Assignment 17

kartik Thakur

```
In [36]: # Predict the selling price of car from the given dataset using Linear Regression Model
         # Column Name:
         # name: Name of Car
         # year: In which year car is purchased
         # selling_price: Selling price of Car
         # km_driven: Car driven in Kms
         # fuel: Type of car Petrol, Diesel or CNG
         # seller type: who is selling the car
         # transmission: car is automatic or manual
         # mileage: Mileage of Car
         # engine: Car Engine in cc
         # max_power: Maximum power of car
         # seats: Number of seats in car
```

step 1 : firstly import the necessarry libraries

```
In [59]: # firstly import the necessarry libraries
         import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         import sklearn
         %matplotlib inline
```

step 2: Import the csv file and clean the car data

```
In [60]: car=pd.read_csv('car_details.csv')
```

In [61]: car.head()

Out[61]:

	name	year	selling_price	km_driven	fuel	seller_type	transmission	mileage	engine	max_power
0	Maruti Swift Dzire VDI	2014	450000	145500	Diesel	Individual	Manual	23.4 kmpl	1248 CC	74 bhp
1	Skoda Rapid 1.5 TDI Ambition	2014	370000	120000	Diesel	Individual	Manual	21.14 kmpl	1498 CC	103.52 bhp
2	Honda City 2017- 2020 EXi	2006	158000	140000	Petrol	Individual	Manual	17.7 kmpl	1497 CC	78 bhp
3	Hyundai i20 Sportz Diesel	2010	225000	127000	Diesel	Individual	Manual	23.0 kmpl	1396 CC	90 bhp
4	Maruti Swift VXI BSIII	2007	130000	120000	Petrol	Individual	Manual	16.1 kmpl	1298 CC	88.2 bhp
4)

step 3: cleaning the data from null values and more

```
In [62]: car.isnull().sum()
                                 # checking null values
Out[62]: name
                             0
                             0
         year
         selling_price
                             0
         km driven
                             0
         fuel
                             0
         seller_type
         transmission
                             0
         mileage
                           221
         engine
                           221
         max_power
                           215
                           221
         seats
         dtype: int64
In [63]: car.dropna(inplace=True)
```

```
In [64]: car.isnull().sum()
Out[64]: name
                          0
                          0
         year
                          0
         selling price
         km driven
                          0
         fuel
                          0
         seller_type
                          0
         transmission
                          0
                          0
         mileage
         engine
                          0
                          0
         max power
         seats
                          0
         dtype: int64
In [65]: car.info() # getting info of car data
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 7907 entries, 0 to 8127
         Data columns (total 11 columns):
                             Non-Null Count Dtype
          #
              Column
              -----
                              -----
          0
                             7907 non-null
                                              object
              name
                             7907 non-null
                                             int64
          1
              year
                             7907 non-null
                                              int64
          2
              selling price
          3
                             7907 non-null
                                              int64
              km driven
          4
              fuel
                             7907 non-null
                                             object
          5
              seller_type
                             7907 non-null
                                             object
          6
              transmission
                             7907 non-null
                                             object
          7
              mileage
                             7907 non-null
                                             object
              engine
                             7907 non-null
                                             object
          9
              max_power
                             7907 non-null
                                              object
          10
              seats
                             7907 non-null
                                             float64
         dtypes: float64(1), int64(3), object(7)
```

memory usage: 741.3+ KB

In [66]: | car.head()

Out[66]:

	name	year	selling_price	km_driven	fuel	seller_type	transmission	mileage	engine	max_power
(Maruti Swift Dzire VDI	2014	450000	145500	Diesel	Individual	Manual	23.4 kmpl	1248 CC	74 bhp
	Skoda Rapid 1.5 TDI Ambition	2014	370000	120000	Diesel	Individual	Manual	21.14 kmpl	1498 CC	103.52 bhp
;	Honda City 2 2017- 2020 EXi	2006	158000	140000	Petrol	Individual	Manual	17.7 kmpl	1497 CC	78 bhp
;	Hyundai i20 Sportz Diesel	2010	225000	127000	Diesel	Individual	Manual	23.0 kmpl	1396 CC	90 bhp
4	Maruti Swift VXI BSIII	2007	130000	120000	Petrol	Individual	Manual	16.1 kmpl	1298 CC	88.2 bhp
4										

```
In [67]: | car['seats']=car['seats'].astype('int32') # changing float to int32
         car['mileage']=car['mileage'].str.replace('kmpl|km/kg','')
```

