HW3

Yaqi Li

4/22/2019

```
library(ggplot2)
library(caret)
## Loading required package: lattice
library(tidyverse)
                                                         - tidyverse 1.2.1 —
## — Attaching packages -
## ✓ tibble 2.0.1
                        ✓ purrr
                                   0.3.0
## ✓ tidyr 0.8.3

✓ dplyr 0.8.0.1

## ✓ readr 1.3.1

✓ stringr 1.3.1

## ✓ tibble 2.0.1
                        ✔ forcats 0.3.0
## — Conflicts —
                                                   - tidyverse conflicts() -
## * dplyr::filter() masks stats::filter()
## ★ dplyr::lag() masks stats::lag()
## ★ purrr::lift() masks caret::lift()
```

1. NBA predictions revisited

```
nba = read.csv('nbaspread.csv')
attach(nba)
str(nba)

## 'data.frame': 553 obs. of 7 variables:
```

```
## 'data.frame':
                   553 obs. of 7 variables:
##
   $ favwin : int 1 1 1 0 0 1 1 1 0 1 ...
##
   $ favscr : int 72 82 87 69 77 91 95 90 79 103 ...
   $ undscr : int 61 74 57 70 79 65 88 67 80 68 ...
##
   $ spread : num 7 7 17 9 2.5 9 10 18 7.5 8 ...
##
   $ favhome: int
##
                  0 1 1 1 0 0 1 1 0 0 ...
##
   $ fregion: int 3 3 3 3 2 3 3 4 3 2 ...
   $ uregion: int 4 1 3 3 3 4 3 4 3 2 ...
##
```

We can fit the logistic regression model with several different variables and compare their AlCs to choose the best combination.

```
nbaLr1 = glm(favwin ~ favscr, family = binomial, data = nba)
AIC(nbaLr1)
```

```
## [1] 485.9228

nbaLr2 = glm(favwin ~ spread-1, family = binomial, data = nba)
AIC(nbaLr2)

## [1] 529.9716

nbaLr3 = glm(favwin ~ favhome , family = binomial, data = nba)
AIC(nbaLr3)

## [1] 599.7383

nbaLr4 = glm(favwin ~ fregion , family = binomial, data = nba)
AIC(nbaLr4)

## [1] 609.4997

nbaLrAll = glm(favwin ~ . - undscr , family = binomial, data = nba)
AIC(nbaLrAll)
```

```
## [1] 444.5751
```

The result shows favscore has the most predictive power as a single variable. The best logistic regression model is the one incorporates all the variables but undscr. Be noticed that the favwin is deducted directly from favhome - undscr so we cannot have both variables in the model simultaneously.

```
nbaLr = glm(favwin ~ favhome + favscr + spread + fregion , family = binomial, data
= nba)
AIC(nbaLr)
```

```
## [1] 445.2505
```

It is more accurate when we incorporate all those variables to predict the outcome.

```
nbaTrain <- createDataPartition(nba$favwin, p=0.6, list=FALSE)
nbatraining <- nba[nbaTrain, ]
nbatesting <- nba[-nbaTrain, ]
nbaLogistic = glm(favwin ~ favhome + favscr + spread + fregion , family = binomial
, data = nbatraining)
nbatesting$model_prob <- predict(nbaLogistic, nbatesting, type = "response")
nbatesting = nbatesting %>%
   mutate(model_pred = 1*(model_prob > .53) + 0)
nbatesting <- nbatesting %>% mutate(accurate = 1*(model_pred == favwin))
sum(nbatesting$accurate)/nrow(nbatesting)
```

```
## [1] 0.8235294
```

The accuracy of the logistic regression incorporating variables favhome, favscr, spread, fregion is 80%. ##2. Graduate school admissions

```
adm = read.csv('admissions.csv')
str(adm)
```

```
'data.frame':
                    400 obs. of
                                  4 variables:
##
    $ admit: int
                  0 1 1 1 0 1 1 0 1 0 ...
##
##
    $ gre : int
                  380 660 800 640 520 760 560 400 540 700 ...
                  3.61 3.67 4 3.19 2.93 3 2.98 3.08 3.39 3.92 ...
##
    $ qpa
           : num
##
                  3 3 1 4 4 2 1 2 3 2 ...
    $ rank : int
```

