DM545/DM871 Linear and Integer Programming

Lecture 11 Network Flows

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Outline

1. Duality in Network Flow Problems

	X _{e1}	X _{e2}	 Xij	 X_{e_m}		
	C _{e1}	Ce ₂	 Cij	 Cem		
1	-1	-	 		=	b_{1}
2			 		=	b_2
:	:	1.			=	:
i	1		 -1		=	b_i
:	:	100			=	:
j			 1		=	b_j
:	:	100			=	:
n					=	b_n
e_1	1		 	 	≤ ≤	u_1
e_2	l I	1			\leq	u_2
:	:	100			<	:
(i,j)			1		≤ ≤	u _{ij}
:	:	100			< <	:
e _m				1	\leq	u_m

Outline

1. Duality in Network Flow Problems

Shortest Path - Dual LP

$$z = \min \sum_{ij \in A} c_{ij} x_{ij}$$

$$\sum_{i} x_{ji} - \sum_{i} x_{ij} = 1 \qquad \qquad \text{for } i = s \qquad (\pi_s)$$

$$\sum_{i:ii\in A} x_{ij} - \sum_{i:ij\in A} x_{ji} = 0 \qquad \forall i\in V\setminus\{s,t\}$$
 (\pi_i)

$$\sum_{i:ii\in A} \mathsf{x}_{ji} - \sum_{i:ij\in A} \mathsf{x}_{ij} = -1 \qquad \qquad \text{for } i = t \tag{π_t}$$

$$x_{ij} \geq 0$$
 $\forall ij \in A$

 (π_s)

 (π_i)

 (π_t)

Shortest Path - Dual LP

$$z = \min \sum_{ij \in A} c_{ij} x_{ij}$$

$$\sum_{i:i:\in A} x_{ji} - \sum_{i:i:\in A} x_{ij} = 1$$

$$\sum_{i:i:i\in A} x_{ij} - \sum_{i:i:j\in A} x_{ji} = 0$$

$$\sum_{j:ji\in A} x_{ji} - \sum_{j:ij\in A} x_{ij} = -1$$

$$x_{ij} \geq 0$$

for
$$i = s$$

$$\forall i \in V \setminus \{s, t\}$$

for
$$i = t$$

$$\forall ij \in A$$

$$g^{LP} = \max \pi_s - \pi_t$$
$$\pi_j - \pi_i \le c_{ij}$$

$$\forall ij \in A$$

.

Shortest Path - Dual LP

$$z = \min \sum_{i:j \in A} c_{ij} x_{ij}$$

$$\sum_{j:ji \in A} x_{ji} - \sum_{j:ij \in A} x_{ij} = 1$$

$$\sum_{j:ji \in A} x_{ij} - \sum_{j:ij \in A} x_{ji} = 0$$

$$\sum_{j:ji \in A} x_{ji} - \sum_{j:ij \in A} x_{ij} = -1$$

$$x_{ij} \geq 0$$

$$\forall i \in V \setminus \{s, t\}$$

$$(\pi_i)$$

$$(\pi_t)$$

$$\forall i \in A$$

Dual problem:

$$g^{LP} = \max \pi_s - \pi_t$$
 $\pi_j - \pi_i \leq c_{ij}$ $\forall ij \in A$

Hence, the shortest path can be found by potential values π_i on nodes such that $\pi_s = z, \pi_t = 0$ and $\pi_i - \pi_i \le c_{ii}$ for $ij \in A$

Maximum (s, t)-Flow

Adding a backward arc from t to s:

$$z = \max_{j:ji \in A} x_{ts}$$

$$\sum_{j:ji \in A} x_{ij} - \sum_{j:ij \in A} x_{ji} = 0 \qquad \forall i \in V \qquad (\pi_i)$$

$$x_{ij} \leq u_{ij} \qquad \forall ij \in A \qquad (w_{ij})$$

$$x_{ij} \geq 0 \qquad \forall ij \in A$$

Maximum (s, t)-Flow

Adding a backward arc from t to s:

$$z = \max_{j:ji \in A} x_{ij} - \sum_{j:ij \in A} x_{ji} = 0$$
 $\forall i \in V$ (π_i)
 $x_{ij} \leq u_{ij}$ $\forall ij \in A$ (w_{ij})
 $x_{ij} \geq 0$ $\forall ij \in A$

