ODPOWIEDZI I SCHEMAT PUNKTOWANIA POZIOM PODSTAWOWY

Numer zadania		Etapy rozwiązania zadania	Liczba punktów	Uwagi dla egzaminatorów
	1.1	Zapisanie dziedziny funkcji $f: \langle -7,2 \rangle$.	1	Końce przedziału muszą być poprawnie ustalone. Akceptujemy zapisy typu: $x \in \langle -7,2 \rangle$, $-7 \le x \le 2$.
	1.2	Podanie miejsc zerowych funkcji: $x = -4$, $x = \frac{1}{4}$.	1	Miejsca zerowe mogą być odczytane z wykresu, nie wymagamy zapisu stosownych obliczeń.
1	1.3	Naszkicowanie wykresu funkcji	1	Jeśli dziedzina została poprawnie wyznaczona, to akceptujemy wykres nawet bez wyraźnie oznaczonych końców łamanej.
	1.4	Zapisanie zbioru wartości funkcji: $\langle -1,7 \rangle$.	1	Końce przedziału muszą być poprawnie ustalone. Akceptujemy zapisy typu: $y \in \langle -1,7 \rangle$, $-1 \le y \le 7$.

	2.1	Obliczenie: $ \Omega = 6 \cdot 6 = 36$.	1	
	2.2	Obliczenie $ A $, gdzie A jest zdarzeniem, że utworzona liczba jest większa od 52: $ A = 1 \cdot 4 + 1 \cdot 6 = 10$.	1	
	2.3	Obliczenie prawdopodobieństwa zdarzenia <i>A</i> : $P(A) = \frac{10}{36} = \frac{5}{18}$.	1	Zdający może narysować tabelę o wymiarach 6 na 6 i odczytać rozwiązanie. Za prawidłową odpowiedź przyznajemy komplet punktów.
2	2.1	II sposób rozwiązania (metoda drzewa): Narysowanie drzewa z zaznaczeniem istotnych gałęzi.	1	
	2.2	Zapisanie prawdopodobieństw na istotnych gałęziach drzewa.	1	
	2.3	Obliczenie prawdopodobieństwa zdarzenia <i>A</i> : $P(A) = \frac{1}{6} \cdot \frac{1}{6} \cdot 4 + \frac{1}{6} = \frac{5}{18}.$	1	

	3.1	Wykorzystanie związku $tg\alpha = \frac{\sin \alpha}{\cos \alpha}$ w przekształcaniu tożsamości.	1	
3	3.2	Przekształcenie lewej strony tożsamości do postaci: $\frac{1-\sin^2\alpha}{\cos\alpha}$.	1	Punkt przyznajemy za poprawne wymnożenie nawiasów na dowolnym etapie rozwiązania tego zadania.
	3.3	Wykorzystanie związku $\sin^2 \alpha + \cos^2 \alpha = 1$ w przekształcaniu tożsamości.	1	
	3.4	Sformułowanie wniosku: "Podana równość jest tożsamością" lub sformułowanie równoważne.	1	Wniosek musi być konsekwencją wykonanych przekształceń.
4	4.1	Obliczenie sumy 7 początkowych wyrazów ciągu geometrycznego: $S_7 = \frac{1}{4} (1 + 2^7) = \frac{129}{4}.$	1	Wystarczy zapis $S_7 = \frac{\frac{3}{4}(1+2^7)}{3}$ (nie musi być to oddzielny zapis, może występować, np. jako jedna ze stron równania w czynności 4.3). Zdający nie musi obliczyć wartości sumy S_7 .
	4.2	Zapisanie sumy 7 początkowych wyrazów ciągu arytmetycznego w zależności od r : $S_7 = \frac{2 \cdot \frac{3}{4} + 6r}{2} \cdot 7$.	1	Nie musi to być oddzielny zapis, może występować, np. jako jedna ze stron równania w czynności 4.3.
	4.3	Ułożenie równania z niewiadomą r : $\frac{2 \cdot \frac{3}{4} + 6r}{2} \cdot 7 = \frac{1}{4} (1 + 2^7)$.	1	Może też być: $\frac{2 \cdot \frac{3}{4} + 6r}{2} \cdot 7 = \frac{129}{4}.$
	4.4	Rozwiązanie równania: $r = \frac{9}{7}$.	1	

