Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления» КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №7 Моделирование информационного стенда на языке GPSS

Студент	Соколов Ефим						
Группа	ИУ7-73Б						
Дисциплина	Моделирование						
Преподаватель:		Рудаков И.В.					
	подпись, дата	Фамилия, И.О.					
Оценка							

Задание

В информационный центр приходят клиенты через интервал времени 10 +- 2 минуты. Если все три имеющихся оператора заняты, клиенту отказывают в обслуживании. Операторы имеют разную производительность и могут обеспечивать обслуживание среднего запроса пользователя за 20 +- 5; 40 +- 10; 40 +- 20. Клиенты стремятся занять свободного оператора с максимальной производительностью. Полученные запросы сдаются в накопитель. Откуда выбираются на обработку. На первый компьютер запросы от 1 и 2-ого операторов, на второй – запросы от 3-его. Время обработки запросов первым и 2-м компьютером равны соответственно 15 и 30 мин. Промоделировать процесс обработки 300 запросов.

На рисунке 1 приведена схема системы.

Рисунок 1: Схема системы

Для выполнения поставленного задания необходимо создать концептуальную модель в терминах СМО, определить эндогенные и экзогенные переменные и уравнения модели. За единицу системного времени выбрать 0,01 минуты.

Теоретическая часть

В процессе взаимодействия клиентов с информационным центром возможно:

• режим нормального обслуживания, т.е. клиент выбирает одного из

свободных операторов, отдавая предпочтение тому у которого меньше номер;

• режим отказа в обслуживании клиента, когда все операторы заняты.

Переменные и уравнения имитационной модели

Эндогенные переменные отвечают за время обработки задания і-ым оператором, время решения этого задания ј-ым компьютером.

Экзогенные переменные - это число клиентов, которых обслужили и получившие отказ.

Концептуальная схема

На рисунке 2 приведена концептуальная схема системы в терминах СМО.

Рисунок 2: Концептуальная схема в терминах СМО

$$P_{react} = \frac{C_{react}}{C_{react} + C_{proc}}$$

Листинги

На листинге 1 приведен листинг программы на языке GPSS.

```
SIMULATE
   GENERATE 10,2,,300, ;; блок GENERATE осуществляет ввод транзактов в модель
       ; 1 средний интервал времени между последовательными поступлениями транзактов в модель
        ; [2] модификатор, который изменяет значения интервала генерации транзактов по сравнению
           с интервалом, указанным операндом А
        ; [3] задержка в выработке первого транзакта (0)
        ; [4] число вырабатываемых источником заявок
        ; [5] приоритет заявок
; если первый оператор занят, переход ко второму
M OP1 GATE NU POINT OPER1, M OP2
       ;; блок GATE определяет состояние устройства
       ; оператор задает условие пропуска транзакта
       ; NU устройство не используется (NOT USED)
        ; 1 операнд задает устройство для проверки
        ; [2] операнд задает блок, в который перейдет транзакт, если оператор вернет "FALSE"
   SEIZE POINT_OPER1 ;; транзакт занимает устройство
   ADVANCE 20,5 ;; задержка транзакта в течение некоторого времени
   RELEASE POINT OPER1 ;; освобождение устройства
   TRANSFER ,M_PC1,, ;; переход в блок первого компьютера
; если второй оператор занят, переход к третьему
M OP2 GATE NU POINT OPER2, M OP3
   SEIZE POINT_OPER2 ;; транзакт занимает устройство
   ADVANCE 40,10 ;; задержка транзакта
   RELEASE POINT_OPER2 ;; устройство освобождается
   TRANSFER , M_PC1 ;; переход в блок первого компьютера
; если и третий оператор занят, заявка не обслуживается
M_OP3 GATE NU POINT_OPER3, M_DROP
   SEIZE POINT_OPER3
   ADVANCE 40,20 ;; задержка транзакта
   RELEASE POINT OPER3
   TRANSFER ,M_PC2 ;; переход в блок второго компьютера
M_PC1 QUEUE PC1_QUEUE ;; постановка транзакта в очередь
   SEIZE SPC1 ;; транзакт занимает устройство
   	exttt{DEPART} 	exttt{PC1}_QUEUE ;; извлечение транзакта из очереди
   ADVANCE 15 ;; задержка транзакта
   RELEASE SPC1 ;; освобождение устройства
   TRANSFER , M_PROC ;; транзакт обслужен, переход к завершению
M_PC2 QUEUE PC2_QUEUE
   SEIZE SPC2
   DEPART PC2_QUEUE
   ADVANCE 30
   RELEASE SPC2
   TRANSFER , M_PROC ;; транзакт обслужен, переход к завершению
M_PROC TRANSFER , M_END
M_DROP TRANSFER , M_END
; количество обработанных заявок
M_END SAVEVALUE TRANS_PROCESSED, N$M_PROC
```

```
SAVEVALUE TRANS_DROPPED,N$M_DROP
; вероятность потери заявки
SAVEVALUE TRANS_DROPPED_PROB,((N$M_DROP)/(N$M_END))

TERMINATE 1
START 300
```

Результаты выполнения работы

На рисунках 3-5 приведен отчет о результатах работы системы с 300 заявок.

GPSS World Simulation Report - lab07_sokolov.1.1

Friday, January 07, 2022 19:32:13

START TIME	END TIME	BLOCKS	FACILITIES	STORAGES
0.000	3058.002	34	5	0
NAME		VALUE		
M_DROP		30.000		
M_END		31.000		
M OP1		2.000		
M OP2		7.000		
M OP3		12.000		
M PC1		17.000		
M PC2		23.000		
M PROC		29.000		
PC1 QUEUE	100	03.000		
PC2 QUEUE	100	08.000		
POINT OPER1	100	00.000		
POINT OPER2	100	01.000		
POINT OPER3	100	02.000		
SPC1	100	04.000		
SPC2	100	09.000		
TRANS DROPPED	100	06.000		
TRANS DROPPED PROB	100	07.000		
TRANS PROCESSED	100	05.000		

Рисунок 3: Результат моделирования системы с 300 заявками (часть 1)

При моделировании системы с 300 заявками процент потерянных заявок составляет 23%.

	LABEL	LOC	BLOCK TYPE	ENTRY COUNT	CURRENT	COUNT	RETRY
		1	GENERATE	300		0	0
	M OP1	2	GATE	300		0	0
	_	3	SEIZE	121		0	0
		4	ADVANCE	121		0	0
		5	RELEASE	121		0	0
		6	TRANSFER	121		0	0
	M OP2	7	GATE	179		0	0
	_	8	SEIZE	59		0	0
		9	ADVANCE	59		0	0
		10	RELEASE	59		0	0
		11	TRANSFER	59		0	0
	M OP3	12	GATE	120		0	0
	_	13	SEIZE	51		0	0
		14	ADVANCE	51		0	0
		15	RELEASE	51		0	0
		16	TRANSFER	51		0	0
	M_PC1	17	QUEUE	180		0	0
		18	SEIZE	180		0	0
		19	DEPART	180		0	0
		20	ADVANCE	180		0	0
		21	RELEASE	180		0	0
		22	TRANSFER	180		0	0
	M_PC2	23	QUEUE	51		0	0
		24	SEIZE	51		0	0
		25	DEPART	51		0	0
		26	ADVANCE	51		0	0
		27	RELEASE	51		0	0
		28	TRANSFER	51		0	0
	_	29	TRANSFER	231		0	0
	M_DROP	30	TRANSFER	69		0	0
	M_END	31	SAVEVALUE	300		0	0
		32	SAVEVALUE	300		0	0
		33	SAVEVALUE	300		0	0
		34	TERMINATE	300		0	0
- 1							

Рисунок 4: Результат моделирования системы с 300 заявками (часть 2)

FACILITY	ENTRIES	UTI	L. I	AVE. TIME	AVAIL.	OWNER	PEND	INTER	RETRY	DELAY
POINT_OPER1	121	0.	788	19.924	1	0	0	0	0	0
POINT_OPER2		0.	772	40.03€	1	0	0	0	0	0
POINT OPER3	51	0.	711	42.640	1	0	0	0	0	0
SPC1	180	0.	883	15.000	1	0	0	0	0	0
SPC2	51	0.	500	30.000	1	0	0	0	0	0
QUEUE	MAX C	ONT.	ENTRY	ENTRY(0)	AVE.CO	NT. AVI	E.TIME	E AVI	E. (-0)	RETRY
PC1_QUEUE	2	0	180	61	0.27	9	4.737	7	7.165	0
PC2_QUEUE	1	0	51	48	0.00	4	0.212	2	3.598	0
SAVEVALUE		RETRY		VALUE						
TRANS PROCESSED				231.000						
TRANS_DROPPED		0		69.000						
TRANS_DROPPED_PR	ROB	0)	0.230)					

Рисунок 5: Результат моделирования системы с 300 заявками (часть 3)