

Given a single valued function f(x) as shown in the figure above, the goal is to determine the integral

$$I = \int_{x_1=0}^{x_2=x_{\text{max}}} f(x) dx$$

The above integral is the area under the curve represented by a solid line in the above figure.

Osman/EECS/WSU EE351: 4/12/2006

Numerical Integration Using Monte Carlo Method

$$I = \int_{x_1=0}^{x_2=x_{\text{max}}} f(x) dx$$

In order to use the Monte method, we need two parameters:

(I) Range of integration. In the above case it runs from $x_1 = 0$ to $x_2 = x_{max}$. Therefore the full range of integration:

$$x_2 - x_1 = x_{\text{max}} - 0 = x_{\text{max}}$$

(II) Maximum value of the function f(x) in the range of integration: f_{max} . Values larger than the exact f_{max} are acceptable.

$$I = \int_{x_1=0}^{x_2=x_{\text{max}}} f(x) dx$$

The parameters \mathbf{f}_{\max} and \mathbf{x}_{\max} define the sides of a rectangle as shown above. The area of the rectangle is given by:

$$Area_A = f_{max} * x_{max}$$

The integral I of the function f(x) is part of the rectangle defined by f_{max} and x_{max} .

Using Monte Carlo to perform the integration amounts to generating a random sequence of points (xr, fr) and checking to see if the points are under the curve defined by f(x) or not.

Osman/EECS/WSU EE351: 4/12/2006

Numerical Integration Using Monte Carlo Method

$$I = \int_{x_1=0}^{x_2=x_{\text{max}}} f(x) dx$$

- 1. generate a pair of random numbers r_1 and r_2 . Note that: $0 \le r_1 \le 1$ and $0 \le r_2 \le 1$
- 2. Calculate $x_r = r_1^* x_{max}$ and $f_r = r_2^* f_{max}$. 3. Check if the point is under the curve. Check if $f_r \leq f(x_r)$
- 4. If the condition in step (3) is true, then accept the point and update the counter for points under curve (N_accept). Note that out of the three points in the above figure only point (3) falls below the curve. For points (1) and (2)
- 5. Repeat steps (1) through (4) large number of times (N_trials). Typical values of N_trials range from 10,000 to 1,000,000.
- 6. Compute the integral I (=Area under the curve):

$$I = \frac{N_accept}{N_trials} * (f_{max} * x_{max})$$

Example:

Evaluate the following integral using Monte Carlo method.

$$I = \int_{0}^{\pi} \cos^2 \theta d\theta$$

This can evaluated analytically and results in $I = I_{Actual} = \frac{\pi}{2} = 1.57$

Solution: We first determine the range of integration and the maximum value $\,f_{
m max}$

- 1. Range of integration: $\pi 0 = \pi$ $x_{\text{max}} = \pi$
- 2. Maximum value of the function $f(\theta) = \cos^2 \theta$ $f_{\text{max}} = 1$

(You may also use f_{max} greater than 1)

The number of trails was varied from 1,000 to 1,000,000.

The error in the integration was also calculated.

Osman/EECS/WSU EE351: 4/12/2006

Numerical Integration Using Monte Carlo Method

$$I = \int_{0}^{\pi} \cos^{2} \theta d\theta$$

$$I = I_{Actual} = \frac{\pi}{2} = 1.57$$

$$\Delta\% = \frac{\left|I_{Aactual} - I_{Monte}\right|}{I_{Actual}} x 100$$

N_trials	I _{Monte}	Error (%)
1,000	1.529955	2.60
10,000	1.568911	0.12
100,000	1.566586	0.27
1,000,000	1.571855	0.07

Random Number generation program:

- (1) SERRN: sets the sequence of random numbers using a real number Q
- (2) Rannum: generates random numbers r uniformly distributed in 0<r<1.

```
c---- set random number sequence using Q as seed.
c----
SUBROUTINE SETRN(Q)
IMPLICIT REAL*8(A-H,O-Z)
common /RANDY/ QA1,QA2,QB1,QB2,QBASE
C* INITIALIZE WITH A CALL TO SETRN(0.D0-1.D0)
QA1=2057713.0D0
QA2=16676923.0D0
QBASE=2.**24
QC=DINT(QBASE*(QBASE*Q))
QB1=DINT(QC/QBASE)
QB2=QC-QB1*QBASE
QB1=DMOD(QB1,QBASE)
QB2=DINT(QB2/2.D0) * 2.D0 + 1.D0
RETURN
END
```

Osman/EECS/WSU EE351: 4/12/2006

Numerical Integration Using Monte Carlo Method

Problems:

Determine the following integrals using Monte Carlo method (write a Matlab code or C):

1)
$$\int_{0}^{\pi} \sin^{2}(\pi \cos(3\theta)) \cos^{2}\theta d\theta$$

2)
$$\int_{0}^{10} \frac{x^{3}}{x^{4} + 16} dx$$

(plot and find an approximate maximum and add 0.1 to it). I_{actual} =1.60984. Estimate the error (%).

$$\int_{0}^{\pi} \sin^4(3x) dx$$