. At the end, we had 8 different logistic regression models, one for each cluster.

Testing: We determined to which cluster belongs each observation of the testing data set. To do so, for each observation, we computed its distance to each cluster centroid, and we chose the cluster with the smallest distance (we used a classical distance measuring). Then, we created 8 new data sets, with data set *i* containing the observations of cluster *i*. We finally assessed our models, by computing the accuracy.

Features selection: As we have a big difference between the accuracy on the training and the testing data, we are going to perform features selection to reduce the overfitting of the training data. For each model, we removed the features with a low coefficient and a high p-value (we adapted the threshold to the cluster). We trained and tested our models again, but the performance only slightly improved from the models without features selection.

Results: We computed for each model the accuracy, TPR, and FPR. The performance metrics did not improve much overall, compared to the other models, with an accuracy between 0.5549 (cluster 4) and 0.7465 (cluster 7).

Clustering w/ Logistic Regression										
Accuracy for cluster #										
$oxed{0} oxed{1} oxed{2} oxed{3} oxed{4} oxed{5} oxed{6} oxed{7}$										
0.6218 0.6331 0.5793 0.6241 0.5549 0.5872 0.6571 0.746										

4.4 Random Forest

A Random Forest Classifier model can be used for our prediction problem. Using the accuracy as the performance metric, we perform a Random Forest with and without cross-validation. The results are summarized in the following table.

The 5 most important features are:

1. Body Mass Index 2. Daily Cholesterol Nutrients 3. Physical Activity Scale for the Elderly (PASE) 4. Daily Calcium Nutrients 5. Daily Vitamin D.

Random Forest Classifier								
RF w/o CV RF w/ CV								
Accuracy	TPR	FPR	Accuracy	TPR	FPR			
0.6070	0.6070							

4.5 Gradient Boosting

We also used a boosting model, to obtain better results. Our final, and most accurate version of our Gradient Boosting model was obtained by only keeping the 25 most important features, as given by the feature_importance function of the Gradient Boosting model from sklearn.

The 5 most important features are:

1. Daily Cholesterol Nutrients 2. Daily Vitamin D 3. Daily Calcium Nutrients 4. Physical Activity Scale for the Elderly (PASE) 5. Body Mass Index

Gradient Boosting Classifier							
Accuracy	TPR	FPR					
0.6337	0.4163	0.3163					

4.6 Ridge

We use the RidgeClassifier from the sklearn library to try and predict the cumulative outcome. The value for the regularization parameter was found through a cross validation and the one standard error rule adapted to an accuracy scoring(see code in appendix), and allows us to improve on a classical logistic regression.

Ridge	Classifi	er
Accuracy	TPR	FPR
0.58596	0.35	0.18

5 Interpretation

As we can see, the models that we have were moderately performant, with accuracies ranging from 0.6 in the worst case to 0.74 in the best case (cluster and predict on cluster n°7). We can draw multiple conclusions from this:

- The ML models remain better than the baseline, but not by a great margin.
- The fact that observations (such as knee pain) are evaluated qualitatively, than encoded may lead to a loss of information that translates into poor model performance
- The fact that models only slightly improve when we select important features may be explained by the fact that some key information necessary to OA diagnosis may be missing
- The performance may also be explained by the great number of missing data, that doesn't allow us to exploit all information we may have had (90% of the features were removed in the data processing)

To improve on our prediction, we could use other models, such as neural networks, that may be able to figure out more complex patterns that the usual models we applied can not find.

Our models still allow us to infer that nutrition factors - namely calcium, cholesterol and vitamin D levels - as well as mass index and activity play a pivotal role in contracting OA.

Nevertheless, we must keep in mind that our model is destined to assist doctors in making their diagnosis, and raise awareness on a patient's chances to contract OA or not, in order to prescribe preventive treatment. The models should not be substituted to a doctor's diagnosis, but rather ran prior to one, to alert the doctor on the eventuality of OA for a patient.

6 Conclusion

This project led us to an effective applications discovered in the class. In spite of extensive data processing, feature engineering, and the implementation of multiple different models, we managed to get at best a 74% accuracy, which shows how difficult it is to do predictions in healthcare.

7 Appendix

7.1 References

- 1. Nelson, A. E. (2018). Osteoarthritis year in review 2017: Clinical Osteoarthritis & Cartilage, 26 (3), 319–325. https://doi.org/10.1016/j.joca.2017.11.014
- 2. Barbour, K. E., Helmick, C. G., Boring, M., Brady, T. J. (2017). Vital signs: Prevalence of doctor-diagnosed arthritis and arthritis-attributable activity limitation

7.2 Code

7.3 Data Cleaning

```
import pandas as pd
from google.colab import drive
drive.mount('/content/drive')

raw_data = pd.read_csv('/content/drive/MyDrive/Osteoarthritis dataset/All Cli:
    raw_data.head()
```

Mounted at /content/drive

Out[]:		ID	VERSION	V00BLDCOLL	V00BLDHRS1	V00BLDHRS2	V00BLDRAW1	VOOBLDRA
	0	9000099	0.2.3	1: Sample at 1st collection only	35400.0	NaN	1: Yes	.: Miss Form/Incompl Workbo
	1	9000296	0.2.3	1: Sample at 1st collection only	30780.0	NaN	1: Yes	.: Miss Form/Incompl Workbo
	2	9000622	0.2.3	1: Sample at 1st collection only	33900.0	NaN	1: Yes	.: Miss Form/Incompl Workbo
	3	9000798	0.2.3	1: Sample at 1st collection only	26400.0	NaN	1: Yes	.: Miss Form/Incompl Workbo
	4	9001104	0.2.3	1: Sample at 1st collection only	35100.0	NaN	1: Yes	.: Miss Form/Incompl Workbo

5 rows × 1187 columns

```
In []: raw_data.shape
Out[]: (4796, 1187)
In []: # Initial dictionnary with following format: {name: index}
   initial_dict = {}
   for i in range(len(raw_data.columns)):
      initial_dict[raw_data.columns[i]] = i
```

```
In [ ]:
         # Lists of kept features
         list_features_Aish = ['ID', 'P01KPNREV', 'P01KPNLEV', 'P01KPACT30', 'P01HPNR12','
         list_features_Antoine = ['P01BL12SXL', 'P01BL12SXR', 'P01KPACDCV', 'P01LKP30C']
         list features Oriane = ['P010ADEGCV', 'P010AHIPCV', 'P01GOUTCV', 'P01OTARTCV', 'P
         list_features_Vijitha = ['V00DISCOMF', 'V00REASW12', 'V00REASW10', 'V00REASW9
         list features William = ['VOORPWKTYP','VOOLPWKTYP','VOONPN400W', 'PO1BMI','VO
         list_features = list_features_Aish + list_features_Antoine + list_features_Or
In [ ]:
         ## Create a dictionnary with all kept features, to track original index and n
         ## {original index: new index} for every feature kept
         dictionary_track = {}
         for i in range(len(list features)):
           original_index = initial_dict[list_features[i]]
           new index = i
           dictionary_track[new_index] = original_index
In [ ]:
         selected_data = pd.DataFrame()
         for i in list_features:
           selected_data[i] = raw_data[i]
         selected_data.head()
```

Out[]:		ID	P01KPNREV	P01KPNLEV	P01KPACT30	P01HPNR12	P01HPNL12	V00SF2	V00SF
	0	9000099	1: Yes	1: Yes	1: Yes	0: No	0: No	3: Not limited at all	2: Ye limited litt
	1	9000296	1: Yes	0: No	0: No	1: Yes	0: No	3: Not limited at all	3: No limite at a
	2	9000622	1: Yes	0: No	1: Yes	1: Yes	0: No	2: Yes, limited a little	2: Ye limited litt
	3	9000798	0: No	1: Yes	0: No	0: No	0: No	3: Not limited at all	2: Ye limited litt
	4	9001104	1: Yes	0: No	1: Yes	1: Yes	0: No	3: Not limited at all	3: No limite at a

5 rows × 139 columns

```
In []: ## Check amount of missing data in every column

# Create dictionnary
missing_count = {}

# Loop over every column
for i in selected_data.columns:
    if '.: Missing Form/Incomplete Workbook' in selected_data[i].value_counts()
        missing_count[i] = round(selected_data[i].value_counts()['.: Missing Form
    else:
        missing_count[i] = 0

missing_count

Out[]: {'ID': 0,
    'P01ARTDOC': 0.002,
    'P01ARTDOCY: 0.002.
```

```
'P01ARTDOC': 0.002,
'P01ARTDOC': 0.002,
'P01ARTDOC': 0.002,
'P01ARTHOTH': 0.018,
'P01BL12SXL': 0.008,
'P01BL12SXR': 0.012,
'P01BMI': 0,
'P01FAMKR': 0.013,
'P01GOUTCV': 0.02,
'P01HPL12CV': 0.004,
'P01HPNL12': 0.003,
'P01HPNR12': 0.003,
'P01HPR12CV': 0.003,
'P01HRSLFXO': 0.998,
'P01HRSRFXO': 0.997,
```

```
'P01INJR': 0.011,
'P01KPA30CV': 0.006,
'P01KPACDCV': 0,
'P01KPACT30': 0.002,
'P01KPACTCV': 0.006,
'P01KPL30CV': 0.004,
'P01KPMED': 0.001,
'P01KPMEDCV': 0.002,
'P01KPNLEV': 0.003,
'P01KPNREV': 0.005,
'P01KPR30CV': 0.005,
'P01KSURGL': 0.002,
'P01KSURGR': 0.002,
'P01LKP30CV': 0.002,
'P010ADEGCV': 0.049,
'P010AHIPCV': 0.036,
'P010TARTCV': 0.03,
'P01PMLKRCV': 0.003,
'P01PMRKRCV': 0.003,
'P01RAIA': 0.022,
'P01RAJS1HR': 0.916,
'P01RAKN6L': 0.917,
'P01RAKN6R': 0.916,
'P01RASTASV': 0,
'P01RAWE6L': 0.916,
'P01RAWE6R': 0.916,
'P01RKP30CV': 0.002,
'P02CNCOTH': 0.993,
'P02KPMED': 0.001,
'P02KPMEDCV': 0.004,
'P02KPNLCV': 0.005,
'P02KPNRCV': 0.006,
'P02KSURG': 0.001,
'P02KSURGCV': 0.001,
'P02WTGA': 0,
'V00ACUSCV': 0.002,
'V00ACUTCV': 0.001,
'V00BONEFX': 0.012,
'V00BPDIAS': 0,
'V00BPSYS': 0,
'V00BRACCV': 0.001,
'V00CALCMCV': 0.028,
'V00CAM12': 0.001,
'V00CAPSNCV': 0.004,
'V00CHIRCV': 0.001,
'V00COMORB': 0,
'V00DIAB': 0.026,
'V00DIETCV': 0.001,
'V00DILKN1': 0.002,
'V00DILKN14': 0.001,
'V00DILKN2': 0.002,
'V00DIRKN1': 0.002,
'V00DIRKN14': 0.001,
'V00DIRKN2': 0.002,
'V00DISCOMF': 0.048,
'V00DTCALC': 0,
'V00DTCHOL': 0,
```

```
'V00DTVITD': 0,
'V00EKRSL': 0.111,
'V00EKRSR': 0.108,
'V00FALLCV': 0.019,
'V00FFQYR86': 0.729,
'V00HERBCV': 0.001,
'V00HOMECV': 0.002,
'V00HRTAT': 0.024,
'V00HT25MM': 0,
'V00HYINJCV': 0.001,
'V00KOOSFX5': 0.123,
'V00KSXLKN1': 0.013,
'V00KSXRKN1': 0.013,
'V00LFXCOMP': 0.104,
'V00LFXPN': 0.124,
'V00LKEFFB': 0.028,
'V00LKEFFPT': 0.027,
'V00LKRFXPN': 0.028,
'V00LLWGT': 0,
'V00LPWKTYP': 0.857,
'V00MASSCV': 0.001,
'V00NPN400W': 0.294,
'V000TH400W': 0.937,
'V000THCAM': 0.002,
'V000THCAMC': 0.002,
'V00P7LKFR': 0.005,
'V00P7LKRCV': 0.006,
'V00P7RKFR': 0.005,
'V00P7RKRCV': 0.005,
'V00PASE': 0,
'V00PN400W': 0.928,
'V00POLYRH': 0.097,
'V00RA': 0.175,
'V00RAMEDS': 0.986,
'V00REASW10': 0.997,
'V00REASW12': 0.997,
'V00REASW9': 0.996,
'V00RELACV': 0.001,
'V00REXPN': 0.122,
'V00RFXCOMP': 0.103,
'V00RKEFFB': 0.033,
'V00RKEFFPT': 0.031,
'V00RKRFXPN': 0.032,
'V00RLWGT': 0,
'V00RPWKTYP': 0.848,
'V00RUBCV': 0.002,
'V00SF2': 0.008,
'V00SF3': 0.008,
'V00SF8': 0.011,
'V00SMOKE': 0.013,
'V00SPIRCV': 0.001,
'V00STINJCV': 0.002,
'V00STROKE': 0.019,
'V00VIT1': 0.037,
'V00VIT9': 0.038,
'V00VITDCV': 0.029,
'V00VITMCV': 0.002,
```

```
'V00WOMTSL': 0,
         'V00WOMTSR': 0,
         'V00WPLKN1': 0,
         'V00WPLKN2': 0.002,
         'V00WPRKN1': 0.0,
         'V00WPRKN2': 0.004,
         'V00WT25KG': 0,
         'V00WTMAXKG': 0,
         'V00WTMINKG': 0,
         'V00YOGACV': 0.0}
In [ ]:
         ## Remove columns with too many missing data
         ## Arbitrarily set the threshold value at 25%
         threshold = 0.25
         features_to_remove = []
         for i in missing_count:
           if missing_count[i] > threshold:
             features_to_remove.append(i)
         ## Create new data frame containing only the columns with less than the thres
         df = pd.DataFrame()
         for i in selected_data.columns:
           if i not in features_to_remove:
             df[i] = selected_data[i]
         print('Removed features (too much missing data): ', features to remove)
         df.head()
```

Removed features (too much missing data): ['P01RAJS1HR', 'P01RAKN6R', 'P01RAK N6L', 'V00RAMEDS', 'P02CNCOTH', 'P01RAWE6L', 'P01HRSRFXO', 'P01HRSLFXO', 'P01R AWE6R', 'V00REASW12', 'V00REASW10', 'V00REASW9', 'V00FFQYR86', 'V00RPWKTYP', 'V00LPWKTYP', 'V00NPN400W', 'V00PN400W', 'V00OTH400W']

Out[]:		ID	P01KPNREV	P01KPNLEV	P01KPACT30	P01HPNR12	P01HPNL12	V00SF2	V00SF
	0	9000099	1: Yes	1: Yes	1: Yes	0: No	0: No	3: Not limited at all	2: Ye limited litt
	1	9000296	1: Yes	0: No	0: No	1: Yes	0: No	3: Not limited at all	3: No limite at a
	2	9000622	1: Yes	0: No	1: Yes	1: Yes	0: No	2: Yes, limited a little	2: Ye limited litt
	3	9000798	0: No	1: Yes	0: No	0: No	0: No	3: Not limited at all	2: Ye limited litt
	4	9001104	1: Yes	0: No	1: Yes	1: Yes	0: No	3: Not limited at all	3: No limite at a

5 rows × 121 columns

```
In [ ]: ## Remove begining of text when it is of the form: 'number: value' --> 'value

for i in df.columns:
    for j in range(len(df[i])):
        if type(df[i][j]) == str: # if it is string, check if there is a need to
            content = [char for char in df[i][j]]
            content_isdigit = [char.isdigit() for char in content]

        if content_isdigit[0] == True and content[1] == ':' and content[2] == '
            kept_value = ''.join(content[3:])
            df[i][j] = kept_value

        else: # if the element is not a string, do nothing
            pass

        df.head()
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:11: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st able/user_guide/indexing.html#returning-a-view-versus-a-copy # This is added back by InteractiveShellApp.init_path()

Out[]:		ID	P01KPNREV	P01KPNLEV	P01KPACT30	P01HPNR12	P01HPNL12	V00SF2	VOOSF
	0	9000099	Yes	Yes	Yes	No	No	Not limited at all	Ye limited litt
	1	9000296	Yes	No	No	Yes	No	Not limited at all	No limite at a
	2	9000622	Yes	No	Yes	Yes	No	Yes, limited a little	Ye Iimited Iitt
	3	9000798	No	Yes	No	No	No	Not limited at all	Ye Iimited Iitt
	4	9001104	Yes	No	Yes	Yes	No	Not limited at all	No limite at a

5 rows × 121 columns

```
In [ ]:
## For each column, replace missing data by most common observation in the co
for col in df.columns:

if df[col].dtype == 'int64' or df[col].dtype == 'float64':
    most_common_observation = df[col].describe()['mean']
else:
    most_common_observation = df[col].describe()['top']

for index in range(len(df[col])):
    if df[col][index] == '.: Missing Form/Incomplete Workbook':
        df[col][index] = most_common_observation

df.head()
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:12: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st able/user guide/indexing.html#returning-a-view-versus-a-copy if sys.path[0] == '': /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:12: SettingWithCo pyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st able/user_guide/indexing.html#returning-a-view-versus-a-copy if sys.path[0] == '': /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:12: SettingWithCo pyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st able/user guide/indexing.html#returning-a-view-versus-a-copy if sys.path[0] == '': /usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo pyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st able/user_guide/indexing.html#returning-a-view-versus-a-copy if sys.path[0] == '': /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:12: SettingWithCo pyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st able/user guide/indexing.html#returning-a-view-versus-a-copy if sys.path[0] == '': /usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo pyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st able/user guide/indexing.html#returning-a-view-versus-a-copy if sys.path[0] == '': /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:12: SettingWithCo pyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st able/user guide/indexing.html#returning-a-view-versus-a-copy if sys.path[0] == '': /usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo pyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st able/user_guide/indexing.html#returning-a-view-versus-a-copy if sys.path[0] == '': /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:12: SettingWithCo A value is trying to be set on a copy of a slice from a DataFrame

```
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user quide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user quide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user quide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
```

```
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
 if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user_guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user_guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
```

```
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user quide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
```

able/user guide/indexing.html#returning-a-view-versus-a-copy

```
if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user_guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user_guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user_guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user_guide/indexing.html#returning-a-view-versus-a-copy
```

if sys.path[0] == '':

```
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user_guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user quide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo
```

```
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user quide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user_guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:12: SettingWithCo
```

pyWarning:

A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st able/user guide/indexing.html#returning-a-view-versus-a-copy if sys.path[0] == '': /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:12: SettingWithCo pyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st able/user_guide/indexing.html#returning-a-view-versus-a-copy if sys.path[0] == '': /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:12: SettingWithCo pyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st able/user guide/indexing.html#returning-a-view-versus-a-copy if sys.path[0] == '': /usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo pyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st able/user_guide/indexing.html#returning-a-view-versus-a-copy if sys.path[0] == '': /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:12: SettingWithCo pyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st able/user guide/indexing.html#returning-a-view-versus-a-copy if sys.path[0] == '': /usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo pyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st able/user guide/indexing.html#returning-a-view-versus-a-copy if sys.path[0] == '': /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:12: SettingWithCo pyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st able/user guide/indexing.html#returning-a-view-versus-a-copy if sys.path[0] == '': /usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo pyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st able/user_guide/indexing.html#returning-a-view-versus-a-copy if sys.path[0] == '': /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:12: SettingWithCo A value is trying to be set on a copy of a slice from a DataFrame

```
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user quide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user quide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user quide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
```

```
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
 if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user_guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user_guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
```

```
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user quide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
```

able/user guide/indexing.html#returning-a-view-versus-a-copy

```
if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user_guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user_guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user_guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user guide/indexing.html#returning-a-view-versus-a-copy
  if sys.path[0] == '':
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCo
pyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user_guide/indexing.html#returning-a-view-versus-a-copy
```

if sys.path[0] == '':

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:12: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-versus-a-copy

if sys.path[0] == '':

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:12: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/st
able/user_guide/indexing.html#returning-a-view-versus-a-copy
 if sys.path[0] == '':

Out[]: ID PO1KPNREV PO1KPNLEV PO1KPACT30 PO1HPNR12 PO1HPNL12 VOOSF2 VOOSF

V0031	V00312	POINFINEIZ	FUITFINKIZ	FUIRFACISU	POINFINELV	FUIRFIARE	ID		Out[]:
Ye Iimited Iitt	Not limited at all	No	No	Yes	Yes	Yes	9000099	0	
No limite at a	Not limited at all	No	Yes	No	No	Yes	9000296	1	
Ye Iimited Iitt	Yes, limited a little	No	Yes	Yes	No	Yes	9000622	2	
Ye limited litt	Not limited at all	No	No	No	Yes	No	9000798	3	
No limite at a	Not limited at all	No	Yes	Yes	No	Yes	9001104	4	

5 rows × 121 columns

```
In [ ]:
#We upload the data sets with the information every year

raw_data_lyears = pd.read_csv('/content/drive/MyDrive/Osteoarthritis dataset/.
raw_data_2years = pd.read_csv('/content/drive/MyDrive/Osteoarthritis dataset/.
raw_data_3years = pd.read_csv('/content/drive/MyDrive/Osteoarthritis dataset/.
raw_data_4years = pd.read_csv('/content/drive/MyDrive/Osteoarthritis dataset/.
raw_data_5years = pd.read_csv('/content/drive/MyDrive/Osteoarthritis dataset/.
#The outcome of the initial data set is the feature P01OADEGCV
```

#The outcome that we consider for each data set is the features V01ARTH12, V0

```
In [ ]:
#Creation of a data frame with only the outcomes of the 5 years
#The aim is to add a column where the value is equal to one if the patient ha
#Hence, if for a patient, the value of the outcome is 1 in one of the 5 outco.

outcome_lyears = raw_data_lyears['V01ARTH12']
outcome_2years = raw_data_2years['V03ARTH12']
outcome_3years = raw_data_3years['V05ARTH12']
outcome_4years = raw_data_4years['V06ARTH12']
outcome_5years = raw_data_5years['V07ARTH12']

outcomes = pd.concat([outcome_lyears, outcome_2years, outcome_3years, outcome_outcomes.columns = ['Year1', 'Year2', 'Year3', 'Year4', 'Year5']
outcomes.head(10)
```

```
Year1 Year2 Year3 Year4 Year5
Out[]:
         0 1: Yes
                    0.0
                          0.0
                                 0.0
                                       0.0
         1 0: No
                    0.0
                          0.0
                                 0.0
                                       0.0
         2 1: Yes
                   NaN
                          NaN
                                NaN
                                      NaN
         3 0: No
                    0.0
                          0.0
                                 0.0
                                       0.0
         4 0: No
                   1.0
                          NaN
                                NaN
                                      NaN
         5 0: No
                    0.0
                          0.0
                                 0.0
                                      0.0
         6 1: Yes
                    1.0
                          NaN
                                1.0
                                     0.0
         7 0: No
                    0.0
                          1.0
                                 0.0
                                       0.0
         8 1: Yes
                    0.0
                          0.0
                                 0.0
         9 0: No
                    0.0
                           1.0
                                 1.0
                                       1.0
```

```
In []: #Clean the first column of the data set ouctomes: we will only keep 0 or 1
for j in range(len(outcomes['Year1'])):
    content = [char for char in outcomes['Year1'][j]]

if content[0] == '0':
    outcomes['Year1'][j] = 0.0

if content[0] == '1':
    outcomes['Year1'][j] = 1.0

outcomes.head(20)
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:9: SettingWithCop yWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-versus-a-copy

if __name__ == '__main__':

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:6: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-versus-a-copy

Out[]:	Year1	Year2	Year3	Year4	Year5
0	1	0.0	0.0	0.0	0.0
1	0	0.0	0.0	0.0	0.0
2	1	NaN	NaN	NaN	NaN
3	0	0.0	0.0	0.0	0.0
4	0	1.0	NaN	NaN	NaN
5	0	0.0	0.0	0.0	0.0
6	1	1.0	NaN	1.0	0.0
7	0	0.0	1.0	0.0	0.0
8	1	0.0	0.0	0.0	0.0
9	0	0.0	1.0	1.0	1.0
10	0	0.0	0.0	0.0	NaN
11	0	0.0	1.0	0.0	1.0
12	.: Missing Form/Incomplete Workbook	NaN	NaN	NaN	NaN
13	0	0.0	0.0	0.0	0.0
14	0	0.0	0.0	0.0	1.0
15	1	1.0	0.0	0.0	1.0
16	0	0.0	0.0	0.0	0.0
17	1	0.0	1.0	0.0	1.0
18	1	0.0	0.0	0.0	1.0
19	0	1.0	0.0	0.0	0.0

```
In []:
#Add a new column which will be equal to 1 if one of the ouctome over the pas
cumulative_outcome = pd.DataFrame(index = range(len(outcomes)), columns = ['c
for j in range(len(outcomes)):
    if type(outcomes['Year1'][j]) == str and type(outcomes['Year2'][j]) == str
        cumulative_outcome['cumulative_outcome'][j] = 'Missing Form/Incomplete Wo
    if outcomes['Year1'][j] == 1 or outcomes['Year2'][j] == 1.0 or outcomes['Ye
        cumulative_outcome['cumulative_outcome'][j] = 'Yes'
        pass
    else:
        cumulative_outcome['cumulative_outcome'][j] = 'No'

df2 = pd.concat([df, cumulative_outcome], axis = 1)
    df2.head(20)
```

Out[]:		ID	P01KPNREV	P01KPNLEV	P01KPACT30	P01HPNR12	P01HPNL12	V00SF2	voos
	0	9000099	Yes	Yes	Yes	No	No	Not limited at all	Y limite lit
	1	9000296	Yes	No	No	Yes	No	Not limited at all	limit at
	2	9000622	Yes	No	Yes	Yes	No	Yes, limited a little	Y limite lit
	3	9000798	No	Yes	No	No	No	Not limited at all	Y limite lit
	4	9001104	Yes	No	Yes	Yes	No	Not limited at all	l limit at
	5	9001400	No	No	No	Yes	No	Not limited at all	l limit at
	6	9001695	Yes	No	No	No	No	Not limited at all	l limit at
	7	9001897	No	No	No	No	No	Not limited at all	l limit at

8	9002116	No	Yes	Yes	Yes	No	Yes, limited a little	Y limite lit
9	9002316	Yes	Yes	No	No	No	Not limited at all	limit at
10	9002411	Yes	No	No	No	No	Yes, limited a little	Y limite lit
11	9002430	No	Yes	No	No	No	Not limited at all	limit at
12	9002663	No	Yes	No	No	No	Not limited at all	limit at
13	9002817	No	No	No	No	No	Not limited at all	limit at
14	9003126	No	No	No	Yes	Yes	Yes, limited a little	Y limite
15	9003175	No	No	Yes	Yes	No	Not limited at all	limit at
16	9003316	Yes	Yes	No	No	No	Not limited at all	limit at
17	9003380	Yes	Yes	Yes	Yes	Yes	Yes, limited a little	Y limite lit
18	9003406	No	Yes	Yes	No	No	Yes, limited a lot	Y limite
19	9003430	No	No	No	Yes	Yes	Yes, limited	1 limit

> a little at

20 rows × 122 columns

```
In [ ]:
         #Drop the rows with P010ADEGCV = Yes, because it means the patient already ha
         \ensuremath{\textit{\#Drop}} the rows where we have missing forms (there are some missing forms for
         index yes = df2[df2['P010ADEGCV'] == 'Yes'].index
         print(len(index_yes))
         index_missing = df2[df2['cumulative_outcome'] == 'Missing Form/Incomplete Wor'
         print(len(index_missing))
         df2.drop(index_yes, inplace = True)
         df2.drop(index_missing, inplace = True)
         df2.head()
        1094
```

Out[]:		ID	P01KPNREV	P01KPNLEV	P01KPACT30	P01HPNR12	P01HPNL12	V00SF2	V00S
	1	9000296	Yes	No	No	Yes	No	Not limited at all	۱ limit at
	2	9000622	Yes	No	Yes	Yes	No	Yes, limited a little	Ye limited lit
	6	9001695	Yes	No	No	No	No	Not limited at all	۱ limit at
	7	9001897	No	No	No	No	No	Not limited at all	۱ limit at
	10	9002411	Yes	No	No	No	No	Yes, limited a little	Yı limited lit

5 rows × 122 columns

```
df2.to_csv('cleaned_data.csv', index=False)
```

7.4 Models

Project_242_Random_Forest_Model (2)

December 17, 2021

/usr/local/lib/python3.7/dist-packages/statsmodels/tools/_testing.py:19: FutureWarning: pandas.util.testing is deprecated. Use the functions in the public API at pandas.testing instead.

import pandas.util.testing as tm

Mounted at /content/drive

```
[1]:
             ID PO1KPNREV PO1KPNLEV ... VOOLLWGT VOORLWGT cumulative_outcome
    0 9000296
                      Yes
                                 No ...
                                           12.0
                                                     18.0
                                                                          No
    1 9000622
                                            14.0
                                                     14.0
                      Yes
                                 No ...
                                                                          Yes
    2 9001695
                      Yes
                                           13.0
                                                     13.0
                                                                         Yes
                                 No ...
    3 9001897
                      No
                                           16.0
                                                     17.0
                                                                         Yes
                                 No ...
    4 9002411
                      Yes
                                 No ...
                                           18.0
                                                     22.0
                                                                          No
```

[5 rows x 122 columns]

```
[2]:
             ID PO1KPNREV PO1KPNLEV ... VOOLLWGT VOORLWGT cumulative_outcome
     0 9000296
                                            12.0
                                                     18.0
                      Yes
                                 No ...
     1 9000622
                                                     14.0
                                            14.0
                                                                            1
                      Yes
                                  No ...
     2 9001695
                      Yes
                                 No ...
                                            13.0
                                                     13.0
                                                                            1
     3 9001897
                      No
                                            16.0
                                                     17.0
                                                                            1
                                  No ...
     4 9002411
                                                                            0
                      Yes
                                  No ...
                                            18.0
                                                     22.0
     [5 rows x 122 columns]
[2]:
[3]: ## Drop first column (ID of the patient)
     df = df.drop('ID', axis='columns')
     ## Check columns to convert to dummies
     columns_dummies = []
     for col in df.columns:
       if df[col].dtype != 'float64' and df[col].dtype != 'int64':
         columns_dummies.append(col)
     print(f'Number of columns to dummy encode = {len(columns_dummies)} out of ⊔
     →{len(df.columns)}')
     df_enc = pd.get_dummies(df, columns = columns_dummies, drop_first = True)
    Number of columns to dummy encode = 103 out of 121
[4]: df_enc.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 3702 entries, 0 to 3701
    Columns: 228 entries, VOOWOMTSL to VOOLKRFXPN_Yes
    dtypes: float64(17), int64(1), uint8(210)
    memory usage: 1.2 MB
[5]: df_enc.head()
        VOOWOMTSL VOOWOMTSR ...
                                                  VOOLKRFXPN_Yes
[5]:
                                  VOORKRFXPN_Yes
                         0.0 ...
     0
              0.0
                                                                0
     1
              0.0
                        20.9 ...
                                               1
                                                                0
                         NaN ...
     2
              0.0
                                               0
                                                                0
     3
              0.0
                         0.0 ...
                                               0
                                                                0
```

```
1.1
                                              0
                                                               0
                         2.1 ...
     [5 rows x 228 columns]
[6]: columns_with_nan_values = []
     for col in df_enc.columns:
       if df_enc[col].isnull().values.any() == True:
         columns_with_nan_values.append(col)
    print(columns_with_nan_values)
    ['VOOWOMTSL', 'VOOWOMTSR', 'PO1KPACDCV', 'VOOCOMORB', 'VOOHT25MM', 'VOOWT25KG',
    'VOOWTMAXKG', 'VOOWTMINKG', 'VOOBPDIAS', 'VOOBPSYS', 'VOODTVITD', 'VOODTCALC',
    'VOODTCHOL', 'PO1BMI', 'VOOPASE', 'VOOLLWGT', 'VOORLWGT']
[7]: for col in columns_with_nan_values:
       col_mean = df[col].describe()['mean']
       df_enc[col] = df[col].fillna(col_mean)
    df_enc.head()
[7]:
        VOOWOMTSL VOOWOMTSR ...
                                 VOORKRFXPN_Yes VOOLKRFXPN_Yes
             0.0
                   0.000000 ...
    0
                                                               0
              0.0 20.900000 ...
                                                               0
    1
                                               1
              0.0 10.076808 ...
                                               0
                                                               0
    2
                    0.000000 ...
    3
              0.0
                                              0
                                                               0
    4
              1.1
                    2.100000 ...
                                               0
                                                               0
     [5 rows x 228 columns]
[8]: | ## Check if there are still NaN values in data frame
     df_enc.isnull().values.any()
[8]: False
[9]: ## Rename columns to have format usable with the Stats Model Formula input
    print('Before = ', df_enc.columns)
     # Replace all spaces and symbols by underscores
     df_enc.columns = df_enc.columns.str.replace(' ', '_')
     df_enc.columns = df_enc.columns.str.replace(',', '_')
     df_enc.columns = df_enc.columns.str.replace(':', '_')
     df_enc.columns = df_enc.columns.str.replace('/',
     df_enc.columns = df_enc.columns.str.replace('-', '_')
```

4

```
print('After = ', df_enc.columns)
     Before = Index(['VOOWOMTSL', 'VOOWOMTSR', 'PO1KPACDCV', 'VOOCOMORB',
     'VOOHT25MM',
            'VOOWT25KG', 'VOOWTMAXKG', 'VOOWTMINKG', 'VOOBPDIAS', 'VOOBPSYS',
            'PO1FAMKR_Yes', 'PO2WTGA_Yes', 'VOORKEFFB_Yes',
            'VOORKEFFPT_Too tender to examine', 'VOORKEFFPT_Yes', 'VOOLKEFFB_Yes',
            'VOOLKEFFPT_Too tender to examine', 'VOOLKEFFPT_Yes', 'VOORKRFXPN_Yes',
            'VOOLKRFXPN_Yes'],
           dtype='object', length=228)
     After = Index(['VOOWOMTSL', 'VOOWOMTSR', 'PO1KPACDCV', 'VOOCOMORB',
     'VOOHT25MM',
            'VOOWT25KG', 'VOOWTMAXKG', 'VOOWTMINKG', 'VOOBPDIAS', 'VOOBPSYS',
            'PO1FAMKR_Yes', 'PO2WTGA_Yes', 'VOORKEFFB_Yes',
            'VOORKEFFPT_Too_tender_to_examine', 'VOORKEFFPT_Yes', 'VOOLKEFFB_Yes',
            'VOOLKEFFPT_Too_tender_to_examine', 'VOOLKEFFPT_Yes', 'VOORKRFXPN_Yes',
            'VOOLKRFXPN_Yes'],
           dtype='object', length=228)
[10]: ## Divide data set in training and testing set
      df_train, df_test = train_test_split(df_enc, test_size=0.3, random_state=88)
      df_train.shape, df_test.shape
[10]: ((2591, 228), (1111, 228))
     0.1 Random Forest Classifier
[11]: #Random forest classifier
      from sklearn.ensemble import RandomForestClassifier
[12]: #Creating a model
      y_train = df_train['cumulative_outcome']
      x_train = df_train.drop(columns = ['cumulative_outcome'], axis = 1)
      y_test = df_test['cumulative_outcome']
     x_test = df_test.drop(columns = ['cumulative_outcome'], axis = 1)
[21]: # Train the random forest
     rf = RandomForestClassifier(n estimators = 200, criterion = 'entropy',
      →random_state = 0)
     rf.fit(x_train, y_train)
[21]: RandomForestClassifier(criterion='entropy', n_estimators=200, random_state=0)
```

```
[22]: ## Making predictions on the testing set
      y_pred_rf = rf.predict(x_test)
      ## Obtaining the confusion matrix
      cm_rf = confusion_matrix(y_test, y_pred_rf)
      print ("Confusion Matrix : \n", cm_rf, "\n")
      # Accuracy
      print("Accuracy : \n", (cm_rf.ravel()[0]+cm_rf.ravel()[3])/sum(cm_rf.
      \rightarrowravel()),"\n")
      #True positive rate
      tpr = (cm_rf.ravel()[3])/(cm_rf.ravel()[2]+cm_rf.ravel()[3])
      print("TPR : \n", tpr,"\n")
      #False positive rate
      fpr = (cm_rf.ravel()[1])/(cm_rf.ravel()[0]+cm_rf.ravel()[1])
      print("FPR : \n", fpr,"\n")
     Confusion Matrix :
      [[525 92]
      [345 149]]
     Accuracy:
      0.606660666066
     TPR:
      0.3016194331983806
     FPR::
      0.14910858995137763
[15]: ## ROC Curve
      from sklearn.metrics import roc_curve, auc
      fpr, tpr, thresholds = roc_curve(y_test, y_pred_rf)
      roc_auc_rf = auc(fpr, tpr)
      plt.figure(figsize=(8, 6))
      plt.title('ROC Curve', fontsize=18)
      plt.xlabel('FPR', fontsize=16)
     plt.ylabel('TPR', fontsize=16)
      plt.xlim([-0.01, 1.00])
      plt.ylim([-0.01, 1.01])
      plt.plot(fpr, tpr, lw=3, label='Random forest (area = {:0.4f})'.
      →format(roc_auc_rf))
      plt.plot([0, 1], [0, 1], color='navy', lw=3, linestyle='--')
      plt.legend(loc='lower right', fontsize=14)
      plt.show()
```


0.1.1 Random Forest with Cross Validation

time: 183.52 s

```
[]: max_features = rf_cv.cv_results_['param_max_features'].data
    accuracy_score = rf_cv.cv_results_['mean_test_score']

plt.figure(figsize=(8, 6))
    plt.xlabel('max features', fontsize=16)
    plt.ylabel('CV Accuracy', fontsize=16)
    plt.scatter(max_features, accuracy_score, s=30)
    plt.plot(max_features, accuracy_score, linewidth=3)
    plt.grid(True, which='both')

plt.tight_layout()
    plt.show()

print('Best parameters', rf_cv.best_params_)
```



```
Best parameters {'max_features': 11, 'min_samples_leaf': 5, 'n_estimators': 500,
'random_state': 88}
```

```
[23]: ## Making predictions on the testing set
y_pred_rf_cv = rf_cv.predict(x_test)
## Obtaining the confusion matrix
```

```
cm_rf_cv = confusion_matrix(y_test, y_pred_rf_cv)
     print ("Confusion Matrix : \n", cm_rf_cv, "\n")
     # Accuracy
     print("Accuracy : \n", (cm_rf_cv.ravel()[0]+cm_rf_cv.ravel()[3])/sum(cm_rf_cv.
      \negravel()),"\n")
     #True positive rate
     tpr = (cm_rf_cv.ravel()[3])/(cm_rf_cv.ravel()[2]+cm_rf_cv.ravel()[3])
     print("TPR : \n", tpr,"\n")
     #False positive rate
     fpr = (cm_rf_cv.ravel()[1])/(cm_rf_cv.ravel()[0]+cm_rf_cv.ravel()[1])
     print("FPR : \n", fpr,"\n")
    Confusion Matrix:
     [[550 67]
     [362 132]]
    Accuracy :
     0.6138613861386139
    TPR:
     0.26720647773279355
    FPR:
     0.1085899513776337
[]: ## ROC Curve
     from sklearn.metrics import roc_curve, auc
     fpr, tpr, thresholds = roc_curve(y_test, y_pred_rf_cv)
     roc_auc_rf_cv = auc(fpr, tpr)
     plt.figure(figsize=(8, 6))
     plt.title('ROC Curve', fontsize=18)
     plt.xlabel('FPR', fontsize=16)
     plt.ylabel('TPR', fontsize=16)
     plt.xlim([-0.01, 1.00])
     plt.ylim([-0.01, 1.01])
    plt.plot(fpr, tpr, lw=3, label='Random forest (area = {:0.4f})'.
     →format(roc_auc_rf_cv))
     plt.plot([0, 1], [0, 1], color='navy', lw=3, linestyle='--')
     plt.legend(loc='lower right', fontsize=14)
     plt.show()
```


0	VOOWOMTSL	3.0
1	VOOWOMTSR	3.1
2	P01KPACDCV	0.7
3	VOOCOMORB	0.7
4	VOOHT25MM	2.5
		•••
222	V00LKEFFB_Yes	0.2
		
222	V00LKEFFB_Yes	0.2
222 223	VOOLKEFFB_Yes VOOLKEFFPT_Too_tender_to_examine	0.2
222 223 224	VOOLKEFFB_Yes VOOLKEFFPT_Too_tender_to_examine VOOLKEFFPT_Yes	0.2 0.0 0.1

[227 rows x 2 columns]

```
[ ]: pd.DataFrame({'Feature' : x_train.columns,
                   'Importance score': 100*rf_cv.best_estimator_.
     →feature importances }).round(1)
     feature_importances = list(zip(x_train.columns,100*rf_cv.best_estimator_.
     →feature_importances_))
     # Then sort the feature importances by most important first
     feature_importances_ranked = sorted(feature_importances, key = lambda x: x[1],__
     →reverse = True)
     # Print out the feature and importances
     [print('Feature: {:35} Importance: {}'.format(*pair)) for pair in_
     →feature_importances_ranked[:25]];
     # Plot the top 25 feature importance
     feature_names_25 = [i[0] for i in feature_importances_ranked[:25]]
     y_ticks = np.arange(0, len(feature_names_25))
     x_axis = [i[1] for i in feature_importances_ranked[:25]]
     plt.figure(figsize = (10, 14))
    plt.barh(feature_names_25, x_axis) #horizontal barplot
    plt.title('Random Forest Feature Importance (Top 25)',
               fontdict= {'fontname':'Comic Sans MS','fontsize' : 20})
     plt.xlabel('Features',fontdict= {'fontsize' : 16})
    plt.show()
```

findfont: Font family ['Comic Sans MS'] not found. Falling back to DejaVu Sans.

```
Feature: P01BMI
                                              Importance: 3.6340376366947424
Feature: VOODTCHOL
                                              Importance: 3.3487055811528417
Feature: VOOPASE
                                              Importance: 3.28620479100094
Feature: VOODTCALC
                                              Importance: 3.2522299695558297
Feature: VOODTVITD
                                              Importance: 3.2355900217230475
Feature: VOOBPSYS
                                              Importance: 3.1232582392101818
Feature: VOOWOMTSR
                                              Importance: 3.0997647124565537
Feature: VOOWTMAXKG
                                              Importance: 3.0475610693603543
Feature: VOOWOMTSL
                                              Importance: 3.013200040499116
Feature: VOOWTMINKG
                                              Importance: 2.9297953542139368
Feature: V00WT25KG
                                              Importance: 2.663661372140834
Feature: VOOLLWGT
                                              Importance: 2.475550041302802
Feature: VOOHT25MM
                                              Importance: 2.4584745614348344
Feature: VOORLWGT
                                              Importance: 2.4262824263170817
Feature: VOOBPDIAS
                                              Importance: 2.3929988812074554
Feature: P01ARTHOTH_Yes
                                              Importance: 2.348317205573995
Feature: V00SF8_Not_at_all
                                              Importance: 1.5296990964421289
Feature: P02KPMED_Yes
                                              Importance: 0.9527963378641816
Feature: V00SF3_Yes__limited_a_little
                                              Importance: 0.8251502255880654
Feature: P01ARTDOC Yes
                                              Importance: 0.8045141916326934
Feature: PO2KPMEDCV_Yes
                                              Importance: 0.7888874881939981
```

 Feature:
 P01HPNL12_Yes
 Importance:
 0.7662990725810771

 Feature:
 P01KPACDCV
 Importance:
 0.7340932775860353

 Feature:
 V00C0MORB
 Importance:
 0.7159320772418082

 Feature:
 P01HPNR12_Yes
 Importance:
 0.7140243321671955


```
In [51]:
           import numpy as np
           import pandas as pd
           import matplotlib.pyplot as plt
In [52]:
           import statsmodels.formula.api as smf
In [53]:
           data = pd.read csv('/Users/william/Downloads/cleaned data.csv')
In [54]:
           data.head()
                   ID P01KPNREV P01KPNLEV P01KPACT30 P01HPNR12 P01HPNL12 V00SF2 V00SF
Out[54]:
                                                                                        Not
                                                                                                Ν¢
          0 9000296
                              Yes
                                           No
                                                        No
                                                                   Yes
                                                                                No
                                                                                     limited
                                                                                              limite
                                                                                       at all
                                                                                               at a
                                                                                       Yes,
                                                                                                Ye
          1 9000622
                              Yes
                                           No
                                                       Yes
                                                                   Yes
                                                                               No
                                                                                     limited
                                                                                           limited
                                                                                     a little
                                                                                                litt
                                                                                        Not
                                                                                                No
          2 9001695
                              Yes
                                                                                     limited
                                           No
                                                        No
                                                                    No
                                                                               No
                                                                                              limite
                                                                                       at all
                                                                                               at a
                                                                                        Not
                                                                                                No
          3 9001897
                              No
                                           No
                                                        No
                                                                    No
                                                                               No
                                                                                     limited
                                                                                              limite
                                                                                       at all
                                                                                               at a
                                                                                       Yes,
                                                                                                Ye
              9002411
                              Yes
                                           No
                                                        No
                                                                    No
                                                                               No
                                                                                     limited limited
                                                                                     a little
                                                                                                litt
         5 rows × 122 columns
In [55]:
           from sklearn.ensemble import GradientBoostingClassifier
In [56]:
           from sklearn.model_selection import train_test_split
           data train, data test = train test split(data, test size=0.3, random state=95
In [57]:
           data train
```

Out[57]: ID PO1KPNREV PO1KPNLEV PO1KPACT30 PO1HPNR12 PO1HPNL12 VOOSF2 VC

• •	V 0031 Z	FUITIFILIZ	FUITIFIANTE	FUIRFAUISU	FUIRFIALL	FUINFINIL	שו] •
lim	Yes, limited a little	No	No	Yes	Yes	Yes	9428490	1489
ľ	Not limited at all	Yes	No	No	No	No	9113414	364
Γ	Not limited at all	No	No	No	Yes	No	9794849	2939
lim	Not limited at all	No	No	Yes	No	Yes	9391984	1342
ľ	Not limited at all	Yes	Yes	No	No	Yes	9413319	1425
								•••
ľ	Not limited at all	No	No	No	No	Yes	9547677	1982
ľ	Not limited at all	Yes	Yes	No	Yes	No	9594608	2166
lim	Not limited at all	No	No	No	Yes	Yes	9962232	3603
Γ	Not limited at all	Yes	Yes	No	Yes	Yes	9904241	3369
Γ	Not limited at all	No	Yes	No	Yes	Yes	9928863	3478

2591 rows × 122 columns

```
In [58]: y_train = data_train['cumulative_outcome']
    y_train = [1 if x=='Yes' else 0 for x in y_train]
    x_train = data_train[data_train.columns[1:]]
    x_train = x_train.drop(columns = ['cumulative_outcome'],axis=1)
In [59]: x_train
```

Out[59]:		P01KPNREV	P01KPNLEV	P01KPACT30	P01HPNR12	P01HPNL12	V00SF2	V00SF3	١
	1489	Yes	Yes	Yes	No	No	Yes, limited a little	Yes, limited a little	Мо
	364	No	No	No	No	Yes	Not limited at all	Not limited at all	Ν
	2939	No	Yes	No	No	No	Not limited at all	Not limited at all	٨
	1342	Yes	No	Yes	No	No	Not limited at all	Yes, limited a little	Α
	1425	Yes	No	No	Yes	Yes	Not limited at all	Not limited at all	Α
	•••							•••	
	1982	Yes	No	No	No	No	Not limited at all	Not limited at all	Ν
	2166	No	Yes	No	Yes	Yes	Not limited at all	Not limited at all	А
	3603	Yes	Yes	No	No	No	Not limited at all	Yes, limited a little	А
	3369	Yes	Yes	No	Yes	Yes	Not limited at all	Not limited at all	٨
	3478	Yes	Yes	No	Yes	No	Not limited at all	Not limited at all	٨

2591 rows × 120 columns

```
In [60]: xd = pd.get_dummies(x_train)
In [61]: xd.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 2591 entries, 1489 to 3478

Columns: 328 entries, V00WOMTSL to V00LKRFXPN_Yes

dtypes: float64(17), uint8(311)

memory usage: 1.1 MB

In [62]: xd.head()

Out[62]:

	V00WOMTSL	V00WOMTSR	P01KPACDCV	V00COMORB	V00HT25MM	V00WT25KG	V
1489	20.8	25.2	16.0	1.0	1600.2	68.2	
364	0.0	0.0	0.0	0.0	1676.4	72.7	
2939	1.0	0.0	0.0	0.0	1651.0	54.5	
1342	0.0	5.0	3.0	0.0	1651.0	65.9	
1425	0.0	4.0	0.0	0.0	1549.4	59.1	

5 rows × 328 columns

```
#We replace the missing data in the columns with the most common observation for column in xd.columns:

xd[column]=xd[column].fillna(xd[column].mode()[0])
```

Remaining Time

Train Loss

Iter

```
1.3437
                                                  3.94m
                   1
                   2
                               1.3313
                                                  3.33m
                   3
                               1.3209
                                                  3.21m
                   4
                               1.3110
                                                  3.12m
                   5
                               1.3026
                                                  2.88m
                   6
                               1.2956
                                                  2.79m
                   7
                               1.2883
                                                  2.63m
                   8
                               1.2821
                                                  2.47m
                   9
                               1.2756
                                                  2.33m
                  10
                               1.2699
                                                  2.27m
                  20
                               1.2254
                                                  1.80m
                  30
                               1.1945
                                                  1.79m
                  40
                               1.1676
                                                  1.97m
                  50
                               1.1439
                                                  2.26m
                               1.1210
                                                  2.28m
                  60
                  70
                               1.0982
                                                  2.22m
                  80
                               1.0755
                                                  2.26m
                               1.0573
                  90
                                                  2.26m
                 100
                               1.0376
                                                  2.22m
                 200
                               0.8876
                                                  1.94m
                 300
                               0.7665
                                                  1.73m
                 400
                                                  1.59m
                               0.6616
                                                  1.55m
                 500
                               0.5750
                 600
                               0.5027
                                                  1.50m
                 700
                               0.4394
                                                  1.42m
                 800
                                                  1.32m
                               0.3882
                 900
                               0.3411
                                                  1.28m
                1000
                               0.3033
                                                  1.26m
                2000
                               0.0986
                                                 39.39s
                3000
                               0.0335
                                                  9.26s
Out[66]: GradientBoostingClassifier(max_leaf_nodes=10, n_estimators=3300, verbose=1)
In [67]:
          y_test = data_test['cumulative_outcome']
          y_test = [1 if x=='Yes' else 0 for x in y_test]
          x_test = data_test[data_test.columns[1:]]
          x_test = x_test.drop(columns = ['cumulative_outcome'],axis=1)
          xd_test = pd.get_dummies(x_test)
In [68]:
          #treatment of missing data: we put the most common observation in place of th
          for column in xd test.columns:
              xd_test[column]=xd_test[column].fillna(xd_test[column].mode()[0])
In [71]:
          from sklearn.metrics import accuracy_score
          print('Accuracy:', round(accuracy_score(y_test, gbc.predict(xd_test)), 5))
         Accuracy: 0.57156
```

First model: accuracy 0.57, fpr = 0.32, tpr = 0.41, auc = 0.55

```
In [75]:
    roc_auc = auc(fpr, tpr)
    plt.figure(figsize=(8, 6))
    plt.title('ROC Curve', fontsize=18)
    plt.xlabel('FPR', fontsize=16)
    plt.ylabel('TPR', fontsize=16)
    plt.xlim([-0.01, 1.00])
    plt.ylim([-0.01, 1.01])
    plt.plot(fpr, tpr, lw=3, label='Logistic Regression (area = {:0.2f})'.format(plt.plot([0, 1], [0, 1], color='navy', lw=3, linestyle='--')
    plt.legend(loc='lower right', fontsize=14)
    plt.show()
```



```
In [82]:
          #Model 2: Gradient Boosted classifier with cross-validation
          from sklearn.ensemble import GradientBoostingClassifier
          from sklearn.model selection import GridSearchCV
          import time
          grid_values = {'max_leaf_nodes': np.linspace(2, 10, 9, dtype='int32'),
                         'min_samples_leaf': [10],
                         'n_estimators': np.logspace(9, 13, num=8, base=2, dtype='int32
                         'learning_rate': [0.01],
                         'random state': [88]}
          tic = time.time()
          gbc = GradientBoostingClassifier()
          gbc_cv = GridSearchCV(gbc, param_grid=grid_values, scoring='accuracy', cv=5,
          gbc_cv.fit(xd, y_train)
          toc = time.time()
          print('time:', round(toc-tic, 2),'s')
```

```
File "<ipython-input-82-e45516098f97>", line 10
   'min_samples_leaf': [10],
   ^
```

IndentationError: unexpected indent


```
In [84]: print(gbc_cv.best_params_)
```

{'learning_rate': 0.01, 'max_leaf_nodes': 2, 'min_samples_leaf': 10, 'n_estima
tors': 2496, 'random_state': 88}

In [85]:

Iter	Train Loss	Remaining Time
1	1.3576	3.43m
2	1.3569	2.56m
3	1.3563	2.26m
4	1.3556	2.02m
5	1.3550	1.92m
6	1.3544	1.93m
7	1.3538	1.99m
8	1.3532	2.17m
9	1.3526	2.18m
10	1.3521	2.19m
11	1.3515	2.28m
12	1.3510	2.43m
13	1.3505	2.40m
14	1.3499	2.32m
15	1.3494	2.26m
16	1.3489	2.20m
17	1.3484	2.17m
18	1.3479	2.26m
19	1.3474	2.33m
20	1.3469	2.31m
21	1.3464	2.32m
22	1.3459	2.36m
23	1.3454	2.35m
24	1.3450	2.31m
25	1.3445	2.27m
26	1.3440	2.25m
27	1.3436	2.26m
28	1.3431	2.31m
29	1.3427	2.30m
30	1.3423	2.29m
31	1.3418	2.30m
32	1.3414	2.32m
33	1.3414	2.30m
34	1.3410	2.28m
35	1.3401	2.25m
36	1.3397	2.22m
	1.3397	2.25m
37		
38	1.3389	2.28m
39	1.3385	2.34m
40	1.3381	2.51m
41	1.3378	2.61m
42	1.3374	2.63m
43	1.3370	2.62m
44	1.3366	2.59m
45	1.3363	2.56m
46	1.3359	2.55m
47	1.3355	2.56m
48	1.3352	2.55m

49	1.3348	2.54m
50	1.3345	2.53m
51	1.3341	2.52m
52	1.3338	2.51m
53	1.3335	2.49m
54	1.3331	2.47m
55	1.3328	2.46m
56	1.3325	2.48m
57	1.3322	2.49m
58	1.3318	2.49m
59	1.3315	2.48m
60	1.3312	2.48m
61	1.3309	2.48m
62	1.3306	2.48m
63	1.3303	2.50m
64	1.3300	2.49m
65	1.3297	2.49m
66	1.3294	2.49m
67	1.3291	2.47m
68	1.3288	2.47m
69	1.3285	2.48m
70	1.3282	2.48m
71	1.3279	2.49m
72	1.3276	2.49m
73	1.3274	2.46m
74	1.3271	2.45m
75	1.3268	2.44m
76	1.3265	2.43m
77	1.3263	2.45m
78	1.3260	2.45m
79	1.3257	2.44m
80	1.3255	2.43m
81	1.3252	2.42m
82	1.3250	2.42m
83	1.3247	2.40m
84	1.3244	2.39m
85	1.3242	2.39m
86	1.3240	2.39m
87	1.3237	2.40m
88	1.3235	2.40m
89	1.3233	2.40m
90	1.3232	2.39m
91	1.3227	2.37m
92	1.3225	2.36m
93	1.3223	2.35m
94	1.3220	2.34m
95	1.3218	2.34m
96	1.3216	2.34m
97	1.3214	2.34m
98	1.3211	2.33m
99	1.3211	2.31m 2.30m
100	1.3207	2.30m
101	1.3207	2.31m 2.29m
101	1.3203	2.29m
102	1.3203	2.30m 2.31m
103	1.3198	2.31m 2.31m
105	1.3196	2.31m 2.31m
100	1.3170	∠ • J IIII

106	1.3194	2.30m
107	1.3192	2.29m
108	1.3190	2.29m
109	1.3188	2.29m
110	1.3186	2.30m
111	1.3184	2.31m
112	1.3182	2.31m
113	1.3180	2.34m
114	1.3178	2.34m
115	1.3176	2.32m
116	1.3174	2.32m
117	1.3173	2.31m
118	1.3171	2.30m
119	1.3169	2.29m
120	1.3167	2.29m
121	1.3165	2.30m
122	1.3163	2.31m
123	1.3161	2.33m
124	1.3160	2.33m
125	1.3158	2.33m
126	1.3156	2.33m
127	1.3154	2.33m
128	1.3153	2.34m
129	1.3151	2.35m
130	1.3149	2.35m
131	1.3147	2.34m
132	1.3146	2.34m
133	1.3144	
		2.32m
134	1.3142	2.32m
135	1.3140	2.32m
136	1.3139	2.33m
137	1.3137	2.33m
138	1.3135	2.33m
139	1.3134	2.33m
140	1.3132	2.32m
141	1.3130	2.31m
142	1.3129	2.34m
143	1.3127	2.34m
144	1.3126	2.34m
145	1.3124	2.33m
146	1.3122	2.33m
147	1.3121	2.32m
148	1.3119	2.32m
149	1.3118	2.33m
150	1.3116	2.33m
151	1.3114	2.32m
152	1.3113	2.32m
153	1.3111	2.32m
154	1.3110	2.31m
155	1.3108	2.30m
156	1.3107	2.30m
157	1.3105	2.30m
158	1.3104	2.30m
159	1.3102	2.29m
160	1.3101	2.29m
161	1.3099	2.29m
162	1.3098	2.28m
102	1.3090	∠ • ∠ OIII

163	1.3096	2.27m
164	1.3095	2.27m
165	1.3093	2.26m
166	1.3092	2.26m
167	1.3090	2.25m
168	1.3089	2.25m
169	1.3088	2.25m
170	1.3086	2.24m
171	1.3085	2.23m
172	1.3083	2.23m
173	1.3082	2.22m
174	1.3081	2.22m
175	1.3079	2.21m
176	1.3078	2.21m
177	1.3076	2.20m
178	1.3075	2.20m
179	1.3074	2.20m
180	1.3072	2.19m
181	1.3071	2.19m
182	1.3070	2.18m
183	1.3068	2.17m
184	1.3067	2.17m
185	1.3066	2.17m
186	1.3064	2.17m
187	1.3063	2.17m
188	1.3062	2.16m
189	1.3061	2.16m
190	1.3059	2.15m
191	1.3058	2.14m
192	1.3057	2.14m
193	1.3056	2.13m
194	1.3054	2.13m
195	1.3053	2.13m
196	1.3052	2.13m
197	1.3051	2.12m
198	1.3049	2.12m
199	1.3048	2.12m
200	1.3047	2.12m
201	1.3046	2.12m
202	1.3044	2.11m
203	1.3043	2.11m
204	1.3042	2.11m
205	1.3041	2.10m
206	1.3040	2.10m
207	1.3039	2.09m
208	1.3037	2.09m
209	1.3036	2.08m
210	1.3035	2.09m
211	1.3034	2.10m
212	1.3033	2.10m
213	1.3033	2.10m
214	1.3031	2.09m
215	1.3029	2.08m
216	1.3028	2.08m
217	1.3027	2.03m
218	1.3026	2.07m
219	1.3025	2.06m
217	1.3023	2 • 0 OIII

220	1.3024	2.06m
221	1.3023	2.05m
222	1.3022	2.05m
223	1.3021	2.04m
224	1.3019	2.04m
225	1.3018	2.04m
	1.3017	
226		2.03m
227	1.3016	2.03m
228	1.3015	2.02m
229	1.3014	2.02m
230	1.3013	2.02m
231	1.3012	2.01m
232	1.3011	2.01m
233	1.3010	2.00m
234	1.3009	2.00m
235	1.3008	1.99m
236	1.3007	1.99m
237	1.3006	1.99m
238	1.3005	1.99m
239	1.3004	1.99m
240	1.3003	1.99m
241	1.3002	1.99m
242	1.3001	1.99m
243	1.3000	1.98m
244	1.2999	1.98m
245	1.2998	1.97m
246	1.2997	1.97m
247	1.2996	1.97m
248	1.2995	1.96m
249	1.2994	1.96m
250	1.2993	1.95m
251	1.2992	1.95m
252	1.2991	1.95m
253	1.2990	1.94m
254	1.2989	1.94m
255	1.2988	1.94m
256	1.2987	1.93m
257	1.2986	1.93m
258	1.2985	1.93m
259	1.2984	1.92m
260	1.2983	1.92m
261	1.2982	1.92m
262	1.2982	1.91m
263	1.2981	1.91m
264	1.2980	1.91m
265	1.2979	1.90m
266	1.2978	1.90m
267	1.2977	1.90m
268	1.2976	1.90m
269	1.2975	1.90m
270	1.2974	1.89m
271	1.2973	1.89m
272	1.2972	1.89m
273	1.2972	1.88m
274	1.2971	1.88m
275	1.2970	1.88m
276	1.2969	1.88m

277	1.2968	1.87m
278	1.2967	1.87m
279	1.2966	1.87m
280	1.2965	1.86m
281	1.2964	1.86m
282	1.2964	1.86m
283	1.2963	1.85m
284	1.2962	1.85m
285	1.2961	1.85m
286	1.2960	1.85m
287	1.2959	1.84m
288	1.2958	1.84m
289	1.2958	1.84m
290	1.2957	1.84m
291	1.2956	1.83m
292	1.2955	1.83m
293	1.2954	1.83m
294	1.2953	1.82m
295	1.2953	1.82m
296	1.2952	1.82m
297	1.2951	1.82m
298	1.2950	1.81m
299	1.2949	1.81m
300	1.2948	1.81m
301	1.2948	1.80m
302	1.2947	1.80m
303	1.2946	1.80m
304	1.2945	1.80m
305	1.2944	1.79m
306	1.2943	1.79m
307	1.2943	1.79m
308	1.2942	1.79m
309	1.2941	1.78m
310	1.2940	1.78m
311	1.2940	1.78m
312	1.2939	1.77m
313	1.2938	1.77m
314		
_	1.2937	1.77m
315	1.2936	1.77m
316	1.2936	1.76m
317	1.2935	1.76m
318	1.2934	1.76m
319	1.2933	1.76m
320	1.2932	1.76m
321	1.2932	1.75m
322	1.2931	1.75m
323	1.2930	1.75m
324	1.2929	1.75m
325	1.2929	1.74m
326	1.2928	1.74m
327	1.2927	1.74m
328	1.2926	1.74m
329	1.2926	1.73m
330	1.2925	1.73m
331	1.2924	1.73m
332	1.2923	1.73m
333	1.2923	1.73m

334	1.2922	1.73m
335	1.2921	1.73m
336	1.2920	1.72m
337	1.2920	1.72m
338	1.2919	1.72m
339	1.2918	1.72m
340	1.2917	1.71m
341	1.2917	1.71m
342	1.2916	1.71m
343	1.2915	1.71m
344	1.2915	1.70m
345	1.2914	1.70m
346	1.2913	1.70m
347	1.2912	1.70m
348	1.2912	1.70m
349	1.2911	1.69m
350	1.2910	1.69m
351	1.2910	1.69m
352	1.2909	1.69m
353	1.2908	1.68m
354	1.2907	1.68m
355	1.2907	1.68m
356	1.2906	1.68m
357	1.2905	1.68m
358	1.2905	1.67m
359	1.2904	1.67m
360	1.2903	1.67m
361	1.2903	1.67m
362	1.2902	1.67m
363	1.2901	1.66m
364	1.2901	1.66m
365	1.2900	1.67m
366	1.2899	1.67m
367	1.2899	1.67m
368	1.2898	1.66m
369	1.2897	1.66m
370	1.2897	1.66m
371	1.2896	1.66m
372	1.2895	1.65m
373	1.2895	1.65m
374	1.2894	1.65m
375	1.2893	1.65m
376	1.2893	1.65m
377	1.2892	1.64m
378	1.2891	1.64m
379	1.2891	1.64m
380	1.2890	1.64m
381	1.2889	1.64m
382	1.2889	1.63m
383	1.2888	1.63m
384	1.2887	1.63m
385	1.2887	1.63m
386	1.2886	1.63m
387	1.2885	1.63m
388	1.2885	1.62m
389	1.2884	1.62m
390	1.2883	1.62m

