N an 892.

PAT-NO:

JP407097679A

DOCUMENT-IDENTIFIER: JP 07097679 A

TITLE:

ULTRA-THIN FILM LAMINATE

PUBN-DATE:

April 11, 1995

INVENTOR-INFORMATION:

NAME FUKUI, HARUYO NAKAYAMA, AKIRA SETOYAMA, MAKOTO YOSHIOKA, TAKESHI

YAMAGATA, KAZUO

ASSIGNEE-INFORMATION:

NAME

COUNTRY

SUMITOMO ELECTRIC IND LTD

N/A

APPL-NO:

JP05244178

APPL-DATE:

September 30, 1993

INT-CL (IPC): C23C014/06, B23B027/14, B23P015/28, B32B015/01, C22C029/16 , C23C016/34, C23C028/04

ABSTRACT:

PURPOSE: To improve the wear resistance and oxidation resistance of the surface of a substrate by alternately repetitively laminating thin films of two kinds of Ti-Al-N compds. varying in compsn. on the surface of the substrate.

CONSTITUTION: The thin film 3 which consists of carbides, nitride and carbonitrides of group IVa, Va and VIa metals in periodic table and has a

thickness of 0.05 to 5μm is formed by an ion plating method by a vacuum arc discharge on the surface of the hard base material 2, such as cutting tip, drill or end mill, consisting of a WC-base sintered hard a way, cermet, ceramics or high-speed steel, Two kinds of the compds. A, B expressed by Ti<SB>x</SB>Al<SB>1-x</SB>N (where 0≤X<0.5) and Ti<SB>y</SB>Al<SB>1-y</SB>N (where 0.5<y≤1) are alternately laminated in many layers on the surface of the thin-film layer 3 by setting the sum Selemble of the thin-film layer 3 by setting the sum Selemble of the thin-film layer 3 by setting the sum Selemble of the thin-film layer 3 by setting the sum Selemble of the thin-film layer 3 by setting the sum Selemble of the thin-film layer 3 by setting the sum Selemble of the thin-film layer 3 by setting the sum Selemble of the set in layer 4 (SD) 1 (SD)

(where 0.5<y≤1) are alternately laminated in many layers on the surface of the thin-film layer 3 by setting the sum λ of the thickness t<SB>1</SB>, t<SB>2</SB> of these compds. as a repetitive lamination period of 0.5 to 20nm. The thin films 1 having the total thickness of 0.5 to 10μm are thus formed. The wear resistance and oxidation resistance of the substrate 1 are greatly improved by the alternately laminated thin films of the Ti-Al-N alloy.

COPYRIGHT: (C)1995,JPO

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平7-97679

(43)公開日 平成7年(1995)4月11日

(51) Int.Cl. ⁶	識別記号	庁内整理番号	ΡI	技術表示箇所
C 2 3 C 14/06	P	9271-4K 9271-4K		以市 权小圆기
B 2 3 B 27/14	Α	9326-3C		
B 2 3 P 15/28	A	7528-3C		
B 3 2 B 15/01	Z			
		審查請求	未請求請求	求項の数6 OL (全7頁) 最終頁に続く
(21)出願番号	特顧平5-244178		(71)出顧	人 000002130
(00) :1:101				住友電気工業株式会社
(22)出廣日	平成5年(1993) 9月30日			大阪府大阪市中央区北浜四丁目5番33号
			(72)発明	者福井治田
				伊丹市昆陽北一丁目1番1号 住友電気工
				業株式会社伊丹製作所内
			(72)発明	者中山 明
				伊丹市昆陽北一丁目1番1号 住友電気工
				業株式会社伊丹製作所内
			(72)発明	者 有形可山 誠
				伊丹市昆陽北一丁目1番1号 住友電気工
				柔体式会社伊丹製作所内
			(74)代理/	人,弁理士(鎌田)文二(今)2名)
				最終頁に続く

(54) 【発明の名称】 超薄膜積層体

(57)【要約】

【目的】 耐摩耗性および表面保護機能向上のため、切削工具、耐摩工具等の硬質基材表面、或いは電気・電子部品、摺動部品、機械部品の表面に形成される超薄膜積層体を提供する。

