



# **RADIO TEST REPORT**

# No. 601881R1

#### **EQUIPMENT UNDER TEST**

Equipment:

WiPOQ messaging terminal

Type / model:

WMT-100

Manufacturer:

Shimane Sanyo Industrial Co., Ltd.

320-1, Yamagata

Kisuki-cho, Unnan City, Shimane

699-1394 Japan

Tested by request of:

Teleca Sweden West

# **SUMMARY**

The equipment complies with the requirements of the following standards:

FCC, Part 15, Subpart B (2005) and Subpart C (2005); RSS-210, Issue 6 (September 2005); RSS-Gen, Issue 1 (September 2005).

Industry Canada listed test facility No. IC 3481A-1

This test report replaces earlier issued test report with the same ref. no. dated 2006-07-03 due to editorial corrections.

Date of issue: 2006-10-31

Tested by:

Approved by:

Björn Utermöhl

This report may not be reproduced other than in full, except with the prior written approval by SEMKO.

G

CE

Intertek Semko AB



## **CONTENTS**

|                                                                                                                             | Page           |
|-----------------------------------------------------------------------------------------------------------------------------|----------------|
| 1. Client information                                                                                                       | 3              |
| 2. Equipment under test (EUT)                                                                                               | 3<br>4<br>4    |
| 3.1 Standards                                                                                                               | 5<br>5         |
| 4.Test summary                                                                                                              | 6              |
| 5. Peak output power                                                                                                        | 7              |
| 6. 20 dB Bandwidth                                                                                                          |                |
| 7. Carrier frequency separation                                                                                             |                |
| 3. Number of hopping channels                                                                                               |                |
| 9. Time of occupancy (Dwell time)                                                                                           |                |
| 10. Band edge compliance<br>10.1 Test set-up.<br>10.2 Test protocol.                                                        | 14             |
| 11. Radiated spurious emissions 11.1 Measurement uncertainty 11.2 Test equipment 11.3 Measurement set-up 11.4 Test protocol | 17<br>17<br>17 |
| 12. Conducted disturbance voltage in the frequency range 0,15 - 30 MHz                                                      | 17<br>17<br>17 |
| Appendix I – Photos of the EUT                                                                                              | 17             |













#### 1. CLIENT INFORMATION

The EUT has been tested by request of

Teleca Sweden West Company:

Name of contact: **Daniel Nilsson** 

# **EQUIPMENT UNDER TEST (EUT)**

#### 2.1 Identification of the EUT according to the manufacturer/client declaration

Equipment: WiPOQ messaging terminal

Type/Model: WMT-100 Brand name: **WiPOQ** 

Serial number: EUT were marked with:

ES3 3/12 and ES3 12/12

Manufacturer: Shimane Sanyo Industrial Co., Ltd.

320-1, Yamagata

Kisuki-cho, Unnan City, Shimane

699-1394 Japan

Rating/Supplying voltage: 3,7 V DC, Li-On battery

Rating RF output power: 4 dBm Antenna gain: 0 dBi

No External antenna connector:

Operating temperature range: -5 to +55 °C

2402 - 2480 MHz Frequency range:

Number of channels: 79 Channel separation: 1 MHz

Modulation characteristics: **FHSS** 

Shaped Binary FM (0.5 Gaussion filter)

#### 2.2 Additional hardware information about the EUT

No additional information.













#### 2.3 Additional software information about the EUT

During the tests the EUT supported the following software:

Software Version Comment

ATP 301-1264-PA2 Test software to be able to set the device in suitable TX

and RX modes

## 2.4 Peripheral equipment

Peripheral equipment is defined as equipment needed for correct operation of the EUT during the tests, but not included as a part of the testing and evaluation of the EUT.

Equipment Manufacturer / Type Comment

Charger Model: PSC05R-050

Input: 100-20VAC 50-60Hz Output: 5V 1.0 A Max

#### 2.5 Modifications during the test

The Charger was modified with a Ferrite core from Würth Electronik

Material: 4 W 620

Order number: 74271142 (Ferrite in plastic case)

The center of the ferrite core was placed 8 centimeters from the EUT. See illustration and photo below:



















#### **TEST SPECIFICATIONS**

#### 3.1 Standards

FCC 47 CFR part 15 (2005) Subpart B - Unintentional radiators FCC 47 CFR part 15 (2005) Subpart C - Intentional Radiators; §15.247 Operation within the bands 902-928 MHz, 2400 - 2483.5 MHz and 5725 - 5850 MHz.

