

SEQUENCE LISTING

<110> University of Rochester
Maquat, Lynne E.

<120> NONSENSE-MEDIATED mRNA DECAY

<130> 21108.0023P1

<150> 60/405,602
<151> 2002-08-22

<160> 38

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 1
gcctatttgtt ctagtttccc

20

<210> 2
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 2
cctgaaggttc tcaggatc

18

<210> 3
<211> 32

<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 3
atctggcacc acacccctcta caatgagctg cg

32

<210> 4
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 4
cgtcatactc ctgcttgctg atccacatct gc 32

<210> 5
<211> 19
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 5
tgcaaggagt ttcatcctg 19

<210> 6
<211> 21
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 6
agaatcagta gtttaacaca c 21

<210> 7
<211> 22
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 7
tgagcatagt tattaatagc ag 22

<210> 8
<211> 77
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 8
gctagctcg aaccggtgcc accatggact acaaagacga tgacgacaag gcggaaaggc . 60
tggagcgtgt gcggatc 77

<210> 9
<211> 43
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 9
tttaaacccg gcctgcgggg ccagagtagc caggatcccg cgc 43

<210> 10
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 10
tgaccattcag cgccctcgg 18

<210> 11
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 11
ctccgagtcc ctctgcc 17

<210> 12
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 12
ggcaaaggct ctgagaagc 19

<210> 13
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 13
ccgaggtccc aaaggcgc 17

<210> 14
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 14
atcgaagatc tggatccaag gtcgggcagg agagggcct 39

<210> 15
<211> 59
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 15
tacacaaagc aatgtccatt acatgccacg gtgttcgtc ctttccacaa gatataaa 59

<210> 16
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 16
cgaaatctag aaaaaagtgg catgtaatgg acattgccta cacaaagc 48

<210> 17

<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 17
gcugcagcag aacaggccat t 21

<210> 18
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 18
guacaaccca ggauaugugt t 21

<210> 19
<211> 59
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 19
tacacaaaca gggctgttct tcgagatgcg gtgttcgtc ctttccacaa gatatataa 59

<210> 20
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 20
cgaaatctag aaaaaagcat ctcgaagaac agccctgcta cacaaaca 48

<210> 21
<211> 59
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 21
tacacaaagc aatgtccgtt gcatgccacg gtgttcgtc ctttccacaa gatatataa 59

<210> 22
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 22
cgaaatctag aaaaaagtgg catgcaacgg acattgccta cacaaagc 48

<210> 23
<211> 59
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 23
tacacaaagt tcagaggctg tgtcataacg gtgttcgtc ctttccacaa gatatataa 59

<210> 24
<211> 48
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 24
cgaaatctag aaaaaagtta tgacacagcc tctgaaccta cacaaagt 48

<210> 25
<211> 59
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 25
tacacaaacc aaggcacttg ttggcagtcg gtgttcgtc ctttccacaa gatataaa 59

<210> 26
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 26
cgaaatctag aaaaaagact gccacaacaagt gccttggcta cacaaacc 48

<210> 27
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 27
gcagcgagca actgagaagc 20

<210> 28
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
synthetic construct

<400> 28
gggttagtg gtacttgtga gc 22

<210> 29
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =

synthetic construct

<400> 29
gactgagccg atcccgcgc 19

<210> 30
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
'synthetic construct'

<400> 30
gcagtaacgg cagacttctc 20

<210> 31
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
'synthetic construct'

<400> 31
ccttcctgc tcttgccctg 19

<210> 32
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
'synthetic construct'

<400> 32
gcttttatt tgtcagaaga cag 23

<210> 33
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
'synthetic construct'

<400> 33
atctggcacc acaccttcta caatgagctg 30

<210> 34
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/note =
'synthetic construct'

