SECURITY IN COMPUTING, FIFTH EDITION

Chapter 2: Toolbox: Authentication, Access Control, and Cryptography

From Security in Computing Eith Edition by Charles D. Disease et al. (ISBN: 9780134085043). Converble 9015 by Destron Education. Inc. All rights reseased

1

Objectives for Chapter 2

- · Survey authentication mechanisms
- · List available access control implementation options
- Explain the problems encryption is designed to solve
- Understand the various categories of encryption tools as well as the strengths, weaknesses, and applications of
- · Learn about certificates and certificate authorities

From Security in Computing, Fifth Edition, by Charles P. Pfleeger, et al. (ISBN: 9780134085043). Copyright 2015 by Pearson Education, Inc. All rights reserve

2

Authentication

- The act of proving that a user is who she says she is
- Methods:
 - Something the user knows
 - Something the user is
 - Something user has

From Security in Computing, Fifth Edition, by Charles P. Pfleeger, et al. (ISBN: 9780134085043). Copyright 2015 by Pearson Education, Inc. All rights reserved.

Something You Know

- Passwords
- Security questions
- Attacks on "something you know":
 - Dictionary attacks
 - Inferring likely passwords/answers
 - Guessing
 - · Defeating concealment
 - Exhaustive or brute-force attack
 - Rainbow tables

From Security in Computing Eight Edition by Charles D. Pleager et al. (ISBN: 9790134085043). Converted 2015 by Dearen Education Inc. All rights reseased

4

5

Password Storage

Identity	Password	Identity	Password	
Jane	qwerty	Jane	0x471aa2d2	
Pat	aaaaaa	Pat	0x13b9c32f	
Phillip	oct31witch	Phillip	0x01c142be	
Roz	aaaaaa	Roz	0x13b9c32f	
Herman	guessme	Herman	0x5202aae2	
Claire	aq3wmSoto!4	Claire	0x488b8c27	

Plaintext Concealed

From Security in Computing, Fifth Edition, by Charles P. Pfleeger, et al. (ISBN: 9780134085043). Copyright 2015 by Pearson Education, Inc. All rights reserved.

Problems with Biometrics

- Intrusive
- Expensive
- Single point of failure
- Sampling error
- · False readings
- Speed
- Forgery

From Security in Computing, Fifth Edition, by Charles P. Pfleeger, et al. (ISBN: 9780134085043). Copyright 2015 by Pearson Education, Inc. All rights reserved.

8

Access Policies

- · Goals:
 - · Check every access
 - Enforce least privilege
- Verify acceptable usage
- Track users' access
- Enforce at appropriate granularity
- Use audit logging to track accesses

From Security in Computing Fifth Edition by Charles P. Pfleeger et al. (ISBN: 9780134085043). Copyright 2015 by Pearson Education. Inc. All rights reserved

13

14

Implementing Access Control

- · Reference monitor
- · Access control directory
- Access control matrix
- Access control list
- Privilege list
- Capability
- · Procedure-oriented access control
- · Role-based access control

From Security in Computing, Fifth Edition, by Charles P. Pfleeger, et al. (ISBN: 9780134085043). Copyright 2015 by Pearson Education, Inc. All rights reserved

14

	BIBLIOG	TEMP	F	HELP.TXT	C_COMP	LINKER	SYS_CLOCK	PRINTER
USER A	ORW	ORW	ORW	R	х	x	R	w
USER B	R	-	-	R	х	х	R	w
USER S	RW	-	R	R	х	х	R	w
USER T	-	-	-	R	х	х	R	w
SYS_MGR	-	-	-	RW	ox	ox	ORW	0
USER_SVCS	-	-	-	0	х	х	R	w

Problems Addressed by Encryption

- Suppose a sender wants to send a message to a recipient. An attacker may attempt to
 - Block the message
 - · Intercept the message
 - Modify the message
 - · Fabricate an authentic-looking alternate message

From Security in Computing Fifth Edition by Charles P. Pfleeger et al. (ISBN: 9780134085043). Copyright 2015 by Pearson Education. Inc. All rights reserved

19

20

Encryption Terminology

- Sender
- Recipient
- · Transmission medium
- Interceptor/intruder
- Encrypt, encode, or encipher
- · Decrypt, decode, or decipher
- Cryptosystem
- Plaintext
- Ciphertext

From Security in Computing, Fifth Edition, by Charles P. Pfleeger, et al. (ISBN: 9780134085043). Copyright 2015 by Pearson Education, Inc. All rights reserved.

20

Stream vs.	Block	
	Stream	Block
Advantages	Speed of transformation Low error propagation	High diffusion Immunity to insertion of symbol
Disadvantages	Low diffusion Susceptibility to malicious insertions and modifications	Slowness of encryption Padding Error propagation

DES: The Data Encryption Standard

- Symmetric block cipher
- Developed in 1976 by IBM for the US National Institute of Standards and Technology (NIST)

Form	Operation	Properties	Strength
DES	Encrypt with one key	56-bit key	Inadequate for high- security applications by today's computing capabilities
Double DES	Encrypt with first key; then encrypt result with second key	Two 56-bit keys	Only doubles strength of 56-bit key version
Two-key triple DES	Encrypt with first key, then encrypt (or decrypt) result with second key, then encrypt result with first key (E-D-E)	Two 56-bit keys	Gives strength equivalent to about 80-bit key (about 16 million times as strong as 56-bit version)
Three-key triple DES	Encrypt with first key, then encrypt or decrypt result with second key, then encrypt result with third key (E-E-E)	Three 56-bit keys	Gives strength equivalent to about 112-bit key about 72 quintillion (72*10 ¹⁵) times as strong as 56-bit version

