Midterm Cheat Sheet

Daxiang Na (那达翔)

2022-11-01

Contents

1	Type I and Type II Error, calculating power:	2
2	Skewness	2
3	Quantiles3.1 Percentiles and quartiles3.2 Modified Boxplot	2 2 2
4	Variance	3
5	Relationships Between Variables	3
6	Three Variables	3
7	Empirical Rule	3
8	Transformation: 8.1 Box-Cox Power Transformation	3 3
9	Check normality: qqplot	4

1 Type I and Type II Error, calculating power:

2 Skewness

Left (negative) skew: The left tail extends farther out than the right tail Right (positive skew): The right tail extends farther out than the left tail

3 Quantiles

3.1 Percentiles and quartiles

The p sample quantile is the value below which a proportion p of the data are located.

E.g., if your birth weight is at the 95th percentile, then you weighed more than 0.95 of all newborn babies.

IQR: Interquartile Range = Q3 - Q1

1st quartile (Q1): 25th percentile, 2nd quartile (Q2): 50th percentile (median), 3rd quartile (Q3): 75th percentile.

3.2 Modified Boxplot

An outlier is a data point that is either:

- Less than: $Q1 1.5 \times (Q3 Q1) = lower fence of box$
- Greater than: $Q3 + 1.5 \times (Q3 Q1) = \text{upper fence of boxplot}$

• Standard span: $1.5 \times (Q3 - Q1) = 1.5 \times IQR$

4 Variance

5 Relationships Between Variables

Case CQ: Categorical and Quantitative

Case CC: Categorical and Categorical

Case QQ: Quantitative and Quantitative

6 Three Variables

add color as the third dimension

7 Empirical Rule

If a distribution is symmetric, unimodal, and bell-shaped (i.e., normally distributed), then the following hold:

- Approximately 68% of observations fall within one SD of the mean: $x \pm s$, or (x s, x + s)
- Approximately 95% of observations fall within two SDs of the mean: $x \pm 2s$, or (x 2s, x + 2s)
- Approximately 99.7% of observations fall within three SDs of the mean: $x \pm 3s$, or (x 3s, x + 3s)

8 Transformation:

8.1 Box-Cox Power Transformation

$$y_{\lambda} = \begin{cases} \frac{x^{\lambda} - 1}{\lambda}, & \lambda \neq 0 \\ \log(x), & \lambda = 0 \end{cases}$$

R code:

library(MASS)
bc1 <- boxcox(x ~ 1)
bc1\$x[bc1\$y == max(bc1\$y)]</pre>

```
# Example code from assignment
library(MASS)
bc1 <- boxcox(df$price ~ 1)
lambda <- bc1$x[bc1$y == max(bc1$y)]
trans <- (df$price^lambda - 1)/lambda
summary(trans)</pre>
```

- 8.2 For right skewed data, use a function that tends to reduce larger values in proportion to smaller ones (i.e., an increasing function whose slope is decreasing):
- 8.2.1 Log transformation:

```
in R: log()
```

8.2.2 Square-root transformation:

in R: sqrt

9 Check normality: qqplot

in R: qqnorm(data); qqline(data)