CENTER FOR NAVAL ANALYSES ALEXANDRIA VA MARINE CORP--ETC F/6 5/9 NORMALIZATION OF THE ARMED SERVICES VOCATIONAL APTITUDE BATTERY--ETC(U) DEC 80 W H SIMS, A R TRUSS NO0014-76-C-0001 AD-A104 020 CRC-438 UNCLASSIFIED NL

AD A 104020

NORMALIZATION OF THE ARMED SERVICES YOCATIONAL APTITUDE BATTERY (ASVAB) FORMS 8, 9, AND 10 USING A SAMPLE OF SERVICE RECRUITS.

William H./Sims Ann R./Truss

DTIC ELECTE SEP 1 0 1981

9 Korack Contribution

E

DISTRIBUTION STATEMENT A

Approved for public release

Distribution Unlimited

(5) NOOP 14-76-C-0001

(11)

CENTER FOR NAVAL ANALYSES

401327

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACC CRC 438	CESSION NO. 3. RECIPIENT'S CATALOG NUMBER
HU 1	LOYOXU
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED
Normalization of the Armed Services Vocation	nal
Aptitude Battery (ASVAB) Forms 8, 9, and 10 Using a Sample of Service Recruits	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a)	8. CONTRACT OR GRANT NUMBER(#)
William H. Sims, Ann R. Truss	N00014-76-C-0001
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Center for Naval Analyses 2000 N. Beauregard Street	Private and the second
Alexandria, Virginia 22311	
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Deputy Chief of Staff (RD&S)	December 1980
Headquarters, Marine Corps Washington, D.C. 20380	13. NUMBER OF PAGES
Washington, D.C. 20380 14. MONITORING AGENCY NAME & ADDRESS(If different from Controlli	85 (Ing Office) 15. SECURITY CLASS. (of this report)
	Unclassified
	154 DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)	
Approved for public release; distribution	unlimited.
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, If	different from Report)
This Research Contribution does not necessa: of the Commandant, Marine Corps.	rily represent the opinion
of the communication marries corpor	
18. SUPPLEMENTARY NOTES	
19. KEY WORDS (Continue on reverse side if necessary and identify by bi	lock number)
AFQT, aptitude tests, ASVAB 8,9,10, enlisted	d personnel, examination,
military forces (United States), normalizing recruiting, regression analysis	g (statistics), ratings,
-	
d James by M	
20. ABSTRACT (Continue on reverse side it necessary and identity by blo All branches of the Armed Services use the	Armed Services Vocational
Aptitude Battery (ASVAB) to measure the ment recruits. New forms of ASVAB are introduced	tal aptitudes of prospective
forms are introduced they must be normalized	d (i.e., the proper relationship
must be established between the number of quality as a standard score scale). This process ensured	uestions answered correctly and
new forms represents the same ability level	as that same score on previous
forms of the test. This report documents of ASVAB forms 8, 9, and 10.	ar analysis of the normalization
	•

Subj: CNA Research Contribution 438

Encl: CRC 438, "Normalization of the Armed Services Vocational Aptitude Battery (ASVAB) Forms 8, 9, and 10 Using a Sample of Service Recruits," by William H. Sims and Ann R. Truss, December 1980

- Enclosure (1) is forwarded as a matter of possible interest.
- Research Contributions are distributed for their potential value in other studies and analyses. They do not necessarily represent the opinion of the U.S. Marine Corps or the Department of the Navy.

Director Marine Corps Operations Analysis Group

Accession For NTIS GRA&I DTIC TAB Unannounced Justification By_ Distribution/ Availability Codes Avail and/or Dist Special

CNA Research Contribution 438 Subi:

DISTRIBUTION LIST

```
SNDL Part I:
21A1
           Commander in Chief, U.S. Atlantic Fleet
           Commander in Chief, U.S. Pacific Fleet
21A2
           Commander in Chief, U.S. Naval Forces, Europe
21A3
24J1
           Commanding General, Fleet Marine Force Atlantic
24J2
           Commanding General, Fleet Marine Force Pacific
SNDL Part II:
           Ass't Sec'y of the Navy, MRA&L
           Comptroller of the Navy
A2A
A2A
           Office of Program Appraisal
           Chief of Naval Research
A2A
           Chief of Naval Personnel
Α5
           Chief of Staff, USMC
A6
           DC/S, Manpower (10 copies)
A6
           DC/S, Plans, Policy and Operations
A6
           DC/S, Research, Development & Studies (2 copies)
Α6
           DC/S, Installations and Logistics
А6
           DC/S, Requirements and Programs
Α6
           Director, C4 Systems, HqMC
Α6
           Secretary, Joint Chiefs of Staff
B2A
В3
           National Defense University
           Armed Forces Staff College
B3
FA34
           Human Resource Management Center, Atlantic
FB44
           Human Resource Management Center, Pacific
FF30
           Naval Manpower & Material Analysis Center, Atlantic
FF30
           Naval Manpower & Material Analysis Center, Pacific
           U.S. Naval Academy (Nimitz Library)
FF38
FF44
           Naval War College
FF48
           Human Resource Management Center (CNO)
FJ18
           Navy Military Personnel Command
FJ76
           Navy Recruiting Command
FKA6A16
           Naval Personnel R&D Center
FT1
           Chief of Naval Education and Training
FT73
           Naval Postgraduate School
FT87
           Human Resource Management School
V8
           Marine Corps Recruit Depot, Parris Islant
           Marine Corps Recruit Depot, San Diego
V8
           Marine Corps Development and Education Command
V12
           Op-09BH (Naval History)
OpNav:
           Op-01 (DCNO, Personnel and Training)
```

Ass't Sec'y of Defense, Manpower, Reserve Affairs & Logistics(10 cys) Ass't Sec'y of Defense, Program Analysis & Evalution (2 copies) Department of the Army Library The Army Research Institute (Chief, Personnel Utilization Technical Area) Department of the Air Force (SAMI) Institute for Defense Analyses

The Rand Corporation

Defense Technical Information Center

NORMALIZATION OF THE ARMED SERVICES VOCATIONAL APTITUDE BATTERY (ASVAB) FORMS 8, 9, AND 10 USING A SAMPLE OF SERVICE RECRUITS

William H. Sims Ann R. Truss

CENTER FOR NAVAL ANALYSES

2000 North Beauregard Street, Alexandria, Virginia 22311

EXECUTIVE SUMMARY

All branches of the Armed Services use the Armed Services Vocational Aptitude Battery (ASVAB) to measure the mental aptitude of prospective recruits. Current plans call for implementing a new series of the ASVAB (forms 8A, 8B, 9A, 9B, 10A, and 10B) in October 1980.

Before implementing the new forms of ASVAB, the test must be normalized, 2,3 that is, the proper relationship must be established between the number of questions answered correctly (the raw score) and the percentile score. This procedure ensures that a certain score on the new forms represents the same ability level as did that same score on previous forms of the test. To reduce the possibility of error in the normalization of ASVAB 8/9/10, four independent analyses were conducted. This report describes one of these analyses.

The data for this analysis were obtained by administering both the new ASVAB and a reference test to 3,799 recruits from the Army, Navy, Air Force, and Marine Corps at service reception centers. The testing was carried out under carefully controlled conditions designed to provide equal motivation and opportunity to do well on both the ASVAB and the reference test. Because neither the new ASVAB nor the reference test were being used operationally, there was no possibility that coaching distorted the scores.

The mix of recruits from each service was selected to equal the normal annual percentage of all recruits who choose that service. To obtain the most accurate equating of the new ASVAB to the reference test, the sample was adjusted so the ethnic and sex mix were the same as the sample originally used to norm the reference test.

The data were carefully analyzed for spurious scores, and any suspect cases were removed from the sample. We established that any bias in our results from using recruits who were tested and selected before enlistment rather than using the more traditional service applicants is negligible.

The results of our analyses for the Armed Forces Qualification Test (AFQT) part of the ASVAB are given in table I. Results for the ASVAB subtests and composites are given in appendices H and J, respectively.

¹Commonly referred to as ASVAB 8/9/10.

The words normalized, equated, scaled, or calibrated are frequently used interchangeably to describe the same process.

This report was initially issued as a working paper in June 1980 to permit a DoD decision on norms for ASVAB 8/9/10 prior to the October 1980 implementation date. The results given in this final report are unchanged from those shown in the working paper.

TABLE 1
CONVERSION TABLE FOR ASVAB 8A AFQT SCORE

Raw score	Percentile score	Raw score	Percentile score
0-24	0	66	32
25	1	67	33
26	1 2	68	35
27	3 4	69	36
28	4	70	38
29	4	71	41
30	5 5 6 6 7	72	43
31	5	73	45
32	6	74	47
33	6	75	49
34	7	76	50
35	8 9 9	77	52
36	9	78	54
37		79	56
38	10	80	58
39	10	81	60
40	11	82	61
41	11	83	63
42	12 12	84	65
43 44	13	85	67
44 45	13	86	69
45 46	13	87 88	70 72
47	14	89	72 74
48	15	90	74 76
49	15	91	76 77
50	16	92	7 <i>7</i> 79
. 51	16	93	80
52	17	94	82
53	18	95	83
54	19	96	85
55	20	97	86
56	21	98	88
57	22	99	90
58	23	100	91
59	24	101	92
60	25	102	93
61	26	103	95
62	27	104	97
63	28	105	99
64	30		
65	31		

TABLE OF CONTENTS

	Page
List of illustrations	v
List of tables	vii
Chapter 1 - Introduction	1
Background	1
Plans for normalization	i
Organization of the report	3
Chapter 2 - Analysis	4
Experimental design	4
Data sample	4
Removal of spurious data	5
Equipercentile equating	8
Effect of sample truncation	8
Chapter 3 - Results	12
Normalization of ASVAB 8A AFQT	12
Normalization of ASVAB 8A subtests	12
Normalization of ASVAB 8A composites	14
Standard statistics for ASVAB 8A	14
References	15
Appendix A - Definitions of ASVAB tests and composites	1 - 3-4
_	
Appendix B - Experimental design B-	1 - B-2
Appendix C - Removal of nonstandard test sessions C-	1 - C-11
Appendix D - Removal of spurious test scores of	
individuals D-	1 - D-4
Appendix E - Equipercentile equating E-	1 - E-7
Appendix F - Effect of sample truncation F-	1 - F-11
Appendix G - Stratification of sample G-	1 - G-2
Appendix H - Conversion tables for subtests H-	1 - H-5
Appendix I - Equipercentile equating for composites I-	1 - 1-3
Appendix J - Conversion tables for composites J-	l - J-14
Appendix K - Sample statistics K-	1 - K-4

LIST OF ILLUSTRATIONS

	Page
1	Illustration of removal of testing sessions where maladministration was suspected 6
2	Illustration of removal of individual cases with spurious scores
3	Illustration of equipercentile equating 9
4	Illustration of direct and incidental test selection on a sample of recruits
C-1	Scattergram of mean AR and mean CS by test session C-2
C-2	Scattergram of mean AR and mean MK by test session C-3
C-3	Scattergram of mean WK and mean GS by test session C-4
C-4	Scattergram of mean MC and mean AS by test session C-5
C-5	Scattergram of mean AR and mean NO by test session C-6
C-6	Scattergram of mean WK and mean PC by test session C-7
C-7	Scattergram of mean GS and mean EI by test session C-8
C-8	Scattergram of mean NO and mean CS by test session C-9
C-9	Scattergram of mean AFQT 7A percentile and mean AFQT 8 by test session
D-1	Scattergram of AFQT 7A raw scores vs ASVAB 8 AFQT raw scores
D-2	Illustration of various parameterizations of the data in figure D-1 D-3
E-1	Equipercentile equating for total sample E-2

LIST OF ILLUSTRATIONS (Cont'd)

	<u>P</u> :	age
E-2	Equipercentile equating for clean sample	E-3
E-3		E-4
F-1	Illustration of direct and incidental test selection on sample of recruits	F-2
F-2	Comparison of truncated CNA sample with full-range and truncated ARI sample	
F-3	-db	F-6
F-4		F-7

