梁笑

<u> barryliang52</u>	<u>1@gmail.com</u>	tps://barry-liang.github.io/resume/
教育背景	东京大学	东京,日本
	工学硕士 (英文项目): 山川研究室 (高速机器人实验室)	9 /2019 – 9 /2021
	GPA: 4.00/4.00	
	上海交通大学 交大密西根学院	上海,中国
	工学学士 (英文项目): 主修机械工程 GPA: 3.77/4.00 (专业第二名) 专业 GPA: 3.93/4.00	9 /2015 – 8 /2019
实习经历	计 算机视觉工程师 华为东京研究所 AR/VR 部门	
	1. 评估测试 3D 人脸重建的最新研究成果,应用 Tencent 3D face	
	Ganfit, Avatarme 等现有模型重建 3D 人脸。	
	2. 进行人脸数据采集,转换和 3dmm 基底构建。	
	3. 参与测试 Dressi 渲染器性能,应用该渲染器进行贴图材质的优	忙化。
核心课程	深度学习, 机器人操作, 数据结构与算法, 数据科学和机器学习,	线性代数, 概率论,
ent when lest 100°	自动控制,多线程并行计算,光线追踪与图像合成	** H.L.
研究经历	东京大学 山川机器人研究室	东京,日本
	研究一:基于高速双目视觉的高速旋转物体姿态测量和运动追踪。	• •
	设计基于双目的标记物匹配算法和局部窗口追踪算法,实现 1000	0hz 的高速视觉追踪和基于
	标记物排列模式的运动姿态估计。	
	<i>研究二:</i> 飞行环的视觉追踪和机器人抓取	6 /2020 – 12 /2020
	应用高速视觉系统实现飞行环的视觉追踪和姿态估计。设计新的	抓取点选择算法实现快速灵
	敏的机器人抓取动作。	
页目经历	上海交通大学	上海,中国
	项目一:CCD 相机成像模拟系统 (毕业设计银奖)	9 /2018 - 12 /2018
	设计基于 CCD 相机成像原理的光学仿真软件,输入车灯发射的光线数据,输出相机在不同	
	设计基于 CCD 相机成像原理的光学仿真软件,输入车灯发射的分	光线数据,输出相机在不同
	设计基于 CCD 相机成像原理的光学仿真软件,输入车灯发射的分角度和距离的成像结果。该项目用于车灯设计中的成像效果评测	
	角度和距离的成像结果。该项目用于车灯设计中的成像效果评测	6 /2018 – 8 /2018
	角度和距离的成像结果。该项目用于车灯设计中的成像效果评测 项目二:移动机器人运动规划:底盘运动规划和避障	6 /2018 – 8 /2018
	角度和距离的成像结果。该项目用于车灯设计中的成像效果评测 项目二:移动机器人运动规划:底盘运动规划和避障 利用传感器系统实现避障功能;对比 A star 和 Dijkstra 等最短路	6 /2018 – 8 /2018
	角度和距离的成像结果。该项目用于车灯设计中的成像效果评测 项目二:移动机器人运动规划:底盘运动规划和避障 利用传感器系统实现避障功能;对比 A star 和 Dijkstra 等最短路人到目标点的运动规划。	6 /2018 – 8 /2018 6 /2018 – 8 /2018 6 /2016 – 8 /2016
	角度和距离的成像结果。该项目用于车灯设计中的成像效果评测 项目二:移动机器人运动规划:底盘运动规划和避障 利用传感器系统实现避障功能;对比 A star 和 Dijkstra 等最短路人到目标点的运动规划。 项目三:基于动感单车的空气净化系统	6/2018 - 8/2018 6/2016 - 8/2016 6/2016 - 8/2016 统,利用锻炼时的车轮转动
	角度和距离的成像结果。该项目用于车灯设计中的成像效果评测 项目二:移动机器人运动规划:底盘运动规划和避障 利用传感器系统实现避障功能;对比 A star 和 Dijkstra 等最短路人到目标点的运动规划。 项目三:基于动感单车的空气净化系统 设计并制造基于皮带传动的动感单车,将车轮改造成空气净化系实现空气净化。用 Arduino 和传感器等实现心率测量,车轮转速	6/2018 - 8/2018 6/2018 - 8/2018 6/2016 - 8/2016 统,利用锻炼时的车轮转动 测量和信息显示等功能。
