Proyecto de Titulación

Segmentación de Municipios de la República Mexicana

Pablo Gómez García

Objetivo

Plantear una solución desde un enfoque Analítico basada en un Modelo no supervisado que logre segmentar a los municipios de la República Mexicana. Se pretende que dicha segmentación resulte de utilidad para estrategias de implementación de Políticas Públicas, de Marketing y para estrategias de Seguridad Pública.

Introducción

En la actualidad existen en México diversos estudios a nivel municipio, en su mayoría muestran características poblacionales de cada uno de ellos, también muestran estados de opinión, preferencias electorales, índices de Pobreza y Marginación etc.

Toda la información que se tiene acerca de los municipios es valiosa para distintos fines, sin embargo a la fecha hay muy pocos estudios que describen a los municipios por medio de varias de sus características, si es que existe tales estudios lo hacen a nivel descriptivo simple.

Dentro de este proyecto planteamos la posibilidad de aplicar una técnica no supervisada para encontrar una segmentación muy característica de los municipios del País.

Planteamiento del Problema

Tomando como punto de partida la información pública que existe de los municipios en diversos temas, plateamos la siguiente Hipótesis:

"Existen variables entre los datos públicos de los municipios que permiten diferenciarlos en segmentos cuyos elementos que los conforman poseen características homogéneas entre sí pero heterogéneas con los elementos de otros segmentos". Bajo el supuesto anterior se propone recaudar información pública de fuentes como el INEGI, la PGR, la CNBV entre otras más. Con esta información se procedería a construir un Modelo no supervisado para encontrar los segmentos planteados en la hipótesis. Cabe mencionar que este Modelo no tendrá como objetivo clasificar municipios que sean creados en el futuro pues esto no sucede a menudo, sin embargo busca mostrar de manera descriptiva el valor y aporte de cada segmento para los fines planteados en el objetivo del proyecto.

** Importar librerías **

```
In [1]:
         #Importamos los paquetes que vamos a utilizar
         import json as js
         import random as rd
         import math as mt
         from time import time
         from statistics import mean
         import pandas as pd
         import matplotlib.pyplot as plt
         from nltk.corpus import stopwords
         import nltk
         import unicodedata
         import re
         from collections import Counter
         import numpy as np
         import io
         import seaborn as sns
```

** Importar el conjunto de datos **

Fuente:

https://www.gob.mx/sesnsp/acciones-y-programas/datos-abiertos-de-incidencia-delictiva

https://drive.google.com/file/d/1caLtpjb1KahDK3dTTBOEwR2syA3FySrD/view?usp=sharing

```
with open('IDM_NM_sep22.csv', newline='', encoding='utf-8', errors='ignore') as csvfile:
    csv_reader = list(csv.reader(csvfile, delimiter=','))
#print(csv_reader)
IOPub data rate exceeded.
The notebook server will temporarily stop sending output
to the client in order to avoid crashing it.
To change this limit, set the config variable
`--NotebookApp.iopub_data_rate_limit`.
Current values:
NotebookApp.iopub_data_rate_limit=1000000.0 (bytes/sec)
NotebookApp.rate_limit_window=3.0 (secs)
\tt df\_natural=pd.DataFrame(csv\_reader[1:],columns=csv\_reader[0])
```

In [21]:

df natural

]:	Anio	Clave_Ent	Entidad	Cve_Municipio	Municipio	Bien_juridico_afectado	Tipo_delito	Subtipo_delito	Modalidad	Enero
0	2015	1	Aguascalientes	1001	Aguascalientes	La vida y la Integridad corporal	Homicidio	Homicidio doloso	Con arma de fuego	2
1	2015	1	Aguascalientes	1001	Aguascalientes	La vida y la Integridad corporal	Homicidio	Homicidio doloso	Con arma blanca	1
2	2015	1	Aguascalientes	1001	Aguascalientes	La vida y la Integridad corporal	Homicidio	Homicidio doloso	Con otro elemento	0
3	2015	1	Aguascalientes	1001	Aguascalientes	La vida y la Integridad corporal	Homicidio	Homicidio doloso	No especificado	1
4	2015	1	Aguascalientes	1001	Aguascalientes	La vida y la Integridad corporal	Homicidio	Homicidio culposo	Con arma de fuego	0
1832399	2022	32	Zacatecas	32058	Santa Mara de la Paz	Otros bienes jurdicos afectados (del fuero comn)	Falsificacin	Falsificacin	Falsificacin	0
1832400	2022	32	Zacatecas	32058	Santa Mara de la Paz	Otros bienes jurdicos afectados (del fuero comn)	Contra el medio ambiente	Contra el medio ambiente	Contra el medio ambiente	0
1832401	2022	32	Zacatecas	32058	Santa Mara de la Paz	Otros bienes jurdicos afectados (del fuero comn)	Delitos cometidos por servidores pblicos	Delitos cometidos por servidores pblicos	Delitos cometidos por servidores pblicos	0
1832402	2022	32	Zacatecas	32058	Santa Mara de la Paz	Otros bienes jurdicos afectados (del fuero comn)	Electorales	Electorales	Electorales	0
1832403	2022	32	Zacatecas	32058	Santa Mara de la Paz	Otros bienes jurdicos afectados (del fuero comn)	Otros delitos del Fuero Comn	Otros delitos del Fuero Comn	Otros delitos del Fuero Comn	0
1832404	rows	× 21 columr	ns							