Dual problem:

$$g^{LP} = \min \sum_{ij \in A} u_{ij} w_{ij}$$

$$\pi_i - \pi_j + w_{ij} \ge 0 \qquad \forall ij \in A$$

$$\pi_t - \pi_s \ge 1$$

$$w_{ij} \ge 0 \qquad \forall ij \in A$$

	X _e 1	X_{e_2}	 x_{ij}	 X_{e_m}		
	C _e 1	Ce ₂	 Cij	 Cem		
1	-1			 	=	b_1
2					=	b_2
:	:	100			=	:
i	1		 -1		=	b_i
:	:	14.			_	:
j			 1		=	b _j
:	:	14.			=	:
n					=	\dot{b}_n
e_1	1		 	 	\leq	u_1
<i>e</i> ₂		1			\leq	u_2
:		100			<	:
(i,j)	 		1		≤ ≤	u _{ij}
:	! : ! :	1.			<	:
e_m	 			1	≤ ≤	u_m

$$g^{LP} = \min \sum_{ij \in A} u_{ij} w_{ij}$$

$$\pi_i - \pi_j + w_{ij} \ge 0 \qquad \forall ij \in A$$

$$\pi_t - \pi_s \ge 1 \qquad (3)$$

$$w_{ij} \ge 0 \qquad \forall ij \in A \qquad (4)$$

• Without (3) all potentials would go to 0.

$$g^{LP} = \min \sum_{ij \in A} u_{ij} w_{ij}$$

$$\pi_i - \pi_j + w_{ij} \ge 0$$

$$\pi_t - \pi_s \ge 1$$

$$w_{ij} \ge 0$$

$$\forall ij \in A$$

$$(3)$$

$$(4)$$

- Without (3) all potentials would go to 0.
- Keep w low because of objective function

$$g^{LP} = \min \sum_{ij \in A} u_{ij} w_{ij}$$

$$\pi_i - \pi_j + w_{ij} \ge 0$$

$$\pi_t - \pi_s \ge 1$$

$$w_{ij} \ge 0$$

$$\forall ij \in A$$

$$(3)$$

$$(4)$$

- Without (3) all potentials would go to 0.
- Keep w low because of objective function
- Keep all potentials low \rightsquigarrow (3) $\pi_s=0, \pi_t=1$

$$g^{LP} = \min \sum_{ij \in A} u_{ij} w_{ij}$$

$$\pi_i - \pi_j + w_{ij} \ge 0$$

$$\pi_t - \pi_s \ge 1$$

$$w_{ii} \ge 0$$

$$\forall ij \in A$$

$$(2)$$

$$(3)$$

$$(4)$$

- Without (3) all potentials would go to 0.
- Keep w low because of objective function
- Keep all potentials low \rightsquigarrow (3) $\pi_s = 0, \pi_t = 1$
- Cut C: on left =1 on right =0. Where is the transition?

$$g^{LP} = \min \sum_{ij \in A} u_{ij} w_{ij} \tag{1}$$

$$\pi_{i} - \pi_{j} + w_{ij} \ge 0 \qquad \forall ij \in A$$

$$\pi_{t} - \pi_{s} \ge 1 \qquad (3)$$

$$w_{ii} > 0 \qquad \forall ij \in A \qquad (4)$$

- Without (3) all potentials would go to 0.
- Keep w low because of objective function
- Keep all potentials low \rightsquigarrow (3) $\pi_s = 0, \pi_t = 1$
- Cut C: on left =1 on right =0. Where is the transition?
- Vars w identify the cut $\rightsquigarrow \pi_j \pi_i + w_{ij} \geq 0 \rightsquigarrow w_{ij} = 1$

$$w_{ij} = egin{cases} 1 & \textit{if } ij \in C \\ 0 & \textit{otherwise} \end{cases}$$

for those arcs that minimize the cut capacity $\sum_{ij \in A} u_{ij} w_{ij}$

$$g^{LP} = \min \sum_{ij \in A} u_{ij} w_{ij}$$

$$\pi_i - \pi_j + w_{ij} \ge 0$$

$$\pi_t - \pi_s \ge 1$$

$$w_{ii} \ge 0$$

$$\forall ij \in A$$

$$(2)$$

$$(3)$$

- Without (3) all potentials would go to 0.
- Keep w low because of objective function
- Keep all potentials low \leadsto (3) $\pi_s=0, \pi_t=1$
- Cut C: on left =1 on right =0. Where is the transition?
- Vars w identify the cut $\rightsquigarrow \pi_i \pi_i + w_{ii} \ge 0 \rightsquigarrow w_{ii} = 1$

