Abstract

For now: I don't consider full-join. To do: A lot:) Don't forget to demonstrate that u dont loose certain answer that "normal" evaluation would return.

1 Preliminaries

Definition 1. We denote the Set of well formed select query without agregation, full join and null test by [SQL]

We denote the Set of well formed select query without agregation and full join by $[SQL]_{\perp}$

Definition 2. Let's a Select query $Q \in [SQL]$ a tuple (Σ, R, H, P) such that

$$\Sigma \subseteq \{r_i.a_i | \exists r_i \in R \land \exists a_i \in r_i\}$$

 $P \subseteq \{p_i = r_j.a_j | r_j \notin R\}$ a set of external parameter.

R a set of relation.

H belongs to the following grammar

$$\begin{split} H ::= r_i.a_i = c_i \mid r_i.a_i \neq c_j \mid r_i.a_i = r_j.a_j \mid r_i.a_i \neq r_j.a_j \mid r_i.a_i = p_i \mid \\ exists(Q) \mid notexists(Q) \mid in(r_i.a_i,Q) \mid notin(r_i.a_i,Q) \mid \\ H \land H \mid H \lor H \end{split}$$

Definition 3. Let's a Select query $Q \in [SQL]_{\perp}$ a tuple (Σ, R, H, P) such that

$$\Sigma \subseteq \{r_i.a_i | \exists r_i \in R \land \exists a_i \in r_i\}$$

 $P \subseteq \{p_i = r_j.a_j | r_j \notin R\}$ a set of external parameter.

R a set of relation.

 H_{\perp} belongs to the following grammar

```
H_{\perp} ::= r_i.a_i = c_i \mid r_i.a_i \neq c_i \mid r_i.a_i = r_j.a_i \mid r_i.a_i \neq r_j.a_i \mid
             r_i.a_i = p_i \mid null(r_i.a_i) \mid const(r_i.a_i)
            exists(Q_{\perp}) \mid notexists(Q_{\perp}) \mid in(r_i.a_i, Q_{\perp}) \mid notin(r_i.a_i, Q_{\perp}) \mid
            H_{\perp} \wedge H_{\perp} \mid H_{\perp} \vee H_{\perp}
```

We denote $(\Sigma, R, H, P)[x]$ the query $(\Sigma, R, H, P \cup x)$

Proposition 1.

$$\llbracket SQL \rrbracket \subset \llbracket SQL \rrbracket_\bot$$

Proof. immediate i guess?

 $P = \{F1.id_film, F2.id_film\}$

```
Example 1. SELECT F1.titre, F2.titre FROM Film as F1, Film as F2 WHERE NOT EXISTS
(SELECT id_production FROM Production WHERE Production.id_film = F1.id_film
AND id_production NOT IN
(SELECT id_production FROM Production WHERE Production.id_film = F2.id_film))
and NOT EXISTS
(SELECT id_production FROM Production WHERE Production.id_film = F2.id_film
AND id_production NOT IN
(SELECT id_production FROM Production WHERE Production.id_film = F1.id_film));
Q = (\Sigma, R, H)
\Sigma = \{F1.titre, F2.titre\}
R = \{F1, F2\}
H = notexists(Q_1) \wedge notexists(Q_2)
P = \emptyset
Q_1 = (\Sigma_1, R_1, H_1)
\Sigma_1 = \{id\_production\}
R_1 = \{Production\}
H_1 = Production.id\_film = F1.id\_film \land notin(id\_production, Q_{11})
P = \{F1.id\_film, F2.id_film\}
Q_{11} = (\Sigma_{11}, R_{11}, H_{11})
\Sigma_{11} = \{id\_production\}
R_{11} = \{Production\}
H_{11} = Production.id\_film = F2.id\_film
P = \{F1.id\_film, F2.id_film\}
Q_2 = (\Sigma_2, R_2, H_2)
\Sigma_2 = \{id\_production\}
R_2 = \{Production\}
H_2 = Production.id\_film = F2.id\_film \land notin(id\_production, Q_{21})
```

2 SEMANTICS 3

```
\begin{array}{l} -\\ Q_{21} = (\Sigma_{21}, R_{21}, H_{21})\\ \Sigma_{21} = \{id\_production\}\\ R_{21} = \{Production\}\\ H_{21} = Production.id\_film = F1.id\_film\\ P = \{F1.id\_film, F2.id_film\} \end{array}
```

1.1 Syntaxic Sugar

NO BAGS FOR NOW. (Only a sketch to keep it in mind) AND WRONG

Proposition 2.

