花束摆放问题

花束摆放问题

- 一、问题描述
- 二、实验要求
- 三、实验原理

证明最优子结构

求解递推式

记录解向量

四、算法实现

DP初始化

DP计算

时间统计

数据生成

美学值表打印

DP结果打印

测试程序

五、算法分析

时间复杂度

空间复杂度

六、算法测试

附录 完整代码

Homework5.cpp

ustime.h

ustime.cpp

DateCreate.h

DataCreate.cpp

Algorithm1.h

Algorithm1.cpp

一、问题描述

现在有F束不同品种的花束,同时有至少同样数量的花瓶被按顺序摆成一行,其位置固定于架子上,并从1至V按从左到右顺序编号,V是花瓶的数目 ($F \le V$)。花束可以移动,并且每束花用1至F的整数唯一标识。标识花束的整数决定了花束在花瓶中排列的顺序,如果i < j,花束i必须放在花束j左边的花瓶中。每个花瓶只能放一束花。如果花瓶的数目大于花束的数目,则多余的花瓶空置。

每一个花瓶都具有各自的特点。因此,当各个花瓶中放入不同的花束时,会产生不同的美学效果,并以一美学值(一个整数)来表示,空置花瓶的美学值为零。为取得最佳美学效果,必须在保持花束顺序的前提下,使花束的摆放取得最大的美学值。请求出具有最大美学值的一种摆放方式。

二、实验要求

- 设计动态规划算法,描述最优子结构,在报告中写出设计思路;
- 编程序实现上述算法,并完成测试;
- 分析算法的时间复杂度

三、实验原理

用 N[i][j] 表示第 i 束花放到第 j 个瓶子中的美学值,用 (x_1, x_2, \ldots, x_F) 表示最大美学值总和下的摆放方式,即第 i 束花被摆放到 x_i 花瓶中, $1 \le x_i \le V$ 且序列中各元素互不相等。

证明最优子结构

用反证法证明:

设 $(x_1, x_2, ..., x_F)$ 是所给花束摆放问题的一个最优解,则 $(x_1, x_2, ..., x_{F-1})$ 是下面一个子问题的最优解:

F-1 束花被摆放到V-1 个花瓶中,求最大美学值总和

如若不然,设 (y_1,y_2,\ldots,y_{F-1}) 是上述子问题的一个最优解,及

$$\sum_{i=1}^{F-1} N[i][x_i] < \sum_{i=1}^{F-1} N[i][y_i] \ \sum_{i=1}^{F} N[i][x_i] = \sum_{i=1}^{F-1} N[i][x_i] + N[F][x_F] < \sum_{i=1}^{F-1} N[i][y_i] + N[F][x_F]$$

得到 (x_1, x_2, \ldots, x_F) 不 是所给花束摆放问题的一个最优解,与题设矛盾。

因此,该问题满足最优子结构。

求解递推式

用 M[i][j] 表示将前 i 束花插到前 j 个花瓶中能够产生的最大美学值总和。

考虑两种情况:

- 当前第i東花摆放到第j个花瓶中,则M[i][j] = M[i-1][j-1] + N[i][j]
- 当前第i 束花不放到第j 个花瓶中,则 M[i][j] = M[i][j-1]

综合以上两种情况,可以递推式 $M[i][j] = Max\{M[i][j-1], M[i-1][j-1] + N[i][j]\}$

记录解向量

要记录最大美学值的解向量 $X = (x_1, x_2, \ldots, x_F)$ 。我们可以考虑从M[F][V]出发,倒退求解向量:

- 初始i = F, j = V
- 若M[i][j] > M[i-1][j],则花束i被摆放在花瓶j,用于更新M[i][j],i=i-1, j=j-1
- 若M[i][j] = M[i-1][j],则花束i没有被摆放在花瓶j,j = j-1, i保持不变

