(11) EP 1 201 250 A1

EUROPEAN PATENT APPLICATION

(43) Date of publication: 02.05.2002 Bulletin 2002/18

(51) Int Cl.7: **A61K 39/39**, A61K 39/015

(21) Application number: 00203724.0

(22) Date of filing: 25.10.2000

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE Designated Extension States:

AL LT LV MK RO SI

(71) Applicants:

- SMITHKLINE BEECHAM BIOLOGICALS S.A. 1330 Rixensart (BE)
- INSTITUT PASTEUR 75724 Paris Cédex 15 (FR)
- (72) Inventors:
 - Cohen, Joe,
 Smithkline Beecham Biologicals s.a.
 1330 Rixensart (BE)

- Druilhe, Pierre 75724 - Parls Cedex 15 (FR)
- (74) Representative:

Tyrrell, Arthur William Russell, Dr. et al GlaxoSmithKline Corporate Intellectual Property (CN9.25.1) 980 Great West Road Brentford, Middlesex TW8 9GS (GB)

Remarks:

The sequence listing, which is published as annex to the application documents, was filed after the date of filing. The applicant has declared that it does not include matter which goes beyond the content of the application as filed.

(54) Immunogenic compositions comprising liver stage malarial antigens

(57) A vaccine composition comprising a Th1-inducing adjuvant in combination with a protecting Liver Stage Antigen or immunological fragment thereof of a human malaria parasite, especially Plasmodium falciparum, with the proviso that when the immunological fragment is an immunological fragment of LSA-3 the Th1-inducing adjuvant is not Montanide. In a preferred aspect the Th1-inducing adjuvant comprises QS21, De-O-acylated monophosphoryl lipid A (3D-MPL) and an oil in water emulsion wherein the oil in water emulsion has the fol-

lowing composition: a metabolisible oil, such a squalene, alpha tocopherol and tween 80. In a further preferred aspect the protecting Liver Stage Antigen is Liver Stage Antigen 3 (LSA-3) or an immunological fragment thereof. A multivalent vaccine composition is also provided comprising the vaccine composition of the invention and in addition at least one other protecting antigen or an immunological fragment thereof, of a malaria parasite.

Description

20

30

50

55

[0001] The present invention relates to novel vaccine formulations, to methods of their production and to their use in medicine. In particular, the present invention relates to a malaria antigen known as Liver Stage Antigen 3 in association with an oil in water emulsion. Such emulsions comprise tocopherol, squalene, Tween 80, Span 85 and Lecithin and have useful adjuvant properties. Vaccines containing QS21, an Hplc purified non-toxic fraction derived from the bark of Quillaja Saponaria Molina, and/or 3 De-O-acylated monophosphoryl lipid A (3 D-MPL), together with such oil in water emulsions also form part of the invention. Other aspects of the invention are described hereinbelow.

[0002] It has long been known that enterobacterial lipopolysaccharide (LPS) is a potent stimulator of the immune system, although its use in adjuvants has been curtailed by its toxic effects. A non-toxic derivative of LPS, monophosphoryl lipid A (MPL), produced by removal of the core carbohydrate group and the phosphate from the reducing-end glucosamine, has been described by Ribi et al (1986, Immunology and Immunopharmacology of bacterial endotoxins, Plenum Publ. Corp., NY, p407-419).

[0003] A further detoxified version of MPL results from the removal of the acyl chain from the 3-position of the disaccharide backbone, and is called 3-O-Deacylated monophosphoryl lipid A (3D-MPL). 3 De-O-acylated monophosphoryl lipid A is known from GB2 220 211 (Ribi). Chemically it is a mixture of 3 De-O-acylated monophosphoryl lipid A with 4, 5 or 6 acylated chains and is manufactured by Ribi Immunochem Montana. GB 2122204B also discloses the preparation of diphosphoryl lipid A, and 3-O-deacylated variants thereof. Other purified and synthetic lipopolysaccharides have been described (US 6,005,099 and EP 0 729 473 B1; Hilgers *et al.*, 1986, *Int.Arch.Allergy.Immunol.*, 79(4): 392-6; Hilgers *et al.*, 1987, Immunology, 60(1):141-6; and EP 0 549 074 B1).

[0004] A preferred form of 3 De-O-acylated monophosphoryl lipid A (3D-MPL) is in the form of an emulsion having a small particle size less than 0.2µm in diameter, disclosed in International Patent Application No. WO 92/116556 (SmithKline Beecham Biologicals s.a.). See also WO 94/21292.

[0005] Aqueous formulations comprising monophosphoryl lipid A and a surfactant have been described in WO98/43670A2.

[0006] Saponins are taught in: Lacaille-Dubois, M and Wagner H. (1996. A review of the biological and pharmacological activities of saponins. Phytomedicine vol 2 pp 363-386). Saponins are steroid or triterpene glycosides widely distributed in the plant and marine animal kingdoms. Saponins are noted for forming colloidal solutions in water which foam on shaking, and for precipitating cholesterol. When saponins are near cell membranes they create pore-like structures in the membrane which cause the membrane to burst. Haemolysis of erythrocytes is an example of this phenomenon, which is a property of certain, but not all, saponins.

[0007] Saponins are known as adjuvants in vaccines for systemic administration. The adjuvant and haemolytic activity of individual saponins has been extensively studied in the art (Lacaille-Dubois and Wagner, *supra*). For example, Quil A (derived from the bark of the South American tree Quillaja Saponaria Molina), and fractions thereof, are described in US 5,057,540 and "Saponins as vaccine adjuvants", Kensil, C. R., *Crit Rev Ther Drug Carrier Syst*, 1996, 12 (1-2): 1-55; and EP 0 362 279 B1. Particulate structures, termed Immune Stimulating Complexes (ISCOMS), comprising fractions of Quil A are haemolytic and have been used in the manufacture of vaccines (Morein, B., EP 0 109 942 B1; WO 96/11711; WO 96/33739). The haemolytic saponins QS21 and QS17 (HPLC purified fractions of Quil A) have been described as potent systemic adjuvants, and the method of their production is disclosed in US Patent No.5,057,540 and EP 0 362 279 B1. Other saponins which have been used in systemic vaccination studies include those derived from other plant species such as Gypsophila and Saponaria (Bomford *et al.*, Vaccine, 10(9):572-577, 1992).

[0008] QS21 is a Hplc purified non toxic fraction of a saponin from the bark of the South American tree Quillaja Saponaria Molina and its method of its production is disclosed (as QA21) in US patent No. 5,057,540.

[0009] Oil emulsion adjuvants have been known for many years, including work on Freund's complete and incomplete mineral oil emulsion adjuvants. Since that time much work has been performed to design stable and well tolerated alternatives to these potent, but reactogenic, adjuvant formulations.

[0010] Many single or multiphase emulsion systems have been described. Oil in water emulsion adjuvants *per se* have been suggested to be useful as adjuvant compositions (EP O 399 843B), also combinations of oil in water emulsions and other active agents have been described as adjuvants for vaccines (WO 95/17210). Other oil emulsion adjuvants have been described, such as water in oil emulsions (US 5,422,109; EP 0 480 982 B2) and water in oil in water emulsions (US 5,424,067; EP 0 480 981 B).

[0011] In order for any oil in water composition to be suitable for human administration, the oil phase of the emulsion system preferably comprises a metabolisable oil. The meaning of the term metabolisable oil is well known in the art. Metabolisable can be defined as "being capable of being transformed by metabolism" (Dorland's Illustrated Medical Dictionary, W.B. Sanders Company, 25th edition (1974)). The oil may be any vegetable oil, fish oil, animal oil or synthetic oil, which is not toxic to the recipient and is capable of being transformed by metabolism. Nuts (such as peanut oil), seeds, and grains are common sources of vegetable oils. Synthetic oils are also part of this invention and can include commercially available oils such as NEOBEE® and others. Squalene (2,6,10,15,19,23-Hexamethyl-

- 2,6,10,14,18,22-tetracosahexaene) is an unsaturated oil which is found in large quantities in shark-liver oil, and in lower quantities in olive oil, wheat germ oil, rice bran oil, and yeast, and is a particularly preferred oil for use in this invention. Squalene is a metabolisable oil virtue of the fact that it is an intermediate in the biosynthesis of cholesterol (Merck index, 10th Edition, entry no.8619).
- [0012] The oil in water emulsions which form part of the present invention when formulated with 3 D-MPL and QS21 are preferential stimulators of IgG2a production and TH1 cell response. This is advantageous, because of the known implication of TH₁ response in cell mediated response. Indeed in mice induction of IgG2a is correlated with such an immune response.
 - [0013] The observation that it is possible to induce strong cytolytic T lymphocyte responses is significant as these responses, in certain animal models have been shown to induce protection against disease.
 - [0014] The present inventors have shown that the combination of the adjuvants QS21 and 3D-MPL together with an oil in water emulsion with an antigen results in a powerful induction of CS protein specific CTL in the spleen. QS21 also enhances induction of CTL on its own, while 3D-MPL does not.
 - [0015] Induction of CTL is easily seen when the target antigen is synthesised intracellularly (e.g. in infections by viruses, intracellular bacteria, or in tumours), because peptides generated by proteolytic breakdown of the antigen can enter the appropriate processing pathway, leading to presentation in association with class I molecules on the cell membrane. However, in general, pre-formed soluble antigen does not reach this processing and presentation pathway, and does not elicit class I restricted CTL. Therefore conventional non-living vaccines, while eliciting antibody and T helper responses, do not generally induce CTL mediated Immunity. The combination of the two adjuvants QS21 and 3D-MPL together with an oil in water emulsion can overcome this serious limitation of vaccines based or recombinant proteins, and induce a wider spectrum of immune responses.
 - [0016] CTL specific for CS protein have been shown to protect from malaria in mouse model systems (Romero et al. Nature 341:323 (1989)). In human trials where volunteers were immunised using irradiated sporozoites of P. falciparum, and shown to be protected against subsequent malaria challenge, induction of CTL specific for CS epitopes was demonstrated (Malik et al. Proc. Natl. Acad. Sci. USA 88:3300 (1991)).
 - [0017] The ability to induce CTL specific for an antigen administered as a recombinant molecules is relevant to malaria vaccine development, since the use of irradiated sporozoites would be impractical, on the grounds of production and the nature of the immune response.
- [0018] In certain systems, the combination of 3D-MPL and QS21 together with an oil in water emulsion have been able to synergistically enhance interferon y production.
 - [0019] IFN-γ secretion is associated with protective responses against intracellular pathogens, including parasites, bacteria and viruses. Activation of macrophages by IFN-γ enhances intracellular killing of microbes and increases expression of Fc receptors. Direct cytotoxicity may also occur, especially in synergism with lymphotoxin (another product of TH1 cells). IFN-γ is also both an inducer and a product of NK cells, which are major innate effectors of protection. TH1 type responses, either through IFN-γ or other mechanisms, provide preferential help for IgG2a immunoglobulin isotypes.
 - [0020] RTS is a hybrid protein comprising substantially all the C-terminal portion of the circumsporozoite (CS) protein of P.falciparum linked via four amino acids of the preS₂ portion of Hepatitis B surface antigen to the surface (S) antigen of hepatitis B virus (HBV). The structure of RTS and the molecules from which it is derived is disclosed in International Patent Application Publication Number WO 93/10152. When expressed in yeast RTS is produced as a lipoprotein particle, and when it is co-expressed with the S antigen from HBV it produces a mixed particle known as RTS,S.
 - [0021] Liver Stage Antigens are described in Malaria, Parasite Biology, Pathogenesis and Protection (1998 ASM Press, Washington D.C., edited by Irwin W. Sherman), especially Chapter 34 (P. Druilhe et al.).
 - [0022] A 26-amino acid synthetic peptide based on Plasmodium falciparum liver stage antigen 3 (LSA-3) is described in Eur J. Immunol., 1997, 27, 1242-1253 (L. BenMohamed et al).
 - [0023] The immunogenicity of 12 synthetic peptides derived from four new Plasmodium falciparum molecules expressed at pre-erythrocytic stages of the human malaria parasite was reported in Vaccine 18 (2000), pages 2843-2855 (L BenMohamed et al). In these studies the adjuvant Montanide ISA-51 (SEPPIC, Quai D'Orsay, France) was used. There is no report, however, of such peptides being combined with other adjuvants. The present invention is based on
 - the surprising discovery that a Th-1 inducing adjuvant especially an oil in water emulsion which preferably comprises tocopherol, as such or in combination with QS21 and/or 3 D-MPL (or related molecules), enhances immune responses to a defined malaria antigen. Such enhancement available affords better immunological responses than hitherto before.
 - [0024] According to the present invention there is provided a vaccine composition comprising a Th1-inducing adjuvant in combination with a protecting Liver Stage Antigen or immunological fragment thereof of a human malaria parasite with the proviso that when the immunological fragment is an immunological fragment of LSA-3, the Th1-inducing adjuvant is not Montanide.
 - [0025] In a preferred aspect of the invention the Th1-inducing adjuvant comprises QS21, De-O-acylated monophosphoryl lipid A (3D-MPL) and an oil in water emulsion wherein the oil in water emulsion has the following composition:

a metabolisible oil, such a squalene, alpha tocopherol and tween 80.

[0026] It will be appreciated that variants or derivatives of QS21 and 3-DMPL as described above may also be used without departing from the spirit of the invention.

[0027] The bacterial lipopolysaccharide derived adjuvants to be formulated in the adjuvant combinations of the present invention may be purified and processed from bacterial sources, or alternatively they may be synthetic. Accordingly, the LPS derivatives that may be used in the present invention are those immunostimulants that are similar in structure to that of LPS or MPL or 3D-MPL. In another aspect of the present invention the LPS derivatives may be an acylated monosaccharide, which is a sub-portion of MPL. In a preferred aspect the 3-DMPL is small particle 3-DMPL as described in WO 92/116556.

[0028] The oil emulsion adjuvants for use in the present invention may be natural or synthetic, and may be mineral or organic. Examples of mineral and organic oils will be readily apparent to the man skilled in the art based on the description hereinabove.

[0029] Particularly preferred oil emulsions are oil in water emulsions, and in particular squalene in water emulsions. [0030] In addition, the most preferred oil emulsion adjuvants of the present invention comprise an antioxidant, which is preferably the oil α -tocopherol (vitamin E, EP 0 382 271 B1).

[0031] WO 95/17210 discloses emulsion adjuvants based on squalene, α -tocopherol, and TWEEN 80, optionally formulated with the immunostimulants QS21 and/or 3D-MPL.

[0032] The size of the oil droplets found within the stable oil in water emulsion are preferably less than 1 micron, may be in the range of substantially 30-600nm, preferably substantially around 30-500nm in diameter, and most preferably substantially 150-500nm in diameter, and in particular about 150 nm in diameter as measured by photon correlation spectroscopy. In this regard, 80% of the oil droplets by number should be within the preferred ranges, more preferably more than 90% and most preferably more than 95% of the oil droplets by number are within the defined size ranges. The amounts of the components present in the oil emulsions of the present invention are conventionally in the range of from 2 to 10% oil, such as squalene; and when present, from 2 to 10% alpha tocopherol; and from 0.3 to 3% surfactant, such as polyoxyethylene sorbitan monooleate. Preferably the ratio of oil: alpha tocopherol is equal or less than 1 as this provides a more stable emulsion. Span 85 may also be present at a level of about 1%. In some cases it may be advantageous that the vaccines of the present invention will further contain a stabiliser. Preferably the oil emulsion contains a surfactant such as polyoxyethylene sorbitan monooleate (TWEEN80TM), but it will be clear to the man skilled in the art that other surfactants may be used, preferred examples of which are the SPAN series (especially SPAN85) and or lecithin.

[0033] The method of producing oil in water emulsions is well known to the man skilled in the art. Commonly, the method comprises the mixing the oil phase with a surfactant such as a PBS/TWEEN80™ solution, followed by homogenisation using a homogenizer, it would be clear to a man skilled in the art that a method comprising passing the mixture twice through a syringe needle would be suitable for homogenising small volumes of liquid. Equally, the emulsification process in microfluidiser (M110S microfluidics machine, maximum of 50 passes, for a period of 2 minutes at maximum pressure imput of 6 bar (output pressure of about 850 bar)) could be adapted by the man skilled in the art to produce smaller or larger volumes of emulsion. This adaptation could be achieved by routine experimentation comprising the measurement of the resultant emulsion until a preparation was achieved with oil droplets of the required diameter.

[0034] In a preferred aspect of the invention the human malaria parasite is Plasmodium falciparum.

[0035] In a particular aspect of the invention the said protecting Liver Stage Antigen is the Liver Stage Antigen 3

(LSA-3) or immunological fragment thereof.

20

35

50

[0036] However other Liver Stage Antigens may also be used, for example LSA-1 and LSA-2 as described in Malaria, Parasite Biology, Pathogenesis and Protection (1998 ASM Press, Washington D.C., edited by Irwin W. Sherman), especially Chapter 34 (P. Druilhe et al.).

[0037] By immunological fragment is meant herein a molecule which has a related or similar sequence to the reference antigen in terms of % homology and which can induce a similar immune response, cellular or humoral, in vivo. [0038] The LSA-3 antigen and polypeptide molecules containing at least 10 consecutive amino acids of the amino acid sequence representing LSA-3 are described in WO 96/41877. LSA-3 for use in the present invention may suitably be prepared as described in the examples section of the present specification. Reference may also be made to C Marchand and P Druilhe, Bulletin of the World Health Organisation, Volume 68 (Suppl.) 158-164 (1990) and US Patent Number 6,100,067.

[0039] In a further aspect there is provided a vaccine composition according to the invention comprising in addition at least one other protecting antigen or an immunological fragment thereof, of a malaria parasite, in particular LSA-3. [0040] In particular, the other malaria antigen may be selected from the following group:

a) a hybrid protein comprising substantially all the C-terminal portion of the CS protein, four or more tandem repeats of the immunodominant region, and the surface antigen from hepatitis B virus (HBsAg), in particular RTS,S, or an immunogenic derivative including fragments thereof;

- b) the TRAP protein of the T9/96 isolate of Plasmodium falciparum and proteins having at least 80% homology thereto and immunogenic derivatives including fragments thereof (see European Patent Application No 91903249.0);
- c) the MSP-1 of Plasmodium falciparum or Plasmodium vivax and proteins having at least 80% homology thereto and immunogenic derivatives including fragments thereof; and
- d) the MSP-3 of Plasmodium falciparum or Plasmodium vivax and proteins having at least 70% homology with the C-terminal region thereof, and immunogenic derivatives including fragments thereof.
- [0041] MSP-1 of P.falciparum or P.vivax is described in US Patent No. 4,837,016. Immunogenic derivatives include fragments thereof such as the C-terminal 42 KDa antigen (p42).
- [0042] The MSP-3 antigen is described in US Patent Number 6,017,538.
- [0043] Homology in sequence analysis may be established by the use of Blast 2.0 and Fasta default settings of the algorithms used by these programs. The comparison of LSA-3 sequences in various isolates or stocks can be done using a calculation manual.
- 15 [0044] By C-terminal region of MSP-3 is meant a 185 amino acid region from positions 193 to 381. It contains a leucine zipper on its extremity (C-terminus part) and is rich in acidic amino acids. The three-dimensional structure is coil-coiled. The clone DG 210 (amino acids 193-257) corresponds to a globular region of high complexity and is followed by the coil-coiled region.
 - [0045] Normally the vaccine composition according to any aspect of the invention invokes a T cell response in a mammal to the antigen or antigenic composition and is preferably capable of stimulating interferon γ production. The oil in water emulsion used in the present invention may be utilised on its own or with other adjuvants or immunostimulants and therefore an important embodiment of the invention is an oil in water formulation comprising squalene or another metabolisable oil, alpha tocopherol, and tween 80. The oil in water emulsion may also contain span 85 and/ or Lecithin.
- [0046] The combination of the two adjuvants QS21 and 3D-MPL together with an oil in water emulsion is particularly preferred. This is known and referred to herein as SBAS2.
 - [0047] The ratio of QS21: 3D-MPL will typically be in the order of 1: 10 to 10: 1; preferably 1: 5 to 5: 1 and often substantially 1: 1. The preferred range for optimal synergy is 2.5:1 to 1:1 3D MPL: QS21. Typically for human administration QS21 and 3D MPL will be present in a vaccine in the range 1 μ g 100 μ g, preferably 10 μ g 50 μ g per dose. Typically the oil in water will comprise from 2 to 10% squalene, from 2 to 10% alpha tocopherol and from 0.3 to 3% tween 80. Preferably the ratio of squalene: alpha tocopherol is equal or less than 1 as this provides a more stable emulsion. Span 85 may also be present at a level of 1%. In some cases it may be advantageous that the vaccines of the present invention will further contain a stabiliser.
 - [0048] In a further aspect of the present invention there is provided a vaccine as herein described for use in medicine.

