CMPUT 654 Fa 23: Theoretical Foundations of Machine Learning

Fall 2023

Lecture 5: September 19

Lecturer: Csaba Szepesvári Scribes: Zixin Zhong

Note: ETFX template courtesy of UC Berkeley EECS dept. (link to directory)

Disclaimer: These notes have <u>not</u> been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

5.1 Review

5.1.1 Concentration inequalities

Theorem 5.1 (Additive Chernoff's Inequality). Let $X_1, \ldots, X_n \in [0,1]$ be i.i.d. random variables, $\bar{X}_n = \frac{1}{n}(X_1 + \ldots + X_n)$, $\mu = \mathbb{E}X_1$. We have

(a) $\forall \delta \in (0,1)$, with probability $1 - \delta$,

$$\bar{X}_n \le \mu + \sqrt{\frac{\log(1/\delta)}{2n}};$$

(b) $\forall \delta \in (0,1)$, with probability $1 - \delta$,

$$\bar{X}_n \ge \mu - \sqrt{\frac{\log(1/\delta)}{2n}}.$$

Theorem 5.2 (Multiplicative Chernoff's Inequality). Let $X_1, \ldots, X_n \in [0,1]$ be i.i.d. random variables, $\bar{X}_n = \frac{1}{n}(X_1 + \ldots + X_n)$, $\mu = \mathbb{E}X_1$. We have

(a) $\forall \delta \in (0,1)$, with probability $1-\delta$,

$$\bar{X}_n \le \mu + \sqrt{\frac{2\mu \log(1/\delta)}{n}} + \frac{1}{3n};$$

(b) $\forall \delta \in (0,1)$, with probability $1 - \delta$,

$$\bar{X}_n \ge \mu - \sqrt{\frac{2\mu \log(1/\delta)}{n}}.$$
 (*)

5.1.2 PAC-learning

Let function $f_*: \{0,1\}^d \to \{0,1\}, X_1, X_2, \dots, X_n \in \{0,1\}^d := \underline{2}^d$ be i.i.d. random variables drawn from distribution P_X , data set $D_n = \{(X_1, f_*(X_1)), \dots, (X_n, f_*(X_n))\}.$

distribution P_X , data set $D_n = \{(X_1, f_*(X_1)), \dots, (X_n, f_*(X_n))\}$. Let $f_* \in \mathcal{F} \subset \underline{2}^{2^d}$ and $f \in \underline{2}^{2^d}$. In other words, $\mathcal{X} = \underline{2}^d$, $\mathcal{Y} = \underline{2}$, $f_* \in \mathcal{Y}^{\mathcal{X}}$, $f : \mathcal{X} \to \mathcal{Y}$. Let $P_X^{f_*} := P(X_1, f_*X_1)$, and

$$L(f) = \mathbb{P}(f(X) \neq f_*(X)) = L(P_X^{f_*}, f),$$

$$l : \underline{2} \times \underline{2} \to \underline{2}, \quad l(y, y') = \mathbf{1}(y \neq y'),$$

$$L(P_X^{f_*}, f) = \int P(dx, dy) \ l(f(x), y).$$

Definition 5.3 (PAC-Learning). Fix $\mathcal{C}=(\mathcal{C}_d)_{d\geq 1}$, where $\mathcal{C}_d\subset\underline{2}^{\underline{2}^d}$. \mathcal{C} is **PAC-learnable** (Proabably Approximately Correctly) if \exists polynomial $p\in\mathbb{R}[x,y,z]$ (computed with polynomial cost) and $\mathcal{A}=(\mathcal{A}_{n,d})_{n\geq 1,d\geq 1}$ where $\mathcal{A}_{n,d}:(\underline{2}^d\times\underline{2})^n\to\underline{2}^d$

s.t.
$$\forall \varepsilon \in (0,1), \ \delta \in (0,1), \ d \geq 1, \ P \in \mathcal{M}_1(\underline{2}^d), \ f_* \in \mathcal{C}_d,$$

