Soluzioni metodi matematici

Andrea Princic 1837592

13 Giugno 2022

Es. 1

NOTA BENE: l'esercizio dice di segnare quelle **NON** vere. non è molto chiaro cosa intenda visto che è già un esercizio vero-falso, nel dubbio io segno vere le affermazioni vere e false quelle false

- A. V
- B. F
- C. V
- D. V

Es. 2

L'insieme delle parti di X è l'insieme dei sottoinsiemi di X.

Es. 3

- A. F
- B. V
- C. F
- D. F

Es. 4

Un insieme è numerabile sse può essere messo in corrispondenza biunivoca con \mathbb{N} . Ad esempio \mathbb{P} (l'insieme dei numeri pari) è numerabile.

Es. 5

Dim $\forall n \geq 2$:

$$\sum_{k=0}^{n-1} x^k = \frac{1-x^n}{1-x}$$

Caso base: n=2

$$\sum_{k=0}^{1} x^k = 1 + x$$

$$\frac{1-x^2}{1-x} = \frac{(1-x)(1+x)}{1-x} = 1+x$$

Passo induttivo: n+1

$$\sum_{k=0}^{n} x^{k} = \sum_{k=0}^{n-1} x^{k} + x^{n} = \frac{1-x^{n}}{1-x} + x^{n} = \frac{1-x^{n}}{1-x} + \frac{(1-x)x^{n}}{1-x} = \frac{1-x^{n}}{1-x} + \frac{x^{n}-x^{n+1}}{1-x} = \frac{1-x^{n}}{1-x} = \frac{1-x^{n+1}}{1-x}$$

Es. 6

Interpretare significa dare un significato ad ogni predicato e scegliere un dominio.

Es. 7

Se $A \vDash B \lor C$ e $B \vDash \neg C$ allora $(A \to C) \vDash \neg B$? **Falso** nel caso in cui B = V e A = F

Se $A \wedge \neg B$ è soddisfacibile allora $A \to B$ è insoddisfacibile

Falso perché $A \to B = \neg A \lor B = \neg (A \land \neg B)$ e il fatto che $A \land \neg B$ sia soddisfacibile non implica in nessun modo che la sua negazione non lo sia. Se $A \land \neg B$ fosse una tautologia allora la sua negazione sarebbe insoddisfacibile, ma non è questo il caso

Es. 8

$$\exists x (A(x) \to \neg B(x)) \to \neg \forall x (B(x) \to A(x))$$

Si può scrivere anche:

$$\exists x (A(x) \to \neg B(x)) \to \exists x (B(x) \land \neg A(x))$$

Che è falsificabile nel caso in cui A e B siano insoddisfacibili nel dominio di interpretazione.

Ad esempio:

Dominio: \mathbb{N}

A(x): x è negativo

B(x): x ha una parte decimale diversa da 0

Un altro modo per falsificare è porre A=B falsificabili.

Es. 9

Ogni insieme Z è intersezione di qualche coppia di insiemi X e Y:

$$\forall Z \; \exists X \; \exists Y \; \forall z (z \in Z \leftrightarrow (z \in X \land z \in Y))$$