Wykład pokazujący, że wybór stałego kroku czasowego nie zawsze jest dobrym pomysłem. Jak napisać program, który będzie sam sobie dobierał krok czasowy na podstawie narzuconej przez nas tolerancji dokładności

orbita komety Halleya

ciało w potenciale

radialnym

■ masa Słońca $M = 1.989 \times 10^{30}$ kg; Słońce w początku układu odniesienia, nieruchome;

 $G = 6.6741 \times 10^{-11} \text{ m}^3/\text{kg/s}^2$, jednostka astronomiczna 149 597 870 700 m

$$\frac{dx}{dt} = v_x \tag{1}$$

$$\frac{dy}{dt} = v_y \tag{2}$$

$$\frac{dv_x}{dt} = -G\frac{M}{r^3}x\tag{3}$$

$$\frac{dv_y}{dt} = -G\frac{M}{r^3}y \tag{4}$$

(4)(5)

Physics Education 38 (2003) 429

M Follows

b = distance at perihelion

height (or distance) at aphelion

Where has this energy gone?

Table 1. Various parameters for comet Halley.

Perihelion distance (AU)	0.587
Aphelion distance (AU)	35.11
Semi-major axis (AU)	17.84
Dimensions (km)	$16 \times 8 \times 8$
Density (kg m ⁻³)	100
Mass (kg)	$\sim 1 \times 10^{14}$

Note that AU denotes astronomical units. $1 \text{ AU} = 1.49 \times 10^{11} \text{ m}$, the distance between the Sun and Earth. I encourage students to calculate this roughly for themselves by telling them that it takes approximately eight minutes for sunlight to reach us.

Jawny Euler dla ciała w potencjale centralnym

ciało w potencjale radialnym

schemat Eulera

orbity

kroku cza sowego

$$\frac{dx}{dt} = v_x \qquad (6) \qquad x_{n+1} = x_n + (v_x)_n \Delta t \qquad (10)
y_{n+1} = y_n + (v_y)_n \Delta t \qquad (11)
\frac{dy}{dt} = v_y \qquad (7) \qquad (v_x)_{n+1} = (v_x)_n - G\frac{M}{r_n^3} x_n \Delta t \qquad (12)
\frac{dv_x}{dt} = -G\frac{M}{r^3} x \qquad (8) \qquad (v_y)_{n+1} = (v_y)_n - G\frac{M}{r_n^3} y_n \Delta t \qquad (13)$$

(9)

- parametry orbity Ziemi do startu:
- odległość Ziemi od Słońca w peryhelium: 0.9832917 jedn. at.
- wtedy prędkość Ziemi 30.29 km/s.

Orbita Ziemi

ciało w cotencjale

chema

orbity

kontrola kroku cza sowego

Orbita Ziemi

ciało w cotencjale

schema Fulera

orbity

kroku cza sowego

Orbita Ziemi

ciało w cotencjale

chema

orbity

kontrola kroku cz sowego

Ogólnie orbita Ziemi nie jest kłopotliwa do policzenia

Kometa Halleya

ciało w cotencjale

M. Follows, Physics Education 38 (2003) 429

schema Eulera

orbity

kroku cz sowego

Table 1. Various parameters for comet Halley.

Perihelion distance (AU)	0.587
Aphelion distance (AU)	35.11
Semi-major axis (AU)	17.84
Dimensions (km)	$16 \times 8 \times 8$
Density (kg m ⁻³)	100
Mass (kg)	$\sim 1 \times 10^{14}$

Note that AU denotes astronomical units. $1 \text{ AU} = 1.49 \times 10^{11} \text{ m}$, the distance between the

1 AU = 1.49 × 10¹¹ m, the distance between the Sun and Earth. I encourage students to calculate this roughly for themselves by telling them that it takes approximately eight minutes for sunlight to reach us.

- preedkość w peryhelium: 54.6 km/s, a aphelium około 800 m/s
- czas obiegu około 75 lat

Kometa Halleya

ciało w cotencjal cadialnym

Eulera

kroku czasowego

- wniosek: nawet 15 minut to zbyt długo na krok czasowy przy obiegu około 80 lat
- problemem jest peryhelium. wielkie siły i wielkie prędkości rozwijane przez kometę w pobliżu Słońca
- można zmienić metodę na bardziej dokładną (my znamy m. trapezów), ale tam również o obliczeniach numerycznych decydować będzie krok potrzebny do aphelium ...

