ELEMENTARY STATISTICS COURSE

Alfredo Sánchez Alberca (asalber@ceu.es)

Feb 2016

Department of Applied Math and Statistics CEU San Pablo

LICENSE TERMS ©

This work is licensed under an Attribution-NonCommercial-ShareAlike 4.0 International Creative Commons License. http://creativecommons.org/licenses/by-nc-sa/4.0/

You are free to:

- · Share copy and redistribute the material in any medium or format
- · Adapt remix, transform, and build upon the material

Under the following terms:

Attribution. You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

NonComercial. You may not use the material for commercial purposes.

ShareAlike. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

CONTENTS

1. Probability

PROBABILITY

PROBABILITY

- 1. Probability
- 1.1 Random experiments and events
- 1.2 Set theory
- 1.3 Probability defintion
- 1.4 Conditional probability
- 1.5 Dependence of events

Introduction

Descriptive Statistics provide methods to describe de variables measured in the sample and their relations, but it doesn't allow to draw any conclusion about the population.

Now it's time to make the leap from the sample to the population and the bridge for that is the **probability theory**.

Remember that the sample has a limited information about the population, and in order to draw valid conclusions for the population the sample must be representative of it. For that reason, to guarantee the representativeness of the sample, this must be drawn randomly. This means that the choice of individuals in the sample is by chance.

The probability theory will give us the tools to control the random in the sampling and to determine the level of reliability of the conclusions drawn from the sample.

RANDOM EXPERIMENTS

The study of a characteristic of the population is conducted through random experiments.

Definition (Random experiment)

A random experiment is an experiment that meets two conditions:

- 1. It is known the set of possible outcomes.
- 2. It is impossible to predict the outcome with absolute certainty.

Example. Gambling are typical examples of random experiments. The roll of a dice, for example, is a random experiment cause

- It is known the set of possible outcomes: $\{1, 2, 3, 4, 5, 6\}$.
- Before rolling the dice, it's impossible to predict with absolute certainty the face of the dice that will occur.

Another non-gambling example is the random choice of an individual of a human population and the determination of its blood type. Generally, the draw of a sample by a random method is an random experiment.

SAMPLE SPACE

Definition (Sample space)

The set Ω of the possible outcomes of a random experiment is known as sample space.

Example Some examples of sample spaces are:

- For the toss of a coin $\Omega = \{head, tail\}$.
- For the roll of a dice $\Omega = \{1, 2, 3, 4, 5, 6\}.$
- For the blood type of an individual drawn by chance $\Omega = \{A, B, AB, 0\}$.
- For the height of an individual drawn by chance $\Omega = \mathbb{R}^+$.

SAMPLE SPACE CONSTRUCTION

In experiments where more than one variable is measured, the determination of the sample space can be difficult. In such a cases, it is advisable to use a tree diagram to construct the sample space.

In a tree diagram every variable is represented in a level of the tree and every possible outcome of the variable as a branch.

SAMPLE SPACE CONSTRUCTION

EXAMPLE OF GENDER AND BLOOD TYPE

RANDOM EVENTS

Definition (Random event)

A $\it random\ event$ is any subset of the sample space Ω of a $\it random\ experiment$.

There are different types of events:

- Impossible event: Is the event with no elements Ø. It has no chance of occurring.
- Elemental events: Are events with only one element, that is, a singleton.
- Composed events: Are events with two or more elements.
- Sure event: Is the event that contains the whole sample space. It always happens.

EVENT SPACE

Definition (Event space)

Given a sample space Ω of a random experiment, the *event space* of Ω is the set of all possible events of Ω , and is noted $\mathcal{P}(\Omega)$.

Example. Given the sample space $\Omega = \{a, b, c\}$, its even space is

$$\mathcal{P}(\Omega) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}\}$$

EVENT OPERATIONS

As events are subsets of the sample space, using the set theory we have the following operations on events:

- Union
- Intersection
- Complement
- · Difference

Union of events

Definition (Union event)

Given two events $A, B \in \mathcal{P}(\Omega)$, the *union* of A and B, denoted by $A \cup B$, is the event of all elements that are members of A or B or both.

$$A \cup B = \{x \mid x \in A \text{ or } x \in B\}.$$

The union event $A \cup B$ happens when A or B happen.

Intersection of events

Definition (Intersection event)

Given two events $A, B \in \mathcal{P}(\Omega)$, the *intersection* of A and B, denoted by $A \cap B$, is the event of all elements that are members of both A and B.

$$A\cap B=\{x\,|\,x\in A\text{ and }x\in B\}.$$

The intersection event $A \cap B$ happens when A and B happen.

