題号 - 二 三 四 五 六 七 1 2 3 4 5 6 1 2 1 2 六 七 得分									September 1					-
1 2 3 4 5 6 1 2 1 2 7 5	斯早	_				Ε			E	Ш	3	E.	,	
得分	Re 9	_	1	2	3	4	5	6	1	2	1	2	一六	t
	得分													

一、单项选择题 (本题共6小题,每小题3分,共18分)

- 1. 若函数 y = f(x) 在 x_0 处的导数 $f'(x_0) = 0$,则曲线 y = f(x) 在点 $(x_0 f(x_0))$ 处的法线
 - (A) 与 x 轴相平行;
- (B) 与 x 轴相垂 首:
- (C) 与y轴相垂直;
- (D) 与 x 轴既不平行也不垂直.
- 2. $\exists x \to 0$ 时, $\arctan 3x 与 \frac{ax}{\cos x}$ 是等阶无穷小, 则 a = ()
 - (A) 1;
- (B) 2;
- (C) 3;

- 3. $y = f(\sin x)$, $\mathbb{N} dy = ($
 - (A) $f'(\sin x)(\sin x)'dx$;
- (B) $f'(\sin x)dx$;

(C) $f'(\sin x) \sin x dx$;

- (D) $f'(\sin x)\cos x$.
- 4. 下列等式中正确的是()
- (A) $\frac{d}{dx} \int_{0}^{b} f(x)dx = f(x);$ (B) $\frac{d}{dx} \int_{0}^{x} f(x)dx = f(x);$
- (C) $\frac{d}{dx} \int_{x}^{b} f(x)dx = f(x);$ (D) $\int f'(x)dx = f(x).$

- 5. 若 f(x) 的一个原函数是 $\frac{\ln x}{r}$, 则 $\int xf'(x)dx = ($)

- (A) $\frac{\ln x}{x} + C$; (B) $\frac{1 + \ln x}{x^2} + C$; (C) $\frac{1}{x} + C$; (D) $\frac{1 2\ln x}{x} + C$.
- 6. 下列反常积分中发散的是()

- (A) $\int_0^\infty \frac{1}{1+x^2} dx$; (B) $\int_0^\infty \frac{\ln x}{x} dx$; (C) $\int_0^\infty \frac{1}{\sqrt{1-x^2}} dx$; (D) $\int_0^\infty e^{-x} dx$.
- 二、填空题(本题共4小题,每小题3分,共12分)

1. 函数 $y=x+2\cos x$ 在闭区间 $[0,\frac{\pi}{2}]$ 上的最大值是______

- 2. 函数 y = ln(4-x²)的单调减少区间是______.
- 3. 微分方程(x+1)y'-2y=0的满足y(1)=1/4的特解是_____
- 4. $\int_{-\pi}^{\pi} (x + \cos x) \sin x dx = \underline{\hspace{1cm}}.$
- 三、计算题(共6小题,每小题5分,共30分)

1. 求极限 $\lim_{x\to 1} (\frac{1}{x-1} - \frac{1}{\ln x})$.

得分

2. 设函数 y = f(x) 由方程 $e^{y} = y \sin x + 1$ 所确定, 求 y'(0).

得分

4. 求曲线 $\begin{cases} x = 1 + t^2 \\ y = t^3 \end{cases}$ 在 t = 2 对应点处的切线方程.

得分

3. 求 $f(x) = 2x^2 - \ln x$ 的极值.

得分

5. 求微分方程 y'' - 4y' + 4y = 0 的通解.

得分

6. 设 $\lim_{x\to\infty} \left(\frac{x-k}{x}\right)^{-2x} = \lim_{x\to\infty} x \sin\frac{2}{x}$, 求 k 的值.

四、(共2小题,每小题6分,共12分).

得分

1. 求不定积分 $\int x(1+\cos 2x)dx$.

得分

2. 计算 $I = \int_1^{\sqrt{3}} \frac{dx}{x^2 \sqrt{x^2 + 1}}$.

五、(共2小题, 每小题7分, 共14分).

】 1.
$$f(x) = \begin{cases} \int_0^x \sin 2t dt & x > 0, (1) \leq a \text{ 取何值 } f(x) \text{ 在 } x = 0 \text{ 处连续?} \end{cases}$$
 (2) $f(x)$

在x=0是否可导?

得分

2. f(x) 在闭区间[0,1] 连续,证明 $\int_{0}^{\pi} f(\sin x) dx = \int_{0}^{\pi} f(\cos x) dx$,并由此计算

积分 $\int_0^{\frac{\pi}{2}} \frac{\sin^3 x}{\sin x + \cos x} dx$ 的值.

/	七、证明题[本题 5 分] 设 $f(x)$ 往[0, π] 上连续,且 $\int_0^x f(x)\cos x dx = 0$. 试证则: 存在两点 $\xi_1 \in (0,\pi)$, $\xi_2 \in (0,\pi)$, $\xi_1 \neq \xi_2$, 使得 $f(\xi_1) = f(\xi_2)$.
	第 4 页 共 4 页