Planos, superficies y cilindros

1 Planos

El plano es una superficie bidimensional que se extiende de manera indefinida en todas las direcciones dentro del espacio. Es un conjunto de puntos que cumplen ciertas condiciones geométricas y puede pensarse como una "hoja infinita" sin grosor ni dobleces.

Intuitivamente, vemos que la condición de no tener dobleces, implica la siguiente propiedad:

Propiedad fundamental del plano: si dos puntos distintos P_1 y P_2 están en un plano π , entonces la recta $\overrightarrow{P_1P_2}$ está contenida en π .

Entonces, dados dos puntos P_1 y P_2 del plano π tendremos una recta $r = \overleftarrow{P_1P_2}$ contenida en π , y recordemos que la recta r siempre tiene algún vector director \mathbf{r} , de esta manera podemos definir paralelismo entre planos y vectores:

Diremos que el vector \mathbf{r} es paralelo al plano π , si existe una recta $r: t\mathbf{r} + P_0$ contenida en π .

Notemos que los vectores paralelos a π serán aquellos vectores ${\bf r}$ tales que si su punto de aplicación es un punto del plano, entonces todo el vector estará contenido en π .

De manera análoga definimos la perpendicularidad:

Un vector **n** es normal (o perpendicular) al plano π si es normal a todo vector **r** paralelo a π .

Formalmente, el plano es la generalización del concepto de una recta en dos dimensiones. Y al igual que las rectas, en el espacio tridimensional, un plano puede ser definido como el conjunto de puntos cuya posición cumple con una relación algebraica particular.

1.1 Ecuación implícita del plano

La ecuación implícita o general de un plano es $\pi: Ax + By + Cz + D = 0$.

Todo punto que cumpla la ecuación previa (fijados los coeficientes A, B, C, D) estarán en el plano definido por la expresión.

Ejemplo 1: Consideremos el plano $\pi: x+2y+3z-4=0$, aquí $A=1,\ B=2,\ C=3$ y D=-4.

Vemos que el punto P(0,2,0) está en el plano pues $0+2\cdot 2+3\cdot 0-4=0$, mientras que el punto Q(1,1,1) no lo está porque $1+2\cdot 1+3\cdot 1-4=2\neq 0$.

Ahora supongamos que tenemos dos puntos $P_1(x_1,y_1,z_1)$ y $P_2(x_2,y_2,z_2)$ pertenecientes a un plano $\pi:Ax+By+Cz+D=0$.

Entonces la recta $\overrightarrow{P_1P_2}$ está contenida en el plano, y el vector $\mathbf{p} = \overrightarrow{P_1P_2}$ es un vector director de dicha recta. Además, si el punto de aplicación de \mathbf{p} fuera P_1 , entonces el vector estaría contenido en el plano. Como P_1 y P_2 cumplen las ecuaciones tendremos

$$Ax_1 + By_1 + Cz_1 + D = 0$$
$$Ax_2 + By_2 + Cz_2 + D = 0$$

Si restamos las dos ecuaciones tendremos

$$A(x_2 - x_1) + B(y_2 - y_1) + C(z_2 - z_1) = 0 = \langle (A, B, C), \overrightarrow{P_1 P_2} \rangle$$

Y esto vale para todo par de puntos distintos del plano π .

Así hemos probado que cualquier dirección paralela al plano, es perpendicular a (A, B, C).

Dado el plano $\pi: Ax + By + Cz + D = 0$, el vector $\mathbf{n} = (A, B, C)$ es normal al plano.

Lo anterior nos permite determinar un plano a partir de un punto y una normal:

La ecuación del plano π que pasa por $P_0(x_0, y_0, z_0)$ y es normal a $\mathbf{n} = (n_1, n_2, n_3)$, es

$$\pi: n_1x + n_2y + n_3z - \langle \mathbf{n}, (x_0, y_0, z_0) \rangle = 0.$$

Ejemplo 2: Encontrar la ecuación del plano que pasa por el punto $P_0(2,3,4)$ y es perpendicular a $\mathbf{n}=(-3,-3,-3)$. Primero calculamos $\langle (-3,-3,-3),(2,3,4)\rangle = -6-9-12=-27$.