 $\frac{dx}{dt} = f(t, x)$

 \blacksquare rozwiązanie dokładne $x(t_k)$

lacktriangle rozwiązanie schematu różnicowego x_k

• $x(t_k) = x_k + O(\Delta t)^{n+1}$, gdzie n- rząd zbieżności metody.

■ np. dla Eulera n = 1, dla trapezów n = 2

szereg Taylora

$$x(t + \Delta t) = x(t) + f(t, x)\Delta t + \frac{\Delta t^2}{2}f'(t, x) + \ldots,$$

ogólnie

$$x(t_k) = x_k + C_t(\Delta t)^{n+1} + O(\Delta t)^{n+2}$$

■ wyliczyc C_t to poznać wiodącą część błędu

■ jak to zrobić?

$$lacksquare$$
 $x_{k+1} = x_k + W(\Delta t), \ W(\Delta t)$ - przepis metody

$$x(t_{k+1}) = x_{k+1} + C_t(\Delta t)^{n+1} + O(\Delta t)^{n+2}$$

- rachunek z krokiem $\Delta t/2$: 2 kroki aby dojść do chwili $t + \Delta t$
- $x'_{k+1/2} = x_k + W(\Delta t/2)$
- $x'_{k+1} = x'_{k+1/2} + W(\Delta t/2)$
- w każdym kroku $\Delta t/2$ popełniamy błąd $C_t(\Delta t/2)^{n+1}$

$$x(t_{k+1}) = x'_{k+1} + 2C_t \left(\frac{\Delta t}{2}\right)^{n+1} + O(\Delta t)^{n+2}$$

- który przepis dokładniejszy (?) (minimalne Euler n = 1)
- $C_t(\Delta t)^{n+1} 2C_t(\Delta t/2)^{n+1} = x'_{k+1} x_{k+1}$
- $C_t(\Delta t)^{n+1}(1-\frac{1}{2^n})=x'_{k+1}-x_{k+1}$
- $x(t_{k+1}) = x'_{k+1} + \frac{x'_{k+1} x_{k+1}}{2^n 1} + O(\Delta t)^{n+2}$
- oszacowanie błędu: $\epsilon \equiv \frac{x'_{k+1} x_{k+1}}{2^n 1}$
- zabieg szacowania błędu i lepszego rozwiązania przez obserwację zachowania metody zależnie od kroku czasowego: ekstrapolacja Richardsona

zakładamy tolerancję błędu tol

- rachunek z krokiem ∆t
- $\mathbf{x}_{k+1} = x_k + W(\Delta t), W(\Delta t)$ przepis metody
- $x(t_{k+1}) = x_{k+1} + C_t(\Delta t)^{n+1} + O(\Delta t)^{n+2}$

$$X_{k+1/2}' = X_k + W(\Delta t/2)$$

- $x'_{k+1} = x'_{k+1/2} + W(\Delta t/2)$
- $x(t_{k+1}) = x'_{k+1} + 2C_t \left(\frac{\Delta t}{2}\right)^{n+1} + O(\Delta t)^{n+2}$
- ullet jeśli $|\epsilon| \leqslant$ tol akceptujemy krok, przyjmujemy wyliczone wartości x'_{k+1} i idziemy dalej $t:=t+\Delta t$
- niezależnie od wartości ε zmieniamy krok czasowy tak, aby bląd popełniany w pojedynczym kroku był bliski torelancji
- jest $\epsilon = C_t(\Delta t)^{n+1}$
- cheemy tol = $C_t(\Delta t(nowy))^{n+1}$
- $\Delta t(nowy) = \Delta t \left(\frac{\text{tol}}{\epsilon}\right)^{\frac{1}{n+1}}$
- bezpieczniej:
- $\Delta t(nowy) = c\Delta t\left(\frac{\text{tol}}{\epsilon}\right)^{\frac{1}{n+1}}$, np. c=0.9

