Advanced Topics in Econometrics

Nonparametric and Semiparametric estimators

- Introduction
- Nonparametric estimation;
- Semiparametric estimators;

Introduction

- A parametric estimator is used to estimate finite-dimensional parameters of a model where these parameter values uniquely identify the conditional probability distribution of the dependent variables (see chapter on Maximum Likelihood Estimation).
- A nonparametric estimator is used to estimate features of a model without making any assumptions on the population distribution. It is often (but not always) used to estimate functions, such as a probability density function or a conditional mean without assuming strong conditions such as normality. These are denoted in the literature infinite dimensional parameters.
- A semiparametric estimator is one used to estimate finite-dimensional parameters but these do not uniquely identify the conditional probability distribution of the dependent variables.
- Some authors define also *seminonparametric estimators* for the case in which a **semiparametric estimator** requires some form of nonparametric estimation.

Introduction

Remark:

 Note that the same estimator can be seen as parametric, nonparametric and semiparametric depending on the context. Consider the linear regression model

$$y = x'\beta_0 + u.$$

and the Ordinary Least Squares Estimator (OLS):

- OLS can be considered a parametric estimator if on assumes $u|x \sim N(0, \sigma^2)$ and obtain this estimator via Maximum Likelihood.
- OLS can be considered a semiparametric estimator if we only assume that E(u|x) = 0 and consequently $E[y|x] = x'\beta_0$. Note that we do not assume normality of the error term, but assume a specific form for the mean of y conditional on x.
- It can also be seen as nonparametric if our objective is to estimate the best linear predictor coefficients. That is, we want to estimate the value of β that minimizes $E\left[\left(y-x'\beta\right)^2\right]$. This is given by $\beta_0 = E\left[xx'\right]^{-1}E\left[xy\right]$.

- In this chapter we focus on a particular type of nonparametric estimators denoted as *kernel estimators* (other types of nonparametric estimators are possible; eg. series estimators).
- Suppose $\{y_i\}_{i=1}^n$ are iid, where y_i is a random variable with a continuous distribution.
- Our objective is to estimate the density function of y, f(y).
- A crude estimator of the density of *y* is the histogram.
- The shape of the histogram depends on the **bin width**, on the **number of bins** and on the chosen **origin**.
- Fixing these parameters, the density of y at $y = y_0$ given by the histogram is

$$\hat{f}(y_0) = \frac{1}{n} \frac{\text{# of observations in the same bin as } y_0}{\text{width of the bin containing } y_0}$$

• If we define h as the bin width and let y^* denote the midpoint of the interval containing y_0 , the histogram estimate is given by

$$\hat{f}(y_0) = \frac{1}{nh} \sum_{j=1}^{n} \mathbf{1}\left(-\frac{1}{2} \le \frac{y_j - y^*}{h} < \frac{1}{2}\right)$$

where $\mathbf{1}(A) = 1$ if A is true and $\mathbf{1}(A) = 0$ if A is false

• This estimator is not continuous in y_0 .

Another estimator of the density function can be motivated as follows.

• From the definition of a probability density, we have that

$$f(y_0) = \lim_{h \to 0} \frac{F(y_0 + h/2) - F(y_0 - h/2)}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \Pr(y_0 - h/2 < y < y_0 + h/2)$$

$$= \lim_{h \to 0} \frac{1}{h} \mathbb{E}\left[\mathbf{1}\left(y_0 - \frac{h}{2} \le y < y_0 + \frac{h}{2}\right)\right]$$

where F(y) is the cumulative distribution function of y.

• Hence the estimator of $f(y_0)$ given by the analogy principle is the *naïve* density estimator:

$$\hat{f}(y_0) = \frac{1}{nh} \sum_{j=1}^{n} \mathbf{1} \left(y_0 - \frac{h}{2} \le y_j < y_0 + \frac{h}{2} \right)$$
$$= \frac{1}{nh} \sum_{j=1}^{n} \mathbf{1} \left(-\frac{1}{2} \le \frac{y_j - y_0}{h} < \frac{1}{2} \right)$$

