2401.
$$y = x$$
; $y = x + \sin^2 x$ $(0 \le x \le \pi)$.

2402.
$$y = \frac{a^2}{a^2 + r^2}$$
, $y = 0$.

2403.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

2404.
$$y^2 = x^2 (a^2 - x^2)$$
.

2405.
$$y^2 = 2px$$
, 27 $py^2 = 8(x-p)^3$.

2405.
$$y^2 = 2px$$
, 27 $py^3 = 8(x-p)^3$.
2406. $Ax^2 + 2Bxy + Cy^2 = 1$ $(A > 1, AC-B^2 > 0)$.

2407.
$$y^2 = \frac{x^3}{2a-x}$$
 (инссоида), $x = 2a$.

2408.
$$x = a \ln \frac{a + \sqrt{a^2 - y^2}}{y} - \sqrt{a^2 - y^2}$$
, $y = 0$ (трактриса).

2409.
$$y^2 = \frac{x^n}{(1+x^{n+2})^2}$$
 (x>0; n>-2).

2410.
$$y = e^{-x} |\sin x|$$
, $y = 0$ $(x \ge 0)$.

2411. В каком отношении парабола $y^2 = 2x$ делит площадь круга $x^2 + y^2 = 8$?

2412 (н). Выразить координаты точки M(x, y) гиперболы $x^2-y^2=1$ как функции площади гиперболического сектора S = OM'M, ограниченного дугой гиперболы М'М и двумя лучами ОМ и ОМ', где M'(x, -y) — точка, симметричная M относительно оси Ох.

Найти площади фигур, ограниченных кривыми, заданными параметрически:

2413. $x = a(t - \sin t), y = a(1 - \cos t) (0 \le t \le 2\pi)$ (циклоида) и y = 0.

2414. $x = 2t-t^2$, $y = 2t^2-t^3$.

2415. $x = a (\cos t + t \sin t), y = a (\sin t - t \cos t)$

 $(0 \le t \le 2\pi)$ (развертка круга) и $x = a, y \le 0$. 2416. x = a (2 cos t—cos 2t), y = a (2 sin t — sin 2t).

2417. $x = \frac{c^2}{a} \cos^3 t$, $y = \frac{c^2}{b} \sin^3 t$ ($c^2 = a^2 - b^2$) (980люта эллипса).

2417.1.
$$x = a \cos t$$
, $y = \frac{a \sin^2 t}{2 + \sin t}$.

Найти площади фигур, ограниченных кривыми, заданными в полярных координатах:

2418, $r^2 = a^2 \cos 2\phi$ (лемниската).