1. CUDA event API is used to measure execution time of GPU and CPU code. Implemented by recording a time by creating an event just before and after the kernel function is called and then taking the difference of start time and end time recorded as shown below.

```
cudaEvent_t GPUstart, GPUstop;
float GPUelapsedTime;

cudaEventCreate(&GPUstart);
cudaEventRecord(GPUstart,0);

// Launch the device computation threads!
ConvolutionKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd);

cudaEventCreate(&GPUstop);
cudaEventRecord(GPUstop,0);
cudaEventSynchronize(GPUstop);

printf("Matrix N width = %d\n", N.width);
printf("Matrix N height = %d\n", N.height);

cudaEventElapsedTime(&GPUelapsedTime, GPUstart,GPUstop);
printf("GPU Elapsed time : %f ms\n",GPUelapsedTime);
```

Results obtained for different tests inputs are as follows

```
Test Input I: (Random Size)
```

Size: 281 x 80

GPU Elapsed time: 0.048480 ms CPU Elapsed time: 2.256992 ms

Total number of floating point operations : 2 * 5 * 5 * 281 * 80 = 1124000

GPU time for per floating point operations = $0.048480 / 1124000 = 43.13 \times 10^{-9} \text{ ms}$

CPU time for per floating point operations = $2.256992 / 1124000 = 2 \times 10^{-6} \text{ ms}$

Test Input II:

Size: 32 x 32

GPU Elapsed time: 0.044768 ms CPU Elapsed time: 0.099488 ms

Total number of floating point operations : 2 * 5 * 5 * 32 * 32 = 51200

GPU time for per floating point operations = $0.044768 / 51200 = 87.43 \times 10^{-9} \text{ ms}$

CPU time for per floating point operations = $0.099488 / 51200 = 1.95 \times 10^{-6} \text{ ms}$

Test Input III:

Size: 64 x 64

Homework 4 Answer

GPU Elapsed time: 0.043488 ms CPU Elapsed time: 0.434176 ms

Total number of floating point operations : 2 * 5 * 5 * 64 * 64 = 204800

GPU time for per floating point operations = $0.043488 / 204800 = 212.34 \times 10^{-9} \text{ ms}$

CPU time for per floating point operations = $0.434176 / 204800 = 2.1 \times 10^{-6} \text{ ms}$

Test Input IV:

Size: 128 x 128

GPU Elapsed time: 0.047488 ms CPU Elapsed time: 1.629376 ms

Total number of floating point operations: 819200

GPU time for per floating point operations = $0.047488 / 819200 = 57.96 \times 10^{-9} \text{ ms}$

CPU time for per floating point operations = $1.629376 / 819200 = 2 \times 10^{-6} \text{ ms}$

Test Input V:

Size: 256 x 256

GPU Elapsed time: 0.060352 ms CPU Elapsed time: 6.535136 ms

Total number of floating point operations : 2 * 5 * 5 * 256 * 256 = 3276800

GPU time for per floating point operations = $0.060352 / 3276800 = 18.42 \times 10^{-9} \text{ ms}$

CPU time for per floating point operations = $6.535136 / 3276800 = 2 \times 10^{-6} \text{ ms}$

Test Input V:

Size: 512 x 512

GPU Elapsed time: 0.113568 ms CPU Elapsed time: 26.200705 ms

Total number of floating point operations : 2 * 5 * 5 * 512 * 512 = 13107200

GPU time for per floating point operations = $0.113568 / 13107200 = 8.66 \times 10^{-9} \text{ ms}$

CPU time for per floating point operations = $26.200705 / 13107200 = 2 \times 10^{-6} \text{ ms}$

Test Input VI:

Size: 1024 x 1024

GPU Elapsed time: 0.325024 ms CPU Elapsed time: 104.868607 ms

Total number of floating point operations: 2 * 5 * 5 * 1024 * 1024 = 52428800 GPU time for per floating point operations = $0.325024 / 52428800 = 6.20 \times 10^{-9}$ ms CPU time for per floating point operations = $104.868607 / 52428800 = 2 \times 10^{-6}$ ms

CPU computation time scales with size as shown below:

GPU computation time scales with size as shown below:

Homework 4 Answer

Image I Test:

Size: 32 x 32

GPU Elapsed time: 0.044768 ms CPU Elapsed time: 0.099488 ms

Total number of floating point operations : 2 * 5 * 5 * 32 * 32 = 51200

Image II Test:

Size 1024 x 1024

GPU Elapsed time: 0.313120 ms CPU Elapsed time: 105.495361 ms

Total number of floating point operations : 2 * 5 * 5 * 1024 * 1024 = 52428800

GPU FLOPS scaling with respect to input

CPU FLOPS scaling with respect to input:

2. Overhead cost for using the GPU for computation can be given by the difference between Overhead time and GPU Elapsed time.

Test Input I:

Size: 80 x 281

GPU Elapsed time: 0.048512 ms

Time including GPU computation: 1.144768 ms

Therefore, Overhead time = 1.144768 ms - 0.048512 ms = 1.096256 ms

Test Input II:

Size: 32 x 32

GPU Elapsed time: 0.043424 ms

Time including GPU computation: 0.897504 ms

Therefore, Overhead time = 0.897504 ms - 0.043424 ms = 0.85408 ms

Test Input III:

Size: 64 x 64

GPU Elapsed time: 0.043328 ms

Time including GPU computation: 0.941120 ms

Therefore, Overhead time = 0.941120 ms - 0.043328 ms = 0.897792 ms

Homework 4 Answer

Test Input IV:

Size: 128 x 128

GPU Elapsed time: 0.046880 ms

Time including GPU computation: 1.114784 ms

Therefore, Overhead time = 1.114784 ms - 0.046880 ms = 1.067904 ms

Test Input V:

Size: 256 x 256

GPU Elapsed time: 0.060128 ms

Time including GPU computation: 1.498880 ms

Therefore, Overhead time = 1.498880 ms - 0.060128 ms = 1.438752 ms

Test Input VI:

Size: 512 x 512

GPU Elapsed time: 0.126304 ms

Time including GPU computation: 3.621952 ms

Therefore, Overhead time = 3.621952 ms - 0.126304 ms = 3.495648 ms

Test Input VI:

Size: 1024 x 1024

GPU Elapsed time: 0.323392 ms

Time including GPU computation: 7.937344 ms

Therefore, Overhead time = 7.937344 ms - 0.323392 ms = 7.613952 ms

Test Image I:

Size: 32 x 32

GPU Elapsed time: 0.053504 ms

Time including GPU computation: 0.996128 ms

Therefore, Overhead time = 0.996128 ms - 0.053504 ms = 0.942624 ms

Test Image II:

Size 1024 x 1024

GPU Elapsed time: 0.324096 ms

Time including GPU computation: 7.857888 ms

Therefore, Overhead time = 7.533792 ms

Overhead scale with the size as shown below

