Department of Computer Science and Engineering (CSE) BRAC University

Fall 2023

CSE250 - Circuits and Electronics

FIRST ORDER CIRCUITS

PRITHU MAHMUD, LECTURER

Department of Computer Science and Engineering (CSE)

BRAC University

Course Outline: broad themes

First Order Circuits

- A first-order circuit is characterized by a first-order differential equation.
- We shall examine two types of differential circuits: circuit comprising resistors and capacitors (RC circuit) and circuit comprising resistors and inductors (RL circuit).
- Two ways to excite the circuits: (i) by initial conditions of storage elements (source free circuits) and (ii) by independent sources (DC for this course).

Circuit Elements

Active element

- > An *active element* is capable of generating energy.
- In other words, an element is said to be active if it can add some gain (in terms of voltage or current) to a circuit.
- > Active elements can absorb energy if they are forced to do so by other active elements.
- > Examples: Voltage/current sources, generators, transistors, operational amplifiers.

Passive element

- > Passive elements cannot supply energy. They can only consume/dissipate/store energy.
- > Examples: Resistors, capacitors, inductors, transformers.
- > Transformers change the voltage or current levels, but the power is unchanged. This is why transformers are passive element.

Capacitors

- A capacitor is a passive circuit element designed to store energy in its electric field.
- Unlike resistors, which dissipate energy, capacitors and inductors do not dissipate but store energy, which can be retrieved at a later time. For this reason, capacitors and inductors are called *storage* elements.

Mica Capacitors

Parallel Plate Capacitor

- Most widely used configuration is the two conducting surfaces (aluminium mainly) separated by a dielectric (air, ceramic, paper, or mica).
- The switch is open initially (no net charge).
- Closing the switch causes electrons to flow from and to the upper and lower plates respectively as shown by the arrows.
- Electron flow continues until the potential difference between the plates equals the applied potential.
- The final result is a net positive charge on the top plate and a negative charge on the bottom plate.

Capacitance

- Capacitance is a measure of a capacitor's ability to store charge.
- Increasing V increases E as $E \propto \frac{V}{d}$ as long as d is constant. An increase in E field causes increased charge separation i.e. increases q.

conducting material

- So, $q \propto V$
- $\Rightarrow q = CV [C \text{ is a proportionality constant} \equiv Capacitance]$

$$\Rightarrow$$
 $C = \frac{q}{v}$ [F (Farad), mF, μ F]

- \Rightarrow For a particular capacitor $\uparrow V$, $\uparrow q$ but $\frac{q}{v} = \text{const. So, } C$ does not depend on q or v. It depends on the physical dimension of the capacitor.
- \Rightarrow For the parallel plate capacitor, $C = \frac{\mathcal{E}A}{d}$

I-V relation of a Capacitor

From the definition of the capacitance,

$$C = \frac{q}{v}$$

$$\Rightarrow q = Cv$$

Differentiating with respect to time,

$$\frac{dq}{dt} = C \frac{dv}{dt}$$

$$i = C \frac{dv}{dt}$$

- This is the characteristic equation of a capacitor.
- Integrating with respect to time,

$$v(t) = \frac{1}{C} \int i(t) \, dt$$

If the voltage of the capacitor at any time t_0 is $v(t_0) =$ $q(t_0)/C$, then,

$$v(t) = \frac{1}{C} \int_{t_0}^{t} i(t) dt + v(i_0)$$

It shows that capacitor voltage depends on the past history of the capacitor current. Hence, the capacitor has memory—a property that is often exploited.

Energy & Power of a Capacitor

• The instantaneous power delivered to a capacitor according to the passive sign convention is,

$$p = v(t)i(t) = Cv(t)\frac{dv(t)}{dt}$$

The energy stored in the capacitor is therefore

$$w(t) = \int_{-\infty}^{t} p(t) dt = \int_{-\infty}^{t} Cv(t) \frac{dv(t)}{dt} dt = \int_{v(-\infty)}^{v(t)} Cv(t) dv$$

$$\Rightarrow w(t) = \frac{1}{2} Cv^{2} \Big|_{v(-\infty)=V_{0}}^{v(t)=V}$$

$$\Rightarrow w(t) = \frac{1}{2}CV^2 - \frac{1}{2}CV_0^2$$

$$w(t) = \frac{1}{2}Cv(t)^2 = \frac{1}{2}CV^2$$

Capacitor: important properties

- 1. A capacitor is an <u>open circuit</u> to dc. At dc, $i_C = C \frac{dV_{c-dc}}{dt} = 0$ [Open circuit]
- 2. The voltage on a capacitor cannot change abruptly.

