On Harman's "Unreachable Points" Puzzle

Peter Richtárik

February 3, 2010

Abstract

In his blog post "Unreachable points", Radoslav Harman posed the following puzzle:

"In the 2D plane there is a circular disk D and a point a inside it. For each point b on the boundary of D let T_b be the intersection of D and the line passing through the midpoint of the line segment [a,b] and perpendicular to it. What is the set of points of D which do not lie on any of the segments T_b ?"

In this short note we give a simple proof of a general version of this puzzle and add a few more insights. Our solution approach highlights the interplay between geometry, convex analysis, matrix theory and optimization, and is perhaps suitable as an exercise for graduate students.

Figure 1: The white shape inside, the set of unreachable points, is an ellipsoid whose center is the midpoint between a and the center of the circle. It lies inside the disk if a does. It is analytically described by Theorems 1 and 6 in this note.

We will assume without loss of generality that D is the unit Euclidean ball in \mathbb{R}^n . In the first result we show that the set of unreachable points is a level set of a certain simple convex function: norm perturbed by a linear term.

¹http://radoslav-harman.blogspot.com/2010/02/nedosiahnutelne-body.html

Theorem 1 (Level Set). Let $a \in \mathbb{R}^n$ with $||a|| \leq 1$. Furthermore, for $b \in \mathbb{R}^n$ let

$$T_a(b) = \{x \in \mathbf{R}^n : \langle x - \frac{1}{2}(a+b), a-b \rangle = 0\}.$$

Then the set of points unreachable by any of the hyperplanes $T_a(b)$ for ||b|| = 1 is given by

$$S_a \stackrel{def}{=} \bigcap_{\|b\|=1} [T_a(b)]^c = \left\{ x \in \mathbf{R}^n : \|x\| - \langle a, x \rangle < \frac{1 - \|a\|^2}{2} \right\},\,$$

where $[T_a(b)]^c = R^n \backslash T_a(b)$, i.e., the complement of $T_a(b)$ in \mathbb{R}^n .

Proof. It is easy to see that for ||b|| = 1 we have

$$T_a(b) = \left\{ x \in \mathbf{R}^n : \langle b, x \rangle = \langle a, x \rangle + \frac{1 - \|a\|^2}{2} \right\}. \tag{1}$$

Let us now fix x and ask whether there exists b of unit norm such that $x \in T_a(b)$. It can be shown using a continuity argument together with the Cauchy-Schwarz inequality that the function $b \mapsto \langle b, x \rangle$ maps the unit sphere onto the interval [-||x||, ||x||]. This, together with (1) implies such b exists if and only if

$$-\|x\| \le \langle a, x \rangle + \frac{1 - \|a\|^2}{2} \le \|x\|. \tag{2}$$

Since $\langle a, x \rangle + ||x|| \ge -||a|||x|| + ||x|| = ||x||(1 - ||a||) \ge 0 \ge (||a||^2 - 1)/2$, the left-hand side inequality in (2) is always satisfied. Therefore, x does not lie in $T_a(b)$ for any b of unit norm precisely when the right-hand side inequality in (2) is violated, which proves the theorem. \square

Corollary 2. If ||a|| < 1, then S_a is a convex set containing 0 and a. If ||a|| = 1, then $S_a = \emptyset$.

Proof. It follows from Theorem 1 that S_a is a level set of the convex function $f(x) = ||x|| - \langle a, x \rangle$ and hence it is convex. That $0 \in S_a$ is trivial. To show that $a \in S_a$ it is enough to note that ||a|| < (1 + ||a||)/2 and multiply both sides by 1 - ||a||. If ||a|| = 1, then all $x \in S_a$ must satisfy $||x|| - \langle a, x \rangle < 0$. Since $||x|| - \langle a, x \rangle \ge ||x|| - ||a|| ||x|| = 0$, S_a must be empty.

Since S_a is empty if a has norm one, from now on we will assume that ||a|| < 1.

Theorem 3 (Enclosing Ball 1). All points of S_a have norm strictly less than $\frac{1}{2}(1 + ||a||)$. The bound is tight.

Proof. Choose $x \in S_a$ and let x = tx', where $t \ge 0$ and ||x'|| = 1. Then from Theorem 1 we know that $t||x'|| - t\langle a, x' \rangle < \frac{1}{2}(1 - ||a||^2)$, and consequently

$$||x|| = t < \frac{1 - ||a||^2}{2(1 - \langle a, x' \rangle)} \le \frac{1 - ||a||^2}{2(1 - ||a||)} = \frac{1 + ||a||}{2}.$$

For any positive ϵ small enough so that $t = \frac{1}{2}(1 + ||a||) - \epsilon > 0$, let $x_{\epsilon} = ta/||a||$. Note that

$$||x_{\epsilon}|| - \langle a, x_{\epsilon} \rangle = t - t||a|| = \frac{1}{2}(1 - ||a||^2) - \epsilon(1 - ||a||) < \frac{1}{2}(1 - ||a||^2),$$

and hence by Theorem 1, $x_{\epsilon} \in S_a$. If we let $\epsilon \to 0$, then $||x_{\epsilon}|| \to \frac{1}{2}(1+||a||)$.

