Point Representation

- A point is represented using 2 or 3 numbers (x, y, [z]) that are the projections on to the respective coordinate axes.
- Fundamental shape-defining primitive in most Graphics APIs. Everything else is built from it!
- Represented using byte, short, int, float, double, etc.
- The scale and unit are application dependent. Could be angstroms or lightyears!
- Points undergo transformations: Translations, Rotations, Scaling, Shearing.

3D Coordinates

- ▶ Cartesian: (x, y, z).
- ▶ Polar: (ρ, θ, ϕ)
- > z =
 - y =
 - x =
- $\rho =$
 - $\phi =$
 - $\theta =$
- ▶ Elevation: θ , Azimuthal: ϕ

3D Coordinates

- ▶ Cartesian: (x, y, z).
- ▶ Polar: (ρ, θ, ϕ)
- $z = \rho \cos \theta$ $y = \rho \sin \theta \sin \phi$ $x = \rho \sin \theta \cos \phi$
- $\rho^2 = x^2 + y^2 + z^2$ $\phi = \tan^{-1}(y/x)$ $\theta = \tan^{-1}(\sqrt{x^2 + y^2}/z)$
- ▶ Elevation: θ , Azimuthal: ϕ

Translation

- ► Translate a point P = (x, y, [z]) by (a, b, [c]).
- ▶ Points coordinates become P' = (?,?,?).
- ▶ In vector form, P' = ?.

Translation

- ► Translate a point P = (x, y, [z]) by (a, b, [c]).
- ▶ Points coordinates become P' = (x + a, y + b, [z + c]).
- ▶ In vector form, P' = P + T, where T = (a, b, [c]).
- Distances, angles, parallelism are all maintained.

2D Rotation

- ▶ Rotate about origin CCW by θ .
- x' = ?, y' = ?
- ▶ Matrix notation: P' = R P

$$\left[\begin{array}{c} x \\ y \end{array}\right]' = \left[\begin{array}{cc} ? & ? \\ ? & ? \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right]$$

2D Rotation

- ▶ Rotate about origin CCW by θ .
- x' = ?, y' = ?
- ▶ Matrix notation: P' = R P

2D Rotation

- ▶ Rotate about origin CCW by θ .
- $x' = x \cos \theta y \sin \theta,$ $y' = x \sin \theta + y \cos \theta.$

▶ Matrix notation: P' = R P

$$\begin{bmatrix} x \\ y \end{bmatrix}' = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Rotation: Observations

$$R = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

- ▶ Orthonormal: $R^{-1} = R^T$
- Rows: vectors that rotate to coordinate axes
- Cols: vectors coordinate axes rotate to
- Invariants: distances, angles, parallelism.

3D Rotations

- Rotation could be about any axis in 3D!
- About Z-axis: Just like 2D rotation case. Z-coordinates don't change anyway.
- X-Y coordinates change exactly the same way as in 2D.
- CCW +ve, when looking into the arrowhead

$$R_z(\theta) = ??$$

3D Rotations

- Rotation could be about any axis in 3D!
- About Z-axis: Z-coordinates don't change anyway

$$R_z(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ 0 & 0 & 1 \end{bmatrix}$$

- CCW +ve; orthonormal; length preserving
- Rows: vectors that rotate onto axes; columns: vectors that axes rotate into....

3D Rotations

$$R_{y} = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}$$

$$R_{x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}$$

- CCW +ve; orthonormal
- ▶ Rows: vectors that rotate onto axes; columns: vectors that axes rotate into....
- ► Rotation about an arbitrary axis, for example, [1, 1, 1]^T ?? Coming soon

Non-uniform Scaling

- Scale along X, Y, Z directions by s, u, and t.
- x' = s x, y' = u y, z' = t z.
- We are more comfortable with P' = SP or

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}' = \begin{bmatrix} s & 0 & 0 \\ 0 & u & 0 \\ 0 & 0 & t \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Invariants: parallelism, ratios of lengths in any direction (Angles also for uniform scaling.)

Shearing

Add a little bit of x to y or other combinations

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}' = \begin{bmatrix} 1 & x_y & x_z \\ y_x & 1 & y_z \\ z_x & z_y & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

- ▶ One of $x_v, x_z, y_x, y_z, z_x, z_v \neq 0$. Rectangles can become parallelograms.
- Invariants: parallelism, ratios of lengths in any direction.

Reflection

Negative entries in a matrix indicate reflection.

