

ACADEMIC BOARD POLICY: ACADEMIC DISHONESTY AND PLAGIARISM

COMPLIANCE STATEMENT

INDIVIDUAL / COLLABORATIVE WORK

I/We certify that:

- (1) I/We have read and understood the *University of Sydney Academic Board Policy: Academic Dishonesty and Plagiarism*;
- (2) I/We understand that failure to comply with the *Academic Board Policy: Academic Dishonesty* and *Plagiarism* can lead to the University commencing proceedings against me/us for potential student misconduct under Chapter 8 of the *University of Sydney By-Law 1999* (as amended);
- (3) This Work is substantially my/our own, and to the extent that any part of this Work is not my/our own I/we have indicated that it is not my/our own by Acknowledging the Source of that part or those parts of the Work;
- (4) No part of this Work has been previously submitted for summative assessment, whether in this Unit of Study or another Unit of Study (unless the Examiner has given specific approval for this to occur);
- (5) I/We accept that the Work submitted with this Compliance Statement is the version of the Work that will be assessed.

Complete all fields in the following table for yourself (in the case of individual work), <u>OR</u> for ALL members of your group (in the case of collaborative work).

Typewritten name(s) in the signature column will be accepted as signature(s) for electronic submissions only.

Name	Signature	SID	Date
Tara Bartlett	T.B	450198331	02/06/17

Title for Assignment

SUBJ1234 ASSIGNMENT X

Tara Bartlett 450198331

1 Abstract

Contents

1	Abstract	i
2	Introduction 2.1 Aim	1 1
3	Literature Review 3.1 Inserting a figure	2 2 2 2 4
4	Conclusion	5
\mathbf{R}	eferences	i
5	Appendix 5.1 Matlab Code	ii ii

- 2 Introduction
- 2.1 Aim

3 Literature Review

Before starting the project, it was important to comprehensively understand what issues are being faced by systems controlled in similar ways to AIRUS, and what solutions are already available.

3.1 Inserting a figure

Figure 1.

Figure 1: Example Figure

3.2 Referencing¹

3.3 Table

Table 1 is a table. Use latex table generator

Variable Name Definition		Initialization	Application
dtTelem	Time between telemetry	User input to	Compensated for in the prediction,
	being sent and received	parent file	used to calculate expected current
			position
dt Control Received	Time between control being	User input to	Used in the prediction to find position
sent and received		parent file	of green dot, represents the lag in the
			system
dtControlActed	Time taken for commanded	User input to	The reciprocal of this is used as the
	velocity to be implemented,	parent file	proportional gain constant in the PD
	once received		controller
dtEuler	Shorter time step used for	Defined in	Used to iterate through the
	Euler integration in predictor	predictor	displacement and velocity prediction
			calculations in each loop of the system
$dt_{-}i$	Time taken for each iteration	Calculated in	Represents the time taken for each
		parent file	iteration in the simulation, used in
			many functions in the system to
			find the number of iterations that
			corresponds to a given delay
time Taken	Total time taken for the red	Calculated in	The total time taken for the pilot
	dot to reach the end of the	parent file	to move the red dot from the initial
	plot		position to the final position

Table 1: Definition of Time Parameters

3.4 subfigures

Figure 2: Example subfigures

4 Conclusion

References

[1] Abdullah Akce, Miles Johnson, Timothy Bretl, "Remote Teleoperation of an Unmanned Aircraft with a Brain-Machine Interface: Theory and Preliminary Results," Conference Paper in Proceedings - IEEE International Conference on Robotics and Automation, 2010.

5 Appendix

5.1 Matlab Code

Figure Formatting

```
1 % FORMAT 2D FIGURE: GIVES FIGURE LATEX FORMATTING
2 % Author: Tara Bartlett 450198331
3 % Input: handles of figure, xlabel and ylabel (and legend)
4
5 function formatFigure(figHandle, xHandle, yHandle, varargin)
6 figure(figHandle);
7 grid on;
8 fontsize = 20;
9 set(xHandle, 'Interpreter', 'Latex', 'FontSize', fontsize);
10 set(yHandle, 'Interpreter', 'Latex', 'FontSize', fontsize);
11 set(gca, 'TickLabelInterpreter', 'latex', 'FontSize', fontsize, 'LineWidth', 1.5);
12
13 if ¬isempty(varargin)
14 set(varargin{1}, 'Interpreter', 'latex', 'Location', 'best', 'FontSize', fontsize);
15 end
16 end
```