Lemma. Pos_{\mathcal{U}} and Pos_{\mathcal{Y}} are equivalent: there exists a pair of functors

$$\angle: \mathbf{Pos}_{\mathscr{U}} \to \mathbf{Pos}_{\mathscr{Y}},$$

$$\angle: \mathbf{Pos}_{\mathscr{V}} \to \mathbf{Pos}_{\mathscr{V}},$$

such that $\angle \circ / = \operatorname{Id}_{\mathbf{Pos}_{\mathcal{U}}}$ and $\angle \circ / = \operatorname{Id}_{\mathbf{Pos}_{\mathcal{Y}}}$, where $\operatorname{Id}_{\mathbf{Pos}_{\mathcal{U}}}$ and $\operatorname{Id}_{\mathbf{Pos}_{\mathcal{Y}}}$ are the identity functors on $\mathbf{Pos}_{\mathcal{U}}$ and $\mathbf{Pos}_{\mathcal{Y}}$, respectively.