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}' = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Reflection needn't be about a coordinate axis alone

General Transformation

- Rotation, scaling, shearing, and reflection: Matrix-vector product. Vectors get tranformed into other vectors
- Translation alone is a vector-vector addition
- ▶ Sequence of: Translation, rotation, scaling, translation and rotation: $P' = R_2 [S R_1 (P + t_1) + t_2]$
- If translation is also a matrix-vector product, we can combine above transformations into a single matrix:

$$P' = R_2 T_2 S R_1 T_1 P = M P$$

► How?

General Transformation

- Rotation, scaling, shearing, and reflection: Matrix-vector product. Vectors get tranformed into other vectors
- Translation alone is a vector-vector addition
- ► Sequence of: Translation, rotation, scaling, translation and rotation: $P' = R_2 [S R_1 (P + t_1) + t_2]$
- If translation is also a matrix-vector product, we can combine above transformations into a single matrix:

$$\mathbf{P}' = \mathbf{R_2} \; \mathbf{T_2} \; \mathbf{S} \; \mathbf{R_1} \; \mathbf{T_1} \; \mathbf{P} = \mathbf{M} \; \mathbf{P}$$

▶ How? Answer: homogeneous coordinates!

Homogeneous Coordinates

- Add a non-zero scale factor w to each coordinate. A 2D point is represented by a vector [x y w]^T
- ► Translate $\begin{bmatrix} x & y \end{bmatrix}^{\mathsf{T}}$ by $\begin{bmatrix} a & b \end{bmatrix}^{\mathsf{T}}$ to get $\begin{bmatrix} x+a & y+b \end{bmatrix}^{\mathsf{T}}$

$$\begin{bmatrix} x+a \\ y+b \\ 1 \end{bmatrix} = \begin{bmatrix} ? & ? & ? \\ ? & ? & ? \\ ? & ? & ? \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Homogeneous Coordinates

- Add a non-zero scale factor w to each coordinate. A 2D point is represented by a vector $\begin{bmatrix} x & y & w \end{bmatrix}^T$
- $\triangleright [x \ y \ w]^{\mathsf{T}} \equiv (x/w, \ y/w)$
- ► Translate $\begin{bmatrix} x & y \end{bmatrix}^T$ by $\begin{bmatrix} a & b \end{bmatrix}^T$ to get $\begin{bmatrix} x + a & y + b \end{bmatrix}^T$

$$\begin{bmatrix} x+a \\ y+b \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Now, translation is also: P' = TP, a matrix-vector product and a linear operation.

Homogeneous Coordinates

- Add a non-zero scale factor w to each coordinate. A 2D point is represented by a vector $\begin{bmatrix} x & y & w \end{bmatrix}^T$
- \triangleright $[x \ v \ w]^{\mathsf{T}} \equiv (x/w, \ v/w).$
- Now, translation is also: P' = TP
- For a point: Rotation followed by translation followed by scaling, followed by another rotation: $P' = R_2 STR_1 P$.
- Similarly for 3D. Points represented by: $[x \ y \ z \ w]^T$.
- \blacktriangleright All matrices are 3 \times 3 in 2D. Last row is $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$.
- \blacktriangleright All matrices are 4×4 in 3D. Last row is $\begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}$.

Homogeneous Representation

- Convert to a 4-vector with a scale factor as fourth. $(x, y, z) \equiv [kx \ ky \ kz \ k]^{\mathsf{T}}$ for any $k \neq 0$.
- Translation, rotation, scaling, shearing, etc. become linear operations represented by 4×4 matrices.
- ▶ What does $[x \ y \ z \ 0]^T$ mean?
- $[a \ b \ c \ d]^{\mathsf{T}}$ could be a point or a plane. Lines are specified using two such vectors, either as join of two points or intersection of two planes!

Transformation Matrices: Rotations

$$R_x(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

$$R_{\mathrm{y}} = egin{bmatrix} \cos heta & 0 & \sin heta & 0 \ 0 & 1 & 0 & 0 \ -\sin heta & 0 & \cos heta & 0 \ 0 & 0 & 0 & 1 \ \end{bmatrix}, \quad R_{z} = egin{bmatrix} \cos heta & -\sin heta & 0 & 0 \ \sin heta & \cos heta & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \ \end{bmatrix}$$

CCW +ve; orthonormal; length preserving; rows give direction vectors that rotate onto each axis; columns

