Основные формулы по тригонометрии

Определение в прямоугольном треугольнике

 $\sin A = \frac{a}{c}, \cos A = \frac{b}{c}, \operatorname{tg} A = \frac{a}{b}, \overline{\operatorname{ctg}} A = \frac{b}{a},$ где a противолежащий катет для $\angle A$, Определение:

b прилежащий катет для $\angle A$, c гипотенуза

Из определения: $\operatorname{tg} A \cdot \operatorname{ctg} A = 1, \operatorname{tg} A = \frac{\sin A}{\cos A}, \operatorname{ctg} A = \frac{\cos A}{\sin A}$

Φ ункции sinx, cosx, tgx, ctgx

 Φ ункции $\sin x$, $\cos x$, $\tan x$, $\cot x$ вводятся через единичную окружность, sinx - проекция на ось OY, cosx - проекция на ось OX. Тангенс и котангенс также можно определить через построение.

Четность нечетность функций:

$$\sin(-x) = -\sin(x)$$
 (нечетная), $\cos(-x) = \cos(x)$ (четная) $\operatorname{tg}(-x) = -\operatorname{tg}(x)$ (нечетная), $\operatorname{ctg}(-x) = -\operatorname{ctg}(x)$ (нечетная)

Формулы суммы и разности углов

Основные формулы:

Синус суммы: $\sin(a+b) = \sin a \cdot \cos b + \cos a \cdot \sin b$ $\sin(a-b) = \sin a \cdot \cos b - \cos a \cdot \sin b$ Синус разности: $\cos(a+b) = \cos a \cdot \cos b - \sin a \cdot \sin b$ Косинус суммы: Косинус разности: $\cos(a-b) = \cos a \cdot \cos b + \sin a \cdot \sin b$

Дополнительные формулы:

Тангенс суммы: $tg(a+b) = \frac{tg\,a + tg\,b}{1 - tg\,a\,tg\,b}$ Тангенс разности: $tg(a-b) = \frac{tg\,a - tg\,b}{1 + tg\,a\,tg\,b}$

Формулы двойных углов

Основные формулы:

 $\sin(2a) = 2\sin a\cos a$ Синус двойного угла:

Косинус двойного угла: $\cos(2a) = \cos^2 a - \sin^2 a = 2\cos^2 a - 1 = 1 - 2\sin^2 a$

Дополнительные формулы:

Тангенс двойного угла: $tg(2a) = \frac{2 tg a}{1 - t\sigma^2 a}$

Формулы суммы разности тригонометических функций

Основные формулы:

Сумма синусов: $\sin a + \sin b = 2 \sin \frac{a+b}{2} \cos \frac{a-b}{2}$ Разность синусов: $\sin a - \sin b = 2 \cos \frac{a+b}{2} \sin \frac{a-b}{2}$ Сумма косинусов: $\cos a + \cos b = 2 \cos \frac{a+b}{2} \cos \frac{a-b}{2}$ Разность косинусов: $\cos a - \cos b = -2 \sin \frac{a+b}{2} \sin \frac{a-b}{2}$

Дополнительные формулы:

Сумма тангенсов: $tg a + tg b = \frac{\sin{(a+b)}}{\cos{a}\cos{b}}$ Разность тангенсов: $tg a - tg b = \frac{\sin{(a+b)}}{\cos{a}\cos{b}}$

Произведение синусов косинусов тангенсов котангенсов

Основные формулы:

 $\sin a \cdot \sin b = \frac{1}{2} \cdot (\cos(a-b) - \cos(a+b))$ Произведение синусов: $\cos a \cdot \cos b = \frac{1}{2} \cdot (\cos(a-b) + \cos(a+b))$ Произведение косинусов: Произведение синуса и косинуса: $\sin a \cdot \cos b = \frac{1}{2} \cdot (\sin(a-b) + \sin(a+b))$

Дополнительные формулы:

Произведение тангенсов: $\operatorname{tg} a \cdot \operatorname{tg} b = \frac{\operatorname{tg} a + \operatorname{tg} b}{\operatorname{ctg} a + \operatorname{ctg} b}$ Произведение котангенсов: $\operatorname{ctg} a \cdot \operatorname{ctg} b = \frac{\operatorname{tg} a + \operatorname{tg} b}{\operatorname{tg} a + \operatorname{tg} b}$

Формулы половинных аргументов

Основные формулы:

Синус половинного аргумента: $\sin^2\frac{a}{2}=\frac{1-\cos a}{2}$ Косинус половинного аргумента: $\cos^2\frac{a}{2}=\frac{1+\cos a}{2}$

Формулы приведения:

Функция / угол в рад.	π/2 – α	π/2 + α	π – α	π + α	3π/2 – α	3π/2 + α	2π – α	2π + α
sin	cos α	cos α	sin α	– sin α	– cos α	– cos α	– sin α	sin α
cos	sin α	– sin α	– cos α	– cos α	– sin α	sin α	cos α	cos α
tg	ctg α	– ctg α	– tg α	tg α	ctg α	– ctg α	– tg α	tg α
ctg	tg α	– tg α	– ctg α	ctg α	tg α	– tg α	– ctg α	ctg α
Функция / угол в °	90° – α	90° + α	180° – α	180° + α	270° – α	270° + α	360° – α	360° + α

Табличные значения тригонометрических функций:

		Аргумент <i>t</i>															
Функция	0	$\frac{\pi}{6}$ 30°	$\frac{\pi}{4}$ 45°	$\frac{\pi}{3}$ 60°	$\frac{\pi}{2}$ 90°	$\frac{2\pi}{3}$ 120°	$\frac{3\pi}{4}$ 135°	$\frac{5\pi}{6}$ 150°	π 180°	$\frac{7\pi}{6}$ 210°	$\frac{5\pi}{4}$ 225°	$\frac{4\pi}{3}$ 240°	$\frac{3\pi}{2}$ 270°	$\frac{5\pi}{3}$ 300°	$\frac{7\pi}{4}$ 315°	$\frac{11\pi}{6}$ 330°	2π 360°
sin t	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0
cos t	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
tg ţ	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	-	- √3	-1	$-\frac{\sqrt{3}}{3}$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	1	- √3	-1	$-\frac{\sqrt{3}}{3}$	0
ctg ţ	ı	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0	$-\frac{\sqrt{3}}{3}$	-1	- √3	-	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0	$-\frac{\sqrt{3}}{3}$	-1	$-\sqrt{3}$	_

От автора:

Этот материал поможет в структурировании формул по тригонометрии, однако важным является умение выводить большую часть этих формул. Вывод всей теории можно посмотреть на моем канале. Также буду признателен, если подпишешься на мою открытую группу в Telegram: Qanalitiqutor, там ты сможешь найти больше материалов по математике, физике, информатике и программированию. Будем на связи.