Office of the Controller of Examinations

Sanothimi, Bhaktapur

Regular/Back/Scholarship Exam - 2080/2081, Chaitra/Baishakh

Program: Diploma in Engineering All Full Marks: 80

Year/Part: I/I (2021) Pass Marks: 32

Subject: Engineering Mathematics I Time: 3 hrs.

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

WWW.ar un00.com.np

Group 'A'

Attempt ALL questions.

 $[7 \times (2+2)=28$

- 1. a. Define power set of a set. If $s = \{1,2\}$, find its power set.
 - b. Prove that: $\log(1 + 2 + 3) = \log 1 + \log 2 + \log 3$
- 2. a. Find the general solution of $cos4\theta = cos2\theta$
 - b. Prove that: $\sin(2\sin^{-1}x) = 2x\sqrt{1-x^2}$
- 3. a. Prove that: $\tan^{-1}\left(\frac{2x}{1+x^2}\right) = 2\tan^{-1}x$
 - b. Define indeterminate form of limit with example.
- 4. a. Evaluate: $\lim_{x\to 2} \left(\frac{x^2-3x+2}{x-2}\right)$
 - b. Find the limit of: $\lim_{\theta \to 0} \frac{\sin p\theta}{\theta}$
- 5. a. Find $\frac{dy}{dx}$ of $y = ax^4 + 6x^3 + cx^2$
 - b. Establish the relation:
 - i. A.M > G.M > H.M
 - ii. (G.M)²=A.M×H.M for the numbers 9 and 36
- 6. a. How many numbers between 4000 and 5000 can be formed with the digits 2, 3, 4, 5, 6, 7?
 - b. Show that: $\frac{1}{1!} + \frac{2}{2!} + \frac{3}{3!} + \cdots = e$
- 7. a. Find the equation of straight line passing through (2,1) and perpendicular to the line 2x + y = 5
 - b. Find the equation of the straight line whose perpendicular distance from the origin p = 3 and $\alpha = 120^{\circ}$

Attempt ALL questions.

[13×4=52]

8. Define composite function. If f(x) = 3x + 4 and g(x) = 2x + 2 then prove that $f \circ g(x) = g \circ f(x)$ and find $f^{-1} \circ g(-2)$

OR

If $x = log_{2a}(a)$, $y = log_{3a}(2a)$, $z = log_{4a}(3a)$, prove that 1 + xyz = 2yz

- 9. Show that: $x^2 + y^2 + z^2 + 2xyz = 1$ if $\cos^{-1} x + \cos^{-1} y + \cos^{-1} z = \pi$
- 10 In any triangle ABC, prove that : $\frac{a+b}{c} \sin \frac{c}{2} = \cos \frac{A-B}{2}$
- 11. Find the sum to infinity: $1 3a + 5a^2 7a^3 + \dots + |a| < 1$
- 12. From 5 boys and 4 girls a committee of 5 is to be formed. In how many ways can this committee be done 80 as to include at least one girl?
- 13. If the coefficient of x in the expansion of $\left(x^2 + \frac{k}{x}\right)^5$ is 270, find k.
- 14. Prove that the equation of the straight line through the point $(a\cos^3\theta, a\sin^3\theta)$ and perpendicular to the line $x\sec\theta + y \csc\theta = a \operatorname{is} x \cos\theta y \sin\theta = a\cos 2\theta$
- 15. Find the center and radius of the circle:

$$x^2 + y^2 - 12x - 4y = 9$$

- 16. P and Q are two points on the line x y + 1 = 0 and are at distance 5 from the origin. Find the area of the triangle OPQ.
- 17. Show that: $\lim_{x\to 0} \frac{|x|}{x}$ does not exist.

