

From Shallow to Deep Neural Networks

[Building More Complex Models]

José Oramas

Previous Session: Artificial Neurons

An artificial counterpart to real neurons

$$\sum_{i=1}^{d} \mathbf{w}_i \mathbf{x}_i + \mathbf{b}$$

$$\sum_{i=0}^{d} \mathbf{w}_i \mathbf{x}_i, \quad \mathbf{x}_0 := 1$$

Characteristics:

- Basic computation
- Has inhibition/excitation connections
- Building block
- Time-independent state
- Outputs real values

[Minsky & Papert, 1969]

Previous Session: Artificial Neurons

What they do?

Define a linear (afine) projection of the data

Oh yes I remember, but ...

How do we use that?

A Shallow Neural Network

[with few layers]

A Common Composition

A Common Composition

A Common Composition

A Common Composition

A Common Composition

Add several neurons working on "parallel".

Output

A Common Composition

$$h(x, w, b) = \langle w, x \rangle + b$$

$$f_{linear}(x, W, b) = Wx + b$$

A Common Composition

Add several neurons working on "parallel".

$$h(x, w, b) = \langle w, x \rangle + b$$

$$f_{linear}(x, W, b) = Wx + b$$

Why?

- Highly optimizable
 - Algorithmically (via smart matrix multiplication)
 - Hardware-wise (via GPUs, TPUs)
- Enable powerful compositions

From Layers to Neurons

Enabling Powerful Composition

Add several neurons working on "parallel".

Idea:

- Every neuron/layer → simple operation
- Using simple operations to build more complex ones
- Obtain a new quality out of the composition

[with few layers]

Given:

Given:

Ok I see where this goes, but ...

How do we train one of those networks?

Ok I see where this goes, but ...

How do we train a machine learning model in general?

Training a Model

Given:

- Classification Task with k classes.
- Training Data: inputs (x_i) and labels (\hat{y}_i)

A Simple Neural Network

How do we train such a model? → Learn the weights

Let's see how we did it earlier

```
Algorithm: Perceptron Learning Algorithm
P \leftarrow inputs with label 1:
N \leftarrow inputs with label 0;
Initialize w randomly;
while !convergence do
   Pick random \mathbf{x} \in P \cup N;
   if x \in P and w.x < 0 then
        \mathbf{w} = \mathbf{w} + \mathbf{x};
    end
   if \mathbf{x} \in N and \mathbf{w}.\mathbf{x} \ge 0 then
        \mathbf{w} = \mathbf{w} - \mathbf{x};
    end
end
//the algorithm converges when all the
 inputs are classified correctly
```

Requirements:

- Examples (with labels)
- A way to evaluate the "goodness" of the model

 (measure performance)
- Stopping criteria

Given:

Given:

Given:

Let's assume we have the following simple model

$$h(x, w, b) = \langle w, x \rangle + b$$

$$f_{linear}(x, W, b) = Wx + b$$

The very same equations of *layers* of artificial perceptrons

Given:

Given:

Activation Function - Sigmoid

$$f_{\sigma}(\mathbf{x}) = \frac{1}{1+e^{-\mathbf{x}}} = \frac{e^{\mathbf{x}}}{e^{\mathbf{x}}+1}$$

Activation Function - Sigmoid

$$f_{\sigma}(\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{x}}} = \frac{e^{\mathbf{x}}}{e^{\mathbf{x}} + 1}$$

Characteristics:

- Introduces non-linear behavior
- Scaled output [0-1]
- Simple derivatives
- Saturates
 - Vanishing derivatives

Note:

- Often called "non-linearities"
- Applied point-wise

Given:

Given:

Given:

Loss Function – Cross Entropy

$$l_{CE}(p, t) = -[t \log(p) + (1 - t) \log(1 - p)]$$

Characteristics:

- Negation of logarithm of probability of correct prediction
- Composable with sigmoid
- Numerically unstable

Given:

Loss Function - Cross Entropy

Characteristics:

- Additive w.r.t. samples (highly desirable)
- Negation of logarithm of probability of correct prediction
 (on the entire dataset)
- Numerically unstable

$$L_{CE}(\mathbf{p}, \mathbf{t}) = -\sum_{i=1}^{n} [\mathbf{t}^{(i)} \log(\mathbf{p}^{(i)}) + (1 - \mathbf{t}^{(i)}) \log(1 - \mathbf{p}^{(i)})$$