Measurements methods according to ANSI C63.4-2003

RSS-210, Issue 6 (September 2005): Low Power Licence-Exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment.

RSS-Gen, Issue 1 (September 2005): General Requirements and Information for the Certification of Radiocommunication Equipment.

#### 3.2 Additions, deviations and exclusions from standards

#### 3.3 Test set-up

Measurement set-ups for the test of conducted disturbance voltage in the frequency range 0,15-30 MHz and out-of-band spurious emissions test are described in corresponding sections. During other tests the EUT was connected to the spectrum analyser by cable.

#### 3.4 Operating environment

If not additionally specified, the tests were performed under the following environmental conditions:

Air temperature: 19-25 °C Relative humidity: 20-35 %













## **TEST SUMMARY**

The results in this report apply only to the sample(s) tested.

| FCC reference | Industry Canada reference | Test                                      | Result | Note |
|---------------|---------------------------|-------------------------------------------|--------|------|
| 15.247(b)     | A8.4(2)                   | Peak output power                         | PASS   | 1    |
| 15.247(a)     | A8.1(1)                   | 20 dB Bandwidth                           | PASS   | 1    |
| 15.247(a)     | A8.1(2)                   | Carrier frequency separation              | PASS   | 1    |
| 15.247(a)     | A8.1(4)                   | Number of hopping frequencies (channels)  | PASS   | 1    |
| 15.247(a)     | A8.1(4)                   | Time of occupancy (dwell time)            | PASS   | 1    |
| 15.247        | A8.1                      | Band edge compliance                      | PASS   | 1    |
| 15.247(d)     | 2.7, A2.9(1), A8.5        | Out of band spurious emissions, radiated  | PASS   | 1    |
| 15.247(d)     | 2.7, A8.5                 | Out of band spurious emissions, conducted | NA     | 1    |
| 15B           | 6 (a)(Table1)             | Out of band spurious emissions, radiated  | PASS   | 2    |
| 15B           | 7.2.2 (Table 2)           | Conducted emission at AC port             | PASS   | 2    |

NA = Not Applicable

#### Notes:

- 1. Industry Canada reference: RSS-210, Issue 6 (September 2005)
- 2. Industry Canada reference: RSS-Gen, Issue 1 (September 2005)













#### **5. PEAK OUTPUT POWER**

#### 5.1 Test protocol

Date of test: 2006-05-10

EUT mode of operation: TX and hopping on one channel.

Spectrum analyzer settings:

Span: 10 MHz RBW: 3 MHz VBW: 3 MHz Sweep time: Auto Detector: Peak Trace: Max Hold

| Channel | Peak Output | Limit value |
|---------|-------------|-------------|
|         | Power       |             |
| (MHz)   | (dBm)       | (dBm)       |
| 2402    | 2,3         |             |
| 2441    | 2,4         | < 30        |
| 2480    | 2,2         |             |

Measurement results are corrected for attenuation in the set-up configuration and antenna gain declared by the manufacturer.

Example calculation:

Peak output power [dBm] = Analyser reading [dBm] + cable loss [dB] + EUT antenna gain [dBi]

#### 5.2. SAR calculation

The maximum output power of the EUT is 1,7mW e.i.r.p.

Limit: 25 mW time averaged output power.













#### 6. 20 dB BANDWIDTH

#### 6.1 Test protocol

Date of test: 2006-05-10

EUT mode of operation: TX, hopping on one channel.

Spectrum analyser settings:

Span: 1,5 MHz RBW: 30 kHz VBW: 30 kHz Sweep time: 5 ms Detector: Peak Trace: Max Hold

| Channel<br>(MHz) | 20 dB Bandwidth (kHz) | Limit value<br>(kHz) |
|------------------|-----------------------|----------------------|
| 2402             | 836                   |                      |
| 2441             | 832                   | < 1000               |
| 2480             | 832                   |                      |

#### TX @ 2402 MHz



















#### TX @ 2480 MHz















#### 7. CARRIER FREQUENCY SEPARATION

#### 7.1 Test protocol

Date of test: 2006-05-10

EUT mode of operation: TX and hopping on.

