Genetics and update of CKD

Hussein Sheashaa, MD, FACP

Professor of Nephrology, Urology and Nephrology Center and Director of Medical E-Learning Unit, Mansoura University and Executive Director of ESNT- Virtual Academy: http://lms.mans.edu.eg/esnt/

ESNT, February 23rd, 2016

Nephrogenetics

Mallett et al. Human Genomics (2015) 9:13 DOI 10.1186/s40246-015-0035-1

OPINION ARTICLE

Open Access

Genomics in the renal clinic - translating nephrogenetics for clinical practice

Andrew Mallett 1,2,3*, Christopher Corney 1,2, Hugh McCarthy 4,5, Stephen I. Alexander 4,5,6 and Helen Healy 1,2

Corners

- Early onset CKD
- 2. Alternative splicing
- DKD and hypertension
- 4. ADPCKD
- 5. African American and kidney disease
- 6. Clinical implications and guidelines
- 7. Closure

Early Onset CKD

Early Onset CKD: Exploring the Genes

REVIEWS

Exploring the genetic basis of early-onset chronic kidney disease

Asaf Vivante^{1,2} and Friedhelm Hildebrandt¹

Early Onset CKD: Exploring the Genes

Diagnostic group	Indication to run a gene panel	Proportion of cases of early-onset CKD	Number of known causative genes	Percentage of cases caused by known genes (multiplied by fraction of all CKD)
aHUS	Microangiopathic haemolytic anaemia, thrombocytopaenia, and AKI	2.0%	9	~60% (1.2%)
Nephrolithiasis or nephrocalcinosis	Known stone disease or nephrocalcinosis	1.6% (cystinosis 1.5%; oxalosis 0.1%)	30	21% (0.4%)
Other	Other indications of genetic disease	23.5% (renal infarct 2.2%; pyelonephritis or interstitial nephritis 1.4%; Wilms tumour 0.5%; other systemic immunologic diseases 0.4%; granulomatosis with polyangiitis 0.4%; sickle cell nephropathy 0.2%; diabetic glomerulopathy 0.2%; other nonimmunologic causes 18.2%)	Not known	Not known
Total	_	100%	~219	(~20%)

Urinary Stones: Monogenic Causes

CJASN ePress. Published on January 19, 2016

Increased Echogenicity: The Causative Mutations

Whole exome sequencing identifies causative mutations in the majority of consanguineous or familial cases with childhood-onset increased renal echogenicity

Daniela A. Braun^{1,19}, Markus Schueler^{1,19}, Jan Halbritter^{1,2}, Heon Yung Gee¹, Jonathan D. Porath¹, Jennifer A. Lawson¹, Rannar Airik¹, Shirlee Shril¹, Susan J. Allen³, Deborah Stein¹, Adila Al Kindy⁴, Bodo B. Beck⁵, Nurcan Cengiz⁶, Khemchand N. Moorani⁷, Fatih Ozaltin^{8,9,10}, Seema Hashmi¹¹, John A. Sayer¹², Detlef Bockenhauer¹³, Neveen A. Soliman^{14,15}, Edgar A. Otto³, Richard P. Lifton^{16,17,18} and Friedhelm Hildebrandt^{1,18}

¹Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA; ²Division of Nephrology, Department of Internal Medicine, University Clinic Leipzig, Leipzig, Germany; ³Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA; ⁴Department of Genetics, Sultan Qaboos University Hospital, Seeb, Sultanate of Oman; ⁵Institute for Human Genetics, University of Cologne, Cologne, Germany; ⁶School of Medicine, Adana Medical Training and Research Center, Department of Pediatric Nephrology, Baskent University, Adana, Turkey; ⁷Department of Pediatric Nephrology, National Institute of Child Health, Karachi, Pakistan; ⁸Faculty of Medicine, Department of Pediatric Nephrology, Hacettepe University, Ankara, Turkey; ⁹Nephrogenetics Laboratory, Faculty of Medicine, Department of Pediatric Nephrology, Hacettepe University, Ankara, Turkey; ¹⁰Center for Biobanking and Genomics, Hacettepe University, Ankara, Turkey; ¹¹Department of Pediatric Nephrology, Sindh Institute of Urology and Transplantation, SIUT, Karachi, Pakistan; ¹²Institute of Genetic Medicine, International Centre for Life, Newcastle University, Central Parkway, Newcastle, UK; ¹³University College London, Institute of Child Health and Pediatric Nephrology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; ¹⁴Department of Pediatrics, Kasr Al Ainy School of Medicine, Cairo University, Cairo, Egypt; ¹⁵Egyptian Group for Orphan Renal Diseases (EGORD), Cairo, Egypt; ¹⁶Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA; and ¹⁸Howard Hughes Medical Institute, Chevy Chase, MD, USA

