FLOWQA:GRASPING FLOW IN HISTORY FOR CONVERSATIONAL MACHINE COMPREHENSION

张璐 吴贺然 2018.12.20

single-turn models

- Question encoding
- Context encoding
- Reasoning
- Answer prediction

Conversational MC

- Existing methods
- just incorporate previous question/answer pairs into the current question and context encoding without modifying higher-level
- FLOWQA
- incorporate the conversation history more comprehensively via a conceptually simple

FLOW mechanism

- Conversation flow can be a representation based of the context tokens and inferred by intermediate machine process for answering previous questions
- Flow builds information flow from the intermediate representation C_1^h, \ldots, C_{i-1}^h generated for the previous question Q_1, \ldots, Q_{i-1} to the current process for answering Q_i , for every h and i

Context integration

pass the current context representation C_i^h for each question i into a **BiLSTM layer**. All **question** i $(1 \le i \le t)$ are processed **in parallel** during training

$$\hat{C}_i^h = \hat{c}_{i,1}^h, \dots, \hat{c}_{i,m}^h = \text{BiLSTM}([C_i^h])$$

Figure 2: Alternating computational structure between context integration (RNN over context) and FLOW (RNN over question turns).

• FLOW

All context word $j(1 \le j \le m)$ are processed in parallel

$$f_{1,j}^{h+1}, \dots, f_{t,j}^{h+1} = \text{GRU}(\hat{c}_{1,j}^h, \dots, \hat{c}_{t,j}^h)$$

Figure 2: Alternating computational structure between context integration (RNN over context) and FLOW (RNN over question turns).

 Reshape the outputs from the Flow layer back, and concatenate them to the output of the integration

$$\begin{split} F_i^{h+1} &= \{f_{i,1}^{h+1}, \dots, f_{i,m}^{h+1}\} \\ C_i^{h+1} &= c_{i,1}^{h+1}, \dots, c_{i,m}^{h+1} = [\hat{c}_{i,1}^h; f_{i,1}^{h+1}], \dots, [\hat{c}_{i,m}^h; f_{i,m}^{h+1}] \end{split}$$

Figure 2: Alternating computational structure between context integration (RNN over context) and FLOW (RNN over question turns).

Figure 3: An illustration of the architecture for FLowQA.

 FLOWQA is based on the single-turn MC structure with fully-aware attention

$$S(x, y) = \text{ReLU}(\mathbf{U}x)^T \mathbf{D} \text{ReLU}(\mathbf{U}y)$$

- Initial encoding
- Reasoning
- Answer prediction

Figure 3: An illustration of the architecture for FLowQA.

Word embedding

Embed the context an question into a sequence of vectors with **pretrained GloVe, CoVE and ELMo**

$$C = \{c_1, \dots, c_m\}$$

 $Q_i = \{q_{i,1}, \dots, q_{i,n}\}.$

Attention (on Question)
 in word level

$$g_{i,j} = \sum_{k} \alpha_{i,j,k} g_{i,k}^Q, \ \alpha_{i,j,k} \propto \exp(\text{ReLU}(W g_j^C)^T \text{ReLU}(W g_{i,k}^Q)),$$

- Word embedding
- A binary indicator
- Output from the attention

$$C_i^0 = [c_1; em_{i,1}; g_{i,1}], \dots, [c_m; em_{i,m}; g_{i,m}]$$

Figure 3: An illustration of the architecture for FLowQA.

 Question Integration with QHierRNN two layers BiLSTM

$$Q_i^1 = q_{i,1}^1, \dots, q_{i,n}^1 = \text{BiLSTM}(Q_i)$$

$$Q_i^2 = q_{i,1}^2, \dots, q_{i,n}^2 = \operatorname{BiLSTM}(Q_i^1)$$

 Answer pointer vectors used in answer prediction layer

$$\tilde{q}_i = \sum_{k=1}^n \alpha_{i,k} \cdot q_{i,k}^2, \ \alpha_{i,k} \propto \exp(w^T q_{i,k}^2)$$

$$p_1, \ldots, p_t = LSTM(\tilde{q}_i, \ldots, \tilde{q}_t)$$

Figure 3: An illustration of the architecture for FLowQA.

