DEDEKIND'S TRANSPOSITION PRINCIPLE AND PERMUTING SUBGROUPS & EQUIVALENCE RELATIONS

William DeMeo

williamdemeo@gmail.com

University of South Carolina

Zassenhaus Conference at WCU Asheville, NC May 24–26, 2013

These slides and other resources are available at http://williamdemeo.wordpress.com

INTERVALS IN SUBGROUP LATTICES

- Let *H*, *K* be subgroups of a group *G*.
- Recall the set

$$(H,K)$$
 $H \cap K$
 $H \cap K$

$$HK = \{hk \mid h \in H, k \in K\}$$

is a group if and only if $HK = KH = \langle U, H \rangle$.

• Let $H_0 = H \cap K$ and define

$$\llbracket H_0, H \rrbracket := \{ X \mid H_0 \leqslant X \leqslant H \},$$

$$\llbracket K, \langle H, K \rangle \rrbracket := \{ X \mid K \leqslant X \leqslant \langle H, K \rangle \}.$$

Define

$$\llbracket H_0,H\rrbracket^K:=\{X\in\llbracket H_0,H\rrbracket\mid XK=KX\}.$$

LEMMA

If
$$HK = KH$$
, then $\llbracket K, HK \rrbracket \cong \llbracket H_0, H \rrbracket^K \leqslant \llbracket H_0, H \rrbracket$.

EXAMPLE

• The group S_4 has permuting subgroups $H\cong D_8$ and $K\cong C_3$. (neither one normalizes the other)

• Only four subgroups of *H* permute with *K*, including

$$H \cap A_4 \cong C_2 \times C_2, \qquad H \cap S_3 \cong C_2.$$

DEDEKIND'S TRANSPOSITION PRINCIPLE

FOR MODULAR LATTICES

Notation

Let $\mathbf{L} = \langle L, \wedge, \vee \rangle$ be a lattice with $a \in L$.

Let $\varphi_{\it a}$ and $\psi_{\it a}$ be the "perspectivity maps"

$$\varphi_a(x) = x \wedge a$$
 and $\psi_a(x) = x \vee a$

For
$$x, y \in L$$
, let $[x, y]_L = \{z \in L \mid x \leqslant z \leqslant y\}$.

THEOREM (DEDEKIND'S TRANSPOSITION PRINCIPLE)

L is modular iff for all $a,b\in L$ the maps φ_a and ψ_b are inverse lattice isomorphisms of $[\![a\wedge b,a]\!]$ and $[\![b,a\vee b]\!]$.

ANOTHER TRANSPOSITION PRINCIPLE

FOR LATTICES OF EQUIVALENCE RELATIONS

Let *X* be a set and let Eq *X* be the lattice of equivalence relations on *X*.

Given $\alpha, \beta \in \text{Eq } X$, define the *composition* of α and β to be the binary relation

$$\alpha \circ \beta = \{(x, y) \in X^2 \mid (\exists z \in X) \ x \ \alpha \ z \ \beta \ y\}.$$

For a sublattice $L \leq \text{Eq } X$, with $\eta, \theta \in L$, define

$$[\![\eta,\theta]\!]_{\mathsf{L}} = \{ \gamma \in \mathsf{L} \mid \eta \leqslant \gamma \leqslant \theta \},$$

$$\llbracket \eta, \theta \rrbracket_{L}^{\beta} = \{ \gamma \in L \mid \eta \leqslant \gamma \leqslant \theta \text{ and } \gamma \circ \beta = \beta \circ \gamma \},$$

i.e., the relations in $[\![\eta,\theta]\!]_L$ that permute with β .

LEMMA

Suppose α and β are permuting relations in $L \leqslant \text{Eq } X$.

Then
$$[\![\beta,\alpha\vee\beta]\!]_L\cong [\![\alpha\wedge\beta,\alpha]\!]_L^\beta\leqslant [\![\alpha\wedge\beta,\alpha]\!]_L$$
.

Question: Does this generalize the subgroup lattice lemma?

ANSWER: YES!

- For groups $H \leqslant G$, the algebra $\mathbf{A} = \langle G \backslash H, \overline{G} \rangle$ has
 - universe: the right cosets $H \setminus G = \{Hx \mid x \in G\}$
 - operations: $\bar{G} = \{g^{\mathbf{A}} : g \in G\}$, where $g^{\mathbf{A}}(Hx) = Hxg$.
- A standard result is Con $\mathbf{A} \cong \llbracket H, G \rrbracket$.

The isomorphism $\llbracket H, G \rrbracket \ni K \mapsto \theta_K \in \text{Con } \mathbf{A}$ is given by

$$\theta_K = \{(Hx, Hy) \mid xy^{-1} \in K\}.$$

The inverse isomorphism Con $\mathbf{A} \ni \theta \mapsto K_{\theta} \in \llbracket H, G \rrbracket$ is

$$K_{\theta} = \{g \in G \mid (H, Hg) \in \theta\}.$$

 So every lattice property of congruence lattices is also a lattice property of (intervals of) subgroup lattices. Moreover, it's easy to prove:

LEMMA

In $Con\langle G \backslash H, \bar{G} \rangle$, two congruences θ_{K_1} and θ_{K_2} permute if and only if the corresponding subgroups K_1 and K_2 permute.

