Esempio di I prova in itinere di FONDAMENTI DI AUTOMATICA

Oltre ai necessari articoli di cancelleria (penna, matita, etc.) si può utilizzare **solo** una calcolatrice non programmabile. Non si possono, in particolare, tenere fotocopie di alcun tipo, appunti, quaderni, etc. Inoltre, ciascuna Studentessa e ciascuno Studente deve svolgere la prova per proprio conto e può comunicare SOLO con il personale di sorveglianza per tutta la durata della prova.

Durata della prova: 80 minuti.

• Domanda 1. Si consideri un sistema lineare la cui matrice di stato è

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

e sia \mathcal{M}_A l'insieme dei modi del sistema. Si ha:

- 1. $\mathcal{M}_A = \{1\};$
- 2. GIUSTA $\mathcal{M}_A = \{1, t\};$
- 3. $\mathcal{M}_A = \{1, t, t^2\};$
- 4. nessuna delle precedenti risposte è corretta.

Spiegazione. Il polinomio caratteristico di A è

$$\pi_A(s) = s^3$$

e quindi $\lambda = 0$ è l'unico autovalore di A ed ha molteplicità algebrica pari a 3. Per determinare i modi dobbiamo calcolare l'indice di $\lambda = 0$. $\lambda I - A = -A$ ha rango pari 1 e quindi il suo nucleo ha dimensione $3 - 1 = 2 \neq 3$. Pertanto, la $mg(\lambda) = 2$ e quindi $I(\lambda) \neq 1$.

Invece,
$$(\lambda I - A)^2 = A^2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 ha nucleo di dimensione $3 = \text{ma}(\lambda)$. Pertanto, $I(\lambda) = 2$ e $\mathcal{M}_A = \{1, t\}$.

- **Domanda 2.** Si consideri un sistema Σ di funzione di trasferimento $W(s) = \frac{s-1}{s^2-K}$ dove K è un parametro reale.
 - 1. Σ è BIBO stabile per ogni K < 0;
 - 2. GIUSTA Σ è BIBO stabile se solo se K=1;
 - 3. Qualunque sia il valore del parametro reale K, Σ non è BIBO stabile;
 - 4. nessuna delle precedenti risposte è corretta.

Spiegazione. Se K < 0 allora W(s) ha poli puramente immaginari e quindi non è BIBO stabile. Se $K \ge 0$ allora il denominatore di W(s) è pari a $D_W(s) = (s + \sqrt{K})(s - \sqrt{K})$ e quindi W(s) ha un polo in \sqrt{K} (e quindi nel semipiano destro chiuso) se e solo il termine $(s - \sqrt{K})$ non si cancella con il numeratore e ciò avviene se e solo se K = 1.

• **Domanda 3.** Si consideri lo schema a catena chiusa rappresentato in figura

Indicando con W(s) la funzione di trasferimento da y_0 a y e con $W_d(s)$ la funzione di trasferimento da d a y, si ha:

- 1. se C(s) e G(s) sono BIBO stabili allora di sicuro lo sono anche W(s) e $W_d(s)$;
- 2. GIUSTA anche se C(s) e G(s) non sono BIBO stabili è possibile che W(s) sia BIBO stabile;
- 3. se G(s) è la funzione di trasferimento di un sistema che non è semplicemente stabile allora W(s) non può essere BIBO stabile;
- 4. nessuna delle precedenti risposte è corretta.

Spiegazione. Vedi teoria.

• Domanda 4. Si consideri un circuito elettrico con la struttura rappresentata in figura, dove R e C sono parametri positivi costanti.

Si consideri la tensione u(t) come ingresso del filtro e la tensione y(t) (a morsetti di uscita aperti) come uscita. Sia H(s) la funzione di trasferimento del filtro. Si ha:

- 1. $H(s) = \frac{RC}{1 + sRC}$;
- 2. GIUSTA $H(s) = \frac{1}{1+sRC}$; 3. $H(s) = \frac{1+sRC}{s+1}$;
- 4. nessuna delle precedenti risposte è corretta.