We have a dependant binary variable admit indicating admitted or not. gre and gpa are continuous predictors and rank is a categorical variable taking on values through 1 to 4. 4 means the lowest prestigious rank.

```
hist(adm$gre)
```

Histogram of adm\$gre


```
mean(adm$gre)
```

```
## [1] 587.7

sd(adm$gre)

## [1] 115.5165
```

Variable Gre has a mean of 587.7 with a standard deviation of 115.5.

hist(adm\$gpa)


```
2.5 3.0 3.5 4.0

adm$gpa

mean(adm$gpa)

## [1] 3.3899

sd(adm$gpa)

## [1] 0.3805668
```

Variable gpa has a mean of 3.39 with a standard deviation of 0.38. Both distribution of gre and gpa are right-skewed. Lets now take a look at the relationship between the two categorical values.

```
xtabs(~admit+rank,data = adm)
```

```
## rank
## admit 1 2 3 4
## 0 28 97 93 55
## 1 33 54 28 12
```

This shows us the number of observations in 8 possible scenarios. Now we can predict the admission with these variables. But first we need to transform rank into factor.

```
adm$rank = as.factor(adm$rank)
str(adm)
```

```
## 'data.frame': 400 obs. of 4 variables:
## $ admit: int 0 1 1 1 0 1 1 0 1 0 ...
## $ gre : int 380 660 800 640 520 760 560 400 540 700 ...
## $ gpa : num 3.61 3.67 4 3.19 2.93 3 2.98 3.08 3.39 3.92 ...
## $ rank : Factor w/ 4 levels "1", "2", "3", "4": 3 3 1 4 4 2 1 2 3 2 ...
```

Now we can fit a logistic regression model with glm.

```
admLR = glm(admit ~ gre + gpa + rank , family = binomial, data = adm)
summary(admLR)
```

```
##
## Call:
## glm(formula = admit ~ gre + gpa + rank, family = binomial, data = adm)
##
## Deviance Residuals:
##
       Min
                 1Q
                     Median
                                   3Q
                                           Max
## -1.6268 -0.8662 -0.6388
                               1.1490
                                        2.0790
##
## Coefficients:
##
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.989979 1.139951 -3.500 0.000465 ***
                           0.001094
## gre
                0.002264
                                      2.070 0.038465 *
## qpa
                0.804038
                           0.331819
                                      2.423 0.015388 *
               -0.675443
                           0.316490 -2.134 0.032829 *
## rank2
## rank3
               -1.340204
                           0.345306 -3.881 0.000104 ***
               -1.551464
                           0.417832 -3.713 0.000205 ***
## rank4
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 499.98
                             on 399
                                      degrees of freedom
## Residual deviance: 458.52 on 394
                                     degrees of freedom
## AIC: 470.52
##
## Number of Fisher Scoring iterations: 4
```

gre, gpa, and level 2,3, and 4 of rank are significant predictors. The coefficient of rank3 means if the student comes from a university ranked 3rd, the *negative* coefficient would decrease his/her probability of getting admitted.

We can also transform the rank into an ordered factor.

```
adm$rank = as.ordered(adm$rank)
admLR2 = glm(admit ~ gre + gpa + rank , family = binomial, data = adm)
summary(admLR2)
```

```
##
## Call:
## glm(formula = admit ~ gre + gpa + rank, family = binomial, data = adm)
##
## Deviance Residuals:
##
      Min
                 10
                     Median
                                   3Q
                                           Max
## -1.6268 -0.8662 -0.6388
                               1.1490
                                        2.0790
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -4.881757
                         1.113111 -4.386 1.16e-05 ***
               0.002264
                                     2.070
## gre
                          0.001094
                                             0.0385 *
                0.804038 0.331819 2.423
                                              0.0154 *
## gpa
## rank.L
              -1.189399 0.287159 -4.142 3.44e-05 ***
## rank.Q
                          0.251685 0.922
                                              0.3564
               0.232092
## rank.C
                0.099017
                           0.212052
                                     0.467
                                              0.6405
## ---
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## (Dispersion parameter for binomial family taken to be 1)
##
                                     degrees of freedom
##
      Null deviance: 499.98 on 399
## Residual deviance: 458.52 on 394
                                     degrees of freedom
## AIC: 470.52
##
## Number of Fisher Scoring iterations: 4
```

