12425 03 Hours / 70 Marks Seat No.

- Instructions (1) All Questions are Compulsory.
 - (2) Answer each next main Question on a new page.
 - (3) Illustrate your answer with neat sketches wherever necessary.
 - (4) Figures to the right indicate full marks.
 - (5) Assume suitable data, if necessary.
 - (6) Use of Non-programmable Electronic Pocket Calculator is permissible.
 - (7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Attempt any FIVE of the following:

10

- Give advantages of BCD codes (Any two).
- List OR laws of boolean algebra. b)
- Convert following equation into their standard / canonical form c) $Y = A\overline{B} + BC + \overline{AC}$.
- List modes of operation of shift register.
- Give two applications of A/D converter. e)
- Give any two applications of demultiplexer.
- Simplify following expression with boolean laws, Y = (A + B) (A + C).

d)

			Marks
2.		Attempt any THREE of the following:	12
	a)	State and prove De-Morgan's theorem with logic diagram.	
	b)	Perform subtraction using 2's complement method (85) ₁₀ - (98) ₁₀ .	
	c)	Draw block diagram of half adder. Write truth table and draw logic diagram.	
	d)	Draw and explain 4 bit ring counter using D flip-flop.	
3.		Attempt any THREE of the following:	12
	a)	Draw and explain working of clocked S-R flip flop using NAND gate.	
	b)	Implement basic gates using NAND gate.	
	c)	Draw and explain 4:2 priority encoder with block diagram, truth table and logic diagram.	
	d)	Compare static RAM and Dynamic RAM (Write any four points).	
4.		Attempt any THREE of the following:	12
	a)	Realize the following equations using NAND gate only.	
		i) $Y = AB + CD$	
		ii) $Y = A + B$.	
	b)	Calculate the analog output for 4 bit weighted resistive type DAC for following inputs	
		i) 1011	
		ii) 1010.	
	c)	Design 32:1 MUX using 8:1 MUX.	

Draw and explain working of SAR ADC.

e) Draw and explain operation of 4:1 MUX.

12

12

5. Attempt any TWO of the following:

- a) Explain BCD to 7 segment decoder using truth table, circuit diagram and realize code for 'a' and 'e' using K map.
- b) Design mod IO asynchronous UP counter with its truth table and timing diagram.
- c) Draw and explain operation of 4-bit SISO shift register using D flip-flop, with block diagram, truth table and waveform.

6. Attempt any TWO of the following:

- a) Draw and explain 4 bit twisted ring counter using J-K flip-flop with circuit diagram and truth table.
- b) Explain working of 3 bit R-2R ladder DAC with circuit diagram.
- c) Do following conversions
 - i) $(A26.48)_{16} \rightarrow (?)_{10}$
 - ii) $(172.95)_{10} \rightarrow (?)_{8}$
 - iii) $(0101 \ 0011)_{BCD} \rightarrow (?)_2$