Self-Test 2

- 1. In $\triangle XYZ$, $m \angle X = 50$, $m \angle Y = 60$, and $m \angle Z = 70$. Name the longest side of the triangle.
- 2. In $\triangle DOM$, $\angle O$ is a right angle and $m \angle D > m \angle M$. Which side of $\triangle DOM$ is the shortest side?

Complete each statement by writing <, =, or >.

- 3. If ER > EN, then $m \angle R \stackrel{?}{=} m \angle N$.
- **4.** If $\overline{AG} \cong \overline{ER}$, $\overline{AP} \cong \overline{EN}$, and $\angle A \cong \angle E$, then $GP \stackrel{?}{=} RN$.
- 5. If $\overline{GA} \cong \overline{RE}$, $\overline{GP} \cong \overline{RN}$, and AP > EN, then $m \angle G \stackrel{?}{=} m \angle R$.

6. The lengths of the sides of a triangle are 5, 6, and x. Then x must be greater than ? and less than ?.

The longer diagonal of $\square QRST$ is \overline{QS} . Tell whether each statement must be, may be, or cannot be true.

7. $\angle R$ is an acute angle.

8. QS > RS

9. RS > RT

Extra

Non-Euclidean Geometries

When you develop a geometry, you have some choice as to which statements you are going to postulate and which you are going to prove. For example, consider these two statements:

- (A) If two parallel lines are cut by a transversal, then corresponding angles
- (B) Through a point outside a line, there is exactly one line parallel to the given line.

In this book, statement (A) is Postulate 10 and statement (B) is Theorem 3-8. In some books, statement (B) is a postulate (commonly called Euclid's Parallel Postulate) and statement (A) is a theorem. In still other developments, both of these statements are proved on the basis of some third statement chosen as a postulate.

A geometry that provides for a unique parallel to a line through a point not on the line is called Euclidean, so this text is a Euclidean geometry book. In the nineteenth century, it was discovered that geometries exist in which the Parallel Postulate is not true. Such geometries are called non-Euclidean. The statements at the top of the next page show the key differences between Euclidean geometry and two types of non-Euclidean geometry.