

Content

Preliminaries
motivations, basic conceptions

2 Related Work
Faster R-CNN

3 Network Architecture FPN、ROI Align.

Experiments

Experiments, Conclusion, Reference.

Motivation

IOU(intersection-over-union)

It refers to the overlap rate between the target window and the original marked window generated by the model.

$$IoU = \frac{Detection\text{Result} \cap GroundTruth}{Detection\text{Result} \cup GroundTruth}$$

Bounding Box Regression

Fine-tune the prediction window to make positioning more accurate.

Bounding Box Regression

Fine-tune the prediction window to make positioning more accurate.

$$\widehat{G_x} = P_w d_x(P) + P_x \qquad \widehat{G_w} = P_w \exp(d_w(P))$$

$$\widehat{G_y} = P_h d_y(P) + P_y \qquad \widehat{G_h} = P_h \exp(d_h(P))$$

$$t_x = (G_x - P_x)/P_w \qquad t_w = \log(G_w/P_w)$$

$$t_y = (G_y - P_y)/P_h \qquad t_h = \log(G_h/P_h)$$

$$Loss = \sum_{i}^{N} (t_*^i - \widehat{w}_*^T \phi_5(P^i))^2$$

$$W_* = \operatorname{argmin}_{W_*} \sum_{i}^{N} (t_*^i - \widehat{w}_*^T \phi_5(P^i))^2 + \lambda ||\widehat{w}_*||^2$$

Quantitative evaluation indexs

Precision

• The ratio of the number of samples **correctly classified** by the classifier to the **total number of samples** for a given test data set.

$$precision = \frac{TP}{TP + FP}$$

Recall

• It refers to the proportion of items that are **correctly retrieved** (TP) to all items that **should be retrieved** (TP + FN).

$$recall = \frac{TP}{TP + TN}$$

TP: True Positive

FP: False Positive

TN: True Negative

F-measure

• To evaluate the model
$$F-measure = \frac{2*precision*recall}{precision+recall}$$

Quantitative evaluation indexs

AP(average precision over IoU thresholds)

Related Work

Region Proposal Network(RPN)

- Region Proposal Network(RPN)
- RPN not only has no time cost when extracting proposals, but also improves the quality of proposals.

N*M 个网格、围绕每个网格中心 点选取k个 anchor 。共计(N*M*k)个anchor

Region Proposal Network(RPN)

Faster R-CNN

- Whole process:
 - Step 1: Input the whole picture to CNN and get feature map.
 - **Step 2: The convolution feature** is input into RPN to get the feature information of the candidate box.

Faster R-CNN

- Whole process:
 - Step 3: A classifier is used to determine whether the feature extracted from the candidate box belongs to a particular class.

• **Step 4:** For candidate boxes belonging to a feature, the position of them is further adjusted with **a regression**.

FPN (feature pyramid networks)

Head Architecture

Mask

FCIS

多分类的Softmax with entropy loss

Mask R-CNN

Sigmoid binary cross-entropy loss

FPN (feature pyramid networks)

ROI Pooling "RoiPool" 665/32 = 20.78800 Outputs: 800/32 = 25bbox softmax regressor [665/32]=20 CNN Roll VGG16 pooling layer 20/7 = 2.86Coordinate quantized quantized Coordinate Coordinate on image on feature map on Rol feature · RolPool breaks pixel-to-pixel translation-equivariance RolPool coordinate quantization quantized Rol original Rol

Results

Figure 2. Mask R-CNN results on the COCO test set. These results are based on ResNet-101 [19], achieving a mask AP of 35.7 and running at 5 fps. Masks are shown in color, and bounding box, category, and confidences are also shown.

Results

Figure 4. More results of Mask R-CNN on COCO test images, using ResNet-101-FPN and running at 5 fps, with 35.7 mask AP (Table 1).