【構成】 Ti、Al3よびNによって構成されるTi Al_{1-x} NおよびTi Al_{1-y} N ($0 \le x < 0$. 5、0. $5 < y \le 1$) なる2種類の化合物 (A、B) を交互に繰り返し積層し、その繰り返しの積層周期 λ を 0. 5 nm \sim 20 nmとし、全体の膜厚が0. 5 μ m \sim 10 μ mとした超薄膜積層体 1 を、基材 2 の表面に被覆し、切削工具や耐摩工具の硬質被覆層、又は電気・電子部品、摺動部品、機械部品の表面の耐摩耗膜や保護膜として用いる。

【特許請求の範囲】

【請求項1】 Ti、AlおよびNによって構成される Tir Alı-r NおよびTiy Alı-y N (0≤x< 0.5、0.5<y≦1)なる2種類の化合物を、交互 に繰り返して積層し、積層体の全体組成として化学量論 的にアルミニウムリッチになるものとした超薄膜積層 体。

【請求項2】 請求項1に記載の超薄膜積層体におい て、繰り返しの積層周期を0.5nm~20nmとし、 全体の膜厚を0.5μm~10μmとした超薄膜積層

【請求項3】 請求項1又は2に記載の超薄膜積層体 を、WC基超硬合金、サーメット、セラミックス、高速 度鋼等の硬質基材の表面に被覆し、切削チップ、ドリル またはエンドミルとして用いる超薄膜積層体の被覆物。 【請求項4】 請求項1又は2に記載の超薄膜積層体を 基材の表面に被覆し、その超薄膜積層体と基材との間 に、周期律表IVa族、Va族、VIa族の金属元素の 群から選択される1種以上の元素と、C、Nの1種以上 膜厚0.05μm~5μmの界面層を設けた超薄膜積層 体の被覆物。

【請求項5】 請求項1又は2に記載の超薄膜積層体に おいて、電気・電子部品、摺動部品、機械部品の耐摩耗 膜あるいは保護膜として用いるビッカース硬度が荷重2 5gfで3500kgf/m² 以上のものである超薄膜積 層体。

【請求項6】 請求項5に記載の超薄膜積層体におい て、積層体の全体の膜厚を5 n m~1 0 μ m とした超薄 膜積層体。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、耐摩耗性および表面 保護機能向上のために、切削工具、耐摩工具等の硬質基 材の表面、或いは電気・電子部品、摺動部品、機械部品 の表面に形成する超薄膜積層体に関するものである。 [0002]

【従来の技術及びその課題】従来、耐摩耗性および表面 保護機能向上のため、WC基超硬合金、サーメット、セ ラミックス、高速度鋼等からなる切削工具や耐摩工具等 40 の硬質基材の表面に、硬質被覆層として、PVD法やC VD法によりTi、Hf、Zrの炭化物、窒化物、炭窒 化物あるいはA1の酸化物を単層又は複層形成すること が行なわれている。

【0003】また、硬質被覆層の耐酸化性の向上を図る 目的で、例えば特公平4-53642号公報に示される ように、切削工具の硬質被覆層として上述したTiの炭 ・窒化物にAlを固溶させ、それぞれTiとAlの複合 炭化物固溶体、複合窒化物固溶体および複合炭窒化物固 溶体を形成することが知られている。

【0004】さらに、日本金属学会誌第57巻第8号 (1993) 919-925には、Ti-Al-N系の

硬質被覆層において、Al-Nの固溶度の増大とともに 耐酸化性は向上するが、AI-Nの固溶度が75モル% を越えると硬度が低下すると報告されている。

【0005】しかし、上記従来の硬質被覆層では、いず れも被覆層を構成する物質固有の特性がそのまま被覆層 全体の特性を決定し、エンドミルやスローアウェイチッ プ等の切削工具や耐摩工具に使用した場合、耐摩耗性と 10 耐酸化性の両立が難しく、特に高速切削や高硬度材料の 切削用途においては耐酸化性を重視した被覆層材質を採 用すると、耐摩耗性が低下するという問題があった。

