KINEMATIKA

1. zadatak MI 2013./2014.

1. Trenutno najbrži lift preveze putnike na visinsku razliku od 382,2 m u 39 s i pri tome postiže najveću brzinu 60,6 km/h. Pretpostavite da se lift može ubrzavati i usporavati samo s jednim iznosom akceleracije. Izračunajte tu akceleraciju.

$$a = \frac{v_{\rm max}}{T - L/v_{\rm max}} \ .$$

2. zadatak JIR 2013/2014

1. Gibajući se stalnom brzinom 65 km/h vozač automobila počinje kočiti. Nakon 5 s kočenja prijeđe upravo trostruki put od onog što ga je prošao u prvih 1,5 s kočenja. Kolika je akceleracija kočenja? (6 bodova)

$$a=-1$$
m/s²

DINAMIKA

3. zadatak JIR 2013/2014

2. Na česticu mase $m = 1 \log djeluje sila$

$$F = F_o \left[5 - \left(\frac{t - T}{T} \right)^2 \right]$$

u vremenskom intervalu $0 \le t \le T$. F_o je 2N i T= 1s. Potrebno je odrediti brzinu čestice na svršetku vremenskog intervala ako čestica u početku miruje. **(6 bodova)**

$$v = 14 F_0 T/(3m)$$

4. zadatak Kulišić

3.4. Na vodoravnoj podlozi leže dva tijela mase m₁ = 0,2 kg i m₂ = 0,3 kg međusobno povezana laganom niti (sl. 3.21). Predmeti su također preko kolotura na rubu podloge spojeni s tijelom mase m₃ = 0,6 kg (sl. 3.21). Izračunajte akceleraciju sustava: a) zanemarivši trenje i b) imajući na umu da je faktor trenja klizanja između prva dva tijela i podloge jednak 0,4. c) Kolike su napetosti niti T₁ i T₂ u slučaju kad je trenje zanemarivo? Zanemarite masu žice i koloture.

Rezultat: a) $a = 5.35 \text{ m s}^{-2}$, b) $a = 3.57 \text{ m s}^{-2}$, c) $T_1 = 1.07 \text{ N}$, $T_2 = 2.68 \text{ N}$

Slika 3.21.

RAD, ENERGIJA, SNAGA

5. zadatak MI 2013/2014

3. Na vrhu kosine visine h=1m i nagiba α=30° nalazi se predmet mase m=2 kg. Koeficijent trenja između predmeta i površine kosine je μ=0,1. Nakon što tijelo niz kosinu prijeđe put od 70 cm nalijeće na nerastegnutu oprugu k=100 N/m u ravnotežnom položaju. Koliko se maksimalno stisne opruga? Do koje se maksimalne visine h' (vidi sliku) tijelo vrati nakon što se opruga ponovno rastegne?

(6 bodova)

y=0,8 m h'=0,83 m

6. zadatak DIR 2011/2012

3. Mase m₁ i m₂ smještene su na krajevima štapa duljine 1m i zanemarive mase. Štap rotira oko vertikalne osi koja je okomita na njega. Kroz koju točku na štapu mora prolaziti os rotacije da bi rad potreban da zarotiramo štap kutnom brzinom ω₀ bio minimalan? Pretpostavite da su dimenzije masa zanemarive u odnosu na duljinu štapa, te da vrijedi m₂ /m₁ = 2.

(8 bodova) $\frac{A}{3}D^3$

7. zadatak DIR 2012/2013

2. U trenutku polijetanja, avion mora imati brzinu od 100 km/h. Masa aviona je 2 t, zaletna staza je duga 100 m, a koeficijent trenja je 0,3. Kolika mora biti minimalna snaga motora da bi avion poletio? Brzina gibanja tijekom zaleta je proporcionalna vremenu. (6 bodova)

$$P = (ma + \mu mg) v$$

8. zadatak Zadaci za vježbu, 2. dio, 2013

7 Zadatak: Vlak mase $m=500\,\mathrm{t}$ se u početnom trenutku gibao brzinom iznosa $v_0=10\,\mathrm{km}\,\mathrm{h}^{-1}$, a narednih ga je $\Delta t=30\,\mathrm{s}$ lokomotiva ubrzavala duž vodoravne pruge djelujući stalnom snagom $P=2\,\mathrm{MW}$. Odredi duljinu prevaljenog puta u tom intervalu vremena te iznos konačne brzine. Učinak svih sila otpora smatramo zanemarivim.

