Ch9: Centralized Control - Position Control

Amin Fakhari, Spring 2024

0000

PID

000

Closed-loop Dynamic Equation

Consider the dynamic model of an n-DOF open-chain manipulator with no friction at the joints and no external force at the end-effector.

$$\tau = M(q)\ddot{q} + C(q, \dot{q})\dot{q} + g(q) \qquad \text{or} \qquad \frac{d}{dt} \begin{bmatrix} q \\ \dot{q} \end{bmatrix} = \begin{bmatrix} \dot{q} \\ M(q)^{-1} [\tau - C(q, \dot{q})\dot{q} - g(q)] \end{bmatrix}$$
(state-space form)

In general, a position/motion Control Law (Controller) with desired joint position $q_d(t) \in \mathbb{R}^n$, velocity $\dot{q}_d(t) \in \mathbb{R}^n$, and acceleration $\ddot{q}_d(t) \in \mathbb{R}^n$ can be expressed as a nonlinear function τ_c as $\tau = \tau_c(q, \dot{q}, q_d, \dot{q}_d, \ddot{q}_d, M(q), C(q, \dot{q}), g(q))$

Note: For practical purposes, it is desirable that the controller τ_c does not depend on the joint acceleration \ddot{q} since computing or measuring acceleration is usually highly sensitive to noise.

PD

Closed-loop Dynamic Equation (cont.)

Thus, the closed-loop dynamic equation is derived as

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) = \tau_c(q,\dot{q},q_d,\dot{q}_d,\ddot{q}_d,M(q),C(q,\dot{q}),g(q))$$

or in the state-space form as

$$\frac{d}{dt}\begin{bmatrix} \mathbf{q}_d - \mathbf{q} \\ \dot{\mathbf{q}}_d - \dot{\mathbf{q}} \end{bmatrix} = f(\mathbf{q}, \dot{\mathbf{q}}, \mathbf{q}_d, \dot{\mathbf{q}}_d, \ddot{\mathbf{q}}_d, \mathbf{M}(\mathbf{q}), C(\mathbf{q}, \dot{\mathbf{q}}), g(\mathbf{q}))$$

$$egin{aligned} oldsymbol{e} &= oldsymbol{q}_d - oldsymbol{q} \in \mathbb{R}^n, \ oldsymbol{\dot{e}} &= \dot{oldsymbol{q}}_d - \dot{oldsymbol{q}} \in \mathbb{R}^n, \ & ext{and by replacing } oldsymbol{q} ext{ with } \ oldsymbol{q}_d(t) - oldsymbol{e} ext{ and } \dot{oldsymbol{q}} ext{ with } \ oldsymbol{\dot{q}}_d(t) - \dot{oldsymbol{e}} ext{ in } oldsymbol{f} ext{:} \end{aligned}$$

$$\frac{d}{dt} \begin{bmatrix} \boldsymbol{e} \\ \dot{\boldsymbol{e}} \end{bmatrix} = \tilde{\boldsymbol{f}}(t, \boldsymbol{e}, \dot{\boldsymbol{e}})$$

In general, a nonautonomous nonlinear ODE when $q_d = q_d(t)$.

PD

Actuator Saturation

In some controllers, choosing large values for the control parameters causes a large (initial) control torque which is beyond the robot actuators capacity which are limited by maximum and minimum allowable values $au_{
m max}$, $au_{
m min}$. Therefore, the control parameters should be chosen properly.

To consider the actuator saturation limits in the simulation, we add a saturation function as follows:

$$\tau_{\text{actual}} = \text{sat}(\tau_{\text{controller}})$$

 $e_{\rm int} = e_{\rm int} + (\delta t)_{\tau} (\theta_d[i] - \overline{\theta})$ % error integral

Pseudocode for Controllers

First-order Euler Integration

(we can also use any other ODE solver like **ode45** which is based on an explicit **Runge-Kutta** (4,5) formula)

