1. (i)

$$I_n - I_{n+1} = \int_0^\infty \frac{1}{(1+u^2)^n} du - \int_0^\infty \frac{1}{(1+u^2)^{n+1}} du = \int_0^\infty \frac{1+u^2-1}{(1+u^2)^{n+1}} du$$
$$= \int_0^\infty \frac{u^2}{(1+u^2)^{n+1}} du$$

B1

$$= \int_{0}^{\infty} u \frac{u}{(1+u^{2})^{n+1}} du = \left[u \frac{-1}{2n(1+u^{2})^{n}} \right]_{0}^{\infty} - \int_{0}^{\infty} \frac{-1}{2n(1+u^{2})^{n}} du$$

integrating by parts

M1 A1

$$= 0 + \frac{1}{2n} \int_{0}^{\infty} \frac{1}{(1+u^2)^n} du = \frac{1}{2n} I_n$$

A1* (4)

$$I_{n+1} = I_n - \frac{1}{2n}I_n = \frac{2n-1}{2n}I_n$$
 M1

$$=\frac{(2n-1)(2n-3)...(1)}{(2n)(2n-2)...(2)}I_1 \hspace{1.5cm} \text{M1}$$

$$I_1 = \int_0^\infty \frac{1}{(1+u^2)} du = [\tan^{-1} u]_0^\infty = \frac{\pi}{2}$$
 B1

$$\frac{(2n-1)(2n-3)...(1)}{(2n)(2n-2)...(2)} = \frac{(2n)(2n-1)(2n-2)(2n-3)...(2)(1)}{[(2n)(2n-2)...(2)]^2} = \frac{(2n)!}{[2^n n!]^2} = \frac{(2n)!}{2^{2n}(n!)^2}$$
 M1

Thus
$$I_{n+1} = \frac{(2n)!}{2^{2n}(n!)^2} \frac{\pi}{2} = \frac{(2n)!\pi}{2^{2n+1}(n!)^2}$$
 A1*

(ii)

$$J = \int_{0}^{\infty} f((x - x^{-1})^{2}) dx = \int_{0}^{0} f((u^{-1} - u)^{2}) . -u^{-2} du = \int_{0}^{\infty} x^{-2} f((x - x^{-1})^{2}) dx$$

using the substitution $u=x^{-1}$, $\frac{du}{dx}=-x^{-2}$ and then the substitution u=x , $\frac{du}{dx}=1$ M1A1*

$$2J = \int_{0}^{\infty} f((x - x^{-1})^{2}) dx + \int_{0}^{\infty} x^{-2} f((x - x^{-1})^{2}) dx = \int_{0}^{\infty} f((x - x^{-1})^{2}) (1 + x^{-2}) dx$$

So
$$J = \frac{1}{2} \int_0^\infty f((x - x^{-1})^2) (1 + x^{-2}) dx$$
 M1A1*

Using the substitution $u = x - x^{-1}$, $\frac{du}{dx} = 1 + x^{-2}$,

$$J = \frac{1}{2} \int_0^\infty f((x - x^{-1})^2) (1 + x^{-2}) dx = \frac{1}{2} \int_{-\infty}^\infty f(u^2) du = \int_0^\infty f(u^2) du$$
 M1A1* (6)

$$\int_0^\infty \frac{x^{2n-2}}{(x^4-x^2+1)^n} dx = \int_0^\infty \frac{x^{-2}}{(x^2-1+x^{-2})^n} dx = \int_0^\infty \frac{x^{-2}}{((x-x^{-1})^2+1)^n} dx$$
 M1A1

$$=\int_0^\infty \frac{1}{(u^2+1)^n} du$$
 M1

$$\int_0^\infty \frac{x^{2n-2}}{(x^4-x^2+1)^n} dx = \int_0^\infty \frac{1}{(u^2+1)^n} du = I_n$$
 M1

$$=\frac{(2(n-1))!\pi}{2^{2(n-1)+1}((n-1)!)^2} = \frac{(2n-2)!\pi}{2^{2n-1}((n-1)!)^2}$$
 A1 (5)

$$m = 1000$$
 B1

If
$$n \ge 1000$$
, then $1000 \le n$, so $1000n \le n^2$, i.e. $(1000n) \le (n^2)$ M1A1 (4)

E. G. Let
$$s_n=1$$
 and $t_n=2$ for n odd, and $s_n=2$ and $t_n=1$ for n even.

Then
$$\not\exists m$$
 for which for $n \geq m$, $s_n \leq t_n$, nor $t_n \leq s_n$

So it is not the case that
$$(s_n) \leq (t_n)$$
 , but nor is it the case that $(t_n) \leq (s_n)$

$$(s_n) \leq (t_n)$$
 means that there exists a positive integer, say $\,m_1$, for which for $\,n \geq m_1\,$, $\,s_n \leq t_n$.
 E1

$$(t_n) \leq (u_n)$$
 means that there exists a positive integer, say m_2 , for which for $n \geq m_2$, $t_n \leq u_n$. F1

Then if
$$m = \max(m_1, m_2)$$
,

for
$$n \ge m$$
, $s_n \le t_n \le u_n$, and so $(s_n) \le (u_n)$

$$m=4$$

Assume
$$k^2 \le 2^k$$
 for some value $k \ge 4$.

Then
$$(k+1)^2 = \left(\frac{k+1}{k}\right)^2 k^2 = \left(1 + \frac{1}{k}\right)^2 k^2 \le \left(1 + \frac{1}{4}\right)^2 k^2 = \frac{25}{16}k^2 < 2k^2 \le 2 \times 2^k = 2^{k+1}$$

M1A1

$$4^2 = 2^4$$
 B1

so by the principle of mathematical induction, $n^2 \le 2^n$ for $n \ge 4$, and thus $(n^2) \le (2^n)$ A1 (7)

3. (i)

Symmetry about initial line

Two branches G1

Shape and labelling G1 (3)

If $|r - a \sec \theta| = b$, then $r - a \sec \theta = b$ or $r - a \sec \theta = -b$

So $r = a \sec \theta + b$ or $r = a \sec \theta - b$ M1A1

If $\sec \theta < 0$, $a \sec \theta + b < -a + b < 0$ as a > b and $a \sec \theta - b < -a - b < 0$ as a and b are both positive, and thus in both cases, r < 0 which is not permitted.

