

학습 목표

비순환 방향 그래프(Directed Acyclic Graph)를 이해하고 위상(Topological) 정렬을 학습한다

Data Structures in Python Chapter 9

- Graph Introduction
- Graph Traversal BFS
- Graph Traversal DFS
- Topological Sort of DAG

Agenda

- Topological Sort
 - Digraph ADT and Class
 - Digraph DFS and BFS
 - Topological Sort of DAG
- References:
 - Problem Solving with Algorithms and Data Structures
 - Wikipedia: <u>Directed graph</u>
 - Wikipedia: <u>Directed acyclic graph</u>

Digraph Introduction

- When a graph has an ordered pair of vertices, it is called a directed graph or digraph.
- A special case of digraph that contains no cycles is called a directed acyclic graph, or DAG.
- The outdegree of a vertex is the number of edges pointing from it.
- The indegree of a vertex is the number of edges pointing to it.

Graph ADT - Review

 Graph processing algorithms first build an internal representation of a graph by adding edges, then process it by iterating through the vertices and through edges that are adjacent to a vertex.

Operations	Description		
g = Graph()	construct a new Graph object g		
<pre>g.addEdge(v, w)</pre>	add two edges v-w and w-v to g for undirected		
g.countV()	the number of vertices in g		
g.countE()	the number of edges in g		
g.degree(v)	the number of neighbors of v in g		
<pre>g.hasVertex(v)</pre>	is v a vertex in g?		
<pre>g.hasEdge(v, w)</pre>	is v-w an edge in g?		
<pre>g.vertices()</pre>	an iterable for the vertices of g		
g.neighbors(v)	an iterable for the neighbors of vertex v in g		
str(g)	string representation of g		

Graph ADT - Review

 Graph processing algorithms first build an internal representation of a graph by adding edges, then process it by iterating through the vertices and through edges that are adjacent to a vertex.

	Operations	Description		
	g = Graph()	construct a new Graph object g	Digraph()	
$\qquad \qquad \Box \\$	<pre>g.addEdge(v, w)</pre>	add two edges v-w and w-v to g for undirected	override to add one edge v-w to	
ightharpoonup	g.countV()	the number of vertices in g		
	g.countE()	the number of edges in g		
	g.degree(v)	the number of neighbors of v in g	inDegree(v), outDegree(v)	
	g.hasVertex(v)	is v a vertex in g?		
	g.hasEdge(v, w)	is v-w an edge in g?		
ightharpoonup	<pre>g.vertices()</pre>	an iterable for the vertices of g		
	g.neighbors(v)	an iterable for the neighbors of vertex v in g	inNeighbors(v), outNeighbors(v)	
	str(g)	string representation of g		

Graph ADT for Digraph

 Graph processing algorithms first build an internal representation of a graph by adding edges, then process it by iterating through the vertices and through edges that are adjacent to a vertex.

	Operations	Description	
	g = Digraph()	construct a new Digraph object g	Digraph()
	<pre>g.addEdge(v, w)</pre>	add one edge v-w to g	override to add one edge v-w to g
\Box	g.countV()	the number of vertices in g	
	g.countE()	the number of edges in g	
	<pre>g.inDegree(v) g.degree(v)</pre>	the number of incoming neighbors of v in g the number of outgoing neighbors of v in g	add inDegree(v)
	<pre>g.hasVertex(v)</pre>	is v a vertex in g?	
	g.hasEdge(v, w)	is v-w an edge in g?	
	<pre>g.vertices()</pre>	an iterable for the vertices of g	
	<pre>g.inNeighbors(v) g.neighbors(v)</pre>	an iterable for incoming neighbors of vertex v in g an iterable for outgoing neighbors of vertex v in g	add inNeighbors(v)
	str(g)	string representation of g	