<400> 34		
cgtcatactc ctgcttgcgt atccacatct		30
<210> 35		
<211> 18		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:/note = synthetic construct		
<400> 35		
atgacttcga aagtttat		18
<210> 36		
<211> 19		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:/note = synthetic construct		
<400> 36		
ttcagatttg atcaacgca		19
<210> 37		
<211> 1419		
<212> PRT		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence:/note = synthetic construct		
<400> 37		
Met Ala Glu Gly Leu Glu Arg Val Arg Ile Ser Ala Ser Glu Leu Arg		
1 5 10 15		
Gly Ile Leu Ala Thr Leu Ala Pro Gln Ala Gly Ser Arg Glu Asn Met		
20 25 30		
Lys Glu Leu Lys Glu Ala Arg Pro Arg Lys Asp Asn Arg Arg Pro Asp		
35 40 45		
Leu Glu Ile Tyr Lys Pro Gly Leu Ser Arg Leu Arg Asn Lys Pro Lys		
50 55 60		
Ile Lys Glu Pro Pro Gly Ser Glu Glu Phe Lys Asp Glu Ile Val Asn		
65 70 75 80		
Asp Arg Asp Cys Ser Ala Val Glu Asn Gly Thr Gln Pro Val Lys Asp		
85 90 95		
Val Cys Lys Glu Leu Asn Asn Gln Glu Gln Asn Gly Pro Ile Asp Pro		
100 105 110		
Glu Asn Asn Arg Gly Gln Glu Ser Phe Pro Arg Thr Ala Gly Gln Glu		
115 120 125		
Asp Arg Ser Leu Lys Ile Ile Lys Arg Thr Lys Lys Pro Asp Leu Gln		
130 135 140		
Ile Tyr Gln Pro Gly Arg Arg Leu Gln Thr Val Ser Lys Glu Ser Ala		
145 150 155 160		
Ser Arg Val Glu Glu Glu Val Leu Asn Gln Val Glu Gln Leu Arg		
165 170 175		

Val Glu Glu Asp Glu Cys Arg Gly Asn Val Ala Lys Glu Glu Val Ala
 180 185 190
 Asn Lys Pro Asp Arg Ala Glu Ile Glu Lys Ser Pro Gly Gly Gly Arg
 195 200 205
 Val Gly Ala Ala Lys Gly Glu Lys Gly Lys Arg Met Gly Lys Gly Glu
 210 215 220
 Gly Val Arg Glu Thr His Asp Asp Pro Ala Arg Gly Arg Pro Gly Ser
 225 230 235 240
 Ala Lys Arg Tyr Ser Arg Ser Asp Lys Arg Arg Asn Arg Tyr Arg Thr
 245 250 255
 Arg Ser Thr Ser Ser Ala Gly Ser Asn Asn Ser Ala Glu Gly Ala Gly
 260 265 270
 Leu Thr Asp Asn Gly Cys Arg Arg Arg Gln Asp Arg Thr Lys Glu
 275 280 285
 Arg Pro Pro Leu Lys Lys Gln Val Ser Val Ser Ser Thr Asp Ser Leu
 290 295 300
 Asp Glu Asp Arg Ile Asp Glu Pro Asp Gly Leu Gly Pro Arg Arg Ser
 305 310 315 320
 Ser Glu Arg Lys Arg His Leu Glu Arg Asn Trp Ser Gly Arg Gly Glu
 325 330 335
 Gly Glu Gln Lys Thr Ser Ala Lys Glu Tyr Arg Gly Thr Leu Arg Val
 340 345 350
 Thr Phe Asp Ala Glu Ala Met Asn Lys Glu Ser Pro Met Val Arg Ser
 355 360 365
 Ala Arg Asp Asp Met Asp Arg Gly Lys Pro Asp Lys Gly Leu Ser Ser
 370 375 380
 Gly Gly Lys Gly Ser Glu Lys Gln Glu Ser Lys Asn Pro Lys Gln Glu
 385 390 395 400
 Leu Arg Gly Arg Gly Arg Ile Leu Ile Leu Pro Ala His Thr Thr
 405 410 415
 Leu Ser Val Asn Ser Ala Gly Ser Pro Glu Ser Ala Pro Leu Gly Pro
 420 425 430
 Arg Leu Leu Phe Gly Ser Gly Ser Lys Gly Ser Arg Ser Trp Gly Arg
 435 440 445
 Gly Gly Thr Thr Arg Arg Leu Trp Asp Pro Asn Asn Pro Asp Gln Lys
 450 455 460
 Pro Ala Leu Lys Thr Gln Thr Pro Gln Leu His Phe Leu Asp Thr Asp
 465 470 475 480
 Asp Glu Val Ser Pro Thr Ser Trp Gly Asp Ser Arg Gln Ala Gln Ala
 485 490 495
 Ser Tyr Tyr Lys Phe Gln Asn Ser Asp Asn Pro Tyr Tyr Tyr Pro Arg
 500 505 510
 Thr Pro Gly Pro Ala Ser Gln Tyr Pro Tyr Thr Gly Tyr Asn Pro Leu
 515 520 525
 Gln Tyr Pro Val Gly Pro Thr Asn Gly Val Tyr Pro Gly Pro Tyr Tyr
 530 535 540
 Pro Gly Tyr Pro Thr Pro Ser Gly Gln Tyr Val Cys Ser Pro Leu Pro
 545 550 555 560
 Thr Ser Thr Met Ser Pro Glu Glu Val Glu Gln His Met Arg Asn Leu
 565 570 575
 Gln Gln Gln Glu Leu His Arg Leu Leu Arg Val Ala Asp Asn Gln Glu
 580 585 590
 Leu Gln Leu Ser Asn Leu Leu Ser Arg Asp Arg Ile Ser Pro Glu Gly
 595 600 605
 Leu Glu Lys Met Ala Gln Leu Arg Ala Glu Leu Leu Gln Leu Tyr Glu
 610 615 620
 Arg Cys Ile Leu Leu Asp Ile Glu Phe Ser Asp Asn Gln Asn Val Asp
 625 630 635 640
 Gln Ile Leu Trp Lys Asn Ala Phe Tyr Gln Val Ile Glu Lys Phe Arg
 645 650 655