Voltage change across a capacitor (a) allowed and (b) not allowed

3. An ideal capacitor does not dissipate energy.

4. A real, nonideal capacitor has a parallel-model leakage resistance.

Course Outline: broad themes

Step Response of a RC circuit

- The *step response* of a circuit is its behaviour under the sudden application of dc voltage or current source. We assume the circuit response to be the capacitor voltage.
- Since the voltage of a capacitor cannot change instantaneously,

$$\Rightarrow v(0^-) = v(0^+) = V_0$$

$$\Rightarrow$$
 Using KCL (for $t > 0$),

$$\Rightarrow C \frac{dv}{dt} + \frac{v - V_S}{R} = 0$$

$$\Rightarrow \frac{dv}{dt} = -\frac{v - V_S}{RC}$$

$$\Rightarrow \frac{dv}{v - V_S} = -\frac{1}{RC} dt$$

Integrating both sides,

$$\Rightarrow v(0^{-}) = v(0^{+}) = V_{0} \quad \Rightarrow \quad \left[\ln(v - V_{S})\right]_{V_{0}}^{v(t)} = -\left[\frac{t}{RC}\right]_{0}^{t}$$

$$\Rightarrow$$
 Using KCL (for $t>0$), \Rightarrow $\ln(v(t)-V_S)-\ln(V_0-V_S)=-\frac{t}{RC}+0$

$$\Rightarrow ln \frac{v - V_S}{V_0 - V_S} = -\frac{t}{RC}$$

$$\Rightarrow \frac{v - V_S}{V_0 - V_S} = e^{-t/RC}$$

CSE250 - CIRCUITS AND ELECTRONICS

$$\Rightarrow v - V_S = (V_0 - V_S)e^{-t/RC}$$

$$\Rightarrow v(t) = V_S + (V_0 - V_S)e^{-t/RC}$$

Time Constant (charging) for RC circuit

$$v(t) = \begin{cases} V_0, & t < 0 \\ V_s + (V_0 - V_s)e^{-\frac{t}{RC}}, & t > 0 \end{cases}$$

• This is known as the complete response (or total response) of the RC circuit to a sudden application of a dc voltage source. It is assumed that the capacitor was initially charged to V_0 .

$$\Rightarrow v(t) = \begin{cases} V_0, & t < 0 \\ V_s + (V_0 - V_s)e^{-\frac{t}{\tau}}, & t > 0 \end{cases}$$

- \Rightarrow where $\tau = RC$ is the *time constant* (unit in sec).
- Notice that, we write $\tau = RC$ for the circuit consisting of only a resistor R in series with the capacitor. As we know, all the linear two terminal circuits can be reduced to this form by Thevenin's Theorem, so the resistor R is actually the Thevenin Resistance R_{Th} . Therefore,

$$\tau = R_{Th}C$$

Transient and Steady-State Response

$$v(t) = \begin{cases} V_0, & t < 0 \\ V_s + (V_0 - V_s)e^{-\frac{t}{\tau}}, & t > 0 \end{cases}$$

• The *complete response* can be broken into two parts—one temporary and the other permanent, that is,

$$v(t) = v_{ss} + v_t$$
, where,
 $v_{ss} = V_s$ & $v_t = (V_0 - V_s)e^{-\frac{t}{\tau}}$

• The transient response (v_t) is the circuit's temporary response that will die out with time.

- The steady-state response (v_{ss}) is the behaviour of the circuit a long time after an external excitation is applied.
- The complete response can be written as,

$$v(t) = V_{final} + \left[V_{initial} - V_{final}\right]e^{-\frac{t}{\tau}}$$

$$or, \qquad v(t) = V(\infty) + \left[V(0) - V(\infty)\right]e^{-\frac{t}{\tau}}$$

Definition of τ (charging)

$$v(t) = V_{final} + \left[V_{initial} - V_{final}\right]e^{-\frac{t}{\tau}}$$

- At $t = \tau$, $v(t) = V_{final} + \left[V_{initial} V_{final}\right]e^{-1}$ $\Rightarrow v(t) = V_{final}\left(1 \frac{1}{e}\right) + V_{initial}\left(\frac{1}{e}\right)$ $\Rightarrow v(t) = V_{final}\left(1 \frac{1}{e}\right) V_{initial}\left(1 \frac{1}{e}\right) + V_{initial}$ $\Rightarrow v(t) = V_{initial} + \left[V_{final} V_{initial}\right]\left(1 \frac{1}{e}\right)$
- We can define the time constant in this way,
- The *charging time constant* is the time required for the response to reach to a factor of (1-1/e) or 63.2% towards V_{final} from an initial response $V_{initial}$.

