HAKG: Hierarchy-Aware Knowledge Gated Network for Recommendation

Yuntao Du¹, Xinjun Zhu², Lu Chen¹, Baihua Zheng³, Yunjun Gao¹

¹College of Computer Science, Zhejiang University, China ²School of Software Technology, Zhejiang University, China ³School of Computing and Information Systems, Singapore Management University, Singapore

- **■** Motivation
- □ Related Work
- Preliminaries
- Methods
- Experimental Evaluation
- Conclusions

Motivation

- ☐ Data sparsity and cold-start issues
 - KG provides rich semantic information about Items
- □ Poor explainability of recommendation results
 - KG improves the accuracy and interpretability

Knowledge-aware Recommendation!

Motivation

General steps of existing methods

- a) Modeling both user-item interactions and KG in Euclidean space.
- b) Considering the relations are of equal importance in KG.
- c) Designing the KG-oriented item aggregation schemes.

Two important facts.

- Hierarchical structures and relations.
- High-order collaborative signals of items.

HAKG: Hierarchy-Aware Knowledge Gated Network for Recommendation

- **■** Motivation
- □ Related Work
- Preliminaries
- Methods
- **□** Experimental Evaluation
- Conclusions

Related Work

■ Embedding-based methods

- Directly embed entities and relations in KG to serve as item embedding in recommendation.
- Drawbacks: fail to capture <u>high-order dependence</u> of user-item relations.

Path-based methods

- Define meta-paths in KG, and then connect items and users to discover long-range connectivity for recommendation.
- Drawbacks: time-consuming and poor generalization.

Propagation-based methods

Iteratively perform heterogeneous information aggregation mechanism from neighborhood nodes.

- **■** Motivation
- □ Related Work
- **□** Preliminaries
- Methods
- Experimental Evaluation
- Conclusions

Preliminaries

Problem Statement

- **▶** User-Item Bipartite Graph $G_b = \{(u, i) \mid u \in U, i \in I\}$
 - \square \mathcal{U} is the set of users, \mathcal{I} is the set of items, (u,i) pair indicates that user u has interacted with item i.
- ➤ Knowledge Graph $G_k = \{(h, r, t) \mid h, t \in \mathcal{E}, r \in \mathcal{R}\}$
 - \blacksquare Let \mathcal{T} be the triplet set, \mathcal{E} be a set of entities, and \mathcal{R} be the relation set
 - □ Triplet $(h, r, t) \in \mathcal{T}$ means that there is a relation r between head entity h and tail entity t.
 - \square Assume all the items appear in KG as entities (i.e., $\mathcal{I} \subset \mathcal{E}$).

Task Description

Given a user-item graph \mathcal{G}_b and a KG \mathcal{G}_k , our task of knowledge-aware recommendation is to predict how likely that a user would adopt an item that she has never engaged with.

Preliminaries

■ Hyperbolic geometry

Poincaré Ball & Tangent Space

$$\mathbb{B} = \left\{ (x_1, \dots, x_n) : x_1^2 + \dots + x_n^2 < \frac{1}{c} \right\}$$

- \square in \mathbb{R}^n . The tangent space $\mathcal{T}_{\mathbf{z}}\mathbb{B}$ at point z on \mathbb{B} is a n-dimensional Euclidean space that best approximates \mathbb{B} around z.
- Exponential Map & Logarithmic Map

$$\begin{split} \exp_{\mathbf{z}}(\mathbf{x}) &= \mathbf{z} \oplus \tanh\left(\frac{\parallel \mathbf{x} \parallel}{1 - \parallel \mathbf{z} \parallel^2}\right) \frac{\mathbf{x}}{\parallel \mathbf{x} \parallel} \\ \log_{\mathbf{z}}(\mathbf{y}) &= (1 - \parallel \mathbf{z} \parallel^2) \cdot \tanh^{-1}(\parallel -\mathbf{z} \oplus \mathbf{y} \parallel) \frac{-\mathbf{z} \oplus \mathbf{y}}{\parallel -\mathbf{z} \oplus \mathbf{y} \parallel} \end{split}$$

where ⊕ represents Möbius addition:

$$\mathbf{x} \oplus \mathbf{y} = \frac{(1 + 2\langle \mathbf{x}, \mathbf{y} \rangle + || \mathbf{y} ||^2)\mathbf{x} + (1 - || \mathbf{x} ||^2)\mathbf{y}}{1 + 2\langle \mathbf{x}, \mathbf{y} \rangle + || \mathbf{x} ||^2 || \mathbf{y} ||^2}$$

□ the exponential map can map the tangent space $\mathcal{T}_z\mathbb{B}$ to the hyperbolic space \mathbb{B} , and the logarithmic map maps \mathbb{B} to \mathcal{T}_zB conversely.

