Goodness-of-fit tests based on Lorenz curve for progressive censored data from a location-scale distribution

Author and Position

☐ Hyein Koo Graduate student, Department of Statistics, Daegu University

☐ Kyeongjun Lee Assistant professor, Division of Mathematics and Big Data Science,

Daegu University

☐ Namjin Beak Undergraduate student, Division of Mathematics and Big Data Science,

Daegu University

Text

1. Introduction

- * The progressively Type II censored (PC) have become fairly common in a reliability and lifetime-testing experiment as follows. R₁ surviving items are removed from the test at random after 1st observed failure time; furthermore, R₂ surviving items are then removed from the test at random after the 2nd observed failure time. Keep repeating this process until all the remaining $R_m = n-R_1 - \cdots - R_{m-1} - m$ items are removed from the test immediately after the following mth observed failure time. In test, the PC scheme $R = (R_1, R_2, ..., R_m)$ is pre-fixed. For this reason the m ordered observed failure times, which we denote by $X_{1:m:n}$, $X_{2:m:n}$, . . . , $X_{m:m:n}$, are referred to as PC.
- * When the observed failure time data are PC data, the goodness-of-fit tests for perfect data can no longer be used. In this motive, the goodness-of-fit test under PC has received the attention from numerous authors.

2.1 Lorenz curve

- ❖ In this section explain to Lorenz curve. (LC), which is a standard Lorenz curve scaled up by the mean.
- * Lorenz curve provides the means to evaluate income or wealth disparity between two distributions. Let F denotes the CDF of income or wealth distribution. Then the income or wealth is assumed to be non-negative. For a given percentile p, let;

$$\mathcal{F}^{-1}(p)=\inf\{y\,|\mathcal{F}(y)\geq p\}, 0\leq p\leq 1\quad,$$

denotes the inverse CDF corresponding to 3 .

It shall be assumed all through that F is continuous CDF with finite support.

The Lorenz curves corresponding to the distributions with F is defined as;

$$L(p) = \frac{1}{\mu} \int_0^{\mathscr{F}^{-1}} x \, d\mathscr{F}(x) ,$$

where μ denotes the mean of the distribution with $\pmb{\mathcal{F}}$.

With these process the Lorenz curve corresponding to F is the Lorenz curve scaled up by the mean μ .

2.2 LC with a location-scale distribution

❖ To test whether the PC data comes from a location-scale distribution, let above the PC data with PC scheme from a location-scale distribution. Also, the PC data have a location-scale distribution with a probability density function (PDF).

$$f(x; \mu, \sigma) = \frac{1}{\sigma} g\left(\frac{x - \mu}{\sigma}\right)$$
,

where $g(\cdot)$ is the known function, but each μ and σ is the unknown location scale parameter.

$$H_0: \mathscr{F} \in f_\theta \ for \ some \ \theta \in \Theta = \{(\mu, \sigma) | -\infty < \mu < \infty, \sigma > 0\}$$

where $\mathcal{F} = \mathcal{F}$ (x; μ , σ) denote the distribution function.

 \bullet If $U_{i:m:n} = \mathscr{F}(X_{i:m:n}; \mu, \sigma)$, then $p_{i:m:n} = E(U_{i:m:n})$ denote the expected value of the ith PC order statistics from the standard uniform distribution, which is given by;

$$p_{i:m:n} = 1 - \prod_{j=m-i+1}^{m} \left\{ \frac{j + R_{m-j+1} + \dots + R_m}{j + 1 + R_{m-j+1} + \dots + R_m} \right\} .$$

Since a Lorenz curve cannot show the characteristics of the skewed distribution, the above result is multiplied by $(1 - p_{i:m:n})$. Then mLC is obtained as;

$$mLC(p_{jm:n}) = \frac{\sum_{i=1}^{j} X_{i:m:n} - X_{1:m:n}}{\sum_{i=1}^{m} X_{i:m:n} - X_{1:m:n}} - p_{j:m:n} + 1 .$$