	角度和距离的成像结果。该项目用于车灯设计中的成像效果评测 项目二:移动机器人运动规划:底盘运动规划和避障 利用传感器系统实现避障功能;对比 A star 和 Dijkstra 等最短路人到目标点的运动规划。 项目三:基于动感单车的空气净化系统 设计并制造基于皮带传动的动感单车,将车轮改造成空气净化系实现空气净化。用 Arduino 和传感器等实现心率测量,车轮转速上海交大密西根学院	6/2018 - 8/2018 6/2018 - 8/2018 6/2016 - 8/2016 统,利用锻炼时的车轮转动 测量和信息显示等功能。 上海,中国
	角度和距离的成像结果。该项目用于车灯设计中的成像效果评测 项目二:移动机器人运动规划:底盘运动规划和避障 利用传感器系统实现避障功能;对比 A star 和 Dijkstra 等最短路 人到目标点的运动规划。 项目三:基于动感单车的空气净化系统 设计并制造基于皮带传动的动感单车,将车轮改造成空气净化系实现空气净化。用 Arduino 和传感器等实现心率测量,车轮转速上海交大密西根学院 课程助教 9/2018-8/2019; 学业分享中心负责人 9	6/2018 - 8/2018 6/2018 - 8/2018 6/2016 - 8/2016 统,利用锻炼时的车轮转动 测量和信息显示等功能。 上海,中国 9/2017 - 8/2019;
	角度和距离的成像结果。该项目用于车灯设计中的成像效果评测 项目二:移动机器人运动规划:底盘运动规划和避障 利用传感器系统实现避障功能;对比 A star 和 Dijkstra 等最短路人到目标点的运动规划。 项目三:基于动感单车的空气净化系统 设计并制造基于皮带传动的动感单车,将车轮改造成空气净化系实现空气净化。用 Arduino 和传感器等实现心率测量,车轮转速上海交大密西根学院	6/2018 - 8/2018 6/2018 - 8/2018 6/2016 - 8/2016 统,利用锻炼时的车轮转动 测量和信息显示等功能。 上海,中国 9/2017 - 8/2019; 1教授设计实验项目。
	角度和距离的成像结果。该项目用于车灯设计中的成像效果评测 项目二:移动机器人运动规划:底盘运动规划和避障 利用传感器系统实现避障功能;对比 A star 和 Dijkstra 等最短路 人到目标点的运动规划。 项目三:基于动感单车的空气净化系统 设计并制造基于皮带传动的动感单车,将车轮改造成空气净化系实现空气净化。用 Arduino 和传感器等实现心率测量,车轮转速上海交大密西根学院 课程助教 9/2018 – 8/2019; 学业分享中心负责人 包担任实验课助教,每周开展英文实验讲解,负责批改作业,协助组织学业分享中心日常 workshop; 为学院同学提供课程,科研等	6/2018 - 8/2018 6/2018 - 8/2018 6/2016 - 8/2016 统,利用锻炼时的车轮转动 测量和信息显示等功能。 上海,中国 9/2017 - 8/2019; 1教授设计实验项目。
	角度和距离的成像结果。该项目用于车灯设计中的成像效果评测 项目二:移动机器人运动规划:底盘运动规划和避障 利用传感器系统实现避障功能;对比 A star 和 Dijkstra 等最短路人到目标点的运动规划。 项目三:基于动感单车的空气净化系统 设计并制造基于皮带传动的动感单车,将车轮改造成空气净化系实现空气净化。用 Arduino 和传感器等实现心率测量,车轮转速上海交大密西根学院 课程助教 9/2018 – 8/2019; 学业分享中心负责人 担任实验课助教,每周开展英文实验讲解,负责批改作业,协助组织学业分享中心日常 workshop;为学院同学提供课程,科研等 学生会部长 7/2016 – 7/2017; 密院青志队副队长 在学生会组织企业参观和商业挑战赛活动。在青志队参与策划日	6/2018 - 8/2018 6/2016 - 8/2016 6/2016 - 8/2016 统,利用锻炼时的车轮转动 测量和信息显示等功能。 上海,中国 9/2017 - 8/2019; 1教授设计实验项目。 等方面的咨询服务。 7/2016 - 7/2017; 常公益和年度支教活动。
