

Fundamentos Estatísticos para Análise Estática de Instrumentos – Parte 2

Prof. Jean Tavares

SUMÁRIO

- Introdução
- Características Estáticas de Instrumentos
 - Sensibilidade;
 - Resolução;
 - Incerteza
 - Linearidade estática;
 - Limiar;
 - Histerese.
- Calibração de Instrumentos

Introdução

Caracterização Estática de Instrumentos:

- Desempenho em estado estacionário
- Estabelece relação entre a Grandeza a ser Medida e o Sinal de Saída do Sensor
- É preciso definir as características de instrumentos que sirvam para descrever suas propriedades fundamentais, para satisfazer as especificações de uma determinada aplicação.

Introdução Exemplo: LM35

LM35

SNIS159G - AUGUST 1999-REVISED AUGUST 2016

LM35 Precision Centigrade Temperature Sensors

1 Features

- · Calibrated Directly in Celsius (Centigrade)
- Linear + 10-mV/°C Scale Factor
- 0.5°C Ensured Accuracy (at 25°C)
- Rated for Full -55°C to 150°C Range
- Suitable for Remote Applications
- Low-Cost Due to Wafer-Level Trimming
- Operates from 4 ∨ to 30 ∨
- Less than 60-μA Current Drain
- Low Self-Heating, 0.08°C in Still Air
- Non-Linearity Only ±¼°C Typical
- Low-Impedance Output, 0.1 Ω for 1-mA Load

3 Description

The LM35 series are precision integrated-circuit temperature devices with an output voltage linearly-proportional to the Centigrade temperature. The

LM35 device has a temperature sensors calls not required to subtifrom the output to oscaling. The LM35 directernal calibration or accuracies of ±½°C at over a full -55°C to 150 cost is assured by tring wafer level. The low-ou and precise inherent campakes interfacing to

Figure 8. Accuracy vs Temperature (Ensured)

Características Estáticas Sensibilidade

• A sensibilidade Se de um instrumento é a variação do valor da saída em estado estacionário q_o provocado por uma variação da variável da entrada q_i , também em estado estacionário.

$$Se = q_o / q_i$$

Se independente de $q_i \rightarrow$ Comportamento Estático Linear Se dependente de $q_i \rightarrow$ Comportamento Estático Não Linear

Características Estáticas Sensibilidade

$$S_e(q_i) = \frac{dq_o}{dq_i} = \lim_{\Delta q_i \to 0} \frac{\Delta q_o}{\Delta q_i}$$

Entradas de INTERFERÊNCIA e MODIFICADORAS (EI, EM) alteram a sensibilidade S_e

Características Estáticas Sensibilidade - Exemplo

EXEMPLO: SM de PRESSÃO

Entrada:
$$P_o$$
Saída: y
$$S_e = \frac{y}{P_o} = \frac{a}{b \ K \ A} \longrightarrow \text{Independe de } P_o$$

INFLUÊNCIA da variação da TEMPERATURA AMBIENTE:

DERIVA do ZERO:

Com $P_o = 0$: ΔT provoca dilatação da escala, da alavanca, da mola, gerando a saída $y \neq 0$

MUDANÇA da SENSIBILIDADE

ΔT provoca dilatação da escala, da alavanca, da mola, gerando ΔS_e ≠ 0

Características Estáticas Sensibilidade - Exemplo

ENSAIO 1: Manter $P_o = 0$ e variar a temperatura T dentro da faixa de temperaturas ambientes $[T_{max}, T_{min}]$ previstas para uso do SM.

Os ensaios feitos em CÂMARA de temperatura CONTROLADA.

- Dividir a escala (y) de acordo com a variação acima.
- Aplicar algoritmo de correção da medida (y) em função de T

Características Estáticas Sensibilidade - Exemplo

ENSAIO 2: para cada valor de P_o na faixa $[P_{max}, P_{min}]$ variar a temperatura T dentro da faixa de uso do SM $[T_{max}, T_{min}]$

Os ensaios são realizados, para cada valor de ${f P}_{\rm o}$, em uma câmara de temperatura controlada.

