

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Topología II

Los Del DGIIM, losdeldgiim.github.io

Jesús Muñoz Velasco

Granada, 2023-2024

Índice general

0.1.	Conexión	-
0.2.	Conexión por arcos	(

Tema 0. Conexión por arcos

0.1. Conexión

Notación. Notaremos por e.t al espacio topológico (X, \mathcal{T}) o diremos X es un e.t.

Definición 0.1. Se dice que un e.t X es no conexo si existen U y V abiertos disjuntos y no vacíos tales que $X = U \cup V$.

Proposición 0.1. Dado un e.t. X equivalen las siguientes afirmaciones:

- (i) X es conexo.
- (ii) Los únicos subconjuntos de X que son abiertos y cerrados a la vez son el vacío y el total.
- (iii) Los únicos subconjuntos de X con frontera vacía son el vacío y el total.

Teorema 0.2. El ser conexo se conserva por aplicaciones continuas. En particular, ser conexo es una propiedad topológica (se conserva por homeomorfismos).

Teorema 0.3. La unión de una colección de subconjuntos conexos que tienen un punto común de un e.t. X es también conexa.

Teorema 0.4. Si A es un subconjunto del e.t. X y A es conexo, entonces dado B con $A \subset B \subset \overline{A}$, entonces se tiene que B también es conexo. En particular, la adherencia de un conexo siempre es un conjunto conexo.

Teorema 0.5. Dados dos espacios topológicos X, Y se cumple que $X \times Y$ es conexo (con la topología producto) si y solo si X e Y son conexos.

Teorema 0.6. Los conjuntos conexos de \mathbb{R} con la topología usual son exactamente los intervalos (incluyendo los puntos).

Definición 0.2. Dados un e.t. X y un punto x_0 se define la componente conexa de x_0 es X como el mayor conexo de X que contiene a x_0

Teorema 0.7. Las componentes conexas de un e.t. X forman una partición de X es conjuntos conexos maximales y cerrados.

0.2. Conexión por arcos

Definición 0.3. Un **arco** (o camino) en un espacio topológico X es una aplicación continua $\alpha : [0,1] \to X$. Si además $\alpha(0) = \alpha(1)$ diremos que α es un lazo.

Diremos que un arco $\alpha:[0,1]\to X$ une x con y si se verifica que $\alpha(0)=x$ y $\alpha(1)=y$. Si α es un arco, diremos que está basado en x (o su punto base es x) si $\alpha(0)=x=\alpha(1)$.

Denotaremos por

$$\Omega(X; x, y) = \{\alpha : [0, 1] \to X \text{ continua } : \alpha(0) = x, \quad \alpha(1) = y\}$$

al **conjunto de arcos** que unen x con y. Denotaremos además por

$$\Omega(X;x) = \{\alpha : [0,1] \to X \text{ continua } : \alpha(0) = x = \alpha(1)\}$$

al **conjunto de lazos** basados en x.

Ejemplo.

1. Dados un e.t. X y un punto $x_0 \in X$ siempre se tiene que

$$\varepsilon_{x_0}: [0,1] \to X$$

$$t \mapsto x_0$$

es un lazo basado en x_0 al que llamaremos **arco constante**. De hecho, si X tiene la topología discreta, entonces los únicos arcos que hay en X son los arcos constantes.

Demostración. Si X tiene la topología discreta, entonces como α es continua $\alpha^{-1}(\{x_0\})$ será abierto y cerrado y por tanto $\alpha^{-1}(\{x_0\}) \in \{\emptyset, X\}$ por ser X conexo.