problem ruchu w potencjale grawitacyjnym

kroku czasowego

$$x_{n+1} = x_n + (y_n)_n \Delta t \tag{14}$$

$$y_{n+1} = y_n + (v_y)_n \Delta t$$

$$x_{n+1} = x_n + (v_x)n\Delta t$$
 (14) bledy szacowane dla położeń x/y $y_{n+1} = y_n + (v_y)n\Delta t$ (15) $\epsilon \equiv \frac{x'_{k+1} - x_{k+1}}{2^n - 1}$, maksymalny bląd porównywany z tolerancją wrok akceptowany gdy błąd mniejs: $(v_y)_{n+1} = (v_y)_n - G\frac{M}{2^n}y_n\Delta t$ (17) zmiana kroku czasowego

$$(v_y)_{n+1} = (v_y)_n - G \frac{M}{r_n^3} y_n \Delta t$$

$$\epsilon \equiv \frac{x'_{k+1} - x_{k+1}}{2^{n} + 1}$$
, maksymalny błąc

krok akceptowany gdy błąd mniejszy od tol

$$\Delta t(nowy) = 0.9 \Delta t \left(\frac{\text{tol}}{\epsilon}\right)^{\frac{1}{n+1}}$$

dla Fulera n = 1

```
n=1 (Euler)
iter=0
151 continue
c 2 kroki dt/2
VSX=VOX
VSY=VOY
                                                    if(blond.lt.tol) then
SX=XO
                                                    t=t+dt
sy=yo
                                                    iter=iter+1
                                                    write(18,13) xo/au,yo/au,t/rok,dt/3600/24
vsx0=vox
                                                    else
vsv0=vov
                                                    vox=vsx0
sx0=xo
                                                    vov=vsv0
sv0=vo
                                                    x_0 = sx_0
                                                    vo=sv0
call wykonajkrok(dt/2,dx,vox,voy,xo,yo)
                                                    endif
call wykonajkrok(dt/2,dx,vox,voy,xo,yo)
                                                    dt=dt^*.9^*(tol/blond)^{**}(1.0/(n+1.0))
c 1 krok dt
                                                    if(t.lt.czas)goto 151
call wykonajkrok(dt,dx,vsx,vsy,sx,sy)
c porownujemy
ex=(xo-sx)/(2**n-1)
ey=(yo-sy)/(2**n-1)
blond=abs(ex)
if(abs(ey).gt.blond) blond=abs(ey)
```

problem ruchu w potencjale grawitacyjnym

ciało w potencjal radialnyn

Eulen

kontrola kroku czasowego

lacktriangle przy tolerancji błędu 1m krok czasowy $\Delta t = 5.5$ minuty w peryhelium do 5.5h w aphelium

 $X_{n+1} = X_n + \frac{\Delta t}{2} (v_{n+1} + v_n)$

układ równań nieliniowych:

$$F_1(x_{n+1}, v_{n+1}) = x_{n+1} - x_n - \frac{\Delta t}{2} v_{n+1} - \frac{\Delta t}{2} v_n$$

$$\ \ \, \mathbf{F}_{2}(x_{n+1},v_{n+1}) = v_{n+1} - v_{n} - \frac{\Delta t}{2} \left(-\frac{1}{m} \frac{dV}{dx} |_{x_{n+1}} - \alpha v_{n+1} \right) - \frac{\Delta t}{2} \left(-\frac{1}{m} \frac{dV}{dx} |_{x_{n}} - \alpha v_{n} \right)$$

$$\begin{pmatrix}
\frac{\partial F_{1}}{\partial x_{n+1}} & \frac{\partial F_{1}}{\partial v_{n+1}} \\
\frac{\partial F_{2}}{\partial x_{n+1}} & \frac{\partial F_{2}}{\partial v_{n+1}}
\end{pmatrix}_{\begin{vmatrix} x_{n+1}^{\mu}, v_{n+1}^{\mu} \\ x_{n+1}^{\mu}, v_{n+1}^{\mu} \end{vmatrix}} \begin{pmatrix}
x_{n+1}^{\mu+1} - x_{n+1}^{\mu} \\ y_{n+1}^{\mu+1} - v_{n+1}^{\mu}
\end{pmatrix} = -\begin{pmatrix}
F_{1}(x_{n+1}^{\mu}, v_{n+1}^{\mu}, v_{n+1}^{\mu}) \\
F_{2}(x_{n+1}^{\mu}, v_{n+1}^{\mu})
\end{pmatrix} (18)$$