	角度和距离的成像结果。该项目用于车灯设计中的成像效果评测 项目二:移动机器人运动规划:底盘运动规划和避障 利用传感器系统实现避障功能;对比 A star 和 Dijkstra 等最短路 人到目标点的运动规划。 项目三:基于动感单车的空气净化系统 设计并制造基于皮带传动的动感单车,将车轮改造成空气净化系实现空气净化。用 Arduino 和传感器等实现心率测量,车轮转速 上海交大密西根学院 课程助教 9/2018 – 8/2019; 学业分享中心负责人 经担任实验课助教,每周开展英文实验讲解,负责批改作业,协助组织学业分享中心日常 workshop; 为学院同学提供课程,科研等学生会部长 7/2016 – 7/2017; 密院青志队副队长 在学生会组织企业参观和商业挑战赛活动。在青志队参与策划日大理右所实验小学 和 大理农业局	6/2018 - 8/2018 6/2016 - 8/2016 6/2016 - 8/2016 统,利用锻炼时的车轮转动 测量和信息显示等功能。 上海,中国 9/2017 - 8/2019; 即教授设计实验项目。 等方面的咨询服务。 7/2016 - 7/2017; 同常公益和年度支教活动。 云南,中国
	角度和距离的成像结果。该项目用于车灯设计中的成像效果评测 项目二:移动机器人运动规划:底盘运动规划和避障 利用传感器系统实现避障功能;对比 A star 和 Dijkstra 等最短路 人到目标点的运动规划。 项目三:基于动感单车的空气净化系统 设计并制造基于皮带传动的动感单车,将车轮改造成空气净化系实现空气净化。用 Arduino 和传感器等实现心率测量,车轮转速 上海交大密西根学院 课程助教 9/2018 – 8/2019; 学业分享中心负责人 经担任实验课助教,每周开展英文实验讲解,负责批改作业,协助组织学业分享中心日常 workshop;为学院同学提供课程,科研等学生会部长 7/2016 – 7/2017;密院青志队副队长 在学生会组织企业参观和商业挑战赛活动。在青志队参与策划日大理右所实验小学 和 大理农业局 支教老师 12/2015 – 1/2016; 生态经济挑战赛成员	6/2018 - 8/2018 6/2016 - 8/2016 6/2016 - 8/2016 6/2016 - 8/2016 6/2016 - 8/2016 6/2017 - 8/2016 上海,中国 9/2017 - 8/2019; 2017 - 8/2018;
	角度和距离的成像结果。该项目用于车灯设计中的成像效果评测	6/2018 - 8/2018 6/2016 - 8/2016 6/2016 - 8/2016 统,利用锻炼时的车轮转动 测量和信息显示等功能。 上海,中国 9/2017 - 8/2019; 2教授设计实验项目。 6方面的咨询服务。 7/2016 - 7/2017; 常公益和年度支教活动。 云南,中国 12/2017 - 1/2018; 证课程。
领导力	角度和距离的成像结果。该项目用于车灯设计中的成像效果评测 项目二:移动机器人运动规划:底盘运动规划和避障 利用传感器系统实现避障功能;对比 A star 和 Dijkstra 等最短路 人到目标点的运动规划。 项目三:基于动感单车的空气净化系统 设计并制造基于皮带传动的动感单车,将车轮改造成空气净化系实现空气净化。用 Arduino 和传感器等实现心率测量,车轮转速 上海交大密西根学院 课程助教 9/2018 – 8/2019; 学业分享中心负责人 包担任实验课助教,每周开展英文实验讲解,负责批改作业,协助组织学业分享中心日常 workshop; 为学院同学提供课程,科研等学生会部长 7/2016 – 7/2017; 密院青志队副队长 在学生会组织企业参观和商业挑战赛活动。在青志队参与策划日大理右所实验小学 和 大理农业局 支教老师 12/2015 – 1/2016; 生态经济挑战赛成员 参与寒假支教活动,为当地学生开展日常文化课教学和特色科普参加大理生态经济挑战赛,为当地果农制定线上和线下销售方案	6/2018 - 8/2018 6/2016 - 8/2016 6/2016 - 8/2016 6/2016 - 8/2016 6/2016 - 8/2016 6/2017 - 8/2016 上海,中国 9/2017 - 8/2019; 2017 - 1/2018; 2017 - 1/2018; 2018 - 1/2018; 2018 - 1/2018; 2018 - 1/2018; 2018 - 1/2018; 2018 - 1/2018;
