# Exploring perfect binary trees with relation to the HK-property

**MXML** Presentation

Atishaya Maharjan Mahsa N. Shirazi

March 27, 2024

#### Outline

EKR Theorem

2 HK-property

Perfect Binary Trees

4 Does a perfect binary tree satisfy the HK property?

#### Introduction

- Providing an overview of the Erdős-Ko-Rado (EKR) theorem and its relevance to intersecting families of sets.
- Introducing perfect binary trees and their relation to the HK-property.
- Objectives of this presentation:
  - Exploring properties of perfect binary trees.
  - Discussing the HK-property.
  - Investigating potential connections between perfect binary trees and the HK-property.

#### **EKR Theorem**

- <sup>1</sup> The Erdős-Ko-Rado (EKR) theorem, named after mathematicians Paul Erdős, Chao Ko, and Richard Rado, is a fundamental result in extremal set theory.
- The theorem deals with intersecting families of sets, which are collections of sets that share a common non-empty intersection.
- Specifically, the EKR theorem provides conditions under which the size of the largest intersecting family of sets can be determined.
- <sup>2</sup> This result has applications in combinatorics, graph theory, probability and other areas of statistics and mathematics.

<sup>&</sup>lt;sup>1</sup>Erds1961INTERSECTIONTF.

<sup>&</sup>lt;sup>2</sup>MR0892525.

#### **EKR Theorem**

#### Definition (Intersecting family)

A family of subsets  $\mathcal F$  of some set is **intersecting** if any two members of  $\mathcal F$  have a non-empty intersection.

 The Erdős-Ko-Rado theorem limits the number of sets in an intersecting family.

## Theorem (EKR Theorem)

<sup>a</sup> If  $\mathcal F$  is an intersecting family of k-subsets of an n-set (cardinality of the set is n), then

- $\bullet |\mathcal{F}| \leq \binom{n-1}{k-1}$
- If equality holds,  $\mathcal F$  consists of the k-subsets that contain i, for some i in the n-set.

<sup>a</sup>Godsil Meagher 2015.

# **HK-property**

Some definitions before we get into the property:

## Definition (Cocliques)

- A **coclique** in a graph is a set of vertices such that no two vertices in the set are adjacent.
- The maximum size of a coclique in a graph is called the **indepdence** number of the graph. For a graph G, it is denoted by  $\alpha(G)$ .

#### Definition (Stars and Stars Center)

• Let G = (V, E) be a graph, and  $v \in V(G)$ . The family  $\mathcal{I}_G^k(v) = A \in \mathcal{I}_G^k : v \in A$  is called a **star** of  $\mathcal{I}_G^k$  and v is called it's **star center**.

## Definition (k-EKR graph)

A graph is said to be k-EKR if for any family of indepdent sets  $\mathcal{I}_G^k$  of size k, the intersection of any two sets in  $\mathcal{I}_G^k$  is non-empty and that  $|\mathcal{F}| \leq \mathcal{I}_G^k(v)$ , for a vertex  $v \in V(G)$ .

# **HK-property**

Studying the EKR theorem,<sup>3</sup> Holroyd and Talbot made the following two conjectures:

#### Conjecture (k-EKR Conjecture)

Let G be a graph, and let  $\mu(G)$  be the size of its smallest maximal independent set. Then G is k-EKR for every  $1 \le k \le \frac{\mu(G)}{2}$ .

## Conjecture (HK-Property)

For any  $k \geq 1$  and any tree T, there exists a leaf I of T such that  $|\mathcal{I}_T^k(v)| \leq |\mathcal{I}_T^k(I)|$  for each  $v \in V(T)$ .

# **HK-property**

• The HK-property was proven for  $k \le 4$ , but the conjecture was shown to be false.  $^{456}$ 



The largest k-star for  $k \geq 5$  is centered at  $\nu_0$ 

<sup>&</sup>lt;sup>4</sup>MR2523796.

<sup>&</sup>lt;sup>5</sup>MR3612439.

<sup>&</sup>lt;sup>6</sup>MR3271819.

# Some graphs that DO satisfy the HK-property

<sup>7</sup> The HK-property holds for spiders, caterpillars, and (partially) lobsters. ¡INSERT IMAGES HERE WHEN YOU HAVE TIME¿

<sup>&</sup>lt;sup>7</sup>MR4245360

# Perfect Binary Tree

### Definition (Depth of a vertex)

For a tree T = (V, E) with a root vertex  $r \in V$ , the **depth** of a vertex  $v \in V$  is defined as the length of the path from the r to v.

### Definition (Binary Tree)

A **binary tree** is a tree in which each vertex has at most two children, referred to as the left child and the right child.

#### Definition (Perfect Binary Tree)

A **perfect binary tree** is a binary tree in which all the internal nodes have exactly two children and all the leaves are at the same depth.

# Perfect Binary Tree

#### Definition

Let  $\mathcal{V}_k \in V(T)$  be the set of vertices of depth k. We call  $\mathcal{V}_k$  as the depth vertex set of depth k. Index all vertices in  $\mathcal{V}_k$  from left to right as  $v_{k,i}$ , where k is the depth of the vertex and i is the index of the vertex in  $\mathcal{V}_k$  such that  $1 \leq i \leq 2^{k-1}$ .



# Does a perfect binary tree satisfy the HK property?

- Probably.
- The lobster partially satisfies the HK property and the perfect binary tree has a close relation to the lobster.
- In addition, the perfect binary tree is very symmetric and has a lot of structure that we can maniputlate.

Idea 1: Expand the definition of the flip function to relate it to the perfect binary trees

•

# An Algorithm to Generate Pefect Binary Trees

```
Data: n \ge 0, where n is the depth of the perfect binary tree Result: A perfect binary tree graph's leaves Function perfect_binary_tree_generator(n):

\begin{array}{c|c} num\_vertices \leftarrow 2^{n+1} - 1; \\ leaves \leftarrow []; \\ last\_row\_start \leftarrow floor(num\_vertices/2); \\ \textbf{for } vertex \ in \ range(last\_row\_start, \ num\_vertices) \ \textbf{do} \\ & | leaves.append(vertex); \\ \textbf{end} \\ & \textbf{return } leaves \end{array}
```

# Output of the Perfect Binary Trees

The algorithm will generate a perfect binary tree of this form:



# Thank You!

Summary

A slideshow usually ends with a summary slide.