Introduction

Jupyter notebook for the simplest model scratch. By convention, all exogenous variables are presented with a overline line (e.g. \bar{a}) and the parameters are represented by greek letters (e.g. α). The code in this document is executable and is strongly recommend to do the follow to ensure that the output is corrected and updated:

Run time > Restart and run all...

Variables list

- C Consumption
- CG: Capital gains
- FT: Total profits
- FD: Distributed profits
- FU: Retained profits
- g_i : Growth rate of variable i
- g_i^e : Expected growth rate of variable i
- h: Marginal propensity to invest
- I: Total investment
- I_f: Non-residential investment
- I_h : Residential investment
- K_f : Non-residential fixed capital
- K_h : Residential capital
- K_{HD} : Demand for houses
- K_{HU} : Unsold houses
- K_H : Houses supply
- L: Loans
- morp: Mortgages repayments
- *M*: Money deposits
- MO: Mortgages
- p_h Housing prices
- r_l : Interest rates on Loans
- r_m : Interest rates on money deposits
- r_H: Housing own interest rates
- S_i : Sector i savings
- u: Capacity utilization ratio
- v: Capacity-Output ratio
- V_i : Net financial Wealth of sector i
- ullet W Total Wage bill
- Y: GDP
- Y_K : Capacity
- ullet YD: Household disposable income
- Z: Autonomous expenditures

Parameters list

- α : Propensity to consume out of wages
- β: Expectation adjustment parameter
- γ_F : % of distributed profits

Exogenous variables

- gz: Autonomous grouth rate
- ω : Wage share
- rm: Interest rates on money deposits
- $spread_l$: Spread for loans
- $spread_{mo}$: Spread for mortgages
- un: Normal capacity utilization ratio
- v: Capitl-Output ratio

Assumptions

General

- No inflation
- · Two kinds of capital: Residential and non-Residential
- No depeciation
- · Non-residential investment is induced

Households

- · All savings are accumulated in bank deposits
- · Households do not have access to Loans
- · Residential investment is financed by mortgages

Firms

Banks

· Have any net worth

Matrix

Balance sheet

	Households	Firms	Banks	Σ
Money Deposits	+M		-M	0
Loans		-L	+L	0
Mortgages	-MO		+MO	0
Capital		K_f		K_f
Houses	K_{HD}			K_H
Net Worth	V_h	V_f	V_b	K

Transactions and flow of funds matrix

	Households	Households	Firms	Firms	Banks	Banks	Sum
	Current	Capital	Current	Capital	Current	Capital	\sum
Consumption	-C		+C				0
Investment		$-I_h$	I	$-I_f$			0
[Production]			[Y]				Y
Wages	+W		-W				0
Profits	+FD		-FT	+FU			0
Interests on loans			$-r_{l-1} \ \cdot L_{-1}$		$+r_{l-1} \ \cdot L_{-1}$		0
Interests on Bank deposits	$+r_{m-1} \ \cdot M_{-1}$				$\begin{matrix} -r_{m-1} \\ \cdot M_{-1} \end{matrix}$		0
Interests on Mortgage	$-r_{mo-1} \ \cdot MO_{-1}$				$+r_{mo-1} \ \cdot MO_{-1}$		0
Subtotal	S_h			S_f	S_b		0
Change in Loans				$+\Delta L$		$-\Delta L$	0
Change in Bank deposits	$-\Delta M$					$+\Delta M$	0
Change in Mortgages		$+\Delta MO$				$-\Delta MO$	0
Sum	0	0	0	0	0	0	0

Y = C + I

Equations

General Equations

$$Y = C + I$$
 (1)
 $I = I_f + I_h$ (2)
 $\omega = \overline{\omega}$ (3)
 $W = \omega \cdot Y$ (4)
 $Y_K = \frac{K_f}{\overline{v}}$ (5)
 $u = \frac{Y}{Y_K}$ (6)

