PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE ESCUELA DE INGENIERÍA. SEGUNDO SEMESTRE 2020

Tarea 1 ALGORITMOS PARALELOS EN COMPUTACIÓN CIENTÍFICA IMT2112

Vicente Hojas

En la figura 1, se muestran los resultados de la clasificación para distintos valores de k.

Figura 1: scatterplot de las clasificaciones para distintos valores de k

En las figuras 2 y 3 se muestran los tiempos de ejecución para las 3 versiones del algoritmo, notamos que para registros de dimensión baja (m=2), tal como aparece en la figura 2, los for loops son más eficientes que numpy y que Multiprocessing, pero para registros de dimensión alta (m=20), notamos en la figura 3 que Multiprocessing es la forma más eficiente de implementar el algoritmo (con 4 trabajadores), seguido de Numpy y luego por los for loops. De hecho, Multiprocessing es a veces hasta casi 4 veces más eficiente que Numpy y los for loops.

Figura 2: Gráfico de tiempos para m=2

Por último, se observa que para una Pool con 4 trabajadores (que es la que se utilizó para la parte de multiprocessing) hay 5 procesos de Python en ejecución. El proceso principal está usando 11 threads y cada uno de los procesos de Pool está ocupando 8 threads, esto puede deberse a que para la parte de multiprocessing también se ocuparon funciones de NumPy, que pueden hacer uso de threading. Lo anterior se muestra en la figura 4

Figura 3: Gráfico de tiempos para m=20

Process	CPU	Threads
Interrupts	0.62	0
smss.exe		2
Memory Compression	0.01	50
csrss.exe		11
→ wininit.exe		1
csrss.exe	0.08	15
winlogon.exe		5
fontdrvhost.exe		5
dwm.exe	1.51	15
explorer.exe	2.29	115
SecurityHealthSystray.exe		1
RtkAudUService64.exe		7
OneDrive.exe	0.09	30
OneDrive.exe		24
atility.exe		4
NENOTEM.EXE		2
Zoom.exe	0.22	25
Zoom.exe	0.08	19
→ Code.exe	< 0.01	31
raskmgr.exe Taskmgr.exe € € € € € € € € € € € € € € € € € €	0.73	16
cmd.exe		1
conhost.exe	< 0.01	7
python.exe	10.08	11
python.exe	12.42	8
python.exe	12.46	8
python.exe	12.43	8
python.exe	12.48	8

Figura 4: Captura de Process Explorer mientras se ejecutaba el script