Results

	backbone	AP	AP_{50}	AP ₇₅	AP_S	AP_M	AP_L
MNC [10]	ResNet-101-C4	24.6	44.3	24.8	4.7	25.9	43.6
FCIS [26] +OHEM	ResNet-101-C5-dilated	29.2	49.5	-	7.1	31.3	50.0
FCIS+++ [26] +OHEM	ResNet-101-C5-dilated	33.6	54.5	-	-	-	-
Mask R-CNN	ResNet-101-C4	33.1	54.9	34.8	12.1	35.6	51.1
Mask R-CNN	ResNet-101-FPN	35.7	58.0	37.8	15.5	38.1	52.4
Mask R-CNN	ResNeXt-101-FPN	37.1	60.0	39.4	16.9	39.9	53.5

Table 1. Instance segmentation mask AP on COCO test-dev. MNC [10] and FCIS [26] are the winners of the COCO 2015 and 2016 segmentation challenges, respectively. Without bells and whistles, Mask R-CNN outperforms the more complex FCIS+++, which includes multi-scale train/test, horizontal flip test, and OHEM [35]. All entries are single-model results.

Figure 5. FCIS+++ [26] (top) vs. Mask R-CNN (bottom, ResNet-101-FPN). FCIS exhibits systematic artifacts on overlapping objects.

net-depth-features	AP	AP_{50}	AP_{75}
ResNet-50-C4	30.3	51.2	31.5
ResNet-101-C4	32.7	54.2	34.3
ResNet-50-FPN	33.6	55.2	35.3
ResNet-101-FPN	35.4	57.3	37.5
ResNeXt-101-FPN	36.7	59.5	38.9

	AP	AP_{50}	AP_{75}
softmax	24.8	44.1	25.1
sigmoid	30.3	51.2	31.5
	+5.5	+7.1	+6.4

	align?	bilinear?	agg.	AP	AP_{50}	AP_{75}
RoIPool [12]			max	26.9	48.8	26.4
RolWarp [10]		✓	max	27.2	49.2	27.1
		✓	ave	27.1	48.9	27.1
RoIAlign	✓	✓	max	30.2	51.0	31.8
	✓	✓	ave	30.3	51.2	31.5

- (a) Backbone Architecture: Better backbones bring expected gains: deeper networks do better, FPN outperforms C4 features, and ResNeXt improves on ResNet.
- (b) Multinomial vs. Independent Masks (ResNet-50-C4): Decoupling via perclass binary masks (sigmoid) gives large gains over multinomial masks (softmax).
- (c) RoIAlign (ResNet-50-C4): Mask results with various RoI layers. Our RoIAlign layer improves AP by ~3 points and AP₇₅ by ~5 points. Using proper alignment is the only factor that contributes to the large gap between RoI layers.

AP

31.5

31.5

33.6

 AP_{50}

53.7

54.0

55.2

 AP_{75}

32.8

32.6

35.3

		AP	AP_{50}	AP_{75}	APbb	AP_{50}^{bb}	$\mathrm{AP^{bb}_{75}}$
Roll	Pool	23.6	46.5	21.6	28.2	52.7	26.9
RolA	Align	30.9	51.8	32.1	34.0	55.3	36.4
		+7.3	+ 5.3	+10.5	+5.8	+2.6	+9.5

7 11	711 50	711 (5	711	7 11 50	71 75	mask orancii
23.6	46.5	21.6	28.2	52.7	26.9	MLP fc: $1024 \rightarrow 1024 \rightarrow 80.28^2$
30.9	51.8	32.1	34.0	55.3	36.4	MLP fc: $1024 \rightarrow 1024 \rightarrow 1024 \rightarrow 80.28^2$
+7.3	+ 5.3	+10.5	+5.8	+2.6	+9.5	FCN conv: $256 \rightarrow 256 \rightarrow 256 \rightarrow 256 \rightarrow 256 \rightarrow 80$

- (d) RoIAlign (ResNet-50-C5, stride 32): Mask-level and box-level AP using large-stride features. Misalignments are more severe than with stride-16 features (Table 2c), resulting in massive accuracy gaps.
- (e) Mask Branch (ResNet-50-FPN): Fully convolutional networks (FCN) vs. multi-layer perceptrons (MLP, fully-connected) for mask prediction. FCNs improve results as they take advantage of explicitly encoding spatial layout.

mack branch

Table 2. Ablations for Mask R-CNN. We train on trainval35k, test on minival, and report mask AP unless otherwise noted.

