Stručný úvod do problematiky jazyků a gramatik

doc. Ing. Roman Šenkeřík, Ph.D.

Univerzita Tomáše Bati ve Zlíně

2021

Úvod

Teorie formálních jazyků:

- Důležitá oblast teoretické informatiky
- Základy položil Noam Chomský v roce 1956
- Obsahuje formální jazyky a formální modely výpočtu

Osnova

- 🚺 Formální jazyky a gramatiky
 - Základní terminologie
 - Gramatiky
 - Hierarchie jazyků
 - Stromy odvození

Analogie

Pohled na definici jazyka a gramatiky v souvislosti s lidskou řečí:

analogie

- Základem jazyka jsou písmena abecedy.
- Písmena skládají slova, slova věty, atd.
- Ne všechny kombinace písmen jsou slova.
- Jazyk je určen množinou slov jazyka pravidly pro tvorbu slov.
- Pravidlům pro tvorbu slov říkáme gramatika.

2. analogie

- Základem jazyka jsou slova dále nedělitelná.
- Místo z abecedy vycházíme ze slovníku.
- Gramatika určuje pravidla sestavování vět.
- Jazyk tvoří všechny věty, které lze vytvořit.

Abeceda

Abeceda[Slovník]

- Libovolná neprázdná konečná množina znaků
- Obvykle se vyžadují min. 2 znaky
- Příklady abeced:
 - $\{A, B, C, ..., Z\}, \{\alpha, \beta, \gamma, ..., \omega\}, \{0, 1\}$
 - $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, +, -, *, /\}$
 - {begin, end, if, then, else, while, repeat, until, for, read, write, ...}

Slovo

Slovo[věta]

- Libovolná konečná, případně i prázdná posloupnost
- Řetězec znaků abecedy
- Prázdné slovo ε
- Značení:
 - V abeceda
 - V* množina všech slov
 - V^+ množina všech neprázdných slov $V^+ = V^* \div \{\varepsilon\}$
- Příklady:
 - $V = \{0, 1\}, V^* = \{\varepsilon, 0, 1, 00, 01, 000, 001, 010, ...\},\ V^+ = \{1, 00, 01, 000, 001, 010, ...\}$
 - $V = \{a, b, c\}, V^* = \{\varepsilon, a, b, c, aa, ab, ac, ba, ...\}$

Jazyk

Je-li dána abeceda V, potom libovolná podmnožina množiny V všech slov nad touto abecedou se nazývá **jazyk**.

$$L \subseteq V^*$$

- Příklady vymezení jazyka
 - Množina slov zadané délky. BYTE (abeceda $V = \{0, 1\}$, délka 8 jazyk má 256 slov
 - Množina slov nad abecedou $V = \{0, 1\}$, kde počet jedniček je prvočíslo
 - Množina všech slov nad libovolnou abecedou, která jsou schodná se slovy vytvořenými opačným pořadím znaků ve slově.
 - Množina syntakticky správně vytvořených programů daného programovacího jazyka.

Gramatiky

Gramatika

- Systém jak pomocí přepisovacích pravidel vytvořit všechna slova daného jazyka z počátečního symbolu
- Počáteční symbol
 - Počáteční symbol nepatří do abecedy jazyka (terminál)
- Terminální symbol prvek abecedy jazyka
- Neterminální symbol proměnná (prvek abecedy proměnných), dále se nahrazuje (za další termínální nebo netermínální symbol)

Gramatiky

Příklad analytické gramatiky

Používá 2. analogii!

- ② ⟨Podmět ⟩ → ⟨Přívlastek ⟩⟨Podmět ⟩
- ⟨Přívlastek ⟩ → ⟨Přídavné jm. ⟩ a ⟨Přívlastek ⟩
- ⟨Přívlastek ⟩ → ⟨Přídavné jm. ⟩
- ⟨Podmět ⟩ → ⟨Podstatné jm. ⟩
- ⟨Přísudek ⟩ → ⟨Sloveso ⟩⟨Předmět ⟩
- ⟨Předmět⟩ → ⟨Podstatné jm.⟩⟨Příslovce⟩
- ⟨Přídavné jm. ⟩ → Nadaný
- ⟨Přídavné jm. ⟩ → pilný

- ⟨Sloveso ⟩ → složil
- ⟨Příslovce ⟩ → výborně

Gramatiky

Příklad analytické gramatiky

Používá 2. analogii!

