Exercice 1. Sujet0-2021

On considère le cube ABCDEFGH de côté 1, le milieu I de [EF] et I le symétrique de E par rapport à F.

Dans tout l'exercice, l'espace est rapporté au repère orthonormé (A; AB, AD, AE).

- b. En déduire les coordonnées des vecteurs DI, BI et BG.
- c. Montrer que Di est un vecteur normal au plan (BGI).
- d. Montrer qu'une équation cartésienne du plan (BGI) est 2x y + z 2 = 0.

- a. Déterminer une représentation paramétrique de la droite d.
- b. On considère le point L de coordonnées $(\frac{2}{3}:\frac{1}{6}:\frac{5}{6})$. Montrer que L'est le point d'intersection de la droite d et du plan (BGI).
- 3. On rappelle que le volume V d'une pyramide est donné par la formule

$$V = \frac{1}{3} \times \mathcal{B} \times h$$

où B est l'aire d'une base et h la hauteur associée à cette base.

- a. Calculer le volume de la pyramide FBGI.
- b. En déduire l'aire du triangle BGI.

Exercice 2. Métro1-Mars 2021

SABCD est une pyramide régulière à base carrée ABCD dont toutes les arêtes ont la même lon-

Le point l'est le centre du carré ABCD.

On suppose que : IC = IB = IS = 1.

Les points K, L et M sont les milieux respectifs des arêtes [SD], [SC] et [SB].

Pour les questions suivantes, on se place dans le repère orthonormé de l'espace $\{1; \overline{1C}, \overline{1B}, \overline{1S}\}$ Dans ce repère, on donne les coordonnées des points suivants :

$$I(\theta\,;\,0\,;\,0)\,;\,A(-1\,;\,0\,;\,0)\,;\,B(\theta\,;\,1\,;\,0)\,;\,C(1\,;\,0\,;\,0);\\D(0\,;\,-1\,;\,0)\,;\,S(0\,;\,0\,;\,1).$$

a.
$$\left(\frac{1}{4}; \frac{1}{4}; \frac{1}{4}\right)$$

a.
$$\left(\frac{1}{4}; \frac{1}{4}; \frac{1}{4}\right)$$
 b. $\left(\frac{1}{4}; -\frac{1}{4}; \frac{1}{2}\right)$ c. $\left(-\frac{1}{4}; \frac{1}{4}; \frac{1}{2}\right)$ d. $\left(-\frac{1}{2}; \frac{1}{2}; 1\right)$

$$c.\left(-\frac{1}{4};\frac{1}{4};\frac{1}{2}\right)$$

$$\mathbf{d.}\left(-\frac{1}{2};\frac{1}{2};1\right)$$

3. Les coordonnées du vecteur AS sont :

$$\mathbf{b.} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

4. Une représentation paramétrique de la droite (AS) est :

(IE別)

$$\mathbf{a.} \begin{cases} x = -1 - t \\ y = t \\ z = -t \end{cases}$$

$$\mathbf{b.} \begin{cases} x = -1 + 2t \\ y = 0 \\ z = 1 + 2t \end{cases}$$

$$\mathbf{c} \left\{ \begin{array}{ll} x = & t \\ y = & 0 \\ z = 1 + t \end{array} \right.$$

$$d. \begin{cases} x = -1 - t \\ y = 1 + t \\ z = 1 - t \end{cases}$$

5. Une équation cartésienne du plan (SCB) est :

a.
$$y + z - 1 = 0$$

a.
$$y+z-1=0$$
 b. $x+y+z-1=0$ **c.** $x-y+z=0$

$$\mathbf{c.} \ x - y + z = 0$$

d.
$$x + z - 1 = 0$$

Exercice 3. Métro2-Mars 2021

Exercice 3, commun à tous les candidats

4 points

Dans l'espace rapporté à un repère orthonormé [0,1,1,k], un considére les points : A de coordonnées (2;0;0), B de coordonnées (0;3;0) et C de coordonnées (0;0;1).

L'objectif de cet exercice est de calculer l'aire du triangle ABC.

- 1. a. Montrer que le vecteur $n = \begin{pmatrix} 3 \\ 2 \\ 6 \end{pmatrix}$ est normal au plan (ABC).
 - b. En déduire qu'une équation cartésienne du plan (ABC) est : 3x+2y+6z-6=0.
- 2. On note d la droite passant par $\mathbb O$ et orthogonale au plan (ABC).
 - a. Déterminer une représentation paramétrique de la droite d.
 - b. Montrer que la droite d coupe le plan (ABC) au point H de coordonnées (18/49): 12/49.
 - c. Calculer la distance OH.
- 3. On rappelle que le volume d'une pyramide est donné par : V = 1/3 \$\mathcal{B}h\$, où \$\mathcal{B}\$ est l'aire d'une base et h est la hauteur de la pyramide correspondant à cette base.
 En calculant de deux façons différentes le volume de la pyramide OABC, déterminer l'aire du triangle ABC.

Exercice 4. Centre étranger 2021

Dans un repère orthonormé de l'espace, on considère les points suivants : A(2;-1;0); B(3;-1;2); C(0;4;1) et S(0;1;4)

- 1. Montrer que le triangle ABC est rectangle en A.
- 2. a. Montrer que le vecteur $i\begin{pmatrix} 2\\1\\-1 \end{pmatrix}$ est orthogonal au plan (ABC).
 - b. En déduire une équation cartésienne du plan (ABC).
 - c. Montrer que les points A, B, C et S ne sont pas coplanaires.
- Soit (d) la droite orthogonale au plan (ABC) passant par S. Elle coupe le plan (ABC) en H.
 - a. Déterminer une représentation paramétrique de la droite (d).
 - b. Montrer que les coardonnées du point H sont §(2;2;3).
- 4. On rappelle que le volume V d'un tétraèdre est $V = \frac{Aire de la base \times hauteur}{3}$. Calculer le volume du tétraèdre SABC.
- 5. a. Calculer la longueur SA.
 - b. On indique que SB = $\sqrt{17}$. En déduire une mesure de l'angle \overrightarrow{ASB} approchée au dixième de degré.