NUMERI INTERI

Generalità

È noto che, mentre l'equazione x-5=0 è risolubile in \mathbb{N} , l'equazione x+3=0 non lo è, pertanto dobbiamo cercare di *ampliare l'insieme dei numeri* in modo da includere tutte le soluzioni di equazioni del tipo $x+n=0, n\in\mathbb{N}$.

Giungiamo quindi all'insieme $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3\}$, detto insieme degli **interi relativi**. Per dare la definizione degli interi relativi, partiamo dal prodotto cartesiano $\mathbb{N} \times \mathbb{N}$, ovvero l'insieme delle coppie ordinate di numeri naturali, e introduciamo questa relazione:

$$oxed{\left[(n,m) \ \sim \ (n',m') \ \Longleftrightarrow \ n+m'=m+n'
ight]}$$

Esempio - Rappresentazione di un numero intero

$$(5,6) \sim (0,1) \iff 5+1=6+0$$

$$(8,2) \sim (6,0) \iff 8+0=2+6$$

Dimostriamo che questa relazione sia di equivalenza:

- È riflessiva: $(a,b) \rho (a,b) \iff a+b=a+b$
- È simmetrica: $(a,b) \rho(c,d) \implies (c,d) \rho(a,b) : c+b=a+d, e a+d=c+b$ per ipotesi
- È transitiva: $(a,b) \rho (c,d) e (c,d) \rho (e,f) \implies (a,b) \rho (e,f)$:

$$\left\{egin{aligned} a+d=b+c & ext{sommando} \ c+f=d+e, \end{aligned}
ight. egin{aligned} \Rightarrow & a+d+c+f=b+c+d+e \implies (a,b) \;
ho \; (e,f) \end{aligned}
ight.$$

Si tratta di una relazione di equivalenza. L'insieme $\mathbb{N} \times \mathbb{N}$ viene quindi diviso in classi (n, m).

Possiamo quindi definire delle classi di equivalenza che suddividono in parti l'insieme $\mathbb{N} \times \mathbb{N}$ in classi [(n, m)]. Scegliamo come *rappresentanti* delle classi di equivalenza gli elementi che prevedono **uno dei due elementi uguale a** 0.

Ogni classe sarà rappresentabile con uno dei seguenti rappresentanti distinti:

$$(0,0)$$

 $(1,0), (2,0), (3,0), \dots, (n,0), \dots$
 $(0,1), (0,2), (0,3), \dots, (0,n), \dots$

In sintesi, una coppia del tipo (a,0) è in relazione con tutte le coppie (n,m)|n-m=a:

$$*_1: [7,0] = \{(10,3)(14,7), (15,8), \dots\}$$

mentre una coppia del tipo (0,a) è in relazione con tutte le coppie (n,m)|n-m=-a:

$$*_2: [0,2] = \{(4,6), (8,10), (9,11), \dots\}$$

Pertanto, l'insieme quoziente $\mathbb{Z} := \mathbb{N} \times \mathbb{N} / \sim$ è detto insieme dei numeri interi.

Possiamo quindi definire

$$egin{aligned} \mathbb{Z}^+ & \stackrel{ ext{def}}{=} \{\overline{(n,0)} | n \in \mathbb{N}, n
eq 0 \} \ 0 & \stackrel{ ext{def}}{=} \overline{(0,0)} \ \mathbb{Z}^- & \stackrel{ ext{def}}{=} \{\overline{(0,n)} | n \in \mathbb{N}, n
eq 0 \} \end{aligned}$$

Mentre gli elementi di \mathbb{Z} nel seguente modo:

$$egin{aligned} \overline{(n,0)} & \stackrel{ ext{def}}{=} n \ \hline (0,0) & \stackrel{ ext{def}}{=} 0 \ \hline (0,n) & \stackrel{ ext{def}}{=} -n \end{aligned}$$

I numeri interi godono delle proprietà base:

- Proprietà commutativa dell'addizione
- Proprietà associativa dell'addizione
- $\bullet~$ Esistenza dell'elemento~neutrorispetto all'addizione
- Esistenza dell'opposto
- Proprietà commutativa della moltiplicazione
- Proprietà associativa della moltiplicazione
- Esistenza dell'*elemento neutro* rispetto alla moltiplicazione
- Distributiva della moltiplicazione rispetto all'addizione

 $\boldsymbol{\mathit{LEMMA}}$: Siano a, b elementi di $\mathbb{Z}.$ Allora:

•
$$a * 0 = 0 * a = 0$$

•
$$(-a) * b = -(a * b)$$

•
$$(-a)(-b) = ab$$

Valore Assoluto

Si definisce valore assoluto di un intero a il numero intero positivo

$$|a| = egin{cases} a & \sec a \ge 0 \\ -a & \sec a < 0 \end{cases}$$

Dati quindi $a, b \in \mathbb{Z}$ valgono le seguenti relazioni

$$|a| + |b| \ge |a+b|$$
 e $|a| * |b| = |a * b|$

Divisibilità

DEF: dati due interi a, b si dice che a divide b e si scrive a|b, se esiste un $c \in \mathbb{Z}$ tale che b = ac.

DEF: in un anello commutativo si dice che un elemento $a \neq 0$ è un divisore dello zero se esiste un $b \neq 0$ tale che ab = 0.

DEF: un dominio di integrità è un anello commutativo primo di divisori dello 0.

DEF: è un divisore comune degli elementi $a \in b$ di \mathbb{Z} un elemento $c \in \mathbb{Z}$ tale che $c|a \in c|b$.

Lemma: Se c'è un divisore comune di a e b, allora c divide ogni intero della forma sa + tb, con s e t in \mathbb{Z} cioè c|a e $c|b \implies c|sa + tb \, \forall s,t \in \mathbb{Z}$.

DEF: Un elemento $u \in \mathbb{Z}$ che divide 1 si dice una *unità* (elemento invertibile) di \mathbb{Z} . E' immediato riconoscere che le sole unità di \mathbb{Z} sono 1 e -1

DEF: due elementi a e b di \mathbb{Z} tali che a|b e b|a si dicono associati Possiamo quindi dire che due elementi sono associati se e solo se differiscono per il segno. La relazione associati è una relazione di equivalenza.

DEF: un elemento $a \in \mathbb{Z}$ che non sia lo zero e non sia una unità si dice *primo* se ogni volta che a divide un prodotto bc, con $b, c \in \mathbb{Z}$, allora a divide almeno uno dei due fattori.

PROPOSIZIONE: ogni elemento primo in \mathbb{Z} è un elemento irriducibile.

DIMOSTRAZIONE: sia a un elemento primo in Z. Per provare che esso è irriconducibile dobbiamo provare che dall''essere a = bc con b, c ∈ Z segue che b o c sono delle unità. Sia dunque a = bc; in particolare a|bc.
Allora (essendo a primo per ipotesi) a|b oppure a|c, cioè b = ah o c = ak con h, k ∈ Z; ma allora la a = bc, assieme ad una di queste relazioni comportano che a o b o c sono delle unità