Gramatiky - formální zápis

Generativní gramatika je uspořádaná čtveřice $G=(V_n, V_t, P, S)$

- V_n neprázdná konečná množina neterminálních znaků
- V_t neprázdná konečná množina termináních znaků abeceda
- P neprázdná konečná množina přepisovacích pravidel
- S vybraný počáteční symbol

Gramatiky lze rozdělovat podle typu - **Chomského hierarchie** gramatik

- Obsahuje všechny gramatiky a jimi genervané jazyky L₀
- Ne každý jazyk lze generovat nějakou gramatikou existují jazyky které nejsou ani typu 0

- Kontextová gramatika
- Levá strana produkčních pravidel obsahuje definice v kontextu
- ullet Každé produkční slovo musí být typu $lpha Xeta
 ightarrow lpha \gamma eta$
 - $\alpha, \beta \in (V_n \cup V_t)^*$
 - X jeden neterminální symbol
 - $\gamma \in (V_n \cup V_t)^+$ neprázdný řetězec
- Příklad:
 - $G = (\{A, S\}, \{0, 1\}, P, S)$
 - $S \rightarrow 0A|\varepsilon$
 - $0A \rightarrow 00A1(\alpha = 0, \beta = \varepsilon, X = A, \gamma = 0A1)$
 - A → 1

- Bezkontextová gramatika
- Na levé straně se nacházejí pouze neterminální symboly
- ullet Každé produkční slovo musí být typu $X
 ightarrow \gamma$
 - X jeden neterminální symbol
 - $\gamma \in (V_n \cup V_t)^*$
- Příklad
 - $G = (\{S\}, \{0, 1\}, P, S)$
 - S o 0S1|arepsilon

- Regulární gramatika
- Každé produkční slovo musí být typu A o aB nebo A o a
 - A, B neterminální symboly
 - a terminální symbol
- Příklad
 - $G = (\{A, B\}, \{a, b, c\}, P, S)$
 - A → aaB|ccB
 - $B \rightarrow bB|\varepsilon$

Hierarchie jazyků podle Chomského

- L₀ všechny jazyky
- L₁ kontextové
- L₂ bezkontextové
- L₃ regulární

Gramatika

Příklad na jinou formu zápisu gramatiky

Bude použita **Backus - Naurova forma** (BNF). Neterminální symboly se zapisují do špičatých závorek. "Svislítko" znamená "nebo" a šipka v přepisovacím pravidle je nahrazena trojznakem "::=".

Pravidla pro zápis čísel typu REAL

- $V_t = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9+, -, ., E\}$
- $V_n = \{\langle \check{\mathsf{C}}(\mathsf{slo}), \langle \check{\mathsf{C}}(\mathsf{slo}) \mathsf{bez} \; \mathsf{znam\'enka} \rangle, \langle \check{\mathsf{C}}(\mathsf{slice}), \ldots \}$
- $P = \{ \langle Neterminální symbol \rangle ::= XX | YY ... \}$
- $S \rightarrow \langle \check{\mathsf{C}} \mathsf{islo} \rangle$

Stromy odvození

Přepisovací pravidla:

- ⟨Číslo bez znaménka⟩::= ⟨Desetinné číslo⟩| ⟨Exponentová část⟩|
 ⟨Desetinné číslo⟩⟨Exponentová část⟩
- ◆ ⟨Exponentová část⟩::= E⟨Celé číslo⟩
- Oesetinná část)::= .(Celé číslo bez znaménka)
- ⟨Celé číslo ⟩::= ⟨Celé číslo bez znaménka ⟩| +⟨Celé číslo bez znaménka ⟩| -⟨Celé číslo bez znaménka ⟩
- ⟨Celé číslo bez znaménka ⟩::= ⟨Číslice ⟩| ⟨Celé číslo bez znaménka ⟩⟨Číslice⟩
- (Číslice)::= (0|1|2|3|4|5|6|7|8|9)

Gramatika

