

SENIOR CERTIFICATE EXAMINATIONS/ SENIORSERTIFIKAAT-EKSAMEN NATIONAL SENIOR CERTIFICATE EXAMINATIONS/ NASIONALE SENIORSERTIFIKAAT-EKSAMEN

MATHEMATICS P1/WISKUNDE V1 MARKING GUIDELINES/NASIENRIGLYNE MAY/JUNE/MEI/JUNIE 2024

MARKS: 150 *PUNTE: 150*

These marking guidelines consist of 16 pages./ Hierdie nasienriglyne bestaan uit 16 bladsye.

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- Consistent Accuracy applies in all aspects of the marking memorandum.

LET WEL:

- Indien 'n kandidaat 'n vraag TWEE keer beantwoord, merk slegs die EERSTE poging.
- Volgehoue akkuraatheid is DEURGAANS op ALLE aspekte van die nasienriglyne van toepassing.

QUESTION 1/VRAAG 1

1.1.1	$3x^2 + 5x = 0$	
	x(3x+5)=0	$\checkmark x = 0$
	$x = 0$ or $x = -\frac{5}{3}$	$\checkmark x = -\frac{5}{3}$
	$\begin{bmatrix} x-0 & \text{or} & x-\frac{\pi}{3} \end{bmatrix}$	$\checkmark x = -\frac{5}{}$
		3
		(2)
1.1.2	$4x^2 + 3x - 5 = 0$	
	$-(3) \pm \sqrt{(3)^2 - 4(4)(-5)}$	
	$x = \frac{-(3) \pm \sqrt{(3)^2 - 4(4)(-5)}}{2(4)}$	✓ correct substitution into
	· /	correct formula ✓ answer
	x = 0.80 or $x = -1.55$	✓ answer ✓ answer
		(3)
1.1.0	(1)2 0 > 0	(3)
1.1.3	$(x-1)^2 - 9 \ge 0$	
	$x^2 - 2x - 8 \ge 0$	✓ standard form
	$(x-4)(x+2) \ge 0$	Sundard Torrir
	x = 4 or $x = -2$	✓ critical values
	$x \le -2$ or $x \ge 4$	· critical values
		$\checkmark \checkmark x \le -2 \text{ or } x \ge 4$
		(4)
1.1.4	$5^{2x} - 5^x = 0$	
	$5^{x}(5^{x}-1)=0$	✓ common factor
		$\checkmark 5^x \neq 0$
	$5^x \neq 0$ or $5^x = 1$	$\checkmark 5^x = 1$
	x = 0	$\checkmark x = 0 \tag{4}$
	OR/OF	OR/OF
	$5^{2x} = 5^x$	$\checkmark 5^{2x} = 5^x$
	2x = x	$\checkmark 2x = x$
	2x - x = 0	$\checkmark 2x - x = 0$
	x = 0	$\checkmark x = 0 \tag{4}$

	· ·		
1.1.5	$\frac{x}{\sqrt{20-x}} = 1$		
	$\begin{vmatrix} \sqrt{20-x} \\ x = \sqrt{20-x} \end{vmatrix}$	✓ isolating the surd	
	$\begin{vmatrix} x - \sqrt{20 - x} \\ x^2 = 20 - x \end{vmatrix}$	✓ squaring both sides	
	$\begin{vmatrix} x &= 20 - x \\ x^2 + x - 20 = 0 \end{vmatrix}$	squaring oour sides	
		✓ standard form	
	$x = 4$ or $x \neq -5$		
		✓ answers ✓ selection	
		Sciection	(5)
1.2	$2x^2 - y^2 = 7$ (1)		(0)
1.2	$x + y = 9 \qquad \dots (1)$ $\dots (2)$		
	y = 9 - x	$\checkmark y = 9 - x$	
	$2x^2 - (9 - x)^2 = 7$		
	` '	✓ substitution	
	$2x^2 - 81 + 18x - x^2 = 7$	(, 1 16	
	$\begin{cases} x^2 + 18x - 88 = 0\\ (x + 22)(x - 4) = 0 \end{cases}$	✓ standard form	
	x = -22 or x = 4 y = 31 or y = 5	✓ x-values	
	y = 31 or $y = 3$	✓ y-values	(5)
	OR/OF	OR/OF	(3)
	$2x^2 - y^2 = 7 \qquad \dots (1)$		
	$x + y = 9 \qquad \dots (2)$		
	x = 9 - y	$\checkmark x = 9 - y$	
	$2(9-y)^2 - y^2 = 7$	✓ substitution	
	$2(81-18y+y^2)-y^2-7=0$	Substitution	
	$162 - 36y + 2y^2 - y^2 - 7 = 0$	/ 1 1 6	
	$y^2 - 36y + 155 = 0$	✓ standard form	
	(y-31)(y-5)=0		
	y = 31 or $y = 5$	✓ y-values ✓ x-values	
	x = -22 or $x = 4$	* x-values	(5)
1.3	$P \times T = (1-a)(1+a)(1+a^2)(1+a^4)(1+a^{512})$		(5)
1.5	$\begin{bmatrix} 1 & 1 & -(1-a)(1+a)(1+a) & (1+a) & (1+a) \\ 0 & 2 & (1-a)(2)(1+a) & (1+a)(1+a) & (1+a)(1+a) \end{bmatrix}$		
	$P \times T = (1 - a^{2})(1 + a^{2})(1 + a^{4})(1 + a^{512})$	$\checkmark (1-a^4)$ $\checkmark (1-a^{512})$ $\checkmark 1-a^{1024}$	
	$P \times T = (1 - a^4)(1 + a^4)(1 + a^{512})$,	
	$P \times T = (1 - a^8) \dots (1 + a^{512})$	$\checkmark (1-a^{512})$	
	$P \times T = (1 - a^{512})(1 + a^{512})$, ,	
	$=1-a^{1024}$	$\checkmark 1-a^{1024}$	
			(3)
			[26]

