Model Question Paper- I with effect from 2022

CBCS SCHEME

First Semester B.E Degree Examination

Mathematics-I for Civil Engineering Stream (BMATC101)

TIME:03 Hours Max.Marks:100

Note:

- 1. Answer any FIVE full questions, choosing at least ONE question from each MODULE
- 2. VTU Formula Hand Book is Permitted
- 3. M: Marks, L: Bloom's level, C: Course outcomes.

		Module - 1	M	L	С				
Q.1	a	With usual notations prove that $\tan \phi = r \frac{d\theta}{dr}$.	6	L2	CO1				
	b	Find the angle between the curves $r = a(1 - \cos \theta)$ and $r = 2a \cos \theta$.	7	L2	CO1				
	c	Show that the radius of curvature for the curve	7	L3	CO1				
		$r^n = a^n \cos n\theta$ varies inversely as r^{n-1} .							
OR									
Q.2	a	Derive an expression for the radius of curvature for a Cartesian curve.	7	L2	CO1				
	b	Find the pedal equation of the curve $r = 2(1 + \cos \theta)$	8	L2	CO1				
	c	Using modern mathematical tool write a program/code to plot the sine and cosine curve.	5	L2	CO5				
		Module – 2							
Q.3	a	Expand $\log(1+e^x)$ by Maclaurin's series up to the term containing x^4 .	6	L2	CO2				
	b	If $u = f(x - y, y - z, z - x)$, show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.	7	L2	CO2				
	c	Examine the function $f(x, y) = xy(a - x - y)$ for extreme values.	7	L3	CO2				
		OR							
Q.4	a	If $z = f(x + ay) + g(x - ay)$ Prove that $\frac{\partial^2 z}{\partial y^2} = a^2 \frac{\partial^2 z}{\partial x^2}$.	8	L2	CO2				
	b	If $u = x + 3y^2 - z^3$, $v = 4x^2yz$, $w = 2z^2 - xy$ find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$ at $(1, -1, 0)$.	7	L2	CO2				
	c	Using modern mathematical tool write a program/code to evaluate	5	L3	CO5				

Model Question Paper- I with effect from 2022

		$\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x.$								
	Module – 3									
Q.5	a	Solve $\frac{dy}{dx} + xy = xy^3$.	6	L2	CO3					
	b	Find the orthogonal trajectories of the cardioids $r = a(1 - \cos \theta)$.	7	L3	CO3					
	c	Solve $p^2 + 2py \cot x = y^3$.	7	L2	CO3					
	OR									
Q.6	a	Solve $(4xy + 3y^2 - x)dx + x(x + 2y)dy = 0$.	6	L2	CO3					
	b	A body originally at 80° C cools down to 60° C in 20 minutes; the temperature of the air being 40° c. What will be the temperature of the body after 40 minutes from the original?	7	L3	CO3					
	c	Find the general and singular solution of the equation	7	L2	CO3					
		$x^{2}(y-px)=p^{2}y$ reducing into Clairaut's form, using the substitution $X=x^{2}, Y=y^{2}$.								
	T	Module – 4	ı	ı	,					
Q.7	a	Solve $(4D^4-4D^3-23D^2+12D+36)y=0$.	6	L2	CO3					
	b	Solve $(D-2)^2y = 8(e^{2x} + \sin 2x + x^2)$.	7	L2	CO3					
	c	Solve by the method of variation of parameter $y'' - 6y' + 9y = \frac{e^{3x}}{x^2}$.	7	L2	CO3					
		OR								
Q.8	a	Solve $y'' + 3y' + 2y = 12x^2$.	6	L2	CO3					
	b	Solve $\frac{d^2y}{dx^2} - 4y = \cosh(2x-1) + 3^x$.	7	L2	CO3					
	c	Solve $\frac{d^2y}{dx^2} - 4y = \cosh(2x-1) + 3^x$. Solve $(2x-1)^2 \frac{d^2y}{dx^2} + (2x-1)\frac{dy}{dx} - 2y = 8x^2 - 2x + 3$.	7	L2	CO3					
	ı	Module – 5	1							
Q.9	a	Find the rank of the matrix $\begin{bmatrix} 4 & 0 & 2 & 1 \\ 2 & 1 & 3 & 4 \\ 2 & 3 & 4 & 7 \\ 2 & 3 & 1 & 4 \end{bmatrix}$.	6	L2	CO4					

Model Question Paper- I with effect from 2022

	b	Solve the system of equations by Gauss-Jordan method $x + y + z = 9$, $x - 2y + 3z = 8$, $2x + y - z = 3$.	7	L3	CO4			
	c	Using Rayleigh's power method find the dominant eigen value and the corresponding eigenvector of	7	L3	CO4			
		$\begin{bmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{bmatrix}$ by taking $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$ as the initial						
		eigenvector[carryout6iterations].						
OR								
Q.10	a	Find the rank of the matrix $\begin{bmatrix} 11 & 12 & 13 & 14 \\ 12 & 13 & 14 & 15 \end{bmatrix}$.	7	L2	CO4			
		13 14 15 16 14 15 16 17						
	b	Solve the system of equations $5x+2y+z=12;x+4y+2z=15;x+2y+5z=20$	8	L3	CO4			
		Using Gauss-Seidel method, taking (0, 0, 0) as an initial approximation.(Carryout4 iterations).						
	c	Using modern mathematical tool write a program/code to test the consistency of the equations, x+2y-z=1, 2x+y+4z=2, 3x+3y+4z=1.	5	L3	CO5			