Capítulo 13 | Experimentos com um fator: geral

#### 13.1 Técnica da análise de variância

| Tabela 13.1 Absorção de mistura dos agregados de concreto |                |                |                |                |                |                  |  |  |
|-----------------------------------------------------------|----------------|----------------|----------------|----------------|----------------|------------------|--|--|
| Agregado:                                                 | 1              | 2              | 3              | 4              | 5              |                  |  |  |
|                                                           | 551            | 595            | 639            | 417            | 563            |                  |  |  |
|                                                           | 457            | 580            | 615            | 449            | 631            |                  |  |  |
|                                                           | 450            | 508            | 511            | 517            | 522            |                  |  |  |
|                                                           | 731            | 583            | 573            | 438            | 613            |                  |  |  |
|                                                           | 499            | 633            | 648            | 415            | 656            |                  |  |  |
|                                                           | 632            | 517            | 677            | 555            | 679            |                  |  |  |
| Total<br>Média                                            | 3320<br>553,33 | 3416<br>569,33 | 3663<br>610,50 | 2791<br>465,17 | 3664<br>610,67 | 16,854<br>561,80 |  |  |

#### 13.3 Análise de variância simples: delineamento completamente aleatorizado (ANOVA simples)

| Tabela 13.2 Amostras aleatórias |                       |              |       |      |       |                         |   |  |
|---------------------------------|-----------------------|--------------|-------|------|-------|-------------------------|---|--|
| Tratamento                      | : 1                   | 2            | • • • | i    | • • • | k                       |   |  |
|                                 |                       | y 21<br>y 22 |       |      |       |                         |   |  |
|                                 |                       | :            |       | :    |       | :                       |   |  |
|                                 | $y_{1n}$              | $y_{2n}$     | • • • | y in | • • • | $\mathcal{Y}$ kn        | _ |  |
| Total<br>Média                  | $Y_1$ . $\bar{y}_1$ . |              |       |      |       | $Y_{k.}$ $\bar{y}_{k.}$ |   |  |

## Teorema 13.1

Identidade da soma dos quadrados

$$\sum_{i=1}^{k} \sum_{j=1}^{n} (y_{ij} - \bar{y}_{..})^2 = n \sum_{i=1}^{k} (\bar{y}_{i.} - \bar{y}_{..})^2 + \sum_{i=1}^{k} \sum_{j=1}^{n} (y_{ij} - \bar{y}_{i.})^2$$

## Três importantes medidas de variabilidade

$$SQT = \sum_{i=1}^{k} \sum_{j=1}^{n} (y_{ij} - \bar{y}_{..})^2 = \text{soma dos quadrados}$$
 total,

$$SQA = n \sum_{i=1}^{k} (\bar{y}_{i.} - \bar{y}_{..})^2 = \text{soma dos quadrados}$$
 do tratamento,

$$SQE = \sum_{i=1}^{k} \sum_{j=1}^{n} (y_{ij} - \bar{y}_{i.})^2 = \text{soma dos quadrados}$$
 do erro.

# Teorema 13.2

$$E(SQA) = (k-1)\sigma^2 + n \sum_{i=1}^{k} \alpha_i^2.$$

## Quadrado médio do tratamento

$$s_1^2 = \frac{SQA}{k-1}$$

# Quadrado médio do erro

$$s^2 = \frac{SQE}{k(n-1)}.$$

| a dos       | Graus                       | Quadrado      |  |
|-------------|-----------------------------|---------------|--|
| Tabela 13.3 | Análise de variância para a | ANOVA simples |  |

| Fonte de variação   | Soma dos<br>quadrados | Graus<br>de liberdade | Quadrado<br>médio                                    | fcalculado          |
|---------------------|-----------------------|-----------------------|------------------------------------------------------|---------------------|
| Tratamentos<br>Erro | SQA<br>SQE            | k-1 $k(n-1)$          | $s_1^2 = \frac{SQA}{k-1}$ $s^2 = \frac{SQE}{k(n-1)}$ | $\frac{s_1^2}{s^2}$ |
| Total               | SQT                   | <i>kn</i> − 1         |                                                      |                     |

