Introduction to bioinformatics (NGS data analysis)

Alexander Jueterbock

2015-06-02

Got your sequencing data - now, what to do with it?

- File size: several Gb
- Number of lines: >1.000.000

@M02443:17:000000000-ABPBW:1:1101:12675:1533 1:N:0:1 TCGATAATTCTTACTTTCTCTCTGGTCTGAGCGTTTCACATCAACGACAAGCTCGA TTTTTTTTTTTTTTTTT

```
+
```

Background information

```
8B6-@-,CFFED9CFAE@@C6;@,CFEEF9<@6FGGF9F<CC,,CB,@::8CF,6+
,,3733>>00,,,3880,,8*,773333,3,333738,*,,,,,76,,2,,2
0*).1.))(0*)***
@M02443:17:000000000-ABPBW:1:1101:18658:1535 1:N:0:1
```

TCCCTAATTCTCTCTCAAATTTTCCTTCTAAATCGTCCCTCGTTTCTACCT TTTTCTTCTTTTTCT

```
-<<9-@CCEF9CE-<,,,,,<C,=,6,C9,C<=C,,,,86C,6:C,,,;<;,,
,,,,5,5:,,9++4,,,:,,,,,,,,38,853,5,,3,,7,,,6,,,,,7,,,,
+0.()+++)11.*)*
```

Before library preparation

What you need to know to steer your way through the analysis

- Research question
 - Identify adaptive genes
 - *De novo* genome assembly
 - Population genetic structure
 - Phylogenetic relation
- Experimental design
 - Number of individuals
 - Treatment of samples (e.g. heat stress)
- Sample collection
 - Samples degraded (e.g. stored in Formalin)
 - Tissue (reproductive, vegetative)
- What genetic sources are further available?
 - Lucky, if you have a reference genome

Library preparation

00000

- DNA-seq, RNA-seq, Bis-Seq, Chip-Seq. . .
 - RNA reads (which lack introns) requires splice-aware mappers.
 - Bis-seq changes GC ratio (bisulphite converts cytosine to uracil, but leaves 5-methylcytosine unaffected)
 - Chip-Seq enriches binding-sites of DNA-associated proteins
- Pooled samples?
 - Demultiplexing
 - Remove barcodes
- Adapter sequences for trimming
- Targeted coverage

Single- or Paired end sequencing, read length

Library fragment

Adapter Flowcell/bead binding sequences Amplification primers Sequencing primers Barcodes

00000

Adapter Flowcell/bead binding sequences Amplification primers Sequencing primers

Barcodes

matter

00000

Expected read lengths and sequencing qualities for the most common sequencing platforms

Platform	Max read length	Reads/run or lane	Consideration
Illumina	2×300	312,500,000	
HiSeq 3/4000			
Illumina	2×600	25,000,000	
MiSeq v3			
Roche 454	700	700,000	High error rate
GS FLX+/FLX			
Ion PGM 318	400	4,000,000	
PacBio RSII	14,000	47,000	High error rate
SoliD	2×100	266,666,667	Low error rate
5500xl W			Color-space

References

Tertiary analysis

- Demultiplexing
- Adapter trimming
- Quality control

Fastq file

4 lines that contain

- sequence id
 - 0, instrument name, flowcell lane, tile number, and flowcell x,y coordinates
 - barcode sequence and pair number for paired-end sequencing
- sequence
- quality scores

```
@HWI-ST141_0365:2:1101:2983:2114#TTAGGC/1
GATTTGGGGTTCAAATTAGTATCGATCAAATAGTAAATCCATTTGTTCAACTC
+
!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>CC
```

