1. La se determine inversele urmatoorelor oplicații linione: a) $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T(x_1, x_2) = (2x_1 - x_2, x_1 + x_2)$

$$A_T = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix}$$
; $\det A_T = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix} = 2 + 1 = 3 \neq 0 =)$ A_T inversabilă $A_T = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix} = 0$ A_T inversabilă

$$A_{T}^{\dagger} = \begin{pmatrix} 2 & \gamma \\ -\gamma & \gamma \end{pmatrix} ; A_{T}^{\star} = \begin{pmatrix} \gamma & \gamma \\ -1 & 2 \end{pmatrix}$$

$$\left(\begin{array}{c} A_{7} \right)^{-\gamma} = \frac{\gamma}{3} \, \left(\begin{array}{c} \gamma \, \gamma \\ -1 \, 2 \end{array} \right) = \left(\begin{array}{c} \gamma/3 & \gamma/3 \\ -1/3 & 2/3 \end{array} \right) \Rightarrow T_{\left(\overrightarrow{X} \right)}^{-\gamma} = \left(\frac{\gamma}{3} \times_{1} + \frac{\gamma}{3} \times_{2} \right) \frac{-\gamma}{3} \times_{1} + \frac{2}{3} \times_{2} \right)$$

$$A_T = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & -1 \\ 1 & 1 & 1 \end{pmatrix}$$
; det $A_T = 1 - 1 + 1 = 1 \neq 0 \Rightarrow A_T$ inversabil $\Rightarrow T$ inversabil

	v	•	• •				
	Vi	VZ	V 3	前	ZZ	Ž3	
12		7	0	7	<i>C/</i>	0	_
15	0	1	-7	O	7	0	
Ī3	7	7	1	0	Ø	1	
35	1	1	0	1	0	0	
₹>	0		-1	0	1	٥	
Ĭŝ	0	σ	1	-1	0	1	_
阳	1	Û	7	1	-1	U	_
$\vec{V_2}$	0	1	-1	0	7	0	
RECEISE EIRE EIRE	0	0	7	-7	0	7	
V3	7	Ø	0	2	-1	-1	2 ,
农	0	7	0	-7	1	1	1AT
$\overline{V}_3^{>}$	0	d	1	-1	0	1	J

$$= \begin{pmatrix} 2 & -1 & -1 \\ -1 & 1 & 1 \\ -1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) & -1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -1 & -1 \\ (\vec{x}) & -$$