391	1.2883	1.62m
392	1.2882	1.62m
		1.62m
393	1.2882	
394	1.2881	1.61m
395	1.2880	1.61m
396	1.2880	1.61m
397	1.2879	1.61m
398	1.2878	1.61m
399	1.2878	1.61m
400	1.2877	1.61m
401	1.2876	1.60m
402	1.2876	1.60m
403	1.2875	1.60m
404	1.2875	1.60m
405	1.2874	1.60m
406	1.2873	1.60m
407	1.2873	1.59m
408	1.2872	1.59m
409	1.2872	1.59m
410	1.2871	1.59m
411	1.2870	1.59m
412	1.2870	1.58m
413	1.2869	1.58m
414	1.2868	1.58m
415	1.2868	1.58m
416	1.2867	1.58m
417	1.2867	1.58m
418	1.2866	1.58m
419	1.2865	1.58m
420	1.2865	1.58m
421	1.2864	1.58m
422	1.2864	1.58m
423	1.2863	1.58m
424	1.2862	1.58m
425	1.2862	1.58m
426	1.2861	1.58m
427	1.2861	1.58m
428	1.2860	1.58m
429	1.2859	1.59m
430	1.2859	1.59m
431	1.2858	1.58m
432	1.2858	1.58m
433	1.2857	1.58m
434	1.2857	1.58m
435	1.2856	1.58m
436	1.2855	1.58m
437	1.2855	1.58m
438	1.2854	1.58m
439	1.2854	1.58m
440	1.2853	1.58m
441	1.2852	1.58m
442	1.2852	1.58m
443	1.2851	1.58m
444	1.2851	1.58m
445	1.2850	1.58m
446	1.2850	1.58m
447	1.2849	1.57m

448	1.2848	1.57m
449	1.2848	1.57m
450	1.2847	1.57m
451	1.2847	1.57m
452	1.2846	1.57m
453	1.2846	1.57m
454	1.2845	1.57m
455	1.2844	1.58m
456	1.2844	1.58m
457	1.2843	1.58m
458	1.2843	1.58m
459	1.2842	1.57m
460	1.2842	1.57m
461	1.2841	1.57m
462	1.2841	1.57m
463	1.2840	1.57m
464	1.2839	1.57m
465	1.2839	1.57m
466	1.2838	1.57m
467	1.2838	1.57m
468	1.2837	1.57m
469	1.2837	1.57m
470	1.2836	1.57m
471	1.2836	1.57m
472	1.2835	1.56m
473	1.2835	1.56m
474	1.2834	1.56m
475	1.2833	1.56m
476	1.2833	1.56m
477	1.2832	1.56m
478	1.2832	1.56m
479	1.2831	1.56m
480	1.2831	1.56m
481	1.2830	1.56m
482	1.2830	1.56m
483	1.2829	1.56m
484	1.2829	1.56m
485	1.2828	1.56m
486	1.2828	1.56m
487	1.2827	1.56m
488	1.2827	1.56m
489	1.2826	1.56m
490	1.2825	1.56m
491	1.2825	1.56m
492	1.2824	1.56m
493	1.2824	1.56m
494	1.2823	1.56m
495	1.2823	1.56m
496	1.2822	1.56m
497	1.2822	1.56m
498	1.2821	1.56m
499	1.2821	1.56m
500	1.2820	1.56m
501	1.2820	1.56m
502	1.2819	1.55m
503	1.2819	1.55m
504	1.2818	1.55m

505	1.2818	1.55m
506	1.2817	1.55m
507	1.2817	1.55m
508	1.2816	1.55m
509	1.2816	1.54m
510	1.2815	1.54m
511	1.2815	1.54m
512	1.2814	1.54m
513	1.2814	1.54m
514	1.2813	1.54m
515	1.2813	1.54m
516	1.2812	1.54m
517	1.2812	1.53m
518	1.2811	1.53m
519	1.2811	1.53m
520	1.2810	1.53m
521	1.2810	1.53m
522	1.2809	1.53m
523	1.2809	1.52m
524	1.2808	1.52m
525	1.2808	1.52m
526	1.2807	1.52m
527	1.2807	1.52m
528	1.2806	1.52m
529	1.2806	1.52m
530	1.2805	1.51m
531	1.2805	1.51m
532	1.2804	1.51m
533	1.2804	1.51m
534	1.2803	1.51m
535	1.2803	1.51m
536	1.2802	1.51m
537	1.2802	1.51m
538	1.2801	1.50m
539	1.2801	1.50m
540	1.2800	1.50m
541	1.2800	1.50m
542	1.2799	1.50m
543	1.2799	1.50m
544	1.2798	1.50m
545	1.2798	1.49m
546	1.2797	1.49m
547	1.2797	1.49m
548	1.2796	1.49m
549	1.2796	1.49m
550	1.2795	1.49m
551	1.2795	1.48m
552	1.2794	1.48m
553	1.2794	1.48m
554	1.2794	1.48m
555	1.2793	1.48m
556	1.2793	1.48m
557	1.2792	1.48m
558	1.2792	1.48m
559	1.2791	1.48m
560	1.2791	1.48m
561	1.2790	1.48m

562	1.2790	1.48m
563	1.2789	1.48m
564	1.2789	1.47m
565	1.2788	1.47m
566	1.2788	1.47m
567	1.2787	1.47m
568	1.2787	1.47m
569	1.2787	1.47m
570	1.2786	1.47m
571	1.2786	1.47m
572	1.2785	1.47m
573	1.2785	1.47m
574	1.2784	1.47m
575	1.2784	1.47m
576	1.2783	1.47m
577	1.2783	1.47m
578	1.2782	1.46m
579	1.2782	1.46m
580	1.2781	1.47m
581	1.2781	1.47m
582	1.2780	1.46m
583	1.2780	1.46m
584	1.2780	1.46m
585	1.2779	1.46m
586	1.2779	1.46m
587	1.2778	1.46m
		1.46m
588	1.2778	
589	1.2777	1.46m
590	1.2777	1.46m
591	1.2776	1.46m
592	1.2776	1.46m
593	1.2776	1.46m
594	1.2775	1.46m
595	1.2775	1.46m
596	1.2774	1.46m
597	1.2774	1.45m
598	1.2773	1.45m
599	1.2773	1.45m
600	1.2772	1.45m
601	1.2772	1.45m
602	1.2772	1.45m
603	1.2771	1.45m
604	1.2771	1.45m
605	1.2770	1.45m
606	1.2770	1.45m
607	1.2769	1.44m
608	1.2769	1.44m
609	1.2768	1.44m
610	1.2768	1.44m
611	1.2768	1.44m
612	1.2767	1.44m
613	1.2767	1.44m
614	1.2766	1.44m
615	1.2766	1.43m
616	1.2765	1.43m
	1.2765	
617		1.43m
618	1.2765	1.43m

619	1.2764	1.43m
620	1.2764	1.43m
621	1.2763	1.43m
622	1.2763	1.43m
623	1.2762	1.43m
624	1.2762	1.43m
625	1.2762	1.42m
626	1.2761	1.42m
627	1.2761	1.42m
628	1.2760	1.42m
629	1.2760	1.42m
630	1.2759	1.42m
631	1.2759	1.42m
632	1.2759	1.42m
633	1.2758	1.42m
634	1.2758	1.42m
635	1.2757	1.42m
636	1.2757	1.42m
637	1.2756	1.42m
638	1.2756	1.42m
639	1.2756	1.41m
640	1.2755	1.41m
641	1.2755	1.41m
642	1.2754	1.41m
643	1.2754	1.41m
644	1.2754	1.41m
645	1.2753	1.41m
646	1.2753	1.41m
647	1.2752	1.41m
648	1.2752	1.41m
649	1.2751	1.41m
650	1.2751	1.41m
651	1.2751	1.41m
652	1.2750	1.41m
653	1.2750	1.40m
654	1.2749	1.40m
655	1.2749	1.40m
656	1.2749	1.40m
657	1.2748	1.40m
658	1.2748	1.40m
659	1.2747	1.40m
660	1.2747	1.40m
661	1.2746	1.40m
662	1.2746	1.40m
663	1.2746	1.40m
664	1.2745	1.40m
665	1.2745	1.40m
666	1.2744	1.40m
667	1.2744	1.40m
668	1.2744	1.40m
669	1.2743	1.40m
670	1.2743	1.40m
671	1.2742	1.40m
672	1.2742	1.40m
673	1.2742	1.40m
674	1.2741	1.40m
675	1.2741	1.40m
- · -	· ·	

676	1.2740	1.39m
	1.2740	
677		1.39m
678	1.2740	1.39m
679	1.2739	1.39m
680	1.2739	1.39m
681	1.2738	1.39m
682	1.2738	1.39m
683	1.2738	1.39m
684	1.2737	1.38m
685	1.2737	1.38m
686	1.2736	1.38m
687	1.2736	1.38m
688	1.2736	1.38m
689	1.2735	1.38m
690	1.2735	1.38m
691	1.2734	1.38m
692	1.2734	1.38m
693	1.2734	1.38m
694	1.2733	1.37m
695	1.2733	1.37m
696	1.2732	1.37m
697	1.2732	1.37m
	1.2732	
698		1.37m
699	1.2731	1.37m
700	1.2731	1.37m
701	1.2730	1.37m
702	1.2730	1.36m
703	1.2730	1.36m
704	1.2729	1.36m
705	1.2729	1.36m
	1.2729	1.36m
706		
707	1.2728	1.36m
708	1.2728	1.36m
709	1.2727	1.36m
710	1.2727	1.35m
711	1.2727	1.35m
712	1.2726	1.35m
713	1.2726	1.35m
		1.35m
714	1.2725	
715	1.2725	1.35m
716	1.2725	1.35m
717	1.2724	1.35m
718	1.2724	1.34m
719	1.2724	1.34m
720	1.2723	1.34m
721	1.2723	1.34m
	1.2722	
722		1.34m
723	1.2722	1.34m
724	1.2722	1.34m
725	1.2721	1.34m
726	1.2721	1.33m
727	1.2720	1.33m
728	1.2720	1.33m
729	1.2720	1.33m
	1.2719	1.33m
730		
731	1.2719	1.33m
732	1.2719	1.33m

733	1.2718	1.33m
734	1.2718	1.33m
735	1.2717	1.33m
736	1.2717	1.33m
737	1.2717	1.33m
738	1.2716	1.32m
739	1.2716	1.32m
740	1.2716	1.33m
741	1.2715	1.33m
742	1.2715	1.33m
743	1.2714	
		1.32m
744	1.2714	1.32m
745	1.2714	1.32m
746	1.2713	1.32m
747	1.2713	1.32m
748	1.2713	1.32m
749	1.2712	1.32m
750	1.2712	1.32m
751	1.2711	1.32m
752	1.2711	1.32m
753	1.2711	1.32m
754	1.2710	1.32m
755	1.2710	1.32m
756	1.2710	1.32m
757	1.2709	1.32m
758	1.2709	1.32m
759	1.2709	1.32m
760	1.2708	1.31m
761	1.2708	1.31m
762	1.2707	1.31m
763	1.2707	1.31m
764	1.2707	1.31m
765	1.2706	1.31m
766	1.2706	1.31m
767	1.2706	1.31m
768	1.2705	1.31m
769	1.2705	1.30m
770	1.2704	1.30m
771	1.2704	1.30m
772	1.2704	1.30m
773	1.2703	1.30m
774	1.2703	1.30m
775	1.2703	1.30m
776		1.30m
	1.2702	
777	1.2702	1.30m
778	1.2702	1.30m
779	1.2701	1.30m
780	1.2701	1.30m
781	1.2701	1.30m
782	1.2700	1.30m
783	1.2700	1.30m
784	1.2699	1.30m
785	1.2699	1.30m
786	1.2699	1.30m
787	1.2698	1.29m
788	1.2698	1.29m
789	1.2698	1.29m

790	1.2697	1.29m
791	1.2697	1.29m
792	1.2697	1.29m
793	1.2696	1.29m
794	1.2696	1.29m
795	1.2695	1.29m
796	1.2695	1.29m
797	1.2695	1.29m
798	1.2694	1.29m
799	1.2694	1.29m
800	1.2694	1.29m
801	1.2693	1.29m
802	1.2693	1.29m
803	1.2693	1.28m
804	1.2692	1.28m
805	1.2692	1.28m
806	1.2692	1.28m
807	1.2691	1.28m
808	1.2691	1.28m
		1.28m
809	1.2691	
810	1.2690	1.28m
811	1.2690	1.28m
812	1.2690	1.27m
813	1.2689	1.27m
814	1.2689	1.27m
815	1.2689	1.27m
816	1.2688	1.27m
817	1.2688	1.27m
818	1.2687	1.27m
819	1.2687	1.27m
820	1.2687	1.27m
821	1.2686	1.26m
822	1.2686	1.26m
823	1.2686	1.26m
824	1.2685	1.26m
825	1.2685	1.26m
826	1.2685	1.26m
827	1.2684	1.26m
828	1.2684	1.26m
829	1.2684	1.26m
830	1.2683	1.25m
831	1.2683	1.25m
832	1.2683	1.25m
833	1.2682	1.25m
834	1.2682	1.25m
835	1.2682	1.25m
836	1.2681	1.25m
837	1.2681	1.25m
838	1.2681	1.25m
839	1.2680	1.25m
840	1.2680	1.24m
841	1.2680	1.24m
842	1.2679	1.24m
843	1.2679	1.24m
844	1.2679	1.24m
845	1.2678	1.24m
846	1.2678	1.24m
0-10	1.40/0	1 • 2 #III

847	1.2678	1.24m
848	1.2677	1.24m
849	1.2677	1.23m
850	1.2677	1.23m
851	1.2676	1.23m
852	1.2676	1.23m
853	1.2676	1.23m
854	1.2675	1.23m
855	1.2675	1.23m
856	1.2675	1.23m
857	1.2674	1.23m
858	1.2674	1.23m
859	1.2674	1.22m
860	1.2673	1.22m
861	1.2673	1.22m
862	1.2673	1.22m
863	1.2672	1.22m
864	1.2672	1.22m
865	1.2672	1.22m
866	1.2671	1.22m
867	1.2671	1.22m
868	1.2671	1.22m
869	1.2670	1.22m
870	1.2670	1.22m
871	1.2670	1.21m
872	1.2669	1.21m
873	1.2669	1.21m
874	1.2669	1.21m
875	1.2668	1.21m
876	1.2668	1.21m
877	1.2668	1.21m
878	1.2667	1.21m
879	1.2667	1.21m
880	1.2667	1.21m
881	1.2666	1.21m
882	1.2666	1.21m
883	1.2666	1.20m
884	1.2665	1.20m
885	1.2665	1.20m
886	1.2665	1.20m
887	1.2664	1.20m
888	1.2664	1.20m
889	1.2664	1.20m
890	1.2663	1.20m
891	1.2663	1.20m
892	1.2663	1.20m
893	1.2662	1.20m
894	1.2662	1.19m
895	1.2662	1.19m
896	1.2661	1.19m
897	1.2661	1.19m
898	1.2661	1.19m
899	1.2660	1.19m
900	1.2660	1.19m
901	1.2660	1.19m
902	1.2660	1.19m
903	1.2659	1.19m
		·

904	1.2659	1.19m
905	1.2659	1.19m
906	1.2658	1.19m
907	1.2658	1.19m
908	1.2658	1.19m
909	1.2657	1.19m
910	1.2657	1.18m
911	1.2657	1.18m
912	1.2656	1.18m
913	1.2656	1.18m
914	1.2656	1.18m
915	1.2655	1.18m
916	1.2655	1.18m
917	1.2655	1.18m
918	1.2654	1.18m
919	1.2654	1.18m
920	1.2654	1.18m
921	1.2653	1.18m
922	1.2653	1.18m
923	1.2653	1.18m
924	1.2653	1.18m
925	1.2652	1.18m
926	1.2652	1.18m
927	1.2652	1.19m
928	1.2651	1.19m
929	1.2651	1.18m
930	1.2651	1.19m
931		1.19m
	1.2650	
932	1.2650	1.19m
933	1.2650	1.19m
934	1.2649	1.18m
935	1.2649	1.18m
936	1.2649	1.18m
937	1.2648	1.18m
938	1.2648	1.18m
939	1.2648	1.18m
940	1.2648	1.18m
941	1.2647	1.18m
942	1.2647	1.18m
943	1.2647	1.18m
944	1.2646	1.17m
945	1.2646	1.17m
946	1.2646	1.17m
947	1.2645	1.17m
948	1.2645	1.17m
949	1.2645	1.17m
950	1.2644	1.17m
951	1.2644	1.17m
952	1.2644	1.17m
953	1.2644	1.17m
954	1.2643	1.17m
955	1.2643	1.16m
956	1.2643	1.16m
957	1.2642	1.16m
958	1.2642	1.16m
959	1.2642	1.16m
960	1.2641	1.16m

961	1.2641	1.16m
962	1.2641	1.16m
963	1.2640	1.16m
964	1.2640	1.16m
965	1.2640	1.16m
966	1.2640	1.15m
967	1.2639	1.15m
968	1.2639	1.15m
969	1.2639	1.15m
970	1.2638	1.15m
971	1.2638	1.15m
972	1.2638	1.15m
973	1.2637	1.15m
974	1.2637	1.15m
975	1.2637	1.15m
976	1.2637	1.15m
977	1.2636	1.15m
978	1.2636	1.15m
979	1.2636	1.15m
980	1.2635	1.14m
981	1.2635	1.14m
982	1.2635	1.14m
983	1.2634	1.14m
984	1.2634	1.14m
985	1.2634	1.14m
986	1.2634	1.14m
987	1.2633	1.14m
988 989	1.2633 1.2633	1.14m 1.14m
990	1.2632	1.14m
991	1.2632	1.13m
992	1.2632	1.13m
993	1.2632	1.13m
994	1.2631	1.13m
995	1.2631	1.13m
996	1.2631	1.13m
997	1.2630	1.13m
998	1.2630	1.13m
999	1.2630	1.12m
1000	1.2629	1.12m
1001	1.2629	1.12m
1002	1.2629	1.12m
1003	1.2629	1.12m
1004	1.2628	1.12m
1005	1.2628	1.12m
1006	1.2628	1.12m
1007	1.2627	1.12m
1008	1.2627	1.12m
1009	1.2627	1.12m
1010	1.2627	1.12m
1011	1.2626	1.12m
1012	1.2626	1.12m
1013	1.2626	1.12m
1014	1.2625	1.12m
1015	1.2625	1.11m
1016 1017	1.2625 1.2624	1.11m 1.11m
101/	1.4047	T • T TIII

1018	1.2624	1.11m
1019	1.2624	1.11m
1020	1.2624	1.11m
1021	1.2623	1.11m
1022	1.2623	1.11m
1023	1.2623	1.11m
1024	1.2622	1.11m
	1.2622	1.11m
1025	1.2622	1.11m
1026	1.2622	
1027		1.11m
1028	1.2621	1.11m
1029	1.2621	1.10m
1030	1.2621	1.10m
1031	1.2620	1.10m
1032	1.2620	1.10m
1033	1.2620	1.10m
1034	1.2620	1.10m
1035	1.2619	1.10m
1036	1.2619	1.10m
1037	1.2619	1.10m
1038	1.2618	1.10m
1039	1.2618	1.10m
1040	1.2618	1.10m
1041	1.2618	1.09m
1042	1.2617	1.09m
1043	1.2617	1.09m
1044	1.2617	1.09m
1045	1.2616	1.09m
1046	1.2616	1.09m
1047	1.2616	1.09m
1048	1.2616	1.09m
1049	1.2615	1.09m
1050	1.2615	1.09m
1051	1.2615	1.08m
1052	1.2615	1.08m
1053	1.2614	1.08m
1054	1.2614	1.08m
1055	1.2614	1.08m
1056	1.2613	1.08m
1057	1.2613	1.08m
1058	1.2613	1.08m
1059	1.2613	1.08m
1060	1.2612	1.08m
1061	1.2612	1.08m
1062	1.2612	1.07m
1063	1.2611	1.07m
1064	1.2611	1.07m
1065	1.2611	1.07m
1066	1.2611	1.07m
1067	1.2610	1.07m
1068	1.2610	1.07m
1069	1.2610	1.07m
1070	1.2610	1.07m
		1.07m
1071	1.2609	
1072	1.2609	1.06m
1073	1.2609	1.06m
1074	1.2608	1.06m

1075	1.2608	1.06m
1076	1.2608	1.06m
1077	1.2608	1.06m
1078	1.2607	1.06m
1079	1.2607	1.06m
1080	1.2607	1.06m
1081	1.2606	1.06m
1082	1.2606	1.06m
1083	1.2606	1.06m
1084	1.2606	1.05m
1085	1.2605	1.05m
1086	1.2605	1.05m
	1.2605	
1087		1.05m
1088	1.2605	1.05m
1089	1.2604	1.05m
1090	1.2604	1.05m
1091	1.2604	1.05m
1092	1.2603	1.05m
1093	1.2603	1.05m
1094	1.2603	1.04m
1095	1.2603	1.04m
1096	1.2602	1.04m
1097	1.2602	1.04m
1098	1.2602	1.04m
1099	1.2602	1.04m
1100	1.2601	1.04m
1101	1.2601	1.04m
1102	1.2601	1.04m
1103	1.2600	1.04m
1104	1.2600	1.03m
1105	1.2600	1.03m
1106	1.2600	1.03m
1107	1.2599	1.03m
	1.2599	1.03m
1108		
1109	1.2599	1.03m
1110	1.2599	1.03m
1111	1.2598	1.03m
1112	1.2598	1.03m
1113	1.2598	1.03m
1114	1.2597	1.03m
1115	1.2597	1.02m
1116	1.2597	1.02m
1117	1.2597	1.02m
1118	1.2596	1.02m
	1.2596	1.02m
1119		
1120	1.2596	1.02m
1121	1.2596	1.02m
1122	1.2595	1.02m
1123	1.2595	1.02m
1124	1.2595	1.02m
1125	1.2595	1.02m
1126	1.2594	1.02m
1127	1.2594	1.02m
1128	1.2594	1.02m
1129	1.2594	1.02m
1130	1.2593	1.01m
1131	1.2593	1.01m

1132	1.2593	1.01m
1133	1.2592	1.01m
1134	1.2592	1.01m
1135	1.2592	1.01m
1136	1.2592	1.01m
1137	1.2591	1.01m
1138	1.2591	1.01m
1139	1.2591	1.01m
1140	1.2591	1.01m
1141	1.2590	1.01m
1142	1.2590	1.01m
	1.2590	1.01m
1143		
1144	1.2590	1.00m
1145	1.2589	1.00m
1146	1.2589	1.00m
1147	1.2589	1.00m
1148	1.2588	1.00m
1149	1.2588	1.00m
1150	1.2588	1.00m
1151	1.2588	1.00m
	1.2587	
1152		1.00m
1153	1.2587	1.00m
1154	1.2587	1.00m
1155	1.2587	1.00m
1156	1.2586	1.00m
1157	1.2586	1.00m
1158	1.2586	59.99s
1159	1.2586	59.93s
1160	1.2585	59.88s
1161	1.2585	59.83s
1162	1.2585	59.77s
1163	1.2585	59.72s
1164	1.2584	59.67s
1165	1.2584	59.64s
1166	1.2584	59.59s
1167	1.2584	59.53s
1168	1.2583	59.48s
1169	1.2583	59.42s
1170	1.2583	59.36s
1171	1.2583	
		59.31s
1172	1.2582	59.26s
1173	1.2582	59.20s
1174	1.2582	59.14s
1175	1.2582	59.09s
1176	1.2581	59.03s
1177	1.2581	58.98s
1178	1.2581	58.93s
1179	1.2580	58.87s
	1.2580	58.81s
1180		
1181	1.2580	58.76s
1182	1.2580	58.70s
1183	1.2579	58.64s
1184	1.2579	58.61s
1185	1.2579	58.56s
1186	1.2579	58.57s
1187	1.2578	58.57s
1188	1.2578	58.57s
		20.075

1189	1.2578	58.56s
1190	1.2578	58.57s
1191	1.2577	58.55s
1192	1.2577	58.53s
1193	1.2577	58.50s
1194	1.2577	58.48s
1195	1.2576	58.44s
1196	1.2576	58.40s
1197	1.2576	58.34s
1198	1.2576	58.29s
1199	1.2575	58.24s
1200	1.2575	58.20s
1201	1.2575	58.19s
1202	1.2575	58.15s
1203	1.2574	58.11s
1204	1.2574	58.07s
1205	1.2574	58.04s
1206	1.2574	58.00s
1207	1.2573	57.97s
1208	1.2573	57.93s
1209	1.2573	57.88s
1210	1.2573	57.84s
1211	1.2572	57.81s
1212	1.2572	57.77s
1213	1.2572	57.72s
1214	1.2572	57.66s
1215	1.2571	57.60s
1216	1.2571	57.55s
1217	1.2571	57.49s
1218	1.2571	57.44s
1219	1.2570	57.45s
1220	1.2570	57.39s
1221	1.2570	57.34s
1222	1.2570	57.28s
		57.22s
1223	1.2569	
1224	1.2569	57.18s
1225	1.2569	57.15s
1226	1.2569	57.19s
1227	1.2568	57.15s
1228	1.2568	57.11s
1229	1.2568	57.06s
1230	1.2568	57.00s
1231	1.2567	56.98s
1232	1.2567	56.96s
1233	1.2567	56.92s
1234	1.2567	56.88s
1235	1.2566	56.85s
1236	1.2566	56.82s
1237	1.2566	56.78s
1238	1.2566	56.74s
	1.2565	56.72s
1239		
1240	1.2565	56.68s
1241	1.2565	56.62s
1242	1.2565	56.57s
1243	1.2565	56.51s
1244	1.2564	56.45s
1245	1.2564	56.39s

1246	1.2564	56.34s
1247	1.2564	56.28s
1248	1.2563	56.22s
1249	1.2563	56.16s
1250	1.2563	56.10s
1251	1.2563	
		56.04s
1252	1.2562	55.99s
1253	1.2562	55.93s
1254	1.2562	55.87s
1255	1.2562	55.81s
1256	1.2561	55.77s
1257	1.2561	55.73s
1258	1.2561	55.79s
1259	1.2561	55.91s
1260	1.2560	55.90s
1261	1.2560	55.85s
1262	1.2560	55.81s
1263	1.2560	55.76s
1264	1.2559	55.75s
1265	1.2559	55.70s
1266	1.2559	55.65s
1267	1.2559	55.59s
1268	1.2558	55.53s
1269	1.2558	55.50s
1270	1.2558	55.45s
1271	1.2558	55.41s
1272	1.2558	55.37s
1273	1.2557	55.32s
1274	1.2557	55.26s
1275	1.2557	55.21s
1276	1.2557	55.18s
1277	1.2556	55.15s
1278	1.2556	55.09s
1279	1.2556	55.03s
1280	1.2556	54.98s
1281	1.2555	54.92s
1282	1.2555	54.88s
1283	1.2555	54.84s
1284	1.2555	54.79s
		54.79s
1285	1.2554	
1286	1.2554	54.78s
1287	1.2554	54.75s
1288	1.2554	54.72s
1289	1.2553	54.67s
1290	1.2553	54.66s
1291	1.2553	54.70s
1292	1.2553	54.70s
1293	1.2553	54.65s
1294	1.2552	54.61s
1295	1.2552	54.56s
	1.2552	54.50s
1296		
1297	1.2552	54.50s
1298	1.2551	54.48s
1299	1.2551	54.45s
1300	1.2551	54.42s
1301	1.2551	54.38s
1302	1.2550	54.33s

1303	1.2550	54.29s
1304	1.2550	54.25s
1305	1.2550	54.22s
1306	1.2550	54.21s
1307	1.2549	54.17s
1308	1.2549	54.13s
1309	1.2549	54.07s
1310	1.2549	54.01s
1311	1.2548	53.95s
1312	1.2548	53.90s
1313	1.2548	53.85s
1314	1.2548	53.80s
1315	1.2547	53.76s
1316	1.2547	53.72s
1317	1.2547	53.69s
1318	1.2547	53.64s
1319	1.2546	53.58s
	1.2546	53.50s
1320		
1321	1.2546	53.46s
1322	1.2546	53.40s
1323	1.2546	53.35s
1324	1.2545	53.33s
1325	1.2545	53.30s
1326	1.2545	53.25s
1327	1.2545	53.19s
1328	1.2544	53.13s
1329	1.2544	53.07s
1330	1.2544	53.03s
1331	1.2544	52.97s
1332	1.2544	52.91s
1333	1.2543	52.85s
1334	1.2543	52.79s
1335	1.2543	52.74s
1336	1.2543	52.68s
1337	1.2542	52.62s
1338	1.2542	52.58s
1339	1.2542	52.54s
1340	1.2542	52.53s
1341	1.2541	52.51s
1342	1.2541	52.50s
	1.2541	
1343		52.48s
1344	1.2541	52.44s
1345	1.2541	52.41s
1346	1.2540	52.42s
1347	1.2540	52.40s
1348	1.2540	52.42s
1349	1.2540	52.41s
	1.2539	
1350		52.38s
1351	1.2539	52.33s
1352	1.2539	52.28s
1353	1.2539	52.23s
1354	1.2539	52.17s
1355	1.2538	52.12s
1356	1.2538	52.06s
1357	1.2538	52.00s
1358	1.2538	51.95s
1359	1.2537	51.90s

1360	1.2537	51.84s
1361	1.2537	51.79s
1362	1.2537	51.73s
1363	1.2536	51.68s
1364	1.2536	51.62s
1365	1.2536	51.57s
1366	1.2536	51.52s
1367	1.2536	51.50s
1368	1.2535	51.46s
1369	1.2535	51.41s
1370	1.2535	51.35s
		51.30s
1371	1.2535	
1372	1.2534	51.24s
1373	1.2534	51.18s
1374	1.2534	51.13s
1375	1.2534	51.07s
1376	1.2534	51.02s
1377	1.2533	50.96s
1378	1.2533	50.91s
1379	1.2533	50.85s
1380	1.2533	50.80s
1381	1.2532	50.74s
1382	1.2532	50.69s
1383	1.2532	50.63s
1384	1.2532	50.57s
1385	1.2532	50.52s
1386	1.2531	50.46s
1387	1.2531	50.41s
1388	1.2531	50.36s
1389	1.2531	50.30s
1390	1.2530	50.24s
1391	1.2530	50.19s
1392	1.2530	50.13s
1393	1.2530	50.07s
1394	1.2530	50.02s
1395	1.2529	49.97s
1396	1.2529	49.92s
1397	1.2529	49.86s
1398	1.2529	49.81s
	1.2528	49.75s
1399		
1400	1.2528	49.69s
1401	1.2528	49.65s
1402	1.2528	49.60s
1403	1.2528	49.54s
1404	1.2527	49.48s
1405	1.2527	49.43s
1406	1.2527	49.41s
1407	1.2527	49.39s
1408	1.2526	49.34s
1409	1.2526	49.29s
1410	1.2526	49.25s
1411	1.2526	49.21s
1412	1.2526	49.20s
1413	1.2525	49.20s
1414	1.2525	49.19s
1415	1.2525	49.16s
1416	1.2525	49.12s

1417	1.2525	49.09s
1418	1.2524	49.09s
		49.05s
1419	1.2524	
1420	1.2524	49.01s
1421	1.2524	48.97s
1422	1.2523	48.92s
1423	1.2523	48.87s
1424	1.2523	48.82s
1425	1.2523	48.77s
1426	1.2523	48.74s
1427	1.2522	48.69s
1428	1.2522	48.64s
1429	1.2522	48.58s
1430	1.2522	48.54s
1431	1.2521	48.50s
1432	1.2521	48.45s
	1.2521	48.40s
1433		
1434	1.2521	48.37s
1435	1.2521	48.34s
1436	1.2520	48.29s
1437	1.2520	48.24s
1438	1.2520	48.19s
1439	1.2520	48.14s
1440	1.2520	48.10s
1441	1.2519	48.05s
1442	1.2519	48.00s
1443	1.2519	47.95s
1444	1.2519	47.89s
1445	1.2518	47.84s
1446	1.2518	47.80s
1447	1.2518	47.75s
1448	1.2518	47.70s
1449		
	1.2518	47.66s
1450	1.2517	47.62s
1451	1.2517	47.57s
1452	1.2517	47.51s
1453	1.2517	47.46s
1454	1.2516	47.41s
1455	1.2516	47.35s
1456	1.2516	47.30s
1457	1.2516	47.25s
	1.2516	47.23s
1458		
1459	1.2515	47.15s
1460	1.2515	47.11s
1461	1.2515	47.07s
1462	1.2515	47.07s
1463	1.2515	47.04s
1464	1.2514	47.02s
1465	1.2514	46.98s
1466	1.2514	46.94s
1467	1.2514	46.90s
1468	1.2514	46.86s
1469	1.2513	46.82s
1470	1.2513	46.77s
1471	1.2513	46.72s
1472	1.2513	46.67s
1473	1.2512	46.62s
11/3	1.2.7.1.	10.023

1474	1.2512	46.59s
1475	1.2512	46.56s
1476	1.2512	46.53s
1477	1.2512	46.49s
	1.2511	
1478		46.45s
1479	1.2511	46.40s
1480	1.2511	46.35s
1481	1.2511	46.29s
1482	1.2511	46.24s
1483	1.2510	46.19s
1484	1.2510	46.14s
1485	1.2510	46.08s
1486	1.2510	46.04s
1487	1.2509	46.01s
1488	1.2509	45.98s
1489	1.2509	45.94s
1490	1.2509	45.88s
1491	1.2509	45.83s
1492	1.2508	45.77s
1493	1.2508	45.73s
1494	1.2508	45.69s
1495	1.2508	45.64s
	1.2508	
1496		45.60s
1497	1.2507	45.61s
1498	1.2507	45.59s
1499	1.2507	45.54s
1500	1.2507	45.50s
1501	1.2507	45.46s
1502	1.2506	45.42s
1503	1.2506	45.38s
1504	1.2506	45.34s
1505	1.2506	45.30s
1506	1.2505	45.25s
1507	1.2505	45.20s
1508	1.2505	45.14s
1509	1.2505	45.09s
1510	1.2505	45.04s
1511	1.2504	44.99s
1512	1.2504	44.93s
1513	1.2504	44.88s
1514	1.2504	44.82s
1515	1.2504	44.77s
1516	1.2503	44.72s
1517	1.2503	44.66s
1518	1.2503	44.62s
1519	1.2503	44.56s
1520	1.2503	44.51s
1521	1.2502	44.46s
1522	1.2502	44.42s
1523	1.2502	44.37s
1524	1.2502	44.31s
1525	1.2502	44.26s
1526	1.2501	44.20s
1527	1.2501	44.15s
1528	1.2501	44.10s
1529	1.2501	44.06s
1530	1.2500	44.00s

1531	1.2500	43.95s
1532	1.2500	43.89s
1533	1.2500	43.84s
1534	1.2500	43.79s
1535	1.2499	43.75s
1536	1.2499	43.70s
1537	1.2499	43.64s
1538	1.2499	43.59s
1539	1.2499	43.53s
1540	1.2498	43.48s
1541	1.2498	43.43s
1542	1.2498	43.38s
1543	1.2498	43.34s
1544	1.2498	43.33s
1545	1.2497	43.30s
1546	1.2497	43.27s
1547	1.2497	43.23s
1548	1.2497	43.18s
1549	1.2497	43.14s
1550	1.2496	43.10s
1551	1.2496	43.06s
1552	1.2496	43.02s
1553	1.2496	42.98s
1554	1.2496	42.94s
1555	1.2495	42.91s
1556	1.2495	42.86s
1557	1.2495	42.81s
1558	1.2495	42.76s
1559	1.2495	42.71s
1560	1.2494	42.66s
1561	1.2494	42.60s
1562	1.2494	42.57s
1563	1.2494	42.54s
1564	1.2493	42.49s
1565	1.2493	42.44s
1566	1.2493	42.38s
1567	1.2493	42.33s
1568	1.2493	42.29s
1569	1.2492	42.28s
1570	1.2492	42.24s
1571	1.2492	42.19s
1572	1.2492	42.14s
1573	1.2492	42.09s
1574	1.2491	42.03s
1575	1.2491	42.01s
1576	1.2491	41.96s
1577	1.2491	41.93s
1578	1.2491	41.89s
1579	1.2490	41.84s
1580	1.2490	41.79s
1581	1.2490	41.74s
1582	1.2490	41.69s
1583	1.2490	41.65s
1584	1.2489	41.59s
1585	1.2489	41.57s
1586	1.2489	41.52s
1587	1.2489	41.46s

1588	1.2489	41.41s
1589	1.2488	41.36s
1590	1.2488	41.31s
1591	1.2488	41.26s
1592	1.2488	41.21s
1593	1.2488	41.17s
1594	1.2487	41.12s
1595	1.2487	41.08s
1596	1.2487	41.04s
1597	1.2487	40.99s
1598	1.2487	40.94s
1599	1.2486	40.89s
1600	1.2486	40.84s
1601	1.2486	40.79s
1602	1.2486	40.74s
1603	1.2486	40.69s
1604	1.2485	40.63s
1605	1.2485	40.58s
1606	1.2485	40.53s
1607	1.2485	40.48s
	1.2485	
1608		40.43s
1609	1.2484	40.39s
1610	1.2484	40.34s
1611	1.2484	40.29s
1612	1.2484	40.24s
1613	1.2484	40.19s
1614	1.2483	40.14s
1615	1.2483	40.09s
1616	1.2483	40.04s
1617	1.2483	39.99s
1618	1.2483	39.93s
1619	1.2482	39.88s
1620	1.2482	39.83s
1621	1.2482	39.78s
1622	1.2482	39.73s
1623	1.2482	39.68s
1624	1.2481	39.63s
1625	1.2481	39.58s
1626	1.2481	39.53s
1627	1.2481	39.48s
1628	1.2481	39.43s
1629	1.2480	39.38s
	1.2480	39.32s
1630		
1631	1.2480	39.27s
1632	1.2480	39.22s
1633	1.2480	39.18s
1634	1.2479	39.14s
1635	1.2479	39.09s
1636	1.2479	39.04s
1637	1.2479	38.99s
1638	1.2479	38.96s
1639	1.2478	39.00s
1640	1.2478	38.96s
1641	1.2478	38.92s
1642	1.2478	38.88s
1643	1.2478	38.84s
1644	1.2478	38.80s

1645	1.2477	38.76s
1646	1.2477	38.72s
1647	1.2477	38.67s
1648	1.2477	38.63s
1649	1.2477	38.58s
1650	1.2476	38.53s
1651	1.2476	38.48s
1652	1.2476	38.43s
1653	1.2476	38.38s
1654	1.2476	38.32s
1655	1.2475	38.27s
1656	1.2475	38.22s
1657	1.2475	38.17s
1658	1.2475	38.12s
1659	1.2475	38.07s
1660	1.2474	38.03s
1661	1.2474	37.98s
1662	1.2474	37.93s
1663	1.2474	37.88s
1664	1.2474	37.83s
1665	1.2473	37.78s
1666	1.2473	37.72s
1667	1.2473	37.67s
1668	1.2473	37.62s
1669	1.2473	37.57s
1670	1.2472	37.53s
1671	1.2472	37.49s
1672	1.2472	37.45s
1673	1.2472	37.41s
1674	1.2472	37.36s
1675	1.2471	37.32s
1676	1.2471	37.28s
1677	1.2471	37.26s
1678	1.2471	37.22s
1679	1.2471	37.18s
1680	1.2470	37.15s
1681	1.2470	37.15s
1682	1.2470	37.14s
1683	1.2470	37.12s
1684	1.2470	37.08s
1685	1.2470	37.03s
1686	1.2469	36.99s
1687	1.2469	36.94s
1688	1.2469	36.89s
1689	1.2469	36.84s
1690	1.2469	36.80s
1691	1.2468	36.75s
1692	1.2468	36.70s
1693	1.2468	36.65s
1694	1.2468	36.59s
1695	1.2468	36.54s
1696	1.2467	36.49s
1697	1.2467	36.44s
1698	1.2467	36.39s
1699	1.2467	36.34s
1700	1.2467	36.28s
1701	1.2466	36.23s

1702	1.2466	36.18s
1703	1.2466	36.13s
1704	1.2466	36.08s
1705	1.2466	36.03s
1706	1.2466	35.98s
1707	1.2465	35.93s
1708	1.2465	35.88s
1709	1.2465	35.83s
1710	1.2465	35.78s
1711	1.2465	35.72s
1712	1.2464	35.67s
1713	1.2464	35.62s
1714	1.2464	35.57s
1715	1.2464	35.52s
1716	1.2464	35.47s
1717	1.2463	35.41s
1718	1.2463	35.36s
	1.2463	35.31s
1719		
1720	1.2463	35.26s
1721	1.2463	35.21s
1722	1.2462	35.16s
1723	1.2462	35.11s
1724	1.2462	35.06s
1725	1.2462	35.00s
1726	1.2462	34.96s
1727	1.2462	34.91s
1728	1.2461	34.86s
1729	1.2461	34.82s
1730	1.2461	34.77s
1731	1.2461	34.72s
1732	1.2461	34.67s
1733	1.2460	34.62s
1734	1.2460	34.58s
1735	1.2460	34.53s
1736	1.2460	34.48s
1737	1.2460	34.43s
1738	1.2459	34.38s
1739	1.2459	34.33s
1740	1.2459	34.28s
	1.2459	34.25s
1741		
1742	1.2459	34.20s
1743	1.2459	34.16s
1744	1.2458	34.12s
1745	1.2458	34.07s
1746	1.2458	34.02s
1747	1.2458	33.97s
1748	1.2458	33.92s
1749	1.2457	33.88s
1750	1.2457	33.84s
1751	1.2457	33.79s
1752	1.2457	33.74s
1753	1.2457	33.69s
1754	1.2456	33.64s
1755	1.2456	33.58s
1756	1.2456	33.53s
1757	1.2456	33.48s
1758	1.2456	33.44s

1759	1.2456	33.40s
1760	1.2455	33.35s
1761	1.2455	33.30s
1762	1.2455	33.26s
1763	1.2455	33.21s
1764	1.2455	33.17s
1765	1.2454	33.12s
1766	1.2454	33.07s
1767	1.2454	33.02s
1768	1.2454	
		32.97s
1769	1.2454	32.92s
1770	1.2454	32.86s
1771	1.2453	32.81s
1772	1.2453	32.76s
	1.2453	32.71s
1773		
1774	1.2453	32.66s
1775	1.2453	32.61s
1776	1.2452	32.56s
1777	1.2452	32.51s
1778	1.2452	32.46s
1779	1.2452	32.41s
1780	1.2452	32.36s
1781	1.2451	32.31s
1782	1.2451	32.26s
1783	1.2451	32.21s
1784	1.2451	32.16s
1785	1.2451	32.11s
1786	1.2451	32.06s
1787	1.2450	32.01s
1788	1.2450	31.96s
1789	1.2450	31.91s
1790	1.2450	31.86s
1791	1.2450	31.82s
1792	1.2449	31.77s
1793	1.2449	31.73s
1794	1.2449	31.68s
1795	1.2449	31.64s
1796	1.2449	31.59s
1797	1.2449	31.54s
1798	1.2448	31.51s
1799	1.2448	31.49s
1800	1.2448	31.45s
1801	1.2448	31.41s
1802	1.2448	31.39s
1803	1.2447	31.36s
1804	1.2447	31.32s
1805	1.2447	31.27s
1806	1.2447	31.22s
1807	1.2447	31.18s
1808	1.2446	31.14s
1809	1.2446	31.09s
1810	1.2446	31.04s
1811	1.2446	31.04s
1812	1.2446	30.96s
1813	1.2446	30.91s
1814	1.2445	30.86s
1815	1.2445	30.81s
	-	

1816	1.2445	30.76s
1817	1.2445	30.71s
1818	1.2445	30.66s
1819	1.2445	30.62s
1820	1.2444	30.57s
1821	1.2444	30.52s
1822	1.2444	30.47s
1823	1.2444	30.42s
1824	1.2444	30.38s
1825	1.2443	30.34s
1826	1.2443	30.29s
1827	1.2443	30.24s
1828	1.2443	30.19s
1829	1.2443	30.14s
1830	1.2443	30.09s
1831	1.2442	30.04s
1832	1.2442	29.99s
1833	1.2442	29.95s
1834	1.2442	29.92s
1835	1.2442	29.87s
1836	1.2441	29.82s
1837	1.2441	29.77s
1838	1.2441	29.72s
1839	1.2441	29.67s
1840	1.2441	29.62s
1841	1.2441	29.58s
1842	1.2440	29.53s
1843	1.2440	29.48s
1844	1.2440	29.43s
1845	1.2440	29.38s
1846	1.2440	29.33s
1847	1.2439	29.28s
1848	1.2439	29.23s
1849	1.2439	29.18s
1850	1.2439	29.13s
1851	1.2439	29.08s
1852	1.2439	29.03s
1853	1.2438	28.98s
1854	1.2438	28.93s
1855	1.2438	28.89s
1856	1.2438	
		28.84s
1857	1.2438	28.79s
1858	1.2437	28.74s
1859	1.2437	28.69s
1860	1.2437	28.64s
1861	1.2437	28.59s
1862	1.2437	28.54s
1863	1.2437	28.49s
1864	1.2436	28.44s
1865	1.2436	28.39s
1866	1.2436	28.34s
1867	1.2436	28.29s
1868	1.2436	28.24s
1869	1.2436	28.20s
1870	1.2435	28.15s
1871	1.2435	28.10s
1872	1.2435	28.05s
10/2	1.433	20.008

1873	1.2435	28.00s
1874	1.2435	27.95s
1875	1.2434	27.90s
1876	1.2434	27.85s
1877	1.2434	27.80s
1878	1.2434	27.75s
1879	1.2434	27.70s
1880	1.2434	27.65s
1881	1.2433	27.60s
1882	1.2433	27.55s
1883	1.2433	27.51s
1884	1.2433	27.46s
1885	1.2433	27.41s
1886	1.2433	27.36s
1887	1.2432	27.31s
1888	1.2432	27.26s
1889	1.2432	27.21s
1890	1.2432	27.17s
1891	1.2432	27.12s
1892	1.2431	27.07s
1893	1.2431	27.02s
1894	1.2431	26.97s
1895	1.2431	26.92s
1896	1.2431	26.87s
1897	1.2431	26.82s
1898	1.2430	26.77s
1899	1.2430	26.77s
1900	1.2430	26.68s
1901	1.2430	26.63s
1902	1.2430	26.58s
1903	1.2430	26.53s
1904	1.2429	26.48s
1905	1.2429	26.43s
1906	1.2429	26.38s
1907	1.2429	26.34s
1908	1.2429	26.29s
1909	1.2429	26.24s
1910	1.2428	26.19s
1911	1.2428	26.14s
1912	1.2428	26.09s
1913	1.2428	26.04s
1914	1.2428	25.99s
1915	1.2427	25.95s
1916	1.2427	25.90s
1917	1.2427	25.85s
1918	1.2427	25.80s
1919	1.2427	25.75s
1920	1.2427	25.70s
1921	1.2426	25.65s
1922	1.2426	25.61s
1923	1.2426	25.56s
1924	1.2426	25.51s
1925	1.2426	25.46s
1926	1.2426	25.41s
1927	1.2425	25.37s
1928	1.2425	25.32s
1929	1.2425	25.27s
- -	· = ===	, _ , _

1930	1.2425	25.22s
1931	1.2425	25.18s
1932	1.2425	25.13s
1933	1.2424	25.08s
1934	1.2424	25.03s
1935	1.2424	24.98s
1936	1.2424	24.93s
1937	1.2424	24.89s
1938	1.2423	24.84s
1939	1.2423	24.79s
1940	1.2423	24.74s
1941	1.2423	24.69s
1942	1.2423	24.65s
1943	1.2423	24.60s
1944	1.2422	24.55s
1945	1.2422	24.50s
1946	1.2422	24.45s
1947	1.2422	24.41s
1948	1.2422	24.36s
1949	1.2422	24.31s
1950	1.2421	24.26s
	1.2421	
1951		24.21s
1952	1.2421	24.17s
1953	1.2421	24.12s
1954	1.2421	24.07s
1955	1.2421	24.02s
1956	1.2420	23.98s
1957	1.2420	23.93s
1958	1.2420	23.88s
1959	1.2420	23.83s
1960	1.2420	23.79s
1961	1.2420	23.74s
1962	1.2419	23.69s
	1.2419	23.64s
1963		
1964	1.2419	23.59s
1965	1.2419	23.55s
1966	1.2419	23.50s
1967	1.2419	23.45s
1968	1.2418	23.41s
1969	1.2418	23.36s
1970	1.2418	23.31s
1971	1.2418	23.26s
1972	1.2418	23.21s
1973	1.2417	23.17s
1974	1.2417	23.12s
1975	1.2417	23.07s
1976	1.2417	23.02s
1977	1.2417	22.98s
1978	1.2417	22.93s
1979	1.2416	22.88s
	1.2416	22.84s
1980		
1981	1.2416	22.79s
1982	1.2416	22.74s
1983	1.2416	22.70s
1984	1.2416	22.65s
1985	1.2415	22.60s
1986	1.2415	22.55s
1700	1.411	22.335

1987	1.2415	22.51s
1988	1.2415	22.46s
1989	1.2415	22.41s
1990	1.2415	22.37s
1991	1.2414	22.32s
	1.2414	
1992		22.27s
1993	1.2414	22.22s
1994	1.2414	22.18s
1995	1.2414	22.13s
1996	1.2414	22.08s
1997	1.2413	22.04s
1998	1.2413	21.99s
1999	1.2413	21.94s
2000	1.2413	21.89s
2001	1.2413	21.85s
2002	1.2413	21.80s
2003	1.2412	21.76s
2004	1.2412	21.72s
2005	1.2412	21.67s
2006	1.2412	21.62s
2007	1.2412	21.58s
2008	1.2412	21.53s
2009	1.2411	21.49s
2010	1.2411	21.44s
2011	1.2411	21.39s
2012	1.2411	21.35s
2012	1.2411	21.30s
2014	1.2411	21.25s
2015	1.2410	21.21s
2016	1.2410	21.16s
2017	1.2410	21.11s
2018	1.2410	21.07s
2019	1.2410	21.02s
2020	1.2410	20.98s
2021	1.2409	20.93s
2022	1.2409	20.88s
2023	1.2409	20.83s
2024	1.2409	20.79s
2025	1.2409	20.74s
2026	1.2409	20.69s
2027	1.2408	20.65s
2028	1.2408	20.60s
2029	1.2408	20.55s
2030	1.2408	20.51s
2031	1.2408	20.46s
2032	1.2408	20.41s
2033	1.2407	20.37s
2034	1.2407	20.32s
2035	1.2407	20.27s
2036	1.2407	20.23s
2037	1.2407	20.18s
2038	1.2407	20.13s
2039	1.2406	20.09s
2040	1.2406	20.04s
2041	1.2406	19.99s
2042	1.2406	19.95s
2043	1.2406	19.90s

2044	1.2406	19.85s
2045	1.2405	19.81s
2046	1.2405	19.76s
2047	1.2405	19.72s
2048	1.2405	19.67s
2049	1.2405	19.63s
2050	1.2405	19.58s
2051	1.2404	19.54s
2052	1.2404	19.49s
2053	1.2404	19.44s
2054	1.2404	19.40s
2055	1.2404	19.35s
2056	1.2404	19.30s
2057	1.2403	19.26s
2058	1.2403	19.21s
2059	1.2403	19.17s
2060	1.2403	19.12s
2061	1.2403	19.07s
2062	1.2403	19.03s
2063	1.2402	18.98s
2064	1.2402	18.93s
2065	1.2402	18.89s
2066	1.2402	18.84s
2067	1.2402	18.80s
2068	1.2402	18.75s
2069	1.2401	18.70s
2070	1.2401	18.66s
2071	1.2401	18.61s
2072	1.2401	18.57s
2073	1.2401	18.52s
2074	1.2401	18.47s
2075	1.2400	18.43s
2076	1.2400	18.38s
2077	1.2400	18.34s
2078	1.2400	18.29s
2079	1.2400	18.24s
2080	1.2400	18.20s
2081	1.2399	18.16s
2082	1.2399	18.11s
2083	1.2399	18.06s
2084	1.2399	18.02s
2085	1.2399	17.97s
2086	1.2399	17.97s
	1.2398	17.92s 17.88s
2087	1.2398	17.83s
2088	1.2398	17.03s
2089	1.2398	17.79s
2090	1.2398	
2091	1.2398	17.70s
2092		17.65s
2093	1.2397	17.60s
2094	1.2397	17.56s
2095	1.2397	17.52s
2096	1.2397	17.47s
2097	1.2397	17.43s
2098	1.2397	17.38s
2099	1.2396	17.33s
2100	1.2396	17.29s

2101	1.2396	17.24s
2102	1.2396	17.20s
2103	1.2396	17.15s
2104	1.2396	17.10s
2105	1.2396	17.06s
2106	1.2395	17.01s
2107	1.2395	16.97s
2108	1.2395	16.92s
2109	1.2395	16.88s
2110	1.2395	16.83s
2111	1.2395	16.79s
2112	1.2394	16.74s
2113		
	1.2394	16.69s
2114	1.2394	16.65s
2115	1.2394	16.60s
2116	1.2394	16.56s
2117	1.2394	16.51s
2118	1.2393	16.47s
2119	1.2393	16.42s
2120	1.2393	16.37s
2121	1.2393	16.33s
2122	1.2393	16.28s
2123	1.2393	16.24s
2124	1.2392	16.19s
2125	1.2392	16.15s
2126	1.2392	16.10s
2127	1.2392	16.06s
2128	1.2392	16.01s
2129	1.2392	15.97s
2130	1.2391	15.92s
2131	1.2391	15.88s
2132	1.2391	15.84s
2133	1.2391	15.80s
2134	1.2391	15.76s
2135	1.2391	15.71s
2136	1.2391	15.67s
2137	1.2390	15.63s
2138	1.2390	15.58s
2139	1.2390	15.54s
2140	1.2390	15.50s
2141	1.2390	15.46s
2142	1.2390	15.41s
2143	1.2389	15.38s
2144	1.2389	15.33s
	1.2389	15.29s
2145		
2146	1.2389	15.24s
2147	1.2389	15.20s
2148	1.2389	15.15s
2149	1.2388	15.11s
2150	1.2388	15.06s
2151	1.2388	15.02s
2152	1.2388	14.97s
2153	1.2388	14.93s
2154	1.2388	14.88s
2155	1.2387	14.83s
2156	1.2387	14.79s
2157	1.2387	14.79s
4 ± J I	1.2301	14./45

2158	1.2387	14.70s
2159	1.2387	14.65s
2160	1.2387	14.61s
2161	1.2386	14.56s
2162	1.2386	14.52s
2163	1.2386	14.47s
2164	1.2386	14.43s
2165	1.2386	14.38s
2166	1.2386	14.34s
2167	1.2386	14.29s
2168	1.2385	14.25s
2169	1.2385	14.20s
2170	1.2385	14.16s
2171	1.2385	14.11s
2172	1.2385	14.07s
2173	1.2385	14.02s
2174	1.2384	13.98s
		13.93s
2175	1.2384	
2176	1.2384	13.89s
2177	1.2384	13.85s
2178	1.2384	13.80s
2179	1.2384	13.76s
2180	1.2383	13.71s
2181	1.2383	13.67s
2182	1.2383	13.62s
2183	1.2383	13.58s
2184	1.2383	13.53s
2185	1.2383	13.49s
2186	1.2383	13.44s
2187	1.2382	13.40s
2188	1.2382	13.405 13.35s
	1.2382	13.31s
2189		
2190	1.2382	13.26s
2191	1.2382	13.22s
2192	1.2382	13.17s
2193	1.2381	13.13s
2194	1.2381	13.08s
2195	1.2381	13.04s
2196	1.2381	12.99s
2197	1.2381	12.95s
2198	1.2381	12.90s
2199	1.2380	12.86s
2200	1.2380	12.81s
2201	1.2380	12.77s
2202	1.2380	12.72s
2203	1.2380	12.68s
2204	1.2380	12.63s
2205	1.2380	12.03s
	1.2379	12.54s
2206		
2207	1.2379	12.50s
2208	1.2379	12.45s
2209	1.2379	12.41s
2210	1.2379	12.36s
2211	1.2379	12.32s
2212	1.2378	12.28s
2213	1.2378	12.23s
2214	1.2378	12.19s

2215	1.2378	12.14s
2216	1.2378	12.10s
2217	1.2378	12.05s
2218	1.2377	12.01s
		11.96s
2219	1.2377	
2220	1.2377	11.92s
2221	1.2377	11.87s
2222	1.2377	11.83s
2223	1.2377	11.79s
2224	1.2377	11.74s
2225	1.2376	11.70s
2226	1.2376	11.65s
2227	1.2376	11.61s
2228	1.2376	11.56s
2229	1.2376	11.52s
2230	1.2376	11.47s
2231	1.2375	11.43s
2232	1.2375	11.39s
2233	1.2375	11.34s
2234	1.2375	11.30s
2235	1.2375	11.25s
2236	1.2375	11.21s
2237	1.2375	11.16s
2238	1.2374	11.12s
	1.2374	11.08s
2239		
2240	1.2374	11.03s
2241	1.2374	10.99s
2242	1.2374	10.94s
2243	1.2374	10.90s
2244	1.2373	10.85s
2245	1.2373	10.81s
2246	1.2373	10.77s
2247	1.2373	10.72s
2248	1.2373	10.68s
2249	1.2373	10.63s
2250	1.2372	10.59s
2251	1.2372	10.54s
2252	1.2372	10.50s
=		
2253	1.2372	10.46s
2254	1.2372	10.41s
2255	1.2372	10.37s
2256	1.2372	10.32s
2257	1.2371	10.28s
2258	1.2371	10.23s
2259	1.2371	10.19s
2260	1.2371	10.15s
2261	1.2371	10.10s
2262	1.2371	10.06s
2263	1.2370	10.01s
2264	1.2370	9.97s
2265	1.2370	9.93s
2266	1.2370	9.88s
2267	1.2370	9.84s
2268	1.2370	9.79s
2269	1.2370	9.75s
2270	1.2369	9.71s
2271	1.2369	9.66s