Digraph Class

- Define a Digraph class derived from Graph class.
- Override addEdge(v, w) method.
- Define inDegree(v) and inNeighbors(v) for incoming vertices to v.
- To use DFS(), IDFS(), and BFS() as they are,
 do not define outDegree(v) and outNeighbors(v) for outgoing vertices from v.

```
class Digraph(Graph):
   def addEdge(self, v, w):
        pass
                                        override to add one edge v-w to g
   def inDegree(self, v):
                                        return len( [ list of incoming vertices ] )
        pass
   def inNeighbors(self, v):
                                        return iter( [ list of incoming vertices ] )
        pass
   def outDegree(self, v):
                                              Leave out these two definitions, then
        return super().degree(v)
                                              existing degree(v) and neighbors(v)
   def outNeighbors(self, v):
                                              will work for outgoing vertices from v.
        return super().neighbors(v)
```

Digraph Class DFS

To compute the DFS for a digraph, we may use the same code used for undirected graphs.

Adjacency list

LAX: ORD ATL

ORD: ATL

ATL: LAX JFK

JFK: JFK

Digraph with a self-loop

Digraph Class DFS

To compute the DFS for a digraph, we may use the same code used for undirected graphs.

Adjacency list

LAX: ORD ATL
ORD: ATL
ATL: LAX JFK
JFK: JFK

Pseudocode

```
def DFS(g, v):
    path.append(v)
    for w in g.neighbors(v):
        if w not in path:
            DFS(g, w)
```

Sample Run: DFS at ATL

```
['ATL', 'LAX', 'ORD', 'JFK']
```

Digraph with a self-loop

We start traversal from vertex ATL. Look for neighbors, **LAX** and JFK. Then go for LAX first (why?). Look for all neighbors, ATL and ORD. Since ATL is a visited vertex, now go for ORD. Now it reached a dead-end since it started ATL→LAX. Now back-track and found ATL → JFK not visited. Now go for JFK. A Depth-first traversal of the graph above is ATL, LAX, ORD, JFK.

Digraph Class BFS - Review

Just like DFS, the same BFS algorithm for the undirected graph works for digraphs.

Digraph with a self-loop

```
class BFS:
    def __init__(self, graph, s):
        self. distTo = dict()
        self. prevTo = dict()
        self._distTo[s] = 0
        self._prevTo[s] = None
        self._path = []
        queue = deque()
        queue.append(s)
        while queue:
            v = queue.popleft()
            for w in g.neighbors(v):
                if w not in self._distTo:
                    queue.append(w)
                    self._distTo[w] = 1 + self._distTo[v]
                    self. prevTo[w] = v
```

Digraph Class BFS

Just like DFS, the same BFS algorithm for the undirected graph works for digraphs.

Digraph with a self-loop

Adjacency list

LAX: ORD ATL ORD: ATL ATL: LAX JFK JFK: JFK

```
class BFS:
    def __init__(self, graph, s):
        self. distTo = dict()
        self. prevTo = dict()
        self. distTo[s] = 0
        self._prevTo[s] = None
        self. path = []
        queue = deque()
        queue.append(s)
        while queue:
            v = queue.popleft()
            for w in g.neighbors(v):
                if w not in self._distTo:
                    queue.append(w)
                    self. distTo[w] = 1 + self. distTo[v]
                    self. prevTo[w] = v
```

Sample Run: BFS at ATL

```
[ATL, LAX, JFK, ORD]
```

Digraph DFS/BFS Exercise

Perform DFS and BFS for all vertices in the following digraph.


```
recursive DFS: 1, 3
iterative DFS: 1, 4
BFD: 1, 7
```

Topological Sort of DAG(위상 정렬)

- A directed edge in DAG is often used to indicate precedence among events.
 - For example, consider how a person might wear several garments, such as socks, pants, shoes, etc. Some must be put on before the others. We need to wear pants u before belt v.

Topological Sort of DAG(위상 정렬)

- A directed edge in DAG is often used to indicate precedence among events.
 - For example, consider how a person might wear several garments, such as socks, pants, shoes, etc. Some must be put on before the others. We need to wear pants u before belt v.

• A direct edge (u, v) in a DAG indicates that we need proceed u before v while respecting the dependency constraints. For example, we can put on garments in the following order.

Topological Sort of DAG(위상 정렬)

The following graph is "topologically unsorted graph".

The following graph is so called topologically sorted graph.

