Explicit Lower Bounds on the Outage Probability of Integer Forcing over $N_r \times 2$ Channels

Elad Domanovitz

Joint work with Uri Erez

November 10th, 2017 ITW, Kaohsiung, Taiwan

Introduction

- Single-user Open-loop (infinite number of users) MIMO ($N_r \ge 2$) compound (worst-case) setup
- Integer-forcing as a practical scheme
- Upper and lower bounds of integer-forcing on outage probability
- Extension 1: Symmetric-rate (statistical) $N_r \times 2$ ($N_r \ge 2$) Rayleigh MAC with minimal feedback
- \bullet Extension 2: lower bound of symmetric-rate (statistical) 1×2 Rayleigh MAC with minimal feedback

Introduction

 The Single-User Multiple-Input Multiple-Output (MIMO) Gaussian channel has been the focus of extensive research

$$\mathbf{y}_c = \mathbf{H}_c \mathbf{x}_c + \mathbf{z}_c,$$

- ullet $\mathbf{x}_c \in \mathbb{C}^{N_t}$ is the channel input vector
- $oldsymbol{ iny} oldsymbol{ iny}_c \in \mathbb{C}^{N_r}$ is the channel output vector
- \mathbf{H}_c is an $N_r \times N_t$ complex channel matrix
 - → Fixed over entire block length
- $\mathbf{z}_c \sim \mathcal{CSCN}(0, \mathbf{I})$
- Power constraint: $\mathbb{E}(x_c^H x_c) \leq N_t \cdot \mathsf{SNR}$

Introduction

 The MIMO Gaussian broadcast channel has also been widely studied for well over a decade now:

$$\mathbf{y}_c^i = \mathbf{H}_c^i \mathbf{x}_c + \mathbf{z}_c^i$$

- Private (only) Messages vs. Common (only) Messages
 - ▶ Capacity is known for both scenarios √
 - Practical schemes?

 - * Common Message?
 - \implies Single user: SVD or QR+SIC
 - ⇒ Two users: Joint triangularization (Khina et al., '12)
 - \implies Moderate # of users: non-optimal extensions (Khina et al., '12)
 - ⇒ Infinite # of users (knowing only WI-MI): Approximate joint
 - triangularization is not very good \Longrightarrow The focus of this talk

Motivation for Compound MIMO Setting

- We're interested a scheme that is:
 - Practical
 - * Linear complexity in the block length
 - Uses off-the-shelf SISO codes
 - Has provable good performance guarantees
 - Universal: Is good for all channels with same WI-MI (compound channel setting), i.e., $\mathbf{H}_c \in \mathbb{H}(C_{\mathrm{WI}})$
- Universal ⇒ needs to deal with DoF mismatch

Candidate Scheme for Compound MIMO Setting: Integer Forcing

• Equalization scheme introduced by Zhan '14, et. al.

Idea: Decode linear combination of messages ⇒ Invert

Candidate Scheme for Compound MIMO Setting: Integer Forcing

- What is already known?
- Ordentlich & Erez '15: using algebraic space-time precoding
 - A linear Non-Vanishing Determinant (NVD) precoder achieves the mutual information up to a constant gap for any channel
 - Guaranteed gap to capacity is quite large
- D. '17: using random (Haar measure) precoded (space-only precoding)
 - Bound on the outage probability depends only on the gap-to-capacity and number of antennas
 - Empirical performance still much better than the bound

Can we obtain a lower bound?

Lower Bound on the Outage of Precoded IF

- How does IF behaves compared to ML?
- Simple bound
 - Consider same (random) precoded but (independent) Gaussian codebooks of equal rate
 - Since codebooks are independent can be viewed as MIMO MAC

MIMO MAC bound [Zhan et al. '14]

- Let \mathbf{H}_S denote the submatrix of $\mathbf{H}_{\text{eff}} = \mathbf{H}_c \mathbf{P}_c$ formed by taking the columns with indices in $S \subseteq \{1, 2, ..., N_t\}$
- For ML decoder, the maximal achievable symmetric rate

$$C_{\text{sym}} = \min_{S \subseteq \{1, 2, \dots, N_t\}} \frac{N_t}{|S|} \log \det \left(\mathbf{I}_{N_r} + \mathbf{H}_S \mathbf{H}_S^H \right)$$

Explicit Expressions for $N_r \times 2$

Theorem 2 (new converse)

For a randomly precoded $N_r \times 2$ compound MIMO channel with white-input mutual information C and $N_r \ge 2$, we have

$$P_{
m out,C_{
m sym}}^{
m WC}(C,\Delta C) = 1 - \sqrt{1 - 2^{-\Delta C}} pprox rac{1}{2} 2^{-\Delta C}$$

Theorem 1 (achievable) - D. '17

For any $N_r \times 2$ complex channel \mathbf{H}_c with white-input mutual information C>1, i.e., $\mathbf{D}\in \mathbb{D}(C)$, and for randomly precoded \mathbf{P}_c (which induces a real-valued precoding matrix \mathbf{P}), we have

$$P_{ ext{out,IF-SIC}}^{ ext{WC}}(C, \Delta C) \le 81\pi^2 2^{-\Delta C},$$

for $\Delta C > 1$

Same exponent, very different constant

Lower and upper bounds for $N_r \times 2$ MIMO channel

Figure: Theorem 1 and Theorem 2 for $N_r \times 2$ MIMO channels $(N_r \ge 2)$ with mutual information C = 14.