LIST OF TABLES

Marie Commission Commi

		Page
I	Conversion table for ASVAB 8A AFQT score	ii
1	The structure of ASVAB 8/9/10	2
2	Estimate of bias in AFQT norm due to preselection at AFEES	11
3	Conversion table for ASVAB 8A AFQT score	13
A-1	Individual ASVAB 8 tests	A-2
A-2	ASVAB 8 composites for Army and/or Marine Corps	A- 2
A-3	Formulas for computing Army ASVAB 8 composites	A-3
A-4	Formulas for computing Marine Corps ASVAB 8 composites	A-4
A-5	Formulas for computing Air Force ASVAB 8 composites	A-4
B-1	Reception center testing quota	B-2
C-1	Statistics used in the removal of nonstandard test sessions	C-11
E-1	Summary of equipercentile equating results	E-5
F-1	Calculation of weights to simulate truncation	F-5
F-2	Comparison of equipercentile equating results from ARI full-range and ARI truncated sample	F-8
F-3	Comparative statistics for truncated CNA sample and ARI sample before and after simulated truncation	F-11
G-1	Calculation of weight factors for building composites and subtests	G-2
H-1	ASVAB 8 subtest conversion tables	H-2

LIST OF TABLES (Cont'd)

		Page
1-1	Traditional conversion table: AFQT 1 or AFQT 2 percentile scores to Army standard scores	1-2
J - 1	Conversion table for Army and USMC composites	J-2
J ~ 3	Conversion table for Air Force composites	J-14
K-1	Mean values and standard deviations of ASVAB 8 subtests	K-2
K-2	Correlation coefficients of ASVAB subtests	K-3
K-3	Correlation coefficients of ASVAB composites	K-4

CHAPTER 1

INTRODUCTION

BACKGROUND

The Armed Services Vocational Aptitude Battery (ASVAB) is the screening test currently used by the Armed Services to measure the mental aptitude of prospective recruits. On 1 January 1976, two forms, 6 and 7 (ASVAB 6/7), were implemented at the Armed Forces Examining and Entrance Stations (AFEES). These forms were supplemented by two additional forms, 6E and 7E, in June 1979, making a total of four forms of ASVAB that are now being used. This series is referred to as ASVAB 6/7/6E/7E.

Current plans call for replacing ASVAB 6/7/6E/7E with a new series, designated ASVAB 8/9/10, in October 1980. This report is about the normalization of this new series.

THE STRUCTURE OF ASVAB 8/9/10

ASVAB 8/9/10 consists of 10 subtests (table 1) that comprise two groups (see appendix A). One group of subtests make up the Armed Forces Qualification Test (AFQT) part of the battery; the remainder form the non-AFQT portion. The AFQT part of the ASVAB is used to determine eligibility for enlistment. Some services further use certain non-AFQT subtests to determine eligibility. The Department of Defense also uses the AFQT to place recruits in broad mental categories that serve as measures of general trainability. The non-AFQT subtests are used primarily for job classification. The ASVAB 8/9/10 series consists of six different forms of the AFQT subtests (8A, 8B, 9A, 9B, 10A, and 10B) combined with three different forms of the non-AFQT subtests (8, 9, 10) to produce six forms (8A, 8B, 9A, 9B, 10A, and 10B) of the battery.

PLANS FOR NORMALIZATION

Since ASVAB 6/7 was introduced in January 1976, there has been considerable controversy over whether it was properly normalized (see reference 1). In developing ASVAB 8/9/10 the ASVAB Working Group² hoped to resolve any uncertainty about the normalization of these tests before implementing them. Therefore, the

In It is report was initially issued as a working paper in June 1980 to permit a DoD decision on norms for ASVAB 8/9/10 before the October implementation date.

²A joint service group that deals with ASVAB issues. It is composed of policy and technical representatives from each service.

ASVAB Working Group recommended a series of four concurrent normalization analyses for ASVAB 8/9/10, and the ASVAB Steering Committee approved the series. One normalization analysis was to be based on the full ASVAB 8A administered to applicants at the AFEES--this analysis was to be conducted by the Army Research Institute (ARI). A second normalization analysis based on an administration of the full ASVAB 8A to recruits at service reception centers was to be conducted by the Center for Naval Analyses (CNA). A third normalization analysis was to be based on an administration of the AFQT part of ASVAB 8A to students in high schools--this analysis was to be conducted by the Educational Testing Service (ETS). It was expected that at least two of these analyses would agree on the normalization of ASVAB 8A, and it was hoped that all three might agree.

TABLE 1

THE STRUCTURE OF ASVAB 8/9/10

Subtest	Content area	Number of questions	Testing time (minutes)
GS	General Science	25	11
AR ^a	Arithmetic Reasoning	30	36
wk ^a	Word Knowledge	35	11
PC ^a	Paragraph Comprehension	15	13
NO ^a	Numerical Operations	50	3
CS	Coding Speed	84	7
AS	Auto and Shop Information	25	11
MK	Mathematics Knowledge	25	24
MC	Mechanical Comprehension	25	19
EI	Electronics Information	20	9
		334	144

These tests comprise the AFQT part of the battery: AFQT = AR+WK+PC+ $(\frac{NO}{2})$.

¹The flag officer oversight committee for the ASVAB Working Group.

Because all six of the new ASVAB forms had been constructed to be parallel, ¹ it was expected that the same conversion tables could be used for all forms. To ensure that the six forms were indeed parallel, a fourth study was to be conducted based on tests administered to recruits at service reception centers. This study, to be conducted by the Air Force Human Resources Laboratory (AFHRL), was to compare the means and standard deviations of each subtest of forms 8B, 9A, 9B, 10A, and 10B with the like-named subtest from form 8A to ascertain if the tests are in fact parallel (or comparable).

If the three independent normalizations of ASVAB 8A agree and if the comparability study shows that the six forms are in fact parallel, then ASVAB 8/9/10 can be implemented with a high degree of confidence.

This report only concerns CNA's normalization analysis based on tests administered to recruits at service reception centers. The other normalization analyses are to be presented in separate reports issued by the responsible organizations.

ORGANIZATION OF THE REPORT

The experimental details of this analysis are discussed in chapter 2 and are presented in more detail in the appendices. The resulting normalization is discussed in chapter 3.

¹ The six forms of the prototype ASVAB were constructed from item banks developed by the Air Force Human Resources Laboratory (AFHRL). These items were then administered to high school students in spring 1979 to obtain a uniform set of item parameters. Members of the Psychometric Task Group (a subgroup of the ASVAB Working Group) then grouped the items by difficulty and by correlation with the total subtest score. The six most similar items were chosen, one assigned to each of the six new forms, and so forth, until all forms contained the desired number of items. In this manner, six new forms of the ASVAB were constructed that were expected to be parallel (or nearly parallel). See reference 2 (page 207) for a discussion of the methodology.

CHAPTER 2

ANALYSIS

EXPERIMENTAL DESIGN

The normalization analysis discussed here is based on test scores obtained by administering both ASVAB 8A and a reference test, AFQT 7A, to recruits from all services at service reception centers (see appendix B for details). The tests were administered between 18 January and 9 February 1980. The number of recruits chosen from each service reflected the percentage of applicants from that service that flow through the AFEES. 1 The testing order was counterbalanced 2 for recruits from each service.

Testing personnel from the responsible service personnel laboratories visited each reception center. During their visit, they briefed the local testing personnel on the procedures to be followed and observed at least one complete testing session.

DATA SAMPLE

To minimize equating errors, the data sample used to equate ASVAB 8A to AFQT 7A had to be similar to that used in the original normalization of AFQT 7A. For this reason, we restricted the data sample to male recruits only. For this same reason, we adjusted the racial-ethnic mix of the sample to 12 percent "black," 82 percent "white," and 6 percent "other." The initial data sample consisted of 3,799 male cases.

Except for the initial testing session at each reception center, none of the sessions were monitored. For this reason, we focused considerable attention on removing from the sample any data that seemed likely to have been biased by maladministration. We discuss later our procedure for removing bad data.

¹ For the services, these were 43.3 percent, Army; 23.3 percent, Navy; 20.0 percent, Air Force; and 13.4 percent, Marine Corps.

²Counterbalanced means that the same number of recruits took ASVAB 8A first as took the reference test first.

The male-only restriction was particularly important because AFQT 7A contains some questions about tools although ASVAB 8A AFQT does not. Because females traditionally do less well on tool-related items than males, and because no females were used in the original norming of AFQT 7A, the norms of ASVAB 8A would have been biased if females had been included in the sample.

The recruits marked their answers on optically scannable answer sheets. The answer sheets were machine scored. A 1 percent random sample of answer sheets from ASVAB 8A was rescored by hand and no errors were found. A 2 percent random sample of answer sheets from AFQT 7A was also rescored by hand and one error was found. This error rate was small and acceptable because most resulting spurious data would be removed at later stages of the analysis.

REMOVAL OF SPURIOUS DATA

In general, spurious data are of two types. One type is from maladministration in testing such as mistiming. In such a case, all data from that testing session are biased and should be removed. A second type of bad data results when an individual test must be discounted because a person becomes sick or otherwise indisposed during the testing or if a test is improperly scored. In this case, the individual case should be removed from the sample. We explored both types of problems.

We examined the problem of maladministration by computing mean scores for each subtest for each day of testing at each test site. For each subtest there was another subtest that correlated reasonably well with the first. We constructed scattergrams of the mean values of the correlated subtests and looked for anomalous points. The procedure is illustrated in figure 1. This figure shows the mean values of the Coding Speed and Arithmetic Reasoning subtests for 44 different testing sessions. A regression line was fit to the data. Three data points are seen to be displaced from the regression line by more than 2.5 standard errors where none would be expected in a normal distribution. These three data points, representing three testing sessions, were removed from the sample. Scattergrams of correlated means for other pairs of tests were also examined and are shown in appendix C. Using the criteria just discussed, we removed 9 of the 44 testing sessions as cases of probable maladministration. This selection reduced the data sample to 3,293 cases.

At this point in the analysis, data from tests administered at AFEES to these recruits became available. Because this information would be useful in examining possible bias due to preselection at AFEES, the AFEES test file was matched to our reception center data file. Because not all cases were successfully matched, our data set was reduced to 3,084 cases.

To delete any remaining cases of bad test scores on individuals, we examined a scattergram (figure 2) of individual scores on ASVAB 8A AFQT and the reference test. Note the excess of points in the upper left corner of the figure. The data were

Mean AR

Note: Circled data points denote test sessions removed from our data sample. The symbol """ denotes a single testing session.
Intergers "2" through "8" represent the indicated number of sessions and the interger "9" denotes nine or more sessions.

FIG. 1: ILLUSTRATION OF REMOVAL OF TESTING SESSIONS WHERE MALADMINISTRATION WAS SUSPECTED⁸

FIG. 2: ILLUSTRATION OF REMOVAL OF INDIVIDUAL CASES WITH SPURIOUS SCORES Note: Dashed lines denote 2.5 standard error limit.

-7-

parameterized with a linear regression equation and points falling outside 2.5 standard errors were removed (see appendix D for details). The removal of these cases reduced our data sample to 3,001 cases. Thus, we had a clean data set of 3,001 cases for further analysis.

EQUIPERCENTILE EQUATING

The equipercentile equating method (reference 3 and figure 3) was used to equate graphically the raw scores on the new ASVAB 8A AFQT to percentile scores on the reference test AFQT 7A. Two scores were considered equivalent if they were made by the same cumulative percentage of a sample (point "A" in figure 3). Hence, the raw scores on the ASVAB at point "B" were defined as equal to the percentile scores on the reference test at point "C."

The ASVAB 8A AFQT was normalized in appendix E using this procedure. However, before we discuss these results, we examine the possibility that a normalization based on recruit data (such as ours) is biased due to preselection at AFEES.