The AIC are the same for both models however the model treats rank as a combination of linear, quadratic, and cubic formulas and only the first order of rank has shown significant predictive ability in the logistic model.

Now we can calculate the 95% confidence interval for each variable.

```
confint(admLR, level = 0.95)
```

```
## Waiting for profiling to be done...
```

Now we can predict the different admission probability by changing rank while holding gre and gpa at their mean value.

```
predict(admLR, data.frame(gre = 587, gpa = 3.39 , rank = factor(1)), type = "respo
nse")
```

```
## 1
## 0.5162258
```

```
predict(admLR, data.frame(gre = 587, gpa = 3.39 , rank = factor(2)), type = "respo
nse")
```

```
## 1
## 0.3519413
```

```
predict(admLR, data.frame(gre = 587, gpa = 3.39 , rank = factor(3)), type = "respo
nse")
```

```
## 1
## 0.2183551
```

```
predict(admLR, data.frame(gre = 587, gpa = 3.39 , rank = factor(4)), type = "respo
nse")
```

```
## 1
## 0.184442
```

As expected, the probability of getting admitted decreases as the rank increases, which means less prestigious university background.

We can also calculate the probability directly from the definition of the logistic function.

```
logistic = function(x){
  res = exp(x)/(1+exp(x))
  return(res)
}
# Predict the probability of admission by assigning the sum of linear combination
into logistic function
logistic(sum(admLR$coefficients*c(1,587,3.39,0,0,0)))
```

```
## [1] 0.5162258

logistic(sum(admLR$coefficients*c(1,587,3.39,1,0,0)))

## [1] 0.3519413

logistic(sum(admLR$coefficients*c(1,587,3.39,0,1,0)))

## [1] 0.2183551

logistic(sum(admLR$coefficients*c(1,587,3.39,0,0,1)))

## [1] 0.184442
```

The result is consistent with the predict method provided by R.

Conduct Chi-square test to see the effect of coefficients.

Null deviance: 499.98 on 399 degrees of freedom Residual deviance: 458.52 on 394 degrees of freedom

```
1 - pchisq(499.98-458.52,df = 399-394)

## [1] 7.574756e-08
```

The p-vale is very low, so that we can reject the null hypothesis that there is no difference between the null model and fitted model, which means the model is effective.