Alternative Splicing and CKD

Alternative Splicing in CKD

BRIEF REVIEW www.jasn.org

Alternative Splicing in CKD

Megan Stevens*† and Sebastian Oltean*†

*School of Physiology and Pharmacology, Faculty of Biomedical Sciences, and [†]Academic Renal Unit, School of Clinical Sciences, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom

J Am Soc Nephrol 2016, in press

Alternative Splicing in CKD

/EGF₂₀₆b

/EGF₁₈₉b

/EGF₁₈₈b

/EGF₁₆₅b

/EGF₁₄₅b

/EGF,21b

sVEGFR-1 (Soluble Flt-1) Soluble Klotho Soluble Erythropoietin Receptor Fibronectin

Proximal Splice Site - VEGF_{xxx}
Angiogenic

Distal Splice Site - VEGF_{xxx}b Anti-Angiogenic

J Am Soc Nephrol 2016, in press

Alternative Splicing: Potential Therapy

J Am Soc Nephrol 2016, in press

DKD and Hypertension

DKD and SNP

rs478333, rs7756992, rs7754840

Kidney International (2016) 89, 411–420

Epigenetic Memory in Kidney Diseases

Epigenetic memory in kidney diseases

Imari Mimura¹

Epigenetic mechanisms have been the focus of intensive research. De Marinis et al. demonstrated that high glucose levels exert stimulatory effects on activation histone marks, leading to the upregulation of thioredoxin-interacting protein (TXNIP) gene expression, which is proinflammatory. They also showed that the effect was reversed by the inhibition of histone acetyltransferase, suggesting a new therapeutic approach for improving diabetic kidney disease. Epigenetic changes are memorized as epigenetic memory that could exacerbate diabetic complications.

Kidney International (2016) 89, 274-277; http://dx.doi.org/10.1016/j.kint.2015.12.026

Epigenetic Memory in Kidney Diseases

Kidney International (2016) 89, 274–277

Hypertension Pharmacogenomics

Hypertension pharmacogenomics: in search of personalized treatment approaches

Rhonda M. Coope

Top pharmacogenomic signals associated with blood pressure response and/or cardiovascular outcomes

ϵ	Association	Drug class	Locus (SNP)	Associated allele	Magnitude of effect
	BP response and CV outcomes	Thiazide diuretic	NEDD4L (rs4149601)	G allele	BP lowering: G allele associated with greater BP response (–19.5 versus –15.0 mmHg SBP and –15.4 versus –14.0 mmHg DBP) ³⁸
0					Adverse CV outcomes: G allele associated with reduced risk of CV outcomes in NORDIL β -blocker/diuretic arm (OR 0.52, P <0.0001) 38
					G allele (one or two copies) associated with increased risk of CV outcomes when a thiazide diuretic was not included in treatment $(OR~8.94-10.7, P=0.051-0.022)^{39}$
		β-blocker	ADRB1 (rs1801253 [Arg389Gly])	C allele	C allele (arginine) homozygotes had greater BP response to metoprolol: -6.5 mmHg in 24 h DBP more than G (glycine) allele carriers (P=0.0018)*5
			ADRB1 (rs1801252 [Ser49Gly])	A allele	A allele (serine) homozygotes had similar trend for greater DBP response to metoprolol ($P=0.08$) ⁴⁵
			ADRB1 Ser49/Arg389 haplotype	Haplotype	Ser49Arg389/Ser49Arg389 haplotype associated with greater BP response to metoprolol (-14.7 mmHg versus -0.5 mmHg in patients with the Gly49Arg389/Ser49Gly389 haplotype; $P=0.006$) ⁴⁵