2273 1.2369 9.57 2274 1.2369 9.53 2275 1.2368 9.49 2276 1.2368 9.49 2277 1.2368 9.40 2278 1.2368 9.35 2279 1.2368 9.31 2280 1.2368 9.27 2281 1.2368 9.22 2282 1.2368 9.18 2283 1.2367 9.19 2284 1.2367 9.09 2285 1.2367 9.05 2286 1.2367 9.06 2287 1.2367 9.06 2288 1.2367 9.06 2287 1.2366 8.87 2290 1.2366 8.87 2291 1.2366 8.78 2292 1.2366 8.65 2293 1.2366 8.65 2294 1.2366 8.65 2295 1.2366 8.65 2297 1.2365 8.36 2300 1.2365 8.39			
2273 1.2369 9.57 2274 1.2369 9.53 2275 1.2368 9.49 2276 1.2368 9.49 2277 1.2368 9.49 2278 1.2368 9.35 2279 1.2368 9.31 2280 1.2368 9.27 2281 1.2368 9.22 2282 1.2368 9.22 2283 1.2367 9.13 2284 1.2367 9.05 2285 1.2367 9.05 2286 1.2367 9.05 2287 1.2367 9.05 2288 1.2367 9.05 2287 1.2366 8.87 2290 1.2366 8.83 2291 1.2366 8.65 2292 1.2366 8.69 2294 1.2366 8.69 2295 1.2366 8.61 2296 1.2365 8.49 2299 1.2365 8.49 2300 1.2365 8.49	2272	1.2369	9.62s
2274 1.2369 9.53 2276 1.2368 9.49 2277 1.2368 9.40 2278 1.2368 9.35 2279 1.2368 9.31 2280 1.2368 9.27 2281 1.2368 9.18 2282 1.2368 9.18 2283 1.2367 9.09 2284 1.2367 9.05 2285 1.2367 9.05 2286 1.2367 9.05 2287 1.2367 8.96 2289 1.2367 8.91 2289 1.2367 8.91 2289 1.2366 8.83 2290 1.2366 8.87 2291 1.2366 8.69 2292 1.2366 8.69 2293 1.2366 8.69 2294 1.2366 8.69 2295 1.2366 8.69 2296 1.2365 8.48 2299 1.2365 8.36 2301 1.2365 8.35			
2275 1.2369 9.49 2276 1.2368 9.44 2277 1.2368 9.40 2278 1.2368 9.35 2279 1.2368 9.31 2280 1.2368 9.22 2281 1.2368 9.22 2282 1.2368 9.18 2283 1.2367 9.05 2284 1.2367 9.05 2285 1.2367 9.05 2286 1.2367 9.05 2287 1.2367 9.06 2288 1.2367 9.06 2289 1.2366 8.87 2290 1.2366 8.83 2291 1.2366 8.74 2292 1.2366 8.65 2293 1.2366 8.65 2294 1.2366 8.65 2295 1.2366 8.65 2297 1.2365 8.56 2299 1.2365 8.35 2300 1.2365 8.35 2301 1.2364 8.02			
2276 1.2368 9.44 2277 1.2368 9.40 2278 1.2368 9.35 2279 1.2368 9.31 2280 1.2368 9.27 2281 1.2368 9.22 2282 1.2368 9.18 2283 1.2367 9.09 2284 1.2367 9.05 2285 1.2367 9.05 2286 1.2367 9.05 2287 1.2367 8.96 2289 1.2366 8.87 2289 1.2366 8.87 2290 1.2366 8.83 2291 1.2366 8.69 2292 1.2366 8.69 2293 1.2366 8.69 2294 1.2366 8.69 2295 1.2366 8.61 2296 1.2365 8.46 2297 1.2365 8.48 2299 1.2365 8.49 2300 1.2365 8.35 2301 1.2364 8.02			
2277 1.2368 9.40 2278 1.2368 9.35 2279 1.2368 9.31 2280 1.2368 9.27 2281 1.2368 9.27 2282 1.2368 9.18 2283 1.2367 9.09 2284 1.2367 9.05 2285 1.2367 9.05 2287 1.2367 9.06 2287 1.2367 8.96 2289 1.2367 8.91 2289 1.2366 8.87 2290 1.2366 8.83 2291 1.2366 8.74 2292 1.2366 8.65 2293 1.2366 8.65 2294 1.2366 8.65 2295 1.2366 8.61 2296 1.2365 8.56 2297 1.2365 8.48 2300 1.2365 8.39 2301 1.2365 8.39 2302 1.2364 8.26 2303 1.2364 8.26			
2278 1.2368 9.35 2279 1.2368 9.31 2280 1.2368 9.27 2281 1.2368 9.22 2282 1.2368 9.18 2283 1.2367 9.09 2284 1.2367 9.05 2285 1.2367 9.05 2287 1.2367 8.96 2288 1.2367 8.91 2289 1.2366 8.83 2290 1.2366 8.83 2291 1.2366 8.69 2292 1.2366 8.69 2293 1.2366 8.69 2294 1.2366 8.69 2295 1.2366 8.69 2297 1.2365 8.52 2298 1.2365 8.52 2299 1.2365 8.49 2300 1.2365 8.39 2301 1.2364 8.26 2302 1.2364 8.26 2303 1.2364 8.26 2304 1.2364 8.26			
2279 1.2368 9.31 2280 1.2368 9.27 2281 1.2368 9.22 2282 1.2368 9.18 2283 1.2367 9.18 2284 1.2367 9.05 2285 1.2367 9.06 2287 1.2367 9.06 2288 1.2367 8.91 2289 1.2366 8.87 2290 1.2366 8.74 2291 1.2366 8.74 2292 1.2366 8.69 2294 1.2366 8.69 2295 1.2366 8.69 2296 1.2365 8.56 2297 1.2365 8.52 2298 1.2365 8.35 2300 1.2365 8.35 2301 1.2365 8.35 2302 1.2364 8.26 2303 1.2364 8.26 2304 1.2364 8.26 2305 1.2364 8.06 2306 1.2364 8.06	2277	1.2368	9.40s
2280 1.2368 9.27 2281 1.2368 9.28 2282 1.2368 9.18 2283 1.2367 9.13 2284 1.2367 9.09 2285 1.2367 9.09 2286 1.2367 9.00 2287 1.2367 8.96 2289 1.2366 8.87 2289 1.2366 8.83 2290 1.2366 8.78 2291 1.2366 8.78 2292 1.2366 8.69 2293 1.2366 8.69 2294 1.2366 8.69 2295 1.2366 8.69 2297 1.2365 8.56 2297 1.2365 8.39 2300 1.2365 8.39 2301 1.2365 8.39 2302 1.2364 8.26 2303 1.2364 8.26 2304 1.2364 8.26 2305 1.2364 8.09 2306 1.2364 8.09	2278	1.2368	9.35s
2281 1.2368 9.22 2282 1.2368 9.18 2283 1.2367 9.13 2284 1.2367 9.05 2285 1.2367 9.05 2287 1.2367 9.06 2288 1.2367 8.96 2289 1.2366 8.87 2290 1.2366 8.78 2291 1.2366 8.78 2292 1.2366 8.69 2293 1.2366 8.69 2294 1.2366 8.69 2295 1.2366 8.69 2297 1.2365 8.52 2298 1.2365 8.48 2299 1.2365 8.39 2300 1.2365 8.35 2301 1.2365 8.35 2302 1.2364 8.30 2303 1.2364 8.22 2304 1.2364 8.22 2305 1.2364 8.06 2306 1.2364 8.09 2307 1.2364 8.09	2279	1.2368	9.31s
2281 1.2368 9.22 2282 1.2368 9.18 2283 1.2367 9.13 2284 1.2367 9.05 2285 1.2367 9.05 2287 1.2367 9.06 2288 1.2367 8.96 2289 1.2366 8.87 2290 1.2366 8.78 2291 1.2366 8.78 2292 1.2366 8.69 2293 1.2366 8.69 2294 1.2366 8.69 2295 1.2366 8.69 2297 1.2365 8.52 2298 1.2365 8.48 2299 1.2365 8.39 2300 1.2365 8.35 2301 1.2365 8.35 2302 1.2364 8.30 2303 1.2364 8.22 2304 1.2364 8.22 2305 1.2364 8.06 2306 1.2364 8.09 2307 1.2364 8.09			9.27s
2282 1.2368 9.18 2283 1.2367 9.13 2284 1.2367 9.05 2285 1.2367 9.06 2287 1.2367 9.06 2288 1.2367 8.96 2289 1.2366 8.87 2290 1.2366 8.83 2291 1.2366 8.74 2292 1.2366 8.69 2293 1.2366 8.69 2294 1.2366 8.69 2295 1.2366 8.61 2296 1.2365 8.56 2297 1.2365 8.56 2298 1.2365 8.48 2299 1.2365 8.39 2300 1.2365 8.39 2301 1.2365 8.39 2302 1.2364 8.30 2303 1.2364 8.26 2304 1.2364 8.26 2305 1.2364 8.30 2306 1.2364 8.06 2307 1.2364 8.06			9.22s
2283 1.2367 9.13 2284 1.2367 9.09 2285 1.2367 9.00 2287 1.2367 8.96 2288 1.2367 8.91 2289 1.2366 8.87 2290 1.2366 8.78 2291 1.2366 8.78 2292 1.2366 8.69 2294 1.2366 8.65 2295 1.2366 8.61 2296 1.2365 8.56 2297 1.2365 8.52 2299 1.2365 8.48 2299 1.2365 8.39 2300 1.2365 8.39 2301 1.2365 8.39 2302 1.2364 8.20 2303 1.2364 8.20 2304 1.2364 8.20 2305 1.2364 8.09 2306 1.2364 8.09 2307 1.2364 8.09 2308 1.2364 8.09 2311 1.2363 7.96			
2284 1.2367 9.09 2285 1.2367 9.05 2287 1.2367 8.96 2288 1.2367 8.91 2289 1.2366 8.87 2290 1.2366 8.78 2291 1.2366 8.74 2293 1.2366 8.69 2294 1.2366 8.69 2295 1.2365 8.56 2297 1.2365 8.56 2299 1.2365 8.48 2299 1.2365 8.39 2300 1.2365 8.39 2301 1.2365 8.35 2302 1.2364 8.26 2303 1.2364 8.26 2304 1.2364 8.26 2305 1.2364 8.09 2306 1.2364 8.09 2307 1.2364 8.09 2308 1.2364 8.09 2309 1.2363 7.96 2311 1.2363 7.91 2312 1.2363 7.78			
2285 1.2367 9.05 2287 1.2367 9.06 2288 1.2367 8.96 2289 1.2366 8.87 2290 1.2366 8.78 2291 1.2366 8.78 2292 1.2366 8.69 2293 1.2366 8.69 2294 1.2366 8.69 2295 1.2365 8.56 2297 1.2365 8.56 2298 1.2365 8.48 2299 1.2365 8.39 2300 1.2365 8.39 2301 1.2365 8.39 2302 1.2364 8.30 2303 1.2364 8.26 2304 1.2364 8.26 2305 1.2364 8.09 2306 1.2364 8.09 2307 1.2364 8.09 2308 1.2364 8.09 2310 1.2363 7.96 2311 1.2363 7.96 2312 1.2363 7.78			
2286 1.2367 9.00 2287 1.2367 8.96 2288 1.2367 8.91 2289 1.2366 8.87 2290 1.2366 8.78 2291 1.2366 8.78 2292 1.2366 8.69 2293 1.2366 8.69 2294 1.2366 8.65 2295 1.2365 8.52 2297 1.2365 8.52 2298 1.2365 8.48 2299 1.2365 8.39 2300 1.2365 8.39 2301 1.2365 8.39 2302 1.2364 8.30 2303 1.2364 8.26 2304 1.2364 8.26 2305 1.2364 8.09 2306 1.2364 8.09 2307 1.2364 8.09 2308 1.2364 8.09 2310 1.2363 7.96 2311 1.2363 7.96 2312 1.2363 7.78			
2287 1.2367 8.96 2289 1.2366 8.87 2290 1.2366 8.83 2291 1.2366 8.78 2292 1.2366 8.78 2293 1.2366 8.69 2294 1.2366 8.65 2295 1.2365 8.56 2297 1.2365 8.52 2299 1.2365 8.48 2299 1.2365 8.39 2300 1.2365 8.39 2301 1.2365 8.39 2302 1.2364 8.26 2303 1.2364 8.26 2304 1.2364 8.26 2305 1.2364 8.26 2306 1.2364 8.09 2308 1.2364 8.09 2310 1.2363 7.96 2311 1.2363 7.96 2312 1.2363 7.87 2313 1.2363 7.82 2314 1.2362 7.69 2317 1.2362 7.69			
2288 1.2367 8.91 2289 1.2366 8.87 2290 1.2366 8.83 2291 1.2366 8.78 2292 1.2366 8.74 2293 1.2366 8.69 2294 1.2366 8.61 2295 1.2365 8.56 2297 1.2365 8.52 2298 1.2365 8.48 2299 1.2365 8.39 2300 1.2365 8.39 2301 1.2365 8.35 2302 1.2364 8.26 2303 1.2364 8.26 2304 1.2364 8.26 2305 1.2364 8.26 2306 1.2364 8.09 2308 1.2364 8.09 2310 1.2363 7.96 2311 1.2363 7.91 2312 1.2363 7.91 2313 1.2363 7.91 2314 1.2362 7.69 2315 1.2362 7.69	2286		9.00s
2289 1.2366 8.87 2291 1.2366 8.78 2292 1.2366 8.74 2293 1.2366 8.69 2294 1.2366 8.65 2295 1.2365 8.56 2297 1.2365 8.52 2298 1.2365 8.48 2299 1.2365 8.39 2300 1.2365 8.35 2301 1.2365 8.35 2302 1.2364 8.30 2303 1.2364 8.26 2304 1.2364 8.26 2305 1.2364 8.13 2306 1.2364 8.09 2307 1.2364 8.09 2308 1.2364 8.09 2310 1.2364 8.09 2311 1.2363 7.96 2312 1.2363 7.87 2313 1.2363 7.87 2314 1.2363 7.78 2315 1.2362 7.69 2316 1.2362 7.56	2287	1.2367	8.96s
2290 1.2366 8.83 2291 1.2366 8.78 2292 1.2366 8.74 2293 1.2366 8.69 2294 1.2366 8.65 2295 1.2365 8.56 2297 1.2365 8.52 2298 1.2365 8.48 2299 1.2365 8.39 2300 1.2365 8.35 2301 1.2365 8.35 2302 1.2364 8.30 2303 1.2364 8.26 2304 1.2364 8.26 2305 1.2364 8.13 2306 1.2364 8.09 2307 1.2364 8.09 2308 1.2364 8.09 2310 1.2363 7.96 2311 1.2363 7.96 2312 1.2363 7.87 2313 1.2363 7.82 2314 1.2362 7.69 2315 1.2362 7.56 2318 1.2362 7.56	2288	1.2367	8.91s
2291 1.2366 8.78 2292 1.2366 8.74 2293 1.2366 8.69 2294 1.2366 8.65 2295 1.2365 8.56 2297 1.2365 8.52 2298 1.2365 8.48 2299 1.2365 8.39 2300 1.2365 8.39 2301 1.2365 8.39 2302 1.2364 8.26 2303 1.2364 8.26 2304 1.2364 8.26 2305 1.2364 8.17 2306 1.2364 8.09 2307 1.2364 8.09 2308 1.2364 8.09 2310 1.2363 7.96 2311 1.2363 7.97 2312 1.2363 7.87 2313 1.2363 7.78 2314 1.2363 7.78 2315 1.2362 7.69 2317 1.2362 7.56 2318 1.2362 7.56	2289	1.2366	8.87s
2291 1.2366 8.78 2292 1.2366 8.74 2293 1.2366 8.69 2294 1.2366 8.65 2295 1.2365 8.56 2297 1.2365 8.52 2298 1.2365 8.48 2299 1.2365 8.39 2300 1.2365 8.39 2301 1.2365 8.39 2302 1.2364 8.26 2303 1.2364 8.26 2304 1.2364 8.26 2305 1.2364 8.17 2306 1.2364 8.09 2307 1.2364 8.09 2308 1.2364 8.09 2310 1.2363 7.96 2311 1.2363 7.97 2312 1.2363 7.87 2313 1.2363 7.78 2314 1.2363 7.78 2315 1.2362 7.69 2317 1.2362 7.56 2318 1.2362 7.56	2290	1.2366	8.83s
2292 1.2366 8.74 2293 1.2366 8.69 2294 1.2366 8.65 2295 1.2365 8.56 2297 1.2365 8.52 2298 1.2365 8.48 2299 1.2365 8.39 2300 1.2365 8.39 2301 1.2365 8.35 2302 1.2364 8.26 2303 1.2364 8.26 2304 1.2364 8.22 2305 1.2364 8.13 2306 1.2364 8.09 2308 1.2364 8.09 2310 1.2364 8.09 2311 1.2363 7.96 2312 1.2363 7.97 2313 1.2363 7.87 2314 1.2363 7.78 2315 1.2362 7.69 2317 1.2362 7.69 2318 1.2362 7.56 2321 1.2362 7.56 2322 1.2361 7.39			8.78s
2293 1.2366 8.69 2294 1.2366 8.65 2295 1.2365 8.56 2297 1.2365 8.52 2298 1.2365 8.48 2299 1.2365 8.39 2300 1.2365 8.39 2301 1.2365 8.39 2302 1.2364 8.30 2303 1.2364 8.22 2304 1.2364 8.22 2305 1.2364 8.13 2307 1.2364 8.09 2308 1.2364 8.09 2309 1.2363 7.96 2311 1.2363 7.96 2312 1.2363 7.87 2313 1.2363 7.87 2314 1.2363 7.78 2315 1.2362 7.69 2317 1.2362 7.69 2318 1.2362 7.56 2321 1.2362 7.56 2322 1.2361 7.39 2323 1.2361 7.35			
2294 1.2366 8.65 2295 1.2365 8.56 2297 1.2365 8.52 2298 1.2365 8.48 2299 1.2365 8.49 2300 1.2365 8.39 2301 1.2365 8.35 2302 1.2364 8.36 2303 1.2364 8.26 2304 1.2364 8.17 2305 1.2364 8.13 2307 1.2364 8.09 2308 1.2364 8.09 2309 1.2363 7.96 2311 1.2363 7.91 2312 1.2363 7.87 2313 1.2363 7.87 2314 1.2363 7.78 2315 1.2362 7.69 2317 1.2362 7.69 2318 1.2362 7.56 2321 1.2362 7.56 2322 1.2361 7.39 2323 1.2361 7.35 2324 1.2361 7.35			
2295 1.2366 8.61 2296 1.2365 8.56 2297 1.2365 8.52 2298 1.2365 8.48 2299 1.2365 8.49 2300 1.2365 8.39 2301 1.2365 8.35 2302 1.2364 8.30 2303 1.2364 8.26 2304 1.2364 8.17 2305 1.2364 8.13 2307 1.2364 8.09 2308 1.2364 8.09 2309 1.2364 8.09 2310 1.2363 7.96 2311 1.2363 7.96 2312 1.2363 7.87 2313 1.2363 7.87 2314 1.2363 7.78 2315 1.2362 7.65 2317 1.2362 7.65 2318 1.2362 7.61 2319 1.2362 7.56 2321 1.2362 7.56 2322 1.2361 7.36			
2296 1.2365 8.56 2297 1.2365 8.52 2298 1.2365 8.48 2299 1.2365 8.49 2300 1.2365 8.39 2301 1.2365 8.35 2302 1.2364 8.36 2303 1.2364 8.26 2304 1.2364 8.17 2305 1.2364 8.13 2307 1.2364 8.09 2308 1.2364 8.09 2310 1.2363 7.96 2311 1.2363 7.96 2312 1.2363 7.87 2313 1.2363 7.87 2314 1.2363 7.78 2315 1.2362 7.74 2316 1.2362 7.65 2317 1.2362 7.65 2318 1.2362 7.56 2319 1.2362 7.56 2321 1.2362 7.52 2321 1.2362 7.52 2321 1.2362 7.52			
2297 1.2365 8.52 2298 1.2365 8.48 2299 1.2365 8.49 2300 1.2365 8.39 2301 1.2365 8.35 2302 1.2364 8.30 2303 1.2364 8.26 2304 1.2364 8.17 2305 1.2364 8.17 2306 1.2364 8.09 2307 1.2364 8.09 2308 1.2364 8.09 2310 1.2363 7.96 2311 1.2363 7.97 2312 1.2363 7.87 2313 1.2363 7.87 2314 1.2363 7.78 2315 1.2362 7.74 2316 1.2362 7.65 2317 1.2362 7.65 2318 1.2362 7.56 2321 1.2362 7.56 2322 1.2361 7.35 2323 1.2361 7.35 2324 1.2361 7.36			
2298 1.2365 8.48 2300 1.2365 8.39 2301 1.2365 8.35 2302 1.2364 8.36 2303 1.2364 8.26 2304 1.2364 8.22 2305 1.2364 8.17 2306 1.2364 8.09 2307 1.2364 8.09 2308 1.2364 8.09 2310 1.2363 7.96 2311 1.2363 7.91 2312 1.2363 7.87 2313 1.2363 7.87 2314 1.2363 7.78 2315 1.2362 7.69 2317 1.2362 7.69 2318 1.2362 7.69 2319 1.2362 7.69 2320 1.2362 7.56 2321 1.2362 7.56 2322 1.2361 7.39 2323 1.2361 7.39 2324 1.2361 7.36 2325 1.2361 7.26 <td></td> <td></td> <td></td>			
2299 1.2365 8.44 2300 1.2365 8.39 2301 1.2365 8.35 2302 1.2364 8.26 2303 1.2364 8.26 2304 1.2364 8.17 2305 1.2364 8.09 2306 1.2364 8.09 2307 1.2364 8.09 2308 1.2364 8.09 2309 1.2363 7.96 2310 1.2363 7.96 2311 1.2363 7.87 2312 1.2363 7.87 2313 1.2363 7.78 2314 1.2363 7.78 2315 1.2362 7.74 2316 1.2362 7.69 2317 1.2362 7.69 2318 1.2362 7.56 2319 1.2362 7.56 2320 1.2362 7.56 2321 1.2362 7.48 2322 1.2361 7.39 2324 1.2361 7.39	2297		8.52s
2300 1.2365 8.39 2301 1.2365 8.35 2302 1.2364 8.36 2303 1.2364 8.26 2304 1.2364 8.17 2305 1.2364 8.13 2306 1.2364 8.09 2308 1.2364 8.09 2309 1.2363 7.96 2310 1.2363 7.96 2311 1.2363 7.87 2312 1.2363 7.87 2313 1.2363 7.78 2314 1.2363 7.78 2315 1.2362 7.74 2316 1.2362 7.69 2317 1.2362 7.69 2318 1.2362 7.69 2319 1.2362 7.56 2320 1.2362 7.56 2321 1.2362 7.48 2322 1.2361 7.39 2323 1.2361 7.39 2324 1.2361 7.36 2325 1.2361 7.26 <td>2298</td> <td>1.2365</td> <td>8.48s</td>	2298	1.2365	8.48s
2301 1.2365 8.35 2302 1.2364 8.36 2303 1.2364 8.26 2304 1.2364 8.17 2305 1.2364 8.13 2306 1.2364 8.09 2308 1.2364 8.09 2309 1.2363 8.00 2310 1.2363 7.96 2311 1.2363 7.91 2312 1.2363 7.87 2313 1.2363 7.78 2314 1.2363 7.78 2315 1.2362 7.74 2316 1.2362 7.69 2317 1.2362 7.69 2318 1.2362 7.69 2319 1.2362 7.56 2320 1.2362 7.56 2321 1.2362 7.52 2321 1.2362 7.48 2322 1.2361 7.39 2323 1.2361 7.39 2324 1.2361 7.36 2325 1.2361 7.26 <td>2299</td> <td>1.2365</td> <td>8.44s</td>	2299	1.2365	8.44s
2301 1.2365 8.35 2302 1.2364 8.36 2303 1.2364 8.26 2304 1.2364 8.17 2305 1.2364 8.13 2306 1.2364 8.09 2308 1.2364 8.09 2309 1.2363 8.00 2310 1.2363 7.96 2311 1.2363 7.91 2312 1.2363 7.87 2313 1.2363 7.78 2314 1.2363 7.78 2315 1.2362 7.74 2316 1.2362 7.69 2317 1.2362 7.69 2318 1.2362 7.69 2319 1.2362 7.56 2320 1.2362 7.56 2321 1.2362 7.52 2321 1.2362 7.48 2322 1.2361 7.39 2323 1.2361 7.39 2324 1.2361 7.36 2325 1.2361 7.26 <td>2300</td> <td>1.2365</td> <td>8.39s</td>	2300	1.2365	8.39s
2302 1.2364 8.36 2303 1.2364 8.26 2304 1.2364 8.17 2305 1.2364 8.17 2306 1.2364 8.09 2307 1.2364 8.09 2308 1.2364 8.09 2309 1.2363 8.00 2311 1.2363 7.96 2312 1.2363 7.87 2313 1.2363 7.82 2314 1.2363 7.78 2315 1.2362 7.74 2316 1.2362 7.65 2317 1.2362 7.65 2318 1.2362 7.56 2319 1.2362 7.56 2320 1.2362 7.56 2321 1.2362 7.48 2322 1.2361 7.39 2323 1.2361 7.39 2324 1.2361 7.36 2325 1.2361 7.26	2301	1.2365	8.35s
2303 1.2364 8.26 2305 1.2364 8.17 2306 1.2364 8.13 2307 1.2364 8.09 2308 1.2364 8.04 2309 1.2363 8.00 2310 1.2363 7.96 2311 1.2363 7.91 2312 1.2363 7.87 2313 1.2363 7.78 2314 1.2363 7.78 2315 1.2362 7.74 2316 1.2362 7.65 2317 1.2362 7.65 2318 1.2362 7.61 2319 1.2362 7.56 2320 1.2362 7.56 2321 1.2362 7.48 2322 1.2361 7.39 2323 1.2361 7.35 2324 1.2361 7.36 2325 1.2361 7.36 2326 1.2361 7.26			8.30s
2304 1.2364 8.22 2305 1.2364 8.17 2306 1.2364 8.09 2307 1.2364 8.09 2308 1.2364 8.04 2309 1.2363 8.00 2310 1.2363 7.96 2311 1.2363 7.91 2312 1.2363 7.87 2313 1.2363 7.78 2314 1.2363 7.78 2315 1.2362 7.74 2316 1.2362 7.69 2317 1.2362 7.69 2318 1.2362 7.56 2319 1.2362 7.56 2320 1.2362 7.56 2321 1.2362 7.56 2322 1.2361 7.43 2323 1.2361 7.39 2324 1.2361 7.36 2325 1.2361 7.36 2326 1.2361 7.26			
2305 1.2364 8.17 2306 1.2364 8.13 2307 1.2364 8.09 2308 1.2364 8.04 2309 1.2363 8.00 2310 1.2363 7.96 2311 1.2363 7.87 2312 1.2363 7.87 2313 1.2363 7.78 2314 1.2363 7.78 2315 1.2362 7.74 2316 1.2362 7.69 2317 1.2362 7.69 2318 1.2362 7.56 2319 1.2362 7.56 2320 1.2362 7.56 2321 1.2362 7.48 2322 1.2361 7.43 2323 1.2361 7.35 2324 1.2361 7.36 2325 1.2361 7.36 2326 1.2361 7.26			
2306 1.2364 8.13 2307 1.2364 8.09 2308 1.2364 8.04 2309 1.2363 8.00 2310 1.2363 7.96 2311 1.2363 7.87 2312 1.2363 7.87 2313 1.2363 7.78 2314 1.2363 7.78 2315 1.2362 7.74 2316 1.2362 7.69 2317 1.2362 7.65 2318 1.2362 7.56 2319 1.2362 7.56 2320 1.2362 7.56 2321 1.2362 7.48 2322 1.2361 7.43 2323 1.2361 7.35 2324 1.2361 7.36 2325 1.2361 7.36 2326 1.2361 7.26			
2307 1.2364 8.09 2308 1.2363 8.00 2310 1.2363 7.96 2311 1.2363 7.91 2312 1.2363 7.87 2313 1.2363 7.78 2314 1.2363 7.78 2315 1.2362 7.74 2316 1.2362 7.69 2317 1.2362 7.65 2318 1.2362 7.56 2319 1.2362 7.56 2320 1.2362 7.56 2321 1.2362 7.52 2321 1.2362 7.48 2322 1.2361 7.39 2323 1.2361 7.35 2324 1.2361 7.36 2325 1.2361 7.36 2326 1.2361 7.26			
2308 1.2364 8.04 2309 1.2363 8.00 2310 1.2363 7.96 2311 1.2363 7.87 2312 1.2363 7.87 2313 1.2363 7.78 2314 1.2363 7.78 2315 1.2362 7.74 2316 1.2362 7.69 2317 1.2362 7.69 2318 1.2362 7.61 2319 1.2362 7.56 2320 1.2362 7.56 2321 1.2362 7.48 2322 1.2361 7.39 2323 1.2361 7.39 2324 1.2361 7.36 2325 1.2361 7.36 2326 1.2361 7.26			
2309 1.2363 8.00 2310 1.2363 7.96 2311 1.2363 7.91 2312 1.2363 7.87 2313 1.2363 7.78 2314 1.2363 7.78 2315 1.2362 7.74 2316 1.2362 7.69 2317 1.2362 7.61 2318 1.2362 7.61 2319 1.2362 7.56 2320 1.2362 7.52 2321 1.2362 7.48 2322 1.2361 7.39 2323 1.2361 7.39 2324 1.2361 7.36 2325 1.2361 7.36 2326 1.2361 7.26			
2310 1.2363 7.96 2311 1.2363 7.91 2312 1.2363 7.87 2313 1.2363 7.78 2314 1.2363 7.78 2315 1.2362 7.74 2316 1.2362 7.65 2317 1.2362 7.65 2318 1.2362 7.61 2319 1.2362 7.56 2320 1.2362 7.52 2321 1.2362 7.52 2321 1.2362 7.48 2322 1.2361 7.39 2323 1.2361 7.39 2324 1.2361 7.36 2325 1.2361 7.36 2326 1.2361 7.26		1.2364	8.04s
2311 1.2363 7.91 2312 1.2363 7.87 2313 1.2363 7.78 2314 1.2363 7.74 2315 1.2362 7.74 2316 1.2362 7.69 2317 1.2362 7.65 2318 1.2362 7.61 2319 1.2362 7.56 2320 1.2362 7.52 2321 1.2362 7.48 2322 1.2361 7.39 2323 1.2361 7.35 2325 1.2361 7.36 2326 1.2361 7.26			8.00s
2312 1.2363 7.87 2313 1.2363 7.78 2314 1.2363 7.74 2315 1.2362 7.74 2316 1.2362 7.69 2317 1.2362 7.65 2318 1.2362 7.56 2319 1.2362 7.56 2320 1.2362 7.52 2321 1.2362 7.48 2322 1.2361 7.43 2323 1.2361 7.35 2325 1.2361 7.36 2326 1.2361 7.26	2310	1.2363	7.96s
2313 1.2363 7.82 2314 1.2363 7.78 2315 1.2362 7.74 2316 1.2362 7.69 2317 1.2362 7.65 2318 1.2362 7.61 2319 1.2362 7.56 2320 1.2362 7.52 2321 1.2362 7.48 2322 1.2361 7.43 2323 1.2361 7.35 2325 1.2361 7.36 2326 1.2361 7.26	2311	1.2363	7.91s
2314 1.2363 7.78 2315 1.2362 7.74 2316 1.2362 7.69 2317 1.2362 7.65 2318 1.2362 7.61 2319 1.2362 7.56 2320 1.2362 7.52 2321 1.2362 7.48 2322 1.2361 7.39 2323 1.2361 7.35 2325 1.2361 7.36 2326 1.2361 7.26	2312	1.2363	7.87s
2314 1.2363 7.78 2315 1.2362 7.74 2316 1.2362 7.69 2317 1.2362 7.65 2318 1.2362 7.61 2319 1.2362 7.56 2320 1.2362 7.52 2321 1.2362 7.48 2322 1.2361 7.39 2323 1.2361 7.35 2325 1.2361 7.36 2326 1.2361 7.26	2313	1.2363	7.82s
2315 1.2362 7.74 2316 1.2362 7.69 2317 1.2362 7.65 2318 1.2362 7.61 2319 1.2362 7.56 2320 1.2362 7.52 2321 1.2362 7.48 2322 1.2361 7.39 2323 1.2361 7.35 2324 1.2361 7.35 2325 1.2361 7.36 2326 1.2361 7.26			7.78s
2316 1.2362 7.69 2317 1.2362 7.65 2318 1.2362 7.61 2319 1.2362 7.56 2320 1.2362 7.52 2321 1.2362 7.48 2322 1.2361 7.39 2323 1.2361 7.35 2324 1.2361 7.35 2325 1.2361 7.36 2326 1.2361 7.26			
2317 1.2362 7.65 2318 1.2362 7.61 2319 1.2362 7.56 2320 1.2362 7.52 2321 1.2362 7.48 2322 1.2361 7.39 2323 1.2361 7.35 2324 1.2361 7.35 2325 1.2361 7.36 2326 1.2361 7.26			
2318 1.2362 7.61 2319 1.2362 7.56 2320 1.2362 7.52 2321 1.2362 7.48 2322 1.2361 7.43 2323 1.2361 7.39 2324 1.2361 7.35 2325 1.2361 7.36 2326 1.2361 7.26			
2319 1.2362 7.56 2320 1.2362 7.52 2321 1.2362 7.48 2322 1.2361 7.43 2323 1.2361 7.39 2324 1.2361 7.35 2325 1.2361 7.36 2326 1.2361 7.26			
2320 1.2362 7.52 2321 1.2362 7.48 2322 1.2361 7.43 2323 1.2361 7.39 2324 1.2361 7.35 2325 1.2361 7.36 2326 1.2361 7.26			
2321 1.2362 7.48 2322 1.2361 7.43 2323 1.2361 7.39 2324 1.2361 7.35 2325 1.2361 7.36 2326 1.2361 7.26			7.56s
2322 1.2361 7.43 2323 1.2361 7.39 2324 1.2361 7.35 2325 1.2361 7.36 2326 1.2361 7.26			7.52s
2323 1.2361 7.39 2324 1.2361 7.35 2325 1.2361 7.30 2326 1.2361 7.26	2321	1.2362	7.48s
2324 1.2361 7.35 2325 1.2361 7.36 2326 1.2361 7.26	2322	1.2361	7.43s
2324 1.2361 7.35 2325 1.2361 7.36 2326 1.2361 7.26	2323	1.2361	7.39s
2325 1.2361 7.30 2326 1.2361 7.26			7.35s
2326 1.2361 7.26			7.30s
2321 1.2301 /.21			
2220 1 2261 7 17			
2328 1.2361 7.17	4340	1.4301	7.17s

2329	1.2360	7.13s
2330	1.2360	7.09s
2331	1.2360	7.04s
2332	1.2360	7.00s
2333	1.2360	6.95s
2334	1.2360	6.91s
2335	1.2359	6.87s
2336	1.2359	6.83s
2337	1.2359	6.78s
2338	1.2359	6.74s
2339	1.2359	6.69s
2340	1.2359	6.65s
2341	1.2359	6.61s
2342	1.2358	6.56s
2343	1.2358	6.52s
2344	1.2358	6.48s
2345	1.2358	6.44s
2346	1.2358	6.39s
2347	1.2358	6.35s
2348	1.2357	6.31s
2349	1.2357	6.26s
2350	1.2357	6.22s
2351	1.2357	6.18s
2352	1.2357	6.13s
2353	1.2357	6.09s
2354	1.2357	6.05s
2355	1.2356	6.00s
2356	1.2356	5.96s
2357	1.2356	5.92s
2358	1.2356	5.87s
2359	1.2356	5.83s
2360	1.2356	5.79s
2361	1.2356	5.74s
2362	1.2355	5.70s
2363	1.2355	5.66s
2364	1.2355	5.61s
2365	1.2355	5.57s
2366	1.2355	5.53s
2367	1.2355	5.48s
2368	1.2355	5.44s
2369	1.2354	5.40s
2370	1.2354	5.36s
2371	1.2354	5.31s
2372	1.2354	5.27s
2373	1.2354	5.23s
2374	1.2354	5.18s
2375	1.2353	5.14s
2376	1.2353	5.14s
2377	1.2353	5.05s
2378	1.2353	5.01s
2379	1.2353	4.97s
2380	1.2353	4.93s
2381	1.2353	4.88s
2382	1.2352	4.84s
2383	1.2352	4.80s
2384	1.2352	4.75s
2385	1.2352	4.71s
2303	1,2002	1.113

2386	1.2352	4.67s
2387	1.2352	4.63s
2388	1.2352	4.58s
2389	1.2351	4.54s
2390	1.2351	4.50s
2391	1.2351	4.45s
2392	1.2351	4.41s
2393	1.2351	4.37s
2394	1.2351	4.33s
2395	1.2350	4.28s
2396		4.24s
2397		4.20s
2398	1.2350	4.16s
2399		4.11s
2400		4.07s
		4.07s
2401		
2402	1.2349	3.98s
2403		3.94s
2404		3.90s
2405		3.86s
2406		3.81s
2407	1.2349	3.77s
2408	1.2349	3.73s
2409	1.2348	3.69s
2410	1.2348	3.64s
2411	1.2348	3.60s
2412	1.2348	3.56s
2413	1.2348	3.51s
2414	1.2348	3.47s
2415	1.2348	3.43s
2416	1.2347	3.39s
	1.2347	3.34s
2417		
2418	1.2347	3.30s
2419	1.2347	3.26s
2420	1.2347	3.22s
2421	1.2347	3.17s
2422	1.2346	3.13s
2423	1.2346	3.09s
2424	1.2346	3.05s
2425	1.2346	3.00s
2426	1.2346	2.96s
2427	1.2346	2.92s
2428	1.2346	2.88s
2429	1.2345	2.83s
2430	1.2345	2.79s
2431	1.2345	2.75s
2432	1.2345	2.70s
2433	1.2345	2.66s
2434	1.2345	2.62s
2435	1.2345	2.58s
2436	1.2344	2.53s
2437	1.2344	2.49s
2438	1.2344	2.45s
2439	1.2344	2.41s
2440	1.2344	2.36s
2441	1.2344	2.32s
2442	1.2344	2.28s

2443	1.2343	2.24s
2444	1.2343	2.19s
2445	1.2343	2.15s
2446	1.2343	2.11s
2447	1.2343	2.07s
2448	1.2343	2.03s
2449	1.2343	1.98s
2450	1.2342	1.94s
2451	1.2342	1.90s
2452	1.2342	1.86s
2453	1.2342	1.81s
2454	1.2342	1.77s
2455	1.2342	1.73s
2456	1.2341	1.69s
2457	1.2341	1.64s
2458	1.2341	1.60s
2459	1.2341	1.56s
2460	1.2341	1.52s
2461	1.2341	1.47s
2462	1.2341	1.43s
2463	1.2340	1.39s
2464	1.2340	1.35s
2465	1.2340	1.31s
2466	1.2340	1.26s
2467	1.2340	1.22s
2468	1.2340	1.18s
2469	1.2340	1.14s
2470	1.2339	1.09s
2471	1.2339	1.05s
2472	1.2339	1.01s
2473	1.2339	0.97s
2474	1.2339	0.93s
2475	1.2339	0.88s
2476	1.2339	0.84s
2477	1.2338	0.80s
2478	1.2338	0.76s
2479	1.2338	0.72s
2480	1.2338	0.67s
2481	1.2338	0.63s
2482	1.2338	0.59s
2483	1.2338	0.55s
2484	1.2337	0.50s
2485	1.2337	0.46s
2486	1.2337	0.42s
2487	1.2337	0.38s
2488	1.2337	0.34s
2489	1.2337	0.29s
2490	1.2337	0.25s
2491	1.2336	0.21s
2492	1.2336	0.17s
2493	1.2336	0.13s
2494	1.2336	0.08s
2495	1.2336	0.04s
2496	1.2336	0.00s

```
Out[85]: GradientBoostingClassifier(learning_rate=0.01, max_leaf_nodes=2,
                                     min_samples_leaf=10, n_estimators=2496,
                                     random state=88, verbose=3)
In [86]:
          print('Accuracy:', round(accuracy_score(y_test, gbc_opt.predict(xd_test)), 5)
         Accuracy: 0.62196
In [94]:
          from sklearn.metrics import roc_curve, auc
          fpr_opt, tpr_opt, _ = roc_curve(y_test, gbc_opt.predict(xd_test))
          roc auc = auc(fpr opt, tpr opt)
          plt.figure(figsize=(8, 6))
          plt.title('ROC Curve', fontsize=18)
          plt.xlabel('FPR', fontsize=16)
          plt.ylabel('TPR', fontsize=16)
          plt.xlim([-0.01, 1.00])
          plt.ylim([-0.01, 1.01])
          plt.plot(fpr, tpr, lw=3, label='Logistic Regression (area = {:0.2f})'.format(
          plt.plot([0, 1], [0, 1], color='navy', lw=3, linestyle='--')
          plt.legend(loc='lower right', fontsize=14)
          plt.show()
          print(fpr_opt,tpr_opt)
```


Optimized Gradient Boosting Clasifier: accuracy = 0.62, fpr=0.22, tpr =0.41, AUC = 0.59

```
In [95]:
#3rd model: we only select the 25 most important features and build a booster
importances = gbc.feature_importances_

forest_importances = pd.Series(importances, index=xd.columns)

fig, ax = plt.subplots()
forest_importances.plot.bar(ax=ax)
ax.set_title("Feature importances using MDI")
ax.set_ylabel("Mean decrease in impurity")
fig.tight_layout()
```

<ipython-input-95-10412ee12b3e>:12: UserWarning: Tight layout not applied. The
bottom and top margins cannot be made large enough to accommodate all axes dec
orations.

fig.tight_layout()

Out[98]:

V00DTCHOL	V00DTVITD	VOODTCALC	VOOPASE	P01BMI	VOOWOMTSR	VOOWTMINKG

1489	300.6	260.66	984.8	50.0	43.9	25.2	59.1
364	157.5	164.02	904.2	199.0	27.8	0.0	67.7
2939	134.6	151.06	1071.8	340.0	21.3	0.0	52.3
1342	161.3	58.17	361.4	172.0	25.0	5.0	53.2
1425	334.4	161.20	1046.9	237.0	27.5	4.0	53.6

5 rows × 25 columns

In [90]:

Iter	Train Loss	Remaining Time
1	1.3576	31.21s
2	1.3569	31.66s
3	1.3563	33.53s
4	1.3556	38.04s
5	1.3550	40.17s
6	1.3544	41.87s
7	1.3538	42.57s
8	1.3532	45.16s
9	1.3526	45.25s
10	1.3521	44.63s
11	1.3515	44.99s
12	1.3510	44.60s
13	1.3505	44.24s
14	1.3499	44.94s
15	1.3494	46.17s
16	1.3489	45.15s
17	1.3484	44.23s
18	1.3479	43.30s
19	1.3474	42.47s
20	1.3469	41.71s
21	1.3464	41.01s
22	1.3459	40.36s
23	1.3454	39.80s
24	1.3450	39.30s
25	1.3445	38.87s
26	1.3440	38.49s
27	1.3436	38.07s
28	1.3431	38.32s
29	1.3427	38.73s
30	1.3423	39.02s
31	1.3418	39.10s
32	1.3414	38.91s
33	1.3410	39.28s
34	1.3406	40.07s

35	1.3401	10 020
		40.93s
36	1.3397	41.49s
37	1.3393	42.19s
38	1.3389	44.47s
39	1.3385	45.63s
40	1.3381	45.79s
41	1.3378	47.07s
42	1.3374	47.71s
43	1.3370	47.84s
44	1.3366	48.60s
45	1.3363	48.41s
46	1.3359	48.98s
47	1.3355	49.20s
48	1.3352	50.71s
49	1.3348	51.23s
50	1.3345	51.10s
51	1.3341	50.93s
52	1.3338	51.17s
53	1.3335	51.05s
54	1.3331	50.89s
55	1.3328	50.67s
56	1.3325	50.51s
57	1.3322	50.27s
58	1.3318	50.15s
59	1.3315	50.57s
60	1.3312	50.43s
61	1.3309	50.38s
62	1.3306	50.29s
63	1.3303	50.11s
64	1.3300	49.92s
65	1.3297	49.84s
66	1.3294	49.83s
67	1.3291	49.68s
68	1.3288	49.94s
69	1.3285	50.18s
70	1.3282	50.10s
71	1.3279	50.25s
72	1.3276	50.01s
73	1.3274	49.80s
74	1.3271	49.87s
75	1.3268	51.15s
76	1.3265	51.39s
77	1.3263	51.22s
78	1.3260	51.20s
79	1.3257	51.10s
80	1.3255	50.96s
81	1.3252	51.02s
82	1.3250	51.05s
83	1.3247	51.09s
84	1.3244	51.09s
85	1.3242	51.08s
86	1.3240	50.88s
87	1.3237	50.74s
88	1.3235	50.60s
89	1.3232	50.50s
90	1.3230	50.41s
91	1.3227	50.30s

92	1.3225	50.21s
93	1.3223	50.07s
94	1.3220	49.89s
95	1.3218	49.70s
96	1.3216	49.47s
97	1.3214	49.23s
98	1.3211	48.98s
99	1.3209	48.77s
100	1.3207	48.56s
101	1.3205	48.41s
		48.24s
102	1.3203	
103	1.3201	48.15s
104	1.3198	48.21s
105	1.3196	48.59s
106	1.3194	48.78s
107	1.3192	49.05s
108	1.3190	49.24s
109	1.3188	49.37s
110	1.3186	49.27s
111	1.3184	49.11s
112	1.3182	48.96s
113	1.3180	48.83s
114	1.3178	48.81s
115	1.3176	48.85s
116	1.3174	48.86s
117	1.3173	48.95s
118	1.3171	48.95s
119	1.3169	48.96s
120	1.3167	49.30s
121	1.3165	49.34s
122	1.3163	49.39s
123	1.3161	49.38s
124	1.3160	49.25s
125	1.3158	49.37s
126	1.3156	49.43s
127	1.3154	49.41s
128	1.3153	49.35s
129	1.3151	49.23s
130	1.3149	49.12s
131	1.3147	48.98s
132	1.3146	48.83s
133	1.3144	48.78s
134	1.3142	48.88s
135	1.3140	48.82s
136	1.3139	48.68s
137	1.3137	48.65s
138	1.3135	48.59s
139	1.3134	
		48.71s
140	1.3132	48.56s
141	1.3130	48.43s
142	1.3129	48.29s
143	1.3127	48.14s
144	1.3126	47.99s
145	1.3124	47.82s
146	1.3122	47.67s
147	1.3121	47.50s
148	1.3119	47.34s
140	1.3113	7/.045

149	1.3118	47.19s
150	1.3116	47.04s
151	1.3114	46.88s
152	1.3113	46.74s
		46.74s
153	1.3111	
154	1.3110	46.58s
155	1.3108	46.60s
156	1.3107	46.92s
157	1.3105	47.08s
158	1.3104	47.19s
159	1.3102	47.14s
160	1.3101	47.05s
161	1.3099	47.00s
162	1.3098	46.88s
163	1.3096	46.76s
164	1.3095	46.72s
165	1.3093	46.79s
166	1.3092	46.71s
167	1.3090	46.67s
168	1.3089	46.56s
169	1.3088	46.45s
170	1.3086	46.40s
171	1.3085	46.27s
172	1.3083	46.21s
173	1.3082	46.16s
174	1.3081	46.11s
175	1.3079	46.11s
176	1.3078	46.09s
177	1.3076	46.04s
178	1.3075	46.08s
179	1.3074	46.09s
180	1.3072	46.21s
181	1.3071	46.18s
182	1.3070	46.19s
183	1.3068	46.14s
184	1.3067	46.12s
185	1.3066	46.13s
186	1.3064	46.05s
187	1.3063	45.96s
188	1.3062	45.89s
189	1.3061	45.89s
190	1.3059	45.91s
191	1.3058	45.91s
		45.98s
192	1.3057	
193	1.3056	45.94s
194	1.3054	45.87s
195	1.3053	45.81s
196	1.3052	45.75s
197	1.3051	45.66s
198	1.3049	45.58s
199	1.3048	45.49s
200	1.3047	45.39s
201	1.3046	45.34s
202	1.3045	45.27s
203	1.3043	45.25s
204	1.3042	45.18s
205	1.3041	45.13s

206	1.3040	45.02s
207	1.3039	44.92s
208	1.3037	44.82s
209	1.3036	44.71s
210	1.3035	44.60s
211	1.3034	44.50s
212	1.3033	44.39s
213	1.3032	44.30s
214	1.3031	44.21s
215	1.3029	44.15s
216	1.3028	44.05s
217	1.3027	43.96s
218	1.3026	43.86s
219	1.3025	43.78s
220	1.3024	43.67s
221	1.3023	43.58s
222	1.3022	43.48s
223	1.3021	43.39s
224	1.3020	43.29s
225	1.3019	43.19s
226	1.3018	43.10s
227	1.3016	43.00s
228	1.3015	42.90s
229	1.3014	42.82s
230	1.3013	42.80s
231	1.3012	42.71s
232	1.3011	42.64s
233	1.3010	42.55s
234	1.3009	42.47s
235	1.3008	42.38s
236	1.3007	42.29s
237	1.3006	42.24s
238	1.3005	42.23s
239	1.3004	42.20s
240	1.3003	42.15s
241	1.3002	42.19s
242	1.3001	42.14s
243	1.3000	42.08s
244	1.2999	42.04s
245	1.2998	41.97s
246	1.2997	41.91s
247	1.2996	41.88s
248	1.2996	41.85s
249	1.2995	41.83s
250	1.2773	
251	1.2994	41.81s
252		41.81s
777	1.2994 1.2993	41.81s 41.74s
252	1.2994 1.2993 1.2992	41.81s 41.74s 41.71s
253	1.2994 1.2993 1.2992 1.2991	41.81s 41.74s 41.71s 41.66s
253 254	1.2994 1.2993 1.2992 1.2991 1.2990	41.81s 41.74s 41.71s 41.66s 41.58s
253 254 255	1.2994 1.2993 1.2992 1.2991 1.2990 1.2989	41.81s 41.74s 41.71s 41.66s 41.58s 41.50s
253 254 255 256	1.2994 1.2993 1.2992 1.2991 1.2990 1.2989 1.2988	41.81s 41.74s 41.71s 41.66s 41.58s 41.50s 41.43s
253 254 255	1.2994 1.2993 1.2992 1.2991 1.2990 1.2989	41.81s 41.74s 41.71s 41.66s 41.58s 41.50s
253 254 255 256	1.2994 1.2993 1.2992 1.2991 1.2990 1.2989 1.2988	41.81s 41.74s 41.71s 41.66s 41.58s 41.50s 41.43s
253 254 255 256 257	1.2994 1.2993 1.2992 1.2991 1.2990 1.2989 1.2988 1.2987	41.81s 41.74s 41.71s 41.66s 41.58s 41.50s 41.43s 41.35s
253 254 255 256 257 258 259	1.2994 1.2993 1.2992 1.2991 1.2990 1.2989 1.2988 1.2987 1.2986 1.2985	41.81s 41.74s 41.71s 41.66s 41.58s 41.50s 41.43s 41.35s 41.32s 41.37s
253 254 255 256 257 258 259 260	1.2994 1.2993 1.2992 1.2991 1.2990 1.2989 1.2988 1.2987 1.2986 1.2985 1.2984	41.81s 41.74s 41.71s 41.66s 41.58s 41.50s 41.43s 41.35s 41.37s 41.44s
253 254 255 256 257 258 259	1.2994 1.2993 1.2992 1.2991 1.2990 1.2989 1.2988 1.2987 1.2986 1.2985	41.81s 41.74s 41.71s 41.66s 41.58s 41.50s 41.43s 41.35s 41.32s 41.37s

263	1.2982	41.38s
264	1.2981	41.36s
265	1.2980	41.36s
266	1.2979	41.35s
267	1.2978	41.29s
268	1.2977	41.21s
269	1.2976	41.15s
270	1.2975	41.08s
271	1.2975	41.14s
		41.12s
272	1.2974	
273	1.2973	41.07s
274	1.2972	41.00s
275	1.2971	40.92s
276	1.2970	40.84s
277	1.2969	40.79s
278	1.2968	40.76s
279	1.2968	40.73s
280	1.2967	40.66s
281	1.2966	40.60s
282	1.2965	40.53s
283	1.2964	40.48s
284	1.2963	40.45s
285	1.2963	40.41s
286	1.2962	40.40s
287	1.2961	40.34s
288	1.2960	40.31s
289	1.2959	40.26s
290	1.2958	40.19s
291	1.2958	40.13s
292	1.2957	40.06s
293	1.2956	40.00s
294	1.2955	39.92s
295	1.2954	39.87s
296	1.2954	39.80s
297	1.2953	39.73s
298	1.2952	39.67s
299	1.2951	39.61s
300	1.2950	39.54s
301	1.2950	39.50s
302	1.2949	39.53s
303	1.2948	39.48s
304	1.2947	39.41s
305	1.2946	39.35s
306	1.2946	39.28s
307	1.2945	39.21s
308	1.2944	39.15s
309	1.2943	39.09s
310	1.2943	39.02s
311	1.2942	38.96s
312	1.2941	38.90s
313	1.2940	38.86s
314	1.2940	38.89s
315	1.2939	38.86s
316	1.2938	38.81s
317	1.2937	38.78s
318	1.2937	38.87s
319	1.2936	38.88s

320	1.2935	38.86s
321	1.2934	38.84s
322	1.2934	38.78s
323	1.2933	38.72s
324	1.2932	38.69s
325	1.2932	38.64s
326	1.2931	38.62s
327	1.2930	38.62s
328	1.2929	38.62s
329	1.2929	38.57s
330	1.2928	38.58s
331	1.2927	38.55s
332	1.2927	38.49s
333	1.2926	38.46s
334	1.2925	38.40s
335	1.2924	38.36s
336	1.2924	38.30s
337	1.2923	38.25s
338	1.2922	38.19s
339	1.2922	38.16s
340	1.2921	38.22s
341	1.2920	38.24s
342	1.2920	38.29s
343	1.2919	38.34s
344	1.2918	38.36s
345	1.2918	38.36s
346	1.2917	38.35s
347	1.2916	38.33s
348	1.2916	38.28s
349	1.2915	38.22s
350	1.2914	38.16s
351	1.2914	38.14s
352	1.2913	38.10s
353	1.2912	38.06s
354	1.2912	38.02s
355	1.2911	37.97s
356	1.2910	37.91s
357	1.2910	37.86s
358	1.2909	37.80s
359	1.2908	37.76s
360	1.2908	37.71s
361	1.2907	37.65s
362	1.2906	37.59s
363	1.2906	37.54s
364	1.2905	37.48s
365	1.2904	37.43s
366	1.2904	37.38s
367	1.2903	37.33s
368	1.2903	37.29s
369	1.2902	37.24s
370	1.2901	37.21s
371	1.2901	37.17s
372	1.2900	37.13s
373	1.2899	37.08s
374	1.2899	37.00s
375	1.2898	36.99s
376	1.2898	36.94s

377	1.2897	36.89s
378	1.2896	36.83s
379	1.2896	36.79s
380	1.2895	36.74s
381	1.2895	36.72s
382	1.2894	36.74s
383	1.2893	36.77s
384	1.2893	36.78s
385	1.2892	36.78s
386	1.2891	36.80s
387	1.2891	36.81s
388	1.2890	36.76s
389	1.2890	36.72s
390	1.2889	36.67s
391	1.2888	36.63s
392	1.2888	36.58s
393	1.2887	36.53s
394	1.2887	36.48s
395	1.2886	36.47s
396	1.2885	36.42s
397	1.2885	36.40s
398	1.2884	36.39s
399	1.2884	36.37s
400	1.2883	36.32s
401	1.2883	
		36.27s
402	1.2882	36.24s
403	1.2881	36.20s
404	1.2881	36.18s
405	1.2880	36.14s
406	1.2880	36.10s
407	1.2879	36.06s
408	1.2879	36.03s
409	1.2878	36.01s
410	1.2877	36.01s
411	1.2877	35.99s
412	1.2876	36.00s
413	1.2876	36.00s
414	1.2875	36.01s
415	1.2875	35.99s
416	1.2874	35.95s
417	1.2873	35.91s
418	1.2873	35.87s
419	1.2872	35.82s
420	1.2872	35.78s
421	1.2871	35.74s
422	1.2871	35.74s
423	1.2870	35.69s
424	1.2870	35.65s
425	1.2869	35.62s
426	1.2868	35.58s
427	1.2868	35.53s
428	1.2867	35.52s
429	1.2867	35.48s
430	1.2866	35.44s
431	1.2866	35.39s
432	1.2865	35.34s
433	1.2865	35.30s

434	1.2864	35.26s
435	1.2864	35.22s
436	1.2863	35.18s
437	1.2862	35.13s
438	1.2862	35.09s
439	1.2861	35.05s
	1.2861	
440		35.01s
441	1.2860	34.96s
442	1.2860	34.94s
443	1.2859	34.90s
444	1.2859	34.85s
445	1.2858	34.82s
446	1.2858	34.80s
447	1.2857	34.76s
448	1.2857	34.72s
449	1.2856	34.68s
450	1.2856	34.69s
451	1.2855	34.71s
452	1.2855	34.71s
453	1.2854	34.71s
454	1.2854	34.71s
455	1.2853	34.68s
456	1.2853	34.65s
457	1.2852	34.64s
	1.2852	
458		34.68s
459	1.2851	34.67s
460	1.2851	34.64s
461	1.2850	34.61s
462	1.2850	34.57s
463	1.2849	34.52s
464	1.2849	34.48s
465	1.2848	34.44s
466	1.2848	34.40s
467	1.2847	34.36s
468	1.2847	34.32s
469	1.2846	34.30s
470	1.2846	34.26s
471	1.2845	34.22s
472	1.2845	34.19s
473	1.2844	34.40s
474	1.2844	34.81s
475	1.2843	34.88s
476	1.2843	34.85s
477	1.2842	34.82s
478	1.2842	34.80s 34.76s
479	1.2841	
480	1.2841	34.72s
481	1.2840	34.69s
482	1.2840	34.65s
483	1.2839	34.61s
484	1.2839	34.57s
485	1.2838	34.53s
486	1.2838	34.48s
487	1.2837	34.45s
488	1.2837	34.41s
489	1.2836	34.38s
490	1.2836	34.35s

491	1.2835	34.32s
492	1.2835	34.28s
493	1.2834	34.24s
494	1.2834	34.21s
495	1.2834	34.17s
496	1.2833	34.16s
497	1.2833	34.14s
498	1.2832	34.13s
499	1.2832	34.12s
500	1.2831	34.11s
501	1.2831	34.12s
502	1.2830	34.14s
503	1.2830 1.2829	34.12s 34.10s
504 505	1.2829	34.10s
506	1.2828	34.07s
507	1.2828	34.00s
508	1.2828	33.96s
509	1.2827	33.92s
510	1.2827	33.88s
511	1.2826	33.84s
512	1.2826	33.80s
513	1.2825	33.76s
514	1.2825	33.72s
515	1.2824	33.68s
516	1.2824	33.64s
517	1.2823	33.60s
518	1.2823	33.56s
519	1.2823	33.53s
520	1.2822	33.50s
521	1.2822	33.46s
522	1.2821	33.43s
523	1.2821	33.39s
524	1.2820	33.36s
525	1.2820	33.34s
526	1.2820	33.33s
527	1.2819	33.35s
528	1.2819	33.35s
529	1.2818	33.34s
530	1.2818	33.33s
531	1.2817	33.33s
532	1.2817	33.38s
533	1.2816	33.70s
534	1.2816	33.76s
535	1.2816	33.75s
536	1.2815	33.72s
537	1.2815	33.69s
538 539	1.2814 1.2814	33.71s 33.74s
540	1.2813	33.74s
541	1.2813	33.88s
542	1.2813	33.95s
543	1.2812	33.94s
544	1.2812	33.95s
545	1.2811	33.97s
546	1.2811	34.03s
547	1.2810	34.01s

548	1.2810	33.99s
549	1.2810	34.51s
550	1.2809	34.50s
551	1.2809	34.49s
552	1.2808	34.47s
553	1.2808	34.45s
554	1.2808	34.44s
	1.2807	
555		34.45s
556	1.2807	34.44s
557	1.2806	34.43s
558	1.2806	34.42s
559	1.2805	34.38s
560	1.2805	34.36s
561	1.2805	34.46s
562	1.2804	34.44s
563	1.2804	34.44s
564	1.2803	34.46s
565	1.2803	34.45s
566	1.2803	34.43s
567	1.2802	34.47s
568	1.2802	34.56s
569	1.2801	34.59s
570	1.2801	34.74s
571	1.2801	34.72s
572	1.2800	34.69s
573	1.2800	34.71s
574	1.2799	34.68s
575	1.2799	34.69s
576	1.2799	34.69s
577	1.2798	34.69s
578	1.2798	34.66s
579	1.2797	34.64s
580	1.2797	34.61s
581	1.2797	34.60s
582	1.2796	34.58s
583	1.2796	34.56s
584	1.2795	34.53s
585	1.2795	34.51s
586	1.2795	34.49s
587	1.2794	34.49s
588	1.2794	34.46s
589	1.2794	34.43s
590	1.2793	34.41s
591	1.2793	34.38s
		34.36s
592	1.2792	
593	1.2792	34.34s
594	1.2792	34.31s
595	1.2791	34.30s
596	1.2791	34.27s
597	1.2790	34.24s
598	1.2790	34.21s
599	1.2790	34.17s
600	1.2789	34.15s
601	1.2789	34.12s
602	1.2789	34.09s
603	1.2788	34.07s
604	1.2788	34.03s

605	1.2787	34.02s
606	1.2787	34.12s
607	1.2787	34.15s
608	1.2786	34.12s
609	1.2786	34.10s
610	1.2785	34.10s
611	1.2785	34.11s
612	1.2785	34.11s
613	1.2784	34.09s
614	1.2784	34.06s
615	1.2784	34.05s
616	1.2783	34.02s
617	1.2783	33.99s
618	1.2783	33.97s
	1.2782	34.01s
619		
620	1.2782	34.03s
621	1.2781	34.07s
622	1.2781	34.07s
623	1.2781	34.05s
624	1.2780	34.06s
625	1.2780	34.15s
626	1.2780	34.20s
627	1.2779	34.36s
628	1.2779	34.38s
629	1.2778	34.37s
630	1.2778	34.35s
631	1.2778	34.33s
632	1.2777	34.30s
633	1.2777	34.26s
634	1.2777	34.22s
635	1.2776	34.18s
636	1.2776	34.16s
637	1.2776	34.12s
638	1.2775	34.09s
639	1.2775	34.05s
640	1.2775	34.01s
641	1.2774	33.97s
642	1.2774	33.94s
643	1.2773	33.90s
644	1.2773	33.87s
645	1.2773	33.86s
646	1.2772	33.84s
647	1.2772	33.80s
648	1.2772	33.77s
649	1.2771	33.73s
650	1.2771	33.70s
651	1.2771	33.66s
	1.2770	
652		33.63s
653	1.2770	33.59s
654	1.2770	33.56s
655	1.2769	33.52s
656	1.2769	33.49s
657	1.2769	33.45s
658	1.2768	33.42s
659	1.2768	33.38s
660	1.2768	33.35s
661	1.2767	33.32s

662	1.2767	33.30s
663	1.2767	33.36s
664	1.2766	33.40s
665	1.2766	33.54s
666	1.2766	33.52s
667	1.2765	33.50s
668	1.2765	33.48s
669	1.2764	33.46s
670	1.2764	33.45s
671	1.2764	33.46s
672	1.2763	33.48s
673	1.2763	33.54s
674	1.2763	33.54s
675	1.2762	33.53s
676	1.2762	33.51s
677	1.2762	33.49s
678	1.2761	33.46s
679	1.2761	33.49s
680	1.2761	33.61s
681	1.2760	33.66s
682	1.2760	33.69s
683	1.2760	33.67s
684	1.2759	33.67s
685	1.2759	33.65s
686	1.2759	33.64s
687	1.2758	33.64s
688	1.2758	33.64s
689	1.2758	33.69s
690	1.2757	33.72s
691	1.2757	33.70s
692	1.2757	33.69s
693	1.2756	33.68s
694	1.2756	33.69s
695	1.2756	33.68s
696	1.2756	33.66s
697	1.2755	33.63s
698	1.2755	33.60s
699	1.2755	33.58s
700	1.2754	33.56s
701	1.2754	33.54s
702	1.2754	33.51s
703	1.2753	33.49s
704	1.2753	33.46s
705	1.2753	33.43s
706	1.2752	33.40s
707	1.2752	33.36s
708	1.2752	33.33s
	1.2751	
709		33.30s
710	1.2751	33.27s
711	1.2751	33.23s
712	1.2750	33.20s
713	1.2750	33.16s
714	1.2750	33.13s
715	1.2749	33.10s
716	1.2749	33.07s
717	1.2749	33.03s
718	1.2748	33.00s
, 10	1.2/10	55.005

719	1.2748	32.97s
720	1.2748	32.93s
721	1.2747	32.90s
722	1.2747	32.86s
723	1.2747	32.83s
724	1.2747	32.79s
725	1.2746	32.76s
726	1.2746	32.72s
727	1.2746	32.69s
728	1.2745	32.65s
729	1.2745	32.62s
730		
	1.2745	32.58s
731	1.2744	32.55s
732	1.2744	32.52s
733	1.2744	32.49s
734	1.2743	32.46s
735	1.2743	32.42s
736	1.2743	32.39s
737	1.2742	32.35s
738	1.2742	32.32s
739	1.2742	32.28s
740	1.2742	32.25s
741	1.2741	32.21s
742	1.2741	32.18s
743	1.2741	32.15s
744	1.2740	32.11s
745	1.2740	32.08s
746	1.2740	32.04s
747	1.2739	32.01s
748	1.2739	31.97s
749	1.2739	31.94s
750	1.2739	31.91s
751	1.2738	31.89s
752	1.2738	31.87s
753	1.2738	31.84s
754	1.2737	31.81s
755	1.2737	31.79s
756	1.2737	31.78s
757	1.2736	31.75s
	1.2736	
758		31.72s
759	1.2736	31.70s
760	1.2735	31.68s
761	1.2735	31.66s
762	1.2735	31.66s
763	1.2735	31.74s
764	1.2734	31.71s
765	1.2734	31.69s
766	1.2734	31.66s
767	1.2733	31.63s
768	1.2733	31.60s
769	1.2733	31.58s
770	1.2733	31.56s
771	1.2732	31.55s
772	1.2732	31.53s
773	1.2732	31.55s
774	1.2731	31.60s
775	1.2731	31.57s
, , ,	1.2/31	51.5/15

776	1.2731	31.56s
	1.2730	
777		31.53s
778	1.2730	31.50s
779	1.2730	31.47s
780	1.2730	31.44s
781	1.2729	31.42s
782	1.2729	31.41s
783	1.2729	31.41s
784		31.46s
	1.2728	
785	1.2728	31.65s
786	1.2728	31.64s
787	1.2728	31.62s
788	1.2727	31.63s
789	1.2727	31.62s
790	1.2727	31.71s
791	1.2726	31.70s
792	1.2726	31.70s
793	1.2726	31.69s
794	1.2726	31.69s
795	1.2725	31.67s
796	1.2725	31.65s
797	1.2725	31.64s
798	1.2724	31.63s
799	1.2724	31.61s
800	1.2724	31.63s
801	1.2724	31.61s
802	1.2723	31.59s
803	1.2723	31.56s
804	1.2723	31.53s
805	1.2722	31.50s
806	1.2722	31.48s
807	1.2722	31.46s
808	1.2722	31.43s
809	1.2721	31.41s
810	1.2721	31.38s
811	1.2721	31.35s
812	1.2720	31.32s
813	1.2720	31.28s
	1.2720	
814		31.26s
815	1.2720	31.27s
816	1.2719	31.24s
817	1.2719	31.23s
818	1.2719	31.22s
819	1.2718	31.21s
820	1.2718	31.21s
821	1.2718	31.19s
822	1.2718	31.17s
		31.17s
823	1.2717	
824	1.2717	31.12s
825	1.2717	31.10s
826	1.2717	31.07s
827	1.2716	31.07s
828	1.2716	31.03s
829	1.2716	31.01s
830	1.2715	30.98s
831	1.2715	30.95s
832	1.2715	30.93s