Admission probability as gre and rank vary

create a table that shows how admission probabilities vary at each rank level across gre scores from 200 to 800 (increment gre by 10) while holding gpa at its mean.

```
table = data.frame( matrix(nrow = 61))

for (k in c(1,2,3,4)) {
  temp = c()
  for (i in seq(200, 800, by=10)) {
    temp = append(temp,predict(admLR, data.frame(gre = i , gpa = 3.39 , rank = facto
  r(k)), type = "response"))
  }
  table = cbind(table,temp)
}
table[1] = NULL
names(table ) = c(1,2,3,4)
row.names(table) = seq(200, 800, by=10)
table
```

```
##
                                               4
## 200 0.3075908 0.1843951 0.1041808 0.08604819
## 210 0.3124345 0.1878250 0.1063132 0.08784580
## 220 0.3173194 0.1913037 0.1084839 0.08967728
## 230 0.3222450 0.1948315 0.1106934 0.09154310
## 240 0.3272103 0.1984083 0.1129422 0.09344376
## 250 0.3322147 0.2020343 0.1152309 0.09537974
## 260 0.3372572 0.2057095 0.1175597 0.09735153
## 270 0.3423370 0.2094341 0.1199292 0.09935960
## 280 0.3474533 0.2132080 0.1223399 0.10140443
## 290 0.3526050 0.2170313 0.1247921 0.10348652
## 300 0.3577912 0.2209038 0.1272864 0.10560633
## 310 0.3630109 0.2248257 0.1298231 0.10776434
## 320 0.3682631 0.2287967 0.1324027 0.10996103
## 330 0.3735467 0.2328167 0.1350256 0.11219687
## 340 0.3788606 0.2368857 0.1376923 0.11447232
## 350 0.3842038 0.2410035 0.1404030 0.11678785
## 360 0.3895751 0.2451699 0.1431583 0.11914391
## 370 0.3949733 0.2493846 0.1459584 0.12154096
## 380 0.4003973 0.2536474 0.1488038 0.12397946
## 390 0.4058458 0.2579581 0.1516948 0.12645983
## 400 0.4113175 0.2623162 0.1546318 0.12898252
## 410 0.4168113 0.2667216 0.1576151 0.13154796
## 420 0.4223258 0.2711737 0.1606450 0.13415656
## 430 0.4278598 0.2756722 0.1637218 0.13680874
## 440 0.4334118 0.2802166 0.1668458 0.13950491
## 450 0.4389806 0.2848065 0.1700174 0.14224546
## 460 0.4445649 0.2894413 0.1732367 0.14503076
## 470 0.4501631 0.2941206 0.1765039 0.14786121
## 480 0.4557740 0.2988437 0.1798194 0.15073716
## 490 0.4613962 0.3036100 0.1831834 0.15365896
## 500 0.4670282 0.3084188 0.1865959 0.15662694
## 510 0.4726686 0.3132696 0.1900572 0.15964145
## 520 0.4783160 0.3181616 0.1935674 0.16270277
## 530 0.4839690 0.3230940 0.1971267 0.16581122
## 540 0.4896260 0.3280661 0.2007352 0.16896708
## 550 0.4952857 0.3330771 0.2043929 0.17217060
## 560 0.5009467 0.3381261 0.2080999 0.17542203
## 570 0.5066073 0.3432122 0.2118562 0.17872162
## 580 0.5122663 0.3483346 0.2156618 0.18206956
## 590 0.5179222 0.3534923 0.2195168 0.18546605
## 600 0.5235734 0.3586843 0.2234210 0.18891128
## 610 0.5292187 0.3639097 0.2273745 0.19240538
## 620 0.5348564 0.3691673 0.2313771 0.19594850
## 630 0.5404853 0.3744562 0.2354287 0.19954074
## 640 0.5461038 0.3797753 0.2395291 0.20318220
## 650 0.5517107 0.3851234 0.2436781 0.20687293
## 660 0.5573044 0.3904994 0.2478756 0.21061299
## 670 0.5628836 0.3959021 0.2521213 0.21440238
## 680 0.5684470 0.4013303 0.2564149 0.21824111
## 690 0.5739931 0.4067829 0.2607562 0.22212913
## 700 0.5795207 0.4122585 0.2651447 0.22606638
## 710 0.5850285 0.4177559 0.2695802 0.23005279
```

```
## 720 0.5905150 0.4232739 0.2740622 0.23408823

## 730 0.5959791 0.4288110 0.2785903 0.23817256

## 740 0.6014195 0.4343660 0.2831640 0.24230560

## 750 0.6068350 0.4399376 0.2877829 0.24648717

## 760 0.6122243 0.4455243 0.2924464 0.25071701

## 770 0.6175864 0.4511249 0.2971539 0.25499488

## 780 0.6229199 0.4567378 0.3019048 0.25932048

## 790 0.6282238 0.4623618 0.3066986 0.26369349

## 800 0.6334971 0.4679953 0.3115345 0.26811354
```

Credit Card Analysis

Consider a data set of 1000 bank customers. Banks must make decisions regarding whether to approve loans or not. If an applicant is a good credit risk then the cost of not approving a loan is the loss of potentially profitable business to the bank. If the applicant is a bad credit risk, then approving a loan exposes the bank to a significant default risk.

