

HT Lab Experiment-1: Estimating the Convective Heat Transfer coefficient

Group-2

20110130	Dishant Patel	patel.dishant@iitgn.ac.in
20110065	Ekansh Somani	ekansh.somani@iitgn.ac.in
20110068	Gaurav Sharma	sharmagaurav@iitgn.ac.in
20110133	Shubham Patel	patel.shubham@iitgn.ac.in
20110169	Rohan Naika	rohan.naika@iitgn.ac.in
20110176	Sachin Bhardwaj	sachin.bhardwaj@iitgn.ac.in
20110032	Ayush Singh Kushwah	ayush.kushwah@iitgn.ac.in

Preliminaries

Pump Power → 80%

Bath Temperature $(T_{\infty}) \rightarrow 62^{o}C$

Material	Shape	Dimensions (mm)	Density (kg/m^3)	Thermal Conductivity (W/m-K)	Specific Heat Capacity (J/kg- K)
Brass	Sphere	40 (D)	8500	111	380
SS	Cylinder	14 (D), 150 (L)	8000	14	490
Aluminium	Rectangular Slab	150*40*10	2700	190	890

Questions

Q. Estimate and plot the instantaneous heat transfer coefficient h(t) by considering the instantaneous rate of heat transfer to the object:

$$\dot{Q} =
ho V c_p rac{dT(t)}{dt} = h(t) A (T_\infty - T(t))$$

Also compute the average heat transfer coefficient \bar{h} .

Instantaneous Heat Transfer Coefficient can be written as,

$$h(t) = rac{
ho V c_p}{A} \cdot rac{rac{dT(t)}{dt}}{T_{\infty} - T(t)}$$

h(t) $_{\rightarrow}$ Red and \bar{h} $_{\rightarrow}$ Green. $\bar{h}=750.66W/m^2K$

HT Lab Experiment-1: Estimating the Convective Heat Transfer coefficient

Q. Based on a best fit curve of the temperature variation with time, estimate the average heat transfer coefficient $\bar{h}_{overall}$.

Ans. Integrating the previous equation with time and then setting limits between t=0 to t=t, we get,

$$egin{align} logigg(rac{T_{\infty}-T(0)}{T_{\infty}-T(t)}igg) &= rac{A}{
ho V c_p} \int_0^t h(t) dt \ \implies T(t) &= T_{\infty} - (T_{\infty} - T_0) e^{-c \int_0^t h(t) dt} \ & ext{where, } c &= rac{A}{
ho V c_p} \end{aligned}$$

Q. Compare the values of average heat transfer coefficient found through the above two methods.

	$ar{h}(W/m^2K)$	$h_{overall}(W/m^2K)$
Brass Sphere	750.66	717.20
SS Cylinder	394.11	363.40
Aluminium Slab	399.28	379.00

Q. Check and comment on the validity of the lumped capacitance approximation.

	h_bar	h_overall	h	Volume	Area	k	Bi
Brass Sphere	750.66	717.2	733.9	3.35E-05	0.005	111	0.04408
Aluminium Slab	399.28	379	389.1	6.00E-05	0.0158	190	0.007778
SS Cylinder	394.11	363.4	378.8	2.31E-05	0.0069	14	0.090421

Lumped Capacitance approximation seems to be perfectly valid in this case.