Lecture 16: Martingales

Parimal Parag

1 Martingales

A martingale is a type of stochastic process whose definition formalizes the concept of a fair game.

Definition 1.1. A stochastic process $\{Z_n, n \geq 1\}$ is said to be a martingale process if

- 1. $E[|Z_n|] < \infty$, for all n.
- 2. $E[Z_{n+1}|Z_1, Z_2, \dots Z_n] = Z_n$.

Taking expectation on both sides of part 2 of the above definition, we get

$$E[Z_{n+1}] = E[Z_n],$$

and so

$$E[Z_{n+1}] = E[Z_1], \text{ for all } n.$$

Example 1.2. Let $\{X_i\}$ be a sequence of independent random variables with mean 0. Let $Z_n = \sum_{i=1}^n X_i$. Then, $\{Z_n, n \geq 1\}$ is a martingale. This is so because, $E[Z_n] = 0$ and

$$E[Z_{n+1}|Z_1, Z_2 \dots Z_n] = E[Z_n + X_{n+1}|Z_1, Z_2 \dots Z_n]$$

$$= E[Z_n|Z_1, Z_2 \dots Z_n] + E[X_{n+1}|Z_1, Z_2 \dots Z_n]$$

$$= Z_n.$$

Example 1.3. Let $\{X_i\}$ be a sequence of independent random variables with mean 1. Let $Z_n = \prod_{i=1}^n X_i$. Then, $\{Z_n, n \geq 1\}$ is a martingale. This is so because, $E[Z_n] = 1$ and

$$E[Z_{n+1}|Z_1, Z_2 \dots Z_n] = E[Z_n X_{n+1}|Z_1, Z_2 \dots Z_n]$$

$$= Z_n E[X_{n+1}|Z_1, Z_2 \dots Z_n]$$

$$= Z_n E[X_{n+1}]$$

$$= Z_n.$$

Example 1.4. Let $\{X_n\}$ be a branching process. Let $X_0 = 1$. Then,

$$X_n = \sum_{i=1}^{X_{n-1}} Z_i,$$

where Z_i represents the number of offspring of the i^{th} individual of the $(n-1)^{\text{st}}$ generation. conditioning on X_{n-1} yields, $E[X_n] = \mu^n$ where μ is the mean number of offspring per individual. Then Y_n is a martingale when

$$Y_n = X_n/\mu^n$$
.

This is true because $E[Y_n] = 1$ and

$$E[Y_{n+1}|Y_1, \dots Y_n] = \frac{1}{\mu^{n+1}} E[X_{n+1}|Y_1, \dots Y_n]$$

$$= \frac{1}{\mu^{n+1}} E[\sum_{i=1}^{X_n} Z_i|Y_1, \dots Y_n]$$

$$= \frac{1}{\mu^{n+1}} X_n E[Z_i] = \frac{X_n}{\mu^n} = Y_n.$$

Example 1.5. Let $X, Y_1, Y_2 \dots$ be arbitrary random variables such that $E[|X|] < \infty$. Then

$$Z_n = E[X|Y_1, Y_2, \dots Y_n]$$

is a martingale. The integrability condition is direct to be verified.

$$E[Z_{n+1}|Y_1, Y_2, \dots Y_n] = E[E[X|Y_1, \dots Y_{n+1}]|Y_1, \dots Y_n]$$

= $E[X|Y_1, \dots Y_n]] = Z_n.$

Thus the result follows. The above martingale is called the Doob type martingale.

Example 1.6. For any sequence of random variables $X_1, X_2 ...$, the random variables $X_i - E[X_i | X_1 ... X_{i-1}]$ have zero mean. Define

$$Z_n = \sum_{i=1}^n X_i - E[X_i | X_1, X_2, \dots X_{i-1}]$$

is a martingale provided $E[|Z_n|] < \infty$. To verify the same,

$$E[Z_{n+1}|Z_1...Z_n] = E[Z_n + X_n - E[X_n|X_1...X_{n-1}]]$$

= $Z_n + E[X_n - E[X_n|X_1...X_{n-1}]] = Z_n.$

1.1 Stopping Times

Definition 1.7. The positive integer values, possibly infinite, random variable N is said to be a random time for the process $\{Z_n\}$ if the event $\{N=n\}$ is determined by the random variables $Z_1 \dots Z_n$. If $Pr(N < \infty) = 1$, then the random time N is said to be a stopping time.

Definition 1.8. Let N be a random time for the process $\{Z_n\}$. Let

$$\bar{Z}_n = \left\{ \begin{array}{ll} Z_n & : n \le N \\ Z_N & : n > N. \end{array} \right.$$

 $\{\bar{Z}_n\}$ is called the stopped process.

Proposition 1.9. If N is a random time for the martingale $\{Z_n\}$, then the stopped process $\{\bar{Z}_n\}$ is also a martingale.

Proof. We claim that

$$\bar{Z}_n = \bar{Z}_{n-1} + 1_{N > n} (Z_n - Z_{n-1})$$

The above equation can be directly verified by considering the two cases separately viz.

- 1. $N \geq n$: $\bar{Z}_n = Z_n$.
- 2. $N < n : \bar{Z}_{n-1} = \bar{Z}_n = Z_N$

$$E[\bar{Z}_{n+1}|Z_1...\bar{Z}_n] = E[\bar{Z}_n + 1_{n \le N}(Z_n - Z_{n-1})|Z_1...\bar{Z}_n]$$

$$\stackrel{(a)}{=} \bar{Z}_n + 1_{n \le N}E[(Z_n - Z_{n-1})|Z_1...\bar{Z}_n]$$

$$= \bar{Z}_n,$$

where in (a) we have used the fact that N is a random time. Also, we have $E[\bar{Z}_n] = E[Z_1]$, for all n. Now assume that N is a stopping time. It is immediate

$$that\bar{Z}_n \to Z_N \text{ w.p } 1.$$

But is it true that

$$that E[\bar{Z}_n] \to E[Z_N] \text{ as n } \to \infty.$$

It so turns out that the above is true under some additional regularity constraints only. We state the following theorem without proof.

Theorem 1.10. If either:

- 1. \bar{Z}_n are uniformly bounded, or;
- 2. N is bounded, or;
- 3. $E[N] < \infty$, and there is an $M < \infty$ such that

$$E[|Z_{n+1} - Z_n||Z_1 \dots Z_n] < M,$$

then
$$E[\bar{Z}_n] \to E[Z_N] = E[Z_1]$$
.

Corollary 1.11. Wald's Equation: If X_i , $i \ge 1$, are independent and identically distributed iid with $E[|X|] < \infty$ and if N is a stopping time for $X_1, X_2 \dots$ with $E[N] < \infty$, then

$$E[\sum_{i=1}^{N} X_i] = E[N]E[X].$$

Proof. Let $\mu = E[X]$. Since

$$Z_n = \sum_{i=1}^n (X_i - \mu)$$

is a martingale and hence from the previous theorem,

$$E[Z_N] = E[Z_1] = 0.$$

But

$$E[Z_N] = E[\sum_{i=1}^{N} (X_i - \mu)]$$

$$= E[\sum_{i=1}^{N} (X_i) - N\mu)]$$

$$= E[\sum_{i=1}^{N} (X_i)] - E[N]\mu)].$$

Observe that condition 3 for Martingale stopping theorem to hold can be directly verified. Hence the result follows. $\hfill\Box$