ANALÍZIS II. Példatár

Komplex függvénytan

2009. május

5. fejezet

Feladatok

5.1. Komplex számsorozatok és számsorok

Konvergensek-e a kÖvetkező komplex elemű számsorozatok, s ha igen, számítsa ki a határértéküket!

5.1.
$$z_n = \frac{n-i}{2n+i}$$

5.2.
$$z_n = \frac{n^2 - i(n^2 - 1)}{n^2}$$

5.3.
$$z_n = \frac{(n+i)^2}{n^2}$$

5.4.
$$z_n = i^n$$

5.5.
$$z_n = (1+i)^n$$

5.6.
$$z_n = \left(1 + \frac{i\pi}{n}\right)^n$$

5.7.
$$z_n = \frac{\sqrt{n} + (n-1)i}{n\pi}$$

Konvergensek-e az alábbi komplex tagú végtelen sorok? Ha igen, számítsa ki az Összegüket!

$$5.8. \sum_{n=0}^{\infty} \left(\frac{i}{2}\right)^2$$

5.9.
$$\sum_{n=0}^{\infty} \frac{1}{(1+i)^n}$$

$$5.10. \sum_{n=1}^{\infty} \left(\frac{i}{1+i}\right)^n$$

5.2. Komplex függvények értelmezése

Határozzuk meg a komplex számsíknak azon tartományát, melyet az alábbi leképezés feleltet meg a komplex sík adott tartományának! (w = f(z))

5.11.
$$f(z) = (1+i)z,$$
 $\{z : Im(z) > 0\}$

5.12.
$$f(z) = 1 + iz$$
, $\{z : Re(z) > 0 \text{ és } 0 < Im(z) < 2\}$

5.13.
$$f(z) = -iz - 1$$
, $\{z : |z| < 1\}$

5.14.
$$f(z) = (-1+i)z,$$
 $\{z: |z| > 1\}$

Határozza meg a w sík mely tartományát felelteti meg a $w=\frac{1}{z}$ leképezés a sík alábbi tartományainak:

5.15.
$$\left\{0 > Re(z) < \frac{1}{2c}\right\}$$

5.16.
$$\{Re(z) > 1, Im(z) > 0\}$$

5.17.
$$\{Im(z) > c\}$$

5.3. Komplex függvények differenciálhatósága

Vizsgálja meg, differenciálhatók-e az alábbi komplex változós függvények!

5.18.
$$w = y^3 - 3x^2y + i(x^3 - 3xy^2)$$
.

5.19.
$$w = \frac{1}{z}$$
.

5.20.
$$w = \frac{1}{z^2}$$
.

5.21.
$$w = Re(z)$$
.

5.22.
$$w = z^2$$
.

5.23.
$$w = \overline{z}^2$$
.

5.24.
$$w = 2x + xy^2i$$
.

5.25.
$$w = e^x(\cos y - i\sin y)$$
.

5.26
$$w = z^3$$
.

5.27.
$$w = x^3 - (y-1)^3 i$$
.

5.28.
$$w = 1 - iz$$
.

5.29.
$$w = |z|$$
.

5.4. Harmonikus függvények

Vizsgálja meg, harmonikusak-e a k
Övetkező függvények, s ha igen, keresse meg harmonikus társukat!

5.30.
$$u(x,y) = 2x(1-y)$$
.

5.31.
$$u(x,y) = 2x - x^3 + 3xy^2$$
.

5.32.
$$u(x,y) = \sinh x \cdot \sin y$$
.

5.33.
$$v(x,y) = e^x \cdot \sin y$$
.

5.34.
$$v(x,y) = -\sin x \cdot \sinh y$$
.

Megoldások

5.5. Komplex számsorozatok és számsorok

- **5.1** Konvergens, $\frac{1}{2}$
- 5.2 Konvergens, 1-i
- 5.3 Nem konvergens
- **5.4** Nem konvergens
- 5.5 Nem konvergens
- **5.6** Konvergens, -1
- **5.7** Konvergens, $\frac{1}{\pi}i$
- **5.8** Konvergens, $\frac{2}{5}(2+i)$
- **5.9** Konvergens, 1-i
- **5.10.** Konvergens, i

5.6. Komplex függvények értelmezése

5.11.
$$\{Im(w) > Re(w)\}$$

5.12.
$$-1 < Re(w) < 1$$
 és $Im(z) > 0$

5.13.
$$(u+1)^2 + v^2 < 1$$
 k
Örtartomány

5.14.
$$u^2 + v^2 > 2 \text{ k\"{0}}\text{rk\"{u}}\text{ls\~{o}}$$

5.15. Az
$$\{Im(w)>0\}$$
 félsík $v^2+(v+c)^2=c^2$ körön kívüli része

5.16. Az
$$\left(u-\frac{1}{2}\right)^2+v^2<\frac{1}{4}$$
 kör $\{Im(v)<0\}$ félkörének belseje

5.17.

$$\left\{ u^2 + \left(v + \frac{1}{2c} \right) < \frac{1}{4c^2} \right\}, \text{ ha } c > 0$$

$$Im(w) < 0, \text{ ha } c = 0$$

5.7. Komplex függvények differenciálhatósága

- 5.18. A függvény az egész számsíkon differenciálható.
- **5.19.** A függvény a z=0 kivételével mindenütt differenciálható.
- **5.20.** A függvény a z=0 kivételével mindenütt differenciálható.
- 5.21. A függvény sehol sem differenciálható.
- **5.22.** A függvény differenciálható.
- **5.23.** A függvény csak a z=0 pontban differenciálható.
- **5.24.** A függvény nem differenciálható.
- **5.25.** A függvény nem differenciálható.
- 5.26. A függvény differenciálható.
- **5.27.** A függvény csak a z = i pontban differenciálható.
- **5.28.** A függvény differenciálható.
- **5.29.** A függvény nem differenciálható.

5.8. Harmonikus függvények

- **5.30.** Harmonikus, $v(x, y) = x^2 (1 y)^2$.
- **5.31.** Harmonikus, $v(x, y) = 2y 3x^2y + y^3$.
- **5.32.** Harmonikus, $v(x, y) = -\cosh x \cdot \cos y$.
- **5.33.** Harmonikus, $u(x,y) = e^x \cdot \cos y$.
- **5.34.** Harmonikus, $u(x, y) = \cos x \cdot \cosh y$.