Contents

1	Bell	lle II and SuperKEKB (SKB) accelerator				
	1.1	Physic	ics program of the B-factories			
		1.1.1	Opened questions in SM	3		
		1.1.2	Belle II Physics channels	4		
		1.1.3	B meson decay vertices	6		
	1.2	Super	KEKB accelerator	8		
		1.2.1	The facility	8		
		1.2.2	"Nano-beam" scheme	10		
	1.3	Belle l	II detector	11		
		1.3.1	Vertex Detector (VXD)	11		
		1.3.2	Central Drift Chamber (CDC)	12		
		1.3.3	Particle identification system (TOP e ARICH) \dots	12		
		1.3.4	Electromagnetic calorimeter (ECL)	13		
		1.3.5	K_L muon detector (KLM)	13		
		1.3.6	Trigger system	14		
	1.4	Curre	arrent state and perspectives of data taking			
2	Bell	le II U	pgrade	15		
	2.1	Backg	ground sources and limitations in Belle II $$			
		2.1.1	Major background sources	15		
		2.1.2	Current background status and future implications (pre-			
			${\rm dictions}) \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	16		

	2.2	Purpo	poses of the upgrade				
	2.3	Summ	nary of possible VXD upgrade				
		2.3.1	DEPFET	. 18			
		2.3.2	Thin and Fine-Pitch SVD	. 18			
		2.3.3	Silicon On Insulator (SOI)	. 19			
			2.3.3.1 Concept	. 19			
			2.3.3.2 Sensor design and and features	. 20			
		2.3.4	CMOS MAPS	. 21			
3	VT	X detector					
	3.1	VTX	Layout	. 23			
		3.1.1	$iVTX \dots \dots \dots \dots \dots \dots \dots \dots \dots $. 23			
		3.1.2	oVTX	. 23			
4	Con	clusio	ons	24			

1. Belle II and SuperKEKB (SKB) accelerator

This first chapter aims to present a brief introduction of the Belle II physics program, focusing on those measurements wich could particularly benefit from the upgrade the whole detector and in particular of the VerteX Detector (VXD), discussed in this work. A short description of the SuperKEKB accelerator's operation, the Belle II detector's structure and to conclude some highlights on te actual state of measurements are also presented.

1.1 Physics program of the B-factories

Belle II is a B-factory dedicated to improve precision measurements of the Standard Model's parameters (SM) and to looking for the physics Beyond the Standard Model (BSM). In particular the experiment investigates the Charge-Parity Violation (CPV) in the B mesons system and it also searches for New Physics (NP) evidences in the decays of B and D mesons, in τ leptons and in the dark matter sector (DM), above all, hunting for dark photons.

1.1.1 Opened questions in SM

The SM is a physics theory that describe three of the fundamental forces [interactions] involving elementary particles, which are strong, weak and electromagnetic interaction (with the exclusion of the gravitational one). It classifies all known particles up to now in 4 main groups: quark, leptons, bosons and Higgs (figure 1.1 on the following page).

Despite its undeniable success achieved over the years in predicting with high precision new particles and mechanisms unknown until that moment, there are many aspects of the Nature on which it is unable to give answers. Some of them are listed in the following.

- Three generations of quark and leptons are known, but it is not obvious wheter they should be the only ones and the reasons behind their mass hierarchy.
- Higgs mechanism is able to explain the cause of elementary particles' masses through spontaneous electro-weak symmetry breaking, but it doesn't justify those of neutrinos.

Figure 1.1: Particle classification in the Standard Model.

- The SM also predicts other Higgs-like bosons, potentially vector bosons, whose existance would be justified in some SUper-SYmmetry (SUSY) theories or in others of New Physics.
- Another opened question is the matter-antimatter asymmetry in the Universe. Even though CP violation is necessary to explain the current state of the universe, the observed quantity is several orders of magnitude less than needed to explain the matter domination over antimatter, which allowed the evolution of the universe as we know it today.
- The elements of the Cabibbo-Kobayashi-Maskawa (CKM) matrix, which complex phase is at the foundation of CP Violation (CPV) in the quark flavor sector, are diagonal and it might suggest the existence of a new symmetry, that is unbroken at high energy (greater than the order of TeV).

All these topics encourage the research of new particles and processes that could give reasonable answers.

At the energy frontier, experiments like the Large Hadron Collider (LHC) in Geneve are looking for new particles created from the proton-proton collision with a center mass energy up to 14 TeV.

At luminosity frontier instead, the trace of new particles and mechanisms is searched in precision measurements of suppressed reactions in flavour physics or in the deviations from SM. The discrepancies indeed, could be interpreted as a clue of new physics beyond SM. The last is the Belle II approach.

1.1.2 Belle II Physics channels

The field of reaserch at SuperKEKB is very extended and in the following we will go through the main physics goals of the experiment, underlining how the

measurements could be enhanced by the upgrade of the vertex detector.

FLAVOR PHYSICS

CP-violating phases in quark sector:

- Also the CP violation in charm mixing, negligible in the SM, could draw attention to new phenomena in the up-type quark sector.
- Another aspect that need to be understood is the large amount of CP violation in the time-integrated rates of charmless hadronic B decays, such as $B \to K\pi$ and $B \to K\pi\pi$, observed by other B factories and LHCb.

