Appunti di analisi 1

Alexandru Gabriel Bradatan

Data compilazione: 17 ottobre 2019

Indice

1	Inside 1.1 1.2	iemi Sottoinsiemi		
2	Rela	azioni Relazioni particolari	3	
3	Fun	nzioni	4	
4	Ope	erazioni	5	
5	Poli	inomi	5	
	5.1	Divisione tra polinomi	. 5	
6	Insi	iemi numerici	7	
	6.1	Numeri naturali	. 7	
		6.1.1 Proprietà	. 7	
		6.1.2 Operazioni definite	. 7	
		6.1.3 Principio del minimo intero	. 7	
		6.1.4 Il principio di induzione	. 7	
		6.1.5 Fattoriale	. 7	
		6.1.6 Coefficiente binomiale	. 7	
		6.1.7 Binomio di Newton		
	6.2	Numeri interi relativi	. 8	
		6.2.1 Costruzione	. 8	
		6.2.2 Operazioni definite		
	6.3	Numeri razionali		
		6.3.1 Costruzione		
		6.3.2 Operazioni definite	. 9	
		6.3.3 La rappresentazione decimale		
	6.4	I numeri reali		
		6.4.1 Operazioni definite	. 9	
		6.4.2 Assioma di completezza		
	6.5	Numeri complessi		
		6.5.1 Costruzione		
		6.5.2 Operazioni		
7	Som	nmatoria	11	
8	La produttoria			
			12	
9		ervalli e intorni	13	
	9.1	Intervallo		
	9.2	Intorno	. 13	

10	Insiemi limitati	13
	10.1 Massimo di un insieme limitato	13
	10.2 Minimo di un insieme limitato	13
	10.3 Maggiorante di un insieme limitato	13
	10.4 Minorante di un insieme limitato	13
	10.5 Estremo superiore di un insieme limitato	14
	10.6 Estremo inferiore di un insieme limitato	14
	10.7 Collegamento tra estremo inferiore (superiore) e l'assioma di completezza	14

1 Insiemi

Un insieme è una collezione di oggetti. Tutta la matematica si basa sulla teoria assiomatica degli insiemi. Un insieme A si può indicare per elencazione $(A = \{a_1, \ldots, a_n\})$ o con una condizione $(A = \{x \mid condizione\})$. La cardinalità di A è il numero di oggetti: |A| = n. La cardinalità dell'insieme vuoto è 0.

Esempi $\mathbb{N} = \{0, 1, 2, \dots\}, \mathbb{Q} = \{q = \frac{m}{n} \mid m, n \in \mathbb{Z}, n \neq 0\}, \mathbb{R} = \{x \text{ numeri decimali}\}.$

Un insieme particolare è l'insieme con nessun elemento detto vuoto, indicato con \emptyset . Un altro insieme particolare è l'insieme di tutti gli tutto detto insieme universo U.

1.1 Sottoinsiemi

Un insieme può essere sottoinsieme di un altro, ossia contenere una parte degli elementi dell'insieme più grande. Formalizzando si può dire che:

$$A \subset B \implies \forall a \in A, a \in B$$

1.2 Operazioni

Le operazioni più usate sono:

Unione $A \cup B = \{x \mid x \in A \lor x \in B\}$

Intersezione $A \cap B = \{x \mid x \in A \land x \in B\}$

Complementare $A^C = \bar{A} = \{x \in U \mid x \notin A\}$

Differenza $A - B = \{x \mid x \in A \land x \notin B\}$ Si può anche trovare indicata con \

Prodotto cartesiano $A \times B = \{(a, b) \mid a \in A, b \in B\}$ Le coppie (a, b) sono anche dette coppie (m-uple per m elementi)

2 Relazioni

Una relazione è un sottoinsieme del prodotto cartesiano tra due insiemi.

Per indicare che due elementi (a_i, b_j) sono legati da una relazione R usiamo $a_i \sim_R b_j$. Per rappresentare le relazioni si possono usare i diagrammi di Venn (le patate) con le frecce che collegano i vari elementi tra di loro.