Sketch Of Proof

• For $N_r \times 2$ the SVD of the precoded channel

$$\mathbf{H}_{\mathrm{eff}} = \mathbf{H}_{c} \mathbf{P}_{c} = \mathbf{U}_{c} \begin{bmatrix} \sqrt{\rho_{1}} & 0 & 0 & \cdots & 0 \\ 0 & \sqrt{\rho_{2}} & 0 & \cdots & 0 \end{bmatrix}^{H} \mathbf{V}_{c}^{H} \mathbf{P}_{c},$$

- \mathbf{P}_c is drawn from the CUE (Haar measure) $\Longrightarrow \mathbf{V}_c^H \mathbf{P}_C$ has same probability as \mathbf{P}_c
- Taking k columns from $\mathbf{H}_c \mathbf{P}_c$ equals to multiplying \mathbf{H}_c with k columns of \mathbf{P}_c
- For $N_r \times 2$, $C_{\text{sym}} = \min(C(\{1\}), C(\{2\}), C)$

$$C(\{1\}) = 2 \log \left(1 + \begin{bmatrix} \mathbf{P}_{1,1} \\ \mathbf{P}_{2,1} \end{bmatrix}^H \begin{bmatrix} \rho_1 & \mathbf{0} \\ \mathbf{0} & \rho_2 \end{bmatrix} \begin{bmatrix} \mathbf{P}_{1,1} \\ \mathbf{P}_{2,1} \end{bmatrix} \right)$$

$$= 2 \log \left(1 + \rho_1 \mathbf{P}_{1,1}^H \mathbf{P}_{1,1} + \rho_2 \mathbf{P}_{2,1}^H \mathbf{P}_{2,1} \right)$$

Sketch Of Proof

- $\mathbf{P}_{1,1}$ and $\mathbf{P}_{2,1}$ form a vector in a unitary matrix \Longrightarrow $\mathbf{P}_{1,1}^H \mathbf{P}_{1,1} + \mathbf{P}_{2,1}^H \mathbf{P}_{2,1} = 1$
- $\Pr\left(C(\{1\}) < R | C\right) = \Pr\left(|\mathbf{P}_{1,1}|^2 < \frac{2^{R/2} 1 \rho_2}{\rho_1 \rho_2}\right)$
- Narula et al. '09 squared norm of an entry in 2×2 unitary matrix drawn from the CUE is uniformly distributed over [0,1]
- Recall $\rho_1 = \frac{2^{\mathcal{C}}}{1+\rho_2} 1$ we have

(*)
$$\Pr\left(C(\{1\}) < R\right) | C\right) = \frac{2^{R/2} - 1 - \rho_2}{\frac{2^C}{1 + \rho_2} - 1 - \rho_2}$$

- By symmetry $\Pr(C(\{2\}) < R)) = \Pr(C(\{1\}) < R))$
- We show that the events $\{C(\{1\}) < R\}$ and $\{C(\{2\}) < R\}$ are disjoint

Sketch Of Proof

We thus have

$$P_{\text{out,C}_{\text{sym}}}^{\text{WC}}(C,R) = \max_{0 \le \rho_2 \le 2^{C/2} - 1} 2 \cdot \frac{2^{R/2} - 1 - \rho_2}{\frac{2^C}{1 + \rho_2} - 1 - \rho_2}.$$

• The derivative of the expression that is maximized with respect to ρ_2 is zero for (and only for)

$$\rho_2^* = 2^{-R/2-1} \left(2^{C+1} - 2^{R/2+1} - 2\sqrt{2^{2C} - 2^{C+R}} \right),$$

We get

$$P_{\mathrm{out,C_{\mathrm{sym}}}}^{\mathrm{WC}}(\mathit{C},\Delta\mathit{C}) = 1 - \sqrt{1 - 2^{-\Delta\mathit{C}}}.$$

Performance Extensions

- Explicit expression can be calculated for $N_r \times 2$ when **random** space-time precoding is applied
- This extension relies on the fact that the singular values of a sub-matrix of a unitary matrix have Jacobi distribution

Setup Extensions

We stick to $N_t = 2$

What is so special about i.i.d. Rayleigh fading?