Adapters disturb assembly and alignment

GATTTGGGGTTCAANNNNNNNATTAGTATCGAT

GATTTGGGGTTCAANNNNNNNNATTAGTATCGAT

TTGGGGTTCAANNNNNNNNATTAGTATCGAT

GATTTGGGGTTCAANNNNNNNATTAGTATCGAT

ATTTGGGGTTCAANNNNNNNATTAGTATCGAT

GATTTGGGGTTCAANNNNNNNATTAGTATCGAT

AATTANNNNNNNNNNNNNN File 1 AGTCGNNNNNNNNNNNNNNNN File 2 File 2 File 3 AATTANNNNNNNNNNNNNN File 1 File 3 AGTCGNNNNNNNNNNNNNNN File 2

- Trim bases with a Phred quality score <20
- $Quality = -10 * log_{10}P$

Phred Score	Probability of incorrect base	Base call accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1000	99.9%

Secondary analysis

Fastg file contains both sequence reads and base quality scores

```
Fastq file
@SEQ_ID
GATTTGGGGTTCAAATTAGTATCGATCAAATAGTAAATCCATTTGTTCAACTC
+
!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>CC
Fasta file
>SEQ_ID
```

GATTTGGGGTTCAAATTAGTATCGATCAAATAGTAAATCCATTTGTTCAACTC

ASCII stands for American Standard Code for Information Interchange. An ASCII code is the numerical representation for a character.

Dec	Н	Oct	Cha	r	Dec	Нх	Oct	Html	Chr	Dec	Нх	Oct	Html	Chr	Dec	Нх	Oct	Html Ch	<u>nr</u>
0	0	000	NUL	(null)	32	20	040	6#32;	Space	64	40	100	a#64;	0	96	60	140	`	8
1	1	001	SOH	(start of heading)	33	21	041	6#33;	1	65	41	101	a#65;	A	97	61	141	6#97;	a
2	2	002	STX	(start of text)	34	22	042	6#34;	"	66	42	102	a#66;	В	98	62	142	6#98;	b
3	3	003	ETX	(end of text)	35	23	043	6#35;	#	67	43	103	6#67;	С	99	63	143	6#99;	C
4	4	004	EOT	(end of transmission)				6#36;					D					d	
5	5	005	ENQ	(enquiry)				6#37;					E					6#101;	
6	6	006	ACK	(acknowledge)				6#38;					6#70;					6#102;	
7				(bell)				6#39;					6#71;					6#103;	
8		010		(backspace)				6#40;	(72			6#72;					h	
9		011		(horizontal tab)	41))	73			6#73;					i	
10		012		(NL line feed, new line)	42			*					6#74;					j	
11		013		(vertical tab)	43			6#43;	+				6#75;					6#107;	
12		014		(NP form feed, new page)				6#44;	1				6#76;					6#108;	
13		015		(carriage return)				6#45;	E (1)				6#77;					@#109;	
14		016		(shift out)				6#46;	•				6#78;					n	
15		017		(shift in)				6#47;					6#79;					6#111;	
		020		(data link escape)				6#48;					6#80;					p	
				(device control 1)				6#49;					Q					q	
				(device control 2)				6#50;					R					r	
				(device control 3)				6#51;					6#83;					6#115;	
				(device control 4)				6#52;					6#84;					6#116;	
				(negative acknowledge)				6#53;					6#85;					6#117;	
				(synchronous idle)				6#5 4 ;					V					v	
				(end of trans. block)				6#55;					6#87;					6#119;	
				(cancel)				%#56 ;					X					x	
		031		(end of medium)				6#57;					6#89;					y	
		032		(substitute)				:					Z					z	
			ESC		59			6#59;					[{	
		034		(file separator)				6#60;					6#92;					6#124;	
		035		(group separator)				6#61;					6#93;					6#125;	
		036		(record separator)				6#62;					6#9 4 ;					~	
31	1F	037	US	(unit separator)	63	3F	077	6#63;	2	95	5F	137	6#95;	_	127	7F	177		DEL
													s	ourc	e: 4	nviv.	Look	un Tables	mos. 2

