Quantum Phase Estimation

Tzu Hsuan Chang

December 11, 2020

1 Introduction

Quantum phase estimation (QPE) is used to find the eigenvalues of a unitary matrix. Suppose we want to find the eigenvalues $e^{2\pi i\theta_i}$ corresponding to the eigenvector $|u_i\rangle$ of an unitary operator \hat{U} such that $\hat{U}|u_i\rangle = e^{2\pi i\theta_i}|u_i\rangle$. The QPE have the following operation,

$$|0\rangle |u_i\rangle \longrightarrow \left|\tilde{\theta}_i\right\rangle |u_i\rangle,$$
 (1)

where $\tilde{\theta}_i$ is an estimate for θ_i .

As shown on figure 1, the QPE circuit write the phase of \hat{U} to n ancillary qubits $|0\rangle^{\otimes n}$ in the Fourier basis and using inverse QFT to transform them back to the computational basis. The following is the mathematical details.

Mathematical details

As shown in figure 1, assuming ψ is the eigenvector of the unitary operator \hat{U} with eigenvalue $e^{2\pi i\theta}$. Initially, we have

$$\psi_0 = |0\rangle^{\otimes n} \,\psi. \tag{2}$$

After applying n-bit Hadamard gates on the ancillary qubits,

$$\psi_1 = \frac{1}{2^{n/2}} (|0\rangle + |1\rangle)^{\otimes n} \psi. \tag{3}$$

References

- [1] A. Asfaw, L. Bello, Y. Ben-Haim, S. Bravyi, N. Bronn, L. Capelluto, A. C. Vazquez, J. Ceroni,
 - R. Chen, A. Frisch, J. Gambetta, S. Garion, L. Gil, S. D. L. P. Gonzalez, F. Harkins,
 - T. Imamichi, D. McKay, A. Mezzacapo, Z. Minev, R. Movassagh, G. Nannicni, P. Nation,
 - A. Phan, M. Pistoia, A. Rattew, J. Schaefer, J. Shabani, J. Smolin, K. Temme, M. Tod,
 - S. Wood, and J. Wootton. Learn quantum computation using qiskit, 2020.

Figure 1: Quantum phase estimation circuit.[1]