

Document History

Ver. Rel. No.	Release Date	Prepared. By	Reviewed By	Approved By	Remarks/Revision Details

Table of Contents

TASK 1- SMART LOCK FOR YOUR SECURITY AND SAFETY	
1. RESEARCH	
1.1 Ageing	4
1.2 Costing	4
2. DEFINITION OF PRODUCT	
3. SWOT ANALYSIS	
4. REQUIREMENTS	
5. SYSTEM DESIGN	
5.1 Structural Diagram	
5.2 Behavioral Diagram	
6. MODULAR DESIGN	
6.1 Structural Diagram	11
6.2 Behavioral Diagram	13
7. TEST PLAN	
7.1 Integration Test Plan and Unit Test Plan	
7.2 Requirement Based	
7.3 Scenario Based	
7.4 Boundary Condition Based	
8. REFERENCES	17
TASK 2- AGILE MODEL	18
1. THEME	18
2. EPIC	
3. USER STORIES	
4. REFERENCES	
TASK 3- MINIPROJECT	
TASK 3- MINIPROJECT	20
1. INTRODUCTION	20
2. REQUIREMENTS	20
2.1 High Level Requirements	
2.2 Low Level Requirements	21
3. UML DIAGRAM	22
4. TEST PLAN	
5. CI WORKFLOWING	
5.1 Git Hub Link	
5.2 Code Commits	
5.3 Build	30
5.4 CppCheck	30
5.5 Unit Testing	31
5.6 Badges	31
5.7 Codacy	32
ADDENION	22
APPENDIX	33

Activity and Tasks

Task 1– System/ Software Development

SMART LOCK FOR YOUR SECURITY AND SAFETY

RESEARCH

Ageing and Cost grading

AGEING	COSTING
 Traditional Lock and key 	500-1500
2) Combination Lock	1000-3000
3) Electronic key card lock	8000
4) PIN secured Lock	15000
5) Biometrics Locking system	20000

DEFINITION OF PRODUCT

- 1) Wi-Fi enabled remote access from anywhere using smart phones. This feature provides additional safety as you do not have to touch the door to open it in the current COVID scenario.
- 2) RFID card locking system is also provided. So that the card can be scanned to unlock the system as well.
- 3) Fingerprint enabled locking system: The fingerprint of the people accessing the building can be stored within the system so that the access can be restricted to a limited group.
- 4) Remotely knowing when any person is accessing the lock. This feature provides additional security to the door.

SWOT ANALYSIS

STRENGTH	WEAKNESS
 Contact less access to the building Remote monitoring of the people accessing the door Remote control of the door Safety and security is ensured Limited access to the building 	1) High cost of the system2) Wi-Fi connection may get disconnected
OPPORTUNITIES	THREATS
 High security buildings Office buildings to remotely access the people entering the building Residential apartments when people forget to lock the door while stepping out Contact less accessing of doors in current COVID situation. 	 Hacking the system may lead to vulnerable data being exposed Missing of RFID tags can lead to external people accessing the building

REQUIREMENTS

ID	DESCRIPTION
HL_01	Wi-Fi enabled remote access to the building to ensure safety of people using the doors in current COVID situation
HL_02	Accessing the building using RFID tag
HL_03	Fingerprint access to building to limit the people accessing the building and thereby ensure security.
HL_04	Material Quality
HL_05	Space Usability
HL_06	Aesthetically pleasing
HL_01_LL_01	Wi-Fi Connectivity
HL_02_LL_01	Power source management
HL_03_LL_01	Database Management
HL_04_LL_01	Resistant to corrosion
HL_04_LL_02	Resistant to different weather conditions
HL_05_LL_01	Light weight device
HL_05_LL_02	Easy to manage and handle

