Glossary

Editor: A.P.M. Baede

 $A \rightarrow$ indicates that the following term is also contained in this Glossary.

Adjustment time

See: →Lifetime; see also: →Response time.

Aerosols

A collection of airborne solid or liquid particles, with a typical size between 0.01 and 10 μ m and residing in the atmosphere for at least several hours. Aerosols may be of either natural or anthropogenic origin. Aerosols may influence climate in two ways: directly through scattering and absorbing radiation, and indirectly through acting as condensation nuclei for cloud formation or modifying the optical properties and lifetime of clouds. See: \rightarrow Indirect aerosol effect.

The term has also come to be associated, erroneously, with the propellant used in "aerosol sprays".

Afforestation

Planting of new forests on lands that historically have not contained forests. For a discussion of the term →forest and related terms such as afforestation, →reforestation, and →deforestation: see the IPCC Report on Land Use, Land-Use Change and Forestry (IPCC, 2000).

Albedo

The fraction of solar radiation reflected by a surface or object, often expressed as a percentage. Snow covered surfaces have a high albedo; the albedo of soils ranges from high to low; vegetation covered surfaces and oceans have a low albedo. The Earth's albedo varies mainly through varying cloudiness, snow, ice, leaf area and land cover changes.

Altimetry

A technique for the measurement of the elevation of the sea, land or ice surface. For example, the height of the sea surface (with respect to the centre of the Earth or, more conventionally, with respect to a standard "ellipsoid of revolution") can be measured from space by current state-of-the-art radar altimetry with

centrimetric precision. Altimetry has the advantage of being a measurement relative to a geocentric reference frame, rather than relative to land level as for a \rightarrow tide gauge, and of affording quasi-global coverage.

Anthropogenic

Resulting from or produced by human beings.

Atmosphere

The gaseous envelope surrounding the Earth. The dry atmosphere consists almost entirely of nitrogen (78.1% volume mixing ratio) and oxygen (20.9% volume mixing ratio), together with a number of trace gases, such as argon (0.93% volume mixing ratio), helium, and radiatively active →greenhouse gases such as →carbon dioxide (0.035% volume mixing ratio), and ozone. In addition the atmosphere contains water vapour, whose amount is highly variable but typically 1% volume mixing ratio. The atmosphere also contains clouds and →aerosols.

Attribution

See: →Detection and attribution.

Autotrophic respiration

→Respiration by photosynthetic organisms (plants).

Biomass

The total mass of living organisms in a given area or volume; recently dead plant material is often included as dead biomass.

Biosphere (terrestrial and marine)

The part of the Earth system comprising all →ecosystems and living organisms, in the atmosphere, on land (terrestrial biosphere) or in the oceans (marine biosphere), including derived dead organic matter, such as litter, soil organic matter and oceanic detritus.

Black carbon

Operationally defined species based on measurement of light absorption and chemical reactivity and/or thermal stability; consists of soot, charcoal, and/or possible light-absorbing refractory organic matter. (Source: Charlson and Heintzenberg, 1995, p. 401.)

Burden

The total mass of a gaseous substance of concern in the atmosphere.

Carbonaceous aerosol

Aerosol consisting predominantly of organic substances and various forms of →black carbon. (Source: Charlson and Heintzenberg, 1995, p. 401.)

Carbon cycle

The term used to describe the flow of carbon (in various forms, e.g. as carbon dioxide) through the atmosphere, ocean, terrestrial →biosphere and lithosphere.

Carbon dioxide (CO₂)

A naturally occurring gas, also a by-product of burning fossil fuels and \rightarrow biomass, as well as \rightarrow land-use changes and other industrial processes. It is the principal anthropogenic \rightarrow greenhouse gas that affects the earth's radiative balance. It is the reference gas against which other greenhouse gases are measured and therefore has a \rightarrow Global Warming Potential of 1.

Carbon dioxide (CO₂) fertilisation

The enhancement of the growth of plants as a result of increased atmospheric CO_2 concentration. Depending on their mechanism of \rightarrow photosynthesis, certain types of plants are more sensitive to changes in atmospheric CO_2 concentration. In particular, $\rightarrow C_3$ plants generally show a larger response to CO_2 than $\rightarrow C_4$ plants.

Charcoal

Material resulting from charring of biomass, usually retaining some of the microscopic texture typical of plant tissues; chemically it consists mainly of carbon with a disturbed graphitic structure, with lesser amounts of oxygen and hydrogen. See: →Black carbon; Soot particles. (Source: Charlson and Heintzenberg, 1995, p. 402.)

Climate

Climate in a narrow sense is usually defined as the "average weather", or more rigorously, as the statistical description in terms of the mean and variability of relevant quantities over a period of time ranging from months to thousands or millions of years. The classical period is 30 years, as defined by the World Meteorological Organization (WMO). These quantities are most often surface variables such as temperature, precipitation, and wind. Climate in a wider sense is the state, including a statistical description, of the →climate system.

Climate change

Climate change refers to a statistically significant variation in

either the mean state of the climate or in its variability, persisting for an extended period (typically decades or longer). Climate change may be due to natural internal processes or external forcings, or to persistent anthropogenic changes in the composition of the atmosphere or in land use.

Note that the →Framework Convention on Climate Change (UNFCCC), in its Article 1, defines "climate change" as: "a change of climate which is attributed directly or indirectly to human activity that alters the composition of the global atmosphere and which is in addition to natural climate variability observed over comparable time periods". The UNFCCC thus makes a distinction between "climate change" attributable to human activities altering the atmospheric composition, and "climate variability" attributable to natural causes.

See also: →Climate variability.

Climate feedback

An interaction mechanism between processes in the →climate system is called a climate feedback, when the result of an initial process triggers changes in a second process that in turn influences the initial one. A positive feedback intensifies the original process, and a negative feedback reduces it.

Climate model (hierarchy)

A numerical representation of the \rightarrow climate system based on the physical, chemical and biological properties of its components, their interactions and feedback processes, and accounting for all or some of its known properties. The climate system can be represented by models of varying complexity, i.e. for any one component or combination of components a *hierarchy* of models can be identified, differing in such aspects as the number of spatial dimensions, the extent to which physical, chemical or biological processes are explicitly represented, or the level at which empirical \rightarrow parametrizations are involved. Coupled atmosphere/ocean/sea-ice General Circulation Models (AOGCMs) provide a comprehensive representation of the climate system. There is an evolution towards more complex models with active chemistry and biology.

Climate models are applied, as a research tool, to study and simulate the climate, but also for operational purposes, including monthly, seasonal and interannual \rightarrow climate predictions.

Climate prediction

A climate prediction or climate forecast is the result of an attempt to produce a most likely description or estimate of the actual evolution of the climate in the future, e.g. at seasonal, interannual or long-term time scales. See also: \rightarrow Climate projection and \rightarrow Climate (change) scenario.

Climate projection

A projection of the response of the climate system to permission or concentration scenarios of greenhouse gases and aerosols, or pradiative forcing scenarios, often based upon simulations by permission by permiss

radiative forcing scenario used, which are based on assumptions, concerning, e.g., future socio-economic and technological developments, that may or may not be realised, and are therefore subject to substantial uncertainty.

Climate scenario

A plausible and often simplified representation of the future climate, based on an internally consistent set of climatological relationships, that has been constructed for explicit use in investigating the potential consequences of anthropogenic →climate change, often serving as input to impact models. →Climate projections often serve as the raw material for constructing climate scenarios, but climate scenarios usually require additional information such as about the observed current climate. A *climate change scenario* is the difference between a climate scenario and the current climate.

Climate sensitivity

In IPCC Reports, equilibrium climate sensitivity refers to the equilibrium change in global mean surface temperature following a doubling of the atmospheric (\rightarrow equivalent) CO₂ concentration. More generally, equilibrium climate sensitivity refers to the equilibrium change in surface air temperature following a unit change in \rightarrow radiative forcing (°C/Wm⁻²). In practice, the evaluation of the equilibrium climate sensitivity requires very long simulations with Coupled General Circulation Models (\rightarrow Climate model).

The *effective climate sensitivity* is a related measure that circumvents this requirement. It is evaluated from model output for evolving non-equilibrium conditions. It is a measure of the strengths of the →feedbacks at a particular time and may vary with forcing history and climate state. Details are discussed in Section 9.2.1 of Chapter 9 in this Report.

Climate system

The climate system is the highly complex system consisting of five major components: the →atmosphere, the →hydrosphere, the →cryosphere, the land surface and the →biosphere, and the interactions between them. The climate system evolves in time under the influence of its own internal dynamics and because of external forcings such as volcanic eruptions, solar variations and human-induced forcings such as the changing composition of the atmosphere and →land-use change.

Climate variability

Climate variability refers to variations in the mean state and other statistics (such as standard deviations, the occurrence of extremes, etc.) of the climate on all temporal and spatial scales beyond that of individual weather events. Variability may be due to natural internal processes within the climate system (*internal variability*), or to variations in natural or anthropogenic external forcing (*external variability*). See also: \rightarrow Climate change.

Cloud condensation nuclei

Airborne particles that serve as an initial site for the condensation of liquid water and which can lead to the formation of cloud droplets. See also: \rightarrow Aerosols.

CO₂ fertilisation

See \rightarrow Carbon dioxide (CO₂) fertilisation

Cooling degree days

The integral over a day of the temperature above 18°C (e.g. a day with an average temperature of 20°C counts as 2 cooling degree days). See also: →Heating degree days.

Cryosphere

The component of the \rightarrow climate system consisting of all snow, ice and permafrost on and beneath the surface of the earth and ocean. See: \rightarrow Glacier; \rightarrow Ice sheet.

C₃ plants

Plants that produce a three-carbon compound during photosynthesis; including most trees and agricultural crops such as rice, wheat, soyabeans, potatoes and vegetables.

C₄ plants

Plants that produce a four-carbon compound during photosynthesis; mainly of tropical origin, including grasses and the agriculturally important crops maize, sugar cane, millet and sorghum.

Deforestation

Conversion of forest to non-forest. For a discussion of the term \rightarrow forest and related terms such as \rightarrow afforestation, \rightarrow reforestation, and deforestation: see the IPCC Report on Land Use, Land-Use Change and Forestry (IPCC, 2000).

Desertification

Land degradation in arid, semi-arid, and dry sub-humid areas resulting from various factors, including climatic variations and human activities. Further, the UNCCD (The United Nations Convention to Combat Desertification) defines land degradation as a reduction or loss, in arid, semi-arid, and dry sub-humid areas, of the biological or economic productivity and complexity of rain-fed cropland, irrigated cropland, or range, pasture, forest, and woodlands resulting from land uses or from a process or combination of processes, including processes arising from human activities and habitation patterns, such as: (i) soil erosion caused by wind and/or water; (ii) deterioration of the physical, chemical and biological or economic properties of soil; and (iii) long-term loss of natural vegetation.

Detection and attribution

Climate varies continually on all time scales. *Detection* of →climate change is the process of demonstrating that climate has changed in some defined statistical sense, without providing a reason for that change. *Attribution* of causes of climate change is the process of establishing the most likely causes for the detected change with some defined level of confidence.

Diurnal temperature range

The difference between the maximum and minimum temperature during a day.

Dobson Unit (DU)

A unit to measure the total amount of ozone in a vertical column above the Earth's surface. The number of Dobson Units is the thickness in units of 10^{-5} m, that the ozone column would occupy if compressed into a layer of uniform density at a pressure of 1013 hPa, and a temperature of 0° C. One DU corresponds to a column of ozone containing 2.69×10^{20} molecules per square meter. A typical value for the amount of ozone in a column of the Earth's atmosphere, although very variable, is 300 DU.

Ecosystem

A system of interacting living organisms together with their physical environment. The boundaries of what could be called an ecosystem are somewhat arbitrary, depending on the focus of interest or study. Thus the extent of an ecosystem may range from very small spatial scales to, ultimately, the entire Earth.

El Niño-Southern Oscillation (ENSO)

El Niño, in its original sense, is a warm water current which periodically flows along the coast of Ecuador and Peru, disrupting the local fishery. This oceanic event is associated with a fluctuation of the intertropical surface pressure pattern and circulation in the Indian and Pacific oceans, called the Southern Oscillation. This coupled atmosphere-ocean phenomenon is collectively known as El Niño-Southern Oscillation, or ENSO. During an El Niño event, the prevailing trade winds weaken and the equatorial countercurrent strengthens, causing warm surface waters in the Indonesian area to flow eastward to overlie the cold waters of the Peru current. This event has great impact on the wind, sea surface temperature and precipitation patterns in the tropical Pacific. It has climatic effects throughout the Pacific region and in many other parts of the world. The opposite of an El Niño event is called *La Niña*.

Emission scenario

A plausible representation of the future development of emissions of substances that are potentially radiatively active (e.g. \rightarrow greenhouse gases, \rightarrow aerosols), based on a coherent and internally consistent set of assumptions about driving forces (such as demographic and socio-economic development, technological change) and their key relationships.

Concentration scenarios, derived from emission scenarios, are used as input into a climate model to compute \rightarrow climate projections.

In IPCC (1992) a set of emission scenarios was presented which were used as a basis for the →climate projections in IPCC (1996). These emission scenarios are referred to as the IS92 scenarios. In the IPCC Special Report on Emission Scenarios (Nakićenović *et al.*, 2000) new emission scenarios, the so called →SRES scenarios, were published some of which were used, among others, as a basis for the climate projections presented in Chapter 9 of this Report. For the meaning of some terms related to these scenarios, see →SRES scenarios.

Energy balance

Averaged over the globe and over longer time periods, the energy budget of the →climate system must be in balance. Because the

climate system derives all its energy from the Sun, this balance implies that, globally, the amount of incoming →solar radiation must on average be equal to the sum of the outgoing reflected solar radiation and the outgoing →infrared radiation emitted by the climate system. A perturbation of this global radiation balance, be it human induced or natural, is called →radiative forcing.

Equilibrium and transient climate experiment

An *equilibrium climate experiment* is an experiment in which a →climate model is allowed to fully adjust to a change in →radiative forcing. Such experiments provide information on the difference between the initial and final states of the model, but not on the time-dependent response. If the forcing is allowed to evolve gradually according to a prescribed →emission scenario, the time dependent response of a climate model may be analysed. Such experiment is called a *transient climate experiment*. See: →Climate projection.

Equivalent CO₂ (carbon dioxide)

The concentration of \rightarrow CO₂ that would cause the same amount of \rightarrow radiative forcing as a given mixture of CO₂ and other \rightarrow greenhouse gases.

Eustatic sea-level change

A change in global average sea level brought about by an alteration to the volume of the world ocean. This may be caused by changes in water density or in the total mass of water. In discussions of changes on geological time-scales, this term sometimes also includes changes in global average sea level caused by an alteration to the shape of the ocean basins. In this Report the term is not used with that sense.

Evapotranspiration

The combined process of evaporation from the Earth's surface and transpiration from vegetation.

External forcing

See: →Climate system.

Extreme weather event

An extreme weather event is an event that is rare within its statistical reference distribution at a particular place. Definitions of "rare" vary, but an extreme weather event would normally be as rare as or rarer than the 10th or 90th percentile. By definition, the characteristics of what is called *extreme weather* may vary from place to place.

An extreme climate event is an average of a number of weather events over a certain period of time, an average which is itself extreme (e.g. rainfall over a season).

Faculae

Bright patches on the Sun. The area covered by faculae is greater during periods of high →solar activity.

Feedback

See: →Climate feedback.

Flux adjustment

To avoid the problem of coupled atmosphere-ocean general circulation models drifting into some unrealistic climate state, adjustment terms can be applied to the atmosphere-ocean fluxes of heat and moisture (and sometimes the surface stresses resulting from the effect of the wind on the ocean surface) before these fluxes are imposed on the model ocean and atmosphere. Because these adjustments are precomputed and therefore independent of the coupled model integration, they are uncorrelated to the anomalies which develop during the integration. In Chapter 8 of this Report it is concluded that present models have a reduced need for flux adjustment.

Forest

A vegetation type dominated by trees. Many definitions of the term forest are in use throughout the world, reflecting wide differences in bio-geophysical conditions, social structure, and economics. For a discussion of the term forest and related terms such as →afforestation, →reforestation, and →deforestation: see the IPCC Report on Land Use, Land-Use Change and Forestry (IPCC, 2000).

Fossil CO₂ (carbon dioxide) emissions

Emissions of CO₂ resulting from the combustion of fuels from fossil carbon deposits such as oil, gas and coal.

Framework Convention on Climate Change See: →United Nations Framework Convention on Climate Change (UNFCCC).

General Circulation

The large scale motions of the atmosphere and the ocean as a consequence of differential heating on a rotating Earth, aiming to restore the →energy balance of the system through transport of heat and momentum.

General Circulation Model (GCM)

See: \rightarrow Climate model.

Geoid

The surface which an ocean of uniform density would assume if it were in steady state and at rest (i.e. no ocean circulation and no applied forces other than the gravity of the Earth). This implies that the geoid will be a surface of constant gravitational potential, which can serve as a reference surface to which all surfaces (e.g., the Mean Sea Surface) can be referred. The geoid (and surfaces parallel to the geoid) are what we refer to in common experience as "level surfaces".

Glacier

A mass of land ice flowing downhill (by internal deformation and sliding at the base) and constrained by the surrounding topography e.g. the sides of a valley or surrounding peaks; the bedrock topography is the major influence on the dynamics and surface slope of a glacier. A glacier is maintained by accumulation of snow at high altitudes, balanced by melting at low altitudes or discharge into the sea.

Global surface temperature

The global surface temperature is the area-weighted global average of (i) the sea-surface temperature over the oceans (i.e. the subsurface bulk temperature in the first few meters of the ocean), and (ii) the surface-air temperature over land at 1.5 m above the ground.

Global Warming Potential (GWP)

An index, describing the radiative characteristics of well mixed →greenhouse gases, that represents the combined effect of the differing times these gases remain in the atmosphere and their relative effectiveness in absorbing outgoing →infrared radiation. This index approximates the time-integrated warming effect of a unit mass of a given greenhouse gas in today's atmosphere, relative to that of →carbon dioxide.

Greenhouse effect

→Greenhouse gases effectively absorb →infrared radiation, emitted by the Earth's surface, by the atmosphere itself due to the same gases, and by clouds. Atmospheric radiation is emitted to all sides, including downward to the Earth's surface. Thus greenhouse gases trap heat within the surface-troposphere system. This is called the *natural greenhouse effect*.

Atmospheric radiation is strongly coupled to the temperature of the level at which it is emitted. In the →troposphere the temperature generally decreases with height. Effectively, infrared radiation emitted to space originates from an altitude with a temperature of, on average, −19°C, in balance with the net incoming solar radiation, whereas the Earth's surface is kept at a much higher temperature of, on average, +14°C.

An increase in the concentration of greenhouse gases leads to an increased infrared opacity of the atmosphere, and therefore to an effective radiation into space from a higher altitude at a lower temperature. This causes a \rightarrow radiative forcing, an imbalance that can only be compensated for by an increase of the temperature of the surface-troposphere system. This is the *enhanced greenhouse effect*.

Greenhouse gas

Greenhouse gases are those gaseous constituents of the atmosphere, both natural and anthropogenic, that absorb and emit radiation at specific wavelengths within the spectrum of infrared radiation emitted by the Earth's surface, the atmosphere and clouds. This property causes the \rightarrow greenhouse effect. Water vapour (H₂O), carbon dioxide (CO₂), nitrous oxide (N₂O), methane (CH₄) and ozone (O₃) are the primary greenhouse gases in the Earth's atmosphere. Moreover there are a number of entirely human-made greenhouse gases in the atmosphere, such as the \rightarrow halocarbons and other chlorine and bromine containing substances, dealt with under the \rightarrow Montreal Protocol. Beside CO₂, N₂O and CH₄, the \rightarrow Kyoto Protocol deals with the greenhouse gases sulphur hexafluoride (SF₆), hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs).

Gross Primary Production (GPP)

The amount of carbon fixed from the atmosphere through →photosynthesis.

Grounding line/zone

The junction between \rightarrow ice sheet and \rightarrow ice shelf or the place where the ice starts to float.

Halocarbons

Compounds containing either chlorine, bromine or fluorine and carbon. Such compounds can act as powerful \rightarrow greenhouse gases in the atmosphere. The chlorine and bromine containing halocarbons are also involved in the depletion of the \rightarrow ozone layer.

Heating degree days

The integral over a day of the temperature below 18° C (e.g. a day with an average temperature of 16° C counts as 2 heating degree days). See also: \rightarrow Cooling degree days.

Heterotrophic respiration

The conversion of organic matter to CO_2 by organisms other than plants.

Hydrosphere

The component of the climate system comprising liquid surface and subterranean water, such as: oceans, seas, rivers, fresh water lakes, underground water etc.

Ice cap

A dome shaped ice mass covering a highland area that is considerably smaller in extent than an—ice sheet.

Ice sheet

A mass of land ice which is sufficiently deep to cover most of the underlying bedrock topography, so that its shape is mainly determined by its internal dynamics (the flow of the ice as it deforms internally and slides at its base). An ice sheet flows outwards from a high central plateau with a small average surface slope. The margins slope steeply, and the ice is discharged through fast-flowing ice streams or outlet glaciers, in some cases into the sea or into ice-shelves floating on the sea. There are only two large ice sheets in the modern world, on Greenland and Antarctica, the Antarctic ice sheet being divided into East and West by the Transantarctic Mountains; during glacial periods there were others.

Ice shelf

A floating \rightarrow ice sheet of considerable thickness attached to a coast (usually of great horizontal extent with a level or gently undulating surface); often a seaward extension of ice sheets.

Indirect aerosol effect

→Aerosols may lead to an indirect →radiative forcing of the →climate system through acting as condensation nuclei or modifying the optical properties and lifetime of clouds. Two indirect effects are distinguished:

First indirect effect

A radiative forcing induced by an increase in anthropogenic aerosols which cause an initial increase in droplet concentration and a decrease in droplet size for fixed liquid water content, leading to an increase of cloud →albedo. This effect is also known as the *Twomey effect*. This is sometimes referred to as the *cloud albedo effect*. However this is highly misleading since the second indirect effect also alters cloud albedo.

Second indirect effect

A radiative forcing induced by an increase in anthropogenic aerosols which cause a decrease in droplet size, reducing the precipitation efficiency, thereby modifying the liquid water content, cloud thickness, and cloud life time. This effect is also known as the *cloud life time effect* or *Albrecht effect*.

Industrial revolution

A period of rapid industrial growth with far-reaching social and economic consequences, beginning in England during the second half of the eighteenth century and spreading to Europe and later to other countries including the United States. The invention of the steam engine was an important trigger of this development. The industrial revolution marks the beginning of a strong increase in the use of fossil fuels and emission of, in particular, fossil carbon dioxide. In this Report the terms *pre-industrial* and *industrial* refer, somewhat arbitrarily, to the periods before and after 1750, respectively.

Infrared radiation

Radiation emitted by the earth's surface, the atmosphere and the clouds. It is also known as terrestrial or long-wave radiation. Infrared radiation has a distinctive range of wavelengths ("spectrum") longer than the wavelength of the red colour in the visible part of the spectrum. The spectrum of infrared radiation is practically distinct from that of \rightarrow solar or short-wave radiation because of the difference in temperature between the Sun and the Earth-atmosphere system.

Integrated assessment

A method of analysis that combines results and models from the physical, biological, economic and social sciences, and the interactions between these components, in a consistent framework, to evaluate the status and the consequences of environmental change and the policy responses to it.

Internal variability

See: →Climate variability.

Inverse modelling

A mathematical procedure by which the input to a model is estimated from the observed outcome, rather than *vice versa*. It is, for instance, used to estimate the location and strength of sources and sinks of CO_2 from measurements of the distribution of the CO_2 concentration in the atmosphere, given models of the global \rightarrow carbon cycle and for computing atmospheric transport.

Isostatic land movements

Isostasy refers to the way in which the →lithosphere and mantle respond to changes in surface loads. When the loading of the lithosphere is changed by alterations in land ice mass, ocean mass, sedimentation, erosion or mountain building, vertical isostatic adjustment results, in order to balance the new load.

Kyoto Protocol

The Kyoto Protocol to the United Nations \rightarrow Framework Convention on Climate Change (UNFCCC) was adopted at the Third Session of the Conference of the Parties (COP) to the United Nations \rightarrow Framework Convention on Climate Change, in 1997 in Kyoto, Japan. It contains legally binding commitments, in addition to those included in the UNFCCC. Countries included in Annex B of the Protocol (most OECD countries and countries with economies in transition) agreed to reduce their anthropogenic \rightarrow greenhouse gas emissions (CO₂, CH₄, N₂O, HFCs, PFCs, and SF₆) by at least 5% below 1990 levels in the commitment period 2008 to 2012. The Kyoto Protocol has not yet entered into force (April 2001).

Land use

The total of arrangements, activities and inputs undertaken in a certain land cover type (a set of human actions). The social and economic purposes for which land is managed (e.g., grazing, timber extraction, and conservation).

Land-use change

A change in the use or management of land by humans, which may lead to a change in land cover. Land cover and land-use change may have an impact on the \rightarrow albedo, \rightarrow evapotranspiration, \rightarrow sources and \rightarrow sinks of \rightarrow greenhouse gases, or other properties of the \rightarrow climate system and may thus have an impact on climate, locally or globally. See also: the IPCC Report on Land Use, Land-Use Change, and Forestry (IPCC, 2000).

La Niña

See: →El Niño-Southern Oscillation.

Lifetime

Lifetime is a general term used for various time-scales characterising the rate of processes affecting the concentration of trace gases. The following lifetimes may be distinguished:

Turnover time (T) is the ratio of the mass M of a reservoir (e.g., a gaseous compound in the atmosphere) and the total rate of removal S from the reservoir: T = M/S. For each removal process separate turnover times can be defined. In soil carbon biology this is referred to as *Mean Residence Time (MRT)*.

Adjustment time or response time (T_a) is the time-scale characterising the decay of an instantaneous pulse input into the reservoir. The term adjustment time is also used to characterise the adjustment of the mass of a reservoir following a step change in the source strength. Half-life or decay constant is used to quantify a first-order exponential decay process. See: \rightarrow Response time, for a different definition pertinent to climate variations. The term lifetime is sometimes used, for simplicity, as a surrogate for adjustment time.

In simple cases, where the global removal of the compound is directly proportional to the total mass of the reservoir, the adjustment time equals the turnover time: $T = T_a$. An example is CFC-11 which is removed from the atmosphere only by photochemical processes in the stratosphere. In more complicated cases, where several reservoirs are involved or where the removal is not proportional to the total mass, the equality $T = T_a$ no longer holds.

 \rightarrow Carbon dioxide (CO₂) is an extreme example. Its turnover time is only about 4 years because of the rapid exchange between atmosphere and the ocean and terrestrial biota. However, a large part of that CO₂ is returned to the atmosphere within a few years. Thus, the adjustment time of CO₂ in the atmosphere is actually determined by the rate of removal of carbon from the surface layer of the oceans into its deeper layers. Although an approximate value of 100 years may be given for the adjustment time of CO₂ in the atmosphere, the actual adjustment is faster initially and slower later on. In the case of methane (CH₄) the adjustment time is different from the turnover time, because the removal is mainly through a chemical reaction with the hydroxyl radical OH, the concentration of which itself depends on the CH₄ concentration. Therefore the CH₄ removal S is not proportional to its total mass M.

Lithosphere

The upper layer of the solid Earth, both continental and oceanic, which comprises all crustal rocks and the cold, mainly elastic, part of the uppermost mantle. Volcanic activity, although part of the lithosphere, is not considered as part of the →climate system, but acts as an external forcing factor. See: →Isostatic land movements.

LOSU (Level of Scientific Understanding)

This is an index on a 4-step scale (High, Medium, Low and Very Low) designed to characterise the degree of scientific understanding of the radiative forcing agents that affect climate change. For each agent, the index represents a subjective judgement about the reliability of the estimate of its forcing, involving such factors as the assumptions necessary to evaluate the forcing, the degree of knowledge of the physical/ chemical mechanisms determining the forcing and the uncertainties surrounding the quantitative estimate.

Mean Sea Level

See: →Relative Sea Level.

Mitigation

A human intervention to reduce the \rightarrow sources or enhance the \rightarrow sinks of \rightarrow greenhouse gases.

Mixing ratio

See: →Mole fraction.

Model hierarchy

See: →Climate model.

Mole fraction

Mole fraction, or *mixing ratio*, is the ratio of the number of moles of a constituent in a given volume to the total number of moles of all constituents in that volume. It is usually reported for dry air. Typical values for long-lived →greenhouse gases are in the order of µmol/mol (parts per million: ppm), nmol/mol (parts per billion: ppb), and fmol/mol (parts per trillion: ppt). Mole fraction differs from *volume mixing ratio*, often expressed in ppmv etc., by the corrections for non-ideality of gases. This correction is

significant relative to measurement precision for many greenhouse gases. (Source: Schwartz and Warneck, 1995).

Montreal Protocol

The Montreal Protocol on Substances that Deplete the Ozone Layer was adopted in Montreal in 1987, and subsequently adjusted and amended in London (1990), Copenhagen (1992), Vienna (1995), Montreal (1997) and Beijing (1999). It controls the consumption and production of chlorine- and bromine-containing chemicals that destroy stratospheric ozone, such as CFCs, methyl chloroform, carbon tetrachloride, and many others.

Net Biome Production (NBP)

Net gain or loss of carbon from a region. NBP is equal to the →Net Ecosystem Production minus the carbon lost due to a disturbance, e.g. a forest fire or a forest harvest.

Net Ecosystem Production (NEP)

Net gain or loss of carbon from an →ecosystem. NEP is equal to the →Net Primary Production minus the carbon lost through →heterotrophic respiration.

Net Primary Production (NPP)

The increase in plant →biomass or carbon of a unit of a landscape. NPP is equal to the →Gross Primary Production minus carbon lost through →autotrophic respiration.

Nitrogen fertilisation

Enhancement of plant growth through the addition of nitrogen compounds. In IPCC Reports, this typically refers to fertilisation from anthropogenic sources of nitrogen such as human-made fertilisers and nitrogen oxides released from burning fossil fuels.

Non-linearity

A process is called "non-linear" when there is no simple proportional relation between cause and effect. The →climate system contains many such non-linear processes, resulting in a system with a potentially very complex behaviour. Such complexity may lead to →rapid climate change.

North Atlantic Oscillation (NAO)

The North Atlantic Oscillation consists of opposing variations of barometric pressure near Iceland and near the Azores. On average, a westerly current, between the Icelandic low pressure area and the Azores high pressure area, carries cyclones with their associated frontal systems towards Europe. However, the pressure difference between Iceland and the Azores fluctuates on time-scales of days to decades, and can be reversed at times.

Organic aerosol

→Aerosol particles consisting predominantly of organic compounds, mainly C, H, O, and lesser amounts of other elements. (Source: Charlson and Heintzenberg, 1995, p. 405.) See: →Carbonaceous aerosol.

Ozone

Ozone, the triatomic form of oxygen (O_3) , is a gaseous atmospheric constituent. In the \rightarrow troposphere it is created both naturally and by photochemical reactions involving gases resulting from human activities ("smog"). Tropospheric ozone acts as a \rightarrow greenhouse gas. In the \rightarrow stratosphere it is created by the interaction between solar ultraviolet radiation and molecular oxygen (O_2) . Stratospheric ozone plays a decisive role in the stratospheric radiative balance. Its concentration is highest in the \rightarrow ozone layer.

Ozone hole

See: →Ozone layer.

Ozone layer

The →stratosphere contains a layer in which the concentration of ozone is greatest, the so called ozone layer. The layer extends from about 12 to 40 km. The ozone concentration reaches a maximum between about 20 and 25 km. This layer is being depleted by human emissions of chlorine and bromine compounds. Every year, during the Southern Hemisphere spring, a very strong depletion of the ozone layer takes place over the Antarctic region, also caused by human-made chlorine and bromine compounds in combination with the specific meteorological conditions of that region. This phenomenon is called the *ozone hole*.

Parametrization

In \rightarrow climate models, this term refers to the technique of representing processes, that cannot be explicitly resolved at the spatial or temporal resolution of the model (sub-grid scale processes), by relationships between the area or time averaged effect of such sub-grid scale processes and the larger scale flow.

Patterns of climate variability

Natural variability of the →climate system, in particular on seasonal and longer time-scales, predominantly occurs in preferred spatial patterns, through the dynamical non-linear characteristics of the atmospheric circulation and through interactions with the land and ocean surfaces. Such spatial patterns are also called "regimes" or "modes". Examples are the →North Atlantic Oscillation (NAO), the Pacific-North American pattern (PNA), the →El Niño-Southern Oscillation (ENSO), and the Antarctic Oscillation (AO).

Photosynthesis

The process by which plants take CO_2 from the air (or bicarbonate in water) to build carbohydrates, releasing O_2 in the process. There are several pathways of photosynthesis with different responses to atmospheric CO_2 concentrations. See: \rightarrow Carbon dioxide fertilisation.

Pool

See: →Reservoir.

Post-glacial rebound

The vertical movement of the continents and sea floor following

the disappearance and shrinking of \rightarrow ice sheets, e.g. since the Last Glacial Maximum (21 ky BP). The rebound is an \rightarrow isostatic land movement.

Ppm, ppb, ppt

See: \rightarrow Mole fraction.

Precursors

Atmospheric compounds which themselves are not →greenhouse gases or →aerosols, but which have an effect on greenhouse gas or aerosol concentrations by taking part in physical or chemical processes regulating their production or destruction rates.

Pre-industrial

See: →Industrial revolution.

Projection (generic)

A projection is a potential future evolution of a quantity or set of quantities, often computed with the aid of a model. Projections are distinguished from *predictions* in order to emphasise that projections involve assumptions concerning, e.g., future socioeconomic and technological developments that may or may not be realised, and are therefore subject to substantial uncertainty. See also \rightarrow Climate projection; \rightarrow Climate prediction.

Proxy

A proxy climate indicator is a local record that is interpreted, using physical and biophysical principles, to represent some combination of climate-related variations back in time. Climate related data derived in this way are referred to as proxy data. Examples of proxies are: tree ring records, characteristics of corals, and various data derived from ice cores.

Radiative forcing

Radiative forcing is the change in the net vertical irradiance (expressed in Watts per square metre: Wm⁻²) at the →tropopause due to an internal change or a change in the external forcing of the →climate system, such as, for example, a change in the concentration of →carbon dioxide or the output of the Sun. Usually radiative forcing is computed after allowing for stratospheric temperatures to readjust to radiative equilibrium, but with all tropospheric properties held fixed at their unperturbed values. Radiative forcing is called *instantaneous* if no change in stratospheric temperature is accounted for. Practical problems with this definition, in particular with respect to radiative forcing associated with changes, by aerosols, of the precipitation formation by clouds, are discussed in Chapter 6 of this Report.

Radiative forcing scenario

A plausible representation of the future development of —radiative forcing associated, for example, with changes in atmospheric composition or land-use change, or with external factors such as variations in —solar activity. Radiative forcing scenarios can be used as input into simplified —climate models to compute —climate projections.

Radio-echosounding

The surface and bedrock, and hence the thickness, of a glacier can be mapped by radar; signals penetrating the ice are reflected at the lower boundary with rock (or water, for a floating glacier tongue).

Rapid climate change

The →non-linearity of the →climate system may lead to rapid climate change, sometimes called *abrupt events* or even *surprises*. Some such abrupt events may be imaginable, such as a dramatic reorganisation of the →thermohaline circulation, rapid deglaciation, or massive melting of permafrost leading to fast changes in the →carbon cycle. Others may be truly unexpected, as a consequence of a strong, rapidly changing, forcing of a non-linear system.

Reforestation

Planting of forests on lands that have previously contained forests but that have been converted to some other use. For a discussion of the term \rightarrow forest and related terms such as \rightarrow afforestation, reforestation, and \rightarrow deforestation: see the IPCC Report on Land Use, Land-Use Change and Forestry (IPCC, 2000).

Regimes

Preferred →patterns of climate variability.

Relative Sea Level

Sea level measured by a →tide gauge with respect to the land upon which it is situated. Mean Sea Level (MSL) is normally defined as the average Relative Sea Level over a period, such as a month or a year, long enough to average out transients such as waves.

(Relative) Sea Level Secular Change

Long term changes in relative sea level caused by either →eustatic changes, e.g. brought about by →thermal expansion, or changes in vertical land movements.

Reservoir

A component of the \rightarrow climate system, other than the atmosphere, which has the capacity to store, accumulate or release a substance of concern, e.g. carbon, a \rightarrow greenhouse gas or a \rightarrow precursor. Oceans, soils, and \rightarrow forests are examples of reservoirs of carbon. *Pool* is an equivalent term (note that the definition of pool often includes the atmosphere). The absolute quantity of substance of concerns, held within a reservoir at a specified time, is called the *stock*.

Respiration

The process whereby living organisms convert organic matter to CO_2 , releasing energy and consuming O_2 .

Response time

The response time or *adjustment time* is the time needed for the \rightarrow climate system or its components to re-equilibrate to a new state, following a forcing resulting from external and internal processes or \rightarrow feedbacks. It is very different for various

components of the climate system. The response time of the →troposphere is relatively short, from days to weeks, whereas the →stratosphere comes into equilibrium on a time-scale of typically a few months. Due to their large heat capacity, the oceans have a much longer response time, typically decades, but up to centuries or millennia. The response time of the strongly coupled surface-troposphere system is, therefore, slow compared to that of the stratosphere, and mainly determined by the oceans. The →biosphere may respond fast, e.g. to droughts, but also very slowly to imposed changes.

See: →Lifetime, for a different definition of response time pertinent to the rate of processes affecting the concentration of trace gases.

Scenario (generic)

A plausible and often simplified description of how the future may develop, based on a coherent and internally consistent set of assumptions about driving forces and key relationships. Scenarios may be derived from \rightarrow projections, but are often based on additional information from other sources, sometimes combined with a "narrative storyline". See also: \rightarrow SRES scenarios; \rightarrow Climate scenario; \rightarrow Emission scenarios.

Sea level rise

See: →Relative Sea Level Secular Change; →Thermal expansion.

Sequestration

See: \rightarrow Uptake.

Significant wave height

The average height of the highest one-third of all sea waves occurring in a particular time period. This serves as an indicator of the characteristic size of the highest waves.

Sink

Any process, activity or mechanism which removes a →greenhouse gas, an →aerosol or a precursor of a greenhouse gas or aerosol from the atmosphere.

Soil moisture

Water stored in or at the land surface and available for evaporation.

Solar activity

The Sun exhibits periods of high activity observed in numbers of \rightarrow sunspots, as well as radiative output, magnetic activity, and emission of high energy particles. These variations take place on a range of time-scales from millions of years to minutes. See: \rightarrow Solar cycle.

Solar ("11 year") cycle

A quasi-regular modulation of \rightarrow solar activity with varying amplitude and a period of between 9 and 13 years.

Solar radiation

Radiation emitted by the Sun. It is also referred to as short-wave radiation. Solar radiation has a distinctive range of wavelengths

(spectrum) determined by the temperature of the Sun. See also: \rightarrow Infrared radiation.

Soot particles

Particles formed during the quenching of gases at the outer edge of flames of organic vapours, consisting predominantly of carbon, with lesser amounts of oxygen and hydrogen present as carboxyl and phenolic groups and exhibiting an imperfect graphitic structure. See: →Black carbon; Charcoal. (Source: Charlson and Heintzenberg, 1995, p. 406.)

Source

Any process, activity or mechanism which releases a greenhouse gas, an aerosol or a precursor of a greenhouse gas or aerosol into the atmosphere.

Spatial and temporal scales

Climate may vary on a large range of spatial and temporal scales. Spatial scales may range from local (less than 100,000 km²), through regional (100,000 to 10 million km²) to continental (10 to 100 million km²). Temporal scales may range from seasonal to geological (up to hundreds of millions of years).

SRES scenarios

SRES scenarios are \rightarrow emission scenarios developed by Nakićenović *et al.* (2000) and used, among others, as a basis for the climate projections in Chapter 9 of this Report. The following terms are relevant for a better understanding of the structure and use of the set of SRES scenarios:

(Scenario) Family

Scenarios that have a similar demographic, societal, economic and technical-change storyline. Four scenario families comprise the SRES scenario set: A1, A2, B1 and B2.

(Scenario) Group

Scenarios within a family that reflect a consistent variation of the storyline. The A1 scenario family includes four groups designated as A1T, A1C, A1G and A1B that explore alternative structures of future energy systems. In the Summary for Policymakers of Nakićenović *et al.* (2000), the A1C and A1G groups have been combined into one 'Fossil Intensive' A1FI scenario group. The other three scenario families consist of one group each. The SRES scenario set reflected in the Summary for Policymakers of Nakićenović *et al.* (2000) thus consist of six distinct scenario groups, all of which are equally sound and together capture the range of uncertainties associated with driving forces and emissions.

Illustrative Scenario

A scenario that is illustrative for each of the six scenario groups reflected in the Summary for Policymakers of Nakićenović *et al.* (2000). They include four revised 'scenario markers' for the scenario groups A1B, A2, B1, B2, and two additional scenarios for the A1FI and A1T groups. All scenario groups are equally sound.

(Scenario) Marker

A scenario that was originally posted in draft form on the SRES website to represent a given scenario family. The choice of markers was based on which of the initial quantifications best

reflected the storyline, and the features of specific models. Markers are no more likely than other scenarios, but are considered by the SRES writing team as illustrative of a particular storyline. They are included in revised form in Nakićenović *et al.* (2000). These scenarios have received the closest scrutiny of the entire writing team and via the SRES open process. Scenarios have also been selected to illustrate the other two scenario groups (see also 'Scenario Group' and 'Illustrative Scenario').

