

Apport des méthodes d'apprentissage profond pour la reconnaissance des actes des énoncés oraux

 ${
m OUACHOUR}$ Hanane Sous la direction de : ${
m RAVIER} \ {
m Phillipe} \quad {
m et} \quad {
m BOUGRINE} \ {
m Asma}$

Université de Strasbourg

Sommaire

- Introduction
- Rappel et définition
- 3 Classification des signaux acoustiques
 - Constitution des bases de données
 - Traitement de données
 - Extraction de données
 - Classification
 - Machines à vecteurs supports
 - Algorithme des K plus proches voisins
 - Réseau longue mémoire à court terme
 - Réseaux neuronaux convolutifs (CNN)

Introduction

Traitement de la parole avec les signaux vocaux

Introduction

Phrase injonctive

- Ordre
 - **I**mpératif
 - Phrase nominale
- Interjection
- Apostrophe
- Politesse

Parole et signal acoustique

Parole

- un flux continu constitué d'une suite de mots.
- les mots sont constitués d'un enchaînement de :
 - phonèmes
 - type de la voix
 - déformation du son
 - émotions
 - bruits articulatoires

Signal acoustique:

- analogique
- continu
- non stationnaire
- structure complexe.
- variable avec le temps.

Caractéristiques d'un signal acoustique

Figure: Catégories des caractéristiques des audio vocaux

Caractéristiques des audio vocaux :

- intensité (db) : dépend de l'amplitude de la vibration.
- énergie (db): extraite du signal temporel sur une fenêtre d'analyse.
- fréquence (Hz) : nombre de vibrations par seconde.
- hauteur (pitch) : la fréquence la plus petite.

Modes de représentation d'un signal acoustique

Modes de représentation:

- temporelle
- spectrale
- spectrogramme
- mel Spectrogramme

Hertz en mel

 $m=2595.\log_{10}\left(1+rac{f}{700}
ight)$ f : fréquence en Hz

Figure: Exemple des modes de représentation d'un signal acoustique [2]

Constitution des bases de données

Modules de la base RAVIOLI

• École : micro

• Repas: micro

• Itinéraire : micro discret

• 24H : micro-cravate

1	Nom du fichier	Locuteur	Injonctive?	Categorie	Start	End	Durée	Texte
2	24H_apresmiditravail_4.wav	NR390	oui	excuse	189.69	191.75	2.06	pardon je te le mets déjà sur les pieds je suis désolée
3	24H_apresmiditravail_4.wav	NR390	oui	apostrophe	346.9	347.33	0.43	Sarah
4	24H_apresmiditravail_4.wav	NR390	oui	excuse	390.97	391.86	0.89	pardon excusez -moi
5	24H_apresmiditravail_4.wav	NR390	oui	refus	498.53	500.93	2.4	bah vu comment il est cintré excuse -moi
6	24H_apresmiditravail_4.wav	collègue 4	oui	stop	551.36	552.15	0.79	attends attends attends attends
7	24H_apresmiditravail_4.wav	NR390	oui	_UNDEF_	574.24	574.45	0.21	non
8	24H_apresmiditravail_4.wav	NR390	oui	_UNDEF_	574.45	574.88	0.43	t' inquiète
9	24H apresmiditravail 4.wav	collègue 4	oui	UNDEF	602.63	604.55	1.92	oui mais faut les serrer Pamela

Figure: Tableur des audio injonctifs

Constitution des bases de données

Première base

- Base de Hacine-Gharbi et al.
- 198 audio non injonctifs.
- 197 audio injonctifs.
- Mot-clé : allez ou aller

Deuxième base

- Donnése sauvages
- 1215 audio non injonctifs.
- 2237 audio injonctifs.
- Pas de mot-clé.

Traitement de données

échantillonnage des signaux

- Enregistrés à l'origine à 44100Hz
- Sous-échantillonnés à 16000Hz
- Thérome de Shannon

Suppression des silences

- Détection d'activité vocale (VAD)
- Valeur de la hauteur nulle

Extraction de données

Hauteur (PI)

- logiciel Praat
- calculer sur des trames de 10*ms*
- la vitesse (A) et l'accélération
 (D) sont calculés avec HTK

Énergie logarithmique (E)

- Logiciel HTK
- calculer toutes les 10ms sur des fenêtres d'analyse de Hamming de 30ms
- La vitesse (A) et l'accélération
 (D) sont calculés avec HTK

Machines à vecteurs supports (SVMs)

Méthode SVM

- Méthode d'apprentissage supervisé
- Marge maximale et fonctions noyau

Figure: Principe de la méthode SVM [3]