QUESTION 2/VRAAG 2

2.1.1	$r = \frac{1}{2}$	$\checkmark r = \frac{1}{2}$
	Yes, because $-1 < \frac{1}{2} < 1$	✓ answer with reason
		(2)
2.1.2	$S_{\infty} = \frac{a}{1 - r}$	
	$S_{\infty} = \frac{a}{1-r}$ $S_{\infty} = \frac{4}{1-\frac{1}{2}}$	✓ substitution
	$\therefore S_{\infty} = 8$	✓ answer
2.2	$\sum_{p=k}^{10} 3^{p-1} = 3^{k-1} + 3^{k+1-1} + 3^{k+2-1} + \dots + 3^9$	(2)
	$= 3^{k-1} + 3^k + 3^{k+1} + \dots 3^9$ $S_n = \frac{a(r^n - 1)}{r - 1}$	$\checkmark a = 3^{k-1}$
	$S_n = \frac{1}{r-1}$ $29 520 = \frac{3^{k-1}(3^{11-k} - 1)}{3-1}$	$\checkmark a = 3^{k-1}$ $\checkmark r = 3$ $\checkmark n = 11 - k$
	$3^{10} - 3^{k-1} = 59040$	$\checkmark n = 11 - k$ \checkmark substitution
	$3^{k-1} = 9$ $k-1=2$	
	$\therefore k = 3$	✓ answer (5)
		[9]

QUESTION 3/VRAAG 3

3.1.1	3;7;12;18	
	V V V	
	First diff: 4;5;6	
	Second diff: 1;1	
	2a=1	/ 2 1
	1	✓ 2 <i>a</i> =1
	$a = \frac{1}{2}$	
	3a+b=4	
	$3\left(\frac{1}{2}\right) + b = 4$	(1)
		$\checkmark 3\left(\frac{1}{2}\right) + b = 4$
	$b=\frac{5}{2}$	(2)
	a+b+c=3	
		. 1 5
	$\frac{1}{2} + \frac{5}{2} + c = 3$	$\checkmark \frac{1}{2} + \frac{5}{2} + c = 3$
	c = 0	(3)
	$T_{-} = \frac{1}{n^2} + \frac{5}{n}$	
2.1.2	ⁿ 2 2	
3.1.2	$T_n = \frac{1}{2}n^2 + \frac{5}{2}n$ $13527 = \frac{1}{2}n^2 + \frac{5}{2}n$	$\checkmark 13527 = \frac{1}{2}n^2 + \frac{5}{2}n$
	$n^2 + 5n - 27\ 054 = 0$	✓ standard form
		standard form
	(n-162)(n+167)=0 n=162 or $n=-167$	\checkmark answers for n
	$T_{161} = 13363$	answers for n
	$T_{161} + 164 = 13527$	
	164 must be added.	(164
	101 must be udded.	✓ 164 (4)
	OR/OF	OR/OF
	T = 3 L sum of 1st differences	
	$T_n = 3 + \text{sum of } 1^{\text{st}} \text{ differences}$ 13527 = 3 + 4 + 5 + + n	$\checkmark 13527 = 3 + 4 + 5 + + n$
		· 13321 - 3+++3++1l
	$\left[\frac{n-3+1}{2}[3+n]=13527\right]$	$\sqrt{n^2 + n - 27060} = 0$
	$n^2 + n - 27060 = 0$	2,000
	(n+165)(n-167)=0	\checkmark answers for n
	n = 164	✓ answers for <i>n</i> ✓ 164
		(4)