(Scenario) Storyline

A narrative description of a scenario (or family of scenarios) highlighting the main scenario characteristics, relationships between key driving forces and the dynamics of their evolution.

Stock

See: →Reservoir.

Storm surge

The temporary increase, at a particular locality, in the height of the sea due to extreme meteorological conditions (low atmospheric pressure and/or strong winds). The storm surge is defined as being the excess above the level expected from the tidal variation alone at that time and place.

Stratosphere

The highly stratified region of the atmosphere above the →troposphere extending from about 10 km (ranging from 9 km in high latitudes to 16 km in the tropics on average) to about 50 km.

Sunspots

Small dark areas on the Sun. The number of sunspots is higher during periods of high →solar activity, and varies in particular with the →solar cycle.

Thermal expansion

In connection with sea level, this refers to the increase in volume (and decrease in density) that results from warming water. A warming of the ocean leads to an expansion of the ocean volume and hence an increase in sea level.

Thermohaline circulation

Large-scale density-driven circulation in the ocean, caused by differences in temperature and salinity. In the North Atlantic the thermohaline circulation consists of warm surface water flowing northward and cold deep water flowing southward, resulting in a net poleward transport of heat. The surface water sinks in highly restricted sinking regions located in high latitudes.

Tide gauge

A device at a coastal location (and some deep sea locations) which continuously measures the level of the sea with respect to the adjacent land. Time-averaging of the sea level so recorded gives the observed \rightarrow Relative Sea Level Secular Changes.

Transient climate response

The globally averaged surface air temperature increase, averaged over a 20 year period, centred at the time of CO₂ doubling, i.e., at

year 70 in a 1% per year compound CO_2 increase experiment with a global coupled \rightarrow climate model.

Tropopause

The boundary between the \rightarrow troposphere and the \rightarrow stratosphere.

Troposphere

The lowest part of the atmosphere from the surface to about 10 km in altitude in mid-latitudes (ranging from 9 km in high latitudes to 16 km in the tropics on average) where clouds and "weather" phenomena occur. In the troposphere temperatures generally decrease with height.

Turnover time

See: →Lifetime.

Uncertainty

An expression of the degree to which a value (e.g. the future state of the climate system) is unknown. Uncertainty can result from lack of information or from disagreement about what is known or even knowable. It may have many types of sources, from quantifiable errors in the data to ambiguously defined concepts or terminology, or uncertain projections of human behaviour. Uncertainty can therefore be represented by quantitative measures (e.g. a range of values calculated by various models) or by qualitative statements (e.g., reflecting the judgement of a team of experts). See Moss and Schneider (2000).

United Nations Framework Convention on Climate Change (UNFCC)

The Convention was adopted on 9 May 1992 in New York and signed at the 1992 Earth Summit in Rio de Janeiro by more than 150 countries and the European Community. Its ultimate objective is the "stabilisation of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system". It contains commitments for all Parties. Under the Convention, Parties included in Annex I aim to return greenhouse gas emissions not controlled by the Montreal Protocol to 1990 levels by the year 2000. The convention entered into force in March 1994. See: →Kyoto Protocol.

Uptake

The addition of a substance of concern to a \rightarrow reservoir. The uptake of carbon containing substances, in particular carbon dioxide, is often called (carbon) *sequestration*.

Volume mixing ratio

See: →Mole fraction.

Sources:

Charlson, R. J., and J. Heintzenberg (Eds.): *Aerosol Forcing of Climate*, pp. 91-108, copyright 1995 ©John Wiley and Sons Limited. Reproduced with permission.

IPCC, 1992: Climate Change 1992: *The Supplementary Report to the IPCC Scientific Assessment* [J. T. Houghton, B. A. Callander and S. K. Varney (eds.)]. Cambridge University Press, Cambridge, UK, xi + 116 pp.

- IPCC, 1994: Climate Change 1994: Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission Scenarios, [J. T. Houghton, L. G. Meira Filho, J. Bruce, Hoesung Lee, B. A. Callander, E. Haites, N. Harris and K. Maskell (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, 339 pp.
- IPCC, 1996: Climate Change 1995: The Science of Climate Change. Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change [J. T. Houghton., L.G. Meira Filho, B. A. Callander, N. Harris, A. Kattenberg, and K. Maskell (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 572 pp.
- IPCC, 1997a: IPCC Technical Paper 2: An introduction to simple climate models used in the IPCC Second Assessment Report, [J. T. Houghton, L.G. Meira Filho, D. J. Griggs and K. Maskell (eds.)]. 51 pp.
- IPCC, 1997b: Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories (3 volumes) [J. T. Houghton, L. G. Meira Filho, B. Lim, K. Tréanton, I. Mamaty, Y. Bonduki, D. J. Griggs and B. A. Callander (eds.)].
- IPCC, 1997c: IPCC technical Paper 4: Implications of proposed CO₂ emissions limitations. [J. T. Houghton, L.G. Meira Filho, D. J. Griggs and M Noguer (eds.)]. 41 pp.
- IPCC, 2000:Land Use, Land-Use Change, and Forestry. Special Report of the IPCC. [R.T. Watson, I.R. Noble, B. Bolin, N.H. Ravindranath and D. J. Verardo, D. J. Dokken, , (eds.)] Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 377 pp.
- **Maunder, W. John** , 1992: *Dictionary of Global Climate Change*, UCL Press Ltd.
- Moss, R. and S. Schneider, 2000: IPCC Supporting Material, pp. 33-51:Uncertainties in the IPCC TAR: Recommendations to Lead Authors for more consistent Assessment and Reporting, [R. Pachauri, T. Taniguchi and K. Tanaka (eds.)]
- Nakićenović, N., J. Alcamo, G. Davis, B. de Vries, J. Fenhann, S. Gaffin, K. Gregory, A. Grübler, T. Y. Jung, T. Kram, E. L. La Rovere, L. Michaelis, S. Mori, T. Morita, W. Pepper, H. Pitcher, L. Price, K. Raihi, A. Roehrl, H-H. Rogner, A. Sankovski, M. Schlesinger, P. Shukla, S. Smith, R. Swart, S. van Rooijen, N. Victor, Z. Dadi, 2000: Emissions Scenarios, A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 599 pp.
- Schwartz, S. E. and P. Warneck, 1995: Units for use in atmospheric chemistry, Pure & Appl. Chem., 67, pp. 1377-1406.

SRES Tables

Contents

Introductio	on	800	II.3.2	CH ₄ radiative forcing (Wm ⁻²)	818
			II.3.3	N ₂ O radiative forcing (Wm ⁻²)	818
	opogenic Emissions	801	II.3.4	PFCs, SF ₆ and HFCs radiative forcing	
II.1.1	CO ₂ emissions (PgC/yr)	801		(Wm^{-2})	819
II.1.2	CH ₄ emissions (Tg(CH ₄)/yr)	801	II.3.5	Tropospheric O ₃ radiative forcing (Wm ⁻²)	822
II.1.3	N ₂ O emissions (TgN/yr)	802	II.3.6	SO_4^{2-} aerosols (direct effect) radiative	0
II.1.4	PFCs, SF ₆ and HFCs emissions (Gg/yr)	802	11.5.0	forcing (Wm ⁻²)	822
II.1.5	NO _x emissions (TgN/yr)	805	II.3.7	BC aerosols radiative forcing (Wm ⁻²)	822
II.1.6	CO emissions (Tg(CO)/yr)	806	II.3.7 II.3.8	OC aerosols radiative forcing (Wm ⁻²)	822
II.1.7	VOC emissions (Tg/yr)	806	II.3.8 II.3.9	CFCs and HFCs following the Montreal	022
II.1.8	SO ₂ emissions (TgS/yr)	806	11.5.9	(1997) Amendments – radiative	
II.1.9	BC aerosols emissions (Tg/yr)	807		forcing (Wm ⁻²)	823
II.1.10	OC aerosols emissions (Tg/yr)	807	II 2 10	Radiative Forcing (Wm ⁻²) from fosil fuel	023
			II.3.10	plus biomass Organic and Black Carbon a	c
	lances and Burdens	807		used in the Chapter 9 Simple Model SRES	
II.2.1	CO ₂ abundances (ppm)	807		Projections	823
II.2.2	CH ₄ abundance (ppb)	809	II.3.11	Total Radiative Forcing (Wm ⁻²) from GH ₀	
II.2.3	N ₂ O abundance (ppb)	809	11.5.11	plus direct and indirect aerosol effects	823
II.2.4	PFCs, SF ₆ and HFCs abundances (ppt)	809		prus uncer and municer acrosor effects	023
II.2.5	Tropospheric O ₃ burden (global mean		II.4: Surfac	e Air Temperature Change (°C)	824
	column in DU)	814	110 10 2011000	orm remperature change (c)	o _ .
II.2.6	Tropospheric OH (as a factor relative to		II.5: Sea Le	vel Change (mm)	824
	year 2000)	814	II.5.1	Total sea level change (mm)	824
II.2.7	SO ₄ ^{2–} aerosols burden (TgS)	814	II.5.2	Sea level change due to thermal expansion	
II.2.8	BC aerosol burden (Tg)	815		(mm)	825
II.2.9	OC aerosol burden (Tg)	815	II.5.3	Sea level change due to glaciers and ice	
II.2.10	CFCs and HFCs abundances from WMO	98		caps (mm)	825
	Scenario A1 (baseline) following the		II.5.4	Sea level change due to Greenland (mm)	826
	Montreal (1997) Amendments (ppt)	816	II.5.5	Sea level change due to Antarctica (mm)	826
II.3: Radiat	tive Forcing (Wm ⁻²)	817	References		826
II 2 1	CO radiative forcing (Wm ⁻²)	217			

Introduction

Appendix II gives, in tabulated form, the values for emissions, abundances and burdens, and, radiative forcing of major greenhouse gases and aerosols based on the SRES¹ scenarios (Nakićenović *et. al.*, 2000). The Appendix also presents global projections of changes in surface air temperature and sea level using these SRES emission scenarios.

The emission values are only anthropogenic emissions and are the ones published in Appendix VII of the SRES Report. Apart from the CO₂ emissions, for which deforestation and land use values are given in the SRES Report, the SRES scenarios for the rest of the gases define only the changes in direct anthropogenic emissions and do not specify the current magnitude of the natural emissions nor the concurrent changes in natural emissions due either to direct human activities such as land-use change or to the indirect impacts of climate change. Emissions for black carbon (BC) aerosols and organic matter carbonaceous (OC) aerosols species not covered in the SRES Report, are calculated by scaling to the SRES anthropogenic CO emissions.

The abundances and burdens for each of the species are calculated with the latest climate chemistry and climate carbon models (see Chapters 3, 4 and 5 for details).

The radiative forcings due to well-mixed greenhouse gases are computed using each of the simplified expressions given in Chapter 6, Table 6.2. The radiative forcings associated with future tropospheric O_3 increase are calculated on the basis of the O_3 changes presented in Chapter 4 for the various SRES scenarios. The mean forcing per DU estimated from the various models, and given in Chapter 6, Table 6.3 (i.e., $0.042 \, \text{Wm}^{-2}/\text{DU}$), is used to derive these future forcings. For each aerosol species, the ratio of the column burdens for the particular scenario to that of the year 2000 is multiplied by the "best estimate" of the present day radiative forcing (see Chapter 6 for more details). The radiative forcings for all the species have been calculated since pre-industrial time.

The global mean surface air temperature and sea level projections, based on the SRES scenarios, have been calculated using Simple Climate models which have been "tuned" to get similar responses to the AOGCMs in the global mean (see Chapters 9 and 11 for details).

The results presented are global mean values, every ten years from 2000 to 2100, for a range of scenarios. These scenarios are the final approved Illustrative Marker Scenarios (A1B, A1T, A1FI, A2, B1, and B2); the preliminary marker scenarios (A1p, A2p, B1p, B2p, approved by the IPCC Bureau in June 1998) and, for comparison and for some species, results based on a previous scenario used by IPCC (IS92a) have also been added. For some gases, the values tabulated in the IPCC Second Assessment Report (IPCC, 1996; hereafter SAR), for that IS92a scenario using the previous generation of chemistry and climate models, are also given.

Main Chemical Symbols used in this Appendix:

 CO_2 carbon dioxide O_3 ozone methane CH_4 OH hydroxyl CFC chlorofluorocarbon **PFC** perfluorocarbon CO carbon monoxide SO_2 sulphur dioxide **HFC** hydrofluorocarbon SO_4^{2-} sulphate ion N_2O nitrous oxide SF_6 sulphur hexafluoride NO_x the sum of NO (nitric oxide) and NO₂ (nitrogen dioxide) VOC volatile organic compound

¹ IPCC Special Report on Emission Scenarios (Nakićenović *et. al.*, 2000), herafter SRES.

II.1: Anthropogenic Emissions

II.1.1: CO₂ emissions (PgC/yr)

II.I. CO ₂ chiassions (1 gC/y1)											
CO ₂ emi	issions fr	om fossil	fuel and i	ndustrial	processes	(PgC/yr)					
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
2000	6.90	6.90	6.90	6.90	6.90	6.90	6.8	6.8	6.8	6.8	7.1
2010	9.68	8.33	8.65	8.46	8.50	7.99	9.7	8.4	7.7	7.9	8.68
2020	12.12	10.00	11.19	11.01	10.00	9.02	12.2	10.9	8.3	8.9	10.26
2030	14.01	12.26	14.61	13.53	11.20	10.15	14.2	13.3	8.4	10.0	11.62
2040	14.95	12.60	18.66	15.01	12.20	10.93	15.2	14.7	9.1	10.8	12.66
2050	16.01	12.29	23.10	16.49	11.70	11.23	16.2	16.4	9.8	11.1	13.7
2060	15.70	11.41	25.14	18.49	10.20	11.74	15.9	18.2	10.4	11.6	14.68
2070	15.43	9.91	27.12	20.49	8.60	11.87	15.6	20.2	10.4	11.8	15.66
2080	14.83	8.05	29.04	22.97	7.30	12.46	15.0	22.7	8.7	12.4	17.0
2090	13.94	6.27	29.64	25.94	6.10	13.20	14.1	25.6	7.5	13.1	18.7
2100	13.10	4.31	30.32	28.91	5.20	13.82	13.2	28.8	6.5	13.7	20.4
2100	13.10	4.31	30.32	26.91	3.20	13.82	13.2	20.0	0.3	15.7	20.4
CO ₂ emi	issions fr	om defore	estation ar	nd land us	se (PgC/yı	•)					
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
2000	1.07	1.07	1.07	1.07	1.07	1.07	1.6	1.6	1.6	1.6	1.3
2010	1.20	1.04	1.08	1.12	0.78	0.80	1.5	1.6	0.8	1.8	1.22
2020	0.52	0.26	1.55	1.25	0.63	0.03	1.6	1.7	1.3	1.6	1.14
2030	0.47	0.12	1.57	1.19	-0.09	-0.25	0.7	1.5	0.7	0.3	1.04
2040	0.40	0.05	1.31	1.06	-0.48	-0.24	0.3	1.3	0.6	0.0	0.92
2050	0.37	-0.02	0.80	0.93	-0.41	-0.23	-0.2	1.2	0.5	-0.3	0.8
2060	0.30	-0.03	0.55	0.67	-0.46	-0.24	-0.3	0.7	0.7	-0.2	0.54
2070	0.30	-0.03	0.16	0.40	-0.42	-0.25	-0.3	0.4	0.8	-0.2	0.28
2080	0.35	-0.03	-0.36	0.25	-0.60	-0.31	-0.4	0.3	1.0	-0.2	0.12
2090	0.36	-0.01	-1.22	0.21	-0.78	-0.41	-0.5	0.2	1.2	-0.2	0.06
2100	0.39	0.00	-2.08	0.18	-0.97	-0.50	-0.6	0.2	1.4	-0.2	-0.1
CO	·	4.4.1 (D.(7/)								
CO_2 em	issions –	total (PgC	/уг)								1000
Voor	A 1 D	A 1T	A 1 ET	A 2	D1	DΥ	A 1 m	A 2n	D15	D7m	
Year 2000	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
2000	7.97	7.97	7.97	7.97	7.97	7.97	8.4	8.4	8.4	8.4	8.4
2000 2010	7.97 10.88	7.97 9.38	7.97 9.73	7.97 9.58	7.97 9.28	7.97 8.78	8.4 11.2	8.4 10.0	8.4 8.5	8.4 9.7	8.4 9.9
2000 2010 2020	7.97 10.88 12.64	7.97 9.38 10.26	7.97 9.73 12.73	7.97 9.58 12.25	7.97 9.28 10.63	7.97 8.78 9.05	8.4 11.2 13.8	8.4 10.0 12.6	8.4 8.5 9.6	8.4 9.7 10.5	8.4 9.9 11.4
2000 2010 2020 2030	7.97 10.88 12.64 14.48	7.97 9.38 10.26 12.38	7.97 9.73 12.73 16.19	7.97 9.58 12.25 14.72	7.97 9.28 10.63 11.11	7.97 8.78 9.05 9.90	8.4 11.2 13.8 14.9	8.4 10.0 12.6 14.8	8.4 8.5 9.6 9.1	8.4 9.7 10.5 10.3	8.4 9.9 11.4 12.66
2000 2010 2020 2030 2040	7.97 10.88 12.64 14.48 15.35	7.97 9.38 10.26 12.38 12.65	7.97 9.73 12.73 16.19 19.97	7.97 9.58 12.25 14.72 16.07	7.97 9.28 10.63 11.11 11.72	7.97 8.78 9.05 9.90 10.69	8.4 11.2 13.8 14.9 15.5	8.4 10.0 12.6 14.8 16.0	8.4 8.5 9.6 9.1 9.7	8.4 9.7 10.5 10.3 10.8	8.4 9.9 11.4 12.66 13.58
2000 2010 2020 2030 2040 2050	7.97 10.88 12.64 14.48 15.35 16.38	7.97 9.38 10.26 12.38 12.65 12.26	7.97 9.73 12.73 16.19 19.97 23.90	7.97 9.58 12.25 14.72 16.07 17.43	7.97 9.28 10.63 11.11 11.72 11.29	7.97 8.78 9.05 9.90 10.69 11.01	8.4 11.2 13.8 14.9 15.5 16.0	8.4 10.0 12.6 14.8 16.0 17.6	8.4 8.5 9.6 9.1 9.7 10.3	8.4 9.7 10.5 10.3 10.8	8.4 9.9 11.4 12.66 13.58 14.5
2000 2010 2020 2030 2040 2050 2060	7.97 10.88 12.64 14.48 15.35 16.38 16.00	7.97 9.38 10.26 12.38 12.65 12.26 11.38	7.97 9.73 12.73 16.19 19.97 23.90 25.69	7.97 9.58 12.25 14.72 16.07 17.43 19.16	7.97 9.28 10.63 11.11 11.72 11.29 9.74	7.97 8.78 9.05 9.90 10.69 11.01 11.49	8.4 11.2 13.8 14.9 15.5 16.0 15.6	8.4 10.0 12.6 14.8 16.0 17.6 18.9	8.4 8.5 9.6 9.1 9.7 10.3 11.1	8.4 9.7 10.5 10.3 10.8 10.8 11.4	8.4 9.9 11.4 12.66 13.58 14.5 15.22
2000 2010 2020 2030 2040 2050 2060 2070	7.97 10.88 12.64 14.48 15.35 16.38 16.00 15.73	7.97 9.38 10.26 12.38 12.65 12.26 11.38 9.87	7.97 9.73 12.73 16.19 19.97 23.90 25.69 27.28	7.97 9.58 12.25 14.72 16.07 17.43 19.16 20.89	7.97 9.28 10.63 11.11 11.72 11.29 9.74 8.18	7.97 8.78 9.05 9.90 10.69 11.01 11.49 11.62	8.4 11.2 13.8 14.9 15.5 16.0 15.6 15.3	8.4 10.0 12.6 14.8 16.0 17.6 18.9 20.6	8.4 8.5 9.6 9.1 9.7 10.3 11.1 10.9	8.4 9.7 10.5 10.3 10.8 10.8 11.4 11.6	8.4 9.9 11.4 12.66 13.58 14.5 15.22 15.94
2000 2010 2020 2030 2040 2050 2060 2070 2080	7.97 10.88 12.64 14.48 15.35 16.38 16.00 15.73 15.18	7.97 9.38 10.26 12.38 12.65 12.26 11.38 9.87 8.02	7.97 9.73 12.73 16.19 19.97 23.90 25.69 27.28 28.68	7.97 9.58 12.25 14.72 16.07 17.43 19.16 20.89 23.22	7.97 9.28 10.63 11.11 11.72 11.29 9.74 8.18 6.70	7.97 8.78 9.05 9.90 10.69 11.01 11.49 11.62 12.15	8.4 11.2 13.8 14.9 15.5 16.0 15.6 15.3 14.6	8.4 10.0 12.6 14.8 16.0 17.6 18.9 20.6 23.0	8.4 8.5 9.6 9.1 9.7 10.3 11.1 10.9 9.7	8.4 9.7 10.5 10.3 10.8 10.8 11.4 11.6 12.2	8.4 9.9 11.4 12.66 13.58 14.5 15.22 15.94 17.12
2000 2010 2020 2030 2040 2050 2060 2070 2080 2090	7.97 10.88 12.64 14.48 15.35 16.38 16.00 15.73 15.18 14.30	7.97 9.38 10.26 12.38 12.65 12.26 11.38 9.87 8.02 6.26	7.97 9.73 12.73 16.19 19.97 23.90 25.69 27.28 28.68 28.42	7.97 9.58 12.25 14.72 16.07 17.43 19.16 20.89 23.22 26.15	7.97 9.28 10.63 11.11 11.72 11.29 9.74 8.18 6.70 5.32	7.97 8.78 9.05 9.90 10.69 11.01 11.49 11.62 12.15 12.79	8.4 11.2 13.8 14.9 15.5 16.0 15.6 15.3 14.6 13.6	8.4 10.0 12.6 14.8 16.0 17.6 18.9 20.6 23.0 25.8	8.4 8.5 9.6 9.1 9.7 10.3 11.1 10.9 9.7 8.7	8.4 9.7 10.5 10.3 10.8 10.8 11.4 11.6 12.2 12.9	8.4 9.9 11.4 12.66 13.58 14.5 15.22 15.94 17.12 18.76
2000 2010 2020 2030 2040 2050 2060 2070 2080	7.97 10.88 12.64 14.48 15.35 16.38 16.00 15.73 15.18	7.97 9.38 10.26 12.38 12.65 12.26 11.38 9.87 8.02	7.97 9.73 12.73 16.19 19.97 23.90 25.69 27.28 28.68	7.97 9.58 12.25 14.72 16.07 17.43 19.16 20.89 23.22	7.97 9.28 10.63 11.11 11.72 11.29 9.74 8.18 6.70	7.97 8.78 9.05 9.90 10.69 11.01 11.49 11.62 12.15	8.4 11.2 13.8 14.9 15.5 16.0 15.6 15.3 14.6	8.4 10.0 12.6 14.8 16.0 17.6 18.9 20.6 23.0	8.4 8.5 9.6 9.1 9.7 10.3 11.1 10.9 9.7	8.4 9.7 10.5 10.3 10.8 10.8 11.4 11.6 12.2	8.4 9.9 11.4 12.66 13.58 14.5 15.22 15.94 17.12
2000 2010 2020 2030 2040 2050 2060 2070 2080 2090	7.97 10.88 12.64 14.48 15.35 16.38 16.00 15.73 15.18 14.30	7.97 9.38 10.26 12.38 12.65 12.26 11.38 9.87 8.02 6.26	7.97 9.73 12.73 16.19 19.97 23.90 25.69 27.28 28.68 28.42	7.97 9.58 12.25 14.72 16.07 17.43 19.16 20.89 23.22 26.15	7.97 9.28 10.63 11.11 11.72 11.29 9.74 8.18 6.70 5.32	7.97 8.78 9.05 9.90 10.69 11.01 11.49 11.62 12.15 12.79	8.4 11.2 13.8 14.9 15.5 16.0 15.6 15.3 14.6 13.6	8.4 10.0 12.6 14.8 16.0 17.6 18.9 20.6 23.0 25.8	8.4 8.5 9.6 9.1 9.7 10.3 11.1 10.9 9.7 8.7	8.4 9.7 10.5 10.3 10.8 10.8 11.4 11.6 12.2 12.9	8.4 9.9 11.4 12.66 13.58 14.5 15.22 15.94 17.12 18.76
2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100	7.97 10.88 12.64 14.48 15.35 16.38 16.00 15.73 15.18 14.30 13.49	7.97 9.38 10.26 12.38 12.65 12.26 11.38 9.87 8.02 6.26	7.97 9.73 12.73 16.19 19.97 23.90 25.69 27.28 28.68 28.42 28.24	7.97 9.58 12.25 14.72 16.07 17.43 19.16 20.89 23.22 26.15	7.97 9.28 10.63 11.11 11.72 11.29 9.74 8.18 6.70 5.32	7.97 8.78 9.05 9.90 10.69 11.01 11.49 11.62 12.15 12.79	8.4 11.2 13.8 14.9 15.5 16.0 15.6 15.3 14.6 13.6	8.4 10.0 12.6 14.8 16.0 17.6 18.9 20.6 23.0 25.8	8.4 8.5 9.6 9.1 9.7 10.3 11.1 10.9 9.7 8.7	8.4 9.7 10.5 10.3 10.8 10.8 11.4 11.6 12.2 12.9	8.4 9.9 11.4 12.66 13.58 14.5 15.22 15.94 17.12 18.76
2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100	7.97 10.88 12.64 14.48 15.35 16.38 16.00 15.73 15.18 14.30 13.49	7.97 9.38 10.26 12.38 12.65 12.26 11.38 9.87 8.02 6.26 4.32	7.97 9.73 12.73 16.19 19.97 23.90 25.69 27.28 28.68 28.42 28.24 CH ₄)/yr)	7.97 9.58 12.25 14.72 16.07 17.43 19.16 20.89 23.22 26.15 29.09	7.97 9.28 10.63 11.11 11.72 11.29 9.74 8.18 6.70 5.32 4.23	7.97 8.78 9.05 9.90 10.69 11.01 11.49 11.62 12.15 12.79 13.32	8.4 11.2 13.8 14.9 15.5 16.0 15.6 15.3 14.6 13.6	8.4 10.0 12.6 14.8 16.0 17.6 18.9 20.6 23.0 25.8 29.0	8.4 8.5 9.6 9.1 9.7 10.3 11.1 10.9 9.7 8.7 7.9	8.4 9.7 10.5 10.3 10.8 10.8 11.4 11.6 12.2 12.9 13.5	8.4 9.9 11.4 12.66 13.58 14.5 15.22 15.94 17.12 18.76 20.3
2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HI.1.2: C	7.97 10.88 12.64 14.48 15.35 16.38 16.00 15.73 15.18 14.30 13.49 EH ₄ emiss	7.97 9.38 10.26 12.38 12.65 12.26 11.38 9.87 8.02 6.26 4.32 ions (Tg(7.97 9.73 12.73 16.19 19.97 23.90 25.69 27.28 28.68 28.42 28.24 CH ₄)/yr)	7.97 9.58 12.25 14.72 16.07 17.43 19.16 20.89 23.22 26.15 29.09	7.97 9.28 10.63 11.11 11.72 11.29 9.74 8.18 6.70 5.32 4.23	7.97 8.78 9.05 9.90 10.69 11.01 11.49 11.62 12.15 12.79 13.32	8.4 11.2 13.8 14.9 15.5 16.0 15.6 15.3 14.6 13.6 12.6	8.4 10.0 12.6 14.8 16.0 17.6 18.9 20.6 23.0 25.8 29.0	8.4 8.5 9.6 9.1 9.7 10.3 11.1 10.9 9.7 8.7 7.9	8.4 9.7 10.5 10.3 10.8 11.4 11.6 12.2 12.9 13.5	8.4 9.9 11.4 12.66 13.58 14.5 15.22 15.94 17.12 18.76 20.3
2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 H.1.2: C	7.97 10.88 12.64 14.48 15.35 16.38 16.00 15.73 15.18 14.30 13.49 EH ₄ emiss	7.97 9.38 10.26 12.38 12.65 12.26 11.38 9.87 8.02 6.26 4.32 ions (Tg(7.97 9.73 12.73 16.19 19.97 23.90 25.69 27.28 28.68 28.42 28.24 CH ₄)/yr) A1FI 323	7.97 9.58 12.25 14.72 16.07 17.43 19.16 20.89 23.22 26.15 29.09	7.97 9.28 10.63 11.11 11.72 11.29 9.74 8.18 6.70 5.32 4.23	7.97 8.78 9.05 9.90 10.69 11.01 11.49 11.62 12.15 12.79 13.32	8.4 11.2 13.8 14.9 15.5 16.0 15.6 15.3 14.6 12.6	8.4 10.0 12.6 14.8 16.0 17.6 18.9 20.6 23.0 25.8 29.0	8.4 8.5 9.6 9.1 9.7 10.3 11.1 10.9 9.7 8.7 7.9	8.4 9.7 10.5 10.3 10.8 11.4 11.6 12.2 12.9 13.5	8.4 9.9 11.4 12.66 13.58 14.5 15.22 15.94 17.12 18.76 20.3
2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 H.1.2: C	7.97 10.88 12.64 14.48 15.35 16.38 16.00 15.73 15.18 14.30 13.49 EH ₄ emiss A1B 323 373	7.97 9.38 10.26 12.38 12.65 12.26 11.38 9.87 8.02 6.26 4.32 ions (Tg(7.97 9.73 12.73 16.19 19.97 23.90 25.69 27.28 28.68 28.42 28.24 CH ₄)/yr) A1FI 323 359	7.97 9.58 12.25 14.72 16.07 17.43 19.16 20.89 23.22 26.15 29.09 A2 323 370	7.97 9.28 10.63 11.11 11.72 11.29 9.74 8.18 6.70 5.32 4.23	7.97 8.78 9.05 9.90 10.69 11.01 11.49 11.62 12.15 12.79 13.32 B2 323 349	8.4 11.2 13.8 14.9 15.5 16.0 15.6 15.3 14.6 12.6	8.4 10.0 12.6 14.8 16.0 17.6 18.9 20.6 23.0 25.8 29.0 A2p 347 394	8.4 8.5 9.6 9.1 9.7 10.3 11.1 10.9 9.7 8.7 7.9	8.4 9.7 10.5 10.3 10.8 11.4 11.6 12.2 12.9 13.5 B2p 347 389	8.4 9.9 11.4 12.66 13.58 14.5 15.22 15.94 17.12 18.76 20.3
2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 Year 2000 2010 2020	7.97 10.88 12.64 14.48 15.35 16.38 16.00 15.73 15.18 14.30 13.49 EH ₄ emiss A1B 323 373 421	7.97 9.38 10.26 12.38 12.65 12.26 11.38 9.87 8.02 6.26 4.32 ions (Tg(7.97 9.73 12.73 16.19 19.97 23.90 25.69 27.28 28.68 28.42 28.24 CH ₄)/yr) A1FI 323 359 416	7.97 9.58 12.25 14.72 16.07 17.43 19.16 20.89 23.22 26.15 29.09 A2 323 370 424	7.97 9.28 10.63 11.11 11.72 11.29 9.74 8.18 6.70 5.32 4.23	7.97 8.78 9.05 9.90 10.69 11.01 11.49 11.62 12.15 12.79 13.32 B2 323 349 384	8.4 11.2 13.8 14.9 15.5 16.0 15.6 15.3 14.6 13.6 12.6	8.4 10.0 12.6 14.8 16.0 17.6 18.9 20.6 23.0 25.8 29.0 A2p 347 394 448	8.4 8.5 9.6 9.1 9.7 10.3 11.1 10.9 9.7 8.7 7.9	8.4 9.7 10.5 10.3 10.8 11.4 11.6 12.2 12.9 13.5 B2p 347 389 448	8.4 9.9 11.4 12.66 13.58 14.5 15.22 15.94 17.12 18.76 20.3 IS92a 390 433 477
2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 Year 2000 2010 2020 2030	7.97 10.88 12.64 14.48 15.35 16.38 16.00 15.73 15.18 14.30 13.49 EH ₄ emiss A1B 323 373 421 466	7.97 9.38 10.26 12.38 12.65 12.26 11.38 9.87 8.02 6.26 4.32 ions (Tg(0))	7.97 9.73 12.73 16.19 19.97 23.90 25.69 27.28 28.68 28.42 28.24 CH ₄)/yr) A1FI 323 359 416 489	7.97 9.58 12.25 14.72 16.07 17.43 19.16 20.89 23.22 26.15 29.09 A2 323 370 424 486	7.97 9.28 10.63 11.11 11.72 11.29 9.74 8.18 6.70 5.32 4.23 B1 323 349 377 385	7.97 8.78 9.05 9.90 10.69 11.01 11.49 11.62 12.15 12.79 13.32 B2 323 349 384 426	8.4 11.2 13.8 14.9 15.5 16.0 15.6 15.3 14.6 13.6 12.6 Alp 347 417 484 547	8.4 10.0 12.6 14.8 16.0 17.6 18.9 20.6 23.0 25.8 29.0 A2p 347 394 448 506	8.4 8.5 9.6 9.1 9.7 10.3 11.1 10.9 9.7 8.7 7.9 B1p 347 367 396 403	8.4 9.7 10.5 10.3 10.8 11.4 11.6 12.2 12.9 13.5 B2p 347 389 448 501	8.4 9.9 11.4 12.66 13.58 14.5 15.22 15.94 17.12 18.76 20.3 IS92a 390 433 477 529
2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 Year 2000 2010 2020 2030 2040	7.97 10.88 12.64 14.48 15.35 16.38 16.00 15.73 15.18 14.30 13.49 EH ₄ emiss A1B 323 373 421 466 458	7.97 9.38 10.26 12.38 12.65 12.26 11.38 9.87 8.02 6.26 4.32 ions (Tg(C) A1T 323 362 415 483 495	7.97 9.73 12.73 16.19 19.97 23.90 25.69 27.28 28.68 28.42 28.24 CH ₄)/yr) A1FI 323 359 416 489 567	7.97 9.58 12.25 14.72 16.07 17.43 19.16 20.89 23.22 26.15 29.09 A2 323 370 424 486 542	7.97 9.28 10.63 11.11 11.72 11.29 9.74 8.18 6.70 5.32 4.23 B1 323 349 377 385 381	7.97 8.78 9.05 9.90 10.69 11.01 11.49 11.62 12.15 12.79 13.32 B2 323 349 384 426 466	8.4 11.2 13.8 14.9 15.5 16.0 15.6 15.3 14.6 13.6 12.6 Alp 347 417 484 547 531	8.4 10.0 12.6 14.8 16.0 17.6 18.9 20.6 23.0 25.8 29.0 A2p 347 394 448 506 560	8.4 8.5 9.6 9.1 9.7 10.3 11.1 10.9 9.7 8.7 7.9 B1p 347 367 396 403 423	8.4 9.7 10.5 10.3 10.8 11.4 11.6 12.2 12.9 13.5 B2p 347 389 448 501 528	8.4 9.9 11.4 12.66 13.58 14.5 15.22 15.94 17.12 18.76 20.3 IS92a 390 433 477 529 580
2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 Year 2000 2010 2020 2030 2040 2050	7.97 10.88 12.64 14.48 15.35 16.38 16.00 15.73 15.18 14.30 13.49 EH ₄ emiss A1B 323 373 421 466 458 452	7.97 9.38 10.26 12.38 12.65 12.26 11.38 9.87 8.02 6.26 4.32 ions (Tg(C) A1T 323 362 415 483 495 500	7.97 9.73 12.73 16.19 19.97 23.90 25.69 27.28 28.68 28.42 28.24 CH ₄)/yr) A1FI 323 359 416 489 567 630	7.97 9.58 12.25 14.72 16.07 17.43 19.16 20.89 23.22 26.15 29.09 A2 323 370 424 486 542 598	7.97 9.28 10.63 11.11 11.72 11.29 9.74 8.18 6.70 5.32 4.23 B1 323 349 377 385 381 359	7.97 8.78 9.05 9.90 10.69 11.01 11.49 11.62 12.15 12.79 13.32 B2 323 349 384 426 466 504	8.4 11.2 13.8 14.9 15.5 16.0 15.6 15.3 14.6 13.6 12.6 Alp 347 417 484 547 531 514	8.4 10.0 12.6 14.8 16.0 17.6 18.9 20.6 23.0 25.8 29.0 A2p 347 394 448 506 560 621	8.4 8.5 9.6 9.1 9.7 10.3 11.1 10.9 9.7 8.7 7.9 B1p 347 367 396 403 423 444	8.4 9.7 10.5 10.3 10.8 11.4 11.6 12.2 12.9 13.5 B2p 347 389 448 501 528 538	8.4 9.9 11.4 12.66 13.58 14.5 15.22 15.94 17.12 18.76 20.3 IS92a 390 433 477 529 580 630
2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 H.1.2: C Year 2000 2010 2020 2030 2040 2050 2050 2050 2050	7.97 10.88 12.64 14.48 15.35 16.38 16.00 15.73 15.18 14.30 13.49 EH ₄ emiss 323 373 421 466 458 452 410	7.97 9.38 10.26 12.38 12.65 12.26 11.38 9.87 8.02 6.26 4.32 ions (Tg() A1T 323 362 415 483 495 500 459	7.97 9.73 12.73 16.19 19.97 23.90 25.69 27.28 28.68 28.42 28.24 CH ₄)/yr) A1FI 323 359 416 489 567 630 655	7.97 9.58 12.25 14.72 16.07 17.43 19.16 20.89 23.22 26.15 29.09 A2 323 370 424 486 542 598 654	7.97 9.28 10.63 11.11 11.72 11.29 9.74 8.18 6.70 5.32 4.23 B1 323 349 377 385 381 359 342	7.97 8.78 9.05 9.90 10.69 11.01 11.49 11.62 12.15 12.79 13.32 B2 323 349 384 426 466 504 522	8.4 11.2 13.8 14.9 15.5 16.0 15.6 15.3 14.6 13.6 12.6 Alp 347 417 484 547 531 514 464	8.4 10.0 12.6 14.8 16.0 17.6 18.9 20.6 23.0 25.8 29.0 A2p 347 394 448 506 560 621 674	8.4 8.5 9.6 9.1 9.7 10.3 11.1 10.9 9.7 8.7 7.9 B1p 347 367 396 403 423 444 445	8.4 9.7 10.5 10.3 10.8 11.4 11.6 12.2 12.9 13.5 B2p 347 389 448 501 528 538 544	8.4 9.9 11.4 12.66 13.58 14.5 15.22 15.94 17.12 18.76 20.3 IS92a 390 433 477 529 580 630 654
2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 Year 2000 2010 2020 2030 2040 2050 2060 2070	7.97 10.88 12.64 14.48 15.35 16.38 16.00 15.73 15.18 14.30 13.49 2H ₄ emiss 421 466 458 452 410 373	7.97 9.38 10.26 12.38 12.65 12.26 11.38 9.87 8.02 6.26 4.32 ions (Tg() A1T 323 362 415 483 495 500 459 404	7.97 9.73 12.73 16.19 19.97 23.90 25.69 27.28 28.68 28.42 28.24 CH ₄)/yr) A1FI 323 359 416 489 567 630 655 677	7.97 9.58 12.25 14.72 16.07 17.43 19.16 20.89 23.22 26.15 29.09 A2 323 370 424 486 542 598 654 711	7.97 9.28 10.63 11.11 11.72 11.29 9.74 8.18 6.70 5.32 4.23 B1 323 349 377 385 381 359 342 324	7.97 8.78 9.05 9.90 10.69 11.01 11.49 11.62 12.15 12.79 13.32 B2 323 349 384 426 466 504 522 544	8.4 11.2 13.8 14.9 15.5 16.0 15.6 15.3 14.6 13.6 12.6 Alp 347 417 484 547 531 514 464 413	8.4 10.0 12.6 14.8 16.0 17.6 18.9 20.6 23.0 25.8 29.0 A2p 347 394 448 506 560 621 674 732	8.4 8.5 9.6 9.1 9.7 10.3 11.1 10.9 9.7 8.7 7.9 B1p 347 367 396 403 423 444 445 446	8.4 9.7 10.5 10.3 10.8 11.4 11.6 12.2 12.9 13.5 B2p 347 389 448 501 528 538 544 542	8.4 9.9 11.4 12.66 13.58 14.5 15.22 15.94 17.12 18.76 20.3 IS92a 390 433 477 529 580 630 654 678
2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 H.1.2: C Year 2000 2010 2020 2030 2040 2050 2060 2070 2080	7.97 10.88 12.64 14.48 15.35 16.38 16.00 15.73 15.18 14.30 13.49 EH ₄ emiss A1B 323 373 421 466 458 452 410 373 341	7.97 9.38 10.26 12.38 12.65 12.26 11.38 9.87 8.02 6.26 4.32 ions (Tg() A1T 323 362 415 483 495 500 459 404 359	7.97 9.73 12.73 16.19 19.97 23.90 25.69 27.28 28.68 28.42 28.24 CH ₄)/yr) A1FI 323 359 416 489 567 630 655 677 695	7.97 9.58 12.25 14.72 16.07 17.43 19.16 20.89 23.22 26.15 29.09 A2 323 370 424 486 542 598 654 711 770	7.97 9.28 10.63 11.11 11.72 11.29 9.74 8.18 6.70 5.32 4.23 B1 323 349 377 385 381 359 342 324 293	7.97 8.78 9.05 9.90 10.69 11.01 11.49 11.62 12.15 12.79 13.32 B2 323 349 384 426 466 504 522 544 566	8.4 11.2 13.8 14.9 15.5 16.0 15.6 15.3 14.6 13.6 12.6 Alp 347 417 484 547 531 514 464 413 370	8.4 10.0 12.6 14.8 16.0 17.6 18.9 20.6 23.0 25.8 29.0 A2p 347 394 448 506 560 621 674 732 790	8.4 8.5 9.6 9.1 9.7 10.3 11.1 10.9 9.7 8.7 7.9 B1p 347 367 396 403 423 444 445 446 447	8.4 9.7 10.5 10.3 10.8 11.4 11.6 12.2 12.9 13.5 B2p 347 389 448 501 528 538 544 542 529	8.4 9.9 11.4 12.66 13.58 14.5 15.22 15.94 17.12 18.76 20.3 IS92a 390 433 477 529 580 630 654 678 704
2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 Year 2000 2010 2020 2030 2040 2050 2060 2070	7.97 10.88 12.64 14.48 15.35 16.38 16.00 15.73 15.18 14.30 13.49 2H ₄ emiss A1B 323 373 421 466 458 452 410 373	7.97 9.38 10.26 12.38 12.65 12.26 11.38 9.87 8.02 6.26 4.32 ions (Tg() A1T 323 362 415 483 495 500 459 404	7.97 9.73 12.73 16.19 19.97 23.90 25.69 27.28 28.68 28.42 28.24 CH ₄)/yr) A1FI 323 359 416 489 567 630 655 677	7.97 9.58 12.25 14.72 16.07 17.43 19.16 20.89 23.22 26.15 29.09 A2 323 370 424 486 542 598 654 711	7.97 9.28 10.63 11.11 11.72 11.29 9.74 8.18 6.70 5.32 4.23 B1 323 349 377 385 381 359 342 324	7.97 8.78 9.05 9.90 10.69 11.01 11.49 11.62 12.15 12.79 13.32 B2 323 349 384 426 466 504 522 544	8.4 11.2 13.8 14.9 15.5 16.0 15.6 15.3 14.6 13.6 12.6 Alp 347 417 484 547 531 514 464 413	8.4 10.0 12.6 14.8 16.0 17.6 18.9 20.6 23.0 25.8 29.0 A2p 347 394 448 506 560 621 674 732	8.4 8.5 9.6 9.1 9.7 10.3 11.1 10.9 9.7 8.7 7.9 B1p 347 367 396 403 423 444 445 446	8.4 9.7 10.5 10.3 10.8 11.4 11.6 12.2 12.9 13.5 B2p 347 389 448 501 528 538 544 542	8.4 9.9 11.4 12.66 13.58 14.5 15.22 15.94 17.12 18.76 20.3 IS92a 390 433 477 529 580 630 654 678

