

Conditional-Flow NeRF: Accurate 3D Modelling with Reliable Uncertainty Quantification

Jianxiong Shen, Antonio Agudo, Francesc Moreno-Noguer, Adrià Ruiz

Introduction Methodology

Reliable?

Limitation of Neural Radiance Fields (NeRF)

- Model prediction correctness not known
- No confidence associated with the model outputs
- Could make Risky decisions based on the predictions

General Uncertainty Method

	Uncertainty	Models	Forward pass	Complexity	Explicit distribution
NeRF		1	1	O(1)	
Deep Ensembles	~	Ν	N	$O(N^2)$	
MC-Dropout	~	1	N	O(N)	
Ours	✓	1	1	O(1)	✓

- General uncertainty methods are computationally expensive
- Ours model an explicit distribution over all possible radiance fields

Deterministic VS. Stochastic NeRF

We introduce stochasticity in NeRF for explicitly modelling uncertainty

Overall framework

- (a) Latent variable modelling to introduce dependence among all 3D location
- (b) Complex distribution modelling by Conditional Normalizing Flow (CNF)
- (c) Volume Rendering to build a likelihood for pixel color

Conditional Flow

Variational Bayesian optimization

KL-divergence:

$$\min_{\theta} \mathbb{KL}\left(q_{\theta}(\mathcal{F})||p(\mathcal{F}|\mathbf{C})\right) \propto \min_{\theta} -\mathbb{E}_{q_{\theta}(\mathcal{F})} \log p(\mathbf{C}|\mathcal{F}) + E_{q_{\theta}(\mathcal{F})} \log q_{\theta}(\mathcal{F})$$

$$\log -\mathbb{E}_{q_{\theta}(\mathcal{F})} \log p(\mathbf{C}|\mathcal{F})$$

$$\log -\mathbb{E}_{q_{\theta}(\mathcal{F})} \log p(\mathbf{C}|\mathcal{F})$$

Kernel density estimator (KDE):

$$\mathcal{L}_{\text{NLL}} = \frac{1}{N} \sum_{n=1}^{N} \log p \left(C_n | \mathcal{F} \right) \triangleq \frac{1}{N} \sum_{n=1}^{N} \log \frac{1}{K} \sum_{k=1}^{K} K_{\text{H}} \left(C_n - C_{nk} \right)$$
Gaussian kernel

Results

NLL: negative log-likelihood

 δ_3 : δ -threshold method to assess the depth quality

AUSE: uncertainty evaluation by sparsification curves

Uncertainty estimation on RGB and depth

RGB						Depth						
Methods	Quality Metrics			Uncertainty Metrics			Quality Metrics			Uncertainty Metrics		
	PSNR	SSIM	LPIPS	AUSE RMSE	AUSE MAE	NLL	RMSE	MAE	δ_3	AUSE RMSE	AUSE MAE	NLL
D.E.	23.78	0.808	0.283	0.263	0.195	1.70	0.150	0.090	0.750	0.260	0.132	5.76
Drop.	22.32	0.740	0.398	0.311	0.253	1.81	0.229	0.149	0.348	0.497	0.395	10.21
NeRF-W	19.11	0.683	0.458	0.171	0.113	2.05	0.222	0.179	0.475	-	-	-
S-NeRF	17.69	0.603	0.548	0.271	0.355	1.92	0.420	0.375	0.248	0.416	0.490	9.38
CF-NeRF	24.68	0.863	0.168	0.051	0.026	-0.71	0.118	0.074	0.810	0.110	0.071	5.09

Ours render visually more intuitive uncertainty maps highly correlated with the prediction error both on RGB and depth, as well as more accurate predictions

Time performance

- Ours perform the best both on image quality (PSNR) and uncertainty estimation (NLL) with a reasonable inference time
- Moreover, properly selecting the number of samples (K=8~16) reduces the inference time with a negligible impact on performance
- To further reduce time usage, our framework can be readily integrated into other efficient NeRF variants like Voxel-based instead of MLP