$$g_k = \frac{h \cdot u}{v} \tag{7}$$

$$Z = I_h \tag{8}$$

$$K = K_f + K_{HD} \tag{9}$$

Households

$$YD = W + FD + \bar{r}_{m-1} \cdot M_{-1} - \bar{r}_{mo-1} \cdot MO \tag{10}$$

$$S_h = YD - C = \Delta M \tag{11}$$

$$\Delta MO = \Delta M - S_h \tag{12}$$

$$C = \alpha \cdot YD \tag{13}$$

$$V_h = M + K_H - MO (14)$$

Firms

$$\Delta L = I_f - FU \tag{15}$$

$$FT = Y - W = FU + FD \tag{16}$$

$$FU = \gamma_F \cdot (FT - r_{L_1} \cdot L_{-1}) \tag{17}$$

$$FD = (1 - \gamma_F) \cdot (FT - r_{L_1} \cdot L_{-1}) \tag{18}$$

$$I_f = h \cdot Y \tag{19}$$

$$\Delta K_f = I_f \tag{20}$$

$$\Delta h = h_{-1} \cdot \gamma_u \cdot (u - \overline{u}_n) \tag{21}$$

$$V_f = K_f - L \tag{22}$$

$$S_f = FU - I_f \tag{23}$$

Banks

$$\Delta M = \Delta L + \Delta MO \tag{24}$$

$$S_b = rl_{-1} \cdot L_{-1} + rmo_{-1} \cdot MO_{-1} - rm_{-1} \cdot M_{-1} \tag{25}$$

$$r_l = r_m + spread_l \tag{26}$$

$$r_{mo} = r_m + spread_{mo} (27)$$

$$V_b = L + MO - M \tag{28}$$

Residential Investment

$$K_{HS} = K_{HD} \tag{29}$$

$$\Delta K_{HD} = I_h \tag{30}$$

$$I_h = \Delta MO \tag{31}$$

$$g_{I_h} = \bar{g}_{I_h} \tag{32}$$

Simulation setup

Installing required packages

```
1 |!pip install pysolve3 ☐>
```

▼ Loading libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
plt.style.use('seaborn-white')
import seaborn as sns
from pysolve3.utils import ShockModel, SFCTable, SolveSFC
from pysolve3.model import Model
import sympy as sp
%config InlineBackend.figure_format = 'retina'
```

Creating model function

```
1 def model():
    2
3
                     model = Model()
                    model.set_var_default(0)
   4
5
6
7
                   model.var('C', desc='Consumption')
model.var('FD', desc='Distributed profits')
model.var('FT', desc='Total Profits')
model.var('FU', desc='Retained profits', default = 100)
model.var('g', desc='Capital growth rate', default=0.01)
model.var('g', desc='Marginal propagative to invest (non residential)', default=0.01
10
                  model.var('g_Ih', desc='Residential investment growth rate (Demand)', defamodel.var('h', desc='Marginal propensity to invest (non-residential)', defamodel.var('I_t', desc='Investment')
model.var('I_f', desc='Non-residential investment', default = 100)
model.var('I_h', desc='Residential investment', default = 300)
model.var('K_HS', desc='Houses supply', default=500)
model.var('K_HD', desc='Houses demand', default=500)
model.var('K_f', desc='Non-residential capital', default = 1000)
model.var('K', desc='Capital', default=1500)
model.var('L', desc='Loans', default = 100)
model.var('M', desc='Money deposits', default = 100)
model.var('MO', desc='Mortgages', default = 100)
model.var('omega', desc='Wage-share', default = 0.5)
11
12
13
14
15
16
17
18
19
20
                    model.var('omega', desc='Wage-share', default = 0.5)
                   model.var('omega', desc='wage-share', default = 0.5,
model.var('rl', desc='Interests rates on loans')
model.var('rmo', desc='Interests rates on mortgages')
model.var('S_h', desc='Households savings', default = 100)
model.var('S_f', desc='Firms savings')
model.var('S_b', desc='Banks savings')
23
25
26
```