Topological Sort of DAG Example

- 1. Compute in-coming and out-going degrees of vertices 0, 1, and 7, respectively:
- 2. Select all vertices in a DAG that can be a starting vertex for the topological sort:

Observations:

- In a DAG, there must be at least one vertex that has in-coming degree of 0.
- In a DAG, there can be many topological orderings shown below.
- If there is a cycle in a DAG, a topological sort can not be defined since the precedence of vertices cannot be determined.

7	5	3	1	4	2	0	6	
7	5	1	2	3	4	0	6	
5	7	3	1	0	2	6	4	
3	5	7	0	1	2	6	4	
5	7	3	0	1	4	6	2	
7	5	1	3	4	0	6	2	
5	7	1	2	3	0	6	4	
3	7	0	5	1	4	2	6	
more to come								

Topological Sort - Kahn Algorithm

Idea: Keep on finding and removing vertices that have no incoming edges from the graph,

one by one for all vertices.

Algorithm:

```
Compute indegree, ideg, for each vertex in g.

Put all vertices with 0 indegree into a queue.

Create an empty vertex list, path.

while queue:

dequeue a vertex u from queue

add u to tail of path

for each vertex v in neighbor(u):

decrease v's indegree by 1

if v's indegree is 0:

add v to queue

return path
```


toposort.txt edge list

ATL DEN
ICN LAX
ICN DFW
DFW ATL
LAX DFW
LAX ATL
LAX ORD
LAX DEN
DEN JFK
ORD JFK

adjacency list

ATL: DEN
DEN: JFK
ICN: LAX DFW
LAX: DFW ATL ORD DEN
DFW: ATL
ORD: JFK
JFK:

Topological Sort - Kahn Algorithm

Idea: Keep on finding and removing vertices that have no incoming edges from the graph, one by one for all vertices.

Algorithm:

```
Compute indegree, ideg, for each vertex in g.

Put all vertices with 0 indegree into a queue.

Create an empty vertex list, path.

while queue:

dequeue a vertex u from queue

add u to tail of path

for each vertex v in neighbor(u):

decrease v's indegree by 1

if v's indegree is 0:

add v to queue

return path
```


['ICN', 'LAX', 'DFW', 'ORD', 'ATL', 'DEN', 'JFK']

Topological Sort - Kahn Algorithm Code

Algorithm:

```
Compute indegree, ideg, for each vertex in g.
Put all vertices with 0 indegree into a queue.
Create an empty vertex list, path.
while queue:
   dequeue a vertex u from queue
   add u to tail of path
   for each vertex v in neighbor(u):
        decrease v's indegree by 1
        if v's indegree is 0:
        add v to queue
return path
```



```
def topoSort(g):
    que = deque()
   ideg = dict()
   for v in g.vertices():
       ideg[v] = g.inDegree(v)
       if ideg[v] == 0:
            que.append(v)
    path = []
   while que:
       u = que.popleft()
       path.append(u)
       for v in g.neighbors(u):
            ideg[v] -= 1
            if ideg[v] == 0:
                que.append(v)
    return path
if name == ' main ':
   g = Digraph('toposort.txt')
   print(topoSort(g))
             ['ICN', 'LAX', 'DFW', 'ORD', 'ATL', 'DEN', 'JFK']
```

Topological Sort - Kahn Algorithm Coding Exercise

- Create a new file, topocycle.txt, by appending an edge from JFK to ATL to toposort.txt.
- Observe the result of the topological sort.
 - Print out the status of indegree of the graph.

```
if __name__ == '__main__':
    g = Digraph('topocycle.txt')
    print(topoSort(g))
    ['ICN', 'LAX', 'DFW', 'ORD']
```

Enhance the code that detects a cycle such that it outputs the result shown below:

```
if __name__ == '__main__':
    g = Digraph('topocycle.txt')
    print(topoSort(g))
It is not a DAG - a cycle found.
None
```


Create a new file, **topocycle.txt** by appending a new edge to toposort.txt

Hint: Before returning the result of the topological sort, check the sum of indegree of vertices.