$$\begin{pmatrix} 1 & -\frac{\Delta t}{2} \\ \frac{\Delta t}{2m} \frac{g^2 V}{dx^2} \Big|_{x_{n+1}^{\mu}} & 1 + \frac{\Delta t}{2} \alpha \end{pmatrix}_{|x_{n+1}^{\mu}, v_{n+1}^{\mu}|} \begin{pmatrix} x_{n+1}^{\mu+1} - x_{n+1}^{\mu} \\ v_{n+1}^{\mu+1} - v_{n+1}^{\mu} \end{pmatrix} = -\begin{pmatrix} F_1(x_{n+1}^{\mu}, v_{n+1}^{\mu}) \\ F_2(x_{n+1}^{\mu}, v_{n+1}^{\mu}) \end{pmatrix}$$

$$(19)$$

schemat trapezów dla komety

potencjale radialnym

Eulera orbity

kontrola kroku czasowego
$$(v_x)_{n+1} = (v_x)_n + \frac{\Delta t}{2} ((a_x)_{n+1} + (a_x)_n)$$

$$y_{n+1} = y_n + \frac{\Delta t}{2} ((v_y)_{n+1} + (v_y)_n)$$

$$(v_y)_{n+1} = (v_y)_n + \frac{\Delta t}{2} ((a_y)_{n+1} + (a_y)_n)$$

$$F_1(x_{n+1}, y_{n+1}, (v_x)_{n+1}, (v_y)_{n+1}) = x_{n+1} - x_n - \frac{\Delta t}{2}(v_x)_{n+1} - \frac{\Delta t}{2}(v_x)_n$$

$$F_2(x_{n+1}, y_{n+1}, (v_x)_{n+1}, (v_y)_{n+1}) = y_{n+1} - y_n - \frac{\Delta t}{2}(v_y)_{n+1} - \frac{\Delta t}{2}(v_y)_n$$

■
$$F_3(x_{n+1}, y_{n+1}, (v_x)_{n+1}, (v_y)_{n+1}) = (v_x)_{n+1} - (v_x)_n - \frac{\Delta t}{2}(a_x)_{n+1} - \frac{\Delta t}{2}(a_x)_n$$

$$F_4(x_{n+1}, y_{n+1}, (v_x)_{n+1}, (v_y)_{n+1}) = (v_y)_{n+1} - (v_y)_n - \frac{\Delta t}{2}(a_y)_{n+1} - \frac{\Delta t}{2}(a_y)_n$$

$$\begin{pmatrix} \frac{\partial F_{1}}{\partial x_{n+1}} & \frac{\partial F_{1}}{\partial y_{n+1}} & \frac{\partial F_{1}}{\partial (y_{1})_{n+1}} & \frac{\partial F_{1}}{\partial (y_{1})_{n+1}} & \frac{\partial F_{1}}{\partial (y_{1})_{n+1}} \\ \frac{\partial F_{2}}{\partial x_{n+1}} & \frac{\partial F_{2}}{\partial y_{n+1}} & \frac{\partial F_{2}}{\partial (y_{1})_{n+1}} & \frac{\partial F_{1}}{\partial (y_{1})_{n+1}} & \frac{\partial F_{2}}{\partial (y_{1})_{n+1}} \\ \frac{\partial F_{3}}{\partial x_{n+1}} & \frac{\partial F_{3}}{\partial y_{n+1}} & \frac{\partial F_{3}}{\partial (y_{1})_{n+1}} & \frac{\partial F_{3}}{\partial (y_{1})_{n+1}} \\ \frac{\partial F_{4}}{\partial x_{n+1}} & \frac{\partial F_{4}}{\partial y_{n+1}} & \frac{\partial F_{4}}{\partial (y_{1})_{n+1}} & \frac{\partial F_{3}}{\partial (y_{1})_{n+1}} \end{pmatrix}_{\mu} \begin{pmatrix} x_{n+1}^{\mu+1} - x_{n+1}^{\mu} \\ y_{n+1}^{\mu+1} - y_{n+1}^{\mu} \\ (v_{x})_{n+1}^{\mu+1} - (v_{x})_{n+1}^{\mu} \\ (v_{y})_{n+1}^{\mu+1} - (v_{y})_{n+1}^{\mu} \end{pmatrix} = -\begin{pmatrix} F_{1} \\ F_{2} \\ F_{3} \\ F_{4} \end{pmatrix}_{\mu}$$

