<u>CHE 1214 – Basic Concepts in Chemistry II</u> (C) General Physical Chemistry (Tutorial on Thermodynamics II)

- 1. An *adiabatic* system consisting of a thermally insulated reaction vessel, with a $10~\Omega$ resistance heater inside, is connected to a 20~V power supply, which is switched on for 50~s.
 - (i) Analyse the change in internal energy, ΔU , of the system.
 - (ii) Repeat the analysis for an *isothermal diathermic* system (i.e. the system is in contact with a thermal reservoir such as a water bath).
- 2. The internal energy U of a monatomic ideal gas is $U = \frac{1}{2}Nm < v^2 >$, where N is the number of atoms, m is the mass of one atom, and the kinetic theory of gases gives the mean-square speed $< v^2 >$ of the atoms as = 3pV/Nm.
 - (i) How does U depend on temperature?
 - (ii) Does U depend on pressure or volume, at constant temperature?
- 3. A volume of an ideal gas is contained within a cylinder with a frictionless piston at one end. When the internal volume of the cylinder is $V_1 = 1 \text{ dm}^3$, the outward pressure on the piston is $p_1 = 10$ atm. The piston is held stationary by an opposing pressure consisting of 1 atm due to air outside and 9 atm due to nine weights sitting on the piston (each weight exerts 1 atm pressure). Calculate the work done if:
 - (i) all of the weights are removed quickly together;
 - (ii) five of the weights are removed quickly together, the system allowed to equilibrate, and then the remaining four weights are removed quickly;
 - (iii) the weights are removed one at a time, the system being allowed to come to equilibrium at each step.

Discuss how the *maximum* amount of work could be extracted from the system. Calculate this value.

4. One mole of an ideal gas is carried through the following cycle:

		A		В		C	
	1	\rightarrow	2	\rightarrow	3	\rightarrow	1
V/dm^3	22.4		22.4		44.8		22.4
T/K	273		546		546		273

Assuming that each process is carried out reversibly:

- (i) Calculate the pressure at each state, 1, 2, and 3.
- (ii) Name each process, A, b, and C.
- (iii) Obtain expressions for the heat flow q, the work w, and the internal energy change ΔU for each process.
- (iv) Calculate numerical values for q, w and ΔU for the complete cycle.
- 5. Derive expressions for U_m , H_m , C_V and C_p for an ideal gas, evaluate them at 298 K, using the result from the kinetic theory of gases that $U_m = (3/2)pV$.
- 6. (i) 100 g of KNO_3 ($\Delta_{sol}H^{\theta}(298 \text{ K}) = +34.9 \text{ kJ mol}^{-1}$) is added to 1 dm^3 of water ($C_p(H_2O) = 75.29 \text{ J K}^{-1} \text{ mol}^{-1}$) at 298 K in an adiabatic container. What is the temperature of the water when the salt has all dissolved?
 - (ii) Repeat the calculation for AlCl₃ ($\Delta_{\text{sol}}H^{\theta}(298 \text{ K}) = -329 \text{ kJ mol}^{-1}$.

7. Calculate the reaction enthalpy for the process:

$$0.5 N_2(g) + 1.5 H_2(g) \rightarrow NH_3(g)$$

At 700 K (the appropriate temperature for ammonia synthesis), given that for $NH_3(g)$, $\Delta_f H^\theta(298.15 \text{ K}) = -46.11 \text{ kJ mol}^{-1}$, and the variation of C_p with temperature can be represented approximately by the equation: $C_p = a + bT + CT^{-2}$. Values for the constants a, b and c are:

	$a/(J K^{-1} mol^{-1})$	$b/(J K^{-2} mol^{-1})$	c/(J K mol ⁻¹)
N_2	28.58	3.77×10^{-3}	-0.50×10^5
H_2	27.28	3.26×10^{-3}	$+0.50 \times 10^5$
NH_3	29.75	25.1×10^{-3}	-1.55×10^5

- 8. Show that the following functions have exact differentials:
 - (i) $x^2y + 3y^2$
- (ii) $x \cos(xy)$
- (iii) $t(t + e^{s}) + 25 s$
- 9. Prove that, when the internal energy is expressed as a function of temperature and pressure only, then for a process at constant pressure,

$$dq = C_p dT + \left[\left(\frac{\partial U}{\partial p} \right)_T + p \left(\frac{\partial V}{\partial p} \right)_T \right] dp.$$

- 10. Sketch the following diagrams for the reversible Carnot cycle of an ideal gas with constant C_p and C_V :
 - (a) pressure versus volume;
- (b) temperature versus pressure;
- (c) internal energy versus pressure;
- (d) enthalpy versus pressure;
- (e) volume versus temperature;
- (f) volume versus internal energy.
- 11. For any substance, the following relationship can be obtained:

$$p + \left(\frac{\partial U}{\partial V}\right)_T = T \left(\frac{\partial p}{\partial T}\right)_V$$

- (i) Using the above equation, show that for a, perfect gas the internal energy is independent of volume and pressure.
- (ii) Show that, for a one mole of a van deer Waals gas, $\left(\frac{\partial U}{\partial V}\right)_T = \frac{a}{V^2}$.
- 12. Show that the change in enthalpy of a van deer Waals gas in a reversible isobaric process is given by

$$\Delta H = bRT \left(\frac{1}{V_2 - b} - \frac{1}{V_1 - b} \right) - \frac{2a}{V_2} + \frac{2a}{V_1}.$$