Jianzhao Bi

Personal Website: jianzhaobi.netlify.com

ResearchGate: researchgate.net/profile/Jianzhao_Bi

GitHub: github.com/jianzhaobi LinkedIn: linkedin.com/in/jianzhaobi 1518 Clifton Rd. Atlanta, GA 30322, USA jianzhao.bi@emory.edu +1 (404) 375-5533

EDUCATION

Ph.D. Candidate, Environmental Health Sciences

Emory University, Atlanta, USA

08/2016 - Present

Research Interest: Air pollution modeling, Air pollution health effects

Master of Science, Atmospheric Remote Sensing

Tsinghua University, Beijing, China

09/2014 - 07/2016

Thesis: NO_x emission retrieval and lifetime estimation in European metropolitan areas

Major GPA: 91/100

Bachelor of Engineering, Photogrammetry and Remote Sensing

Wuhan University, Wuhan, China

09/2010 - 06/2014

Major GPA: 3.81/4.00

RESEARCH EXPERIENCES

Department of Environmental Health, Emory University, Atlanta, USA

Contribution of low-cost sensor measurements to PM_{2.5} prediction

06/2018 - Present

Co-reseachers, Advisors: Dr. Yang Liu, Dr. Howard Chang, Dr. Avani Wildani

- \bullet Evaluated the extent to which low-cost sensor measurements can provide new information about PM_{2.5} pollution
- \bullet Proposed calibration and down-weighting strategies to mitigate the adverse influence of the large uncertainty in sensor measurements in PM_{2.5} modeling

Associations between air pollution exposure and ED visits for renal diseases 02/2018 – Present Co-reseachers, Advisors: Dr. Stefanie Sarnat, Dr. Vaughn Barry

• Estimated the relationships between air pollution exposure (criteria gases and PM components) and renal diseases in Atlanta, USA with a time-series Poisson generalized linear model

Impacts of snow and cloud covers on satellite-derived $PM_{2.5}$ concentrations 09/2016 - 06/2018 Advisor: Dr. Yang Liu

- Estimated missing values in MAIAC AOD by considering snow and cloud cover in New York State, USA and Lima, Peru
- Developed a random forest model to predict 1-km PM_{2.5} with complete coverage in New York State

Center for Earth System Science, Tsinghua University, Beijing, China

$NO_{\mathbf{x}}$ emission retrieval and lifetime estimation

09/2015 - 06/2016

Advisor: Dr. Qiang Zhang

• Combined OMI NO₂ data and ECMWF wind field to estimate NO₂ lifetimes and retrieve NO_x emissions for megacities in China and Europe with an advanced Exponentially-Modified Gaussian (EMG) method

School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China

Quality-adaptive image enhancement

11/2013 - 03/2014

Research Leader: Dr. Yuchun Huang

- Designed a quality-adaptive image enhancement algorithm based on the Visible Edge method and Poisson Image Editing algorithm for the low-quality street-view photos from Mobile Mapping System (MMS) of Wuhan University
- Implemented the enhancement algorithm in the MFC platform and enhanced 300k+ low-quality streetview photos automatically

GPS positioning based on Epoch-difference

03/2012 - 04/2013

Research Leader: Dr. Jianhong Fu

• Implemented a positioning algorithm for Global Positioning System (GPS) based on the Carrier Phase Epoch-difference, which satisfied the positioning requirements for civilian use

PROFESSIONAL ACTIVITIES

MAKE Environment Science & Technology Co., Ltd., Beijing, China

A website for ground-based real-time air quality data visualization

09/2015 - 11/2015

Front-end web developer

• Developed a website with interactive charts to display *in-situ* air quality data using HTML, Javascript, and ECharts

Center for Earth System Science, Tsinghua University, Beijing, China

Air quality improving measures

08/2015 - 09/2015

Key member of the team

• Provided technical support for the emission inventory data processing and visualization of air quality improving measures in Hebei Province for the commemoration of the 70th anniversary of the end of World War II

School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China

A visualization system for regional ambient air quality monitoring

02/2014 - 06/2014

Java developer

• Analyzed the OMI data, developed a platform-independent software with an interactive user interface, and visualized the spatial distribution of NO₂, SO₂, O₃ and aerosol in selected spatial range and time period in a Java platform.

