Unit 2 Analysis of Algorithms + Divide-and-Conquer

T.H. Cormen et al., "Introduction to Algorithms", 3rd ed., Chapters 3-4.

中大資工 何錦文

Algorithms-Analysis+D&C

Analysis of Algorithms

- **►** Issues:
 - Correctness
 - *Time efficiency* (discussed in this unit)
 - Space (or other resources) efficiency
 - Optimality

只討論時間分析,並非其他資源不重要而是....

中大資工 何錦文

Algorithms-Analysis+D&C

Theoretical Analysis of Time Efficiency

- ightharpoonup Decide on parameter n indicating *input size*.
- ► Identify algorithm's <u>basic operation</u> (the operation that contributes most towards the running time).
- Let T(n) = # basic operations. Then, running time $\approx cT(n)$.
- In the following, T(n) may denote # basic operations or running time of the algorithm.

中大資工 何錦文

Algorithms-Analysis+D&C

3

Cases of Analysis

- ► Let **I** be the set of all inputs.
- Let function $t_A(i): \mathcal{I} \to \mathbb{R}^*$ be the running time of algorithm A with input i.
- Worst case analysis: $T(n) = \max\{ t_A(i) : i \in I, |i| = n \}$

Some statistical distribution of inputs must be assumed.

中大沓丁 何錦立

Algorithms-Analysis+D&C

Analysis of Insertion Sort (複習)

$$T(n) = T(n-1) + f(n)$$
$$T(1) = 0$$

For each case:

Best case: $f(n) = 1 \implies T(n) = n - 1$

Worst case: $f(n) = n \implies T(n) = n(n+1)/2$

Average case: f(n) = (n+1)/2(uniform distribution) = (1+2+3+...+n)/n $\Rightarrow T(n) \approx$ ____.

中大資工 何錦文

Algorithms-Analysis+D&C

4

複雜度表示法的簡化

► 例: Selection Sort $T(n) = n^2/2 - n/2$

可寫成 $T(n) \approx n^2/2$ (Drop low order terms)

或 $T(n) = O(n^2)$ (Ignore the leading constant)

- ➡ 好處:f 些書寫成: $T(n) \in O(n^2)$
 - ▶ 簡化時間複雜度表示法 (就算時間複雜度的單位是基本運算量,仍可能相當複雜).
 - ▶時間複雜度的單位為何變不重要.
 - ▶較容易計算,若不需精準表示演算法的計算量.

中大資工 何錦文

Algorithms-Analysis+D&C

Asymptotic Notation: Big-O

Let $f, g, T, : \mathbb{N} \to \mathbb{R}^*$. O(g(n)) denotes the set

$$\{f(n): \exists \ c \in \mathbb{R}^+, \ \exists \ n_o \in \mathbb{N} \ni \forall n \geq n_o, \ f(n) \leq c \cdot g(n)\}$$

$$T(n) = O(g(n)) \cong T(n) \in O(g(n))$$

中大資工 何錦文

Algorithms-Analysis+D&C

Notes on Big-O Notation

- If T(n) = O(g(n)), then we say that g(n) is an asymptotically upper bound for T(n).
- In general, T(n) is positive (and complicated) and g(n) is asymptotically positive (and simple).
- Fig. If $T(n) = n^2/2 n/2$, then we can write:

$$T(n) = O(n^2)$$
, or $T(n) = O(n^3)$, ..., $T(n) =$

$$O(n^{100}), \ldots, T(n) = O(n^{10000}), \ldots$$

but $T(n) \neq O(n^{1.99})$, and $O(n^2) \neq O(n^3)$.

中大資工 何錦文

Algorithms-Analysis+D&C

Asymptotic Notation : Θ Let $f,g: \mathbb{N} \to \mathbb{R}^*$. $\Theta(g(n))$ denotes the set of functions $\{f(n): \exists c_1, c_2 \in \mathbb{R}^+, \exists n_0 \in \mathbb{N} \ni \forall n \geq n_0, c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n)\}$ $c_1 \cdot g(n) \leq f(n) \leq c_2 \cdot g(n)\}$ $c_1 \cdot g(n)$ $c_1 \cdot g(n)$ $c_1 \cdot g(n)$ $c_1 \cdot g(n)$

