Risk Analysis On Cyber Attacks: Evaluating Success Probability and Detection Accuracy

Dataset

- We chose to collect data from an IDS
- Track network packet features, analyze risk in each of them

Identify and Access Risks

Bayesian Analysis

Bayesian Analysis

$$P(U) = \frac{654 + 776}{9537} = \frac{1430}{9537} = 0.15$$

$$= \frac{0.153}{0.15} \frac{(0.447)}{0.15}$$

$$= 0.456 (45.60\%)$$

Total events	9537
Feature	Count
Attack	4264
attack when TCP used	2963
UDP used and attack	1092
AES used and attack	2055
DES used and attack	1299
Chrome used and attack	2202
Firefox used and attack	849
unusual time of access and	
attack	654
non-attack using TCP	3661
non-attack using UDP	1314
AES and non-attack	2651
DES and non- attack	1566
Chrome non-attack	2935
Firefox non-attack	1095
unusual time of access non- attack	776

Bayesian Analysis

P(Attack)= 44.70%

Feature (X)	P (Attack X)	Effect on Attack Probability	
TCP	44.70%	No effect	
UDP	45.40%	Slight increase (+0.7%)	
AES	43.70%	Slight decrease (-1.0%)	
DES	45.50%	Slight increase (+0.8%)	
Chrome	42.80%	Decrease (-1.9%)	
Firefox	43.60%	Decrease (-1.1%)	
Unusual time	45.60%	Slight increase (+0.9%)	

Risk Analysis

P (Attack X)	Risk Level	Interpretation	
>50%	High Risk	Attack is more likely	
		than not	
40-50%	Moderate Risk	Attack is somewhat	
		likely	
<40%	Low Risk	Attack is less likely	

Risk Analysis

Feature	Risk percentage	Risk level	Mitigation Priority
Unusual access time	45.60%	High	Immediate action needed
DES Encryption	45.50%	High	Immediate action needed
UDP usage	45.40%	High	Immediate action needed
TCP Usage	44.7%	Neutral	Recommended but not immediate
Chrome & Firefox	42.8% & 43.6%	Low	Low priority
AES Encryption	43.7%	Low	Safe state

Risk Response and Countermeasures

Risk Response and Countermeasures

Decision Tree

Implement time based access control

High risk environment

Low risk env

Medium risk env

SECURITY MECHANISMS

Enhance Encryption algorithm

High risk environment

Low risk env

Medium risk env

Enhance Protocol type

High risk environment

Low risk env

Medium risk env

Expert Opinion

- Risk Analysis
 - Unusual time access + no MFA causes high risk
 - DES + UDP causes high impact Risk
 - Having some response will likely reduce attack surface
- Control Measures
 - Mandatory MFA on all logins
 - DES is outdated and vulnerable, Update to AES
 - Intrusion Prevention System should be implemented to reduce attack %
 - Regular Security audits to revise security controls.

Poisson Distribution

 Poisson distribution is used to model the probability of a given number of events occurring in a fixed interval.

To find probabilities for different intrusion counts and gain insights into the

dataset's behavior.

λ (Average Rate) = 1.5177 where

 λ =Total number of failed logins/Total number of sessions

```
import matplotlib.pyplot as plt
# Load the dataset
df = pd.read_csv(r'C:\Users\Manraj Kaur\Desktop\6320 project\dataset... intrusion detection data.csv')
failed_logins = df['failed_logins'].tolist()
lambda_ = sum(failed_logins) / len(failed_logins)
print(f"Average failed logins per session (λ): {lambda_:.2f}")
k_values = range(0, 11)
pmf = [poisson.pmf(k, lambda_) for k in k_values]
plt.figure(figsize=(10, 6))
plt.bar(k_values, pmf, color='skyblue', edgecolor='black', alpha=0.7)
plt.title(f'Poisson Distribution of Failed Logins (λ = {lambda_:.2f})')
plt.xlabel('Number of Failed Logins')
plt.ylabel('Probability')
plt.xticks(k_values)
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.show()
print("End of poisson distribution"
```

Poisson Distribution Results

Probability of different attack counts:

0 Attacks: 21.92%

1 Attack: 33.27%

2 Attacks: 25.25%

3 Attacks: 12.77%

4+ Attacks: Less than 5%

Binomial Distribution Setup

- Assumptions:
- - Independent trials (each session is independent)
- Constant probability of attack
- Binary outcome (Attack = 1, No Attack = 0)

Binomial Distribution Calculation results

Total Sessions: 9537

Number of attacks: 4264

Probability of Attack (p) = 0.4471

Probability of no attack (q): 0.5529

Expected attacks in next 100 sessions: 44.7

Variance: 24.7

Standard Deviation: 5.0

Risk Analysis

Higher p means greater attack risk.

