МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНОМУ УНІВЕРСИТЕТІ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

Кафедра систем штучного інтелекту

Лабораторна робота № 3

з дисципліни «Дискретна математика»

Виконав:

студент групи КН-114 Долінський А.Г.

Викладач:

Мельникова Н.І.

Тема: Побудова матриці бінарного відношення.

Мета роботи: Набуття практичних вмінь та навичок при побудові матриць бінарних відношень та визначенні їх типів.

Теоретичні відомості

Декартів добуток множин A і B (позначається $A \times B$) — це множина всіх упорядкованих пар

елементів (a,b), де $a \in A$, $b \in B$. При цьому вважається, що $(a_1,b_1) = (a_2,b_2)$ тоді і тільки тоді, коли $a_1 = a_2$, $b_1 = b_2$.

Потужність декартового добутку дорівнює $|A \times B| = |A| \times |B|$.

Бінарним відношенням R називається підмножина декартового добутку $A \times B$ (тобто $R \subset A \times B$). Якщо пара (a,b) належить відношенню R , то пишуть

 $(a, b) \in R$, a fo aRb.

Областю визначення бінарного відношення $R \subset X \times Y$ називається множина $\delta_R = \{x \; \exists y \; (x, \, y) \in R\}$, а областю значень — множина $\rho_R = \{y \; \exists x \; (x, \, y) \in R\}$ (\exists - ichyє).

Для скінчених множин бінарне відношення $R \subset A \times B$ зручно задавати за допомогою *матриці відношення* $R_m \times_n = (r_{ij}) \ m = |A|, \ a \ n = |B|.$

Елементами матриці є значення $r_{ij} = \begin{cases} 1, якщо (a_i, b_j) \in R, \\ 0, якщо (a_i, b_j) \vdash \in R. \end{cases}$

Види бінарних відношень.

Нехай задано бінарне відношення R на множині $A^2 : R \subseteq A \times A = \{(a, b) | a \in A, b \in A \}.$

1. Бінарне відношення R на множині A називається $pe\phi$ лексивним, якщо для будь якого $a \in A$

виконується aRa, тобто $(a,a) \in \mathbb{R}$. Головна діагональ матриці рефлексивного відношення складається

- з одиниць. Граф рефлексивного відношення обов'язково має петлі у кожній вершині.
- 2. Бінарне відношення R на множині A називається антирефлексивним, якщо для будь якого a

- \in *A* не виконується aRa, тобто $(a,a) \notin R$. Головна діагональ матриці антирефлексивного відношення складається з нулів. Граф антирефлексивного відношення не має петель.
- 3. Бінарне відношення R на множині A називається cumempuчним, якщо для будь яких $a,b \in A$ з

aRb слідує bRa, тобто якщо $(a,b) \in R$ то і $(b,a) \in R$. Матриця симетричного відношення симетрична відносно головної діагоналі. Граф симетричного відношення не є орієнтованим.

4. Бінарне відношення R на множині *A* називається *антисиметричним*, якщо для будь яких

 $a,b \in A$ з aRb та bRa слідує що a = b. Тобто якщо $(a,b) \in R$ і $(b,a) \in R$, то a = b. Матриця антисиметричного відношення не має жодної пари одиниць, які знаходяться на симетричних місцях по відношенню до головної діагоналі. У графа антисиметричного відношення вершини з'єднуються тільки однією напрямною дугою.

- 5. Бінарне відношення R на множині A називається *транзитивним*, якщо для будь яких $a, b, c \in A$ з aRb та bRc слідує, що aRc . Тобто якщо $(a,b) \in R$ і $(b,c) \in R$, то $(a,c) \in R$. Матриця транзитивного
- відношення характеризується тим, що якщо елемент матриці $\sigma_{ij} = 1$ та $\sigma_{jm} = 1$, то обов'язково $\sigma_{im} = 1$. Граф транзитивного відношення такий, що якщо з'єднані дугами, наприклад, перша-друга та друга-третя вершини, то обов'язково є дуга з першої в третю вершину.
- 6. Бінарне відношення R на множині A називається антитранзитивним, якщо для будь яких $a, b, c \in A$ з aRb та bRc слідує, що не виконується aRc. Тобто якщо $(a, b) \in R$ і $(b, c) \in R$, то $(a, c) \notin R$. Матриця антитранзитивного відношення характеризується тим, що якщо елемент матриці $\sigma_{ij} = 1$ та

 σ_{jm} = 1, то обов'язково σ_{im} = 0. Граф транзитивного відношення такий, що якщо з'єднані дугами, наприклад, перша-друга та друга-третя вершини, то обов'язково немає дуги з першої в третю вершину.

 Φ ункцією з множини X на множину Y називається всюди визначена бінарна відповідність, при якому кожен елемент множини X зв'язаний з єдиним елементом множини Y. Функція записується

наступним чином: якщо $f \subseteq X \times Y$, то $f: X \to Y$. Множину X називають областю визначення, а Y – множиною значень функції.

Областю значень функції називається підмножина Y, яка складається з образів всіх елементів $x \in X$.

Вона позначається символом f(X).