Beyond Binary Classification

[with few layers + multiple classes are possible]

Beyond Binary Classification - Softmax

$$f_{sm}(\mathbf{x}) = \frac{e^{\mathbf{x}}}{\sum_{j=1}^{k} e^{\mathbf{x}_j}}$$

Beyond Binary Classification - Softmax

$$f_{sm}(\mathbf{x}) = \frac{e^{\mathbf{x}}}{\sum_{j=1}^{k} e^{\mathbf{x}_j}}$$

Considering,

$$f_{sm}([x, 0]) = \left[\frac{e^x}{e^x + e^0}, \frac{e^0}{e^x + e^0}\right]$$
$$= \left[f_{\sigma}(x), 1 - f_{\sigma}(x)\right]$$

Beyond Binary Classification - Softmax

$$f_{sm}(\mathbf{x}) = \frac{e^{\mathbf{x}}}{\sum_{j=1}^{k} e^{\mathbf{x}_j}}$$

Considering,

$$f_{sm}([\mathbf{x}, 0]) = \left[\frac{e^{\mathbf{x}}}{e^{\mathbf{x}} + e^{0}}, \frac{e^{0}}{e^{\mathbf{x}} + e^{0}}\right]$$
$$= \left[f_{\sigma}(\mathbf{x}), 1 - f_{\sigma}(\mathbf{x})\right]$$

Characteristics:

- Generalization of the sigmoid
- Does not work properly with sparse outputs
- Does not scale properly w.r.t. the number of classes (k)

Beyond Binary Classification - Softmax + Cross Entropy

Beyond Binary Classification - Softmax + Cross Entropy

$$l_{CE}(f_{sm}(\boldsymbol{x}), \boldsymbol{t}) = -\sum_{j=1}^{k} t_{j} \log[f_{sm}(\boldsymbol{x}_{j})]$$

Beyond Binary Classification - Softmax + Cross Entropy

$$l_{CE}(f_{sm}(x), t) = -\sum_{j=1}^{k} t_j \, \log[f_{sm}(x_j)] = -\sum_{j=1}^{k} t_j [x_j - \log \sum_{l=1}^{k} e^{x_l}]$$

Beyond Binary Classification - Softmax + Cross Entropy

Characteristics:

- Generalization of the sigmoid
- Becomes numerically stable
- Simple, yet powerful(~92% in handwritten digit recognition)

$$l_{CE}(f_{sm}(x), t) = -\sum_{j=1}^{k} t_j \, \log[f_{sm}(x_j)] = -\sum_{j=1}^{k} t_j [x_j - \log \sum_{l=1}^{k} e^{x_l}]$$

Beyond Binary Classification - Softmax + Cross Entropy

Simple, yet powerful (~92% in handwritten digit recognition)

MNIST dataset, [Le Cunn et al., 1998a]

What if we encounter the following problem?

What if we encounter the following problem?

Exclusive Disjunction (XOR) $p \oplus q = (p \lor q) \land \neg (p \land q)$

[with few layers]

Break

See you in few minutes

[with few layers]

Extending the previous schematic

Going back to the original problem

Going back to the original problem

Let's assume we have the following hyperplanes

Projecting our samples on the planes

Going back to the original problem

Squashing our samples to the range [0,1]

Going back to the original problem

Squashing our samples to the range [0,1]

Going back to the original problem

- Squashing our samples to the range [0,1]
- The hidden-layer provides a non-linear input space.

Going back to the original problem

- Squashing our samples to the range [0,1]
- The hidden-layer provides a non-linear input space.

Nice, but ...

What if we have a more complex problem?

[adding more and more layers | something something "deep learning"]

Further extending the previous schematic

Activation Function - Rectifier Linear Unit

$$f_{relu} = \max(0, x)$$

Activation Function - Rectifier Linear Unit

Characteristics:

- Point-wise operation
- Not linear, but piece-wise linear
- Cut the space into polyhedra

$$f_{relu} = \max(0, \mathbf{x})$$

Activation Function - Rectifier Linear Unit

$$f_{relu} = \max(0, \mathbf{x})$$

Characteristics:

- Point-wise operation
- Not linear, but piece-wise linear
- Cut the space into polyhedra

Note

- Dead neurons can occur
- Not differentiable at 0
- Derivatives do not vanish

Further extending the previous schematic

Nice, but ...

