

In the Claims:

1. **(currently amended):** Plane-parallel structures of silicon/silicon oxide, ~~obtainable obtained~~ by heating plane-parallel structures of SiO_y in an oxygen-free atmosphere at a temperature above 400 °C, wherein $0.70 \leq y \leq 1.8$, or plane-parallel structures of silicon/silicon oxide, ~~obtainable obtained~~ by heating plane-parallel structures of SiO_x in an oxygen-free atmosphere at a temperature above 400 °C, wherein $0.03 \leq x \leq 0.95$, ~~, especially $0.05 \leq x \leq 0.50$, very especially $0.10 \leq x \leq 0.30$.~~
2. **(currently amended):** A plane-parallel pigment, comprising a silicon/silicon oxide layer, ~~obtainable obtained~~ by heating a SiO_y layer in an oxygen-free atmosphere at a temperature above 400 °C, wherein $0.70 \leq y \leq 1.8$, or a plane-parallel pigment, comprising a silicon/silicon oxide layer, ~~obtainable obtained~~ by heating plane-parallel structures of SiO_x in an oxygen-free atmosphere at a temperature above 400 °C, wherein $0.03 \leq x \leq 0.95$, ~~, especially $0.05 \leq x \leq 0.50$, very especially $0.10 \leq x \leq 0.30$.~~
3. **(currently amended):** A pigment according to claim 2, wherein the silicon/silicon oxide layer~~[;]~~, ~~obtainable obtained~~ by heating a SiO_y layer in an oxygen-free atmosphere at a temperature above 400 °C, forms the core of the pigment, wherein $0.70 \leq y \leq 1.8$.
4. **(original):** A pigment according to claim 3, comprising a further layer of a dielectric material having a "high" refractive index.
5. **(currently amended):** A pigment according to claim 4, wherein the dielectric material is selected from the group consisting of silicon carbide (SiC), zinc sulfide (ZnS), zinc oxide (ZnO), zirconium oxide (ZrO_2), titanium dioxide (TiO_2), carbon, indium oxide (In_2O_3), indium tin oxide (ITO), tantalum pentoxide (Ta_2O_5), cerium oxide (CeO_2), yttrium oxide (Y_2O_3), europium oxide (Eu_2O_3), iron oxides such as iron(II)/iron(III) oxide (Fe_3O_4) and iron(III) oxide (Fe_2O_3), hafnium nitride (HfN), hafnium carbide (HfC), hafnium oxide (HfO_2), lanthanum oxide (La_2O_3), magnesium oxide (MgO), neodymium oxide (Nd_2O_3), praseodymium oxide (Pr_6O_{11}), samarium oxide (Sm_2O_3), antimony trioxide (Sb_2O_3), silicon monoxides (SiO), selenium trioxide (Se_2O_3), tin oxide (SnO_2), tungsten trioxide (WO_3) and combinations thereof~~, especially TiO_2 , ZrO_2 , Fe_2O_3 ,~~

~~Fe₃O₄, Cr₂O₃, ZnO, or a mixture of these oxides, or an iron titanate, an iron oxide hydrate, a titanium suboxide or a mixture or mixed phase of these compounds.~~

6. **(currently amended):** A pigment according to claim 2 comprising in this order:
 - (a) a silicon/silicon oxide layer obtainable obtained by heating a SiO_y layer in an oxygen-free atmosphere at a temperature above 400 °C,
 - (b) a reflective layer, especially a metal layer, and
 - (c) a silicon/silicon oxide layer obtainable obtained by heating a SiO_y layer in an oxygen-free atmosphere at a temperature above 400 °C, wherein 0.70 ≤ y ≤ 1.8.
7. **(currently amended):** A pigment according to claim 2, wherein the pigment comprises in this order:
 - (a2) a silicon/silicon oxide layer obtainable obtained by heating a SiO_{0.70-0.99} layer in an oxygen-free atmosphere at a temperature above 400 °C,
 - (b2) a silicon/silicon oxide layer obtainable obtained by heating a SiO_{1.00-1.80} layer in an oxygen-free atmosphere at a temperature above 400 °C, and
 - (c2) a silicon/silicon oxide layer obtainable obtained by heating a SiO_{0.70-0.99} layer in an oxygen-free atmosphere at a temperature above 400 °C,
or
the pigment comprises in this order:
 - (a3) a silicon/silicon oxide layer obtainable obtained by heating a SiO_{1.00-1.80} layer in an oxygen-free atmosphere at a temperature above 400 °C,
 - (b3) a silicon/silicon oxide layer obtainable obtained by heating a SiO_{0.70-0.99} layer in an oxygen-free atmosphere at a temperature above 400 °C, and
 - (c3) a silicon/silicon oxide layer obtainable obtained by heating a SiO_{1.00-1.80} layer in an oxygen-free atmosphere at a temperature above 400 °C.
8. **(currently amended):** A pigment according to claim 2, wherein the pigment comprises in this order:
 - (a4) a silicon/silicon oxide layer obtainable obtained by heating a SiO_{0.03-0.69} layer in an oxygen-free atmosphere at a temperature above 400 °C,
 - (b4) a silicon/silicon oxide layer obtainable obtained by heating a SiO_{1.00-1.8} layer in an oxygen-free atmosphere at a temperature above 400 °C, and