833	1.2715	30.90s
834	1.2714	30.87s
835	1.2714	30.84s
836	1.2714	30.81s
837	1.2714	30.78s
838	1.2713	30.76s
839	1.2713	30.74s
840	1.2713	30.72s
841	1.2712	30.69s
842	1.2712	30.66s
843	1.2712	30.63s
844	1.2712	30.59s
845	1.2711	30.57s
846	1.2711	30.58s
847	1.2711	30.56s
848	1.2711	30.53s
849	1.2710	30.50s
850	1.2710	30.48s
851	1.2710	30.44s
852	1.2710	30.42s
853	1.2709	30.42s
854	1.2709	30.38s
855	1.2709	30.36s
856	1.2708	30.35s
857	1.2708	30.34s
858	1.2708	30.34s
859	1.2708	30.32s
860	1.2707	30.30s
861	1.2707	30.28s
862	1.2707	30.25s
863	1.2707	30.22s
864	1.2706	30.21s
865	1.2706	30.21s
866	1.2706	30.23s
867	1.2706	30.22s
868	1.2705	30.21s
869	1.2705	30.21s
870	1.2705	30.19s
871	1.2705	30.20s
	1.2704	
872		30.19s
873	1.2704	30.19s
874	1.2704	30.17s
875	1.2703	30.15s
876	1.2703	30.14s
877	1.2703	30.12s
878	1.2703	30.10s
879	1.2702	30.07s
880	1.2702	30.04s
881	1.2702	30.02s
882	1.2702	30.00s
883	1.2701	29.97s
884	1.2701	29.95s
885	1.2701	29.92s
886	1.2701	29.89s
887	1.2700	29.86s
888	1.2700	29.83s
889	1.2700	29.80s
	1.2/00	27.005

890	1.2700	29.77s
891	1.2699	29.74s
892		
	1.2699	29.70s
893	1.2699	29.67s
894	1.2699	29.64s
895	1.2698	29.61s
896	1.2698	29.58s
897	1.2698	29.55s
898	1.2698	29.52s
899	1.2697	29.49s
900	1.2697	29.46s
901	1.2697	29.43s
902	1.2697	29.40s
903	1.2696	29.37s
904	1.2696	29.34s
905	1.2696	29.31s
906	1.2696	29.28s
907	1.2695	29.25s
908	1.2695	29.22s
909	1.2695	29.19s
910	1.2695	29.16s
911	1.2694	29.13s
912	1.2694	29.17s
913	1.2694	29.15s
914	1.2694	29.12s
915	1.2693	29.10s
916	1.2693	29.07s
917	1.2693	29.05s
918	1.2693	29.02s
919	1.2692	28.99s
920	1.2692	28.96s
921	1.2692	28.93s
922	1.2692	28.90s
923	1.2691	28.87s
924	1.2691	28.84s
925	1.2691	28.81s
926	1.2691	28.78s
927	1.2690	28.76s
928	1.2690	28.73s
929	1.2690	28.70s
930	1.2690	28.66s
931	1.2689	28.64s
932	1.2689	28.61s
933	1.2689	28.58s
934	1.2689	28.55s
935	1.2688	28.52s
936	1.2688	28.49s
937	1.2688	28.47s
938	1.2688	28.45s
939	1.2688	28.42s
940	1.2687	28.40s
		28.39s
941	1.2687	
942	1.2687	28.38s
943	1.2687	28.37s
944	1.2686	28.36s
945	1.2686	28.35s
946	1.2686	28.34s

947	1.2686	28.32s
948	1.2685	28.30s
949	1.2685	28.28s
950	1.2685	28.27s
951	1.2685	28.26s
952	1.2684	28.24s
953	1.2684	28.23s
954	1.2684	28.20s
955	1.2684	28.19s
956	1.2684	28.17s
957	1.2683	28.16s
958	1.2683	28.14s
959	1.2683	28.11s
960	1.2683	28.10s
961	1.2682	28.10s
962	1.2682	28.49s
963	1.2682	28.63s
964	1.2682	28.66s
965	1.2681	28.77s
966	1.2681	28.76s
967	1.2681	28.88s
968	1.2681	28.85s
969	1.2680	28.87s
970	1.2680	28.91s
971	1.2680	28.98s
972	1.2680	28.96s
973	1.2680	28.94s
974	1.2679	29.14s
975	1.2679	29.11s
976	1.2679	29.09s
977	1.2679	29.12s
978	1.2678	29.10s
979	1.2678	29.09s
980	1.2678	29.07s
981	1.2678	29.05s
982	1.2677	29.04s
983	1.2677	29.03s
984	1.2677	29.04s
985	1.2677	29.03s
986	1.2677	29.12s
987	1.2676	29.12s
988	1.2676	29.11s
989	1.2676	29.10s
990	1.2676	29.10s
991	1.2675	29.11s
992	1.2675	29.12s
993	1.2675	29.20s
994	1.2675	29.24s
995	1.2675	29.24s
996	1.2674	29.24s
997	1.2674	29.31s
998	1.2674	29.34s
999	1.2674	29.34s
1000	1.2673	29.34s
1001	1.2673	29.35s
1002	1.2673	29.33s
1003	1.2673	29.31s

1004	1.2673	29.31s
1005	1.2672	29.32s
1006	1.2672	29.32s
1007	1.2672	29.30s
1008	1.2672	29.32s
1009	1.2671	29.32s
1010	1.2671	29.32s
1011	1.2671	29.36s
1012	1.2671	29.36s
1013	1.2670	29.33s
1014	1.2670	29.31s
1015	1.2670	29.30s
1016	1.2670	29.27s
1017	1.2670	29.25s
1018	1.2669	29.23s
1019	1.2669	29.21s
1020	1.2669	29.18s
1021	1.2669	29.16s
1022	1.2669	29.13s
1023	1.2668	29.15s
1024	1.2668	29.13s
1025	1.2668	29.13s
1026	1.2668	29.13s
1027	1.2667	29.10s
	1.2667	29.10s
1028		
1029	1.2667	29.09s
1030	1.2667	29.09s
1031	1.2667	29.07s
1032	1.2666	29.06s
1033	1.2666	29.03s
1034	1.2666	29.00s
1035	1.2666	28.98s
1036	1.2665	28.95s
1037	1.2665	28.92s
1038	1.2665	28.90s
1039	1.2665	28.87s
1040	1.2665	28.85s
	1.2664	
1041		28.83s
1042	1.2664	28.81s
1043	1.2664	28.80s
	1.2664	28.77s
1044		
1045	1.2664	28.75s
1046	1.2663	28.72s
1047	1.2663	28.70s
1048	1.2663	28.68s
1049	1.2663	28.66s
1050	1.2662	28.63s
1051	1.2662	28.61s
1052	1.2662	28.59s
1053	1.2662	28.57s
1054	1.2662	28.55s
1055	1.2661	28.53s
1056	1.2661	28.50s
1057	1.2661	28.48s
1058	1.2661	28.45s
1059	1.2661	28.43s
1060	1.2660	28.41s

1061	1.2660	28.39s
1062	1.2660	28.37s
1063	1.2660	28.35s
1064	1.2659	28.32s
1065	1.2659	28.29s
1066	1.2659	28.27s
1067	1.2659	28.26s
	1.2659	28.23s
1068	1.2658	
1069		28.21s
1070	1.2658	28.20s
1071	1.2658	28.19s
1072	1.2658	28.17s
1073	1.2658	28.15s
1074	1.2657	28.13s
1075	1.2657	28.10s
1076	1.2657	28.08s
1077	1.2657	28.07s
1078	1.2657	28.05s
1079	1.2656	28.04s
1080	1.2656	28.02s
1081	1.2656	28.01s
1082	1.2656	27.98s
1083	1.2655	27.95s
1084	1.2655	27.93s
1085	1.2655	27.90s
1086	1.2655	27.90s
1087	1.2655	27.85s
1088	1.2654	27.82s
	1.2654	
1089		27.82s
1090	1.2654	27.80s
1091	1.2654	27.77s
1092	1.2654	27.75s
1093	1.2653	27.73s
1094	1.2653	27.71s
1095	1.2653	27.68s
1096	1.2653	27.65s
1097	1.2653	27.62s
1098	1.2652	27.59s
1099	1.2652	27.58s
1100	1.2652	27.58s
1101	1.2652	27.57s
1102	1.2652	27.54s
1103	1.2651	27.53s
1104	1.2651	27.50s
1105	1.2651	27.48s
1106	1.2651	27.46s
1107	1.2651	27.44s
1108	1.2650	27.41s
1109	1.2650	27.39s
1110	1.2650	27.36s
1111	1.2650	27.33s
1112	1.2650	27.30s
1113	1.2649	27.27s
1114	1.2649	27.27s
1114	1.2649	27.24s 27.25s
1116	1.2649	27.25s 27.25s
1117	1.2649	27.23s

1118	1.2648	27.21s
1119	1.2648	27.19s
1120	1.2648	27.16s
1121	1.2648	27.15s
1122	1.2648	27.13s
1123	1.2647	27.10s
1124	1.2647	27.08s
1125	1.2647	27.07s
1126	1.2647	27.04s
1127	1.2647	27.02s
1128	1.2646	27.00s
1129	1.2646	26.97s
1130	1.2646	26.96s
1131	1.2646	26.93s
1132	1.2646	26.91s
1133	1.2645	26.88s
1134	1.2645	26.86s
	1.2645	26.86s
1135		
1136	1.2645	26.84s
1137	1.2645	26.82s
1138	1.2644	26.79s
1139	1.2644	26.77s
1140	1.2644	26.75s
1141	1.2644	26.73s
1142	1.2644	26.71s
1143	1.2643	26.68s
1144	1.2643	26.66s
1145	1.2643	26.65s
1146	1.2643	26.64s
1147	1.2643	26.62s
1148	1.2642	26.60s
1149	1.2642	26.58s
1150	1.2642	26.55s
1151	1.2642	26.55s
1152	1.2642	26.54s
1153	1.2641	26.55s
1154	1.2641	26.55s
1155	1.2641	
		26.54s
1156	1.2641	26.52s
1157	1.2641	26.50s
1158	1.2640	26.50s
1159	1.2640	26.50s
1160	1.2640	26.48s
1161	1.2640	26.46s
		26.48s
1162	1.2640	
1163	1.2639	26.49s
1164	1.2639	26.50s
1165	1.2639	26.49s
1166	1.2639	26.48s
1167	1.2639	26.50s
1168	1.2638	26.48s
		26.50s
1169	1.2638	
1170	1.2638	26.53s
1171	1.2638	26.52s
1172	1.2638	26.50s
1173	1.2637	26.51s
1174	1.2637	26.48s

1175	1.2637	26.46s
1176	1.2637	26.43s
1177	1.2637	26.41s
1178	1.2636	26.42s
1179	1.2636	26.40s
1180	1.2636	26.38s
1181	1.2636	26.37s
1182	1.2636	26.36s
1183	1.2636	26.34s
1184	1.2635	26.32s
1185	1.2635	26.30s
1186	1.2635	26.28s
1187	1.2635	26.26s
1188	1.2635	26.24s
1189	1.2634	26.22s
1190	1.2634	26.20s
1191	1.2634	26.17s
1192	1.2634	26.15s
1193	1.2634	26.13s
1194	1.2633	26.11s
1195	1.2633	26.09s
1196	1.2633	26.07s
1197	1.2633	26.05s
1198	1.2633	26.03s
1199	1.2632	26.02s
1200	1.2632	26.03s
1201	1.2632	26.07s
1202	1.2632	26.06s
1203	1.2632	26.04s
1204	1.2632	26.02s
1205	1.2631	26.00s
1206	1.2631	25.97s
1207	1.2631	25.97s
1208	1.2631	25.98s
1209	1.2631	25.95s
1210	1.2630	25.93s
1211	1.2630	25.91s
1212	1.2630	25.89s
1213	1.2630	25.89s
1214	1.2630	25.89s
1215	1.2629	25.87s
1216	1.2629	25.85s
1217	1.2629	25.85s
1218	1.2629	25.85s
1219	1.2629	25.83s
1220	1.2629	25.81s
1221	1.2628	25.79s
1222	1.2628	25.76s
1223	1.2628	
		25.74s
1224	1.2628	25.71s
1225	1.2628	25.70s
1226	1.2627	25.67s
1227	1.2627	25.66s
1228	1.2627	25.71s
1229	1.2627	25.70s
1230	1.2627	25.70s
1231	1.2626	25.69s

1232	1.2626	25.67s
1233	1.2626	25.66s
1234	1.2626	25.67s
1235	1.2626	25.66s
1236	1.2626	25.64s
1237	1.2625	25.63s
1238	1.2625	25.61s
1239	1.2625	25.59s
1240	1.2625	25.59s
1241	1.2625	25.60s
1242	1.2624	25.58s
1243	1.2624	25.56s
1244	1.2624	25.54s
1245	1.2624	25.53s
1246	1.2624	25.51s
1247	1.2624	25.49s
1248	1.2623	25.51s
1249	1.2623	25.50s
1250	1.2623	25.49s
1251	1.2623	25.47s
1252	1.2623	25.45s
1253	1.2622	25.43s
1254	1.2622	25.41s
1255	1.2622	25.39s
1256	1.2622	25.39s
1257	1.2622	25.37s
1258	1.2622	25.36s
1259	1.2621	25.34s
1260	1.2621	25.32s
1261	1.2621	25.30s
	1.2621	25.28s
1262		
1263	1.2621	25.27s
1264	1.2620	25.29s
1265	1.2620	25.27s
1266	1.2620	25.30s
1267	1.2620	25.28s
1268	1.2620	25.25s
1269	1.2620	25.23s
1270	1.2619	25.21s
1271	1.2619	25.19s
1272	1.2619	25.17s
1273	1.2619	25.14s
1274	1.2619	25.13s
1275	1.2618	25.11s
1276	1.2618	25.11s
1277	1.2618	25.12s
1278	1.2618	25.10s
1279	1.2618	25.10s
1280	1.2618	25.09s
1281	1.2617	25.08s
1282	1.2617	25.06s
1283	1.2617	25.04s
1284	1.2617	25.03s
1285	1.2617	25.01s
1286	1.2616	25.00s
1287	1.2616	25.00s
1288	1.2616	24.97s
1200	1.2010	-1.0/13

1289	1.2616	24.99s
1290	1.2616	24.97s
1291	1.2616	24.95s
1292	1.2615	24.93s
1293	1.2615	24.92s
1294	1.2615	24.90s
1295	1.2615	24.88s
1296	1.2615	24.86s
1297	1.2615	
		24.84s
1298	1.2614	24.83s
1299	1.2614	24.81s
1300	1.2614	24.80s
1301	1.2614	24.78s
1302	1.2614	24.75s
1303	1.2613	24.75s
1304	1.2613	
		24.72s
1305	1.2613	24.70s
1306	1.2613	24.67s
1307	1.2613	24.64s
1308	1.2613	24.62s
1309	1.2612	24.59s
1310	1.2612	24.57s
	1.2612	24.54s
1311		
1312	1.2612	24.52s
1313	1.2612	24.50s
1314	1.2611	24.48s
1315	1.2611	24.45s
1316	1.2611	24.43s
1317	1.2611	24.40s
1318	1.2611	24.38s
1319	1.2611	24.35s
1320	1.2610	24.33s
1321	1.2610	24.32s
1322	1.2610	24.31s
1323	1.2610	24.29s
1324	1.2610	24.26s
1325	1.2610	24.24s
1326	1.2609	24.23s
1327	1.2609	24.23s
1328	1.2609	24.24s
1329	1.2609	24.22s
1330	1.2609	24.19s
1331	1.2609	24.17s
1332	1.2608	24.15s
1333	1.2608	24.14s
1334	1.2608	24.12s
1335	1.2608	24.11s
1336	1.2608	24.09s
1337	1.2608	24.09s
1338	1.2607	24.07s
1339	1.2607	24.05s
1340	1.2607	24.03s
1341	1.2607	24.01s
1342	1.2607	23.99s
1343	1.2607	23.97s
1344	1.2606	23.94s
1345	1.2606	23.92s

1346	1.2606	23.90s
1347	1.2606	23.88s
1348	1.2606	23.85s
1349	1.2605	23.84s
1350	1.2605	23.83s
1351	1.2605	23.81s
1352	1.2605	23.79s
1353	1.2605	23.78s
1354	1.2605	23.76s
	1.2604	23.73s
1355		
1356	1.2604	23.71s
1357	1.2604	23.69s
1358	1.2604	23.67s
1359	1.2604	23.64s
1360	1.2604	23.62s
1361	1.2603	23.60s
1362	1.2603	23.59s
1363	1.2603	23.57s
1364		
	1.2603	23.54s
1365	1.2603	23.52s
1366	1.2603	23.49s
1367	1.2602	23.47s
1368	1.2602	23.46s
1369	1.2602	23.44s
1370	1.2602	23.42s
1371	1.2602	23.40s
1372	1.2602	23.38s
1373	1.2601	23.37s
1374	1.2601	23.35s
1375	1.2601	23.35s
1376	1.2601	23.33s
1377	1.2601	23.31s
1378	1.2601	23.28s
1379	1.2600	23.26s
1380	1.2600	23.25s
1381	1.2600	23.25s
1382	1.2600	23.22s
1383	1.2600	23.20s
1384	1.2600	23.17s
1385	1.2599	23.15s
1386	1.2599	23.12s
1387	1.2599	23.10s
1388	1.2599	23.08s
1389	1.2599	23.06s
1390	1.2599	23.04s
1391	1.2598	23.02s
1392	1.2598	22.99s
1393	1.2598	22.97s
1394	1.2598	22.95s
1395	1.2598	22.94s
1396	1.2598	22.94s
1397	1.2597	22.96s
1398	1.2597	22.96s
1399	1.2597	22.94s
1400	1.2597	22.93s
1401	1.2597	22.91s
1402	1.2597	22.91s
1404	1 • 4 3 3 1	22.743

1403	1.2596	22.91s
1404	1.2596	22.91s
1405	1.2596	22.91s
1406	1.2596	22.89s
1407	1.2596	22.87s
1408	1.2596	22.85s
1409	1.2595	22.84s
1410	1.2595	22.83s
1411	1.2595	22.83s
1412	1.2595	22.80s
1413	1.2595	22.78s
1414	1.2595	22.75s
1415	1.2594	22.73s
1416	1.2594	22.71s
1417	1.2594	22.69s
1418	1.2594	22.66s
1419	1.2594	22.68s
1420	1.2594	22.66s
1421	1.2593	
		22.66s
1422	1.2593	22.65s
1423	1.2593	22.65s
1424	1.2593	22.63s
1425	1.2593	22.61s
1426	1.2593	22.59s
1427	1.2592	22.57s
1428	1.2592	22.55s
1429	1.2592	22.53s
1430	1.2592	22.51s
1431	1.2592	22.49s
1432	1.2592	22.47s
1433	1.2591	22.47s
1434	1.2591	22.62s
1435	1.2591	22.59s
1436	1.2591	22.57s
1437	1.2591	22.57s
1438	1.2591	22.53s
1439	1.2590	22.50s
1440	1.2590	22.49s
1441	1.2590	22.47s
1442	1.2590	22.47s
1443	1.2590	22.46s
1444	1.2590	22.48s
1445	1.2589	22.47s
1446	1.2589	22.46s
1447	1.2589	22.43s
1448	1.2589	22.43s
1449	1.2589	22.46s
1450	1.2589	22.44s
1451	1.2589	22.42s
1452	1.2588	22.40s
1453	1.2588	22.39s
1454	1.2588	22.39s 22.41s
	1.2588	22.41s 22.42s
1455		
1456	1.2588	22.41s
1457	1.2588	22.39s
1458	1.2587	22.39s
1459	1.2587	22.37s

1460	1.2587	22.34s
1461	1.2587	22.33s
1462	1.2587	22.32s
1463	1.2587	22.31s
1464	1.2586	22.46s
1465	1.2586	22.45s
1466	1.2586	22.52s
1467	1.2586	22.62s
1468	1.2586	22.63s
1469	1.2586	22.64s
1470	1.2585	22.85s
1471	1.2585	22.95s
1472	1.2585	22.94s
1473	1.2585	22.94s
1474	1.2585	22.97s
1475	1.2585	22.97s
1476	1.2584	23.03s
1477	1.2584	23.14s
1478	1.2584	23.14s
1479	1.2584	23.19s 23.22s
1480	1.2584	23.22s 23.21s
1481	1.2584	23.27s
1482	1.2584	23.25s
1483	1.2583	23.22s
1484	1.2583	23.21s
1485	1.2583	23.20s
1486	1.2583	23.20s
1487	1.2583	23.18s
1488	1.2583	23.17s
1489	1.2582	23.17s
1490	1.2582	23.16s
1491	1.2582	23.13s
1492	1.2582	23.12s
1493	1.2582	23.12s
1494	1.2582	23.14s
1495	1.2581	23.18s
1496	1.2581	23.16s
1497	1.2581	23.13s
1498	1.2581	23.25s
1499	1.2581	23.23s
1500	1.2581	23.22s
1501	1.2581	23.20s
1502	1.2580	23.19s
1503	1.2580	23.18s
1504	1.2580	23.19s
1505	1.2580	23.17s
1506	1.2580	23.16s
1507	1.2580	23.13s
1508	1.2579	23.18s
1509	1.2579	23.17s
1510	1.2579	23.16s
1511	1.2579	23.14s
1512	1.2579	23.12s
1513	1.2579	23.10s
1514	1.2578	23.09s
1515	1.2578	23.15s
1516	1.2578	23.22s

1517	1.2578	23.29s
1518	1.2578	23.36s
1519	1.2578	23.39s
1520	1.2578	23.37s
1521	1.2577	23.40s
	1.2577	
1522		23.49s
1523	1.2577	23.70s
1524	1.2577	23.71s
1525	1.2577	23.76s
1526	1.2577	23.79s
1527	1.2576	23.81s
1528	1.2576	23.78s
1529	1.2576	23.92s
1530	1.2576	23.91s
1531	1.2576	23.89s
1532	1.2576	23.87s
1533	1.2576	23.89s
1534	1.2575	23.88s
1535	1.2575	23.87s
1536	1.2575	23.87s
1537	1.2575	23.92s
1538	1.2575	23.90s
1539	1.2575	23.88s
1540	1.2574	23.86s
1541	1.2574	23.86s
1542	1.2574	23.87s
1543	1.2574	23.88s
		23.87s
1544	1.2574	
1545	1.2574	23.89s
1546	1.2574	23.88s
1547	1.2573	23.87s
1548	1.2573	23.86s
1549	1.2573	23.85s
1550	1.2573	23.86s
1551	1.2573	23.86s
1552	1.2573	23.88s
1553	1.2572	23.89s
1554	1.2572	23.88s
1555	1.2572	23.86s
1556	1.2572	23.87s
1557	1.2572	23.90s
1558	1.2572	23.91s
1559	1.2572	23.88s
1560	1.2571	23.85s
1561	1.2571	23.83s
1562	1.2571	23.87s
1563	1.2571	23.86s
1564	1.2571	23.87s
1565	1.2571	23.87s
1566	1.2570	23.85s
1567	1.2570	23.83s
1568	1.2570	23.89s
1569	1.2570	23.90s
1570	1.2570	23.88s
1570	1.2570	23.87s
	1.2570	23.85s
1572		
1573	1.2569	23.88s

1574	1.2569	23.87s
1575	1.2569	23.84s
1576	1.2569	23.85s
1577	1.2569	23.83s
1578	1.2569	23.80s
1579	1.2569	23.80s
1580	1.2568	23.78s
	1.2568	
1581		23.76s
1582	1.2568	23.74s
1583	1.2568	23.73s
1584	1.2568	23.71s
1585	1.2568	23.73s
1586	1.2567	23.70s
1587	1.2567	23.66s
1588	1.2567	23.65s
1589	1.2567	23.63s
1590	1.2567	23.61s
1591	1.2567	23.60s
1592	1.2567	23.62s
1593	1.2566	23.60s
1594	1.2566	23.58s
1595	1.2566	23.56s
1596	1.2566	23.58s
1597	1.2566	23.57s
1598	1.2566	23.55s
1599	1.2565	23.53s
1600	1.2565	23.52s
1601	1.2565	23.53s
1602	1.2565	23.51s
1603	1.2565	23.49s
1604	1.2565	23.46s
1605	1.2565	23.47s
1606	1.2564	23.46s
	1.2564	
1607		23.45s
1608	1.2564	23.42s
1609	1.2564	23.39s
1610	1.2564	23.36s
1611	1.2564	23.33s
1612	1.2564	23.30s
1613	1.2563	23.29s
1614	1.2563	23.26s
1615	1.2563	23.27s
1616	1.2563	23.25s
1617	1.2563	23.24s
1618	1.2563	23.22s
1619	1.2563	23.20s
1620	1.2562	23.19s
1621	1.2562	23.16s
1622	1.2562	23.13s
1623	1.2562	23.11s
1624	1.2562	23.11s
1625	1.2562	23.08s
1626	1.2561	23.06s
1627	1.2561	23.05s
1628	1.2561	23.02s
1629	1.2561	22.99s
1630	1.2561	22.96s

1631	1.2561	22.97s
1632	1.2561	22.94s
1633	1.2560	22.92s
1634	1.2560	22.90s
1635	1.2560	22.89s
1636	1.2560	22.87s
1637	1.2560	22.84s
1638	1.2560	22.81s
1639	1.2560	22.80s
1640	1.2559	22.78s
1641	1.2559	22.75s
	1.2559	22.73s
1642		
1643	1.2559	22.70s
1644	1.2559	22.68s
1645	1.2559	22.65s
1646	1.2559	22.62s
1647	1.2558	22.59s
1648	1.2558	22.56s
1649	1.2558	22.53s
1650	1.2558	22.50s
1651	1.2558	22.47s
1652	1.2558	22.44s
1653	1.2558	22.41s
1654	1.2557	22.38s
1655	1.2557	22.35s
1656	1.2557	22.33s
1657	1.2557	22.30s
1658	1.2557	22.27s
1659	1.2557	22.24s
1660	1.2557	22.21s
1661	1.2556	22.17s
1662	1.2556	22.14s
1663	1.2556	22.11s
1664	1.2556	22.09s
1665	1.2556	22.06s
1666	1.2556	22.03s
1667	1.2556	21.99s
1668	1.2555	21.96s
1669	1.2555	21.93s
1670	1.2555	21.90s
1671	1.2555	21.87s
1672	1.2555	21.84s
1673	1.2555	21.81s
1674	1.2555	21.79s
	1.2554	
1675		21.75s
1676	1.2554	21.72s
1677	1.2554	21.70s
1678	1.2554	21.67s
1679	1.2554	21.64s
1680	1.2554	21.61s
1681	1.2554	21.58s
1682	1.2553	21.55s
1683	1.2553	21.52s
1684	1.2553	21.50s
1685	1.2553	21.47s
	1.2553	21.47s 21.43s
1686		
1687	1.2553	21.40s

1688	1.2553	21.37s
1689	1.2552	
		21.34s
1690	1.2552	21.31s
1691	1.2552	21.28s
1692	1.2552	21.25s
	1.2552	21.22s
1693		
1694	1.2552	21.19s
1695	1.2552	21.16s
1696	1.2551	21.13s
1697	1.2551	21.10s
1698	1.2551	21.07s
1699	1.2551	21.04s
1700	1.2551	21.03s
1701	1.2551	21.01s
1702	1.2551	20.99s
1703	1.2550	20.98s
1704	1.2550	20.95s
1705	1.2550	20.92s
	1.2550	
1706		20.89s
1707	1.2550	20.86s
1708	1.2550	20.83s
1709	1.2550	20.80s
1710	1.2549	20.78s
1711	1.2549	20.76s
1712	1.2549	20.73s
1713	1.2549	20.70s
1714	1.2549	20.70s
1715	1.2549	20.68s
1716	1.2549	20.68s
1717	1.2548	20.66s
1718	1.2548	20.64s
1719	1.2548	20.61s
	1.2548	
1720		20.62s
1721	1.2548	20.60s
1722	1.2548	20.56s
1723	1.2548	20.53s
1724	1.2547	20.50s
1725	1.2547	20.47s
1726	1.2547	20.44s
1727	1.2547	20.41s
1728	1.2547	20.38s
1729	1.2547	20.35s
1730	1.2547	20.32s
1731	1.2546	20.29s
1732	1.2546	20.29s
1733	1.2546	20.26s
1734	1.2546	20.24s
1735	1.2546	20.21s
1736	1.2546	20.18s
1737	1.2546	20.16s
1738	1.2545	20.18s
	1.2545	20.10s
1739		
1740	1.2545	20.14s
1741	1.2545	20.11s
1742	1.2545	20.09s
	1.2313	20.000
1743		
1743 1744	1.2545 1.2545	20.07s 20.04s

1745	1.2545	20.01s
1746	1.2544	19.98s
	1.2544	
1747		19.95s
1748	1.2544	19.94s
1749	1.2544	19.92s
1750	1.2544	19.88s
1751	1.2544	19.85s
1752	1.2544	19.82s
1753	1.2543	19.79s
1754	1.2543	19.77s
1755	1.2543	19.76s
1756	1.2543	19.75s
1757	1.2543	19.72s
	1.2543	
1758		19.69s
1759	1.2543	19.68s
1760	1.2542	19.65s
1761	1.2542	19.63s
1762	1.2542	19.61s
1763	1.2542	19.58s
1764	1.2542	19.55s
1765	1.2542	19.52s
1766	1.2542	19.49s
1767	1.2541	19.46s
1768	1.2541	19.43s
1769	1.2541	19.40s
1770	1.2541	19.37s
1771	1.2541	19.34s
1772	1.2541	19.31s
1773	1.2541	19.29s
1774	1.2541	19.26s
1775	1.2540	19.23s
1776	1.2540	19.20s
1777	1.2540	19.17s
1778	1.2540	19.14s
1779	1.2540	19.11s
1780	1.2540	19.08s
1781	1.2540	19.05s
1782	1.2539	19.02s
1783	1.2539	18.99s
1784	1.2539	18.98s
1785	1.2539	18.95s
1786	1.2539	18.92s
1787	1.2539	18.89s
1788	1.2539	18.86s
1789	1.2538	18.83s
1790	1.2538	18.80s
1791	1.2538	18.78s
1792	1.2538	18.75s
1793	1.2538	18.72s
1794	1.2538	18.69s
1795	1.2538	18.66s
1796	1.2538	18.64s
1797	1.2537	18.61s
1798	1.2537	18.58s
1799	1.2537	18.56s
1800	1.2537	18.52s
1801	1.2537	18.50s

1802	1.2537	18.47s
1803	1.2537	18.44s
1804	1.2536	18.41s
1805	1.2536	18.38s
1806	1.2536	18.35s
1807	1.2536	18.32s
1808	1.2536	18.29s
1809	1.2536	18.26s
1810	1.2536	18.23s
1811	1.2536	18.20s
1812	1.2535	18.17s
1813	1.2535	18.14s
1814	1.2535	18.11s
1815	1.2535	18.08s
1816	1.2535	18.05s
1817	1.2535	18.02s
1818	1.2535	17.99s
1819	1.2534	17.96s
1820	1.2534	17.93s
1821	1.2534	17.90s
1822	1.2534	17.87s
1823	1.2534	17.84s
1824	1.2534	17.81s
1825	1.2534	17.78s
1826	1.2534	17.75s
1827	1.2533	17.72s
1828	1.2533	17.70s
1829	1.2533	17.67s
1830	1.2533	17.66s
1831	1.2533	17.63s
1832	1.2533	17.60s
1833	1.2533	17.58s
1834	1.2532	17.55s
1835	1.2532	17.53s
	1.2532	17.50s
1836		
1837	1.2532	17.47s
1838	1.2532	17.45s
1839	1.2532	17.43s
1840	1.2532	17.40s
1841	1.2532	17.37s
1842	1.2531	17.34s
1843	1.2531	17.31s
1844	1.2531	17.29s
1845	1.2531	17.26s
1846	1.2531	17.23s
1847	1.2531	17.20s
1848	1.2531	17.17s
1849	1.2531	17.14s
1850	1.2530	17.12s
1851	1.2530	17.09s
1852	1.2530	17.06s
1853	1.2530	17.03s
1854	1.2530	17.00s
1855	1.2530	16.97s
1856	1.2530	16.97s
	1.2529	16.93s
1857		
1858	1.2529	16.90s

1859	1.2529	16.88s
1860	1.2529	16.85s
1861	1.2529	16.83s
1862	1.2529	16.80s
1863	1.2529	16.77s
1864	1.2529	16.74s
1865	1.2528	16.72s
1866	1.2528	16.72s
1867	1.2528	16.70s
1868	1.2528	16.68s
1869	1.2528	16.68s
1870	1.2528	16.70s
1871	1.2528	16.67s
1872	1.2528	16.65s
1873	1.2527	16.62s
1874	1.2527	16.64s
1875	1.2527	16.61s
1876	1.2527	16.58s
1877	1.2527	16.55s
1878	1.2527	16.53s
1879	1.2527	16.50s
1880	1.2526	16.48s
1881	1.2526	16.46s
1882	1.2526	16.43s
1883	1.2526	16.40s
1884	1.2526	16.37s
1885	1.2526	16.34s
1886	1.2526	16.31s
1887	1.2526	16.28s
1888	1.2525	16.25s
1889	1.2525	16.22s
1890	1.2525	16.20s
1891	1.2525	16.17s
1892	1.2525	16.14s
1893	1.2525	16.11s
1894	1.2525	16.08s
	1.2525	16.05s
1895		
1896	1.2524	16.02s
1897	1.2524	16.00s
1898	1.2524	15.97s
1899	1.2524	15.94s
1900	1.2524	15.91s
1901	1.2524	15.88s
1902	1.2524	15.85s
1903	1.2524	15.82s
1904	1.2523	15.79s
1905	1.2523	15.77s
1906	1.2523	15.74s
1907	1.2523	15.71s
1908	1.2523	15.68s
1909	1.2523	15.65s
1910	1.2523	15.63s
1911	1.2523	15.61s
1912	1.2522	15.58s
1913	1.2522	15.56s
1914	1.2522	15.53s
1915	1.2522	15.50s

1916	1.2522	15.47s
1917	1.2522	15.44s
1918	1.2522	15.41s
1919	1.2522	15.38s
1920	1.2521	15.35s
1921	1.2521	15.33s
1922	1.2521	15.30s
1923	1.2521	15.27s
1924	1.2521	15.27s
1925	1.2521	15.21s
1926	1.2521	15.18s
1927	1.2520	15.15s
1928	1.2520	15.12s
1929	1.2520	15.09s
1930	1.2520	15.06s
1931	1.2520	15.04s
1932	1.2520	15.01s
1933	1.2520	14.98s
1934	1.2520	14.95s
1935	1.2519	14.92s
1936	1.2519	14.89s
1937	1.2519	14.87s
1938	1.2519	14.84s
1939	1.2519	14.81s
1940	1.2519	14.78s
1941		
	1.2519	14.76s
1942	1.2519	14.73s
1943	1.2518	14.70s
1944	1.2518	14.67s
1945	1.2518	14.64s
1946	1.2518	14.61s
1947	1.2518	14.59s
1948	1.2518	14.56s
1949	1.2518	14.53s
1950	1.2518	14.50s
	1.2517	14.30s
1951		
1952	1.2517	14.44s
1953	1.2517	14.41s
1954	1.2517	14.38s
1955	1.2517	14.35s
1956	1.2517	14.32s
1957	1.2517	14.30s
1958	1.2517	14.27s
1959	1.2516	14.24s
1960	1.2516	14.21s
1961	1.2516	14.18s
1962	1.2516	14.15s
1963	1.2516	14.12s
1964	1.2516	14.09s
1965	1.2516	14.06s
1966	1.2516	14.04s
1967	1.2515	14.01s
1968	1.2515	13.98s
1969	1.2515	13.95s
1970	1.2515	13.92s
	1.2515	
1971		13.89s
1972	1.2515	13.87s

1973	1.2515	13.84s
1974	1.2515	13.81s
1975	1.2515	13.78s
1976	1.2514	13.75s
1977	1.2514	13.72s
1978	1.2514	13.70s
1979	1.2514	13.70s
1980	1.2514	13.64s
1981	1.2514	13.61s
1982	1.2514	13.58s
1983	1.2514	13.56s
1984	1.2513	13.53s
1985	1.2513	13.50s
1986	1.2513	13.47s
1987	1.2513	13.44s
1988	1.2513	13.41s
1989	1.2513	13.39s
1990	1.2513	13.38s
1991	1.2513	13.35s
1992	1.2512	13.32s
1993	1.2512	13.29s
1994	1.2512	13.27s
1995	1.2512	13.24s
1996	1.2512	13.21s
1997	1.2512	13.18s
1998	1.2512	13.16s
1999	1.2512	13.10s
2000	1.2511	13.10s
2001	1.2511	13.08s
2002	1.2511	13.05s
2003	1.2511	13.02s
2004	1.2511	12.99s
2005	1.2511	12.96s
2006	1.2511	12.94s
2007	1.2511	12.91s
2008	1.2510	12.88s
2009	1.2510	12.85s
2010	1.2510	12.82s
2011	1.2510	12.80s
2012	1.2510	12.77s
2013	1.2510	12.74s
2014	1.2510	12.72s
2015	1.2510	12.71s
2016	1.2509	12.68s
2017	1.2509	12.66s
2018	1.2509	12.63s
2019	1.2509	12.60s
2020	1.2509	12.57s
2021	1.2509	12.56s
2022	1.2509	12.53s
2023	1.2509	12.50s
2023	1.2509	12.30s
2024	1.2508	12.47s 12.44s
	1.2508	
2026		12.42s
2027	1.2508	12.39s
2028	1.2508	12.36s
2029	1.2508	12.33s

2030	1.2508	12.30s
2031	1.2508	12.28s
2032	1.2508	12.25s
2033	1.2507	12.22s
2034	1.2507	12.19s
	1.2507	
2035		12.16s
2036	1.2507	12.14s
2037	1.2507	12.11s
2038	1.2507	12.08s
2039	1.2507	12.05s
2040	1.2507	12.02s
2041	1.2506	12.00s
2042	1.2506	11.97s
2043	1.2506	11.94s
2044	1.2506	11.91s
2045	1.2506	11.88s
2046	1.2506	11.85s
2047	1.2506	11.82s
2048	1.2506	11.79s
2049	1.2506	11.77s
2050	1.2505	11.74s
2051	1.2505	11.71s
2052	1.2505	11.68s
2053	1.2505	11.65s
2054	1.2505	11.63s
		11.60s
2055	1.2505	
2056	1.2505	11.57s
2057	1.2505	11.54s
2058	1.2504	11.51s
2059	1.2504	11.49s
2060	1.2504	11.46s
2061	1.2504	11.43s
2062	1.2504	11.40s
2063	1.2504	11.38s
2064	1.2504	11.35s
2065	1.2504	11.33s
2066	1.2503	11.30s
2067	1.2503	11.27s
2068	1.2503	11.25s
2069	1.2503	11.22s
2070	1.2503	11.20s
2071	1.2503	11.17s
2072	1.2503	11.15s
2073	1.2503	11.12s
2074	1.2503	11.10s
2075	1.2502	11.08s
2076	1.2502	11.05s
2077	1.2502	11.02s
2078	1.2502	11.00s
2079	1.2502	10.97s
2080	1.2502	10.95s
2081	1.2502	10.92s
2082	1.2502	10.89s
2083	1.2501	10.86s
2084	1.2501	10.83s
2085	1.2501	10.81s
2086	1.2501	10.79s

2087	1.2501	10.76s
2088	1.2501	10.73s
2089	1.2501	10.71s
2090	1.2501	10.715 10.68s
2091	1.2501	10.65s
2092	1.2500	10.62s
2093	1.2500	10.60s
2094	1.2500	10.57s
2095	1.2500	10.54s
2096	1.2500	10.52s
2097	1.2500	10.49s
2098	1.2500	10.47s
2099	1.2500	10.44s
2100	1.2499	10.41s
2101	1.2499	10.38s
2102	1.2499	10.36s
2103	1.2499	10.33s
2104	1.2499	10.30s
2105	1.2499	10.28s
2106	1.2499	10.25s
2107	1.2499	10.22s
2108	1.2499	10.19s
2109	1.2498	10.16s
2110	1.2498	10.13s
2111	1.2498	10.11s
2112	1.2498	10.08s
2113	1.2498	10.05s
2114	1.2498	10.03s
2115	1.2498	10.00s
2116	1.2498	9.97s
2117	1.2497	9.94s
2118	1.2497	9.91s
2119	1.2497	9.89s
		9.86s
2120	1.2497	
2121	1.2497	9.83s
2122	1.2497	9.80s
2123	1.2497	9.78s
2124	1.2497	9.75s
2125	1.2497	9.72s
2126	1.2496	9.69s
2127	1.2496	9.66s
2128	1.2496	9.64s
2129	1.2496	9.61s
2130	1.2496	9.58s
2131	1.2496	9.55s
2132	1.2496	9.53s
2133	1.2496	9.50s
2134	1.2496	9.47s
2135	1.2495	9.45s
2136	1.2495	9.42s
2137	1.2495	9.42s 9.40s
2138	1.2495	9.37s
2139	1.2495	9.35s
2140	1.2495	9.32s
2141	1.2495	9.29s
2142	1.2495	9.27s
2143	1.2494	9.24s

2144	1.2494	9.21s
2145	1.2494	9.18s
2146	1.2494	9.16s
2147	1.2494	9.13s
2148	1.2494	9.10s
		9.10s 9.08s
2149	1.2494	
2150	1.2494	9.05s
2151	1.2494	9.02s
2152	1.2493	8.99s
2153	1.2493	8.96s
2154	1.2493	8.94s
2155	1.2493	8.91s
2156	1.2493	8.88s
2157	1.2493	8.85s
2158	1.2493	8.83s
2159	1.2493	8.80s
2160	1.2493	8.77s
2161	1.2492	8.74s
2162	1.2492	8.72s
2163	1.2492	8.69s
2164	1.2492	8.66s
2165	1.2492	8.63s
2166	1.2492	8.61s
2167	1.2492	8.58s
2168	1.2492	8.55s
2169	1.2492	8.53s
2170	1.2491	8.50s
2171	1.2491	8.47s
2172	1.2491	8.45s
2173	1.2491	8.42s
2174	1.2491	8.39s
2175	1.2491	8.36s
2176	1.2491	8.33s
2177	1.2491	8.31s
2178	1.2490	8.28s
2179	1.2490	8.25s
2180	1.2490	8.23s
2181		
-	1.2490	8.20s
2182	1.2490	8.17s
2183	1.2490	8.14s
2184	1.2490	8.12s
2185	1.2490	8.09s
2186	1.2490	8.06s
2187	1.2489	8.03s
2188	1.2489	8.01s
2189	1.2489	7.98s
2190	1.2489	7.95s
2191	1.2489	7.93s
2192	1.2489	7.90s
2193	1.2489	7.87s
2194	1.2489	7.85s
2195	1.2489	7.82s
2196	1.2488	7.79s
2197	1.2488	7.77s
2198	1.2488	7.74s
2199	1.2488	7.71s
2200	1.2488	7.69s

2201	1.2488	7.66s
2202	1.2488	7.63s
2203	1.2488	7.61s
2204	1.2488	7.58s
2205		7.55s
2206		7.53s
2207		7.50s
2208		7.47s
2209	1.2487	7.45s
2210	1.2487	7.42s
2211	1.2487	7.39s
2212	1.2487	7.36s
2213	1.2487	7.34s
2214	1.2486	7.31s
2215	1.2486	7.28s
2216	1.2486	7.26s
2217	1.2486	7.23s
2218	1.2486	7.23s
2219	1.2486	7.18s
2220	1.2486	7.15s
2221	1.2486	7.13s
2222	1.2486	7.10s
2223	1.2485	7.105
2224	1.2485	7.07s
2225	1.2485	7.02s
2226	1.2485	6.99s
2227	1.2485	6.97s
2228	1.2485	6.94s
2229	1.2485	6.92s
2230	1.2485	6.89s
2231	1.2485	6.86s
2232	1.2484	6.84s
2233	1.2484	6.81s
2234	1.2484	6.78s
2235	1.2484	6.76s
2236	1.2484	6.73s
2237	1.2484	6.70s
2238	1.2484	6.68s
2239	1.2484	6.65s
2240	1.2484	6.62s
2241	1.2483	6.60s
2242	1.2483	6.57s
2243	1.2483	6.54s
2244	1.2483	6.52s
2245	1.2483	6.49s
2246	1.2483	6.46s
2247	1.2483	6.44s
2248	1.2483	6.41s
2249	1.2483	6.38s
2250	1.2483	6.35s
2251	1.2482	6.33s
	1.2482	6.30s
2252	1.2482	
2253		6.28s
2254	1.2482	6.25s
2255	1.2482	6.22s
2256	1.2482	6.19s
2257	1.2482	6.17s

2258	1.2482	6.14s
2259	1.2481	6.12s
2260	1.2481	6.09s
2261	1.2481	6.06s
2262	1.2481	6.03s
2263	1.2481	6.01s
2264	1.2481	5.98s
2265	1.2481	5.96s
2266	1.2481	5.93s
2267	1.2481	5.90s
2268	1.2480	5.87s
2269	1.2480	5.85s
2270	1.2480	5.82s
2271	1.2480	5.79s
2272	1.2480	5.77s
2273	1.2480	5.74s
2274	1.2480	5.71s
2275	1.2480	5.69s
2276	1.2480	5.66s
2277	1.2479	5.63s
2278	1.2479	5.61s
2279	1.2479	5.58s
2280		5.55s
2281		5.53s
2282	1.2479	5.50s
2283	1.2479	5.47s
2284	1.2479	5.45s
2285	1.2479	5.42s
2286	1.2479	5.40s
2287	1.2478	5.37s
2288	1.2478	5.35s
2289	1.2478	5.32s
2290	1.2478	5.29s
2291	1.2478	5.27s
2292	1.2478	5.24s
2293	1.2478	5.21s
2294	1.2478	5.19s
2295	1.2478	5.16s
2296	1.2477	5.13s
2297	1.2477	5.11s
2298	1.2477	5.08s
2299	1.2477	5.05s
2300	1.2477	5.03s
2301	1.2477	5.00s
2302	1.2477	4.97s
2303	1.2477	4.95s
2304	1.2477	4.92s
2305	1.2476	4.90s
2306	1.2476	4.87s
2307	1.2476	4.85s
2308	1.2476	4.82s
2309	1.2476	4.79s
2310	1.2476	4.77s
2311	1.2476	4.74s
2312	1.2476	4.71s
2313	1.2476	4.69s
2314	1.2475	4.66s

2315	1.2475	4.64s
2316	1.2475	4.61s
2317	1.2475	4.58s
2318	1.2475	4.56s
2319	1.2475	4.53s
2320	1.2475	4.50s
2321	1.2475	4.48s
2322	1.2475	4.45s
2323	1.2474	4.43s
2324	1.2474	4.40s
2325	1.2474	4.37s
2326		4.35s
2327	1.2474	4.32s
		4.30s
2328	1.2474	
2329	1.2474	4.27s
2330	1.2474	4.24s
2331	1.2474	4.22s
2332	1.2474	4.19s
2333	1.2473	4.17s
2334		4.14s
2335		4.11s
2336		4.09s
2337	1.2473	4.06s
2338	1.2473	4.03s
2339	1.2473	4.01s
2340	1.2473	3.98s
2341	1.2473	3.96s
2342	1.2472	3.93s
2343	1.2472	3.90s
2344	1.2472	3.88s
2345	1.2472	3.85s
2346	1.2472	3.83s
2347	1.2472	3.80s
2348	1.2472	3.77s
	1.2472	3.75s
2349		
2350	1.2472	3.72s
2351	1.2471	3.70s
2352	1.2471	3.67s
2353	1.2471	3.64s
2354	1.2471	3.62s
2355	1.2471	3.59s
2356	1.2471	3.57s
2357	1.2471	3.54s
2358	1.2471	3.51s
2359	1.2471	3.49s
2360	1.2471	3.46s
2361	1.2470	3.43s
2362	1.2470	3.41s
2363	1.2470	3.38s
2364	1.2470	3.36s
2365	1.2470	3.33s
2366	1.2470	3.30s
2367	1.2470	3.28s
2368	1.2470	3.25s
2369	1.2470	3.23s
2370	1.2469	3.20s
2371	1.2469	3.17s

2372	1.2469	3.15s
2373	1.2469	3.12s
2374	1.2469	3.10s
2375	1.2469	3.07s
2376	1.2469	3.04s
2377	1.2469	3.02s
2378	1.2469	2.99s
2379	1.2469	2.97s
2380	1.2468	2.94s
2381	1.2468	2.92s
2382	1.2468	2.89s
2383	1.2468	2.86s
	1.2468	2.84s
2384		
2385	1.2468	2.81s
2386	1.2468	2.79s
2387	1.2468	2.76s
2388	1.2468	2.73s
2389	1.2467	2.71s
2390	1.2467	2.68s
2391	1.2467	2.66s
2392	1.2467	2.63s
2393	1.2467	2.61s
2394	1.2467	2.58s
2395	1.2467	2.55s
2396	1.2467	2.53s
2397	1.2467	2.50s
2398	1.2467	2.48s
2399	1.2466	2.45s
2400	1.2466	2.43s
2401	1.2466	2.40s
2402	1.2466	2.38s
2403	1.2466	2.35s
2404	1.2466	2.32s
2405	1.2466	2.30s
2406	1.2466	2.27s
2407		2.27s
	1.2466	
2408	1.2465	2.22s
2409	1.2465	2.20s
2410	1.2465	2.17s
2411	1.2465	2.14s
2412	1.2465	2.12s
2413	1.2465	2.09s
2414	1.2465	2.07s
2415	1.2465	2.04s
2416	1.2465	2.02s
2417	1.2465	1.99s
	1.2464	1.97s
2418		
2419	1.2464	1.94s
2420	1.2464	1.91s
2421	1.2464	1.89s
2422	1.2464	1.86s
2423	1.2464	1.84s
2424	1.2464	1.81s
2425	1.2464	1.79s
2426	1.2464	1.76s
2427	1.2463	1.74s
2428	1.2463	1.71s
		1.715

2429	1.2463	1.68s
2430	1.2463	1.66s
2431	1.2463	1.63s
2432	1.2463	1.61s
2433	1.2463	1.58s
2434	1.2463	1.56s
2435	1.2463	1.53s
2436	1.2463	1.51s
2437	1.2462	1.48s
2438	1.2462	1.46s
2439	1.2462	1.45s
2440	1.2462	1.43s
2441	1.2462	1.41s
2442	1.2462	1.39s
2443	1.2462	1.36s
2444	1.2462	1.34s
2445	1.2462	1.31s
2446	1.2462	1.29s
2447	1.2461	1.26s
2448	1.2461	1.25s
2449	1.2461	1.22s
2450	1.2461	1.20s
2451	1.2461	1.17s
2452	1.2461	1.15s
2453	1.2461	1.13s
2454	1.2461	1.10s
2455	1.2461	1.10s
	1.2461	1.05s
2456 2457	1.2460	1.03s
		1.02s
2458	1.2460	0.97s
2459	1.2460	
2460	1.2460	0.95s
2461	1.2460	0.92s
2462	1.2460	0.90s
2463	1.2460	0.87s
2464	1.2460	0.85s
2465	1.2460	0.82s
2466	1.2459	0.79s
2467	1.2459	0.77s
2468	1.2459	0.74s
2469	1.2459	0.72s
2470	1.2459	0.69s
2471	1.2459	0.66s
2472	1.2459	0.64s
2473	1.2459	0.61s
2474	1.2459	0.59s
2475	1.2459	0.56s
2476	1.2458	0.53s
2477	1.2458	0.51s
2478	1.2458	0.48s
2479	1.2458	0.45s
2480	1.2458	0.43s
2481	1.2458	0.40s
2482	1.2458	0.37s
2483	1.2458	0.35s
2484	1.2458	0.32s
2485	1.2458	0.30s

Boosting - Project 12/17/21, 9:15 PM

```
2486
                              1.2457
                                                 0.27s
               2487
                                                 0.24s
                               1.2457
               2488
                              1.2457
                                                 0.22s
               2489
                              1.2457
                                                 0.19s
               2490
                              1.2457
                                                 0.16s
               2491
                              1.2457
                                                 0.13s
               2492
                              1.2457
                                                 0.11s
               2493
                              1.2457
                                                 0.08s
               2494
                              1.2457
                                                 0.05s
               2495
                               1.2457
                                                 0.03s
               2496
                               1.2456
                                                 0.00s
Out[90]: GradientBoostingClassifier(learning_rate=0.01, max leaf nodes=2,
                                     min samples leaf=10, n estimators=2496,
                                     random_state=88, verbose=3)
In [91]:
          xd red test = pd.DataFrame()
          for column in columns red:
              xd red test[column] = xd test[column]
In [92]:
          from sklearn.metrics import accuracy score
          print('Accuracy:', round(accuracy_score(y_test, gbc2.predict(xd_red_test)), 5
         Accuracy: 0.63366
In [93]:
          from sklearn.metrics import roc curve, auc
          fpr2, tpr2, = roc curve(y test, gbc2.predict(xd red test))
          print (fpr,tpr)
          roc_auc = auc(fpr2, tpr2)
          plt.figure(figsize=(8, 6))
          plt.title('ROC Curve', fontsize=18)
          plt.xlabel('FPR', fontsize=16)
          plt.ylabel('TPR', fontsize=16)
          plt.xlim([-0.01, 1.00])
          plt.ylim([-0.01, 1.01])
          plt.plot(fpr, tpr, lw=3, label='Logistic Regression (area = {:0.2f})'.format(
          plt.plot([0, 1], [0, 1], color='navy', lw=3, linestyle='--')
          plt.legend(loc='lower right', fontsize=14)
          plt.show()
```

Boosting - Project 12/17/21, 9:15 PM


```
from sklearn.metrics import roc_curve, auc

fpr2, tpr2, _ = roc_curve(y_test, gbc2.predict(xd_red_test))

print (fpr,tpr)
roc_auc = auc(fpr2, tpr2)
plt.figure(figsize=(8, 6))
plt.stitle('ROC Curve', fontsize=18)
plt.xlabel('FPR', fontsize=16)
plt.ylabel('TPR', fontsize=16)
plt.ylabel('TPR', fontsize=16)
plt.ylim([-0.01, 1.00])
plt.ylim([-0.01, 1.01])
plt.plot(fpr, tpr, lw=3, label='Logistic Regression (area = {:0.2f})'.format(plt.plot([0, 1], [0, 1], color='navy', lw=3, linestyle='--')
plt.legend(loc='lower right', fontsize=14)
plt.show()
```

Boosting - Project 12/17/21, 9:15 PM

Final model: AUC = 0.60, TPR = 0.42, FPR = 0.32, AUC = 0.60

```
In [4]:
          import numpy as np
          import pandas as pd
          import matplotlib.pyplot as plt
          import seaborn as sns
 In [5]:
          import numpy as np
          import pandas as pd
          import matplotlib.pyplot as plt
          import statsmodels.formula.api as smf
 In [6]:
          import statsmodels.formula.api as smf
 In [7]:
          #Helper Function: accuracy
 In [8]:
          def accuracy(y_test, y_pred):
              a=0
              for i in len(y_test):
                  if y_test[i]==y_pred[i]:
                      a+=1
              return a/len(y test)
 In [9]:
          data = pd.read_csv('/Users/william/Downloads/cleaned_data.csv')
          from sklearn.model selection import train test split
          data train, data test = train test split(data, test size=0.3, random state=95
In [10]:
          y train = data train['cumulative outcome']
          y_train = [1 if x=='Yes' else 0 for x in y_train]
          x train = data train[data train.columns[1:]]
          x_train = x_train.drop(columns = ['cumulative_outcome'],axis=1)
          xd = pd.get_dummies(x_train)
In [11]:
          for column in xd.columns:
              xd[column]=xd[column].fillna(xd[column].mode()[0])
```

```
In [12]:
           from sklearn.linear_model import RidgeClassifier
          alpha_max = 10**5
          rr = RidgeClassifier(alpha=alpha_max, random_state=88)
          rr.fit(xd, y_train)
Out[12]: RidgeClassifier(alpha=100000, random_state=88)
In [13]:
          plt.plot(rr.coef_[0])
          plt.show()
          print(max(abs(rr.coef_[0])))
           0.004
           0.002
           0.000
          -0.002
          -0.004
                              100
                                    150
                                          200
                                                 250
                                                       300
          0.0048814152535055135
In [14]:
          rr.coef_[0][1]
```

```
alpha_grid = np.logspace(-1, 5, num=50, base=10)
coefs = []
for a in alpha_grid:
    rr = RidgeClassifier(alpha=a, fit_intercept=False, random_state=88)
    rr.fit(xd, y_train)
    coefs.append(rr.coef_[0])

plt.figure(figsize=(12, 10))
ax = plt.gca()
ax.plot(alpha_grid, coefs)
ax.set_xscale('log')
plt.xlabel('Alpha')
plt.ylabel('Coefficients')
plt.title('Ridge coefficients as a function of the regularization')
plt.show()
```


In [16]:

```
from sklearn.model_selection import GridSearchCV

alpha_grid = {'alpha': np.logspace(-1, 5, num=50, base=10)}

rr = RidgeClassifier(random_state=88)

rr_cv = GridSearchCV(rr, alpha_grid, scoring='accuracy', cv=10, verbose = 4)

rr_cv.fit(xd, y_train)
```

```
Fitting 10 folds for each of 50 candidates, totalling 500 fits
[CV 1/10] END .....alpha=0.1; total time=
                                                       0.
[CV 2/10] END .....alpha=0.1; total time=
                                                       0.
[CV 3/10] END .....alpha=0.1; total time=
                                                       0.
[CV 4/10] END .....alpha=0.1; total time=
                                                       0.
[CV 5/10] END .....alpha=0.1; total time=
                                                       0.
[CV 6/10] END ......alpha=0.1; total time=
                                                       0.
[CV 7/10] END .....alpha=0.1; total time=
                                                       0.
[CV 8/10] END .....alpha=0.1; total time=
                                                       0.
[CV 9/10] END .....alpha=0.1; total time=
                                                       0.
[CV 10/10] END .....alpha=0.1; total time=
                                                       0.
[CV 1/10] END .....alpha=0.13257113655901093; total time=
                                                       0.
[CV 2/10] END ......alpha=0.13257113655901093; total time=
                                                       0.
[CV 3/10] END ......alpha=0.13257113655901093; total time=
                                                       0.
[CV 4/10] END .....alpha=0.13257113655901093; total time=
                                                       0.
[CV 5/10] END ......alpha=0.13257113655901093; total time=
                                                       0.
[CV 6/10] END ......alpha=0.13257113655901093; total time=
                                                       0.
[CV 7/10] END ......alpha=0.13257113655901093; total time=
                                                       0.
[CV 8/10] END .....alpha=0.13257113655901093; total time=
                                                       0.
[CV 9/10] END .....alpha=0.13257113655901093; total time=
                                                       0.
[CV 10/10] END .....alpha=0.13257113655901093; total time=
                                                       0.
[CV 1/10] END .....alpha=0.1757510624854792; total time=
                                                       0.
[CV 2/10] END .....alpha=0.1757510624854792; total time=
                                                       0.
[CV 3/10] END .....alpha=0.1757510624854792; total time=
                                                       0.
```

0s						
[CV 0s	4/10]	END	alpha=0.1757510624854792;	total	time=	0.
[CV 0s	5/10]	END	alpha=0.1757510624854792;	total	time=	0.
	6/10]	END	alpha=0.1757510624854792;	total	time=	0.
[CV	7/10]	END	alpha=0.1757510624854792;	total	time=	0.
1s [CV	8/10]	END	alpha=0.1757510624854792;	total	time=	0.
2s [CV	9/10]	END	alpha=0.1757510624854792;	total	time=	0.
1s [CV	10/10	l END	oalpha=0.1757510624854792;	total	time=	0.
0s		-	alpha=0.2329951810515372;			0.
0s	-		<u>-</u>			
0s	-		alpha=0.2329951810515372;			0.
[CV 0s	3/10]	END	alpha=0.2329951810515372;	total	time=	0.
[CV 1s	4/10]	END	alpha=0.2329951810515372;	total	time=	0.
[CV	5/10]	END	alpha=0.2329951810515372;	total	time=	0.
-	6/10]	END	alpha=0.2329951810515372;	total	time=	0.
0s [CV	7/10]	END	alpha=0.2329951810515372;	total	time=	0.
1s [CV	8/101	END	alpha=0.2329951810515372;	total	time=	0.
1s	-		alpha=0.2329951810515372;			0.
0s	-		- ·			
0s		-	oalpha=0.2329951810515372;			0.
[CV 0s	1/10]	END	alpha=0.3088843596477481;	total	time=	0.
[CV 1s	2/10]	END	alpha=0.3088843596477481;	total	time=	0.
	3/10]	END	alpha=0.3088843596477481;	total	time=	0.
[CV	4/10]	END	alpha=0.3088843596477481;	total	time=	0.
0s [CV	5/10]	END	alpha=0.3088843596477481;	total	time=	0.
1s [CV	6/10]	END	alpha=0.3088843596477481;	total	time=	0.
1s [CV	7/101	END	alpha=0.3088843596477481;	total	time=	0.
1s	-		alpha=0.3088843596477481;			0.
0s						
0s			alpha=0.3088843596477481;			0.
[CV 0s	10/10] END	oalpha=0.3088843596477481;	total	time=	0.
[CV 1s	1/10]	END	alpha=0.40949150623804254;	total	time=	0.

[CV 0s	2/10]	END	alpha=0.40949150623804254;	total	time=	0.
	3/10]	END	alpha=0.40949150623804254;	total	time=	0.
	4/10]	END	alpha=0.40949150623804254;	total	time=	0.
	5/10]	END	alpha=0.40949150623804254;	total	time=	0.
	6/10]	END	alpha=0.40949150623804254;	total	time=	0.
	7/10]	END	alpha=0.40949150623804254;	total	time=	0.
	8/10]	END	alpha=0.40949150623804254;	total	time=	0.
	9/10]	END	alpha=0.40949150623804254;	total	time=	0.
	10/10] END	oalpha=0.40949150623804254;	total	time=	0.
	1/10]	END	alpha=0.5428675439323859;	total	time=	0.
	2/10]	END	alpha=0.5428675439323859;	total	time=	0.
	3/10]	END	alpha=0.5428675439323859;	total	time=	0.
	4/10]	END	alpha=0.5428675439323859;	total	time=	0.
	5/10]	END	alpha=0.5428675439323859;	total	time=	0.
	6/10]	END	alpha=0.5428675439323859;	total	time=	0.
	7/10]	END	alpha=0.5428675439323859;	total	time=	0.
	8/10]	END	alpha=0.5428675439323859;	total	time=	0.
[CV	9/10]	END	alpha=0.5428675439323859;	total	time=	0.
1s [CV 0s	10/10] END	oalpha=0.5428675439323859;	total	time=	0.
	1/10]	END	alpha=0.7196856730011519;	total	time=	0.
[CV	2/10]	END	alpha=0.7196856730011519;	total	time=	0.
-	3/10]	END	alpha=0.7196856730011519;	total	time=	0.
	4/10]	END	alpha=0.7196856730011519;	total	time=	0.
-	5/10]	END	alpha=0.7196856730011519;	total	time=	0.
-	6/10]	END	alpha=0.7196856730011519;	total	time=	0.
	7/10]	END	alpha=0.7196856730011519;	total	time=	0.
_	8/10]	END	alpha=0.7196856730011519;	total	time=	0.
_	9/10]	END	alpha=0.7196856730011519;	total	time=	0.
1s [CV	10/10] END	alpha=0.7196856730011519;	total	time=	0.

