

Pre-Course: Probability exercise

- 1. You toss a fair coin until you get head twice. What is the probability that you made k tosses?
- 2. Each person in a group of n people is requested to select a number between 1 to k. Describe the probability that at least 2 people chose the same number.
- 3. The frequency of the *Malum Indentum* disease in the population is 1 in 10,000. A test that checks if one is infected with the disease is 99% accurate. One takes the test and gets a positive response (test says she is infected). What's the probability that she is infected?
- 4. Let X and Y be discrete random variables, Z be a continuous random variable, and α and β constants. Prove the following equalities:
 - a. E(X+Y) = E(X)+E(Y)
 - b. $E(\alpha Z) = \alpha E(Z)$
 - c. If X and Y are independent then E(XY) = E(X)E(Y)
 - d. $V(\alpha X + \beta) = \alpha^2 V(X)$
 - e. If X and Y are independent then V(X+Y) = V(X)+V(Y)
- 5. Let $X_i \sim \text{Unif}(0, 1)$ for 1 <= i <= n be IID (independent identically distributed) random variables. Let $Y = \max(X_1, ..., X_n)$. What is E(Y)?
- 6. A drunken point hops on the number line, making jumps sized 1. The probability to jump to the right is fixed: P(right) = p. Let X_n be the position of the point after n jumps.
 - a. What is $E(X_n)$?
 - b. What is $V(X_n)$?