Resultam \rightarrow FAMÍLIAS de curvas $y(T) = S_e(T) \cdot P_o(T) \rightarrow S_e(T)$

A sensibilidade NOMINAL pode ser estimada estatisticamente com o intervalo de confiança especificado para o SM.

Características Estáticas Fundo de Escala e Resolução

- FAIXA DE OPERAÇÃO (RANGE): Intervalo da entrada definido por [q_{imin}, q_{imax}] para o qual o SM mantém suas ESPECIFICAÇÕES de funcionamento (sensibilidade estática, linearidade, incertezas, etc). Se o módulo dos limites do RANGE são IGUAIS eles são denominados FUNDO DE ESCALA (± FS)
- **RESOLUÇÃO**: menor variação de **q**_i que pode ser OBSERVADA em **q**_o.
- Um SM ANALÓGICO tem teoricamente RESOLUÇÃO ZERO. Porém, interferências (atritos, folgas, induções eletromagnéticas, etc.)
 DEGRADAM sua resolução.
- Um SM DIGITAL tem resolução FINITA correspondente ao menor INCREMENTO DIGITAL que pode ser observado em q_o.

Características Estáticas Fundo de Escala e Resolução

O Arduino, por exemplo, trabalha com 10 bits. Nesse caso, as entradas tem resolução de 1/2¹⁰

Se o sensor de temperatura avalia uma faixa de operação de 0 a 100°C, qual a variação de entrada mínima para obter uma alteração da temperatura do sensor?

Características Estáticas Fundo de Escala e Resolução

O Arduino, por exemplo, trabalha com 10 bits. Nesse caso, as entradas tem resolução de 1/2¹⁰

Se o sensor de temperatura avalia uma faixa de operação de 0 a 100°C, qual a variação de entrada mínima para obter uma alteração da temperatura do sensor?

$$100 - 1024 = x = 100/1024 = 0.097$$
°C

Características Estáticas Faixa Linear

- FAIXA LINEAR: SUBINTERVALO da faixa de operação na qual \mathbf{q}_o = S_e \mathbf{q}_i , com S_e ADMITIDA CONSTANTE = S_e nominal, dentro de uma TOLERÂNCIA especificada para o SM.

Faixa A: $S_e = S_e$ nominal

From NULO

Faixa B: $S_e \neq S_e$ nominal

→ Erro limitado a ± ∆S_a

Características Estáticas Não Linearidade Terminal

- NÃO LINEARIDADE TERMINAL: Incerteza MÁXIMA calculada na faixa de operação da SM. Construir a reta (a) e reta (b) // (a) e TANGENTE à curva de resposta do SM, passando pelo ponto que resulta o máximo △.

S_e é determinada pela inclinação da reta (a)

A INCERTEZA devida à NÃO LINEARIDADE é Δ.

Características Estáticas Não Linearidade Relativa

 NÃO LINEARIDADE RELATIVA À RETA DE REGRESSÃO: Incerteza MÁXIMA calculada na faixa de operação da SM. Construir as retas (a) e (b) paralelas à reta de REGRESSÃO obtida a partir das medições de q_i e q_o, passando pelos pontos que resultam o MÁXIMO Δ.

S_e nominal é determinada pela inclinação da RETA DE REGRESSÃO

A **INCERTEZA** devida à NÃO LINEARIDADE é Δ.

Características Estáticas Incerteza: Valor Entrada

Porcentagem do Fundo de ESCALA: B% de FS

Porcentagem do VALOR da ENTRADA: A% de qi

Usa-se o valor da INCERTEZA que for MAIOR para cada valor de qi no RANGE do SM.