Figure: Exemple de fonction noyaux SVM [3]

Algorithme des K plus proches voisins(KNN)

Figure: Principe de la méthode KNN [4]

Méthode KNN

- Méthode d'apprentissage supervisé
- Notion de voisinage
- Notion de la distance

Implémentation des méthodes SVM et KNN

Figure: Implémentation des méthodes KNN et SVM

Critères de validation des méthodes SVM et KNN

Précision (accuracy)

$$précision = \frac{\text{Nombre de prédictions correctes}}{\text{Nombre total de prédictions}}$$

Figure: Principe de la validation croisée [5]

	Réponse P	de l'expert n
Réponse du classifier	Vrai	Faux
N	Positif	Positif
Réponse	Faux	Vrai
N	Négatif	Négatif

Figure: Matrice de confusion [6]

Méthodes SVM et KNN

Les paramètres de configuration utilisés sont :

- pour la méthode KNN:
 - première base (N): tous les nombres impairs entre 1 et 200
 - deuxième base (N): tous les nombres impairs entre 1 et 400
- pour la méthode SVM:
 - o noyau: RBF
 - ullet paramètre de régularisation : C = [0.01, 0.1, 0.5, 1, 1.5, 5, 10]
 - \bullet coefficient du noyau : $\gamma = [0.01, 0.1, 1, 10, 100]$

Méthodes SVM et KNN appliqués sur la première base

Configs	E	E,E_D	E,E_A	E,E _{DA}	PI	PI,PI _{DA}	PI,E	E, E_D, PI_D	PI,E,E _{DA} , PI _{DA}
N	51	5	3	5	27	39	3	89	11
TC (%)	71.42	65.75	69.89	65.30	65.81	66.83	69.83	70.42	65.81

Table: Résultats obtenus avec la méthode KNN

Configs	E	E,E _D	E,E_A	E,E _{DA}	PI	PI,PI _{DA}	PI,E	E,E_D,PI_D	PI,E,E _{DA} , PI _{DA}
C,γ	10,1	0.1,10	10,1	1,1	10,1	10,0.01	10,1	1,1	10,1
TC (%)	82	76.02	73.46	77	63	65	65	70.91	67

Table: Résultats obtenus avec la méthode SVM

Comparaison entre les résultats obtenus avec la première base

Figure: Les résultats obtenus par les méthodes SVM, KNN et GMM

Méthodes SVM et KNN appliqués sur la première base

Dans le cas de la validation croisée (2-folds)

Configs	E	E,E _D	E,E _{DA}	PI	E, E_D, PI_D	PI,E,E_{DA},PI_{DA}
N	3	5	7	27	123	11
TC (%)	[50.75, 69.89]	[50.75, 62.75]	[53.76, 61.73]	[49.74, 65.81]	[49.24, 68.36]	[49.50, 65.81]

Table: Résultats obtenus avec la méthode KNN en utilisant 2-fold ([1-fold,2-fold])

Configs	E	E,E_D	E,E _{DA}	PI	E, E_D, PI_D	PI,E,E _{DA} , PI _{DA}
C,γ	0.01,0.01	0.01,0.01	0.1,0.01	10,0.01	0.01,0.01	0.5,0.01
TC (%)	[49.74, 71.93]	[49.74, 64.28]	[49.74, 61.73]	[34.18, 50.25]	[33.36, 51.25]	[51.25, 71.93]

 $Table: \ R\'esultats \ obtenus \ avec \ la \ m\'ethode \ SVM \ en \ utilisant \ 2-fold([1-fold,2-fold])$

Méthodes SVM et KNN appliqués sur la première base

	INJ	NINJ
1-fold (minutes)	1.2	0.909
2-fold (minutes)	1.3215	3.463

Table: La durée en minute des audio dans chaque fold

	Méthod	de KNN	Méthode SVM				
Configs	groupe1	goupe2	groupe1	goupe2			
$E, E_{DA}, \mathit{PI}, \mathit{PI}_{DA}$	$\begin{pmatrix} 0 & 100 \\ 1 & 98 \end{pmatrix}$	44 53 14 85	$\begin{pmatrix} 1 & 99 \\ 0 & 99 \end{pmatrix}$	(54 43) 11 88)			
E	$\begin{pmatrix} 2 & 98 \\ 0 & 99 \end{pmatrix}$	$ \begin{pmatrix} 31 & 66 \\ 7 & 92 \end{pmatrix} $	$\begin{pmatrix} 1 & 99 \\ 0 & 99 \end{pmatrix}$	$ \begin{pmatrix} 25 & 72 \\ 1 & 98 \end{pmatrix} $			
PI	$\begin{pmatrix} 0 & 100 \\ 0 & 99 \end{pmatrix}$	(43 54 13 86)	(13 87) 15 84)	(26 71 15 84)			
PI,E_D,PI_D	$\begin{pmatrix} 0 & 100 \\ 1 & 98 \end{pmatrix}$	$ \begin{pmatrix} 39 & 58 \\ 4 & 95 \end{pmatrix} $	(4 96) 1 98)	(13 84) 46 53)			

