学籍番号: 氏名: 評価:

- 問題 1

一般項が

$$a_n = \frac{n+2}{3n+4}$$
 (n は自然数 $(n=1,2,3,\cdots)$)

で表される数列 (a_n) を考える。この数列は $n \to \infty$ としたときに収束することが知られている。

- (1) 極限 $\alpha = \lim_{n \to \infty} a_n$ を求めよ。
- (2) $\varepsilon>0$ に対して、次が成り立つような自然数 N_{ε} を答えよ。

「任意の N_{ε} 以上の自然数 n に対して $|a_n - \alpha| < \varepsilon$ である。」

学籍番号: 氏名: 評価:

- 問題 2

次の漸化式によって定義される数列 (a_n) を考える。

$$a_1 = \sqrt{2}, \ a_{n+1} = \sqrt{2 + a_n} \ (n = 1, 2, 3, \cdots).$$

- (1) この数列 (a_n) は各 n に対して $0 < a_n < 2$ を満たすことを示せ。
- (2) この数列 (a_n) は単調増加であることを示せ。
- (3) この数列 (a_n) は収束することを示し、極限 $\lim_{n \to \infty} a_n$ を求めよ。

学籍番号: 氏名: 評価:

- 宿題 3

極限 $\lim_{n \to \infty} \left(1 - \frac{1}{n}\right)^n$ の値をネイピア数 $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$ を用いて表せ。

学籍番号: 氏名: 評価:

- 宿題 4 -

各 n に対して $a_n \ge 0$ を満たす数列 (a_n) が $\alpha \ge 0$ に収束しているとする。この時、数列 $(\sqrt{a_n})$ が $\sqrt{\alpha}$ に収束することを極限の定義に基づいて証明せよ。