Đáp số Bài tập Chương 3

- **3.1.** (a) a = 2, b = -1; (b) a = b. **3.2.** (a) 12, (b) 16ln2, (c) 1/27, (d) 5. **3.3.** (a) 0, (b) n(n+1)/2.
- **3.4.** (a) f'(0-0) = -1, f'(0+0) = 1, f(x) không khả vi tại x = 0; (b) f'(0-0) = f'(0+0) = 0, f(x) khả vi tại x = 0; (c) f'(0-0) = -1, f'(0+0) = 1, f(x) không khả vi tại x = 0; (d) f'(1-0) = -1, f'(1+0) = 1, f(x) không khả vi tại x = 1.
- 3.5. (a) $\frac{4x}{1+x^4}$, (b) $x^x x^{x^x} \left(\ln^2 x + \ln x + 1/x \right)$, (c) $x^x a^{x^x} \ln a \left(\ln x + 1 \right)$, (d) $a^x x^{a^x} \left(\ln a \ln x + 1/x \right)$, (e) $x^{a-1} x^{x^a} \left(a \ln x + 1 \right)$, (f) 2|x|, (g) $1/\sqrt{x^2+1}$, (h) $(\sin x)^{\tan x} \left[1 + \ln(\sin x)/\cos^2 x \right]$, (i) $e^x \arctan e^x$.
- **3.6.** (a) x/(x+1), (b) $1/(1+e^x)$, (c) $x^3/2y^2$. **3.7.** (a) $-\frac{\sin t + \sin at}{\cos t + \cos at}$, (b) $\cot \frac{t}{2}$, (c) $\frac{1}{2(t+1)^2}$, (d) $\frac{1-1/e^{at}}{e^{at}}$.
- **3.8.** (a) $-\frac{e^x y2^{xy} \ln 2}{e^y x2^{xy} \ln 2}$, (b) $\frac{y}{x}$, (c) $-\sqrt{\frac{y}{x}}$, (d) $\frac{x+y}{x-y}$. **3.9.** $\frac{x_0x}{a^2} + \frac{y_0y}{b^2} = 1$. **3.10.** -1/3.
- **3.14.** (a) $y^{(n)}(0) = \begin{cases} 0 & \text{khi} \quad n = 2k \\ (-1)^k (2k)! & \text{khi} \quad n = 2k+1 \end{cases}$, (b) $y^{(n)}(1) = (n-1)!$.
- $\textbf{3.15.} \quad \left(\frac{b}{c} \frac{ad}{c^2}\right) \frac{(-1)^n \, n!}{\left(x + d/c\right)^{n+1}} \,, \quad (a) \frac{ad}{c^2} \frac{(-1)^{n+1} \, n!}{\left(x + d/c\right)^{n+1}} \,, \quad (b) \frac{b}{c} \frac{(-1)^n \, n!}{\left(x + d/c\right)^{n+1}} \,, \quad (c) \frac{n!}{\left(1 x\right)^{n+1}} \,, \quad (d) \frac{(-1)^n \, n!}{\left(1 + x\right)^{n+1}} \,, \\ (e) \frac{(-1)^n \, n!}{x^{n+1}} \,.$
- **3.16.** (a) $\frac{n!}{2a} \left[\frac{1}{(a-x)^{n+1}} + \frac{(-1)^n}{(a+x)^{n+1}} \right]$, (b) $\begin{cases} x(2-x)/(1-x)^2 & \text{khi} & n=1\\ n!/(1-x)^{n+1} & \text{khi} & n \geq 2 \end{cases}$
 - $(c) (-1)^{n+1} n! \left[\frac{1}{(x-1)^{n+1}} + \frac{1}{x^{n+1}} \right], (d) (-1)^{n+1} n! \left[\frac{1}{(x-2)^{n+1}} \frac{1}{(x-1)^{n+1}} \right],$
 - $(e)\frac{(-1)^{n}n!}{4}\left[\frac{1}{(x+2)^{n+1}}-\frac{3}{(x-2)^{n+1}}\right], (f)(-1)^{n+1}n!\left[\frac{1}{(x-1)^{n+1}}+\frac{1}{(x+1)^{n+1}}\right],$
 - $(g)\frac{(-1)^{n}.a.b^{n}.(2n-1)!!}{2^{n}}\frac{1}{(bx+c)^{n}\sqrt{bx+c}}\,,\,(h)\,(-1)^{n-1}(n-1)!\Bigg\lceil\frac{1}{(x+2)^{n}}-\frac{1}{(x-1)^{n}}\Bigg\rceil,$
 - $(i)(-1)^n(2-x)e^{-x}, (k)n!e^x\sum_{k=0}^n\frac{x^k}{k!}.$
- **3.17.** (a) $a^n \sin \left(ax + \frac{n\pi}{2} \right)$, (b) $a^n \cos \left(ax + \frac{n\pi}{2} \right)$,
 - $(c)\frac{(a+b)^{n}}{2}\sin\left[(a+b)x+\frac{n\pi}{2}\right]+\frac{(a-b)^{n}}{2}\sin\left[(a-b)x+\frac{n\pi}{2}\right],$
 - $(d)\frac{(a+b)^{n}}{2}\cos\left[(a+b)x + \frac{n\pi}{2}\right] + \frac{(a-b)^{n}}{2}\cos\left[(a-b)x + \frac{n\pi}{2}\right],$
 - (e) $\frac{(a+b)^n}{2} \cos \left[(a+b)x + \frac{n\pi}{2} \right] \frac{(a-b)^n}{2} \cos \left[(a-b)x + \frac{n\pi}{2} \right],$
 - $(f)-2^{n-l}\cos\!\left(2x+\frac{n\pi}{2}\right)\!,\,(g)\,2^{n-l}\cos\!\left(2x+\frac{n\pi}{2}\right)\!,\,(h)-2^{2n-3}\!\left(4x+\frac{n\pi}{2}\right)\!.$
- **3.18.** (a) $\sqrt{(a^2+b^2)^n}e^{ax}\sin(bx+n\phi)$, (b) $\sqrt{(a^2+b^2)^n}e^{ax}\cos(bx+n\phi)$ với $\phi = \arctan\frac{b}{a}$.

3.19. (a)
$$[(ax^2 + bx + c)d^2 - an(n-1)]d^{n-2} \sin\left(dx + \frac{n\pi}{2}\right) - (2ax + b)d^{n-1}n\cos\left(dx + \frac{n\pi}{2}\right),$$

$$(b)[(ax^{2}+bx+c)d^{2}-an(n-1)]d^{n-2}\cos\left(dx+\frac{n\pi}{2}\right)+(2ax+b)d^{n-1}n\sin\left(dx+\frac{n\pi}{2}\right),$$

(c)
$$d^{n-2}e^{dx}[(ax^2 + bx + c)d^2 + nd(2ax + b) + n(n-1)a],$$

$$(d) (-1)^{n-1} (n-1)! a^{n} \left[\frac{1}{(ax+b)^{n}} + \frac{1}{(ax-b)^{n}} \right]$$