Conclusive measurements of time-dependent CP violation require a combination of data size and high precision measurement of Δz (discussed further in on the next page), the distance between the tag and signal in B meson decay vertices. In this respect, the upgrade of VXD could improve a lot the flavor tagging efficiency losses, due mainly to the beam-induced backgrounds, among the others.

Multiple Higgs bosons: Another fundamental channel is the measurement of the Branching Ratio (BR) of B $\rightarrow \tau \nu$, which is particularly sensitive to the charged Higgs boson (in addition to a neutral SM-like Higgs) that in general couples more strongly to heavier particles. But also the BR of the decay B $\rightarrow D^{(*)}\tau \nu$, where BaBar, Belle and LHCb had already reported some anomalies. Moreover extended Higgs mechanism could introduce extra sources of CP violation. We could notice that semi-tauonic decay measurements, rely on efficient and pure tag side B full reconstruction, and so also on the performance of VXD.

Flavor Changing Neutral Current (FCNC):

- For this purpose, measurements of time-dependent CP violation in $B \to K^{*0} (\to K_S^0 \pi^0) \gamma$, triple product CP violation asymmetries in B $\to VV$ decays, and semileptonic decays $B \to Vl\nu$, $V = D^*$, ρ are the main approaches.
- It is also important to measure $b \to s\nu\bar{\nu}$ transitions (such as $B \to K^{(*)}\nu\bar{\nu}$) which belong to a class of decays with large missing energy and to improve FCNC measurements of $b \to d$, $b \to s$, and $c \to u$ transitions.

Most analyses with missing energy in the final state utilise hadronic or semileptonic B full reconstruction techniques and the performance of these methods is most dependent on low momentum track finding and so on the capabilities of the vertex detector as well.

Sources of Lepton Flavor Violation (LFV): LFV in charged lepton decay (at rates of 10^{-8}) is a key prediction in many neutrinos mass generation mechanisms and other models of physics BSM. Belle II has an unrivalled sensitivity to τ decays, because of their production in a clean e^+e^- collision background and the large dataset. The experiment analyzes τ leptons to search for LF and CP violation and to measure its the electric dipole moment and (g-2) value.

NON FLAVOR PHISICS

Dark Sector: Belle II has a unique sensitivity to dark matter via missing energy decays. Although most research for NP are indirect, there are different model that predict the existance of new particles at the MeV to GeV scale, that couple to the SM via new gauge asymmetries. They also predict a vast range of hidden particles, including dark matter candidates and new gauge bosons.

In these last two areas, τ and dark sectors physics, the aim is to probe forbidden and ultra-rare transition in low-multiplicity final states with as large dataset as possible. This mostly relies on trigger efficiency and strategies, that could take advantage from the upgrade. Many of these processes can only be addressed by Belle II, so it is essential to increase the perfomance of the detector.

Binding Hadrons: As time goes on, a large numbers of states not predicted by conventional mesons interpretation are discovered in other B factories and hadron colliders, changing our understanding of QCD in the low-energy regime. For this reason, study of quarkonia is a fundamental purpose for Belle II. In fact new particles can be produced near resonance, achievable by adjusting the machine energy, or by intial state radiation, which effectively provides a continuum of center of mass energies.

CKM matrix: Belle II is also dealing with the measurements of CKM observable, the matrix elements and their phases, with unprecedented precision.

1.1.3 B meson decay vertices

The main task of VXD is the reconstruction of the production and decay vertices of the particles originated from the collisions and it is crucial to perform time-dependent measurements, core of the Belle II physics program.

The center of mass energy of Belle II experiment has its peak at the $\Upsilon(4S)$ resonance, such as $\sqrt{s} = 10.58$ GeV, which decays almost instantaneously into two B mesons $(B^0 \ \bar{B}^0)$ in nearly 96% of all cases. The choice of the asymmetric configuration of the beams, relies precisely in the requirement to boost the mesons in order to measure their life-time, exploiting the information on the

distance between their decay vertices. In fact in a beam symmetric situation, they would have been produced at rest, decaying roughly at the same point or in any case at undetectable distances. The investigation of CP Violating processes instead, requires to measure the decay time difference of the two B mesons, and its uncertainty is dominated by that of decay vertex measurement (order of hundreds microns).

SuperKEKB collides an electrons beam of 7 GeV with a positrons beam of 4 GeV, chosen in order to have the center mass energy equal to 10.58 GeV. Indeed it must be valid:

$$s = (p_{e^-}^{\mu} + p_{e^+}^{\mu})^2 = m_{\Upsilon(4S)}^2, \text{ with } m_{e^+/-} \ll E_{e^+/-} \Rightarrow 4E_{e^-}E_{e^+} = m_{\Upsilon(4S)}^2$$
 (1.1)

