Section 2.3

Section Summary

- Definition of a Function.
 - · Domain, Codomain
 - Image, Preimage
- Injection, Surjection, Bijection
- Inverse Function
- Function Composition
- Graphing Functions
- Floor, Ceiling

Definition: Let A and B be nonempty sets. A function f from A to B, denoted $f: A \rightarrow B$ is an assignment of each element of A to exactly one element of B.

We write f(a) = b if b is the unique element of B assigned by the function f to the element a of A.

Functions are sometimes called *mappings* or *transformations*.

Zhao
Qian
Sun
Li
Zhou
• A
• B
• C
• C
• F

- A function $f: A \rightarrow B$ can also be defined as a subset of $A \times B$ (a relation). This subset is restricted to be a relation where no two elements of the relation have the same first element.
- Specifically, a function f from A to B contains one, and only one ordered pair (a, b) for every element $a \in A$.

and
$$\forall x[x\in A\to\exists y[y\in B\land (x,y)\in f]]\\ \forall x,y_1,y_2[[(x,y_1)\in f\land (x,y_2)]\to y_1=y_2]$$

Given a function $f: A \rightarrow B$:

- We say f maps A to B or
 f is a mapping from A to B.
- A is called the domain of f.
- B is called the codomain of f.
- If f(a) = b,
 - \blacksquare then b is called the *image* of a under f.
 - a is called the preimage of b.
- The range of f is the set of all images of points in A under f. We denote it by f(A).
- Two functions are equal when they have the same domain, the same codomain and map each element of the domain to the same element of the codomain.

For example,

Suppose that each student in a class is assigned a letter grade from the set $\{A,B,C,D,F\}$. Let G be the function that assigns a grade to a student.

Domain

Codomain

Range

Representing Functions

Functions may be specified in different ways:

- An explicit statement of the assignment Students and grades example.
- A formula

$$f(x) = x + 1$$

• A computer program

A Java program that when given an integer *n*, produces the *n*th Fibonacci Number (covered in the next section and also in Chapter 5).

Definition Let f_1 and f_2 be functions from A to **R**. Then $f_1 + f_2$ and $f_1 f_2$ are also functions from A to **R** defined by

$$(f_1 + f_2)(x) = f_1(x) + f_2(x)$$

 $(f_1f_2)(x) = f_1(x) f_2(x)$

Definition Let f be a function from A to B and let S be a subset of A. The *image* of S is the subset of B that consists of the images of the elements of S. We denote the image of S by f(S), so that

$$f(S) = \{ f(s) \mid s \in S \}$$

Remark:

f(S) denotes a set, and not the value of the function f for the set S.

One-to-one Functions

A function f is one-to-one (denoted 1-1), or injective

$$\forall a \forall b (a \in A \land b \in A \land (f(a) = f(b) \rightarrow a = b))$$

$$\forall a \forall b (a \in A \land b \in A \land (a \neq b \rightarrow f(a) \neq f(b)))$$

Note: Preimages are unique.

Example,

Onto Functions

A function f from A to B is called onto, or surjective

$$\forall b(b \in B \to \exists a \ (a \in A \land f(a) = b))$$

Note:

This means that for every b in B there must be an a in A such that f(a) = b.

Every b in B has a pre-image.

Example,

One-to-one Correspondence Functions

The function f is a one-to-one correspondence, or a bijection, if it is both one-to-one and onto.

For example,

Note:

Whenever there is a bijection from A to B, the two sets must have the same number of elements or the same *cardinality*.

That will become our *definition*, especially for infinite sets.

Showing that f is one-to-one or onto

Suppose that $f: A \to B$.

To show that f is injective Show that if f(x) = f(y) for arbitrary $x, y \in A$ with $x \neq y$, then x = y.

To show that f is not injective Find particular elements $x, y \in A$ such that $x \neq y$ and f(x) = f(y).

To show that f is surjective Consider an arbitrary element $y \in B$ and find an element $x \in A$ such that f(x) = y.

To show that f is not surjective Find a particular $y \in B$ such that $f(x) \neq y$ for all $x \in A$.

Showing that f is one-to-one or onto

Example: Let f be the function from $\{a,b,c,d\}$ to $\{1,2,3\}$ defined by f(a) = 3, f(b) = 2, f(c) = 1, and f(d) = 3. Is f an onto function?

Solution: Yes, f is onto since all three elements of the codomain are images of elements in the domain. If the codomain were changed to $\{1,2,3,4\}$, f would not be onto.

Example: Is the function $f(x) = x^2$ from the set of integers onto?

