

Bengaluru, India

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi

Pattern Discovery and Forecasting of Attrition

Saumyadip Sarkar

SRN: R19MBA07

Date: 27-Aug-22

MBA in Business Analytics

Capstone Project Presentation Year: II

race.reva.edu.in

Agenda

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi

01 Introduction

Background | Current status | Why this study

05 Project Methodology

Conceptual Framework | Research Design

02 Literature Review

Seminal works | Summary | Research Gap

06 Business Understanding

Business Context | Monetary Impact

03 Problem Statement

Business Problem | Analytics Solution

n7 Data Understanding

Data Collection | Variables

04 Project Objectives

Primary & Secondary Objectives | Expected Outcome

08 Data Preparation

Pre-processing | Process | Techniques

09 Descriptive Analytics

Univariate | Bivariate | Hypothesis

10 Modeling

Machine Learning | Model Evaluation | Insights

11 Model Deployment

Applications | Demo

12 Suggestions and Conclusions

Insights | Next Step | Future Scope

13 Annexure

References | Publications | Plagiarism Score

Introduction

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi

Background | Current status | Why this study

Forecast Attrition in advance

Plan workload management

Reduce Penalties

Transportation Line of Business

Literature Review

Seminal works | Summary | Research Gap

20+ research papers and article are researched to understand employee attrition & timeseries forecasting related work.

Key Findings

Attrition is a very costly affair for any industry. The direct costs of workforce turnover include the cost of hiring new employees, the cost of training new employees, the time it takes to transition, the cost of temporary employees, the cost of lost expertise, and the cost of the job itself (Chakraborty et al., 2021).

In the study (Kumar Jain et al., 123 C.E.), several machine learning algorithms like Decision Tree, SVM, Random Forests have been used to estimate if an employee will leave or not.

There is one study that stands out from the rest is the use of Ensemble Model Based on Machine Learning Algorithms for automated employee attrition prediction (Alsheref et al., 2022).

In another study (Fallucchi et al., 2020), Gaussian Naïve Bayes classifier has been used to classify if an employee will attrit or not. XGBoost classifier has also been used to classify employee attrition (Jain & Nayyar, 2018).

Time series analysis and forecasting are important for a variety of applications, including business, the stock market and exchange, the weather, electricity demand, cost, and usages of goods like fuels and electricity, etc., and in any setting where there are periodic, seasonal variations seen (Mahalakshmi et al., 2016).

As seen in most of the studies related to attrition predictions, classification is the go-to approach. However, using time-series techniques to forecast future attrition has not been explored enough based on the observations during the literature review. This establishes a unique opportunity for this study.

Problem Statement

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi

Business Problem | Analytics Solution

Project Objectives

Primary & Secondary Objectives | Expected Outcome

Identify the required attrition dataset. In this case, only the attrition data of last 14 months are available. Study data at various levels and categories to identify trends, patterns, and top contributors which then will be used to create subsets of the main dataset for modeling. Explore various timeseries techniques to identify the best timeseries forecasting model which can be used to forecast future attrition. Propose early alert system which will help managers manage workload better to reduce missed SLAs and penalties.

Project Methodology

Conceptual Framework | Research Design

CRISP-DM

Business Understanding – Transportation Line of Business

Data Understanding – Attrition Data of last 14 months

Data Preparation – Creating subsets by introducing various categories

Modeling – Explore various timeseries forecasting models

Evaluation – Compare results of various modeling techniques to identify the best one

Deployment – Suggest a deployment strategy

Business Understanding

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi

Business Impact | Challenges | Monetary Impact

The transportation one of the most profitable units in this organization.

Solutions	Description		
	Captures vehicle details when a tolling both is crossed and bills customer accordingly. A		
Automated Tolling	team also works on dispute resolutions pertaining to technical failure, failed auto-debit		
	attempts, customer complaints, etc.		
Automoted Devices	It provided intelligent parking solutions mainly for governments. The solution involves fee		
Automated Parking	collections, dynamic pricing, enforcement solutions, etc.		
Public Safety	It provides automated photo enforcement, traffic violation solutions, etc.		

Missed SLAs

Penalties

(~ 34% avg last 3 years)

278 in last 14 months

\$2,082k in last 14 months

Constant change in management

Lack of focus and support

Data Understanding

Data Collection | Variables

Data used in this study is only attrition data collected for the last 14 months. Other data points collected are Number of Missed SLAs & Penalties Paid at contract level for last 14 months.

Fields in the Attrition Dataset

Employee details

Approved by AICTE, New Delhi

 ID, Employee Name, Salary, Last Performance Rating

Employment Details

 Employee Type (Regular or Contract), Joining Date, **Termination Date**, **Employee Level**, Type of Termination, Termination Code, Cost Centre, Job Name

Contract Details

Contract Name, Sector, Business Category,
 Location City, Country

Data Preparation

Pre-processing | Techniques

Based on Termination Date, the data was divided into Quarters and Months.

