Exercise 1. Plot the vectors $\mathbf{v} = \langle 1, 2 \rangle$ and $\mathbf{w} = \langle 3, -1 \rangle$. Then, draw $2\mathbf{v}$, $-\mathbf{w}$, $\mathbf{v} + \mathbf{w}$, and $\mathbf{v} - \mathbf{w}$. Calculate also $|\mathbf{v} + \mathbf{w}|$ and find the unit vector in the direction of \mathbf{v} .

 $\sqrt{\frac{1}{2}}$ $\sqrt{\frac{1}{3}}$ $\sqrt{\frac$

Exercise 2. Plot the points P(3,4,5) and Q(1,2,1). Then, plot the vectors $\overrightarrow{OP} = \langle 3,4,5 \rangle$, $\overrightarrow{OQ} = \langle 1,2,1 \rangle$, and \overrightarrow{PQ} and calculate the magnitude $|\overrightarrow{PQ}|$ and find the midpoint of the segment $|\overrightarrow{PQ}|$.

Exercise 3. Determine the center and radius of the sphere given by

$$x^2 + y^2 + z^2 - 2x + 6y - 8z = -1.$$

$$\begin{array}{c} (x^{2}-7x+y^{2}+6y+z^{2}-8z=-1) \\ (x^{2}-7x+y)+(y^{2}+6y+9)+(z^{2}-8z+16)= \\ (x-1)^{2}+(y+3)^{2}+(z-4)^{2}=25 \\ \hline (center is C=(1,-3,-4)) \\ -(-1,-3,-4) \end{array}$$