● 2회차

[서술형 3] $4\sqrt{2}$

01 ①	02 ③	03 ③	04 ①	05 ②		
063	07 ⑤	08 4	09 ②	10 ⑤		
11 ③	12 ③	13 ⑤	14 ⑤	15 ⑤		
16 ③	17 ④					
[서술형 1] 34						
[서술형 2] $\frac{1}{4}$						

- 01 $x^2+3x-10<0$ 에서 (x-2)(x+5)<0 $\therefore -5< x<2$ 따라서 $\alpha=-5, \beta=2$ 이므로 $\alpha+3\beta=-5+3\cdot 2=1$
- 02 모든 실수 x에 대하여 $x^2 (k+1)x + k + 1 \ge 0$ 이 성립하므로 이차방정식 $x^2 (k+1)x + k + 1 = 0$ 의 판별식을 D라 하면 $D = \{-(k+1)\}^2 4 \cdot 1 \cdot (k+1) \le 0$ $k^2 2k 3 \le 0, (k+1)(k-3) \le 0$ $\therefore -1 \le k \le 3$
- 03 4x+1≥x+13에서 3x≥12
 ∴ x≥4
 ∴ x²-5x-14<0에서 (x+2)(x-7)<0
 ∴ -2<x<7
 ∴ □
 □, □의 공통부분을 구하면 4≤x<7
 따라서 구하는 정수 x는 4, 5, 6으로 그 개수는 3이다.
- 04 $x^2 x 6 > 0$ 에서 (x+2)(x-3) > 0 $\therefore x < -2$ 또는 x > 3 ① $(x-1)(x-a) \le 0$ 에서 (i) a > 1일 때 $(x-1)(x-a) \le 0$ 에서 $1 \le x \le a$ ② ⊙, ②을 동시에 만 족시키는 정수 x가 2개이려면 오른쪽 그림에서 $5 \le a < 6$
 - (ii) a = 1일 때 $(x-1)(x-a) \le 0 \text{에서 } (x-1)^2 \le 0$ $\therefore x = 1$ 따라서 주어진 조건을 만족시키지 않는다.

- (iii) a<1일 때
 (x-1)(x-a)≤0에서 a≤x≤1 ····· ©

 ③, ⓒ을 동시에 만
 족시키는 정수 x가
 2개이려면 오른쪽
 그림에서
 -5<a≤-4
 (i)~(iii)에서 5≤a<6 또는 -5<a≤-4
- (i)~(ii)에서 $5 \le a < 6$ 또는 $-5 < a \le -4$ 따라서 구하는 정수 a의 값의 합은 5 + (-4) = 1
- **05** $\overline{AB} = 5$ 에서 $\overline{AB}^2 = 25$ 이므로 $\{a (-1)\}^2 + (-1 3)^2 = 25$ $a^2 + 2a + 17 = 25$, $a^2 + 2a 8 = 0$ (a 2)(a + 4) = 0 $\therefore a = 2 \ (\because a > 0)$
- **06** 선분 AB를 3 : 4로 내분하는 점 P의 좌표는 $\left(\frac{3 \cdot 9 + 4 \cdot 2}{3 + 4}\right)$ ∴ P(5) ∴ a = 5
- 07 삼각형 ABC의 무게중심의 좌표는 $\left(\frac{a+b-5}{3}, \frac{-b+2a+2}{3}\right)$ 이 점이 원점이므로 $\frac{a+b-5}{3} = 0, \frac{-b+2a+2}{3} = 0$ $\therefore a+b=5, 2a-b=-2$ 위의 두 식을 연립하여 풀면 a=1, b=4 $\therefore ab=1\cdot 4=4$
- 08 두 점 (-3,5), (1,1)을 지나는 직선의 방정식은 $y-1=\frac{1-5}{1-(-3)}(x-1)$ $\therefore y=-x+2$ 따라서 이 직선과 y축이 만나는 점의 좌표는 (0,2) 이므로 a=2