Spectrum analyser settings:

Span: 4 MHz RBW: 100 kHz VBW: 100 kHz Sweep time: Auto Detector: Peak Trace: Max Hold

| Channel | Carrier frequency<br>separation<br>from the next channel |      | Limit value |
|---------|----------------------------------------------------------|------|-------------|
| (MHz)   | To the right To the left (kHz) (kHz)                     |      | (kHz)       |
| 2402    | 1000                                                     | -    | > 836       |
| 2441    | 1010                                                     | 1000 | > 836       |
| 2480    | - 1000                                                   |      | > 836       |

Limit = Result from the 20 dB Bandwidth measurements

































#### 8. NUMBER OF HOPPING CHANNELS

#### 8.1 Test protocol

Date of test: 2006-04-21

EUT mode of operation: TX and hopping on.

Spectrum analyser settings:

Start frequency: 2398,5 MHz Stop frequency: 2483,5 MHz

RBW: 300 kHz VBW: 300 kHz Sweep time: Auto Detector: Peak Trace: Max Hold

| Number of hopping channels | Limit value |
|----------------------------|-------------|
| 79                         | > 75        |















# 9. TIME OF OCCUPANCY (DWELL TIME)

#### 9.1 Test protocol

Date of test: 2006-05-10

EUT mode of operation: TX and hopping on.

Spectrum analyzer settings:

Determination of transmitting time T

Span: 0 Hz RBW: 1 MHz VBW: 1 MHz Sweep time: 15 ms Single sweep Detector: Peak Trace: Clear/Write

Determination of the number of times **n** the channel is active during the sweep time of 10 s

RBW: 100 kHz VBW: 100 kHz Sweep time: 10 s

| Test parameters                      | С    | hannel (MH | z)   | Limit value |
|--------------------------------------|------|------------|------|-------------|
| rest parameters                      | 2402 | 2441       | 2480 | (s)         |
| T (µs)                               | 450  | 412,5      | 450  | -           |
| n                                    | 101  | 101        | 101  | -           |
| Dwell time (s) = $T \cdot 10^{-6}$ · | 0,14 | 0,13       | 0,14 | < 0,4       |
| 3,16 ⋅ n                             |      |            |      |             |













#### 10. BAND EDGE COMPLIANCE

## 10.1 Test set-up

See Section 11.3.

#### 10.2 Test protocol

Date of test: 2006-05-05 and 2006-05-10

#### Band edge compliance at 2400 MHz

EUT mode of operation: TX and hopping on one channel.

Sweep with average detector



















EUT mode of operation: TX and hopping on.





## Sweep with peak detector















## Band edge compliance at 2483,5 MHz

EUT mode of operation: TX and hopping on one channel.





#### Sweep with peak detector















EUT mode of operation: TX and hopping on.





## Sweep with peak detector















#### 11. RADIATED SPURIOUS EMISSIONS

#### 11.1 Measurement uncertainty

Radiated disturbance electric field intensity, 30 – 1000 MHz: ± 4,6 dB Radiated disturbance electric field intensity, 1000 - 18000 MHz: ± 6,0 dB

The measurement uncertainty describes the overall uncertainty of the given measured value during operation of the EUT.

Measurement uncertainty is calculated in accordance with EA-4/02-1997.

The measurement uncertainty is given with a confidence of 95%.

## 11.2 Test equipment

Double Ridge Guide Horn:

Transformer

| Equipment                          | Manufacturer           | Туре                  | SEMKO No. |
|------------------------------------|------------------------|-----------------------|-----------|
| Test site: Semi-anechoic shielded  | chamber, 5,7 x 8,7 x 5 | 5,4 m (W x L x H)     |           |
| Software:                          | Rohde & Schwarz        | EMC32, V5.10.99       |           |
| Measurement receiver:              | Rohde & Schwarz        | ESCI                  | 12798     |
| Integrated Measurement System:     | Rohde & Schwarz        | IMS                   | 12800     |
| Antenna:<br>Ultra Broadband        | Rohde & Schwarz        | HL562                 | 30711     |
| Test site: Bluetooth anechoic shie | lded chamber, 3,7 x 7, | 0 x 2,4 m (W x L x H) |           |
| Software:                          | Rohde & Schwarz        | ES-K1, V1.70          |           |
| Signal analyser:                   | Rohde & Schwarz        | FSIQ 40               | 40023     |
| Preamplifier:                      | MITEQ                  | AFS6/AFS44            | 12335     |
| Antenna:                           |                        |                       |           |

3115

AFM-1500

4936

30317

**EMCO** 

**Tufvassons** 













#### 11.3 Measurement set-up

Test site: Semi-anechoic shielded chamber (30 – 1000 MHz)

The radiated disturbance electric field intensity was measured in a semi-anechoic chamber at a distance of 3 m and the EUT was placed on a non-metallic table, 0,8 m above the reference ground plane. The specified test mode was enabled. Test set-up photos are given below.