EFFECT OF SAMPLE TRUNCATION

The effect of preselection at AFEES is illustrated in figure 4. Figure 4(a) shows the distribution of scores on the operational ASVAB 6/7 AFQT expected from applicants at AFEES. Those applicants in the shaded area of figure 4(a) are rejected for enlistment because of low test scores. Those in the unshaded area are accepted for enlistment and become recruits such as those who make up our data sample. Hence, a distribution of scores of recruits on a test administered at AFEES is said to be truncated due to direct selection on the test administered at AFEES. these recruits are retested at reception centers, as is the case with the data used in our analysis, the distribution of retest scores is also distorted by the preselection at AFEES. The tests given at reception centers are highly correlated with the operational test administered at AFEES. Hence, removal of the shaded area in figure 4(a) by rejecting low-aptitude applicants results in a similar, but less sharply defined, removal of low-aptitude cases in the shaded areas of figures 4(b) and 4(c). These cases are said to be removed by incidental selection.

The unshaded areas in figures 4(b) and 4(c) represent the distributions used in our sample to normalize ASVAB 8A. If the incidental selection affects the distributions of scores on ASVAB 8A differently than those on the reference test, then our normalization of ASVAB 8A is biased. If, on the other hand, it does not affect them differently, then our results are not biased.

FIG. 3: ILLUSTRATION OF EQUIPERCENTILE EQUATING

ķ

FIG. 4: ILLUSTRATION OF DIRECT AND INCIDENTAL TEST SELECTION ON A SAMPLE OF RECRUITS

To examine this situation, we obtained a full-range data set based on tests administered at AFEES. The data set was made available by ARI and consisted of the scores of applicants on the same three tests that were administered to our recruit sample. (The details are given in appendix F.) First we normalized ASVAB 8A using the ARI full-range data set. Then we truncated this data set exactly as our data set was truncated and got a second normalization of ASVAB 8A from this "truncated" ARI data set. A comparison of the two sets of norms gave us a measure of the bias, if any, due to truncation at AFEES. Details of the comparison are given in appendix F. The estimated bias (in percentile points) is shown for each AFQT decile in table 2. The bias is seen to be small (less than 1 percentile point) and is probably on the order of the uncertainty inherent in the graphical equipercentile equating procedure. We concluded that any bias in our ASVAB 8 AFQT normalization from sample truncation due to preselection at AFEES was negligible.

TABLE 2
ESTIMATE OF BIAS IN AFQT NORM DUE
TO PRESELECTION AT AFEES

ASVAB 8 AFQT (percentile score)	Mean "bias" in indicated AFQT decile due to truncation of sample (percentiles)
0 - 9	0.3
10 - 19	- 0.3
20 - 29	- 0.3
30 - 39	- 0.4
40 - 49	- 0.3
50 - 59	0.0
60 - 69	0.0
70 - 79	- 0.5
80 - 89	0.2
90 - 99	0.0

CHAPTER 3

RESULTS

NORMALIZATION OF ASVAB 8A AFOT

Raw scores from ASVAB 8A AFQT were equated to percentile scores from the reference test by the equipercentile equating method (see appendix E). The results are shown in table 3.

NORMALIZATION OF ASVAB 8A SUBTESTS

To produce subtest standard scores we stratified the sample on the reference test AFQT 7A, as described in appendix G. The mean value and standard deviation of each ASVAB 8A subtest were obtained from this stratified sample. Subtest standard scores were obtained for each subtest raw score by the relation

ASVAB Standard Score = 50 + 10
$$\frac{(x_i - \overline{x})}{\sigma_x}$$

where X_i is the ith raw score of subtest X, \overline{X} is the mean raw score of subtest X, and X is the standard deviation of subtest X. Details are given in appendix H.

We note that the subtest standard scores given in appendix H are only approximately correct. The stratification procedure necessary to produce the subtest scores introduces a small, but unavoidable bias. This bias is discussed in reference 4 with respect to its effect on norms for AFQT percentile scores. It was estimated that the effect on AFQT scores from using a stratified technique on a truncated sample could be as large as 5 percentile points in the lower percentiles. For that reason, we (and reference 4) used an equipercentile equating technique rather than a stratification technique when norming the AFQT

¹Stratification means weighting the cases in the sample so that the distribution of $AF\Omega T$ 7A percentile scores contains an equal number of cases in each decile. In so doing, one standardizes the sample so that resulting statistics have a common basis for comparison with those from other analyses, that is, they are relatively independent of the sample used to collect the data.

TABLE 3

CONVERSION TABLE FOR ASVAB 8A AFQT SCORE

Raw score	Percentile score	Raw score	Percentile score
0-24	0	66	32
25		67	33
26	1 2 3	68	35
$\frac{1}{2}$	3	69	36
28	4	70	38
29	4	71	41
30	Š	72	43
31	5	73	45
32	4 4 5 5 6	74	47
33	6	75	49
34	7	76	50
35	8	77	52
36	9	78	5.4
37	9	79	56
38	10	80	58
39	10	81	60
40	11	82	61
41	11	83	63
42	12	84	65
43	12	85	67
44	13	86	69
45	13	87	70
46	14	88	72
47	14	89	74
48	15	90	76
49	15	91	77
50	16	92	79
51	16	93	80
52	17	94	82
53	18	95	83
54	19	96	85
55	20	97	86
56	21	98	88
57	22	99	90
58	23	100	91
59	24	101	92
60	2 5	102	93
61	26	103	95
62	27	104	97
63	28	105	99
64	30		1
65	31		•

percentile score. We expected the effect of a stratification bias on <u>subtest</u> standard scores to be much less than 5 percentile points.

NORMALIZATION OF ASVAB 8A COMPOSITES

ASVAB 8A composites were formed from sums of subtest standard scores as indicated in appendix A. The sums of standard scores were equated by the equipercentile method to AFQT 7A. To minimize bias due to stratification we performed the equating using unstratified data. The details are shown in appendix I, and the resulting conversion tables are given in appendix J.

STANDARD STATISTICS FOR ASVAB 8A

The data sample was stratified on AFQT 7A and standard statistics produced. Subtest means and correlations are shown in appendix K.

The stratification bias with respect to AFQT norms in truncated data sets was a function of two items: first the question of "true score" versus "observed score" for individuals retested after preselection had removed the lower percentiles, and second, the non-zero measurement error inherent in all tests. In the case of using stratified data to produce subtest standard scores, only the second of the two items was a factor; hence, the bias was considerably reduced.

REFERENCES

- Office of the Principal Deputy Assistant Secretary of Defense (Manpower, Reserve Affairs, and Logistics), "History of the Armed Services Vocational Aptitude Battery (ASVAB) 1974-1980," by the ASVAB Working Group, Unclassified, May 1980
- Gulliksen, Harold, "Theory of Mental Tests," John Wiley and Sons, New York, 1950
- 3. Robert L. Thorndike, "Educational Measurement," American Council on Education, Washington, D.C., Unclassified, 1971
- 4. Center for Naval Analyses, Study 1152, "A Reexamination of the Normalization of the Armed Services Vocational Aptitude Battery (ASVAB) Forms 6, 7, 6E, and 7E," by William H. Sims and Ann R. Truss, Unclassified, Apr 1980

APPENDIX A

DEFINITIONS OF ASVAB TESTS AND COMPOSITES

APPENDIX A

DEFINITIONS OF ASVAB TESTS AND COMPOSITES

The definitions of each of the tests¹ in the ASVAB are given in table A-1. Army and Marine Corps composites are defined in tables A-2, A-3, and A-4. Air Force composites are defined in table A-5. Because only subtest scores are reported for Navy recruits, no explicit composites are shown for this service.

¹ These tests are also referred to as subtests.

TABLE A-1

INDIVIDUAL ASVAB 8 TESTS

GS = General Science

AR = Arithmetic Reasoning

WK = Word Knowledge

PC = Paragraph Comprehension

NO = Numerical Operations

CS = Coding Speed

AS = Auto & Shop Information

MK = Mathematics Knowledge

MC = Mechanical Comprehension

EI = Electronics Information

VE^a= Verbal

 $\overline{a_{VE} = WK + PC}$.

TABLE A-2

ASVAB 8 COMPOSITES FOR ARMY AND/OR MARINE CORPS

AFQT = Armed Forces Qualification Test

GT = General Technical

GM = General Maintenance

EL = Electronics

CL = Clerical

MM = Mechanical Maintenance

SC = Surveillance & Communications

CO = Combat

FA = Field Artillery

OF = Operators & Food Handlers

ST = Skilled Technical

TABLE A-3
FORMULAS FOR COMPUTING ARMY ASVAB 8 COMPOSITES

AFQT^a = AR + NO/2 + VE

GT = AR + VE

GM = GS + AS + MS + EI

EL = GS + AR + MK + EI

CL = NO + CS + VE

MM = NO + AS + MC + EI

SC = NO + CS + AS + VE

CO = AR + CS + AS + MC

FA = AR + CS + MK + MC

OF = NO + AS + MC + VE

ST = GS + MK + MC + VE

^aAFQT is defined as a sum of subtest raw scores. All other composites are defined as sums of subtests in ASVAB standard score form.

TABLE A-4

FORMULAS FOR COMPUTING MARINE CORPS ASVAB 8 COMPOSITES

$$AFQT^{a} = AR + NO/2 + VE$$

GT = AR + VE

GM = GS + AS + MK + EI

EL = GS + AR + MK + EI

CL = NO + CS + VE

MM = AR + AS + MC + EI

CO = NO + AS + VE

FA = AR + AS + VE

TABLE A-5

FORMULAS FOR COMPUTING AIR FORCE ASVAB 8 COMPOSITES

$$AFQT^{a} = AR + NO/2 + VE$$

M = GS + 2AS + MC

A = NO + CS + VE

G = AR + VE

E = GS + AR + MK + EI

^aAFQT is defined as a sum of subtest raw scores. All other composites are defined as the sum of subtests in ASVAB standard score form.

^aAFQT is defined as a sum of subtest raw scores. All other composites are defined as the sum of subtests in ASVAB standard score form.

APPENDIX B

EXPERIMENTAL DESIGN

APPENDIX B

EXPERIMENTAL DESIGN

The test score data were collected during special test administrations at reception centers between 18 January and 9 February 1980. The number of recruits scheduled to be tested at each test site is shown in table B-1. Also shown in table B-1 is the testing order and the service research organization responsible for monitoring the testing.

The Army and Marine Corps tested more recruits than their normal fraction of accessions. They did so because these services generally access a large percentage of lower-aptitude recruits. This larger number of low-aptitude recruits is particularly important to us in accurately establishing norms in the lower percentiles because the proportion of recruits in these percentiles had been reduced by preselection at AFEES. However, to maintain overall service balance in the sample, the numbers of recruits were weighted before analysis to achieve the following percentage input by service: Air Force, 20.0 percent; Army, 43.3 percent; Marine Corps, 13.4 percent; and Navy, 23.3 percent.

To minimize any effects due to the order of administering ASVAB 8 and the reference test, all testing was counterbalanced within each service, as shown in table B-1.

To ensure standard test administration, the first test session at each reception center was monitored. The monitors were personnel from the service personnel research laboratories: Army Research Institute (ARI), Center for Naval Analyses (CNA), Naval Personnel Research and Development Center (NPRDC), and Air Force Human Resources Laboratory (AFHRL).

After the tests were administered, the answer sheets were returned to CNA for processing. All sheets were examined and identifying information was checked and corrected as necessary. The AFQT 7A answer sheets were optically scanned and scored by ARI. The ASVAB 8 answer sheets were optically scanned and answers recorded by the Marine Corps Institute. The recorded answers were then compared with the correct answers and scores computed by CNA.

A l percent random sample of ASVAB 8 answer sheets was scored by hand and no discrepancies with the machine scores were found. A 2 percent random sample of AFQT 7A answer sheets was scored by hand. In this sample, we found two minor errors and one major error. We considered the error rate small enough so that with reasonable care in rejecting spurious scores (discussed in appendix D), a reliable data set could be obtained.