The German Credit Data contains data on 20 variables and the classification whether an ap-plicant is considered a Good or a Bad credit risk for 1000 loan applicants. Your task is to create a predictive model using this data to help make decisions about whether to approve loans to potential borrowers dependent upon the variables in the data set.

```
credit = read.csv("GermanCredit.csv")
##Delete the first index column and add a numeric colomun
credit = credit %>%
  mutate(X = NULL) %>%
  mutate(approval = if_else(Class == "Good",1,0))
```

```
trainIndex <- createDataPartition(credit$approval, p=0.6, list=FALSE)
creditTraining <- credit[trainIndex, ]
creditTesting <-credit[-trainIndex, ]
creditLogistic = glm(approval ~ . - Class , family = binomial, data = creditTraini
ng)
summary(creditLogistic)</pre>
```

```
##
## Call:
## glm(formula = approval ~ . - Class, family = binomial, data = creditTraining)
##
## Deviance Residuals:
                1Q Median
##
     Min
                                  3Q
                                         Max
## -2.5977 -0.6284 0.3184 0.7070
                                      2.2846
##
## Coefficients: (13 not defined because of singularities)
                                          Estimate Std. Error z value
##
## (Intercept)
                                          9.650e+00 1.969e+00 4.900
                                        -2.786e-02 1.209e-02 -2.305
## Duration
## Amount
                                         -1.761e-04 6.080e-05 -2.896
                                         -4.672e-01 1.200e-01 -3.895
## InstallmentRatePercentage
## ResidenceDuration
                                         2.437e-01 1.183e-01 2.061
## Age
                                          8.843e-03 1.235e-02
                                                                0.716
```

##	NumberExistingCredits	-3.434e-01	2.635e-01	-1.303
	NumberPeopleMaintenance	-7.045e-01	3.207e-01	-2.197
	Telephone	-5.623e-01	2.836e-01	-1.983
	ForeignWorker	-7.825e-01	8.864e-01	-0.883
	CheckingAccountStatus.lt.0	-1.489e+00	3.038e-01	-4.899
	CheckingAccountStatus.0.to.200	-9.669e-01	3.013e-01	-3.210
	CheckingAccountStatus.gt.200	2.839e-01	5.257e-01	0.540
	CheckingAccountStatus.none	NA	NA	NA
	CreditHistory.NoCredit.AllPaid	-1.783e+00	6.212e-01	-2.870
	CreditHistory.ThisBank.AllPaid	-1.824e+00	6.118e-01	-2.981
	CreditHistory.PaidDuly	-8.757e-01	3.437e-01	-2.548
	CreditHistory.Delay	-5.603e-01	4.370e-01	-1.282
	CreditHistory.Critical	NA	NA	NA
##	Purpose.NewCar	-8.020e-01	1.058e+00	-0.758
	Purpose.UsedCar	8.581e-01	1.132e+00	0.758
##	Purpose.Furniture.Equipment	-3.921e-01	1.072e+00	-0.366
##	Purpose.Radio.Television	-9.633e-02	1.060e+00	-0.091
##	Purpose.DomesticAppliance	-1.175e+00	1.517e+00	-0.774
##	Purpose.Repairs	-8.409e-01	1.223e+00	-0.688
##	Purpose.Education	-6.912e-01	1.139e+00	-0.607
##	Purpose.Vacation	NA	NA	NA
##	Purpose.Retraining	1.267e+01	7.368e+02	0.017
##	Purpose.Business	-1.786e-01	1.089e+00	-0.164
##	Purpose.Other	NA	NA	NA
##	SavingsAccountBonds.lt.100	-1.315e+00	3.564e-01	-3.689
##	SavingsAccountBonds.100.to.500	-1.055e+00	4.784e-01	-2.205
##	SavingsAccountBonds.500.to.1000	-3.582e-02	6.641e-01	-0.054
##	SavingsAccountBonds.gt.1000	-6.104e-01	6.686e-01	-0.913
##	SavingsAccountBonds.Unknown	NA	NA	NA
##	EmploymentDuration.lt.1	-4.201e-01	5.558e-01	-0.756
##	EmploymentDuration.1.to.4	-1.886e-01	5.282e-01	-0.357
##	EmploymentDuration.4.to.7	5.275e-01	5.768e-01	0.915
##	EmploymentDuration.gt.7	-1.797e-01	5.250e-01	-0.342
##	EmploymentDuration.Unemployed	NA	NA	NA
##	Personal.Male.Divorced.Seperated	-7.520e-01	6.974e-01	-1.078
##	Personal.Female.NotSingle	-3.508e-01	4.433e-01	-0.791
	Personal.Male.Single	4.632e-01	4.454e-01	1.040
	Personal.Male.Married.Widowed	NA	NA	NA
	Personal.Female.Single	NA	NA	NA
	OtherDebtorsGuarantors.None	-2.225e+00	7.936e-01	-2.804
	OtherDebtorsGuarantors.CoApplicant	-2.066e+00	9.607e-01	-2.151
	OtherDebtorsGuarantors.Guarantor	NA	NA	NA
	Property.RealEstate	1.452e+00	5.746e-01	2.527
	Property.Insurance	1.112e+00	5.619e-01	1.980
	Property.CarOther	1.059e+00	5.528e-01	1.915
	Property.Unknown	NA	NA	NA
	OtherInstallmentPlans.Bank	-1.002e+00	3.313e-01	-3.026
	OtherInstallmentPlans.Stores	-9.069e-01	4.863e-01	-1.865
	OtherInstallmentPlans.None	NA	NA	NA
	Housing.Rent		6.479e-01	-1.988
	Housing.Own	-6.333e-01	6.096e-01	-1.039
	Housing.ForFree	NA	NA	NA 0 216
	Job. UnemployedUnskilled	1.812e-01	8.381e-01	0.216
##	Job. Unskilled Resident	-1.818e-01	4.755e-01	-0.382