 [0049] In yet a further aspect the invention provides a process for making a vaccine composition according to any aspect of the present invention by mixing the required components using standard techniques. Vaccine preparation is generally described in New Trends and Developments in Vaccines, edited by Voller et al., University Park Press, Baltimore, Maryland, U.S.A. 1978.
- [0050] Preferably the process comprises admixing QS21, 3D-MPL and the oil in water emulsion with a protecting Liver Stage Antigen of a human malaria parasite as hereinabove defined, optionally with an additional malaria antigen. [0051] The amount of protein in each vaccine dose is selected as an amount which induces an immunoprotective response without significant, adverse side effects in typical vaccinees. Such amount will vary depending upon which specific immunogen is employed and how it is presented. Generally, it is expected that each dose will comprise 1-1000ug of protein, preferably 2-100 ug, most preferably 4-40 ug. An optimal amount for a particular vaccine can be ascertained by standard studies involving observation of appropriate immune responses in subjects. Following an initial vaccination, subjects may receive one or several booster immunisation adequately spaced.
 - [0052] The formulations of the present invention maybe used for both prophylactic and therapeutic purposes.
 - [0053] Accordingly in one aspect, the invention provides a method of treatment comprising administering an effective amount of a vaccine of the present invention to a patient.
- 50 [0054] The following examples illustrate the invention.

Examples

5

Example 1

55

[0055] Two adjuvant formulations were made each comprising the following oil in water emulsion component.
[0056] SB26: 5% squalene 5% tocopherol 0.4% tween 80; the particle size was 500 nm size SB62: 5% Squalene 5% tocopherol 2.0% tween 80; the particle size was 180 nm

1(a) Preparation of emulsion SB62 (2 fold concentrate)

[0057] Tween 80 is dissolved in phosphate buffered saline (PBS) to give a 2% solution in the PBS. To provide 100 ml two fold concentrate emulsion 5g of DL alpha tocopherol and 5ml of squalene are vortexed to mix thoroughly. 90ml of PBS/Tween solution is added and mixed thoroughly. The resulting emulsion is then passed through a syringe and finally microfluidised by using an M110S microfluidics machine. The resulting oil droplets have a size of approximately 180 nm.

1(b) Preparation of emulsion SB26

[0058] This emulsion was prepared in an analogous manner utilising 0.4% tween 80.

[0059] To the emulsion of 1 a) or b) an appropriate amount of LSA-3 (for example 2µg to 100µg) may be added and mixed. This may be combined with, for example, 50µg/ml of 3D-MPL and 20µg/ml of QS21 (or related molecules) to give the final formulation.

Example 2

15

20

55

Protection against *Plasmodium falciparum* malaria in chimpanzees by immunisation with a conserved preerythrocytic antigen, LSA-3

[0060] The basis of the strong immunological protection induced in humans by vaccination with radiation-attenuated pre-erythrocytic malaria parasites is poorly understood. However it is now suspected that the transformation of the irradiated sporozoites into live but developmentally arrested intra-hepatic liver trophozoites is required to induce protection⁹. This occurs at low (15-20 krad) but not at high (23-30 krad) irradiation doses^{9,10}. We reasoned that the differential response of hosts immunised with such irradiated sporozoites could provide a screen for molecules relevant to protection. We proceeded to screen 120 phage lambda clones previously identified as expressing *P. falciparum* polypeptides that are expressed during pre-erythrocytic stage parasite development^{6,7} and which derive from ca. 20 distinct genes^{6,7,11,12}. A clone corresponding to each of these putative genes was screened using eight sera from human volunteers (4/6 protected) and from chimpanzees (1/2 protected) immunised with sporozoites irradiated at low or high doses. A single clone (DG729) reacted only with sera from protected humans and chimpanzees. This differential reactivity was further confirmed with a peptide derived from this fragment (Table I). This led us to select this clone for further investigation.

[0061] DG729 was used to probe a *P. falciparum* (K1) genomic library. One clone was found to contain the whole gene corresponding to DG729, and which was named Liver Stage Antigen-3 (LSA-3). Full description of the sequence, expression, location and conservation of the *Isa-3* gene is provided in the Supplementary Information (S.I.) and is summarised below and in Figures 1-3. Briefly we identified a single-copy gene which comprises a mini-exon 1, a mini-intron, and a large exon 2 (Fig. 1a), a structure similar to that of other surface antigens of *P. falciparum* ¹³. It was recently confirmed that *Isa-3* is located on chromosome 2¹⁴, where the gene was annotated as * RESA-H3 * gene (Acc. Number AE001424). LSA-3, with a predicted molecular weight of 200 kDa (in K1), is made up of large non-repeated sequences flanking three glutamic acid-rich repeated regions, a feature that extends the known *P. falciparum* Glu-rich antigen network ¹⁵ to include a pre-erythrocytic component. The location of the original fragment (DG729) and of the peptides corresponding to the repeat region R2 and to the non-repetitive regions NR-A and NR-B are shown in Fig. 1b. Naturally-or artificially- induced antibodies against the non-repeated peptides and the recombinant protein GST-PC were not cross-reactive with the repeated Glu-rich regions, and were used for further studies.

[0062] Pre-erythrocytic expression of LSA-3 (see Fig. 2-3 and see S.I.) was confirmed a) by RT-PCR (primers i1 and i2) of total RNA and Western blotting of protein extracts, isolated in both cases from sporozoites, and b) by immunofluorescence antibody test (IFAT) on infected liver sections and dry or wet sporozoite preparations, using antibodies to a non-crossreactive portion of the protein. In the five and six day-old liver schizonts, LSA-3 was located in the parasitophorous vacuole and at the periphery of maturing hepatic merozoites. This location is consistent with the molecular structure of this protein, which contains two hydrophobic regions (Fig. 1a). In our hands, mRNA from *Isa-3* could not be detected in Northern blotted RNA from erythrocytic stages. Western blottings and IFAT of infected red blood cells were also consistently negative with non cross-reactive antibodies. Reactivity was however obtained when antibodies to the Glu-rich repeat region were used. This might explain in part the detection of a putatively homologous antigen (D260) previously described in intra-erythrocytic parasites, and which was identified solely using antibodies which cross-react extensively with Glu-rich epitopes¹⁶.

[0063] Polymorphism of many malaria vaccine candidate molecules is of recognised concern, we therefore investigated naturally occurring sequence variation in LSA-3 (see S.I.). The gene was consistently detected by PCR amplification of the NR-A region (primers S1 and S2) in a total of 111 *P. falciparum* isolates, strains or clones of various

geographical origin. Using LSA-3 specific antibodies in IFAT assays, the expression of LSA-3 was also detected in liver schizonts of two distinct strains and in all the sporozoites from 30 wild isolates which developed in mosquitoes fed *in vitro* on Thai gametocytes. The repeat regions R1 and R3 are highly conserved, but variation in the number and order of the repeat units of R2 was found to occur amongst different parasite lines. This did not however affect the predicted conserved?-helical organisation, a secondary structure considered to be important in defining major B-cell epitopes since antibodies which recognise R2 did indeed react positively by IFAT with all the parasites tested. The non-repeated portions of exon 2, where numerous Th and CTL epitopes are found 17-19, displayed a remarkable degree of amino acid (aa) sequence conservation between different parasites (>95.5% homology). The sequence of NR2 peptide was fully conserved amongst K1 and T9/96 parasites, the source of the immunising proteins, the NF54 parasites used for sporozoite challenges, and 27 *P. falciparum* samples of various geographical origin 17. An HLA-B53 restricted epitope identified in the NR-B region of LSA-3 (present in GST-PC recombinant protein) was also found to be free of variation in clone 3D7 and in 18 Gambian isolates 19. This conservation of immunologically important epitopes contrasts with substantial polymorphism in current pre-erythrocytic vaccine candidates.

[0064] We selected the chimpanzee to investigate the protective capacity of LSA-3 immunisation for the following reasons. The chimpanzee is the only non-human primate fully susceptible to complete intra-hepatic development of P. falciparum, with a comparable rate of sporozoite transformation to liver forms to that seen in humans⁹. The chimpanzee is also the most closely related animal to humans (98.4 % homology at the DNA level 8), and one in which detailed investigations of immune responses can be performed and legitimately compared with those of humans 17.18. The fact that parasitological and immunological events can be directly examined in the liver biopsies, a possibility excluded for infected humans, is clearly of considerable significance. A number of preliminary stringent tests were conducted in control animals in order to validate the suitability of this model for vaccine evaluation. Since cost and ethical considerations preclude the use of large number of animals, high reproducibility of the infection in this model system is critical. In a preliminary experiment (Group I, Table II), we confirmed that in the chimpanzee protection by immunisation with irradiated sporozoite is radiation dose-dependent, and we validated the detection of the infected red blood cells as an assay of protection. The results allowed us to define a number of important parameters: a) as in humans, chimpanzees develop a powerful protective response following immunisation with irradiated sporozoite, b) chimpanzees, like humans, remain broadly susceptible to at least five successive challenges, in contrast to lower primates or rodents which become refractory after the first challenge²⁰, and c) as a result of the high dose of inoculated sporozoites detection of erythrocytic parasites corresponded to the first invasion of red cells by merozoites released from intra-hepatocytic schizonts. Positive blood smears were reproducibly obtained in non-protected chimpanzees on days six or seven. In the chimpanzee erythrocytic infections normally remain sub-clinical and self-limiting which was in fact observed despite the high dose challenges. These results have been recently confirmed in two further chimpanzees (Langermans J. et al. manuscript in preparation).

[0065] Having established the suitability of the chimpanzee, we proceeded to assay the protective value of LSA-3 immunisation by challenge with viable *P. falciparum* sporozoites. In preliminary experiments, two animals were immunised with a mixture of LSA-3 and LSA-1 recombinant proteins. Full protection against three challenges over several months was only seen in the animal which responded to LSA-3 (both responded to LSA-1). In liver biopsies performed on this animal on day five, only one liver schizont of unhealthy appearance and infiltrated by leukocytes could be detected in the 300 liver sections screened (Dirk, Fig. 3). By contrast 2500 and 750 hepatic schizonts of healthy appearance were observed in the two non-protected controls.

[0066] These results led us to focus further immunisation and challenge experiments on LSA-3 alone. Two groups of chimpanzees were used to evaluate lipopeptide and recombinant protein formulations (Table II, Groups II-III). In Group II, one animal (Gerda) was initially immunised solely with the NR2 lipopeptide of LSA-3, and boosted by recombinant LSA-3 molecules in Montanide ISA 51. Gerda was fully protected when challenged with 10⁷ sporozoites, whereas the control receiving Montanide ISA 51 was not (Fig. 4a).

[0067] In Gerda boosting with the recombinant LSA-3 formulation was not found to induce any detectable increase in the strong B-cell, T-helper cell and CTL responses already evoked by the initial lipopeptide/peptide injections^{17,18}. We were therefore interested to see whether the simple and well-tolerated peptidic formulation alone could induce protection. Two chimpanzees, Mopia and Mgbado were immunised with LSA-3 lipopeptides/peptides alone (Table II, Group III). Protection against a first challenge with 2 x 10⁴ sporozoites was obtained in both. The same group included an investigation of the effects of microbead presentation of recombinant proteins without adjuvant in one animal (Judy) which resulted in a one-day delay to patency (Fig. 4b). Following a subsequent high dose sporozoite challenge (5 x 10⁶ sporozoites), both Mopia and Mgbado demonstrated a clear two-day delay to patency and a low transient parasitaemia, whilst no protection was found for Judy (Fig. 4c). The delay to patency suggests that the immune responses had caused a reduction exceeding 90% of intra-hepatocytic schizont load²¹ (Fig. 4).

[0068] In chimpanzees from groups IV and V, we investigated the efficacy of a less complex lipopeptide mixture alone, or of recombinants adjuvated by SBAS2, a novel adjuvant whose efficacy has been recently established in humans^{4,5}. Since immunogenicity studies^{17,18} and analysis of previous chimpanzee data had indicated that peptide

CT1 was poorly immunogenic and thus might not be critical, chimpanzee Patty was immunised by a mix of three instead of four peptides. This animal showed protection upon challenge. Among four animals receiving SBAS2 adjuvated LSA-3 proteins, two showed full, sterile protection against a medium dose challenge. One showed a delay in patency which may be indicative of partial protection, whereas neither the fourth nor the control receiving SBAS2 adjuvant alone were protected. One of the two fully protected chimpanzees was further challenged with a high dose three months later and still showed full protection.

[0069] We present here the first description of protective vaccination against human malaria in the chimpanzee. This model provided us with convincing evidence that LSA-3 of *P. falciparum* is a valuable candidate for effective vaccination against pre-erythrocytic stages. A total of nine animals were immunised using lipopeptides in saline or polypeptides in either Montanide or SBAS2 adjuvants. Full sterile protection was induced in six of these nine chimpanzees on first challenge. If the significant delay as compared to controls is taken in consideration, a protective effect induced by LSA-3 was shown in eight of nine animals. Out of the 14 challenges which were performed, complete protection was obtained in seven, and partial protection in an additional four challenges. All seven control animals employed in these studies showed a consistent pattern in the appearance and the course of the blood-stage parasitaemiae following each of the 12 challenges with viable parasites. Demonstration of this reproducibility in controls, in animals immunised by overirradiated sporozoites, and in an additional 26 challenges performed in other experiments (not shown), is an essential point in the interpretation of our data.

[0070] It is encouraging that protection was induced against a heterologous challenge (NF54) in outbred animals immunised with LSA-3 molecules whose sequences were derived from K1 and T9/96 parasites. A variety of immunisation strategies were investigated in the course of this work. The data underpin the value of the SBAS2 adjuvant. The results with Gerda, Mopia, Mgbado and Patty are also particularly encouraging since they are based on simple peptide and lipopeptide formulations which are relatively easy to produce under GMP conditions²². In our animals no local or general reactions was detected following lipopeptide injections, an observation consistent with previous experience with similar formulations derived from SIV in macaques²³ and HbS²⁴ or HIV²² in humans. This bodes well for future clinical trials.

METHODS

10

40

45

[0071] Selection of clone DG729. Dot blot analysis of the β-galactosidase-fused recombinant proteins encoded by the pre-erythrocytic clones was performed on nitrocellulose as previously described⁷, using 1/100 diluted human and chimpanzee sera. ELISA was performed in duplicate as previously described²⁵ on 1/100 diluted sera using coating solutions of 0.3. 3 and 10 μα/ml ofNR1. NR2 and RE peptides respectively, in PBS.

LSA-3 cloning and characterisation. Detailed description of molecular methods, gene cloning, sequence data, protein characteristics and description of the recombinant proteins and of the peptides are provided in the S.I. The primers used for PCR: S1 (nucl.161-184)/S2 (nucl.454-432) and for RT-PCR: i1 (nucl.695-722)/i2 (nucl.824-799), numbering refers to the *Isa-3* sequence of K1 (Accession Nber AJ007010). All mouse sera used for the Western blot (at dilution 1/100) presented in Fig. 2 were obtained following 3 subcutaneous injections of the immunogen (100 μg) emulsified in SBAS2 adjuvant⁴. Long synthetic peptides GP5, GP6, GP8 and GP11 were synthesised as described in ref. 26 (see Fig. 1 for position).

Immunogens injected in chimpanzees. Sequences of the various immunogens evaluated here consisted of clone DG729 and inserts NN and PC, as well as peptides (pep.) NR1, NR2, RE and CT1; their location is shown in Fig. 1 and described in more details in the S.I. Clone DG729, as well as inserts NN and PC were expressed as glutathione-S-transferase-fused recombinants and purified according to manufacturer recommendations (Invitrogen, The Netherlands). Recombinants GST-DG729, -NN and -PC were designed so as to cover 95% of the LSA-3 antigen and were used as a mixture mentioned as LSA-3 GST-rec. Peptides NR1, NR2 and CT1, were also synthesised as palmitoyl-conjugated lipopeptides (lipopep.), as described in ref. 17. Combination of synthetic compounds (mentioned as (lipo) pep.) consisted in a mixture of NR1, NR2 and CT1 lipopeptides and of RE peptide. All peptides and lipopeptides were purified to >90% purity by reversed-phase chromatography, and the impurities consisted essentially of related peptides of shorter sequences¹⁷.

50 Chimpanzee immunisations and challenges. None of the chimpanzees included in this study had previously been exposed to malaria infections or malarial antigens.

Recombinant and synthetic compounds were injected subcutaneously, at a dose of 100 μg for each peptide and/or lipopeptides, and/or 50 μg for each protein. Lipopeptides were always injected in PBS and, except when mentioned, peptides and recombinants were emulsified in Montanide ISA51. Group I animals (Carl and Japie) were immunised by five intra-venous injections of 5 x 10⁶ gamma-irradiated sporozoites at day 0 and weeks 8, 24, 44 and 65, and received three challenges at weeks 71, 97 and 123 (challenge doses are given in Table II). One year after the three challenges reported here, these chimpanzees were re-immunised once, and received one low and one high dose challenges, which revealed the same pattern of protection (not shown, Langermans J. *et al.*, manuscript in preparation).

In Group II, Gerda received NR2 lipopeptide at day 0 and weeks 3, 13 and 31 as described in ref. 17. She was then boosted with the mixture of LSA-3 GST-rec. at weeks 40, 45, 48 and 50. Control animal Lianne received Montanide ISA51. Challenges were performed at week 60. Group III animals were immunised at day 0 and weeks 3 and 6. Mopia and Mgbado received LSA-3 (lipo)peptides whereas Judy was injected with LSA-3 GST-rec. adsorbed to latex microbeads. Challenges LD and HD were performed at weeks 21 and 29. In Group IV, Patty received LSA-3 (lipo)peptides, but without lipopeptide CT1, whereas Wendy and Willy were injected with LSA-3 GST-rec in SBAS2 adjuvant^{4,5}. Control animal Helen received SBAS2 adjuvant only. All animals were immunized at weeks 0, 4 and 8 and were challenged with 20,000 sporozoites at week 13. In Group V, Cindy and Marty were both immunised at weeks 0, 4, 8 and 26 with LSA-3 GST-rec in SBAS2 adjuvant (as in Group IV) and negative control animal Fauzi received over-irradiated sporozoites similarly to Japie (Group I) at weeks 5, 8, 11 and 26. Challenges LD and HD were performed at weeks 33 and 46 in all three animals.

NF54 sporozoites were obtained from dissected salivary glands of infected *Anopheles gambiae* as previously described²⁷. Sporozoites were pooled, resuspended in PBS and injected intravenously. All animals in each group were challenged with the same pool of sporozoites. For cost reasons, extensive evaluation of the Minimal Infective Dose has not been undertaken, however challenge with 5 x 10³ sporozoites, the lowest dose used to date, has proven infective in four other animals (Thomas, A.W., unpublished data).

Determination of the protective status. For Groups I, II, IV and V, animals blood was taken on days five to nine, and evaluated by thick and thin film Giemsa-stained preparations, and confirmed in all cases by *in vitro* culture (not shown), as described in ref. 21. For Group III chimpanzees blood taken every day from day five up to day 18, then every other day up to day 30, was used to prepare thin and thick smears which were Giemsa-stained and examined by two separate microscopists. A chimpanzee was considered a) totally protected when no parasites could be detected in the circulation blood, by direct microscopical observation and by long term culture, or b) partially protected when time to patency was delayed by one or more days as compared to that observed in control animals. In mice, these delays correspond to a protection of 80% (24h) or 96% (48h) against sporozoite challenges. In humans, a 12 hour delay was calculated to correspond to a 92% reduction of liver forms following sporozoite challenges²¹. In a limited number of animals a liver biopsy was performed under anaesthesia by a veterinary doctor on day five following a high dose challenge. Material was fixed and 4 μm sections were made and stained by Giemsa-collophonium28 before complete microscopic enumeration of the liver forms in 300 sections (average area 0.8 cm²). All animals were curatively treated with chloroquine immediately after the period of observation, and irrespective of their protective status.