So it's possible to compute the Lorentz boost of the mass center:

$$\vec{P}_{\Upsilon(4S)} = \vec{p}_{e^{-}} + \vec{p}_{e^{+}} = (\beta \gamma)_{\Upsilon(4S)} m_{\Upsilon(4S)} \approx 3 GeV \implies (\beta \gamma)_{\Upsilon(4S)} = \frac{4 GeV}{10.58 GeV} \approx 0.28$$
(1.2)

which is the same boost acquired by mesons, because they are produced almost at rest $(m_{\Upsilon(4S)} - m_{2B_0} \approx 19 \text{ MeV})$. Moreover knowing that $\tau_B \simeq 1.5 \times 10^{-12} \text{ s}$ ans so $c\tau_B \simeq 450 \ \mu\text{m}$, we can compute the average flight distance travelled before decaying:

$$l = (\beta \gamma)_{\Upsilon(4S)} c \tau_B \approx 126 \mu m \tag{1.3}$$

This value must be within the vertex detector sensitivity in order to distinguish the vertex decay and as consequence a precision measurements of lifetimes, mixing parameters and CP violation. The six-layer VXD could determine the position of the vertices with a precision better than 100 μ m, allowing to reconstruct secondary vertices, i.e. the decay position of the particles coming from B decays, and also the tau and D mesons vertices. [In the topology of the B meson decay vertices, lie the combined great efforts employed to be able to build a fast, high-granularity and radiation hardness detector]

Let's take a closer look at the event kinematics (e.g. on this page). The two B mesons are produced in an entangled quantum state, so from the decay products of the first it's possible to assign its flavor (for example B^0 , identifyed as B^0_{tag}) and as consequence that of the second, which will be the opposite $(\bar{B}^0$, called \bar{B}^0_{phys}).

Figure 1.2: Example of the kinematics of the golden channel of Belle II experiment.

After this reconstruction, both B decay vertex positions z_1 and z_2 are eval-

uated, in order to compute their difference:

$$\Delta z = z_1 - z_2 = (\beta \gamma)_{\Upsilon(4S)} c \Delta t \tag{1.4}$$

where Δt is the proper time decay difference. Therefore this topology allows to transform a temporal information in a spatial one that we are able to measure. Without the boosted center of mass none of it could be possible, and this is a main feature of an asymmetric B-factory.

1.2 SuperKEKB accelerator

Belle II sensitivity in the precision measurements that we sift throug in the previous section, is feasible expecially thanks to the extraordinary performance of the SuperKEKB accelerator which host the (almost) hermetic detector. This complex facility is the result of efforts and efficient collaboration between the researches of KEK laboratory and all the international working groups that partecipate to the experiment.

1.2.1 The facility

SuperKEKB is an asymmetric e^+e^- collider with a circumference of 3 km and a center of mass energy peak equal to $\sqrt{s}=10.58$ GeV, which corresponds to the mass of the $\Upsilon(4S)$ resonance. Compared to its predecessor KEKB (which started its operation in 1998 and concluded in 2010), the current accelerator has allowed to obtain the highest luminosity ever achieved, equal to 4.7×10^{-34} cm⁻²s⁻¹ in July 2022, using a new scheme to accelerate and collide the beams, the so called nano-beam scheme(section 1.2.2 on page 10). Moreover a new upgrade of the machine, still under study, will also include other interventions expecially to cope with higher background levels, in view of further increase in luminosity.

Figure 1.3: SuperKEKB accelerator in 2021. The letters V and H denote respectively vertical and horizontal collimators. Each ring is divided in 12 sections, from the first called D01 to the last D12.

We will briefly see the main features and parameters of the accelerator.

Luminosity

Luminosity is one of the key parameters of an accelerator and it represents the interaction rate per unit of cross section between colliding particles. Reversing this equation is possible to obtain N, namely the number of the physical events produced in the interaction with a given luminosity:

$$L = \frac{1}{\sigma} \frac{dN}{dt} \qquad \Rightarrow \qquad N = \int_0^T L\sigma dt \tag{1.5}$$

where T is the duration of the experiment, σ the cross section of the physical process of interest. Specifically luminosity is strictly dependent from both machine parameters and the main characteristics of the beam. With respect to this, it can be expressed as:

$$L = \dots (1.6)$$

where

As we have already seen, SuperKEKB holds the actual world record in luminosity (with $\beta_y^*=1.0$ mm) and in the near future the target will be to reach $6.3\times 10^{-35}~cm^{-2}s^{-1}$ (by 2030?), by increasing current beams and reducing their section in the Interaction Point (IP), through the reduction of the betatron function to $\beta_y^*=0.3$ mm.

For these reasons, the supervision of the beams background becomes crucial: right now it has been estimated that the background should remain accettable up to a luminosity value equal to $2.8 \times 10^{-35}~cm^{-2}s^{-1}$ with $\beta_y^* = 0.6$ mm. So the possibility(hope) to achieve higher luminosity is closely (strictly) related to an upgrade plan of both the detector and the accelerator.

Beam energy

Energy beams is mostly decided by the physics program interesting for the experiment. Currently SuperKEKB collides an electron beam with energy of 7 GeV (High Energy Ring, HER), with a positron beam of 4 GeV (Low Energy Ring, LER), reaching a center of mass energy peaked to $\Upsilon(4S)$ resonance.

The choice of colliding asymmetric beam (like its predecessor KEKB, which got collide electrons beam of 8 GeV with a positrons beam of 3.5 GeV) is necessary to identify and measure the decay vertices of particles created in the collisions, as we have seen in section 1.1.3 on page 6.