09 직선
$$y=2x$$
에 수직인 직선의 기울기는 $-\frac{1}{2}$ 이고 점 $(3,1)$ 을 지나므로 구하는 직선의 방정식은 $y-1=-\frac{1}{2}(x-3)$ $\therefore y=-\frac{1}{2}x+\frac{5}{2}$ 따라서 $a=-\frac{1}{2},b=\frac{5}{2}$ 이므로 $a+b=-\frac{1}{2}+\frac{5}{2}=2$

- **10** (i) 직선 kx-y-2=0이 직선 3x-y-3=0 또는 직선 x+y-1=0과 평행할 때 k=3 또는 k=-1
 - (ii) 직선 kx-y-2=0이 두 직선 3x-y-3=0, x+y-1=0의 교점을 지날 때 3x-y-3=0, x+y-1=0을 연립하여 풀면 x=1, y=0 즉 직선 kx-y-2=0이 점 (1,0)을 지나려면 k-2=0 $\therefore k=2$
 - (i), (ii)에서 모든 실수 k의 값의 합은 3+(-1)+2=4
- **11** 선분 AH의 길이는 직선 l과 점 A 사이의 거리와 같으므로

$$\overline{AH} = \frac{|-2 \cdot 2 + 1 - 12|}{\sqrt{(-2)^2 + 1^2}} = \frac{15}{\sqrt{5}} = 3\sqrt{5}$$

- **12** 원 $(x+3)^2+(y-1)^2=25$ 의 중심의 좌표가 (-3,1)이고 반지름의 길이가 5이므로 a=-3,b=1,r=5 $\therefore a+b+r=-3+1+5=3$
- 13 원의 방정식을 $x^2+y^2+Ax+By+C=0\ (A,B,C\vdash \& +)$ 이라 하면 세 점 (1,1),(4,2),(0,4)를 지나므로 1+1+A+B+C=0 16+4+4A+2B+C=0 16+4B+C=0 위의 세 식을 연립하여 풀면 A=-4,B=-6,C=8 따라서 원의 방정식은 $x^2+y^2-4x-6y+8=0$, 즉 $(x-2)^2+(y-3)^2=5$ 이므로 구하는 원의 넓이는 $\pi\cdot(\sqrt{5})^2=5\pi$

14 원 $x^2 + y^2 = 5$ 의 반지름의 길이는 $\sqrt{5}$ 이므로 기울기가 2인 접선의 방정식은 $y = 2x \pm \sqrt{5} \cdot \sqrt{2^2 + 1}$ $= 2x \pm 5$

다른 풀이

기울기가 2인 접선의 방정식을

y=2x+a, 즉 2x-y+a=0 (a는 상수) ····· ① 이라 하면 직선 ①이 원 $x^2+y^2=5$ 에 접하므로 원의 중심 (0,0)과 직선 ① 사이의 거리는 반지름의 길이와 같다. 즉

$$\frac{|a|}{\sqrt{2^2+(-1)^2}} = \sqrt{5}, |a| = 5$$
 $\therefore a = \pm 5$

이것을 \bigcirc 에 대입하면 구하는 직선의 방정식은 $y{=}2x{\pm}5$

- **15** 점 (5, -1)을 x축의 방향으로 -1만큼, y축의 방향으로 -2만큼 평행이동한 점의 좌표는 (5-1, -1-2) ∴ (4, -3) 따라서 a=4, b=-3이므로 a+b=4+(-3)=1
- 16 원 $(x-2)^2+(y-\sqrt{5})^2=3$ 을 x축에 대하여 대칭이 동한 원의 방정식은 $(x-2)^2+(-y-\sqrt{5})^2=3$ $\therefore (x-2)^2+(y+\sqrt{5})^2=3$ 따라서 원의 중심 $(2,-\sqrt{5})$ 와 원점 사이의 거리는 $\sqrt{2^2+(-\sqrt{5})^2}=3$
- 17 점 A(-2, 4)를 x축에 대하 여 대칭이동한 점을 A'이라 하 면 A'(-2, -4) ∴ ĀP+BP =Ā'P+BP ≥Ā'B =√{3-(-2)}²+{1-(-4)}² =5√2

따라서 $\overline{AP} + \overline{BP}$ 의 최솟값은 $5\sqrt{2}$ 이다.

