

888888888888 0000000000 0000000000 TTTTTTTTTTTTTTTTT
888888888888 0000000000 0000000000 TTTTTTTTTTTTTTTTT
888888888888 0000000000 0000000000 TTTTTTTTTTTTTTTTT
888 888 000 000 000 000 000 TTT SSS
888 888 000 000 000 000 000 TTT SSS
888 888 000 000 000 000 000 TTT SSS
888 888 000 000 000 000 000 TTT SSS
888 888 000 000 000 000 000 TTT SSS
888 888 000 000 000 000 000 TTT SSS
888 888 000 000 000 000 000 TTT SSS
888888888888 000 000 000 000 000 TTT SSSSSSSSS
888888888888 000 000 000 000 000 TTT SSSSSSSSS
888888888888 000 000 000 000 000 TTT SSSSSSSSS
888 888 000 000 000 000 000 TTT SSS
888 888 000 000 000 000 000 TTT SSS
888 888 000 000 000 000 000 TTT SSS
888 888 000 000 000 000 000 TTT SSS
888 888 000 000 000 000 000 TTT SSS
888 888 000 000 000 000 000 TTT SSS
888888888888 0000000000 0000000000 TTT SSSSSSSSSSSSS
888888888888 0000000000 0000000000 TTT SSSSSSSSSSSSS
888888888888 0000000000 0000000000 TTT SSSSSSSSSSSSS

FILE ID**BOOT10

K 5

The image shows a 2D grid pattern composed of several distinct symbol sets arranged in a staggered, non-overlapping manner. The symbols used include:

- B**: Represented by a 2x8 block of 'B' characters.
- O**: Represented by a 2x8 block of 'O' characters.
- T**: Represented by a 2x8 block of 'T' characters.
- I**: Represented by a 2x8 block of 'I' characters.
- S**: Represented by a 2x8 block of 'S' characters.
- L**: Represented by a 2x8 block of 'L' characters.

The grid is composed of these blocks in a repeating pattern across the entire area. There are some minor variations in the symbol placement, such as 'C' appearing instead of 'O' in one position and 'LL' appearing instead of 'L' in another. A small portion of the pattern is cut off on the right side, indicated by three dots.

(1)	66	RDWRTLBN - READ/WRITE LOGICAL BLOCK NUMBER
(1)	130	BOOSCACHE_INIT - INIT FILEREAD CACHE
(1)	264	BOOSIMAGE_ATT - Get image attributes from image header
(1)	310	SYSS\$ASSIGN, Dummy assign device system service
(1)	347	Common Globals for VMB and SYSBOOT

P - I C P S P S P C A T 4 - 1

M - - T 6 T M

0000 1 .TITLE BOOTIO - BOOTSTRAP FILEREAD IO MODULE
0000 2 .IDENT 'V04-000'
0000 3 :
0000 4 :*****
0000 5 :
0000 6 :* COPYRIGHT (c) 1978, 1980, 1982, 1984 BY
0000 7 :* DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASSACHUSETTS.
0000 8 :* ALL RIGHTS RESERVED.
0000 9 :
0000 10 :* THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
0000 11 :* ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE
0000 12 :* INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
0000 13 :* COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY
0000 14 :* OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY
0000 15 :* TRANSFERRED.
0000 16 :
0000 17 :* THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
0000 18 :* AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
0000 19 :* CORPORATION.
0000 20 :
0000 21 :* DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
0000 22 :* SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL.
0000 23 :
0000 24 :
0000 25 :*****
0000 26 :
0000 27 :++
0000 28 :FACILITY: SYSTEM BOOTSTRAPPING
0000 29 :
0000 30 :ABSTRACT:
0000 31 :
0000 32 : THIS MODULE PERFORMS LOGICAL BLOCK I/O FOR FILEREAD
0000 33 :
0000 34 :ENVIRONMENT: KERNEL MODE, UNMAPPED, IPL=31
0000 35 :
0000 36 :AUTHOR: RICHARD I. HUSTVEDT . CREATION DATE: 14-APR-78
0000 37 :
0000 38 :MODIFIED BY:
0000 39 :
0000 40 :V03-002 KDM0097 Kathleen D. Morse 09-Apr-1984
0000 41 :Bias the out of range value by the initial page number.
0000 42 :
0000 43 :--

```
0000 45 :  
0000 46 : INCLUDE FILES:  
0000 47 :  
0000 48     $IHDEF          : IMAGE HEADER DEFINITIONS  
0000 49     $IHSDEF         : IMAGE HEADER SYMBOL TABLE DEFS  
0000 50     $IHPDEF         : IMAGE HEADER PATCH CONTROL DEFS  
0000 51     $RPBDEF         : DEFINE RESTART PARAMETER BLOCK  
0000 52 :  
0000 53 : MACROS:  
0000 54 :  
0000 55 : Define Memory Size to File Cache Parameter table entry  
0000 56 :  
0000 57     .MACRO  MEM_FILE_CACHE MEM_PAGE_CNT,CACHE_PAGE_NUM,CACHE_PAGE_CNT,MAX_PAGE  
0000 58     .LONG   MEM_PAGE_CNT-<MEM_PAGE_CNT/10>  
0000 59     .WORD   CACHE_PAGE_NUM  
0000 60     .WORD   <<CACHE_PAGE_CNT+3>8^C<3>>  
0000 61     .LONG   MAX_PAGE  
0000 62     .ENDM   MEM_FILE_CACHE
```

