

Sequence Listing

<110> DARYL T. BALDWIN
SARAH C. BODARY
ANDREW C. CHAN
HILARY CLARK
JANET K. J ACKMAN
WILLIAM I. WOOD

<120> NOVEL COMPOSITIONS AND METHODS FOR THE TREATMENT OF
IMMUNE RELATED DISEASES

<130> P1974R1-US

<140> US 10/658,482
<141> 2003-09-09

<150> US 60/410,062
<151> 2002-09-11

<160> 9

<210> 1
<211> 831
<212> DNA
<213> Homo sapiens

<400> 1
cgtcctatct gcagtcggct actttcagtgc gcagaaggagg ccacatctgc 50
ttccctgttagg ccctctgggc agaagcatgc gctgggtgtct cctcctgatc 100
tggcccccagg ggctgaggca ggctccccctc gcctcaggaa tggatgacagg 150
cacaatagaa acaacgggga acatttctgc agagaaaagggt ggctctatca 200
tcttacaatg tcacacctcc tccaccacgg cacaagtgc acaggtaaac 250
tgggagcagc aggaccagct tctggccatt tgtaatgctg acttgggttg 300
gcacatctcc ccattcattca aggatcgagt ggccccaggt cccggcctgg 350
gcctcaccct ccagtcgctg accgtgaacg atacaggggaa gtacttctgc 400
atctatcaca cttaccctga tgggacgtac actgggagaa tcttcctgga 450
ggtcctagaa agctcagtgg ctgagcacgg tgccagggttc cagattccat 500
tgcttggagc catggcccgcg acgctgggtgg tcatactgcac agcagtcac 550
gtgggtgtcg cggtgactag aaagaagaaa gccctcagaa tccattctgt 600
ggaagggtgac ctcaggagaa aatcagctgg acaggaggaa tggagcccc 650
gtgctccctc acccccaggaa agctgtgtcc aggcagaagc tgcacctgct 700
gggctctgtg gagagcagcg gggagaggac tgtgccgagc tgcataacta 750
cttcaatgtc ctgagttaca gaagcctggg taactgcacgc ttcttcacag 800
agactggta gcaaccagag gcatcttctg g 831

<210> 2
<211> 244
<212> PRT
<213> Homo sapiens

<400> 2
Met Arg Trp Cys Leu Leu Leu Ile Trp Ala Gln Gly Leu Arg Gln
1 5 10 15
Ala Pro Leu Ala Ser Gly Met Met Thr Gly Thr Ile Glu Thr Thr
20 25 30
Gly Asn Ile Ser Ala Glu Lys Gly Gly Ser Ile Ile Leu Gln Cys
35 40 45
His Leu Ser Ser Thr Thr Ala Gln Val Thr Gln Val Asn Trp Glu
50 55 60
Gln Gln Asp Gln Leu Leu Ala Ile Cys Asn Ala Asp Leu Gly Trp
65 70 75
His Ile Ser Pro Ser Phe Lys Asp Arg Val Ala Pro Gly Pro Gly
80 85 90
Leu Gly Leu Thr Leu Gln Ser Leu Thr Val Asn Asp Thr Gly Glu
95 100 105
Tyr Phe Cys Ile Tyr His Thr Tyr Pro Asp Gly Thr Tyr Thr Gly
110 115 120
Arg Ile Phe Leu Glu Val Leu Glu Ser Ser Val Ala Glu His Gly
125 130 135
Ala Arg Phe Gln Ile Pro Leu Leu Gly Ala Met Ala Ala Thr Leu
140 145 150
Val Val Ile Cys Thr Ala Val Ile Val Val Val Ala Leu Thr Arg
155 160 165
Lys Lys Lys Ala Leu Arg Ile His Ser Val Glu Gly Asp Leu Arg
170 175 180
Arg Lys Ser Ala Gly Gln Glu Glu Trp Ser Pro Ser Ala Pro Ser
185 190 195
Pro Pro Gly Ser Cys Val Gln Ala Glu Ala Ala Pro Ala Gly Leu
200 205 210
Cys Gly Glu Gln Arg Gly Glu Asp Cys Ala Glu Leu His Asp Tyr
215 220 225
Phe Asn Val Leu Ser Tyr Arg Ser Leu Gly Asn Cys Ser Phe Phe
230 235 240
Thr Glu Thr Gly