Integration-FLOW *2

$$\begin{split} C_i^1 &= \operatorname{IF}(C_i^0) \\ C_i^2 &= \operatorname{IF}(C_i^1) \end{split}$$

Attention(on Question)

$$\hat{q}_{i,j} = \sum_{k=1}^{n} \alpha^{i,j,k} \cdot q_{i,k}^2, \ \alpha^{i,j,k} \propto \exp(S([c_i; c_{j,i}^1; c_{j,i}^2], [q_{j,k}; q_{j,k}^1; q_{j,k}^2]))$$

Integration-FLOW

$$C_i^3 = \text{IF}([c_{i,1}^2; \hat{q}_{i,1}], \dots, [c_{i,m}^2; \hat{q}_{i,m}])$$

Attention(on Context)

$$\begin{array}{ll} \textbf{Encoding} & \hat{c}_{i,j} = \sum_{k=1}^m \alpha^{i,j,k} \cdot c_{j,k}^3, \ \alpha^{i,j,k} \propto \exp(S([c_{i,j}^1; c_{i,j}^2, c_{i,j}^3], [c_{k,j}^1; c_{k,j}^2, c_{k,j}^3])) \\ \textbf{(Context)} & \end{array}$$

Integration

$$C_i^4 = \text{BiLSTM}([c_{i,1}^3; \hat{c}_{i,1}], \dots, [c_{i,m}^3; \hat{c}_{i,m}])$$

Figure 3: An illustration of the architecture for FLowQA.

Estimate the start and end probabilities

$$P_{i,j}^{S} \propto \exp(\left[c_{i,j}^{4}\right]^{T} W_{S} p_{i}), \quad \tilde{p}_{i} = \operatorname{GRU}(p_{i}, \sum_{i,j} P_{i,j}^{S} c_{i,j}^{4}), \quad P_{i,j}^{E} \propto \exp(\left[c_{i,j}^{4}\right]^{T} W_{E} \tilde{p}_{i})$$

Unanswerable question

$$P_i^{\emptyset} \propto \exp\left(\left[\sum_{j=1}^m c_{i,j}^4; \max_j c_{i,j}^4\right]^T W p_i\right)$$

	Child.	Liter.	Mid-High.	News	Wiki	Reddit	Science	Overall
PGNet (1-ctx)	49.0	43.3	47.5	47.5	45.1	38.6	38.1	44.1
DrQA (1-ctx)	46.7	53.9	54.1	57.8	59.4	45.0	51.0	52.6
DrQA + PGNet (1-ctx)	64.2	63.7	67.1	68.3	71.4	57.8	63.1	65.1
BiDAF++ (3-ctx)	66.5	65.7	70.2	71.6	72.6	60.8	67.1	67.8
FLOWQA (1-Ans)	73.7	71.6	76.8	79.0	80.2	67.8	76.1	75.0
Human	90.2	88.4	89.8	88.6	89.9	86.7	88.1	88.8

Table 1: Model and human performance (% in F_1 score) on the CoQA test set. (N-ctx) refers to using previous N QA pairs. (N-Ans) refers to providing previous N gold answers.

	F ₁	HEQ-Q	HEQ-D
Pretrained InferSent	20.8	10.0	0.0
Logistic Regression	33.9	22.2	0.2
BiDAF++ (0-ctx)	50.2	43.3	2.2
BiDAF++ (1-ctx)	59.0	53.6	3.4
BiDAF++ (2-ctx)	60.1	54.8	4.0
BiDAF++ (3-ctx)	59.5	54.5	4.1
FLOWQA (2-Ans)	64.1	59.6	5.8
Human	80.8	100	100

Table 2: Model and human performance (in %) on the QuAC test set. (baselines from (Choi et al., 2018))

	CoQA	QuAC
Prev. SotA (Yatskar, 2018)	70.4	60.6
FLOWQA (0-Ans)	75.0	59.0
FLOWQA (1-Ans)	76.2	64.2
- Flow	72.5	62.1
- QHierRNN	76.1	64.1
- FLow - QHierRNN	71.5	61.4
FLOWQA (2-Ans)	76.0	64.6
FLOWQA (All-Ans)	75.3	64.6

Table 3: Ablation study: model performance on the dev. set of both datasets (in % F_1).

FLOWQA:GRASPING FLOW IN HISTORY FOR CONVERSATIONAL MACHINE COMPREHENSION

张璐 吴贺然 2018.12.20