00000000 64 .PSECT YFILEREAD,BYTE,EXE
 0000 65
 0000 66 .SBttl RDWRITLBN - READ/WRITE LOGICAL BLOCK NUMBER
 0000 67 ++
 0000 68 : FUNCTIONAL DESCRIPTION:
 0000 69
 0000 70 : THIS ROUTINE READS/WRITES N BYTES FROM/TO THE SPECIFIED
 0000 71 : LOGICAL BLOCK NUMBER OF THE VOLUME ASSIGNED TO THE SPECIFIED CHANNEL
 0000 72
 0000 73 : CALLING SEQUENCE:
 0000 74
 0000 75 CALLG ARGLIST,FIL\$RDWRITLBN
 0000 76
 0000 77 : INPUT PARAMETERS:
 0000 78
 0000 79 :CHAN(AP) = ;CHANNEL ASSIGNED TO THE VOLUME TO READ
 0000 80 :LBN(AP) = ;LOGICAL BLOCK NUMBER TO READ
 0000 81 :BUFADR(AP) = ;ADDRESS OF BUFFER TO READ INTO
 0000 82 :IOFUNC(AP) = ;I/O FUNCTION CODE
 0000 83 :BYTCNT(AP) = ;NUMBER OF BYTES TO TRANSFER
 0000 84
 0000 85 : IMPLICIT INPUTS:
 0000 86 : NONE
 0000 87
 0000 88 : OUTPUT PARAMETERS:
 0000 89
 0000 90 : R0 = SYSTEM STATUS CODE
 0000 91
 0000 92 : IMPLICIT OUTPUTS:
 0000 93
 0000 94 : NONE
 0000 95
 0000 96 : COMPLETION CODES:
 0000 97
 0000 98 : NONE
 0000 99
 0000 100 : SIDE EFFECTS:
 0000 101
 0000 102 : NONE
 0000 103
 0000 104
 0000 105 : EQUATED SYMBOLS:
 0000 106
 0000 107 : OFFSETS FROM AP
 0000 108
 00000004 0000 109 :CHAN = 4 ;CHANNEL TO WHICH VOLUME IS ASSIGNED
 00000008 0000 110 :LBN = 8 ;LOGICAL BLOCK NUMBER
 0000000C 0000 111 :BUFADR = 12 ;BUFFER ADDRESS TO READ INTO
 00000010 0000 112 :IOFUNC = 16 ;FUNCTION CODE FOR THE QIO
 00000014 0000 113 :BYTCNT = 20 ;NUMBER OF BYTES TO TRANSFER
 0000 114 :--
 0000 115 :--
 0000 116
 0000 117 FIL\$RDWRITLBN::
 0000 118 .WORD 0
 0000 119 PUSHL CHAN(AP)
 0000 120 MOVL (SP),R0 : ADDRESS OF RPB
 : GET ADDRESS OF RPB