$$w_{ij} = egin{cases} 1 & \textit{if ij} \in C \ 0 & \textit{otherwise} \end{cases}$$

for those arcs that minimize the cut capacity $\sum_{ii \in A} u_{ij} w_{ij}$

• Complementary slackness: $w_{ij} = 1 \implies x_{ij} = u_{ij}$

Theorem

A strong dual to the max (st)-flow is the minimum (st)-cut problem:

$$\min_{X} \left\{ \sum_{ij \in A: i \in X, j \notin X} u_{ij} : s \in X \subset V \setminus \{t\} \right\}$$

Max Flow Algorithms

Optimality Condition

- Ford Fulkerson augmenting path algorithm $O(m|x^*|)$
- Edmonds-Karp algorithm (augment by shortest path) in $O(nm^2)$
- Dinic algorithm in layered networks $O(n^2m)$
- Karzanov's push relabel $O(n^2m)$

Min Cost Flow - Dual LP

$$\min \sum_{ij \in A} c_{ij} x_{ij}$$

$$\sum_{j: ji \in A} x_{ij} - \sum_{j: ij \in A} x_{ji} = b_{i} \qquad \forall i \in V \qquad (\pi_{i})$$

$$x_{ij} \leq u_{ij} \qquad \forall ij \in A \qquad (w_{ij})$$

$$x_{ij} \geq 0 \qquad \forall ij \in A$$

Dual problem:

$$\max \sum_{i \in V} b_i \pi_i - \sum_{ij \in E} u_{ij} w_{ij}$$

$$-c_{ij} - \pi_i + \pi_j \le w_{ij} \qquad \forall ij \in E$$

$$w_{ii} \ge 0 \qquad \forall ij \in A$$

$$(1)$$

• define reduced costs $\bar{c}_{ij} = c_{ij} + \pi_j - \pi_i$, hence (2) becomes $-\bar{c}_{ij} \leq w_{ij}$

- define reduced costs $\bar{c}_{ij} = c_{ij} + \pi_j \pi_i$, hence (2) becomes $-\bar{c}_{ij} \leq w_{ij}$
- $u_e=\infty$ then $w_e=0$ (from obj. func) and $ar{c}_{ij}\geq 0$ (optimality condition)

- define reduced costs $\bar{c}_{ij} = c_{ij} + \pi_j \pi_i$, hence (2) becomes $-\bar{c}_{ij} \leq w_{ij}$
- $u_e = \infty$ then $w_e = 0$ (from obj. func) and $\bar{c}_{ij} \geq 0$ (optimality condition)
- $u_e < \infty$ then $w_e \ge 0$ and $w_e \ge -\bar{c}_{ij}$ then $w_e = \max\{0, -\bar{c}_{ij}\}$, hence w_e is determined by others and irrelevant

- define reduced costs $\bar{c}_{ij} = c_{ij} + \pi_j \pi_i$, hence (2) becomes $-\bar{c}_{ij} \leq w_{ij}$
- $u_e = \infty$ then $w_e = 0$ (from obj. func) and $\bar{c}_{ij} \geq 0$ (optimality condition)
- $u_e < \infty$ then $w_e \ge 0$ and $w_e \ge -\bar{c}_{ij}$ then $w_e = \max\{0, -\bar{c}_{ij}\}$, hence w_e is determined by others and irrelevant
- Complementary slackness th. for optimal solutions: each primal variable \times the corresponding dual slack must be equal 0, ie, $x_e(\bar{c}_e + w_e) = 0$;

- define reduced costs $\bar{c}_{ij} = c_{ij} + \pi_j \pi_i$, hence (2) becomes $-\bar{c}_{ij} \leq w_{ij}$
- $u_e = \infty$ then $w_e = 0$ (from obj. func) and $\bar{c}_{ij} \geq 0$ (optimality condition)
- $u_e < \infty$ then $w_e \ge 0$ and $w_e \ge -\bar{c}_{ij}$ then $w_e = \max\{0, -\bar{c}_{ij}\}$, hence w_e is determined by others and irrelevant
- Complementary slackness th. for optimal solutions: each primal variable \times the corresponding dual slack must be equal 0, ie, $x_e(\bar{c}_e + w_e) = 0$;
 - $x_e > 0$ then $-\bar{c}_e = w_e = \max\{0, -\bar{c}_e\}$, $x_e > 0 \implies -\bar{c}_e \ge 0$ or equivalently (by negation) $\bar{c}_e > 0 \implies x_e = 0$ each dual variable \times the corresponding primal slack must be equal 0, ie, $w_e(x_e u_e) = 0$;

