12. Линейные преобразования.

Пусть V — линейное пространство.

Определение 1. Если задан закон f, по которому каждому вектору $\vec{x} \in V$ поставлен в соответствие единственный вектор $\vec{y} \in V$, то будем говорить, что задано **преобразование** (отображение, оператор) f пространства V в себя и записывать $f:V \to V$.

Вектор \vec{y} называется **образом** вектора \vec{x} , а вектор \vec{x} – **прообразом** вектора \vec{y} . Если преобразование f переводит вектор \vec{x} в вектор \vec{y} , то это будем записывать как $\vec{y} = f(\vec{x})$.

Определение 2. Преобразование f называется **линейным**, если выполнены два условия:

- 1) $f(\vec{x}_1 \oplus \vec{x}_2) = f(\vec{x}_1) \oplus f(\vec{x}_2), \forall \vec{x}_1, \vec{x}_2 \in V$;
- 2) $f(\lambda \otimes \vec{x}) = \lambda \otimes f(\vec{x}), \forall \vec{x} \in V, \forall \alpha \in R$.

Замечание. Линейное преобразование переводит нулевой вектор в нулевой. Действительно,

$$f(\vec{0}) = f(\vec{x} \oplus (-\vec{x})) = f(\vec{x}) \oplus f(-\vec{x}) = f(\vec{x}) \oplus f(-1 \otimes \vec{x}) = f(\vec{x}) \oplus (-1 \otimes f(\vec{x})) = f(\vec{x}) \oplus (-f(\vec{x})) = \vec{0}.$$

Определение 3. Преобразование f называется тождественным, если оно каждому вектору пространства V ставит в соответствие этот же вектор, то есть $f(\vec{x}) = \vec{x}$.

Тождественное преобразование является линейным.

Пусть линейное преобразование f переводит базис $\vec{e}_1, \vec{e}_2, ..., \vec{e}_n$ в векторы $\vec{e}_1', \vec{e}_2', ..., \vec{e}_n'$, то есть $f(\vec{e}_i) = \vec{e}_i', i = 1, 2, ..., n$, при этом

$$\begin{cases} \vec{e}_1' = a_{11}\vec{e}_1 + a_{21}\vec{e}_2 + \dots + a_{n1}\vec{e}_n, \\ \vec{e}_2' = a_{12}\vec{e}_1 + a_{22}\vec{e}_2 + \dots + a_{n2}\vec{e}_n, \\ \dots \\ \vec{e}_n' = a_{1n}\vec{e}_1 + a_{2n}\vec{e}_2 + \dots + a_{nn}\vec{e}_n. \end{cases}$$

Определение 4. Матрица вида

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$

называется матрицей линейного преобразования f в базисе $\vec{e}_1, \vec{e}_2, ..., \vec{e}_n$.

Определение 5. Ранг r матрицы A называется рангом преобразования, а число n-r- дефектом этого преобразования.

Связь между координатами вектора и его образа

Пусть вектор $\vec{x}(x_1; x_2; ...; x_n)$ в базисе $\vec{e}_1, \vec{e}_2, ..., \vec{e}_n$, то есть $\vec{x} = x_1 \vec{e}_1 + x_2 \vec{e}_2 + ... + x_n \vec{e}_n$. Найдем $f(\vec{x})$.

Предположим, что $f(\vec{x}) = (y_1, y_2, ..., y_n)$. Тогда $f(\vec{x}) = y_1 \vec{e}_1 + y_2 \vec{e}_2 + ... + y_n \vec{e}_n$. С другой стороны

$$\begin{split} f(\vec{x}) &= f(x_1\vec{e}_1 + x_2\vec{e}_2 + \ldots + x_n\vec{e}_n) = x_1f(\vec{e}_1) + x_2f(\vec{e}_2) + \ldots + x_nf(\vec{e}_n) = \\ &= x_1\big(a_{11}\vec{e}_1 + a_{21}\vec{e}_2 + \ldots + a_{n1}\vec{e}_n\big) + x_2\big(a_{12}\vec{e}_1 + a_{22}\vec{e}_2 + \ldots + a_{n2}\vec{e}_n\big) + \ldots + x_n\big(a_{1n}\vec{e}_1 + a_{2n}\vec{e}_2 + \ldots + a_{nn}\vec{e}_n\big) = \\ &= \big(a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n\big)\vec{e}_1 + \big(a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n\big)\vec{e}_2 + \ldots + \big(a_{n1}x_1 + a_{n2}x_2 + \ldots + a_{nn}x_n\big)\vec{e}_n. \end{split}$$
 Отсюда

$$\begin{cases} y_{1} = a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n}, \\ y_{2} = a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n}, \\ \dots \\ y_{n} = a_{n1}x_{1} + a_{n2}x_{2} + \dots + a_{nn}x_{n}. \end{cases}$$

$$(1)$$

Обозначим
$$X = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}$$
, $Y = \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix}$, $A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$. Тогда система (1) примет вид

Y = AX.

