Table VIII Critical Values of X for the Sign Test

		$\alpha = .005$ $\alpha = .01$		$\alpha = .01$ $\alpha = .02$		$\alpha = .025$ $\alpha = .05$	One tail $\alpha = .05$ Two tail $\alpha = .10$		
n	Lower critical value	Upper critical value	Lower critical value	Upper critical value	Lower critical value	Upper critical value	Lower critical value	Upper critical value	
1	_				_				
2	_	_	_	_	_	_	_	_	
3	_	_	_	_	_	_	_	_	
4	_	_	_	_	_	_	_	_	
5	_	_	_	_	_	_	0	5	
6	_	_	_	_	0	6	0	6	
7	_	_	0	7	0	7	0	7	
8	0	8	0	8	0	8	1	7	
9	0	9	0	9	1	8	1	8	
10	0	10	0	10	1	9	1	9	
11	0	11	1	10	1	10	2	9	
12	1	11	1	11	2	10	2	10	
13	1	12	1	12	2	11	3	10	
14	1	13	2	12	2	12	3	11	
15	2	13	2	13	3	12	3	12	
16	2	14	2	14	3	13	4	12	
17	2	15	3	14	4	13	4	13	
18	3	15	3	15	4	14	5	13	
19	3	16	4	15	4	15	5	14	
20	3	17	4	16	5	15	5	15	
21	4	17	4	17	5	16	6	15	
22	4	18	5	17	5	17	6	16	
23	4	19	5	18	6	17	7	16	
24	5	19	5	19	6	18	7	17	
25	5	20	6	19	7	18	7	18	

Source: D.~B.~Owen, Handbook of Statistical Tables. © 1962 by Addison-Wesley Publishing Company, Inc.~Reprinted by permission of Addison Wesley Longman.

 Table IX
 Critical Values of T for the Wilcoxon Signed-Rank Test

n	One-tailed $\alpha = .005$ Two-tailed $\alpha = .01$	One-tailed $\alpha = .01$ Two-tailed $\alpha = .02$	One-tailed $\alpha = .025$ Two-tailed $\alpha = .05$	One-tailed $\alpha = .05$ Two-tailed $\alpha = .10$		
1	_	_	_	_		
2	_	_	_	_		
3	_		_	_		
4	_	_	_	_		
5	_		_	1		
6	_	_	1	2		
7	_	0	2	4		
8	0	2	4	6		
9	2	3	6	8		
10	3	5	8	11		
11	5	7	11	14		
12	7	10	14	17		
13	10	13	17	21		
14	13	16	21	26		
15	16	20	25	30		

Source: Some Rapid Approximate Statistical Procedures, 1964. Reprinted with permission of Lederle Pharmaceutical Division of American Cyanamid Company, Philadelphia, PA.

Table X Critical Values of *T* for the Wilcoxon Rank Sum Test

a. One-tailed $\alpha = .025$; Two-tailed $\alpha = .05$

n_1		3		4	:	5		6	,	7	:	8		9	1	10
	T_L	T_U														
3	5	16	6	18	6	21	7	23	7	26	8	28	8	31	9	33
4	6	18	11	25	12	28	12	32	13	35	14	38	15	41	16	44
5	6	21	12	28	18	37	19	41	20	45	21	49	22	53	24	56
6	7	23	12	32	19	41	26	52	28	56	29	61	31	65	32	70
7	7	26	13	35	20	45	28	56	37	68	39	73	41	78	43	83
8	8	28	14	38	21	49	29	61	39	73	49	87	51	93	54	98
9	8	31	15	41	22	53	31	65	41	78	51	93	63	108	66	114
10	9	33	16	44	24	56	32	70	43	83	54	98	66	114	79	131

b. One-tailed $\alpha = .05$; Two-tailed $\alpha = .10$

n_1		3	,	4	:	5		6		7		8		9		10
	T_L	T_U														
3	6	15	7	17	7	20	8	22	9	24	9	27	10	29	11	31
4	7	17	12	24	13	27	14	30	15	33	16	36	17	39	18	42
5	7	20	13	27	19	36	20	40	22	43	24	46	25	50	26	54
6	8	22	14	30	20	40	28	50	30	54	32	58	33	63	35	67
7	9	24	15	33	22	43	30	54	39	66	41	71	43	76	46	80
8	9	27	16	36	24	46	32	58	41	71	52	84	54	90	57	95
9	10	29	17	39	25	50	33	63	43	76	54	90	66	105	69	111
10	11	31	18	42	26	54	35	67	46	80	57	95	69	111	83	127

Source: Some Rapid Approximate Statistical Procedures, 1964. Reprinted with the permission of Lederle Pharmaceutical Division of American Cyanamid Company, Philadelphia, PA.