- It is quite easy to prove that this estimator is *consistent* in iid samples provided that $n \to \infty$, $nh \to \infty$ and $h \to 0$.
- Note that

$$E\left[\hat{f}\left(y_{0}\right)\right] = \frac{F\left(y_{0} + \frac{h}{2}\right) - F\left(y_{0} - \frac{h}{2}\right)}{h} \rightarrow f\left(y_{0}\right)$$

as $h \rightarrow 0$

Also

$$Var\left(\hat{f}\left(y_{0}\right)\right) =$$

$$= \frac{1}{nh} \frac{F\left(y_{0} + \frac{h}{2}\right) - F\left(y_{0} - \frac{h}{2}\right)}{h} \left[1 - \left(F\left(y_{0} + \frac{h}{2}\right) - F\left(y_{0} - \frac{h}{2}\right)\right)\right]$$

$$\leq \frac{1}{nh} \frac{F\left(y_{0} + \frac{h}{2}\right) - F\left(y_{0} - \frac{h}{2}\right)}{h} \to 0$$

provided that $nh \to \infty$.

- Consequently plim $\hat{f}(y_0) = f(y_0)$.
- Like the histogram, this estimator is **not continuous** in y_0 .

- A continuous and smooth estimator can be obtained by replacing the function $K[z] = \mathbf{1}(-1/2 \le z < 1/2)$ by another *kernel* function. A *kernel* function is any function $K(\cdot)$ such that $\int_{\mathbb{R}} K(u) du = 1$ (Rosenblatt, 1956).
- Note that we do not require $K(\cdot) \ge 0$ (although this assumption ensures that the estimator is non-negative).
- Many kernels are available, but a popular choice is to use $K[z] = \phi(z)$ (the density function of the standard normal distribution).
- In general, for a bandwidth h > 0, the kernel density estimator is given by

$$\hat{f}(y_0) = \frac{1}{nh} \sum_{j=1}^{n} K\left(\frac{y_j - y_0}{h}\right).$$

- ullet The choice of the kernel affects the bias $E\left[\hat{f}\left(y_{0}
 ight)
 ight]-f\left(y_{0}
 ight)$.
- As before consistency of this estimator requires $n \to \infty$, $nh \to \infty$ and $h \to 0$

- This can be generalized to d-dimensional data using a multivariate kernel function $K_d(\cdot)$ such that $\int_{\mathbb{R}^d} K_d(u) du = 1$.
- Example: $K_d(u) = \prod_{j=1}^d \phi(u_j)$, where $u = (u_1, ..., u_d)'$.
- To ensure **consistency**, among other things, we need to assume
 - $n \to \infty$;
 - $h \rightarrow 0$;
 - $nh^d \rightarrow \infty$.
- In this case the variance of the estimator goes to zero as
 nh^d → ∞. Notice the "curse of dimensionality": the larger the
 value of d, the slower the rate of convergence.
- Under additional conditions it is also possible to ensure asymptotic *normality*.
- However, convergence is slower than rate $n^{-1/2}$ and the estimator is biased.
- The rate of convergence depends on $K_d(\cdot)$ but according to some authors this choice is relatively unimportant.
- The *bandwidth h* affects the bias and variance of the estimator: as *h* decreases, so does the bias; however, the variance increases.

- The choice of bandwidth is critical for the results.
- *Too large* a bandwidth, means over-smoothing and eliminates important features of the function being estimated.
- *Too small* a bandwidth, means under-smoothing and the important features of the function become obscured by noise.
- Choices usually implemented by:
 - Automatic rules;
 - Graphically analysing the effects of varying the bandwidth;
 - Minimizing selection criterion.
- Silverman's rule-of-thumb, for the Gaussian kernel, is a popular choice

$$h = \min\left\{\sigma, \frac{IQR}{1.34}\right\} \frac{0.9}{n^{1/5}}.$$

- The kernel density estimator can be used for *Kernel Regression*.
- Particularly in the exploratory analysis of the data, it may be convenient not to assume a functional form for the relation between two variables.
- Let $\{(y_i, x_i)\}_{i=1}^n$ be iid, where y_i and x_i are random variables with continuous distributions and suppose we want to estimate $E(y_i|x_i) = m(x_i)$.
- Write this as

$$y_i = m\left(x_i\right) + \epsilon_i$$

where $E(\epsilon_i|x_i) = 0$.

