

CS240 Algorithm Design and Analysis

Lecture 20

Randomized Algorithms

Quan Li Fall 2024 2024.12.05

Randomized Algorithms

- Till now, all of our algorithms have been deterministic.
 - □ Given an input, the algorithm always does the same thing.
- It turns out it's very useful to allow algorithms to be nondeterministic.
 - ☐ As the algorithm operates, it's allowed to make some random choices.
 - □ Running the algorithm multiple times on same input can produce different behaviors.
- Randomization. Allow fair coin flip in unit time.

Why Randomized Algorithms?

- For many problems, randomized algorithms work better than deterministic ones.
 - □ Faster / uses less memory
 - ☐ Simpler, easier to understand.
 - □ Some problems that provably can't be solved (or solved efficiently) by deterministic algorithms can be solved by randomized ones.
 - □ According to quantum mechanics, the world is inherently probabilistic, so nature is randomized!

How can randomness help?

- Say you have a string of length n that's half A's and half B's.
- We want to find a location in the string with an A.
- Any deterministic algorithm takes n/2+1 steps in the worst case.

But by checking random locations, a randomized algorithm finds an A in 2 steps in

expectation.

Measure the area of this

Method 1

- Method 2
- Print the shape out on a piece of paper.
- Throw 100 darts at it.
- See what percent land in the shape.
- Multiply by area of your paper.

Las Vegas VS. Monte Carlo

- A Las Vegas randomized algorithm always produces the right answer. But it's running time can vary depending on its random choices.
 - □ We want to minimize the expected running time of a Las Vegas algorithm.
- A Monte Carlo algorithm always has the same running time. But it sometimes produces the wrong answer, depending on its random choices.
 - □ We want to minimize the error probability of a Monte Carlo algorithm.

- Discrete probability theory is based on events and their probabilities.
 - □ Events can be composed of more basic events.
 - □ Ex Event of rolling a 2 on a fair dice, with probability 1/6.
 - \square Ex Event of rolling an even number, with probability $\frac{1}{2}$. Composed of basic events of rolling a 2, 4 or 6.
 - \square If A is event, write Pr[A]=y. E.g., $Pr[roll\ a\ 2]=1/6$
- Two events A, B are independent if Pr[A∧B]=Pr[A]*Pr[B].
 - □ Ex Events A="2 on first roll" and B="3 on second roll" are independent, because $Pr[A \land B]=1/36=Pr[A]*Pr[B]=1/6*1/6$.
 - □ Ex Events A="2 on first roll" and B="the two rolls sum to 5" are not independent, because $Pr[A \land B]=1/36 \neq Pr[A]*Pr[B]=1/6*4/36$.

- Random variables
 - □ A variable which takes values with certain probabilities. The probabilities sum to 1.
 - \square Ex X = value from roll of dice. Values are $\{1,2,3,4,5,6\}$, each with probability 1/6.
 - \square Ex Y = number of heads in 4 flips of fair coin. Values are $\{0,1,2,3,4\}$, with probabilities $\{1/16,4/16,6/16,4/16,1/16\}$.
 - \square Ex Z = number of flips of fair coin till first head. Values are $\{1,2,3,...\}$, with probabilities $\{1/2,1/4,1/8,...\}$.
 - \square We write Pr[X=x]=y, e.g. Pr[Z=3]=1/8.

- Expectation of random variable X
 - \square E[X]= $\sum_{x} X^* Pr[X=x]$.
 - \square The average value of X, over many trials.
 - \square Ex X=number of heads in 4 flips. E[X]=0*1/16+1*4/16+2*6/16+3*4/16+4*1/16=2.
 - If you flip a coin 4 times, for 1000 times, on average you see 2 heads per 4 flips.
- An indicator variable X for an event E is a random variable that's 1 of E occurs, and 0 otherwise.
- If event E has probability p of occurring, and X is E's indicator variable, then E[X]=p.
 - □ Because $E[X]=Pr[E \ occurs]*1+Pr[E \ doesn't \ occur]*0=p$.
 - ☐ This is a convenient fact we'll frequently use.

- Linearity of expectations
 - \square Given random variables X, Y, E[X+Y]=E[X]+E[Y].
 - \square Extends to any number of random variables, e.g. E[X+Y+Z]=E[X]+E[Y]+E[Z].
 - ☐ The random variables do not have to be independent.
 - □ Very useful property!
 - □ Ex Let X=number of heads in 100 coin flips. Calculate E[X].
 - Direct method: 1*Pr[1 head]+2*Pr[2 heads]+...+100*Pr[100 heads], a very complicated sum.
 - Linearity method: $X=X_1+X_2+...+X_{100}$, where X_i =number of heads on i'th flip.
 - $E[X_i]=0*Pr[0 \text{ heads}]+1*Pr[1 \text{ head}]=1/2.$
 - $E[X]=E[X_1]+...+E[X_{100}]=100/2=50.$

- We studied the Min-Cut problem, which is closely related to finding the max flow in a network.
- Max-Cut is the opposite of Min-Cut.
- Given a graph G, split vertices into two sides to maximize the number of edges between the sides.

