Title

D. Zack Garza

January 20, 2020

Contents

1 Chapter 1		pter 1	1
	1.1	Within Chapter	1
	1.2	End of Chapter Exercises	5

1 Chapter 1

1.1 Within Chapter

Nice mnemonic: Maximal \implies prime \implies radical Field \implies domain \implies reduced

Proposition 1.1: Fix an ideal $\mathfrak{a} \subseteq R$. There is a correspondence

$$\left\{\mathfrak{b}\ \middle|\ \mathfrak{a}\subseteq\mathfrak{b}\trianglelefteq R\right\}\iff \left\{\tilde{\mathfrak{b}}\trianglelefteq R/\mathfrak{a}\right\}.$$

Proof: Adapted from proof for groups here: https://math.stackexchange.com/a/955413/147053.

Let $f: R \to T$ be any ring homomorphism and let S(R), S(T) denote the lattices of subrings of R, T respectively. Then f induces two maps:

$$F: S(R) \to S(T)$$

$$H \mapsto f(H)$$

$$F^{-1}: S(T) \to S(R)$$
$$K \mapsto f^{-1}(K).$$

It follows that

- $H \leq R \implies F(H) \leq \text{im } f$, by the subring test
 - Subring test: contains 1, closed under multiplication/subtraction.
 - Properties of ring homomorphisms: f(sa + b) = sf(a) + f(b) and f(1) = 1.

- Thus if f is not surjective, F is not surjective either.
- $K \le T \implies \ker f \subseteq F^{-1}(K)$.
 - Follows because subrings contain 0, and $H \in \ker F \implies f(H) = 0_T \in K$.
 - Thus if there is any subring H that doesn't contain ker f, F^{-1} is not surjective.

The claim is that if you restrict to

- $S'(R) := \{ H \le R \mid \ker f \subseteq H \}$ and
- $S'(T) := \{K \le T \mid K \subseteq \text{im } f\},\$

this is a bijection.

This follows from the fact that

- $(F \circ F^{-1})(K) = K \bigcap \text{im } f \leq T$
 - No clear motivation for why it's this specific thing, but the inclusions are easy to check.
- $(F^{-1} \circ F)(H) = \langle H, \ker f \rangle \leq S$.
 - Inclusions easy to check, need to take subring generated since F(H) is a pushforward/direct image, which don't preserve sub-structures in general.

So we take the projection $f = \pi : R \to R/\mathfrak{a}$, then

- $K \subseteq \operatorname{im} \pi \implies K \cap \operatorname{im} \pi = K \implies (F \circ F^{-1})(K) = K$,
- $\ker \pi \subseteq H \implies \langle H, \ker \pi \rangle = H \implies (F^{-1} \circ F)(H) = H$,

so both directions are surjections. Restricting to just those subrings that are ideals preserves this bijection. Moreover, $\ker \pi = \mathfrak{a}$ so S'(R) is the set of ideals containing \mathfrak{a} , and $\operatorname{im} \pi = R/\mathfrak{a}$, so S'(T) is the set of ideals of the quotient.

Proposition 1.2: TFAE

- 1. R is a field
- 2. R is simple, i.e. the only ideals of R are 0, R.
- 3. Every nonzero homomorphism $\phi: R \to S$ for S an arbitrary ring is injective.

Proof:

Lemma: $I \subseteq R$ and $1 \in I \implies I = R$. This is because $RI \subseteq I$, and $r \in R \implies r \cdot 1 \in I \implies r \in I \implies R \subseteq I$.

 $1 \implies 2$:

Let $0 \neq I \leq R$ for R a field, then pick any $x \in I$, since $x^{-1} \in R$, we have $x^{-1}x = 1 \in I \implies I = R$. $A \implies 2$:

If R is not a field, pick a non-unit element r; then $(r) \subseteq R$ is a proper ideal.

 $2 \implies 3$:

 $\ker \phi \triangleleft R$ is an ideal, so $\ker \phi = 0$.

