

CS120: Computer Networks

Lecture 9. Internet Protocol

Zhice Yang

How to Further Extend the Network?

Limitation of Extended Ethernet

- Addressing Scalability
 - Spanning Tree does not scale
 - Large network
 - Switches store too many forwarding entries
 - Huge broadcasting overhead
- Network Heterogeneity
 - Cannot communicate with other networks
 - Cannot addressing nodes in other networks

Internet Protocol (IP)

- Goal:
 - Scalable Addressing Scheme
 - Support Heterogeneous Networks
- Service Model: Datagram (Connectionless)
 - Packets can be lost
 - Packets can be delivered out of order
 - Duplicate copies of a packet can be delivered
 - Packets can be delayed for a long time

Outline

- IP Addressing
 - IP Address
 - Subnet
 - Routing Aggregation
 - IP Distribution: DHCP
 - IP and Switching: ARP
- IP Packet
 - Fragmentation

Addressing in Postal Service

- NAME => Ethernet MAC Address
 - Unique
 - but less informative in finding route to deliver
- In practice we use: Location Address + NAME

Hierarchical Address

- China
- Shanghai
- Pudong
- ShanghaiTech

IP Address

- IP Address: 32-bit identifier for host, router ports
 - Globally unique (original goal)
 - Hierarchical: network + host (original goal)

9

IP Address

- Dot notation
 - 10.3.2.4
 - 128.96.33.15
 - 192.12.69.77

10000000 01100000 00100010 00001111

128.

96.

33.

15

Assigning IP Address

Each host has a unique IP address

Network 1

(Wireless)

Hosts in the same physical network have the same network part

Network 4 (Ethernet) H1: 200.155.11.5 H8: 210.168.1.10 H2: 200.155.11.3 H9: 210.168.1.200 R3 H3: 200.155.11.2 11010010.10101000.00000001.XXXXXXXX Network 2 (Ethernet) Network 3 11001000.10011011.00001011.XXXXXXXX (Point-point) R2 H4: 197.168.23.1 H5: 197.168.23.11

H7: 197.168.23.2

H6: 197.168.23.111 <u>110</u>00101.10101000.00010111.XXXXXXXX

Each router contains multiple network interfaces

Network 1

(Wireless)

• Each interface has the IP address of the connected network

H1: 200.155.11.5 H2: 200.155.11.3 H3: 200.155.11.2 Network 2 200.155.11.1 Network 3 (Point-point)

Network 4 (Ethernet)

H8: 210.168.1.10

H9: 210.168.1.200

> H4: 197.168.23.1 H5: 197.168.23.11

> > H6: 197.168.23.111 <u>110</u>00101.10101000.00010111.XXXXXXXX

H7: 197.168.23.2

Forwarding with IP Address

- Each router maintains a forwarding table
 - if IP.network == Connected network
 - forward to the host (How? ARP: IP->MAC)
 - if IP.network != Connected network
 - forward to some router

H1: 200.155.11.5

H2: 200.155.11.3

H3: 200.155.11.2

NO need to check the host part

H8: 210.168.1.10

H9: 210.168.1.200

11010010.10101000.00000001.XXXXXXXX

NetworkNum NextHop 00101.10101000.00010111 Interface 0 01000.10011011.00001011 Interface 1 10010.10101000.00000001 R2

H4: 197.168.23.1

Network 1

(Wireless)

H5: 197.168.23.11

H6: 197.168.23.111 <u>110</u>00101.10101000.00010111.XXXXXXXX

H7: 197.168.23.2

11001000.10011011.00001011.XXXXXXXX

Forwarding with IP Address

Forwarding with IP Address

Each host has a default router

Class Addressing

- Limitation
 - Address utilization is not efficient
 - 255 hosts
 - Class C: not enough
 - Class B: too many addresses are wasted
 - Forwarding table is still large
 - Proportional to the number of networks

255 hosts Not Enough!

Not Efficient

IP Address

- IP Address: 32-bit identifier for host, router ports
 - Globally unique (original goal)
 - Hierarchical: network + host (original goal)

Subnet

141.155.255.254

10001101.10011011.111111111.11111110

10001101.10011011.00000001.111111110

10001101.10011011.00000011.111111110

How to Determine the Network Part?

Subnet Mask

Subnet Mask

• "and" IP address with network mask to determine the Subnet

Mask: 255.255.254.0

Mask: 255.255.254.0

Mask: 255.255.254.0

SubnetNum	SubnetMask	NextHop
197.168.0.0	255.255.255.0	R4
197.168.1.0	255.255.255.0	R4
197.168.2.0	255.255.255.0	R4
197.168.3.0	255.255.255.0	R4

SubnetNum	SubnetMask	NextHop
197.168.0.0	255.255.252.0	R4

Classless InterDomain Routing (CIDR)

- Subnet portion of address is of arbitrary length
- Address format: a.b.c.d/x, where x is # bits in subnet portion of address

```
      141.155.0.1
      10001101.10011011.00000000.00000001

      |
      |

      141.155.1.254
      10001101.10011011.00000001.11111111
```


Route Aggregation

SubnetNum NextHop
197.168.0.0/22 R4

More Specific Routes

 SubnetNum
 NextHop

 197.168.0.0/22
 R4

 197.168.3.0/24
 R7

Longest Prefix Matching

 When looking for forwarding table entry for given destination address, use longest address prefix that matches destination address.

SubnetNum	NextHop	
197.168.0.0/22	R4	11000101.10101000.000000**.******
197.168.3.0/24	R7	11000101.10101000.00000011.******
197.168.4.0/22	R9	11000101.10101000.000001**.*****

11000101.10101000.00000011.11010111

R9

How to Assign IP Addresses?

- Hard-coded
- Dynamic Host Configuration Protocol (DHCP)
 - Dynamically get IP address from server

Dynamic Host Configuration Protocol (DHCP)

- Goal: allow host to dynamically obtain its IP address from network server when it joins the network
 - Reuse of IP addresses
 - Release IP of unconnected host, e.g. power-off
 - Support for mobile hosts who want to join the network

DHCP

DHCP

DHCP Server 223.1.2.5

discover

src: 0.0.0.0

dest.: 255.255.255.255 MACdest: FF:FF:FF:FF:FF

yiaddr: 0 0.0.0

offer

src: 223.1.2.5

dest.: 255.255.255.255 MACdest: FF:FF:FF:FF:FF

yiaddr: 223.1.2.4

request

src: 0.0.0.0

dest.: 255.255.255.255 MACdest: FF:FF:FF:FF:FF

yiaddr:223.1.2.4

reply

src: 223.1.2.5

dest.: 255.255.255.255 MACdest: FF:FF:FF:FF:FF

yiaddr: 223.1.2.4

Client

200.155.11.3 58-23-D7-FA-20-B0

How to Determine Interface's MAC address, Knowing its IP address?

Address Resolution Protocol (ARP)

- ARP table: each IP node (host, router) on LAN has table IP/MAC address mappings for some LAN nodes
 - < IP address; MAC address; TTL>
- TTL (Time To Live)
 - Time after which address mapping will be forgotten

200.155.11.3; 58-23-D7-FA-20-B0 200.155.11.5; 1A-2F-BB-76-09-AD 200.155.11.2; 0C-C4-11-6F-E3-98

Address Resolution Protocol (ARP)

- A wants to send datagrams to B
 - if B's MAC address is in the same subnet and B's MAC address not in A's ARP table
 - A broadcasts ARP query packet, containing B's IP address
- B receives ARP packet, replies to A with its (B's) MAC address
 - Frame sent to A's MAC address (unicast)
- A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out)

Demo

- DHCP
 - Four handshake messages
 - ipconfig /release
 - ipconfig /renew
- ARP
 - Show arp table: arp -a
- Forwarding Table
 - Show Forwarding Table: route print

Reference

• Textbook 3.2