The Timers of the STM32 Microcontrollers

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory

Dipartimento di Matematica e Informatica - Università di Catania, Italy santoro@dmi.unict.it

L.A.P. 1 Course

The Timers of the STM32 MCUs

STM32 MCUs offer up to 11 different **timer/counters** with the following features:

- Clock selection (internal, external, other)
- 16/32-bit counter resolution
- Programmable prescaler
- Four independent channels configurable as:
 - Input Capture
 - Output Compare
 - PWM Mode
 - One-pulse Output
- Interrupt generation on the basis of the various events that can occur

Block Schematics of the Timers

Timer Clock Source

Clock source can be:

- Internal (System Peripheral Clock)
- External (External Pin)
- External in QEI mode (Quadrature-encoder interface)
- Several Gate/Trigger inputs can be configured in order to start/stop the clock on the basis of events

Time-Base Part

Counting is handled in the time-base by the following registers:

- TIMx->PSC: the <u>prescaler register</u>, it directly specified the division factor
- TIMx->CNT: the counter register, it holds the counter value and increments according to the input clock
- TIMx->ARR: the <u>auto-reload register</u>, CNT counts from 0 to ARR, then CNT is set to 0 again

HAL Functions for Clock Source and Time Base

- HAL_StatusTypeDef HAL_TIM_Base_Init (TIM_HandleTypeDef *htim);
 Time-base initialization (counting mode, prescaler, auto-reload)
- HAL_StatusTypeDef HAL_TIM_ConfigClockSource(TIM_HandleTypeDef *htim, TIM_ClockConfigTypeDef * sClockSourceConfig);
 Clock source configuration
- HAL_StatusTypeDef HAL_TIM_Base_Start (TIM_HandleTypeDef *htim);
 Timer start
- HAL_StatusTypeDef HAL_TIM_Base_Stop(TIM_HandleTypeDef *htim);
 Timer stop

Timer Channels

Each timer can drive up to four different channels that can be configured as:

- Input Capture
- Output Compare
- PWM Mode
- One-pulse Output
- Each channel has a specific register CCRy

Input Capture

- An external pin is used as event source
- When an edge is detected, the value of CNT is stored into CCRy
- A bit in a flag register is set
- An (optional) interrupt is then generated
- The edge type can be programmed
- The circuit can also handle both edges in order to perform pulse width measurement

HAL Functions for Input Capture

- HAL_StatusTypeDef HAL_TIM_IC_Init (TIM_HandleTypeDef *htim);
 Input capture circuit initialization
- HAL_StatusTypeDef HAL_TIM_IC_ConfigChannel (TIM_HandleTypeDef *htim, TIM_IC_InitTypeDef* sConfig, uint32_t Channel);
 Capture channel configuration
- HAL_StatusTypeDef HAL_TIM_IC_Start(TIM_HandleTypeDef *htim, uint32_t Channel); Capture start
- HAL_StatusTypeDef HAL_TIM_IC_Stop (TIM_HandleTypeDef *htim, uint32_t Channel);
 Capture stop

Output Compare

- An external pin is used as output
- When CNT reaches the value stored into CCRy a compare event is generated and, on the basis of a configuration, ...
- the output is set, or
- the output is reset, or
- the output is toggled

HAL Functions for Output Compare

- HAL_StatusTypeDef HAL_TIM_OC_Init (TIM_HandleTypeDef *htim);
 Output compare circuit initialization
- HAL_StatusTypeDef HAL_TIM_OC_ConfigChannel (TIM_HandleTypeDef *htim, TIM_OC_InitTypeDef* sConfig, uint32_t Channel);
 Compare channel configuration
- HAL_StatusTypeDef HAL_TIM_OC_Start (TIM_HandleTypeDef *htim, uint32_t Channel);
 Compare start
- HAL_StatusTypeDef HAL_TIM_OC_Stop (TIM_HandleTypeDef *htim, uint32_t Channel);
 Compare stop

PWM Mode

- An external pin is used as output
- The PWM signal is generated at that external pin
- ARR specifies the PWM period (in count units)
- CCRy specifies the PWM duty-cycle (in count units)

HAL Functions for PWM Mode

- HAL_StatusTypeDef HAL_TIM_PWM_Init (TIM_HandleTypeDef *htim);
 PWM initialization
- HAL_StatusTypeDef HAL_TIM_PWM_ConfigChannel (TIM_HandleTypeDef *htim, TIM_OC_InitTypeDef* sConfig, uint32_t Channel);
 PWM channel configuration
- HAL_StatusTypeDef HAL_TIM_PWM_Start (TIM_HandleTypeDef *htim, uint32_t Channel);
 PWM start
- HAL_StatusTypeDef HAL_TIM_PWM_Stop (TIM_HandleTypeDef *htim, uint32_t Channel);
 PWM stop

The Timers of the STM32 Microcontrollers

Corrado Santoro

ARSLAB - Autonomous and Robotic Systems Laboratory

Dipartimento di Matematica e Informatica - Università di Catania, Italy santoro@dmi.unict.it

L.A.P. 1 Course