From Security in Computing, Pitth Edition, by Charles P. Pfleeger, et al. (ISBN: 9780134085043). Copyright 2015 by Pearson Education, Inc. All rights reserv

26

DE0	A = 0	
DES vs. /	AES	
	DES	AES
Date designed	1976	1999
Block size	64 bits	128 bits
Key length	56 bits (effective length); up to 112 bits with multiple keys	128, 192, 256 (and possibly more) bits
Operations	16 rounds	10, 12, 14 (depending on key length); can be increased
Encryption primitives	Substitution, permutation	Substitution, shift, bit mixing
Cryptographic primitives	Confusion, diffusion	Confusion, diffusion
Design	Open	Open
Design rationale	Closed	Open
Selection process	Secret	Secret, but open public comments and criticisms invited
Source	IBM, enhanced by NSA	Independent Dutch cryptographer

Public Key (Asymmetric) Cryptography

- Instead of two users sharing one secret key, each user has two keys: one public and one private
- Messages encrypted using the user's public key can only be decrypted using the user's private key, and vice versa

From Security in Computing, Fifth Edition, by Charles P. Pfleeger, et al. (ISBN: 9780134085043). Copyright 2015 by Pearson Education, Inc. All rights reserved.

29

Secret Key vs. Public Key Encryption

	Secret Key (Symmetric)	Public Key (Asymmetric)	
Number of keys	1	2	
Key size (bits)	56-112 (DES), 128-256 (AES)	Unlimited; typically no less than 256; 1000 to 2000 currently considered desirable for most uses	
Protection of key	Must be kept secret	One key must be kept secret; the other can be freely exposed	
Best uses	Cryptographic workhorse. Secrecy and integrity of data, from single characters to blocks of data, messages and files	Key exchange, authentication, signing	
Key distribution	Must be out-of-band	Public key can be used to distribute other keys	
Speed	Fast	Slow, typically by a factor of up to 10,000 times slower than symmetric algorithms	

From Security in Computing, Fifth Edition, by Charles P. Pfleeger, et al. (ISBN: 9780134085043). Copyright 2015 by Pearson Education, Inc. All rights reserved

32

Error Detecting Codes

- Demonstrates that a block of data has been modified
- Simple error detecting codes:
 - Parity checks
 - Cyclic redundancy checks
- Cryptographic error detecting codes:
 - · One-way hash functions
 - · Cryptographic checksums
- Digital signatures

From Security in Computing, Fifth Edition, by Charles P. Pfleeger, et al. (ISBN: 9780134085043). Copyright 2015 by Pearson Education, Inc. All rights reserved.

Certificates: Trustable Identities and Public Keys

- A certificate is a public key and an identity bound together and signed by a certificate authority.
- A certificate authority is an authority that users trust to accurately verify identities before generating certificates that bind those identities to keys.

From Security in Computing, Fifth Edition, by Charles P. Pfleeger, et al. (ISBN: 9780134085043). Copyright 2015 by Pearson Education, Inc. All rights reserved

37

ertificate Signing	and Hierarchy
To create Diana's certificate: Diana creates and delivers to Edward: Name: Diana Position: Division Manager Public key: 17EF83CA	To create Delwyn's certificate: Delwyn creates and delivers to Dinna: Name: Delwyn Position: Dept Manager Public key: 3AB3882C
Edward adds: Name: Diana Position: Division Manager Public key: 17EF83CA Edward signs with his private key:	Diana adds: Name: Delwyn Position: Dept Manager Public key: 3AB3882C Diana signs with her private key:
Name: Diana Position: Division Manager Public key: 17EF83CA hash value 128C4	Name: Delwyn Position: Dept Manager Public key: 3AB3882C hash value 48CFA
Which is Diana's certificate.	And appends her certificate:
	Name: Delwyn Position: Dept Manager Public key: 3AB3882C hash value 48CFA
	Name: Diana Position: Division Manager Public key: 17EF83CA hash value 128C4
	Which is Delwyn's certificate.

38

Cryptographic Tool Summary

Tool	Uses Protecting confidentiality and integrity of data at rest or in transit		
Secret key (symmetric) encryption			
Public key (asymmetric) encryption	Exchanging (symmetric) encryption keys Signing data to show authenticity and proof of origin		
Error detection codes	Detect changes in data		
Hash codes and functions (forms of error detection codes)	Detect changes in data		
Cryptographic hash functions	Detect changes in data, using a function that only the data owner can compute (so an outsider cannot change both data and the hash code result to conceal the fact of the change)		
Error correction codes	Detect and repair errors in data		
Digital signatures	Attest to the authenticity of data		
Digital certificates	Allow parties to exchange cryptographic keys with confidence of the identities of both parties		

From Security in Computing, Fifth Edition, by Charles P. Pfleeger, et al. (ISBN: 9780134085043). Copyright 2015 by Pearson Education, Inc. All rights reserved.

Summary

- Users can authenticate using something they know, something they are, or something they have
- Systems may use a variety of mechanisms to implement access control
- Encryption helps prevent attackers from revealing, modifying, or fabricating messages
- Symmetric and asymmetric encryption have complementary strengths and weaknesses
- · Certificates bind identities to digital signatures

From Security in Computing Eith Edition by Charles D. Dissayer at al. (ISBN: 9780134085043). Converbl 2015 by Degreen Education, Inc. All rights research