## Simulation10

### Mengqi Liu

### Sep 12, 2023

- ullet Methods: ( $ilde{Z}$  is the discretized Z, and the data belonging to the same group share the same  $ilde{Z}$ .)
  - "double\_Z/cor\_Z": permute X within each bin. At each time, regress Y on 1, Z and regress X on 1, Z separately, and take the *absolute correlation* between residuals from two linear regressions as the test statistic.
  - lacktriangledown "XY\_meanZ": permute X within each bin. At each time, regress Y on  $1, \tilde{Z}$  and regress X on  $1, \tilde{Z}$  separately, and take the *absolute product* between residuals from two linear regressions as the test statistic.
  - "cor\_noZ": use cor(X,Y) as test statistic with local permutation in X with respect to Z.
  - "XY\_Z": regress Y on 1, Z and regress X on 1, Z separately. Permute residuals from regression on for X and take the absolute product between residuals as the test statistic.
  - "XY\_noZ": use  $X^{\top}Y$  as test statistic with local permutation in X with respect to Z.

## Summary

- cor\_meanZ = XY\_meanZ (same denominator)
- Only using nominator (XY\_Z) will improve the ability of cor\_Z to control for type-1 error
- cor\_noZ != XY\_noZ due to non-zero E(X) & E(Y)
- noZ has lower power under situtation that at least one of X and Y is smooth. If both are non-smooth, sometimes noZ can have better type-1 error control and power at the same time. noZ & XY\_noZ sometimes have catastrophic problem in zero power.
- why XY\_Z doesn't gain more power than XY\_meanZ?
  - too small sample? (N=1000)
  - too large M? (M≤25 cannot guarantee type-1 error control)
  - good property of gaussian noise? (skewed normal distribution)
  - linear in Z? (both non-linear)

# Deviation of ${\sf SD}(P_{Z^\perp}X)$ to ${\sf SD}(P_{Z^\perp}X_\sigma)$



Original results (transformed to cor-power plot)



Comparing cor\_Z and XY\_Z



Comparing type-1 error and power between using information of  $\boldsymbol{Z}$  or not



## Comparing XY\_Z and XY\_meanZ

• large N=1000



large N=1000 + distribution="skewed\_normal"



• large N=1000 + distribution="skewed\_normal" + nonlinear function in Z

#### Skewed Normal Distribution







• M = 10





### More statistics

• new conditional correlation coefficient by Mona Azadkia & Sourav Chatterjee (2021)

$$T = T(X,Y|Z) = rac{\int \mathbb{E}( ext{Var}(\mathbb{P}(X \geq t|Y,Z)|Z))d\mu(t)}{\int \mathbb{E}( ext{Var}(1_{\{X \geq t\}}|Z))d\mu(t)} \ T_n = T_n(X,Y|Z) = rac{\sum_{i=1}^n (\min\{R_i,R_{M(i)}\} - \min\{R_i,R_{N(i)}\})}{\sum_{i=1}^n (R_i - \min\{R_i,R_{N(i)}\})}$$

where N(i) is the index of nearest to  $Z_i$ , M(i) is the index of nearest to  $(Z_i, Y_i)$  and  $R_i$  is the rank of  $X_i$ .