3.2.1	$T_n = 8 + (n-1)(3)$	
	$T_n = 3n + 5$	$\checkmark T_n = 3n + 5$ $\checkmark T_n = 41$
	41 = 3n + 5	$\checkmark T_n = 41$
	36 = 3n	
	n = 12	✓ answer
3.2.2a	D =12	(3) ✓ answer
3.2.2a	$P_{41} = 12$	(1)
		(1)
3.2.2b	$P_8 = a + 7d = 1$	$\checkmark a + 7d = 1$
	$P_{11} = a + 10d = 2$	$\checkmark a + 10d = 2$
	3d = 1	
	$d=\frac{1}{3}$	✓ value of d
	3	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	$a + 7\left(\frac{1}{3}\right) = 1$	
		✓ value of a
	$a = -\frac{4}{3}$	$\begin{array}{c c} \bullet & \text{value of } a \\ \hline \end{array} \tag{4}$
	3	[15]

QUESTION 4/VRAAG 4

	x = 1	$\checkmark x = 1$ $\checkmark y = 2$
	y = 2	$y = 2 \tag{2}$
4.2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	✓ x-intercept ✓ y-intercept ✓ asymptotes ✓ shape (4)
4.3	$x < \frac{1}{2}$ or $x > 1$	$\checkmark x < \frac{1}{2}$ $\checkmark x > 1 \tag{2}$
4.4	y = -(x-1) + 2 $y = -x + 3$	✓ substitution of (1;2) ✓ answer (2)
	OR/OF y-2=-(x-1) $y=-x+3$	OR/OF ✓ substitution of (1;2) ✓ answer
	OR/OF	OR/OF
	$y = -x + c$ $2 = -(1) + c$ $c = 3$ $\therefore y = -x + 3$	✓ substitution of (1; 2) ✓ answer (2) [10]

QUESTION5/VRAAG 5

5.1	P ′ (2;4)	$\checkmark x = 2$
		$\checkmark x = 2$ $\checkmark y = 4$
		(2)
5.2	$f(x) = \log_a x$	
	$2 = \log_a 4$	✓ substitute (4; 2)
	$a^2 = 4$	$\checkmark a^2 = 4$
	a = 2	(2)
5.3	$y = 2^x$	$\checkmark y = 2^x$
		(1)
5.4	$1 = \log_2 x$	
	$\therefore x = 2 \qquad T(2;1)$	$\checkmark x = 2$
	RT = 2 units P'T = 3 units	\checkmark RT = 2 units \checkmark P'T = 3 units
	Area of $\triangle RTP^{\prime} = \frac{1}{2}.RT.TP^{\prime}$	
	$= \frac{1}{2} \times 2 \times 3 = 3 \text{ units}^{2}$	✓ answer
		(4) [9]

