Summer 2015

EAST WEST UNIVERSITY BANGLADESH Department of Computer Science & Engineering

CSE325: Operating System

Term-II Examination

Total Marks: 40 Instructor: Dr. Md. Shamim Akhter Time: 90 minutes

1. Consider the following snapshot of a system:

	<u>A</u>	<u>Allocation</u>			<u>Max</u>				<u>Available</u>			
	A	В	C	D	A	В	C	D	A	В	\mathbf{C}	D
P_0	0	0	1	2	0	0	1	2	1	5	2	0
P_1	1	0	0	0	1	7	5	0				
P_2	1	3	5	4	2	3	5	6				
P_3	0	6	3	2	0	6	5	2				
P_4	0	0	1	4	0	6	5	6				

Answer the following questions using the **banker's algorithm**:

- a) What is the content of the **matrix Need**?
- b) Is the system in a safe state?
- c) If a request from process P_1 arrives for (0, 4, 2, 0), can the request be granted immediately?

2.

- a) What is the difference between deadlock and starvation?
- b) Is it possible to have a deadlock involving only one process? Explain your answer concerning the four required deadlock conditions.
- c) Proof "If all processes always request resources in a fixed order, there can be no hold-and-wait cycle".

3.

- a) Can any of the three scheduling schemes (**FCFS**, **SRTF**, **or RR**) result in starvation? If so, how might you fix this?
- b) Five processes **A**, **B**, **C**, **D** and **E** arrived in this order at the same time with the following CPU burst and priority values. A smaller value means a higher priority.

	CPU Burst	Priority
Α	3	3
В	7	1
С	5	5
D	2	4
E	6	2

Fill the entries of the following table with **waiting time** and **average waiting time** for each indicated scheduling policy and each process. Ignore context switching overhead.

Scheduling Policy		Average Waiting Time				
	Α	В	С	D	E	
First-Come-First-Serve						
Shortest-Job First						
Priority						
RR (time quantum=5)						

4. For the following set of processes:

P ₁ :	P ₂ :	P ₃ :
Wait(mutex1)	Wait(mutex1)	Wait(mutex2)
Wait(mutex2)	Wait(mutex2)	Wait(mutex1)
Signal(mutex1)	Signal(mutex1)	Signal(mutex2)
Signal(mutex1)	Signal(mutex2)	Signal(mutex2)

Initially mutex1 and mutex2 are set as 1

- a) Describe a situation when there is a deadlock. List what processes are in this deadlock.
- b) If only processes P₁ and P₂ existed, would there be a deadlock? Why or why not?