Mandatory assignment 1

- a) Use the Grocery dataset.csv file provided to answer questions in this assignment
- b) Use Code Cell in Jupyter Notebook to write your codes.
- c) Work in groups 2-4 and submit the Jupyter Notebook in .ipynb format on Canvas.
 - 1. Read the CSV file in Pandas and create a DataFrame named Grc_df. What is the number of rows and columns in Grc_df? Print the first 10 and last 10 rows of Grc_df.
 - 2. Are there any null values in the Grc_df? If yes, then in which columns and how many? Finally, handle these null values using any strategy shown during the labs.
 - 3. How many unique Outlet Sizes are there in the Grc_df? Which outlet size is maximum, and which is minimum?
 - 4. How many unique Item Fat Content types are in the Grc_df? List them. Do you see any issues with the Item Fat Content types? If yes, then handle this issue.
 - 5. Drop the columns having index values of 0, 6 and create a new DataFrame Grc_new_df.
 - 6. Using different Supermarket type listed in the column Outlet_Type create two different DataFrames from Grc_new_df. Name these DataFrames as SupType_1 and SupType_2.
 - 7. Using Seaborn ("ggplot style") create a (2,1) subplot of a box plot showing 5-point summary of the column Item_MRP for SupType_1 and SupType_2. Which Outlet Type has a higher median MRP? Are there any outliers?
 - 8. Concatenate the DataFrames SupType_1 and SupType_2 to create a new DataFrame Grc_Concat_df and sort it in ascending order based on the column Item_Outlet_Sales. What is the Outlet_Location_type of the store with the lowest sales?
 - Using columns Outlet_Size and Outlet_Location_Type to create a multiple index for Grc_Concat_df.
 - 10. Cut the column Item_Weight of Grc_Concat_df into 10 buckets and compute each bucket's mean, minimum, maximum, and count.