TD 2

Exercice 1 - Exercice 1 : Classifieur bayésien

Soit \mathcal{X} un ensemble de description dans \mathbb{R}^d et \mathcal{Y} l'ensemble des labels $\{y_1, ..., y_l\}$.

- Q 1.1 Rappeler ce qu'est un classifieur bayésien.
- Q 1.2 Exprimer l'erreur faîte par le classifieur bayésien à un point x. L'erreur est-elle minimale?
- **Q 1.3** Soit $\lambda(y_j, y_i)$ le coût d'une erreur consistant à prédire le label y_j plutôt que y_i . Que valent les λ dans le cas de l'erreur 0-1? Donner quelques exemples de coûts asymétrique et des contextes d'utilisation.
- **Q 1.4** Quelle est l'expression du risque $R(y_i|\mathbf{x})$ de prédire y_i sachant \mathbf{x} en fonction de λ et des probabilités a posteriori? Dans le cas 0-1?
- **Q 1.5** Donner l'expression du risque sur \mathcal{X} associé au classifieur f, R(f). **Q 1.6** On se place dans le cas binaire. Exprimer le critère de décision en fonction de λ et des probabilités a posteriori, puis donner un critère de décision en fonction de λ , la distribution des classes et la vraissemblance.

Exercice 2 - Exercice 2 : Estimation de densité

- **Q 2.1** Donner l'estimation de la densité $p_{\mathcal{B}}(\mathbf{x})$ d'une variable aléatoire X à l'intérieur d'une région d'intérêt \mathcal{B} de volume V, en fonction d'un nombre k d'échantillons observés dans cette zone parmi n échantillons tirés.
- Q 2.2 Qu'est ce qu'une telle estimation permet dans le cadre de la méthode des fenêtres de Parzen?
- **Q 2.3** Quelle différence entre les fenêtres de Parzen et les k-nn? Que vérifie-t-on quand le nombre d'échantillons tend vers l'infini?
- **Q 2.4** Sur l'exemple suivant, tracez la frontière de décision pour k=1. Quel problème peut se poser pour des valeurs de k?

Q 2.5 Ajouter un *outlier* en (-0.5, -0.5). Comment évolue la frontière? **Q 2.6** Et si k = 3? Que se passe-t-il quand k tend vers l'infini? **Q 2.7** Soit $p_1, ..., p_l$ les fonctions densités des différents labels,

qu'on suppose strictement positive sur l'ensemble de définition. Soit \mathbf{x} un exemple à classifier, $(\mathbf{x}_i)_{i=1}^n$ une suite d'échantillons aléatoires et $(\mathbf{x}_j')_{j=1}^n$ la suite extraite de l'ensemble précédent tel que \mathbf{x}_j' soit le plus proche voisin de \mathbf{x} à l'étape j parmi les $\{\mathbf{x}_i\}$. Montrer que la séquence $(\mathbf{x}_i')_{i=1}^n$ converge vers \mathbf{x} .

- **Q 2.8** Exprimez le risque $r(\mathbf{x}, \mathbf{x}'_n)$, la probabilité de faire une erreur de classification sur \mathbf{x} à l'étape n en considérant le plus proche voisin \mathbf{x}'_n , en fonction des $q_k(\mathbf{x}) = P(y = k|\mathbf{x})$.
- **Q 2.9** Vers quoi converge $r(\mathbf{x}, \mathbf{x}'_n)$ quand le nombre d'échantillons tend vers l'infini? Nous noterons $r(\mathbf{x})$ cette limite.
- **Q 2.10** Simplifier l'expression de $r(\mathbf{x})$.
- **Q 2.11** Montrer que $r(\mathbf{x}) \leq 2r_b(\mathbf{x})(1-r_b(\mathbf{x}))$ dans le cas à 2 classes, avec $r_b(\mathbf{x})$ l'expression du risque bayésien pour x. Monter que $r(\mathbf{x}) \leq r_b(\mathbf{x})(2-\frac{K}{K-1}r_b(\mathbf{x}))$ dans le cas à K classes. Indication : utiliser l'inégalité de Cauchy $\left|\sum_{i=1}^n u_i v_i\right|^2 \leq \sum_{i=1}^n |u_i|^2 \sum_{j=1}^n |v_j|^2$ en l'utilisant sur K-1 q_i et en choisissant $v_j=1$.