ACADEMIC HONORS AND AWARDS

- The ISES-ISIAQ 2019 Joint Conference Travel Award, Kaunas, Lithuania, 2019
- China National Scholarship, Wuhan University, Wuhan, China, 2013
- First Prize Scholarship for Academic Excellence, Wuhan University, Wuhan, China, 2011 2013
- Georgia State Alumni Scholarship, Wuhan University, Wuhan, China, 2012

POSTERS AND PRESENTATIONS

- Contribution of Low-Cost Sensor Measurements to the Prediction of PM_{2.5} Levels, The ISES-ISIAQ 2019 Joint Annual Meeting, Kaunas, Lithuania, August 2019 (Oral and Poster)
- Incorporating Snow and Cloud Fractions in Random Forest to Estimate High-Resolution PM_{2.5} Exposures in New York State, *The ISES-ISEE 2018 Joint Annual Meeting*, Ottawa, Canada, August 2018 (Oral and Poster)

• Citywide validation and improvement of the MAIAC aerosol product in Lima, Peru, The ISES 2017 Annual Meeting, Research Triangle Park, North Carolina, USA, Octobor 2017 (Poster)

PUBLICATIONS

- (Submitted) **Bi, J.**, Wildani, A., Chang, H. H., & Liu, Y. (2019). Incorporating Low-Cost Sensor Measurements into High-Resolution PM_{2.5} Modeling at a Large Spatial Scale.
- **Bi, J.**, Stowell, J., Seto, E. Y. W., English, P. B., Al-Hamdan, M. Z., Kinney, P. L., Freedman, F. R., & Liu, Y. (2020). Contribution of Low-Cost Sensor Measurements to the Prediction of PM_{2.5} Levels: A Case Study in Imperial County, California, USA. *Environmental Research*, 180, 108810. doi: doi.org/10.1016/j.envres.2019.108810
- **Bi, J.**, Belle, J. H., Wang, Y., Lyapustin, A. I., Wildani, A., & Liu, Y. (2019). Impacts of snow and cloud covers on satellite-derived PM_{2.5} levels. *Remote Sensing of Environment*, 221, 665-674. doi: 10.1016/j.rse.2018.12.002
- She, Q., Choi, M., Belle, J.H., Xiao, Q., **Bi, J.**, Huang, K., Meng, X., Geng, G., Kim, J., He, K., Liu, M., & Liu, Y. (2020). Satellite-based estimation of hourly PM_{2.5} levels during heavy winter pollution episodes in the Yangtze River Delta, China. *Chemosphere*, 239, 124678. doi: 10.1016/j.chemosphere.2019.124678
- Huang, K., **Bi, J.**, Meng, X., Geng, G., Lyapustin, A., Lane, K. J., Gu, D., Kinney, P. L., & Liu, Y. (2019). Estimating daily PM_{2.5} concentrations in New York City at the neighborhood-scale: Implications for integrating non-regulatory measurements. *Science of The Total Environment*, 697, 134094. doi: 10.1016/j.scitotenv.2019.134094
- Jin, X., Fiore, A.M., Civerolo, K., Bi, J., Liu, Y., van Donkelaar, A., Martin, R.V., Al-Hamdan, M., Zhang, Y., Insaf, T. Z., & Kioumourtzoglou, M.A. (2019). Comparison of multiple PM_{2.5} exposure products for estimating health benefits of emission controls over New York State, USA. Environmental Research Letters, 14(8), 084023. doi: 10.1088/1748-9326/ab2dcb
- Vu, B. N., Snchez, O., **Bi, J.**, Xiao, Q., Hansel, N. N., Checkley, W., Gonzales, G. F., Steenland, K., & Liu, Y. (2019). Developing an Advanced PM_{2.5} Exposure Model in Lima, Peru. *Remote Sensing*, 11(6), 641. doi: 10.3390/rs11060641

SKILLS AND LANGUAGES

Programming: R, MATLAB, IDL, SAS, Bash, LATEX, Git, C, Java, SQL, HTML/CSS, Javascript

Tools & Software: QGIS, ArcGIS, ERDAS, ENVI, HighCharts, ECharts

Languages: Mandarin (native), English (professional), Japanese (professional)