References to Example 2

[0072]

30

35

40

45

50

55

- 1. Herrington, D., et al. Successful immunization of humans with irradiated malaria sporozoites: humoral and cellular responses of the protected vaccinees. Am. J Trap. Med. Hyg. 45, 539-547 (1991).
- 2. Egan, J.E., et al. Humoral immune responses in volunteers immunized with irradiated *Plasmodium falciparum* sporozoites. *Am. J. Trop. Med. Hyg.* **49**, 166-73 (1993).
- 3. Facer, C.A. & M., Tanner. Clinical trials of malaria vaccines: progress and prospects. *Adv. Parasitol.* **39**, 1-68 (1997).
- 4. Stoute, J.A., et al. A preliminary evaluation of a recombinant circumsporozoite protein vaccine against *Plasmodium falciparum* malaria. *New Engl. J. Med.* 336, 86-91 (1997).
- 5. Stoute, J.A., et al. Long-term efficacy and immune responses following immunization with the RTS,S malaria vaccine. *J Infect. Dis.* 178, 1139-44 (1998).
- Guérin-Marchand, C., et al. A liver stage-specific antigen of Plasmodium falciparum characterized by gene cloning. Nature. 329, 164-167 (1987).
 - 7. Marchand, C. & Druilhe, P. How to select *Plasmodium falciparum* pre-erythrocytic antigens in an expression library without defined probe. *Bull. WHO.* **68** (suppl.), 158-164 (1990).
 - 8. Miyamoto, M.M., Koop, B. F., Slightom, J. L., Goodman, M. and M.R., Tennant. Molecular systematics of higher primates: genealogical relations and classification. *Proc. Nat. Acad. Sci. U.S.A.* **85**, 7627-31 (1988).

- 9. Druilhe, P., et al. in "Malaria. Parasite Biology, Pathogenesis and Protection" (eds. Irwin W. Sherman), p.513-543 (American Society for Microbiology, Washington D.C., 1998).
- 10. Mellouk, S., Lunel, F., Sedegah, M., Beaudoin, R.L. and P., Druilhe. Protection against malaria induced by irradiated sporozoites. *Lancet*. 335, **721** (1990).
- 11. Fidock, D.A., et al. Cloning and characterization of a *Plasmodium falciparum* sporozoite surface antigen STARP. *Mol. Biochem. Parasitol.* **64**, 219-232 (1994).
- 12. Bottius, E., et al. A novel Plasmodium falciparum sporozoite and liver stage antigen (SALSA) defines major B, T helper, and CTL epitopes. J. Immunol. 156, 2874-2884 (1996).

5

15

25

35

- 13. Kemp, D.J., Cowman, A.F. and D., Walliker. Genetic diversity in *Plasmodium falciparum. Adv. Parasitol.* 29, 75-149 (1990).
- 14. Gardner, M.J., *et al.* Chromosome 2 sequence of the human malaria parasite *Plasmodium falciparum*. Science, **282**, 1126-1132 (1998).
- 15 Moelans, I.I.M.D. & J.G.G., Schoenmakers. Crossreactive antigens between life cycle stages of *Plasmodium falciparum*. *Parasitol. Today.* **8**, 118-123 (1992).
 - 16. Barnes, D. A., Wollish, W., Nelson, R.G., Leech, J.H. and C., Petersen. *Plasmodium falciparum*: D260, an intraerythrocytic parasite protein, is a member of the glutamic acid dipeptide-repeat family of proteins. *Exp. Parasitol.*, **81**, 79-89 (1995).
 - 17. Ben Mohamed, L., *et al.* Lipopeptide immunization without adjuvant induces potent and long-lasting B, Thelper, and cytotoxic T lymphocyte responses against a malaria liver stage antigen in mice and chimpanzees. *Eur. J. Immunol.* 27, 1242-1253 (1997).
- 18. Ben Mohamed, L. et al. High immunogenicity in chimpanzees of peptides and lipopeptides derived from four new Plasmodium falciparum pre-erythrocytic molecules. Vaccine, 18, 2843-2855 (2000).
 - 19 Aidoo, M., et al. CTL epitopes for HLA-B53 and other HLA types in the malaria vaccine candidate Liver Stage Antigen-3. Infect. Immun. 68, 227-232 (2000).
 - 20. Nüssler, A.K., et al. In vivo induction of the nitric oxide pathway in hepatocytes after injection with irradiated malaria sporozoites, malaria blood parasites or adjuvants. Eur. J. Immunol. 23, 882-887 (1993).
- 21. Murphy, J.R., Baqar, S., Davis, J.R., Herrington, D.A. and D.F., Clyde. Evidence for a 6.5-day minimum exoerythrocytic cycle for *Plasmodium falciparum* in humans and confirmation that immunization with a synthetic peptide representative of a region of the circumsporozoite protein retards infection. *J. Clin. Microbiol.* 27, 1434-1437 (1989).
- 22. Gahery-Segard, H., et al. Multiepitopic B- and T-cell responses induced in humans by a Human Immunodeficiency Virus type 1 lipopeptide vaccine. *J. Virol.* **4**, 1694-703 (2000).
 - 23. Bourgault, I., et al. Simian immunodeficiency virus as a model for vaccination against HIV: induction in rhesus macaques of GAG or NEF specific cytotoxic T lymphocytes by lipopeptides. *J Immunol.* **152**, 2530-2537 (1994).
- 24. Vitiello, A., et al. Development of a lipopeptide-based therapeutic vaccine to treat chronic HBV infection. Induction of a primary cytotoxic T lymphocyte response in humans. J. Clin. Invest. 95, 341-349 (1995).
 - Londoño, J.A., Gras-Masse, H., Dubeaux, C., Tartar, A. and P., Druilhe. Secondary structure and immunogenicity of hybrid synthetic peptides derived from two *Plasmodium falciparum* pre-erythrocytic antigens. *J. Immu*nol. 145, 1557-1563 (1990).
 - 26. Roggero, M.A., et al. Synthesis and immunological characterization of 104-mer and 102-mer peptides corresponding to the N- and C-terminal regions of the Plasmodium falciparum CS Protein. Mol. Immunol. 32, 1301-1309

(1995).

5

10

15

20

25

30

35

27. Ponnudurai, T., et al. Sporozoite load of mosquitoes infected with Plasmodium falciparum. Trans. Roy Soc. Trop. Med. Hyg. 83, 67-70 (1989).

28. Druilhe, P., Puebla, R.M., Miltgen, F., Perrin, L. and M., Gentilini. Species- and stage-specific antigens in exoerythrocytic stages of Plasmodium falciparum. Am. J Trop. Med. Hyg. 33, 336-341 (1984).

29. Meis, J.F.G.M., et al. Plasmodium falciparum: studies on mature excerythrocytic forms in the liver of the chimpanzee, Pan troglodytes. Exp. Parasitol. 70, 1-11 (1990).

Code	Spz.	IFAT		NR2
or	irrad.	titers	status	peptide
Name	dose	on spz.		(aa 198-
				223)
V4	23.6	4,096	not	0.5
V5	23:6	32,000	protected	0.5
Japie	30	3,200	2 day	0.7
			delay	
			not	Ì
			protected	
V6	20.8	5,120	Protected	3.8
V7	20.8	41,960	Protected	2.6
V8	20.8	40,960	Protected	4.8
WR4	15	3,200	Protected	3.4
Carl in	all ation	6,400	Protected	2.3

Spz.: sporozoite; irrad. irradiation

6,400

40

[0073] Table I. Differential reactivity of sera from protected or non-protected humans or chimpanzees with peptide NR2. IgG-specific antibodies against peptide NR2 were measured by ELISA in sera from human volunteers (codes) and chimpanzees (names in italic) immunised with sporozoites irradiated at low or high dose (in krad). Codes, immunisation schemes, sporozoite IFAT titres and protective status determination for human volunteers V4-V8 and WR4 are detailed in ref. 1 and 2, respectively. Chimpanzees Carl and Japie were immunised and challenged as described in the text and the Methods (Group I). ELISA titres are expressed in arbitrary units representing the ratio of the mean ODs from test sera to the mean OD plus three standard deviations from 10 controls studied in parallel in the same plate. Results are taken as positive for ratios above one (in bold). Similar experiments performed with peptides NR1 and RE (see Fig. 1) yielded negative results with these sera (not shown).

ANIMAI	L GROUPS	Immunisation and	PROT ON	ECTI
		challenge dates	LD	HD
Chimp.	Immunisation protocols*	(weeks)	2x10 4	107
gere vez de	Group Ib	97 123	Same.	14 A
Carl	18 krad-irradiated sporozoites		+	+
Japie	30 krad-irradiated sporozoites) -3-24-44-65) 60	-	-
Marcel	unimmunised control	1	-	_
Theo	unimmunised control	1-2-12-21] [40-42-48-20]	-	-
	Group II	21 29°		* 102
			77.5	4
Lianne		0-3-6]	nd	-
	control ISA 51	13		
	CKILL II			
wopia		1-4-8	+	dZ
Mgbado	[(lipo)pep.]	33 46	+	d2
	afficial To and a segment posterior	G-4-8-26]	- Gig	1.0
Ondele	control GST/microbeads	[5-8-11-26] ^f	1-	-
Makata	unimmunised control		0 - 1 7	-
	Group IV			
Patty	[(lipo)pep.]d		+	nd-
Wendy	[GST-rec. in SBAS2]		+	nd
Willy	[GST-rec. in SBAS2]		-	nd
Helen	control SBAS2		-	nd
	Group V		-	
Cindy	[GST-rec. in SBAS2]		. +	+
Marty	[GST-rec. in SBAS2]		dl	-
Fauzi	30 krad-irradiated		-	-
•	sporozoites			

Chimp.: chimpanzee name; HD/LD: high/low dose sporozoite challenges; d1/d2: one/two-day delay to patency; nd: not done.

- a) details and abbreviations are given in the Methods.
- b) Group I chimpanzees received three additional challenges (2 LD and 1 HD) which led each time to similar results, i.e. a reproducible protection only in Carl (data not shown).
- c) HD challenge was performed with 5 x 10⁶ sporozoites.
- d) same mixture as in Group III but without peptide CT1.
- e) performed in Cindy and Marty.

f) performed in Fauzi.

5 [0074] Table II. Immunisation and challenge experiments in the chimpanzees. Challenges were performed with either 2x10⁴ (low dose) or 10⁷ (high dose) NF54 *P. falciparum* sporozoites ("Protection" column). Immunisation schedules (in brackets under the bar) and of challenges (indicated by arrows above the bar) are expressed in weeks from first immunisation. Shading highlights protected animals. Complete protection is indicated with (+); a delay to patency (in days) as compared to controls and non-protected animals is indicated by d1 or d2 (determination of the protective status is detailed in the Methods).

LEGENDS FOR FIGURES

15

20

[0075] Figure 1: Schematic representation of the LSA-3 gene, recombinant proteins and peptides. a) 6.2 Kb Eco RI-insert isolated from K1 parasite genomic DNA library that hybridised with DG729. The 5.53 Kb gene comprises a 198 bp exon 1, a 168 bp intron (i) and a 5.16 Kb exon 2. Regions NR-A, -B and -C correspond to non-repeated sequences whereas R1 to R3 designate the three repeat blocks. The two hydrophobic regions potentially corresponding to the NH₂-terminal signal peptide and the anchor region are indicated by HR1 and HR2 respectively. b) Location of the sequences encoding for LSA-3 in the recombinant fusion proteins (first line) and the synthetic peptides (strokes) used in this study (see Supplementary Information for an numbering). For the immunisations, CT1 and NR2 were also used as palmitoyl-conjugated lipopeptides¹⁷ (indicated by *).

[0076] Figure 2: LSA-3 expression in *P. falciparum* sporozoites. Western blot analysis was performed on protein extracts from NF54 sporozoites and control uninfected mosquito salivary glands using mouse antisera directed against: C) control GST, 1) GST-PC, 2) peptides GP5, GP6, GP8 or GP11, 3) GST-729 (see Fig. 1, Methods and S.I.). LSA-3 is visualised as a 175 kDa protein (*), in agreement with the theoretical molecular weight of LSA-3 in this parasite strain. [0077] Figure 3: Immunostaining of *P. falciparum* pre-erythrocytic stages with anti-LSA-3 antibodies. a) sporozoites stained by IFAT with human antibodies affinity purified on recombinant βga1-DG729. b) staining by IFAT of day six post-challenge liver stages²⁹ from a chimpanzee, using the antibodies induced by lipopeptide NR2 injection¹⁷ in chimpanzee Gerda (see S.I. for additional pictures). c) The single residual liver schizont detected in a chimpanzee Dirk (day five post-challenge) appeared infiltrated by lymphomononuclear cells, as compared in d) to one of the numerous healthy schizonts observed in the control chimpanzee Peer (total of ca 2500 schizonts/300 liver sections, Giemsa-collophonium staining²⁸) (see text). Bars correspond to 5 μm in panel a) and 20 μm in panels b) to d).

[0078] Figure 4: Blood parasitaemia courses in Groups II and III. a) chimpanzees from Group II and b-c) animals in Group III, following high dose (HD) or low dose (LD) challenges with NF54 sporozoites. Names of totally or partially protected animals are in bold. Hatched patterns correspond to control chimpanzees. Parasitaemia scales are different for each challenge, as expected from challenges with different numbers of sporozoites. Note that the day of patency in control and non-protected animals was the same for a given challenge inoculum within each group (in the above and in other groups not shown here).

40 Example 3

45

50

55

Sequence data and supplementary information

[0079] The following further information exemplifying the invention is supplied:

Sequence Data - Gene: full Sequence (K1 parasite)

- Protein: full Sequence (K1 parasite)
- Clones DG729 / DG679 (T9/96 parasite)
- Note on LSA-3 sequence in parasite 3D7

Gene & Protein - Structure . Restriction map . Hydrophobicity

- Oligonucleotides employed
- Organisation

Regions & Comments - NR-A . R1 . R2 . NR-B . R3 . NR-C Conservation - of the gene

,		-
5	St	age
	Нс	omo
10	[00	080]
,,,	-	In
	Sy	nth
15	[00	081]
	- -	Pe Re
20		
25		
30		
35		
40		

45

50

55

- of the sequence
- of repeat region R2
- comparaison of immunising and challenging sequences

Specificity & Subcellular Location 5

logles - Intraspecies

terspecies

etic Peptides & Recombinant Proteins used for Chimpanzee Immunisations

- eptides CT1 . NR1 . NR2 . RE
- ecombinant proteins β-729. GST-729. GST-NN. GST-PC

	hα	

References to Example 3

5 [0082]

5

5

SEQUENCE DATA

KT PARASTTE STRAINE clone kt.2

Accession Nber AJ007010

odenjaranta ESTEN

							1				100
	10	20		1 40	50	1 60		80	90		
1	atgacasata	gtaattacaa	atcasataat	aaaacataca	atgaaaataa			tatttaatag			
101	aassatgtca	tatgagagaa	assatsaata	agtact tttt	titgatcaaa			aatatgggct			
	aagataaaaa							gtataatata			
	tatatatata							atataaacaa			
	atgtagataa							tagtgaagaa			
	cttattagaa							ataaaggaaa			
	gaagaAccaa							gtgtatcaga			
701	aactttttaa	tgaat:atta	aatagtgtag	atgttaatgg	agaagtaaaa			tcaagttaat			
801	agtaaaaagt	gttcaacaag	aacaacaaca	castgttgag	gasasagttq			qacqaaqaaa			
901	gaaaatgtag	aagaaaacga	CGACGGAAGE	gtagcctcaa	gtgttgaaga			atqanagtat			
1001	atgtagetee	aactqttqaa	gaaatcgtag	ctccaagtgt	totagaaagt.	gragetecaa	gtgttgaaga	aaqtqtaqaa	gaaaatgttg	aagaaag	tqt
	agctgaaaat					ctgaaaatgt	tgaagaaagt	gragetgaaa	acqt tqaaqa	aatcgta	ige t
	ccaactgttg					aagtgttgta	gaaagtgtgg	ctccaaqtqt	tgaagaaagt	gtagaag	gaa a
	atgitgaaga					gttgaagaaa	gtgtagetga	anatgttgaa	gaaagtgtag	ctgaaaa	FOL
1401	tgaagaaagt	gragergaaa	acqttqaaqa	asteqtaget	ccaactgttg	aagaaatcgt	agetecaact	gttgaagaaa	ttgtagetee	aagtgtt	gta
	qaaaqtqtqq					aaqtqtaqct	qaaaatqttg	aagaaag tgt	agctgaaaat	gttcaag	148 4
	gtgtagctga					gtagctgaaa	atqttqaaqa	aagtstaget	qaaaatqttq	PASSEPSS	tat
	agetgaaaat							gtagetecaa			
	ccaagtgttg					aaa tgt tga a	gaaagtgtag	ctgaaaatgt	tgaagaaagt	gtagetg	aaa
	atgttgaaga					gttgaagaaa	togtagetee	aactgttgaa	qaaattqtaq	ctccaag	gtgt
	tgtagaaagt					aagaaagtgt	agetgasaat	gttgaagaaa	gtgtagctga	aaatgtt	cgaa
	gasagtqtaq					aategtaget	ccaactqttq	aagaaattgt	agetecangt	gttqtag	1860
	gtataactcc					qtaqctqaaa	atgttgaaga	aagtgtagct	gaaaatqtto	aagaaag	gtgt
	agctgaaaat					ctccaactqt	tgaagaaatc	gtagetecaa	ctgttgaaqa	aattgta	aqc t
	ccaagtgttg							ctqaaaatgt			
	atgttgaaga							aagtgtEgaa			
	tgaagsaagt							atcgaaactg			
	ttaaatgaga					aaacqtaqaa	gaaactacag	ctgaaagtgt	aactacttt	agtaaca	atat
	tagaggagat							tgtattaagt			
	aagtgaagag							atagaaactg			
	agegeaaata							cagagaattt			
	tatttaatac							aatggataaa			
	tgataatgta							atccaatcag			
	gasasgtgg							atatttcaag			
	ctgtaactga							aggaatatta		-	_
	. agaaatgttt							gargaaccgg			
	. gaaactgtta							taacagacaa			
	aatccataga							actagttgtt			
	l tatggatgaa							gaaataaatg			
	l qaagaaactc							aaaaagcatt			
	L taatagatgo							tgaagttgta			
	l agacangate							aaagaactt			
	L tataaagaat	-			-			aaaaattcq			
	L cacamagnac L aagatettga							agtacacga			
	L aagatettga L tataataagt							ggaagtatat			
	L catalataayc L atqqaattag							ccttaaaaga			
	l gcatggatga							agaagaggt			
	l aataacaaa							atganagato	-		
	l gaagaagata							taggtgaag			
	L taatagteea							agaaggtgt			
	l agacgaagta							tcasasaat			
	l casaatcas							tatetgeegt			
	l tagttgggtt							aaaagttga			
	L ggagagaccg							gaaaaattt			
		LLCLALICAL									
		******	. AUCTOBOS-								
	l gtaatagaag				tacaggtaac	aaa taaaac	gagaaaacaa	a ctaaagttga	a Casasalas	t dadyta	ccy
		aacgcaaaaa	tcanaataa	. 5529							100

Complete nucleotide sequence of the 5529 base-pair (bp) *lsa-3* gene. Bolded is a 168 bp intron; underlined are the 3 repeat regions R1, R2 and R3.

ing a reasonne en inche e

5

10

15

20

25

30

35

40

45

55

1 MINSNYKSNN KTYNENNNEQ ITTIFNRINM NPIKKCHMRE KINKYFFLIK ILICTILIWA VQYDNNSDIN KSWKKNTYVD 81 KKINKLFNRS LGESQVNGEL ASEEVKEKIL DLLEEGNTLT ESVDENKNLE EAEDIKENIL LSNIEEPKEN IIDNLLNNIG 161 QNSEKQESVS ENVQVSDELF NELLNSVDVN GEVKENILEE SQVNDDIFNS LVKSVQQEQQ HNVEEKVEES VEENDEESVE 241 ENVEENVEEN DDGSVASSVE ESIASSVDES IDSSIEENVA PTVEEIVAPS VVESVAPSVE ESVEENVEES VAENVEESVA 321 ENVESVAEN VEESVAENVE EIVAPTVEEI VAPTVEEIVA PSVVESVAPS VEESVEENVE ESVAENVEES VAENVEESVA 401 ENVEESVAEN VEESVAENVE ELVAPTVEEL VAPTVEELVA PSVVESVAPS VEESVEENVE ESVAENVEES VAENVEESVA 481 ENVEESVAEN VEESVAENVE ESVAENVEES VAENVEEIVA PTVEEIVAPT VEEIVAPSVV ESVAPSVEES VEENVEESVA 561 ENVEESVAEN VEESVAENVE ESVAENVEEL VAPTVEELVA PTVEELVAPS VVESVAPSVE ESVEENVEES VAENVEESVA 641 ENVEESVAEN VERIVAPTVE EIVAPTVEET VAPSVVESVA PSVEESVEEN VEESVAENVE ESVAENVEES VAENVEESVA 721 ENVEETVAPT VEETVAPTVE ETVAPSVES VAPSVEESVE ENVEESVAEN VEESVAENVE ESVAENVEES VAPTVEETVA 801 PSVEESVAPS VEESVAENVA THISDHLISH LLGGIETEEI KDSILHEIEE VKENVVTTIL ENVEETTAES VTTFSHILEE 881 IQENTITNOT IEEKLEELHE NVLSAALENT QSEEEKKEVI DVIEEVKEEV ATTLIETVEQ AEEKSANTIT EIFENLEENA 961 VESNENVAEN LEKLNETVFN TVLDKVEETV EISGESLENN EMDKAFFSEI FDNVKGIQEN LLTGMFRSIE TSIVIQSEEK 1041 VDLNENVVSS ILDNIENMKE GLLNKLENIS STEGVQETVT EHVEQNVYVD VDVPAMKDQF LGILNEAGGL KEMFFNLEDV 1121 FKSESDVITV EEIKDEPVQK EVEKETVSII EEMEENIVDV LEEEKEDLTD KMIDAVEESI EISSDSKEET ESIKDKEKDV 1201 SLVVEBVODN DMDESVEKVL ELKNMEEELM KDAVEINDIT SKLIBETQEL NEVEADLIKD MEKLKELEKA LSEDSKEIID 1281 AKDDTLEKVI EEEHDITTIL DEVVELKDVE EDKIEKVSDL KDLEEDILKE VKEIKELESE ILEDYKELKT IETDILEEKK 1361 EIERDHFEKF EEEAEEIKDL EADILKEVSS LEVEEEKKLE EVHELKEEVE HIISGDAHIK GLEEDDLEEV DDLKGSILDM 1441 LKSDMELGDM DKESLEDVTT KLGERVESLK DVLSSALGMD EEQMKTRKKA QRPKLEEVLL KEEVKEEPKK KITKKKVRFD 1521 IKDREPKDEI VEVEMKDEDI EEDVEEDIER DIEEDKVEDI DEDIDEDIGE DKDEVIDLIV QKEKRIEKVK AKKKKLEKKV 1601 EEGVSGLKKH VDEVMKYVQK IDKEVDKEVS KALESKNDVT NVLKQNQDFF SKVKNFVKKY KVFAAPFISA VAAFASYVVG 1681 PFTFSLFSSC VTIASSTYLL SKVDKTINKN KERPFYSFVF DIFKNLKHYL QQMKEKFSKE KNNNVIEVTN KAEKKGNVQV 1761 TNKTEKTTKV DKNNKVPKKR RTOKSKZ 1786

Complete peptide sequence of the 1786 amino-acid (aa) LSA-3 protein. Bolded are 3 potential start sites; underlined are the 3 repeat regions R1, R2 and R3.