0s						
[CV 0s	1/10]	END	alpha=0.9540954763499939;	total	time=	0.
	2/10]	END	alpha=0.9540954763499939;	total	time=	0.
	3/10]	END	alpha=0.9540954763499939;	total	time=	0.
[CV	4/10]	END	alpha=0.9540954763499939;	total	time=	0.
-	5/10]	END	alpha=0.9540954763499939;	total	time=	0.
-	6/10]	END	alpha=0.9540954763499939;	total	time=	0.
0s [CV	7/10]	END	alpha=0.9540954763499939;	total	time=	0.
0s [CV	8/10]	END	alpha=0.9540954763499939;	total	time=	0.
0s [CV	9/10]	END	alpha=0.9540954763499939;	total	time=	0.
1s [CV	10/10	l END		total	time=	0.
0s		-	alpha=1.2648552168552958;			0.
0s	-		<u>-</u>			
0s			alpha=1.2648552168552958;			0.
0s	-		alpha=1.2648552168552958;			0.
[CV 0s	4/10]	END	alpha=1.2648552168552958;	total	time=	0.
[CV 1s	5/10]	END	alpha=1.2648552168552958;	total	time=	0.
[CV 0s	6/10]	END	alpha=1.2648552168552958;	total	time=	0.
[CV	7/10]	END	alpha=1.2648552168552958;	total	time=	0.
	8/10]	END	alpha=1.2648552168552958;	total	time=	0.
[CV	9/10]	END	alpha=1.2648552168552958;	total	time=	0.
-	10/10] END	alpha=1.2648552168552958;	total	time=	0.
_	1/10]	END	alpha=1.6768329368110082;	total	time=	0.
1s [CV	2/10]	END	alpha=1.6768329368110082;	total	time=	0.
1s [CV	3/10]	END	alpha=1.6768329368110082;	total	time=	0.
1s [CV	4/10]	END	alpha=1.6768329368110082;	total	time=	0.
0s [CV	5/101	END	alpha=1.6768329368110082;	total	time=	0.
0s			alpha=1.6768329368110082;			0.
1s			alpha=1.6768329368110082;			0.
1s						
[CV 1s	8/10]	END	alpha=1.6768329368110082;	total	time=	0.

[CV 0s	9/10]	END	alpha=1.6768329368110082;	total	time=	0.
	10/10] END	oalpha=1.6768329368110082;	total	time=	0.
	1/10]	END	alpha=2.2229964825261943;	total	time=	0.
[CV	2/10]	END	alpha=2.2229964825261943;	total	time=	0.
-	3/10]	END	alpha=2.2229964825261943;	total	time=	0.
-	4/10]	END	alpha=2.2229964825261943;	total	time=	0.
-	5/10]	END	alpha=2.2229964825261943;	total	time=	0.
-	6/10]	END	alpha=2.2229964825261943;	total	time=	0.
-	7/10]	END	alpha=2.2229964825261943;	total	time=	0.
0s [CV	8/10]	END	alpha=2.2229964825261943;	total	time=	0.
0s [CV	9/10]	END	alpha=2.2229964825261943;	total	time=	0.
0s [CV	10/10] END	oalpha=2.2229964825261943;	total	time=	0.
0s [CV	1/10]	END	alpha=2.9470517025518097;	total	time=	0.
1s [CV	2/10]	END	alpha=2.9470517025518097;	total	time=	0.
1s [CV	3/10]	END	alpha=2.9470517025518097;	total	time=	0.
1s			alpha=2.9470517025518097;			0.
0s			alpha=2.9470517025518097;			0.
0s			alpha=2.9470517025518097;			0.
0s			alpha=2.9470517025518097;			0.
1s			alpha=2.9470517025518097;			0.
2s			alpha=2.9470517025518097;			
0s	•		-			0.
0s		-	oalpha=2.9470517025518097;			0.
0s			alpha=3.906939937054617;			0.
0s	-		alpha=3.906939937054617;			0.
[CV 0s	3/10]	END	alpha=3.906939937054617;	total	time=	0.
[CV 0s	4/10]	END	alpha=3.906939937054617;	total	time=	0.
[CV 0s	5/10]	END	alpha=3.906939937054617;	total	time=	0.
	6/10]	END	alpha=3.906939937054617;	total	time=	0.
	7/10]	END	alpha=3.906939937054617;	total	time=	0.

0						
0s [CV 1s	8/10]	END	alpha=3.906939937054617;	total	time=	0.
	9/10]	END	alpha=3.906939937054617;	total	time=	0.
[CV	10/10] END	alpha=3.906939937054617;	total	time=	0.
_	1/10]	END	alpha=5.17947467923121;	total	time=	0.
•	2/10]	END	alpha=5.17947467923121;	total	time=	0.
-	3/10]	END	alpha=5.17947467923121;	total	time=	0.
-	4/10]	END	alpha=5.17947467923121;	total	time=	0.
-	5/10]	END	alpha=5.17947467923121;	total	time=	0.
0s [CV 0s	6/10]	END	alpha=5.17947467923121;	total	time=	0.
[CV	7/10]	END	alpha=5.17947467923121;	total	time=	0.
1s [CV 0s	8/10]	END	alpha=5.17947467923121;	total	time=	0.
	9/10]	END	alpha=5.17947467923121;	total	time=	0.
	10/10] END	alpha=5.17947467923121;	total	time=	0.
[CV	1/10]	END	alpha=6.8664884500430015;	total	time=	0.
0s [CV 0s	2/10]	END	alpha=6.8664884500430015;	total	time=	0.
	3/10]	END	alpha=6.8664884500430015;	total	time=	0.
[CV	4/10]	END	alpha=6.8664884500430015;	total	time=	0.
-	5/10]	END	alpha=6.8664884500430015;	total	time=	0.
	6/10]	END	alpha=6.8664884500430015;	total	time=	0.
-	7/10]	END	alpha=6.8664884500430015;	total	time=	0.
_	8/10]	END	alpha=6.8664884500430015;	total	time=	0.
	9/10]	END	alpha=6.8664884500430015;	total	time=	0.
-	10/10] END	alpha=6.8664884500430015;	total	time=	0.
-	1/10]	END	alpha=9.102981779915218;	total	time=	0.
_	2/10]	END	alpha=9.102981779915218;	total	time=	0.
0s [CV 0s	3/10]	END	alpha=9.102981779915218;	total	time=	0.
[CV	4/10]	END	alpha=9.102981779915218;	total	time=	0.
1s [CV 1s	5/10]	END	alpha=9.102981779915218;	total	time=	0.
12						

[CV 1s	6/10]	END	alpha=9.102981779915218;	total	time=	0.
	7/10]	END	alpha=9.102981779915218;	total	time=	0.
[CV	8/10]	END	alpha=9.102981779915218;	total	time=	0.
-	9/10]	END	alpha=9.102981779915218;	total	time=	0.
	10/10] ENI	0alpha=9.102981779915218;	total	time=	0.
-	1/10]	END	alpha=12.067926406393289;	total	time=	0.
0s [CV	2/10]	END	alpha=12.067926406393289;	total	time=	0.
0s [CV	3/10]	END	alpha=12.067926406393289;	total	time=	0.
0s [CV	4/10]	END	alpha=12.067926406393289;	total	time=	0.
0s [CV	5/10]	END	alpha=12.067926406393289;	total	time=	0.
0s ICV	6/101	END	alpha=12.067926406393289;	total	time=	0.
0s	-		alpha=12.067926406393289;			0.
0s	-		alpha=12.067926406393289;			0.
0s	-		-			
0s	-		alpha=12.067926406393289;			0.
0s		_	0alpha=12.067926406393289;			0.
[CV 0s	1/10]	END	alpha=15.998587196060573;	total	time=	0.
[CV 0s	2/10]	END	alpha=15.998587196060573;	total	time=	0.
[CV 0s	3/10]	END	alpha=15.998587196060573;	total	time=	0.
	4/10]	END	alpha=15.998587196060573;	total	time=	0.
	5/10]	END	alpha=15.998587196060573;	total	time=	0.
[CV	6/10]	END	alpha=15.998587196060573;	total	time=	0.
-	7/10]	END	alpha=15.998587196060573;	total	time=	0.
	8/10]	END	alpha=15.998587196060573;	total	time=	0.
1s [CV	9/10]	END	alpha=15.998587196060573;	total	time=	0.
1s [CV	10/10] ENI	oalpha=15.998587196060573;	total	time=	0.
3s [CV	1/10]	END	alpha=21.209508879201906;	total	time=	0.
5s			alpha=21.209508879201906;			0.
1s	_		alpha=21.209508879201906;			0.
1s			alpha=21.209508879201906;			0.
ΓCV	4/IO]	חאה	aipna-21.2095000/9201900;	LULAI	CTING-	0.

_						
1 [1	CV 5/1	0] END	oalpha=21.209508879201906;	total	time=	0.
[CV 6/1	0] END	oalpha=21.209508879201906;	total	time=	0.
_	CV 7/1	0] END	oalpha=21.209508879201906;	total	time=	0.
_	CV 8/1	0] END	oalpha=21.209508879201906;	total	time=	0.
	CV 9/1	0] END	oalpha=21.209508879201906;	total	time=	0.
-	CV 10/	10] EN	NDalpha=21.209508879201906;	total	time=	0.
_	CV 1/1	0] END	alpha=28.11768697974231;	total	time=	0.
_	CV 2/1	0] END	oalpha=28.11768697974231;	total	time=	0.
_	CV 3/1	0] END	oalpha=28.11768697974231;	total	time=	0.
	CV 4/1	0] END	oalpha=28.11768697974231;	total	time=	0.
	CV 5/1	0] END	oalpha=28.11768697974231;	total	time=	0.
_	CV 6/1	0] END	oalpha=28.11768697974231;	total	time=	0.
_	CV 7/1	0] END	oalpha=28.11768697974231;	total	time=	0.
1		0] END	oalpha=28.11768697974231;	total	time=	0.
1 [0] END	oalpha=28.11768697974231;	total	time=	0.
0]		10] EN	NDalpha=28.11768697974231;	total	time=	0.
0]		0] END	oalpha=37.27593720314938;	total	time=	0.
0]		0] END	oalpha=37.27593720314938;	total	time=	0.
1 [0] END	oalpha=37.27593720314938;	total	time=	0.
1 [0] END	oalpha=37.27593720314938;	total	time=	0.
0]		0] END	oalpha=37.27593720314938;	total	time=	0.
0]		0] END	oalpha=37.27593720314938;	total	time=	0.
0]		0] END	oalpha=37.27593720314938;	total	time=	0.
0		0] END	oalpha=37.27593720314938;	total	time=	0.
1 [0] END	oalpha=37.27593720314938;	total	time=	0.
1		10] EN	NDalpha=37.27593720314938;	total	time=	0.
1		0] END	oalpha=49.417133613238335;	total	time=	0.
1	S	_	oalpha=49.417133613238335;			0.
1		-	-			

[CV 1s	3/10]	END	alpha=49.417133613238335;	total	time=	0.
	4/10]	END	alpha=49.417133613238335;	total	time=	0.
	5/10]	END	alpha=49.417133613238335;	total	time=	0.
	6/10]	END	alpha=49.417133613238335;	total	time=	0.
	7/10]	END	alpha=49.417133613238335;	total	time=	0.
	8/10]	END	alpha=49.417133613238335;	total	time=	0.
	9/10]	END	alpha=49.417133613238335;	total	time=	0.
	10/10] END	oalpha=49.417133613238335;	total	time=	0.
	1/10]	END	alpha=65.51285568595509;	total	time=	0.
	2/10]	END	alpha=65.51285568595509;	total	time=	0.
[CV	3/10]	END	alpha=65.51285568595509;	total	time=	0.
-	4/10]	END	alpha=65.51285568595509;	total	time=	0.
	5/10]	END	alpha=65.51285568595509;	total	time=	0.
-	6/10]	END	alpha=65.51285568595509;	total	time=	0.
-	7/10]	END	alpha=65.51285568595509;	total	time=	0.
-	8/10]	END	alpha=65.51285568595509;	total	time=	0.
-	9/10]	END	alpha=65.51285568595509;	total	time=	0.
-	10/10] END	oalpha=65.51285568595509;	total	time=	0.
-	1/10]	END	alpha=86.85113737513521;	total	time=	0.
-	2/10]	END	alpha=86.85113737513521;	total	time=	0.
0s [CV	3/10]	END	alpha=86.85113737513521;	total	time=	0.
0s [CV	4/10]	END	alpha=86.85113737513521;	total	time=	0.
0s [CV	5/10]	END	alpha=86.85113737513521;	total	time=	0.
0s [CV	6/10]	END	alpha=86.85113737513521;	total	time=	0.
0s [CV	7/10]	END	alpha=86.85113737513521;	total	time=	0.
1s [CV	8/10]	END	alpha=86.85113737513521;	total	time=	0.
0s	_		alpha=86.85113737513521;			0.
0s	_)alpha=86.85113737513521;			0.
0s		_	alpha=115.1395399326447;			0.
	_, _ v]		110,10000000011/			•

0s						
[CV 0s	2/10]	END	alpha=115.1395399326447;	total	time=	0.
[CV	3/10]	END	alpha=115.1395399326447;	total	time=	0.
	4/10]	END	alpha=115.1395399326447;	total	time=	0.
[CV	5/10]	END	alpha=115.1395399326447;	total	time=	0.
-	6/10]	END	alpha=115.1395399326447;	total	time=	0.
-	7/10]	END	alpha=115.1395399326447;	total	time=	0.
0s [CV	8/10]	END	alpha=115.1395399326447;	total	time=	0.
0s [CV	9/10]	END	alpha=115.1395399326447;	total	time=	0.
1s [CV	10/10] ENI	oalpha=115.1395399326447;	total	time=	0.
0s		•	alpha=152.64179671752333;			0.
2s	-		·			
0s	-		alpha=152.64179671752333;			0.
[CV 0s	3/10]	END	alpha=152.64179671752333;	total	time=	0.
[CV 0s	4/10]	END	alpha=152.64179671752333;	total	time=	0.
[CV 1s	5/10]	END	alpha=152.64179671752333;	total	time=	0.
	6/10]	END	alpha=152.64179671752333;	total	time=	0.
[CV	7/10]	END	alpha=152.64179671752333;	total	time=	0.
_	8/10]	END	alpha=152.64179671752333;	total	time=	0.
0s [CV	9/10]	END	alpha=152.64179671752333;	total	time=	0.
0s [CV	10/10] ENI)alpha=152.64179671752333;	total	time=	0.
1s [CV	1/10]	END	alpha=202.35896477251575;	total	time=	0.
1s [CV	2/101	END	alpha=202.35896477251575;	total	time=	0.
3s	_		alpha=202.35896477251575;			0.
1s	_		alpha=202.35896477251575;			0.
1s	-		·			
1s	_		alpha=202.35896477251575;			0.
[CV 1s	6/10]	END	alpha=202.35896477251575;	total	time=	0.
[CV 1s	7/10]	END	alpha=202.35896477251575;	total	time=	0.
	8/10]	END	alpha=202.35896477251575;	total	time=	0.
[CV	9/10]	END	alpha=202.35896477251575;	total	time=	0.
1s						

[CV 1s	10/10]	END	oalpha=202.35896477251575;	total	time=	0.
	1/10]	END	alpha=268.26957952797244;	total	time=	0.
	2/10]	END	alpha=268.26957952797244;	total	time=	0.
[CV	3/10]	END	alpha=268.26957952797244;	total	time=	0.
-	4/10]	END	alpha=268.26957952797244;	total	time=	0.
_	5/10]	END	alpha=268.26957952797244;	total	time=	0.
_	6/10]	END	alpha=268.26957952797244;	total	time=	0.
1s [CV	7/10]	END	alpha=268.26957952797244;	total	time=	0.
1s [CV	8/10]	END	alpha=268.26957952797244;	total	time=	0.
2s [CV	9/10]	END	alpha=268.26957952797244;	total	time=	0.
1s [CV	10/10]	END)alpha=268.26957952797244;	total	time=	0.
2s [CV	1/10]	END	alpha=355.64803062231283;	total	time=	0.
1s [CV	2/10]	END	alpha=355.64803062231283;	total	time=	0.
ls [CV	3/101	END	alpha=355.64803062231283;	total	time=	0.
1s	-		alpha=355.64803062231283;			0.
1s	-		alpha=355.64803062231283;			0.
3s	_		alpha=355.64803062231283;			0.
1s	_					
2s	_		alpha=355.64803062231283;			0.
1s	-		alpha=355.64803062231283;			0.
1s	-		alpha=355.64803062231283;			0.
0s			oalpha=355.64803062231283;			0.
1s			alpha=471.48663634573944;			0.
[CV 1s	2/10]	END	alpha=471.48663634573944;	total	time=	0.
[CV 0s	3/10]	END	alpha=471.48663634573944;	total	time=	0.
[CV 1s	4/10]	END	alpha=471.48663634573944;	total	time=	0.
[CV 3s	5/10]	END	alpha=471.48663634573944;	total	time=	0.
	6/10]	END	alpha=471.48663634573944;	total	time=	0.
	7/10]	END	alpha=471.48663634573944;	total	time=	0.
	8/10]	END	alpha=471.48663634573944;	total	time=	0.

0s				
[CV 0s	9/10] ENDalpha=471.48663634573944;	total	time=	0.
[CV 1s	10/10] ENDalpha=471.48663634573944;	total	time=	0.
[CV 1s	1/10] ENDalpha=625.0551925273969;	total	time=	0.
	2/10] ENDalpha=625.0551925273969;	total	time=	0.
[CV	3/10] ENDalpha=625.0551925273969;	total	time=	0.
_	4/10] ENDalpha=625.0551925273969;	total	time=	0.
-	5/10] ENDalpha=625.0551925273969;	total	time=	0.
-	6/10] ENDalpha=625.0551925273969;	total	time=	0.
-	7/10] ENDalpha=625.0551925273969;	total	time=	0.
-	8/10] ENDalpha=625.0551925273969;	total	time=	0.
0s [CV	9/10] ENDalpha=625.0551925273969;	total	time=	0.
1s [CV	10/10] ENDalpha=625.0551925273969;	total	time=	0.
0s [CV	1/10] ENDalpha=828.6427728546843;	total	time=	0.
1s [CV	2/10] ENDalpha=828.6427728546843;	total	time=	0.
1s [CV	3/10] ENDalpha=828.6427728546843;	total	time=	0.
1s [CV	4/10] ENDalpha=828.6427728546843;	total	time=	0.
0s [CV	5/10] ENDalpha=828.6427728546843;	total	time=	0.
0s [CV	6/10] ENDalpha=828.6427728546843;	total	time=	0.
0s	7/10] ENDalpha=828.6427728546843;			0.
0s	8/10] ENDalpha=828.6427728546843;			0.
0s	9/10] ENDalpha=828.6427728546843;			0.
0s	10/10] ENDalpha=828.6427728546843;			0.
0s	1/10] ENDalpha=1098.5411419875572;			0.
0s				
0s	2/10] ENDalpha=1098.5411419875572;			0.
0s	3/10] ENDalpha=1098.5411419875572;			0.
0s	4/10] ENDalpha=1098.5411419875572;			0.
1s	5/10] ENDalpha=1098.5411419875572;			0.
[CV 2s	6/10] ENDalpha=1098.5411419875572;	total	time=	0.

[CV 1s	7/10]	END	alpha=1098.5411419875572;	total	time=	0.
	8/10]	END	alpha=1098.5411419875572;	total	time=	0.
	9/10]	END	alpha=1098.5411419875572;	total	time=	0.
[CV	10/10	END	oalpha=1098.5411419875572;	total	time=	0.
-	1/10]	END	alpha=1456.3484775012444;	total	time=	0.
-	2/10]	END	alpha=1456.3484775012444;	total	time=	0.
-	3/10]	END	alpha=1456.3484775012444;	total	time=	0.
0s [CV	4/10]	END	alpha=1456.3484775012444;	total	time=	0.
0s [CV	5/10]	END	alpha=1456.3484775012444;	total	time=	0.
0s [CV	6/10]	END	alpha=1456.3484775012444;	total	time=	0.
0s [CV	7/10]	END	alpha=1456.3484775012444;	total	time=	0.
0s	-		alpha=1456.3484775012444;			0.
0s	-		alpha=1456.3484775012444;			0.
0s	-		oalpha=1456.3484775012444;			0.
1s			- ·			
0s	_		alpha=1930.6977288832495;			0.
[CV 0s	2/10]	END	alpha=1930.6977288832495;	total	time=	0.
[CV 0s	3/10]	END	alpha=1930.6977288832495;	total	time=	0.
[CV 0s	4/10]	END	alpha=1930.6977288832495;	total	time=	0.
	5/10]	END	alpha=1930.6977288832495;	total	time=	0.
[CV	6/10]	END	alpha=1930.6977288832495;	total	time=	0.
-	7/10]	END	alpha=1930.6977288832495;	total	time=	0.
-	8/10]	END	alpha=1930.6977288832495;	total	time=	0.
0s [CV	9/10]	END	alpha=1930.6977288832495;	total	time=	0.
0s [CV	10/10] END	oalpha=1930.6977288832495;	total	time=	0.
1s [CV	1/10]	END	alpha=2559.547922699533;	total	time=	0.
1s	_		alpha=2559.547922699533;			0.
1s	_		alpha=2559.547922699533;			0.
2s	_					
2s	_		alpha=2559.547922699533;			0.
[CV	5/10]	END	alpha=2559.547922699533;	total	time=	0.

_																	
1s [CV on the control of the control	6/10]	END				 	 6	alph	a=25	59.5	34792	26995	33;	total	tim	ie=	0.
[CV	7/10]	END				 	 6	alph	a=25	59.5	34792	26995	33;	total	tim	ie=	0.
-	8/10]	END				 	 6	alph	a=25	59.5	34792	26995	33;	total	tim	ie=	0.
-	9/10]	END		• • •		 	 6	alph	a=25	59.5	4792	26995	33;	total	tim	ie=	0.
-	10/10] END	D.		• • • • •	 	 6	alph	a=25	59.5	4792	26995	33;	total	tim	ie=	0.
-	1/10]	END				 	 al	Lpha	=339	3.22	21771	89532	98;	total	tim	ie=	0.
_	2/10]	END				 	 al	Lpha	=339	3.22	21771	89532	98;	total	tim	ie=	0.
-	3/10]	END				 	 al	Lpha	=339	3.22	21771	89532	98;	total	tim	ie=	0.
-	4/10]	END				 	 al	Lpha	=339	3.22	21771	89532	98;	total	tim	ie=	0.
_	5/10]	END				 	 al	Lpha	=339	3.22	21771	89532	98;	total	tim	ne=	0.
-	6/10]	END				 	 al	Lpha	=339	3.22	21771	89532	98;	total	tim	ne=	0.
-	7/10]	END				 	 al	Lpha	=339	3.22	21771	89532	98;	total	tim	ne=	0.
-	8/10]	END				 	 al	Lpha	=339	3.22	21771	89532	98;	total	tim	ne=	0.
-	9/10]	END				 	 al	Lpha	=339	3.22	21771	89532	98;	total	tim	ie=	0.
1s [CV	10/10] END	D.			 	 al	Lpha	=339	3.22	21771	89532	98;	total	tim	ie=	0.
-	1/10]	END				 	 6	alph	a=44	98.4	3266	89694	44;	total	tim	ie=	0.
-	2/10]	END				 	 6	alph	a=44	98.4	3266	89694	44;	total	tim	ie=	0.
-	3/10]	END				 	 6	alph	a=44	98.4	3266	89694	44;	total	tim	ie=	0.
ls [CV ·	4/10]	END				 	 6	alph	a=44	98.4	13266	89694	44;	total	tim	ne=	0.
1s [CV	5/10]	END				 	 6	alph	a=44	98.4	13266	89694	44;	total	tim	ie=	0.
	6/10]	END				 	 6	alph	a=44	98.4	13266	89694	44;	total	tim	ie=	0.
	7/10]	END				 	 6	alph	a=44	98.4	3266	89694	44;	total	tim	ie=	0.
_	8/10]	END				 	 6	alph	a=44	98.4	3266	89694	44;	total	tim	ie=	0.
	9/10]	END				 	 6	alph	a=44	98.4	3266	89694	44;	total	tim	ie=	0.
2s [CV	10/10] END	D.			 	 6	alph	a=44	98.4	13266	89694	44;	total	tim	ne=	0.
-	1/10]	END				 	 6	alph	a=59	63.6	52331	65946	37;	total	tim	ie=	0.
-	2/10]	END				 	 6	alph	a=59	63.6	52331	65946	37;	total	tim	ie=	0.
	3/10]	END				 	 6	alph	a=59	63.6	52331	65946	37;	total	tim	ie=	0.
0s																	

[CV 0s	4/10]	END	alpha=5963.623316594637;	total	time=	0.
	5/10]	END	alpha=5963.623316594637;	total	time=	0.
	6/10]	END	alpha=5963.623316594637;	total	time=	0.
	7/10]	END	alpha=5963.623316594637;	total	time=	0.
	8/10]	END	alpha=5963.623316594637;	total	time=	0.
	9/10]	END	alpha=5963.623316594637;	total	time=	0.
	10/10] ENI	oalpha=5963.623316594637;	total	time=	0.
	1/10]	END	alpha=7906.043210907702;	total	time=	0.
	2/10]	END	alpha=7906.043210907702;	total	time=	0.
	3/10]	END	alpha=7906.043210907702;	total	time=	0.
[CV	4/10]	END	alpha=7906.043210907702;	total	time=	0.
-	5/10]	END	alpha=7906.043210907702;	total	time=	0.
-	6/10]	END	alpha=7906.043210907702;	total	time=	0.
-	7/10]	END	alpha=7906.043210907702;	total	time=	0.
_	8/10]	END	alpha=7906.043210907702;	total	time=	0.
-	9/10]	END	alpha=7906.043210907702;	total	time=	0.
_	10/10] ENI	oalpha=7906.043210907702;	total	time=	0.
-	1/10]	END	alpha=10481.131341546852;	total	time=	0.
	2/10]	END	alpha=10481.131341546852;	total	time=	0.
0s [CV	3/10]	END	alpha=10481.131341546852;	total	time=	0.
1s [CV	4/10]	END	alpha=10481.131341546852;	total	time=	0.
1s [CV	5/10]	END	alpha=10481.131341546852;	total	time=	0.
1s [CV	6/10]	END	alpha=10481.131341546852;	total	time=	0.
1s [CV	7/10]	END	alpha=10481.131341546852;	total	time=	0.
1s [CV	8/10]	END	alpha=10481.131341546852;	total	time=	0.
1s [CV	9/10]	END	alpha=10481.131341546852;	total	time=	0.
1s	_		oalpha=10481.131341546852;			0.
1s		-	alpha=13894.95494373136;			0.
1s	_		alpha=13894.95494373136;			0.
'	1					

1s					
[CV 1s	3/10] END	alpha=13894.95494373136;	total	time=	0.
	4/10] END	alpha=13894.95494373136;	total	time=	0.
[CV	5/10] END	alpha=13894.95494373136;	total	time=	0.
2s [CV	6/10] END	alpha=13894.95494373136;	total	time=	0.
1s [CV	7/10] END	alpha=13894.95494373136;	total	time=	0.
1s [CV	8/10 END	alpha=13894.95494373136;	total	time=	0.
2s	•	alpha=13894.95494373136;			0.
1s	-	-			
lcv 1s	10/10] EN	Dalpha=13894.95494373136;	total	time=	0.
[CV 1s	1/10] END	alpha=18420.699693267165;	total	time=	0.
[CV	2/10] END	alpha=18420.699693267165;	total	time=	0.
-	3/10] END	alpha=18420.699693267165;	total	time=	0.
2s [CV	4/10] END	alpha=18420.699693267165;	total	time=	0.
1s [CV	5/10] END	alpha=18420.699693267165;	total	time=	0.
1s [CV	6/101 END	alpha=18420.699693267165;	total	time=	0.
1s		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
[CV 2s	7/10] END	alpha=18420.699693267165;	total	time=	0.
[CV 1s	8/10] END	alpha=18420.699693267165;	total	time=	0.
[CV	9/10] END	alpha=18420.699693267165;	total	time=	0.
-	10/10] EN	Dalpha=18420.699693267165;	total	time=	0.
1s [CV	1/10] END	alpha=24420.5309454865;	total	time=	0.
0s [CV	2/10] END	alpha=24420.5309454865;	total	time=	0.
0s		alpha=24420.5309454865;			0.
0s	_				
[CV 0s	4/10] END	alpha=24420.5309454865;	total	time=	0.
[CV 1s	5/10] END	alpha=24420.5309454865;	total	time=	0.
[CV	6/10] END	alpha=24420.5309454865;	total	time=	0.
-	7/10] END	alpha=24420.5309454865;	total	time=	0.
1s [CV	8/10] END	alpha=24420.5309454865;	total	time=	0.
0s [CV	9/10] END	alpha=24420.5309454865;	total	time=	0.
0s	_				_
[CV 0s	10/10] EN	Dalpha=24420.5309454865;	total	time=	0.

[CV 0s	1/10]	END	alpha=32374.5754281764;	total	time=	0.
	2/10]	END	alpha=32374.5754281764;	total	time=	0.
	3/10]	END	alpha=32374.5754281764;	total	time=	0.
	4/10]	END	alpha=32374.5754281764;	total	time=	0.
	5/10]	END	alpha=32374.5754281764;	total	time=	0.
	6/10]	END	alpha=32374.5754281764;	total	time=	0.
	7/10]	END	alpha=32374.5754281764;	total	time=	0.
	8/10]	END	alpha=32374.5754281764;	total	time=	0.
	9/10]	END	alpha=32374.5754281764;	total	time=	0.
	10/10] ENI	oalpha=32374.5754281764;	total	time=	0.
	1/10]	END	alpha=42919.34260128778;	total	time=	0.
	2/10]	END	alpha=42919.34260128778;	total	time=	0.
[CV	3/10]	END	alpha=42919.34260128778;	total	time=	0.
-	4/10]	END	alpha=42919.34260128778;	total	time=	0.
_	5/10]	END	alpha=42919.34260128778;	total	time=	0.
-	6/10]	END	alpha=42919.34260128778;	total	time=	0.
_	7/10]	END	alpha=42919.34260128778;	total	time=	0.
_	8/10]	END	alpha=42919.34260128778;	total	time=	0.
-	9/10]	END	alpha=42919.34260128778;	total	time=	0.
	10/10] ENI	oalpha=42919.34260128778;	total	time=	0.
0s [CV	1/10]	END	alpha=56898.66029018293;	total	time=	0.
1s [CV	2/10]	END	alpha=56898.66029018293;	total	time=	0.
1s [CV	3/10]	END	alpha=56898.66029018293;	total	time=	0.
0s [CV	4/10]	END	alpha=56898.66029018293;	total	time=	0.
0s [CV	5/10]	END	alpha=56898.66029018293;	total	time=	0.
0s [CV	6/10]	END	alpha=56898.66029018293;	total	time=	0.
1s [CV	7/10]	END	alpha=56898.66029018293;	total	time=	0.
0s [CV	8/10]	END	alpha=56898.66029018293;	total	time=	0.
0s	_		alpha=56898.66029018293;			0.
-	-		-			

0s				
[CV	10/10] ENDalpha=56898.66029018293;	total	time=	0.
1s		_		_
-	1/10] ENDalpha=75431.20063354608;	total	time=	0.
1s		_		_
_	2/10] ENDalpha=75431.20063354608;	total	time=	0.
1s				
_	3/10] ENDalpha=75431.20063354608;	total	time=	0.
1s				
[CV	4/10] ENDalpha=75431.20063354608;	total	time=	0.
0s				
[CV	5/10] ENDalpha=75431.20063354608;	total	time=	0.
0s				
[CV	6/10] ENDalpha=75431.20063354608;	total	time=	0.
0s				
[CV	7/10] ENDalpha=75431.20063354608;	total	time=	0.
0s				
[CV	8/10] ENDalpha=75431.20063354608;	total	time=	0.
1s				
[CV	9/10] ENDalpha=75431.20063354608;	total	time=	0.
2s				
[CV	10/10] ENDalpha=75431.20063354608;	total	time=	0.
1s				
[CV	1/10] ENDalpha=100000.0;	total	time=	0.
1s				
[CV	2/10] ENDalpha=100000.0;	total	time=	0.
1s				
[CV	3/10] ENDalpha=100000.0;	total	time=	0.
1s				
[CV	4/10] ENDalpha=100000.0;	total	time=	0.
1s				
[CV	5/10] ENDalpha=100000.0;	total	time=	0.
1s				
[CV	6/10] ENDalpha=100000.0;	total	time=	0.
1s				
[CV	7/10] ENDalpha=100000.0;	total	time=	0.
1s				
[CV	8/10] ENDalpha=100000.0;	total	time=	0.
0s	- · · · · · · · · · · · · · · · · · · ·			
[CV	9/10] ENDalpha=100000.0;	total	time=	0.
0s				
[CV	10/10] ENDalpha=100000.0;	total	time=	0.
0s	- · ·			

```
Out[16]: GridSearchCV(cv=10, estimator=RidgeClassifier(random_state=88),
                      param_grid={'alpha': array([1.00000000e-01, 1.32571137e-01, 1.757
         51062e-01, 2.32995181e-01,
                3.08884360e-01, 4.09491506e-01, 5.42867544e-01, 7.19685673e-01,
                9.54095476e-01, 1.26485522e+00, 1.67683294e+00, 2.22299648e+00,
                2.94705170e+00, 3.90693994e+00, 5.17947468e+00, 6.86648845e+00,
                9.10298178e+00, 1.2067...
                2.68269580e+02, 3.55648031e+02, 4.71486636e+02, 6.25055193e+02,
                8.28642773e+02, 1.09854114e+03, 1.45634848e+03, 1.93069773e+03,
                2.55954792e+03, 3.39322177e+03, 4.49843267e+03, 5.96362332e+03,
                7.90604321e+03, 1.04811313e+04, 1.38949549e+04, 1.84206997e+04,
                2.44205309e+04, 3.23745754e+04, 4.29193426e+04, 5.68986603e+04,
                7.54312006e+04, 1.00000000e+05])},
                      scoring='accuracy', verbose=4)
In [17]:
          def one standard error rule(model, results, param_grid, n_splits):
              #assert neg mean squared error == True # function is defined specifically
              #find model with minimum error, then select the simplest model
              #whose mean falls within 1 standard deviation of the minimum
              range x = param grid # results['param '+list(param grid.keys())[0]].data
              std vs x = pd.Series(results['std test score'], index = range x)
              sem_vs_x = std_vs_x/np.sqrt(n_splits)
              mean_vs_x = pd.Series(results['mean_test_score'], index = range_x)
              mean_vs_x = mean_vs_x^*(-1)
              x_min = mean_vs_x.idxmin()
              sem = sem vs x[x min]
              if (model=='pcr'):
                  x_1se = mean_vs_x[mean_vs_x <= min(mean_vs_x) + sem].index.min()
              elif (model=='ridge') | (model=='lasso'):
                  x 1se = mean vs x[mean vs x \le min(mean vs x) + sem].index.max()
              \#x 1se idx = int(np.argwhere(range <math>x == x \ 1se)[0])
              return x_min, x_1se
```

```
In [18]:
          range_alpha = rr_cv.cv_results_['param_alpha'].data
          accuracy_scores = rr_cv.cv_results_['mean_test_score']
          x_min, x_1se = one_standard_error_rule(model='ridge',
                                                  results=rr_cv.cv_results_,
                                                  param_grid=range_alpha,
                                                  n_splits=10,
          plt.figure(figsize=(8, 6))
          ax = plt.gca()
          ax.set_xscale('log')
          plt.xlabel('Alpha', fontsize=16)
          plt.ylabel('CV MSE', fontsize=16)
          plt.scatter(range_alpha, accuracy_scores, s=30)
          plt.axvline(x=x_min, color='m')
          plt.axvline(x=x_1se, color='c')
          plt.grid(True, which='both')
          plt.tight_layout()
          plt.show()
```



```
In [19]: print('Alpha one standard error rule:', x_1se)
```

Alpha one standard error rule: 1098.5411419875572

```
In [20]:
          rr_cv = GridSearchCV(rr, {'alpha': [x_1se]}, scoring='accuracy', cv=10)
          rr_cv.fit(xd, y_train)
Out[20]: GridSearchCV(cv=10, estimator=RidgeClassifier(random_state=88),
                      param grid={'alpha': [1098.5411419875572]}, scoring='accuracy')
In [21]:
          y_test = data_test['cumulative_outcome']
          y_test = [1 if x=='Yes' else 0 for x in y_test]
          x_test = data_test[data_test.columns[1:]]
          x_test = x_test.drop(columns = ['cumulative_outcome'],axis=1)
          xd_test = pd.get_dummies(x_test)
          #treatment of missing data: we put the most common observation in place of th
          for column in xd test.columns:
              xd_test[column]=xd_test[column].fillna(xd_test[column].mode()[0])
In [22]:
          from sklearn.metrics import accuracy_score
          print('Accuracy:', round(accuracy_score(y_test, rr_cv.predict(xd_test)), 5))
         Accuracy: 0.61926
In [23]:
          from sklearn.metrics import roc curve, auc
          fpr, tpr, _ = roc_curve(y_test, rr_cv.predict(xd_test))
          print(fpr,tpr)
         [0.
                     0.18449612 1.
                                           ] [0.
                                                         0.34763948 1.
                                                                              1
```

```
In [39]:
          def create_polynomial_features(df, n_degree):
              new_df = None
              for i in range(2, n degree+1):
                  tmp = df.pow(i)
                  affix = '_pow_'+str(i)
                  tmp.columns = list(map(lambda x: x + affix, df.columns))
                  if new df is not None:
                      new_df = pd.concat([new_df, tmp], axis=1)
                  else:
                      new_df = tmp
              return new_df
In [40]:
          n_degree = 3
          X_train_poly = pd.concat([xd, create_polynomial_features(xd[xd.columns], n_de
          X_test_poly = pd.concat([xd_test, create_polynomial_features(xd[xd.columns],
          print(X_train_poly.shape, X_test_poly.shape)
         (2591, 984) (3702, 984)
 In [ ]:
 In [ ]:
In [ ]:
In [41]:
          from sklearn.linear model import LogisticRegression
          LogReg = LogisticRegression(penalty='12')
In [42]:
          LogReg.fit(xd, y_train)
```

```
/Users/william/opt/anaconda3/lib/python3.8/site-packages/sklearn/linear model/
         _ridge.py:147: LinAlgWarning: Ill-conditioned matrix (rcond=1.21138e-19): resu
         It may not be accurate.
           return linalg.solve(A, Xy, sym_pos=True,
         /Users/william/opt/anaconda3/lib/python3.8/site-packages/sklearn/linear model/
         ridge.py:147: LinAlgWarning: Ill-conditioned matrix (rcond=1.19124e-19): resu
         It may not be accurate.
           return linalg.solve(A, Xy, sym_pos=True,
         /Users/william/opt/anaconda3/lib/python3.8/site-packages/sklearn/linear model/
          ridge.py:147: LinAlgWarning: Ill-conditioned matrix (rcond=1.95134e-19): resu
         It may not be accurate.
           return linalg.solve(A, Xy, sym_pos=True,
         /Users/william/opt/anaconda3/lib/python3.8/site-packages/sklearn/linear model/
         ridge.py:147: LinAlgWarning: Ill-conditioned matrix (rcond=1.20616e-19): resu
         It may not be accurate.
           return linalg.solve(A, Xy, sym_pos=True,
         /Users/william/opt/anaconda3/lib/python3.8/site-packages/sklearn/linear model/
         _ridge.py:147: LinAlgWarning: Ill-conditioned matrix (rcond=1.25064e-19): resu
         It may not be accurate.
           return linalg.solve(A, Xy, sym_pos=True,
         /Users/william/opt/anaconda3/lib/python3.8/site-packages/sklearn/linear_model/
         _ridge.py:147: LinAlgWarning: Ill-conditioned matrix (rcond=1.19266e-19): resu
         It may not be accurate.
           return linalg.solve(A, Xy, sym pos=True,
         /Users/william/opt/anaconda3/lib/python3.8/site-packages/sklearn/linear model/
          ridge.py:147: LinAlgWarning: Ill-conditioned matrix (rcond=1.20408e-19): resu
         It may not be accurate.
           return linalg.solve(A, Xy, sym_pos=True,
         /Users/william/opt/anaconda3/lib/python3.8/site-packages/sklearn/linear model/
         ridge.py:147: LinAlgWarning: Ill-conditioned matrix (rcond=1.2072e-19): resul
         t may not be accurate.
           return linalg.solve(A, Xy, sym_pos=True,
         /Users/william/opt/anaconda3/lib/python3.8/site-packages/sklearn/linear_model/
         _ridge.py:147: LinAlgWarning: Ill-conditioned matrix (rcond=1.28986e-19): resu
         It may not be accurate.
           return linalg.solve(A, Xy, sym pos=True,
         /Users/william/opt/anaconda3/lib/python3.8/site-packages/sklearn/linear_model/
         ridge.py:147: LinAlgWarning: Ill-conditioned matrix (rcond=1.26559e-19): resu
         It may not be accurate.
           return linalg.solve(A, Xy, sym_pos=True,
         /Users/william/opt/anaconda3/lib/python3.8/site-packages/sklearn/linear model/
          ridge.py:147: LinAlgWarning: Ill-conditioned matrix (rcond=1.14262e-19): resu
         It may not be accurate.
           return linalg.solve(A, Xy, sym_pos=True,
Out[44]: GridSearchCV(cv=10, estimator=RidgeClassifier(random_state=88),
                      param grid={'alpha': [1098.5411419875572]}, scoring='accuracy')
```

In []:

Project_242_Clustering

December 17, 2021

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).

```
[]:
             ID PO1KPNREV PO1KPNLEV ... VOOLLWGT VOORLWGT cumulative_outcome
     0 9000296
                      Yes
                                            12.0
                                                      18.0
                                                                           No
                                  No ...
     1 9000622
                      Yes
                                            14.0
                                                      14.0
                                                                          Yes
                                  No ...
     2 9001695
                      Yes
                                  No ...
                                            13.0
                                                     13.0
                                                                          Yes
     3 9001897
                       No
                                  No ...
                                            16.0
                                                     17.0
                                                                          Yes
     4 9002411
                      Yes
                                  No ...
                                            18.0
                                                     22.0
                                                                           No
```

[5 rows x 122 columns]

1 Pre-processing

```
[]: ## Replace 'No' and 'Yes' by 0 and 1 in the outcome column

df['cumulative_outcome'] = df['cumulative_outcome'].apply(lambda x: 1 if x ==⊔

→'Yes' else 0)

df.head()
```

```
[]: ID PO1KPNREV PO1KPNLEV ... VOOLLWGT VOORLWGT cumulative_outcome 0 9000296 Yes No ... 12.0 18.0 0 1 9000622 Yes No ... 14.0 14.0 1
```

2	9001695	Yes	No .	•••	13.0	13.0	1
3	9001897	No	No .		16.0	17.0	1
4	9002411	Yes	No .	•••	18.0	22.0	0

[5 rows x 122 columns]

We drop the useless columns and we transform the columns with string into dummy variables.

Number of columns to dummy encode = 103 out of 121

```
[]: df_enc.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3702 entries, 0 to 3701

Columns: 228 entries, VOOWOMTSL to VOOLKRFXPN_Yes

dtypes: float64(17), int64(1), uint8(210)

memory usage: 1.2 MB

[]: df_enc.head()

[]:	VOOWOMTSL	VOOWOMTSR	 VOORKRFXPN_Yes	VOOLKRFXPN_Yes
0	0.0	0.0	 0	0
1	0.0	20.9	 1	0
2	0.0	NaN	 0	0
3	0.0	0.0	 0	0
4	1.1	2.1	 0	0

[5 rows x 228 columns]

Now, we are looking for Nan values in the data set, and we are going to replace them by the mean

of the variable.

```
[]: # Search for the columns with Nan values
     columns_with_nan_values = []
     for col in df_enc.columns:
       if df_enc[col].isnull().values.any() == True:
         columns_with_nan_values.append(col)
     print(columns_with_nan_values)
    ['VOOWOMTSL', 'VOOWOMTSR', 'PO1KPACDCV', 'VOOCOMORB', 'VOOHT25MM', 'VOOWT25KG',
    'VOOWTMAXKG', 'VOOWTMINKG', 'VOOBPDIAS', 'VOOBPSYS', 'VOODTVITD', 'VOODTCALC',
    'VOODTCHOL', 'PO1BMI', 'VOOPASE', 'VOOLLWGT', 'VOORLWGT']
[]: # Replacement of the Nan values by the mean of the column
     for col in columns_with_nan_values:
       col_mean = df[col].describe()['mean']
       df_enc[col] = df[col].fillna(col_mean)
     df_enc.head()
[]:
       VOOWOMTSL VOOWOMTSR ...
                                 VOORKRFXPN_Yes
                                                 VOOLKRFXPN_Yes
                  0.000000 ...
             0.0
     1
              0.0 20.900000 ...
                                              1
                                                              0
     2
              0.0 10.076808 ...
                                              0
                                                              0
                                              0
     3
              0.0 0.000000 ...
                                                              0
              1.1
                    2.100000 ...
     [5 rows x 228 columns]
[]: ## Check if there are still NaN values in data frame
     df_enc.isnull().values.any()
[]: False
[]: ## Rename columns to have format usable with the Stats Model Formula input
     print('Before = ', df_enc.columns)
     # Replace all spaces and symbols by underscores
     df_enc.columns = df_enc.columns.str.replace(' ', '_')
     df_enc.columns = df_enc.columns.str.replace(',', '_')
     df_enc.columns = df_enc.columns.str.replace(':', '_')
     df_enc.columns = df_enc.columns.str.replace('/', '_')
     df_enc.columns = df_enc.columns.str.replace('-', '_')
```

```
print('After = ', df_enc.columns)
    Before = Index(['VOOWOMTSL', 'VOOWOMTSR', 'PO1KPACDCV', 'VOOCOMORB',
    'VOOHT25MM',
           'VOOWT25KG', 'VOOWTMAXKG', 'VOOWTMINKG', 'VOOBPDIAS', 'VOOBPSYS',
           'PO1FAMKR_Yes', 'PO2WTGA_Yes', 'VOORKEFFB_Yes',
           'VOORKEFFPT_Too tender to examine', 'VOORKEFFPT_Yes', 'VOOLKEFFB_Yes',
           'VOOLKEFFPT_Too tender to examine', 'VOOLKEFFPT_Yes', 'VOORKRFXPN_Yes',
           'VOOLKRFXPN_Yes'],
          dtype='object', length=228)
    After = Index(['VOOWOMTSL', 'VOOWOMTSR', 'PO1KPACDCV', 'VOOCOMORB',
    'VOOHT25MM',
           'VOOWT25KG', 'VOOWTMAXKG', 'VOOWTMINKG', 'VOOBPDIAS', 'VOOBPSYS',
           'PO1FAMKR_Yes', 'PO2WTGA_Yes', 'VOORKEFFB_Yes',
           'VOORKEFFPT_Too_tender_to_examine', 'VOORKEFFPT_Yes', 'VOOLKEFFB_Yes',
           'VOOLKEFFPT_Too_tender_to_examine', 'VOOLKEFFPT_Yes', 'VOORKRFXPN_Yes',
           'VOOLKRFXPN_Yes'],
          dtype='object', length=228)
[]: df_enc.describe()
[]:
              VOOWOMTSL
                           VOOWOMTSR ...
                                         VOORKRFXPN_Yes VOOLKRFXPN_Yes
     count 3702.000000 3702.000000 ...
                                            3702.000000
                                                             3702.000000
    mean
               9.774844
                           10.076808 ...
                                               0.135062
                                                                0.148568
              14.058002
     std
                           13.081182 ...
                                               0.341836
                                                                0.355711
              0.000000
    min
                            0.000000 ...
                                               0.000000
                                                                0.000000
    25%
               0.000000
                            0.000000 ...
                                               0.000000
                                                                0.000000
    50%
               3.000000
                            5.000000 ...
                                               0.000000
                                                                0.000000
    75%
                           15.000000 ...
              14.000000
                                               0.000000
                                                                0.000000
    max
              96.000000
                           93.900000 ...
                                               1.000000
                                                                1.000000
     [8 rows x 228 columns]
```

We normalized each column before performing the clustering, so each variable has the same weight when computing the clusters.

First, center the data (substract the mean to each column) => mean becomes 0 for each column

Then, scale the data, by dividing by the standard deviation => std becomes 1 for each column

```
[]: from sklearn import preprocessing

scaler = preprocessing.StandardScaler()
df_enc_features = df_enc.drop('cumulative_outcome', axis='columns')
df_scaled = scaler.fit_transform(df_enc_features)

df_scaled = pd.DataFrame(df_scaled, columns=df_enc_features.columns)
```

```
df_scaled.describe()
[]:
               VOOWOMTSL
                                                             VOOLKRFXPN_Yes
                              VOOWOMTSR
                                            VOORKRFXPN_Yes
            3.702000e+03
                          3.702000e+03
                                              3.702000e+03
                                                               3.702000e+03
     count
     mean
            7.462966e-17
                           2.181909e-16
                                              2.495453e-16
                                                               1.616751e-16
     std
            1.000135e+00
                           1.000135e+00
                                              1.000135e+00
                                                               1.000135e+00
           -6.954164e-01 -7.704327e-01
                                             -3.951612e-01
                                                              -4.177229e-01
     min
           -6.954164e-01 -7.704327e-01
     25%
                                             -3.951612e-01
                                                              -4.177229e-01
     50%
           -4.819859e-01 -3.881526e-01
                                              -3.951612e-01
                                                              -4.177229e-01
     75%
            3.005923e-01
                                             -3.951612e-01
                                                              -4.177229e-01
                          3.764076e-01
            6.134357e+00
                          6.408788e+00
                                              2.530613e+00
                                                               2.393932e+00
     max
     [8 rows x 227 columns]
[]: df_normalized = preprocessing.normalize(df_scaled)
     df_normalized = pd.DataFrame(df_normalized, columns=df_scaled.columns)
     df_normalized.describe()
[]:
              VOOWOMTSL
                            VOOWOMTSR
                                          VOORKRFXPN_Yes
                                                           VOOLKRFXPN_Yes
                                             3702.000000
                                                              3702.000000
     count
            3702.000000
                          3702.000000
              -0.013706
                            -0.014290
                                                -0.006360
                                                                -0.006459
     mean
     std
               0.059204
                             0.060842
                                                 0.066169
                                                                 0.067200
              -0.094583
                            -0.104786
                                                -0.053746
                                                                -0.056814
     min
     25%
              -0.058564
                            -0.061627
                                               -0.036446
                                                                -0.038481
     50%
              -0.032862
                            -0.031160
                                                                -0.031005
                                               -0.029492
     75%
               0.019169
                             0.022912
                                                -0.021970
                                                                -0.022756
               0.211807
                             0.212003 ...
                                                 0.300912
                                                                 0.284660
     max
```

[8 rows x 227 columns]

2 Split the data set

We first need to split the data set into a training set and a test set. Then, we will apply clustering only on the training set. To predict the outcome of the testing set, each observations will be assigned to a cluster and then the specific model of this cluster will be applied on the observation.

```
[]: ((2591, 228), (1111, 228))
```

```
[]: y_train = df_train['cumulative_outcome']
y_test = df_test['cumulative_outcome']

x_train = df_train.drop('cumulative_outcome', axis='columns')
x_test = df_test.drop('cumulative_outcome', axis='columns')
```

3 K-means clustering

3.1 Scree plot (to select the value of K)

To create the plot we need to compute the cluster dissimilarity for different values of k

```
[]: plt.figure(figsize=(11,8))
   plt.plot(range(1, 100), wcss, linewidth=2, color='black')
   plt.axvline(x=8, linewidth=2)
   plt.xticks(np.linspace(0,100,21))
   plt.xlabel('K')
   plt.ylabel('WCSS')
   plt.grid(axis='both')
   plt.show()
```


We choose k = 8 clusters, as it is a knee in the WCSS curve above.

```
[]: # Fitting of the kmeans model for 8 clusters
     kmeans = KMeans(init='k-means++', n_clusters=8, n_init=10, max_iter=100,__
     →random_state=88)
     kmeans.fit(x_train)
     wcss_train = kmeans.inertia_
[]: # We compute the centroid and the size of each cluster, which will be useful.
     \hookrightarrow later
     print('k-means center is: \n', kmeans.cluster_centers_)
     kmeans_size = []
     clusters = np.unique(kmeans.labels_)
     for cluster in clusters:
         kmeans_size.append(len(np.where(kmeans.labels_ == cluster)[0]))
     kmeans_size
    k-means center is:
     [[ 1.66886546e-02 -4.52399483e-02 -1.98475466e-03 ... -1.58281687e-03
      -2.10225776e-02 3.64570467e-02]
     [-6.91319112e-02 -7.59399903e-02 -4.17256035e-02 ... -1.28761278e-02
```

```
-3.78199814e-02 -3.70274057e-02]
     [ 1.85091911e-03 5.48941521e-03 -1.54929475e-02 ... 6.59621665e-03
      -7.37328460e-03 -9.99549614e-03]
     [ 6.97766059e-02 5.99528742e-02 2.98608045e-02 ... 4.51966322e-03
       2.87379871e-02 3.32891002e-02]
     [-6.14809192e-02 -6.45144949e-02 -3.67775292e-02 ... 5.85539873e-05
      -2.95185789e-02 -3.11825516e-02]
     [-6.10319463e-02 -6.65398438e-02 -3.56719631e-02 ... -7.01042643e-03
      -3.50427494e-02 -2.75475167e-02]]
[]: [297, 327, 331, 346, 415, 494, 227, 154]
[]: # We had a column Cluster with the cluster number of each observation
     df_train_cluster = df_train.copy()
     df_train_cluster['Cluster'] = kmeans.labels_
     df_train_cluster.head()
[]:
          VOOWOMTSL VOOWOMTSR ...
                                    cumulative_outcome
    558
          -0.062097 -0.076635
                                                              7
    2651 -0.045562 -0.028329 ...
                                                     0
                                                              3
    2673 -0.080512 -0.089197 ...
                                                     0
                                                              6
                                                              2
    3499
           0.003663
                      0.007725 ...
                                                     1
    815
          -0.004304 -0.012397 ...
                                                              2
     [5 rows x 229 columns]
[]: |#df_train_cluster.loc[2909].values
```

3.2 Split into the different clusters

We create one data set for each cluster, we split the observations according to which cluster it belongs. It will be useful to apply a model for each cluster.

```
[]: df_cluster_0 = df_train_cluster[df_train_cluster['Cluster'] == 0]
    df_cluster_1 = df_train_cluster[df_train_cluster['Cluster'] == 1]
    df_cluster_2 = df_train_cluster[df_train_cluster['Cluster'] == 2]
    df_cluster_3 = df_train_cluster[df_train_cluster['Cluster'] == 3]
    df_cluster_4 = df_train_cluster[df_train_cluster['Cluster'] == 4]
    df_cluster_5 = df_train_cluster[df_train_cluster['Cluster'] == 5]
    df_cluster_6 = df_train_cluster[df_train_cluster['Cluster'] == 6]
    df_cluster_7 = df_train_cluster[df_train_cluster['Cluster'] == 7]
[]: df_cluster_0 = df_cluster_0.drop('Cluster', axis = 1)
    df_cluster_1 = df_cluster_1.drop('Cluster', axis = 1)
    df_cluster_2 = df_cluster_2.drop('Cluster', axis = 1)
    df_cluster_3 = df_cluster_3.drop('Cluster', axis = 1)
```

```
df_cluster_4 = df_cluster_4.drop('Cluster', axis = 1)
     df_cluster_5 = df_cluster_5.drop('Cluster', axis = 1)
     df_cluster_6 = df_cluster_6.drop('Cluster', axis = 1)
     df_cluster_7 = df_cluster_7.drop('Cluster', axis = 1)
[]: |#df_train_cluster_0 = cluster_data(df_train_cluster, 0)
     len(df_cluster_1)
     df_cluster_0.head(10)
[]:
           VOOWOMTSL VOOWOMTSR ...
                                    VOOLKRFXPN_Yes
                                                    cumulative_outcome
     1620
           0.025892 -0.053191
                                         -0.035981
                                                                     0
     2191
           0.023447
                     -0.014838
                                         -0.026348
                                                                     1
     2754
           0.001217 -0.029500 ...
                                         -0.031747
                                                                     0
           0.087363 -0.046737 ...
     2582
                                         -0.031615
                                                                     0
     2963
           0.009648 -0.085281 ...
                                         -0.046239
     983
           0.049346 -0.044072 ...
                                          0.136944
                                                                     0
    2924
           0.152516 -0.043208 ...
                                         0.134259
                                                                     1
     1526
          -0.031348 -0.058785
                                         -0.031873
                                                                     1
           0.055625 -0.048338 ...
     357
                                         -0.029096
                                                                     0
     2378 -0.009016 -0.055012 ...
                                         -0.029827
                                                                     0
     [10 rows x 228 columns]
[]: #print(df_train_cluster_0['cumulative_outcome'])
[]: print(len(df_cluster_0), len(df_cluster_1), len(df_cluster_2),_
     →len(df_cluster_3), len(df_cluster_4), len(df_cluster_5), len(df_cluster_6),
      →len(df_cluster_7))
    297 327 331 346 415 494 227 154
[]: print(len(df_cluster_0.columns), len(df_cluster_1.columns), len(df_cluster_2.
      →columns), len(df_cluster_3.columns), len(df_cluster_4.columns),
      →len(df_cluster_5.columns), len(df_cluster_6.columns), len(df_cluster_7.
```

228 228 228 228 228 228 228

3.3 Logistic Regression: training

We choose to apply a logistic regression model as it is the one which has the best performance among the model that we did before. We will train one model for each cluster.

3.3.1 Cluster 0

```
[]: print(np.linalg.matrix_rank(df_cluster_0))
```

183

We will use sklearn as a library for the logistic regression model, because our dataframes are not invertible matrix, and sklearn can handle it.

