Análisis de escenarios

Carlos Javier Uribe Martes

Ingeniería Industrial Universidad de la Costa

Abril 28, 2020

Contenido

1 Análisis de Escenarios

2 Comparación de dos sistemas

3 Análisis de múltiples sistemas

Análisis de escenarios

- El análisis de escenarios consiste en la comparación del sistema con otros posibles diseños o variaciones del sistema.
- Para simular diferentes configuraciones de diseño, quizás se tengan que construir diferentes modelos o en ocasiones se puede usar el mismo modelo con diferentes parámetros de entrada [2].
- En cualquier caso, se tienen diferentes configuraciones de diseño que pueden ser comparadas bajo una variedad de condiciones controladas de diseño [2].

Análisis de escenarios

- Cuando se tienen diferentes configuraciones de diseño, se desea saber cuál combinación es la mejor.
- Los estimadores de cada sistema deben analizarse y compararse con métodos estadísticos para garantizar que las diferencias no se deben a factores aleatorios en el muestreo [1].

Comparación de dos sistemas

- Suponga que se tienen muestras de dos poblaciones (configuraciones del sistema): $X_{11}, X_{12}, \ldots, X_{1n_1}$ una muestra de tamaño n_1 de la configuración del sistema 1 y $X_{21}, X_{22}, \ldots, X_{2n_2}$ una muestra de tamaño n_2 de la configuración del sistema 2, las cuales representan una medida de desempeño que será utilizada para determinar cuál de los dos sistemas es preferido.
- Asuma que cada configuración tiene una media poblacional desconocida para la medida de desempeño, $E[X_1] = \theta_1$ y $E[X_2] = \theta_2$.

Comparación de dos sistemas

- El problema es determinar, con alguna confianza estadística, si $\theta_1 < \theta_2$ o si $\theta_1 > \theta_2$.
- Si se define $\theta=\theta_1-\theta_2$ como la diferencia promedio en el desempeño de los dos sistemas, basta con determinar si $\theta>0$ o $\theta<0$, para determinar si $\theta_1<\theta_2$ o si $\theta_1>\theta_2$.
- Es decir, es suficiente concentrarse en la diferencia del desempeño de los sistemas más que en los valores de cada uno.

Comparación de dos sistemas

- Calcule un intervalo de confianza (IC) para $\theta = \theta_1 \theta_2$.
- Si IC está totalmente a la izquierda de 0, entonces hay evidencia estadística fuerte de que $\theta_1 \theta_2 < 0$ o $\theta_1 < \theta_2$.
- Si IC está totalmente a la derecha de 0, entonces hay evidencia estadística fuerte de que $\theta_1 \theta_2 > 0$ o $\theta_1 > \theta_2$.
- Si IC contiene al 0, entonces no hay evidencia estadística de que alguno de los sistemas sea mejor que el otro.

- El muestre independientes implica que secuencias diferentes e independientes de númeroes aleatorios serán utilizadas para simular los dos sistemas.
- Esto implica que todas las observaciones del sistema 1 simulado son estadísticamente independientes de las observaciones del sistema 2 simulado.

■ Sea \bar{X}_1 , \bar{X}_2 , s_1^2 y s_2^2 las medias muestrales y varianzas muestrales para las dos muestras (k=1,2). Entonces:

$$\bar{X}_k = \frac{1}{n_k} \sum_{j=1}^{n_k} X_{kj}$$

$$s_k^2 = \frac{1}{n_k - 1} \sum_{i=1}^{n_k} (X_{kj} - \bar{X}_k)^2$$

- Se requiere un estimado de $\theta = \theta_1 \theta_2$, el cual puede ser estimado por la diferencia $\hat{D} = \bar{X}_1 \bar{X}_2$.
- Asumiendo de las muestras son independientes, la varianza de la diferencia es

$$Var(\hat{D}) = Var(\bar{X}_1 - \bar{X}_2) = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$$

donde σ_1^2 y σ_2^2 son las varianzas poblacionales (desconocidas).