- **■** Motivation
- □ Related Work
- Preliminaries
- **□** Methods
- Experimental Evaluation
- Conclusions

Overview

■ HAKG framework

- Component 1: Hierarchy-Aware Modeling
 - □ Embed users and items as well as entities and relations in hyperbolic space.
 - Hyperbolic Relation-Transitive Aggregation.
 - Angle Constraint of Hierarchical triplets.
- Component 2: Gated Aggregation with Dual embeddings
 - Collaborative Aggregation for Items.
 - Information Gated Aggregation for Users.

Hierarchy-Aware Modeling

■ Hyperbolic Relation-Transitive Aggregation

Integrate information from each connection (i, r, e) in hyperbolic space, and preserve the relation dependencies.

$$\mathbf{e}_{i}^{(l)} = \exp_{\mathbf{0}} \left(\frac{1}{|\mathcal{N}_{i}|} \sum_{(r,t) \in \mathcal{N}_{i}} \log_{\mathbf{e}_{i}^{(l-1)}} \left(\mathbf{e}_{t}^{(l-1)} \oplus \mathbf{e}_{r} \right) \right)$$

Angle Constraint of Hierarchical triplets

Hyperbolic cone forms a nested structure in embedding space, and the width of the cone can indicate the "attribute" semantics of embeddings.

Cone width:
$$\psi_{\mathbf{x}} = \arcsin\left(K\frac{1-\|\mathbf{x}\|^2}{\|\mathbf{x}\|}\right)$$
 Angle:
$$\angle_{\mathbf{x}}\mathbf{y} = \arccos\left(\frac{\langle \mathbf{x},\mathbf{y}\rangle(1+\|\mathbf{x}\|^2)-\|\mathbf{x}\|^2(1+\|\mathbf{y}\|^2)}{\|\mathbf{x}\|\|\mathbf{x}-\mathbf{y}\|\sqrt{1+\|\mathbf{x}\|^2\|\mathbf{y}\|^2-2\langle \mathbf{x},\mathbf{y}\rangle}}\right)$$

Angle loss:
$$\mathcal{L}_{H}' = \sum_{(i,t) \in \mathcal{H}} max \left(\angle_{\mathbf{e}'_{t}} \mathbf{e}'_{i} - \psi_{\mathbf{e}'_{t}}, 0 \right)$$

Gated Aggregation with Dual embeddings

Collaborative Aggregation for Items

Initialize new item representation to collaborative information.

$$\tilde{\mathbf{e}}_{i}^{(l)} = \exp_{0}\left(\frac{1}{\left|\tilde{\mathcal{N}}_{i}\right|} \sum_{(u) \in \overline{\mathcal{N}}_{i}} \log_{0}\left(\mathbf{e}_{u}^{(l-1)}\right)\right)$$

■ Information Gated Aggregation for Users

> A fusion gate to control the combination of two different types of semantic item representation.

$$\mathbf{g}_{i}^{(l)} = \sigma \left(W_{1} \log_{0} \left(\mathbf{e}_{i}^{(l)} \right) + W_{2} \log_{0} \left(\tilde{\mathbf{e}}_{i}^{(l)} \right) \right)$$

$$\hat{\mathbf{e}}_{i}^{(l)} = \exp_{0} \left(\mathbf{g}_{i}^{(l)} \cdot \mathbf{e}_{i}^{(l)} + \left(1 - \mathbf{g}_{i}^{(l)} \right) \cdot \tilde{\mathbf{e}}_{i}^{(l)} \right)$$

$$\mathbf{e}_{u}^{(l)} = \exp_{0} \left(\frac{1}{|\mathcal{N}_{u}|} \sum_{(i) \in \mathcal{N}_{u}} \log_{0} \left(\hat{\mathbf{e}}_{i}^{(l-1)} \right) \right)$$

- **■** Motivation
- □ Related Work
- Preliminaries
- Methods
- **□** Experimental Evaluation
- Conclusions

Experimental Evaluation

Datasets

Alibaba-iFashion, Yelp2018 and Last-FM are widely adopted in the state-of-the-art methods, and vary in terms of domain, size and sparsity.

		Alibaba-iFashion	Yelp2018	Last-FM
User-Item Interaction	#Users	114,737	45,919	23,566
	#Items	30,040	45,538	48,123
	#Interactions	1,781,093	1,185,068	3,034,796
Knowledge Graph	#Entities	59,156	90,961	58,266
	#Relations	51	42	9
	#Triplets	279,155	1,853,704	464,567

Competitors

9 state-of-the-art methods, including KG-free methods, embedding-based methods, propagation-based methods and hyperbolic-based methods.

Metrics

> Recall@20, NDCG@20.