Indeed this mechanism allows to boost the decay products, improving the vertices reconstruction and increasing the sensitivity of the physics measurement, too. In particular this makes possible time-dependent measurements, expecially in CP violation.

In figure 1.4 on the next page the flexibility of the energy of both LER and HER beams is showed, which provides a continuum of the center mass energy. The possible range covers energies which goes from the $\Upsilon(1S)$ (9.46 GeV) resonance to the $\Upsilon(6S)$ (11.24 GeV).

Figure 1.4: Beam energies to reach center of mass energy equal to $\Upsilon(4S)$, $\Upsilon(6S)$, 11.24 GeV and 12 GeV. Horizontal axis represents the energy of LER and the vertical one the energy of HER.

1.2.2 "Nano-beam" scheme

[?]

As mentioned in the previous section, another decisive factor to define the luminosity is the beta function β in the Interaction Point (IP). To be able to increase luminosity, it's necessary to decrease the value of β depending also but not only, on the variation of the other machine parameters in the difinition (on the preceding page). The mechanism used in SuperKEKB is called nanobeam scheme, and it allowed to obtain luminosity 40 times greater than that of KEKB, managing to (succeding) decrease of 1/20 the β function in the IP.

This new scheme, designed by P. Raimondi, dictates that the beams have to collide at large angle, equal to 83 mrad in SuperKEKB (keeping beams divided through quadruople magnets), in order to reduce the *hourglass effect*, which succeed when the bunches in the beam are much longer.

Figure 1.5: Comparison between the beams scheme used in KEKB and SuperKEKB.

Using a crossing angle large enough, has other positive implications on the

operation of the accelerator:

- allows the placement of a new focusing system in the IP with a superconducting quadrupole magnet;
- allows to have two distinct line which host HER and LER beams;
- diminishes the *fringe fields* effect in the IP, wihch are the residuals of the magnets (magnetic fields) in the proximity (nearby).

1.3 Belle II detector

Belle II detector is a general-purpose spectrometers, which consists of a series of nested subdetectors that surrounds the IP of the two beams, placed around the berillium beam pipe of 10 mm of radius. Here we will go trough a briefly description of the several subdetectors.

Figure 1.6: Belle II detector.

1.3.1 Vertex Detector (VXD)

The **Vertex Detector (VXD)** is composed by two devices, the silicon Pixel Detector (PXD) and the Silicon Vertex Detector (SVD), for a total of six layers around the beam pipe.

The inner two layers of PXD (L12) consist of pixelated sensors based on the depleted field effect transistor (DEPFET) technology, realised with very thin (< 100 μ m) sensors, allowing to minimise multiple scattering, thus improving the tracking resolution for low-momentum particles. They are at a radius of 14 mm and 22 mm, respectively.

The remaining four layers of SVD (L3456) instead, are equipped with double-sided silicon strip (DSSD) sensors (at 39 mm, 80 mm, 104 mm and 135 mm respectively). Since a lower background rate is expected with respect to PXD, DSSD allow to achieve similar performance with a much smaller number of readout channels. These layers are mainly used for tracking/vertexing and also for particle identification (dE/dx).

Figure 1.7: A schematic view of the Belle II vertex detector with a Be beam pipe and the six layers of PXD and SVD.

1.3.2 Central Drift Chamber (CDC)

It is the central tracking device, with a large-volume drift chamber and small drift cells. The chamber gas is composed of a He–C₂H₆ 50:50 mixture with an average drift velocity of 3.3 μs^{-1} and a maximum drift time of about 350 ns for a 17 mm cell size. The CDC contains 14336 wires arranged in 56 layers either in axial (so aligned with the solenoidal magnetic field) or stereo (skewed with respect to the axial wires) orientation. In fact by combining information from both the axial and the stereo layers it is possible to reconstruct a full three-dimensional helix charged tracks and measures their momenta. It also provides information for particle identification by measuring ionization energy loss, which is particularly useful for low-momentum particles that cannot reach the outer particle identification subdetectors.

1.3.3 Particle identification system (TOP e ARICH)

TOP (Time Of Propagation) is a special kind of Cherenkov detector used for particle identification in the barrel region. It employs the two-dimensional information of a Cherenkov ring image, such as the time of arrival and impact position of Cherenkov photons at the photodetector at one end of a $2.6~\mathrm{m}$ quartz bar. It is composed by $16~\mathrm{detector}$ modules, each one consisted in a $45~\mathrm{x}~2~\mathrm{cm}$ quartz bar (Cherenkov radiator) with a small expansion volume (about $10~\mathrm{cm}$ long) at the sensor end of the bar. In order to achieve a single-photon time resolution of about $100~\mathrm{ps}$ (required for a good PID), 16-channel microchannel plate photomultiplier tubes (MCP-PMT), specially developed for this purpose, are employed.

Figure 1.8: TOP detector.