Notes on Big-O, Θ , and Ω

- If $T(n) = n^2/2 n/2$, then we can write: $T(n) = O(n^2), \text{ or } T(n) = \Theta(n^2), \text{ or } T(n) = \Omega(n^2).$
- $ightharpoonup f(n) = \Theta(g(n)) \Leftrightarrow f(n) = O(g(n)) \text{ and } f(n) = \Omega(g(n)).$

$$f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n)).$$

$$f(n) = \Theta(g(n)) \Leftrightarrow g(n) = \Theta(f(n)).$$

中大資工何錦衣

Algorithms-Analysis+D&C

1

例: Merge Sort

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + n - 1, \ T(1) = 0$$

假設
$$n = 2^k$$
, 可得: $T(n) = n \lg n - n + 1$

對一般 n 可證得:

$$\lg n = \log_2 n$$

$$T(n) = O(n \lg n) \ \ \ \ \ \ \ T(n) = \Theta(n \lg n)$$

也可以更精確的表示為:

Asymptotic Notation in Descriptions

- The running time of insertion sort is (in) $O(n^2)$.
- \cong The worst-case running time (which is a function of n) of insertion sort is $O(n^2)$.
- \cong No matter what particular input of size n is chosen for each value of n, the running time on that set of inputs is $O(n^2)$.
- **►** The (best-case) running time of insertion sort is $\Omega(n)$.
- The worst-case running time of insertion sort is $\Theta(n^2)$.

中大資工 何錦文

Algorithms-Analysis+D&C

Little-oh and Little-omega

r e.g.
$$2n = o(n^2)$$
, but $2n \neq o(n)$.

$$f(n) = \omega(g(n)) \Leftrightarrow g(n) = o(f(n))$$
 (a simpler definition)

$$ightharpoonup$$
 e.g. $2n = \omega(\log^k n)$, for $k > 0$.

中大資工 何錦文

Algorithms-Analysis+D&C

14

An Analogy

 \blacktriangleright Let a and b be two real numbers:

$$f(n) = O(g(n)) \approx a \leq b$$

$$f(n) = \Omega(g(n)) \approx a \geq b$$

$$f(n) = \Theta(g(n)) \approx a = b$$

$$f(n) = o(g(n)) \approx a < b$$

$$f(n) = \omega(g(n)) \approx a > b$$

➡但三一律不成立,不是任意兩函數 f,g 都滿足

$$f(n) = O(g(n)), f(n) = \Omega(g(n)), \text{ or } f(n) = \Theta(g(n))$$

中大資工 何錦衣

Algorithms-Analysis+D&C

f(n) corresponds to a

g(n) corresponds to b

Properties of Asymptotic Notations

- ightharpoonup Transitivity: For $X = O, \Theta, \Omega, o, \omega$ $f(n) = X(g(n)) \land g(n) = X(h(n)) \Longrightarrow f(n) = X(h(n))$
- **Reflexivity**: $f(n) = O(f(n)), f(n) = \Theta(f(n)), f(n) = \Omega(f(n))$
- **Symmetry**: $f(n) = \Theta(g(n)) \iff g(n) = \Theta(f(n))$
- **Transpose symmetry:** $f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n))$ $f(n) = o(g(n)) \Leftrightarrow g(n) = \omega(f(n))$

中大資工 何錦文

Algorithms-Analysis+D&C

Asymptotic Notation & Limits

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = c \neq 0 \implies f(n) = \Theta(g(n))$$
The reverse is not necessarily correct.

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0 \Leftrightarrow f(n)=o(g(n))\Rightarrow f(n)=O(g(n))$$

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty \iff f(n)=\omega(g(n))\Rightarrow f(n)=\Omega(g(n))$$

Algorithms-Analysis+D&C

Some Additional Properties

P1:
$$T(n) = O(T(n))$$

P2: If
$$c \ge 0$$
, $d > 0$, $g(n) = O(f(n))$ and $h(n) = \Theta(f(n))$

then,
$$c g(n) + d h(n) = \Theta(f(n))$$

$$[\mathfrak{H}]: 5n + 3\lg n + 10n\lg n + n^2 = \Theta(n^2)$$

P3: If
$$a > 1$$
, $b > 1$, then $\log_a n = \Theta(\log_b n) = \Theta(\lg n)$

P4: For any
$$\varepsilon > 0$$
, $k > 1$, $\lg^k n = o(n^{\varepsilon})$.

P5: For any
$$k > 1$$
, $c > 1$, $n^k = o(c^n)$.

P6: For any
$$c > 1$$
, $c^n = o(n!)$.

中大資工何錦女

Algorithms-Analysis+D&C

10

A Simple Test

(i):
$$n^2 = O(n^3)$$

(ii):
$$n^3 = O(n^2)$$

(iii):
$$2^{n+1} = \Theta(2^n)$$

(iv):
$$(n+1)! = \Theta(n!)$$

(v):
$$f(n) = O(n) \rightarrow f(n) \times f(n) = O(n^2)$$

(vi):
$$f(n) = O(n) \rightarrow 2^{f(n)} = O(2^n)$$

(vii):
$$\lg^{100000} n = o(n^{0.000001})$$
.