Does it always work?

Universal Approximation Theorem [Cybenko, 1989]

Given a continuous function from the hypercube to a single real value.

A large network can approximate (up to some error epsilon), not represent, any smooth function.

Universal Approximation Theorem [Cybenko, 1989]

Given a continuous function from the hypercube to a single real value.

A large network can approximate (up to some error epsilon), not represent, any smooth function.

Does not provides guarantees over the "learnability" of such network.

Size of the network grows exponentially w.r.t. the input dimensions

Universal Approximation Theorem [Cybenko, 1989]

Given a continuous function from the hypercube to a single real value.

A large network can approximate (up to some error epsilon), not represent, any smooth function.

Does not provides guarantees over the "learnability" of such network.

Size of the network grows exponentially w.r.t. the input dimensions

[Hornik, 1991]

The key is that the stacked components are non-constant and bounded

Universal Approximation Theorem [Cybenko, 1989]

Universal Approximation Theorem [Cybenko, 1989]

Universal Approximation Theorem [Cybenko, 1989]

Universal Approximation Theorem [Cybenko, 1989]

Universal Approximation Theorem [Cybenko, 1989]

An intuition on how it works

Universal Approximation Theorem [Cybenko, 1989]

An intuition on how it works

Nice, but ...
What happens in high-dimensional spaces?

Universal Approximation Theorem [Cybenko, 1989]

An intuition on how it works – High-Dimensional Spaces

Universal Approximation Theorem [Cybenko, 1989]

An intuition on how it works – High-Dimensional Spaces

Universal Approximation Theorem [Cybenko, 1989]

An intuition on how it works – High-Dimensional Spaces

Ok, but ...
Why deeper rather than wider?

Deeper VS. Wider Architectures

Deeper

V S

Growth of the partitioning space

- Exponential by depth
- Polynomial by width

Deeper VS. Wider Architectures

← Learning how to recognize a bicycle

Deeper VS. Wider Architectures

← Learning how to recognize a bicycle

[with few layers]

Process Overview

Gradient Descent - Algebraic Foundations

$$y = f(x) : \mathbb{R}^d \to \mathbb{R}$$

$$y = f(x) : \mathbb{R}^d \to \mathbb{R}$$

$$\frac{\partial y}{\partial x} = \nabla_x f(x) = \left[\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_d}\right]$$

Gradient

Gradient Descent - Algebraic Foundations

$$y = f(\mathbf{x}) : \mathbb{R}^d \to \mathbb{R}$$

$$y = f(x) : \mathbb{R}^d \to \mathbb{R}$$

$$\frac{\partial y}{\partial x} = \nabla_x f(x) = \left[\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_d} \right]$$

Gradient

$$\frac{\partial y}{\partial x} = \mathbf{J}_x f(x) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_d} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_k}{\partial x_1} & \dots & \frac{\partial f_k}{\partial x_d} \end{bmatrix}$$

Jacobian

Gradient Descent

$$\mathbf{\theta}_{t+1} = \mathbf{\theta}_t - \alpha_t \nabla_{\mathbf{\theta}} L(\mathbf{\theta}_t)$$

[doi:10.1126/science.aau0577]

Gradient Descent

$$\theta_{t+1} = \theta_t - \alpha_t \nabla_{\theta} L(\theta_t)$$

$$\nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_t) = \nabla_{\boldsymbol{\theta}} \sum_{i} l(f(\boldsymbol{x}^{(i)}, \boldsymbol{\theta}_t), \boldsymbol{y}^{(i)})$$

$$= \sum_{i} \nabla_{\boldsymbol{\theta}} l(f(\boldsymbol{x}^{(i)}, \boldsymbol{\theta}_{t}), \boldsymbol{y}^{(i)})$$

[doi:10.1126/science.aau0577]

Gradient Descent

$$\mathbf{\theta}_{t+1} = \mathbf{\theta}_t - \alpha_t \nabla_{\mathbf{\theta}} L(\mathbf{\theta}_t)$$

$$\nabla_{\boldsymbol{\theta}} L(\boldsymbol{\theta}_t) = \nabla_{\boldsymbol{\theta}} \sum_{i} l(f(\boldsymbol{x}^{(i)}, \boldsymbol{\theta}_t), \boldsymbol{y}^{(i)})$$

$$= \sum_{i} \nabla_{\boldsymbol{\theta}} l(f(\boldsymbol{x}^{(i)}, \boldsymbol{\theta}_{t}), \boldsymbol{y}^{(i)})$$

