

图4. 音频集标记的PANNs结果。透明和实线分别是训练mAP和评估mAP。六个图显示了不同的结果。(a)集构。(b) 数据平衡和数据增强。(c) 嵌入尺寸。(d) 训练数据量。(e) 采样率。 (f) 概象拉坦桶的数量

CNN14系统的mAP为0.431,优于之前最好的系统。我们使用CNN14作为青干未构建Mavegram-Logmel CNN,以便与CNN14系统进行公平比较。图4(a)显示,Mavegram-Logmel CNN的性能优于CNN14系统和MobileNetV1系统。详细结果见本节后面的表XI

2) 按美別檢能:图3星示了CNN14系统不同声音类别的按美別AP。在、中、右列星示了声音类的AP。其中训练片段的数量在AudioSot的训练集中排名第1至第1位、第250至第260位和第517至第527位。不同声音等级的表现可能率常不同。例如,"音乐"和"语音"的AP超过0.80。另一方面,一些声音类,如"linsido, small",只能达到0.19的AP。图3星示,AP通常与训练片段的数量无关。例如,在列星示"linsido, small"包含70159~训练片段,因2星示,AP通常的训练片段的数量无关。例如,在列星示"linsido, small"包含70159~训练片段,因比是外段低,相比之下,右柱星示"lboot只有106个训练片段,但达到了0.88的AP,并且比许多其他训练片段更多的声音类别更大。在本文的最后,我们在图12中绘制了所有527个声音类别的mAP。图12星示了CNN14、MobileNetVi和Wavegram Logmel CNN系统与之前最大进行音频的面AP,现20分的逐类比较,该系统使用[i]发布的嵌入功能构建。图12中的蓝色条星示引排标片段的对数数量。"+"符号表示0和1之间的标记质量,这是通过专家检证的正确标记的音频片段的百分比来衡量的[i]。标签质量因声音等级而具。"一"符号表示

表五 数据平衡和增强的结果

| 增强              | mAP    | AUC   | d-prime |
|-----------------|--------|-------|---------|
| 无平衡, 无混淆 (20k)  | 0. 224 | 0.894 | 1.763   |
| bal, 无混音 (20k)  | 0.221  | 0.879 | 1.652   |
| 混球 (20k)        | 0.278  | 0.905 | 1.850   |
| 无平衡, 无混淆 (1.9米) | 0.375  | 0.971 | 2.690   |
| 平衡, 无混淆(1.9米)   | 0.416  | 0.968 | 2.613   |
| 混合球 (1.9米)      | 0.431  | 0.973 | 2,732   |
| 混球way (1,9米)    | 0.425  | 0.973 | 2,720   |

表VI 不同啤酒花大小的结果

| 跳跃大小 | 时间分辨率   | шAР   | AUC   | d-prime |
|------|---------|-------|-------|---------|
| 1000 | 31.25毫秒 | 0.400 | 0.969 | 2.645   |
| 640  | 20,00毫秒 | 0.417 | 0.972 | 2, 711  |
| 500  | 15.63毫秒 | 0.417 | 0.971 | 2.682   |
| 320  | 10.00毫秒 | 0.431 | 0.973 | 2.732   |

标签质量不可用的声音类别。图12显示。某些类别的平均精度高于其能类别。例如。"风管"等声音类别的平均精度为0.90。伤"鼠标"等声音等级的平均精度小于0.2。一种解释是。不同声音类别的音频标记程度不同。此外,音频标记性能并不总是与训练片段的数量和标签质量相关[20]。图12显示,我们是出的系统在各种声音类别上都优于之前最先进的系统[16]、[17