Por lo anterior tendremos que dicho plano está dado por $\pi: -3x-3y-3z-(-27)=0$, si simplificamos obtenemos $\pi: x+y+z-9=0$.

Los vectores normales nos permiten analizar las posiciones relativas entre planos:

Sean π_1 y π_2 planos con vectores normales \mathbf{n}_1 y \mathbf{n}_2 respectivamente. Entonces

- $\pi_1 \parallel \pi_2$ si y sólo si $\mathbf{n}_1 \parallel \mathbf{n}_2$.
- $\pi_1 \perp \pi_2$ si y solo si $\mathbf{n}_1 \perp \mathbf{n}_2$.

Utilizando el producto escalar y vectorial, podemos reescribir lo anterior como

- $\pi_1 \parallel \pi_2$ si y sólo si $\mathbf{n}_1 \times \mathbf{n}_2 = 0$ (condición de paralelismo).
- $\pi_1 \perp \pi_2$ si y solo si $\langle \mathbf{n}_1, \mathbf{n}_2 \rangle = 0$ (condición de perpendicularidad).

El ángulo entre dos planos π_1 y π_2 es igual al ángulo entre sus normales \mathbf{n}_1 y \mathbf{n}_2 .

La distancia de un punto $P_0(x_0, y_0, z_0)$ al plano $\pi: Ax + By + Cz + D = 0$ está dada por

$$d(P_0, \pi) = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}.$$

1.2 Trazas del plano

Se denominan trazas de un plano a sus intersecciones (si existen) con los planos coordenados.

Ejemplo 3: Sea el plano $\pi: 8x + 4y + 2z - 16 = 0$. Busquemos sus trazas:

- Intersección con el plano xy (z = 0): como z = 0, tendremos que es la recta $r_1 : 8x + 4y 16 = 0$, simplificando tenemos $r_1 : 2x + y 4 = 0$.
- Intersección con el plano xz (y=0): como y=0, tendremos que la traza correspondiente será $r_2: 8x+2z-16=0$, simplificando $r_2: 4x+z-8=0$.
- \bullet Intersección con el plano yz (x=0): como x=0, tendremos $r_3: 4y+2z-16=0,$ simplificando $r_3: 2y+z-8=0.$

1.3 Ecuación segmentaria del plano

La ecuación implícita de un plano no es única: puede haber muchas que representen el mismo plano. Por ejemplo: $\pi: 3x+6y+9z-9=0$ y $\pi: x+2y+3z-3=0$ son ecuaciones distintas, pero representan el mismo plano.

Si tenemos un plano $\pi:Ax+By+Cz+D=0$ con $A,B,C,D\neq 0,$ entonces:

$$\pi::Ax+By+Cz+D=0 \ \Rightarrow \ \left(-\frac{A}{D}\right)x+\left(-\frac{B}{D}\right)y+\left(-\frac{C}{D}\right)z=1$$

y esto último lo podemos escribir como $\frac{x}{\left(-\frac{D}{A}\right)}+\frac{y}{\left(-\frac{D}{B}\right)}+\frac{z}{\left(-\frac{D}{C}\right)}=1,$

Si convenimos en llamar
$$p=\left(-\frac{D}{A}\right),\,q=\left(-\frac{D}{B}\right)$$
 y $r=\left(-\frac{D}{C}\right)$, obtendremos:

La expresión $\frac{x}{p} + \frac{y}{q} + \frac{z}{r} = 1$, se denomina ecuación segmentaria del plano.

De manera análoga a lo que ocurre con la recta, los valores p, q, r dan los puntos de corte del plano con los ejes de coordenadas.

Como esos puntos de cortes son únicos, entonces

La ecuación segmentaria es única para cada plano.

