

Équations différentielles

Vidéo ■ partie 1. Définition

Vidéo ■ partie 2. Équation différentielle linéaire du premier ordre

Vidéo ■ partie 3. Équation différentielle linéaire du second ordre à coefficients constants

Vidéo ■ partie 4. Problèmes conduisant à des équations différentielles

Fiche d'exercices ♦ Équations différentielles

Lorsqu'un corps tombe en chute libre sans frottement, il n'est soumis qu'à son poids \vec{P} . Par le principe fondamental de la mécanique : $\vec{P} = m\vec{a}$. Tous les vecteurs sont verticaux donc mg = ma, où g est la constante de gravitation, a l'accélération verticale et m la masse. On obtient a = g. L'accélération étant la dérivée de la vitesse par rapport au temps, on obtient :

$$\frac{\mathrm{d}\nu(t)}{\mathrm{d}t} = \mathbf{g} \tag{1}$$

Il est facile d'en déduire la vitesse par intégration : v(t) = gt (en supposant que la vitesse initiale est nulle), c'est-à-dire que la vitesse augmente de façon linéaire au cours du temps. Puisque la vitesse est la dérivée de la position, on a $v(t) = \frac{dx(t)}{dt}$, donc par une nouvelle intégration on obtient $x(t) = \frac{1}{2}gt^2$ (en supposant que la position initiale est nulle).

Le cas d'un parachutiste est plus compliqué. Le modèle précédent n'est pas applicable car il ne tient pas compte des frottements. Le parachute fait subir une force de frottement opposée à sa vitesse. On suppose que le frottement est proportionnel à la vitesse : F = -f mv (f est le coefficient de frottement). Ainsi le principe fondamental de la mécanique devient mg - f mv = ma, ce qui conduit à la relation :

$$\frac{\mathrm{d}v(t)}{\mathrm{d}t} = g - fv(t) \tag{2}$$

C'est une relation entre la vitesse ν et sa dérivée : il s'agit d'une *équation différentielle*. Il n'est pas évident de trouver quelle est la fonction ν qui convient. Le but de ce chapitre est d'apprendre comment déterminer $\nu(t)$, ce qui nous permettra d'en déduire la position x(t) à tout instant.

1. DÉFINITION

1.1. Introduction

Une équation différentielle est une équation :

- dont l'inconnue est une fonction (généralement notée y(x) ou simplement y);
- dans laquelle apparaissent certaines des dérivées de la fonction (dérivée première y', ou dérivées d'ordres supérieurs y'', $y^{(3)}$,...).

Voici des équations différentielles faciles à résoudre.

Exemple 1.

De tête, trouver au moins une fonction, solution des équations différentielles suivantes :

$$y' = \sin x$$

$$y' = 1 + e^{x}$$

$$y' = y$$

$$y' = 3y$$

$$y'' = \cos x$$

$$y'' = y$$

$$\exists \exists \gamma \text{ no } \gamma + x \cos - = (x) \lambda$$

$$\exists \exists \gamma \text{ no } \gamma + x \cos - = (x) \lambda$$

$$\exists \exists \gamma \text{ no } \gamma + x \cos - = (x) \lambda$$

$$\exists \exists \gamma \text{ no } \gamma + x \cos - = (x) \lambda$$

$$\exists \exists \gamma \text{ no } \gamma + x \cos - = (x) \lambda$$

$$\exists \exists \gamma \text{ no } \gamma + x \cos - = (x) \lambda$$

$$\exists \exists \gamma \text{ no } \gamma + x \cos - = (x) \lambda$$

$$\exists \exists \gamma \text{ no } \gamma + x \cos - = (x) \lambda$$

$$\exists \exists \gamma \text{ no } \gamma + x \cos - = (x) \lambda$$

$$\exists \exists \gamma \text{ no } \gamma + x \cos - = (x) \lambda$$

$$\exists \exists \gamma \text{ no } \gamma + x \cos - = (x) \lambda$$

Il est aussi facile de vérifier qu'une fonction donnée est bien solution d'une équation.

Exemple 2.

- 1. Soit l'équation différentielle y' = 2xy + 4x. Vérifier que $y(x) = k \exp(x^2) 2$ est une solution sur \mathbb{R} , ceci quel que soit $k \in \mathbb{R}$.
- 2. Soit l'équation différentielle $x^2y'' 2y + 2x = 0$. Vérifier que $y(x) = kx^2 + x$ est une solution sur \mathbb{R} , pour tout $k \in \mathbb{R}$.

1.2. Définition

Passons à la définition complète d'une équation différentielle et surtout d'une solution d'une équation différentielle.

Définition 1.

• Une équation différentielle d'ordre n est une équation de la forme

$$F(x, y, y', ..., y^{(n)}) = 0$$
 (E)

où F est une fonction de (n + 2) variables.

• Une *solution* d'une telle équation sur un intervalle $I \subset \mathbb{R}$ est une fonction $y : I \to \mathbb{R}$ qui est n fois dérivable et qui vérifie l'équation (E).

Remarque.

- C'est la coutume pour les équations différentielles de noter y au lieu de y(x), y' au lieu y'(x),... On note donc « $y' = \sin x$ » ce qui signifie « $y'(x) = \sin x$ ».
- Il faut s'habituer au changement de nom pour les fonctions et les variables. Par exemple $(x'')^3 + t(x')^3 + (\sin t)x^4 = e^t$ est une équation différentielle d'ordre 2, dont l'inconnue est une fonction x qui dépend de la variable t. On cherche donc une fonction x(t), deux fois dérivable, qui vérifie $(x''(t))^3 + t(x'(t))^3 + (\sin t)(x(t))^4 = e^t$.
- Rechercher une primitive, c'est déjà résoudre l'équation différentielle y' = f(x). C'est pourquoi on trouve souvent « intégrer l'équation différentielle » pour « trouver les solutions de l'équation différentielle ».
- La notion d'intervalle dans la résolution d'une équation différentielle est fondamentale. Si on change d'intervalle, on peut très bien obtenir d'autres solutions. Par exemple, si on se place sur l'intervalle $I_1 =]0, +\infty[$, l'équation différentielle y' = 1/x a pour solutions les fonctions $y(x) = \ln(x) + k$. Alors que sur l'intervalle $I_2 =]-\infty, 0[$, les solutions sont les fonctions $y(x) = \ln(-x) + k$ (k est une constante).
- Si aucune précision n'est donnée sur l'intervalle I, on considérera qu'il s'agit de I = ℝ.

Exemple 3 (Équation à variables séparées).

Une équation différentielle à variables séparées est une équation du type :

$$y' = g(x)/f(y)$$
 ou $y'f(y) = g(x)$

Ine telle équation se résout par calcul de primitives. Si G(x) est une primitive de g(x) alors G'(x) = g(x). So F(x) est une primitive de f(x) alors F'(x) = f(x), mais surtout, par dérivation d'une composition, (F(y(x)))' = y'(x)F'(y(x)) = y'f(y). Ainsi l'équation différentielle y'f(y) = g(x) se réécrit (F(y(x)))' = G'(x) ce qui équivaut à une égalité de fonctions : F(y(x)) = G(x) + c.

1. Définition

Voici un exemple concret:

$$x^2y' = e^{-y}$$

On commence par séparer les variables x d'un côté et y de l'autre : $y'e^y = \frac{1}{x^2}$ (en supposant $x \neq 0$). On intègre des deux côtés :

$$e^y = -\frac{1}{x} + c \quad (c \in \mathbb{R})$$

Ce qui permet d'obtenir y (en supposant $-\frac{1}{x} + c > 0$):

$$y(x) = \ln\left(-\frac{1}{x} + c\right)$$

qui est une solution sur chaque intervalle I où elle est définie et dérivable. Cet intervalle dépend de la constante c: si c < 0, $I =]\frac{1}{c}$, 0[; si c = 0, $I =]-\infty$, 0[; si c > 0, $I =]\frac{1}{c}$, $+\infty[$.

1.3. Équation différentielle linéaire

On ne sait pas résoudre toutes les équations différentielles. On se concentre dans ce chapitre sur deux types d'équations : les équations différentielles linéaires du premier ordre et celles du second ordre à coefficients constants.

• Une équation différentielle d'ordre *n* est *linéaire* si elle est de la forme

$$a_0(x)y + a_1(x)y' + \dots + a_n(x)y^{(n)} = g(x)$$

où les a_i et g sont des fonctions réelles continues sur un intervalle $I \subset \mathbb{R}$.

Le terme linéaire signifie grosso modo qu'il n'y a pas d'exposant pour les termes y, y', y'', \dots

Une équation différentielle linéaire est *homogène*, ou *sans second membre*, si la fonction g ci-dessus est la fonction nulle :

$$a_0(x)y + a_1(x)y' + \dots + a_n(x)y^{(n)} = 0$$

• Une équation différentielle linéaire est à coefficients constants si les fonctions a_i ci-dessus sont constantes :

$$a_0y + a_1y' + \dots + a_ny^{(n)} = g(x)$$

où les a; sont des constantes réelles et g une fonction continue.

Exemple 4.

- 1. $y' + 5xy = e^x$ est une équation différentielle linéaire du premier ordre avec second membre.
- 2. y' + 5xy = 0 est l'équation différentielle homogène associée à la précédente.
- 3. 2y'' 3y' + 5y = 0 est une équation différentielle linéaire du second ordre à coefficients constants, sans second membre.
- 4. $y'^2 y = x$ ou $y'' \cdot y' y = 0$ ne sont pas des équations différentielles linéaires.

Proposition 1 (Principe de linéarité).

Si y_1 et y_2 sont solutions de l'équation différentielle linéaire homogène

$$a_0(x)y + a_1(x)y' + \dots + a_n(x)y^{(n)} = 0$$
 (E₀)

alors, quels que soient $\lambda, \mu \in \mathbb{R}$, $\lambda y_1 + \mu y_2$ est aussi solution de cette équation.

C'est une simple vérification. On peut reformuler la proposition en disant que l'ensemble des solutions forme un espace vectoriel.

Pour résoudre une équation différentielle linéaire avec second membre

$$a_0(x)y + a_1(x)y' + \dots + a_n(x)y^{(n)} = g(x),$$
 (E)

on décompose souvent la résolution en deux étapes :

- trouver une solution particulière y_0 de l'équation (E),
- trouver l'ensemble \mathcal{S}_h des solutions y de l'équation homogène associée

$$a_0(x)y + a_1(x)y' + \dots + a_n(x)y^{(n)} = 0$$
 (E₀)

ce qui permet de trouver toutes les solutions de (E):

Proposition 2 (Principe de superposition).

L'ensemble des solutions $\mathcal S$ de (E) est formé des

$$y_0 + y$$
 avec $y \in \mathcal{S}_h$.

Autrement dit, on trouve toutes les solutions en ajoutant une solution particulière aux solutions de l'équation homogène. C'est une conséquence immédiate du caractère linéaire des équations.

Mini-exercices.

- 1. Chercher une solution « simple » de l'équation différentielle y' = 2y. Même question avec y'' = -y; $y'' + \cos(2x) = 0$; xy'' = y'.
- 2. Résoudre l'équation différentielle à variables séparées $y'y^2 = x$. Même question avec $y' = y \ln x$; $y' = \frac{1}{y^n}$ $(n \ge 1)$.
- 3. Soit l'équation y' = y(1-y). Montrer que si y est une solution non nulle de cette équation, alors z = 2y n'est pas solution. Que peut-on en conclure?

2. Équation différentielle linéaire du premier ordre

Définition 2.

Une équation différentielle *linéaire du premier ordre* est une équation du type :

$$y' = a(x)y + b(x) \tag{E}$$

où a et b sont des fonctions définies sur un intervalle ouvert I de \mathbb{R} .

Dans la suite on supposera que a et b sont des fonctions continues sur I. On peut envisager la forme : $\alpha(x)y' + \beta(x)y = \gamma(x)$. On demandera alors que $\alpha(x) \neq 0$ pour tout $x \in I$. La division par α permet de retrouver la forme (E).

On va commencer par résoudre le cas où a est une constante et b=0. Puis a sera une fonction (et toujours b=0). On terminera par le cas général où a et b sont deux fonctions.

2.1. y' = ay

Théorème 1.

Soit a un réel. Soit l'équation différentielle :

$$y' = ay (E)$$

Les solutions de (E), sur \mathbb{R} , sont les fonctions y définies par :

$$y(x) = ke^{ax}$$

où $k \in \mathbb{R}$ est une constante quelconque.

Ce résultat est fondamental. Il est tout aussi fondamental de comprendre d'où vient cette formule, via une preuve rapide (mais pas tout à fait rigoureuse). On réécrit l'équation différentielle sous la forme

$$\frac{y'}{y} = a$$

que l'on intègre à gauche et à droite pour trouver :

$$ln |y(x)| = ax + b$$

On compose par l'exponentielle des deux côtés pour obtenir :

$$|y(x)| = e^{ax+b}$$

Autrement dit $y(x) = \pm e^b e^{ax}$. En posant $k = \pm e^b$ on obtient les solutions (non nulles) cherchées. Nous verrons une preuve rigoureuse juste après.

Exemple 5.

Résoudre l'équation différentielle :

$$3y'-5y=0$$

On écrit cette équation sous la forme $y' = \frac{5}{3}y$. Ses solutions, sur \mathbb{R} , sont donc de la forme : $y(x) = ke^{\frac{5}{3}x}$, où $k \in \mathbb{R}$.

Remarque.

- L'équation différentielle (*E*) admet donc une infinité de solutions (puisque l'on a une infinité de choix de la constante *k*).
- La constante k peut être nulle. Dans ce cas, on obtient la « solution nulle » : y = 0 sur \mathbb{R} , qui est une solution évidente de l'équation différentielle.
- Le théorème 1 peut aussi s'interpréter ainsi : si y_0 est une solution non identiquement nulle de l'équation différentielle (*E*), alors toutes les autres solutions y sont des multiples de y_0 . En termes plus savants, l'ensemble des solutions forme un espace vectoriel de dimension 1 (une droite vectorielle).

Preuve du théorème 1.

1. On vérifie que les fonctions proposées sont bien solutions de (E). En effet, pour $y(x) = ke^{ax}$, on a

$$y'(x) = ake^{ax} = ay(x).$$

2. Montrons que les fonctions proposées sont les seules solutions. (C'est-à-dire qu'il n'y en a pas d'un autre type que $y(x) = ke^{ax}$.) Soit y une solution quelconque de (E) sur \mathbb{R} . Considérons la fonction z définie par : $z(x) = y(x)e^{-ax}$. Alors, par la formule de dérivation d'un produit :

$$z'(x) = y'(x)e^{-ax} + y(x) \Big(-ae^{-ax} \Big) = e^{-ax} \Big(y'(x) - ay(x) \Big)$$

Mais, par hypothèse, y est une solution de (E), donc y'(x) - ay(x) = 0. On en déduit que z'(x) = 0, pour tout réel x. Ainsi z est une fonction constante sur \mathbb{R} . Autrement dit, il existe une constante k telle que z(x) = k pour tout $x \in \mathbb{R}$. D'où :

$$z(x) = k$$
 donc $y(x)e^{-ax} = k$ donc $y(x) = ke^{ax}$.

Ce qui termine la preuve du théorème.

2.2. y' = a(x)y

Le théorème suivant affirme que, lorsque a est une fonction, résoudre l'équation différentielle y' = a(x)y revient à déterminer une primitive A de a (ce qui n'est pas toujours possible explicitement).

Théorème 2.

Soit $a:I\to\mathbb{R}$ une fonction continue. Soit $A:I\to\mathbb{R}$ une primitive de a. Soit l'équation différentielle :

$$y' = a(x)y \tag{E}$$

Les solutions sur I de (E) sont les fonctions y définies par :

$$y(x) = ke^{A(x)}$$

où $k \in \mathbb{R}$ est une constante quelconque.

Si a(x) = a est une fonction constante, alors une primitive est par exemple A(x) = ax et on retrouve les solutions du théorème 1.

Une preuve rapide du théorème 2 est la suivante :

$$\frac{y'}{y} = a(x) \iff \ln|y(x)| = A(x) + b \iff |y(x)| = e^{A(x) + b}$$

$$\iff y(x) = \pm e^b e^{A(x)} \iff y(x) = ke^{A(x)} \quad \text{avec } k = \pm e^b$$

Une preuve rigoureuse (puisque l'on évite de diviser par quelque chose qui pourrait être nul) :

Démonstration.

$$y(x)$$
 solution de (E)
 $\iff y'(x) - a(x)y(x) = 0$
 $\iff e^{-A(x)}(y'(x) - ay(x)) = 0$
 $\iff (y(x)e^{-A(x)})' = 0$
 $\iff \exists k \in \mathbb{R} \quad y(x)e^{-A(x)} = k$
 $\iff \exists k \in \mathbb{R} \quad y(x) = ke^{A(x)}$

Exemple 6.