领导力	角度和距离的成像结果。该项目用于车灯设计中的成像效果评测 项目二:移动机器人运动规划:底盘运动规划和避障 利用传感器系统实现避障功能;对比 A star 和 Dijkstra 等最短路 人到目标点的运动规划。 项目三:基于动感单车的空气净化系统 设计并制造基于皮带传动的动感单车,将车轮改造成空气净化系实现空气净化。用 Arduino 和传感器等实现心率测量,车轮转速 上海交大密西根学院 课程助教 9/2018 – 8/2019; 学业分享中心负责人 担任实验课助教,每周开展英文实验讲解,负责批改作业,协助组织学业分享中心日常 workshop;为学院同学提供课程,科研等学生会部长 7/2016 – 7/2017; 密院青志队副队长 在学生会组织企业参观和商业挑战赛活动。在青志队参与策划日大理右所实验小学 和 大理农业局 支教老师 12/2015 – 1/2016; 生态经济挑战赛成员 参与寒假支教活动,为当地学生开展日常文化课教学和特色科普参加大理生态经济挑战赛,为当地果农制定线上和线下销售方案日本文部省奖学金	6/2018 - 8/2018 6/2016 - 8/2016 6/2016 - 8/2016 统,利用锻炼时的车轮转动 测量和信息显示等功能。 上海,中国 9/2017 - 8/2019; 2教授设计实验项目。 等方面的咨询服务。 7/2016 - 7/2017; 常公益和年度支教活动。 云南,中国 12/2017 - 1/2018; 证课程。 5: 9/2019 - 8/2021
领导力	角度和距离的成像结果。该项目用于车灯设计中的成像效果评测 项目二:移动机器人运动规划:底盘运动规划和避障 利用传感器系统实现避障功能;对比 A star 和 Dijkstra 等最短路人到目标点的运动规划。 项目三:基于动感单车的空气净化系统设计并制造基于皮带传动的动感单车,将车轮改造成空气净化系实现空气净化。用 Arduino 和传感器等实现心率测量,车轮转速上海交大密西根学院 课程助教 9/2018 – 8/2019; 学业分享中心负责人 经担任实验课助教,每周开展英文实验讲解,负责批改作业,协助组织学业分享中心日常 workshop;为学院同学提供课程,科研等学生会部长 7/2016 – 7/2017; 密院青志队副队长在学生会组织企业参观和商业挑战赛活动。在青志队参与策划日大理右所实验小学 和 大理农业局 支教老师 12/2015 – 1/2016; 生态经济挑战赛成员参与寒假支教活动,为当地学生开展日常文化课教学和特色科普参加大理生态经济挑战赛,为当地果农制定线上和线下销售方案日本文部省奖学金上海市优秀毕业生	6/2018 - 8/2018 6/2016 - 8/2016 统,利用锻炼时的车轮转动 测量和信息显示等功能。 上海,中国 9/2017 - 8/2019; 到教授设计实验项目。 等方面的咨询服务。 7/2016 - 7/2017; 常公益和年度支教活动。 云南,中国 12/2017 - 1/2018; 课程。 5/2019 - 8/2021 6/2019
课外活动 /领导力	角度和距离的成像结果。该项目用于车灯设计中的成像效果评测 项目二:移动机器人运动规划:底盘运动规划和避障 利用传感器系统实现避障功能;对比 A star 和 Dijkstra 等最短路人到目标点的运动规划。 项目三:基于动感单车的空气净化系统设计并制造基于皮带传动的动感单车,将车轮改造成空气净化系实现空气净化。用 Arduino 和传感器等实现心率测量,车轮转速上海交大密西根学院 课程助教 9/2018 – 8/2019; 学业分享中心负责人 经担任实验课助教,每周开展英文实验讲解,负责批改作业,协助组织学业分享中心目常 workshop;为学院同学提供课程,科研等学生会部长 7/2016 – 7/2017;密院青志队副队长在学生会组织企业参观和商业挑战赛活动。在青志队参与策划日大理右所实验小学 和 大理农业局 支教老师 12/2015 – 1/2016;生态经济挑战赛成员参与寒假支教活动,为当地学生开展日常文化课教学和特色科普参加大理生态经济挑战赛,为当地果农制定线上和线下销售方案日本文部省奖学金上海市优秀毕业生 国家奖学金(两次)	6/2018 - 8/2018 6/2016 - 8/2016 统,利用锻炼时的车轮转动 测量和信息显示等功能。 上海,中国 9/2017 - 8/2019; 2教授设计实验项目。 等方面的咨询服务。 7/2016 - 7/2017; 常公益和年度支教活动。 云南,中国 12/2017 - 1/2018; 证课程。 5/2019 - 8/2021 6/2019 10/2017, 10/2018
