Properties of relations on a set determined by a matrix

Mr Ashlin Darius Govindasamy University of South Africa Department of Computer Science and Mathematics

November 19, 2022

Abstract

This paper introduces a technique of converting a relation set into a matrix of \mathbb{R}^n space using that matrix classifying the properties for the relational set. Using this technique, we can find the properties of a relation set by using some properties of the matrix. In programming, we can use this technique to determine our properties of a relation set by using the matrix. Code snippets are provided to show how this technique can be used in programming.

Contents

1	Relations 1.0.1	What is a relation?	2
2	Finding th	ne properties of a relation set	3

Chapter 1

Relations

1.0.1 What is a relation?

A (binary) relation R between sets A and B is a subset of $A \times B$. ($A \times B$ is a Cartesian product.) Thus, a relation is a set of pairs.

The interpretation of this subset is that it contains all the pairs for which the relation is true. We write aRb if the relation is true for A and B (equivalently B, if $(A, B) \in R$).

A and B can be the same set, in which case the relation is said to be "on" rather than "between": A binary relation R on a set A is a $\subseteq A \times A$. $(A \times A)$ is a Cartesian product.)

Example of a relation using $A = \{0, 1, 2, 3\}$

$$R = \{(0,0), (1,1), (2,2), (3,3)\}$$

Relations may also be of other arities. An *n*-ary relation R between sets $X_1, \ldots,$ and $X_n \subseteq n$ -ary product $X_1...X_n$, in which case R is a set of n-tuples.

Chapter 2

Finding the properties of a relation set