 $\theta[i+1] = \overline{\theta}$

 $\dot{\boldsymbol{\theta}}[i+1] = \dot{\overline{\boldsymbol{\theta}}}$

0000

Position Control Objective

Given a desired <u>constant</u> joint position (set-point reference) $q_d \in \mathbb{R}^n$, we wish to find joint torques/forces $\tau \in \mathbb{R}^n$ such that the joint position $q(t) \in \mathbb{R}^n$ tend to q_d accurately:

$$\lim_{t\to\infty} \mathbf{q}(t) = \mathbf{q}_d \qquad \Rightarrow \qquad \lim_{t\to\infty} \mathbf{e}(t) = \mathbf{0} \qquad \qquad \mathbf{e}(t) = \mathbf{q}_d - \mathbf{q}(t) \in \mathbb{R}^n$$
 position error

The most common position controllers:

- PD Control (or P Control Plus Velocity Feedback)
- PD Control with Gravity Compensation
- PD Control with Desired Gravity Compensation
- PID Control

0000

PD Control

(or P Control Plus Velocity Feedback)

The PD (Proportional Derivative) control law is given by

$$au = K_p e + K_v \dot{e}$$
 Since $q_d = \text{constant}$ $\tau = K_p e - K_v \dot{q}$ $e = q_d - q$

 K_p , $K_v \in \mathbb{R}^{n \times n}$ are symmetric positive definite matrices. If $K_p = \text{diag}\{K_{p,i}\}$, $K_v = \text{diag}\{K_{v,i}\}$, the controller is called PD Independent Joint Control.

This controller is the simplest (linear) controller that may be used to control robot

manipulators.

Introduction

PD Control

The closed-loop dynamic equation is derived as

PD

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) = K_p e - K_v \dot{q}$$

$$\frac{d}{dt}\begin{bmatrix} e \\ \dot{q} \end{bmatrix} = \begin{bmatrix} -\dot{q} \\ M(q)^{-1} \left(K_p e - K_v \dot{q} - C(q, \dot{q}) \dot{q} - g(q) \right) \end{bmatrix} = f(e, \dot{q}) \qquad q = q_d - e$$

The system is **autonomous** because q_d is constant.

Note: In general, this system may have several equilibrium points, and the origin $(e, \dot{q}) =$ $\mathbf{0} \in \mathbb{R}^{2n}$ is not necessarily an equilibrium point.

$$f(e,\dot{q})=0 \quad \Rightarrow \quad \dot{q}=0, \qquad K_p e - g(q_d-e)=0$$

Note: If the manipulator model does not include the gravitational torques term g(q) (e.g., those which move only on the horizontal plane), then the only equilibrium is the origin $(\boldsymbol{e}, \dot{\boldsymbol{q}}) = \mathbf{0} \in \mathbb{R}^{2n}$.

PD Control (when g(q) = 0)

To study the stability of the equilibrium we can use Lyapunov's direct method and LaSalle's Theorem to show asymptotic stability of the origin $(e, \dot{q}) = 0$.

Consider a Lyapunov function candidate as
$$V(\boldsymbol{e}, \dot{\boldsymbol{q}}) = \frac{1}{2} \dot{\boldsymbol{q}}^T \boldsymbol{M}(\boldsymbol{q}) \dot{\boldsymbol{q}} + \frac{1}{2} \boldsymbol{e}^T \boldsymbol{K}_p \boldsymbol{e} > 0$$
 (PD)

$$\dot{V}(\boldsymbol{e},\dot{\boldsymbol{q}}) = \dot{\boldsymbol{q}}^T \boldsymbol{M}(\boldsymbol{q}) \ddot{\boldsymbol{q}} + \frac{1}{2} \dot{\boldsymbol{q}}^T \dot{\boldsymbol{M}}(\boldsymbol{q}) \dot{\boldsymbol{q}} + \boldsymbol{e}^T \boldsymbol{K}_p \dot{\boldsymbol{e}} \qquad \text{Kinetic energy of the arm}$$

$$\boldsymbol{M}(\boldsymbol{q}) \ddot{\boldsymbol{q}} = \boldsymbol{K}_p \boldsymbol{e} - \boldsymbol{K}_v \dot{\boldsymbol{q}} - \boldsymbol{C}(\boldsymbol{q},\dot{\boldsymbol{q}}) \dot{\boldsymbol{q}}, \quad \dot{\boldsymbol{e}} = -\dot{\boldsymbol{q}} \quad (*)$$

$$\dot{\boldsymbol{q}}^T \left[\frac{1}{2} \dot{\boldsymbol{M}} - \boldsymbol{C} \right] \dot{\boldsymbol{q}} = \boldsymbol{0} \quad \text{(Property of dynamic model)}$$

$$\dot{V}(\boldsymbol{e},\dot{\boldsymbol{q}}) = -\dot{\boldsymbol{q}}^T \boldsymbol{K}_v \dot{\boldsymbol{q}} \leq 0 \quad \text{(NSD)}$$

Equilibrium Point Theorem

The origin $(e, \dot{q}) = 0$ is (globally) stable and the solutions e(t)and $\dot{q}(t)$ are bounded.