- Yes, it's widely used, but this is not the point...
- What is crucial for our purposes is that the precoding matrix P is built into the ensemble:
 - \vdash $H = U\Sigma V^H$
 - \triangleright Edelman & Rao '04 both **U** and **V** belong to the CUE (Haar measure)
- Symmetric rate Rayleigh MAC $N_r \times 2$:
 - What changes?
 - Now we don't minimize over worst case (ρ_1, ρ_2) pair, rather needs to take the expectation
- Symmetric rate Rayleigh MAC 1×2 :
 - All that is left from the Rayleigh statistics (given the capacity) is the random matrix **P**

Rayleigh MAC with Symmetric Rates

• MAC:
$$y = \sum_{i=1}^{N_t} h_i x_i + z$$

Rayleigh MAC with Symmetric Rates

• MAC:
$$y = \sum_{i=1}^{N_t} h_i x_i + z$$

- CSI at Rx
- Equal average transmission power per antenna: P = 1
- $z \sim \mathcal{CN}(0,1)$
- $h_i \sim \sqrt{\text{SNR}} \cdot \mathcal{CN}(0,1)$ and i.i.d.

Rayleigh MAC with Symmetric Rates

- ullet Capacity region: $\sum_{i\in\mathcal{S}}R_i\leq \log\left(1+\sum_{i\in\mathcal{S}}|h_i|^2
 ight)$ for all $\mathcal{S}\subseteq\{1,2,\ldots,N_t\}$
- Symmetric-rate capacity: $C_{\text{sym}} = \min_{S \subseteq \{1,2,...,N_t\}} \frac{N_t}{|S|} \log \left(1 + \sum_{i \in S} |h_i|^2\right)$
- Sum-capacity $C_{\text{sum}} = \log \left(1 + \sum_{i=1}^{N_t} |h_i|^2 \right)$

Simple MAC Transmission Protocol

Theorem 3

For a 1×2 Rayleigh MAC with sum capacity C_{sum} :

$$\Pr(C_{\text{sym}} < R | C_{\text{sum}}) = 2 \cdot \frac{2^{R/2} - 1}{2^{C_{\text{sum}}} - 1}; \ 0 \le R \le C_{\text{sum}}$$

The chance of achieving C_{sum} can be calculated. For example:

$$\Pr(C_{\text{sym}} = C_{\text{sum}} | C_{\text{sum}} = 2) = 1 - 2 \cdot \frac{2^{2/2} - 1}{2^2 - 1} = \frac{1}{3}$$

Simple MAC Transmission Protocol

Proof Follows Derivation of Theorem 2

- Note that in the SVD we have single singular value
- Recall

(*)
$$\Pr\left(C(\{1\}) < R\right) = \frac{2^{R/2} - 1 - \rho_2}{\frac{2^C}{1 + \rho_2} - 1 - \rho_2}$$

• Substitute $\rho_2 = 0$ in (*) gives the theorem

1×2 Rayleigh MAC with Symmetric Rates

What about a practical scheme?

• We would like a scheme for which the outage behaves as Theorem 3:

$$-\log\left(\Pr(\mathcal{C}_{ ext{sym}} < R | \mathcal{C}_{ ext{sum}})\right) pprox -\log\left(2 \cdot rac{2^{R/2}-1}{2^{\mathcal{C}_{ ext{sum}}}-1}\right)$$
 $pprox -\log\left(2 \cdot 2^{-(\mathcal{C}_{ ext{sum}}-R/2)}\right) \; ext{(for } 2^{R/2} \gg 1)$
 $pprox \left(\mathcal{C}_{ ext{sum}} - R/2\right)$

• Recall that for $N_r \times 2$ $(N_r \ge 2)$, we had:

$$-\log\left(\Pr(C_{ ext{sym}} < R | C_{ ext{sum}})\right) pprox (C_{ ext{sum}} - R)$$

 \Longrightarrow for 1×2 ML behavior is now changed

Does integer-forcing still get the job done?

1×2 Rayleigh MAC with Symmetric Rates

Does the achievable rate (of IF) have (qualitatively) the same (improved) behaviour?

Figure: ML vs. IF for 1×2 channel with $C_{\mathrm{sum}} = 10$

1×2 Rayleigh MAC with Symmetric Rates

Is there a problem with IF?

Remember the MAC-DMT moral...

Summary and Outlook

Summary

- Explicit lower bounds on integer-forcing outage probability
 - ► Compound (worst-case) single user $N_r \times 2$ ($N_r \ge 2$)
 - Rayleigh MAC $N_r \times 2$ ($N_r \ge 2$) path to analysis
 - ▶ Rayleigh MAC 1 × 2

Outlook

- Rayleigh MAC $N_r \times 2$ ($N_r \ge 2$) derive explicit expressions
- Rayleigh MAC 1×2
 - Can IF performance be improved (to match ML behaviour)?
 - ▶ We believe it can (lessons from MAC-DMT...)
- What about $N_t > 2$?
 - Same principles are applicable?
- Stay tuned...

Thanks for your attention!