$$(20)$$

$$X_{n+1} = X_n + \frac{\Delta t}{2} ((v_x)_{n+1} + (v_x)_n)$$

$$(v_x)_{n+1} = (v_x)_n + \frac{\Delta t}{2} ((a_x)_{n+1} + (a_x)_n)$$

$$y_{n+1} = y_n + \frac{\Delta t}{2} ((v_y)_{n+1} + (v_y)_n)$$

$$(v_y)_{n+1} = (v_y)_n + \frac{\Delta t}{2} ((a_y)_{n+1} + (a_y)_n)$$

$$\begin{pmatrix} 1 & 0 & -\frac{\Delta t}{2} & 0\\ 0 & 1 & 0 & -\frac{\Delta t}{2}\\ -\frac{\Delta t}{2} \frac{\partial}{\partial x}(a_{x}) & -\frac{\Delta t}{2} \frac{\partial}{\partial y}(a_{x}) & 1 & 0\\ -\frac{\Delta t}{2} \frac{\partial}{\partial x}(a_{y}) & -\frac{\Delta t}{2} \frac{\partial}{\partial y}(a_{y}) & 0 & 1 \end{pmatrix}_{\mu} \begin{pmatrix} x_{n+1}^{\mu+1} - x_{n+1}^{\mu}\\ y_{n+1}^{\mu+1} - y_{n+1}^{\mu}\\ (v_{x})_{n+1}^{\mu+1} - (v_{x})_{n+1}^{\mu}\\ (v_{y})_{n+1}^{\mu+1} - (v_{y})_{n+1}^{\mu} \end{pmatrix} = -\begin{pmatrix} F_{1}\\ F_{2}\\ F_{3}\\ F_{4} \end{pmatrix}$$
(21)

■ $a_x = -\frac{GM}{(x^2+y^2)^{3/2}} x$ ■ $a_y = -\frac{GM}{(x^2+y^2)^{3/2}} y$

wyniki metody trapezów ze stałym dt

ciało w potencjal radialnyn

orbity

kontrola kroku czasowego

wyniki metody trapezów z doborem kroku czasowego

ciało w potencjale radialnym

schem Eulera

kontrola kroku czasowego

- przy tej samej tolerancji (1m) schemat trapezów stawia znacznie dłuższe kroki (~ 10)
- rachunek wzoru trapezów przy tej samej tolerencji jest jakościowo lepszy
- w Eulerach błędy się akumulują (ten sam znak błędu w każdym kroku).

ciało w potencjale radialnym

Eulera orbity

kontrola kroku czasowego metoda trapezów: niejawna drugiego rzędu dokładności

metody Rungego Kutty (początek XXw): metody jawne wysokiej dokładności

$$\frac{du}{dt} = f$$

klasyczna formula RK4:
$$u_n=u_{n-1}+\frac{\Delta t}{6}\left(k_1+2k_2+2k_3+k_4\right)$$

$$k_1=f(t_{n-1},u_{n-1})$$

$$k_2 = f(t_{n-1} + \frac{\Delta t}{2}, u_{n-1} + \frac{\Delta t k_1}{2})$$

$$k_3 = f(t_{n-1} + \frac{\Delta t}{2}, u_{n-1} + \frac{\Delta t k_2}{2})$$

$$k_4 = f(t_{n-1} + \Delta t, u_{n-1} + \Delta t k_3)$$

4 wywołania f na krok, bład lokalny O(Δt⁵)

