Kholle 1 filière MP Mardi 19 septembre 2023

Planche 1

- 1. Énoncer le théorème de sommation des relations de comparaison des séries numériques. Le démontrer dans le cas de la relation de prépondérance (les « petits o »).
- 2. Soit $\alpha > 0$. Pour tout entier n, on note $v_n = \arccos\left(\frac{n^{\alpha}}{1+n^{\alpha}}\right)$. Déterminer la nature de la série $\sum v_n$.
- 3. Déterminer l'ensemble des valeurs d'adhérence de la suite $(\sin(n))_{n \in \mathbb{N}}$.

Planche 2

- 1. Soit $a \in \mathbb{R}$ et $I = [a, +\infty[$. Dans ce cadre, définition d'un intégrale convergente, d'une intégrale absolument convergente. Démontrer que l'une implique l'autre.
- 2. On note pour tout entier n supérieur ou égal à 2, $u_n = \sum_{k=n}^{+\infty} \frac{(-1)^k}{\ln(k)}$.
 - (a) Pourquoi la suite *u* est -elle bien définie?
 - (b) Quelle est la nature de la série $\sum |u_n|^{\ln(n)}$?
- 3. Soit w une suite réelle strictement positive telle que la série $\sum w_n$ est convergente. On note $(R_n)_{n\in\mathbb{N}}$ la suite de ses restes.
 - (a) Montrer que pour tout $\alpha \in]0,1[$, la série $\sum \frac{w_n}{R_n^{\alpha-1}}$ est convergente
 - (b) Démontrer que la série $\sum \frac{w_n}{R_n}$ est divergente.

Planche 3

- 1. Soit $u \in \mathbb{K}^{\mathbb{N}}$. Définition des valeurs d'adhérence de la suite u. Caractérisation(s) des valeurs d'adhérence de u.
- 2. On considère une suite u réelle strictement positive, strictement croissante telle que $\lim_{n \to +\infty} u_n = +\infty$ et $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = 1$. Démontrer qu'on a l'équivalent suivant au voisinage de $+\infty$:

$$\sum_{k=1}^{n} \frac{u_k - u_{k-1}}{u_k} \sim_{n \to +\infty} \ln(u_n)$$

3. On note $(x_n)_{n\in\mathbb{N}}$ la suite définie réelle définie par $x_0\in]0,1[$ et $\forall n\in\mathbb{N}, x_{n+1}=x_n-x_n^2.$ Montrer qu'il existe un réel λ tel qu'on a le développement asymptotique suivant au voisinage de $+\infty$:

$$\frac{1}{x_n} = n + \ln(n) + \lambda + o(1)$$

Bonus pour cinq demis

Soit f une application continue non constante de \mathbb{R} dans \mathbb{R} . Montrer que l'équation différentielle y'' - y = f admet au plus une solution périodique.