(viii):
$$n^{1.01} = O(n \lg n)$$

中大資工 何錦文

Algorithms-Analysis+D&C

Big-Oh form	Name
<i>O</i> (1)	Constant
$O(\lg n)$	Logarithmic
O(n)	Linear
$O(n \lg n)$	$n \log n$
$O(n^2)$	Quadratic, Squar
$O(n^3)$	Cubic
$O(n^m), m \geq 1$	Polynomial
$O(c^n), c \geq 1$	Exponential

Problem size $n =$	2	16	64
$\log n$	1	4	6
n	2	16	64
$n \log n$	2	64	384
n^2	4	256	Exponenti explosion
2^n	4	6.5×10 ⁴	1.84×10 ¹⁹
n!	2	2.1×10 ¹³	> 1089

Basic Analysis Methods

- For algorithms <u>suitable for recursive implementation</u>, set up a <u>recurrence relation</u> and initial condition(s) for T(n) and then solve the recurrence to obtain a closed form or estimate the order of magnitude of the solution.
- For algorithms <u>not</u> suitable for <u>recursive</u> (e.g. DP) <u>implementation</u>, set up summation for T(n) reflecting algorithm's loop structure and then simplify summation using standard formulas (see Appendix A).

中大資工 何錦文

Algorithms-Analysis+D&C

23

Recurrences

- A <u>recurrence</u> is an equation or inequality that describes a function in terms of its value on small inputs, e.g. T(n) = T(n-1) + n, T(1) = 0.
- ► Methods for solving recurrences:
 - The recursion-tree method
 - Changing variables
 - The substitution method
 - The master method
 - •Other methods discussed in discrete math.

Technicalities

If we only want to find an asymptotical bound for T(n), sometimes we can neglect certain technical details such as integer argument assumption, boundary condition, floors, ceilings,... etc., for example:

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + \Theta(n), \text{ for } n > 1$$

$$T(1) = \Theta(1)$$

$$T(n) = 2T(n/2) + n$$

We forge ahead without these details and later determine whether or not they matter.

中大資工 何錦文

Algorithms-Analysis+D&C

The substitution method

- The method entails two steps:
 - 1. Guess the form of solution.
 - 2. Use mathematical induction to show it works.
- ► It is the most rigorous among these methods.
- An example: T(n) = T(n/3) + T(2n/3) + O(n)A guess: $T(n) \le d n \lg n$, where d is a suitable positive constant (i.e. we need to show that d exists.)

The substitution method 例

$$T(n) \le T(n/3) + T(2n/3) + cn$$

$$\leq d(n/3)\lg(n/3) + d(2n/3)\lg(2n/3) + cn$$

$$\leq d(n/3)\lg(n/3) + d(2n/3)\lg(2n/3) + cn$$

$$= (d(n/3)\lg n - d(n/3)\lg 3) + (d(2n/3)\lg n - d(2n/3)\lg(3/2)) + cn$$

$$= dn \lg n - d((n/3) \lg 3 + (2n/3) \lg (3/2)) + cn$$

$$= dn \lg n - d((n/3) \lg 3 + (2n/3) \lg 3 - (2n/3) \lg 2 + cn$$

$$= dn \lg n - dn (\lg 3 - 2/3) + cn$$

$$\leq dn \lg n$$
, Goal

As long as $d \ge c/(\lg 3 - (2/3))$.

$$T(n) = O(n \lg n).$$

Algorithms-Analysis+D&C

Avoiding pitfalls

- Solve $T(n) = 2T(\lfloor n/2 \rfloor) + n$
- ightharpoons Assume $T(n) \leq O(n)$
- ► We want to prove: $\exists c \forall n \ T(n) \leq cn$
- **►**By induction:

$$T(n) \le 2c \lfloor n/2 \rfloor + n \le cn + n = O(n)$$

(since c is a constant.)

►(*WRONG!*) You cannot find such a *c*.

Stirling's Formula (or Approximation)

$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right)$$

$$c^n = o(n!), c > 1; n! = o(n^n),$$

$$\log (n!) = \Theta(n \log n)$$

 $rac{1}{2}m$ th Catalan number = $C(2n, n)/(n + 1) = \Omega(4^n/n^{3/2})$

中大資工 何錦文

Algorithms-Analysis+D&C

31

Approximation by Integrals (p.1155)

If f(n) is a monotonically increasing function, then

$$\int_{a-1}^{n} f(x) dx \le \sum_{k=a}^{n} f(k) \le \int_{a}^{n+1} f(x) dx$$

If f(n) is a monotonically decreasing function, then

$$\int_{a}^{n+1} f(x) dx \le \sum_{k=a}^{n} f(k) \le \int_{a-1}^{n} f(x) dx$$

ightharpoonup e.g. $\log(n!) = \Theta(n \log n)$

何錦文

Algorithms-Analysis+D&C

The Master Theorem (p. 94)

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined by the recurrence :

$$T(n) = aT(n/b) + f(n),$$

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$.

