

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problems Mailbox.**

Fig. 1

Fig. 2 P450cam dans pCWOI(+) graphic map (This vector was constructed and donated by Prof.Ortiz de Montellano).
 DNA sequence : 6313 bp. First Ptac : start at 22 end at 49,
 Second Ptac : start at 117 end at 144

ORIGIN 5 bp upstream of PstI site.

1 CTGCAGGATC GTTATCCGCT GGCGATCTG ATCACCCAGC GTTTTTCAT CGACGAGGCC
61 AGCAAGGCAC TTGAACCTGGT CAAGGCAGGA GCACTGATCA AACCCGTGAT CGACTCCACT
121 CTTTAGCCAA CCCCGTTC AGGAGAACAA CAACAATGAC GACTGAAACC ATACAAAGCA
181 ACGCCAATCT TGCCCCCTTG CCACCCCCATG TGCCAGAGCA CCTGGTATTG GACTTCGACA
241 TGTACAATCC GTGAACTCTG TCTGCCGGCG TGCAAGGAGC CTGGCAGTT CTGCAAGAAT
301 CAAACGTACC GGATCTGGTG TGGACTCGCT GCAACGGCGG ACACTGGATC GCGACTCGCG
361 GCCAACTGAT CGGTGAGGCC TATGAAGATT ACGGCCACTT TTCCAGCGAG TGCCCGTTCA
421 TCCCTCGTGA AGCCGGCAGA GCCTACGACT TCATTOCCAC CTGATGGAT CGGGGGAGC
481 AGOGCCAGTT TCGTGGCTG GCCAACCAAG TGGTTGGCAT GCGGTGGTG GATAAGCTGG
541 AGAACCGGAT CCAGGAGCTG GCCTGCTCG TGATCGAGAG CCTGGCCCG CAAGGACAGT
601 GCAACTTCAC CGAGGACTAC GCCGAACCTT TCCCATAACG CATCTTCATG CTGCTCGCAG
661 GTCTACCGGA AGAAGATATC CGCGACTTGA AATACCTAAC GGATCAGATG ACCCGTCCGG
721 ATGGCAGCAT GACCTCGCA GAGGCCAAGG AGGCGCTCTA CGACTATCTG ATACCGATCA
781 TCGAGCAAACG CAGGCCAGAAG CGGGGAACCG ACGCTATCAG CATGGTGCC AACGGCCAGG
841 TCAATGGCG ACCGATCACC AGTGACGAAG CCAAGAGGAT GTGTGGCTG TTACTGGTCG
901 GCGGCCCTGGA TACGGTGGTC AATTTCCCTCA GCTTCAGCAT GGAGTTCTG GCCAAAAGCC
961 CGGAGCATCG CCAGGAGCTG ATCGAGCGTC CGGAGCGTAT TCCAGCCGCT TGGAGGAAC
1021 TACTCCGGCG CTTCTCGCTG GTTGCCGATG GCGCATCTT CACCTCCGAT TACGAGTTTC
1081 ATGGCGTGCA ACTGAAGAAA GGTGACCCAGA TCTGCTAAC CGAGATGCTG TCTGGCCCTGG
1141 ATGAGCGCGA AAACCCCTGC CGGATGCAAG TCGACTTCAG TCGCCAAAAG GTTTCACACA
1201 CCACCTTGG CCACGGCAGC CATCTGTGCC TTGGCCAGCA CCTGGCCCGC CGGGAAATCA
1261 TCGTCACCTT CAAGGAATGG CTGACCCAGGA TCTCTGACTT CTCCATTGCC CGGGGTGCC
1321 AGATTCAAGCA CAAGAGCGGC ATCGTCAGCG CGGTGCAGGC ACTCCCTCTG GTCTGGGATC
1381 CGGCGACTAC CAAAGCGGTA TA

Fig. 3A, P450cam ORF Region.