C:\Users\user\AppData\Local\Temp\ipykernel_10736\1728237567.py:2: FutureWarning: The default value of regex will change from True to False in a future version. car['mileage']=car['mileage'].str.replace('kmpl|km/kg','')

```
In [68]: | car['mileage']=car['mileage'].astype('float')
         car['engine']=car['engine'].str.replace('CC','')
         car['engine']=car['engine'].astype('int64')
```

```
In [69]: | car['max_power']=car['max_power'].str.replace('bhp','')
         car['max_power']=pd.to_numeric(car['max_power'],errors='coerce')
         car['max_power']=car['max_power'].astype('float')
```

```
In [70]:
         ### AND EXCLUDING UNNECESSARY COLUMNS
         car
         car.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 7907 entries, 0 to 8127
         Data columns (total 11 columns):
              Column
          #
                             Non-Null Count Dtype
              -----
                             -----
          0
                             7907 non-null
                                             object
              name
          1
              year
                             7907 non-null
                                             int64
          2
              selling price 7907 non-null
                                             int64
          3
              km driven
                             7907 non-null
                                             int64
          4
              fuel
                             7907 non-null
                                             object
          5
              seller type
                             7907 non-null
                                             object
              transmission
                             7907 non-null
                                             object
          7
                             7907 non-null
                                             float64
              mileage
          8
              engine
                             7907 non-null
                                             int64
          9
                             7906 non-null
                                             float64
              max power
          10
             seats
                             7907 non-null
                                             int32
         dtypes: float64(2), int32(1), int64(4), object(4)
         memory usage: 710.4+ KB
In [71]:
         car.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 7907 entries, 0 to 8127
         Data columns (total 11 columns):
              Column
          #
                             Non-Null Count Dtype
              -----
                             _____
          0
              name
                             7907 non-null
                                             object
                             7907 non-null
                                             int64
          1
              year
                             7907 non-null
                                             int64
          2
              selling price
              km driven
                             7907 non-null
          3
                                             int64
          4
              fuel
                             7907 non-null
                                             object
          5
              seller type
                             7907 non-null
                                             object
              transmission
                             7907 non-null
                                             object
          6
          7
              mileage
                             7907 non-null
                                             float64
                             7907 non-null
                                             int64
          8
              engine
          9
              max power
                             7906 non-null
                                             float64
          10
             seats
                             7907 non-null
                                             int32
```

dtypes: float64(2), int32(1), int64(4), object(4) memory usage: 710.4+ KB

```
In [235]:
```

```
car.dropna(inplace=True)
car.isnull().sum()
car.info()
```

<class 'pandas.core.frame.DataFrame'> Int64Index: 7906 entries, 0 to 8127 Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	name	7906 non-null	object
1	year	7906 non-null	int64
2	selling_price	7906 non-null	int64
3	km_driven	7906 non-null	int64
4	fuel	7906 non-null	object
5	seller_type	7906 non-null	object
6	transmission	7906 non-null	object
7	mileage	7906 non-null	float64
8	engine	7906 non-null	int64
9	max_power	7906 non-null	float64
10	seats	7906 non-null	int32
dtyp	es: float64(2),	int32(1), int64	(4), object(4)

memory usage: 968.3+ KB

In [236]: car.describe(include='all') # describing the car after cleaning the data