G1

If $\sec \theta > 0$, $a \sec \theta + b > a + b > 0$ and $a \sec \theta - b > a - b > 0$ giving r > 0

so $\sec \theta > 0$ as required. B1 (4)

So $r=a\sec\theta\pm b$, thus points satisfying (*) lie on a certain conchoid of Nicomedes with A being the pole (origin),

d being b,

and L being the line $r = a \sec \theta$. B1 (3)

(ii)

Symmetry about initial line G1

Two branches G1

Loop, shape and labelling G1

If a < b, then the curve has two branches, $r = a \sec \theta + b$ with $\sec \theta > 0$ and $r = a \sec \theta + b$ with $\sec \theta < 0$, the endpoints of the loop corresponding to $\sec \theta = \frac{-b}{a}$. B1 (4)

In the case $\ a=1$ and $\ b=2$, $\sec\theta=\frac{-2}{1}=-2$ so $\ \theta=\pm\frac{2\pi}{3}$

Area of loop

$$=2\times\frac{1}{2}\int_{\frac{2\pi}{2}}^{\pi}(\sec\theta+2)^2d\theta$$
 M1A1

$$= \int_{\frac{2\pi}{3}}^{\pi} \sec^2 \theta + 4 \sec \theta + 4 d\theta = [\tan \theta + 4 \ln|\sec \theta + \tan \theta| + 4\theta]_{\frac{2\pi}{3}}^{\pi} \quad \mathbf{M1A1}$$

$$= 4\pi - \left(-\sqrt{3} + 4\ln\left|-2 - \sqrt{3}\right| + \frac{8\pi}{3}\right) = \frac{4\pi}{3} + \sqrt{3} - 4\ln\left|2 + \sqrt{3}\right|$$
 M1A1 (6)

4. (i)
$$y = z^3 + az^2 + bz + c$$
 is continuous.

For
$$z \to -\infty$$
, $y \to -\infty$ and for $z \to \infty$, $y \to \infty$.

So the sketch of this graph must be one of the following:-

B1

Hence, it must intersect the z axis at least once, and so there is at least one real root of

$$z^3 + az^2 + bz + c = 0$$
 B1 (3)

(ii)
$$z^3 + az^2 + bz + c = (z - z_1)(z - z_2)(z - z_3)$$
 M1

Thus
$$a = (-z_1 - z_2 - z_3) = -S_1$$

$$b = (z_2 z_3 + z_3 z_1 + z_1 z_2) = \frac{(z_1 + z_2 + z_3)^2 - (z_1^2 + z_2^2 + z_3^2)}{2} = \frac{S_1^2 - S_2}{2}$$
A1

and, as
$${z_1}^3 + a{z_1}^2 + b{z_1} + c = 0$$
 , ${z_2}^3 + a{z_2}^2 + b{z_2} + c = 0$, ${z_3}^3 + a{z_3}^2 + b{z_3} + c = 0$

adding these three equations we have,

$$(z_1^3 + z_2^3 + z_3^3) + a(z_1^2 + z_2^2 + z_3^2) + b(z_1 + z_2 + z_3) + 3c = 0$$
 M1

(Alternatively,

$$(z_1 + z_2 + z_3)^3 =$$

$$({z_1}^3 + {z_2}^3 + {z_3}^3) + 3({z_1}^2 z_2 + {z_2}^2 z_3 + {z_3}^2 z_1 + {z_1}^2 z_3 + {z_2}^2 z_1 + {z_3}^2 z_2) + 6z_1 z_2 z_3$$

$$(z_1^2 + z_2^2 + z_3^2)(z_1 + z_2 + z_3) = (z_1^3 + z_2^3 + z_3^3) + (z_1^2 z_2 + z_2^2 z_3 + z_3^2 z_1 + z_1^2 z_3 + z_2^2 z_1 + z_3^2 z_2)$$

So
$$S_3 - S_1 S_2 + \frac{S_1^2 - S_2}{2} S_1 + 3c = 0$$
 M1

Thus
$$6c = (3S_1S_2 - S_1^3 - 2S_3)$$
 A1* (6)

(iii) Let
$$z_k = r_k(\cos \theta_k + i \sin \theta_k)$$
 for $k = 1, 2, 3$

Then $z_k^2 = r_k^2(\cos 2\theta_k + i \sin 2\theta_k)$ and $z_k^3 = r_k^3(\cos 3\theta_k + i \sin 3\theta_k)$ by de Moivre M1

$$\sum_{k=1}^{3} r_k \sin \theta_k = 0$$

$$\sum_{k=1}^{3} r_k^2 \sin 2\theta_k = 0$$

$$\sum_{k=1}^{3} r_k^3 \sin 3\theta_k = 0$$

$$Im\left(\sum_{k=1}^{3} z_k\right) = 0$$

$$Im\left(\sum_{k=1}^{3} z_k^2\right) = 0$$

$$Im\left(\sum_{k=1}^{3} z_k^3\right) = 0$$

and so S_1 , S_2 , and S_3 are real ,

M1

and therefore so are a , b , and c

A1

Hence, as z_1 , z_2 , and z_3 are the roots of $z^3+az^2+bz+c=0$ with a, b, and c real, by part (i), at least one of z_1 , z_2 , and z_3 is real.

