Value-Based Reinforcement Learning

Shusen Wang

Action-Value Functions

Discounted Return

Definition: Discounted return (aka cumulative discounted future reward).

```
• R_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots (to infinity.)
```

- The rewards depend on actions a_t , a_{t+1} , a_{t+2} , a_{t+3} , \cdots and states s_{t+1} , s_{t+2} , s_{t+3} , \cdots
- Observing s_t , the future rewards are random.
- Actions are randomly sampled: $a_t \sim \pi(\cdot | s_t)$. (Policy function.)
- States are randomly sampled: $s_{t+1} \sim p(\cdot | s_t, a_t)$. (State transition.)

Action-Value Functions Q(s, a)

Definition: Discounted return (aka cumulative discounted future reward).

•
$$R_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots$$
 (to infinity.)

Definition: Action-value function for policy π .

•
$$Q_{\pi}(s_t, a_t) = \mathbb{E}\left[R_t|s_t, a_t, \pi\right].$$

- Taken w.r.t. actions a_{t+1} , a_{t+2} , a_{t+3} , \cdots and states s_{t+1} , s_{t+2} , s_{t+3} , \cdots
- Integrate out everything except for a_t and s_t .

Action-Value Functions Q(s, a)

Definition: Discounted return (aka cumulative discounted future reward).

•
$$R_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots$$
 (to infinity.)

Definition: Action-value function for policy π .

•
$$Q_{\pi}(s_t, \mathbf{a}_t) = \mathbb{E}[R_t|s_t, \mathbf{a}_t, \pi].$$

Definition: Optimal action-value function.

- $Q^*(s_t, \mathbf{a}_t) = \max_{\pi} Q_{\pi}(s_t, \mathbf{a}_t).$
- Whatever policy function π is used, the result of taking a_t at state s_t cannot be better than $Q^*(s_t, a_t)$.

Deep Q-Network (DQN)

Approximate the Q Function

Goal: Win the game (\approx maximize the discounted return.)

Question: If we know $Q^*(s, a)$, what is the best action?

• Obviously, the best action is $a^* = \operatorname{argmax} Q^*(s, a)$.

 Q^* is an indication for how good it is for an agent to pick action a while being in state s.

Approximate the Q Function

Goal: Win the game (\approx maximize the discounted return.)

Question: If we know $Q^*(s, a)$, what is the best action?

• Obviously, the best action is $a^* = \underset{a}{\operatorname{argmax}} Q^*(s, a)$.

Challenge: We do not know $Q^*(s, a)$.

- Solution: Use a neural network to approximate $Q^*(s, a)$.
- Let Q(s, a; w) be a neural network parameterized by w.
- The input is state; the output is the approximate Q^* for every a.

Deep Q Network (DQN)

- Input shape: size of the screenshot.
- Output shape: dimension of action space.

Deep Q Network (DQN)

- Input shape: size of the screenshot.
- Output shape: dimension of action space.

Question: Based on the predictions, what should be the action?

How to train DQN?

Naïve approach:

- 1. Play a game to the end (totally T steps.)
- 2. Make predictions using DQN at every step. Get

$$Q(s_1, \mathbf{a_1}; \mathbf{w}), \ Q(s_2, \mathbf{a_2}; \mathbf{w}), \ \cdots, \ Q(s_T, \mathbf{a_T}; \mathbf{w}).$$

- 3. Observe rewards: r_1, r_2, \cdots, r_T .
- 4. Compute returns: R_1, R_2, \dots, R_T .

$$D = n + 2t \cdot n + 2t^{T-t}$$

- $R_t = r_t + \gamma \cdot r_{t+1} + \dots + \gamma^{T-t} \cdot r_T$.
- R_t is unknown until the game ends.

How to train DQN?

