Assignments

- 1. Explain the following terms regarding the datasets.
 - a. Training set
 - b. Validation set
 - c. Test set
- 2. Describe the following common problems found in machine learning models.
 - a. Underfitting
 - b. Overfitting

3. Data splitting

- a. Present the importance of randomly splitting data.
- b. Explain how to use the train_test_split() function in sklearn.model_selection to split the given data.
- c. Explain the purpose of the test size parameter in the above function.
- d. Please provide an example to illustrate your explanation.

4. Boston Housing Dataset

- a. Write a description about the Boston Housing dataset. Find the labels of each column of the dataset.
- b. Develop a machine learning model based on linear regression in Scikit-learn. Follow the following steps.
- i. Load the Boston Housing Dataset from sklearn.datasets
- ii. Extract the features (X) and target (y) values from the dataset.
- iii. Split the data into training (X_{train} , y_{train}) and testing (X_{test} , y_{test}) sets.
- iv. Develop a linear regression model.
- v. Train the linear regression model.
- vi. Predict the y (y_pred) values using the trained model for X_test.
- vii. Evaluate the model using mean squared error (MSE) and coefficient of determination (R2 score) after training.
- viii. Plot *y*_pred Vs *y*_test graph. Comment on the plot.
- ix. Calculate MSE for both training and testing sets. Based on the results, comment on underfitting or overfitting of the developed model.
 - c. Change the test_size parameter in train_test_split() function from 0.1 to 0.9 with 0.1 step size.

PH3022- Machine Learning and Neural Computation

- i. Calculate MSE and R2 score for both training and testing sets for each test_size value.
- ii. Plot MSE for both training and testing sets against test_size parameter.

test_size	MSE (Train)	MSE (Test)
0.1		
0.2		
0.3		
0.4		
0.5		
0.6		
0.8		
0.9		

iii. Plot R2 score for both training and testing sets against test_size parameter.

test_size	R2 Score (Train)	R2 Score (Test)
0.1		
0.2		
0.3		
0.4		
0.5		
0.6		
0.8		
0.9		

iv. Comment on underfitting or overfitting of the developed model when test_size alters.
(Note: The results and conclusions may be only valid for the above dataset and the linear regression model. You cannot generalize the results for all the machine learning models.)