So for at least one value of k , $r_k(\cos\theta_k+i\sin\theta_k)$ is real and thus, $\sin\theta_k=0$,

and as $-\pi < \theta_k < \pi$, $\theta_k = 0$ as required. A1 (6)

If $\theta_1=0$ then z_1 is real. z_2 and z_3 are the roots of $(z-z_2)(z-z_3)=0$

which is $z^2 + (-z_2 - z_3)z + z_2z_3 = 0$ (say $z^2 + pz + q = 0$)

 $p=-z_2-z_3=a+z_1$ and $q=z_2z_3=-rac{c}{z_1}$ and so the quadratic of which z_2 and z_3 are the roots has real coefficients. Thus z_2 , $z_3=rac{-p\pm\sqrt{p^2-4q}}{2}$. ($z_1\neq 0$ because $r_k>0$)

If
$$p^2 - 4q < 0$$
, M1

Thus $\cos \theta_2 = \cos \theta_3$, and so $\theta_2 = \pm \theta_3$, as $-\pi < \theta_k < \pi$.

But
$$\sin \theta_2 = -\sin \theta_3$$
 and so $\theta_2 = -\theta_3$.

If $p^2-4q\geq 0$, then z_2 and z_3 are real roots, so $\sin\theta_2=\sin\theta_3=0$, and thus $\theta_2=\theta_3=0$, so $\theta_2=-\theta_3$.

5. (i) Having assumed that $\sqrt{2}$ is rational (step 1), $\sqrt{2} = p/q$, where $p, q \in \mathbb{Z}, q \neq 0$ B1

Thus from the definition of S (step 2), as $q \in \mathbb{Z}$ and $\sqrt{2} = q \times p/q = p \in \mathbb{Z}$, so $q \in S$ proving step 3. B1 (2)

If $k \in S$, then k is an integer and $k\sqrt{2}$ is an integer.

So
$$(\sqrt{2}-1)k = k\sqrt{2}-k$$
 is an integer,

and $(\sqrt{2}-1)k\sqrt{2}=2k-k\sqrt{2}$ which is an integer and so $(\sqrt{2}-1)k\in S$ proving step 5. **B1 (3)**

 $1 < \sqrt{2} < 2$ and so **M1**

$$0 < \sqrt{2} - 1 < 1$$
, and thus $0 < (\sqrt{2} - 1)k < k$

and thus this contradicts step 4 that k is the smallest positive integer in S as $(\sqrt{2}-1)k$ has been shown to be a smaller positive integer and is in S.

(ii) If
$$2^{2/3}$$
 is rational, then $2^{2/3} = p/q$, where $p, q \in \mathbb{Z}, q \neq 0$

So
$$\left(2^{2/3}\right)^2 = {p \choose q}^2$$
 , that is $2^{4/3} = {p^2 \choose q^2}$, which can be written $2 \times 2^{1/3} = {p^2 \choose q^2}$ M1

and hence $2^{1/3} = p^2/2q^2$ proving that $2^{1/3}$ is rational. A1

If $2^{1/3}$ is rational, then $2^{1/3} = p/q$, where $p, q \in \mathbb{Z}, q \neq 0$

and so $2^{2/_3} = p^2/_{q^2}$ proving that $2^{2/_3}$ is rational and that $2^{1/_3}$ is rational only if $2^{2/_3}$ is rational. A1 (4)

Assume that $2^{1/3}$ is rational.

Define the set T to be the set of positive integers with the following property: n is in T if and only if $n2^{1/3}$ and $n2^{2/3}$ are integers.

The set T contains at least one positive integer as if $2^{1/_3}=p/_q$, where $p,q\in\mathbb{Z}$, $q\neq 0$, then $q^22^{1/_3}=q^2\times p/_q=pq\in\mathbb{Z}$ and $q^22^{2/_3}=q^2\times p^2/_{q^2}=p^2\in\mathbb{Z}$, so $q^2\in T$. M1A1

Define t to be the smallest positive integer in T. Then $t2^{1/3}$ and $t2^{2/3}$ are integers. **B1**

Consider $t\left(2^{2/3}-1\right)$. $t\left(2^{2/3}-1\right)=t2^{2/3}-t$ which is the difference of two integers and so is itself an integer. $t\left(2^{2/3}-1\right)\times 2^{1/3}=2t-t2^{1/3}$ which is an integer,

and $t(2^{2/3}-1)\times 2^{2/3}=2^{4/3}t-t2^{2/3}=2\times 2^{1/3}t-t2^{2/3}$ which is an integer.

Thus $t(2^{2/3}-1)$ is in T. M1A1

 $1 < 2^{2/_3} < 2$ and so $0 < 2^{2/_3} - 1 < 1$, and thus $0 < t\left(2^{2/_3} - 1\right) < t$, and thus this contradicts that t is the smallest positive integer in T as $t\left(2^{2/_3} - 1\right)$ has been shown to be a smaller positive integer and is in T.

6. (i)
$$w, z \in \mathbb{R} \implies u, v \in \mathbb{R}$$

B1

For $w, z \in \mathbb{R}$, we require to solve w + z = u, $w^2 + z^2 = v$ M1

$$w^{2} + (u - w)^{2} = v$$

$$2w^{2} - 2uw + (u^{2} - v) = 0$$

$$w = \frac{2u \pm \sqrt{4u^{2} - 8u^{2} + 8v}}{4} = \frac{u \pm \sqrt{2v - u^{2}}}{2}$$

$$z = \frac{u \mp \sqrt{2v - u^{2}}}{2}$$

M1A1

So for , $z \in \mathbb{R}$, as u = w + z must be real, $v = w^2 + z^2$ must be real, and $2v - u^2 \ge 0$

i.e.
$$u^2 \le 2v$$
 B1* (5)

(ii)
$$u = w + z \implies u^2 = w^2 + z^2 + 2wz$$
 so if $w^2 + z^2 - u^2 = -\frac{2}{3}$, then $-2wz = -\frac{2}{3}$

so
$$3wz = 1$$

M1A1

$$w^3 + z^3 = (w + z)(w^2 + z^2 - wz) = u(u^2 - 3wz) = u(u^2 - 1)$$

M1A1

Thus if
$$w^3 + z^3 - \lambda u = -\lambda$$
, $u(u^2 - 1) = \lambda(u - 1)$

M1A1

Thus
$$(u-1)(u(u+1) - \lambda) = 0$$
,

M1

$$(u-1)(u^2+u-\lambda)=0$$

M1A1

Thus
$$u=1$$
 or $u=\frac{-1\pm\sqrt{1+4\lambda}}{2}$

So as $\lambda \in \mathbb{R}$ and $\lambda > 0$, the values of u are real. **B1**