Esempio Presi $A = \{a_1, a_2\}, B = \{b_1, b_2\}$, calcoliamo il loro prodotto cartesiano e otterremo 16 possibili sottoinsiemi:

$$R_0 = \emptyset$$

$$R_1 = \{(a_1, b_1)\}, \dots, R_4$$

$$R_5 = \{(a_1, b_1), (a_1, b_2)\}, \dots, R_{10}$$

$$R_{11} = \{(a_1, b_1), (a_1, b_2), (a_2, b_1)\}, \dots, R_{14}$$

$$R_{15} = A \times B$$

2.1 Relazioni particolari

Relazione d'ordine Prendiamo una relazione $R \subseteq A \times A$, essa è d'ordine se:

- è riflessiva: $(a, a) \in R \forall a \in R$
- è antisimmetrica: $(a,b),(b,a) \in R \implies a=b$
- è transitiva: $(a,b),(b,c) \in R \implies (a,c) \in R$

Insieme totalmente e parzialmente ordinato Siano A un insieme ed R una relazione d'ordine su A. Se per ogni $a1, a2 \in A$ vale $(a1, a2) \in R$ oppure $(a2, a1) \in R$, R si dice relazione d'ordine totale e la coppia (A, R) si dice insieme totalmente ordinato. In caso contrario si dice che R è una relazione d'ordine parziale e la coppia (A, R) si dice insieme parzialmente ordinato.

Relazione di equivalenza Prendiamo una relazione $R \subseteq A \times A$, essa è di equivalenza se:

- è riflessiva: $(a, a) \in R \forall a \in R$
- è simmetrica: $(a,b) \in R \implies (b,a) \in R$
- è transitiva: $(a,b),(b,c) \in R \implies (a,c) \in R$

Una modo di vedere la relazione di equivalenza è come generalizzazione dell'uguaglianza.

Classe di equivalenza Data una relazione di equivalenza R, preso un elemento a, la classe di equivalenza di a sono tutti gli elementi equivalenti equivalenti ad a, ossia:

$$[a]_R = \{ b \in A \mid a \sim_R a \}$$

La classe di equivalenza è in sostanza l'insieme di tutti gli elementi equivalenti tra di loro.

Teorema: Ogni elemento $a \in A$ appartiene a una sola classe di equivalenza (dimostrazione nella dispensa, teorema 2.38). Teorema: Un insieme A sul quale agisce una relazione di equivalenza R è l'unione disgiunta delle sue classi di equivalenza.

Insieme quoziente L'insieme quoziente A/R di A rispetto a una relazione di equivalenza R è l'insieme di tutte le classi di equivalenza.

3 Funzioni

Le funzioni sono speciali relazioni che associano a ogni elemento del primo insieme un solo elemento del secondo. Una funzione in genere si indica con la lettera minuscola e usa questa notazione:

$$f:A\to B$$

L'insieme A è detto dominio, B il codominio. L'insieme di tutte le possibili funzioni che vanno da A a B si indica con B^A .

Preso $a \in A, b = f(a)$ sarà la sua immagine. La controimmagine di b è l'elemento tale che $f^{-1}(b) = \{a \in A \mid f(a) = b\}$

L'insieme di tutte le immagini è detto insieme immagine e si indica con Im(f).

Le funzioni sono trattate più nel dettaglio nell'omonimo capitolo degli appunti di Analisi 1

Funzione particolare La funzione $A \times A = \Delta A = Id(A) = \{(a,a) \mid a \in A\}$ è detta funzione identità o insieme diagonale.

Iniettività Una funzione è detta iniettiva se $\forall a, b \in A, a \neq b \implies f(a) \neq f(b)$.

Suriettività Una funzione è detta suriettiva se $\forall b \in B, \exists a \in A \mid f(a) = b$.