ARICH (Aerogel Ring Imaging CHerenkov) is used to identify charged

Figure 1.9: ARICH detector.

particle and it is placed in the forward endcap region. It is a proximity focusing Cherenkov ring imagine detector which adopts aerogel as Cherenkov radiator. In particular this detector employs a novel method to increase the number of detected Cherenkov photons: two 2 cm-thock layers of aerogel with different refractive indices ($n_1 = 1.045$ upstream, $n_2 = 1.055$ downstream) that increase the yield without degrading the Cherenkov angle resolution. A hybrid avalanche photon detector (HAPD) are exploited as single-photon-sensitive high-granularity sensor. Here photo-electrons are accelerated over a potential difference of about 8 KV and are detected in avalanches pyotodiodes (APD).

The main task of these detector is to improve the K/π separation until 3.5 and 4 GeV/c of momentum, respectively.

1.3.4 Electromagnetic calorimeter (ECL)

The **ECL** is a highly segmented array of tallium-doped caesium iodide CsI(Tl) crystals assembled in a 3 m long barrel section with a radius of 1.25m, and two endcaps discs located at 2 m (forward) and 1 m (backward). All of them are instrumented with a total of 8736 crystal, covering about 90 % of the solid angle in center-of-mass system. This detector is used to detect gamma rays and to identify electrons in order to separate the latter from hadrons, expecially pions.

1.3.5 K_L muon detector (KLM)

It consists of an alternating sandwich of 4.7 cm-thick iron plates and active detector elements located outside the volume of the superconducting solenoid that provides a 1.5 T magnetic field. The iron plates serve as the magnetic flux return joke for the solenoid. They also provide 3.9 interaction lenghts or more of material, beyond the 0.8 interaction lenghts of the calorimeter, in which K_L^0 mesons can shower hadronically. The active detector elements have been chosen in order to cope with the reduction of the detector efficiency under the SuperKEKB background rates: resistive plate chambers (RPCs) for the outermost active layers, and scintillator strip, with wavelenght-shifting fibers, readout by silicon photomultipliers (SiPMs) in the two innermost layers of the barrel region and for the endcaps regions.

1.3.6 Trigger system

The trigger system of Belle II has a non-trivial role to identify events of interest during data-taking at SuperKEKB, where high background rate are expected. This system is composed of two levels: a hardware-based low-level trigger (L1) and a software-based high-level trigger (HLT), implemented in the data acquisition (DAQ) system.

- L1: has a latency of 5 μ s and a maximum trigger output rate of 30 kHz, limited by the read-in rate of the DAQ.
- HLT: is a key component of the DAQ, used to fully reconstruct events that passed the L1 trigger selection. It has to reduce online event rates to 10 kHz for offline storage and it must identify track regions of interest for PXD readout in order to reduce data flux. It fully recreates events with offline reconstruction algorithms, using all detectors infromation except for the PXD.

1.4 Current state and perspectives of data taking

As we already said, Belle II has reach the world record luminosity with $L_{MAX} = 0.47 \times 10^{-35} \ cm^{-2} s^{-1}$ in June 2022. In further perspectives, the target is to achieve a new record with $L = 6 \times 10^{-35} \ cm^{-2} s^{-1}$ and to increase the integrated luminosity from 428 fb^{-1} (actual value, starting in 2019) to 50 fb^{-1} , in order to increase the statistics and also the hope to give an insight in some the opened questions of SM.

In order to accomplish the fixed(estabilished) goals mentioned above, an upgrade not only of the vertex detector but of the whole experiment is necessary, among several reasons, to cope with a more complex circumstances due to the increased luminosity, which undermine its proper functioning.

Therefore a three-phase program is envisaged (considered):

- **short term**: year 2022. Long Shutdown 1 (LS1) is planned for approximately 15 months starting in July 2022, to install a complete pixel detector (PXD). Was it done?
- short term: approximately year 2026-27. Long Shutdown 2 (LS2) will probably be needed for the upgrade of the Interaction Region (IR) to reach a new luminosity target $L_{peak} = 6.5 \times 10^{-35}~cm^{-2}s^{-1}$. A new Vertex Detector might be required to accommodate the new IR design, and other sub-detector upgrades are possible.
- long term: years > 2032. Studies have started to explore upgrades beyond the currently planned program, such as beam polarization and ultra-high luminosity, such as L_{peak} in excess of $1 \times 10^{-36} \ cm^{-2} s^{-1}$. While the beam polarization has a concrete proposal, for ultra-high luminosity studies have just started.

At time of writing we are in the period of a long shut-down (LS1), last since June 2022 and the restart of data taking is planned at the beginning of 2024.

2. Belle II Upgrade

This second chapter wants to address some of the main reasons in favor of the upgrade of Belle II. We will give an overview of the primary background sources in the experiment to understand how to mitigate them to be able to achieve a better performance of the whole detector, even ramping up the luminosity. Eventually we will also introduce some of the proposes made for the vertex detector, which is the focus of this thesis.

2.1 Background sources and limitations in Belle II

SuperKEKB is already the world's highest-luminosity collider and it aims to reach a new luminosity peak and to increase the statistics in the future, to become more sensitive to rare process and precise measurements of Belle II physics program. But to be able to do this without loosing the good functionality of the entire detector, it's necessary to understand how to mitigate the beam backgrounds where possible and how to cope with the consequent challenges.

Several simulations and measurements of beam background are still being done in order to guess possible future machine scenarios, under new luminosity conditions. This is necessary to study the vulnerability of the subdetectors (and more generally of the machine) and so to design the countermeasures to adopt against the deterioration of performance and material.