 $3 \implies 2$:

Take $\mathfrak{a} \triangleleft R$ a proper ideal and let $S = R/\mathfrak{a}$ with $\phi : R \to S$ the projection. ϕ is a bijection, since it's always a surjection and assumed injective. So $R \cong S = R/\mathfrak{a}$, forcing $\mathfrak{a} = (0)$.

Proposition: If $\mathfrak{m} \leq R$ is maximal iff R/\mathfrak{m} is a field.

Proof:

 R/\mathfrak{m} is a field \iff R/\mathfrak{m} is simple \iff there are no nontrivial ideals \mathfrak{a} such that $\mathfrak{m} \subset \mathfrak{a}$ (correspondence) \iff \mathfrak{m} is maximal.

Proposition: $\mathfrak{p} \subseteq R$ is prime iff R/\mathfrak{p} is a domain.

Proof:

 \Longrightarrow :

WLOG,
$$(x + \mathfrak{p})(y + \mathfrak{p}) = xy + \mathfrak{p} = 0 \iff xy \in \mathfrak{p} \iff x \in \mathfrak{p} \iff (x + \mathfrak{p}) = 0.$$

⇐=:

WLOG,
$$xy \in \mathfrak{p} \implies (x+\mathfrak{p})(y+\mathfrak{p}) = 0 \implies x+\mathfrak{p} = 0 \implies x \in \mathfrak{p}$$
.

Proposition: Maximal ideals are prime.

Proof: Let $\mathfrak{m} \leq A$ be maximal, then R/\mathfrak{m} is simple and thus a field, so \mathfrak{m} is prime.

Proposition: Prime does not imply maximal in general.

Proof: Take $(0) \in \mathbb{Z}$, then $ab = 0 \implies a = 0$ or b = 0, so this is prime. It is not maximal, because $(0) \in (n)$ for any n.

Theorem 1.3: Every ring R has a nontrivial maximal ideal $I \neq 0$, and every ideal is contained in a maximal ideal.

Proof: ?

Corollary 1.5: Every non-unit of R is contained in a maximal ideal.

Proof: ?

Proposition 1.6: If $A \setminus \mathfrak{m} \subset R^{\times}$, then A is a local ring with \mathfrak{m} its maximal ideal. If \mathfrak{m} is maximal and $1 + m \in R^{\times}$ for all $m \in \mathfrak{m}$, then A is a local ring.

Proof: ?

Proposition: If $f \in k[x_1, \dots x_n]$ is irreducible over k, then (f) is prime.

Proposition: \mathbb{Z} is a PID, and (p) is prime iff p is zero or a prime number, and every such ideal is maximal.

Proposition: $k[\{x_i\}]$ has maximal ideals that are not principal iff n > 1.

Exercise: Characterize the maximal and prime ideals of $k[x_1, \dots, x_n]$? Is this a field, domain, PID, UFD, a local ring, ...?

Proposition: Every nonzero prime ideal in a PID is maximal.

Proof: ?

Definition: The set $\operatorname{nil}(A)$ of all nilpotent elements in a ring A is the nilradical of A. The set $J(A) = \bigcap_{\mathfrak{m} \in \operatorname{Spec}_{\max}(A)} \mathfrak{m}$ is the Jacobson radical.,

Proposition 1.7: $nil(A) \leq R$ is an ideal and A/\Re has no nonzero nilpotent elements.

Proof: ?

Proposition 1.8: $\operatorname{nil}(A) = \bigcap \mathfrak{p} \in \operatorname{Spec}(A)\mathfrak{p}$ is the intersection of all prime ideals of A.

Proof: ?

Proposition 1.9: $x \in J(A)$ iff $1 - xa \in A^{\times}$ for all $a \in A$.

Proposition: If $(m), (n) \subseteq \mathbb{Z}$ then $(m) \cap (n) = (\gcd(m, n))$ and (m)(n) = (mn).

Exercise: If $\mathfrak{a} \leq k[x_1, \cdots, x_m]$, characterize \mathfrak{a}^n .

Exercise: Show that $\mathfrak{a},\mathfrak{b} \leq A$ are coprime iff there exist $a \in \mathfrak{a}, b \in \mathfrak{b}$ such that a + b = 1.