Time Constant (τ): graphically

At
$$t = \tau$$
, $v(t) = V_{initial} + [V_{final} - V_{initial}](1 - \frac{1}{e})$
 $\Rightarrow v(t) = 63.2\% \times V_{final} \text{ when } V_{initial} = 0$
 $\Rightarrow v(t) = V_{initial} + 63.2\% \times [V_{final} - V_{initial}] \text{ when } V_{initial} \neq 0$

As τ only depends on R_{Th} and C $(\tau =$ $R_{Th}C$), for a given circuit, that is, for a fixed R_{Th} and C, the time needed for the capacitor voltage to rise to the final value (V_{final}) is the same whether or not the capacitor is initially charged ($V_{initial}$ zero or nonzero).

Significance of τ (charging): 5τ Time

• As can be seen from the following plot, the capacitor voltage reaches the final voltage approximately after 5 times the Time Constant (τ) . The capacitor is fully charged and acts as open circuit from 5τ time onward. So, when designing circuits, the charging time of a capacitor under the application of a

certain dc supply can be set by choosing R_{Th} .

Course Outline: broad themes

Source-Free RC circuit

- A source-free RC circuit occurs when its dc source is suddenly disconnected. The energy already stored in the capacitor is released to the resistors.
- \Rightarrow Assume that a capacitor is charged to V_0 and then it is connected to a resistor as shown. The capacitor starts to discharge the stored energy to the resistor.
- \Rightarrow Initially stored charge, $w(0) = \frac{1}{2}CV_0^2$
- \Rightarrow From the figure using KCL, $i_C + i_R = 0$

$$\Rightarrow C \frac{dv}{dt} + \frac{v}{R} = 0$$

$$\Rightarrow \frac{dv}{dt} + \frac{v}{RC} = 0$$

$$\Rightarrow \frac{dv}{v} = -\frac{1}{RC}dt$$

Integrating both sides,

$$\Rightarrow lnv = -\frac{t}{RC} + lnA$$

$$\Rightarrow ln \frac{v}{A} = -\frac{t}{RC}$$

$$\Rightarrow v = Ae^{-\frac{t}{RC}}$$

At
$$t = 0$$
, $v(0) = A = V_0$. So, $v(t) = V_0 e^{-\frac{t}{RC}}$

$$v(t) = V_0 e^{-\frac{t}{RC}}$$

Time Constant (discharging) for RC circuit

$$v(t) = V_0 e^{-\frac{t}{RC}}$$

 This shows that the voltage response of the RC circuit is an exponential decay of the initial voltage. It is called the natural response of the circuit.

$$\Rightarrow v(t) = V_0 e^{-\frac{t}{\tau}}$$

- where $\tau = RC$ is the time constant (unit in sec).
- Notice that, we write $\tau = RC$ for the circuit consisting of only a resistor R in series with the capacitor. As we know, all the linear two terminal circuits can be reduced to this $0.368V_0$ form by Thevenin's Theorem, so the resistor R is actually the Thevenin Resistance R_{Th} . Therefore,

$$\tau = R_{Th}C$$

Definition of τ (discharging)

$$v(t) = V_0 e^{-\frac{t}{\tau}}$$

• At t= au, $v(t)=V_0e^{-1}$

$$\Rightarrow v(t) = 0.368 \times V_0$$

- We can define the discharging time constant in this way,
- The discharging time constant is the time required for the response to fall to a factor of $^1/_e$ or 36.8% from an initial response $V_{initial}$ or V_0 .
- Recall that the *charging time constant* is the time required for the response to reach to a factor of (1-1/e) or 63.2% towards V_{final} from an initial response $V_{initial}$.

Significance of τ (discharging): 5τ Time

• As can be seen from the following plot, the capacitor voltage decreases to the final voltage approximately after 5 times the Time Constant (τ) . In case where $V(\infty) = 0$, the capacitor is fully discharged from 5τ time onward. So, when designing circuits, the discharging time of a capacitor can

be set by choosing R_{Th} .