<210> 3
<211> 1006
<212> DNA

<213> Homo sapiens

<400> 3

gccagttca gttggaggag aggccacatc cacttgctg taggcctctg 50
gttagaagca tgcattggctg gctgctcctg gtctgggtcc aggggctgat 100
acaggctgcc ttcctcgcta caggagccac agcaggcacg atagatacaa 150
agaggaacat ctctgcagag gaaggtggct ctgtcatctt acagtgtcac 200
ttctcctctg acacagctga agtgaccctaa gtcgactgga agcagcagga 250
ccagcttctg gccatttata gtgttgacct ggggtggcat gtcgcttcag 300
tcttcagtga tcgggtggtc ccaggccccca gcctaggcct caccttccag 350
tctctgacaa tgaatgacac gggagagttac ttctgtacct atcatacgta 400
tcctgggtggg atttacaagg ggagaatatt cctgaaggtc caagaaagct 450
cagtggctca gttccagact gccccgcttg gaggaaccat ggctgctgtg 500
ctgggactca tttgcttaat ggtcacagga gtgactgtac tggctagaaa 550
gaagtctatt agaatgcatt ctatagaaag tggccttggg agaacagaag 600
cgaggccaca ggaatggaac ctgaggagtc tctcatcccc tggaaagccct 650
gtccagacac aaactgcccc tgctggtccc tgtggagagc aggagaaga 700
tgactatgct gacccacagg aatactttaa tgtcctgagc tacagaagcc 750
tagagagctt cattgctgta tcgaagactg gctaacgaca gctctctatc 800
cctctcccta tgtctctctc tctgtctctc tctgtctctc tctgtctctg 850
tctctgtctc tgtctctctc tctctctctc tctctctctc tgtgtgtgtg 900
tgtgtgtatg tgtgtataca tcattaatgt tcattaacac taactgcata 950
tggtgagga ccaggaaata aaagtttgtt ttgctaataa aattaagtgc 1000
taactt 1006

<210> 4

<211> 241

<212> PRT

<213> Homo sapiens

<400> 4

Met	His	Gly	Trp	Leu	Leu	Leu	Val	Trp	Val	Gln	Gly	Leu	Ile	Gln
1				5					10				15	
Ala	Ala	Phe	Leu	Ala	Thr	Gly	Ala	Thr	Ala	Gly	Thr	Ile	Asp	Thr
					20				25				30	
Lys	Arg	Asn	Ile	Ser	Ala	Glu	Glu	Gly	Gly	Ser	Val	Ile	Leu	Gln
						35			40				45	
Cys	His	Phe	Ser	Ser	Asp	Thr	Ala	Glu	Val	Thr	Gln	Val	Asp	Trp

50	55	60
Lys Gln Gln Asp Gln Leu Leu Ala Ile Tyr Ser Val Asp Leu Gly		
65	70	75
Trp His Val Ala Ser Val Phe Ser Asp Arg Val Val Pro Gly Pro		
80	85	90
Ser Leu Gly Leu Thr Phe Gln Ser Leu Thr Met Asn Asp Thr Gly		
95	100	105
Glu Tyr Phe Cys Thr Tyr His Thr Tyr Pro Gly Gly Ile Tyr Lys		
110	115	120
Gly Arg Ile Phe Leu Lys Val Gln Glu Ser Ser Val Ala Gln Phe		
125	130	135
Gln Thr Ala Pro Leu Gly Gly Thr Met Ala Ala Val Leu Gly Leu		
140	145	150
Ile Cys Leu Met Val Thr Gly Val Thr Val Leu Ala Arg Lys Lys		
155	160	165
Ser Ile Arg Met His Ser Ile Glu Ser Gly Leu Gly Arg Thr Glu		
170	175	180
Ala Glu Pro Gln Glu Trp Asn Leu Arg Ser Leu Ser Ser Pro Gly		
185	190	195
Ser Pro Val Gln Thr Gln Thr Ala Pro Ala Gly Pro Cys Gly Glu		
200	205	210
Gln Ala Glu Asp Asp Tyr Ala Asp Pro Gln Glu Tyr Phe Asn Val		
215	220	225
Leu Ser Tyr Arg Ser Leu Glu Ser Phe Ile Ala Val Ser Lys Thr		
230	235	240

Gly

<210> 5
<211> 27
<212> DNA
<213> Artificial sequence

<220>
<223> oligonucleotide probe - forward primer

<400> 5
cgtcctatct gcagtcggct actttca 27

<210> 6
<211> 27
<212> DNA
<213> Artificial sequence

<220>
<223> oligonucleotide probe - reverse primer

<400> 6

ccagaagatg cctctggttg ctaacca 27
<210> 7
<211> 29
<212> DNA
<213> Artificial sequence

<220>
<223> oligonucleotide probe - forward primer

<400> 7
caggaccagc ttctggccat ttatagtgt 29

<210> 8
<211> 26
<212> DNA
<213> Artificial sequence

<220>
<223> oligonucleotide probe - reverse primer

<400> 8
ctgcttccag tcgacttggg tcactt 26

<210> 9
<211> 46
<212> DNA
<213> Artificial sequence

<220>
<223> oligonucleotide probe

<400> 9
cctggtgaaa tttacaaggg gagaatattc ctgaagggcc aagaaa 46