CKD Progression: RAAS genes

The role of renin-angiotensin-aldosterone system genes in the progression of chronic kidney disease: findings from the Chronic Renal Insufficiency Cohort (CRIC) study

AGT and RENBP

Tanika N. Kelly¹, Dominic Raj², Mahboob Rahman³, Matthias Kretzler⁴, Radhakrishna R. Kallem⁵, Ana C. Ricardo⁶, Sylvia E. Rosas⁷, Kaixiang Tao⁸, Dawei Xie⁸, Lotuce Lee Hamm⁹ and Jiang He^{1,9} on behalf of the CRIC Study Investigators^{*}

¹School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA, ²Medical Faculty Associates, George Washington University, Washington, DC 20037, USA, ³University Hospitals Case Medical Center, Case Western Reserve University, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA, ⁴University of Michigan, Ann Arbor, MI 48109, USA, ⁵University of Pennsylvania, Translational Research Center, Philadelphia, PA 19104, USA, ⁶University of Illinois at Chicago, Chicago, IL 60612, USA, ⁷Joslin Diabetes Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA, ⁸The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA and ⁹Tulane University School of Medicine, New Orleans, LA 70112, USA

ADPCKD

ADPCKD: Cystogenesis

J Am Soc Nephrol 26: 2081–2095, 2015

ADPCKD: Cystogenesis

J Am Soc Nephrol 26: 2081–2095, 2015

PKD: MicroRNA-21

J Am Soc Nephrol 2016, in press

ADPCKD: Pd1 and 3

Modulation of Polycystic Kidney Disease Severity by Phosphodiesterase 1 and 3 Subfamilies

Hong Ye,* Xiaofang Wang,* Caroline R. Sussman,* Katharina Hopp,* Maria V. Ira. Jason L. Bakeberg,[†] Wells B. LaRiviere,* Vincent C. Manganiello,[‡] Charles V. Voo Haiqing Zhao,^{||} Peter C. Harris,* Jan van Deursen,[¶] Christopher J. Ward,[†] and Vicente E. Torres*

*Division of Nephrology and Hypertension and *Department of Biochemistry and Molecular Biology, M. Rochester, Minnesota; *Division of Nephrology and Hypertension, The Kidney Institute, University of Ka Center, Kansas City, Kansas; *Cardiovascular and Pulmonary Branch, National Heart, Lung and Blood In National Institutes of Health, Bethesda, Maryland; *Department of Pediatrics, Division of Neurology, Cincin Research Foundation and University of Cincinnati, Cincinnati, Ohio; and *Department of Biology, Johns University, Baltimore, Maryland

J Am Soc Nephrol 2016, in press

ADPCKD: VEGFC

J Am Soc Nephrol 27: 69–77, 2016

ADPCKD: Genotypes

Table 2. Age at ESRD and patient death by mutation class

Mutation Class	N	Age (yr) at ESRD ^a	Age (yr) at Patient Death
PKD1 truncating	249	52.5 (51.2 to 53.9)	65.2 (62.7 to 67.7)
PKD1 IF indel	32	58.6 (54.9 to 62.4)	71.6 (67.3 to 75.9)
PKD1 NT	152	70.8 (67.5 to 74.2)	77.5 (74.6 to 80.5)
PKD2	213	80.0 (77.1 to 82.8)	79.1 (76.6 to 81.6)
NMD	61	77.5 (72.1 to 82.9)	80.1 (75.3 to 84.8)

^aData derived from Kaplan–Meier survival analysis and expressed as means and 95% Cls. *P*<0.001 by log-rank test.

