

Deep Joint Entity Disambiguation with Local Neural Attention (EMNLP'17)

https://arxiv.org/abs/1704.04920

Octavian-Eugen Ganea, Thomas Hofmann

Department of Computer Science, ETH Zürich, Switzerland

Entity Disambiguation (ED): Problem Definition

Goal: leverage only neural features, no engineered (except p(e|m))

1) Fast-Trainable Competitive Entity Embeddings

- Same space as word vectors (use pre-trained Word2Vec)
- $\hat{p}(w|e)$ estimated from : i) canonical pages ii) windows of hyperlinks
- Positive word distribution: $w^+ \sim \hat{p}(w|e)$
- Negative word distribution: $w^- \sim q(w) = \hat{p}(w)^{\alpha}$ for $\alpha \in (0,1)$
- Loss function (independent per each entity):

$$J(\mathbf{z}; e) = \mathbb{E}_{w^+|e} \mathbb{E}_{w^-} [\max(0, \gamma - \langle \mathbf{z}, \mathbf{x}_{w^+} - \mathbf{x}_{v^-} \rangle)]$$
 $\mathbf{x}_e = \arg\min J(\mathbf{z}; e)$

Advantages:

- Avoids entity co-occurrence counts (suffer from sparsity, memory footprint, rare entities)
- Any subset of entities can be trained (no need for full set of entities)
- Entities can join later without full retraining

Method Metric	NDCG@1	NDCG@5	NDCG@10	MAP
WikiLinkMeasure	0.54	0.52	0.55	0.48
(Yamada, 2016)	0.59	0.56	0.59	0.52
our (canonical pages)	0.624	0.589	0.615	0.549
our (canonical+hyperlinks)	0.632	0.609	0.641	0.578

Table: Entity relatedness results on the test set of (Ceccarelli, 2013).

2) Local Neural Attention Mechanism

Loss:
$$L(\theta) = \sum_{D \in \mathcal{D}} \sum_{m_i \in D} \sum_{e \in \Gamma(m_i)} [\gamma - \Psi(e_i^*, m_i, c_i) + \Psi(e, m_i, c_i)]_+$$

3) Differentiable Joint Inference Stage

i) Fully-connected pairwise CRF (log-scale):

$$g(\mathbf{e}, \mathbf{m}, \mathbf{c}) = \sum_{i=1}^{n} \Psi_i(e_i) + \sum_{i < j} \Phi(e_i, e_j)$$

- unary factors: $\Psi_i(e_i) = \Psi(e_i, c_i)$ (context entity similarity from above)
- pairwise factors: $\Phi(e, e') = \frac{2}{n-1} \mathbf{x}_e^{\mathsf{T}} \mathbf{C} \mathbf{x}_{e'}$,
- ii) Unrolled loopy belief propagation (LBP) in a deep neural network:

Experiments (More in the Paper)

Methods	AIDA-B
Local models	
prior $\hat{p}(e m)$	71.9
(Lazic, 2015) (Plato)	86.4
(Globerson, 2016)	87.9
(Yamada, 2016)	87.2
our (local)	88.8
Global models	
(Huang, 2015)	86.6
(Ganea, 2016)	87.6
(Chisholm, 2015)	88.7
(Guo, 2016)	89.0
(Globerson, 2016)	91.0
(Yamada, 2016)	91.5
our (global)	92.22 ± 0.14

Global methods	MSB	AQ	ACE	CWEB	WW
prior $\hat{p}(e m)$	89.3	83.2	84.4	69.8	64.2
(Fang, 2016)	81.2	88.8	85.3	_	_
(Ganea, 2016)	91	89.2	88.7	_	_
(Milne, 2008)	78	85	81	64.1	81.7
(Hoffart, 2011)	79	56	80	58.6	63
(Ratinov, 2011)	75	83	82	56.2	67.2
(Cheng, 2013)	90	90	86	67.5	73.4
(Guo, 2016)	92	87	88	77	84.5
our (alabal)	93.7	88.5	88.5	77.9	77.5
our (global)	\pm 0.1	± 0.4	\pm 0.3	\pm 0.1	± 0.1
	I	I .	1	<u>I</u>	1

Table: Micro F1 results for other datasets.

Frequency	Number	Solved
gold entity	mentions	correctly
0	5	80.0 %
1-10	0	_
11-20	4	100.0%
21-50	50	90.0%
> 50	4345	94.2%
	gold entity 0 1-10 11-20 21-50	1-10 0 11-20 4 21-50 50

\hat{p}	(e m) gold	Number	Solved
	entity	mentions	correctly
	≤ 0.01	36	89.19%
(0.01 - 0.03	249	88.76%
	0.03 - 0.1	306	82.03%
	0.1 - 0.3	381	86.61%
	> 0.3	3431	96.53%

Table: ED accuracy on AIDA-B for our best system splitted by Wikipedia hyperlink frequency and mention prior of the gold entity.