Worksheet 20 - Linear Independence

Definition. Let V be a vector space and let $\vec{u}_1, \vec{u}_2, \dots, \vec{u}_n \in V$. we say that $(\vec{u}_1, \vec{u}_2, \dots, \vec{u})$ is a *linearly independent sequence* if and only if the following statement is true:

For all
$$c_1, c_2, \dots, c_n \in \mathbb{R}$$
, if $c_1 \vec{u}_1 + c_2 \vec{u}_2 + \dots + c_n \vec{u} = \vec{0}$ then $c_1 = c_2 = \dots = c_n = 0$.

Otherwise, we say that the sequence is linearly dependent.

1 Warm-up

Exercise 1. Find vectors, \vec{u} and \vec{v} , in \mathbb{R}^2 such that

- (a) (\vec{u}, \vec{v}) is linearly dependent.
- (b) (\vec{u}, \vec{v}) is linearly independent.

Exercise 2. Find vectors, \vec{u}, \vec{v} and \vec{w} , in \mathbb{R}^2 such that

- (a) $(\vec{u}, \vec{v}, \vec{w})$ is linearly dependent.
- (b) $(\vec{u}, \vec{v}, \vec{w})$ is linearly independent.

Exercise 3. Find vectors, \vec{u} and \vec{v} , in \mathbb{R}^3 such that

- (a) (\vec{u}, \vec{v}) is linearly dependent.
- (b) (\vec{u}, \vec{v}) is linearly independent.

Exercise 4. Find vectors, \vec{u}, \vec{v} and \vec{w} , in \mathbb{R}^3 such that

- (a) $(\vec{u}, \vec{v}, \vec{w})$ is linearly dependent.
- (b) $(\vec{u}, \vec{v}, \vec{w})$ is linearly independent.

Exercise 5. Find vectors, $\vec{u}, \vec{v}, \vec{w}$ and \vec{z} , in \mathbb{R}^3 such that

- (a) $(\vec{u}, \vec{v}, \vec{w}, \vec{z})$ is linearly dependent.
- (b) $(\vec{u}, \vec{v}, \vec{w}, \vec{z})$ is linearly independent.

2 Applications and Generalizations

Exercise 6. Consider the following set of vectors:

$$\begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \\ 3 \end{pmatrix} \in \mathbb{R}^3$$

Determine whether these are linearly independent. Describe a step-by-step, general, approach for determining whether three vectors in \mathbb{R}^3 are linearly independent.

Exercise 7. Consider the following set of vectors:

$$\begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} \in \mathbb{R}^3$$

Demonstrate explicitly that these are linearly dependent. Describe a step-by-step, general, approach for demonstrating that four vectors in \mathbb{R}^3 are linearly dependent.

Exercise 8. Let V be the vector space made up of all real valued functions. Which of the following sets of functions are linearly independent in V?:

(a)
$$f_1(t) = 3t$$
; $f_2(t) = t + 5$; $f_3(t) = 2t^2$; $f_4(t) = (t + 1)^2$
(b) $f_1(t) = (t + 1)^2$; $f_2(t) = t^2 - 1$; $f_3(t) = 2t^2 + 2t - 3$
(c) $f_1(t) = 1$; $f_2(t) = e^t$; $f_3(t) = e^{-t}$
(d) $f_1(t) = t^2$; $f_2(t) = t$; $f_3(t) = 1$
(e) $f_1(t) = 1 - t$; $f_2(t) = t(1 - t)$; $f_3(t) = 1 - t^2$

(b)
$$f_1(t) = (t+1)^2$$
; $f_2(t) = t^2 - 1$; $f_3(t) = 2t^2 + 2t - 3$

(c)
$$f_1(t) = 1;$$
 $f_2(t) = e^t;$ $f_3(t) = e^{-t}$

(d)
$$f_1(t) = t^2;$$
 $f_2(t) = t;$ $f_3(t) = 1$

(e)
$$f_1(t) = 1 - t;$$
 $f_2(t) = t(1 - t);$ $f_3(t) = 1 - t^2$