$$n \geq \lceil p(\underbrace{1/\varepsilon}_{\text{accuracy confidence}}, \underbrace{1/\delta}_{\text{accuracy confidence}}, d) \rceil,$$

$$X_1, X_2, \dots, X_n \sim P_X,$$

$$f_n = \mathcal{A}_{n,d} \left(\underbrace{(X_1, f_*(X_1)), \dots, (X_n, f_*(X_n))}_{D_n} \right) \quad \text{i.e. } D_n \stackrel{\mathcal{A}}{\to} f_n,$$

we have

$$\mathbb{P}\left(L\left(P_X^{f_*}, f_n\right) \ge \varepsilon\right) \le \delta.$$

In other words, with probability $1 - \delta$, $\mathbb{P}(f_n(X) \neq f_*(x)|D_n) \leq \varepsilon$.

Remark 5.4 (Example).

$$\mathcal{C}_{\text{AND},d} = \left\{ f : \underline{2}^d \to \underline{2} \mid \exists u \subset [d], \ \forall x \in \underline{2}^d : f(x) = \min_{j \in u} X_j \right\},$$

$$\mathcal{C} = (\mathcal{C}_{\text{AND},d})_{d \geq 1}.$$

5.2 ERM: Empirical Risk Minimization

Let

$$L_n(f) = \frac{1}{n} \sum_{i=1}^n \mathbf{1} \left(f(X_i) \neq Y_i \right),$$

$$f_n := \operatorname*{min}_{f \in \mathcal{C}_d} L_n(f).$$

<u>Homework:</u> Show $f_n \arg \min_{f \in \mathcal{C}_d} L_n(f)$ is computationally efficient. Moreover,

$$f_n := \underset{f \in \mathcal{C}_{\text{AND}}}{\operatorname{arg min}} L_n(f) \longrightarrow \text{proper learning.}$$

Method I: Fix $d \ge 1$, P and f_* . Let $D_n \to f_n$. We first decompose $L(f_n)$ as follows:

$$L(f_n) = L(f_n) - L_n(f_n) + L_n(f_n)$$

$$= \underbrace{L(f_n) - L_n(f_n)}_{\text{bounded with concentration inequality}} + \underbrace{L_n(f_n) - L_n(f_*)}_{\text{ERM}} + \underbrace{L_n(f_*) - L(f_*)}_{\text{bounded with concentration inequality}} + \underbrace{L(f_*) - L(f_*)}_{\text{bounded with concentra$$

Next, Hoeffding inequality implies that with probability $1 - \delta$,

$$L_n(f_*) - L(f_*) \le \sqrt{\frac{\log(1/\delta)}{2n}}.$$

Besides, $f_n \in \mathcal{C}_d$ indicates that

$$L(f_n) - L_n(f_n) \le \max_{f \in C_d} L(f) - L_n(f_n).$$

Fix $f \in \mathcal{C}_d$. Set

$$\mathcal{U}(f,\delta) = \left\{ L(f) - L_n(f) \le \sqrt{\frac{\log(1/\delta)}{2n}} \right\}.$$

Then

$$\mathbb{P}(\mathcal{U}(f,\delta)) \ge 1 - \delta \iff \mathbb{P}(\mathcal{U}^{c}(f,\delta)) \le \delta.$$

Let $N = |\mathcal{C}_{AND,d}|$ and define 'nice event'

$$\mathcal{U} = \bigcap_{f \in \mathcal{C}_d} \mathcal{U}\left(f, \frac{\delta}{N}\right).$$

Then

$$\mathbb{P}(\mathcal{U}^{\mathrm{c}}) = \mathbb{P}\left(\bigcup_{f \in \mathcal{C}_d} \mathcal{U}^{\mathrm{c}}\left(f, \frac{\delta}{N}\right)\right) \leq \sum_{f \in \mathcal{C}_d} \mathbb{P}\left(\mathcal{U}^{\mathrm{c}}\left(f, \frac{\delta}{N}\right)\right) \leq \sum_{f \in \mathcal{C}_d} \frac{\delta}{N} = \delta.$$