Определение 6. Областью значений линейного оператора f называется множество ${\rm Im}\,A$ векторов вида $\vec{y} = A\vec{x}$, то есть $\operatorname{Im} A = \{ \vec{y} \in V \mid \vec{y} = A\vec{x}, \vec{x} \in V \}$.

Определение 7. Ядром линейного оператора f называется множество KerA всех векторов $\vec{x} \in V$, для которых $A\vec{x} = \vec{0}$, то есть $\ker A = \{\vec{x} \in V \mid A\vec{x} = \vec{0}\}$.

Связь между координатами вектора и его образа

Определение 8. Пусть в линейном пространстве V даны два базиса $\vec{e}_1, \vec{e}_2, ..., \vec{e}_n$ и $\vec{e}'_1, \vec{e}'_2, ..., \vec{e}'_n$

И

$$\begin{cases} \vec{e}_1' = t_{11}\vec{e}_1 + t_{21}\vec{e}_2 + \dots + t_{n1}\vec{e}_n, \\ \vec{e}_2' = t_{12}\vec{e}_1 + t_{22}\vec{e}_2 + \dots + t_{n2}\vec{e}_n, \\ \dots \\ \vec{e}_n' = t_{1n}\vec{e}_1 + t_{2n}\vec{e}_2 + \dots + t_{nn}\vec{e}_n. \end{cases}$$

$$\begin{cases} \vec{e}_1' = t_{11}\vec{e}_1 + t_{21}\vec{e}_2 + \ldots + t_{n1}\vec{e}_n, \\ \vec{e}_2' = t_{12}\vec{e}_1 + t_{22}\vec{e}_2 + \ldots + t_{n2}\vec{e}_n, \\ \ldots \\ \vec{e}_n' = t_{1n}\vec{e}_1 + t_{2n}\vec{e}_2 + \ldots + t_{nn}\vec{e}_n. \end{cases}$$
 Матрица $T = \begin{pmatrix} t_{11} & t_{12} & \ldots & t_{1n} \\ t_{21} & t_{22} & \ldots & t_{2n} \\ \ldots & \ldots & \ldots & \ldots \\ t_{n1} & t_{n2} & \ldots & t_{nn} \end{pmatrix}$ называется **матрицей перехода от базиса** $\vec{e}_1, \vec{e}_2, \ldots, \vec{e}_n$ **к**

базису $\vec{e}_1', \vec{e}_2', ..., \vec{e}_n'$.

Если $\vec{x}(x_1;x_2;...;x_n)$ в базисе $\vec{e}_1,\vec{e}_2,...,\vec{e}_n$ и $\vec{x}(x_1';x_2';...;x_n')$ в базисе $\vec{e}_1',\vec{e}_2',...,\vec{e}_n'$, то покажем,

что
$$X=TX'$$
 , где $X'=egin{pmatrix} x_1'\\x_2'\\\dots\\x_n' \end{pmatrix}$.

Действительно,

$$\vec{x} = x_1 \vec{e}_1 + x_2 \vec{e}_2 + \ldots + x_n \vec{e}_n \,,$$

$$\vec{x} = x_1' \vec{e}_1' + x_2' \vec{e}_2' + \ldots + x_n' \vec{e}_n' = x_1' \cdot (t_{11} \vec{e}_1 + t_{21} \vec{e}_2 + \ldots + t_{n1} \vec{e}_n) + x_2' \cdot (t_{12} \vec{e}_1 + t_{22} \vec{e}_2 + \ldots + t_{n2} \vec{e}_n) + \ldots + x_n' \cdot (t_{1n} \vec{e}_1 + t_{2n} \vec{e}_2 + \ldots + t_{nn} \vec{e}_n) =$$

$$= (t_{11} x_1' + t_{12} x_2' + \ldots + t_{1n} x_n') \vec{e}_1 + (t_{21} x_1' + t_{22} x_2' + \ldots + t_{2n} x_n') \vec{e}_2 + \ldots + (t_{n1} x_1' + t_{n2} x_2' + \ldots + t_{nn} x_n') \vec{e}_n.$$
 Отсюда

$$\begin{cases} x_1 = t_{11}x'_1 + t_{12}x'_2 + \dots + t_{1n}x'_n, \\ x_2 = t_{21}x'_1 + t_{22}x'_2 + \dots + t_{2n}x'_n, \\ \dots \\ x_n = t_{n1}x'_1 + t_{n2}x'_2 + \dots + t_{nn}x'_n, \end{cases}$$
(2)

или в матричной форме

$$X = TX'. (3)$$

Определение 9. Формулы (2) или(3) называются формулами преобразования координат.

