COMP20005 Engineering Computation

Differentia Equations

Equations

Additional Notes Numeric Computation, Part B

Lecture slides © Alistair Moffat, 2013

Consider an object on a spring.

Hooke's Law says that the force *F* that is generated by the spring tension is proportional and opposed to the *displacement*,

$$\mathbf{F}_s = -k\mathbf{x}$$
.

In one dimension, $F_s = -kx$.

If there is a frictional force or damping action, it is proportional and opposed to the *velocity*,

$$\mathbf{F}_d = -c \frac{d\mathbf{x}}{dt} \,.$$

Applying these two forces to an object of mass m gives

$$\mathbf{a} = \frac{d^2\mathbf{x}}{dt^2} = \frac{1}{m}(\mathbf{F}_s + \mathbf{F}_d).$$

Combining the parts in one dimension gives

$$a = \frac{d^2x}{dt^2} = \frac{1}{m} \left(-kx - c\frac{dx}{dt} \right)$$

as a governing equation, or

$$\frac{d^2x}{dt^2} + \frac{c}{m}\frac{dx}{dt} + \frac{k}{m}x = 0.$$

Euler forward differences

Differential Equations

Equations

If an object of mass m is taken to a spring extension of x_0 at time t_0 and released, with a spring constants of K and frictional damping factor C, what happens?

Can use numeric simulation approach, with a small time-step Δt , to model the situation. Initialize, then iterate using:

$$a = (1/m) \cdot (-K \cdot x - C \cdot v)$$

$$x = x + \Delta t \cdot v$$

$$v = v + \Delta t \cdot a$$

$$t = t + \Delta t$$

spring.c

Euler forward differences

Differentia Equations

Equations

But need to be very careful, because the errors accumulate through the course of the simulation.

Make Δt too big, and the over- or under-shoot that occurs at every step can quickly become divergent.

But make Δt too small, and rounding/truncation errors can become a risk.

Equations

If a planetary body of mass E has initial location in its orbital plane of (x,0) relative to a fixed mass S, and has initial velocity (0,v), what is its path?

Now need to work with vectors for position, velocity, acceleration.

▶ orbits.c

Equations

In the system

$$\mathbf{y}'(t) = f(t, \mathbf{y}(t)),$$

where f defines the relationship between some variables and their derivatives, the Euler forward difference approach computes the sequence of approximations

$$\mathbf{y}_{n+1} = \mathbf{y}_n + \Delta t \cdot f(t_n, \mathbf{y}_n)$$

 $t_{n+1} = t_n + \Delta t$

as a time-stepped "simulation" of the underlying behavior.

For the damped spring,

$$\begin{bmatrix} v'(t) \\ x'(t) \end{bmatrix} = \begin{bmatrix} a(t) \\ v(t) \end{bmatrix} = f\left(t, \begin{bmatrix} v(t) \\ x(t) \end{bmatrix}\right) = \begin{bmatrix} \frac{-c \cdot v(t) - k \cdot x(t)}{m} \\ v(t) \end{bmatrix}$$

and we compute

$$v_{n+1} = v_n + \Delta t \cdot (-c \cdot v_n - k \cdot x_n)/m$$

$$x_{n+1} = x_n + \Delta t \cdot v_n$$

$$t_{n+1} = t_n + \Delta t$$

And that is exactly what the program calculated.

Equations

For the planet

$$\begin{bmatrix} v_x'(t) \\ v_y'(t) \\ x_x'(t) \\ x_y'(t) \end{bmatrix} = f \left(t, \begin{bmatrix} v_x(t) \\ v_y(t) \\ x_x(t) \\ x_y(t) \end{bmatrix} \right) = \begin{bmatrix} -(x_x(t)/d) \cdot G(S, E, d)/E \\ -(x_y(t)/d) \cdot G(S, E, d)/E \\ v_x(t) \\ v_y(t) \end{bmatrix}$$

where

$$d = ((x_x(t))^2 + (x_y(t))^2)^{1/2}$$

$$G(m_1, m_2, d) = \frac{G \cdot m_1 \cdot m_2}{d^2}$$

Systems of Equations

To improve stability, try to make better estimates.