Ejemplo 4: Sea el plano $\pi: 3x+6y-4z-12=0$, dar los puntos de intersección con los ejes y hallar su ecuación segmentaria.

Primero hallamos sus intersecciones con los ejes:

- Eje x: entonces y=z=0, y tendremos $3x-12=0 \Rightarrow x=4$. El punto de intersección es (4,0,0) y p=4.
- Eje y: entonces x=z=0, y tendremos es $6y-12=0 \Rightarrow y=2$. El punto de intersección es (0,2,0) y q=2.
- Eje z: entonces x=y=0, y tendremos es $-4z-12=0 \Rightarrow z=-3$. El punto de intersección es (0,0,-3) y r=-3.

Así la ecuación segmentaria resulta $\pi: \frac{x}{4} + \frac{y}{2} - \frac{z}{3} = 1.$

2 Superficies

Se denomina superficie al lugar geométrico de todos los puntos P(x, y, z) del espacio que verifican F(x, y, z) = 0.

Ejemplo 5: El plano $\pi: Ax + By + Cz + D = 0$ es una superficie.

Ejemplo 6: La esfera de radio R está dada por la ecuación $S: x^2 + y^2 + z^2 = R^2$.

Ejemplo 7: El lugar geométrico de los puntos del espacio que cumplen $x^2 + y - 1 = 0 = E(x, y)$ es una superficie si hacemos F(x, y, z) = E(x, y).

Observacion: Siempre hay que señalar si nos encontramos en el plano o en el espacio. *Que una variable no aparezca en una expresión, no quiere decir que no pueda ser parte de su argumento.*

2.1 Simetrías de las superficies

Una superficie S es simétrica respecto de un plano coordenado si

- para todo $P(x, y, z) \in S$ vale que $P(x, y, -z) \in S$ (simétrica respecto del plano xy).
- para todo $P(x, y, z) \in S$ vale que $P(x, -y, z) \in S$ (simétrica respecto del plano xz).
- para todo $P(x, y, z) \in S$ vale que $P(-x, y, z) \in S$ (simétrica respecto del plano yz).

Ejemplo 8: Analizar las simetrías respecto de los planos coordenados de la superficie $S: z - x^2 = 0$. Notemos que en este ejemplo $F(x, y, z) = z - x^2$.

- Respecto del plano xy (z=0). Supongamos $P(x,y,z) \in S$, entonces $F(x,y,-z) = -z x^2 \neq z x^2 = F(x,y,z) = 0$ (si $z \neq 0$). Entonces tomamos el punto P(1,0,1) y vemos que $P \in S$, pero $Q(1,0,-1) \notin S$. Luego no es simétrica respecto del plano xy.
- Respecto del plano xz (y=0). Hacemos $F(x,-y,z)=z-x^2=F(x,y,z)=0$, luego es simétrica respecto del plano xz.
- Respecto del plano yz (x = 0). Hacemos $F(-x, y, z) = z (-x)^2 = z x^2 = F(x, y, z) = 0$. Luego es simétrica respecto del plano yz.

Si una superficie S es simétrica respecto a dos planos coordenados, es simétrica respecto al eje que determinan.

Ejemplo 9: Como la superficie $S: z - x^2 = 0$ del ejercicio anterior es simétrica respecto al plano xz e yz, entonces es simétrica respecto del eje z.

Si una superficie es simétrica respecto de los tres planos coordenados, es simétrica respecto del origen O.

Ejemplo 10: Es sencillo ver que la superficie $S: z-x^2=0$ no es simétrica respecto del origen, entonces sabemos que no lo es respecto de algún plano coordenado (xy).

Por simplicidad podemos resumir en una tabla las simetrías vistas para una superficie S: F(x, y, z) = 0.

