PH 716 Applied Survival Analysis

Part III: Comparing survival curves

Zhiyang Zhou (zhou67@uwm.edu, zhiyanggeezhou.github.io)

2024/Jan/21 13:01:04

Recall Ex. 2.2

```
data.ex22 = survival::pbc[complete.cases(survival::pbc[,1:4]), 1:4]
data.ex22$status = 1*(data.ex22$status %in% c(1,2)) # merging status 1 and 2
survminer::ggsurvplot(
    survival::survfit(survival::Surv(time, status)~trt, data=data.ex22, conf.type="log-log"),
    xlab="Time",
    conf.int = T,
    conf.int.style="step",
    censor=F,
    risk.table = F,
    cumevents = F,
    tables.height = 0.15
)
```

Recall the hypothesis testing (from the perspective of binary classification)

- Make a decision between the null hypothesis H_0 and the alternative one H_1
- Potential outcomes
 - True positive (TP) = H_0 correctly rejected
 - False positive (FP, i.e., type I error) = H_0 incorrectly rejected
 - True negative (TN) = H_0 is correctly accepted
 - False negative (FN, i.e., type II error) = H_0 incorrectly accepted
 - E.g., H_0 : healthy vs H_1 : sick
 - * TP: sick people identified as sick
 - * FP: healthy people identified as sick
 - * TN: healthy people identified as healthy
 - * FN: sick people identified as healthy

	Accept H_0	Reject H_0
H_0 is true H_0 is false	True negative (TN) False negative (FN, i.e., type II error)	False positive (FP, i.e., type I error) True positive (TP)

- Evaluating the error rate
 - Misclassification rate = Pr(FP) + Pr(FN)
 - False discovery rate (FDR) = $Pr(FP)/\{Pr(FP) + Pr(TP)\}$
 - * controlling for sequential/simultaneous testing

- True positive rate (TPR, i.e., sensitivity) = $Pr(TP)/\{Pr(TP) + Pr(FN)\}$
- False positive rate (FPR) = $Pr(FP)/\{Pr(FP) + Pr(FN)\}$
- Receiver operating characteristic curve (ROC curve): plot of TPR vs FPR
 - * Area under the ROC curve (AUC)
- True negative rate (TNR, i.e., specificity) = $Pr(TN)/\{Pr(TN) + Pr(FP)\}$
- The (optimal) hypothesis testing is a strategy minimizing Pr(FN) subject to capped Pr(FP), i.e.,

minimize Pr(type II error) subject to $Pr(type\ I\ error) \leq \alpha$

 $-\alpha$ is the significance level

Assumptions

- The censoring is noninformative
- All the subjects are independent from each other
- Subjects in group k share the identical hazard rate $\lambda_k(t)$

Hypotheses to be tested

- Null hypothesis $H_0: \lambda_1(t) = \lambda_2(t) = \lambda(t)$ for all t
- Alternative hypothesis H_1 could be:
 - One-sided $H_1: \lambda_1(t) \geq \lambda_2(t)$ for all t and $\lambda_1(t) > \lambda_2(t)$ for some t
 - One-sided $H_1: \lambda_1(t) \leq \lambda_2(t)$ for all t and $\lambda_1(t) < \lambda_2(t)$ for some t
 - Two-sided $H_1: \lambda_1(t) \neq \lambda_2(t)$ for some t

Two-sample log-rank test

- Distinct observed event times across the POOLED sample are $t_1 < \cdots < t_{n_D}$
 - At time t_j , there are d_{kj} events in group $k, k = 1, 2, \text{ and } d_j = d_{1j} + d_{2j}$
 - Just prior to t_j , there are n_{kj} at risk in group k and $n_j = n_{1j} + n_{2j}$
- Test statistic
 - $-U_k/\sqrt{V} \approx N(0,1)$ under $H_0, k=1,2$
 - * $U_k = \sum_{j=1}^{n_D} n_{kj} (d_{kj}/n_{kj} d_j/n_j) = n_{kj} \{ \hat{\lambda}_1(t_j) \hat{\lambda}(t_j) \}$
 - $\hat{\lambda}_1(t_i)$: estimated hazard rate at t_i for group k
 - $\hat{\lambda}(t_i)$: estimated hazard rate at t_i for pooled population
 - · $d_{kj} = n_{kj} \hat{\lambda}_1(t_j)$: observed number of events from sample k at time t_j
 - $n_{kj}\hat{\lambda}(t_i)$: expected number of events from sample k at time t_i under H_0
 - * $V = \text{var}(U_k) = \sum_{j=1}^{n_D} \frac{d_j n_{1j} n_{2j} (n_j d_j)}{n_j^2 (n_j 1)}$
 - $* U_1 = U_2$
 - The log-rank test is rank-based; one could construct the test statistic using only the order of observed event times alone.
- Rejection region
 - 2-sided: $|U_k/\sqrt{V}| > z_{1-\alpha/2}$ or equiv. $U_k^2/V > \chi_{1,1-\alpha}^2$ * $z_{1-\alpha/2}$ is the $1-\alpha/2$ quantile of N(0,1)