Funzione biunivoca Se una funzione è sia iniettiva che suriettiva è detta biunivoca. Se una funzione è biunivoca può essere invertita ottenendo $f^{-1}: B \to A$.

Composizione di funzioni Date due funzioni $f: A \to B, g: B \to C$, la composizione $g \circ f$ delle due è una nuova funzione tale che $g \circ f: A \to C$. Ciò equivale a dire che $(g \circ f)(a) = g(f(a))$

4 Operazioni

Le operazioni sono delle speciali funzioni: dati n+1 insiemi A_1, \ldots, A_{n+1} non vuoti, una operazione n-aria * è una funzione che:

$$*: A_1 \times \cdots \times A_n \to A_{n+1}$$
$$(a_1, \dots, a_n) \mapsto *(a_1, \dots, a_n)$$

Se $A_1 = \cdots = A_{n+1}$ allora l'operazione è detta interna, altrimenti è detta esterna. Se n=2 allora l'operazione è detta binaria e si può indicare con $a_1 * a_2$.

Esempi La somma + un'operazione binaria interna a \mathbb{N}

$$\begin{array}{cccc} +: & \mathbb{N} \times \mathbb{N} & \to & \mathbb{N} \\ & (n1, n2) & \mapsto & n3 = n1 + n2 \end{array}$$

La differenza è sempre un'operazione binaria, ma esterna ad $\mathbb N$

$$\begin{array}{cccc} -: & \mathbb{N} \times \mathbb{N} & \to & \mathbb{Z} \\ & (n1, n2) & \mapsto & n3 = n1 - n2 \end{array}$$

Le varie operazioni possono essere rappresentate in tabelle che indicano tutti i possibili casi. Ad esempio, esistono $2^4 = 16$ diverse operazioni binarie interne (* : $A \times A \rightarrow A$) ad $A = \{a_1, a_2\}$.

Proprietà delle operazioni Le operazioni possono godere di alcune proprietà:

Elemento neutro a * e = a

Inverso $a * a^{-1} = e$

Proprietà commutativa a * b = b * a

Proprietà assocativa a*(b*c) = (a*b)*c

Proprietà distributiva Lega due operazioni: $a \cdot (b * c) = (a \cdot b) * (a \cdot c)$

5 Polinomi

Un polinomio P(x) è una particolare funzione della forma:

$$P(x) = \sum_{i=0}^{n} a_i x^i \text{ con } n \in \mathbb{N}$$

Dove (a_1, \ldots, a_n) (i coefficienti) appartengono a un campo K^{n+1} . L'insieme di tutti i possibili coefficienti si indica con K[x]. Un polinomio nelle m variabili x_1, \ldots, x_m è definito induttivamente come l'espressione:

$$P(x_1, \dots, x_m) = \sum_{i=0}^{n} Q_i(x_1, \dots, x_{m-1}) x_m^i$$

dove Q_1, \ldots, Q_n sono polinomi nelle prime m-1 variabili. L'insieme di tutti i polinomi di questo tipo si indica con $K[x_1, \ldots, x_m]$.

Se il campo K coincide con il campo dei reali $((\mathbb{R}, +, \times))$ allora $K[x] = \mathbb{R}[x]$ e sarà l'insieme di tutti i possibili polinomi con variabile reale.

Un polinomio è generalmente scritto come somma di monomi.

Il grado di un polinomio Il grado di un polinomio P(x) è il massimo grado dei suoi monomi con grado diverso da 0. Il polinomio nullo ha per definizione grado indeterminato.

5.1 Divisione tra polinomi

Data la coppia $(A, B) \in K[x] \times K[x], B \neq 0$, esiste una sola coppia $(Q, R) \in K[x] \times K[x]$ tale che A = QB + R per la quale grado(R) < grado(Q) o grado(R) = 0. $Q \in R$ sono rispettivamente quoziente e resto della divisione di $A \in B$.