■ Si se puede asumir que ambas poblaciones tienen una varianza común $\sigma^2 = \sigma_1^2 = \sigma_2^2$, un estimador de σ^2 se puede definir como:

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

■ Entonces, un intervalo de confianza $(1 - \alpha)$ % para θ es:

$$\hat{D} \pm t_{\alpha/2,v} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

donde $v = n_1 + n_2 - 2$

Para el caso de varianzas diferentes, un intervalo de confianza $(1-\alpha)$ % para θ es:

$$\hat{D} \pm t_{\alpha/2,v} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

donde

$$v = \left[\frac{(s_1^2/n_1 + s_2^2/n_2)^2}{\frac{(s_1^2/n_1)^2}{n_1 + 1} + \frac{(s_2^2/n_2)^2}{n_2 + 1}} - 2 \right]$$

- También conocido como CRN (por las siglas en inglés para Common Random Numbers), implica que para cada réplica, los mismos números aleatorios son utilizados para simular ambos sistemas.
- Se continua asumiendo que las observaciones dentro de una muestra son independientes e idénticamente distribuidas; sin embargo, las muestras no son independientes.

- Se asume que se tiene igual número de réplicas para ambos sistemas, esto es, $n_1 = n_2 = n$.
- Como cada réplica para los dos sistemas utiliza las mismas secuencias de números aleatorios, la correlación entre (X_{1j}, X_{2j}) será diferente de cero.
- Aún así, cada par será independiente entre réplicas.

■ Para analizar este caso se calculan las diferencias de cada par:

$$D_j = X_{1j} - X_{2j}$$
 para $j = 1, 2, \dots, n$

■ Entonces, D_1, D_2, \dots, D_n , forman una muestra aleatoria, que puede ser analizada por los métodos tradicionales.

Un intervalo de confianza para $\theta=\theta_1-\theta_2$, con una significancia α , es:

$$\hat{D} = \frac{1}{n} \sum_{j=1}^{n} D_j$$

$$s_D^2 = \frac{1}{n-1} \sum_{j=1}^{n} \left(D_j - \hat{D} \right)^2$$

$$\hat{D} \pm t_{\alpha/2, n-1} \frac{s_D}{\sqrt{n}}$$

■ La interpretación del intervalo de confianza resultante es la misma que en el caso del muestreo independiente.

Análisis de múltiples sistemas

- En ocasiones se desea desarrollar un análisis de sensibilidad del modelo, cuando se desea medir el efecto que tendrán en la simulación cambios en parámetros de entrada claves, lo cual ayuda a determinar qué tan robusto es el modelo a variaciones en los supuestos.
- Además, puede ser deseable comparar el desempeño de múltiples alternativas de configuración para escoger la mejor. Este tipo de análisis se desarrolla utilizando varias técnicas de comparación estadísticas.

Análisis de múltiples sistemas

- Algunos posibles objetivos de este análisis son:
 - **I** Estimar cada parámetro, θ_i .
 - **2** Comparar cada medida de desempeño θ_i con algún control θ_1 , el cual puede representar el desempeño promedio del sistema existente.
 - Realizar todas las comparaciones pareadas, $\theta_i \theta_i$, para $i \neq j$.
 - 4 Seleccionar el mejor θ_i .

- Suponga que se calculan C intervalos de confianza y que el i-ésimo intervalo tiene un nivel de confianza $1 \alpha_i$.
- Sea S_i la afirmación de que el i-ésimo intervalo contiene el parámetro (o la diferencia de dos parámetros) que se pretende estimar.
- lacksquare S_i puede ser cierta o falsa para un conjunto dado de datos, el procedimiento que lleva a la construcción del intervalo se diseña para que S_i sea verdadera con probabilidad $1-\alpha_i$.

La desigualdad de Bonferroni afirma que:

$$P(\mathsf{todas\ las}\ S_i\ \mathsf{son\ ciertas}, i=1,\ldots,C) \geq 1 - \sum_{j=1}^C lpha_j = 1 - lpha_E$$

■ Donde α_E es la probabilidad de error total y provee una cota superior para la probabilidad de una conclusión falsa.