Solution: No, f is not onto because there is no integer x with $x^2 = -1$, for example.

A function is

increasing
$$\forall x \forall y (x < y \rightarrow f(x) \le f(y))$$

strictly increasing $\forall x \forall y (x < y \rightarrow f(x) < f(y))$
decreasing $\forall x \forall y (x < y \rightarrow f(x) \le f(y))$
strictly decreasing $\forall x \forall y (x < y \rightarrow f(x) \ge f(y))$

Questions:

- 1. A function that is either strictly increasing or strictly decreasing must be one to one?
- 2. The number of one to one functions form a set S to a set T?

Inverse Functions

Let f be a bijection from A to B. Then the inverse function of f, denoted f^{-1} , is the function from B to A defined as

$$f^{-1}(b) = a \text{ iff } f(a) = b$$

Note:

No inverse function exists unless f is a bijection.

The Graphs of Functions

Let f be a function from the set A to the set B. The graph of the function f is the set of ordered pairs

$$\{(a,b) \mid a \in A \text{ and } f(a) = b\}.$$

Graph of f(n) = 2n + 1from **Z** to **Z**

Graph of $f(x) = x^2$ from Z to Z

Some Important Functions

The floor function f(x) is the largest integer less than or

equal to x.

Notation:
$$\lfloor x \rfloor$$

For example:

$$\begin{bmatrix}
0.5 \end{bmatrix} = 0 \\
\begin{bmatrix}
1.5 \end{bmatrix} = 1 \\
\begin{bmatrix}
2 \end{bmatrix} = 2 \\
\begin{bmatrix}
-0.5 \end{bmatrix} = -1$$

Graph of Floor Functions

Remark:

The floor function is often also called the *greatest integer* function. It is often denoted by [x].

Some Important Functions

The ceiling function f(x) is the smallest integer greater than or equal to x.

Notation:

$$\lceil x \rceil$$

For example:

$$\begin{bmatrix}
 0.5 \end{bmatrix} = 1 \\
 1.5 \end{bmatrix} = 2 \\
 2 \\
 2 \end{bmatrix} = 2 \\
 -0.5 \end{bmatrix} = 0$$

Graph of Ceiling Functions

The floor and ceiling functions are useful in wide variety of application.

- Data storage and data transmission
- The pigeonhole principle

Example, Date stored on a computer disk or transmitted over a data network are usually represented as a string of bytes. Each byte is made up of 8 bits. How many bytes are required to encode 100 bits of data?

$$\lceil 100/8 \rceil = \lceil 12.5 \rceil = 13$$

Useful Properties of the Floor and Ceiling Functions

(1a) $\lfloor x \rfloor = n$ if and only if $n \le x < n + 1$ where n is an integer

(1b)
$$\lceil x \rceil = n$$
 if and only if $n-1 < x \le n$ where n is an integer

$$(1c) \lfloor x \rfloor = n$$
 if and only if $x - 1 < n \le x$ where n is an integer

$$(1d) \lceil x \rceil = n$$
 if and only if $x \le n < x + 1$ where n is an integer

$$(2) \quad x-1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x+1$$

$$(3a)$$
 $\lfloor -x \rfloor = - \lceil x \rceil$

$$(3b)$$
 $\lceil -x \rceil = - \lfloor x \rfloor$

$$(4a) \lfloor x + m \rfloor = \lfloor x \rfloor + m$$
 where m is an integer

$$(4b) \lceil x + m \rceil = \lceil x \rceil + m$$
 where m is an integer

Prove property (4a)

 $(4a) \lfloor x + m \rfloor = \lfloor x \rfloor + m$ where m is an integer

Proof:

Suppose that $\lfloor x \rfloor = n$, where n is a positive integer.

By property (1a), it follows that if $n \le x < n + 1$.

Then $n + m \le x + m < n + m + 1$.

Using property (1a) again, we see that $\lfloor x + m \rfloor = n + m = \lfloor x \rfloor + m$.

Example, Prove that if x is a real number, then

$$\lfloor 2x \rfloor = \lfloor x \rfloor + \lfloor x + 1/2 \rfloor$$
.

Hint:

The floor function: Let $x=n+\varepsilon$, where $n=\lfloor x\rfloor$ is an integer, and ε , the fractional part of x, $0 \le \varepsilon < 1$.

The ceiling function: Let $x=n-\varepsilon$, where $n=\lceil x \rceil$ is an integer, and $0 \le \varepsilon < 1$.

Homework:

Seventh Edition: P.153 12,40, 56, 72, 76

