gsplatam Real-time Splat, Track, and Map with gsplat

Chahyon Ku, David Wang, Ruihan Chen, Yicheng Zou

Motivation

Motivation

- + High Quality Reconstruction
- + Simple

- Lack of Online Interactive Visualization
- Slow
- 3D Gaussians Geometrically Inaccurate

Method: Visualization

Replica Dataset (tiny, 10.5 fps, 1200x680)

TUM Dataset (base, 1.27 fps, 640 x 480)

IPAD Record3D (tiny, 15 fps)

Results: IPAD - NerfCapture

1 fps Posed RGBD Stream over WIFI from iPad

David's Video!

Method: Runtime Optimization

ROBOTICS

Settings vary based on # of optimization steps

Base (40/60) vs. Small (10/15) vs. Tiny (4/6)

Setting	Methods	Track Time (s/frame) ↓	Map Time $(s/frame) \downarrow$	Total Time (s/frame) ↓	Num Gaussians ↓	ATE RMSE (cm) ↓	PSNR (db) ↑	Depth L1 (cm) ↓
base	reported reproduced ours	1.00 2.74 0.32	1.44 4.94 0.59	7.85 0.93	5,085,417 973,059	0.27 0.32 0.05	32.81 32.48 35.78	0.49 0.51 0.25
small	reported reproduced ours	0.19 0.27 0.08	0.33 0.45 0.14	0.84 0.24	931,214 1,101,708	0.39 0.52 0.28	29.29 30.44	0.83 0.55
tiny	reported reproduced ours	0.10 0.03	0.17 0.05	0.39 0.10	- 880,241 954,972	6.40 0.26	- 22.97 22.92	4.31 3.28

- Reported Reported Results from Desktop 3080 Ti
- Reproduced Evaluation of Their Implementation on Laptop 4090
- Ours Evaluation of Our Implementation on Laptop 4090

Setting	Methods	Track Time (s/frame) ↓	Map Time $(s/frame) \downarrow$	Total Time (s/frame) ↓	Num Gaussians ↓	ATE RMSE (cm) ↓	PSNR (db) ↑	$\begin{array}{c} \textbf{Depth L1} \\ (cm) \downarrow \end{array}$
base	reported reproduced ours	1.00 2.74 0.32	1.44 4.94 0.59	7.85 0.93	5,085,417 973,059	0.27 0.32 0.05	32.81 32.48 35.78	0.49 0.51 0.25
small	reported reproduced ours	0.19 0.27 0.08	0.33 0.45 0.14	0.84 0.24	931,214 1,101,708	0.39 0.52 0.28	29.29 30.44	0.83 0.55
tiny	reported reproduced ours	0.10 0.03	0.17 0.05	0.39 0.10	- 880,241 954,972	6.40 0.26	- 22.97 22.92	4.31 3.28

- 1. Reported (3080 Ti) -> Reproduced (Laptop 4090) is 1.3 to 3.4 slower
- 2. Reproduced (SplaTAM) -> Ours (gsplatam) is 3 to 8 times faster

Setting	Methods	Track Time (s/frame) ↓	Map Time (s/frame) ↓	Total Time (s/frame) ↓	Num Gaussians ↓	ATE RMSE (cm) ↓	PSNR (db) ↑	$\begin{array}{c} \textbf{Depth L1} \\ (cm) \downarrow \end{array}$
base	reported reproduced ours	1.00 2.74 0.32	1.44 4.94 0.59	7.85 0.93	5,085,417 973,059	0.27 0.32 0.05	32.81 32.48 35.78	0.49 0.51 0.25
small	reported reproduced ours	0.19 0.27 0.08	0.33 0.45 0.14	0.84 0.24	931,214 1,101,708	0.39 0.52 0.28	29.29 30.44	0.83 0.55
tiny	reported reproduced ours	0.10 0.03	0.17 0.05	0.39 0.10	- 880,241 954,972	6.40 0.26	- 22.97 22.92	4.31 3.28

- 1. Reproduced results match reported results within a margin
- 2. Our tracking is significantly better across all settings
- 3. Our mapping is comparable for tiny/small and superior for base

Setting	Methods	Track Time (s/frame) ↓	Map Time (s/frame) ↓	Total Time (s/frame) ↓	Num Gaussians ↓	ATE RMSE (cm) ↓	PSNR (db) ↑	Depth L1 (cm) ↓
base	reported reproduced ours	1.00 2.74 0.32	1.44 4.94 0.59	7.85 0.93	5,085,417 973,059	0.27 0.32 0.05	32.81 32.48 35.78	0.49 0.51 0.25
small	reported reproduced ours	0.19 0.27 0.08	0.33 0.45 0.14	0.84 0.24	931,214 1,101,708	0.39 0.52 0.28	29.29 30.44	0.83 0.55
tiny	reported reproduced ours	0.10 0.03	0.17 0.05	0.39 0.10	- 880,241 954,972	- 6.40 0.26	22.97 22.92	4.31 3.28

Method: Geometrically Accurate Gaussians

3DGS provides smooth photometric loss 2DGS is more geometrically accurate

Camera pose gradients were not implemented, so we implemented it

Results: Geometrically Accurate Gaussians

• 2DGS is slightly better for 3x runtime

Isotropic gaussians are slightly better with identical runtime

Туре	Covariance	Track Time (s/frame) ↓	Map Time (s/frame) ↓	Total Time (s/frame) ↓	Num Gaussians ↓	ATE RMSE (cm) ↓	PSNR (db) ↑	Depth L1 (cm) ↓
3D	Isotropic	0.03	0.05	0.10	984,531	0.26	23.17	2.58
3D	Anisotropic	0.03	0.05	0.10	954,972	0.26	22.92	3.28
2D	Isotropic	0.12	0.16	0.30	1,193,273	0.60	23.66	2.33
2D	Anisotropic	0.11	0.16	0.29	1,171,766	0.60	23.11	2.74

Limitation and Future Work

Loss of tracking is the biggest issue on realistic datasets

- 3DGS excel at local optimization
- 3DGS bad at larger camera movement / motion blur

Next Steps

- Integrate Sparse Keypoints such as SIFT / ORB
- Backend for robustness and recovery

Summary

Method: Runtime Optimization

Integration with gsplat 10-15 fps on a Laptop

Method: Visualization

Nerf Studio Team. Viser: a Library for Interactive 3D Visualization in Python. (Github 2023)

Interactive Visualization iPhone Streaming over WIFI