领导力	角度和距离的成像结果。该项目用于车灯设计中的成像效果评测 项目二:移动机器人运动规划:底盘运动规划和避障 利用传感器系统实现避障功能;对比 A star 和 Dijkstra 等最短路人到目标点的运动规划。 项目三:基于动感单车的空气净化系统设计并制造基于皮带传动的动感单车,将车轮改造成空气净化系实现空气净化。用 Arduino 和传感器等实现心率测量,车轮转速上海交大密西根学院 课程助教 9/2018 – 8/2019; 学业分享中心负责人 包担任实验课助教,每周开展英文实验讲解,负责批改作业,协助组织学业分享中心日常 workshop;为学院同学提供课程,科研等学生会部长 7/2016 – 7/2017;密院青志队副队长在学生会组织企业参观和商业挑战赛活动。在青志队参与策划日大理右所实验小学 和 大理农业局 支教老师 12/2015 – 1/2016;生态经济挑战赛成员参与寒假支教活动,为当地学生开展日常文化课教学和特色科普参加大理生态经济挑战赛,为当地果农制定线上和线下销售方案日本文部省奖学金上海市优秀毕业生国家奖学金(两次)美国大学生数学建模大赛荣誉奖	6/2018 - 8/2018 6/2016 - 8/2016 6/2016 - 8/2016 统,利用锻炼时的车轮转动 测量和信息显示等功能。 上海,中国 9/2017 - 8/2019; 2教授设计实验项目。 等方面的咨询服务。 7/2016 - 7/2017; 常公益和年度支教活动。 云南,中国 12/2017 - 1/2018; 证课程。 5/2019 - 8/2021 6/2019 10/2017, 10/2018 4/2018
领导力	角度和距离的成像结果。该项目用于车灯设计中的成像效果评测 项目二:移动机器人运动规划:底盘运动规划和避障 利用传感器系统实现避障功能;对比 A star 和 Dijkstra 等最短路人到目标点的运动规划。 项目三:基于动感单车的空气净化系统设计并制造基于皮带传动的动感单车,将车轮改造成空气净化系实现空气净化。用 Arduino 和传感器等实现心率测量,车轮转速上海交大密西根学院 课程助教 9/2018 – 8/2019; 学业分享中心负责人 包担任实验课助教,每周开展英文实验讲解,负责批改作业,协助组织学业分享中心日常 workshop;为学院同学提供课程,科研等学生会部长 7/2016 – 7/2017; 密院青志队副队长 在学生会组织企业参观和商业挑战赛活动。在青志队参与策划日大理右所实验小学 和 大理农业局 支教老师 12/2015 – 1/2016; 生态经济挑战赛成员参与寒假支教活动,为当地学生开展日常文化课教学和特色科普参加大理生态经济挑战赛,为当地果农制定线上和线下销售方案日本文部省奖学金上海市优秀毕业生国家奖学金(两次)美国大学生数学建模大赛荣誉奖 俞黎明奖学金(两次)	6/2018 - 8/2018 6/2016 - 8/2016 6/2016 - 8/2016 统,利用锻炼时的车轮转动 测量和信息显示等功能。 上海,中国 9/2017 - 8/2019; 1教授设计实验项目。 等方面的咨询服务。 7/2016 - 7/2017; 1常公益和年度支教活动。 云南,中国 12/2017 - 1/2018; 证课程。 5. 9/2019 - 8/2021 6/2019 10/2017, 10/2018 4/2018 11/2016, 11/2017
荣 誉	角度和距离的成像结果。该项目用于车灯设计中的成像效果评测 项目二:移动机器人运动规划:底盘运动规划和避障 利用传感器系统实现避障功能;对比 A star 和 Dijkstra 等最短路人到目标点的运动规划。 项目三:基于动感单车的空气净化系统设计并制造基于皮带传动的动感单车,将车轮改造成空气净化系实现空气净化。用 Arduino 和传感器等实现心率测量,车轮转速上海交大密西根学院 课程助教 9/2018 – 8/2019; 学业分享中心负责人 9担任实验课助教,每周开展英文实验讲解,负责批改作业,协助组织学业分享中心日常 workshop;为学院同学提供课程,科研等学生会部长 7/2016 – 7/2017; 密院青志队副队长在学生会组织企业参观和商业挑战赛活动。