Proiect la Analiza Datelor

Masterand: Darie Maxim

Specializarea: TAPI

Grupa: 41307

An: I

Cuprins

Formularea problemei	3
Metode și tehnici de soluționare ale problemei	3
Experimente efectuate	3
Încărcarea fișierului sursă	. 4
Analiza exploratorie a datelor	4
Corelația variabilelor	9
Teste statistice pentru compararea mediilor	10
Anova	. 11
Bibliografie	11

Car Evaluation Data Set

Formularea problemei

Baza de date auto de evaluare a fost derivată dintr-un simplu model de decizie ierarhic dezvoltat inițial pentru demonstrarea DEX. Analiza statistica a datelor auto a fost folosita pentru descoperirea tiparelor si pentru a explica diferentele dintre subseturi de date.

In calitate de constructor in automobilistica pentru a produce modele de autovehicule cat mai econome din punct de vedere a consumului de carburant(nmg) am avut necesitatea de a manipula setul de date "Car Evaluation Data Set" pentru a pruduce un vehicul cat mai economic.

Metode și tehnici de soluționare ale problemei

Pentru a reduce esential consumul de combustibil este necesar sa lual in calcul asa factori ca :

- 1. Ajustarea mărimii vehiculelor depinde de tipul activității desfășurate cu ajutorul lor. E decizia managementului dacă se poate opta pentru mașinii mai mici cu consum mai bun de combustibil la 100 km.
- 2. Tot mai mulți manageri doresc să includă în flota companiei mașini hibrid, care folosesc energie verde, în special pentru activitatea desfășurată în oraș. Mașinile

hibrid sunt mai eficiente și mai puțin poluante, deci reduc emisiile și cresc economiile de carburant, cu efecte pozitive asupra mediului și bugetului companiei.

Experimente efectuate

Primul pas efectuat pentru analiza Car Evaluation Data Set a fost download-area fisierelor sursa Data Folder/Data SetDescription din baza de date publică UCI Machine Learning Repository.

Derivată dintr-un model de decizie ierarhic simplu, această bază de date poate fi utilă pentru testarea inducției constructive și a metodelor de descoperire a structurii.

Fisierele sursa download-ate (car.c45-names, car.dat, car.names) inainte de a face orice fel de analiză statistică cu PSPP, au fost redactate cu ajutorul aplicatiei Notepad++

Din motiv ca a fost cu valori lipsă, a fost redactata si modalitatea de aliniere, doar apoi salvate ca fisiere cu extensia .sav si apoi importante in aplicatia grafica PSPP.

DATA VIEW:

								*auto-mpg.sa	v [DataSet2] -	- PSPPIRE Da	ita Editor										-	
					Analyze Graphs	Utilities Wind	ows Help															
<u>r</u>	6 8 4	, Q	ô	â	= 4 ◆																	
	15 : cylind	ers		4																		
Case	mpg	C	ylinde	rs	displacement	horsepower	weight	acceleration	model_year	origin	car_name	Var	Va									
1	18.0	8			307.0	130.0	3504	12.0	70	1	"chevrolet											
2	15.0	8			350.0	165.0	3693	11.5	70	1	"buick											
3	18.0	8			318.0	150.0	3436	11.0	70	1	"plymouth											
4	16.0	8			304.0	150.0	3433	12.0	70	1	"amc											
5	17.0	8			302.0	140.0	3449	10.5	70	1	"ford											
6	15.0	8			429.0	198.0	4341	10.0	70	1	"ford											
7	14.0	8			454.0	220.0	4354	9.0	70	1	"chevrolet											Г
8	14.0	8			440.0	215.0	4312	8.5	70	1	"plymouth											Г
9	14.0	8			455.0	225.0	4425	10.0	70	1	"pontiac											Г
10	15.0	8			390.0	190.0	3850	8.5	70	1	"amc											Г
11	15.0	8			383.0	170.0	3563	10.0	70	1	"dodge											Г
12	14.0	8			340.0	160.0	3609	8.0	70	1	"plymouth											Г
13	15.0	8			400.0	150.0	3761	9.5	70	1	"chevrolet											Г
14	14.0	8			455.0	225.0	3086	10.0	70	1	"buick											Г
15	24.0	4			113.0	95.0	2372	15.0	70	3	"toyota											Г
16	22.0	6			198.0	95.0	2833	15.5	70	1	"plymouth											Г
17	18.0	6			199.0	97.0	2774	15.5	70	1	"amc											Г
18	21.0	6			200.0	85.0	2587	16.0	70	1	"ford											Г
19	27.0	4			97.0	88.0	2130	14.5	70	3	"datsun											Г
20	26.0	4			97.0	46.0	1835	20.5	70	2	"volkswagen											Г
21	25.0	4			110.0	87.0	2672	17.5	70	2	"peugeot											Г
22	24.0	4			107.0	90.0	2430	14.5	70	2	"audi											
23	25.0	4			104.0	95.0	2375	17.5	70	2	"saab											Т
Data		ariable				l			L		L	L	1									-

VARIABLE VIEW:

Analiza exploratorie a datelor

Pentru a calcula valoarea minimă, valoarea maximă, media, abaterea standard, asimetria pentru variabila (cylinders) a fost folosit Descriptive Statistics Frequencies.