| Demondant Wass | iabla maia  | The GLM Prod |              |         |        |
|----------------|-------------|--------------|--------------|---------|--------|
| Dependent Var  | lable: mols | cure         |              |         |        |
|                |             |              | Sum of       |         |        |
| Source         | DF          | Squares      | Mean Square  | F Value | Pr > F |
| Model          | 4           | 85356,4667   | 21339,1167   | 4,30    | 0,0088 |
| Error          | 25          | 124020,3333  | 4960,8133    |         |        |
| Corrected Tota | al 29       | 209376,8000  |              |         |        |
| R-Square       | Coeff Var   | Root MSE     | moisture Mea | an      |        |
| 0,407669       | 12,53703    | 70,43304     | 561,800      | 0       |        |
| Source         | DF          | Type I SS    | Mean Square  | F Value | Pr > F |
| aggregate      | 4           | 85356,46667  | 21339,11667  | 4,30    | 0,0088 |

Figura 13.1 – Impressão *SAS* para o procedimento da análise de variância.

# Soma dos quadrados; tamanhos de amostras desiguais

$$SQT = \sum_{i=1}^{k} \sum_{j=1}^{n_{i}} (y_{ij} - \bar{y}_{..})^{2},$$

$$SQA = \sum_{i=1}^{k} n_{i} (\bar{y}_{i.} - \bar{y}_{..})^{2}, SQE = SQT - SQA$$

| Tabela 13.4 Nível de atividade da fosfatase alcalina do soro |        |        |        |        |  |  |  |  |
|--------------------------------------------------------------|--------|--------|--------|--------|--|--|--|--|
| G-1                                                          |        | G-2    | G-3    | G-4    |  |  |  |  |
| 49,20                                                        | 97,50  | 97,07  | 62,10  | 110,60 |  |  |  |  |
| 44,54                                                        | 105,00 | 73,40  | 94,95  | 57,10  |  |  |  |  |
| 45,80                                                        | 58,05  | 68,50  | 142,50 | 117,60 |  |  |  |  |
| 95,84                                                        | 86,60  | 91,85  | 53,00  | 77,71  |  |  |  |  |
| 30,10                                                        | 58,35  | 106,60 | 175,00 | 150,00 |  |  |  |  |

0,57

0,79

0,77

0,81

79,50

29,50

78,40

127,50

82,90

111,50

72,80

116,70

45,15

70,35

77,40

36,50

82,30

87,85

95,22

105,00

```
One-way ANOVA: G-1, G-2, G-3, G-4
 Source
        DF
              SS
                    MS
                          F
                                Ρ
 Factor
         3 13939 4646 3,57 0,022
        41
           53376 1302
 Error
 Total
        44 67315
S = 36,08 R-Sq = 20,71% R-Sq(adj) = 14,90%
                          Individual 95% CIs For Mean Based on
                           Pooled StDev
 Level
            Mean StDev --+-----
          73,01 25,75
 G-1
       20
        9 48,93 47,11 (----*---)
 G-2
           93,61 46,57
 G-3
        7 101,06 30,76
 G-4
                           30
                                    60
                                             90
                                                    120
Pooled StDev = 36,08
```

Figura 13.2 – Análise do *Minitab* da Tabela 13.4.

### 13.7 Comparando tratamentos com um controle

| Tabela 13.6 Rendimento da reação |                                              |                        |                        |  |  |  |  |  |
|----------------------------------|----------------------------------------------|------------------------|------------------------|--|--|--|--|--|
| Controle                         | Controle Catalisador Catalisador Catalisador |                        |                        |  |  |  |  |  |
|                                  | 1                                            | 2                      | 3                      |  |  |  |  |  |
| 50,7                             | 54,1                                         | 52,7                   | 51,2                   |  |  |  |  |  |
| 51,5                             | 53,8                                         | 53,9                   | 50,8                   |  |  |  |  |  |
| 49,2                             | 53,1                                         | 57,0                   | 49,7                   |  |  |  |  |  |
| 53,1                             | 52,5                                         | 54,1                   | 48,0                   |  |  |  |  |  |
| 52,7                             | 54,0                                         | 52,5                   | 47,2                   |  |  |  |  |  |
| $\bar{y}_{0.} = 51,44$           | $\bar{y}_{1.} = 53,50$                       | $\bar{y}_{2.} = 54,04$ | $\bar{y}_{3.} = 49,38$ |  |  |  |  |  |