```
[]: ## Logistic Regression with sklearn
    from sklearn.linear_model import LogisticRegression
    from sklearn.metrics import accuracy_score
    from sklearn import metrics
    x_train_cluster_0 = df_cluster_0.drop('cumulative_outcome', axis='columns')
    y_train_cluster_0 = df_cluster_0['cumulative_outcome']
    logreg0 = LogisticRegression()
    logreg0.fit(x_train_cluster_0, y_train_cluster_0.ravel())
    print('Accuracy = ', logreg0.score(x_train_cluster_0, y_train_cluster_0.
     →ravel()))
    Accuracy = 0.7542087542087542
[]: # We create a list with the accuracy of each cluster to analyze it later
    Accuracy_train = []
    Accuracy_train.append(logreg0.score(x_train_cluster_0, y_train_cluster_0.
     →ravel()))
[]: ## Coefficients of the logistic regression
    logreg0.coef_
[]: array([[ 1.39222375e-01, -1.23004859e-01, 2.35835486e-02,
             3.08020079e-01, -2.07616960e-01, 9.99436309e-02,
             4.08202312e-02, 2.76164301e-01, -4.61090499e-01,
            -3.19480732e-01, -1.28648742e-01, 3.65021573e-01,
            -4.36454488e-01, 2.81718164e-01, 2.45292835e-01,
            -9.55878264e-02, 7.66807918e-02, -2.11671981e-01,
            -1.20264298e-01, -2.15421403e-01, 4.26039321e-01,
             6.49420590e-01, 1.29928639e-01, 9.05589847e-02,
            -4.37634639e-02, -3.65211922e-01, 1.42539947e-03,
             2.20177445e-01, -5.40297314e-01, 5.13581684e-02,
            -7.84557207e-02, 6.05213116e-03, 6.52687634e-02,
             1.96659836e-03, -2.44738075e-01, -1.11835524e-01,
             3.01258042e-01, 4.14854598e-03, 5.96100121e-02,
            -2.39316089e-01, -3.19099224e-02, 2.38695235e-01,
            -1.03438760e-02, 2.22605800e-03, 9.36711175e-03,
            -1.12560399e-01, -3.45379512e-03, -1.25572212e-01,
             7.87528043e-02, 2.48170019e-03, -1.84189859e-01,
            -1.70811574e-01, 2.70777084e-01, 3.35728602e-03,
            -1.37613031e-01, 4.36726806e-03, 1.18255091e-01,
             1.30750386e-03, 7.68082694e-02, 4.99387890e-01,
            -4.74100793e-01, 4.11545826e-01, -2.56937839e-01,
             3.57228328e-01, 2.29241926e-02, -8.99360713e-02,
```

```
8.34301381e-01, -1.35970129e-01, 1.95991876e-01,
-8.71021909e-01, 1.07706919e-01, 3.54328533e-01,
-4.00423353e-01, 1.53133765e-01, 2.97700622e-01,
3.30709741e-01, -4.17035170e-01, -1.58939563e-01,
8.43882140e-01, -7.70638614e-01, -1.15359733e-01,
-2.00755585e-01, 2.37054233e-01, 1.82316431e-01,
-3.03975458e-01, 1.76339330e-03, -4.17134713e-01,
4.91329383e-01, 3.04683431e-01, -6.96827597e-01,
4.32318025e-02, 1.12071628e-01, -9.08157725e-02,
-1.04433447e+00, -2.15421403e-01, 1.10805315e-02,
4.19133457e-01, 5.77976372e-01, -1.10805315e-02,
1.56913271e-03, -3.60778208e-01, 2.94345685e-01,
-2.94454238e-01, 3.42186836e-01, 2.79965565e-01,
4.00684665e-03, 2.93048857e-03, 1.60309925e-03,
2.11446620e-01, 1.96659836e-03, 1.40346687e-01,
-9.83101679e-03, -1.15113266e+00, 4.46363903e-01,
-4.53215973e-01, 1.64230610e-01, 1.07969043e-01,
1.96659836e-03, 1.44293589e-01, -2.12685932e-01,
-4.22534024e-01, -3.41523190e-03, 9.77119172e-02,
2.29789064e-01, 1.62609851e-01, 4.00684665e-03,
-2.18210430e-01, 1.88210465e-03, 9.87876457e-02,
3.06929664e-01, 5.55768575e-02, -4.71265712e-01,
3.88725125e-01, 3.25393884e-01, -3.19178620e-01,
-3.69063781e-01, -1.01413973e-01, 2.41766067e-01,
3.21123996e-01, 1.01461030e+00, 2.24488831e-01,
-6.09776294e-01, 2.54818902e-01, -3.97452997e-02,
-2.58662176e-03, -4.62877700e-01, -2.37913158e-01,
7.71386167e-01, -1.99327933e-01, 1.94426204e-01,
3.80166619e-01, 2.53669153e-01, 1.81097156e-02,
-1.20424880e-01, -6.20078413e-01, 6.55185666e-02,
4.85020014e-01, 6.24860672e-01, 1.96351584e-01,
-2.32277034e-01, 1.17808873e-03, -5.29810350e-01,
6.55378467e-01, 1.57045501e-01, 7.92957094e-01,
1.64602950e-01, 3.25575176e-01, 7.89700356e-02,
4.79242264e-01, 1.72360485e-01, 4.91144941e-01,
-7.70133293e-02, 4.62848538e-01, -6.88880496e-01,
1.03283229e-03, 2.90491091e-01, -3.84260039e-01,
2.57074409e-02, -2.18891571e-01, -2.18353392e-01,
-4.05341038e-01, 1.82368282e-03, -3.31058837e-01,
-2.56593838e-01, -9.47101548e-02, -4.75584358e-01,
-5.03419263e-02, 1.92571568e-01, -7.73085148e-02,
4.35346629e-01, 3.26212884e-04, -1.04943864e-01,
3.26212884e-04, 1.97020634e-01, 7.99595418e-04,
-3.06262867e-01, 2.51778689e-01, 4.92171134e-01,
4.74345324e-01, -1.42195739e-01, -7.95259727e-03,
7.29828686e-04, 3.60787068e-01, -3.48562473e-01,
-1.40376270e-01, -3.85628871e-01, -5.03379793e-01,
```

```
3.17867829e-01, -4.31154207e-01, 9.19328703e-02,
             -5.80247700e-01, 2.16312688e-01, -2.58066629e-01,
             -3.65130617e-02, 9.19328703e-02, 6.05708779e-01,
              5.18376285e-02, 6.16618162e-01, 1.13321614e+00,
              2.83882613e-01, 7.99595418e-04, 5.14325221e-02,
              5.67140759e-01, -2.54113553e-01, 4.08980553e-02,
              1.90845605e-01, 5.79793333e-01]])
[]: ## Computation of the p-values of the features, to perform features selection
     \hookrightarrow later
     import statsmodels.api as sm
     mod0 = sm.OLS(y_train_cluster_0,x_train_cluster_0)
     fii0 = mod0.fit()
     p_values0 = fii.summary2().tables[1]['P>|t|']
     p_values0
[ ]: VOOWOMTSL
                                         0.422254
     VOOWOMTSR
                                         0.594368
    P01KPACDCV
                                         0.490362
    VOOCOMORB
                                         0.441689
    VOOHT25MM
                                         0.407957
    VOOLKEFFB Yes
                                         0.573021
    VOOLKEFFPT_Too_tender_to_examine
                                         0.602212
    VOOLKEFFPT Yes
                                         0.278842
    VOORKRFXPN_Yes
                                         0.911536
    VOOLKRFXPN_Yes
                                         0.144860
    Name: P>|t|, Length: 227, dtype: float64
    3.3.2 Cluster 1: Training
[]: ## Logistic Regression with sklearn
     x_train_cluster_1 = df_cluster_1.drop('cumulative_outcome', axis='columns')
     y_train_cluster_1 = df_cluster_1['cumulative_outcome']
     logreg1 = LogisticRegression()
     logreg1.fit(x_train_cluster_1, y_train_cluster_1.ravel())
     print('Accuracy = ', logreg1.score(x_train_cluster_1, y_train_cluster_1.
      →ravel()))
    Accuracy = 0.7400611620795107
[]: Accuracy_train.append(logreg1.score(x_train_cluster_1, y_train_cluster_1.
      →ravel()))
[]: ## Coefficients of the logistic regression
```

logreg1.coef_

```
[]: array([[ 1.16524432e-01, -9.13812496e-03, 6.50551406e-04,
            -7.64911841e-03, -5.33054310e-01, -3.14173876e-01,
            -5.55627771e-01, 2.23396436e-01, -2.43692261e-01,
            -1.26258567e-02, -2.67180233e-01, -3.83685327e-01,
            -2.55194938e-01, -1.43922234e-01, -2.95793584e-01,
            -8.75224679e-02, 1.73411355e-01, -1.67441484e-01,
             3.96366964e-01, -7.04799940e-02, 3.25926451e-01,
            -1.62600046e-01, 6.82702282e-01, 4.81108907e-01,
             5.82293664e-01, 3.84912932e-01, 2.04317123e-03,
             7.18174522e-02, -8.16632863e-01, 6.95240252e-01,
             3.63035451e-02, 8.67514019e-03, -3.80439794e-02,
             2.81892709e-03, -2.43365388e-01, -5.09030152e-02,
             2.55177523e-01, 5.94653635e-03, 1.43863545e-02,
             1.37899202e-01, 8.37860045e-02, -2.66052265e-01,
             1.75249286e-02, 3.19083719e-03, 2.84841280e-02,
            -6.67815223e-02, -1.94942854e-01, 9.03161131e-03,
             1.66355066e-01, 3.55727536e-03, -2.11422099e-01,
             9.88691918e-03, 1.79421149e-01, 4.81234231e-03,
             6.98221092e-02, 6.26005314e-03, -6.50343276e-02,
             1.87417935e-03, 8.75041335e-02, 7.83441802e-03,
            -8.11413505e-02, 3.65119037e-03, -4.14040907e-01,
             1.08610246e-02, 3.59223297e-01, 5.55530116e-03,
            -1.31069351e-01, -2.33833794e-01, 4.90390819e-01,
            -2.43662822e-01, -2.11858336e-01, 3.77300571e-03,
             2.26693128e-01, 2.75894792e-01, -8.21663446e-02,
             9.50775925e-03, -5.58047251e-02, 3.82651736e-01,
             1.64505969e-02, 1.01761659e-02, -2.32955165e-02,
             5.40514277e-03, -2.81600017e-01, 6.14402912e-03,
             2.42770245e-01, 2.52765245e-03, 3.81566918e-01,
             5.30864857e-01, -6.41585913e-01, -1.18033150e-01,
             2.70494863e-01, 1.99118131e-01, 1.66188028e-02,
             8.38316862e-02, -7.04799940e-02, -4.22814270e-01,
             1.90996386e-01, 3.94609700e-01, 4.22814270e-01,
             2.24919882e-03, -6.50252008e-02, -2.40833152e-01,
             8.08981182e-03, 7.43963068e-03, 6.16349061e-03,
             5.74342417e-03, 3.87638069e-01, 2.29788654e-03,
             2.50961936e-02, 2.81892709e-03, -2.10371604e-01,
            -2.74171302e-01, 7.99471727e-03, -1.16792750e-01,
             5.78452481e-03, 5.29565273e-03, 4.49030878e-03,
             2.81892709e-03, 2.85954517e-01, 2.57121335e-03,
            -4.17113844e-01, -1.41848481e-01, -9.06557317e-02,
             8.64500418e-03, 6.33643695e-03, 5.74342417e-03,
             4.69082758e-03, 2.69781358e-03, 2.51783784e-01,
             3.04728396e-03, -2.73777793e-01, -7.03889567e-02,
             3.68636103e-01, 2.92389233e-01, 6.16349061e-03,
             5.61860255e-03, -1.81782267e-01, 3.11984710e-03,
            -5.14460664e-01, 3.44817976e-01, -2.32389561e-01,
```

```
9.97296813e-02, 5.16089799e-01, -1.60923179e-01,
             3.77464143e-01, 3.07551473e-02, -3.52408475e-01,
             1.00666530e+00, 7.38495778e-01, 1.39159064e-02,
            -5.22341252e-02, -1.21613515e-01, -9.25021416e-02,
            -7.34705829e-01, 4.60723142e-01, 4.93229944e-01,
            -1.43590573e-01, 1.68867538e-03, 7.65974212e-01,
            -1.85904045e-01, -1.00848232e-01, 1.38183757e-01,
             2.89160271e-01, -1.83818398e-01, 7.16476936e-01,
             4.11833546e-03, 1.73696695e-01, -2.88275172e-01,
             3.20195562e-01, 3.01037700e-03, 7.61831281e-02,
             1.48046443e-03, -1.97491918e-01, -3.33270484e-01,
             1.48046443e-03, 2.51710613e-01, 1.93212196e-03,
            -1.24208151e-02, -1.80230043e-01, 7.04872212e-01,
             1.91215271e-01, -2.79502497e-01, 2.27098765e-01,
             7.31602876e-01, 3.04728396e-03, 7.53482479e-02,
             5.80332443e-01, 4.67594378e-04, -1.49257208e-01,
             4.67594378e-04, -3.57616654e-01, 1.14614210e-03,
             2.19946094e-03, 1.48046443e-03, 1.93212196e-03,
            -2.02087842e-01, 1.71070432e-01, 6.44963441e-03,
              1.04613829e-03, -3.11527036e-01, 1.93212196e-03,
             1.68679538e-01, -4.00993618e-01, -7.47800992e-02,
            -5.68634779e-01, 7.01954860e-01, 6.67086418e-02,
            -4.48986399e-01, -1.95145774e-01, 1.12466312e-01,
             1.33031807e-01, 6.67086418e-02, 1.83950864e-01,
             2.18405304e-01, -1.08928126e-01, -3.61988845e-02,
            -4.51659530e-01, 1.14614210e-03, -1.83920105e-01,
            -1.08730623e-01, 1.40430171e-03, -2.39021095e-01,
            -3.88582085e-01, -1.73482759e-01]])
[]: ## p-values of the logistic regression to perform features selection
    import statsmodels.api as sm
    mod1 = sm.OLS(y_train_cluster_1,x_train_cluster_1)
    fii1 = mod1.fit()
    p_values1 = fii.summary2().tables[1]['P>|t|']
    p_values1
[ ]: VOOWOMTSL
                                        0.422254
    VOOWOMTSR
                                        0.594368
    P01KPACDCV
                                        0.490362
    VOOCOMORB
                                        0.441689
    VOOHT25MM
                                        0.407957
    VOOLKEFFB Yes
                                        0.573021
    VOOLKEFFPT_Too_tender_to_examine
                                        0.602212
    VOOLKEFFPT_Yes
                                        0.278842
    VOORKRFXPN Yes
                                        0.911536
```

2.36078169e-01, 5.83243876e-01, -3.12369210e-01,

```
VOOLKRFXPN_Yes 0.144860
Name: P>|t|, Length: 227, dtype: float64
```

3.3.3 Cluster 2: Training

```
[]: ## Logistic Regression with sklearn
    x_train_cluster_2 = df_cluster_2.drop('cumulative_outcome', axis='columns')
    y_train_cluster_2 = df_cluster_2['cumulative_outcome']
    logreg2 = LogisticRegression()
    logreg2.fit(x_train_cluster_2, y_train_cluster_2.ravel())
    print('Accuracy = ', logreg2.score(x_train_cluster_2, y_train_cluster_2.
     →ravel()))
    Accuracy = 0.7069486404833837
[]: Accuracy_train.append(logreg2.score(x_train_cluster_2, y_train_cluster_2.
     →ravel()))
[]: ## Coefficients of the logistic regression
    logreg2.coef_
[]: array([[-2.00402107e-01, 6.56619578e-02, 8.83331617e-02,
             1.35970781e-01, -8.73048877e-01, -3.83702474e-01,
             1.71937294e-01, -3.07576717e-01, -1.72240023e-01,
             1.94630853e-02, 2.53088711e-01, -3.97607200e-01,
            -4.54022144e-01, 8.49054074e-01, -1.03205526e+00,
            -2.63595164e-01, -2.78338850e-01, -3.77348158e-01,
            -4.38306563e-01, 7.11769752e-03, 2.73593468e-01,
             2.75810341e-01, -4.90331103e-01, 5.10645137e-01,
             4.91384030e-01, -5.44876208e-01, -1.28969684e-03,
            -5.21256554e-01, -3.52675105e-01, -8.52805322e-02,
            -5.02732774e-01, -1.20398008e-02, 4.52446898e-01,
            -1.77937185e-03, -2.98485992e-01, -5.84300056e-02,
             3.46653920e-01, -8.25676544e-02, -2.54360159e-01,
             4.25663761e-01, -1.47977937e-01, -3.87081597e-02,
             1.63249264e-01, -2.01413009e-03, -6.84296575e-01,
             1.79631627e-01, 3.37022353e-02, 1.88194714e-01,
            -1.96881594e-01, 2.01869005e-01, -7.75001659e-02,
             1.86964838e-01, -1.09849518e-01, 1.77288173e-01,
            -1.57026811e-01, 2.27384875e-01, 1.52724728e-02,
            -1.18302527e-03, -4.31030050e-01, -7.95428659e-03,
             3.76660577e-01, -2.30471565e-03, 2.97175162e-01,
            -3.70613820e-01, 2.71985527e-02, -1.13262741e-01,
            -1.28966446e-02, 1.20598132e-01, -1.25259744e-01,
            -7.08047390e-02, -2.15363276e-01, 1.87111711e-01,
            -8.90339890e-02, -1.03404813e-01, 3.21498567e-01,
```

```
-5.72813161e-02, -2.40987652e-01, -2.75262408e-03,
-2.12186923e-01, -1.83460761e-01, 2.94406035e-01,
 2.27769076e-02, -3.60002091e-01, 1.86937307e-01,
2.17337779e-01, -1.59551257e-03, -2.31574604e-01,
-8.37924953e-02, 8.73418802e-02, 1.40675574e-01,
-1.74806506e-01, -2.83161817e-01, -1.49818907e-01,
-2.14261586e-01, 7.11769752e-03, -2.60506214e-01,
3.24218848e-01, 5.53711390e-01, 2.60506214e-01,
-1.41974622e-03, -1.70199110e-01, 3.26191196e-01,
4.76964975e-01, 4.00714374e-02, 3.43810533e-02,
-3.33973306e-01, -1.49978398e-01, 3.52287473e-01,
-1.80838728e-01, -1.77937185e-03, 2.90591708e-01,
-9.42464523e-02, 2.57629087e-01, -3.59765236e-02,
 1.23212272e-01, -4.70151966e-01, -2.25584341e-01,
-1.77937185e-03, -1.19625330e-01, -1.62300922e-03,
-5.44862017e-01, 4.93376327e-02, -9.64561201e-02,
7.07377737e-02, -2.79520632e-01, -3.35246996e-01,
 1.88296507e-01, -1.70292221e-03, 3.96559188e-01,
-1.92351598e-03, -5.63948590e-01, -1.09426654e-01,
-3.18601343e-01, 4.17271249e-02, 1.65947146e-01,
-3.80792722e-02, -1.09273366e-01, 2.96364303e-01,
2.35505855e-01, 4.43379632e-01, 4.99541083e-01,
-4.23701023e-01, -2.91562458e-02, 5.51457370e-01,
-7.04421540e-01, 1.62777424e-01, 1.17514125e-01,
4.78354636e-01, 2.29998443e-01, 3.51074995e-01,
5.31562578e-01, 4.57308187e-01, -9.91617078e-02,
6.41825560e-02, 1.73643788e-01, 3.68087715e-01,
-5.64872957e-01, -1.85977418e-01, 1.11703452e-01,
-2.51067941e-01, -1.06593088e-03, 2.41490838e-01,
1.92975759e-01, 1.03320945e+00, 6.58351340e-01,
 2.56202078e-01, -4.93700114e-01, 2.16408462e-01,
 4.59514515e-01, 5.74633114e-01, 2.30962584e-01,
-3.30961197e-02, -4.56754228e-01, 5.91107305e-02,
-9.34503322e-04, 3.37116996e-01, -3.19498606e-02,
-2.81400447e-01, 9.44754833e-01, 2.25684584e-01,
2.71827485e-01, -3.08552132e-01, 4.95116532e-01,
-9.82691117e-02, 1.02467689e-01, -6.97108512e-01,
6.00206243e-01, -1.64230865e-01, -7.00664608e-02,
3.13660336e-02, -2.95156365e-04, -3.88208520e-01,
-2.95156365e-04, 3.56181970e-01, -7.23471354e-04,
-1.38835052e-03, -9.34503322e-04, -1.21959999e-03,
9.57822406e-02, 9.71321148e-02, 1.56468321e-01,
-6.60346640e-04, 1.09889700e-01, -1.21959999e-03,
5.33104157e-01, -2.95300801e-01, -1.77673051e-01,
-4.39635905e-01, 4.57360979e-01, 3.18953708e-02,
6.96675126e-02, 1.47439150e-01, -3.22674002e-01,
-1.49082482e-01, 3.18953708e-02, -2.86919024e-01,
```

```
3.38223886e-01, 5.20559113e-01, 1.08538422e+00,
            -1.84501606e-01, -7.23471354e-04, 4.83826362e-01,
             -5.00328808e-01, -8.86427655e-04, 5.34989821e-01,
            -3.96662751e-01, -4.24761323e-02]])
[]: ## p-values of the logistic regression to perform features selection
     import statsmodels.api as sm
     mod2 = sm.OLS(y_train_cluster_2,x_train_cluster_2)
     fii2 = mod2.fit()
     p_values2 = fii.summary2().tables[1]['P>|t|']
    p_values2
[ ]: VOOWOMTSL
                                         0.422254
    VOOWOMTSR
                                         0.594368
    P01KPACDCV
                                         0.490362
    VOOCOMORB
                                         0.441689
    VOOHT25MM
                                         0.407957
                                         0.573021
    VOOLKEFFB_Yes
    VOOLKEFFPT_Too_tender_to_examine
                                        0.602212
    VOOLKEFFPT_Yes
                                         0.278842
    VOORKRFXPN_Yes
                                         0.911536
    VOOLKRFXPN_Yes
                                         0.144860
    Name: P>|t|, Length: 227, dtype: float64
    3.3.4 Cluster 3: Training
[]: ## Logistic Regression with sklearn
     x_train_cluster_3 = df_cluster_3.drop('cumulative_outcome', axis='columns')
     y_train_cluster_3 = df_cluster_3['cumulative_outcome']
     logreg3 = LogisticRegression()
     logreg3.fit(x_train_cluster_3, y_train_cluster_3.ravel())
    print('Accuracy = ', logreg3.score(x_train_cluster_3, y_train_cluster_3.
     →ravel()))
    Accuracy = 0.7832369942196532
[]: Accuracy_train.append(logreg3.score(x_train_cluster_3, y_train_cluster_3.
     →ravel()))
[]: ## Coefficients of the logistic regression
     logreg3.coef_
[]: array([[ 0.15222227, -0.01291461, -0.16989793, 0.09497085, -0.79897101,
            -0.08909227, 0.19523345, -0.01450771, -0.0632383, 0.05744524,
              0.27201943, 0.40736777, 0.72343072, 0.48821612, 0.60221453,
```

```
-0.04250753, -0.44785716, 0.01492169, 0.0482295, -0.36486817,
0.62415724, 0.16989762, -0.13698212, 0.73505391, 0.61416334,
0.23672655, 0.39857176, 0.81104823, -0.21144243, 0.5390284,
-0.37328352, 0.75202681, -0.23872771, 0.34585163, -0.21106139,
-0.44746085, 0.29520768, 0.60398974, 0.15577124, -0.25646265,
-0.06389761, 0.11362505, -0.05313398, 0.47977948, -0.27716797,
-0.6538812, -0.02951153, -0.1293954, -0.07027502, 0.54833588,
0.68184759, -0.18973791, -0.52383204, -0.2385236, 0.29421369,
-0.13777259, -0.24450387, 0.35768045, 0.00550698, 0.06739823,
-0.05437136, 0.0314106, 0.18115186, 0.09768538, -0.24905579,
0.04779136, -0.1360402, 0.09850416, -0.24681157, 0.36767403,
-0.02488403, 0.26425061, 0.41971786, -0.42538084, 0.11421777,
-0.0516659, -0.1259006, 0.03751507, 0.06863206, -0.00757338,
-0.1195732 , 0.04649957 , 0.37250049 , 0.25303975 , -0.46476706 ,
0.02174499, 0.19431236, -0.06245168, -0.57319426, 0.38097094,
-0.00840921, -0.25376227, -0.8323965, -0.18756255, -0.36486817,
-0.12472407, 0.19554104, 0.37760393, 0.12472407, 0.0761814,
-0.08954814, -0.1521688, 0.29786917, 0.08074025, -0.18768454,
0.44430403, -0.56984446, 0.60737458, -0.02838814, 0.02425077,
0.18840899, 0.46505086, -0.49557405, 0.16664232, 0.05718503,
0.05914847, 0.0386294, 0.20173027, -0.60137535, 0.48774912,
-0.61204549, -0.5338489, 0.36270435, 0.07760604, 0.44701334,
-0.2848346 , 0.22448793 , 0.82170832 , 0.30970614 , 0.3445535 ,
-0.35453767, 0.15012028, 0.27818799, -0.02014749, -0.40216564,
-0.06515042, -0.15613301, 0.29906246, 0.06872199, 0.09365635,
 0.17771861, 0.23331973, 0.01050782, 0.04780997, 0.04204939,
 0.11814653, -0.29917253, 0.28240969, -1.04446252, 0.22839454,
 0.92391687, 0.18990305, 0.27707457, 0.76194978, -1.13238084,
 0.15036104, 0.05586157, 0.53788285, -0.46429796, 0.86552942,
 0.55577408, 0.14984519, 0.52740664, 0.54679851, 0.41308673,
 0.13567702, 0.20178463, 0.38565011, -0.49689874, 0.25213922,
-0.29605217, -0.13679385, -0.23237642, 0.61899611, 0.58409633,
 0.25351973, -0.67201803, 0.15370282, 0.79022407, -0.2351597,
0.11390599, -0.31655561, 0.06673317, 0.06090807, 0.177688
-0.14064908, -0.19900887, 0.46610476, 0.02927415, 0.2134692,
0.00402264, -1.0143326, 0.00402264, 0.17896531, 0.31371823,
 \hbox{0.43664912, -0.17049826, -0.1240461 , 0.0933254 , 0.17873976, } \\
-0.14177054, 0.28796209, 0.34289355, 0.3399684, -0.25951676,
 0.61581614, 0.44864028, -0.16952722, 0.13153433, -0.34454578,
0.19400946, -0.07049805, -0.21136288, 0.49078896, -0.34454578,
0.51755892, 0.34114297, -0.18293341, -0.40265245, -0.0546139,
-0.28779192, 0.23315633, 0.27802014, 0.01208098, -0.2727859,
-0.60485004, -0.71699086]])
```

```
[]: ## p-values of the logistic regression to perform features selection
import statsmodels.api as sm
mod3 = sm.OLS(y_train_cluster_3,x_train_cluster_3)
```

```
fii3 = mod3.fit()
     p_values3 = fii.summary2().tables[1]['P>|t|']
    p_values3
[]: VOOWOMTSL
                                         0.422254
     VOOWOMTSR
                                         0.594368
    P01KPACDCV
                                         0.490362
    VOOCOMORB
                                         0.441689
    VOOHT25MM
                                         0.407957
    VOOLKEFFB_Yes
                                         0.573021
    VOOLKEFFPT_Too_tender_to_examine
                                         0.602212
    VOOLKEFFPT_Yes
                                         0.278842
    VOORKRFXPN_Yes
                                         0.911536
    VOOLKRFXPN_Yes
                                         0.144860
    Name: P>|t|, Length: 227, dtype: float64
    3.3.5 Cluster 4: Training
[]: ## Logistic Regression with sklearn
     x_train_cluster_4 = df_cluster_4.drop('cumulative_outcome', axis='columns')
     y_train_cluster_4 = df_cluster_4['cumulative_outcome']
     logreg4 = LogisticRegression()
     logreg4.fit(x_train_cluster_4, y_train_cluster_4.ravel())
     print('Accuracy = ', logreg4.score(x_train_cluster_4, y_train_cluster_4.
     →ravel()))
    Accuracy = 0.7614457831325301
[]: Accuracy_train.append(logreg4.score(x_train_cluster_4, y_train_cluster_4.
     →ravel()))
[]: ## Coefficients of the logistic regression
     logreg4.coef_
[]: array([[2.13494685e-01, 3.77873162e-01, 2.18580024e-02,
             -1.85752228e-01, -2.11801467e-02, -2.20374256e-01,
             8.40732892e-02, -4.04060877e-02, -5.71851636e-01,
              4.52604591e-01, -2.53694492e-01, 4.38593459e-01,
             -5.11091227e-01, 7.70681102e-01, 1.90777355e-01,
              1.73593334e-01, -1.55004238e-02, -6.64641425e-01,
              3.50298372e-01, 2.61011257e-01, -3.08346160e-01,
              1.17889105e+00, -1.40647726e-01, -2.79137609e-01,
              6.59664135e-02, -6.78735388e-01, -1.70542895e-01,
              6.96338382e-01, -8.88060883e-01, 1.75192000e-01,
             -4.49386421e-01, -2.89360653e-02, 4.14704530e-01,
```

```
1.38832461e-03, 9.61280338e-02, 1.01542133e-01,
-1.62013459e-01, 2.92867552e-03, -2.47870876e-01,
1.41526412e-01, 3.38636363e-01, -2.09092151e-01,
-1.14306114e-01, 1.57149074e-03, 2.87783057e-01,
-2.60570015e-01, -2.65693292e-02, 1.25868311e-01,
-9.09212159e-02, 1.45129577e-01, -2.74202453e-01,
1.15644798e-01, 1.32568340e-01, 1.09709199e-01,
-3.16210538e-01, 7.09519822e-02, 2.39194421e-01,
9.23035339e-04, 2.89165523e-01, -9.34504857e-02,
-1.95417574e-01, 1.79821517e-03, -2.67800377e-01,
-1.56625445e-01, 3.42634274e-01, 2.73599178e-03,
3.83007993e-02, -2.55211307e-01, -4.62914691e-02,
2.96770585e-01, 3.00292348e-01, 1.85820936e-03,
-2.92433552e-01, 5.34315066e-02, -9.66641027e-02,
4.68258162e-03, 4.27312196e-02, 1.20012408e-01,
-8.53797961e-03, -8.79275357e-03, -2.44178537e-02,
9.89243274e-02, 3.23683183e-01, 3.02594092e-03,
-2.85387627e-01, 1.24487154e-03, 5.64075748e-01,
-2.02171658e-01, -3.57978238e-01, 6.58640703e-02,
-2.75007462e-01, 1.69476580e-01, -3.96515454e-01,
-2.04992373e-02, 2.61011257e-01, -1.30872993e-01,
3.28661711e-01, 5.05099829e-01, 1.30872993e-01,
-2.37818681e-01, 2.35673881e-01, 7.52065044e-01,
2.85356689e-01, -1.38158655e-01, -1.60109246e-01,
-2.37572075e-01, -3.59921985e-01, 1.13171158e-03,
-1.80810723e-02, 1.38832461e-03, -3.34733684e-01,
7.91882799e-01, -2.63905682e-01, -2.51439865e-01,
2.84888467e-03, 2.13093121e-01, -1.42323237e-01,
1.38832461e-03, -2.17524586e-01, 1.26632533e-03,
-4.07358871e-01, 1.61151553e-01, 2.48882618e-02,
-3.32917619e-01, -2.84332964e-01, -4.62712086e-01,
4.01984465e-01, 9.10284715e-01, 5.21089766e-01,
1.50079062e-03, 6.32906686e-02, -3.71036024e-01,
-1.81108945e-01, 2.50739704e-01, 1.83632130e-01,
7.79902272e-02, 4.38385140e-01, -1.93515477e-01,
1.48407949e-01, -8.59459027e-02, -9.00879183e-02,
-1.31101882e-01, -6.72417999e-02, 4.27948535e-01,
-3.95305798e-01, 1.75802382e-01, 1.19244788e-01,
2.01260758e-01, 5.46119872e-01, 1.00539968e-01,
2.48346780e+00, 2.76310562e-01, 2.05589224e-01,
-4.87206214e-01, -2.85683414e-01, 9.10480556e-01,
-9.77886280e-02, -4.59163858e-01, -1.24303783e-01,
1.53652804e-03, 6.18975490e-01, 1.70492894e+00,
6.97157605e-02, 6.53869933e-01, 1.81759631e-01,
1.26056289e+00, -4.59399081e-01, -2.98894127e-01,
7.19660854e-01, 3.17419453e-01, -5.72895688e-01,
2.51128104e-01, 1.94168860e-01, -8.38913469e-02,
```

```
7.29130317e-04, 1.20085125e-03, 5.14221225e-02,
              3.71225029e-01, 3.30082234e-01, -1.08326286e-01,
              1.71793365e-01, 6.73292652e-01, 1.78882818e-01,
              4.31473330e-01, -9.25177712e-02, -7.04477047e-01,
              5.30859837e-01, -1.78531124e-02, 1.16252894e-01,
             -2.72031562e-01, 2.30290732e-04, 5.32386284e-01,
              2.30290732e-04, 1.43512441e-01, -2.48924128e-01,
             -1.82456665e-01, -5.76280730e-01, -7.88634104e-01,
              7.38874093e-01, 5.06165230e-01, 2.84812718e-01,
              1.35890849e-01, -6.60825290e-01, -2.81237605e-01,
              3.19045169e-01, -1.11997603e+00, -9.35344764e-02,
             -3.75851330e-01, 7.77555785e-01, 2.14493820e-02,
             -4.31964596e-01, 9.03976253e-02, -3.69001453e-02,
              2.12123125e-01, 2.14493820e-02, 2.98089562e-01,
             3.11806170e-01, 1.98060876e-01, 1.64584737e-01,
             7.31053742e-01, 5.16231888e-01, -1.92155593e-02,
             -9.69163698e-01, 6.91620096e-04, -7.36305996e-01,
             6.56407035e-02, 1.21098862e-01]])
[]: ## p-values of the logistic regression to perform features selection
     import statsmodels.api as sm
     mod4 = sm.OLS(y_train_cluster_4,x_train_cluster_4)
     fii4 = mod4.fit()
     p_values4 = fii.summary2().tables[1]['P>|t|']
     p_values4
[ ]: VOOWOMTSL
                                         0.42254
    VOOWOMTSR
                                         0.594368
    P01KPACDCV
                                         0.490362
    VOOCOMORB
                                         0.441689
    VOOHT25MM
                                         0.407957
    VOOLKEFFB_Yes
                                         0.573021
     VOOLKEFFPT_Too_tender_to_examine
                                         0.602212
    VOOLKEFFPT_Yes
                                         0.278842
    VOORKRFXPN_Yes
                                         0.911536
     VOOLKRFXPN Yes
                                         0.144860
    Name: P>|t|, Length: 227, dtype: float64
    3.3.6 Cluster 5: Training
[]: ## Logistic Regression with sklearn
     x_train_cluster_5 = df_cluster_5.drop('cumulative_outcome', axis='columns')
     y_train_cluster_5 = df_cluster_5['cumulative_outcome']
     logreg5 = LogisticRegression()
```

```
print('Accuracy = ', logreg5.score(x_train_cluster_5, y_train_cluster_5.
     →ravel()))
    Accuracy = 0.7226720647773279
[]: Accuracy_train.append(logreg5.score(x_train_cluster_5, y_train_cluster_5.
     →ravel()))
[]: ## Coefficients of the logistic regression
    logreg5.coef_
[]: array([[ 0.45286626, -0.12767409, -0.1855959 , -0.51129373, 0.40008584,
             0.07525755, -0.19155081, -0.28775398, 0.44826567, -0.00884279,
             0.16273168, 0.18065849, 0.16400087, 0.54086787, 0.32018528,
            -0.28597249, -0.3638088, -0.69470225, 0.11405321, -0.46224979,
            -0.07026457, -0.21056297, 0.12167148, 0.22423481, 0.43413994,
             0.53478925, 0.78193503, -0.41007259, 0.11339178, 0.3307658,
            -0.50529942, 0.44382192, 0.08569345, 0.39675516, 0.01753221,
            -0.24904895, -0.2074535, 0.38839615, -0.04796672, -0.05392646,
             0.24799221, -0.51815622, 0.31286338, 0.38596427, -0.20489169,
             0.00893264, -0.28109293, -0.06630699, 0.36790305, 0.00212043,
             0.46821311, -0.88058316, -0.01257985, 0.41010689, -0.1734156
             0.06161137, 0.19247629, -0.43563738, 0.251328 , -0.05766713,
            -0.38740149, 0.52035152, -0.34599105, 0.23586656, -0.24750933,
             0.54586836, -0.09715624, -0.38904507, 0.15222342, 0.16522604,
            -0.51110272, 0.00411113, 0.55531764, 0.53344764, -0.23366485,
             0.35262769, -0.28683622, 0.78201358, -0.39183527, 0.01778701,
            -0.05551059, 0.62896154, 0.52775915, -0.11540691, -0.35349162,
            -0.32810956, 0.30647435, -0.25716942, 0.03628847, -0.36452923,
            -0.45867851, -0.29367079, -0.40594244, 0.31798404, -0.46224979,
             0.66360356, 0.90383775, -0.22492013, -0.66360356, 0.34734874,
            -0.09487717, -0.02548893, -0.11240567, 0.39430609, 0.26187672,
            -0.23741689, -1.03277431, -0.27469212, 0.26995988, -0.15569413,
             0.15716249, -0.06935717, 0.27581435, 0.6348052, -0.21730027,
            -0.87826535, 0.47279958, 0.28477307, -0.01421099, -0.19760236,
            -0.31086976, 0.32083619, -0.14452647, -0.59125548, 0.44548635,
             0.35727634, -1.22134023, 0.14610854, 0.34421525, 0.08645384,
             0.73316572, 0.15840264, -0.25960821, -0.34641285, -0.04384101,
             0.43371589, -0.15814598, -0.30663013, -0.18782245, -0.17549354,
             0.33352673, 0.04340614, 0.47860778, 0.33413065, 0.24225708,
             0.23253672, -0.19040279, 0.31555996, 0.53921086, 0.67726258,
             0.33752619, 0.80499511, -0.19043563, 0.3123385, 0.97111742,
             0.33557727, -0.06034495, -0.03057915, -0.54114856, -0.05243886,
            -0.18534807, 0.29058588, -0.59201542, 0.73420358, 0.61951514,
             0.38764149, -0.04335982, 0.49198483, 0.53193711, 0.25083119,
            -0.3228864 , 0.43252377, -0.5752708 , -0.16538096, 0.41958073,
             0.11586685, 0.11800197, 0.00602779, 0.57244452, -0.17765527,
```

logreg5.fit(x_train_cluster_5, y_train_cluster_5.ravel())

```
0.60342474, 0.26276462, 0.09358675, 0.55370067, 0.15703425,
             0.23065389, 0.22846828, 1.0069386, 0.37005225, -0.01136374,
             0.00190383, -0.6485655, 0.00190383, 0.70031738, -0.08147339,
            -0.0483129, -0.48318439, 0.06498685, 0.20197174, 0.22434724,
            -0.36513196, 0.00425941, -0.37327937, -0.21797762, 0.11520742,
             0.29432876, -0.13376615, 0.35529096, -0.21927294, -0.40713126,
             0.40199788, 0.06598336, 0.00481756, 0.09747999, -0.40713126,
            -0.11746598, 0.3732049, 0.37104192, -0.10143224, 0.14226426,
             0.55460321, 0.38461854, 0.56843959, -0.02849578, 0.47448832,
            -0.40874519, 0.69137879]])
[]: ## p-values of the logistic regression to perform features selection
     import statsmodels.api as sm
     mod5 = sm.OLS(y_train_cluster_5,x_train_cluster_5)
     fii5 = mod5.fit()
     p_values5 = fii.summary2().tables[1]['P>|t|']
    p_values5
[ ]: VOOWOMTSL
                                        0.42254
    VOOWOMTSR
                                        0.594368
    P01KPACDCV
                                        0.490362
    VOOCOMORB
                                        0.441689
    VOOHT25MM
                                        0.407957
    VOOLKEFFB Yes
                                        0.573021
    VOOLKEFFPT_Too_tender_to_examine
                                        0.602212
    VOOLKEFFPT Yes
                                        0.278842
    VOORKRFXPN_Yes
                                        0.911536
    VOOLKRFXPN_Yes
                                        0.144860
    Name: P>|t|, Length: 227, dtype: float64
    3.3.7 Cluster 6: Training
[]: ## Logistic Regression with sklearn
     x_train_cluster_6 = df_cluster_6.drop('cumulative_outcome', axis='columns')
     y_train_cluster_6 = df_cluster_6['cumulative_outcome']
     logreg6 = LogisticRegression()
     logreg6.fit(x_train_cluster_6, y_train_cluster_6.ravel())
     print('Accuracy = ', logreg6.score(x_train_cluster_6, y_train_cluster_6.
     →ravel()))
    Accuracy = 0.7048458149779736
[]: Accuracy_train.append(logreg6.score(x_train_cluster_6, y_train_cluster_6.
     →ravel()))
```

[]: ## Coefficients of the logistic regression logreg6.coef_

```
[]: array([[-1.69366502e-03, -1.71462874e-02, -3.94245807e-04,
            -5.63182592e-01, -3.28767749e-01, -2.40417868e-01,
             2.31751344e-01, -1.58582280e-01, 9.21856648e-03,
            -5.44523046e-01, -2.02433209e-01, -3.08988625e-01,
             3.46699379e-01, 2.40749107e-01, -3.09631408e-01,
             7.68410367e-01, 3.41936173e-01, 6.25128213e-02,
            -3.39244723e-01, 1.16525757e-01, -2.34528404e-01,
             2.16388282e-01, 5.13360563e-01, -9.99907136e-02,
             8.24872344e-02, -3.14008043e-01, -7.78921179e-04,
            -2.97757741e-01, -5.09550791e-01, 1.91246627e-01,
             9.89915772e-02, -3.30723648e-03, -8.53113725e-02,
            -1.07466373e-03, 4.93581127e-01, 1.16933228e-01,
            -5.31861044e-01, -2.26700682e-03, -1.29847494e-01,
             4.07167790e-01, -2.44344155e-01, -2.85088683e-02,
            -1.72049450e-01, -1.21644757e-03, 7.71311903e-02,
             7.48543775e-02, 1.44496764e-01, -3.44313449e-03,
            -1.25695883e-01, -1.35614533e-03, 1.17444207e-02,
             1.54967679e-01, -1.08294991e-01, -1.83461635e-03,
            -6.24447897e-02, -8.97015083e-02, 1.03424277e-01,
            -7.14496157e-04, 2.81411524e-01, -2.98672673e-03,
            -2.40197429e-01, -1.39194869e-03, 2.10776924e-01,
            -4.14056442e-03, -1.84129819e-01, -2.11785565e-03,
            -8.50508765e-02, 7.64315690e-02, 4.21870122e-02,
            -4.98643605e-02, 9.67542616e-02, -1.43838853e-03,
            -1.41543227e-01, -2.72592893e-03, 4.73882793e-01,
            -3.62465707e-03, -4.07261254e-01, -1.66246603e-03,
             4.40022776e-01, 5.59598276e-02, -4.15201217e-01,
            -2.06061055e-03, 7.63628749e-02, -2.34229728e-03,
            -6.54084517e-02, -9.63620668e-04, -4.21084132e-01,
             6.31224152e-01, -1.42087486e-01, -3.38128637e-03,
             6.92571296e-02, -6.56928601e-02, -9.08115593e-02,
             5.41164109e-03, 1.16525757e-01, 4.12311951e-01,
             2.31277724e-01, 4.85624624e-01, -4.12311951e-01,
            -8.57465382e-04, -3.45708474e-01, -1.47952237e-01,
             3.22580692e-01, -8.45452563e-02, -2.34971661e-03,
             4.23482830e-02, -1.60138940e-03, -8.76026673e-04,
            -1.14633626e-01, -1.07466373e-03, -8.25082199e-01,
             3.51856967e-01, 2.00345484e-01, 1.42070657e-01,
            -2.20524292e-03, 2.24289983e-01, -1.71184704e-03,
            -1.07466373e-03, 6.88615281e-02, -9.80227455e-04,
             6.06957960e-02, -4.83246531e-01, 2.55543437e-01,
             1.31045017e-01, -2.41564920e-03, -2.18957406e-03,
            -1.78829111e-03, -1.02849145e-03, 3.25775003e-01,
            -1.16172056e-03, 7.17825106e-02, -3.78532739e-01,
```

```
2.75248481e-01, -2.01043149e-03, -1.18938391e-03,
             -2.03405347e-01, 2.83825293e-01, 5.78423824e-02,
             8.56968605e-03, 3.33523330e-01, 9.12862880e-02,
             -2.88118874e-01, 4.05512245e-02, -6.52753330e-01,
             -3.17797834e-01, -3.44373081e-02, 1.30284612e-01,
             6.40463209e-01, 5.07463387e-01, 4.20414750e-01,
              5.09122401e-01, -4.54954497e-01, 7.80402664e-02,
             -4.56458288e-01, 4.65198468e-01, 9.32241654e-01,
             -2.68143840e-01, -2.76568126e-01, -6.69407038e-02,
             -3.42665318e-01, -2.90504765e-01, 6.91824433e-02,
             4.86182382e-01, 2.68841942e-01, -5.42263042e-01,
             -1.57003910e-03, 1.97171130e-01, 1.83824073e-01,
              1.76361650e-02, -1.57166851e-01, -7.35898800e-02,
             -5.64399636e-04, -9.29545776e-04, -1.08963600e-03,
             -5.64399636e-04, -3.93115157e-01, -7.36585705e-04,
             -1.78132664e-01, -2.29510001e-01, 1.44023899e-01,
             3.26070736e-01, -1.26892861e-03, 5.23472948e-02,
             -1.62375540e-01, -1.16172056e-03, -5.20645889e-01,
              1.89624782e-01, -1.78261694e-04, 1.83380603e-01,
             -1.78261694e-04, 1.32212640e-01, -4.36945444e-04,
             -8.38503737e-04, -5.64399636e-04, -7.36585705e-04,
            -1.11548956e-01, -3.90349135e-01, -1.28684696e-01,
             -3.98820844e-04, -9.90637820e-02, -7.36585705e-04,
             -2.68442708e-01, -1.71184704e-03, 6.91629024e-02,
             -1.41736150e-01, -1.59808963e-01, -5.07464888e-03,
             -4.97637524e-01, 3.11434843e-01, -3.04195935e-02,
             -3.30115603e-01, -5.07464888e-03, 3.55083296e-01,
             9.52360140e-01, 7.85303087e-02, 2.30453116e-02,
             4.68657738e-01, -4.36945444e-04, -1.64655591e-01,
              4.35016305e-02, -5.35364010e-04, -3.25597930e-01,
            -1.83960165e-02, 1.73008505e-01]])
[]: ## p-values of the logistic regression to perform features selection
     import statsmodels.api as sm
     mod6 = sm.OLS(y train cluster 6,x train cluster 6)
     fii6 = mod6.fit()
     p_values6 = fii.summary2().tables[1]['P>|t|']
    p_values6
[]: VOOWOMTSL
                                         0.42254
    VOOWOMTSR
                                         0.594368
    P01KPACDCV
                                         0.490362
    VOOCOMORB
                                         0.441689
    VOOHT25MM
                                         0.407957
    VOOLKEFFB Yes
                                         0.573021
```

2.90751432e-01, 5.73279880e-02, 4.89307697e-01,

```
VOOLKRFXPN_Yes
                                       0.144860
    Name: P>|t|, Length: 227, dtype: float64
    3.3.8 Cluster 7: Training
[]: ## Logistic Regression with sklearn
    x train cluster 7 = df cluster 7.drop('cumulative outcome', axis='columns')
    y_train_cluster_7 = df_cluster_7['cumulative_outcome']
    logreg7 = LogisticRegression()
    logreg7.fit(x_train_cluster_7, y_train_cluster_7.ravel())
    print('Accuracy = ',logreg7.score(x_train_cluster_7, y_train_cluster_7.ravel()))
    Accuracy = 0.7337662337662337
[]: Accuracy_train.append(logreg7.score(x_train_cluster_7, y_train_cluster_7.
     →ravel()))
[]: | ## Coefficients of the logistic regression
    logreg7.coef_
[]: array([[ 0.1408727 , 0.19222347, 0.21111394, 0.03854913, 0.2698563 ,
            -0.0448699 , 0.24515991, 0.01232008, -0.01705201, 0.67313005,
            -0.34003229, -0.27139969, 0.14506051, 0.49888018, -0.53692493,
             0.19684381, 0.39482 , -0.02057835, -0.16934771, 0.21573129,
             0.83986522, 0.01149528, 0.01518505, -0.19930721, 0.51113901,
             0.08147762, 0.00706956, 0.32791319, -0.7393787, 0.48141261,
            -0.04663204, 0.03001676, 0.05331872, -0.14343583, 0.4728237,
            -0.00801118, -0.43307041, 0.02057555, -0.00320854, -0.53015363,
             0.63911871, -0.30145528, 0.05710126, 0.01104058, -0.1074985
             0.02333486, 0.2809983, 0.03125018, -0.27232018, 0.01230849,
            -0.25602105, -0.02407774, 0.23601977, 0.01665113, 0.0163018,
             0.02166034, -0.0271805, 0.00648483, 0.24622155, 0.23820918,
            -0.35461494, 0.01263344, -0.06514589, 0.03758012, 0.02399368,
             0.01922184, 0.11855154, -0.59052725, 0.58343104, -0.23445824,
             0.08267468, 0.01305494, 0.157222 , -0.09319688, 0.21109663,
             0.0328977, -0.20941378, 0.01508868, 0.03639345, 0.03521044,
            -0.0628942, 0.01870228, -0.04200666, 0.02125889, 0.02343593,
             0.0087459, -0.13480209, -0.00116773, -0.0102455, 0.21473826,
             0.03783177, 0.39337906, -0.05851078, 0.0894343,
                                                               0.21573129,
            -0.27165865, 0.25345345, 0.09897595, 0.27165865, 0.00778243,
             0.27740523, 0.15395765, 0.01232669, 0.15006312, 0.02132623,
             0.01987276, -0.18483272, 0.00795089, 0.13857315, 0.00975374,
```

0.602212

0.278842

0.911536

VOOLKEFFPT_Too_tender_to_examine

VOOLKEFFPT_Yes

VOORKRFXPN Yes

-0.06260053, -0.03697111, -0.10435809, 0.02562555, 0.02001497,

```
-0.02525962, -0.31838109, -0.02640005, 0.02991249, -0.06324668,
            -0.08091704, 0.01623068, 0.00933468, 0.08134861, 0.01054387,
             0.02525073, 0.39388861, -0.34095409, 0.02864158, 0.19510992,
             0.01944087, 0.28889833, 0.33189692, -0.28876427, 0.52382349,
            -0.41681556, 0.0786269, 0.2189371, 0.07200886, -0.19718332,
             0.08695051, -0.00176501, 0.43848051, -0.44371176, 0.27097842,
             0.96986941, 0.90760036, 0.27670592, -0.24266468, -0.12976387,
            -0.24836248, 0.12141361, 0.63445149, 0.17471407, 0.01079495,
             0.00584297, 0.94920405, 0.15987229, 0.0130375, 0.0562929,
             0.2704699, 0.31717997, 0.52259224, 0.01424981, 0.03990293,
             0.42134761, -0.01008126, 0.40245163, -0.60622861, 0.00512254,
             0.00843664, 0.00988963, 0.00512254, -0.2123024, 0.00668531,
             0.0164841 , 0.00904492, 0.02166034, 0.27812225, 0.0115169 ,
             0.01698082, 0.14642232, 0.01054387, 0.01754455, -0.11067911,
             0.00161792, -0.30975953, 0.00161792, 0.27403889, 0.00396575,
             0.00761033, 0.00512254, 0.00668531, 0.2704329, 0.16920576,
             0.02231631, 0.00361973, 0.13194746, 0.00668531, 0.16656961,
             0.01553687, 0.01424981, 0.10786457, 0.05126654, -0.21034283,
             0.02251008, 0.03001676, 0.06557348, 0.07074403, -0.21034283,
             0.53452539, 0.0800955, -0.16000372, 0.32601897, 0.023972
             0.00396575, -0.18691544, -0.26241871, 0.00485901, 0.16517902,
            -0.04741857, -0.11738065]])
[]: | ## p-values of the logistic regression to perform features selection
    import statsmodels.api as sm
    mod7 = sm.OLS(y_train_cluster_7,x_train_cluster_7)
    fii7 = mod7.fit()
    p_values7 = fii.summary2().tables[1]['P>|t|']
    p_values7
[ ]: VOOWOMTSL
                                       0.422254
    VOOWOMTSR.
                                       0.594368
    P01KPACDCV
                                       0.490362
    VOOCOMORB
                                        0.441689
    VOOHT25MM
                                       0.407957
    VOOLKEFFB_Yes
                                        0.573021
    VOOLKEFFPT_Too_tender_to_examine
                                       0.602212
    VOOLKEFFPT_Yes
                                       0.278842
    VOORKRFXPN_Yes
                                        0.911536
    VOOLKRFXPN Yes
                                       0.144860
    Name: P>|t|, Length: 227, dtype: float64
```

0.01832343, -0.0739268, 0.00975374, 0.05532276, 0.00889663,

4 Logistic Regression: Test

For each observation of the test data set, we are going to assign a cluster, according to which cluster the observation is the closest, and then to apply the logistic regression model of this specific cluster.

```
[]: len(x_test)
[]: 1111
[]: ## Assign each point of the test set to a cluster
    from tqdm import tqdm
    Clusters_test = pd.DataFrame(data = len(x_test)*[0], index = x_test.index,_u
     for i in tqdm(range(len(x_test))):
      dist_clusters = 8*[0] #First element will be the distance to the first_
     →cluster, second element to the second, ...
      for j in range(227):
        for k in range(8):
          →for each point of the vector
          dist_clusters[k] = dist_clusters[k] + (x_test.iloc[i,j] - kmeans.
     →cluster_centers_[k][j])**2
      #We select the cluster for which the distance between the observation and the
     \rightarrow centroid is minimal
      K = dist_clusters.index(min(dist_clusters))
      Clusters_test.iloc[i,0] = K
    100%|
              | 1111/1111 [00:56<00:00, 19.61it/s]
[]: ## Number of observations in each cluster
    Clusters_test['Cluster'].value_counts()
[]: 5
         235
    4
         164
    2
         145
    1
         139
    3
         133
    0
         119
         105
    6
          71
    Name: Cluster, dtype: int64
[]: | ## We split the observation according to the cluster it belongs to
    ## Then, the aim is to predict the outcomes of one data set using the specificu
     \rightarrow model of the cluster involved
```

```
df_test_cluster_0 = df_test[Clusters_test['Cluster'] == 0]
     df_test_cluster_1 = df_test[Clusters_test['Cluster'] == 1]
     df_test_cluster_2 = df_test[Clusters_test['Cluster'] == 2]
     df_test_cluster_3 = df_test[Clusters_test['Cluster'] == 3]
     df_test_cluster_4 = df_test[Clusters_test['Cluster'] == 4]
     df_test_cluster_5 = df_test[Clusters_test['Cluster'] == 5]
     df_test_cluster_6 = df_test[Clusters_test['Cluster'] == 6]
     df_test_cluster_7 = df_test[Clusters_test['Cluster'] == 7]
[]: | # We check the len of each created data sets
     print(len(df_test_cluster_0), len(df_test_cluster_1), len(df_test_cluster_2),_u
      →len(df_test_cluster_3), len(df_test_cluster_4), len(df_test_cluster_5),
      →len(df_test_cluster_6), len(df_test_cluster_7))
    119 139 145 133 164 235 105 71
[]: df_test_cluster_0.head()
[]:
           VOOWOMTSL VOOWOMTSR ...
                                    VOOLKRFXPN_Yes cumulative_outcome
     1732 -0.007473 -0.013923 ...
                                         -0.024724
                                                                      0
                                                                      0
     2080
          0.062570 -0.049925 ...
                                          0.172221
     3065
          0.039535 -0.056148 ...
                                          0.174467
                                                                      0
     1906
            0.042137 -0.029830 ...
                                         -0.026819
                                                                      1
     283
            0.047794 -0.050617 ...
                                          0.157281
                                                                      1
     [5 rows x 228 columns]
    Then, we are going to predict the outcomes for each cluster, using the models trained before. We
    assess its performance by computing the accuracy.
    4.0.1 Cluster 0
[]: x_test_cluster_0 = df_test_cluster_0.drop('cumulative_outcome', axis='columns')
     y_test_cluster_0 = df_test_cluster_0['cumulative_outcome']
     logreg0.predict(x_test_cluster_0)
     print('Accuracy = ',logreg0.score(x_test_cluster_0, y_test_cluster_0.ravel()))
    Accuracy = 0.5966386554621849
[]: #We create a list with the accuracy of each cluster to analyze it further
     Accuracy test = []
     Accuracy_test.append(logreg0.score(x_test_cluster_0, y_test_cluster_0.ravel()))
    4.0.2 Cluster 1
[]: x train cluster 1.shape
```

[]: (327, 227)

```
[]: x_test_cluster_1 = df_test_cluster_1.drop('cumulative_outcome', axis='columns')
     y_test_cluster_1 = df_test_cluster_1['cumulative_outcome']
     logreg1.predict(x_test_cluster_1)
     print('Accuracy = ', logreg1.score(x_test_cluster_1, y_test_cluster_1.ravel()))
    Accuracy = 0.6258992805755396
[]: Accuracy_test.append(logreg1.score(x_test_cluster_1, y_test_cluster_1.ravel()))
    4.0.3 Cluster 2
[]: x_test_cluster_2 = df_test_cluster_2.drop('cumulative_outcome', axis='columns')
     y_test_cluster_2 = df_test_cluster_2['cumulative_outcome']
     logreg2.predict(x_test_cluster_2)
     print('Accuracy = ',logreg2.score(x_test_cluster_2, y_test_cluster_2.ravel()))
    Accuracy = 0.5724137931034483
[]: Accuracy_test.append(logreg2.score(x_test_cluster_2, y_test_cluster_2.ravel()))
    4.0.4 Cluster 3
[]: x_test_cluster_3 = df_test_cluster_3.drop('cumulative_outcome', axis='columns')
     y_test_cluster_3 = df_test_cluster_3['cumulative_outcome']
     logreg3.predict(x_test_cluster_3)
    print('Accuracy = ',logreg3.score(x_test_cluster_3, y_test_cluster_3.ravel()))
    Accuracy = 0.6090225563909775
[]: Accuracy_test.append(logreg3.score(x_test_cluster_3, y_test_cluster_3.ravel()))
    4.0.5 Cluster 4
[]: x_test_cluster_4 = df_test_cluster_4.drop('cumulative_outcome', axis='columns')
    y_test_cluster_4 = df_test_cluster_4['cumulative_outcome']
     logreg4.predict(x_test_cluster_4)
    print('Accuracy = ',logreg4.score(x_test_cluster_4, y_test_cluster_4.ravel()))
    Accuracy = 0.524390243902439
[]: Accuracy_test.append(logreg4.score(x_test_cluster_4, y_test_cluster_4.ravel()))
```

```
4.0.6 Cluster 5
```

```
[]: x_test_cluster_5 = df_test_cluster_5.drop('cumulative_outcome', axis='columns')
     y_test_cluster_5 = df_test_cluster_5['cumulative_outcome']
     logreg5.predict(x_test_cluster_5)
    print('Accuracy = ', logreg5.score(x_test_cluster_5, y_test_cluster_5.ravel()))
    Accuracy = 0.5702127659574469
[]: Accuracy_test.append(logreg5.score(x_test_cluster_5, y_test_cluster_5.ravel()))
    4.0.7 Cluster 6
[]: x_test_cluster_6 = df_test_cluster_6.drop('cumulative_outcome', axis='columns')
     y_test_cluster_6 = df_test_cluster_6['cumulative_outcome']
    logreg6.predict(x_test_cluster_6)
    print('Accuracy = ', logreg6.score(x_test_cluster_6, y_test_cluster_6.ravel()))
    Accuracy = 0.6571428571428571
[]: Accuracy_test.append(logreg6.score(x_test_cluster_6, y_test_cluster_6.ravel()))
    4.0.8 Cluster 7
[]: x_test_cluster_7 = df_test_cluster_7.drop('cumulative_outcome', axis='columns')
     y_test_cluster_7 = df_test_cluster_7['cumulative_outcome']
     logreg7.predict(x_test_cluster_7)
     print('Accuracy = ',logreg7.score(x_test_cluster_7, y_test_cluster_7.ravel()))
    Accuracy = 0.7464788732394366
[]: Accuracy_test.append(logreg7.score(x_test_cluster_7, y_test_cluster_7.ravel()))
    4.0.9 Summary
[]: summary1 = pd.DataFrame(data = [Accuracy_train, Accuracy_test],
                             index = ['Accuracy_train', 'Accuracy_test'],
                             columns = ['Cluster 0', 'Cluster 1', 'Cluster 2', 'Cluster L
     →3', 'Cluster 4', 'Cluster 5', 'Cluster 6', 'Cluster 7'])
     summary1
[]:
                     Cluster 0 Cluster 1 ... Cluster 6 Cluster 7
                     0.754209
                               0.740061 ...
                                              0.704846
     Accuracy_train
                                                         0.733766
                     0.596639  0.625899  ...  0.657143  0.746479
    Accuracy_test
     [2 rows x 8 columns]
```

5 Features selection

As we have a huge difference between the accuracy on the training and the testing data, we are going to perform features selection to reduce the overfitting of the training data.

5.1 Cluster 0

5.1.1 Feature selection: coefficients value

We are going to remove the features which have a coefficient value too low

```
[]: #We look for the columns which have low coefficients' values
     low_coef_col = []
     for i in range(len(logreg0.coef_[0])):
      if abs(logreg0.coef_[0][i]) < 0.1:</pre>
         low_coef_col.append(df_cluster_0.iloc[:,i].name)
     print(len(low_coef_col))
    print(low_coef_col)
    ['PO1KPACDCV', 'VOOWT25KG', 'VOOWTMAXKG', 'VOOLLWGT', 'VOORLWGT',
    'VOOSF2_Yes__limited_a_lot', 'VOOSF3_Yes__limited_a_little', 'VOOSF8_Extremely',
    'VOOSF8_Quite_a_bit', 'VOOWPRKN1_Mild', 'VOOWPRKN1_Moderate', 'VOOWPRKN1_None',
    'VOOWPRKN1_Severe', 'VOOWPRKN2_Severe', 'VOOP7RKFR_Daily', 'VOOP7RKFR_Never',
    'VOOKSXRKN1_Never', 'VOOKSXRKN1_Often', 'VOOKSXRKN1_Rarely', 'VOODIRKN1_Mild',
    'VOODIRKN1_None', 'VOODIRKN1_Severe', 'VOODIRKN2_Severe', 'VOODIRKN14_Moderate',
    'VOODIRKN14_Severe', 'VOOWPLKN1_Mild', 'VOOWPLKN2_None', 'VOOWPLKN2_Severe',
    'VOODILKN14_Severe', 'PO2KPNRCV_Yes', 'PO1KPR30CV_Yes',
    'P01KPACTCV_No_Limits_or_avoidance', 'P01KPA30CV_Yes',
    'VOOP7RKRCV_10__Pain_as_bad_as_you_can_imagine', 'VOOP7RKRCV_7', 'VOOP7RKRCV_8',
    'VOOP7RKRCV_9', 'VOOP7LKRCV_10_Pain_as_bad_as_you_can_imagine', 'VOOP7LKRCV_3',
    'VOOP7LKRCV_9', 'PO1PMRKRCV_3', 'PO1PMRKRCV_4', 'PO1PMRKRCV_7', 'PO1PMRKRCV_9',
    'PO1PMRKRCV_No_pain', 'PO1PMLKRCV_2', 'PO1BL12SXR_Neither',
    'PO1BL12SXR_SV_only', 'PO1KPMED_Yes', 'PO1KSURGL_Yes', 'VOOPOLYRH_Yes',
    'PO10TARTCV_Yes', 'VO0FALLCV_One', 'VO0HYINJCV_Yes', 'VO0ACUSCV_Yes',
    'VOODIETCV_Yes', 'VOOCAPSNCV_Yes', 'VOOYOGACV_Yes', 'VOORELACV_Yes',
    'PO1RASTASV_DK_to_RA_inflam_arth__no_dk_to_meds',
    'PO1RASTASV_Report_RA_inflam_arth__dk_to_all_meds',
    'PO1RASTASV_Report_RA_inflam_arth__no_dk_to_meds', 'VOOLFXPN_Yes',
    'VOOEKRSL_Yes', 'VOOVITDCV_No_vitamins_minerals_taken_in_past_year',
    'VOOCALCMCV_Every_day', 'VOOCALCMCV_No_vitamins_minerals_taken_in_past_year',
    'VOOVIT1_Yes', 'VOORKEFFPT_Too_tender_to_examine', 'VOORKEFFPT_Yes',
    'VOOLKEFFPT_Yes']
[]: # And we remove those features from the dataset
     df2_cluster0 = df_cluster_0.copy()
     for col in low coef col:
```

```
df2_cluster0 = df2_cluster0.drop(col, axis = 1)
df2_cluster0.shape
```

[]: (297, 157)

Training

```
[]: ## Logistic Regression with sklearn
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn import metrics

x_train_cluster_0_2 = df2_cluster0.drop('cumulative_outcome', axis='columns')
y_train_cluster_0_2 = df2_cluster0['cumulative_outcome']

logreg0_2 = LogisticRegression()
logreg0_2.fit(x_train_cluster_0_2, y_train_cluster_0_2.ravel())
logreg0_2.score(x_train_cluster_0_2, y_train_cluster_0_2.ravel())
```

[]: 0.7474747474747475

Testing

```
[]: # And we remove the features from the dataset

df2_test_cluster0 = df_test_cluster_0.copy()
for col in low_coef_col:
    df2_test_cluster0 = df2_test_cluster0.drop(col, axis = 1)
    df2_test_cluster0.shape
```

[]: (119, 157)

[]: 0.5966386554621849

```
[]: ## Coefficients of the logistic regression logreg0_2.coef_
```

```
0.42919984, 0.65025787, 0.12862233, -0.34686778, 0.21197352,
-0.53802045, -0.24276687, -0.11393682, 0.30100911, -0.22726107,
 0.23792969, -0.11350771, -0.1265626 , -0.18489191, -0.17247442,
 0.27247423, -0.13183365, 0.11321266, 0.48593589, -0.49434005,
 0.41090723, -0.24924106, 0.35763799, 0.83873242, -0.13299622,
 0.19537591, -0.87388998, 0.10824349, 0.35390605, -0.397907
                     , 0.33215434, -0.41811245, -0.16557908,
 0.14733212, 0.30031
 0.84087584, -0.77144852, -0.11023735, -0.20246612, 0.23774995,
 0.18165088, -0.30422907, -0.41188465, 0.49273809, 0.3040687,
-0.70611086, 0.11558581, -1.04713194, -0.21702404, 0.42180154,
0.5687488 , -0.35433547, 0.29482442, -0.29501539, 0.3441796 ,
0.27752642, 0.20787636, 0.15612093, -1.15478075, 0.45468172,
-0.45198897, 0.16042803, 0.10075829, 0.14374137, -0.21245217,
-0.42116809, 0.22525458, 0.16144616, -0.21966164, 0.30329596,
-0.46630384, 0.38782239, 0.32663529, -0.31927576, -0.37244765,
-0.10133901, 0.24157162, 0.31857075, 1.01871311, 0.22161631,
-0.61064813, 0.2579599, -0.46093918, -0.24212327, 0.77561051,
-0.1714534, 0.19533629, 0.37721038, 0.25069742, -0.11769287,
-0.62059947, 0.49035605, 0.62683037, 0.19148903, -0.2365919,
-0.53136455, 0.64918444, 0.1516107, 0.79560517, 0.16612914,
0.32118037, 0.48246326, 0.17894212, 0.50998506, 0.45505717,
-0.68655798, 0.28907089, -0.3842792, -0.22356564, -0.218149
-0.40887369, -0.34563782, -0.26930702, -0.47793844, 0.19125919,
0.43269161, -0.10573165, 0.19794557, -0.30734029, 0.25220834,
0.49048037, 0.47856133, -0.14112913, 0.36020569, -0.34978228,
-0.13932292, -0.38968953, -0.50829898, 0.29790714, -0.45394757,
-0.58840486, 0.21506685, -0.26700317, 0.58255989, 0.61568069,
 1.14297476, 0.28167535, 0.58001871, -0.25549436, 0.18800763,
 0.57916534]])
```

5.1.2 Features selection: P-values

```
[]: #We look for the feature which have a p-value too high

high_pvalue_col = []
for i in range(len(p_values0)):
   if p_values0[i] > 0.5:
     high_pvalue_col.append(p_values0.index[i])
print(len(high_pvalue_col))
print(high_pvalue_col)
```

```
['VOOWOMTSR', 'VOOWT25KG', 'VOOBPDIAS', 'VOODTCHOL', 'PO1BMI', 'VOOPASE',
'PO1KPNREV_Yes', 'PO1KPNLEV_Yes', 'PO1HPNR12_Yes', 'PO1HPNL12_Yes',
'VOOSF2_Yes__limited_a_little', 'VOOSF8_Moderately', 'VOOWPRKN2_Mild',
'VOOWPRKN2_Moderate', 'VOOWPRKN2_None', 'VOOP7RKFR_Monthly', 'VOOP7RKFR_Never',
'VOOKSXRKN1_Never', 'VOOKSXRKN1_Rarely', 'VOODIRKN2_None', 'VOOWPLKN1_Mild',
'VOOWPLKN1_Moderate', 'VOOWPLKN2_Mild', 'VOOWPLKN2_Moderate', 'VOOWPLKN2_None',
```