T9/96 PARASTE CEONE

Accession Nber AJ007011

Notification se montre.

agtgatgaac tittitaatga attattaaat agtgtagatg tiaatggaga agtaaaagaa aatattitgg aggaaagtca 81' acttaatoac catattttta atactttact aaaaactott caacaacaac aacaacaca tottosacaa aacettosac 161' anagtotaga agasaatgac qaaqaaaqto taqaaqaaaa totaqaaqaa aatotaqaaq aasatqacqa coqaaqtota 241' gcctcaaqtg ttgaagaaag tatagettca agtqttgatg aaagtataga ttcaagtatt gaagaaaatg tagetccaac tgttgaagaa atcgtagete caactgttga agaaattgta getecaagtg ttgtagaaag tgtggeteea agtgttgaag 321. 401' assatgtage tecssagtgtt quagasagtg tagetgassa tgttquagas agtqtaqetq assatgttqa aquasteqta 481' gctccaaqtq ttqaaqaaaq tqtaqctqaa aatqttqaaq aaaqtqtaqc tqaaaatqtt qaaqaaaqtq taqctqaaaa 561' tqttqaaqaa aqtqtaqctq aaaatqttqa aqaaaqtqta qctqaaaaatq ttqaaqaaat cqtaqctcca actqttqaaq anagtgtage tecaactett gaagaaatte tageteeaac tettgaagaa agtgtagete caactettga agaaatteta 641' 721 4 gttccaagtg ttgaagaaag tgtagctcca agtgttgaag aaagtgtagc tgaaaatgtt gaagaaagtg tagctgaaaa 801' tqttqaaqaa aqtqtaqctq aaaatqttqa aqaaaqtqta qctqaaaatq ttqaaqaaaq tqtaqctqaa aatqttqaaq 881 anatogtage tecanguage ganganatog tagetecane tgttgangan agtgttgetg ananggttge ancanattta 961' tcagacaatc ttttaagtaa tttattaggt ggtatcgaaa ctgaggaaat aaaggacagt atattaaatg agatagaaga 1041' agtaaaagaa aatgtagtca ccacaatact agaaaaagta gaagaaacta cagctgaaag tgtaactact tttagtaata 1121' tattagagga gatacaagaa aatactatta ctaatgatac tatagaggaa aaattagaag aactccacga aaatgtatta agtgccgctt tagaaaatac ccaaagtgaa gaggaaaaga aagaagtaat agatgtaatt gaagaagtaa aagaagaggt 1201' 1281' cgctaccact ttaatagaaa ctgtggaaca ggcagaagaa gagagcgaaa gtacaattac ggaaatattt gaaaatttag 1361 aagaaaatgc agtagaaagt aatgaaaaag ttgcagagaa tttagagaaa ttaaacgaaa ctgtattaa tactgtatta 1441' gataaagtag aggaaacagt agaaattagc ggagaaagtt tagaaaacaa tgaaatggat aaagcatttt ttagtgaaat 1521 atttgataat gtaaaaggaa tacaagaaaa tttattaaca ggtatgtttc gaagtataga aaccagtata gtaatccaat 1601' cagaagaaaa ggttgatttg aatgaaaatg tggttagttc gattttagat aatatagaaa atatgaaaga aggtttatta 1681' aataaattag aaaatatttc aagtactgaa gg 1712'

Partial nucleotide sequence of the *Isa-3* gene in the Thai parasite clone T9/96. Bolded is the sequence of insert DG729. Insert DG679, the largest among the LSA-3 insert family (see text of the present article and Guérin-Marchand *et al.*, 1987), spans from nucl. 32' to nucl. 1712'. Underlined are the adjacent repeat region's R1 and R2. Position 1' corresponds to nucl. 694 in the original K1 sequence.

Penignosephrise

5

1' SDELFNELLN SVDVNGEVKE MILEESQVND DIFNSLVKSV QQEQQHNVEE KVEESVEEND EESVEENVEE NVEENDDGSV

81' ASSVESIAS SVDESIDSSI EKNVAPTVEE IVAPTVEKIV APSVVESVAP SVEESVAPSV EESVAENVEE SVAENVERIV

161' APSVEESYAE NVERSVAENV EESVAENVEE SVAENVERSV AENVEETVAP TVEESVAPTV EETVAPTVEE SVAPTVEETV

241' <u>VPSVBESVAP SVEESVAENV EESVAENVEE SVAENVEESV AENVEESVAE NVEELVAPSV EELVAPTVEE SVAEN</u>VATNL 321' SDNLLSNLLG GIETEEIKDS ILNEIEEVKE NVVTTILEKV EETTAESVTT FSNILEEIQE NTITNDTIEE KLEELHENVL

401' SAALENTOSE EEKKEVIDVI EEVKEEVATT LIETVEQAEE ESESTITEIF ENLEENAVES NEKVAENLEK LIETVFNIVL

481' DKVEETVEIS GESLENNEMD KAFFSEIFUN VKGIQENLLT GMFRSIETSI VIQSEEKVDL NENVVSSILD NIENMKEGLL

561' NKLENISSTE 570'

15

10

Partial peptide sequence of the LSA-3 protein in the Thai parasite clone T9/96. Bolded is the sequence of insert DG729. Insert DG679, the largest among the LSA-3 insert family (see text of the present article and Guérin-Marchand et al., 1987), spans from aa 12' to aa 570'. Underlined are the 2 adjacent repeat regions R1 and R2. Position 1' corresponds to aa 176 in the original K1 sequence.

20

Note on LSA-3 sequence in parasite 3D7

25

The *Isa-3* gene sequence in parasite clone 3D7 (derived from strain NF54 used in the present article for chimpanzee challenges) is found in the complete sequence of *P. falciparum* Chromosome 2 (Gardner *et al.*, 1998) where it was annotated as *resa-h3* (Accession Number AE001424).

30

35

40

45

50

LSA-3 GENE & PROTEIN

Exon 2 Exon 1 NR-A NR-B NR-C HR2 HRI R1 R2 R3 repeats repeats repeats Restriction map B: Bgl II C: Cla I E: Eco RI F: Fsp I H: Hind III 1 Kb N: Nla IV P: Pvu II R5: Eco RV Sc: Sca I Sn: Sna BI Sp: Spe I P ВВ R5 C ΗE Ν N N N N N Sc Sp F H **Hydrophobicity** - HYDROPHOBIC PLOT (KYTE & DOOLITTLE) 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 170 парата <u>արերվ ավարիակար այիա քանա անա արևու արևու արևու չակա չավար այիա այնա քանա այնա արևա արևու չակա արևու այիա այ</u> Oligonucleotides employed Location Utilisation Name nucl. 161-184 / 454-432 intron amplification, RT-PCR i1(+)/i2(-) CTL1(+)/CTL2(-) nucl. 649-677 / 942-919 amplification of the NR2 peptide-coding region S1(+)/S2(-) nucl. 695-722/824-799 lsa-3 gene detection in P. falciparum

Gene [5529	bp]				
Regions	Length	Location	Regions	Length	Location
NR-A	834 bp	nucl. 1-834	R2 repeats	1623 bp	nucl. 1003-2625
Exon 1	198 bp	nucl. 1-198	NR-B	2148 bp	nucl. 2626-4773
Intron	168 bp	nucl. 199-366	R3 repeats	126 bp	nucl. 4774-4899
Exon 2	5164 bp	nucl. 367-5529	NR-C	630 bp	nucl. 4900-5529
R1 repeats	168 bp	nucl. 835-1002		-	

55

5

10

15

20

25

30

35

40

45

Regions	Length	Location	•
NR-A	278 aa	aa 1-278	Non-repeated region A
HR1	18 aa	aa 46-63	Hydrophobic region 1: putative signal peptide
R1	56 aa	aa 223-278	Conserved repeat region
R2	541 aa	aa 279-819	Polymorphic repeat region
NR-B	716 aa	aa 820-1535	Non-repeated region B
R3	42 aa	aa 1536-1577	Conserved repeat region
NR-C	210 aa	aa 1 <i>5</i> 78-1 7 86	Non-repeated region C
HR2	33 aa	aa 1662-1694	Hydrophobic region 2: putative
			transmembrane domain

REGIONS & COMMENTS

k1.2 and T9/96 clones# 5%

clone DG679 NR-A NR-B

NR-C HR2 HR1 R1 R2 R3 repeats repeats repeats

NR-A

10

15

20

25

30

*3*5

45

50

55

- 1 MTNSNYKSNN KTYNENNNEQ ITTIFNRTNM NPIKKCHMRE KINKYFFLIK ILTCTILIWA VQYDNNSDIN
 - 71 KSWKKNTYVD KKLNKLFNRS LGESQVNGEL ASEEVKEKIL DLLEEGNTLT ESVDDNKNLE EAEDIKENIL
 - 141 LSNIEEPKEN IIDNLLNNIG QNSEKQESVS ENVQVSDELF NELLNSVDVN GEVKENILEE SQVNDDIFNS
 - 211 LVKSVOQEOO HN 222

Underlined and bolded are the 3 potential start sites; in green is a stretch of 17 uncharged and hydrophobic residues (HR1), preceded and followed by two short positively charged regions. As confirmed by the combined neural approach documented in Nielsen et al. (1997): 1) this constitutes a potential signal sequence peptide, consistent with the subcellular location of LSA-3 in sporozoites and in liver forms, 2) most likely cleavage site is located between as 63 and 64. Underlined is the NR2 peptide-coding region which shows a perfect conservation among P. falciparum parasites.

R1

223 VEEK VEES VEEN DEES VEEN VEEN VEEN DDGS VASS VEES IASS VDES IDSS IEEN 278

R1 is distinguished from region R2 by its specific tetrapeptide motifs and an extremely high conservation in T9/96 (100% at both nucleotidic and peptidic levels) and 3D7 (1 point mutation over 168bp/56aa, see sequence AE001424 in Gardner et al., 1998) parasite clones.

R2 / k1.2 clone 279 VAPT VEETVAPS VVESVAPS VEESVEEN 307 VEESVAEN VEESVAEN VEESVAEN VEESVAEN 339 VEEIVAPT VEEIVAPT VEETVAPS **VVESVAPS** VEESVAEN VEESVAEN 379 VERSVARN VEESVAEN VERSVARN VEETVAPT VEEIVAPT VERTVAPS VVESVAPS VEESVAEN VEESVAEN 459 VEESVAEN VEESVAEN VEESVAEN VEESVARN VERSVARN VEEIVAPT 515 VEEIVAPT VEETVAPS **VVESVAPS** VEESVEEN 555 VEESVAEN VEESVAEN VEESVAEN VEESVAEN 587 VEEIVAPT VEEIVAPT VEEIVAPS VVESVAPS VEESVEEN 627 VERSVAEN VEESVAEN VRESVAEN 651 VEEIVAPT VEEIVAPT VEETVAPS VVESVAPS VEESVEEN 691 VEESVAEN VKESVAEN VEESVAEN VEESVARN 723 VEEIVAPT VEEIVAPT VEETVAPS VVESVAPS VEESVEEN 763 VEESVAEN VEESVAEN VEESVAEN 787 VEESVAPT VEEIVAPS VEESVAPS 811 VEESVAEN 818

R2 / T9/96 clone

5

10

15

20

25

30

35

40

45

104' VAPT VEEIVAPT VEEIVAPS VVESVAPS VEESVAPS

140' VEESVAEN VEESVAEN

156' VEETVAPS

164' VEESVAEN VEESVAEN VEESVAEN VEESVAEN VEESVAEN

204' VEELVAPT VEESVAPT VEELVAPT VEESVAPT VEELVVPS VEESVAPS

252' VEESVAEN VEESVAEN VEESVAEN VEESVAEN VEESVAEN

292' VEEIVAPS VEEIVAPT

308' VEESVAEN 315'

Bolded are stretches of tandemly repeated and conserved octapeptides VEESVAEN which can vary in number, from 2 to 7 in both strains. Underlined are the highly conserved 40 as repeated blocks which separate these stretches in strain K1. In clone T9/96, no particular organization is observed in R2. This region is nevertheless composed of similar and conserved tetrapeptides compared to strain K1, except one variant VVPS which is specific for T9/96.

NR-B

819 VA TNLSDNLLSN LLGGIETEEI KDSILNEIEE VKENVYTTIL ENVEETTAES VTTFSNILEE
881 IQENTITNDT IEEKLEELHE NVLSAALENT QSEEEKKEVI DVIEEVKEEV ATTLIETVEQ AEEKSANTIT
951 ETFENLENA VESNENVAEN LEKLNETVFN TVLDKVEETV EISGESLENN EMDKAFFSEI FDNVKGIQEN
1021 LLTGMFRSIE TSIVIQSEK VDLNENVVSS ILDNIENMKE GLLNKLENIS STEGVQETVT EHVEQNVYVD
1091 VDVPANKDQF LGILNEAGGL KEMFFNLEDV FKSESDVITV EEIKDEPVQK EVEKETVSII EEMEENIVDV
1161 LEEEKEDLTD KMIDAVEESI EISSDSKEET ESIKDKEKDV SLVVEEVQDN DMDESVEKVL ELKNMEEELM
1231 KDAVEINDIT SKLIEETQEL NEVEADLIKD MEKLKELEKA LSEDSKEIID AKDDTLEKVI EEHDITTTL
1301 DEVVELKDVE EDKIEKVSDL KOLEEDILKE VKEIKELESE ILEDYKELKT IETDILEEKK EIEKDHFEKF
1371 EEEAEEIKDL EADILKEVSS LEVEEEKKLE EVHELKEEVE HIISGDAHIK GLEEDDLEEV DDLKGSILDM
1441 LKGDMELGDM DKESLEDVTT KLGERVESLK DVLSSALGMD EEQMKTRKKA QRPKLEEVLL KEEVKEEPKK
1511 KITKKKVRFD IKDK

Underlined is the partial NR-B region of insert DG679 (parasite clone T9/96) which shows a high degree of conservation with K1 sequences and contains only 6 bp substitutions leading to 5 aa mutations

(bolded). Shaded is the highly conserved HLA-B53 restricted epitope la90 identified by Aidoo et al.

(2000).

$^{ m R3}$ 1536 KDED IEED VEED IERD IEED KVED IDED IDED IGED KDEV ID 1577

The same regular spacing of the hydrophobic isoleucine and valine residues is observed in region R3 which is predicted, according to its HCP analysis (not shown), to adopt an α -helical conformation and is preceded by a cluster of helix-breakers (proline) alternating with β -sheet segments. This region also shows a high degree of conservation with LSA-3 sequences in clone 3D7 (see sequence AE001424 in Gardner et al., 1998) and in isolates from various geographical origins (Daubersies, P. et al., in preparation).

NR-C

1578 LIV QKEKRIEKVK AKKKKLEKKV EEGVSGLKKH VDEVMKYVQK IDKEVDKEVS KALESKNDVT
1641 NVLKQNQDFF SKVKNFVKKY KVFAAPFISA VAAFASYVVG FFTSLFSSC VTIASSTYLL SKVDKTINKN
1711 KERPFYSFVF DIFKNLKHYL QQMKEKFSKE KNNNVIEVTN KAEKKGNVQV TNKTEKTTKV DKNNKVPKKR

Bolded (and in green) is a second hydrophobic region (HR2) which could constitute a transmembrane domain, consistent with the subcellular location of the antigen in sporozoites and in liver forms.

50

CONSERVATION

5

10

LSA-3 gene and protein detected in 100 % of P. falciparum parasites by:

15

• PCR ANALYSIS performed with S1(+) / S2(-) primers on:

20

- 70 isolates from Ivory Coast, Madagascar, Myanmar, Brazil and Columbia

- 12 Thai sporozoite strains

- 6 laboratory strains or clones (K1, T9/96, NF54, Palo Alto, 150, 3D7)
- -23 Senegalese isolates Data published in Bottius et al. (1996) [where clone DG157 is a member of the LSA-3 clone family and encodes for a part of region NR-A]

The expected 130 bp amplification product was found in the 111 samples

•IFAT performed with anti-NR2 peptide and anti-GST-PC antibodies (mouse and chimpanzee sera) on:

25

- 30 Thai sporozoite strains

30

- 2 infected liver sections: one from a Cebus (day 5 post-challenge) and one from a chimpanzee (day 6 post-challenge)

35

Detection in the 32 samples 100 % of positive parasites in each assay

40

45

50

Precise position and description of bp/aa mutations in parasite K1, T9/96 and 3D7 is detailed in 2 tables from section "comparaison of immunising and challenging sequences". Conservation of the polymorphic repeat region R2 is analysed in the following section.

Conservation of the copen topolities

Conservation of R2 motif sequences

	MOTIFS	P. FALCIPARUM LINES			
PEPTIDIC	NUCLEOTIDIC	K1	T9/96	3D7	
VAEN	gta gct gaa aat	30/31 1/31	12/13 1/13	9/10 1/10	
VAPS	gta gct cca agt	9/16 7/16	5/6 1/6	16/17 1/17	
VAPT	gta gct cca act	14/14	7 <i>1</i> 7 -	7/9 2/9	
VEES	gtt gaa gaa agt	42/42	17/17	15/15	
VEEI	gtt gaa gaa atc	13/20 7/20	5/8 3/8	16/22 6/22	
VEEN	gta gaa gaa aat	11/11	٠.,	1/1	
VVES	gtt gta gaa agt	7 <i>1</i> 7 -	-	1/1	
VVPS	gta gtt cca agt	-	1/1 -	<u>-</u>	
VVPT	gta gtt cca act	<u>.</u>	-	2/2	

Peptide and nucleotide sequence comparison of R2 tetrapeptidic motifs between K1, T9/96 and 3D7 parasites. Although the organization of these tetrapeptide motifs varies within R2 (see section "regions & comments" for K1, and T9/96 and see sequence AE001424 in Gardner et al. (1998) for 3D7), conservation of their sequences remains extremly high (e.g. only 3 strain specific tetrapeptides (VVPS, VVPT) among a total of 231 motifs and no single <u>nucleotide</u> mutation in the 74 VEES, 21 VAPT, 12 VEEN motifs.