【0006】一方、被覆層の高硬化を達成する手段とし て、nmオーダーの薄膜を積層し、界面での格子歪エネ ルギーの効果により硬度上昇を図る方法もあるが、この 方法では、高硬度化の代わりに切削工具や耐摩工具に要 求される他の特性が犠牲になり、特に耐酸化性に関して は効果が乏しいという欠点がある。

【0007】また、上記切削工具や耐摩工具以外に、従 との組み合せからなる化合物の少なくとも1種からなる 20 来、電気・電子部品、摺動部品、機械部品の表面に耐摩 耗膜や保護膜が形成され、例えば、磁気テープやフロッ ピーディスク又は磁気ディスクといった高密度記録媒体 の表面には、耐摩耗膜としてCo-Ni、Co-P、7 ーFe2 O3 が被覆されたり、或いは保護膜として、厚 さ80 nm程度の二酸化ケイ素、窒化ケイ素、酸化アル ミ等の酸化物、窒化物、カーボン膜等が被覆されてい る。

> 【0008】しかし、近年の高密度、大容量記録化の進 行に伴ない、保護膜にも一段の薄膜化が求められ、膜厚 30 として50 nm以下にすることが要求されているが、こ れに対して従来の保護膜では、膜厚を50 n m以下に薄 くすると、耐摩耗性や耐食性が不十分になり、上記の要 求に対して十分に対応できない不具合がある。

【0009】そこでこの発明は、上記の問題を解決し、 切削工具や耐摩工具における硬質被覆層の耐摩耗性向上 を実現し、かつ電気・電子部品、摺動部品、機械部品の 表面の耐摩耗膜や保護膜としても優れた特性を有する超 薄膜積層体を提供することを目的としている。

[0010]

【課題を解決するための手段】上記の課題を解決するた め、この発明は、Ti、AlおよびNによって構成され るTir Alı-r NおよびTiy Alı-y N (0≤x< 0.5、0.5<y≤1)なる2種類の化合物を、交互 に繰り返して積層し、積層体の全体組成として化学量論 的にアルミニウムリッチになるものとした構造を採用し たのである。

【0011】この発明の超薄膜積層体は、繰り返しの積 層周期を0.5mm~20mmとし、全体の膜厚を0. 5μm~10μmとすることにより最も好ましい効果を 50 得ることができ、切削チップ、ドリルまたはエンドミル

の被覆層として用いる場合、上記超薄膜積層体を、WC 基超硬合金、サーメット、セラミックス、高速度鋼等の 硬質基材の表面に被覆する。

【0012】ここで、繰り返しの積層周期とは、例えば 図1に示すように、2種類の化合物AとBを交互に繰り 返し積層した場合、化合物Aの厚み(t1)と化合物B の厚み(t_2)との和($t_1 + t_2 = \lambda$)をいう。

【0013】なお、図1において、符号1は超薄膜積層 体を、2は基材を示している。

【0014】上記超薄膜積層体を基材の表面に被覆する 場合、図2に示すように、超薄膜積層体1と基材2の間 に界面層3を設け、この界面層3を、周期律表IVa 族、Va族、VIa族の金属元素の群から選択される1 種以上の元素と、C、Nの1種以上との組み合せからな る化合物の少なくとも1種からなる膜厚0.05μm~ 5μmのものとするのが好ましい。

【0015】また、超薄膜積層体の使用用途を、電気・ 電子部品や摺動部品、機械部品の表面の耐摩耗膜や保護 膜とする場合、電気・電子部品では全体の膜厚を5nm ~2 m 、摺動部品、機械部品においては全体の膜厚を 20 $0.1 \mu m \sim 10 \mu m に するのがよい。$

【0016】上記の超薄膜積層体を形成する方法として は、CVD法やPVD法があり、特にPVD法は、融点 や硬度が著しく高いセラミックス皮膜を500℃以下の 温度で形成することが可能であるため、基材の強度を容 易に維持することができ、また積層物間の界面層におけ る原子拡散の影響を小さくできる点で好ましい作製法と 云える。

[0017]

【作用】この発明の超薄膜積層体は、Ti、A1および 30 Nによって構成される2種類の化合物を用いて、化学量 論的にアルミニウムリッチなTix Alュ-x N(0≤x <0.5)、および化学量論的にチタンリッチなTix A l_{1-y} N (0.5<y≤1)を交互に繰り返し精層 し、薄膜全体の組成として耐酸化性に優れたアルミニウ ムリッチなTi-Al-N化合物とするものである。

【0018】このように化学量論的にチタンリッチな超 薄膜層を含む構成とすることにより、アルミニウムリッ チなTi-Al-N化合物の薄膜単体で起こる硬度の低 性の両立を実現できる。この特性を利用すれば、切削工 具や耐摩工具の被覆層として用いた場合、工具の摩耗寿 命の大幅な延命化を図ることができる。

【0019】また、異なる2種類の化合物を交互に0. 5 nm~20 nmという極めて薄い膜厚で積層した場 合、ビッカース硬度が荷重25gfで3500㎏f/m 2 以上という化合物の薄膜単体では得ることができない 高硬度が実現でき、優れた耐摩耗性が発現する。

【0020】これは、繰り返しの積層周期を20nm以 下にした場合、結晶を構成する原子の中で界面を形成す る原子、すなわち界面に接する原子が多くなり、物質固 有の特性よりも界面に起因する特性が顕著になり、界面 での格子歪エネルギーの効果により硬度上昇が発現する ものと考えられる。一方、繰り返しの積層周期が0.5 nm以下の場合は、界面での相互拡散等の影響により積 層物質同士の混合層となり、逆に、繰り返しの積層周期 が20 nm以上の場合には、個々の薄膜の単体としての 特性が支配的となり、いずれも積層による顕著な硬度上 昇効果を得ることができない。

【0021】この発明の超薄膜積層体は、基材表面に直 接形成するよりも、両者の間に界面層を介在させる方 が、基材に対する超薄膜積層体の密着強度を向上させる ことができる。これは、基材と超薄膜積層体という特性 の大きく異なる物質間に、中間的な特性を有する界面層 を設けることにより、特性の変化が連続的になり、膜の 残留応力の低減等の効果が期待できるからである。この 界面層の効果は、膜厚がO.05μm未満では密着強度 の向上が見られず、逆に、5μmを越えても密着強度の 更なる向上は見られず、所定の範囲で特有の効果を発揮 することができる。

【0022】なお、上述したものと同様の効果は、Ti -A1系以外のA1合金の窒化物、例えば(A1Zr) N、(AlNb)N、(AlHf)N等の合金組成を変 化させた被膜を積層させることによっても得られるが、 この発明では、耐酸化性と硬度の良好なバランスからT i-Al窒化物を採用するものである。

[0023]

【実施例】次に、この発明の効果を見るために行なった 実施例について説明する。なお、以下の各実施例におい て超薄膜積層体を形成する場合、nmオーダーの積層周 期の測定は、透過電子顕微鏡(TEM)による観察およ び小角X線解析法により行なっている。また、長周期の 積層構造に関しては、高分解能走査電子顕微鏡による積 層周期の測定も可能である。

【0024】<実施例1>基材として、組成がJIS規 下が抑制され、従来技術では得られない高硬度と耐酸化 40 格P30、形状がJISSNG432の超硬合金製切削 チップを複数用意し、その表面に、真空アーク放電によ るイオンプレーティング法を用いて表1に示す超薄膜積 層構造を形成した。ここで、この発明の実施例の切削チ ップ試料を、No.1~No.26とした。

[0025]