Then T(n) can be bounded asymptotically as follows.

1.
$$f(n) = O(n^{\log_b a - \varepsilon}), \ \varepsilon > 0 \Rightarrow T(n) = \Theta(n^{\log_b a})$$

$$2. f(n) = \Theta(n^{\log_b a}) \Rightarrow T(n) = \Theta(n^{\log_b a} \log n)$$

3.
$$f(n) = \Omega(n^{\log_b a + \varepsilon})$$
, $\varepsilon > 0$, and $af(n/b) < cf(n)$ for

$$c > 1$$
 and all sufficiently large $n \Rightarrow T(n) = \Theta(f(n))$

中大資工 何錦文

Algorithms-Analysis+D&C

-3/

A simple version of the master theorem

Let T(n) be defined by the recurrence :

$$T(n) = aT(n/b) + \Theta(n^k), \text{ for } n > n_0$$

$$T(n) = O(1)$$
for $n \le n_0$

$$k \ge 0$$

Then T(n) can be bounded asymptotically as follows.

1.
$$T(n) = \Theta(n^{\log_b a})$$
 if $k < \log_b a$,

2.
$$T(n) = \Theta(n^k \lg n)$$
 if $k = \log_b a$,

3.
$$T(n) = \Theta(n^k)$$
 if $k > \log_b a$,

中大資工 何錦文

Algorithms-Analysis+D&C

34

A Recurrence Equation for D&C

$$T(n) = aT(n/b) + cn^k$$
, for $n > n_0$
 $T(n) \le d$ for $n \le n_0$

- ►代表將問題分解(假設等分的話)成 a 塊每塊大 小為 n/b (取上或下高斯符號). 例:
 - \Rightarrow Binary search (a = 1, b = 2, k = 0)
 - * Merge sort (a = 2, b = 2, k = 1)
 - ※ Quicksort (不合等分假設)
 - * Tree traversals (不等分, 但 k = 0)

中大資工何錦莎

Algorithms-Analysis+D&C

矩陣相乘

- ➡ 給兩個 $n \times n$ 矩陣 A, B要計算它們的乘積: C = AB
- ■傳統做法需 (P) 的計算時間。
- ► 想法:每個矩陣各分成四個 n/2×n/2 矩陣.

$$C = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

$$T(n) = 8T(n/2) + \Theta(\underline{}) \qquad a = 8, b = 2, \\ \log_b a = 3 \qquad T(n) = \Theta(\underline{})$$

中大資工 何錦文 Algorithms-Analysis+D&C

37

矩陣相乘(續1)

➡ 想辦法降低遞迴 公式中的8

$$T(n) = 8T(n/2) + \Theta(n^2)$$

► Strassen's method:

$$M_1 = (A_{11} + A_{22})(B_{11} + B_{22}), \quad M_2 = (A_{21} + A_{22}) B_{11}$$
 $M_3 = A_{11}(B_{12} - B_{22}), \quad M_4 = A_{22}(B_{21} - B_{11})$
 $M_5 = (A_{11} + A_{12}) B_{22}, \quad M_6 = (A_{21} - A_{11})(B_{11} + B_{12})$
 $M_7 = (A_{12} - A_{22})(B_{21} + B_{22})$

$$C = \begin{bmatrix} M_1 + M_4 - M_5 + M_7 & M_3 + M_5 \\ M_2 + M_4 & M_1 + M_3 - M_2 + M_6 \end{bmatrix}$$

Algorithms-Analysis+D&C

$$T(n) = 7T(n/2) + \Theta(n^2) \xrightarrow{a = 7, b = 2, \\ \log_b a = \lg 7} T(n) = \Theta(\underline{})$$

$$= O(\underline{})$$

- ➡可進一步改進 (再細分; Ex.4.2-4,5 p.82)
- ►世界記錄: $O(n^{2.376})$
- ➡以下幾個問題也可在同一時間複雜度內解決
 - * Given A, b find x s.t. Ax = b (that is why the title of Strassen's paper is "Gaussian elimination is not optimal"
 - * Given A find A^{-1} , det(A).