```
model.var('u', desc='Capacity utilization ratio', default=0.7)
model.var('V_h', desc='Household net financial wealth', default = 600)
model.var('V_f', desc='Firms net financial wealth', default = 300)
model.var('V_b', desc='Banks net financial wealth')
28
29
30
31
       model.var('V_D', desc='Banks net 'Inanclat weatth')
model.var('W', desc='Wages')
model.var('Y', desc='GDP')
model.var('Yk', desc='Capacity')
model.var('YD', desc='Household disposable income')
model.var('Z', desc='Autonomous expenditures')
32
33
34
35
36
37
38
        model.param('alpha', desc='Propensity to consume out of wages', default=0.
       model.param('beta', desc='Expectation adjustment parameter', default=0.2); model.param('gamma_F', desc='% of distributed profits', default=0.4) # 0.4 model.param('gamma_u', desc='Adjustment parameter for the marginal propens.
39
40
41
42
        model.param('gz', desc='Autonomous grouth rate', default=0.05) # 0.02
       model.param('omegapar', desc='Wage-share', default=0.5) # 0.5
model.param('rm', desc='Interest rates on money deposits', default=0.02) #
model.param('spread_l', desc='Spread for loans', default=0.01) # 0.01
model.param('spread_mo', desc='Spread for mortgages', default=0.005) # 0.00
43
44
45
46
       model.param('un', desc='Normal capacity utilization ratio', default=0.8) #
47
48
        model.param('v', desc='Capitl-Output ratio', default=2.5) # 2.5
49
50
        # General equations
51
       \begin{array}{ll} \text{model.add('Y = C + I\_t') \# Eq1} \\ \text{model.add('I\_t = I\_f + I\_h') \# Eq2} \end{array}
52
53
        model.add('omega = omegapar') # Eq 3
54
        model.add('Yk = K f(-1)/v') # Eq 4
55
        model.add('u = Y/\overline{Y}k') # Eq 5
56
       model.add('W = omega*Y') # Eq 6

model.add('gk = h*u/v') # Eq 7

model.add('K = K_HD + K_f') # Eq 8

model.add('Z = I_h') # Eq 9
57
58
59
60
61
62
        # Household equations
63
        model.add('YD = W + FD + rm*M(-1) - rmo*MO(-1)') # Eq 10
        model.add('S_h = YD - C') # Eq 11
64
       #model.add('\overline{d}(MO) = d(M) - S h') # Eq 12 model.add('d(MO) = (1+gz)*I h(-1)') # Eq 12 model.add('C = alpha*W') # Eq 13
65
66
67
        #model.add('C = alpha*YD') # Eq 13
#model.add('C = alpha*W + (1-alpha)*V_h(-1)') # Eq 13
68
69
70
        model.add('V h = M + K HD - MO') # Eq 14
71
72
73
        # Firms
       model.add('L = I_f - FU + L(-1)') # Eq 15 model.add('FT = Y - W') # Eq 16
74
75
        model.add('FU = gamma_F*(FT' - rl*L(-1))') # Eq 17
76
       77
78
        model.add('d(K_f) = I_f') # 20
79
        model.add('h = h(-1)*gamma_u*(u-un) + h(-1)') # Eq 21 # Version without co
80
       model.add('V_f = K_f - L') # Eq 22
model.add('S_f = FU - I_f') # Eq 23
81
82
83
84
        # Banks
85
        model.add('M = (L - L(-1)) + (MO - MO(-1)) + M(-1)') # Eq 24
86
        model.add('rmo = rm + spread mo') # Eq 25
        model.add('rl = rm + spread \overline{l}') # Eq 26
87
88
        model.add('V_b = L + MO - M') # Eq 27
89
        model.add('S_b = rl*L(-1) + rmo*MO(-1) - rm*M(-1)') # Eq 28
90
91
        # Residential investment
       model.add('K_HS = K_HD') # Eq 29 model.add('d(K_HD) = I_h') # Eq 30
92
93
        \# model.add('I_{\overline{h}} = d(MO)') \# Eq 31
94
95
        model.add('I_h = d(M) - S_h')
96
        \# model.add('\overline{I}_h = (1+gz)*\overline{I}_h(-1)') \# Eq 31
        model.add('g_{\overline{l}h} = gz') # Eq 32
97
98
        return model
```

- Solving

```
base = model()
df = SolveSFC(base, time=500)
df.transpose()
```

₽

Evaluating consistenty

```
1 evaldf = pd.DataFrame({
2    'Households' : base.evaluate('M - MO + K_HD - V_h'),
3    'Firms' : base.evaluate('K_f - L - V_f'),
4    'Banks' : base.evaluate('L + MO - M - V_b'),
5    '[Total Financial Wealth - K]' : base.evaluate('V_f + V_h + V_b - K'),
6    "Firm's Funds" : base.evaluate('I_f - FU - d(L)'),
7    "Housing" : base.evaluate('K_HD - K_HS'),
8    "[Saving - Investment]" : base.evaluate('S_f + S_b + S_h - I_h - I_f'),
9    }, index = ['Sum'])
10 evaldf
```

- Plots