Пример 1. Выясните, являются ли линейными операторы $f: \mathbb{R}^3 \to \mathbb{R}^3$, заданные условиями:

a)
$$f(\vec{x}) = (x_1 - x_3; x_2^2; x_1 + 2x_2 + 3x_3), \vec{x}(x_1; x_2; x_3) \in \mathbb{R}^3$$
.

6)
$$f(\vec{x}) = [\vec{x}, \vec{a}], \vec{a} = 2\vec{i} - \vec{j} + 5\vec{k}, \vec{x}(x_1; x_2; x_3) \in \mathbb{R}^3.$$

Решение.

а) Проверим первое условие из определения линейного оператора. Найдем $f(\vec{x}+\vec{y})$ и $f(\vec{x})+f(\vec{y})$. Учитывая, что $\vec{x}+\vec{y}=(x_1+y_1;x_2+y_2;x_3+y_3)$, получим

$$f(\vec{x} + \vec{y}) = ((x_1 + y_1) - (x_3 + y_3); (x_2 + y_2)^2; (x_1 + y_1) + 2(x_2 + y_2) + 3(x_3 + y_3)) =$$

$$= (x_1 + y_1 - x_3 - y_3; x_2^2 + y_2^2 + 2x_2y_2; x_1 + y_1 + 2x_2 + 2y_2 + 3x_3 + 3y_3),$$

$$f(\vec{x}) + f(\vec{y}) = (x_1 - x_3; x_2^2; x_1 + 2x_2 + 3x_3) + (y_1 - y_3; y_2^2; y_1 + 2y_2 + 3y_3) =$$

$$= (x_1 - x_3 + y_1 - y_3; x_2^2 + y_2^2; x_1 + 2x_2 + 3x_3 + y_1 + 2y_2 + 3y_3).$$

Сравнивая покоординатно векторы $f(\vec{x}+\vec{y})$ и $f(\vec{x})+f(\vec{y})$, получаем, что их первые и третьи координаты совпадают, тогда как вторые различны: $x_2^2+y_2^2+2x_2y_2\neq x_2^2+y_2^2$, если $x_2y_2\neq 0$.

Таким образом, равенство $f(\vec{x} + \vec{y}) = f(\vec{x}) + f(\vec{y})$ выполняется не для всех векторов $\vec{x}, \vec{y} \in R^3$. Значит, оператор f не является линейным.

б) В силу свойств векторного произведения векторов получим

$$f(\vec{x} + \vec{y}) = [\vec{x} + \vec{y}, \vec{a}] = [\vec{x}, \vec{a}] + [\vec{y}, \vec{a}] = f(\vec{x}) + f(\vec{y}); \ f(\lambda \vec{x}) = [\lambda \vec{x}, \vec{a}] = \lambda [\vec{x}, \vec{a}] = \lambda f(\vec{x}).$$

Значит, оператор $f(\vec{x}) = [\vec{x}, \vec{a}]$ является линейным для любого вектора \vec{a} .

Составим матрицу оператора f в базисе \vec{i} , \vec{j} , \vec{k} . Для этого найдем $f(\vec{i})$, $f(\vec{j})$, $f(\vec{k})$. Получим

$$f(\vec{i}) = [\vec{i}, \vec{a}] = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 0 & 0 \\ 2 & -1 & 5 \end{vmatrix} = (0; -5; -1);$$

$$f(\vec{j}) = [\vec{i}, \vec{a}] = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 0 & 1 & 0 \\ 2 & -1 & 5 \end{vmatrix} = (5; 0; -2);$$

$$f(\vec{k}) = [\vec{k}, \vec{a}] = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 0 & 0 & 1 \\ 2 & -1 & 5 \end{vmatrix} = (1; 2; 0).$$

Столбцами матрицы A этого оператора в базисе \vec{i} , \vec{j} , \vec{k} являются координаты образов

базисных векторов $f(\vec{i}), f(\vec{j}), f(\vec{k}) \colon A = \begin{pmatrix} 0 & 5 & 1 \\ -5 & 0 & 2 \\ -1 & -2 & 0 \end{pmatrix}$.