Table: Les matrices de confusion obtenues par les méthodes KNN et SVM dans le cas de 2-folds appliquées sur la première base

Méthode KNN appliqué sur la deuxième base

		2-folds			5-folds	
Configs	N	TC(%)	moyen TC(%)	N	TC(%)	moyen TC(%)
E,PI,E _{DA} , PI _{DA}	21	[65.82, 61.20]	63.51	7	[63, 64, 65.50, 62, 64]	64.17
E	95	[55.81, 56.48]	56.15	21	[51.37, 56.04, 55.21, 59.34, 58.79]	56.15
E, E _D	49	[58.79, 60.43]	59.61	77	[55.76, 59.89, 59.06, 56.31, 65.93]	59.39
E, E _A	45	[58.79, 62.96]	60.87	91	[58.51, 62.08, 58.79, 62.08, 63.73]	61.04
E,E _{DA}	69	[53.07, 55.93]	54.50	77	[59.06, 63.73, 59.89, 59.89, 64.83]	61.48
PI	9	[60.95, 55.71]	58.35	9	[56.59, 60.98, 56.86, 56.04, 56.59]	57.41
PI, PI _D	33	[61.64, 56.70]	59.175	43	[54.67, 62.36, 57.96, 57.14, 59.89]	58.40
PI, PI _A	55	[60.54, 56.48]	59.17	25	[54.94, 62.08, 61.81, 57.41, 53.84]	58.02
PI, E	63	[54.84, 54.84]	54.84	13	[56.31, 62.91, 60.71, 58.24, 54.12]	58.46
PI, PI _D , E _D	85	[62.19, 58.13]	60.16	9	[56.86, 59.89, 57.69, 58.24, 59.34]	58.40

Table: Résultats obtenus avec la méthode KNN en utilisant 2-folds et 5-folds ([1fold,...,5fold]) appliqués sur la base complète

Methode SVM appliquée sur la dexième base

			2-folds		5-folds					
Configs	С	γ	TC	moyen TC	С	γ	TC	moyen T		
E,PI,E _{DA} , PI _{DA}	1	1	[58.58, 63.49]	61.04	0.1	10	[62, 63.5 64.5, 63, 51]	63		
E	1	1	[56.15, 56.59]	56.37	10	10	[51.64, 58.79, 54.67, 57.69, 60.71]	56.70		
E, E _D	10	10	[55.91, 59.34]	58.62	10	10	[53.57, 59.06, 56.31, 60.71, 62.91]	58.51		
E, E _A	10	10	[56.92, 58.35]	57.63	10	10	[53.29, 58.24, 56.04, 57.41, 61.81]	57.36		
E,E _{DA}	1	10	[57.25, 59.23]	58.24	1	10	[55.49, 59.34, 57.40, 58.24, 61.53]	58.40		
PI	10	10	[57.58, 52.74]	55.16	0.1	10	[52.47, 57.69, 56.31, 53.29, 54.67]	54.89		
PI, PI _D	10	1	[59.67, 55.93]	57.80	1	1	[56.04, 60.71, 59.06, 56.86, 58.24]	58.18		
PI, PI _A	10	1	[60.30, 58.02]	59.17	1	10	[55.49, 59.89, 59.34, 56.31, 54.94]	57.19		
PI, E	1	10	[60, 57.80]	58.90	1	1	[53.02, 59.34, 55.49, 55.76, 53.57]	55.43		
E, PI _D , E _D	0.1	10	[60, 57.80]	58.90	1	1	[58.79, 59.89, 58.51, 59.06, 60.16]	59.28		
,							•			

Table: Résultats obtenus avec la méthode SVM en utilisant 2-folds et 5-folds ([1fold,...,5fold]) appliqués sur la base complète