Оскільки для кожного $x \in X$ існує єдиним образом визначений $y \in Y$, такий що $(x, y) \in f$, то записують y = f(x) та говорять, що функція f відображує множину X на множину Y, а f(x) називають образом x при відображенні f або значенням функції, яка відповідає аргументу x.

Види функціональних відношень

1. Функція називається ін'єктивною (ін'єкцією), якщо з умови $f(x_1) = f(x_2)$ слідує, що $x_1 = x_2$ для будь-яких $x_1, x_2 \in X$.

Функція ін'єктивна тоді і тільки тоді, коли для будь-яких $x_1, x_2 \in X$ якщо $x_1 \neq x_2$, то $f(x_1) \neq f(x_2)$, тобто для різних аргументів функція f приймає різні значення.

2. Функція називається сюр'єктивною (сюр'єкцією), якщо для кожного $y^* \in Y$ знайдеться такий

$$x^* \in X$$
, що $y^* = f(x^*)$.

3. Функція називається бієктивною (бієкцією), якщо вона ін'єктивна та сюр'єктивна одночасно. Таку функцію ще називають взаємно-однозначним відображенням.

Додаток 1

Варіант № 7

- **1.** Чи є вірною рівність: $(A \cap B) \times (C \cap D) = (A \times D) \cap (B \times C)$?
- **2.** Знайти матрицю відношення $R \subset 2^A \times 2^B$:

$$R = \{(x,y) \mid (x,y) \subset A \& y \subset B \& x \subset y\}, \text{ All } A = \{1,2\}, B = \{1,2,4\}.$$

- **3.** Зобразити відношення графічно: $\alpha = \{(x,y)|\ (x,y) \in R^2 \& x^2 2x + y^2 = 8\}, \ \text{де } R \text{ множина дійсних чисел.}$
- **4.** Навести приклад бінарного відношення $R \subset A \times A$, де $A = \{a,b,c,d,e\}$, яке є антирефлексивне, симетричне, транзитивне, та побудувати його матрицю.
 - **5.** Визначити множину (якщо це можливо), на якій дане відношення ϵ : а) функціональним; б) бієктивним:

$$\alpha = \{(x, y) | (x, y) \in \mathbb{R}^2 \& y = (x - 2)^{-2} \}.$$

1. Чи є вірною рівність: $(A \cap B) \times (C \cap D) = (A \times D) \cap (B \times C)$?

Нехай $(x, y) \in (A \cap B) \times (C \cap D) \leftrightarrow (x, y) \in (A \cap B) \& (x, y) \in (C \cap D) \leftrightarrow \leftrightarrow (x \in A \& y \in B) \& (x \in C \& y \in D) \leftrightarrow (x \in A \& x \in C) \& (y \in B \& y \in D) \leftrightarrow (x \in A \cap C) \& (y \in B \cap D) \leftrightarrow (x, y) \in (A \cap C) \times (B \cap D).$

Рівність невірна.

2. Знайти матрицю відношення $R \subset 2^A \times 2^B$:

$$R = \{(x,y) \mid x \in A \& y \in B \& x \in y\}, \text{де } A = \{1,2\}, B = \{1,2,4\}.$$
 $2^A = \{\{O\}, \{1\}, \{2\}, \{1,2\}\};$
 $2^B = \{\{O\}, \{1\}, \{2\}, \{4\}, \{1,2\}, \{1,4\}, \{2,4\}, \{1,2,4\}\};$
 $R = \{\{1, \{1,2\}\}, \{1,4\}\}, \{2,\{1,2\}\}, \{2,\{4\}\}\};$

3. Зобразити відношення графічно:

$$\alpha = \{(x, y) | (x, y) \in \mathbb{R}^2 \& x^2 - 2x + y^2 = 8\},$$
 де \mathbb{R} - множина дійсних чисел

$$x^{2} - 2x + y^{2} = 8;$$

 $(x-1)^{2} + y^{2} = 9$

4.Навести приклад бінарного відношення R ⊂A ×A, де A = {a,b,c,d,e}, яке ϵ антирефлексивне, симетричне, транзитивне, та побудувати його матрицю.

$$R = \{ (a, b), (a, c), (a, d), (a, e), (b, a), (b, c), (b, d), (b, e), (c, a), (c, b), (c, d), (c, e), (d, a), (d, b), (d, c), (d, e), (e, a), (e, b), (e, c), (e, d) \};$$

$$0\ 1\ 1\ 1\ 1\\ 1\ 0\ 1\ 1\ 1\\ R = 1\ 1\ 0\ 1\ 1\\ 1\ 1\ 1\ 0\ 1\\ 1\ 1\ 1\ 1\ 0$$

5.Визначити множину (якщо це можливо), на якій дане відношення ϵ : а) функціональним; б) бієктивним:

$$\alpha = \{ (x, y) | (x, y) \in \mathbb{R}^2 \& y = (x - 2)^{-2} \}.$$

$$y = \frac{1}{(x - 2)^2}; D(f): x \in \mathbb{R} \setminus \{2\};$$

- a) $\mathbb{R}\setminus\{2\}$;
- б) $R \setminus (B \cup \{2\})$ або $R \setminus \overline{B}$;

(R - множина дійсних чисел, В – множина дійсних недодатніх чисел);

Написати програму, яка знаходить матрицю бінарного відношення $\rho \subset A \times B$, заданого на двох числових множинах. Реалізувати введення цих множин, та виведення на екран матриці відношення. Перевірити програмно якого типу є задане відношення. Навести різні варіанти тестових прикладів.