OUESTION 6/VRAAG 6

6.1 $y \ge -4$ or $y \in [-4; \infty)$
$(x-3)(x+1) = 0$ $x = 3 \text{ or } x = -1$ $\therefore E(3;0) \text{ and } D(-1;0)$ (5.3) $\therefore m_{pE} = 1$ $\therefore g(x) = x - 3$ (5.4) $f(x) > g(x)$ $x < 0 \text{ or } x > 3$ (5.5) $Distance = -x^2 + 2x + 3 - x + 3 = -x^2 + x + 6$ $D' = -2x + 1 = 0$ $\therefore x = \frac{1}{2}$ $D\left(\frac{1}{2}\right) = -\left(\frac{1}{2}\right)^2 + \frac{1}{2} + 6$ $= \frac{25}{4} = 6,25$ (5.5) (5.6) (5.6) (5.7) (7.5) (7.5) (7.5) (8.6) (8.7) (9.7)
$x = 3 \text{ or } x = -1$ $\therefore E(3; 0) \text{ and } D(-1; 0)$ $0.3 P(0; -3)$ $\therefore m_{PE} = 1$ $\therefore g(x) = x - 3$ $0.4 f(x) > g(x)$ $x < 0 \text{ or } x > 3$ $0.5 Distance = -x^2 + 2x + 3 - x + 3 = -x^2 + x + 6$ $D' = -2x + 1 = 0 \text{or/of} x = -\frac{b}{2a}$ $\therefore x = \frac{1}{2} \therefore x = \frac{1}{2}$ $D\left(\frac{1}{2}\right) = -\left(\frac{1}{2}\right)^2 + \frac{1}{2} + 6$ $= \frac{25}{4} = 6,25$ $0.5 \text{on } x = -\frac{b}{2a}$ $\therefore x = \frac{1}{2} \text{on } x = -\frac{b}{2a}$ $\text{on } x = \frac{1}{2} \text{on } x = \frac{1}{2}$ $\text{on } x = \frac{1}{2} \text{on } x = \frac{1}{2}$ $\text{on } x = \frac{1}{2} \text{on } x = \frac{1}{2}$ $\text{on } x = \frac{1}{2} \text{on } x = \frac{1}{2}$ $\text{on } x = \frac{1}{2} \text{on } x = \frac{1}{2}$ $\text{on } x = \frac{1}{2} \text{on } x = \frac{1}{2}$ $\text{on } x = \frac{1}{2} \text{on } x = \frac{1}{2}$ $\text{on } x = \frac{1}{2} \text{on } x = \frac{1}{2}$ $\text{on } x = \frac{1}{2} \text{on } x = \frac{1}{2}$ $\text{on } x = \frac{1}{2} \text{on } x = \frac{1}{2}$ $\text{on } x = \frac{1}{2} \text{on } x = \frac{1}{2}$ $\text{on } x = \frac{1}{2} \text{on } x = \frac{1}{2}$ $\text{on } x = \frac{1}{2} \text{on } x = \frac{1}{2}$ $\text{on } x = \frac{1}{2} \text{on } x = \frac{1}{2} \text{on } x = \frac{1}{2}$ $\text{on } x = \frac{1}{2} \text{on } x = \frac{1}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
of coordinates 6.3 $P(0; -3)$ $\therefore m_{pE} = 1$ $\therefore g(x) = x - 3$ 6.4 $f(x) > g(x)$ $x < 0$ or $x > 3$ 6.5 Distance $= -x^2 + 2x + 3 - x + 3 = -x^2 + x + 6$ $D' = -2x + 1 = 0$ or/of $x = -\frac{b}{2a}$ $\therefore x = \frac{1}{2}$ $D\left(\frac{1}{2}\right) = -\left(\frac{1}{2}\right)^2 + \frac{1}{2} + 6$ $= \frac{25}{4} = 6,25$ of coordinates of coordinates of coordinates of coordinates of coordinates of coordinates of $m_{pE} = 1$ $f(x) = x + 3$ $f(x) = x + 3$ $f(x) = x + 4$
6.3 $P(0; -3)$ $\therefore m_{PE} = 1$ $\therefore g(x) = x - 3$ $\forall g(x) = x - 3$ $\forall g(x) = x - 3$ (6.4 $f(x) > g(x)$ $x < 0 \text{ or } x > 3$ $\forall x > 3$ $\forall x > 3$ (7.5 $\Rightarrow x > 3$ $\Rightarrow x $
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
6.5 Distance $= -x^2 + 2x + 3 - x + 3 = -x^2 + x + 6$ $D' = -2x + 1 = 0 or/of x = -\frac{b}{2a} \checkmark x = \frac{1}{2}$ $D\left(\frac{1}{2}\right) = -\left(\frac{1}{2}\right)^2 + \frac{1}{2} + 6$ $= \frac{25}{4} = 6,25$ $\checkmark x > 3$ $\checkmark x > 3$ $\checkmark D = -x^2 + x + 6$ $\checkmark method$ $\checkmark x = \frac{1}{2}$ $\checkmark substitution$ $\checkmark answer$