	5.1	Przekształcenie nierówności do postaci: $x(x-4) < 0$.	1	Przyznajemy 1pkt za przedstawienie metody rozwiązania nierówności kwadratowej: np. zapisania podanej nierówności w postaci: $ x-2 < 2$ lub narysowanie wykresu funkcji $y = (x-2)^2 - 4$, itp.
	5.2	Rozwiązanie nierówności: $x \in (0,4)$.	1	Dopuszczamy przedstawienie zbioru rozwiązań na osi liczbowej, o ile zdający wyraźnie zaznaczy przedział otwarty.
5	5.3	Przedstawienie równania w postaci, np. $x^2(x+6)-4(x+6)=0$.	1	Lewa strona równania musi mieć postać sumy iloczynów, w których występuje ten sam czynnik.
	5.4	Przedstawienie równania w postaci iloczynu czynników liniowych, np. $(x+6)(x+2)(x-2)=0$.	1	
	5.5	Wyznaczenie wszystkich rozwiązań równania: $x = -6$, $x = -2$, $x = 2$.	1	Przyznajemy punkty w czynności 5.3, 5.4 i 5.5, gdy zdający podaje wszystkie pierwiastki wielomianu $W(x) = x^3 + 6x^2 - 4x - 24$ bez jakichkolwiek obliczeń (np. przez zastosowanie tw. o pierwiastkach wymiernych wielomianu).
	5.6	Podanie odpowiedzi: $x = 2$.	1	

	6.1	Zapisanie, które boki trójkąta są równej długości: $ AC = BC $.	1	Przyznajemy punkt, gdy z dalszego toku rozumowania wynika, że zdający poprawnie wybrał równe boki trójkąta.
	6.2	Wyznaczenie równania prostej <i>AB</i> : $y = -x - 5$.	1	Wystarczy, że zdający poda współczynnik kierunkowy prostej <i>AB</i> .
	6.3	Zapisanie równania rodziny prostych prostopadłych do prostej AB : $y = x + b$.	1	Wystarczy, że zdający poda współczynnik kierunkowy prostej prostopadłej do prostej <i>AB</i> .
	6.4	Wyznaczenie równania osi symetrii trójkąta: $y = x - 1$.	1	
6	6.1	II sposób rozwiązania: (z własności symetralnej) Oznaczenie dowolnego punktu leżącego na poszukiwanej symetralnej, np. $P = (x, y)$ i zapisanie własności $ AP = BP $.	1	
	6.2	Wyznaczenie długości odcinków <i>AP</i> i <i>BP</i> i zapisanie równania: $\sqrt{(x+4)^2 + (y+1)^2} = \sqrt{x^2 + (y+5)^2}$.	1	
	6.3	Doprowadzenie równania do postaci równania pierwszego stopnia z dwiema niewiadomymi, np. $8x + 2y + 17 = 10y + 25$.	1	
	6.4	Zapisanie odpowiedzi: $y = x - 1$.	1	
	6.1	III sposób rozwiązania: Zapisanie, które boki trójkąta są równej długości: $ AC = BC $.	1	
	6.2	Wyznaczenie współrzędnych środka odcinka $AB: D = (-2, -3)$.	1	
	6.3	Zauważenie, że prosta przechodząca przez punkty C i D jest osią symetrii trójkąta ABC .	1	Przyznajemy punkt, gdy z toku rozumowania wynika, że zdający stosując tę metodę poprawnie wybrał równe boki trójkąta.
	6.4	Wyznaczenie równania osi symetrii trójkąta: $y = x - 1$.	1	

7	7.1	Obliczenie wysokości ostrosłupa: $H = 2$.	1	Jeśli zdający rozpatruje ostrosłup prawidłowy inny niż czworokątny, to oceniamy czynność 7.1, za czynności 7.2 i 7.3 nie przyznajemy punktów. Pozostałą część rozwiązania tego zadania oceniamy według schematu.
	7.2	Obliczenie długości przekątnej podstawy ostrosłupa: $d = 4\sqrt{3}$ albo długości krawędzi podstawy: $a = 2\sqrt{6}$.	1	
	7.3	Obliczenie objętości ostrosłupa: $V = 16$.	1	
	7.4	Oznaczenie długości krawędzi sześcianu, np. b i zapisanie równania: $b^3 = 16$.	1	
	7.5	Obliczenie długości krawędzi sześcianu: $b = 2\sqrt[3]{2}$.	1	Zdający może podać wynik w postaci, np. $b = \sqrt[3]{16}$ lub wartość przybliżoną pierwiastka.
	8.1	Obliczenie kapitału końcowego: $K_3 = 9 \cdot 1029 = 9261$.	1	
8	8.2	Zapisanie równania z niewiadomą K_0 – kapitałem początkowym: $K_0 \cdot \left(1 + \frac{5}{100}\right)^3 = 9261$.	1	
	8.3	Obliczenie kwoty K_0 : 8000 zł.	1	

9	9.1	Wprowadzenie oznaczeń, np. takich jak na poniższym rysunku: $x = PB $, h –wysokość odciętego trójkąta. $ \begin{array}{c} C \\ \hline A \\ D \\ P \\ X \\ B \\ \end{array} $ Wykorzystanie podanej proporcji do wyznaczenia długości odcinków: $ AD = 6$, $ DB = 12$.	1	
	9.2	Zapisanie równania: $\frac{1}{2}x \cdot h = \frac{1}{4} \cdot \frac{1}{2} \cdot 18 \cdot 15$.	1	
	9.3	Zapisanie zależności między x i h z wykorzystaniem podobieństwa trójkątów CDB i FPB : $\frac{h}{x} = \frac{15}{12} = \frac{5}{4}$.	1	
	9.4	Obliczenie długości odcinka PB : $ PB = 3\sqrt{6}$ cm.	1	