2 Semantics

2.1 $Eval_{SQL}$

Definition 4.

$$\sigma_{\Sigma}(x) = (x[r_i.a_i]|r_i.a_i \in \Sigma)$$

3 TRANSLATION

4

Definition 5.

```
Eval_{SQL}((\Sigma, R, H_1 \land H_2, P), D) = \llbracket \sigma_{\Sigma}(x)^n | x \in^n Eval_{SQL}((*, R, H_1, P), D) \land x \in^n Eval_{SQL}((*, R, H_2, P), P) \\ Eval_{SQL}((\Sigma, R, H_1 \lor H_2, P), D) = \llbracket \sigma_{\Sigma}(x)^n | x \in^n Eval_{SQL}((*, R, H_1, P), D) \lor x \in^n Eval_{SQL}((*, R, H_2, P), P) \\ Eval_{SQL}((\Sigma, R, null(r_i.a_i), P), D) = \llbracket \sigma_{\Sigma}(x)^n | x \in^n R, x[r_i.a_i] = \bot \rrbracket \\ Eval_{SQL}((\Sigma, R, const(r_i.a_i), P), D) = \{\sigma_{\Sigma}(x) | x \in R, x[r_i.a_i] \neq \bot \} \\ Eval_{SQL}((\Sigma, R, r_i.a_i = c_i, P), D) = \{\sigma_{\Sigma}(x) | x \in R, x[r_i.a_i] = c_i \} \\ Eval_{SQL}((\Sigma, R, r_i.a_i = r_j.a_j, P), D) = \{\sigma_{\Sigma}(x) | x \in R, x[r_i.a_i] = x[r_j.a_j] \land x[r_i.a_i] \neq \bot \land x[r_j.a_j] \neq \bot \} \\ Eval_{SQL}((\Sigma, R, r_i.a_i = p_i, P), D) = \{\sigma_{\Sigma}(x) | x \in R, x[r_i.a_i] = P[p_i] \land x[r_i.a_i] \neq \bot \land P[p_i] \neq \bot \} \\ Eval_{SQL}((\Sigma, R, r_i.a_i \neq c_i, P), D) = \{\sigma_{\Sigma}(x) | x \in R, x[r_i.a_i] \neq x[r_j.a_j] \land x[r_i.a_i] \neq \bot \land x[r_j.a_j] \neq \bot \} \\ Eval_{SQL}((\Sigma, R, r_i.a_i \neq r_j.a_j, P), D) = \{\sigma_{\Sigma}(x) | x \in R, x[r_i.a_i] \neq x[r_j.a_j] \land x[r_i.a_i] \neq \bot \land x[r_j.a_j] \neq \bot \} \\ Eval_{SQL}((\Sigma, R, r_i.a_i \neq p_i, P), D) = \{\sigma_{\Sigma}(x) | x \in R, x[r_i.a_i] \neq P[p_i] \land x[r_i.a_i] \neq \bot \land P[p_i] \neq \bot \} \\ Eval_{SQL}((\Sigma, R, r_i.a_i \neq p_i, P), D) = \{\sigma_{\Sigma}(x) | x \in R, x[r_i.a_i] \neq P[p_i] \land x[r_i.a_i] \neq \bot \land P[p_i] \neq \bot \} \\ Eval_{SQL}((\Sigma, R, r_i.a_i \neq p_i, P), D) = \{\sigma_{\Sigma}(x) | x \in R, x[r_i.a_i] \neq P[p_i] \land x[r_i.a_i] \neq \bot \land P[p_i] \neq \bot \} \\ Eval_{SQL}((\Sigma, R, r_i.a_i \neq p_i, P), D) = \{\sigma_{\Sigma}(x) | x \in R, x[r_i.a_i] \neq P[p_i] \land x[r_i.a_i] \neq \bot \land P[p_i] \neq \bot \} \\ Eval_{SQL}((\Sigma, R, r_i.a_i \neq p_i, P), D) = \{\sigma_{\Sigma}(x) | x \in R, x[r_i.a_i] \neq P[p_i] \land x[r_i.a_i] \neq \bot \land P[p_i] \neq \bot \} \\ Eval_{SQL}((\Sigma, R, r_i.a_i \neq p_i, P), D) = \{\sigma_{\Sigma}(x) | x \in R, x[r_i.a_i] \neq P[p_i] \land x[r_i.a_i] \neq \bot \land P[p_i] \neq \bot \} \\ Eval_{SQL}((\Sigma, R, r_i.a_i \neq p_i, P), D) = \{\sigma_{\Sigma}(x) | x \in R, x[r_i.a_i] \neq P[p_i] \land x[r_i.a_i] \neq \bot \land P[p_i] \neq \bot \} \\ Eval_{SQL}((\Sigma, R, r_i.a_i \neq p_i, P), D) = \{\sigma_{\Sigma}(x) | x \in R, x[r_i.a_i] \neq P[p_i] \land x[r_i.a_i] \neq \bot \land P[p_i] \neq \bot \} \\ Eval_{SQL}((\Sigma, R, r_i.a_i \neq p_i, P), D) = \{\sigma_{\Sigma}(x) | x \in R, x[r_i.a_i] \neq \bot \land P[p_i] \land P[r_i.a_i] \neq \bot \land P[r_i.a_i] \neq \bot \land P[r_i
```

