Министерство науки и высшего образования Российской Федерации МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ

ОТЧЁТ О ВЫПОЛНЕНИИ ЛАБОРАТОРНОЙ РАБОТЫ

Термоэлектронный диод: изготовление и измерение ВАХ

Работу выполнили: студенты Б04-107 группы

Луговцов Г.С. и Козлов А.К.

Реферат

В работе был изготовлен диод, работающий по принципу термоэлектронной эмиссии, катод которого состоял из вольфрамовой проволоки, анод — из куска листового никеля. Металлические детали скреплялись между собой с помощью контактной сварки, после чего диод помещали в вакуум и измерялась его вольт-амперная характеристика. Полученные результаты говорят о том, что эмиссионные характеристики диода можно предсказать теоретической моделью, которая представлена в работе.

Содержание

Введение	4
1 Методика	
1.1 Изготовление термоэлектронного диода	5
1.1.1 Материалы и детали	
1.1.2 Сборка диода	
1.2 Измерение характеристик диода	6
1.2.1 Прогрев катода	6
1.2.2 Измерение серии ВАХ катода	6
2 Обсуждение результатов	7
Заключение	11
Список использованных источников	19

Введение

Как известно из курса общей физики, существует такое являение, как термоэлектронная эмиссия — возможность высвобождения электронов проводником при нагреве. На этом принципе предлагается построить диод: с разогретого катода будут вылетать электроны, которые будут под действием электрического поля между катодом и анодом попадать на анод. Это позволит фиксировать течение тока между катодом и анодом.

Но возникает ряд вопросов при изготовлении такого диода и дальнейшем его использовании в схемотехнике: как измерить его ВАХ, как зависит величина протекающего тока от температуры катода и какое у диода сопротивление? Ответы на эти вопросы найдены в этой работе.

1 Методика

1.1 Изготовление термоэлектронного диода

1.1.1 Материалы и детали

Собранный в работе диод состоит из нескольких основных компонентов:

- а) Kamod изготавливается из вольфрамовой проволоки диаметром $d_{\mbox{\tiny K}}=0.15$ мм.
 - б) Aноd изготавливается из листового никеля толщиной $d_a=0.2$ мм.
- в) $\mathit{Траверсы}$ изготавливаются из никелевой проволоки диаметром d=1 мм.
 - г) Металлостеклянная ножка.

Монтаж всех частей производился с помощью электроконтактной сварки.

1.1.2 Сборка диода

Анод вырезается из листа никеля, далее с помощью электроконтактной сварки крепится на ножку при помощи траверс, которые изготавливаются из никелевой проволоки.

Рисунок 1.1 — Крепление траверс на анод

Катод изготавливается из вольфрамовой проволоки и крепится на соответствующий вывод ножки с одной стороны и на натягивающую траверсу с другой. В результате мы получаем диод, изображённый на рис. 1.2.

Рисунок 1.2 — Вид диода в сборе

1.2 Измерение характеристик диода

Для измерений диод устанавливается в вакуумную камеру лабораторной вакуумной установки, затем происходит откачка вакуумной камеры до высокого вакуума $(10^{-6} - 10^{-7} \text{ Topp})$.

1.2.1 Прогрев катода

Сначала необходимо прогреть катод и измерить зависимость напряжения накала катода от тока накала. Целью прогрева является определение значения тока накала, при котором ток анода достигает значения 10 мкA.

1.2.2 Измерение серии ВАХ катода

Далее были проведены серии из 10 вольт-амперных характеристик диода при различных токах накала катода. Непосредственно перед началом измерения каждой характеристики необходимо дождаться установления температуры катода.

2 Обсуждение результатов

В результате выполнения работы были получены следующие экспериментальные зависимости:

Рисунок $2.1-\Gamma$ рафик зависимости тока накала от напряжения накала

<i>I</i> , A	U, B	$I_{ m Hac}$, мА	H , мк $A/{ m B}{ m T}$
2.4	4.95	0.343	28.9
2.5	5.31	1.06	80
2.6	5.7	3.36	227
2.7	6.1	9.8	595
2.8	6.49	26.8	1470
2.9	6.69	70	3430
3	7.43	129	5780

Таблица 2.1 — Расчёт КПД

Рисунок 2.2 — График зависимости сопротивления катода от приложенной мощности

Рисунок 2.3 — График зависимости температуры катода от тока накала: 1 — на основании измерения сопротивления катода; 2 — на основании расчётов с использованием уравнения энергетического баланса; 3 — на основании расчётов с использованием уравнения Ричардсона-Дэшмана.

Рисунок 2.4 — График зависимости анодного тока от анодного напряжения при различных значениях тока накала $I_{\rm H}$ в координатах $\log I_A$ от $\log V_A$.

Рисунок 2.5 — Аппроксимация прямой.

Рисунок 2.6 — График зависимости анодного тока от тока накала при различных значениях напряжения на аноде V_A в координатах $\log I_A$ от $I_{\mathrm{H}}.$

Рисунок 2.7 — Схематичный график зависимости степени черноты от температуры для разных металлов.

Заключение

Все полученные зависимости хорошо описываются теоретической моделью, описанной в [1], что свидетельствует о качественно собранном диоде и возможностью применения этой модели к дальнейшим исследованиям.

Список использованных источников

1. $Батурин,\ A.C.$ Термоэлектронный диод. Лабораторная работа по курсу Вакуумная электроника / А.С. Батурин, П.А. Стариков, Е.П. Шешин. — М.: МФТИ, 2008. — 43 с.