# NLP 201 Introduction

Jeffrey Flanigan

University of California Santa Cruz jmflanig@ucsc.edu

Fall 2024

#### Administrative

- Canvas website is up
- Assignment 0 out, due 4pm Friday
- We will send class announcements on Canvas
- Please turn on notifications in Canvas (off by default) or install the app
- Please use Canvas to communicate with Jeff or the TA
- We will try our best to respond within 12-24 hours during the weekdays

## What is Natural Language Processing (NLP)?

## What is Natural Language Processing (NLP)?

• The set of methods for making human language accessible to computers (Eisenstein, 2018).

## What is Natural Language Processing (NLP)?

- The set of methods for making human language accessible to computers (Eisenstein, 2018).
- Why do we want this?

#### Communication with Machines



#### NLP Application: Machine translation



## NLP Application: Question Answering



- What does "divergent" mean?
- What year was Abraham Lincoln born?
- How many states were in the United States that year?
- How much Chinese silk was exported to England in the end of the 18th century?
- What do scientists think about the ethics of human cloning?

## NLP has many end-user tasks (downstream tasks or applications)

- Machine translation
- Summarization
- Question answering
- Conversational agents
- Search (information retrieval)
- Recommender systems
- Document classification

#### Applications listed on the NLP wiki



## NLP has many end-user tasks (downstream tasks or applications)

- Machine translation
- Summarization
- Question answering\*
- Conversational agents\*
- Search (information retrieval)
- Recommender systems
- Document classification

\*These two tasks are supertasks.

#### Downstream tasks sometimes benefit from intermediate tasks

- Knowing a word's sense (i.e duck animal vs duck action) could help translate it. This is sense disambiguation.
- Knowing if a word is a verb or noun (its part of speech) could help translate it (duck

   noun vs duck verb). This is part-of-speech (POS) tagging.
- Splitting text into sentences is often required before processing. This is **sentence segmentation**.
- Deciding what should count as a word (\$100 vs \$\_100 or it's vs it\_'s) (tokenization) usually has a very large effect on performance.

#### Examples of intermediate tasks

- Tokenization
- Language modeling
- POS tagging
- Lemmatization
- Synactic parsing
- Entity recognition
- Entity linking
- Relation extraction
- Semantic role labeling
- Semantic parsing
- Generation (from an intermediate representation)

#### Classes of tasks

- Document Classification binary or multi-label classification
- Tagging each token gets a label
- Parsing produce a tree or other structure over the words in sentence
- Generation produce a sentence from some representation of the desired output
- Sequence-to-sequence sequence of tokens to another sequence of tokens with possibly different length

#### The traditional NLP pipeline

- 1. Tokenization decide what is the unit of processing, usually words or subwords
- 2. Morphological analysis analysing the structure of the words
- 3. Part-of-speech tagging
- 4. Syntactic Parsing
- 5. Semantic Parsing (optional)
- 6. Downstream task: classification, QA, summarization, etc use information from previous stages in pipeline
- 7. Generation (optional)

With deep learning, sometimes tasks are done **end-to-end**, without any intermediate steps.

#### Areas of Linguistics



#### Areas of Linguistics

- Phonetics and phonology the inventory of sounds, and how they are used in the language
- Orthography the writing system
- Morphology the study of words
- Syntax the study of how words go together form grammatical sentences
- Semantics the meaning
- Pragmatics the extra information beyond the meaning
- Discourse multiple sentences in order, either a monologue (one speaker) or dialog (more than one)

## Why is NLP hard?

Computers can understand programming languages. Could we do the same thing for natural language?

## Why is NLP hard?

"At last, a computer that understands you like your mother."

#### Why is NLP hard?

"At last, a computer that understands you like your mother."

- (3 Minutes) On your whiteboard or in the chat, write
  - as many ways of interpreting this sentence as you can think of
  - how would you (as a human) know which one to choose? what specifically would you
    use to decide?
- (3 minutes) Discuss with the person next to you or with the others in Zoom

## **Ambiguity**

- "At last, a computer that understands you like your mother."
  - 1. It understands you as well as your mother understands you.
  - 2. It understands (that) you like your mother.
  - 3. It understands you as well as it understands your mother.
- 1 and 3: Does this mean well, or poorly?

## Ambiguity at Many Levels

#### At the acoustic level

- 1. "... a computer that understands you like your mother."
- 2. "... a computer that understands you lie cure mother."

## Ambiguity at Many Levels

#### At the syntactic level:



Different structures lead to different interpretations.

## More Syntactic Ambiguity



## Ambiguity at Many Levels

At the semantic (meaning) level:

Two definitions of "mother"

- a woman who has given birth to a child
- a stringy slimy substance consisting of yeast cells and bacteria; is added to cider or wine to produce vinegar

This is an instance of word sense ambiguity

#### More Semantic Ambiguity

#### At the semantic (meaning) level:

- ► They put money in the *bank* 
  - = buried in mud?
- I saw her duck with a telescope

#### Ambiguity at Many Levels

#### At the discourse (multi-clause) level:

- ► Alice says they've built a computer that understands you like your mother
- ▶ But she . . .
  - ... doesn't know any details
  - ... doesn't understand me at all

This is an instance of anaphora, where she co-referees to some other discourse entity

#### Large growth in NLP in recent years



## History of NLP

- 50's-90's: Rule-based methods
  - Drawbacks: time-consuming, usually doesn't scale (with some exceptions)
  - Example: SYSTRAN MT system, powered babelfish.com
- 90's-2010's: Machine learning and statistical methods
  - Drawbacks: usually lower performance than deep learning when lots of data
- 2014-present: Deep learning methods
  - Open issues: data-hungry, black-box, brittle, overfits quirks in datasets

#### History of NLP

- 50's-90's: Rule-based methods
  - Drawbacks: time-consuming, usually doesn't scale (with some exceptions)
  - Example: SYSTRAN MT system, powered babelfish.com
- 90's-2010's: Machine learning and statistical methods
  - Drawbacks: usually lower performance than deep learning when lots of data
- 2014-present: Deep learning methods
  - Open issues: data-hungry, black-box, brittle, overfits quirks in datasets
- Lots of progress, still a long way to go
- Older methods are important to know, can work better in certain situations. Breadth of knowledge helps drive progress

#### NLP applications are now commonplace

- Spam email filtering
- Google translate
- Built-in recommender systems (in Amazon, Ebay, Netflix, etc)
- Siri, Amazon Alexa
- Auto-completion suggestions
- Grammar checking
- Automatic essay grading (used by ETS)
- Inappropriate social media post filtering
- Fake news detection
- Lots you probably don't even realize!

#### **Ethics**

- With widespread use, NLP has potential ethical issues such as
  - Bias
  - Censorship
  - Privacy
  - Security
- These issues are hot topics, very active area of research

#### **Ethics**

- Bias amplification: systems exacerbate real-world bias rather than correct for it
- Exclusion: underprivileged users are left behind by systems
- Dangers of automatic systems: automating things in ways we don't understand is dangerous
- Unethical use: powerful systems can be used for bad ends

#### Relation of NLP to other fields

- Speech (both recognition and generation) are separate, not an NLP tasks
- Machine learning (computers learn from experience or examples)
- Linguistics (the study of language).
- Computational linguistics (CL)
  - Sometimes synonymous with NLP
  - CL often has larger emphasis on linguistics and linguistic theories

#### References I

Jacob Eisenstein. Natural Language Processing. 2018. URL https://github.com/jacobeisenstein/gt-nlp-class/raw/master/notes/eisenstein-nlp-notes.pdf.