COMPOSITION DE PROBABILITÉS ET STATISTIQUES

Ι

 \mathbf{R}^2 est muni de la distance euclidienne et considéré comme espace affine et métrique. Un point de \mathbf{R}^2 est défini par ses coordonnées (x, y).

Soit Ω l'ensemble des droites de \mathbb{R}^2 , Π l'ensemble $[0,\pi \, [\times \mathbb{R}. \, L'application qui, à tout couple <math>(u,v)$, élément de Π , associe l'élément $\omega(u,v)$ de Ω d'équation $x\cos u + y\sin u = v$, est une bijection de Π sur Ω . Soit \mathcal{S} l'ensemble des images dans Ω des boréliens de Π et soit μ la mesure image de la mesure de Borel-Lebesgue de Π par cette bijection.

Soit $\mathscr C$ l'ensemble des parties convexes compactes de R^2 . Étant donné $A \in \mathscr C$, on pourra admettre que l'ensemble Ω_A des droites qui coupent A est mesurable dans $(\Omega, \, \mathcal S)$.

On admettra que toute partie A de $\mathcal C$ possède la propriété suivante : à toute valeur de u correspondent deux valeurs de v: $v_1(u)$ et $v_2(u)$, $v_1(u) \leqslant v_2(u)$ telles que toute droite $\omega(u, v)$ coupe A si et seulement si $v \in [v_1(u), v_2(u)]$.

1º Soit C* l'ensemble des éléments de C, dont la frontière est une courbe fermée simple rectifiable; pour A∈C*, calculer l'intégrale

$$\int_{[0,\frac{1}{n}]} \left[v_2(u) - v_1(u) \right] du$$

en fonction de la longueur L_A de la frontière de A; en déduire que la mesure dans $(\Omega, \mathcal{S}, \mu)$ de l'ensemble des droites qui coupent A est L_A .

(On pourra d'abord montrer que l'intégrale est indépendante de l'origine O et par suite la calculer en supposant que $O \in A$, ce qui conduira à une intégrale telle que : $\int_{[0,2\pi l]} w(u) \, du \quad \text{avec} \quad w(u) \geqslant 0. \text{ On pourra}$ dorénavant supposer que la frontière de A est une courbe « fermée simple rectifiable »).

N.B. — Le candidat qui ne saura pas résoudre cette question préliminaire en admettra le résultat pour traiter la suite du problème.

A étant un élément déterminé de \mathscr{C}^* , dont la frontière a pour longueur L_A , si Ω_A est l'ensemble des droites qui coupent A, \mathcal{S}_A la trace de \mathcal{S} sur Ω_A et P_A la restriction à $(\Omega_A,\,\mathcal{S}_A)$ de la mesure $\frac{1}{L_A}\mu$, $(\Omega_A,\,\mathcal{S}_A,\,P_A)$ est un espace probabilisé. Cet espace sera l'espace de référence qui sera utilisé dans les deux premières parties du problème.

Si B est une partie de \mathbb{R}^2 telle que l'ensemble des droites de \mathbb{R}^2 appartenant à Ω_A qui coupent B est un événement dans $(\Omega_A, \mathcal{S}_A)$, on notera cet événement E_B .

2º a. Montrer que, si $B\in\mathcal{C}^*$ et $B\subset A,$ on a : $P_A(E_B)=\frac{L_B}{L_A},$ où L_B est la longueur de la frontière de B.

b. Soit B et B' deux éléments de \mathscr{C}^* inclus dans A tels que $B \cap B' \neq \varnothing$, C le plus petit ensemble convexe de \mathbf{R}^2 qui contient B et B' (enveloppe convexe de B et B') et L_B , $L_{B'}$, L_C les longueurs respectives des frontières de B, B' et C. Montrer que :

$$P_{\mathbf{A}}(E_{\mathbf{B}} \cap E_{\mathbf{B'}}) = \frac{L_{\mathbf{B}} + L_{\mathbf{B'}} - L_{\mathbf{C}}}{L_{\mathbf{A}}}$$

c. Soit $B \in \mathcal{C}^*$ tel que $B \cap A \neq \emptyset$, C l'enveloppe convexe de B et A, L_B et L_C les longueurs respectives des frontières de B et C. Montrer que :

$$P_{A}(E_{B}) = \frac{L_{A} + L_{B} - L_{C}}{L_{A}}$$

d. Soit deux disques fermés B et B' inclus dans A, de rayons respectifs r et r' (r>0, r'>0) et dont la distance des centres est d. Calculer la probabilité pour qu'une droite coupe ces deux disques à la fois. On distinguera les deux cas : $d \le r + r'$ et d > r + r'. Dans ce second cas, on pourra introduire les tangentes communes intérieures aux cercles frontières des disques.

 3° a. Étant donnés dans A deux points m et n dont la distance est l, trouver la probabilité pour qu'une droite coupe le segment [m, n] en fonction de l. Comparer le résultat ainsi obtenu à celui de I 1° .

b. Soit G un arc de courbe inclus dans A d'extrémités a et b tel que $G \cup [a, b]$ soit la frontière d'un élément de G^* ; on désigne par L la longueur de G et par l la distance entre a et b.

