

Métodos não paramétricos

Felipe Figueiredo

Discussão da aula passada

Normalidade

Transformações

paramétrio

Resumo

Aprofundament

Métodos não paramétricos

Ou: o que fazer caso seus dados não sejam normais?

Felipe Figueiredo

Instituto Nacional de Traumatologia e Ortopedia

Discussão da aula passada

Discussão da leitura obrigatória da aula passada

Métodos não paramétricos

Felipe Figueiredo

Discussão da aula Discussão da aula

Normalidade

Transformações

látodos põo

Sumário

Discussão da aula passada

- Normalidade
 - Visualização
 - Testes contra a normalidade
- Transformações
 - Transformações
- 4 Métodos não paramétricos
 - Introdução
 - Teste para 1 amostra
 - Testes para 2 amostras
 - Teste para 3 ou mais amostras
 - Correlação

Resumo

Aprofundamento

Aprofundamento

A hipótese da normalidade

- Todos os métodos que vimos até aqui presumem que os dados são normalmente distribuídos
- Desvios da normalidade precisam ser contornados¹
- Veremos duas maneiras: transformações e alternativas

Mas antes...

... como identificar essa necessidade?

¹há controvérsias:

https://www.r-bloggers.com/normality-tests-don't-do-what-you-think-they-do/

Métodos não paramétricos

> Felipe Figueiredo

Discussão da aula passada

Normalidade

Transformações

Métodos não

Resumo

Métodos não paramétricos

Felipe Figueiredo

Discussão da

Normalidade Visualização

Transformaçõe

Métodos não

Resumo

Visualização - Histograma

25

20

15

9

2

140

150

160

170

х1

Dados normais

180

190

Frequency

Métodos não paramétricos

Felipe Figueiredo

Visualização

Visualização - Histograma

40

20

10

0

10 20 30

Dados não normais

х2

40 50 60 70

Frequency 30

Métodos não paramétricos

Felipe Figueiredo

aula passada

Visualização Normalidade

Visualização - Histograma

Felipe

Visualização

Dados normais

Métodos não paramétricos

Figueiredo

Visualização - Histograma

Dados não normais

Métodos não paramétricos

Felipe Figueiredo

aula passada

Visualização

Normalidade

Resumo

Visualização - Histograma

10 20

10 20

 Métodos não paramétricos

Felipe Figueiredo

Discussão da

Visualização

Transformações

Métodos não paramétricos

Resumo

Aprofundamento

Visualização - boxplot

ON INTO

Métodos não paramétricos

Felipe Figueiredo

Discussão da

Normalidade Visualização

Transformações

Métodos não

Resumo

Aprofundamento

O Q-Q plot

 Gráfico que compara os quantis da amostra com os quantis teóricos

40 50

x2

- Adicionalmente uma reta "ideal" é sobreposta, como referência
- Dados normalmente distribuídos ficam próximos da reta

Princípio

Quanto maior o desvio da normalidade...

... maior a distância à reta

Métodos não paramétricos

Felipe Figueiredo

Discussão da

Normalida Visualização

- . ~

iransformações

paramétrico

parametrice

Sample Quantiles

Visualização - QQ plot

Theoretical Quantiles

Métodos não paramétricos

Felipe Figueiredo

Discussão da

Normalidad Visualização

Transformaçõe

Métodos não

Resumo

Métodos não

paramétricos

Felipe

Figueiredo

- Objetivo: é possível determinar se uma amostra veio de uma população normalmente distribuída?
- Resposta curta: NÃO.
- Resposta longa: podemos examinar se há evidências para "aceitar" esta hipótese²

Alguns testes contra a normalidade

- Shapiro-Wilk
- Anderson-Darling
- Kolmogorov-Smirnov

INTO

Métodos não paramétricos

> Felipe Figueiredo

Discussão da aula passada

Normalidade

Visualização

Normalidade

Transformações

Métodos não

Resumo

Aprofundament

Shapiro-Wilk – Rejeitamos a H_0 de normalidade?