Proposition 1.10: Let $\{mfa_i\} \leq A$ be a family of ideals and define $\phi: A \to \prod A/\mathfrak{a}_i$.

- 1. If $\{\mathfrak{a}_i\}$ are pairwise coprime, then $\prod \mathfrak{a}_i = \bigcap \mathfrak{a}_i$
- 2. ϕ is surjective iff $\{\mathfrak{a}_i\}$ are pairwise coprime.
- 3. ϕ is injective iff $\bigcap \mathfrak{a}_i = (0)$.

Exercise: Show that the union of ideals is not necessarily an ideal.

Proposition 1.11:

- a. Let $\{\mathfrak{p}_i\}$ be a set of prime ideals and let $\mathfrak{a} \in \bigcup \mathfrak{p}$. Then $\mathfrak{a} \subseteq \mathfrak{p}_i$ for some i.
- b. Let $\{\mathfrak{a}_i\}$ be ideals and $\mathfrak{p} \supseteq \bigcap \mathfrak{a}_i$ be prime. $\mathfrak{p} \supseteq \mathfrak{a}_i$ for some i, and if $\mathfrak{p} = \bigcap \mathfrak{a}_i$, then $\mathfrak{p} = \mathfrak{a}_i$ for some i.

Exercise: Let $A = \mathbb{Z}$, and characterize the ideal quotient (m : n).

Exercise 1.12:

- 1. $\mathfrak{a} \subseteq (\mathfrak{a} : \mathfrak{b})$
- 2. $(\mathfrak{a}:\mathfrak{b})\mathfrak{b}\subseteq\mathfrak{a}$
- 3. $((\mathfrak{a} : \mathfrak{b}) : \mathfrak{c}) = (\mathfrak{a} : \mathfrak{bc}) = ((\mathfrak{a} : \mathfrak{c}) : \mathfrak{b})$
- 4. $(\bigcap \mathfrak{a}_i : \mathfrak{b}) = \bigcap (\mathfrak{a}_i : \mathfrak{b})$
- 5. $(\mathfrak{a}: \sum \mathfrak{b}_i) = \bigcap (\mathfrak{a}: \mathfrak{b}_i)$

Proposition: For $\mathfrak{a} \subseteq A$, $\sqrt{\mathfrak{a}}$ is an ideal.

Exercise 1.13:

1.
$$\sqrt{\mathfrak{a}} \supseteq \mathfrak{a}$$

$$2. \ \sqrt{\sqrt{\mathfrak{a}}} = \sqrt{\mathfrak{a}}$$

3.
$$\sqrt{\mathfrak{a}\mathfrak{b}} = \sqrt{\mathfrak{a} \bigcap \mathfrak{b}} = \sqrt{\mathfrak{a} \bigcap \sqrt{\mathfrak{b}}}$$

4.
$$\sqrt{\mathfrak{a}} = (1) \iff \mathfrak{a} = (1)$$

5.
$$\sqrt{\mathfrak{a} + \mathfrak{b}} = \sqrt{\sqrt{\mathfrak{a}} + \sqrt{\mathfrak{b}}}$$
.

6. For \mathfrak{p} prime, $\sqrt{\mathfrak{p}^n} = \mathfrak{p}$ for all $n \ge 1$.

Proposition 1.14:
$$\sqrt{\mathfrak{a}} = \bigcap_{\mathfrak{a} \subseteq \mathfrak{p} \in \operatorname{Spec}(A)} \mathfrak{p}$$

Proposition 1.15: Let *D* be the set of zero-divisors in *A*. Then $D = \bigcup_{x \neq 0} \sqrt{\operatorname{Ann}(x)}$.

Exercise: Let $(m) \leq \mathbb{Z}$ where $m = \prod p_i^{k_i}$, and show that $\sqrt{(m)} = (p_1 p_2 \cdots) = \bigcap (p_i)$.

Proposition 1.16: If $\sqrt{\mathfrak{a}}$, $\sqrt{\mathfrak{b}}$ are coprime then \mathfrak{a} , \mathfrak{b} are coprime.