Quelle est la probabilité pour qu'une droite coupe G en deux points distincts ou soit «tangente » à G en laissant G toute entière d'un même côté? pour qu'elle coupe G en un point et un seul?

c. Soit B un disque fermé inclus dans A, de rayon r (r > 0) et de centre b, m et n deux points de A situés sur un même diamètre de B et i le milieu de [m, n]. On appelle δ la distance entre b et i et 2ρ la longueur de [m, n] ($\rho > 0$).

Calculer en fonction de r, δ et ρ la probabilité pour qu'une droite coupe à la fois B et le segment [m, n].

Cas particulier: $\delta=0$, $0<\rho< r$: expliquer pourquoi ce résultat donne la solution du problème suivant (problème de l'aiguille de Buffon): on lance au hasard une « aiguille » de longueur 2ρ sur le « plan » sur lequel sont tracées les droites parallèles x=2nr, $n\in \mathbb{Z}$; quelle est la probabilité pour que « l'aiguille » coupe une quelconque de ces parallèles? Quelle est l'hypothèse mathématique correspondant à l'expression « au hasard »?

II

Dans cette seconde partie, l'espace probabilisé est toujours $(\Omega_A, \mathcal{S}_A, P_A)$, mais on particularise en prenant pour A le disque :

$$\{(x, y) : x^2 + y^2 \leq 1\}$$

1º B est un disque fermé de rayon r (r > 0) et tel que la distance de son centre à l'origine O soit 2d $(d \ge 0)$.

Calculer P_A(E_B) dans les différents cas possibles.

2º Si $m = (\alpha, 0)$ et $n = (\beta, 0)$ sont deux éléments de \mathbb{R}^2 , calculer en fonction de α et β la probabilité pour qu'une droite coupe le segment [m, n].

30 On note \mathcal{R} la relation d'équivalence définie sur Ω de la manière suivante : deux éléments ω et ω' de Ω sont équivalents si et seulement si ou bien ω et ω' coupent la droite $\gamma=0$ en un même point ou bien ω et ω' sont parallèles (au sens large) à la droite $\gamma=0$.

Soit $\mathcal C$ la sous-tribu des parties S de $\mathcal S$ telles que, si ω est un élément de S, tout élément ω' de Ω , $\mathcal R$ -équivalent à ω , appartient aussi à S; soit $\mathcal C_A$ la trace de $\mathcal C$ sur Ω_A .

B_r étant le disque $\{(x, y) : x^2 + y^2 \le r^2, r \in \mathbb{R}^+ - \{0\}\}$, calculer un représentant de la probabilité conditionnelle $P(E_{B_r} \mid \mathcal{C}_A)$.

Trouver le lien entre cette probabilité conditionnelle et la probabilité pour qu'une droite ω coupe B, sachant qu'elle passe par un point $m = (\alpha, 0)$ donné.

4º On suppose que le rayon r du disque $B_r = \{(x, y) : x^2 + y^2 \le r^2\}$ satisfait à $0 < r \le 1$. La longueur de la corde découpée sur une droite ω par B_r est une variable aléatoire Z_r dont on demande de déterminer la fonction de répartition. Cette loi est-elle absolument continue par rapport à la mesure de Borel-Lebesgue? Calculer l'espérance et la variance de Z_r .

En prenant $r=1-\frac{1}{n}$, on fait correspondre à tout entier n>1 une variable aléatoire $Z_n'=Z_{1-\frac{1}{n}}$. La suite $\{Z_n'\}$ converge-t-elle en probabilité lorsque n tend vers l'infini?

Ш

On suppose désormais que la distribution de probabilité sur (Ω, \mathcal{S}) , donc sur Π , résulte de la construction suivante :

t étant un nombre réel appartenant à l'intervalle]— 1, + 1], la droite x = t rencontre le demi-cercle :

$$\Gamma = \{(x, y) : x^2 + y^2 = 1, y > 0\} \cup \{(1,0)\}$$

en un point h; cos u, sin u, où $u \in [0, \pi[$, sont les coordonnées de h; v étant un nombre réel quelconque, la perpendiculaire à Oh en k telle que $\overrightarrow{Ok} = v\overrightarrow{Oh}$ est une réalisation d'un élément de Ω .

La distribution de probabilité sur (Ω, \mathcal{S}) est alors parfaitement déterminée par la distribution du couple (T, V), t et v étant des réalisations de T et de V; u est une réalisation de U.

- 1º Ouelle relation lie les variables U et T?
- 2º Quelle serait la loi du couple (T, V) qui induirait sur (Ω, \mathcal{S}) la probabilité dont la restriction à $(\Omega_A, \mathcal{S}_A)$ est P_A , lorsque A est le disque unité de la seconde partie?
- 3° Dans cette question, on suppose les variables T et V indépendantes, T uniformément distribuée sur]— 1, + 1], V symétrique sur **R** et de fonction de répartition F. On pose

$$\Phi(x) = \int_0^x \mathbf{F}(v) \ dv.$$

- a. Montrer que U admet une densité et trouver cette densité y.
- b. Quelle est la probabilité H(a) pour qu'une droite ω coupe la demi-droite $]-\infty$, $a] \times \{0\}$?
- c. Montrer que l'application H de R dans [0,1], qui à a associe H(a), est la fonction de répartition d'une distribution de probabilité. Cette distribution a-t-elle une densité?
 - d. Calculer H dans le cas où V admet une densité f telle que

$$f(v) = \frac{1}{2}e^{-|v|}.$$