Spiegazione. Scegliamo la tensione ai capi del condensatore come unica variabile di stato e stabiliamo le seguenti convenzioni per i segni di correnti e tensioni:

Si ottiene l'equazione di stato $\dot{x} = [-1/(RC)]x + [1/(RC)]u$ e l'equazione di uscita y=x. Pertanto $H(s)=c(sI-A)^{-1}b+d$ dove A:=-1/(RC), b := 1/(RC), c := 1 e d := 0. Cioè

$$H(s) = [s + 1/(RC)]^{-1}[1/(RC)] = \frac{1}{1 + sRC}.$$

• Domanda 5. Si consideri un sistema lineare di funzione di trasferimento

$$H(s) = \frac{1}{(s+1)(s+2)}$$

e sia \mathcal{M}_A l'insieme dei modi del sistema. Si può concludere che:

- 1. $e^t \in \mathcal{M}_A$;
- 2. $e^t \notin \mathcal{M}_A$;
- 3. $te^{-t} \notin \mathcal{M}_A$;
- 4. GIUSTA nessuna delle precedenti risposte è corretta.

Spiegazione. Poiché i poli della funzione di trasferimento sono un sottoinsieme degli autovalori della matrice di stato del sistema, posso solo concludere che $e^{-t} \in \mathcal{M}_A$ e che $e^{-2t} \in \mathcal{M}_A$.

• **Domanda 6.** Si consideri lo schema a catena chiusa rappresentato in figura dove

$$C(s) := \frac{K}{s}, \quad K > 0,$$
 e $G(s) = \frac{1}{s+4}.$

Siano $y_0 = 1(t)$ e $d(t) = \alpha \cdot 1(t)$ con α costante reale. Sia, infine, y_r il valore di regime dell'uscita del sistema a catena chiusa. Si ha:

- 1. per qualunque valore delle costanti reali α e K > 0, $y_r = 1 + \alpha$;
- 2. GIUSTA per qualunque valore delle costanti reali α e K > 0, $y_r = 1$;
- 3. y_r non esiste o non è finito;
- 4. nessuna delle precedenti risposte è corretta.

Spiegazione. Si verifica subito che per ogni valore di K > 0, il sistema a catena chiusa è BIBO stabile e di tipo 1. Pertanto l'uscita insegue con errore asintotico nullo un riferimento a gradino e la catena chiusa garantisce reiezione asintotica perfetta di disturbi a gradino. Quindi il valore di regime dell'uscita è pari a 1.

• Domanda 7. Si consideri il sistema lineare

$$\begin{cases} \dot{x} = Ax + bu \\ y = cx + du \end{cases}$$

dove

$$A = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{bmatrix}, \qquad b = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \qquad c = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}, \qquad d = 0.$$

Sia W(s) la funzione di trasferimento del sistema. Si ha:

1. $W(s) = \frac{s^3}{(s+1)^3}$

2. $W(s) = \frac{s^3}{(s-1)^3}$

3. $W(s) = \frac{1}{(s-1)^3}$

4. GIUSTA nessuna delle precedenti risposte è corretta.

Spiegazione. Anche senza calcolare W(s) possiamo escludere le risposte 1. e 2. perché corrispondono a f.d.t. non strettamente proprie (mentre d=0) e la 3. perché la relativa funzione di trasferimento ha un polo in 1 che non è autovalore di A (gli autovalori di A si leggono direttamente sulla sua diagonale perché A è una matrice triangolare).

