scRNA-seq_S100A9:

This violin plot shows the log-normalized expression levels of the gene S100A9 across four cohorts of patients using single-cell RNA-seq data from peripheral blood mononuclear cells (PBMCs):

Cohort	Violin Shape	Median Expression (Box center)	Overall Height	Interpretation
Bac-SEP (Tallest & Widest	Median around ~5.2	Max > 7	Very high expression across many cells.
ICU-SEP (Purple)	Slightly shorter but wide	Median ~4.5	Max ~7	Moderately high expression, close to Bac-SEP.
Control (Blue)	Narrow, low	Median ~2-3	Max ~5	Low expression. Most cells have minimal S100A9 activity.
ICU-NoSEP (Moderate-to-high	Median ~4.5	Max < 5	Significant expression.

S100A9 (also known as calgranulin B or MRP14) is a calcium-binding protein predominantly expressed in neutrophils and monocytes. It often forms a heterodimer with S100A8 (together known as calprotectin).

Biological role:

Acts as a damage-associated molecular pattern (DAMP).

Amplifies inflammatory responses by binding to receptors like TLR4 and RAGE.

Plays a central role in sepsis, infection, autoimmune disease, and cancer.

Facilitates leukocyte recruitment and contributes to antimicrobial defense.

Overexpression of S100A9 is strongly linked to:

- Systemic inflammation
- Sepsis severity
- Innate immune activation

The violin plot demonstrates that S100A9 expression is markedly elevated in bacterial sepsis (Bac-SEP) and ICU-related sepsis (ICU-SEP), reflecting its role as a key inflammatory mediator. Interestingly, moderate upregulation in ICU-NoSEP suggests that critical illness alone, even in the absence of sepsis, can stimulate S100A9. These findings support its **potential as a biomarker for immune activation** and disease severity in sepsis-related contexts.