7. $\rho = \{(a, b) \mid a \in A \& b \in B \& a < 3b\};$

```
#include <iostream>
 using namespace std;
 void arrayInput(int* arr, int n);
 void arrayOutput(int* arr, int n);
void array2dOutput(int** arr, int n, int m);
 void relation(int** arr, int n, int m);
pint main() {
     int n, m;
     cout << "Enter the number of elements in first array: ";</pre>
     int* firstArray = new int[n];
     cout << "Enter the first array: " << endl;</pre>
     arrayInput(firstArray, n);
     cout << "The first array: " << endl;</pre>
     arrayOutput(firstArray, n);
     cout << "Enter the number of elements in second array: ";</pre>
     cin >> m;
     int* secondArray = new int[m];
     cout << "Enter the second array: " << endl;</pre>
     arrayInput(secondArray, m);
cout << "The second array: " << endl;</pre>
     arrayOutput(secondArray, m);
     int** R = new int* [n];
      for (int i = 0; i < n; i++) {
          R[i] = new int[m];
```

```
for (int i = 0; i < n; i++) {
if (firstArray[i] < 3 * secondArray[j]) {</pre>
                  R[i][j] = 1;
                  R[i][j] = 0;
     cout << endl;</pre>
     cout << "The relation(a < 3b): " << endl;</pre>
     array2dOutput(R, n, m);
     relation(R, n, m);
     delete[]firstArray;
     delete[]secondArray;
     for (int i = 0; i < n; i++) {
         delete[]R[i];
     system("pause");
     return 0;
□void arrayInput(int* arr, int n) {
          bool uniq = true;
自自
             if (arr[i] == arr[k]) {
                  uniq = false;
          if (uniq == false) {
              cout << "The elemnent should be unique!" << endl;</pre>
              exit(0);
pvoid arrayOutput(int* arr, int n) {
     cout << endl;</pre>
□void array2dOutput(int** arr, int n, int m) {
         for (int j = 0; j < m; j++) {
    cout << arr[i][j] << " ";
         cout << endl;</pre>
□void relation(int** arr, int n, int m) {
     bool equal = true;
     bool trans = false;
     bool antitrans = false;
     for (int i = 0; i < n; i++) {
          for (int j = 0; j < m; j++) {
              if (i >= j) {
                  if (arr[i][j] == arr[j][i] && arr[i][j] == 1 && arr[j][i] == 1 && i != j) 
                      k++;
                  else if (arr[i][j] != arr[j][i] && equal == true) {
                      equal = false;
```

```
for (int q = 0; q < n; q++) {
                     trans = true;
                else if (arr[i][j] == arr[j][k] == 1 \&\& arr[i][j] == arr[j][k] != arr[i][k])
                     antitrans = true;
if (s == m) {
   cout << "Matrix is reflexive" << endl;</pre>
else if (s > 0 && s != m) {
   cout << "Matrix is irreflexive" << endl;</pre>
   cout << "Matrix is antireflexive" << endl;</pre>
if (k > 0 && equal == true) {
    cout << "Matrix is symmetrical" << endl;</pre>
else if (k > 0 && equal == false) {
  cout << "Matrix is asymmetrical" << endl;</pre>
  cout << "Matrix is antisymmetrical" << endl;</pre>
if (trans == true && antitrans == false) {
   cout << "Matrix is transitive" << endl;</pre>
else if (trans == true && antitrans == true)
    cout << "Matrix is intransitive" << endl;</pre>
else if (trans == false && antitrans == true)
    cout << "Matrix is antitransitive" << endl;</pre>
```

Скрін-шот коду на мові С++.

```
Enter the number of elements in first array: 4
Enter the first array:
1 2 5 7
The first array:
1 2 5 7
Enter the number of elements in second array: 4
Enter the second array:
1 2 3 4
The second array:
1 2 3 4
The relation(a < 3b):
1 1 1 1
1 1 1 1
0 1 1 1
0011
Matrix is reflexive
Matrix is asymmetrical
Matrix is transitive
Press any key to continue \dots
```

Скрін-шот тесту №1.

```
C:\Users\Admin\source\repos\Lab 3 (math)\Debug\Lab 3 (math).exe
Enter the number of elements in first array: 5
Enter the first array:
1 5 8 9 19
The first array:
1 5 8 9 19
Enter the number of elements in second array: 5
Enter the second array:
1 2 4 6 7
The second array:
1 2 4 6 7
The relation(a < 3b):
11111
01111
00111
00111
00001
Matrix is reflexive
Matrix is asymmetrical
Matrix is intransitive
Press any key to continue . . .
```

Скрін-шот тесту №2.

Висновок: Я набув практичних вмінь та навичок при побудові матриць бінарних відношень та визначенні їх типів.