Table XI Critical Values for the Spearman Rho Rank Correlation Coefficient Test

	One-tailed α									
	.05	.025	.01	.005						
		Two-ta	iled α							
n	.10	.05	.02	.01						
5	±.900	_	_	_						
6	±.829	$\pm .886$	±.943	_						
7	±.714	$\pm .786$	$\pm .893$	±.929						
8	±.643	±.738	±.833	$\pm .881$						
9	±.600	$\pm .700$	$\pm .783$	$\pm .833$						
10	±.564	$\pm .648$	±.745	$\pm .794$						
11	±.536	$\pm .618$	$\pm .709$	$\pm .755$						
12	±.503	$\pm .587$	$\pm .678$	±.727						
13	±.475	$\pm .566$	$\pm .672$	$\pm .744$						
14	±.456	$\pm .544$	$\pm .645$	$\pm .714$						
15	±.440	±.524	$\pm .622$	$\pm .688$						
16	±.425	$\pm .506$	$\pm .601$	$\pm .665$						
17	±.411	$\pm .490$	$\pm .582$	$\pm .644$						
18	±.399	$\pm .475$	±.564	$\pm .625$						
19	±.388	$\pm .462$	$\pm .548$	$\pm .607$						
20	±.377	$\pm .450$	±.534	$\pm .591$						
21	±.368	±.438	$\pm .520$	$\pm .576$						
22	±.359	±.428	$\pm .508$	$\pm .562$						
23	±.351	±.418	±.496	±.549						
24	±.343	$\pm .409$	±.485	$\pm .537$						
25	±.336	$\pm .400$	±.475	$\pm .526$						
26	±.329	$\pm .392$	±.465	±.515						
27	±.323	±.384	±.456	$\pm .505$						
28	±.317	$\pm .377$	±.448	±.496						
29	±.311	$\pm .370$	$\pm .440$	±.487						
30	±.305	±.364	±.432	±.478						

Table XII Critical Values for a Two-Tailed Runs Test with $\alpha=.05$

			1	1							
n_1 n_2	5	6	7	8	9	10	11	12	13	14	15
2	_	_	_	_	_	_	_	2	2	2	2
								6	6	6	6
3	_	2	2	2	2	2	2	2	2	2	3
		8	8	8	8	8	8	8	8	8	8
4	2	2	2	3	3	3	3	3	3	3	3
	9	9	10	10	10	10	10	10	10	10	10
5	2	3	3	3	3	3	4	4	4	4	4
	10	10	11	11	12	12	12	12	12	12	12
6	3	3	3	3	4	4	4	4	5	5	5
	10	11	12	12	13	13	13	13	14	14	14
7	3	3	3	4	4	5	5	5	5	5	6
	11	12	13	13	14	14	14	14	15	15	15
8	3	3	4	4	5	5	5	6	6	6	6
	11	12	13	14	14	15	15	16	16	16	16
9	3	4	4	5	5	5	6	6	6	7	7
	12	13	14	14	15	16	16	16	17	17	18
10	3	4	5	5	5	6	6	7	7	7	7
	12	13	14	15	16	16	17	17	18	18	18
11	4	4	5	5	6	6	7	7	7	8	8
	12	13	14	15	16	17	17	18	19	19	19
12	4	4	5	6	6	7	7	7	8	8	8
	12	13	14	16	16	17	18	19	19	20	20
13	4	5	5	6	6	7	7	8	8	9	9
	12	14	15	16	17	18	19	19	20	20	21
14	4	5	5	6	7	7	8	8	9	9	9
	12	14	15	16	17	18	19	20	20	21	22
15	4	5	6	6	7	7	8	8	9	9	10
	12	14	15	16	18	18	19	20	21	22	22

Source: Frieda S. Swed and C. Eisenhart, "Tables for Testing Randomness of Grouping in a Sequence of Alternatives," The Annals of Statistics 14(1943). Reprinted with permission of the Institute of Mathematical Statistics.