MIT 16.90 Spring 2013: Problem Set 3

Qiqi Wang, Karen Willcox, Eric Dow

Due: Friday March 8, in class

Problem 2. 1 Reading Assignment

- Unit II: 1. Partial Differential Equations.
- Unit II: 2. Introduction to Finite Difference Methods.
- Unit II: 3. More on Finite Difference Methods.
- Unit II: 4. Introduction to Finite Volume Methods.
- Unit II: 5. Method of Weighted Residuals.

Problem 2. 2 Finite Differences for the Steady Convection-Diffusion Equation

Consider the steady convection-diffusion equation for the domain $x \in [0,1]$:

$$U\frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2}$$

with boundary conditions

$$u(0) = 1$$
 $u(1) = 0$

where U is the convection velocity and ν is the diffusivity.

- Why do we need two boundary conditions to make the solution unique?
- Determine the analytical solution $u_{\text{ex}}(x)$ that satisfies the specified boundary conditions. (Hint: the equation is written with partial derivatives, but is this really a PDE? 18.03 is your friend...)
- To solve this equation numerically, we use the following central difference approximation:

$$U\delta_{2x}u_i - \nu\delta_x^2 u_i = 0$$

Determine the local truncation error for this approximation.

• Implement the finite difference scheme in MATLAB. Do this in matrix form, i.e. construct a linear system Au = b that can be solved to give u(x). What does the i^{th} row of this matrix look like? How do you handle the boundary conditions at the left and right end of the domains?

Problem 2

• Using the values U=1.0, $\nu=0.1$, plot the error versus Δx in a log-log plot for $\Delta x \in \{1.0 \times 10^{-1}, 1.0 \times 10^{-2}, 1.0 \times 10^{-3}, 1.0 \times 10^{-4}\}$. Use the infinity norm of the difference between the numerical and exact solutions to quantify the error. The infinity norm is defined as

$$||e||_{\infty} = \max\{|e_1|, ..., |e_n|\}$$

The MATLAB norm command might be useful (type help norm to see how to use it). Does your error plot agree with the analysis performed earlier?

• For $\Delta x = 0.01$ and U = 1.0, plot the solution for $\nu = 0.5, 0.1$, and 0.05 on the same plot. What do you see forming at the right end of the solution as we decrease ν ? Does this remind you of anything you have seen in fluids? What is the significance of the ratio U/ν ?