Projekt STP 33

Radosław Światkiewicz

27 listopada 2016

1 Zadanie 1

Celem zadania jest wyznaczenie transmitancji dyskretnej od transmitancji ciągłej:

$$G(s) = \frac{(s+2)(s+3)}{(s-4)(s+5)(s+6)} = \frac{s^2 + 5s + 6}{s^3 + 7s^2 - 14s - 120}$$

z okresem próbkowania T = 0.25.

Do wykonania tego można użyć programu MatLab. Najpierw należy ustawić zmienne i obliczyć za pomocą c2dm. Ekstrapolator zerowego rzędu osiągamy ustawiając 'zoh', co oznacza, że wartość próbki jest podtrzymywana w czasie jej trwania.

Co się przekłada na:

$$G(z) = \frac{0.26z^2 - 0.29z + 0.08}{z^3 - 3.23z^2 + 1.45z - 0.17}$$

Zera transmitancji ciągłej można wyliczyć przyrównując licznik do zera, podobnie bieguny przyrównując mianownik:

$$\begin{cases} s_{z1} = -2 \\ s_{z2} = -3 \\ s_{b1} = 4 \\ s_{b2} = -5 \\ s_{b3} = -6 \end{cases}$$

Używając funkcji ${\tt roots}$ łatwo obliczamy także zera i bieguny transmitancji dyskretnej:

$$\begin{cases} z_{z1} = 0.68 \\ z_{z2} = 0.43 \\ z_{b1} = 2.72 \\ z_{b2} = 0.29 \\ z_{b3} = 0.22 \end{cases}$$