Задача. Составьте матрицу линейного оператора f, являющегося оператором ортогонального проектирования векторов R^3 на плоскость x + y = 0.

Собственные векторы линейного оператора

Зависимость между матрицами одного и того же оператора в различных базисах.

Теорема 1. Если $\vec{e}_1, \vec{e}_2, ..., \vec{e}_n$ и $\vec{e}_1', \vec{e}_2', ..., \vec{e}_n'$ – два базиса некоторого линейного пространства и A – матрица линейного оператора f в базисе $\vec{e}_1, \vec{e}_2, ..., \vec{e}_n$, то матрица B этого оператора в базисе $\vec{e}_1', \vec{e}_2', ..., \vec{e}_n'$ имеет вид

$$B = T^{-1} \cdot A \cdot T \,. \tag{1}$$

где T — матрица перехода от базиса $\vec{e}_1, \vec{e}_2, ..., \vec{e}_n$ к базису $\vec{e}_1', \vec{e}_2', ..., \vec{e}_n'$.

Доказательство.

Пусть вектор \vec{x} имеет координаты $x_1, x_2, ..., x_n$ в базисе $\vec{e}_1, \vec{e}_2, ..., \vec{e}_n$ и $x_1', x_2', ..., x_n'$ в базисе $\vec{e}_1', \vec{e}_2', ..., \vec{e}_n'$, а вектор $f(\vec{x})$ имеет координаты $y_1, y_2, ..., y_n$ в базисе $\vec{e}_1, \vec{e}_2, ..., \vec{e}_n$ и $y_1', y_2', ..., y_n'$ в

базисе
$$\vec{e}_1', \vec{e}_2', \ldots, \vec{e}_n'$$
. Обозначим $X = \begin{pmatrix} x_1 \\ x_2 \\ \ldots \\ x_n \end{pmatrix}, \ X' = \begin{pmatrix} x_1' \\ x_2' \\ \ldots \\ x_n' \end{pmatrix}, \ Y = \begin{pmatrix} y_1 \\ y_2 \\ \ldots \\ y_n \end{pmatrix}, \ Y' = \begin{pmatrix} y_1' \\ y_2' \\ \ldots \\ y_n' \end{pmatrix}$. Тогда

$$X = T \cdot X', \tag{2}$$

$$Y = T \cdot Y' \tag{3}$$

И

$$Y = A \cdot X \,, \tag{4}$$

$$Y' = B \cdot X' \,. \tag{5}$$

Умножим обе части равенства (2) на матрицу A слева, получим $A \cdot X = A \cdot T \cdot X'$. Отсюда и в силу (3) и (4) получим

$$T \cdot Y' = A \cdot T \cdot X' \,. \tag{6}$$

Так как T — матрица перехода от базиса $\vec{e}_1, \vec{e}_2, ..., \vec{e}_n$ к базису $\vec{e}_1', \vec{e}_2', ..., \vec{e}_n'$, то она является невырожденной и, значит, существует обратная матрица T^{-1} . Умножим обе части равенства (6) на матрицу T^{-1} слева, получим

$$T^{-1} \cdot (T \cdot Y') = T^{-1} \cdot (A \cdot T \cdot X') \Leftrightarrow (T^{-1} \cdot T) \cdot Y' = (T^{-1} \cdot A \cdot T) \cdot X' \Leftrightarrow Y' = (T^{-1} \cdot A \cdot T) \cdot X'.$$

Из последнего равенства и в силу (5) получим $B = T^{-1} \cdot A \cdot T$.

Теорема 1 доказана.

Следствие.

Если линейный оператор имеет в некотором базисе невырожденную матрицу, то и в любом другом базисе матрица этого оператора является невырожденной.

Действительно, пусть A и B —матрицы линейного оператора в двух различных базисах $\vec{e}_1,\vec{e}_2,...,\vec{e}_n$ и $\vec{e}_1',\vec{e}_2',...,\vec{e}_n'$ соответственно и $\det A \neq 0$. Так как $B = T^{-1} \cdot A \cdot T$, где T — невырожденная матрица, то найдем $\det B$, получим

$$\det B = \det \left(T^{-1} \cdot A \cdot T \right) = \det \left(T^{-1} \right) \cdot \det A \cdot \det T = \frac{1}{\det T} \cdot \det A \cdot \det T = \det A \neq 0,$$

то есть $\det A = \det B \neq 0$.

Замечание.

Если A и B —матрицы линейного оператора в двух различных базисах $\vec{e}_1, \vec{e}_2, ..., \vec{e}_n$ и $\vec{e}_1', \vec{e}_2', ..., \vec{e}_n'$ соответственно, то $A = T \cdot B \cdot T^{-1}$.