Comment résoudre l'équation différentielle $x^2y'=y$? On se place sur l'intervalle $I_+=]0,+\infty[$ ou $I_-=]-\infty,0[$. L'équation devient $y'=\frac{1}{x^2}y$. Donc $a(x)=\frac{1}{x^2}$, dont une primitive est $A(x)=-\frac{1}{x}$. Ainsi les solutions cherchées sont $y(x)=ke^{-\frac{1}{x}}$, où $k\in\mathbb{R}$.

2.3. y' = a(x)y + b(x)

Il nous reste le cas général de l'équation différentielle linéaire d'ordre 1 avec second membre :

$$y' = a(x)y + b(x) \tag{E}$$

où $a: I \to \mathbb{R}$ et $b: I \to \mathbb{R}$ sont des fonctions continues.

L'équation homogène associée est :

$$y' = a(x)y (E_0)$$

Il n'y a pas de nouvelle formule à apprendre pour ce cas. Il suffit d'appliquer le principe de superposition : les solutions de (E) s'obtiennent en ajoutant à une solution particulière de (E) les solutions de (E_0) . Ce qui donne :

Proposition 3.

Si y_0 est une solution de (E), alors les solutions de (E) sont les fonctions $y:I\to\mathbb{R}$ définies par :

$$y(x) = y_0(x) + ke^{A(x)}$$
 avec $k \in \mathbb{R}$

où $x \mapsto A(x)$ est une primitive de $x \mapsto a(x)$.

La recherche de la solution générale de (E) se réduit donc à la recherche d'une solution particulière. Parfois ceci se fait en remarquant une solution évidente. Par exemple, l'équation différentielle y'=2xy+4x a pour solution particulière $y_0(x)=-2$; donc l'ensemble des solutions de cette équation sont les $y(x)=-2+ke^{x^2}$, où $k\in\mathbb{R}$.

Recherche d'une solution particulière : méthode de variation de la constante.

Le nom de cette méthode est paradoxal mais justifié! C'est une méthode générale pour trouver une solution particulière en se ramenant à un calcul de primitive.

La solution générale de (E_0) y'=a(x)y est donnée par $y(x)=ke^{A(x)}$, avec $k\in\mathbb{R}$ une constante. La méthode de la variation de la constante consiste à chercher une solution particulière sous la forme $y_0(x)=k(x)e^{A(x)}$, où k est maintenant une fonction à déterminer pour que y_0 soit une solution de (E) y'=a(x)y+b(x).

Puisque A' = a, on a :

$$y_0'(x) = a(x)k(x)e^{A(x)} + k'(x)e^{A(x)} = a(x)y_0(x) + k'(x)e^{A(x)}$$

Ainsi:

$$y_0'(x) - a(x)y_0(x) = k'(x)e^{A(x)}$$

Sonc y_0 est une solution de (E) si et seulement si

$$k'(x)e^{A(x)} = b(x) \iff k'(x) = b(x)e^{-A(x)} \iff k(x) = \int b(x)e^{-A(x)}dx.$$

Ce qui donne une solution particulière $y_0(x) = (\int b(x)e^{-A(x)}dx)e^{A(x)}$ de (E) sur I. La solution générale de (E) est donnée par

$$y(x) = y_0(x) + ke^{A(x)}, \quad k \in \mathbb{R}.$$

Exemple 7.

Soit l'équation $y'+y=e^x+1$. L'équation homogène est y'=-y dont les solutions sont les $y(x)=ke^{-x}$, $k\in\mathbb{R}$. Cherchons une solution particulière avec la méthode de variation de la constante : on note $y_0(x)=k(x)e^{-x}$. On doit trouver k(x) afin que y_0 vérifie l'équation différentielle $y'+y=e^x+1$.

$$y'_0 + y_0 = e^x + 1$$

$$\iff (k'(x)e^{-x} - k(x)e^{-x}) + k(x)e^{-x} = e^x + 1$$

$$\iff k'(x)e^{-x} = e^x + 1$$

$$\iff k'(x) = e^{2x} + e^x$$

$$\iff k(x) = \frac{1}{2}e^{2x} + e^x + c$$

On fixe c = 0 (n'importe quelle valeur convient):

$$y_0(x) = k(x)e^{-x} = \left(\frac{1}{2}e^{2x} + e^x\right)e^{-x} = \frac{1}{2}e^x + 1$$

Nous tenons notre solution particulière! Les solutions générales de l'équation $y' + y = e^x + 1$ s'obtiennent en additionnant cette solution particulière aux solutions de l'équation homogène :

$$y(x) = \frac{1}{2}e^x + 1 + ke^{-x}, \quad k \in \mathbb{R}.$$

2.4. Théorème de Cauchy-Lipschitz

Voici l'énoncé du théorème de Cauchy-Lipschitz dans le cas des équations différentielles linéaires du premier ordre.

Théorème 3 (Théorème de Cauchy-Lipschitz).

Soit y' = a(x)y + b(x) une équation différentielle linéaire du premier ordre, où $a, b : I \to \mathbb{R}$ sont des fonctions continues sur un intervalle ouvert I. Alors, pour tout $x_0 \in I$ et pour tout $y_0 \in \mathbb{R}$, il existe une et une seule solution y telle que $y(x_0) = y_0$.

D'après nos calculs précédents cette solution est :

$$y(x) = \left(\int_{x_0}^{x} b(t)e^{-A(t)} dt \right) e^{A(x)} + y_0 e^{A(x)}$$

où A est la primitive de a s'annulant en x_0 , et cette solution vérifie bien $y(x_0) = y_0$.

Exemple 8

Trouver la solution de $y'+y=e^x+1$ vérifiant y(1)=2. Nous avons déjà trouvé toutes les solutions de cette équation dans l'exemple $7:y(x)=\frac{1}{2}e^x+1+ke^{-x}$ où $k\in\mathbb{R}$. Nous allons déterminer la constante k afin que la condition initiale y(1)=2 soit vérifiée :

$$y(1) = 2 \iff \frac{1}{2}e^{1} + 1 + ke^{-1} = 2 \iff \frac{k}{e} = 1 - \frac{e}{2} \iff k = e - \frac{e^{2}}{2}$$

Ainsi la solution cherchée est $y(x) = \frac{1}{2}e^x + 1 + \left(e - \frac{e^2}{2}\right)e^{-x}$, et c'est la seule solution.

2.5. Courbes intégrales

Une *courbe intégrale* d'une équation différentielle (E) est le graphe d'une solution de (E). Le théorème 3 pour les équations différentielles linéaires du premier ordre y' = a(x)y + b(x) se reformule ainsi :

« Par chaque point $(x_0, y_0) \in I \times \mathbb{R}$ passe une et une seule courbe intégrale. »

Exemple 9.

Les solutions de l'équation différentielle y' + y = x sont les

$$y(x) = x - 1 + ke^{-x} \quad k \in \mathbb{R}$$

et sont définies sur $I = \mathbb{R}$. Pour chaque point $(x_0, y_0) \in \mathbb{R}^2$, il existe une unique solution y telle que $y(x_0) = y_0$. Le graphe de cette solution est la courbe intégrale passant par (x_0, y_0) .

2.6. Exemples

Exemple 10.

On considère l'équation différentielle (E): $x^3y' + (2-3x^2)y = x^3$.

- 1. Résoudre l'équation différentielle (E) sur $]0, +\infty[$ et $]-\infty, 0[$.
- 2. Peut-on trouver une solution sur \mathbb{R} ?
- 3. Trouver la solution sur $]0, +\infty[$ vérifiant y(1) = 0.

Correction.

- 1. (a) Résolution de l'équation homogène $(E_0): x^3y' + (2-3x^2)y = 0$. Pour $x \neq 0$, on a $y' = -\frac{2-3x^2}{x^3}y$. Donc la solution générale de (E_0) est $y(x) = ke^{\int -\frac{2-3x^2}{x^3} dx} = ke^{3\ln|x|}e^{1/x^2} = k|x|^3e^{1/x^2}$. Donc la solution générale de (E_0) sur $]0, +\infty[$ est $: y(x) = k_1x^3e^{1/x^2}$; et sur $]-\infty, 0[: y(x) = k_2x^3e^{1/x^2}$.
 - (b) Résolution de l'équation avec second membre (E) par la méthode de variation de la constante. On cherche une solution sous la forme $y(x)=k(x)x^3e^{1/x^2}$. En dérivant et en remplaçant dans l'équation différentielle, on obtient $k'(x)x^3e^{1/x^2}=1$. Donc $k(x)=\int \frac{e^{-1/x^2}}{x^3}\mathrm{d}x=\frac{1}{2}e^{-1/x^2}+c$. D'où une solution particulière de (E) sur $]0,+\infty[$ ou $]-\infty,0[:y_0(x)=k(x)x^3e^{1/x^2}=\frac{1}{2}x^3$.
 - (c) Solution générale sur $]0, +\infty[: y(x) = \frac{1}{2}x^3 + k_1x^3e^{1/x^2}.$ Solution générale sur $]-\infty, 0[: y(x) = \frac{1}{2}x^3 + k_2x^3e^{1/x^2}.$
- 2. x^3e^{1/x^2} tend vers $+\infty$ (resp. $-\infty$) lorsque $x \to 0^+$ (resp. 0^-), donc pour k_1 ou k_2 non nul, y ne peut pas être prolongée par continuité en 0. Pour $k_1 = k_2 = 0$, $y(x) = \frac{1}{2}x^3$ est continue et dérivable sur \mathbb{R} . C'est la seule solution sur \mathbb{R} .
- 3. Si l'on cherche une solution particulière vérifiant y(1) = 0, alors on a $y(x) = \frac{1}{2}x^3 + kx^3e^{1/x^2}$, y(1) = 1/2 + ke = 0, donc $k = -\frac{1}{2e}$. Donc $y(x) = \frac{1}{2}x^3 \frac{1}{2e}x^3e^{1/x^2}$.

Exemple 11.

Résoudre x(1+x)y' - (x+2)y = 2x.

1. Équation homogène.

L'équation homogène est x(1+x)y'-(x+2)y=0. Pour $x\neq 0$ et $x\neq -1$, l'équation s'écrit $y'=\frac{x+2}{x(1+x)}y$. La décomposition de la fraction en éléments simples est : $a(x)=\frac{x+2}{x(1+x)}=\frac{2}{x}-\frac{1}{1+x}$. Une primitive de a(x) est donc $A(x)=\int \frac{x+2}{x(1+x)} dx=2\ln|x|-\ln|x+1|$. La solution générale de l'équation homogène est $y(x)=ke^{A(x)}=ke^{2\ln|x|-\ln|x+1|}=ke^{\ln\frac{x^2}{|x+1|}}=\pm k\frac{x^2}{|x+1|}$. Cette solution est bien définie en x=0. On obtient donc la solution générale de l'équation homogène : $y(x)=k\frac{x^2}{x+1}$ sur $]-\infty,-1[$ ou sur $]-1,+\infty[$.

2. Solution particulière.

On cherche une solution de l'équation non homogène sous la forme $y_0(x) = k(x) \frac{x^2}{x+1}$ par la méthode de variation de la constante. En remplaçant dans l'équation, on obtient $k'(x)x^3 = 2x$. Donc pour $x \neq 0$, on a $k'(x) = \frac{2}{x^2}$, et $k(x) = -\frac{2}{x}$. D'où la solution générale de l'équation non homogène $y(x) = -\frac{2x}{x+1} + k \frac{x^2}{x+1}$. Cette solution est définie sur $]-\infty,-1[$ ou $]-1,+\infty[$.

3. Existe-t-il une solution définie sur \mathbb{R} ?

On a $y(x) = \frac{x(kx-2)}{x+1}$. Donc pour $k \neq -2$, on ne peut prolonger y en -1. Pour k = -2, on peut prolonger y en -1. On obtient une solution définie sur $\mathbb{R}: y = -2x$.

Mini-exercices.

- 1. Résoudre l'équation différentielle $y' + y \ln 2 = 0$. Tracer les courbes intégrales. Trouver la solution vérifiant $y(1) = \frac{1}{2}$.
- 2. Résoudre l'équation différentielle 2y' + 3y = 5. Trouver la solution vérifiant $y(0) = -\frac{1}{3}$. Tracer la courbe intégrale.
- 3. Trouver une solution évidente, puis résoudre l'équation différentielle 2xy' + y = 1. Trouver la solution vérifiant y(1) = 2. Tracer la courbe intégrale. Même travail avec l'équation $xy' y = x^2$.
- 4. Par la méthode de variation de la constante, trouver une solution particulière de l'équation différentielle $y' 2xy = 3xe^{x^2}$. Même travail avec $y' + 2y = \sin(3x)e^{-2x}$.

3. Équation différentielle linéaire du second ordre à coefficients constants

3.1. Définition

Une équation différentielle linéaire du second ordre, à coefficients constants, est une équation de la forme

$$ay'' + by' + cy = g(x) \tag{E}$$

où $a, b, c \in \mathbb{R}$, $a \neq 0$ et g est une fonction continue sur un intervalle ouvert I. L'équation

$$ay'' + by' + cy = 0 (E_0)$$

est appelée l'équation homogène associée à (E).

La structure des solutions de l'équation est très simple :

Théorème 4.

L'ensemble des solutions de l'équation homogène (E_0) *est un* \mathbb{R} *-espace vectoriel de dimension* 2.

Nous admettons ce résultat.

And Change English

3.2. Équation homogène

On cherche une solution de (E_0) sous la forme $y(x) = e^{rx}$ où $r \in \mathbb{C}$ est une constante à déterminer. On trouve

$$ay'' + by' + cy = 0$$

$$\iff (ar^2 + br + c)e^{rx} = 0$$

$$\iff ar^2 + br + c = 0.$$

Définition 3.

L'équation $ar^2 + br + c = 0$ est appelée l'équation caractéristique associée à (E_0) .

Soit $\Delta = b^2 - 4ac$, le discriminant de l'équation caractéristique associée à (E_0) .

Théorème 5.

1. Si $\Delta > 0$, l'équation caractéristique possède deux racines réelles distinctes $r_1 \neq r_2$ et les solutions de (E_0) sont les

$$y(x) = \lambda e^{r_1 x} + \mu e^{r_2 x}$$
 où $\lambda, \mu \in \mathbb{R}$.

2. Si $\Delta = 0$, l'équation caractéristique possède une racine double r_0 et les solutions de (E_0) sont les

$$y(x) = (\lambda + \mu x)e^{r_0 x}$$
 où $\lambda, \mu \in \mathbb{R}$.

3. Si $\Delta < 0$, l'équation caractéristique possède deux racines complexes conjuguées $r_1 = \alpha + \mathrm{i}\,\beta$, $r_2 = \alpha - \mathrm{i}\,\beta$ et les solutions de (E_0) sont les

$$y(x) = e^{\alpha x} (\lambda \cos(\beta x) + \mu \sin(\beta x))$$
 où $\lambda, \mu \in \mathbb{R}$.

Exemple 12.

1. Résoudre sur \mathbb{R} l'équation y'' - y' - 2y = 0. L'équation caractéristique est $r^2 - r - 2 = 0$, qui s'écrit aussi (r+1)(r-2) = 0 ($\Delta > 0$). D'où, pour tout $x \in \mathbb{R}$, $y(x) = \lambda e^{-x} + \mu e^{2x}$, avec $\lambda, \mu \in \mathbb{R}$.

2. Résoudre sur \mathbb{R} l'équation y'' - 4y' + 4y = 0. L'équation caractéristique est $r^2 - 4r + 4 = 0$, soit $(r-2)^2 = 0$ ($\Delta = 0$). D'où, pour tout $x \in \mathbb{R}$, $y(x) = (\lambda x + \mu)e^{2x}$, avec $\lambda, \mu \in \mathbb{R}$.

3. Résoudre sur \mathbb{R} l'équation y'' - 2y' + 5y = 0. L'équation caractéristique est $r^2 - 2r + 5 = 0$. Elle admet deux solutions complexes conjuguées : $r_1 = 1 + 2i$ et $r_2 = 1 - 2i$ ($\Delta < 0$). D'où, pour tout $x \in \mathbb{R}$, $y(x) = e^x(\lambda \cos(2x) + \mu \sin(2x))$, avec $\lambda, \mu \in \mathbb{R}$.

Démonstration. La preuve consiste à trouver deux solutions linéairement indépendantes, ce qui permet d'affirmer qu'elles forment une base d'après le théorème 4 (que l'on a admis).