Gln Leu Val Lys Asp Pro Asn Val Glu Asn Pro Glu Gln Ile Arg Asn
 660 665 670
 Arg Leu Leu Glu Leu Leu Asp Glu Gly Ser Asp Phe Phe Asp Ser Leu
 675 680 685
 Leu Gln Lys Leu Gln Val Thr Tyr Lys Phe Lys Leu Glu Asp Tyr Met
 690 695 700
 Asp Gly Leu Ala Ile Arg Ser Lys Pro Leu Arg Lys Thr Val Lys Tyr
 705 710 715 720
 Ala Leu Ile Ser Ala Gln Arg Cys Met Ile Cys Gln Gly Asp Ile Ala
 725 730 735
 Arg Tyr Arg Glu Gln Ala Ser Asp Thr Ala Asn Tyr Gly Lys Ala Arg
 740 745 750
 Ser Trp Tyr Leu Lys Ala Gln His Ile Ala Pro Lys Asn Gly Arg Pro
 755 760 765
 Tyr Asn Gln Leu Ala Leu Leu Ala Val Tyr Thr Arg Arg Lys Leu Asp
 770 775 780
 Ala Val Tyr Tyr Tyr Met Arg Ser Leu Ala Ala Ser Asn Pro Ile Leu
 785 790 795 800
 Thr Ala Lys Glu Ser Leu Met Ser Leu Phe Glu Glu Thr Lys Arg Lys
 805 810 815
 Ala Glu Gln Met Glu Lys Lys Gln His Glu Glu Phe Asp Leu Ser Pro
 820 825 830
 Asp Gln Trp Arg Lys Gly Lys Lys Ser Thr Phe Arg His Val Gly Asp
 835 840 845
 Asp Thr Thr Arg Leu Glu Ile Trp Ile His Pro Ser His Pro Arg Ser
 850 855 860
 Ser Gln Gly Thr Glu Ser Gly Lys Asp Ser Glu Gln Glu Asn Gly Leu
 865 870 875 880
 Gly Ser Leu Ser Pro Ser Asp Leu Asn Lys Arg Phe Ile Leu Ser Phe
 885 890 895
 Leu His Ala His Gly Lys Leu Phe Thr Arg Ile Gly Met Glu Thr Phe
 900 905 910
 Pro Ala Val Ala Glu Lys Val Leu Lys Glu Phe Gln Val Leu Leu Gln
 915 920 925
 His Ser Pro Ser Pro Ile Gly Ser Thr Arg Met Leu Gln Leu Met Thr
 930 935 940
 Ile Asn Met Phe Ala Val His Asn Ser Gln Leu Lys Asp Cys Phe Ser
 945 950 955 960
 Glu Glu Cys Arg Ser Val Ile Gln Glu Gln Ala Ala Ala Leu Gly Leu
 965 970 975
 Ala Met Phe Ser Leu Leu Val Arg Arg Cys Thr Cys Leu Leu Lys Glu
 980 985 990
 Ser Ala Lys Ala Gln Leu Ser Ser Pro Glu Asp Gln Asp Asp Gln Asp
 995 1000 1005
 Asp Ile Lys Val Ser Ser Phe Val Pro Asp Leu Lys Glu Leu Leu Pro
 1010 1015 1020
 Ser Val Lys Val Trp Ser Asp Trp Met Leu Gly Tyr Pro Asp Thr Trp
 1025 1030 1035 1040
 Asn Pro Pro Pro Thr Ser Leu Asp Leu Pro Ser His Val Ala Val Asp
 1045 1050 1055
 Val Trp Ser Thr Leu Ala Asp Phe Cys Asn Ile Leu Thr Ala Val Asn
 1060 1065 1070
 Gln Ser Glu Val Pro Leu Tyr Lys Asp Pro Asp Asp Asp Leu Thr Leu
 1075 1080 1085
 Leu Ile Leu Glu Glu Asp Arg Leu Leu Ser Gly Phe Val Pro Leu Leu
 1090 1095 1100
 Ala Ala Pro Gln Asp Pro Cys Tyr Val Glu Lys Thr Ser Asp Lys Val
 1105 1110 1115 1120
 Ile Ala Ala Asp Cys Lys Arg Val Thr Val Leu Lys Tyr Phe Leu Glu
 1125 1130 1135