[서술형 1] $|x|+|x-2| \le 8$ 에서 $x < 0, 0 \le x < 2, x \ge 2$ 로 x의 값의 범위를 나누어 해를 구한다.

$$-x-(x-2) \le 8, -x-x+2 \le 8$$

$$-2x \le 6$$
 $\therefore x \ge -3$

그런데 x < 0이므로 $-3 \le x < 0$

(ii) 0≤x<2일 때

$$x-(x-2) \le 8, x-x+2 \le 8$$

$$\therefore 0 \cdot x \leq 6$$

따라서 해는 모든 실수이다.

그런데 $0 \le x < 2$ 이므로 $0 \le x < 2$

(iii) $x \ge 2$ 일 때

$$x+(x-2) \le 8, 2x \le 10$$

$$\therefore x \leq 5$$

그런데 $x \ge 2$ 이므로 $2 \le x \le 5$

(i)~(iii)에서 주어진 부등식의 해는

$$-3 \le x \le 5$$

따라서 $\alpha = -3$, $\beta = 5$ 이므로

$$\alpha^2 + \beta^2 = (-3)^2 + 5^2 = 34$$

채점 기준	배점
● <i>x</i> 의 값의 범위를 나눌 수 있다.	1점
❷ 나눈 범위에 따라 각 부등식의 해를 구할 수 있다.	3점
❸ α, β의 값을 구할 수 있다.	1점
$\mathbf{Q} \alpha^2 + \beta^2$ 의 값을 구할 수 있다.	1점

[서술형 2] k:(1-k)에서 k>0, 1-k>0

$$\therefore 0 < k < 1 \qquad \cdots \bigcirc$$

선분 AB를 k:(1-k)로 내분하는 점의 좌표는 $\left(\frac{k \cdot 3 + (1-k) \cdot (-5)}{k + (1-k)}, \frac{k \cdot 3 + (1-k) \cdot (-2)}{k + (1-k)}\right)$

- $\therefore (8k-5, 5k-2)$
- 이 점이 제2사분면 위의 점이므로

$$8k-5 < 0, 5k-2 > 0$$

$$\therefore \frac{2}{5} < k < \frac{5}{8} \qquad \cdots \cdots \bigcirc$$

①, ⓒ에서
$$\frac{2}{5}$$
< k < $\frac{5}{8}$
따라서 $\alpha=\frac{2}{5}$, $\beta=\frac{5}{8}$ 이므로

$$\alpha\beta = \frac{2}{5} \cdot \frac{5}{8} = \frac{1}{4}$$

배점
2점
3점
1점
1점

[서술형 3] 원 $x^2+y^2-4y=5$ 에서 $x^2+(y-2)^2=9$ 이 원을 원점에 대하여 대칭이동한 원의 방정식은 $(-x)^2 + (-y-2)^2 = 9$

 $\therefore x^2 + (y+2)^2 = 9 \qquad \cdots \qquad \bigcirc$

오른쪽 그림과 같이 원 🗇과 직선 4x-3y-1=0의 두 교점을 A, B, 원 □의 중심 을 C(0, −2)라 하고, 점 C 에서 직선 4x-3y-1=0에 내린 수선의 발을 H라 하면 $\overline{\text{CH}} = \frac{|4 \cdot 0 - 3 \cdot (-2) - 1|}{\sqrt{4^2 + (-3)^2}}$

4

=1

3

이때 원 ①의 반지름의 길이가 3이므로 직각삼각형 CAH에서

$$\overline{AH} = \sqrt{\overline{CA}^2 - \overline{CH}^2} = \sqrt{3^2 - 1^2} = 2\sqrt{2}$$

 $\therefore \overline{AB} = 2\overline{AH} = 4\sqrt{2}$

따라서 구하는 선분의 길이는 $4\sqrt{2}$

채점 기준		
❶ 대칭이동한 원의 방정식을 구할 수 있다.	2점	
❷ 원의 중심과 직선 사이의 거리를 구할 수 있다.	3점	
❸ 원이 직선에 의하여 잘린 선분의 길이를 구할 수 있다.	2점	