Logică pentru Informatică - Subiectul 1 (28.01.2019)

Se va completa de către student			
Nume, prenume:			
An, grupă:			
<u> </u>			

Se va completa de				
profesorul corector				
Subject	Punctaj			
1				
2				
3				
4				
5				

Total

Începeți rezolvarea pe această pagină. Numerotați toate paginile.

Reguli de inferență pentru deducția naturală:

$$\wedge i \frac{\Gamma \vdash \varphi \quad \Gamma \vdash \varphi'}{\Gamma \vdash (\varphi \land \varphi')}, \qquad \wedge e_1 \frac{\Gamma \vdash (\varphi \land \varphi')}{\Gamma \vdash \varphi}, \qquad \wedge e_2 \frac{\Gamma \vdash (\varphi \land \varphi')}{\Gamma \vdash \varphi'}, \qquad \rightarrow e \frac{\Gamma \vdash (\varphi \rightarrow \varphi') \quad \Gamma \vdash \varphi}{\Gamma \vdash \varphi'}, \qquad \rightarrow i \frac{\Gamma, \varphi \vdash \varphi'}{\Gamma \vdash (\varphi \rightarrow \varphi')}, \qquad \vee i_1 \frac{\Gamma \vdash \varphi_1}{\Gamma \vdash (\varphi_1 \lor \varphi_2)}, \qquad \vee i_2 \frac{\Gamma \vdash \varphi_2}{\Gamma \vdash (\varphi_1 \lor \varphi_2)}, \qquad \vee e^2 \frac{\Gamma \vdash \varphi_2}{\Gamma \vdash (\varphi_1 \lor \varphi_2)}, \qquad \vee e^2 \frac{\Gamma \vdash \varphi'}{\Gamma \vdash \varphi'}, \qquad e^2$$

- 1. (5p). Enunțați definiția următoarei noțiuni: signatură.
- 2. (10p). Scrieți o formulă din LP1 care modelează următoarea afirmație: orice număr prim este par.
- 3. (10p). Fie $\Sigma = (\{P\}, \{f, i, e\})$ și Σ -structura $S = (\mathbb{Z}, \{=\}, \{+, -, 0\})$, unde = este predicatul de egalitate peste numere întregi, + este funcția (binară) de adunare peste numere întregi, este minusul unar și 0 este elementul neutru (constantă). Este formula P(f(i(x), z), i(y)) satisfiabilă în structura S? Dar satisfiabilă? Este obligatorie justificarea răspunsului.
- 4. (10p). Arătați folosind rezoluția de ordinul I că formula de mai jos este validă:

$$\varphi = Q(y) \rightarrow \exists x. Q(x).$$

5. (10p). Dați o demonstrație formală pentru secvența $\{\forall x.(P(x) \to Q(x)), R(a) \land P(a)\} \vdash \exists x.Q(x),$ folosind deducția naturală.