

Universidade Federal do Pampa Ciência da Computação Computação Gráfica Prof. Alessandro Bof de Oliveira

Computação Gráfica Curvas

Curvas Paramétricas

- Normalmente, o resultado da modelagem é dado em forma paramétrica
- Permite que uma curva seja definida facilmente através de um parâmetro (que em geral varia entre 0 e 1).
- Permite descrever uma curva por trechos (segmentos).
- Uma curva em 3D é dada por
 - $C(u) = [C_x(u) C_y(u) C_z(u)]^T$

Continuidade

- Podemos definir a suavidade de uma curva algebricamente.
- Continuidade C⁰ → funções paramétricas são contínuas, sem descontinuidades.
- Continuidade C¹→ funções paramétricas têm primeiras derivadas contínuas, isto é, tangentes variam suavemente
- Continuidade C² → funções paramétricas têm segunda derivadas contínuas

Interpolação x Aproximação

- Modelagem da curva através de um conjunto de pontos.
- Se a curva desejada passa obrigatoriamente pelos pontos temos uma interpolação.
- Porém se a curva passa perto dos pontos temos métodos de aproximação.

O. O. O

Aproximação

- Suponha que queiramos aproximar uma curva polinomial entre dois pontos \mathbf{p}_0 e \mathbf{p}_1 dados
- Uma solução natural é um segmento de reta que passa por p₀e p₁cuja parametrização pode ser escrita como:

$$\mathbf{p}(u) = (1 - u)\mathbf{p}_0 + u\mathbf{p}_1$$

 Observe que os polinômios (1 – u) e u somam 1 para qualquer valor de u.

Para generalizar a idéia para três pontos p₀,
 p₁ e p₂ consideramos primeiramente os segmentos de reta p₀p₁ e p₁p₂

$$\mathbf{p}_{01}(u) = (1 - u)\mathbf{p}_0 + u \mathbf{p}_1$$

 $\mathbf{p}_{11}(u) = (1 - u)\mathbf{p}_1 + u \mathbf{p}_2$

 Podemos agora realizar uma interpolação entre p₀₁(u) e p₁₂(u)

$$\mathbf{p}_{02}(u) = (1 - u)\mathbf{p}_{01}(u) + u\mathbf{p}_{11}(u)$$
$$= (1 - u)^2\mathbf{p}_0 + 2u(1 - u)\mathbf{p}_1 + u^2\mathbf{p}_2$$

- A curva obtida pode ser entendida como a combinação dos pontos **p**₀, **p**₁e **p**₂ por intermédio de três funções quadráticas:
 - $b_{02}(u) = (1 u)^2$
 - $b_{12}(u) = 2u (1 u)$
 - $b_{22}(u) = u^2$
- Aplicando mais uma vez a ideia podemos definir uma cúbica por 4 pontos

$$\mathbf{p}_{02}(u) = (1 - u)^{2} \mathbf{p}_{0} + 2 u (1 - u) \mathbf{p}_{1} + u^{2} \mathbf{p}_{2}$$

$$\mathbf{p}_{12}(u) = (1 - u)^{2} \mathbf{p}_{1} + 2 u (1 - u) \mathbf{p}_{2} + u^{2} \mathbf{p}_{3}$$

$$\mathbf{p}_{03}(u) = (1 - u) \mathbf{p}_{02}(u) + u \mathbf{p}_{12}(u)$$

$$= (1 - u)^{3} \mathbf{p}_{0} + 3 u (1 - u)^{2} \mathbf{p}_{1} + 3 u^{2} (1 - u) \mathbf{p}_{2} + u^{3} \mathbf{p}_{3}$$

 Novamente temos uma curva dada pela soma de 4 funções de mistura (agora cúbicas), cada uma multiplicada por um dos 4 pontos

$$\bullet b_{03}(u) = (1 - u)^3$$

•
$$b_{13}(u) = 3 u (1 - u)^2$$

$$\bullet b_{23}(u) = 3 u^2 (1 - u)$$

•
$$b_{33}(u) = u^3$$

 Uma curva de grau n pode ser construída desta forma e será expressa pela expressão geral:

$$p_{0n}(u) = \sum_{j=0}^{n} b_{jn}(u) p_{j}$$

 Onde b_{jn}(u) é denominado de polinômio de Bernstein.

$$B_{i,n}(t) = \binom{n}{i} t^i (1-t)^{n-i} \qquad \qquad \binom{n}{i} = \frac{n!}{i!(n-i)!}$$

Curvas de Bézier e Polinômios de Bernstein

 As curvas construídas pelo algoritmo de De Casteljau são conhecidas como curvas de Bézier e as funções de mistura são chamadas de base Bézier ou polinômios de Bernstein

Polinômios de Bernstein

Polinômios de Bernestein de terceiro grau (ou grau 3).

