Санкт-Петербургский государственный электротехнический университет им. В.И. Ульянова (Ленина)

Разработка распределенной отказоустойчивой системы мониторинга доступности веб-сайтов и сетевых сервисов

Выполнил:

Руководитель:

Гаськов М. В., гр. 5381 Лавров А. А., к.т.н., ассистент

Цели и задачи

Актуальность: любая компания с обширной инфраструктурой нуждается в постоянном надзоре за узлами, входящими в ее состав.

Проблема: обеспечение отказоустойчивости распространенных систем мониторинга (Zabbix, Nagios и др.) зачастую представляет собой нетривиальную задачу.

Цель: реализовать отказоустойчивую распределенную систему мониторинга доступности сетевых сервисов и веб-сайтов на удаленных узлах.

Задачи:

- 1. Формализовать требования к реализуемой системе;
- 2. Разработать архитектуру распределенной системы;
- 3. Разработать алгоритмы, обеспечивающие отказоустойчивость системы;
- 4. Реализовать систему и провести ее тестирование.

Требования к реализуемой системе

- Отказоустойчивость;
- Масштабируемость;
- Внутренний мониторинг состояния системы;
- Мониторинг широко распространенных сетевых сервисов (HTTP, SMTP, POP3, SSH, FTP и др.);
- Возможность задания частоты опроса целевых узлов от одной минуты;
- Потенциально неограниченное число целевых узлов.

Архитектура распределенной системы мониторинга

Упрощенный вариант архитектуры распределенной системы мониторинга

Возможности масштабирования архитектуры системы

Простота масштабирования упрощенной архитектуры до развернутой достигается счет выделения логики мониторинга, оповещения пользовательского интерфейса В отдельные программные модули. изображена рисунке справа структура узла кластера мониторинга в упрощенной архитектуре.

Алгоритм внутреннего мониторинга системы

Алгоритм внутреннего мониторинга системы

Представим узел кластера мониторинга в виде структуры данных:

```
N {
    a - адрес узла кластера, который опрашивается узлом N;
    s - собственный адрес узла N;
}
```

Удаление/(выход из строя) узла:

```
N_k - удаляемый узел for N_i in Cluster: if N_i.a == N_k.s: N_i.a \leftarrow N_k.a; \text{Перераспр-е ц.у.} break; continue;
```

Добавление/(возвращение к работе) узла:

```
N_k — добавляемый узел N_m \leftarrow Cluster.any(); N_k.a \leftarrow N_m.a; N_m.a \leftarrow N_k.s; Перераспр-е ц.у.
```

Реализация системы

Тестирование системы

Предусловия	Шаги	Ожидаемы результаты
• В кластере мониторинга находятся узлы serv1, serv2 и serv3 в рабочем состоянии; • Внутренний мониторинг: serv1 ведет наблюдение за serv2; serv2 ведет наблюдение за serv3; serv3 ведет наблюдение за serv1.	• Остановить модуль мониторинга на узле serv2;	 Внутренний мониторинг: serv1 ведет наблюдение за serv3; serv3 ведет наблюдение за serv1. Администратор получает сообщение на почту о выходе из строя узла serv2; В панели «Лог событий» появляется запись о том, что serv2 вышел из строя.
 В кластере мониторинга находится узел serv1 в рабочем состоянии; serv1 опрашивает 7 целевых узлов 	 Приостановить работу модуля мониторинга на узле serv1; Добавить узел serv2 в список узлов кластера мониторинга; Запустить узел мониторинга на узле serv2. 	 serv2 опрашивает 7 целевых узлов; Администратор получает сообщение на почту о выходе из строя узла serv1; В панели «Лог событий» появляется запись о том, что serv1 вышел из строя.

Полный список тестовых сценариев приведен в пояснительной записке. Все тесты привели к ожидаемому результату.

Заключение

В рамках ВКР выполнены все поставленные задачи:

- Формализованы требования к реализуемой системе;
- разработана архитектура распределенной системы мониторинга и ее упрощенная схема;
- реализованы алгоритмы, обеспечивающие отказоустойчивость системы при выходе из строя отдельных узлов;
- выполнено успешное тестирование готовой системы мониторинга.

В дальнейшей перспективе реализованная система может быть улучшена путем расширения функциональности мониторинга (замер времени ответа сервисов, добавление возможности мониторинга сервисов, работающих по другим сетевым протоколам и пр.)

Апробация работы

- М.В. Гаськов, А.А. Лавров. Архитектура отказоустойчивой распределенной системы мониторинга информационных ресурсов // Управление в современных системах: сборник трудов VIII Всероссийской научно-практической конференции научных, научно-педагогических работников и аспирантов, 2018. с. 277–283.
- Репозиторий проекта:
 https://github.com/MaximGaskov/distributed_monitoring_system.
- Релиз для установки системы:
 https://github.com/MaximGaskov/distributed_monitoring_system/releases