

Classification and Regression

Classification and regression

- What is classification? What is regression?
- Issues regarding classification and regression
- Classification by decision tree induction
- Bayesian Classification
- Other Classification Methods
- regression

What is Bayesian Classification?

- Bayesian classifiers are statistical classifiers
- For each new sample they provide a probability that the sample belongs to a class (for all classes)

Bayes' Theorem: Basics

- Let X be a data sample ("evidence"): class label is unknown
- Let H be a hypothesis that X belongs to class C
- Classification is to determine P(H|X), the probability that the hypothesis holds given the observed data sample X
- P(H) (prior probability), the initial probability
 - E.g., X will buy computer, regardless of age, income, ...
- P(X): probability that sample data is observed
- P(X|H) (posteriori probability), the probability of observing the sample X, given that the hypothesis holds
 - E.g., Given that X will buy computer, the prob. that X is 31..40, medium income

Bayes' Theorem

Given training data X, posteriori probability of a hypothesis H,
 P(H|X), follows the Bayes theorem

$$P(H|\mathbf{X}) = \frac{P(\mathbf{X}|H)P(H)}{P(\mathbf{X})}$$

- Informally, this can be written as posteriori = likelihood x prior/evidence
- Predicts **X** belongs to C_2 iff the probability $P(C_i | \mathbf{X})$ is the highest among all the $P(C_k | \mathbf{X})$ for all the k classes
- Practical difficulty: require initial knowledge of many probabilities, significant computational cost

Towards Naïve Bayesian Classifiers

- Let D be a training set of tuples and their associated class labels, and each tuple is represented by an n-D attribute vector $\mathbf{X} = (\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n)$
- Suppose there are m classes C₁, C₂, ..., C_m.
- Classification is to derive the maximum posteriori, i.e., the maximal P(C_i | X)
- This can be derived from Bayes' theorem

• Since P(X) is constant for all classes on $Y(X|C_i)P(C_i)$

needs to be maximized

$$P(C_i|\mathbf{X}) = P(\mathbf{X}|C_i)P(C_i)$$

RV 27/1TUTVO

Derivation of Naïve Bayesian Classifier

- A simplified assumption: attributes are conditionally independent (i.e., no dependence relation between attributes):
- This greatly reduces the class distribution
- If A_k is categorical, $P(x_k | C_i)$ is the # of tuples in C_i having value x_k for A_k divided by $|C_{i,D}|$ (# of tuples of C_i in D)
- If A_k is continous-valued, $P(x_k|C_i)$ is usually computed based on Gaussian distribution with a mean μ and standard deviation σ

and
$$P(x_k | C_i)$$
 is

$$g(x,\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$P(\mathbf{X} \mid C_i) = g(x_k, \mu_{C_i}, \sigma_{C_i})$$

NBC: Training Dataset

Class:

C1:buys_computer = 'yes' C2:buys_computer = 'no'

Data sample

X = (age <=30,

Income = medium,

Student = yes

Credit_rating = Fair)

age	income	<mark>studen</mark> t	<mark>credit rating</mark>	com
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

NBC: An Example

- P(C_i): P(buys_computer = "yes") = 9/14 = 0.643
 P(buys_computer = "no") = 5/14= 0.357
- Compute P(X|C_i) for each class

```
P(age = "<=30" | buys_computer = "yes") = 2/9 = 0.222
P(age = "<= 30" | buys_computer = "no") = 3/5 = 0.6
P(income = "medium" | buys_computer = "yes") = 4/9 = 0.444
P(income = "medium" | buys_computer = "no") = 2/5 = 0.4
P(student = "yes" | buys_computer = "yes) = 6/9 = 0.667
P(student = "yes" | buys_computer = "no") = 1/5 = 0.2
P(credit_rating = "fair" | buys_computer = "yes") = 6/9 = 0.667
P(credit_rating = "fair" | buys_computer = "no") = 2/5 = 0.4
```

X = (age <= 30, income = medium, student = yes, credit_rating = fair)

```
P(X|C<sub>i</sub>): P(X|buys_computer = "yes") = 0.222 x 0.444 x 0.667 x 0.667 = 0.044

P(X|buys_computer = "no") = 0.6 x 0.4 x 0.2 x 0.4 = 0.019

P(X|C<sub>i</sub>)*P(C<sub>i</sub>): P(X|buys_computer = "yes") * P(buys_computer = "yes") = 0.028

P(X|buys_computer = "no") * P(buys_computer = "no") = 0.007
```

Therefore, X belongs to class ("buys_computer = yes")

play tennis?

