Modeling Module 1

August 11, 2020

- ▶ Bounded Satisfaction of a path: $\pi \models_k \phi$
 - ▶ SAT of π requires inspecting only a k-long (or shorter) π -prefix
 - \blacktriangleright π is k-bounded lasso \Longrightarrow $\pi \models_k \phi$

- ▶ Bounded Satisfaction of a path: $\pi \models_k \phi$
 - ▶ SAT of π requires inspecting only a k-long (or shorter) π -prefix
 - $\blacktriangleright \pi \text{ is } k\text{-bounded lasso} \implies \pi \models_k \phi$
- ▶ Bounded satisfaction by a TS M: $M \models_k \phi$
 - every lasso-shaped k-bounded path π in M satisfies ϕ

- ▶ Bounded Satisfaction of a path: $\pi \models_k \phi$
 - ▶ SAT of π requires inspecting only a k-long (or shorter) π -prefix
 - $\blacktriangleright \pi \text{ is } k\text{-bounded lasso} \implies \pi \models_k \phi$
- ▶ Bounded satisfaction by a TS M: $M \models_k \phi$
 - every lasso-shaped k-bounded path π in M satisfies ϕ
- ▶ A CompletenessThreshold (CT) K for an (M, ϕ) is a K s.t.:

- ▶ Bounded Satisfaction of a path: $\pi \models_k \phi$
 - ▶ SAT of π requires inspecting only a k-long (or shorter) π -prefix
 - $\blacktriangleright \pi \text{ is } k\text{-bounded lasso} \implies \pi \models_k \phi$
- ▶ Bounded satisfaction by a TS M: $M \models_k \phi$
 - every lasso-shaped k-bounded path π in M satisfies ϕ
- ▶ A CompletenessThreshold (CT) K for an (M, ϕ) is a K s.t.:
 - $\blacktriangleright M \models_{\kappa} \phi \implies M \models \phi$
 - why should such a K exist at all?