		Quarter	Month	Overall	Top 6 Contracts	C01 Employee Level	Top 6 Contracts (C01)	Top Salary Bucket	TSA Top Cities
Subsets	0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 ·			Attrition	Attrition	Attrition	Attrition	Attrition	Attrition
created		Q1- FY22	Month 1	56	46	39	35	46	41
for modeling	Attrition by top contracts, quarter and month-wise		Month 2	99	85	73	65	79	85
			Month 3	87	73	66	62	72	76
	Attrition by top employment levels, quarter and month-wise	Q2 - FY22	Month 1	100	80	87	71	84	80
			Month 2	106	84	77	68	86	83
	Attrition by top contracts and top employment level, quarter and month-wise		Month 3	95	76	69	61	78	79
		Q3 - FY22	Month 1	85	71	67	62	69	71
	Attrition by top Cities, quarter and monthwise Attrition by top salary ranges, quarter, and month-wise		Month 2	125	110	107	98	111	108
			Month 3	125	103	93	88	96	102
		Q4 - FY22	Month 1	137	106	99	91	100	106
	IIIOII(II-M19C		Month 2	116	103	96	92	102	103
			Month 3	117	100	96	91	101	102

Descriptive Analytics

Multivariate Analysis | Hypothesis

Key Findings

Top 6 contracts which representing 15% of overall contracts are contributing to more than 80% of attrition and 50% penalties

~ 90% of attrition is happening at the junior most level (C01). Top 6 contracts remained constant.

Top 11 cities representing 27 % contributed to 80% of attritions

Salary ranging from \$20k to \$40k contribute to more than 80% attrition

Strong correlation of 0.93 exists between contract level attrition numbers and missed SLAs

Strong correlation of 0.92 is observed between Missed SLAs and Penalties paid at contract levels

Modeling

Modeling Techniques | Modeling Process | Model Building

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi

Dickey-Fuller Test

Data is Stationary
Across all Dataset

Upward trend across all datasets contradicts Dickey-Fuller test

Following timeseries model are tested to validate both Stationary & Trend in the datasets

Modeling Technique Used using MS Excel

Moving Average

Ratio to Moving Average

Exponential Smoothing

Modeling Technique Used using Python

ARIMA

LSTM

Holt-Winters

Modeling

Modeling Techniques | Modeling Process | Model Building

Moving Average

- •A 3 months moving average is considered as the data is divided into quarters consisting of 3 months
- It is an empirical methods for smoothing and forecasting timeseries

Ratio to Moving Average

- •Building on Moving Average, some additional steps are added like deseasonalizing the data, building regression model on the deseasonalized data to forecast
- •This method is frequently used to show the data's overall movement without taking seasonal effects into account.

Exponential Smoothing

- ·MS Excel's FORECAST.ETS function is used
- •It uses AAA version of Exponential Smoothing
- •This method is based on three smoothing equations: stationary component, trend, and seasonal.

Modeling

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi

Modeling Techniques | Modeling Process | Model Building

ARIMA

Auto ARIMA is used to find the best combination of the order (p,d,q)

The best order found was (1,0,0).

This order was used for all other datasets

LSTM

The data is divided into train and test data and MinMax preprocessing technique is used on both the datasets

LSTM learns using "TimeSeriesGenerator" function with input as 2.

The Sequential, Dense, and LSTM classes are called from the Keras library

The model is the run 50 epoch to understand the stage at which the loss is lowest for it to learn on its own

Holt-Winters

Single HWES is used as the first technique.

Double HWES is tried next with both additive and multiplicative for trend

Finally Triple HWES is used with both additive and multiplicative for trend and seasonality

Established as per the section 2(f) of the UGC Act, 1956,

Approved by AICTE, New Delhi

Modeling

Modeling Techniques | Modeling Process | Model Building

Linear Regression

Given forecasted attrition, missed SLAs are predicted using a linear regression model.

Similarly, with forecasted missed SLAs, the penalties are predicted using a linear regression model.

Regression Formulae

Predicted Missed SLAs = (0.07958 * Forecasted Attrition) + 3.7954

Predicted Penalties = (7.45942 * Predicted Missed SLAs) + 0.20933

Model Evaluation

Results | Interpretation | Insights

ETS or Moving Average has the best MAPE across all the datasets.