Observe that the intersection event is included in the union even $A \cap B \subseteq A \cup B$.

COMPLEMENT OF AN EVENT

Definition (Complementary event)

Given an event $A \in \mathcal{P}(\Omega)$, the complementary or contrary event of A, denoted by \bar{A} , is the event of all elements of Ω except the elements that are members of A.

$$\overline{A} = \{ x \mid x \notin A \}.$$

The complementary event \bar{A} happens when A does no happen.

DIFFERENCE OF EVENTS

Definition (Intersection event)

Given two events $A, B \in \mathcal{P}(\Omega)$, the *intersection* of A and B, denoted by $A \cap B$, is the event of all elements that are members of both A and B.

$$A - B = \{x \mid x \in A \text{ and } x \notin B\} = A \cap \overline{B}.$$

The difference event A-B happens when A happens but B not.

EXAMPLE

Given the sample space of rolling a dice $\Omega = \{1, 2, 3, 4, 5, 6\}$ and the events $A = \{2, 4, 6\}$ and $B = \{1, 2, 3, 4\}$,

- The union of A and B is $A \cup B = \{1, 2, 3, 4, 6\}.$
- The intersection of A and B is $A \cap B = \{2, 4\}$.
- The complement of A is $\bar{A} = \{1, 3, 5\}$.
- The events A and \bar{A} are incompatible.
- The difference of A and B is $A B = \{6\}$, and the difference of B and A is $B A = \{1,3\}$.

ALGEBRA OF EVENTS

Given the events $A, B, C \in \mathcal{P}(\Omega)$, the following properties are meet.

- 1. $A \cup A = A$, $A \cap A = A$ (idempotency).
- 2. $A \cup B = B \cup A$, $A \cap B = B \cap A$ (commutative).
- 3. $(A \cup B) \cup C = A \cup (B \cup C)$, $(A \cap B) \cap C = A \cap (B \cap C)$ (associative).
- 4. $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$, $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$ (distributive).
- 5. $A \cup \emptyset = A$, $A \cap \Omega = A$ (neutral element).
- 6. $A \cup \Omega = \Omega$, $A \cap \emptyset = \emptyset$ (absorbing element).
- 7. $A \cup \overline{A} = \Omega$, $A \cap \overline{A} = \emptyset$ (complementary symmetric element).
- 8. $\overline{\overline{A}} = A$ (double contrary).
- 9. $\overline{A \cup B} = \overline{A} \cap \overline{B}$, $\overline{A \cap B} = \overline{A} \cup \overline{B}$ (Morgan's laws).

CLASSICAL DEFINITION OF PROBABILITY

Definition (Probability - Laplace)

Given a sample space Ω of a random experiment where all elements of Ω are equally likely, the *probability* of an event $A\subseteq \Omega$ is the quotient between the number of elements of A and the number of elements of Ω

$$P(A) = \frac{|A|}{|\Omega|} = \frac{\text{number of favorable outcomes}}{\text{number of possible outcomes}}$$

This definition is widespread, but it has important restrictions:

- It is required that all the elements of the sample space are equally likely (equiprobability).
- · It can't be used with infinite sample spaces.

Watch out! These conditions are not meet in many real experiments.

Given the sample space of rolling a dice $\Omega = \{1, 2, 3, 4, 5, 6\}$ and the event $A = \{2, 4, 6\}$, the probability of A is

$$P(A) = \frac{|A|}{|\Omega|} = \frac{3}{6} = 0.5.$$

However, given the sample space of the blood type of a random individual $\Omega\{O,A,B,AB\}$, it's not possible to use the classical definition to compute the probability of having group A,

$$P(A) \neq \frac{|A|}{|\Omega|} = \frac{1}{4} = 0.25,$$

cause the blood types are not equally likely in human populations.

FREQUENCY DEFINITION OF PROBABILITY

Theorem (Law of large numbers)

When a random experiment is repeated a large number of times, the relative frequency of an event tends to a number that is the real probability of the event.

The following definition of probability uses this theorem.

