

CONVLSTMS FOR HIGH RESOLUTION CONFLICT FORECASTS

VIEWS PREDICTION COMPETITION ENTRY

Benjamin J. Radford April 2, 2022

University of North Carolina at Charlotte

THIS TALK

Introduction
Approach
Results
It's (not) a Black Box
Next

Preprint PDF

1

INTRODUCTION

THE GOAL

ViEWS Competition

- · Make predictions of Δln (battle deaths + 1) $_{t+s}$
- · Resolution: monthly grid cells
- Grid cells: ~2500.0 km² (one-half degree lat / lon)
- Time frame: 1990-2020

WHAT DOES THE TARGET LOOK LIKE?

FEATURES

	Variable	Description
1	ln_ged_best_sb	Current In(deaths + 1)
2	pgd_bdist3	Border distance (km)
3	pgd_capdist	Distance to capital (km)
4	pgd_agri_ih	Agricultural area %
5	pgd_pop_gpw_sum	Population
6	pgd_ttime_mean	Travel time to major city
7	spdist_pgd_diamsec	Diamond resources (spatial lag?)
8	pgd_pasture_ih	Pasture area %
9	pgd_savanna_ih	Savanna area %
10	pgd_forest_ih	Forest area %
11	pgd_urban_ih	Urban area %
12	pgd_barren_ih	Barren area %
13	pgd_gcp_mer	Gross cell product (USD)

^{*} A subset of features from the benchmark model.

FEATURES

	Variable	Description
1	ln_ged_best_sb	Current In(deaths + 1)
2	pgd_bdist3	Border distance (km)
3	pgd_capdist	Distance to capital (km)
4	pgd_agri_ih	Agricultural area %
5	pgd_pop_gpw_sum	Population
6	pgd_ttime_mean	Travel time to major city
7	spdist_pgd_diamsec	Diamond resources (spatial lag?)
8	pgd_pasture_ih	Pasture area %
9	pgd_savanna_ih	Savanna area %
10	pgd_forest_ih	Forest area %
11	pgd_urban_ih	Urban area %
12	pgd_barren_ih	Barren area %
13	pgd_gcp_mer	Gross cell product (USD)

^{*} A subset of features from the benchmark model.

WHAT'S THE DATA LOOK LIKE?

Let's consider what our data "look like," to motivate our modeling choices.

FEATURE MAPS

7

FEATURE PER MONTH

FEATURES OVER TIME

Time (months)

RESHAPE

MISSING CELLS

What about missing PGM cells?

- · Some cells are missing (because ocean...).
- · Let's just add them!

But what about the feature values?

- · We could cleverly mask these cells.
- Instead, let's call them 0...
- · ...and add a "missing" feature to indicate them.

INPUT SIZE

Sample Size

(12 \times 178 \times 169 \times 14) = 5, 053,776 values per observation.

Training Set Size

 $5,053,776/12 \times 270 = 113.7M.$

Output Size

(178 \times 169 \times 7) = 210,574 values per output observation.

APPROACH

MODEL

MODEL DETAILS

· 281,016 parameters

· Loss: MSE

· Optimizer: RMSprop

· Batch Size: 8

• Epochs: 75

Training time: about 1.5 hours

RESULTS

THE NUMBERS

Table 1: Validation Set

Steps	MSE	TADDA
s = 1	0.020001	0.013797
s = 2	0.021097	0.014095
s = 3	0.020870	0.013470
s = 4	0.021124	0.013904
s = 5	0.021368	0.013742
s = 6	0.021357	0.014156
s = 7	0.021576	0.014696

Table 2: Test Set

Steps	MSE	TADDA
s = 1	0.021483	0.016579
s = 2	0.022296	0.016795
s = 3	0.022141	0.016235
s = 4	0.022344	0.016404
s = 5	0.022486	0.016198
s = 6	0.022962	0.016912
s = 7	0.022581	0.017468

MAX PREDICTIONS IN TEST SET (+2 MONTHS)

Figure 2: Observed Max

Figure 3: Predicted Max

MIN PREDICTIONS IN TEST SET (+2 MONTHS)

Figure 4: Observed Min

Figure 5: Predicted Min

ACTUAL: DECEMBER 2018 (+2 MONTHS)

PREDICTED: DECEMBER 2018 (+2 MONTHS)

WHAT'S THE MODEL LEARNING?

What if...

- · ... the model is only learning a reversion to the mode (0) when the current death count is greater than 0,
- ... and, when the current death count is 0, it just predicts something like the mean increase in deaths from the training set?

$$\hat{\Delta}_{s=X} = \begin{cases} -\ln(\text{deaths} + 1)_{t=0} & \text{if } \ln(\text{deaths} + 1)_{t=0} > 0 \\ \bar{\Delta}_{s \neq X} & \text{else} \end{cases}$$

ACTUAL VERSUS PREDICTED

Figure 6: Observed v. Predicted

Figure 7: Count v. Prediction

ACTUAL VERSUS PREDICTED

Figure 8: Benchmark Model

Figure 9: ConvLSTM

IT'S A BLACK BOX

BLACK BOX MODELS

Not quite...

WHAT FEATURES MATTER?

Methods to Inspect Model

- Shapley values
- LIME
- · Occlusion Sensitivity (Zeiler & Fergus, 2014)
- · Attention Layer (Bahdanau, Cho, & Bengio, 2015)
- Alternative Models

ATTENTION LAYER

Feature	Importance
ln_ged_best_sb	0.284
pgd_pop_gpw_sum	0.271
pgd_urban_ih	0.207
pgd_ttime_mean	0.051
pgd_agri_ih	0.040
pgd_gcp_mer	0.035
pgd_forest_ih	0.029
spdist_pgd_diamsec	0.017
pgd_barren_ih	0.016
pgd_bdist3	0.014
pgd_savanna_ih	0.012
pgd_pasture_ih	0.011
missing_indicator	0.010
pgd_capdist	0.010

SOMETHING SIMPLER

Let's try the same ConvLSTM model with *only* one feature:

ln(battle deaths + 1).

SINGLE FEATURE MODEL

	Competition Model		Single Feature	
Steps	MSE	TADDA	MSE	TADDA
s = 2	0.022	0.017	0.022	0.013
s = 3	0.022	0.016	0.022	0.013
s = 4	0.022	0.016	0.022	0.014
s = 5	0.022	0.016	0.022	0.013
s = 6	0.023	0.017	0.022	0.013
s = 7	0.023	0.017	0.022	0.014

LET'S DO IT BETTER!

Upcoming Work

- What's the right resolution?
 - · (Dis)aggregation probably degrades signal.
 - Spatio-temporal point processes.
- What are leading signals of violence?
 - Event data
 - Mobilization
 - · Social media

Other Issues

- The "pixels" of our map images aren't equal area!
 - · Rewrite the internals of the convolutional layer.
 - Interpolate \rightarrow Model \rightarrow Aggregate.
 - · Use a graph convolutional network.

THANK YOU

Benjamin J. Radford benjamin.radford@uncc.edu