There are three distinct values of u unless $\frac{-1\pm\sqrt{1+4\lambda}}{2}=1$ in which case $\pm\sqrt{1+4\lambda}=3$, i.e. $\lambda=2$

M1A1 (12)

For $w,z\in\mathbb{R}$, from (i) we require $u\in\mathbb{R}$ which it is, $u^2-\frac{2}{3}\in\mathbb{R}$ which it is, and $u^2\leq 2\left(u^2-\frac{2}{3}\right)$ in other words $u^2\geq\frac{4}{3}$.

So w and z need not be real. A counterexample would be u=1

for then w+z=1, $w^2+z^2=\frac{1}{3}$, so $w^2+(1-w)^2=\frac{1}{3}$, i.e. $2w^2-2w+\frac{2}{3}=0$ in which case the discriminant is $-\frac{4}{3}<0$ so $w\notin\mathbb{R}$.

7.
$$D^2 x^a = D(D(x^a)) = D\left(x \frac{d}{dx}(x^a)\right) = D(xax^{a-1})$$
 M1

$$= D(ax^a) = x \frac{d}{dx}(ax^a) = xa^2x^{a-1} = a^2x^a$$
 M1A1 (3)

(i) Suppose $D^k P(x)$ is a polynomial of degree r i.e. $D^k P(x) = a_r x^r + a_{r-1} x^{r-1} + \dots + a_0$ for some integer k .

Then
$$D^{k+1}P(x) = D(a_rx^r + a_{r-1}x^{r-1} + \dots + a_0) = x\frac{d}{dx}(a_rx^r + a_{r-1}x^{r-1} + \dots + a_0)$$

$$= x(ra_rx^{r-1} + (r-1)a_{r-1}x^{r-2} + \dots + a_1) = ra_rx^r + (r-1)a_{r-1}x^{r-1} + \dots + a_1x$$

which is a polynomial of degree r.

M1A1

Suppose $P(x) = b_r x^r + b_{r-1} x^{r-1} + \dots + b_0$, then

$$DP(x) = x \frac{d}{dx} (b_r x^r + b_{r-1} x^{r-1} + \dots + b_0) = r b_r x^r + (r-1) b_{r-1} x^{r-1} + \dots + b_1 x$$
 so the result is true for $n=1$, M1A1

and we have shown that if it is true for n=k, it is true for n=k+1. Hence by induction, it is true for any positive integer . B1 (6)

(ii) Suppose $D^k(1-x)^m$ is divisible by $(1-x)^{m-k}$ i.e. $D^k(1-x)^m=f(x)(1-x)^{m-k}$ for some integer k, with k < m-1.

Then
$$D^{k+1}(1-x)^m = D(f(x)(1-x)^{m-k}) = x \frac{d}{dx}(f(x)(1-x)^{m-k})$$

$$= x \left(f'^{(x)} (1-x)^{m-k} - (m-k) f(x) (1-x)^{m-k-1} \right)$$

$$=x(1-x)^{m-k-1}\left(f'^{(x)}(1-x)-(m-k)f(x)\right)$$
 which is divisible by $(1-x)^{m-(k+1)}$. M1A1

$$D(1-x)^m = x \frac{d}{dx}((1-x)^m) = -mx(1-x)^{m-1}$$
 so result is true for $n = 1$. M1A1

We have shown that if it is true for n=k , it is true for n=k+1 . Hence by induction, it is true for any positive integer < m . B1 (6)

(iii)

$$(1-x)^m = \sum_{r=0}^m {m \choose r} (-x)^r = \sum_{r=0}^m (-1)^r {m \choose r} x^r$$
 M3

So

$$D^{n}(1-x)^{m} = \sum_{r=0}^{m} (-1)^{r} {m \choose r} D^{n} x^{r} = \sum_{r=0}^{m} (-1)^{r} {m \choose r} r^{n} x^{r}$$
 M1A1

But by (ii), $D^n(1-x)^m$ is divisible by $(1-x)^{m-n}$ and so $D^n(1-x)^m=g(x)(1-x)^{m-n}$, and thus if x=1, $D^n(1-x)^m=0$, and hence

$$\sum_{r=0}^{m} (-1)^r {m \choose r} r^n = 0$$
 M1A1* (5)

8. (i)
$$x = r \cos \theta \implies \frac{dx}{d\theta} = -r \sin \theta + \frac{dr}{d\theta} \cos \theta$$
 M1A1

and
$$y = r \sin \theta \implies \frac{dy}{d\theta} = r \cos \theta + \frac{dr}{d\theta} \sin \theta$$
 M1A1

Thus
$$(y+x)\frac{dy}{dx} = y-x$$
 becomes $(r\sin\theta + r\cos\theta)\frac{r\cos\theta + \frac{dr}{d\theta}\sin\theta}{-r\sin\theta + \frac{dr}{d\theta}\cos\theta} = r\sin\theta - r\cos\theta$ M1

That is
$$(\sin \theta + \cos \theta) \left(r \cos \theta + \frac{dr}{d\theta} \sin \theta \right) = (\sin \theta - \cos \theta) \left(-r \sin \theta + \frac{dr}{d\theta} \cos \theta \right)$$

as
$$r > 0$$
, $r \neq 0$

Multiplying out and collecting like terms gives

$$r(\cos^2\theta + \sin^2\theta) + \frac{dr}{d\theta}(\sin^2\theta + \cos^2\theta) = 0$$

which is
$$r + \frac{dr}{d\theta} = 0$$
 . M1A1* (7)