INTO

Métodos não paramétricos Felipe Figueiredo

scussão da

Normalidac Visualização Normalidade

Iransformações

detodos nao aramétricos

Aprofundamento

Shapiro-Wilk – Rejeitamos a H_0 de normalidade?

Métodos não paramétricos

> Felipe Figueiredo

Discussão d aula passad

Normalidade Visualização Normalidade

Transformaçõ

Métodos não paramétricos

Resumo

²Lembre: **nunca** aceitamos uma hipótese – apenas deixamos de rejeitar *H*₀.

Transformações

INTO

Métodos não

paramétricos

Felipe

Figueiredo

Métodos não

- Podemos aplicar uma transformação nos dados, para coagi-los a se aproximar das premissas requeridas
- Transformações usuais incluem:
 - logaritmo
 - exponencial
 - raiz quadrada
 - potências
- Geralmente envolve tentativa e erro³
- Hipóteses sobre o problema ou desenho experimental ajudam

Exemplo

Métodos não paramétricos

Felipe Figueiredo

Discussão da aula passada

Normalidade

Transformaçõ

Métodos não

Resumo

Aprofundamento

Exemplo

Métodos não paramétricos

Felipe Figueiredo

Discussão da aula passada

Transformaçõe

Métodos não paramétricos

Aprofundamento

Exemplo

Métodos não paramétricos

Felipe Figueiredo

Discussão da aula passada

Transformaçõ

Transformações

Métodos não paramétricos

³Mas a transformação de Box-Cox pode ajudar!

Introdução aos métodos não paramétricos

Métodos não paramétricos

Felipe Figueiredo

Discussão da Jula passada

Normalidade

n anoioi magoc

Métodos não

Intro

2 médias 3+ amostras

Resumo

Aprofundamento

Métodos paramétricos

usam a distribuição dos dados^a...

...para possibilitar cálculos simples como média e DP.

^aGeralmente distribuição Normal

Métodos não paramétricos

Não presumem nada sobre a distribuição dos dados.

Teste para 1 amostra

- Desvios da normalidade severos impactam os testes paramétricos
- Nesses casos, tenta-se transformar os dados, se possível
- Caso não seja, deve-se usar um teste não paramétrico⁵

Teste para uma amostra

Ao invés do teste t, usar o teste de Wilcoxon (Capítulo 25)

Introdução aos métodos não paramétricos

Sem média e DP⁴, a única coisa que resta para comparar...

... é a **ordem** dos dados (*ranks*).

Métodos não paramétricos

> Felipe Figueiredo

Discussão da aula passada

Transformaçõe

Mátodos pão

paramétrico

1 amostra 2 médias 3+ amostras

Resumo

Aprofundamento

- Dependente:
 - categórica ordinal
 - numérica discreta
 - numérica contínua (não-normal)

⁴tendência central e dispersão, respectivamente

Independente: parâmetro fixo

Exemplo

escore HHS mediano ~ 70

Exemplo

escore ASA mediano \sim II

Métodos não paramétricos

Felipe Figueiredo

Discussão da

Normalidade

Transformações

paramétricos Intro

1 amostra 2 médias

Correlação

Resumo

Aprofundamento

⁵Sem transformação!

Quais são as variáveis?

Testes para 2 amostras

Métodos não paramétricos

Felipe Figueiredo

Intro

2 médias

io da

numérica discreta

numérica contínua (não-normal)

Independente:

Dependente:

categórica ordinal

categórica ordinal

Quais são as variáveis?

- numérica discreta
- numérica contínua (não-normal)

Esta relação pode ser expressa como

escore HHS tratamento ~ escore HHS controle

Dados normais

- amostras independentes ⇒ t-teste n\u00e3o pareado
- amostras pareadas ⇒ t-teste pareado

Dados não normais

- amostras independentes ⇒ Mann-Whitney (Capítulo 24)
- amostras pareadas ⇒ Wilcoxon (Capítulo 25)

Em termos práticos...

P: Estas amostras são significativamente diferentes?