Naïve approach:

- 1. Play a game to the end (totally T steps.)
- 2. Make predictions using DQN at every step. Get

$$Q(s_1, \mathbf{a_1}; \mathbf{w}), \ Q(s_2, \mathbf{a_2}; \mathbf{w}), \ \cdots, \ Q(s_T, \mathbf{a_T}; \mathbf{w}).$$

- 3. Observe rewards: r_1, r_2, \dots, r_T .
- 4. Compute returns: R_1, R_2, \dots, R_T .
- 5. Loss: $L(\mathbf{w}) = \sum_{t=1}^{T} [Q(s_t, \mathbf{a_t}; \mathbf{w}) R_t]^2$.
- 6. Use $\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}}$ to update \mathbf{w} .

How to train DQN?

Naïve approach:

- 1. Play a game to the end (totally T steps.)
- 2. Make predictions using DQN at every step. Get

$$Q(s_1, \mathbf{a_1}; \mathbf{w}), \ Q(s_2, \mathbf{a_2}; \mathbf{w}), \ \cdots, \ Q(s_T, \mathbf{a_T}; \mathbf{w}).$$

- 3. Observe rewards: r_1, r_2, \dots, r_T .
- 4. Compute returns: R_1, R_2, \dots, R_T .
- 5. Loss: $L(\mathbf{w}) = \sum_{t=1}^{T} [Q(s_t, \mathbf{a}_t; \mathbf{w}) R_t]^2$.
- 6. Use $\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}}$ to update \mathbf{w} .

Problem: What if the game takes long to end or does not end at all?

Reference

- 1. Sutton and others: A convergent O(n) algorithm for off-policy temporal-difference learning with linear function approximation. In NIPS, 2008.
- 2. Sutton and others: Fast gradient-descent methods for temporal-difference learning with linear function approximation. In *ICML*, 2009.

• I want to drive from NYC to Atlanta.

• Model $Q(\mathbf{w})$ estimates the time cost, e.g., 1000 minutes.

Question: How do I update the model?

- I want to drive from NYC to Atlanta.
- Model $Q(\mathbf{w})$ estimates the time cost, e.g., 1000 minutes.

Question: How do I update the model?

- Make a prediction: $q = Q(\mathbf{w})$, e.g., q = 1000.
- Finish the trip and get the target y, e.g., y = 860.
- Loss: $L = \frac{1}{2}(q y)^2$.
- Gradient: $\frac{\partial L}{\partial \mathbf{w}} = \frac{\partial q}{\partial \mathbf{w}} \cdot \frac{\partial L}{\partial q} = (q y) \cdot \frac{\partial Q(\mathbf{w})}{\partial \mathbf{w}}$.
- Gradient descent: $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \cdot \frac{\partial L}{\partial \mathbf{w}} \mid_{\mathbf{w} = \mathbf{w}_t}$.

- I want to drive from NYC to Atlanta.
- Model $Q(\mathbf{w})$ estimates the time cost, e.g., 1000 minutes.

Question: How do I update the model?

Can I update the model before finishing the trip?

- I want to drive from NYC to Atlanta (via DC).
- Model $Q(\mathbf{w})$ estimates the time cost, e.g., 1000 minutes.

Question: How do I update the model?

- Can I update the model before finishing the trip?
- Can I get a better w as soon as I arrived DC?

• Model's estimate:

NYC to Atlanta: 805 minutes (estimate).

Model's estimate:

NYC to Atlanta: 805 minutes (estimate).

• I arrived at DC; actual time cost:

NYC to DC: 300 minutes (actual).

Model's estimate:

NYC to Atlanta: 805 minutes (estimate).

• I arrived at DC; actual time cost:

NYC to DC: 300 minutes (actual).

Model now updates its estimate:

DC to Atlanta: 589 minutes (estimate).

- Model's estimate: $Q(\mathbf{w}) = 805$ minutes.
- Updated estimate: 300 + 589 = 889 minutes. TD target.

- Model's estimate: $Q(\mathbf{w}) = 805$ minutes.
- Updated estimate: 300 + 589 = 889 minutes. TD target.

• TD target y = 889 is a more reliable estimate than 805.

- Model's estimate: $Q(\mathbf{w}) = 805$ minutes.
- Updated estimate: 300 + 589 = 889 minutes. TD target.
- TD target y = 889 is a more reliable estimate than 805.
- Loss: $L = \frac{1}{2}(Q(\mathbf{w}) y)^2$.

 TD error

- Model's estimate: $Q(\mathbf{w}) = 805$ minutes.
- Updated estimate: 300 + 589 = 889 minutes.

TD target.

- TD target y = 889 is a more reliable estimate than 805.
- Loss: $L = \frac{1}{2}(Q(\mathbf{w}) y)^2$.
- Gradient: $\frac{\partial L}{\partial \mathbf{w}} = (805 889) \cdot \frac{\partial Q(\mathbf{w})}{\partial \mathbf{w}}$.
- Gradient descent: $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \cdot \frac{\partial L}{\partial \mathbf{w}} \big|_{\mathbf{w} = \mathbf{w}_t}$.

• Model's estimate: $Q(\mathbf{w}) = 589$ minutes (DC to Atlanta.)

• Continue driving. Update the model again upon arriving at Charlotte.

- Model's estimate: $Q(\mathbf{w}) = 589$ minutes (DC to Atlanta.)
- Continue driving. Update the model again upon arriving at Charlotte.
- I arrive at Charlotte, I have the new TD target:

- Model's estimate: $Q(\mathbf{w}) = 589$ minutes (DC to Atlanta.)
- Continue driving. Update the model again upon arriving at Charlotte.
- I arrive at Charlotte, I have the new TD target:

$$360 + 250 = 610$$
 minutes.

- Loss: $L = \frac{1}{2}(Q(\mathbf{w}) 610)^2$.
- Update the model again using gradient descent.

TD Learning for DQN

Apply DQN to Play Game

Apply DQN to Play Game

Apply DQN to Play Game

If it is accurate estimate, then $Q(s_{t+1}, a_{t+1}; \mathbf{w}) = \mathbb{E}[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \cdots]$

If it is accurate estimate, then $Q(s_t, \mathbf{a}_t; \mathbf{w}) = \mathbb{E}[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots]$

Discounted return: R_t

If it is accurate estimate, then $Q(s_{t+1}, a_{t+1}; \mathbf{w}) = \mathbb{E}[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \cdots]$

Discounted return: R_{t+1}

Fact: $R_t = r_t + \gamma \cdot R_{t+1}$.

If it is accurate estimate, then
$$Q(s_t, a_t; \mathbf{w}) = \mathbb{E}[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots]$$

Discounted return: R_t

If it is accurate estimate, then $Q(s_{t+1}, a_{t+1}; \mathbf{w}) = \mathbb{E}[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \cdots]$

Discounted return: R_{t+1}

If DQN is accurate estimate, then

$$Q(s_t, \mathbf{a_t}; \mathbf{w}) = r_t + \gamma \cdot Q(s_{t+1}, \mathbf{a_{t+1}}; \mathbf{w})$$

If it is accurate estimate, then $Q(s_t, \mathbf{a}_t; \mathbf{w}) = \mathbb{E}[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots]$

Discounted return: R_t

If it is accurate estimate, then $Q(s_{t+1}, a_{t+1}; \mathbf{w}) = \mathbb{E}[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \cdots]$

If DQN is accurate estimate, then

$$Q(s_t, a_t; \mathbf{w}) = r_t + \gamma \cdot Q(s_{t+1}, a_{t+1}; \mathbf{w})$$

= $r_t + \gamma \cdot \max_{a} Q(s_{t+1}, a; \mathbf{w})$

If it is accurate estimate, then $Q(s_t, \mathbf{a_t}; \mathbf{w}) = \mathbb{E}[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots]$

If DQN is accurate estimate, then

$$Q(s_t, \mathbf{a_t}; \mathbf{w}) = r_t + \gamma \cdot \max_{\mathbf{a}} Q(s_{t+1}, \mathbf{a}; \mathbf{w})$$

If DQN is accurate estimate, then

$$Q(s_t, \mathbf{a_t}; \mathbf{w}) = r_t + \gamma \cdot \max_{\mathbf{a}} Q(s_{t+1}, \mathbf{a}; \mathbf{w})$$

Old estimate (less reliable)

TD target (more reliable estimate of the value)

If DQN is accurate estimate, then

$$Q(s_t, \mathbf{a_t}; \mathbf{w}) = r_t + \gamma \cdot \max_{\mathbf{a}} Q(s_{t+1}, \mathbf{a}; \mathbf{w})$$

- TD target: $y_t = r_t + \gamma \cdot \max_{a} Q(s_{t+1}, a; \mathbf{w}_t)$.
- Loss: $L_t = \frac{1}{2} [Q(s_t, a_t; \mathbf{w}) y_t]^2$.
- Gradient descent: $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \cdot \frac{\partial L_t}{\partial \mathbf{w}} \big|_{\mathbf{w} = \mathbf{w}_t}$

Summary

Value-Based Reinforcement Learning

Definition: Optimal action-value function.

•
$$Q^*(s, \mathbf{a}) = \max_{\pi} \mathbb{E}[R_t|s, \mathbf{a}, \pi].$$

Value-Based Reinforcement Learning

Definition: Optimal action-value function.

• $Q^*(s, \mathbf{a}) = \max_{\pi} \mathbb{E}[R_t|s, \mathbf{a}, \pi].$

DQN: Approximate $Q^*(s, a)$ using a neural network (DQN).

- $Q(s, a; \mathbf{w})$ is a neural network parameterized by \mathbf{w} .
- Input: observed state s (e.g., a screenshot of game.)
- Output: a vector, each entry of which corresponds to an action α .

Temporal Difference (TD) Learning

Algorithm: One iteration of TD learning.

- 1. Observe state s_t and action a_t .
- 2. Predict the value: $q_t = Q(s_t, a_t; \mathbf{w}_t)$.
- 3. Differentiate the value network: $\mathbf{d}_t = \frac{\partial Q(s_t, \mathbf{a_t}; \mathbf{w})}{\partial \mathbf{w}} \big|_{\mathbf{w} = \mathbf{w}_t}$.

Temporal Difference (TD) Learning

Algorithm: One iteration of TD learning.

- 1. Observe state s_t and action a_t .
- 2. Predict the value: $q_t = Q(s_t, a_t; \mathbf{w}_t)$.
- 3. Differentiate the value network: $\mathbf{d}_t = \frac{\partial Q(s_t, \mathbf{a_t}; \mathbf{w})}{\partial \mathbf{w}} \big|_{\mathbf{w} = \mathbf{w}_t}$.
- 4. Environment provides new state s_{t+1} and reward r_t .
- 5. Compute TD target: $y_t = r_t + \gamma \cdot \max_{a} Q(s_{t+1}, a; \mathbf{w}_t)$.

Temporal Difference (TD) Learning

Algorithm: One iteration of TD learning.

- 1. Observe state s_t and action a_t .
- 2. Predict the value: $q_t = Q(s_t, a_t; \mathbf{w}_t)$.
- 3. Differentiate the value network: $\mathbf{d}_t = \frac{\partial Q(s_t, a_t; \mathbf{w})}{\partial \mathbf{w}} \big|_{\mathbf{w} = \mathbf{w}_t}$.
- 4. Environment provides new state s_{t+1} and reward r_t .
- 5. Compute TD target: $\mathbf{y_t} = r_t + \gamma \cdot \max_{a} Q(s_{t+1}, a; \mathbf{w_t})$.
- 6. Gradient descent: $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \cdot (\mathbf{q}_t \mathbf{y}_t) \cdot \mathbf{d}_t$.

Play Breakout using DQN

(The video was posted on YouTube by DeepMind)