四、算法实现

DP初始化

```
/*DP初始化*/
Algorithm1::Algorithm1(int f, int v, int** n)
{
    F = f;
    V = v;
    N = n;
    M = new int* [F + 1];

    for (int i = 0; i <= F; ++i)
        M[i] = new int[V + 1];
    for (int i = 0; i <= F; ++i)
        for (int j = 0; j <= V; ++j)
        M[i][j] = 0;

Result = new int [F + 1];
```

```
for (int i = 1; i <= F; ++i)
    Result[i] = 0;
}</pre>
```

DP计算

```
/*DP计算*/
int Algorithm1::Run()
{
   /*动态规划过程*/
   for (int i = 1; i <= F; ++i) //遍历花束
      for (int j = i; j <= V; ++j) //遍历花瓶,第i束花必须
摆放在第i个花瓶之后
          M[i][j] = gmax(M[i][j-1], M[i-1][j-1] +
N[i][j]); //抉择当前花瓶摆还是不摆
   /*倒推求解解向量过程*/
   for (int i = F, j = V; i >= 1; j--)
   {
      if (M[i][j] > M[i][j - 1]) //如果当前在花束下,前j个花瓶
方案比前i-1个花瓶方案更优,则表明第i个花瓶被选中
      {
          Result[i] = j; //记录解向量
          i --; //继续考虑上一个花束
      }
   }
   return M[F][V];
}
```

```
#pragma once
#ifdef _WIN32
#include <windows.h>
#else
#include <time.h>
#endif // _WIND32
// 定义64位整形
#if defined(_WIN32) && !defined(CYGWIN)
typedef __int64 int64_t;
#else
typedef long long int64t;
#endif // _WIN32
int64_t GetSysTimeMicros();
#include "ustime.h"
// 获取系统的当前时间,单位微秒(us)
int64_t GetSysTimeMicros()
{
#ifdef _WIN32
    // 从1601年1月1日0:0:0:000到1970年1月1日0:0:0:000的时间(单位
100ns)
#define EPOCHFILETIME (116444736000000000UL)
    FILETIME ft;
    LARGE_INTEGER li;
    int64_t tt = 0;
    GetSystemTimeAsFileTime(&ft);
   li.LowPart = ft.dwLowDateTime;
   li.HighPart = ft.dwHighDateTime;
    // 从1970年1月1日0:0:0:000到现在的微秒数(UTC时间)
   tt = (li.QuadPart - EPOCHFILETIME) / 10;
    return tt;
#else
   timeval tv;
    gettimeofday(&tv, 0);
```

```
return (int64_t)tv.tv_sec * 1000000 +
(int64_t)tv.tv_usec;
#endif // _WIN32
    return 0;
}
```

数据生成

```
DataCreate::DataCreate(int f, int v)
{
    F = f;
    V = V;
    data = new int* [F + 1];
    for (int i = 0; i <= F; ++i)
        data[i] = new int[V + 1];
}
int** DataCreate::GetData()
{
    srand(time(NULL));
    for (int i = 1; i <= F; i++)
        for (int j = 1; j <= V; j++)
        {
            data[i][j] = rand() \% 100;
    return data;
}
```

```
void DataCreate::Print()
{
    cout << "美学值表: " << endl;
    cout << setw(8) << "花束\\花瓶";
    for (int i = 1; i <= V; ++i)
        cout << setw(5) << i;
    cout << endl;
    for (int i = 1; i <= F; ++i)
    {
        cout << setw(9) << i;
        for (int j = 1; j <= V; ++j)
            cout << setw(5) << data[i][j];
        cout << endl;
    }
}</pre>
```

DP结果打印

测试程序

```
#include "DataCreate.h"
#include "ustime.h"
#include "Algorithm1.h"
#include <iostream>
using namespace std;
int main()
{
   while (1)
    {
       int F, V;
        cout << "请输入花束总数F: ";
        cin >> F:
        cout << "请输入花瓶总数V: ";
        cin >> V;
        DataCreate Data(F, V);
        int** N = Data.GetData();
        Data.Print();
        Algorithm1 Algo(F, V, N);
       Algo.Run();
       Algo.Print();
    }
```

五、算法分析

时间复杂度

在动态规划求解过程中,DP部分进行 O(FV) 的二重循环

在求解解向量的过程中,进行O(V)的单重循环

故时间复杂度为O(FV)

