CDO - advanced data operations

Ralf Müller Uwe Schulzweida Luis Kornblueh Karl-Hermann Wieners Oliver Heidmann

MPI Met

29. September 2015

Ralf Müller et al. MPI Met 29. September 2015 1

Overview

Operations

Hundreds of operators for selection, comparison, arithmetic functions, statistical analysis, regression, interpolation, meta data processing, compression, plotting, ...

Supported file formats

netCDF3/4, GRIB1, GRIB2 (grib_api), MPIMET: SERVICE, EXTRA and IEG including multiple output precisions

Supported Platforms

- POSIX Compatiple: AIX, Super-UX, Linux, BSD
- Windows: 32bit (mingw32, limited functionality), 64bit (cygwin, full functionality)

Homepage

https://code.zmaw.de/projects/cdo

Institut ologie

Main Feature: One Rule to Combine them all!

Operator Chaining

Operators can be combined with '-' on the command line \longrightarrow running in parallel

```
cdo -f nc -setunit , 'm/s' \
    -setname , velocity \
    -sqrt \
    -add \
    -mul -selname , u $ifile -selname , u $ifile \
    -mul -selname , v $ifile -selname , v $ifile \
    7
```

Operator Chaining

Operators can be combined with '-' on the command line \longrightarrow running in parallel

```
cdo -f nc -setunit , 'm/s' \
-setname , velocity \
-sqrt \
-add \
-mul -selname , u $ifile -selname , u $ifile \
-mul -selname , v $ifile -selname , v $ifile \
$ofile
```

```
cdo \
-div \
-addc,273.15 -select,name=temp $ifile0 \
-mul \
-gtc,1035.0 -selname,rho $ifile1 \
-ltc,1038.0 -selname,rho $ifile1 \
$ ofile
```

Main Feature: One Rule to ... let them share something?

Shared Memory Parallelisation

- Smallest IO unit is a record: one horizontal field like a GRIB record
- Output stream of right operator is input stream of left operator
- data read/write is synchronized with pthread

Ralf Müller et al. MPI Met 29. September 2015

Main Feature: One Rule to ... let them share something?

Shared Memory Parallelisation

- Smallest IO unit is a record: one horizontal field like a GRIB record
- Output stream of right operator is input stream of left operator
- data read/write is synchronized with pthread

What's the benefit?

- Huge files can be processed as long as a single record fits into memory
- No need for temporary files
- Users can write their own operations based on existing ones
- Other parallelisation techniques can be use on top or below: File splitting, OpenMP

Ralf Müller et al. MPI Met 29. September 2015

Highlights: Usefull options - Part I

Get help -h [operator] get help for given operator or module information about the CDO binary

Highlights: Usefull options - Part I

Get help

-h [operator]	get help for given operator or module
-V	information about the CDO binary

Set output format

-f grb/grb2/nc/nc2/nc4/nc4c/srv/ext/ieg

```
Climate Data Operators version 1.6.9 (http://mpimet.mpg.de/cdo)
  Compiled: by ram on luthien (x86_64-unknown-linux-gnu) Jun 26 2015 14:42:31
3 Compiler: gcc -g -O3 -std=gnu99 -Wall -fopenmp -march=native
   version: gcc (GCC) 5.1.0
5 Features: PTHREADS OpenMP4 NC4/HDF5 OPeNDAP SZ Z UDUNITS2 PROJ.4 FFTW3 AVX2
  Libraries: proj/4.91
7 Filetypes: srv ext ieg grb grb2 nc nc2 nc4 nc4c
       CDI library version: 1.6.9 of Jun 26 2015 14:42:11
  CGRIBEX library version: 1.7.2 of Apr 22 2015 13:44:04
  GRIB_API library version : 1.13.1
    netCDF library version: 4.3.3.1 of Mar 12 2015 14:13:12 $
      HDF5 library version: 1.8.14
  SERVICE library version: 1.3.2 of Jun 26 2015 14:42:09
     EXTRA library version: 1.3.2 of Jun 26 2015 14:42:14
       IEG library version: 1.3.3 of Jun 26 2015 14:42:14
      FILE library version: 1.8.2 of Jun 26 2015 14:42:13
```

Highlights: Usefull options - Part II

Run multiuple OpenMP threads

-P <threads>

OpenMP is mostly used in horizontal interpolation, ensemble analysis, filtering and eofs

Set netcdf header size

--hdr_pad <numberOfBytes>

If the memory dedicated to data definitions is large enough, meta information can be changed without rewriting the data. [netcdf only]

Set output precision

-b <numberOfBits>

Possible values are I8/I16/I32/F32/F64 for nc/nc2/nc4/nc4c

P1 - P24 for grb/grb2

Highlights - GRIB2 decoding

Use the *copy* operator and desired output type

cdo -f nc copy input.grb2 output.nc

```
File format : netCDF
     Institut Ttype
                     Levels Points Dtype : Parameter name
   : DWD
               instant
                                65160 F32
                                            : prmsl
   : DWD
                                65160 F32
                                            : sshf
               instant
 21 : DWD
               instant
                                65160
                                       F32
                                            : NCRAIN
```

```
... but
```