II.1.3: N₂O emissions (TgN/yr)

Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
2000	7.0	7.0	7.0	7.0	7.0	7.0	6.9	6.9	6.9	6.9	5.5
2010	7.0	6.1	8.0	8.1	7.5	6.2	7.3	7.9	7.4	7.1	6.2
2020	7.2	6.1	9.3	9.6	8.1	6.1	7.7	9.4	8.1	7.1	7.1
2030	7.3	6.2	10.9	10.7	8.2	6.1	7.5	10.5	8.3	6.7	7.7
2040	7.4	6.2	12.8	11.3	8.3	6.2	7.1	11.1	8.6	6.4	8.0
2050	7.4	6.1	14.5	12.0	8.3	6.3	6.8	11.8	8.9	6.0	8.3
2060	7.3	6.0	15.0	12.9	7.7	6.4	6.3	12.7	8.8	5.8	8.3
2070	7.2	5.7	15.4	13.9	7.4	6.6	5.9	13.7	8.7	5.5	8.4
2080	7.1	5.6	15.7	14.8	7.0	6.7	5.5	14.6	8.6	5.4	8.5
2090	7.1	5.5	16.1	15.7	6.4	6.8	5.2	15.5	8.3	5.2	8.6
2100	7.0	5.4	16.6	16.5	5.7	6.9	4.9	16.4	8.0	5.1	8.7

II.1.4: PFCs, SF₆ and HFCs emissions (Gg/yr)

CF ₄	emissions	(Gg/vr)
$\mathbf{Cr_4}$	emissions	((42/1)

Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p
2000	12.6	12.6	12.6	12.6	12.6	12.6	26.7	26.7	26.7	26.7
2010	15.3	15.3	15.3	20.3	14.5	21.0	28.4	28.9	27.0	29.9
2020	21.1	21.1	21.1	25.2	15.7	27.1	41.0	35.2	29.6	37.7
2030	30.1	30.1	30.1	31.4	16.6	34.6	59.4	43.0	31.4	47.4
2040	38.2	38.2	38.2	37.9	18.5	43.6	71.7	50.9	33.1	58.9
2050	43.8	43.8	43.8	45.6	20.9	52.7	77.3	60.0	35.5	70.5
2060	48.1	48.1	48.1	56.0	23.1	59.2	76.7	72.6	36.1	78.5
2070	52.1	52.1	52.1	63.6	22.5	63.1	64.2	84.7	29.6	85.1
2080	56.1	56.1	56.1	73.2	21.3	64.2	40.6	97.9	19.7	86.6
2090	58.9	58.9	58.9	82.8	22.5	62.9	46.8	110.9	20.8	84.7
2100	57.0	57.0	57.0	88.2	22.2	59.9	53.0	117.9	20.5	80.6

C₂F₆ emissions (Gg/yr)

Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p
2000	1.3	1.3	1.3	1.3	1.3	1.3	2.7	2.7	2.7	2.7
2010	1.5	1.5	1.5	2.0	1.5	2.1	2.8	2.9	2.7	3.0
2020	2.1	2.1	2.1	2.5	1.6	2.7	4.1	3.5	3.0	3.8
2030	3.0	3.0	3.0	3.1	1.7	3.5	5.9	4.3	3.1	4.7
2040	3.8	3.8	3.8	3.8	1.8	4.4	7.2	5.1	3.3	5.9
2050	4.4	4.4	4.4	4.6	2.1	5.3	7.7	6.0	3.6	7.1
2060	4.8	4.8	4.8	5.6	2.3	5.9	7.7	7.3	3.6	7.9
2070	5.2	5.2	5.2	6.4	2.2	6.3	6.4	8.5	3.0	8.5
2080	5.6	5.6	5.6	7.3	2.1	6.4	4.1	9.8	2.0	8.7
2090	5.9	5.9	5.9	8.3	2.2	6.3	4.7	11.1	2.1	8.5
2100	5.7	5.7	5.7	8.8	2.2	6.0	5.3	11.8	2.1	8.1

SF ₆ emi	issions (G	g/yr)									
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	
2000	6.2	6.2	6.2	6.2	6.2	6.2	6.2	6.2	6.2	6.2	
2010	6.7	6.7	6.7	7.6	5.6	7.4	7.2	8.0	6.4	7.7	
2020	7.3	7.3	7.3	9.7	5.7	8.4	7.9	10.2	6.5	9.9	
2030	10.2	10.2	10.2	11.6	7.2	9.2	10.7	12.0	8.0	12.5	
2040	15.2	15.2	15.2	13.7	8.9	11.7	15.8	14.0	9.7	15.8	
2050	18.3	18.3	18.3	16.0	10.4	12.1	18.8	16.8	11.2	18.6	
2060	19.5	19.5	19.5	18.8	10.9	12.2	20.0	18.7	11.6	20.4	
2070	17.3	17.3	17.3	19.8	9.5	11.4	17.8	19.7	10.2	22.0	
2080	13.5	13.5	13.5	20.7	7.1	9.6	12.0	20.6	6.8	22.8	
2090	13.0	13.0	13.0	23.4	6.5	10.0	13.5	23.3	7.2	23.9	
2100	14.5	14.5	14.5	25.2	6.5	10.6	15.0	25.1	7.2	24.4	
HFC-2	3 emissio	ns (Gg/yr	•)								
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	
2000	13	13	13	13	13	13	13	13	13	13	
2010	15	15	15	15	15	15	15	15	15	15	
2020	5	5	5	5	5	5	5	5	5	5	
2030	2	2	2	2	2	2	2	2	2	2	
2040	2	2	2	2	2	2	2	2	2	2	
2050	1	1	1	1	1	1	0	0	0	0	
2060	1	1	1	1	1	1	0	0	0	0	
2070	1	1	1	1	1	1	0	0	0	0	
2080	1	1	1	1	1	1	0	0	0	0	
2090	1	1	1	1	1	1	0	0	0	0	
2100	1	1	1	1	1	1	0	0	0	0	
2100	1	1	1	1	1	1	U	U	U	U	
		ns (Gg/yr									
Year	A1B	A1T	A1FI	A2	B1	B2	Alp	A2p	B1p	<u>B2p</u>	
2000	0	0	0	0	0	0	2	2	2	2	
2010	4	4	4	4	3	3	3	3	3	3	
2020	8	8	8	6	6	6	8	6	6	7	
2030	14	14	14	9	8	9	14	9	8	10	
2040	19	19	19	11	10	11	19	10	10	12	
2050	24	24	24	14	14	14	24	13	14	16	
2060	28	28	28	17	14	17	26	16	14	19	
2070	29	29	29	20	14	20	27	19	14	21	
2080	30	30	30	24	14	22	28	23	14	23	
2090	30	30	30	29	14	24	28	28	13	24	
2100	30	30	30	33	13	26	28	33	13	25	
HFC-1	25 emissi	ons (Gg/y	/r)								
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
2000	0	0	0	0	0	0	7	7	7	7	0
2010	12	12	12	11	11	11	11	10	10	10	1
2020	27	27	27	21	21	22	26	19	20	22	9
2030	45	45	45	29	29	30	44	27	28	32	46
2040	62	62	62	35	36	38	62	33	35	40	111
						49	78	43	47	52	175
2050	80	80	80	46	48	49	70	73		32	1/3
2050		80 94	80 94	46 56	48 48		84	53	48		
2060	80 94	94	94	56	48	58	84	53	48	62	185
2060 2070	80 94 98	94 98	94 98	56 66	48 48	58 67	84 88	53 62	48 47	62 70	185 194
2060	80 94	94	94	56	48	58	84	53	48	62	185

HFC-	-134a emiss	sions (Gg/	/vr)								
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
2000	80	80	80	80	80	80	147	147	147	147	148
2010	176	176	176	166	163	166	220	204	206	216	290
2020	326	326	326	252	249	262	427	315	319	359	396
2030	515	515	515	330	326	352	693	412	422	496	557
2040	725	725	725	405	414	443	997	508	545	638	738
2050	931	931	931	506	547	561	1215	635	734	816	918
2060	1076	1076	1076	633	550	679	1264	800	732	991	969
2070	1078	1078	1078	758	544	799	1272	962	718	1133	1020
2080	1078	1078	1078	915	533	910	1247	1169	698	1202	1020
2090	1001				513	1002					1047
		1029	1029	1107			1204	1422	667	1261	
2100	980	980	980	1260	486	1079	1142	1671	627	1317	1055
HFC-	-143a emiss	sions (Gg/	/yr)								
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	
2000	0	0	0	0	0	0	6	6	6	6	
2010	9	9	9	9	8	8	8	8	8	8	
2020	21	21	21	16	15	16	20	15	15	17	
2030	34	34	34	22	21	22	34	21	21	24	
2040	47	47	47	27	26	27	48	26	26	30	
2050	61	61	61	35	35	35	60	33	35	39	
2060	70	70	70	43	35	42	64	41	35	47	
2070	74	74	74	51	35	49	67	48	35	53	
2080	75	75	75	61	35	55	69	58	35	57	
2090	76	76	76	73	34	60	70	70	33	60	
2100	76	76	76	82	32	65	70	81	32	63	
2100	70	70	70	02	32	05	70	01	32	05	
HFC-	-152a emiss	• • • • • • • • • • • • • • • • • • • •									
		_	-								
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
Year 2000	A1B 0	A1T 0	A1FI 0	0	0	0	0	0	0	0	0
Year 2000 2010	A1B 0 0	A1T 0 0	A1FI 0 0	0	0	0	0 0	0 0	0 0	0 0	0
Year 2000 2010 2020	0 0 0	A1T 0 0 0	A1FI 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 18
Year 2000 2010 2020 2030	A1B 0 0 0 0	A1T 0 0 0 0 0 0	A1FI 0 0 0 0	0 0 0 0	0 0 18 114						
Year 2000 2010 2020 2030 2040	0 0 0	A1T 0 0 0	A1FI 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 18
Year 2000 2010 2020 2030	A1B 0 0 0 0	A1T 0 0 0 0 0 0	A1FI 0 0 0 0	0 0 0 0	0 0 18 114 281 448						
Year 2000 2010 2020 2030 2040	A1B 0 0 0 0 0	A1T 0 0 0 0 0 0 0 0 0	A1FI 0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 18 114 281
Year 2000 2010 2020 2030 2040 2050	A1B 0 0 0 0 0 0	A1T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A1FI 0 0 0 0 0 0	0 0 0 0 0	0 0 18 114 281 448						
Year 2000 2010 2020 2030 2040 2050 2060	A1B 0 0 0 0 0 0 0	A1T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A1FI 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 18 114 281 448 495						
Year 2000 2010 2020 2030 2040 2050 2060 2070	A1B 0 0 0 0 0 0 0 0 0	A1T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A1FI 0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 18 114 281 448 495 542
Year 2000 2010 2020 2030 2040 2050 2060 2070 2080	A1B 0 0 0 0 0 0 0 0 0 0	A1T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A1FI 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 18 114 281 448 495 542 567						
Year 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100	A1B 0 0 0 0 0 0 0 0 0 0 0	A1T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A1FI 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 18 114 281 448 495 542 567 568						
Year 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC-	A1B 0 0 0 0 0 0 0 0 0 0 0	A1T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A1FI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 18 114 281 448 495 542 567 568						
Year 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC- Year	A1B 0 0 0 0 0 0 0 0 0 0 0 0 0	A1T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A1FI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A1FI	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 18 114 281 448 495 542 567 568
Year 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC- Year 2000	A1B 0 0 0 0 0 0 0 0 0 0 0 0 0	A1T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A1FI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 41FI 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 18 114 281 448 495 542 567 568
Year 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC- Year 2000 2010	A1B 0 0 0 0 0 0 0 0 0 0 0 0 0	A1T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A1FI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 18 114 281 448 495 542 567 568
Year 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC- Year 2000 2010 2020	A1B 0 0 0 0 0 0 0 0 0 0 0 0 0	A1T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A1FI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 22	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 18 114 281 448 495 542 567 568
Year 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC- Year 2000 2010 2020 2030	A1B 0 0 0 0 0 0 0 0 0 0 0 0 0	A1T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A1FI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 22 34	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 18 114 281 448 495 542 567 568						
Year 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC-Year 2000 2010 2020 2030 2040	A1B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 227ea emis A1B 0 13 22 34 48	A1T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A1FI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 22 34 48	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 18 114 281 448 495 542 567 568						
Year 2000 2010 2020 2030 2040 2050 2090 2100 HFC-Year 2000 2030 2040 2050	A1B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 227ea emis A1B 0 13 22 34 48 62	A1T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A1FI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 22 34 48 62	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 18 114 281 448 495 542 567 568						
Year 2000 2010 2020 2030 2040 2050 2090 2100 HFC-Year 2000 2030 2040 2050 2050 2060	A1B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 227ea emis A1B 0 13 22 34 48 62 72	A1T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A1FI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 22 34 48 62 72	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 18 114 281 448 495 542 567 568						
Year 2000 2010 2020 2030 2040 2050 2090 2100 HFC-Year 2000 2030 2040 2050 2050 2060 2070	A1B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 227ea emis A1B 0 13 22 34 48 62 72 71	A1T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A1FI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 22 34 48 62 72 71	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 18 114 281 448 495 542 567 568						
Year 2000 2010 2020 2030 2040 2050 2090 2100 2020 2030 2040 2050 2050 2050 2050 2050 2050 205	A1B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 227ea emis A1B 0 13 22 34 48 62 72 71 68	A1T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A1FI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 22 34 48 62 72 71 68	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 18 114 281 448 495 542 567 568						
Year 2000 2010 2020 2030 2040 2050 2060 2070 2080 2100 HFC- Year 2000 2010 2020 2030 2040 2050	A1B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 227ea emis A1B 0 13 22 34 48 62 72 71 68 65	A1T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A1FI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 22 34 48 62 72 71 68 65	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 18 114 281 448 495 542 567 568						
Year 2000 2010 2020 2030 2040 2050 2090 2100 2020 2030 2040 2050 2050 2050 2050 2050 2050 205	A1B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 227ea emis A1B 0 13 22 34 48 62 72 71 68	A1T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A1FI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 22 34 48 62 72 71 68	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 18 114 281 448 495 542 567 568						

HFC-24	45ca emis	sions (Gg/	yr)							
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p
2000	0	0	0	0	0	0	38	38	38	38
2010	62	62	62	59	60	61	56	52	53	55
2020	100	100	100	79	80	85	98	73	75	84
2030	158	158	158	98	102	112	159	92	97	114
2040	222	222	222	121	131	144	229	113	128	149
2050	292	292	292	149	173	178	281	140	173	188
2060	350	350	350	190	173	216	298	179	172	229
2070	343	343	343	228	170	255	299	216	168	266
2080	330	330	330	276	166	290	287	262	163	280
2090	312	312	312	334	159	323	271	319	155	291
2100	288	288	288	388	150	353	251	376	145	302
HFC43-	-10mee er	nissions (Gg/yr)							
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p
2000	0	0	0	0	0	0	5	5	5	5
2010	7	7	7	7	6	6	6	6	6	6
2020	9	9	9	8	7	7	8	7	7	7
2030	12	12	12	8	8	8	10	7	7	8
2040	15	15	15	9	9	10	13	8	9	9
2050	18	18	18	11	11	11	15	9	10	11
2060	22	22	22	12	11	12	17	11	10	12
2070	24	24	24	14	11	14	20	12	10	13
2080	27	27	27	16	11	15	22	14	10	14
2090	29	29	29	19	11	17	24	17	10	15

Note: Table II.1.4 contains supplementary data to the SRES Report (Nakićenović *et. al.*, 2000): The data contained in the SRES Report was insufficient to break down the individual contributions to HFCs, PFCs and SF₆, these emissions were supplied by Lead Authors of the SRES Report and are also available at the CIESIN (Center for International Earth Science Information Network) Website (http://sres.ciesin.org). The sample scenario IS92a is only included for HFC–125, HFC–134a, and HFC–152a.

All PFCs, SF₆ and HFCs emissions are the same for family A1 (A1B, A1T and A1FI).

II.1.5: NO_x emissions (TgN/yr)

Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
2000	32.0	32.0	32.0	32.0	32.0	32.0	32.5	32.5	32.5	32.5	37.0
2010	39.3	38.8	39.7	39.2	36.1	36.7	41.0	39.6	34.8	37.6	43.4
2020	46.1	46.4	50.4	50.3	39.9	42.7	48.9	50.7	39.3	43.4	49.8
2030	50.2	55.9	62.8	60.7	42.0	48.9	52.5	60.8	40.7	48.4	55.2
2040	48.9	59.7	77.1	65.9	42.6	53.4	50.9	65.8	44.8	52.8	59.6
2050	47.9	61.0	94.9	71.1	38.8	54.5	49.3	71.5	48.9	53.7	64.0
2060	46.0	59.6	102.1	75.5	34.3	56.1	47.2	75.6	48.9	55.4	67.8
2070	44.2	51.7	108.5	79.8	29.6	56.3	45.1	80.1	48.9	55.6	71.6
2080	42.7	42.8	115.4	87.5	25.7	59.2	43.3	87.3	48.9	58.5	75.4
2090	41.4	34.8	111.5	98.3	22.2	60.9	41.8	97.9	41.2	60.1	79.2
2100	40.2	28.1	109.6	109.2	18.7	61.2	40.3	109.7	33.6	60.4	83.0

Note: NO_x is the sum of NO and NO₂

II.1.6: CO emissions (Tg(CO)/yr)

Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
2000	877	877	877	877	877	877	1036	1036	1036	1036	1048
2010	1002	1003	1020	977	789	935	1273	1136	849	1138	1096
2020	1032	1147	1204	1075	751	1022	1531	1234	985	1211	1145
2030	1109	1362	1436	1259	603	1111	1641	1413	864	1175	1207
2040	1160	1555	1726	1344	531	1220	1815	1494	903	1268	1282
2050	1214	1770	2159	1428	471	1319	1990	1586	942	1351	1358
2060	1245	1944	2270	1545	459	1423	2174	1696	984	1466	1431
2070	1276	2078	2483	1662	456	1570	2359	1816	1026	1625	1504
2080	1357	2164	2776	1842	426	1742	2455	1985	1068	1803	1576
2090	1499	2156	2685	2084	399	1886	2463	2218	1009	1948	1649
2100	1663	2077	2570	2326	363	2002	2471	2484	950	2067	1722

II.1.7: Total VOC emissions (Tg/yr)

Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
2000	141	141	141	141	141	141	151	151	151	151	126
2010	178	164	166	155	141	159	178	164	143	172	142
2020	222	190	192	179	140	180	207	188	151	192	158
2030	266	212	214	202	131	199	229	210	144	202	173
2040	272	229	256	214	123	214	255	221	147	215	188
2050	279	241	322	225	116	217	285	235	150	217	202
2060	284	242	361	238	111	214	324	246	155	214	218
2070	289	229	405	251	103	202	301	260	160	202	234
2080	269	199	449	275	99	192	263	282	165	192	251
2090	228	167	435	309	96	178	223	315	159	178	267
2100	193	128	420	342	87	170	174	352	154	170	283

Note: Volatile Organic Compounds (VOC) include non-methane hydrocarbons (NMHC) and oxygenated NMHC (e.g., alcohols, aldehydes and organic acids).

II.1.8: SO₂ emissions (TgS/yr)

Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
2000	69.0	69.0	69.0	69.0	69.0	69.0	69.0	69.0	69.0	69.0	79.0
2010	87.1	64.7	80.8	74.7	73.9	65.9	87.4	74.7	59.8	68.2	95.0
2020	100.2	59.9	86.9	99.5	74.6	61.3	100.8	99.5	56.2	65.0	111.0
2030	91.0	59.6	96.1	112.5	78.2	60.3	91.4	111.9	53.5	59.9	125.8
2040	68.9	45.9	94.0	109.0	78.5	59.0	77.9	108.1	53.3	58.8	139.4
2050	64.1	40.2	80.5	105.4	68.9	55.7	64.3	105.4	51.4	57.2	153.0
2060	46.9	34.4	56.3	89.6	55.8	53.8	51.2	86.3	51.2	53.7	151.8
2070	35.7	30.1	42.6	73.7	44.3	50.9	44.9	71.7	49.2	51.9	150.6
2080	30.7	25.2	39.4	64.7	36.1	50.0	30.7	64.2	42.2	49.1	149.4
2090	29.1	23.3	39.8	62.5	29.8	49.0	29.1	61.9	33.9	48.0	148.2
2100	27.6	20.2	40.1	60.3	24.9	47.9	27.4	60.3	28.6	47.3	147.0

Note: The SRES emissions for SO₂ are used with a linear offset in all scenarios to 69.0 TgS/yr in year 2000.

II.1.9: BC aerosol emissions (Tg/yr)

Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
2000	12.4	12.4	12.4	12.4	12.4	12.4	12.4	12.4	12.4	12.4	12.4
2010	13.9	13.9	14.1	13.6	11.3	13.1	15.2	13.6	10.2	13.6	13.0
2020	14.3	15.6	16.3	14.8	10.9	14.1	18.3	14.8	11.8	14.5	13.6
2030	15.2	18.2	19.1	17.0	9.1	15.2	19.6	16.9	10.3	14.1	14.3
2040	15.8	20.5	22.6	18.0	8.3	16.5	21.7	17.9	10.8	15.2	15.2
2050	16.4	23.1	27.7	19.0	7.5	17.7	23.8	19.0	11.3	16.2	16.1
2060	16.8	25.2	29.1	20.4	7.4	18.9	26.0	20.3	11.8	17.5	17.0
2070	17.2	26.8	31.6	21.8	7.4	20.7	28.2	21.7	12.3	19.4	17.9
2080	18.1	27.8	35.1	24.0	7.0	22.8	29.4	23.8	12.8	21.6	18.7
2090	19.8	27.7	34.0	26.8	6.7	24.5	29.5	26.5	12.1	23.3	19.6
2100	21.8	26.8	32.7	29.7	6.2	25.9	29.6	29.7	11.4	24.7	20.5

Note: Emissions for BC are scaled to SRES anthropogenic CO emissions offset to year 2000.

II.1.10: OC aerosol emissions (Tg/yr)

Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
2000	81.4	81.4	81.4	81.4	81.4	81.4	81.4	81.4	81.4	81.4	81.4
2010	91.2	91.3	92.6	89.3	74.5	86.0	100.0	89.3	66.7	89.4	85.2
2020	93.6	102.6	107.1	97.0	71.5	92.8	120.3	97.0	77.4	95.2	89.0
2030	99.6	119.5	125.3	111.4	59.9	99.8	128.9	111.0	67.9	92.3	93.9
2040	103.6	134.7	148.1	118.1	54.2	108.3	142.6	117.4	71.0	99.6	99.8
2050	107.9	151.6	182.1	124.7	49.5	116.1	156.4	124.6	74.0	106.2	105.8
2060	110.3	165.2	190.9	133.9	48.6	124.3	170.8	133.3	77.3	115.2	111.5
2070	112.8	175.8	207.6	143.1	48.3	135.9	185.4	142.7	80.6	127.7	117.2
2080	119.1	182.5	230.6	157.2	46.0	149.4	192.9	156.0	83.9	141.7	122.9
2090	130.3	181.9	223.5	176.2	43.8	160.7	193.5	174.3	79.3	153.1	128.6
2100	143.2	175.7	214.4	195.2	41.0	169.8	194.2	195.2	74.6	162.4	134.4

Note: Emissions for OC are scaled to SRES anthropogenic CO emissions offset to year 2000.

II.2: Abundances and burdens

II.2.1: CO₂ abundances (ppm)

ISAM 1	model (re	ference) -	- CO ₂ abu	ndances	(ppm)							IS92a/
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a	SAR
1970	325	325	325	325	325	325	325	325	325	325	325	326
1980	337	337	337	337	337	337	337	337	337	337	337	338
1990	353	353	353	353	353	353	353	353	353	353	353	354
2000	369	369	369	369	369	369	369	369	369	369	369	372
2010	391	389	389	390	388	388	393	391	388	390	390	393
2020	420	412	417	417	412	408	425	419	409	414	415	418
2030	454	440	455	451	437	429	461	453	429	438	444	446
2040	491	471	504	490	463	453	499	492	450	462	475	476
2050	532	501	567	532	488	478	538	535	472	486	508	509
2060	572	528	638	580	509	504	577	583	497	512	543	544
2070	611	550	716	635	525	531	615	637	522	539	582	580
2080	649	567	799	698	537	559	652	699	544	567	623	620
2090	685	577	885	771	545	589	685	771	563	597	670	664
2100	717	582	970	856	549	621	715	856	578	630	723	715

ISAM n	nodel (lo	$\mathbf{w}_1 - \mathbf{CO}_2$	abundanc	es (ppm)							
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
2000	368	368	368	368	368	368	368	368	368	368	368
2010	383	381	381	382	380	380	385	383	380	382	382
2020	405	398	403	402	398	394	409	404	395	400	401
2030	432	419	433	429	416	410	438	431	410	417	423
2040	461	443	473	460	436	427	467	461	425	435	446
2050	493	466	525	493	455	446	498	495	442	454	472
2060	524	486	584	532	470	466	528	534	460	473	499
2070	554	501	647	576	480	486	557	577	479	492	529
2080	582	511	715	626	486	507	583	627	495	513	561
2090	607	516	783	686	490	530	607	686	507	536	598
2100	630	516	851	755	490	554	627	755	517	561	640
Ta. 1 T											
	, ,		₂ abundan		*						
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
Year 2000	A1B 369	A1T 369	A1FI 369	A2 369	B1 369	369	369	369	369	369	369
Year 2000 2010	A1B	A1T	A1FI	A2 369 395	B1 369 394						369 396
Year 2000	A1B 369	A1T 369	A1FI 369	A2 369	B1 369	369	369	369	369	369	369
Year 2000 2010	A1B 369 397	A1T 369 394	A1FI 369 394	A2 369 395	B1 369 394	369 393	369 398	369 396	369 393	369 396	369 396
Year 2000 2010 2020	A1B 369 397 431	A1T 369 394 422	A1FI 369 394 427	A2 369 395 427	B1 369 394 422	369 393 417	369 398 435	369 396 429	369 393 418	369 396 424	369 396 426
Year 2000 2010 2020 2030	A1B 369 397 431 470	A1T 369 394 422 455	A1FI 369 394 427 471	A2 369 395 427 466	B1 369 394 422 452	369 393 417 443	369 398 435 477	369 396 429 469	369 393 418 444	369 396 424 453	369 396 426 460
Year 2000 2010 2020 2030 2040	A1B 369 397 431 470 513	A1T 369 394 422 455 491	A1FI 369 394 427 471 527	A2 369 395 427 466 511	B1 369 394 422 452 483	369 393 417 443 472	369 398 435 477 521	369 396 429 469 514	369 393 418 444 469	369 396 424 453 482	369 396 426 460 498
Year 2000 2010 2020 2030 2040 2050	A1B 369 397 431 470 513 560	A1T 369 394 422 455 491 527	A1FI 369 394 427 471 527 597	A2 369 395 427 466 511 561	B1 369 394 422 452 483 514	369 393 417 443 472 502	369 398 435 477 521 568	369 396 429 469 514 564	369 393 418 444 469 496	369 396 424 453 482 512	369 396 426 460 498 539
Year 2000 2010 2020 2030 2040 2050 2060	A1B 369 397 431 470 513 560 609	A1T 369 394 422 455 491 527 560	A1FI 369 394 427 471 527 597 678	A2 369 395 427 466 511 561 617	B1 369 394 422 452 483 514 541	369 393 417 443 472 502 534	369 398 435 477 521 568 615	369 396 429 469 514 564 620	369 393 418 444 469 496 527	369 396 424 453 482 512 543	369 396 426 460 498 539 583
Year 2000 2010 2020 2030 2040 2050 2060 2070	A1B 369 397 431 470 513 560 609 656	A1T 369 394 422 455 491 527 560 590	A1FI 369 394 427 471 527 597 678 767	A2 369 395 427 466 511 561 617 681	B1 369 394 422 452 483 514 541 563	369 393 417 443 472 502 534 567	369 398 435 477 521 568 615 661	369 396 429 469 514 564 620 682	369 393 418 444 469 496 527 558	369 396 424 453 482 512 543 577	369 396 426 460 498 539 583 631

Note: A "reference" case was defined with climate sensitivity 2.5° C, ocean uptake corresponding to the mean of the ocean model results in Chapter 3, Figure 3.10, and terrestrial uptake corresponding to the mean of the responses of mid–range models, LPJ, IBIS and SDGM (Chapter 3, Figure 3.10). A "low CO₂" parametrization was chosen with climate sensitivity 1.5° C and maximal CO₂ uptake by oceans and land. A "high CO₂" parametrization was defined with climate sensitivity 4.5° C and minimal CO₂ uptake by oceans and land. See Chapter 3, Box 3.7, and Jain *et al.* (1994) for more details on the ISAM model.

The IS92a column values are calculated using the ISAM parametrization noted above with IS92a emissions starting in the year 2000; whereas the IS92a/SAR column refers to values as reported in the SAR using IS92a emissions starting in 1990, using the SAR parametrization of ISAM.

Bern-	CC model	(reference	$(e) - CO_2$	abundan	ces (ppm)							IS92a/
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a	SAR
1970	325	325	325	325	325	325	325	325	325	325	325	325
1980	337	337	337	337	337	337	337	337	337	337	337	337
1990	352	352	352	352	352	352	352	352	352	352	352	353
2000	367	367	367	367	367	367	367	367	367	367	367	370
2010	388	386	386	386	386	385	390	388	385	387	387	391
2020	418	410	415	414	410	406	421	416	407	412	413	416
2030	447	435	449	444	432	425	454	447	425	433	439	444
2040	483	466	495	481	457	448	490	484	445	457	468	475
2050	522	496	555	522	482	473	529	525	467	481	499	507
2060	563	523	625	568	503	499	569	571	492	506	533	541
2070	601	545	702	620	518	524	606	622	515	532	568	577
2080	639	563	786	682	530	552	642	683	537	559	607	616
2090	674	572	872	754	538	581	674	754	555	588	653	660
2100	703	575	958	836	540	611	702	836	569	618	703	709

Bern-C	CC model	(low) - C	CO ₂ abund	lances (pp	m)						
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
2000	367	367	367	367	367	367	367	367	367	367	367
2010	383	381	381	381	381	380	384	383	380	382	383
2020	407	400	405	404	400	396	411	406	397	402	403
2030	432	419	432	428	417	410	437	431	410	417	424
2040	460	442	472	459	436	427	466	461	425	434	448
2050	491	464	521	492	455	445	496	495	440	452	473
2060	522	483	577	529	470	464	524	531	458	470	500
2070	548	496	636	569	479	482	550	569	475	487	527
2080	575	505	700	617	485	502	575	616	490	507	559
2090	598	508	763	671	487	522	596	670	501	528	593
2100	617	506	824	735	486	544	613	734	509	550	632
Bern-C	CC model	(high) –	CO ₂ abun	dances (p	pm)						
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
2000	367	367	367	367	367	367	367	367	367	367	367
2010	395	393	393	393	392	392	397	395	392	394	395
2020	436	427	433	431	426	422	441	434	424	430	431
2030	483	467	484	477	463	454	491	482	455	465	471
2040	538	514	552	533	503	491	548	538	488	504	517
2050	599	562	638	597	544	531	609	602	524	544	568
2060	666	610	743	670	584	575	675	675	566	588	624
2070	732	653	859	753	617	620	738	757	608	632	684
2080	797	689	985	848	645	668	802	851	648	680	750
2090	860	717	1118	957	666	718	863	959	682	730	822
2100	918	735	1248	1080	681	769	918	1082	713	782	902

Note: A "reference" case was defined with an average ocean uptake for the 1980s of 2.0 PgC/yr. A "low CO₂" parameterisation was obtained by combining a "fast ocean" (ocean uptake of 2.54 PgC/yr for the 1980s) and no response of heterotrophic respiration to temperature. A "high CO₂" parameterisation was obtained by combining a "slow ocean " (ocean uptake of 1.46 PgC/yr for the 1980s) and capping CO₂ fertilisation. Climate sensitivity was set to 2.5°C for a doubling of CO₂. See Chapter 3, Box 3.7 for more details on the Bern–CC model.

The IS92a/SAR column refers to values as reported in the SAR using IS92a emissions; whereas the IS92a column is calculated using IS92a emissions but with year 2000 starting values and the BERN-CC model as described in Chapter 3.

The Bern-CC model was initialised for observed atmospheric CO_2 which was prescribed for the period 1765 to 1999. The CO_2 data were smoothed by a spline. Scenario calculations started at the beginning of the year 2000. This explains the difference in the values given for the years upto 2000. Values shown are for the beginning of each year. Annual-mean values are generally higher (up to 7ppm) depending on the scenario and the year.

II.2.2: CH₄ abundances (ppb)

												IS92a/
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a	SAR
1970	1420	1420	1420	1420	1420	1420	1420	1420	1420	1420	1420	1420
1980	1570	1570	1570	1570	1570	1570	1570	1570	1570	1570	1570	1570
1990	1700	1700	1700	1700	1700	1700	1700	1700	1700	1700	1700	1700
2000	1760	1760	1760	1760	1760	1760	1760	1760	1760	1760	1760	1810
2010	1871	1856	1851	1861	1827	1839	1899	1861	1816	1862	1855	1964
2020	2026	1998	1986	1997	1891	1936	2126	1997	1878	2020	1979	2145
2030	2202	2194	2175	2163	1927	2058	2392	2159	1931	2201	2129	2343
2040	2337	2377	2413	2357	1919	2201	2598	2344	1963	2358	2306	2561
2050	2400	2503	2668	2562	1881	2363	2709	2549	2009	2473	2497	2793
2060	2386	2552	2875	2779	1836	2510	2736	2768	2049	2552	2663	3003
2070	2301	2507	3030	3011	1797	2639	2669	2998	2077	2606	2791	3175
2080	2191	2420	3175	3252	1741	2765	2533	3238	2100	2625	2905	3328
2090	2078	2310	3307	3493	1663	2872	2367	3475	2091	2597	3019	3474
2100	1974	2169	3413	3731	1574	2973	2187	3717	2039	2569	3136	3616

Note: The IS92a/SAR column refers to values as reported in the SAR using IS92a emissions; whereas the IS92a column is calculated using IS92a emissions but with year 2000 starting values and the new feedbacks on the lifetime. See Chapter 4 for details.

II.2.3: N₂O abundances (ppb)

												IS92a/
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a	SAR
1970	295	295	295	295	295	295	295	295	295	295	295	295
1980	301	301	301	301	301	301	301	301	301	301	301	301
1990	308	308	308	308	308	308	308	308	308	308	308	308
2000	316	316	316	316	316	316	316	316	316	316	316	319
2010	324	323	325	325	324	323	324	325	324	324	324	328
2020	331	328	335	335	333	328	332	335	333	331	333	339
2030	338	333	347	347	341	333	340	347	341	338	343	350
2040	344	338	361	360	349	338	346	360	350	343	353	361
2050	350	342	378	373	357	342	351	373	358	347	363	371
2060	356	345	396	387	363	346	355	386	366	350	372	382
2070	360	348	413	401	368	350	358	400	373	352	381	391
2080	365	350	429	416	371	354	360	415	380	354	389	400
2090	368	352	445	432	374	358	361	430	385	355	396	409
2100	372	354	460	447	375	362	361	446	389	356	403	417

Note: The IS92a/SAR column refers to values as reported in the SAR using IS92a emissions; whereas the IS92a column is calculated using IS92a emissions but with year 2000 starting values and the new feedbacks on the lifetime. See Chapter 4 for details.