Come sanity check si può calcolare la funzione di trasferimento:

$$W(s) = \frac{1}{(s+1)^3}$$

7

• Domanda 8. Si consideri il polinomio

$$P(s) = (s+1)(s+2)(s+3)(s+4) + k$$

dove k è un parametro reale. Si ha:

- 1. qualunque sia il valore del parametro reale $k,\ P(s)$ non è un polinomio di Hurwitz;
- 2. GIUSTA esistono valori del parametro reale k per i quali tutti gli zeri di P(s) hanno parte reale minore di -3/4.
- 3. se k < 0 allora tutti gli zeri di P(s) hanno parte reale minore di -3/4;
- 4. nessuna delle precedenti risposte è corretta.

Spiegazione. È evidente che per k=0 gli zeri di P(s) sono -1, -2, -3 e -4. Pertanto, la loro parte reale è minore di -3/4. Rimane da verificare che k=0 non è l'unico valore di k con tale proprietà. A questo scopo è sufficiente usare il fatto che gli zeri di un polinomio sono funzioni continue dei suoi coefficienti e quindi per $k \in (-\varepsilon, \varepsilon)$, dove ε è una costante positiva sufficientemente piccola, gli zeri di P(s) sono arbitrariamente vicini a -1, -2, -3 e -4 e quindi la loro parte reale è minore di -3/4.

- **Domanda 9.** Si consideri un polinomio monico P(s) e la relativa tabella di Routh. Si ha:
 - 1. se, nel costruire la tabella, un elemento della prima colonna risulta nullo, allora di sicuro P(s) ha almeno uno zero sull'asse immaginario;
 - 2. GIUSTA se un qualunque elemento della tabella è negativo allora di sicuro P(s) non è un polinomio di Hurwitz;
 - 3. se il prodotto degli elementi della prima colonna della tabella è positivo allora di sicuro P(s) è un polinomio di Hurwitz;
 - 4. nessuna delle precedenti risposte è corretta.

Spiegazione. Possiamo subito escludere la risposta 1. Infatti consideriamo, per esempio, il polinomio $P(s) := s^3 + 1$ la cui tabella di Routh (che non si può completare) inizia con le seguenti due righe

$$\begin{array}{c|cccc}
3 & 1 & 0 \\
2 & 0 & 1
\end{array}$$

cosicché un elemento della prima colonna risulta nullo. D'altra parte, gli zeri di P(s) si calcolano esplicitamente (sono $s_1 = -1$ e $s_{2/3} = 1/2 \pm j\sqrt{3}/2$) e hanno tutti parte reale non nulla.

Anche la risposta 3. si può escludere immediatamente considerando il polinomio $P(s) := s^2 - s - 1$.

Rimane da valutare le risposta 2. Sappiamo che se P(s) è hurwitziano allora tutti gli elementi della prima colonna della relativa tabella di Routh sono positivi (per il Criterio di Routh) e sappiamo anche tutti gli elementi delle prime due righe della tabella di Routh sono non-negativi (per la condizione necessaria). Manca da dimostrare che anche gli elementi delle altre righe sono tutti (e non solo il primo) non-negativi. Per fare ciò possiamo cercare di combinare il Criterio di Routh con la condizione necessaria. Supponiamo dunque che P(s) sia hurwitziano e che, per assurdo, ci sia un elemento negativo (necessariamente non appartenente

alla prima colonna né alle prime due righe) nella tabella di Routh di P(s). Sia m l'indice della riga in cui si trova questo elemento. Allora possiamo considerare le ultime m+1 righe della tabella di Routh di P(s) (consideriamo il caso in cui m sia dispari: il caso di m pari è del tutto analogo):

dove almeno uno dei parametri $a_{m-2}, a_{m-4}, \ldots a_1$ è negativo, mentre a_m e tutti gli elementi della prima colonna della sotto-tabella (1) sono positivi.

