

Deep Learning Lecture 3 Backpropagation

Prof. Dr. Rainer Herrler

Phone: 09721/940-8710

Email: <u>rainer.herrler@fhws.de</u>

Pictures from Wikipedia / Pixabay Some Pictures generated with Dall-E or Stable Diffusion

Questions about last lecture

- Weight initialization
 - Why did we initialize weights randomly, and bias values with zero?
 - What range of values did we use for weight initialization, and why does this make sense?
- Loss Function
 - What loss function did we implement and why?
 - What did we change moving from one sample the loss of a batch?
- Why did we transpose the weight-matrix when we switched from forwarding one training example to a whole batch?
- Python
 - What functions for random number generation do we know already?
 - What parameters should we know to draw a 2D-scatter plot?

What did we achieve until now with our implementation?

- We can make predictions if we find define a networkstructure and weights
- For more complex questions we cannot create the weights, we want them to automatically derived from data

How can we optimize weights?

- There is a (complicated)
 function how to calculate the loss
 based on weight, biases and inputs.
- Training samples are fixed
- Weights&Biases are variable
- We want to find a point (in parameter space) with minimal loss

Minimizing Loss functions with gradient descent

1 dimensional Parameter Space

Update Rules for gradient descent:

If $\frac{\partial}{\partial \theta_1} J(\theta_1) < 0$ then θ_1 is increased a little

If $\frac{\partial}{\partial \theta_1} J(\theta_1) > 0$ then θ_1 is decressed a little

$$\theta_1 = \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

Python code for plots:

Seite 5

What about a linear loss function?

Does this make sense?

Minimizing Loss functions with gradient descent

Extending to 2 dimensional Parameter Space

Update Rules:

If
$$\frac{\partial}{\partial \theta_i} J(\Theta) < 0$$
 then $\theta_i \neq \emptyset$
If $\frac{\partial}{\partial \theta_i} J(\Theta) > 0$ then $\theta_i \neq \emptyset$

$$\theta_i = \theta_i - \alpha \frac{\partial}{\partial \theta_i} J(\Theta)$$

If
$$\frac{\partial}{\partial \theta_i} J(\Theta) > 0$$
 then $\theta_i \setminus$

$$\theta_i = \theta_i - \alpha \frac{\partial}{\partial \theta_i} J(\Theta)$$

Deep Learning

Ways to determine the gradient

Numerical way:

$$\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Analytical way (Calculus):

z.B.
$$f(x) = (x-4)^2$$
 $f'(x) = 2(x-4)$

The numerical way works for simple one-dimensional functions, for complicated multi-dimensional function it is very slow.

Analytical way is faster but determining the all partial derivations is also complicated.

$$f(x, y, z) = (x + y) \cdot z$$

Introducing q

$$q = x + y$$
 $\frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$

$$f = qz$$
 $\frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$

Computational Graph of Function f

But we finally need partial derivatives for f

$$\frac{\partial f}{\partial x}$$
 $\frac{\partial f}{\partial y}$ $\frac{\partial f}{\partial z}$

$$f(x, y, z) = (x + y) \cdot z$$

Introducing q

$$q = x + y$$
 $\frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$

$$f = qz$$
 $\frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$

But we finally need partial derivatives for f

$$\frac{\partial f}{\partial x}$$
 $\frac{\partial f}{\partial y}$ $\frac{\partial f}{\partial z}$

$$f(x, y, z) = (x + y) \cdot z$$

Introducing q

$$q = x + y$$
 $\frac{\partial q}{\partial x} = 1, \frac{\partial q}{\partial y} = 1$

$$f = qz$$
 $\frac{\partial f}{\partial q} = z, \frac{\partial f}{\partial z} = q$

But we finally need partial derivatives for *f*

$$\frac{\partial f}{\partial x}$$
 $\frac{\partial f}{\partial y}$ $\frac{\partial f}{\partial z}$

Introducing the Chain Rule

$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial q} \cdot \frac{\partial q}{\partial y}$$

Values from forward propagation

A more complicated example

Computational graph for $f(\theta, x) = \frac{1}{1 + e^{-(\theta_1 x_1 + \theta_2 x_2 + \theta_3)}}$

A more complicated example

Computational graph for $f(\theta, x) = \frac{1}{1 + e^{-(\theta_1 x_1 + \theta_2 x_2 + \theta_3)}}$

Derivation formulas:

$$\bullet \quad f(x) = e^x \rightarrow f'(x) = e^x$$

•
$$f(x) = ax \rightarrow f'(x) = a$$

•
$$f(x) = \frac{1}{x} \to f'(x) = -\frac{1}{x^2}$$

• $f(x) = c + x \to f'(x) = 1$

•
$$f(x) = c + x \rightarrow f'(x) = 1$$

A more complicated example

Computational graph for $f(\theta, x) = \frac{1}{1 + e^{-(\theta_1 x_1 + \theta_2 x_2 + \theta_3)}}$

Derivation formulas:

$$\bullet \quad f(x) = e^x \to f'(x) = e^x$$

•
$$f(x) = ax \rightarrow f'(x) = a$$

•
$$f(x) = \frac{1}{x} \to f'(x) = -\frac{1}{x^2}$$

• $f(x) = c + x \to f'(x) = 1$

•
$$f(x) = c + x \rightarrow f'(x) = 1$$

Using known derivatives as shortcuts

$$\sigma(x) = \frac{1}{1 + e^{-(x)}}$$

$$\sigma'(x) = (1 - \sigma(x)) \cdot \sigma(x)$$

$$(1-0.73)\cdot 0.73 = 0.2$$

Dealing with branches

- In our example the computational graph just got narrower
- In practice (especially in neural neutworks) we also have one variable/node as a input to multiple other calculations
- Then gradients add up in this case
- Upstream gradient of a node is the sum of downstream gradients

Exercise: What about max or average?

Computational Graphs & Backpropagation with Matrixes

Neural Networks can also be seen as very complex computational graphs with lots of variables.

Using Matrix-Notation the graph gets more smaller and easier to comprehend.

Backpropagation

Suppose we have just one Training

Example (x,y). Gradient of the loss with respect to p

•
$$\delta_p = p - y$$

• $\delta_a = (\Theta^2)^T \left(\delta_p * \sigma'(z_p)\right)$
derived activation function

If we do that from the last layer until the first layer we can use the upstream gradients to calculate the downstream gradients.

Updating all the weights:

$$\Theta_{ij}^{l} = \Theta_{ij}^{l} - \alpha \cdot \alpha_{j}^{l-1} \delta_{i}^{l}$$
$$= \Theta_{ij}^{l} - \alpha \frac{\partial}{\partial \Theta_{ij}^{l}} J(\Theta)$$

Interpretation: This is the partial derivative of the cost function with respect to Θ^l_{ij} holding all the x and all other Θ^l_{ij} constant

Backpropagation & Gradient descent

- In one backproagation step we minimize the loss a little bit by updating all weights at the same time
- The learning rate α is used to define how large our adjustment step is
 - To large: we can overshoot the minimum
 - Too low: we have to learn a long time
- We can use a single training example in one backpropagation step or a larger batch (up to complete training set)
- On the long run and with many repetitions weights are updated in way to consider loss regarding all training examples.
- However we can get stuck in local minima, not finding the global minimum

Implementing a neural network with numpy

DL_002_BackwardPropagation.ipynb

Summary

- We saw how to do backward propagation in vectorized way
- Gradient descent helps us to find the point with minimal loss (samples are fixed, weights and biases are subject to optimization)
- We understand the difference between computing gradients in an analytical and numerical way
- Backpropagation is an efficient way to compute gradients with respect to the weights