50 04 AC 0000 0000
 6E DD 0002 0005

50 34 A0 D0 0008 121 MOVL RPB\$L_Iovec(R0),R0 : GET POINTER TO I/O ROUTINE VECTOR
00 00 DD 000C 122 PUSHL #0 : SET MODE TO PHYSICAL ADDRESS
10 AC DD 000E 123 PUSHL IOFUNC(AP) : SET FUNCTION
08 AC DD 0011 124 PUSHL LBN(AP) : LOGICAL BLOCK NUMBER
14 AC DD 0014 125 PUSHL BYTCNT(AP) : SET NUMBER OF BYTES
OC BC DF 0017 126 PUSHAL @BUFADR(AP) : SET BUFFER ADDRESS
00 B040 06 FB 001A 127 CALLS #6,@(R0)[R0] : CALL BOOTSTRAP DRIVER
04 001F 128 RET

0020 130 .SBTTL BOOSCACHE_INIT - INIT FILEREAD CACHE
0020 131 :++
0020 132
0020 133 Functional description:
0020 134
0020 135 This routine establishes a desired FILEREAD cache size and
0020 136 base address according to the size of memory. It finds
0020 137 good contiguous pages at or near the desired place and
0020 138 calls the FIL\$CACHE_INIT routine to initialize the cache.
0020 139 The routine is further divided into two pieces: one to do
0020 140 cache allocation, and one to do the actual mount and open.
0020 141 This is necessary for VMB needs to allocate the cache long
0020 142 before it is ready to accept I/O to the device.
0020 143
0020 144 Calling Sequence:
0020 145 BSBW BOOSCACHE_INIT
0020 146
0020 147 Inputs:
0020 148
0020 149 R11 - RPB base address
0020 150 RPBSL_PFN_CNT(R11) - actual number of good pages in memory
0020 151 RPBSQ_PFN_MAP+4(R11) - base address of PFN bitmap
0020 152
0020 153
0020 154 Implicit inputs:
0020 155
0020 156 none
0020 157
0020 158 Outputs:
0020 159 R0-R4 altered
0020 160 FIL\$GQ_CACHE set up with size and address of cache
0020 161
0020 162
0020 163 Implicit outputs:
0020 164
0020 165 --
0020 166
0020 167 Table of memory sizes to file cache parameters
0020 168
0020 169 NOTE: If this table is modified, a corresponding table in VMB around
0020 170 label MEM_TAB should be checked for consistency.
0020 171
0020 172 MEM_CACHE_TABLE:
0020 173 MEM_FILE_CACHE 16384,2048,64,4096 : More than 8 megabyte
0020 174 MEM_FILE_CACHE 8192,1024,64,2048 : More than 4 megabyte
0038 175 MEM_FILE_CACHE 4096, 640,64,1024 : More than 2 megabyte
0044 176 MEM_FILE_CACHE 2048, 512,64, 768 : More than 1 megabyte
0050 177 MEM_FILE_CACHE 1024, 256,32, 512 : More than 512k bytes
005C 178 MEM_FILE_CACHE 512, 256,16, 256 : More than 256k bytes
0068 179 MEM_FILE_CACHE 384, 256, 8, 192 : More than 192k bytes
0074 180 MEM_FILE_CACHE 256, 128, 4, 128 : More than 128k bytes
0080 181 MEM_FILE_CACHE 0, 0, 0, 0 :

