Implicit Differentiation

A graph can be expressed as an explicit function of x or an implicit function of x:

Explicitly in terms of x	Implicitly in terms of x	
y is written explicitly in terms of x $y = \sqrt{x^2 + 1}$ $y = x^2 + 2x + 1$ \vdots	$y = \frac{1}{x}$ can be written implicitly in terms of x as $xy = 1$ The function $y = f(x)$ is implied by the equation. $xy = 1$ $x^2 + y^2 = 25$ \vdots	

It is oftentimes difficult to define y in terms of x explicitly. To find the derivative of such a relation, we must use **implicit differentiation.**

In implicit differentiation, we differentiate with respect to x, however <u>we treat each y as f(x), and use chain rule on each $y \leftrightarrow f(x)$.</u>

A few things to remember when executing implicit differentiation:

✓ Remember that y = f(x). You have to apply chain rule when differentiating y.

f(x) y	$\cos(f(x))$	$\cos(y)$	$[f(x)]^5$	y^5
↓ ↓	\	\downarrow	\downarrow	\downarrow
f'(x) y'	$-\sin(f(x))\cdot f'(x)$	$-\sin(y)\cdot y'$	$5[f(x)]^4 \cdot f'(x)$	$5y^4 \cdot y'$

- O Differentiate a component involving y just like x, however, you multiply the result of that component by y'
- \checkmark If an "x" is multiplying a "y" then product rule must be used.

$$xy = 3y^2 \cos(x)$$

$$1 \cdot y + x \cdot y' = 6y \cdot y' \cos(x) + 3y^{2} \left[-\sin(x) \right]$$

- ✓ When solving for y' a.k.a. $\frac{dy}{dx}$, or y'' a.k.a. $\frac{d^2y}{dx^2}$ <u>you must solve in terms of x and y only</u>.
 - When finding y'', if $y' = [\cdots]$, then replace every y' with $[\cdots]$ in the expression for y''

When solving for y'

- I. Differentiate, and after differentiating distribute wherever possible.
- II. Move all terms with y' to one side, and all terms without y' to the other.
- III. Factor out the common factor of y'
- IV. Divide both sides by the factor of y'

Find y' in terms of x and y only: cos(xy) = sin(y) + 1

Then find $y'|_{(0,0)}$.

$$\cos(xy) = \sin(y) + 1$$

$$\frac{d}{dx} \Big[\cos(xy) \Big] = \frac{d}{dx} \Big[\sin(y) + 1 \Big]$$

$$-\sin(xy) \cdot (y + x \cdot y') = \cos(y) \cdot y'$$

$$-\sin(xy) \cdot y - \sin(xy) \cdot x \cdot y' = \cos(y) \cdot y'$$

$$-\sin(xy) \cdot x \cdot y' - \cos(y) \cdot y' = \sin(xy) \cdot y$$

$$y' \Big[-\sin(xy) \cdot x - \cos(y) \Big] = \sin(xy) \cdot y$$

$$y' = \frac{\sin(xy) \cdot y}{-\sin(xy) \cdot x - \cos(y)}$$

$$= 0$$

Find
$$\frac{d^2y}{dx^2}$$
 in terms of x and y only: $x^2 + xy + y^2 = 1$

$$x^{2} + xy + y^{2} = 1$$

$$\frac{d}{dx} \left[x^{2} + xy + y^{2} \right] = \frac{d}{dx} [1]$$

$$2x + y + x \cdot y' + 2y \cdot y' = 0$$

$$x \cdot y' + 2y \cdot y' = -2x - y$$

$$y' = \frac{(-2 - y')(x + 2y) - (-2x - y)(1 + 2y')}{(x + 2y)^{2}}$$

$$y'' = \frac{(-2 - y')(x + 2y) - (-2x - y)(1 + 2y')}{(x + 2y)^{2}}$$

$$y'' = \frac{(-2 - \left[\frac{-2x - y}{x + 2y} \right])(x + 2y) - (-2x - y)\left[1 + 2\left[\frac{-2x - y}{x + 2y} \right] \right]}{(x + 2y)^{2}}$$