# **Santander Customer Transaction Prediction**

Breitman, Zarina Madelaine Navarro Quantín, Denise Marinella, Santiago Ramos, Mateo



## Tabla de contenidos

- 1. Orígen del dataset y objetivo
- 2. EDA (Exploratory Data Analysis)
- 3. Modelos
- 4. Optimización de modelos
- 5. Ensamble de modelos
- 6. Conclusiones

# 1. Dataset y Objetivo

Origen del dataset: Kaggle

https://www.kaggle.com/datasets/lakshmi25npathi/santander-customer-transaction-prediction-dataset

#### Objetivo:

Predecir si se realizará una transacción determinada. Se eligió este dataset por recomendación del profesor debido a que tenía gran cantidad de entradas y es un dataset real.

## 2. EDA

#### Análisis del dataset

```
d df = pd.read_csv('train.csv', index_col="ID_code")
df.head()
executed in 5.67s, finished 11:16:31 2022-10-28
```

|         | target | var_0   | var_1   | var_2   | var_3  | var_4   | var_5   | var_6  | var_7   |
|---------|--------|---------|---------|---------|--------|---------|---------|--------|---------|
| ID_code |        |         |         |         |        |         |         |        |         |
| train_0 | 0      | 8.9255  | -6.7863 | 11.9081 | 5.0930 | 11.4607 | -9.2834 | 5.1187 | 18.6266 |
| train_1 | 0      | 11.5006 | -4.1473 | 13.8588 | 5.3890 | 12.3622 | 7.0433  | 5.6208 | 16.5338 |
| train_2 | 0      | 8.6093  | -2.7457 | 12.0805 | 7.8928 | 10.5825 | -9.0837 | 6.9427 | 14.6155 |
| train_3 | 0      | 11.0604 | -2.1518 | 8.9522  | 7.1957 | 12.5846 | -1.8361 | 5.8428 | 14.9250 |
| train_4 | 0      | 9.8369  | -1.4834 | 12.8746 | 6.6375 | 12.2772 | 2.4486  | 5.9405 | 19.2514 |

1 df.shape (200000, 201)

200.000 filas y 200 columnas

1 df.info()

<class 'pandas.core.frame.DataFrame'>

Index: 200000 entries, train\_0 to train\_199999

Columns: 201 entries, target to var\_199

dtypes: float64(200), int64(1)

memory usage: 308.2+ MB

Todas variables numéricas

Variables con nombres desconocidos

## 2. EDA

#### Variable a predecir: Target

|   | Cantidad | Porcentaje |
|---|----------|------------|
| 0 | 179902   | 90.0%      |
| 1 | 20098    | 10.0%      |

1 J = df["target"].isna().sum()
2 print("Total null values in target column is " + str(J))
executed in 13ms, finished 11:17:12 2022-10-28

Total null values in target column is 0

Variable target muy desbalanceada

#### Las otras variables:

Dataset limpio

```
1 df.isnull().any().value_counts()
```

False 201 dtype: int64

# 2. EDA

#### Las otras variables:

- Nula correlación entre variables
- Variables bastante simétricas





# 3. Modelos (Clasificación)

#### No boosting:

- LogisticRegression
- Naïve Bayes Classifier
- MLPClassifier (redes neuronales)
- K-Nearest Classifier (KNC)
- Support Vector Machine (SVC)
- Linear Discriminant Analysis (LDA)

#### **Boosting:**

- Randomforest
- Lightboost
- Adaboost
- Catboost
- XGB

# 3. Modelos (Métricas)

- Matriz de confusión
- Precision
- Recall (dataset desbalanceado)
- F1

$$Precision = \frac{True\ Positive}{True\ Positive + False\ Positive}$$

$$Recall = \frac{True\ Positive}{True\ Positive + False\ Negative}$$

#### Logistic Regression (all dataset)



Precision score is 0.7025641025641025 Recall score is 0.272636815920398 F1 score is 0.392831541218638

https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9

# 3. Modelos

#### Metodología de trabajo

- Stratified K-fold
- PCA
  - o 100 componentes
  - o 125 componentes
  - o 150 componentes
  - o 175 componentes



skf = StratifiedKFold(n\_splits=10, shuffle= True, random\_state= 1)

## 3. Modelos

Se obtuvo la media geométrica de cada modelo, promediando los resultados del Kfold.

Se evaluó el costo de cada algoritmo tomando el tiempo de ejecución total.

