Math 4242
Summer 2018
Midterm 1
6/22/2018
Time Limit. 50

Name (Print): _____

Solutions

Time Limit: 50 minutes Instructor

Midterm 1 contains 7 pages (including this cover page) and 5 problems. Please check to see if any pages are missing.

Work individually without reference to a textbook, notes, the internet, or a calculator.

Show your work on each problem. Specifically:

- Organize your work, in a reasonably neat and coherent way, in the space provided. Work scattered all over the page without a clear ordering will receive very little credit.
- Unsupported answers will not receive credit. A correct answer, unsupported by calculations, explanation, or algebraic work will receive no credit; an incorrect answer supported by substantially correct calculations and explanations will likely receive partial credit.
- Circle your final answer for problems involving a series of computations.
- If you need more space, use the back of the pages; clearly indicate when you have done this.

Please do not write in the table to the right.

Problem	Points	Score
1	10	
2	15	
3	15	
4	10	
5	15	
Total:	65	

1. (10 points) Below are six statements about $n \times n$ invertible matrices A and B. Circle T for true and F for false.

Provide a counterexample for each false statement.

(You do not need to justify the true statements.)

 $(AB)^{-1} = B^{-1}A^{-1}$ (2 pts) (a)

(2 pts) (b) $\det ((AB)^T) = \det A \det B$

T F FAU 2020 PR'

NOT or

Let not or

(A+B) must be nonsingular (2 pts) (c)

So invertish

(2 pts) (d) rank(AB) = n

But A+B= 0 matrix
which is
singular

F

(2 pts) (e) $\ker(A) = \mathbf{0}$

2. (15 points) The augmented matrix $[A|\mathbf{b}]$ for a linear system is shown below.

$$\left[\begin{array}{ccc|ccc|c}
1 & 0 & 0 & a & 1 \\
-1 & -1 & 2 & 0 & -4 \\
0 & 2 & -4 & 1 & a
\end{array}\right]$$

What value(s) of a (if any) would imply that the system has

- (i) no solution?
- (ii) exactly one solution?
- (iii) infinitely many solutions?

First, we have 3 egn's and 4 variables so there is never a unique solution.

Now row reduce
$$r_1 r_2$$
 r_3 r_4 r_5 r_5 r_5 r_6 r_6

3. (15 points) Compute the LU factorization of the matrix

$$A = \begin{bmatrix} 1 & 5 & 0 \\ 3 & 17 & 1 \\ 0 & -4 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 5 & 0 \\ 3 & 17 & 1 \\ 0 & -4 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 1 \\ -2 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 1 \\ -2 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 5 & 0 \\ 0 & 2 & 1 \\ 0 & -4 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 5 & 0 \\ 3 & 17 & 1 \\ 0 & -4 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 5 & 0 \\ 3 & 17 & 1 \\ 0 & -4 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 5 & 0 \\ 3 & 17 & 1 \\ 0 & -4 & 2 \end{bmatrix}$$

4. (10 points) Let $\mathcal{P}^{(n)}$ be the vector space of all polynomial functions of degree less than or equal to n, with addition and scalar multiplication defined in the standard way.

(5 pts) (a) Let W be the set of polynomials p(x) in $\mathcal{P}^{(n)}$ such that p(2) = 0. Is W a vector subspace of $\mathcal{P}^{(n)}$? Justify your answer.

We show that Wis a subspace.

① Is p(x)=0, the p(x)=0 so 0 & W.

② WA P, 9 & W. Then (P+8/2) = p(x) + g(x)

= 0+0=0. So p+6 & W.

③ (L+ C & R, P & W. The (CP/2) = CP(x) =

C.0=0. So CP UT & W.

Since W satisfies the 3 properties, Wis a subspace of P(x)

(5 pts) (b) Let V be the subset of $\mathcal{P}^{(n)}$ consisting of polynomials of even degree and the zero polynomial. Is V a vector subspace of $\mathcal{P}^{(n)}$? Justify your answer.

Claim: Vis not a subspace.

PE: Let $p(x) = x^2 - x + 1 \in V$ and $q(x) = -x^2 \in V$.

But $p(x) + q(x) = x^2 - x + 1 - x^2$ $= -x + 1 \quad \text{E} V$ This has degree I so V is not closed under addition (property 2). So V

15 not a subspace.

5. (15 points) The vectors $\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}, \mathbf{v_4} \in \mathbb{R}^4$ form the columns of the 4×4 matrix A:

$$A = \left[\begin{array}{ccc|c} | & | & | & | \\ \mathbf{v_1} & \mathbf{v_2} & \mathbf{v_3} & \mathbf{v_4} \\ | & | & | & | \end{array} \right]$$

The row echelon form of A is

$$\begin{bmatrix} 3 & 1 & 7 & -1 \\ 0 & = 4 & 8 & 2 \\ 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 \end{bmatrix} . 3 pivots$$

(7 pts) (a) Do $\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}$, and $\mathbf{v_4}$ form a basis for \mathbb{R}^4 ? Justify your answer.

They do not. Since $\Gamma k(A) = \# n_0 p'vots$ which is 3, the A is not full rank (n=4).