#### 13.9 Delineamento completamente aleatorizado em blocos

| Tratamento | Bloco: | 1           | 2           | 3           | 4           |
|------------|--------|-------------|-------------|-------------|-------------|
| 1          |        | <i>y</i> 11 | <i>y</i> 12 | <i>y</i> 13 | <i>y</i> 14 |
| 2          |        | <i>y</i> 21 | <i>y</i> 22 | <i>y</i> 23 | <i>y</i> 24 |
| 3          |        | <i>y</i> 31 | $y_{32}$    | <i>y</i> 33 | <i>y</i> 34 |

# Hipótese de médias de tratamentos iguais

 $H_0': \mu_{1.} = \mu_{2.} = \dots = \mu,$ 

 $H'_1$ : Os  $\mu_i$ 's não são todos iguais.

|                | Tabela 13.7 $k \times b$ para o delineamento CAB |                                    |     |                                    |     |                                    |                            |                            |
|----------------|--------------------------------------------------|------------------------------------|-----|------------------------------------|-----|------------------------------------|----------------------------|----------------------------|
|                |                                                  |                                    | В   | loco                               | :   |                                    |                            |                            |
| Tratament      | o 1                                              | 2                                  | ••• | j                                  | ••• | b                                  | Total                      | Média                      |
| 1 2            | y <sub>11</sub><br>y <sub>21</sub>               | y <sub>12</sub><br>y <sub>22</sub> |     | y <sub>1j</sub><br>y <sub>2j</sub> |     | y <sub>1b</sub><br>y <sub>2b</sub> | $T_1$ . $T_2$ .            |                            |
| ;<br><i>i</i>  | ÷                                                | :                                  |     | :                                  |     | :                                  | :<br><i>T<sub>i</sub>.</i> | :<br><i>y<sub>i.</sub></i> |
| :<br><i>k</i>  | :<br>Y <sub>k</sub> 1                            | :<br>y <sub>k2</sub>               |     | :<br>y <sub>kj</sub>               |     | :<br>Y <sub>kb</sub>               | $\vdots$ $T_{k.}$          | ;<br>y <sub>k</sub> .      |
| Total<br>Média | $T_{.1}$ $\bar{y}_{.1}$                          |                                    |     | ,                                  |     |                                    | <i>T.</i> .                | <i>y</i> ̄                 |

## Teorema 13.3

Identidade da soma dos quadrados

$$\sum_{i=1}^{k} \sum_{j=1}^{b} (y_{ij} - \bar{y}_{..})^2 = b \sum_{i=1}^{k} (\bar{y}_{i.} - \bar{y}_{..})^2 + k \sum_{j=1}^{b} (\bar{y}_{.j} - \bar{y}_{..})^2$$

$$+ \sum_{i=1}^{k} \sum_{j=1}^{b} (y_{ij} - \bar{y}_{i.} - \bar{y}_{.j} + \bar{y}_{..})^{2}$$

A identidade da soma dos quadrados pode ser apresentada simbolicamente pela equação

$$SQT = SQA + SQB + SQE$$

onde

$$SQT = \sum_{i=1}^{k} \sum_{j=1}^{b} (y_{ij} - \bar{y}_{..})^{2} = \text{a soma dos quadrados total },$$

$$SQA = b \sum_{i=1}^{k} (\bar{y}_{i.} - \bar{y}_{..})^{2} = \text{soma dos quadrados do tratamento,}$$

$$SQB = k \sum_{j=1}^{b} (\bar{y}_{.j} - \bar{y}_{..})^{2} = \text{soma dos quadrados dos blocos,}$$

$$SQE = \sum_{i=1}^{k} \sum_{j=1}^{b} (y_{ij} - \bar{y}_{i.} - \bar{y}_{.j} + \bar{y}_{..})^{2} = \text{soma dos quadrados quadrados quadrados do erro.}$$