	backbone	APbb	$\mathrm{AP^{bb}_{50}}$	AP_{75}^{bb}	AP^bb_S	$\mathrm{AP}^{\mathrm{bb}}_{M}$	AP^bb_L
Faster R-CNN+++ [19]	ResNet-101-C4	34.9	55.7	37.4	15.6	38.7	50.9
Faster R-CNN w FPN [27]	ResNet-101-FPN	36.2	59.1	39.0	18.2	39.0	48.2
Faster R-CNN by G-RMI [21]	Inception-ResNet-v2 [37]	34.7	55.5	36.7	13.5	38.1	52.0
Faster R-CNN w TDM [36]	Inception-ResNet-v2-TDM	36.8	57.7	39.2	16.2	39.8	52.1
Faster R-CNN, RoIAlign	ResNet-101-FPN	37.3	59.6	40.3	19.8	40.2	48.8
Mask R-CNN	ResNet-101-FPN	38.2	60.3	41.7	20.1	41.1	50.2
Mask R-CNN	ResNeXt-101-FPN	39.8	62.3	43.4	22.1	43.2	51.2

Table 3. **Object detection** *single-model* results (bounding box AP), *vs.* state-of-the-art on test-dev. Mask R-CNN using ResNet-101-FPN outperforms the base variants of all previous state-of-the-art models (the mask output is ignored in these experiments). The gains of Mask R-CNN over [27] come from using RoIAlign (+1.1 AP^{bb}), multitask training (+0.9 AP^{bb}), and ResNeXt-101 (+1.6 AP^{bb}).

Human Pose Estimation

Figure 6. Keypoint detection results on COCO test using Mask R-CNN (ResNet-50-FPN), with person segmentation masks predicted from the same model. This model has a keypoint AP of 63.1 and runs at 5 fps.

	AP^{kp}	$\mathrm{AP}^{\mathrm{kp}}_{50}$	$\mathrm{AP}^{\mathrm{kp}}_{75}$	AP_M^{kp}	AP^kp_L
CMU-Pose+++ [6]	61.8	84.9	67.5	57.1 59.1	68.2
G-RMI [31] [†]	62.4	84.0	68.5	59.1	68.1
Mask R-CNN, keypoint-only				I	
Mask R-CNN, keypoint & mask	63.1	87.3	68.7	57.8	71.4

Cityscapes

	training data	AP [val]	AP	AP_{50}	person	rider	car	truck	bus	train	mcycle	bicycle
InstanceCut [23]	fine + coarse	15.8	13.0	27.9	10.0	8.0	23.7	14.0	19.5	15.2	9.3	4.7
DWT [4]	fine	19.8	15.6	30.0	15.1	11.7	32.9	17.1	20.4	15.0	7.9	4.9
SAIS [17]	fine	-	17.4	36.7	14.6	12.9	35.7	16.0	23.2	19.0	10.3	7.8
DIN [3]	fine + coarse	-	20.0	38.8	16.5	16.7	25.7	20.6	30.0	23.4	17.1	10.1
Mask R-CNN	fine	31.5	26.2	49.9	30.5	23.7	46.9	22.8	32.2	18.6	19.1	16.0
Mask R-CNN	fine + COCO	36.4	32.0	58.1	34.8	27.0	49.1	30.1	40.9	30.9	24.1	18.7

Table 7. Results on Cityscapes val ('AP [val]' column) and test (remaining columns) sets. Our method uses ResNet-50-FPN.

Figure 7. Mask R-CNN results on Cityscapes test (32.0 AP). The bottom-right image shows a failure prediction.

Conclusion

Roi₊

Pooling

- Advantages:
- Faster
- Accuracy
- Simple
- Flexible

- Improvements:
- Replace ROI Pooling with ROI Align
- Add a mask branch

Reference

- [1] He K, Gkioxari G, Dollár P, et al. Mask R-CNN[J]. 2017.
- [2] Uijlings J R R, Sande K E A V D, Gevers T, et al. Selective Search for Object Recognition[J]. International Journal of Computer Vision, 2013, 104(2):154-171.
- [3] Lin T Y, Dollár P, Girshick R, et al. Feature Pyramid Networks for Object Detection[J]. 2016.
- [4] Ren S, Girshick R, Girshick R, et al. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6):1137.

THANKS

请各位评委老师批评指正