So
$$re^{\theta} + \frac{dr}{d\theta}e^{\theta} = 0$$
 M1

and thus
$$re^{\, heta} = k$$
 ,

$$r = ke^{-\theta}$$
 A1

G1 (4)

(or alternatively $\int \frac{1}{r} dr = \int -d\theta$ M1 so $\ln |r| = -\theta + c$ A1 and hence $r = ke^{-\theta}$ A1)

(ii)
$$(y+x-x(x^2+y^2))\frac{dy}{dx} = y-x-y(x^2+y^2)$$

becomes
$$(r\sin\theta + r\cos\theta - r^3\cos\theta)\frac{r\cos\theta + \frac{dr}{d\theta}\sin\theta}{-r\sin\theta + \frac{dr}{d\theta}\cos\theta} = r\sin\theta - r\cos\theta - r^3\sin\theta$$

that is

$$(\sin\theta + \cos\theta - r^2\cos\theta)\left(r\cos\theta + \frac{dr}{d\theta}\sin\theta\right) = (\sin\theta - \cos\theta - r^2\sin\theta)\left(-r\sin\theta + \frac{dr}{d\theta}\cos\theta\right)$$

Multiplying out and collecting like terms gives

$$r(\cos^2\theta + \sin^2\theta - r^2(\cos^2\theta + \sin^2\theta)) + \frac{dr}{d\theta}(\sin^2\theta + \cos^2\theta) = 0 \quad \mathbf{M1}$$

which is
$$r - r^3 + \frac{dr}{d\theta} = 0$$
 .

Α1

$$\int \frac{1}{r^3 - r} dr = \int d\theta$$

$$\int \frac{1}{r^3 - r} dr = \int \frac{1}{r(r^2 - 1)} dr = \int \frac{1}{r(r - 1)(r + 1)} dr = \int d\theta$$

So
$$\int d\theta = \int \frac{1/2}{r-1} + \frac{-1}{r} + \frac{1/2}{r+1} dr$$

Δ1

$$\theta + k = \frac{1}{2} \ln \left| \frac{(r-1)(r+1)}{r^2} \right|$$

A1

So

$$\left|\frac{r^2 - 1}{r^2}\right| = Ce^{2\theta}$$

with C>0

$$r^2 = \frac{1}{1 \mp Ce^{2\theta}}$$

that is

$$r^2 = \frac{1}{1 + Ae^{2\theta}}$$

A1*

G1 G1 G1 (9)

9. If the initial position of P is α , then at time α , α , α , so conserving energy,

$$\frac{1}{2}mv^2 = \frac{1}{2}m\dot{x}^2 + \frac{\lambda}{2a}\left(\sqrt{a^2 + x^2} - a\right)^2$$

M1 A1 A1

Thus,

$$\dot{x}^2 = v^2 - \frac{\lambda}{ma} \left(\sqrt{a^2 + x^2} - a \right)^2$$

M1

i.e.

$$\dot{x}^2 = v^2 - k^2 \left(\sqrt{a^2 + x^2} - a \right)^2$$

A1* (5)

The greatest value, x_0 , attained by x , occurs when $\dot{x}=0$.

Thus
$$v^2 = k^2 \left(\sqrt{a^2 + x_0^2} - a \right)^2$$

So $\sqrt{a^2+{x_0}^2}-a=rac{v}{k}$ (negative root discounted as all quantities are positive)

Thus

$$x_0^2 = \left(\frac{v}{k} + a\right)^2 - a^2 = \frac{v^2}{k^2} + \frac{2av}{k}$$

and

$$x_0 = \sqrt{\frac{v^2}{k^2} + \frac{2av}{k}}$$

M1 A1 (3)

As

$$\dot{x}^2 = v^2 - k^2 \left(\sqrt{a^2 + x^2} - a \right)^2$$

differentiating with respect to t

$$2\dot{x}\ddot{x} = -2k^2\left(\sqrt{a^2 + x^2} - a\right)\frac{1}{2}(a^2 + x^2)^{\frac{-1}{2}}2x\dot{x}$$

M1 A1

Thus

$$\ddot{x} = -xk^2 \frac{\left(\sqrt{a^2 + x^2} - a\right)}{\sqrt{a^2 + x^2}}$$

A1

So when $x = x_0$, the acceleration of P is

$$-x_0 k^2 \frac{\frac{v}{k}}{\frac{v}{k} + a} = -\sqrt{\frac{v^2}{k^2} + \frac{2av}{k}} k^2 \frac{\frac{v}{k}}{\frac{v}{k} + a} = -\frac{kv\sqrt{v^2 + 2akv}}{v + ak}$$

M1 A1 (5)

$$\dot{x} = \left[v^2 - k^2 \left(\sqrt{a^2 + x^2} - a\right)^2\right]^{\frac{1}{2}}$$

That is

$$\frac{dx}{dt} = \left[v^2 - k^2 \left(\sqrt{a^2 + x^2} - a\right)^2\right]^{\frac{1}{2}}$$

and thus

$$\int_{0}^{\tau/4} dt = \int_{0}^{x_{0}} \frac{1}{\left[v^{2} - k^{2}\left(\sqrt{a^{2} + x^{2}} - a\right)^{2}\right]^{\frac{1}{2}}} dx$$

where τ is the period.