OR

Evaluate: $\lim_{x\to\theta} \frac{x\cos\theta - \theta\cos x}{x-\theta}$

- 18. Find the derivative from first principle of $\cos x$ or $x^2 2$
- 19. Find $\frac{dy}{dx}$: (any <u>ONE</u>) **www.arjun00.com.np**
 - a) $y = \tan(5x^2 + 6)$
- b) $xy = \log(x^2 + y^2)$
- 20. Integrate: (any ONE)
 - a) $\int (2x+3)\sqrt{3x+1}\,dx$
- b) $\int \sin^3 x \cos x \, dx$
 - c) $\int x \log x dx$

Office of the Controller of Examinations

Sanothimi, Bhaktapur

Regular Scholarship Exam – 2080 Poush

Program:

Engineering All

Full Marks: 80

Year/Part: 1/1 (2021)

Pass Marks: 32

Subject:

Engineering Mathematics 1

Time: 3 hrs.

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

WWW.arjun00.com.np

Group 'A'

Attempt ALL questions.

 $[7 \times (2 \times 2) = 28]$

- 1. a. If n(A) = 37, n(B) = 50 and ACB then find $n(A \cup B)$ and $n(A \cap B)$.
 - b. Prove that: $log_a x^2 2log_a \sqrt{x} = log_a x$
- 2. a. Solve: $cos5\theta cos3\theta = 0$
 - b. Prove that: $\sin(2\sin^{-1}x) = 2x\sqrt{1-x^2}$
- 3. a. Prove that: $sinA + sinB + sinC = \frac{s}{R}$
 - b. Evaluate: $\lim_{x \to 2} \frac{x^2 5x + 6}{x^2 x 2}$
- 4. a. Find $\frac{dy}{dx}$ when $y = \frac{1}{\sqrt[3]{x^2 2x + 1}}$.
 - b. Integrate: $\int \frac{2x+3}{x+1} dx$
- 5 a. Integrate: ∫ sin²x dx
 - b. Find the sum of the series: 1+4+7+10+... to 40 terms.
- 6. a. In how many ways can eight people be seated in a row of eight seats if two people insist on sitting next to each other?
 - b. Expand $(2a + b)^5$ by the binomial theorem.
- 7. a. Find the equation of the circle with center at the point (-1, 2) and passing through the point (5, -8).
 - b. Find the single equation represented by the lines x y = 0 and x + y = 0.

Group 'B'

Attempt ALL questions.

[13×4=52]

Let $f: R \rightarrow R$ and $g: R \rightarrow R$ be defined by $f(x) = x^2 + 1$ and 8. $g(x) = x^5$. Find $f^-(x)$, $f \circ g(x)$ and $g \circ f(x)$.

Prove that: $x^{\log y - \log z}$. $y^{\log z - \log x}$. $z^{\log x - \log y} = 1$

- Solve $\sqrt{3}sinx cosx = \sqrt{2}$ for $0 \le x \le 2\pi$. 9.
- 10. If $tan^{-1}x + tan^{-1}y + tan^{-1}z = \frac{\pi}{2}$, then prove that xy + yz + zx = 1.
- 11. A function f(x) is define as follows:

$$f(x) = \begin{cases} 2x+3 & \text{for } x < 1 \\ 4 & \text{for } x = 1 \\ 6x-1 & \text{for } x > 1 \end{cases}$$

Is the function continuous at x = 1? If not, how can you make it continuous?

- Find $\frac{dy}{dx}$ from first principles of $y = \sqrt{tanx}$.
- Evaluate: $\int \frac{1}{1 \cos x} dx$ Find $\frac{dy}{dx}$ when $x^2 + y^2 = \sin(xy)$.
- Find the sum of: 4+44+444+... to n terms. 15.
- Find the sum of the series: $1+(1+2)+(1+2+3)+\ldots$ to n terms. 16.
- A person has 12 friends of whom 8 are relatives. In how many ways 17. can he/she invite 7 friends so that 5 of them may be relatives?
- Prove that the three lines x + 3y = 5, 2x y = 3 and 7x + 5y 17 = 0are concurrent. Also, find the point of concurrency.
- Find the equation of the two lines represented by the equation 19. $2x^2 + 3xy + y^2 + 5x + 2y - 3 = 0$. Find their points of intersection and also the angle between them.
- Find the equation of tangent and normal to the circle $x^2 + y^2 3x +$ 20. 10y - 15 = 0 at (4, -11).

Office of the Controller of Examinations

Sanothimi, Bhaktapur

Back/Scholarship Exam-2080/2081, Chaitra/Baishakh

Program: Diploma in Engineering All

Full Marks: 80

Year/Part:

1/1 (2013, 2014, 2015, 2016, 2017, 2018)

Pass Marks: 32

Subject:

Engineering Mathematics I

Time: 3 hrs.

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks

www.arjun00.com.np

Group 'A'

Attempt ALL questions.

[(5×2)×3=30]

- 1. Evaluate: $\lim_{x\to 0} \frac{\tan 2x \sin 2x}{x^3}$
 - b. Test the continuity or discontinuity at x=2 if a function is defined by: $f(x) = \begin{cases} 2x + 5 & for & x \le 2 \\ 3x + 1 & for & x > 2 \end{cases}$
- 2. If the quadratic equation ax2+bx+c=0 and bx2+cx+a=0 have a common root, then prove that a+b+c=0 or a=b=c.
 - b. If a'=b'=c' and a, b, c are in GP then prove that x, y, z are in HP.
- 3. a. In any triangle ABC if $a^4+b^4+c^4=2c^2(a^2+b^2)$ prove that C=45° or 135°.
 - b. If $\cos^{-1}x + \cos^{-1}y + \cos^{-1}z = \pi$ then prove that $x^2 + y^2 + z^2 + 2xyz = 1$.

OR

Find the general solution of tan0+tan20=tan30.

Group 'B'

Attempt any TEN questions.

[10×5=50]

- Find the derivative by using definition: (any ONE)
 - a. y=eax+b

b. cos2x

- 5. Find $\frac{dy}{dx}$ for: (any <u>ONE</u>)
 - a. $x^2+y^2=3xy$

b. x=a²tant and y=2asect

a.
$$\int \frac{1}{x^2 \sqrt{x^2 - a^2}} dx$$

b.
$$\int_{1}^{2} \frac{\sin(\log x)}{x} dx$$

7. Find the coefficient of
$$x^5$$
 in the expansion of $\left(x^2 + \frac{1}{x}\right)^{10}$

$$1.2^2 + 2.3^2 + 3.4^2 + \dots$$

- A committee of 5 is to be formed out of 6 gents and 4 ladies. 9. In how many ways this can be done when at most two ladies are included?
- Find the equation of sides of an equilateral triangle whose 10. vertex is (-1, 2) and base is y=0.
- If P is the length of perpendicular dropped from origin on the line $\frac{x}{a} + \frac{y}{b} = 1$ then prove that $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{P^2}$.
- 12. Find the equation of the parabola in the standard from $y^2 = 4ax$.
- Find the coordinates of the point of intersection of the line x-y=1 and the circle $x^2+y^2=25$.

14. If
$$\frac{\log x}{y-z} = \frac{\log y}{z-x} = \frac{\log z}{x-y}$$
 then prove that $x^x \cdot y^y \cdot z^z = 1$.

Good Luck !

www.arjun00.com.np

Sanothimi, Bhaktapur

Regular/Back/Scholarship Exam-2080, Baishakh / Jestha

Program: Diploma in Engineering All Full Marks: 80

Year/Part: I/I (2021) Pass Marks: 32

Subject: Engineering Mathematics I Time: 3 hrs.

Candidates are required to give their figures in the margin indicate full man

Attempt All questions.

$$[7 \times (2+2)=28]$$

- 1. a) If $U = \{x: x \text{ is a vowel of English Alphabet}\}$, $A = \{a, e, i\}$, $B = \{e, i, o\}$ Verify that $\overline{A \cap B} = \overline{A} \cup \overline{B}$.
 - b) Let $f: R \to R$ and $R \to R$ be defined by $f(x) = x^3 + 1$ and g(x) = x + 5, Find $(i) f \circ g(x)$ $(ii) g \circ f(x)$
- 2. a) Solve : Cos2x sinx = 0
 - b) Evaluate : $tan^{-1}3 + tan^{-1}\frac{1}{3}$.
- 3. a) If $2\cos A = \sin B : \sin C$, Prove that the triangle is isosceles.
 - b) Evaluate: $\lim_{x \to a} \frac{\sqrt{2x} \sqrt{x+a}}{x-a}$
- 4. a) Find $\frac{dy}{dx}$ when $x^2 + y^2 = a^2$.
 - b) Integrate : $\int \cos^2 x \ dx$
- 5. a) Evaluate: $\int_0^1 \frac{dx}{x+2}$.
 - b) Find the sum of infinite geometric series:

$$1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \cdots$$

- 6. a) In how many ways can the letters of the word "MISSISSIPPI" be Arranged?
 - b) Prove that : $\frac{2}{3!} + \frac{4}{5!} + \frac{6}{7!} + \dots = \frac{1}{e}$
- 7. a) Find the angle betⁿ the lines:

$$2x - y + 3 = 0$$
 and $x + y - 2 = 0$

b) Find the equation of circle with centre (3,4) and touching the x - axis.

Attempt All questions.

 $[13 \times 4 = 52]$

8. If
$$\frac{\log x}{y-z} = \frac{\log y}{z-x} = \frac{\log z}{x-y}$$
 prove that $x^x y^y z^z = 1$.

- 9. Solve: $tanx + tan2x + \sqrt{3}tanx \ tan2x = \sqrt{3}$.
- 10. If (a + b + c)(b + c a) = 3bc, show that $A = 60^{\circ}$.

11. Let
$$f(x)$$
 be defined by $f(x) = \begin{cases} 2x+1 & for \ x < 1 \\ 2x & for \ x = 1 \\ 3x & for \ x > 1 \end{cases}$

- i) Does $\lim_{x \to 1} f(x) exist$? ii) Is f(x) continuous at x = 1?
- Find derivatives of *cosx* by definition.

13. Find
$$\frac{dy}{dx}$$
 when $x = \frac{1-t^2}{1+t^2}$, $y = \frac{2t}{1+t^2}$.

- Compute the integral : $\int e^{\sin 2x} 2x \, dx$. 14.
- If $a^x = b^y = c^z$ and a, b, c, are in GP prove that x, y, z are in H.P. 15.
- 16.
- Solve for n: C(n+2,4) = 6xC(n,2). Find the term independent of x in the expansion of $\left(x^2 \frac{1}{x^2}\right)^{10}$. 17.
- 18. Find the equations of bisectors of the angles between the lines 4x - 3y + 1 = 0 and 12x - 5y + 7 = 0 and hence verify that the bisectors are right angles.
- Prove that the straight lines joining the origin to the points of 19. intersections of the lines $\frac{x}{a} + \frac{y}{b} = 1$ and the curve $x^2 + y^2 = c^2$ are at right angles if $\frac{1}{a^2} + \frac{1}{v^2} = \frac{2}{c^1}$.
- Find the equation of tangent to the circle $x^2 + y^2 2x 4y 4 = 0$, 20. Perpendicular to the line 3x - 4y = 1.

Office of the Controller of Examinations

Sanothimi, Bhaktapur

Regular/Back Exam-2080, Baishakh / Jestha

Program: Diploma in Engineering All

Full Marks: 60

Year/Part: I/I (Old + Very Old)

Pass Marks: 24

Subject: Engineering Mathematics I

Time: 3 hrs.

Candidates are required to give thei in the margin indicate full marks.

Attempt All questions.

 $[(5\times2)\times3=30]$

1. a) State and prove cosine law.

b) If
$$\frac{R}{\gamma} = \frac{4}{3}$$
, Prove that Cos A + Cos B + Cos C = $\frac{7}{4}$.

2. a) Evaluate: $\lim_{x \to \theta} \frac{x \sin \theta - \theta \sin x}{x - \theta}$.

$$3x + 2$$
 for $x < 1$

b) Test the continuity of: f(x) = 7 for x = 1 }at x = 1. 6x - 1 for x > 1

If the function is not continuous at x=1. How can you make it Continuous?

- 3. a) Find the condition that the general equation of second degree $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ always the pair of straight line.
 - b) The sum of three number in AP is 36. When the number are increased by 1, 4, 43 respectively, the resulting numbers are in GP. Find the numbers.

Group'A'

Attempt Any Ten questions.

 $[10 \times 5 = 50]$

- 4. Find derivative of first principle method of: (any **ONE**)
 - a. Sinx

b.
$$x + \sqrt{x}$$

5. Find $\frac{dy}{dx}$: (any **ONE**)

a.
$$x^2 + y^2 = 2x^2 + 3xy$$

b.
$$x = a^2 tant$$

 $y = 2asect$

6. Integrate: (any ONE)

a.
$$\int e^{ax} \sin bx \, dx$$

b.
$$\int \frac{e^x - 1}{e^x + 1}$$

Cont.....

- 7. Show that the number of ways in which the letters of the word 'ARRANGE' can be arranged so that no two R's comes together is 900.
- 8. Find the middle term in the expansion of $(1 + x^2)^{10}$.
- 9. Show that:

$$\frac{2}{3!} + \frac{4}{5!} + \frac{6}{7!} + \dots = \frac{1}{e}$$

$$loge^2 = \frac{1}{1.2} + \frac{1}{3.4} + \frac{1}{5.6} + \cdots$$

- 10. Find the equation of straight line through the point (2, 3) and Perpendicular to 4x + 5y + 3 = 0.
- 11. Find the equation of tangent and normal to the circle

$$x^2 + y^2 - 2x4y + 3 = 0$$
 at $(2, 3)$.

 $x^2 + y^2 - 2x4y + 3 = 0 \text{ at } (2, 3).$ 12. If the roots of the equation $lx^2 + nx + x + n = 0$ be in the ratio p:q.

Prove that :
$$\sqrt{\frac{p}{q}} + \sqrt{\frac{q}{p}} + \sqrt{\frac{n}{l}} = 0$$

13. Find the equation of parabola vertex (2, 3) and focus (6, 3).

14. If
$$\frac{\log x}{y-z} = \frac{\log y}{z-x} = \frac{\log z}{x-y}$$
 prove that $x^x y^y z^z = 1$.

Sanothimi, Bhaktapur

Regular Exam-2079, Ashad

Program: Diploma in Engineering All

Full Marks: 80

Year/Part: I/I (2021 New Course)

Pass Marks: 32

Subject: **Engineering Mathematics I** Time: 3 hrs

Candidates are required to give the figures in the margin indicate full n

Attempt All questions.

$$[7 \times (2+2)=28]$$

- 1. a) If $A = \{2, 3, 4, 5, 6, 7\}$, $B = \{4,5,6,7,8\}$ and $c = \{1,2,3,4,5\}$, find i) $(A \cup B) \cap C$ ii) $(A \cap B) \cup C$
 - b) Rewrite $|2x 1| \le 5$ without using absolute value sign.
- 2. a) Prove that: $sin(2sin^{-1}x) = 2x\sqrt{1-x^2}$.
 - b) In any $\triangle ABC$, show that $c(a \cos B b \cos A) = a^2 b^2$
- 3. a) If $\frac{\cos A}{a} = \frac{\cos B}{b}$, prove that the triangle is an isosceles.
 - b) Evaluate: $\frac{Lt}{x \to 2} \frac{x^2 5x + 6}{x^2 x 2}$
- 4. a) Find $\frac{dy}{dx}$; when $y = \frac{1}{\sqrt{ax^2 + bx + c}}$. b) Find $\frac{dy}{dx}$ when $= cos (sin\sqrt{3x + 5})$.
- 5. a) Integrate: $\int \left(\sqrt{x} \frac{1}{\sqrt{x}}\right) dx$.
 - b) The sum of an infinite G.S. is 15 and the first term is 3.Find the common ratio.
- 6. a) In how many ways can the letters of the word "MATHEMATICS" be arranged?
 - b) Find the seventh term in the expansion of $(3x^2 \frac{1}{2x})^{12}$.
- 7.a) Find the distance between the parallel lines 3x+4y-5=0and 6x+8y+17=0.

b) Find the angle betⁿ two lines represented by

$$x^2 - 2xy \cot\theta - y^2 = 0.$$

Group 'B'

Attempt All questions.

 $[13 \times 4 = 52]$

8. If
$$\frac{\log x}{y-z} = \frac{\log y}{z-x} = \frac{\log z}{x-y}$$
 prove that $x^x y^y z^z = 1$.

OR

Let $f: R \to R$, $g: R \to R$ which are defined by $f(x) = x^3 + 1$ and $g(x) = x^5$ respectively then find

a)
$$f \circ g(x)$$
 b) $g \circ f(x)$ c) $f^{-1}(x)$

b)
$$gof(x)$$

c)
$$f^{-1}(x)$$

9. Solve: $tan^2x = secx + 1$.

Solve:
$$sin^{-1} \frac{2a}{1+a^2} - cos^{-1} \frac{1-b^2}{1+b^2} = 2tan^{-1}x$$
.
10. If $a^4 + b^4 + c^4 = 2a^2(b^2 + c^2)$ prove that $A = 45^\circ$ or 135° .
OR

Solve the AABC, if $b = \sqrt{3}$, $c = 1$ and $A = 30^\circ$

Solve the \triangle ABC, if $b = \sqrt{3}$, c = 1 and $A = 30^{\circ}$.

11. Evaluate: $\begin{array}{c} Lt & x \tan \theta - \theta \tan x \\ x \longrightarrow \theta \end{array}$

A function f(x) is defined as follows.

$$\int (x) = \begin{cases} 2x + 1 & for \ x < 1 \\ 2 & for \ x = 1 \\ 3x & for \ x > 1 \end{cases}$$

Is the function continuous at x = 1? If not, how can it be made continuous at x = 1?

- 12. Find from first principle, the derivatives of \sqrt{tanx} or $\frac{1}{\sqrt{4-5x}}$.
- 13. Integrate (any one)

a)
$$\int \frac{dx}{x^2 \sqrt{9-x^2}}$$
 b) $\int \sec^3 x \, dx$

b)
$$\int \sec^3 x \, dx$$

14. Prove that the AM, GM and HM between any two unequal positive numbers satisfy the relation.

i)
$$(GM)^2 = AM \times HM$$
 ii) $AM > GM > HM$

ii)
$$AM > GM > HM$$

OR

Find the sum to infinity $1 - 3x + 5x^2 - 7x^3 + \dots (|x| < 1)$.

- 15. From 6 gentleman and 4 ladies, a committee of 5 is to be formed. In how many ways can this be done as to include at most two ladies?
- 16. Prove that: $\frac{1.2}{11} + \frac{2.3}{21} + \frac{3.4}{21} + \cdots = 3e$.
- 17. Find the equations of the bisectors of the angles between the lines 4x - 3y + 1 = 0 and 12x - 5y + 7 = 0. Also show that bisectors are at right angle.
- 18. Find the separate equations represented by $2x^2 + xy 3y^2 + 9x + 26y 2xy 3y^2 + 3$ 35 = 0. Also find the angle between them.

OR

Prove that the straight lines joining the origin to the point of intersection of the line $\frac{x}{a} + \frac{y}{b} = 1$ and the curve $x^2 + y^2 = c^2$ are at right angles if $\frac{1}{a^2} + \frac{1}{b^2} + \frac{2}{c^2}$.

- 19. Find the equation of circle passing through the points (3,-2) and (-2, 0) whose centre lies on the line 2x - y = 3.
- 20. Find $\frac{dy}{dx}$ (any one)

i)
$$x^2 y^2 = tanxy$$
 ii) $x^y y^x = a$

$$ii) x^y \cdot y^x = a$$

Sanothimi, Bhaktapur

Back Exam-2079, Ashad

Program: Diploma in Engineering All

Full Marks: 80 Year/Part: I/I (Old + Very Old) Pass Marks: 32

Time: 3 hrs **Engineering Mathematics I** Subject:

Attempt All questions.

$$[5 \times 2) \times 3 = 30$$

- a) State and prove cosine law.
 - b) If $tan^{-1}x + tan^{-1}y + tan^{-1}z = \pi$, prove that x + y + z = xyz.
- 2.a) Prove that $\lim_{n\to\infty} \frac{\sin\theta}{\theta} = 1$
 - b) Test the continuity of:

$$f(x) = \begin{cases} 2x & for & x \le 3 \\ 3x - 3 & for & x > 3 \end{cases} at x$$

- 3. a) Prove that the straight lines joining the origin to the point of intersection of the line $\frac{x}{a} + \frac{y}{b} = 1$ and the curve $x^2 + y^2 = c^2$ are at right angles if $\frac{1}{a^2} + \frac{1}{b^2} + \frac{2}{c^2}$
 - b) Find the equation of the straight line through the point (2, 3) and equation of perpendicular to the line 2x + 3y + 4 = 0. Group 'B'

Attempt Any Ten questions.

 $[10 \times 5 = 50]$

- 4. Find the sum of squares of first n natural numbers.
- 5. Find the term free form x in the expansion of $\left(2x \frac{1}{x}\right)^{10}$.

6. Prove that :
$$1 + \frac{1+3}{2!} + \frac{1+3+5}{3!} + \frac{1+3+5+7}{4!} + \dots = 2e$$
.

- Prove that every quadratic equation cannot have more than two roots.
- 8. In how many ways a committee of 6 members can be selected from 7 boys and 6 girls consisting of 4 boys and 2 girls.
- 9. Find the equation of circle in diameter form.
- 10. Find the equation of the parabola whose vertex is at (-2, 0) and directrix x = 1.
- 11. Sketch the graph: $y = 2^{\pm x}$
- 12. Find form first principle, the derivative $\frac{1}{\sqrt{x}}$.
- 13. Find $\left(\frac{dy}{dx}\right)$: (Any One)
 - i) $x^2 + 2hxy + by^2 = 0$
 - ii) $x^2 + y^2 = \sec xy^2$
- 14. Integrate: (Any One)

a)
$$\int \frac{x^2 dx}{(1+x^2)^2}$$
. b) $\int e^{ax} \cos bx dx$

15. Evaluate $: \int_0^{\pi/2} (1 + \cos x)^2 \sin x \, dx$

Sanothimi, Bhaktapur

Regular/Back Exam-2078, Bhadra

Program: Diploma in Engineering All Full Marks: 80

Year/Part: I/I (New + Old) Pass Marks: 32

Subject: Engineering Mathematics I Time: 3 hrs

Candidates are required to give the figures in the margin indicate full

Attempt All questions.

- 1 a) Define in circle. In any triangle ABC, establish the relation $r = \frac{\Delta}{s}$ where the symbols have their usual meanings.
 - b) Find the general solution of $\cos\theta + \cos 3\theta + \cos 5\theta = 0$

OR

Prove that: $tan^{-1}x - tan^{-1}y = tan^{-1}\frac{x-y}{1+xy}$

2. a) Define continuity of a function at a given point. Test the continuity of the function at a given point where

$$f(x) = \begin{bmatrix} 3 + 2x & for & \frac{-3}{2} \le x \le 0 \\ 3 - x^2 & for & 0 < x \le 3/2 \end{bmatrix} \{ \text{at } x = 0 \}$$

OR

Evaluate the limit of $\lim_{x \to 0} \frac{\sin \theta - \theta \sin x}{x - \theta}$

- b) Find from first principle the derivatives of y = tanx or $y = e^{ax}$.
- 3 a) What is homogenous equation of second degree? Prove that the homogenous equation of second degree represent a pair or straight line through the origin.
 - b) Find the equation of the straight line through the point (2, 3) and perpendicular to the line 5x 2y = 8.

Attempt All questions.

 $[10 \times 5 = 50]$

- 4. Sum to n terms of 7+77+777+.....
- 5. From a group of 6 gentlemen and 4 ladies, a committee of 5 is to be formed. In how many ways can this be done so as to include at most 2 lady?
- 6. Find the middle term (s) in the expansion of $(1+\frac{x}{2})^{15}$.
- 7. Prove that every quadratic equation cannot have more than two roots.
- 8. Find the equation of the circle through the intersection of the circles $x^2 + y^2 8x 2y + 7 = 0$ and $x^2 + y^2 4x + 10y + 8 = 0$ and passes through the point (-1,-2).
- 9. Find $\frac{dy}{dx}$: (Any One)

(a)
$$x^3 + y^3 = 3xy^2$$
 b) $x = Tant, y = sint cost$

- 10. Integrate: (Any One)
 - i) $\int x^2 \sin x \, dx$ ii) $\int e^{ax} \cos bx \, dx$
- 11. Find the vertex, focus, equation of directrix and length of latus rectum of the parabola: $y^2 4y 4x 8 = 0$.
- 12. Let $f: R \to R$ and $R \to R$ be defined by $f(x) = x^3 + 1$ and g(x) = x + 5, Find $(i) f \circ g(x)$ $(ii) g \circ f(x)$

OR

If
$$\frac{\log x}{y-z} = \frac{\log y}{z-x} = \frac{\log z}{z-y}$$
, prove that $x^2 \cdot y^y \cdot z^z = 1$

13. Prove that the angle between two straight lines $y = m_1 x + c_1$ and $y = m_2 x + c_2$ is $\tan \theta = \pm \left(\frac{m_1 - m_2}{1 + m_1 m_2}\right)$. Also, prove that the two lines are parallel and perpendicular to each other if $m_1 = m_2$ and $m_1 \times m_2 = -1$ respectively.

Office of the Controller of Examinations

Sanothimi, Bhaktapur

Regular/Back Exam-2076, Falgun/Chaitra

Program: Diploma in Engineering All Full Marks: 80 Year/Part: I/I (New + Old) Pass Marks: 32

Engineering Mathematics Time: 3 hrs Subject:

Group'A'

[5x2)x3=30]

Attempt All questions.

- 1. a) In any triangle ABC, If $a^4+b^4+c^4+-2c^2(a^2+b^2)=0$; prove that $\angle c = 45^{\circ} \text{ or } 135^{\circ}$.
 - b) Prove that $2Tan^{-1}\frac{1}{3} + Tan^{-1}\frac{1}{7} = \frac{1}{4}\pi$.

Find the general solution of the equation $\sin^2\theta - 2\cos\theta + \frac{1}{4} = 0$.

- 2. a) Evaluate: $x \xrightarrow{\text{lime}} y \xrightarrow{xTany-ytanx}$
 - b) Test the continuity of $f(x) = \frac{x^2 64}{8 x}$ at x = 8.
- 3. a) Show that lines joining the origin to the point of intersection of the line $fx - gy = \lambda$ and $x^2 + hxy - y^2 + gx + fy = 0$ are at right angles for all values of $\lambda \neq 0$.
 - b) Find the egⁿ of a straight line passing through (-2,-3) and making angle 45° with the line 2x-3y+5=0

Group 'B' $[10 \times 5 = 50]$ **Attempt Any Ten Questions**

- 4. Find the sum of n terms of the series 1+11+111+1111+.....
- 5. Show that the quadratic equation $ax^2 + bx + c = 0$ can not have more than two roots.
- 6. Find the middle term in the expansion of $(x + \frac{2}{2x^2})^{12}$.

Cont

7. Prove that
$$1 + \frac{1}{3.2^2} + \frac{1}{5.2^4} + \frac{1}{7.2^6} + \dots = \log_e 3$$
.

8. Find, from first principle, the derivative of

$$f(x) = \frac{1}{\sqrt{x}}$$
 or $f(x) = Tan \ 4x$.

9. Find $\frac{dy}{dx}$ (Any one)

i)
$$x^3+y^3 = 3xy^2$$
 ii) $x^2 + y^2 = Tan xy$

- 10. Evaluate: $\int \frac{dx}{x^2 \sqrt{x^2 4}}$.
- 11. Evaluate $\int_0^{\pi/4} Tan^3 x dx$.
- 12. Find the equation of a circle which touches both axes and radius is 4.
- 13. Find the equation of the parabola whose vertex is at (-1, 2) and directrix x=4.
- 14. From 6 gentlemen and 4 ladies a committee of 5 is to be formed. In how many ways can this be done so as to include at least one lady.
- 15. Define inverse of a function. In which condition does the inverse of function exist? If $f(x) = x^2 3$ find $f^{-1}(x)$.

