

Online Thinning to Reduce Discrepancy

Raaz Dwivedi, Ohad Feldheim, Ori Gurel-Gurevich and Aaditya Ramdas raaz.rsk@eecs.berkeley.edu, ohad@huji.edu, ori@huji.edu, aramdas@berkeley.edu

Set-up

For a sequence $X^{\infty} = \{X_1, X_2, \ldots\}$ in $[0, 1)^d$, let X^N denote the set $\{X_1, \ldots, X_N\}$. Define the discrepancy sequence as

$$\operatorname{Dis}(X^N) = \sup_{R \in \mathcal{R}} \left| \frac{1}{N} \nu_N(R) - \operatorname{vol}(R) \right|,$$

where \mathcal{R} is the set of all axis aligned hyper-rectangles in $[0,1)^d$, $\operatorname{vol}(R)$ denotes the Lebesgue measure of R and

$$\nu_N(S) := |S \cap X^N| \quad \text{for any } S \subset [0, 1)^d.$$

Objectives

Fact: For independent and identically distributed (i.i.d.) sequence such that $X_i \sim U[0,1]^d, i=1,2,...$

$$\operatorname{Dis}(X^N) = \mathcal{O}\left(\frac{1}{\sqrt{N}}\right).$$

Goal: To select a *dense* subset $Z^{\infty} = \{Z_1, Z_2, ...\}$ of a streaming sequence X^{∞} with $X_i \sim U[0, 1]^d$, using an *online* and *time and space efficient* strategy such that

$$\operatorname{Dis}(Z^N) = \mathcal{O}\left(\frac{\operatorname{polylog}(N)}{N}\right).$$

Motivation

N Balls, N Bins

Random Assignment

Randomly sample a bin. Assign the new ball to it.

Two Choice Assignment

Randomly sample two bins. Assign the new ball to the **better** one.

Two Thinning Assignment

Randomly sample a bin. With some probability assign the new ball to it. Else, assign the ball to the next random bin.

Extend the two thinning strategy to our set-up of axis alligned hyper-rectangles. To overcome, the cardinality of the set and heavy dependence across the elements of the set.

Key idea: Decouple them using Haar wavelets –

Haar 2-Thinning Strategy

Given Z_1, \ldots, Z_N , consider Haar wavelets of order up-to $\log_2 N$, denoted by \mathcal{H}_N . Using the *tilt* of each Haar, determine the net tilt of \mathcal{H}_N , and compute *rate function of thinning* as

$$\mathbb{P}(\text{accept } x) =$$

$$0.5 + \frac{1}{\sum_{H \in \mathcal{H}_N} |H(x)|} \underbrace{\sum_{H \in \mathcal{H}_N} \operatorname{sgn}(\nu_N(H^-) - \nu_N(H^+)) \cdot H(x)}_{\text{net tilt of } \mathcal{H}_N \text{ for } x$$

Haar Wavelets

Main Result

For a streaming sequence X^{∞} of i.i.d. $U[0,1)^d$ random variables, Haar 2-Thinning strategy outputs a streaming sequence Z^{∞} such that for any $\Delta > 1$

$$\mathbb{P}\left(\exists N \in \mathbb{N} : \mathrm{Dis}(Z^N) > \Delta \cdot \frac{d \log^{2d+1}(N)}{N}\right) \le 10^7 \exp(-2\Delta).$$

The strategy takes $\mathcal{O}(d \log^d N)$ space and $\mathcal{O}(d \log^d N)$ computation time to output N points and accepts at least half of the points of X^N for any N.

Haar Greedy-Thinning Strategy

Conjecture: A simplified greedy strategy with $\mathcal{O}(\log^d N)$ space-time complexity outputs a thinned sequence Z^{∞} improves over Haar 2-Thinning by a factor of $\log^d N$, that is

$$\operatorname{Dis}(Z^N) = \mathcal{O}(d \log^d N/N).$$

Greedy Strategy: Accept a point x in the sequence, if the net tilt of \mathcal{H}_N at x is positive, otherwise accept the next point of the sequence.

Numerical Experiments

Figure 1:

Figure 2:

Proof Techniques

- Write arbitrary rectangles in terms of "diadic rectangles"
- Write diadic rectangles in terms of "Haar wavelets"
- Control the balance of points in Haar wavelets upto some resolution

References