

中山大学理工学院 <u>2012</u>学年 <u>1</u>学期期末 11 级微电子 2+2 模拟电子技术试卷(B)

年级	专业	姓名_		_学号_	
老师姓名:			考试成绩	:	

i. Choose the best answer (20%)

- 1. The majority carriers in n-type materials are____, while the majority carriers in p-type materials are____. ()
- A. neutron, holes B. holes, electrons C. electrons, holes
- 2. For the network shown below, $V_R = ___.(V_D = 0.7V, V_Z = 6V)$ (

- A. $V_R = 7.4V$
- B. $V_R = 4.6V$
- C. $V_R = 6.7V$
- D. $V_R = 9.9V$
- 3. Which of the followings is a pnp transistor of Si? ()

- 4. A transistor works at linear amplification region.if I_B increased to 20uA from 10uA and Ic increased to 1.5mA from1mA, $\beta \approx$ _____. ()

 A. 83 B. 91 C. 50
- 5. Which of the following statements is not correct? ()
- A. FETs are voltage controlled devices whereas BJTs are current controlled devices.
- B. FETs have a higher input impedance, but BJTs have higher gains.
- C. FETs are less sensitive to temperature variations than BJTs.
- D Because of FETs' construction, they are more difficult integrated on ICs than BJTs.
- 6. For the FET shown below, it is a____ ()

- A. n-channel depletion-type MOSFET B.p-channel enhancement-type MOSFET
- C. n-channel enhancement-type MOSFET D.n-channel MESFET

7. Determine the output waveform for the network shown below

8. For the figures shown below, which package is used for high power? ()

B.

9. For the Comparator shown below, the LED will go on when V_i =___. ()

A. +6.5V

A.

$$C + 12V$$

Fig.4

10. For the circuit shown below , please determine the bode plot of frequency response: ()

ii. **fill in the blanks (15%)**

- 1. Operational amplifier or op-amp, is a very _____(high or low) gain differential amplifier with a _____(high or low) input impedance and _____(high or low)output impedance. Operational amplifier can amplify the ______(differential or common) signal while reject the ______ (differential or common) signal at the two inputs. In order to control the gain of an op-amp it must have
- 2. For the circuit shown in Fig.5, if $V_A = 10V$, $V_B = 0V$, $V_{CE} = 0V$, $V_{out} = ___V$. (2 point)

- 3. A popular application use_____ to build active filter circuits, which uses _____ (positive or negative) freeback. The great advantage of active filter circuit, compared with passive filtering ,is that voltage gain and cut-off frequency _____ (will or won't) change with the load
- 4. There are four basic ways of connecting the feedback signal in Fig 6.
- A. voltage-series feedback
- B. voltage-shunt feedback
- C. current-series feedback
- D. current-shunt feedback
- (a)is ____. (b)is ___
- (c)is _____. (d)is _____. (please filled with A,B,C,D)

iii. essay questions (65%)

1. Calculate the constant current I in the circuit shown below, $V_{BE} = 0.7 \text{ V}$ (5%)

2. (a) Which circuit is unity follower? Please give the reasons.(5 %) [tips: use the freeback theory to explain]

 V_1

В

(b)Which circuit is inverting amplifier? Please give the reasons and provide the relational expression of V_1 and V_o . (5%)

- 3. (15%) A BJT cascade amplifier is shown below. Assuming $V_{\text{BE(on)}}$ is 0.7 V,
 - (1) Calculate the dc bias voltages and collector current

A

- (2) Calculate the voltage gain of each stage
- (3) Calculate the overall ac voltage gain without loading and with 1-k Ω loading resistance

4. Fill in the blank areas (10%)

Logic circuit	Truth table				Function
V _{DD} ♣	4%				1%
$A \circ - \circ Q_{PA} B \circ - \circ Q_{PB}$ $A \circ - \circ Q_{NA} Q_{NA}$ $B \circ - \circ Q_{NB}$		A	В	Y	
		0	0		
		0	1		
		1	0		
$B \circ \longrightarrow Q_{NB}$		1	1		
÷			•	1	
4%					1%
		A	В	Y	
		0	0	0	
		0	1	1	
		1	0	1	
		1	1	1	

- 5. Op-Amp application circuits (20%)
- (1) Find the relationship between V_1 and V_o (5%)

- (2) For the instrumentation amplifier circuit shown below, $R = 500 \Omega$, $R_P = 5 \text{ k}\Omega$, and all operaional amplifiers are ideal. (15%)
 - a. Find the relationship between V_1, V_2 and V_{o2}
 - b. Find the relationship between V_1, V_2 and V_{o1}
 - c. Find the relationship between V_{o1} , V_{o2} and V_{o}
 - d. Find the value of V_o if $V_2 = 5$ V and $V_1 = 10$ V

6. A CMOS circuit with negative feedback configuration is shown below. Assuming the amplifier is ideal and all enhancement MOSFTEs are working in saturation mode. Ignoring the channel length modulation effect, please find the values of I_1 and I_2 . (5%)

The End