II.2.4: PFCs, SF_6 and HFCs abundances (ppt)

CF ₄ ab	undances	(ppt)								
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p
1990	70	70	70	70	70	70	70	70	70	70
2000	82	82	82	82	82	82	82	82	82	82
2010	91	91	91	92	91	93	100	100	100	100
2020	103	103	103	107	101	108	122	121	118	122
2030	119	119	119	125	111	128	154	146	138	150
2040	141	141	141	148	122	153	197	176	159	184
2050	168	168	168	175	135	184	245	212	181	226
2060	198	198	198	208	150	221	296	255	204	274
2070	230	230	230	246	164	261	342	306	226	327
2080	265	265	265	291	179	302	377	365	242	383
2090	303	303	303	341	193	344	405	433	256	439
2100	341	341	341	397	208	384	437	508	269	493
C ₂ F ₆ al	bundance	s (ppt)								
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p
1990	2	2	2	2	2	2	2	2	2	2
2000	3	3	3	3	3	3	3	3	3	3
2010	4	4	4	4	4	4	4	4	4	4
2020	5	5	5	5	4	5	6	6	6	6
2030	6	6	6	6	5	6	8	7	7	8
2040	7	7	7	7	6	8	11	9	8	10
2050	9	9	9	9	7	10	14	12	10	12
2060	11	11	11	11	8	12	17	14	11	16
2070	13	13	13	14	8	15	20	18	12	19
2080	15	15	15	17	9	17	22	21	13	22
2090	17	17	17	20	10	20	24	26	14	26
2100	20	20	20	23	11	22	26	30	15	30

SF ₆ ab	undances	(ppt)								
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p
1990	3	3	3	3	3	3	3	3	3	3
2000	5	5	5	5	5	5	5	5	5	5
2010	7	7	7	7	7	7	7	7	7	7
2020	10	10	10	11	9	10	10	11	10	11
2030	13	13	13	15	12	14	14	15	12	15
2040	18	18	18	20	15	18	19	20	16	21
2050	25	25	25	26	19	23	26	26	20	27
2060	32	32	32	32	23	27	33	33	24	35
2070	39	39	39	40	27	32	41	41	29	43
2080	45	45	45	48	30	36	46	48	32	52
2090	50	50	50	56	33	40	51	57	35	61
2100	56	56	56	65	35	44	57	66	37	70
HFC_3)3 ahund	ances (ppt	+)							
Year	A1B	AlT	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p
1990	8	8	8	8	8	8	8	8	8	8
2000	15	15	15	15	15	15	15	15	15	15
2010	26	26	26	26	26	26	26	26	26	26
2020	33	33	33	33	33	33	33	33	33	33
2030	35	35	35	35	35	35	35	35	35	35
2040	35	35	35	35	35	35	36	35	35	35
2050	35	35	35	35	35	35	35	35	35	35
2060	35	35	35	35	34	35	34	34	33	34
2070	35	35	34	34	34	34	33	32	32	33
2080	34	34	34	34	33	34	32	31	31	31
2090	34	34	34	34	33	34	31	30	30	30
2100	34	34	34	33	32	34	30	29	29	29
HEC.	22 - 1 1									
Year	52 abunda A1B	ance (ppt) A1T	A1FI	A2	В1	В2	A1p	A2p	B1p	B2p
1990	0	0	0	0	0	0	0	0	0	0
2000	0	0	0	0	0	0	0	0	0	0
2010	1	1	1	1	1	1	1	1	1	1
2020	3	3	3	3	3	3	3	3	3	3
2030	7	7	6	4	4	4	7	4	4	5
2040	10	10	10	6	5	6	11	5	5	7
2050	14	14	13	7	7	8	15	7	7	9
2060	17	17	16	9	8	10	18	9	8	11
2070	19	19	18	11	8	12	20	11	8	13
2080	19	21	19	14	8	14	21	13	8	14
2090	20	22	20	17	8	15	21	16	8	15
2100	19	22	20	20	8	17	20	20	8	16
2100	17		20	20	3	11	20	20	J	10

HFC-	-125 abund	lance (nn	f)								
Year	A1B	AlT	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
1990	0	0	0	0	0	0	0	0	0	0	0
2000	0	0	0	0	0	0	0	0	0	0	0
2010	2	2	2	2	2	2	4	3	3	3	0
2020	9	9	9	8	8	8	10	8	8	9	2
2030	21	21	21	16	16	16	22	15	16	17	12
2040	37	37	37	24	24	26	38	23	24	27	40
2050	57	56	55	34	33	36	57	32	33	38	87
2060	77	78	76	45	43	48	78	43	42	51	137
2070	97	98	95	58	49	61	96	54	49	65	177
2080	112	115	111	72	54	75	111	68	54	77	210
2090	124	129	124	89	57	88	123	83	57	89	236
2100	133	140	134	107	58	102	132	101	58	99	255
HEC	124	1 (
	-134a abur	-	-	4.2	D1	Da	A 1	4.0	D.1	DA	1002
Year 1990	A1B 0	A1T 0	A1FI 0	A2 0	B1 0	B2 0	A1p 0	A2p 0	B1p 0	B2p 0	1S92a 0
1990	U	U	U	U	U	U	U	U	U	U	U
2000	12	12	12	12	12	12	12	12	12	12	12
2010	58	58	58	55	55	56	80	76	76	79	94
2020	130	130	129	111	108	113	172	141	142	155	183
2030	236	235	233	170	165	179	319	214	215	250	281
2040	375	373	366	231	223	250	522	290	294	356	401
2050	537	535	521	299	293	330	754	375	393	477	537
2060	698	701	675	382	352	424	954	480	476	615	657
2070	814	832	791	480	380	526	1092	606	515	756	743
2080	871	912	859	594	391	633	1167	753	530	878	807
2090	887	952	893	729	390	737	1185	930	531	968	850
2100	875	956	899	877	379	835	1157	1132	522	1041	878
	-143a abur	-		4.2	D1	D2	A 1	4.2	D.1	D2	
Year	A1B	A1T	A1FI	A2	B1	B2	Alp	A2p	B1p	B2p	
		-		A2 0	B1 0	B2 0	A1p 0	A2p	B1p 0	B2p 0	
Year	A1B	A1T	A1FI								
Year 1990	A1B 0	A1T 0	A1FI 0	0	0	0	0	0	0	0	
Year 1990 2000	A1B 0 0	A1T 0 0	A1FI 0 0	0	0	0	0	0 0	0	0	
Year 1990 2000 2010	A1B 0 0 3	A1T 0 0 3	A1FI 0 0 3	0 0 3	0 0 2	0 0 2	0 0 4	0 0 4	0 0 4	0 0 4	
Year 1990 2000 2010 2020	A1B 0 0 3 11	A1T 0 0 3 11	A1FI 0 0 3 11	0 0 3 10	0 0 2 9	0 0 2 9	0 0 4 12	0 0 4 11	0 0 4 11	0 0 4 11	
Year 1990 2000 2010 2020 2030 2040 2050	A1B 0 0 3 11 26 47 73	A1T 0 0 3 11 26 47 73	A1FI 0 0 3 11 26 47 72	0 0 3 10 20 32 45	0 0 2 9 18 29 43	0 0 2 9 19 31 45	0 0 4 12 27 48 75	0 0 4 11 20 31 44	0 0 4 11 20 31 44	0 0 4 11 22 35 51	
Year 1990 2000 2010 2020 2030 2040 2050 2060	A1B 0 0 3 11 26 47 73 103	A1T 0 0 3 111 226 47 73 103	A1FI 0 0 3 11 26 47 72 101	0 0 3 10 20 32 45 62	0 0 2 9 18 29 43 57	0 0 2 9 19 31 45 62	0 0 4 12 27 48 75 104	0 0 4 11 20 31 44 60	0 0 4 11 20 31 44 58	0 4 11 22 35 51 69	
Year 1990 2000 2010 2020 2030 2040 2050 2060 2070	A1B 0 0 3 11 26 47 73 103 132	A1T 0 0 3 11 26 47 73 103 133	A1FI 0 0 3 11 26 47 72 101 130	0 0 3 10 20 32 45 62 81	0 0 2 9 18 29 43 57 68	0 0 2 9 19 31 45 62 81	0 4 12 27 48 75 104 131	0 0 4 11 20 31 44 60 78	0 0 4 11 20 31 44 58 69	0 4 11 22 35 51 69 89	
Year 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080	A1B 0 0 3 11 26 47 73 103 132 158	A1T 0 0 3 11 26 47 73 103 133 161	A1FI 0 0 3 11 26 47 72 101 130 157	0 0 3 10 20 32 45 62 81 103	0 0 2 9 18 29 43 57 68 77	0 0 2 9 19 31 45 62 81	0 0 4 12 27 48 75 104 131 156	0 0 4 11 20 31 44 60 78 98	0 0 4 11 20 31 44 58 69 79	0 0 4 11 22 35 51 69 89 110	
Year 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090	A1B 0 0 3 11 26 47 73 103 132 158 181	A1T 0 0 3 111 26 47 73 103 133 161 185	A1FI 0 0 3 11 26 47 72 101 130 157 180	0 0 3 10 20 32 45 62 81 103 129	0 0 2 9 18 29 43 57 68 77 85	0 0 2 9 19 31 45 62 81 101 121	0 4 12 27 48 75 104 131 156 179	0 0 4 11 20 31 44 60 78 98 123	0 0 4 11 20 31 44 58 69 79 86	0 0 4 11 22 35 51 69 89 110 129	
Year 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080	A1B 0 0 3 11 26 47 73 103 132 158	A1T 0 0 3 11 26 47 73 103 133 161	A1FI 0 0 3 11 26 47 72 101 130 157	0 0 3 10 20 32 45 62 81 103	0 0 2 9 18 29 43 57 68 77	0 0 2 9 19 31 45 62 81	0 0 4 12 27 48 75 104 131 156	0 0 4 11 20 31 44 60 78 98	0 0 4 11 20 31 44 58 69 79	0 0 4 11 22 35 51 69 89 110	
Year 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100	A1B 0 0 3 11 26 47 73 103 132 158 181 200	A1T 0 0 3 11 26 47 73 103 133 161 185 207	A1FI 0 0 3 11 26 47 72 101 130 157 180 201	0 0 3 10 20 32 45 62 81 103 129	0 0 2 9 18 29 43 57 68 77 85	0 0 2 9 19 31 45 62 81 101 121	0 4 12 27 48 75 104 131 156 179	0 0 4 11 20 31 44 60 78 98 123	0 0 4 11 20 31 44 58 69 79 86	0 0 4 11 22 35 51 69 89 110 129	
Year 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2100 HFC-	A1B 0 0 3 11 26 47 73 103 132 158 181 200	A1T 0 0 3 11 26 47 73 103 133 161 185 207	A1FI 0 0 3 11 26 47 72 101 130 157 180 201	0 0 3 10 20 32 45 62 81 103 129 157	0 0 2 9 18 29 43 57 68 77 85 90	0 0 2 9 19 31 45 62 81 101 121 142	0 0 4 12 27 48 75 104 131 156 179 197	0 0 4 11 20 31 44 60 78 98 123 151	0 0 4 11 20 31 44 58 69 79 86 92	0 0 4 11 22 35 51 69 89 110 129 147	
Year 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2100 HFC- Year	A1B 0 0 3 11 26 47 73 103 132 158 181 200	A1T 0 0 3 11 26 47 73 103 133 161 185 207	A1FI 0 0 3 11 26 47 72 101 130 157 180 201 pt) A1FI	0 0 3 10 20 32 45 62 81 103 129 157	0 0 2 9 18 29 43 57 68 77 85 90	0 0 2 9 19 31 45 62 81 101 121 142	0 0 4 12 27 48 75 104 131 156 179 197	0 0 4 11 20 31 44 60 78 98 123 151	0 0 4 11 20 31 44 58 69 79 86 92	0 0 4 11 22 35 51 69 89 110 129 147	IS92a
Year 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2100 HFC-	A1B 0 0 3 11 26 47 73 103 132 158 181 200	A1T 0 0 3 11 26 47 73 103 133 161 185 207	A1FI 0 0 3 11 26 47 72 101 130 157 180 201	0 0 3 10 20 32 45 62 81 103 129 157	0 0 2 9 18 29 43 57 68 77 85 90	0 0 2 9 19 31 45 62 81 101 121 142	0 0 4 12 27 48 75 104 131 156 179 197	0 0 4 11 20 31 44 60 78 98 123 151	0 0 4 11 20 31 44 58 69 79 86 92	0 0 4 11 22 35 51 69 89 110 129 147	IS92a 0
Year 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC- Year 1990	A1B 0 0 3 11 26 47 73 103 132 158 181 200 -152a abur A1B 0 0	A1T 0 0 3 11 26 47 73 103 133 161 185 207 adance (p A1T 0 0	A1FI 0 0 3 11 26 47 72 101 130 157 180 201 pt) A1FI 0 0	0 0 3 10 20 32 45 62 81 103 129 157	0 0 2 9 18 29 43 57 68 77 85 90	0 0 2 9 19 31 45 62 81 101 121 142	0 0 4 12 27 48 75 104 131 156 179 197	0 0 4 11 20 31 44 60 78 98 123 151 A2p 0	0 0 4 11 20 31 44 58 69 79 86 92 B1p 0	0 0 4 11 22 35 51 69 89 110 129 147	0
Year 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC- Year 1990 2000 2010	A1B 0 0 3 11 26 47 73 103 132 158 181 200 -152a abur A1B 0 0 0	A1T 0 0 3 11 26 47 73 103 133 161 185 207 adance (p A1T 0 0 0	A1FI 0 0 3 11 26 47 72 101 130 157 180 201 pt) A1FI 0 0	0 0 3 10 20 32 45 62 81 103 129 157	0 0 2 9 18 29 43 57 68 77 85 90	0 0 2 9 19 31 45 62 81 101 121 142 B2 0 0	0 0 4 12 27 48 75 104 131 156 179 197 A1p 0 0	0 0 4 11 20 31 44 60 78 98 123 151 A2p 0	0 0 4 11 20 31 44 58 69 79 86 92 B1p 0	0 0 4 11 22 35 51 69 89 110 129 147	0 0 0
Year 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC- Year 1990 2000 2010 2020	A1B 0 0 3 11 26 47 73 103 132 158 181 200 -152a abur A1B 0 0	A1T 0 0 3 11 26 47 73 103 133 161 185 207 adance (p A1T 0 0 0 0	A1FI 0 0 3 11 26 47 72 101 130 157 180 201 pt) A1FI 0 0 0	0 0 3 10 20 32 45 62 81 103 129 157	0 0 2 9 18 29 43 57 68 77 85 90	0 0 2 9 19 31 45 62 81 101 121 142 0 0	0 0 4 12 27 48 75 104 131 156 179 197 Alp 0 0	0 0 4 11 20 31 44 60 78 98 123 151 A2p 0 0	0 0 4 11 20 31 44 58 69 79 86 92 B1p 0 0	0 0 4 11 22 35 51 69 89 110 129 147 B2p 0 0	0 0 0 2
Year 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2100 HFC- Year 1990 2010 2020 2030	A1B 0 0 3 11 26 47 73 103 132 158 181 200 -152a abur A1B 0 0 0	A1T 0 0 3 11 26 47 73 103 133 161 185 207 adance (p A1T 0 0 0	A1FI 0 0 3 11 26 47 72 101 130 157 180 201 pt) A1FI 0 0	0 0 3 10 20 32 45 62 81 103 129 157	0 0 2 9 18 29 43 57 68 77 85 90	0 0 2 9 19 31 45 62 81 101 121 142 B2 0 0	0 0 4 12 27 48 75 104 131 156 179 197 A1p 0 0	0 0 4 11 20 31 44 60 78 98 123 151 A2p 0	0 0 4 11 20 31 44 58 69 79 86 92 B1p 0	0 0 4 11 22 35 51 69 89 110 129 147	0 0 0 2 12
Year 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC- Year 1990 2010 2020 2030 2040	A1B 0 0 3 11 26 47 73 103 132 158 181 200 -152a abur A1B 0 0 0 0 0	A1T 0 0 3 11 26 47 73 103 133 161 185 207 adance (p A1T 0 0 0 0 0 0	A1FI 0 0 3 11 26 47 72 101 130 157 180 201 pt) A1FI 0 0 0 0 0	0 0 3 10 20 32 45 62 81 103 129 157	0 0 2 9 18 29 43 57 68 77 85 90 B1 0 0 0	0 0 2 9 19 31 45 62 81 101 121 142 0 0 0 0	0 0 4 12 27 48 75 104 131 156 179 197 A1p 0 0 0 0	0 0 4 11 20 31 44 60 78 98 123 151 A2p 0 0 0 0	0 0 4 11 20 31 44 58 69 79 86 92 B1p 0 0 0	0 0 4 11 22 35 51 69 89 110 129 147 B2p 0 0 0 0	0 0 0 2 12 33
Year 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2100 HFC- Year 1990 2000 2010 2020 2030 2040 2050	A1B 0 0 3 11 26 47 73 103 132 158 181 200 -152a abur A1B 0 0 0 0 0 0 0	A1T 0 0 3 11 26 47 73 103 133 161 185 207 adance (p A1T 0 0 0 0 0 0 0	A1FI 0 0 3 11 26 47 72 101 130 157 180 201 pt) A1FI 0 0 0 0 0 0	0 0 3 10 20 32 45 62 81 103 129 157 A2 0 0 0 0	0 0 2 9 18 29 43 57 68 77 85 90 B1 0 0 0 0	0 0 2 9 19 31 45 62 81 101 121 142 0 0 0 0	0 0 4 12 27 48 75 104 131 156 179 197 0 0 0 0 0	0 0 4 11 20 31 44 60 78 98 123 151 0 0 0 0	0 0 4 11 20 31 44 58 69 79 86 92 B1p 0 0 0 0	0 0 4 11 22 35 51 69 89 110 129 147 B2p 0 0 0 0	0 0 0 2 12 33 56
Year 1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2100 HFC- Year 1990 2000 2010 2020 2030 2040 2050 2060	A1B 0 0 3 11 26 47 73 103 132 158 181 200 -152a abur A1B 0 0 0 0 0 0 0 0 0	A1T 0 0 3 11 26 47 73 103 133 161 185 207 adance (p A1T 0 0 0 0 0 0 0 0 0	A1FI 0 0 3 11 26 47 72 101 130 157 180 201 pt) A1FI 0 0 0 0 0 0 0 0	0 0 3 10 20 32 45 62 81 103 129 157 A2 0 0 0 0 0	0 0 2 9 18 29 43 57 68 77 85 90 B1 0 0 0 0 0	0 0 2 9 19 31 45 62 81 101 121 142 0 0 0 0 0	0 0 4 12 27 48 75 104 131 156 179 197 0 0 0 0 0 0	0 0 4 11 20 31 44 60 78 98 123 151 0 0 0 0 0	0 0 4 11 20 31 44 58 69 79 86 92 B1p 0 0 0 0 0	0 0 4 11 22 35 51 69 89 110 129 147 B2p 0 0 0 0 0	0 0 0 2 12 33 56 67
Year 1990 2000 2010 2020 2030 2040 2050 2060 2070 2100 HFC- Year 1990 2000 2010 2020 2030 2040 2050 2060 2070	A1B 0 0 3 11 26 47 73 103 132 158 181 200 -152a abur A1B 0 0 0 0 0 0 0 0 0 0 0	A1T 0 0 3 11 26 47 73 103 133 161 185 207 adance (p A1T 0 0 0 0 0 0 0 0 0 0 0	A1FI 0 0 3 11 26 47 72 101 130 157 180 201 pt) A1FI 0 0 0 0 0 0 0 0 0 0	0 0 3 10 20 32 45 62 81 103 129 157 A2 0 0 0 0 0 0	0 0 2 9 18 29 43 57 68 77 85 90 B1 0 0 0 0 0 0	0 0 2 9 19 31 45 62 81 101 121 142 0 0 0 0 0 0	0 0 4 12 27 48 75 104 131 156 179 197 0 0 0 0 0 0 0	0 0 4 11 20 31 44 60 78 98 123 151 0 0 0 0 0 0	0 0 4 11 20 31 44 58 69 79 86 92 B1p 0 0 0 0 0 0	0 0 4 11 22 35 51 69 89 110 129 147	0 0 0 2 12 33 56 67 74
Year 1990 2000 2010 2020 2030 2040 2050 2060 2070 2100 HFC- Year 1990 2010 2020 2030 2040 2050 2060 2070 2080	A1B 0 0 3 11 26 47 73 103 132 158 181 200 -152a abur A1B 0 0 0 0 0 0 0 0 0 0 0 0 0	A1T 0 0 3 11 26 47 73 103 133 161 185 207 adance (p A1T 0 0 0 0 0 0 0 0 0 0 0 0 0	A1FI 0 0 3 11 26 47 72 101 130 157 180 201 pt) A1FI 0 0 0 0 0 0 0 0 0 0 0 0	0 0 3 10 20 32 45 62 81 103 129 157 A2 0 0 0 0 0 0	0 0 2 9 18 29 43 57 68 77 85 90 B1 0 0 0 0 0 0	0 0 2 9 19 31 45 62 81 101 121 142 0 0 0 0 0 0 0	0 0 4 12 27 48 75 104 131 156 179 197 0 0 0 0 0 0 0	0 0 4 11 20 31 44 60 78 98 123 151 0 0 0 0 0 0 0	0 0 4 11 20 31 44 58 69 79 86 92 B1p 0 0 0 0 0 0 0	0 0 4 11 22 35 51 69 89 110 129 147	0 0 0 2 12 33 56 67 74 79
Year 1990 2000 2010 2020 2030 2040 2050 2060 2070 2100 HFC- Year 1990 2000 2010 2020 2030 2040 2050 2060 2070	A1B 0 0 3 11 26 47 73 103 132 158 181 200 -152a abur A1B 0 0 0 0 0 0 0 0 0 0 0	A1T 0 0 3 11 26 47 73 103 133 161 185 207 adance (p A1T 0 0 0 0 0 0 0 0 0 0 0	A1FI 0 0 3 11 26 47 72 101 130 157 180 201 pt) A1FI 0 0 0 0 0 0 0 0 0 0	0 0 3 10 20 32 45 62 81 103 129 157 A2 0 0 0 0 0 0	0 0 2 9 18 29 43 57 68 77 85 90 B1 0 0 0 0 0 0	0 0 2 9 19 31 45 62 81 101 121 142 0 0 0 0 0 0	0 0 4 12 27 48 75 104 131 156 179 197 0 0 0 0 0 0 0	0 0 4 11 20 31 44 60 78 98 123 151 0 0 0 0 0 0	0 0 4 11 20 31 44 58 69 79 86 92 B1p 0 0 0 0 0 0	0 0 4 11 22 35 51 69 89 110 129 147	0 0 0 2 12 33 56 67 74

HFC-22	7ea abun	dance (pp	ot)							
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p
1990	0	0	0	0	0	0	0	0	0	0
2000	0	0	0	0	0	0	0	0	0	0
2010	2	2	2	2	2	2	3	3	3	3
2020	6	6	6	5	6	6	7	6	6	7
2030	13	13	13	10	10	11	13	9	10	11
2040	22	22	22	14	15	17	22	13	15	17
2050	33	33	32	19	21	24	33	18	20	23
2060	45	45	44	25	27	31	43	23	26	31
2070	56	56	55	32	31	40	52	29	30	39
2080	63	65	62	40	34	49	60	36	33	47
2090	68	71	68	49	35	59	64	45	34	54
2100	70	74	71	60	36	68	67	55	35	60
HEC 24	15.a. ah	J (.4)							
	l 5ca abun A1B	A1T		A2	B1	B2	۸ 1	A 2m	D1.	D2m
Year 1990	0	0	A1FI 0	0	0	0	A1p 0	A2p 0	B1p 0	$\frac{B2p}{0}$
	U				-					-
2000	0	0	0	0	0	0	0	0	0	0
2010	8	8	8	8	8	8	11	10	10	10
2020	20	20	20	17	17	18	20	16	16	18
2030	34	34	33	23	23	26	35	21	22	26
2040	52	51	50	29	29	34	55	27	28	35
2050	72	72	69	36	38	44	76	34	38	46
2060	92	93	88	46	43	55	92	43	44	58
2070	102	105	99	58	44	67	101	55	44	70
2080	101	108	101	72	43	80	101	68	44	79
2090	97	107	99	88	42	92	96	84	43	84
2100	90	101	94	105	40	103	88	101	41	88
HEC 42	3–10mee a		. (4)							
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p
1990	0	0	0	0	0	0	0	0 0	0	0 0
				-		-			-	
2000	0	0	0	0	0	0	0	0	0	0
2010	1	1	1	1	1	1	1	1	1	1
2020	2	2	2	2	1	1	2	2	2	2
2030	3	3	3	2	2	2	3	2	2	2
2040	4	4	4	3	2	3	4	2	2	3
2050	5	5	5	3	3	3	5	3	3	3
2060	7	7	6	4	3	4	6	3	3	4
2070	8	8	8	4	4	5	7	4	3	4
2080	9	9	9	5	4	5	8	4	4	5
2090	10	11	10	6	4	6	9	5	4	5
2100	11	12	11	7	4	7	10	6	4	6

Note: Even though all PFCs, SF6 and HFCs emissions are the same for family A1 (A1B, A1T and A1FI), the OH changes due to CH_4 , NO_x , CO and VOC (affecting only HFCs burdens). Hence the burden for HFCs can diverge for each of these scenarios within familiy A1. See Chapter 4 for details.

II.2.5: Tropospheric O₃ burden (global mean column in DU)

												IS92a/
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a	SAR
1990	34.0	34.0	34.0	34.0	34.0	34.0	34.0	34.0	34.0	34.0	34.0	34.0
2000	34.0	34.0	34.0	34.0	34.0	34.0	34.0	34.0	34.0	34.0	34.0	34.3
2010	35.8	35.6	35.8	35.7	34.8	35.2	36.2	35.6	34.3	35.4	35.5	34.8
2020	37.8	37.7	38.4	38.2	35.6	36.7	38.8	38.2	35.4	37.1	37.1	35.3
2030	39.3	40.3	41.5	40.8	35.9	38.4	40.5	40.7	35.7	38.5	38.7	35.8
2040	39.7	41.9	45.1	42.6	35.8	39.8	41.3	42.4	36.5	39.9	40.1	36.5
2050	39.8	42.9	49.6	44.2	35.0	40.7	41.6	44.1	37.5	40.6	41.6	37.1
2060	39.6	43.1	51.9	45.7	34.0	41.5	41.8	45.6	37.7	41.2	42.9	37.7
2070	39.1	41.9	53.8	47.2	33.1	42.1	41.4	47.1	37.9	41.6	44.0	38.2
2080	38.5	40.2	55.9	49.3	32.1	43.0	40.8	49.1	38.1	42.3	45.1	38.7
2090	38.0	38.4	55.6	52.0	31.2	43.7	39.9	51.8	36.8	42.6	46.1	39.1
2100	37.5	36.5	55.2	54.8	30.1	44.2	38.9	54.7	35.2	42.8	47.2	39.5

Note: IS92a/SAR column refers to IS92a emissions as reported in the SAR which estimated this O_3 change only as an indirect feedback effect from CH_4 increases; whereas IS92a column uses the latest models (see Chapter 4) which include also changes in emissions of NO_x , CO and VOC. A mean tropospheric O_3 content of 34 DU in 1990 is adopted; and 1 ppb of tropospheric $O_3 = 0.65$ DU.

These projected increases in troposheric O_3 are likely to be 25% too large, see note to Table 4.11 of Chapter 4 describing corrections made after government review.

II.2.6: Tropospheric OH (as a factor relative to year 2000)

Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
2000	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
2010	0.99	0.99	0.99	1.00	1.01	0.99	0.98	1.00	1.02	0.99	1.00
2020	0.97	0.98	0.99	1.00	1.02	0.99	0.94	1.00	1.01	0.97	0.99
2030	0.94	0.96	0.98	0.99	1.04	0.98	0.90	0.99	1.02	0.96	0.98
2040	0.91	0.93	0.96	0.98	1.06	0.96	0.85	0.98	1.03	0.95	0.96
2050	0.90	0.89	0.94	0.96	1.06	0.93	0.81	0.96	1.04	0.93	0.95
2060	0.89	0.87	0.92	0.94	1.05	0.91	0.78	0.94	1.03	0.92	0.93
2070	0.89	0.84	0.90	0.92	1.04	0.89	0.77	0.92	1.01	0.90	0.92
2080	0.89	0.81	0.88	0.90	1.04	0.87	0.77	0.90	1.01	0.89	0.91
2090	0.90	0.81	0.86	0.89	1.04	0.86	0.80	0.89	0.98	0.89	0.90
2100	0.90	0.82	0.86	0.88	1.05	0.84	0.82	0.88	0.97	0.89	0.89

II.2.7: SO₄²⁻ aerosol burden (TgS)

A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52	0.52
0.66	0.49	0.61	0.56	0.56	0.50	0.66	0.56	0.45	0.51	0.64
0.76	0.45	0.65	0.75	0.56	0.46	0.76	0.75	0.42	0.49	0.76
0.69	0.45	0.72	0.85	0.59	0.45	0.69	0.84	0.40	0.45	0.87
0.52	0.35	0.71	0.82	0.59	0.44	0.59	0.81	0.40	0.44	0.98
0.48	0.30	0.61	0.79	0.52	0.42	0.48	0.79	0.39	0.43	1.08
0.35	0.26	0.42	0.68	0.42	0.41	0.39	0.65	0.39	0.40	1.07
0.27	0.23	0.32	0.56	0.33	0.38	0.34	0.54	0.37	0.39	1.06
0.23	0.19	0.30	0.49	0.27	0.38	0.23	0.48	0.32	0.37	1.05
0.22	0.18	0.30	0.47	0.22	0.37	0.22	0.47	0.26	0.36	1.04
0.21	0.15	0.30	0.45	0.19	0.36	0.21	0.45	0.22	0.36	1.03
	0.52 0.66 0.76 0.69 0.52 0.48 0.35 0.27 0.23 0.22	0.52 0.52 0.66 0.49 0.76 0.45 0.69 0.45 0.52 0.35 0.48 0.30 0.35 0.26 0.27 0.23 0.23 0.19 0.22 0.18	0.52 0.52 0.52 0.66 0.49 0.61 0.76 0.45 0.65 0.69 0.45 0.72 0.52 0.35 0.71 0.48 0.30 0.61 0.35 0.26 0.42 0.27 0.23 0.32 0.23 0.19 0.30 0.22 0.18 0.30	0.52 0.52 0.52 0.52 0.66 0.49 0.61 0.56 0.76 0.45 0.65 0.75 0.69 0.45 0.72 0.85 0.52 0.35 0.71 0.82 0.48 0.30 0.61 0.79 0.35 0.26 0.42 0.68 0.27 0.23 0.32 0.56 0.23 0.19 0.30 0.49 0.22 0.18 0.30 0.47	0.52 0.52 0.52 0.52 0.52 0.66 0.49 0.61 0.56 0.56 0.76 0.45 0.65 0.75 0.56 0.69 0.45 0.72 0.85 0.59 0.52 0.35 0.71 0.82 0.59 0.48 0.30 0.61 0.79 0.52 0.35 0.26 0.42 0.68 0.42 0.27 0.23 0.32 0.56 0.33 0.23 0.19 0.30 0.49 0.27 0.22 0.18 0.30 0.47 0.22	0.52 0.52 0.52 0.52 0.52 0.66 0.49 0.61 0.56 0.56 0.50 0.76 0.45 0.65 0.75 0.56 0.46 0.69 0.45 0.72 0.85 0.59 0.45 0.52 0.35 0.71 0.82 0.59 0.44 0.48 0.30 0.61 0.79 0.52 0.42 0.35 0.26 0.42 0.68 0.42 0.41 0.27 0.23 0.32 0.56 0.33 0.38 0.23 0.19 0.30 0.49 0.27 0.38 0.22 0.18 0.30 0.47 0.22 0.37	0.52 0.62 0.66 0.66 0.50 0.66 0.66 0.76 0.66 0.76 0.46 0.76 0.69 0.45 0.69 0.45 0.69 0.45 0.69 0.45 0.69 0.45 0.69 0.44 0.59 0.44 0.59 0.44 0.59 0.44 0.59 0.44 0.59 0.48 0.30 0.61 0.79 0.52 0.42 0.48 0.35 0.26 0.42 0.68 0.42 0.41 0.39 0.27 0.23 0.32 0.56 0.33 0.38 0.34 0.23 0.19 0.30 0.49 0.27 0.38 0.23 0.22 0.18 0.30 0.47 0.22 0.37 0.	0.52 0.56 0.46 0.76 0.75 0.75 0.56 0.46 0.76 0.75 0.75 0.69 0.84 0.75 0.69 0.84 0.75 0.69 0.84 0.59 0.84 0.52 0.35 0.71 0.82 0.59 0.44 0.59 0.81 0.48 0.30 0.61 0.79 0.52 0.42 0.48 0.79 0.35 0.26 0.42 0.68 0.42 0.41 0.39 0.65 0.27 0.23 0.32 0.56 0.33 0.38 0.34 0.54 0.23 0.19 0.30 0.49 0.27 0.38 0.23 0.48 0.22	0.52 0.05 0.45 0.66 0.45 0.45 0.40 0.45 0.75 0.42 0.40 0.42 0.40 0.45 0.69 0.84 0.40 0.40 0.52 0.35 0.71 0.82 0.59 0.44 0.59 0.81 0.40 0.48 0.30 0.61 0.79 0.52 0.42 0.48 0.79 0.39 0.35 0.26 0.42 0.68 0.42 0.41 0.39 0.65 0.39 0.27 0.23 0.32 0.56 0.33 0.38 0.34 0.54 0.37 0.23 0.19 0.30 0.49 0.27 0.38	0.52 0.51 0.74 0.74 0.75 0.46 0.76 0.75 0.42 0.49 0.49 0.69 0.84 0.40 0.44 0.45 0.52 0.35 0.71 0.82 0.59 0.44 0.59 0.81 0.40 0.44 0.48 0.30 0.61 0.79 0.52 0.42 0.48 0.79 0.39 0.43 0.35 0.26 0.42 0.68 0.42 0.41 0.39 0.65 0.39 0.40 0.27 0.23 0.32 0.56 0.33 0.38 0.34 0.54 0.37 0.39

Note: Global burden is scaled to emissions: 0.52 Tg burden for 69.0 TgS/yr emissions.

II.2.8: BC aerosol burden (Tg)

Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
2000	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26
2010	0.29	0.29	0.30	0.29	0.24	0.27	0.32	0.29	0.21	0.29	0.27
2020	0.30	0.33	0.34	0.31	0.23	0.30	0.38	0.31	0.25	0.30	0.28
2030	0.32	0.38	0.40	0.36	0.19	0.32	0.41	0.35	0.22	0.29	0.30
2040	0.33	0.43	0.47	0.38	0.17	0.35	0.46	0.37	0.23	0.32	0.32
2050	0.34	0.48	0.58	0.40	0.16	0.37	0.50	0.40	0.24	0.34	0.34
2060	0.35	0.53	0.61	0.43	0.16	0.40	0.55	0.43	0.25	0.37	0.36
2070	0.36	0.56	0.66	0.46	0.15	0.43	0.59	0.46	0.26	0.41	0.37
2080	0.38	0.58	0.74	0.50	0.15	0.48	0.62	0.50	0.27	0.45	0.39
2090	0.42	0.58	0.71	0.56	0.14	0.51	0.62	0.56	0.25	0.49	0.41
2100	0.46	0.56	0.68	0.62	0.13	0.54	0.62	0.62	0.24	0.52	0.43

Note: Global burden is scaled to emissions: 0.26 Tg burden for 12.4 Tg/yr emsissions.

II.2.9: OC aerosol burden (Tg)

Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
2000	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52	1.52
2010	1.70	1.70	1.73	1.67	1.39	1.61	1.87	1.67	1.25	1.67	1.59
2020	1.75	1.92	2.00	1.81	1.34	1.73	2.25	1.81	1.45	1.78	1.66
2030	1.86	2.23	2.34	2.08	1.12	1.86	2.41	2.07	1.27	1.72	1.75
2040	1.94	2.51	2.77	2.21	1.01	2.02	2.66	2.19	1.32	1.86	1.86
2050	2.01	2.83	3.40	2.33	0.92	2.17	2.92	2.33	1.38	1.98	1.97
2060	2.06	3.09	3.56	2.50	0.91	2.32	3.19	2.49	1.44	2.15	2.08
2070	2.11	3.28	3.88	2.67	0.90	2.54	3.46	2.66	1.51	2.38	2.19
2080	2.22	3.41	4.31	2.94	0.86	2.79	3.60	2.91	1.57	2.65	2.29
2090	2.43	3.40	4.17	3.29	0.82	3.00	3.61	3.25	1.48	2.86	2.40
2100	2.67	3.28	4.00	3.65	0.77	3.17	3.63	3.64	1.39	3.03	2.51

Note: Global burden is scaled to emissions: 1.52 Tg burden for 81.4 Tg/yr emissions.

II.2.10: CFCs and HFCs abundances from WMO98 Scenario A1(baseline) following the Montreal (1997) Amendments (ppt)

Year	CFC-11	CFC-12	CFC-113	CFC-114	CFC-115	CCl_4	CH ₃ CCl ₃	HCFC-22	HCFC-141b	HCFC-142b	HCFC-123	3 CF ₂ BrCl	CF ₃ Br	EESC1
1970	50	109	4	6	0	56	13	13	0	0	0	0	0	1.25
1975	106	199	9	8	1	77	36	25	0	0	0	0	0	1.54
1980	164	290	18	10	1	92	75	41	0	0	0	1	0	1.99
1985	207	373	34	12	3	100	102	64	0	0	0	2	1	2.44
1990	258	467	67	15	5	102	125	90	0	1	0	3	2	2.87
1995	271	520	86	16	7	100	110	112	3	7	0	4	2	3.30
2000	267	535	85	16	9	92	44	145	13	15	0	4	3	3.28
2010	246	527	81	16	9	75	6	257	22	33	2	4	3	3.03
2020	214	486	72	15	9	59	1	229	16	32	3	3	3	2.74
2030	180	441	64	15	9	47	0	137	9	23	2	2	3	2.42
2040	149	400	57	14	9	37	0	88	6	17	2	1	3	2.16
2050	123	362	51	14	9	29	0	46	2	11	1	1	3	1.94
2060	101	328	45	13	9	23	0	20	1	6	1	0	2	1.76
2070	83	298	40	13	9	18	0	9	0	4	0	0	2	1.62
2080	68	270	36	12	8	14	0	4	0	2	0	0	2	1.51
2090	56	245	32	12	8	11	0	2	0	1	0	0	2	1.41
2100	45	222	28	12	8	9	0	1	0	1	0	0	1	1.33

Notes: Only significant greenhouse halocarbons shown (ppt).

EESCl = Equivalent Effective Stratospheric Chlorine in ppb (includes Br).

[Source: UNEP/WMO Scientific Assessment of Ozone Depletion: 1998 (Chapter 11), Version 5, June 3, 1998, Calculations by John Daniel and Guus Velders – guus.velders@rivm.nl & jdaniel@al.noaa.gov]

II.3: Radiative Forcing (Wm⁻²) (relative to pre-industrial period, 1750)

The concentrations of CO_2 and CH_4 considered here correspond to the year 2000 and differ slightly from those considered in Chapter 6 which used the values corresponding to the year 1998 (as appropriate for the time frame when Chapter 6 began its preparation). The resulting difference in the computed present day forcings is about 3% in the case of CO_2 and about 2% in the case of CH_4 . For N_2O , the difference in the computed forcings is negligible. In the case of tropospheric ozone, the forcing for the year 2000 given here and that in Chapter 6 are the results of slightly different scenarios employed which leads to about a 9% difference in the forcings. For the halogen containing compounds, the absolute differences in concentrations between here and Chapter 6 lead to a difference in present day forcing of less than 0.002 Wm $^{-2}$ for any species.