The following is a technical result which we will use in proving that S_a is an ellipsoid.

Lemma 4. Let a and $x \in \mathbf{R}^n$ satisfy $(a, x) + (1 - \|a\|^2)/2 < 0$. Then $\|x\| > -(a, x) + (\|a\|^2 - 1)/2$.

Proof. Let $\alpha = \langle a, x \rangle$. Then $-\alpha = -\langle a, x \rangle \leq \|a\| \|x\|$ and hence $\|x\| \geq -\alpha/\|a\|$. It therefore suffices to show that $-\alpha/\|a\| > -\alpha + (\|a\|^2 - 1)/2$, which can be simplified to $\alpha < \frac{1}{2} \|a\| (1 + \|a\|)$. However, we know by assumption that $\alpha < (\|a\|^2 - 1)/2$ and therefore it is enough to prove that $\|a\|^2 - 1 \leq \|a\| (1 + \|a\|)$, which is straightforward.

Lemma 5. The following hold:

(i)
$$I_n - aa^T \succ 0$$
, and

(ii)
$$\frac{I_n - aa^T}{1 - ||a||^2} \succeq I_n$$
.

Proof. Since $1 - \|a\|^2 > 0$ and $I_n > 0$, the first statement follows from the second. Inequality (ii) is equivalent to $I_n - aa^T \succeq (1 - \|a\|^2)I_n$, which in is turn equivalent to $\|a\|^2I_n \succeq aa^T$. We thus only need to show that for all vectors $x \in \mathbf{R}^n$, $\|a\|^2x^TI_nx \geq x^Taa^Tx$, which follows from the Cauchy-Schwarz inequality.

Theorem 6 (Ellipsoid). The set of unreachable points S_a is a full-dimensional ellipsoid given by

$$S_a = \{ x \in \mathbf{R}^n : (x - v)^T B(x - v) < r^2 \},$$

where $B = I_n - aa^T > 0$ governs its shape, its center is v = a/2 and the radius is $r = \frac{1}{2}\sqrt{1-\|a\|^2}$.

Proof. We know from Theorem 1 that $S_a = \{x \in \mathbf{R}^n : ||x|| < \langle a, x \rangle + (1 - ||a||^2)/2\}$. Lemma 4 says that we can square both sides of this inequality without having to worry that we have introduced new solutions. Letting $t = ||a||^2$, we have

$$S_{a} = \{x \in \mathbf{R}^{n} : x^{T}x < \langle a, x \rangle^{2} + (1-t)^{2}/4 + \langle a, x \rangle(1-t)\}$$

$$= \{x \in \mathbf{R}^{n} : x^{T}(I_{n} - aa^{T})x < 2\langle(1-t)a/2, x\rangle + (1-t)^{2}/4\}$$

$$= \{x \in \mathbf{R}^{n} : x^{T}Bx < 2x^{T}Bv - v^{T}Bv + v^{T}Bv + (1-t)^{2}/4\}$$

$$= \{x \in \mathbf{R}^{n} : (x-v)^{T}B(x-v) < v^{T}Bv + (1-t)^{2}/4\}$$

$$= \{x \in \mathbf{R}^{n} : (x-v)^{T}B(x-v) < v^{T}Bv + (1-t)^{2}/4\}$$

We will now show that S_a is tightly circumscribed by the ball with center a/2 and radius $\frac{1}{2}$.

Theorem 7 (Enclosing Ball 2). The distance of all points of S_a from a/2 is strictly less than $\frac{1}{2}$. This bound is tight.

Proof. Let H be the open ball with center v = a/2 and radius $\frac{1}{2}$. Then

$$C = \{x \in \mathbb{R}^n : (x - v)^T [4I_n](x - v) < 1\}.$$

From Theorem 6 we know that

$$S_a = \left\{ x \in \mathbb{R}^n : (x - v)^T \left[\frac{4(I_n - aa^T)}{1 - ||a||^2} \right] (x - v) < 1 \right\}.$$

Inclusion $S_a \subseteq C$ now follows from part (ii) of Lemma 5.