# Valor esperado do quadrado médio do tratamento

$$E\left(\frac{SQA}{k-1}\right) = \sigma^2 + \frac{b}{k-1} \sum_{i=1}^k \alpha_i^2,$$

| Tabela 13.8 Análise de variância para o desenho de blocos completamente aleatorizados |                    |                    |                                |                           |  |  |  |  |  |
|---------------------------------------------------------------------------------------|--------------------|--------------------|--------------------------------|---------------------------|--|--|--|--|--|
| Fonte de variação                                                                     | Soma dos quadrados | Graus de liberdade | Quadrado médio                 | fcalculado                |  |  |  |  |  |
| Tratamentos                                                                           | SQA                | k-1                | $s_1^2 = \frac{SQA}{k-1}$      | $f_1 = \frac{s_1^2}{s^2}$ |  |  |  |  |  |
| Blocos                                                                                | SQB                | b-1                | $s_2^2 = \frac{SQB}{b-1}$      |                           |  |  |  |  |  |
| Erro                                                                                  | SQE                | (k-1)(b-1)         | $s^2 = \frac{SQE}{(k-1)(b-1)}$ |                           |  |  |  |  |  |
| Total                                                                                 | SQT                | <i>kb</i> − 1      |                                |                           |  |  |  |  |  |

|         | Tabela 13.9 Tempo, em segundos, para a montagem do produto |       |       |       |       |       |        |  |  |
|---------|------------------------------------------------------------|-------|-------|-------|-------|-------|--------|--|--|
|         |                                                            |       | Ope   | rador |       |       |        |  |  |
| Máquina | 1                                                          | 2     | 3     | 4     | 5     | 6     | Total  |  |  |
| 1       | 42,5                                                       | 39,3  | 39,6  | 39,9  | 42,9  | 43,6  | 247,8  |  |  |
| 2       | 39,8                                                       | 40,1  | 40,5  | 42,3  | 42,5  | 43,1  | 248,3  |  |  |
| 3       | 40,2                                                       | 40,5  | 41,3  | 43,4  | 44,9  | 45,1  | 255,4  |  |  |
| 4       | 41,3                                                       | 42,2  | 43,5  | 44,2  | 45,9  | 42,3  | 259,4  |  |  |
| Total   | 163,8                                                      | 162,1 | 164,9 | 16,98 | 176,2 | 174,1 | 1010,9 |  |  |

| Tabela 13.10 Análise de variância para os dados da Tabela 13.9 |                    |                    |                |            |  |  |  |  |  |
|----------------------------------------------------------------|--------------------|--------------------|----------------|------------|--|--|--|--|--|
| Fonte de variação                                              | Soma dos quadrados | Graus de liberdade | Quadrado médio | fcalculado |  |  |  |  |  |
| Máquinas                                                       | 15,93              | 3                  | 5,31           | 3,34       |  |  |  |  |  |
| Operadores                                                     | 42,09              | 5                  | 8,42           |            |  |  |  |  |  |
| Erro                                                           | 23,84              | 15                 | 1,59           |            |  |  |  |  |  |
| Total                                                          | 81,86              | 23                 |                |            |  |  |  |  |  |



#### 13.10 Métodos gráficos e verificação do modelo



Figura 13.6 Gráfico das observações ao redor da média para os dados dos agregados da Tabela 13.1.



Figura 13.7 Gráfico dos resíduos para os cinco agregados, usando a Tabela 13.1.



Figura 13.8 Gráfico dos resíduos das quatro máquinas para os dados do Exemplo 13.6.



Figura 13.9 Gráfico dos resíduos dos seis operadores para os dados do Exemplo 13.6.