- Para realizar un experimento que involucre C comparaciones, primero seleccione la probabilidad de error total, digamos $\alpha_E = 0.05$.
- Luego, los α_j individuales se pueden seleccionar todos iguales a $\alpha_j = \alpha_E/C$, o diferentes, según se desee.
- Entre más pequeño sea el valor de α_j , más ancho será el j-ésimo intervalo de confianza.

- Una ventaja del enfoque de Bonferroni es que funciona de manera similar cuando los modelos de diseños alternativos se corren con muestras independientes o con CRN.
- Una desventaja es que la anchura de cada intervalo se incrementa a medida que se incrementa el número de comparaciones.
- Alrededor de 20 comparaciones es un límite máximo práctico.

ICs individuales

- Construya un IC de 100(1-i) %, donde el número de intervalos es C = K.
- Este tipo de procedimiento es más utilizado para estimar múltiples parámetros de un solo sistema.

Comparación con un sistema existente

- Construya un IC de $100(1-\alpha_i)$ % para el parámetro $\theta_i-\theta_1$, donde $i=2,3,\ldots_K$.
- Este procedimiento se utiliza para comparar distintas alternativas con el sistema actual para identificar cuál es el mejor.
- \blacksquare Se asume que θ_1 es la medida de desempeño para el sistema actual.
- El número de intervalos es C = K 1.

Todas las comparaciones por pares

- Para cualquier par de sistemas $i \neq j$, construya un IC de $100(1 \alpha_{ij}) \%$ para $\theta_i \theta_j$.
- Compara todos los diseños con los demás.
- Con K diseños, el número de Cls a construir es C = K(K-1)/2

Selección del mejor

Especifique el nivel de confianza $1/k < 1 - \alpha < 1$, la diferencia significativa práctica $\epsilon > 0$, un número inicial de réplicas $R_0 \ge 10$. Calcule

$$t = t_{1 - (1 - \alpha/2)^{\frac{1}{k-1}}, R_0 - 1}$$

y obtenga la constante de Rinnott $h = h(R_0, K, 1 - \alpha/2)$.

2 Realice R_0 réplicas de cada diseño y calcule para todo $i=1,2,\ldots,K$

$$\bar{Y}_{.i} = \frac{1}{R_0} \sum_{r=1}^{R_0} Y_{ri}$$

$$s_i^2 = \frac{1}{n_0 - 1} \sum_{r=1}^{R_0} (Y_{ri} - \bar{Y}_{.i})^2$$

Selección del mejor

3 Calcule un umbral de detección para todo $i \neq j$

$$W_{ij} = t \left(\frac{S_i^2 + S_j^2}{R_0} \right)^2$$

lacksquare Si mayor es mejor, forme un subconjunto S con cada diseño i tal que

$$\bar{Y}_{.i} \ge \bar{Y}_{.j} - \max\{0, W_{ij} - \epsilon\} \quad \forall j \neq i$$

 \blacksquare Si menor es mejor, forme un subconjunto S con cada diseño i tal que

$$\bar{Y}_{i} \le \bar{Y}_{i} - \max\{0, W_{ij} - \epsilon\} \quad \forall j \ne i$$

Selección del mejor

4 Si el subconjunto S contiene un solo diseño, termine, ese es el mejor diseño. De lo contrario, calcule el número de réplicas para todos los diseños en S, mediante:

$$R_i = \max\{R_0, \lceil (hS_i/\epsilon)^2 \rceil\}$$

- **5** Corra $R_i R_0$ réplicas para todo sistema $i \in S$.
- f 6 Calcule para todo diseño i en S

$$\bar{\bar{Y}}_{.i} = \frac{1}{R_i} \sum_{r=1}^{R_i} Y_{ri}$$

Si mayor es mejor, seleccione aquel diseño i con mayor $ar{ar{Y}}_i$. Si menor es mejor, seleccione el diseño i con menor $ar{ar{Y}}_i$.

Referencias

- Banks, J., Carson II, J. S., Nelson, B. L. y Nicol, D. M. Discrete-Event System Simulation. Fifth (Pearson, 2014).
- Rossetti, M. D. Simulation modeling and Arena. (John Wiley & Sons. 2015).

