Samples Functions and their graphs SOLUTIONS

- 1. (1) $2y + 5x^2 = 16y + 10x^2 + 1$, so $14y = -5x^2 1$. This equation includes an x^2 term with a negative coefficient, so the graph is a parabola which turns downwards. Also, the *y*-intercept is negative. Hence the matching graph is Graph T.
 - (2) $y = e^{3x}$, which is a graph of exponential growth. Hence the matching graph is Graph K.
 - (3) 11y 7 = 5x 7, so 11y = 5x. Hence this is a straight line, with positive gradient and passing through the origin. Hence the matching graph is Graph F.
 - (4) $-15y + 9 = x^2 + 9$, so $15y = -x^2$. This equation includes an x^2 term with a negative coefficient, so the graph is a parabola which turns downwards. Also, the y-intercept is 0. Hence the matching graph is Graph S.
 - (5) 11x 8 = -3y + 11x 10, so 3y = -2, so $y = -\frac{2}{3}$. Hence this is a horizontal line, with y negative. Hence the matching graph is Graph D.
 - (6) -7y + 8x 4 = 9y + 7, so 16y = 8x 11. Hence this is a straight line, with positive gradient and negative y-intercept. Hence the matching graph is Graph E.
 - (7) 1 = -13x, so $x = -\frac{1}{13}$. Hence this is a vertical line, with x negative. Hence the matching graph is Graph A.
 - (8) $y = e^{-x}$, which is a graph of exponential decay. Hence the matching graph is Graph L.
- 2. (1) $-14y 6x^2 + 7 = -15y 9x^2 16$, so $y = -3x^2 23$. This equation includes an x^2 term with a negative coefficient, so the graph is a parabola which turns downwards. Also, the y-intercept is negative. Hence the matching graph is Graph T.
 - (2) 9x 4 = 13x, so -4x = 4, so x = -1. Hence this is a vertical line, with x negative. Hence the matching graph is Graph A.
 - (3) $y = e^{3x}$, which is a graph of exponential growth. Hence the matching graph is Graph K.
 - (4) 6y 15 = -16, so 6y = -1, so $y = -\frac{1}{6}$. Hence this is a horizontal line, with y negative. Hence the matching graph is Graph D.
 - (5) $y = 8 \times |9x|$, which is a graph of absolute value. Hence the matching graph is Graph N.
 - (6) 12y 5 = 14y 15x + 13, so 2y = 15x 18. Hence this is a straight line, with positive gradient and negative y-intercept. Hence the matching graph is Graph E.
 - (7) 14x + 5 = 15x 1, so -x = -6, so x = 6. Hence this is a vertical line, with x positive. Hence the matching graph is Graph B.
 - (8) -x-5 = -10y-16x-14, so 10y = -15x-9. Hence this is a straight line, with negative gradient and negative y-intercept. Hence the matching graph is Graph J.

- **3.** (1) 9y + 8x 9 = 12y + 8x 10, so -3y = -1, so $y = \frac{1}{3}$. Hence this is a horizontal line, with y positive. Hence the matching graph is Graph C.
 - (2) -9y + 5x 2 = 16y + 8x 9, so 25y = -3x + 7. Hence this is a straight line, with negative gradient and positive y-intercept. Hence the matching graph is Graph H.
 - (3) $y = 2 \times |-13x|$, so $y = 2 \times |13x|$, which is a graph of absolute value. Hence the matching graph is Graph N.
 - (4) $y = -5 \times |8x|$, which is a graph of negative absolute value. Hence the matching graph is Graph M.
 - (5) 4y + 6x 14 = 6y 5x 14, so 2y = 11x. Hence this is a straight line, with positive gradient and passing through the origin. Hence the matching graph is Graph F.
 - (6) $-4y 13 = -9y + 5x^2$, so $5y = 5x^2 + 13$. This equation includes an x^2 term with a positive coefficient, so the graph is a parabola which turns upwards. Also, the y-intercept is positive. Hence the matching graph is Graph O.
 - (7) $15x^2 = 5y$. This equation includes an x^2 term with a positive coefficient, so the graph is a parabola which turns upwards. Also, the y-intercept is 0. Hence the matching graph is Graph P.
 - (8) $7y = 15y + 6x^2 + 15$, so $8y = -6x^2 15$. This equation includes an x^2 term with a negative coefficient, so the graph is a parabola which turns downwards. Also, the y-intercept is negative. Hence the matching graph is Graph T.