008C 183 :
 008C 184 : BOOSCACHE_ALLOC - The piece that does the allocation.
 008C 185 :
 008C 186 : Outputs:
 008C 187 : FIL\$GQ_CACHE filled in with size/address in blocks
 008C 188 :
 008C 189 BOOSCACHE_ALLOC:::
 50 0000'CF 55 DD 008C 190 POSHL R5 ; Save a register
 50 88 AF DE 0092 008C 191 CLRQ W^FIL\$GQ_CACHE ; Assume no cache available
 51 80 7D 0096 008C 192 MOVAL B^MEM_CACHE_TABLE, R0 ; Adr of memory size to cache params tbl
 51 1F 13 0099 008C 193 10\$: MOVQ (R0)+, R1 ; Get the next table entry
 51 55 80 D0 009B 008C 194 BEQL 20\$; Branch if memory too small for cache
 51 4C AB D1 009E 008C 195 MOVL (R0)+, R5 ; Max page
 51 F2 19 00A2 008C 196 CMPL RPBSL_PFN_CNT(R11), R1 ; More memory than this entry?
 51 50 52 3C 00A4 008C 197 BLSS 10\$; Branch if not, get next one
 54 51 F0 8F 78 00A7 008C 198 MOVZWL R2, R0 ; Starting relative bit (page) in PFNMAP
 54 37 10 00B1 008C 199 ASHL #16, R2, R1 ; Count of bits (pages) to look for
 54 05 19 00B3 008C 200 ASHL #1, R1, R4 ; Settle for half if can't find all
 0000'CF 52 7D 00B5 008C 201 BSBB BOOS\$ALLOC_PAGES ; Go get the pages
 55 BED0 00BA 008C 202 BLSS 20\$; Failed
 05 00BD 008C 203 MOVQ R2, W^FIL\$GQ_CACHE ; Success, record the values
 00BE 204 20\$: POPL R5 ; Restore a register
 00BE 205 RSB
 00BE 206
 00BE 207 :
 00BE 208 : BOOSCACHE_INIT - Full routine to both allocate and open the cache
 00BE 209 :
 CC 10 00BE 210 BOOSCACHE_INIT::: ; Allocate the cache
 00CO 211 BSBB BOOS\$CACHE_ALLOC ; Fall thru to finish
 00CO 212
 00CO 213
 00CO 214 :
 00CO 215 : BOOSCACHE_OPEN - Actually mount the device and fill the cache
 00CO 216 :
 00CO 217 BOOS\$CACHE_OPEN:::
 52 0000'CF D0 00CO 218 MOVL W^FIL\$GQ_CACHE, R2 ; Pick up size
 52 22 13 00C5 219 BEQL 10\$; Zero length implies none
 5E 04 C2 00C7 220 SUBL #4, SP ; Location to store channel
 50 5E D0 00CA 221 MOVL SP, R0 ; Address to store channel
 7E 52 02 C3 00CD 222 SUBL #2, R2, -(SP) ; Blocks in directory LBN cache
 7E 00 DD 00D1 223 PUSHL S^#<<I024-FILSC_SIZE>/FILSC_DIR_SIZE>; No. of dir cache entries
 7E 09 78 00D3 224 ASHL #9, W^FIL\$GQ_CACHE+4, -(SP) ; Byte address from page number
 7E 52 09 78 00D9 225 ASHL #9, R2, -(SP) ; Size of cache in bytes
 7E D4 00DD 226 CLRL -(SP) ; Null device name string descriptor
 50 DD 00DF 227 PUSHL R0 ; Address to store channel
 0000'CF 06 FB 00E1 228 CALLS #6, W^FIL\$CACHE_INIT ; Init the FIL\$OPENFILE cache
 5E 04 C0 00E6 229 ; descriptor returned in FIL\$GQ_CACHE
 05 00E9 230 ADDL #4, SP ; Clean off channel
 00EA 231 10\$: RSB
 00EA 232
 00EA 233 :
 00EA 234 : BOOS\$ALLOC_PAGES - Find a run of contiguous, good pages
 00EA 235 :
 00EA 236 : Inputs:
 00EA 237 : R0 - Page to start at
 00EA 238 : R1 - Number of pages needed
 00EA 239 : R4 - Number willing to settle for