Proposition 3.

$$\forall Q \in \llbracket SQL \rrbracket, cert_{\perp}((\Sigma, R, H, P), D) = \{x | \forall h, h(x) \in Eval_{SQL}((\Sigma, R, H, h(P)), h(D)\}$$

$$Proof. \text{ to do ! EvalSQL} = \text{EvalFO on complete database. and Q without null check.}$$

Proposition 4.

$$\forall h, \forall Q \in \llbracket SQL \rrbracket (\{y|h(y) \in Eval_{SQL}(Q, h(D))\} = \emptyset \Rightarrow Eval_{SQL}(Q, h(D)) = \emptyset)$$

$$Proof.$$

$$Eval_{SQL}(Q, h(D)) \neq \emptyset \Rightarrow \exists x \in Eval_{SQL}(Q, h(D))$$

$$As \ Eval_{SQL} \ \text{has correctness guarentee on complete databases}$$

$$\Rightarrow \exists x, x \in Cert_{\perp}(Q, h(D))$$

$$\Rightarrow \exists x, \forall g, g(x) \in Eval_{SQL}(Q, g(h(D)))$$

$$\Rightarrow \exists x, \text{especialy } g = h, h(x) \in Eval_{SQL}(Q, h(h(D)))$$

$$\Rightarrow \exists x, h(x) \in Eval_{SQL}(Q, h(D))$$

$$\Rightarrow \{y|h(y) \in Eval_{SQL}(Q, h(D))\} \neq \emptyset$$

3 Translation

$$(\Sigma, R, H, P)^{+} \to (\Sigma, R, H^{*}, P)$$
$$(\Sigma, R, H, P)^{?} \to (\Sigma, R, H^{**}, P)$$