SYSTEM DESIGN

1) Structural Diagram

CLASS DIAGRAM

COMPONENT DIAGRAM

2) Behavioral Diagram

• ACTIVITY DIAGRAM

• USECASE DIAGRAM

MODULAR DESIGN

1) Structural Diagram

• COMPONENT DIAGRAM

CLASS DIAGRAM

2) Behavioral Diagram

ACTIVITY DIAGRAM

USECASE DIAGRAM

TEST PLAN

Integration Test Plan and Unit Test Plan

ID	DESCRIPTION	PRE- CONDITION	EXPECTED INPUT	EXPECTED OUTPUT	ACTUAL OUTPUT
HL_01_IT_01	Testing all the features of Wi-Fi enabled device using a smart phone App for its proper functioning	No Wi- Fi connection	Log in to device app using credentials and access the features	Proper functioning of features	COTPOT
HL_02_IT_01	Testing the RFID tags for its functions	RFID tags may not be received	Inserting the RFID tag and scanning the tag	Scan successful and door opens	
HL_03_IT_01	Testing the fingerprint access of an authorized person for successful scan	Fingerp rint may not be stored in database	Fingerprin t scan	Scan successful	
HL_04_IT_01	Testing against different industry standards	System may not be properly integrated	Different materials used in the system	All the materials meet the expected standards	
HL_05_IT_01	Testing for the space used up by the device and compare it with the acceptable	System may not be integrated	System	The space taken up by the system is less than 5% of the door	
HL_06_IT_01	Checking whether the appearance of the system is acceptable in the market and will obtain good market value	System may not be working	System	The product will have good market value which can be expected to get required profits	

HL_01_LL_01_UT_01	Testing the	The Wi-	Wi-Fi	A good
	Wi-Fi connectivity of	Fi may not be turned		and stable connectivity is
	the device	on		ensured
02 II 04 IIT 04	To Provide	TI		A
HL_02_LL_01_UT_01	Testing the battery life of	The battery	Power source	A good battery life is
	the system	may not be	304.00	ensured
		charged		
HL_03_LL_01_UT_01	Testing for	The	Database	A well-
	the proper	database	of the system	managed database
	management and quality of	may not be completed		uatabase
	database of the	Completed		
	system			
HL_04_LL_01_UT_01	Testing against different	A well painted	Any corroding	The product is
	corroding agents	system	agent	resistant
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	180	against the
				inputs
HL_04_LL_02_UT_01	Testing	System	Different	The
	against the weather	may not be	weather	product is
	conditions that	integrated	conditions	resistant against the
	are probable to			inputs
	occur			
HL_05_LL_01_UT_01	The weight	System	Weight	The
HE_02_EE_01_01_01	of the system is	may not be	vveignt	product is
	checked and	integrated		light weight
	compared			and the
	against the			weight of the
	overall weight of the door			product is less than 5% of the
	the door			door
HL_05_LL_02_UT_01	The overall	System	System	Comforta
	functionality and	may not be		ble and easy
	ease of handling	integrated		to handle
	is monitored and compared with			
	existing devices			
	0 3.011.00			

1) Requirement Based

- Testing the features of the system using the smart phone apps.
- Testing the RFID tags for its functions.
- Testing the fingerprint access of the system
- Material quality testing.
- Testing the space usability.
- Testing the battery life

2) Scenario Based

- Testing against different weather conditions.
- Testing the system for protection against corrosion
- Testing to understand any situation of hacking the system

3) Boundary conditions

- Testing the system when there is a Wi-Fi connectivity issue.
- Testing when the RFID tags are lost
- Testing to detect the functioning of the system when an external person who do not have access to the building tries to enter into the building
- Testing to find any situation of over-heating and exploding of battery

REFERENCES

- Smart lock buying guide CNET, [online] Available: https://www.cnet.com/news/smart-lock-buving-guide/.
- A. Kassem, S. E. Murr, G. Jamous, E. Saad and M. Geagea, "A smart lock system using Wi-Fi security", **2016 3rd International Conference on Advances in Computational Tools for Engineering Applications (ACTEA)**, pp. 222-225, 2016.
- Yu Yuan, D. Shing-chern and Dwen-Ren Tsai, "Smart Door: A Ubiquitous Collaboration System for Home Activities in the Smart Home", *J. Inf. Sci. Eng.*, vol. 29, no. 6, pp. 1227-1248, 2013.

Task 2 – Agile Aspects

AGILE MODEL

1) Theme

A safe and secured Door lock system that can provide remote access to the lock from anywhere with additional features like limiting the number of people entering the building and maintaining a record of the people accessing the building.

2) Epic

- Security is the prime concern/requirement
- Safety must be ensured
- Easily and remote access to people entering the building
- Non-contact controlling of the locking system
- Light weight locking system
- Easy to handle
- Tolerance to extreme weather conditions.
- Resistant to corrosion
- · Aesthetically pleasing
- Take up only less space

3) User Stories

ID	Description
US_01	As a user, I am expecting a safe system to use in the current situation of COVID. So that there is minimal requirement to open/close the door by contact. Also the security of the system has to be taken as a prime concern. I am delivery within 6 months. The system needs to be tested for faster performance and safety.
US_02	As a user, I am expecting a safe system that can be accessed remotely from anywhere. So that even if I forget to close the door, it can be done remotely. Along with this feature, I am expecting complete safety for this device. I am expecting a delivery within 5 months. The system needs to be tested for any kind of hacking and hecnce security needs to be ensured.

