

Tuning Neural Networks - 1

One should look for what is and not what he thinks should be. (Albert Einstein)

Tuning Neural Networks: Topic introduction

In this part of the course, we will cover the following concepts:

- Visualize model performance using Neptune
- Performance tuning and keras Tuner
- Accelerating NN training

Module completion checklist

Objective	Complete
Visualize model performance using Neptune	
Introduce performance tuning and keras tuner	

Loading packages

Let's load the packages we will be using:

```
# Helper packages.
import os
import pickle
import pandas as pd
import numpy as np
# Scikit-learn packages.
from sklearn import metrics
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from sklearn import preprocessing
# TensorFlow and supporting packages.
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.wrappers.scikit_learn import KerasClassifier
from tonocation income models imposst load mode
```

```
/opt/conda/envs/python-r-course-test/bin/python:1: DeprecationWarning: `import kerastuner` is deprecated, please use `import keras_tuner`.
```

```
from tensorflow.keras.layers import Dropout
import neptune.new as neptune
from neptune.new.integrations.tensorflow_keras import NeptuneCallback
```

Introducing Neptune

- To track our model's metadata, we will use Neptune.ai
- This web-based experiment tracking tool allows us to organize and compare performance metrics such as loss and accuracy
- We'll use Neptune today to visualize the performance metrics for various models

Tuning Neural Networks - 1

 Refer to this link to know more about Neptune and how it works

Using Neptune

- Setting up an account on Neptune is fairly easy! Please refer to the instruction manual to set up your Neptune account
- Once your account is setup, make a note of the user name and API token
- You'll need these details to initialize Neptune and track experiments later in this module
- In this session, we will build neural network models using TensorFlow, evaluate them, and then visualize the results using Neptune

Setting up project parameters for Neptune

- The first step is to initialize the Neptune client using the init function
 - Set project_qualified_name parameter to USER_NAME/PROJECT_NAME, in order to track the project you have set up in your Neptune account
 - In the code notebook, we have configured the project name as sandbox
 - Set your API_TOKEN token to the one you noted down from your Neptune account

• The second step is to integrate Neptune with Tensorflow by adding Neptune to the callback of the model with the NeptuneCallback function

```
from neptune.new.integrations.tensorflow_keras import NeptuneCallback
```

Directory settings

- In this section we will build a neural network model using TensorFlow, evaluate it, and then visualize our results using **Neptune**
- Before that, we'll encode the directory structure into variables in order to maximize the
 efficiency of your workflow
- Let the data_dir be the variable corresponding to your data folder

```
from pathlib import Path
home_dir = Path(".").resolve()
main_dir = home_dir.parent.parent
print(main_dir)
```

```
data_dir = str(main_dir) + "/data"
print(data_dir)
```

Load the data

- The credit_card_data dataset contains information about credit card defaulters
- Our goal is to predict if the customer will default on a credit card payment or not

```
credit_card = pd.read_csv(str(data_dir) + '/credit_card_data.csv')
print(credit_card.head())
```

```
PAY_AMT5
                                    PAY_AMT6
                                              default_payment_next_month
      LIMIT_BAL
                 SEX
          20000
                                        2000
         120000
          90000
                              1000
                                      5000
       50000
                                     1000
                              1069
                              689
          50000
                                       679
[5 rows x 25 columns]
```

Data prep: convenience function

 Lucky for you, Data Society wrote a time-saving function to perform all of the cleaning and split steps on the credit card dataset at once!

```
def data_prep(df):
    # Fill missing values with mean
    df = df.fillna(df.mean()['BILL_AMT1'])
    # Drop an unnecessary identifier column.
    df = df.drop('ID',axis = 1)

# Convert 'sex' into dummy variables.
    sex = pd.get_dummies(df['SEX'], prefix = 'sex', drop_first = True)
# Convert 'education' into dummy variables.
    education = pd.get_dummies(df['EDUCATION'], prefix = 'education', drop_first = True)
# Convert 'marriage' into dummy variables.
    marriage = pd.get_dummies(df['MARRIAGE'], prefix = 'marriage', drop_first = True)
# Drop `sex`, `education`, `marriage` from the data.
    df.drop(['SEX', 'EDUCATION', 'MARRIAGE'], axis = 1, inplace = True)

# Concatenate `sex`, `education`, `marriage` dummies to our dataset.
    df = pd.concat([df, sex, education, marriage], axis=1)
```

```
# Separate predictors from data.
X = df.drop(['default_payment_next_month'], axis=1)
# Separate target from data.
y = df['default_payment_next_month']
```

