M1F Foundations of Analysis, Problem Sheet 2.

- 1. What are the following sets? Justify your answers.
 - (a) $\bigcup_{n=0}^{\infty} [n, n+1)$.
 - (b) $\bigcup_{n=1}^{\infty} [1/n, 1]$.
 - (c) $\bigcup_{n=1}^{\infty} (-n, n)$.
 - (d) $\bigcap_{n=1}^{\infty} (-n, n)$.
- **2.** Prove that the set (0,1) (that is $\{x \in \mathbf{R} : 0 < x < 1\}$) has no largest element. (NB: by a "largest element" of a set S I mean an element $x \in S$ such that $\forall y \in S, y \leq x$.)
- 3.
- (a) Prove that if n is an integer and 3 divides n^2 then 3 divides n.
- (b) Deduce that $\sqrt{3}$ is irrational.
- 4. Are the following statements true or false? Proofs or counterexamples required.
 - (a) If a is irrational and b is irrational then a+b must be irrational.
 - (b) If a is irrational and b is rational then ab must be irrational.
- 5. Are the following statements true or false? Proof or counterexample required.
 - (a) $\forall x \in \mathbf{R} \,\exists y \in \mathbf{R} \, x + y = 2$.
 - (b) $\exists y \in \mathbf{R} \, \forall x \in \mathbf{R} \, x + y = 2$.
- **6***. Prove that $\sqrt{2} + \sqrt{6} < \sqrt{15}$ (NB you may assume the square roots exist).
- 7. Are the following numbers rational or irrational? Proofs required.
 - (a) $\sqrt{2} + \sqrt{3/2}$ (hint: if it were rational then its square would also be rational).
 - (b) $1 + \sqrt{2} + \sqrt{3/2}$.
 - (c) $2\sqrt{18} 3\sqrt{8}$.