TABLE B-1
RECEPTION CENTER TESTING QUOTA

		Number of to be	recruits tested		
<u>Service</u>	Reception center	Male_	Female_	Testing order ^a	Monitor
Army	Ft. Bliss Ft. Sill Ft. McClellan Ft. Knox Ft. Dix Ft. Jackson Ft. Leonard Wood	100 200 100 300 300 600 100 1,700	0 0 100 0 250 450 200 1,000	B A B B A B	ARI ARI ARI ARI CNA ARI
Marine Corps	MCRD ^b Parris Island MCRD San Diego	$ \begin{array}{r} 500 \\ 500 \\ \hline 1,000 \end{array} $	$\begin{array}{c} 100 \\ 0 \\ \hline 100 \end{array}$	A B	CNA NPRDC
Air Force	Lackland AFB	600	400	A and B^{C}	AFHRL
Navy	NRTC ^d Great Lakes NRTC San Diego NRTC Orlando	250 250 200 700	0 0 500 500	A B A and B ^C	NPRDC NPRDC NPRDC

aTest order A is test AFQT 7A first and test ASVAB 8 second. Test order B is test ASVAB 8 first and test AFQT 7A second. bMCRD = Marine Corps Recruit Depot.

CAt these reception centers, test order was mixed with half of the recruits tested with order A and half tested with order B. dNRTC = Navy Recruit Training Center.

APPENDIX C

REMOVAL OF NONSTANDARD TEST SESSIONS

APPENDIX C

REMOVAL OF NONSTANDARD TEST SESSIONS

In an attempt to identify maladministered test sessions, we examined mean test scores for each test site by date tested. Significant anomalies in mean scores might indicate that at some time during testing, one of the sites might have deviated from the proper testing procedure. By examining these anomalies, possible maladministered test sessions, which would bias our results, were identified and removed from our data sample. The method used is described in this appendix.

Mean scores of all subtests, AFQT 8, and AFQT 7A were calculated for each test site by date tested. Mean scores were then plotted for pairs of subtests with reasonably high correlation coefficients. A regression equation parameterizing these mean values was derived from our 44 data points. Each point represented a separate test administration. We expected 99 percent of all points to lie within 2.5 standard errors of the regression line. Points that fall outside 2.5 standard errors probably would represent sessions involving maladministration and were removed from our data sample.

Three nonstandard test sessions, circled in our scattergram of Arithmetic Reasoning (AR) and Coding Speed (CS) (figure C-1), were removed from the data set.

This procedure was followed for eight additional pairs of tests and is illustrated in figures C-2 through C-9. Regression equations, correlation coefficients, and standard errors of estimate (s.e.e.) are given in table C-1. Of the 44 test sessions, 9 were removed using this method.

FIG. C-1: SCATTERGRAM OF MEAN AR AND MEAN CS BY TEST SESSION

FIG. C-2: SCATTERGRAM OF MEAN AR AND MEAN MK BY TEST SESSION

FIG. C-3: SCATTERGRAM OF MEAN WK AND MEAN GS BY TEST SESSION

C-5

FIG. C-5: SCATTERGRAM OF MEAN AR AND MEAN NO BY TEST SESSION

FIG. C-6: SCATTERGRAM OF MEAN WK AND MEAN PC BY TEST SESSION

FIG. C-7: SCATTERGRAM OF MEAN GS AND MEAN EI BY TEST SESSION

FIG. C-8: SCATTERGRAM OF MEAN NO AND MEAN CS BY TEST SESSION

FIG. C-9: SCATTERGRAM OF MEAN AFQT 7A PERCENTILE AND MEAN AFQT 8 BY TEST SESSION

TABLE C-1
STATISTICS USED IN THE REMOVAL OF NONSTANDARD TEST SESSIONS

Regression equation ^a	Correlation coefficient	Standard error of estimate
MEAN CS = 1.51 (MEAN AR) + 17.74	0.58	5.53
MEAN MK = 0.77 (MEAN AR) - 1.26	0.96	0.60
MEAN GS = 0.61 (MEAN WK) + 0.40	0.98	0.39
MEAN AS = 0.85 (MEAN MC) + 3.75	0.87	0.89
MEAN NO = 0.75 (MEAN AR) + 24.14	0.67	2.17
MEAN PC = 0.45 (MEAN WK) - 1.06	0.94	0.44
MEAN EI = 0.84 (MEAN GS) - 1.06	0.96	0.48
MEAN CS = 1.27 (MEAN NO) - 3.80	0.55	5.69
MEAN ASVAB 8 AFQT = 0.64 (MEAN AFQT 7A PERCENTILE) + 42.27	0.91	3.26

 $[\]overline{a}$ The methodology is described in detail in appendix D.

APPENDIX D

REMOVAL OF SPURIOUS TEST SCORES OF INDIVIDUALS

APPENDIX D

REMOVAL OF SPURIOUS TEST SCORES OF INDIVIDUALS

To explore the possibility of spurious test scores of individuals we examined a scattergram of AFQT 7A raw scores versus ASVAB 8 AFQT raw scores. First, all cases from those test sites (and testing dates) where maladministration was suspected were removed from the sample (see appendix C). The scattergram of the remaining 3,084 cases is shown in figure D-1. An excess of events with high scores on ASVAB 8 AFQT and low scores on AFQT 7A was noted. We assumed that these scores were spurious and should be removed.

To remove the spurious cases we parameterized the relationship between the two variables by a linear regression and removed those cases that fell 2.5 standard errors away from the regression line.

In general, there are two regression equations that result from an attempt to parameterize the relationship between two variables--X and Y. These equations are:

$$X = A + BY \tag{D-1}$$

$$Y = C + DX. (D-2)$$

The results of regresson analysis applied to our data sample gave:

ASVAB 8 AFQT =
$$34.3 + 0.65$$
 AFQT 7A (D-3)

$$AFQT 7A = -1.3 + 0.82 ASVAB 8 AFQT.$$
 (D-4)

Because both of the variables in figure D-1 had large measurement errors, neither equation (D-3) nor (D-4) was a correct parameterization of the data. We assumed that the measurement errors in each variable were similar and that the "best" parameterization was the "average" of equations (D-3) and (D-4). Accordingly, we computed the ASVAB 8 AFQT intercepts from both equations (D-3) and (D-4). Averaging these intercepts gave a "best" intercept of 17.8. We then constructed a line through this intercept and through the point defined by the mean values of ASVAB 8 AFQT and AFQT 7A (71.6 and 57.5):

ASVAB 8 AFQT =
$$17.8 + 0.94$$
 AFQT 7A. (D-5)

Equation (D-5) was our preferred parameterization of the data. The procedure is illustrated in figure D-2.

FIG. D-1: SCATTERGRAM OF AFQT 7A RAW SCORES vs ASVAB 8 AFQT RAW SCORES

FIG. D-2: ILLUSTRATION OF VARIOUS PARAMETERIZATIONS OF THE DATA IN FIGURE D-1

To remove the bad data (in figure D-1) we used equation (D-5) and removed all cases that lay outside 2.5 standard errors from this line. For the standard error we used the value of 11.7 computed for equation (D-3). This procedure removed 84 cases (mostly from the upper left corner of figure D-1) leaving 3,001 cases for analysis.

APPENDIX E

EQUIPERCENTILE EQUATING

APPENDIX E

EQUIPERCENTILE EQUATING

Equipercentile equating was carried out for the full sample (3,550 male cases), the clean sample (3,001 male cases), and the clean sample with adjusted racial mix (2,546 cases). Cumulative frequencies of the ASVAB 8 AFQT raw score and the AFQT 7A percentile score were made and graphed for the three samples in figures E-1, E-2, and E-3. Scores on the two tests that were achieved by the same cumulative percentage of the sample were equated. In this manner, percentile scores were assigned to each ASVAB 8 AFQT raw score and were tabulated in table E-1.

The results in table E-1 are similar for all three samples. However, the results from the clean sample with adjusted minority percentages are preferred because this sample is less contaminated by spurious data and reflects the approximate racial \mbox{mix}^1 of the sample on which the reference test, AFQT 7A, was normed. Smoothed percentiles are our preferred conversions from ASVAB 8 raw scores to percentile scores.

¹The race-ethnic mix that we used for ASVAB 8 norming was 12 percent "black," 82 percent "white," and 6 percent "other." The race-ethnic mix used for the norming of AFQT 7A was unknown but believed to be representative of the mix of subgroups in the Armed Forces in 1959 when the test was normed. It is estimated that the mix at that time was 12 percent "black."

FIG. E-1: EQUIPERCENTILE EQUATING FOR TOTAL SAMPLE

FIG. E-2: EQUIPERCENTILE EQUATING FOR CLEAN SAMPLE

FIG. E-3: EQUIPERCENTILE EQUATING FOR CLEAN SAMPLE WITH ADJUSTED RACIAL MIX

TABLE E-1
SUMMARY OF EQUIPERCENTILE EQUATING RESULTS

		Percentile		
			Clean sample	Smoothed percentiles from
	Fu11	Clean	with adjusted	clean sample
ASVAB 8 AFQT	sample	sample	racial mix	with adjusted
(raw score)	(3,550 cases)	(3,001 cases)	(2,546 cases)	racial mix
0-24	0.0	0.0	0.0	0
25	0.0	1.0	1.0	
26	1.0	2.0	2.0	1 2
27	1.8	3.0	3.0	3
28	2.2	4.0	4.0	4
29	3.5	4.5	4.5	4
30	4.1	5.0	5.0	5
31	4.6	6.0	5.5	5
32	4.7	6.3	6.0	3 4 4 5 5 6
33	5.0	6.8	6.8	6
34 35	6.0	7.3	7.0	6 7 8 9
	6.4	7.5	8.0	8
36 3.7	7.8	8.2	8.7	9
37 38	8.5	9.2	9.0	9
	9.0	10.0	9.8	10
39 40	9.4	10.5	10.4	10
41	10.1	11.0	11.1	11
41	10.3	11.5	11.5	11
43	11.3	12.1	12.2	12
4 3 4 4	11.8	12.5	12.7	12
45	12.1	13.1	13.4	13
46	12.7	13.7	14.0	13
47	13.6	14.3	14.3	14
48	14.0	14.6	14.8	14
49	14.5	15.1	15.2	15
50	14.8	15.6	15.6	15
51	15.4	16.3	16.2	16
52	16.1	16.9	16.9	16
53	16.6	17.4	17.6	17
5 <i>4</i>	17.1	18.2	18.4	18
55 55	17.9	18.8	19.4	19
33	18.8	19.6	20.3	20

TABLE E-1 (Cont'd)

		Percentile		
ASVAB 8 AFQT (raw score)	Full sample (3,550 cases)	Clean sample	Clean sample with adjusted racial mix (2,546 cases)	Smoothed percentiles from clean sample with adjusted racial mix
56	19.8	20.6	21.5	21
57	21.0	21.7	22.6	22
5 <i>8</i>	22.1	22.7		22
			23.7	23
59	23.0	23.5	24.2	24
60	24.0	24.5	25.1	25
61	25.0	25.4	26.0	26
62	26.1	26.6	27.2	27
63	27.2	27.8	28.3	28
64	28.5	29.2	29.7	30
65	29.8	30.4	31.2	31
66	30.9	31.6	32.2	32
67	31.9	32.8	33.5	33
68	33.4	34.5	35.0	35
69	34.8	36.2	36.2	36
70	36.6	37.9	38.3	38
71	39.0	40.5	41.0	41
72	41.8	43.0	43.3	43
73	44.0	45.2	45.5	45
74	45.9	47.0	47.2	47
75	47.5	48.7	48.7	49
76	49.5	50.2		50
70 77	50.5	52.2	50.5	
	53.3		52.1	52
78 70		53.7	53.9	54
79	54.9	55.5	55.8	56
80	56.8	57.3	57.9	58
81	59.0	59.3	59.5	60
82	60.9	61.0	61.4	61
83	62.7	62.8	63.2	63
84	64.4	64.8	65.0	65
85	66.2	66.5	66.6	67
86	68.2	68.3	68.5	69
87	69.8	70.0	70.2	70
88	71.6	71.8	71.9	72
89	73.5	73.9	73.8	74
90	75.0	75.5	75.5	76

TABLE E-1 (Cont'd)

	Percentile			
ASVAB 8 AFQT (raw score)	Full sample (3,550 cases)	Clean sample (3,001 cases)	Clean sample with adjusted racial mix (2,546 cases)	Smoothed percentiles from clean sample with adjusted racial mix
91	76.9	77.4	77.2	77
92	78.7	78.8	78.8	79
93	80.3	80.4	80.2	80
94	81.8	82.0	82.1	82
95	83.4	83.5	83.3	83
96	84.9	85.0	85.0	85
97	85.2	86.4	86.4	86
98	87.9	87.8	88.0	88
99	89.1	89.3	89.7	90
100	90.4	91.0	91.0	91
101.	91.6	92.3	92.0	92
102	92.8	93.7	93.4	93
103	94.0	95.0	95.0	95
104	97.0	97.0	97.0	97
105	99.0	99.0	99.0	99

APPENDIX F

EFFECT OF SAMPLE TRUNCATION

APPENDIX F

EFFECT OF SAMPLE TRUNCATION

All individuals in our sample had been previously tested at Armed Forces Examining and Entrance Stations (AFEES) and selected in accordance with the enlistment standards of each service. Because applicants who scored in the lower percentiles on the AFEES tests were rejected for enlistment, our sample contains fewer low-aptitude individuals than would a sample of AFEES applicants. In this appendix, we examine whether normalization results from such a truncated sample are biased.