Institut ologie

Ralf Müller et al. MPI Met 29. September 2015 7 / 24

Highlights - GRIB2 decoding

Use the *copy* operator and desired output type

cdo -f nc copy input.grb2 output.nc

```
File format : netCDF
    Institut Ttype
                    Levels Points Dtype : Parameter name
   : DWD
              instant
                               65160 F32
                                           : prmsl
   : DWD
                               65160 F32
                                           : sshf
         instant
 21 : DWD
              instant
                               65160
                                      F32
                                           : NCRAIN
```

... but

... results depend on the grib_api library installation

Institut ologie

Highlights - GRIB2 encoding

Back to the initial format

cdo -f grb2 output.nc FromGrib2ToNcToGrib2.grb2

```
File format :
             GRTB2
 -1: Institut Ttype Levels Points Dtype: Parameter name
   : DWD
               instant
                                65160
                                       F32
                                            : prmsl
   : DWD
                                65160 F32
                                            : SHFL S
               instant
                             1
 . . .
 21 : DWD
                             1 65160 F32
               instant
                                            : NCRATN
```

Compare original and transformed grib2 files ... slighty perfect

```
Institut
                       Levels Points Dtype : Parameter
              Ttype
    DWD
              instant
                                65160
                                       P16
                                            : 1.3.0
    DWD
                                65160 P16
                                            : 11.0.0
              accum
21
  : DWD
                                65160
                                       P16
                                            : 216.1.0
              instant
```

k-Institut rologie

Highlights - fine tuned data conversion

How to convert meta data of variables in a single step

setpartabn and setpartabp allow meta data transformations based on a fortran namelist syntax:

```
&parameter

name = topo

out_name = topography

standard_name = surface_height

units = "cm"
```

Other transformation keys are: long_name, missing_value, type, valid_min, factor, delete, convert, ...

CDO call looks like

```
cdo setpartabn, <tableFile>[,convert] <ifile> <ofile>
```

Unitconvertsion is done with UDUNITS2. Parameter tables of existing files can be created with the *partab* operator.

Institut Jogie

Highlights - formulars with expr

Provide formulars as string on the command line:

cdo - expr, 'T=T+271.15' tempInK.nc tempInC.nc

Support for math.h and Array functions

sin, cos, tanh, sqrt,log, exp, asin, gamma, min, max, sum, avg, mean, std, var

Highlights - formulars with expr

Provide formulars as string on the command line:

```
cdo -expr, 'T=T+271.15' templnK.nc templnC.nc
```

Support for math.h and Array functions

sin, cos, tanh, sqrt,log, exp, asin, gamma, min, max, sum, avg, mean, std, var

Possible replacement for the initial example: Absolute Velocity computation

```
cdo \
-setname, velocity \
-setunit, 'm/s' \
-expr, 'vel=sqrt(u*u+v*v)' $ifile \
$ ofile
```

Borrowed from NCO's ncap.

Mask valued expressions

```
== ,!= ,< ,<= ,>= ,> ,<=> ,&& ,|| ,?: (ternary operator)
```

```
cdo -f nc \
    -setmisstonn \
    -sellonlatbox, -12,10,40,62 \
    -aexpr, 'P=1013.25*exp(-1.602769777072154*log((exp(topo /10000.0)*213.15+75.0)/288.15));T=213.0+75.0*exp((-1)*topo/10000.0) -273.15;' \
    -expr, 'topo=((topo>=0.0))?topo:(topo/0.0)' \
    -remapbic,r1440x720 \
    -topo surfTemp_if.nc
```

expr vs. aexpr

aexpr performas a copy on all input fields to the output stream and appends the computation results to it. expr writes comuted fields only

Highlights - more complex expressions

Mask valued expressions

```
== ,!= ,< ,<= ,>= ,> ,<=> ,&& ,|| ,?: (ternary operator)
```

```
1 cdo -f nc \
    -setmisstonn \
    -sellonlatbox, -12,10,40,62 \
    -aexpr, 'P=1013.25*exp(-1.602769777072154*log((exp(topo /10000.0)*213.15+75.0)/288.15));T=213.0+75.0*exp((-1)*topo/10000.0) -273.15;' \
    -expr, 'topo=((topo>=0.0))?topo:(topo/0.0)' \
    -remapbic, r1440x720 \
    -topo surfTemp_if.nc
```

expr vs. aexpr

aexpr performs a copy on all input fields to the output stream and appends the computation results to it. expr writes comuted fields only

And what if formulars are getting lengthy?

exprf and aexprf accept textfile names as arguments from where the formulars will be read in

Institu ologie

11 / 24

Ralf Müller et al. MPI Met 29. September 2015

Highlights: built-in topography with topo operator

Highlights: built-in topography with topo operator

cdo -topo topo.grb

Highlights: built-in topography with topo operator

Highlights: Split the grid with distgrid - collgrid

Break your regular grid into $n \times m$ parts

cdo -distgrid,2,3 -topo topo_splitted

Put your pieces together with

cdo -collgrid topo_splitted*grb collectedtopo.grb

Institut ologie

Possible plot types

contour

shaded

Institut ologie

Ralf Müller et al. MPI Met 29. September 2015 14 / 24

Fill missing values

How to overwrite missing data with something reasonable

Model initial data for ocean salinity is on low resolution, usually 1deg.

