Kösystem 31 maj 2021

Otillåtna hjälpmedel: andra personer (utom möjligtvis för att servera kaffe eller så...). Det betyder att man bland annat får använda Erlang-kalkylatorn på kursens Canvassida och Python eller Matlab för att till exempel lösa ekvationssystem.

Varje uppgift ger maximalt 10 poäng. 30 poäng eller mer är godkänt. Alla svar måste motiveras.

Uppgift 1

En server modelleras som ett M/M/2-system med två buffertplatser och två betjänare. Ankomstintensiteten är 10 per sekund och betjäningsintensiteten är 5 per sekund.

- a) Rita tillståndsdiagram och bestäm tillståndssannolikheterna.
- b) Hur lång tid tillbringar i medeltal en kund som inte spärras i kösystemet?
- c) Hur stor andel av tiden (i procent) är bägge betjänarna upptagna samtidigt?
- d) Hur många kunder spärras per sekund i medeltal?
- e) En busy period är tiden från det att en kund kommer till ett tomt system tills systemet blir tomt igen. Vad är medellängden av en busy period för detta kösystem?

Uppgift 2

Ett upptagetsystem har fem betjänare, betjäningstiden är exponentialfördelad med medelvärde 2 minuter. Ankomsterna är en poissonprocess med intensiteten 3 per minut.

- a) Vad är spärrsannolikheten?
- b) Hur många betjänare måste systemet minst ha om spärrsannolikheten ska vara mindre än 0,01? Ankomstintensiteten och medelbetjäningstiden ändras inte.
- c) För att modellera en fördröjning kan man sätta antalet betjänare i vårt system till oändligheten. Om vi gör detta, kommer det då att vara stabilt? Motivera svaret!
- d) För systemet i c, beräkna sannolikheten att det innehåller minst två kunder.

Uppgift 3

Ett kösystem har en buffertplats och två betjänare. Det finns fyra användare av systemet. En användare som inte har ett jobb i kösystemet skickar ett jobb till kösystemet med intensiteten 10 per sekund. Om en användare har ett jobb i kösystemet skickar den inte några jobb till det. Betjäningstiden är exponentialfördelad med intensiteten 10 per sekund.

- a) Rita ett tillståndsdiagram som beskriver kösystemet.
- b) Vad är spärrsannolikheten?
- c) Vad är medeltiden från det att en användare skickar ett jobb (som inte spärras) till kösystemet tills användaren får svar från kösystemet?
- d) Kösystemet blir tomt vid en viss tidpunkt. I medeltal, hur lång tid tar det innan kösystemet blir fullt igen? (Fullt = alla betjänarna upptagna och någon väntar i bufferten)

Uppgift 4

I könätet nedan är noderna kösystem med en betjänare och oändlig buffert. Betjäningstiderna är exponentialfördelade med intensiteterna som anges i bilden. Ankomsterna till könätet är en poissonprocess.

- a) Beräkna medelantal kunder i var och en av noderna.
- b) Vad blir medeltiden i könätet för en godtycklig kund?
- c) Beräkna medelvärdet av den totala betjäningstiden i könätet för en godtycklig kund.
- d) Ankomstintensiteten till könätet (det vill säga λ) ökar så mycket att nod 1 blir instabil. Vad blir då medelantal kunder i nod 2, nod 3 och nod 4?

Uppgift 5

Ett M/G/1-system har ankomstintensitet 10 per sekund. Betjäningstiden är likformigt fördelad mellan 0 och 0,16 sekunder.

- a) Vad är sannolikheten att betjänaren är upptagen?
- b) Hur lång tid tillbringar en kund i medeltal i systemet?
- c) Vad är medeltiden i kösystemet för en kund som anländer till kösystemet när det inte är tomt?

Uppgift 6

Ett könät består av två M/M/1-system (med oändliga buffertar), se figuren nedan. Könätet får inte rymma mer än två kunder, om en kund kommer till könätet och det redan finns två kunder i det så spärras kunden.

a) Definiera tillstånd och rita en markovkedja som beskriver könätet. Använd λ , μ_1 och μ_2 som intensiteter på bågarna.

I fortsättningen är $\lambda = \mu_1 = \mu_2 = 10 \text{ s}^{-1}$.

- b) Hur många kunder betjänas i medeltal per sekund av kösystem nummer 2?
- c) Hur lång tid tillbringar en kund som inte spärras i medeltid i könätet?
- d) Ankomstintensiteten blir mycket hög, det vill säga $\lambda \to \infty$. Vad blir då medeltiden i systemet för en kund som inte spärras?