PD

PD Control (when q(q) = 0)

Now, we use LaSalle (invariant set) theorem to analyze the global asymptotic stability of the origin.

$$R = \{(\boldsymbol{e}, \dot{\boldsymbol{q}}) \in \mathbb{R}^{2n} : \dot{V}(\boldsymbol{e}, \dot{\boldsymbol{q}}) = 0\}$$

 $(e, \dot{q}) = 0$ is the largest invariant set in R

 \Rightarrow The origin $(e, \dot{q}) = 0$ is globally asymptotically stable for any initial condition $q(0), \dot{q}(0) \in \mathbb{R}^n$:

$$\lim_{t\to\infty} \boldsymbol{e}(t) = \mathbf{0} \qquad \lim_{t\to\infty} \dot{\boldsymbol{q}}(t) = \mathbf{0}$$

 \Rightarrow Thus, the control objective is achieved.

Note: Friction at the joints may also affect the position error.

PD Control (when $g(q) \neq 0$)

The study of unicity of the equilibrium and boundedness of solutions for a control system under PD control when $g(q) \neq 0$ is somewhat more complex than when g(q) = 0.

For robots with only revolute joints, we can prove that

- For any $K_p = K_p^T > 0$, $K_v = K_v^T > 0$, it is guaranteed that e(t) and $\dot{q}(t)$ are bounded for all initial conditions. Moreover, $\lim_{t\to\infty} \dot{q}(t) = 0$ (it does not guarantee $\lim_{t\to\infty} q(t) = q_d$ or even $\lim_{t\to\infty} q(t) = \text{constant}$).
- By choosing K_p sufficiently large, e.g., $\lambda_{\min}(K_p) > n \cdot \left(\max_{i,j,q} \left| \frac{\partial g_i(q)}{\partial q_j} \right| \right)$, then the closed-loop equation has a unique equilibrium (but not necessarily at origin).
- The error bound decreases, as $K_{v,i}$ become larger (in case $K_v = \text{diag}\{K_{v,i}\}$), however, large $K_{v,i}$ can saturate the robot actuators.
 - \Rightarrow Thus, the control objective <u>cannot</u> be achieved using PD control <u>unless</u> the desired position q_d is such that $g(q_d) = 0$ (i.e., the origin $(e, \dot{q}) = 0$ is an equilibrium).

Note: Friction at the joints may also affect the position error.

PID OOO

PD Control with Gravity Compensation

Introduction

PD

00000

PD Control with Gravity Compensation

The PD control law with gravity compensation is given by

$$\tau = K_p e + K_v \dot{e} + g(q)$$
 Since $q_d = \text{constant}$ $\dot{q}_d = 0$
$$\tau = K_p e - K_v \dot{q} + g(q)$$

 K_p , $K_v \in \mathbb{R}^{n \times n}$ are symmetric positive definite matrices.

$$e = q_d - q$$

PD Control with Gravity Compensation

The closed-loop dynamic equation is derived as

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) = K_p e - K_v \dot{q} + g(q)$$

$$\frac{d}{dt}\begin{bmatrix} \mathbf{e} \\ \dot{\mathbf{q}} \end{bmatrix} = \begin{bmatrix} -\dot{\mathbf{q}} \\ \mathbf{M}(\mathbf{q})^{-1} (\mathbf{K}_p \mathbf{e} - \mathbf{K}_v \dot{\mathbf{q}} - \mathbf{C}(\mathbf{q}, \dot{\mathbf{q}}) \dot{\mathbf{q}}) \end{bmatrix} = f(\mathbf{e}, \dot{\mathbf{q}}) \qquad \mathbf{q} = \mathbf{q}_d - \mathbf{e}$$

The system is **autonomous**, and the origin $(e, \dot{q}) = 0 \in \mathbb{R}^{2n}$ is the only equilibrium point.