Ala Leu Cys Gly Gln Glu Glu Pro Leu Leu Ala Phe Lys Gly Gly Lys
 1140 1145 1150
 Tyr Val Ser Val Ala Pro Val Pro Asp Thr Met Gly Lys Glu Met Gly
 1155 1160 1165
 Ser Gln Glu Gly Thr Arg Leu Glu Asp Glu Glu Asp Val Val Ile
 1170 1175 1180
 Glu Asp Phe Glu Glu Asp Ser Glu Ala Glu Gly Ser Gly Gly Glu Asp
 1185 1190 1195 1200
 Asp Ile Arg Glu Leu Arg Ala Lys Lys Leu Ala Leu Ala Arg Lys Ile
 1205 1210 1215
 Ala Glu Gln Gln Arg Arg Gln Glu Lys Ile Gln Ala Val Leu Glu Asp
 1220 1225 1230
 His Ser Gln Met Arg Gln Met Glu Leu Glu Ile Arg Pro Leu Phe Leu
 1235 1240 1245
 Val Pro Asp Thr Asn Gly Phe Ile Asp His Leu Ala Ser Leu Ala Arg
 1250 1255 1260
 Leu Leu Glu Ser Arg Lys Tyr Ile Leu Val Val Pro Leu Ile Val Ile
 1265 1270 1275 1280
 Asn Glu Leu Asp Gly Leu Ala Lys Gly Gln Glu Thr Asp His Arg Ala
 1285 1290 1295
 Gly Gly Tyr Ala Arg Val Val Gln Glu Lys Ala Arg Lys Ser Ile Glu
 1300 1305 1310
 Phe Leu Glu Gln Arg Phe Glu Ser Arg Asp Ser Cys Leu Arg Ala Leu
 1315 1320 1325
 Thr Ser Arg Gly Asn Glu Leu Glu Ser Ile Ala Phe Arg Ser Glu Asp
 1330 1335 1340
 Ile Thr Gly Gln Leu Gly Asn Asn Asp Asp Leu Ile Leu Ser Cys Cys
 1345 1350 1355 1360
 Leu His Tyr Cys Lys Asp Lys Ala Lys Asp Phe Met Pro Ala Ser Lys
 1365 1370 1375
 Glu Glu Pro Ile Arg Leu Leu Arg Glu Val Val Leu Leu Thr Asp Asp
 1380 1385 1390
 Arg Asn Leu Arg Val Lys Ala Leu Thr Arg Asn Val Pro Val Arg Asp
 1395 1400 1405
 Ile Pro Ala Phe Leu Thr Trp Ala Gln Val Gly
 1410 1415