	II sposób rozwiązania: Wprowadzenie oznaczeń, np. takich jak na poniższym rysunku: x = PB , h –wysokość odciętego trójkąta.		
9.1	A D P X B	1	
	Wykorzystanie podanej proporcji do wyznaczenia długości odcinków: $ AD = 6$, $ DB = 12$.		
9.2	Obliczenie proporcji: $\frac{P_{\triangle DBC}}{P_{\triangle ABC}} = \frac{2}{3} \text{ stąd } P_{\triangle DBC} = \frac{2}{3} P_{\triangle ABC}$.	1	
9.3	Stwierdzenie, że $\Delta DBC \sim \Delta PBF$ i wykorzystanie twierdzenia o stosunku pół figur podobnych do zapisania proporcji: $\frac{P_{\Delta DBC}}{P_{\Delta PBF}} = \left(\frac{12}{ PB }\right)^2$	1	
9.4	Obliczenie długości odcinka $PB: \frac{\frac{2}{3}}{\frac{1}{4}} = \frac{144}{ PB ^2}, PB = 3\sqrt{6}$.	1	

	9.3	III sposób rozwiązania: (czynności 9.3 oraz 9.4) Stwierdzenie, że $\triangle DBC \sim \triangle PBF$ i wykorzystanie twierdzenia o stosunku pól figur podobnych do zapisania proporcji: $k^2 = \frac{P_{\triangle DBC}}{P_{\triangle PBF}} = \frac{\frac{2}{3}P_{\triangle ABC}}{\frac{1}{4}P_{\triangle ABC}} = \frac{8}{3} \text{ stąd } k = \frac{2\sqrt{6}}{3}.$	1	
	9.4	Obliczenie długości odcinka <i>PB</i> : $\frac{ DB }{ PB } = k \text{ stąd } PB = 12 \cdot \frac{3}{2\sqrt{6}} = 3\sqrt{6}.$	1	
10	10.1	Zapisanie układu: $\begin{cases} 100a + 10b = 20 \\ 900a + 30b = 90 \end{cases}$	1	Wystarczy zapis $\begin{cases} T(10) = 20 \\ T(30) = 90 \end{cases}$
	10.2	Rozwiązanie układu: $\begin{cases} a = \frac{1}{20} \\ b = \frac{3}{2} \end{cases}$.	1	
	10.3	Zapisanie wzoru funkcji: $T(n) = \frac{1}{20}n^2 + \frac{3}{2}n, n \in \mathbb{N}$.	1	Akceptujemy sam wzór bez podania założenia $n \in N$.
	10.4	1 . 3	1	
	10.5	Rozwiązanie równania i wyznaczenie liczby kartek : 20.	1	Zdający nie musi wyznaczyć ujemnego rozwiązania równania.

11	11.1	Uzasadnienie, że trójkąty DCF , DAE i EBF są równoramienne (wykorzystanie założenia, że $ AB = BC = CD = DA $ i trójkąty AEB oraz BFC są równoboczne).	1	
	11.2	Obliczenie miary kąta <i>DAE</i> lub <i>FCD</i> : $ < DAE = < FCD = 90^{\circ} + 60^{\circ} = 150^{\circ}$.	1	
	11.3	Obliczenie miary kąta EBF : $ \angle EBF = 360^{\circ} - 2 \cdot 60^{\circ} - 90^{\circ} = 150^{\circ}$.	1	
	11.4	Zapisanie, że trójkąty <i>DCF</i> , <i>DAE</i> i <i>EBF</i> są przystające (z cechy przystawania <i>bkb</i>) i wyciągnięcie wniosku o równości boków trójkąta <i>DEF</i> .	1	

	12.1	Wprowadzenie oznaczeń i zapisanie zależności między liczbą dziewcząt i liczbą chłopców: np. x – liczba dziewcząt, y – liczba chłopców, x – 6 = y .	1	
	12.2	Zapisanie równania: $x = 60\%(x + y)$.	1	
12.	12.3	Zapisanie układu równań: $\begin{cases} x = 0, 6(x + y) \\ x - 6 = y \end{cases}$	1	
	12.4	Rozwiązanie układu i sformułowanie odpowiedzi: $x = 18$, $y = 12$. W klasie jest 30 osób w tym 12 chłopców.	1	Wystarczy, że zdający poda liczby dziewcząt i chłopców.
	12.1	II sposób rozwiązania: Wprowadzenie oznaczeń : x – liczba osób w klasie, 0,6x – liczba dziewcząt, 0,4x – liczba chłopców.	1	
	12.2	Zapisanie równania: $0,6x-6=0,4x$.	1	
	12.3	Rozwiązanie równania: $x = 30$.	1	
	12.4	Podanie odpowiedzi: W klasie jest 30 osób w tym 12 chłopców.	1	

Za prawidłowe rozwiązanie każdego z zadań inną metodą niż przedstawiona w schemacie przyznajemy maksymalną liczbę punktów.