Note: Using the same proof given for PD Control when g(q) = 0, we can show that the origin $(e, \dot{q}) = 0$ is globally asymptotically stable for any initial condition $q(0), \dot{q}(0) \in \mathbb{R}^n$:

$$\lim_{t\to\infty} \boldsymbol{e}(t) = \mathbf{0} \qquad \lim_{t\to\infty} \dot{\boldsymbol{q}}(t) = \mathbf{0}$$

 \Rightarrow Thus, the position control objective is achieved.

Note: Friction at the joints may also affect the position error.

PID

000

PD Control with Desired Gravity Compensation

Introduction

PD

PD Control with Desired Gravity Compensation

Implementation of the PD control with gravity compensation requires **on-line** computation of g(q). However, since the elements of g(q) involve trigonometric functions of q, its real time computation take a longer time than the computation of the 'PD-part' of the control law, especially in high sampling frequency applications. A solution is using PD Control with **Desired Gravity Compensation** which requires only **off-line** computation of $g(q_d)$:

$$\boldsymbol{\tau} = \boldsymbol{K}_{p}\boldsymbol{e} + \boldsymbol{K}_{v}\dot{\boldsymbol{e}} + \boldsymbol{g}(\boldsymbol{q}_{d}) \qquad \qquad \boldsymbol{e} = \boldsymbol{q}_{d} - \boldsymbol{q}$$

 K_p , $K_v \in \mathbb{R}^{n \times n}$ are symmetric positive definite matrices.

PD Control with Desired Gravity Compensation

The closed-loop dynamic equation is derived as

$$M(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) = K_p e - K_v \dot{q} + g(q_d)$$

$$\frac{d}{dt}\begin{bmatrix} e \\ \dot{q} \end{bmatrix} = \begin{bmatrix} -\dot{q} \\ M(q)^{-1} \left(K_p e - K_v \dot{q} - C(q, \dot{q}) \dot{q} - g(q) + g(q_d) \right) \end{bmatrix} = f(e, \dot{q})$$

$$q = q_d - e$$

The system is **autonomous** (since q_d is constant), and in general, may have multiple equilibria which the origin $(e, \dot{q}) = 0 \in \mathbb{R}^{2n}$ is always one of them:

$$f(e,\dot{q})=0 \quad \Rightarrow \quad \dot{q}=0, \qquad K_p e - g(q_d-e) + g(q_d)=0$$

PD Control with Desired Gravity Compensation

For robots with only revolute joints, we can prove that

- For any $K_p = K_p^T > 0$, $K_v = K_v^T > 0$, it is guaranteed that e(t) and $\dot{q}(t)$ are bounded for all initial conditions. Moreover, $\lim_{t \to \infty} \dot{q}(t) = \mathbf{0}$ (it does not guarantee $\lim_{t \to \infty} q(t) = q_d$ or even $\lim_{t \to \infty} q(t) = \text{constant}$).
- By choosing K_p sufficiently large, e.g., $\lambda_{\min}(K_p) > n \cdot \left(\max_{i,j,q} \left| \frac{\partial g_i(q)}{\partial q_j} \right| \right)$, then the closed-loop equation has a unique equilibrium at origin $(e,\dot{q}) = \mathbf{0}$ and it is globally asymptotically stable.

$$\lim_{t\to\infty} \boldsymbol{e}(t) = \mathbf{0} \qquad \lim_{t\to\infty} \dot{\boldsymbol{q}}(t) = \mathbf{0}$$

 \Rightarrow Thus, the position control objective is achieved.

Note: Friction at the joints may also affect the position error.

PID Control

Introduction

0000

PD

PID Control

The PID (Proportional Integral Derivative) control law is given by

$$\boldsymbol{\tau} = \boldsymbol{K}_{p}\boldsymbol{e} + \boldsymbol{K}_{v}\dot{\boldsymbol{e}} + \boldsymbol{K}_{i}\int_{0}^{t}\boldsymbol{e}(\tau)d\tau \qquad \qquad \boldsymbol{e} = \boldsymbol{q}_{d} - \boldsymbol{q}$$

 K_p , K_v , $K_i \in \mathbb{R}^{n \times n}$ (position, velocity, and integral gains) are symmetric positive definite matrices. If $K_p = \text{diag}\{K_{p,i}\}$, $K_v = \text{diag}\{K_{v,i}\}$, $K_i = \text{diag}\{K_{i,i}\}$, the controller is called PID

Independent Joint Control.