##	Job.SkilledEmployee	1.193e-0)1	3.847e-01	0.310
	Job.Management.SelfEmp.HighlyQualified	Ŋ	ΙA	NA	NA
##		Pr(> z)			
##	(Intercept)	9.59e-07	***	•	
##	Duration	0.021186	*		
##	Amount	0.003783	**		
##	InstallmentRatePercentage	9.82e-05	***	·	
##	ResidenceDuration	0.039328	*		
##	Age	0.474097			
##	NumberExistingCredits	0.192458			
##	NumberPeopleMaintenance	0.028029			
##	Telephone	0.047419	*		
##	ForeignWorker	0.377389			
##	CheckingAccountStatus.lt.0	9.61e-07		·	
	CheckingAccountStatus.0.to.200	0.001329	**		
	CheckingAccountStatus.gt.200	0.589088			
	CheckingAccountStatus.none	NA			
	CreditHistory.NoCredit.AllPaid	0.004108			
	CreditHistory.ThisBank.AllPaid	0.002872			
	CreditHistory.PaidDuly	0.010841	*		
	CreditHistory.Delay	0.199802			
	CreditHistory.Critical	NA			
	Purpose.NewCar	0.448360			
	Purpose.UsedCar	0.448611			
	Purpose.Furniture.Equipment	0.714461			
	Purpose.Radio.Television	0.927604			
	Purpose.DomesticAppliance	0.438715			
	Purpose Repairs	0.491751			
	Purpose Education	0.543913 NA			
	Purpose.Vacation Purpose.Retraining	0.986282			
	Purpose.Business	0.869683			
	Purpose.Other	NA			
	SavingsAccountBonds.lt.100	0.000225	***	•	
	SavingsAccountBonds.100.to.500	0.027469			
	SavingsAccountBonds.500.to.1000	0.956987			
	SavingsAccountBonds.gt.1000	0.361273			
	SavingsAccountBonds.Unknown	NA			
##		0.449738			
##		0.721018			
##	EmploymentDuration.4.to.7	0.360443			
##	EmploymentDuration.gt.7	0.732184			
##	EmploymentDuration.Unemployed	NA			
	Personal.Male.Divorced.Seperated	0.280901			
	Personal.Female.NotSingle	0.428789			
	Personal.Male.Single	0.298435			
##	Personal.Male.Married.Widowed	NA			
##	Personal.Female.Single	NA			
	OtherDebtorsGuarantors.None	0.005049	**		
##	OtherDebtorsGuarantors.CoApplicant	0.031505	*		
##	OtherDebtorsGuarantors.Guarantor	NA			
##	Property.RealEstate	0.011509	*		
##	Property.Insurance	0.047758	*		
##	Property.CarOther	0.055439	•		

```
## Property.Unknown
                                                   NA
 ## OtherInstallmentPlans.Bank
                                             0.002481 **
 ## OtherInstallmentPlans.Stores
                                             0.062164 .
 ## OtherInstallmentPlans.None
                                                   NA
 ## Housing.Rent
                                             0.046763 *
 ## Housing.Own
                                             0.298918
 ## Housing.ForFree
                                                   NA
 ## Job.UnemployedUnskilled
                                             0.828849
 ## Job.UnskilledResident
                                             0.702191
 ## Job.SkilledEmployee
                                             0.756468
 ## Job.Management.SelfEmp.HighlyQualified
                                                   NA
 ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
 ##
 ## (Dispersion parameter for binomial family taken to be 1)
 ##
 ##
        Null deviance: 747.65 on 599 degrees of freedom
 ## Residual deviance: 511.79 on 551 degrees of freedom
 ## AIC: 609.79
 ##
 ## Number of Fisher Scoring iterations: 14
 creditTesting$model prob <- predict(creditLogistic, creditTesting, type = "respons")</pre>
 e")
 ## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
 ## ifelse(type == : prediction from a rank-deficient fit may be misleading
 creditTesting = creditTesting %>%
   mutate(model pred = 1*(model prob > .53) + 0) %>%
   mutate(accuracy = 1*(model pred == approval))
 sum(creditTesting$accuracy)/nrow(creditTesting)
 ## [1] 0.745
Because too many variables are included in the logistic regression model, we need to conduct stepwise to
find the best variable combination.
```

