МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

Кафедра «Комп'ютерні інформаційні технології»

Лабораторна робота №2

з дисципліни «Організація комп'ютерних мереж»

на тему: «Передача даних віддаленому абоненту з використанням модема»

Виконав: студент гр.П31911 Сафонов Д.Є. Прийняв: Івченко Ю.М. Тема. Передача даних віддаленому абоненту з використанням модема.

Мета. Отримати практичні навички з передачі даних віддаленому абоненту. **Хід роботи.**

- 1. Ознайомитися з основними AT командами керування модемом. Ознайомитися з роботою програми HyperTerminal.
- 2. Виконати передачу даних, використовуючи орендовану лінію.
- 3. Виконати передачу даних, використовуючи комутовану лінію.

Основні АТ команди

Перед кожною командою повинен бути префікс АТ.

Xn – встановлює набір результуючих кодів і опцій, які використовуються при виконанні дзвінка (попередньо обумовлено X5). Якщо ввімкнені результуючі коди контролю помилок (X5, X6, X7), результуюче повідомлення буде відформатовано у наступному вигляді:

X5: CONNECT <Швидкість порту (DTE)>/<Швидкість в лінії>/<Рівень контролю помилок> Приклади: Для X5 -

- CONNECT 38400/V.32 9600T/MNP5
- CONNECT 57600/V.32b 14400/V.42b

Рівень контролю помилок - від NONE (відсутній) до V.42b.

- Zn переустановлює модем і завантажує profile користувача n (n=0-3).
- Z4 переустановлює модем і завантажує фабричні установки, а також встановлює фабричні установки як такі, що попередньо обумовлені при ввімкнені живлення. Zn також встановлює profile n, що приймається при ввімкнені живлення.
- \$ коротка допомога з основного набору команд АТ.
- &\$ коротка допомога з розширеного набору команд АТ&.
- *\$ коротка допомога з розширеного набору команд АТ*.

Приклад профайлу зі змінами, робота програми HyperTerminal 🏶 lr2 - HyperTerminal Файл Правка Вид Вызов Передача Справка D = 3 1 1 2 2 at&u2 Profile 1 Settings..... B0 E1 L4 M1 N5 Q0 U1 X5 &B1 &C1 &D0 &G0 &H3 &J0 &K4 &L1 &M0 &N0 &P0 &R1 &30 &X0 2/1 *B0 *C0 *D0 *E0 *F0 *G0 *I0 *L0 *M0 *P9 *Q2 *S0 \$05=008 \$06=003 \$07=060 \$08=002 \$09=006 \$10=007 \$11=070 \$12=000 \$13=000 \$14=004 \$15=130 \$16=000 \$17=018 \$18=000 \$19=000 \$20=002 \$21=050 \$22=000 \$23=105 \$24=138 \$25=000 \$31=017 \$32=019 \$33=255 \$34=030 \$31=017 \$32=019 \$33=255 \$34=030 \$35=034 \$36=000 \$42=000 \$43=008 \$44=000 \$44=000 \$44=000 \$44=000 \$45=100 \$46=028 \$47=064 \$48=000 \$54=000 \$55=00 \$80-800 \$81-800 \$82-843 \$83-813 504=010 OK at&12 OK at*m1 57600 B-N-1 АВТОВЫ 60р ремя подключения: 0:10:17 Покальный дис. 🧞 r2 - HyperTermi... 🗢 покальный дис. # пуск SAMSUNG

Контрольні питання

1. Система телеобробки.

Система телеобробки – сукупність технічних і програмних засобів, що призначена для обробки на ЕОМ даних, переданих через канали зв'язку. Типова конфігурація системи телеобробки наступна: абоненти (користувачі, технічні об'єкти) підключаються до ЕОМ за допомогою каналів зв'язку.

2. Стандарт RS-232C (V.24, V.28).