空间复杂度

DP数组M[F][V], 空间复杂度为O(FV)

六、算法测试

10束花, 15个花瓶

请输入花束总数F: 10

		总数V:	15									
美学值	ī表 :											
花束	\花瓶	1	2	3	4	5	6	7	8	9	10	
11	12	13	14	15								
	1	30	60	24	81	11	77	20	96	32	83	
78	80	63	2	75								
	2	29	25	37	54	35	80	23	55	37	50	
77	61	87	90	48								
	3	45	75	64	74	31	90	77	99	55	96	
0	22	44	29	45								
	4	67	7	33	38	87	40	19	37	74	36	
61	86	68	11	67								
	5	37	84	36	25	5	37	69	41	94	25	
81	66	25	63	23								
	6	49	51	27	69	46	83	5	44	3	78	
94	29	27	75	66								
	7	5	22	43	39	97	54	11	40	25	53	
65	18	78	62	64								
	8	27	46	73	7	19	39	79	79	36	98	
25	56	56	9	31								
	9	17	62	63	16	3	78	91	0	25	12	
72	78	25	60	19								
				5	57	63	82	71	63	63	28	
27	75	19	91	88								
DP表:												
	•			3	4	5	6	7	8	9	10	
11			14									
				60	81	81	81	81	96	96	96	
96			96									
4=0				97	114	116	161	161	161	161	161	
1/3			186		474	a 7 a	206	220	260	260	260	
2.50				119	1/1	1/1	206	238	260	260	260	
260			260		a = =	2-2	2 - 2	2-2	a=-	22.	22.	
224				0	157	258	258	258	2/5	334	334	
334			346			4.00	22-	22-	22-	2.02	2.22	
44.5				0	0	162	295	327	327	369	369	
415	415	415	415	415								

6 0 0 245 463 463 490 490 7 0 0 0 512 541 541 8 0 0 0 568 568 568 572 0 0 9 0 572 593 628 628 10 0 0 0 415 641 641 684 716 最大美学值为: 716 摆花方案为: 第 1 束花被摆放到第 4 个花瓶 第 2 束花被摆放到第 6 个花瓶 第 3 束花被摆放到第 7 个花瓶 第 4 束花被摆放到第 8 个花瓶 第 5 束花被摆放到第 9 个花瓶 第 6 束花被摆放到第 10 个花瓶 第 7 束花被摆放到第 11 个花瓶 第 8 束花被摆放到第 12 个花瓶 第 9 束花被摆放到第 14 个花瓶

20束花, 30个花瓶

运行时间: 0 s

请输入花束总数F: 20 请输入花瓶总数V: 30

第 10 束花被摆放到第 15 个花瓶

美学值表: 4 5 6 7 花東\花瓶 2 3 11 12 20 21 24 25 20 93 24 87 95 72 1

	2	97	75	67	95	98	91	92	44	34	98
16	28	10	21	45	70	33	25	8	86	86	24
82	55	38	89	70	31	7	88				
	3	96	99	14	6	0	43	72	22	6	94
27	17	89	54	48	12	5	66	90	91	9	11
65	96	4	61	99	16	64	30				
	4	87	57	69	72	89	65	35	91	6	17
94	57	16	82	89	49	96	48	61	54	97	1
48	53	68	68	5	91	34	25				
	5	89	12	21	4	94	1	3	71	43	44
83	17	29	5	70	77	17	67	21	88	78	1
40	66	79	6	6	33	96	71				
	6	62	11	45	67	21	85	56	20	40	65
29	84	9	34	94	46	29	12	36	42	45	89
63	10	69	22	52	11	76	59				
	7	1	20	6	62	61	9	82	1	86	30
52	10	87	81	6	55	18	21	33	54	6	24
42	22	0	15	5	30	79	29				
	8	30	53	89	30	91	60	92	25	58	24
25	99	62	63	11	81	51	44	7	64	93	25
79	12	73	97	21	51	40	42				
	9	98	98	68	64	71	84	17	70	22	90
83	97	91	28	64	3	21	86	8	2	47	12
27	41	36	54	18	94	35	50				
	10	2	97	11	76	82	16	3	72	80	55
96	94	18	45	50	47	88	67	63	74	24	73
34	38	49	75	21	14	13	75				
	11	61	8	55	96	14	2	79	36	57	45
51	65	52	8	2	92	46	22	31	83	15	43
5	72	42	40	48	23	36	71				
	12	42	65	32	57	34	26	61	27	93	96
78	87	35	72	61	52	37	72	29	47	65	34
48	4	5	24	25	20	47	68				
	13	15	56	44	74	23	93	8	36	74	57
34	9	25	15	77	45	52	30	69	32	1	52
25	97	95	85	33	61	15	8				