Alguns SM comerciais utilizam a especificação da incerteza por uma SUPERPOSIÇÃO dos dois critérios:

$$\Delta (q_i) = B\% FS \pm A\% q_i$$

Características Estáticas Resolução e Incerteza

- A RESOLUÇÃO do SM pode ter valores diferentes para cada nível da entrada → R = R(q_i). Esta característica é determinada em ensaios realizados fixando valores de q_i e aplicando variações Δq_i. O menor valor de Δq_i que gera Δq_o é a resolução.
- Alguns FABRICANTES fornecem o valor da RESOLUÇÃO expresso em Porcentagem do Fundo de Escala (%FS).

Exemplo: Célula de carga de FS = 500 N com resolução melhor que 1% de FS → a RESOLUÇÃO é igual a 5 N.

Características Estáticas Resolução e Incerteza

 - A INCERTEZA de um SM expressa os limites do intervalo de confiança (95%) para a medida indicada. O valor depende do Fundo de Escala e das características construtivas do SM.

Exemplo: VOLTÍMETRO HP 3456A de 6 DÍGITOS: para FS = 1 V INCERTEZA = \pm 0.0012% da leitura + 5 contagens (do LSD = sexto dígito) \rightarrow Até 1 V DC: I = 0.000012 V + 0.000005 = 0.000017 V.

Características Estáticas Limiar e Histerese

- LIMIAR (Threshold): Menor valor de q_i a partir do ZERO que pode ser detectado na saída do SM. Este é o valor da RESOLUÇÃO para q_i = 0
- HISTERESE: Diferença entre a saída \mathbf{q}_o do SM para cada entrada \mathbf{q}_i quando esta é atingida de forma CRESCENTE ou DECRESCENTE. Esta característica produz uma incerteza no valor de \mathbf{q}_o , sendo provocadas por deformações, atritos viscosos e secos, amortecimento interno ou propriedades elétricas e magnéticas dos componentes do SM.

Calibração Estática

Procedimento experimental para determinar a Função de Transferência efetiva do SM, comparando a medida q_o com o VALORES PADRÃO da entrada q_i . \rightarrow Os resultados obtidos permitem determinar S_e .

ESTA OPERAÇÃO É REALIZADA NAS SEGUINTES SITUAÇÕES:

- Quando um novo SM é projetado e construído.
- Em intervalos de tempo regulares para garantir que o SM está operando dentro de suas especificações. O intervalo de tempo entre Calibrações é estabelecido por Norma Técnica específica para cada categoria do SM, sendo em média igual a 1 ano.
- Para VERIFICAÇÃO de erros sistemáticos ou aleatórios ANTES de usar o SM num experimento.

Calibração Estática Método Direto

Usa PADRÕES da GRANDEZA FÍSICA como entradas no SM.

OS PADRÕES devem ter INCERTEZAS pelo menos <u>5 VEZES MENORES</u> que a desejada para o SM.

Calibração Estática Método Indireto

Usa um SISTEMA de MEDIÇÃO PADRÃO (SMP) cujas saídas são comparadas com as do SM a ser calibrado para o MESMO valor de q_i aplicado SIMULTANEAMENTE às duas entradas.

O SMP deve ter INCERTEZAS pelo menos <u>5 VEZES MENORES</u> que a desejada para o SM.

Calibração Estática Procedimentos Gerais

- ESPAÇAMENTO ENTRE AS MEDIDAS: Caso o SM tenha comportamento LINEAR, o intervalo de entrada (± FS) deve ser dividido em SUBINTERVALOS IGUAIS. O NÚMERO de subintervalos é determinado por um critério estatístico (mínimo de 10). Caso o comportamento seja NÃO LINEAR o tamanho dos subintervalos pode ser VARIÁVEL, sendo MENOR na faixa em que o gradiente (dq_o/dq_i) é elevado.
- NÚMERO DE MEDIDAS POR ENTRADA (q_i): O número de experimentos deve ser definido em função da característica estatística dos dados para determinar o INTERVALO de CONFIANÇA com o nível de probabilidade desejado (a confiança deve ser a mesma para todos o níveis de entrada: 95% é usual).
- HISTERESE: as entradas q_i são aplicadas de forma CRESCENTE e DECRESCENTE e são medias as saídas q_o para os dois casos.
- RESOLUÇÃO e LIMIAR: para cada valor de q_i determinar o menor valor de q_i capaz de produzir variação em q_o. Estes ensaios devem ser realizados após a obtenção da função de transferência do SM.