00EA 240 : R5 - Maximum page
 00EA 241 : Outputs:
 00EA 242 : CC - Status (BLSS to an error routine)
 00EA 243 : R2 - Number found
 00EA 244 : R3 - Starting page number
 00EA 245 :
 00EA 246 BOOS\$ALLOC PAGES:::
 52 5B 17 9C 00EA 247 ROTL #<32-9>,R11,R2 ; PFN of the RPB
 50 52 C0 00EE 248 ADDL R2,R0 ; Convert relative PFN to absolute
 53 50 D0 00F1 249 MOVL R0,R3 ; Make a copy of starting bit
 55 52 C0 00F4 250 ADDL R2,R5 ; Convert max relative PFN to absolute
 50 55 D1 00F7 251 30\$: CMPL R5,R0 ; Less than max page
 1E 19 00FA 252 BLSS S0\$; No. failure
 0D 48 88 50 E0 00FC 253 BBS R0,@RPB\$Q_PFNMAP+4(R11),40\$; Branch if this is a good page
 52 50 53 C3 0101 254 SUBL3 R3,R0,R2 ; Count of bits (pages) found
 54 52 D1 0105 255 CMPL R2,R4 ; Found enough?
 53 50 10 18 0108 256 BGEQ S0\$; Branch if yes
 53 50 01 C1 010A 257 ADDL3 #1,R0,R3 ; No, reset starting base
 50 50 D6 010E 258 40\$: INCL R0 ; Next bit (page)
 52 50 E4 51 F5 0110 259 SOBGTR R1,30\$; Branch if more to check
 53 52 C3 0113 260 SUBL3 R3,R0,R2 ; Count of bits (pages) found
 54 52 D1 0117 261 CMPL R2,R4 ; Found enough?
 05 011A 262 50\$: RSB ; Return (Status in CC)

011B 264 .SBTTL BOOSIMAGE_ATT - Get image attributes from image header
 011B 265 :++
 011B 266 Functional Description:
 011B 267
 011B 268 BOOSIMAGE_ATT returns to the caller some attributes of the image
 011B 269
 011B 270 Calling Sequence:
 011B 271
 011B 272 BSBW BOOSIMAGE_ATT
 011B 273
 011B 274 Inputs:
 011B 275
 011B 276 R2 = Size of file in blocks
 011B 277 R3 = Address of image header block (first one only)
 011B 278
 011B 279 Outputs:
 011B 280
 011B 281 R1 = Number of image header blocks at the front of the image
 011B 282 R2 = Size of image in blocks excluding the blocks at the end
 011B 283 containing local symbols, global symbols, or patch text
 011B 284
 011B 285 :--
 011B 286
 011B 287 BOOSIMAGE_ATT::
 50 04 A3 3C 011B 288 MOVZWL IHDSW_SYMDBGOFF(R3),R0 ; ANY SYMBOL TABLE INFORMATION?
 0D 13 011F 289 BEQL 20\$; BRANCH IF NOT
 51 6043 9E 0121 290 MOVAB IHSSL_DSTVBN(R0)[R3],R1 ; ADR OF 1ST VBN IN DEBUG SYMBOL TABLE
 19 10 0125 291 BSBB 40\$; PROCESS IT
 51 04 A043 9E 0127 292 MOVAB IHSSL_GSTVBN(R0)[R3],R1 ; ADR OF 1ST VBN IN GLOBAL SYMBOL TABLE
 12 10 012C 293 BSBB 40\$; PROCESS IT
 50 08 A3 3C 012E 294 20\$: MOVZWL IHDSW_PATCHOFF(R3),R0 ; ANY PATCH CONTROL INFORMATION?
 07 13 0132 295 BEQL 30\$; BRANCH IF NOT
 51 20 A043 9E 0134 296 MOVAB IHPSL_PATCOMTXT(R0)[R3],R1 ; ADR OF 1ST VBN OF PATCH COMMAND TEXT
 05 10 0139 297 BSBB 40\$; PROCESS IT
 51 10 A3 9A 013B 298 30\$: MOVZBL IHDSB_HDRBLKCNT(R3),R1 ; GET IMAGE HEADER BLOCK COUNT
 05 013F 299 RSB
 0140 300 ;
 0140 301 ; SEE IF VBN IS NON ZERO AND THEN IF IT IS SMALLER THAN THE CURRENT SMALLEST
 0140 302
 51 61 01 C3 0140 303 40\$: SUBL3 #1,(R1),R1 ; FETCH VBN - 1
 08 19 0144 304 BLSS 50\$; BRANCH IF NO VBN IS PRESENT
 51 52 D1 0146 305 CMPL R2,R1 ; IS IT SMALLER THAN THE CURRENT ONE
 03 15 0149 306 BLEQ 50\$; BRANCH IF NOT
 52 51 D0 014B 307 MOVL R1,R2 ; YES, USE IT
 05 014E 308 50\$: RSB