To establish tightness, let $x_{\epsilon} \in S_a$ be as in the proof of Theorem 3. If we let $\epsilon \to 0$, then

$$\left\| x_{\epsilon} - \frac{1}{2}a \right\| = \left(\frac{1}{2} (1 + \|a\|) - \epsilon - \frac{1}{2} \|a\| \right) \to \frac{1}{2}.$$

In the next result we will show that all the hyperplanes $T_a(b)$, for b of unit norm, are supporting to S_a . We will do so by studying the behavior of the linear function $x \mapsto \langle b - a, x \rangle$ on $T_b(a)$ and on S_a . Note that this function is constant on $T_a(b)$, achieving on it the value $\langle b - a, \frac{a+b}{2} \rangle = \frac{1}{2}(1 - ||a||^2)$. In particular, we will prove that the supremum of this function over S_a is also equal to $\frac{1}{2}(1 - ||a||^2)$, and we give a formula for the intersection of $T_a(b)$ and the closure of S_a .

Theorem 8 (Supporting Hyperplanes). If b is of unit norm, then the hyperplane $T_a(b)$ is a supporting hyperplane to S_a and, moreover,

$$\operatorname{cl} S_a \cap T_a(b) = \left\{ \frac{1 - \|a\|^2}{2 - 2\langle a, b \rangle} b \right\}.$$

Proof. Using the characterization of S_a given in Theorem 6, it can be shown using the Karush-Kuhn-Tucker optimality conditions that the unique optimal point x^* and optimal value Opt of the problem

$$Opt \stackrel{\text{def}}{=} \max_{x \in \operatorname{cl} S_a} \langle c, x \rangle$$

are given by

$$x^* = v + r \frac{B^{-1}c}{\|c\|_R^*} \tag{3}$$

and

$$Opt = \langle c, v \rangle + r \|c\|_B^*, \tag{4}$$

where $v=a/2, r=\frac{1}{2}\sqrt{1-\|a\|^2}$ and $B=I_n-aa^T$ are as in Theorem 6, and $\|c\|_B^*=(c^TB^{-1}c)^{1/2}$. Let us first compute $y=B^{-1}(b-a)$. Since $B=I_n-aa^T$, we will guess that y is of the form $b-\alpha a$, and then compute α . Since $By=y-aa^Ty=b-\alpha a-\langle a,b\rangle a+\alpha \|a\|^2a$, it is enough to solve for α from $\alpha+\langle a,b\rangle-\alpha \|a\|^2=1$. We get $\alpha=(1-\langle a,b\rangle)/(1-\|a\|^2)$, whence

$$B^{-1}(b-a) = b - \frac{1 - \langle a, b \rangle}{1 - \|a\|^2} a = \frac{b - \|a\|^2 b - a + \langle a, b \rangle a}{1 - \|a\|^2},$$
 (5)

and

$$||b - a||_B^* = \sqrt{(b - a)^T B^{-1} (b - a)} = \frac{1 - \langle a, b \rangle}{\sqrt{1 - ||a||^2}}.$$
 (6)

We now have all the ingredients needed to evaluate x^* and Opt:

$$x^* = \frac{a}{2} + \frac{1}{2}\sqrt{1 - \|a\|^2} \frac{\frac{b - \|a\|^2 b - a + \langle a, b \rangle a}{1 - \|a\|^2}}{\frac{1 - \langle a, b \rangle}{\sqrt{1 - \|a\|^2}}} = \frac{a}{2} + \frac{1}{2} \frac{b - \|a\|^2 b - a + \langle a, b \rangle a}{1 - \langle a, b \rangle} = \frac{1 - \|a\|^2}{2 - 2\langle a, b \rangle} b,$$

$$Opt = \langle b - a, \frac{1}{2}a \rangle + \frac{1}{2}\sqrt{1 - \|a\|^2} \frac{1 - \langle a, b \rangle}{\sqrt{1 - \|a\|^2}} = \frac{1}{2}(1 - \|a\|^2).$$

The rest follows from the discussion preceding this theorem.

We are now ready to prove that the points 0 and a are the foci of the ellipsoid S_a .

Corollary 9 (Foci). The points 0 and a are the foci of the ellipsoid S_a . In particular,

$$S_a = \{x \in \mathbf{R}^n : ||x|| + ||x - a|| < 1\}.$$

Proof. It is enough to show that for all points x on the boundary of S_a we have ||x|| + ||x-a|| = 1. Let x be any point on the boundary of S_a . It can be shown easily that 0 lies in the interior of S_a and hence $x \neq 0$. Let b = x/||x|| and consider the point z obtained as the intersection of $T_a(b)$ and $cl S_a$. Theorem 8 tells us that x = tb for some t > 0. Notice that because also $x \in T_b(a)$, the right triangles $[x, b, \frac{1}{2}(a+b)]$ and $[x, a, \frac{1}{2}(a+b)]$ are identical, whence ||a-x|| = ||b-x||. Finally,

$$||x|| + ||x - a|| = ||x|| + ||x - b|| = ||b|| = 1.$$