Fig. 3B P450cam amino acid sequence

THR THR GLU THR ILE GLN SER ASN ALA ASN LEU ALA PRO
LEU PRO PRO HIS VAL PRO GLU HIS LEU VAL PHE ASP PHE
ASP MET TYR ASN PRO SER ASN LEU SER ALA GLY VAL GLN
GLU ALA TRP ALA VAL LEU GLN GLU SER ASN VAL PRO ASP
LEU VAL TRP THR ARG CYS ASN GLY GLY HIS TRP ILE ALA
THR ARG GLY GLN LEU ILE ARG GLU ALA TYR GLU ASP TYR
ARG HIS PHE SER SER GLU CYS PRO PHE ILE PRO ARG GLU
ALA GLY GLU ALA TYR ASP PHE ILE PRO THR SER MET ASP
PRO PRO GLU GLN ARG GLN PHE ARG ALA LEU ALA ASN GLN
VAL VAL GLY MET PRO VAL VAL ASP LYS LEU GLU ASN ARG
ILE GLN GLU LEU ALA CYS SER LEU ILE GLU SER LEU ARG
PRO GLN GLY GLN CYS ASN PHE THR GLU ASP TYR ALA GLU
PRO PHE PRO ILE ARG ILE PHE MET LEU LEU ALA GLY LEU
PRO GLU GLU ASP ILE PRO HIS LEU LYS TYR LEU THR ASP
GLN MET THR ARG PRO ASP GLY SER MET THR PHE ALA GLU
ALA LYS GLU ALA LEU TYR ASP TYR LEU ILE PRO ILE ILE
GLU GLN ARG ARG GLN LYS PRO GLY THR ASP ALA ILE SER
ILE VAL ALA ASN GLY GLN VAL ASN GLY ARG PRO ILE THR
SER ASP GLU ALA LYS ARG MET CYS GLY LEU LEU LEU VAL
GLY GLY LEU ASP THR VAL VAL ASN PHE LEU SER PHE SER
MET GLU PHE LEU ALA LYS SER PRO GLU HIS ARG GLN GLU
LEU ILE GLU ARG PRO GLU ARG ILE PRO ALA ALA CYS GLU
GLU LEU LEU ARG ARG PHE SER LEU VAL ALA ASP GLY ARG
ILE LEU THR SER ASP TYR GLU PHE HIS GLY VAL GLN LEU
LYS LYS GLY ASP GLN ILE LEU LEU PRO GLN MET LEU SER
GLY LEU ASP GLU ARG GLU ASN ALA CYS PRO MET HIS VAL
ASP PHE SER ARG GLN LYS VAL SER HIS THR THR PHE GLY
HIS GLY SER HIS LEU CYS LEU GLY GLN HIS LEU ALA ARG
ARG GLU ILE ILE VAL THR LEU LYS GLU TRP LEU THR ARG
ILE PRO ASP PHE SER ILE ALA PRO GLY ALA GLN ILE GLN
HIS LYS SER GLY ILE VAL SER GLY VAL GLN ALA LEU PRO
LEU VAL TRP ASP PRO ALA THR THR LYS ALA VAL

Fig. 4B

Fig. 4A P450_{cam} activity assay using added horseradish peroxidase (HRP).

1	2	3	4	5	6	7	8	9	10	11	12
2x			2x			2x			2x		A
2x			2x	pCW	ORI+	2x			2x		B
2x			2x	P450	cam	2x			2x		C
2x			2x			2x			2x		D
2x			2x			2x			2x		E
2x			2x	XI	10	2x			2x		F
2x			2x			2x			2x		G
2x			2x			2x			2x		H

↑ ↑ ↑ ↑ ↑
 TB + TB + M9(glucose) + M9(glycerol)
 0.5 mM deltaALA 1.3 mM deltaALA 0.5 mM deltaALA 0.5 mM deltaALA

* 2x : 200 μ L cultivation volume, others : 100 μ L cultivation volume.

Fig. 5A

Fig. 5B

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

E. Coli BL-21(DE3) showing strong intracellular fluorescence in the presence naphthalene and hydrogen peroxide:
 $P450_{cam}$ and *mutant HRP* were coexpressed in the cells. Hydroxylated naphthols generated by $P450_{cam}$ reaction
was intensified by the HRP mediated coupling reaction

Fig. 11A

Fig. 11B

Fig. 11C

Fig. 11D

alfield Labeled section, a) original fluorescence image, b) locally improved by cutting touching cells:threshold value = 28, c) cleaned by edge cut and deletion, threshold level = 71, d) finding and dividing overlap region

Fig. 12

Image analysis result showing fluorescence intensities under 6 different conditions

F. P450cam/HRP, no H_2O_2 addition

B. P450cam

E. P450cam/HRP, no naphthalene addition

D. BL21(DE3) host strain

Fig. 13

Fluorescence Intensification using P450cam/HRP1A6 coexpression system.
 (1) P450cam/HRP1A6 in BL21(DE3), (2) P450cam in BL21(DE3), (3) HRP1A6
 in BL21(DE3), (4) BL21(DE3) host strain