Exercise: Show that if $f: A \to B$ and $\mathfrak{a} \subseteq A$, it is not necessarily the case that $f(\mathfrak{a}) \subseteq B$.

Exercise: Show that if \mathfrak{b} is prime then $A \cdot f^{-1}(\mathfrak{b})$ is prime, but if \mathfrak{a} is prime then $B \cdot f(\mathfrak{a})$ need not be prime.

Exercise: Write $\mathfrak{a}^e := \langle f(\mathfrak{a}) \rangle$ and $\mathfrak{b}^c = \langle f^{-1}(\mathfrak{b}) \rangle$. Let $f : \mathbb{Z} \to \mathbb{Z}[i]$ be the inclusion, and show that

- $(2)^e = \langle (1+i)^2 \rangle$, which is not prime in $\mathbb{Z}[i]$ (Nontrivial) If $p = 1 \mod 4$, then \mathfrak{p}^e is the product of two distinct prime ideals
- If $p = 3 \mod 4$ then \mathfrak{p}^e is prime.

Proposition: Let $C = \{ \mathfrak{b}^c \mid \mathfrak{b} \leq B \}$ and $E = \{ \mathfrak{a}^e \mid \mathfrak{a} \leq A \}$. Then

- 1. $\mathfrak{a} \subseteq \mathfrak{a}^{ec}$ and $\mathfrak{b} \supset \mathfrak{b}^{ce}$, 2. $\mathfrak{b}^c = \mathfrak{b}^{cec}$ and $\mathfrak{a}^e = \mathfrak{a}^{ece}$ 3. $C = \{\mathfrak{a} \leq A \mid \mathfrak{a}^{ec} = \mathfrak{a}\}$ and $E = \{\mathfrak{b} \leq B \mid \mathfrak{b}^{ce} = \mathfrak{b}\}$.
- 4. The map φ: C → E given by φ(a) = a^{ec} is a bijection with inverse b → b^c.
 5. If a ∈ C then a = b^c = b^{cec} = a^{ec}, and if a = a^{ec} then a is the contraction of a^e.

Exercise 1.18:

$$\begin{split} &(\mathfrak{a}_1+\mathfrak{a}_2)^{\mathfrak{e}}=\mathfrak{a}_1^{\mathfrak{e}}+\mathfrak{a}_2^{\mathfrak{e}}, & (\mathfrak{b}_1+\mathfrak{b}_2)^c \geq \mathfrak{b}_1^{\mathfrak{e}}+\mathfrak{b}_2^{\mathfrak{e}} \\ &(\mathfrak{a}_1\cap\mathfrak{a}_2)^e \subseteq \mathfrak{a}_1^{\mathfrak{e}}\cap\mathfrak{a}_2^e, & (\mathfrak{b}_1\cap\mathfrak{b}_2)^{\mathfrak{e}}=\mathfrak{b}_1^{\mathfrak{e}}\cap\mathfrak{b}_3^{\mathfrak{e}} \\ &(\mathfrak{a}_1\mathfrak{a}_2)^{\mathfrak{e}}=\mathfrak{a}_1^{\mathfrak{e}}\mathfrak{a}_2^{\mathfrak{e}}, & (\mathfrak{b}_1\mathfrak{b}_2)^{\mathfrak{e}}\supseteq\mathfrak{b}_1^{\mathfrak{e}}\mathfrak{b}_2^{\mathfrak{e}} \\ &(\mathfrak{a}_1:\mathfrak{a}_2)^{\mathfrak{e}}\subseteq (\mathfrak{a}_1^{\mathfrak{e}}:\mathfrak{a}_2^{\mathfrak{e}}), & (\mathfrak{b}_1:\mathfrak{b}_2)^{\mathfrak{e}}\subseteq (\mathfrak{b}_1^{\mathfrak{e}}:\mathfrak{b}_2^{\mathfrak{e}}) \\ &r(\mathfrak{a})^e\subseteq r\left(\mathfrak{a}^e\right), & r(\mathfrak{b})^e=r\left(\mathfrak{b}^e\right) \end{split}.$$

1.2 End of Chapter Exercises