Comparing Classical Boson Sampling and Stabilised Quantum Circuits for Interferometry

Hayden Dyke Imperial College London London, United Kingdom hayden.dyke23@imperial.ac.uk Ismail Mehmood

Imperial College London

London, United Kingdom
ismail.mehmood24@imperial.ac.uk

Abstract—Interferometers are devices which use light, or more generally superimposing waves, using interference to extract information. We propose a method by which quantum information can be obtained and used as a benchmark for quantum circuits, as well as modelling non-linear interferometers. We simulate these with traditional classical methods, then show quantum circuit variants, finally showing how these circuits can be used as benchmarks for qubit coherence.

I. Introduction

II. MACH-ZEHNDER INTERFEROMETER

The Mach-Zehnder interferometer determines a relative phase shift variation between two collimated beams of light. It also has the property that each light path is only traversed once. It consists of two beam splitters, and a mirror.

In our classically computed photonic model, an MZI is a 2-mode interferometer. We use a matrix representation of the beam splitter [1, i, i, 1]/root(2)

To encode this as a quantum circuit REF HERE, we use Hadamard gates to represent the 50/50 beam splitters, a single qubit as the initial single photon input, and a unitary operation U(phi) to represent some phase shift.

III. MICHELSON INTERFEROMETER

IV. RAMSEY INTERFEROMETER AND BENCHMARKING

Measuring phase decoherence using a Ramsey interferometer quantum circuit.

V. BEATING RAMSEY LIMITS WITH DETERMINISTIC QUBIT CONTROL

SNR per shot (Rv): Compare phase contrast (vary amplitude) between protocols.

SNR per $\sqrt{\text{time}}$ (Rs): Compare sensitivity improvement when including longer stabilized evolution windows.

Breakdown Time (tb): Quantify how long stabilization lasts before vx coherence collapses.

Robustness: Test sensitivity to miscalibrated T1/T2 (simulate with noise models).

This level of quantum information abstraction has applications in quantum sensing, quantum communication,

VI. Application of stablising operators to Galton Board

Implementation Steps

Start with the standard Galton circuit:

Initialize ball qubit in center peg.

Use CSWAP-CNOT-CSWAP controlled by the control qubit.

Insert stabilization between layers:

After each layer, extract/estimate Bloch components of control qubit (or infer from expected evolution).

Compute $hy(t) \propto \gamma 2 \cdot vx/vzhy(t) \propto \gamma 2 \cdot vx/vz$ - use eq in paper 2 Apply Trotterized slices: Ustab $\approx \prod ke-i\delta t$ [$\Delta \sigma z/2 + hy(tk)\sigma y/2$] Ustab $\approx k \prod e-i\delta t [\Delta \sigma z/2 + hy(tk)\sigma y/2]$ which in gates is CLOSE ENOUGH TO small $Rz(\Delta \delta t)Rz$

which in gates is CLOSE ENOUGH TO small $Rz(\Delta\delta t)$ I $(\Delta\delta t)$ + $Ry(hy\delta t)Ry(hy\delta t)$.

Repeat for each Galton layer: CSWAP scattering Trotterized stabilization pulses Move to next layer. demonstrate with fewer shots