Chapter 7 Wireless and Mobile Networks

A note on the use of these Powerpoint slides:

We're making these slides freely available to all (faculty, students, readers). They're in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a *lot* of work on our part. In return for use, we only ask the following:

- If you use these slides (e.g., in a class) that you mention their source (after all, we'd like people to use our book!)
- If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

Thanks and enjoy! JFK/KWR (updated, pmc, UMinho, 2022)

© All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved

Computer Networking: A Top Down Approach

7th edition
Jim Kurose, Keith Ross
Pearson/Addison Wesley
April 2016

Ch. 7: Wireless and Mobile Networks

Global View:

Source: ITU, Measuring Digital Development: Facts and Figures, 2021.

- two important (but different) challenges
 - wireless: communication over wireless link
 - mobility: handling the mobile user who changes point of attachment to network

Chapter 7 outline

7.1 Introduction

Wireless

- 7.2 Wireless links, characteristics
- 7.3 IEEE 802.11 wireless LANs ("Wi-Fi")

Not covered in RC... 7.4 Cellular Internet Access

- architecture
- standards (e.g., 4G, 5G)

Mobility

- 7.5 Principles: addressing and routing to mobile users
- 7.6 Mobile IP
- 7.7 Handling mobility in cellular networks
- 7.8 Mobility and higher-layer protocols

Characteristics of selected wireless links

ad hoc mode

- no base stations
- nodes can only transmit to other nodes within link coverage
- nodes organize themselves into a network: route among themselves

Wireless network taxonomy

	single hop	multiple hops
infrastructure (e.g., APs)	host connects to base station (WiFi, WiMAX, cellular) which connects to larger Internet	host may have to relay through several wireless nodes to connect to larger Internet: mesh net
no infrastructure	no base station, no connection to larger Internet (Bluetooth, ad hoc nets)	no base station, no connection to larger Internet. May have to relay to reach other a given wireless node MANET,VANET

Chapter 7 outline

7. Introduction

Wireless

- 7.2 Wireless links, characteristics
 - CDMA
- 7.3 IEEE 802.11 wireless LANs ("Wi-Fi")
- 7.4 Cellular Internet Access
 - architecture
 - standards

Mobility

- 7.5 Principles: addressing and routing to mobile users
- 7.6 Mobile IP
- 7.7 Handling mobility in cellular networks
- 7.8 Mobility and higher-layer protocols

Wireless Link Characteristics (I)

important differences from wired link

- decreased signal strength: radio signal attenuates as it propagates through matter (path loss)
- interference from other sources: standardized wireless network frequencies (e.g., 2.4 GHz) shared by other devices (e.g., Wi-Fi, cellular, motors) interfere as well
- multipath propagation: radio signal reflects off objects ground, arriving ad destination at slightly different times

.... make communication across (even a point to point) wireless link much more "difficult"

Wireless Link Characteristics (2)

- SNR: signal-to-noise ratio
 - larger SNR easier to extract signal from noise (a "good thing")
- SNR versus BER tradeoffs
 - given physical layer: increase power -> increase SNR->decrease BER
 - given SNR: choose physical layer that meets BER requirement, giving highest throughput
 - SNR may change with mobility: dynamically adapt physical layer (modulation technique, rate)

Wireless network characteristics

Multiple wireless senders and receivers create additional problems (beyond multiple access):

Hidden terminal problem

- B,A hear each other
- B, C hear each other
- A, C cannot hear each other means A, C unaware of their interference at B

Signal attenuation:

- B,A hear each other
- B, C hear each other
- A, C cannot hear each other interfering at B

Wireless network characteristics

Sentir o canal no transmissor não fornece informação acerca do canal no receptor

Hidden node problem

N1 e N3 não se escutam mutuamente devido a obstáculos ou atenuação: os seus pacotes colidem em N2

Exposed node problem

N1 e N4 poderiam ser receptores simultâneos mas os respectivos emissores N2 e N3 estão em zona de alcance

Dois principais problemas

Problema menos grave que o anterior →reduz a utilização →menos estudado

Chapter 7 outline

7. Introduction

Wireless

- 7.2 Wireless links, characteristics
 - CDMA
- 7.3 IEEE 802.11 wireless LANs ("Wi-Fi")
- 7.4 Cellular Internet Access
 - architecture
 - standards