❖ Let **F** denote the CDF of location-scale distribution, an nLC⁺ and nLC[−] are obtained as;

$$nLC^{+}\left(p_{j:m:n}\right) = \frac{mLC\left(p_{j:m:n}\right)}{mLC_{f}\left(p_{j:m:n}\right)},$$

$$nLC^{-}\left(p_{j:m:n}\right) = \frac{mLC_{f}\left(p_{j:m:n}\right)}{mLC_{f}\left(p_{j:m:n}\right)} ,$$

where

$$mLC_f(p_{j:m:n}) = \frac{\sum_{i=1}^{j} F^{-1}(p_{i:m:n}) - F^{-1}(p_{1:m:n})}{\sum_{i=1}^{m} F^{-1}(p_{i:m:n}) - F^{-1}(p_{1:m:n})} - p_{j:m:n} + 1.$$

Here, the mLC, nLC⁺, and nLC⁻ are clearly location-scale invariant.

$$G_{m:n}^{+} = \max_{1 \le i \le m} [|1 - nLC^{+}(p_{j:m:n})|]$$
, $G_{m:n}^{-} = \max_{1 \le i \le m} [|1 - nLC^{-}(p_{j:m:n})|]$,

and $G_{m:n}^+ = G_{m:n}^+ + G_{m:n}^-$.

- \bullet If the data accurately follows a location-scale distribution we expect the $G_{m:n}^+$, $G_{m:n}^$ and $G_{m\cdot n}$ test statistics to be zero.
- **❖** Suggest new plot methonds using nLC⁺ and nLC[−];

$$g^{+}(p_{j:m:n}) = |1 - nLC^{+}(p_{j:m:n})|$$
, $g^{-}(p_{j:m:n}) = |1 - nLC^{-}(p_{j:m:n})|$.

- 3. Comparison of the simulated power values
- **❖** We generated 10,000 samples for different choices of sample sizes and PC schemes.

First, a normal distribution with the parent distribution with the PDF;

$$f(x; \mu, \sigma^2) = \frac{1}{\sigma \sqrt{2\pi}} \exp -\left\{\frac{(x-\mu)^2}{2\sigma^2}\right\}, -\infty < \mu < \infty, \sigma > 0$$

as the parent distribution.

The normal distribution, the alternative distribution is considered t distribution with PDF;

$$f(\mathbf{x}; \gamma) = \frac{\tau\left[\frac{\nu+1}{2}\right]}{\sqrt{\nu\pi}\tau\left(\frac{\gamma}{2}\right)} \left(1 + \frac{\mathbf{x}^2}{\gamma}\right), -\infty < \mathbf{x} < \infty, \gamma > .$$

Next, a Gumbel distribution with the parent distribution with the PDF;

$$f(x;\mu,\sigma^2) = \frac{1}{\sigma} \exp\left\{\frac{x-\mu}{\sigma}\right\} \exp\left[-\exp\left[\frac{x-\mu}{\sigma}\right]\right], -\infty < x < \infty, -\infty < \mu < \infty, \sigma > 0, \sigma > 0$$

as the parent distribution.

For testing the normal distribution, the alternative distribution is considered log-gamma distribution with PDF;

$$f(\mathbf{x};\mathbf{k}) = \frac{\mathbf{k}^{\mathbf{k} - \frac{1}{2}}}{\tau(\mathbf{k})} \exp\left[\sqrt{\mathbf{k}\mathbf{x} - \mathbf{k} \exp\left\{\frac{\mathbf{x}}{\sqrt{\mathbf{k}}}\right\}}\right], -\infty < \mathbf{x} < \infty, \mathbf{k} > 0.$$

4. Simulation Study

* The mean squared error (MSE) of the estimators are simulated by Monte Carlo method based on 10,000 runs sample 5 type scheme and 3 different df. We compare the estimators in the sense of the estimation for different censored schemes.

Insulating fluid log data and progressive Type II censoring scheme												
i	1	2	3	4	5	6	7	8				
$X_{i:m:n}$	-1.661	-0.249	-0.041	0.270	1.022	1.579	2.872	1.99				
R_i	0	0	3	0	3	0	0	5				

						3.1.3.1.3.1.1. 9			
Criterion	C _{m:n}	C _{m:n}	C _{m:n}	$K_{m:n}$	$T_{m:n}^{(1)}$	$T_{m:n}^{(2)}$	G ⁺ _{m:n}	G _{m:n}	G _{m:n}
Test statistic	0.080	0.068	0.080	0.148	0.001	0.042	0.076	0.071	0.147
p – value	0.563	0.450	0.648	0.564	0.535	0.516	0.794	0.813	0.804

Test statistics and the corresponding p-values for the insulating fluid log data