Molteplicità algebrica Dati $P \in K[x], r \in \mathbb{N}$ esiste un valore m < grado(P) tale che $(x-r)^m$ divida P(x). Tale valore è detto molteplicità algebrica di r rispetto a P. La r sarà la radice del polinomio. Se la molteplicità algebrica di r è 1, r è una radice semplice.

Chiusura algebrica Le radici di un polinomio $P \in K[x]$ di grado n rispettano la regola $m_1 + \cdots + m_i \leq n$ dove m_i è la molteplicità algebrica di r_i con $i = 1, \ldots, k$. Per ogni campo K esisterà un altro campo K che lo contiene tale che ogni polinomio appartenente ad esso abbia le radici che soddisfino $m_1 + \cdots + m_i = n$. Tale campo è detto chiusura algebrica di K. Se K e la sua chiusura coincidono, K si dice algebricamente completo.

Il campo dei \mathbb{C} è algebricamente chiuso, è la chiusura algebrica di \mathbb{R} e contiene la chiusura algebrica di \mathbb{Q} .

6 Insiemi numerici

6.1 Numeri naturali

Sono i numeri interi positivi incluso lo 0. Può essere costruito a partire da un solo numero (lo 0) basta aggiungendo un'unità ogni volta.

$$\mathbb{N} = \{0, 1, 2, 3, \dots\}$$

6.1.1 Proprietà

Contiene sempre il successore di ogni suo elemento (principio di induzione). Gode della relazione d'ordine ≤, il che lo rende un insieme ordinato. N, come tutti i suoi sottoinsiemi, godono del principio del minimo intero che lo rende, insieme ai suoi sottoinsiemi, un insieme ben ordinato.

6.1.2 Operazioni definite

In \mathbb{N} sono definite somma e prodotto: in questo modo:

Proprietà delle operazioni

Commutativa $n_1 + n_2 = n_2 + n_1$

Associativa $n_1 + (n_2 + n_3) = (n_1 + n_2) + n_3$

Distributiva $n_1 \cdot (n_2 + n_3) = n_1 \cdot n_2 + n_1 \cdot n_3$

6.1.3 Principio del minimo intero

Ogni sottoinsieme di N ha un elemento minimo (più piccolo di tutti gli altri).

6.1.4 Il principio di induzione

Sia $S \subseteq \mathbb{N}$ un sottoinsieme tale che $0 \in S$ e $\forall n \in S \implies n+1 \in S$. Allora S coincide con \mathbb{N} .

Il principio di induzione nella logica Il principio di induzione può essere usato per dimostrare teoremi in \mathbb{N} . Enunciamolo in questo modo: sia P(n) un predicato che dipende da $n \in \mathbb{N}$ tale che $P(n_0)$ sia vero e che $\forall n \in \mathbb{N} P(n) \implies P(n+1)$. Il predicato sarà vero per tutti gli $n \geq n_0$.

6.1.5 Fattoriale

Preso $n \in N$, il fattoriale di n sarà $n! = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot (n-1) \cdot n$. Una eccezione è lo 0: il fattoriale di 0 è 0! = 1. Il fattoriale è un numero definito che può essere definito induttivamente: n! = n(n-1)!.

6.1.6 Coefficiente binomiale

Già incontrati nella probabilità:

$$\binom{n}{n} = \frac{n!}{k!(n-k)!}$$

con $n \in \mathbb{N}, 0 \le k \le n$. Convenzionalmente $\binom{0}{0} = 1$. Il coefficiente binomiale viene usato nel binomio di Newton.

6.1.7 Binomio di Newton

Il binomio di Newton ci permette di calcolare l'elevamento a qualsiasi potenza di un binomio:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

La formula è dimostrabile per induzione (se sei proprio interessato, vedi gli appunti a penna).

6.2 Numeri interi relativi

É l'insieme \mathbb{Z} . Non esiste un minimo, di conseguenza non valgono il principio del minimo intero e il principio di induzione. É definita la relazione d'ordine \leq , quindi è un insieme ordinato ma a causa della mancata validità dei due principi nominati precedentemente, non è un insieme ben ordinato. \mathbb{Z} è, inoltre, più grande di \mathbb{N} : $N \subset \mathbb{Z}$.

6.2.1 Costruzione

Per costruire il numeri relativi, definiamo una relazione di equivalenza \sim in $\mathbb{N} \times \mathbb{N}$ tale che:

$$(a,b) \sim (h,k) \iff a+k=b+h$$

Questa relazione di equivalenza ci permette di descrivere tutti i numeri negativi che sono la differenza dei numeri a e b o h e k: per esempio -1 è la classe di equivalenza $[(2,3)]_{\sim}$. \mathbb{Z} viene, quindi, definito come $\mathbb{Z} = (\mathbb{N} \times \mathbb{N})/\sim$

Dimostrazione che \sim è una relazione di equivalenza Per dimostrare che \sim è una relazione di equivalenza, verifichiamo che soddisfi i requisiti:

- è riflessiva: $(m,n) \sim (m,n) \implies m+n=n+m$
- è simmetrica: $(a,b) \sim (c,d) = (c,d) \sim (a,b)$
- è transitiva: $(a,b) \sim (c,d), (c,d) \sim (e,f) \implies (a,b) \sim (e,f)$ Infatti:

$$a + d = b + c$$
, $c + f = d + e$
 $a - b = c - d$, $c - d = e - f$
 $a - b = e - f$
 $a + f = b + e$

6.2.2 Operazioni definite

Le operazioni sono le stesse di N ma aggiornate:

$$+: \quad \mathbb{Z} \times \mathbb{Z} \quad \to \quad \mathbb{Z} \quad \cdot: \quad \mathbb{Z} \times \mathbb{Z} \quad \to \quad \mathbb{Z}$$
$$((a,b)_{\sim},(h,k)_{\sim}) \quad \mapsto \quad (a+h,b+k)_{\sim} \quad ((a,b)_{\sim},(h,k)_{\sim}) \quad \mapsto \quad (ah+bk,bh+ak)_{\sim}$$

Proprietà delle operazioni Mantnengono le stesse proprietà che avevano in \mathbb{N} .

6.3 Numeri razionali

É l'insieme \mathbb{Q} . Non esiste un minimo, di conseguenza non valgono il principio del minimo intero e il principio di induzione. É definita la relazione d'ordine \leq , quindi è un insieme ordinato ma a causa della mancata validità dei due principi nominati precedentemente, non è un insieme ben ordinato.

6.3.1 Costruzione

Per costruire il numeri razionali, definiamo una relazione di equivalenza \approx in $\mathbb{Z} \times (\mathbb{Z} - \{0\})$ tale che:

$$(a,b) \approx (h,k) \iff ak = bh$$

Questa relazione di equivalenza ci permette di descrivere tutti i numeri razionali che sono divisione dei numeri a e b o h e k: per esempio $^2/_3$ è la classe di equivalenza $[(2,3)]_{\approx}$. $\mathbb Q$ viene, quindi, definito come $\mathbb Z = (\mathbb Z \times (\mathbb Z - \{0\})/\approx$

Dimostrazione che \approx è una relazione di equivalenza Per dimostrare che \approx è una relazione di equivalenza, verifichiamo che soddisfi i requisiti:

- è riflessiva: $(m,n) \approx (m,n) \implies mn = nm$
- è simmetrica: $(a,b) \approx (c,d) = (c,d) \approx (a,b)$
- è transitiva: $(a,b) \approx (c,d), (c,d) \approx (e,f) \implies (a,b) \approx (e,f)$ Infatti:

$$ad = bc, \quad cf = de$$

$$\frac{a}{b} = \frac{c}{d}, \quad \frac{c}{d} = \frac{e}{f}$$

$$\frac{a}{b} = \frac{e}{f}$$

$$af = be$$

6.3.2 Operazioni definite

Le operazioni sono le stesse che sono definite in \mathbb{Z} ma aggiornate:

Proprietà delle operazioni Mantengono le stesse proprietà che avevano in \mathbb{Z} .

6.3.3 La rappresentazione decimale

La rappresentazione decimale di un numero non è nient'altro che un allineamento di cifre. Le rappresentazioni decimali che si trovano nei razionali sono limitate, illimitate periodiche. Esistono anche rappresentazioni illimitate, ma non sono contenute in \mathbb{Q} .

É costituita da una parte intera (necessariamente finita) e una parte decimale che può essere finita o illimitata (si ricorda che in $\mathbb Q$ solo illimitati periodici). Può essere scritta come:

$$x = \pm \sum_{j=0}^{k} c_j \cdot 10^j + \sum_{l=0}^{m} d_l 10^{-l}$$

Dove la prima sommatoria rappresenta la parte intera e la seconda la parte decimale.

6.4 I numeri reali

L'insieme dei numeri reali contiente qualsiasi rappresentazione decimale possibile, limitata o illimitata. Di conseguenza, \mathbb{R} contiene tutti gli insiemi visti fino ad ora. Nell'insieme dei reali è definita la relazione d'ordine \leq , rendolo un insieme ordinato. Inoltre, vale anche l'assioma di completezza, che rende \mathbb{R} un insieme ordinato e completo.

6.4.1 Operazioni definite

Le operazioni definite sono sempre le stesse trovate negli insiemi precedenti:

Proprietà delle operazioni Mantengono le stesse proprietà che avevano in Q.

6.4.2 Assioma di completezza

Siano $A, B \subseteq R$ tali che:

- $A, B \neq \emptyset$
- $A \cap B = \emptyset$
- $A \cup B = R$
- $\forall a \in A, \forall b \in B \ a < b$

allora esiste un unico numero reale tale che $\forall a \in A, \forall b \in B \ a \leq s \leq b$. s è detto elemento separatore.

6.5 Numeri complessi

É l'insieme che completa i numeri reali: ci permettono di risolvere le equazioni polinomiali che non riuscivamo nei reali (chiusura algebrica).

6.5.1 Costruzione

É un insieme di coppie ordinate di numeri reali appartenenti a $\mathbb{R} \times \mathbb{R}$.

6.5.2 Operazioni

Le operazioni sono sempre le stesse che in \mathbb{R} ma aggiornate:

$$\begin{array}{cccc} +: & \mathbb{C} \times \mathbb{C} & \to & \mathbb{C} \\ & somma((a,b),(c,d)) & \mapsto & (a+c,b+d) \in \mathbb{R} \\ \\ \cdot: & \mathbb{C} \times \mathbb{C} & \to & \mathbb{C} \\ & prodotto((a,b),(c,d)) & \mapsto & (ac-bd,ad+bc) \in \mathbb{R} \end{array}$$

7 Sommatoria

Si indica con la sigma maiuscola:

$$\sum_{i \in I} a_i$$

Dove:

- I è un insieme finito. I suoi elementi sono chiamati indici
- $(a_i), i \in I$ è una famiglia di numeri che dipendono da i

Alcune sommatorie famose

Formula di Gauss $\sum_{i=1}^{n} (i) = \frac{n \cdot (n-1)}{2}$

Somma di una progressione geometrica

$$\sum_{i=0}^{n} q^{i} = \frac{1 - q^{n+1}}{1 - q}$$
$$= n + 1 \text{ per } q = 1$$

Dimostrazione:

Tesi:
$$(1-q)\sum_{i=0}^{n}q^{i} = 1 - q^{n+1}$$

 $(1-q)\sum_{i=0}^{n}q^{i} = \sum_{i=0}^{n}q^{i} - q\sum_{i=0}^{n}q^{i}$
 $= \sum_{i=0}^{n}q^{i} - \sum_{i=0}^{n}q^{i+1}$ prendiamo $k = i+1$
 $= \sum_{i=0}^{n}q^{i} - \sum_{k=1}^{n+1}q^{k}$
 $= (q^{0} + \sum_{i=1}^{n}q^{i}) - (\sum_{k=1}^{n}q^{k} + q^{n+1})$
 $= q^{0} + \sum_{i=1}^{n}q^{i} - \sum_{k=1}^{n}q^{k} - q^{n+1}$
 $= 1 - q^{n+1}$

