Privacy-Enhanced Capabilities for VANETs using Direct Anonymous Attestation

Jorden Whitefield

Aalto University, 17^{th} September 2018

Surrey Centre for Cyber Security
Department of Computer Science
University of Surrey
sccs.surrey.ac.uk

Outline

- Security & Privacy challenges of Intelligent Transportation Systems
- Trusted Computing for Automotive
- Application of DAA within VANETs
- Implementation
- Future Research

ITS Security & Privacy Challenges

Contradictory positions between users and infrastructure entities. . .

Image source: "Trustworthy People-Centric Sensing: Privacy, Security and User Incentives Road-Map"

- Protect the Users from the System (i.e., user privacy)
 - ⇒ Anonymity (conditional)
 - \Rightarrow Pseudonymity
 - \Rightarrow Unlinkability
 - ⇒ Unobservability
- Protect the System from the Users (i.e., trustworthiness)
 - ⇒ Authentication & Authorization
 - ⇒ Accountability
 - ⇒ Data Trustworthiness

Security & Privacy Architectures - Close to deployment

- Many standardization bodies
 - √ Car 2 Car Communication Consortium (C2C-CC)
 - √ IEEE & ETSI standard specifications

But safety is the key pillar

- Vehicular Communications (VC)
- Vehicles propagate information for Safe-Driving
 - Location, Velocity, angle
 - Hazardous warnings
 - Emergency break etc.
- Cooperative awareness through beaconed status messages and event-triggered warnings
- ... Security in VC?
 - Assure legitimate vehicles propagate information
 - Secure integrity of information

Image source: Car-2-Car Consortium

The Challenge

Deploy an ITS with security & privacy built-in, which is scalable providing vehicles with

- Protection from trusted & colluding third parties
- Privacy and unlinkability, while still being held accountable
- Scalable and dependable authentication, authorization & revocation
- Solutions that abide by the VC standards

State-of-the-art VPKI

Trusted Computing for Automotive

- Trusted Platform Module (TPM) provides:
 - \Rightarrow Isolation
 - ⇒ Protected Execution
 - ⇒ Shielded Storage
- Secure crypto processor: creates, stores, uses crypto keys
- TCG developing TPM for "Automotive Thin Profile" 1

¹ https:

Direct Anonymous Attestation

- Anonymous digital signature scheme
 - \Rightarrow Strong, but privacy preserving authentication.
- Hardware-based attestation using TPMs
- Properties of DAA include:
 - ⇒ Correctness:
 - ightarrow Valid signatures only producible by honest platforms, and are verifiable and linkable when specified.
 - **⇒** User-controlled Anonymity:
 - \rightarrow Identity of user cannot be revealed.
 - **⇒** User-controlled Traceability:
 - → The host controls whether signatures can be linked.
 - **⇒** Non-Frameability:
 - $\,\rightarrow\,$ Adversary should not be able to impersonate honest platforms.
- Standardised in ISO/IEC 20008-2 & 11889

DAA Pseudonym Scheme - Overview

- Simplified VPKI Architecture
 - ⇒ Issuer: Authenticates vehicles' to ITS and issues DAA credential
 - ⇒ Revocation Authority: Removes misbehaving / malfunctioning vehicles'
- Decentralised ITS allows a shift-of-trust into vehicles.
 - ⇒ Vehicles responsible for self-signing pseudonyms
 - ⇒ Promotes scalability *Certificate Revocation Lists* not required
- Timely and "in the moment" revocation
- Vehicles in control of privacy
- Utilises trusted hardware and uses DAA for hardware-based attestation

Trusted third parties gain no knowledge of ITS entities from colluding with one another.

DAA Pseudonym Scheme - Architecture

DAA Protocols for VANETs

- <u>SETUP</u>: TC generates fresh DAA key-pair from Issuers security parameters.
- <u>JOIN</u>: Attests that a vehicle has a valid TC, and produces the DAA credential from Issuer ⇒ authenticated member of ITS.
- <u>CREATE:</u> Fresh self-signed pseudonyms created by TC using credential.
- SIGN/VERIFY: Authenticated V2X communication that verifies pseudonym is valid.
- <u>REVOKE</u>: Verifiable revocation that a vehicle has been removed from ITS. Performed without pseudonym resolution.