Характеристическое уравнение линейного оператора.

Теорема 2.

Если A и B —матрицы линейного оператора в двух различных базисах $\vec{e}_1, \vec{e}_2, ..., \vec{e}_n$ и $\vec{e}_1', \vec{e}_2', ..., \vec{e}_n'$ соответственно, то

$$\det(A - \lambda \cdot E) = \det(B - \lambda \cdot E),$$

где λ — произвольное число и E — единичная матрица порядка n .

Доказательство.

Пусть T — матрица перехода от базиса $\vec{e}_1,\vec{e}_2,...,\vec{e}_n$ к базису $\vec{e}_1',\vec{e}_2',...,\vec{e}_n'$, тогда $B=T^{-1}\cdot A\cdot T$. Найдем $\det(B-\lambda\cdot E)$, получим

$$\det(B - \lambda \cdot E) = \det(T^{-1} \cdot A \cdot T - \lambda \cdot E) = \det(T^{-1} \cdot A \cdot T - \lambda \cdot (T^{-1} \cdot E \cdot T)) =$$

$$= \det \left(T^{-1} \cdot (A \cdot T) - \lambda \cdot \left(T^{-1} \cdot (E \cdot T) \right) \right) = \det \left(T^{-1} \cdot (A \cdot T) - T^{-1} \cdot (\lambda \cdot E \cdot T) \right) = \det \left(T^{-1} \cdot (A \cdot T - \lambda \cdot E \cdot T) \right) = \det \left(T^{-1} \cdot (A - \lambda \cdot E) \cdot T \right) = \det \left(T^{-1} \cdot (A - \lambda \cdot E) \cdot T \right) = \det \left(T^{-1} \cdot (A - \lambda \cdot E) \cdot T \right) = \det \left(T^{-1} \cdot (A \cdot T - \lambda \cdot E) \cdot T \right) = \det \left(T^{-1} \cdot (A \cdot T - \lambda \cdot E) \cdot T \right) = \det \left(T^{-1} \cdot (A \cdot T - \lambda \cdot E) \cdot T \right) = \det \left(T^{-1} \cdot (A \cdot T - \lambda \cdot E) \cdot T \right) = \det \left(T^{-1} \cdot (A \cdot T - \lambda \cdot E) \cdot T \right) = \det \left(T^{-1} \cdot (A \cdot T - \lambda \cdot E) \cdot T \right) = \det \left(T^{-1} \cdot (A \cdot T - \lambda \cdot E) \cdot T \right) = \det \left(T^{-1} \cdot (A \cdot T - \lambda \cdot E) \cdot T \right) = \det \left(T^{-1} \cdot (A \cdot T - \lambda \cdot E) \cdot T \right) = \det \left(T^{-1} \cdot (A \cdot T - \lambda \cdot E) \cdot T \right) = \det \left(T^{-1} \cdot (A \cdot T - \lambda \cdot E) \cdot T \right) = \det \left(T^{-1} \cdot (A \cdot T - \lambda \cdot E) \cdot T \right) = \det \left(T^{-1} \cdot (A \cdot T - \lambda \cdot E) \cdot T \right) = \det \left(T^{-1} \cdot (A \cdot T - \lambda \cdot E) \cdot T \right) = \det \left(T^{-1} \cdot (A \cdot T - \lambda \cdot E) \cdot T \right) = \det \left(T^{-1} \cdot (A \cdot T - \lambda \cdot E) \cdot T \right) = \det \left(T^{-1} \cdot (A \cdot T - \lambda \cdot E) \cdot T \right) = \det \left(T^{-1} \cdot (A \cdot T - \lambda \cdot E) \cdot T \right) = \det \left(T^{-1} \cdot (A \cdot T - \lambda \cdot E) \cdot T \right) = \det \left(T^{-1} \cdot (A \cdot T - \lambda \cdot E) \cdot T \right) = \det \left(T^{-1} \cdot (A \cdot T - \lambda \cdot E) \cdot T \right) = \det \left(T^{-1} \cdot (A \cdot T - \lambda \cdot E) \cdot T \right) = \det \left(T^{-1} \cdot (A \cdot T - \lambda \cdot E) \cdot T \right) = \det \left(T^{-1} \cdot (A \cdot T - \lambda \cdot E) \cdot T \right) = \det \left(T^{-1} \cdot (A \cdot T - \lambda \cdot E) \cdot T \right) = \det \left(T^{-1} \cdot (A \cdot T - \lambda \cdot E) \cdot T \right) = \det \left(T^{-1} \cdot (A \cdot T - \lambda \cdot E) \cdot T \right) = \det \left(T^{-1} \cdot (A \cdot T - \lambda \cdot E) \cdot T \right) = \det \left(T^{-1} \cdot (A \cdot T - \lambda \cdot E) \cdot T \right) = \det \left(T^{-1} \cdot (A \cdot T - \lambda \cdot E) \cdot T \right) = \det \left(T^{-1} \cdot (A \cdot T - \lambda \cdot E) \cdot T \right) = \det \left(T^{-1} \cdot (A \cdot T - \lambda \cdot E) \cdot T \right) = \det \left(T^{-1} \cdot (A \cdot T - \lambda \cdot E) \cdot T \right) = \det \left(T^{-1} \cdot (A \cdot T - \lambda \cdot E) \cdot T \right) = \det \left(T^{-1} \cdot (A \cdot T - \lambda \cdot E) \cdot T \right) = \det \left(T^{-1} \cdot (A \cdot T - \lambda \cdot E) \cdot T \right) = \det \left(T^{-1} \cdot (A \cdot T - \lambda \cdot E) \cdot T \right) = \det \left(T^{-1} \cdot (A \cdot T - \lambda \cdot E) \cdot T \right) = \det \left(T^{-1} \cdot (A \cdot T - \lambda \cdot E) \cdot T \right) = \det \left(T^{-1} \cdot (A \cdot T - \lambda \cdot E) \cdot T \right) = \det \left(T^{-1} \cdot (A \cdot T - \lambda \cdot E) \cdot T \right) = \det \left(T^{-1} \cdot (A \cdot T - \lambda \cdot E) \cdot T \right) = \det \left(T^{-1} \cdot (A \cdot T - \lambda \cdot E) \cdot T \right) = \det \left(T^{-1} \cdot (A \cdot T - \lambda \cdot E) \cdot T \right) = \det \left(T^{-1} \cdot (A \cdot T - \lambda \cdot E) \cdot T \right) = \det \left(T^{-1} \cdot (A \cdot T - \lambda \cdot E) \cdot T \right)$$