library(MASS)

Attaching package: 'MASS'

select

The following object is masked from 'package:dplyr':

##

##

```
step.creditLogistic <- creditLogistic %>% stepAIC(trace = FALSE)
AIC(step.creditLogistic)

## [1] 577.501

summary(step.creditLogistic)

##
## Call:
## glm(formula = approval ~ Duration + Amount + InstallmentRatePercentage +
## ResidenceDuration + NumberPeopleMaintenance + Telephone +
## CheckingAccountStatus.lt.0 + CheckingAccountStatus.0.to.200 +
```

```
##
       CreditHistory.NoCredit.AllPaid + CreditHistory.ThisBank.AllPaid +
##
       CreditHistory.PaidDuly + Purpose.NewCar + Purpose.UsedCar +
##
       SavingsAccountBonds.lt.100 + SavingsAccountBonds.100.to.500 +
##
       EmploymentDuration.4.to.7 + Personal.Male.Single + OtherDebtorsGuarantors.N
one +
##
       OtherDebtorsGuarantors.CoApplicant + Property.RealEstate +
##
       Property.Insurance + Property.CarOther + OtherInstallmentPlans.Bank +
##
       OtherInstallmentPlans.Stores + Housing.Rent, family = binomial,
##
       data = creditTraining)
##
## Deviance Residuals:
##
      Min
                      Median
                                   30
                                           Max
                 10
## -2.7641 -0.6531
                      0.3525
                               0.7005
                                        2.2281
##
## Coefficients:
##
                                        Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                                       7.708e+00 1.161e+00
                                                              6.641 3.12e-11
## Duration
                                      -2.876e-02 1.150e-02 -2.500 0.012407
## Amount
                                      -1.750e-04 5.717e-05
                                                             -3.061 0.002207
## InstallmentRatePercentage
                                      -4.481e-01 1.136e-01 -3.945 7.98e-05
## ResidenceDuration
                                       2.525e-01 1.061e-01
                                                             2.380 0.017332
## NumberPeopleMaintenance
                                      -7.990e-01 3.034e-01 -2.633 0.008456
## Telephone
                                      -6.440e-01
                                                  2.550e-01
                                                             -2.525 0.011561
## CheckingAccountStatus.lt.0
                                      -1.538e+00 2.801e-01
                                                             -5.490 4.02e-08
## CheckingAccountStatus.0.to.200
                                                 2.730e-01
                                                             -3.884 0.000103
                                      -1.060e+00
## CreditHistory.NoCredit.AllPaid
                                      -1.475e+00 5.651e-01
                                                             -2.609 0.009074
## CreditHistory.ThisBank.AllPaid
                                      -1.347e+00
                                                 5.268e-01
                                                             -2.556 0.010577
## CreditHistory.PaidDuly
                                      -4.830e-01
                                                  2.443e-01
                                                             -1.977 0.048069
                                      -4.306e-01
                                                 2.538e-01
                                                             -1.697 0.089750
## Purpose.NewCar
## Purpose.UsedCar
                                       1.335e+00