2.1.1 Major background sources

Making clear that even the interaction of the beams is a source of noise for the measurements, in the following are listed some of the *beam-induced* and *luminosity-dependent* background sources.

Touschek effect: It is an intra-bunches scattering process, where the Coulomb scattering of two particles in the same beam bunch causes a variation of their energies, increasing the value of one of them and lowering that of the other from the nominal value. This interaction among the bunch particles is the first beam background source at SuperKEKB.

Beam-gas scattering: this represents the collision of beam particles with residual gas molecules in the beam pipe. It's the second beam background source and it can occur via two processes: Coulomb interactions, which changes the direction of the beam particles, and bremsstrahlung scattering, which instead decreases their energy.

Because of these two processes, the scattered particle fall out the stable orbit and hit the beam pipe while they move around the ring. This causes electromagnetic showers that could reach the detector if their origin (loss position) is close to it.

Radiative Bhabha scattering and two-photon processes: There are several undesirable collision processes at IP, which have very high cross sections but only little interest for the physics studied in the experiment. Two of them are Bhabha scattering $(e^+e^- \to e^+e^-\lambda)$ and Two-photon processes $(e^+e^- \to e^+e^-e^+e^-)$. In the first effect the emitted photon interacts with the iron magnets and produces a very large amounts of neutrons via the photo-nuclear resonance mechanism. [Such neutrons are the main background source for the outermost Belle II detector, the K_L and muon detector (KLM).] The electrons-positrons pairs of the latter instead, can spiral around the solenoid field lines and leave multiple hits in the inner Belle II detectors.

These processes increase the Belle II occupancy and radiation dose, and they are reffered as *Luminosity background* because their strength is proportional to the luminosity. The future upgrade intends to deal with this problem in order to keep occupancy low.

Synchrotron Radiation (SR): X-rays emitted from the beam when electrons and positrons pass through the strong magnetic field near the IP. The HER beam is the main source of this type of background, because SR power is proportional to the square of beam energy and magnetic field. SR can potentially damage the inner layers of the vertex detector due to an higher radiation dose. As a matter of fact, many current studies aim to enhance radiation hardness detector.

There are also other background sources beyond those mentioned above and during the last decade a well-structured set of countermeasures have been developed trying to ease each one of them.

2.1.2 Current background status and future implications (predictions)

Several monitoring devices are located all along the accelerator to keep under control radiation doses on both detector and delicate regions of the ring, to intervene as soon as possible in case too high levels are reached. Indeed large doses of radiation could cause accidental damages on the detector, decreasing its performance.

Event though the current level is of no concern in terms of occupancy for the innermost layers of the vertex detector, in the case of a larger amount, such as of SR may cause inhomogenities in PXD module, which would make more difficult to compensate them by adjusting the operation voltages of the affected ones.

Until now it can be said that SuperKEKB and Belle II are operating stably. Beam-induced backgorund rates are well below the limits of the detector and do not prevent from increasing further tha current and hence the luminosity.

Despite that, there are several other difficulties that can limit beam currents and so the possibility to move the luminosity frontier at towards higher levels, allowing Belle II reaserchers to study rare physics processes.

2.2 Purposes of the upgrade

Current studies foresee that SuperKEKB may reach higher luminosity targets with the existing accelerator complex (background simulations have been done for each phase listed in section on page 14), but in order to achieve the established final value of $6.3 \times 10^{-35}~cm^{-2}s^{-1}$ by 2030, an enhancement of the interaction region are under consideration.

Belle II detector is also designed to operate efficiently under the high levels of backgrounds extrapolated to luminosity target, but safety margins are not so large. Moreover in the case of a redesign of the interaction region large uncertainties in the background extrapolations are unavoidable.

Therefore the global upgrade program is justified by many considerations, among them:

- improve detector's resitance to higher level of background;
- make each subdetectors long-lived against radiation damage;
- push forward safety margins for running at higher luminosity;
- develop the technology to cope with different future paths;
- improve overall physics performance.

In particular all different upgrade ideas of the whole Belle II detector intend to ensure its proper functioning, at the higher level of luminosity ever achived, condering also further improvements of the lattice machine and so of the colliding beams. Indeed current detector configuration is not expected to maintain its performance level when facing high beam background level or high rates.

In regards to the Vertex Detector, all proposed improvements aim to:

- reduce occupancy level by employing fully pixelated and fast detector (nowadays CMOS technologies are the most probably choice);
- increase robustness against tracking efficiency and resolution losses from beam background;
- improve radiation hardness for delaying detector ageing effects and so performance degradation;
- reduce the inserted material budget between subdetectors in order to achieve good resolution lessening the multiple scattering, above all at lower momenta.

2.3 Summary of possible VXD upgrade

The Vertex Detector is particularly sensitive to machine background, beeing the closest to the beam pipe and therefore subject to high doses of radiation. As we have already seen, current studies are trying to extrapolate how it could be affected by reaching the future luminosity target, but there are a lot of uncertainties due to models and still not well defined design of the interaction region. Moreover a completely new detector might be required, in event of a considerable(significant) redesing of the IR. However in this case, also the physics performance could be improved, taking advantage of the more recent technology developments.

