UNIVERSITY OF OSLO

CONTROL OF MOBILE ROBOTS UNIK4490

An Unnecessarily Extra Long Convoluted Academic Title That Makes Little Sense

Authors
Daniel SANDER ISAKSEN, Eirik
KVALHEIM and Torgrim R. NÆSS

Supervisors
Dr. Kim MATHIASSEN and
Magnus BAKSAAS

November 17, 2017

Some Heading

Figure 1: 4 by 4 Rover

Tasks

- 1. Move the robot to a pose
- 2. Implement odometric localization
- 3. Implement motor control for each wheel
- 4. Implement posture regulation motion control In general the posture regulation controller takes in the configuration variables, $q = [x, y, \theta]^T$, and outputs $vand\omega$. It is assumed that the desired variables are $q_d = [0, 0and0]^T$ and the error from q_d is represented by following variables:

$$\rho = \sqrt{x^2 + y^2}$$

$$\gamma = Atan2(y, x) - \theta + \pi$$

$$\delta = \gamma + \theta$$

Where $\rho = ||e_p||$ is the distance between current point (x, y) and desired point (0, 0), γ is the angle between $\vec{e_p}$ and the sagittal axis of the vehicle and δ is the axis between $\vec{e_p}$ and the x-axis. $vand\omega$ are found by:

$$v = k_1 \rho \cos(\gamma) \tag{1}$$

$$\omega = k_2 \gamma + k_1 \frac{\sin(\gamma)\cos(\gamma)}{\gamma} (\gamma + k_3 \delta)$$
 (2)

In our implementation of the controller we get \vec{q} from the odometric module and output ω_R and ω_L to the motor controller. Equations for ω_R and ω_L expressed by error variables ρ , γ and δ , by setting the following equations (3) and (4) equal to equations (1) and (2) respectively,

$$v = \frac{r(\omega_R + \omega_L)}{2} \tag{3}$$

$$\omega = \frac{r(\omega_R - \omega_L)}{d} \tag{4}$$

and then solve for ω_R and ω_L by the inserting method. This yields:

$$\omega_R = \frac{2k_1\rho\cos(\gamma)}{2r} + \frac{dk2\gamma}{2r} + \frac{d\sin(\gamma)\cos(\gamma)(\gamma + k_3\delta)}{2r\gamma}$$
 (5)

$$\omega_L = \frac{2k_1\rho\cos(\gamma)}{2r} - \frac{dk_2\gamma}{2r} - \frac{d\sin(\gamma)\cos(\gamma)(\gamma + k_3\delta)}{2r\gamma}$$
 (6)