

NuShellX Tutorial

Presented by:

Adam B Jones

Outline

- How to obtain NuShellX.
- Starting NushellX
- Calculating Spectra
- Calculating transitions.

How to Obtain NuShellX

- From B. A. Brown's website
 - NuShellX@MSU for Windows PC can be obtained by sending an email to:
 - » brown@nscl.msu.edu
 - This version runs directly on any Windows PC without the need for any other software.
 - NuShellX@MSU is an adaption of W.D.M.Rae's code NuShellX with input and output files similar to the older Oxbash code.
 - W.D.M Rae's original version of the code can be obtained at his website.
 - » http://www.garsington.eclipse.co.uk/
- There are versions of NuShellX that are made to run on different platforms.
 - As far as I know only the windows version is kept up to date so be aware that the versions for different platforms may be inconsistent.

Starting NuShellX -login

- NuShellX is designed to be used with a special terminal window.
 - The window has commands aliased in a way that is supposed be independent of the platform used.
 - This is important because NuShellX is designed to set up and run the shell model interactions using scripts to run different programs and manage their inputs and outputs.
- To start this terminal window find the shortcut in the login directory:
 - The windows example is:
 - » C:\aaa\nushellx\windows\login
 - » "nushellx-login" is the name of the shortcut
 - » You can relocate this shortcut wherever is convenient for you.
- The "nushellx-login" shortcut runs the "login-nushellx.bat" script this script sets up the terminal used for nushellx calculations.
 - You may need to modify this file to suit your purposes.
 - It is recommended that you change the "OMP_NUM-THREADS" variable to 1 less than the number of cores on your machine so that you reduce contention with your operating system.

Example NuShellX -login

- Below is an example of the nushellx terminal window.
 - The login script is set up to print information about the system on startup.
- Take a moment and start your own terminal window.
 - Verify the OMP_NUM_THREADS is a reasonable value for your system.

```
nushellx-login
C:\aaa\nushellx\windows\login>call login-nushellx.bat intel
C:\aaa\nushellx\windows\login\rem
                                      number of cores = 4
C:\aaa\nushellx\windows\login\rem
                                      AMD64 Intel64 Family 6 Model 60 Stepping 3. GenuineIntel
                                      C:\aaa\nushellx\windows\login
C:\aaa\nushellx\windows\login>rem
C:\aaa\nushellx\windows\login\rem
                                      nushellx data files C:\aaa\nushellx\sps\
C:\aaa\nushellx\windows\login\rem
                                      mass.for data files C:\aaa\nushellx\toi\mass-data\
C:\aaa\nushellx\windows\login\rem
                                      toi.for data files C:\aaa\nushellx\toi\toi-data\
C:\aaa\nushellx\windows\login>set OMP_NUM_THREADS=3
C:\aaa\nushellx\windows\login\rem
                                      intel nushellx programs
C:\aaa\nushellx\windows\login\rem
C:\aaa\nushellx\windows\login\_
                                     ----- nushellx login complete -----
```


- The simplest operation in NuShellX is to calculate the spectrum of a single nucleus.
- The first step is to specify the parameters of the calculation and generate the script that will run the calculation.
 - This is done by running the program "shell" in the terminal window.
 - Be sure to navigate to an empty directory because many files will be created.
 - Simply type shell and press enter.

```
shell
                                          C:\aaa\nushellx\windows\login
C:\aaa\nushellx\windows\login>rem
C:\aaa\nushellx\windows\login\rem
                                          nushellx data files C:\aaa\nushellx\sps\
C:\aaa\nushellx\windows\login>rem
                                          mass.for data files C:\aaa\nushellx\toi\mass-data\
                                          toi.for data files C:\aaa\nushellx\toi\toi-data\
C:\aaa\nushellx\windows\login>rem
C:\aaa\nushellx\windows\login>set OMP_NUM_THREADS=3
                                          intel nushellx programs
C:\aaa\nushellx\windows\login>rem
C:\aaa\nushellx\windows\login\rem ----- nushellx log
C:\aaa\nushellx\windows\login\shell
directory for the nushellx files C:\aaa\nushellx\sps\
                                         ----- nushellx login complete -----
  using label.dat
                         from area C:\aaa\nushellx\sps\
name for batch file (h=help) :_
```


- Enter a name for the batch file.
 - It is useful to have a naming convention that distinguishes what type of calculation is done.
 - » Here we will name it after the nucleus we intend to calculate: "ne20".
- We want option "lpe"
 - "lpe" is the option to calculate wave functions and spectra.
 - » The "lpe" option will be used before any other calculation.
 - The "den" option is for calculating wave function overlaps.
 - » We will discuss this in later slides
 - "help" will provide more information.
 - "st" ends the generation of the batch file.
 - » You can put as many calculations in the batch file as you wish.