PID Control

The closed-loop dynamic equation is derived as

PD

oop dynamic equation is derived as
$$M(q)\ddot{q}+C(q,\dot{q})\dot{q}+g(q)=K_pe+K_v\dot{e}+K_i\int_0^t e(au)d au$$
 $\Rightarrow egin{cases} M(q)\ddot{q}+C(q,\dot{q})\dot{q}+g(q)=K_pe+K_v\dot{e}+K_i\dot{\xi} \ \dot{\xi}=e \end{cases}$ $q=q_d-e$

$$\frac{d}{dt} \begin{bmatrix} \boldsymbol{\xi} \\ \boldsymbol{e} \\ \dot{\boldsymbol{q}} \end{bmatrix} = \begin{bmatrix} \boldsymbol{e} \\ -\dot{\boldsymbol{q}} \\ \boldsymbol{M}(\boldsymbol{q})^{-1} \left(\boldsymbol{K}_{p} \boldsymbol{e} - \boldsymbol{K}_{v} \dot{\boldsymbol{q}} + \boldsymbol{K}_{i} \boldsymbol{\xi} - \boldsymbol{C}(\boldsymbol{q}, \dot{\boldsymbol{q}}) \dot{\boldsymbol{q}} - \boldsymbol{g}(\boldsymbol{q}) \right) \end{bmatrix} \xrightarrow{\text{equilibrium}} \begin{bmatrix} \boldsymbol{K}_{i}^{-1} \boldsymbol{g}(\boldsymbol{q}_{d}) \\ \boldsymbol{0} \\ \boldsymbol{0} \end{bmatrix}$$

Translating this equilibrium point to the origin via a suitable change of variable:

$$z = \xi - K_i^{-1} g(q_d)$$

$$\frac{d}{dt} \begin{bmatrix} \mathbf{z} \\ \mathbf{e} \\ \dot{\mathbf{q}} \end{bmatrix} = \begin{bmatrix} \mathbf{e} \\ -\dot{\mathbf{q}} \\ \mathbf{M}(\mathbf{q})^{-1} \left(\mathbf{K}_{p} \mathbf{e} - \mathbf{K}_{v} \dot{\mathbf{q}} + \mathbf{K}_{i} \mathbf{z} + \mathbf{g}(\mathbf{q}_{d}) - \mathbf{C}(\mathbf{q}, \dot{\mathbf{q}}) \dot{\mathbf{q}} - \mathbf{g}(\mathbf{q}) \right) \end{bmatrix}$$

The system is **autonomous**, and its unique equilibrium is the origin $(\boldsymbol{z}, \boldsymbol{e}, \dot{\boldsymbol{q}}) = \boldsymbol{0} \in \mathbb{R}^{3n}$.

PID Control: Tuning Method

For robots with only revolute joints, we can prove that the symmetric positive definite matrices K_p , K_i , K_v which satisfy the following relations can only guarantee achievement of the position control objective by making the origin $(z, e, \dot{q}) = 0$ locally asymptotically stable (i.e., if e(t), $\dot{q}(t)$ are "sufficiently small", $\lim_{t\to\infty} e(t) = 0$).

$$\lambda_{\max}\{K_i\} \ge \lambda_{\min}\{K_i\} > 0$$

$$\lambda_{\max}\{K_p\} \ge \lambda_{\min}\{K_p\} > n \cdot k_g$$

$$\lambda_{\max}\{K_v\} \ge \lambda_{\min}\{K_v\} > \frac{\lambda_{\max}\{K_i\}}{\lambda_{\min}\{K_p\} - k_g} \cdot \frac{\lambda_{\max}^2(M(q))}{\lambda_{\min}(M(q))}$$

$$k_g = \max_{i,j,q} \left| \frac{\partial g_i(\boldsymbol{q})}{\partial \boldsymbol{q}_j} \right|$$

Note: A system with K_p , K_i , K_v parameters which satisfy these relations does not necessarily achieve a proper settling time. It is possible to find a set of the symmetric PD matrices K_p , K_i , K_v which achieve a small settling time, while violating these relations.