• If we were interested in estimating $m(x_j)$ at a particular value of x and **if multiple observations** of y were available for that particular value of x, we could use

$$\hat{m}(x_0) = \frac{\sum_{j=1}^{n} \mathbf{1}(x_j = x_0) y_j}{\sum_{j=1}^{n} \mathbf{1}(x_j = x_0)} = \sum_{j=1}^{n} \frac{\mathbf{1}(x_j = x_0)}{\sum_{j=1}^{n} \mathbf{1}(x_j = x_0)} y_j$$

$$= m(x_0) + \frac{\sum_{j=1}^{n} \mathbf{1}(x_j = x_0) \epsilon_j}{\sum_{j=1}^{n} \mathbf{1}(x_j = x_0)}$$

which, under mild assumptions, is consistent if $n \to \infty$, provided that $\Pr(x_i = x_0) > 0$.

• Consequently this estimator is nor valid if x_j is a continuous random variable.

- For continuos random variables if $m(\cdot)$ is sufficiently smooth, we can estimate $m(x_0)$ using observations in a **neighbourhood** of x_0 .
- A **smoothing estimator** of $m(x_0)$ can be written as

$$\hat{m}(x_0) = \sum_{j=1}^{n} \omega_h (x_0 - x_j) y_j$$

where the weights $\omega_h (x_0 - x_j)$ decrease with the distance between x_i and x_0 .

• Frequently, the weights are defined as

$$\omega_h\left(x_0-x_j\right)=\frac{K\left(\frac{x_0-x_j}{h}\right)}{\sum_{k=1}^n K\left(\frac{x_0-x_k}{h}\right)}.$$

- This defines the **Nadaraya-Watson** estimator of $m(x_0)$.
- Under appropriate regularity conditions, $\hat{m}(x_0)$ is consistent when $\lim_{n\to\infty}h=0$, but the **convergence is slow** (not $n^{1/2}$).

- Again, the properties of the estimator depend on the choice of $K(\cdot)$ and h.
 - According to some authors, the choice of $K(\cdot)$ is not that important, and often $K(\cdot) = \phi(\cdot)$.
 - The choice of h is critical: If h is too small, the estimates become too irregular; If h is too large, the estimates approach ȳ.
- A popular method to choose *h* is to use leave-one-out cross-validation, i.e.,

$$h_{CV} = \arg\min_{h} \frac{1}{n} \sum_{i=1}^{n} \delta(x_i) \left[y_i - \sum_{j \neq i} \omega_h (x_i - x_j) y_j \right]^2$$

where $\delta(x)$ is a trimming function to reduce boundary effects.

- This can be generalized for the case where we condition on a vector of regressors.
- However, for the multivariate case, not only do we have to face the "Curse of Dimensionality", but we also lose the ability to display the results graphically.

Semiparametric estimation

- Most non-ML estimators are semiparametric in the sense that they do not require the full specification of the conditional probability distribution of the dependent variable.
- Later we will see examples of semiparametric estimators in the context of some specific microeconometric models.
- Here, we will look at a useful *semi(non)parametric* estimator: The partially linear model.
- Suppose that $E(y_i|z,x) = z_i\beta + g(x_i)$, where $g(\cdot)$ is left unspecified, and

$$y_i = z_i \beta + g(x_i) + \epsilon_i, i = 1, \ldots, n.$$

- Robinson (1988) and Speckman (1988) have shown that, under certain conditions, it is possible to obtain \sqrt{n} -consistent estimators for β .
- Notice that we can write

$$E(y_i|x) = E(z_i|x)\beta + g(x_i)$$

$$y_i - E(y_i|x) = [z_i - E(z_i|x)] \beta + \epsilon$$

Semiparametric estimation

- If $E(y_i|x)$ and $E(z_i|x)$ where known, β could be estimated by *OLS*.
- However, if $E(y_i|x)$ and $E(z_i|x)$ are replaced by *kernel estimators* that converge sufficiently quickly, their use will *not affect* the rate of convergence of the OLS estimator of β , which, using an obvious notation, can be estimated by (see Yatchew, 2003)

$$\hat{\beta} = \left[\left(Z - \widehat{E(Z|x)} \right)' \left(Z - \widehat{E(Z|x)} \right) \right]^{-1} \left(Z - \widehat{E(Z|x)} \right)' \left(Y - \widehat{E(Y|x)} \right),$$

• This estimator is consistent and asymptotically normal distributed.