 - * $\chi^2_{1,1-\alpha}$ is the $1-\alpha$ quantile of $\chi^2(1)$
 - 1-sided $(H_1: \lambda_1(t) \ge \lambda_2(t))$ for all t and $\lambda_1(t) > \lambda_2(t)$ for some t): $U_1/\sqrt{V} > z_{1-\alpha}$
 - 1-sided $(H_1: \lambda_1(t) \leq \lambda_2(t))$ for all t and $\lambda_1(t) < \lambda_2(t)$ for some t): $-U_1/\sqrt{V} > z_{1-\alpha}$
- p-value
 - 2-sided: $p = 2\{1 \Phi(|U_k/\sqrt{V}|)\}$
 - * $\Phi(\cdot)$ is the cdf of N(0,1)

 - 1-sided $(H_1: \lambda_1(t) \geq \lambda_2(t))$ for all t and $\lambda_1(t) > \lambda_2(t)$ for some t): $p = \{1 \Phi(U_1/\sqrt{V})\}$ 1-sided $(H_1: \lambda_1(t) \leq \lambda_2(t))$ for all t and $\lambda_1(t) < \lambda_2(t)$ for some t): $p = \{1 \Phi(-U_1/\sqrt{V})\}$

Ex. 3.1. Revisit the PBC data

```
data.ex22 = survival::pbc[complete.cases(survival::pbc[,1:4]), 1:4]
data.ex22$status = 1*(data.ex22$status %in% c(1,2)) # merging status 1 and 2
# For 2-sided only
survival::survdiff(
  formula = survival::Surv(time, status)~trt, data=data.ex22
)
survminer::surv_pvalue(
  fit = survival::survfit(formula = survival::Surv(time, status)~trt, data=data.ex22),
  method = 'log-rank'
# For 2-sided or 1-sided
nph::logrank.test(
  time = data.ex22$time,
  event = data.ex22$status,
  group = data.ex22$trt,
  alternative = 'two.sided' # 'two.sided', 'less', 'greater'
)$test
```

- Demo report of testing results (covering necessary components: hypotheses, test name, p-value/rejection region, significance level, and conclusion):
 - "Testing hypotheses H_0 : ____ vs. H_1 : ____, we carried on the ____ test."
 - * "The p-value is ____ . So, at the ____ level, there was/wasn't a strong statistical evidence against H_0 , i.e., we believed that ____ ."
 - * OR "The value of test statistic is $T = \underline{\hspace{1cm}}$. Given the level $\underline{\hspace{1cm}}$ rejection region $T > \underline{\hspace{1cm}}$, there was/wasn't a strong statistical evidence against H_0 , i.e., we believed that $\underline{\hspace{1cm}}$."

Testing multiple (>2) survival curves

- Hypotheses to be tested
 - Null hypothesis $H_0: \lambda_1(t) = \cdots = \lambda_K(t) = \lambda(t)$ for all t
 - Alternative hypothesis $H_1: \lambda_{k_1}(t) \neq \lambda_{k_2}(t)$ for certain t and certain 2-tuple (k_1, k_2)
- Ex. 3.2. (Bladder Cancer Recurrences) A dataset on recurrences of bladder cancer. It contains three treatment arms for 118 subjects.

```
data.ex32 = survival::bladder1[
  complete.cases(survival::bladder1[,c('id', 'treatment', 'start', 'stop', 'status')]),
  c('id', 'treatment', 'start', 'stop', 'status')
٦
data.ex32\$status = 1*(data.ex32\$status \%in\% c(1,2,3)) # merging status 1, 2,3
data.ex32$time = data.ex32$stop - data.ex32$start
# For 2-sided only
survival::survdiff(
 formula = survival::Surv(time, status)~treatment, data=data.ex32
survminer::surv_pvalue(
 fit = survival::survfit(formula = survival::Surv(time, status)~treatment, data=data.ex32),
 method = 'log-rank'
)
survminer::surv_pvalue(
 fit = survival::survfit(formula = survival::Surv(time, status)~treatment, data=data.ex32),
 method = 'log-rank',
 test.for.trend = T
```

)

Testing for trend

- Hypotheses to be tested
 - Null hypothesis $H_0: \lambda_1(t) = \cdots = \lambda_K(t) = \lambda(t)$ for all t, K > 2
 - Alternative hypothesis $H_1: \lambda_1(t) \geq \cdots \geq \lambda_K(t)$ or $\lambda_1(t) \leq \cdots \leq \lambda_K(t)$, with at least one strict inequality
- Ex. 3.3. Revisit the data of bladder cancer recurrences

```
data.ex33 = survival::bladder1[
  complete.cases(survival::bladder1[,c('id', 'treatment', 'start', 'stop', 'status')]),
  c('id', 'treatment', 'start', 'stop', 'status')
data.ex33\$status = 1*(data.ex33\$status \%in% c(1,2,3)) # merging status 1, 2,3
data.ex33$time = data.ex33$stop - data.ex33$start
data.ex33$treatment = factor(data.ex33$treatment, levels = c("placebo", "pyridoxine", "thiotepa"))
survminer::surv_pvalue(
 fit = survival::survfit(formula = survival::Surv(time, status)~treatment, data=data.ex33),
 method = 'log-rank',
  test.for.trend = T
# Change the order of treatments
data.ex33$treatment = factor(data.ex33$treatment, levels = c("placebo", "thiotepa", "pyridoxine"))
survminer::surv_pvalue(
 fit = survival::survfit(survival::Surv(time, status)~treatment, data=data.ex33),
 method = 'log-rank',
  test.for.trend = T
```