[doi:10.1126/science.aau0577

Characteristics:

- Works for any smooth function
- Less guarantees for some non-smooth targets
- Converges to local optimum
- Critical effect of the Learning rate

Process Overview

Back-Propagation Algorithm

Back-Propagation Algorithm

Back-Propagation Algorithm

$$f_{k-1}(f_{k-2}(\dots f_2(f_1(x))))$$

Back-Propagation Algorithm

$$y = f_k(f_{k-1}(f_{k-2}(\dots f_2(f_1(\mathbf{x})))))$$

Back-Propagation Algorithm

Back-Propagation Algorithm

$$y = f(g(\mathbf{x})) \frac{\partial y}{\partial \mathbf{x}}$$

Back-Propagation Algorithm

$$y = f(g(x)) \frac{\partial y}{\partial x} = \frac{\partial y}{\partial g} \frac{\partial g}{\partial x}$$

$$\frac{dL}{dw} = \frac{dL}{dy} \cdot \frac{dy}{dz} \cdot \frac{dz}{dw}$$

Back-Propagation Algorithm

$$y = f(g(x)) \frac{\partial y}{\partial x} = \frac{\partial y}{\partial g} \frac{\partial g}{\partial x}$$

$$\frac{dL}{dw} = \frac{dL}{dy} \cdot \frac{dy}{dz} \cdot \frac{dz}{dw}$$

Characteristics:

- Chain rule for derivative computation
- Computations can be re-used (makes is linear [faster], otherwise quadratic)

Back-Propagation Algorithm

$$y = f(g(\mathbf{x})) \frac{\partial y}{\partial \mathbf{x}} = \frac{\partial y}{\partial g} \frac{\partial g}{\partial \mathbf{x}}$$

$$y = f(g(X)) \frac{\partial y}{\partial X} = \sum_{i=1}^{m} \frac{\partial y}{\partial g^{(i)}} \frac{\partial g^{(i)}}{\partial X}$$

Characteristics:

- Chain rule for derivative computation
- Computations can be re-used (makes is linear [faster], otherwise quadratic)

wait, ...
That's it?

From Shallow to Deep Neural Networks

Some Extra Practice - http://playground.tensorflow.org

[Finally:D]

- A From Neurons to Networks
 - Neurons → Layers → Networks

A From Neurons to Networks

Neurons → Layers → Networks

Power through Composition

- It is not about a single unit but their combination
- Capable of approximating any function producing a single real value as output
- Better deeper (exponential) than wider (polynomial) architectures

A From Neurons to Networks

Neurons → Layers → Networks

Power through Composition

- It is not about a single unit but their combination
- Capable of approximating any function producing a single real value as output
- Better deeper (exponential) than wider (polynomial) architectures

Some Enablers

- Efficient algorithmic computations
- Use of dedicated hardware

Pay Attention...

[one last tip for today]

Pay attention to...

References

Universal Approximation Capabilities of Deep Neural Networks

- G. Cybenko, Approximation by superpositions of a sigmoidal function, Math. Control Signals Systems, 2 (1989), 303–314. https://link.springer.com/article/10.1007/BF02134016
- K. Hornik Approximation Capabilities of Muitilayer Feedforward Networks https://web.njit.edu/~usman/courses/cs675_spring20/hornik-nn-1991.pdf

Deep VS. Wide architectures

• Guido Montúfar, Razvan Pascanu, Kyunghyun Cho, Yoshua Bengio, On the Number of Linear Regions of Deep Neural Networks. NeurIPS 2014 https://papers.nips.cc/paper/2014/file/109d2dd3608f669ca17920c511c2a41e-Paper.pdf

ReLU

- R H Hahnloser 1, R Sarpeshkar, M A Mahowald, R J Douglas, H S Seung. Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit. Nature 2000
 - https://pubmed.ncbi.nlm.nih.gov/10879535/

Questions?

From Shallow to Deep Neural Networks

[Building More Complex Models]

José Oramas

