Access Control on Multiprotocol Networks

T2TRG - IETF 93 18 July 2015

Pablo Puñal Pereira pablo.punal@ltu.se

Department of Computer Science, Electrical and Space Engineering EISLAB

Outline

- Why
 - Arrowhead Introduction
 - Translation Service
 - Multiprotocol communication issues
- ▶ Requirements
- Current Solution
 - Architecture
 - How it works
- ▶ Results (demo with CoAP protocol)
- ▶ Limitations
- ▶ Future Work

Translator

Network A

- Protocol A
- Security Type A
- Access Control A

Network B

- Protocol B
- Security Type B
- Access Control B

Interoperability

- Protocol Level
- Semantic Level
- Coding Level

Problems

- Man in the Middle
- No end to end Security
- How to fit ticket on each protocol
- Encrypted Payload

Requirements for Access Control

- Supported by all involved devices
- → Devices with different performance
 - Special care of low power constrained devices
 - No complex processing
 - ✓ Compromising the low power criteria
 - ✓ Introducing latencies during the communication
 - Mitigate additional overhead
 - ✓ Increasing the communication usage
 - ✓ Increasing the computation
 - Reduce extra communication
 - √ Keeping the low power criteria
 - ✓ Keeping the network performance

Proposed Solution: Tickets

- Ticket just as an ID, no extra information inside
- Add it to each protocol
- Flexible size
- Static / Dynamic
- Timeout validation
- Supports Accounting
- Supports Network Monitoring

AAA Server Architecture

How it works?

Demo

Limitations

Future Work

Thanks for your attention