II.3.1: CO₂ radiative forcing (Wm⁻²)

2100

4.96

3.89

6.62

5.89

3.55

4.21

4.96

5.89

3.83

4.27

4.96

5.01

ISAM	model (re	eference) -	- CO ₂ rad	liative for	cing (Wn	1^{-2})						IS92a/
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a	SAR
2000	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.56
2010	1.82	1.80	1.80	1.81	1.78	1.78	1.85	1.82	1.78	1.81	1.81	1.85
2020	2.21	2.10	2.17	2.17	2.10	2.05	2.27	2.19	2.07	2.13	2.14	2.18
2030	2.62	2.46	2.64	2.59	2.42	2.32	2.71	2.61	2.32	2.43	2.50	2.53
2040	3.04	2.82	3.18	3.03	2.73	2.61	3.13	3.05	2.58	2.72	2.87	2.88
2050	3.47	3.15	3.81	3.47	3.01	2.90	3.53	3.50	2.83	2.99	3.23	3.24
2060	3.86	3.43	4.44	3.93	3.24	3.18	3.91	3.96	3.11	3.27	3.58	3.59
2070	4.21	3.65	5.06	4.42	3.40	3.46	4.25	4.44	3.37	3.54	3.95	3.93
2080	4.54	3.81	5.65	4.93	3.52	3.74	4.56	4.93	3.59	3.81	4.32	4.29
2090	4.82	3.91	6.20	5.46	3.60	4.02	4.82	5.46	3.78	4.09	4.71	4.66
2100	5.07	3.95	6.69	6.02	3.64	4.30	5.05	6.02	3.92	4.38	5.11	5.05
ISAM	model (le	w) CO	radiative	foreing ((W/m ⁻²)							
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a	
2000	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	
2010	1.71	1.69	1.69	1.70	1.67	1.67	1.74	1.71	1.67	1.70	1.70	
2020	2.01	1.92	1.99	1.97	1.92	1.87	2.07	2.00	1.88	1.95	1.96	
2030	2.36	2.19	2.37	2.32	2.16	2.08	2.43	2.35	2.08	2.17	2.25	
2040	2.71	2.49	2.84	2.69	2.41	2.30	2.78	2.71	2.27	2.40	2.53	
2050	3.06	2.76	3.40	3.06	2.64	2.53	3.12	3.09	2.48	2.62	2.83	
2060	3.39	2.99	3.97	3.47	2.81	2.76	3.43	3.49	2.69	2.84	3.13	
2070	3.69	3.15	4.52	3.90	2.92	2.99	3.72	3.91	2.91	3.05	3.44	
2080	3.95	3.26	5.05	4.34	2.99	3.21	3.96	4.35	3.09	3.28	3.76	
2090	4.18	3.31	5.54	4.83	3.03	3.45	4.18	4.83	3.21	3.51	4.10	
2100	4.38	3.31	5.99	5.35	3.03	3.69	4.35	5.35	3.32	3.76	4.46	
TG 1 3 5			** .*		(TT) 2)							
Year	moaei (ni A1B	gn) – CO A1T	2 radiativ A1FI	e forcing A2	(wm ²) B1	B2	A1p	A2p	B1p	B2p	IS92a	
2000	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.51	1.51	
2010	1.91	1.87	1.87	1.88	1.87	1.85	1.92	1.89	1.85	1.89	1.89	
2020	2.35	2.23	2.30	2.30	2.23	2.17	2.40	2.32	2.18	2.26	2.28	
2030	2.81	2.64	2.82	2.76	2.60	2.49	2.89	2.80	2.50	2.61	2.69	
2040	3.28	3.04	3.42	3.26	2.96	2.83	3.36	3.29	2.80	2.94	3.12	
2050	3.75	3.42	4.09	3.76	3.29	3.16	3.82	3.78	3.10	3.27	3.54	
2060	4.20	3.75	4.77	4.27	3.56	3.49	4.25	4.29	3.42	3.58	3.96	
2070	4.59	4.03	5.43	4.79	3.78	3.81	4.63	4.80	3.73	3.91	4.39	
2080	4.96	4.23	6.06	5.34	3.94	4.13	4.99	5.35	3.99	4.22	4.80	
2090	5.30	4.39	6.64	5.90	4.06	4.46	5.30	5.90	4.21	4.54	5.23	
2100	5.59	4.48	7.17	6.49	4.14	4.79	5.58	6.49	4.41	4.87	5.68	
D.) 60	7. 4.	• • (xx/ _2\						1000 /
			ce) – CO_2				Λ1	A 2	D1	D2	1000-	IS92a/
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a	SAR
2000	1.49	1.49	1.49	1.49	1.49	1.49	1.49	1.49	1.49	1.49	1.49	1.53
2010	1.78	1.76	1.76	1.76	1.76	1.74	1.81	1.78	1.74	1.77	1.77	1.82
2020	2.18	2.08	2.14	2.13	2.08	2.03	2.22	2.16	2.04	2.10	2.12	2.16
2030	2.54	2.40	2.56	2.50	2.36	2.27	2.62	2.54	2.27	2.37	2.44	2.50
2040	2.96	2.76	3.09	2.93	2.66	2.55	3.03	2.97	2.52	2.66	2.79	2.87
2050	3.37	3.10	3.70	3.37	2.94	2.84	3.44	3.40	2.78	2.93	3.13	3.21
2060	3.78	3.38	4.33	3.82	3.17	3.13	3.83	3.85	3.05	3.20	3.48	3.56
2070	4.12	3.60	4.96	4.29	3.33	3.39	4.17	4.31	3.30	3.47	3.82	3.91
2080	4.45	3.78	5.56	4.80	3.45	3.67	4.48	4.81	3.52	3.74	4.18	4.26
2090	4.74	3.86	6.12	5.34	3.53	3.94	4.74	5.34	3.70	4.01	4.57	4.63

Bern-	CC model	(low) - (CO ₂ radia	tive forci	ng (Wm ⁻²)						
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a	
2000	1.49	1.49	1.49	1.49	1.49	1.49	1.49	1.49	1.49	1.49	1.49	
2010	1.71	1.69	1.69	1.69	1.69	1.67	1.73	1.71	1.67	1.70	1.71	
2020	2.04	1.95	2.01	2.00	1.95	1.89	2.09	2.03	1.91	1.97	1.99	
2030	2.36	2.19	2.36	2.31	2.17	2.08	2.42	2.35	2.08	2.17	2.26	
2040	2.69	2.48	2.83	2.68	2.41	2.30	2.76	2.71	2.27	2.38	2.55	
2050	3.04	2.74	3.36	3.05	2.64	2.52	3.10	3.09	2.46	2.60	2.84	
2060	3.37	2.96	3.91	3.44	2.81	2.74	3.39	3.46	2.67	2.81	3.14	
2070	3.63	3.10	4.43	3.83	2.91	2.94	3.65	3.83	2.87	3.00	3.42	
2080	3.89	3.19	4.94	4.27	2.98	3.16	3.89	4.26	3.03	3.21	3.74	
				4.71	3.00							
2090	4.10	3.23	5.40		2.99	3.37 3.59	4.08	4.71	3.15	3.43	4.05	
2100	4.27	3.20	5.81	5.20	2.99	3.39	4.23	5.19	3.24	3.65	4.39	
Bern-	CC model	(high) -	CO ₂ radia	ative forc	ing (Wm	-2)						
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a	
2000	1.49	1.49	1.49	1.49	1.49	1.49	1.49	1.49	1.49	1.49	1.49	
2010	1.88	1.85	1.85	1.85	1.84	1.84	1.91	1.88	1.84	1.87	1.88	
2020	2.41	2.30	2.37	2.35	2.28	2.23	2.47	2.38	2.26	2.33	2.35	
2030	2.96	2.78	2.97	2.89	2.73	2.62	3.04	2.94	2.64	2.75	2.82	
2040	3.53	3.29	3.67	3.48	3.17	3.04	3.63	3.53	3.01	3.18	3.32	
2050	4.11	3.77	4.44	4.09	3.59	3.46	4.20	4.13	3.39	3.59	3.82	
2060	4.67	4.20	5.26	4.71	3.97	3.89	4.75	4.75	3.80	4.01	4.33	
2070	5.18	4.57	6.04	5.33	4.27	4.29	5.23	5.36	4.19	4.39	4.82	
2080	5.63	4.86	6.77	5.97	4.50	4.69	5.67	5.99	4.53	4.79	5.31	
2090	6.04	5.07	7.45	6.61	4.67	5.08	6.06	6.62	4.80	5.17	5.80	
2100	6.39	5.20	8.03	7.26	4.79	5.44	6.39	7.27	5.04	5.53	6.30	
II.3.2:	CH ₄ radia	ative forc	eing (Wm	²)								1000
* 7	4.1D		4.457		D.1	D.0			D.1	D.A	1000	IS92a/
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a	SAR
2000	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.51
2010	0.53	0.52	0.52	0.53	0.51	0.52	0.54	0.53	0.51	0.53	0.52	0.56
2020	0.59	0.58	0.57	0.58	0.54	0.55	0.62	0.58	0.53	0.58	0.57	0.63
2030	0.65	0.64	0.64	0.63	0.55	0.60	0.71	0.63	0.55	0.64	0.62	0.69
2040	0.69	0.70	0.71	0.70	0.55	0.64	0.77	0.69	0.56	0.70	0.68	0.76
2050	0.71	0.74	0.79	0.76	0.53	0.70	0.80	0.76	0.58	0.73	0.74	0.83
2060	0.71	0.76	0.85	0.83	0.52	0.74	0.81	0.82	0.59	0.76	0.79	0.89
2070	0.68	0.74	0.90	0.89	0.50	0.78	0.79	0.89	0.60	0.77	0.83	0.94
2080	0.64	0.72	0.94	0.96	0.48	0.82	0.75	0.96	0.61	0.78	0.86	0.98
2090	0.60	0.68	0.97	1.02	0.45	0.85	0.70	1.02	0.61	0.77	0.90	1.02
2100	0.57	0.63	1.00	1.09	0.42	0.88	0.64	1.08	0.59	0.76	0.93	1.06
II.3.3:	N ₂ O radia	ative forc	eing (Wm-	²)								
					- .				.			IS92a/
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a	SAR
2000	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.16
2010	0.18	0.17	0.18	0.18	0.18	0.17	0.18	0.18	0.18	0.18	0.18	0.19
2020	0.20	0.19	0.21	0.21	0.21	0.19	0.20	0.21	0.21	0.20	0.21	0.22
2030	0.22	0.21	0.25	0.25	0.23	0.21	0.23	0.25	0.23	0.22	0.24	0.26
2040	0.24	0.22	0.29	0.29	0.25	0.22	0.25	0.29	0.26	0.24	0.27	0.29
2050	0.26	0.23	0.34	0.33	0.28	0.23	0.26	0.33	0.28	0.25	0.30	0.32
2060	0.28	0.24	0.39	0.37	0.30	0.25	0.27	0.36	0.31	0.26	0.32	0.35
2070	0.29	0.25	0.44	0.41	0.31	0.26	0.28	0.40	0.33	0.26	0.35	0.38
2080	0.30	0.26	0.48	0.45	0.32	0.27	0.29	0.45	0.35	0.27	0.37	0.40
2090	0.31	0.26	0.53	0.49	0.33	0.28	0.29	0.49	0.36	0.27	0.39	0.43
2100	0.32	0.27	0.57	0.53	0.33	0.29	0.29	0.53	0.37	0.28	0.41	0.45

II.3.4:	PFCs, SF	₆ and HF	Cs radiati	ve forcing	g (Wm ⁻²)					
CF ₄ ra	diative fo	rcing (Wr	n ⁻²)							
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p
2000	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
2010	0.004	0.004	0.004	0.004	0.004	0.004	0.005	0.005	0.005	0.005
2020	0.005	0.005	0.005	0.005	0.005	0.005	0.007	0.006	0.006	0.007
2030	0.006	0.006	0.006	0.007	0.006	0.007	0.009	0.008	0.008	0.009
2040	0.008	0.008	0.008	0.009	0.007	0.009	0.013	0.011	0.010	0.012
2050	0.010	0.010	0.010	0.011	0.008	0.012	0.016	0.014	0.011	0.015
2060	0.013	0.013	0.013	0.013	0.009	0.014	0.020	0.017	0.013	0.019
2070	0.015	0.015	0.015	0.016	0.010	0.018	0.024	0.021	0.015	0.023
2080	0.018	0.018	0.018	0.020	0.011	0.021	0.027	0.026	0.016	0.027
2090	0.021	0.021	0.021	0.024	0.012	0.024	0.029	0.031	0.017	0.032
2100	0.024	0.024	0.024	0.029	0.013	0.028	0.032	0.037	0.018	0.036
C ₂ E _c r	adiative fo	orcing (W	m ⁻²)							
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p
2000	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
2010	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
2020	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
2030	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.002	0.002	0.002
2040	0.002	0.002	0.002	0.002	0.001	0.002	0.002	0.002	0.002	0.002
2050	0.002	0.002	0.002	0.002	0.002	0.002	0.003	0.002	0.002	0.003
2060	0.002	0.002	0.002	0.002	0.002	0.003	0.004	0.003	0.003	0.003
2070	0.003	0.003	0.003	0.003	0.002	0.003	0.005	0.005	0.003	0.005
2080	0.003	0.003	0.003	0.004	0.002	0.004	0.006	0.005	0.003	0.005
2090	0.004	0.004	0.004	0.004	0.002	0.004	0.006	0.003	0.003	0.007
2100	0.005	0.005	0.005	0.005	0.003	0.006	0.007	0.007	0.004	0.007
-	diative for	_								
Year	A1B	A1T	A1FI	A2	B1	B2	Alp	A2p	B1p	B2p
2000	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
2010	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004
2020	0.005	0.005	0.005	0.006	0.005	0.005	0.005	0.006	0.005	0.006
2030	0.007	0.007	0.007	0.008	0.006	0.007	0.007	0.008	0.006	0.008
2040	0.009	0.009	0.009	0.010	0.008	0.009	0.010	0.010	0.008	0.011
2050	0.013	0.013	0.013	0.014	0.010	0.012	0.014	0.014	0.010	0.014
2060	0.017	0.017	0.017	0.017	0.012	0.014	0.017	0.017	0.012	0.018
2070	0.020	0.020	0.020	0.021	0.014	0.017	0.021	0.021	0.015	0.022
2080	0.023	0.023	0.023	0.025	0.016	0.019	0.024	0.025	0.017	0.027
2090	0.026	0.026	0.026	0.029	0.017	0.021	0.027	0.030	0.018	0.032
2100	0.029	0.029	0.029	0.034	0.018	0.023	0.030	0.034	0.019	0.036
	23 radiati	_								
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p
2000	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
2010	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004	0.004
2020	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
2030	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006
2040	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006
2050	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006	0.006
2060	0.006	0.006	0.006	0.006	0.005	0.006	0.005	0.005	0.005	0.005
2070	0.006	0.006	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
2080	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
2090	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005
2100	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005	0.005

HFC-	-32 radiativ	e forcing	(Wm ⁻²)								
Year	A1B	AlT	AlFI	A2	B1	B2	A1p	A2p	B1p	B2p	
2000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
2010	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
2020	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
2030	0.001	0.001	0.001	0.000	0.000	0.000	0.001	0.000	0.000	0.000	
2040	0.001	0.001	0.001	0.001	0.000	0.001	0.001	0.000	0.000	0.001	
2050	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	
2060	0.002	0.002	0.001	0.001	0.001	0.001	0.002	0.001	0.001	0.001	
2070	0.002	0.002	0.002	0.001	0.001	0.001	0.002	0.001	0.001	0.001	
2080	0.002	0.002	0.002	0.001	0.001	0.001	0.002	0.001	0.001	0.001	
2090	0.002	0.002	0.002	0.002	0.001	0.001	0.002	0.001	0.001	0.001	
2100	0.002	0.002	0.002	0.002	0.001	0.002	0.002	0.002	0.001	0.001	
			2								
	-125 radiati		_	4.2	D.1	DA	A 1	4.2	D.1	D2	1002
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
2000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2010	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0.000
2020	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.000
2030	0.005	0.005	0.005	0.004	0.004	0.004	0.005	0.003	0.004	0.004	0.003
2040	0.009	0.009	0.009	0.006	0.006	0.006	0.009	0.005	0.006	0.006	0.009
2050	0.013	0.013	0.013	0.008	0.008	0.008	0.013	0.007	0.008	0.009	0.020
2060	0.018	0.018	0.017	0.010	0.010	0.011	0.018	0.010	0.010	0.012	0.032
2070	0.022	0.023	0.022	0.013	0.011	0.014	0.022	0.012	0.011	0.015	0.041
2080	0.026	0.026	0.026	0.017	0.012	0.017	0.026	0.016	0.012	0.018	0.048
2090	0.029	0.030	0.029	0.020	0.013	0.020	0.028	0.019	0.013	0.020	0.054
2100	0.031	0.032	0.031	0.025	0.013	0.023	0.030	0.023	0.013	0.023	0.059
HFC-	-134a radia	tive forci	ng (Wm ⁻²)							
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
					B1 0.002	B2 0.002	A1p 0.002	0.002	0.002	B2p 0.002	IS92a 0.002
Year 2000 2010	A1B	A1T 0.002 0.009	A1FI 0.002 0.009	A2 0.002 0.008			0.002 0.012		0.002 0.011	0.002 0.012	
Year 2000 2010 2020	A1B 0.002 0.009 0.020	A1T 0.002 0.009 0.020	A1FI 0.002 0.009 0.019	A2 0.002 0.008 0.017	0.002 0.008 0.016	0.002 0.008 0.017	0.002 0.012 0.026	0.002 0.011 0.021	0.002 0.011 0.021	0.002 0.012 0.023	0.002 0.014 0.027
Year 2000 2010 2020 2030	A1B 0.002 0.009 0.020 0.035	A1T 0.002 0.009 0.020 0.035	A1FI 0.002 0.009 0.019 0.035	A2 0.002 0.008 0.017 0.026	0.002 0.008 0.016 0.025	0.002 0.008 0.017 0.027	0.002 0.012 0.026 0.048	0.002 0.011 0.021 0.032	0.002 0.011 0.021 0.032	0.002 0.012 0.023 0.038	0.002 0.014 0.027 0.042
Year 2000 2010 2020 2030 2040	A1B 0.002 0.009 0.020 0.035 0.056	A1T 0.002 0.009 0.020 0.035 0.056	A1FI 0.002 0.009 0.019 0.035 0.055	A2 0.002 0.008 0.017 0.026 0.035	0.002 0.008 0.016 0.025 0.033	0.002 0.008 0.017 0.027 0.038	0.002 0.012 0.026 0.048 0.078	0.002 0.011 0.021 0.032 0.043	0.002 0.011 0.021 0.032 0.044	0.002 0.012 0.023 0.038 0.053	0.002 0.014 0.027 0.042 0.060
Year 2000 2010 2020 2030 2040 2050	A1B 0.002 0.009 0.020 0.035 0.056 0.081	A1T 0.002 0.009 0.020 0.035 0.056 0.080	A1FI 0.002 0.009 0.019 0.035 0.055 0.078	A2 0.002 0.008 0.017 0.026 0.035 0.045	0.002 0.008 0.016 0.025 0.033 0.044	0.002 0.008 0.017 0.027 0.038 0.050	0.002 0.012 0.026 0.048 0.078 0.113	0.002 0.011 0.021 0.032 0.043 0.056	0.002 0.011 0.021 0.032 0.044 0.059	0.002 0.012 0.023 0.038 0.053 0.072	0.002 0.014 0.027 0.042 0.060 0.081
Year 2000 2010 2020 2030 2040 2050 2060	A1B 0.002 0.009 0.020 0.035 0.056 0.081 0.105	A1T 0.002 0.009 0.020 0.035 0.056 0.080 0.105	A1FI 0.002 0.009 0.019 0.035 0.055 0.078 0.101	A2 0.002 0.008 0.017 0.026 0.035 0.045 0.057	0.002 0.008 0.016 0.025 0.033 0.044 0.053	0.002 0.008 0.017 0.027 0.038 0.050 0.064	0.002 0.012 0.026 0.048 0.078 0.113 0.143	0.002 0.011 0.021 0.032 0.043 0.056 0.072	0.002 0.011 0.021 0.032 0.044 0.059 0.071	0.002 0.012 0.023 0.038 0.053 0.072 0.092	0.002 0.014 0.027 0.042 0.060 0.081 0.099
Year 2000 2010 2020 2030 2040 2050 2060 2070	A1B 0.002 0.009 0.020 0.035 0.056 0.081 0.105 0.122	A1T 0.002 0.009 0.020 0.035 0.056 0.080 0.105 0.125	A1FI 0.002 0.009 0.019 0.035 0.055 0.078 0.101 0.119	A2 0.002 0.008 0.017 0.026 0.035 0.045 0.057 0.072	0.002 0.008 0.016 0.025 0.033 0.044 0.053 0.057	0.002 0.008 0.017 0.027 0.038 0.050 0.064 0.079	0.002 0.012 0.026 0.048 0.078 0.113 0.143 0.164	0.002 0.011 0.021 0.032 0.043 0.056 0.072 0.091	0.002 0.011 0.021 0.032 0.044 0.059 0.071 0.077	0.002 0.012 0.023 0.038 0.053 0.072 0.092 0.113	0.002 0.014 0.027 0.042 0.060 0.081 0.099 0.111
Year 2000 2010 2020 2030 2040 2050 2060 2070 2080	A1B 0.002 0.009 0.020 0.035 0.056 0.081 0.105 0.122 0.131	A1T 0.002 0.009 0.020 0.035 0.056 0.080 0.105 0.125 0.137	A1FI 0.002 0.009 0.019 0.035 0.055 0.078 0.101 0.119 0.129	A2 0.002 0.008 0.017 0.026 0.035 0.045 0.057 0.072 0.089	0.002 0.008 0.016 0.025 0.033 0.044 0.053 0.057 0.059	0.002 0.008 0.017 0.027 0.038 0.050 0.064 0.079 0.095	0.002 0.012 0.026 0.048 0.078 0.113 0.143 0.164 0.175	0.002 0.011 0.021 0.032 0.043 0.056 0.072 0.091 0.113	0.002 0.011 0.021 0.032 0.044 0.059 0.071 0.077 0.079	0.002 0.012 0.023 0.038 0.053 0.072 0.092 0.113 0.132	0.002 0.014 0.027 0.042 0.060 0.081 0.099 0.111 0.121
Year 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090	A1B 0.002 0.009 0.020 0.035 0.056 0.081 0.105 0.122 0.131 0.133	A1T 0.002 0.009 0.020 0.035 0.056 0.080 0.105 0.125 0.137 0.143	A1FI 0.002 0.009 0.019 0.035 0.055 0.078 0.101 0.119 0.129 0.134	A2 0.002 0.008 0.017 0.026 0.035 0.045 0.057 0.072 0.089 0.109	0.002 0.008 0.016 0.025 0.033 0.044 0.053 0.057 0.059	0.002 0.008 0.017 0.027 0.038 0.050 0.064 0.079 0.095 0.111	0.002 0.012 0.026 0.048 0.078 0.113 0.143 0.164 0.175 0.178	0.002 0.011 0.021 0.032 0.043 0.056 0.072 0.091 0.113 0.140	0.002 0.011 0.021 0.032 0.044 0.059 0.071 0.077 0.079 0.080	0.002 0.012 0.023 0.038 0.053 0.072 0.092 0.113 0.132 0.145	0.002 0.014 0.027 0.042 0.060 0.081 0.099 0.111 0.121 0.128
Year 2000 2010 2020 2030 2040 2050 2060 2070 2080	A1B 0.002 0.009 0.020 0.035 0.056 0.081 0.105 0.122 0.131	A1T 0.002 0.009 0.020 0.035 0.056 0.080 0.105 0.125 0.137	A1FI 0.002 0.009 0.019 0.035 0.055 0.078 0.101 0.119 0.129	A2 0.002 0.008 0.017 0.026 0.035 0.045 0.057 0.072 0.089	0.002 0.008 0.016 0.025 0.033 0.044 0.053 0.057 0.059	0.002 0.008 0.017 0.027 0.038 0.050 0.064 0.079 0.095	0.002 0.012 0.026 0.048 0.078 0.113 0.143 0.164 0.175	0.002 0.011 0.021 0.032 0.043 0.056 0.072 0.091 0.113	0.002 0.011 0.021 0.032 0.044 0.059 0.071 0.077 0.079	0.002 0.012 0.023 0.038 0.053 0.072 0.092 0.113 0.132	0.002 0.014 0.027 0.042 0.060 0.081 0.099 0.111 0.121
Year 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100	A1B 0.002 0.009 0.020 0.035 0.056 0.081 0.105 0.122 0.131 0.133 0.131	A1T 0.002 0.009 0.020 0.035 0.056 0.080 0.105 0.125 0.137 0.143 0.143	A1FI 0.002 0.009 0.019 0.035 0.055 0.078 0.101 0.119 0.129 0.134 0.135	A2 0.002 0.008 0.017 0.026 0.035 0.045 0.057 0.072 0.089 0.109 0.132	0.002 0.008 0.016 0.025 0.033 0.044 0.053 0.057 0.059	0.002 0.008 0.017 0.027 0.038 0.050 0.064 0.079 0.095 0.111	0.002 0.012 0.026 0.048 0.078 0.113 0.143 0.164 0.175 0.178	0.002 0.011 0.021 0.032 0.043 0.056 0.072 0.091 0.113 0.140	0.002 0.011 0.021 0.032 0.044 0.059 0.071 0.077 0.079 0.080	0.002 0.012 0.023 0.038 0.053 0.072 0.092 0.113 0.132 0.145	0.002 0.014 0.027 0.042 0.060 0.081 0.099 0.111 0.121 0.128
Year 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100	A1B 0.002 0.009 0.020 0.035 0.056 0.081 0.105 0.122 0.131 0.133 0.131	A1T 0.002 0.009 0.020 0.035 0.056 0.080 0.105 0.125 0.137 0.143 0.143	A1FI 0.002 0.009 0.019 0.035 0.055 0.078 0.101 0.119 0.129 0.134 0.135	A2 0.002 0.008 0.017 0.026 0.035 0.045 0.057 0.072 0.089 0.109 0.132	0.002 0.008 0.016 0.025 0.033 0.044 0.053 0.057 0.059 0.059	0.002 0.008 0.017 0.027 0.038 0.050 0.064 0.079 0.095 0.111 0.125	0.002 0.012 0.026 0.048 0.078 0.113 0.143 0.164 0.175 0.178	0.002 0.011 0.021 0.032 0.043 0.056 0.072 0.091 0.113 0.140 0.170	0.002 0.011 0.021 0.032 0.044 0.059 0.071 0.077 0.079 0.080 0.078	0.002 0.012 0.023 0.038 0.053 0.072 0.092 0.113 0.132 0.145 0.156	0.002 0.014 0.027 0.042 0.060 0.081 0.099 0.111 0.121 0.128
Year 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC- Year	A1B 0.002 0.009 0.020 0.035 0.056 0.081 0.105 0.122 0.131 0.133 0.131	A1T 0.002 0.009 0.020 0.035 0.056 0.080 0.105 0.125 0.137 0.143 0.143 tive forci	A1FI 0.002 0.009 0.019 0.035 0.055 0.078 0.101 0.119 0.129 0.134 0.135 ng (Wm ⁻² A1FI	A2 0.002 0.008 0.017 0.026 0.035 0.045 0.057 0.072 0.089 0.109 0.132	0.002 0.008 0.016 0.025 0.033 0.044 0.053 0.057 0.059 0.059	0.002 0.008 0.017 0.027 0.038 0.050 0.064 0.079 0.095 0.111 0.125	0.002 0.012 0.026 0.048 0.078 0.113 0.143 0.164 0.175 0.178 0.174	0.002 0.011 0.021 0.032 0.043 0.056 0.072 0.091 0.113 0.140 0.170	0.002 0.011 0.021 0.032 0.044 0.059 0.071 0.077 0.079 0.080 0.078	0.002 0.012 0.023 0.038 0.053 0.072 0.092 0.113 0.132 0.145 0.156	0.002 0.014 0.027 0.042 0.060 0.081 0.099 0.111 0.121 0.128
Year 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC- Year 2000	A1B 0.002 0.009 0.020 0.035 0.056 0.081 0.105 0.122 0.131 0.133 0.131 -143a radia A1B 0.000	A1T 0.002 0.009 0.020 0.035 0.056 0.080 0.105 0.125 0.137 0.143 0.143 tive forci A1T 0.000	A1FI 0.002 0.009 0.019 0.035 0.055 0.078 0.101 0.119 0.129 0.134 0.135 ng (Wm ⁻² A1FI 0.000	A2 0.002 0.008 0.017 0.026 0.035 0.045 0.057 0.072 0.089 0.109 0.132	0.002 0.008 0.016 0.025 0.033 0.044 0.053 0.057 0.059 0.059	0.002 0.008 0.017 0.027 0.038 0.050 0.064 0.079 0.095 0.111 0.125	0.002 0.012 0.026 0.048 0.078 0.113 0.164 0.175 0.178 0.174 A1p	0.002 0.011 0.021 0.032 0.043 0.056 0.072 0.091 0.113 0.140 0.170	0.002 0.011 0.021 0.032 0.044 0.059 0.071 0.077 0.079 0.080 0.078	0.002 0.012 0.023 0.038 0.053 0.072 0.092 0.113 0.132 0.145 0.156	0.002 0.014 0.027 0.042 0.060 0.081 0.099 0.111 0.121 0.128
Year 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC- Year	A1B 0.002 0.009 0.020 0.035 0.056 0.081 0.105 0.122 0.131 0.133 0.131	A1T 0.002 0.009 0.020 0.035 0.056 0.080 0.105 0.125 0.137 0.143 0.143 tive forci	A1FI 0.002 0.009 0.019 0.035 0.055 0.078 0.101 0.119 0.129 0.134 0.135 ng (Wm ⁻² A1FI	A2 0.002 0.008 0.017 0.026 0.035 0.045 0.057 0.072 0.089 0.109 0.132	0.002 0.008 0.016 0.025 0.033 0.044 0.053 0.057 0.059 0.059	0.002 0.008 0.017 0.027 0.038 0.050 0.064 0.079 0.095 0.111 0.125	0.002 0.012 0.026 0.048 0.078 0.113 0.143 0.164 0.175 0.178 0.174	0.002 0.011 0.021 0.032 0.043 0.056 0.072 0.091 0.113 0.140 0.170	0.002 0.011 0.021 0.032 0.044 0.059 0.071 0.077 0.079 0.080 0.078	0.002 0.012 0.023 0.038 0.053 0.072 0.092 0.113 0.132 0.145 0.156	0.002 0.014 0.027 0.042 0.060 0.081 0.099 0.111 0.121 0.128
Year 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC- Year 2000 2010	A1B 0.002 0.009 0.020 0.035 0.056 0.081 0.105 0.122 0.131 0.133 0.131 -143a radia A1B 0.000 0.000	A1T 0.002 0.009 0.020 0.035 0.056 0.080 0.105 0.125 0.137 0.143 0.143 tive forci A1T 0.000 0.000	A1FI 0.002 0.009 0.019 0.035 0.055 0.078 0.101 0.119 0.129 0.134 0.135 ng (Wm ⁻² A1FI 0.000 0.000	A2 0.002 0.008 0.017 0.026 0.035 0.045 0.057 0.072 0.089 0.109 0.132 0.000 0.000	0.002 0.008 0.016 0.025 0.033 0.044 0.053 0.057 0.059 0.059 0.057	0.002 0.008 0.017 0.027 0.038 0.050 0.064 0.079 0.095 0.111 0.125 B2 0.000 0.000	0.002 0.012 0.026 0.048 0.078 0.113 0.164 0.175 0.178 0.174 A1p 0.000 0.001	0.002 0.011 0.021 0.032 0.043 0.056 0.072 0.091 0.113 0.140 0.170 A2p 0.000 0.001	0.002 0.011 0.021 0.032 0.044 0.059 0.071 0.077 0.079 0.080 0.078 B1p 0.000 0.001	0.002 0.012 0.023 0.038 0.053 0.072 0.092 0.113 0.132 0.145 0.156 B2p 0.000 0.001	0.002 0.014 0.027 0.042 0.060 0.081 0.099 0.111 0.121 0.128
Year 2000 2010 2020 2030 2040 2050 2060 2070 2080 2100 HFC- Year 2000 2010 2020	A1B 0.002 0.009 0.020 0.035 0.056 0.081 0.105 0.122 0.131 0.133 0.131 -143a radia A1B 0.000 0.000 0.001	A1T 0.002 0.009 0.020 0.035 0.056 0.080 0.105 0.125 0.137 0.143 0.143 tive forci A1T 0.000 0.000 0.001	A1FI 0.002 0.009 0.019 0.035 0.055 0.078 0.101 0.119 0.129 0.134 0.135 ng (Wm ⁻² A1FI 0.000 0.000 0.001	A2 0.002 0.008 0.017 0.026 0.035 0.045 0.057 0.072 0.089 0.109 0.132 0.000 0.000 0.000 0.001	0.002 0.008 0.016 0.025 0.033 0.044 0.053 0.057 0.059 0.059 0.057	0.002 0.008 0.017 0.027 0.038 0.050 0.064 0.079 0.095 0.111 0.125 B2 0.000 0.000 0.001	0.002 0.012 0.026 0.048 0.078 0.113 0.143 0.164 0.175 0.178 0.174 A1p 0.000 0.001 0.002	0.002 0.011 0.021 0.032 0.043 0.056 0.072 0.091 0.113 0.140 0.170 A2p 0.000 0.001 0.001	0.002 0.011 0.021 0.032 0.044 0.059 0.071 0.077 0.079 0.080 0.078 B1p 0.000 0.001	0.002 0.012 0.023 0.038 0.053 0.072 0.092 0.113 0.132 0.145 0.156 B2p 0.000 0.001 0.001	0.002 0.014 0.027 0.042 0.060 0.081 0.099 0.111 0.121 0.128
Year 2000 2010 2020 2030 2040 2050 2060 2070 2080 2100 HFC- Year 2000 2010 2020 2030 2040	A1B 0.002 0.009 0.020 0.035 0.056 0.081 0.105 0.122 0.131 0.133 0.131 -143a radia A1B 0.000 0.000 0.001 0.003	A1T 0.002 0.009 0.020 0.035 0.056 0.080 0.105 0.125 0.137 0.143 0.143 tive forci A1T 0.000 0.000 0.001 0.003	A1FI 0.002 0.009 0.019 0.035 0.055 0.078 0.101 0.119 0.129 0.134 0.135 ng (Wm ⁻² A1FI 0.000 0.000 0.001 0.003	A2 0.002 0.008 0.017 0.026 0.035 0.045 0.057 0.072 0.089 0.109 0.132 0.000 0.000 0.000 0.001 0.003	0.002 0.008 0.016 0.025 0.033 0.044 0.053 0.057 0.059 0.059 0.057 B1 0.000 0.000 0.001	0.002 0.008 0.017 0.027 0.038 0.050 0.064 0.079 0.095 0.111 0.125 B2 0.000 0.000 0.001	0.002 0.012 0.026 0.048 0.078 0.113 0.143 0.164 0.175 0.178 0.174 A1p 0.000 0.001 0.002 0.004	0.002 0.011 0.021 0.032 0.043 0.056 0.072 0.091 0.113 0.140 0.170 A2p 0.000 0.001 0.001 0.003	0.002 0.011 0.021 0.032 0.044 0.059 0.071 0.077 0.079 0.080 0.078 B1p 0.000 0.001 0.001	0.002 0.012 0.023 0.038 0.053 0.072 0.092 0.113 0.132 0.145 0.156 B2p 0.000 0.001 0.001 0.003	0.002 0.014 0.027 0.042 0.060 0.081 0.099 0.111 0.121 0.128
Year 2000 2010 2020 2030 2040 2050 2060 2070 2080 2100 HFC- Year 2000 2010 2020 2030	A1B 0.002 0.009 0.020 0.035 0.056 0.081 0.105 0.122 0.131 0.133 0.131 -143a radia A1B 0.000 0.000 0.001 0.003 0.006	A1T 0.002 0.009 0.020 0.035 0.056 0.080 0.105 0.125 0.137 0.143 0.143 tive forci A1T 0.000 0.000 0.001 0.003 0.006	A1FI 0.002 0.009 0.019 0.035 0.055 0.078 0.101 0.119 0.129 0.134 0.135 ng (Wm ⁻² A1FI 0.000 0.000 0.001 0.003 0.006	A2 0.002 0.008 0.017 0.026 0.035 0.045 0.057 0.072 0.089 0.109 0.132 0.000 0.000 0.001 0.003 0.004	0.002 0.008 0.016 0.025 0.033 0.044 0.053 0.057 0.059 0.059 0.057 B1 0.000 0.000 0.001 0.002 0.004	0.002 0.008 0.017 0.027 0.038 0.050 0.064 0.079 0.095 0.111 0.125 B2 0.000 0.000 0.001 0.002 0.004	0.002 0.012 0.026 0.048 0.078 0.113 0.164 0.175 0.178 0.174 Alp 0.000 0.001 0.002 0.004 0.006	0.002 0.011 0.021 0.032 0.043 0.056 0.072 0.091 0.113 0.140 0.170 A2p 0.000 0.001 0.001 0.003 0.004	0.002 0.011 0.021 0.032 0.044 0.059 0.071 0.077 0.079 0.080 0.078 B1p 0.000 0.001 0.001 0.003 0.004	0.002 0.012 0.023 0.038 0.053 0.072 0.092 0.113 0.132 0.145 0.156 B2p 0.000 0.001 0.001 0.003 0.005	0.002 0.014 0.027 0.042 0.060 0.081 0.099 0.111 0.121 0.128
Year 2000 2010 2020 2030 2040 2050 2090 2100 HFC-Year 2000 2030 2040 2050	A1B 0.002 0.009 0.020 0.035 0.056 0.081 0.105 0.122 0.131 0.133 0.131 -143a radia A1B 0.000 0.000 0.001 0.003 0.006 0.009	A1T 0.002 0.009 0.020 0.035 0.056 0.080 0.105 0.125 0.137 0.143 0.143 tive forci A1T 0.000 0.000 0.001 0.003 0.006 0.009	A1FI 0.002 0.009 0.019 0.035 0.055 0.078 0.101 0.119 0.129 0.134 0.135 ng (Wm ⁻² A1FI 0.000 0.000 0.001 0.003 0.006 0.009	A2 0.002 0.008 0.017 0.026 0.035 0.045 0.057 0.072 0.089 0.109 0.132 0.000 0.000 0.001 0.003 0.004 0.006	0.002 0.008 0.016 0.025 0.033 0.044 0.053 0.057 0.059 0.059 0.057 B1 0.000 0.000 0.001 0.002 0.004 0.006	0.002 0.008 0.017 0.027 0.038 0.050 0.064 0.079 0.095 0.111 0.125 B2 0.000 0.000 0.001 0.002 0.004 0.006	0.002 0.012 0.026 0.048 0.078 0.113 0.164 0.175 0.178 0.174 A1p 0.000 0.001 0.002 0.004 0.006 0.010	0.002 0.011 0.021 0.032 0.043 0.056 0.072 0.091 0.113 0.140 0.170 A2p 0.000 0.001 0.001 0.003 0.004 0.006	0.002 0.011 0.021 0.032 0.044 0.059 0.071 0.077 0.079 0.080 0.078 B1p 0.000 0.001 0.001 0.003 0.004 0.006	0.002 0.012 0.023 0.038 0.053 0.072 0.092 0.113 0.132 0.145 0.156 B2p 0.000 0.001 0.001 0.003 0.005 0.007	0.002 0.014 0.027 0.042 0.060 0.081 0.099 0.111 0.121 0.128
Year 2000 2010 2020 2030 2040 2050 2090 2100 HFC-Year 2000 2030 2040 2050 2060	A1B 0.002 0.009 0.020 0.035 0.056 0.081 0.105 0.122 0.131 0.133 0.131 -143a radia A1B 0.000 0.000 0.001 0.003 0.006 0.009 0.013	A1T 0.002 0.009 0.020 0.035 0.056 0.080 0.105 0.125 0.137 0.143 0.143 tive forci A1T 0.000 0.000 0.001 0.003 0.006 0.009 0.013	A1FI 0.002 0.009 0.019 0.035 0.055 0.078 0.101 0.119 0.129 0.134 0.135 ng (Wm ⁻² A1FI 0.000 0.000 0.001 0.003 0.006 0.009 0.013	A2 0.002 0.008 0.017 0.026 0.035 0.045 0.057 0.072 0.089 0.109 0.132 0.000 0.000 0.001 0.003 0.004 0.006 0.008	0.002 0.008 0.016 0.025 0.033 0.044 0.053 0.057 0.059 0.057 B1 0.000 0.000 0.001 0.002 0.004 0.006 0.007	0.002 0.008 0.017 0.027 0.038 0.050 0.064 0.079 0.095 0.111 0.125 B2 0.000 0.000 0.001 0.002 0.004 0.006 0.006	0.002 0.012 0.026 0.048 0.078 0.113 0.143 0.164 0.175 0.178 0.174 A1p 0.000 0.001 0.002 0.004 0.006 0.010 0.014	0.002 0.011 0.021 0.032 0.043 0.056 0.072 0.091 0.113 0.140 0.170 A2p 0.000 0.001 0.001 0.003 0.004 0.006 0.008	0.002 0.011 0.021 0.032 0.044 0.059 0.071 0.077 0.079 0.080 0.078 B1p 0.000 0.001 0.001 0.003 0.004 0.006 0.008	0.002 0.012 0.023 0.038 0.053 0.072 0.092 0.113 0.132 0.145 0.156 B2p 0.000 0.001 0.001 0.003 0.005 0.007 0.009	0.002 0.014 0.027 0.042 0.060 0.081 0.099 0.111 0.121 0.128
Year 2000 2010 2020 2030 2040 2050 2060 2070 2080 2100 HFC- Year 2000 2010 2020 2030 2040 2050 2050 2070	A1B 0.002 0.009 0.020 0.035 0.056 0.081 0.105 0.122 0.131 0.133 0.131 -143a radia A1B 0.000 0.000 0.001 0.003 0.006 0.009 0.013 0.017	A1T 0.002 0.009 0.020 0.035 0.056 0.080 0.105 0.125 0.137 0.143 0.143 tive forci A1T 0.000 0.000 0.001 0.003 0.006 0.009 0.013 0.017	A1FI 0.002 0.009 0.019 0.035 0.055 0.078 0.101 0.119 0.129 0.134 0.135 ng (Wm ⁻² A1FI 0.000 0.000 0.001 0.003 0.006 0.009 0.013 0.017	A2 0.002 0.008 0.017 0.026 0.035 0.045 0.057 0.072 0.089 0.109 0.132 0.000 0.000 0.001 0.003 0.004 0.006 0.008 0.011	0.002 0.008 0.016 0.025 0.033 0.044 0.053 0.057 0.059 0.057 B1 0.000 0.000 0.001 0.002 0.004 0.006 0.007 0.009	0.002 0.008 0.017 0.027 0.038 0.050 0.064 0.079 0.095 0.111 0.125 B2 0.000 0.000 0.001 0.002 0.004 0.006 0.008 0.011	0.002 0.012 0.026 0.048 0.078 0.113 0.164 0.175 0.178 0.174 A1p 0.000 0.001 0.002 0.004 0.006 0.010 0.014 0.017	0.002 0.011 0.021 0.032 0.043 0.056 0.072 0.091 0.113 0.140 0.170 A2p 0.000 0.001 0.003 0.004 0.006 0.008 0.010	0.002 0.011 0.021 0.032 0.044 0.059 0.071 0.077 0.079 0.080 0.078 B1p 0.000 0.001 0.001 0.003 0.004 0.006 0.008 0.009	0.002 0.012 0.023 0.038 0.053 0.072 0.092 0.113 0.132 0.145 0.156 B2p 0.000 0.001 0.001 0.003 0.005 0.007 0.009 0.012	0.002 0.014 0.027 0.042 0.060 0.081 0.099 0.111 0.121 0.128
Year 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 HFC- Year 2000 2030 2040 2020 2030 2040 2050	A1B 0.002 0.009 0.020 0.035 0.056 0.081 0.105 0.122 0.131 0.133 0.131 -143a radia A1B 0.000 0.000 0.001 0.003 0.006 0.009 0.013 0.017 0.021	A1T 0.002 0.009 0.020 0.035 0.056 0.080 0.105 0.125 0.137 0.143 0.143 tive forci A1T 0.000 0.000 0.001 0.003 0.006 0.009 0.013 0.017 0.021	A1FI 0.002 0.009 0.019 0.035 0.055 0.078 0.101 0.119 0.129 0.134 0.135 ng (Wm ⁻² A1FI 0.000 0.000 0.001 0.003 0.006 0.009 0.013 0.017 0.020	A2 0.002 0.008 0.017 0.026 0.035 0.045 0.057 0.072 0.089 0.109 0.132 0.000 0.000 0.001 0.003 0.004 0.006 0.008 0.011 0.013	0.002 0.008 0.016 0.025 0.033 0.044 0.053 0.057 0.059 0.057 B1 0.000 0.000 0.001 0.002 0.004 0.006 0.007 0.009 0.010	0.002 0.008 0.017 0.027 0.038 0.050 0.064 0.079 0.095 0.111 0.125 B2 0.000 0.000 0.001 0.002 0.004 0.006 0.008 0.011 0.013	0.002 0.012 0.026 0.048 0.078 0.113 0.164 0.175 0.178 0.174 A1p 0.000 0.001 0.002 0.004 0.006 0.010 0.014 0.017 0.020	0.002 0.011 0.021 0.032 0.043 0.056 0.072 0.091 0.113 0.140 0.170 A2p 0.000 0.001 0.003 0.004 0.006 0.008 0.010 0.013	0.002 0.011 0.021 0.032 0.044 0.059 0.071 0.077 0.079 0.080 0.078 B1p 0.000 0.001 0.001 0.003 0.004 0.006 0.008 0.009 0.010	0.002 0.012 0.023 0.038 0.053 0.072 0.092 0.113 0.132 0.145 0.156 B2p 0.000 0.001 0.003 0.005 0.007 0.009 0.012 0.014	0.002 0.014 0.027 0.042 0.060 0.081 0.099 0.111 0.121 0.128