2. Sean $x, y, z \in X$, $\alpha : [0, 1] \to X$ un arco uniendo x con y y $\beta : [0, 1] \to X$ un arco uniendo y con z. Buscaremos ahora un arco formado a partir de estos dos de la siguiente forma:

$$\alpha*\beta:[0,1]\to X:(\alpha*\beta)(t)=\left\{\begin{array}{ll}\alpha(2t) & \text{si} \quad 0\leqslant t\leqslant 1/2\\\beta(2t-1) & \text{si} \quad 1/2\leqslant t\leqslant 1\end{array}\right.$$

Entonces $\alpha * \beta$ es continua ya que $(\alpha * \beta)_{|_{[0,1/2]}}$ y $(\alpha * \beta)_{|_{[1/2,1]}}$ lo son y para t=1/2 se tiene que

$$\alpha\left(2\cdot\frac{1}{2}\right) = \alpha(1) = \beta(0) = \beta\left(2\cdot\frac{1}{2} - 1\right)$$

con $\left[0,\frac{1}{2}\right]$ y $\left[\frac{1}{2},1\right]$ cerrados. Aplicando el lema de pegado¹ tenemos que $\alpha*\beta$ es continua.

¹visto en Topología I

3. Si $\alpha:[0,1]\to X$ es un arco uniendo x con y, entonces

$$\tilde{\alpha}: [0,1] \to X$$

$$t \mapsto \alpha(1-t)$$

es un arco que une y con x.

Definición 0.4. Decimos que un e.t. X es **arcoconexo** (o **conexo por arcos**) si para cualesquiera $x, y \in X$ existe un arco en X que une el punto x con el punto y.

Si X es un e.t. y $A \subset X$, diremos que A es arcoconexo si A es arcoconexo con la topología de inducida de X.

Teorema 0.8. Todo espacio topológico arcoconexo es conexo.

Demostración. Dado $x_0 \in X$ fijo y otro punto $x \in X$ cualquiera, sabemos que existe $\alpha : [0,1] \to X$ un arco tal que $\alpha(0) = x_0$ y $\alpha(1) = x$. En particular, como el intervalo [0,1] es conexo y α es continua, entonces se tiene que $\alpha([0,1])$ es conexo y podremos escribir

$$X = \bigcup_{x \in X} \{x\} \subseteq \bigcup_{x \in X} \alpha_x([0, 1]) \in X \Rightarrow X = \bigcup_{x \in X} \alpha_x\{[0, 1]\}$$

y además $x_0 \in \bigcap_{x \in X} \alpha_x\{[0,1]\}$ por lo que X es conexo (por el lema del peine). \square

Ejemplo. Veamos que la otra implicación no es cierta en general. Para ello consideramos los siguientes conjuntos:

$$X_0 = \{1\} \times [0, 1]$$
 y $X_n = [0, 1] \times \left\{\frac{1}{n}\right\}, n \in \mathbb{N}$

Llamamos $X=\{(0,0)\}\cup\left(\bigcup_{n\in\mathbb{N}\cup\{0\}}X_n\right)$ y queremos ver que X es conexo pero no es arcoconexo.

Si tomamos la segunda parte de esta unión, es decir,

$$Y = \bigcup_{n \in \mathbb{N} \cup \{0\}} X_n$$

tenemos que Y es es conexo porque es unión de los X_n que son todos conexos y que intersecan con X_0 . Entonces, como $Y \subset X \subset \overline{Y}$ tenemos que X es conexo. Veamos sin embargo que X no es arcoconexo.

Para ello vamos a demostrar que si $\alpha:[0,1]\to X:\alpha$ es continua con $\alpha(0)=(0,0)$, entonces $\alpha(t)=(0,0)$ para todo $t\in[0,1]$.

Podemos escribir la curva como $\alpha(t) = (x(t), y(t)) \in \mathbb{R}^2$. Como $\alpha(0) = (0, 0)$, si tomamos $((-1/2, 1/2) \times (-1/2, 1/2)) \cap X$ un abierto que contiene al origen, entonces $\exists \varepsilon > 0$ tal que $\alpha([0, \varepsilon)) \subseteq ((-1/2, 1/2) \times (-1/2, 1/2)) \cap X$ por ser α continua. Como

y(t) es continua y se tiene que $y([0,\varepsilon))\subseteq\{0\}\cup\left(\bigcup_{n>2}\left\{\frac{1}{n}\right\}\right)$. Por el teorema del valor intermedio tenemos que $y([0,\varepsilon))=\{0\}$ por lo que $\alpha([0,\varepsilon))=\{(0,0)\}$. De esta forma hemos probado que no hay ningún arco que conecte (0,0) con un punto distinto (el único arco es el constante).