In the following we will present in a few words the four main proposal for future upgrade: DEPFET pixel, thin sensor, CMOS MAPS pixel and SOI technology.

2.3.1 **DEPFET**

This first proposal intend to minimize risk and costs of the project, preserving the general layout of the PXD system. The upgrade consists to improve the sensor above all, in order to provide higher safety factor for the allowed occupancy and to prevent some issue that at the moment weaken the good functionality of the detector.

Some of the main improvements are listed below:

- improve signal trasmission on the pixel matrix and the signal processing in the read-out, in order to reduce the read-out time per row from the current 100 ns to 50 ns. In this way the frame time and the background occupancy might be reduce by factor 2, while leaving unchanged the optimized pixel size and number of PXD as it stands;
- increase the robustness against beam losses which could make inefficient or even inoperative gate lines on almost all PXD modules. This reaction seems to be due to a high photocurrent on the chip because of the high istantaneous dose. it could be mitigate by adding protection circuits onchip;
- TID effect on the chip provokes an unexpected avalanche current that does not compromise the sensor performance but requires more power supply to provide ennough current. This issue might be solved by bringing some changes in the DEPFET pixel layout.

Simulations and studies of the new pixel design are showing promising results.???

2.3.2 Thin and Fine-Pitch SVD

The Thin and Fine-Pitch SVD (**TFP-SVD**) is a new detector concept that aims to improve not only SVD, but also the inner part of the CDC, whose functionality could be threatened by future beam background condition. This proposal takes into account the Double-sided Silicon Strip Detector (DSSD) as a

prime candidate for a tracking device in the inner and middle detector volume since a single sensor can cover a large dimension of about $100 \times 100 \ mm^2$. In the current detector, the DSSD technology is already used in the SVD, which deals with vertex reconstruction and low momentum tracking, togheter with PXD.

One of the major improvements of this technology is the reduction of the material budget. Currently SVD has about $0.7\%X_0$ material budget per layer. TFP-SVD instead, decreasing the sensor thickness to 140 μ m, intend to reduce it to $0.41\%X_0$.

Moreover small sensor thickness is expected to reduce the voltage needed to reach the full depletion, even after radiation damage. SNAP128 is the front-end thought for TFP-SVD, with 128 input channels and a 127 MHz clock in each of them, to generate the binary hit information sampled. It also offers a reduction of the amount cables.

Some concerns about TFP-SVD are the feasibility and efficiency of the final sensor production and the small signal charge due to the short path length of the particles through the sensor.

In any case a first prototype has been produced by Micron-Semiconductor Ltd (UK), with a size of $52.6 \times 59.0 \ mm^2$. The characterization studies are in agreement with the expectation and also a lower full depletion voltage is confirmed (??). It is planned to increase the dimensions to $100 \times 100 \ mm^2$ in the further prototype.

2.3.3 Silicon On Insulator (SOI)

The basic idea of the proposal is to replace the whole VXD detector employing a new design of pixel, called Dual Timer Pixel (DuTiP), based on SOI technology. This new sensor concept has been invented to cope with the expected higher background accordingly to higher value of luminosity to achieve.

2.3.3.1 Concept

SOI technology has been chosen as baseline for the new pixel design thanks to its monolithic structure, thinness, low power consumption and low parasitic capacitance. In addition it's resistant aginst neutron and single event upset (SEU, explained??), even though an important issue is TID effect on which efficient solutions have been studied.?

To cope with higher background environment indeed, DuTiP was invented to fullfil the requirements of a new vertex detector with faster readout, lower occupancy, smaller data size and smaller data transfer. In particular its concept rest on the concern to store at least two hits during Belle II trigger latency of 4.5 μ m, to avoid loss information of the inner part of the detector at high background level.

The analog part is quite standard for a binary detector and consists of a sequence of preamplifier, shaper and comparator. Digital part is equipped with two timers (7 bit counters) to store at least two hits. When a processed hit signal arrive to the digital part it is stored and one of the timers start to counting down from a starting time set to trigger latency plus one clock, waiting for trigger signal. If the trigger signal is received when the time is 1 (it could be also 2/0), the signal is readout as current (Next/Previous respectively) timing (Previous CurrentNext,

PCN timings?). If the trigger is not received at the PCN timings in the pixel, the timer is reset.

This complicated digital circuit has to be assembled on each pixel and Lapis semiconductor 2.0 μm FD-SOI CMOS technology has been chosen, based on the experience gained in the successful development of other detectors like pixel detectors for the future ILC and CEPC.?

(a) Analog, Digital and Scan blocks for DuTiP detector.

(b) Operational sketch.

Figure 2.1: Schematic of DuTiP circuits.

2.3.3.2 Sensor design and and features

The size fo the new designed pixel is 45 μ m and the sensor layer thickness of 50 μ m, which gives about 11 μ m of intrinsic resolution on z direction averaging over incident polar angle. ALPIDE was choosen as analog circuit with some modification to adapt it to SOI technology.