Calibração Estática Etapas:

- DEFINIÇÃO DOS OBJETIVOS: teste de funcionamento, tipo de ensaios experimentais a serem realizados em função do tipo de SM, normas técnicas aplicáveis.
- IDENTIFICAÇÃO DO SM: características metrológicas, princípio de funcionamento, módulos e componentes constitutivos, estado de conservação, condições ambientais de operação. (usar informações técnicas do fabricante e do usuário)
- SELEÇÃO DOS PADRÕES: as incertezas máximas admissíveis nos padrões (da grandeza física ou SMP) devem ser pelo menos 5 vezes menores que a desejada para o SM a ser calibrado.
- PREPARAÇÃO DO EXPERIMENTO: planejamento de cada ensaio, definição do fundo de escala para q_i, construção e montagem de dispositivos auxiliares, definição da forma de aquisição e de armazenamento dos dados.
- EXECUÇÃO DO ENSAIO: controle dos fatores de interferência, identificação de anomalias durante os ensaios e a aquisição dos dados.
- PROCESSAMENTO E ANÁLISE DOS RESULTADOS: gerar informações técnicas sobre o SM na forma de TABELAS, GRÁFICOS e OBSERVAÇÕES.
- RELATÓRIO TÉCNICO; memorial descritivo dos procedimentos experimentais, Normas técnicas utilizadas e RESULTADOS DA CALIBRAÇÃO.

CALIBRAÇÃO ESTÁTICA DE UMA CÉLULA DE CARGA KRATOS

PROCEDIMENTOS

- 1. Tipos de ensaios: COMPRESSÃO e TRAÇÃO em CARGA e DESCARGA
- Seleção das MASSAS PADRÃO [kg] (incerteza ± 1 grama)
- Para o ensaio de compressão: mc = [0.996 1.982 3.962 6.480 11.442 16.478]
- Para o ensaio de tração: mt = [0.594 1.578 2.564 4.544 7.062 12.024 17.060]

CALIBRAÇÃO ESTÁTICA DE UMA CÉLULA DE CARGA KRATOS MÉTODO DIRETO

3. Procedimentos e Dispositivos para os ensaios:

 Os ensaios serão realizados com ADIÇÃO e RETIRADA das MASSAS.

Os vetores mc e mt indicam a sequência de colocação das massas, resultando as forças PADRÃO aplicadas: (F = m g)

Fpc = [-9.7708 -19.4434 -38.8672 -63.5688 -112.2460 -161.6492] [N]

Fpt = [5.8271 15.4802 25.1528 44.5766 69.2782 117.9554 167.3586] [N]

CALIBRAÇÃO ESTÁTICA DE UMA CÉLULA DE CARGA KRATOS

30 leituras por trigger → Médias: Vxc e Vxd Intervalos com 95% : Dxc e Dxd

COMPRESSÃO: x = c

	Fpc [N]	-9.7708	-19.4434	-38.8672	-63.5688	-112.2460	-161.6492
carga	Vcc [mV]	-448	-824	-1586	-2585	-4521	-6488
_	Vcc [mV] Dcc [mV]	1.1632	2.0379	1.3053	0.9674	1.6791	1.7852
descarga	Vcd [mV]	-417	-810	-1579	-2570	-4525	-6488
	Dcd [mV]	1.6439	1.2922	1.8764	1.3568	1.2920	1.7852