- 1. Si $\Delta > 0$, alors l'équation caractéristique a deux racines réelles distinctes r_1, r_2 . On obtient ainsi deux solutions $y_1 = e^{r_1 x}, y_2 = e^{r_2 x}$ qui sont linéairement indépendantes car $r_1 \neq r_2$. Comme l'espace des solutions est un espace vectoriel de dimension 2 (par le théorème 4), alors une base de l'espace des solutions de (E_0) est $\left\{e^{r_1 x}, e^{r_2 x}\right\}$. La solution générale de (E_0) s'écrit $y(x) = \lambda e^{r_1 x} + \mu e^{r_2 x}$, où $\lambda, \mu \in \mathbb{R}$.
- 2. Si $\Delta=0$, alors l'équation caractéristique a une racine réelle double r_0 . On obtient ainsi une solution $y_1=e^{r_0x}$. On vérifie que $y_2=xe^{r_0x}$ est aussi une solution : $ay_2''+by_2'+cy_2=(2ar_0+ar_0^2x)e^{r_0x}+(b+br_0x)e^{r_0x}+cxe^{r_0x}=(2ar_0+b)e^{r_0x}=0$ car $2ar_0+b=P'(r_0)=0$, où $P(r)=ar^2+br+c$. Ces deux solutions sont linéairement indépendantes. Une base de l'espace des solutions est $\left\{e^{r_0x},xe^{r_0x}\right\}$, et la solution générale de (E_0) s'écrit $y(x)=(\lambda+\mu x)e^{r_0x}$, où $\lambda,\mu\in\mathbb{R}$.
- 3. Si $\Delta < 0$, alors l'équation caractéristique a deux racines complexes conjuguées $r_1 = \alpha + \mathrm{i}\,\beta$, $r_2 = \alpha \mathrm{i}\,\beta$. On obtient deux solutions complexes $Y_1 = e^{(\alpha + \mathrm{i}\,\beta)x} = e^{\alpha x}e^{\mathrm{i}\,\beta x}$, $Y_2 = e^{(\alpha \mathrm{i}\,\beta)x} = e^{\alpha x}e^{-\mathrm{i}\,\beta x}$. Comme les parties réelles et imaginaires sont des solutions réelles, on obtient deux solutions réelles $y_1 = e^{\alpha x}\cos(\beta x)$, $y_2 = e^{\alpha x}\sin(\beta x)$, qui sont linéairement indépendantes. Alors, une base de l'espace des solutions est $\{e^{\alpha x}\cos(\beta x), e^{\alpha x}\sin(\beta x)\}$. La solution générale de (E_0) s'écrit $y(x) = e^{\alpha x}(\lambda\cos(\beta x) + \mu\sin(\beta x))$, où $\lambda, \mu \in \mathbb{R}$.

EdixChange Ellow

8.3. Équation avec second membre

Nous passons au cas général d'une équation différentielle linéaire d'ordre 2, à coefficients constants, mais avec un second membre g qui est une fonction continue sur un intervalle ouvert $I \subset \mathbb{R}$:

$$ay'' + by' + cy = g(x) \tag{E}$$

Pour ce type d'équation, nous admettons le théorème de Cauchy-Lipschitz qui s'énonce ainsi :

Théorème 6 (Théorème de Cauchy-Lipschitz).

Pour chaque $x_0 \in I$ et chaque couple $(y_0, y_1) \in \mathbb{R}^2$, l'équation (E) admet une **unique** solution y sur I satisfaisant aux conditions initiales :

$$y(x_0) = y_0$$
 et $y'(x_0) = y_1$.

Dans la pratique, pour résoudre une équation différentielle linéaire avec second membre (avec ou sans conditions initiales), on cherche d'abord une solution de l'équation homogène, puis une solution particulière de l'équation avec second membre et on applique le principe de superposition :

Proposition 4.

Les solutions générales de l'équation (E) s'obtiennent en ajoutant les solutions générales de l'équation homogène (E_0) à une solution particulière de (E).

Il reste donc à déterminer une solution particulière.

3.4. Recherche d'une solution particulière

On donne deux cas particuliers importants et une méthode générale.

Second membre du type $e^{\alpha x}P(x)$.

Si $g(x) = e^{\alpha x} P(x)$, avec $\alpha \in \mathbb{R}$ et $P \in \mathbb{R}[X]$, alors on cherche une solution particulière sous la forme $y_0(x) = e^{\alpha x} x^m Q(x)$, où Q est un polynôme de même degré que P avec :

- $y_0(x) = e^{\alpha x} Q(x)$ (m = 0), si α n'est pas une racine de l'équation caractéristique,
- $y_0(x) = xe^{\alpha x}Q(x)$ (m = 1), si α est une racine simple de l'équation caractéristique,
- $y_0(x) = x^2 e^{\alpha x} Q(x)$ (m = 2), si α est une racine double de l'équation caractéristique.

Second membre du type $e^{\alpha x} (P_1(x)\cos(\beta x) + P_2(x)\sin(\beta x))$.

Si $g(x) = e^{\alpha x} (P_1(x)\cos(\beta x) + P_2(x)\sin(\beta x))$, où $\alpha, \beta \in \mathbb{R}$ et $P_1, P_2 \in \mathbb{R}[X]$, on cherche une solution particulière sous la forme :

- $y_0(x) = e^{\alpha x} (Q_1(x)\cos(\beta x) + Q_2(x)\sin(\beta x))$, si $\alpha + i\beta$ n'est pas une racine de l'équation caractéristique,
- $y_0(x) = xe^{\alpha x}(Q_1(x)\cos(\beta x) + Q_2(x)\sin(\beta x))$, si $\alpha + i\beta$ est une racine de l'équation caractéristique.

Dans les deux cas, Q_1 et Q_2 sont deux polynômes de degré $n = \max\{\deg P_1, \deg P_2\}$.

Exemple 13.

Résoudre les équations différentielles :

$$(E_0) y'' - 5y' + 6y = 0$$
 $(E_1) y'' - 5y' + 6y = 4xe^x$ $(E_2) y'' - 5y' + 6y = 4xe^{2x}$

Trouver la solution de (E_1) vérifiant y(0) = 1 et y'(0) = 0.

- 1. Équation (E_0) . L'équation caractéristique est $r^2 5r + 6 = (r 2)(r 3) = 0$, avec deux racines distinctes $r_1 = 2, r_2 = 3$. Donc l'ensemble des solutions de (E_0) est $\{\lambda e^{2x} + \mu e^{3x} \mid \lambda, \mu \in \mathbb{R}\}$.
- 2. Équation (E_1) .
 - (a) On cherche une solution particulière à (E_1) sous la forme $y_0(x) = (ax + b)e^x$. Lorsque l'on injecte y_0 dans l'équation (E_1) , on obtient :

$$(ax + 2a + b)e^{x} - 5(ax + a + b)e^{x} + 6(ax + b)e^{x} = 4xe^{x}$$

$$\iff (a - 5a + 6a)x + 2a + b - 5(a + b) + 6b = 4x$$

$$\iff 2a = 4 \text{ et } -3a + 2b = 0$$

$$\iff a = 2 \text{ et } b = 3$$

Donc $y_0(x) = (2x + 3)e^x$.

- (b) L'ensemble des solutions de (E_1) est $\{(2x+3)e^x + \lambda e^{2x} + \mu e^{3x} \mid \lambda, \mu \in \mathbb{R}\}.$
- (c) On a $y(x) = (2x+3)e^x + \lambda e^{2x} + \mu e^{3x}$. On cherche λ , μ tels que y(0) = 1, y'(0) = 0. C'est-à-dire que $3 + \lambda + \mu = 1$, $5 + 2\lambda + 3\mu = 0$. Donc $\lambda = -1$, $\mu = -1$, c'est-à-dire que $y(x) = (2x+3)e^x e^{2x} e^{3x}$.
- 3. Équation (E_2) . Comme 2 est une racine de l'équation caractéristique, on cherche une solution particulière sous la forme $y_0(x) = x(ax+b)e^{2x}$. On obtient $y_0(x) = x(-2x-4)e^{2x}$.

Méthode de variation des constantes.

ATIONS DIFFÉRENTIELLES

Si $\{y_1, y_2\}$ est une base de solutions de l'équation homogène (E_0) , on cherche une solution particulière sous la forme $y_0 = \lambda y_1 + \mu y_2$, mais cette fois λ et μ sont deux fonctions vérifiant :

(S)
$$\begin{cases} \lambda' y_1 + \mu' y_2 = 0 \\ \lambda' y_1' + \mu' y_2' = \frac{g(x)}{a}. \end{cases}$$

Pourquoi cela? Si $y_0 = \lambda y_1 + \mu y_2$ est une telle fonction, alors :

$$y_0' = \lambda' y_1 + \mu' y_2 + \lambda y_1' + \mu y_2' = \lambda y_1' + \mu y_2'$$
$$y_0'' = \lambda' y_1' + \mu' y_2' + \lambda y_1'' + \mu y_2'' = \frac{g(x)}{a} + \lambda y_1'' + \mu y_2''$$

Ainsi l'équation (E) est vérifiée par y_0 :

$$ay_0'' + by_0' + cy_0 = a\left(\frac{g(x)}{a} + \lambda y_1'' + \mu y_2''\right) + b(\lambda y_1' + \mu y_2') + c(\lambda y_1 + \mu y_2)$$

$$= g(x) + \lambda(ay_1'' + by_1' + cy_1) + \mu(ay_2'' + by_2' + cy_2)$$

$$= g(x)$$

On a utilisé le fait que y_1 et y_2 sont solutions de l'équation homogène. Le système (S) se résout facilement, ce qui donne λ' et μ' , puis λ et μ par intégration.

Exemple 14.

Résoudre l'équation suivante, sur l'intervalle $]-\frac{\pi}{2},+\frac{\pi}{2}[:$

$$y'' + y = \frac{1}{\cos x}$$

Les solutions de l'équation homogène y''+y=0 sont $\lambda\cos x+\mu\sin x$ où $\lambda,\mu\in\mathbb{R}.$

On cherche une solution particulière de l'équation avec second membre sous la forme

$$y_0(x) = \lambda(x)\cos x + \mu(x)\sin x$$

où cette fois $\lambda(x)$, $\mu(x)$ sont des fonctions à trouver et qui vérifient (S)

$$\left\{ \begin{array}{lll} \lambda' y_1 + \mu' y_2 & = & 0 \\ \lambda' y_1' + \mu' y_2' & = & \frac{g(x)}{a} \end{array} \right. \quad \mathrm{donc} \quad \left\{ \begin{array}{lll} \lambda' \cos x + \mu' \sin x & = & 0 \\ -\lambda' \sin x + \mu' \cos x & = & \frac{1}{\cos x}. \end{array} \right.$$

En multipliant la première ligne par $\sin x$ et la seconde par $\cos x$, on obtient

$$\begin{cases} \lambda' \cos x \sin x + \mu' (\sin x)^2 &= 0 \\ -\lambda' \cos x \sin x + \mu' (\cos x)^2 &= 1 \end{cases}$$
 donc par somme $\mu' = 1$.

Ainsi $\mu(x) = x$ et la première ligne des équations devient $\lambda' = -\frac{\sin x}{\cos x}$ donc $\lambda(x) = \ln(\cos x)$.

On vérifie pour se rassurer que $y_0(x) = \ln(\cos x)\cos x + x\sin x$ est une solution de l'équation. Ainsi les fonctions solutions sont de la forme :

$$\lambda \cos x + \mu \sin x + \ln(\cos x)\cos x + x\sin x$$

quels que soient $\lambda, \mu \in \mathbb{R}$.

Mini-exercices.

- 1. Résoudre l'équation différentielle $y'' + \omega^2 y = 0$. Trouver la solution vérifiant y(0) = 1 et y'(0) = 1. Tracer la courbe intégrale. Résoudre l'équation différentielle $y'' + \omega^2 y = \sin(\omega x)$.
- 2. Résoudre l'équation différentielle y'' + y' 6y = 0. Trouver la solution vérifiant y(-1) = 1 et y'(-1) = 0. Tracer la courbe intégrale. Résoudre l'équation différentielle $y'' + y' 6y = e^x$.
- 3. Résoudre l'équation différentielle $2y''-2y'+\frac{1}{2}y=0$. Trouver la solution ayant une limite finie lorsque $x\to +\infty$. Résoudre $2y''-2y'+\frac{1}{2}y=x-1$.

4. Problèmes conduisant à des équations différentielles

4.1. Parachutiste

Revenons sur l'exemple du parachutiste de l'introduction : sa vitesse verticale vérifie l'équation différentielle

$$\frac{\mathrm{d}v(t)}{\mathrm{d}t} = g - fv(t)$$

où g (la constante de gravitation) et f (le coefficient de frottement) sont des constantes.

Nous avons tous les ingrédients pour trouver v.

- Équation homogène. Les solutions de l'équation homogène v'(t) = -fv(t) sont les $v(t) = ke^{-ft}$, $k \in \mathbb{R}$.
- Solution particulière. On cherche une solution particulière $v_p(t) = k(t)e^{-ft}$ de l'équation v' = g fv par la méthode de variation de la constante : $v_p'(t) = k'(t)e^{-ft} fk(t)e^{-ft}$. Pour que v_p soit solution de l'équation différentielle il faut et il suffit donc que $k'(t)e^{-ft} = g$. Ainsi $k'(t) = ge^{ft}$ donc, par exemple, $k(t) = \frac{g}{f}e^{ft}$. Ainsi $v_p(t) = \frac{g}{f}$.
- Solutions générales. La solution générale de l'équation est donc $v(t) = \frac{g}{f} + ke^{-ft}$, $k \in \mathbb{R}$.
- Condition initiale. Si à l'instant t = 0 le parachute se lance avec une vitesse initiale nulle, c'est-à-dire $\nu(0) = 0$, alors sa vitesse est :

$$v(t) = \frac{g}{f} - \frac{g}{f}e^{-ft}.$$

- Vitesse limite. Lorsque $t \to +\infty$, $v(t) \to v_{\infty} = \frac{g}{f}$, qui représente la vitesse limite que le parachutiste ne peut dépasser. Expérimentalement, on mesure que v_{∞} vaut environ 5 m/s (soit environ 20 km/h), et comme $g \approx 9.81 \,\text{m/s}^2$, cela permet de calculer le coefficient de frottement f.
- **Position.** Comme $v(t) = \frac{dx(t)}{dt}$, trouver la position x revient à trouver une primitive de v:

$$x(t) = \frac{g}{f}t + \frac{g}{f^2}(e^{-ft} - 1)$$

en prenant comme convention x(0) = 0.

Ceci n'est bien sûr qu'un *modèle* qui ne correspond pas parfaitement à la réalité, mais permet cependant de mettre en évidence des propriétés vérifiées par les conditions expérimentales, comme la vitesse limite par exemple.

Dans un tissu radioactif, la vitesse de désintégration des noyaux radioactifs est proportionnelle au nombre de noyaux radioactifs N(t) présents dans le tissu à l'instant t. Il existe donc une constante λ strictement positive telle que :

$$N'(t) = -\lambda N(t)$$

Le signe « — » de cette équation différentielle traduit la décroissance du nombre de noyaux. Si N_0 désigne le nombre de noyaux à l'instant initial, on a donc :

$$N(t) = N_0 e^{-\lambda t}$$

Dans ce contexte apparaissent souvent deux grandeurs qu'il est bon de savoir interpréter graphiquement :

• Le *temps caractéristique*, noté τ , est défini par :

$$\tau = \frac{1}{\lambda}$$

Si (T) désigne la tangente à l'origine de la courbe (C) de la fonction N, le temps caractéristique τ est l'abscisse du point d'intersection de la droite (T) avec l'axe du temps. En effet, une équation de (T) est :

$$y = N'(0)t + N(0) = -\lambda N_0 t + N_0$$

On constate que si $t = \tau$, on a bien y = 0. Plus le temps caractéristique est petit, plus la vitesse de désintégration initiale est élevée.

La période de demi-vie, notée τ_{1/2}, est la période au bout de laquelle la moitié des noyaux se sont désintégrés.
 On a donc :

$$N(\tau_{1/2}) = \frac{N_0}{2}$$

Donc $N_0 e^{-\lambda \tau_{1/2}} = \frac{N_0}{2}$, d'où $\lambda \tau_{1/2} = \ln 2$. Ainsi :

$$\tau_{1/2} = \frac{\ln 2}{\lambda} = \tau \ln 2$$

On peut aussi exprimer N(t) en fonction de la période de demi-vie :

$$N(t) = N_0 e^{-\lambda t} = N_0 e^{-\frac{t}{\tau}} = N_0 e^{-\frac{t}{\tau_{1/2}} \ln 2} = N_0 2^{-\frac{t}{\tau_{1/2}}}$$

Notez que $\tau_{1/2}$ ne dépend pas de N_0 , et c'est bien le temps nécessaire pour que la moitié des noyaux se soient désintégrés, ce quel que soit l'instant initial :

$$N(t+\tau_{1/2}) = N_0 2^{-\frac{t+\tau_{1/2}}{\tau_{1/2}}} = N_0 2^{-\frac{t}{\tau_{1/2}}-1} = \frac{1}{2}N_0 2^{-\frac{t}{\tau_{1/2}}} = \frac{N(t)}{2}$$

4.3. Modèles d'évolution

On considère une culture de bactéries en milieu clos. Soit N_0 le nombre de bactéries introduites dans la culture à l'instant t = 0.

Loi de Malthus.

In premier modèle est de supposer que la vitesse d'accroissement des bactéries est proportionnelle au nombre ${
m d}$ bactéries en présence. Cela signifie que le nombre N(t) de bactéries vérifie l'équation différentielle

$$y' = ay$$
,

où a > 0 est une constante dépendant des conditions expérimentales. Nous savons résoudre cette équation! Ainsi selon ce modèle

$$N(t) = N_0 e^{at}$$
.