RK4 dla autonomicznego układu równań

 $v_X(t + \Delta t) = v_X(t) + \frac{\Delta t}{6} \left(k_{1,3} + 2k_{2,3} + 2k_{3,3} + k_{4,3} \right)$

potencjale 🛓

claib w potenciale radialnym schemat Eulera
$$\frac{dx}{dt} = f(\mathbf{u}), \mathbf{u} = (u^1, u^2, u^3, u^4)^T, \mathbf{f} = (f^1, f^2, f^3, f^4)^T$$
schemat Eulera
$$\frac{dx}{dt} = v_X(t) \qquad \frac{dy}{dt} = v_Y(t) \qquad (22) \qquad u^1 \equiv x \qquad u^2 \equiv y \qquad (23) \qquad f^1 \equiv v_X \qquad f^2 \equiv v_Y \qquad (24)$$
when to la kroku czasowego
$$\mathbf{u} \qquad \mathbf{k}_1 = \mathbf{f}(\mathbf{u}_{n-1}) \text{ nastepnie kolejno}$$

$$\mathbf{u} \qquad \mathbf{k}_2 = \mathbf{f}(\mathbf{u}_{n-1}) \text{ nastepnie kolejno}$$

$$\mathbf{u} \qquad \mathbf{k}_3 = \mathbf{f}(\mathbf{u}_{n-1} + \Delta f_1^2 \mathbf{k}_1)$$