	14	8	91	85	10	16	14	22	44	85	61	
96	11	75	23	67	43	51	4	15	26	35	50	
6	31	57	3	83	29	85	54					
	15	50	6	61	91	66	26	3	69	29	2	
41	98	72	21	36	33	86	20	41	28	37	9	
59	51	62	46	35	77	32	94					
	16	76	15	20	77	72	61	43	80	2	34	
21	64	24	31	69	71	92	4	9	58	33	89	
98	93	49	66	71	20	12	30					
	17	95	23	8	33	88	81	43	49	59	96	
68	77	53	84	49	67	19	61	41	12	5	6	
13	49	75	79	69	32	12	45					
	18	36	3	14	72	35	68	35	50	82	94	
23	15	72	71	93	55	38	43	46	39	93	0	
24	70	7	57	3	80	66	28					
	19	6	45	95	55	31	14	66	19	44	76	
31	60	33	91	73	68	86	34	77	14	39	33	
53	60	93	32	9	56	46	58					
	20	9	39	56	76	48	7	82	67	61	63	
51	19	36	37	19	61	16	87	87	8	27	61	
13	91	73	53	84	98	16	80					
DP表:												
花東\	花瓶	1	2	3	4	5	6	7	8	9	10	
11	12	13	14	15	16	17	18	19	20	21	22	
23	24	25	26	27	28	29	30					
	1	87	95	95	95	95	95	95	95	95	95	
95	98	98	98	98	98	98	98	98	98	98	98	
98	98	98	98	98	98	98	98					
	2	0	162	162	190	193	193	193	193	193	193	
193	193	193	193	193	193	193	193	193	193	193	193	
193	193	193	193	193	193	193	193					
	3	0	0	176	176	190	236	265	265	265	287	
287	287	287	287	287	287	287	287	287	287	287	287	
287	289	289	289	292	292	292	292					
	4	0	0	0	248	265	265	271	356	356	356	
381	381	381	381	381	381	383	383	383	383	384	384	
384	384	384	384	384	384	384	384					

```
5 0 0 0 342 342 342 349 400
   439 439 439 451 458 458 458 458 471 471 471
439
   471 471 471 471 471 480 480
471
    6 0 0 0 0 0 427 427 427 427 464
   523 523 523 533 533 533 533 533 533 560
464
   560 560 560 560 560 560
560
    7 0 0 0 0 0 0 509 509 513 513
516
   516 610 610 610 610 610 610 610 610 610
   610 610 610 610 639 639
610
   8 0 0 0 0 0 0 534 567 567
567
   615 615 673 673 691 691 691 691 691 703 703
   703 703 707 707 707 707 707
703
    9 0 0 0 0 0 0 0 556 657
   664 706 706 737 737 737 777 777 777 777
657
777
   777 777 777 777 801 801 801
   10 0 0 0 0 0 0 0 0 611
   753 753 756 784 825 825 840 851 851 851
753
851
   851 851 852 852 852 856
    11 0 0 0 0 0 0 0 0 0
   818 818 818 818 848 848 848 856 923 923 923
662
   923 923 923 923 923 923 923
    12 0 0 0 0 0 0 0 0 0
  0 749 853 890 890 890 890 920 920 920 988 988
988 988 988 988 988 988 991
    13 0 0 0 0 0 0 0 0 0
  0 0 774 868 967 967 967 967 989 989 989 1040
1040 1085 1085 1085 1085 1085 1085 1085
    14
        0 0 0 0 0
                            0 0 0 0
        0 797 935 1010 1018 1018 1018 1018 1024 1039
1046 1071 1142 1142 1168 1168 1170 1170
              0 0 0 0 0 0 0 0
    15
       0
          0
        0 0 833 968 1096 1096 1096 1096 1096 1096
    0
1098 1098 1133 1188 1188 1245 1245 1264
              0 0 0 0 0 0 0
           0
    16
        0
           0 0 904 1060 1100 1105 1154 1154 1185
  0 0
        0
1194 1194 1194 1199 1259 1259 1259 1275
```