The effect of preselection of recruits at AFEES on distributions of test scores of recruits is illustrated in figure F-1. Figure F-1(a) shows the distribution of scores on the operational ASVAB 6/7 AFQT expected from applicants at AFEES. Those applicants in the shaded area of figure F-1(a) were rejected for enlistment because of low test scores. Those in the unshaded area were accepted for enlistment and became recruits such as those who made up our data sample. Hence, a distribution of scores of recruits on a test administered at AFEES is said to be truncated due to direct selection on the test administered at AFEES. When these recruits were retested at reception centers, as was the case with the data used in our analysis, the distributions of retest scores were also distorted by the preselection at AFEES. The distortion of retest score distributions is illustrated in figures F-1(b) and F-1(c). The tests given at reception centers were highly correlated with the operational tests administered at AFEES. Hence, the removal of the shaded area in figure F-1(a) by rejecting low-aptitude applicants results in a similar, but less sharply defined, removal of low-aptitude cases in the shaded areas of figures F-1(b) and F-1(c). These cases were said to be removed by incidental selection. The unshaded areas in figures F-1(b) and F-1(c) represent the distributions used in our recruit sample to normalize ASVAB 8. If the incidental selection affected the distributions of scores on ASVAB 8 differently from those on the reference test, then our normalization of ASVAB 8 would be biased. If, on the other hand, the incidental selection affected both ASVAB 8 and the reference test equally, then the resulting normalization of ASVAB 8 would be unbiased. appendix, we examine the question of whether the unshaded areas of figures F-1(b) and F-1(c) produce unbiased normalization results.

Analogous to the unshaded illustrative distributions of figure F-1, are the test score distributions from our clean 3,001-case sample of recruits (figures F-2(a), F-2(b), and F-2(c)). Figure F-2(a) shows very few cases below the 30th percentile because service enlistment criteria reject most applicants below that level. The effects of incidental selection on ASVAB 8 AFQT raw

FIG. F-1: ILLUSTRATION OF DIRECT AND INCIDENTAL TEST SELECTION ON SAMPLE OF RECRUITS

Note: Full-range distribution (dots plus cross-hatched area) was scaled to the truncated distribution in the upper percentiles. Figures F-2 (a), (b), and (c) are from the CNA sample. Figures F-2 (d), (e), and (f) are from the ARI sample.

FIG. F-2: COMPARISON OF TRUNCATED CNA SAMPLE WITH FULL-RANGE AND TRUNCATED ARI SAMPLE

scores and reference test percentile scores are shown in figures F-2(b) and F-2(c).

To examine the effect of sample truncation on norming results, we used a full-range data sample. This sample was obtained from the Army Research Institute (ARI) and consisted of scores on ASVAB 6/7, ASVAB 8, and the reference test administered to applicants at AFEES. Because applicants, not recruits, were the test subjects for the ARI data set, it was not biased by truncation effects. We examined the truncation effect by first normalizing ASVAB 8 AFQT using the full-range ARI data sample, then truncating the ARI data sample and doing a second normalization of ASVAB 8 AFQT using the truncated ARI sample. Differences in the two normalization results are due to truncation effects. truncation of the ARI sample is done in a way that closely simulates the actual truncation in our 3,001-case recruit sample. Note that we used the full-range ARI applicant sample only to determine if there was a truncation effect in our recruit sample. It was not used to construct a normalization.

.e truncation effect was simulated in the full-range ARI sample by weighting the observed distribution in operational ASVAB 6/7 AFQT scores from the ARI sample to match those from the CNA sample. (The calculation is shown in table F-1.) The indicated weight factors were then applied to each case in the ARI fullrange sample based on each individual's ASVAB 6/7 AFQT score. The resulting weighted distribution of ASVAB 6/7 AFQT scores from the ARI sample was almost identical to that of the CNA sample (see figures F-2(a) and F-2(d)). The unshaded areas of figures F-2(d), F-2(e), and F-2(f) are distributions from the ARI sample with truncation simulated by the weighting procedure. The shaded areas of figures F-2(d), F-2(e), and F-2(f) represent the difference between the full-range ARI sample and the same sample with simulated truncation. As such, the shaded areas represent applicants that would be rejected at AFEES as unqualified.

We used equipercentile equating, as shown in figures F-3 and F-4, to normalize ASVAB 8 AFQT in the ARI full-range and the ARI truncated sample. The results are tabulated in table F-2. The difference in the two normalizations is shown before and after smoothing. The differences are generally very small and in all cases less than I percentile point. Only near the 4th and 20th percentile do the differences exceed the 0.5 percentile point. In our opinion, these differences are comparable to the uncertainties in the equating procedure itself and in any event are of no practical significance.

 $^{^{1}\}text{A}$ 3-point moving average was used to smooth the difference.

TABLE F-1
CALCULATION OF WEIGHTS TO SIMULATE TRUNCATION

Operational AFEES data

ASVAB 6/7 AFQT (percentiles)	CNA truncated sample (2)	ARI full-range sample (3)	Weight factor ^a (4)
0- 9	0	151	0.000
10-19	41	233	0.176
20-29	106	161	0.658
30-39	477	322	1.481
40-49	658	401	1.641
50-59	623	286	2.178
60-69	489	269	1.818
70-79	254	127	2.000
80-89	168	117	1.436
90-99	185	119	1.555
Tota1	3,001	2,186	

aColumn 2 divided by column 3.

FIG. F-3: EQUIPERCENTILE EQUATING FOR ARI FULL-RANGE SAMPLE

F-7

TABLE F-2

COMPARISON OF EQUIPERCENTILE EQUATING RESULTS FROM ARI FULL-RANGE AND ARI TRUNCATED SAMPLE

			Commention for	tmungation
	D		Correction for	truncation
	Percentile	score	Full-range	
ASVAB 8 AFQT	Full-range	Т	minus	0
(raw score)	(2,186 cases)	Truncated	truncated	Smoothed
15	0.0	0.0		
16	0.0	0.0		
17 18	0.0	0.0	0.0	0 0
19	1.0 1.0	1.0 1.0	0.0 0.0	0.0 0.0
20	1.5	1.5	0.0	0.0
21	2.0	1.5	0.5	0.3
22 23	2.5 3.0	2.0	0.5	0.5
23	4.0	2.5 3.0	$\begin{smallmatrix}0.5\\1.0\end{smallmatrix}$	0.7 0.8
25	4.3	3.5	0.8	0.8
26	4.7	4.0	0.7	0.5
27	5.0	5.0	0.0	7.2
28 29	6.0 6.7	6.0 6.5	0.0 0.2	0.1
30	7.3	7.0	0.3	0.2 0.2
31	7.7	7.7	0.0	0.1
32	8.4	8.3	0.1	0.1
33 34	8.7 9.2	8.6 9.2	$ \begin{array}{c} 0.1 \\ 0.0 \end{array} $	0.1
35	9.5	9.7	-0.2	0.0 -0.1
36	10.1	10.4	-0.3	-0.1
37	10.6	10.5	0.1	-0.1
38 39	11.0 11.4	11.1	-0.1	-0.1
40	12.2	11.6 12.2	-0.2 0.0	-0.1 -0.1
41	12.6	12.8	-0.2	-0.2
42	13.3	13.6	-0.3	-0.3
43 44	13.7 14.2	14.1 14.5	-0.4	-0.3
45	14.2	14.5	-0.3 -0.3	-0.3 -0.3
46	15.2	15.4	-0.2	-0.2
47	15.7	15.9	-0.2	-0.2
48 49	16.3	16.5	-0.2	-0.2
50	16.7 17.2	16.9 17.4	-0.2 -0.2	-0.2 -0.3
51	17.7	18.2	-0.5	-0.4
52	18.4	19.0	-0.6	-0.6
53	19.2	19.8	-0.6	-0.6
54	20.0	20.6	-0.6	-0.7

TABLE F-2 (Cont'd)

			Correction for	truncation
	Percentile	score	Full-range	
ASVAB 8 AFQT	Full-range		minus	
(raw score)	(2,186 cases)	Truncated	truncated	Smoothed
55	20.9	21.8	-0.9	-0.7
56	22.0	22.7	-0.7	-0.6
57	23.3	23.6	-0.3	-0.4
58	24.5	24.7	-0.2	-0.2
59	25.6	25.8	-0.2	-0.2
60	26.6	26.8	-0.2 0.0	-0.1 0.0
61 62	27.7 28.6	27.7 28.5	0.1	0.0
63	29.5	29.6	-0.1	0.0
64	30.7	30.8	-0.1	-0.2
65	31.8	32.1	-0.3	-0.3
66	33.0	33.4	-0.4	-0.4
67	34.5	35.0	-0.5	-0.4
68	36.8	37.2	-0.4	-0.4
69	39.3	39.7	-0.4	-0.4
70	41.9	42.4	-0.5	-0.4
71 72	44.2	44.6	-0.4	-0.4 -0.3
72 73	46.3 47.8	46.5 48.0	-0.2 -0.2	-0.2
73 74	48.9	49.1	-0.2	-0.1
75	50.3	50.3	0.0	-0.1
76	51.5	51.5	0.0	-0.1
77	52.5	52.8	-0.3	-t.1
78	54.3	54.2	0.1	0.0
79	56.1	55.7	0.3	0.2
80	57.7	57.5	0.2	0.2
81	60.2	60.0	0.2	0.2
82	62.2 63.6	62.0 64.0	0.2 -0.4	0.0 -0.1
83 84	65.4	65.5	-0.1	-0.1
85	67.0	66.7	0.3	0.1
86	68.4	68.4	0.0	0.1
87	70.0	70.0	0.0	0.0
88	71.4	71.5	-0.1	-0.2
89	73.0	73.4	-0.4	-0.5
. 90	74.3	75.2	-0.9	-0.6
91	76.0	76.5	-0.5	-0.8
92 93	78.0 79.6	79.0 80.4	-1.0 -0.8	-0.8 -0.7
93 94	82.0	82.2	-0.2	-0.3
95	84.3	84.2	0.1	0.0
96	86.0	86.0	0.0	0.3
97	88.0	87.3	0.7	0.5
98	89.4	88.8	0.6	0.6
99	90.4	90.0	0.4	0.5
100	91.5	91.0	0.5	0.2
101	92.2	92.5	-0.3 -0.5	-0.1 -0.3
102	93.5 96.0	94.0 96.0	0.0	-0.2
103 104	98.0	98.0	0.0	0.0
105	99.0	99.0	0.0	0.0

In table F-3, we show mean values and correlation coefficients for the variables relevant to the truncation issue. The similarity of the means and correlations observed in the CNA sample and in the truncated ARI sample indicate that the truncation—by-weighting procedure of the ARI data closely approximates the actual truncation in the CNA data. The correlations observed in the full-range ARI sample between the directly selected ASVAB 6/7 AFQT and each of the two indirectly selected tests are seen in table F-3 to be identical (0.85). This result indicates that distributions of both indirectly selected tests would have been distorted in a similar manner by preselection at AFEES and that we should not expect that a normalization based on retesting recruits should be biased.