- Next you will be prompted for the model space name: input "sd".
 - The model space names can be found in the first column of the file "label.dat" in the directory following directory
 - » C:\aaa\nushellx\sps
 - » This file is an input to NuShellX and the file path is always printed when shell is run.
 - The model space refers to the single particle orbitals that the valence particles can occupy.
 - » "sd" refers to the 1s0d shell of the harmonic oscillator.
 - » It is critical to choose the appropriate model space for your problem.
- You will be asked if you wish to restrict the model space. Press enter.
 - A blank answer is the same as "n" for no.
 - You may wish to do this if you are calculating in a large space.
 - It is not recommended to limit your model space unless absolutely necessary.

"label.dat"

- Model space (*.sp file) name (single-particle state file name)
- Interaction (*.int file) name
 - In some cases the interaction may consist of several pieces which are read into MATRIX separately. In this case this interaction name is the code word which tells SHELL which *.INT files to include.)
- Model space code used for the output files
 - (The labels "p" and "n" should be reserved for charge-dependent interaction names)
- Interaction code used for the output files
- References and information

National Science Foundation

Michigan State University

```
Reference list for model spaces (* is reserved)
                        (3)(1)
                                                      (3)(1)
                            ho,f5p
                                                           jj56pn,jj67pn,PBPOP
        sd,sdpn,sdw
                            gl,jj45
                                                           pb206
        zbm, zbmpn, zbme
                            slg
                                            jj55pn
        psd,psdpn
                            sns
                                            jj45pn
        f7,f7pn
                            sdpf,sdpfpn s
        fp,fppn
                                            SPSDPF
                                            i13
        d3f7,d3f7pn
    list of available model-space and interaction combinations
!(1)
       (2)
              (3)(4)
                       ! P Model Space
                       ! 1p1/2,1p3/2 orbits
       ckpot
                     ! (8-16)POT
                                     S. Cohen and D. Kurath,
                      ! (6-16)TBME
                                     Nucl. Phys. A73, 1 (1965) and
                   c ! (8-16)TBME
                                     Nucl. Phys. A101, 1 (1967)
       ckii
                     ! Includes fit to moments, van Hees et al,
                       ! Nucl. Phys. A476, 61 (1988) and pri. comm.
       pjp
                      ! JULIES-RICHTER POT INT
       pit
                      ! JULIES-RICHTER TBME INT
                       ! S. Afr. Tydskr.Fis. 15 nr. 3/4 (1992)
                     ! D.J.MILLENER (PRIVATE COMMUNICATION NOV 1984)
                      ! * P(10-16)T: WARBURTON A=10-16 TBME INT (1991)
       pewt
                      ! * P(5-16)T: WARBURTON A= 5-16 TBME INT (1991)
                   j! * Kuo, Paris interaction, Private Comm. (1989)
       pkuo
                   k ! * SU3 INT - OCT 1990 VERSION
                   1 ! * CKI plus fit to He isotopes PRC37, 2220 (1988).
```


- The interaction we will use is "w":
 - The interaction name can be found in the second column "label.dat" file.
 - The selection of the appropriate interaction is critical to the validity of a calculation.
 - » Warning! Not all interactions in the sps directory are intended for the end user.
 - The "label.dat" has literature references for some interactions listed in the rightmost column.
 - » An example row of "label.dat"
 - sd w b w! (W) WILDENTHAL'S A=17-39 "USD" INT (JULY 1982)
 - » It is recommended that you check the literature for the interaction you use before drawing any conclusions from the results of your calculation.

```
nushellx-login - shell

using label.dat from area C:\aaa\nushellx\sps\

name for batch file (h=help) :ne20

option (lpe, den, help or st) :lpe
model space (*.sp) name: sd
any restrictions (y/n) :n
interaction (*.int) name : w
number of protons :
```


- You will be prompted to enter the number of protons: "10"
- Number of nucleons is "20"
 - The terminal will display the number valence protons and the number of valence nucleons.
 - » It is a good idea that you check to see if your idea of the many body problem matches up with the output.
 - » If this doesn't seem right make sure your model space, proton, and nucleon numbers are correct.
 - » Hint: negative numbers are bad.