то есть $\det(B - \lambda \cdot E) = \det(A - \lambda \cdot E)$.

Теорема 2 доказана.

Определение 10. Многочлен $\det(A - \lambda \cdot E)$ степени n относительно λ называется **характеристическим многочленом** матрицы A или линейного оператора f .

Определение 11. Характеристическим уравнением линейного оператора f называется уравнение вида

$$\det(A - \lambda \cdot E) = 0,\tag{1}$$

где A — матрица линейного оператора f в некотором базисе.

Определение 12. Корни характеристического уравнения (1) называются **характеристическими числами** матрицы A или линейного оператора f.

Замечание. При переходе от одного базиса к другому матрица линейного оператора меняется, а характеристический многочлен остается неизменным.

Пусть
$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$
 — матрица линейного оператора f в некотором базисе. Тогда

характеристическое уравнение примет вид

$$\det(A - \lambda \cdot E) = 0 \Leftrightarrow \det \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} - \lambda \cdot \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix} = 0 \Leftrightarrow \begin{vmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{vmatrix} = 0.$$

Собственные векторы линейного оператора.

Определение 13. Вектор \vec{x} линейного пространства называется собственным вектором линейного оператора f , если этот вектор ненулевой и существует действительное число k такое, что

$$f(\vec{x}) = k \cdot \vec{x}. \tag{1}$$

Определение 2. Число k называется **собственным числом вектора** \vec{x} относительно линейного оператора f .

Равенство (1) можно записать в матричном виде

$$A \cdot X = k \cdot X \Leftrightarrow A \cdot X = k \cdot (E \cdot X) \Leftrightarrow A \cdot X = (k \cdot E) \cdot X \Leftrightarrow (A - k \cdot E) \cdot X = O,$$

где
$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$
 — матрица линейного оператора f в некотором базисе, $X = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}$

-матрица-столбец из координат вектора \vec{x} в том же базисе.

Свойства линейного оператора

1. Собственный вектор линейного оператора имеет единственное собственное значение. **Доказательство.**

Пусть k_1 и k_2 – различные собственные числа собственного вектора \vec{x} относительно линейного оператора f . Тогда $f(\vec{x}) = k_1 \cdot \vec{x}$ и $f(\vec{x}) = k_2 \cdot \vec{x}$.Отсюда

$$k_1 \cdot \vec{x} = k_2 \cdot \vec{x} \Leftrightarrow (k_1 - k_2) \cdot \vec{x} = \vec{0}.$$

Так как $\vec{x} \neq \vec{0}$, то $k_1 = k_2$. Получили противоречие. Значит, собственное значение собственного вектора определено однозначно.

