Esercitazioni ESD#1

- · Aula -CPUs (8/2/07)
 - Fondamenti cpu;
 - Classificazioni (uP, dsp, microcontrollori, soc,..)
 - · Esempi di architetture particolari
 - DSP
 - Introduzione esercitazione
- Aula Daughter card e temporizzazioni (22/2/07)
 - Daughter card (DC):
 - struttura generale;
 - Decoder:
 - · registro e buffer
 - · Esempi di accesso analisi temporizzazioni
 - DSP:
 - · Caratteristiche principali
 - DSK (Development Starter Kit):
 - cenni
 - · temporizzazioni

- Lab misure su protoboard (15/2/07)
 - Introduzione: logica comb. e registro
 - Schema (porte logiche, registro)
 - Misure di Tpd, Tsu, Th, Tcritico, Tcko
- Lab misure su DC: (1/3/07)
- Introduzione: counter, registro, buffer
- Schema (counter, registro, buffer)
- Misure di Tsu, Th, Tcritico, Tcko
- Lab misure su DC: (8/3/07)
 - Schema (counter, decoder, reg, buffer)
- Misure di Tsu, Th, Tcritico, Tcko
- Lab misure su DSK+DC: (15/3/07)
 - Introduzione: cpu,decoder
 - Schema (cpu,decoder,reg,buffer)
 - timing dsp, decodifica, Tsu, Th, Tcko
- Lab misure su DSK+DC : (22/3/07)
 - Schema ()
 - timing dsp, decodifica, Tsu, Th, Tcko

PC e interfacce

Architettura di un calcolatore

Central Process Unit

Architetture CPU a confronto

II μControllore

- CPU tipo CISC con set di istruzioni dedicato;
 - Supporta varie modalità di indirizzamento, operazioni su registri, bit manipulation;
- System on chip
 - Ram, rom, gestione di I/O
- Dispositivi accessori
 - Convertitori A/D, D/A, porte di comunicazione specializzate, Power supervisor, watch-dog, Timers, pwm, pll, gestione sofisticata di interrupts;
 - DPRam, Eprom, E²prom, Flash;

μControllore National COP8

TMS320DM644x™ Processors

SoC "DaVinci" (TI)

C40 – multi-processor network

- CPU floating point da 275 Mops, 40ns cycle-time
- 16 Gbyte di spazio di indirizzamento
- 2 Kdw di sram interna
- 2 bus ad alta velocitá: globale e locale
- 6 porte di comunicazione da 20 Mb/s
- Sono disponibili tutte le funzionalitá del c50

C80 - multi-processor architecture

C6xxx – VLIW

TMS320C6414T-1000: 1GHz, 8000MIPS, 90nm technology

Pentium 4

Un Digital Signal Processor (DSP) è un circuito integrato progettato per l'elaborazione digitale di dati (segnali) ad alta velocità

DSP: algoritmi tipici

FourierTransform:
$$X_m = \sum_{n=0}^{N-1} x_n e^{-j2mn\pi/N}$$

$$IIR: y_n = \sum_{k=0}^{N-1} a_k \cdot x_{n-k} + \sum_{k=1}^{N-1} b_k \cdot y_{n-k}$$

Convoluzione, correlazione, espansioni in serie, ...

Problema ricorrente -> MAC

DSP: caratteristiche

- Architetture ALU orientate al signal-processing
 - Moltiplicatori
 - ALU e accumulatori a 32-48 bit
 - Barrel-shifters
- Metodi di indirizzamento specializzati
- Architettura Harward (interna) da 16 o più bit
- Memorie veloci (interne)

Architetture Von Neuman e Harvard

DSP TMS32010: architettura

19

TMS32010-Z80 a confronto (anno '86)

Caratteristiche TMS

- $T_{ciclo} = 200$ ns
- Memoria int: 144word
- Memoria ext.: 4kw
- Architettura 16 bit
- ALU 32 bit
- Moltiplicatore: hw
- Istruzioni in 1 ciclo

Caratteristiche Z80

- $T_{ciclo} = 250$ ns
- Memoria int: ---
- Memoria ext.: 64kB
- Architettura ad 8 bit
- ALU 8 bit
- Moltiplicatore: sw
- Da 4 a 23 cicli per l'esecuzione di una istruzione

TMS32010-Z80: esecuzione istruzioni

Il set istruzioni

Supponiamo di voler eseguire la seguente operazione:

Pippo = Pippo & 0F3h

TMS32010

Lac #0F3h
Sacl Mask
Lac Pippo
And Mask
Sacl Pippo

TMS320c25

Lac Pippo And #0F3h Sacl Pippo

TMS320c50

Apl #0F3h,Pippo

Instruction-pipeline

Instruction-pipeline: esempio

B LAC

NewAdd

OR

.

NewAdd:

SACL AND

FETCH
DECODE
OPERAND

EXECUTE

n-1	n	n+1	n+2	n+3	n+4	n+5	n+6
	В	NewAdd	LAC	OR	SACL	AND	
	-	В	NewAdd	LAC		SACL	
	-	-	В	NewAdd			
	-	-	-	В	NewAdd		

Ripetizione di blocchi di codice

Un LOOP è sempre composto da:

- inizializzazione
- corpo del loop
- controllo del numero di iterazioni

Utilizzando la RPTB il controllo viene realizzato in HW consentendo:

- a) risparmio di 1 registro AR;
- b) ottimizzazione della pipeline evitandone lo svuotamento e risparmiando quindi 4 cicli macchina.

Se il corpo del loop è composto da poche istruzioni, il tempo perso nel controllo non è trascurabile deteriorando le prestazioni

Data addressing: circular buffer

Supponendo di voler leggere con continuità il contenuto di una porzione di memoria. Per ogni dato da estrarre occorre:

- leggere la cella corrente: v(i)
- Incrementare il puntatore: i = i+1
- Controllare la posizione del puntatore (i>A2) ed eventualmente porre: i = A1.

Normalmente il controllo della posizione deteriora sensibilmente le prestazioni.

MPYA: Multiply and accumulate

Esempio MPYA *0+

Soluzioni adottate per aumentare le prestazioni

- tecnologie e pipeline più spinte Mck;
- dispositivi hw dedicati (moltiplicatore, barrel shifter,..) \Longrightarrow operazioni complesse in 1 ciclo;
- aumento del numero di bus
 operandi;
- scambio dati con l'esterno lento \implies aumento della ram interna;
- aumento dei dispositivi intelligenti (DMA) per sfruttare meglio la banda dei bus e per gestire lo scambio dati (relativamente lento) con l'esterno;
- aumento del numero di core;
- sostituzione di dispositivi hw dedicati in ALU perché piú flessibili;
- Hw dedicato per indirizzamenti particolari, predizione salti, ...
- Instruction prefetch
- VLIM, Superscalar, CISC vs RISC

Esercitazioni Elettronica dei Sistemi Digitali #1 – Gennaio-Marzo 2007

N:		
Nome GRUP	PO:	
		 _
	Studente:	_
	Studente:	_
Note:		

Setups disponibili in laboratorio

• Protoboard:

Function generator

Protoboard

Scope

• Daughter card (DC):

DC

Scope

Development Starter Kit (DSK) + DC:

