

NODE CONDUCTANCE: A Scalable Node Centrality Measure on Big Networks

Tianshu Lyu, Fei Sun, Yan Zhang Peking University, Alibaba Group

Node Centrality

Local Centrality

- ego-network
- less informative

Global Centrality

- ideal routes
- unrealistic
- infeasible to compute

Refer to https://aksakalli.github.io/2017/07/17/network-centrality-measures-and-their-visualization.html

Node Conductance

Conductance

measures how hard it is to leave a set of nodes

$$\phi(S) = rac{ ext{cut}(S)}{\min(ext{vol}(S), ext{vol}(ar{S}))}$$

Node Conductance

- measures how hard it is to leave a certain node
- the sum of the probability that i is revisited at s-th step, where s is the integer between 1 and ∞ .

$$\mathrm{NC}_{\infty}(i) \equiv \sum_{s=1}^{\infty} P(i|i,s).$$

Node Conductance

$$NC_{\infty}(i) \equiv \sum_{s=1}^{\infty} P(i|i,s).$$

Definition	Notation
adjacency matrix	Α
degree vector	d = A1
diagonal matrix of degree	$\mathbf{D} = \operatorname{diag}(\mathbf{d})$

For a walk starting at node ί, the probability that we find it at j after exactly s steps is given by

$$P(j|i,s) = [(\mathbf{D}^{-1}\mathbf{A})^s]_{ij}.$$

• NC_r denotes the sum of the probability that the node is revisited at the step s, s is between 1 and r

$$NC_r(i) = \sum_{s=1}^r P(i|i,s) = \mathbf{P}_{ii}^{(r)}, \quad \mathbf{P}^{(r)} = \sum_{s=1}^r (\mathbf{D}^{-1}\mathbf{A})^s,$$

Node Conductance

Supposed that r approaches infinity,

$$\mathbf{P}^{(\infty)} = \Sigma_{s=1}^{\infty} (\mathbf{D}^{-1} \mathbf{A})^s = \Sigma_{s=0}^{\infty} (\mathbf{D}^{-1} \mathbf{A})^s - \mathbf{I}$$
$$= (\mathbf{I} - \mathbf{D}^{-1} \mathbf{A})^{-1} - \mathbf{I} = (\mathbf{D} - \mathbf{A})^{-1} \mathbf{D} - \mathbf{I}.$$

Laplacian Matrix

Pseudo-inverse of Laplacian Matrix:

$$g(\lambda_k) = \begin{cases} \frac{1}{\lambda_k}, & \text{if } \lambda_k \neq 0 \\ 0, & \text{if } \lambda_k = 0 \end{cases}, \quad \mathbf{L}_{ii}^{\dagger} = \Sigma_{k=1}^{N-1} g(\lambda_k) u_{ik}^2,$$

Node Conductance only concerns about the diagonal:

$$\mathtt{NC}_{\infty}(i) \propto \mathbf{L}_{ii}^{\dagger} \cdot d_i,$$

Related Work

$$SC(i) = \sum_{s=1}^{\infty} \frac{(\mathbf{A^s})_{ii}}{s!}$$

- Subgraph Centrality
 - the "sum" of closed walks of different lengths in the network starting and ending at vertex ί.
 - adding a scaling factor to the denominator in order to make the SC value converge
 - less interpretive

Related Work

$$PR = D(D - \alpha A)^{-1}1$$

- PageRank
 - the stationary distribution of the random walk
 - the probability that a random walk, with infinite steps, starts from any node and hits the node under consideration.

DeepWalk Vectors

- Syntagmatic: If two nodes have a strong connection in the network, the value of $\mathbf{W}_i \cdot \mathbf{c}_j$ is large.
- Paradigmatic: If two nodes have similar neighbors, the value of $\mathbf{w}_i \cdot \mathbf{w}_j$ is high.

DeepWalk Vectors & Node Conductance

DeepWalk loss function

$$\mathcal{L} = \sum_{i \in \mathcal{V}_W} \sum_{j \in \mathcal{V}_C} \#(i, j)_r \left(\log \sigma(\mathbf{w}_i \cdot \mathbf{c}_j)\right) + \sum_{i \in \mathcal{V}_W} \#(i)_r \left(k \cdot \sum_{\text{neg} \in \mathcal{V}_C} P(\text{neg}) \log \sigma(-\mathbf{w}_i \cdot \mathbf{c}_{\text{neg}})\right).$$

ullet Comparing the derivative to zero. $\mathtt{NC}_r(i)$

$$\mathbf{w}_i \cdot \mathbf{c}_j = \log\left(\frac{\#(i,j)_r}{\#(i)_r \cdot P(j)}\right) - \log k,$$

Estimating probability by the actual number of observations

$$NC_r(i) = \exp(\mathbf{w}_i \cdot \mathbf{c}_i) \cdot k \cdot P(i) \propto \exp(\mathbf{w}_i \cdot \mathbf{c}_i) \cdot \deg(i).$$

Compute approximate Node Conductance by DeepWalk vectors

Visualization

Node Conductance gives low value to nodes with low degree and high betweenness centrality.

Visualization

Node Conductance looks quite different with PageRank. Node Conductance and its approximation are similar.

Finding Nodes Spanning Several Communities

- Plot the communities numbers of nodes (y-axis) in the order of each centrality measure (x-axis).
- Node Conductance provides the smoothest curve comparing with the other five metrics.

Conclusion

- Intuition
 - the probability of revisiting the target node in a random walk
- Approximation
 - by the dot product of the input and output vectors
- Mining influential nodes

THANKS!

Tianshu Lyu, Fei Sun, Yan Zhang Peking University, Alibaba Group