$\forall P(x,y,z) \in S \text{ se verifica}$	S es simétrica respecto a
F(x, y, z) = F(x, y, -z)	Plano $xy (z = 0)$
F(x, y, z) = F(x, -y, z)	Plano $xz (y = 0)$
F(x, y, z) = F(-x, y, z)	Plano $yz (x = 0)$
F(x, y, z) = F(x, -y, -z)	Eje $x (y = 0 y z = 0)$
F(x, y, z) = F(-x, y, -z)	Eje y ($x = 0$ y $z = 0$)
F(x, y, z) = F(-x, -y, z)	Eje z (x = 0 y y = 0)
F(x, y, z) = F(-x, -y, -z)	Origen $(x = 0, y = 0 \text{ y } z = 0)$

Table 1: Resumen de simetrías

Ejemplo 11: La esfera $S: x^2 + y^2 + z^2 = 1$ tiene todos los tipos de simetrías vistas.

2.2 Trazas de una superficie

Se denominan trazas de una superficie S a las secciones transversales formadas por sus intersecciones con planos paralelos a los planos coordenados.

En otras palabras, las trazas son las "rebanadas" resultantes de cortar una superficie de manera paralela al "piso" (plano xy) o alguna "pared" (planos yz, xz).

Ejemplo 12: Las trazas de la esfera $S: x^2 + y^2 + z^2 = 1$ siempre son circunferencias.

Ejemplo 13: Hallar las trazas de la superficie $S: x^2 - y^2 - z = 0$.

3 Cilindros

Se denomina cilindro a la superficie S generada por una recta r que se mueve de manera paralela a una recta fija dada y pasa siempre por una curva plana fija C dada. La recta móvil se llama generatriz y la curva fija directriz.

En general nos interesarán un tipo particular de cilindros,

Se denomina $cilindro\ recto$ a aquel en que la directriz $\mathcal C$ está contenida en un plano coordenado y la generatriz r se mueve de manera paralela al eje perpendicular al plano.

La característica que tendrán los cilindros rectos, es que sus ecuacion será muy sencilla: la ecuación de la superficie será la de la directriz, y la variable ausente corresponderá al eje paralelo a las generatrices.

En otras palabras, si el cilindro es generado, por ejemplo, por una curva C: F(x, z) = 0, contenida en el plano xz, su ecuación será S: F(x, z) = 0, y las generatrices (paralelas al eje y), tendrán por ecuación $r: x = x_0, z = z_0$.

3.1 Algunos cilindros destacados

3.1.1 Cilindro circular recto

La curva directriz es una circunferencia y la generatriz una recta paralela a un eje. Ejemplo 14:

Si la curva directriz está en el plano xy, entonces es de la forma $\mathcal{C}:(x-a)^2+(y-b)^2=R^2$. Y podemos tomar como generatriz cualquier recta que pase por la circunferencia y que sea paralela al eje $z, r: x=x_1, y=y_1$, donde $P(x_1,y_1,0)$ está en el círculo.

La ecuación de la superficie será $S: (x-a)^2 + (y-b)^2 = R^2$.

3.1.2 Cilindro hiperbólico recto

La curva directriz es una hipérbola y la generatriz una recta paralela a un eje.

Como la hipérbola tiene dos ramas, el cilindro hiperbólico también tendrá dos partes.

Ejemplo 15: Tomemos como curva directriz la siguiente hipérbola en el plano xz, $C: \frac{x^2}{a^2} - \frac{z^2}{b^2} = 1$. Y por cada rama de la hipérbola, tomamos como generatriz la recta paralela al eje y que pase por la curva C.

La ecuación de la superficie será $S: \frac{x^2}{a^2} - \frac{z^2}{b^2} = 1$

3.1.3 Cilindro parabólico recto

La curva directriz es una parábola y la generatriz una recta paralela a un eje.

Ejemplo 16: Tomamos como curva directriz $C: z = y^2 - y$, que está contenida en el plano. Y como recta generatriz, podemos tomar al eje x, que pasa por el origen O, que se encuentra en la curva.

La ecuación de la superficie será $S: z = y^2 - y$.