```
'VOOP7LKFR_Daily', 'VOOP7LKFR_Monthly', 'VOOP7LKFR_Never', 'VOOP7LKFR_Weekly',
    'VOOKSXLKN1_Often', 'VOOKSXLKN1_Sometimes', 'VOODILKN1_Mild',
    'VOODILKN1_Moderate', 'VOODILKN1_None', 'VOODILKN2_Moderate', 'VOODILKN14_Mild',
    'VOODILKN14_None', 'VOOKOOSFX5_Mild', 'VOOKOOSFX5_Moderate', 'VOOKOOSFX5_None',
    'PO2KPNRCV_Yes', 'PO2KPNLCV_Yes', 'PO1KPR30CV_Yes',
    'P01KPACTCV_No_Limits_or_avoidance', 'P01HPR12CV_Yes', 'P01HPL12CV_Yes',
    'PO1KPA30CV_Yes', 'VO0P7LKRCV_2', 'VO0P7LKRCV_5', 'V00P7LKRCV_7',
    'VOOP7LKRCV_No_pain', 'PO1PMRKRCV_6', 'PO1PMLKRCV_3', 'PO1PMLKRCV_6',
    'P01PMLKRCV_7', 'P01PMLKRCV_8', 'P01BL12SXL_IEI_only', 'P01BL12SXL_Neither',
    'P01BL12SXL_SV_only', 'P01BL12SXR_IEI_only', 'P01BL12SXR_Neither',
    'P01BL12SXR_SV_only', 'P01LKP30CV_Yes', 'P01RKP30CV_Yes', 'P02KSURG_Yes',
    'PO1RAIA_Yes', 'PO1ARTHOTH_Yes', 'PO1ARTDOC_Yes', 'PO1INJR_Yes',
    'PO1KSURGR_Yes', 'PO1KSURGL_Yes', 'VOOBONEFX_Yes', 'PO1OAHIPCV_Yes',
    'PO10TARTCV_Yes', 'PO1KPMEDCV_Yes', 'VO0FALLCV_None', 'V00FALLCV_One',
    'VOOACUSCV_Yes', 'VOOVITMCV_Yes', 'VOORUBCV_Yes', 'VOOCAPSNCV_Yes',
    'VOOBRACCV_Yes', 'VOORELACV_Yes', 'VOOSPIRCV_Yes',
    'PO1RASTASV_Does_not_report_RA_inflam_arth',
    'PO1RASTASV_Report_RA_inflam_arth__no_to_all_meds', 'VOOOTHCAMC_Yes',
    'VOODISCOMF_Yes', 'VOOREXPN_Yes',
    'VOOVITDCV_No_vitamins_minerals_taken_in_past_year',
    'VOOCALCMCV_4_6_days_per_week', 'VOOCALCMCV_A_few_days_per_month',
    'VOOCALCMCV_No_vitamins_minerals_taken_in_past_year', 'PO1FAMKR_Yes',
    'VOORKEFFB_Yes', 'VOORKEFFPT_Yes', 'VOOLKEFFB_Yes',
    'VOOLKEFFPT_Too_tender_to_examine', 'VOORKRFXPN_Yes']
[]: # And we remove those features from the dataset
     df3_cluster0 = df2_cluster0.copy()
     for col in high_pvalue_col:
      if col in df3_cluster0.columns:
         df3_cluster0 = df3_cluster0.drop(col, axis = 1)
     df3_cluster0.shape
```

[]: (297, 79)

Training

```
[]: ## Logistic Regression with sklearn
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn import metrics

x_train_cluster_0_3 = df3_cluster0.drop('cumulative_outcome', axis='columns')
y_train_cluster_0_3 = df3_cluster0['cumulative_outcome']

logreg0_3 = LogisticRegression()
logreg0_3.fit(x_train_cluster_0_3, y_train_cluster_0_3.ravel())
logreg0_3.score(x_train_cluster_0_3, y_train_cluster_0_3.ravel())
```

[]: 0.7104377104377104

Testing

```
[]: # And we remove the features from the dataset

df3_test_cluster0 = df2_test_cluster0.copy()
for col in high_pvalue_col:
   if col in df3_test_cluster0.columns:
      df3_test_cluster0 = df3_test_cluster0.drop(col, axis = 1)
   df3_test_cluster0.shape
```

[]: (119, 79)

[]: 0.6218487394957983

```
[]: # We create two lists with the accuracy on the training and testing set for → each cluster, for further analysis

Accuracy_train2 = []

Accuracy_test2 = []
```

5.2 Cluster 1

5.2.1 Feature selection: coefficients value

```
[]: #We look for the columns which have low coefficients' values

low_coef_col1 = []
for i in range(len(logreg1.coef_[0])):
    if abs(logreg1.coef_[0][i]) < 0.1:
        low_coef_col1.append(df_cluster_1.iloc[:,i].name)
    print(len(low_coef_col1))
    print(low_coef_col1))</pre>
```

```
['VOOWOMTSR', 'PO1KPACDCV', 'VOOCOMORB', 'VOOBPSYS', 'VOOLLWGT',
    'PO1KPACT30_Yes', 'VO0SF8_Extremely', 'VO0SF8_Moderately', 'V00WPRKN1_Mild',
    'VOOWPRKN1_Moderate', 'VOOWPRKN1_None', 'VOOWPRKN1_Severe',
    'VOOWPRKN2_Moderate', 'VOOWPRKN2_Severe', 'VOOP7RKFR_Daily', 'VOOP7RKFR_Never',
    'VOOKSXRKN1_Never', 'VOOKSXRKN1_Often', 'VOOKSXRKN1_Rarely',
    'VOOKSXRKN1_Sometimes', 'VOODIRKN1_Moderate', 'VOODIRKN1_Severe',
    'VOODIRKN2_Moderate', 'VOODIRKN2_Severe', 'VOODIRKN14_Mild',
    'VOODIRKN14_Moderate', 'VOODIRKN14_None', 'VOODIRKN14_Severe', 'VOOWPLKN1_Mild',
    'VOOWPLKN1_Moderate', 'VOOWPLKN1_None', 'VOOWPLKN1_Severe',
    'VOOWPLKN2_Moderate', 'VOOWPLKN2_Severe', 'VOOKSXLKN1_Often', 'VOODILKN1_Mild',
    'VOODILKN1_Moderate', 'VOODILKN1_None', 'VOODILKN2_Mild', 'VOODILKN2_Moderate',
    'VOODILKN2_None', 'VOODILKN2_Severe', 'VOODILKN14_Moderate',
    'VOODILKN14_Severe', 'PO1KPR30CV_Yes', 'PO1KPL30CV_Yes', 'PO1KPACTCV_Limits',
    'VOOP7RKRCV_10__Pain_as_bad_as_you_can_imagine', 'VOOP7RKRCV_2', 'VOOP7RKRCV_4',
    'VOOP7RKRCV_5', 'VOOP7RKRCV_6', 'VOOP7RKRCV_7', 'VOOP7RKRCV_9',
    'VOOP7RKRCV_No_pain', 'VOOP7LKRCV_10__Pain_as_bad_as_you_can_imagine',
    'VOOP7LKRCV_4', 'VOOP7LKRCV_6', 'VOOP7LKRCV_7', 'VOOP7LKRCV_8', 'VOOP7LKRCV_9',
    'P01PMRKRCV_10__Pain_as_bad_as_you_can_imagine', 'P01PMRKRCV_4', 'P01PMRKRCV_5',
    'PO1PMRKRCV_6', 'PO1PMRKRCV_7', 'PO1PMRKRCV_8', 'PO1PMRKRCV_9',
    'P01PMLKRCV_10_Pain_as_bad_as_you_can_imagine', 'P01PMLKRCV_3', 'P01PMLKRCV_6',
    'P01PMLKRCV_7', 'P01PMLKRCV_9', 'P01BL12SXR_SV_only', 'P02KSURG_Yes',
    'PO1KPMED_Yes', 'PO1INJR_Yes', 'PO1KSURGL_Yes', 'VO0POLYRH_Yes',
    'PO1ARTDRCV_Yes', 'VO0FALLCV_Six_or_more', 'VO0FALLCV_Two_or_Three',
    'VOOHYINJCV_Yes', 'VOOACUSCV_Yes', 'VOOHOMECV_Yes', 'VOOMASSCV_Yes',
    'VOOHERBCV_Yes', 'VOORELACV_Yes',
    'PO1RASTASV_DK_to_RA_inflam_arth__no_dk_to_meds',
    'PO1RASTASV_Report_RA_inflam_arth__dk_to_all_meds',
    'P01RASTASV_Report_RA_inflam_arth__no_dk_to_meds', 'P02KSURGCV_Yes',
    'VOOOTHCAMC_Yes', 'VOOOTHCAM_Yes', 'VOOLFXPN_Yes', 'VOOEKRSL_Yes',
    'VOOEKRSR_Yes', 'VOOVITDCV_A_few_days_per_month',
    'VOOVITDCV_No_vitamins_minerals_taken_in_past_year',
    'VOOCALCMCV_No_vitamins_minerals_taken_in_past_year', 'PO2WTGA_Yes',
    'VOORKEFFPT_Too_tender_to_examine', 'VOOLKEFFPT_Too_tender_to_examine']
[]: # And we remove those features from the dataset
     df2_cluster1 = df_cluster_1.copy()
     for col in low_coef_col1:
      df2_cluster1 = df2_cluster1.drop(col, axis = 1)
    df2_cluster1.shape
[]: (327, 125)
    Training
[]: ## Logistic Regression with sklearn
```

```
x_train_cluster_1_2 = df2_cluster1.drop('cumulative_outcome', axis='columns')
y_train_cluster_1_2 = df2_cluster1['cumulative_outcome']

logreg1_2 = LogisticRegression()
logreg1_2.fit(x_train_cluster_1_2, y_train_cluster_1_2.ravel())
logreg1_2.score(x_train_cluster_1_2, y_train_cluster_1_2.ravel())
```

[]: 0.7400611620795107

Testing

```
[]: # And we remove the features from the dataset

df2_test_cluster1 = df_test_cluster_1.copy()
for col in low_coef_col1:
    df2_test_cluster1 = df2_test_cluster1.drop(col, axis = 1)
    df2_test_cluster1.shape
```

[]: (139, 125)

[]: 0.6330935251798561

```
[]: ## Coefficients of the logistic regression logreg1_2.coef_
```

```
[]: array([[ 0.11866382, -0.53734453, -0.31565543, -0.56124246,  0.22022874, -0.25088347, -0.26372501, -0.38164911, -0.25530582, -0.14931521, -0.29431313,  0.15716768, -0.17017085,  0.39288304,  0.32391749, -0.15912997,  0.6892358,  0.48149547,  0.58620942,  0.38538849, -0.82089384,  0.69424342, -0.24647382,  0.25832092,  0.11560059, -0.26806769, -0.19527504,  0.16628885, -0.21201437,  0.17950329, -0.41211897,  0.35697439, -0.1298124, -0.23534013,  0.48955001, -0.24234191, -0.21383291,  0.22784115,  0.27681953,  0.38808989, -0.28078718,  0.24184841,  0.38145921,  0.53368665, -0.64415755, -0.11749632,  0.26990591,  0.20093688, -0.42122286,  0.18765409,  0.39976055,  0.42122286, -0.24296719,  0.38816362, -0.20657486, -0.27402539, -0.11642321,  0.28189559, -0.41937405, -0.14123131,  0.25600266, -0.27278443,  0.36781609,  0.29321074, -0.18176625, -0.51348866,  0.3456739, -0.23805852,  0.24456475,  0.58085386,
```

```
-0.31578572, 0.51909328, -0.16356982, 0.375715 , -0.3512818 , 1.01053083, 0.74497081, -0.12274634, -0.734093 , 0.45980949, 0.49600076, -0.14272482, 0.76195786, -0.19015122, -0.09476004, 0.13658967, 0.29196425, -0.18395963, 0.71863669, 0.17455921, -0.30023369, 0.31240121, -0.19783508, -0.33338771, 0.25771137, -0.17990515, 0.71525795, 0.19337261, -0.27890883, 0.22745908, 0.73509442, 0.58338437, -0.14861035, -0.35648618, -0.20638144, 0.17085649, -0.31105949, 0.16846248, -0.39837738, -0.568599 , 0.7005078 , -0.45196806, -0.20034701, 0.11389897, 0.13045642, 0.17709043, 0.21732952, -0.11825334, -0.44670338, -0.18159715, -0.10547958, -0.24014728, -0.38884607, -0.17138452]])
```

5.2.2 Features selection: P-values

```
high_pvalue_col1 = []
for i in range(len(p_values1)):
   if p_values1[i] > 0.6:
      high_pvalue_col1.append(p_values1.index[i])
print(len(high_pvalue_col1))
print(high_pvalue_col1)
```

```
71
['VOOWT25KG', 'PO1BMI', 'PO1KPNLEV_Yes', 'PO1HPNR12_Yes', 'PO1HPNL12_Yes',
'VOOSF2_Yes__limited_a_little', 'VOOSF8_Moderately', 'VOOWPRKN2_Moderate',
'VOOP7RKFR_Never', 'VOOKSXRKN1_Never', 'VOOKSXRKN1_Rarely', 'VOODIRKN2_None',
'VOOWPLKN1_Mild', 'VOOWPLKN2_Mild', 'VOOWPLKN2_None', 'VOOP7LKFR_Daily',
'VOOP7LKFR_Monthly', 'VOOKSXLKN1_Often', 'VOOKSXLKN1_Sometimes',
'VOODILKN1_Mild', 'VOODILKN1_Moderate', 'VOODILKN1_None', 'VOODILKN14_Mild',
'PO2KPNLCV_Yes', 'PO1KPR3OCV_Yes', 'PO1KPACTCV_No_Limits_or_avoidance',
'PO1HPR12CV_Yes', 'PO1HPL12CV_Yes', 'PO1KPA30CV_Yes', 'V00P7LKRCV_2',
'VOOP7LKRCV_5', 'VOOP7LKRCV_7', 'VOOP7LKRCV_No_pain', 'PO1PMRKRCV_6',
'PO1PMLKRCV_3', 'PO1PMLKRCV_7', 'PO1PMLKRCV_8', 'PO1BL12SXL_IEI_only',
'P01BL12SXL_Neither', 'P01BL12SXR_Neither', 'P01BL12SXR_SV_only',
'PO1LKP3OCV_Yes', 'PO1RKP3OCV_Yes', 'PO1RAIA_Yes', 'PO1ARTHOTH_Yes',
'PO1INJR_Yes', 'PO1KSURGL_Yes', 'VO0BONEFX_Yes', 'PO1OAHIPCV_Yes',
'PO10TARTCV_Yes', 'PO1KPMEDCV_Yes', 'VO0FALLCV_None', 'V00FALLCV_One',
'VOOACUSCV_Yes', 'VOOVITMCV_Yes', 'VOOCAPSNCV_Yes', 'VOOBRACCV_Yes',
'VOORELACV_Yes', 'VOOSPIRCV_Yes', 'PO1RASTASV_Does_not_report_RA_inflam_arth',
'VOOOTHCAMC_Yes', 'VOODISCOMF_Yes', 'VOOREXPN_Yes',
'VOOVITDCV_No_vitamins_minerals_taken_in_past_year',
'VOOCALCMCV_4_6_days_per_week',
'VOOCALCMCV_No_vitamins_minerals_taken_in_past_year', 'PO1FAMKR_Yes',
'VOORKEFFB_Yes', 'VOORKEFFPT_Yes', 'VOOLKEFFPT_Too_tender_to_examine',
'VOORKRFXPN_Yes']
```

```
[]: # And we remove those features from the dataset

df3_cluster1 = df2_cluster1.copy()
for col in high_pvalue_col1:
   if col in df3_cluster1.columns:
      df3_cluster1 = df3_cluster1.drop(col, axis = 1)
   df3_cluster1.shape
```

[]: (327, 78)

Training

```
[]: ## Logistic Regression with sklearn
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn import metrics

x_train_cluster_1_3 = df3_cluster1.drop('cumulative_outcome', axis='columns')
y_train_cluster_1_3 = df3_cluster1['cumulative_outcome']

logreg1_3 = LogisticRegression()
logreg1_3.fit(x_train_cluster_1_3, y_train_cluster_1_3.ravel())
logreg1_3.score(x_train_cluster_1_3, y_train_cluster_1_3.ravel())
```

[]: 0.7186544342507645

Testing

```
[]: #We remove the features from the testing data set, as we did for the training
data set

df3_test_cluster1 = df2_test_cluster1.copy()
for col in high_pvalue_col1:
   if col in df3_test_cluster1.columns:
      df3_test_cluster1 = df3_test_cluster1.drop(col, axis = 1)
df3_test_cluster1.shape
```

[]: (139, 78)

[]: 0.6330935251798561

5.3 Cluster 2

5.3.1 Feature selection: coefficients value

```
[]: #We look for the columns which have low coefficients' values
     low_coef_col2 = []
     for i in range(len(logreg2.coef_[0])):
      if abs(logreg2.coef_[0][i]) < 0.1:</pre>
         low_coef_col2.append(df_cluster_2.iloc[:,i].name)
     print(len(low_coef_col2))
    print(low_coef_col2)
    71
    ['VOOWOMTSR', 'PO1KPACDCV', 'VOOBPSYS', 'PO1KPACT30_Yes', 'VOOSF8_Extremely',
    'VOOSF8_Quite_a_bit', 'VOOWPRKN1_Moderate', 'VOOWPRKN1_Severe',
    'VOOWPRKN2_Moderate', 'VOOWPRKN2_Severe', 'VOOP7RKFR_Weekly',
    'VOOKSXRKN1_Often', 'VOODIRKN1_Mild', 'VOODIRKN2_Mild', 'VOODIRKN14_None',
    'VOODIRKN14_Severe', 'VOOWPLKN1_Moderate', 'VOOWPLKN1_Severe', 'VOOWPLKN2_None',
    'VOOP7LKFR_Daily', 'VOOP7LKFR_Weekly', 'VOOKSXLKN1_Rarely',
    'VOODILKN1_Moderate', 'VOODILKN1_Severe', 'VOODILKN2_Severe',
    'VOODILKN14_Severe', 'VOOKOOSFX5_Moderate', 'VOOKOOSFX5_None',
    'PO1KPACTCV_Limits', 'VOOP7RKRCV_10_Pain_as_bad_as_you_can_imagine',
    'VOOP7RKRCV_5', 'VOOP7RKRCV_6', 'VOOP7LKRCV_10__Pain_as_bad_as_you_can_imagine',
    'VOOP7LKRCV_3', 'VOOP7LKRCV_5', 'VOOP7LKRCV_9',
    'P01PMRKRCV_10__Pain_as_bad_as_you_can_imagine', 'P01PMRKRCV_3', 'P01PMRKRCV_4',
    'PO1PMRKRCV_5', 'PO1PMRKRCV_9', 'PO1PMLKRCV_10__Pain_as_bad_as_you_can_imagine',
    'P01PMLKRCV_5', 'P01PMLKRCV_7', 'P01BL12SXR_IEI_only', 'P01KPMED_Yes',
    'PO1INJR_Yes', 'VO0POLYRH_Yes', 'VO0FALLCV_One', 'VO0FALLCV_Two_or_Three',
    'VOOHYINJCV_Yes', 'VOOACUTCV_Yes', 'VOORUBCV_Yes', 'VOORELACV_Yes',
    'VOOSPIRCV_Yes', 'PO1RASTASV_DK_to_RA_inflam_arth__no_dk_to_meds',
    'PO1RASTASV_Report_RA_inflam_arth__dk_to_all_meds',
    'PO1RASTASV_Report_RA_inflam_arth__no_dk_to_meds', 'PO2KSURGCV_Yes',
    'VOOOTHCAMC Yes', 'VOOOTHCAM Yes', 'VOODISCOMF Yes', 'VOOLFXCOMP Yes',
    'VOOEKRSL_Yes', 'VOOEKRSR_Yes',
    'VOOVITDCV_No_vitamins_minerals_taken_in_past_year',
    'VOOCALCMCV_4_6_days_per_week',
    'VOOCALCMCV_No_vitamins_minerals_taken_in_past_year',
    'VOORKEFFPT_Too_tender_to_examine', 'VOOLKEFFPT_Too_tender_to_examine',
    'VOOLKRFXPN_Yes']
```

```
[]: # And we remove those features from the dataset

df2_cluster2 = df_cluster_2.copy()
for col in low_coef_col2:
    df2_cluster2 = df2_cluster2.drop(col, axis = 1)
    df2_cluster2.shape

[]: (331, 157)
Training
```

```
[]: ## Logistic Regression with sklearn
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn import metrics

x_train_cluster_2_2 = df2_cluster2.drop('cumulative_outcome', axis='columns')
y_train_cluster_2_2 = df2_cluster2['cumulative_outcome']

logreg2_2 = LogisticRegression()
logreg2_2.fit(x_train_cluster_2_2, y_train_cluster_2_2.ravel())
logreg2_2.score(x_train_cluster_2_2, y_train_cluster_2_2.ravel())
```

[]: 0.716012084592145

Testing

```
[]: #We remove the features from the testing data set, as we did for the training

data set

df2_test_cluster2 = df_test_cluster_2.copy()

for col in low_coef_col2:

df2_test_cluster2 = df2_test_cluster2.drop(col, axis = 1)

df2_test_cluster2.shape
```

[]: (145, 157)

[]: 0.5793103448275863

```
logreg2_2.coef_
[]: array([[-0.20653967, 0.14188415, -0.8682224, -0.38420269, 0.17233682,
            -0.31088509, -0.17374885, 0.25889259, -0.39032669, -0.44763211,
             0.84911294, -1.03721832, -0.25411045, -0.27026343, -0.37850017,
            -0.44266566, 0.26267006, 0.26970853, -0.48196114, 0.50880162,
             0.4979326, -0.54814455, -0.51524177, -0.34872926, -0.50166552,
             0.45325761, -0.27990927, 0.3452398, -0.23474974, 0.43913556,
            -0.14659644, 0.17195068, -0.68819678, 0.17060989, 0.18617539,
            -0.20299902, 0.20167788, 0.19060158, -0.09805756, 0.18107369,
            -0.16441247, 0.22832814, -0.4266106, 0.37321044, 0.28802545,
            -0.38134691, -0.11328034, 0.14531357, -0.11940651, -0.1864824,
             0.18606357, -0.10714936, 0.32629706, -0.23554871, -0.21594824,
            -0.19476548, 0.3025416, -0.36465834, 0.18654753, 0.22168088,
            -0.23347736, 0.14094208, -0.1741984, -0.28036218, -0.14802591,
            -0.21628802, -0.25584814, 0.32213827, 0.55712812, 0.25584814,
            -0.16606884, 0.31168189, 0.48012278, -0.33665813, -0.15250562,
             0.3574604, -0.17861454, 0.30701275, 0.26425502, 0.12404656,
            -0.47472609, -0.22662656, -0.11195594, -0.55307038, -0.28818454,
            -0.33733648, 0.18655986, 0.40139177, -0.56583685, -0.10120801,
            -0.33366883, 0.15491107, -0.10910251, 0.30258068, 0.24163251,
             0.44409733, 0.49791178, -0.42562496, 0.55478417, -0.71159283,
             0.16035731, 0.11427731, 0.46542882, 0.23627927, 0.34791004,
             0.51839746, 0.46381477, 0.18169578, 0.36667559, -0.56148195,
            -0.18071151, 0.11303013, -0.24923308, 0.24315931, 0.19185282,
             1.03030752, 0.65448006, 0.26184057, -0.49498087, 0.2190868,
             0.45828727, 0.56921573, 0.23729072, -0.45693699, 0.33724703,
            -0.28603048, 0.94353138, 0.22464066, 0.26851268, -0.30778614,
             0.48623001, 0.10821015, -0.70085527, 0.58738226, -0.16248826,
            -0.38771392, 0.35299362, 0.16114648, 0.11364694, 0.5599995,
            -0.27910921, -0.17472573, -0.45038937, 0.4501078, 0.14599725,
            -0.33478622, -0.16073489, -0.29347463, 0.33440507, 0.53296764,
             1.08520602, -0.18444161, 0.49000634, -0.5015506, 0.54523501,
            -0.40120901]])
    5.3.2 Features selection: P-values
```

[]: ## Coefficients of the logistic regression

```
[]: #We look for the feature which have a p-value too high

high_pvalue_col2 = []
for i in range(len(p_values2)):
   if p_values2[i] > 0.7:
     high_pvalue_col2.append(p_values2.index[i])
print(len(high_pvalue_col2))
print(high_pvalue_col2)
```

```
['VOOWT25KG', 'PO1BMI', 'PO1HPNL12_Yes', 'VOOSF2_Yes__limited_a_little',
    'VOOSF8_Moderately', 'VOOWPRKN2_Moderate', 'VOOKSXRKN1_Never', 'VOODIRKN2_None',
    'VOOWPLKN1_Mild', 'VOOWPLKN2_Mild', 'VOOWPLKN2_None', 'VOOP7LKFR_Daily',
    'VOOP7LKFR_Monthly', 'VOOKSXLKN1_Often', 'VOOKSXLKN1_Sometimes',
    'VOODILKN1_Mild', 'VOODILKN1_Moderate', 'VOODILKN14_Mild', 'PO2KPNLCV_Yes',
    'P01KPR30CV_Yes', 'P01KPACTCV_No_Limits_or_avoidance', 'P01HPR12CV_Yes',
    'PO1KPA30CV_Yes', 'VO0P7LKRCV_2', 'VO0P7LKRCV_5', 'V00P7LKRCV_7',
    'VOOP7LKRCV_No_pain', 'PO1PMLKRCV_7', 'PO1PMLKRCV_8', 'PO1BL12SXL_Neither',
    'PO1BL12SXR_SV_only', 'PO1LKP3OCV_Yes', 'PO1RKP3OCV_Yes', 'PO1INJR_Yes',
    'VOOBONEFX_Yes', 'PO10AHIPCV_Yes', 'PO10TARTCV_Yes', 'PO1KPMEDCV_Yes',
    'VOOFALLCV_None', 'VOOACUSCV_Yes', 'VOOVITMCV_Yes', 'VOOCAPSNCV_Yes',
    'VOOBRACCV_Yes', 'VOOSPIRCV_Yes', 'PO1RASTASV_Does_not_report_RA_inflam_arth',
    'VOOOTHCAMC_Yes', 'VOODISCOMF_Yes', 'VOOREXPN_Yes',
    'VOOVITDCV_No_vitamins_minerals_taken_in_past_year',
    'VOOCALCMCV_4_6_days_per_week',
    'VOOCALCMCV_No_vitamins_minerals_taken_in_past_year', 'VOORKEFFB_Yes',
    'VOORKEFFPT_Yes', 'VOORKRFXPN_Yes']
[]: # And we remove those features from the dataset
     df3_cluster2 = df2_cluster2.copy()
     for col in high_pvalue_col2:
      if col in df3_cluster2.columns:
         df3_cluster2 = df3_cluster2.drop(col, axis = 1)
     df3_cluster2.shape
[]: (331, 116)
    Training
[]: ## Logistic Regression with sklearn
     x train cluster 2 3 = df3 cluster2.drop('cumulative outcome', axis='columns')
     y_train_cluster_2_3 = df3_cluster2['cumulative_outcome']
     logreg2_3 = LogisticRegression()
```

[]: 0.6918429003021148

Testing

```
[]: #We remove the features from the testing data set, as we did for the training

data set

df3_test_cluster2 = df2_test_cluster2.copy()

for col in high_pvalue_col2:

if col in df3_test_cluster2.columns:
```

logreg2_3.fit(x_train_cluster_2_3, y_train_cluster_2_3.ravel())
logreg2_3.score(x_train_cluster_2_3, y_train_cluster_2_3.ravel())

```
df3_test_cluster2 = df3_test_cluster2.drop(col, axis = 1)
df3_test_cluster2.shape
```

[]: (145, 116)

[]: 0.5655172413793104

As the accuracy is better if we don't select the features according to their p-values, we are going to keep the accuracy with features selection only on the coefficient values.

```
[]: Accuracy_train2.append(logreg2_2.score(x_train_cluster_2_2, y_train_cluster_2_2.

→ravel()))
Accuracy_test2.append(logreg2_2.score(x_test_cluster_2_2, y_test_cluster_2_2))
```

5.4 Cluster 3

5.4.1 Feature selection: coefficients value

```
[]: #We look for the columns which have low coefficients' values

low_coef_col3 = []
for i in range(len(logreg3.coef_[0])):
    if abs(logreg3.coef_[0][i]) < 0.18:
        low_coef_col3.append(df_cluster_3.iloc[:,i].name)
    print(len(low_coef_col3))
    print(low_coef_col3)</pre>
```

```
['VOOWOMTSL', 'VOOWOMTSR', 'PO1KPACDCV', 'VOOCOMORB', 'VOOWT25KG', 'VOOWTMINKG',
'VOOBPDIAS', 'VOOBPSYS', 'VOOLLWGT', 'PO1KPNREV_Yes', 'PO1KPNLEV_Yes',
'PO1HPNL12_Yes', 'VOOSF2_Yes__limited_a_little', 'VOOP7RKFR_Daily',
'VOOP7RKFR_Never', 'VOOP7RKFR_Weekly', 'VOOKSXRKN1_Never', 'VOODIRKN1_Mild',
'VOODIRKN1_Moderate', 'VOODIRKN1_None', 'VOODIRKN14_Moderate', 'VOOWPLKN1_Mild',
'VOOWPLKN1_Moderate', 'VOOWPLKN1_None', 'VOOWPLKN1_Severe',
'VOOWPLKN2_Moderate', 'VOOWPLKN2_Severe', 'VOOP7LKFR_Daily',
'VOOP7LKFR_Monthly', 'VOOKSXLKN1_Never', 'VOODILKN1_Mild', 'VOODILKN1_Moderate',
'VOODILKN1_None', 'VOODILKN1_Severe', 'VOODILKN2_Mild', 'VOODILKN2_Moderate',
'VOODILKN2_None', 'VOODILKN2_Severe', 'VOODILKN14_Severe',
'VOOKOOSFX5_Moderate', 'PO2KPNRCV_Yes', 'PO1KPACTCV_No_Limits_or_avoidance',
'PO1KPA3OCV_Yes', 'VOOP7RKRCV_10_Pain_as_bad_as_you_can_imagine',
```

```
'VOOP7RKRCV_2', 'VOOP7RKRCV_3', 'VOOP7RKRCV_5', 'VOOP7RKRCV_No_pain',
            'VOOP7LKRCV_10__Pain_as_bad_as_you_can_imagine', 'VOOP7LKRCV_5', 'VOOP7LKRCV_6',
            'VOOP7LKRCV_7', 'VOOP7LKRCV_8', 'PO1PMRKRCV_5', 'PO1PMLKRCV_3', 'PO1PMLKRCV_5',
            'PO1PMLKRCV_7', 'PO1PMLKRCV_8', 'PO1PMLKRCV_No_pain', 'PO1BL12SXL_IEI_only',
            'P01BL12SXL_Neither', 'P01BL12SXR_IEI_only', 'P01BL12SXR_Neither',
            'P01BL12SXR_SV_only', 'P01LKP30CV_Yes', 'P01KSURGL_Yes', 'V00HRTAT_Yes',
            'VOOBONEFX_Yes', 'PO10AHIPCV_Yes', 'VOOFALLCV_One', 'VOOACUSCV_Yes',
            'VOOMASSCV_Yes', 'VOOVITMCV_Yes', 'VOORUBCV_Yes', 'VOOCAPSNCV_Yes',
            'VOOBRACCV_Yes', 'VOORELACV_Yes',
            'PO1RASTASV_DK_to_RA_inflam_arth__no_dk_to_meds',
            'PO1RASTASV_Report_RA_inflam_arth__dk_to_all_meds',
            \verb|'PO1RASTASV_Report_RA_inflam_arth__no_to_all_meds',     |'VO00THCAMC_Yes',      |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',      |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',      |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO00THCAMC_Yes',     |'VO0
            'VOOOTHCAM_Yes', 'VOODISCOMF_Yes', 'VOOLFXCOMP_Yes', 'VOOLFXPN_Yes',
            'VOOVITDCV_Didn_t_take', 'VOOVITDCV_Every_day',
            'VOOCALCMCV_A_few_days_per_month', 'VOORKEFFB_Yes',
            'VOOLKEFFPT_Too_tender_to_examine']
[]: # And we remove those features from the dataset
             df2 cluster3 = df cluster 3.copy()
             for col in low_coef_col3:
                 df2_cluster3 = df2_cluster3.drop(col, axis = 1)
             df2_cluster3.shape
```

[]: (346, 138)

Training

```
[]: ## Logistic Regression with sklearn
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn import metrics

x_train_cluster_3_2 = df2_cluster3.drop('cumulative_outcome', axis='columns')
y_train_cluster_3_2 = df2_cluster3['cumulative_outcome']

logreg3_2 = LogisticRegression()
logreg3_2.fit(x_train_cluster_3_2, y_train_cluster_3_2.ravel())
logreg3_2.score(x_train_cluster_3_2, y_train_cluster_3_2)
```

[]: 0.7861271676300579

Testing

```
[]: #We remove the features from the testing data set, as we did for the training data set

df2_test_cluster3 = df_test_cluster_3.copy()
for col in low_coef_col3:
```

```
df2_test_cluster3.shape
[]: (133, 138)
[]: # Prediction of the outcomes
     x test cluster 3 2 = df2 test cluster3.drop('cumulative outcome', |
     →axis='columns')
     y_test_cluster_3_2 = df2_test_cluster3['cumulative_outcome']
     logreg3_2.predict(x_test_cluster_3_2)
     logreg3_2.score(x_test_cluster_3_2, y_test_cluster_3_2)
[]: 0.6240601503759399
[]: ## Coefficients of the logistic regression
     logreg3_2.coef_
[]: array([[-0.81843819, 0.1759312, 0.27915353, 0.42073369, 0.72852567,
             0.48985625, 0.5952005, -0.46574876, -0.34663273, 0.65185128,
             0.73996883, 0.61159396, 0.24649259, 0.39742573, 0.81160663,
            -0.22707824, 0.55456893, -0.36542151, 0.74799499, -0.24594731,
             0.35463295, -0.21343534, -0.43319438, 0.28481571, 0.61008734,
            -0.27782627, 0.48274646, -0.27424002, -0.64687229, 0.56535148,
             0.68989024, \ -0.20111412, \ -0.5240446 \ , \ -0.25076255, \ \ 0.29913526,
            -0.22104082, 0.36136808, 0.18934698, -0.25772564, -0.29176459,
             0.38711738, 0.26215332, 0.42324349, -0.42669603, 0.3779483,
             0.25174105, -0.46897425, 0.19395774, -0.54966741, 0.39580175,
            -0.27316125, -0.85599343, -0.19154636, -0.34663273, 0.22053575,
              \hbox{\tt 0.40635756, 0.29995479, -0.1997922, 0.45457274, -0.55428282, } 
             0.61057898, 0.21052155, 0.47074774, -0.49929609, 0.20705961,
            -0.6335064, 0.47461628, -0.63632345, -0.55063183, 0.34350441,
             0.46313383, -0.29643128, 0.22058942, 0.83144031, 0.30975358,
             0.34372591, -0.37079635, 0.28460554, -0.40136674, 0.31061096,
             0.23010807, -0.30089087, 0.27253304, -1.03129005, 0.27728749,
             0.95556531, 0.20697003, 0.2902726, 0.7621314, -1.14846587,
             0.54923527, -0.45413371, 0.8724367, 0.5670986, 0.51131339,
             0.54741432, 0.40499413, 0.21654971, 0.37515536, -0.50525959,
             0.2819424 , -0.27926251 , -0.23974179 , 0.6369503 , 0.58858175 ,
             0.25152266, -0.68934999, 0.79201079, -0.21168355, -0.30640829,
             -0.20364885, 0.47909066, 0.20989425, -1.0528691, 0.31109881,
             0.44423353, 0.29556159, 0.35104277, 0.3444624, -0.22461762,
             0.6157837, 0.47488205, -0.33644671, 0.21460675, -0.24127023,
             0.52403228, -0.33644671, 0.54386788, 0.34140708, -0.18400662,
            -0.39402967, -0.28565867, 0.23179907, 0.28852099, -0.26266774,
            -0.58082861, -0.71368975]])
```

df2_test_cluster3 = df2_test_cluster3.drop(col, axis = 1)

5.4.2 Features selection: P-values

```
[]: | #We look for the feature which have a p-value too high
     high pvalue col3 = []
     for i in range(len(p_values3)):
       if p_values3[i] > 0.5:
         high_pvalue_col3.append(p_values3.index[i])
     print(len(high_pvalue_col3))
     print(high_pvalue_col3)
    ['VOOWOMTSR', 'VOOWT25KG', 'VOOBPDIAS', 'VOODTCHOL', 'PO1BMI', 'VOOPASE',
    'PO1KPNREV_Yes', 'PO1KPNLEV_Yes', 'PO1HPNR12_Yes', 'PO1HPNL12_Yes',
    'VOOSF2_Yes__limited_a_little', 'VOOSF8_Moderately', 'VOOWPRKN2_Mild',
    'VOOWPRKN2_Moderate', 'VOOWPRKN2_None', 'VOOP7RKFR_Monthly', 'VOOP7RKFR_Never', 'VOOKSXRKN1_Never', 'VOOKSXRKN1_Rarely', 'VOODIRKN2_None', 'VOOWPLKN1_Mild',
    'VOOWPLKN1_Moderate', 'VOOWPLKN2_Mild', 'VOOWPLKN2_Moderate', 'VOOWPLKN2_None',
    'VOOP7LKFR_Daily', 'VOOP7LKFR_Monthly', 'VOOP7LKFR_Never', 'VOOP7LKFR_Weekly',
    'VOOKSXLKN1_Often', 'VOOKSXLKN1_Sometimes', 'VOODILKN1_Mild',
    'VOODILKN1_Moderate', 'VOODILKN1_None', 'VOODILKN2_Moderate', 'VOODILKN14_Mild',
    'VOODILKN14_None', 'VOOKOOSFX5_Mild', 'VOOKOOSFX5_Moderate', 'VOOKOOSFX5_None',
    'PO2KPNRCV_Yes', 'PO2KPNLCV_Yes', 'PO1KPR30CV_Yes',
    'PO1KPACTCV_No_Limits_or_avoidance', 'PO1HPR12CV_Yes', 'PO1HPL12CV_Yes',
    'PO1KPA3OCV_Yes', 'VOOP7LKRCV_2', 'VOOP7LKRCV_5', 'VOOP7LKRCV_7',
    'VOOP7LKRCV_No_pain', 'PO1PMRKRCV_6', 'PO1PMLKRCV_3', 'PO1PMLKRCV_6',
    'P01PMLKRCV_7', 'P01PMLKRCV_8', 'P01BL12SXL_IEI_only', 'P01BL12SXL_Neither',
    'P01BL12SXL_SV_only', 'P01BL12SXR_IEI_only', 'P01BL12SXR_Neither',
    'P01BL12SXR_SV_only', 'P01LKP30CV_Yes', 'P01RKP30CV_Yes', 'P02KSURG_Yes',
    'PO1RAIA_Yes', 'PO1ARTHOTH_Yes', 'PO1ARTDOC_Yes', 'PO1INJR_Yes',
    'PO1KSURGR_Yes', 'PO1KSURGL_Yes', 'VO0BONEFX_Yes', 'PO1OAHIPCV_Yes',
    'PO10TARTCV_Yes', 'PO1KPMEDCV_Yes', 'VO0FALLCV_None', 'V00FALLCV_One',
    'VOOACUSCV_Yes', 'VOOVITMCV_Yes', 'VOORUBCV_Yes', 'VOOCAPSNCV_Yes',
    'VOOBRACCV_Yes', 'VOORELACV_Yes', 'VOOSPIRCV_Yes',
    'PO1RASTASV_Does_not_report_RA_inflam_arth',
    'PO1RASTASV Report RA inflam arth no to all meds', 'VOOOTHCAMC Yes',
    'VOODISCOMF_Yes', 'VOOREXPN_Yes',
    'VOOVITDCV_No_vitamins_minerals_taken_in_past_year',
    'VOOCALCMCV_4_6_days_per_week', 'VOOCALCMCV_A_few_days_per_month',
    'VOOCALCMCV_No_vitamins_minerals_taken_in_past_year', 'PO1FAMKR_Yes',
    'VOORKEFFB_Yes', 'VOORKEFFPT_Yes', 'VOOLKEFFB_Yes',
    'VOOLKEFFPT_Too_tender_to_examine', 'VOORKRFXPN_Yes']
[]: # And we remove those features from the dataset
     df3_cluster3 = df2_cluster3.copy()
     for col in high_pvalue_col3:
       if col in df3_cluster3.columns:
```

```
df3_cluster3 = df3_cluster3.drop(col, axis = 1)
df3_cluster3.shape
```

[]: (346, 88)

Training

```
[]: ## Logistic Regression with sklearn

x_train_cluster_3_3 = df3_cluster3.drop('cumulative_outcome', axis='columns')
y_train_cluster_3_3 = df3_cluster3['cumulative_outcome']

logreg3_3 = LogisticRegression()
logreg3_3.fit(x_train_cluster_3_3, y_train_cluster_3_3.ravel())
logreg3_3.score(x_train_cluster_3_3, y_train_cluster_3_3.ravel())
```

[]: 0.7254335260115607

Testing

```
[]: #We remove the features from the testing data set, as we did for the training

data set

df3_test_cluster3 = df2_test_cluster3.copy()

for col in high_pvalue_col3:

if col in df3_test_cluster3.columns:

df3_test_cluster3 = df3_test_cluster3.drop(col, axis = 1)

df3_test_cluster3.shape
```

[]: (133, 88)

[]: 0.6240601503759399

```
[]: Accuracy_train2.append(logreg3_3.score(x_train_cluster_3_3, y_train_cluster_3_3. 

→ravel()))
Accuracy_test2.append(logreg3_3.score(x_test_cluster_3_3, y_test_cluster_3_3. 

→ravel()))
```

5.5 Cluster 4

5.5.1 Feature selection: coefficients value

[]: #We look for the columns which have low coefficients' values

```
low coef col4 = []
for i in range(len(logreg4.coef_[0])):
  if abs(logreg4.coef_[0][i]) < 0.5:</pre>
    low_coef_col4.append(df_cluster_4.iloc[:,i].name)
print(len(low_coef_col4))
print(low_coef_col4)
189
['VOOWOMTSL', 'VOOWOMTSR', 'PO1KPACDCV', 'VOOCOMORB', 'VOOHT25MM', 'VOOWT25KG',
'VOOWTMAXKG', 'VOOWTMINKG', 'VOOBPSYS', 'VOODTVITD', 'VOODTCALC', 'VOOPASE',
'VOOLLWGT', 'VOORLWGT', 'PO1KPNLEV_Yes', 'PO1KPACT30_Yes', 'PO1HPNR12_Yes',
'VOOSF2_Yes__limited_a_little', 'VOOSF2_Yes__limited_a_lot',
'VOOSF3_Yes__limited_a_little', 'VOOSF8_Extremely', 'VOOSF8_Quite_a_bit',
'VOOWPRKN1_Mild', 'VOOWPRKN1_Moderate', 'VOOWPRKN1_None', 'VOOWPRKN1_Severe',
'VOOWPRKN2_Mild', 'VOOWPRKN2_Moderate', 'VOOWPRKN2_None', 'VOOWPRKN2_Severe',
'VOOP7RKFR_Daily', 'VOOP7RKFR_Monthly', 'VOOP7RKFR_Never', 'VOOP7RKFR_Weekly',
'VOOKSXRKN1 Never', 'VOOKSXRKN1 Often', 'VOOKSXRKN1 Rarely',
'VOOKSXRKN1_Sometimes', 'VOODIRKN1_Mild', 'VOODIRKN1_Moderate',
'VOODIRKN1_None', 'VOODIRKN1_Severe', 'VOODIRKN2_Mild', 'VOODIRKN2_Moderate',
'VOODIRKN2_None', 'VOODIRKN2_Severe', 'VOODIRKN14_Mild', 'VOODIRKN14_Moderate',
'VOODIRKN14_None', 'VOODIRKN14_Severe', 'VOOWPLKN1_Mild', 'VOOWPLKN1_Moderate',
'VOOWPLKN1_None', 'VOOWPLKN1_Severe', 'VOOWPLKN2_Mild', 'VOOWPLKN2_Moderate',
'VOOWPLKN2_None', 'VOOWPLKN2_Severe', 'VOOP7LKFR_Daily', 'VOOP7LKFR_Monthly',
'VOOP7LKFR_Never', 'VOOP7LKFR_Weekly', 'VOOKSXLKN1_Never', 'VOOKSXLKN1_Often',
'VOOKSXLKN1_Rarely', 'VOOKSXLKN1_Sometimes', 'VOODILKN1_Mild',
'VOODILKN1_Moderate', 'VOODILKN1_None', 'VOODILKN1_Severe', 'VOODILKN2_Mild',
'VOODILKN2_Moderate', 'VOODILKN2_None', 'VOODILKN2_Severe', 'VOODILKN14_Mild',
'VOODILKN14_Moderate', 'VOODILKN14_None', 'VOODILKN14_Severe',
'VOOKOOSFX5_Moderate', 'VOOKOOSFX5_None', 'VOOKOOSFX5_Severe', 'PO2KPNRCV_Yes',
'PO2KPNLCV_Yes', 'PO1KPR3OCV_Yes', 'PO1KPL3OCV_Yes', 'PO1KPACTCV_Limits',
'PO1KPACTCV_No_Limits_or_avoidance', 'PO1HPR12CV_Yes', 'PO1KPA30CV_Yes',
'VOOP7RKRCV_10_Pain_as_bad_as_you_can_imagine', 'VOOP7RKRCV_2', 'VOOP7RKRCV_4',
'VOOP7RKRCV_5', 'VOOP7RKRCV_6', 'VOOP7RKRCV_7', 'VOOP7RKRCV_8', 'VOOP7RKRCV_9',
'VOOP7RKRCV_No_pain', 'VOOP7LKRCV_10__Pain_as_bad_as_you_can_imagine',
'VOOP7LKRCV_2', 'VOOP7LKRCV_4', 'VOOP7LKRCV_5', 'VOOP7LKRCV_6', 'VOOP7LKRCV_7',
'VOOP7LKRCV_8', 'VOOP7LKRCV_9', 'VOOP7LKRCV_No_pain',
'P01PMRKRCV_10_Pain_as_bad_as_you_can_imagine', 'P01PMRKRCV_2', 'P01PMRKRCV_3',
'PO1PMRKRCV_4', 'PO1PMRKRCV_5', 'PO1PMRKRCV_6', 'PO1PMRKRCV_7', 'PO1PMRKRCV_8',
'P01PMLKRCV_10__Pain_as_bad_as_you_can_imagine', 'P01PMLKRCV_2', 'P01PMLKRCV_3',
'PO1PMLKRCV_4', 'PO1PMLKRCV_5', 'PO1PMLKRCV_6', 'PO1PMLKRCV_7', 'PO1PMLKRCV_8',
'P01PMLKRCV_9', 'P01PMLKRCV_No_pain', 'P01BL12SXL_IEI_only',
'P01BL12SXL_Neither', 'P01BL12SXL_SV_only', 'P01BL12SXR_IEI_only',
'P01BL12SXR_Neither', 'P01BL12SXR_SV_only', 'P01LKP30CV_Yes', 'P01RKP30CV_Yes',
'PO2KPMED_Yes', 'PO1RAIA_Yes', 'PO1ARTDOC_Yes', 'PO1KPMED_Yes', 'PO1INJR_Yes',
```

```
'PO1KSURGR_Yes', 'VOOHRTAT_Yes', 'VOOSTROKE_Yes', 'VOODIAB_Yes', 'VOORA_Yes',
    'VOOSMOKE_Yes', 'PO2KPMEDCV_Yes', 'PO1GOUTCV_Yes', 'PO1OTARTCV_Yes',
    'PO1KPMEDCV_Yes', 'VO0FALLCV_One', 'VO0FALLCV_Six_or_more',
    'VOOFALLCV_Two_or_Three', 'VOOHYINJCV_Yes', 'VOOSTINJCV_Yes', 'VOOACUTCV_Yes',
    'VOOACUSCV_Yes', 'VOOCHIRCV_Yes', 'VOOHOMECV_Yes', 'VOOMASSCV_Yes',
    'VOOVITMCV_Yes', 'VOORUBCV_Yes', 'VOOCAPSNCV_Yes', 'VOOHERBCV_Yes',
    'VOORELACV_Yes', 'VOOSPIRCV_Yes',
    'PO1RASTASV_DK_to_RA_inflam_arth__no_dk_to_meds',
    'PO1RASTASV_Report_RA_inflam_arth__dk_to_all_meds',
    'PO1RASTASV_Report_RA_inflam_arth__no_to_all_meds',
    'PO1RASTASV_Report_RA_inflam_arth__no_dk_to_meds', 'PO2KSURGCV_Yes',
    'VOOLFXPN_Yes', 'VOOEKRSL_Yes', 'VOOEKRSR_Yes', 'VOORFXCOMP_Yes',
    'VOOVITDCV_A_few_days_per_month', 'VOOVITDCV_Didn_t_take',
    'VOOVITDCV_No_vitamins_minerals_taken_in_past_year',
    'VOOCALCMCV_4_6_days_per_week', 'VOOCALCMCV_A_few_days_per_month',
    'VOOCALCMCV_Didn_t_take', 'VOOCALCMCV_Every_day',
    'VOOCALCMCV No_vitamins_minerals_taken_in_past_year', 'VOOVIT9_Yes',
    'VOOVIT1_Yes', 'PO1FAMKR_Yes', 'PO2WTGA_Yes', 'VOORKEFFPT_Yes',
    'VOOLKEFFPT_Too_tender_to_examine', 'VOORKRFXPN_Yes', 'VOOLKRFXPN_Yes']
[]: # And we remove those features from the dataset
     df2_cluster4 = df_cluster_4.copy()
    for col in low_coef_col4:
      df2_cluster4 = df2_cluster4.drop(col, axis = 1)
    df2_cluster4.shape
[]: (415, 39)
    Training
[]: ## Logistic Regression with sklearn
     x_train_cluster_4_2 = df2_cluster4.drop('cumulative_outcome', axis='columns')
     y_train_cluster_4_2 = df2_cluster4['cumulative_outcome']
     logreg4_2 = LogisticRegression()
     logreg4_2.fit(x_train_cluster_4_2, y_train_cluster_4_2.ravel())
    logreg4_2.score(x_train_cluster_4_2, y_train_cluster_4_2.ravel())
[]: 0.7228915662650602
    Testing
[]: #We remove the features from the testing data set, as we did for the training
     →data set
```

df2_test_cluster4 = df_test_cluster_4.copy()

for col in low_coef_col4:

```
df2_test_cluster4 = df2_test_cluster4.drop(col, axis = 1)
     df2_test_cluster4.shape
[]: (164, 39)
[]: #Prediction of the outcomes
     x test cluster 4 2 = df2 test cluster4.drop('cumulative outcome', |
     →axis='columns')
    y_test_cluster_4_2 = df2_test_cluster4['cumulative_outcome']
     logreg4_2.predict(x_test_cluster_4_2)
    logreg4_2.score(x_test_cluster_4_2, y_test_cluster_4_2)
[]: 0.5548780487804879
[]: ## Coefficients of the logistic regression
    logreg4_2.coef_
[]: array([[-0.4064876 , -0.43084041, 0.88107317, -0.83626109, 1.22986999,
             -0.72268921, 0.6481113, -0.95515315, 0.6693788, 0.54205997,
             0.66363181, 0.82262607, 0.88756572, 0.53535651, 0.40951013,
             2.52054748, 0.98486286, 0.57348646, 1.75060699, 0.81298851,
             1.28935531, 0.752831, -0.67548755, 0.77156828, -0.69465308,
             0.54896725, 0.49844191, -0.56228799, -0.7669594, 0.73437141,
             0.5777814 , -0.65031753 , -1.1809342 , 0.999373 , 0.80906431,
             0.49435356, -0.93070592, -0.75613397]
    5.5.2 Features selection: P-values
[]: | #We look for the feature which have a p-value too high
    high_pvalue_col4 = []
     for i in range(len(p_values4)):
      if p_values4[i] > 0.6:
        high_pvalue_col4.append(p_values4.index[i])
     print(len(high_pvalue_col4))
    print(high_pvalue_col4)
    71
    ['VOOWT25KG', 'PO1BMI', 'PO1KPNLEV_Yes', 'PO1HPNR12_Yes', 'PO1HPNL12_Yes',
    'VOOSF2_Yes__limited_a_little', 'VOOSF8_Moderately', 'VOOWPRKN2_Moderate',
    'VOOP7RKFR_Never', 'VOOKSXRKN1_Never', 'VOOKSXRKN1_Rarely', 'VOODIRKN2_None',
    'VOOWPLKN1_Mild', 'VOOWPLKN2_Mild', 'VOOWPLKN2_None', 'VOOP7LKFR_Daily',
    'VOOP7LKFR_Monthly', 'VOOKSXLKN1_Often', 'VOOKSXLKN1_Sometimes',
    'VOODILKN1_Mild', 'VOODILKN1_Moderate', 'VOODILKN1_None', 'VOODILKN14_Mild',
    'PO2KPNLCV_Yes', 'PO1KPR3OCV_Yes', 'PO1KPACTCV_No_Limits_or_avoidance',
    'PO1HPR12CV_Yes', 'PO1HPL12CV_Yes', 'PO1KPA30CV_Yes', 'V00P7LKRCV_2',
```

```
'VOOP7LKRCV_5', 'VOOP7LKRCV_7', 'VOOP7LKRCV_No_pain', 'PO1PMRKRCV_6',
    'PO1PMLKRCV_3', 'PO1PMLKRCV_7', 'PO1PMLKRCV_8', 'PO1BL12SXL_IEI_only',
    'P01BL12SXL_Neither', 'P01BL12SXR_Neither', 'P01BL12SXR_SV_only',
    'PO1LKP30CV_Yes', 'PO1RKP30CV_Yes', 'PO1RAIA_Yes', 'PO1ARTHOTH_Yes',
    'P01INJR_Yes', 'P01KSURGL_Yes', 'V00BONEFX_Yes', 'P010AHIPCV_Yes',
    'PO10TARTCV_Yes', 'PO1KPMEDCV_Yes', 'VO0FALLCV_None', 'V00FALLCV_One',
    'VOOACUSCV_Yes', 'VOOVITMCV_Yes', 'VOOCAPSNCV_Yes', 'VOOBRACCV_Yes',
    'VOORELACV_Yes', 'VOOSPIRCV_Yes', 'PO1RASTASV_Does_not_report_RA_inflam_arth',
    'VOOOTHCAMC_Yes', 'VOODISCOMF_Yes', 'VOOREXPN_Yes',
    'VOOVITDCV_No_vitamins_minerals_taken_in_past_year',
    'VOOCALCMCV_4_6_days_per_week',
    'VOOCALCMCV_No_vitamins_minerals_taken_in_past_year', 'PO1FAMKR_Yes',
    'VOORKEFFB_Yes', 'VOORKEFFPT_Yes', 'VOOLKEFFPT_Too_tender_to_examine',
    'VOORKRFXPN_Yes']
[]: # And we remove those features from the dataset
     df3_cluster4 = df2_cluster4.copy()
     for col in high_pvalue_col4:
      if col in df3 cluster4.columns:
         df3_cluster4 = df3_cluster4.drop(col, axis = 1)
     df3_cluster4.shape
```

[]: (415, 24)

Training

```
[]: ## Logistic Regression with sklearn

x_train_cluster_4_3 = df3_cluster4.drop('cumulative_outcome', axis='columns')
y_train_cluster_4_3 = df3_cluster4['cumulative_outcome']

logreg4_3 = LogisticRegression()
logreg4_3.fit(x_train_cluster_4_3, y_train_cluster_4_3.ravel())
logreg4_3.score(x_train_cluster_4_3, y_train_cluster_4_3.ravel())
```

[]: 0.653012048192771

Testing

```
[]: #We remove the features from the testing data set, as we did for the training

data set

df3_test_cluster4 = df2_test_cluster4.copy()

for col in high_pvalue_col4:

if col in df3_test_cluster4.columns:

df3_test_cluster4 = df3_test_cluster4.drop(col, axis = 1)

df3_test_cluster4.shape
```

[]: (164, 24)

[]: 0.5365853658536586

As the accuracy is better if we don't select the features according to their p-values, we are going to keep the accuracy with features selection only on the coefficient values.

```
[]: Accuracy_train2.append(logreg4_2.score(x_train_cluster_4_2, y_train_cluster_4_2.

→ravel()))
Accuracy_test2.append(logreg4_2.score(x_test_cluster_4_2, y_test_cluster_4_2.

