JOURNAL OF KIM IL SUNG UNIVERSITY

(NATURAL SCIENCE)

Vol. 61 No. 12 JUCHE104(2015).

면역친화성자성담체에 의한 페경기성 성선자극호르몬의 정제

김정열, 손형일, 리영철

위대한 령도자 김정일동지께서는 다음과 같이 교시하시였다.

《…이학과학의 새로운 분야를 개척하며 최신과학기술의 성과를 치료예방사업에 받아들이기 위한 연구사업을 힘있게 벌려야 합니다.》(《김정일선집》 중보판 제11권 81~82폐지)

무배란성불임증치료에서 배란유발약으로 쓰이는 폐경기성성선자극호르몬(hMG)은 란포자극호르몬(FSH)과 황체형성호르몬(LH)이 일정한 비률로 혼합되여있는 당단백질이다.[3] hMG로부터 LH활성을 낮추고 FSH/LH비률을 높이는것은 과잉란소자극증후군(OHSS)을 비롯한 부작용을 예방하고 배란효과를 높이는데서 매우 중요한 문제로 제기된다.

우리는 첨단기술의 하나인 항황체화호르몬단클론항체(anti-LH monoclonal antibody)를 고정한 철자성담체[1]에 의한 면역친화성크로마토그라프법으로 hMG로부터 LH함량을 낮추기위한 연구를 하였다.

재료와 방법

1) 재료

2) 연구방법

철자성담체의 활성화 및 항LH항체결합 pH 7.0, 0.02mol/L 린산완충액(PBS)으로 세척한 철자성담체 1g에 2.5% 글루타르알데히드(GA) 10mL를 첨가하고 2h동안 진탕기에서 교반하면서 충분히 반응시킨 후 세척액(0.02mol/L PBS(pH 7.0), 0.05% 트윈-20, 1mol/L EDTA)으로 두번, 0.02mol/L 린산완충액(pH 7.0)으로 세번 세척하였다.

활성화시킨 철자성담체를 같은 용액 15mL에 현탁시킨 후 항LH항체 20μg을 첨가하였다. 다음 20℃ 조건에서 진탕기로 천천히 3h동안 교반시킨 후 자석을 리용하여 담체를 모으고 항체액을 회수한 다음 0.02mol/L 린산완충액(pH 7.0)으로 담체를 세번 세척하였다.

항제비결합활성기들에 대한 봉쇄 3% 소혈청알부민(BSA)용액을 항LH항체결합담체에 첨가하고 2h동안 천천히 교반하면서 봉쇄를 진행한 후 자석을 리용하여 담체를 모으고 0.02mol/L 린산완충액(pH 7.0), 트윈-20용액으로 두번, 0.02mol/L PBS(pH 7.0)로 세번 세척하였다.

면역진화성분리정제 우에서와 같이 준비한 항LH항체결합한 철자성담체에 hMG용액 (70mg/mL) 20mL를 첨가한 후 2h동안 천천히 교반한 다음 자석을 리용하여 담체를 모으고 hMG용액을 회수한다. 다음 담체를 0.02mol/L PBS(pH 7.0)로 세번 세척한 후 용출액(1mol/L 트리에틸아민용액)을 첨가하여 500r/min의 속도로 20min간 교반하여 용출시킨다. 다음 0.02mol/L

린산완충액(pH 7.0)으로 담체를 세번 세척한 후 우와 같은 정제공정을 반복한다.

hMG활성측정 FSH활성측정은 흰쥐란소질량증가법[2]으로 진행하였으며 LH활성측정은 hCG감작혈구응집저지반응에 의한 교차반응방법으로 평가하였다.

연구결과

1) 항LH항체결합자성담체에 의한 hMG로부터 LH의 분리에 미치는 몇가지 인자들의 영향 항LH항체처리량에 따르는 LH활성의 변화 각이한 량의 항LH항체로 1g의 담체를 처리하 였을 때 hMG용액으로부터 분리되는 LH활성은 표 1

과 같다.

표 1에서 보는바와 같이 항LH항체의 처리량이 증 - 가함에 따라 분리되는 LH활성은 높아지지만 $20\mu g$ 이상에서는 유의성있게 높아지지 못하였다.

담체처리회수에 따르는 LH활성의 변화 각이한 회수로 리용한 담체로 hMG용액을 처리하였을 때 LH분리률은 표 2와 같다.

표 1. 담체에 결합되는 항LH항체량에 따르는 LH활성의 변화

항LH항체량	처리전활성	분리된활성
$/\mu \mathrm{g}$	$/(IU \cdot mL^{-1})$	$/(IU \cdot mL^{-1})$
10	574.1 ± 30.23	103.5 ± 6.6
20	574.1 ± 30.23	$197.5^* \pm 8.7$
30	574.1 ± 30.23	199.2 ± 8.9
•		

n=7, * p<0.05(10µg과 비교)

표 2. 담체처리회수에 따르는 LH분리률

- 담체종류	처리전활성/(IU·mL ⁻¹)	분리된 LH활성/(IU·mL ⁻¹)	분리률/%
1차처리	574.1 ± 30.23	197.5±13.7	34.4
2차(1차처리후 회수한 담체)	574.1 ± 30.23	100.2 ± 11.5	17.5
3차(2차처리후 회수한 담체)	574.1 ± 30.23	$52.8^{**} \pm 2.8$	9.2
4차(3차처리후 회수한 담체)	574.1 ± 30.23	12.6 ± 1.2	2.2
5차(4차처리후 회수한 담체)	574.1 ± 30.23	_	_

n=7, ** p<0.01(5차 처리와 비교)

표 2에서 보는바와 같이 자성담체의 처리회수가 많아짐에 따라 LH의 분리률이 낮아 졌으며 4차이상 회수한 담체로는 LH를 거의나 분리하지 못하였다.

hMG로부터 LH분리에 미치는 담체처리온도의 영향 자성담체로 hMG용액을 처리하였을 때 반응온도에 따르는 LH분리률은 표 3과 같다.