<210> 38
 <211> 5965
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence:/note =
 synthetic construct

<400> 38

 cctggctgcg cgccggcggtg gcggagccgc tacggctgta gcagcagccg cgaagatggc 60
 ggaaggggctg gagcgtgtgc ggatctccgc gtcggagctg cgcggatcc tggctactct 120
 ggcccccgag gcccggagca gagaaaacat gaaggaatta aaggaggcca ggccgcgcaa 180
 agataaacagg cgtccagatc tggaaatcta taagcctggc ctttctcgcc taaggaacaa 240
 gccaaaaatc aaggaacccc ctgggagtga ggaattcaaa gatgaaattt ttaatgaccg 300
 agattgtct gctgttggaaa atgttacaca gcccgttaaa gatgtctgca aggaactgaa 360
 caaccaagag cagaatggtc ctatagaccc agaaaataat cggggacaag aatccttcc 420
 taggactgct ggacaagagg atcgttgtct aaaaattatc aaaagaacaa agaaacccga 480
 cctgcagatc tatcagcctg gacgacgttt gcagactgtt agcaaagaat ccgccagtcg 540
 ggtggaggag gaagaagtcc tcaaccaggt agaacaactg agagtagagg aagatgagtg 600
 taggggaaat gttgcgaagg aggaagttgc gaataaacca gacaggccg agatagaaaa 660
 gagcccaggt ggtggggagag taggggctgc aaaaggagaa aaaggaaaga ggtatggaaa 720
 aggggggggg gtgaggggaaa cccacgacga cccggccgc gggaggccgg gctccgcaaa 780
 gcgctactcc cgctcagaca aacgaaggaa tcgctaccgc acgcgcagca ccagctcagc 840