Le milieu étant limité (en volume, en éléments nutritifs,...), le nombre de bactéries ne peut pas croître indéfiniment de façon exponentielle. Ce modèle ne peut donc s'appliquer sur une longue période.

Modèle de Verhulst.

Pour tenir compte de ces observations, on présente un autre modèle d'évolution. On suppose que le nombre N(t) de bactéries vérifie l'équation différentielle

$$y' = ay(M - y), (E)$$

où a > 0 et M > 0 sont des constantes.

On cherche les solutions y de (E) telles que y(t) > 0 pour $t \in I = [0, +\infty[$. Supposons qu'une telle solution y existe.

• Changement de fonction.

On transforme l'équation (E) en une équation plus facile à résoudre. Pour cela on pose $z(x) = \frac{1}{v(x)}$. La fonction zest dérivable sur I et :

$$z' = -\frac{y'}{y^2} = \frac{ay(y-M)}{y^2} = a - \frac{aM}{y} = a - aMz$$

• Solutions z.

Ainsi la fonction z doit vérifier l'équation différentielle

$$z' = a - aMz$$
.

qui est une équation différentielle linéaire d'ordre 1 à coefficients constants avec second membre constant. On en déduit que, pour tout $x \in I$,

$$z(x) = ke^{-aMx} + \frac{1}{M}$$

où $k \in \mathbb{R}$ est une constante.

Solutions y.

Cela permet d'obtenir y :

$$y(x) = \frac{1}{z(x)} = \frac{1}{ke^{-aMx} + \frac{1}{M}} = \frac{M}{kMe^{-aMx} + 1}$$

La constante k est déterminée par la condition initiale $y(0) = \frac{M}{kM+1} = N_0$, ainsi $k = \frac{1}{N_0} - \frac{1}{M}$. **Exemple.** On suppose $N_0 = 0$, 01 (en million de bactéries) et M = 1, a = 1. Alors $k = \frac{1}{N_0} - \frac{1}{M} = 99$. Ainsi selon ce modèle:

$$N(t) = \frac{1}{1 + 99e^{-t}}$$

Il est clair que 0 < N(t) < 1 pour tout $t \ge 0$, et $N(t) \to 1$ lorsque $t \to +\infty$.

Pour connaître les variations de la fonction N, nul besoin de calculs car on sait déjà que N est solution de l'équation différentielle (*E*), donc N'(t) = N(t)(1 - N(t)). Ainsi N'(t) > 0, donc la fonction N est croissante.

Le modèle de Verhulst a l'avantage de bien faire apparaître un comportement asymptotique particulier : le nombre de bactéries finit par se stabiliser.

Rose Change E Tolk Change E To

4.4. Masse attachée à un ressort

Une masse est attachée à un ressort. Quelles sont les forces qui s'appliquent à cette masse?

- Un poids \vec{P} ,
- une réaction $\vec{R} = -\vec{P}$ qui s'oppose au poids,
- une force de rappel \vec{T} ,
- une force de frottement \vec{F} .

Principe fondamental de la mécanique

Le principe fondamental de la mécanique s'écrit :

$$\vec{P} + \vec{R} + \vec{T} + \vec{F} = m\vec{a}$$

Il est à noter que la réaction s'opposant au poids, on a $\vec{P} + \vec{R} = \vec{0}$, et l'équation devient :

$$\vec{T} + \vec{F} = m\vec{a}$$

Force de rappel

La force de rappel est une force horizontale. Elle est nulle à la position d'équilibre, qui sera pour nous l'origine x=0. Si on écarte davantage la masse du mur, la force de rappel est un vecteur horizontal qui pointe vers la position d'équilibre (vers la gauche sur le dessin). Si on rapproche la masse du mur, le ressort se comprime, et la force de rappel est un vecteur horizontal qui pointe encore vers la position d'équilibre (cette fois vers la droite sur le dessin). On modélise la force de rappel par

$$\vec{T} = -kx\vec{i}$$

où x est la position de la masse (on peut avoir $x \ge 0$ ou $x \le 0$), et k > 0 est une constante qui dépend du ressort.

Oscillations sans frottements

Dans un premier temps, on suppose qu'il n'y a pas de frottement : $\vec{F} = \vec{0}$.

Le principe fondamental de la mécanique, considéré uniquement sur l'axe horizontal, s'écrit alors :

$$-kx(t) = m\frac{\mathrm{d}^2x(t)}{\mathrm{d}t^2}$$

Il s'agit donc de résoudre l'équation différentielle du second ordre :

$$y'' + \frac{k}{m}y = 0$$

L'équation caractéristique est $r^2 + \frac{k}{m} = 0$, dont les solutions sont les nombres complexes $r_1 = +\mathrm{i}\,\sqrt{\frac{k}{m}}$ et $r_2 = -\mathrm{i}\,\sqrt{\frac{k}{m}}$. Nous sommes dans le cas $\Delta = -4\frac{k}{m} < 0$. Les solutions de cette équation caractéristique sont de la forme $\alpha \pm \mathrm{i}\,\beta$ avec

 $\alpha=0,\, \beta=\sqrt{rac{k}{m}},$ ce qui fait que les solutions de l'équation différentielle sont les :

$$y(x) = e^{\alpha x} (\lambda \cos(\beta x) + \mu \sin(\beta x))$$

Dans notre situation (la fonction inconnue est x et la variable t):

$$x(t) = \lambda \cos\left(\sqrt{\frac{k}{m}}t\right) + \mu \sin\left(\sqrt{\frac{k}{m}}t\right) \qquad (\lambda, \mu \in \mathbb{R})$$

Exemple 15.

On lâche la masse au point d'abscisse 1, sans vitesse initiale. Cela nous donne les conditions initiales x(0) = 1 et x'(0) = 0. Comme x(0) = 1 alors $\lambda = 1$. Comme x'(0) = 0 alors $\mu = 0$. Ainsi on trouve une solution périodique :

$$x(t) = \cos\left(\sqrt{\frac{k}{m}}t\right)$$

Oscillations avec faibles frottements

On rajoute une force de frottement $\vec{F} = -f m \frac{\mathrm{d}x(t)}{\mathrm{d}t}$ qui est proportionnelle à la vitesse et s'oppose au déplacement (f est le coefficient de frottement). Le principe fondamental de la mécanique devient :

$$-kx(t) - fm\frac{\mathrm{d}x(t)}{\mathrm{d}t} = m\frac{\mathrm{d}^2x(t)}{\mathrm{d}t^2}$$

Il s'agit donc de résoudre l'équation différentielle :

$$y'' + fy' + \frac{k}{m}y = 0$$

L'équation caractéristique est cette fois $r^2+fr+\frac{k}{m}=0$. Son discriminant est $\Delta=f^2-4\frac{k}{m}$. Supposons que le coefficient de frottement f soit faible, c'est-à-dire que $\Delta=f^2-4\frac{k}{m}<0$, comme dans le cas sans frottement. On note $\delta=\sqrt{|\Delta|}=\sqrt{4\frac{k}{m}-f^2}$. Les deux solutions sont $r_1=\alpha+\mathrm{i}\,\beta$ et $r_2=\alpha-\mathrm{i}\,\beta$ avec $\alpha=-\frac{f}{2}$ et $\beta=\frac{\delta}{2}=\sqrt{\frac{k}{m}-\frac{f^2}{4}}$. Les solutions de l'équation différentielle sont encore de la forme :

$$y(x) = e^{\alpha x} (\lambda \cos(\beta x) + \mu \sin(\beta x))$$

Ce qui donne ici:

$$x(t) = e^{-\frac{f}{2}t} \left(\lambda \cos\left(\frac{\delta}{2}t\right) + \mu \sin\left(\frac{\delta}{2}t\right) \right) \qquad (\lambda, \mu \in \mathbb{R})$$

Cette fois la solution n'est plus périodique, mais correspond à un mouvement oscillant amorti, qui tend vers la position d'équilibre x = 0.

Mini-exercices.

- 1. Un circuit électrique constitué d'un condensateur de capacité C se décharge dans une résistance R. Calculer l'évolution de la charge électrique qui vérifie $q(t) = -RC \frac{\mathrm{d}q(t)}{\mathrm{d}t}$.
- 2. Calculer et tracer les solutions du système masse-ressort pour différents niveaux de frottements.

3. Un tasse de café de température $T_0 = 100\,^{\circ}\text{C}$ est posée dans une pièce de température $T_{\infty} = 20\,^{\circ}\text{C}$. La loi de Newton affirme que la vitesse de décroissance de la température $\frac{\mathrm{d}T(t)}{\mathrm{d}t}$ est proportionnelle à l'écart entre sa température T(t) et la température ambiante T_{∞} . Sachant qu'au bout de 3 min la température du café est passée à 80 °C, combien de temps faudra-t-il pour avoir un café à 65 °C?

Auteurs du chapitre

D'après un cours de Gilles Costantini pour le site Bacamaths et des cours de Guoting Chen et Abdellah Hanani Repris et mixés par Arnaud Bodin Relu par Stéphanie Bodin et Vianney Combet

Intégrales

```
Vidéo ■ partie 1. L'intégrale de Riemann
```

Vidéo ■ partie 2. Propriétés

Vidéo ■ partie 3. Primitive

Vidéo ■ partie 4. Intégration par parties - Changement de variable

Vidéo ■ partie 5. Intégration des fractions rationnelles

Fiche d'exercices ♦ Calculs d'intégrales

Motivation

Nous allons introduire l'intégrale à l'aide d'un exemple. Considérons la fonction exponentielle $f(x) = e^x$. On souhaite calculer l'aire $\mathscr A$ en-dessous du graphe de f et entre les droites d'équation (x = 0), (x = 1) et l'axe (Ox).

Nous approchons cette aire par des sommes d'aires des rectangles situés sous la courbe. Plus précisément, soit $n \geqslant 1$ un entier ; découpons notre intervalle [0,1] à l'aide de la subdivision $(0,\frac{1}{n},\frac{2}{n},\dots,\frac{i}{n},\dots,\frac{n-1}{n},1)$. On considère les « rectangles inférieurs » \mathcal{R}_i^- , chacun ayant pour base l'intervalle $\left[\frac{i-1}{n},\frac{i}{n}\right]$ et pour hauteur $f\left(\frac{i-1}{n}\right) = e^{(i-1)/n}$. L'entier i varie de 1 à n. L'aire de \mathcal{R}_i^- est « base × hauteur » : $\left(\frac{i}{n}-\frac{i-1}{n}\right)$ × $e^{(i-1)/n}=\frac{1}{n}e^{\frac{i-1}{n}}$.

$$\sum_{i=1}^{n} \frac{e^{\frac{i-1}{n}}}{n} = \frac{1}{n} \sum_{i=1}^{n} \left(e^{\frac{1}{n}} \right)^{i-1} = \frac{1}{n} \frac{1 - \left(e^{\frac{1}{n}} \right)^{n}}{1 - e^{\frac{1}{n}}} = \frac{\frac{1}{n}}{e^{\frac{1}{n}} - 1} (e - 1) \xrightarrow[n \to +\infty]{} e - 1.$$

Pour la limite on a reconnu l'expression du type $\frac{e^x-1}{x} \xrightarrow[x \to 0]{} 1$ (avec ici $x = \frac{1}{n}$).

Soit maintenant les « rectangles supérieurs » \mathcal{R}_i^+ , ayant la même base $\left[\frac{i-1}{n},\frac{i}{n}\right]$ mais la hauteur $f\left(\frac{i}{n}\right)=e^{i/n}$. Un calcul similaire montre que $\sum_{i=1}^n \frac{e^{\frac{i}{n}}}{n} \to e-1$ lorsque $n \to +\infty$.

L'aire \mathscr{A} de notre région est supérieure à la somme des aires des rectangles inférieurs; et elle est inférieure à la somme des aires des rectangles supérieurs. Lorsque l'on considère des subdivisions de plus en plus petites (c'est-à-dire lorsque l'on fait tendre n vers $+\infty$) alors on obtient à la limite que l'aire \mathscr{A} de notre région est encadrée par deux aires qui tendent vers e-1. Donc l'aire de notre région est $\mathscr{A}=e-1$.

Voici le plan de lecture conseillé pour ce chapitre : il est tout d'abord nécessaire de bien comprendre comment est définie l'intégrale et quelles sont ses principales propriétés (parties ?? et ??). Mais il est important d'arriver rapidement à savoir calculer des intégrales : à l'aide de primitives ou par les deux outils efficaces que sont l'intégration par parties et le changement de variable.

Dans un premier temps on peut lire les sections ??, ?? puis ??, ??, avant de s'attarder longuement sur les parties ??, ??. Lors d'une seconde lecture, revenez sur la construction de l'intégrale et les preuves.

Dans ce chapitre on s'autorisera (abusivement) une confusion entre une fonction f et son expression f(x). Par exemple on écrira « une primitive de la fonction $\sin x$ est $-\cos x$ » au lieu « une primitive de la fonction $x \mapsto \sin x$ est $x \mapsto -\cos x$ ».

1. L'intégrale de Riemann

Nous allons reprendre la construction faite dans l'introduction pour une fonction f quelconque. Ce qui va remplacer les rectangles seront des *fonctions en escalier*. Si la limite des aires en-dessous égale la limite des aires au-dessus on appelle cette limite commune *l'intégrale* de f que l'on note $\int_a^b f(x) \, dx$. Cependant il n'est pas toujours vrai que ces limites soient égales, l'intégrale n'est donc définie que pour les fonctions *intégrables*. Heureusement nous verrons que si la fonction f est continue alors elle est intégrable.

1.1. Intégrale d'une fonction en escalier

Définition 1

Soit [a,b] un intervalle fermé borné de \mathbb{R} $(-\infty < a < b < +\infty)$. On appelle une *subdivision* de [a,b] une suite finie, strictement croissante, de nombres $\mathscr{S}=(x_0,x_1,\ldots,x_n)$ telle que $x_0=a$ et $x_n=b$. Autrement dit $a=x_0< x_1<\cdots< x_n=b$.

Définition 2.

Une fonction $f:[a,b] \to \mathbb{R}$ est une *fonction en escalier* s'il existe une subdivision (x_0,x_1,\ldots,x_n) et des nombres réels c_1,\ldots,c_n tels que pour tout $i \in \{1,\ldots,n\}$ on ait

$$\forall x \in]x_{i-1}, x_i[f(x) = c_i$$

Autrement dit f est une fonction constante sur chacun des sous-intervalles de la subdivision.

Remarque.

La valeur de f aux points x_i de la subdivision n'est pas imposée. Elle peut être égale à celle de l'intervalle qui précède ou de celui qui suit, ou encore une autre valeur arbitraire. Cela n'a pas d'importance car l'aire ne changera pas.

Définition 3.

Pour une fonction en escalier comme ci-dessus, son *intégrale* est le réel $\int_a^b f(x) dx$ défini par

$$\int_{a}^{b} f(x) dx = \sum_{i=1}^{n} c_{i}(x_{i} - x_{i-1})$$

Remarque.

Notez que chaque terme $c_i(x_i - x_{i-1})$ est l'aire du rectangle compris entre les abscisses x_{i-1} et x_i et de hauteur c_i . Il faut juste prendre garde que l'on compte l'aire avec un signe « + » si $c_i > 0$ et un signe « - » si $c_i < 0$.

L'intégrale d'une fonction en escalier est l'aire de la partie située au-dessus de l'axe des abscisses (ici en rouge) moins l'aire de la partie située en-dessous (en bleu). L'intégrale d'une fonction en escalier est bien un nombre réel qui mesure l'aire algébrique (c'est-à-dire avec signe) entre la courbe de f et l'axe des abscisses.

1.2. Fonction intégrable

Rappelons qu'une fonction $f:[a,b] \to \mathbb{R}$ est bornée s'il existe $M \ge 0$ tel que :

$$\forall x \in [a, b] \quad -M \leqslant f(x) \leqslant M.$$

Rappelons aussi que si l'on a deux fonctions $f, g : [a, b] \to \mathbb{R}$, alors on note

$$f \leqslant g \qquad \Longleftrightarrow \qquad \forall x \in [a,b] \quad f(x) \leqslant g(x).$$

On suppose à présent que $f:[a,b] \to \mathbb{R}$ est une fonction bornée quelconque. On définit deux nombres réels :

$$I^{-}(f) = \sup \left\{ \int_{a}^{b} \phi(x) \, dx \mid \phi \text{ en escalier et } \phi \leqslant f \right\}$$
$$I^{+}(f) = \inf \left\{ \int_{a}^{b} \phi(x) \, dx \mid \phi \text{ en escalier et } \phi \geqslant f \right\}$$

Pour $I^-(f)$ on prend toutes les fonctions en escalier (avec toutes les subdivisions possibles) qui restent inférieures à f. On prend l'aire la plus grande parmi toutes ces fonctions en escalier, comme on n'est pas sûr que ce maximum existe on prend la borne supérieure. Pour $I^+(f)$ c'est le même principe mais les fonctions en escalier sont supérieures à f et on cherche l'aire la plus petite possible.

Il est intuitif que l'on a :

Proposition 1.
$$I=(f) < I^+(f)$$

 $I^-(f) \leqslant I^+(f)$.