3 TRANSLATION 5

$$(H_1 \wedge H_2)^* \rightarrow H_1^* \wedge H_2^*$$

$$(H_1 \vee H_2)^* \rightarrow H_1^* \vee H_2^*$$

$$(r_i.a_i = c_i)^* \rightarrow r_i.a_i = c_i$$

$$(r_i.a_i \neq c_i)^* \rightarrow r_i.a_i \neq c_i$$

$$(r_i.a_i = r_j.a_j)^* \rightarrow r_i.a_i = r_j.a_j$$

$$(r_i.a_i \neq r_j.a_j)^* \rightarrow r_i.a_i \neq r_j.a_j$$

$$null(r_i.a_i)^* \rightarrow null(r_i.a_i)$$

$$const(r_i.a_i)^* \rightarrow const(r_i.a_i)$$

$$exists(Q)^* \rightarrow exists(Q^+)$$

$$notexists(Q)^* \rightarrow notexists(Q^?)$$

$$in(r_i.a_i, Q)^* \rightarrow in(r_i.a_i, Q^+)$$

$$notin(r_i.a_i, Q)^* \rightarrow notin(r_i.a_i, Q^?)$$

$$(H_{1} \wedge H_{2})^{**} \to H_{1}^{**} \wedge H_{2}^{**} \\ (H_{1} \vee H_{2})^{**} \to H_{1}^{**} \vee H_{2}^{**} \\ (r_{i}.a_{i} = c_{i})^{**} \to r_{i}.a_{i} = c_{i} \vee null(r_{i}.a_{i}) \\ (r_{i}.a_{i} \neq c_{i})^{**} \to r_{i}.a_{i} \neq c_{i} \vee null(r_{i}.a_{i}) \\ (r_{i}.a_{i} = r_{j}.a_{j})^{**} \to r_{i}.a_{i} = r_{j}.a_{j} \vee null(r_{i}.a_{i}) \vee null(r_{j}.a_{j}) \\ (r_{i}.a_{i} \neq r_{j}.a_{j})^{**} \to r_{i}.a_{i} \neq r_{j}.a_{j} \vee null(r_{i}.a_{i}) \vee null(r_{j}.a_{j}) \\ null(r_{i}.a_{i})^{**} \to null(r_{i}.a_{i}) \\ const(r_{i}.a_{i})^{**} \to const(r_{i}.a_{i}) \\ exists(Q)^{**} \to exists(Q^{?}) \\ notexists(Q)^{**} \to notexists(Q^{+}) \\ in(r_{i}.a_{i},Q)^{**} \to in(r_{i}.a_{i},Q^{?}) \\ notin(r_{i}.a_{i},Q)^{**} \to notin(r_{i}.a_{i},Q^{+}) \\ \end{cases}$$

Proposition 5.

$$\forall Q \in [SQL], Eval_{SQL}(Q^+, D) \subseteq cert_{\perp}(Q, D)$$

Proposition 6.

$$\forall Q \in [SQL], posi_{\perp}(Q, D) = \{x | \exists h, h(x) \in Eval_{SQL}(Q, h(D))\} \subseteq Eval_{SQL}(Q^?, D)$$

Proof. Assume (5).

By induction \dots

```
x \in Eval_{SQL}((\Sigma, R, notexists(Q), P)^{+}, D) \Rightarrow x \in Eval_{SQL}((\Sigma, R, notexists(Q^{?}), P), D)
\Rightarrow Eval_{SQL}(Q^{?}[x], D) = \emptyset
\Rightarrow \{y | \exists h, h(y) \in Eval_{SQL}(Q[h(x)], h(D))\} = \emptyset \text{ (by 5)}
\Rightarrow \forall h, \forall y, h(y) \notin Eval_{SQL}(Q[h(x)], h(D))
\Rightarrow \forall h, \{y | h(y) \in Eval_{SQL}(Q[h(x)], h(D))\} = \emptyset
\Rightarrow \forall h, Eval_{SQL}(Q[h(x)], h(D) = \emptyset \text{ (by 3)}
\Rightarrow \forall h, h(x) \in Eval_{SQL}((\Sigma, R, notexists(Q), h(P)), h(D))
\Rightarrow x \in cert_{\perp}((\Sigma, R, notexists(Q), P), D)
```

Proof. Assume (4). By induction ...

```
x \in posi_{\perp}((\Sigma, R, notexists(Q), P), D) \Rightarrow \exists h, h(x) \in Eval_{SQL}((\Sigma, R, notexists(Q), P), h(D))
\Rightarrow \exists h, Eval_{SQL}(Q[h(x)], h(D)) = \emptyset
\Rightarrow \{y | \forall g, g(y) \in Eval_{SQL}(Q[g(x)], g(D))\} = \emptyset
\Rightarrow Eval_{SQL}(Q^{+}[x], D) = \emptyset \text{ (by 4)}
\Rightarrow x \in Eval_{SQL}(\Sigma, R, notexists(Q^{+}), P), D)
\Rightarrow x \in Eval_{SQL}(\Sigma, R, notexists(Q), P)^{?}, D)
```

4 Optimization

The translation $Q \to Q^+$ has an heavy cost has explained in the paper ..., in order to remove some useless null test we offer an optimization.

Definition 6. For each Query and nested Query we maintain a set of attributes that have to be not null in order for the query to be true resp. false we denote this set $\perp_Q^T \operatorname{resp.} \perp_Q^F$.