014F 310 .SBTTL SYSSASSIGN, Dummy assign device system service
014F 311
014F 312 :++
014F 313
014F 314 : Functional description:
014F 315
014F 316 SYSSASSIGN is a dummy routine to satisfy the requirements of
014F 317 FIL\$OPENFILE.
014F 318
014F 319 Inputs:
014F 320
014F 321 CHAN(AP) - address at which to return channel
014F 322
014F 323 Implicit inputs:
014F 324
014F 325 The label BOO\$GL_RPBBASE contains the physical address of the RPB.
014F 326
014F 327 Outputs:
014F 328
014F 329 R0 - success status code
014F 330
014F 331 Implicit outputs:
014F 332
014F 333 The channel returned is not a channel. It is instead the base
014F 334 address of the RPB.
014F 335
014F 336 :--
00000008 014F 337
0000 014F 338 CHAN = 8
014F 339
014F 340 SYSSASSIGN:: : Dummy system service.
014F 341 .WORD 0
0151 342
08 BC 0000'CF DO 0151 343 MOVL W^BOO\$GL_RPBBASE,2CHAN(AP) : Store RPB address as channel.
50 '00' DO 0157 344 MOVL S^#SSS_NORMAL, R0 : Return success status.
04 015A 345 RET : Return to caller.

015B 347 .SBTTL Common Globals for VMB and SYSBOOT
015B 348 :
015B 349 : The following globals are common to VMB and SYSBOOT and are
015B 350 : defined here to avoid replicate definitions.
015B 351 :
SD 45 58 45 53 59 53 5B 00' 015B 352 FIL\$GT_DDSTRING:: ; Default directory string.
08 015B 353 .ASCIC /[SYSEXE]/
00 0164 354 FIL\$GT_DDDEV:: ; Default device name
00 0164 355 .BYTE 0 ; Null ASCIC string
0165 356
0165 357 .END

BOOT10
Symbol table

- BOOTSTRAP FILEREAD IO MODULE

15-SEP-1984 23:41:42 VAX/VMS Macro V04-00
4-SEP-1984 23:02:54 [BOOTS.SRC]BOOT10.MAR;1

Page 11
(1)