【表1】

	2						6	
硬質被覆層の組成 試料 膜厚 (μm)			超薄膜積層構造			周期	硬度HV	僅者
		μm)	膜物質A	膜物質B	全膜厚	(nm)	(kgf/mm2)	
<u> </u>	界面層	表面層	(TixAl1-xN)	(TiyAl1-yN)	(µm)		, , , , , , , , ,	
1	なし	超薄膜積層	x-0.12	y=0.63	3.80	0.2	3250	PVD法
2	1	1	1	1	3.50	0.5	3300	1
3	↓	1	1	l l	3.60	3.5	5810	1
4	1	1	Ţ	1	3.50	6.2	4200	Ĭ
5	↓	1	1	1	3.70	11.1	3640	⊢ `
6	J	<u> </u>	ļ	ı	3.60	19.8	3510	
7	J	↓	1	1	3.70	26.4	3020	i
8	J	1	1	1	0.10	3.5	5690	1
9	1	ţ	1	1	0.50	1	5760	1
10	1	J	ļ	1	2.00	Ť	5690	-
11	1	1	↓	1	8.00	1	5750	i
12	1	1	1	1	15.00	1	5810	
13	TiN(0.01)	1	1	1	3.60	Ť	5830	i
14	TiN(0.05)		1	+	3.80	i	5850	1
15	TiN(0.5)	_ 1	1	+	3.50	i	5750	1
16	TiN(1.0)	1	1	1	3.70	1	5890	
17	TiN(5.0)	1	1	1	3.60	1	5850	-
18	TiN(8.0)	1	1	1	3.60	1	5780	1
19	なし	Ţ	Ţ	y=0.75		1	5760	-
20	↓	1	1	y=0.82	i	Ť	5890	-
21	. ↓	↓	x=0.24	y=0.66	−i 	Ť	5770	<u> </u>
22		1	x=0.39	y=0.55	i	Ť	5810	<u> </u>
23	Ţ	1	1	y=0,78	i	Ť	5100	1
24	+	1	1	y=0.91	- i 	Ť	4590	- i
25	1	1	x=0.81		1	1	2560	i
26	4	+	x=0.19	y=0.38	1	Ť	2140	-
27	1	TiN(4.2)		_	ì	Ť	2260	<u> </u>
28	1	TiCN(3.9)		- 1	i	Ť	2890	<u> </u>
29	1	TiAIN(4.1)			i	Ţ	2910	1
30	+	TiN(3.5)	_		-i	Ť	2500	CVD法

【0026】図3は、切削チップ試料の製造方法を示し i-Al化合物のターゲット5、6を配置し、ターゲッ トの中心点を中心としてこれ等のターゲット間で回転す る基材保持具7に切削チップ8を装着し、切削チップの 回転数と真空アークの放電電流(ターゲット材料の蒸発 量)の一方又は両方を調整することにより繰り返しの積 層周期を調整した。

【0027】これは、先ず、成膜装置4内の真空度を1 O-5Torrとし、この雰囲気中にArガスを導入して 10-2 Torrの真空度を保持しながら500℃まで加 熱し、切削チップ8に-1000Vの電圧をかけて洗浄 40 を行なった後、Arガスを排気した。次に、成膜装置4 内にN2 ガス、CH4 ガスのいずれか1種類或いは数種 類を基材回転に合わせた時間制御により200cc/m i nの割合で導入し、この状態で真空アーク放電を行な うことにより周期律表IVa族、Va族、VIa族の金 属元素、及びTi-Al化合物のターゲット5、6を蒸 発・イオン化させ、これによって、回転する切削チップ がターゲットの前を通過する際にターゲット材料と導入 ガス中のC、Nとの化合物層を切削チップ上に形成し

- *【0028】また、上記の実施例の試料との比較のた
- ており、試料の形成は、成膜装置4の内部に複数個のT 30 め、表1に試料27~30で示す従来構造による硬質被 覆の切削チップを準備した。この場合、試料27~29 は、通常の成膜装置を使用して真空アーク放電を用いた イオンプレーティング法により、また試料30は、通常 のCVD法により、上述と同じ組成と形状の切削チップ の表面に単独の硬質被覆層を形成して製作した。

【0029】この実施例では、上記のように準備した各 種の切削チップ試料について、次の表2の条件により連 続切削試験と断続切削試験を行ない、切刃の逃げ面摩耗 幅を測定した。その各切削試験の結果を表3に示す。