• In the case that a capacitor is subjected to a final voltage lower than its initial voltage, the discharging τ is the time required for the response to decay to 63.2% from V(0) towards $V(\infty)$. See Problem 6

Procedure

$$v(t) = V(\infty) + [V(0) - V(\infty)]e^{-t/\tau}$$

Determine the initial voltage of the capacitor $V_{initial}$ or $\underline{V(0)}$

Consider only the active[‡] portion of the circuit before switching. For example, if switching occurs at t=0, consider the circuit for t<0.

If the circuit includes any dc source (current or voltage), open the capacitor and determine the voltage at the open terminal. This is the V(0). V(0)=0 if there is no independent source in the circuit.

 $\frac{\text{Determine the final}}{\text{voltage of the capacitor}}$ $\frac{V_{final} \text{ or } V(\infty)$

Now consider the active[‡] portion of the circuit after switching. For example, for t > 0.

Repeat the step. This time, the voltage across the capacitor is $V(\infty)$. Circuits with $V(\infty) = 0$ are called source free.

Determine the time constant (τ)

Again, only consider the active[‡] portion after switching. For example, for t > 0.

Determine the Thevenin resistance (R_{Th}) as seen from the capacitor terminals

 $\tau = R_{Th}C$

 $\frac{\text{Determine}}{v(t)}$

Plug in V(0), $V(\infty)$, and τ into the equation for v(t)

Determine any other voltages or currents in the circuit using v(t) and the circuit laws.

‡ active portion of the circuit excludes everything that has no influence on the capacitor

Example 1

• Let $V_{\mathcal{C}}(0)=15\,V$, Determine $v_{\mathcal{C}},v_{x}$, and i_{x} for t>0.

Solution

The equivalent resistance as seen from the capacitor terminal is,

$$R_{eq} = (8 + 12) \mid |5 = 4 \Omega$$

Time constant, $\tau = R_{eq}C = 4 \times 0.1 = 0.4 s$

Thus, for a source-free RC circuit, $V(\infty) = 0$. So,

$$v_C(t) = V(0)e^{-\frac{t}{\tau}} = 15e^{-2.5t} (V)$$

The voltage v_x can be found by simple voltage division.

$$v_x(t) = \frac{12}{12 + 8} \times v_C(t) = 9e^{-2.5t} (V)$$

According to the Ohm's law,

$$i_x = \frac{v_x}{12} = \frac{9e^{-2.5t}}{12} = 0.75e^{-2.5t} \text{ (A)}$$

Example 2

• The switch in the circuit has been closed for a long time, and it is opened at t=0. Find v(t) for t>0. Calculate the initial energy stored in the capacitor.

For t < 0, the switch is closed. With the capacitor open at dc, the circuit transforms into the one shown above.

No current flows through the 1Ω . So, the voltage across the 9Ω is the $v_C(t)$ for t < 0,

$$v_C(t) = \frac{9}{9+3} \times 20 = 15 V, \qquad t < 0$$

Since the voltage across the capacitor cannot change instantaneously,

$$v_C(0) = v_C(0^-) = 15 V$$

Example 2: t > 0

For t > 0, the switch is open. The circuit transforms into the one shown above. As there is no independent source in the circuit, $V(\infty) = 0$.

The Thevenin resistance as seen from the capacitor terminal,

$$R_{Th} = 1 + 9 = 10 \Omega$$

The time constant is,

$$\tau = R_{Th}C = 10 \times 20 \times 10^{-3} = 0.2 s$$

So, the voltage across the capacitor for t > 0 is,

$$v_C(t) = V(0)e^{-\frac{t}{\tau}}$$

= 15e^{-5t} (V)

The initial energy stored in the capacitor is,

$$w_C(t) = \frac{1}{2}CV(0)^2$$
$$= \frac{1}{2} \times 20 \times 10^{-3} \times 15^2 = 2.25 J$$

Example 3

• Calculate the capacitor voltage v(t) for t < 0 and for t > 0.

For t < 0, the switch is open. With the capacitor open at dc, the circuit transforms into the one shown above.

The $2\,A$ current from the current source will flow only through the $4\,\Omega$ resistance. The voltage drop across the $4\,\Omega$ resistance is, $4\times 2=8\,V$.

There is no voltage drop across the 3Ω (i=0 at open circuit). So,

$$v(t) = 12 - 8 = 4 V$$
, $t < 0$

Since the voltage across the capacitor cannot change instantaneously,

$$v(0) = v(0^-) = 4 V$$

Example 3: t > 0

For t > 0, the switch is closed. With the capacitor again open at dc, the circuit transforms into the one shown above.