6.5 Distance $= -x^2 + 2x + 3 - x + 3 = -x^2 + x + 6$ $D' = -2x + 1 = 0 or/of x = -\frac{b}{2a} \checkmark x = \frac{1}{2}$ $D\left(\frac{1}{2}\right) = -\left(\frac{1}{2}\right)^2 + \frac{1}{2} + 6$ $= \frac{25}{4} = 6,25$ $\checkmark x > 3$ $\checkmark x > 3$ $\checkmark D = -x^2 + x + 6$ $\checkmark method$ $\checkmark x = \frac{1}{2}$ $\checkmark substitution$ $\checkmark answer$
6.5 Distance $= -x^2 + 2x + 3 - x + 3 = -x^2 + x + 6$ $D' = -2x + 1 = 0 or/of x = -\frac{b}{2a} \checkmark method$ $\therefore x = \frac{1}{2} \therefore x = \frac{1}{2} \checkmark x = \frac{1}{2}$ $D\left(\frac{1}{2}\right) = -\left(\frac{1}{2}\right)^2 + \frac{1}{2} + 6$ $= \frac{25}{4} = 6,25$ ✓ substitution $\checkmark \text{ answer} ($
$D' = -2x + 1 = 0 \qquad \text{or/of} \qquad x = -\frac{b}{2a}$ $\therefore x = \frac{1}{2} \qquad \therefore x = \frac{1}{2}$ $D\left(\frac{1}{2}\right) = -\left(\frac{1}{2}\right)^2 + \frac{1}{2} + 6$ $= \frac{25}{4} = 6,25$ (25) $= \frac{5}{4} = 6,25$ (35) $\Rightarrow \text{or/of} \qquad x = -\frac{b}{2a}$ $\Rightarrow x = \frac{1}{2}$ $\Rightarrow \text{substitution}$ $\Rightarrow \text{answer}$
$\therefore x = \frac{1}{2} \qquad \therefore x = \frac{1}{2}$ $D\left(\frac{1}{2}\right) = -\left(\frac{1}{2}\right)^2 + \frac{1}{2} + 6$ $= \frac{25}{4} = 6,25$ $(x) = xx = \frac{1}{2}$ $\checkmark \text{ substitution}$ $\checkmark \text{ answer}$
$\therefore x = \frac{1}{2} \qquad \therefore x = \frac{1}{2}$ $D\left(\frac{1}{2}\right) = -\left(\frac{1}{2}\right)^2 + \frac{1}{2} + 6$ $= \frac{25}{4} = 6,25$ $(x) = xx = \frac{1}{2}$ $\checkmark \text{ substitution}$ $\checkmark \text{ answer}$
$D\left(\frac{1}{2}\right) = -\left(\frac{1}{2}\right)^2 + \frac{1}{2} + 6$ $= \frac{25}{4} = 6,25$ $\checkmark \text{ substitution}$ $\checkmark \text{ answer}$
$D\left(\frac{1}{2}\right) = -\left(\frac{1}{2}\right)^2 + \frac{1}{2} + 6$ $= \frac{25}{4} = 6,25$ $\checkmark \text{ substitution}$ $\checkmark \text{ answer}$
$= \frac{25}{4} = 6,25$ \checkmark answer (
$= \frac{25}{4} = 6,25$ \checkmark answer (
66
66
6.6
$1 = 2x - 2$ $x = \frac{3}{2}$ $x = \frac{3}{2}$ $x = \frac{3}{2}$
$x = \frac{3}{2}$ $x = \frac{3}{2}$ $x = \frac{3}{2}$
$\begin{bmatrix} 2 & & & \\ 2 & & & \\ 2 & & & \end{bmatrix}$
$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $
Point on t: -:
$\sqrt{\frac{-15}{1}}$
$\begin{bmatrix} 15 & 3 \\ 2 & 3 \end{bmatrix}$
$\sqrt{-\frac{15}{4} - \left(\frac{3}{2} - 3\right) - n}$
$\left \begin{array}{c} \mathbf{v} - \frac{1}{4} = \left(\frac{1}{2} - 3\right) - n \end{array}\right $
$\therefore n = 2\frac{1}{4} = \frac{9}{4} = 2,25$
4 4 2,20 ✓ answer
OD/OF
$ \begin{array}{ c c } \mathbf{OR/OF} \\ f(x) = k(x) \end{array} $
$\begin{cases} f(x) = k(x) \\ x^2 - 2x - 3 = x - 3 - n \end{cases}$ \(\sigma \text{equating}
$x^2 - 3x + n = 0$ \checkmark standard form
$\Delta = b^2 - 4ac$ substitution into \(\Delta \)
$=(-3)^2 -4(1)(n)$
To touch: $\Delta = 0$
0 = 9 - 4n
4n = 9
$n = \frac{9}{2}$ answer
$n-\frac{1}{4}$
[1