M1 A1

So

$$\tau = 4 \int_{0}^{x_0} \frac{1}{\left[v^2 - k^2 \left(\sqrt{a^2 + x^2} - a\right)^2\right]^{\frac{1}{2}}} dx$$

$$\tau = \frac{4}{v} \int_{0}^{\sqrt{\frac{v^{2}}{k^{2}}} + \frac{2av}{k}} \frac{1}{\left[1 - \frac{k^{2}(\sqrt{a^{2} + x^{2}} - a)^{2}}{v^{2}}\right]^{\frac{1}{2}}} dx$$

Let

$$u^2 = \frac{k\left(\sqrt{a^2 + x^2} - a\right)}{v}$$

B1

then

$$a^2 + x^2 = \left(\frac{vu^2}{k} + a\right)^2$$

and so

$$x^2 = \frac{v^2 u^4 + 2kavu^2}{k^2}$$

$$x = \sqrt{2kav} \frac{u}{k} \left(1 + \frac{v}{2ka} u^2 \right)^{\frac{1}{2}} \approx \sqrt{2kav} \frac{u}{k}$$

as $v \ll ka$

Thus

$$\frac{dx}{du} \approx \frac{1}{k} \sqrt{2kav}$$

M1A1

and so

$$\tau \approx \frac{4}{v} \int_{0}^{1} \frac{1}{\sqrt{1 - u^{4}}} \frac{1}{k} \sqrt{2kav} du = \sqrt{\frac{32a}{kv}} \int_{0}^{1} \frac{1}{\sqrt{1 - u^{4}}} du$$

as required. M1 A1* (7)

10. The position vector of the upper particle is

$$\begin{pmatrix} x + a \sin \theta \\ y + a \cos \theta \end{pmatrix}$$

B1 B1

so differentiating with respect to time, its velocity is

$$\begin{pmatrix} \dot{x} + a \,\dot{\theta} \cos\theta \\ \dot{y} - a \,\dot{\theta} \sin\theta \end{pmatrix}$$

E1* (3)

Its acceleration, by differentiating with respect to time, is thus

$$\begin{pmatrix} \ddot{x} + a \ddot{\theta} \cos \theta - a \dot{\theta}^2 \sin \theta \\ \ddot{y} - a \ddot{\theta} \sin \theta - a \dot{\theta}^2 \cos \theta \end{pmatrix}$$

M1 A1 A1

so by Newton's second law resolving horizontally and vertically

$$\begin{pmatrix} -T\sin\theta \\ -T\cos\theta - mg \end{pmatrix} = m \begin{pmatrix} \ddot{x} + a\,\ddot{\theta}\cos\theta - a\dot{\theta}^{2}\sin\theta \\ \ddot{y} - a\,\ddot{\theta}\sin\theta - a\dot{\theta}^{2}\cos\theta \end{pmatrix}$$

M1 A1

That is

$$m\begin{pmatrix} \ddot{x} + a \ddot{\theta} \cos \theta - a \dot{\theta}^2 \sin \theta \\ \ddot{y} - a \ddot{\theta} \sin \theta - a \dot{\theta}^2 \cos \theta \end{pmatrix} = -T \begin{pmatrix} \sin \theta \\ \cos \theta \end{pmatrix} - mg \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

The other particle's equation is

$$m\begin{pmatrix} \ddot{x} - a \ddot{\theta} \cos \theta + a \dot{\theta}^2 \sin \theta \\ \ddot{y} + a \ddot{\theta} \sin \theta + a \dot{\theta}^2 \cos \theta \end{pmatrix} = T\begin{pmatrix} \sin \theta \\ \cos \theta \end{pmatrix} - mg\begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

B1 (6)

Adding these two equations we find

$$2m\begin{pmatrix}\ddot{x}\\\ddot{y}\end{pmatrix} = -2mg\begin{pmatrix}0\\1\end{pmatrix}$$

i.e. $\ddot{x}=0$ and $\ddot{y}=-g$

M1 A1*

Thus

$$m \begin{pmatrix} -a \ddot{\theta} \cos \theta + a\dot{\theta}^2 \sin \theta \\ a \ddot{\theta} \sin \theta + a\dot{\theta}^2 \cos \theta \end{pmatrix} = T \begin{pmatrix} \sin \theta \\ \cos \theta \end{pmatrix}$$

i.e. $m(-a\ddot{\theta}\cos\theta + a\dot{\theta}^2\sin\theta) = T\sin\theta$ and $m(a\ddot{\theta}\sin\theta + a\dot{\theta}^2\cos\theta) = T\cos\theta$

Multiplying the second of these by $\sin\theta$ and the first by $\cos\theta$ and subtracting,

$$ma\ddot{\theta} = 0$$
 and so $\ddot{\theta} = 0$. M1A1* (4)

Thus $\dot{\theta}=a\ constant$ and as initially $2a\dot{\theta}=u$, $\dot{\theta}=\frac{u}{2a}$

Therefore the time to rotate by $\frac{1}{2}\pi$ is given by $\tau\dot{\theta}=\frac{1}{2}\pi$, so $\tau=\frac{1}{2}\pi\div\frac{u}{2a}=\frac{\pi a}{u}$

As $\ddot{y}=-g$ and initially $\dot{y}=v$, at time , $\dot{y}=v-gt$, and so $y=vt-\frac{1}{2}gt^2+h$ as the centre of the rod is initially h above the table.

Hence, given the condition that the particles hit the table simultaneously,

$$0 = v \pi a/u - 1/2 g(\pi a/u)^2 + h$$

.

Hence
$$0 = 2\pi uva - \pi^2 a^2 g + 2hu^2$$
, or $2hu^2 = \pi^2 a^2 g - 2\pi uva$ as required. M1 A1* (7)

11. (i) Suppose that the force exerted by P on the rod has components X perpendicular to the rod and Y parallel to the rod. Then taking moments for the rod about the hinge, Xd = 0, M1

which as $d \neq 0$ yields X = 0 and hence the force exerted on the rod by P is parallel to the rod. A1* (2)

Resolving perpendicular to the rod for P, $mg \sin \alpha = m(r - d \sin \alpha)\omega^2 \cos \alpha$ M1 A1

Dividing by $m\omega^2 \sin \alpha$, $\frac{g}{\omega^2} = (r - d \sin \alpha) \cot \alpha$

That is $\alpha = r \cot \alpha - d \cos \alpha$ or in other words $r \cot \alpha = a + d \cos \alpha$ as required. M1 A1* (4)

The force exerted by the hinge on the rod is along the rod towards P, **B1**

and if that force is F, then resolving vertically for P, $F\cos\alpha=mg$ M1 A1

so
$$F = mg \sec \alpha$$
.