ASCII encodings of sequencing platforms

```
!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^ `abcdefghijklmnopgrstuvwxyz{|}~
33
                                             104
                                                           126
                .26...31......40
                    S - Sanger Phred+33, raw reads typically (0, 40)
X - Solexa Solexa+64, raw reads typically (-5, 40)
I - Illumina 1.3+ Phred+64, raw reads typically (0, 40)
J - Illumina 1.5+ Phred+64, raw reads typically (3, 40)
  with 0=unused, 1=unused, 2=Read Segment Quality Control Indicator (bold)
  (Note: See discussion above).
L - Illumina 1.8+ Phred+33, raw reads typically (0, 41)
```

Figure: Quality score encodings

Secondary analysis

Informs on:

Background information

- Base quality
- Duplication
- Overrepresentation of sequences
 - contamination?
 - adapters?
- GC content (should be around 50%, in Bis-Seq lower)

Quality before trimming

Figure : Base-quality generally decreases with increasing sequencing length

Quality after trimming

Figure: Quality after trimming

Due to 'random' hexamer primers for reverse transcription

Figure : Per base sequence content (FastQC output)

Secondary analysis

Background information Primary analysis Secondary analysis Tertiary analysis References

PCR Duplicates

Duplicates are generally removed in quantitative analyses (e.g. RNA-seq)

Figure: Duplication levels (FastQC output)

Task: Look for overlapping regions and create contigs (contiguous sequences)

- Genome assembly
 - SOAP de NOVO
 - Velvet
- MIRA
- Transcriptome assembly
 - Review: Martin and Wang (2011)
 - Trinity
 - MIRA

De NOVO assembly: The N50 metric

N50 is a single measure of the contig length size distribution in an assembly

- Sort contigs in descending length order
- Size of contig above which the assembly contains at least 50% of the total length of all contigs

Figure: From Kane, N.C.

Mapping against reference genome/transcriptome

- Main purposes:
 - Identify variants (SNPs, InDels)

ACAGTTAGGACATAGATTTAAGGCATCGATTATAGCCATAGAT

ACAGTTAGGACATAGATATAAGGCATCGATTATAGCCATAGAT
ACAGTTAGGACATAGATTTAAGGCATCGATTATAGCCATAGAT
ACAGTTAGGACATAGATTTAAGGCATCGATTATAGCCATAGAT
ACAGTTAGGACATAGATATAAGGCATCGATTATAGCCATAGAT
ACAGTTAGGACATAGATATAAGGCATCGATTATAGCCATAGAT
ACAGTTAGGACATAGATTTAAGGCATCGATTATAGCCATAGAT
ACAGTTAGGACATAGATTTAAGGCATCGATTATAGCCATAGAT
ACAGTTAGGACATAGATTTAAGGCATCGATTATAGCCATAGAT
ACAGTTAGGACATAGATTTAAGGCATCGATTATA---ATAGAT

Mapping against reference genome/transcriptome

- Main purposes:
 - Quantify gene expression

Population 1

Mapping: Global versus local alignment

- Global alignment (e.g. BWA, Bowtie2)
 - Needleman-Wunsch algorithm
 - aligns sequences in their full length
 - typically used for multiple sequence alignment when sequences are similar

```
--T--CC-C-AGT--TATGT-CAGGGGACACG--A-GCATGCAGA-GAC
```

Figure: Global vs local alignment from rosalind.info

Local alignemt

Background information

- Smith-Waterman algorithm
- clipping of terminal unmatched bases
- Only aligned bases contribute to the alignment's score
- used to target smaller portions of genes with high similarity

References

Splice-aware alignment of RNAseq reads

Figure: Adapted from Haas and Zody (2010)

Mapping: SAM/BAM files example

Output format of most alignment programs

- Header lines preceded by @
- One tab-delimited line per read

```
0HD
     VN:1.0
@SO
     SN:chr20 LN:62435964
@RG ID:L1 PU:SC 1 10 LB:SC 1 SM:NA12891
@RG
     ID:L2 PU:SC 2 12 LB:SC 2 SM:NA12891
read 28833 29006 6945 99 chr20 28833 20 10M1D25M = 28993 195 \
     AGCTTAGCTAGCTACTATATCTTGGTCTTGGCCG <><><><<<!><9/.&.22::<<
     NM:i:1 RG:Z:L1
read 28701 28881 323b 147 chr20 28834 30 35M = 28701 -168 \
     ACCTATATCTTGGCCGTTGCGGCCTTGCA <><<;:<<<6;<<<<7>:<<<6;</>
     MF:i:18 RG:Z:L2
```