Can use (an estimate of) the rate of change at mid-point of the interval, rather than the start of the interval.

$$\mathbf{y}_{n+1} = \mathbf{y}_n + \Delta t \cdot f\left(t_n + \frac{\Delta t}{2}, \mathbf{y}_n + \frac{\Delta t}{2}f(t_n, \mathbf{y}_n)\right)$$

$$t_{n+1} = t_n + \Delta t$$

This will diverge more slowly from the "true" situation, at the cost of more calculation per iteration.

Systems of Equations

Another significant variation, the RK4 approach, computes:

$$\mathbf{y}_{n+1} = \mathbf{y}_n + (\Delta t/6) \cdot (\mathbf{k}_1 + 2\mathbf{k}_2 + 2\mathbf{k}_3 + \mathbf{k}_4)$$

where the **k**'s are estimates of slope at the beginning, at the midpoint (using the first slope), at the midpoint (using the second slope), and at the end (using the midpoint slope):

$$\mathbf{k_1} = f(t_n, \mathbf{y}_n)$$

$$\mathbf{k_2} = f(t_n + \Delta t/2, \mathbf{y}_n + (\Delta t/2) \cdot \mathbf{k_1})$$

$$\mathbf{k_3} = f(t_n + \Delta t/2, \mathbf{y}_n + (\Delta t/2) \cdot \mathbf{k_2})$$

$$\mathbf{k_4} = f(t_n + \Delta t, \mathbf{y}_n + \Delta t \cdot \mathbf{k_3})$$

Then it gets even more complicated...

Differential Equations

Equations

A point object in Euclidean space is represented as a six dimensional vector.

A set of n point objects in Euclidean space needs 6n components to be maintained.

If one of the objects is a rocket, add another dimension, because its mass is also changing as a function of time.

If attitude is important (and in a rocket, it is!) three more dimensions for orientation are required.

Then it gets even more complicated...

Differential Equations

Systems of Equations

Or, if each of the n objects is a voxel of air inside the combustion chamber of an engine, variables in that voxel include temperature, pressure, and fuel load. Each voxel interacts with 6 or 14 neighboring ones.

When the spark plug fires, temperature and pressure alter in each voxel in a time-dependent manner. Different behavior takes place at the boundaries.

See http://www.youtube.com/watch?v=Hhc6xMOwjKQ.

Or, each voxel in the simulation might be a cubic kilometer of air as part of a weather forecast.

Differential Equations

Systems of Equations

With this kind of numerical approximation/simulation it is not straightforward to check answers and obtain tangible evidence of convergence. Absurd behavior might be noted, but incorrect-plausible behavior may not.

Nor are aggregative addition techniques possible to avoid the risks of adding small numbers to large when the stepsize Δt is made very small. The tension on step size is real.

These are important techniques, but you need to be careful with them.

Systems of Equations

Given

$$A = \begin{bmatrix} a_{0,0} & a_{0,1} & a_{0,2} & \cdots & a_{0,n-1} \\ a_{1,0} & a_{1,1} & a_{1,2} & \cdots & a_{1,n-1} \\ a_{2,0} & a_{2,1} & a_{2,2} & \cdots & a_{2,n-1} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ a_{n-1,0} & a_{n-1,1} & a_{n-1,2} & \cdots & a_{n-1,n-1} \end{bmatrix}$$

and

$$B^T = [b_0 \quad b_1 \quad b_2 \quad \cdots \quad b_{n-1}]$$

Find a solution *n*-vector X such that AX = B.

Systems of Equations

For example, with n = 3,

$$2x_1 + 3x_2 = 1$$
$$3x_0 + 5x_1 + 6x_2 = 2$$
$$9x_0 + 2x_1 + 3x_2 = 3$$

is there a solution $X = \begin{bmatrix} x_0 & x_1 & x_2 \end{bmatrix}$?

One method: find A^{-1} , and then $X = A^{-1}AX = A^{-1}B$.

But same question, really.