QUESTION 7/VRAAG 7

7.1	$A = P(1-i)^n$	
	$8337,75 = 13000(1-i)^6$	✓ substitution in correct
	i = 7.14%	formula ✓✓ answer
	1,32 170	(3)
7.2	$x[(1+i)^n-1]$	
	$F = \frac{x[(1+i)^n - 1]}{i}$	
	$\begin{bmatrix} (86)^{36} \end{bmatrix}$	\bigvee_i
	$80000 = \frac{x \left[\left(1 + \frac{8,6}{1200} \right)^{36} - 1 \right]}{8,6}$	· ·
	80000= [1200)]	✓ substitution into correct
	$\frac{8,0}{1200}$	formula
	1200 n = D1 055 79	✓answer
	x = R1 955,78	✓ answer
	Thandi's total = $1955,78 \times 36 = R70408,08$	
	Eric's total = $1402,31 \times 48 = R$ 67 310,88	
	Difference = 70 409,08 – 67 310,88	✓ answer
	= R3 097,20	v answer (4)
7.3	$A = P(1+i)^n$	()
	$A = P(1+i)^n$ $A = 225000 \left(1 + \frac{0.09}{12}\right)^3$	
	$A = 225000 \left(1 + \frac{0.09}{12} \right)$	✓ substitution in correct
	A = R 230100,5637	formula ✓ answer
	11 11 250100,5057	
	$\begin{bmatrix} (0.09)^{-n} \end{bmatrix}$	
	$225000 \left(1 + \frac{0,09}{12}\right)^{3} = \frac{5500 \left[1 - \left(1 + \frac{0,09}{12}\right)^{-n}\right]}{0,09}$	
	$\left 225000 \left(1 + \frac{0.05}{12} \right) \right = \frac{1}{0.09}$	
	$\frac{6,65}{12}$	
	$(0.09)^{-n}$	(1 - 4 i 4 - 4 i
	$0,3137734959 = 1 - \left(1 + \frac{0,09}{12}\right)^{-n}$	✓ substitution
	· · · · · · · · · · · · · · · · · · ·	
	$\left(1 + \frac{0.09}{12}\right)^{-n} = 0.6862265041$	
	$-n = \log_{(0.09)} 0.6862265041$	✓ simplification
	$-n = \log_{\left(1 + \frac{0.09}{12}\right)} 0,6862265041$	Simpinication
	n = 50,394375	
	n = 51	✓ use of logs
		✓ answer
		(6)
		[13]

QUESTION8/VRAAG 8

8.1	$f(x) = \frac{1}{x}$	
	$f(x) = \frac{1}{x}$ $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	
	$\frac{1}{(n+k)} - \frac{1}{n}$	$\checkmark f(x+h) = \frac{1}{1}$
	$f'(x) = \lim_{h \to 0} \frac{\frac{1}{(x+h)} - \frac{1}{x}}{h}$	$\checkmark f(x+h) = \frac{1}{x+h}$
	$f'(x) = \lim_{h \to 0} \frac{x - (x+h)}{x(x+h)} \times \frac{1}{h}$	$\checkmark \frac{x - (x + h)}{x(x + h)} \times \frac{1}{h}$
	$f'(x) = \lim_{h \to 0} \frac{-h}{x(x+h)} \times \frac{1}{h}$	$\checkmark \frac{-h}{x(x+h)} \times \frac{1}{h}$
	$f'(x) = \lim_{h \to 0} \frac{-1}{x(x+h)}$	
	$f'(x) = -\frac{1}{x^2}$	$\checkmark \frac{-1}{x(x+h)}$
	x^2	✓answer (5)
	OR/OF	OR/OF
	$f(x) = \frac{1}{x}$	
	$f(x) = \frac{1}{x}$ $f(x+h) = \frac{1}{x+h}$ $f(x+h) - f(x) = -\frac{h}{x(x+h)}$ $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	$\checkmark f(x+h) = \frac{1}{x+h}$
	$f(x+h)-f(x) = -\frac{h}{x(x+h)}$	$\checkmark f(x+h) = \frac{1}{x+h}$ $\checkmark f(x+h) - f(x) = -\frac{h}{x(x+h)}$
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	
	$f'(x) = \lim_{h \to 0} \frac{-h}{x(x+h)} \times \frac{1}{h}$	$\checkmark \frac{-h}{x(x+h)} \times \frac{1}{h}$
	$f'(x) = \lim_{h \to 0} \frac{-1}{x(x+h)}$ $f'(x) = -\frac{1}{x^2}$	$\checkmark \frac{-1}{x(x+h)}$
	$f'(x) = -\frac{1}{x^2}$	✓answer
		(5)