Figure: Example from http://samtools.sourceforge.net/SAM1.pdf

- SAM files are large
- BAM: Compressed binary versions, not human-readable

Col	Field	Type	Regexp/Range	Brief description
1	QNAME	String	[!-?A-~]{1,255}	Query template NAME
2	FLAG	$_{ m Int}$	[0,2 ¹⁶ -1]	bitwise FLAG
3	RNAME	String	* [!-()+-<>-~][!-~]*	Reference sequence NAME
4	POS	$_{ m Int}$	[0,2 ³¹ -1]	1-based leftmost mapping POSition
5	MAPQ	$_{ m Int}$	[0,2 ⁸ -1]	MAPping Quality
6	CIGAR	String	* ([0-9]+[MIDNSHPX=])+	CIGAR string
7	RNEXT	String	* = [!-()+-<>-~][!-~]*	Ref. name of the mate/next read
8	PNEXT	$_{ m Int}$	[0,2 ³¹ -1]	Position of the mate/next read
9	TLEN	Int	[-2 ³¹ +1,2 ³¹ -1]	observed Template LENgth
10	SEQ	String	* [A-Za-z=.]+	segment SEQuence
11	QUAL	String	[!-~]+	ASCII of Phred-scaled base QUALity+33

Explanation of the flag field (click here: Link1, Link2)

Op	BAM	Description
M	0	alignment match (can be a sequence match or mismatch)
I	1	insertion to the reference
D	2	deletion from the reference
N	3	skipped region from the reference
S	4	soft clipping (clipped sequences present in SEQ)
H	5	hard clipping (clipped sequences NOT present in SEQ)
P	6	padding (silent deletion from padded reference)
=	7	sequence match
X	8	sequence mismatch

Consistent mismatches in the alignment indicate:

- Single Nucleotide Polymorphisms (SNPs)
- Insertions/Deletions (InDels)

Difficulty in discriminating sequencing errors from real SNPS

 Minimum coverage of 50 recommended (Schlötterer et al., 2014)

Minimum count threshold decreases error rate

----Q=00; Mac=1 Q=10; Mac=2 ----Q=20; Mac=2 -Q=30; Mac=2 Q=20; Mac=3

Variant calling: Copy number variations

Background information

Sequenced specimen (2 copies)

Reference sequence (1 copy)

Based on Kofler, R. (link)

Venn diagram of the number of SNPs (coverage >400) called with four programs from the same alignment file (ddRAD tags mapped against the genome of Guppy).

Variant call format

- described in http://www.1000genomes.org/node/101
- informs on location and quality of each SNP

VCF file information

Background information

Figure: VCF file info from

http://vcftools.sourceforge.net/VCF-poster.pdf

Phased alleles are on the same chromosome strand

Differential gene expression analysis

Figure : Log2 fold-change of expression over the mean of counts normalized by size factors. Differentially expressed genes (p<0.1) are red.

From the DESeq2 R package documentation

Clustering

Background information

Figure: Multivariate grouping of stressed (W) and control (C) seagrass samples. Most variation is explained by the first principle component

References

Visualizing differential expression

Figure : Heatmap of functions that were differentially expressed between Atlantic and Mediterranean seagrass samples.