In [51]:

#Cargamos los datos que previamente fueron Manipulados con el software R para obtner la siguiente tabla # Se importa el archivo con los nombres de municipios y Estados df_ini=pd.read_csv('Delitos_totales_2022_final.csv') df = df_ini.set_index('id') drop_col=['Entidad','Municipio','XCOORD','YCOORD'] df.drop(drop_col, inplace=True, axis=1)

Out[51]:

:		Aborto	Abuso_de_confianza	Abuso_sexual	Acoso_sexual	Allanamiento_de_morada	Amenazas	Contra_el_medio_ambiente	Corrupc
	id								
	1010001	0.000000	0.291667	0.177083	0.031250	0.010417	0.479167	0.000000	
	1010002	0.000000	0.000000	0.010417	0.000000	0.000000	0.062500	0.000000	
	1010003	0.000000	0.000000	0.000000	0.000000	0.000000	0.083333	0.000000	
	1010004	0.000000	0.468750	0.333333	0.041667	0.062500	0.947917	0.000000	
	1010005	0.125000	34.020833	17.354167	1.895833	8.583333	66.093750	0.041667	
	99014	0.281250	34.770833	10.406250	3.895833	4.781250	61.072917	3.989583	
	99015	0.552083	66.395833	34.760417	11.427083	6.125000	131.354167	6.343750	

99016	0.364583	22.166667	12.062500	4.020833	3.500000	52.333333	3.312500
99017	0.854167	19.531250	14.541667	3.239583	3.187500	63.093750	2.291667
99998	0.072917	0.187500	1.447917	0.604167	0.000000	0.656250	0.156250

2479 rows × 40 columns

1

** Análisis exploratorio de datos **

```
In [17]:
            # Visualizamos las columnas que contiene el dataset
            df.columns
Out[17]: Index(['Aborto', 'Abuso de confianza', 'Abuso sexual', 'Acoso sexual',
                    'Allanamiento_de_morada', 'Amenazas', 'Contra_el_medio_ambiente', 'Corrupcion_de_menores', 'Dano_a_la_propiedad',
                    'por servidores publicos', 'Despojo', 'Electorales',
                    'Evasion de presos', 'Extorsion', 'Falsedad', 'Falsificacion',
                    'Feminicidio', 'Fraude', 'Homicidio', 'Hostigamiento_sexual', 'Incesto', 'Incump_obligaciones_asistencia_fam', 'Lesiones', 'Narcomenudeo',
                    'contra_el_patrimonio', 'Otros_contra_la_familia',
'Otros_contra_la_sociedad', 'Otros_Fuero_Comun', 'libertad_personal',
'libertad_seguridad_sexual', 'vida_integridad_corporal', 'Rapto',
                    'Robo', 'Secuestro', 'Trafico_de_menores', 'Trata_de_personas', 'Violacion_equiparada', 'Violacion_simple', 'Violencia_de_genero',
                    'Violencia familiar'],
                  dtype='object')
In [18]:
            df.dtypes
                                                          float64
Out[18]: Aborto
                                                          float64
           Abuso de confianza
                                                          float64
           Abuso_sexual
           Acoso sexual
                                                          float64
                                                          float64
           Allanamiento de morada
           Amenazas
                                                          float64
           Contra el medio ambiente
                                                          float64
                                                          float64
           Corrupcion de menores
           Dano_a_la_propiedad
                                                          float64
           por servidores publicos
                                                          float64
                                                          float64
           Despoio
           Electorales
                                                          float64
           Evasion de presos
                                                          float64
                                                          float64
           Extorsion
           Falsedad
                                                          float64
           Falsificacion
                                                          float64
                                                          float64
           Feminicidio
                                                          float64
           Fraude
                                                          float64
           Homicidio
           Hostigamiento sexual
                                                          float64
                                                          float64
           Incesto
           Incump obligaciones asistencia fam
                                                          float64
                                                          float64
           Lesiones
           Narcomenudeo
                                                          float64
                                                          float64
           contra_el_patrimonio
           Otros contra la familia
                                                          float64
           Otros contra la sociedad
                                                          float64
           Otros Fuero Comun
                                                          float64
           libertad personal
                                                          float64
           libertad seguridad sexual
                                                          float64
           vida integridad corporal
                                                          float64
           Rapto
                                                          float64
                                                         float64
           Roho
           Secuestro
                                                          float64
           Trafico_de_menores
                                                          float64
           Trata de personas
                                                          float64
           Violacion_equiparada
                                                         float64
           Violacion_simple
                                                          float64
           Violencia_de_genero
                                                         float64
           Violencia_familiar
                                                         float64
```