Variable	N	Mean	Std Dev	Minimum	Maximum
mpg	398	23.51	7.82	9.00	46.60
cylinders	398	5.45	1.70	3.00	8.00
displacement	398	193.43	104.27	68.00	455.00
horsepower	392	104.47	38.49	46.00	230.00
weight	398	2970.42	846.84	1613.00	5140.00
acceleration	398	15.57	2.76	8.00	24.80
model year	398	76.01	3.70	70.00	82.00
origin	398	1.57	.80	1.00	3.00

FREQUENCIES

FREQUENCIES

/VARIABLES = cylinders /FORMAT=AVALUE TABLE.

cylinders

ш	cymnacis					
	Value Label	Value	Frequency	Percent	Valid Percent	Cum Percent
		3	4	1.01	1.01	1.01
		4	204	51.26	51.26	52.26
		5	3	.75	.75	53.02
		6	84	21.11	21.11	74.12
		8	103	25.88	25.88	100.00
		Total	398	100.0	100.0	

cylinders

Valid	398
Missing	0
	5.45
	1.70
	3.00
	8.00

În ambele tabele se regăsesc valorile variabilei (cylinders), frecvențele absolute, procentul

cumulat, în timp ce al doilea tabel conține valorile indicatorilor statistici medie, abaterea

standard, asimetria, valoarea maximă, respectiv valoarea minimă.

Calcularea statisticilor descriptive: valoarea minimă, valoarea maximă, media, abaterea

standard, dispersia și asimetria pentru atributul (WEIGHT).

DESCRIPTIVES /VARIABLES= weight /STATISTICS=DEFAULT VARIANCE SKEWNESS. Valid cases = 398; cases with missing value(s) = 0. Variable Mean Skewness S.E. Skew Minimum Ν Std Dev Variance Maximum 398 2970.42 weight 846.84 717140.99 .53 .12 1613.00 5140.00

Reprezentarea grafic pentru variabila (WEIGHT), utilizând histograma:

Reprezentarea grafică sub fomă de bar chart pentru variabila (ACCELERATION):

Am realizat un grafic de tip scatter plot și am interpretaț rezultatele. Am droit sa verific daca există o legătură între anul de fabricatie a autoturismului (variabila: model_year) si aceleratie (variabila: acceleration)

Dupa care a fost analizata corelația dintre variabila(displacement) ce reprezinta distanta parcursa si (mpg) care reprezinta consumul de combustibil . Astfel, între distanta de deplasare și consumul de carburant 1L/100km există o corelație de - 0.80 ceaia ce semnifica o corelație puternica negative. Variabilele sunt invers proportionale.

CORRELATION /VARIABLES = mpg displacement /PRINT = TWOTAIL NOSIG. Correlations displacement mpg Pearson Correlation 1.00 -.80 mpg Sig. (2-tailed) .000 398 398 displacement Pearson Correlation -.80 1.00 Sig. (2-tailed) .000 398 398

Pentru a furniza reprezentări grafice de date, cum ar fi histograme sau boxplot-uri se consideră fișierul sursă auto-mpg.sav.

Corelația variabilelor

CORRELATIONS

CORRELATION

/VARIABLES = acceleration model_year mpg cylinders displacement horsepower weight origin /PRINT = TWOTAIL SIG.

Correlations

		acceleration	model_year	mpg	cylinders	displacement	horsepower	weight	origin
acceleration	Pearson Correlation	1.00	.29	.42	51	54	69	42	.21
	Sig. (2-tailed)	1700000	.000	.000	.000	.000	.000	.000	.000
	N	398	398	398	398	398	392	398	398
model year	Pearson Correlation	.29	1.00	.58	35	37	42	31	.18
	Sig. (2-tailed)	.000		.000	.000	.000	.000	.000	.000
	N	398	398	398	398	398	392	398	398
mpg	Pearson Correlation	.42	.58	1.00	78	80	78	83	.56
	Sig. (2-tailed)	.000	.000		.000	.000	.000	.000	.000
	N	398	398	398	398	398	392	398	398
cylinders	Pearson Correlation	51	35	78	1.00	.95	.84	.90	56
	Sig. (2-tailed)	.000	.000	.000		.000	.000	.000	.000
	N	398	398	398	398	398	392	398	398
displacement	Pearson Correlation	54	37	80	.95	1.00	.90	.93	61
	Sig. (2-tailed)	.000	.000	.000	.000		.000	.000	.000
	N	398	398	398	398	398	392	398	398
horsepower	Pearson Correlation	69	42	78	.84	.90	1.00	.86	46
	Sig. (2-tailed)	.000	.000	.000	.000	.000		.000	.000
	N	392	392	392	392	392	392	392	392
weight	Pearson Correlation	42	31	83	.90	.93	.86	1.00	58
	Sig. (2-tailed)	.000	.000	.000	.000	.000	.000		.000
	N	398	398	398	398	398	392	398	398
origin	Pearson Correlation	.21	.18	.56	56	61	46	58	1.00
October 1980	Sig. (2-tailed)	.000	.000	.000	.000	.000	.000	.000	
	N	398	398	398	398	398	392	398	398

Se dorește a se verifica ipoteza următoare: Greutatea media a vehiculelor din lista este de 2600 kg (H0=2600). Intervalul de încredere considerat este 95%(default). Astfel, pentru ipoteza enunțată, se alege variabila (weight) și se precizează valoarea medie cu care se va compara media variabilei WEIGHT (H0=50).

