Отчёт по научной работе

Ознакомление сос средством моделирования mininet

Саргсян Арам Грачьяевич

Содержание

1	Теоритическое введение	5
	1.1 Mininet	5 5
2	Процесс установки	7
3	Процесс моделирования	10

Список иллюстраций

2.1	установка mininet
2.2	установка putty и xserver
2.3	подключение по ssh
2.4	виртуальная машина mininet
2.5	Настройка соединения X11 для суперпользователя
3.1	Первая модель
3.2	ping от первого хоста ко второму
3.3	Установка iperf3
3.4	Запуск модели
3.5	Первый тест
3.6	Второй тест
3.7	Окно перегрузки
3.8	Количество переданных байтов
3.9	Топология в API Mininet
3.10	Результаты

Список таблиц

1 Теоритическое введение

1.1 Mininet

Mininet — это симулятор сетевых топологий на основе виртуаилизации, который позволяет моделировать и изучать поведение сетей в контролируемой среде, основанный на использовании виртуальных машин и пространств имен Linux для создания изолированных сетевых узлов. Моделирование сетевых топологий с помощью Mininet позволяет исследовать различные сетевые протоколы, маршрутизацию, управление трафиком и т.д. Возможности моделирования с помощью Mininet включают создание виртуальных сетевых узлов, конфигурирование топологий (связь между узлами, настраивать IP-адреса, маршрутизацию), имитировать различные условия сети, такие как задержки, потери пакетов и пропускную способность, интеграция с контроллерами для исследования новых протоколов и алгоритмов.

1.2 **Iperf3**

iPerf3 представляет собой кроссплатформенное клиент-серверное приложение с открытым исходным кодом, которое можно использовать для измерения пропускной способности между двумя конечными устройствами. iPerf3 может работать с транспортными протоколами TCP, UDP и SCTP:

TCP и SCTP: - измерение пропускной способности - возможность задать размер MSS/MTU - отслеживание размера окна перегрузки TCP (CWnd)

UDP: - измерение пропускной способности - измерение потери пакетов - измерение колебания задержки (jitter) - поддержка групповой рассылки пакетов (multicast).

2 Процесс установки

1. Для работы с данным средством я скачал рекомендуемый к установке образ виртуальной машины: mininet-2.3.0- 210211-ubuntu-20.04.1-legacy-server-amd64-ovf. Для работы из под операционной системы Windows дополнительно установил Putty и VcXsrv Windows X Server.

Рис. 2.1: установка mininet

```
Microsoft Windows [Version 10.0.19045.3448]
(c) Корпорация Майкрософт (Microsoft Corporation). Все права защищены.

С:\WINDOWS\system32>choco install putty
Chocolatey v1.2.1
Installing the following packages:
putty
By installing, you accept licenses for the packages.
putty v0.79.0 already installed.
Use --force to reinstall, specify a version to install, or try upgrade.

Chocolatey installed 0/1 packages.
See the log for details (C:\ProgramData\chocolatey\logs\chocolatey.log).

Warnings:
- putty - putty v0.79.0 already installed.
Use --force to reinstall, specify a version to install, or try upgrade.

C:\WINDOWS\system32>choco install vcxsrv
Chocolatey v1.2.1
Installing the following packages:
vcxsrv
By installing, you accept licenses for the packages.
vcxsrv v1.20.14.0 already installed.
Use --force to reinstall, specify a version to install, or try upgrade.

Chocolatey installed 0/1 packages.
See the log for details (C:\ProgramData\chocolatey\logs\chocolatey.log).

Warnings:
- vcxsrv - vcxsrv v1.20.14.0 already installed.
Use --force to reinstall, specify a version to install, or try upgrade.

C:\WINDOWS\system32>
```

Рис. 2.2: установка putty и xserver

2. После запуск виртуальной машины и xserver, соединился с помощью консоля putty по ssh c ip адрессом 192.168.56.101

Рис. 2.3: подключение по ssh

```
mininet@mininet-vm:~ - - X
login as: mininet
mininet@192.168.56.101's password:
Access denied
mininet@192.168.56.101's password:
Welcome to Ubuntu 20.04.1 LTS (GNU/Linux 5.4.0-42-generic x86_64)

* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com

* Support: https://ubuntu.com/advantage

Last login: Sun Sep 17 03:24:56 2023 from 192.168.56.1
mininet@mininet-vm:~$
```

Рис. 2.4: виртуальная машина mininet

3. Настроил соединения X11 для суперпользователя

```
login as: mininet
mininet@192.168.56.101's password:
Access denied
mininet@192.168.56.101's password:
Welcome to Ubuntu 20.04.1 LTS (GNU/Linux 5.4.0-42-generic x86_64)

* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/advantage

Last login: Sun Sep 17 03:24:56 2023 from 192.168.56.1
mininet@mininet-vm:~$ xauth list $DISPLAY
mininet@mininet-vm:~$ xauth list $DISPLAY
mininet@mininet-vm:~$ xauth add mininet-vm/unix:10 MIT-MAGIC-COOKIE-1 c93c676d52
2566850caf9ef87513191
root@mininet-vm:~$ xauth list $DISPLAY
mininet-vm/unix:10 MIT-MAGIC-COOKIE-1 c93c676d5292566850caf9ef87513191
root@mininet-vm:~$ xauth list $DISPLAY
mininet-vm/unix:10 MIT-MAGIC-COOKIE-1 c93c676d5292566850caf9ef87513191
root@mininet-vm:~$ xauth list $DISPLAY
mininet-vm/unix:10 MIT-MAGIC-COOKIE-1 c93c676d5292566850caf9ef87513191
root@mininet-vm:~$ # Xauth list $DISPLAY
mininet-vm/unix:10 MIT-MAGIC-COOKIE-1 c93c676d5292566850caf9ef87513191
```