DuTiP pixel detector is designed to cover the current VXD acceptance with 7 layer: 1-3 with S (smaller size chip) type sensors, 4-7 with L(larger size) type instead (on this page).

sensor	layer	pitch	row × column	array r - $\phi \times z$	array area	chip r - $\phi \times z$
type		$[\mu \mathrm{m}]$	[pixels]	$[\mathrm{mm}^2]$	$[\mathrm{cm}^2]$	$[\mathrm{mm}^2]$
S	1-3	45	320×640	14.4×28.8	4.15	17.2×29.6
L	4-7	45	480×640	21.6×28.8	6.22	24.4×29.6

Figure 2.2: The size of Small (S) and Large (L) DuTiP chips.

In order to minimize the dead region between chips in the ladder, stitching technique allows to produce longer chips in the z direction, but the structure

of the ladders has not be decided yet. For the inner layer of the detector might be possible the cooling with airflow at room temperature; for the outer layers instead, a combination of air and water flows.

For layer 1, which is expected to work in more severe condition of background, the pixel occupancy has been estimated with the trigger latency of 8.0 μ s and both (L and S?) are small enough, O(10¹⁴) or less, thus stabòe tracking and vertexing are contemplated. Moreover without using two timers for layer 1, the signal loss probability with the trigger latency of 4.5 (8.0) μ s is about 0.2 (0.4)% and so not negligible. In fact if the background rate is higher and the latency is longer, the signal loss probability increases.

A first prototype of this new desgin has been delivered in June 2021, with all in-pixel functionalitites except for the scan block and the fast readout system. the chip is a matrix of 64x64 pixels and size of 6x6 mm^2 . Its characterization is ongoing and it seems to work fine, aslo with radioactive sources and red laser. A second prototype had been submitted in December 2021, with 64x320 pixels and size of 18x6 mm^2 (on the current page).

(a) DuTip first prototype.

(b) DuTip second prototype.

Figure 2.3: DuTiP prototypes.

2.3.4 CMOS MAPS

The last proposal is the one that we will analyze in more details in the next chapters. Like the previous one, it aims to replace the entire current VXD detector using a new technology, in this case the CMOS MAPS, that is Monolithic Active Pixel Sensor CMOS (Complementary Metal-Oxide Semiconductor).

The program hopes to solve some of the issues discussed in the previous chapters, with a new system of two inner layers and three outermost, for a total of 5 stages equipped with a single sensor type, called **VTX** (on the following page). Also the machanical structure had been redesigned but it is expected that the

all system could work at room temperature, so as consequence an important reduction of services is also contemplated.

The new pixel design is called OBELIX, based on the pixel matrix of the TJ-Monopix 2 chip, whose characterization is the main topic of this work.

Figure 2.4: Overall VTX layout.

At the current state of art, intense $R\&D(Research\ and\ Development)$ is being carried out, taking advantage from other experiments experiences, like ALICE, with the same type of sensor.

After a briefly review of the main upgrade proposals, we can now deepen into this last one in the following chapter.

3. VTX detector

This chapter focuses on one of the four proposal for the vertex detector upgrade of Belle II, that is VTX. After a brief reference to the reasons behind the vertex detector upgrade, we will go trough VTX concept and layout, designed with a new geometry with respect VXD and so with a different mechanical structure and a new pixel sensor, in order to fullfil the new requirements dictated by new environment conditions. Moreover all ongoing studies are supported by continual tests and simulations that we will also take a look at.

3.1 VTX Layout

In section on page 10 we have introduced in a few word the concept of the *nano-beam* scheme, which could allow to achieve the new fixed target of istantaneous luminosity. This new strategy required a strong focusing of the beams in particular at the IP, resulting in a large amounts of beam induced background and as consequence in a higher dose of radiation in the innermost detector layers.

So VTX aims to replace the all VXD with a fully pixelated detector based on Depleted Monolithic Active Pixel Sensors (DMPAS) arranged on five layers at different distance from the beam pipe. As already discussed for other upgrade proposal, it may be important to try to reduce the material budget, in order to minimize the multiple Coulomb scattering which particularly affects the very soft particles produced in Belle II collisions.

3.1.1 iVTX

3.1.2 oVTX

4. Conclusions

List of Figures

1.1	Particle classification in the Standard Model	4
1.2	Example of the kinematics of the golden channel of Belle II ex-	
	periment	7
1.3	SuperKEKB accelerator in 2021. The letters V and H denote	
	respectively vertical and horizontal collimators. Each ring is di-	
	vided in 12 sections, from the first called D01 to the last D12	8
1.4	Beam energies to reach center of mass energy equal to $\Upsilon(4S)$,	
	Υ(6S), 11.24 GeV and 12 GeV. Horizontal axis represents the	
	energy of LER and the vertical one the energy of HER	10
1.5	Comparison between the beams scheme used in KEKB and Su-	
	perKEKB	10
1.6	Belle II detector	11
1.7	A schematic view of the Belle II vertex detector with a Be beam	
	pipe and the six layers of PXD and SVD	12
1.8	TOP detector.	12
1.9	ARICH detector	13
2.1	Schematic of DuTiP circuits	20
2.2	The size of Small (S) and Large (L) DuTiP chips	20
2.3	DuTiP prototypes	21
$^{2.4}$	Overall VTX lavout.	22

List of Tables