[0030]

【表2】

	連続切削試験	断続切削試験
切削材	SCM435	SCM435
切削速度	220m/min	220m/min
送り	0.37mm/rev.	0.30mm/rev.
切り込み	2.0mm	1.5mm
切削時間	15min	20min

[0031]

*50 【表3】

た。

7

以料	逃げ面摩耗幅 (mm)						
	連続切削	既続切削					
1	0.156	0.159					
2	0.121	0.122					
3	0.084	0.082					
4	0.098	0.099					
5	0.105	0.103					
6	0.116	0.124					
7	0.176	0.169					
8	0.416	0.294					
9	0.126	0.125					
10	0.113	0.109					
11	0.124	0.131					
12	0.136	0,138					
13	0.096	0.097					
14	0.084	0.088					
15	0.077	0.079					
16	0.071	0.078					
17	0.069	0.074					
18	0.075	0.081					
19	0.115	0.119					
20	0.111	0.108					
21	.0.109	0.108					
22	0.113	0.117					
23	0.169	0.171					
24	0.181	0.179					
25	0.251	0.223					
26	0.219	0.216					
27	0.386	0.257					
28	0.357	0.236					
29	0.277	0.224					
30	0.154	欠攢					

【0032】表3の結果から、従来構造の試料のうち硬 質被覆層をPVD法で形成した試料27~29は耐摩耗 化により刃先の耐欠損性が低下した。これに対して、こ の発明に係る試料1~24 (試料8は除く)は、連続切 削及び断続切削の両方において優れた耐摩耗性を有し、 また、基材の靱性が維持され、優れた耐欠損性を示し た。

【0033】また、試料1~7までの結果から、超薄膜

積層体を切削工具に適用した場合の繰り返しの積層周期 としては、0.5nm~20nmが最適であり、さら

に、試料13~18の試験結果から、界面層の膜厚とし $T0.05\mu$ m \sim 5 μ mが適当であることが明らかであ る。

【0034】加えて、試料9~12の試験結果から、超 薄膜積層体の全体の膜厚として、0.5μm~10μm が適当であることがわかる。

【0035】また、試料19~26の試験結果から、超 10 薄膜積層体の構造は、0≤x<0.5の範囲にあるアル ミニウムリッチなTix Al1-x Nの化合物と、0.5 <y≤1の範囲にあるチタンリッチなTiy Al1-y N の化合物とを交互に繰り返し積層し、薄膜全体としてア ルミニウムリッチなT i -A l - N化合物にすることが 適当であると言える。

【0036】<実施例2>超薄膜積層体を電気・電子部 品の耐摩耗膜や保護膜に適用した場合の耐摩耗性を確か めるため、磁気ヘッドの表面に超薄膜積層体を被覆し、 その磁気ヘッドの磁気ディスクとの接触摩耗試験を行な 20 った。

【0037】この摩耗試験では、磁気ヘッドとしてアル ミニウムと炭化チタンからなる焼結体 (ビッカース硬度 4000kgf/mm²)を用い、これを磁気ディスク表面 の保護膜上に荷重600kg f /mm² で押し付け、次に、 磁気ディスクを磁気ヘッドが浮上するまで高速回転さ せ、浮上後回転を停止し、再び磁気ヘッドをディスク面 に接触させることを繰り返すCSS試験を行った。ここ で、CSS試験とは、磁気ヘッドと磁気記録媒体とを接 触状態でセットした後、磁気記録媒体を回転浮上させた 性に劣り、CVD法で形成した試料30は基材の靱性劣 30 後、回転を停止し、再び磁気ヘッドと磁気記録媒体を接 触させるサイクル試験である。

> 【0038】表4は、上記CSS試験法により10万回 の繰り返し試験を行なった場合の結果を示している。 [0039]