Again, there is no voltage drop across the 3 Ω (i=0 at open circuit). So,

$$v(t) = 12 V, t > 0$$

This is the steady-state voltage across the capacitor for t > 0.

$$v(\infty) = 12 V$$

The time constant is, $\tau = R_{Th}C = 3 \times 2 = 6 s$ So,

$$v(t) = V(\infty) + [V(0) - V(\infty)]e^{-t/\tau}$$
$$= 12 + [4 - 12]e^{-\frac{t}{6}} = 12 - 8e^{-\frac{t}{6}}$$

28

• Let $V_C(0) = 60 V$, Find v_C, v_X , and i_X for t > 0.

Ans:
$$v_C = 60e^{-0.25t} V$$
; $v_x = 20e^{-0.25t} V$; $i_x = -5e^{-0.25t} A$

• The switch in the circuit has been closed for a long time, and it is opened at t=0. Find v(t) for t>0. Calculate the initial energy stored in the capacitor.

Ans: $v(t) = 8e^{-2t} V$; $w_c(0) = 5.333 J$

• The switch opens at t = 0. Find $v_0(t)$ for t > 0.

$$\underline{\text{Ans}} : \boldsymbol{v}(t) = \mathbf{10} e^{-t/12} V$$

- For the circuit below, $v = 10e^{-4t} V$ and $i = 0.2e^{-4t} A$
 - (a) Find R and C.
 - (b) Determine the time constant.
 - (c) Calculate the initial energy in the capacitor.
 - (d) Obtain the time it takes to dissipate 50% of the initial energy.

Ans: $R = 50 \Omega$; C = 5 mF; $\tau = 0.25 s$; $w_{c(0)} = 0.25 J$; t = 86 ms

• Assume that the switch has been in position A for a long time and is moved to position B at t=0. Then at t=1s, the switch moves from B to C. Find $I_{\mathcal{C}}(t)$ for t>0.

• Find v(t) for t>0 in the circuit shown below. Assume the switch has been open for a long time and is closed at t=0. Calculate v(t) at t=0.5s.

Ans: $v_c(t) = 9.375 + 5.625e^{-2t} V for t > 0$; $v_c(0.5) = 11.444 V$

• Calculate the capacitor voltage for t < 0 and for t > 0.

Ans: v(t) = 12 V for t < 0; v(t) = 12 V for t > 0

• The switch has been in position a for a long time. At t = 0 it moves to position b. Calculate i(t) for all t > 0.

Ans: $i(t) = -6e^{-0.25t} A for t > 0$

• Consider the circuit shown below. Find i(t) for t < 0 and t > 0.

Ans: i(t) = 0.8 A for t < 0; $i(t) = 0.8e^{-t/480} A for t > 0$

The figure below shows the voltage response of an RC circuit to a sudden DC voltage applied through an equivalent resistance of 4 $k\Omega$.

CSE250 - CIRCUITS AND ELECTRONICS

v(t)

- Define time constant.
- Determine the approximate time constant from the figure.
- Find the mathematical expression of v(t) for t > 0.
- What is the initial energy stored in the capacitor?
- Draw the circuit diagram.

Ans: (ii)
$$\tau = 9 ms$$
; (iii) $v(t) = 6 - 8e^{-1000t/9} I for t > 0$; (iv) $w = 4.5 \times 10^{-6} J$

- I. Simplify the circuit 1 below so that it takes the form of the circuit 2. Determine the values of V_1 and R_1 .
- II. Perform transient analysis to determine $i_c(t)$ through the capacitor for t > 0.

- Simplify the Circuit 1 below so that it takes the form of the Circuit 2. Determine the values of *I* and *R*.
- Perform transient analysis to determine $V_c(t)$ across the capacitor for t>0.

Circuit 1

Ans: V = 20 V; $R = 5 \text{ k}\Omega$; $V_c(t) = 20(1 - e^{-2t}) V$

40

• Simplify the Circuit 1 below so that it takes the form of the Circuit 2. Determine the values of V_1 and R_1 . Perform transient analysis to determine $V_c(t)$ across the capacitor for t>0.

- Reduce the left portion with respect to the dashed grey line of Circuit 1 so that it takes the form of Circuit 2 as shown. Write down the values of V_1 and R_1 .
- Now, analyse the Transient Behaviour of the circuit assuming that the switch moves from position x to position y at t=0. Determine v(t) for t>0.