By Froza, the Whitness $v_1v_2v_3v_4$ do

Not form a basis.

(8 pts) (b) Is $\mathbf{v_3}$ in the span of $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_4}\}$? If not, explain why. If yes, write $\mathbf{v_3}$ as a linear combination of $\mathbf{v_1}, \mathbf{v_2}$, and $\mathbf{v_4}$.

Yes, $V_3 \in Span(V_1,V_2)$ in fact.

We know that the dependences of the prefit is the care for A.

Prefit is the care for A.

Provided that $\begin{bmatrix} 1 & 3 & 7 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ represent $\begin{bmatrix} 1 & 3 & 7 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ represent $\begin{bmatrix} 1 & 3 & 7 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ represent $\begin{bmatrix} 1 & 3 & 7 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ represent $\begin{bmatrix} 1 & 3 & 7 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ represent $\begin{bmatrix} 1 & 3 & 7 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ represent $\begin{bmatrix} 1 & 3 & 7 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ represent $\begin{bmatrix} 1 & 3 & 7 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ represent $\begin{bmatrix} 1 & 3 & 7 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ represent $\begin{bmatrix} 1 & 3 & 7 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ represent $\begin{bmatrix} 1 & 3 & 7 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ represent $\begin{bmatrix} 1 & 3 & 7 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ represent $\begin{bmatrix} 1 & 3 & 7 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ represent $\begin{bmatrix} 1 & 3 & 7 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ represent $\begin{bmatrix} 1 & 3 & 7 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ represent $\begin{bmatrix} 1 & 3 & 7 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ represent $\begin{bmatrix} 1 & 3 & 7 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ represent $\begin{bmatrix} 1 & 3 & 7 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ represent $\begin{bmatrix} 1 & 3 & 7 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ represent $\begin{bmatrix} 1 & 3 & 7 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ represent $\begin{bmatrix} 1 & 3 & 7 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ represent $\begin{bmatrix} 1 & 3 & 7 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ represent $\begin{bmatrix} 1 & 3 & 7 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ represent $\begin{bmatrix} 1 & 3 & 7 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ represent $\begin{bmatrix} 1 & 3 & 7 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ represent $\begin{bmatrix} 1 & 3 & 7 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ represent $\begin{bmatrix} 1 & 3 & 7 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ represent $\begin{bmatrix} 1 & 3 & 7 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ represent $\begin{bmatrix} 1 & 3 & 7 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ represent $\begin{bmatrix} 1 & 3 & 7 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ represent $\begin{bmatrix} 1 & 3 & 7 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ represent $\begin{bmatrix} 1 & 3 & 7 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ represent $\begin{bmatrix} 1 & 3 & 7 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ represent $\begin{bmatrix} 1 & 3 & 7 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ represent $\begin{bmatrix} 1 & 3 & 7 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ represent $\begin{bmatrix} 1 & 3 & 7 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ represent $\begin{bmatrix} 1 & 3 & 7 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ represent $\begin{bmatrix} 1 & 3 & 7 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ represent $\begin{bmatrix} 1 & 3 & 7 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ represent $\begin{bmatrix} 1 & 3 & 7 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ represent $\begin{bmatrix} 1 & 3 & 7 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ represent $\begin{bmatrix} 1 & 3 & 7 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ represent $\begin{bmatrix} 1 & 3 & 7 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ represent $\begin{bmatrix} 1 & 3 & 7 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ represent $\begin{bmatrix} 1 & 3 & 7 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ represent $\begin{bmatrix} 1 & 3 & 7 &$

This page is for your reference only. There are no questions to answer.

Definition A vector space is a set V equipped with two operations:

- (i) Addition: adding any pair of vectors \mathbf{v} , $\mathbf{w} \in V$ produces another vector $\mathbf{v} + \mathbf{w} \in V$.
- (ii) Scalar Multiplication: multiplying a vector $\mathbf{v} \in V$ by a scalar $c \in \mathbb{R}$ produces a vector $c\mathbf{v} \in V$.

These operations obey the following axioms, valid for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and all scalars $c, d \in \mathbb{R}$:

- (a) Commutativity of Addition: $\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v}$.
- (b) Associativity of Addition: $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$.
- (c) Additive Identity: There is a zero element $\mathbf{0} \in V$ satisfying $\mathbf{v} + \mathbf{0} = \mathbf{v} = \mathbf{0} + \mathbf{v}$
- (d) Additive Inverse: For each $\mathbf{v} \in V$ there exists $-\mathbf{v} \in V$ such that $\mathbf{v} + (-\mathbf{v}) = \mathbf{0} = (-\mathbf{v}) + \mathbf{v}$.
- (e) Distributivity: $(c+d)\mathbf{v} = (c\mathbf{v}) + (d\mathbf{v})$ and $c(\mathbf{v} + \mathbf{w}) = (c\mathbf{v}) + (c\mathbf{w})$.
- (f) Associativity of Scalar Multiplication: $c(d\mathbf{v}) = (cd)\mathbf{v}$.
- (g) Unit for Scalar Multiplication: the scalar $1 \in \mathbb{R}$ satisfies $1\mathbf{v} = \mathbf{v}$.