dtype: object

Out[19]:

	count	mean	std	min	25%	50%	75%	max
Aborto	2479.0	0.020641	0.103366	0.0	0.00	0.00	0.010	1.97
Abuso_de_confianza	2479.0	0.824712	3.707413	0.0	0.00	0.04	0.240	66.40
Abuso_sexual	2479.0	0.676958	2.973642	0.0	0.01	0.05	0.220	50.75
Acoso_sexual	2479.0	0.134433	0.677515	0.0	0.00	0.00	0.030	15.64
Allanamiento_de_morada	2479.0	0.434885	3.573997	0.0	0.00	0.03	0.150	154.16
Amenazas	2479.0	3.179000	14.026048	0.0	0.04	0.21	0.930	217.26
Contra_el_medio_ambiente	2479.0	0.060803	0.398351	0.0	0.00	0.00	0.010	9.18
Corrupcion_de_menores	2479.0	0.071154	0.512703	0.0	0.00	0.00	0.020	16.99
Dano_a_la_propiedad	2479.0	4.244078	18.110651	0.0	0.06	0.29	1.445	308.27
por_servidores_publicos	2479.0	0.588495	3.766842	0.0	0.01	0.04	0.130	104.36
Despojo	2479.0	0.874296	3.068362	0.0	0.03	0.14	0.440	45.21
Electorales	2479.0	0.043667	0.163427	0.0	0.00	0.01	0.030	2.70
Evasion_de_presos	2479.0	0.003780	0.020601	0.0	0.00	0.00	0.000	0.41
Extorsion	2479.0	0.243852	1.074441	0.0	0.00	0.01	0.080	21.84
Falsedad	2479.0	0.104558	0.753174	0.0	0.00	0.00	0.020	27.36
Falsificacion	2479.0	0.543647	3.503101	0.0	0.00	0.01	0.070	83.49
Feminicidio	2479.0	0.006523	0.020495	0.0	0.00	0.00	0.010	0.36
Fraude	2479.0	2.399137	12.807845	0.0	0.02	0.10	0.570	294.99
Homicidio	2479.0	0.148471	0.548769	0.0	0.01	0.03	0.090	15.85
Hostigamiento_sexual	2479.0	0.049484	0.304511	0.0	0.00	0.00	0.020	6.95
Incesto	2479.0	0.000710	0.010123	0.0	0.00	0.00	0.000	0.45
Incump_obligaciones_asistencia_fam	2479.0	0.764712	3.491686	0.0	0.00	0.03	0.230	73.43
Lesiones	2479.0	0.732283	2.920760	0.0	0.01	0.06	0.280	55.86
Narcomenudeo	2479.0	1.937608	19.184218	0.0	0.00	0.04	0.250	731.50
contra_el_patrimonio	2479.0	0.348616	2.120363	0.0	0.00	0.01	0.070	43.01
Otros_contra_la_familia	2479.0	0.386023	2.685532	0.0	0.00	0.01	0.060	80.17
Otros_contra_la_sociedad	2479.0	0.186837	1.187383	0.0	0.00	0.00	0.020	32.25
Otros_Fuero_Comun	2479.0	5.899855	28.703586	0.0	0.06	0.25	1.355	523.40
libertad_personal	2479.0	0.582711	2.463326	0.0	0.00	0.04	0.180	40.28
libertad_seguridad_sexual	2479.0	0.228439	1.106819	0.0	0.00	0.02	0.080	26.36
vida_integridad_corporal	2479.0	0.258766	1.633317	0.0	0.00	0.01	0.070	46.20
Rapto	2479.0	0.005389	0.054069	0.0	0.00	0.00	0.000	1.66
Robo	2479.0	0.629685	3.041599	0.0	0.00	0.03	0.150	54.31
Secuestro	2479.0	0.006196	0.022908	0.0	0.00	0.00	0.000	0.44
Trafico_de_menores	2479.0	0.002481	0.045548	0.0	0.00	0.00	0.000	2.09
Trata_de_personas	2479.0	0.016002	0.112320	0.0	0.00	0.00	0.000	3.26
Violacion_equiparada	2479.0	0.126370	0.640366	0.0	0.00	0.01	0.040	16.88
Violacion_simple	2479.0	0.412291	1.588285	0.0	0.01	0.05	0.190	33.27
Violencia_de_genero	2479.0	0.098362	0.739735	0.0	0.00	0.00	0.000	19.48
V:-1:- f:!:	0.470.0	0.440000	07.054.000	0.0	0.00	0.00	4 000	E444E

```
In [20]: # Obtenemos el % total de valores perdidos que aún quedan en la base
df.isnull().values.mean() * 100
```