Mobility

- 7.5 Principles: addressing and routing to mobile users
- 7.6 Mobile IP
- 7.7 Handling mobility in cellular networks
- 7.8 Mobility and higher-layer protocols

IEEE 802.11 Wireless LAN

IEEE 802.11 standard	Year	Max data rate	Range	Frequency
802.11b	1999	11 Mbps	30m	2.4 GHz
802.11g	2003	54 Mbps	30m	2.4 GHz
802.11n (WiFi 4)	2009	600 Mbps	70m	2.4, 5 GHz
802.11ac (WiFi 5)	2013	3.47 Gbps	70m	5 GHz
802.11ax (WiFi 6)	2020	14 Gbps	70m	2.4, 5 GHz
802.11af	2014	35 – 560 Mbps	1 km	unused TV bands (54-790 MHz)
802.11ah	2017	347 Mbps	1 km	900 MHz

- all use CSMA/CA for multiple access
- all have base-station and ad-hoc network versions

802.11 LAN architecture

BSS 2

- wireless host communicates with base station
 - base station = access point (AP)
- Basic Service Set (BSS) (aka "cell") in infrastructure mode contains:
 - wireless hosts
 - access point (AP): base station
 - ad hoc mode: hosts only

802. I I: Channels, association

- spectrum divided into channels at different frequencies
 - AP admin chooses frequency for AP
 - interference possible: channel can be same as that chosen by neighboring AP!

Example: IEEE 802.11b/g: 2.4GHz-2.48GHz spectrum is divided into 11 or 14 channels (country dependent).

802. I I: Channels, association

- arriving host: must associate with an AP
 - scans channels, listening for beacon frames containing AP's name (SSID) and MAC address
 - selects AP to associate with
 - then may perform authentication [Chapter 8]
 - then typically run DHCP to get IP address in AP's subnet

802. I I: passive/active scanning

passive scanning:

- (1) beacon frames sent from APs
- (2) association Request frame sent: HI to selected AP
- (3) association Response frame sent from selected AP to HI

active scanning:

- (1) Probe Request frame broadcast from H1
- (2) Probe Response frames sent from APs
- (3) Association Request frame sent: H1 to selected AP
- (4) Association Response frame sent from selected AP to H1

IEEE 802.11: multiple access

- avoid collisions: 2⁺ nodes transmitting at same time
- 802.11: CSMA sense before transmitting
 - don't collide with ongoing transmission by other node
- 802.11: no collision detection!
 - difficult to receive (sense collisions) when transmitting due to weak received signals (fading)
 - can't sense all collisions in any case: hidden terminal, fading
 - goal: avoid collisions: CSMA/C(ollision)A(voidance)

IEEE 802.11 MAC Protocol: CSMA/CA

802.11 sender

1 if sense channel idle for **DIFS** then

transmit entire frame (no CD)

2 if sense channel busy then

start random backoff time

timer counts down while channel idle

transmit when timer expires

if no ACK, increase random backoff interval, repeat 2

802.11 receiver

- if frame received OK

return ACK after **SIFS** (ACK needed due to hidden terminal problem)

DIFS – DCF (Distributed Coordinated Function) Interframe Space (standard-dep, from 28 to 50 µs)

SIFS – Short Interframe Space (standard-dependent, usually from 10 to 16 µs)

Avoiding collisions (more)

idea: allow sender to "reserve" channel rather than random access of data frames: avoid collisions of long data frames

- sender first transmits small request-to-send (RTS) packets to base station (BS) using CSMA
 - RTSs may still collide with each other (but they're short)
- BS broadcasts clear-to-send CTS in response to RTS
- CTS heard by all nodes
 - sender transmits data frame
 - other stations defer transmissions

avoid data frame collisions completely using small reservation packets!

Collision Avoidance: RTS-CTS exchange

transmitting this frame

toDS=1, fromDS=0

A1 (RA) = BSSID = MAC AP A2 (TA) = SA = MAC STA A3 (DA) = MAC R1

toDS=1, fromDS=1

A1(RA) = MACAP2

A2(TA) = MACAP1

A3 (DA) = MAC R2

A4(SA) = MACR1

toDS=0, fromDS=1

A1 (RA) = DA = MAC STA A2 (TA) = BSSID = MAC AP A3 (SA) = MAC R1 DA - Destination Address - receptor final

