TUTORIAL SIX

Deadlocks

- 1. Indicate whether the following statements are true or false. Justify your answers.
- (a) In the dining-philosopher problem with five philosophers, if we allow at most four of them to be hungry simultaneously, deadlock may still occur.
- (b) It is impossible to have a deadlock involving only one single process.
- (c) If a resource allocation graph contains a cycle, then a deadlock has occurred.
- 2. A resource-allocation state is given below. Assume Available = 2.

	Allocation	Max	Need
PROCESS 1	1	6	5
PROCESS 2	1	5	4
PROCESS 3	2	4	2
PROCESS 4	4	7	3

- (a) If PROCESS 4 requests for one unit of the resource next, does this lead to a safe state or an unsafe one?
- (b) If PROCESS 3 requests for one unit of the resource next, does this lead to a safe state or an unsafe one?
- 3. Consider the following snapshot of a system's state, with five processes (P0, P1, P2, P3 and P4) and four resource types (A, B, C and D). The current **Allocation**, **Need** and **Available** matrices are as shown in the table below.

		Available
		A B C D
		0 x y 1
Process	Allocation	Need
	ABCD	ABCD
P0	2200	1400
P1	3100	0100
P2	1100	1000
Р3	0011	0011
P4	00 11	0032

Suppose process P3 generates the resource request (A=0 B=0 C=0 D=1) next. Compute the minimum values for \boldsymbol{x} and \boldsymbol{y} so that this request from P3 can be granted and the resulting system state is safe. Justify your answer and show the algorithm steps for generating the safe sequence.