TRAÇÃO: x = t

Fpt [N]	5.8271	15.4802	25.1528	44.5766	69.2782	117.9554	167.3586
Vtc [mV]	257	649	1071	1836	2801	4752	6729
Dtc [mV]	1.4122	1.8477	1.3688	1.3852	1.2538	1.0009	1.9650
Vtd [mV]	166	566	960	1760	2758	4723	6729
Dtd [mV]	1.4050	2.2082	2.2070	1.3355	1.8431	1.7428	1.9650
	Vtc [mV] Dtc [mV] Vtd [mV]	Vtc [mV] 257 Dtc [mV] 1.4122 Vtd [mV] 166	Vtc [mV] 257 649 Dtc [mV] 1.4122 1.8477 Vtd [mV] 166 566	Vtc [mV] 257 649 1071 Dtc [mV] 1.4122 1.8477 1.3688 Vtd [mV] 166 566 960	Vtc [mV] 257 649 1071 1836 Dtc [mV] 1.4122 1.8477 1.3688 1.3852 Vtd [mV] 166 566 960 1760	Vtc [mV] 257 649 1071 1836 2801 Dtc [mV] 1.4122 1.8477 1.3688 1.3852 1.2538 Vtd [mV] 166 566 960 1760 2758	Fpt [N] 5.8271 15.4802 25.1528 44.5766 69.2782 117.9554 Vtc [mV] 257 649 1071 1836 2801 4752 Dtc [mV] 1.4122 1.8477 1.3688 1.3852 1.2538 1.0009 Vtd [mV] 166 566 960 1760 2758 4723 Dtd [mV] 1.4050 2.2082 2.2070 1.3355 1.8431 1.7428

CALIBRAÇÃO ESTÁTICA DE UMA CÉLULA DE CARGA KRATOS

ANÁLISE DOS RESULTADOS
REGRESSÃO LINEAR (Matlab: função regress)

% medidas globais de carga e descarga na faixa de operação

Fp = [Fc Ft]; Vc = [Vcc Vtc]; Vd = [Vcd Vtd]; Vg = (Vc + Vd)/2;

X = [ones(length (Fp),1) Fp']; % cria o conjunto de dados de entrada

[prc, intc95, resc] = regress (Vc', X); % resultados globais em CARGA

[prd, ind95, resd] = regress (Vd', X); % resultados globais em DESCARGA

[prg, intg95, resg] = regress (Vg', X); % resultados globais em CARGA e DESCARGA

% pr contem o OFFSET e a SENSIBILIDADE ESTÁTICA

% int95 contem os INTERVALOS de CONFIANÇA dos pr

% res contém os RESÍDUOS em cada valor de Fp

Calibração Estática Regressão Linear

CALIBRAÇÃO ESTÁTICA DE UMA CÉLULA DE CARGA KRATOS
ANÁLISE DOS RESULTADOS DOS EXPERIMENTOS

REGRESSÃO LINEAR - RESULTADOS

F < 0: COMPRESSÃO

	Carga	Descarga	Global
Se[mV/N]	39.81904	39.98662	39.90283
offset[mV]	-50.59534	-28.76821	-39.68178
Resíduo[mV]	15.21647	10.92450	10.04185

F > 0: TRAÇÃO

	Carga	Descarga	Global
Se[mV/N]	39.96556	40.58548	40.27552
offset[mV]	40.74077	-60.58132	-9.92028
Resíduo[mV]	35.76898	17.32928	23.19167

Calibração Estática Resultados

CALIBRAÇÃO ESTÁTICA DE UMA CÉLULA DE CARGA KRATOS ANÁLISE DOS RESULTADOS DOS EXPERIMENTOS

REGRESSÃO LINEAR - RESULTADOS GRÁFICOS

Dif = diferença entre valores ajustados e medidos em cada Fp