Conservation of R2 helicity

Prediction of LSA-3 conformation (K1 strain) by hydrophobic cluster plot (HCP) analysis (for symbols, see Gaboriaud *et al.*, 1987) reveals a regular organization of the R1-R2 repeat regions, in a succession of α -helical stretches interrupted by the helix-breaker proline residues (tetrapeptides VAPT). This α -helical conformation is also strongly suggested by the remarkable regular spacing, every 4 residues, of the hydrophobic valine throughout the entire R1-R2 block, i.e. 597 aa. To a lesser extend, the same regular spacing of the hydrophobic isoleucine and valine residues is observed in the R3 repeat region which is predicted, according to its HCP (not shown), to adopt an α -helical conformation and is preceded by a cluster of helix-breakers (proline) alternating with β -sheet segments.

Regions R1-R2 from T9/96 shows a different organization since sequences separating the stretches of tandemly repeated octapeptide VEESVAEN consist of a mosaic of various tetrapeptides also found in blocks R1-R2 of clone k1.2. Nevertheless and according to its HCP, the secondary structure of R1-R2 seems perfectly conserved in T9/96 compared to K1, with the same succession of α -helical stretches interrupted by the proline helix-breaker residues. This result is strongly suggestive of important structural constraints at least on this part of the protein.

Conservation of R2 conformation

Antibodies	recombinant pro (EL	NF54 sporozoites	
	from K1	from T9/96	(IFAT)
anti-RE (T9/96)	+/GST-NN	+ / GST-729	+
anti-GST-NN (K1)	+/GST-NN	+/RE	+

As shown in this table, conservation of R2 conformation is suggested by the constant recognition of recombinant proteins and peptides (K1 and T9/96 derived sequences) in ELISA and of NF54 sporozoites in IFAT by anti-RE (T9/96) or anti-GST-NN (K1) antibodies (mouse sera and human immunopurified antibodies).

Consensor delectration misses subtending misses dispute

Mutations identified and localisation

LSA-3 Regions ¹	Clones ²	Mutated nucleotide ³	Mutated codon ³	Original K1 sequence ⁴	Mutated sequence ⁴
NR•A (1-834)	3D7	191	64	gat (D)	gct (A)
R1 (835-1002)	3D7	926	253	gga (G)	gct (E)
NR-B	T9/96	2754	862	aac (N)	aaa (K)
(2626-4773)	T9/96	2796	876 [.]	aac (N)	aat sil.
	3D7 + T9/96	2998	944	aag (K)	gag (E)
	T9/96	3005	946	gca (A)	gag (E)
	3D7 + T9/96	3008	947	aat (N)	agt (S)
	T9/96	3066	966	aat (N)	aaa (K)
	3D7	3972	1268	gaa (E)	gag sil.
	3D7	4546	1460	aca (T)	gca (A)
	3D7	4650	1494	aag (K)	aaa <i>sil.</i>
R3	3D7	4791	1541	gaa (E)	gat (D)
(4774-4899)	3D7	4798	1544	gta (V)	ata (I)
	3D7	4810	1548	ata (I)	gta (V)
	3D7	4870-71	1567-68		12 bp ins.5
NR-C	3D7	4940	1591	gcg (A)	gag (E)
(4900-5529)	3D7	5508	1780	aga (R)	agt (S)

Position in the reference Isa-3 gene (strain K1) and description of the mutations identified in parasites clones T9/96 and 3D7 (which was originally cloned from strain NF54 and is considered here as representative of NF54 for complete comparison purposes). As reported in section "conservation of the sequence", NR2 peptide-coding region of the NF54 strain used for the chimpanzee challenges was found 100 % homologuous to K1 sequence.

1. Comments on region R2 from K1, T9/96 and 3D7 parasites are given in the preceeding section. Numbers in brackets define first and last nucleotides of the corresponding region in strain K1. 2. 3D7 sequences analysed here cover the entire gene and were defined by compiling data from 3 different sources: 1) construct VR2555 which contains a PCR-amplified truncated lsa-3 gene (nucl. 432-5095; P. Daubersies, unpublished data), 2) construct VR2556 which contains a full-length PCR-amplified LSA-3 cDNA (Hoffman S., personal communication), 3) lsa-3 gene sequence identified in P. falciparum Chromosome 2 (seq. AE001424 in Gardner et al., 1998). Mutations were considered as such if they were observed in at least 2 out of 3 sequences. 3. Numbers for mutated nucleotides and codons correspond to their location in the reference lsa-3 gene and protein respectively (in strain K1). 4. Original and mutated codons are followed in brackets with the corresponding amino acid (one-letter code). 5. 12 base pair insertion "gaagatatagat", leading to a 4 amino acid insertion "EDID".

Correspondences and homologies

٠	•	•	

				LSA-3 se	quences'		
LSA	LSA-3 regions		in strain K1		e T9/96	in clone 3D7	
,		sequenced	immunis.2	sequenced	immunis.3	sequenced4	challenge
NR-A	length in base pairs	834	60(CTI)	316	141 (GST-729)	834	60 + 141
	location in gene	1-834	586-645	519-834	694-834	1-834	586-645 + 694-8
	length in amino acids	278	20	104	47	278	20 + 47
	location in protein	1-278	140-159	119-222	176-222	1-278	140-159 + 176-2
	nucleotid. mutation(s)			0	0	l '	0
	aa mutation(s)	[0	0	t	0
R1	length in base pairs	168	-	168	168 (GST-729)	168	168
	location in gene	835-1002	•	835-1002	835-1002	835-1002	835-1002
	length in amino acids	56	-	56	56	56	56
	location in protein	223-278		223-278	223-278	223-278	223-278
	nucleotid. mutation(s)	Ì		0	(o	[·	1
	aa mutation(s)	Ī		0	0	i l	1
R26	length in base pairs	1623	240 (GST-NN)	636 (full seq.)	141 (GST-729)	924 (full seq.)	924
	location in gene	1003-2625	1269-1509		,		
	length in amino acids	541	80	212	47	308	308
	location in protein	279-819	369-448		ļ		
NR-B	length in base pairs	2148	2006 (GST-PC)	764	-	2148	2009
	location in gene	2626-4773	2769-4773	2626-3389	.	2626-4773	2769-4773
	length in amino acids	716	667	255	i -	716	667
	location in protein	820-1535	869-1535	820-1074		820-1535	869-1535
	nucleotid, mutations)		İ	6	ľ	5	5
	aa mutation(s)			5	ļ	3	3
R3	length in base pairs	126	126 (GST-PC)	-		126	126
	location in gene	4774-4899	4774-4899	1		4774-4899	4774-4899
	length in amino acids	42	42	ļ.	- /	42	42
	location in protein	1536-1577	1536-1577	1		1536-1577	1536-1577
	nucleotid. mutations	İ		i	İ	4	4
	aa mutation(s)	Ì		İ		4	4
NR-C	length in base pairs	630	630 (GST-PC)			630	630
	location in gene	4900-5529	4900-5529			4900-5529	4900-5529
	length in amino acids	210	210	.	-	210	210
	location in protein	1578-1786	1578-1786]	Ī	1578-1786	1578-1786
	nucleotid. mutations			İ		2	2
	aa mutation(s)	1	1	1	Ī	2	2
Non-repeated	total length in bp/aa	3612/1204	2695/898	1080/360		3612/1204	2836/944
regions	total nber nucl /aa mut,			6/5		8/6	7/5
(NR-ABC)	nucl/aa homology (%)			99.4/98.6		99.8/99.5	99.8/99.5
Conserved	total length in bp/aa	3906/1302	2821/940	1248/416		3906/1302	3130/104
		1	1	6/5	1	13/11	12/10
regions	total nber nucl sa mut.		1	10/3	i	113/11	11210

Definition and comparison of immunising and challenging sequences. As in the preceeding table, *Isa-3* sequence in clone 3D7 (originally cloned from NF54 strain) is considered here as representative of the actual NF54 strain used for sporozoite challenges.

1: All sequence locations (bp and aa) correspond to the reference numbering in *Isa-3* gene and protein from strain K1. 2: Immunising sequences in strain K1 correspond to peptide CT1 and recombinant proteins GST-NN and GST-PC. 3: Immunising sequences in clone T9/96 correspond to peptides NR1, NR2, and RE and recombinant protein GST-729 from which these 3 peptides were derived. 4: See note (2) in the preceeding table. 5: Challenging sequences are defined as 3D7 sequences corresponding to cumulated immunising sequences from both K1 and T9/96 parasites. 6: A more detailed analysis of R2 is given in the preceeding section. Due to length polymorphism, numbering in region R2 is non-relevant in parasites other than K1. Lengths given for T9/96 and 3D7 correspond to their respective fully sequences bregion R2.

STAGE SPECIFICITY & SUBCELLULAR LOCATION

A. RT-PCR

B. WESTERN BLOT ANALYSIS

5

C. Immunofluorescence Antibody Test

bp

A. Due to the difficulties in obtaining an adequate quantity of sporozoite mRNA, Northern blot analysis could not be performed at this stage and transcription of *lsa-3* gene was studied by RT-PCR. Oligonucleotides i1 (+) and i2 (-), located 3' of exon 1 and 5' of exon 2 respectively, allowed amplification of the expected 125 bp fragment in NF54 mRNA (lane 2) whereas control DNA (lane 3) and contaminating DNA (lane 2) gave a 293 bp band. Lanes 1: 100 bp ladder (Amersham). Effective splicing of the intron were further confirmed by subcloning of the 125 bp fragment and complete sequencing.

B. Western blot analysis of protein extracts from uninfected mosquito salivary glands, NF54 sporozoites

and blood stages (r: rings, s: schizonts) using mouse antisera directed against C) control GST recombinant protein, 1) GST-PC recombinant protein, 2) oligonucleotides GP5-GP6-GP8-GP11, 3) GST-729 recombinant protein (see Methods). In sporozoites, LSA-3 is visualized as a 175 kDa protein (*), in agreement with LSA-3 theoretical molecular weight calculated (for NF54 sequence) with the PEPTIDEMASS program (Wilkins et al., 1997 and http://www.expasy.ch/tools/peptide-mass.html). C. By IFAT, LSA-3 appears to be located in some areas of the membrane and to distribute over the cytoplasm of sporozoites. Bars correspond to 10 µm.

Immunofluorescence Antibody Test

mouse anti-NR2 peptide antibodies Five day-old liver schizonts (Cebus)

chimpanzee anti-NR2 peptide antibodies Six day-old liver schizonts (chimpanzee)

By IFAT, LSA-3 appears located in the parasitophorous vacuole of trophozoites and in the pseudocytomere, i.e. the fluffy material surrounding merozoites from mature liver schizonts. Bars correspond to $20\,\mu m$.

RT-PCR, Northern blot, Western Blot: not accessible

Northern blot

5

10

15

20

25

30

35

45

50

55

. negative (DNA probes: DG729 and PC insert; data not shown)

Western blot (see sporozoite Western blot for comparison with sporozoite and control extracts run in parallel)

. negative on extracts from all forms when using mouse antisera directed against peptides GP5-GP6-GP8-GP11 (see Methods) and GST-PC recombinant protein

. cross-reactions observed on ring and schizont extracts when using human and/or mouse antibodies directed against R2 repeats (anti-GST-729, -GST-NN and -RE antibodies)

IFAT

. negative on all blood stage forms with antibodies against NR2 peptide and GST-PC recombinant (not shown)

. cross-reactions observed on rings and schizonts with human and mouse antibodies directed against R1-R2 repeats (anti-GST-729, -GST-NN and -RE antibodies; not shown)

HOMOLOGIES

Some observation is a conference of the

Data banks screening (GenBank, EMBL and SwissProt) with LSA-3 non-repeated sequences did not reveal any significant homology (>30%) with other known genes or proteins. As expected from their high valine and glutamine content, R2 repeated sequences did show significant homologies with PfRESA repeats, expressed at the surface of infected-erythrocytes and a member of the *P. falciparum* glutamic acid-rich antigenic network which also comprises antigens Pf11.1 and Ag332 (Moelans & Schoenmakers, 1992).

lsa-3 gene is a single-copy gene in P. falciparum genome.

A single band, corresponding to a single-copy gene, is observed below in each of lanes 1-4 where a DG729 DNA probe was hybridized at low-stringency with (see section "Restriction map") Sca VEco RI (lanes 1-2) and Eco RI/Hind III (lanes 3-4)-digested P. falciparum DNA from NF54 (lanes 1, 3) and T9/96 (lanes 2, 4) parasites.

The same experiment performed with Eco RVHind III-digested DNA from Plasmodium gallinaceum (lane 7), vivax (lane 8), knowlesi (lane 9), cynomolgi (lane 10), chabaubi (lane 12), yoelii (lane 13) and berghei (lane 14) did not reveal any homologous sequences in these species, except in the simian parasite P. reichenowi (lane 5) which is closely related to P. falciparum. Lanes 6 and 11: molecular weight markers.

SYNTHETIC PEPTIDES & RECOMBINANT PROTEINS

แหน่งใจวินีเก็บอยระยะเมื่อให้เลือนเลือน

10

5

15

20

25

30

35

40

45

STATES TO BENEFINE

CT1 -

NR1 -*NR2 -

. CT1 . NR1 aa 140-159 aa 177-201 aa 198-223

B-729

RE -

.NR2

. RE

derived from block R2 of clone DG729

GST-NN

PEPTIDES

LLSNIEEPKENIIDNLLNNI

GST-PC

DELFNELLNSVDVNGEVKENILEES

LEESQVNDDIFNSLVKSVQQEQQHNV VESVAPSVEESVAPSVEESVAENVEESV

*: for the immunisations, CT1 and NR2 were also employed as palmitoyl-conjugated lipopeptides prepared as described in Ben Mohamed et al. (1997).

ANGGREGOVANT DIGHTENS

- . B-729: B-galactosidasefused protein encoded by the DG729 insert (aa 1'-150'), cloned in frame within the Eco RI site of the phage $\lambda gt11$
- . GST-729: GST (glutathione-S-transferase)-fused protein encoded by the DG729 insert (aa 1'-150'), cloned in frame within the *Eco* RI site of pGEX.A plasmid (Invitrogen)
- . GST-NN: GST-fused protein (aa 369-447) encoded by the klenow filled-in NlaIV-NlaIV restriction fragment (nucl.1269-1509, K1 strain), cloned in frame within the SmaI site of pGEX-2T plasmid (Invitrogen)
- . GST-PC: GST-fused protein (aa 869-1786) encoded by the klenow filled-in PvuII-ClaI restriction fragment (nucl.2768-5574, K1 strain), cloned in frame within the klenow filled-in Eco RI site of pGEX-3X plasmid (Invitrogen)

METHODS

1. Parasites

25

40

[0083] Blood stages of *P. falciparum* T9/96 clone (Thaithong *et al.*, 1984), NF54 (Ponnudurai et *al.*, 19881) and K1 (Thaithong and Beale, 1981) strains were cultured as described by Trager and Jensen (1976). *P. falciparum* sporozoites were obtained from NF54 strain as described in Ponnodurai *et al.* (1989) and from mosquitoes fed with gametocytes produced *in vitro* from Thai patient isolates (Galey et al., 1990). *P. falciparum* liver schizonts were identified in liver biopsies of a Sapajou monkey (*Cebus apella*, in day 5 post-sporozoite challenge) infected with the African isolate 730XI (Druilhe *et al.*, 1984), and of a chimpanzee (*Pan troglodytes*, in day 6 post-sporozoite challenge) infected with NF54 strain (Meis *et al.*, 1990).

2. Nucleic acid isolation and hybridisation

[0084] Parasite genomic DNA was purified from saponin-lysed infected erythrocytes (Robson *et al.*, 1991). Total RNA from sporozoites and parasite blood stages were extracted according to Chomczynski *et al.* (1987). DNA probes were randomly [32P]-radiolabelled according to the manufacturer's recommendations (Amersham, UK). Southern and Northern blottings, probe hybridisations and washes were performed on 5-10 μg of material by standard methods (Sambrook *et al.*, 1989).

Low stringency cross-species hybridisations were performed overnight at 54°C in: 5x Denhardt's solution, 6x SSC buffer, 0.1 % SDS, 0.1 mg/ml sonicated salmon sperm DNA. Membranes were washed 30 min. at 54°C in 0.2X or 0.1X SSC buffer before autoradiography.

3. Cloning and sequencing protocols

[0085] A size-selected (0.5-1.5 Kb) genomic expression library was prepared in the phage λgt11 from *P. falciparum* T9/96 DNA and differentially screened with various stage-restricted sera as previously described (Guérin-Marchand *et al.*, 1987). λgt11-DG729 and -DG679 DNA were prepared from a liquid phage lysate. The gel-purified *EcoRI* inserts were cloned into plasmid pUC18 and sequenced. The DG729 insert was randomly radiolabelled and used as a probe to screen an *EcoRI*-digested genomic DNA library prepared from the K1 strain in the phage λgt10 (generously provided by G. Langsley, Pasteur Institute). Five positive clones were isolated and analysed. One of them, clone k1.2, was found to contain the largest *EcoRI* insert and was therefore chosen for subcloning and complete sequence analysis. This 6.7 Kb *EcoRI* fragment and subclones derived from it (spanning the entire insert) were cloned into pUC18. A series of Exonuclease III-digested subclones from the 1.8 Kb repeated regions R1-R2 of clone k1.2 was obtained using the Erase-a-Base Kit (Promega, U.S.A.). All clones and subclones described above were sequenced on both strands with insert flanking or internal oligonucleotidic primers using the dideoxy method (Sanger *et al.*, 1977) and the Sequenase enzyme system (United States Biochemicals Corp.).

4. PCR and RT-PCR amplifications

[0086] RT-PCR experiments were performed on 300-500 ng of total RNA (for blood stage parasites) or on the RNA pellet obtained from 10⁶-10⁷ NF54 sporozoites. cDNA were synthesized from 30 pmoles of primers S2(-) by the MMLV-reverse transcriptase in a final volume of 20 µl according to the manufacturer 's recommendations (Gibco-BRL). PCR reactions were carried out on 10 µl of cDNA synthesis reaction or on 1 µg of genomic DNA, according to the manufacturer 's recommendations (Amersham, UK).

For *Isa-3* amplification in human blood samples and *P. falciparum* detection in challenged chimpanzees, PCR was performed as described in Bottius *et al.* (1996) where primers described within for clone DG157 correspond to primers S1 and S2 reported here.

50 5. Peptides synthesis and production of recombinant proteins

[0087] Peptides and lipopeptides used for chimpanzee immunisations were synthesized as described in Ben Mohamed *et al.* (1997). All peptides and lipopeptides were purified over 90% by reversed-phase chromatography, the impurities essentially consisting in shorter sequences. Long synthetic peptides GP5 (aa 1241-1346), GP6 (aa 1143-1255), GP8 (aa 1026-1095) and GP11 (aa 840-907) were synthesized as described in Roggero *et al.* (1995); they are all located in region NR-B (strain K1), i.e. the non-repeated region of PC insert.

Recombinant protein β-729 was prepared from a liquide lysate as described in Guérin-Marchand *et al.* (1987). Control GST protein and GST-fused recombinant proteins were prepared according to the manufacturer 's recommendations

(Invitrogen) except for GST-PC which was prepared from 20 liter cultures due to poor production yields. This large scale culture was incubated until OD_{600} = 8.0; bacteria were then pelleted, lysed using a French Press and filtered before standard purification.

6. Antibodies and antisera

[0088] Human antibodies were immunopurified on recombinant proteins and peptides as previously described in Marchand & Druilhe (1990) and Brahimi *et al.* (1993), respectively. Mouse and chimpanzee anti-NR2 peptide antibodies were induced respectively in mice and in chimpanzee Gerda by lipopeptide NR2 injections as described in Ben Mohamed *et al.* (1997). Mouse antisera against GST-PC recombinant protein and long peptides GP5-6-8-11 (used for Western blotting) were obtained following 3 subcutaneous injections of the immunogen (100 μg) emulsified in SBAS2 adjuvant (Stoute *et al.*, 1997).

7. Western blot analysis

15

20

30

35

40

45

50

[0089] Proteins from intraerythrocytic parasites and sporozoites were solubilized in sodium dodecyl sulphate (SDS)-containing sample buffer, subjected to 5% SDS-polyacrylamide gel electrophoresis under reducing conditions, electroblotted onto nitrocellulose membrane and detected as described previously (Bouharoun-Tayoun & Druilhe, 1992), using mouse antibodies (at dilution 1/100). Visualisation was performed by peroxidase-conjugated goat anti-human IgG and chemoluminescence (ECL Western blotting reagents, Amersham).