Translation, Scaling, Composite

$$T(a,b,c) = \begin{bmatrix} 1 & 0 & 0 & a \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & c \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad S(a,b,c) = \begin{bmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- A sequence of transforms can be represented using a composite matrix: $\mathbf{M} = \mathbf{R_x} \mathbf{T} \mathbf{R_y} \mathbf{S} \mathbf{T} \cdots$
- Operations are not commutative, but are associative.
- RT and TR??

$$T_{4\times 4} = \begin{bmatrix} \mathbf{I} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix}$$

$$R_{4\times4} = \left[\begin{array}{cc} \mathbf{R} & \mathbf{0} \\ \mathbf{0} & 1 \end{array} \right]$$

$$R T = \begin{bmatrix} \mathbf{R} & \mathbf{0} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{I} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix} = ?$$

$$T_{4\times 4} = \begin{bmatrix} \mathbf{I} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix}$$

$$R_{4\times4} = \left| \begin{array}{cc} \mathbf{R} & \mathbf{0} \\ \mathbf{0} & 1 \end{array} \right|$$

$$R T = \begin{bmatrix} \mathbf{R} & \mathbf{0} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{I} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R} & \mathbf{R}\mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix}$$

$$ightharpoonup TR = R T ext{ if:} (a) \mathbf{R} = \mathbf{I} ext{ or } (b) \mathbf{t} = \mathbf{0} ext{ or } (c) \mathbf{R} \mathbf{t} = ?$$

$$T_{4\times 4} = \left[\begin{array}{cc} \mathbf{I} & \mathbf{t} \\ \mathbf{0} & 1 \end{array} \right]$$

$$R_{4\times4} = \left| \begin{array}{cc} \mathbf{R} & \mathbf{0} \\ \mathbf{0} & 1 \end{array} \right|$$

$$R T = \begin{bmatrix} \mathbf{R} & \mathbf{0} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{I} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R} & \mathbf{R}\mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix}$$

- ► TR = R T if: (a) $\mathbf{R} = \mathbf{I}$ or (b) $\mathbf{t} = \mathbf{0}$ or (c) $\mathbf{R}\mathbf{t} = \mathbf{t}$
- ▶ When is Rt = t? eigenvector of R

$$T_{4\times 4} = \begin{bmatrix} \mathbf{I} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix}$$

$$R_{4\times4} = \left| \begin{array}{cc} \mathbf{R} & \mathbf{0} \\ \mathbf{0} & 1 \end{array} \right|$$

$$R T = \begin{bmatrix} \mathbf{R} & \mathbf{0} \\ \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{I} & \mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R} & \mathbf{R}\mathbf{t} \\ \mathbf{0} & 1 \end{bmatrix}$$

- ► TR = R T if: (a) $\mathbf{R} = \mathbf{I}$ or (b) $\mathbf{t} = \mathbf{0}$ or (c) $\mathbf{R}\mathbf{t} = \mathbf{t}$
- ▶ When is Rt = t? when t is an eigenvector of R

Commutativity

- ▶ Translations are commutative: $T_1T_2 = T_2T_1$
- ► Scaling is commutative: $S_1S_2 = S_2S_1$
- ► Are rotations commutative? $R_1R_2 \stackrel{?}{=} R_2R_1$
- What would be an example? Consider the effect on Z-axis of:

Commutativity

- ▶ Translations are commutative: $T_1T_2 = T_2T_1$
- ▶ Scaling is commutative: $S_1S_2 = S_2S_1$
- ▶ Are rotations commutative? $R_1R_2 \neq R_2R_1$
- Consider the effect on Z-axis of $R_x(90)R_v(90)$ and $R_v(90)R_x(90)$
- **RT** \neq **TR**. (If translation is not parallel to rotation axis)
- ▶ Consider: $\mathbf{R}(\pi/4)$ and T(5,0). Where does the origin (0,0) go in **TR** and **RT**?

TR and RT

TR keeps it on X axis to (5,0). **RT** takes it to $(\frac{5}{\sqrt{2}},\frac{5}{\sqrt{2}})$.

Objects Away from Origin

- Object "translates" when rotated or scaled!!
- Default: Perform these about the origin
- How do we transform points "in place"?
- Rotate or scale about the centroid of the object. Or about an arbitrary point
- ► How?

