

#### UNIVERSITÀ DEGLI STUDI DI PARMA

FACOLTÀ DI INGEGNERIA

CORSO DI LAUREA IN INGEGNERIA INFORMATICA

# L11 - Image Segmentation

**ANNO ACCADEMICO 2016/2017** 



## **K-Means Clustering**

- Initialization:
  - choose k cluster centers
- Repeat:
  - assignment step:
    - For every point find its closest center
  - update step:
    - Update every center as the mean of its points
- Until:
  - The maximum number of iterations is reached, or
  - No changes during the assignment step, or
  - The average distortion per point drops very little

[Lloyd, 1957]



## **K-Means Clustering**

- Input: N examples  $\{x_1, \dots, x_N\}$   $(x_n \in \mathbb{R}^D)$ ; the number of partitions K
- Initialize: K cluster centers  $\mu_1, \ldots, \mu_K$ . Several initialization options:
  - Randomly initialized anywhere in  $\mathbb{R}^D$
  - Choose any K examples as the cluster centers
- Iterate:
  - Assign each of example  $x_n$  to its closest cluster center

$$C_k = \{n: k = \arg\min_{k} ||\mathbf{x}_n - \mu_k||^2\}$$

 $(C_k$  is the set of examples closest to  $\mu_k$ )

• Recompute the new cluster centers  $\mu_k$  (mean/centroid of the set  $C_k$ )

$$\mu_k = \frac{1}{|\mathcal{C}_k|} \sum_{n \in \mathcal{C}_k} \mathbf{x}_n$$

Repeat while not converged



## **K-Means Clustering**

The K-means objective function

- Let  $\mu_1, \ldots, \mu_K$  be the K cluster centroids (means)
- Let  $r_{nk} \in \{0,1\}$  be indicator denoting whether point  $\mathbf{x}_n$  belongs to cluster k
- K-means objective minimizes the total distortion (sum of distances of points from their cluster centers)

$$J(\mu, r) = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||\mathbf{x}_n - \mu_k||^2$$

- Note: Exact optimization of the K-means objective is NP-hard
- The K-means algorithm is a heuristic that converges to a local optimum [1]
  - [1] L. Bottou and Y. Bengio. Convergence properties of the kmeans algorithm. NIPS, 1995.



 Implementare K-Means utilizzando come feature il tono di grigio dell'immagine [0-255]

- Scelta iniziale dei centri:
  - Equidistribuiti su 0-255
  - Random su 0-255



- Scelta dei centri in base all'istogramma:
  - Calcolare l'istogramma dei toni di grigio
  - Prendere un centro cluster per ogni massimo locale dell'istogramma



- Implementare K-Means utilizzando come feature i 3 canali di colore RGB
  - Modificare oppurtunamente funzione distanza e costo



- Implementare K-Means utilizzando come feature il tono di grigio più la posizione riga-colonna:
  - -(L,u,v,) -> [0 255][0 (rows-1)][0 (cols-1)]
  - Modificare opportunamente le funzioni distanza e costo



## **Superpixel**

#### **SLIC Superpixels:**

- Feature space → intensity + position
  - L.a.b. color space
  - limited region (window 2\*S)

$$[l_k, a_k, b_k, x_k, y_k]$$

Distance metric:

$$d_c = \sqrt{(l_j - l_i)^2 + (a_j - a_i)^2 + (b_j - b_i)^2}$$
 $d_s = \sqrt{(x_j - x_i)^2 + (y_j - y_i)^2}$ 
 $D' = \sqrt{\left(\frac{d_c}{N_c}\right)^2 + \left(\frac{d_s}{N_s}\right)^2}.$ 

- Initialization:
  - Spatial grid (grid step = S)
- Iterate over centers and not points



Fig. 1: Images segmented using SLIC into superpixels of size 64, 256, and 1024 pixels (approximately).



Achanta et al., SLIC Superpixels Compared to State-of-the-art Superpixel Methods, PAMI 2012.