Стандарт RS-232C (RS – Recommended Standart; 232 – серійний номер даного стандарту) еквівалентний:

- за описом ланцюгів обміну рекомендації V.24;
- за характеристиками електричного сигналу рекомендації V.28;
- за механічними характеристиками опису 25 (9) контактного інтерфейсного роз'єму DTE(Data Terminal Equipment термінальний пристрій) DCE(Data Communication Equipment апаратура передачі даних (АПД)).

3. Канали зв'язку. Пропускна спроможність каналу (С, Стах).

• Канал зв'язку складається з лінії зв'язку, по якій передаються сигнали, і АПД, що перетворює дані в сигнали, що відповідають типу лінії зв'язку (каналу). Склад каналу зв'язку представлений нижче, де КОД — кінцеве обладнання даних, яке передає і приймає послідовності бітів, що складають дані.

• Пропускна спроможність каналу залежить від смуги частот лінії зв'язку і відношення потужностей сигналу і шуму. Максимальна пропускна спроможність каналу, побудованого на основі лінії із смугою частот F і відношенням сигнал-шум (потужність) P_C/P_{III} , складає

$$C_{\text{max}} = F * \log_2(1 + P_C/P_{\text{III}})$$

(бітів за секунду).

Значення ($1+P_C/P_{III}$) визначає число рівнів сигналу, що може бути сприйнято приймачем. Так, якщо відношення $P_C/P_{III} \ge 3$, тоді одиничний сигнал може переносити чотири значення, тобто $\log_2(1+3)=2$ біти інформації.

При передачі даних широко використовуються двійкові сигнали, що приймають значення 0 і 1. Мінімальна тривалість такту, з яким можуть передаватися сигнали по каналу зі смугою частот F, дорівнює $T_{\min}=1/(2F)$. Якщо імовірність спотворення символів 0 і 1 через перешкоди однакова і дорівнює p, то число двійкових символів, які можна безпомилково передавати по каналу в секунду

$$C = 2F[1+p*log_2p+(1-p)*log_2(1-p)].$$

Цей вираз визначає пропускну спроможність двійкового каналу. Величина в квадратних дужках визначає частку двійкових символів, які передаються по каналу з частотою 2F без спотворень. Якщо перешкоди відсутні, ймовірність перекручування символу p=0 і пропускна спроможність C=2F; якщо ймовірність перекручування p=0,5, то пропускна спроможність C=0. Найпоширеніший тип каналу — телефонний із смугою пропускання 3,1 к Γ ц і діапазоном частот від $f_H=0,3$ до $f_B=3,4$ к Γ ц. Комутований телефонний канал забезпечує швидкість передачі даних C=33600 біт/с, а некомутований — до 64000 біт/с.

4. Типи каналу (дуплексний, напівдуплексний, симплексний).

- Симплексний дозволяє передавати дані тільки в одному напрямку прямому або зворотному один абонент передає, а інший приймає дані.
- Напівдуплексний забезпечує почергову передачу даних у двох напрямках по черзі. Модеми на кожнім кінці каналу встановлюються в стан прийому або передачі за допомогою сигналів управління.
- Дуплексний дозволяє передавати дані одночасно в двох напрямках. Це забезпечується за рахунок використання чотиридротової лінії зв'язку (два дроти служать для передачі, а два інших для прийому даних), або двох смуг частот.

5. Смуга частот F. Питома вартість.

- Смуга частот $F=f_B-f_H$ визначає діапазон частот $[f_B, f_H]$, де f_B і f_H верхня і нижня межа частот, що ефективно передаються по лінії. Смуга частот залежить від типу лінії і її довжини.
- Питома вартість лінії визначається витратами на створення лінії довжиною 1км. Для передачі даних на невеликі відстані використовуються в основному низькочастотні дротяні лінії, на великій відстані високочастотні лінії: коаксіальні кабелі, волоконнооптичні і радіорелейні лінії. Радіозв'язок застосовується для організації як місцевого, так і дальнього зв'язку.

6. Модем. Способи модуляції.