Violencia_familiar 2479.0 6.418080 27.651832 0.0 0.08 0.38 1.830 514.15

Out[20]: 0.0

In [21]: df.shape

Out[21]: (2479, 40)

. .

Approach 1

```
In [23]: # Análisis de correlación entre las variables
sns.heatmap(df.corr(method='pearson'),square=True)
```

Out[23]: <AxesSubplot:>

Clustering de variables

```
In [ ]: #!pip install varclushi

In [25]: #Clusterin de variables
    from varclushi import VarClusHi
    #Realizamos el clustering
    var_clust_model=VarClusHi(df,maxeigval2=0.7, maxclus=None)
    var_clust_model.varclus()
```

Out[25]: <varclushi.varclushi.VarClusHi at 0x225c15f9d30>

```
In [26]: #Visualizamos los clusters formados
var_clust_model.rsquare
```

Out[26]:			Variable	RS_Own	RS_NC	RS_Ratio
	0	0	Abuso_de_confianza	0.830808	0.769288	0.733349
	1	0	por_servidores_publicos	0.824154	0.621512	0.464602
	2	0	Falsedad	0.760237	0.409843	0.406269
	3	0	Falsificacion	0.822116	0.567534	0.411324
	4	0	Fraude	0.909022	0.681342	0.285505
	5	0	Trata_de_personas	0.770087	0.522953	0.481950
	6	1	Abuso_sexual	0.872288	0.757028	0.525624
	7	1	Amenazas	0.838310	0.567483	0.373835
	8	1	Dano_a_la_propiedad	0.895934	0.750435	0.416989
	9	1	contra_el_patrimonio	0.586850	0.414141	0.705204
	10	1	libertad_seguridad_sexual	0.599838	0.477581	0.765978
	11	1	Violacion_simple	0.874484	0.742551	0.487539
	12	1	Violencia_familiar	0.934205	0.729318	0.243070
	13	2	Otros_contra_la_familia	0.919739	0.276414	0.110921
	14	2	Rapto	0.919739	0.137501	0.093056
	15	3	Feminicidio	0.775939	0.627296	0.601178
1 2 3 4 5 6 7 8 9 10 11 12 13	16	3	libertad_personal	0.798321	0.570432	0.469494
	3	Secuestro	0.636053	0.453582	0.666061	