Le proprietà della sommatoria

- La sommatoria è un operatore lineare
- l'indice è muto: non importa il nome dell'indice
- traslando gli indici, la sommatoria non cambia: è importante che il numero di elementi sia uguale
- si definiscono sommatorie anche su due o più famiglie di indici: $\sum_{i \in I, j \in J} a_{ij} = \sum_{i \in I} \sum_{j \in J} a_{ij}$
- vale la proprietà dissociativa: $\sum_{i \in I} (a_i + b_i) = \sum_{i \in I} (a_i) + \sum_{i \in I} (b_i)$
- le costanti possono essere portate fuori: $\sum_{i \in I} Ka_i = K \cdot \sum_{i \in I} a_i$
- può essere scomposta in sommatorie più piccole: $\sum_{i=1}^n a_i = \sum_{i=1}^k a_i + \sum_{i=k+1}^n a_i$
- riflessione degli indici: $\sum_{i=0}^{n} = \sum_{i=0}^{n} a_{n-i}$

8 La produttoria

Si indica con un grande pi greco. E' uguale alla sommatoria ma al posto di fare la somma fa il prodotto.

Proprietà

- $\prod_{i \in I} k a_i = k^{\#i} \prod_{i \in I} a_i$
- Non vale la dissociativa

9 Intervalli e intorni

9.1 Intervallo

Per intervallo di estremi $a \in b$ si intende un sottoinsieme di \mathbb{R} di diversi tipi:

- $(a;b) = \{x \in \mathbb{R} \mid a < x < b\}$
- $[a;b] = \{x \in \mathbb{R} \mid a \le x \le b\}$
- $[a;b) = \{x \in \mathbb{R} \mid a \le x < b\}$
- $(a; b] = \{x \in \mathbb{R} \mid a < x \le b\}$

Gli intervalli possono essere anche illimitati: $(a; +\infty)$.

9.2 Intorno

Preso $x_0 \in \mathbb{R}$, di dice intorno di x_0 di raggio δ l'insieme dei valori x tali che:

$$|x-x_0|<\delta$$

In generale un intervolo è un intervallo $(x_0 - \delta; x_0 + \delta)$, ma un intervallo non per forza è un intervolo.

10 Insiemi limitati

Sia $E \subseteq \mathbb{R}$. E è detto insieme limitato se $\exists m, M \in \mathbb{R} \mid \forall x \in E \ m \leq x \leq M$. L'insieme E è detto superiormente limitato se esiste solo M, mentre è detto inferiormente limitato se esiste solo m.

Un insieme limitato può avere un massimo e un minimo, però non è detto che li contenga. Un esempio di insieme dei questo tipo è (-1;1). Infatti gli elementi, si continuano ad avvicinare a un valore, ma a causa della completezza di \mathbb{R} , non lo raggiungeranno mai poichè esisterà sempre un sepratore tra l'elemento e il "bordo". Ciò sarà ancora più apparente dalla definizione di massimo e minimo. Per descrivere appieno insiemi come (-1;1) vengono aggiunti i concetti di maggiorante, minorante, estremo superiore e inferiore che completano quello di massimo e minimo.

10.1 Massimo di un insieme limitato

Viene detto M massimo per un insieme limitato superiormente E se:

- $\forall x \in E, x \leq M$
- $M \in E$

10.2 Minimo di un insieme limitato

Viene detto m minimo per un insieme limitato inferiormente E se:

- $\forall x \in E, x \geq M$
- $m \in E$

10.3 Maggiorante di un insieme limitato

Viene detto \overline{M} maggiorante di un insieme limitato superiormente E se $\forall x \in E, x \geq \overline{M}$.

