Winter Term 2023/24 Prof. W. Rhode

Dr. M. Linhoff

Statistical Methods for Data Analyses B Submission: 01.11.2022 23:59

Time	Group	Submission in Moodle; Mails with subject: [SMD2023]
Th. 12:00–13:00	A	tristan.gradetzke@udo.edu and samuel.haefs@udo.edu
Fr. 09:00–10:00	В	$lucas.witthaus@udo.edu \ {\tt and} \ david.venker@udo.edu$

Exercise 1 Error propagation

5 p.

The parameters of a regression line $y = a_0 + a_1 x$ were determined to be $a_0 = 1.0 \pm 0.2$ and $a_1 = 1.0 \pm 0.2$. The correlation coefficient is $\rho = -0.8$. Determine the uncertainty of a value y as a function of x.

- (a) Determine the result analytically both considering the correlation and neglecting the correlation.
- (b) Determine the result numerically with a Monte Carlo simulation. Visualise the parameters a_0 and a_1 in a scatter plot.
- (c) Determine the predictions y (mean and standard deviation) for fixed x = -3, 0, +3 numerically as well as analytically and compare them.

Exercise 2 Particle traces

5 p.

In a particle physics experiment, 2 planes of drift chambers are placed perpendicular to the z-axis at the positions z_1 and z_2 . The detector is operating in a vacuum and the magnetic field is zero. You measure the respective x-position $(x_1 \text{ and } x_2)$ of a charged particle passing through with the errors σ_{x_1} and σ_{x_2} without correlation.

(a) Calculate the linear equation

$$x = az + b$$
,

which describes the motion of the particle in the x-z-plane, as well as the errors, the covariance matrix and the correlation coefficients of a and b.

- (b) The measurements in the two drift chamber planes at z_1 and z_2 are now used to predict the position of the particle in the next detector element. Let this be another drift chamber plane parallel to the first two at $z=z_3$. With the help of the equation determined in (a), calculate the position x_3 and its error at $z=z_3$.
- (c) How does the error of x_3 change if you mistakenly do not take into account the correlation between a and b?