Forma Matricial da Base Bézier

 Podemos escrever a equação para uma curva de Bézier cúbica na forma

$$p(u) = p_{03}(u) = \begin{bmatrix} 1 & u & u^2 & u^3 \end{bmatrix} M_B \begin{bmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \end{bmatrix}$$

onde M_R é a matriz de coeficientes da base Bézier

$$M_{B} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -3 & 3 & 0 & 0 \\ 3 & -6 & 3 & 0 \\ -1 & 3 & -3 & 1 \end{bmatrix}$$

Propriedades de Curva de Bézier

- Continuidade infinita (todas as derivadas são contínuas).
- O grau da curva (do polinômio) é dado pelo número de pontos do polígono (n) de controle menos 1 (ou seja n-1)
- A curva de Bézier está contida no fecho convexo do polígono de controle
 - Os polinômios de Bernstein somam 1 para qualquer u
- A curva interpola o primeiro e último ponto do polígono de controle

Propriedades de Curva de Bézier

- As tangentes à curva em $\mathbf{p}_0 \in \mathbf{p}_n$ têm a direção dos segmentos de reta $\mathbf{p}_0 \mathbf{p}_1 \in \mathbf{p}_{n-1} \mathbf{p}_n$, respectivamente
 - Para cúbicas, as derivadas são $3(\mathbf{p}_1 \mathbf{p}_0)$ e $3(\mathbf{p}_2 \mathbf{p}_3)$
- Qualquer linha reta intercepta a curva tantas ou menos vezes quanto intercepta o polígono de controle.

Desenhando Curvas Bézier

- Curva normalmente é aproximada por uma linha poligonal
- Pontos podem ser obtidos avaliando a curva em $u = u_1, u_2 \dots u_k$
 - Avaliar os polinômios de Bernstein
 - Usar o algoritmo recursivo de De Casteljau
- Quantos pontos?
 - Mais pontos em regiões de alta curvatura
- Idéia: subdividir recursivamente a curva em trechos até que cada trecho seja aproximadamente "reto"

Curvas de Hermite

- Ao invés de modelar a curva a partir de um polígono de controle (Bézier), especifica-se pontos de controle e vetores tangentes nesses pontos
- Vantagem: é fácil emendar várias curvas bastando especificar tangentes iguais nos pontos de emenda
- Exemplos (cúbicas):

Curvas de Hermite

 No caso de cúbicas, temos o ponto inicial e final além dos vetores tangentes

$$p(u) = \begin{bmatrix} 1 & u & u^2 & u^3 \end{bmatrix} M_H \begin{bmatrix} p_0 \\ p_1 \\ p'(0) \\ p'(1) \end{bmatrix}$$
onde $M_H = \begin{bmatrix} 1 & 0 - 3 & 2 \\ 0 & 0 & 3 & -2 \\ 0 & 1 - 2 & 1 \\ 0 & 0 - 1 & 1 \end{bmatrix}$

Curvas Longas

- Curvas Bézier com k pontos de controle são de grau k - 1
- Curvas de grau alto são difíceis de desenhar
 - Complexas
 - Sujeitas a erros de precisão
- Normalmente, queremos que pontos de controle tenham efeito local
 - Em curvas Bézier, todos os pontos de controle têm efeito global
- Uma solução pode ser:
 - Emendar curvas polinomiais de grau baixo

Emendando Curvas Bézier

- Continuidade C⁰: Último ponto da primeira = primeiro ponto da segunda
- Continuidade C¹: C⁰ e segmento p₂p₃da primeira com mesma direção e comprimento que o segmento p₀p₁da segunda
- Continuidade C²: C¹ e + restrições sobre pontos p₁da primeira e p₂da segunda

Curvas Racionais

- Funções são razões
 - Avaliados em coordenadas homogêneas:

$$[x(t), y(t), z(t), w(t)] \rightarrow \left[\frac{x(t)}{w(t)}, \frac{y(t)}{w(t)}, \frac{z(t)}{w(t)}\right]$$

- NURBS (Non-Uniform Rational B-Splines): x(t),
 y(t), z(t) e w(t) são B-splines não uniformes
- Vantagens:
 - Invariantes sob transformações perspectivas e portanto podem ser avaliadas no espaço da imagem

Parametrização de um Círculo

 Por exemplo, uma parametrização conhecida do círculo é dada por

$$x(u) = \frac{1 - u^2}{1 + u^2}$$
$$y(u) = \frac{2u}{1 + u^2}$$

 Podemos expressar essa parametrização em coordenadas homogêneas por:

$$x(u)=1-u^{2}$$

$$y(u)=2u$$

$$w(u)=1+u^{2}$$