8. Immunofluorescence Antibody Test (IFAT)

[0090] IFAT were performed as described previously (Druilhe *et al.*, 1986) on asynchronous erythrocytic cultures of *P. falciparum* NF54 strain, on freshly dissected live sporozoites labelled in suspension, on wet sporozoites deposited on poly-L-lysine-coated slides and on glutaraldehyde-fixed sporozoites, as well as on Camoy-fixed liver schizonts. Positive IFAT on liver schizonts were verified by phase contrast microscopy and subsequent Giemsa staining of the sections (Druilhe *et al.*, 1984).

Ahlborg, N., et al. Definition of the epitope recognized by the *Plasmodium falciparum*-reactive human monoclonal antibody 33G2. *Mol. Biochem. Parasitol.*, **46**, 89-95 (1991).

Aidoo, M., et al. CTL epitopes for HLA-B53 and other HLA types in the malaria vaccine candidate Liver Stage Antigen-3. Infect. Immun., 68, 227-232 (2000).

Barnes, D. A., et al. Plasmodium falciparum. D260, an intracrythrocytic parasite protein, is a member of the glutamic acid dipeptide-repeat family of proteins. Experim. Parasitol., 81, 79-89 (1995).

Ben Mohamed, L., *et al.* Lipopeptide immunization without adjuvant induces potent and long-lasting B, T helper, and cytotoxic T lymphocyte responses against a malaria liver stage antigen in mice and chimpanzees. *Eur. J. Immunol.*, **27**, 1242-1253 (1997).

Bottius, E., et al. Malaria - even more chronic in nature than previously thought - evidence for subpatent parasitaemia detectable by the polymerase chain reaction. *Trans. Roy. Soc. Trop. Med. Hyg.*, **90**, 15-19 (1996).

Bouharoun-Tayoun, H. & Druilhe, P. *Plasmodium falciparum* malaria: evidence for an isotype imbalance which may be responsible for delayed acquisition of protective immunity. *Infect: Immun.*, **60**, 1473-1481 (1992).

Brahimi, K., et al. Fast immunopurification of small amounts of specific antibodies on peptides bound to ELISA plates. J. Immunol. Methods, 162, 69-75 (1993).

Chomczynski, P. & Sacchi, N. Single step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. *Anal. Biochem.*, **162**, 156-161 (1987).

Druilhe, P., et al. Species- and stage-specific antigens in exoerythrocytic stages of *Plasmodium falciparum*. *Am. J. Trop. Med. Hyg.*, **33**, 336-341 (1984).

Druilhe, P., et al. Levels of antibodies to Plasmodium falciparum sporozoite surface antigens reflect malaria trans-

mission rates and are persistent in the absence of reinfections. Infect.	. Immun., 5	53 , 393-397	(1986)
--	-------------	---------------------	--------

5

20

30

55

Druilhe, P., et al. A primary malaria infection is composed of a very wide range of genetically diverse but related parasites. J. Clin. Invest., 101, 1-9 (1998).

- Gaboriaud, C., et al. Hydrophobic cluster analysis: an efficient new way to compare and analyse amino acid sequences. FEBS Lett., 224, 149-155 (1987).
- Galey, B., et al. Evidence for diversity of *Plasmodium falciparum* sporozoite surface antigens derived from analysis of antibodies elicited in humans. *Infect. Immun.*, **58**, 2995-3001 (1990).
 - Gardner, M. J., et al. Chromosome 2 sequence of the human malaria parasite *Plasmodium falciparum*. Science, **282**, 1126-1132 (1998).
- Guérin-Marchand, C., et al. A liver stage-specific antigen of Plasmodium falciparum characterized by gene cloning. Nature (London), 329, 164-167 (1987).
 - Hernandez-Rivas, R., et al. Compartmentalization of genes coding for immunodominant antigens to fragile chromosome ends leads to dispersed subtelomeric gene families and rapid gene evolution in *Plasmodium falciparum*. *Mol. Biochem. Parasitol.*, 78, 137-48 (1996).
 - Meis, J. F. G. M., et al. Plasmodium falciparum. studies on mature excerythrocytic forms in the liver of the chimpanzee, Pan troglodytes. Exp. Parasitol., 70, 1-11 (1990).
- Moelans, I. I. M. D. & Schoenmakers, J. G. G. Crossreactive antigens between life cycle stages of *Plasmodium falciparum*. *Parasitol. Today*, 8, 118-123 (1992).
 - Nielsen, H., et al. Identification of prokaryotic and eukaryotic signal peptides and prediction of their clivage sites. Prot. Engineering, 10, 1-6 (1997).
 - Ponnudurai, T., et al. Chloroquine sensitivity of isolates of *Plasmodium falciparum* adapted to *in vitro* culture. *Trop. Geo. Med.*, 33, 50-4 (1981).
- Ponnudurai, T., et al. Sporozoite load of mosquitoes infected with *Plasmodium falciparum. Trans. Roy. Soc. Trop. Med. Hyg.*, **83**, 67-70 (1989).
 - Robson, K. J. H. & Jennings, M. W. The structure of the calmodulin gene of *Plasmodium falciparum. Mol. Biochem. Parasitol.*, **46**, 19-34 (1991).
- 40 Roggero, M.A., et al. Synthesis and immunological characterization of 104-mer and 102-mer peptides corresponding to the N-and C-terminal regions of the *Plasmodium falciparum* CS Protein. *Mol. Immunol.*, 32, 1301-1309 (1995).
- Sambrook, J., et al. Molecular cloning. A laboratory manual-2nd edition. Cold Spring Harbor, New York, Cold Spring
 Harbor Laboratory Press (1989).
 - Sanger, F., et al. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. U.S.A., 74, 5463-5467 (1977).
- 50 Stoute, J.A., et al. A preliminary evaluation of a recombinant Circumsporozoite Protein vaccine against Plasmodium falciparum malaria. New Engl. J. Med., 336, 86-91 (1997).
 - Thaithong, S. & Beale, G. H. Resistance of ten Thai isolates of *Plasmodium falciparum* to chloroquine and pyrimethamine by in vitro tests. *Trans. Roy. Soc. Trop. Med. Hyg.*, **75**, 271-3 (1981).
 - Thaithong, S., et al. Clonal diversity in a single isolate of the malaria parasite *Plasmodium falciparum*. *Trans. Roy. Soc. Trop. Med. Hyg.*, **78**, 242-5 (1984).

Trager, W. & Jensen, J. B. Human malaria parasites in continuous culture. Science, 193, 673-675 (1976).

Wilkins, M.R. *et al.* Detailed peptide characterisation using PEPTIDEMASS - a World Wide Web accessible tool. *Electrophoresis*, **18**, 403-408 (1997).

Annex to the application documents - subsequently filed sequences listing

[0091]

5 SECUENCE LISTING <110> SmithKline Beecham Biologicals S.A. <120> Immunogenic compositions comprising 10 Liver Stage Malarial Antigens <130> B45250 <160> 8 15 <170> FastSEQ for Windows Version 3.0 <210> 1 <211> 5529 <212> DNA <213> K1 Parasite Strain 20 atgacaanta gtaattacaa atcaantaat aaaacatata atgaaaataa taatgaacaa ataactacca tatttaatag aacaaatatg aatccgataa aaaaatgtca tatgagagaa 120 aaaataaata agtactitti titgatcaaa attitgacat gcaccattit aatatgggct 180 240 300 360 25 ttttagtctg atataaacaa gagttggaaa aaaaataegt atgtagataa gaaattgaat 420 aaactattta acagaagttt aggagaatct caagtaaatg gtgaattagc tagtgaagaa 480 gtaaaggaaa aaattottga ottattagaa gaaggaaata cattaactga aagtgtagat 540 gataataaaa atttagaaga agccgaagat ataaaggaaa atatcttatt aagtaatata 600 gaagaaccaa aagaaaatat tattgacaat ttattaaata atattggaca aaattcagaa 660 anacangaan gtgtatcaga aaatgtacaa gtcagtgatg aactttttaa tgaattatta 720 30 aatagtgtag atgttaatgg agaagtaaaa gaaaatattt tggaggaaag tcaagttaat 780 gacgatattt ttaatagttt agtaaaangt gttcaacnag nacancnaca cnatgttgan 840 gaaaaagttg aagaaagtgt agaagaaaat gacgaagaaa gtgtagaaga aaatgtagaa 900 gaaaatgtag aagaaaatga cgacggaagt gtagcctcaa gtgttgaaga aagtatagct 960 tcaagtgttg atgaaagtat agattcaagt attgaagaaa atgtagctcc aactgttgaa 1020 gaaategtag etccaagtgt tgtagaaagt gtggeteeaa gtgttgaaga aagtgtagaa 1080 gaaaatgttg aagaaagtgt agctgaaaat gttgaagaaa gtgtagctga aaatgttgaa 1140 35 gaaagtgtag etgaaaatgt tgaagaaagt gtagetgaaa atgttgaaga aategtaget 1200 ccaactgttg aagaaatcgt agetecaact gttgaagaaa ttgtagetee aagtgttgta 1260 gaaagtgtgg ctccaagtgt tgaagaaagt gtagaagaaa atgttgaaga aagtgtagct 1320 gaaaatgttg aagaaagtgt agctgaaaat gttgaagaaa gtgtagctga aaatgttgaa 1380 gaaagtgtag ctgaaaatgt tgaagaaagt gtagctgaaa atgttgaaga aatcgtagct 1440 ccaactgttg aagaaatcgt agetecaact gttgaagaaa ttgtagetee aagtgttgta 1500 gaaagtgtgg ctccaagtgt tgaagaaagt gtagaagaaa atgttgaaga aagtgtagct 1560 40 gaaaatgttg aagaaagtgt agctgaaaat gttgaagaaa gtgtagctga aaatgttgaa 1620 gaaagtgtag ctgaaaatgt tgaagaaagt gtagctgaaa atgttgaaga aagtgtagct 1680 gassatgttg aagaaagtgt agctgaaaat gttgaagaaa tcgtagctcc aactgttgaa 1740 gaaategtag etecaacigi igaagaaati gtagetecaa gigtigtaga aagigtgget 1800 ccaagtgttg aagaaagtgt agaagaaaat gttgaagaaa gtgtagctga aaatgttgaa 1860 qaaaqtqtaq ctqaaaatgt tgaagaaagt gtagctgaaa atgttgaaga aagtgtagct 1920 gammatgttg magamatcgt agetecanet gttgamgamma tegtagetee maetgttgam 45 1980 gaaattgtaq ctccaagtgt tgtagaaagt gtggctccaa gtgttgaaga aagtgtagaa 2040 gaaaatgttg aagaaagtgt agctgaaaat gttgaagaaa gtgtagctga aaatgttgaa 2100 gasagtgtag ctgaaaatgt tgaagaaatc gtagctccaa ctgttgaaga aatcgtagct 2160 ccaactgttg aagaaattgt agctccaagt gttgtagaaa gtgtggctcc aagtgttgaa 2220 gaaagtgtag aagaaaatgt tgaagaaagt gtagetgaaa atgt:gaaga aagtgtaget 2280 gaaaatgttg aagaaagtgt agctgaaaat gttgaagaaa gtgtagctga aaatgttgaa 2340 50 gaaatcgtag ctccaactgt tgaagaaatc gtagctccaa ctgttgaaga aattgtagct 2400 ccaagtgttg tagaaagtgt ggctccaagt gttgaagaaa gtgtagaaga aaatgttgaa 2460

55

2520

2580

gaaagtgtag etgaaaatgt tgaagaaagt gragetgaaa atgttgaaga aagtgtaget

gammatgttg amgmmmgtgt mgctccmact gttgmmgmmm ttgtmgctcc mmgtgttgmm

gaaagtgtag ctccaagtgt tgaagaaagt gttgctgaaa acgttgcaac aaatttatca

2640

```
gacaatottt taagtaattt attaggtggt atcgaaactg aggaaataaa ggacagtata
                                                                      2700
                                                                      2760
ttaaatgaga tagaagaagt aaaagaaaat gtagtcacca caatactaga aaacgtagaa
                                                                      2820
gaaactacag ctgaaagtgt aactactttt agtaacatat tagaggagat acaagaaaat
actattacta atgatactat agaggaaaaa ttagaagaac tecacgaaaa tgtattaagt
                                                                      2880
gccgctttag aaaataccca aagtgaagag gaaaagaaag aagtaataga tgtaattgaa
                                                                      2940
                                                                      3000
gaagtaaaag aagaggtege taccacttta atagaaactg tggaacagge agaagaaaag
agegeaaata caattaegga aatatttgaa aatttagaag aaaatgeagt agaaagtaat
                                                                      3060
                                                                      3120
gaaaatgttg cagagaattt agagaaatta aacgaaactg tatttaatac tgtattagat
aaagtagagg aaacagtaga aattagcgga gaaagtttag aaaacaatga aatggataaa
                                                                      3180
gcatttttta gtgaaatatt tgataatgta aaaggaatac aagaaaattt attaacaggt
                                                                      3240
                                                                      3300
atgtttcgaa gtatagaaac cagtatagta atccaatcag aagaaaaggt tgatttgaat
gamaatgtgg ttagttcgat tttagataat atagaaaata tgaaagaagg tttattaaat
                                                                      3360
                                                                      3420
aaattagaaa atatttcaag tactgaaggt gttcaagaaa ctgtaactga acatgtagaa
                                                                      3480
caaaatgtat atgtggatgt tgatgttcct gctatgaaag atcaattttt aggaatatta
aatgaggcag gagggttgaa agaaatgttt tttaatttgg aagatgtatt taaaagtgaa
                                                                      3540
agtgatgtaa ttactgtaga agaaattaag gatgaaccgg ttcaaaaaaga ggtagaaaaa
                                                                      3600
                                                                      36€0
gaaactgtta gtattattga agaaatggaa gaaaatattg tagatgtatt agaggaagaa
                                                                      3720
anagaagatt taacagacaa gatgatagat gcagtagaag aatccataga aatatcttca
gattetaaag aagaaactga atetattaaa gataaagaaa aagatgttte aetagttgtt
                                                                      3780
gaagaagtto aagacaatga tatggatgaa agtgttgaga aagttttaga attgaaaaat
                                                                      3840
atggaagagg agttaatgaa ggatgctgtt gaaataaatg acattactag caaacttatt
                                                                      3900
                                                                      396D
gaagaaacto aagagttaaa tgaagtagaa gcagatttaa taaaagatat ggaaaaatta
aaagaattag aaaaagcatt atcagaagat totaaagaaa taatagatgo aaaagatgat
                                                                      4020
                                                                      408D
acattagaaa aagttattga agaggaacat gatataacga cgacgttgga tgaagttgta
gaattaaaag atgtegaaga agacaagate gaaaaagtat etgatttaaa agatettgaa
                                                                      4140
                                                                      4200
gaagatatat taaaagaagt aaaagaaatc aaagaacttg aaagtgaaat titagaagat
tatamagaat taaaaactat tgaaacagat attttagaag agaamamaga matagamama
                                                                      4260
                                                                      4320
gatcattttg aaaaattcga agaagaaget gaagaaataa aagatcttga agcagatata
                                                                      43ED
ttaaaagaag tatcttcatt agaagttgaa gaagaaaaaa aattagaaga agtacacgaa
ttaaaagaag aggtagaaca tataataagt ggtgatgcgc atataaaagg tttggaagaa
                                                                      4440
                                                                      4500
gatgatttag aagaagtaga tgatttaaaa ggaagtatat tagacatgtt aaagggagat
atggaattag gggatatgga taaggaaagt ttagaagatg taacaacaaa acttggagaa
                                                                      456D
agagttgaat ccttaaaaga tgttttatct agtgcattag gcatggatga agaacaaatg
                                                                      4620
                                                                      4680
aaaacaagaa aaaaagctca aagacctaag ttggaagaag tattattaaa agaagaggtt
aaagaagaac caaagaaaaa aataacaaaa aagaaagtaa ggtttgatat taaggataag
                                                                      4740
gaaccaaaag atgaaatagt agaagttgaa atgaaagatg aagatataga agaagatgta
                                                                      4800
gaagaagata tagaagaaga tatagaagaa gataaagttg aagatataga tgaagatata
                                                                      4860
                                                                      4920
gatgaagata taggtgaaga caaagatgaa gttatagatt taatagtcca aaaagagaaa
cgcattgasa aggttasagc gasaasgasa asattagasa asaasgttga agaaggtgtt
                                                                      4980
agtggtctta aaaaacacgt agacgaagta atgaaatatg ttcaaaaaat tgataaagaa
                                                                      5040
gttgataaag aagtatctaa agctttagaa tcaaaaaaatg atgttactaa tgttttaaaa
                                                                      5100
                                                                      5160
caaaatcaag attttttag taaagttaaa aacttcgtaa aaaaatataa agtatttgct
                                                                      5220
gcaccattca tatetgccgt tgcagcattt gcatcatatg tagttgggtt ctttacattt
tetttatttt catcatgtgt aacaataget tettcaactt acttattatc aaaagttgac
                                                                      5280
                                                                      5340
aaaactataa ataaaaataa ggagagaccg ttttattcat ttgtatttga tatctttaag
                                                                      5400
aatttaaaac attatttaca acaaatgaaa gaaaaattta gtaaagaaaa aaataataat
                                                                      5460
gtaatagaag taacaaacaa agctgagaaa aaaggtaatg tacaggtaac aaataaaacc
gagamaacaa ctaaagttga taaaaataat maagtaccga ammaagaag macgcamaan
                                                                      5520
                                                                      5529
```

<210> 2 <211> 1787

<212> PRT

<213> Kl parasite clone

<400> 2

55

10

15

20

25

30

35

40

45

	Tle	Tars	35 Tle	T.eu	Thr	Cvs	Thr	40 Tle	Len	Tle	Тт	Ala	45 Val	Gln	Tvr	Asp
		50					55				_	60				
	65		Ser			70					75					80
	Lys	ГЛЗ	Leu	Asn	Був 85	Leu	Phe	Asn	Arg	Ser 90	Leu	Gly	Glu	Ser	Gln 95	Val
	Asn	Gly	Glu	Leu 100	Ala	Ser	Glu	Glu	Val 105	Lys	Glu	ràs	Ile	Leu 110	Yab	Leu
	Leu	Glu	Glu 115	GJA	Asn	Thr	Leu	Thr 120	Glu	Ser	Val	Авр	Asp 125	Asn	Lys	Asn
	Leu	Glu 130	Glu	Ala	Glu	Asp	Ile 135	Lys	Glu	naA	Ile	Leu 140	Leu	Ser	Asn	Ile
	Glu 145		Pro	Lув	Glu	Asn 150	_	Ile	Asp	Asn	Leu 155		Asn	λsn	Ile	Gly 160
		Asn	Ser	Glu	Lys 165		Glu	Ser	Val	Ser 170		Asn	Val	Gln	Val 175	
	Asp	Glu	Leu	Phe 180		Glu	Leu	Leu	Asn 185		Val	Двр	Val	Asn 190		Glu
	Val	Lys	Glu 195		Ile	Leu	Glu	Glu 200		Gln	Val	Aan	Авр 205	_	Ile	Phe
	Asn	Ser 210	Leu	Val	Lув	Ser	Val 215	_	Gln	Glu	Gln	Gln 220		Asn	Val	Glu
	Glu 225		Val	Glu	Glu	Ser 230		Glu	Glu	Asn	Asp 235		Glu	Ser	Val	Glu 240
		Asn	Val	Glu	Glu 245	Asn	Val	Glu	Glu	Asn 250	Asp	qaA	Gly	Ser	Val 255	Ala
•	Ser	Ser	Val	Glu 260		Ser	Ile	Ala	Ser 265		Val	Asp	Glu	Ser 270	Ile	Ąsp
	Ser	Ser	Ile 275		Glu	Asn	Val	Ala 280		Thr	Val	Glu	Glu 285		Val	Ala
	Pro	Ser 290	Val	Val	Glu	Ser	Val 295		Pro	Ser	۷al	Glu 300		Ser	Val	Glu
	Glu 305		Val	Glu	Glu	Ser 310		Ala	Glu	naA	Val 315		Glu	Ser	Val	Ala 320
		Asn	Val	Glu	Glu 325		Val	Ala	Glu	Asn 330	Val	Glu	Glu	Ser	Val 335	Ala
	Glu	Asn	Val	Glu 340	Glu	Ile	Val	Ala	Pro 345	Thr	Val	Glu	Glu	11e 350	Val	Ala
	Pro	Thr	Val 355	Glų	9 1u	Ile	Val	Ala 360	Pro	Ser	Val	Val	Glu 365	Ser	Val	Ala
	Pro	Ser 370	Val	Glu	Glu	Ser	Val 375	Glu	G1u	Asn	Val	Glu 380	Glu	Ser	Val	Ala
	Glu 385	Asn	Val	Glu	Glu	Ser 390	Val	Ala	Glu	Asn	Val 395	Glu	Glu	Ser	Val	Ala 400
		Asn	Val	Glu	Glu 405		Val	Ala	Glu	Asn 410	Val	Glu	Glu	Ser	Val 415	
	Glu	Asn	Val	Glu 420		lle	Val	Ala	Pro 425		Val	Glu	Glu	Ile 430	Val	Ala
	Pro	Thr	Val 435		Glu	11e		Ala 440	Pro	Ser	Val	Val	Glu 445		Val	Ala
	Pro	Ser 450	Val	Gl u	Glu	Ser	Val 455	Glu	Glu	Asn	Val	Glu 460	_	Ser	Val	Ala
	Glu 465		Val	Glu	Glu	Ser 470		Ala	Glu	Asn	Val 475		Glu	Ser	Val	Ala 480
, '		Asn	Val	Glu	Glu 485		Val	Ala	Glu	Asn 490		Glu	Glu	Ser	Val 495	
	Glu	Asn	Val	Glu 500		Ser	Val	Ala	Glu 505		Val	Glu	Glu	Ser 510		Ala
	Glu	Asn	Val 515		Glu	Ile	Val	Ala 520		Thr	Val	Glu	Glu 525		Val	Ala
	Pro	Thr 530	Val	Glu	Glu	Ile	Val 535		Pro	Ser	Val	Val 540		Ser	Val	Ala
	Pro		Val	Glu	Glu	Ser		Glu	Glu	aeA	Val		Gl u	Ser	Val	Ala