18	3	Aborto	0.690397	0.459194	0.572485
19	3	Despojo	0.843609	0.798878	0.777591
20	3	Evasion_de_presos	0.668282	0.515286	0.684358
21	4	Trafico_de_menores	1.000000	0.105126	0.000000
22	5	Otros_Fuero_Comun	0.889798	0.500419	0.220589
23	5	Violencia_de_genero	0.492870	0.190336	0.626346
24	5	Extorsion	0.877798	0.651777	0.350929
25	5	Lesiones	0.920972	0.700007	0.263434
26	5	Robo	0.847986	0.753226	0.616005
27	6	Incesto	1.000000	0.074333	0.000000
28	7	Homicidio	0.811694	0.607992	0.480364
29	7	Narcomenudeo	0.682930	0.382159	0.513191
30	7	Incump_obligaciones_asistencia_fam	0.667902	0.432368	0.585058
31	8	Contra_el_medio_ambiente	1.000000	0.335585	0.000000
32	9	Allanamiento_de_morada	0.627176	0.341939	0.566550
33	9	Corrupcion_de_menores	0.853143	0.592095	0.360026
34	9	vida_integridad_corporal	0.760559	0.437726	0.425843
35	9	Hostigamiento_sexual	0.678358	0.521357	0.671986
36	9	Violacion_equiparada	0.705156	0.568175	0.682785
37	10	Acoso_sexual	0.811100	0.601113	0.473568
38	10	Electorales	0.804232	0.648085	0.556294
39	10	Otros_contra_la_sociedad	0.752623	0.377773	0.397567

```
In [27]:
    #Verificamos el proceso anterior
    var_clus=var_clust_model.rsquare
    var_clus.to_csv('var_clust.csv')
```

Observación

99015

6.34

Tras el Análisis de Clustering de variables podemos tomar la variable con la distancia menor al centroide dentro de cada cluster, esto es con el valor del RS_Ratio y así elegiriamos una variable representante de cada grupo de acuerdo a su nivel de correlación. Por otro lado aquellos cluster cuyo numero de variables es uno significa que son variables que no se correlacionan con ninguna otra.

El criterio tomado es que la iteración del algoritmo pare cuando se tenga el 70% de la Varianza explicada.

En este caso de 40 variables que entraron al análisis podemos xplicar el 70% de la varianza del fenómeno con solo con solo 11 variables.

```
In [53]:
         'Otros_contra_la_familia','Aborto','Feminicidio','Secuestro','Evasion_de_presos','Despojo','Lesiones
                      'Extorsion','Robo','Violencia_de_genero','Narcomenudeo','Incump_obligaciones_asistencia_fam',
                       'vida integridad corporal', 'Allanamiento de morada', 'Hostigamiento sexual', Violacion equiparada',
                       'Acoso_sexual','Electorales']
         df.drop(col_drop2, inplace=True, axis=1)
In [29]:
          df
Out[29]:
                Contra_el_medio_ambiente Corrupcion_de_menores Fraude Homicidio Incesto Otros_contra_la_sociedad Otros_Fuero_Comun liberta
             id
         1010001
                                 0.00
                                                    0.00
                                                           1.32
                                                                    0.08
                                                                           0.00
                                                                                               0.00
                                                                                                                2.35
         1010002
                                 0.00
                                                     0.00
                                                           0.00
                                                                    0.02
                                                                           0.00
                                                                                               0.00
                                                                                                                0.07
         1010003
                                 0.00
                                                    0.00
                                                           0.00
                                                                    0.01
                                                                           0.00
                                                                                               0.00
                                                                                                                0.06
         1010004
                                 0.00
                                                     0.00
                                                           0.74
                                                                    0.10
                                                                           0.00
                                                                                               0.02
                                                                                                                1.83
         1010005
                                 0.04
                                                     0.99
                                                         104.42
                                                                    0.87
                                                                           0.01
                                                                                               1.74
                                                                                                               34.98
           99014
                                 3.99
                                                     0.76
                                                         154.69
                                                                    0.53
                                                                           0.00
                                                                                               5.32
                                                                                                               58.61
```

2.58

294.99

1.43

0.00

18.76

99016	3.31	0.74 114.60	0.67 0.00	5.34	45.83
99017	2.29	0.83 46.89	1.51 0.00	4.08	29.92
99998	0.16	0.24 1.59	0.01 0.00	0.32	5.84

2479 rows × 11 columns

** Modelación **

En esta parte vamos a probar un modelo simple de kmeans para tener un primer acercamiento de si los datos propuestos arrojan resultados orientados a probar nuestra hipótesis.

** Análisis de Clustering: K-Means **

```
In [56]:
          # Realizamos un proceso de estandarización de las variables
          from sklearn.preprocessing import StandardScaler
          scaler = StandardScaler()
          X = pd.DataFrame(scaler.fit transform(df), index=df.index, columns=df.columns)
In [32]:
          # cluster es la clase para implementar agrupamiento con sklearn.
          from sklearn import cluster
```

Método del codo

plt.show()

In [57]:

```
# Ejecución de K-means con 12 valores de clusters.
          distorsion = []
          for i in range(1,13):
            modeloK = cluster.KMeans(n_clusters = i)
            modeloK.fit(X)
            distorsion.append(modeloK.inertia_)
In [58]:
          # Grafica de distorsión para identificar el codo de la curva con el que se
          # obtiene el número óptimo de clusters.
          clusters = np.linspace(1,12,12)
          plt.plot(clusters, distorsion, marker = 'o')
          plt.xlabel('número de clusters')
          plt.ylabel('distorsión')
```



```
In [59]:
          # Construcción del modelo para obtener etiquetas mediante kmeans.
          # Debemos indicar el numero de clusters (grupos) que el algorítmo ajustará.
          modeloK = cluster.KMeans(n_clusters = 7)
In [60]:
          # Ajuste de los clusters.
          modeloK.fit(X)
Out[60]: KMeans(n_clusters=7)
```

```
In [63]:
          prediccion = modeloK.predict(X)
```

t[63]:		id	Entidad	Municipio	Aborto	Abuso_de_confianza	Abuso_sexual	Acoso_sexual	Allanamiento_de_morada	Amenazas	Contra
_	0	1010001	Durango	Canatlan	0.000000	0.291667	0.177083	0.031250	0.010417	0.479167	
	1	1010002	Durango	Canelas	0.000000	0.000000	0.010417	0.000000	0.000000	0.062500	
	2	1010003	Durango	Coneto de Comonfort	0.000000	0.000000	0.000000	0.000000	0.000000	0.083333	
	3	1010004	Durango	Cuencame	0.000000	0.468750	0.333333	0.041667	0.062500	0.947917	
	4	1010005	Durango	Durango	0.125000	34.020833	17.354167	1.895833	8.583333	66.093750	
	2474	99014	Ciudad de Mexico	Benito Juarez	0.281250	34.770833	10.406250	3.895833	4.781250	61.072917	
	2475	99015	Ciudad de Mexico	Cuauhtemoc	0.552083	66.395833	34.760417	11.427083	6.125000	131.354167	
	2476	99016	Ciudad de Mexico	Miguel Hidalgo	0.364583	22.166667	12.062500	4.020833	3.500000	52.333333	
	2477	99017	Ciudad de Mexico	Venustiano Carranza	0.854167	19.531250	14.541667	3.239583	3.187500	63.093750	
	2478	99998	Ciudad de Mexico	No Especificado	0.072917	0.187500	1.447917	0.604167	0.000000	0.656250	
_	2479 r	rows × 46	columns								D

Resultados del Análisis

In [6]:
 from IPython.display import Image
 Image(filename = "resultados.png", width=600, height=5)

Como un Primer ejercicio se obtienen 7 segmentos de municipios donde el cluster 1 de color azul fuerte concentra el 95% de los municipios y el otro 5% se logra diferenciar del resto.

En la imagen se puede apreciar que el tamaño del círculo representa el número promedio de delitos denunciados por mes, es decir, entre más grande tiene muchos más delitos.

```
In [64]:
```

df_final.to_csv('clusters.csv')

Conclusiones

Como primer acercamiento a los resultados buscados de nuestro proyecto, concluimos lo siguiente:

- 1. 7 segmentos no son suficientes para discriminar la totalidad de los municipios
- 2. Se logra diferenciar el 5% de los municipios del resto como aquellos con mayo incidencia delictiva en fraudes, secuestros, trata de

- personas y homicidios.
- 3. Es necesario incorporar más variables que ayuden a discriminar mejor a los municipios.
- 4. Detectamos un sesgo en cuanto a la cultura de la denuncia, es decir municipios que se perciben con altos índices de delitos (por ejemplo los mencionados constantemente en las noticias azotados por el narcotráfico) no reflejan dicha característica en los datos oficiales.

Referencias

- 1. Mitchell, Tom, "Machine Learning", Ed. McGraw-Hill (1997), cap 6 pp 154-199.
- 2. Everitt, B.S. (2011). Cluster analysis, 5th Edition. Wiley.
- 3. Peña Sánchez de Rivera, D. "Estadística. Modelos y Métodos. Volumen 2" Ed. Alianza. Madrid, 1987
- 4. Introduction to machine learning, Third Edition. Ethem Alpaydin. MIT Press
- 5. Understanding Machine Learning: From Theory to Algorithms. Shai Shalev-Shwartz and Shai Ben-David. Cambridge University Press.

Loading [MathJax]/extensions/Safe.js