Equazioni di secondo grado

formule risolutive

equazione	nome	procedimento	soluzioni o radici
$ax^2 + bx + c = 0$	equazione completa	si applica la formula completa	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
$ax^2 + bx + c = 0$	equazione completa con b pari	si applica la formula ridotta	$x = \frac{-\frac{b}{2} \pm \sqrt{\left(\frac{b}{2}\right)^2 - ac}}{a}$
$ax^2 + c = 0$	equazione pura b = 0	 si isola x² si estrae la radice quadrata algebrica 	$x^{2} = -\frac{c}{a}$ $x_{1} = -\sqrt{-\frac{c}{a}}$ $x_{2} = +\sqrt{-\frac{c}{a}}$
$ax^2 + bx = 0$	equazione spuria $c = 0$	si raccoglie la xsi applica la legge di annullamento del prodotto	$x \cdot (ax + b) = 0$ $x_1 = 0$ $x_2 = -\frac{b}{a}$
$ax^2 = 0$	equazione monomia	ha sempre due soluzioni nulle	$x_1 = x_2 = 0$

le soluzioni di una equazione di secondo grado sono dette anche **radici** dell'equazione

significato del delta $\Delta = b^2 - 4ac$								
un'equazione di 2^0 grado ammette sempre due soluzioni: distinte, coincidenti o non reali secondo il segno del $m{\Delta}$								
$\Delta > 0$	$x_1 \neq x_2$	soluzioni reali e distinte	$\Delta = 0$	$x_1 = x_2$	soluzioni reali e coincidenti	Δ < 0	Ø	soluzioni non reali (o complesse)

proprietà				
$s = x_1 + x_2 = -\frac{b}{a}$	è la relazione tra la somma delle soluzioni e i coefficienti dell'equazione di II grado. Si applica solo se $\Delta \geq 0$			
$p = x_1 \cdot x_2 = \frac{c}{a}$	è la relazione tra il prodotto delle soluzioni e i coefficienti dell'equazione di II grado. Si applica solo se $\Delta \geq 0$			
$x^2 - sx + p = 0$	serve per scrivere il testo dell'equazione di II grado quando si conosce la somma e il prodotto delle soluzioni			
$ax^2 + bx + c = a \cdot (x - x_1) \cdot (x - x_2)$	serve a scomporre un trinomio di II grado dove x_1 e x_2 sono le soluzioni dell'equazione $ax^2 + bx + c = 0$			

la regola di Cartesio permette di trovare il segno delle soluzioni di una equazione di II grado. Si può applicare solo se $~\Delta \geq 0$

- si osserva la successione dei segni dei coefficienti a, b, c
- ad ogni permanenza corrisponde una soluzione negativa
- ad ogni variazione corrisponde una soluzione positiva

regola di Cartesio: segno delle soluzioni