- Min J, max J, del J: "0.0, 8."
 - Omitting the "del J" argument is equivalent to using "1.0"
 - It is recommended that you calculate all values of angular momenta that you desire at the same time to take advantage of your processor's parallelism.
 - » Don't make different batch files for individual angular momentum values.
 - Restricting the momentum is one way to reduce the runtime of the calculation.
- Parity "0"
 - Restricting parity is another way to reduce the runtime of calculations.
- Shell will output an estimate of the runtime for the different angular momentum partitions.
 - Check this before you run a calculation for the first time so you know what to expect.
 - If any runtime is very large think about what types of restrictions you can make to the angular momentum and parity.
 - » It is also possible to restrict the number of eigenvalues calculated for each partition
 - » Only as a last resort should you restrict your model space.

- After the runtime estimates for the different partitions shell will output the wavefunction output names.
 - These will be important for calculating transitions which we will discuss later.
- You will be prompted to enter another option: "st"
 - This tells shell you are done specifying a calculation and it should write the batch file.
 - If you enter lpe or den you can specify more calculations to be added to the batch file.

```
nushellx-login - shell

parity (0 for +) (1 for -) (2 for both) :0
number of proton partitions =
number of neutron partitions =
number of proton partition parti
```


The ".ans" file

- This file stores the answers to shell so the batch file can be produced on demand.
- This is useful for producing large numbers of batch files using your own code or reproducing a calculation from someone else.
- It is also useful if you are prone to typos.
- To use the ".ans" file generated in our example type the command:
 - "shell ne20.ans"
 - The contents of this file are shown below.

- You have exited shell and now will be prompted to run the batch file.
 - This will execute a series of programs to generate the outputs that we specified.
- Simply type the name you entered at the first prompt:"ne20"
 - It should take less than a minute.
 - Many hundreds of output files will be generated.
 - » I have no idea what the function is of most of these files.
- NuShellX always generates some human readable output summaries that contain useful information.
 - For the spectrum of the nucleus look for an ".lpt" file that starts witht the batch file name.
 - » In our example it is: "ne20w.lpt"

a w	=	20 z =	1.00000		0.96889 1.6466			2 0/170	1625	
w		1.00000		٥.	0.9089 J		1.6466 -3.9478		.1033	
			5 (H.) ()	- 44.14	_	_				
	N	NJ		Ex(MeV)	J	T_z	p	lowest Ex	name	
	1	1	-40.491	0.000	0	0	1	0.000	bw2400.lpe	
	2	2 1	-38.715	1.776	2	0	1	1.776	bw2404.lpe	
	3	3 1	-36.278	4.212	4	0	1	4.212	bw2408.1pe	
	4	1 2	-33.735	6.756	0	0	1		bw2400.lpe	
	-	5 2	-33.175	7.316	2	0	1		bw2404.lpe	
	6	5 1	-31.976	8.515	6	0	1	8.515	bw240c.lpe	
	7	7 2	-30.517	9.974	4	0	1		bw2408.1pe	
	8	3	-30.343	10.148	2	0	1		bw2404.lpe	
	9) 1	-30.261	10.230	3	0	1	10.230	bw2406.lpe	
	10) 4	-30.054	10.437	2	0	1		bw2404.lpe	
	11	L 3	-29.815	10.676	4	0	1		bw2408.lpe	
	12	2 5	-29.754	10.736	2	0	1		bw2404.lpe	
	13	3 2	-29.745	10.746	3	0	1		bw2406.lpe	
	14	1 4	-29.604	10.886	4	0	1		bw2408.lpe	
	15	5 1	-29.295	11.196	1	0	1	11.196	bw2402.lpe	
	16	5 3	-29.054	11.436	3	0	1		bw2406.lpe	
	17	7 1	-28.903	11.588	5	0	1	11.588	bw240a.lpe	
	18	3 1	-28.900	11.591	8	0	1	11.591	bw240g.lpe	
	10	5	-28 738	11 752	Λ	a	1		hu2/08 lne	