7

Definition 7.

$$\begin{split} & \bot_{(\Sigma,R,H_1 \land H_2,P)}^T = \bot_{(\Sigma,R,H_1,P)}^T \cup \bot_{(\Sigma,R,H_2,P)}^T \\ & \bot_{(\Sigma,R,H_1 \lor H_2,P)}^T = \bot_{(\Sigma,R,H_1,P)}^T \cap \bot_{(\Sigma,R,H_2,P)}^T \\ & \bot_{(\Sigma,R,r_i.a_i=c_i,P)}^T = \{r_i.a_i\} \\ & \bot_{(\Sigma,R,r_i.a_i\neq c_i,P)}^T = \{r_i.a_i\} \\ & \bot_{(\Sigma,R,r_i.a_i\neq r_j.a_j,P)}^T = \{r_i.a_i,r_j.a_j\} \\ & \bot_{(\Sigma,R,r_i.a_i\neq r_j.a_j,P)}^T = \{r_i.a_i,r_j.a_j\} \\ & \bot_{(\Sigma,R,r_i.a_i\neq r_j.a_j,P)}^T = \{r_i.a_i,p_i\} \\ & \bot_{(\Sigma,R,r_i.a_i\neq p_i,P)}^T = \{r_i.a_i,p_i\} \\ & \bot_{(\Sigma,R,r_i.a_i\neq p_i,P)}^T = \{r_i.a_i,p_i\} \\ & \bot_{(\Sigma,R,r_i.a_i\neq p_i,P)}^T = \emptyset \\ & \bot_{(\Sigma,R,const(r_i.a_i),P)}^T = \{r_i.a_i\} \\ & \bot_{(\Sigma,R,const(r_i.a_i),P)}^T = \{r_i.a_i\} \\ & \bot_{(\Sigma,R,const(r_i.a_i),P)}^T = \bot_{Q[?]}^T \\ & \bot_{(\Sigma,R,notexists(Q),P)}^T = \bot_{Q[?]}^T \end{split}$$

$$\begin{split} & \bot_{(\Sigma,R,H_1 \wedge H_2,P)}^F = \bot_{(\Sigma,R,H_1,P)}^F \cap \bot_{(\Sigma,R,H_2,P)}^F \\ & \bot_{(\Sigma,R,H_1 \vee H_2,P)}^F = \bot_{(\Sigma,R,H_1,P)}^F \cup \bot_{(\Sigma,R,H_2,P)}^F \\ & \bot_{(\Sigma,R,r_i.a_i=c_i,P)}^F = \emptyset \\ & \bot_{(\Sigma,R,r_i.a_i\neq c_i,P)}^F = \emptyset \\ & \bot_{(\Sigma,R,r_i.a_i=r_j.a_j,P)}^F = \emptyset \\ & \bot_{(\Sigma,R,r_i.a_i\neq r_j.a_j,P)}^F = \emptyset \\ & \bot_{(\Sigma,R,r_i.a_i\neq r_j.a_j,P)}^F = \emptyset \\ & \bot_{(\Sigma,R,r_i.a_i\neq p_i,P)}^F = \emptyset \\ & \bot_{(\Sigma,R,r_i.a_i\neq p_i,P)}^F = \emptyset \\ & \bot_{(\Sigma,R,r_i.a_i\neq p_i,P)}^F = \emptyset \\ & \bot_{(\Sigma,R,const(r_i.a_i),P)}^F = \emptyset \end{split}$$

(No projection again ... otherwise it's not as powerful as it should be : SELECT a FROM R WHERE a=b or null(B))

Proposition 7.

$$x \in Eval_{SQL}(Q, D) \Rightarrow \forall r_i.a_i \in \bot_Q^T, x^{\sigma}[r_i.a_i] \neq \bot$$

4 OPTIMIZATION

IMIZATION

8

$$x \notin Eval_{SQL}(Q, D) \Rightarrow \forall r_i.a_i \in \bot_Q^F, x^{\sigma}[r_i.a_i] \neq \bot$$

Proof. \Box

If disjunction can do better.

