INF-BIOx121 2017

RNA-seq differential expression analysis

Arvind Sundaram Sep 18-20, 2017

RNA-seq analysis

Differential expression (DE)

Arvind Sundaram Sep 19, 2017

Differential expression

- * Genes
- Transcripts (Isoforms)
- * Allele specific expression
- Exon level expression

Counting

- * Feature genes, transcript or exon
- * How many reads aligned to each feature of interest?
- * What is the length of the feature?

- Raw count calculated from BAM files using featureCounts, HTSeq, etc
- * Most (all) DE tools would require raw count file and not (pre) scaled data.

Normalisation

- Normalistion within and across samples
- Count gets converted to RPKM, FPKM or TPM
- * RPKM (Reads Per Kilobase Million)

Scaling factor = Total number reads / 1,000,000

RPM = Read count per feature / scaling factor

RPKM = RPM / Feature length in kilo bases

* FPKM (Fragments Per Kilobase Million)

FPM = Fragment count per feature / scaling factor

FPKM = FPM / Feature length in kilo bases

* TPM (Transcripts Per Kilobase Million)

RPK = Read count per feature / Feature length in kilo bases

Scaling factor = sum of RPK / 1,000,000

TPM = RPK / Scaling factor

DESeq2 (or edgeR) is different!!

https://www.youtube.com/watch?v=UFB993xufUU

DESeq2

- * Generalised linear model fit
 - Using negative binomial distortion (aka gamma-Poisson distribution)
- * Empirical Bayes shrinkage
 - * for within-group variability, i.e., variability between replicates
- Fold change estimation
- * Not just pair-wise comparison. Allows for complicated nested designs to be compared

DESeq2

- plotDispEsts(): To look at the dispersion plots
- plotPCA(): To find outliers
- * plotMA(): Exploring DE results

Multiple hypothesis testing and FDR

Multiple hypothesis testing

- * Thousands of genes = thousands of hypothesis tests (simultaneously)
- Increased chance of false positives! (Type I error)
 - * e.g. you test for differential expression in 1000 genes that are not differentially expressed
 - * You would expect $1000 \times 0.05 = 50$ of them to have a *P*-value < 0.05
- Individual P-values not useful: Need multiple testing statistic instead

False Discovery date (Benjamini & Hochberg 1995)

- * The expected proportion of Type I errors among the rejected hypotheses
 - * i.e. the proportion of false positives
 - Tends to be conservative if many genes are DE
 - * FDR = 0.05 common for exploratory/broad scope studies
 - * FDR < 0.05 common for medical applications and hunts for candidate genes