Métodos não paramétricos

Felipe Figueiredo

Discussão da

lormalidade

létodos não

Intro

1 amostra 2 médias

Jorrelação

profundamento

Exemplo

- Assumindo⁶ que elas são
 - normalmente distribuídas, e
 - independentes,

poderíamos fazer um teste t não pareado.

Resultado: p-valor = 0.259

Pergunta

Isto significa que as amostras não são significativamente diferentes?

⁶pelo desenho experimental

Métodos não

paramétricos

Felipe

Figueiredo

2 médias

Métodos não paramétricos

> Felipe Figueiredo

Discussão da

Normalidade

Transformações

Métodos não paramétricos

1 amostra 2 médias

> 8+ amostras Correlação

Resumo

Novamente...

15

10

Métodos não paramétricos

Felipe Figueiredo

Discussão da aula passada

Normanuaue

Transformações

paramétr Intro

1 amostra 2 médias

3+ amostras

Resumo

Aprofundament

Histogramas

20

10

Frequency

Amostra 1

10

Х

15 20

Métodos não paramétricos

Felipe Figueiredo

Amostra 2

6

30

9

2

0

Frequency

Discussão da aula passada

Дана разована

Transformação

Métodos não

paramétrico Intro

1 amostra 2 médias

3+ amostras

Resumo

Aprofundamento

QQ-plots

2

Métodos não paramétricos

Felipe Figueiredo

Discussão da aula passada

Normalidade

Métodos não paramétricos

1 amostra 2 médias

Acumo

Aprofundamento

Mann-Whitney

0

Teste t

p-valor = 0.259 (não significativo)

- Aplicando o teste de Shapiro-Wilk em x e y
 - x: p-valor = 5.515e-16
 - y: p-valor = 5.274e-09
- Devemos rejeitar a hipótese de normalidade.
- Então o teste t não é apropriado!
- Substituto: teste de Mann-Whitney

Teste de Mann-Whitney

p-value = 0.0001346 (significativo)

Métodos não paramétricos

Felipe Figueiredo

Discussão da

Normalidade

Transformações

Métodos não

Intro 1 amostra

2 médias

Correlação

Relembrando

INTO

Métodos não

paramétricos

Felipe

Figueiredo

Intro

2 médias

3+ amostras

- Para testar a diferença nas médias de 3 ou mais amostras
 - Análise de Variâncias (ANOVA)
 - Leva em conta as variâncias entre os grupos (inter)
 - Leva em conta a variância em cada grupo (intra)
 - H_0 : Todos os grupos são =
 - H₁: pelo menos um grupo é significativamente ≠

Em termos práticos...

P: Estas amostras são significativamente diferentes?

Métodos não paramétricos

Felipe Figueiredo

Discussão da aula passada

Normalidad

Transformaçõ

Métodos não

Intro 1 amostra

2 médias 3+ amostras

Resumo

Anrofundament

Quais são as variáveis?

- Dependente:
 - categórica ordinal
 - numérica discreta
 - numérica contínua (não-normal)
- Independente:
 - grupo (categórica nominal 3+ níveis)

Esta relação pode ser expressa como

Ozônio \sim Mês

Métodos não paramétricos

Felipe Figueiredo

Discussão da

Vormalidade

Métodos não

Intro 1 amostra 2 médias

3+ amostras

Resumo

Aprofundamento

Kruskal-Wallis

ANOVA

p-valor = 0.0776 (não significativo)

- Shapiro-Wilk (Ozônio por mês (Maio Setembro):
 < 0.0001, 0.0628, 0.86689, 0.090325, < 0.0001
- Devemos rejeitar a hipótese de normalidade.
- Então o ANOVA não é apropriado!
- Substituto: teste de Kruskal-Wallis (Capítulo 30)

Teste de Kruskal-Wallis

p-value = 6.901e-06 (significativo)

Métodos não paramétricos

Felipe Figueiredo

Discussão da aula passada

Normalidade

Transformações

Intro

2 médias 3+ amostras

Recumo

5 x 6: p = 1.0000 5×7 : p = 0.0003 150 Mais quais são os meses diferentes? 5 x 8: p = 0.0012 5 x 9: p = 1.0000 100 6 x 7: p = 0.1414 8 6 x 8: p = 0.2591 0 6 x 9: p = 1.0000 7 x 8: p = 1.0000 7 x 9: p = 0.0074 8 x 9: p = 0.0325 8 Mês

Métodos não

paramétricos

Felipe

Figueiredo

Intro

Correlação

Correlação não-paramétrica

- A correlação de Pearson
 - associa dados numéricos (contínuos);
 - mede a direção e força desta associação.

