Chapter 2

Mike Desgrottes

October 2020

Theorem 1. Prove that the empty set is a subset of every set.

Proof.

Theorem 2. A complex number is said to be algebraic if there are integers $a_0, ..., a_n$ not all zero such that

$$a_0 z^n + a_1 z^{n-1} + \dots + a_{n-1} z + a_n = 0$$

. Prove that the set of all algebraic numbers is countable.

Proof. For each $N \in \mathbb{N}$, the number of polynomials such that $n + |a_0| + |a_1| + ... + |a_n| = N$ is finite. Hence the number of roots of these polynomials is also finite. Let $U_{n,N}$ be the set of roots of polynomials such that

$$n + |a_0| + |a_1| + \dots + |a_n| = N$$

and let $U_n = \bigcup_{i=1}^{\infty} U_{n,i}$. U_n and $\bigcup_{n=1}^{\infty} U_n$ is at most countable.

Theorem 3. Prove that there exists real numbers which are not algebraic.

Proof. Let A be the set of all algebraic numbers. A is countable. As \mathbb{R} is uncountable, \mathbb{R} cannot be a subset of A. Hence, there exists a $x \in \mathbb{R}$ with $x \in A^c$.

Theorem 4. Prove that the set of irrational numbers is uncountable.

Proof. $\mathbb{R} = \mathbb{Q} \bigcup \mathbb{I}$ implies that \mathbb{I} contains an uncountable set because \mathbb{Q} is countable.

Theorem 5. Construct a bounded set of real numbers with exactly 3 limit points.

Proof. $\left\{\frac{1}{n}:n\in\mathbb{N}\right\}\bigcup\left\{1+\frac{1}{n}:n\in\mathbb{N}\right\}\bigcup\left\{2+\frac{1}{n}:n\in\mathbb{N}\right\}$ with limit points $\{0,1,2\}$

Theorem 6. Let K be a subset of real numbers with 0 and 1/n. Prove that K is compact directly from definition.

Proof. Let $\bigcup_{i=1}^{\infty} U_i$ be an open cover of K. There exists $i \in \mathbb{N}$ such that $0 \in U_i$. This interval will contain infinitely many elements of K. Thus, there are only finitely many elements not in U_i . The subcover $U_i \bigcup (\bigcup_{n=1}^m U_n)$ is a finite subcover of K.

Theorem 7. Construct a compact set of real numbers whose limit points form a countable set.

Proof. Let
$$U_i = \{\frac{1}{i} + \frac{1}{n} : n \in \mathbb{N}\}$$
, then $\{0\} \bigcup (\bigcup_{n=1}^{\infty} U_n)$

Theorem 8. Give an example of an open cover of (0,1) which has no finite subcover.

Proof.
$$\bigcup_{n=1}^{\infty} (0,1+\frac{1}{n})$$

Theorem 9. (a) If A and B are disjoint closed(open) sets in some metric space X, prove that they are separated.

- (b) Fix $p \in X$, $\delta > 0$, define A to be the set of all $q \in X$ for which $|x y| < \delta$, define B similarly, with <. Prove that A and B are separated.
 - (c) Prove that every connected metric space with at least two points is uncountable.

Proof. (a) Closed sets contains their limit points and $A \cap \overline{B} = \overline{A} \cap B = \emptyset$.

We exclude clopen sets as we proved the result for closed sets. Let A and B be open sets that are not closed and disjoint Let $p \in X$ be a limit point of A and B, then every neighborhood of p intersects A at a point other than p. Let $U = (p - \epsilon, p + \epsilon) \cap A$ and $V = (p - \epsilon, p + \epsilon) \cap B$. $U \cap V \neq \emptyset$ because we can find an open set contained in $U \cup \{p\}$. This would give rise to an open set containing p which only intersect B at p, a contradiction.

- (b) $A = \{x \in X : |x-p| < \delta\}$ and $B = \{x \in X : |x-p| > \delta\}$ are disjoint open sets and hence are seperated.
- (c) Let $c \in \mathbb{R}$ such that there is no pair of points in A such that their distance is c. By previous excersies, we can seperate X, which is a contradiction. Therefore, for all real numbers, there exists a $y \in A$ such that |x-y|=c which implies it contains an uncountable set.