Example: p = 0.4471, there's a 44.71% chance of an attack per session.

- Expected attacks in next 100 sessions: 44.7

Key findings

protocol_type`:
UDP/ICMP has higher
attack rates.

- `failed_logins`:
Sessions with more
failed login attempts
may indicate brute-force
attacks.

- `encryption_used`: Weak encryption (e.g., DES) could correlate with higher attack success.

`ip_reputation_score`:
Lower scores may
indicate malicious IPs.

- 1.1 Reveals the baseline attack rate in the dataset (e.g., 30% attacks vs. 70% normal traffic)
- 1.2 Predicts the likelihood of specific attack counts (e.g., "There's a 20% chance of 25 attacks in 100 sessions").
- 1.2 Shows the **spread of risk** (mean ± standard deviation) around expected attacks

- . Identifies **risk factors** (e.g., high failed_logins may correlate with attacks).
- Highlights **protective factors** (e.g., high ip_reputation_score may reduce attack likelihood).
- Red = positive correlation, Blue = negative correlation.

Risk Mitigation Measures

- Enhance Encryption
- - Monitor Suspicious Activity
- Block Malicious IPs
- - Limit High-Risk Protocols
- - Implement Account Lockout Policies

Normal Distribution Analysis

- Assumptions:
- - Independence
- - No outliers
- - Sufficient sample size

- Statistical Check:
- - Shapiro-Wilk Test: p-value > 0.05 indicates normality.

Normal Distribution Results

• Mean: 792.75

Standard Deviation: 786.56

• Shapiro-Wilk p-value: 0.0000 (Data is NOT normally distributed)

Weibull Distribution Analysis

- Used to model time-to-event (attack detection time).
- Shape Parameter (β):
- - β < 1: Decreasing hazard rate
- - $\beta \approx 1$: Constant hazard rate
- - β > 1: Increasing hazard rate
- Scale parameter (α Alpha): This tells us when 63.2% of attacks have happened

Preparing the Data

- **session_duration:** How long a session lasts before an attack happens or it ends normally.
- attack_detected: Whether an attack was found (1 = yes, 0 = no).
- **Censoring:** If no attack happens in a session, we treat it as "incomplete data" (right-censored).

Results

- β (shape) = 1.02, α (scale) = 1756.62
- Since β≈1, the risk (hazard rate) remains almost constant over time. So, after about 1757 seconds (≈29 minutes), most attacks have already taken place.
- Right-Censored Data (55.29%)-55.29% of the sessions ended without an attack (censored data).

Possible Security Strategies – Expert Opinion

General Continuous Monitoring- Rsk is constant so attack can occur at any time.

Authentication & Initial Security Measures: Focus on strong authentication at the start of a session to prevent unauthorized access early.

Session Timeout Consideration: Unlike a scenario where attacks increase over time ($\beta > 1$), setting a hard session limit (like 600 seconds) may not significantly reduce risk in this case.

Survival Analysis

Survival analysis is used to estimate how long something will last before an event happens. In this case, we are analyzing **how long a session lasts before an attack happens** using the Kaplan-Meier estimator.

Preparing the Data

The data is sorted based on session duration (asc).

Sessions where an attack happens are labeled as **events**.

Sessions that end without an attack are right-censored.

Key takeaways

The Kaplan-Meier analysis shows **how long sessions remain** safe from attacks.

If survival probability **drops quickly**, it means sessions are at **high risk** of attack early. If the probability declines **gradually**, risk is more evenly distributed over time.

Based on this, you can make **data-driven security decisions** like setting session limits, improving early security measures, or focusing monitoring efforts at specific times

Review and Outcome

- We were able to perform a variety of Risk Analysis on varying features of our dataset.
- Our study helped understand how various distributions work on specific features of the dataset.