Outlier analysis

Background information

Based on Vitti et al. (2012)

References

Outlier detection

Eukaryote genome annotation

Background information

Identify the strcuture and functional role

References

Gene ontologies

Figure: GO terms of unigenes in a moth genome

(Jacquin-Joly et al., 2012)

Background information

	GO.ID	Term	Annotated	Significant	Expected	Rank in classicFisher	classicFisher
1	GO:0007067	mitotic nuclear division	175	17	25.97	932	0.9988
2	GO:0051301	cell division	162	18	24.04	887	0.9819
3	GO:0045931	positive regulation of mitotic cell cycl	44	5	6.53	657	0.8222
4	GO:0000910	cytokinesis	15	2	2.23	534	0.6821
5	GO:0002757	immune response-activating signal transd	14	7	2.08	32	0.0016
6	GO:0033077	T cell differentiation in thymus	10	6	1.48	21	0.0010
7	GO:0042108	positive regulation of cytokine biosynth	18	6	2.67	111	0.0353
8	GO:0090068	positive regulation of cell cycle proces	37	3	5.49	809	0.9393
9	GO:0048639	positive regulation of developmental gro	12	3	1.78	298	0.2565
10	GO:0051129	negative regulation of cellular componen	52	5	7.72	777	0.9215

Figure: Test for enrichment of GO terms with Fisher's exact test in the R package 'topGO'

(Alexa and Rahnenfuhrer, 2010)

Cloud of GO term enrichments

establishment of protein localization to. Syrosine metabolic process extracellular matrix organization riboflavin metabolic process flavin-containing compound biosynthetic ...potassium ion transmembrane transport organic hydroxy compound metabolic proce... cellulose microfibril organization response to chemical stimulus iboflavin biosynthetic process response to chemical sumulus polyamine metabolic process cell wall organization coll growth socitate metabolic process external encapsulating structure organiz... alcohol metabolic process alcohol metabolic process cellular homeostasis celular biogenic amine biosynthetic proIMP metabolic process carbohydrate biosynthetic process IMP biosynthetic process

response to stimulus

cell wall organization or biogenesis cell wall modification cellular carbohydrate biosynthetic proce... Plant-type cell wall assembly amina biosymhite process. plant-type cell wall biogenesis punt cell redox homeostasis response to drug qlucan biosynthetic processing transports drug enterprise transports and the processing transports are metabolic process. cellulose biosynthetic process drug transmembrane transport polyamine biosynthetic process polyol metabolic processes will assembly outer mitochondrial membrane organizatio Cellular potassium ion transport Revin-containing compound metabolic pro... protein import into mitochondrial outer ... extracellular structure organization

Figure: Term cloud of heat-responsive functions in seagrass

Background information

References I

- Alexa, A and J Rahnenfuhrer (2010). topGO: topGO: Enrichment analysis for Gene Ontology. R package version 2.16.0.
- Haas, BJ and MC Zody (2010). "Advancing RNA-seq analysis". In: Nature biotechnology 28.5, pp. 421–423.
- Hansen, KD, SE Brenner, and S Dudoit (2010). "Biases in Illumina transcriptome sequencing caused by random hexamer priming". In: Nucleic acids research 38.12, e131–e131.
- Jacquin-Joly, E. F Legeai, N Montagné, C Monsempes. MC François, J Poulain, et al. (2012). "Candidate chemosensory genes in female antennae of the noctuid moth Spodoptera littoralis". In: International journal of biological sciences 8.7, p. 1036.

Background information

- Kofler, R, P Orozco-terWengel, N De Maio, RV Pandey, V Nolte, A Futschik, et al. (2011). "PoPoolation: A Toolbox for Population Genetic Analysis of Next Generation Sequencing Data from Pooled Individuals". In: PLoS ONE 6.1, e15925.
- Martin, J and Z Wang (2011). "Next-generation transcriptome assembly". In: Nature Reviews Genetics.
- Schlötterer, C, R Tobler, R Kofler, and V Nolte (2014). "Sequencing pools of individuals [mdash] mining genome-wide polymorphism data without big funding". In: Nature Reviews Genetics.
- Vitti, JJ, MK Cho, SA Tishkoff, and PC Sabeti (2012). "Human evolutionary genomics: ethical and interpretive issues". In: *Trends in Genetics* 28.3, pp. 137 –145.