	545					550					555					560
			Val	Glu	Glu 565	Ser	Val	Ala	Glu	Asn 570	Val	Glu	Glu	Ser	Val 575	Ala
5	Glu	Asn	Val	Glu 580		Ser	Val	Ala	G] u 585		Val	Glu	Glu	Ile 590	Val	Ala
	Pro	Thr	Val 595		Glu	Ile	Val	Ala 600	Pro	Thr	Val	Glu	Glu 605	Ile	Val	Ala
	Pro	Ser 610	Val	Val	Glu	Ser	Val 615	Ala	Pro	Ser	Val	Glu 620	Glu	Ser	Val	Glu
10	625					630					635					Ala 640
		Asn			645					650					655	
				660					665					670		Ala
15		Ser	675					680					685			
		Asn 690					695					700				
	705	Asn				710					715					720
20		Asn			725					730					735	
		Thr		740					745					750		
		Ser	755					760					765			
25		770 Asn					775					780				
	785	Ser				790					795					800
		Asn			805					810					815	
30		Gly		820					825					830		
	_	Glu	B35					840					845			
		850 Thr					855					860				
35	865	Gln				870					875					880
		Leu			885				_	890					895	
		Glu		900					905					910		
40		Val	915	_	-			920	_				925		_	
		930 Ala	•				935					940				
	945	Glu				950					955					960
45		Val			965					970					975	
		Gly		980				_	985					990-		
		Ile	995					1000)		_	_	1005			
50		1010 Phe)	_			1015	;				1020)			_
•	1025		3			1030					1035					104
	Val	Asp	Leu	Asn	Glu 1045		Val	Val	Ser	Ser 1050		Leu	Veb	Asn	Ile 1055	
	Asn	Met	Lys	Glu	Gly	Leu	Leu	Asn	Lys	Leu	Glu	Asn	Ile	Ser	Ser	Thr
55																

			105					106					1070	,	
Glu	Gly	Val 107	1060 Gln		Thr	Val	Thr 108	Glu		Val	Glu	Gln 108	Asn		Tyr
Val	Asp 109	Val	Asp	Val	Pro	Ala 1099	Met		Asp	Gln	Phe 1100	Leu		Ile	Leu
Asn 110	Gl u		Gly	Gly	Leu 1110	Lys		Met	Phe	Phe 1115	Asm		Glu	Авр	Val 112
		Ser	Glu	Ser 1125	Авр		Ile	Thr	Val 113(Glu		Ile	Lys	Авр 1135	Glu
Pro	Val	Gln	Lys 1140	Glu		Glu	Lys	Glu 1149	Thr		Ser	Ile	Ile 1150	Glu	
Met	Glu	Glu 1159	Asn	,	Val	Азр	Val 1160	Leu		Glu	Glu	Lys 1169	Glu		Leu
Thr	Asp 117	Lys	Met	Ile	Asp	Ala 1179	Val		Glu	Ser	Ile 1180	Glu		Ser	Ser
Asp			Glu	Glu	Thr			Ile				Glu	Lys	Asp	
1189		7	Val	G1	1190		~1 ~	Z am		1199		N a m	c1	0a=	120
				1205	5				1210)				1215	•
Glu	Lys	Val	Leu 1220		Leu	Lys	Asn	Met 122		Glu	Glu	Leu	Met 1230		Asp
Ala	Val	Glu 1239	Ile		Авр	Ile	Thr 1240		ГÀв	Leu	Ile	Glu 1245		Thr	Gln
Glu	Leu 1250		Glu	Val	Glu	Ala 1259		Leu	Ile	Lys	Авр 1260		Glu	Lys	Leu
1269	5		Glu		1270)				1275	;				128
				1285	5				1290)				1295	;
Thr	Thr	Thr	Leu 1300		Glu	Val		Glu 1305		ГХв	Asp	Val	Glu 1310		Asp
•		1315				_	1320)	_			1325	,		
ГÀа	Glu 1330		Lys	Glu		Lys 1339		Leu	Glu	Ser	Glu 1340		Leu	Glu [.]	Asp
1345	5		Leu	_	1350)			-	1355	;				136
Glu	Ile	Glu	Lys	Asp 1365		Phe	Glu		Phe 1370		Glu	Glu		Glu 1375	
			Leu 1380	•				1385	5				1390		
Val	Glu	Glu 1395	Glu	ГÀЗ	Lys	Leu	Glu 1400		Val	His	Glu	Leu 1405		Glu	Glu
Val			Ile	Ile	Ser			Ala	His	Ile	Lys 1420		Leu	Glu	Glu
Авр	1410 Asp		Glu	Glu	Val	1415 Asp		Leu	ГУB	Gly			Leu	Лар	Met
1429		~ 1	Авр		1430		C1	3		1435		~1··	Fo-		2144
ren	Lys	GIĀ	Авр	Mec 1445		Leu	Giy	Авр	1450	-	гув	GIU		1455	
Авр	Val	Thr	Thr 1460		Leu	Gly		Arg 1469		Glu	Ser		Lys 1470		Val
Leu	Ser	Ser 1475	Ala	Leu	Gly	Met	Авр 1480		Glu	Gln	Met	Lys 1485		Arg	Lys
Lys	Ala 1490		Arg	Pro	_	Leu 1495		Glu	Val	Leu	Leu 1500		Glu	Glu	Val
Lys 1509		Glu	Pro	Lys	Lys 1510	-	Ile	Thr	Lys	Lys 1515		Val	Arg	Phe	Asp 152
Ile	Lys	Asp	Lys	Glu 1525		Lys	Asp	Glu	Ile 1530		Glu	Val		Met 1535	
Asp	Glu	Asp	Ile 1540		Glu	Asp	Val	Glu 1545	Glu		Ile	Glu	Glu 1550	_	Ile
Glu	Glu	Авр 1555	Lуя	Val	Glu	Авр	Ile 1560		Glu	Авр	Ile	Asp 1565		Asp	Ile
Gly	Gl	Aen	Larg	lan	Glu	Va 1	T1_	λcn	[.en	Tle	Va1	Gln	Targ	a) ii	Iva

```
1570
                                    1575
               Arg Ile Glu Lys Val Lys Ala Lys Lys Lys Lys Leu Glu Lys Lys Val
                       1590 1595
               Glu Glu Gly Val Ser Gly Leu Lys Lys His Val Asp Glu Val Met Lys
                           1605 1610 1615
               Tyr Val Gln Lys Ile Asp Lys Glu Val Asp Lys Glu Val Ser Lys Ala
                         1620
                                      1625
                                                            1630
               Leu Glu Ser Lys Asn Asp Val Thr Asn Val Leu Lys Gln Asn Gln Asp
                     1635 1640 1645
               Phe Phe Ser Lys Val Lys Asn Phe Val Lys Lys Tyr Lys Val Phe Ala
10
                                  1655 1660
                 1650
               Ala Pro Phe Ile Ser Ala Val Ala Ala Phe Ala Ser Tyr Val Val Gly
               1665 1670 1675
                                                            168
               Phe Phe Thr Phe Ser Leu Phe Ser Ser Cys Val Thr Ile Ala Ser Ser
                            1685 1690
              Thr Tyr Leu Leu Ser Lys Val Asp Lys Thr Ile Asn Lys Asn Lys Glu
15
                       1700
                                  1705 1710
               Arg Pro Phe Tyr Ser Phe Val Phe Asp Ile Phe Lys Asn Leu Lys His
                    1715
                               1720
                                                  1725
               Tyr Leu Gln Gln Met Lys Glu Lys Phe Ser Lys Glu Lys Asn Asn Asn
                  1730 1735 1740
              Val Ile Glu Val Thr Asn Lys Ala Glu Lys Lys Gly Asn Val Gln Val
20
                    1750 1755 176
              1745
               Thr Asn Lys Thr Glu Lys Thr Thr Lys Val Asp Lys Asn Asn Lys Val
                           1765
                                     1770
               Pro Lys Lys Arg Arg Thr Gln Lys Ser Lys Glx
                         1780
                                           1785
25
                    <210> 3
                    <211> 1712
                    <212> DNA
                    <213> T9/96 Parasite Clone
                    <400> 3
30
              agtgatgaac tttttaatga attattaaat agtgtagatg ttaatggaga agtaaaagaa
              aatattttgg aggaaagtca agttaatgac gatattttta atagtttagt aaaaagtgtt
                                                                              120
              caacaagaac aacaacacaa tgttgaagaa aaagttgaag aaagtgtaga agaaaatgac
                                                                              180
              gaagaaagtg tagaagaaaa tgtagaagaa aatgtagaag aaaatgacga cggaagtgta
                                                                              240
              gectcaagtg ttgaagaaag tatagettca agtgttgatg aaagtataga ttcaagtatt
                                                                              300
              gaagaaaatg tageteeaae tgttgaagaa ategtagete caactgttga agaaattgta
                                                                              360
              getecaagtg ttgtagaaag tgtggeteca agtgttgaag aaagtgtage tecaagtgtt
                                                                              420
35
              gaagaaagtg tagctgaaaa tgttgaagaa agtgtagctg aaaatgttga agaaatcgta
                                                                              480
              getecaagtg ttgaagaaag tgtagetgaa aatgttgaag aaagtgtage tgaaaatgtt
                                                                              540
              gaagaaagtg tagctgaaaa tgttgaagaa agtgtagctg aaaatgttga agaaagtgta
                                                                              600
              gctgaaaatg ttgaagaaat cgtagctcca actgttgaag aaagtgtagc tccaactgtt
                                                                              660
              gaagaaattg tagctccaac tgttgaagaa agtgtagctc caactgttga agaaattgta
                                                                              720
              gttccaagtg ttgaagaaag tgtagctcca agtgttgaag aaagtgtagc tgaaaatgtt
                                                                              780
40
              gaagaaagtg tagctgaaaa tgttgaagaa agtgtagctg aaaatgttga agaaagtgta
                                                                              840
              getgaaaatg ttgaagaaag tgtagetgaa aatgttgaag aaategtage tecaagtgtt
                                                                              900
              gaagaaateg tageteeaac tgttgaagaa agtgttgetg aaaaegttge aacaaattta
                                                                              960
              teagacaate ttttaagtaa tttattaggt ggtategaaa etgaggaaat aaaggacagt
                                                                             1020
              atattaaatq agatagaaga agtaaaaqaa aatgtagtca ccacaatact agaaaaaqta
                                                                             1080
              gaagaaacta cagctgaaag tgtaactact tttagtaata tattagagga gatacaagaa
                                                                             1140
45
              aatactatta ctaatgatac tatagaggaa aaattagaag aactccacga aaatgtatta
                                                                             1200
              agtgccgctt tagaaaatac ccaaagtgaa gaggaaaaga aagaagtaat agatgtaatt
                                                                             1260
              gaagaagtaa aagaagaggt cgctaccact ttaatagaaa ctgtggaaca ggcagaagaa
                                                                             1320
              gagagcgaaa gtacaattac ggaaatattt gaaaatttag aagaaaatgc agtagaaagt
                                                                             1380
              aatgaaaaag ttgcagagaa tttagagaaa ttaaacgaaa ctgtatttaa tactgtatta
                                                                             1440
              gataaagtag aggaaacagt agaaattagc ggagaaagtt tagaaaacaa tgaaatggat
                                                                             1500
              aaagcatttt ttagtgaaat atttgataat gtaaaaggaa tacaagaaaa tttattaaca
                                                                             1560
              ggtatgtttc gaagtataga aaccagtata gtaatccaat cagaagaaaa ggttgatttg
                                                                             1680
              aatqaaaatq tggttagttc gattttagat aatatagaaa atatqaaaga aqqtttatta
              aataaattag aaaatatttc aagtactgaa gg
                                                                             1712
```

<211> 570 <212> PRT <213> T9/96 Parasite Clone <400> 4 Ser Asp Glu Leu Phe Asn Glu Leu Leu Asn Ser Val Asp Val Asn Gly Glu Val Lys Glu Asn Ile Leu Glu Glu Ser Gln Val Asn Asp Asp Ile . 30 Phe Asn Ser Leu Val Lys Ser Val Gln Gln Glu Gln Gln His Asn Val Glu Glu Lys Val Glu Glu Ser Val Glu Glu Asn Asp Glu Glu Ser Val Glu Glu Asn Val Glu Glu Asn Val Glu Glu Asn Asp Asp Gly Ser Val Ala Ser Ser Val Glu Glu Ser Ile Ala Ser Ser Val Asp Glu Ser Ile Asp Ser Ser Ile Glu Glu Asn Val Ala Pro Thr Val Glu Glu Ile Val Ala Pro Thr Val Glu Glu Ile Val Ala Pro Ser Val Val Glu Ser Val Ala Pro Ser Val Glu Glu Ser Val Ala Pro Ser Val Glu Glu Ser Val 130 135 Ala Glu Asn Val Glu Glu Ser Val Ala Glu Asn Val Glu Glu Ile Val Ala Pro Ser Val Glu Glu Ser Val Ala Glu Asn Val Glu Glu Ser Val 165 170 175 Ala Glu Asn Val Glu Glu Ser Val Ala Glu Asn Val Glu Glu Ser Val Ala Glu Asn Val Glu Glu Ser Val Ala Glu Asn Val Glu Glu Ile Val 195 200 205 Ala Fro Thr Val Glu Glu Ser Val Ala Pro Thr Val Glu Glu Ile Val Ala Pro Thr Val Glu Glu Ser Val Ala Pro Thr Val Glu Glu Ile Val Val Pro Ser Val Glu Glu Ser Val Ala Pro Ser Val Glu Glu Ser Val
245 250 255 Ala Glu Asn Val Glu Glu Ser Val Ala Glu Asn Val Glu Glu Ser Val 260 265 Ala Glu Asn Val Glu Glu Ser Val Ala Glu Asn Val Glu Glu Ser Val Ala Glu Asn Val Glu Glu Ile Val Ala Pro Ser Val Glu Glu Ile Val 290 295 300 Ala Pro Thr Val Glu Glu Ser Val Ala Glu Asn Val Ala Thr Asn Leu Ser Asp Asn Leu Leu Ser Asn Leu Leu Gly Gly Ile Glu Thr Glu Glu 325 330 335 Ile Lys Asp Ser Ile Leu Asn Glu Ile Glu Glu Val Lys Glu Asn Val 340 345 Val Thr Thr Ile Leu Glu Lys Val Glu Glu Thr Thr Ala Glu Ser Val Thr Thr Phe Ser Asn Ile Leu Glu Glu Ile Gln Glu Asn Thr Ile Thr 370 375 Asn Asp Thr Ile Glu Glu Lys Leu Glu Glu Leu His Glu Asn Val Leu Ser Ala Ala Leu Glu Asn Thr Gln Ser Glu Glu Glu Lys Lys Glu Val Ile Asp Val Ile Glu Glu Val Lys Glu Glu Val Ala Thr Thr Leu Ile Glu Thr Val Glu Gln Ala Glu Glu Glu Ser Glu Ser Thr Ile Thr Glu Ile Phe Glu Asn Leu Glu Glu Asn Ala Val Glu Ser Asn Glu Lys Val

<210> 4

```
Ala Glu Asn Leu Glu Lys Leu Asn Glu Thr Val Phe Asn Thr Val Leu
                                   470
                                                     475
                   Asp Lys Val Glu Glu Thr Val Glu Ile Ser Gly Glu Ser Leu Glu Asn
                                                 490
                                                               495
                                485
5 .
                   Asn Glu Met Asp Lys Ala Phe Phe Ser Glu Ile Phe Asp Asn Val Lys
500 505 510
                     ź 500
                   Gly Ile Gln Glu Asn Leu Leu Thr Gly Met Phe Arg Ser Ile Glu Thr
                                           520
                         515
                   Ser Ile Val Ile Gln Ser Glu Glu Lys Val Asp Leu Asn Glu Asn Val
                              535
                                                   540
10
                   Val Ser Ser Ile Leu Asp Asn Ile Glu Asn Met Lys Glu Gly Leu Leu
                   545 550 555
                   Asn Lys Leu Glu Asn Ile Ser Ser Thr Glu
                                565
                         <210> 5
15
                         <211> 20
                         <212> PRT
                         <213> Artificial Sequence
                         <220>
                         <223> Synthetic peptide
20
                   Leu Leu Ser Asn Ile Glu Glu Pro Lys Glu Asn Ile Ile Asp Asn Leu
                    1
                   Leu Asn Asn Ile
25
                         <210> 6
                         <211> 25
                         <212> PRT
                         <213> Artificial Sequence
                         <220>
30
                         <223> synthetic peptide
                   Asp Glu Leu Phe Asn Glu Leu Leu Asn Ser Val Asp Val Asn Gly Glu
                                  5
                                               10
                   Val Lys Glu Asn Ile Leu Glu Glu Ser
35
                             20
                         <210> 7
                         <211> 26
                         <212> PRT
                         <213> Artificial Sequence
40
                         <220>
                         <223> synthetic peptide
                         <400> 7
                   Leu Glu Glu Ser Gln Val Asn Asp Asp Ile Phe Asn Ser Leu Val Lys
45
                       5
                    1
                   Ser Val Gln Gln Glu Gln Gln His Asn Val
                              20
                         <210> 8
                         <211> 28
50
                         <212> PRT
                         <213> Artificial Sequence
                         <220>
                         <223> synthetic peptide
```

55

		<4	100>	8												
	Val	Glu	Ser	Val	Ala	Pro	Ser	Val	Glu		Ser	Val	Ala	Pro		Val
5	Glu	Glu	Ser	Val	Ala	Glu	Asn	Val	Glu	10 Glu	Ser	Val			15	
				20					25							

Claims

5

15

20

25

30

35

50

- A vaccine composition comprising a Th1-inducing adjuvant in combination with a protecting Liver Stage Antigen
 or immunological fragment thereof of a human malaria parasite with the proviso that when the immunological
 fragment is an immunological fragment of LSA-3, the Th1-inducing adjuvant is not Montanide.
- 2. A vaccine composition as claimed in claim 1 wherein the human malaria parasite is Plasmodium falciparum.
- 3. A vaccine composition as claimed in claim 1 or claim 2 in which the Thl-inducing adjuvant comprises QS21, De-O-acylated monophosphoryl lipid A (3D-MPL) and an oil in water emulsion wherein the oil in water emulsion has the following composition: a metabolisable oil, such a squalene, alpha tocopherol and tween 80.
 - A vaccine composition as claimed in claim 1 or 2 or claim 3 wherein said protecting Liver Stage Antigen is the Liver Stage Antigen 3 (LSA-3) or immunological fragment thereof.
 - A vaccine composition according to any one of claims 1 to 4 comprising in addition at least one other protecting antigen or an immunological fragment thereof, of a malaria parasite.
 - 6. A vaccine composition as claimed in claim 4 in which the other malaria antigen is selected from the following group:
 - a) a hybrid protein comprising substantially all the C-terminal portion of the CS protein, four or more tandem repeats of the immunodominant region, and the surface antigen from hepatitis B virus (HBsAg), in particular RTS,S, or immunogenic derivatives including fragments thereof;
 - b) the TRAP protein of the T9/96 isolate of Plasmodium falciparum and proteins having at least 80% homology thereto and immunogenic derivatives including fragments thereof;
 - c) the MSP-1 of Plasmodium falciparum or Plasmodium vivax and proteins having at least 80% homology thereto and immunogenic derivatives including fragments thereof; and
 - d) the MSP-3 of Plasmodium falciparum or Plasmodium vivax and proteins having at least 70% homology with the C-terminal region thereof, and immunogenic derivatives including fragments thereof.
 - A vaccine composition according to claims 1 to 6 capable of involving a T cell response in a mammal to the antigen or antigenic composition
 - 8. A vaccine composition according to claims 1 to 7 capable of stimulating interferon γ production.
 - 9. A vaccine composition according to claims 1 to 8, wherein the ratio of QS21:3D-MPL is from 1:10 to 10:1.
 - 10. A vaccine composition according to claims 1 to 8, wherein the ratio of QS21:3D-MPL is from 1:1 to 1:2.5.
- 40 11. A process to make a vaccine composition according to any one of claims 1 to 10 comprising admixing QS21, 3D-MPL and the oil in water emulsion as defined in claim 2 with a protecting Liver Stage Antigen of a human malaria parasite.
- 12. A process according to claim 11 wherein the Liver Stage Antigen is LSA-3 of Plasmodium falciparum or immunological fragment thereof.
 - 13. Use of a composition according to any one of claims 1 to 10 for the prophylaxis or treatment of malaria infections.