在青志队参与策划日大理右所实验小学 和 大理农业局 支教老师 12/2015 – 1/2016; 生态经济挑战赛成员 参与寒假支教活动,为当地学生开展日常文化课教学和特色科普参加大理生态经济挑战赛,为当地果农制定线上和线下销售方案日本文部省奖学金上海市优秀毕业生国家奖学金(两次)美国大学生数学建模大赛荣誉奖 俞黎明奖学金(两次)交大学业优秀奖学金(三次)	6/2018 - 8/2018 6/2016 - 8/2016 6/2016 - 8/2016 6/2016 - 8/2016 6/2016 - 8/2016 6/2017 - 8/2019; 2017 - 8/2019; 2017 - 8/2019; 2017 - 8/2017; 2016 - 7/2017; 2016 - 7/2017; 2016 - 7/2018; 3012 / 2017 - 1/2018; 3013 - 8/2021 3014 - 8/2021 3016 - 8/2019 3016 - 8/2021 3016 - 8/2019 3016 - 8/2021 3016 - 8/2021 3016 - 8/2019 3016 - 8/2021 3016 - 8/2021 3016 - 8/2021 3016 - 8/2021 3016 - 8/2021 3016 - 8/2021 3016 - 8/2021 3016 - 8/2021 3016 - 8/2021 3016 - 8/2021 3016 - 8/2021 3016 - 8/2021 3016 - 8/2021 3016 - 8/2021 3016 - 8/2021 3016 - 8/2021 3017 - 8/2021 3018 - 8/2021 30
领导力	角度和距离的成像结果。该项目用于车灯设计中的成像效果评测 项目二:移动机器人运动规划:底盘运动规划和避障 利用传感器系统实现避障功能;对比 A star 和 Dijkstra 等最短路人到目标点的运动规划。 项目三:基于动感单车的空气净化系统设计并制造基于皮带传动的动感单车,将车轮改造成空气净化系实现空气净化。用 Arduino 和传感器等实现心率测量,车轮转速上海交大密西根学院 课程助教 9/2018 – 8/2019; 学业分享中心负责人 包担任实验课助教,每周开展英文实验讲解,负责批改作业,协助组织学业分享中心日常 workshop;为学院同学提供课程,科研等学生会部长 7/2016 – 7/2017; 密院青志队副队长 在学生会组织企业参观和商业挑战赛活动。在青志队参与策划日大理右所实验小学 和 大理农业局 支教老师 12/2015 – 1/2016; 生态经济挑战赛成员参与寒假支教活动,为当地学生开展日常文化课教学和特色科普参加大理生态经济挑战赛,为当地果农制定线上和线下销售方案日本文部省奖学金上海市优秀毕业生国家奖学金(两次)美国大学生数学建模大赛荣誉奖 俞黎明奖学金(两次)	6/2018 - 8/2018 6/2016 - 8/2016 6/2016 - 8/2016 6/2016 - 8/2016 6/2016 - 8/2016 6/2017 - 8/2019; 2017 - 8/2019; 2017 - 8/2019; 2017 - 8/2017; 2016 - 7/2017; 2016 - 7/2018; 2017 - 1/2018; 2018 - 8/2021 2019 - 8/2021 2019 - 8/2021 2019 - 8/2021 2019 - 8/2018 2019 - 8/2

Xiao(Barry) Liang

<u>barryliang521@</u> <u>a</u>	gmail.com		
SUMMARY	Seeking for a Job related to Robotics, Algorithm or Computer Vision Engineer		
	 Skilled in C++, Python, MATLAB, ROS and OpenCV. (★★★) 		
	 Familiar with Linux, PyTorch, Shell, Webots and Universe Robot (★★★) 		
	 Experienced in Blender, Cuda, OpenMP, and V-REP Pro. (★★) 		
	 Fluent in English and beginner level in Japanese. 		