Fig. 14

Row:

- E : 60 uM luminol + 0.5 mM PPP
- F : 120 uM luminol + 0.5 mM PPP
- G : 60 uM luminol
- H : 120 uM luminol

Column:

- 4 : P450cam/HRP1A6
in BL21(DE3)
- 5 : P450cam in BL21(DE3)
- 6 : HRP1A6 in BL21(DE3)
- 7 : host strain, BL21(DE3)

Fig. 15A

Light Emission values

E4 :	51	ILDV
F4 :	98	ILDV
G4 :	0.2	ILDV
H4 :	1	ILDV
Others : < 0.1 ILDV		

Fig. 15B

Fig. 4.1. The hydroxylation assay using chemiluminescence detection. Hydroxylated *p*-phenyl propionate (catalyzed by P450cam) is utilized in the second, HRP catalyzed reaction with luminol. The light emissions were enhanced up to 98 ILDV (integrated light density value) from < 0.1 background level.

Fig. 16 Yeast cytochrome c peroxidase expression vector pET26 b+CCP.
pelB leader sequence in original pET 26 b+ vector was deleted for
intracellular CCP expression in *E.coli*.

Fig. 17 Development of fluorescence in solutions containing naphthalene and hydrogen peroxide. Reactions were carried out using whole cells and pH 9.0 dibasic sodium phosphate buffer (100mM).

Fig. 18

Fig. 19A Activities of P450cam mutants as measured by fluorescence digital imaging.

Fig. 19C

Fig. 19D

Fig. 19E

Fig. 19B

Fig. 19F

Fig. 20 Activities of randomly chosen P450cam mutants in 96-well plate assay, as measured by fluorescence. Activity of wild type P450cam is approximately 40 RFU/min under these conditions.

Fig. 21

ATG AAA TAC CCTA TTG CCT ACG GCA GCC GCT GGA TTG TTA TTA CTC GCT GCC CAA CCA GCC ATG GCC
Met Lys Tyr Leu Pro Thr Ala Ala Gly Leu Leu Ala Ala Gln Pro Ala Met Ala

Fig. 22 Nucleotide and amino acid sequence of the pelB signal peptide.

P mutant, HRP1A6, Coding Sequence
(Mutation, N255E, AC --> GAC. The position of the starting Met is 0)