Consideriamo ora il polinomio

$$Q(s) := a_m s^m + a_{m-1} s^{m-1} + a_{m-2} s^{m-2} + \dots + a_1 s + a_0$$

La sotto-tabella appena costruita è proprio la tabella di Routh del polinomio Q(s) e quindi il polinomio Q(s) è di Hurwitz per il Criterio di Routh. Ma allora, in base alla condizione necessaria, tutti gli a_i sono positivi (perché a_m lo è). Abbiamo così raggiunto un assurdo visto che almeno uno dei parametri $a_{m-2}, a_{m-4}, \ldots a_1$ è negativo.

• **Domanda 10.** Si consideri un sistema lineare di funzione di trasferimento W(s) e sia A la sua matrice di stato. Si ha:

- 1. se l'uscita del sistema è nulla per ogni ingresso e per ogni stato iniziale, allora non può accadere che il sistema sia semplicemente ma non asintoticamente stabile;
- 2. GIUSTA se A è diagonalizzabile allora W(s) non può avere poli doppi;
- 3. se A è diagonalizzabile allora tutti i modi del sistema appaiono con combinatore non nullo nella risposta impulsiva del sistema;
- 4. nessuna delle precedenti risposte è corretta.

Spiegazione. Possiamo subito escludere la risposta 1. Infatti, se il sistema è strettamente proprio e il vettore c di uscita è nullo l'uscita è sempre nulla ma la matrice di stato è arbitraria.

Anche la risposta 3. si può escludere immediatamente considerando un sistema strettamente proprio in cui il vettore c di uscita è nullo.

Rimane da valutare le risposta 2. Se W(s) ha un polo doppio in p allora si può scrivere nella forma

$$W(s) = \frac{N(s)}{(s-p)^2 D_1(s)}$$

dove N e D sono polinomi coprimi senza zeri in p.

Allora nell'espansione in fratti semplici di W(s) si ha

$$W(s) = \frac{A}{(s-p)^2} + F(s)$$

dove F(s) è la somma di fratti semplici che contiene, al più, un polo semplice in p, e

$$A = \lim_{s \to p} (s - p)^2 W(s) = \frac{N(p)}{D_1(p)} \neq 0.$$

Allora la risposta impulsiva

$$w(t) = \mathcal{L}^{-1}[W(s)] = A t e^{pt} + f(t), \quad A \neq 0$$

contiene il modo te^{pt} . Ricordando che la risposta impulsiva è la somma di una combinazione lineare dei modi del sistema e di un impulso di ampiezza d, possiamo concludere che te^{pt} è modo del sistema e quindi A non è diagonalizzabile.

Metodo alternativo di raggiungere la stessa conclusione. Se A è diagonalizzabile allora esiste una matrice T tale che $D := T^{-1}AT$ è diagonale: siano λ_i , i = 1, ..., n i suoi elementi diagonali. Allora

$$W(s) = c(sI - A)^{-1}b + d = c(sI - TT^{-1}ATT^{-1})^{-1}b + d$$
$$= c(sI - TDT^{-1})^{-1}b + d = cT(sI - D)^{-1}T^{-1}b + d.$$

cT è un vettore riga che possiamo scrivere nella forma

$$cT = [c_1 \ c_2 \ \dots \ c_n].$$

Analogamente, $T^{-1}b$ è un vettore colonna che possiamo scrivere nella forma

$$T^{-1}b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}.$$

Dunque,

$$W(s) = \begin{bmatrix} c_1 & c_2 & \dots & c_n \end{bmatrix} \begin{bmatrix} s - \lambda_1 & 0 & 0 & \dots & 0 \\ 0 & s - \lambda_2 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & s - \lambda_n \end{bmatrix}^{-1} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} + d$$

ossia

$$W(s) = \frac{c_1 b_1}{s - \lambda_1} + \frac{c_2 b_2}{s - \lambda_2} + \dots + \frac{c_n b_n}{s - \lambda_n} + d$$

che chiaramente non ha poli multipli. Infatti, possiamo scrivere W(s) come un rapporto di polinomi in cui il denominatore è il prodotto dei soli $(s - \lambda_i)$ con λ_i distinti.