We conclude that any bias in the ASVAB 8 AFQT normalization because of using a sample of recruits instead of applicants is negligible.

TABLE F-3

COMPARATIVE STATISTICS FOR TRUNCATED CNA SAMPLE AND ARI SAMPLE BEFORE AND AFTER SIMULATED TRUNCATION

Item	CNA sample (3,001 cases)	ARI sample Truncated	ARI sample (2,186 cases)
Mean values of:			init inige
Directly selected ^a ASVAB 6/7 AFQT (percentile score)	55.2	55.2	46.2
Indirectly selected ASVAB 8 AFQT (raw score)	71.6	69.4	62.9
<pre>Indirectly selected reference test (percentile score)</pre>	45.8	44.2	37.3
Correlation coefficients between:			
Directly selected ^a ASVAB 6/7 AFQT and indirectly selected ASVAB 8 AFQT	0.78	0.79	0.85
Directly selected $^{ m a}$ ASVAB 6/7 AFQT and indirectly selected reference test	0.80	0.81	0.85
Indirectly selected ASVAB 8 AFQT and indirectly selected reference test	0.79	0.77	0.83

^aThis test was an operational test at AFEES; hence, distributions in ASVAB 6/7 scores made by successful applicants (i.e., recruits) do not contain those of low-aptitude applicants. These distributions may be said to be directly selected or truncated.

APPENDIX G
STRATIFICATION OF SAMPLE

APPENDIX G

STRATIFICATION OF SAMPLE

To build conversion tables for composites and subtests, we stratified our sample on the reference test AFQT 7A. By applying the weight factors calculated in table G-1, we were able to simulate the traditional reference population.

TABLE G-1
CALCULATION OF WEIGHT FACTORS FOR BUILDING COMPOSITES AND SUBTESTS

AFQT 7A percentile interval (1)	Number observed in sample (2)	Number expected in mobilization population (3)	Weight factor ^a
0 - 9	96	300.1	3.126
10-19	497	300.1	0.604
20-29	430	300.1	0.698
30-39	418	300.1	0.718
40-49	300	300.1	1.000
50-59	354	300.1	0.848
60-69	293	300.1	1.024
70-79	256	300.1	1.172
80-89	267	300.1	1.124
90-99	90	300.1	3.334
Total	3,001		

 $[\]overline{a}$ Column 3 divided by column 2.

APPENDIX H

CONVERSION TABLES FOR SUBTESTS

APPENDIX H

CONVERSION TABLES FOR SUBTESTS

To build conversion tables for ASVAB 8 subtests, we stratified the sample on the reference test AFQT 7A, as described in appendix G. The mean value and standard deviation of each subtest were obtained. Standard scores were calculated for each subtest raw score using the equation

ASVAB Standard Score
$$(X_i) = 50 + 10 \frac{(X_i - \overline{X})}{\sigma_X}$$
,

where

 $X_i = is the i^{th} raw score of subtest X,$

 \overline{X} = is the mean raw score of subtest X,

 $\sigma_{\mathbf{x}}$ = is the standard deviation of subtest X.

The resultant conversion tables are listed in table H-1.

TABLE H-1
ASVAB 8 SUBTEST CONVERSION TABLES (expressed in ASVAB Standard Score)

Raw score	Paragraph Comprehension (PC)	Mathematics Knowledge (MK)	Mechanical Comprehension (MC)	Electronics Information (EI)	Raw score
25	-	71	67	_	25
24		70	65		24
23		68	63		23
22		66	61		22
21		64	59		21
20	-	63	58	67	20
19		61	56	65	19
18		60	54	62	18
17		58	52	60	17
16		56	50	58	16
15	63	54	48	55	15
14	60	52	47	53	14
13	57	51	44	51	13
12	54	49	43	48	12
11	51	47	41	46	11
10	48	46	39	44	10
9	45	44	37	41	9
8	42	42	35	39	8
7	39	41	33	36	7
6	36	39	31	34	6
5	33	37	29	32	5
4	30	35	28	29	
5 4 3 2 1	27	34	26	27	2 2 1
2	25	32	24	25	2
1	22	30	22	22	i
0	19	29	20	20	ō

TABLE H-1 (Cont'd)

Raw score 35 34 33 32 31	General Science (GS)	Arithmetic Reasoning (AR)	Word Knowledge (WK) 63 61 60 58 57	Auto & Shop Information (AS)	Raw score 35 34 33 32 31
30 29 28 27 26	-	67 65 64 63 61	56 54 53 51 50	-	30 29 28 27 26
25 24 23 22 21	68 66 64 62 59	60 58 57 56 54	48 47 46 44 43	65 63 61 59 58	25 24 23 22 21
20 19 18 17 16	57 55 53 51 49	53 51 50 49 47	41 40 39 37 36	56 54 52 50 48	20 19 18 17 16
15 14 13 12 11	47 45 43 40 38	46 44 43 42 40	34 33 31 30 29	46 44 42 40 38	15 14 13 12
10 9 8 7 6	36 34 32 30 28	39 37 36 35 33	27 26 24 23 22	37 35 33 31 29	10 9 8 7 6
5 4 3 2 1 0	26 24 21 19 17	32 31 29 28 26 25	20 19 17 16 14	27 25 23 21 19	5 4 3 2 1 0

TABLE H-1 (Cont'd)

Raw score	Numerical Operations (NO)	Coding Speed (CS)	Verbal (VE)	Raw score
84 83 82 81	•	75 75 74 74	-	84 83 82 81
80 79 78 77 76	-	73 72 72 71 70	-	80 79 78 77 76
75 74 73 72 71	-	70 69 68 68 67	-	75 74 73 72 71
70 69 68 67 66	-	66 66 65 65 64	-	70 69 68 67 66
65 64 63 62 61	-	63 63 62 61 61	-	65 64 63 62 61
60 59 58 57 56	-	60 59 59 58 57	-	60 59 58 57 56
55 54 53 52 51	-	57 56 56 55 54	-	55 54 53 52 51
50 49 48 47 46	63 62 61 60 59	54 53 52 52 51	63 62 61 60 59	50 49 48 47 46
45 44 43 42 41	58 57 56 55 54	50 50 49 48 48	58 57 56 55 54	45 44 43 42 41

TABLE H-1 (Cont'd)

Raw score	Numerical Operations (NO)	Coding Speed (CS)	Verbal (VE)	Raw score
40	53	47	53	40
39	52	47	52	39
38	51	46	51	38
37	50	45	50	37
36	49	45	49	36
35	48	44	48	35
34	47	43	47	34
33	46	43	46	33
32	45	42	45	32
31	44	41	44	31
30	43	41	43	30
29	42	40	42	29
28	41	39	41	28
27	40	39	40	27
26	39	38	39	26
25	38	38	38	25
24	37	37	37	24
23	36	36	36	23
22	35	36	35	22
21	34	35	34	21
20	33	34	33	20
19	32	34	32	19
18	31	33	31	18
17	30	32	30	17
16	29	31	29	16
15	28	31	28	15
14	27	30	27	14
13	26	30	26	13
12	25	29	25	12
11	24	29	24	11
10	23	28	23	10
9	22	27	22	9
8	21	27	21	8
7	20	26	20	7
6	19	25	19	6
5 4 3 2 1 0	18 17 16 15 14	25 24 23 23 22 21	18 17 16 15 14 13	5 4 3 2 1 0

APPENDIX I

EQUIPERCENTILE EQUATING FOR COMPOSITES

APPENDIX I

EQUIPERCENTILE EQUATING FOR COMPOSITES

The equipercentile equating method was used to equate composite scores to percentile scores or to standard scores on the reference test AFQT 7A. The equating methodology is described in reference I-1. Composites were built from sums of ASVAB 8 subtests in ASVAB Standard Score form. For a definition of composites, see appendix A.

For the Army and Marine Corps composites, which must be expressed in Army Standard Score form, the percentile scores made by each recruit on the reference test AFQT 7A were first converted to equivalent Army Standard Scores² using traditional relations (tabulated in table I-1). The sums of ASVAB 8 subtests in ASVAB Standard Score form were then directly equated³ to the AFQT 7A scores expressed in Army Standard Score form. For the Air Force Composites, which were expressed in percentiles, the sums of ASVAB 8 subtests in ASVAB Standard Score form were directly equated to AFQT 7A scores expressed in percentiles.

Composite conversion tables are tabulated in appendix J.

¹ ASVAB Standard Scores have mean values of 50 and a standard deviation of 10.

²Army Standard Scores have mean values of 100 and a standard deviation of 20.

minimize bias from sample stratification we performed the relating using unstratified data.

TABLE I-1

TRADITIONAL CONVERSION TABLE: AFQT 1 OR AFQT 2
PERCENTILE SCORES TO ARMY STANDARD SCORES

Percentile	Standard score	Percentile	Standard score
100	164	28	86
100	157	27	8.5
100	151	26	84
100	146	24	83
99	142	23	82
98 97	139 137	22	81
97 96	137	21 20	80 79
95	131	19	7 9 7 8
93	130	18	77
92	128	17	76
90	126	16	75
.89	125	15	73
87	123	14	71
85	122	13	70
84	121	12	69
82	120	12	68
80	118	11	66
78 76	117	10	65
76	116	9	64
74	115	9	63
73	114	8	62
71	113	8 7 7	61
69 67	112 111	6	60
			59
65	110	5 5 4 4 3	. 57
63	109	5	56
61	107	4	\$5
59 57	106 105	4	53
			52
5.5	104	3 2 2 2 2	50
53	103	2	48
51	101 100	2	47
49 47	99	2	45 43
45	98	2 2 1 1	42
43	97	2	42
41 39	96 95	1	41
39 37	94	1	41
			40
36	93	1	39
34	92	1	39
32 31	91 90	1	39 30
30	88	1 1	39 39
30	00	1	33

REFERENCE

I-l Robert L. Thorndike, "Educational Measurement," American Council on Education, Washington, D.C., Unclassified, 1971 APPENDIX J
CONVERSION TABLES FOR COMPOSITES

APPENDIX J

CONVERSION TABLES FOR COMPOSITES

The conversion tables for ASVAB 8 composites were built using the equipercentile equating method. $^{\rm l}$ The Army and Marine Corps conversion tables are in Army Standard Scores (table J-1). The Air Force conversion tables are in percentile scores (table J-2). See appendix A for definitions of composites.

For Navy recruits, only subtest scores in ASVAB Standard Score form are reported by AFEES. Classification composites built from these subtest scores are constructed by Navy testing and classification personnel and are not a subject of this report.

¹The sample was not stratified before equating.

