Herbst 14 Themennummer 1 Aufgabe 2 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

- a) Definieren Sie den Begriff der gleichmäßigen Konvergenz für Folgen und Reihen von komplexwertigen Funktionen auf einer Teilmenge von \mathbb{C} .
- b) Es sei $\mathbb{E} := \{z \in \mathbb{C} : |z| < 1\}$ und $f : \mathbb{E} \to \mathbb{C}$ sei holomorph mit f(0) = 0.
 - i) Zeigen Sie, dass die Reihe $\sum_{n=1}^{\infty} f(z^n)$ auf jeder in \mathbb{E} enthaltenen kompakten Menge gleichmäßig konvergiert.
 - ii) Zeigen Sie, dass die Reihe $\sum_{n=1}^\infty f(z^n)$ i. A. nicht gleichmäßig auf $\mathbb E$ konvergiert.

Lösungsvorschlag:

- a) Sei $M \subset \mathbb{C}$ und seien $f_n : M \to \mathbb{C}$ für $n \in \mathbb{N}$. Die Funktionenfolge $(f_n)_{n \in \mathbb{N}}$ konvergiert gleichmäßig (gegen f), wenn es ein $f : M \to \mathbb{C}$ gibt, sodass für alle $\varepsilon > 0$ ein $N \in \mathbb{N}$ existiert mit $n \geq N \implies |f_n(z) f(z)| \leq \varepsilon$ für alle $z \in M$. Wir sagen die Funktionenreihe $\sum_{n=1}^{\infty} f_n(z)$ konvergiert gleichmäßig, wenn die Folge $(g_m)_{m \in \mathbb{N}}$ mit $g_m : M \to \mathbb{C}, g_m(z) := \sum_{n=1}^m f_n(z)$ gleichmäßig konvergiert.
- b) i) Sei $K \subset \mathbb{E}$ kompakt, dann ist die Funktion $K \ni z \mapsto |z|$ stetig, nimmt also ein Maximum in $K \subset \mathbb{E}$ an. Es folgt dann die Existenz eines $c \in [0,1)$ mit $|z| \le c$ für alle $z \in K$. Weiter ist f holomorph, also auch f' und die Funktion |f'| ist stetig auf K, besitzt also ebenfalls ein Maximum L > 0. Nun ist $f(z) = f(z) f(0) = \int_{[0,z]} f'(z) dz$, also $|f(z)| \le |z| L$ nach der Standardabschätzung für Wegintegrale $(\gamma : [0,1] \to [0,z], t \mapsto tz)$. Wir zeigen nun, dass die Funktion $f : \mathbb{E} \to \mathbb{C}, f(z) = \sum_{n=1}^{\infty} f(z^n)$ wohldefiniert ist. Die Reihe konvergiert absolut, weil wir eine geometrische Reihe als Majorante erhalten und |z| < 1 ist, diese also konvergiert: $\sum_{n=1}^{\infty} |f(z^n)| \le 1$

aber nochmals direkt. Mit der obigen Definition von g_m ist $|f(z) - g_m(z)| \leq \sum_{n=m+1}^{\infty} |f(z^n)| \leq \sum_{n=m+1}^{\infty} L|z|^n \leq \sum_{n=m+1}^{\infty} Lc^n = L\frac{c^{m+1}}{1-c} \to 0$, für $m \to \infty$. Wir wählen also zu $\varepsilon > 0$ ein $N \in \mathbb{N}$, sodass für alle $n \geq N$ der letzte Term kleiner als ε wird und haben damit gleichmäßige Konvergenz gezeigt.

 $\sum_{n=1}^{\infty} L|z|^n < \infty$. Als nächstes zeigen wir gleichmäßige Konvergenz, diese würde schon mit dem Weierstraßkriterium folgen, wir zeigen die Konvergenz

ii) Wir geben ein Gegenbeispiel an. f(z)=z ist natürlich holomorph und fixiert den Ursprung. Die Reihe $\sum_{n=1}^{\infty} z^n$ konvergiert punktweise gegen $\frac{z}{1-z}$, allerdings nicht gleichmäßig. Wir wählen $\varepsilon=1$, sei $N\in\mathbb{N}$ beliebig. Wir wählen N+1 und müssen ein $z\in\mathbb{E}$ mit $|f(z)-g_{N+1}(z)|>1$ finden. Es ist $f(z)-g_{N+1}(z)=\sum_{n=N+2}^{\infty} z^n=\frac{z^{N+2}}{1-z}$, also $|f(z)-g_{N+1}(z)|=\frac{|z|^{N+2}}{|1-z|}>1$ für $z=1-\varepsilon$ und $\varepsilon>0$ klein genug, weil der letzte Term für $z\to1$ gegen ∞ divergiert, irgendwann also größer als 1 wird. Damit konvergiert diese Reihe nicht gleichmäßig auf \mathbb{E} .

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$