Efficient Local Search for Nonlinear Real Arithmetic

Zhonghan Wang, Bohua Zhan, Bohan Li, Shaowei Cai

Institute of Software, Chinese Academy of Sciences

January 15th, 2024

Introduction

Beamer Basic

Hightlight

Other Environments

Beamer More

Split Screen

Table

Math

Introduction

Beamer Basic

Hightlight

Other Environments

Beamer More

Split Screen

Table

Math

Latex and Beamer

LaTeX is a high-quality typesetting system; it includes features designed for the production of technical and scientific documentation.

Introduction

Beamer Basic

Hightlight

Other Environments

Beamer More

Split Screen

Table

Math

Latex and Beamer

LaTeX is a high-quality typesetting system; it includes features designed for the production of technical and scientific documentation.

Beamer is a LaTeX class to create powerful, flexible and nice-looking presentations and slides.

The beamer class is focussed on producing (on-screen) presentations, along with support material such as handouts and speaker notes.

Introduction

Beamer Basic

Hightlight

Other Environments

Beamer More

Split Screen

Table

Math

Introduction

Beamer Basic

Hightlight

Other Environments

Beamer More

Split Screen

Table

Math

Block and Alert

Pythagorean theorem

$$a^2 + b^2 = c^2$$

where c represents the length of the hypotenuse and a and b the lengths of the triangle's other two sides.

Remark

- the environment above is **block**
- the environment here is alertblock

Introduction

Beamer Basic

Hightlight

Other Environments

Beamer More

Split Screen

Table

Math

Proof

Pythagorean theorem

$$a^2 + b^2 = c^2$$

Proof.

$$3^2 + 4^2 = 5^2$$
$$5^2 + 12^2 = 13^2$$

Introduction

Beamer Basic

Hightlight

Other Environments

Beamer More

Split Screen

Table

 Math

Algorithm

```
Data: this text

Result: how to write algorithm with LATEX2e initialization;

while not at end of this document do read current;

if understand then

go to next section;
current section becomes this one;
else
go back to the beginning of current section;
end

end

Algorithm 1: How to write algorithms (copied from here)
```

Introduction

Beamer Basic

Hightlight

Other Environments

Beamer More

Split Screen

Table

Math

An Algorithm For Finding Primes Numbers.

Note the use of \alert

More

More environments such as

- Definition
- lemma
- corollary
- example

Introduction

Beamer Basic

Hightlight

Other Environments

Beamer More

Split Screen

Table

Math

Introduction

Beamer Basic

Hightlight

Other Environments

Beamer More

Split Screen

Table

Math

Minipage

- 1 item
- 2 another
- 3 more
 - first
 - second
 - third

Introduction

Beamer Basic

Hightlight

Other Environments

eamer More

Split Screen

Table

Math

Columns

This is a text in first column.

$$E = mc^2$$

- First item
- Second item

first block

columns achieves splitting the screen

second block

stack block in columns

Introduction

Beamer Basic

Hightlight

Other Environments

Beamer More

Split Screen

Table

Math

Create Tables

first	second	third
1	2	3
4	5	6
7	8	9

Introduction

Beamer Basic

Hightlight

Other Environments

Beamer More

Split Screen

Table

Math

Equation1

A matrix in text must be set smaller: $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ to not increase leading in a portion of text.

$$f(n) = \begin{cases} n/2 & \text{if } n \text{ is even} \\ -(n+1)/2 & \text{if } n \text{ is odd} \end{cases}$$

 $50apples \times 100apples = lots of apples^2$

Introduction

Beamer Basic

Hightlight

Other Environments

Beamer More

Split Screen

Table

Math

Equation2

$$\sum_{\substack{0 < i < m \\ 0 < j < n}} P(i, j) = \int_{a}^{b} \prod P(i, j)$$

$$P\left(A = 2 \left| \frac{A^{2}}{B} > 4 \right.\right)$$

$$(a), [b], \{c\}, |d|, ||e||, \langle f \rangle, \lfloor g \rfloor, \lceil h \rceil, \lceil i \rceil$$

Introduction

Beamer Basic

Hightlight

Other Environments

Beamer More

Split Screen

Table

Math

Equation3

$$Q(\alpha) = \alpha_i \alpha_j y_i y_j (x_i \cdot x_j)$$

$$Q(\alpha) = \alpha^i \alpha^j y^{(i)} y^{(j)} (x^i \cdot x^j)$$

$$\Gamma = \beta + \alpha + \gamma + \rho$$

Introduction

Beamer Basic

Hightlight

Other Environments

Beamer More

Split Screen

Table

Math

Introduction

Beamer Basic

Hightlight

Other Environments

Beamer More

Split Screen

Table

Math

End

The last page.

Introduction

Beamer Basic

Hightlight

Other Environments

Beamer More

Split Screen

Table

Math