tggcagcaac	aacagcgctg	agggagctgg	cctgacggat	aatggatgtc	gccgcgcgccc	900
acaggatagg	accaaggaga	ggccaccact	gaagaagcaa	gtgtctgtgt	cctcaaccga	960
ttcccttagac	gaggacagaa	tttatgagcc	tgatggatta	ggacccagga	gaagttcaga	1020
aaggaagaga	catttagaaa	gaaactggtc	tggccgtggg	gagggtgagc	agaaaaaccag	1080
tgctaaagaa	tatcgaggca	ctttcgtgt	cactttcgat	gcagaagcca	tgaacaaaga	1140
gtctcccatg	gtgaggctcg	ccagggatga	tatggataga	ggaaagcctg	acaaggctt	1200
gagcagtggg	ggcaaaaggct	ctgagaagca	ggagtccaaa	aacccgaaac	aagaacttcg	1260
gggtcgttgt	cgtggcattc	tgatttgcc	tgcccatacc	accctatctg	tcaattcagc	1320
aggttctcca	gagtccgcgc	cttgggacc	tcggctttt	tttggatctg	gttagaaggg	1380
atctcggagt	tggggccgt	gaggcaccac	acgcccattt	ttggacccaa	acaatcccta	1440
tcagaaacct	gctctaaaga	ctcagacgca	ccagctacat	ttcttgacca	ctgatgtga	1500
agtcagccct	acatcttggg	gtgactcacg	ccaggctcg	gcatcttact	ataagttca	1560
aaactctgac	aaccctatt	attacccccg	gacaccaggc	cctgcctccc	agtatcccta	1620
tacgggctat	aaccctctac	agtacccagt	gggcctacg	aatggtgtgt	acccaggggc	1680
ttactaccca	ggctaccgc	ctccgtcagg	acagtatgt	tgtagccctc	tacattaccag	1740
caccatgagt	cccgaggagg	tagagcagca	catgaggaac	ctgcagcaac	aggagctgca	1800
caggcttctc	cggggtggct	acaaccagg	actgcagtc	agcaacctgc	tctccaggga	1860
ccgcatcagt	ccggaggggc	tggagaagat	ggcgcactc	agagctgaac	tgctgcagct	1920
atatgagcgc	tgtattctat	tagatattga	gttctctgt	aatcagaatg	tggatcagat	1980
cctgtggaag	aatgcttct	atcaggtgat	tgagaagttc	aggcaactt	tcaaggatcc	2040
gaatgttgag	aaccagaac	agattcgaa	cagactttt	gagcttttgg	atgagggtag	2100
tgacttctt	gatagttgc	ttcagaagct	gcaggttact	tacaagttca	aacttggaa	2160
ctacatggat	ggtcttgcc	ttcgcagcaa	gccattacgc	aagacagtaa	aatatgcctt	2220
gatcagtgcc	cagcgatc	tgatatgcca	aggagatatt	gctaggtacc	gggagcaagc	2280
cagtataca	gcgaattatg	ggaaagcacc	cagtttgtac	ctgaaggccc	agcacattgc	2340
tcccaagaat	gggcgcctt	ataaccagg	ggcttgcgt	gcagtgtata	cgaggaggaa	2400
gcttgcgc	gtctattact	atatgcgcag	tttagctgc	agcaacccta	tcctgcactgc	2460
caaggagagt	ctcatgagct	tgtttgaaga	gaccaagcgg	aaggcagaac	agatggaaaa	2520
gaagcaacat	gaggaattt	acctgagccc	tgaccagtgg	cgaaaaggaa	agaagtctac	2580
tttccggcat	gttggagat	acaccactcg	cctggagatc	ttgatttcattc	catccatcc	2640
acggcttcc	cagggcactg	agtctggaa	ggattctgag	caagagaatg	ggctggcag	2700
cctgagtccc	agtgatctg	acaaaagg	catcctcagt	tttctccatg	ccatggaa	2760
gctgtttacc	cggttggg	tggagacatt	ccctgcagt	gctgagaagg	tcctcaagga	2820
gttccagg	ttactgcagc	acagcccctc	tcccattgga	agtacccgca	tgctgcagct	2880
tatgaccatc	aatatgttt	cagtagaccaa	ctcccaagct	aaagactgt	tctcggagga	2940
gtgcgcgtct	gtgatccagg	aacaagccgc	agctctggc	ttggccatgt	tttctctact	3000
ggtccgcgc	tgcacctgt	tacttaagga	gtccgcctt	gctcagctgt	cctctcctg	3060
ggaccaggat	gaccaagacg	acatcaaggt	gtcttcctt	gtcccggacc	tgaaggagct	3120
gctccccagt	gtcaaagtct	ggtcagatt	gatgctcggc	tacccggaca	cctgaaatcc	3180
tcctccca	tccctggatc	tgccctcgca	tggtgtgt	gatgtatgg	cgacgcgtgc	3240
tgatttctgt	aacatactga	ctgcagtgaa	tcagtcgt	gtgccactgt	acaaggaccc	3300
ggatgtatc	ctcacccctc	ttatcctgga	agaggatcgg	tttctctcgg	gtttgtccc	3360
cttgcgtgg	gcccctcagg	accctcgta	cgtggagaaa	acctcgatc	aggttattgc	3420
agctgactgc	aaaagggtca	cagtgctgaa	gtatttctg	gaagccctt	gtggacaaga	3480
agaggctctg	ctggcattca	agggtggaaa	gtatgtgtca	gtggcacc	tcccagacac	3540
catgggaaag	gaaatggaa	gccaagaggg	aacacgactg	gaagatgagg	aggaggatgt	3600
ggtgattgaa	gactttgagg	aagattcaga	ggctgaaggc	agcggaggcg	aggatgacat	3660
cagggagctt	cgggccaaga	agctggctc	ggccaggaag	atagctgagc	agcagcgtcg	3720
ccagggaaag	atccaggctg	tcctggagga	ccacagt	atgaggcaga	tggagctcga	3780
aatcagac	ttgttccctg	taccagacac	caacggcttc	attgaccacc	tggccagtct	3840
ggcgcggctg	ctggagagca	ggaagtacat	cctgggtgt	cccctcatcg	tgatcaatga	3900
gctggacggc	ctggccaagg	ggcaggagac	agaccacgg	gttggggct	acgcggctgt	3960
ggtacaagag	aaggcccgc	agttccatcg	gttccctcg	cagcgattcg	agagtcggga	4020
ctcttgcctg	cgagccctg	ccagccgtgg	caatgaactc	gaatccatcg	cctccgcag	4080
tgaggacatc	actggccagc	tggtaacaa	cgatgtct	atcctgtct	gctgcctcca	4140
ctactgc	aaa	gacaaggcta	aggacttcat	gcccgccagc	aaagaggagc	4200
actgcggag	gtggtctgt	tgacggatga	ccgaaacctg	cgtgtgaagg	cgctcacaag	4260
gaatgttcc	gtacgggaca	tccagccctt	cctcacgtgg	gcccaggtgg	gctgagggag	4320
ccacactggg	gccccccccc	cccggtggaa	cgttccgt	aggccaccag	gcccagtg	4380
tagcacggaa	gatgcccacg	tgctcgagcc	accaatccac	ccagacaata	aaccatccctc	4440
ttccaaccca	cggccacggcc	atgctgtggg	ggacctgctc	ctcacagagc	ccctcccaag	4500