HEC 1	150 4:-	4:	(XV	25							
Year	1 52a radia A1B	A1T	ng (wm - A1FI	A2	B1	B2	A 1 m	A 2n	D1n	D2n	IS92a
2000	0.000	0.000	0.000	0.000	0.000	0.000	A1p 0.000	A2p 0.000	B1p 0.000	B2p 0.000	$\frac{1392a}{0.000}$
2010	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2020	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2030	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001
2040	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.003
2050	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.005
2060	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.006
2070	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.007
2080	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.007
2090	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.007
2100	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.007
HFC_2	227ea radi	ative forc	ing (Wm	-2)							
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	
2000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
2010	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	
2020	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002	
2030	0.004	0.004	0.004	0.003	0.003	0.003	0.004	0.003	0.003	0.003	
2040	0.007	0.007	0.007	0.004	0.004	0.005	0.007	0.004	0.004	0.005	
2050	0.010	0.010	0.010	0.006	0.006	0.007	0.010	0.005	0.006	0.007	
2060	0.014	0.014	0.013	0.008	0.008	0.009	0.013	0.007	0.008	0.009	
2070	0.017	0.017	0.016	0.010	0.009	0.012	0.016	0.009	0.009	0.012	
2080	0.019	0.020	0.019	0.012	0.010	0.015	0.018	0.011	0.010	0.014	
2090	0.020	0.021	0.020	0.015	0.010	0.018	0.019	0.014	0.010	0.016	
2100	0.021	0.022	0.021	0.018	0.011	0.020	0.020	0.016	0.010	0.018	
HFC-2	245ca radi	ative forc	ing (Wm	-2)							
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	
2000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
2010	0.002	0.002	0.002	0.002	0.002	0.002	0.003	0.002	0.002	0.002	
2020	0.005	0.005	0.005	0.004	0.004	0.004	0.005	0.004	0.004	0.004	
2030	0.008	0.008	0.008	0.005	0.005	0.006	0.008	0.005	0.005	0.006	
2040	0.012										
2050		0.012	0.012	0.007	0.007	0.008	0.013	0.006	0.006	0.008	
2050	0.017	0.017	0.012 0.016	0.008	0.009	0.008 0.010	0.013 0.017	0.008	0.009	0.011	
2060	0.017 0.021	0.017 0.021	0.012 0.016 0.020	0.008 0.011	0.009 0.010	0.008 0.010 0.013	0.013 0.017 0.021	0.008 0.010	0.009 0.010	0.011 0.013	
2060 2070	0.017 0.021 0.023	0.017 0.021 0.024	0.012 0.016 0.020 0.023	0.008 0.011 0.013	0.009 0.010 0.010	0.008 0.010 0.013 0.015	0.013 0.017 0.021 0.023	0.008 0.010 0.013	0.009 0.010 0.010	0.011 0.013 0.016	
2060 2070 2080	0.017 0.021 0.023 0.023	0.017 0.021 0.024 0.025	0.012 0.016 0.020 0.023 0.023	0.008 0.011 0.013 0.017	0.009 0.010 0.010 0.010	0.008 0.010 0.013 0.015 0.018	0.013 0.017 0.021 0.023 0.023	0.008 0.010 0.013 0.016	0.009 0.010 0.010 0.010	0.011 0.013 0.016 0.018	
2060 2070 2080 2090	0.017 0.021 0.023 0.023 0.022	0.017 0.021 0.024 0.025 0.025	0.012 0.016 0.020 0.023 0.023 0.023	0.008 0.011 0.013 0.017 0.020	0.009 0.010 0.010 0.010 0.010	0.008 0.010 0.013 0.015 0.018 0.021	0.013 0.017 0.021 0.023 0.023 0.022	0.008 0.010 0.013 0.016 0.019	0.009 0.010 0.010 0.010 0.010	0.011 0.013 0.016 0.018 0.019	
2060 2070 2080	0.017 0.021 0.023 0.023	0.017 0.021 0.024 0.025	0.012 0.016 0.020 0.023 0.023	0.008 0.011 0.013 0.017	0.009 0.010 0.010 0.010	0.008 0.010 0.013 0.015 0.018	0.013 0.017 0.021 0.023 0.023	0.008 0.010 0.013 0.016	0.009 0.010 0.010 0.010	0.011 0.013 0.016 0.018	
2060 2070 2080 2090 2100 HFC-4	0.017 0.021 0.023 0.023 0.022 0.021	0.017 0.021 0.024 0.025 0.025 0.023	0.012 0.016 0.020 0.023 0.023 0.023 0.022 forcing (0.008 0.011 0.013 0.017 0.020 0.024 Wm ⁻²)	0.009 0.010 0.010 0.010 0.010 0.009	0.008 0.010 0.013 0.015 0.018 0.021 0.024	0.013 0.017 0.021 0.023 0.023 0.022 0.022	0.008 0.010 0.013 0.016 0.019 0.023	0.009 0.010 0.010 0.010 0.010 0.009	0.011 0.013 0.016 0.018 0.019 0.020	
2060 2070 2080 2090 2100 HFC -4 Year	0.017 0.021 0.023 0.023 0.022 0.021 13–10mee A1B	0.017 0.021 0.024 0.025 0.025 0.023 radiative	0.012 0.016 0.020 0.023 0.023 0.023 0.022 forcing (A1FI	0.008 0.011 0.013 0.017 0.020 0.024 Wm ⁻²)	0.009 0.010 0.010 0.010 0.010 0.009	0.008 0.010 0.013 0.015 0.018 0.021 0.024	0.013 0.017 0.021 0.023 0.023 0.022 0.020	0.008 0.010 0.013 0.016 0.019 0.023	0.009 0.010 0.010 0.010 0.010 0.009	0.011 0.013 0.016 0.018 0.019 0.020	
2060 2070 2080 2090 2100 HFC -4 Year 2000	0.017 0.021 0.023 0.023 0.022 0.021 13–10mee A1B 0.000	0.017 0.021 0.024 0.025 0.025 0.023 radiative A1T 0.000	0.012 0.016 0.020 0.023 0.023 0.023 0.022 forcing (A1FI 0.000	0.008 0.011 0.013 0.017 0.020 0.024 Wm ⁻²) A2 0.000	0.009 0.010 0.010 0.010 0.010 0.009 B1	0.008 0.010 0.013 0.015 0.018 0.021 0.024 B2 0.000	0.013 0.017 0.021 0.023 0.023 0.022 0.020 A1p	0.008 0.010 0.013 0.016 0.019 0.023 A2p	0.009 0.010 0.010 0.010 0.010 0.009 B1p 0.000	0.011 0.013 0.016 0.018 0.019 0.020 B2p 0.000	
2060 2070 2080 2090 2100 HFC-4 Year 2000 2010	0.017 0.021 0.023 0.023 0.022 0.021 13–10mee A1B 0.000 0.000	0.017 0.021 0.024 0.025 0.025 0.023 radiative A1T 0.000 0.000	0.012 0.016 0.020 0.023 0.023 0.023 0.022 forcing (A1FI 0.000 0.000	0.008 0.011 0.013 0.017 0.020 0.024 Wm ⁻²) A2 0.000 0.000	0.009 0.010 0.010 0.010 0.010 0.009 B1 0.000 0.000	0.008 0.010 0.013 0.015 0.018 0.021 0.024 B2 0.000 0.000	0.013 0.017 0.021 0.023 0.023 0.022 0.020 A1p 0.000 0.000	0.008 0.010 0.013 0.016 0.019 0.023 A2p 0.000 0.000	0.009 0.010 0.010 0.010 0.010 0.009 B1p 0.000 0.000	0.011 0.013 0.016 0.018 0.019 0.020 B2p 0.000 0.000	
2060 2070 2080 2090 2100 HFC -4 Year 2000 2010 2020	0.017 0.021 0.023 0.023 0.022 0.021 43–10mee A1B 0.000 0.000	0.017 0.021 0.024 0.025 0.025 0.023 radiative A1T 0.000 0.000 0.001	0.012 0.016 0.020 0.023 0.023 0.023 0.022 forcing (A1FI 0.000 0.000 0.001	0.008 0.011 0.013 0.017 0.020 0.024 Wm ⁻²) A2 0.000 0.000 0.001	0.009 0.010 0.010 0.010 0.010 0.009 B1 0.000 0.000 0.000	0.008 0.010 0.013 0.015 0.018 0.021 0.024 B2 0.000 0.000 0.000	0.013 0.017 0.021 0.023 0.023 0.022 0.020 A1p 0.000 0.000 0.001	0.008 0.010 0.013 0.016 0.019 0.023 A2p 0.000 0.000 0.001	0.009 0.010 0.010 0.010 0.010 0.009 B1p 0.000 0.000 0.001	0.011 0.013 0.016 0.018 0.019 0.020 B2p 0.000 0.000 0.001	
2060 2070 2080 2090 2100 HFC -4 Year 2000 2010 2020 2030	0.017 0.021 0.023 0.023 0.022 0.021 43–10mee A1B 0.000 0.000 0.001	0.017 0.021 0.024 0.025 0.025 0.023 radiative A1T 0.000 0.000 0.001 0.001	0.012 0.016 0.020 0.023 0.023 0.023 0.022 forcing (A1FI 0.000 0.000 0.001 0.001	0.008 0.011 0.013 0.017 0.020 0.024 Wm ⁻²) A2 0.000 0.000 0.001 0.001	0.009 0.010 0.010 0.010 0.010 0.009 B1 0.000 0.000 0.000 0.000	0.008 0.010 0.013 0.015 0.018 0.021 0.024 B2 0.000 0.000 0.000 0.000	0.013 0.017 0.021 0.023 0.023 0.022 0.020 A1p 0.000 0.000 0.001	0.008 0.010 0.013 0.016 0.019 0.023 A2p 0.000 0.000 0.001	0.009 0.010 0.010 0.010 0.010 0.009 B1p 0.000 0.000 0.001	0.011 0.013 0.016 0.018 0.019 0.020 B2p 0.000 0.000 0.001	
2060 2070 2080 2090 2100 HFC -4 Year 2000 2010 2020 2030 2040	0.017 0.021 0.023 0.023 0.022 0.021 43–10mee A1B 0.000 0.000 0.001 0.001	0.017 0.021 0.024 0.025 0.025 0.023 radiative A1T 0.000 0.000 0.001 0.001 0.002	0.012 0.016 0.020 0.023 0.023 0.022 forcing (A1FI 0.000 0.001 0.001 0.002	0.008 0.011 0.013 0.017 0.020 0.024 Wm ⁻²) A2 0.000 0.000 0.001 0.001	0.009 0.010 0.010 0.010 0.010 0.009 B1 0.000 0.000 0.000 0.001	0.008 0.010 0.013 0.015 0.018 0.021 0.024 B2 0.000 0.000 0.000 0.001 0.001	0.013 0.017 0.021 0.023 0.023 0.022 0.020 A1p 0.000 0.000 0.001 0.001	0.008 0.010 0.013 0.016 0.019 0.023 A2p 0.000 0.000 0.001 0.001	0.009 0.010 0.010 0.010 0.010 0.009 B1p 0.000 0.000 0.001 0.001	0.011 0.013 0.016 0.018 0.019 0.020 B2p 0.000 0.000 0.001 0.001	
2060 2070 2080 2090 2100 HFC-4 Year 2000 2010 2020 2030 2040 2050	0.017 0.021 0.023 0.023 0.022 0.021 43–10mee A1B 0.000 0.000 0.001 0.001 0.002 0.002	0.017 0.021 0.024 0.025 0.025 0.023 radiative A1T 0.000 0.000 0.001 0.001 0.002 0.002	0.012 0.016 0.020 0.023 0.023 0.022 forcing (A1FI 0.000 0.001 0.001 0.002 0.002	0.008 0.011 0.013 0.017 0.020 0.024 Wm ⁻²) A2 0.000 0.000 0.001 0.001 0.001	0.009 0.010 0.010 0.010 0.010 0.009 B1 0.000 0.000 0.000 0.001 0.001	0.008 0.010 0.013 0.015 0.018 0.021 0.024 B2 0.000 0.000 0.000 0.001 0.001	0.013 0.017 0.021 0.023 0.023 0.022 0.020 A1p 0.000 0.000 0.001 0.001 0.002 0.002	0.008 0.010 0.013 0.016 0.019 0.023 A2p 0.000 0.000 0.001 0.001	0.009 0.010 0.010 0.010 0.010 0.009 B1p 0.000 0.000 0.001 0.001	0.011 0.013 0.016 0.018 0.019 0.020 B2p 0.000 0.000 0.001 0.001	
2060 2070 2080 2090 2100 HFC-4 Year 2000 2010 2020 2030 2040 2050 2060	0.017 0.021 0.023 0.023 0.022 0.021 13–10mee A1B 0.000 0.000 0.001 0.001 0.002 0.002 0.003	0.017 0.021 0.024 0.025 0.025 0.023 radiative A1T 0.000 0.000 0.001 0.001 0.002 0.002 0.003	0.012 0.016 0.020 0.023 0.023 0.022 forcing (A1FI 0.000 0.001 0.001 0.002 0.002 0.002	0.008 0.011 0.013 0.017 0.020 0.024 Wm ⁻²) A2 0.000 0.000 0.001 0.001 0.001 0.002	0.009 0.010 0.010 0.010 0.010 0.009 B1 0.000 0.000 0.000 0.001 0.001	0.008 0.010 0.013 0.015 0.018 0.021 0.024 B2 0.000 0.000 0.000 0.001 0.001 0.002	0.013 0.017 0.021 0.023 0.023 0.022 0.020 A1p 0.000 0.000 0.001 0.001 0.002 0.002 0.002	0.008 0.010 0.013 0.016 0.019 0.023 A2p 0.000 0.000 0.001 0.001 0.001	0.009 0.010 0.010 0.010 0.010 0.009 B1p 0.000 0.000 0.001 0.001 0.001	0.011 0.013 0.016 0.018 0.019 0.020 B2p 0.000 0.000 0.001 0.001 0.001 0.002	
2060 2070 2080 2090 2100 HFC-4 Year 2000 2010 2020 2030 2040 2050 2060 2070	0.017 0.021 0.023 0.022 0.021 13–10mee A1B 0.000 0.000 0.001 0.001 0.002 0.002 0.003	0.017 0.021 0.024 0.025 0.025 0.023 radiative A1T 0.000 0.000 0.001 0.001 0.002 0.002 0.003 0.003	0.012 0.016 0.020 0.023 0.023 0.022 forcing (A1FI 0.000 0.000 0.001 0.001 0.002 0.002 0.002 0.002	0.008 0.011 0.013 0.017 0.020 0.024 Wm ⁻²) A2 0.000 0.000 0.001 0.001 0.001 0.002 0.002	0.009 0.010 0.010 0.010 0.010 0.009 B1 0.000 0.000 0.000 0.001 0.001 0.001	0.008 0.010 0.013 0.015 0.018 0.021 0.024 B2 0.000 0.000 0.000 0.001 0.001 0.002 0.002	0.013 0.017 0.021 0.023 0.022 0.020 A1p 0.000 0.000 0.001 0.001 0.002 0.002 0.002 0.002	0.008 0.010 0.013 0.016 0.019 0.023 A2p 0.000 0.000 0.001 0.001 0.001 0.001 0.002	0.009 0.010 0.010 0.010 0.010 0.009 B1p 0.000 0.000 0.001 0.001 0.001 0.001	0.011 0.013 0.016 0.018 0.019 0.020 B2p 0.000 0.000 0.001 0.001 0.001 0.002 0.002	
2060 2070 2080 2090 2100 HFC-4 Year 2000 2010 2020 2030 2040 2050 2060 2070 2080	0.017 0.021 0.023 0.022 0.021 13–10mee A1B 0.000 0.000 0.001 0.001 0.002 0.002 0.003 0.003	0.017 0.021 0.024 0.025 0.025 0.023 radiative A1T 0.000 0.000 0.001 0.001 0.002 0.002 0.003 0.003 0.004	0.012 0.016 0.020 0.023 0.023 0.022 forcing (A1FI 0.000 0.001 0.001 0.002 0.002 0.002 0.002 0.003 0.004	0.008 0.011 0.013 0.017 0.020 0.024 Wm ⁻²) A2 0.000 0.000 0.001 0.001 0.001 0.002 0.002 0.002	0.009 0.010 0.010 0.010 0.010 0.009 B1 0.000 0.000 0.000 0.001 0.001 0.001 0.002 0.002	0.008 0.010 0.013 0.015 0.018 0.021 0.024 B2 0.000 0.000 0.000 0.001 0.001 0.002 0.002 0.002	0.013 0.017 0.021 0.023 0.022 0.020 A1p 0.000 0.000 0.001 0.002 0.002 0.002 0.002 0.003 0.003	0.008 0.010 0.013 0.016 0.019 0.023 A2p 0.000 0.000 0.001 0.001 0.001 0.001 0.002 0.002	0.009 0.010 0.010 0.010 0.010 0.009 B1p 0.000 0.000 0.001 0.001 0.001 0.001 0.001	0.011 0.013 0.016 0.018 0.019 0.020 B2p 0.000 0.000 0.001 0.001 0.001 0.002 0.002	
2060 2070 2080 2090 2100 HFC-4 Year 2000 2010 2020 2030 2040 2050 2060 2070	0.017 0.021 0.023 0.022 0.021 13–10mee A1B 0.000 0.000 0.001 0.001 0.002 0.002 0.003	0.017 0.021 0.024 0.025 0.025 0.023 radiative A1T 0.000 0.000 0.001 0.001 0.002 0.002 0.003 0.003	0.012 0.016 0.020 0.023 0.023 0.022 forcing (A1FI 0.000 0.000 0.001 0.001 0.002 0.002 0.002 0.002	0.008 0.011 0.013 0.017 0.020 0.024 Wm ⁻²) A2 0.000 0.000 0.001 0.001 0.001 0.002 0.002	0.009 0.010 0.010 0.010 0.010 0.009 B1 0.000 0.000 0.000 0.001 0.001 0.001	0.008 0.010 0.013 0.015 0.018 0.021 0.024 B2 0.000 0.000 0.000 0.001 0.001 0.002 0.002	0.013 0.017 0.021 0.023 0.022 0.020 A1p 0.000 0.000 0.001 0.001 0.002 0.002 0.002 0.002	0.008 0.010 0.013 0.016 0.019 0.023 A2p 0.000 0.000 0.001 0.001 0.001 0.001 0.002	0.009 0.010 0.010 0.010 0.010 0.009 B1p 0.000 0.000 0.001 0.001 0.001 0.001	0.011 0.013 0.016 0.018 0.019 0.020 B2p 0.000 0.000 0.001 0.001 0.001 0.002 0.002	

II.3.5: Tropospheric O_3 radiative forcing (Wm^{-2})

												IS92a/
Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a	SAR
2000	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.39
2010	0.45	0.45	0.45	0.45	0.41	0.43	0.47	0.45	0.39	0.44	0.44	0.41
2020	0.54	0.53	0.56	0.55	0.45	0.49	0.58	0.55	0.44	0.51	0.51	0.43
2030	0.60	0.64	0.69	0.66	0.46	0.56	0.65	0.66	0.45	0.57	0.58	0.45
2040	0.62	0.71	0.84	0.74	0.45	0.62	0.68	0.73	0.48	0.63	0.63	0.48
2050	0.62	0.75	1.03	0.81	0.42	0.66	0.70	0.80	0.52	0.66	0.70	0.51
2060	0.61	0.76	1.13	0.87	0.38	0.69	0.71	0.87	0.53	0.68	0.75	0.53
2070	0.59	0.71	1.21	0.93	0.34	0.72	0.69	0.93	0.54	0.70	0.80	0.55
2080	0.57	0.64	1.30	1.02	0.30	0.76	0.66	1.01	0.55	0.73	0.84	0.58
2090	0.55	0.56	1.29	1.13	0.26	0.79	0.63	1.13	0.50	0.74	0.89	0.59
2100	0.52	0.48	1.27	1.25	0.21	0.81	0.58	1.25	0.43	0.75	0.93	0.61

II.3.6: SO₄²⁻ aerosols (direct effect) radiative forcing (Wm⁻²)

Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
2000	-0.40	-0.40	-0.40	-0.40	-0.40	-0.40	-0.40	-0.40	-0.40	-0.40	-0.40
2010	-0.51	-0.38	-0.47	-0.43	-0.43	-0.38	-0.51	-0.43	-0.35	-0.39	-0.49
2020	-0.58	-0.35	-0.50	-0.58	-0.43	-0.35	-0.58	-0.58	-0.32	-0.38	-0.58
2030	-0.53	-0.35	-0.55	-0.65	-0.45	-0.35	-0.53	-0.65	-0.31	-0.35	-0.67
2040	-0.40	-0.27	-0.55	-0.63	-0.45	-0.34	-0.45	-0.62	-0.31	-0.34	-0.75
2050	-0.37	-0.23	-0.47	-0.61	-0.40	-0.32	-0.37	-0.61	-0.30	-0.33	-0.83
2060	-0.27	-0.20	-0.32	-0.52	-0.32	-0.32	-0.30	-0.50	-0.30	-0.31	-0.82
2070	-0.21	-0.18	-0.25	-0.43	-0.25	-0.29	-0.26	-0.42	-0.28	-0.30	-0.82
2080	-0.18	-0.15	-0.23	-0.38	-0.21	-0.29	-0.18	-0.37	-0.25	-0.28	-0.81
2090	-0.17	-0.14	-0.23	-0.36	-0.17	-0.28	-0.17	-0.36	-0.20	-0.28	-0.80
2100	-0.16	-0.12	-0.23	-0.35	-0.15	-0.28	-0.16	-0.35	-0.17	-0.28	-0.79

II.3.7: BC aerosols radiative forcing (Wm⁻²)

Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
2000	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40
2010	0.45	0.45	0.46	0.45	0.37	0.42	0.49	0.45	0.32	0.45	0.42
2020	0.46	0.51	0.52	0.48	0.35	0.46	0.58	0.48	0.38	0.46	0.43
2030	0.49	0.58	0.62	0.55	0.29	0.49	0.63	0.54	0.34	0.45	0.46
2040	0.51	0.66	0.72	0.58	0.26	0.54	0.71	0.57	0.35	0.49	0.49
2050	0.52	0.74	0.89	0.62	0.25	0.57	0.77	0.62	0.37	0.52	0.52
2060	0.54	0.82	0.94	0.66	0.25	0.62	0.85	0.66	0.38	0.57	0.55
2070	0.55	0.86	1.02	0.71	0.23	0.66	0.91	0.71	0.40	0.63	0.57
2080	0.58	0.89	1.14	0.77	0.23	0.74	0.95	0.77	0.42	0.69	0.60
2090	0.65	0.89	1.09	0.86	0.22	0.78	0.95	0.86	0.38	0.75	0.63
2100	0.71	0.86	1.05	0.95	0.20	0.83	0.95	0.95	0.37	0.80	0.66

II.3.8: OC aerosols radiative forcing (Wm⁻²)

Year	A1B	A1T	A1FI	A2	B1	B2	A1p	A2p	B1p	B2p	IS92a
2000	-0.50	-0.50	-0.50	-0.50	-0.50	-0.50	-0.50	-0.50	-0.50	-0.50	-0.50
2010	-0.56	-0.56	-0.57	-0.55	-0.46	-0.53	-0.62	-0.55	-0.41	-0.55	-0.52
2020	-0.58	-0.63	-0.66	-0.60	-0.44	-0.57	-0.74	-0.60	-0.48	-0.59	-0.55
2030	-0.61	-0.73	-0.77	-0.68	-0.37	-0.61	-0.79	-0.68	-0.42	-0.57	-0.58
2040	-0.64	-0.83	-0.91	-0.73	-0.33	-0.66	-0.88	-0.72	-0.43	-0.61	-0.61
2050	-0.66	-0.93	-1.12	-0.77	-0.30	-0.71	-0.96	-0.77	-0.45	-0.65	-0.65
2060	-0.68	-1.02	-1.17	-0.82	-0.30	-0.76	-1.05	-0.82	-0.47	-0.71	-0.68
2070	-0.69	-1.08	-1.28	-0.88	-0.30	-0.84	-1.14	-0.88	-0.50	-0.78	-0.72
2080	-0.73	-1.12	-1.42	-0.97	-0.28	-0.92	-1.18	-0.96	-0.52	-0.87	-0.75
2090	-0.80	-1.12	-1.37	-1.08	-0.27	-0.99	-1.19	-1.07	-0.49	-0.94	-0.79
2100	-0.88	-1.08	-1.32	-1.20	-0.25	-1.04	-1.19	-1.20	-0.46	-1.00	-0.83

II.3.9: Radiative forcing (Wm⁻²) from CFCs and HCFCs following the Montreal (1997) Amendments

Year	CFC-11	CFC-12	CFC-113	CFC-114	CFC-115	CCl ₄	CH ₃ CCl ₃	HCFC-22	HCFC-141b	HCFC-142	b HCFC-123	CF ₂ BrCl	CF ₃ Br	SUM
2000	0.0668	0.1712	0.0255	0.0050	0.0016	0.0120	0.0026	0.0290	0.0018	0.0030	0.0000	0.0012	0.0010	0.3206
2010	0.0615	0.1686	0.0243	0.0050	0.0016	0.0098	0.0004	0.0514	0.0031	0.0066	0.0004	0.0012	0.0010	0.3348
2020	0.0535	0.1555	0.0216	0.0047	0.0016	0.0077	0.0001	0.0458	0.0022	0.0064	0.0006	0.0009	0.0010	0.3015
2030	0.0450	0.1411	0.0192	0.0047	0.0016	0.0061	0.0000	0.0274	0.0013	0.0046	0.0004	0.0006	0.0010	0.2529
2040	0.0373	0.1280	0.0171	0.0043	0.0016	0.0048	0.0000	0.0176	0.0008	0.0034	0.0004	0.0003	0.0010	0.2166
2050	0.0308	0.1158	0.0153	0.0043	0.0016	0.0038	0.0000	0.0092	0.0003	0.0022	0.0002	0.0003	0.0010	0.1848
2060	0.0253	0.1050	0.0135	0.0040	0.0016	0.0030	0.0000	0.0040	0.0001	0.0012	0.0002	0.0000	0.0006	0.1585
2070	0.0208	0.0954	0.0120	0.0040	0.0016	0.0023	0.0000	0.0018	0.0000	0.0008	0.0000	0.0000	0.0006	0.1393
2080	0.0170	0.0864	0.0108	0.0037	0.0014	0.0018	0.0000	0.0008	0.0000	0.0004	0.0000	0.0000	0.0006	0.1230
2090	0.0140	0.0784	0.0096	0.0037	0.0014	0.0014	0.0000	0.0004	0.0000	0.0002	0.0000	0.0000	0.0006	0.1098
2100	0.0113	0.0710	0.0084	0.0037	0.0014	0.0012	0.0000	0.0002	0.0000	0.0002	0.0000	0.0000	0.0003	0.0977

II.3.10: Radiative Forcing (Wm⁻²) from fosil fuel plus biomass Organic and Black Carbon as used in the Chapter 9 Simple Model SRES Projections

Year	A1B	A1T	A1FI	A2	B1	B2	IS92a
1990	-0.0997	-0.0997	-0.0997	-0.0997	-0.0997	-0.0997	-0.0998
2000	-0.1361	-0.1361	-0.1361	-0.1361	-0.1361	-0.1361	-0.1586
2010	-0.1308	-0.1468	-0.1280	-0.1392	-0.1081	-0.1203	-0.1357
2020	-0.0524	-0.0799	-0.1714	-0.1248	-0.0926	-0.0516	-0.1103
2030	-0.0562	-0.0598	-0.1745	-0.1088	-0.0154	-0.0148	-0.0872
2040	-0.0780	-0.0644	-0.1614	-0.1064	0.0349	-0.0075	-0.0610
2050	-0.0804	-0.0603	-0.1351	-0.1029	0.0280	-0.0049	-0.0339
2060	-0.0948	-0.0615	-0.1417	-0.1002	0.0241	0.0015	-0.0190
2070	-0.1071	-0.0613	-0.1193	-0.0939	0.0147	0.0064	-0.0026
2080	-0.1161	-0.0629	-0.0644	-0.0871	0.0300	0.0180	0.0166
2090	-0.1178	-0.0619	0.0365	-0.0816	0.0421	0.0341	0.0390
2100	-0.1208	-0.0629	0.0565	-0.0762	0.0351	0.0510	0.0635

 $\textbf{II.3.11: Total Radiative Forcing (Wm$^{-2}$) from GHG plus direct and indirect aerosol effects as used in the Chapter 9 Simple Model SRES Projections \\$

Year	A1B	A1T	A1FI	A2	B1	B2	IS92a
1990	1.03	1.03	1.03	1.03	1.03	1.03	1.03
2000	1.33	1.33	1.33	1.33	1.33	1.33	1.31
2010	1.65	1.85	1.69	1.74	1.73	1.82	1.63
2020	2.16	2.48	2.17	2.04	2.15	2.36	2.00
2030	2.84	3.07	2.78	2.56	2.56	2.81	2.40
2040	3.61	3.76	3.67	3.22	2.93	3.26	2.82
2050	4.16	4.31	4.83	3.89	3.30	3.70	3.25
2060	4.79	4.73	5.99	4.71	3.65	4.11	3.76
2070	5.28	4.97	7.02	5.56	3.92	4.52	4.24
2080	5.62	5.11	7.89	6.40	4.09	4.92	4.74
2090	5.86	5.12	8.59	7.22	4.18	5.32	5.26
2100	6.05	5.07	9.14	8.07	4.19	5.71	5.79

II.4: Model Average Surface Air Temperature Change (°C)

Year	A1B	A1T	A1FI	A2	B1	B2	IS92a
1750 to 1990	0.33	0.33	0.33	0.33	0.33	0.33	0.34
1990	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2000	0.16	0.16	0.16	0.16	0.16	0.16	0.15
2010	0.30	0.40	0.32	0.35	0.34	0.39	0.27
2020	0.52	0.71	0.55	0.50	0.55	0.66	0.43
2030	0.85	1.03	0.85	0.73	0.77	0.93	0.61
2040	1.26	1.41	1.27	1.06	0.98	1.18	0.80
2050	1.59	1.75	1.86	1.42	1.21	1.44	1.00
2060	1.97	2.04	2.50	1.85	1.44	1.69	1.26
2070	2.30	2.25	3.10	2.33	1.63	1.94	1.52
2080	2.56	2.41	3.64	2.81	1.79	2.20	1.79
2090	2.77	2.49	4.09	3.29	1.91	2.44	2.08
2100	2.95	2.54	4.49	3.79	1.98	2.69	2.38

Note: See Chapter 9 for details.

II.5: Sea Level Change (mm)

Note: Values are for the middle of the year..

II.5.1: Total sea level change (mm)

Models	Models average – Total sea level change (mm)										
Year	A1B	A1T	A1FI	A2	B1	B2					
1990	0	0	0	0	0	0					
2000	17	17	17	17	17	17					
2010	37	39	37	38	38	38					
2020	61	66	61	61	62	64					
2030	91	97	90	88	89	94					
2040	127	134	126	120	118	126					
2050	167	175	172	157	150	160					
2060	210	217	228	201	183	197					
2070	256	258	290	250	216	235					
2080	301	298	356	304	249	275					
2090	345	334	424	362	281	316					
2100	387	367	491	424	310	358					

Note: The sum of the components listed in Appendix II.5.2 to II.5.5 does not equal the values shown above owing to the addition of other terms. See Chapter 11, Section 11.5.1 for details.

Models minimum – Total sea level change (mm)

1120000		2000			-)	
Year	A1B	A1T	A1FI	A2	B1	B2
1990	0	0	0	0	0	0
2000	6	6	6	6	6	6
2010	13	13	13	13	13	13
2020	22	22	24	21	22	23
2030	34	33	36	31	32	34
2040	48	47	49	44	42	45
2050	63	66	64	58	52	56
2060	78	89	77	75	63	68
2070	93	113	89	93	72	79
2080	107	137	99	113	80	91
2090	119	160	106	133	87	103
2100	129	182	111	155	92	114

Note: The final values of these timeseries correspond to the lower limit of the coloured bars on the right-hand side of Chapter 11, Figure 11.12.

Model maximum – Total sea level change (mm	Model	maximum	- Total	sea level	change	(mm)
--	-------	---------	---------	-----------	--------	------

Year	A1B	A1T	A1FI	A2	B1	B2
1990	0	0	0	0	0	0
2000	29	29	29	29	29	29
2010	63	63	65	64	64	65
2020	103	104	110	104	105	109
2030	153	153	164	149	151	159
2040	214	214	228	204	203	216
2050	284	291	299	269	259	277
2060	360	386	375	343	319	344
2070	442	494	453	430	381	414
2080	527	612	529	526	444	488
2090	611	735	602	631	507	566
2100	694	859	671	743	567	646

Note: The final values of these timeseries correspond to the upper limit of the coloured bars on the right-hand side of Chapter 11, Figure 11.12.

II.5.2: Sea level change due to thermal expansion (mm)

Year	A1B	A1T	A1FI	A2	B1	B2
1990	0	0	0	0	0	0
• • • •	4.0	4.0	4.0	4.0	4.0	4.0
2000	10	10	10	10	10	10
2010	23	24	23	23	23	24
2020	39	43	39	39	39	42
2030	60	66	60	57	58	62
2040	87	93	86	81	79	85
2050	117	123	122	109	101	110
2060	150	155	166	142	125	137
2070	185	186	217	180	149	165
2080	220	216	272	224	173	196
2090	255	243	329	272	195	227
2010	288	267	388	325	216	260

II.5.3: Sea level change due to glaciers and ice caps (mm)

Year	A1B	A1T	A1FI	A2	B1	B2
1990	0	0	0	0	0	0
2000	4	4	4	4	4	4
2010	9	10	9	10	10	10
2020	16	17	16	16	16	16
2030	23	25	23	23	23	24
2040	32	35	32	31	31	34
2050	43	46	44	41	41	44
2060	55	58	57	52	50	54
2070	67	71	72	65	61	66
2080	80	83	89	79	71	77
2090	93	95	105	93	82	89
2100	106	106	120	108	92	101

II.5.4: Sea level change due to Greenland (mm)

Year	A1B	A1T	A1FI	A2	B1	B2
1990	0	0	0	0	0	0
2000	0	0	0	0	0	0
2010	1	1	1	1	1	1
2020	2	2	2	2	2	2
2030	4	4	4	4	4	4
2040	5	6	5	5	5	6
2050	8	8	8	7	7	8
2060	10	11	11	10	9	10
2070	13	14	15	13	12	13
2080	17	17	19	16	14	16
2090	20	21	24	20	17	19
2100	24	24	29	25	20	22

II.5.5: Sea level change due to Antarctica (mm)

Year	A1B	A1T	A1FI	A2	B1	B2
1990	0	0	0	0	0	0
2000	2	2	2	2	2	2
2000	-2	-2	-2	-2	-2	-2
2010	-5	-5	-5	-5	-5	-5
2020	-8	-9	-8	-8	-8	-9
2030	-12	-14	-13	-12	-13	-13
2040	-18	-20	-18	-17	-17	-19
2050	-25	-27	-25	-23	-23	-25
2060	-33	-35	-35	-31	-30	-32
2070	-42	-45	-46	-40	-37	-4 1
2080	-52	-54	-59	-50	-44	-49
2090	-63	-64	-74	-62	-53	-59
2100	-74	-75	-90	-76	-61	-70

References

IPCC, 1996: Climate Change 1995: The Science of Climate Change. Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change [Houghton, J.T., L.G. Meira Filho, B.A. Callander, N. Harris, A. Kattenberg, and K. Maskell (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 572 pp.

Jain, A.K., H.S. Kheshgi, and D.J. Wuebbles, 1994: Integrated Science Model for Assessment of Climate Change. Lawrence Livermore National Laboratory, UCRL-JC-116526.

Nakićenović, N., J. Alcamo, G. Davis, B. de Vries, J. Fenhann, S. Gaffin, K. Gregory, A. Grübler, T. Y. Jung, T. Kram, E. L. La Rovere, L. Michaelis, S. Mori, T. Morita, W. Pepper, H. Pitcher, L. Price, K. Raihi, A. Roehrl, H-H. Rogner, A. Sankovski, M. Schlesinger, P. Shukla, S. Smith, R. Swart, S. van Rooijen, N. Victor, Z. Dadi, 2000: IPCC Special Report on Emissions Scenarios, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 599 pp.

WMO, 1999: Scientific Assessment of Ozone Depletion: 1998. Global Ozone Research and Monitoring Project - Report No. 44, World Meteorological Organization, Geneva, Switzerland, 732 pp.

Contributors

to the IPCC WGI Third Assessment Report

Technical Summary

Co-ordinating Lead Authors

D.L. Albritton NOAA Aeronomy Laboratory, USA L.G. Meira Filho Agência Espacial Brasileira, Brazil

Lead Authors

U. Cubasch Max-Planck Institute for Meteorology, Germany

X. Dai IPCC WGI Technical Support Unit, UK/National Climate Center, China

Y. Ding IPCC WGI Co-Chairman, National Climate Center, China

D.J. Griggs IPCC WGI Technical Support Unit, UK
B. Hewitson University of Capetown, South Africa

IT Houghton IPCC WGI Co. Chairman, UK

J.T. Houghton IPCC WGI Co-Chairman, UK
I. Isaksen University of Oslo, Norway

T. Karl NOAA National Climatic Data Centre, USA

M. McFarland Dupont Fluoroproducts, USA

V.P. Meleshko Voeikov Main Geophysical Observatory, Russia

J.F.B. Mitchell Hadley Centre for Climate Prediction and Research, Met Office, UK

M. Noguer IPCC WGI Technical Support Unit, UK

B.S. Nyenzi Zimbabwe Drought Monitoring Centre, Tanzania

M. Oppenheimer Environmental Defense, USA J.E. Penner University of Michigan, USA

S. Pollonais Environment Management Authority, Trinidad and Tobago

T. Stocker University of Bern, Switzerland

K.E. Trenberth National Center for Atmospheric Research, USA

Contributing Authors

M.R. Allen Rutherford Appleton Laboratory, UK

A.P.M. Baede Koninklijk Nederlands Meteorologisch Instituut, Netherlands

J.A. ChurchD.H. EhhaltCSIRO Division of Marine Research, AustraliaInstitut für Chemie der KFA Jülich GmbH, Germany

C.K. Folland Hadley Centre for Climate Prediction and Research, Met Office, UK
F. Giorgi Abdus Salam International Centre for Theoretical Physics, Italy
J.M. Gregory Hadley Centre for Climate Prediction and Research, Met Office, UK
J.M. Haywood Hadley Centre for Climate Prediction and Research, Met Office, UK

J.I. House Max-Plank Institute for Biogeochemistry, Germany

M. Hulme University of East Anglia, UK

V.J. Jaramillo Instituto de Ecologia, UNAM, Mexico

A. Jayaraman Physical Research Laboratory, India C.A. Johnson IPCC WGI Technical Support Unit, UK

S. Joussaume Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l'Environnement, France

D.J. Karoly Monash University, Australia

H. Kheshgi Exxon Mobil Research and Engineering Company, USA

C. Le Quéré Max Plank Institute for Biogeochemistry, France

K. Maskell IPCC WGI Technical Support Unit, UK

L.J. Mata Universitaet Bonn, Germany

B.J. McAvaney
Bureau of Meteorology Research Centre, Australia
L.O. Mearns
National Center for Atmospheric Research, USA
One of Meteorology Research Centre, Australia
National Center for Atmospheric Research, USA

B. Moore III University of New Hampshire, USA

R.K. Mugara Zambia Meteorological Department, Zambia

M. Prather University of California, USA

C. Prentice Max-Planck Institute for Biogeochemistry, Germany
V. Ramaswamy NOAA Geophysical Fluid Dynamics Laboratory, USA

S.C.B. Raper University of East Anglia, UK

M.J. Salinger National Institute of Water & Atmospheric Research, New Zealand R. Scholes Division of Water, Environment and Forest Technology, South Africa

S. Solomon NOAA Aeronomy Laboratory, USA

R. Stouffer NOAA Geophysical Fluid Dynamics Laboratory, USA

M.-X. Wang Institute of Atmospheric Physics, Chinese Academy of Sciences, China

R.T. Watson Chairman IPCC, The World Bank, USA K.-S. Yap Malaysian Meteorological Service, Malaysia

Review Editors

F. Joos University of Bern, Switzerland

A. Ramirez-Rojas Universidad Central Venezuela, Venezuela

J.M.R. Stone Environment Canada, Canada J. Zillman Bureau of Meteorology, Australia

Chapter 1. The Climate System: an Overview

Co-ordinating Lead Author

A.P.M. Baede Koninklijk Nederlands Meteorologisch Instituut, Netherlands

Lead Authors

E. Ahlonsou National Meteorological Service, Benin

Y. Ding
 D. Schimel
 IPCC WG1 Co-Chairman, National Climate Center, China
 Max-Planck Institute for Biogeochemistry, Germany/NCAR, USA

Review Editors

B. Bolin Retired, Sweden

S. Pollonais Environment Management Authority, Trinidad and Tobago

Chapter 2. Observed Climate Variability and Change

Co-ordinating Lead Authors

C.K. Folland Hadley Centre for Climate Prediction and Research, Met Office, UK

T.R. Karl NOAA National Climatic Data Center, USA

Lead Authors

J.R. Christy University of Alabama, USA

R.A. Clarke Bedford Institute of Oceanography, Canada G.V. Gruza Institute for Global Climate and Ecology, Russia

J. Jouzel Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l'Environment, France

M.E. Mann University of Virginia, USA
J. Oerlemans University of Utrecht, Netherlands

M.J. Salinger National Institute of Water & Atmospheric Research, New Zealand

S.-W. Wang Peking University, China

Contributing Authors

J. Bates NOAA Environmental Research Laboratories, USA M. Crowe NOAA National Climatic Data Center, USA

P. Frich Hadley Centre for Climate Prediction and Research, Met Office, UK

P. Groissman NOAA National Climatic Data Center, USA
J. Hurrell National Center for Atmospheric Research, USA

P. Jones University of East Anglia, UK

D. Parker Hadley Centre for Climate Prediction and Research, Met Office, UK

T. Peterson NOAA National Climatic Data Center, USA

D. Robinson Rutgers University, USA

J. Walsh University of Illinois at Urbana-Champaign, USA

M. Abbott Oregon State University, USA

L. Alexander
 Hadley Centre for Climate Prediction and Research, Met Office, UK
 H. Alexanderson
 R. Allan
 Swedish Meteorological and Hydrological Institute, Sweden
 CSIRO Division of Atmospheric Research, Australia

R. Alley Pennsylvania State University, USA P. Ambenjie Department of Meteorology, Kenya

P. Arkin Lamont-Doherty Earth Observatory of Columbia University, USA

L. Bajuk Mathsoft Data Analysis Products Division, USA

R. Balling Arizona State University, USA

M.Y. Bardin Institute for Global Climate and Ecology, Russia

R. Bradley University of Massachusetts, USA
R. Brázdil Masaryk University, Czech Republic
K.R. Briffa University of East Anglia, UK