10	20	30	40	50	60
ATGCAGTTAACCCCTACATTCTACGACAATAGCTGTCCCAACGTGTCCAACATCGTTCGC					
M	Q	L	T	P	T
F	Y	D	N	S	C
P	N	V	S	N	I
N	V	R			
70	80	90	100	110	120
GACACAATCGTCAACGGAGCTCAGATCCGATCCCAGGATCGCTGCTTAATATTACGTCTG					
D	T	I	V	N	E
L	R	S	D	P	R
R	I	A	A	S	I
L	R	L			
130	140	150	160	170	180
CACTTCCATGACTGCTTCGTGAATGGTTGCCAGCCTAGCATATTACTGGACAACACCACC					
H	F	H	D	C	F
V	N	G	C	D	A
S	I	L	L	D	N
T	T				
190	200	210	220	230	240
AGTTTCCGCACTGAAAAGGATGCATTGGAAACGCTAACAGGCCAGGGCTTCCAGTG					
S	F	R	T	E	K
D	A	F	G	N	A
N	S	A	R	G	F
S	V				
250	260	270	280	290	300
ATCGATCGCATGAAGGCTGCCGTTGAGTCAGCATGCCAACGAACAGTCAGTTGTGCAGAC					
I	D	R	M	K	A
A	V	E	S	A	C
P	R	T	V	S	C
A	D				
310	320	330	340	350	360
CTGCTGACTATAGCTGCGAACAGAGCGTGAAGCTCTTGAGGCGGCCCTGGAGAGTG					
L	L	T	I	A	A
Q	Q	S	V	T	L
G	G	A	G	G	P
P	S	W	R	R	V
370	380	390	400	410	420
CCGCTCGGTCGACGTGACTCCCTACAGGCATTCTAGATCTGGCAACGCCAACATTGCCT					
P	L	G	R	R	D
S	S	L	D	S	L
Q	Q	A	A	F	L
A	F	L	D	L	A
N	A	N	A	N	L
N	L	P			
430	440	450	460	470	480
GCTCCATTCTTCACCCCTGCCAGCTGAAGGATAGCTTAGAAACGTGGCTGAATCGC					
A	P	F	F	T	L
T	L	P	Q	L	K
P	Q	L	D	S	F
R	N	V	F	R	N
N	R	G	G	L	N
R	F				
490	500	510	520	530	540
TCGAGTGACCTTGTGGCTCTGTCCGGAGGACACACATTGGAAAGAACCCAGTAGTGTAGGTT					
S	S	D	L	V	A
L	V	A	L	S	G
G	G	H	T	F	G
H	T	F	G	K	N
T	F	G	K	N	Q
F	G	K	N	C	R
N	R	N	C	R	F
550	560	570	580	590	600
ATCATGGATAGGCTCTACAATTTCAGAACACTGGTTACCTGACCCCACGCTGAACACT					
I	M	D	R	L	Y
N	F	S	N	T	N
F	S	N	T	G	L
S	N	T	G	L	P
N	T	G	L	P	D
T	G	L	P	D	P
G	L	P	D	T	L
P	D	T	L	N	T
610	620	630	640	650	660
ACGTATCTCCAGACACTGAGAGGCTTGTGCCACTGAATGGCAACCTCAGTGCACACTAGTG					
T	Y	L	Q	T	L
Y	L	Q	T	R	G
L	Q	T	R	G	L
Q	T	R	G	L	C
A	T	R	G	L	P
T	R	G	L	C	N
R	G	L	C	P	N
G	L	C	P	N	G
L	C	P	N	G	N
C	P	N	G	N	L
P	N	G	N	L	S
N	G	N	L	S	A
G	N	L	S	A	L
N	G	L	S	A	V
G	L	S	A	V	
670	680	690	700	710	720
GACTTTGATCTGGGACCCAAACCATCTCGATAACAAGTACTATGTGAATCTAGAGGAG					
D	F	D	L	R	T
F	D	L	R	T	P
L	R	T	P	T	I
R	T	P	T	I	F
T	P	T	I	F	D
P	T	I	F	D	N
T	I	F	D	N	K
I	F	D	N	K	Y
F	D	N	K	Y	Y
D	N	K	Y	Y	V
N	K	Y	Y	V	N
K	Y	Y	V	N	L
Y	Y	V	N	L	E
Y	Y	V	N	L	E
730	740	750	760	770	780
CAGAAAGGCCCTGATACAGAGTGTCAAGAACTGTTAGCAGTCCAGACGCCACTGACACC					
Q	K	G	L	I	Q
K	G	L	I	Q	S
G	L	I	Q	S	D
L	I	Q	S	D	Q
I	Q	S	D	Q	E
Q	S	D	Q	E	L
S	D	Q	E	L	F
D	Q	E	L	F	S
Q	E	L	F	S	S
E	L	F	S	S	P
L	F	S	S	P	D
F	S	S	P	D	A
S	P	D	A	T	D
P	D	A	T	D	T
A	T	D	T	D	T
T	D	T	D	T	
D	T				
790	800	810	820	830	840
ATCCCACCTGGTGAGAAGTTGCTAACTCTACTCAAACCTTCTTAACGCCCTCGTGGAA					
I	P	L	V	R	S
P	L	V	R	S	F
L	V	R	S	F	A
V	R	S	F	A	N
R	S	F	A	N	S
S	F	A	N	S	T
F	A	N	S	T	Q
A	N	S	T	Q	T
N	S	T	Q	T	F
S	T	Q	T	F	F
T	Q	T	F	F	N
Q	T	F	F	N	A
T	F	F	N	A	F
F	N	A	F	V	E
N	A	F	V	E	
A	F	V	E		
850	860	870	880	890	900
GCCATGGACCGTATGGGTAACATTACCCCTCTGACGGGTACCCAGGCCAGATTCGTCTG					
A	M	D	R	M	G
M	D	R	M	G	N
D	R	M	G	N	I
R	M	G	N	I	T
M	G	N	I	T	P
G	N	I	T	P	L
N	I	T	P	L	T
I	T	P	L	T	G
T	P	L	T	G	T
P	L	T	G	T	Q
L	T	G	T	Q	G
T	G	T	Q	G	Q
G	T	Q	G	Q	I
T	Q	G	Q	I	R
Q	G	I	R	L	
G	I	R	L		
910	920	930			
AACTGCAGAGTGGTCAACAGCAACTCT					
N	C	R	V	V	N
C	R	V	V	N	S
R	V	V	N	S	N
V	N	S	N	S	S

Fig. 23

Fig. 24

Fig. 25