Systems o Equations

Form the augmented $n \times (n+1)$ matrix from A and B:

$$\begin{bmatrix} a_{0,0} & a_{0,1} & a_{0,2} & \cdots & a_{0,n-1} & | & b_0 \\ a_{1,0} & a_{1,1} & a_{1,2} & \cdots & a_{1,n-1} & | & b_1 \\ a_{2,0} & a_{2,1} & a_{2,2} & \cdots & a_{2,n-1} & | & b_2 \\ \cdots & \cdots & \cdots & \cdots & | & \cdots \\ a_{n-1,0} & a_{n-1,1} & a_{n-1,2} & \cdots & a_{n-1,n-1} & | & b_{n-1} \end{bmatrix}$$

Then eliminate x_0 from the equations $1 \le i < n$, by multiplying row 0 by $-a_{i,0}/a_{0,0}$ and adding to row i.

Systems of Equations

Doing so yields:

$$\begin{bmatrix} a_{0,0} & a_{0,1} & a_{0,2} & \cdots & a_{0,n-1} & | & b_0 \\ 0 & a'_{1,1} & a'_{1,2} & \cdots & a'_{1,n-1} & | & b'_1 \\ 0 & a'_{2,1} & a'_{2,2} & \cdots & a'_{2,n-1} & | & b'_2 \\ \cdots & \cdots & \cdots & \cdots & \cdots & | & \cdots \\ 0 & a'_{n-1,1} & a'_{n-1,2} & \cdots & a'_{n-1,n-1} & | & b'_{n-1} \end{bmatrix}$$

Repeat, now eliminating x_1 from the equations $2 \le i < n$.

Systems of Equations

The second step gives:

$$\begin{bmatrix} a_{0,0} & a_{0,1} & a_{0,2} & \cdots & a_{0,n-1} & | & b_0 \\ 0 & a'_{1,1} & a'_{1,2} & \cdots & a'_{1,n-1} & | & b'_1 \\ 0 & 0 & a''_{2,2} & \cdots & a''_{2,n-1} & | & b''_2 \\ \cdots & \cdots & \cdots & \cdots & | & \cdots \\ 0 & 0 & a''_{n-1,2} & \cdots & a''_{n-1,n-1} & | & b''_{n-1} \end{bmatrix}$$

In total repeat n-1 times. . .

And get:

$$\begin{bmatrix} a_{0,0} & a_{0,1} & a_{0,2} & \cdots & a_{0,n-1} & | & b_0 \\ 0 & a'_{1,1} & a'_{1,2} & \cdots & a'_{1,n-1} & | & b'_1 \\ 0 & 0 & a''_{2,2} & \cdots & a''_{2,n-1} & | & b''_2 \\ \cdots & \cdots & \cdots & \cdots & | & \cdots \\ 0 & 0 & 0 & \cdots & a_{n-1,n-1}^{(n-1)} & | & b_{n-1}^{(n-1)} \end{bmatrix}$$

Can now solve row n-1:

$$x_{n-1} = \frac{b_{n-1}^{(n-1)}}{a_{n-1,n-1}^{(n-1)}}.$$

Systems of Equations

Systems o Equations

Then back substitute into row n-2:

$$x_{n-2} = \frac{b_{n-2}^{(n-2)} - a_{n-2,n-1}^{(n-2)} \cdot x_{n-1}}{a_{n-2,n-2}^{(n-2)}}.$$

and so on, until

$$x_0 = \frac{b_0 - \sum_{i=1}^{n-1} a_{0,i} x_i}{a_{0,0}}$$

can be calculated from row 0.

Differential

Systems of

Requires that $a_{i,i}^{(i)}$ be non-zero at the *i*th step.

If not, interchange rows to make it non-zero.

For numerical stability, should swap rows anyway, so that the next pivot element is always that largest (magnitude) available in that column.

Gaussian elimination

Differential Equations

Systems of Equations

If all possible pivots in column are zero, then equations do not have a single solution. Might be no solution, or an infinite number of solutions.

Gaussian elimination is reasonably straightforward to implement, but for large matrices significant volume of arithmetic required – the number of additive operations grows as n^3 .

Gaussian elimination – Example

oifferential equations

Systems o Equations

```
Start:
```

Swap rows to get largest available pivot in column 0:

```
    9.000
    2.000
    3.000
    |
    3.000

    3.000
    5.000
    6.000
    |
    2.000

    0.000
    2.000
    3.000
    |
    1.000
```

Gaussian elimination – Example

Differential Equations

Systems of Equations

Eliminate below pivot in column 0:

Chose second pivot, eliminate below it:

```
    9.000
    2.000
    3.000
    |
    3.000

    0.000
    4.333
    5.000
    |
    1.000

    0.000
    0.000
    0.692
    |
    0.538
```

Systems of Equations

$$x_2 = \frac{0.538}{0.692} = 0.778$$

and hence

$$x_1 = \frac{1.000 - (5.000 \times 0.778)}{4.333} = -0.667$$

and hence

$$x_0 = \frac{3.000 - (2.000 \times -0.667) - (3.000 \times 0.778)}{9.000} = 0.222$$

Gaussian elimination – Example

Differential Equations

Systems of Equations

Check!

$$0 \times 0.222 - 2 \times 0.667 + 3 \times 0.778 = 1.000$$

 $3 \times 0.222 - 5 \times 0.667 + 6 \times 0.778 = 1.999$
 $9 \times 0.222 - 2 \times 0.667 + 3 \times 0.778 = 2.998$

Systems of Equations

Seek to find a decomposition

$$A = LU$$

where L is lower triangular and U is upper triangular with 1's on the diagonal. Then solve

$$LR = B$$

for *n*-vector *R* by forward substitution; then solve

$$UX = R$$

for the required n-vector X by back substitution.

ystems of guations

$$\begin{bmatrix} a_{0,0} & a_{0,1} & a_{0,2} & a_{0,3} \\ a_{1,0} & a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,0} & a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,0} & a_{3,1} & a_{3,2} & a_{3,3} \end{bmatrix} =$$

$$\begin{bmatrix} \ell_{0,0} & 0 & 0 & 0 \\ \ell_{1,0} & \ell_{1,1} & 0 & 0 \\ \ell_{2,0} & \ell_{2,1} & \ell_{2,2} & 0 \\ \ell_{3,0} & \ell_{3,1} & \ell_{3,2} & \ell_{3,3} \end{bmatrix} \times \begin{bmatrix} 1 & u_{0,1} & u_{0,2} & u_{0,3} \\ 0 & 1 & u_{1,2} & u_{1,3} \\ 0 & 0 & 1 & u_{2,3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

By considering $L \times U_0$, it is clear that first column of L is first column of A.

LU decomposition – Example

Differential Equations

Systems of Equations

$$\begin{bmatrix} a_{0,0} & a_{0,1} & a_{0,2} & a_{0,3} \\ a_{1,0} & a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,0} & a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,0} & a_{3,1} & a_{3,2} & a_{3,3} \end{bmatrix} =$$

$$\begin{bmatrix} a_{0,0} & 0 & 0 & 0 \\ a_{1,0} & \ell_{1,1} & 0 & 0 \\ a_{2,0} & \ell_{2,1} & \ell_{2,2} & 0 \\ a_{3,0} & \ell_{3,1} & \ell_{3,2} & \ell_{3,3} \end{bmatrix} \times \begin{bmatrix} 1 & u_{0,1} & u_{0,2} & u_{0,3} \\ 0 & 1 & u_{1,2} & u_{1,3} \\ 0 & 0 & 1 & u_{2,3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Now consider $L_0 \times U$: must have $u_{0,1} = (a_{0,1}/\ell_{0,0})$, $u_{0,2} = (a_{0,2}/\ell_{0,0})$, and $u_{0,3} = (a_{0,3}/\ell_{0,0})$.

ystems of quations

$$\begin{bmatrix} a_{0,0} & a_{0,1} & a_{0,2} & a_{0,3} \\ a_{1,0} & a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,0} & a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,0} & a_{3,1} & a_{3,2} & a_{3,3} \end{bmatrix} =$$

$$\begin{bmatrix} a_{0,0} & 0 & 0 & 0 \\ a_{1,0} & \ell_{1,1} & 0 & 0 \\ a_{2,0} & \ell_{2,1} & \ell_{2,2} & 0 \\ a_{3,0} & \ell_{3,1} & \ell_{3,2} & \ell_{3,3} \end{bmatrix} \times \begin{bmatrix} 1 & \frac{a_{0,1}}{\ell_{0,0}} & \frac{a_{0,2}}{\ell_{0,0}} & \frac{a_{0,3}}{\ell_{0,0}} \\ 0 & 1 & u_{1,2} & u_{1,3} \\ 0 & 0 & 1 & u_{2,3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

And switch back to the next column of L for the next group of substitutions. And so on.

Systems o Equations

If $a_{0,0} = 0$ right at the beginning, have a problem.

More generally, compute

$$PA = LU$$

where P is an $n \times n$ permutation matrix (one 1 in each row and column, other entries all 0) that reorders the rows to ensure that $a_{0,0}$ is not zero, and that subsequent zero divisions are also avoided.

LUP decomposition

Differential Equations

Systems o Equations

The computation on A is mathematically the same as Gaussian elimination. But the operation sequence is more likely to be numerically stable.

In addition, can now be thought of as two stages, pre-processing to get P, L, and U; and then application to a vector B.

Each vector B can be dealt with by forwards and then backwards substitution in kn^2 arithmetic steps, without completely re-solving.

Systems o Equations

Want to find A^{-1} so that $AA^{-1} = I$, where $I = [I_0, I_1, \dots, I_{n-1}]$ is the identity matrix.

First, factor PA = LU.

Then using the factorization, find the columns of A^{-1} by solving n sets of equations:

$$A(A_k^{-1}) = I_k.$$

As for roots of single variable equations, iterative methods can sometimes be employed.

Suppose that A = M + N where M is lower triangular and N is strictly upper triangular:

$$A = \begin{bmatrix} 9 & 4 & 1 \\ 1 & 6 & 0 \\ 1 & -2 & -6 \end{bmatrix} = \begin{bmatrix} 9 & 0 & 0 \\ 1 & 6 & 0 \\ 1 & -2 & -6 \end{bmatrix} + \begin{bmatrix} 0 & 4 & 1 \\ 0 & 0 & -6 \\ 0 & 0 & 0 \end{bmatrix}$$

Can now rearrange AX = B as MX = B - NX, or

$$X = M^{-1}(B - NX).$$

Systems of Equations

Both M and N can be processed by substitution, and the iteration can be re-written as:

$$x_i^{(k+1)} = \frac{1}{a_{i,i}} \left(b_i - \sum_{j=i+1}^{n-1} a_{i,j} x_j^{(k)} - \sum_{j=0}^{i-1} a_{i,j} x_j^{(k+1)} \right)$$

for $0 \le i < n$, and with k increasing until either convergence or divergence is apparent.

Example:

$$\begin{bmatrix} 9 & 4 & 1 \\ 1 & 6 & 0 \\ 1 & -2 & -6 \end{bmatrix} \cdot X = \begin{bmatrix} -17 \\ 4 \\ 14 \end{bmatrix}$$

Iterating gives:

$$X^{(0)} = [0.000, 0.000, 0.000]$$

 $X^{(1)} = [-1.988, 0.981, -2.975]$
 $X^{(2)} = [-1.995, 0.999, -2.999]$
 $X^{(3)} = [-2.000, 1.000, -3.000]$
 $X^{(4)} = [-2.000, 1.000, -3.000]$

Differential Equations

Systems o Equations

Systems of Equations

Check:

$$9 \times -2 + 4 \times 1 + 1 \times -3 = -17$$

 $1 \times -2 + 6 \times 1 + 0 \times -3 = 4$
 $1 \times -2 - 2 \times 1 - 3 \times -3 = 14$

But note, only converges under defined conditions.