Rezultatele obținute indică o valoare p=0.000 și o valoare t=8.73 si df=397.

ANOVA

Deoarece variabila categorială *cylinders* din fișierul sursă are mai mult de două valori, trebuie să folosim modelul ANOVA unifactorial .Presupunem situatia: dorim sa cunoastem daca numarul de cilindri la masina afecteaza acceleratia,

Analyze → Compare Means → One Way ANOVA

primul tabel reprezintă statisticile descriptive (mediile pentru fiecare grup în parte, abaterea standard, eroarea standard, coeficientul de încredere (limita inferioară și limita superioară), minimul și maximul; al doilea tabel se referă la testul de omogenitate a variației și conține *testul Levene*, gradele de libertate *df1*, *df2 și* semnificația; al treilea tabel rezumă testul ANOVA și conține variația inter

grupuri (SSA), variația intra grupuri (SSW) și variația totală (SST), testul F și semnificația.

Nota: Pe exemplu de date care a fost selectat nu pot efectua Testul ANOVA

Voi folosi matricea de covariatie deoarece valorile nu sunt normalizate(While correlation coefficients lie between -1 and +1)

Communalities											
	Initial		raction								
cylinders	2.		2.63								
displacement	10922.		922.43								
horsepower	1477.		477.79								
weight	719644.		644.19								
acceleration	7.		7.59								
model_year	13.		13.54								
origin	Service of	55	.28								
Total Variance	Explained						_				
			Eigenval				on Sums of Squar			Sums of Square	
Component	Total		/ariance	Cum	ulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
	730283.94		99.76		99.76	730283.94	99.76	99.76	589335.53	80.50	80.50
2	1510.11		.21		99.96	1510.11	.21	99.96	47716.51	6.52	87.02
3	260.58					260.58	.04	100.00	59588.75	8.14	95.16
4	10.94		.00		100.00	10.94	.00	100.00	11502.18	1.57	96.73
5	2.87				100.00	2.87	.00	100.00	23925.47	3.27	100.00
6 7	.38		.00.		100.00						
	01 -01	,	.00	-	100.00						
Component Ma	trix										
			nponent								
	1	2	3	4	5						
cylinders	1.53	.52	12	.00	03						
displacement	97.71	36.75	-4.90	03	.02						
horsepower	33.30	11.59	15.31	14	.15						
weight	848.31	-4.69	04	.00	01						
acceleration	-1.16	-1.35	-1.24	.20	1.69						
	-1.14 47	93 13	69	-3.30 01	.09						
model_year		-,13	.20	01	.00						
model_year origin		7									
model_year origin			_								
model_year origin	onent Matri	. //	Compone								
model_year origin Rotated Compo	onent Matri	2	3	4	5						
model_year origin Rotated Compo cylinders	nent Matri	2	.29	9	.27	.48					
model_year origin Rotated Compo cylinders displacement	1 1.50 95.09	2 06 -7.27	.29 21.20) 18	.27 .15 32	.48					
model_year origin Rotated Compo cylinders displacement horsepower	1 1.50 95.09 25.53	2 06 -7.27 .83	3 21.20 20.23	9 18 8 8	.27 .15 32 .43 18	.48 .38 .58					
model year origin Rotated Compo cylinders displacement horsepower weight	1 1.50 95.09 25.53 761.34	2 06 -7.27 .83 218.32	3 21.20 20.23 242.34	9 18 9 18 3 8 4 105	.27 .15 32 .43 18 .30 150	.48 .38 .58 .08					
model year origin Rotated Compo cylinders displacement horsepower weight acceleration	1 1.50 95.09 25.53 761.34 63	2 06 -7.27 .83 218.32 02	3 21.20 20.23 242.34	18 3 8 4 105	.27 .15 32 .43 18 .30 150 .35 -2	.48 .38 .58 .08					
model year origin Rotated Compo cylinders displacement horsepower weight	1 1.50 95.09 25.53 761.34	2 06 -7.27 .83 218.32	3 21.20 20.23 242.34	18 3 8 4 105 4 -3	.27 .15 32 .43 18 .30 150 .35 -2	.48 .38 .58 .08					

Bibliografie 1. https://archive.ics.uci.edu/ml/datasets/Car+Evaluation

S-a parcurs întreaga arie a cerințelor iar analiza datelor a fost una amănunțită și documentată.