J Am Soc Nephrol 2016, in press

ADPCKD: Mutation Databse (PKDB)

http://pkdb.mayo.edu/

ADPCKD: PROPKD Score

CLINICAL RESEARCH

www.jasn.org

The PROPKD Score: A New Algorithm to Predict Renal Survival in Autosomal Dominant Polycystic Kidney Disease

Multivariate Cox analysis

Variable	Patients (n)	HR (95% CI)	95% CI from Bootstrap Analysis	P Value	Points for PROPKD Score
Sex			2 118		·
Female	541				0
Male	432	1.55 (1.29 to 1.88)	1.27 to 1.89	< 0.001	1
Hypertension before age 35 yr					
No	679				0
Yes	294	2.11 (1.71 to 2.61)	1.71 to 2.62	< 0.001	2
≥1 urologic event before age 35 yr					
No	734				0
Yes	239	1.73 (1.38 to 2.18)	1.35 to 2.24	< 0.001	2
Mutation					
PKD2	186				0
PKD1 nontruncating	239	2.27 (1.57 to 3.28)	1.61 to 3.18	0.002	2
PKD1 truncating	548	4.75 (3.41 to 6.60)	3.63 to 6.60	< 0.001	4

95% CI, 95% confidence interval.

ADPCKD: PROPKD Score

J Am Soc Nephrol 2016, in press

ADPCKD: PROPKD Score

J Am Soc Nephrol 2016, in press

ADPCKD: sFRP4

of autosomal dominant polycystic kidney disease

Stefan Zschiedrich¹, Klemens Budde², Jens Nürnberger³, Christoph Wanner⁴, Claudia Sommerei Bullrich Kunzendorf⁶, Bernhard Banas⁷, Walter H. Hoerl^{8,†}, Nicholas Obermüller⁹, Wolfgang Arn Hermann Pavenstädt¹¹, Jens Gaedeke², Tom H. Lindner¹², Lothar Faerber¹³, Peter Wimmer¹³, Rola Kai-Uwe Eckardt15 and Gerd Walz1

¹Renal Division, University Hospital Freiburg, Freiburg, Germany, ²Renal Division, Charité Universitätsmedizin Berlin – Campu Germany, 3 Department of Nephrology, Helios Kliniken Schwerin, Schwerin, Germany, 4 Renal Division, University Hospital Wi Würzburg, Germany, ⁵Center for Nephrology, University Hospital Heidelberg, Heidelberg, Germany, ⁶Renal Division, Universit Kiel, Germany, Renal Division, University Hospital Regensburg, Regensburg, Germany, Department of Internal Medicine III, Hospital, Vienna, Germany, Renal Division, Center for Internal Medicine, University Hospital Frankfurt, Frankfurt, Germany, Nephrology, Merheim Medical Center, Cologne, Germany, 11 Renal Division, University Hospital Münster, Münster, Germany, 12 University Hospital Leipzig, Leipzig, Germany, 13 Novartis Pharma GmbH, Nuremberg, Germany, 14 Thermo Fisher Scientific, Frei and ¹⁵Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Gen

Nephrol Dial Transplant (2016) 31: 284-289

ADPCKD: MRI Automated Segmentation

Clin J Am Soc Nephrol 11: ccc-ccc, April, 2016

Food Restriction and ADPCK

African American

APOL1-Associated Diseases

Clinical and Population Studies

APOL1 Genotype, Kidney and Cardiovascular Disease, and Death in Older Adults

Kenneth J. Mukamal, Joseph Tremaglio, David J. Friedman, Joachim H. Ix, Lewis H. Kuller, Russell P. Tracy, Martin R. Pollak

Arterioscler Thromb Vasc Biol. Feb 2016;36:398-403

CKD-MBD: African Ancestry

CJASN ePress. Published on February 8, 2016 as doi: 10.2215/CJN.08020715

Article

Genetic African Ancestry and Markers of Mineral Metabolism in CKD

Orlando M. Gutiérrez, Afshin Parsa, Tamara Isakova, Julia J. Scialla, Jing Chen, John M. Flack, Lisa C. Nessel, Jayanta Gupta, Keith A. Bellovich, Susan Steigerwalt, James H. Sondheimer, Jackson T. Wright Jr, Harold I. Feldman, John W. Kusek, James P. Lash, and Myles Wolf