Out[236]:

	name	year	selling_price	km_driven	fuel	seller_type	transmission	mileage	
count	7906	7906.000000	7.906000e+03	7.906000e+03	7906	7906	7906	7906.000000	79
unique	1982	NaN	NaN	NaN	4	3	2	NaN	
top	Maruti Swift Dzire VDI	NaN	NaN	NaN	Diesel	Individual	Manual	NaN	
freq	129	NaN	NaN	NaN	4299	6563	6865	NaN	
mean	NaN	2013.983936	6.498137e+05	6.918866e+04	NaN	NaN	NaN	19.419861	14
std	NaN	3.863695	8.135827e+05	5.679230e+04	NaN	NaN	NaN	4.036263	5
min	NaN	1994.000000	2.999900e+04	1.000000e+00	NaN	NaN	NaN	0.000000	6
25%	NaN	2012.000000	2.700000e+05	3.500000e+04	NaN	NaN	NaN	16.780000	11
50%	NaN	2015.000000	4.500000e+05	6.000000e+04	NaN	NaN	NaN	19.300000	12
75%	NaN	2017.000000	6.900000e+05	9.542500e+04	NaN	NaN	NaN	22.320000	15
max	NaN	2020.000000	1.000000e+07	2.360457e+06	NaN	NaN	NaN	42.000000	36
4									•

Plotting graphs to understand the car details better

In [234]: sns.displot(car['selling_price'])

Out[234]: <seaborn.axisgrid.FacetGrid at 0x1ef1ce78c70>

In [230]: | sns.heatmap(car.corr(),cmap='coolwarm',annot=True)

Out[230]: <AxesSubplot:>

In [73]: sns.pairplot(car)

Out[73]: <seaborn.axisgrid.PairGrid at 0x1ef17de7130>

step 4: seprating dependent and independent variables into x and y

car.columns

```
In [493]: | from sklearn.linear_model import LinearRegression
          from sklearn.preprocessing import OneHotEncoder
          from sklearn.model_selection import train_test_split
          from sklearn import metrics
          from sklearn.metrics import mean_squared_error, r2_score
In [494]: | car_encoded = pd.get_dummies(car, columns=['fuel','seller_type','transmission','name']
```

```
In [495]: # car_encoded.drop(['name'],axis=1,inplace=True) # we can drop car names but we don't
In [496]: | x=car_encoded.drop(columns=['selling_price'],axis=1)
          y=car_encoded['selling_price']
```

Out[496]:

	year	km_driven	mileage	engine	max_power	seats	fuel_CNG	fuel_Diesel	fuel_LPG	fuel_Petrol
0	2014	145500	23.40	1248	74.00	5	0	1	0	0
1	2014	120000	21.14	1498	103.52	5	0	1	0	0
2	2006	140000	17.70	1497	78.00	5	0	0	0	1
3	2010	127000	23.00	1396	90.00	5	0	1	0	0
4	2007	120000	16.10	1298	88.20	5	0	0	0	1
8123	2013	110000	18.50	1197	82.85	5	0	0	0	1
8124	2007	119000	16.80	1493	110.00	5	0	1	0	0
8125	2009	120000	19.30	1248	73.90	5	0	1	0	0
8126	2013	25000	23.57	1396	70.00	5	0	1	0	0
8127	2013	25000	23.57	1396	70.00	5	0	1	0	0

7906 rows × 1997 columns

In [497]: # split the training and test data x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.4,random_state=86)