gatcgggcgg	aagctgtgg	gaccctcctg	ggctgccagg	attagcagg	'gaggtggctg	4560				
gctacagcaa	cagcagctgg	gcaagccaga	taggccc	atgctctcg	ccttctccc	4620				
tccccgtct	cattccaagg	ctgagggagg	gccttctcg	ctggggacgc	agccactttc	4680				
tccagtggag	acagggcagg	ggtcagagt	ttccgtcaga	tgca	gtgaaa	4740				
ctttcatctt	cagaacotct	gtcgtgaatg	tgttcaagag	gctttggta	agtca	ggaag	4800			
aagtgc	cccag	ggtgtgtc	cccagtctcc	ctgaggcctg	gactcgccca	tgaacccaag	4860			
tcggcttcta	gacagcatgt	ccctaaacagc	agccctggc	ccccacctct	tctaccatcc	4920				
acccagact	taccacacac	ccttcctgct	gctccttcc	ctgccc	tttat	caac	ctgggt	4980		
ccctcacact	tcgccc	agg	cgtccccgt	gacagtcatg	agtct	tagagg	aaagggcat	5040		
ctggctc	tcg	ccgtgtc	tcgggtggcc	tccac	ctgt	cccttctcc	tcactggc	5100		
ttcttccgt	ctagcctct	cttca	ggaaa	tgtcctgact	ctc	cctcag	cccccttcac	5160		
ccctccttgc	cgc	cctac	ccc	tccaga	atag	ccctc	acccttctc	cccttctag	5220	
tgatccttt	cac	ccct	cc	tca	ttt	c	ttcc	acc	5280	
ttctca	ct	actt	ccc	tca	ttc	cc	cc	ttt	cc	5340
ccca	gg	gg	cc	ttc	cc	cc	cc	cc	cc	5400
gcctgaggca	ttcc	agg	gt	gt	gg	gg	cc	cc	cc	5460
ctccccggaa	aaact	tgac	ac	agg	gg	gg	cc	cc	cc	5520
cagtggggag	gctt	c	tt	tt	cc	cc	cc	cc	cc	5580
aacttagggg	aag	ac	gg	gg	ttt	cc	gg	gg	gg	5640
gggata	cccc	ag	ag	cc	cc	tt	gg	gg	gg	5700
ctgc	cct	cc	cc	cc	cc	tt	gg	gg	gg	5760
aggcc	at	ttt	gggg	tt	gg	gg	cc	cc	cc	5820
acagg	gtccc	ccgc	cct	tcc	ttt	gg	gg	gg	gg	5880
gg	tcgg	gg	gg	gg	ttt	gg	gg	gg	gg	5940
taataaattt	ttagttat	ga	aac	at	tt	tt	cc	cc	cc	5965