- Unlike Min-Cut, Max-Cut is NP-complete.
- We'll give a very simple randomized Monte Carlo 2-approximation algorithm.
 - □ Monte Carlo means the algorithm sometimes returns the wrong answer, i.e., a cut that's not a 2-approximation.
 - □ Monte Carlo also means the algorithm always runs in a fixed amount of time.
 - Put each node in a random side with probability $\frac{1}{2}$.

Correctness

- Lemma In a graph with e edges, the algorithm produces a cut with expected size e/2.
- Proof Let X be a random variable equal to the size of the cut. We want to bound E[X].
 - \square For each edge e, let X_e be the indicator variable of whether e is in the cut.
 - i.e., $X_e=1$ if e is in the cut and 0 otherwise.
 - \square X= $\sum_{e} X_{e}$.
 - \square Given an edge e=(i,j), e is in the cut if i and j are on different sides.
 - □ $Pr[e \text{ in cut}]=Pr[(i \text{ in L}) \land (j \text{ in R})] + Pr[(j \text{ in L}) \land (i \text{ in R})]=1/4+1/4=1/2.$
 - \Box E[X_e]=1/2.
 - \square E[X]=e/2 by linearity of expectations.

Correctness

- Since a cut can have at most e edges, the e/2 edges the algorithm outputs in expectation is a 2 approximation.
- Note that we only bounded expected size of the algorithm's cut.
 - □ In any particular execution, the algorithm can output a cut that's smaller or larger than e/2.
 - On average, the cut has size e/2.

Contention Resolution

An example in distributed computing where randomization is necessary

Distributed Computing

- Distributed system
 - Set of autonomous nodes, working independently of each other
 - Nodes may be able to communicate, at a cost
 - Ex: Internet, computer cluster, sensor network
- Nodes need to coordinate to solve some problem
- Coordination can be done using communication. But communication is expensive
- By making nodes randomized, they can coordinate with minimal communication
- Randomization also simplifies symmetry breaking between nodes

Contention Resolution in a Distributed System

Contention resolution. Given n processes P_1 , ..., P_n , each competing for access to a shared channel. If two or more processes access the channel simultaneously, all processes are locked out. Devise protocol to ensure all processes get through on a regular basis.

Assumption. Time is divided into rounds.

Restriction. Processes can't communicate, and they don't have id's.

Challenge. Need symmetry-breaking paradigm.

No deterministic protocol can solve the problem.

Contention Resolution: Randomized Protocol

Protocol. Each process requests access to the channel at time t with probability p = 1/n.

Claim. Let S[i, t] = event that process i succeeds in accessing the database at time t. Then $1/(e \cdot n) \le Pr[S(i, t)] \le 1/(2n)$.

Pf. By independence,
$$Pr[S(i, t)] = p (1-p)^{n-1}$$
.

process i requests access

none of remaining n-1 processes request access

■ Setting
$$p = 1/n$$
, we have $Pr[S(i, t)] = 1/n (1 - 1/n)^{n-1}$. ■ between $1/e$ and $1/2$

Useful facts from calculus.

■
$$1/4 < (1 - 1/n)^n < 1/e < (1 - 1/n)^{n-1} < 1/2$$

$$9/4 < (1 + 1/n)^n < e < (1 + 1/n)^{n+1} < 27/8$$

Contention Resolution: Randomized Protocol

Claim. The probability that process i fails to access the channel in e·n rounds is at most 1/e. After e·n·c ln n rounds, the probability is at most n^{-c} .

Pf. Let F[i, t] = event that process i fails to access database in rounds 1 through t. By independence and previous claim, we have $Pr[F(i, t)] \leq (1 - 1/(en))^{t}$.

• Choose
$$t = e n$$
: $\Pr[F(i,t)] \le \left(1 - \frac{1}{e^n}\right)^{e^n} \le \frac{1}{e}$

• Choose t = (e n) (c ln n):
$$\Pr[F(i,t)] \leq \left(\frac{1}{e}\right)^{c \ln n} = n^{-c}$$

Contention Resolution: Randomized Protocol

Claim. The probability that all processes succeed within $2e \cdot n$ in n rounds is at least 1 - 1/n.