US_03	As users, We are expecting a system where the details of the people entering the building can be accessed remotely using a Mobile phone. Also, a remote controlling of the door needs to be provided for security purpose. We are expecting a delivery within 7 months. The product has to be tested for its functionalities and performance.

REFERENCES

- https://www.agilemarketing.net/epic-vs-theme-2/
- <a href="https://www.geeksforgeeks.org/software-engineering-agile-development-models/#:~":text=The%20Agile%20model%20adopts%20Iterative,a%20couple%20of%20weeks%20only.&text=Agile%20model%20is%20the%20combination%20of%20iterative%20and%20incremental%20process%20models.
- <a href="https://www.yodiz.com/blog/what-is-epic-in-agile-methodology-definition-and-template-of-epic/#:~":text=Epic%20Definition%20in%20Agile%20Scrum,customer%20request%20or%20business%20requirement.&text=These%20details%20are%20defined%20in,than%20one%20sprint%20to%20complete.

TASK 3 - MINIPROJECT

PROPERTY ANALYZER OF ANY GIVEN NUMBER

INTRODUCTION

This is an application which checks for various properties of a number. When a number is given, the application checks whether the number is Prime, Armstrong, Odd/Even, Palindrome, Power, Harshad, Perfect_square, Perfect_cube, Automorphic, Divisible by 3, Divisible by 5 and Divisible by 7.

REQUIREMENTS

HIGH LEVEL REQUIREMENTS

ID	DESCRIPTION	
HL_01	Check for different properties of the number	
HL_02	Determine the divisibility	
HL_03	Perform different operations	

LOW LEVEL REQUIREMENTS

ID	DESCRIPTION
HL_01_LL_01	Determine whether the given number is prime
HL_01_LL_02	Determine whether the given number is Armstrong
HL_01_LL_03	Determine whether the given number is Odd or Even
HL_01_LL_04	Determine whether the given number is a Palindrome
HL_01_LL_05	Determine whether the given number is a power of 2
HL_01_LL_06	Determine whether the given number is a Harshad number
HL_01_LL_ 07	Determine whether the given number is a perfect square
HL_01_LL_08	Determine whether the given number is a perfect cube
HL_01_LL_09	Determine whether the given number is an Automorphic number
HL_02_LL_01	Determine whether the given number is divisible by 3
HL_02_LL_02	Determine whether the given number is divisible by 5
HL_02_LL_03	Determine whether the given number is divisible by 7
HL_03_LL_01	Perform addition operation
HL_03_LL_02	Perform subtraction operation
HL_03_LL_03	Perform multiplication operation
HL_03_LL_04	Perform division operation

UML DIAGRAM

Act

TEST PLAN

ID	DESCRIPTION	PRE- CONDITION	EXPECTED INPUT	EXPECTED OUTPUT	ACTUAL OUTPUT
HL_01_IT_01	Test Different properties of the given number	The number must be positive	Any Number	PASS/FAIL	
HL_02_IT_01	Test for the divisibility of number	The number must be positive	Any Number	Divisible	
HL_03_IT_01	Perform different operations	The number must be positive	Any Number	Result of the operation	
HL_01_LL_01_UT_01	Testing with a prime number	The number must be positive	1	The number is prime	
HL_01_LL_01_UT_02	Testing with a non- prime number	The number must be positive	48	The number is not prime	
HL_01_LL_02_UT_01	Testing with an Armstrong number	The number must be positive	153	The number is Armstrong	
HL_01_LL_02_UT_02	Testing with non- Armstrong number	The number must be positive	15	The number is not Armstrong	
HL_01_LL_03_UT_01	Testing with an even number	The number must be positive	2	The number is Even	
HL_01_LL_03_UT_02	Testing with an odd number	The number must be positive	5	The number is Odd	
HL_01_LL_04_UT_01	Testing with a palindrome number	The number must be positive	1551	The number is Palindrome	

