Summary of symmetry calculations

June 16, 2021

Contents

1 hydons_model 5

4 CONTENTS

Chapter 1

$hydons_model$

$Run~01_11PM_04_June-2021$

Degree in tangential ansätze: 1

The reaction terms are:

$$\frac{\mathrm{d}y_1}{\mathrm{d}t} = \frac{ty_1 + y_2^2}{-t^2 + y_1 y_2}$$
$$\frac{\mathrm{d}y_2}{\mathrm{d}t} = \frac{ty_2 + y_1^2}{-t^2 + y_1 y_2}$$

The calculated generator is:

$$X = (K_6 t) \partial t + (K_6 y_1) \partial y_1 + (K_6 y_2) \partial y_2 \tag{1.1}$$

Run 11_23PM_07_June-2021

Degree in tangential ansätze: 1

The reaction terms are:

$$\frac{\mathrm{d}y_1}{\mathrm{d}t} = \frac{ty_1 + y_2^2}{-t^2 + y_1y_2}$$
$$\frac{\mathrm{d}y_2}{\mathrm{d}t} = \frac{ty_2 + y_1^2}{-t^2 + y_1y_2}$$

The calculated generator is:

$$X = (K_6 t) \partial t + (K_6 y_1) \partial y_1 + (K_6 y_2) \partial y_2$$
(1.2)

$Run~11_29PM_07_June-2021$

Degree in tangential ansätze: 1

$$\frac{\mathrm{d}y_1}{\mathrm{d}t} = \frac{ty_1 + y_2^2}{-t^2 + y_1 y_2}$$
$$\frac{\mathrm{d}y_2}{\mathrm{d}t} = \frac{ty_2 + y_1^2}{-t^2 + y_1 y_2}$$

$$X = (K_6 t) \partial t + (K_6 y_1) \partial y_1 + (K_6 y_2) \partial y_2$$
(1.3)

Run 11_35PM_07_June-2021

Degree in tangential ansätze: 1

The reaction terms are:

$$\frac{\mathrm{d}y_1}{\mathrm{d}t} = \frac{ty_1 + y_2^2}{-t^2 + y_1 y_2}$$
$$\frac{\mathrm{d}y_2}{\mathrm{d}t} = \frac{ty_2 + y_1^2}{-t^2 + y_1 y_2}$$

The calculated generator is:

$$X = (K_6 t) \, \partial t + (K_6 y_1) \, \partial y_1 + (K_6 y_2) \, \partial y_2 \tag{1.4}$$

Run 11_36PM_07_June-2021

Degree in tangential ansätze: 1

The reaction terms are:

$$\frac{\mathrm{d}y_1}{\mathrm{d}t} = \frac{ty_1 + y_2^2}{-t^2 + y_1 y_2}$$
$$\frac{\mathrm{d}y_2}{\mathrm{d}t} = \frac{ty_2 + y_1^2}{-t^2 + y_1 y_2}$$

The calculated generator is:

$$X = (K_6 t) \partial t + (K_6 y_1) \partial y_1 + (K_6 y_2) \partial y_2 \tag{1.5}$$

Run 11_38PM_07_June-2021

Degree in tangential ansätze: 1

$$\frac{\mathrm{d}y_1}{\mathrm{d}t} = \frac{ty_1 + y_2^2}{-t^2 + y_1 y_2}$$
$$\frac{\mathrm{d}y_2}{\mathrm{d}t} = \frac{ty_2 + y_1^2}{-t^2 + y_1 y_2}$$

$$X = (K_6 t) \partial t + (K_6 y_1) \partial y_1 + (K_6 y_2) \partial y_2$$
 (1.6)

$Run~11_38PM_07_June-2021$

Degree in tangential ansätze: 1

The reaction terms are:

$$\frac{\mathrm{d}y_1}{\mathrm{d}t} = \frac{ty_1 + y_2^2}{-t^2 + y_1 y_2}$$
$$\frac{\mathrm{d}y_2}{\mathrm{d}t} = \frac{ty_2 + y_1^2}{-t^2 + y_1 y_2}$$

The calculated generator is:

$$X = (K_6 t) \partial t + (K_6 y_1) \partial y_1 + (K_6 y_2) \partial y_2$$
(1.7)

Run 08_45AM_11_June-2021

Degree in tangential ansätze: 1

The reaction terms are:

$$\frac{\mathrm{d}y_1}{\mathrm{d}t} = \frac{ty_1 + y_2^2}{-t^2 + y_1y_2}$$
$$\frac{\mathrm{d}y_2}{\mathrm{d}t} = \frac{ty_2 + y_1^2}{-t^2 + y_1y_2}$$

The calculated generator is:

$$X = (K_1 t) \partial t + (K_1 y_1) \partial y_1 + (K_1 y_2) \partial y_2$$

Run 08_49AM_11_June-2021

Degree in tangential ansätze: 1

$$\frac{\mathrm{d}y_1}{\mathrm{d}t} = \frac{ty_1 + y_2^2}{-t^2 + y_1 y_2}$$
$$\frac{\mathrm{d}y_2}{\mathrm{d}t} = \frac{ty_2 + y_1^2}{-t^2 + y_1 y_2}$$

$$X = (K_1 t) \partial t + (K_1 y_1) \partial y_1 + (K_1 y_2) \partial y_2$$

Run 08_50AM_11_June-2021

Degree in tangential ansätze: 1

The reaction terms are:

$$\frac{\mathrm{d}y_1}{\mathrm{d}t} = \frac{ty_1 + y_2^2}{-t^2 + y_1 y_2}$$
$$\frac{\mathrm{d}y_2}{\mathrm{d}t} = \frac{ty_2 + y_1^2}{-t^2 + y_1 y_2}$$

The calculated generator is:

$$X = (K_1 t) \partial t + (K_1 y_1) \partial y_1 + (K_1 y_2) \partial y_2$$

Run 08_53AM_11_June-2021

Degree in tangential ansätze: 1

The reaction terms are:

$$\frac{\mathrm{d}y_1}{\mathrm{d}t} = \frac{ty_1 + y_2^2}{-t^2 + y_1y_2}$$
$$\frac{\mathrm{d}y_2}{\mathrm{d}t} = \frac{ty_2 + y_1^2}{-t^2 + y_1y_2}$$

The calculated generator is:

$$X = (K_1 t) \partial t + (K_1 y_1) \partial y_1 + (K_1 y_2) \partial y_2$$

Run 09_29AM_11_June-2021

Degree in tangential ansätze: 1

$$\frac{\mathrm{d}y_1}{\mathrm{d}t} = \frac{ty_1 + y_2^2}{-t^2 + y_1 y_2}$$
$$\frac{\mathrm{d}y_2}{\mathrm{d}t} = \frac{ty_2 + y_1^2}{-t^2 + y_1 y_2}$$

$$X = (K_1 t) \partial t + (K_1 y_1) \partial y_1 + (K_1 y_2) \partial y_2$$

$Run~01_32PM_16_June-2021$

Degree in tangential ansätze: 1

The reaction terms are:

$$\frac{\mathrm{d}y_1}{\mathrm{d}t} = \frac{ty_1 + y_2^2}{-t^2 + y_1 y_2}$$
$$\frac{\mathrm{d}y_2}{\mathrm{d}t} = \frac{ty_2 + y_1^2}{-t^2 + y_1 y_2}$$

The calculated generator is:

$$X = (K_1 t) \partial t + (K_1 y_1) \partial y_1 + (K_1 y_2) \partial y_2$$