Méthodes KNN et SVM appliquées sur la base école

		Méthode KN	N	Méthode SVM			
Configs	N	TC	Moyen TC	С	γ	TC	MoyenTC
E,PI,E _{DA} , PI _{DA}	35	[61.35, 63.07]	62.21	10	0.01	[61.60, 62]	61.80
E	43	[56.60, 55.19]	55.90	0.1	1	[55.89,v57.88]	56.88
E,E _D	29	[57.67, 62]	59.84	1	10	[57.14, 59.49]	58.32
$E,E_{\mathcal{A}}$	45	[58.92,56.98]	57.95	10	10	[56.25, 58.42]	57.33
E,E _{DA}	151	[58.75, 63.62]	61.18	10	10	[57.14, 59.85]	58.49
PI	3	[55.71, 60.03]	57.87	0.1	0.1	[56.07, 57.52]	56.79
PI, PI _A	31	[56.78, 61.64]	59.21	10	0.1	[55.89, 60.57]	58.23
PI, PI _D	29	[57.85, 60.21]	59.03	1	0.1	[55.71, 58.06]	57.51
PI, PI _{DA}	49	[56.60, 61.11]	58.85	1	0.1	[55.89, 60.75]	58.32
PI, E	15	[56.96, 60.93]	58.94	1	0.1	[56.07, 56.80]	56.44
E, E_{D}, PI_{D}	201	[56.96, 62.36]	59.66	0.1	10	[59.99, 57.80]	58.90
E, E_D, PI_{DA}	201	[57.32, 64.33]	60.82	1	10	[56.42, 58.24]	57.33
E, E_{DA}, PI_{DA}	21	[60.71, 62.90]	61.80	1	10	[56.60, 57.88]	57.24

Table: Résultats obtenus avec la base **école** par les méthodes KNN et SVM en utilisant 2-fold

Méthodes KNN et SVM appliquées sur la base repas

		Méthode KNI	N			Méthode SVM	
Configs	N	TC	moyen TC	С	γ	TC	TCmoyen
E,PI,E _{DA} , PI _{DA}	15	[61.65, 64.41]	63.03	0.1	0.1	[60.20, 64.88]	62.54
E	201	[50, 53.37]	51.68	0.1	0.1	[51, 52]	51.50
E,E _D	23	[55.21, 53.37]	54.29	1	10	[50.92, 54.60]	52.76
$E,E_{\mathcal{A}}$	91	[52.14, 54.90]	53.52	1	0.1	[50.50, 51.50]	51
E,E _{DA}	251	[57.05, 57.97]	57.51	1	10	[50.92, 54.60]	52.76
PI	7	[57.97, 65.44]	57.20	0.1	0.01	[59.5, 60.12]	59.81
PI, PI _A	47	[58.89, 60.73]	59.81	10	1	[58.58, 63.49]	61.04
PI, PI _D	79	[58.58, 61.04]	59.81	0.1	0.01	[59.81, 62.57]	61.19
PI, PI _{DA}	29	[60.42, 63.49]	61.96	0.1	0.01	[59.81, 64.11]	61.96
PI, E	5	[58.89 , 57.36]	58.12	0.1	0.01	[59.50, 60.12]	59.81
E, E_{D}, PI_{D}	25	[57.05, 57.97]	57.51	1	1	[56.74, 57.36]	57.05
E, E _D , PI _{DA}	51	[56.74, 61.34]	59.04	0.1	1	[56.74,62.26]	59.50
E, E _{DA} , PI _{DA}	11	[58.89, 61.96]	62.07	0.1	1	[56.75,62.28]	59.51

Table: Résultats obtenus avec la base **repas** par les méthodes KNN et SVM en utilisant 2-fold

k-means

Méthode K-means

- Méthode d'apprentissage non supervisé
- Devise les données en k clusters cohérents

Figure: Principe de la méthode K-means [7]

Méthode k-means appliquée sur la deuxième base

Figure: Répartition des valeurs injonctives (à gauche) et non injonctives (à droite) de *E* et *PI* avec 2-means