DFS with Recursion vs. Modified DFS for Topological sort

```
def dfs(g):
                                         def topoSort dfs(g):
    path = []
                                             path = []
                                             for u in g.vertices():
   for u in g.vertices():
        if u not in path:
                                                 if u not in path:
            _dfs(g, u, path)
                                                     _topoSort_dfs(g, u, path)
    return path
                                             return path
def _dfs(g, u, path):
                                         def topoSort dfs(g, u, path):
    path.append(u)
                                             for v in g.neighbors(u):
   for v in g.neighbors(u):
                                                 if v not in path:
        if v not in path:
                                                     topoSort dfs(g, v, path)
           dfs(g, v, path)
                                             path.insert(0, u) # u must be in front of v in topological sort.
g = Diraph('toposort.txt')
                                         g = Diraph('toposort.txt')
print(dfs(g))
                                         print(topoSort dfs(g))
['ATL', 'DEN', 'LAX', 'ICN', 'DFW', 'ORD', 'JFK']
                                                            ['ICN', 'LAX', 'ORD', 'DFW', 'ATL', 'DEN', 'JFK']
```

- In standard DFS algorithm, it appends each vertex into the path immediately when visited.
 Since DFS can start at any vertex, it cannot guarantee to generate a topologically sorted list.
- Instead, we then put it to **the front of the result list**, **path** after all neighbors of a vertex **u** are visited. In this way, we can make sure that **u** appears before all its neighbors **v**'s in the sorted list.

Exercise: Modified DFS for Topological sort

```
def topoSort_dfs(g):
    path = []
   for u in g.vertices():
       if u not in path:
            _topoSort_dfs(g, u, path)
    return path
def _topoSort_dfs(g, u, path):
   for v in g.neighbors(u):
       if v not in path:
            topoSort dfs(g, v, path)
    path.insert(0, u) # u must be in front of v in topological sort.
g = Diraph('toposort.txt')
print(topoSort dfs(g))
                                      It is not a DAG - a cycle found.
                                      None
```

- What would happen if you run this code for a non-DAG such as 'topocycle.txt'?
- Fix the code such that it detects a cycle if any and outputs as shown above.

Time Complexity

The time complexity of DFS/BFS algorithms and Kahn's topological sort algorithm are O(V + E), where V and E are the total number of vertices and edges in the graph, respectively.

Applications of Topological Sort

- Topological sorting is used mainly when tasks or items have to be ordered, where some tasks or items have to occur before others can.
 - Scheduling jobs, given dependencies some jobs have on some other jobs.
 - Course arrangement in educational institutions. Finding prerequisites of any job or task.
 - Detecting deadlocks in operating systems. Finding out if cycles exist in a graph.
 - Resolving symbol dependencies in linkers. Compile-time build dependencies. Deciding the appropriate order of performing compilation tasks in makefiles.

Summary

- Digraph class may be derived from Graph class and need to override some methods.
- For digraph traversals, we may use almost the same algorithms used for undirected graphs.
- A DAG (Directed acyclic graph) is a special case of digraph.
 A DAG will always have at least one valid topological sort possible.
 A DAG has at least one vertex that has no incoming edge.
- The graph must be a DAG for topological sort to be possible.
 If a graph is undirected, each edge being bidirectional creates a cycle between the two vertices it connects; hence topological sort is not possible.

학습 정리

- 1) 비순환 방향 그래프(DAG)는 노드들이 특정한 방향을 향하고 순환하는 구조가 없다
- 2) 위상(Topological) 정렬은 비순환 방향 그래프(DAG)에서 정점 (vertex)들을 선형으로 정렬하는 것이다
- 3) DAG가 아닌 그래프에서는 위상 정렬을 할 수 없다
- 4) 위상 정렬의 시간복잡도는 O(V + E)이다

Topological Sort - Kahn Algorithm

Idea: Keep on finding and removing vertices that have no incoming edges from the graph, one by one for all vertices.

toposort.txt edge list

adjacency list

ATL: DEN DEN: JFK

ICN: LAX DFW

LAX: DFW ATL ORD DEN

DFW: ATL ORD: JFK

JFK: