Bacterial Genome Assembly and Annotation

A workshop for the ISCB DC Area Regional Student Group - Summer 2016 Workshop

Jonathan Goodson

What we will cover

- The general methods used to generate nucleic acid sequences
- The idea behind assembly of genomic sequences from different types sequencing information
- How to practically go from sequencing data to semi-completed genomes
- How to begin to utilize assembled genomes to ask biological questions

What won't happen today

- You will not become an expert
- We will not discuss the best way to do anything
 - Is there a best way?
- We won't cover the most cutting-edge techniques

Why would we want to sequence a bacterial genome?

- Environmental isolate doing something interesting (production of molecule, special metabolism..)
- Analysis of important pathogen isolate
- Metagenomic analysis of mixed populations (not discussed today)
- Much easier than larger, more complex genomes!
 - Still not trivial

Background on DNA sequencing

- Modern methods started back in late 70s with Sander chain-termination sequencing
- Modern high-throughput methods include
 - Illumina short-reads (similar concept to Sanger dye chain-termination of a massive scale)
 - 454 pyrosequencing (less common now)
 - IonTorrent (characteristics similar to 454, cheaper, relatively uncommon)
 - Pacific Biosciences (PacBio) very long-read, lower coverage/accuracy
 - Oxford Nanopore single molecule sequencing (similar characteristics to PacBio, very new)

Background on DNA sequencing

Details about Illumina

- Generates "short" reads (25-300bp)
- Normally "paired" sequencing
 - Sequences both ends of a DNA molecule
 - Can be used to get extra information about DNA fragment size
- Cheapest method, cost for single bacterial genome ranges from \$200-\$1000 depending on number of genomes sequenced at once
- High-per base accuracy

Details about Illumina

Details about Pac Bio

- Generates longest reads possible of any current technology (Nanopore not reliably longer currently)
- 2-25kb reads, can achieve 20kb reliably
- Costs ~\$2000 for coverage on one complete bacterial genome (without short-reads)
- Low per-base accuracy
 - Can be overcome via consensus with sufficient coverage

Details about Nanopore

- Developing technology
- Low startup cost (no expensive sequencer)
- Sequences individual molecules by physical measurements as they pass through a very small pore
- Potential for very long reads
- Currently low-quality sequence and very variable read length

Methods of sequence assembly

- Alignment based (Overlap-Layout-Consensus)
 - Find overlaps between sequence reads (alignment)
 - Slowest part (Dynamic programming or Suffix Trees)
 - Scales with square of number of reads (Not suitable for Illumina/IonTorrent-type sequencing)
 - Layout stretches of overlapping reads into contiguous sequence blocks
 - Based on overlap graph (simplified with removal of transitive edges)
 - Non-branching stretches are contigs
 - Branching areas are unresolvable repeats
 - Choose most likely consensus sequence for each block

Overlap-Layout-Consensus

X: CTCGGCCCTAGG

||| ||||
Y: GGCTCTAGGCCC

TAGATTACACAGATTACTGA TTGATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAAACTA
TAG TTACACAGATTATTGACTTCATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAA CTA

TAGATTACACAGATTACTGACTTGATGGCGTAA CTA

Take reads that make up a contig and line them up

Take *consensus*, i.e. majority vote

Overlap-Layout-Consensus

X: CTCGGCCCTAGG
||| ||||
Y: GGCTCTAGGCCC

TAGATTACACAGATTACTGA TTGATGGCGTAA CTA TAGATTACACAGATTACTGACTTGATGGCGTAAACTA TAG TTACACAGATTATTGACTTCATGGCGTAA CTA TAGATTACACAGATTACTGACTTGATGGCGTAA CTA TAGATTACACAGATTACTGACTTGATGGCGTAA CTA

TAGATTACACAGATTACTGACTTGATGGCGTAA CTA

Take reads that make up a contig and line them up

Take *consensus*, i.e. majority vote

Overlap-Layout-Consensus

X: CTCGGCCCTAGG
||| ||||
Y: GGCTCTAGGCCC

TAGATTACACAGATTACTGA TTGATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAAACTA
TAG TTACACAGATTATTGACTTCATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAA CTA
TAGATTACACAGATTACTGACTTGATGGCGTAA CTA