	MAPE						
TS Models	Overall Data	Top 6 Contracts	C01 Employee Level	Top 6 Contracts at (C01)	Top Salary Range	Top Cities	
Moving Average (3)	9%	6%	7%	7%	7%	6%	
Ratio to Moving Average	12%	11%	13%	12%	9%	12%	
Exponential Triple Smoothing (ETS)	10%	6%	4%	4%	2%	4%	
ARIMA	14%	14%	15%	19%	13%	15%	
Holt Winters ES1	25%	26%	28%	29%	25%	29%	
Holt Winters ES2_ADD	13%	12%	13%	12%	19%	13%	
Holt Winters ES2_MUL	18%	25%	15%	25%	23%	27%	
Holt Winters ES3_ADD	16%	14%	19%	16%	15%	15%	
Holt Winters ES3_MUL	20%	17%	24%	19%	18%	18%	

^{*} LSTM has been used only on overall data where the accuracy was 86%.

Model Deployment

Demonstration

The models used here need to be tested with future attrition data to establish the consistency of results. Since other external factors are not considered which can affect attrition, this study would be an ongoing activity. However, the final findings will be shared to gain overall feedback from the management. Based on the feedback a deployment process can be decided.

Proposed Solution –
Early Alert System in
Power BI

Results and Insights

Key Findings | Suggestions

The forecasting techniques were tested on the actual attrition data of the following two months.

Model Performance on Test Data

Dataset	Forecasting Technique	MAD	RMSE	МАРЕ	MAPE during training
Overall Data	Moving Average	25.8	28.6	17%	9%
Overall Data	ETS	14.0	17.5	9%	10%
Ton 6 Contracts	Moving Average	6.3	8.6	5%	6%
Top 6 Contracts	ETS	7.1	7.6	6%	6%
C01 Employee Level	ETS	7.7	9.1	6%	4%
Top 6 contracts at (C01)	ETS	7.5	7.5	7%	4%
Top Salary Bucket	ETS	4.6	4.8	4%	2%
Top Cities	ETS	4.1	5.0	3%	4%

Results and Insights

Key Findings | Suggestions

Approved by AICTE, New Delhi

Forecasted attrition numbers are used for predicting Missed SLAs and Predicted Missed SLAs are used for predicting Penalties.

Dograco	ion I	Ormi	Jaa
Regress	топт	COLLILLO	шае

Predicted Missed SLAs = (0.07958 * Forecasted Attrition) + 3.7954

Predicted Penalties = (7.45942 * Predicted Missed SLAs) + 0.20933

	Overall Data								
	Month	ETS (Forecast)	Predicted Missed SLAs	Predicted Penalties in (\$ k)					
	Month 1	128.7	14	104.9					
	Month 2	133.4	14	107.7					
	Month 3	138.2	15	110.6					
	Total		43	323.2					

Regression Statistics (Y = Missed SLAs, X = Attrition)			
Multiple R	0.93		
R Square	0.86		
Adjusted R Square	0.86		
Standard Error	2.75		

Regression Statistics (Y = Penalties, X = Missed SLAs)				
Multiple R	0.92			
R Square	0.85			
Adjusted R Square	0.85			
Standard Error	23.18			

Conclusion and Future Work

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi

Proposed solutions | Scope for future work

Given only attrition data, future attrition can be predicted with greater accuracy.

Consistent across all datasets

Simple & Easy to Use

Greater acceptability within organization

As with any modeling technique, continuous training with future attrition is recommended.

References

Bibliography | Webliography

Chakraborty, R., Mridha, K., Nath Shaw, R., & Ghosh, A. (2021). Study and Prediction Analysis of the Employee Turnover using Machine Learning Approaches; Study and Prediction Analysis of the Employee Turnover using Machine Learning Approaches. 2021 IEEE 4th International Conference on Computing, Power and Communication Technologies (GUCON). https://doi.org/10.1109/GUCON50781.2021.9573759

Alsheref, F. K., Fattoh, I. E., & M.Ead, W. (2022). Automated Prediction of Employee Attrition Using Ensemble Model Based on Machine Learning Algorithms. *Computational Intelligence and Neuroscience*, 2022, 1–9. https://doi.org/10.1155/2022/7728668

Fallucchi, F., Coladangelo, M., Giuliano, R., & de Luca, E. W. (2020). *Predicting Employee Attrition Using Machine Learning Techniques*. https://doi.org/10.3390/computers9040086

Mahalakshmi, G., Sridevi, S., & Rajaram, S. (2016). *A survey on forecasting of time series data; A survey on forecasting of time series data.* https://doi.org/10.1109/ICCTIDE.2016.7725358

Kumar Jain, P., Jain, M., & Pamula, R. (123 C.E.). *Explaining and predicting employees' attrition: a machine learning approach*. https://doi.org/10.1007/s42452-020-2519-4

Bengaluru, India

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi

Annexure

Additional Information | Plagiarism score

Bengaluru, India

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi

Annexure

Publications | Conferences

Established as per the section 2(f) of the UGC Act, 1956, Approved by AICTE, New Delhi