Correlação de Spearman

Ao invés da correlação linear de Pearson...

... usar a correlação de ranks de Spearman (Capítulo 17).

Número de resultados no PUBMED⁷

Pós-teste de Wilcoxon

Mês x Mês (correção de Bonferroni)

Medições de qualidade do ar em NY

• t-test: 61488

ANOVA: 431252

Wilcoxon: 19881

Mann-Whitney: 25571 Kruskal-Wallis: 11943

Shapiro-Wilk: 519

Kolmongorov-Smirnoff: 0

Anderson-Darling: 49 Chi-square: 107277

OR: 221034

RR: 344996

Métodos não

paramétricos

Felipe Figueiredo

3+ amostras

Métodos não paramétricos

> Felipe Figueiredo

Resumo

⁷Levantamento feito em 2017-11-30

Resumo (teste oftálmico)

Table 37.1. Selecting a Statistical Test

	Type of Data				
Goal	Measurement (from Gaussian Population)	Rank, Score, or Measurement (from Non- Gaussian Population)	Binomial (Two Possible Outcomes)	Survival Time	
Describe one group	Mean, SD	Median, interquartile range	Proportion	Kaplan Meier survival curve	
Compare one group to a hypothetical value	One-sample t test	Wilcoxon test	Chi-square or Binomial test**	_	
Compare two unpaired groups	Unpaired t test	Mann-Whitney test	Fisher's test (chi-square for large samples)	Log-rank test or Mantel-Haenszel*	
Compare two paired groups	Paired t test	Wilcoxon test	McNemar's test	Conditional proportional hazards regression**	
Compare three or more unmatched groups	One-way ANOVA	Kruskal-Wallis test	Chi-square test	Cox proportional hazard regression*	
Compare three or more matched groups	Repeated-measures ANOVA	Friedman test	Cochrane Q**	Conditional proportional hazards regression**	
Quantify association between two variables	Pearson correlation	Spearman correlation	Contingency coefficients**		
Predict value from another measured variable	Simple linear regression or Nonlinear regression	Nonparametric regression**	Simple logistic regression*	Cox proportional hazard regression*	
Predict value from several measured or binomial variables	Multiple linear regression* or Multiple nonlinear regression**		Multiple logistic regression*	Cox proportional hazard regression*	

^{*}Only briefly mentioned in this book.

**Not discussed in this book.

Aprofundamento

Leitura obrigatória

- Capítulo 37
- Capítulo 38

Exercícios selecionados

Não há.

Leitura recomendada

- Parte VI Designing Clinical Trials
- Trechos de testes n\u00e3o param\u00e9tricos que pulamos dos caps:
 - 17
 - 24
 - 25
 - 30

Métodos não paramétricos

Felipe Figueiredo

aula passada

Aprofundamento

Resumo (agora sim)

Goal	Measurement (from Gaussian Population)	Rank, Score, or Measurement (from Non Gaussian Population)	
Describe one group	Mean, SD	Median, interquartile rang	
Compare one group to a hypothetical value	One-sample t test	Wilcoxon test	
Compare two unpaired groups	Unpaired t test	Mann-Whitney test	
Compare two paired groups	Paired t test	Wilcoxon test	
Compare three or more unmatched groups	One-way ANOVA	Kruskal-Wallis test	
Compare three or more matched groups	Repeated-measures ANOVA	Friedman test	
Quantify association between two variables	Pearson correlation	Spearman correlation	

Métodos não paramétricos

> Felipe Figueiredo

aula passada

Resumo