Méthode k-means appliquée sur la deuxième base

	Méthode KNN			Méthode SVM			
Configs	N	TC	moyen TC	С	γ	TC	TCmoyen
E,PI,E _{DA} , PI _{DA}	13	[67.10, 71]	69.05	10	10	[67.57, 71.07]	68.03
E	17	[74, 74.50]	74.25	0.1	10	[71.25, 70.07]	70.66
E,E _D	15	[73.62, 70.86]	72.24	0.1	10	[70.86, 70.07]	70.47
$E,E_{\mathcal{A}}$	7	[75.39, 71.85]	73.62	0.1	0.1	[71.45, 68.89]	70.17
E,E _{DA}	11	[74, 71]	72.50	0.1	10	[65, 71.07]	68.03
PI	3	[57, 55]	56	10	10	[65.21, 63.81]	67.75
PI, PI _A	21	[65.57, 66.66]	66.12	10	1	[64.49, 66.12]	65.30
PI, PI _D	93	[67.02, 65.45]	66.24	1	10	[64.49, 65.21]	64.85
PI, PI _{DA}	31	[66, 67]	66.50	10	1	[64.67, 66.30]	65.48
PI, E	23	[65, 67]	65.50	0.1	1	[64.67, 64.67]	64.67
E, E_{D}, PI_{D}	59	[61.89, 60.87]	61.38	1	1	[56.74, 57.36]	57.05
E, E_{D}, PI_{DA}	87	[62.83, 60.95]	61.89	0.1	1	[56.74,62.26]	59.50
E, E _{DA} , PI _{DA}	77	[63.93, 64.49]	64.21	0.1	1	[56.74,62.26]	59.50

Table: Résultats obtenus avec les méthodes SVM et KNN testées sur les données obtenues par 2-means

Réseaux de neurones récurrents (RNN)

Figure: Réseau de neurones récurrent [8]

Réseau longue mémoire à court terme (LSTM)

Figure: Cellule LSTM [9]

LSTM

- Méthodes de Deep Learning
- La solution à la mémoire à court terme
- Possède des portes qui régularisent le flux d'information

Méthode LSTM appliquée sur la première base

Les paramètres utilisés sont :

- un modèle séquentiel avec une couche LSTM en entrée contenant 62 neuronnes et 2 neuronne en sortie
- fonction d'activation : softmax
- dropout = 0.5
- batch-size = 10
- nombre d'épochs = 50
- optimiseur : Adam avec lr=0.01
- fonction de perte : la précision

Méthode LSTM appliquée sur la première base

Figure: Représentation de la fonction de perte et de la précision des ensembles de validation et de test de la première base

Méthode LSTM appliquée sur la deuxième base

Les paramètres utilisés sont :

- un modèle séquentiel avec une couche LSTM en entrée contenant 62 neuronnes et 2 neuronne en sortie
- fonction d'activation : softmax
- dropout = 0.2
- batch-size = 80
- nombre d'épochs = 100
- optimiseur : Adam avec lr=0.001
- fonction de perte : la précision

Méthode LSTM appliquée sur la deuxième base

Figure: Représentation de la fonction de perte et de la précision des ensembles de validation et de test de la deuxième base

Réseaux neuronaux convolutifs (CNN)

Figure: Exemple d'un réseau neuronaux convolutif

Méthode CNN appliquée sur la deuxième base

Figure: Architecture du CNN proposée

Méthode CNN appliquée sur la deuxième base

Figure: Représentation de la fonction de perte et de la précision des ensembles de validation et de test de la deuxième base

Conclusion

Conclusion

- Confirmation des résultats obtenus avec Hocine-Gharbi et al sur la première base
- La deuxième base contient toujours des audio non exploitables
- La deuxième base donne des meilleurs taux de classification en utilisant tous les caractéristiques des audio
- La méthode LSTM a amélioré les TC obtenus par les méthodes SVM et KNN avec la première base
- La méthode CNN améliore les TC de classification de la deuxième base

Perspectives

- Proposer d'autres architectures pour le CNN
- Tester sur une nouvelle base mieux structurée
- Utiliser hybridation CNN+LSTM
- Extraire d'autres caractéristique : MECC

Bibliographie

A Hacine-Gharbi et Ravier P. "Automatic Classification of French Spontaneous Oral Speech into Injunction and No-Injunction Classes", 2020

Comprendre le spectrogramme Mel https://ichi.pro/fr/comprendre-le-spectrogramme-mel-277775661583955

SVMhttps://dataanalyticspost.com/Lexique/svm/

c.faury. Les K plus proches voisins. https://htk.eng.cam.ac.uk/

Validation croisée K-Fold pour le Deep Learning à l'aide de Keras. https:

//ichi.pro/fr/validation-croisee-k-fold-pour-le-deep-learning-a-l-aide-de-keras-69014279685432.

Wannous, H. Multi view classification of color regions application of the 3D assessment of chronic wounds, 2008

Marie-Jeanne Vieille, V. k-means, comment ca marche?, 2017

Afshine A et Shervine A. Pense-bête de réseaux de neurones récurrents

Comment le LSTM améliore le RNNhttps://ichi.pro/fr/comment-le-lstm-ameliore-le-rnn-34021890806049

dshahid380.Convolutional

NeuralNetwork, https://towardsdatascience.com/covolutional-neural-network-cb0883dd6529,2019

Merci pour votre attention