Naive Bayesian Classifier Example

Outlook	Temperature	Humidity	Windy	Class
sunny	hot	high	false	N
sunny	hot	high	true	N
overcast	hot	high	false	P
rain	mild	high	false	Р
rain	cool	normal	false	Р
rain	cool	normal	true	N
overcast	cool	normal	true	Р
sunny	mild	high	false	N
sunny	cool	normal	false	Р
rain	mild	normal	false	Р
sunny	mild	normal	true	Р
overcast	mild	high	true	Р
overcast	hot	normal	false	Р
rain	mild	high	true	N

Outlook	Temperature	Humidity	Windy	Class
overcast	hot	high	false	Р
rain	mild	high	false	Р
rain	cool	normal	false	Р
overcast	cool	normal	true	Р
sunny	cool	normal	false	Р
rain	mild	normal	false	Р
sunny	mild	normal	true	Р
overcast	mild	high	true	Р
overcast	hot	normal	false	Р

Outlook	Temperature	Humidity	Windy	Class	
sunny	hot	high	false	N	
sunny	hot	high	true	N	
rain	cool	normal	true	N	-
sunny	mild	high	false	N	
rain	mild	high	true	N	

Given the training set, we compute the probabilities:

Outlook	Р	N	Humidity	Р	N
sunny	2/9	3/5	high	3/9	4/5
overcast	4/9	0	normal	6/9	1/5
rain	3/9	2/5			
Tempreature			Windy		
hot	2/9	2/5	true	3/9	3/5
mild	4/9	2/5	false	6/9	2/5
cool	3/9	1/5			

- We also have the probabilities
 - P = 9/14
 - N = 5/14

- To classify a new sample X:
 - outlook = sunny
 - temperature = cool
 - humidity = high
 - windy = false
- Prob(P|X) = Prob(P)*Prob(sunny|P)*Prob(cool|P)*
 Prob(high|P)*Prob(false|P) = 9/14*2/9*3/9*3/9*6/9 = 0.01
- Prob(N|X) = Prob(N)*Prob(sunny|N)*Prob(cool|N)*
 Prob(high|N)*Prob(false|N) = 5/14*3/5*1/5*4/5*2/5 = 0.013
- Therefore X takes class label N

- Second example X = <rain, hot, high, false>
- P(X|p)·P(p) =
 P(rain|p)·P(hot|p)·P(high|p)·P(false|p)·P(p) =
 3/9·2/9·3/9·6/9·9/14 = 0.010582
- P(X|n)·P(n) =
 P(rain|n)·P(hot|n)·P(high|n)·P(false|n)·P(n) =
 2/5·2/5·4/5·2/5·5/14 = 0.018286
- Sample X is classified in class N (don't play)

Avoiding the 0-Probability Problem

Naïve Bayesian prediction requires each conditional prob. be non-zero. Otherwise, the predicted prob. will be zero

$$P(X \mid C_i) = \prod_{k=1}^{n} P(x_k \mid C_i)$$

- Ex. Suppose a dataset with 1000 tuples, income=low (0), income= medium (990), and income = high (10),
- Use Laplacian correction (or Laplacian estimator)
 - Adding 1 to each case Prob(income = low) = 1/1003Prob(income = medium) = 991/1003Prob(income = high) = 11/1003
 - The "corrected" prob. estimates are close to their "uncorrected" counterparts

- Advantages
 - Easy to implement
 - Good results obtained in most of the cases
- Disadvantages
 - Assumption: class conditional independence, therefore loss of accuracy
 - Practically, dependencies exist among variables
 - E.g., hospitals: patients: Profile: age, family history, etc. Symptoms: fever, cough etc., Disease: lung cancer, diabetes, etc.
 - Dependencies among these cannot be modeled by Naïve Bayesian Classifier
- How to deal with these dependencies?
 - Bayesian Belief Networks

