Semaines 19 et 20 -

Séries, Espaces probabilisés généraux

• Énoncés / notions à connaitre :

Séries

— Notion de série. Notation $\sum u_n$ pour désigner la série $\left(\sum_{n=n_0}^N u_n\right)_{N>n_0}$.

— Nature d'une série. Notations $\sum_{n=n_0}^{+\infty} u_n$ et $R_N = \sum_{n=N+1}^{+\infty} u_n$ pour une série convergente.

Manipulation de sommes infinies (lorsqu'elles sont bien définies).

— Nature des séries usuelles :

• Séries géométriques et dérivées $\sum x^n$, $\sum nx^{n-1}$, $\sum n(n-1)x^{n-2}$ (et valeur des sommes),

• Séries de Riemann $\sum \frac{1}{n^{\alpha}}$,

• Série exponentielle $\sum \frac{x^n}{n!}$ (et valeur de la somme).

— Méthode de comparaison série / intégrale.

Étude des séries à termes positifs :

• Critère de convergence (une série à termes positifs converge ssi elle est majorée),

• Théorèmes de comparaison (Natures de $\sum u_n$ et $\sum v_n$ si $u_n \leq v_n$, si $u_n = o(v_n)$, si $u_n \sim v_n$). Notion de convergence absolue. Une série absolument convergente est convergente.

Espaces probabilisés généraux

— Union/intersection infinie d'évènements $\bigcup_{n=1}^{+\infty} A_n$, $\bigcap_{n=1}^{+\infty} A_n$ — Définition d'une probabilité sur un univers Ω , muni d'un "ensemble des évènements" \mathcal{A} .

Calcul de la probabilité d'une union/intersection infinie :

Théorème de la limite monotone et ses conséquences, probabilité d'une union disjointe infinie.

— Notion d'évènement presque-sûr, d'évènement négligeable.

— Formules habituelles avec les probabilités conditionnelles : formule des probabilités totales, formule des probabilités composées, formule de Bayes.

• Démonstrations à connaitre :

— Convergence et somme des séries $\sum x^n$ et / ou $\sum nx^{n-1}$. (Théorème 2) — Nature de la série de Riemann $\sum \frac{1}{n^{\alpha}}$ (Théorème 3) : on demandera de traiter la démonstration dans un particulier (Ex : montrer que $\sum \frac{1}{n^2}$ converge, que $\sum \frac{1}{n}$ diverge, que $\sum \frac{1}{n^{1/2}}$ diverge...)

Limite monotone : si (A_n) est une suite croissante d'évènements, $P\left(\bigcup_{n=0}^{+\infty}A_n\right)=\lim_{n\to+\infty}P(A_n)$ (Théorème 2)

Enoncé et preuve de la formule des probabilités totales (Proposition 3)