- The states are indexed in the first column in order of energy.
- The J_{π} partition is indexed in the second column.
 - The first three states are the first state of their partition.
 - The 4th state is the second 0_+ .
- The third column is the absolute energy of the eigenstate.
- The fourth column is the energy relative to the lowest energy state calculated.
 - This is not necessarily the ground state.

	a = 2	20 z =	10						
	W		1.00000	0.	96889	1.6	466	-3.9478 -3	.1635
	N	NJ	E(MeV)	Ex(MeV)	J	T_z	p	lowest Ex	name
9	1	1	-40.491	0.000	0	0	1	0.000	bw2400.lpe
	2	1	-38.715	1.776	2	0	1	1.776	bw2404.lpe
	3	1	-36.278	4.212	4	0	1	4.212	bw2408.lpe
	4	2	-33.735	6.756	0	0	1		bw2400.lpe
	5	2	-33.175	7.316	2	0	1		bw2404.lpe
	6	1	-31.976	8.515	6	0	1	8.515	bw240c.lpe
	7	2	-30.517	9.974	4	0	1		bw2408.lpe
	8	3	-30.343	10.148	2	0	1		bw2404.lpe
	9	1	-30.261	10.230	3	0	1	10.230	bw2406.lpe
	10	4	-30.054	10.437	2	0	1		bw2404.lpe
	11	3	-29.815	10.676	4	0	1		bw2408.lpe
	12	5	-29.754	10.736	2	0	1		bw2404.lpe
	13	2	-29.745	10.746	3	0	1		bw2406.lpe
	14	4	-29.604	10.886	4	0	1		bw2408.lpe
	15	1	-29.295	11.196	1	0	1	11.196	bw2402.lpe
	16	3	-29.054	11.436	3	0	1		bw2406.lpe
	17	1	-28.903	11.588	5	0	1	11.588	bw240a.lpe
	18	1	-28.900	11.591	8	0	1	11.591	bw240g.lpe
	19	5	-28 738	11 752	1	a	1		hw2/08 lne

- The fifth column is the angular momentum.
- The sixth column is the isospin projection.
- The seventh column is the parity.
 - In our example the parity is always 1 (for plus) because we restricted the parity we calculated.
- The eighth column has the energy relative to the least energy state only if it is the first state of a given J_{π} .
- The ninthth column names the output file of the wave functions.
 - These are useful for calculations of wave function overlap.

	a =	= 2	0 z = 1							
	W			1.00000	0.	96889	1.6	466	-3.9478 -3	.1635
	N		NJ	E(MeV)	Ex(MeV)	J	T_z	р	lowest Ex	name
		1	1	-40.491	0.000	0	0	1	0.000	bw2400.lpe
		2	1	-38.715	1.776	2	0	1	1.776	bw2404.lpe
	_	3	1	-36.278	4.212	4	0	1	4.212	bw2408.lpe
		4	2	-33.735	6.756	0	0	1		bw2400.lpe
		5	2	-33.175	7.316	2	0	1		bw2404.lpe
		6	1	-31.976	8.515	6	0	1	8.515	bw240c.lpe
		7	2	-30.517	9.974	4	0	1		bw2408.lpe
		8	3	-30.343	10.148	2	0	1		bw2404.lpe
V		9	1	-30.261	10.230	3	0	1	10.230	bw2406.lpe
,		10	4	-30.054	10.437	2	0	1		bw2404.lpe
		11	3	-29.815	10.676	4	0	1		bw2408.lpe
		12	5	-29.754	10.736	2	0	1		bw2404.lpe
		13	2	-29.745	10.746	3	0	1		bw2406.lpe
		14	4	-29.604	10.886	4	0	1		bw2408.lpe
		15	1	-29.295	11.196	1	0	1	11.196	bw2402.lpe
		16	3	-29.054	11.436	3	0	1		bw2406.lpe
		17	1	-28.903	11.588	5	0	1	11.588	bw240a.lpe
		18	1	-28.900	11.591	8	0	1	11.591	bw240g.lpe
		19	5	-28 738	11 752	1	a	1		hu2/08 lne