Elegimos a Logistic Regression como el modelo base.

|                             | RECALL   | Tiempo de ejecucion |
|-----------------------------|----------|---------------------|
| Fulldata_Catboost           | 0.334661 | 501.352978          |
| Fulldata_SVM                | 0.279937 | 10509.334164        |
| Fulldata_LogisticRegression | 0.268982 | 802.499365          |
| Fulldata_XGBClassifier      | 0.249926 | 1023.306308         |
| Catboost_170                | 0.242612 | 440.855039          |
| LogisticRegression_185      | 0.232312 | 46.803771           |
| LogisticRegression_170      | 0.209424 | 32.181545           |
| XGBClassifier_170           | 0.189372 | 1040.673195         |
| Catboost_130                | 0.187083 | 381.142504          |
| XGBClassifier_130           | 0.159021 | 820.077986          |
| SVM_170                     | 0.149317 | 9863.222502         |
| LogisticRegression_130      | 0.143547 | 29.909196           |
| SVM_130                     | 0.062743 | 9207.078305         |

# 4. Optimización de modelos



En modelos más costosos se optó por 10 a 20 trials En modelos más livianos 150 a 400 trials

Se buscó maximizar el recall

#### Parámetros principales para boosts:

- n\_estimators: cantidad de árboles en los bosques [300:3000]
- max\_depth: profundidad de los árboles [3:21]
- **learning \_rate**: tamaño de cada paso [0.25:0.85]

#### Parámetros para LogisticRegression:

- max\_iter: número máximo de iteraciones para converger [7000:40000]
- solver: algoritmos de optimización del modelo ['newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga']
- penalty: tipo de regularización del modelo
   ['l2', 'none'] para solvers ['sag', 'saga', 'lbfgs']

# 4. Optimización de modelos

Best parameters de los algoritmos.

| MODEL               | RECALL   | OPTIMIZED<br>RECALL | BEST PARAMETERS                                                              |
|---------------------|----------|---------------------|------------------------------------------------------------------------------|
| Catboost_fulldata   | 0.3422   | 0.38396             | -                                                                            |
| Catboost_pca130     | 0.16733  | 0.25029             | iterations = 3600, learning_rate = 0.85, depth = 4, logging_level = "Silent" |
| KNC_fulldata        | 0.003169 | 0.065738            | 'n_neighbors': 2, 'weights': 'distance', 'metric': 'minkowski'               |
| KNC_175             | 0.003159 | 0.065937            | 'n_neighbors': 2, 'weights': 'distance', 'metric': 'minkowski'               |
| GaussianNB          | 0.40502  | _                   | No tiene parámetros para optimizar                                           |
| Lightboost_175      | 0.05778  | 0.17344             | 'max_depth': 7, 'n_estimators': 510                                          |
| Logistic Regression | 0.269483 | 0.269483            | 'max_iter': 17689, 'solver': 'lbfgs'                                         |

La optimización de los parámetros de Logistic Regression no consiguieron mejorar el recall

# 5. Ensamble de modelos

#### Voting Classifier

Se validaron diferentes ensambles de modelos con esta metodología. El mejor resultado para el recall fue inferior a los modelos sin ensamble y el costo computacional, mayor.



#### StackingClassifier

Se obtuvieron resultados sustancialmente mejores comparados con los modelos sin ensamblar. El recall alcanzó una mejora aproximada de un 134%.



## 5. Ensamble de modelos

#### StackingClassifier

Se probaron diversas combinaciones de modelos. Estos son los modelos con mayor recall.

- GaussianNB x6 + final GaussianNB
- GaussianNB x12 + final GaussianNB
- GaussianNB x24 + final GaussianNB
- GaussianNB + Linear Discriminant Analysis + final GaussianNB
- GaussianNB x24 + Linear Discriminant Analysis + final GaussianNB
- GaussianNB x12 + Logistic Regression + Linear Discriminant Analysis + final GaussianNB



#### **Model Comparison**



# 6. Conclusión

El modelo base con el que se comenzó el proyecto es la Regresión Logística con un Recall de 0.269483 y un tiempo de ejecución de 988.74 segundos.

El modelo de ensamble que mejor identificó si se harán o no transacciones, es GaussianNB x 24 + Linear Discriminant Analysis + Final Estimator GaussianNB que obtuvo un recall de 0.631196 con un tiempo de ejecución de 940.58 segundos. Es decir, un incremento de 134% de la métrica recall en comparación con el modelo base y una disminución del 5% del tiempo de ejecución.

Sin embargo, GaussianNB x 6 + Final Estimator GaussianNB obtuvo un recall solamente 3% inferior al modelo de ensamblado anterior, 0.611569 con un tiempo de ejecución de 178.87 segundos. Dicho de otro modo, 500% más veloz y en consecuencia con un menor costo computacional.

## 6. Conclusión

En vista de esta situación dividimos nuestra recomendación en dos:

Si se desea realizar la mayor cantidad de detecciones, sin importar el costo computacional, utilizar el primer ensamblado sería lo correcto. Sin embargo, observando el costo computacional, consideramos más conveniente emplear GaussianNB x 6 + Final Estimator GaussianNB como modelo final.

El análisis realizado con el set de datos obtenido, nos ha permitido crear un modelo de ensamblado que prediga de manera correcta un poco más del 60% de las transacciones. Lo que representa una mejora de aciertos, superior al 125% que utilizando un único modelo individual, 6842 más aciertos para este set de datos.

Esta búsqueda podría continuar si se contara con mayor poder de procesamiento para realizar optimizaciones más robustas o mismo evaluar modelos más complejos.

Consideramos haber realizado un buen análisis de la problemática planteada, que es posible mejorar aún más a futuro.