	• Interdisciplinary engineer, fully trained project experience with leadership, nice group worker		
EDUCATION	The University of Tokyo (UT), Tokyo, Japan		
	Member of Yamakawa Lab. (High Speed Flexible Robotics Lab)		
	M.S. in Mechanical Engineering (English Program) Sept 2019 – Sept 2021(expected)		
	Shanghai Jiao Tong University (SJTU), Shanghai, China		
	University of Michigan – Shanghai Jiao Tong University Joint Institute (UM-SJTU JI)		
	B.Sc. in Mechanical Engineering (English Program) Sept 2015 – Aug 2019		
	Overall GPA: 3.77/4.00; Major GPA: 3.93/4.00 (ranking 2/58).		
INTERNSHIP	Computer Vision Engineer, Huawei Tokyo Research Center, Tokyo, Japan Oct 2020 – July 2021		
COURSES	Deep learning, Machine learning, Robot Manipulation, Data Science and Machine Leaning,		
HIGHLIGHTS	S Linear Algebra, Automatic Control, Intro to Robotics, Data Structure and Algorithms		
RESEARCH	Marker-Based Pose Estimation for Rotating Objects using High-Speed Vision		
EXPERIENCE			
	•Apply visual feedback to measure the position and orientation of rotating objects in real time.		
	• Achieve a general marker-matching algorithm to avoid the marker labeling		
	Tracking and Catching of a Thrown Ring		
	Yamakawa Laboratory (High Speed Flexible Robotics Lab) @UT June 2020 – Dec 2020		
	• Proposed a marker-based 6D pose tracking algorithm using a high-speed vision system.		
	• Designed a catching point selection algorithm to make the robot accomplish high-speed catching		
	Design and Analysis of a Wheel-Leg Hybrid Robot with Novel Transformation Mechanism		
	Laboratory of Smart Solids and Structures @SJTU June 2018 – Sept 2018		
	• Designed a vehicle robot with actively transformed three-leg wheels		
	• Conducted automatic control of wheel-transformation to pass through sand road and smooth ro		
SELECTED	CCD Camera Imaging (Silver Award)		
PROJECTS	VM450 Capstone Design @SJTU Sept 2018 – Dec 2018		
	 Designed a software-based optical imaging model to analog CCD camera imaging system Compared small hole imaging and lens imaging and conducted feasibility analysis 		
	Motion Planning of Robot MORO: Roaming Obstacle Avoidance and Chassis Path Planning		
	VM467 Introduction to Robotics @SJTU June 2018 – Aug 2018		
	•Utilized the sensor system and SLAM algorithm to plan the path and control the movement		
	•Applied and compared the A star and Dijkstra algorithm in shortest path planning		
	A Spinning Bike-based Air Purification Device		
	VG100 Introduction to Engineering @SJTU June 2016 – Aug 2016		
	• Designed and manufactured an exercise bike with belt transmission		
THEOD	• Designed and installed an air purification shell to pump out air through the filtration system		
TUTOR	Undergraduate Education Office, UM-SJTU JI		
EXPERIENCE	Teaching Assistant @SJTU Sept 2018 – Aug 2019		
	• Worked as TA for one major course: VM395 Laboratory I		
	Academic Advising Center, UM-SJTU JI Student Advisor @SJTU Sept 2017 – Aug 2019		
	• Provide academic advice to JI students		
	Hold workshops aiming to promote academic skills and share professional interests		
SELECTED			
	The Japanese Government's MEXT scholarship Sept 2019- Aug 2021		
HONORS	Shanghai Distinguished Graduates Award June 2019		
	National Scholarship (Twice, top 1% in SJTU) Oct 2017, Oct 2018		
	Honorable Mention in Mathematical Contest in Modeling Apr 2018 Yes Limited Solve Landing (Toring to 50% in LIM SITELITY)		
	Yu Liming Scholarship (Twice, top 5% in UM-SJTU JI) Nov 2016, Nov 2017 Herbara back Free Herb Scholarship (2 times top 20/in SJTU) Nov 2016, Nov 2017		
-	Undergraduate Excellent Scholarship (3 times, top 3% in SJTU) Dec 2016, Dec 2017, Dec 2018		