Transformations About A Point

- Rotating about point P
 - Align P with origin
 - Rotate/scale about origin
 - Translate back
- ► Rotation: $\mathbf{R}_{\mathbf{C}}(\theta) = \mathbf{T}(\mathbf{C}) \mathbf{R} \mathbf{T}(-\mathbf{C})$
- Scaling: $\mathbf{S}_{\mathbf{C}}() = \mathbf{T}(\mathbf{C}) \mathbf{S}() \mathbf{T}(-\mathbf{C})$
- A transformation M: $M_C = T(C) M T(-C)$

R, T Operations on Points

```
▶ T(5,0) R(\pi/4): Impact on a point:
```

```
► R(\pi/4): (Point stays at (0,0))
► T(5,0): (Point goes to (5,0))
```

R($\pi/4$) **T**(5,0): Impact on the point:

```
    T(5,0): (Point moves to (5,0))
    R(π/4). (Point rotates about origin)
```

 All points on the shape undergo the same motions and get new coordinates

R, T Operaions on Frames

- ▶ **T(5,0) R**($\pi/4$): Impact on coordinate frame:
 - T(5,0): (Origin shifted to (5,0))
 - ► $R(\pi/4)$. (Axes rotated at new origin)
- **R**($\pi/4$) **T**(5,0): Impact on coordinate frame:
 - ► $R(\pi/4)$: (Axes rotate by 45 degrees))
 - ► T(5,0). (Point moves to (5,0) in new axes)
- Frames move around, giving new coordinates to points on objects!!

Relating Coordinate Frames

▶ T(5,0) and $R(\pi/4)$

Start: Black axes Next: Blue axes Last: Red axes

Points and Frames in General

- Points go through changes in a common coordinate frame when a sequence of transformations is viewed from right to left
- Coordinate system goes through the same transformations when the sequence is viewed from left to right
- ightharpoonup Composite transformations $P' = \mathbf{M_1}\mathbf{M_2}\mathbf{M_3}$ P relates the coordinates in successive coordinate frames as we go from left to right, starting with X'Y' coordinate frame to finally the XY frame.

Transforming the World Reference

- ightharpoonup Consider $P_4 = \mathbf{M_4M_3M_2M_1}$ P_0
- Point P₀ undergoes 4 operations and get coordinates P₄
- ▶ Imagine the point having coordinates P_1, P_2, P_3 after operations M_1, M_2, M_3
- ▶ We can also visualize coordinate frames $\Pi_4, \Pi_3, \Pi_2, \Pi_1, \Pi_0$ in which a point has coordinates P_4 to P_0 respectively
- ▶ Operation \mathbf{M}_i represents a change in coordinates from $\mathbf{\Pi}_i$ to Π_{i-1} , resulting in new labels for the point.

Let us look at Ourselves

- Model IIIT Campus as a whole. Campus is our "world"
- ▶ Global coordinate frame Π_G for the campus: at the Gate
- ▶ Buildings: Himalaya, Vindhya, Bakul, Parul, ..., Palash. Each has a natural coordinate frame. Π_H is Himalava's
- ▶ Himalaya has several rooms: H105, H204, H205, H304, etc., with own coordinate frames. Π_C is of H205 (our class)
- ▶ H205 has 55 desks, with coord frames Π_{Di} for desk i
- ▶ Desks are identical in geometry; the coord frame Π_{Di} places each in its location.

Consider a Desk

- Consider a corner point P of desk 37, with coordinates (200, 30, 100) in Π_{D37} . That is: $P_{D37} = (200, 30, 100)$
- Since our world is the campus, we have to ultimately describe everything in the coordinate frame Π_G

$$P_G = \mathbf{M_{GH}} \mathbf{M_{HC}} \mathbf{M_{CD37}} P_{D37}$$

 $ightharpoonup \mathbf{M}_{GH}$ aligns Π_G to Π_H . $\mathbf{M}_{\mathbf{CD37}}$ aligns $\mathbf{\Pi}_C$ to $\mathbf{\Pi}_{D37}$ \mathbf{M}_{HC} aligns $\mathbf{\Pi}_{H}$ to $\mathbf{\Pi}_{C}$.

 $P_G = \mathbf{M_{GH}} \mid \mathbf{M_{HC}} \mid \mathbf{M_{CD37}} \mid P$

(for any point P on Desk37)

We can place a given desk in any building, room, place!

Walking on Stage

- Person walking horizontally on stage, with swinging arms
- How does the hand-tip move w.r.t each student? How?
- Student knows own position in room's reference frame
- Start at a student's eye. (That provides the viewpoint!)
- Align to room's reference frame using M₁. Different matrix for each student, but everyone same now....
- ▶ Walk: pure translation. M₂ aligns to person coord frame
- Arm swing: Simple harmonic motion with angle $\theta(t)$

Simpler viewpoints in newer coord frames.