Problem Solving using State Space Representations

Problem solving components

- **Initial state:** The agent knows itself to be in
- **Operator:** description of an action
- **State space:** all states reachable from the initial state by any sequence action
- **Path**: sequence of actions leading from one state to another
- **Goal test:** which the agent can apply to a single state description to determine if it is a goal state
- Path cost function: assign a cost to a path which the sum of the costs of the individual actions along the path.

Vacuum-cleaner world

- Percepts: location and state of the environment, e.g., [A,Dirty], [A,Clean], [B,Dirty]
- Actions: *Left*, *Right*, *Suck*, *NoOp*

Vacuum-cleaner world

Contd...

- States: S_1 , S_2 , S_3 , S_4 , S_5 , S_6 , S_7 , S_8
- Operators: Go Left , Go Right , Suck
- Goal test: no dirt left in both squares
- **Path Cost:** each action costs 1.

Real-world problems

- Routine finding
 - Routing in computer networks
 - Automated travel advisory system
 - Airline travel planning system
 - Goal: the best path between the origin and the destination
- Travelling Salesperson problem (TSP)
 - Is a famous touring problem in which each city must be visited exactly once.
 - Goal: shortest tour

Example: Traveling in Romania

- On holiday in Romania; currently in Arad
- Flight leaves tomorrow from Bucharest
- Formulate goal:
 - be in Bucharest
- Formulate problem:
 - states: various cities
 - actions/operators: drive between cities
- Find solution
 - By searching through states to find a goal
 - sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest
- Execute states that lead to a solution

Example: Traveling in Romania

State-Space Problem Formulation

A **problem** is defined by four items:

- 1. initial state e.g., "at Arad"
- 2. **actions** or successor function

S(x) = set of action-state pairse.g., $S(Arad) = \{ < Arad \rightarrow Zerind, Zerind >, ... \}$

- 3. **goal test** (or set of goal states)
 e.g., x = "at Bucharest", Checkmate(x)
- 4. path cost (additive)

e.g., sum of distances, number of actions executed, etc. c(x,a,y) is the step cost, assumed to be ≥ 0

A **solution** is a sequence of actions leading from the initial state to a goal state

Example: Formulating the Navigation Problem

- Set of States
 - individual cities
 - e.g., Irvine, SF, Las Vegas, Reno, Boise, Phoenix, Denver
- Operators
 - freeway routes from one city to another
 - e.g., Irvine to SF via 5, SF to Seattle, etc
- Start State
 - current city where we are, Irvine
- Goal States
 - set of cities we would like to be in
 - e.g., cities which are closer than Irvine
- Solution
 - a specific goal city, e.g., Boise
 - a sequence of operators which get us there,
 - e.g., Irvine to SF via 5, SF to Reno via 80, etc

Example: 8-queens problem

State-Space problem formulation

states? -any arrangement of n<=8 queens
 -or arrangements of n<=8 queens in leftmost n columns, 1 per column, such that no queen attacks any other.

- <u>initial state?</u> no queens on the board
- <u>actions?</u> -add queen to any empty square
 -or add queen to leftmost empty square such that it is not attacked by other queens.
- goal test? 8 queens on the board, none attacked.
- path cost? 1 per move

Example: Robot Assembly

- States
- Initial state
- Actions
- Goal test
- Path Cost

Example: Robot Assembly

- States: configuration of robot (angles, positions) and object parts
- Initial state: any configuration of robot and object parts
- Actions: continuous motion of robot joints
- Goal test: object assembled?
- Path Cost: time-taken or number of actions

Learning a spam email classifier

- States
- Initial state
- Actions
- Goal test
- Path Cost

Learning a spam email classifier

- States: settings of the parameters in our model
- Initial state: random parameter settings
- Actions: moving in parameter space
- Goal test: optimal accuracy on the training data
- Path Cost: time taken to find optimal parameters

(Note: this is an optimization problem – many machine learning problems can be cast as optimization)

Example: 8-puzzle

Start State

Goal State

- states?
- initial state?
- actions?
- goal test?
- path cost?

Example: 8-puzzle

- states? locations of tiles
- initial state? given
- actions? move blank left, right, up, down
- goal test? goal state (given)
- path cost? 1 per move

Crypt-Arithmetic puzzle

- Problem Statement:
 - Solve the following puzzle by assigning numeral (0-9) in such a way that each letter is assigned unique digit which satisfy the following addition.
 - Constraints: No two letters have the same value.
 (The constraints of arithmetic).
- CROSS + ROADS = DANGER
- SEND + MORE = MONEY
- Initial Problem State

A Water Jug Problem

- You have a 4-gallon and a 3-gallon water jug
- You have a faucet with an unlimited amount of water
- You need to get exactly 2 gallons in 4gallon jug

Puzzle-solving as Search

- State representation: (x, y)
 - x: Contents of four gallon
 - y: Contents of three gallon
- Start state: (0, 0)
- Goal state (2, n)
- Operators
 - Fill 3-gallon from faucet, fill 4-gallon from faucet
 - Fill 3-gallon from 4-gallon , fill 4-gallon from 3-gallon
 - Empty 3-gallon into 4-gallon, empty 4-gallon into 3-gallon
 - Dump 3-gallon down drain, dump 4-gallon down drain

Production Rules for the Water Jug Problem

$$1 (x,y) \rightarrow (4,y)$$
 Fill the 4-gallon jug if $x < 4$

$$2(x,y) \rightarrow (x,3)$$
 Fill the 3-gallon jug if $v < 3$

$$3(x,y) \rightarrow (x-d,y)$$
 Pour some water out of the 4-gallon jug if $x > 0$

$$4(x,y) \rightarrow (x,y-d)$$
 Pour some water out of the 3-gallon jug if $x > 0$

$$5(x,y) \rightarrow (0,y)$$
 Empty the 4-gallon jug on the ground if $x > 0$

6
$$(x,y) \rightarrow (x,0)$$
 Empty the 3-gallon jug on the ground if $y > 0$

$$7(x,y) \rightarrow (4,y-(4-x))$$
 Pour water from the 3-gallon jug into the 4-gallon jug is full gallon jug until the 4-gallon jug is full

The Water Jug Problem (cont'd)

$$8 (x,y) \rightarrow (x - (3 - y),3)$$

if $x + y \ge 3$ and $x > 0$

Pour water from the 4-gallon jug into the 3-gallon jug until the 3-gallon jug is full

$$9 (x,y) \rightarrow (x + y, 0)$$

if $x + y \le 4$ and $y > 0$

Pour all the water from the 3-gallon jug into the 4-gallon jug

10
$$(x,y) \to (0, x + y)$$

if $x + y \le 3$ and $x > 0$

Pour all the water from the 4-gallon jug into the 3-gallon jug

One Solution to the Water Jug Problem

Gallons in the 4- Gallon Jug	Gallons in the 3- Gallon Jug	Rule Applied
0	0	2
0	3	9
3	0	2
3	3	7
4	2	5
0	2	9
2	0	