```
1 ax = df['K_HD'][10:].pct_change().plot(color = "black", title = "Houses grow
2 ax.set_yticklabels(['{:,.1%}'.format(x) for x in ax.get_yticks()])
3 plt.xlabel("Period")
4 sns.despine()
5 plt.show()
```

```
1 ax = df[['C', 'I_t']].apply(lambda x: x/df['Y']).plot(kind = 'area', stacked
2 ax.axhline(y=1, color = "black", ls = "--", lw=1)
3 ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
4 ax.set_yticklabels(['{:,.0%}'.format(x) for x in ax.get_yticks()])
5 sns.despine()
plt.show()
```

C→

```
1 ax = df[['W', 'FT']].apply(lambda x: x/df['Y']).plot(kind = 'area', stacked :
2 ax.axhline(y=1, color = "black", ls = "--", lw=1)
3 ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
4 ax.set_yticklabels(['{:,.0%}'.format(x) for x in ax.get_yticks()])
5 sns.despine()
plt.show()
```

С>

```
1  f, (ax1, ax2, ax3) = plt.subplots(1, 3)
2  df[['S_b', 'S_h', 'S_f']].apply(lambda x: x/df['Y']).plot(kind = "area", ax :
3  ax3.axhline(y = 0, ls = "--", color = "black")
4  ax3.set_yticklabels(['{:,.0%}'.format(x) for x in ax.get_yticks()])
5  df[['S_b', 'S_h', 'S_f']][1:].apply(lambda x: x/df['K'][1:]).plot(kind = "area")
6  ax2.axhline(y = 0, ls = "--", color = "black")
7  ax2.set_yticklabels(['{:,.0%}'.format(x) for x in ax.get_yticks()])
8  df[['S_b', 'S_h', 'S_f']][1:].plot(kind = "area", ax = ax1, title = "Sector :
9  ax1.axhline(y = 0, ls = "--", color = "black")
10  sns.despine()
11  plt.tight_layout()
12  plt.show()
```

Гэ

```
1 ax = df[['V_b', 'V_h', 'V_f']].apply(lambda x: np.abs(x)/df['K']).plot(kind :
2 ax.set_yticklabels(['{:,.0%}'.format(x) for x in ax.get_yticks()])
3 ax.axhline(y=1, color = "black", ls = "--", lw=1)
4 ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
5 sns.despine()
6 plt.show()
```

C→

```
1 ax = df['Y'][50:].pct_change().plot(color = "black", title = "GDP growth rate
2 ax.set_yticklabels(['{\{\frac{1}{2}},.2\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{\frac{1}{2}}\{
```

₽

```
1 ax = df['u'].plot(color = "black", title = "Capacity utilization ratio", laboral ax.set_yticklabels(['{:,.1%}'.format(x) for x in ax.get_yticks()])
3 ax = df['un'].plot(color = "red", ls="--", title = "Capacity utilization ratio", laboral ax.set_yticklabels(['{:,.1%}'.format(x) for x in ax.get_yticks()])
5 sns.despine()
6 plt.show()
```

```
1 ax = df['h'].plot(color = "black", ls="-", title = "Marginal propensity to :
2 ax = df['h'].pct_change().plot(color = "red", ls="--", label = "$h_t$ growtl
3 ax.set_yticklabels(['{:,.1%}'.format(x) for x in ax.get_yticks()])
4 sns.despine()
5 plt.show()
```

Analytical solution

```
1 base = model()
```

```
2 SolveSFC(base, time=1, table = False)
3 t = sp.Symbol('t')
4 initials = {
        key: base.evaluate(key) for key in base.parameters
6 }
7 initials.update({key: base.evaluate(key) for key in base.variables})
```

Model variables

```
1 for i in base.variables:
2  globals()["_" + i] = sp.Function(i)
```

Model parameters

```
1 for i in base.parameters:
2  globals()[i] = sp.Symbol(i)
```

Defining equations

General equations

Households

→ Firms

▼ Ranke