An overview sweep with peak detection of the electric field intensity was performed with the measurement receiver in max-hold and with the antenna placed 1,5 m, 2,5 m and 3,5 m above the floor. The polarisation was horizontal and vertical. The measurements were repeated with the EUT rotated in 90-degree steps.

At the frequencies where high disturbance levels were found a search for max disturbance level was performed. With the EUT and antenna in the worst-case configuration new measurements with quasi-peak detector were carried out.

The EUT was supplied with 120 V AC (60 Hz) during the test.

Test set-up photo:















## Test site: Bluetooth anechoic shielded chamber (1 – 26 GHz)

In the Bluetooth anechoic chamber the EUT was placed on a non-metallic table, 1,4 m above the floor. The radiated disturbance electric field intensity was measured at a distance of 3 m. The specified test mode was enabled.

An overview sweep with peak detection of the electric field intensity was performed with the spectrum analyser in max-hold and with the antenna placed 1,4 m above the floor. The polarisation was horizontal and vertical. The measurements were repeated with the EUT rotated in 90-degree steps.

At the frequencies where high disturbance levels were found a search for max disturbance level was performed. With the EUT and antenna in the worst-case configuration new measurements with peak and average detectors were carried out.

The EUT was supplied by 120 V AC (50 Hz) during the test.

















## 11.4 Test protocol

#### Semi-anechoic shielded chamber

Date of test: 2006-05-03

## 30 – 1000 MHz, max peak at a distance of 3 m on the lower TX channel



## 30 - 1000 MHz, max peak at a distance of 3 m on the middle TX channel















## 30 - 1000 MHz, max peak at a distance of 3 m on the upper TX channel



# 30 - 1000 MHz, max peak at a distance of 3 m in RX mode















#### Bluetooth anechoic shielded chamber

Date of test: 2006-05-04

1000 - 13000 MHz, max peak at a distance of 3 m on the lower TX channel Carrier is attenuated by band rejection filter K&L 6N45-2450/T 100-0/0



13 – 18 GHz, max peak at a distance of 3 m on the lower TX channel



















## 1000 - 13000 MHz, max peak at a distance of 3 m on the middle TX channel Carrier is attenuated by band rejection filter K&L 6N45-2450/T 100-0/0



















# 18 – 26 GHz, max peak at a distance of 3 m on the middle TX channel















1000 - 13000 MHz, max peak at a distance of 3 m on the upper TX channel Carrier is attenuated by band rejection filter K&L 6N45-2450/T 100-0/0