- Коли канал має різко обмежену смугу частот, як, наприклад, радіоканал, передача сигналів повинна виконуватися в цій смузі і переніс сигналу в задану смугу виконується за допомогою модуляції. В цьому випадку між кінцевим устаткуванням даних, що працює з двійковими сигналами, і каналом встановлюється модем модулятор і демодулятор. Модулятор переміщує спектр первинного сигналу в околицю несущої частоти f₀. Демодулятор виконує над сигналом зворотне перетворення, формуючи з модульованого сигналу імпульсний двійковий сигнал.
- Способи модуляції підрозділяються на аналогові і дискретні.
 - До аналогового відносяться амплітудна, частотна і фазова модуляції.
 - При амплітудній виконується модуляція амплітуди несущої частоти первинним сигналом.
 - При частотній модуляції значення 0 і 1 двійкового сигналу передаються сигналами з різною частотою $-f_0$ і f_1 .
 - При фазовій модуляції значенням 0 і 1 відповідають сигнали частоти f_0 з різною фазою.
 - Дискретні способи модуляції застосовуються для перетворення аналогових сигналів, наприклад, мовних у цифрові. Для цих цілей найбільш широко використовуються амплітудно-імпульсна, кодово-імпульсна і частотно-імпульсна модуляції.

7. Асинхронна і синхронна передача даних.

- При синхронній передачі даних передавач та приймач синхронізуються та використовують загальний синхронізуючий сигнал. Передавач надсилає дані, а одержувач підраховує кількість біт в отриманих даних. Між даними немає прогалин. У цьому методі сигнали синхронізації мають бути точними для ефективної передачі даних. Цей метод швидший, ніж асинхронна передача даних.
- При асинхронній передачі даних передавач та приймач працюють на різних тактових частотах. Кожен байт даних вбудовується в початковий та кінцевий біти. 0 означає початковий біт, а 1 означає кінцевий біт.

8. Корекція помилок. Стиснення інформації.

- Кодування переданих даних виконується в основному для підвищення завадостійкості даних. Так, первинні коди символів можуть бути представлені в завадостійкій формі— з використанням кодів Хеммінга, що забезпечують виявлення і виправлення помилок у переданих даних. Останнім часом функція підвищення достовірності переданих даних покладається на кінцеве обладнання даних і забезпечується за рахунок введення інформаційної надмірності в передані повідомлення.
- Рекомендація V.42 протокол
 - b виявлення помилок із використанням циклічної перевірки надмірності.
 - с виправлення помилок із використанням автоматичної повторної передачі даних.
- SREJ (Selective REJect (вибіркова відмова)) дозволяє перевідправити тільки частину даних, яка не пройшла перевірку, замість усього пакету даних, це зменшує витрати часу та енергії.

9. Стан лінії зв'язку (ATI2, CONNECT).

Такий звіт про стан зв'язку дуже корисний для з'ясування того, якому стані перебуває зв'язок і що з нею гаразд, якщо, звичайно, вона взагалі ще не урвалася. Далі наводяться пояснення щодо кожного з цих пунктів та термінології, використовується у такому звіті. **Chars** (символи) - символи передані між портом DTE та модемом.

Octets (октети) - байти, що передаються між модемами, оброблені за допомогою протоколу контролю помилок, можливо стислі. Ефективність стиснення даних можна визначити за відношенню числа знаків до октетів.

Block (блок) - блоки октетів, обрамлені кадрами, тобто записами для перевірки коректності передачі.

Chars Sent (Символів надіслано) - число символів, надісланих з порту DTE на модем. **Chars Received** (Символів отримано) - число символів, отриманих модемом.

Octets Sent (октетів надіслано) - число байтів даних, надісланих на віддалений модем.

Octets Received (октетів отримано) - число байтів, отриманих від віддаленого модему.

Blocks Send (блоків надіслано) - число блоків, надісланих на віддалений модем.

Blocks Received (блоків отримано) - число блоків, отриманих від віддаленого модему. **Blocks Resent** (блоків надіслано повторно) - число блоків, надісланих повторно через наявність у них помилки. Якщо кількість таких повторних передач занадто велика, то причиною цього може бути погана якість зв'язку на лінії або несумісність протоколів.