                                                  4.929e-01
                                                              2.709 0.006753
                                      -1.221e+00 2.806e-01
                                                             -4.352 1.35e-05
## SavingsAccountBonds.lt.100
## SavingsAccountBonds.100.to.500
                                      -9.830e-01
                                                  4.113e-01
                                                             -2.390 0.016845
                                                             2.236 0.025368
## EmploymentDuration.4.to.7
                                       7.442e-01
                                                 3.329e-01
## Personal.Male.Single
                                       8.285e-01 2.594e-01
                                                              3.194 0.001404
## OtherDebtorsGuarantors.None
                                      -2.442e+00
                                                 7.547e-01
                                                             -3.236 0.001214
## OtherDebtorsGuarantors.CoApplicant -2.318e+00
                                                  9.011e-01
                                                             -2.572 0.010109
## Property.RealEstate
                                       9.782e-01
                                                  3.889e-01
                                                              2.515 0.011901
## Property.Insurance
                                       6.173e-01
                                                 3.604e-01
                                                             1.713 0.086771
```

5.767e-01

Property.CarOther

3.421e-01

1.686 0.091837

```
## OtherInstallmentPlans.Bank
                                      -1.024e+00
                                                 3.122e-01 -3.279 0.001042
## OtherInstallmentPlans.Stores
                                      -9.770e-01 4.686e-01 -2.085 0.037070
## Housing.Rent
                                      -8.053e-01 3.037e-01
                                                              -2.652 0.008013
##
## (Intercept)
                                      * * *
## Duration
## Amount
## InstallmentRatePercentage
## ResidenceDuration
## NumberPeopleMaintenance
## Telephone
## CheckingAccountStatus.lt.0
## CheckingAccountStatus.0.to.200
## CreditHistory.NoCredit.AllPaid
## CreditHistory.ThisBank.AllPaid
## CreditHistory.PaidDuly
## Purpose.NewCar
## Purpose.UsedCar
## SavingsAccountBonds.lt.100
## SavingsAccountBonds.100.to.500
## EmploymentDuration.4.to.7
## Personal.Male.Single
## OtherDebtorsGuarantors.None
## OtherDebtorsGuarantors.CoApplicant *
## Property.RealEstate
## Property.Insurance
## Property.CarOther
## OtherInstallmentPlans.Bank
## OtherInstallmentPlans.Stores
## Housing.Rent
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 747.65 on 599 degrees of freedom
## Residual deviance: 525.50 on 574 degrees of freedom
## AIC: 577.5
##
## Number of Fisher Scoring iterations: 5
```

The AIC of the stepwised model has decreased from 624.52 to 590.38. Now lets find out whether the prediction accuracy has improved.

```
creditTesting$model_probSW <- predict(step.creditLogistic, creditTesting, type = "
response")
creditTesting = creditTesting %>%
  mutate(model_predSW = 1*(model_probSW > .53) + 0) %>%
  mutate(accuracySW = 1*(model_predSW == approval))
sum(creditTesting$accuracySW)/nrow(creditTesting)
```

The accuracy has increased from 0.77 to 0.7775 after we conducted the step-wise regression.							