Les preuves sont reportées en fin de section.

Définition 4.

Une fonction bornée $f:[a,b] \to \mathbb{R}$ est dite *intégrable* (au sens de Riemann) si $I^-(f) = I^+(f)$. On appelle alors ce nombre *l'intégrale de Riemann* de f sur [a,b] et on le note $\int_a^b f(x) \, dx$.

Exemple 1.

- Les fonctions en escalier sont intégrables! En effet si f est une fonction en escalier alors la borne inférieure $I^-(f)$ et supérieure $I^+(f)$ sont atteintes avec la fonction $\phi = f$. Bien sûr l'intégrale $\int_a^b f(x) dx$ coïncide avec l'intégrale de la fonction en escalier définie lors du paragraphe ??.
- Nous verrons dans la section suivante que les fonctions continues et les fonctions monotones sont intégrables.
- Cependant toutes les fonctions ne sont pas intégrables. La fonction $f:[0,1]\to\mathbb{R}$ définie par f(x)=1 si x est rationnel et f(x) = 0 sinon, n'est pas intégrable sur [0, 1]. Convainquez-vous que si ϕ est une fonction en escalier avec $\phi \leqslant f$ alors $\phi \leqslant 0$ et que si $\phi \geqslant f$ alors $\phi \geqslant 1$. On en déduit que $I^-(f) = 0$ et $I^+(f) = 1$. Les bornes inférieure et supérieure ne coïncident pas, donc f n'est pas intégrable.

Il n'est pas si facile de calculer des exemples avec la définition. Nous avons vu l'exemple de la fonction exponentielle dans l'introduction où nous avions en fait montré que $\int_0^1 e^x dx = e - 1$. Nous allons voir maintenant l'exemple de la fonction $f(x) = x^2$. Plus tard nous verrons que les primitives permettent de calculer simplement beaucoup d'intégrales.

Exemple 2.

Soit $f:[0,1]\to\mathbb{R}$, $f(x)=x^2$. Montrons qu'elle est intégrable et calculons $\int_0^1 f(x) \, dx$.

Soit $n \ge 1$ et considérons la subdivision régulière de [0,1] suivante $\mathcal{S} = (0,\frac{1}{n},\frac{2}{n},\dots,\frac{i}{n},\dots,\frac{n-1}{n},1)$. Sur l'intervalle $\left[\frac{i-1}{n}, \frac{i}{n}\right]$ nous avons

$$\forall x \in \left[\frac{i-1}{n}, \frac{i}{n}\right] \quad \left(\frac{i-1}{n}\right)^2 \leqslant x^2 \leqslant \left(\frac{i}{n}\right)^2.$$

Nous construisons une fonction en escalier ϕ^- en-dessous de f par $\phi^-(x) = \frac{(i-1)^2}{n^2}$ si $x \in \left[\frac{i-1}{n}, \frac{i}{n}\right[$ (pour chaque $i=1,\ldots,n$) et $\phi^-(1)=1$. De même nous construisons une fonction en escalier ϕ^+ au-dessus de f définie par $\phi^+(x) = \frac{i^2}{n^2}$ si $x \in \left[\frac{i-1}{n}, \frac{i}{n}\right]$ (pour chaque i = 1, ..., n) et $\phi^+(1) = 1$. ϕ^- et ϕ^+ sont des fonctions en escalier et l'on a

L'intégrale de la fonction en escalier ϕ^+ est par définition

$$\int_0^1 \phi^+(x) \, dx = \sum_{i=1}^n \frac{i^2}{n^2} \left(\frac{i}{n} - \frac{i-1}{n} \right) = \sum_{i=1}^n \frac{i^2}{n^2} \frac{1}{n} = \frac{1}{n^3} \sum_{i=1}^n i^2.$$

On se souvient de la formule $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$, et donc

$$\int_0^1 \phi^+(x) \, dx = \frac{n(n+1)(2n+1)}{6n^3} = \frac{(n+1)(2n+1)}{6n^2} \cdot$$

De même pour la fonction ϕ^- :

$$\int_0^1 \phi^-(x) \, dx = \sum_{i=1}^n \frac{(i-1)^2}{n^2} \frac{1}{n} = \frac{1}{n^3} \sum_{i=1}^{n-1} j^2 = \frac{(n-1)n(2n-1)}{6n^3} = \frac{(n-1)(2n-1)}{6n^2} \cdot \frac{(n-1)(2n-1)}{6n^2} = \frac{$$

Maintenant $I^-(f)$ est la borne supérieure sur toutes les fonctions en escalier inférieures à f donc en particulier $I^-(f) \geqslant \int_0^1 \phi^-(x) \, dx$. De même $I^+(f) \leqslant \int_0^1 \phi^+(x) \, dx$. En résumé :

$$\frac{(n-1)(2n-1)}{6n^2} = \int_0^1 \phi^-(x) \, dx \leqslant I^-(f) \leqslant I^+(f) \leqslant \int_0^1 \phi^+(x) \, dx = \frac{(n+1)(2n+1)}{6n^2}.$$

Lorsque l'on fait tendre n vers $+\infty$ alors les deux extrémités tendent vers $\frac{1}{3}$. On en déduit que $I^-(f) = I^+(f) = \frac{1}{3}$. Ainsi f est intégrable et $\int_0^1 x^2 dx = \frac{1}{3}$.

1.3. Premières propriétés

Proposition 2.

- 1. Si $f:[a,b] \to \mathbb{R}$ est intégrable et si l'on change les valeurs de f en un nombre fini de points de [a,b] alors la fonction f est toujours intégrable et la valeur de l'intégrale $\int_a^b f(x) dx$ ne change pas.
- 2. Si $f:[a,b] \to \mathbb{R}$ est intégrable alors la restriction de f à tout intervalle $[a',b'] \subset [a,b]$ est encore intégrable.

1.4. Les fonctions continues sont intégrables

Voici le résultat théorique le plus important de ce chapitre.

Théorème 1.

Si $f : [a, b] \to \mathbb{R}$ est continue alors f est intégrable.

La preuve sera vue plus loin mais l'idée est que les fonctions continues peuvent être approchées d'aussi près que l'on veut par des fonctions en escalier, tout en gardant un contrôle d'erreur uniforme sur l'intervalle.

Une fonction $f:[a,b] \to \mathbb{R}$ est dite *continue par morceaux* s'il existe un entier n et une subdivision (x_0,\ldots,x_n) telle que $f_{|]x_{i-1},x_i[}$ soit continue, admette une limite finie à droite en x_{i-1} et une limite à gauche en x_i pour tout $i \in \{1,\ldots,n\}$.

Corollaire 1

Les fonctions continues par morceaux sont intégrables.

Voici un résultat qui prouve que l'on peut aussi intégrer des fonctions qui ne sont pas continues à condition que la fonction soit croissante (ou décroissante).

Théorème 2.

Si $f : [a, b] \to \mathbb{R}$ est monotone alors f est intégrable.

1.5. Les preuves

Les preuves peuvent être sautées lors d'une première lecture. Les démonstrations demandent une bonne maîtrise des bornes sup et inf et donc des « epsilons ». La proposition ?? se prouve en manipulant les « epsilons ». Pour la preuve de la proposition ?? : on prouve d'abord les propriétés pour les fonctions en escalier et on en déduit qu'elles restent vraies pour les fonctions intégrables (cette technique sera développée en détails dans la partie suivante).

Le théorème ?? établit que les fonctions continues sont intégrables. Nous allons démontrer une version affaiblie de ce résultat. Rappelons que f est dite de *classe* \mathcal{C}^1 si f est continue, dérivable et f' est aussi continue.

Théorème 3 (Théorème ?? faible).

Si $f:[a,b] \to \mathbb{R}$ est de classe \mathscr{C}^1 alors f est intégrable.

Démonstration. Comme f est de classe \mathscr{C}^1 alors f' est une fonction continue sur l'intervalle fermé et borné [a,b]; f' est donc une fonction bornée : il existe $M\geqslant 0$ tel que pour tout $x\in [a,b]$ on ait $|f'(x)|\leqslant M$.

Nous allons utiliser l'inégalité des accroissements finis :

$$\forall x, y \in [a, b] \quad |f(x) - f(y)| \leqslant M|x - y|. \tag{*}$$

Soit $\epsilon > 0$ et soit (x_0, x_1, \dots, x_n) une subdivision de [a, b] vérifiant pour tout $i = 1, \dots, n$:

$$0 < x_i - x_{i-1} \leqslant \epsilon. \tag{**}$$

Nous allons construire deux fonctions en escalier $\phi^-, \phi^+ : [a, b] \to \mathbb{R}$ définies de la façon suivante : pour chaque i = 1, ..., n et chaque $x \in [x_{i-1}, x_i[$ on pose

$$c_i = \phi^-(x) = \inf_{t \in [x_{i-1}, x_i[} f(t) \quad \text{et} \quad d_i = \phi^+(x) = \sup_{t \in [x_{i-1}, x_i[} f(t)$$

et aussi $\phi^-(b) = \phi^+(b) = f(b)$. ϕ^- et ϕ^+ sont bien deux fonctions en escalier (elles sont constantes sur chaque intervalle $[x_{i-1}, x_i]$).

De plus par construction on a bien $\phi^- \leqslant f \leqslant \phi^+$ et donc

$$\int_{a}^{b} \phi^{-}(x) \, dx \leqslant I^{-}(f) \leqslant I^{+}(f) \leqslant \int_{a}^{b} \phi^{+}(x) \, dx \, .$$

En utilisant la continuité de f sur l'intervalle $[x_{i-1}, x_i]$, on déduit l'existence de $a_i, b_i \in [x_{i-1}, x_i]$ tels que $f(a_i) = c_i$ et $f(b_i) = d_i$. Avec (??) et (??) on sait que $d_i - c_i = f(b_i) - f(a_i) \le M|b_i - a_i| \le M(x_i - x_{i-1}) \le M\epsilon$ (pour tout $i = 1, \ldots, n$). Alors

$$\int_{a}^{b} \phi^{+}(x) dx - \int_{a}^{b} \phi^{-}(x) dx \leqslant \sum_{i=1}^{n} M \epsilon(x_{i} - x_{i-1}) = M \epsilon(b - a)$$

Ainsi $0 \le I^+(f) - I^-(f) \le M\epsilon(b-a)$ et lorsque l'on fait tendre $\epsilon \to 0$ on trouve $I^+(f) = I^-(f)$, ce qui prouve que f est intégrable.

La preuve du théorème ?? est du même style et nous l'omettons.

Mini-exercices.

- 1. Soit $f:[1,4] \to \mathbb{R}$ définie par f(x) = 1 si $x \in [1,2[$, f(x) = 3 si $x \in [2,3[$ et f(x) = -1 si $x \in [3,4]$. Calculer $\int_{1}^{2} f(x) \, dx$, $\int_{1}^{3} f(x) \, dx$, $\int_{1}^{4} f(x) \, dx$, $\int_{1}^{3} f(x) \, dx$, $\int_{1}^{4} f(x) \, dx$, $\int_{1}^{4} f(x) \, dx$, $\int_{1}^{2} f(x) \, dx$.
- 2. Montrer que $\int_0^1 x \, dx = \frac{1}{2}$ (prendre une subdivision régulière et utiliser $\sum_{i=1}^n i = \frac{n(n+1)}{2}$).
- 3. Montrer que si f est une fonction intégrable et paire sur l'intervalle [-a,a] alors $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$

- 4. Montrer que si f est une fonction intégrable et *impaire* sur l'intervalle [-a,a] alors $\int_{-a}^{a} f(x) dx = 0$.
- 5. Montrer que toute fonction monotone est intégrable en s'inspirant de la preuve du théorème ??.

2. Propriétés de l'intégrale

Les trois principales propriétés de l'intégrale sont la relation de Chasles, la positivité et la linéarité.

2.1. Relation de Chasles

Proposition 3 (Relation de Chasles).

Soient a < c < b. Si f est intégrable sur [a, c] et [c, b], alors f est intégrable sur [a, b]. Et on a

$$\int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx$$

Pour s'autoriser des bornes sans se préoccuper de l'ordre on définit :

$$\int_a^a f(x) dx = 0 \qquad \text{et pour } a < b \qquad \int_b^a f(x) dx = -\int_a^b f(x) dx.$$

Pour a, b, c quelconques la relation de Chasles devient alors

$$\int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx$$

2.2. Positivité de l'intégrale

Proposition 4 (Positivité de l'intégrale).

Soit $a \le b$ deux réels et f et g deux fonctions intégrables sur [a, b].

Si
$$f \leq g$$
 alors $\int_a^b f(x) dx \leq \int_a^b g(x) dx$

En particulier l'intégrale d'une fonction positive est positive :

Si
$$f \ge 0$$
 alors $\int_a^b f(x) dx \ge 0$

2.3. Linéarité de l'intégrale

Proposition 5.

Soient f, g deux fonctions intégrables sur [a, b].

- 1. f + g est une fonction intégrable et $\int_a^b (f + g)(x) dx = \int_a^b f(x) dx + \int_a^b g(x) dx$.
- 2. Pour tout réel λ , λf est intégrable et on a $\int_a^b \lambda f(x) dx = \lambda \int_a^b f(x) dx$. Par ces deux premiers points nous avons la linéarité de l'intégrale : pour tous réels λ , μ

$$\int_{a}^{b} (\lambda f(x) + \mu g(x)) dx = \lambda \int_{a}^{b} f(x) dx + \mu \int_{a}^{b} g(x) dx$$

3. $f \times g$ est une fonction intégrable sur [a,b] mais en général $\int_a^b (fg)(x) dx \neq (\int_a^b f(x) dx)(\int_a^b g(x) dx)$.

$$\left| \int_{a}^{b} f(x) \, dx \right| \leqslant \int_{a}^{b} \left| f(x) \right| \, dx$$

Exemple 3.

$$\int_0^1 (7x^2 - e^x) dx = 7 \int_0^1 x^2 dx - \int_0^1 e^x dx = 7 \frac{1}{3} - (e - 1) = \frac{10}{3} - e^x$$

Nous avons utilisé les calculs déjà vus : $\int_0^1 x^2 dx = \frac{1}{3}$ et $\int_0^1 e^x dx = e - 1$.

Exemple 4. Soit $I_n = \int_1^n \frac{\sin(nx)}{1+x^n} dx$. Montrons que $I_n \to 0$ lorsque $n \to +\infty$.

$$|I_n| = \left| \int_1^n \frac{\sin(nx)}{1 + x^n} \, dx \right| \le \int_1^n \frac{|\sin(nx)|}{1 + x^n} \, dx \le \int_1^n \frac{1}{1 + x^n} \, dx \le \int_1^n \frac{1}{x^n} \, dx$$

$$\int_{1}^{n} \frac{1}{x^{n}} dx = \int_{1}^{n} x^{-n} dx = \left[\frac{x^{-n+1}}{-n+1} \right]_{1}^{n} = \frac{n^{-n+1}}{-n+1} - \frac{1}{-n+1} \xrightarrow[n \to +\infty]{} 0$$

Remarque.

Notez que même si $f \times g$ est intégrable on a en général $\int_a^b (fg)(x) \, dx \neq \left(\int_a^b f(x) \, dx\right) \left(\int_a^b g(x) \, dx\right)$. Par exemple, soit $f:[0,1] \to \mathbb{R}$ la fonction définie par f(x)=1 si $x \in [0,\frac{1}{2}[$ et f(x)=0 sinon. Soit $g:[0,1] \to \mathbb{R}$ la fonction définie par g(x) = 1 si $x \in [\frac{1}{2}, 1[$ et g(x) = 0 sinon. Alors $f(x) \times g(x) = 0$ pour tout $x \in [0, 1]$ et donc $\int_{0}^{1} f(x)g(x) dx = 0$ alors que $\int_{0}^{1} f(x) dx = \frac{1}{2}$ et $\int_{0}^{1} g(x) dx = \frac{1}{2}$.

2.4. Une preuve

Nous allons prouver la linéarité de l'intégrale : $\int \lambda f = \lambda \int f$ et $\int f + g = \int f + \int g$. L'idée est la suivante : il est facile de voir que pour des fonctions en escalier l'intégrale (qui est alors une somme finie) est linéaire. Comme les fonctions en escalier approchent autant qu'on le souhaite les fonctions intégrables alors cela implique la linéarité de l'intégrale.