Theorem 10. A metric space is separable if it contains a countable dense subset. Show that \mathbb{R}^k is separable.

Proof. Let $x \in \mathbb{Q}^k$, then $x = (x_1, ..., x_k)$. For each x_i , there exists a sequence $u_{i,n} \in \mathbb{Q}$ that converges to x_i . Therefore the sequence $u_n = (u_{1,n}, ..., u_{k,n})$ converges to x.

 \mathbb{Q}^k is a countable dense subset of \mathbb{R}^k .

Theorem 11. Prove that every seperable metric space has a countable base.

Proof. The separable metric space X contains a dense countable subset E. Let $(x-\epsilon, x+\epsilon)$ be a neighborhood of x. Then the neighborhood $(y-r,y+r) \subset (x-\epsilon,x+\epsilon)$ whenever $r < \epsilon$ and |x-y| < r. We choose r to be a rational number and $y \in E$. Hence the set $\bigcup_{u,r} N_r(y)$ is a countable base.

Theorem 12. Let X be a metric space in which every infinite subset has a limit point. Prove that X is seperable.

Proof. Let $\delta > 0$, then we pick $x_1 \in X$, and having chosen $x_1, ..., x_j$, we pick x_{j+1} such that $|x_j - x_{j+1}| \ge \delta$. The sequence we chose is an infinite subset of X and has limit point. The infinite subset has a sequence that converges to the limit points and the sequence is cauchy. Therefore, the sequence must have finite range. $U_{i,n} = (x_i - \delta, x_i + \delta)$ are finite open sets that cover X. Hence, every point in X belongs to at least one $U_{i,n}$. Let U_n be the set of all $\{x_i\}$ for $\delta = 1/n$, then $U = \bigcup_{n=1}^{\infty} U_n$ is at most countable. Let $x \in X$, then we will construct a sequence of of points as followed. $|x_1-x|<1$, and $|x-x_n|<\frac{1}{n}$. For each $n, x\in\{y:|x-y|<\frac{1}{n}\}$ and we can find $x_n \in U$ to be the point in our sequence. Hence, U is dense in X and it is countable. U is not finite as that would imply X is finite.

Theorem 13. Prove that every compact metric space K has a countable base, and that K is therefore seperable.

Proof. The set $A_x = (x - \frac{1}{n}, x + \frac{1}{n})$ form an open cover of K and hence it contains a finite subcover. So, for each n, there exists a finite set of points such that neighborhood around those points with radius 1/n cover K. By previous exercise, it is separable and it has a countable base.

Theorem 14. Prove that the set of condensation points of $E \subset \mathbb{R}^k$ is perfect and that at most countably points in E is not in P.

Proof. Let $\{V_i\}$ be a countable base of \mathbb{R}^k , and define $W = \bigcup_{k=1}^{\infty} V_k$ where $E \cap V_k$ is at most countable. Let P be the set of condensation points of E. If $p \in P$ then the intersection of every neighborhood of p with E is uncountable. If U is a neighborhood of p, then there exists V_k such that $V_k \subset U$ which implies that $E \cap V_k$ is uncountable and $p \in W^c$. $P \subset W^c$.

If $p \in W^c$, then $E \cap V_i$ is uncountable when $p \in V_i$. If U is any neighborhood of p, then we can find V_i that is contained in U. This implies that every neighborhood of p intersect E at an uncountable set and $p \in P$. We have shown that $P = W^c$.

We look at two sets $P \cap E$ and $P^c \cap E$. $P^c \cap E$ is at most countable because for every $p \in P^c$ we can find a neighborhood U such that $E \cap U$ is countable. As E is uncountable, $P \cap E$ is uncountable.

Suppose that P is not perfect, then we can find a point p in P such that it is not a limit point of P. Let $N/\{p\} \subset P^c$ intersect E at a countable set. $N \bigcup \{p\}$ is countable which is a contradiction. Hence, P is perfect.