浙江工业大学 04/05(二) 高等数学 A 考试试卷 A

子阮,	学院:	班级:	姓名:	学号:	
-----	-----	-----	-----	-----	--

任课教师:

题 号	_	Ш	四	五	六	七	八	总 分
得 分								

-、填空题(每小题4分):

1. 设
$$f(x,y) = \begin{cases} \frac{1}{xy} \sin(x^2 y) & xy \neq 0 \\ 0 & xy = 0 \end{cases}$$
 , 则 $f_x(0,1) = \underline{\hspace{1cm}}$ 。

2.已知
$$z=e^{\frac{y}{x}}$$
,则 $dz=$ ______。

2. 已知
$$z = e^{\frac{y}{x}}$$
 ,则 $dz = \underline{\hspace{1cm}}$ 。
3. 曲线
$$\begin{cases} x = y^2 \\ z = x^2 \end{cases}$$
 上点 (1,1,1) 处的法平面方程为____。

4. 设
$$D:0 \le x \le p$$
, $0 \le y \le \frac{p}{2}$, 则 $\iint_D \sin x \cos y dx dy = \underline{\hspace{1cm}}$ 。

5. 曲线 L 为从原点到点 (1,1) 的直线段,则
$$\int_{L} e^{\sqrt{x^2+y^2}} ds =$$
______。

6.设
$$f(x,y)$$
在 $D:\frac{x^2}{4}+y^2 \le 1$ 上具有连续二阶偏导数, L 是 D 的正向边界,

则
$$\oint_L [3y + f_x(x, y)] dx + f_y(x, y) dy$$
 的值是_____。
7.若 $\lim_{n \to \infty} \left| \frac{c_n}{c_{n+1}} \right| = L \left(0 < L < + \infty \right)$,则幂级数 $\sum_{n=0}^{\infty} c_n (x-1)^n$ 收敛区间_____ (不

考虑端点)。

8.设函数
$$f(x) = x (-1 \le x \le 1)$$
,其周期为 2 的傅氏级数的和函数为 $S(x)$,则 $S(1) =$

二、试解下列各题(每小题6分):

1.设
$$z = f(x^2 - y^2, e^{xy})$$
,其中 $f(u, v)$ 一阶偏导数连续,求: $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial v}$

2. 求函数 $u=2xy-z^2$ 在点(1, - 1,1)处沿方向 $\bar{l}=(1,1,0)$ 的方向导数,并问该函 数沿什么方向的方向导数最大?

三、试解下列各题(每小题6分):

1. 求:
$$\iint_{D} \frac{x^2}{y^2} dx dy$$
 , 其中区域 D 由曲线 $x = 2$, $y = x$, $xy = 1$ 所围成。

2 . 求:
$$\iint_{\Omega} z dx dy dz$$
 其中 Ω :由 $z = \sqrt{1-x^2-y^2}$ 及 $z = x^2+y^2$ 所围成的闭区域。

四、试解下列各题(每小题6分):

- 1. 计算曲线积分 $\int_L (2x^2 + 2xy + 3y) dx (x + y + 1) dy$, 其中 L 是从 O(0,0) 沿曲线 $y = x^2$ 到 A(1,1) 的弧段。
- 2.设有一半径为1(m),高为2(m)的圆柱形容器,盛有1.5(m)高的水,放在离心机上高速旋转,因受离心力的作用,水面呈抛物面形,问当水刚要溢出容器时,液面的最低点距容器底面的距离是多少?

五、(8分)判别级数的收敛性,收敛级数指出是绝对收敛还是条件收敛

1.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} \sin \frac{1}{\sqrt{n}}$$
; 2. $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n}} \ln \frac{n+1}{n-1}$

六、(8分)设曲面 Σ 是由曲线段: $\begin{cases} x=0\\ y=e^z \end{cases}$, $0\leq z\leq 1$,绕 oz 轴旋转而成的下侧,计算曲面积分 $I=\iint_\Sigma x^2 dy dz + y^2 dz dx + 2z dx dy$ 。

七、(8分)求幂级数 $\frac{x}{3} - \frac{x^2}{2 \cdot 3^2} + \frac{x^3}{3 \cdot 3^3} + \dots + (-1)^{n-1} \frac{x^n}{n \cdot 3^n} + \dots$ 的收敛半径、收敛 域以及和函数。

八、(8分)求球面 $\sum : x^2 + y^2 + z^2 - 2ax - 2ay - 2az + 2a^2 = 0$ 上距平面 x + y + z = 0 的最近点与最远点(a > 0),并证明 $\iint_{\Sigma} (x + y + z + \sqrt{3}a)^2 dS \ge 36 \textbf{p} a^4$