Preuve de $\int \lambda f = \lambda \int f$. Soit $f : [a, b] \to \mathbb{R}$ une fonction intégrable et $\lambda \in \mathbb{R}$. Soit $\epsilon > 0$. Il existe ϕ^- et ϕ^+ deux fonctions en escalier approchant suffisamment f, avec $\phi^- \leq f \leq \phi^+$:

$$\int_{a}^{b} f(x) dx - \epsilon \leqslant \int_{a}^{b} \phi^{-}(x) dx \quad \text{et} \quad \int_{a}^{b} \phi^{+}(x) dx \leqslant \int_{a}^{b} f(x) dx + \epsilon \tag{\dagger}$$

Quitte à rajouter des points, on peut supposer que la subdivision $(x_0, x_1, ..., x_n)$ de [a, b] est suffisamment fine pour que ϕ^- et ϕ^+ soient toutes les deux constantes sur les intervalles $]x_{i-1}, x_i[$; on note c_i^- et c_i^+ leurs valeurs respectives. Dans un premier temps on suppose $\lambda\geqslant 0$. Alors $\lambda\phi^-$ et $\lambda\phi^+$ sont encore des fonctions en escalier vérifiant $\lambda\phi^-\leqslant$ $\lambda f \leq \lambda \phi^+$. De plus

$$\int_{a}^{b} \lambda \phi^{-}(x) dx = \sum_{i=1}^{n} \lambda c_{i}^{-}(x_{i} - x_{i-1}) = \lambda \sum_{i=1}^{n} c_{i}^{-}(x_{i} - x_{i-1}) = \lambda \int_{a}^{b} \phi^{-}(x) dx$$

De même pour ϕ^+ . Ainsi

$$\lambda \int_a^b \phi^-(x) \, dx \leqslant I^-(\lambda f) \leqslant I^+(\lambda f) \leqslant \lambda \int_a^b \phi^+(x) \, dx$$

En utilisant les deux inégalités (??) on obtient

$$\lambda \int_a^b f(x) \, dx \, - \lambda \epsilon \, \leqslant I^-(\lambda f) \leqslant I^+(\lambda f) \leqslant \lambda \int_a^b f(x) \, dx \, + \lambda \epsilon$$

Lorsque l'on fait tendre $\epsilon \to 0$ cela prouve que $I^-(\lambda f) = I^+(\lambda f)$, donc λf est intégrable et $\int_a^b \lambda f(x) dx =$ $\lambda \int_a^b f(x) dx$. Si $\lambda \leq 0$ on a $\lambda \phi^+ \leq \lambda f \leq \lambda \phi^-$ et le raisonnement est similaire.

Preuve $de \int f + g = \int f + \int g$. Soit $\epsilon > 0$. Soient $f,g:[a,b] \to \mathbb{R}$ deux fonctions intégrables. On définit deux fonctions en escalier ϕ^+,ϕ^- pour f et deux fonctions en escalier ψ^+,ψ^- pour g vérifiant des inégalités similaires à (??) de la preuve au-dessus. On fixe une subdivision suffisamment fine pour toutes les fonctions ϕ^\pm,ψ^\pm . On note c_i^\pm,d_i^\pm les constantes respectives sur l'intervalle $]x_{i-1},x_i[$. Les fonctions $\phi^-+\psi^-$ et $\phi^++\psi^+$ sont en escalier et vérifient $\phi^-+\psi^-\leqslant f+g\leqslant \phi^++\psi^+$. Nous avons aussi que

$$\int_{a}^{b} (\phi^{-} + \psi^{-})(x) dx = \sum_{i=1}^{n} (c_{i}^{-} + d_{i}^{-})(x_{i} - x_{i-1}) = \int_{a}^{b} \phi^{-}(x) dx + \int_{a}^{b} \psi^{-}(x) dx$$

De même pour $\phi^+ + \psi^+$. Ainsi

$$\int_{a}^{b} \phi^{-}(x) dx + \int_{a}^{b} \psi^{-}(x) dx \leq I^{-}(f+g) \leq I^{+}(f+g) \leq \int_{a}^{b} \phi^{+}(x) dx + \int_{a}^{b} \psi^{+}(x) dx$$

Les conditions du type (??) impliquent alors

$$\int_{a}^{b} f(x) \, dx + \int_{a}^{b} g(x) \, dx \, -2\epsilon \, \leq I^{-}(f+g) \leq I^{+}(f+g) \leq \int_{a}^{b} f(x) \, dx + \int_{a}^{b} g(x) \, dx \, +2\epsilon$$

Lorsque $\epsilon \to 0$ on déduit $I^-(f+g) = I^+(f+g)$, donc f+g est intégrable et $\int_a^b (f(x)+g(x)) dx = \int_a^b f(x) dx + \int_a^b g(x) dx$.

Mini-exercices.

- 1. En admettant que $\int_0^1 x^n dx = \frac{1}{n+1}$. Calculer l'intégrale $\int_0^1 P(x) dx$ où $P(x) = a_n x^n + \dots + a_1 x + a_0$. Trouver un polynôme P(x) non nul de degré 2 dont l'intégrale est nulle : $\int_0^1 P(x) dx = 0$.
- 2. A-t-on $\int_a^b f(x)^2 dx = \left(\int_a^b f(x) dx\right)^2$; $\int_a^b \sqrt{f(x)} dx = \sqrt{\int_a^b f(x) dx}$; $\int_a^b |f(x)| dx = \left|\int_a^b f(x) dx\right|$; $\int |f(x)| dx = \left|\int_a^b f(x) dx\right|$;
- 3. Peut-on trouver a < b tels que $\int_a^b x \, dx = -1$; $\int_a^b x \, dx = 0$; $\int_a^b x \, dx = +1$? Mêmes questions avec $\int_a^b x^2 \, dx$.
- 4. Montrer que $0 \leqslant \int_1^2 \sin^2 x \ dx \leqslant 1$ et $\left| \int_a^b \cos^3 x \ dx \right| \leqslant |b-a|$.

3. Primitive d'une fonction

3.1. Définition

Définition 5.

Soit $f: I \to \mathbb{R}$ une fonction définie sur un intervalle I quelconque. On dit que $F: I \to \mathbb{R}$ est une *primitive* de f sur I si F est une fonction dérivable sur I vérifiant F'(x) = f(x) pour tout $x \in I$.

Trouver une primitive est donc l'opération inverse de calculer la fonction dérivée.

Exemple 5.

- 1. Soit $I = \mathbb{R}$ et $f : \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x^2$. Alors $F : \mathbb{R} \to \mathbb{R}$ définie par $F(x) = \frac{x^3}{3}$ est une primitive de f. La fonction définie par $F(x) = \frac{x^3}{3} + 1$ est aussi une primitive de f.
- 2. Soit $I = [0, +\infty[$ et $g: I \to \mathbb{R}$ définie par $g(x) = \sqrt{x}$. Alors $G: I \to \mathbb{R}$ définie par $G(x) = \frac{2}{3}x^{\frac{3}{2}}$ est une primitive de g sur I. Pour tout $c \in \mathbb{R}$, la fonction G + c est aussi une primitive de g.

Nous allons voir que trouver une primitive permet de les trouver toutes.

Proposition 6.

Soit $f: I \to \mathbb{R}$ une fonction et soit $F: I \to \mathbb{R}$ une primitive de f. Toute primitive de f s'écrit G = F + c où $c \in \mathbb{R}$.

Démonstration. Notons tout d'abord que si l'on note G la fonction définie par G(x) = F(x) + c alors G'(x) = F'(x) mais comme F'(x) = f(x) alors G'(x) = f(x) et G est bien une primitive de f.

Pour la réciproque supposons que G soit une primitive quelconque de f. Alors (G - F)'(x) = G'(x) - F'(x) = f(x) - f(x) = 0, ainsi la fonction G - F a une dérivée nulle sur un intervalle, c'est donc une fonction constante! Il existe donc $c \in \mathbb{R}$ tel que (G - F)(x) = c. Autrement dit G(x) = F(x) + c (pour tout $x \in I$).

Notations. On notera une primitive de f par $\int f(t) \, dt$ ou $\int f(x) \, dx$ ou $\int f(u) \, du$ (les lettres t, x, u, ... sont des lettres dites *muettes*, c'est-à-dire interchangeables). On peut même noter une primitive simplement par $\int f$. La proposition $\ref{f(t)}$ nous dit que si F est une primitive de f alors il existe un réel c, tel que $F = \int f(t) \, dt + c$. Attention : $\int f(t) \, dt$ désigne une fonction de I dans $\mathbb R$ alors que l'intégrale $\int_a^b f(t) \, dt$ désigne un nombre réel. Plus précisément nous verrons que si F est une primitive de f alors $\int_a^b f(t) \, dt = F(b) - F(a)$.

Par dérivation on prouve facilement le résultat suivant :

Proposition 7.

Soient F une primitive de f et G une primitive de g. Alors F+G est une primitive de f+g. Et si $\lambda \in \mathbb{R}$ alors λF est une primitive de λf .

Une autre formulation est de dire que pour tous réels λ , μ on a

$$\int (\lambda f(t) + \mu g(t)) dt = \lambda \int f(t) dt + \mu \int g(t) dt$$

3.2. Primitives des fonctions usuelles

$$\int e^x dx = e^x + c \quad \text{sur } \mathbb{R}$$

$$\int \cos x \, dx = \sin x + c \quad \text{sur } \mathbb{R}$$

$$\int \sin x \, dx = -\cos x + c \quad \text{sur } \mathbb{R}$$

$$\int x^n \, dx = \frac{x^{n+1}}{n+1} + c \quad (n \in \mathbb{N}) \quad \text{sur } \mathbb{R}$$

$$\int x^\alpha \, dx = \frac{x^{\alpha+1}}{\alpha+1} + c \quad (\alpha \in \mathbb{R} \setminus \{-1\}) \text{ sur }]0, +\infty[$$

$$\int \frac{1}{x} \, dx = \ln|x| + c \quad \text{sur }]0, +\infty[\text{ ou }]-\infty, 0[$$

$\int \operatorname{sh} x dx = \operatorname{ch} x + c, \int \operatorname{ch} x dx = \operatorname{sh} x + c \operatorname{sur} \mathbb{R}$
$\int \frac{dx}{1+x^2} = \arctan x + c \text{sur } \mathbb{R}$
$\int \frac{dx}{\sqrt{1-x^2}} = \begin{cases} \arcsin x + c \\ \frac{\pi}{2} - \arccos x + c \end{cases} \text{sur }]-1,1[$
$\int \frac{dx}{\sqrt{x^2+1}} = \begin{cases} \operatorname{Argsh} x + c \\ \ln(x + \sqrt{x^2+1}) + c \end{cases} \text{sur } \mathbb{R}$
$\int \frac{dx}{\sqrt{x^2 - 1}} = \begin{cases} \operatorname{Argch} x + c \\ \ln(x + \sqrt{x^2 - 1}) + c \end{cases} \operatorname{sur} x \in]1, +\infty[$

Remarque.

Ces primitives sont à connaître par cœur.

- 1. Voici comment lire ce tableau. Si f est la fonction définie sur \mathbb{R} par $f(x) = x^n$ alors la fonction : $x \mapsto \frac{x^{n+1}}{n+1}$ est une primitive de f sur \mathbb{R} . Les primitives de f sont les fonctions définies par $x \mapsto \frac{x^{n+1}}{n+1} + c$ (pour c une constante réelle quelconque). Et on écrit $\int x^n dx = \frac{x^{n+1}}{n+1} + c$, où $c \in \mathbb{R}$.
- 2. Souvenez vous que la variable sous le symbole intégrale est une variable muette. On peut aussi bien écrire $\int t^n dt = \frac{x^{n+1}}{n+1} + c.$
- 3. La constante est définie pour un intervalle. Si l'on a deux intervalles, il y a deux constantes qui peuvent être différentes. Par exemple pour $\int \frac{1}{x} dx$ nous avons deux domaines de validité : $I_1 =]0, +\infty[$ et $I_2 =]-\infty, 0[$. Donc $\int \frac{1}{x} dx = \ln x + c_1$ si x > 0 et $\int \frac{1}{x} dx = \ln |x| + c_2 = \ln(-x) + c_2$ si x < 0.
- 4. On peut trouver des primitives aux allures très différentes par exemple $x \mapsto \arcsin x$ et $x \mapsto \frac{\pi}{2} \arccos x$ sont deux primitives de la même fonction $x \mapsto \frac{1}{\sqrt{1-x^2}}$. Mais bien sûr on sait que $\arcsin x + \arccos x = \frac{\pi}{2}$, donc les primitives diffèrent bien d'une constante!

3.3. Relation primitive-intégrale

Théorème 4.

Soit $f:[a,b] \to \mathbb{R}$ une fonction continue. La fonction $F:I \to \mathbb{R}$ définie par

$$F(x) = \int_{a}^{x} f(t) \, dt$$

est une primitive de f, c'est-à-dire F est dérivable et F'(x) = f(x). Par conséquent pour une primitive F quelconque de f:

$$\int_{a}^{b} f(t) dt = F(b) - F(a)$$

Notation. On note $[F(x)]_a^b = F(b) - F(a)$.

Exemple 6.

Nous allons pouvoir calculer plein d'intégrales. Recalculons d'abord les intégrales déjà rencontrées.

1. Pour $f(x) = e^x$ une primitive est $F(x) = e^x$ donc

$$\int_0^1 e^x \, dx = \left[e^x \right]_0^1 = e^1 - e^0 = e - 1.$$

2. Pour $g(x) = x^2$ une primitive est $G(x) = \frac{x^3}{3}$ donc

$$\int_0^1 x^2 dx = \left[\frac{x^3}{3}\right]_0^1 = \frac{1}{3}.$$

- 3. $\int_{a}^{x} \cos t \, dt = \left[\sin t \right]_{t=a}^{t=x} = \sin x \sin a \text{ est une primitive de } \cos x.$
- 4. Si f est impaire alors ses primitives sont paires (le montrer). En déduire que $\int_{-a}^{a} f(t) dt = 0$.

Remarque.

- 1. $F(x) = \int_a^x f(t) dt$ est même l'unique primitive de f qui s'annule en a.
- 2. En particulier si F est une fonction de classe \mathscr{C}^1 alors $\int_a^b F'(t) dt = F(b) F(a)$.
- 3. On évitera la notation $\int_a^x f(x) dx$ où la variable x est présente à la fois aux bornes et à l'intérieur de l'intégrale. Mieux vaut utiliser la notation $\int_a^x f(t) dt$ ou $\int_a^x f(u) du$ pour éviter toute confusion.
- 4. Une fonction intégrable n'admet pas forcément une primitive. Considérer par exemple $f:[0,1] \to \mathbb{R}$ définie par f(x)=0 si $x\in[0,\frac{1}{2}[$ et f(x)=1 si $x\in[\frac{1}{2},1]$. f est intégrable sur [0,1] mais elle n'admet pas de primitive sur [0,1]. En effet par l'absurde si F était une primitive de f, par exemple la primitive qui vérifie F(0)=0. Alors F(x)=0 pour $x\in[0,\frac{1}{2}[$ et $F(x)=x-\frac{1}{2}$ pour $x\in[\frac{1}{2},1]$. Mais alors nous obtenons une contradiction car F n'est pas dérivable en $\frac{1}{2}$ alors que par définition une primitive doit être dérivable.

Démonstration. Essayons de visualiser tout d'abord pourquoi la fonction F est dérivable et F'(x) = f(x).

Fixons $x_0 \in [a, b]$. Par la relation de Chasles nous savons :

$$F(x) - F(x_0) = \int_a^x f(t) dt - \int_a^{x_0} f(t) dt = \int_{x_0}^a f(t) dt + \int_a^x f(t) dt = \int_{x_0}^x f(t) dt$$

Donc le taux d'accroissement

$$\frac{F(x) - F(x_0)}{x - x_0} = \frac{1}{x - x_0} \int_{x_0}^x f(t) \, dt = \frac{\mathcal{A}}{x - x_0}$$

où \mathscr{A} est l'aire hachurée (en rouge). Mais cette aire est presque un rectangle, si x est suffisamment proche de x_0 , donc l'aire \mathscr{A} vaut environ $(x-x_0)\times f(x_0)$; lorsque $x\to x_0$ le taux d'accroissement tend donc vers $f(x_0)$. Autrement dit $F'(x_0)=f(x_0)$.

Passons à la preuve rigoureuse. Comme $f(x_0)$ est une constante alors $\int_{x_0}^x f(x_0) dt = (x - x_0) f(x_0)$, donc

$$\frac{F(x) - F(x_0)}{x - x_0} - f(x_0) = \frac{1}{x - x_0} \int_{x_0}^x f(t) dt - \frac{1}{x - x_0} \int_{x_0}^x f(x_0) dt$$
$$= \frac{1}{x - x_0} \int_{x_0}^x (f(t) - f(x_0)) dt$$

Fixons $\epsilon > 0$. Puisque f est continue en x_0 , il existe $\delta > 0$ tel que $(|t - x_0| < \delta \implies |f(t) - f(x_0)| < \epsilon)$. Donc :

$$\left| \frac{F(x) - F(x_0)}{x - x_0} - f(x_0) \right| = \left| \frac{1}{x - x_0} \int_{x_0}^x \left(f(t) - f(x_0) \right) dt \right|$$

$$\leqslant \frac{1}{|x - x_0|} \left| \int_{x_0}^x \left| f(t) - f(x_0) \right| dt \right|$$

$$\leqslant \frac{1}{|x - x_0|} \left| \int_{x_0}^x \epsilon dt \right| = \epsilon$$

Ce qui prouve que F est dérivable en x_0 et $F'(x_0) = f(x_0)$.

