Adjusted Exponential Smothing Method

In this method, trend adjustment factor is added to exponential smoothing forecast. Its formula is

T= exponentially smoothed trend factor

TE = Trend factor for the current period

B = Smoothing constant for trens

To the of the values of B lies between o and I. Wille of the value of B is subjectively decreed. Value of B closer to one signifies the strong reaction to trend. Value closer to o signifies dampening or smoothing out of trend. For the first year, trend factor is assumed o.

Assuming B also equal to 0.3,

$$T_2 = 0.3(37-37) + (0.7\times0) = 0$$

$$T_4 = 0.3(38.83 - 37.90) + (0.7 \times 0.27)$$

$$=(0.3\times93)+(0.189)=(0.279+0.189)=0.468$$

	_					
Fu	= Fut	-(883+0-47	= 39 13	30	A
	Period	month	Demand (DE)	th	(tt)	ATEN
	1	Jan	37	37	0	37
	2	Feb	40	37	0	37
	3	Mai	41	37.90	0.27	38-17
	4	Apr	37	38.83	0-47	39-30
	5	May	45	38.28		
	6	Jun	50	40,29	1	1
	8	Inl	43	43.20	1)
	9	Ang	47	43-14	1	5
	10	Sep Obt	5%	44-30	1	(
	11	MOV	52	47.81		,
	12	Del	55 54	49.06	,	
			.7 "1	STO M.		,

7

Y=a+bx

Simple Livear equation. I's defendent variable and X is indefendent variable a Value of intercept. b - Mose of repression line. b is coefficient. It explains the % change in defendent variable I with 1% change in indefendent variable (X) and time is indefendent variable (X).

Period(x)	Demand CY	() X2	XY	EXY-nx Y
15	37		37/	
2	400	4	80/	b= Ex2- n(x)2
3 -	41	9-	123/	1046 CX 1641
4-	37/	16	148	= 3867 - 12x6.5x46.41
5-	45-	25	225	650 - (12x6.5x6.5)
6-	50-	36	300 /	
7 -	43-	49-	303	3867-3620
8 -	47/	64-	376	650-507
9-	56	81-	504/	050 507
10-	5a -	100	520	= 247 = 1.72
la	55° 54	121	648	143
		149		
EX=78	EY=557	x2=650	3919 3867	-
J. CX 78	492557		Exy=	a= 7-6x
X= EX= 78	- A12	e		= 46-47- (-72×6.5)
=6-5	7 = 46.41			= 46.47-11-18 = 35,29
			×.	