Рис. 2.5: Настройка соединения X11 для суперпользователя

3 Процесс моделирования

1. Изучил основные команды mininet, в miniedit запустил простую топологию с двумя хостами и одним коммутатором

Рис. 3.1: Первая модель

2. Проверил работаспособность соединения

```
root@mininet-vm:/home/mininet# ping 10.0.0.2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=0.916 ms
64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=0.085 ms
64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=0.095 ms
64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=0.083 ms
64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=0.079 ms
64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=0.047 ms
64 bytes from 10.0.0.2: icmp_seq=7 ttl=64 time=0.079 ms
64 bytes from 10.0.0.2: icmp_seq=8 ttl=64 time=0.075 ms
64 bytes from 10.0.0.2: icmp_seq=8 ttl=64 time=0.075 ms
64 bytes from 10.0.0.2: icmp_seq=9 ttl=64 time=0.077 ms
64 bytes from 10.0.0.2: icmp_seq=10 ttl=64 time=0.079 ms
64 bytes from 10.0.0.2: icmp_seq=11 ttl=64 time=0.085 ms
^C
--- 10.0.0.2 ping statistics ---
11 packets transmitted, 11 received, 0% packet loss, time 10542ms
rtt min/avg/max/mdev = 0.047/0.154/0.916/0.241 ms
```

Рис. 3.2: ping от первого хоста ко второму

3. Установил приложение iperf3

```
mininet@mininet-vm:~/work$ sudo apt install iperf3
Reading package lists... Done
Building dependency tree
Reading state information... Done
iperf3 is already the newest version (3.7-3).
0 upgraded, 0 newly installed, 0 to remove and 360 not upgraded.
mininet@mininet-vm:~/work$
```

Рис. 3.3: Установка iperf3

4. Смоделировал простую тополгию с двумя хостами и коммутатром

Рис. 3.4: Запуск модели

5. Провел простейший интерактивный эксперимент по измерению пропускной способности в iperf3 и в терминале mininet. Как мы видим, при первом тесте потери пакетов значильно меньше (9 против 152), пропусная способность тоже больше в первом случае, как и размер окна перегрузки.

```
Toot@mininet-vm://home/mininet# iperf3 -s
warning: this system does not seem to support IPv6 - trying IPv4

Server Listening on 5201

Accepted connection from 10.0.0.1, port 55878

Accepted connection from 12.0.0.1, port 55878

Accepted connection from 12.0.0.
```

Рис. 3.5: Первый тест

```
* Starting CLI:
mininet> h2 iperf3
inineth h1 iperf3 -c h2 onnecting to host 10.0.0.2, port 5201 5] local 10.0.0.1 port 55884 connected to 10.0.0.2 port 5201
                                sec 2.46 GBytes 21.1 Gbits/sec
sec 3.09 GBytes 26.6 Gbits/sec
sec 3.45 GBytes 29.6 Gbits/sec
                                                                                                      1.58 MBytes
                                                                                                      1.66 MBytes
                                                                                                     1.66 MBytes
            2.00-3.00
                                        2.98 GBytes 25.5 Gbits/sec
                                                                                                     1.66 MBytes
                               sec 2.96 GBytes 25.5 GDits/sec
sec 2.89 GBytes 24.9 Gbits/sec
sec 2.92 GBytes 25.1 Gbits/sec
sec 2.84 GBytes 24.4 Gbits/sec
sec 3.31 GBytes 28.4 Gbits/sec
                                                                                                      1.66 MBytes
                                                                                                      1.66 MBytes
                                                                                                     2.63 MBytes
            6.00-7.00
                                                                                                     2.63 MBvtes
                                         3.06 GBytes
                                        2.25 GBytes
                                                                                                      2.63 MBytes
                                        29.3 GBytes
29.3 GBytes
 perf Done
```

Рис. 3.6: Второй тест

6. Провёл другой тест и визуализировал данные

Рис. 3.7: Окно перегрузки

Рис. 3.8: Количество переданных байтов

7. С помощью API Mininet создал простейшую топологию сети, состоящую из двух хостов и коммутатора с назначенной по умолчанию mininet сетью 10.0.0.0/8 и получил результаты

```
mc[mininet@mininet.wm]:-/work/lab jperf3/lab jperf3 topo/lab iperf3 topo.py
#i/wsr/bin/env python

"""

This example shows how to create an empty Mininet object
(without a topology object) and add nodes to it manually.

"""

from mininet.net import Mininet
from mininet.net import Chil
from mininet.log import Controller
from mininet.log import setLogLevel, info

def emptyNet():

"Create an empty network and add nodes to it."

net = Mininet( controller=Controller, waitConnected=True )

info( '*** Adding controller')
net.addController( 'c0')

info( '*** Adding foot on one of the info one of the in
```

Рис. 3.9: Топология в API Mininet

```
mininet@mininet-vm:-$ mc

mininet@mininet-vm:-$ mc

mininet@mininet-vm:-/work/lab_iperf3/lab_iperf3_topo$ sudo python lab_iperf3_topo.py

*** Adding controller

*** Adding switch

*** Creating links

*** Starting network

*** Starting network

*** Starting controller

c0

*** Starting to witches

33 ...

*** Waiting for switches to connect

$3

HOST h1 has IP address 10.0.0.1 and MAC address a2:61:79:7f:48:fa
HOST h2 has IP address 10.0.0.2 and MAC address 16:fd:f8:85:e6:c6

*** Running CLI

*** Starting CLI

*** Starting CLI

*** Starting CLI
```

Рис. 3.10: Результаты