ALGORITHMS \$ EFFICIENT

CIENTALGORITHMS \$ EFFI

EFFICIENTALGORITHMS \$

ENTALGORITHMS \$ EFFICI

FFICIENTALGORITHMS \$ E

FICIENTALGORITHMS \$ E

GORITHMS \$ EFFICIENTAL

HMS \$ EFFICIENTALGORIT

5

Divide & Conquer

11 November 2024

Prof. Dr. Sebastian Wild

Learning Outcomes

Unit 5: Divide & Conquer

- 1. Know the steps of the Divide & Conquer paradigm.
- 2. Be able to design and analyze new algorithms using the Divide & Conquer paradigm.

Outline

5 Divide & Conquer

- 5.1 Order Statistics
- 5.2 Further D&C Algorithms

Divide and conquer

Divide and conquer *idiom* (Latin: *divide et impera*) to make a group of people disagree and fight with one another so that they will not join together against one (Me

(Merriam-Webster Dictionary)

in politics as in algorithms, many independent, small problems are better than a big one!

Divide-and-conquer algorithms:

- 1. Break problem into smaller, independent subproblems. (Divide!)
- **2.** Recursively solve all subproblems. (Conquer!)
- **3.** Assemble solution for original problem from solutions for subproblems.

Examples:

- Mergesort
- Quicksort
- ► Binary search
- ► (arguably) Tower of Hanoi

5.1 Order Statistics

Selection by Rank

- Standard data summary of numerical data: (Data scientists, listen up!)
 - mean, standard deviation
 - ► min/max (range)
 - histograms
 - median, quartiles, other quantiles (a.k.a. order statistics)

easy to compute in $\Theta(n)$ time

? ? computable in $\Theta(n)$ time?

General form of problem: Selection by Rank

▶ **Given:** array A[0..n) of numbers and number $k \in [0..n)$.

but 0-based & 'counting dups

- ▶ **Goal:** find element that would be in position k if A was sorted (kth smallest element).
- ▶ $k = \lfloor n/2 \rfloor$ \rightsquigarrow median; $k = \lfloor n/4 \rfloor$ \rightsquigarrow lower quartile k = 0 \rightsquigarrow minimum; $k = n \ell$ \rightsquigarrow ℓ th largest

Quickselect

- ► Key observation: Finding the element of rank *k* seems hard.

 But computing the rank of a given element is easy!
- \rightsquigarrow Pick any element A[b] and find its rank j.
 - ▶ j = k? \rightarrow Lucky Duck! Return chosen element and stop
 - ▶ j < k? \longrightarrow ... not done yet. But: The j + 1 elements smaller than $\leq A[b]$ can be excluded!
 - ▶ j > k? \leadsto similarly exclude the n j elements $\geq A[b]$
- partition function from Quicksort:
 - returns the rank of pivot
 - separates elements into smaller/larger

(recursion can be replaced by loop)

```
procedure quickselect(A[l..r), k)

if r - \ell \le 1 then return A[l]

b := \text{choosePivot}(A[l..r))

j := \text{partition}(A[l..r), b)

if j == k

return A[j]

else if j < k

quickselect(A[j+1..n), k-j-1)

else \#/j > k

quickselect(A[0..j), k)
```

Quickselect Discussion

no extra space needed

adaptations possible to find several order statistics

For practical purposes, Quickselect is fine.

Yeah . . . maybe. But can we select by rank in O(n) worst case?

Better Pivots

It turns out, we can!

- ► All we need is better pivots!
 - ► If pivot was the exact median, we would at least halve #elements in each step
 - ► Then the total cost of all partitioning steps is $\leq 2n = \Theta(n)$.

But: finding medians is (basically) our original problem!

It totally suffices to find an element of rank αn for $\alpha \in (\varepsilon, 1 - \varepsilon)$ to get overall costs $\Theta(n)$!

The Median-of-Medians Algorithm

```
1 procedure choosePivotMoM(A[l..r))
       m := |n/5|
       for i := 0, ..., m-1
           sort(A[5i..5i + 4])
4
           // collect median of 5
5
           Swap A[i] and A[5i + 2]
       return quickselectMoM(A[0..m), \lfloor \frac{m-1}{2} \rfloor)
7
9 procedure quickselectMoM(A[1..r), k)
       if r - \ell \le 1 then return A[l]
10
       b := \text{choosePivotMoM}(A[l..r))
      j := partition(A[l..r), b)
12
       if i == k
13
           return A[i]
14
       else if i < k
15
16
       else //i > k
17
           quickselectMoM(A[0..i), k)
18
```

Analysis:

- ► Note: 2 mutually recursive procedures

 → effectively 2 recursive calls!
- 1. recursive call inside choosePivotMoM on $m \le \frac{n}{5}$ elements
- 2. recursive call inside quickselectMoM

 \rightarrow partition excludes $\sim 3 \cdot \frac{m}{2} \sim \frac{3}{10}n$ elem.

$$\begin{array}{lll} \text{quickselectMoM}(A[j+1..n), k-j-1) & \leadsto C(n) \leq \Theta(n) + C(\frac{1}{5}n) + C(\frac{7}{10}n) \\ e//j > k & \leq \Theta(n) + C(\frac{1}{5}n + \frac{7}{10}n) \\ \text{quickselectMoM}(A[0..j), k) & = \Theta(n) + C(\frac{9}{10}n) & \leadsto C(n) = \Theta(n) \end{array}$$

5.2 Further D&C Algorithms

Majority

- ▶ **Given:** Array A[0..n) of objects
- ► **Goal:** Check of there is an object x that occurs at $> \frac{n}{2}$ positions in A if so, return x
- ▶ Naive solution: check each A[i] whether it is a majority \longrightarrow $\Theta(n^2)$ time

Can be solved faster using a simple Divide & Conquer approach:

- ▶ If *A* has a majority, that element must also be a majority of at least one half of *A*.
- → Can find majority (if it exists) of left half and right half recursively
- \rightsquigarrow Check these ≤ 2 candidates.
- ► Costs similar to mergesort $\Theta(n \log n)$

Majority – Linear Time

We can actually do much better!

```
1 def MJRTY(A[0..n))

2  c := 0

3  for i := 1, ..., n-1

4  if c == 0

5  x := A[i]; c := 1

6  else

7  if A[i] == x then c := c+1 else c := c-1

8  return x
```


- ightharpoonup MJRTY(A[0..n)) returns *candidate* majority element
- either that candidate is the majority element or none exists(!)

Closest pair

- ► **Given:** Array P[0..n) of points in the plane each has x and y coordinates: P[i].x and P[i].y
- ▶ **Goal:** Find pair P[i], P[j] that is closest in (Euclidean) distance
- ▶ Naive solution: compute distance of each pair \longrightarrow $\Theta(n^2)$ time
- ► Can be done in $O(n \log n)$ time using a clever divide & conquer algorithm. (Details not part of the module material.)