$$\mathbf{u} \qquad \mathbf{k}_3 = \mathbf{f}(\mathbf{u}_{n-1} + \Delta f_3)$$

$$\mathbf{u} \qquad \mathbf{k}_4 = \mathbf{f}(\mathbf{u}_{n-1} + \Delta f_3)$$

$$\mathbf{u} \qquad \mathbf{u} = \mathbf{u}_{n-1} + \Delta f_1 \mathbf{k}_1$$

$$\mathbf{u} \qquad \mathbf{u} = \mathbf{u}_{n-1} + \Delta f_1 \mathbf{k}_1$$

$$\mathbf{u} \qquad \mathbf{u} = \mathbf{u}_{n-1} + \Delta f_1 \mathbf{k}_1$$

$$\mathbf{u} \qquad \mathbf{u} = \mathbf{u}_{n-1} + \Delta f_1 \mathbf{k}_1$$

$$\mathbf{u} \qquad \mathbf{u} = \mathbf{u}_{n-1} + \Delta f_1 \mathbf{k}_1$$

$$\mathbf{u} \qquad \mathbf{u} = \mathbf{u}_{n-1} + \Delta f_1 \mathbf{k}_1$$

$$\mathbf{u} \qquad \mathbf{u} = \mathbf{u}_{n-1} + \Delta f_1 \mathbf{k}_1$$

$$\mathbf{u} \qquad \mathbf{u} = \mathbf{u}_{n-1} + \Delta f_1 \mathbf{k}_1$$

$$\mathbf{u} \qquad \mathbf{u} = \mathbf{u}_{n-1} + \Delta f_1 \mathbf{k}_1$$

$$\mathbf{u} \qquad \mathbf{u} = \mathbf{u}_{n-1} + \Delta f_1 \mathbf{k}_1$$

$$\mathbf{u} \qquad \mathbf{u} = \mathbf{u}_{n-1} + \Delta f_1 \mathbf{k}_1$$

$$\mathbf{u} \qquad \mathbf{u} = \mathbf{u}_{n-1} + \Delta f_1 \mathbf{k}_1$$

$$\mathbf{u} \qquad \mathbf{u} = \mathbf{u}_{n-1} + \Delta f_1 \mathbf{k}_1$$

$$\mathbf{u} \qquad \mathbf{u} = \mathbf{u}_{n-1} + \Delta f_1 \mathbf{k}_1$$

$$\mathbf{u} \qquad \mathbf{u} = \mathbf{u}_{n-1} + \Delta f_1 \mathbf{k}_1$$

$$\mathbf{u} \qquad \mathbf{u} = \mathbf{u}_{n-1} + \Delta f_1 \mathbf{k}_1$$

$$\mathbf{u} \qquad \mathbf{u} = \mathbf{u}_{n-1} + \Delta f_1 \mathbf{k}_1$$

$$\mathbf{u} \qquad \mathbf{u} = \mathbf{u}_{n-1} + \Delta f_1 \mathbf{k}_1$$

$$\mathbf{u} \qquad \mathbf{u} = \mathbf{u}_{n-1} + \Delta f_1 \mathbf{k}_1$$

$$\mathbf{u} \qquad \mathbf{u} = \mathbf{u}_{n-1} + \Delta f_1 \mathbf{k}_1$$

$$\mathbf{u} \qquad \mathbf{u} = \mathbf{u}_{n-1} + \Delta f_1 \mathbf{k}_1$$

$$\mathbf{u} \qquad \mathbf{u} = \mathbf{u}_{n-1} + \Delta f_1 \mathbf{k}_1$$

$$\mathbf{u} \qquad \mathbf{u} = \mathbf{u}_{n-1} + \Delta f_1 \mathbf{k}_1$$

$$\mathbf{u} \qquad \mathbf{u} = \mathbf{u}_{n-1} + \Delta f_1 \mathbf{k}_1$$

$$\mathbf{u} \qquad \mathbf{u} = \mathbf{u}_{n-1} + \Delta f_1 \mathbf{k}_1$$

$$\mathbf{u} \qquad \mathbf{u} = \mathbf{u}_{n-1} + \Delta f_1 \mathbf{k}_2$$

$$\mathbf{u} \qquad \mathbf{u} \qquad \mathbf{u} = \mathbf{u}_{n-1} + \Delta f_1 \mathbf{k}_2$$

$$\mathbf{u} \qquad \mathbf{u} \qquad \mathbf{u$$

```
implicit double precision(a-h,o-z)
dimension xk(4,4),uk(4,4),u(4)
uk(1,1)=xo
uk(1,2)=yo
uk(1,3)=vox
uk(1,4)=voy
xk(1,1)=uk(1,3)
xk(1,2)=uk(1,4)
xk(1,3)=ax(uk(1,1),uk(1,2))
xk(1,4)=ay(uk(1,1),uk(1,2))
xk(2,1)=uk(1,3)+xk(1,3)*dt/2
xk(2,2)=uk(1,4)+xk(1,4)*dt/2
xk(2,2)=uk(1,4)+xk(1,4)*dt/2
xk(2,3)=ax(uk(1,1)+dt/2*xk(1,1),uk(1,2)+dt/2*xk(1,2))
xk(2,4)=ax(uk(1,1)+dt/2*xk(1,1),uk(1,2)+dt/2*xk(1,2))
```

subroutine wykonajkrok(dt,dx,vox,voy,xo,yo)

```
xk(3.1)=uk(1.3)+xk(2.3)*dt/2
xk(3,2)=uk(1,4)+xk(2,4)*dt/2
xk(3,3)=ax(uk(1,1)+dt/2*xk(2,1),uk(1,2)+dt/2*xk(2,2))
xk(3.4)=av(uk(1.1)+dt/2*xk(2.1).uk(1.2)+dt/2*xk(2.2))
xk(4.1)=uk(1.3)+xk(3.3)*dt
xk(4.2)=uk(1.4)+xk(3.4)*dt
xk(4.3)=ax(uk(1.1)+dt^*xk(3.1).uk(1.2)+dt^*xk(3.2))
xk(4,4)=ay(uk(1,1)+dt^*xk(3,1),uk(1,2)+dt^*xk(3,2))
do 1 i=1.4
u(i)=uk(1,i)+dt/6*(xk(1,i)+xk(4,i)+2*xk(2,i)+2*xk(3,i))
1 continue
xo=u(1)
vo=u(2)
vox=u(3)
vov=u(4)
end
```

wyniki metody RK4 ze stałym dt

ciało w potencjale radialnym

Eulera

kontrola kroku czasowego

x [jedn.astro.]

metoda RK4

wyniki metody trapezów z doborem kroku czasowego

ciało w potencjale radialnym

Eulera orbity

kontrola kroku czasowego

krok czasowy w RK4 i metodzie Eulera

ciało w cotencjale radialnym

Euler

kontrola kroku czasowego

- rekomendacja: jeśli problem nie jest *sztywny*, wybierajmy metodę RK4
- jeśli problem wykazuje sztywność wybierajmy metodę trapezów