SA - Source Address - origem da transmissão

RA - Receiver Address - estação wireless que deve processar a trama wireless STA -> RA=DA

wired node -> RA=MAC AP; DA=router

TA - Transmitter Address - interface wireless que transmitiu a trama BSSID - MAC da interface wireless do AP (Infrastructured networks); aleatório BSSID (Ad-hoc networks)

Summary:

- The addresses semantics depends on type of frame and directionality
- addr I MAC address the receiver (varies); always read
- ❖ addr2 MAC address of the transmitter
- addr3 MAC address of the router (if to/from DS)

toDS	fromDS	addr1	addr2	addr3	addr4	obs.
0	0	DA	SA	BSSID	12	ad hoc
0	1	DA	BSSID	SA		do AP
1	0	BSSID	SA	DA	-	para AP
1	1	RA	TA	DA	SA	dentro DS

802.11 frame: more

802.11 frame types

Management frames – used to perform supervisory functions such as joining and leaving wireless networks and moving associations from AP to AP.

Control frames - used in conjunction with data frames to perform control operations such as channel acquisition and carrier-sensing maintenance functions, and positive acknowledgment of received data. Control frames allow to deliver data reliably from STA to STA.

Data frames - used to send data from STA to STA. Several different data frame may occur, depending on the network.

802.11 frame types and subtypes

Type 00 – Management frames e.g. Beacon, Association request, Probe request, etc.

Type 01 – Control frames e.g. RTS, CTS, ACK, etc.

Type 10 – Data frames e.g. Data

Type value	Type Description	Subtype Value	Subtype description
00	Management	0000	Association Request
00	Management	0001	Association Response
00	Management	0010	Reassociation request
00	Management	0011	Reassociation response
00	Management	0100	Probe request
00	Management	0101	Probe response
00	Management	0110-0111	Reserved
00	Management	1000	Beacon
00	Management	1001	ATIM
00	Management	1010	Disassociation
00	Management	1011	Authentication
00	Management	1100	Deauthentication
00	Management	1101	Action
00	Management	1110-1111	Reserved
01	Control	0000-0111	Reserved
01	Control	1000	Block Ack Request
01	Control	1001	Block Ack
01	Control	1010	PS-Poll
01	Control	1011	RTS
01	Control	1100	CTS
01	Control	1101	ACK
01	Control	1111	CF-END
10	Data	0000	Data
10	Data	0001	Data + CF-Ack
10	Data	0010	Data + CF-Ack + CF-Poll
10	Data	0100	Null (no data)
10	Data	0101	CF-Ack (no data)
10	Data	0110	CF-Poll (no data)
10	Data	0111	CF-Ack + CF-Poll (no data)
10	Data	1000	QoS Data
10	Data	1001	QoS Data + CF-Ack
10	Data	1010	QoS Data + CF-Poll
10	Data	1011	QoS Data + CF-Poll + CF-Ack
10	Data	1100	QoS Null (no data)
10	Data	1101	Reserved
10	Data	1110	QoS CF-Poll (no data)
10	Data	1111	QoS CF-Ack + CF-Poll (no data)
11	Reserved	0000-1111	Reserved

802. I I: mobility within same subnet

- HI remains in same
 IP subnet: IP address
 can remain same
- switch: which AP is associated with HI?
 - self-learning (Ch. 6): switch will see frame from HI and "remember" which switch port can be used to reach HI

802. I I: advanced capabilities

Rate adaptation

 base station, mobile dynamically change transmission rate (physical layer modulation technique) as mobile moves, SNR varies

- 1. SNR decreases, BER increase as node moves away from base station
- 2. When BER becomes too high, switch to lower transmission rate but with lower BER

802. I I: advanced capabilities

power management

- node-to-AP: "I am going to sleep until next beacon frame"
 - AP knows not to transmit frames to this node
 - node wakes up before next beacon frame
- beacon frame: contains list of mobiles with APto-mobile frames waiting to be sent
 - node will stay awake if AP-to-mobile frames to be sent; otherwise sleep again until next beacon frame

Chapter 7 summary

Wireless

- wireless links:
 - capacity, distance
 - channel impairments
 - CDMA
- IEEE 802.11 ("Wi-Fi")
 - CSMA/CA reflects wireless channel characteristics
- cellular access
 - architecture
 - standards (e.g., 3G, 4G LTE)

Mobility

- principles: addressing, routing to mobile users
 - home, visited networks
 - direct, indirect routing
 - care-of-addresses
- case studies
 - mobile IP
 - mobility in GSM, LTE
- impact on higher-layer protocols