```
 \begin{array}{l} 1 \\ M = (\_L(t) - \_L(t-1)) + (\_MO(t) - \_MO(t-1)) + \_M(t-1) \\ 2 \\ rmo = rm + spread\_mo \\ 3 \\ rl = rm + spread\_l \\ 4 \\ V\_b = \_L(t) + \_MO(t) - \_M(t) \\ 5 \\ S\_b = \_rl(t)*\_L(t-1) + \_rmo(t)*\_MO(t-1) - rm*\_M(t-1) \\ \end{array}
```

Residential Investment

```
 \begin{array}{lll} 1 & K_{-}HS &=& K_{-}HD(t) \\ 2 & K_{-}HD &=& I_{-}h(t) & -& I_{-}h(t-1) \\ 3 & I_{-}h &=& MO(t) & -& MO(t-1) \\ 4 & g_{-}Ih &=& gz \end{array}
```

Rearranging

→ Level of GDP

$$Y_{SR} = rac{-I_h(t)}{lpha \cdot \omega + h(t) - 1}$$

Rearranging

 \Box

$$Y_{SR} = rac{I_h(t)}{1 - lpha \cdot \omega - h(t)}$$

Capacity output ratio (short-run)

$$\frac{Y}{K(-1)} = \frac{Y}{K(-1)} \frac{Yk}{Yk} = \frac{u}{v}$$
$$\therefore u = \frac{Y}{K}v$$

$$i_{h_t} = rac{I_h}{K_{t-1}}$$

```
li_h = sp.Function('i_h')
Equ = Equ.subs(_I_h(t)/_K(t-1), i_h(t))
Equ = Equ.subs(_Y(t), soly)
Equ = Equ.subs(_Y(t), yD)
Equ = Equ.subs(_W(t), W)
Equ = sp.solve(Equ, _u(t))[0].factor().collect(alpha*omegapar).collect(_h(t))
solu = Equ.subs(_Y(t), Eqy)
print('u = ', solu)
print('u'nDerivatives')
print('du/d alpha = ', Equ.diff(alpha))
print('du/d omega = ', Equ.diff(omegapar))

print("\nReplacing the initial values....")
Equ = Equ.subs(alpha, df.loc[1, 'alpha']).subs(omegapar, df.loc[1, 'omegapar'])
Equ = Equ.subs(alpha, df.loc[0, 'gk']).subs(_h(t), df.loc[1, 'h']).subs(_t, 't)
Equ = Equ.subs(_ih(t), df.loc[0, 'gk']).subs(_K, 'f(t-1), df.loc[0, 'K'])
Equ = Equ.subs(_Th(t), df.loc[1, 'I_h']/df.loc[0, 'K']).subs(_Y(t), df.loc[1, 'FD']).subs(_I)
Equ = Equ.subs(_M(t-1), df.loc[0, 'M']).subs(_FD(t), df.loc[1, 'FD']).subs(_I)
Equ = Equ.subs(_Tm, df.loc[1, 'rm'])

print('u0 = ', df.loc[1, 'u'].round(3))
print('u1 = ', Equ.round(3))
print('u1 = ', Equ.round(3))
print('hat u - u1 = ", df.loc[1, 'u'].round(3) - Equ.round(3))
```

C→

1|print(sp.latex(solu).replace("omegapar", "\\omega"))

 \Box

$$egin{aligned} u_{SR} \ &= rac{v}{\left(lpha\omega + h(t) - 1
ight) ext{K}_{ ext{f}}\left(t - 1
ight)} \left(lpha^2 \left(\omega^2 Y(t) + \omega \left(rmM(t - 1) + ext{FD}\left(t
ight) - ext{MO}\left(t - 1
ight) ext{rmo}\left(t
ight)
ight)
ight) \ &+ lpha \left(\omega \left(ext{I}_{ ext{h}}\left(t
ight) + Y(t)h(t) - Y(t)
ight) - rmM(t - 1) - ext{FD}\left(t
ight) + ext{MO}\left(t - 1
ight) ext{rmo}\left(t
ight) - ext{I}_{ ext{h}}\left(t
ight)
ight) \end{aligned}$$

$$u_{SR} = rac{-v \cdot i_h(t)}{(lpha \cdot \omega + h(t) - 1)}$$

Rerranging

$$u_{SR} = rac{v \cdot i_h(t)}{1 - lpha \cdot \omega - h(t)}$$