【表4】

9							10	
1	積磨物質		後層角燈	エッチング	膜厚	CSS試験(10万回後)		
以料				速度		į		
	a:TixAl1-xN	b:TiyAl1-yN	(nm)	(nm/min)	(nm)	耐食性	表面状態	再生出力
1	x=0.15	y=0.68	0.3	0.29	50	変化なし	トレース跡有	2 dB低下
2	 	1	0.6	0.09	ţ	1	変化なし	変化なし
3_	1	1	3.2	0.05	1	1	1	1
4	Į.	1	10	0.10	1	1	i	Ì
5	<u> </u>	1	·20	0.19	+	1	1	i
6	↓ ↓	1	28	0.38	+	1	トレース路有	4 dB低下
7	1	1	3.2	0.07	2.5	1	トレース時有	5dB低下
8	1	į.	1	0.09	5	1	変化なし	変化なし
9	1	1	1	0.07	10	1	1	1
10	↓	ţ	1	0.08	20	Į.		i
11	+	1	+	0.07	40	1	1	i
12	x=0.25	y=0.85	1	0.10	1	1	i	i
13	x=0.75	1	_ ↓	0.26	1	1	ルースは有	5dB低下
14	x=0.35	y=0.44	1	0.21	+	1	1	1
15	SiO2の単層膜		1	3.00	80	1	1	6 dB低下

【0040】この表4において試料1~14は、この発 明に係る超薄膜積層体を用いた例であり、スパッタリン グ法を用いて作成した。また、試料15は比較例であ り、SiO2 を保護膜として用いたものである。

9

【0041】なお、被覆層の硬度は、層が非常に薄く測 定ができず、真空中でのArイオンビーム (加速電圧3 KV) による層のエッチング速度と硬度との間に経験的 に正の相関があるため、エッチング速度を硬度の代替値 として示した。

【0042】表4の結果から、0≤x<0.5、0.5 <y≦1の諸元をもち、繰り返しの積層周期が0.5n $m\sim20$ n mの範囲にある試料2~5について、表面状 態や再生出力に変化が見られず、他の試料、特に従来構 造の試料15に比べて優れた耐摩耗性があることが示さ 30 図 れた。

[0043]

【効果】以上のように、この発明の超薄膜積層体は、高 硬度と耐酸化性とを同時に併せ持つことができるので、 切削工具や耐摩工具の被覆層に用いることにより基材強 度を維持したままで従来より優れた耐摩耗性を有するこ とができ、特に高速切削や高硬度材料の切削用途におい て、切削寿命を大きく延長させることができる。

【0044】また、上記切削工具等の用途以外に、この*

- * 発明の超薄膜積層体は、電気・電子部品や摺動部品、機 械部品の表面に対して耐摩耗性に優れた耐摩耗膜や保護 膜として、適用することができる。
- 【0045】さらに、この超薄膜積層体を用いれば、光 磁気記録媒体、光学レンズ等の表面保護膜、或は光学特 性、電気特性等にも優れた薄膜を提供することができ る。

【図面の簡単な説明】

【図1】(a)はこの発明に係る超薄膜積層体を基材に 被覆した状態を示す模式図、(b)はその部分拡大図 【図2】この発明に係る超薄膜積層体を界面層を介して 基材に被覆した状態を示す模式図

【図3】この発明に係る超薄膜積層体の形成方法を示す

【符号の説明】

- 1 超薄膜積層体
- 2 基材
- 3 界面層
- 4 成膜装置
- 5、6 ターゲット
- 7 基材保持具
- 8 切削チップ

【図1】

【図2】

フロントページの続き

(51) Int. Cl. 6

識別記号 庁内整理番号

FΙ

技術表示箇所

C22C 29/16

C23C 16/34

28/04

(72)発明者 吉岡 剛

伊丹市昆陽北一丁目1番1号 住友電気工

業株式会社伊丹製作所内

(72)発明者 山縣 一夫

伊丹市昆陽北一丁目1番1号 住友電気工

業株式会社伊丹製作所内

HPS Trailer Page for

EAST

UserID: JMondt_Job_1_of_1

Printer: cp4_3c03_gbfhptr

Summary

Document	Pages	Printed	Missed	Copies
JP407097679A	7	7	0	1
Total (1)	7	7	0	-