Si può notare come il maggiorante sia una generalizzazione del concetto di massimo. Infatti, per un insieme superiormente limitato possono esistere ∞ maggioranti.

10.4 Minorante di un insieme limitato

Viene detto \bar{m} minorante di un insieme limitato inferiormente E se $\forall x \in E, x \leq \bar{m}$.

Si può notare come il minorante sia una generalizzazione del concetto di minimo. Infatti, per un insieme inferiormente limitato possono esistere ∞ minoranti.

10.5 Estremo superiore di un insieme limitato

Definiamo Sup(E) estremo superiore di un insieme limitato superiormente E il minimo dei maggioranti, ossia un numero che:

- $\forall x \in Ex \leq a$
- $a = Min(\mathcal{M})$

dove \mathcal{M} è l'insieme dei maggioranti di E.

Un insieme limitato superiormente possiede sempre un estremo superiore: esso può essere sia interno all'insieme che esterno ad esso.

10.6 Estremo inferiore di un insieme limitato

Definiamo Inf(E) estremo inferiore di un insieme limitato inferioremente E il massimo dei minoranti, ossia un numero che:

- $\forall x \in Ex \ge a$
- a = Max(m)

dove m è l'insieme dei minoranti di E.

Un insieme limitato inferiormente possiede sempre un estremo inferiore: esso può essere sia interno all'insieme che esterno ad esso.

10.7 Collegamento tra estremo inferiore (superiore) e l'assioma di completezza

Ogni insieme $E \subseteq \mathbb{R}$ limitato inferiormente (superiormente) ammette estremo inferiore (superiore).

Dimostrazione Prendiamo un insieme E limitato superiormente. Allora E ammette maggioranti. Indichiamo con \mathcal{M} l'insieme di tutti i maggioranti ($\mathcal{M} = \{x \in R \mid \forall e \in E \ e \leq x\}$). L'insieme \mathcal{M} così definito è limitato inferiormente (tutti gli elementi di E sono minoranti di \mathcal{M}). Definiamo, allora, $\mathcal{N} = \mathbb{R} - \mathcal{M}$ l'insieme di tutti gli elementi che non sono maggioranti di E. Osserviamo che:

- $\mathcal{N} \neq \emptyset$
- $\mathcal{M} \cup \mathcal{N} = \mathbb{R}$
- $\mathcal{M} \cap \mathcal{N} = \emptyset$
- $\forall y \in \mathcal{N} \exists \bar{e} \in E \mid \bar{e} > y, \forall x \in \mathcal{M} \exists \bar{e} \in E \mid x > \bar{e} \text{ quindi } y < \bar{e} < x$

Le osservazioni che abbiamo fatto non sono altro che le ipotesi dell'assioma di completezza (vedi 6.4.2). Quindi possiamo affermare che $\forall y \in \mathcal{N}, \forall x \in \mathcal{M} \exists s \mid y \leq s \leq x$. Questo elemento, però, dovrà essere unico in quanto dovrà essere o il minimo di \mathcal{M} o il massimo di \mathcal{N} . Per dimostrare il teorema dobbiamo dimostrare che s appartiene a \mathbb{M} .

L'assurdo Per assurdo, supponiamo che s appartenga a \mathcal{N} . Ciò significa che s non è un maggiorante e che $\exists \bar{e} \in E \mid \bar{e} > s$. Posso, allora, costruire un elemento $s < \frac{s+\bar{e}}{2} < \bar{e}$. Questo numero è una contraddizione perché sarebbe come dire che $\frac{s+\bar{e}}{2} \in \mathcal{N}$ e quindi $y \leq s < \frac{s+\bar{e}}{2} < \bar{e} \leq x$. Così esisterebbero due elementi separatori, ciò però è un assurdo perché in questo caso l'assioma di completezza permette l'esistenza di un solo separatore. Allora $s \in \mathcal{M}$ e di conseguenza $\exists Sup(E)$.