ĐẠI HỌC QUỐC GIA THÀNH PHỐ HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC BÁCH KHOA

Khoa học - Kỹ thuật Máy tính

HỆ ĐIỀU HÀNH

Bài thực hành số 9

Paging

GVHD: Hoàng Lê Hải Thanh

SV thực hiện: Trương Hoài Nam – 1813175

TP. H \mathring{O} CHÍ MINH, THÁNG 06/2020

Mục lục

1	EXERCISE		2
	1.1	Consider the page table shown in Figure 1. for a system with 12-bit virtual and physical addresses	
		and with 256-byte pages. The list of free page frames is D, E, F (that is, D is at the head of the	
		list, E is second, and F is last). Convert the following virtual addresses to their equivalent physical	
		addresses in hexadecimal. All numbers are given in hexadecimal. (A dash for a page frame indicates	
		that the page is not in memory) Please describe how you find the physical address	2

1 EXERCISE

1.1 Consider the page table shown in Figure 1. for a system with 12-bit virtual and physical addresses and with 256-byte pages. The list of free page frames is D, E, F (that is, D is at the head of the list, E is second, and F is last). Convert the following virtual addresses to their equivalent physical addresses in hexadecimal. All numbers are given in hexadecimal. (A dash for a page frame indicates that the page is not in memory.) Please describe how you find the physical address.

Page	Page Frame
0	-
1	2
2	С
3	А
4	_
5	4
6	3
7	_
8	В
9	0

Hình 1: Page table for Exercise 1

Bài làm:

Địa chỉ ảo được biểu diễn bằng 12 bit. Trong đó:

- + Page offset: là 8 bit cuối. Vì có kích thước trang là 256-bytes = 2^8 -> cần 8 bit để biểu diễn.
- + Page number: là 4 bit đầu tiên. (12 8 = 4)

Ngoài ra, nếu page chúng ta đang tìm không có page frame, có thể cấp phát trên free page frames gồm: D, E, F. Lần lượt chuyển đổi địa chỉ ảo (HEX) sau sang địa chỉ vật lý:

- * 9EF:
- $9EF_{HEX} = 1001$ 11101111 (BIN): có page number là 9 -> page frame = 0; page offset là EF.
- \Rightarrow Địa chỉ vật lý tương ứng là: 0EF.

*** 111:**

- $111_{HEX} = 0001~00010001$ (BIN): có page number là 1 -> page frame = 2; page offset là 11.
- \Rightarrow Địa chỉ vật lý tương ứng là: 211.
- *** 700:**
- $700_{HEX} = 0111~00000000$ (BIN): có page number là 7 -> không có page frame tương ứng; page offset là 00. Vì không có page frame tương ứng, nên ta sẽ load frame free đầu tiên là D cho 700.
 - \Rightarrow Địa chỉ vật lý tương ứng thu được khi load frame free là: D00.
 - * 0FF:
- $0FF_{HEX} = 0000$ 11111111 (BIN): có page number là 0 -> không có page frame tương ứng; page offset là FF. Vì không có page frame tương ứng, nên ta sẽ load frame free tiếp theo là E cho 0FF.
 - \Rightarrow Địa chỉ vật lý tương ứng thu được khi load frame free là: EFF.
 - * 3DE:
 - $3DE_{HEX} = 0011$ 11011110 (BIN): có page number là 3 -> page frame = A; page offset là DE.
 - \Rightarrow Địa chỉ vật lý tương ứng là: ADE.
 - * 7FF:
- $7FF_{HEX} = 0111$ 11111111 (BIN): có page number là 7 -> không có page frame tương ứng; page offset là FF. Vì không có page frame tương ứng, nên ta sẽ load frame free tiếp theo là F cho 7FF.
 - \Rightarrow Địa chỉ vật lý tương ứng là: FFF.