

KONKURS MATEMATYCZNY

dla uczniów szkół podstawowych województwa mazowieckiego w roku szkolnym 2017/2018

Model odpowiedzi i schematy punktowania

ETAP REJONOWY

UWAGA 1.

Łącznie uczeń może zdobyć 20 punktów.

Do etapu wojewódzkiego zakwalifikowani będą uczniowie, którzy w etapie rejonowym uzyskają **co najmniej 90%** punktów możliwych do zdobycia (**co najmniej 18 punktów**).

UWAGA 2.

Za **każde poprawne** rozwiązanie, inne niż przewidziane w schemacie punktowania rozwiązań zadań, przyznajemy **maksymalną** liczbę punktów.

ROZWIĄZANIA ZADAŃ ZAMKNIĘTYCH

Nr zadania	1.	2.	3.	4.
Maks. liczba punktów	1 pkt	1 pkt	1 pkt	1 pkt
Prawidłowa odpowiedź	С	D	В	С

ROZWIĄZANIA ZADAŃ OTWARTYCH

Zadanie 5. (2 pkt)

W trójkącie ABC miary kątów wewnętrznych przy wierzchołkach B i C są w stosunku 2:3. Kąt zewnętrzny przy wierzchołku A ma 125°. Oblicz miary kątów wewnętrznych trójkąta ABC.

I sposób	
Uczeń:	
1. Korzysta z twierdzenia o kącie zewnętrznym, oznacza kąty trójkąta	1p.
np. kąt przy wierzchołku $B = 2a$, kąt przy wierzchołku $C = 3a$ i układa równanie:	_
$2a + 3a = 125^{\circ}$.	
2. Oblicza kąty przy wierzchołkach <i>B</i> i <i>C</i> . Podaje odpowiedź.	1p.
Odpowiedź: Kąty wewnętrzne trójkąta ABC mają miary: 55°, 50°, 75°	

II sposób	
Uczeń:	1
1. Oblicza kąt przyległy do kąta 125°, korzysta z sumy kątów trójkąta i znajduje	lp.
sumę kątów przy wierzchołkach B i C	
2. Oblicza kąty wewnętrzne trójkąta przy wierzchołkach B i C oraz A. Podaje	1
odpowiedź.	1p.
Odpowiedź: Kąty wewnętrzne trójkąta ABC mają miary: 55°, 50°, 75°	

Zadanie 6. (2 pkt)

Trójkąt równoboczny podziel na trzy trójkąty przystające. Udowodnij, że powstałe trójkąty są przystające.

Zadanie 7. (2 pkt)

Kazik i Tadzik budowali model deltoidu. Z długiej, cienkiej listewki ucięli po dwie listewki o długości 5 cm i 9 cm, które miały być sąsiednimi bokami deltoidu. Na przekątną deltoidu, wychodzącą z wierzchołków między równymi bokami, ucięli listewkę, której długość, podana w centymetrach, była liczbą całkowitą, dwucyfrową i nieparzystą. Wyznacz długość tej listewki. Podaj wszystkie możliwości.

Zadanie 8. (2 pkt)

Kolonijna grupa uczniów poszła z opiekunem na basen. Dla uczniów obowiązywała zniżka w wysokości $\frac{1}{3}$ ceny biletu normalnego. Opiekunowi nie przysługiwała żadna zniżka. Bilet wstępu na basen dla jednego ucznia kosztował 6,20 zł. Opiekun za swój bilet i wszystkie bilety uczniowskie zapłacił 102,30 zł. Ilu uczniów pojechało na basen? Zapisz obliczenia.

1p.

1p.

Uczeń:

- 1. Oblicza cenę biletu dla dorosłych: $\frac{2}{3}x = 6,20$, stąd x = 9,30. Oblicza koszt biletów dla wszystkich uczniów: 102,30 9,30 = 93
- 2. Oblicza liczbę uczniów obecnych na basenie: 93 : 6,2 = 15. Podaje odpowiedź.

Odpowiedź: Na basen pojechało 15 uczniów.

Zadanie 9. (2 pkt)

Wyznacz wszystkie liczby całkowite, które spełniają warunek: a (a – 18) = – 77. Odpowiedź uzasadnij.

Uczeń:

- 1. Przedstawia liczbę –77 w postaci iloczynu liczb całkowitych (–7) · 11 lub 7 · (–11).
- 2. Analizuje i sprawdza dla liczb 7, -7, 11, -11 prawdziwość równości i 1p. wskazuje liczby 7 i 11.

Odpowiedź: Szukane liczby to 7 i 11.

Uwaga:

Uczeń nie musi obliczać iloczynów w czterech przypadkach, jeżeli uzasadni, że w dwóch od razu widać, iż wynik mnożenia będzie dodatni.

Zadanie 10. (2 pkt)

Od sumy kwadratów czterech liczb: a-2, a-1, a+1, a+2 odejmij różnicę kwadratów liczby 2a i liczby 4. Wynik przedstaw w najprostszej postaci.

Uczeń:

- 1. Oblicza kwadrat sum i kwadrat różnic. Zapisuje treść zadania w postaci wyrażenia algebraicznego.
- 2. Przedstawia wynik w najprostszej postaci. 1p.

$$(a-2)^2 + (a-1)^2 + (a+1)^2 + (a+2)^2 - ((2a)^2 - 4^2) = 26$$

Zadanie 11. (2 pkt)

Litrowa butelka zagęszczonego soku malinowego kosztowała 24 zł. Producent przygotował dwie wersje promocji tego soku. Która z nich jest bardziej opłacalna dla klienta? Uzasadnij, wykonując obliczenia.

I promocja:

"Za tę samą cenę otrzymasz o 20% soku malinowego więcej."

II promocja:

"Za tyle samo soku malinowego zapłacisz o 20% mniej."

I sposób	
Uczeń:	
1. Oblicza, że w pierwszej promocji 1,2 litra soku kosztuje 24 zł. Zatem 1 litr soku kosztuje 20 zł.	1p.
2. Oblicza, że w drugiej promocji 1litr soku kosztuje 19,20 zł. Porównuje ceny za 1 litr soku w obydwu promocjach i wnioskuje, że druga promocja jest	
korzystniejsza dla klienta.	
II sposób	
Uczeń:	
1. Oblicza, że w pierwszej promocji za 24 zł otrzyma 1,2 l soku	1p.
2. Oblicza, że w drugiej promocji za 24 zł otrzyma 1,25 l soku. Podaje	
odpowiedź.	1p.
Odpowiedź: Druga promocja jest korzystniejsza.	I T

Zadanie 12. (2 pkt.)

Z dwóch miast odległych o 35 km wyruszają, naprzeciw siebie, o godzinie 10^{00} dwaj rowerzyści A i B jadący ze stałą prędkością. Prędkość rowerzysty A jest równa $\frac{3}{4}$ prędkości rowerzysty B. Rowerzyści mijają się po $1\frac{1}{4}$ godziny. O której godzinie rowerzysta A dojedzie do miasta? Zapisz obliczenia.

Uczeń:	
1.Oblicza prędkość rowerzysty A i prędkość rowerzysty B: 12 km/h, 16 km/h	1p.
2. Oblicza czas rowerzysty A potrzebny do przebycia całej trasy:	1p.
2 h 55 min. Podaje godzinę jego przyjazdu do miasta: godzina 12 ⁵⁵	
Odpowiedź: O godzinie 12 ⁵⁵ rowerzysta A dojedzie do miasta.	