(c4) a silicon/silicon oxide layer obtainable obtained by heating a $\text{SiO}_{0.03-0.69}$ layer in an oxygen-free atmosphere at a temperature above 400 °C and optionally further layers,

or

the pigment comprises in this order:

(a5) a silicon/silicon oxide layer obtainable obtained by heating a $\text{SiO}_{0.03-0.69}$ layer in an oxygen-free atmosphere at a temperature above 400 °C,

(b5) a silicon/silicon oxide layer obtainable obtained by heating a $\text{SiO}_{0.70-0.99}$ layer in an oxygen-free atmosphere at a temperature above 400 °C, and

(c5) a silicon/silicon oxide layer obtainable obtained by heating a $\text{SiO}_{0.03-0.69}$ layer in an oxygen-free atmosphere at a temperature above 400 °C and optionally further layers,

or

the pigment comprises in this order:

(a6) a silicon/silicon oxide layer obtainable obtained by heating a $\text{SiO}_{0.70-0.99}$ layer in an oxygen-free atmosphere at a temperature above 400 °C,

(b6) a silicon/silicon oxide layer obtainable obtained by heating a $\text{SiO}_{0.03-0.69}$ layer in an oxygen-free atmosphere at a temperature above 400 °C, and

(c6) a silicon/silicon oxide layer obtainable obtained by heating a $\text{SiO}_{0.70-0.99}$ layer in an oxygen-free atmosphere at a temperature above 400 °C and optionally further layers,

or

the pigment comprises in this order:

(a7) a silicon/silicon oxide layer obtainable obtained by heating a $\text{SiO}_{1.00-1.80}$ layer in an oxygen-free atmosphere at a temperature above 400 °C,

(b7) a silicon/silicon oxide layer obtainable obtained by heating a $\text{SiO}_{0.03-0.69}$ layer in an oxygen-free atmosphere at a temperature above 400 °C, and

(c7) a silicon/silicon oxide layer obtainable obtained by heating a $\text{SiO}_{1.00-1.80}$ layer in an oxygen-free atmosphere at a temperature above 400 °C and optionally further layers.

9. **(currently amended):** A composition comprising a high molecular weight organic material and from 0.01 to 80 % by weight, ~~preferably from 0.1 to 30 % by weight~~, based on the high molecular weight organic material, of a pigment according to ~~any one of claim[[s]] 2, to 8.~~
10. **(currently amended):** A cosmetic preparation or formulation comprising from 0.0001 to 90 % by weight of the plane-parallel structures of silicon/silicon oxide according to claim[[s]] 1 or ~~the~~

~~pigment according to any one of claims 2 to 8 and from 10 to 99.9999 % of a cosmetically suitable carrier material, based on the total weight of the cosmetic preparation or formulation.~~

11. **(currently amended):** Use of a pigment according to any one of claims 2 to 8, in A method for imparting color characterized by the step of adding a pigment according to claim 2 to ink-jet printing materials, for dyeing textiles, for pigmenting surface coatings, printing inks, plastics, cosmetics, glazes for ceramics and glass.
12. **(original):** A method of producing plane-parallel structures of silicon/silicon oxide, comprising the steps:
 - a) vapour-deposition of a separating agent onto a movable carrier to produce a separating agent layer,
 - b) vapour-deposition of an SiO_y layer onto the separating agent layer,
 - c) dissolution of the separating agent layer in a solvent,
 - d) separation of the SiO_y from the solvent, wherein $0.70 \leq y \leq 1.8$, and
 - e) heating the SiO_y in an oxygen-free atmosphere to a temperature above 400°C .
13. **(new):** Plane-parallel structures of silicon/silicon oxide according to claim 1, obtained by heating plane-parallel structures of SiO_x in an oxygen-free atmosphere at a temperature above 400°C , wherein $0.05 \leq x \leq 0.50$.
14. **(new):** Plane-parallel structures of silicon/silicon oxide according to claim 13, wherein $0.10 \leq x \leq 0.30$.
15. **(new):** A plane-parallel pigment according to claim 2, comprising a silicon/silicon oxide layer, obtained by heating plane-parallel structures of SiO_x in an oxygen-free atmosphere at a temperature above 400°C , wherein $0.05 \leq x \leq 0.50$.
16. **(new):** A plane-parallel pigment according to claim 15, wherein $0.10 \leq x \leq 0.30$.
17. **(new):** A composition according to claim 9 comprising from 0.1 to 30 % by weight, based on the high molecular weight organic material, of a pigment according to claim 2.

18. (new): A pigment according to claim 5, wherein the dielectric material is selected from the group consisting of TiO_2 , ZrO_2 , Fe_2O_3 , Fe_3O_4 , Cr_2O_3 , ZnO , a mixture of those oxides, an iron titanate, an iron oxide hydrate, a titanium suboxide and a mixture or mixed phase of those compounds.