BOOSALLOC_PAGES	000000EA	RG	02	OPS-CVTDH	= 000032FD
BOOSCACHE_ALLOC	0000008C	RG	02	OPS-CVTDL	= 0000006A
BOOSCACHE_INIT	000000BE	RG	02	OPS-CVTDW	= 00000069
BOOSCACHE_OPEN	000000C0	RG	02	OPS-CVTFB	= 00000048
BOOSGL_RPBBASE	*****	X	02	OPS-CVTFD	= 00000056
BOOSIMAGE_ATT	0000011B	RG	02	OPS-CVTFG	= 000099FD
BUFADR	= 0000000C			OPS-CVTFH	= 000098FD
BYTCNT	= 00000014			OPS-CVTFL	= 0000004A
CHAN	= 00000008			OPS-CVTFW	= 00000049
FILSCACHE_INIT	*****	X	02	OPS-CVTGB	= 000048FD
FILSC_DIR_SIZE	*****	X	02	OPS-CVTGF	= 000033FD
FILSC_SIZE	*****	X	02	OPS-CVTGH	= 000056FD
FILSGQ_CACHE	*****	X	02	OPS-CVTGL	= 00004AFD
FILSGT_DDDEV	00000164	RG	02	OPS-CVTGW	= 000049FD
FILSGT_DDSTRING	0000015B	RG	02	OPS-CVTHB	= 000068FD
FILSRDQRTLBN	00000000	RG	02	OPS-CVTHD	= 0000F7FD
IHDSB_HDRBLKCNT	= 00000010			OPS-CVTHF	= 0000F6FD
IHDSW_PATCHOFF	= 00000008			OPS-CVTHG	= 000076FD
IHDSW_SYMDBGOFF	= 00000004			OPS-CVTHL	= 00006AFD
IHPSL_PATCOMTXT	= 00000020			OPS-CVTHW	= 000069FD
IHSSL_DSTVBN	= 00000000			OPS-CVTLD	= 0000006E
IHSSL_GSTVBN	= 00000004			OPS-CVTLF	= 0000004E
IOFUNC	= 00000010			OPS-CVTLG	= 00004EFD
LBN	= 00000008			OPS-CVTLH	= 00006EFD
MEM_CACHE_TABLE	00000020	R	02	OPS-CVTLP	= 000000F9
OPS_ACBD	= 0000006F			OPS-CVTPL	= 00000036
OPS_ACBF	= 0000004F			OPS-CVTPS	= 00000008
OPS_ACBG	= 00004FFD			OPS-CVTPT	= 00000024
OPS_ACBH	= 00006FFD			OPS-CVTRDL	= 00000068
OPS_ADDD2	= 00000060			OPS-CVTRFL	= 0000004B
OPS_ADDD3	= 00000061			OPS-CVTRGL	= 00004BFD
OPS_ADDF2	= 00000040			OPS-CVTRHL	= 000068FD
OPS_ADDF3	= 00000041			OPS-CVTSP	= 00000009
OPS_ADDG2	= 000040FD			OPS-CVTTP	= 00000026
OPS_ADDG3	= 000041FD			OPS-CVTWD	= 00000060
OPS_ADDH2	= 000060FD			OPS-CVTWF	= 0000004D
OPS_ADDH3	= 000061FD			OPS-CVTWG	= 00004DFD
OPS_ADDP4	= 00000020			OPS-CVTWH	= 00006DFD
OPS_ADDP6	= 00000021			OPS-DIVD2	= 00000066
OPS_ASHP	= 000000F8			OPS-DIVD3	= 00000067
OPS_CLRD	= 0000007C			OPS-DIVF2	= 00000046
OPS_CLRFL	= 000000D4			OPS-DIVF3	= 00000047
OPS_CLRG	= 0000007C			OPS-DIVG2	= 000046FD
OPS_CLRH	= 00007CFD			OPS-DIVG3	= 000047FD
OPS_CMPD	= 00000071			OPS-DIVH2	= 000066FD
OPS_CMPF	= 00000051			OPS-DIVH3	= 000067FD
OPS_CMPG	= 000051FD			OPS-DIVP	= 00000027
OPS_CMPPH	= 000071FD			OPS-EDITPC	= 00000038
OPS_CMPP3	= 00000035			OPS-EMODD	= 00000074
OPS_CMPP4	= 00000037			OPS-EMODF	= 00000054
OPS_CRC	= 0000000B			OPS-EMODG	= 000054FD
OPS_CVTBD	= 0000006C			OPS-EMODH	= 000074FD
OPS_CVTBF	= 0000004C			OPS-MATCHC	= 00000039
OPS_CVTBG	= 00004CFD			OPS-MNEGD	= 00000072
OPS_CVTBH	= 00006CFD			OPS-MNEGFI	= 00000052
OPS_CVTDB	= 00000068			OPS-MNEGG	= 000052FD
OPS_CVTDF	= 00000076			OPS-MNEGH	= 000072FD