Overall results of HAKG

	Alibaba-iFashion		Yelp2018		Last-FM	
	recall	ndcg	recall	ndcg	recall	ndcg
MF	0.1095	0.0670	0.0627	0.0413	0.0724	0.0617
CKE	0.1103	0.0676	0.0653	0.0423	0.0732	0.0630
UGRec	0.1006	0.0621	0.0651	0.0419	0.0730	0.0624
KGNN-LS	0.1039	0.0557	0.0671	0.0422	0.0880	0.0642
KGAT	0.1030	0.0627	0.0705	0.0463	0.0873	0.0744
CKAN	0.0970	0.0509	0.0646	0.0441	0.0812	0.0660
KGIN	0.1147	0.0716	0.0698	0.0451	0.0978	0.0848
Hyper-know	0.1057	0.0648	0.0685	0.0447	0.0948	0.0812
LKGR	0.1033	0.0612	0.0679	0.0438	0.0883	0.0675
HAKG	0.1319*	0.0848*	0.0778*	0.0501*	0.1008*	0.0931*
%Imp.	14.99%	15.43%	10.35%	8.21%	3.07%	9.79%

- HAKG consistently yields the best performance on all datasets.
- ➤ HAKG achieves significant improvement even over the strongest baselines w.r.t. ndcg@20 by 15.43%, 8.21%, and 9.79% in Alibaba-iFashion, Yelp2018, and Last-FM, respectively.

Ablation Study

Impact of angle loss and gated aggregation

	Alibaba-iFashion		Yelp2018		Last-FM	
	recall	ndcg	recall	ndcg	recall	ndcg
w/o A&G	0.1218	0.0799	0.0737	0.0458	0.0946	0.0872
w/o A	0.1272	0.0825	0.0763	0.0485	0.0963	0.0907
w/o G	0.1253	0.0817	0.0758	0.0471	0.0959	0.0894

The absence of the angle constraint and gated aggregation dramatically degrades the performance.

Impact of hierarchical modeling

	Alibaba-iFashion		Yelp2018		Last-FM	
	recall	ndcg	recall	ndcg	recall	ndcg
Euclidean	0.1231	0.0798	0.0756	0.0484	0.0981	0.0916
PH-Relation	0.1317	0.0845	0.0772	0.0494	0.1001	0.0928
GH-Relation	0.1320	0.0845	0.0776	0.0498	0.1005	0.0929

- ➤ The performance degrades for all three datasets when we remove the hyperbolic geometry for HAKG.
- The hierarchical types of KG relations are not explicitly available.

Ablation Study

Impact of dual item embedding

	Alibaba-iFashion		Yelp	2018	Last-FM	
	recall	ndcg	recall	ndcg	recall	ndcg
Single	0.1186	0.0755	0.0769	0.0492	0.0989	0.0904
Dual	0.1319	0.0847	0.0778	0.0501	0.1008	0.0931

Discarding the collaborative item embeddings would consistently degrade the performance cross three datasets.

Impact of the number of layers L

	Alibaba-iFashion		Yelp2018		Last-FM	
	recall	ndcg	recall	ndcg	recall	ndcg
HAKG-1	0.1313	0.0845	0.0766	0.0489	0.0972	0.0897
HAKG-2	0.1306	0.0831	0.0778	0.0501	0.0988	0.0913
HAKG-3	0.1319	0.0848	0.0774	0.0498	0.1008	0.0931

HAKG is less sensitive to the model depth, compared with other propagationbased methods.

Hierarchies Visualization

We first train HAKG with two-dimensional embeddings on the Alibaba-iFashion dataset, and separately analyze the hierarchies that exhibit in G_b and G_k .

- ➤ The left figure indicates a clear exponential trend that distance to the origin increases exponentially for less popular items.
- ➤ The connectivities in the right figure show clear hierarchical relations between entities.

- **■** Motivation
- □ Related Work
- Preliminaries
- □ Algorithms
- Experimental Evaluation
- Conclusions

Conclusions

- ➤ A new perspective. We present knowledge-aware recommendation by taking the hierarchy and high-order items' collaborative signals into consideration.
- Hierarchy-Aware. HAKG captures the underlying hierarchical structure of data in hyperbolic space, and characterize items with hierarchical relations in KG.
- Dual embeddings. HAKG employs dual item embeddings to separately encode items' collaborative signals and knowledge associations, and develops a gated mechanism to control discriminative signals towards the users' behavior patterns.
- Extensive experiments. Considerable experimental results demonstrate the superiority of HAKG.

Thank you!

Questions?

ytdu@zju.edu.cn

HAKG: Hierarchy-Aware Knowledge Gated Network for Recommendation

https://github.com/Scottdyt/HAKG

SIGIR 2022