Definition 8.

$$nested^+(H_1 \wedge H_2) = \{H_1 \wedge H_2\} \cup nested^+(H_1) \cup nested^+(H_2)$$

$$nested^+(H_1 \vee H_2) = \{H_1 \vee H_2\} \cup nested^+(H_1) \cup nested^+(H_2)$$

$$nested^+(r_i.a_i = c_i) = \{r_i.a_i = c_i\}$$

$$nested^+(r_i.a_i \neq c_i) = \{r_i.a_i \neq c_i\}$$

$$nested^+(r_i.a_i = r_j.a_j) = \{r_i.a_i = r_j.a_j\}$$

$$nested^+(null(r_i.a_i)) = \{null(r_i.a_i)\}$$

$$nested^+(const(r_i.a_i)) = \{const(r_i.a_i)\}$$

$$nested^+(exists(Q)) = \{exists(Q)\} \cup nested^+(Q)$$

$$nested^+(notexists(Q)) = \{notexists(Q)\} \cup nested^-(Q)$$

$$nested^{-}(H_{1} \wedge H_{2}) = nested^{-}(H_{1}) \cup nested^{-}(H_{2})$$

$$nested^{-}(H_{1} \vee H_{2}) = nested^{-}(H_{1}) \cup nested^{-}(H_{2})$$

$$nested^{-}(r_{i}.a_{i} = c_{i}) = \emptyset$$

$$nested^{-}(r_{i}.a_{i} \neq c_{i}) = \emptyset$$

$$nested^{-}(r_{i}.a_{i} = r_{j}.a_{j}) = \emptyset$$

$$nested^{-}(null(r_{i}.a_{i})) = \emptyset$$

$$nested^{-}(const(r_{i}.a_{i})) = \emptyset$$

$$nested^{-}(exists(Q)) = nested^{-}(Q)$$

$$nested^{-}(notexists(Q)) = nested^{+}(Q)$$

$$nested(Q) = nested^{-}(Q) \cup nested^{+}(Q)$$

Definition 9.

$$\begin{split} notexists(Q')_Q^{\perp} &\to notexists(Q'_Q)^{\perp} \\ exists(Q')_Q^{\perp} &\to exists(Q'_Q)^{\perp} \end{split}$$

4 OPTIMIZATION

9

Definition 10.

$$(\Sigma, R, H \vee null(r_i.a_i), P)_Q^{\perp} \to (\Sigma, R, H_Q^{\perp}, P)$$

$$if \exists Q' \in nested^+(Q), (H \vee null(r_i.a_i)) \in nested(Q'), r_i.a_i \in \bot_{Q'}^T$$

$$if \exists Q' \in nested^-(Q), (H \vee null(r_i.a_i)) \in nested(Q'), r_i.a_i \in \bot_{Q'}^T$$

Proposition 8.

$$Eval_{SQL}(Q, D) = Eval_{SQL}(Q_Q^{\perp}, D)$$

Proof.

Definition 11.

$$\begin{split} (\Sigma, R, H \vee null(r_i.a_i), P)_Q^{\perp^F} &\to (\Sigma, R, H_Q^{\perp^F}, P) \\ & if \ \exists Q' \in nested^-(Q), (H \vee null(r_i.a_i)) \in nested(Q'), r_i.a_i \in \bot_{Q'}^T \\ & if \ \exists Q' \in nested^+(Q), (H \vee null(r_i.a_i)) \in nested(Q'), r_i.a_i \in \bot_{Q'}^F \end{split}$$

Proposition 9.

$$\forall Q' \in nested^+(Q), Eval(Q,D) = Eval(Q_{Q'}^\perp,D)$$

Proposition 10.

$$\forall Q' \in nested^-(Q), Eval(Q, D) = Eval(Q_{Q'}^{\perp^F}, D)$$

Proof. Assume (10).

By Induction ...

 $H_1 \wedge H_2 \in nested^+(Q)$

$$\exists r_i.a_i \in (\bot_{H_i}^T \setminus \bot_{H_i}^T) \land (H \lor null(r_i.a_i) \in nested(H_2)$$

$$\exists r_i.a_i \in (\bot_{H_1}^T \setminus \bot_{H_2}^T) \land (H \lor null(r_i.a_i) \in nested(H_2)$$
Then if $x[r_i.a_i] = \bot$, $Eval(H_{2,H_2}^T, D, x)$ might be different from $Eval(H_{2,H_1 \land H_2}^T, D, x)$