Teorema 0.9. Si $A \subseteq \mathbb{R}^n$ es estrellado, entonces A es arcoconexo.

Demostración. Como A es estrellado existe un $x_0 \in A$ tal que para cualquier $x \in A$, el segmento que los une, $(1-t)x + tx_0 \in A$ para todo $t \in [0,1]$ y entonces $\alpha(t) = (1-t)x + tx_0$ es una curva continua uniendo x con x_0 . Dados dos puntos cualesquiera $x, y \in A$ se tiene que $\alpha_x * \tilde{\alpha}_y$ es una curva continua que une x con y.

Corolario 0.9.1. Cualquier conjunto A de \mathbb{R}^n convexo es arcoconexo. Por ejemplo, las bolas abiertas o las bolas cerradas de \mathbb{R}^n .

Corolario 0.9.2. En \mathbb{R} coinciden los conjuntos conexos y arcoconexos (son solo los intervalos).

Teorema 0.10. La imagen mediante una aplicación continua de un arcoconexo es un arcoconexo. En particular, ser arcoconexo es una propiedad topológica, es decir, se conserva por homeomorfismos.

Demostración. Dados $x, y \in f(X)$, entonces existen $x_0, y_0 \in X$ tal que $f(x_0) = x$ y $f(y_0) = y$. Por ser X arcoconexo, entonces existe un arco $\alpha : [0, 1] \to X$ con $\alpha(0) = x_0$ y $\alpha(1) = y_0$. Entonces tenemos que $f \circ \alpha : [0, 1] \to f(X)$ es continua y $(f \circ \alpha)(0) = f(x_0) = x$ y $(f \circ \alpha)(1) = f(y_0) = y$ y tenemos demostrado el resultado que buscábamos.

Teorema 0.11. Sean X un e.t $y \{A_i\}_{i\in I}$ una familia de arcoconexos de X. Si $\bigcap_{i\in I} A_i \neq \emptyset$, entones $\bigcup_{i\in I} A_i$ es arcoconexo.

Observación. Hay resultados de conexión que no son ciertos para arcoconexión. Por ejemplo, si en un e.t. X se tiene que $A \subseteq X$ es arcoconexo podría ocurrir que si $A \subseteq B \subseteq \overline{A}$, se diera que B no sea arcoconexo (como en el ejemplo anterior).

Ejemplo. Veamos que $\mathbb{S}^n = \{x \in \mathbb{R}^{n+1} : |x| = 1\}$ es arcoconexo. Podemos hacerlo sabiendo que $\mathbb{S}^n \setminus \{N\}$, con $N = (0, \dots, 0, 1)$ es homeomorfo a \mathbb{R}^n que es arcoconexo por lo que $\mathbb{S}^n \setminus \{N\}$ es arcoconexo. Análogamente, $\mathbb{S}^n \setminus \{S\}$ con $S = (0, \dots, 0, -1)$ es arcoconexo y podemos escribir

$$\mathbb{S}^n = (\mathbb{S}^n \setminus \{N\}) \cup (\mathbb{S}^n \setminus \{S\})$$

por lo que \mathbb{S}^n es unión de arcoconexos con puntos en común, luego es arcoconexo.

Teorema 0.12. Sean X, Y e.t., entonces $X \times Y$ es arcoconexo (con la topología producto) si y solo si X e Y son arcoconexos.

Teorema 0.13. Dado un e.t. X, se tiene que X es arcoconexo si y solo si X es conexo y todo punto $x \in X$ tiene un entorno suyo arcoconexo.

Demostración.

 \Rightarrow) Hemos visto que si X es arcoconexo, entonces X es conexo. Además, X es entorno de cualquier punto suyo luego todo punto tiene un entorno conexo.

 \Leftarrow) Elegimos un $x \in X$ fijo y definimos $A = \{y \in X : \exists \alpha_y \text{ arco uniendo } x \text{ con } y \}$ Como $x \in A$ tenemos que $A \neq \emptyset$. Si probamos que A es abierto y cerrado, entonces como X es conexo tendremos que A = X, es decir podremos unir x con cualquier otro punto $y \in X$. Esto se deja como ejercicio para el lector.