표 3에서 보는바와 같이 반응온도가 높아짐에 따라 LH활성분리률이 높아졌으나 20℃ 보다 높으면 오히려 낮아지는 경향성이 있었다.

담체처리시간에 따르는 hMG로부터 LH분리률의 변화 자성담체로 hMG용액을 20℃ 조건에서 처리하였을 때 처리시간에 따르는 LH활성분리률은 표 4와 같다.

표 3 단체처리온도에 따르는 LH분리률

표 4. 담체처리시간에 따르는 LH분리률

	o. Dankieler				· · · · · · · · · · · · · · · · · · ·		
 온도	처리전활성	분리된 활성	분리률	처리시간	처리전활성	분리된 활성	분리률
$/^{\circ}\mathbb{C}$	$/(IU \cdot mL^{-1})$	$/(\mathrm{IU}\cdot\mathrm{mL}^{-1})$	/%	/h	$/(IU \cdot mL^{-1})$	$/(IU \cdot mL^{-1})$	/%
4	574.1 ± 30.23	102.7 ± 6.3	30.8	1	574.1±30.23	115.6±10.6	20.2
10	574.1 ± 30.23	130.3 ± 7.6	31.4	2	574.1 ± 30.23	$197.5^* \pm 13.7$	34.4
20	574.1 ± 30.23	$197.5^{**} \pm 13.7$	34.4	2			
25	574.1 ± 30.23	192.3 ± 13.5	33.4	3	574.1 ± 30.23	198.3 ± 13.9	34.5

n=7, ** p<0.01(4℃와 비교)

n=7, * p<0.05(1h와 비교)

표 4에서 보는바와 같이 자성담체처리시간이 많아짐에 따라 LH활성분리률은 높아졌으나 2h이상부터는 뚜렷한 변화가 없었다.

2) 항LH항체결합철자성담체처리후 hMG의 FSH 및 LH활성의 변화

철자성담체를 hMG용액에 4차에 걸쳐 반복처리할 때 hMG의 FSH 및 LH활성의 변화는 표 5와 같다.

	표 3. 급세시니구 111106~6 1511 옷 11126의 근회				
처리회수	처리전활성 /(IU·mL ⁻¹)	분리된 LH활성/(IU·mL ⁻¹)	FSH/LH		
처리전	686.1 ± 35.8	574.1 ± 30.2	1.19		
1차처리	686.1 ± 35.8	376.5 ± 24.7	1.82		
2차(1차처리후 회수한 담체)	686.1 ± 35.8	276.3 ± 14.6	2.48		
3차(2차처리후 회수한 담체)	686.1 ± 35.8	$223.5^* \pm 11.6$	3.06		
4차(3차처리후 회수한 담체)	686.1 ± 35.8	210.9 ± 10.2	3.25		

표 5. 담체처리후 hMG용액중 FSH 및 LH활성의 변화

n=7, ** p>0.05(4차처리와 비교)

표 5에서 보는바와 같이 자성담체를 반복처리하는 회수가 많아짐에 따라 FSH/LH는 높아졌으나 4차 처리후에는 3.25로서 3차(3.06)에 비하여 크게 높아지지 않았다.

맺 는 말

1g의 자성담체에 결합하는 항LH항체량은 20μg에서 포화되며 hMG용액을 1차처리할 때 (197.5±13.7) IU/mL의 LH를 분리할수 있다. 자성담체를 4차까지 반복회수하여 리용할 때 분리률이 2.2%까지 낮아지며 최적반응온도 및 처리시간은 각각 20℃, 2h이다.

항LH항체결합철자성담체로 hMG를 3차에 걸쳐 반복처리할 때 FSH/LH는 1.19로부터 3.06 으로 높아진다.

참 고 문 헌

- [1] Ji Zhang et al.; Journal of Magnetism and Magnetic Material, 39, 197, 2007.
- [2] 范勇; 中国生化药物杂志, 18, 5, 262, 1997.
- [3] 李斷俊; 妇产科内分泌治疗学, 人民军醫出版社, 52~72, 2012.

주체104(2015)년 8월 5일 원고접수

The Purification of Human Menopausal Gonadotropin by Immuno Affinitive Magnetic Carrier

Kim Jong Yol, Son Hyong Il and Ri Yong Chol

The purification method using magnetic carrier which fixed anti-luteinizing hormone monoclonal antibody is easy and effective for purification of hMG. LH level of hMG has been lower from (574.1 ± 30.2) IU/mL to (223.5 ± 11.6) IU/mL. FSH/LH rate has been higher from 1.19 to 3.06 when the magnetic carrier has treated hMG solution 3 times.

Key words: hMG, FSH, LH, magnetic carrier