1 Relations

Definition:		
A	is any subset of the Cartesian product $A \times B$	3. If R is a relation
from set A to set B and (x, y)	is an element of R , we say	(notation: $x R y$).
A relation from a set S to itse	lf is called a	

Example: Suppose Math majors need to take Differential Calculus, Ordinary Differential Equations, and Linear Algebra; Computer Science majors need to take Differential Calculus and Discrete Math; and Physics majors need to take Differential Calculus and Ordinary Differential Equations. For $A = \{\text{Math, Computer Science, Physics}\}\$ and $B = \{\text{Differential Calculus, Ordinary Differential Equations, Linear Algebra, Discrete Math}\}\$ what

 $B = \{ \text{Differential Calculus, Ordinary Differential Equations, Linear Algebra, Discrete Math} \}, what is the relation <math>R$ representing which majors need to take which classes?

Example: Let $S = \{1, 2, 3, 4\}$. Define a relation R on S by letting x R y mean x > y. Which elements are related to each other?

Definition:

A relation R on a set S may have any of the following special properties:

- (a) If for each $x \in S$, x R x is true, then R is called _____.
- (b) If y R x is true whenever x R y is true, then R is called ______.
- (c) If x R z is true whenever x R y and y R z are both true, then R is called ______.

Example: Revisit relation R on S where x R y means x > y. Is the relation reflexive, symmetric, and/or transitive?

Example: Suppose S is the set of real numbers and, for $x, y \in S$, define x R y to mean that $x^2 = y^2$. Determine whether this relation is reflexive, symmetric, and/or transitive.

2 Equivalence Relations

<u>Defi</u>	<u>inition: </u>											
A	relation	on	S	that	is	reflexive,	symmetric,	and	transitive	is	called	an
				<u>.</u>								

Example: Have any of the examples up to this point been equivalence relations? If so, which?

Definition:

An integer greater than 1 is called _____ if its only positive integer divisors are itself and 1.

Example: Determine whether the following are prime or not prime:

- (a) 13
- (b) 12
- (c) -53
- (d) 2.5
- (e) 57

Example: On the set of integers greater than 1, define x R y to mean that x has the same number of distinct (not counting repeats) prime divisors as y. Show that R is an equivalence relation on S.

x is called the

Definition:
If R is an equivalence relation on a set S and $x \in S$, the set of elements of S that are related to

containing x (notation: [x]).

Example: Suppose S is the positive integers. For $x, y \in S$, define x R y to mean that x and y have the same parity (both odd or both even). Describe the equivalence class containing 7. Describe the equivalence class containing 14. How many distinct equivalence classes of R exist?

Example: Suppose S is the set of real numbers and for $x, y \in S$, x R y means $x^2 = y^2$. Describe the equivalence class containing 7. Describe the equivalence class containing 14. How many distinct equivalence classes of R exist?

Example: Let S be the set of ordered pairs of positive integers. Define R on S so that (x_1, x_2) $R(y_1, y_2)$ means that $x_1 + y_2 = y_1 + x_2$. Describe the equivalence class containing z = (5, 8). How many distinct equivalence classes of R exist?

Theorem 2.3:

Let R be an equivalence relation on set S.

- (a) If x and y are elements of S, then x is related to y by R if and only if [x] = [y].
- (b) Two equivalence classes of R are either equal or disjoint.

Proof summary:

Note:

One standard example of an equivalence relation is equality.

Definition:

The equivalence classes of an equivalence relation R on set S divide S into disjoint subsets. This family of subsets of S is called a _____ of S and has the following properties:

- (a) No subset is empty.
- (b) Each element of S belongs to some subset.
- (c) Two distinct subsets are disjoint.

Example: Suppose $A = \{1, 3, 5, 7, 9\}, B = \{8\}, \text{ and } C = \{2, 4, 6\}.$

- (a) Is $\mathcal{P} = \{A, B, C\}$ a partition of $S = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$?
- (b) Is $\mathcal{P} = \{A, B, C\}$ a partition of $S = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$?

Theorem 2.4:

- (a) An equivalence relation R gives rise to a partition \mathcal{P} in which the members of \mathcal{P} are the equivalence classes of R.
- (b) Conversely, a partition \mathcal{P} induces an equivalence relation R in which two elements are related by R whenever they lie in the same member of \mathcal{P} . Moreover, the equivalence classes of this relation are the members of \mathcal{P} .

What does this mean?

Example: Write the equivalence relation on $\{1, 2, 3, 4, 5\}$ that is induced by the partition with $\{2, 3\}, \{1, 4\}, \{5\}$ as its partitioning subsets.

Example: Let $A = \{1, 2, 3, 4, 5\}$ and suppose that R is an equivalence relation on A. Suppose we also know 1R3, 4R5, and 2R5 are true and 2R3 is not true. Determine the following:

(a) Is 4R2 true? Why or why not?

(b) Is 1R5 true? Why or why not?

(c) What is the equivalence class [4]?