Pf. Let F[t] = event that at least one of the n processes fails to access database in any of the rounds 1 through t.

$$\Pr[F[t]] = \Pr\left[\bigcup_{i=1}^{n} F[i,t]\right] \le \sum_{i=1}^{n} \Pr[F[i,t]] \le n \cdot n^{-c}$$

union bound previous slide

■ Choosing t = 2 e n ln n yields $Pr[F[t]] \le n \cdot n^{-2} = 1/n$. ■

Union bound. Given events E_1 , ..., E_n , independent or not,

$$\Pr\left[\bigcup_{i=1}^{n} E_{i}\right] \leq \sum_{i=1}^{n} \Pr[E_{i}]$$

Global Minimum Cut

A problem for which the best-known randomized algorithm is faster than the best-known deterministic algorithm

Global Minimum Cut

Global min cut. Given a connected, undirected graph G = (V, E), find a cut (A, B) of minimum cardinality.

Applications. Partitioning items in a database, identify clusters of related documents, network reliability, network design, circuit design, TSP solvers.

Network flow solution.

- Replace every edge (u, v) with two antiparallel edges (u, v) and (v, u).
- Pick some vertex s and compute min s-v cut separating s from each other vertex $v \in V$.

False intuition. Global min-cut is harder than min s-t cut.

Contraction algorithm. [Karger 1995]

- Pick an edge e = (u, v) uniformly at random.
- Contract edge e.
 - replace u and v by a single new supernode w
 - preserve edges, updating endpoints of u and v to w
 - keep parallel edges, but delete self-loops
- Repeat until graph has just two supernodes v_1 and v_2 .
- Return the cut (between the two supernodes).

Claim. The contraction algorithm returns a min cut with prob $\geq 2/n^2$.

Pf. Consider a global min-cut (A*, B*) of G. Let F^* be edges with one endpoint in A* and the other in B*. Let $k = |F^*| = \text{size of min cut}$.

- In first step, algorithm contracts an edge in F* with prob k / |E|.
- Every node has degree \geq k since otherwise (A*, B*) would not be min-cut. \Rightarrow |E| \geq ½kn.
- Thus, algorithm contracts an edge in F^* with probability $\leq 2/n$.

Claim. The contraction algorithm returns a min cut with prob $\geq 2/n^2$.

Pf. Consider a global min-cut (A^*, B^*) of G. Let F^* be edges with one endpoint in A^* and the other in B^* . Let $k = |F^*| = size$ of min cut.

- Let G' be graph after j iterations. There are n' = n-j supernodes.
- \blacksquare Suppose no edge in F* has been contracted. The min-cut in G' is still k.
- Since value of min-cut is k, $|E'| \ge \frac{1}{2} kn' \rightarrow k/|E'| <= 2/n'$
- Thus, algorithm contracts an edge in F^* with probability $\leq 2/n'$.
- Let E_j = event that an edge in F^* is not contracted in iteration j.

$$\begin{array}{lll} \Pr[E_1 \cap E_2 \cdots \cap E_{n-2}] & = & \Pr[E_1] \times \Pr[E_2 \mid E_1] \times \cdots \times \Pr[E_{n-2} \mid E_1 \cap E_2 \cdots \cap E_{n-3}] \\ & \geq & \left(1 - \frac{2}{n}\right) \left(1 - \frac{2}{n-1}\right) \cdots \left(1 - \frac{2}{4}\right) \left(1 - \frac{2}{3}\right) \\ & = & \left(\frac{n-2}{n}\right) \left(\frac{n-3}{n-1}\right) \cdots \left(\frac{2}{4}\right) \left(\frac{1}{3}\right) \\ & = & \frac{2}{n(n-1)} \\ & \geq & \frac{2}{n^2} \end{array}$$

Amplification. To amplify the probability of success, run the contraction algorithm many times.

Claim. If we repeat the contraction algorithm n² times with independent random choices and return the best cut found, then the algorithm finds the min-cut with constant probability.

Pf. By independence, the probability of failure is at most

$$\left(1 - \frac{2}{n^2}\right)^{n^2} = \left[\left(1 - \frac{2}{n^2}\right)^{\frac{1}{2}n^2}\right]^2 \le \left(e^{-1}\right)^2 = \frac{1}{e^2}$$

Global Min Cut: Context

Remark. Overall running time is slow since we perform $O(V^2)$ iterations, and each takes $O(E \log V)$ time (we always merge the vertex with smaller degree into the other).

Best known. [Karger 2000] O(E log³V).

faster than best known deterministic global min cut algorithm