	17	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	923	1121	1141	1141	1159	1160	
1198	1243	1269	1273	1273	1291	1291	1304					
	18	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	966	1167	1180	1234	1234	
1234	1268	1268	1326	1326	1353	1357	1357					
	19	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	1043	1181	1219	1267	
1287	1294	1361	1361	1361	1382	1399	1415					
	20	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	1051	1208	1280	

1280 1378 1378 1414 1445 1459 1459 1479

最大美学值为: 1479

摆花方案为:

- 第 1 束花被摆放到第 1 个花瓶
- 第 2 束花被摆放到第 2 个花瓶
- 第 3 束花被摆放到第 3 个花瓶
- 第 4 束花被摆放到第 4 个花瓶
- 第 5 束花被摆放到第 5 个花瓶
- 第 6 束花被摆放到第 6 个花瓶
- 第 7 束花被摆放到第 7 个花瓶
- 第 8 束花被摆放到第 9 个花瓶
- 第 9 束花被摆放到第 10 个花瓶
- 第 10 束花被摆放到第 11 个花瓶
- 第 11 束花被摆放到第 12 个花瓶
- 第 12 束花被摆放到第 14 个花瓶
- 第 13 束花被摆放到第 15 个花瓶
- 第 14 束花被摆放到第 16 个花瓶
- 第 15 束花被摆放到第 17 个花瓶
- 第 16 束花被摆放到第 23 个花瓶
- 第 17 束花被摆放到第 26 个花瓶
- 第 18 束花被摆放到第 28 个花瓶
- 第 19 束花被摆放到第 29 个花瓶
- 第 20 束花被摆放到第 30 个花瓶

Homework5.cpp

```
#include "DataCreate.h"
#include "ustime.h"
#include "Algorithm1.h"
#include <iostream>
using namespace std;
int main()
{
   while (1)
    {
        int F, V;
        cout << "请输入花束总数F: ";
        cin >> F;
        cout << "请输入花瓶总数V: ";
        cin >> V;
        DataCreate Data(F, V);
        int** N = Data.GetData();
        Data.Print();
        Algorithm1 Algo(F, V, N);
        Algo.Run();
        Algo.Print();
    }
}
```

ustime.h

```
#pragma once
#ifdef _WIN32
#include <windows.h>
#else
#include <time.h>
```

```
#endif // _WIND32

// 定义64位整形

#if defined(_WIN32) && !defined(CYGWIN)

typedef __int64 int64_t;

#else

typedef long long int64t;

#endif // _WIN32

int64_t GetSysTimeMicros();
```

ustime.cpp

```
#include "ustime.h"
// 获取系统的当前时间,单位微秒(us)
int64_t GetSysTimeMicros()
{
#ifdef _WIN32
   // 从1601年1月1日0:0:0:000到1970年1月1日0:0:0:000的时间(单位
100ns)
#define EPOCHFILETIME (11644473600000000UL)
   FILETIME ft;
   LARGE_INTEGER li:
   int64_t tt = 0;
   GetSystemTimeAsFileTime(&ft);
   li.LowPart = ft.dwLowDateTime;
   li.HighPart = ft.dwHighDateTime;
   // 从1970年1月1日0:0:0:000到现在的微秒数(UTC时间)
   tt = (li.QuadPart - EPOCHFILETIME) / 10;
   return tt;
#else
   timeval tv;
   gettimeofday(&tv, 0);
```

```
return (int64_t)tv.tv_sec * 1000000 +
  (int64_t)tv.tv_usec;
#endif // _WIN32
    return 0;
}
```