Max Outstanding (максимальне проходження) - параметр протоколу корекції помилок. Максимальне число блоків, що посилаються або одержуються без підтвердження.

Max Block Size (максимальний розмір блоку) - параметр протоколу корекції помилок.

Максимальне число октетів у блоці. Справжній розмір блоку може бути меншим.

Retrains Requested (запитів повторного встановлення зв'язку) - число, що показує, скільки разів локальний модем посилав до віддаленого модему запити повторного встановлення зв'язку. Кожен такий запит ϵ показником поганого прийому.

Retrains Granted (виконано повторних встановлень зв'язку) - число, що показу ϵ , скільки разів було виконано повторне встановлення зв'язку, запитане віддаленим модемом.

Link Duration (тривалість зв'язку) - час зв'язку у хвилинах.

T401 Timeouts and T402 Timeouts (перерви T401 I T402). Вони необхідні для перевірки зв'язку, що виконується виробником. T401 та T402 — це таймери, що використовуються в протоколах MNP4 або V.42. T402 підраховує стани, коли модем, що перебуває на зв'язку простоює, тобто немає даних ні передачі, ні прийому.

FCS Errors (помилки контрольної суми кадру (Frame Check Sum)) - число блоків, отриманих з помилками. Велика кількість помилок означає поганий зв'язок лінії.

Round Trip Delay (Час затримки) - час, потрібний для пересилання сигналу від передавача до отримувача, а потім у зворотному напрямку, виражена в Т-одиницях(1/2400с.). Зазвичай має бути в діапазоні 0-100. Супутниковий зв'язок має затримку близько 1300 т.

Xmitter Underrun (недовантаження передавача) - скільки разів модем не встигав вчасно підготувати дані для передачі.

Receiver Overrun (переповнення приймача) - скільки разів модем не встигав вчасно забрати дані у приймача.

Last Speed/Protocol (остання швидкість/протокол) - швидкість та протокол зв'язку. Може відрізнятися від початкової швидкості через виконані повторні встановлення зв'язку та підвищення чи зниження швидкості. Зміна швидкості — це ключова інформація про зміну стану лінії.

Disconnect Reason (причина роз'єднання) - Можливі причини:

- Local Hang Up Місцевий модем повісив трубку
- Remote Hang Up Видалений модем повісив трубку
- Carrier Lost Втрата (фізична) лінії зв'язку
- On Line На лінії (роз'єднання ще не відбулося, модем знаходиться на зв'язку)
- Resent Expiration Вичерпання числа спроб повторної передачі
- Protocol Error Помилка протоколу передачі
- Break Timeout Розрив після закінчення гранично допустимого часу переривання
- DTR Dropped Вимкнення сигналу DTR(Data Terminal Ready)
- Carrier Lost 1 Втрата зв'язку 1 (Немає відповіді під час спроби повторного встановлення зв'язку)
- Carrier Lost 2 Втрата зв'язку 2 (Видалений модем повісив трубку, чути короткі гудки)

10. Технологія передачі даних з використанням модему.

- 1. Виконати з'єднання абонентів вручну та з автоматичним "привітанням". Послідовність команд для автоматичного привітання для модема в режимі:
 - запиту AT&V2&L2&W0Z0
 - &V2 profile 1
 - &L2 модем приєднаний до 4-дротової орендованої лінії
 - &W0Z0 щоб привітання відбувалося автоматично при ввімкненні живлення, треба зберегти конфігурацію для орендованої лінії в profile, що завантажується автоматично при ввімкненні живлення
 - відповіді AT&V2&L2*M1&W0Z0
 - *M1 При роботі на орендованій лінії модем буде здійснювати "привітання" в режимі відповіді.
- 2. Для встановлення зв'язку між ПК:
 - АТА(відповісти на дзвінок) на ПК1
 - АТD на ПК2
- 3. +++ Перейти в командний режим
- 4. ATI2 Аналіз роботи