8.2.1	$\frac{d}{dx}\left(\sqrt{4x^6} + \sqrt{2}.x^2\right)$ $= \frac{d}{dx}\left(2x^3 + \sqrt{2}.x^2\right)$ $= 6x^2 + 2\sqrt{2}x$	$\checkmark 2x^{3}$ $\checkmark 6x^{2}$ $\checkmark 2\sqrt{2}x$ (3)
8.2.2	$g(x) = \frac{3x^4 - 4x^2 + 6}{x^2}$ $g(x) = 3x^2 - 4 + 6x^{-2}$ $g'(x) = 6x - 12x^{-3}$	$ √3x^{2} - 4 + 6x^{-2} $ $ √6x $ $ √-12x^{-3} $ (3)
8.3	$f(x) = 3x^{2} + bx + c$ $f'(x) = 6x + b$ $f'(1) = 6 + b = 9$ $\therefore b = 3$ $f(1) = 3 + 3 + c = 0$ $c = -6$ $\therefore f(x) = 3x^{2} + 3x - 6$	√ f / (1) = 6 + b = 9 $ √ b = 3 $ $ √ f(1) = 3 + 3 + c = 0 $ $ √ c = -6 $ (4)
		[15]

QUESTION9/VRAAG9

9.1	$f(x) = ax^3 + bx^2 + cx - 5$	
	$-5 = a(0+1)^2(0-5)$	
	-5 = -5a	✓ substitution of <i>x</i> -intercepts ✓ simplification
	a=1	Simplification
	f(x) = (x+1)(x+1)(x-5)	
	$f(x) = (x^2 + 2x + 1)(x - 5)$	
	$f(x) = x^3 - 3x^2 - 9x - 5$	✓ simplification
	$\therefore b = -3 \text{ and } c = -9$	(3)
9.2	$f(x) = x^3 - 3x^2 - 9x - 5$	
	$f'(x) = 3x^2 - 6x - 9$	$\checkmark f'(x) = 3x^2 - 6x - 9$
	$x^2 - 2x - 3 = 0$	$\checkmark f'(x) = 0$
	(x-3)(x+1) = 0	√factors
	x = 3 or $x = -1$	$\checkmark x=3$
	Minimum value at $x = 3$	$\begin{array}{c c} \mathbf{v} & x = 3 \end{array} \tag{4}$
		(4)
9.3	f''(x).f(x) > 0	✓ x = 1
	Point of inflection: $x = 1$	$\checkmark x < 1 ; x \neq -1$
	$x < 1$; $x \ne -1$ or $x > 5$	$\checkmark x > 5 \tag{3}$
9.4	-32 < -t < -5	√-32
7	5 < t < 32	$\sqrt{-32} < -t < -5$
		$\checkmark 5 < t < 32 \tag{3}$
	OR/OF	OR/OF
	Shift up more than 5 units and less than 32 units	✓ more than 5 units
	$\therefore 5 < t < 32$	✓ less than 32 units \checkmark 5 < t < 32 (3)
		$\checkmark 5 < t < 32$ (3) [13]

QUESTION 10/VRAAG 10

10.1	$\frac{NE}{EF} = \frac{2}{3} = \frac{x^2}{b}$	$\checkmark \frac{NE}{NE} = \frac{2}{NE} = \frac{x^2}{NE}$	
		EF 3 b	
	$3x^2 = 2b$	$\checkmark : b = \frac{3x^2}{2}$	
	$\therefore b = \frac{3x^2}{2}$	2	
	$EH = 4 - 2x^2$	$\checkmark EH = 4 - 2x^2$	
	Area EFGH = $(4-2x^2)\left(\frac{3x^2}{2}\right)$	$\checkmark \frac{NE}{EF} = \frac{2}{3} = \frac{x^2}{b}$ $\checkmark \therefore b = \frac{3x^2}{2}$ $\checkmark EH = 4 - 2x^2$ $\checkmark (4 - 2x^2) \left(\frac{3x^2}{2}\right)$	
	$A(x) = 6x^2 - 3x^4$	(2)	(4)
	OR/OF	OR/OF	(4)
	In $\triangle DMP$: $\tan P = \frac{3}{2}$		
	In \triangle HGP: $\tan P = \frac{GH}{x^2}$		
	$\frac{GH}{x^2} = \frac{3}{2}$	$\checkmark \frac{\text{GH}}{x^2} = \frac{2}{3}$	
	$\therefore b = \frac{3x^2}{2}$	$\checkmark \therefore b = \frac{3x^2}{2}$	
	$EH = 4 - 2x^2$	$\checkmark \text{ FH} - 4 - 2x^2$	
	Area EFGH = $(4-2x^2)\left(\frac{3x^2}{2}\right)$	$\checkmark \frac{GH}{x^2} = \frac{2}{3}$ $\checkmark : b = \frac{3x^2}{2}$ $\checkmark EH = 4 - 2x^2$ $\checkmark (4 - 2x^2) \left(\frac{3x^2}{2}\right)$	
	$A(x) = 6x^2 - 3x^4$	(2)	(4)
10.2	$A(x) = 6x^2 - 3x^4$. ,
	$A'(x) = 12x - 12x^3 = 0$	$\checkmark 12x - 12x^3 = 0$	
	$12x(1-x^2) = 0$	\checkmark values of x	
	$\therefore x \neq 0 \text{ or } x = -1 \text{ or } x = 1$	✓ correct substitution	
	\therefore max area: $A(1) = 6(1)^2 - 3(1)^4 = 3 \text{ cm}^2$	✓ answer	
			(4) [8]
			լսյ