For higher resolution runs, a simple interpolation could lead to wrong values in the baltic see. Nearest-neighbor interpolation does the trick.

Play the wildcard ... with files

Problem

How to keep the chaining of operators working, when their number of input streams is abitrary? - Polish notation only works for operators with fixed arity

Might not be a problem for operators like *info* or *copy*, but concatenation (*cat*) and merging (*merge/mergetime*) would create large temporary data

Play the wildcard ... with files

Problem

How to keep the chaining of operators working, when their number of input streams is abitrary? - Polish notation only works for operators with fixed arity

Might not be a problem for operators like *info* or *copy*, but concatenation (*cat*) and merging (*merge*/*mergetime*) would create large temporary data

... let CDO do the wildcard evaluation

Given single quoted wildcard as input stream, CDO evaluates it into a fixed length list

cdo -timmean -cat 'exp004_201?_global.nc*'

17 / 24

Ralf Müller et al. MPI Met 29. September 2015

Play the wildcard ... with variables

Problem

How to select collections of data without explicitly given names or parameters

Play the wildcard ... with variables

Problem

How to select collections of data without explicitly given names or parameters

... use select

CDO's select operator accepts wildcards for the 'name' and 'param' key

```
cdo -select,'name=s*' $ifile $ofile
cdo -select,'param=1.?.0' $ifile $ofile
```


Scripting with Ruby/Python

$\mathsf{cdo.} \{ \mathsf{rb,py} \}$

- is a *smart* caller of a CDO binary (with all the pros and cons)
- doesn't need to be re-installed for a new CDO version
- directly bridges your data to the scientific package in Ruby/Python

Scripting with Ruby/Python

$\mathsf{cdo.} \{ \mathsf{rb,py} \}$

- is a *smart* caller of a CDO binary (with all the pros and cons)
- doesn't need to be re-installed for a new CDO version
- directly bridges your data to the scientific package in Ruby/Python
- isn't a shared library, which keeps everything in memory
- doesn't allow write access to files via the numpy or masked arrays

Scripting with Ruby/Python

$\mathsf{cdo.} \{ \mathsf{rb,py} \}$

- is a *smart* caller of a CDO binary (with all the pros and cons)
- doesn't need to be re-installed for a new CDO version
- directly bridges your data to the scientific package in Ruby/Python
- isn't a shared library, which keeps everything in memory
- doesn't allow write access to files via the numpy or masked arrays

homepage: https://code.zmaw.de/projects/cdo/wiki/Cdo{rbpy}
or directly join development at

https://github.com/Try2Code/cdo-bindings

Interface examples

```
1 from cdo import *
 cdo = Cdo()
 # concatenate list of files, relative time axis
5 cdo.cat(input = ''.join(ofiles),
          output = ofile.
          options = '-r')
 # vertical interpolation
 cdo.intlevel(100,200,500,1000,
               input='Temperatures_L199.grb',
               output='TempOnTargetLevels.grb')
 # perform zonal mean after interpolation in nc4 classic
     format
cdo.zonmean(input = "-remapbil, r1400×720 "+myData,
              output = zonmeanFile,
              options = '-P 8 - f nc4c')
```

return numpy and masked arrays

```
cdo.div(input='salinity.nc landSeaMask.nc',
    returnArray='S')
cdo.copy(input='-div salinity.grb landSeaMask.grb',
    returnMaArray='S'. options='-f nc')
```

get cdf handles

```
= cdo.fldmin(:input => ifile ,:returnCdf => true)
tData = cdf.variables['T'][:]
```

conditional output: no execution if output file is present

```
cdo.forceOutput = False #or
cdo.operator(...., force=False)
```


Beyond the shell

```
def grepYear(ifiles , year):
    yearFiles = []
    for ifile in ifiles:
        if (year in cdo.showyear(input = ifile).split()):
            yearFiles.append(ifile)
        cdo.cat(input = ' '.join(yearFiles),
            output = yearFile)
```

```
pool = multiprocessing.Pool(8)
yearFiles = []
for year, files in filesOfYears.iteritems():
    yearFile = pool.apply_async(grepYear, [files,str(year)])
    yearFiles.append([year,yearFile,yearMeanFile])

pool.close()
pool.join()
```

CDO's Future

Our Plans

- C++ rewrite to get more recent features
- make operators available to models online processing will get more and more imported with rising resolution
- plugin system
- additional parallelisation techniques: OpenACC, MPI

Our Plans

- C++ rewrite to get more recent features
- make operators available to models online processing will get more and more imported with rising resolution
- plugin system
- additional parallelisation techniques: OpenACC, MPI

What feature do YOU need most?

Don't drink and Derive

$$a = b$$

$$a^{2} = ab$$

$$2a^{2} = a^{2} + ab$$

$$2a^{2} - 2ab = a^{2} - ab$$

$$2a(a - b) = a(a - b)$$

$$2a = a$$

$$2 = 1$$