2. Если \vec{x} — собственный вектор линейного оператора f с собственным значением k и λ — любое отличное от нуля число, то $\lambda \cdot \vec{x}$ — также собственный вектор линейного оператора f с собственным значением k.

Доказательство.

Если \vec{x} — собственный вектор линейного оператора f с собственным значением k , то по определению $f(\vec{x}) = k \cdot \vec{x}$.

Найдем $f(\lambda \cdot \vec{x})$. Учитывая определение линейного оператора и в силу (1), получим

$$f(\lambda \cdot \vec{x}) = \lambda \cdot f(\vec{x}) = \lambda \cdot (k \cdot \vec{x}) = k \cdot (\lambda \cdot \vec{x}).$$

Следовательно, $\lambda \cdot \vec{x}$ — также собственный вектор линейного оператора f с собственным значением k .

3. Если \vec{x}_1 и \vec{x}_2 — линейно независимые собственные векторы линейного оператора f с одним и тем же собственным значением k, то $\vec{x}_1 + \vec{x}_2$ — собственный вектор линейного оператора f с собственным значением k.

Доказательство.

Если \vec{x}_1 и \vec{x}_2 — собственные векторы линейного оператора f с одним и тем же собственным значением k , то из определения собственного вектора имеем

$$f(\vec{x}_1) = k \cdot \vec{x}_1, \ f(\vec{x}_2) = k \cdot \vec{x}_2.$$

Так как \vec{x}_1 и \vec{x}_2 – линейно независимые векторы, $\vec{x}_1 + \vec{x}_2$ – ненулевой вектор. Найдем $f(\vec{x}_1 + \vec{x}_2)$. В силу определения линейного оператора получим

$$f(\vec{x}_1 + \vec{x}_2) = f(\vec{x}_1) + f(\vec{x}_2) = k \cdot \vec{x}_1 + k \cdot \vec{x}_2 = k \cdot (\vec{x}_1 + \vec{x}_2).$$

Значит, $\vec{x}_1 + \vec{x}_2$ — собственный вектор линейного оператора f с собственным значением k .

4. Если \vec{x}_1 и \vec{x}_2 — собственные векторы линейного оператора f с собственными значениями k_1 и k_2 соответственно, и $k_1 \neq k_2$, то \vec{x}_1 и \vec{x}_2 — линейно независимые векторы.

Доказательство.

Предположим, что векторы \vec{x}_1 и \vec{x}_2 линейно зависимы. Тогда существует ненулевое число α такое, что $\vec{x}_1 = \alpha \cdot \vec{x}_2$. Отсюда по свойству 2 вектор $\vec{x}_1 = \alpha \cdot \vec{x}_2$ —собственный вектор линейного оператора f с собственными значениями k_2 . А так как собственное значение собственного вектора линейного оператора f определено однозначно, то $k_1 = k_2$. Значит, наше предположение не верно и векторы \vec{x}_1 и \vec{x}_2 линейно независимы.

Теорема 3.

Для того, чтобы линейный оператор f имел собственный вектор \vec{x} с собственным значением k , необходимо и достаточно, чтобы число k являлось корнем характеристического уравнения этого оператора.

Доказательство.

Для того, чтобы линейный оператор f имел собственный вектор \vec{x} с собственным значением k , необходимо и достаточно, имело место равенство

$$f(\vec{x}) = k \cdot \vec{x} \Leftrightarrow A \cdot X = k \cdot E \Leftrightarrow (A - k \cdot E) \cdot X = O$$
.

Для того, чтобы однородная система $(A-k\cdot E)\cdot X=O$ имела ненулевое решение \vec{x} , необходимо и достаточно, чтобы $\det(A-k\cdot E)=0$, то есть число k являлось корнем характеристического уравнения линейного оператора f.

Теорема 3 доказана.

Теорема 4.

Пусть k — собственное число линейного оператора f с матрицей A n — мерного линейного пространства. Если ранг матрицы $A-k\cdot E$ равен r, то существует n-r линейно независимых собственных векторов линейного оператора f с собственным числом k.

Доказательство.

Если k — собственное число линейного оператора f с матрицей A n — мерного линейного пространства, то $(A-k\cdot E)\cdot X=O$. Так как ранг матрицы $A-k\cdot E$ равен r, то существует n-r линейно независимых решений однородной системы. Учитывая, что каждое решение системы $(A-k\cdot E)\cdot X=O$ является собственным вектором с собственным значением k, получим, что существует n-r линейно независимых собственных векторов линейного оператора f с собственным числом k.