Definition (Frequency probability)

Given a sample space Ω of a replicable random experiment, the *probability* of an event $A\subseteq \Omega$ is the relative frequency of the event A in an infinite number of repetitions of the experiment

$$P(A) = \lim_{n \to \infty} \frac{n_A}{n}$$

Although frequency probability avoid the restrictions of classical definition, it also have some drawbacks

• It computes an estimation of the real probability (more accurate the

EXAMPLE

Given the sample space of tossing a coin $\Omega = \{H, T\}$, if after tossing the coin 100 times we got 54 heads, then the probability of H is

$$P(H) = \frac{n_H}{n} = \frac{54}{100} = 0.54.$$

Given the sample space of the blood type of a random individual $\Omega\{O,A,B,AB\}$, if after drawing a random sample of 1000 persons we got 412 with blood type A, then the probability of A is

$$P(A) \neq \frac{n_A}{n} = \frac{412}{1000} = 0.412.$$

AXIOMATIC DEFINITION OF PROBABILITY

Definition (Probability - Kolmogórov)

Given a sample space Ω of a random experiment, a *probability* function is a function that maps every event $A \subseteq \Omega$ a real number P(A), known as the probability of A, that meets the following axioms:

1. The probability of any event is nonnegative,

$$P(A) \geq 0$$
.

2. The probability of the sure event is 1,

$$P(\Omega) = 1$$

3. The probability of the union of two incompatible events $(A \cap B = \emptyset)$ is the sum of their probabilities

$$P(A \cup B) = P(A) + P(B).$$

From the previous axioms is possible to deduce some important properties of a probability function.

From the previous axioms is possible to deduce some important properties of a probability function.

1.
$$P(\bar{A}) = 1 - P(A)$$
.

From the previous axioms is possible to deduce some important properties of a probability function.

- 1. $P(\bar{A}) = 1 P(A)$.
- 2. $P(\emptyset) = 0$.

From the previous axioms is possible to deduce some important properties of a probability function.

- 1. $P(\bar{A}) = 1 P(A)$.
- 2. $P(\emptyset) = 0$.
- 3. If $A \subseteq B$ then $P(A) \le P(B)$.

From the previous axioms is possible to deduce some important properties of a probability function.

- 1. $P(\bar{A}) = 1 P(A)$.
- 2. $P(\emptyset) = 0$.
- 3. If $A \subseteq B$ then $P(A) \le P(B)$.
- 4. $P(A) \leq 1$. This means that $P(A) \in [0,1]$.

From the previous axioms is possible to deduce some important properties of a probability function.

- 1. $P(\bar{A}) = 1 P(A)$.
- 2. $P(\emptyset) = 0$.
- 3. If $A \subseteq B$ then $P(A) \le P(B)$.
- 4. $P(A) \le 1$. This means that $P(A) \in [0, 1]$.
- 5. $P(A B) = P(A) P(A \cap B)$.

From the previous axioms is possible to deduce some important properties of a probability function.

- 1. $P(\bar{A}) = 1 P(A)$.
- 2. $P(\emptyset) = 0$.
- 3. If $A \subseteq B$ then $P(A) \le P(B)$.
- 4. $P(A) \le 1$. This means that $P(A) \in [0, 1]$.
- 5. $P(A B) = P(A) P(A \cap B)$.
- 6. $P(A \cup B) = P(A) + P(B) P(A \cap B)$.

From the previous axioms is possible to deduce some important properties of a probability function.

- 1. $P(\bar{A}) = 1 P(A)$.
- 2. $P(\emptyset) = 0$.
- 3. If $A \subseteq B$ then $P(A) \le P(B)$.
- 4. $P(A) \le 1$. This means that $P(A) \in [0, 1]$.
- 5. $P(A B) = P(A) P(A \cap B)$.
- 6. $P(A \cup B) = P(A) + P(B) P(A \cap B)$.
- 7. If $A = \{e_1, \dots, e_n\}$, where e_i $i = 1, \dots, n$ are elemental events, then

$$P(A) = \sum_{i=1}^{n} P(e_i).$$

PROBABILITY INTERPRETATION

As set by the previous axioms, the probability of an event A, is a real number P(A) that always ranges from 0 to 1.

In a certain way, this number expresses the plausibility of the event, that is, the chances that the event A occurs in the experiment. Therefore, it also gives a measure of the uncertainty about the event.

- The maximum uncertainty correspond to probability P(A) = 0.5 (A and \bar{A} have the same chances of happening.)
- The minimum uncertainty correspond to probability P(A) = 1 (A will happen with absolute certainty) and P(A) = 0 (A won't happen with absolute certainty)

When P(A) is closer to 0 than to 1, the chances of not happening A are grater than the chances of happening A. On the contrary, when P(A) is closer to 1 than to 0, the chances of happening A are grater than the chances of not happening A.

CONDITIONAL EXPERIMENTS

Occasionally, we can get some information about the experiment before its realization. Usually that information is given as an event *B* of the same sample space that we know that is true before to conduct the experiment.