III 04 II 04 IIT 03	Tosting:th -	The number	15	The number is not
HL_01_LL_04_UT_02	Testing with a number which is not a palindrome	The number must be positive	15	The number is not Palindrome
HL_01_LL_05_UT_01	Testing with a number which is a power of 2	The number must be positive	4	The number is a power of 2
HL_01_LL_05_UT_02	Testing with a number which is not a power of 2	The number must be positive	5	The number is not a power of 2
HL_01_LL_06_UT_01	Testing with a Harshad number	The number must be positive	156	The number is Harshad
HL_01_LL_06_UT_02	Testing with a non- Harshad number	The number must be positive	15	The number is not harshad
HL_01_LL_07_UT_01	Testing with a perfect square	The number must be positive	25	The number is a perfect square
HL_01_LL_07_UT_02	Testing with a number which is not a perfect square	The number must be positive	8	The number is not a perfect square
HL_01_LL_08_UT_01	Testing with a perfect cube	The number must be positive	8	The number is a perfect cube
HL_01_LL_08_UT_02	Testing with a number which is not a perfect cube	The number must be positive	5	The number is not a perfect cube
HL_01_LL_09_UT_01	Testing with an automorphic number	The number must be positive	5	The number is automorphic
HL_01_LL_09_UT_02	Testing with a non-automorphic number	The number must be positive	78	The number is not automorphic

HL_02_LL_01_UT_01	Testing with a	The number	6	The number is
	number	must be		divisible by 3
	divisible by 3	positive		
HL_02_LL_01_UT_02	Testing with a	The number	7	The number is not
	number not	must be		divisible by 3
	divisible by 3	positive		
HL_02_LL_02_UT_01	Testing with a	The number	25	The number is
	number	must be		divisible by 5
	divisible by 5	positive		
HL_02_LL_02_UT_02	Testing with a	The number	8	The number is not
	number not	must be		divisible by 5
	divisible by 5	positive		
HL_02_LL_03_UT_01	Testing with a	The number	49	The number is
	number	must be		divisible by 7
	divisible by 7	positive		
HL_02_LL_03_UT_02	Testing with a	The number	8	The number is not
	number not	must be		divisible by 7
	divisible by 7	positive		
HL_03_LL_01_UT_01	Testing	The number	15	27
	Addition	must be	12	
		positive		
HL_03_LL_02_UT_01	Testing	The	48	43
	Subtraction	number	5	
		must be		
		positive		
HL_03_LL_03_UT_01	Testing	The	5	30
	Multiplication	number	6	
		must be		
		positive		
HL_03_LL_04_UT_01	Testing	The	25	5
	Division	number	5	
		must be		
		positive		

CI WORKFLOWING

Git Hub Link: https://github.com/99002496/Property_Analyzer_Number.git

CODE COMMITS

BUILD

UNIT TESTING

CPPCHECK

BADGES

CODACY

APPENDIX

CI Workflow for C Programming

- 1) GIT HUB LINK: https://github.com/stepin104452/AmstrongNumber.git
- 2) CODE COMMITS

3) BUILD

4) CPPCHECK

5) UNIT TESTING

6) BADGES

7) CODACY

MAIN CODE FILE

```
#include <math.h>
#include<stdio.h>
#include "AmstrongNumber.h"

int main()
{
    int n, flag;
    printf("Enter a positive integer: ");
    scanf("%d", &n);
    flag = AmstrongNumber(n);
    if (flag == 1)
        printf("%d is an Amstrong number.", n);
    else
        printf("%d is not an Amstrong number.", n);
    return 0;
}
```

FUNCTION CODE FILE

```
#include <math.h>
#include "AmstrongNumber.h"

int ArmstrongNumber(int num)
{
    int originalNum, remainder, n = 0, flag;
    double result = 0.0;
    for (originalNum = num; originalNum != 0; ++n)
        originalNum /= 10;

    for (originalNum = num; originalNum != 0; originalNum /= 10)
{
        remainder = originalNum % 10;
        result += pow(remainder, n);
    }
    if (round(result) == num)
        flag = 1;
    else
        flag = 0;
    return flag;
}
```


HEADER CODE

```
#ifndef __AMSTRONGNUMBER_H_
#define __AMSTRONGNUMBER_H_
int AmstrongNumber(int number);
#endif /* #ifndef __AMSTRONGNUMBER_H__ */
```

MAKE FILE

```
TEST SRC = src/AmstrongNumber.c\
test/test_AmstrongNumber.c
TEST_OUTPUT = $(BUILD)/Test_$(PROJECT_NAME).out
INC
       = -linc
PROJECT_OUTPUT = $(BUILD)/$(PROJECT_NAME).out
$(PROJECT_NAME):all
.PHONY: run clean test doc all
all: $(SRC) $(BUILD)
       gcc $(SRC) $(INC) -o $(PROJECT_OUTPUT).out
run:$(PROJECT NAME)
       ./$(PROJECT_OUTPUT).out
test:$(BUILD)
       gcc $(TEST_SRC) $(INC) -o $(TEST_OUTPUT) -lcunit
       ./$(TEST_OUTPUT)
clean:
       rm -rf $(BUILD)
$(BUILD):
       mkdir build
```