DAA Protocols for VANETs

CREATE Protocol

- 1. Credential (from JOIN) is blinded by the host for privacy
- 2. DAASign produces two signatures: σ_1 (deterministic) & σ_2
- 3. Pseudonym is a key-pair with a DAA signature associated with a blinded credential.

REVOKE Protocol

Revoke: TC	\rightleftharpoons	Host	=	Ra
sk_{tc}, pk_{ra}		cre		$pk_I, pk_{ps}, ps_{Cert_{tc}}, sk_{ra}$
		fresh T	msg	$msg := \{ \mid "revoke" \mid \mid pk_{ps} \mid \mid reason \mid \}_{sk_{ra}}$
$verify(msg, pk_{ra})$	\widehat{cre}, msg	$\widehat{cre} = \mathtt{hlind}(cre,r)$		
fresh r' $\sigma_{rek} := \mathtt{DAASign}(pk_{ps}, r, sk_{te}) = (\sigma_1^{ra} \parallel \sigma_2^{ra} \parallel \widehat{cre})$ $\sigma_1^{ra} := \mathtt{aign}(pk_{ps}, sk_{te})$				
$\sigma_2^{ra} := \texttt{blindSign}(\texttt{"confirm"} \parallel pk_{ps}, r', sk_{tc})$	σ_{rvk}		σ_{rvk}	eq $(\sigma_1, \sigma_1^{r_{lpha}}, \mathtt{true})$

- 1. Vehicle receives revocation message from RA, and TC verifies authenticity.
- 2. TC creates DAA signature to check if σ_1^{ra} matches σ_1
- 3. If match create revocation confirmation and delete all pseudonyms & DAA key-pair

Security Model

- Security & Privacy Analysis
 - ⇒ User-controlled Anonymity and Traceability:
 - ightarrow Pseudonym creation DAA credential blinded, not linkable to vehicle.
 - ightarrow DAA credential does not contain any PII.
 - \Rightarrow Non-frameability:
 - ightarrow Communication from vehicle cannot be faked or generated by adversary.
 - ightarrow SIGN / VERIFY message is signed by TC, assured by the DAA credential of pseudonym.
 - ⇒ Assurance of revocation:
 - → Revocation requests and confirmations verified by both RA and vehicle.
 - → Confirmed revocation executes deletion of all pseudonyms and DAA credentials.

Research Directions

- Implementation and Experimentation
 - ⇒ Message / signature sizes
 - ⇒ Timings for signature verification
 - ⇒ Host or TC: "Trusted VS Untrusted"
- Formal Analysis using the Tamarin Prover
 - ⇒ Verify trace properties, e.g., security / authentication
 - ⇒ Analysis of V2X revocation²
 - ⇒ Develop theory for proving DAA in symbolic setting (General theory useful beyond vehicular use case)
- Revocation correctness
 - ⇒ How revocation messages reach the host?
 - ⇒ Message Indistinguishability, Heartbeat?

² "Formal Analysis of V2X Revocation Protocols" by Whitefield et al. STM 2017, Oslo, Norway

EPSRC UK Impact Accelaration Account

- Demonstrate the applicability of our DAA V2X architecture:
 - ⇒ Implemented in a relevant lab environment using actual automotive boxes and TPMs.
 - ⇒ Communication interfaces.
 - \Rightarrow DAA scheme compliant with ISO/IEC 20008-2 and 11889
- Project in collaboration with:
 - ⇒ Thales Research and Technology UK.
 - ⇒ Thales eSecurity.
 - ⇒ Pervasive Intelligence.
 - ⇒ University of Surrey.

Implementation: Hardware

- Nexcom VTC 6200
 - \Rightarrow Intel Atom D510 Dual Core 1.6GHz
 - ⇒ 2GB RAM
 - ⇒ Internal wireless communication (3.5G, GSM/GPRS, WLAN, BT)
 - ⇒ Voyage Linux (Lightweight Debian)

Implementation: Hardware

When Cryptography meets the real world

Join Protocol I of IV

The Join Operation TPMHost ISSUER $(X, Y) \in \mathbb{G}_2 \times \mathbb{G}_2$ $(x, y) \in \mathbb{Z}_n \times \mathbb{Z}_n$ INITIALISE generate and store (e, \mathcal{E}) choose and store $f \in \mathbb{Z}_n$ $Q_2 = [f]P_1$ GET_ENDORSEMENT_KEY_DATA $\mathcal{E}_{\mathrm{PD}}$ \mathcal{E}_{PD} extract and store \mathcal{E} send \mathcal{E}_{PD} to Issuer \rightarrow extract and check \mathcal{E} GET_DAA_KEY_DATA Q_2 PD \longrightarrow extract and store Q_2 $Q_2\mathrm{PD}$ send Q_{2PD} to Issuer → check Q₂PD store Q_2PD $K_1 \leftarrow \{0, 1\}^t$ store K_1 $s_1 \leftarrow \{0, 1\}^t$

Join Protocol II of IV

Join Protocol III of IV

$v = H_{5}(n_{J} \parallel p_{tpm})$ $\sigma_{ch} = (n_{J}, w, v)$ $extract Q_{2} \text{ from } Q_{2}PD$ $U' = [w]P_{1} - [v]Q_{2}$ $p' = H_{2}(P_{1} \parallel Q_{2} \parallel U' \parallel str)$ $p'_{tpm} = H_{12}(p')$ $v' = p'_{tpm} \pmod{n}$ $v' = H_{5}(n_{J} \parallel p'_{tpm})$ new	TPM	Host $(X, Y) \in \mathbb{G}_2 \times \mathbb{G}_2$	ISSUER $(x,\ y)\in \mathbb{Z}_n\times \mathbb{Z}_n$
$\begin{aligned} \text{verify } v = v' \\ r \leftarrow \mathbb{Z}_n \\ A = [r]P_1; \ B = [y]A \\ C = [x]A + [rxy]Q_2 \\ D = [ry]Q_2 \\ l \leftarrow \mathbb{Z}_n \\ R_B = [l]P_1; \ R_D = [l]Q_2 \\ q = H_{10}(P_1 \parallel Q_2 \parallel R_B \parallel R_D) \end{aligned}$			extract Q_2 from Q_2 PD $U' = [w]P_1 - [v]Q_2$ $p' = H_2(P_1 \parallel Q_2 \parallel U' \parallel str)$ $p'_{spm} = H_{12}(p')$ old $v' = p'_{spm} \pmod{n}$ verify $v = v'$ $r \leftarrow \mathbb{Z}_n$ $A = [r]P_1; B = [y]A$ $C = [x]A + [rxy]Q_2$ $D = [ry]Q_2$ $l \leftarrow \mathbb{Z}_n$ $R_B = [l]P_1; R_D = [l]Q_2$

Join Protocol IV of IV

TPM $(e, \mathcal{E}), f \in \mathbb{Z}_n$		Host $(X, Y) \in \mathbb{G}_2 \times \mathbb{G}_2$	ISSUER $(x,\ y)\in\mathbb{Z}_n\times\mathbb{Z}_n$
$\overline{\text{ACTIVATE_CREDENTIAL}}$ $\mathcal{K}_2 = \text{activate credential}(\text{CB}_2, \widehat{s_2})$	$CB_2,\widehat{s_2}$ K_2	$\begin{split} \ker \widehat{\mathcal{C}} \\ cre &= \operatorname{senc}(\mathcal{K}_2, \widehat{\mathcal{C}}) \\ (A, B, C, D, q, j) &= \\ R'_B &= [j]P_1 - [q]B \\ R'_D &= [j]Q_2 - [q]D \\ q' &= H_{10}(P_1 \parallel Q_2 \parallel \\ \operatorname{check}: \\ q &= q' \\ \widehat{h}(A, Y) &= \widehat{h}(B, \\ \operatorname{store}\ (A, B, C, D) \end{split}$	$\begin{split} j &= l + yr \cdot q \pmod{n} \\ s_2 &\leftarrow \{0,1\}^l \\ cre &= (A,B,C,D,q,j) \\ \mathcal{K}_2 &\leftarrow \{0,1\}^{t_{mes}} \\ \hat{\mathcal{C}} &= \operatorname{senc}(\mathcal{K}_2, cre) \\ \\ \text{generate } \operatorname{CB}_2 \text{ and } \widehat{s_2} \\ \\ \hat{h}(C,P_2) \end{split}$

Preleminary Results

• SIGN: 1538ms

• Verify: 2545ms

DEMO

Thank You!

 Q/A

Twitter: @sudo_jorden

email: j.whitefield@surrey.ac.uk

JOIN Protocol

Join: Tc	=	Host	⇌	Issuer
$sk_{ek_{tc}}, pk_{ek_{tc}}$		$pk_{ek_{tc}}, pk_{tc}$		$pk_{ek_{tc}}, sk_I$
sk_{tc}, pk_{tc}		pk_I		
			$\xrightarrow{pk_{ek_{tc}},pk_{tc}}$	fresh n_I
				$C = \mathtt{aenc}(n_I \parallel pk_{tc}, pk_{ek_{tc}})$
$n_I \parallel p k_{tc}$	$ \xrightarrow{n_I \parallel pk_{tc}} $		$\xrightarrow{n_I \parallel pk_{tc}}$	$cre = exttt{blindSign}(\; pk_{tc}, \; sk_I \;)$
				fresh key
				$e = \mathtt{senc}(\ cre, key\)$
	<i>d</i>		\leftarrow d, e	$d = \mathtt{aenc}(\ key \parallel pk_{tc},\ pk_{ek_{tc}}\)$
$key \parallel pk_{tc}$	\xrightarrow{key}	store(cre)		

CREATE Protocol

Create: Tc	←		Host
sk_{tc}			cre
			fresh r
fresh sk_{ps}/pk_{ps}		$\longleftarrow \verb \widehat{cre}$	$\widehat{cre} := \operatorname{blind}(cre,r)$
fresh r^\prime			
$ps_{sig} := exttt{DAASign}(pk_{ps}, r', sk_{tc}) = (\sigma_1 \parallel \sigma_2 \parallel \widehat{cre})$			
$\sigma_1 := sign(pk_{ps}, sk_{tc})$			
$\sigma_2 := \operatorname{blindSign}(\operatorname{"certified"} \parallel pk_{ps}, r', sk_{tc})$			
$ps_{Cert_{Ic}} := (pk_{ps} \parallel ps_{sig})$			
$\mathtt{store}(sk_{ps})$	$ps_{Cert_{tc}}$		$store(ps_{Cert_{tc}})$

SIGN/VERIFY Protocol

Sign / Verify: To	\rightleftharpoons	Host =		Verifier
sk_{ps}		$ps_{Cert_{tc}}$		pk_I
←	m_{plain}	$m_{plain} := \{ \verb"70 mph" \parallel data \mid \}$		
$m_{sign} := sign(m_{plain}, sk_{ps})$ _	m_{sign}	$msg := \{ \mid m_{plain} \parallel m_{sign} \parallel ps_{Cert_{t_c}} \mid \}$	msg	${\tt DAAVerlfy}(ps_{sig},pk_I)$
				$store(pk_{ps})$

REVOKE Protocol

ı	Revoke: TC	=	Host	=	RA
ı	sk_{tc}, pk_{ra}		cre		$pk_I, pk_{ps}, ps_{Cert_{tc}}, sk_{ra}$
ı	- -				$msg := \{ \text{"revoke"} pk_{ps} \text{reason} \}_{sk_{ra}}$
ı			fresh T	msg	
ı					
ı	$verify(msg, pk_{ra})$	\widehat{cre}, msg	$\widehat{cre} = \mathtt{hlind}(cre, r)$		
١	fresh T'				
ı	$\sigma_{ruk} := \text{DAASign}(pk_{ps}, r, sk_{tc}) = (\sigma_1^{ra} \parallel \sigma_2^{ra} \parallel \widehat{cre})$				
ı	$\sigma_1^{ra} := \text{sign}(pk_{ps}, r, sk_{tc})$ = $(0_1 \parallel 0_2 \parallel 0.0)$				
ı	U1 .— sign(phps, shic)				
ı	$\sigma_2^{ra} := \text{blindSign}(\text{"confirm"} \parallel pk_{pe}, r', sk_{tc})$	σ_{rvk}	σ_{rvk}	σ_{rvk}	$eq(\sigma_1, \sigma_1^{ra}, true)$
۱				,	
۱					DAAVerify (σ_{rvk}, pk_I)