CS 291 Exam 3 April 23, 2021

Name:

1. (20 points) Convert the following NFA to a DFA. Show your work. Show both the DFA table AND the graph of the resulting DFA.

2. (10 points) Given the grammar: $S \to ba aSb$
(a) Show a parse tree for the string <i>aababb</i>
(b) Is this the only parse tree for this string? If yes, say so. If no, show another parse tree.
(b) is this the only purse tree for this string. If yes, say so. If no, show another purse tree.

- 3. (15 points) Find a regular expression for each of the following languages over the alphabet $\{a,b,c\}$.

 (a) $\{a^mbbc^n|m,n\in\mathbb{N}\}$

(b) Strings over $\{a,b\}$ containing the substring bbb.

- $4.\ (15\ \mathrm{points})$ Draw a graphical picture of a DFA to recognize the language:
 - (a) $a^*cb^* + ab$

5. (15 points) Find a regular expression for the language accepted by the following DFA. Do so by first eliminating state 1, then eliminating state 0. Show your work:

- 6. (15 points) Find a grammar for each of the following languages:
 - (a) $\{aaabbb, aaaabbbb, \ldots\} = \{a^nb^n|n>2\}$

(b) $\{ba, bbba, ..., b^{2n+1}a, ...\} = \{b^{2n+1}a | n \in \mathbb{N}\}$

- 7. (10 points) Show that the following grammar is ambiguous by finding a string in the language with two different parse trees. Show the two different parse trees.
 - (a) $S \to b|SaS$