Теорема 4 доказана.

Пример.

Найдите собственные значения и собственные векторы линейного оператора, заданного в

некотором базисе матрицей
$$A = \begin{pmatrix} 4 & -1 & -1 \\ 1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$$
.

Решение.

Составим характеристическое уравнение $\det(A - \lambda \cdot E) = 0$, корнями которого являются собственные значения λ матрицы A:

$$\det(A - \lambda \cdot E) = 0 \Leftrightarrow \begin{vmatrix} 4 - \lambda & -1 & -1 \\ 1 & 2 - \lambda & -1 \\ 1 & -1 & 2 - \lambda \end{vmatrix} = 0 \Leftrightarrow (4 - \lambda) \cdot ((2 - \lambda)^2 - 1) + (2 - \lambda + 1) - (-1 - (2 - \lambda)) = 0 \Leftrightarrow (4 - \lambda) \cdot (\lambda^2 - 4\lambda + 3) + 6 - 2\lambda = 0 \Leftrightarrow (\lambda - 3)^2 (2 - \lambda) = 0 \Leftrightarrow \begin{bmatrix} \lambda = 2, \\ \lambda = 3. \end{bmatrix}$$

Для каждого собственного значения λ составим и решим однородную систему уравнений $(A - \lambda \cdot E) \cdot \vec{x} = \vec{0}$:

$$(A - \lambda \cdot E) \cdot \vec{x} = \vec{0} \Leftrightarrow \begin{pmatrix} 4 - \lambda & -1 & -1 \\ 1 & 2 - \lambda & -1 \\ 1 & -1 & 2 - \lambda \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix},$$

решениями которой являются собственные векторы матрицы A с собственным значением λ .

Для $\lambda_1 = 2$ указанная система примет вид

$$\begin{pmatrix} 2 & -1 & -1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Leftrightarrow \begin{cases} 2x_1 - x_2 - x_3 = 0, \\ x_1 - x_3 = 0, \\ x_1 - x_2 = 0. \end{cases}$$

Решим систему методом Гаусса:

$$\begin{pmatrix} 2 & -1 & -1 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix} \xrightarrow{S_1 \leftrightarrow S_2} \begin{pmatrix} 1 & 0 & -1 \\ 2 & -1 & -1 \\ 1 & -1 & 0 \end{pmatrix} \xrightarrow{S_2 + (-2)S_1} \begin{pmatrix} 1 & 0 & -1 \\ S_3 + (-1)S_1 \\ 0 & -1 & 1 \\ 0 & -1 & 1 \end{pmatrix} \xrightarrow{S_3 + (-1)S_2} \begin{pmatrix} 1 & 0 & -1 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Последней матрице соответствует однородная система $\begin{cases} x_1 - x_3 = 0, \\ -x_2 + x_3 = 0. \end{cases}$

Выберем базисными переменными x_1 и x_2 , а свободной неизвестной — x_3 . Тогда $x_1=x_3$, $x_2=x_3$. Полагая $x_3=c_3\neq 0$, получим собственные векторы \vec{X}_1 , соответствующие собственному значению $\lambda_1=2$:

$$\vec{X}_1 = \begin{pmatrix} c_3 \\ c_3 \\ c_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \cdot c_3,$$

где c_3 –произвольное число, отличное от нуля.

Для $\lambda_2 = 3$ указанная система примет вид

Выберем x_1 базисной переменной, а x_2 , x_3 — свободными неизвестными. Тогда $x_1=x_2+x_3$. Полагая $x_2=c_2, x_3=c_3$, получим собственные векторы \vec{X}_2 , соответствующие собственному значению $\lambda_2=3$:

$$\vec{X}_{2} = \begin{pmatrix} c_{2} + c_{3} \\ c_{2} \\ c_{3} \end{pmatrix} = c_{2} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} + c_{3} \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix},$$

где c_2, c_3 —произвольные числа, не равные нулю одновременно, что равносильно условию ${c_2}^2 + {c_3}^2 \neq 0$.

Задача. Составьте матрицу линейного оператора

$$f(\vec{x}) = \vec{x} - 3 \cdot (\vec{a}, \vec{x}) \cdot \frac{\vec{a}}{|\vec{a}|^2}, \ \vec{x} = (x_1, x_2, x_3) \in R^3, \ \vec{a} = \vec{i} + \vec{j} - \vec{k},$$

в базисе \vec{i} , \vec{j} , \vec{k} и найдите собственные значения и собственные векторы оператора f .