CHAPTER FOUR

Bipolar Digital Circuits

Digital flectronics.

Introduction

- This chapter describes:
 - Basic types of logic circuits:
 - 1. D-R-L
 - 2. BJT inverter
 - 3. T-T-L

Terminal Currents and Voltages

Cut-off Mode

Saturation Mode

Forward-Active Mode

$$I_{B} > 0$$

$$\downarrow -I_{E} = \beta_{R}I_{B}$$

$$V_{BC}(RA)$$

$$= 0.7V$$

$$E$$

Inverse-Active Mode

3

Terminal Currents and Voltages

ASSES PORTO

Example

Determine I_{C} , I_{B} , and σ for the BJT shown in the following circuit, assuming $\beta{=}65$

Solution

Assume FA, V_{BE} =0.7V and then calculate V_{CE} . If V_{CE} <=0.2 then the BJT operates in saturation mode

$$V_{CE} << 0.2$$

The BJT operates in saturation mode i.e.

$$V_{CE}(sat) = 0.2V V_{BE}(sat) = 0.8V$$

$$I_{B} = \frac{V_{CC} - V_{BE}(sat)}{R_{B}} = 0.84mA$$

$$I_{C} = \frac{V_{CC} - V_{CE}(sat)}{R_{C}} = 7.5mA$$

$$\sigma = \frac{I_{C}}{\beta_{E}I_{B}} = 0.137$$

THE SECTION OF THE PERSON OF T

Example

Determine the terminal voltages of the transistors shown in the following circuit, assuming Q_1 operates in saturation mode while Q_2 and Q_3 operate in forward-active mode

$$V_{E3} = 0.0V$$

$$V_{B3} = 0.7V$$

$$V_{B2} = 0.7 + 0.7 = 1.4V$$

$$V_{B1} = 0.6 + 1.4 = 2V$$

$$V_{E1} = -0.2 + 1.4 = 1.2V$$

Example
Determine the dissipated power P_{CC} in the following circuit, given that the BJT operates in saturation mode

Solution

$$P_{CC} = V_{CC} \times \left(\frac{V_{CC} - V_{CE}(sat) - V_D(ON)}{R_C} + \frac{V_{CC} - V_{BE}(sat) - 2V_D(ON)}{R_B} \right)$$

 $P_{CC} = 5 \times (0.82 + 0.08) = 4.5 mW$

$$I_{CC}$$
 (OL)

• Example
Determine the current I_c in the following circuit.

$$I_C = \frac{V_{CC} - 2V_{CE}(sat)}{R_C} = 0.1 mA$$

ages eggs

Example

Determine the current I in the following circuit neglecting the base currents.

$$I_{C2} = I_{E2}$$
 Since $\beta_F >> 1$
 $I_{C2} = I$ Since $I_{B2} <<$
i.e $I_{E1} <<$
& $I_{C1} <<$

$$I = \frac{V_{CC} - V_{CE1}(sat) - V_{BE1}(FA)}{R_C + R_E}$$

$$I = 1.367 mA$$

Jana Jana

Example

Determine the voltage $V_{\rm B}$ and the current I indicated the circuit shown below assuming the base current of ${\rm Q_1}$ is negligible.

$$I = \frac{0 - V_{EE} - 2V_D(ON)}{R_1 + R_2 + R_3}$$
$$= \frac{5.2 - 1.4}{0.2 + 0.75 + 0.3} = 3.04 \text{mA}$$

$$V_B = 0 - IR_1 = -3.04 \times 0.2 = -0.608V$$

10

BJT Inverter (Basic RTL Inverter)

Voltage-Transfer Characteristics

For
$$V_I - GND < V_{BE}(FA)$$
 $I_R = 0, I_C = 0, V_O = V_{CC} = V_{OH}$

$$I_{B} = 0, I_{C} = 0, V_{O} = V_{CC} = V_{OH}$$

For $V_I - GND \ge V_{BE}(FA)$ $I_B = (V_I - V_{BE}(FA))/R_{BI}I_C = \beta_E I_{BI}V_O = V_{CC} - I_C R_C$

Edge of

Edge of

saturation

_conduction

For
$$V_I - GND \ge V_{IH}$$

$$V_{IH} = I_B(sat)R_B + V_{BE}(sat)$$

$$= I_B(EOS)R_B + V_{BE}(sat)$$

$$= \frac{I_C(EOS)}{\beta_F}R_B + V_{BE}(sat)$$

$$I_C = (V_C - V_{CE}(sat))/R_C$$

$$V_O = V_{CF}(sat) = V_{OI}$$

$$V_O = V_{CF}(sat) = V_{OI}$$

$$V_O = V_{CF}(sat)$$

$$V_O = V_O = V_{CF}(sat)$$

$$V_O = V_O = V_O$$

$$V_{OL} = V_{CE}(sat)$$

$$V_{IH} = \frac{V_{CC} - V_{CE}(sat)}{\beta_F R_C} R_B + V_{BE}(sat)$$

$$V_{IL} = V_{BE}(FA)$$

3

BJT Inverter (Basic RTL Inverter)

Example

Assume $V_{\rm CC}$ = 5 V, $R_{\rm C}$ = 1k Ω , $R_{\rm B}$ = 10 k Ω , $\beta_{\rm F}$ =60;

Determine the <u>VTC</u> parameters and the low and high noise margins

Solution

$$V_{\rm IL} = 0.7 \text{ V},$$
 $V_{\rm IH} = 1.6 \text{ V},$ $V_{\rm OL} = 0.2 \text{ V},$ $V_{\rm OH} = 5 \text{ V},$ $N_{ML} = V_{IL} - V_{OL} = 0.5V$ $\sim 0.5V$ $\sim 0.5V$ $\sim 0.5V$

Small value

HW #4:Solve Problems: 4.1 (a)&(d), 4.3, 4.11, 4.12, 4.13, 4.21

Skip sections 4.3-4.6