H. BrooksR.D. BrownNOAA National Severe Storms Laboratory, USAAtmospheric Environment Service, Canada

S. Brown Hadley Centre for Climate Prediction and Research, Met Office, UK

M. Brunet-India University Rovira I Virgili, Spain

M. Cane Lamont-Doherty Earth Observatory of Columbia University, USA

D. Changnon Northern Illinois University, USA

S. Changnon University of Illinois at Urbana-Champaign, USA

J. ColeD. CollinsUniversity of Colorado, USABureau of Meteorology, Australia

E. Cook Lamont-Doherty Earth Observatory of Columbia University, USA

A. Dai National Center for Atmospheric Research, USA

A. Douglas Creighton University, USA
B. Douglas University of Maryland, USA

J.C. Duplessy Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l'Environnement, France

D. Easterling NOAA National Climatic Data Center, USA

P. Englehart USA

R.E. Eskridge NOAA National Climatic Data Center, USA

D. Etheridge CSIRO Division of Atmospheric Research, Australia

D. Fisher Geological Survey of Canada, CanadaD. Gaffen NOAA Air Resources Laboratory, USA

K. Gallo National Environmental Satellite, Data and Information Service, USA

E. Genikhovich Main Geophysical Observatory, Russia

D. Gong Peking University, China

G. Gutman National Environmental Satellite, Data and Information Service, USA

W. Haeberli University of Zurich, Switzerland

J. Haigh Imperial College, UK

J. Hansen Goddard Institute for Space Studies, USA

D. Hardy University of Massachusetts, USA

S. Harrison Max-Planck Institute for Biogeochemistry, Germany

R. Heino Finnish Meteorological Institute, Finland

K. Hennessy CSIRO Division of Atmospheric Research, Australia

W. Hogg Atmospheric Environment Service, Canada

S. Huang University of Michigan, USA

K. Hughen Woods Hole Oceanographic Institute, USA

M.K. Hughes University of Arizona, USA
M. Hulme University of East Angelia, UK

H. Iskenderian
 O.M. Johannessen
 Atmospheric and Environmental Research, Inc., USA
 Nasen Environmental and Remote Sensing Center, Norway

D. Kaiser Oak Ridge National Laboratory, USA

D. Karoly Monash University, Australia

D. Kley Institut fuer Chemie und Dynamik der Geosphaere, Germany

R. Knight NOAA National Climatic Data Center, USA
K.R. Kumar Indian Institute of Tropical Meteorology, India

K. Kunkel Illinois State Water Survey, USAM. Lal Indian Institute of Technology, India

C. Landsea NOAA Atlantic Oceanographic & Meteorological Laboratory, USA

J. Lawrimore NOAA National Climatic Data Center, USA

J. Lean Naval Research Laboratory, USA
 C. Leovy University of Washington, USA
 H. Lins US Geological Survey, USA

R. Livezey NOAA National Weather Service, USA K.M. Lugina St Petersburg University, Russia

I. Macadam Hadley Centre for Climate Prediction and Research, Met Office, UK

J.A. Majorowicz Northern Geothermal, Canada

B. Manighetti National Institute of Water & Atmospheric Research, New Zealand

J. Marengo Instituto Nacional de Pesquisas Espaciais, Brazil

E. Mekis Environment Canada, Canada

M.W. Miles Nasen Environmental and Remote Sensing Center, Norway

A. Moberg Stockholm University, Sweden

I. Mokhov Institute of Atmospheric Physics, Russia V. Morgan University of Tasmania, Australia L. Mysak McGill University, Canada

M. New Oxford University, UK

J. Norris NOAA Geophysical Fluid Dynamics Laboratory, USA

L. Ogallo University of Nairobi, Kenya

J. OverpeckNOAA National Geophysical Data Center, USAT. OwenNOAA National Climatic Data Center, USA

D. Paillard Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l'Environnement, France

T. Palmer European Centre for Medium-range Weather Forecasting, UK

C. Parkinson NASA Goddard Space Flight Center, USA

C.R. Pfister Unitobler, Switzerland

N. Plummer Bureau of Meteorology, Australia H. Pollack University of Michigan, USA

C. Prentice Max-Planck Institute for Biogeochemistry, Germany R. Quayle NOAA National Climatic Data Center, USA E.Ya. Rankova Institute for Global Climate and Ecology, Russia

N. Rayner Hadley Centre for Climate Prediction and Research, Met Office, UK

V.N. Razuvaev Chief Climatology Department, Russia G. Ren National Climate Center, China

J. Renwick National Institute of Water & Atmospheric Research, New Zealand R. Reynolds NOAA National Centers for Environmental Prediction, USA

D. Rind Goddard Institute of Space Studies, USA

A. Robock Rutgers University, USA

R. Rosen Atmospheric and Environmental Research, Inc., USA

S. Rösner Department Climate and Environment, Deutscher Wetterdienst, Germany

R. Ross

D. Rothrock

J.M. Russell

M. Serreze

W.R. Skinner

J. Slack

NOAA Air Resources Laboratory, USA

Applied Physics Laboratory, USA

Hampton University, USA

University of Colorado, USA

Environment Canada, Canada

US Geological Survey, USA

D.M. Smith Hadley Centre for Climate Prediction and Research, Met Office, UK

D. Stahle University of Arkansas, USA

M. Stendel Danish Meteorological Institute, Denmark

A. Sterin RIHMI-WDCB, Russia

T. Stocker
 B. Sun
 V. Swail
 University of Bern, Switzerland
 University of Massachusetts, USA
 Environment Canada, Canada

V. Thapliyal India Meteorological Department, India

L. ThompsonW.J. ThompsonOhio State University, USAUniversity of Washington, USA

A. Timmermann Koninklijk Nederlands Meteorologisch Instituut, Netherlands

R. Toumi Imperial College, UK

K. Trenberth
 H. Tuomenvirta
 T. van Ommen
 Vational Center for Atmospheric Research, USA
 Finnish Meteorological Institute, Finland
 University of Tasmania, Australia

D. Vaughan British Antarctic Survey, UK K.Y. Vinnikov University of Maryland, USA

U. von Grafenstein Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l'Environnement, France

H. von Storch
M. Vuille
University of Massachusetts, USA
P. Wadhams
Scott Polar Research Institute, UK
J.M. Wallace
University of Washington, USA
S. Warren
University of Washington, USA

W. White Scripps Institution of Oceanography, USA

P. Xie NOAA National Centers for Environmental Prediction, USA

P. Zhai National Climate Center, China

Review Editors

R. Hallgren American Meteorological Society, USA

B. Nyenzi Zimbabwe Drought Monitoring Centre, Tanzania

Chapter 3. The Carbon Cycle and Atmospheric Carbon Dioxide

Co-ordinating Lead Author

I.C. Prentice Max-Planck Institute for Biogeochemistry, Germany

Lead Authors

G.D. Farquhar Australian National University, Australia M.J.R. Fasham Southampton Oceanography Centre, UK

M.L. Goulden University of California, USA

M. Heimann Max-Planck Institute for Biogeochemistry, Germany

V.J. Jaramillo Instituto de Ecologia, UNAM, Mexico

H.S. Kheshgi Exxon Mobil Research and Engineering Company, USA
C. Le Quéré Max-Planck Institute for Biogeochemistry, Germany

R.J. Scholes Division of Water, Environment and Forest Technology, South Africa

D.W.R. Wallace Universitat Kiel, Germany

Contributing Authors

D. Archer University of Chicago, USA

M.R. Ashmore University of Bradford, UK

O. Aumont Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l'Environnement, France

D. Baker Princeton University, USA
M. Battle Bowdoin College, USA
M. Bender Princeton University, USA

L.P. Bopp Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l'Environnement, France P. Bousquet Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l'Environnement, France

K. Caldeira Lawrence Livermore National Laboratory, USA

P. Ciais CEA, LMCE/DSM, France

P.M. Cox Hadley Centre for Climate Prediction and Research, Met Office, UK

W. Cramer Potsdam Institute for Climate Impact Research, Germany

F. Dentener Environment Institute, Italy

I.G. Enting CSIRO Division of Atmospheric Research, Australia

C.B. Field Carnegie Institute of Washington, USA

P. Friedlingstein Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l'Environnement, France

E.A. Holland Max-Planck Institute for Biochemistry, Germany

R.A. Houghton Woods Hole Research Center, USA

J.I. House Max-Planck Institute for Biogeochemistry, Germany

A. Ishida Institute for Global Change Research, Japan

A.K. Jain University of Illinois, USA
I.A. Janssens Universiteit Antwerpen, Belgium
F. Joos University of Bern, Switzerland

T. Kaminski Max-Planck Institute for Meteorology, Germany C.D. Keeling University of California at San Diego, USA R.F. Keeling University of California at San Diego, USA

D.W. Kicklighter Marine Biological Laboratory, USA

K.E. Kohfeld Max-Planck Institute for Biogeochemistry, GermanyW. Knorr Max-Planck Institute for Biogeochemistry, Germany

R. Law Monash University, AustraliaT. Lenton Institute of Terrestrial Ecology, UK

K. Lindsay
National Center for Atmospheric Research, USA
E. Maier-Reimer
Max-Planck Institute for Meteorology, Germany
A.C. Manning
University of California at San Diego, USA
R.J. Matear
CSIRO Division of Marine Research, Australia
A.D. McGuire
University of Alaska at Fairbanks, USA
J.M. Melillo
Woods Hole Oceanographic Institution, USA

R. Meyer University of Bern, Switzerland

M. Mund Max-Planck Institute for Biogeochemistry, Germany

J.C. Orr Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l'Environnement, France

S. Piper Scripps Institution of Oceanography, USA

K. Plattner University of Bern, Switzerland

P.J. Rayner CSIRO Division of Atmospheric Research, Australia S. Sitch Institut für Klimafolgenforschung, Germany

R. Slater Princeton University Atmospheric and Oceanic Sciences Program, USA

S. Taguchi National Institute for Research & Environment, Japan P.P. Tans NOAA Climate Monitoring & Diagnostics Laboratory, USA

H.Q. Tian Marine Biological Laboratory, USA

M.F. Weirig Alfred Wegener Institute for Polar and Marine Research, Germany

T. Whorf
University of California at San Diego, USA
A. Yool
Southampton Oceanography Centre, UK

Review Editors

L. Pitelka University of Maryland, USA

A. Ramirez Rojas Universidad Central Venezuela, Venezuela

Chapter 4. Atmospheric Chemistry and Greenhouse Gases

Co-ordinating Lead Authors

D. Ehhalt Institut für Chemie der KFA Jülich GmbH, Germany

M. Prather University of California, USA

Lead Authors

F. Dentener Institute for Marine and Atmospheric Research, Netherlands

R. Derwent Met Office, UK

E. Dlugokencky NOAA Climate Monitoring & Diagnostics Laboratory, USA

E. Holland Max-Planck Institute for Biogeochemistry, Germany

I. Isaksen University of Oslo, Norway

J. Katima University of Dar-Es-Salaam, Tanzania

V. Kirchhoff Instituto Nacional de Pesquisas Espaciais, Brazil

P. Matson Stanford University, USA
P. Midgley M&D Consulting, Germany

M. Wang Institute of Atmospheric Physics, China

Contributing Authors

T. Berntsen Centre for International Climate and Environmental Research, Norway

I. Bey Harvard University, USA/France

G. Brasseur Max-Planck Institute for Meteorology, Germany
L. Buja National Center for Atmospheric Research, USA

W.J. Collins Hadley Centre for Climate Prediction and Research, Met Office, UK

J. Daniel NOAA Aeronomy Laboratory, USA W.B. DeMore Jet Propulsion Laboratory, USA

N. Derek CSIRO Division of Atmospheric Research, Australia

R. Dickerson University of Maryland, USA

D. Etheridge
 J. Feichter
 P. Fraser
 CSIRO Division of Atmospheric Research, Australia
 Max-Planck Institute for Meteorology, Germany
 CSIRO Division of Atmospheric Research, Australia

R. Friedl Jet Propulsion Laboratory, USA
J. Fuglestvedt University of Oslo, Norway
M. Gauss University of Oslo, Norway

L. Grenfell NASA Goddard Institute for Space Studies, USA

A. Grübler International Institute for Applied Systems Analysis, Austria

N. Harris European Ozone Research Coordinating Unit, UK

D. Hauglustaine Center National de la Recherche Scientifique, Service Aeronomie, France

L. HorowitzNational Center for Atmospheric Research, USAC. JackmanNASA Goddard Space Flight Center, USA

D. Jacob Harvard University, USA
L. Jaeglé Harvard University, USA
A. Jain University of Illinois, USA

M. Kanakidou Environmental Chemical Processes Laboratory, Greece

S. Karlsdottir University of Oslo, Norway

M. Ko Atmospheric & Environmental Research Inc., USA

M. Kurylo NASA Headquarters, USA

M. Lawrence Max-Planck Institute for Chemistry, Germany

J.A. Logan Harvard University, USA

M. Manning National Institute of Water & Atmospheric Research, New Zealand

D. Mauzerall Princeton University, USA
J. McConnell York University, Canada
L. Mickley Harvard University, USA

S. Montzka NOAA Climate Monitoring & Diagnostics Laboratory, USA

J.F. Muller Belgian Institute for Space Aeronomy, Belgium

J. Olivier National Institute of Public Health and the Environment, Netherlands

K. Pickering University of Maryland, USA

G. Pitari Università Degli Studi dell' Aquila, Italy
G.J. Roelofs University of Utrecht, Netherlands
H. Rogers University of Cambridge, UK
B. Rognerud University of Oslo, Norway

S. Smith Pacific Northwest National Laboratory, USA
S. Solomon NOAA Aeronomy Laboratory, USA

J. Staehelin Federal Institute of Technology, Switzerland

P. Steele CSIRO Division of Atmospheric Research, Australia

D. S. Stevenson Met Office, UK

J. Sundet University of Oslo, Norway

A. Thompson NASA Goddard Space Flight Center, USA

M. van Weele Konjnklijk Nederlands Meteorologisch Instituut, Netherlands

R. von Kuhlmann Max-Planck Institute for Chemistry, Germany Y. Wang Georgia Institute of Technology, USA

D. Weisenstein Atmospheric & Envrionmental Research Inc., USA
 T. Wigley National Center for Atmospheric Research, USA
 O. Wild Frontier Research System for Global Change, Japan

D. Wuebbles University of Illinois, USA R. Yantosca Harvard University, USA

Review Editors

F. Joos University of Bern, Switzerland M. McFarland Dupont Fluoroproducts, USA

Chapter 5. Aerosols, their Direct and Indirect Effects

Co-ordinating Lead Author

J.E. Penner University of Michigan, USA

Lead Authors

M. Andreae
 H. Annegarn
 L. Barrie
 J. Feichter
 Max-Planck Institute for Chemistry, Germany
 University of the Witwatersrand, South Africa
 Atmospheric Environment Service, Canada
 Max-Planck Institute for Meteorology, Germany

D. Hegg University of Washington, USA
A. Jayaraman Physical Research Laboratory, India
R. Leaitch Atmospheric Environment Service, Canada
D. Murphy NOAA Aeronomy Laboratory, USA
J. Nganga University of Nairobi, Kenya

G. Pitari Università Degli Studi dell' Aquil, Italy

Contributing Authors

A. Ackerman NASA Ames Research Center, USA

P. Adams Caltech, USA

P. Austin University of British Columbia, Canada

R. BoersCSIRO Division of Atmospheric Research, AustraliaO. BoucherLaboratoire d'Optique Atmospherique, France

M. Chin Goddard Space Flight Center, USA

C. Chuang Lawrence Livermore National Laboratory, USA

W. Collins Met Office, UK

W. Cooke NOAA Geophysical Fluid Dynamics Laboratory, USA

P. DeMott Colorado State University, USA Y. Feng University of Michigan, USA

H. Fischer Scripps Institution of Oceanography, Germany

I. Fung University of California, USA

S. Ghan Pacific Northwest National Laboratory, USA

P. Ginoux NASA Goddard Space Flight Center, USA S.-L. Gong Atmospheric Environment Service, Canada A. Guenther National Center for Atmospheric Research, USA

M. Herzog University of Michigan, USA

A. Higurashi National Institute for Environmental Studies, Japan

Y. Kaufman

NASA Goddard Space Flight Center, USA

A. Kettle

Max-Planck Institute for Chemistry, Germany

J. Kiehl

National Center for Atmospheric Research, USA

D. Koch

National Center for Atmospheric Research, USA

G. Lammel

Max-Planck Institute for Meteorology, Germany

C. Land

Max-Planck Institute for Meteorology, Germany

U. Lohmann Dalhousie University, Canada

S. Madronich National Center for Atmospheric Research, USA

E. Mancini Università Degli Studi dell' Aquila, Italy

M. Mishchenko NASA Goddard Institute for Space Studies, USA

T. Nakajima University of Tokyo, Japan

P. Quinn National Oceanographic and Atmospheric Administration, USA

P. Rasch National Center for Atmospheric Research, USA

D.L. Roberts Hadley Centre for Climate Prediction and Research, Met Office, UK

D. Savoie University of Miami, USA

S. Schwartz Brookhaven National Laboratory, USA
J. Seinfeld California Institute of Technology, USA

B. Soden Princeton University, USA

D. Tanré
 Laboratoire d'Optique Atmospherique, France
 K. Taylor
 Lawrence Livermore National Laboratory, USA
 I. Tegen
 Max-Planck Institute for Biogeochemistry, Germany
 X. Tie
 National Center for Atmospheric Research, USA

G. Vali University of Wyoming, USA

R. Van Dingenen Environment Institute of European Commission, Italy

M. van Weele Koninklijk Nederlands Meteorologisch Instituut, The Netherlands

Y. Zhang University of Michigan, USA

Review Editors

B. Nyenzi Zimbabwe Drought Monitoring Centre, Tanzania

J. Prospero University of Miami, USA

Chapter 6. Radiative Forcing of Climate Change

Co-ordinating Lead Author

V. Ramaswamy NOAA Geophysical Fluid Dynamics Laboratory, USA

Lead Authors

O. Boucher Max-Planck Institute for Chemistry, Germany/Laboratoire d'Optique Atmospherique, France

J. Haigh Imperial College, UK

D. Hauglustaine Center National de la Recherche Scientifique, France J. Haywood Meteorological Research Flight, Met Office, UK

G. Myhre University of Oslo, Norway T. Nakajima University of Tokyo, Japan

G.Y. Shi Institute of Atmospheric Physics, China S. Solomon NOAA Aeronomy Laboratory, USA

Contributing Authors

R. Betts Hadley Centre for Climate Prediction and Research, Met Office, UK

R. Charlson Stockholm University, Sweden

C. Chuang Lawrence Livermore National Laboratory, USA

J.S. Daniel NOAA Aeronomy Laboratory, USA

A. Del Genio NASA Goddard Institute for Space Studies, USA J. Feichter Max-Planck Institute for Meteorology, Germany

J. Fuglestvedt University of Oslo, Norway P.M. Forster Monash University, Australia

S.J. Ghan Pacific Northwest National Laboratory, USA

A. Jones Hadley Centre for Climate Prediction and Research, Met Office, UK

J.T. Kiehl National Center for Atmospheric Research, USA

D. Koch Yale University, USA

C. Land Max-Planck Institute for Meteorology, Germany

J. Lean Naval Research Laboratory, USAU. Lohmann Dalhousie University, Canada

K. Minschwaner New Mexico Institute of Mining and Technology, USA

J.E. Penner University of Michigan, USA

D.L. Roberts Hadley Centre for Climate Prediction and Research, Met Office, UK

H. Rodhe University of Stockholm, Sweden G.J. Roelofs University of Utrecht, Netherlands

L.D. Rotstayn CSIRO, Australia

T.L. Schneider Institute for World Forestry and Ecology, Germany
 U. Schumann Institut für Physik der Atmosphäre, Germany
 S.E. Schwartz Brookhaven National Laboratory, USA

M.D. Schwartzkopf NOAA Geophysical Fluid Dynamics Laboratory, USA

K.P. Shine University of Reading, UK

S. Smith Pacific Northwest National Laboratory, USA

D.S. Stevenson Met Office, UK

F. Stordal Norwegian Institute for Air Research, Norway
I. Tegen Max-Planck Institute for Biogeochemistry, Germany

R. van Dorland Knoinklijk Nederlands Meteorologisch Instituut, The Netherlands

Y. Zhang University of Michigan, USA

Review Editors

J. Srinivasan Indian Institute of Science, India F. Joos University of Bern, Switzerland

Chapter 7. Physical Climate Processes and Feedbacks

Co-ordinating Lead Author

T.F. Stocker University of Bern, Switzerland

Lead Authors

G.K.C. Clarke University of British Columbia, Canada

H. Le Treut Laboratoire de Météorologie Dynamique du Center National de la Recherche Scientifique,

France

R.S. Lindzen Massachusetts Institute of Technology, USA
V.P. Meleshko Voeikov Main Geophysical Observatory, Russia
R.K. Mugara Zambia Meteorological Department, Zambia

T.N. Palmer European Centre for Medium-range Weather Forecasting, UK

R.T. Pierrehumbert University of Chicago, USA P.J. Sellers NASA Johnson Space Centre, USA

K.E. Trenberth National Center for Atmospheric Research, USA

J. Willebrand Institut für Meereskunde an der Universität Kiel, Germany

Contributing Authors

R.B. Alley Pennsylvania State University, USA
O.E. Anisimov State Hydrological Institute, Russia
C. Appenzeller University of Bern, Switzerland
R.G. Barry University of Colorado, USA

J.J. Bates NOAA Environmental Research Laboratories, USA

R. Bindschadler NASA Goddard Space Flight Centre, USA
G.B. Bonan National Center for Atmospheric Research, USA

C.W. Böning Universtat Kiel, Germany

S. Bony Laboratoire de Météorologie Dynamique du Center National de la Recherche Scientifique, France

H. Bryden Southampton Oceanography Centre, UK

M.A. Cane Lamont-Doherty Earth Observatory of Columbia University, USA

J.A. Curry Aerospace Engineering, USA

T. Delworth NOAA Geophysical Fluid Dynamics Laboratory, USA

A.S. Denning Colorado State University, USA
R.E. Dickinson University of Arizona, USA
K. Echelmeyer University of Alaska, USA

K. Emanuel Massachusetts Institute of Technology, USA

G. Flato Canadian Centre for Climate Modelling & Analysis, Canada

I. Fung University of California, USA M. Geller New York State University, USA

P.R. Gent National Center for Atmospheric Research, USA

S.M. Griffies NOAA Princeton University, USA

I. Held NOAA Geophysical Fluid Dynamics Laboratory, USA

A. Henderson-Sellers Australian Nuclear Science and Technology Organisation, Australia

A.A.M. Holtslag Royal Netherlands Meteorological Institute, Netherlands

F. Hourdin Center National de la Recherche Scientifique, Laboratoire de Météorologie Dynamique, France

J.W. Hurrell National Center for Atmospheric Research, USA V.M. Kattsov Voeikov Main Geophysical Observatory, Russia P.D. Killworth Southampton Oceanography Centre, UK

Y. Kushnir Lamont-Doherty Earth Observatory of Columbia Univeristy, USA

W.G. Large National Center for Atmospheric Research, USA M. Latif Max-Planck Institute for Meteorology, Germany

P. Lemke Alfred-Wegener Institute for Polar & Marine Research, Germany

M.E. Mann University of Virginia, USA

G. Meehl National Centre for Atmospheric Research, USA
U. Mikolajewicz Max-Planck Institute for Meteorology, Germany
W. O'Hirok Institute for Computational Earth System Science, USA

C.L. Parkinson NASA Goddard Space Flight Center, USA

A. Payne University of Southampton, UK
A. Pitman Macquarie University, Australia

J. Polcher Center National de la Recherche Scientifique, Laboratoire de Météorologie Dynamique, France

I. Polyakov Princeton University, USA

V. Ramaswamy NOAA Geophysical Fluid Dynamics Laboratory, USA P.J. Rasch National Center for Atmospheric Research, USA

E.P. Salathe University of Washington, USA

C. Schär Institut für Klimaforschung ETH, Switzerland R.W. Schmitt Woods Hole Oceanographic Institution, USA

T.G. Shepherd University of Toronto, Canada B.J. Soden Princeton University, USA

R.W. Spencer Marshall Space Flight Center, USA
P. Taylor Southampton Oceanography Centre, UK

A. Timmermann Koninklijk Nederlands Meteorologisch Instituut, Netherlands

K.Y. Vinnikov University of Maryland, USA

M. Visbeck Lamont Doherty Earth Observatory of Columbia University, USA

S.E. Wijffels CSIRO Division of Marine Research, Australia M. Wild Swiss Federal Institute of Technology, Switzerland

Review Editors

S. Manabe Institute for Global Change, Japan

P. Mason Met Office, UK

Chapter 8. Model Evaluation

Co-ordinating Lead Author

B.J. McAvaney Bureau of Meteorology Research Centre, Australia

Lead Authors

C. Covey Lawrence Livermore National Laboratory, USA

S. Joussaume Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l'Environment, France

V. Kattsov Voeikov Main Geophysical Observatory, Russia A. Kitoh Meteorological Research Institute, Japan

W. Ogana
 A.J. Pitman
 A.J. Weaver
 University of Nairobi, Kenya
 Macquarie University, Australia
 University of Victoria, Canada

R.A. Wood Hadley Centre for Climate Prediction and Research, Met Office, UK

Z.-C. Zhao National Climate Center, China

Contributing Authors

K. AchutaRao Lawrence Livermore National Laboratory, USA
A. Arking NASA Goddard Space Flight Centre, USA
A. Barnston NOAA Climate Prediction Center, USA

R. Betts Hadley Centre for Climate Prediction and Research, Met Office, UK

C. Bitz Quaternary Research, USA

G. Boer Canadian Center for Climate Modelling & Analysis, Canada

P. Braconnot Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l'Environment, France

A. Broccoli
NOAA Geophysical Fluid Dynamics Laboratory, USA
F. Bryan
Programe in Atmospheric and Oceanic Sciences, USA
M. Claussen
Potsdam Institute for Climate Impact Research, Germany
R. Colman
Bureau of Meteorology Research Centre, Australia

P. Delecluse Institut Pierre Simon Laplace, Laboratoire d'Oceanographie Dynamique et Climatologie, France

A. Del Genio

NASA Goddard Institute for Space Studies, USA

K. Dixon

NOAA Geophysical Fluid Dynamics Laboratory, USA

P. Duffy

Lawrence Livermore National Laboratory, USA

L. Dümenil

Max-Planck Institute for Meteorology, Germany

M. England

University of New South Wales, Australia

T. Fichefet

Universite Catholique de Louvain, Belgium

G. Flato Canadian Centre for Climate Modelling & Analysis, Canada
J.C. Fyfe Canadian Centre for Climate Modelling & Analysis, Canada
N. Gedney Hadley Centre for Climate Prediction and Research, Met Office, UK

P. Gent National Center for Atmospheric Research, USA

C. Genthon

Laboratoire de Glaciologie et Geophysique de l'Environment, France

J. Gregory

Hadley Centre for Climate Prediction and Research, Met Office, UK

E. Guilyardi Institut Pierre Simon Laplace, Laboratoire d'Oceanographie Dynamique et Climatologie, France

S. Harrison Max-Planck Institute for Biogeochemistry, Germany

N. Hasegawa Japan Environment Agency, Japan

G. Holland Bureau of Meteorology Research Centre, Australia M. Holland National Center for Atmospheric Research, USA

Y. Jia Southampton Oceanography Centre, UK

P.D. Jones University of East Angelia, UK

M. Kageyama Institut Pierre Simon Laplace, Laboratoire Sciences du Climat et de l'Environment, France

D. Keith Harvard University, USA

K. Kodera Meteorological Research Institute, JapanJ. Kutzbach University of Wisconsin at Madison, USA

S. Lambert University of Victoria, Canada

S. Legutke Deutsches Klimarechenzentrum GmbH, Germany

G. Madec Institut Pierre Simon Laplace, Laboratoire d'Oceanographie Dynamique et Climatologie, France

S. Maeda Meteorological Research Institute, Japan

M.E. Mann University of Virginia, USA

G. Meehl National Centre for Atmospheric Research, USA

I. Mokhov Institute of Atmospheric Physics, Russia

T. Motoi Frontier Research System for Global Change, JapanT. Phillips Lawrence Livermore National Laboratory, USA

J. Polcher Center National de la Recherche Scientifique, Laboratoire de Météorologie Dynamique, France

G.L. Potter Lawrence Livermore National Laboratory, USA

V. Pope Hadley Centre for Climate Prediction and Research, Met Office, UK

C. Prentice Max-Planck Institute for Biogeochemistry, Germany
G. Roff Bureau of Meteorology Research Centre, Australia

P. Sellers NASA Johnson Space Centre, USA F. Semazzi Southampton Oceanography Centre, UK

D.J. Stensrud NOAA National Severe Storms Laboratory, USA

T. Stockdale
 European Centre for Medium-range Weather Forecasting, UK
 R. Stouffer
 NOAA Geophysical Fluid Dynamics Laboratory, USA
 K.E. Taylor
 Lawrence Livermore National Laboratory, USA

R. Tol Vrije Universitiet, Netherlands

K. Trenberth
 J. Walsh
 M. Wild
 D. Williamson
 National Center for Atmospheric Research, USA
 University of Illinois at Urbana-Champaign, USA
 Swiss Federal Institute of Technology, Switzerland
 National Center for Atmospheric Research, USA

S.-P. Xie University of Hawaii at Manoa, USA X.-H. Zhang Chinese Academy of Sciences, China

F. Zwiers Canadian Centre for Climate Modelling and Analysis, Canada

Review Editors

Y. Qian Nanjing University, China J. Stone Environment Canada, Canada

Chapter 9. Projections of Future Climate Change

Co-ordinating Lead Authors

U. Cubasch Max-Planck Institute for Meteorology, Germany G.A. Meehl National Center for Atmospheric Research, USA

Lead Authors

G.J. Boer University of Victoria, Canada

R.J. StoufferM. DixNOAA Geophysical Fluid Dynamics Laboratory, USAM. DixCSIRO Division of Atmospheric Research, Australia

A. Noda Meteorological Research Institute, Japan

C.A. Senior Hadley Centre for Climate Prediction and Research, Met Office, UK

S. Raper University of East Anglia, UK

K.S. Yap Malaysian Meteorological Service, Malaysia

Contributing Authors

A. Abe-Ouchi University of Tokyo, Japan

S. Brinkop Institute für Physik der Atmosphäre, Germany

M. Claussen Potsdam Institute for Climate Impact Research, Germany

M. Collins Hadley Centre for Climate Prediction and Research, Met Office, UK

J. Evans Pennsylvania State University, USA

I. Fischer-Bruns Max-Planck Institute for Meteorology, Germany

G. Flato Canadian Centre for Climate Modelling & Analysis, Canada J.C. Fyfe Canadian Centre for Climate Modelling & Analysis, Canada A. Ganopolski Potsdam Institute for Climate Impact Research, Germany

J.M. Gregory Hadley Centre for Climate Prediction and Research, Met Office, UK

Z.-Z. Hu Center for Ocean-Land-Atmosphere Studies, USA

F. Joos University of Bern, Switzerland

T. Knutson NOAA Geophysical Fluid Dynamics Laboratory, USA

C. Landsea NOAA Atlantic Oceanographic & Meteorological Laboratory, USA

L. Mearns National Center for Atmospheric Research, USA

C. Milly US Geological Survey, USA

J.F.B. Mitchell Hadley Centre for Climate Prediction and Research, Met Office, UK

T. Nozawa National Institute for Environmental Studies, Japan

H. Paeth Universität Bonn, Germany

J. Räisänen Swedish Meteorological and Hydrological Institute, Sweden

R. SausenS. SmithInstitute für Physik der Atmosphäre, GermanyPacific Northwest National Laboratory, USA

T. Stocker University of Bern, Switzerland

A. Timmermann Royal Netherlands Meteorological Institute, Netherlands U. Ulbrich Institut fuer Geophysik und Meteorolgie, Germany

A. Weaver University of Victoria, Canada

J. Wegner Deutsches Klimarechenzentrum, Germany

P. Whetton
 T. Wigley
 M. Winton
 F. Zwiers
 CSIRO Division of Atmospheric Research, Australia
 National Center for Atmospheric Research, USA
 NOAA Geophysical Fluid Dynamics Laboratory, USA
 Canadian Centre for Climate Modelling and Analysis, Canada

Review Editors

J. Stone Environment Canada, Canada J.-W. Kim Yonsei University, South Korea

Chapter 10. Regional Climate Information - Evaluation and Projections

Co-ordinating Lead Authors

F. Giorgi Abdus Salam International Centre for Theoretical Physics, Italy

B. Hewitson University of Capetown, South Africa

Lead Authors

J. Christensen Danish Meteorological Institute, Denmark

M. Hulme University of East Anglia, UK

H. Von Storch GKSS, Germany

P. Whetton CSIRO Division of Atmospheric Research, Australia

R. Jones Hadley Centre for Climate Prediction and Research, Met Office, UK

L. Mearns National Center for Atmospheric Research, USA

C. Fu Institute of Atmospheric Physics, China

Contributing Authors

R. Arritt Iowa State University, USA
B. Bates CSIRO Land and Water, Australia

R. Benestad Det Norske Meteorologiske Institutt, Norway

G. Boer Canadian Centre for Climate Modelling & Analysis, Canada A. Buishand Koninklijk Nederlands Meteorologisch Instituut, Netherlands

M. Castro Universidad Complutense de Madrid, Spain

D. Chen Göteborg University, Sweden

W. Cramer Potsdam Institute for Climate Impact Research, Germany

R. Crane The Pennsylvania State University, USA

J.F. Crossley University of East Anglia, UK M. Dehn University of Bonn, Germany

K. Dethloff Alfred Wegener Institute for Polar and Marine Research, Germany

J. Dippner Institute for Baltic Research, Germany

S. Emori National Institute for Environmental Studies, Japan

R. Francisco Weather Bureau, Philippines

J. Fyfe Canadian Centre for climate modelling and analysis, Canada F.W. Gerstengarbe Potsdam Institute for Climate Impact Research, Germany

W. Gutowski Iowa State University, USAD. Gyalistras University of Berne, Switzerland

I. Hanssen-Bauer The Norwegian Meteorological Institute, Norway

M. Hantel University of Vienna, Austria

D.C. Hassell Hadley Centre for Climate Prediction and Research, Met Office, UK

D. Heimann
 C. Jack
 J. Jacobeit
 Institute of Atmospheric Physics, Germany
 University of Cape Town, South Africa
 Universitate Wuerzburg, Germany

H. Kato Central Research Institute of Electric Power Industry, Japan

R. Katz National Center for Atmospheric Research, USA

F. Kauker Alfred Wegener Institute for Polar and Marine Research, Germany

T. Knutson NOAA Geophysical Fluid Dynamics Laboratory, USA

M. Lal Indian Institute of Technology, India

C. Landsea NOAA Atlantic Oceanographic & Meteorological Laboratory, USA

R. Laprise University of Quebec at Montreal, Canada L.R. Leung Pacific Northwest National Laboratory, USA

A.H. Lynch University of Colorado, USA

W. May Danish Meteorological Institute, Denmark

J.L. McGregor CSIRO Division of Atmospheric Research, Australia N.L. Miller Lawrence Berkeley National Laboratory, USA

J. Murphy Hadley Centre for Climate Prediction and Research, Met Office, UK

J. Ribalaygua Fundación para la Investigación del Clima, Spain

A. Rinke Alfred Wegener Institute for Polar and Marine Research, Germany M. Rummukainen Swedish Meteorological and Hydrological Institute, Sweden

F. Semazzi Southampton Oceanography Centre, UK

K. WalshP. WernerCSIRO Division of Atmospheric Research, AustraliaPotsdam Institute for Climate Impact Research, Germany

M. Widmann GKSS Research Centre, Germany

R. Wilby University of Derby, UK

M. Wild Swiss Federal Institute of Technology, Switzerland Y. Xue University of California at Los Angeles, USA

Review Editors

M. Mietus Institute of Meteorology & Water Management, Poland

J. Zillman Bureau of Meteorology, Australia

Chapter 11. Changes in Sea Level

Co-ordinating Lead Authors

J.A. Church CSIRO Division of Marine Research, Australia

J.M. Gregory Hadley Centre for Climate Prediction and Research, Met Office, UK

Lead Authors

P. Huybrechts Vrije Universiteit Brussel, Belgium M. Kuhn Innsbruck University, Austria

K. Lambeck
 M.T. Nhuan
 D. Oin
 Australian National University, Australia
 Hanoi University of Sciences, Vietnam
 Chinese Academy of Sciences, China

P.L. Woodworth Bidston Observatory, UK

Contributing Authors

O.A. Anisimov State Hydrological Institute, Russia

F.O. Bryan Programe in Atmospheric and Oceanic Sciences, USA
A. Cazenave Groupe de Recherche de Geodesie Spatiale CNES, France

K.W. Dixon NOAA Geophysical Fluid Dynamics Laboratory, USA

B.B. Fitzharris University of Otago, New Zealand

G.M. Flato Canadian Centre for Climate Modelling & Analysis, Canada A. Ganopolski Potsdam Institute for Climate Impact Research, Germany

V. Gornitz Goddard Institute for Space Studies, USA

J.A. Lowe Hadley Centre for Climate Prediction and Research, Met Office, UK

A. Noda Japan Meteorological Agency, Japan

J.M. Oberhuber German Climate Computing Centre, Germany
S.P. O'Farrell CSIRO Division of Atmospheric Research, Australia

A. Ohmura Geographisches Institute ETH, Switzerland

M. Oppenheimer Environmental Defense, USA
W.R. Peltier University of Toronto, Canada
S.C.B. Raper University of East Anglia, UK

C. Ritz Laboratoire de Glaciologie et Geophysique de l'Environment, France

G.L. Russell NASA Goddard Institute for Space Studies, USA

E. Schlosser Innsbruck University, Austria
C.K. Shum Ohio State University, USA
T.F. Stocker University of Bern, Switzerland

R.J. Stouffer NOAA Geophysical Fluid Dynamics Laboratory, USA R.S.W. van de Wal Institute for Marine and Atmospheric Research, Netherlands

R. Voss Deutsches Klimarechenzentrum, Germany

E.C. Wiebe University of Victoria, Canada

M. Wild Swiss Federal Institute of Technology, Switzerland

D.J. Wingham University College London, UK

H.J. Zwally NASA Goddard Space Flight Center, USA

Review Editors

B.C. Douglas University of Maryland, USA

A. Ramirez Universidad Central Venezuela, Venezuela

Chapter 12. Detection of Climate Change and Attribution of Causes

Co-ordinating Lead Authors

J.F.B. Mitchell Hadley Centre for Climate Prediction and Research, Met Office, UK

D.J. Karoly Monash University, Australia

Lead Authors

G.C. Hegerl Texas A&M University, USA/Germany F.W. Zwiers University of Victoria, Canada M.R. Allen Rutherford Appleton Laboratory, UK

J. Marengo Instituto Nacional de Pesquisas Espaciais, Brazil

Contributing Authors

V. Barros Ciudad Universitaria, Argentina M. Berliner Ohio State University, USA

G. Boer Canadian Centre for Climate Modelling & Analysis, Canada

T. Crowley Texas A&M University, USA

C. Folland Hadley Centre for Climate Prediction and Research, Met Office, UK

M. Free NOAA Air Resources Laboratory, USA

N. Gillett University of Oxford, UK

P. Groissman NOAA National Climatic Data Center, USA

J. Haigh Imperial College, UK

K. Hasselmann Max-Planck Institute for Meteorology, Germany

P. Jones University of East Anglia, UK
M. Kandlikar Carnegie-Mellon University, USA

V. Kharin Canadian Centre for Climate Modelling and Analysis, Canada

H. Khesghi Exxon Mobil Research & Engineering Company, USA
T. Knutson NOAA Geophysical Fluid Dynamics Laboratory, USA
M. MacCracken Office of the US Global Change Research Program, USA

M. Mann University of Virginia, USA
G. North Texas A&M University, USA
J. Risbey Carnegie-Mellon University, USA

A. Robock Rutgers University, USA

B. Santer Lawrence Livermore National Laboratory, USAR. Schnur Max-Planck Institute for Meteorology, Germany

C. Schönwiese J.W. Goethe University, Germany

D. Sexton Hadley Centre for Climate Prediction and Research, Met Office, UK
P. Stott Hadley Centre for Climate Prediction and Research, Met Office, UK
S. Tett Hadley Centre for Climate Prediction and Research, Met Office, UK

K. Vinnikov University of Maryland, USA

T. Wigley National Center for Atmospheric Research, USA

Review Editors

F. Semazzi Southampton Oceanography Centre, UK J. Zillman Bureau of Meteorology, Australia

Chapter 13. Climate Scenario Development

Co-ordinating Lead Authors

L.O. Mearns National Center for Atmospheric Research, USA

M. Hulme University of East Anglia, UK

Lead Authors

T.R. Carter Finnish Environment Institute, Finland

R. Leemans Rijksinstituut voor Volksgezondheid en Milieu, Netherlands

M. Lal Indian Institute of Technology, India

P. Whetton CSIRO Division of Atmospheric Research, Australia

Contributing Authors

L. Hay US Geological Survey, USA

R.N. Jones CSIRO Division of Atmospheric Research, Australia R. Katz National Center for Atmospheric Research, USA T. Kittel National Center for Atmospheric Research, USA

J. Smith Stratus Consulting Inc., USA R. Wilby University of Derby, UK

Review Editors

L.J. Mata Universidad Central Venezuela, Venezuela

J. Zillman Bureau of Meteorology, Australia

Chapter 14. Advancing our Understanding

Co-ordinating Lead Author

B. Moore III University of New Hampshire, USA

Lead Authors

W.L. Gates Lawrence Livermore National Laboratory, USA L.J. Mata Universidad Central Venezuela, Venezuela