TABLE J-1

CONVERSION TABLE FOR ARMY AND USMC COMPOSITES (Army Standard Scores)

Sum of subtest scores in ASVAB Standard Score form	<u>GT</u>	CL	Marine Corps CO	Marine Corps FA	Sum of subtest scores in ASVAB Standard Score form
201 200 199 198 197 196		140 140 139 138 137 136			201 200 199 198 197 196
195 194 193 192 191		134 133 132 131 131	140	140 140 140 139 137	195 194 193 192 191
190		130	140	134	190
189		130	140	132	189
188		129	139	131	188
187		128	138	130	187
186		128	136	129	186
185		127	134	128	185
184		127	132	127	184
183		126	130	126	183
182		125	129	125	182
181		124	128	124	181
180		123	127	123	180
179		122	126	122	179
178		122	125	121	178
177		121	124	121	177
176		120	123	120	176
175		120	122	119	175
174		119	121	118	174
173		118	120	117	173
172		117	119	116	172
171		116	118	115	171

TABLE J-1 (Cont'd)

Sum of subtest scores in ASVAB Standard Score			Marine Corps	Marine Corps	Sum of subtest scores in ASVAB Standard Score
form	\underline{GT}	CL	CO	<u>FA</u>	form
4.50		115	117	115	170
170		113	116	114	169
169		113	115	113	168
168		113	114	112	167
167 166		112	113	112	166
			112	111	165
165		111	112 111	110	164
164		110	110	109	163
163		109 109	109	109	162
162		109	108	108	161
161		108	100	100	
160		107	107	107	160
160		106	106	106	159
159 158		105	105	105	158
156		104	104	105	157
156		103	103	104	156
130		100	•		
155		102	102	103	155
154		101	101	102	154
153		101	100	101	153
152		100	100	101	152
151		100	99	100	151
1.50		99	98	99	150
150 149		98	97	99	149
149		97	96	98	148
147		96	95	97	147
146		95	94	96	146
140					
145		94	93	95	145
144		93	93	94	144
143		93	92	94	143
142		92	91	93	142
141		91	90	92	141

TABLE J-1 (Cont'd)

Sum of subtest scores in ASVAB Standard Score form	<u>GT</u>	<u>CL</u>	Marine Corps CO	Marine Corps FA	Sum of subtest scores in ASVAB Standard Score form
140		90	89	92	140
139		89	88	91	139
138		88	87	90	138
137		87	86	89	137
136		86	86	88	136
135 134 133 132 131		85 85 84 84 83	85 84 84 83 82	87 86 85 85	135 134 133 132 131
130	140	82	82	84	130
129	139	81	81	83	129
128	138	81	81	82	128
127	131	80	80	82	127
126	129	79	79	81	126
125	127	79	79	80	125
124	125	78	78	80	124
123	124	78	78	79	123
122	122	77	77	79	122
121	121	77	76	78	121
120	120	76	75	78	120
119	119	75	75	77	119
118	118	75	74	77	118
117	117	74	74	76	117
116	116	74	73	75	116
115	115	73	73	75	115
114	114	72	72	74	114
113	113	72	72	74	113
112	112	71	71	73	112
111	111	71	71	72	111

TABLE J-1 (Cont'd)

Sum of subtest scores in ASVAB Standard Score form	<u>GT</u>	<u>CL</u>	Marine Corps CO	Marine Corps FA	Sum of subtest scores in ASVAB Standard Score form
110	110	70	71	72	110
109	109	70	70	71	109
108	108	70	70	71	108
107	107	69	69	70	107
106	106	68	69	70	106
105	105	68	68	69	105
104	104	67	67	68	104
103	103	66	67	67	103
102	102	66	66	66	102
101	101	66	66	65	101
100	100	65	65	64	100
99	99	64	65	63	99
98	97	64	64	63	98
97	96	63	64	62	97
96	95	63	63	62	96
95	94	62	63	61	95
94	93	62	62	60	94
93	92	61	62	59	93
92	91	61	61	58	92
91	90	60	60	57	91
90	89	59	59	56	90
89	87	58	58	55	89
88	86	57	57	55	88
87	85	57	57	55	87
86	84	56	55	55	86
85	83	56	55	55	85
84	82	55	55	55	84
83	81	55	55	55	83
82	81	55	5 5	55	82
81	80	55	55	55	81

TABLE J-1 (Cont'd)

Sum of subtest scores in ASVAB Standard Score form	<u>GT</u>	CL	Marine Corps CO	Marine Corps FA	Sum of subtest scores in ASVAB Standard Score form
				~-	
80	79	55	55	55	80
79	78	55	5 5	5.5	79
78	77	55	55	55	78
77	76	55	55	55	77
76	7 5	55	55	55	76
75	74	55	55	55	75
74	73	55	55	55	74
73	72	55	55	55	73
72	71	55	55	55	72
71	70	55	55	55	71
71	70	33	33	33	/ 1
70	69	55	55	55	70
69	68	5.5	55	55	69
68	67	5.5	55	5.5	68
67	66	55	55	55	67
66	65	55	55	55	66
00	03	33		33	00
65	64	55	55	~ -	65
64	62	55	55		64
63	61	5.5	55		63
62	59	55	55		62
61	5 <i>7</i>	55	55		61
01	31	33	33		01
45-60	55			~ -	45-60

Sum of subtest scores in ASVAB Standard Score form	274 272 272 271	270 263 268 267 266	265 265 262 261	260 259 258 257 256	255 254 252 252 251
Marine Corps NM	;	140	140 140 140 140	138 137 136 135	132 131 130 130 120
TS	:	140 140 140	139 138 137 136	132 131 131 130 130	128 128 128 127
0F	;	:	;	140 140 140	140 140 139 138
Army FA	140 139 138	138 137 136 135	133 132 132 131 131	130 130 130 129 129	128 128 128 127
Army CO	140 140 140	140 140 140 140	139 139 138 138	137 136 135 134	133 132 131 131 130
SC	:	140	140 140 140 140	140 140 139 138	137 136 135 134
Army	:	:	140	140 140 140 140	139 138 136 134
BL	140 140	140 140 138 138	134 132 131 130	130 129 129 128 128	127 127 126 126 126
8	;	140 140 140 140	140 139 138 136	133 132 130 130	129 129 128 128
Sum of subtest scores in ASVAB Standard Score	274-280 273 272 271	270 269 268 267 266	265 264 263 262 261	260 259 258 257 256	255 255 252 251

Sum of subtest scores in ASVAB Standard Score form	250 249 248 247 246	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	240 239 238 237 236	235 234 233 232 231	230 229 228 227 226
Marine Corps No	128 128 127 127 126	125 125 124 123	122 122 121 121 120	120 119 119 118	117 116 116 115
ST	126 125 125 125 124	124 123 123 122 122	122 121 121 120 120	120 119 119 118	117 117 116 116
10	136 134 133 131 130	130 129 128 127	126 125 125 124 124	123 123 122 121 121	120 119 119 118
Army FA	126 126 125 125 124	124 123 123 123 123	122 122 121 121 121 120	120 119 119 118	117 117 116 116
Army	130 129 128 128	127 127 126 126 125	124 124 123 123	122 121 120 120 120	118 118 117 116
SC	132 131 131 130 130	129 128 128 127 127	126 126 125 124 124	123 123 122 122 121	120 119 119 118
A rmy NM	132 131 130 129 129	128 128 127 126 126	126 125 124 123	122 122 121 120 120	119 118 117 117
ם	125 125 124 124 123	123 122 122 122 121	121 121 120 120 120	119 118 118 117	117 116 116 115
B	127 127 126 126 125	125 124 124 123	122 122 122 121 121	120 120 119 119 118	118 117 116 116
Sum of subtest scores in ASVAB Standard Score form	250 248 247 247	244 2445 243 241	240 239 237 237 236	235 234 233 232 231	230 229 228 227 226

Sum of subtest scores in ASVAB Standard Score	225 224 223 222 221 221	220 219 218 218 217 216	215 214 213 212 211	210 209 208 207 206	205 204 203 201
Marine Corps MM	114 113 113 112	111 111 110 110 109	109 108 108 107	106 105 104 104	103 102 102 101
ST	115 114 114 113	112 112 111 111	109 109 108 108	106 106 105 105	103 103 102 102 101
OF	116 115 114 113	112 112 111 110	109 108 108 107	105 105 104 103	102 101 100 100 99
Army FA	115 114 113 113	112 112 112 111	110 110 109 109	108 107 107 106 106	105 104 103 103
Army	115 114 113 113	112 112 111 111 110	109 109 108 107	105 105 104 104	103 102 102 101 101
SS	116 116 115 114	112 112 111 111 111	109 108 108 107	105 104 104 103	101 101 100 100 99
Army MM	116 115 114 114	113 112 111 111 110	110 109 108 107	106 105 105 104	102 102 101 101 100
EL	114 114 113	112 112 112 111	110 109 109 108	107 107 106 106	104 104 103 103
GN	115 114 113 113	112 112 111 111 110	109 109 108 108	106 106 105 105	104 103 102 102 101
Sum of subtest scores in ASVAB Standard Score form	225 223 223 221	220 219 218 217 216	215 214 213 212 211	210 209 208 207 206	205 204 203 201 201

Sum of subtest scores in ASVAB Standard Score form	200 199 198 197 196	195 194 193 192	190 188 188 186	1885 1883 181 181	180 179 177 176
Marine Corps NM	100 100 99 99	99 97 95 95	99 99 99 99 99 99 99 99 99 99 99 99 99	92 91 91 90 89	88888 7789 6
ST	101 100 100 99	98 97 96 96	95 94 94 93	93 92 91 90	88 88 97 7 88 88 88 88 88 88 88 88 88 88 88 88
OF	98 97 96 96	95 94 93 93	92 92 91 90 90	88 88 89 7 88 7 4 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4	88 88 88 88 88 88 88 88 88 88 88 88 88
Army FA	102 101 101 100 100	99 99 7 96	9999999999999999	93 92 91	889 87 86 66
Army CO	100 100 99 99	97 96 95 95	94 92 92 92	90 90 88 87 87	8888 666 555 855
)S	997 997 96 95	999999999999	00 00 00 00 00 00 00 00 00 00 00 00 00 00	88888 8866 866 866	00 00 00 00 17 4 4 12 12
Army	999 998 7097	96 995 94	93 92 91	0 6 8 8 8 0 0 8 8 8	88 88 88 88 7 8 8 8 8 8
EL	102 101 101 100 100	100 99 99 98 97	97 96 95 95	94 93 92 91	900
W	101 100 100 99 99	98 97 96 96 95	99 99 93	92 91 90 90 89	88 88 88 88 7 7 80 80 80 80 80 80 80 80 80 80 80 80 80
Sum of subtest scores in ASVAB Standard Score form	200 199 198 197 196	195 194 193 192	190 189 188 187 186	185 184 183 182 181	180 179 178 177 176

AD-A104 020

CENTER FOR NAVAL ANALYSES ALEXANDRIA VA MARINE CORP-ETC F/6 5/9
MORNALIZATION OF THE ARMED SERVICES VOCATIONAL APTITUDE BATTERY—ETC(U)
DEC 80 W H SIMS, A R TRUSS

UNCLASSIFIED

CRC-438

CRC-438

LEND
ANALYSES ALEXANDRIA VA MARINE CORP-ETC F/6 5/9
MORNALIZATION OF THE ARMED SERVICES VOCATIONAL APTITUDE BATTERY—ETC(U)
N00014-76-C-0001
NL

END
ANALYSES ALEXANDRIA VA MARINE CORP-ETC F/6 5/9
MORNALIZATION OF THE ARMED SERVICES VOCATIONAL APTITUDE BATTERY—ETC(U)
N00014-76-C-0001
NO CRC-438

LEND
ANALYSES ALEXANDRIA VA MARINE CORP-ETC F/6 5/9
MORNALIZATION OF THE ARMED SERVICES VOCATIONAL APTITUDE BATTERY—ETC(U)
N00014-76-C-0001
NO CRC-438

NL

END
ANALYSES ALEXANDRIA VA MARINE CORP-ETC F/6 5/9
MORNALIZATION OF THE ARMED SERVICES VOCATIONAL APTITUDE BATTERY—ETC(U)
NO CRC-438

NL

END
ANALYSES ALEXANDRIA VA MARINE CORP-ETC F/6 5/9
MORNALIZATION OF THE ARMED SERVICES VOCATIONAL APTITUDE BATTERY—ETC(U)
NO CRC-438