Maintenant on sait que F est une primitive de f, F est même la primitive qui s'annule en a car $F(a) = \int_a^a f(t) dt = 0$. Si G est une autre primitive on sait F = G + c. Ainsi

$$G(b) - G(a) = F(b) + c - (F(a) + c) = F(b) - F(a) = F(b) = \int_{a}^{b} f(t) dt.$$

3.4. Sommes de Riemann

L'intégrale est définie à partir de limites de sommes. Mais maintenant que nous savons calculer des intégrales sans utiliser ces sommes on peut faire le cheminement inverse : calculer des limites de sommes à partir d'intégrales.

Théorème 5.

Soit $f:[a,b] \to \mathbb{R}$ une fonction intégrable, alors

$$S_n = \frac{b-a}{n} \sum_{k=1}^n f\left(a + k \frac{b-a}{n}\right) \qquad \xrightarrow[n \to +\infty]{} \qquad \int_a^b f(x) \, dx$$

La somme S_n s'appelle la somme de Riemann associée à l'intégrale et correspond à une subdivision régulière de l'intervalle [a,b] en n petits intervalles. La hauteur de chaque rectangle étant évaluée à son extrémité droite. Le cas le plus utile est le cas où a=0, b=1 alors $\frac{b-a}{n}=\frac{1}{n}$ et $f\left(a+k\frac{b-a}{n}\right)=f\left(\frac{k}{n}\right)$ et ainsi

$$S_n = \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right) \qquad \xrightarrow[n \to +\infty]{} \qquad \int_0^1 f(x) \, dx$$

Exemple 7.

On a
$$S_1 = \frac{1}{2}$$
, $S_2 = \frac{1}{3} + \frac{1}{4}$, $S_3 = \frac{1}{4} + \frac{1}{5} + \frac{1}{6}$, $S_4 = \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}$,...

Calculer la limite de la somme $S_n = \sum_{k=1}^n \frac{1}{n+k}$. On a $S_1 = \frac{1}{2}$, $S_2 = \frac{1}{3} + \frac{1}{4}$, $S_3 = \frac{1}{4} + \frac{1}{5} + \frac{1}{6}$, $S_4 = \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}$,... La somme S_n s'écrit aussi $S_n = \frac{1}{n} \sum_{k=1}^n \frac{1}{1+\frac{k}{n}}$. En posant $f(x) = \frac{1}{1+x}$, a = 0 et b = 1, on reconnaît que S_n est une somme

$$S_n = \frac{1}{n} \sum_{k=1}^n \frac{1}{1 + \frac{k}{n}} = \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right)$$

$$\xrightarrow[n \to +\infty]{} \int_{a}^{b} f(x) \, dx = \int_{0}^{1} \frac{1}{1+x} \, dx = \left[\ln|1+x| \right]_{0}^{1} = \ln 2 - \ln 1 = \ln 2.$$

Ainsi $S_n \to \ln 2$ (lorsque $n \to +\infty$).

Mini-exercices.

- 1. Trouver les primitives des fonctions : $x^3 x^7$, $\cos x + \exp x$, $\sin(2x)$, $1 + \sqrt{x} + x$, $\frac{1}{\sqrt{x}}$, $\sqrt[3]{x}$, $\frac{1}{x+1}$.
- 2. Trouver les primitives des fonctions : $ch(x) sh(\frac{x}{2})$, $\frac{1}{1+4x^2}$, $\frac{1}{\sqrt{1+x^2}} \frac{1}{\sqrt{1-x^2}}$.
- 3. Trouver une primitive de x^2e^x sous la forme $(ax^2 + bx + c)e^x$.
- 4. Trouver toutes les primitives de $x \mapsto \frac{1}{x^2}$ (préciser les intervalles et les constantes).
- 5. Calculer les intégrales $\int_0^1 x^n dx$, $\int_0^{\frac{\pi}{4}} \frac{dx}{1+x^2}$, $\int_1^e \frac{1-x}{x^2} dx$, $\int_0^{\frac{1}{2}} \frac{dx}{x^2-1}$.
- 6. Calculer la limite (lorsque $n \to +\infty$) de la somme $S_n = \sum_{k=1}^n \frac{e^{k/n}}{n}$. Idem avec $S_n' = \sum_{k=1}^n \frac{n}{(n+k)^2}$

4. Intégration par parties – Changement de variable

Pour trouver une primitive d'une fonction f on peut avoir la chance de reconnaître que f est la dérivée d'une fonction bien connue. C'est malheureusement très rarement le cas, et on ne connaît pas les primitives de la plupart des fonctions. Cependant nous allons voir deux techniques qui permettent des calculer des intégrales et des primitives : l'intégration par parties et le changement de variable.

4.1. Intégration par parties

Théorème 6.

Soient u et v deux fonctions de classe \mathscr{C}^1 sur un intervalle [a, b].

$$\int_a^b u(x) v'(x) dx = \left[uv \right]_a^b - \int_a^b u'(x) v(x) dx$$

Notation. Le crochet $[F]_a^b$ est par définition $[F]_a^b = F(b) - F(a)$. Donc $[uv]_a^b = u(b)v(b) - u(a)v(a)$. Si l'on omet les bornes alors [F] désigne la fonction F + c où c est une constante quelconque.

a formule d'intégration par parties pour les primitives est la même mais sans les bornes :

$$\int u(x)v'(x) dx = [uv] - \int u'(x)v(x) dx.$$

La preuve est très simple :

Démonstration. On a
$$(uv)' = u'v + uv'$$
. Donc $\int_a^b (u'v + uv') = \int_a^b (uv)' = [uv]_a^b$. D'où $\int_a^b uv' = [uv]_a^b - \int_a^b u'v$.

L'utilisation de l'intégration par parties repose sur l'idée suivante : on ne sait pas calculer directement l'intégrale d'une fonction f s'écrivant comme un produit f(x) = u(x)v'(x) mais si l'on sait calculer l'intégrale de g(x) = u'(x)v(x) (que l'on espère plus simple) alors par la formule d'intégration par parties on aura l'intégrale de f.

Exemple 8

1. Calcul de $\int_0^1 xe^x dx$. On pose u(x) = x et $v'(x) = e^x$. Nous aurons besoin de savoir que u'(x) = 1 et qu'une primitive de v' est simplement $v(x) = e^x$. La formule d'intégration par parties donne :

$$\int_{0}^{1} x e^{x} dx = \int_{0}^{1} u(x)v'(x) dx$$

$$= \left[u(x)v(x)\right]_{0}^{1} - \int_{0}^{1} u'(x)v(x) dx$$

$$= \left[x e^{x}\right]_{0}^{1} - \int_{0}^{1} 1 \cdot e^{x} dx$$

$$= \left(1 \cdot e^{1} - 0 \cdot e^{0}\right) - \left[e^{x}\right]_{0}^{1}$$

$$= e - (e^{1} - e^{0})$$

$$= 1$$

2. Calcul de $\int_{1}^{e} x \ln x \, dx$.

On pose cette fois $u = \ln x$ et v' = x. Ainsi $u' = \frac{1}{x}$ et $v = \frac{x^2}{2}$. Alors

$$\int_{1}^{e} \ln x \cdot x \, dx = \int_{1}^{e} uv' = \left[uv \right]_{1}^{e} - \int_{1}^{e} u'v = \left[\ln x \cdot \frac{x^{2}}{2} \right]_{1}^{e} - \int_{1}^{e} \frac{1}{x} \frac{x^{2}}{2} \, dx$$
$$= \left(\ln e \frac{e^{2}}{2} - \ln 1 \frac{1^{2}}{2} \right) - \frac{1}{2} \int_{1}^{e} x \, dx = \frac{e^{2}}{2} - \frac{1}{2} \left[\frac{x^{2}}{2} \right]_{1}^{e} = \frac{e^{2}}{2} - \frac{e^{2}}{4} + \frac{1}{4} = \frac{e^{2} + 1}{4}$$

3. Calcul de $\int \arcsin x \, dx$.

Pour déterminer une primitive de $\arcsin x$, nous faisons artificiellement apparaître un produit en écrivant $\arcsin x = 1 \cdot \arcsin x$ pour appliquer la formule d'intégration par parties. On pose $u = \arcsin x$, v' = 1 (et donc $u' = \frac{1}{\sqrt{1-x^2}}$ et v = x) alors

$$\int 1 \cdot \arcsin x \, dx = \left[x \arcsin x \right] - \int \frac{x}{\sqrt{1 - x^2}} \, dx$$
$$= \left[x \arcsin x \right] - \left[-\sqrt{1 - x^2} \right]$$
$$= x \arcsin x + \sqrt{1 - x^2} + c$$

4. Calcul de $\int x^2 e^x dx$. On pose $u = x^2$ et $v' = e^x$ pour obtenir :

$$\int x^2 e^x \, dx = \left[x^2 e^x \right] - 2 \int x e^x \, dx$$

On refait une deuxième intégration par parties pour calculer

$$\int xe^x \, dx = [xe^x] - \int e^x \, dx = (x-1)e^x + c$$
$$\int x^2 e^x \, dx = (x^2 - 2x + 2)e^x + c.$$

D'où

Exemple 9.

Nous allons étudier les intégrales définies par $I_n = \int_0^1 \frac{\sin(\pi x)}{x+n} dx$, pour tout entier n > 0.

1. Montrer que $0 \leqslant I_{n+1} \leqslant I_n$. Pour $0 \leqslant x \leqslant 1$, on a $0 < x + n \leqslant x + n + 1$ et $\sin(\pi x) \geqslant 0$, donc $0 \leqslant \frac{\sin(\pi x)}{x + n + 1} \leqslant \frac{\sin(\pi x)}{x + n}$. D'où $0 \leqslant I_{n+1} \leqslant I_n$ par la positivité de l'intégrale.

2. Montrer que $I_n \leq \ln \frac{n+1}{n}$. En déduire $\lim_{n \to +\infty} I_n$.

De
$$0 \le \sin(\pi x) \le 1$$
, on a $\frac{\sin(\pi x)}{x+n} \le \frac{1}{x+n}$. D'où $0 \le I_n \le \int_0^1 \frac{1}{x+n} \, dx = \left[\ln(x+n)\right]_0^1 = \ln\frac{n+1}{n} \to 0$.

3. Calculer $\lim_{n\to+\infty} nI_n$.

Nous allons faire une intégration par parties avec $u=\frac{1}{x+n}$ et $v'=\sin(\pi x)$ (et donc $u'=-\frac{1}{(x+n)^2}$ et $v=-\frac{1}{\pi}\cos(\pi x)$) :

$$nI_n = n \int_0^1 \frac{1}{x+n} \sin(\pi x) dx$$

$$= -\frac{n}{\pi} \left[\frac{1}{x+n} \cos(\pi x) \right]_0^1 - \frac{n}{\pi} \int_0^1 \frac{1}{(x+n)^2} \cos(\pi x) dx$$

$$= \frac{n}{\pi (n+1)} + \frac{1}{\pi} - \frac{n}{\pi} J_n$$

Il nous reste à évaluer $J_n = \int_0^1 \frac{\cos(\pi x)}{(x+n)^2} dx$.

$$\left|\frac{n}{\pi}J_n\right| \leqslant \frac{n}{\pi} \int_0^1 \frac{|\cos(\pi x)|}{(x+n)^2} \, dx \leqslant \frac{n}{\pi} \int_0^1 \frac{1}{(x+n)^2} \, dx$$

$$= \frac{n}{\pi} \left[-\frac{1}{x+n} \right]_0^1 = \frac{n}{\pi} \left(-\frac{1}{1+n} + \frac{1}{n} \right) = \frac{1}{\pi} \frac{1}{n+1} \to 0.$$

Donc $\lim_{n\to+\infty} nI_n = \lim_{n\to+\infty} \frac{n}{\pi(n+1)} + \frac{1}{\pi} - \frac{n}{\pi}J_n = \frac{2}{\pi}$.

4.2. Changement de variable

Théorème 7.

Soit f une fonction définie sur un intervalle I et $\varphi: J \to I$ une bijection de classe \mathscr{C}^1 . Pour tout $a, b \in J$

$$\int_{\varphi(a)}^{\varphi(b)} f(x) \, dx = \int_{a}^{b} f(\varphi(t)) \cdot \varphi'(t) \, dt$$

Si F est une primitive de f alors $F \circ \varphi$ est une primitive de $(f \circ \varphi) \cdot \varphi'$.

Voici un moyen simple de s'en souvenir. En effet si l'on note $x = \varphi(t)$ alors par dérivation on obtient $\frac{dx}{dt} = \varphi'(t)$ donc $dx = \varphi'(t) dt$. D'où la substitution $\int_{\varphi(a)}^{\varphi(b)} f(x) dx = \int_a^b f(\varphi(t)) \varphi'(t) dt$.

Démonstration. Comme F est une primitive de f alors F'(x) = f(x) et par la formule de la dérivation de la composition $F \circ \varphi$ on a

$$(F \circ \varphi)'(t) = F'(\varphi(t))\varphi'(t) = f(\varphi(t))\varphi'(t).$$

Donc $F \circ \varphi$ est une primitive de $f(\varphi(t))\varphi'(t)$.

Pour les intégrales :
$$\int_{a}^{b} f(\varphi(t))\varphi'(t) dt = \left[F \circ \varphi\right]_{a}^{b} = F(\varphi(b)) - F(\varphi(a)) = \left[F\right]_{\varphi(a)}^{\varphi(b)} = \int_{\varphi(a)}^{\varphi(b)} f(x) dx.$$

Remarque.

Comme φ est une bijection de J sur $\varphi(J)$, sa réciproque φ^{-1} existe et est dérivable sauf quand φ s'annule. Si φ ne s'annule pas, on peut écrire $t = \varphi^{-1}(x)$ et faire un changement de variable en sens inverse.

Exemple 10.

Calculons la primitive $F = \int \tan t \ dt$.

$$F = \int \tan t \, dt = \int \frac{\sin t}{\cos t} \, dt \, .$$

On reconnaît ici une forme $\frac{u'}{u}$ (avec $u = \cos t$ et $u' = -\sin t$) dont une primitive est $\ln |u|$. Donc $F = \int -\frac{u'}{u} = -\left[\ln |u|\right] = -\ln |u| + c = -\ln |\cos t| + c$.

Nous allons reformuler tout cela en terme de changement de variable. Notons $\varphi(t) = \cos t$ alors $\varphi'(t) = -\sin t$, donc

$$F = \int -\frac{\varphi'(t)}{\varphi(t)} dt$$

Si f désigne la fonction définie par $f(x) = \frac{1}{x}$, qui est bijective tant que $x \neq 0$; alors $F = -\int \varphi'(t) f(\varphi(t)) dt$. Ex posant $x = \varphi(t)$ et donc $dx = \varphi'(t)dt$, on reconnaît la formule du changement de variable, par conséquent

$$F \circ \varphi^{-1} = -\int f(x) dx = -\int \frac{1}{x} dx = -\ln|x| + c.$$

Comme $x = \varphi(t) = \cos t$, on retrouve bien $F(t) = -\ln|\cos t| + c$.

Remarque : pour que l'intégrale soit bien définie il faut que tan t soit définie, donc $t \not\equiv \frac{\pi}{2} \mod \pi$. La restriction d'une primitive à un intervalle $]-\frac{\pi}{2}+k\pi, \frac{\pi}{2}+k\pi[$ est donc de la forme $-\ln|\cos t|+c$. Mais la constante c peut être différente sur un intervalle différent.

Exemple 11.

Calcul de $\int_0^{1/2} \frac{x}{(1-x^2)^{3/2}} dx$.

Soit le changement de variable $u = \varphi(x) = 1 - x^2$. Alors $du = \varphi'(x) dx = -2x dx$. Pour x = 0 on a $u = \varphi(0) = 1$ et pour $x = \frac{1}{2}$ on a $u = \varphi(\frac{1}{2}) = \frac{3}{4}$. Comme $\varphi'(x) = -2x$, φ est une bijection de $[0, \frac{1}{2}]$ sur $[1, \frac{3}{4}]$. Alors

$$\int_0^{1/2} \frac{x \, dx}{(1-x^2)^{3/2}} = \int_1^{3/4} \frac{\frac{-du}{2}}{u^{3/2}} = -\frac{1}{2} \int_1^{3/4} u^{-3/2} \, du$$
$$= -\frac{1}{2} \Big[-2u^{-1/2} \Big]_1^{3/4} = \Big[\frac{1}{\sqrt{u}} \Big]_1^{3/4} = \frac{1}{\sqrt{\frac{3}{4}}} - 1 = \frac{2}{\sqrt{3}} - 1.$$

Exemple 12. Calcul de $\int_0^{1/2} \frac{1}{(1-x^2)^{3/2}} \, dx$. On effectue le changement de variable $x=\varphi(t)=\sin t$ et $dx=\cos t \, dt$. De plus $t=\arcsin x$ donc pour x=0 on a $t = \arcsin(0) = 0$ et pour $x = \frac{1}{2}$ on a $t = \arcsin(\frac{1}{2}) = \frac{\pi}{6}$. Comme φ est une bijection de $[0, \frac{\pi}{6}]$ sur $[0, \frac{1}{2}]$,

$$\int_0^{1/2} \frac{dx}{(1-x^2)^{3/2}} = \int_0^{\pi/6} \frac{\cos t \, dt}{(1-\sin^2 t)^{3/2}} = \int_0^{\pi/6} \frac{\cos t \, dt}{(\cos^2 t)^{3/2}}$$
$$= \int_0^{\pi/6} \frac{\cos t}{\cos^3 t} \, dt = \int_0^{\pi/6} \frac{1}{\cos^2 t} \, dt = \left[\tan t\right]_0^{\pi/6} = \frac{1}{\sqrt{3}} \, .$$

Exemple 13.

