Versuch 353

Das Relaxationsverfahren eines RC-Kreises

Sadiah Azeem sadiah.azeem@tu-dortmund.de nils.metzner@tu-dortmund.de

Nils Metzner

Durchführung: 16.11.2021

Abgabe: 23.11.2021

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Theorie	3
	1.1 Relaxationsgleichung	3
	1.2 Auf- und Entladevorgaenge am Kondensator	3
	1.3 Auf- und Entladevorgaenge bei Wechselspannung	3
	1.4 Integration im RC-Kreis	4
2	Durchführung	4
	2.1 Vorbereitungsaufgaben	4
	2.2 Aufgaben	4
	2.3 Aufbau	4
3	Messwerte	6
4	Auswertung	6
5	Diskussion	6
6	Anhang	6
Lit	teratur	6

1 Theorie

Die Relaxation eines Systems ist der Übergang aus dem ausgelenkten in den Ausgangszustand. In diesem Versuch ist das zu untersuchende System ein RC-Schaltkreis.

Die Entladung des Kondensators durch einen Strom, der durch den Widerstand fließt, ist ein Beispiel für die Relaxation.

1.1 Relaxationsgleichung

Die allgemeine Relaxationsgleichung besteht aus der beschränkten Größe A(t), der Proportionalitätsonstante c < 0 und den konstanten Werten A(0) und $A(\infty)$.

c variiert je nach Relaxationsvorgang und gibt Auskunft über die Geschwindigkeit des Entladeprozesses.

Die Änderungsrate von A wird als proportional zur Auslenkung angenommen:

$$\frac{dA}{dt} = c[A(t) - A(\infty)] \tag{1}$$

diese Gleichung wird dann mit dt multipliziert und dann über das Intervall [0;t] integriert. Es ergibt sich:

$$ln\frac{A(t) - A(\infty)}{A(0) - A(\infty)} = ct \iff A(t) = A(\infty) + [A(0) - A(\infty)] \cdot exp(ct)$$
 (2)

1.2 Auf- und Entladevorgaenge am Kondensator

Die klassische Elektrodynamik bringt die grundlegenden Beziehungen $I=\frac{U}{R}$ und $U_C=\frac{Q}{C}$ hervor.

Daraus lässt sich die Änderungsrate $\frac{dQ}{dt} = -\frac{1}{RC}Q(t)$ der Kondensatorladung bestimmen

Unter der Randbedingung, dass bei einem Entladeprozess $Q(\infty) = 0$ gelten muss, ergibt sich nach den gleichen Umformungen, wie bei der allgemeinen Relaxationsgleichung (1)

$$Q(t) = Q(0) \cdot exp(-\frac{t}{RC}) \tag{3}$$

 $\frac{1}{RC}$ ist hier die Zeitkonstante (wie oben c).

1.3 Auf- und Entladevorgaenge bei Wechselspannung

Die angelegte Wechselspannung $U(t) = U_0 cos(\omega t)$ lässt sich als periodische Anregung beschreiben, wie sie auch aus der Mechanik bekannt ist.

Zwischen U_G und U_C bildet sich der Phasenversatz $\varphi(\omega)$, sodass U_C wie folgt beschrieben werden kann:

$$U_C = A(\omega) \cdot \cos(\omega t + \varphi(\omega)) \tag{4}$$

1.4 Integration im RC-Kreis

Bei geeigneten Frequenzen $\omega >> RC$ und Spannungen $|U_C| >> |U_G|$ erhält man durch die integrierende Funktion des RC-Gliedes

$$U_C = \frac{1}{RC} \int_0^t U(\tau) d\tau \tag{5}$$

[1]

2 Durchführung

2.1 Vorbereitungsaufgaben

In V353 sind keine Vorbereitungsaufgaben vorgesehen.

2.2 Aufgaben

In Teil a) soll die Zeitkonstante des RC-Gliedes mit Hilfe der Schaltung in Abbildung 1 bestimmt werden.

Dazu werden Auf- und Entladevorgänge des Kondensators durch eine Rechteckspannung herbeigeführt und auf dem Oszilloskop die Kondensatorspannung in Abhängigkeit davon beobachtet.

Die Teilaufgabe b) sieht vor, dass man die Schaltung aus Abbildung 2 die Generatorspannung in Sinusform umstellt.

Gemessen werden soll hier die Amplitude $A(\omega)$ der Kondensatorspannung $U_C=A(\omega)\cdot cos(\omega t+\varphi(\omega))$ in Abhängigkeit der Frequenz der Sinusspannung.

c) ist die Bestimmung der Phasenverschiebung zwischen Kondensator- und Generatorspannung in Abhängigkeit von der Frequenz der Sinusspannung.

Es ist erneut die Schaltung aus Abbildung 2

Die Messwerte für **b)** und **c)** konnten in einem Messdurchgang genommen werden, bei dem die Frequenz in kleinen Schritten erhöht wird.

In Teilaufgabe \mathbf{d}) wird bewiesen, dass die vorliegende Schaltung 3 als Integrator genutzt werden kann.

Hierzu stellt man nacheinander eine Rechteck-, Dreieck- und Sinusspannung am Generator ein und dokumentiert die Kondensatorspannung, die proportional zum Integral der Generatorspannung über die Zeit sein sollte.

2.3 Aufbau

Abbildung 1: Das Ersatzschaltbild zu Teilaufgabe a)

Abbildung 2: Das Ersatzschaltbild zu Aufgabe b) und c)

Abbildung 3: Das Ersatzschaltbild zu Teilaufgabe d)

3 Messwerte

4 Auswertung

Siehe Abbildung 4!

5 Diskussion

6 Anhang

Literatur

[1] Versuch zum Literaturverzeichnis. TU Dortmund, Fakultät Physik. 2014.