Math 210B Lecture 7 Notes

Daniel Raban

January 23, 2019

1 Inseparability and Perfect Fields

1.1 Towers of separable extensions

Proposition 1.1. Let E/F be finite, and let $\operatorname{Emb}_F(E)$ be the set of embeddings $\Phi: E \to \overline{F}$ fixing F. Then $|\operatorname{Emb}_F(E)|$ divides [E:F], with equality iff E/F is separable.

Proof. Let $e = |\operatorname{Emb}_F(E)|$ and $E = F(\alpha_1, \dots, \alpha_n)$. Let $E_i = F(\alpha_1, \dots, \alpha_{i=1}, \text{ and let } e_i)$ be the number of embeddings in $\operatorname{Emb}_F(E_{i+1})$ extending an embedding in $\operatorname{Emb}_F(E_i)$. We know that $e_i \mid [E_{i+1} : E_i]$ and we get equality iff E_{i+1}/E_i is separable. This is because this is the number of distinct conjugates of α_i over E_i times the multiplicity (number of conjugates times multiplicity is the degree of the polynomial). Now $e = \prod_{i=1}^n e_i$, so E/F is separable.

If e = [E : F], take $\beta \in E$. The number of conjugates of $\beta \in \overline{F}$ is $d = |\operatorname{Emb}_F(F(\beta))|$, which divides $[F(\beta) : F]$. The number of extensions of any such embedding to $E \to \overline{F}$ divides $c = [E : F(\beta)]$. Now cd = e = [E : F], so $d = [F(\beta) : F]$, since d divides it and $c \mid [E : F(\beta)]$. Then $F(\beta)/F$ is separable.

Proposition 1.2. If K/E/F are salgebraic, and K/E and K/F is separable, then K/F is separable.

Proof. In the case of finite degree, this follows from the previous proposition. In general, any $\alpha \in K$ has minimal polynomial over E which has coefficients in a finite extension E'/F. So $E'(\alpha)/E'/F$ is finite, $E'(\alpha)/E'$ and E'/F are separable. So, by the finite case, α is separable over F. This is true for all $\alpha \in K$, so K/F is separable.

1.2 Purely inseparable extensions and degree of inseparability

Definition 1.1. An extension E/F is **purely inseparable** if every $\alpha \in E \setminus F$ is inseparable. Equivalently, E/F is separable it has no nontrivial intermediate separable extensions over F.

Example 1.1. $\mathbb{F}_p(x)/\mathbb{F}_p(x^p)$ is purely inseparable because it has degree p and because the minimal polynomial of x is $t^p - x^p = (t - x)^p$.

Corollary 1.1. The set of all separable elements in an extension K/F (call it E) is a field, and K/E is purely inseparable.

Definition 1.2. Suppose K/F is finite, and E is a maximal separable subextension. Then the **degree of separability** of K/F is $[K:F]_s = [E:F]$. The **degree of inseparability** if $[K:F]_i = [K:S]$.

1.3 Perfect fields

Definition 1.3. A field is **perfect** if every algebraic extension of it is separable.

Example 1.2. \mathbb{F}_p is perfect. Finite extensions are \mathbb{F}_{p^n} , which is generated by the roots of $x^{p^n} - x$, which has p^n distinct roots. So these extensions are separable.

Lemma 1.1. Let E/F is algebraic, $f \in E[x]$ be monic, and $m \ge 1$ such that $f^m \in F[x]$. Then either m = 0 in F or $f \in F[x]$.

Proof. Let $f = \sum_{i=0}^{n} a_i x^i$ be monic, and suppose that $f \notin F[x]$. Let $i \leq n-1$ be maximal such that $a_i \notin F$. Let c be the coefficient of $x^{(m-1)n+i}$ in f^m . This is not in F, since c is a sum of terms all in F (involving only a_j with j > i and 1 term coming from $a_i a_n^{m-1} = a_i$). So $c - ma_i \in F$, which means $a_i \in F$ or m = 0 in F. But $a_i \notin F$.

Theorem 1.1. Every field of characteristic 0 is perfect.

Proof. Let $\operatorname{char}(F) = 0$. Then every irreducible monic polynomial is $f = \prod_{i=1}^d (x - \alpha_i)^m \in \overline{F}[x]$. Then $f = g^m$, where $g \in \overline{F}[x]$. So $g \in F[x]$ by the lemma. Since f is irreducible, m = 1.

Proposition 1.3. Let char(F) = p. If E/F is purely inseparable and $\alpha \in E$, then there exists a minimal $k \geq 0$ such that $\alpha^{p^k} \in F$, and the minimal polynomial of α is $x^{p^k} - \alpha^{p^k}$.

Proof. Let $\alpha \in E \setminus F$ have minimal polynomial $f = \prod_{i=1}^d (x - \alpha_i)^m \in \overline{F}[x]$. Of m > 1, then $f = g^m$ where $g = \prod_{i=1}^d (x - \alpha_i)$. Then $m = p^k t$, where $p \nmid t$, and $k \geq 1$ by the lemma. Then $f = (g^{p^k})^t \in F[x]$. So the lemma forces t = 1 since $p \nmid t$. Letting $a_i = \alpha_i^{p^k}$, we get $f = \prod_{i=1}^d (x^{p^k} - a_i)$. Then $f = h(x^{p^k})$, where $h = \prod_{i=1}^d (x - a_i) \in F[x]$. This is a separable polynomial, so $F(a_i)/F$ is separable for each i. Since E/F is purely inseparable, each $a_i \in F$. Since F is irreducible, we get d = 1. So $f = x^{p^k} - \alpha_i^{p^k}$.

Corollary 1.2. If E/F is finite and char(F) = p, then $[E/F]_i$ is a power of p.

Proposition 1.4. $[K:F]_s = |\operatorname{Emb}_F(K)|$.

Corollary 1.3. Degrees of separability and inseparability are multiplicative in extensions.

1.4 The primitive element theorem

Definition 1.4. An extension E/F is **simple** if $E = F(\alpha)$ with $\alpha \in E$. Here, α is called a **primitive element** for E/F.

Theorem 1.2 (primitive element theorem). Every finite separable extension is simple.

Proof. If $F = \mathbb{F}_q$, then \mathbb{F}_{q^n} , where $\mathbb{F}_q(\xi)$, where ξ is the primitive $(q^n - 1)$ -th root of 1. Now we may assume that F is an infinite field. It suffices to show that any $F(\alpha, \beta)/F$ (with α, β algebraic) is simple. Look at $\gamma := \alpha + c\beta$ for $c \in F \setminus \{0\}$. Since F is infinite, we can choose $c \neq \alpha' - \alpha)/(\beta' - \beta)$, where α' is a conjugate of α and same for β . Then $\gamma \neq \alpha' + c\beta'$ for all such α', β' . Let f be the minimal polynomial of α , and let $h(x) = f(\gamma - cx) \in F(\gamma)[x]$. Now $h(\beta) = f(\alpha) = 0$. Then h does not have any other β' as a root. We will finish this next time.