Wave function file names

- The name of the wave function files contains information about the states they describe.
- Example: bw240c.lpe
 - "b" is the symbol for the model space found in label.dat
 - » Here b stands for the "sd"
 - "w" is the symbol for the interaction found in label.dat
 - "w" happens to be the name of the potential as well bu this is not always the case.
 - "2" symbol for the number of valence protons
 - » Happens to be the number of valence protons but this is true only of single digit numbers.
 - » See the table to the right
 - "4" is the symbol for the number of valence nucleons.
 - "0" is the symbol for the parity
 - » 0 for + and 1 for -
 - "c" is the symbol for two times the spin.
 - » 12 in this case
 - » This means the spin is 6.
- The table to the right comes from the help file
 - » C:\aaa\nushellx\help

The symbols for J, T and N correspond to the following numbers

```
f - 100
                                                                0 - 120
                     g - 41
                                           1 - 81
                                                     g - 101
                                                                1 - 121
                     h - 42
                                           m - 82
                                                     h - 102
                                                                2 - 122
          n - 23
                     i - 43
                                3 - 63
                                           n - 83
                                                     i - 103
                                                                3 - 123
                                                     j - 104
                                                                4 - 124
                     j - 44
                                           o - 84
          p - 25
                     k - 45
                                5 - 65
                                           p - 85
                                                     k - 105
                                                                5 - 125
                                           q - 86
          q - 26
                                6 - 66
                                                     1 - 106
                                                                6 - 126
          r - 27
                     m - 47
                                           r - 87
                                                     m - 107
                                                                7 - 127
                                           s - 88
                                                                8 - 128
                                                     n - 108
                     0 - 49
                                           t - 89
                                                     o - 109
                                                                9 - 129
                     p - 50
                                a - 70
                                           u - 90
                                                                a - 130
                                                     p - 110
                     q - 51
b - 11
          v - 31
                                b - 71
                                           v - 91
                                                     q - 111
                     r - 52
                                           w - 92
                                                     r - 112
                     s - 53
                                           x - 93
                                                     s - 113
d - 13
                     t - 54
                                e - 74
                                           y - 94
                                                     t - 114
                                f - 75
                                                     u - 115
g - 16
                                g - 76
                                                     v - 116
                     w - 57
                                h - 77
h - 17
          c - 37
                                           c - 97
                                                     w - 117
i - 18
          d - 38
                     x - 58
                                i - 78
                                           d - 98
                                                     x - 118
j - 19
                                j - 79
                                                     y - 119
           e - 39
```


The ".eps" file

- NuShellX Will automatically generate simple level scheme diagrams in the encapsulated post script format.
- You need an eps viewing program to display these diagrams.
 - There is a freeware viewer called "gsview" you can download.
- On the right the diagram in the file "ne20w.eps" is shown.
- The length of the line is proportional to the angular momentum of the state.
 - The angular momentum and parity is labeled only for the lowest level of that angular momentum.
 - The color of the line indicates parity.
- The experimental values come from a database included with NuShellX.
 - I do not know what data is in this database or when it was last updated.
 - It is recommended that this data be used only as a qualitative guide.
 - Numerical values can be found in the file: "ne20exp.lpt"

M1 and E2 transition in ²⁰Ne

- We have already calculated the wave functions and energies we need for this example.
- The following inputs could have been appended to our previous inputs in shell.
- To begin type: "shell"
 - Make sure you are still in the directory with the previous output.
- We will make a batch script with a different name: "ne20t"
 - We could overwrite our previous script but we will keep it for completeness.
- We are interested in one body transition densities: "t"
 - Note we can also calculate 2 body transition densities and spectroscopic factors.
- We need to specify the file name that contains the initial state: "bw2400"
 - Note: the final 2 characters are modified by shell when we specify later arguments.
 - It should always be safe to end the file name with "00".