NL

END
ANALYSES ALEXANDRIA VA MARINE CORP-ETC F/6 5/9
NL

END
ANALYSES ALEXANDRIA VA MARINE CORP-ETC F/6 5/9
NL

END
ANALYSES ALEXANDRIA VA MARINE CORP-ETC F/6 5/9
NL

END
ANALYSES ALEXANDRIA VA MARINE CORP-ETC F/6 5/9
NL

END
ANALYSES ALEXANDRIA VA MARINE CORP-ETC F/6 5/9
NL

END
ANALYSES ALEXANDRIA VA MARINE CORP-ETC F/6 5/9
NL

END
ANALYSES ALEXANDRIA VA MARINE CORP-ETC F/6 5/9
NL

END
ANALYSES ALEXANDRIA VA MARINE CORP-ETC F/6 5/9
NL

END
ANALYSES ALEXANDRIA VA MARINE CORP-ETC F/6 5/9
NL

END
ANALYSES ALEXANDRIA VA MARINE CORP-ETC F/6 5/9
NL

END
ANALYSES ALEXANDRIA VA MARINE CORP-ETC F/6 5/9
NL

END
ANALYSES ALEXANDRIA VA MARINE CORP-ETC F/6 5/9
NL

END
ANALYSES ALEXANDRIA VA MARINE CORP-ETC F/6 5/9
NL

END
ANALYSES ALEXANDRIA VA MARINE CORP-ETC F/6 5/9
NL

END
ANALYSES ALEXANDRIA VA MARINE CORP-ETC F/6 5/9
NL

END
ANALYSES ALEXANDRIA VA MARINE CORP-ETC F/6 5/9
NL

END
ANALYSES ALEXANDRIA VA MARINE CORP-ETC F/6 5/9
NL

END
ANALYSES ALEXANDRIA VA MARINE CORP-ETC F/6 5/9
NL

END
ANALYSES ALEXANDRIA VA MARINE CORP-ETC F/6 5/9
NL

END
ANALYSES ALEXANDRIA VA MARINE CORP-ETC F/6 5/9
NL

END
ANALYSE

Sum of subtest scores in ASVAB Standard Score form	175 174 173 172	170 169 168 167 166	165 164 163 162 161	160 169 158 157 156	155 154 153 152 151
Marine Corps	% % % % % % % % % % % % % % % % % % %	88 88 88 88 88 88 88 88 88 88 88 88 88	81 81 80 80 79	0.000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ST	00 00 00 00 0 4 4 10 10	82 82 81 81 80	79 79 78 78	77 77 77 76	244 244 244 244 244 244 244 244 244 244
OF	8833 815 815	81 80 80 79 79	78 78 77	76 75 75 74	74 73 72 72
Army FA	88 88 88 88 88 88 88 88 88 88 88 88 88	82 82 81 80 80	79 78 77 77	76 76 74 73	73 72 71 71
Army CO	000000 44660	82 81 80 79	78 78 77 77	76 75 74 74	73 72 72 71
SC	88 8 8 1 8 1 8 8 1 8 8 1 8 8 1 8 8 1	7 7 7 9 9 8 8 8 9 9	77 77 76 75 75	2447 445 8	72 72 71 71 71 71 71 71 71 71 71 71 71 71 71
Army	\$ \$6 \$6 \$6 \$ 2 3 3 3 4	81 81 80 79	7 7 8 8 8 7 7 7 4 8 8 7 7 4 8 8 9 7 7 8 9 7 7 9 9 9 9 9 9 9 9 9 9 9	77 76 75 47	42 22 22 22
13	00 00 00 00 7 0 20 20 4	80 80 80 80 44 52 52 53 11	81 80 79 79 78	77 77 76 76	44 44 73 73
æ	യയയയയ സ.സ. 44 44 12		880 79 79 8	74 77 76 76 5	24 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Sum of subtest scores in ASVAB Standard Score form	175 173 172 171	270 169 168 167	165 163 162 161	160 159 158 157 156	155 154 152 151

Sum of subtest scores in ASVAB Standard Score form	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	24 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	140 139 137 136	1334 1334 1332 1332	130 129 128 127 126
Marine Corps NM	73 72 72 71	711 711 70 69	86 66 87 86 87 85 87	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	61 59 58 57
TS	72 71 71 70	70 69 68 68 67	66 65 65 65	64 63 60 60	55.7 5.8 5.7 5.6 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
OF	72 71 71 70	7 6 6 8 8 8 8	67 66 66 65 65	44 48 88 88 88	662 601 601 601
Army FA	70 69 68 67 67	65 S S S S S S S S S S S S S S S S S S S	63 63 62 62 61	59 58 57 57	8 8 8 8 8 8 8 8 8 8
Army CO	71 71 70 70 69	68 67 66 66	00000000000000000000000000000000000000	63 62 62 61 61	60 60 59 57
sc	71 70 70 69 69	68 68 67 67	67 66 66 66.	64 64 63 83	62 62 61 61
Army	71 71 70 70	69 69 67 67	66 65 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	64 63 63 63	62 61 60 60
18	71 71 70 69 69	68 67 66 66 65	633 623 623 623	61 60 59 58 56	25 55 55 55 55 55 55 55 55 55 55 55 55 5
NO NO	72 72 71 71 70	70 70 69 68 67	66 65 65 84	63 62 61 61 60	59 58 56 56
Sum of subtest scores in ASVAB Standard Score form	150 149 147 146	145 144 143 142	140 139 138 137	135 134 132 131	130 129 128 127 126

Ŧ
(Cont
J-1
TABLE

Sum of subtest scores in ASYAB Standard Score form	125 124 123 122 121	120 119 83-118
Marine Corps	ស ស ស ស ស ស ស ស ស ស ស ស ស ស ស ស ស ស ស	\$ \$5 \$ \$
ST	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$\$ \$\$ \$\$
0F	50 58 57 57	\$ \$ \$ \$ \$ \$
Army FA	8 8 8 8 8 8 8 8 8 8	55 55 55
Army CO	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	\$ 22 \$ 5 \$ 5
SC	60 59 59 58 58	55 55 55
Army	59 56 56	8888
13	S S S S S	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
GA GA	8 8 8 8 8 8 8 8 8 8	\$ \$ \$ \$ \$ \$ \$ \$
Sum of subtest scores in ASVAB Standard Score form	125 124 123 122 121	120 119 83-118

TABLE J-2

CONVERSION TABLE FOR AIR FORCE COMPOSITES

Mechanical aptitude index	ude index	Administrative aptitude index	titude index	General aptitude index	e index	Electronic aptitude index	de index
Raw score	AI.	Raw score	<u>AI</u>	Raw score	AI	Raw score	NI.
255 & above	95	192 & above	95	127 & above	95	262 & above	95
248-254	90	183-191	06	125-126	06	253-261	96
241-247	85	179-182	85	122-124	85	244-252	85
234-240	80	173-178	80	118-121	80	233-243	80
230-233	75	171-172	75	116-117	75	229-232	75
223-229	70	167-170	70	112-115	70	220-228	70
219-222	65	163-166	65	110-111	65	215-219	65
212-218	09	159-162	09	106-109	09	208-214	09
209-211	55	157-158	55	104-105	55	205-207	55
204-208	20	154-156	20	101-103	50	199-204	20
197-203	45	149-153	45	98-100	45	192-198	45
194-196	40	147-148	40	76-96	40	161-681	40
189-193	35	144-146	35	94-95	35	184-188	35
181-188	30	138-143	30	90-93	30	177-183	30
170-180	25	132-137	25	85-89	25	169-176	25
161-169	20	126-131	20	80-84	20	163-168	50
147-160	15	115-125	15	74-79	15	153-162	15
130-146	01	100-114	10	66-73	10	141-152	70
119-129	ស	6 6-88	ιΩ	61-65	ស	132-140	2
118 & below	10	87 & below	0	60 & below	10	131 & below	01

APPENDIX K
SAMPLE STATISTICS

APPENDIX K

SAMPLE STATISTICS

From our sample stratified on AFQT 7A percentile scores in appendix G, we calculated mean values, standard deviations, and correlation coefficients of ASVAB subtests and composites. Statistics for the subtests are shown in tables K-1 and K-2. Correlation coefficients for the composites are shown in table K-3.

TABLE K-1
MEAN VALUES AND STANDARD DEVIATIONS OF ASVAB 8 SUBTESTS

<u>Variable</u> ^a	Mean value	Standard deviation
GS	16.54	4.73
AR	17.96	7.16
WK	26.09	7.05
PC	10.61	3.38
NO	37.10	10.00
CS	44.38	15.57
AS	17.04	5.23
MK	12.55	5.87
MC	15.95	5.33
ΕĪ	12.75	4.24
VE	36.69	9.89
AFQT 7A	50.43	28.23
AFQT 8	73.43	19.09

^aSee tables A-1 and A-2 for definitions.

TABLE K-2

CORRELATION COEFFICIENTS $^{\mathbf{a}}$ OF ASVAB SUBTESTS $^{\mathbf{b}}$

AFQ	7.7	š	æ	œ	7	9	Ö	7	3	7.	6	ŏ	
AFOT 7A	7.5	83	9/	7.2	48	47	7.1	72	78	7.5	79	•	86
VE	79	72	86	83	20	49	64	65	9	73	•	79	95
EI	74	64	72	65	36	38	7.2	28	11	•	73	7.5	11
욁	99	29	62	09	36	38	72	61	•	71	65	7.8	89
¥	64	80	19	61	55	49	47	1	61	28	65	72	7.8
AS	65	57	63	57	31	33	•	47	7.5	72	64	71	63
S	37	21	46	49	64	,	33	49	38	38	49	47	61
읽	40	25	46	20	٠	64	31	55	36	36	20	48	73
읾	89	69	77	•	20	49	27	. 19	09	65	83	72	85
¥	7.8	67	٠	7.7	46	46	63	61	62	72	86	9/	88
¥	89		67	69	25	51	57	80	49	64	7.2	83	83
છા	1	8 9	78	9	40	37	65	64	89	74	79	75	77
	SS S	AR	MK	PC	NO	cs	AS	MK	MC	EI	VE	AFQT 7A	

^aDecimal points omitted.

^bSee appendix A for definitions.

TABLE K-3
CORRELATION CORPTICIENTS® OF ASVAS CONPOSITES®

USAF	2	96	90	2	8	18	6	92	87	8	2	3	92	2	*	2	•	
age of	8	81	93	2	8	8	2	8	8	6	23	3	96	2	4	•	88	
A A	8	2	7	8	92	96	82	2	ž	3,6	3	69	11	3	,	:	*	
USAF	8	95	8	89	16	2	8	2	3	8	6	16	98	•	3	2	*	
USAC	*	83	92	"	16	88	93	87	95	83	88	2	•	95	"	96	85	
8 8	2	8	*	8	8	6	68	8	8	81	81	•	93	16	2	2	3	
N	81	92	8	8	96	83	95	80	8	35	•	87	86	66	\$	18 .	2	
ARM	23	8	96	92	89	2	8	16	35		92	81	68	8	92	2	2	
APM PP	68	91	81	2	91	76	76	88		92	. 33	98	98	93	2	8	81	
ARHY	8	8	93	5	98	89	95	ı	89	16	89	83	81	::	z	2	33	
ARM	88	8	£	82	ž	16		2	76	8	8	.	93	28	82	2	\$	
ARMT	. 99	83	81	\$	6	•	16	8	*	3	62	16	8	2	2	3	18	
H H	83	5	2	82	•	6	7	2	97	6	\$	93	16	7	78	63	2	
귕	=	2	Z		2	96	82	2	*	92	3	8	11	89	100	18	*	
描	8	8		2	8	18	6	8	8	96	26	2	92	20	*	2	700	
8	~	•	8	2	93	63	8	98	2	\$	8	2	83	88	2	8	8	
티	•	8	2	=	5	98	2	2	•	93	87	50	96	8	19	8	93	
	••	_	•	•		947 SC		er FA						AP H	A TA	SAF G	AP &	

*Decimal points emitted. bee appendix A for definitions.

DATE ILME