# CMOS 模拟集成电路原理 第八周作业

范云潜 18373486

微电子学院 184111 班

日期: 2020年11月6日

| 作业内容: 设计一轨到轨输入运放,要求指标:       |  |  |  |  |
|------------------------------|--|--|--|--|
| V DD =1.8V                   |  |  |  |  |
| GBW= $100MHz$ , C L = $10pF$ |  |  |  |  |
| 完成设计后给出以下参数:                 |  |  |  |  |
| PM                           |  |  |  |  |
| FOM                          |  |  |  |  |
| 0.4V-1.4V 区间内的系统失调电压         |  |  |  |  |
| 0.4V-1.4V 区间内的 GBW 偏差        |  |  |  |  |

### 目录

| 1  | 电路     | 工作原理       | 2 |
|----|--------|------------|---|
| 2  | 电路     | 设计         | 2 |
| 3  | 性能     | <b>测试</b>  | 3 |
|    | 3.1    | 增益带宽积与相位裕度 | 3 |
|    | 3.2    | FOM        | 3 |
|    | 3.3    | 失调电压       | 4 |
|    | 3.4    | 增益带宽积偏差    | 4 |
| 4  | 调节     | 过程         | 5 |
| Li | ist of | Figures    |   |
|    | 1      | 基本电路       | 2 |
|    | 2      | 仿真含参数电路搭建  | 3 |
|    | 3      | 不含参数电路     | 3 |
|    | 4      | 封装后的测试电路   | 3 |
|    | 5      | 差模增益测试参数   | 4 |
|    | 6      | 差模增益       | 4 |

| 7  | 单位增益接法电路    | 5 |
|----|-------------|---|
| 8  | 失调电压        | 5 |
| 9  | 蒙特卡洛仿真设置    | 6 |
| 10 | 增益带宽积蒙特卡洛仿真 | 6 |
| 11 | 增益带宽积偏差     | 7 |

#### 1 电路工作原理

首先,为了平衡跨导,我们采用了三倍电流镜;其次为了使用该电流进行放大,使用简单电流镜负载,电路如**图1**。

当输入的电压使得 P1 或者 N1 其一截止时,为了维持输出的电流,将原应该从 P1 或 N1 中流过的电流,通过放大使得未截止的管子流过原本四倍的电流,以满足  $g_{m,n}+g_{m,p}=$  const。这也是三倍电流的来源。

将第一级的电路视作电流的提供者,这份电流实际上是提供了  $2g_m$  的跨导,因此电路有  $g_m \times 2 = 2\pi C_L \cdot GBW$  。



图 1: 基本电路

### 2 电路设计

电路的设计如 **图 2** ,采取了极度保守的设计,将目标增益带宽积设为 240M ,来防止在输入极大或者极小的情况不满足预期。承载相同电流的管子的尺寸一致,得到的数据如下:

L: um: 0.5
In: uA: 753.9822368615504
Ip: uA: 753.9822368615504
W-p: um 269.27937030769647 #
IB-p: um 269.27937030769647
3\*IB-p: um 807.8381109230894
W-n: um 67.31984257692412
IB-n: um 67.31984257692412
3\*IB-n: um 201.95952773077235

带入电路中,得到电路如图3,进一步封装。



图 2: 仿真含参数电路搭建



图 3: 不含参数电路

### 3 性能测试

#### 3.1 增益带宽积与相位裕度

首先进行差模输入,AC 测试其增益带宽积,测试电路如  $\bf 84$ ,测试参数如  $\bf 85$ ,结果如  $\bf 86$ ,增益带宽积为  $\bf 270M$ ,相位裕度  $\bf 70^\circ$ 。基本符合预期。



图 4: 封装后的测试电路

#### **3.2 FOM**

计算品质系数:

$$FOM = \frac{GBW \cdot C_L}{I_B} = \frac{270M \cdot 10p}{7 \cdot 754u} = 0.51156$$

| Pa | Parameters |         |  |  |  |
|----|------------|---------|--|--|--|
|    | Name       | Nominal |  |  |  |
| 1  | vcom       | 0.9     |  |  |  |
| 2  | ib         | 754u    |  |  |  |
| 3  | vm         | 1.4     |  |  |  |
| 4  | vrp        | 0.6     |  |  |  |
| 5  | vdif       | 0       |  |  |  |
|    |            |         |  |  |  |

图 5: 差模增益测试参数



图 6: 差模增益

#### 3.3 失调电压

为了测量失调的特性,需要对电路进行 Buffer 式接法,并且转换为 DC 仿真,电路如  $\bf 87$ ,其失调如  $\bf 88$ ,在 3mV 内。

#### 3.4 增益带宽积偏差

为了实现在同时进行多个直流状态的交流测试,需要在 AC 仿真内部开启蒙特卡洛仿真的高级选项,对直流参数进行扫描,如  $\mathbf{89}$  。

最终得到仿真结果,如 **图 10** , **图 11** 。增益带宽积偏差达到了 140M , 但是最坏情况也满足要求。



图 7: 单位增益接法电路



图 8: 失调电压

## 4 调节过程

本次电路没有经历任何的尺寸调节,但是对于参考电压  $V_{r,p/n}$  需要注意,在其造成的对应 晶体管  $V_{GST}$  过大时,在输入为 0V 或者 1.8V 时,电流仍不能被完全抽取,因此应该适当调小其  $V_{GST}$  。



图 9: 蒙特卡洛仿真设置



图 10: 增益带宽积蒙特卡洛仿真



图 11: 增益带宽积偏差