QUESTION 11/VRAAG 11

11.1	P(A) + P(B) = 0.52 0.4 + P(B) = 0.52 P(B) = 0.12	✓ substitution ✓ answer	(2)
11.2.1	$P(\text{sandwich}) = \frac{4}{25}$	✓ answer	(1)
	OR/OF $0,02 + 0,01 + 0,04 + 0,09 = \frac{4}{25} = 0,16$	OR/OF ✓ answer	
			(1)
11.2.2	P(at least two events) = $0.02 + 0.01 + 0.03 + 0.04$ = 0.1	✓ 0,02 + 0,01 + 0,03 + 0,04 ✓ answer	(2)
11.2.3	P(not any) = $1 - (0.1 + 0.04 + 0.09 + 0.2)$ = 0.57	\checkmark 1 - (0,1 + 0,04 + 0,09 + 0,2) \checkmark answer	(2)
11.3.1	7! = 5040	√ 7!	(1)
11.3.2	P(4 players alphabetically) = $\frac{1}{7 \times 6 \times 5 \times 4} = \frac{1}{840}$	✓ 1 ✓ 840 ✓ 1/840	(3)

16 $SC/SS/NSC/NSS-Marking\ Guidelines/Nasienriglyne$

F F F F F F F F F F	11.3.3											
F arrangements: 4! M arrangements: 5 options with 3 males = 5 × 4 × 3 4! × 5 × 4 × 3 = 1 440 OR/OF OR/OF OR/OF OR/OF OR/OF OR/OF OR/OF OR/OF OR/OF (3) OR/OF OR/OF		F		F		F		F				
M arrangements: 5 options with 3 males = 5 × 4 × 3 4! × 5 × 4 × 3 = 1 440 OR/OF OR/OF OR/OF OR/OF OR/OF OR/OF OR/OF OR/OF (3) OR/OF		F arrangements: 4!										
4! × 5 × 4 × 3 = 1 440 OR/OF OR/OF 10 Options: F M F M F M F M M F M F M F M F M F M F												
= 1 440 OR/OF OR/OF 10 Options: F M F M F M F F F F M F M F M F M F M F												
OR/OF		$4! \times 5 \times 4 \times 3$										
OR/OF 10 Options: F M F M F M F M F M F M F M F M F M F M		= 1 440								√ 1 440		
10 Options: F M F M F M F M F M F M F F F F M F M F											(3)	
10 Options: F M F M F M F M F M F M F F F F M F M F		OD/OE								OD/OF		
F M F M F M F M F M F M F F F F M F M F		UK/UF								OR/OF		
F M F M F M F M F M F M F F F F M F M F		10 Options	: :									
F F M F M F M F M F M F F M M F M F F M F M F M F				F								
F M F M F F M M F M F F M F M F M F F M F M F M F F M F M M F F M F F M M M F F M		MFMF	M F	F								
M F M F F M F M F M F F M F M F F M F M M F F M F F M M F F M F M		F F M F	M F I	M								
M F M F F M F M F M F M F M F M F M F M												
F M F F M F M M F F M F F M M F F M F M												
M F F M F F M M F M F M F M F M F M F M												
M F F M F M F M F M F M F M F M F M F M												
M F F F M F M Hence $10 \times 4! \times 3! = 1440$ $\checkmark 4! \times 3!$ $\checkmark \times 10$ $\checkmark 1440$ (3)												
Hence $10 \times 4! \times 3! = 1440$												
Hence $10 \times 4! \times 3! = 1440$ $\checkmark \times 10$ $\checkmark 1440$ (3)		MFFF	M F I	VI						(41 21		
✓1 440 (3)		10	44 24	1 4 4 0								
(3)		Hence 10×	< 4! × 3!	= 1440)							
										V 1 440	(2)	
											. ,	
											[17]	
TOTAL/TOTAAL: 150		TOTAL/TOTA								OTAAL: 150		