QUESTIONS

Recall that $HK = \langle H, K \rangle$ if and only if HK = KH.

Question 1. Is it true that

$$HKH = \langle H, K \rangle$$
 if and only if $HKH = KHK$?

What about

$$HKHK = \langle H, K \rangle$$
 if and only if $HKHK = KHKH$?

$$H \circ^n K = \langle H, K \rangle$$
 if and only if $H \circ^n K = K \circ^n H$?

QUESTIONS

Denote by $H \circ^n K$ the *n-fold composition of H and K*.

$$H \circ^{1} K = H,$$
 $H \circ^{2} K = HK,$
 $H \circ^{3} K = HKH,$
 $H \circ^{4} K = HKHK,$

$$\vdots$$

$$H \circ^{n} K = H \circ^{2} K \circ^{n-1} H.$$

We say H and K are n-permuting if $H \circ^n K = K \circ^n H$.

Question 2. Is the following true?

If H and K are n-permuting, then interval $[\![K,\langle H,K\rangle]\!]$ is isomorphic to the lattice of subgroups in $[\![H_0,H]\!]$ that n-permute with K.

CONNECTION WITH EQUIVALENCE RELATIONS

Let $\mathbf{A} = \langle H \backslash G, \overline{G} \rangle$ be the algebra with

- universe: the right cosets $H \setminus G = \{Hx \mid x \in G\}$
- operations: $\bar{G} = \{g^{\mathbf{A}} : g \in G\}$, where $g^{\mathbf{A}}(Hx) = Hxg$.

LEMMA

The subgroups K_1 and K_2 are n-permuting if and only if their corresponding congruences θ_{K_1} and θ_{K_2} are n-permuting. That is,

$$K_1 \circ^n K_2 = K_2 \circ^n K_1 \iff \theta_{K_1} \circ^n \theta_{K_2} = \theta_{K_2} \circ^n \theta_{K_1}.$$

Answer to Question 1.

LEMMA

For $\alpha, \beta \in \text{Eq } X$, and for every even integer n > 1, TFAE:

- (I) $\alpha \circ^n \beta = \alpha \vee \beta$
- (II) $\alpha \circ^n \beta = \beta \circ^n \alpha$
- (III) $\alpha \circ^n \beta \subseteq \beta \circ^n \alpha$

For n = 3,

$$\alpha \circ \beta \circ \alpha = \beta \circ \alpha \circ \beta \quad \Longrightarrow \quad \alpha \circ \beta \circ \alpha = \alpha \vee \beta$$

but the converse is false.

COROLLARY

For $H, K \leq G$, and for every even integer n > 1, TFAE:

- (I) $H \circ^n K = \langle H, K \rangle$
- (II) $H \circ^n K = K \circ^n H$
- (III) $H \circ^n K \subseteq K \circ^n H$

For n = 3,

$$HKH = KHK \implies HKH = \langle H, K \rangle$$

but the converse is false.

Question 1.' What are conditions on G under which the converse is true?

CASE
$$n=5$$

Question 1. Is it true that

$$H \circ^5 K = \langle H, K \rangle$$
 if and only if $H \circ^5 K = K \circ^5 H$?

Answer. No.

Example. Let
$$G = (C_3 \times C_3) : C_4$$
.

This is a group of order 36 with generators f_1 , f_2 , f_3 , f_4 .

Let
$$H = \langle f_1 \rangle \cong C_2$$
, and $K = \langle f_1 \cdot f_3 \cdot f_4^2, f_2 \cdot f_4^2 \rangle \cong C_4$. Then,

- $H \cap K = 1$
- $\langle H, K \rangle = K \circ^5 H$ has order 36 so it is the whole group.
- The set $H \circ^5 K$ has size 34, so does not generate $\langle H, K \rangle$.
- H covers 1.

ANSWER TO QUESTION 2.

No.

In general, it is not true that if H and K are n-permuting, then the interval $\llbracket K, \langle H, K \rangle \rrbracket$ is isomorphic to the lattice of those subgroups in $\llbracket H_0, H \rrbracket$ that n-permute with K.

Example. The group A_5 has subgroups $H \cong D_{10}$, and $K \cong C_2$ such that

$$H \circ^4 K = K \circ^4 H = A_5$$

but the map

$$[\![K,A_5]\!]\ni J\mapsto J\cap H\in[\![1,H]\!]$$

is not one-to-one.

EXAMPLES

REVISED QUESTION 2.

Question 2.'

What are conditions on the group G so that

if H, K are n-permuting subgroups of G, then

$$\llbracket K, \langle H, K \rangle \rrbracket \cong \llbracket H_0, H \rrbracket^{K_0^n} \leqslant \llbracket H_0, H \rrbracket ?$$

<ADVERTISEMENT>

Workshop on Computational Universal Algebra

Friday, October 4, 2013

University of Louisville, KY

universalalgebra.wordpress.com