- define reduced costs $\bar{c}_{ij} = c_{ij} + \pi_j \pi_i$, hence (2) becomes $-\bar{c}_{ij} \leq w_{ij}$
- $u_e = \infty$ then $w_e = 0$ (from obj. func) and $\bar{c}_{ij} \geq 0$ (optimality condition)
- $u_e < \infty$ then $w_e \ge 0$ and $w_e \ge -\bar{c}_{ij}$ then $w_e = \max\{0, -\bar{c}_{ij}\}$, hence w_e is determined by others and irrelevant
- Complementary slackness th. for optimal solutions: each primal variable \times the corresponding dual slack must be equal 0, ie, $x_e(\bar{c}_e + w_e) = 0$;
 - $x_e > 0$ then $-\bar{c}_e = w_e = \max\{0, -\bar{c}_e\}$, $x_e > 0 \implies -\bar{c}_e \ge 0$ or equivalently (by negation) $\bar{c}_e > 0 \implies x_e = 0$

• $w_e > 0$ then $x_e = u_e$ $-\bar{c} > 0 \implies x_e = u_e$ or equivalently $\bar{c} < 0 \implies x_e = u_e$

- define reduced costs $\bar{c}_{ij} = c_{ij} + \pi_j \pi_i$, hence (2) becomes $-\bar{c}_{ij} \leq w_{ij}$
- $u_e = \infty$ then $w_e = 0$ (from obj. func) and $\bar{c}_{ij} \geq 0$ (optimality condition)
- $u_e < \infty$ then $w_e \ge 0$ and $w_e \ge -\bar{c}_{ij}$ then $w_e = \max\{0, -\bar{c}_{ij}\}$, hence w_e is determined by others and irrelevant
- Complementary slackness th. for optimal solutions: each primal variable \times the corresponding dual slack must be equal 0, ie, $x_e(\bar{c}_e + w_e) = 0$;
 - $x_e > 0$ then $-\bar{c}_e = w_e = \max\{0, -\bar{c}_e\}$, $x_e > 0 \implies -\bar{c}_e \ge 0$ or equivalently (by negation) $\bar{c}_e > 0 \implies x_e = 0$

• $w_e > 0$ then $x_e = u_e$ $-\bar{c} > 0 \implies x_e = u_e$ or equivalently $\bar{c} < 0 \implies x_e = u_e$

- define reduced costs $\bar{c}_{ij} = c_{ij} + \pi_j \pi_i$, hence (2) becomes $-\bar{c}_{ij} \leq w_{ij}$
- $u_e = \infty$ then $w_e = 0$ (from obj. func) and $\bar{c}_{ij} \geq 0$ (optimality condition)
- $u_e < \infty$ then $w_e \ge 0$ and $w_e \ge -\bar{c}_{ij}$ then $w_e = \max\{0, -\bar{c}_{ij}\}$, hence w_e is determined by others and irrelevant
- Complementary slackness th. for optimal solutions: each primal variable \times the corresponding dual slack must be equal 0, ie, $x_e(\bar{c}_e + w_e) = 0$;
 - $x_e > 0$ then $-\bar{c}_e = w_e = \max\{0, -\bar{c}_e\}$, $x_e > 0 \implies -\bar{c}_e \ge 0$ or equivalently (by negation) $\bar{c}_e > 0 \implies x_e = 0$

•
$$w_e > 0$$
 then $x_e = u_e$
 $-\bar{c} > 0 \implies x_e = u_e$ or equivalently $\bar{c} < 0 \implies x_e = u_e$

Hence:

$$ar{c}_e > 0$$
 then $x_e = 0$
 $ar{c}_e < 0$ then $x_e = u_e \neq \infty$

Min Cost Flow Algorithms

Theorem (Optimality conditions)

Let x be feasible flow in N(V, A, l, u, b) then x is min cost flow in N iff N(x) contains no directed cycle of negative cost.

- Cycle canceling algorithm with Bellman Ford Moore for negative cycles $O(nm^2UC)$, $U = \max |u_e|$, $C = \max |c_e|$
- Build up algorithms $O(n^2 mM)$, $M = \max |b(v)|$