Rj:
$$s = (m/3P)((v_0^2 + (2P/m)\Delta t)^{3/2} - v_0^3) \simeq 323.1 \,\mathrm{m}, v_1 = (v_0^2 + (2P/m)\Delta t)^{1/2} \simeq 56.7 \,\mathrm{km} \,\mathrm{h}^{-1}$$

SUDARI

9. zadatak MI 2013/2014

4. Njihalo koje se sastoji od kugle mase 0,8 kg pričvršćene na nit otpušteno je iz mirovanja kada nit zatvara kut 53° s vertikalom. U najnižoj točki kugla se elastično sudari s blokom mase m koji miruje na horizontalnoj podlozi bez trenja. Nakon sudara, maksimalni kut koji nit zatvara s vertikalom je 5,73°. Kolika je masa bloka?

(Zadatak ima dva rješenja, u ovisnosti o tome na koju stranu se kugla otklonila.)

(6 bodova)

$$m = 0.639 \text{ kg}$$
 $m = 1.002 \text{ kg}$

10. zadatak JIR 2013/2014

3. Na gornjem kraju vertikalne opruge položena je lopta mase 0,8 kg. Lopta se pritisne prema dolje tako da se opruga stisne za *Y*=32 cm, a zatim se otpusti. Nakon otpuštanja lopta odleti u vis za 3*Y* u odnosu na ravnotežni položaj. Kolika je konstanta elastičnosti opruge? **(7 bodova)**

$$k_{1,2} = \frac{M \ g}{V} \left(3 \pm 2 \sqrt{2}\right)$$

11. zadatak LJIR 2013/2014

2. Kugla mase m₂ miruje, a s njom se centralno savršeno elastično sudari kugla manje mase m₁=1,3 kg. Kugla m₁ pri tome izgubi 19% kinetičke energije. Kolika je masa m₂? (8 bodova)

$$m_2 = m_1 \frac{\left(1 + \sqrt{x}\right)^2}{1 - x} = 24.7 \text{ kg}$$

KRUTO TIJELO

12. zadatak JIR 2013/2014

3. Čovjek podržava homogenu gredu djelujući silom na jedan njezin kraj. Sila je okomita na gredu (vidi sliku). Kraj grede se nalazi na visini 1 m iznad tla. Greda je dugačka 3 m. Koliki je najmanji statički koeficijent trenja između grede i tla potreban, a da greda ne proklizne? (6 bodova)

13. zadatak MI 2013/2014

2. Homogeni valjak momenta tromosti I počinje rotirati u fluidu pod utjecajem vanjskog zakretnog momenta M. Uz pretpostavku da je otporni moment sredstva proporcionalan kvadratu kutne brzine vrtnje $M_{ot} = -A\omega^2$, pronađite kako kutna brzina ovisi o vremenu.

(Naputak: $\int dx/(a^2-x^2) = \frac{1}{2} Artanb (x/a)$, za |x| < a.)

(Naputak:
$$\int dx/(a^2-x^2)=\frac{1}{a}\operatorname{Artanh}(x/a)$$
, za $|x|< a$) (6 bodova)

$$\omega = \sqrt{\frac{M}{A}} \operatorname{Tanh}(\sqrt{AM} t/I)$$

14. zadatak LJIR 2013./2014.

1. Oko okrugle ploče (diska) je namotana lagana nit. Jedan kraj niti je pričvršćen na oslonac, a okrugla je ploča iz mirovanja puštena da pada tako da se nit odmotava kako ploča pada (vidi sliku). Kolika je akceleracija središta mase ploče? (6 bodova)

$$a = \frac{2}{3}g$$

15. zadatak DIR 2011/2012

3. Mase m₁ i m₂ smještene su na krajevima štapa duljine 1m i zanemarive mase. Štap rotira oko vertikalne osi koja je okomita na njega. Kroz koju točku na štapu mora prolaziti os rotacije da bi rad potreban da zarotiramo štap kutnom brzinom ω₀ bio minimalan? Pretpostavite da su dimenzije masa zanemarive u odnosu na duljinu štapa, te da vrijedi m₂ /m₁ = 2.
(8 bodova)

$$r_1 = \frac{2}{3}L = \frac{2}{3}m,$$

 $r_2 = \frac{1}{3}L = \frac{1}{3}m.$

16. zadatak JIR 2012/2013

3. Puni valjak čiji se centar mase giba brzinom 1 m/s počinje se kotrljati bez klizanja uz kosinu nagiba 30°. Nakon koliko vremena će se valjak zaustaviti? (6 bodova)

$$t = v_o/[2g \sin(\beta)]$$