Data prep: convenience function - cont'd

```
# Set the seed to 1.
np.random.seed(1)
# Split data into train, test, and validation set, use a 70 - 15 - 15 split.
# First split data into train-test with 70% for train and 30% for test.
X_train, X_test, y_train, y_test = train_test_split(X.values,
                                                    test size = .3,
                                                    random state = 1)
# Then split the test data into two halves: test and validation.
X_test, X_val, y_test, y_val = train_test_split(X_test,
                                                y test,
                                                test_size = .5,
                                                random state = 1)
print("Train shape:", X_train.shape, "Test shape:", X_test.shape, "Val shape:", X_val.shape)
# Transforms features by scaling each feature to a given range.
# The default is the range between 0 and 1.
```

```
# Transforms features by scaling each feature to a given range.
# The default is the range between 0 and 1.
min_max_scaler = preprocessing.MinMaxScaler()
X_train_scaled = min_max_scaler.fit_transform(X_train)
X_test_scaled = min_max_scaler.transform(X_test)
X_val_scaled = min_max_scaler.transform(X_val)

return X_train_scaled, X_test_scaled, X_val_scaled, y_train, y_test, y_val
```

Data prep

X_train_scaled, X_test_scaled, X_val_scaled, y_train, y_test, y_val = data_prep(credit_card)

Train shape: (21000, 30) Test shape: (4500, 30) Val shape: (4500, 30)

Define metrics

Let's wrap all metrics of interest into one list METRICS

```
METRICS = [
    keras.metrics.TruePositives(name='tp'),
    keras.metrics.FalsePositives(name='fp'),
    keras.metrics.TrueNegatives(name='tn'),
    keras.metrics.FalseNegatives(name='fn'),
    keras.metrics.BinaryAccuracy(name='accuracy'),
    keras.metrics.Precision(name='precision'),
    keras.metrics.Recall(name='recall'),
    keras.metrics.AUC(name='auc')
]
```

Define model function

• Let's now create a convenience function to define and compile a simple neural network model with an input layer, two hidden layers, and an output layer

Launching Neptune: create callback

- We first create the callback so that the model will be logged by Neptune and we can visualize the metrics
- To create the callback and configure the runs in neptune, we use the function NeptuneCallback

```
neptune_cbk = NeptuneCallback(run=run)
callbacks = [neptune_cbk]

# Create and compile the model.
model = create_model()
```

Fitting the model with Neptune callback

- The final step is to fit the model
- We will pass our list callbacks as a callbacks argument in the fit () function

View the model on neptune.ai

 To view the model that we just ran, launch the Neptune in browser as shown below and click on the project we created earlier - sandbox

Neptune - Runs table

- On the Runs table page, you will see all the models that you've added with the NeptuneCallback function
- It is a summary page that lists the Id, Creation Time, Owner, Monitoring Time of the model
- You can also add the metrics, CPU usage, and/or other system information about the model to this page by clicking on the Add column button

Neptune - Runs table (cont'd)

Neptune - Compare runs

- On the Compare runs page, you will see multiple charts detailing the metrics that you specify (accuracy, auc, etc.) by train/test and batch/epoch
- You can customize this dashboard to view the most important metrics and compare the performance of multiple models side-by-side!

Neptune - Compare runs (cont'd)

Evaluate the model

We'll now predict on test data and evaluate the metrics

• The last step is to stop the neptune run after logging the meta data

```
run.stop()

Shutting down background jobs, please wait a moment...
Done!
```

Module completion checklist

Objective	Complete
Visualize model performance using Neptune	
Introduce performance tuning and keras tuner	

Performance tuning

- From the plots and the metrics, we can se that our model is not doing well
 - o it performs better on training data, achieving accuracy of over 77%, but it severely oscillates, which may be a sign of a high learning rate
 - the accuracy for validation data is constant and the loss oscillates a bit across epochs
 - the accuracy is lower for validation data
- We can tune the model using a Keras package called kerastuner that has various tuning modules for building optimized models

Preventing overfitting using dropout

- Dropout randomly drops neurons (along with their connections) from the neural network during training
- It prevents neurons in layers from coadapting too much
- It takes 2 arguments:
 - rate: a proportion of neurons to be dropped (~0.1-0.4)
 - seed: "locks" the random number generator for reproduceable our results

For more information, visit the documentation page

Tuning using Keras Tuner

- Keras Tuner comes with algorithms like Random Search, Bayesian Optimization, and Hyperband for tuning the hyperparameters
- We'll tune hyperparameters like:
 - Optimizer
 - Activation function
 - Learning rate
 - Number of neurons
 - Rate of the dropout layer
- Then, we'll create a model with the optimized parameters

Types of hyperparameters

- In Keras Tuner, each hyperparameter can be tuned based on its type, such as:
 - Float
 - o Int
 - O Boolean
 - Choice
- The activation function, learning rate, and optimizer are the Choice type
- The number of hidden neurons and rate in the dropout layer are numerical hyperparameters of type Int and Float, respectively

- Each hyperparameter has options which can be set while we tune it
- The Float and Int type parameters have a:
 - minimum value
 - maximum value
 - default value
 - step value (the minimal step between two hyperparameter values)
- The Choice type parameter requires a set of possible values

Knowledge check

Link: https://forms.gle/YPJNgyCz1fcnxt6n9

Module completion checklist

Objective	Complete
Visualize model performance using Neptune	
Introduce performance tuning and keras tuner	

28

Congratulations on completing this module!

You are now ready to try Tasks 1-9 in the Exercise for this topic