Clinical Implications and Guidelines

Genetic Testing: Clinical Implications

- Provides a definitive diagnosis
- Enables genetic counselling for family planning
- Enables unnecessary diagnostic procedures, tests and treatments to be avoided
- Early detection and treatment of asymptomatic (or subtle) extrarenal manifestations

European Renal Best Practice Guideline

- 1.4.4. We do not recommend living donation from a genetically related donor in patients who are suspected to have atypical HUS as their underlying kidney disease unless the responsible mutation has been conclusively excluded in the donor. (1D)
- 1.5.5. We suggest that children with steroid-resistant nephrotic syndrome undergo appropriate genotyping before wait-listing them for kidney transplantation. (Ungraded Statement)

Parma, Italy, ¹¹Renal Unit, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy, ¹²Medical Faculty, University Department of Nephrology, Skopje, Republic of Macedonia, ¹³Department of Abdominal Surgery and Transplantation, CHU Liege, Liège, Belgium, ¹⁴Transplantation Immunology and Nephrology, University Hospital Basel, Basel, Switzerland, ¹⁵Center for Biomedical Research of the Canary Islands (CIBICAN), University of La Laguna, La Laguna, Spain, ¹⁶Nephrology Service, University Hospital of Canary Islands, La Laguna, Spain, ¹⁷Nefrologia, Instituto Reina Sofia de Investigación, Madrid, Spain, ¹⁸Department of Nephrology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic, ¹⁹ Department of Nephrology, University of Heidelberg, Heidelberg, Germany, ²⁰Department of Nephrology, University Hospital Ghent, Ghent, Belgium, ²¹Dienst Nefrologie, UZ Gent, Gent, Belgium and ²²Renal Division, University Hospital Ghent, Ghent, Belgium

ADPCKD: Genetic Counseling

KHA-CARI Autosomal Dominant Polycystic Kidney Disease Guideline: Counseling Counseling

- a. We recommend that adult patients diagnosed autosomal dominant polycystic kidney diseas referred to their regional genetics service for generating if they are interested in and would discuss (2B) the following:
 - i. Inheritance pattern and clarifying/commu ing disease risk to family members
 - ii. Molecular genetic testing (role, indication interpretation)
 - iii. Family planning and prenatal testing options (including preimplantation genetic diagnosis)

- b. We recommend adults and children at risk of autosomal dominant polycystic kidney disease are referred to their regional genetics service for genetic counseling if they are interested in and would like to discuss (2A) the following:
 - i. Inheritance pattern and their risk of disease
 - ii. Predictive testing (via renal imaging and/or molecular genetic testing) and associated issues
 - iii. Family planning and prenatal testing options (including preimplantation genetic diagnosis)

Urology and Nephrology Center

Closure

Novel Genetic Causes: A new Dimension of GRD

STUDY PROTOCOL

Open Access

A protocol for the identification and validation of novel genetic causes of kidney disease

Andrew Mallett^{1,2,3,16*}, Chirag Patel⁴, Barbara Maier^{3,5}, Julie McGaughran⁴, Michael Gabbett^{4,6}, Minoru Takasato^{3,5}, Anne Cameron², Peter Trnka⁷, Stephen I. Alexander⁸, Gopala Rangan⁹, Michael C. Tchan¹⁰, Georgina Caruana¹¹, George John¹, Cathy Quinlan¹², Hugh J. McCarthy^{8,10}, Valentine Hyland¹³, Wendy E. Hoy², Ernst Wolvetang¹⁴, Ryan Taft³, Cas Simons³, Helen Healy^{1,2} and Melissa Little^{3,5,15}

¹Kidney Health Service and Conjoint Kidney Research Laboratory, Royal Brisbane and Women's Hospital, Brisbane, Australia
²Centre for Kidney Disease Research, Centre for Chronic Disease and CKD.QLD, School of Medicine, The University of Queensland, St Lucia, Australia

BMC Nephrology (2015) 16:152

Nephrogenetics: Limitations and Challenges

- Study design
- Phenotypic/genotypic heterogeneity
- Regulatory and ethical concerns
- Lack of cost effectiveness analyses
- Limited availability and lack of education