OPS_MOVD = 00000070
 OPS_MOVF = 00000050
 OPS_MOVG = 000050FD
 OPS_MOVH = 000070FD
 OPS_MOVP = 00000034
 OPS_MOTC = 0000002E
 OPS_MOTUC = 0000002F
 OPS_MULD2 = 00000064
 OPS_MULD3 = 00000065
 OPS_MULF2 = 00000044
 OPS_MULF3 = 00000045
 OPS_MULG2 = 000044FD
 OPS_MULG3 = 000045FD
 OPS_MULH2 = 000064FD
 OPS_MULH3 = 000065FD
 OPS_MULP = 00000025
 OPS_POLYD = 00000075
 OPS_POLYF = 00000055
 OPS_POLYG = 000055FD
 OPS_POLYH = 000075FD
 OPS_SCANC = 0000002A
 OPS_SKPC = 0000003B
 OPS_SPANC = 0000002B
 OPS_SUBD2 = 00000062
 OPS_SUBD3 = 00000063
 OPS_SUBF2 = 00000042
 OPS_SUBF3 = 00000043
 OPS_SUBG2 = 000042FD
 OPS_SUBG3 = 000043FD
 OPS_SUBH2 = 000062FD
 OPS_SUBH3 = 000063FD
 OPS_SUBP4 = 00000022
 OPS_SUBP6 = 00000023
 OPS_TSTD = 00000073
 OPS_TSTF = 00000053
 OPS_TSTG = 000053FD
 OPS_TSTH = 000073FD
 RPBSL_IOVEC = 00000034
 RPBSL_PFN_CNT = 0000004C
 RPBSQ_PFNMAP = 00000044
 SSS_NORMAL
 SYSSASSIGN

0000014F RG X 02

-----+
! Psect synopsis !
-----+

PSECT name

. ABS .
\$ABSS
YFILEREAD

Allocation

		PSECT No.	Attributes
00000000	(0.)	00 (0.)	NOPIC USR CON ABS LCL NOSHR NOEXE NORD NOWRT NOVEC BYTE
00000000	(0.)	01 (1.)	NOPIC USR CON ABS LCL NOSHR EXE RD WRT NOVEC BYTE
00000165	(357.)	02 (2.)	NOPIC USR CON REL LCL NOSHR EXE RD WRT NOVEC BYTE

```
+-----+  
! Performance indicators !  
+-----+
```

Phase	Page faults	CPU Time	Elapsed Time
Initialization	30	00:00:00.10	00:00:00.31
Command processing	110	00:00:00.72	00:00:01.86
Pass 1	406	00:00:11.31	00:00:20.88
Symbol table sort	0	00:00:00.79	00:00:01.02
Pass 2	76	00:00:03.69	00:00:07.01
Symbol table output	19	00:00:00.15	00:00:00.20
Psect synopsis output	1	00:00:00.03	00:00:00.34
Cross-reference output	0	00:00:00.00	00:00:00.00
Assembler run totals	644	00:00:16.80	00:00:31.63

The working set limit was 1500 pages.

49198 bytes (97 pages) of virtual memory were used to buffer the intermediate code.

There were 40 pages of symbol table space allocated to hold 559 non-local and 10 local symbols.

3109 source lines were read in Pass 1, producing 14 object records in Pass 2.

139 pages of virtual memory were used to define 138 macros.

```
+-----+  
! Macro library statistics !  
+-----+
```

Macro library name	Macros defined
\$255\$DUA28:[BOOTS.OBJ]BOOTS.MLB;1	0
\$255\$DUA28:[SYS.OBJ]LIB.MLB;1	4
\$255\$DUA28:[SYSLIB]STARLET.MLB;2	4
TOTALS (all libraries)	8

613 GETS were required to define 8 macros.

There were no errors, warnings or information messages.

MACRO/LIS=LIS\$:\$BOOTIO/OBJ=OBJ\$:\$BOOTIO MASDS:[EMULAT.SRC]MISSING/UPDATE=(MASDS:[EMULAT.ENH]MISSING)+MASDS:[BOOTS.SRC]BOOTIO/UPDATE=(M

0037 AH-BT13A-SE
VAX/VMS V4.0

DIGITAL EQUIPMENT CORPORATION
CONFIDENTIAL AND PROPRIETARY

CONFIG
LIS

BTMEM855
LIS

BTMEM790
LIS

CONFIGURE
LIS

BOOTDEF
LIS

BOOTIO
LIS

BOOTDRIVR
LIS

BOOTBLOCK
LIS

BTMEM200
LIS

BTMEM250
LIS

BTMEM280
LIS

CONFIGMN
LIS