Я выбрала датасет MNIST, и в дальнейшем анализировала его.

2

Реализовала метод опорных векторов. Это один из классических алгоритмов для классификации. Он хорошо работает для линейно разделимых данных и решает задачи бинарной и многоклассовой классификации. В данной задаче использовалась линейная версия SVM, так как она проще и быстрее для выполнения на MNIST. Для модели SVM были использованы следующие настройки:

- Ядро: линейное (kernel='linear')
- Гиперпараметр С: по умолчанию, равен 1

Метрики качества модели:

Точность: 0.9344 Полнота: 0.9340 F1-score: 0.9341

Матрица ошибок:

Матрица ошибок показала, что модель правильно классифицирует большую часть образцов, однако некоторые ошибки присутствуют, особенно между цифрами, которые визуально схожи (например, 3 и 8, 4 и 9).

Далее с помощью keras был создан MLP. Многослойный перцептрон представляет собой искусственную нейронную сеть с несколькими слоями, где каждый слой содержит нейроны с функциями активации, которые помогают моделировать сложные нелинейные зависимости. Архитектура сети состоит из:

- Входного слоя с 128 нейронами и функцией активации ReLU
- Одного скрытого слоя с 64 нейронами и функцией активации ReLU
- Выходного слоя с 10 нейронами и функцией активации Softmax. В качестве оптимизатора использован Adam с начальной скоростью обучения 0.001

Динамика обучения сети:

Графики показали хорошие результаты с точки зрения сходимости, а также отсутствие признаков переобучения на протяжении всех эпох обучения. После 10 эпох обучения точность на валидационной выборке стабилизировалась, что указывает на эффективное обучение модели.

4

Для начала я сравнила метрики SVM и MLP. Важно отметить, что для модели SVM использовались значения точности (precision), полноты (recall) и F1-меры на тестовой выборке, а для модели MLP аналогичные метрики были вычислены на основе предсказаний модели.

Метрика/Метод	SVM	MLP
Accuracy	0.9351	0.9742
Precision	0.9344	0.9741
Recall	0.9340	0.9739
F1-score	0.9341	0.9739

Сравнив метрики для двух моделей, можно отметить, что MLP продемонстрировал лучшую точность и F1-score по сравнению с SVM. Хотя обе модели показывают высокую точность, MLP оказывается чуть более эффективным для данной задачи, что обусловлено его способностью моделировать более сложные нелинейные зависимости.

Преимущества и недостатки каждого метода:

SVM:

Преимущества: быстрое обучение, хорошие результаты на небольших данных —> эффективен для задач с ограниченными размерами данных Недостатки: ограниченная способность моделировать сложные нелинейные зависимости

MLP:

Преимущества: может эффективно моделировать сложные зависимости, работает хорошо на больших данных, достигает высоких результатов в задачах классификации изображений Недостатки: долгое время обучения, требует больше вычислительных ресурсов

Предложение по улучшению:

Для SVM можно провести более тщательную настройку гиперпараметров, таких как выбор ядра (например, попробовать использовать радиально-базисное ядро) и параметр С, чтобы повысить производительность.

Для MLP можно добавить более сложные архитектуры, например, увеличить количество слоев или нейронов в скрытых слоях, а также применить методы регуляризации, такие как Dropout, чтобы уменьшить риск переобучения.