Calcul de $\int \frac{1}{(1+x^2)^{3/2}} dx$.

Soit le changement de variable $x = \tan t$ donc $t = \arctan x$ et $dx = \frac{dt}{\cos^2 t}$ (la fonction tangente établit une bijection de $]-\frac{\pi}{2},+\frac{\pi}{2}[$ sur $\mathbb{R}).$ Donc

$$F = \int \frac{1}{(1+x^2)^{3/2}} dx = \int \frac{1}{(1+\tan^2 t)^{3/2}} \frac{dt}{\cos^2 t}$$
$$= \int (\cos^2 t)^{3/2} \frac{dt}{\cos^2 t} \qquad \cot 1 + \tan^2 t = \frac{1}{\cos^2 t}$$
$$= \int \cos t \, dt = \left[\sin t \right] = \sin t + c = \sin(\arctan x) + c$$

Donc

$$\int \frac{1}{(1+x^2)^{3/2}} \, dx = \sin(\arctan x) + c.$$

En manipulant un peu les fonctions on trouverait que la primitive s'écrit aussi $F(x) = \frac{x}{\sqrt{1+x^2}} + c$.

Mini-exercices.

- 1. Calculer les intégrales à l'aide d'intégrations par parties : $\int_0^{\pi/2} t \sin t \ dt$, $\int_0^{\pi/2} t^2 \sin t \ dt$, puis par récurrence
- 2. Déterminer les primitives à l'aide d'intégrations par parties : $\int t \sinh t \ dt$, $\int t^2 \sinh t \ dt$, puis par récurrence
- 3. Calculer les intégrales à l'aide de changements de variable : $\int_0^a \sqrt{a^2 t^2} dt$; $\int_{-\pi}^{\pi} \sqrt{1 + \cos t} dt$ (pour ce dernier poser deux changements de variables : $u = \cos t$, puis v = 1 - u).
- 4. Déterminer les primitives suivantes à l'aide de changements de variable : $\int \operatorname{th} t \ dt$ où $\operatorname{th} t = \frac{\operatorname{sh} t}{\operatorname{ch} t}, \int e^{\sqrt{t}} \ dt$.

A Change Fille

5. Intégration des fractions rationnelles

Nous savons intégrer beaucoup de fonctions simples. Par exemple toutes les fonctions polynomiales : si $f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$ alors $\int f(x) dx = a_0 x + a_1 \frac{x^2}{2} + a_2 \frac{x^3}{3} + \dots + a_n \frac{x^{n+1}}{n+1} + c$.

Il faut être conscient cependant que beaucoup de fonctions ne s'intègrent pas à l'aide de fonctions simples. Par exemple si $f(t) = \sqrt{a^2 \cos^2 t + b^2 \sin^2 t}$ alors l'intégrale $\int_0^{2\pi} f(t) \, dt$ ne peut pas s'exprimer comme somme, produit, inverse ou composition de fonctions que vous connaissez. En fait cette intégrale vaut la longueur d'une ellipse d'équation paramétrique $(a\cos t, b\sin t)$; il n'y a donc pas de formule pour le périmètre d'une ellipse (sauf si a=b auquel cas l'ellipse est un cercle!).

Mais de façon remarquable, il y a toute une famille de fonctions que l'on saura intégrer : les fractions rationnelles.

5.1. Trois situations de base

On souhaite d'abord intégrer les fractions rationnelles $f(x) = \frac{\alpha x + \beta}{\alpha x^2 + b x + c}$ avec $\alpha, \beta, a, b, c \in \mathbb{R}$, $a \neq 0$ et $(\alpha, \beta) \neq (0, 0)$. **Premier cas.** Le dénominateur $ax^2 + bx + c$ possède deux racines réelles distinctes $x_1, x_2 \in \mathbb{R}$. Alors f(x) s'écrit aussi $f(x) = \frac{\alpha x + \beta}{a(x - x_1)(x - x_2)}$ et il existe des nombres $A, B \in \mathbb{R}$ tels que $f(x) = \frac{A}{x - x_1} + \frac{B}{x - x_2}$. On a donc

$$\int f(x) \, dx = A \ln|x - x_1| + B \ln|x - x_2| + c$$

sur chacun des intervalles $]-\infty, x_1[,]x_1, x_2[,]x_2, +\infty[$ (si $x_1 < x_2$).

Deuxième cas. Le dénominateur $ax^2 + bx + c$ possède une racine double $x_0 \in \mathbb{R}$. Alors $f(x) = \frac{ax + \beta}{a(x - x_0)^2}$ et il existe des nombres $A, B \in \mathbb{R}$ tels que $f(x) = \frac{A}{(x - x_0)^2} + \frac{B}{x - x_0}$. On a alors

$$\int f(x) \, dx = -\frac{A}{x - x_0} + B \ln|x - x_0| + c$$

sur chacun des intervalles $]-\infty, x_0[,]x_0, +\infty[.$

Troisième cas. Le dénominateur $ax^2 + bx + c$ ne possède pas de racine réelle. Voyons comment faire sur un exemple. **Exemple 14.**

Soit $f(x) = \frac{x+1}{2x^2+x+1}$. Dans un premier temps on fait apparaître une fraction du type $\frac{u'}{u}$ (que l'on sait intégrer en $\ln |u|$).

$$f(x) = \frac{(4x+1)\frac{1}{4} - \frac{1}{4} + 1}{2x^2 + x + 1} = \frac{1}{4} \cdot \frac{4x+1}{2x^2 + x + 1} + \frac{3}{4} \cdot \frac{1}{2x^2 + x + 1}$$

On peut intégrer la fraction $\frac{4x+1}{2x^2+x+1}$

$$\int \frac{4x+1}{2x^2+x+1} dx = \int \frac{u'(x)}{u(x)} dx = \ln |2x^2+x+1| + c$$

Occupons nous de l'autre partie $\frac{1}{2x^2+x+1}$, nous allons l'écrire sous la forme $\frac{1}{u^2+1}$ (dont une primitive est $\arctan u$).

$$\frac{1}{2x^2 + x + 1} = \frac{1}{2(x + \frac{1}{4})^2 - \frac{1}{8} + 1} = \frac{1}{2(x + \frac{1}{4})^2 + \frac{7}{8}}$$
$$= \frac{8}{7} \cdot \frac{1}{\frac{8}{7}2(x + \frac{1}{4})^2 + 1} = \frac{8}{7} \cdot \frac{1}{\left(\frac{4}{\sqrt{7}}(x + \frac{1}{4})\right)^2 + 1}$$

Apri Change English April Change English Change Eng

On pose le changement de variable $u = \frac{4}{\sqrt{7}}(x + \frac{1}{4})$ (et donc $du = \frac{4}{\sqrt{7}}dx$) pour trouver

$$\int \frac{dx}{2x^2 + x + 1} = \int \frac{8}{7} \frac{dx}{\left(\frac{4}{\sqrt{7}}(x + \frac{1}{4})\right)^2 + 1} = \frac{8}{7} \int \frac{du}{u^2 + 1} \cdot \frac{\sqrt{7}}{4}$$
$$= \frac{2}{\sqrt{7}} \arctan u + c = \frac{2}{\sqrt{7}} \arctan\left(\frac{4}{\sqrt{7}}(x + \frac{1}{4})\right) + c.$$

Finalement:

$$\int f(x) \, dx = \frac{1}{4} \ln \left(2x^2 + x + 1 \right) + \frac{3}{2\sqrt{7}} \arctan \left(\frac{4}{\sqrt{7}} \left(x + \frac{1}{4} \right) \right) + c$$

5.2. Intégration des éléments simples

Soit $\frac{P(x)}{Q(x)}$ une fraction rationnelle, où P(x), Q(x) sont des polynômes à coefficients réels. Alors la fraction $\frac{P(x)}{Q(x)}$ s'écrit comme somme d'un polynôme $E(x) \in \mathbb{R}[x]$ (la partie entière) et d'éléments simples d'une des formes suivantes :

$$\frac{\gamma}{(x-x_0)^k} \quad \text{ou} \quad \frac{\alpha x + \beta}{(\alpha x^2 + bx + c)^k} \text{ avec } b^2 - 4ac < 0$$

où $\alpha, \beta, \gamma, a, b, c \in \mathbb{R}$ et $k \in \mathbb{N} \setminus \{0\}$.

- 1. On sait intégrer le polynôme E(x).
- 2. Intégration de l'élément simple $\frac{\gamma}{(x-x_0)^k}$.

(a) Si
$$k = 1$$
 alors $\int \frac{\gamma dx}{x - x_0} = \gamma \ln|x - x_0| + c_0$ (sur $] - \infty, x_0[$ ou $]x_0, +\infty[$).

(b) Si
$$k \ge 2$$
 alors $\int \frac{\gamma \, dx}{(x-x_0)^k} = \gamma \int (x-x_0)^{-k} \, dx = \frac{\gamma}{-k+1} (x-x_0)^{-k+1} + c_0$ (sur $]-\infty, x_0[$ ou $]x_0, +\infty[$).

3. Intégration de l'élément simple $\frac{\alpha x + \beta}{(\alpha x^2 + b x + c)^k}$. On écrit cette fraction sous la forme

$$\frac{\alpha x+\beta}{(ax^2+bx+c)^k}=\gamma\frac{2ax+b}{(ax^2+bx+c)^k}+\delta\frac{1}{(ax^2+bx+c)^k}$$

- (a) Si k=1, calcul de $\int \frac{2ax+b}{ax^2+bx+c} dx = \int \frac{u'(x)}{u(x)} dx = \ln|u(x)| + c_0 = \ln|ax^2+bx+c| + c_0$.
- (b) Si $k \ge 2$, calcul de $\int \frac{2ax+b}{(ax^2+bx+c)^k} dx = \int \frac{u'(x)}{u(x)^k} dx = \frac{1}{-k+1} u(x)^{-k+1} + c_0 = \frac{1}{-k+1} (ax^2+bx+c)^{-k+1} + c_0$.
- (c) Si k=1, calcul de $\int \frac{1}{ax^2+bx+c} dx$. Par un changement de variable u=px+q on se ramène à calculer une primitive du type $\int \frac{du}{u^2+1} = \arctan u + c_0$.
- (d) Si $k \geqslant 2$, calcul de $\int \frac{1}{(ax^2+bx+c)^k} dx$. On effectue le changement de variable u=px+q pour se ramener au calcul de $I_k = \int \frac{du}{(u^2+1)^k}$. Une intégration par parties permet de passer de I_k à I_{k-1} .

Par exemple calculons I_2 . Partant de $I_1 = \int \frac{du}{u^2+1}$ on pose $f = \frac{1}{u^2+1}$ et g' = 1. La formule d'intégration par parties $\int f g' = [f g] - \int f' g$ donne (avec $f' = -\frac{2u}{(u^2+1)^2}$ et g = u)

$$\begin{split} I_1 &= \int \frac{du}{u^2+1} = \left[\frac{u}{u^2+1}\right] + \int \frac{2u^2\,du}{(u^2+1)^2} = \left[\frac{u}{u^2+1}\right] + 2\int \frac{u^2+1-1}{(u^2+1)^2}du \\ &= \left[\frac{u}{u^2+1}\right] + 2\int \frac{du}{u^2+1} - 2\int \frac{du}{(u^2+1)^2} = \left[\frac{u}{u^2+1}\right] + 2I_1 - 2I_2 \end{split}$$

On en déduit $I_2 = \frac{1}{2}I_1 + \frac{1}{2}\frac{u}{u^2+1} + c_0$. Mais comme $I_1 = \arctan u$ alors

$$I_2 = \int \frac{du}{(u^2 + 1)^2} = \frac{1}{2} \arctan u + \frac{1}{2} \frac{u}{u^2 + 1} + c_0.$$

5.3. Intégration des fonctions trigonométriques

On peut aussi calculer les primitives de la forme $\int P(\cos x, \sin x) dx$ ou de la forme $\int \frac{P(\cos x, \sin x)}{Q(\cos x, \sin x)} dx$ quand P et Q sont des polynômes, en se ramenant à intégrer une fraction rationnelle.

Il existe deux méthodes:

- les règles de Bioche sont assez efficaces mais ne fonctionnent pas toujours ;
- le changement de variable $t = \tan \frac{x}{2}$ fonctionne tout le temps mais conduit à davantage de calculs.

Les règles de Bioche. On note $\omega(x) = f(x) dx$. On a alors $\omega(-x) = f(-x) d(-x) = -f(-x) dx$ et $\omega(\pi - x)$ $f(\pi - x) d(\pi - x) = -f(\pi - x) dx.$

- Si $\omega(-x) = \omega(x)$ alors on effectue le changement de variable $u = \cos x$.
- Si $\omega(\pi x) = \omega(x)$ alors on effectue le changement de variable $u = \sin x$.
- Si $\omega(\pi + x) = \omega(x)$ alors on effectue le changement de variable $u = \tan x$.

Exemple 15.

Calcul de la primitive $\int \frac{\cos x \, dx}{2-\cos^2 x}$

On note $\omega(x) = \frac{\cos x}{2 - \cos^2 x}$. Comme $\omega(\pi - x) = \frac{\cos(\pi - x)}{2 - \cos^2(\pi - x)} = \frac{(-\cos x)(-dx)}{2 - \cos^2 x} = \omega(x)$ alors le changement de variable qui convient est $u = \sin x$ pour lequel $du = \cos x \, dx$. Ainsi:

$$\int \frac{\cos x \, dx}{2 - \cos^2 x} = \int \frac{\cos x \, dx}{2 - (1 - \sin^2 x)} = \int \frac{du}{1 + u^2} = \left[\arctan u\right] = \arctan(\sin x) + c.$$

Le changement de variable $t = \tan \frac{x}{2}$.

Les formules de la « tangente de l'arc moitié » permettent d'exprimer sinus, cosinus et tangente en fonction de tan $\frac{x}{2}$.

Avec
$$t = \tan \frac{x}{2}$$
 on a
$$\cos x = \frac{1-t^2}{1+t^2} \qquad \sin x = \frac{2t}{1+t^2} \qquad \tan x = \frac{2t}{1-t^2}$$
 et $dx = \frac{2 dt}{1+t^2}$.

Exemple 16.

Calcul de l'intégrale $\int_{-\pi/2}^{0} \frac{dx}{1-\sin x}$. Le changement de variable $t = \tan \frac{x}{2}$ définit une bijection de $[-\frac{\pi}{2}, 0]$ vers [-1, 0] (pour $x = -\frac{\pi}{2}$, t = -1 et pour x = 0, t=0). De plus on a $\sin x = \frac{2t}{1+t^2}$ et $dx = \frac{2 dt}{1+t^2}$.

$$\int_{-\frac{\pi}{2}}^{0} \frac{dx}{1 - \sin x} = \int_{-1}^{0} \frac{\frac{2 dt}{1 + t^2}}{1 - \frac{2t}{1 + t^2}} = 2 \int_{-1}^{0} \frac{dt}{1 + t^2 - 2t}$$
$$= 2 \int_{-1}^{0} \frac{dt}{(1 - t)^2} = 2 \left[\frac{1}{1 - t} \right]_{-1}^{0} = 2 \left(1 - \frac{1}{2} \right) = 1$$

Mini-exercices.

1. Calculer les primitives $\int \frac{4x+5}{x^2+x-2} dx$, $\int \frac{6-x}{x^2-4x+4} dx$, $\int \frac{2x-4}{(x-2)^2+1} dx$, $\int \frac{1}{(x-2)^2+1} dx$.

2. Calculer les primitives $I_k = \int \frac{dx}{(x-1)^k}$ pour tout $k \geqslant 1$. Idem avec $J_k = \int \frac{x \, dx}{(x^2+1)^k}$.

3. Calculer les intégrales suivantes : $\int_0^1 \frac{dx}{x^2 + x + 1}$, $\int_0^1 \frac{x \, dx}{x^2 + x + 1}$, $\int_0^1 \frac{x \, dx}{(x^2 + x + 1)^2}$, $\int_0^1 \frac{dx}{(x^2 + x + 1)^2}$.

4. Calculer les intégrales suivantes : $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 x \cos^3 x \, dx, \int_{0}^{\frac{\pi}{2}} \cos^4 x \, dx, \int_{0}^{2\pi} \frac{dx}{2 + \sin x}$

Auteurs du chapitre

Rédaction: Arnaud Bodin

Basé sur des cours de Guoting Chen et Marc Bourdon

Relecture: Pascal Romon Dessins: Benjamin Boutin