Estimating Power without Measuring it: a Machine Learning Approach

Science & Cycling 4th July 2018

Guillaume Lemaître & Cédric Lemaître

guillaume.lemaitre@inria.fr
contact@apeira-technologies.fr

Inria — Paris-Saclay Center for Data Science Apeira Technologies

- 1 Introduction
 Context
 State-of-the-art
- 2 Methods
- 3 Experiments
 Materials
 Hyper-parameters
- 4 Results
 Performance
 Zoom-in
 Summary
 Post-analysis
- **5** Future work

Introduction Context

Saris PowerTap PowerCal

- ► Low-cost power-meter based on heart-rate
- ✓ Low-cost device
- X Not suitable to track small power changes

Strava

Introduction

- Large amount of data
- Mathematical model based on mechanic

Problemation

Use machine learning to find more complex models using heterogeneous data sensor

Introduction State-of-the-art

Introduction

Mathematical model based on mechanic

$$P_{meca} = (0.5\rho SC_x V_a^2 + C_r mg \cos \alpha + mg \sin \alpha) V_d.$$
 (1)

Model parameters

Name	Symbol	Unit
Air density	ρ	${\rm kg}{\rm m}^{-3}$
Frontal surface	5	m ²
Drag coefficient	C_{\times}	NA
Air speed	V_a	${ m ms^{-1}}$
Rolling coefficient	C_r	NA
Mass of rider and bike	m	kg
Gravitational constant	g	${ m ms^{-2}}$
Slope	α	rad
Rider speed	V_d	${ m ms^{-1}}$

Power estimation using machine learning

Figure: Original data

Power estimation using machine learning

- ► Compute gradient for some data (acceleration, elevation, heart-rate)
- ► Compute derivative with different time periods (1s 5s)
- ► Total of 48 features

Regressor

► Gradient boosting machine

Experiments Setup

Data set

- ▶ 5 riders
- 4 power meters: Saris PowerTap, Rotor Power LT, Power2Max, and SRM
- ▶ 417 rides

Model validation

▶ Group k-fold cross-validation with k = 3

Model evaluation

- ► Coefficient of determination R²
- ► Median absolute error (MAE)

Experiments Model hyper-parameters

Mathematical mode

Parameter	Value
Rider weight	Specific
Bike weight	6.8 kg
Rolling coefficient C_r	0.0045
Atmospheric pressure	1013 hPa
SC_x	0.32m^2
Temperature	15 °C

Machine learning model

Parameter	Value
Number of decision tree	200
Depth of each decision tree	8

Results Quantitative results

R² and MAE scores

Metric	Math	ML
R ²	-0.55	0.76
MAE	61.09	21.95

Figure: Computation time for estimation around 1 million samples

Figure: Power estimation for uphill and downhill

Figure: Left: Machine learning model — right: mathematical model

Figure: Power estimation for uphill

Figure: Left: Machine learning model — right: mathematical model

Results Summary

Mathematical model

- ✓ Fast prediction
- X Too much unknown parameters
- X Too much variation in the estimation

Machine learning model

- ✓ Fast prediction
- ✓ Better prediction
- X Difficulty to predict short power peak

Results Analysis of the machine learning model

Figure: Feature importances of the different features used in the model

Future work

Extension of the current work

- ✓ Convolutional neural-network
- X Larger data set

Open-source initiative via GoldenCheetah

- ► OpenData collection
- ▶ Development of scikit-sports

Purpose

- ✓ Reproducibility of analysis and methods
- ✓ Use data science tools to solve different problematic in cycling performance