TAGATTACACAGATTACTGACTTGATGGCGTAA CTA

Take reads that make up a contig and line them up

Take *consensus*, i.e. majority vote

Methods of sequence assembly

- De Bruijn graph-based
 - Construction of De Bruijn graph based on k-mers
 - Assembly performed by finding appropriate walk through the graph
 - Scales linearly with number of reads (instead of quadratically)
 - Memory requirement proportional to genome size (not read library size)
 - Cannot resolve repeats as well as overlap graph

De Bruijn Graph Assembly

Take each length-3 input string and split it into two overlapping substrings of length 2. Call these the *left* and *right 2-mers*.

Let 2-mers be nodes in a new graph. Draw a directed edge from each left 2-mer to corresponding right 2-mer:

Genomic assembly concepts

- Read
- Contig
- Repeat
- K-mer
- Sequence quality
- Error correction
- Scaffolding
- Coverage

Notable Assemblers

- Celera Assembler
 - Alignment based, used for first shotgun sequenced multi-cellular and human genomes
 - Adapted for Nanopore/PacBio long reads
- NGS Assemblers
 - De Bruijn graph SOAP, ABySS, Velvet, MIRA, SPAdes, Newbler, CLC
 - Alignment HGAP, Canu

Practical Time!

- Assembly of bacterial genome using SPAdes
- SPAdes
 - De Bruijn graph based assembler focued on Illumina data, with some capability to integrate Sanger, 454, PacBio, and Nanopore reads
 - Integrated error correction steps
 - Simple to install/use
 - Top-of-the-line accuracy for bacterial genomes (not designed for larger/complex genoems)

Practical Time!

- Public datasets we will use (E. coli K12 MG1655)
 - Illumina 2x100bp (HiSeq 2500)
 - http://spades.bioinf.spbau.ru/spades_test_datasets/ecoli_mc/
 - Illumina 2x300bp (MiSeq) (10M/89M reads)
 - http://www.illumina.com/systems/miseq/scientific_data.html
 - PacBio P6C2 Chemistry 20kb library (3 flowcells)
 - https://github.com/PacificBiosciences/DevNet/wiki/E.-coli-Bacterial-Assembly
 - Oxford Nanopore R7.3 Chemistry Error-Corrected
 - http://schatzlab.cshl.edu/data/nanocorr/

What didn't we do?

- Read filtering/quality trimming
 - Removal of low-quality or contaminating read sequences
 - Many methods, different for every platform
- Optimization of parameters
- Use of Ion Torrent/454

What to do with a draft assembly?

- Check that it is reasonable
- Decide if it is sufficient for your purposes
- Annotate
- Compare
- Improve

Genome Annotation

- Coding sequence identification
 - Usually uses something like GeneMark or Glimmer
 - Pretty reliable in bacteria (no introns yay!)
- Comparison of coding sequences to annotated genomes
 - Usually using BLAST or Hmmer
 - Even less reliable than the existing annotation (which can be really bad!)
- Identification of non-coding sequence elements
 - Often searching against databases such as Rfam
- Many pipelines exist, both for transferring annotation from similar genomes (BG-7, RATT) or from scratch (RAST, Prokka, DIYA)
 - I suggest RAST, incredibly simple, fully automated, online

Draft vs Finished Genomes

- We generated draft genomes
 - Few-to-Many contigs
 - Potentially many mistakes
- Finished genomes
 - What you find for well-studied bacteria on GenBank
 - Single sequence for whole chromosome
 - Relatively few mistakes
- Finishing genomes
 - Targeted Sanger sequencing
 - High-coverage PacBio with targeted advanced assembly techniques (HGAP, SMRT Analysis)

Advice for practical usage

- The best experts on assembly are the authors of the software themselves
 - They are often very willing to help with your particular issues
- Data handling/filtering/trimming is very important
- Try many methods and compare
- Decide what you really want before you spend the money on the data
- Generation of material for sequencing has dramatic effects on assembly (and cannot be re-done easily)
- Learn the Unix command line (and maybe Python)

Thank you for listening!