(ii) Suppose that the force exerted by m_1 on the rod has component X_1 perpendicular to the rod towards the axis, that the force exerted by m_2 on the rod has component X_2 perpendicular to the rod towards the axis,

B1

then resolving perpendicular to the rod for m_1 , $m_1g\sin\beta+X_1=m_1(r-d_1\sin\beta)\omega^2\cos\beta$ M1A1

and similarly for m_2 , $m_2g\sin\beta+X_2=m_2(r-d_2\sin\beta)\omega^2\cos\beta$

M1A1

Taking moments for the rod about the hinge, $X_1d_1 + X_2d_2 = 0$ M1A1

So multiplying the first equation by $\,d_1$, the second by $\,d_2\,$ and adding we have

 $m_1 g d_1 \sin \beta + m_2 d_2 g \sin \beta = m_1 d_1 (r - d_1 \sin \beta) \omega^2 \cos \beta + m_2 d_2 (r - d_2 \sin \beta) \omega^2 \cos \beta$

Dividing by
$$(m_1 d_1 + m_2 d_2)\omega^2 \sin \beta$$
, $\frac{g}{\omega^2} = r \cot \beta - \left(\frac{m_1 d_1^2 + m_2 d_2^2}{m_1 d_1 + m_2 d_2}\right) \cos \beta$ M1A1

That is $r \cot \beta = a + b \cos \beta$, where $b = \frac{m_1 d_1^2 + m_2 d_2^2}{m_1 d_1 + m_2 d_2}$ A1 (10)

12. (i) The probability distribution function of $\mathcal{S}_{\mathbf{1}}$ is

S_1	1	2	3	4	5	6
p	1/6	1/6	1/6	1/6	¹ / ₆	1/6

so the probability distribution function of $\,R_1$ is

R_1	0	1	2	3	4	5
р	1/6	1/6	1/6	1/6	1/6	1/6

and thus $G(x) = \frac{1}{6}(1+t+t^2+t^3+t^4+t^5)$.

The probability distribution function of $\,S_2$ is

S_2	2	3	4	5	6	7	8	9	10	11	12
p	1/36	$^{2}/_{36}$	³ / ₃₆	4/36	⁵ / ₃₆	⁶ / ₃₆	⁵ / ₃₆	⁴ / ₃₆	³ / ₃₆	² / ₃₆	1/36

M1

so the probability distribution function of $\ensuremath{\mathit{R}}_2$ is

	R_2	0	1	2	3	4	5
-	p	6/36	6/36	6/36	6/36	6/36	6/36

A1

which is the same as for $\,R_1$ and hence its probability generating function is also $\,G(x)$. A1*

Therefore, the probability generating function of R_n is also G(x)

and thus the probability that S_n is divisible by 6 is $\frac{1}{6}$. B1 (6)

(ii) The probability distribution function of T_1 is

T_1	0	1	2	3	4
p	1/6	² / ₆	1/6	1/6	1/6

and thus
$$G_1(x) = \frac{1}{6}(1 + 2x + x^2 + x^3 + x^4)$$
 M1 A1

 $G_2(x)$ would be $(G_1(x))^2$ except that the powers must be multiplied congruent to modulus 5.

$$G_1(x) = \frac{1}{6}(1 + 2x + x^2 + x^3 + x^4) = \frac{1}{6}(x + 1 + x + x^2 + x^3 + x^4) = \frac{1}{6}(x + y)$$
 B1

Thus $G_2(x)$ would be $\frac{1}{36}(x+y)^2$

except
$$xy = x(1 + x + x^2 + x^3 + x^4) = x + x^2 + x^3 + x^4 + 1 = y$$
 M1A1

and
$$y^2 = (1 + x + x^2 + x^3 + x^4)(1 + x + x^2 + x^3 + x^4) = (1 + x + x^2 + x^3 + x^4) + (x + x^2 + x^3 + x^4 + 1) + (x^2 + x^3 + x^4 + 1 + x) + (x^3 + x^4 + 1 + x + x^2) + (x^4 + 1 + x + x^2 + x^3) = 5y$$

A1

So
$$G_2(x) = \frac{1}{36}(x+y)^2 = \frac{1}{36}(x^2+2xy+y^2) = \frac{1}{36}(x^2+2y+5y) = \frac{1}{36}(x^2+7y)$$
 M1A1* (8)

$$G_3(x) = \frac{1}{6^3}(x+y)^3 = \frac{1}{6^3}(x+y)(x^2+7y) = \frac{1}{6^3}(x^3+yx^2+7xy+7y^2)$$

That is

$$G_3(x) = \frac{1}{6^3}(x^3 + yx^2 + 7xy + 7y^2) = \frac{1}{6^3}(x^3 + y + 7y + 35y) = \frac{1}{6^3}(x^3 + 43y)$$

We notice that the coefficient of y inside the bracket in $G_n(x)$ is $(1+6+6^2+\cdots 6^{n-1})$

This can be shown simply by induction. It is true for n = 1 trivially.

Consider
$$(x+y)(x^r + (1+6+6^2+\cdots+6^{k-1})y) = x^{r+1} + yx^r + (1+6+6^2+\cdots+6^{k-1})xy + (1+6+6^2+\cdots+6^{k-1})y^2$$

$$yx^{r} + (1+6+6^{2}+\cdots 6^{k-1})xy + (1+6+6^{2}+\cdots +6^{k-1})y^{2}$$

= $y + (1+6+6^{2}+\cdots +6^{k-1})y + 5(1+6+6^{2}+\cdots +6^{k-1})y$

$$5(1+6+6^2+\cdots 6^{k-1})=(6-1)(1+6+6^2+\cdots 6^{k-1})=6^k-1$$

So
$$y + (1 + 6 + 6^2 + \dots + 6^{k-1})y + 5(1 + 6 + 6^2 + \dots + 6^{k-1})y = (1 + 6 + 6^2 + \dots + 6^k)y$$

as required. M1

However, this coefficient is the sum of a GP and so $G_n(x) = \frac{1}{6^n} \left(x^{n-5p} + \frac{6^n-1}{5} y \right)$ where p is an integer such that $0 \le n-5p \le 4$.