DateCreate.h

DataCreate.cpp

```
#include "DataCreate.h"
#include <iostream>
#include <iomanip>
#include <cstdlib>
#include <ctime>
```

```
using namespace std;
DataCreate::DataCreate(int f, int v)
{
    F = f;
    V = V;
    data = new int* [F + 1];
    for (int i = 0; i <= F; ++i)
        data[i] = new int[V + 1];
}
int** DataCreate::GetData()
{
    srand(time(NULL));
    for (int i = 1; i <= F; i++)
        for (int j = 1; j <= V; j++)
        {
             data[i][j] = rand() \% 100;
        }
    return data;
}
void DataCreate::Print()
{
    cout << "美学值表: " << end1;
    cout << setw(8) << "花束\\花瓶";
    for (int i = 1; i \le V; ++i)
        cout << setw(5) << i;</pre>
    cout << endl;</pre>
    for (int i = 1; i <= F; ++i)
    {
        cout << setw(9) << i;</pre>
        for (int j = 1; j <= V; ++j)
             cout << setw(5) << data[i][j];</pre>
        cout << endl;</pre>
    }
}
```

```
DataCreate::~DataCreate()
{
    for (int i = 0; i <= F; ++i)
        delete[] data[i];
    delete[] data;
}</pre>
```

Algorithm1.h

```
#pragma once
#include "ustime.h"
using namespace std;
class Algorithm1
{
public:
    Algorithm1(int, int, int**);
    ~Algorithm1();
    int Run();
    void Print();
    long long RunTime;
private:
    int F, V;
    int** N;
    int** M;
    int* Result;
};
```

Algorithm1.cpp

```
#include "Algorithm1.h"
#include <iostream>
#include <iomanip>
#include <cstdlib>
#include <ctime>
#define DEBUG
#define gmax(_a, _b) ((_a) > (_b) ? (_a) : (_b))
Algorithm1::Algorithm1(int f, int v, int** n)
{
    F = f;
    V = V;
    N = n;
    M = new int* [F + 1];
    for (int i = 0; i <= F; ++i)
        M[i] = new int[V + 1];
    for (int i = 0; i <= F; ++i)
        for (int j = 0; j \le V; ++j)
            M[i][i] = 0;
    Result = new int [F + 1];
    for (int i = 1; i <= F; ++i)
        Result[i] = 0;
}
int Algorithm1::Run()
{
    long long StartTime, EndTime;
    StartTime = GetSysTimeMicros();
    for (int i = 1; i <= F; ++i)
        for (int j = i; j \leftarrow V; ++j)
            M[i][j] = gmax(M[i][j-1], M[i-1][j-1] +
N[i][j]);
    for (int i = F, j = V; i >= 1; j--)
```

```
{
        if (M[i][j] > M[i][j - 1])
        {
            Result[i] = j;
            i --;
        }
    }
    EndTime = GetSysTimeMicros();
    RunTime = EndTime - StartTime;
    return M[F][V];
}
void Algorithm1::Print()
{
#ifdef DEBUG
    cout << "DP表: " << end1;
    cout << setw(8) << "花束\\花瓶";
    for (int i = 1; i \le V; ++i)
        cout << setw(5) << i;
    cout << endl:</pre>
   for (int i = 1; i <= F; ++i)
    {
        cout << setw(9) << i;</pre>
        for (int j = 1; j \le V; ++j)
            cout << setw(5) << M[i][j];</pre>
        cout << endl;</pre>
    }
#endif // DEBUG
    cout << "最大美学值为: " << M[F][V] << end1;
    cout << "摆花方案为: " << endl;
    for (int i = 1; i <= F; ++i)
        cout << "第 " << i << " 束花被摆放到第 " << Result[i]
<< " 个花瓶" << end1;
    cout << "运行时间: " << RunTime / 1000000.0 << " s" <<
end1;
```

```
Algorithm1::~Algorithm1()
{
    for (int i = 0; i <= F; ++i)
        delete[] M[i];
    delete[] M;

    delete[] Result;
}</pre>
```