M1 and E2 transition in ²⁰Ne

- We are interested in only one initial state. "1"
 - This is one state for a given angular momentum value.
- We need to specify the file for the final state. "bw2400"
 - Once again the final two characters will be modified by later input.
- We will calculate 5 final states per angular momentum value:"5"
- We are interested in only states with J=0 and J=2: 0,2,2
- Again: 0,2,2.
 - At this point shell has enough information to find the desired wave function overlap files.
- We wish to restrict the tensor ranks because we are interested only in E1 and M2 transitions:"y"
- For the M1 and E2 transitions: "1,2"
- We have everything we need: "st"
- Run the batch file by entering: "ne20t"

The ".deo" file

- After the calculation has run the human readable summary file is output to the current directory:
 - In our test case it is: ne200w.deo.
 - This file has all the details relevant to gamma decay.
 - There is another file that has simpler formatting and some different information with the extension ".dei". We will not discuss this in detail.
- The output is arranged by blocks of initial states.
 - Initial state information is in a single row at the start of a block.

```
gamma decay for ne200w.deo
                               BR greater than 0.000
! model space = sd
! interaction = w
! e p = 1.360
                e n = 0.450
! g sp = 4.940
               g_sn = -3.380 M1 spin
! g lp = 1.137
                g ln = -0.079 M1 orbital
! g pp = 0.340
                 g_pn = -0.220 M1 tensor
                                                                                  width
                             tau
                                          T (1/2)
                                                      M1 moment
                                                                  Q moment
    (MeV)
                                                                 (e^2 fm^2)
                            (psec)
                                           (psec)
                                                        (u N)
                                                                                  (eV)
                                                                                0.7015E-03
   1.776
                           0.937990
                                         0.650168
                                                      1.081
                                                                  -14.29 ----
                                      Eg
                                                      B(1)
                                                                  B(2)
                                                                                 Αp
                                                                                          Αn
                                             999.00
                                                     0.0000E+00
                                                                 0.4924E+02
                                                                                8.666
                                                                                         8.666
                         1 100.0000 1.776
   7.316
                           0.042574
                                                                  -14.29 ---- 0.1546E-01
                                         0.029511
                                                      1.081
                                                      B(1)
                                                                  B(2)
                                                                                 A_p
                                                                                          Αn
                             1.2524 7.316
                                                     0.0000E+00
                                                                                0.132
                                                                                         0.132
                                             999.00
                                                                 0.1145E-01
                            98.7476 5.540
                                                                                2.339
                                                                                         2.339
            1.776
                                                                 0.3585E+01
```


The ".deo" file

- The lines of initial state information start in the leftmost column and include the following information.
 - Initial energy
 - Initial angular momentum
 - Index of initial state
 - Meant Lifetime
 - M1 moment
 - Q moment
 - Width

Ei (MeV)	Ji	ni	tau (psec)	T_(1/2) (psec)	M1 moment (u_N)	Q moment (e^2 fm^2)	width (eV)
1.776	2+	1	0.937990	0.650168	1.081	-14.29	0.7015E-03
7.316	Ef	Jf	nf BR	Eg del	B(1)	B(2)	A_p A_n
	0.000	0+	1 100.0000	1.776 999.00	0.0000E+00	0.4924E+02	8.666 8.666
	2+	2	0.042574	0.029511	1.081	-14.29	0.1546E-01
	Ef	Jf	nf BR	Eg del	B(1)	B(2)	A_p A_n
	0.000	0+	1 1.2524	7.316 999.00	0.0000E+00	0.1145E-01	0.132 0.132
	1.776	2+	1 98.7476	5.540 9.31	0.8845E-04	0.3585E+01	2.339 2.339

The ".deo" file

- The lines of final state information start in the second column and include the following information.
 - final energy
 - final angular momentum
 - Index of final state
 - Branching Ratio
 - Energy of the gamma
 - del
 - -B(M1)
 - B(E2)
 - A_p
 - $-A_n$

Ei (MeV)	Ji	ni	tau (psec)	T_(1/2) (psec)	M1 moment (u_N)	Q moment (e^2 fm^2)	width (eV)
1.776	2+	1	0.937990	0.650168	1.081	-14.29	0.7015E-03
7.316	Ef	Jf	nf BR	Eg del	B(1)	B(2)	A_p A_n
	0.000	0+	1 100.0000	1.776 999.00	0.0000E+00	0.4924E+02	8.666 8.666
	2+	2	0.042574	0.029511	1.081	-14.29	0.1546E-01
	Ef	Jf	nf BR	Eg del	B(1)	B(2)	A_p A_n
	0.000	0+	1 1.2524	7.316 999.00	0.0000E+00	0.1145E-01	0.132 0.132
	1.776	2+	1 98.7476	5.540 9.31	0.8845E-04	0.3585E+01	2.339 2.339