13 - 18 GHz, max peak at a distance of 3 m on the upper TX channel



















## 1000 - 13000 MHz, max peak at a distance of 3 m in the RX mode















## Data summary

| Field strength of spurious emissions (lower TX channel) |       |            |            |            |            |                      |
|---------------------------------------------------------|-------|------------|------------|------------|------------|----------------------|
| Frequency                                               | RBW   | Measured   |            | Limit      |            | Note                 |
|                                                         |       | lev        |            |            | T          |                      |
|                                                         |       | Peak       | QP/AV      | Peak       | QP/AV      |                      |
| [MHz]                                                   | [kHz] | [dB(µV/m)] | [dB(µV/m)] | [dB(µV/m)] | [dB(µV/m)] |                      |
| 56,25                                                   | 120   | -          | 32,9       | -          | 40         | TX low               |
| 341,02                                                  | 120   | -          | 37,0       | -          | 46         | TX low               |
| 1602,1                                                  | 1000  | 50,1       | ı          | 74         | 54         | TX low               |
| 4804,2                                                  | 1000  | 50,4       | -          | 74         | 54         | TX low               |
| 13000 - 18000                                           | 1000  | < 49       | -          | 74         | 54         | TX low, noise floor  |
| 18000 – 26000                                           | 1000  | < 53       | -          | 74         | 54         | TX low, noise floor  |
| 59,72                                                   | 120   | -          | 34,5       | -          | 40         | TX mid               |
| 426,56                                                  | 120   | -          | 39,2       | -          | 46         | TX mid               |
| 1628,1                                                  | 1000  | 54,9       | 47,1       | 74         | 54         | TX mid               |
| 13000 - 18000                                           | 1000  | < 49       | -          | 74         | 54         | TX mid, noise floor  |
| 18000 – 26000                                           | 1000  | < 54       | -          | 74         | 54         | TX mid, noise floor  |
| 55,52                                                   | 120   | -          | 33,2       | -          | 40         | TX high              |
| 381,06                                                  | 120   | -          | 41,2       | -          | 46         | TX high              |
| 1054,1                                                  | 1000  | 46,6       | -          | 74         | 54         | TX high              |
| 1653,9                                                  | 1000  | 54,6       | 48,0       | 74         | 54         | TX high              |
| 13000 – 18000                                           | 1000  | < 48       | -          | 74         | 54         | TX high, noise floor |
| 18000 – 26000                                           | 1000  | < 53       | -          | 74         | 54         | TX high, noise floor |
| 56,17                                                   | 120   | -          | 33,1       | -          | 40         | RX mode              |
| 426,56                                                  | 120   | -          | 40,0       | -          | 46         | RX mode              |
| 1627,1                                                  | 1000  | 38,3       | -          | 74         | 54         | RX mode              |
| 1893,8                                                  | 1000  | 38,7       | -          | 74         | 54         | RX mode              |
| 2440,0                                                  | 1000  | 46,4       | -          | 74         | 54         | RX mode              |

## Example calculation:

Measured level [dB $\mu$ V/m] = Analyser reading [dB $\mu$ V] + cable loss [dB] – preamplifier gain [dB] + antenna factor [1/m]











30317



## 12. CONDUCTED DISTURBANCE VOLTAGE IN THE FREQUENCY RANGE 0,15 - 30 MHZ

#### 12.1 Measurement uncertainty

Conducted disturbance voltage, quasi-peak detection: ±2,0 dB

The measurement uncertainty describes the overall uncertainty of the given measured value during operation of the EUT.

Measurement uncertainty is calculated in accordance with EA-4/02-1997.

The measurement uncertainty is given with a confidence of 95%.

Tufvassons

#### 12.2 Test equipment

| Test site: | FCC |
|------------|-----|
|------------|-----|

| Equipment                 | Manufacturer    | Туре        | SEMKO No. |
|---------------------------|-----------------|-------------|-----------|
| Software:                 | Rohde & Schwarz | ES-K1 V1.60 |           |
| Measurement receiver:     | Rohde & Schwarz | ESHS 30     | 4946      |
| Artificial mains network: | Rohde & Schwarz | ESH3-Z5     | 2727      |
|                           |                 |             |           |

AFM-1500

#### 12.3 Measurement set-up

Transformer

The mains terminal disturbance voltage was measured with the EUT located 0,8 m above the ground plane and 0,4 m from the vertical ground plane. The EUT was connected to an artificial mains network (AMN). The AMN was placed on the ground plane. Amplitude measurements were performed with a quasi-peak detector. The EUT was supplied by 120 VAC (60 Hz) during the test.

Test set-up photo:















## 12.4 Test protocol

Date of test: 2006-05-09

|           | Quasi-Peak           |         |  |
|-----------|----------------------|---------|--|
| Frequency | Disturbance Permitte |         |  |
| /MHz      | /dB(µV)              | /dB(µV) |  |
| 0,165     | 51,1                 | 65      |  |
| 0,530     | 46,4                 | 56      |  |
| 1,135     | 37,3                 | 56      |  |
| 2,450     | 38,4                 | 56      |  |
| 4,930     | 35,8                 | 56      |  |
| 8,635     | 30,2                 | 60      |  |
| 25,140    | 26,9                 | 60      |  |

Overview sweeps performed with peak and average detectors















## **APPENDIX I - PHOTOS OF THE EUT**

EUT (front side)



EUT (back side with identification marking)



EUT with antenna connector that was used for conducted measurements (front side)















EUT with antenna connector that was used for conducted measurements (back side with

identification marking)



# Charger