When \mathcal{U} holds, $L(f) - L_n(f) \leq \sqrt{\frac{\log(N/\delta)}{2n}}$ for all $f \in \mathcal{C}_d$, in other words,

$$\max_{f \in \mathcal{C}_d} L(f) - L_n(f) \le \sqrt{\frac{\log(N/\delta)}{2n}}.$$

Theorem 5.5 (Proper learning). $C_{AND,d}$ PAC-learnable, f_n minimizing the empirical risk, and proper learning: with propability $1 - \delta$,

$$L(f_n) \le \sqrt{\frac{\log(N+1/\delta)}{2n}} + \sqrt{\frac{\log(N+1/\delta)}{n}}.$$

Remark 5.6. (a) This bound on $L(f_n)$ may **not** be **tight**.

(b) This result shows PAC-learnability:

$$\begin{split} 2\sqrt{\frac{\log(N+1/\delta)}{2n}} &\leq \varepsilon \\ \Leftrightarrow \frac{n}{2\log(N+1/\delta)} &\geq \frac{1}{\varepsilon^2} \\ \Leftrightarrow n &\geq \frac{2}{\varepsilon^2}\log\left(\frac{N+1}{\delta}\right). \end{split}$$

Hence, $p(1/\varepsilon,1/\delta,d)=2\log\left(\left(|\mathcal{C}_{\text{AND},d}|+1\right)/\delta\right)/\varepsilon^2$. Since $|\mathcal{C}_{\text{AND},d}|=2^d$, we have

$$p\left(\frac{1}{\varepsilon}, \frac{1}{\delta}, d\right) = \frac{2\log(2^d + 1) + 2\log(1/\delta)}{\varepsilon^2} \le \dots$$

Method II: $L(f) - L_n(f) \leq ?$

Fix $0 \le \delta \le 1$. By multiplicative Chernoff inequality, with probability $1 - \delta N/(N+1)$,

$$L(f) - L_n(f) \le \sqrt{\frac{2L(f)\log(N+1/\delta)}{n}} \quad \forall f;$$

with probability $1 - \delta/(N+1)$,

$$L_n(f_*) - L(f_*) \le \sqrt{\frac{2L(f_*)\log(N+1/\delta)}{n}} + \frac{\log((N+1)/\delta)}{3n}.$$

Denote 'nice event'

$$\mathcal{U} := \left\{ L(f) - L_n(f) \le \sqrt{\frac{2L(f)\log(N+1/\delta)}{n}} \quad \forall f, \ L_n(f_*) - L(f_*) \le \sqrt{\frac{2L(f_*)\log(N+1/\delta)}{n}} + \frac{\log((N+1)/\delta)}{3n} \right\}.$$

Then $\mathbb{P}(\mathcal{U}) \geq 1 - \delta$. On $\mathcal{U} \cap \{L(f_n) \neq 0\}$: since $L_n(f_n) \geq 0$ and

$$\frac{L(f_n) - L_n(f_n)}{\sqrt{\frac{2L(f_n)\log(\frac{N+1}{\delta})}{n}}} \le \max_{f \in \mathcal{C}_d, L(f) \neq 0} \frac{L(f) - L_n(f)}{\sqrt{\frac{2L(f)\log(\frac{N+1}{\delta})}{n}}} \le 1,$$

we have

$$L(f_n) \le \sqrt{\frac{2L(f_n)\log\left(\frac{N+1}{\delta}\right)}{n}}.$$

Furthermore, we have

$$L^{2}(f_{n}) \leq \frac{2L(f_{n})\log\left(\frac{N+1}{\delta}\right)}{n},$$

$$L(f_{n}) \leq \frac{2\log\left(\frac{N+1}{\delta}\right)}{n} \leq \varepsilon,$$

$$\Rightarrow n \geq \frac{2\log\left(\frac{|\mathcal{C}_{d}|+1}{\delta}\right)}{\varepsilon},$$

$$\Rightarrow p\left(\frac{1}{\varepsilon}, \frac{1}{\delta}, d\right) = \dots$$