So if n is not divisible by 5, the probability that S_n is divisible by 5 will be the coefficient of x^0 which in turn is the coefficient of y, namely $\frac{1}{6^n} \left(\frac{6^n - 1}{5} \right) = \frac{1}{5} \left(1 - \frac{1}{6^n} \right)$ as required.

If n is divisible by 5, the probability that S_n is divisible by 5 will be $\frac{1}{6^n} \left(1 + \frac{6^n - 1}{5} \right)$ as $x^{n-5p} = x^0$

That is
$$\frac{1}{5} \left(1 + \frac{4}{6^n} \right)$$

13. (i)

G1

$$P(X + Y < t) = \frac{1}{2}t^2 \text{ if } 0 \le t \le 1$$

B1

G1

and
$$P(X + Y < t) = 1 - \frac{1}{2}(2 - t)^2$$
 if $1 < t \le 2$

$$P(X + Y < t) = 0 \text{ if } t < 0 \text{ and } P(X + Y < t) = 1 \text{ if } t > 2$$

So
$$F(t) = \begin{cases} 0 & for \ t < 0 \\ \frac{1}{2}t^2 & for \ 0 \le t \le 1 \\ 1 - \frac{1}{2}(2 - t)^2 & for \ 1 < t \le 2 \\ 1 & for \ t > 2 \end{cases}$$

B1 (5)

Thus
$$P((X+Y)^{-1} < t) = P(X+Y > \frac{1}{t}) = 1 - P(X+Y < \frac{1}{t})$$

$$= \begin{cases} 1 - \frac{1}{2t^2} & \text{for } 1 \le t \\ \frac{1}{2} \left(2 - \frac{1}{t} \right)^2 & \text{for } \frac{1}{2} \le t < 1 \\ 0 & \text{for } t < \frac{1}{2} \end{cases}$$

M1 A1

So as
$$f(t) = \frac{dF(t)}{dt}$$
,

$$f(t) = \begin{cases} 0 & \text{for } t < \frac{1}{2} \\ \frac{1}{t^2} \left(2 - \frac{1}{t} \right) & \text{for } \frac{1}{2} \le t < 1 \\ \frac{1}{t^3} & \text{for } 1 \le t \end{cases}$$

as required.

M1A1* (4)

$$E\left(\frac{1}{X+Y}\right) = \int_{\frac{1}{2}}^{1} t(2t^{-2} - t^{-3})dt + \int_{1}^{\infty} t \cdot t^{-3}dt = \left[2\ln t + t^{-1}\right]_{\frac{1}{2}}^{1} + \left[-t^{-1}\right]_{1}^{\infty}$$
$$= 1 - 2\ln\frac{1}{2} - 2 + 1 = 2\ln 2$$

M1 A1 (2)

(ii)

$$P\left(\frac{Y}{X} < t\right) = \begin{cases} \frac{1}{2}t & for \ 0 \le t \le 1\\ 1 - \frac{1}{2}t^{-1} & for \ t > 1 \end{cases}$$

B1 (2)

Thus

$$P\left(\frac{X}{X+Y} < t\right) = P\left(\frac{X+Y}{X} > \frac{1}{t}\right) = P\left(1 + \frac{Y}{X} > \frac{1}{t}\right) = P\left(\frac{Y}{X} > \frac{1}{t} - 1\right) = 1 - P\left(\frac{Y}{X} < \frac{1}{t} - 1\right)$$

So

$$F(t) = \begin{cases} 1 - \frac{1}{2} \left(\frac{1}{t} - 1 \right) & \text{for } \frac{1}{2} \le t \le 1 \\ \frac{1}{2} \left(\frac{1}{t} - 1 \right)^{-1} & \text{for } 0 \le t < \frac{1}{2} \end{cases}$$

i.e.

$$F(t) = \begin{cases} \frac{1}{2}(3 - t^{-1}) & for \ \frac{1}{2} \le t \le 1\\ \frac{1}{2}(\frac{t}{1 - t}) & for \ 0 \le t < \frac{1}{2} \end{cases}$$

So as
$$f(t) = \frac{dF(t)}{dt}$$
,

$$f(t) = \begin{cases} \frac{1}{2}t^{-2} & \text{for } \frac{1}{2} \le t \le 1\\ \frac{1}{2}(1-t)^{-2} & \text{for } 0 \le t < \frac{1}{2} \end{cases}$$

M1A1 (4)

$$E\left(\frac{X}{X+Y}\right) = \frac{1}{2}$$
 because, by symmetry, $E\left(\frac{X}{X+Y}\right) = E\left(\frac{Y}{X+Y}\right)$

and
$$E\left(\frac{X}{X+Y}\right) + E\left(\frac{Y}{X+Y}\right) = E\left(\frac{X+Y}{X+Y}\right) = E(1) = 1$$

$$E\left(\frac{X}{X+Y}\right) = \int_{0}^{\frac{1}{2}} \frac{1}{2}t(1-t)^{-2} dt + \int_{\frac{1}{2}}^{1} t \times \frac{1}{2}t^{-2} dt$$

$$\begin{split} &= \left[\frac{1}{2}t(1-t)^{-1}\right]_0^{\frac{1}{2}} - \int_0^{\frac{1}{2}} \frac{1}{2}(1-t)^{-1}dt + \left[\frac{1}{2}\ln t\right]_{\frac{1}{2}}^1 \\ &= \frac{1}{2} - \left[-\frac{1}{2}\ln(1-t)\right]_0^{\frac{1}{2}} - \frac{1}{2}\ln\frac{1}{2} \\ &= \frac{1}{2} + \frac{1}{2}\ln\frac{1}{2} - \frac{1}{2}\ln\frac{1}{2} = \frac{1}{2} \end{split}$$

as required. M1A1 (3)