In such a case, we will say that *B* is a *conditioning* event and the probability of another event *A* known as a *conditional* probability and expressed

P(A|B).

This must be read as probability of event A conditional on event B occurring.

CONDITIONAL EXPERIMENTS

EXAMPLE

Usually, conditioning events change the sample space and therefore the probabilities of events.

Assume that we have a sample of 100 women and 100 men with the following frequencies

	Non-smokers	Smokers
Females	80	20
Males	60	40

Then, using the frequency definition of probability, the probability of being smoker from the whole sample is

$$P(Smoker) = 60/200 = 0.3.$$

EXAMPLE

Usually, conditioning events change the sample space and therefore the probabilities of events.

Assume that we have a sample of 100 women and 100 men with the following frequencies

	Non-smokers	Smokers
Females	80	20
Males	60	40

Then, using the frequency definition of probability, the probability of being smoker from the whole sample is

$$P(Smoker) = 60/200 = 0.3.$$

However, if we know that the person is a woman, then the sample is reduced to the first row, and the probability of being smoker is

$$P(\text{Smoker}|\text{Female}) = 20/100 = 0.2.$$

CONDITIONAL PROBABILITY

Definition (Conditional probability)

Given a sample space Ω of a random experiment, and two events $A, B \subseteq \Omega$, the probability of A conditional on B occurring is

$$P(A|B) = \frac{P(A \cap B)}{P(B)},$$

as long as, $P(B) \neq 0$.

This definition allows to calculate conditional probabilities without changing the original sample space.

Example. In the previous example

$$P(\text{Smoker}|\text{Female}) = \frac{P(\text{Smoker} \cap \text{Female})}{P(\text{Female})} = \frac{20/200}{100/200} = \frac{80}{100} = 0.8.$$

De esta definición se deduce que la probabilidad de la intersección es

$$P(A \cap B) = P(A)P(B/A) = P(B)P(A/B).$$

PROBABILITY OF THE INTERSECTION EVENT

From the definition of conditional probability it's possible to derive the formula for the probability of the intersection of two events.

$$P(A \cap B) = P(A)P(B/A) = P(B)P(A/B).$$

Example. In a population there are a 30% of smokers and we know that there are a 40% of smokers with breast cancer. The probability of a random person being smoker and having breast cancer is

$$P(Smoker \cap Cancer) = P(Smoker)P(Cancer|Smoker) = 0.3 \times 0.4 = 0.12.$$

INDEPENDENCE OF EVENTS

Sometimes, the probability the conditioning event doesn't change the original probability of the main event.

Definition (Independent events)

Given a sample space Ω of a random experiment, two events $A,B\subseteq \Omega$ are independents if the probability of A doesn't change when conditioning on B, and vice-versa, that is,

$$P(A|B) = P(A)$$
 and $P(B|A) = P(B)$,

if $P(A) \neq 0$ and $P(B) \neq 0$.

This means that the occurrence of one event doesn't give relevant information to change the uncertainty of the other.

When two events are independent, the probability of the intersection of them is the product of their probabilities,

$$P(A \cap B) = P(A)P(B)$$
.

The sample space of tossing twice a coin is $\Omega = \{(H, H), (H, T), (T, H), (T, T)\}$ and all the elements are equiprobable if the coin is fair. Thus, applying the classical definition of probability we have

$$P((H,H)) = \frac{1}{4} = 0.25.$$

If we name $H_1 = \{(H, H), (H, T)\}$, that is, having heads in the first toss, and $H_2 = \{(H, H), (T, H)\}$, that is, having heads in the second toss, we can get the same result assuming that these events are independent,

$$P(H, H) = P(H_1 \cap H_2) = P(H_1)P(H_2) = \frac{2}{4}\frac{2}{4} = \frac{1}{4} = 0.25.$$

PROBABILISTIC SPACE

Definition (Probabilistic space)

A probabilistic space of a random experiment is a triplet (Ω, \mathcal{F}, P) where

- \cdot Ω is the sample space of the experiment.
- \cdot \mathcal{F} is a set of events of the experiment.
- *P* is a probability function.

If we know the probabilities of all the elements of Ω , then we can calculate the probability of every event in $\mathcal F$ and we can construct easily the probability space.

PROBABILISTIC SPACE CONSTRUCTION

In order to determine the probability of every elemental event we can use a tree diagram, using the following rules:

- 1. For every node of the tree label the incoming edge with the probability of the variable in that level having the value of the node, conditioned by events corresponding to its ancestor nodes in the tree.
- 2. The probability of every elemental event in the leaves is the product of the probabilities on edges that go form the root tho the leave.

