Mathematical and Logical Foundations of Computer Science

Lecture 10 - Propositional Logic (Wrap-up)

Vincent Rahli

(some slides were adapted from Rajesh Chitnis' slides)

University of Birmingham

Where are we?

- Symbolic logic
- ► Propositional logic
- ▶ Predicate logic

Today

- Syntax of propositional logic
- Natural Deduction
- Classical reasoning
- Semantics
- Equivalences
- Provability/Validity

Syntax & Informal Semantics

Syntax:

$$P ::= a \mid P \land P \mid P \lor P \mid P \to P \mid \neg P$$

Lower-case letters are atoms: p, q, r, etc.

Upper-case letters are (meta-)variables: P, Q, R, etc.

Two special atoms:

- ▶ T which stands for True
- which stands for False

We also introduced four connectives:

- ▶ $P \land Q$: we have a proof of both P and Q
- $P \vee Q$: we have a proof of at least one of P and Q
- ▶ $P \rightarrow Q$: if we have a proof of P then we have a proof of Q
- ▶ $\neg P$: stands for $P \rightarrow \bot$

Syntax

Example of propositions:

- "if x is a number then it is even or odd"
 - ightharpoonup atom p: "x is a number"
 - ▶ atom *q*: "*x* is even"
 - ightharpoonup atom r: "x is odd"
 - $p \rightarrow q \vee r$
- "if x is even then it is not odd"
 - ▶ atom p: "x is even"
 - ightharpoonup atom q: "x is odd"
 - $p \to \neg q$
- "if a = b and b = c then a = c"
 - \triangleright atom p: "a = b"
 - ▶ atom q: "b = c"
 - ightharpoonup atom r: "a = c"
 - $(p \land q) \to r$
 - or equivalently: $p \rightarrow q \rightarrow r$

Precedence & Associativity

Precedence: in decreasing order of precedence \neg , \wedge , \vee , \rightarrow .

For example:

- ▶ $\neg P \lor Q$ means $(\neg P) \lor Q$
- $P \wedge Q \vee R$ means $(P \wedge Q) \vee R$
- $P \wedge Q \rightarrow Q \wedge P$ means $(P \wedge Q) \rightarrow (Q \wedge P)$

Associativity: all operators are right associative

For example:

- $P \lor Q \lor R$ means $P \lor (Q \lor R)$.
- $P \wedge Q \wedge R$ means $P \wedge (Q \wedge R)$.
- ▶ $P \to Q \to R$ means $P \to (Q \to R)$.

However use parentheses around compound formulas for clarity.

Constructive Natural Deduction

Constructive Natural Deduction rules:

$$\frac{A}{A} \stackrel{\vdots}{\vdots} \stackrel{B}{\longrightarrow} 1 \stackrel{[}{\longrightarrow} I \stackrel{A}{\longrightarrow} B \stackrel{A}{\longrightarrow} I \stackrel{}{\longrightarrow} E \stackrel{A}{\longrightarrow} E \stackrel{A}{\longrightarrow}$$

Classical Reasoning

Classical Natural Deduction includes all the Constructive Natural Deduction rules, plus:

$$\frac{}{A \vee \neg A} \quad [LEM] \qquad \frac{\neg \neg A}{A} \quad [DNE]$$

Semantics

A valuation ϕ assigns **T** or **F** with each atom

A valuation is **extended** to all formulas as follows:

- $\phi(\top) = \mathbf{T}$
- $\phi(\perp) = \mathbf{F}$
- $\phi(A \vee B) = \mathbf{T}$ iff either $\phi(A) = \mathbf{T}$ or $\phi(B) = \mathbf{T}$
- $\phi(A \wedge B) = \mathbf{T}$ iff both $\phi(A) = \mathbf{T}$ and $\phi(B) = \mathbf{T}$
- $\phi(A \to B) = \mathbf{T}$ iff $\phi(B) = \mathbf{T}$ whenever $\phi(A) = \mathbf{T}$
- \bullet $\phi(\neg A) = \mathbf{T}$ iff $\phi(A) = \mathbf{F}$

Satisfaction & validity:

- Given a valuation ϕ , we say that ϕ satisfies A if $\phi(A) = \mathbf{T}$
- A is satisfiable if there exists a valuation ϕ on atomic propositions such that $\phi(A)={\bf T}$
- A is valid if $\phi(A) = T$ for all possible valuations ϕ

Truth Tables

We can use **truth tables** to check whether propositions are valid:

A	B	$A \vee B$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

A	B	$A \wedge B$
T	Т	T
T	F	F
F	Т	F
F	F	F

P	Q	$P \to Q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	T

A	$\neg A$
T	F
F	Т

A proposition is (semantically) valid if the last column in its truth table only contains ${\sf T}$

Validity

These techniques can be used to prove the validity of propositions:

- a Natural Deduction proof (syntactic validity)
- ▶ a **truth table** with only **T** in the last column (semantical validity)

We saw that:

- ▶ a formula A is provable in Natural Deduction
- ► iff A is semantically valid

This is true about the classical versions of these deduction systems

Logical equivalences

Let $A \leftrightarrow B$ be defined as $(A \to B) \land (B \to A)$

- ▶ it means that A and B are logically equivalent
- this is called a "bi-implication"
- ▶ read as "A if and only if B"

We will now prove:

- ▶ Distributivity of \land over \lor : $(A \land (B \lor C)) \leftrightarrow ((A \land B) \lor (A \land C))$
- ▶ Double negation elimination as an equivalence: $\neg \neg A \leftrightarrow A$

You can also try proving the distributivity of \vee over \wedge : $(A \vee (B \wedge C)) \leftrightarrow ((A \vee B) \wedge (A \vee C))$

Provide a constructive Natural Deduction proof of the following equivalence: $(A \land (B \lor C)) \leftrightarrow ((A \land B) \lor (A \land C))$

Left-to-right implication:

$$\frac{A \wedge (B \vee C)}{A \wedge (B \vee C)} \stackrel{1}{1} \qquad \frac{A \wedge (B \vee C)}{A \wedge (B \vee C)} \stackrel{1}{1} \qquad \frac{A \wedge (B \vee C)}{A \wedge (B \vee C)} \stackrel{1}{1} \qquad \frac{A \wedge B}{A \wedge B} \stackrel{[\wedge I]}{[\vee I_L]} \qquad \frac{A \wedge C}{A \wedge B \vee (A \wedge C)} \stackrel{[\vee I_L]}{[A \wedge B) \vee (A \wedge C)} \stackrel{[\vee I_R]}{[A \wedge B) \vee (A \wedge C)} \qquad \frac{A \wedge C}{(A \wedge B) \vee (A \wedge C)} \stackrel{[\vee I_R]}{[\vee E]} \qquad \frac{(A \wedge B) \vee (A \wedge C)}{(A \wedge (B \vee C)) \rightarrow ((A \wedge B) \vee (A \wedge C))} \qquad 1 \stackrel{[\vee E]}{[\to I]}$$

Right-to-left implication:

where Π_1 is: where Π_2 is:

$$\begin{array}{ccc} \overline{A \wedge B} & 2 & \overline{A \wedge C} & 3 \\ \overline{A} & [\wedge E_L] & \overline{A} & [\wedge E_L] \\ \overline{(A \wedge B) \to A} & 2 & [\to I] & \overline{(A \wedge C) \to A} & 3 & [\to I] \end{array}$$

where Π_3 is:

where Π_4 is:

$$\begin{array}{cccc} & \overline{A \wedge B} & 4 & \overline{A \wedge C} & 5 \\ & \overline{B} & [\wedge E_R] & \overline{A \wedge C} & [\wedge E_R] \\ & \overline{B \vee C} & [\vee I_L] & \overline{B \vee C} & [\vee I_R] \\ & \overline{(A \wedge B) \to (B \vee C)} & 4 & [\to I] & \overline{(A \wedge C) \to (B \vee C)} & 5 & [\to I] \end{array}$$

Prove that $(A \land (B \lor C)) \leftrightarrow ((A \land B) \lor (A \land C))$ is valid using a truth table

A	B	C	$B \vee C$	$A \wedge (B \vee C)$	$A \wedge B$	$A \wedge C$	$(A \wedge B) \vee (A \wedge C)$
Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	Т	Т	F	Т
Т	F	Т	Т	Т	F	Т	Т
Т	F	F	F	F	F	F	F
F	Т	Т	Т	F	F	F	F
F	Т	F	Т	F	F	F	F
F	F	Т	Т	F	F	F	F
F	F	F	F	F	F	F	F

The 5th and last columns are identical, so the two formulas are equivalent

Provide a classical Natural Deduction proof of the following equivalence: $\neg \neg A \leftrightarrow A$

$$\frac{\frac{}{\neg A} \stackrel{1}{\xrightarrow{}} \stackrel{1}{\xrightarrow{}} \stackrel{DNE}{\xrightarrow{}} \stackrel{1}{\xrightarrow{}} \stackrel{1}\xrightarrow{}} \stackrel{1}{\xrightarrow{}} \stackrel{$$

Prove that $\neg \neg A \leftrightarrow A$ is valid using a truth table

A	$\neg A$	$\neg \neg A$
Т	F	Т
F	Т	F

The 1st and last columns are identical, so the two formulas are equivalent

Conclusion

What did we cover today?

- Syntax of propositional logic
- Natural Deduction
- Classical reasoning
- Semantics
- Equivalences
- Provability/Validity

Next time?

Predicate logic (syntax)