Übung zur Vorlesung im WS 2010/2011 **Algorithmische Eigenschaften von Wahlsystemen I**

(Lösungsvorschläge) Blatt 2, Abgabe am 28. Oktober 2010

Aufgabe 1 (Die Wahlsysteme Plurality Voting, Borda, k-Approval, Veto und Copeland): Gegeben sei die Wahl (C,V) mit der Kandidatenmenge $C=\{a,b,c,d,e\}$ und sechs Wählern in der Wählermenge V mit den folgenden Präferenzen:

Wähler v_1 : d c a e b Wähler v_2 : d c b a e Wähler v_3 : d b e a c Wähler v_4 : e c b a d Wähler v_5 : b c a d e Wähler v_6 : a c b d e

(Die Ordnungszeichen "<" werden ab nun weggelassen. Als Konvention vereinbaren wir, dass die Kandidaten in absteigender Reihenfolge sortiert sind, also der beliebteste Kandidat stets links steht.)

Bestimmen Sie in dieser Wahl den Plurality-Gewinner, den Borda-Gewinner, den 2-Approval-Gewinner, den 3-Approval-Gewinner, den Veto-Gewinner und den Copeland-Gewinner.

Lösungsvorschlag:

Verhältnisse in (C, V):

	a	b	c	d	e	#Siege
a	-	2:4	2:4	3:3	4:2	1
b	4:2	-	2:4	2:4	4:2	2
c	4:2	4:2	-	3:3	4:2	3
d	3:3	4:2	3:3	-	5:1	2
e	2:4	2:4	2:4	1:5	-	1 2 3 2 0

Es gibt keinen Condorcet-Gewinner und Kandidat c ist der Copeland-Gewinner in (C, V). Punktwerte in den verschiedenen Wahlsystemen für die Kandidaten:

	a	b	c	d	e	Gewinner
PV	1	1	0	3	1	d
2-AV	1	2	5	3	1	c
3-AV	1	5	5	3	2	b,c
Veto	6	5	5	5	3	a
Borda	11	13	15	14	7	c

Aufgabe 2 (Zusammenhänge zwischen Wahlsystemen): Wie hängt das Wahlsystem *k*-Approval Voting mit den Wahlsystemen Plurality Voting bzw. Veto Voting zusammen?

Lösungsvorschlag:

1-Approval Voting entspricht Plurality Voting. Sei in einer Wahl (C, V) n = ||C||. Dann entspricht (n-1)-Approval Voting Veto Voting.

Aufgabe 3 (Scoring-Protokolle): Gegeben sei ein Scoring-Protokoll $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_m)$. Zeigen Sie die folgenden beiden Aussagen:

- (a) Für alle natürlichen Zahlen k ist $\alpha_{+k} := \alpha + k := (\alpha_1 + k, \alpha_2 + k, \dots, \alpha_m + k)$ ein Scoring-Protokoll und es gilt für alle Kandidaten $c \in C$ über jeder Wählermenge V: Kandidat c ist (eindeutiger) Gewinner in (C, V) bezüglich des Scoring-Protokolls α genau dann, wenn Kandidat c (eindeutiger) Gewinner in (C, V) bezüglich des Scoring-Protokolls α_{+k} ist.
- (b) Für alle natürlichen Zahlen k ist $\alpha_{\cdot k} := k\alpha := (k\alpha_1, k\alpha_2, \ldots, k\alpha_m)$ ein Scoring-Protokoll und es gilt für alle Kandidaten $c \in C$ über jeder Wählermenge V: Kandidat c ist (eindeutiger) Gewinner in (C, V) bezüglich des Scoring-Protokolls α genau dann, wenn Kandidat c (eindeutiger) Gewinner in (C, V) bezüglich des Scoring-Protokolls $\alpha_{\cdot k}$ ist.

Lösungsvorschlag:

Gegeben sei das Scoring-Protokoll $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_m)$. Es gilt also

$$\alpha_1 > \alpha_2 > \dots > \alpha_m. \tag{1}$$

Sei $score_{\alpha}(c)$ die Punktzahl von c in der Wahl (C, V) bezüglich des Scoring-Protokolls α .

- (a) Da $k \geq 0$, folgt mit (1) $\alpha_1 + k \geq \alpha_2 + k \geq \ldots \geq \alpha_m + k$. Damit ist α_{+k} ein Scoring-Protokoll und es gilt $score_{\alpha_{+k}}(c) = score_{\alpha}(c) + k\|V\|$.
 - " \Rightarrow " Angenommen, c habe den höchstens Score bezüglich α , dann hat c auch den höchsten Score bezüglich α_{+k} , da jeder Kandidat bezüglich α_{+k} genau k||V|| Punkte hinzubekommt (im Vergleich zu α).
 - " \Leftarrow " Angenommen, c habe den höchsten Score bezüglich α_{+k} , so hat c auch den höchsten Score bezüglich α , weil alle Kandidaten genau k||V|| Punkte verlieren (im Vergleich zu α_{+k}).
- (b) Da $k \ge 0$, folgt mit (1) $k\alpha_1 \ge k\alpha_2 \ge ... \ge k\alpha_m$. Damit ist $\alpha_{\cdot k}$ ein Scoring-Protokoll und es gilt $score_{\alpha_{\cdot k}}(c) = k \cdot score_{\alpha}(c)$.
 - " \Rightarrow " Angenommen, c habe den höchstens Score bezüglich α , dann hat c auch den höchsten Score bezüglich $\alpha_{\cdot k}$, da jeder Kandidat das k-fache seines Scores bezüglich

 α erhält.

" \Leftarrow " Angenommen, c habe den höchsten Score bezüglich $\alpha_{\cdot k}$, so hat c auch den höchsten Score bezüglich α , weil alle Kandidaten genau ein k-tel ihrer Punkte bezüglich $\alpha_{\cdot k}$ erhalten.