Bayesian Belief Networks

- Bayesian belief network allows a subset of the variables conditionally independent
- A graphical model of causal relationships
 - Represents <u>dependency</u> among the variables
 - Gives a specification of joint probability distribution

- Nodes: random variables
- ☐ Links: dependency
- ☐ X and Y are the parents of Z, and Y is the parent of P
- No dependency between Z and P
- ☐ Has no loops or cycles

Bayesian Belief Network: An Example

The **conditional probability table** (**CPT**) for variable LungCancer:

	(FH, S)	(FH, ~S)	(~FH, S)	(~FH, ~S)
LC	0.8	0.5	0.7	0.1
~LC	0.2	0.5	0.3	0.9

CPT shows the conditional probability for each possible combination of its parents

Derivation of the probability of a particular combination of values of **X**, from CPT:

$$P(x_1,...,x_n) = \prod_{i=1}^{n} P(x_i | Parents(Y_i))$$

Bayesian Belief Networks

Using Bayesian Belief Networks:

$$-P(v_1, ..., v_n) = \Pi P(v_i/Parents(v_i))$$

• Example:

Several scenarios:

- Given both the network structure and all variables observable: learn only the CPTs
- Network structure known, some hidden variables: gradient descent (greedy hill-climbing) method
- Network structure unknown, all variables observable: search through the model space to reconstruct network topology
- Unknown structure, all hidden variables: No good algorithms known for this purpose

Using IF-THEN Rules for Classification

- Represent the knowledge in the form of IF-THEN rules
 - R: IF age = youth AND student = yes THEN buys_computer = yes
 - Rule antecedent/precondition vs. rule consequent
- Assessment of a rule: coverage and accuracy
 - n_{covers} = # of tuples covered by R
 n_{correct} = # of tuples correctly classified by R
 coverage(R) = n_{covers} / |D| /* D: training data set */
 accuracy(R) = n_{correct} / n_{covers}
- If more than one rule is triggered, need conflict resolution
 - Size ordering: assign the highest priority to the triggering rules that has the "toughest" requirement (i.e., with the most attribute test)
 - Class-based ordering: decreasing order of prevalence or misclassification cost per class
 - Rule-based ordering (decision list): rules are organized into one long priority list, according to some measure of rule quality or by experts

Rule Extraction from a Decision Tree

age?

31..4

yes

>40

excellent

no

credit rating?

fair

<=30

yes

yes

student?

no

- Rules are easier to understand than large trees
- One rule is created for each path from the root to a leaf
- Each attribute-value pair along a path forms a conjunction: the leaf holds the class prediction
- Rules are mutually exclusive and exhaustive
 - Example: Rule extraction from our buys_computer decision-tree

```
IF age = young AND student = no

THEN buys_computer = no

IF age = young AND student = yes

THEN buys_computer = yes

THEN buys_computer = yes

IF age = old AND credit_rating = excellent THEN buys_computer = yes

IF age = young AND credit_rating = fair THEN buys_computer = no
```


Instance-Based Methods

- Instance-based learning:
 - Store training examples and delay the processing ("lazy evaluation")
 until a new instance must be classified
- Typical approaches
 - k-nearest neighbor approach
 - Instances represented as points in a Euclidean space.

The k-Nearest Neighbor Algorithm

- All instances correspond to points in the n-D space.
- The nearest neighbor are defined in terms of Euclidean distance.
- The target function could be discrete- or real- valued.
- For discrete-valued function, the *k*-NN returns the most common value among the k training examples nearest to *xq*.
- Vonoroi diagram: the decision surface induced by 1-NN for a typical set of training examples.

Discussion on the k-NN Algorithm

- Distance-weighted nearest neighbor algorithm
 - Weight the contribution of each of the k neighbors according to their distance to the query point x_a
 - give greater weight to closer neighbors

 $w = \frac{1}{d(x_q, x_i)^2}$

- Similarly, for real-valued target functions
- Robust to noisy data by averaging k-nearest neighbors
- Curse of dimensionality: distance between neighbors could be dominated by irrelevant attributes.
 - To overcome it, axes stretch or elimination of the least relevant attributes.