→ravel()))
```

5.6 Cluster 5

5.6.1 Feature selection: coefficients value

```
[]: #We look for the columns which have low coefficients' values
     low_coef_col5 = []
     for i in range(len(logreg5.coef_[0])):
       if abs(logreg5.coef_[0][i]) < 0.1:</pre>
         low_coef_col5.append(df_cluster_5.iloc[:,i].name)
     print(len(low_coef_col5))
    print(low_coef_col5)
    42
    ['VOOWT25KG', 'VOOBPSYS', 'PO1HPNR12_Yes', 'VOOWPRKN1_None', 'VOOWPRKN2_Mild',
    'VOOP7RKFR_Daily', 'VOOP7RKFR_Monthly', 'VOOKSXRKN1_Sometimes',
    'VOODIRKN1_Moderate', 'VOODIRKN1_Severe', 'VOODIRKN2_None',
    'VOODIRKN14 Moderate', 'VOOWPLKN1 Moderate', 'VOOP7LKFR Daily',
    'VOOKSXLKN1_Often', 'VOODILKN2_Moderate', 'VOODILKN2_None', 'VOOKOOSFX5_None',
    'VOOP7RKRCV_2', 'VOOP7RKRCV_3', 'VOOP7LKRCV_3', 'VOOP7LKRCV_No_pain',
    'P01PMLKRCV_10__Pain_as_bad_as_you_can_imagine', 'P01PMLKRCV_6',
    'PO1BL12SXL_SV_only', 'VOOHRTAT_Yes', 'VOOSTROKE_Yes', 'VOORA_Yes',
    'PO1GOUTCV_Yes', 'VO0ACUSCV_Yes', 'VO0VITMCV_Yes', 'V00SPIRCV_Yes',
    'PO1RASTASV_DK_to_RA_inflam_arth__no_dk_to_meds',
    'PO1RASTASV_Report_RA_inflam_arth__dk_to_all_meds',
    'PO1RASTASV_Report_RA_inflam_arth__no_dk_to_meds', 'PO2KSURGCV_Yes',
    'VOOOTHCAM_Yes', 'VOOEKRSL_Yes', 'VOOCALCMCV_A_few_days_per_month',
```

```
'VOOCALCMCV_Didn_t_take', 'VOOCALCMCV_Every_day',
    'VOOLKEFFPT_Too_tender_to_examine']
[]: # And we remove those features from the dataset
     df2_cluster5 = df_cluster_5.copy()
     for col in low_coef_col5:
       df2_cluster5 = df2_cluster5.drop(col, axis = 1)
     df2_cluster5.shape
[]: (494, 186)
    Training
[]: ## Logistic Regression with sklearn
     x_train_cluster_5_2 = df2_cluster5.drop('cumulative_outcome', axis='columns')
     y_train_cluster_5_2 = df2_cluster5['cumulative_outcome']
     logreg5_2 = LogisticRegression()
     logreg5_2.fit(x_train_cluster_5_2, y_train_cluster_5_2.ravel())
     logreg5_2.score(x_train_cluster_5_2, y_train_cluster_5_2.ravel())
[]: 0.7186234817813765
    Testing
[]: #We remove the features from the testing data set, as we did for the training u
     \rightarrow data set
     df2_test_cluster5 = df_test_cluster_5.copy()
     for col in low_coef_col5:
       df2_test_cluster5 = df2_test_cluster5.drop(col, axis = 1)
     df2_test_cluster5.shape
[]: (235, 186)
[]: #Prediction of the outcomes
     x_test_cluster_5_2 = df2_test_cluster5.drop('cumulative_outcome',_
     ⇔axis='columns')
     y_test_cluster_5_2 = df2_test_cluster5['cumulative_outcome']
     logreg5_2.predict(x_test_cluster_5_2)
     logreg5_2.score(x_test_cluster_5_2, y_test_cluster_5_2)
```

[]: 0.5531914893617021

```
logreg5_2.coef_
[]: array([[ 0.45468687, -0.12811831, -0.18518962, -0.51797002,
                                                               0.40117844,
            -0.18514458, -0.28303673, 0.45141005, 0.16740197, 0.18032991,
             0.16709478, 0.54692302, 0.32599809, -0.28645304, -0.36190868,
            -0.69641604, 0.11501085, -0.46197816, -0.21233134, 0.12177374,
             0.22881148, 0.44065718, 0.53683593, 0.79153677, -0.40765198,
             0.11276048, 0.33220146, -0.51530196, 0.42983592, 0.40187647,
            -0.25492728, -0.20493649, 0.38552049, 0.253195 , -0.5053205 ,
             0.30004785, 0.39089556, -0.20647168, -0.26990971, 0.37315867,
             0.46905805, -0.87527228, 0.4077238, -0.18473761, 0.18286008,
            -0.4371855, 0.25039354, -0.37473831, 0.52588295, -0.34382832,
             0.22935403, -0.24527546, 0.54982519, -0.38086491, 0.15575889,
             0.19041269, -0.50898185, 0.55815131, 0.53098424, -0.23703073,
             0.35341045, -0.28613672, 0.78585005, -0.39067647, 0.6312947,
             0.52628174, -0.10566831, -0.35988657, -0.31684515, 0.30483143,
            -0.26437979, -0.36015789, -0.45859895, -0.30450561, -0.40707943,
             0.31586245, -0.46197816, 0.66200459, 0.89643113, -0.22329411,
            -0.66200459, 0.35192869, -0.09906853, 0.404107 , 0.27114119,
            -0.23760374, -1.03368612, -0.26651966, 0.27558302, -0.15008126,
             0.15671259, 0.2831354, 0.64116779, -0.21511784, -0.87285824,
             0.47693347, 0.28544276, -0.17987736, -0.30916045, 0.3172521,
            \hbox{-0.14633224, -0.59000281, 0.43201835, 0.35791788, -1.20906719,}
             0.15258349, 0.34313765, 0.73382211, 0.15573073, -0.25174603,
            -0.34025147, 0.43319997, -0.1596785, -0.3022724, -0.18671591,
            -0.18176802, 0.33516411, 0.48009474, 0.33180753, 0.24600764,
             0.2313364, -0.19012061, 0.31709358, 0.53738865, 0.68030678,
             0.3321055 , 0.80483084, -0.19393122, 0.31325618, 0.97021827,
             0.33307705, -0.5397782, -0.18226674, 0.28730988, -0.59363848,
             0.7401267, 0.62182857, 0.39187079, 0.48833613, 0.53379641,
             0.2508283, -0.3199831, 0.42702639, -0.57551049, -0.16621052,
             0.41969726, 0.1172878, 0.12370322, 0.57604672, -0.17584925,
             0.60720422, 0.26792418, 0.55090368, 0.1573915, 0.2385836,
                         1.01621753, 0.36387597, -0.65241929, 0.70635881,
             0.22717613,
            -0.47674572, 0.19843471, 0.22055991, -0.36240924, -0.36812013,
            -0.2248091, 0.11094264, 0.29368449, -0.12797799, 0.35154664,
            -0.21274874, -0.41251395, 0.39360482, -0.41251395, -0.10039949,
             0.37649654, 0.3635202, -0.09474141, 0.14522041, 0.55244982,
             0.38633608, 0.57402084, 0.47199167, -0.41051834, 0.69280346]])
```

5.6.2 Features selection: P-values

[]: ## Coefficients of the logistic regression

```
[]: #We look for the feature which have a p-value too high
high_pvalue_col5 = []
for i in range(len(p_values5)):
```

```
if p_values5[i] > 0.5:
         high_pvalue_col5.append(p_values5.index[i])
     print(len(high_pvalue_col5))
    print(high_pvalue_col5)
    ['VOOWOMTSR', 'VOOWT25KG', 'VOOBPDIAS', 'VOODTCHOL', 'PO1BMI', 'VOOPASE',
    'PO1KPNREV_Yes', 'PO1KPNLEV_Yes', 'PO1HPNR12_Yes', 'PO1HPNL12_Yes',
    'VOOSF2_Yes__limited_a_little', 'VOOSF8_Moderately', 'VOOWPRKN2_Mild',
    'VOOWPRKN2_Moderate', 'VOOWPRKN2_None', 'VOOP7RKFR_Monthly', 'VOOP7RKFR_Never',
    'VOOKSXRKN1_Never', 'VOOKSXRKN1_Rarely', 'VOODIRKN2_None', 'VOOWPLKN1_Mild',
    'VOOWPLKN1_Moderate', 'VOOWPLKN2_Mild', 'VOOWPLKN2_Moderate', 'VOOWPLKN2_None',
    'VOOP7LKFR_Daily', 'VOOP7LKFR_Monthly', 'VOOP7LKFR_Never', 'VOOP7LKFR_Weekly',
    'VOOKSXLKN1_Often', 'VOOKSXLKN1_Sometimes', 'VOODILKN1_Mild',
    'VOODILKN1_Moderate', 'VOODILKN1_None', 'VOODILKN2_Moderate', 'VOODILKN14_Mild',
    'VOODILKN14_None', 'VOOKOOSFX5_Mild', 'VOOKOOSFX5_Moderate', 'VOOKOOSFX5_None',
    'PO2KPNRCV_Yes', 'PO2KPNLCV_Yes', 'PO1KPR30CV_Yes',
    'PO1KPACTCV_No_Limits_or_avoidance', 'PO1HPR12CV_Yes', 'PO1HPL12CV_Yes',
    'P01KPA30CV_Yes', 'V00P7LKRCV_2', 'V00P7LKRCV_5', 'V00P7LKRCV_7',
    'VOOP7LKRCV_No_pain', 'PO1PMRKRCV_6', 'PO1PMLKRCV_3', 'PO1PMLKRCV_6',
    'P01PMLKRCV_7', 'P01PMLKRCV_8', 'P01BL12SXL_IEI_only', 'P01BL12SXL_Neither',
    'P01BL12SXL_SV_only', 'P01BL12SXR_IEI_only', 'P01BL12SXR_Neither',
    'P01BL12SXR_SV_only', 'P01LKP30CV_Yes', 'P01RKP30CV_Yes', 'P02KSURG_Yes',
    'PO1RAIA_Yes', 'PO1ARTHOTH_Yes', 'PO1ARTDOC_Yes', 'PO1INJR_Yes',
    'PO1KSURGR_Yes', 'PO1KSURGL_Yes', 'VO0BONEFX_Yes', 'PO1OAHIPCV_Yes',
    'PO1OTARTCV_Yes', 'PO1KPMEDCV_Yes', 'VO0FALLCV_None', 'V00FALLCV_One',
    'VOOACUSCV_Yes', 'VOOVITMCV_Yes', 'VOORUBCV_Yes', 'VOOCAPSNCV_Yes',
    'VOOBRACCV_Yes', 'VOORELACV_Yes', 'VOOSPIRCV_Yes',
    'PO1RASTASV_Does_not_report_RA_inflam_arth',
    'PO1RASTASV_Report_RA_inflam_arth__no_to_all_meds', 'VOOOTHCAMC_Yes',
    'VOODISCOMF_Yes', 'VOOREXPN_Yes',
    'VOOVITDCV_No_vitamins_minerals_taken_in_past_year',
    'VOOCALCMCV_4_6_days_per_week', 'VOOCALCMCV_A_few_days_per_month',
    'VOOCALCMCV_No_vitamins_minerals_taken_in_past_year', 'PO1FAMKR_Yes',
    'VOORKEFFB_Yes', 'VOORKEFFPT_Yes', 'VOOLKEFFB_Yes',
    'VOOLKEFFPT_Too_tender_to_examine', 'VOORKRFXPN_Yes']
[]: # And we remove those features from the dataset
     df3_cluster5 = df2_cluster5.copy()
     for col in high_pvalue_col5:
      if col in df3_cluster5.columns:
         df3_cluster5 = df3_cluster5.drop(col, axis = 1)
     df3_cluster5.shape
```

[]: (494, 105)

Training

```
[]: ## Logistic Regression with sklearn

x_train_cluster_5_3 = df3_cluster5.drop('cumulative_outcome', axis='columns')
y_train_cluster_5_3 = df3_cluster5['cumulative_outcome']

logreg5_3 = LogisticRegression()
logreg5_3.fit(x_train_cluster_5_3, y_train_cluster_5_3.ravel())
logreg5_3.score(x_train_cluster_5_3, y_train_cluster_5_3)
```

[]: 0.6700404858299596

Testing

```
[]: #We remove the features from the testing data set, as we did for the training

data set

df3_test_cluster5 = df2_test_cluster5.copy()

for col in high_pvalue_col5:

if col in df3_test_cluster5.columns:

df3_test_cluster5 = df3_test_cluster5.drop(col, axis = 1)

df3_test_cluster5.shape
```

[]: (235, 105)

[]: 0.5872340425531914

5.7 Cluster 6

5.7.1 Feature selection: coefficients value

```
[]: #We look for the columns which have low coefficients' values

low_coef_col6 = []
for i in range(len(logreg6.coef_[0])):
```

```
if abs(logreg6.coef_[0][i]) < 0.1:</pre>
         low_coef_col6.append(df_cluster_6.iloc[:,i].name)
     print(len(low_coef_col6))
    print(low_coef_col6)
    ['VOOWOMTSL', 'VOOWOMTSR', 'PO1KPACDCV', 'VOOBPDIAS', 'PO1KPNREV_Yes',
    'VOOSF2_Yes__limited_a_lot', 'VOOSF3_Yes__limited_a_little', 'VOOSF8_Extremely',
    'VOOWPRKN1_Mild', 'VOOWPRKN1_Moderate', 'VOOWPRKN1_None', 'VOOWPRKN1_Severe',
    'VOOWPRKN2_Severe', 'VOOP7RKFR_Weekly', 'VOOKSXRKN1_Often', 'VOOKSXRKN1_Rarely',
    'VOOKSXRKN1_Sometimes', 'VOODIRKN1_Moderate', 'VOODIRKN1_Severe',
    'VOODIRKN2_Mild', 'VOODIRKN2_Severe', 'VOODIRKN14_Mild', 'VOODIRKN14_Moderate',
    'VOODIRKN14_Severe', 'VOOWPLKN1_Moderate', 'VOOWPLKN1_Severe',
    'VOOWPLKN2_Moderate', 'VOOWPLKN2_Severe', 'VOOP7LKFR_Daily',
    'VOOP7LKFR_Monthly', 'VOOP7LKFR_Never', 'VOOP7LKFR_Weekly', 'VOOKSXLKN1_Never',
    'VOOKSXLKN1_Often', 'VOOKSXLKN1_Sometimes', 'VOODILKN1_Moderate',
    'VOODILKN1_Severe', 'VOODILKN2_Moderate', 'VOODILKN2_Severe', 'VOODILKN14_Mild',
    'VOODILKN14_Moderate', 'VOODILKN14_None', 'VOODILKN14_Severe',
    'VOOKOOSFX5_Severe', 'PO2KPNRCV_Yes', 'PO2KPNLCV_Yes', 'PO1KPR3OCV_Yes',
    'P01KPL30CV_Yes', 'V00P7RKRCV_10__Pain_as_bad_as_you_can_imagine',
    'VOOP7RKRCV_5', 'VOOP7RKRCV_6', 'VOOP7RKRCV_7', 'VOOP7RKRCV_8', 'VOOP7RKRCV_9',
    'VOOP7LKRCV_10_Pain_as_bad_as_you_can_imagine', 'VOOP7LKRCV_6', 'VOOP7LKRCV_8',
    'VOOP7LKRCV_9', 'VOOP7LKRCV_No_pain',
    'P01PMRKRCV_10__Pain_as_bad_as_you_can_imagine', 'P01PMRKRCV_2', 'P01PMRKRCV_6',
    'PO1PMRKRCV_7', 'PO1PMRKRCV_8', 'PO1PMRKRCV_9',
    'P01PMLKRCV_10__Pain_as_bad_as_you_can_imagine', 'P01PMLKRCV_2', 'P01PMLKRCV_5',
    'P01PMLKRCV_8', 'P01PMLKRCV_9', 'P01BL12SXL_Neither', 'P01BL12SXL_SV_only',
    'P01BL12SXR_Neither', 'P01LKP30CV_Yes', 'P02KSURG_Yes', 'P01KSURGL_Yes',
    'VOOBONEFX_Yes', 'PO2KPMEDCV_Yes', 'PO1ARTDRCV_Yes', 'VOOFALLCV_One',
    'VOOFALLCV_Two_or_Three', 'VOOHYINJCV_Yes', 'VOOSTINJCV_Yes', 'VOOACUTCV_Yes',
    'VOOACUSCV_Yes', 'VOOHOMECV_Yes', 'VOOCAPSNCV_Yes', 'VOOBRACCV_Yes',
    'VOOHERBCV_Yes', 'PO1RASTASV_DK_to_RA_inflam_arth__no_dk_to_meds',
    'PO1RASTASV_Report_RA_inflam_arth__dk_to_all_meds',
    'PO1RASTASV_Report_RA_inflam_arth__no_dk_to_meds', 'PO2KSURGCV_Yes',
    'VOOOTHCAMC_Yes', 'VOOOTHCAM_Yes', 'VOOEKRSL_Yes', 'VOOREXPN_Yes',
    'VOOEKRSR_Yes', 'VOOVITDCV_4_6_days_per_week', 'VOOVITDCV_A_few_days_per_month',
    'VOOVITDCV No_vitamins_minerals_taken_in_past_year', 'VOOCALCMCV_Didn_t_take',
    'VOOCALCMCV_No_vitamins_minerals_taken_in_past_year', 'PO1FAMKR_Yes',
    'PO2WTGA_Yes', 'VOORKEFFPT_Too_tender_to_examine', 'VOOLKEFFB_Yes',
    'VOOLKEFFPT_Too_tender_to_examine', 'VOORKRFXPN_Yes']
[]: #And we remove those features from the dataset
     df2_cluster6 = df_cluster_6.copy()
     for col in low coef col6:
      df2_cluster6 = df2_cluster6.drop(col, axis = 1)
     df2_cluster6.shape
```

```
[]: (227, 119)
```

Training

```
[]: ## Logistic Regression with sklearn

x_train_cluster_6_2 = df2_cluster6.drop('cumulative_outcome', axis='columns')
y_train_cluster_6_2 = df2_cluster6['cumulative_outcome']

logreg6_2 = LogisticRegression()
logreg6_2.fit(x_train_cluster_6_2, y_train_cluster_6_2.ravel())
logreg6_2.score(x_train_cluster_6_2, y_train_cluster_6_2.ravel())
```

[]: 0.7004405286343612

Testing

```
[]: #We remove the features from the testing data set, as we did for the training

data set

df2_test_cluster6 = df_test_cluster_6.copy()

for col in low_coef_col6:

df2_test_cluster6 = df2_test_cluster6.drop(col, axis = 1)

df2_test_cluster6.shape
```

[]: (105, 119)

[]: 0.6571428571428571

```
[]: ## Coefficients of the logistic regression logreg6_2.coef_
```

```
[]: array([[-0.56247449, -0.33337545, -0.23701079, 0.23047702, -0.15627739, -0.54073716, -0.20221651, -0.31360458, 0.34948935, 0.24267628, -0.30698217, 0.77535176, 0.34499232, -0.33752305, 0.11619637, -0.23624446, 0.21634494, 0.51638943, -0.31928136, -0.3045373, -0.51036244, 0.19060369, 0.50201941, 0.11761102, -0.54009669, -0.12956809, 0.41196104, -0.24848864, -0.18337522, 0.15051861, -0.13123696, 0.15728427, -0.11422346, 0.10630182, 0.28242113, -0.24123857, 0.20789475, -0.18185348, -0.141543, 0.47695296,
```

```
-0.41014813, 0.43905242, -0.41604151, -0.4236629, 0.63370301,
-0.1420481, 0.11619637, 0.41222739, 0.22760515, 0.48524161,
-0.41222739, -0.345318 , -0.15154012, 0.32370471, -0.12054966,
-0.83022469, 0.34699932, 0.19883978, 0.13891133, 0.22716478,
-0.48929846, 0.25227785, 0.13979419, 0.31916273, -0.37900605,
0.29001929, 0.48759206, 0.27731535, -0.21617687, 0.27386663,
0.32102005, -0.2953493, -0.65108178, -0.31434916, 0.12948422,
0.64181547, 0.50882064, 0.41940374, 0.51577782, -0.4605117,
-0.45404 , 0.46377453, 0.93245631, -0.26893441, -0.27369479,
-0.33020573, -0.29090246, 0.48401618, 0.26039766, -0.54689505,
0.19654082, 0.1855725, -0.15943041, -0.39305558, -0.17858744,
-0.22690892, 0.14810538, 0.33135821, -0.16265218, -0.52026224,
0.18950871, 0.18482166, 0.13139428, -0.11272217, -0.39394795,
-0.12775171, -0.27023736, -0.14625273, -0.16027409, -0.49561889,
0.3187419 , -0.3292625 , 0.36166578, 0.95010168, 0.4725091 ,
-0.16251909, -0.32873366, 0.16767671]])
```

5.7.2 Features selection: P-values

```
[]: #We look for the feature which have a p-value too high

high_pvalue_col6 = []
for i in range(len(p_values6)):
   if p_values6[i] > 0.1:
     high_pvalue_col6.append(p_values6.index[i])
print(len(high_pvalue_col6))
print(high_pvalue_col6)
```

182 ['VOOWOMTSL', 'VOOWOMTSR', 'PO1KPACDCV', 'VOOCOMORB', 'VOOHT25MM', 'VOOWT25KG', 'VOOWTMAXKG', 'VOOWTMINKG', 'VOOBPDIAS', 'VOOBPSYS', 'VOODTVITD', 'VOODTCALC', 'VOODTCHOL', 'PO1BMI', 'VOOPASE', 'VOOLLWGT', 'VOORLWGT', 'PO1KPNREV_Yes', 'PO1KPNLEV_Yes', 'PO1KPACT30_Yes', 'PO1HPNR12_Yes', 'PO1HPNL12_Yes', 'VOOSF2_Yes__limited_a_little', 'VOOSF2_Yes__limited_a_lot', 'VOOSF3_Yes__limited_a_little', 'VOOSF3_Yes__limited_a_lot', 'VOOSF8_Moderately', 'VOOSF8_Not_at_all', 'VOOSF8_Quite_a_bit', 'VOOWPRKN1_Mild', 'VOOWPRKN2_Mild', 'VOOWPRKN2_Moderate', 'VOOWPRKN2_None', 'VOOP7RKFR_Daily', 'VOOP7RKFR_Monthly', 'VOOP7RKFR_Never', 'VOOP7RKFR_Weekly', 'VOOKSXRKN1_Never', 'VOOKSXRKN1_Rarely', 'VOOKSXRKN1_Sometimes', 'VOODIRKN1_Mild', 'VOODIRKN1_Moderate', 'VOODIRKN2_Mild', 'VOODIRKN2_Moderate', 'VOODIRKN2_None', 'VOODIRKN14_Mild', 'VOOWPLKN1_Mild', 'VOOWPLKN1_Moderate', 'VOOWPLKN1_None', 'VOOWPLKN1_Severe', 'VOOWPLKN2_Mild', 'VOOWPLKN2_Moderate', 'VOOWPLKN2 None', 'VOOWPLKN2 Severe', 'VOOP7LKFR Daily', 'VOOP7LKFR Monthly', 'VOOP7LKFR_Never', 'VOOP7LKFR_Weekly', 'VOOKSXLKN1_Never', 'VOOKSXLKN1_Often', 'VOOKSXLKN1_Rarely', 'VOOKSXLKN1_Sometimes', 'VOODILKN1_Mild', 'VOODILKN1_Moderate', 'VOODILKN1_None', 'VOODILKN1_Severe', 'VOODILKN2_Mild', 'VOODILKN2_Moderate', 'VOODILKN2_None', 'VOODILKN2_Severe', 'VOODILKN14_Mild', 'VOODILKN14_None', 'VOOKOOSFX5_Mild', 'VOOKOOSFX5_Moderate', 'VOOKOOSFX5_None',

```
'PO1KPL3OCV_Yes', 'PO1KPACTCV_Limits', 'PO1KPACTCV_No_Limits_or_avoidance',
    'PO1HPR12CV_Yes', 'PO1HPL12CV_Yes', 'PO1KPA3OCV_Yes', 'VO0P7RKRCV_2',
    'VOOP7RKRCV_3', 'VOOP7RKRCV_5', 'VOOP7RKRCV_6', 'VOOP7RKRCV_No_pain',
    'VOOP7LKRCV_2', 'VOOP7LKRCV_3', 'VOOP7LKRCV_5', 'VOOP7LKRCV_6', 'VOOP7LKRCV_7',
    'VOOP7LKRCV_8', 'VOOP7LKRCV_No_pain', 'PO1PMRKRCV_2', 'PO1PMRKRCV_3',
    'PO1PMRKRCV_4', 'PO1PMRKRCV_5', 'PO1PMRKRCV_6', 'PO1PMRKRCV_8',
    'PO1PMRKRCV_No_pain', 'PO1PMLKRCV_2', 'PO1PMLKRCV_3', 'PO1PMLKRCV_5',
    'PO1PMLKRCV_6', 'PO1PMLKRCV_7', 'PO1PMLKRCV_8', 'PO1PMLKRCV_9',
    'PO1PMLKRCV_No_pain', 'PO1BL12SXL_IEI_only', 'PO1BL12SXL_Neither',
    'P01BL12SXL_SV_only', 'P01BL12SXR_IEI_only', 'P01BL12SXR_Neither',
    'P01BL12SXR_SV_only', 'P01LKP30CV_Yes', 'P01RKP30CV_Yes', 'P02KPMED_Yes',
    'PO2KSURG_Yes', 'PO1RAIA_Yes', 'PO1ARTHOTH_Yes', 'PO1ARTDOC_Yes',
    'P01KPMED_Yes', 'P01INJR_Yes', 'P01KSURGR_Yes', 'P01KSURGL_Yes',
    'VOOSTROKE_Yes', 'VOODIAB_Yes', 'VOORA_Yes', 'VOOBONEFX_Yes', 'VOOSMOKE_Yes',
    'PO2KPMEDCV_Yes', 'PO1OAHIPCV_Yes', 'PO1GOUTCV_Yes', 'PO1OTARTCV_Yes',
    'PO1KPMEDCV_Yes', 'VO0FALLCV_None', 'VO0FALLCV_One', 'V00FALLCV_Six_or_more',
    'VOOFALLCV_Two_or_Three', 'VOOSTINJCV_Yes', 'VOOACUTCV_Yes', 'VOOACUSCV_Yes',
    'VOOHOMECV_Yes', 'VOOMASSCV_Yes', 'VOOVITMCV_Yes', 'VOORUBCV_Yes',
    'VOOCAPSNCV_Yes', 'VOOBRACCV_Yes', 'VOOYOGACV_Yes', 'VOOHERBCV_Yes',
    'VOORELACV_Yes', 'VOOSPIRCV_Yes', 'PO1RASTASV_Does_not_report_RA_inflam_arth',
    'PO1RASTASV_Report_RA_inflam_arth__no_to_all_meds', 'VO00THCAMC_Yes',
    'VOODISCOMF_Yes', 'VOOLFXCOMP_Yes', 'VOOLFXPN_Yes', 'VOOREXPN_Yes',
    'VOOEKRSR_Yes', 'VOORFXCOMP_Yes', 'VOOVITDCV_4_6_days_per_week',
    'VOOVITDCV_Didn_t_take', 'VOOVITDCV_No_vitamins_minerals_taken_in_past_year',
    'VOOCALCMCV_4_6_days_per_week', 'VOOCALCMCV_A_few_days_per_month',
    'VOOCALCMCV_Didn_t_take', 'VOOCALCMCV_Every_day',
    'VOOCALCMCV_No_vitamins_minerals_taken_in_past_year', 'VOOVIT1_Yes',
    'PO1FAMKR_Yes', 'VOORKEFFB_Yes', 'VOORKEFFPT_Yes', 'VOOLKEFFB_Yes',
    'VOOLKEFFPT_Too_tender_to_examine', 'VOOLKEFFPT_Yes', 'VOORKRFXPN_Yes',
    'VOOLKRFXPN_Yes']
[]: # And we remove those features from the dataset
     df3_cluster6 = df2_cluster6.copy()
     for col in high_pvalue_col6:
       if col in df3_cluster6.columns:
        df3_cluster6 = df3_cluster6.drop(col, axis = 1)
     df3_cluster6.shape
[]: (227, 13)
    Training
[]: ## Logistic Regression with sklearn
     x_train_cluster_6_3 = df3_cluster6.drop('cumulative_outcome', axis='columns')
     y_train_cluster_6_3 = df3_cluster6['cumulative_outcome']
```

'VOOKOOSFX5_Severe', 'PO2KPNRCV_Yes', 'PO2KPNLCV_Yes', 'PO1KPR3OCV_Yes',

```
logreg6_3 = LogisticRegression()
logreg6_3.fit(x_train_cluster_6_3, y_train_cluster_6_3.ravel())
logreg6_3.score(x_train_cluster_6_3, y_train_cluster_6_3.ravel())
```

[]: 0.6784140969162996

Testing

```
[]: #We remove the features from the testing data set, as we did for the training

data set

df3_test_cluster6 = df2_test_cluster6.copy()

for col in high_pvalue_col6:

if col in df3_test_cluster6.columns:

df3_test_cluster6 = df3_test_cluster6.drop(col, axis = 1)

df3_test_cluster6.shape
```

[]: (105, 13)

[]: 0.6476190476190476

As the accuracy is better if we don't select the features according to their p-values, we are going to keep the accuracy with features selection only on the coefficient values.

```
[]: Accuracy_train2.append(logreg6_2.score(x_train_cluster_6_2, y_train_cluster_6_2.

→ravel()))
Accuracy_test2.append(logreg6_2.score(x_test_cluster_6_2, y_test_cluster_6_2.

→ravel()))
```

5.8 Cluster 7

5.8.1 Feature selection: coefficients value

```
[]: #We look for the columns which have low coefficients' values

low_coef_col7 = []
for i in range(len(logreg7.coef_[0])):
   if abs(logreg7.coef_[0][i]) < 0.1:
    low_coef_col7.append(df_cluster_7.iloc[:,i].name)</pre>
```

```
print(low_coef_col7)
    ['VOOCOMORB', 'VOOWT25KG', 'VOOWTMINKG', 'VOOBPDIAS', 'PO1KPNREV_Yes',
    'PO1HPNL12_Yes', 'VOOSF2_Yes__limited_a_little', 'VOOSF3_Yes__limited_a_lot',
    'VOOSF8_Extremely', 'VOOWPRKN1_Mild', 'VOOWPRKN1_Moderate', 'VOOWPRKN1_None',
    'VOOWPRKN2_Moderate', 'VOOWPRKN2_Severe', 'VOOP7RKFR_Daily', 'VOOKSXRKN1_Never',
    'VOOKSXRKN1_Often', 'VOOKSXRKN1_Sometimes', 'VOODIRKN1_Moderate',
    'VOODIRKN1_Severe', 'VOODIRKN2_Moderate', 'VOODIRKN2_Severe', 'VOODIRKN14_Mild',
    'VOODIRKN14_Moderate', 'VOODIRKN14_None', 'VOODIRKN14_Severe',
    'VOOWPLKN1_Severe', 'VOOWPLKN2_Mild', 'VOOWPLKN2_Moderate', 'VOOWPLKN2_None',
    'VOOWPLKN2_Severe', 'VOOKSXLKN1_Never', 'VOOKSXLKN1_Often',
    'VOOKSXLKN1_Sometimes', 'VOODILKN1_Moderate', 'VOODILKN1_Severe',
    'VOODILKN2_Mild', 'VOODILKN2_Moderate', 'VOODILKN2_None', 'VOODILKN2_Severe',
    'VOODILKN14_Mild', 'VOODILKN14_Moderate', 'VOODILKN14_None',
    'VOODILKN14_Severe', 'VOOKOOSFX5_Moderate', 'VOOKOOSFX5_None', 'PO2KPNRCV_Yes',
    'P01KPR30CV_Yes', 'P01KPL30CV_Yes', 'P01HPL12CV_Yes',
    'VOOP7RKRCV_10__Pain_as_bad_as_you_can_imagine', 'VOOP7RKRCV_4', 'VOOP7RKRCV_6',
    'VOOP7RKRCV_7', 'VOOP7RKRCV_9', 'VOOP7LKRCV_10__Pain_as_bad_as_you_can_imagine',
    'VOOP7LKRCV_2', 'VOOP7LKRCV_3', 'VOOP7LKRCV_5', 'VOOP7LKRCV_6', 'VOOP7LKRCV_7',
    'VOOP7LKRCV_8', 'VOOP7LKRCV_9', 'VOOP7LKRCV_No_pain',
    'P01PMRKRCV_10__Pain_as_bad_as_you_can_imagine', 'P01PMRKRCV_2', 'P01PMRKRCV_4',
    'PO1PMRKRCV_5', 'PO1PMRKRCV_6', 'PO1PMRKRCV_7', 'PO1PMRKRCV_8', 'PO1PMRKRCV_9',
    'P01PMRKRCV_No_pain', 'P01PMLKRCV_10__Pain_as_bad_as_you_can_imagine',
    'P01PMLKRCV_2', 'P01PMLKRCV_5', 'P01PMLKRCV_7', 'P01BL12SXL_SV_only',
    'P01BL12SXR_Neither', 'P01LKP30CV_Yes', 'P01RKP30CV_Yes', 'V00RA_Yes',
    'VOOPOLYRH_Yes', 'VOOCAM12_Yes', 'PO2KPMEDCV_Yes', 'PO1ARTDRCV_Yes',
    'PO1KPMEDCV_Yes', 'VO0FALLCV_One', 'VOOHYINJCV_Yes', 'VO0STINJCV_Yes',
    'VOOACUTCV_Yes', 'VOOACUSCV_Yes', 'VOOHOMECV_Yes', 'VOOMASSCV_Yes',
    'VOODIETCV_Yes', 'VOOVITMCV_Yes', 'VOOCAPSNCV_Yes', 'VOOBRACCV_Yes',
    'VOOHERBCV_Yes', 'VOORELACV_Yes',
    'PO1RASTASV_DK_to_RA_inflam_arth__no_dk_to_meds',
    'PO1RASTASV_Report_RA_inflam_arth__dk_to_all_meds',
    'P01RASTASV_Report_RA_inflam_arth__no_dk_to_meds', 'P02KSURGCV_Yes',
    'VOOOTHCAMC_Yes', 'VOOOTHCAM_Yes', 'VOOLFXPN_Yes', 'VOOEKRSL_Yes',
    'VOOEKRSR_Yes', 'VOOVITDCV_4_6_days_per_week', 'VOOVITDCV_A_few_days_per_month',
    'VOOVITDCV_Every_day', 'VOOCALCMCV_4_6_days_per_week',
    'VOOCALCMCV_A_few_days_per_month', 'VOOCALCMCV_Didn_t_take',
    'VOOCALCMCV_Every_day', 'VOOVIT1_Yes', 'VOORKEFFB_Yes',
    'VOORKEFFPT_Too_tender_to_examine', 'VOOLKEFFPT_Too_tender_to_examine',
    'VOORKRFXPN_Yes']
[]: #And we remove those features from the data set
     df2_cluster7 = df_cluster_7.copy()
     for col in low_coef_col7:
```

print(len(low_coef_col7))

```
df2_cluster7 = df2_cluster7.drop(col, axis = 1)
df2_cluster7.shape
```

[]: (154, 107)

Training

```
[]: ## Logistic Regression with sklearn

x_train_cluster_7_2 = df2_cluster7.drop('cumulative_outcome', axis='columns')
y_train_cluster_7_2 = df2_cluster7['cumulative_outcome']

logreg7_2 = LogisticRegression()
logreg7_2.fit(x_train_cluster_7_2, y_train_cluster_7_2.ravel())
logreg7_2.score(x_train_cluster_7_2, y_train_cluster_7_2.ravel())
```

[]: 0.7402597402597403

Testing

```
[]: #We remove the features from the testing data set, as we did for the training data set

df2_test_cluster7 = df_test_cluster_7.copy()
for col in low_coef_col7:
    df2_test_cluster7 = df2_test_cluster7.drop(col, axis = 1)
df2_test_cluster7.shape
```

[]: (71, 107)

[]: 0.7464788732394366

```
[]: ## Coefficients of the logistic regression logreg7_2.coef_
```

```
[]: array([[ 0.14328317,  0.19418191,  0.21186539,  0.26621889,  0.24404437,  0.67326358, -0.33685068, -0.27489143,  0.14361648,  0.4967084,  -0.54223877,  0.19716557,  0.39470086, -0.16078762,  0.21675511,  0.84550977, -0.19198174,  0.51492131,  0.32782231, -0.74520099,  0.48293486, -0.1437836,  0.46507872, -0.42606484, -0.53781106,
```

```
0.65060245, -0.3054261, -0.10814312, 0.28185197, -0.27342135,
-0.25990678, 0.23962267, 0.24343559, 0.24098433, -0.35388969,
0.11541668, -0.59078377, 0.58892917, -0.23815384, 0.14755088,
0.21335504, -0.21176802, -0.13513663, 0.21512702, 0.39794305,
0.21675511, -0.27300524, 0.26266482, 0.27300524, 0.27591538,
0.14943867, 0.15266586, -0.1875919, 0.1484697, -0.10207526,
-0.32270241, 0.39821283, -0.33018413, 0.19699977, 0.29377084,
0.33581123, \ -0.3012381 \ , \ 0.52439993, \ -0.42598585, \ 0.22213838,
-0.20264122, 0.43993107, -0.44946842, 0.27464109, 0.97468415,
0.91175137, 0.27961504, -0.24028799, -0.13480263, -0.24849664,
0.12268177, 0.64590942, 0.17681616, 0.94788446, 0.16746642,
0.27116238, 0.31757721, 0.5215343, 0.42373259, 0.4053504,
-0.60637519, -0.2089088, 0.28051927, 0.14833754, -0.10943271,
-0.3140632 , 0.2777418 , 0.26853048, 0.16943229, 0.13040493,
0.16678743, 0.10947866, -0.21349041, -0.21349041, 0.53424343,
-0.15547174, 0.32225757, -0.18365801, -0.25848268, 0.16978475,
-0.11601871]])
```

5.8.2 Features selection: P-values

```
[]: #We look for the feature which have a p-value too high

high_pvalue_col7 = []
for i in range(len(p_values7)):
   if p_values7[i] > 0.5:
     high_pvalue_col7.append(p_values7.index[i])
print(len(high_pvalue_col7))
print(high_pvalue_col7)
```

```
['VOOWOMTSR', 'VOOWT25KG', 'VOOBPDIAS', 'VOODTCHOL', 'PO1BMI', 'VOOPASE',
'PO1KPNREV_Yes', 'PO1KPNLEV_Yes', 'PO1HPNR12_Yes', 'PO1HPNL12_Yes',
'VOOSF2_Yes__limited_a_little', 'VOOSF8_Moderately', 'VOOWPRKN2_Mild',
'VOOWPRKN2_Moderate', 'VOOWPRKN2_None', 'VOOP7RKFR_Monthly', 'VOOP7RKFR_Never',
'VOOKSXRKN1_Never', 'VOOKSXRKN1_Rarely', 'VOODIRKN2_None', 'VOOWPLKN1_Mild',
'VOOWPLKN1_Moderate', 'VOOWPLKN2_Mild', 'VOOWPLKN2_Moderate', 'VOOWPLKN2_None',
'VOOP7LKFR_Daily', 'VOOP7LKFR_Monthly', 'VOOP7LKFR_Never', 'VOOP7LKFR_Weekly',
'VOOKSXLKN1_Often', 'VOOKSXLKN1_Sometimes', 'VOODILKN1_Mild',
'VOODILKN1_Moderate', 'VOODILKN1_None', 'VOODILKN2_Moderate', 'VOODILKN14_Mild',
'VOODILKN14_None', 'VOOKOOSFX5_Mild', 'VOOKOOSFX5_Moderate', 'VOOKOOSFX5_None',
'PO2KPNRCV_Yes', 'PO2KPNLCV_Yes', 'PO1KPR30CV_Yes',
'PO1KPACTCV_No_Limits_or_avoidance', 'PO1HPR12CV_Yes', 'PO1HPL12CV_Yes',
'P01KPA30CV_Yes', 'V00P7LKRCV_2', 'V00P7LKRCV_5', 'V00P7LKRCV_7',
'VOOP7LKRCV_No_pain', 'PO1PMRKRCV_6', 'PO1PMLKRCV_3', 'PO1PMLKRCV_6',
'P01PMLKRCV_7', 'P01PMLKRCV_8', 'P01BL12SXL_IEI_only', 'P01BL12SXL_Neither',
'P01BL12SXL_SV_only', 'P01BL12SXR_IEI_only', 'P01BL12SXR_Neither',
'P01BL12SXR_SV_only', 'P01LKP30CV_Yes', 'P01RKP30CV_Yes', 'P02KSURG_Yes',
'PO1RAIA_Yes', 'PO1ARTHOTH_Yes', 'PO1ARTDOC_Yes', 'PO1INJR_Yes',
```

```
'PO1KSURGR_Yes', 'PO1KSURGL_Yes', 'VO0BONEFX_Yes', 'PO1OAHIPCV_Yes',
    'P010TARTCV_Yes', 'P01KPMEDCV_Yes', 'V00FALLCV_None', 'V00FALLCV_One',
    'VOOACUSCV_Yes', 'VOOVITMCV_Yes', 'VOORUBCV_Yes', 'VOOCAPSNCV_Yes',
    'VOOBRACCV_Yes', 'VOORELACV_Yes', 'VOOSPIRCV_Yes',
    'PO1RASTASV_Does_not_report_RA_inflam_arth',
    'PO1RASTASV_Report_RA_inflam_arth__no_to_all_meds', 'VOOOTHCAMC_Yes',
    'VOODISCOMF_Yes', 'VOOREXPN_Yes',
    'VOOVITDCV_No_vitamins_minerals_taken_in_past_year',
    'VOOCALCMCV_4_6_days_per_week', 'VOOCALCMCV_A_few_days_per_month',
    'VOOCALCMCV_No_vitamins_minerals_taken_in_past_year', 'PO1FAMKR_Yes',
    'VOORKEFFB_Yes', 'VOORKEFFPT_Yes', 'VOOLKEFFB_Yes',
    'VOOLKEFFPT_Too_tender_to_examine', 'VOORKRFXPN_Yes']
[]: # And we remove those features from the dataset
     df3_cluster7 = df2_cluster7.copy()
     for col in high_pvalue_col7:
       if col in df3_cluster7.columns:
         df3_cluster7 = df3_cluster7.drop(col, axis = 1)
     df3_cluster7.shape
[]: (154, 52)
    Training
[]: | ## Logistic Regression with sklearn
     x_train_cluster_7_3 = df3_cluster7.drop('cumulative_outcome', axis='columns')
     y_train_cluster_7_3 = df3_cluster7['cumulative_outcome']
     logreg7_3 = LogisticRegression()
     logreg7_3.fit(x_train_cluster_7_3, y_train_cluster_7_3.ravel())
     logreg7_3.score(x_train_cluster_7_3, y_train_cluster_7_3.ravel())
[]: 0.7207792207792207
    Testing
[]: #We remove the features from the testing data set, as we did for the training \Box
     \rightarrow data set
     df3_test_cluster7 = df2_test_cluster7.copy()
     for col in high_pvalue_col7:
       if col in df3_test_cluster7.columns:
         df3_test_cluster7 = df3_test_cluster7.drop(col, axis = 1)
     df3_test_cluster7.shape
```

[]: (71, 52)

[]: 0.7464788732394366

5.9 Summary

```
[]:
                             Cluster 0 Cluster 1 ... Cluster 6 Cluster 7
                              0.754209 0.740061 ...
                                                     0.704846 0.733766
    Accuracy_train
                                        0.625899 ...
    Accuracy_test
                              0.596639
                                                     0.657143 0.746479
                                        0.718654 ...
                                                     0.700441
    Accuracy train selection
                              0.710438
                                                                0.720779
    Accuracy_test_selection
                              0.621849
                                        0.633094 ...
                                                     0.657143
                                                                0.746479
```

[4 rows x 8 columns]

6 Final models: Performance assessment

For each cluster, we are going to choose the model with the higher accuracy between the model with or without features selection. Then, we are going to compute different performance metrics: the AUC, the TPR and the FPR.

For each cluster, the best model is the one with features selection.

```
[]: #Functions to compute the TPR and FPR thanks to the confusion matrix

from sklearn import metrics

def TPR(cm):
    return(round(cm[1][1]/(cm[1][0] + cm[1][1]), 4))
```

```
def FPR(cm):
       return(round(cm[0][1]/(cm[0][0] + cm[0][1]),4))
[ ]: AUC = []
     TPR_list = []
     FPR_list = []
    6.1 Cluster 0
[]: y_pred_0 = logreg0_3.predict(x_test_cluster_0_3)
     cm0 = metrics.confusion_matrix(y_test_cluster_0_3, y_pred_0)
     cm0
[]: array([[62, 6],
            [39, 12]])
[]: print('TPR = ', TPR(cm0))
     print('FPR = ', FPR(cm0))
     TPR_list.append(TPR(cm0))
    FPR_list.append(FPR(cm0))
    TPR = 0.2353
    FPR = 0.0882
[]: # Computation of the AUC
     y_pred_proba0 = logreg0_3.predict_proba(x_test_cluster_0_3)[::,1]
     auc0 = metrics.roc_auc_score(y_test_cluster_0_3, y_pred_proba0)
     AUC.append(round(auc0,4))
    print(auc0)
    0.6346597462514418
    6.2 Cluster 1
[]: y_pred_1 = logreg1_3.predict(x_test_cluster_1_3)
     cm1 = metrics.confusion_matrix(y_test_cluster_1_3, y_pred_1)
     cm1
[]: array([[87, 1],
            [50, 1]])
[]: print('TPR = ', TPR(cm1))
     print('FPR = ', FPR(cm1))
     TPR_list.append(TPR(cm1))
     FPR_list.append(FPR(cm1))
```

```
TPR = 0.0196
    FPR = 0.0114
[]: # Computation of the AUC
     y_pred_proba1 = logreg1_3.predict_proba(x_test_cluster_1_3)[::,1]
     auc1 = metrics.roc_auc_score(y_test_cluster_1_3, y_pred_proba1)
     AUC.append(round(auc1,4))
     print(auc1)
    0.5632798573975044
    6.3 Cluster 2
[]: y_pred_2 = logreg2_2.predict(x_test_cluster_2_2)
     cm2 = metrics.confusion_matrix(y_test_cluster_2_2, y_pred_2)
     cm2
[]: array([[67, 10],
            [51, 17]])
[]: print('TPR = ', TPR(cm2))
     print('FPR = ', FPR(cm2))
     TPR_list.append(TPR(cm2))
    FPR_list.append(FPR(cm2))
    TPR = 0.25
    FPR = 0.1299
[]: # Computation of the AUC
     y_pred_proba2 = logreg2_2.predict_proba(x_test_cluster_2_2)[::,1]
     auc2 = metrics.roc_auc_score(y_test_cluster_2_2, y_pred_proba2)
     AUC.append(round(auc2,4))
    print(auc2)
    0.5909090909090909
    6.4 Cluster 3
[]: y_pred_3 = logreg3_3.predict(x_test_cluster_3_3)
     cm3 = metrics.confusion_matrix(y_test_cluster_3_3, y_pred_3)
     cm3
```

```
[]: array([[59, 14],
            [36, 24]])
[]: print('TPR = ', TPR(cm3))
     print('FPR = ', FPR(cm3))
     TPR_list.append(TPR(cm3))
    FPR_list.append(FPR(cm3))
    TPR = 0.4
    FPR = 0.1918
[]: # Computation of the AUC
     y_pred_proba3 = logreg3_3.predict_proba(x_test_cluster_3_3)[::,1]
     auc3 = metrics.roc_auc_score(y_test_cluster_3_3, y_pred_proba3)
     AUC.append(round(auc3,4))
     print(auc3)
    0.7029680365296803
    6.5 Cluster 4
[]: y_pred_4 = logreg4_2.predict(x_test_cluster_4_2)
     cm4 = metrics.confusion_matrix(y_test_cluster_4_2, y_pred_4)
     cm4
[]: array([[77, 15],
            [58, 14]])
[]: print('TPR = ', TPR(cm4))
     print('FPR = ', FPR(cm4))
     TPR_list.append(TPR(cm4))
     FPR_list.append(FPR(cm4))
    TPR = 0.1944
    FPR = 0.163
[]: # Computation of the AUC
     y_pred_proba4 = logreg4_2.predict_proba(x_test_cluster_4_2)[::,1]
     auc4 = metrics.roc_auc_score(y_test_cluster_4_2, y_pred_proba4)
     AUC.append(round(auc4,4))
     print(auc4)
```

0.5552536231884059

```
6.6 Cluster 5
```

```
[]: y_pred_5 = logreg5_3.predict(x_test_cluster_5_3)
     cm5 = metrics.confusion_matrix(y_test_cluster_5_3, y_pred_5)
     cm5
[]: array([[59, 39],
            [58, 79]])
[]: print('TPR = ', TPR(cm5))
     print('FPR = ', FPR(cm5))
     TPR_list.append(TPR(cm5))
    FPR_list.append(FPR(cm5))
    TPR = 0.5766
    FPR = 0.398
[]: # Computation of the AUC
     y_pred_proba5 = logreg5_3.predict_proba(x_test_cluster_5_3)[::,1]
     auc5 = metrics.roc_auc_score(y_test_cluster_5_3, y_pred_proba5)
     AUC.append(round(auc5,4))
     print(auc5)
    0.58878295843885
    6.7 Cluster 6
[]: y_pred_6 = logreg6_2.predict(x_test_cluster_6_2)
     cm6 = metrics.confusion_matrix(y_test_cluster_6_2, y_pred_6)
     cm6
[]: array([[68, 0],
            [36, 1]])
[]: print('TPR = ', TPR(cm6))
     print('FPR = ', FPR(cm6))
     TPR_list.append(TPR(cm6))
     FPR_list.append(FPR(cm6))
    TPR = 0.027
    FPR = 0.0
[]: # Computation of the AUC
     y_pred_proba6 = logreg6_2.predict_proba(x_test_cluster_6_2)[::,1]
     auc6 = metrics.roc_auc_score(y_test_cluster_6_2, y_pred_proba6)
```

```
AUC.append(round(auc6,4))
    print(auc6)
    0.5631955484896662
    6.8 Cluster 7
[]: y_pred_7 = logreg7_3.predict(x_test_cluster_7_3)
     cm7 = metrics.confusion_matrix(y_test_cluster_7_3, y_pred_7)
     cm7
[]: array([[53, 0],
           [18, 0]])
[]: print('TPR = ', TPR(cm0))
    print('FPR = ', FPR(cm0))
     TPR_list.append(TPR(cm0))
    FPR_list.append(FPR(cm0))
    TPR = 0.2353
    FPR = 0.0882
[]: # Computation of the AUC
     y_pred_proba7 = logreg7_3.predict_proba(x_test_cluster_7_3)[::,1]
     auc7 = metrics.roc_auc_score(y_test_cluster_7_3, y_pred_proba7)
     AUC.append(round(auc7,4))
     print(auc7)
    0.549266247379455
    6.9 Summary
[]: summary3 = pd.DataFrame(data = [Accuracy_train2, Accuracy_test2, AUC, TPR_list,_
     →FPR_list],
                            index = ['Accuracy_train', 'Accuracy_test', 'AUC', |
     columns = ['Cluster 0', 'Cluster 1', 'Cluster 2', 'Cluster_
```

```
[]:
                    Cluster 0 Cluster 1 ... Cluster 6 Cluster 7
                                              0.700441
                                                         0.720779
    Accuracy_train
                     0.710438
                               0.718654 ...
                                                         0.746479
    Accuracy_test
                     0.621849
                                0.633094 ...
                                              0.657143
    AUC
                     0.634700
                                              0.563200
                                                         0.549300
                                0.563300 ...
    TPR
                     0.235300
                                0.019600 ...
                                              0.027000
                                                         0.235300
```

→3','Cluster 4','Cluster 5','Cluster 6','Cluster 7'])

summary3

FPR 0.088200 0.011400 ... 0.000000 0.088200

[5 rows x 8 columns]

Project_242_Logistic_Regression_Model_Sklearn

December 17, 2021

```
[1]: import pandas as pd
     import numpy as np
     import statsmodels.formula.api as smf
     from sklearn.model_selection import train_test_split
     from sklearn.linear_model import LogisticRegression
     df = pd.read_csv('/Users/areinaud/My Drive/Études/5 - Berkeley/Fall Semester/
      →IEOR 242/Project/Data cleaning/cleaned_data.csv')
     df.head()
[1]:
             ID PO1KPNREV PO1KPNLEV PO1KPACT30 PO1HPNR12 PO1HPNL12
        9000296
                       Yes
                                  No
                                              No
                                                       Yes
     1
        9000622
                       Yes
                                  No
                                             Yes
                                                        Yes
                                                                   No
     2 9001695
                       Yes
                                  No
                                              No
                                                        No
                                                                   No
     3 9001897
                        No
                                  No
                                              No
                                                        No
                                                                   No
     4 9002411
                       Yes
                                  No
                                              No
                                                        No
                                                                   No
                        V00SF2
                                                V00SF3
                                                               VOOSF8 VOOWPRKN1
     0
           Not limited at all
                                   Not limited at all
                                                           Not at all
                                                                            None
                               Yes, limited a little
     1
        Yes, limited a little
                                                           Moderately
                                                                            Mild
                                   Not limited at all
     2
           Not limited at all
                                                           Not at all
                                                                            None
     3
           Not limited at all
                                   Not limited at all
                                                           Not at all
                                                                            None
        Yes, limited a little Yes, limited a little
                                                        A little bit
                                                                            None
       PO2WTGA VOORKEFFB VOORKEFFPT VOOLKEFFB VOOLKEFFPT VOORKRFXPN VOOLKRFXPN
     0
            No
                       No
                                  No
                                             No
                                                        No
                                                                    No
     1
            No
                       No
                                  No
                                             No
                                                        No
                                                                   Yes
                                                                                No
     2
            No
                      Yes
                                 Yes
                                             No
                                                        No
                                                                    No
                                                                                No
     3
            No
                      Yes
                                  No
                                             No
                                                        No
                                                                    No
                                                                                No
                                  No
                                             No
           Yes
                       No
                                                        No
                                                                    No
                                                                                No
       VOOLLWGT VOORLWGT cumulative_outcome
     0
           12.0
                     18.0
     1
           14.0
                     14.0
                                          Yes
     2
           13.0
                     13.0
                                          Yes
     3
           16.0
                     17.0
                                          Yes
```

```
[5 rows x 122 columns]
[2]: ## Replace 'No' and 'Yes' by O and 1 in the outcome column
     df['cumulative_outcome'] = df['cumulative_outcome'].apply(lambda x: 1 if x ==_
     df.head()
[2]:
             ID PO1KPNREV PO1KPNLEV PO1KPACT30 PO1HPNR12 PO1HPNL12
     0 9000296
                      Yes
                                 No
                                             No
     1 9000622
                      Yes
                                 No
                                            Yes
                                                      Yes
                                                                  No
     2 9001695
                      Yes
                                 No
                                             No
                                                       No
                                                                  No
     3 9001897
                                                       No
                      No
                                 No
                                             No
                                                                  No
     4 9002411
                      Yes
                                 No
                                             No
                                                       No
                                                                  No
                       V00SF2
                                               V00SF3
                                                             VOOSF8 VOOWPRKN1
           Not limited at all
                                  Not limited at all
                                                         Not at all
                                                                          None
       Yes, limited a little Yes, limited a little
                                                         {\tt Moderately}
                                                                          Mild
     1
     2
           Not limited at all
                                  Not limited at all
                                                         Not at all
                                                                          None
     3
           Not limited at all
                                  Not limited at all
                                                         Not at all
                                                                          None
       Yes, limited a little Yes, limited a little A little bit
                                                                          None
       PO2WTGA VOORKEFFB VOORKEFFPT VOOLKEFFB VOOLKEFFPT VOORKRFXPN VOOLKRFXPN
     0
            No
                                 No
                                                                   No
                      No
                                            No
                                                       No
            No
     1
                      No
                                 No
                                            No
                                                       No
                                                                  Yes
                                                                              No
     2
            No
                     Yes
                                 Yes
                                            No
                                                       No
                                                                   No
                                                                              No
     3
            No
                     Yes
                                 No
                                            No
                                                       No
                                                                   No
                                                                              No
           Yes
                      No
                                 No
                                            No
                                                       No
                                                                   No
                                                                              No
       VOOLLWGT VOORLWGT cumulative_outcome
           12.0
                    18.0
     0
                                           0
           14.0
     1
                    14.0
                                           1
     2
           13.0
                    13.0
     3
           16.0
                    17.0
                                           1
     4
           18.0
                    22.0
                                           0
     [5 rows x 122 columns]
[4]: ## Drop first column (ID of the patient)
     df = df.drop('ID', axis='columns')
     ## Check columns to convert to dummies
```

No

4

18.0

22.0

```
columns_dummies = []
    for col in df.columns:
        if df[col].dtype != 'float64' and df[col].dtype != 'int64':
             columns_dummies.append(col)
    print(f'Number of columns to dummy encode = {len(columns_dummies)} out of ⊔
     →{len(df.columns)}')
    df_enc = pd.get_dummies(df, columns = columns_dummies, drop_first = True)
    Number of columns to dummy encode = 103 out of 121
[5]: df_enc.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 3702 entries, 0 to 3701
    Columns: 228 entries, VOOWOMTSL to VOOLKRFXPN_Yes
    dtypes: float64(17), int64(1), uint8(210)
    memory usage: 1.2 MB
[6]: df_enc.head()
[6]:
       VOOWOMTSL VOOWOMTSR PO1KPACDCV VOOCOMORB VOOHT25MM VOOWT25KG
    0
             0.0
                        0.0
                                    0.0
                                               0.0
                                                       1727.2
                                                                    75.0
             0.0
                       20.9
                                   15.0
                                               1.0
                                                       1625.6
                                                                    54.5
    1
    2
             0.0
                        NaN
                                    0.0
                                               0.0
                                                       1625.6
                                                                    59.1
    3
             0.0
                        0.0
                                    0.0
                                               0.0
                                                       1778.0
                                                                    79.5
             1.1
                        2.1
    4
                                    0.0
                                               0.0
                                                       1879.6
                                                                    81.8
                                          VOOBPSYS ...
       VOOWTMAXKG VOOWTMINKG VOOBPDIAS
                                                       P01FAMKR_Yes
             84.1
                         72.7
    0
                                    84.0
                                             152.0
                                                                  0
                                                    •••
             62.3
                         50.9
                                    60.0
                                                                  0
    1
                                             136.0 ...
    2
             79.5
                         52.3
                                    70.0
                                             115.0 ...
                                                                  1
    3
             84.1
                         70.5
                                    82.0
                                             150.0
                                                                  0
    4
            106.8
                         45.5
                                    60.0
                                             110.0 ...
       P02WTGA_Yes
                   0
                 0
                                0
                 0
                                0
                                                                  0
    1
                 0
                                                                  0
    2
                                1
                                                                  0
    3
                 0
                                1
    4
                 1
       VOORKEFFPT_Yes VOOLKEFFB_Yes VOOLKEFFPT_Too tender to examine
    0
                    0
    1
                    0
                                   0
                                                                     0
```

```
3
                     0
                                     0
                                                                        0
     4
                     0
                                     0
                                                                        0
        VOOLKEFFPT_Yes
                        VOORKRFXPN_Yes
                                         VOOLKRFXPN_Yes
     0
                     0
                                      0
                                                       0
                     0
                                                       0
     1
                                      1
     2
                     0
                                                       0
                                      0
     3
                     0
                                      0
                                                       0
     4
                     0
                                      0
                                                       0
     [5 rows x 228 columns]
[8]: columns_with_nan_values = []
     for col in df_enc.columns:
         if df_enc[col].isnull().values.any() == True:
             columns_with_nan_values.append(col)
     print(columns_with_nan_values)
    ['VOOWOMTSL', 'VOOWOMTSR', 'PO1KPACDCV', 'VOOCOMORB', 'VOOHT25MM', 'VOOWT25KG',
    'VOOWTMAXKG', 'VOOWTMINKG', 'VOOBPDIAS', 'VOOBPSYS', 'VOODTVITD', 'VOODTCALC',
    'VOODTCHOL', 'PO1BMI', 'VOOPASE', 'VOOLLWGT', 'VOORLWGT']
[9]: for col in columns_with_nan_values:
         col_mean = df[col].describe()['mean']
         df_enc[col] = df[col].fillna(col_mean)
     df_enc.head()
[9]:
        VOOWOMTSL VOOWOMTSR PO1KPACDCV VOOCOMORB
                                                      VOOHT25MM VOOWT25KG
    0
              0.0
                    0.000000
                                      0.0
                                                 0.0
                                                          1727.2
                                                                       75.0
                                     15.0
                                                 1.0
                                                                       54.5
              0.0 20.900000
                                                          1625.6
     1
     2
              0.0 10.076808
                                      0.0
                                                 0.0
                                                          1625.6
                                                                       59.1
     3
              0.0
                    0.000000
                                      0.0
                                                 0.0
                                                          1778.0
                                                                       79.5
     4
              1.1
                    2.100000
                                      0.0
                                                 0.0
                                                          1879.6
                                                                       81.8
        VOOWTMAXKG VOOWTMINKG VOOBPDIAS VOOBPSYS ...
                                                          P01FAMKR_Yes
              84.1
     0
                          72.7
                                      84.0
                                               152.0
                                                                     0
              62.3
                          50.9
                                      60.0
                                               136.0 ...
                                                                     0
     1
     2
              79.5
                          52.3
                                      70.0
                                               115.0 ...
                                                                     1
                                      82.0
     3
              84.1
                          70.5
                                               150.0
                                                                     0
     4
             106.8
                          45.5
                                      60.0
                                               110.0
        PO2WTGA Yes
                    VOORKEFFB Yes VOORKEFFPT Too tender to examine
                  0
                                  0
     0
                                                                     0
                  0
                                  0
                                                                     0
     1
     2
                  0
                                                                     0
                                  1
```

0

1

0

2

```
3
                  0
                                 1
                                                                  0
     4
                  1
                                 0
                                                                  0
        VOORKEFFPT_Yes VOOLKEFFB_Yes VOOLKEFFPT_Too tender to examine \
     0
                     0
     1
                     0
                                    0
                                                                     0
                                                                     0
     2
                     1
                                    0
                                    0
                                                                     0
     3
                     0
     4
                     0
                                                                     0
        0
                     0
                     0
                                    1
                                                    0
     1
     2
                     0
                                                    0
                                    0
                     0
                                    0
                                                    0
     3
                     0
                                    0
                                                    0
     [5 rows x 228 columns]
[10]: | ## Check if there are still NaN values in data frame
     df_enc.isnull().values.any()
[10]: False
[11]: ## Divide data set in training and testing set
     df_train, df_test = train_test_split(df_enc, test_size=0.3, random_state=88)
     df_train.shape, df_test.shape
[11]: ((2591, 228), (1111, 228))
[15]: X_train = df_train.drop(['cumulative_outcome'], axis=1)
     y_train = df_train['cumulative_outcome']
     X_test = df_test.drop(['cumulative_outcome'], axis=1)
     y_test = df_test['cumulative_outcome']
     logreg = LogisticRegression()
     logreg.fit(X_train, y_train)
     y_pred = logreg.predict(X_test)
     score = logreg.score(X_test, y_test)
     print(score)
```

0.5742574257425742

```
/opt/anaconda3/lib/python3.8/site-
     packages/sklearn/linear_model/_logistic.py:763: ConvergenceWarning: lbfgs failed
     to converge (status=1):
     STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
     Increase the number of iterations (max_iter) or scale the data as shown in:
         https://scikit-learn.org/stable/modules/preprocessing.html
     Please also refer to the documentation for alternative solver options:
         https://scikit-learn.org/stable/modules/linear_model.html#logistic-
     regression
       n_iter_i = _check_optimize_result(
[18]: ## Confusion matrix and accuracy
      from sklearn.metrics import confusion_matrix
      from sklearn.metrics import accuracy_score
      y_test = df_test['cumulative_outcome']
      cm = confusion_matrix(y_test, y_pred)
      print ("Confusion Matrix : \n", cm)
      print("Accuracy:", round(accuracy_score(y_test, y_pred),4))
      print('TPR = ', cm[1,1]/(cm[1,1]+cm[0,1]))
      print('FPR = ', cm[1,0]/(cm[1,0]+cm[0,0]))
     Confusion Matrix :
      [[552 65]
      [408 86]]
     Accuracy: 0.5743
     TPR = 0.5695364238410596
     FPR = 0.425
[44]: logreg.coef_
[44]: array([[-1.14219563e-02, -7.10408889e-03, -4.12329633e-03,
              -3.27051208e-03, -3.17514908e-03, -1.95325985e-03,
              -1.86105715e-03, -1.35870638e-03, -1.32238187e-03,
              -1.25053439e-03, -1.20369462e-03, -1.18035742e-03,
              -1.16200831e-03, -1.10170405e-03, -1.10170405e-03,
              -1.07446364e-03, -9.98325505e-04, -9.95786606e-04,
              -9.45349566e-04, -8.90553378e-04, -8.77223703e-04,
              -8.06138754e-04, -7.21270392e-04, -7.15197806e-04,
              -6.22735766e-04, -6.16474537e-04, -6.14071055e-04,
              -5.78481406e-04, -5.75572361e-04, -5.60175099e-04,
              -5.48544619e-04, -5.31013474e-04, -5.30363259e-04,
              -5.22513421e-04, -4.34637544e-04, -4.19281618e-04,
              -4.10346815e-04, -3.94857052e-04, -3.86518719e-04,
              -3.84390102e-04, -3.83839803e-04, -3.59701433e-04,
```

```
-3.51380122e-04, -2.99322416e-04, -2.99314238e-04,
-2.95334685e-04, -2.95130711e-04, -2.65358998e-04,
-2.64032674e-04, -2.60488832e-04, -2.53755455e-04,
-2.42697587e-04, -2.21358532e-04, -1.90365880e-04,
-1.85995429e-04, -1.83029295e-04, -1.68992022e-04,
-1.55783989e-04, -1.51360648e-04, -1.43454595e-04,
-1.14042528e-04, -1.11330605e-04, -1.10988829e-04,
-1.01774872e-04, -1.00553660e-04, -9.74183549e-05,
-8.89057739e-05, -8.38977877e-05, -8.24158682e-05,
-5.93865635e-05, -5.76184589e-05, -4.75448679e-05,
-3.95340537e-05, -3.28310001e-05, -1.79149060e-05,
-1.62052316e-05, -1.37324814e-05, 0.00000000e+00,
0.00000000e+00, 1.78429149e-09, 1.27552649e-06,
 7.07710767e-06,
                 7.72017004e-06,
                                  1.49770307e-05,
 1.87047139e-05, 2.49158990e-05, 2.68901618e-05,
 4.30437818e-05, 5.10902165e-05, 5.79464984e-05,
 6.00087892e-05,
                 6.10478668e-05,
                                 6.57123392e-05,
 6.79270684e-05, 6.85963911e-05, 6.97566481e-05,
 7.54105445e-05,
                 7.71220241e-05,
                                  7.72678234e-05,
8.04903226e-05,
                 8.34650145e-05,
                                  8.35515321e-05,
 9.38330005e-05, 9.97693011e-05, 1.04597914e-04,
 1.11834051e-04,
                 1.12497543e-04,
                                  1.13848366e-04,
 1.15091698e-04,
                 1.18951281e-04,
                                  1.26016992e-04,
 1.26876983e-04, 1.35131717e-04, 1.46055589e-04,
 1.53590324e-04,
                 1.56280500e-04,
                                  1.61790383e-04,
 1.70305065e-04,
                1.72676881e-04,
                                  1.74710844e-04,
 1.80786929e-04, 1.84693406e-04,
                                  1.87404055e-04,
 1.89310009e-04,
                 1.99184589e-04,
                                  1.99184589e-04,
 2.04236631e-04, 2.05339886e-04,
                                  2.08082659e-04,
 2.16124784e-04, 2.23490291e-04,
                                  2.37057943e-04,
 2.47380811e-04,
                 2.71108896e-04,
                                  2.71792531e-04,
 2.97296939e-04, 3.03795405e-04,
                                  3.11169104e-04,
 3.11655934e-04, 3.14479278e-04,
                                  3.16316287e-04,
 3.19851639e-04,
                 3.22573690e-04,
                                  3.25673137e-04,
 3.39256596e-04, 3.50593485e-04,
                                  3.62814380e-04,
                                  3.89908123e-04,
                 3.85446068e-04,
 3.84521006e-04,
 4.08613091e-04,
                 4.13718875e-04,
                                  4.16570568e-04,
 4.28258753e-04,
                 4.41863668e-04,
                                  4.44334305e-04,
 4.54693004e-04, 4.83257423e-04,
                                  4.98689983e-04,
 5.08205926e-04,
                 5.12561711e-04,
                                 5.37144695e-04,
 5.53118234e-04, 5.62745885e-04, 5.68587713e-04,
 5.75857978e-04, 5.92569179e-04,
                                  6.16548634e-04,
 6.39072089e-04,
                 6.63667583e-04,
                                  6.76327862e-04,
 6.99531961e-04, 7.09102205e-04,
                                 7.26835731e-04,
 7.51061084e-04,
                 7.85727967e-04,
                                  7.86066566e-04,
 7.90465690e-04, 7.96877222e-04,
                                 8.01990624e-04,
 8.10358395e-04, 8.15936153e-04, 8.36283601e-04,
```

```
8.69601583e-04, 9.15457038e-04, 9.24283045e-04,
9.89984603e-04,
                1.02192374e-03,
                                 1.04094963e-03,
               1.05840143e-03,
                                1.06812812e-03,
1.05806152e-03,
1.07810884e-03, 1.09439672e-03, 1.11022796e-03,
1.17775470e-03,
                1.22269439e-03,
                                1.24011333e-03,
1.32064762e-03, 1.35850037e-03, 1.45014947e-03,
1.47673024e-03, 1.55009744e-03, 1.56074300e-03,
1.56782010e-03,
                1.97505915e-03,
                                1.98353238e-03,
2.07556366e-03,
                2.08726865e-03, 2.10571240e-03,
2.16884423e-03, 2.34994588e-03,
                                2.42710601e-03,
2.46309613e-03,
                2.48290146e-03,
                                2.56175042e-03,
2.57224500e-03, 2.82252246e-03, 2.89876378e-03,
3.25668845e-03, 3.28107146e-03,
                                 3.69811424e-03,
6.37582372e-03,
                6.82599807e-03, 7.08210911e-03,
1.31559383e-02,
               1.99116757e-02]])
```

[]: