Recopilación MATO21 – 2020-1

Clemente Ferrer

El siguiente documento tiene como único fin, servir de apoyo en el desarrollo de ayudantías y complemento de estudio.

CONTROL 1 (LA PREGUNTA 1 ES RESPECTO A QUE PARALELO PERTENECES)

Pregunta 2 Correcta	Considere la siguiente proposición: Si $a^2 + 2a + 9$ es un número par entonces a es un número impar. Demostrar la proposición anterior utilizando el método del contrarecíproco es equivalente a demostrar:
Puntúa 20 sobre 20	Seleccione una:
P	selectione una: a. Si $a = \operatorname{spar} \Rightarrow a^2 + 2a + 9 = \operatorname{spar}$.
	b. Si a es impar $\Rightarrow a^2 + 2a + 9$ es par .
	✓ c. 51 a cs par → a + 2a + 5 cs impar .
	Od. Si a es impar $\Rightarrow a^2 + 2a + 9$ es impar
	La respuesta correcta es: Si a es par $\Rightarrow a^2 + 2a + 9$ es impar .
	24 Topasona ostrosia ost pia 7 a 1 24 To ost impia .
Pregunta 3	El conjunto solución de la inecuación
Correcta	$rac{2}{x}+3>rac{5}{\sqrt{x}}$
Puntúa 20 sobre 20	x \sqrt{x}
P	viene dado por:
	Seleccione una:
	$a.]\frac{4}{9},1[$
	0 b. $]-\infty,rac{4}{9}[\ \cup\]1,+\infty[[$
	© c. $]0, \frac{4}{9}[\cup]1, +\infty[$
	$[0, [0, \frac{1}{9}[0]], +\infty[$
	o d.]0,∞[
	10.45.13.
	La respuesta correcta es: $]0,rac{4}{9}[\;\cup\;]1,+\infty[$
Pregunta 4	Considerar los conjuntos:
Correcta	$A = \{6n-1: n \in \mathbb{Z}\}$
Puntúa 20 sobre 20	$B = \{3n-4: n \in \mathbb{Z}, n \mathrm{impar}\}$ De las proposiciones:
P	I) $68 \in B$.
	II) $A \subseteq B$.
	III) $A=B.$ son correctas:
	Seleccione una:
	a. Sólo I y II.b. Sólo II y III. ✓
	c. Sólo I.
	d. I, II y III.
	G. 1, 11 y 111.
	La constante accepta de Céla II e III
	La respuesta correcta es: Sólo II y III.

Pregunta 5 Correcta Puntúa 20 sobre 20	De un total de 17 personas encuestadas sobre si saben hablar inglés o francés, se tiene la siguiente información: 11 personas saben hablar francés. 9 personas saben hablar inglés. 4 personas saben hablar inglés pero no francés. El número de personas que no saben hablar inglés ni tampoco francés es:
	Seleccione una:
	✓ ○ d. 4
	La respuesta correcta es: 2
Pregunta 6 Correcta Puntúa 20 sobre 20	¿Qué valor debe tener $a>0$ de tal manera que la solución de la inecuación, $ x-a -a \leq 2a$ sea $S=[-4,8]$?
P	Seleccione una:
	● d. 2

La respuesta correcta es: 2

CERTAMEN 1

Pregunta 1	Sea $lpha>0$ Encuentre el conjunto solución de:
Correcta	$rac{ x-lpha - x+lpha }{x^2-lpha^2}< 0$
Puntúa 20 sobre 20	$x^2 - \alpha^2$
P	Seleccione una:
	$lacksquare$ a. $]-lpha,0[\cup]lpha,\infty[$
	\circ b. $]\infty, -lpha[\cup]0,lpha[$
	c. Se necesita mayor información
	\circ d. $]-lpha,0[\cup]lpha,\infty[$
	Las respuestas correctas son:] $-\alpha,0[\ \cup\]\alpha,\infty[$,] $-\alpha,0[\ \cup\]\alpha,\infty[$

Correcta

Puntúa 20 sobre 20

P

Determine el valor de $a \in \mathbb{R}^- \cup \{0\}$ de tal manera que la inecuación

$$\sqrt{|x+a^2|} + a \ge 0$$

tenga por conjunto solución $]-\infty,-4]\cup[0,\infty].$

Seleccione una:

- \bigcirc a. a=2
- lacksquare b. $a=-\sqrt{2}$

- \circ c. $a=\sqrt{2}$
- $igcup d. \ a=-2$

La respuesta correcta es: $a=-\sqrt{2}$

Pregunta 3

_ -

Puntúa 20 sobre 20

P

Considerar la función real $f(x)=\sqrt{x^2-\alpha x}$, con $0<\alpha<1$. De las proposiciones:

I) $dom(f) =]-\infty, 0] \cup [\alpha, +\infty[$

- II) Existe un valor de lpha para el cual $\left(2,rac{1}{4}
 ight)$ pertenece al gráfico de f.
- III) Las soluciones de la ecuación $f(x) = \sqrt{-x}$ son x = 0 y $x = \alpha 1$.

son correctas:

Seleccione una:

- a. Sólo II y III
- b. Sólo I y II.
- o. I, II y III.
- d. Sólo I y III

La respuesta correcta es: Sólo I y III

Pregunta 4

Correcta

Puntúa 20 sobre 20

P

Sea U el conjunto universo definido por $U=\left\{(-2)^n+rac{3}{n}:n\in\mathbb{N}
ight\}$ y $A,B\subset U$ los conjuntos definidos por

$$A = \left\{4^n + \frac{3}{2n} : n \in \mathbb{N}\right\} \text{ y } B = \left\{-\frac{4^n}{2} + \frac{3}{2n-1} : n \in \mathbb{N}\right\}$$

de las siguientes afirmaciones

I)
$$|A \cup B| = \infty$$

II)
$$\inf(A) = \frac{11}{2}$$

$$|||) \sup(B) = 0.$$

son correctas:

Seleccione una:

- a. Solo II y III.
- b. Solo I y II.

 ✓
- c. Solo I y III.
- d. l, ll y lll.

La respuesta correcta es: Solo I y II.

```
Pregunta 5
                      Considerar la proposición P(n):3^n>n^2+n+1 para n\in\mathbb{N}.
                      De las proposiciones:
Correcta
                      I) P(n+1):3^{n+1}>n^2+3n+2. II) La desigualdad n^2\geq 0,\ n\geq 2, es útil para demostrar P(n)\Rightarrow P(n+1).
Puntúa 20 sobre 20
                      III) P(n) es verdadero \forall n \in \mathbb{N}.
                      son correctas:
                      Seleccione una:
                       a. l, ll y lll.

    b. Sólo II. 

✓
                       o. Sólo I.
                       d. Sólo II y III.
                      La respuesta correcta es: Sólo II.
```

CONTROL 2

Pregunta 1

Correcta

Puntúa 20 sobre 20

De las proposiciones:

I) El valor de
$$\lim_{x\to +\infty} \frac{x^3+3x^2-8}{\alpha x^4+4x^3-2x^2+1}$$
 depende de α , $\cos\alpha\in\mathbb{R}$. II) Si $\beta\in\mathbb{R}$, entonces $\lim_{x\to\beta} \frac{x^2+\beta^2}{x+1-\beta}$ existe en \mathbb{R} .

II) Si
$$\beta \in \mathbb{R}$$
, entonces $\lim_{x \to \beta} \frac{x^2 + \beta^2}{x + 1 - \beta}$ existe en \mathbb{R} .

III) Para
$$\gamma \neq 0$$
, el valor de $\lim_{x \to 0} \frac{1 - \cos(\gamma x)}{\sin(\gamma x)}$ depende de γ .

son correctas:

Seleccione una:

- o a. l, ll y lll
- b. Sólo I
- o. Sólo II y III
- d. Sólo I y II

 ✓

Respuesta correcta

La respuesta correcta es: Sólo I y II

Correcta

Puntúa 20 sobre 20

P

Considere una sucesión de números $\{a_1,a_2,\ldots,a_n\}$ en progresión aritmética tales que $a_3=5$ y $a_7=29$. El valor de:

$$\sum_{k=1}^{74} \left(\frac{1}{a_{k+1}} - \frac{1}{a_k} \right)$$

es:

Seleccione una:

- \circ a. $\frac{450}{3101}$
- b. $\frac{444}{3059}$
- \circ c. $\frac{468}{3227}$
- $\bigcirc \quad \text{ d. } \frac{438}{3017}$

Respuesta correcta

La respuesta correcta es: $\frac{444}{3059}$

Pregunta 3

Correcta

Puntúa 20 sobre 20

P

Sean $\ 0 < a < b$, considere la función

$$f(x) = \left\{ \begin{array}{ll} |x-a| + x & , & x \leq b \\ |x-2b| + a & , & x > b \end{array} \right.$$

¿Cuál(es) de las siguientes proposiciones es(son) verdadera(s)?

- I) f es contínua en x = a.
- II) f es contínua en x = b, si b = 2a.
- III) f es contínua en \mathbb{R} , si b = 2a.

Seleccione una:

- a. Sólo I
- b. Todas I, II y III

 ✓
- o. Sólo II
- d. Sólo I y II

Respuesta correcta

La respuesta correcta es: Todas I, II y III

Correcta

Puntúa 20 sobre 20

P

$$f(x)=arphi\cos(x)+\sqrt{4-arphi^2}\sin{(x)}$$
 donde, $\cos{\left(rac{\pi}{5}
ight)}=rac{arphi}{2}$ y $arphi=rac{1+\sqrt{5}}{2}$, puede reescribirse como

Seleccione una:

$$\bigcirc$$
 a. $f(x)=2\cosigg(x+rac{3\pi}{10}igg)$

$$\circ$$
 c. $f(x) = 2\cos\left(x + \frac{\pi}{5}\right)$

$$\bigcirc$$
 d. $f(x)=2\sin\left(x+rac{\pi}{5}
ight)$

Respuesta correcta

La respuesta correcta es: $f(x) = 2 \operatorname{sen}\left(x + \frac{3\pi}{10}\right)$

Pregunta 5 Correcta

_ .. __ . __

Puntúa 20 sobre 20

P

En un triángulo $\triangle ABC$ de lados $\overline{AB}=c$, $\overline{AC}=b$ y $\overline{BC}=a$. Se cumple $(a+b+c)(a+b-c)=\frac{7ab}{3}$. Calcule $3\mathrm{sen}\,(2\gamma)\,\mathrm{sen}\,(\gamma)$, donde γ es el ángulo interior del triángulo opuesto al lado c.

Seleccione una:

- \circ a. $2\sqrt{35}$
- O b. $\frac{\sqrt{3}}{6}$
- \circ c. $\frac{3!}{3!}$
- \bigcirc d. $\sqrt{35}$

Respuesta correcta

La respuesta correcta es: $\frac{35}{36}$

CERTAMEN 2

Pregunta 1

Correcta

Puntúa 20 sobre 20

Sea f una función continua en $\mathbb R$, tal que f(6)=a. El valor debe $a\in\mathbb R$ de tal manera que:

$$\lim_{x \to 6} \frac{(f(x) - a)\mathrm{sen}(af(x) - a^2)}{1 - \cos(f(x) - a)} = 12$$

es:

Seleccione una:

- o a. 3.
- o b. 12.
- © c. 6
- d. 18.

La respuesta correcta es: 6.

Correcta

Puntúa 20 sobre 20

P

Sean a y b reales y considere la función polinomial,

$$f(x) = ax^3 - bx^2 - 4x + 1; \operatorname{con} x \in [0, 1].$$

Para asegurar la existencia de $c\in]0,1[$ tal que f(c)=0. ¿Cuál(es) de las afirmaciones siguientes es(son) suficientes?

I) f tiene máximo y mínimo absoluto en $\left[0,1\right]$.

II)
$$a = b$$
.

|||)
$$a - b < 3$$
.

Seleccione una:

- a. Sólo I.
- b. Sólo II.
- c. Sólo II y III.
- d. Sólo III.

La respuesta correcta es: Sólo II y III.

Pregunta 3

Correcta

Puntúa 20 sobre 20

7

Sean b>a>0 . Si $f:\mathbb{R}-\{3/b\} o\mathbb{R}$ es la función definida por $f(x)=rac{ax-5}{bx-3}$ entonces de las siguientes afirmaciones

- I. f es una función decreciente sobre el intervalo $]-\infty,3/b[$.
- II. f es una función inyectiva.
- III. El recorrido de f es el conjunto $\mathbb{R}-\{a/b\}$.

son correctas:

Seleccione una:

- a. Todas son correctas.
- b. Solo II y III

 ✓
- o. Solo II.
- d. Solo I.

La respuesta correcta es: Solo II y III

Pregunta 4

Correcta

Puntúa 20 sobre 20

P

Uno de los valores de $lpha \in \mathbb{R}$ de tal manera que la ecuación

$$\cos\!\left(\frac{5x}{4} - \alpha\right) = -\frac{1}{2}$$

tenga entre sus soluciones a expresiones del tipo

$$x=rac{4\pi}{30}+rac{8k\pi}{5}, \ {
m con} \ k\in \mathbb{Z}$$

es,

Seleccione una:

- igcap a. No existe un lpha que cumpla con la condición solicitada.
- \bigcirc b. $lpha=rac{5\pi}{10}$
- \circ c. $lpha=\pi$
- $\quad \ \ \, \text{d.} \ \alpha = -\frac{\pi}{2}$

~

La respuesta correcta es: $\alpha = -\frac{\pi}{6}$

Correcta

Puntúa 20 sobre 20

Un triángulo ABC isósceles con $\overline{AB}=\overline{CB}$ varía de tal manera que su vértice A permanece fijo en el punto A=(-a,0), su vértice B se mueve sobre el eje y y el lado \overline{CB} es horizontal. La ecuación del lugar geométrico que recorre el vértice C=(x,y) es:

Seleccione una:

$$\bigcirc$$
 a. $x^2-y^2=a^2$

$$\bigcirc$$
 b. $y^2-x^2=a^2$

$$\bigcirc$$
 c. $x^2-y^2=2a^2$

$$\quad \quad \text{d. } y^2-x^2=2a^2$$

La respuesta correcta es: $x^2-y^2=a^2$

CONTROL 3

Pregunta 1

Correcta

Puntúa 20 sobre 20

Sea
$$A=\{z\in\mathbb{C}:||z-2||-||z+2||=2\}.$$
 Si $z=x+iy\in A$ entonces

a.
$$x^2 - \frac{y^2}{3} = 1$$

$$\bigcirc \quad \text{ b. } \frac{x^2}{3} + y^2 = 1$$

$$\bigcirc$$
 c. $rac{x^2}{3}-y^2=1$

$$\bigcirc \quad \text{ d. } x^2 + \frac{y^2}{3} = 1$$

La respuesta correcta es: $x^2-\frac{y^2}{3}=1$

Pregunta 2

Correcta

Puntúa 20 sobre 20

Considere la función

$$f(x)=e^x-e^{-x}, \text{ con } x\in\mathbb{R}$$

El valor de $(f^{-1})'(0)$, es:

Seleccione una:

o c.
$$-\frac{1}{2}$$

$$\bigcirc$$
 d. $\frac{1}{2}$

La respuesta correcta es: $\frac{1}{2}$

Correcta

Puntúa 20 sobre 20

P

Al calcular

$$\frac{(1-i)^2(1+i)^3}{\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right)^5}$$

resulta

Seleccione una:

- o a. 8
- \circ b. $4\sqrt{2}$
- c. −8
- \odot d. $-4\sqrt{2}$

La respuesta correcta es: $-4\sqrt{2}$

Pregunta 4

Correcta

Puntúa 20 sobre 20

P

Considere la curva

$$x^3 + y^3 - 9xy = 0$$

La ecuación de la recta tangente en el punto P=(2,4), es:

Seleccione una:

- a. -4x + 5y = 12
 - ~
- o b. 4x 5y = 12
- o c. 4x + 5y = 12
- $\bigcirc \quad \text{d. } 4y 5x = 12$

La respuesta correcta es: -4x+5y=12

Pregunta 5

Correcta

Puntúa 20 sobre 20

P

Una función g(x) que satisface la ecuación

$$[\arcsin(g(x))]' = \frac{1}{x\sqrt{1-g^2(x)}}$$

es

Seleccione una:

- lacksquare a. $g(x)=\ln(x)$
- \bigcirc b. $g(x) = \tan(x)$
- \bigcirc c. $g(x)=e^x$
- \bigcirc d. $g(x)=x^2$

La respuesta correcta es: $g(x) = \ln(x)$

CERTAMEN 3

Sabiendo que 1 y 2 son raíces de $p(x) = x^4 - 11x^3 + (k^2 + 42)x^2 - (3k^2 + 64)x + 32 + 2k^2,$ ¿Cuál es el valor de k para que p(x) tenga por raíz a 4 + 2i ? Seleccione una: a. $k = \pm 4$ b. k = 0c. $k = \pm 1$ d. $k = \pm 2$

La respuesta correcta es: $k=\pm 2$

Pregunta 2

Correcta

Puntúa 20 sobre 20

P

El valor de $lpha\in\mathbb{R}$ de modo que la función $y(x)=xe^{lpha x}$ cumpla con y''-8y'+16y=0 es:

Seleccione una:

- a. 4
- b. -6
- o. 6
- d. -4

La respuesta correcta es: 4

Pregunta 3

Correcta

Puntúa 20 sobre 20

P

En un triángulo rectángulo un cateto se alarga y el otro se acorta de tal manera que el área del triángulo varía a una razón de $3[cm^2/seg]$. Si el lado que se acorta lo hace a la mitad de la rapidez del que se alarga ¿a qué razón varía el **cateto que se alarga** cuando éste mide 4[cm] y el que se acorta mide 3[cm]?

Seleccione una:

- a. $-6\left[\frac{cm}{s}\right]$
- O b. $3[\frac{cm}{s}]$
- \bigcirc c. $-3\left[\frac{cm}{s}\right]$
- o d. $6\left[\frac{cm}{s}\right]$

La respuesta correcta es: $6\left[\frac{cm}{e}\right]$

Correcta

Puntúa 20 sobre 20

W>

Considere el polinomio

$$p(x) = x^3 + ax^2 + 3bx + 4.$$

Los valores de a y b de modo al dividir p(x) por x-3 el resto sea 22 y que al dividirlo por x+1 el resto sea -6, son:

Seleccione una:

- o a. a = 3 y b = 2.
- \bigcirc c. a=-3 y b=-2
- o d. a = -3 y b = -2.

La respuesta correcta es: $a=-3 \;\; {\rm y} \;\; b=2.$

Pregunta 5 Correcta

Correcta Puntúa 20 sobre 20 En la figura adjunta, se muestra la gráfica de la derivada f^\prime de una función continua f.

- ¿Cuál(es) de las siguientes afirmaciones es(son) verdadera(s)?
- I) En el intervalo]7, 8[la función tiene un mínimo local.
- II) La función tiene en]0,9[dos máximos lo cales y dos mínimos locales.
- III) En x=3 y x=6 la función tiene mínimos locales.

Seleccione una:

- a. Sólo III.
- o b. Todas I, II y III.
- o. Sólo II y III
- d. Sólo I y II.

La respuesta correcta es: Sólo I y II.

Correcta

Puntúa 20 sobre 20

V

Sea ${\cal S}$ el conjunto solución de la ecuación,

$$sen(x) tan(x) = sen(x)$$

Si $\mathcal{S}\subseteq [\,-n\pi\,,\,n\pi\,]$, con $n\in\mathbb{R}$.

¿Cuál(es) de las afirmaciones siguientes es(son) verdadera(s)?

I) Si n=0, entonces $\mathcal{S}=\{0\}$.

II) Si
$$n=1$$
, entonces $\mathcal{S}=\left\{-\pi,-rac{3\pi}{4},0,rac{\pi}{4},\pi
ight\}$

III) Si
$$n=1$$
, entonces $\mathcal{S}=\left\{-2\pi,-\frac{5\pi}{4},-\pi,-\frac{\pi}{4},0,\frac{\pi}{4},\pi,\frac{5\pi}{4},2\pi\right\}$

Seleccione una:

- a. Sólo I
- b. Todas I, II y III.
- c. Sólo I y III
- d. Sólo I y II

 ✓

La respuesta correcta es: Sólo I y II

Pregunta 2

Correcta

Puntúa 20 sobre 20

P

Si $p(x)=x^4-9x^2-4x+12$ entonces de las afirmaciones

- I. Candidatos a raíces racionales de p(x) son $\{\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12\}$.
- II. Dado que hay dos variaciones de signo de p(x) entonces p(x) tiene posiblemente 2 raíces reales positivas.
- III. Todas las raíces de p(x) son de multiplicidad 1.

son correctas

Seleccione una:

- a. Solo I y II.
- ob. Todas I, II y III.
- c. Solo II y III.
- d. Solo I y III.

La respuesta correcta es: Solo I y II.

Pregunta 3

Correcta

Puntúa 20 sobre 20

V

La recta tangente a la curva

$$y = \operatorname{sen}\left(\frac{\pi}{8x}\right)\cos(\pi x^2)$$

en $x=rac{1}{2}$, es perpendicular a la recta

Seleccione una:

- o a. $4x+3\pi y-2\pi=0$
- o b. $3\pi x + 4y + \pi = 0$
- \odot c. $4x-3\pi y+\pi=0$

$$\bigcirc$$
 d. $3\pi x - 4y - \pi = 0$

La respuesta correcta es: $4x-3\pi y+\pi=0$

Correcta

Puntúa 20 sobre 20

V

Los valores de α y β , **en ese orden**, de modo que la función $f(x)=\frac{\alpha}{x}+\frac{\beta}{x^3}+x$ tenga a x=-3 y x=2 como puntos críticos son:

Seleccione una:

- a. 12 y -13
- b. 13 y -12
- o. 42 y 24
- od. 7 y -10

La respuesta correcta es: 13 y -12

Pregunta 5

Correcta

Puntúa 20 sobre 20

P

Se desea diseñar una lata con forma de cilindro circular recto de modo que la suma de su diámetro basal y su altura sea de 60[cm]. La altura, en [cm], de la lata de máximo volumen posible es:

Seleccione una:

- a. 10
- o b. 15
- o c. 20 ✓
- d. 30

La respuesta correcta es: 20