PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Interrogación 2 MAT1203 - 27 de octubre

Esta prueba tiene 4 preguntas.

Decida si las siguientes afirmaciones son verdaderas o falsas. Si es verdadera, demuéstrela. Si es falsa dé un contraejemplo.

1. a) Sean A y B matrices de 2×2 . Si A y B son antisimétricas, entonces AB es antisimétrica.

Solución:

La afirmación es falsa.

Sea
$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
 y $B = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$, entonces $AB = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$.

A y B son antisimétricas, pero:

$$-(AB)^T = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] \neq AB.$$

b) Sea A una matriz cuadrada. Si $C(A) \subseteq \text{Nul}(A-I)$, entonces $A^2 = A$.

Solución:

La afirmación es verdadera.

Como $C(A) \subseteq \text{Nul}(A-I)$, entonces para todo $v \in C(A)$ se tiene que $v \in \text{Nul}(A-I)$.

En particular si v es una columna de A, se tiene que $v \in Nul(A - I)$.

Entonces $(A - I)v = \vec{0}$ para todo vector v columna de A.

Por definición de producto de matrices se tiene (A - I)A es la matriz nula.

Es decir $A^2 - A$ es la matriz nula, luego $A^2 = A$.

2. a) Sea L una matriz de 4×2 tal que $C(L) = \operatorname{Gen} \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\}$. Si $u \neq v$ son vectores tales que Lu = Lv, entonces u = v.

Solución:

La afirmación es verdadera.

Como L es de 4×2 su rango máximo es 2.

Como C(L) está generado por dos vectores L.I. (canónicos), entonces L es invectiva.

Por lo tanto si Lu = Lv se tiene que u = v.

b) Sea A una matriz de 2×2 . Si A - I es invertible, entonces A^2 es la matriz nula. Solución:

La afirmación es falsa.

Si
$$A=2I=\begin{bmatrix}2&0\\0&2\end{bmatrix}$$
, entonces $A-I=\begin{bmatrix}1&0\\0&1\end{bmatrix}$ que es invertible.
$$A^2=4I=\begin{bmatrix}4&0\\0&4\end{bmatrix}$$
 es distinta a la matriz nula.

3. a) Sea P una matriz tal que $P^2 = P$. Si R = 2P - I, entonces R es invertible.

Solución:

La afirmación es verdadera.

Tomando
$$R^2 = (2P - I)(2P - I) = 4P^2 - 2P - 2P + I$$
.

Pero
$$P^2 = P$$
, entonces $R^2 = 4P - 2P - 2P + I = I$.

Luego $R^2 = I$ y R es invertible. De hecho su inversa es R.

b) Sean A y B matrices de 2×2 . Si B es la matriz que resulta de sumarle a la segunda columna cinco veces la primera columna en la matriz A, entonces $\begin{bmatrix} 1 & 5 \\ 0 & 1 \end{bmatrix} B = A.$

Solución:

La afirmación es falsa.

Si
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, entonces $B = \begin{bmatrix} 1 & 0 + 5 \cdot 1 \\ 0 & 1 + 5 \cdot 0 \end{bmatrix} = \begin{bmatrix} 1 & 5 \\ 0 & 1 \end{bmatrix}$.

Luego
$$\begin{bmatrix} 1 & 5 \\ 0 & 1 \end{bmatrix} B = \begin{bmatrix} 1 & 10 \\ 0 & 1 \end{bmatrix} \neq A.$$

4. a) Sea
$$A = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ a_7 & a_8 & a_9 \end{bmatrix}$$
con $a_1, \dots, a_9 \in \mathbb{R}$.

Si las matrices $\begin{bmatrix} a_1 \end{bmatrix}$ y $\begin{bmatrix} a_1 & a_2 \\ a_4 & a_5 \end{bmatrix}$ son invertibles, entonces A admite A = LU.

Solución:

La afirmación es verdadera.

Como $[a_1]$ es invertible, entonces $a_1 \neq 0$ por lo tanto la primera fila de A no necesita ser intercambiada con ninguna fila para obtener U.

Además es posible hacer la operación elemental $F_2 \to F_2 - \frac{a_4}{a_1} F1$ y se obtiene:

$$\begin{bmatrix} a_1 & a_2 & a_3 \\ 0 & a_5 - \frac{a_4}{a_1} a_2 & a_6 - \frac{a_4}{a_1} a_3 \\ a_7 & a_8 & a_9 \end{bmatrix}.$$

Pero como $\begin{bmatrix} a_1 & a_2 \\ a_4 & a_5 \end{bmatrix}$ es invertible se tiene que $a_5 - \frac{a_4}{a_1}a_2$ es diatinto de cero, luego la segunda fila de A no necesita ser intercambiada con ninguna fila para obtener U.

Finalmente, como la fila 1 y la fila 2 no necesitan ser intercambiadas, entonces la fila 3 no necesita ser intercambiada para obtener U y la matriz A admite la descomposición A = LU.

b) Sea A una matriz de 3×3 que admite A = LU. Si $L = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix}$, entonces el primer elemento de la tercera fila de A es cero.

Solución:

La afirmación es verdadera.

Dado que $L=\begin{bmatrix}1&0&0\\0&1&0\\0&3&1\end{bmatrix}$, entonces para obtener U sólo se hizo la operación elemental $F_3\to F_3+(-2)F_2.$

Como U está en forma escalonada, la segunda fila no puede tener pivotes en la primera columna, luego el primer elemento de la segunda fila de A es cero.

Por lo tanto en la operación elemental $F_3 \to F_3 + (-2)F_2$, no fue alterado el primer elemento de la tercera fila y, de nuevo, como U está en forma escalonada, entonces ese elemento debe ser cero.