Figure 1

Figure 2

Figure 3

Figure 4

PARTIAL EUROPEAN SEARCH REPORT

Application Number

which under Rule 45 of the European Patent ConventionEP 00 20 3724 shall be considered, for the purposes of subsequent proceedings, as the European search report

X,D BENMOHAMED LBACHIR ET AL: "High immunogenicity in chimpanzees of peptides and lipopeptides derived from four new Plasmodium falciparum pre-erythrocytic molecules." VACCINE, vol. 18, no. 25, 2000, pages 2843-2855, XP004203575 ISSN: 0264-410X * the whole document * US 5 602 031 A (MARCHAND CLAUDINE ET AL) 11 February 1997 (1997-02-11) * column 2, line 24 - line 29 * * column 3, line 4 - line 22 * * column 7, line 48 - line 57 * * column 8, line 25 - line 31 * —/	0.1	Citation of document with In	ndication, where appropriate,	Relevant	CLASSIFICATION OF THE
immunogenicity in chimpanzees of peptides and lipopeptides derived from four new Plasmodium falciparum pre-erythrocytic molecules." VACCINE, VOI. 18, no. 25, 2000, pages 2843–2855, XP004203575 ISSN: 0264–410X * the whole document * US 5 602 031 A (MARCHAND CLAUDINE ET AL) 11 February 1997 (1997–02-11) * column 2, line 24 - line 29 * * column 3, line 4 - line 22 * * column 7, line 48 - line 57 * * column 8, line 25 - line 31 * —// TECHNICAL PIELDS SEARCHD (Int. A61K INCOMPLETE SEARCH The Search Division condains that the present application, or one or more of its claims, doesdo to be carried out, or can only be carried out any entire the present application, or one or more of its claims, doesdo the action of the carried out, or can only be carried out, or can only be carried out, or can only be carried out per sent in the present application, or one or more of its claims, doesdo the action of the carried out, or can only be carried out, or can only be carried out and based on the alleged effects of the human/animal body (Article 52(4) EPC), the search has been carried out and based on the alleged effects of the compound/composition. Place of search THE HAGUE CATEGORY OF CITED DOCUMENTS X: particularly selevant if Lisbera alone THE HAGUE CATEGORY OF CITED DOCUMENTS X: particularly selevant if Lisbera alone Y papedusity selevant if Lisbera alone Y papedusity selevant if Lisbera alone Y papedusity selevant if Lisbera alone A member of its search. A combroot for the reasons.	Category				APPLICATION (InLCI.7)
* the whole document * 3,6,9-12	X,D	immunogenicity in c and lipopeptides de Plasmodium falcipar molecules." VACCINE, vol. 18, no. 25, 20 XP004203575	himpanzees of peptides rived from four new um pre-erythrocytic		A61K39/39 A61K39/015
11 February 1997 (1997-02-11) * column 2, line 24 - line 29 * * column 3, line 4 - line 22 * * column 7, line 48 - line 57 * * column 8, line 25 - line 31 * -/	Υ Í		t *	3,6,9-12	
INCOMPLETE SEARCH The Search Division considers that the present application, or one or more of its claims, does/do not comply with the EPC to such an extent that a meaningful search into the state of the ert cannot be carried out, or can only be carried cut partially, for these claims. Claims searched completely: Claims searched incompletely: Claims searched incompletely: Claims not searched: Reason for the limitation of the search: Although claim 13 is directed to a method of treatment of the human/animal body (Article 52(4) EPC), the search has been carried out and based on the alleged effects of the compound/composition. Place of search THE HAGUE CATEGORY OF CITED DOCUMENTS X: particularly relevant if taken alone Y: particularly relevant if taken alone Y: particularly relevant if tombined with another cocument of the same category A: technological background O: non-written disclosure Tithe same partent family, corresponding A: member of the same partent family, corresponding	X	11 February 1997 (1 * column 2, line 24 * column 3. line 4	997-02-11) - line 29 * - line 22 *	1,2,7,13	
INCOMPLETE SEARCH The Search Division considers that the present application, or one or more of its claims, does/do not comply with the EPG to such an extent that a meaningful search into the state of the art cannot be carried out, or can only be carried out partially, for these claims. Claims searched completely: Claims searched incompletely: Claims searched incompletely: Claims not searched: Although claim 13 is directed to a method of treatment of the human/animal body (Article 52(4) EPC), the search has been carried out and based on the alleged effects of the compound/composition. Place of search THE HAGUE CATEGORY OF CITED DOCUMENTS X: particularly relevant if taken alone Y: particularly relevant if combined with another cocument of the same pricent document, but published on, or after the filling date D: document cited for other reasons A: member of the same pricent tamily, corresponding.			-/		
INCOMPLETE SEARCH The Search Division considers that the present application, or one or more of its claims, does/do not comply with the EPC to such an extent that a meaningful search into the state of the ericannot be carried out, or can only be carried out partially, for these claims. Claims searched completely: Claims searched incompletely: Claims searched incompletely: Claims not searched: Reason for the limitation of the search: Although claim 13 is directed to a method of treatment of the human/animal body (Article 52(4) EPC), the search has been carried out and based on the alleged effects of the compound/composition. Place of search THE HAGUE CATEGORY OF CITED DOCUMENTS X : particularly relevant If taken alone Y : particularly relevant If taken alone Y : particularly relevant If tombined with another cocument of the same category A : technological background O : non-written disclosure A : member of the same patient family, corresponding .					
The Search Division considers that the present application, or one or more of its claims, does/do not comply with the EPC to such an extent that a meaningful search into the state of the art cannot be carried out, or can only be carried out partially, for these claims. Claims searched completely: Claims searched incompletely: Claims not searched: Although claim 13 is directed to a method of treatment of the human/animal body (Article 52(4) EPC), the search has been carried out and based on the alleged effects of the compound/composition. Place of search THE HAGUE CATEGORY OF CITED DOCUMENTS X: particularly relevant if taken alone Y: particularly relevant if taken alone Y: particularly relevant if tombined with another cocument of the same category A: technological background O: non-written disclosure A: member of the same patent family, corresponding,	l			İ	A61K
The Search Division considers that the present application, or one or more of its claims, does/do not comply with the EPC to such an extent that a meaningful search into the state of the art cannot be carried out, or can only be carried out partially, for these claims. Claims searched completely: Claims searched incompletely: Claims not searched: Although claim 13 is directed to a method of treatment of the human/animal body (Article 52(4) EPC), the search has been carried out and based on the alleged effects of the compound/composition. Place of search THE HAGUE CATEGORY OF CITED DOCUMENTS X: particularly relevant if taken alone Y: particularly relevant if combined with another cocument of the same category A: technological background O: non-written disclosure A: member of the same partent family, corresponding				1	•
The Search Division considers that the present application, or one or more of its claims, does/do not comply with the EPC to such an extent that a meaningful search into the state of the art cannot be carried out, or can only be carried out partially, for these claims. Claims searched completely: Claims searched incompletely: Claims not searched: Although claim 13 is directed to a method of treatment of the human/animal body (Article 52(4) EPC), the search has been carried out and based on the alleged effects of the compound/composition. Place of search THE HAGUE CATEGORY OF CITED DOCUMENTS X: particularly relevant if taken alone Y: particularly relevant if taken alone Y: particularly relevant if tombined with another cocument of the same category A: technological background O: non-written disclosure A: member of the same patent family, corresponding,					
rot comply with the EPC to such an extent that a meaningful search into the state of the art cannot be carried out, or can only be carried out partially, for these claims. Claims searched completely: Claims searched incompletely: Claims not searched: Although claim 13 is directed to a method of treatment of the human/animal body (Article 52(4)) EPC), the search has been carried out and based on the alleged effects of the compound/composition. Place of search THE HAGUE CATEGORY OF CITED DOCUMENTS X: particularly relevant if taken alone Y: particularly relevant if taken alone Y: particularly relevant if taken alone Y: particularly relevant if taken alone Y: particularly relevant if taken alone A: technological background O: non-written disclosure A: member of the same patent family, corresponding .			11 N	- l-t-	
Claims not searched: Reason for the limitation of the search: Although claim 13 is directed to a method of treatment of the human/animal body (Article 52(4)) EPC), the search has been carried out and based on the alleged effects of the compound/composition. Place of search THE HAGUE CATEGORY OF CITED DOCUMENTS X: particularly relevant if taken alone Y: particularly relevant if taken alone Y: particularly relevant if to mibined with another cocument of the same category A: technological background O: non-written disclosure 8: member of the same patent family, corresponding	not compl	y with the EPC to such an extent that	a meaningful search into the state of the art	cannot	
Claims not searched: Reason for the limitation of the search: Although claim 13 is directed to a method of treatment of the human/animal body (Article 52(4) EPC), the search has been carried out and based on the alleged effects of the compound/composition. Place of search THE HAGUE CATEGORY OF CITED DOCUMENTS X: particularly relevant if taken alone Y: particularly relevant if to combined with another cocument of the same category A: technological background C: non-written disclosure A: member of the same partent family, corresponding	Claims se	arched completely:			
Although claim 13 is directed to a method of treatment of the human/animal body (Article 52(4) EPC), the search has been carried out and based on the alleged effects of the compound/composition. Place of search THE HAGUE CATEGORY OF CITED DOCUMENTS X: particularly relevant if taken alone Y: particularly relevant if combined with another cocument of the same category A: technological background O: non-written disclosure A: member of the same partent family, corresponding	Claims se	earched incompletely:			
Although claim 13 is directed to a method of treatment of the human/animal body (Article 52(4) EPC), the search has been carried out and based on the alleged effects of the compound/composition. Place of search THE HAGUE CATEGORY OF CITED DOCUMENTS X: particularly relevant if taken alone Y: particularly relevant if combined with another cocument of the same category A: technological background C: non-written disclosure A: member of the same patent family, corresponding	Claims no	at searched :			
Although claim 13 is directed to a method of treatment of the human/animal body (Article 52(4) EPC), the search has been carried out and based on the alleged effects of the compound/composition. Place of search THE HAGUE CATEGORY OF CITED DOCUMENTS X: particularly relevant if taken alone Y: particularly relevant if combined with another cocument of the same category A: technological background O: non-written disclosure A: member of the same partent family, corresponding	Reason fo	or the limitation of the search:			
THE HAGUE CATEGORY OF CITED DOCUMENTS X: particularly relevant if taken alone Y: particularly relevant if combined with another cocument of the same category A: technological background O: non-written disclosure 3 August 2001 Noë, V T: theory or principle underlying the Invention E: earlier patent document, but published on, or after the filing date D: document cited in the application L: document cited for other reasons A: member of the same prient family, corresponding	trea EPC)	atment of the human/), the search has be	animal body (Article 52 en carried out and base		
THE HAGUE CATEGORY OF CITED DOCUMENTS X: particularly relevant if taken alone Y: particularly relevant if combined with another cocument of the same category A: technological background O: non-written disclosure 3 August 2001 Noë, V T: theory or principle underlying the invention E: earlier patent document, but published on, or after the filing date D: document cited in the application L: document cited for other reasons A: member of the same patent family, corresponding					
CATEGORY OF CITED DOCUMENTS X: particularly relevant if taken alone Y: particularly relevant if combined with another cocument of the same category A: technological background C: non-written disclosure A: member of the same partent family, corresponding,			•	No."	
E : earlier patent document, but published on, or A : particularly relevant if taken alone Y : particularly relevant if combined with another cocument of the same category A : technological background O : non-written disclosure A : member of the same patent family, corresponding					
O : non-written disclosure & : member of the same patent family, corresponding	X : part Y : part coci	icularly relevant if taken alone Icularly relevant if combined with anoi ument of the same calegory	E: earlier patent do after the filing da her D: document cited L: document cited f	cument, but published in the application for other reasons	shed on, or
	O:non	-written disclosure	& : member of the s		

EPO FORM 1503 03.82 (PO4CO7)

PARTIAL EUROPEAN SEARCH REPORT

Application Number

EP 00 20 3724

	DOCUMENTS CONSIDERED TO BE RELEVANT		CLASSIFICATION OF THE APPLICATION (Int.CL.7)
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	
Y,D	WO 95 17210 A (SMITHKLINE BEECHAM BIOLOG; MOMIN PATRICIA MARIE (BE); GARCON NATHA) 29 June 1995 (1995-06-29) * page 1, line 3 - line 10 * * page 1, line 24 - line 34 * * page 2, line 34 - page 3, line 3 * * page 4, line 26 - line 34 * * page 5, line 4 - line 16 * * page 6, line 4 - line 16 * * page 6, line 36 - line 37 * * page 7, line 16 - line 37 * * example 5 * * claims 1-6,8-10,12,13 *	3,6,9-12	
	EP 0 761 231 A (SMITHKLINE BEECHAM BIOLOG) 12 March 1997 (1997-03-12) * abstract * * page 2, line 3 - line 27 * * page 2, line 52 - line 56 * * page 3, line 38 - line 49 * * page 3, line 56 * * claims 1-6,89,10,12; examples 1,2 *	3,6,9-12	TECHNICAL FIELDS SEARCHED (Int.CL7)
	US 5 811 106 A (HALL JENNIFER RUTH SADLER ET AL) 22 September 1998 (1998-09-22) * the whole document *	6	
	US 6 017 538 A (DRUILHE PIERRE ET AL) 25 January 2000 (2000-01-25) * the whole document *	6	
	US 4 837 016 A (FREEMAN ROBERT R ET AL) 6 June 1989 (1989-06-06) * the whole document *	6	
	·	·	
	·		

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 00 20 3724

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

03-08-2001

Patent documer cited in search rep		Publication date		Patent family member(s)	Publicat date
US 5602031	A	11-02-1997	FR	2610631 A	12-08-
			ÜS	5928901 A	27-07-
			AT	89566 T	15-06-
			AU	610571 B	23-05-
			AU	1342888 A	24-08-
			DE	3881204 A	24-06-
			DE	3881204 D	24-06-
			DE	3881204 T	11-11-
			EP	0343186 A	29-11-
			WO.	8805785 A	11-08-
			JP	1502194 T	03-08-
			JP	2729070 B	18-03-
			ÜS	5599542 A	04-02-
	(US	5589343 A	31-12-
WO 9517210	Α	29-06-1995	AT	177322 T	15-03-
			AU	1316495 A	10-07-
			AU	687494 B	26-02-
			AU	1316695 A	10-07-1
			AU	705521 B	27-05-
			AU	6803198 A	09-07-3
			AU	705519 B	27~05~
			AU	6803298 A	09-07-
			CA	2179779 A	29-06-3
			CN	1138298 A	18-12-1
			DE	69417063 D	15-04-
			DE	69417063 T	28-10-1
			DK	735898 T	23-08-1
			WO	9517209 A	29-06-1
			EP	0735898 A	09-10-1
			EP	0868918 A	07-10-1
			ES	2129801 T	16-06-1
•			GR	3029750 T	30-06-1
			HK	1012243 A	12-05-2
			JP	9506887 T	08-07-1
			NZ	277802 A	27-04-1
			SG	49257 A	18-05-1
			SG	73578 A	20-06-2
			SI	735898 T	30-06-1
			US	6146632 A	14-11-2
			ZA	9410176 A	17-11-1
EP 0761231	 A	12-03-1997	GR	3032742 T	30-06-2
			AP	408 A	27-09-1
			AT	156710 T	27-09-1 15-08-1
			AT	188613 T	15-00-1
			~ ~ .	' TOOOTO I	13-01-6

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 00 20 3724

This annex lists the patent family members relating to the patent documents cited in the above—mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

03-08-2001

	Patent documer ed in search rep		Publication date		Patent family member(s)	Publication date
EP	0761231	Α		AU	1785597 A	19-06-1
				AU	661404 B	20-07-1
				AU	4326393 A	24-01-1
				AU	676166 B	06-03-1
				AU	4326493 A	24-01-1
				CA	2138996 A	06-01-1
			1	CA	2138997 A	06-01-1
				CN	1086142 A	04-05-1
	•			ČN	1092812 A	28-09-1
				ČZ	9403296 A	16-08-1
				DE	69313134 D	18-09-1
	-			DE	69313134 T	26-02-1
				DE	69327599 D	17-02-2
			•	DE	69327599 T	10-08-2
				DK	671948 T	01-09-1
				DK	761231 T	08-05-2
				WO	9400153 A	06-01-1
				WO	9400155 A	06-01-1
				EP	0671948 A	20-09-1
				ĒΡ	0649470 A	26-04-1
				ES	2108278 T	16-12-1
				ES	2143716 T	16-12-1
				FI	946064 A	22-02-1
				GR	3025184 T	27 -0 2-1
				HK	1010097 A	15-09-2
				HÙ	71208 A	28-11-1
				ΪĹ	106109 A	18-02-1
			•	ĴΡ	7508512 T	21-09-1
				JP	7508648 T	28-09-1
				MX	9303771 A	31-05-1
				MX	9303773 A	31-05-1
				NO	945003 A	23-12-1
				NZ	253137 A	27-08-1
				NZ	253138 A	26-10-1
				PL	170980 B	28-02-1
				PT	761231 T	30-06-2
				ŔÚ	2118164 C	27-08-1
				SG	49909 A	15-06-1
				SI	9300335 A	31-12-1
				SK	159294 A	
				US	5750110 A	09-08-1 12-05-1
			22 00 1000			
U2	5811106	A	22-09-1998	DE	68925970 D	18-04-1
				DE	68925970 T	24-10-1
				EP	0428602 A	29-05-1
				AU	630885 B	12-11-1

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 00 20 3724

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office Is in no way liable for these particulars which are merely given for the purpose of information.

03-08-2001

	t document search repor	1	Publication date		Patent family member(s)	Publication date
US 58:	11106	A		AU	4064689 A	05-03-1990
				BR	1100801 A	18-07-2000
				WO	9001496 A	22-02-1990
				JP	4503206 T	11-06-1992
US 601	17538	A	25-01-2000	FR	2697022 A	22-04-1994
				EP	0666916 A	16-08-1995
				MO	9409140 A	28-04-1994
US 483	37016	Α	06-06-1989	ΑU	557570 B	24-12-1986
				AU	8387582 A	25-11-1982
				CA	1197188 A	26-11-1985
				DE	3280028 D	28-12-1989
				EP	0071705 A	16-02-1983
				GB	2099300 A,B	08-12-1982
				HU	187709 B	28-02-1986
				IL	65835 A	31-10-1985
			i	IT	1197431 B	30-11-1988
				JP	1930583 C	12 -05-199 5
				JP	6062430 B	17-08-1994
				JP	57197222 A	03-12-1982
				KE	3769 A	27-11-1987
				MY	84887 A	31-12-1987
				PH	17802 A	13-12-1984
				ZA	8203555 A	28-12-1983
				ZW	10682 A	28-12-1983

FORM POASS

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82