中大資工 何錦文

Algorithms-Analysis+D&C

長整數相乘

- ► 給兩個 n 位數整數要計算它們的乘積.
- ► 傳統做法需 ^②(____) 的計算時間.
- ► 想法:每個整數各分成兩個 n/2 位數的整數.

$$uv = (w d^{n/2} + x)(y d^{n/2} + z) = wy d^n + (wz + xy) d^{n/2} + xz$$

$$T(n) = 4T(n/2) + \Theta(\underline{}) \qquad a = 4, b = 2, \\ \log_b a = 2 \qquad T(n) = \Theta(\underline{})$$

中大資工 何錦文

 $Algorithms\hbox{-} Analysis\hbox{+} D\&C$

4

長整數相乘(續)

■想辦法降低遞迴
公式中的4

$$T(n) = 4T(n/2) + \Theta(n)$$

►做法:

$$uv = wy d^n + (wz + xy) d^{n/2} + xz$$

- 1. Compute r = (w + x)(y + z) = wy + (wz + xy) + xz
- 2. Compute (wz + xy) = r wy xz

$$T(n) = T(n/2) + \Theta(n)$$

$$a = 3, b = 2,$$

$$\log_b a = \lg 3$$

$$= O($$

- ►除法同級;可進一步改進(再細分)
- ➡ 世界記錄: $\Theta(n \log n \log \log n)$

中大資工 何錦文

Algorithms-Analysis+D&C

A Stock Buying Problem (p.68)

- You have the prices that a stock traded at over a period of *n* consecutive days.
- When should you have bought and sold the stock such that you could get the maximal profit.

A Formal Description of the Problem

Given an array of numbers p[0..n], compute $\max_{i < j} (p[j] - p[i])$

(and find the indices if they are needed.)

- If $p[0] > p[1] > \cdots > p[n]$, then 0 is a reasonable solution. (i.e. just don't buy at all.)
- A brute-force method needs time.

A Transformation to MSP

- Transform the array p[0..n] to another array a[1..n] where a[i] = p[i] p[i-1] and compute $\max_{i \le j} \{a[i] + a[i+1] + \cdots + a[j]\}.$
- ► It is called *the maximum subarray* (*sum*) *problem* (MSP). For example:

Day													
Price	100	113	110	85	105	102	86	63	81	101	94	106	101
Change		13	-3	-25	20	-3	-16	-23	18	20	- 7	12	-5

中大資工 何錦文

Algorithms-Analysis+D&C

4:

Use D&C to Solve MSP

- Divide the array a[1..n] into a[1..n/2] and a[n/2+1..n]. Then the maximum sub-array a[i..j] must lie:
 - rightharpoonup entirely in a[1..n/2] or a[n/2+1..n] (case 1)
 - crossing the midpoint (case 2)

Case1: —////////

Case2: ______

中大資工 何錦立

Algorithms-Analysis+D&C

Pseudo-Code for the D&C Algorithm

```
F(a[ ], \ell, r) 
{
            if (\ell == r) return a[\ell];
            m = (\ell + r)/2;
            L = F(a[ ], \ell, m);
            R = F(a[ ], m+1, r);
            C = FIND-MAX-CROSSING-SUBARRAY(a[ ], \ell, r);
            return max(L, R, C);
        }
```

中大資工 何錦文

Algorithms-Analysis+D&C

47

Analyzing the D&C Algorithm

- The solutions of both left and right parts are not used for solving Case 2.
- Case 2 is solved by a 2-way scanning procedure from the middle and uses $\Theta(n)$ time (p.71).
- $T(n) = 2T(n/2) + \Theta(n) \Rightarrow T(n) = \Theta(n \lg n).$
- Exercise: Directly solve the original stock buying problem in $\Theta(n)$ time. (Note: Ex. 4.1-5 in p.75 asks you solve MSP in $\Theta(n)$ time.)

An Improvement on D&C

- In a D&C algorithm, it is advisable to use a simpler algorithm when subproblems become small enough.
- For example, we may use insertion sort within merge sort when the sizes of subproblems are no greater than a given *threshold t*.

中大資工 何錦文

Algorithms-Analysis+D&C

40

Determining Thresholds for D&C

For merge sort, assume that

$$T(n) = n(n-1) / 2 \mu s$$
 for $n \le t$
 $T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 32n \mu s$ for $n > t$

- For any threshold value t, $T(n) = \Theta(n \lg n)$.
- ► However, we want to find an *optimal*threshold value t*.

中大資工 何錦立

Algorithms-Analysis+D&C

Notes on Optimal Threshold Values

- Optimal threshold values may not exist.
- It may be more appropriate to determine an optimal threshold value by doing experiments (a kind of tuning a program).