Программа для подготовки к рубежному контролю № 2 "Алгебраические структуры" по линейной алгебре и аналитической геометрии

для ИУ-9, 2020-2021 уч. год

Примеры задач

- 1. Найти решётку подгрупп циклической группы \mathbb{Z}_{20} .
- 2. Найти все элементы мультипликативной группы \mathbb{Z}_{14}^* кольца вычетов \mathbb{Z}_{14} . Изоморфна ли эта группа циклической группе \mathbb{Z}_7 ? Группе \mathbb{Z}_6 ? (Ответ обосновать.)
- 3. В мультипликативной группе \mathbb{Z}_{17}^* поля \mathbb{Z}_{17} найти 2016-ю степень элемента a=13.
- 4. Содержит ли группа подстановок S_{12} элемент порядка 18? Порядка 24? (Ответ обосновать.)
- 5. В группе подстановок S_7 найти подгруппу, порождённую циклом (167) и транспозицией (23). Какой из следующих групп изоморфна эта подгруппа: V_4 (четверная группа Клейна), \mathbb{Z}_6 , S_3 ? (Ответ обосновать.)
- 6. Решить уравнение (247)(23)X(2546) = (15376)(24) в группе подстановок S_7 . Для найденной подстановки X определить её порядок и чётность.
- 7. На комплексной плоскости изобразить множество точек, заданное неравенством

$$|z - 2i| - |z + 2i| \leqslant 1.$$

Какая кривая служит границей этой области?

- 8. Вычислить 2017-ю степень комплексного числа $z=\frac{-(5/2)+(i/2)}{\sqrt{2}-(3/\sqrt{2})i}$. 9. Найти НОД многочленов $f(x)=x^5+x^4+x^3+2x^2+1$ и $g(x)=x^5+2x^4+2x^3+x^2+x+2$ над полем \mathbb{Z}_3 .
- 10. Является ли многочлен $f(x) = x^5 + x^4 + 1$ неприводимым над полем вычетов \mathbb{Z}_2 ? Если нет, разложить его на неприводимые множители.
- 11. В поле вычетов \mathbb{Z}_{107} найти элемент, обратный элементу a=31.
- 12. Найти ось и угол поворота 3-мерного вращения, которое получается в результате сначала вращения вокруг оси, заданной вектором (2,2,1), на угол 240° в положительном направлении, а затем вращения вокруг оси, заданной вектором $(3\sqrt{3}, 2\sqrt{3} - 1, \sqrt{3} + 2)$, на угол $\alpha = 2\arccos(1/4\sqrt{3})$ в положительном направлении. (Указание: вращение вокруг оси, заданной единичным вектором (l, m, n), на угол α представляется кватернионом $q = \cos(\alpha/2) + (li + mj + nk)\sin(\alpha/2)$; действие такого вращения на вектор v может быть вычислено как qvq^{-1} ; необходимо представить данные вращения кватернионами q и p и вычислить произведение pq.)

Примерный вариант билета рубежного контроля каждая задача оценивается в 4 балла; необходимый минимум для зачёта -- 12 баллов

1. Вычислить 2016-ю степень подстановк

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 3 & 4 & 7 & 10 & 2 & 8 & 1 & 11 & 5 & 9 & 6 \end{pmatrix} \in S_{11}.$$

2. Над полем вычетов \mathbb{Z}_{13} решить систему уравнений

$$\begin{cases} 7x + 8y + z = 10 \\ 2x + 5y + 12z = 12 \\ 6x + y + 2z = 10. \end{cases}$$

- 3. Вычислить комплексный корень $\sqrt[6]{\frac{-6-13i}{13-6i}}$.
- 4. Разложить на неприводимые многочлен $x^4+6x^3+26x^2+6x+25$ над полем $\mathbb C$ комплексных и полем \mathbb{R} действительных чисел.
- 5. В поле $\mathbb{Q}(\sqrt[3]{3})$ найти элемент, обратный элементу $a=1+\sqrt[3]{9}$, и представить его в виде $x+y\sqrt[3]{3}+z\sqrt[3]{9}$, $x, y, z \in \mathbb{Q}$.