step5: Linear regression / Model training

```
In [498]: regression =LinearRegression()
           x_test
Out[498]:
                  year km_driven mileage engine max_power seats fuel_CNG fuel_Diesel fuel_LPG fuel_Petrol
            2789 2009
                           80000
                                    17.00
                                                      70.00
                                                                          0
                                                                                              0
                                                                                                         0
                                            1405
                                                                5
                                                                                     1
            4486 2019
                            7000
                                    21.63
                                            998
                                                      67.00
                                                                5
                                                                          0
                                                                                     0
                                                                                              0
                                                                                                         1
            1777 2014
                           90000
                                    23.20
                                                      73.94
                                                                5
                                                                          0
                                                                                              0
                                            1248
                                                                                     1
                                                                                                         0
            4458 2013
                           50000
                                    15.64
                                            1193
                                                      64.10
                                                                5
                                                                          0
                                                                                     0
                                                                                              0
                                                                                                         1
            3687 2018
                           13000
                                    17.00
                                            2200
                                                      139.01
                                                                7
                                                                          0
                                                                                     1
                                                                                              0
                                                                                                         0
             151 2017
                            9000
                                    13.60
                                            1999
                                                      177.00
                                                                5
                                                                          0
                                                                                     1
                                                                                              0
                                                                                                         0
                           70000
            5738 2012
                                    19.70
                                            796
                                                      46.30
                                                                5
                                                                          0
                                                                                     0
                                                                                              0
                                                                                                         1
            2738 2012
                           95000
                                    19.40
                                            1405
                                                      70.00
                                                                          0
                                                                                              0
                                                                                                         0
            3524 2016
                           56494
                                    18.20
                                            1199
                                                       88.70
                                                                5
                                                                          0
                                                                                     0
                                                                                              0
                                                                                                         1
             979 2013
                           80000
                                    22.07
                                            1199
                                                       73.90
                                                                5
                                                                                     1
                                                                                                         0
           3163 rows × 1997 columns
In [499]: reg_model=LinearRegression()
In [500]: reg_model.fit(x_train,y_train)
Out[500]: LinearRegression()
  In [ ]:
In [501]: price predictions= reg model.predict(x train)
In [502]: # R squared Error
In [503]: error_score=metrics.r2_score(y_train,price_predictions)
           print('R squared Error :',error_score)
           R squared Error: 0.990078388727653
In [504]: r2=r2_score(y_train,price_predictions)
Out[504]: 0.990078388727653
  In [ ]:
```

VISULIZATION OF ACTUCAL PRICE AND MODEL PREDICTED PRICE

```
In [509]: plt.scatter(y_train,price_predictions)
          plt.plot([min(y_test), max(y_test)], [min(y_test), max(y_test)], 'k--', lw=2)
          plt.xlabel('actual price')
          plt.ylabel('predicted price')
          plt.title('actucal price vs predicted price / MODEL')
          plt.show()
```


STEP 6: Giving model car details and finding its car price

x train, y train and predicted price..how it worked

```
In [463]: x_train.head(2)
Out[463]:
```

	year	km_driven	mileage	engine	max_power	seats	fuel_CNG	fuel_Diesel	fuel_LPG	fuel_l
'9	2016	60000	21.49	1498	108.5	5	0	1	0	
	2010	100000	18.00	995	62.0	5	0	0	0	

```
In [464]: y_train.head()
Out[464]: 7279
                    591000
           2723
                    140000
           871
                   1050000
           1871
                   5400000
                    135000
           618
          Name: selling_price, dtype: int64
In [427]: pred= list(map(int,training data prediction)) # this was predicted price
In [428]: pred
            788758,
            231218,
            400001,
            545274,
            535858,
            724568,
            600001,
            392238,
           444133,
            374994,
            476601,
            381025,
            350004,
            3200000,
            1177267,
           440996,
            2674615,
           638136,
            689780,
           432213.
In [429]: y_train
                     # pred price should be close to y_train price ...
Out[429]: 7279
                    591000
           2723
                    140000
           871
                   1050000
           1871
                   5400000
           618
                    135000
                    . . .
           8069
                    500000
           1154
                    400000
                   1650000
           3611
           1944
                    200000
           3322
                     90000
          Name: selling_price, Length: 4743, dtype: int64
  In [ ]:
```

```
In [459]: new_car= x_test.sample()
          i=new_car.index
          new car
Out[459]:
                 year km_driven mileage engine max_power seats fuel_CNG fuel_Diesel fuel_LPG fuel_Petrol
           6959 2017
                          9000
                                  13.6
                                         1999
                                                   177.0
                                                            5
                                                                     0
                                                                                        0
                                                                                                  0
          1 rows × 1997 columns
In [460]: new_car_prediction= reg_model.predict(new_car)
In [461]: price=list(map(int,new_car_prediction))
In [466]: print('the model predicted selling price is', price ,'and actual is:',y_test.loc[i].va
          actual_price=y_test.loc[i].values
          the model predicted selling price is [2688066] and actual is: [2711000]
```