A. Underdal University of Oslo, Norway

Contributing Author R.J. Stouffer

R.J. Stouffer NOAA Geophysical Fluid Dynamics Laboratory, USA

Review Editors

B. Bolin Retired, Sweden

A. Ramirez Rojas Universidad Central Venezuela, Venezuela

Reviewers

of the IPCC WGI Third Assessment Report

Argentina

M. Nuñez Ciudad Universitaria

Australia

K. Abel Australian Greenhouse Office

G. Ayers CSIRO Division of Atmospheric Research

S. Barrell Bureau of Meteorology
P. Bate Bureau of Meteorology

B. Bates
 CSIRO Division of Land and Water
 T. Beer
 CSIRO Division of Atmospheric Research
 R. Boers
 CSIRO Division of Atmospheric Research

W. Budd University of TasmaniaI. Carruthers Australian Greenhouse Office

S. Charles CSIRO Division of Atmospheric Research
J. Church CSIRO Division of Marine Research

D. Collins Bureau of Meteorology

R. Colman

Bureau of Meteorology Research Centre

D. Cosgrove

Bureau of Transport Economics

S. Crimp Department of Natural Resources

B. Curran Bureau of Meteorology

M. Davison Australian Industry Greenhouse NetworkM. Dix CSIRO Division of Atmospheric Research

B. Dixon Bureau of MeteorologyM. England University of New South Wales

I. EntingD. EtheridgeCSIRO Division of Atmospheric ResearchCSIRO Division of Atmospheric Research

G. Farquhar Australian National University

P. Forster Monash University

R. Francey CSIRO Division of Atmospheric Research
P. Fraser CSIRO Division of Atmospheric Research

R. Gifford CSIRO Division of Plant Industry

I. Goodwin University of Tasmania

J. Gras CSIRO Division of Atmospheric Research

G. Hassall Australian Greenhouse Office

A. Henderson-Sellers Australian Nuclear Science and Technology Organisation

K. Hennessy CSIRO Division of Atmospheric Research

A. Ivanovici Australian Greenhouse Office J. Jacka Australian Antarctic Division

I. Jones University of Sydney

R. Jones CSIRO Division of Atmospheric Research

D. Karoly Monash University

J. Katzfey CSIRO Division of Atmospheric Research

B. Kininmonth Australasian Climate Research

J. Lough Australian Institute of Marine Science

G. Love Bureau of Meteorology

M. Manton
 Bureau of Meteorology Research Centre
 B. McAvaney
 Bureau of Meteorology Research Centre
 T. McDougall
 CSIRO Division of Marine Research

A. McEwan Bureau of Meteorology

J. McGregor CSIRO Division of Atmospheric Research

L. Minty Bureau of Meteorology

B. Mitchell Flinders University of South Australia

N. Plummer
L. Powell
L. Quick
Bureau of Meteorology
Australian Greenhouse Office
Australian Greenhouse Office

P. Rayner CSIRO Division of Atmospheric Research L. Rikus Bureau of Meteorology Research Centre L. Rotstayn CSIRO Division of Atmospheric Research W. Scherer Flinders University of South Australia I. Smith CSIRO Division of Atmospheric Research CSIRO Division of Atmospheric Research P. Steele CSIRO Division of Atmospheric Research K. Walsh I. Watterson CSIRO Division of Atmospheric Research CSIRO Division of Atmospheric Research P. Whetton

J. Zillman Bureau of Meteorology

Austria

M. Hantel University of Vienna

K. Radunsky Federal Environment Agency

Belgium

T. Fichefet Université Catholique de Louvain
 J. Franklin Solvay Research and Technology
 A. Mouchet Astrophysics and Geophysics Institute
 J. van Ypersele Université Catholique de Louvain

R. Zander University of Liege

Benin

E. Ahlonsou National Meteorological Service

Brazil

P. Fearnside National Institute for Research in the Amazon J. Marengo Instituto Nacional de Pesquisas Espaciais

Canada

P. Kertland

P. Austin University of British Columbia

E. Barrow Atmospheric and Hydrologic Science Division

Geological Survey of Canada J. Bourgeois R. Brown Atmospheric Environment Service

Environment Canada E. Bush

M. Demuth Geological Survey of Canada Department of Fisheries and Oceans K Denman

P. Edwards **Environment Canada** Trent University W. Evans

Geological Survey of Canada D. Fisher G. Flato University of Victoria

University of Toronto at Scarbrough W. Gough

D. Harvey University of Toronto **Environment Canada** H. Hengeveld

Atmospheric Environment Service W. Hogg

Natural Resources Canada Geological Survey of Canada R. Koerner University of Quebec at Montreal R. Laprise Z. Li Natural Resources Canada Dalhousie University U. Lohmann J. Majorowicz Northern Geothermal L. Malone **Environment Canada**

N. McFarlane University of Victoria L. Mysak McGill University W. Peltier University of Toronto

I. Perry Fisheries and Oceans Canada

J. Rudolph York University

Natural Resources Canada P. Samson

J. Sargent Finance Canada

J. Shaw Geological Survey of Canada S. Smith Natural Resources Canada **Environment Canada** J. Stone R. Street **Environment Canada** D. Whelpdale **Environment Canada** R. Wong Government of Alberta F. Zwiers University of Victoria

China

D. Gong Peking University

W. Li Institute of Atmospheric Physics G. Ren National Climate Center

S. Sun Institute of Atmospheric Physics Institute of Atmospheric Physics R. Yu

P. Zhai National Climate Center

Institute of Atmospheric Physics X. Zhang G. Zhou Institute of Atmospheric Physics Institute of Atmospheric Physics T. Zhou

Czech Republic

R. Brazdil Masaryk University

Denmark

J. Bates University of Copenhagen
 B. Christiansen Danish Meteorological Institute
 P. Frich Danmarks Miljøundersøgelser (DMU)

University of Copenhagen A. Hansen Danish Meteorological Institute A. Jørgensen T. Jørgensen Danish Meteorological Institute Danish Meteorological Institute E. Kaas P. Laut Technical University of Denmark B. Machenhauer Danish Meteorological Institute Danish Meteorological Institute L. Prahm M. Stendel Danish Meteorological Institute Danish Meteorological Institute P. Thejll

Finland

T. Carter Finnish Environment Institute E. Holopainen University of Helsinki

R. Korhonen Technical Research Centre of Finland (VTT)

M. Kulmala University of Helsinki

J. Launiainen Finnish Institute of Marine Research
H. Tuomenvirta Finnish Meteorological Institute

France

A. Alexiou Intergovernmental Oceanographic Commission

P. Braconnot Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l'Environment

J. Brenguier Meteo France

N. Chaumerliac Université Blaisi Pascal

M. Deque Meteo France

Y. Fouquart Université des Science & Techn de Lille

C. Genthon Laboratoire de Glaciologie et Geophysique de l'Environment du CNRS

M. Gillet Mission Interministerielle de l'Effet de Serre

S. Joussaume Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l'Environment J. Jouzel Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l'Environment

R. Juvanon du Vachat Mission Interministerielle de l'Effet de Serre

H. Le Treut Center National de la Recherche Scientifique, Laboratoire de Météorologie Dynamique

M. Petit Ecole Polytechnique

P. Pirazzoli Center National de la Recherche Scientifique, Laboratoire de Géographie Physique

S. Planton Meteo France

J. Polcher Center National de la Recherche Scientifique, Laboratoire de Météorologie Dynamique

A. Riedacker INRA

J. Salmon Ministère de l'Aménagement du Territoire et de l'Environnement

D. Tanre Laboratoire d'Optigue Atmospherique

Germany

H. Ahlgrimm Federal Agricultural Research Center
M. Andreae Max-Planck Institut für Biochemistry
R. Benndorf Federal Environmental Agency

U. Boehm Universität Potsdam

O. Boucher Max-Planck Institut für Chemie
S. Brinkop Institut für Physik der Atmosphäre

M. Claussen Potsdam Institute for Climate Impact Research

M. Dehn Universität Bonn

P. Dietze Private

E. Holland Max-Planck Institut für Biochemistry

J. Jacobeit Universität Wuerzburg

K. Kartschall Federal Environmental AgencyB. Kärcher Institut für Physik der Atmosphäre

K. Lange Federal Ministry for Environment, Nature Conservation and Nuclear Safety

P. Mahrenholz Federal Environmental Agency
J. Oberhuber German Climate Computing Centre
R. Sartorius Federal Environmental Agency

C. Schoenwiese J.W. Goethe University

U. SchumannU. UlbrichInstitut für Physik der AtmosphäreInstitut für Geophysik und Meteorolgie

T. Voigt Federal Environment Agency
A. Volz-Thomas Forschungsezentrum Juelich

G. Weber Gesamtverband Steinkohlenbergbau (GVST)

G. Wefer Universität Bremen
M. Widmann GKSS-Forschungszentrum

Hungary

G. Koppány University of Szeged

Iceland

T. Johannesson Icelandic Meteorological Office

Israel

P. Alpert Tel Aviv University
S. Krichark Tel Aviv University
C. Price Tel Aviv University
Z. Levin Tel Aviv University

Italy

W. Dragoni Perugia Universita

A. Mariotti National Agency for New Technology, Energy and Environment (ENEA)

T. Nanni ISAO National Research Council

P. Ruti National Agency for New Technology, Energy and Environment (ENEA)

R. van Dingenen Enviroment Institute of European Commission

G. Visconti Università Degli Studi dell' Aquila

Japan

M. AminoJapan Meteorological AgencyT. AsohJapan Meteorological AgencyH. IsobeJapan Meteorological Agency

H. Kanzawa Environment Agency

H. Kato Central Research Institute of Electric Power Industry

M. Kimoto University of Tokyo

K. Kurihara
 Japan Meteorological Agency
 Kusunoki
 Meteorological Research Institute
 Manabe
 Institute for Global Change
 Nagata
 Environment Agency
 Nikaidou
 Japan Meteorological Agency
 Ohyama
 Japan Meteorological Research Institute

A. Sekiya National Institute of Materials and Chemical Research

M. Shinoda Tokyo Metropolitan University

S. Taguchi National Institute for Research & Environment

T. TokiokaY. TsutsumiJapan Meteorological AgencyJapan Meteorological Agency

O. Wild Frontier Research System for Global Change

R. Yamamoto Kyoto University

Kenya

J. Ng'ang'a University of Nairobi

N. Sabogal United Nations Environment Programme

Malaysia

A. Chan Malaysian Meteorological Service

Morocco

A. Allali Ministry of Agriculture & Moroccan Association for Environment Protection

S. Khatri Meteorological Office of Morocco A. Mokssit Meteorological Office of Morocco A. Sbaibi Universite Hassan II - Mohammedia

Netherlands

A.P.M. Baede Koninklijk Nederlands Meteorologisch Instituut J. Beersma Koninklijk Nederlands Meteorologisch Instituut

L. Bijlsma Rijksinstituut voor Kust en Zee

T. Buishand Koninklijk Nederlands Meteorologisch Instituut G. Burgers Koninklijk Nederlands Meteorologisch Instituut

H. Dijkstra University of Utrecht

S. Drijfhout Koninklijk Nederlands Meteorologisch Instituut W. Hazeleger Koninklijk Nederlands Meteorologisch Instituut

B. Holtslag Wageningen University

C. Jacobs Koninklijk Nederlands Meteorologisch Instituut
A. Jeuken Koninklijk Nederlands Meteorologisch Instituut
H. Kelder Koninklijk Nederlands Meteorologisch Instituut

G. Komen Koninklijk Nederlands Meteorologisch Instituut and University of Utrecht

N. Maat Koninklijk Nederlands Meteorologisch Instituut

L. Meyer Ministry of Housing, Spatial Planning & the Environment

J. Olivier Rijksinstituut voor Volksgezondheid en MilieuJ. Opsteegh Koninklijk Nederlands Meteorologisch Instituut

A. Petersen Vrije Universiteit
H. Radder Vrije Universiteit
H. Renssen Vrije Universiteit

J. Ronde Rijksinstituut voor Kust en Zee M. Scheffers Rijksinstituut voor Kust en Zee

C. Schuurmans University of Utrecht

P. Siegmund Koninklijk Nederlands Meteorologisch Instituut
A. Sterl Koninklijk Nederlands Meteorologisch Instituut

H. ten Brink Energieonderzoek Centrum Nederland

R. Tol Vrije Universiteit

S. van de Geijn Plant Research International

R. van Dorland Koninklijk Nederlands Meteorologisch Instituut

G. van Tol Expertisecentrum LNV

A. van Ulden Koninklijk Nederlands Meteorologisch Instituut M. van Weele Koninklijk Nederlands Meteorologisch Instituut P. Veefkind Koninklijk Nederlands Meteorologisch Instituut G. Velders Rijksinstituut voor Volksgezondheid en Milieu J. Verbeek Koninklijk Nederlands Meteorologisch Instituut

H. Visser KEMA

New Zealand

C. de Freitas University of Auckland B. Fitzharris University of Otago

V. Gray Climate Consultant, New Zealand

J. Kidson
 H. Larsen
 National Institute of Water & Atmospheric Research
 National Institute of Water & Atmospheric Research

P. Maclaren University of Canterbury

M. Manning

National Institute of Water & Atmospheric Research

J. Renwick

National Institute of Water & Atmospheric Research

Norway

T. Asphjell Norwegian State Pollution Control Authority

R. Benestad Norwegian Meteorological Institute

O. Christophersen Ministry of Environment

E. Forland Norwegian Meteorological Institute

J. Fuglestvedt
 O. Godal
 S. Grønås
 University of Oslo
 University of Bergen

I. Hanssen-Bauer Norwegian Meteorological Institute

E. Jansen University of BergenN. Koc Norsk PolarinstituttH. Loeng Institute of Marine Research

S. Mylona Norwegian State Pollution Control Authority
M. Pettersen Norwegian State Pollution Control Authority

A. Rosland

Norwegian State Pollution Control Authority

T. Sagalated

Livingsity of Oale

T. Segalstad University of Oslo J. Winther Norwegian Polar Institute

Peru

N. Gamboa Pontificia Universidad Catolica del Peru

Poland

M. Mietus Institute of Meteorology & Water Management

Portugal

C. Borrego Universidade de Aveiro

Russian Federation

O. E. Anisimov State Hydrological Institute

R. Burlutsky Hydrometeorological Research Centre of Russia N. Datsenko Hydrometeorological Research Centre of Russia

G. Golitsyn Institute of Atmospheric Physics

N. Ivachtchenko Hydrometeorological Research Centre of Russia

I. Karol Main Geophysical Observatory
 K. Kondratyev Research Centre for Ecological Safety
 V. P. Meleshko Main Geophysical Observatory
 I. Mokhov Institute of Atmospheric Physics

D. Sonechkin Hydrometeorological Research Centre of Russia

Saudi Arabia

M. Al-Sabban Ministry of Petroleum

Slovak Republic

M. Lapin Comenius University

K. Mareckova Slovak Hydrometeorological Institute

Slovenia

A. Kranjc Hydrometeorological Institute of Slovenia

Spain

S. Alonso Universitat de les Illes Balears
L. Balairon National Institute of Meteorology

Y. Castro-Diez Universidad de Granada J. Cortina Universitat d'Alacant M. de Luis Universitat d'Alacant

E. FanjulB. GomezClima Maritimo - Puertos del EstadoClima Maritimo - Puertos del Estado

M. Gomez-Lahoz Puertos del Estado J. Gonzalez-Hidalgo University of Zaragoza

A. Lavin Instituto Español de Oceanografía J. Peñuelas Universitat Autònoma de Barcelona

J. Raventos Universitat d'Alacant J. Sanchez Universitat d'Alacant

I. Sanchez-Arevalo Clima Maritimo - Puertos del Estado M. Vazquez Instituto de Astrofísica de Canarias

Sudan

N. Awad
 I. Elgizouli
 N. Goutbi
 Higher Council for Environment & Natural Resources
 Higher Council for Environment & Natural Resources
 Higher Council for Environment & Natural Resources

Sweden

R. Charlson Stockholm University
E. Källén Stockholm University
A. Moberg Stockholm University
N. Morner Stockholm University

J. Raisanen Swedish Meteorological and Hydrological Institute

H. Rodhe Stockholm University

M. Rummukainen Swedish Meteorological and Hydrological Institute

Switzerland

U. Baltensperger
 D. Gyalistras
 W. Haeberli
 F. Joos
 Paul Scherrer Institute
 University of Bern
 University of Zurich
 University of Bern

H. Lang Swiss Federal Institute of Technology

C. Pfister Unitobler

J. Romero Federal Office of Environment, Forests and Landscape

C. SchaerJ. StaehelinSwiss Federal Institute of TechnologySwiss Federal Institute of Technology

H. Wanner University of Bern

M. Wild Swiss Federal Institute of Technology

Thailand

J. Boonjawat Chulalongkorn University

Togo

A. Ajavon Universite du Benin

Turkey

A. Danchev Fatih University

M. Turkes Turkish State Meteorological Service

United Kingdom

M. Allen Rutherford Appleton LaboratoryS. Allison Southampton Oceanography Centre

R. Betts Hadley Centre for Climate Prediction and Research, Met Office

S. Boehmer-Christiansen
Sussex University
R. Braithwaite
University of Manchester
University of East Anglia

S. Brown Hadley Centre for Climate Prediction and Research, Met Office

I. Colbeck University of Essex

R. Courtney European Science and Environment Forum

M. Crompton Department of the Environment, Transport and the Regions

X. Dai IPCC WGI Technical Support Unit

C. Doake British Antarctic Survey

C. Folland Hadley Centre for Climate Prediction and Research, Met Office N. Gedney Hadley Centre for Climate Prediction and Research, Met Office

N. Gillett University of Oxford

W. Gould Southampton Oceanography Centre

J. Gregory Hadley Centre for Climate Prediction and Research, Met Office

S. Gregory University of Sheffield

D. J Griggs IPCC WGI Technical Support Unit

J. Grove University of Cambridge

J. Haigh Imperial College

R. Harding Centre for Ecology and Hydrology

M. Harley English Nature

J. Haywood Meteorological Research Flight, Met Office

J. Houghton IPCC WGI Co-Chairman

W. Ingram
 T. Iversen
 Hadley Centre for Climate Prediction and Research, Met Office
 European Centre for Medium-range Weather Forecasting

J. Lovelock Retired, United Kingdom

K. Maskell IPCC WGI Technical Support Unit

A. McCulloch Marbury Technical Consulting, United Kingdom

G. McFadyen Department of the Environment, Transport and the Regions
J. Mitchell Hadley Centre for Climate Prediction and Research, Met Office
J. Murphy Hadley Centre for Climate Prediction and Research, Met Office

C. Newton Environment Agency

M. Noguer IPCC WGI Technical Support Unit

T. Osborn University of East Anglia

D. Parker Hadley Centre for Climate Prediction and Research, Met Office

D. Pugh Southampton Oceanography Centre

S. Raper University of East Anglia

D. Roberts
 D. Sexton
 Hadley Centre for Climate Prediction and Research, Met Office
 Hadley Centre for Climate Prediction and Research, Met Office

K. Shine University of ReadingK. Smith University of EdinburghP. Smithson University of Sheffield

P. Stott Hadley Centre for Climate Prediction and Research, Met Office S. Tett Hadley Centre for Climate Prediction and Research, Met Office

P. Thorne University of East Anglia

R. Toumi Imperial College

P. Viterbo European Centre for Medium-range Weather Forecasting
D. Warrilow Department of the Environment, Transport and the Regions

R. Wilby University of Derby

P. Williamson Plymouth Marine Laboratory

P. Woodworth Bidston Observatory

United States of America

M. Abbott Oregon State University

W. Abdalati
 D. Adamec
 R. B. Alley
 Pennsylvania State University
 R. Andres
 University of Alaska at Fairbanks
 J. Angel
 Illinois State Water Survey

P. Arkin Columbia University
R. Arritt Iowa State University

E. Atlas National Centre for Atmospheric Research

D. Bader Department of Energy
 T. Baerwald National Science Foundation
 R. Bales University of Arizona
 R. Barber Duke University

T. Barnett Scripps Institute of Oceanography

P. Bartlein University of Oregon

J. J. Bates NOAA Environmental Technology Laboratory
T. Bates NOAA Pacific Marine Environmental Laboratory

M. Bender Princeton University

C. Bentley University of Wisconsin at Madison

K. Bergman NASA Global Modeling and Analysis Program

C. Berkowitz Pacific Northwest National Laboratory

M. Berliner Ohio State University

J. Berry Carnegie Institution of Washington
R. Bindschadler NASA Goddard Space Flight Centre
D. Blake University of California at Irvine
T. Bond University of Washington
A. Broccoli Princeton University

W. BroeckerL. BruhwilerLamont Doherty Earth Observatory of Columbia UniversityNOAA Climate Monitoring and Diagnostics Laboratory

K. Bryan Princeton University

K. Caldeira Lawrence Livermore National Laboratory

M. A. Cane Lamont Doherty Earth Observatory of Columbia University

A. Carleton Pennsylvania State University
R. Cess State University of New York
W. Chameides Georgia Institute of Technology
T. Charlock NASA Langley Research Center
M. Chin NASA Goddard Space Flight Center

K. CookW. CookeCornell UniversityPrinceton University

C. Covey Lawrence Livermore National Laboratory

T. Crowley Texas A&M University

D. Cunnold Georgia Institute of Technology

J. A. Curry University of Colorado R. Dahlman Department of Energy

A. Dai National Center for Atmospheric Research

B. DeAngelo Environmental Protection Agency

P. DeCola NASA

P. DeMott
Colorado State University
A. S. Denning
Colorado State University
W. Dewar
Florida State University
R. E. Dickerson
University of Maryland
R. Dickinson
Georgia Institute of Technology

L. Dilling NOAA Office of Global Programs

E. Dlugokencky NOAA Climate Monitoring & Diagnostics Laboratory

S. Doney National Centre for Atmospheric Research

S. Drobot University of Nebraska

H. DucklowW. EasterlingVirginia Institute of Marine SciencesPennsylvania State University

J. Elkins NOAA Climate Monitoring & Diagnostics Laboratory

E. Elliott National Science FoundationW. Elliott NOAA Air Resources Laboratory

H. Ellsaesser Atmospheric Consultant S. Esbensen Oregon State University

C. FairallNOAA Environmental Technology LaboratoryY. FanCentre for Ocean-Land-Atmosphere Studies

P. Farrar Naval Oceanographic Office

R. Feely
 F. Fehsenfeld
 G. Feingold
 NOAA Pacific Marine Environmental Laboratory
 NOAA Environmental Research Laboratories
 NOAA Environmental Technology Laboratory

R. Fleagle University of Washington

R. Forte Environmental Protection Agency

M. Fox-Rabinovitz University of Maryland J. Francis Rutgers University

M. Free NOAA Air Resources Laboratory

R. Friedl Jet Propulsion laboratory
I. Fung University of California

D. Gaffen NOAA Air Resources Laboratory

W. Gates
 C. Gautier
 P. Geckler
 Lawrence Livermore National Laboratory
 University of California at Santa Barbara
 Lawrence Livermore National Laboratory

L. Gerhard University of Kansas

S. Ghan
Pacific Northwest National Laboratory
M. Ghil
University of California at Los Angeles
P. Gleckler
Lawrence Livermore National Laboratory
V. Gornitz
NASA Goddard Institute for Space Studies
V. Grewe
NASA Goddard Institute for Space Studies

W. Gutowski Iowa State University
P. Guttorp University of Washington
R. Hallgren American Meteorological Society

D. Hardy University of Massachusetts

E. Harrison NOAA Pacific Marine Environmental Laboratory

G. Hegerl Texas A&M University

B. Hicks NOAA Air Resources Laboratory
 W. Higgins NOAA Climate Protection Center
 D. Houghton University of Wisconsin at Madison
 R. Houghton Woods Hole Research Center

Z. Hu Center for Ocean-Land-Atmosphere StudiesB. Huang Centre for Ocean-Land-Atmosphere Studies

J. Hudson Desert Research Institute
M. Hughes University of Arizona

C. Hulbe NASA Goddard Space Flight Center

D. Jacob
 Harvard University
 S. Jacobs
 Columbia University
 M. Jacobson
 Stanford University
 A. Jain
 University of Illinois
 D. James
 National Science Foundation

G. Johnson NOAA Pacific Marine Environmental Laboratory

R. Johnson Colorado State University

T. Joyce Woods Hole Oceanographic Institution
 R. Katz National Center for Atmospheric Research
 R. Keeling Scripps Institute of Oceanography

J. Kiehl National Center for Atmospheric Research
J. Kim Lawrence Berkeley National Laboratory
J. Kinter Centre for Ocean-Land-Atmosphere Studies
B. Kirtman Centre for Ocean-Land-Atmosphere Studies
T. Knutson NOAA Geophysical Fluid Dynamics Laboratory

National Center for Atmospheric Research

S. Kreidenweis Colorado State University

D. Koch

V. Krishnamurthy Centre for Ocean-Land-Atmosphere Studies

D. Kruger Environmental Protection Agency

J. Kutzbach University of Wisconsin at Madison

C. Landsea NOAA Atlantic Oceanographic & Meteorological Laboratory

Pacific Northwest National Laboratory N. Laulainen

Naval Research Laboratory J. Lean National Science Foundation M. Ledbetter

T. Ledley **TERC**

A. Leetmaa NOAA National Weather Service

C. Leith Lawrence Livermore National Laboratory S. Levitus NOAA National Oceanographic Data Center

NOAA Office of Global Programs J. Levy L. Leung Pacific Northwest National Laboratory R. Lindzen Massachusetts Institute of Technology University of Alaska at Fairbanks C. Lingle

J. Logan Harvard University A. Lupo University of Missouri

Office of the US Global Change Research Program M. MacCracken

G. Magnusdottir University of California J. Mahlman Princeton University

T. Malone Connecticut Academy of Science and Engineering

M. E. Mann University of Virginia

Bigelow Laboratory for Ocean Sciences P. Matrai

D. Mauzerall Princeton University M. McFarland **Dupont Fluoroproducts**

University of Alaska at Fairbanks A. McGuire National Science Foundation S. Meacham M. Meier Institute of Arctic & Alpine Research

P. Michaels University of Virginia N. Miller Lawrence Berkeley National Laboratory

NASA Goddard Institute for Space Studies M. Mishchenko Centre for Ocean-Land-Atmosphere Studies V. Misra

R. Molinari NOAA Atlantic Oceanographic and Meteorological Laboratory NOAA Climate Monitoring & Diagnostics Laboratory S. Montzka

NOAA Office of Global Programs K. Mooney

Department of Agriculture A. Mosier

University of California at Los Angeles D. Neelin

R. Neilson Oregon State University J. Norris Princeton University Texas A & M University G. North

T. Novakov Lawrence Berkeley National Laboratory

Institute for Computational Earth System Science W. O'Hirok

M. Palecki Illinois State Water Survey S. Pandis Carnegie Mellon University

C. L. Parkinson NASA Goddard Space Flight Center

University of Michigan J. Penner University of Maryland K. Pickering Colorado State University R. Pielke

S. Piper Scripps Institution of Oceanography

H. Pollack University of Michigan

Lawrence Livermore National Laboratory G. Potter

M. Prather University of California at Irvine R. Prinn Massachusetts Institute of Technology N. Psuty State University of New Jersey V. Ramanathan Scripps Institute of Oceanography

Princeton University V. Ramaswamy

R. Randall The Rainforest Regeneration Institution California Institute of Technology J. Randerson

C. Raymond University of Washington

P. Rhines University of Washington
C. Rinsland NASA Langley Research Centre

D. Ritson Stanford University
A. Robock Rutgers University

B. Rock University of New Hampshire

J. Rodriguez University of Miami

R. Ross NOAA Air Resources Laboratory

D. Rotman Lawrence Livermore National Laboratory

C. Sabine
 D. Sahagian
 E. Saltzman
 Sander
 E. Sarachik
 University of New Hampshire
 National Science Foundation
 NASA Jet Propulsion Laboratory
 University of Washington
 V. Saxena
 North Carolina State University

S. Schauffler National Centre for Atmospheric Research

E. Scheehle Environmental Protection Agency

W. Schlesinger Duke University

C. Schlosser Centre for Ocean-Land-Atmosphere Studies
R. W. Schmitt Woods Hole Oceanographic Institution
E. Schneider Centre for Ocean-Land-Atmosphere Studies

S. Schneider Stanford University

S. Schwartz Brookhaven National Laboratory

M. Schwartzkopf Princeton University

J. Seinfeld California Institute of Technology
A. Semtner Naval Postgraduate School
J. Severinghaus University of California

D. Shindell NASA Goddard Institute for Space Studies

H. Sievering
 J. Simpson
 H. Singh
 D. Skole
 University of California
 NASA Ames Research Centre
 Michigan State University

S. Smith Pacific Northwest National Laboratory

B. J. Soden Princeton University
R. Somerville University of California
M. Spector Lehigh University

T. Spence National Science FoundationP. Stephens National Science Foundation

P. Stone Massachusetts Institute of Technology

R. Stouffer Princeton University

D. Straus Centre for Ocean-Land-Atmosphere Studies

C. Sucher NOAA Office of Global Programs
Y. Sud NASA Goddard Space Flight Center

B. Sun University of Massachusetts

P. Tans NOAA Climate Monitoring & Diagnostics Laboratory

R. Thomas NASA Wallops Flight Facility
D. Thompson University of Washington

J. Titus Environmental Protection Agency

K. E. Trenberth National Center for Atmospheric Research

S. Trumbore University of California at Irvine

G. Tselioudis NASA Goddard Institute for Space Studies

C. van der Veen Ohio State University

M. Visbeck Lamont Doherty Earth Observatory of Columbia University

M. Vuille University of Massachusetts
 M. Wahlen University of California
 J. Wallace University of Washington

J. Walsh University of Illinois at Urbana-Champaign

J. Wang NOAA Air Resources Laboratory

W. Wang State University of New York at Albany

Y. Wang Georgia Institute of Technology

M. Ward Lamont Doherty Earth Observatory of Columbia University

S. Warren University of Washington

W. Washington National Center for Atmospheric Research

B. Weare University of California at Davis

T. Webb Brown University

M. Wehner
 R. Weller
 P. Wennberg
 H. Weosky
 Lawrence Livermore National Laboratory
 Woods Hole Oceanographic Institution
 California Institute of Technology
 Federal Aviation Administration

D. Williamson National Center for Atmospheric Research

D. Winstanley Illinois State Water Survey
S. Wofsy Harvard University

J. Wong NOAA Air Resources Laboratory

C. Woodhouse NOAA National Geophysical Data Center Z. Wu Centre for Ocean-Land-Atmosphere Studies

X. XiaoZ. YangUniversity of New HampshireUniversity of Arizona

S. Yvon-Lewis NOAA Atlantic Oceanographic & Meteorological Laboratory

C. Zender University of California at Irvine

United Nations Organisations and Specialised Agencies

N. Harris European Ozone Research Coordinating Unit, United Kingdom

F. Raes Environment Institute of European Commission, Italy

Non-Governmental Organisations

J. Owens 3M Company

C. Kolb Aerodyne Research Inc. H. Feldman American Petroleum Institute

J. Martín-Vide Asociación Española de Climatología, Spain
 M. Ko Atmospheric & Environmental Research Inc.

S. Baughcum Boeing Company

C. Field Carnegie Institute of Washington

K. Gregory Centre for Business and the Environment, United Kingdom

W. Hennessy CRL Energy Ltd., New Zealand E. Olaguer The Dow Chemical Company

D. Fisher DuPont Company
A. Salamanca ECO Justicia, Spain

C. Hakkarinen Electric Power Research Institute, USA

M. Oppenheimer Environmental Defense, USA

H. Kheshgi Exxon Mobil Research & Engineering Company, USA

S. Japar Ford Motor Company

W. Hare Greenpeace International, Netherlands

L. Bishop Honeywell International Inc.J. Neumann Industrial Economics, Incorporated

I. Smith International Energy Agency Coal Research, United Kingdom

L. Bernstein International Petroleum Industry Environmental Conservation Association
 J. Grant International Petroleum Industry Environmental Conservation Association

D. Hoyt Raytheon

K. Green Reason Public Policy Institute

S. Singer Science & Environmental Policy Project, USA

J. Le Cornu SHELL Australia Ltd.

Acronyms and Abbreviations

AABW Antarctic Bottom Water AAO Antarctic Oscillation

ABL Atmospheric Boundary Layer
ACC Antarctic Circumpolar Current
ACE Aerosol Characterisation Experiment

ACRIM Active Cavity Radiometer Irradiance Monitor

ACSYS Arctic Climate System Study ACW Antarctic Circumpolar Wave

AEROCE Atmosphere Ocean Chemistry Experiment
AGAGE Advanced Global Atmospheric Gases Experiment

AGCM Atmospheric General Circulation Model AGWP Absolute Global Warming Potential

AMIP Atmospheric Model Intercomparison Project

ANN Artificial Neural Networks

AO Arctic Oscillation

AOGCM Atmosphere-Ocean General Circulation Model

ARESE Atmospheric Radiation Measurement Enhanced Shortwave Experiment

ARGO Part of the Integrated Global Observation Strategy

ARM Atmospheric Radiation Measurement

ARPEGE/OPA Action de Recherche Petite Echelle Grande Echelle/Océan Parallélisé

ASHOE/MAESA Airborne Southern Hemisphere Ozone Experiment/Measurement for Assessing the Effects of Stratospheric

Aircraft

AVHRR Advanced Very High Resolution Radiometer

AWI Alfred Wegener Institute (Germany)

BAHC Biospheric Aspects of the Hydrological Cycle

BC Black Carbon

BERN2D Two-dimensional Climate Model of University of Bern

BIOME 6000 Global Palaeo-vegetation Mapping Project

BMRC Bureau of Meteorology Research Centre (Australia)

CART Classification and Tree Analysis CCA Canonical Correlation Analysis

CCC(ma) Canadian Centre for Climate (Modelling and Analysis) (Canada)

CCM Community Climate Model

CCMLP Carbon Cycle Model Linkage Project

CCN Cloud Condensation Nuclei

CCSR Centre for Climate System Research (Japan)

CERFACS European Centre for Research and Advanced Training in Scientific Computation (France)

CIAP Climate Impact Assessment Program

CLIMAP Climate: Long-range Investigation, Mapping and Prediction

CLIMBER Climate-Biosphere Model

CLIMPACTS Integrated Model for Assessment of the Effects of Climate Change on the New Zealand Environment

CMAP CPC Merged Analysis of Precipitation

CMDL Climate Monitoring and Diagnostics Laboratory of NOAA (USA)

CMIP Coupled Model Intercomparison Project

CNRM Centre National de Recherches Météorologiques (France)
CNRS Centre National de la Recherche Scientifique (France)

COADS Comprehensive Ocean Atmosphere Data Set COHMAP Co-operative Holocene Mapping Project

COLA Centre for Ocean-Land-Atmosphere Studies (USA)

COSAM Comparison of Large-scale Atmospheric Sulphate Aerosol Model

COSMIC Country Specific Model for Intertemporal Climate

COWL Cold Ocean Warm Land

CPC Climate Prediction Center of NOAA (USA)

CRF Cloud Radiative Forcing

CRU Climatic Research Unit of UEA (UK)

CRYOSat Cryosphere Satellite
CSG Climate Scenario Generator

CSIRO Commonwealth Scientific and Industrial Research Organisation (Australia)

CSM Climate System Model CTM Chemistry Transport Model

DARLAM CSIRO Division of Atmospheric Research Limited Area Model

DDC Data Distribution Centre of IPCC
DGVM Dynamic Global Vegetation Model

DERF Dynamical Extended Range Forecasting group of GFDL (USA)

DIC Dissolved Inorganic Carbon
DJF December, January, February

DKRZ Deutsche KlimaRechenZentrum (Germany)

DMS Dimethylsulfide

DMSP Defense Meteorological Satellite Program
DNM Department of Numerical Mathematics (Russia)

DOC Dissolved Organic Carbon
DOE Department of Energy (USA)

DORIS Determination d'Orbite et Radiopositionnement Intégrés par Satellite

DRF Direct Radiative Forcing
DTR Diurnal Temperature Range
DYNAMO Dynamics of North Atlantic Models

EBM Energy Balance Model ECHAM ECMWF/MPI AGCM

ECMWF European Centre for Medium-range Weather Forecasting

ECS Effective Climate Sensitivity

EDGAR Emission Database for Global Atmospheric Research

EISMINT European Ice Sheet Modelling initiative EMDI Ecosystem Model/Data Intercomparison

EMIC Earth system Models of Intermediate Complexity

ENSO El Niño-Southern Oscillation
EOF Empirical Orthogonal Function
EOS Earth Observing System
ERA ECMWF Reanalysis
ERB Earth Radiation Budget

ERBE Earth Radiation Budget Experiment
ERBS Earth Radiation Budget Satellite

ESCAPE Evaluation of Strategies to Address Climate Change by Adapting to and Preventing Emissions

ESMR Electrically Scanning Microwave Radiometer

EURECA European Retrievable Carrier
FACE Free Air Carbon-dioxide Enrichment

FAO Food and Agriculture Organisation (UN)
FCCC Framework Convention on Climate Change

FDH Fixed Dynamical Heating

FF Fossil Fuel

FPAR Plant-absorbed Fraction of Incoming Photosynthetically Active Radiation

FSU Former Soviet Union

GASP Global Assimilation and Prediction

GCIP GEWEX Continental-scale International Program

GCM General Circulation Model GCOS Global Climate Observing System

GCR Galactic Cosmic Ray
GDP Gross Domestic Product
GEBA Global Energy Balance Archive
GEIA Global Emissions Inventory Activity

GEISA Gestion et Etude des Informations Spectroscopiques Atmosphériques

GEWEX Global Energy and Water cycle Experiment
GFDL Geophysical Fluid Dynamics Laboratory (USA)

GHCN Global Historical Climate Network

GHG Greenhouse Gas

GIM Global Integration and Modelling
GISP Greenland Ice Sheet Project

GISS Goddard Institute for Space Studies (USA)
GISST Global Sea Ice and Sea Surface Temperature

GLOSS Global Sea Level Observing System
GOALS Global Ocean-Atmosphere-Land System
GPCP Global Precipitation Climatology Project

GPP Gross Primary Production
GPS Global Positioning System

GRACE Gravity Recovery and Climate Experiment

GRIP Greenland Ice Core Project

GSFC Goddard Space Flight Centre (USA)

GSWP Global Soil Wetness Project
GUAN GCOS Upper Air Network
GWP Global Warming Potential
HadCM Hadley Centre Coupled Model

HIRETYCS High Resolution Ten-Year Climate Simulations

HITRAN High Resolution Transmission Molecular Absorption Database

HLM High Latitude Mode

HNLC High Nutrient-Low Chlorophyll HRBM High Resolution Biosphere Model

IAHS International Association of Hydrological Science

IAP Institute of Atmospheric Physics (China)

IASB Institut d'Aéronomie Spatiale de Belgique (Belgium)

IBIS Integrated Biosphere Simulator

ICESatIce, Cloud and Land Elevation SatelliteICSIInternational Commission on Snow and IceICSUInternational Council of Scientific UnionsIGACInternational Global Atmospheric ChemistryIGBPInternational Geosphere Biosphere ProgrammeIGCRInstitute for Global Change Research (Japan)

IHDP International Human Dimensions Programme on Global Environmental Change

IMAGE Integrated Model to Assess the Global Environment

IN Ice Nuclei

INDOEX Indian Ocean Experiment

IOC Intergovernmental Oceanographic Commission IPCC Intergovernmental Panel on Climate Change

IPO Interdecadal Pacific Oscillation

IPSL-CM Institut Pierre Simon Laplace/Coupled Atmosphere-Ocean-Vegetation Model

ISAM Integrated Science Assessment Model

ISCCP International Satellite Cloud Climatology Project
ISLSCP International Satellite Land Surface Climatology Project

ITCZ Inter-Tropical Convergence Zone

IUPAC International Union of Pure and Applied Chemistry

JGOFS Joint Global Ocean Flux Study

JJA June, July, August

JMA Japan Meteorological Agency (Japan)
JPL Jet Propulsion Laboratory of NASA (USA)

KNMI Koninklijk Nederlands Meteorologisch Instituut (Netherlands)

LAI Leaf Area Index

LASG State Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics

(China)

LBA Large-scale Biosphere-atmosphere Experiment in Amazonia

LGGE Laboratoire de Glaciologie et Géophysique de l'Environnement (France)

LGM Last Glacial Maximum

LLNL Lawrence Livermore National Laboratory (USA)
LMD Laboratoire de Météorologie Dynamique (France)

LOSU Level of Scientific Understanding

LPJ Land-Potsdam-Jena Terrestrial Carbon Model

LSAT Land Surface Air Temperature

LSG Large-Scale Geostrophic Ocean Model

LSP Land Surface Parameterisation

LT Lifetime

LWP Liquid Water Path

MAGICC Model for the Assessment of Greenhouse-gas Induced Climate Change

MAM March, April, May

MARS Multivariate Adaptive Regression Splines MGO Main Geophysical Observatory (Russia)

MJO Madden-Julian Oscillation

ML Mixed Layer

MLOPEX Mauna Loa Observatory Photochemistry Experiment
MODIS Moderate Resoluting Imaging Spectroradiometer

MOGUNTIA Model of the General Universal Tracer Transport in the Atmosphere

MOM Modular Ocean Model

MOZART Model for Ozone and Related Chemical Tracers
MPI Max-Plank Institute for Meteorology (Germany)
MRI Meteorological Research Institute (Japan)

MSLP Mean Sea Level Pressure
MSU Microwave Sounding Unit
NADW North Atlantic Deep Water
NAO North Atlantic Oscillation

NARE North Atlantic Regional Experiment

NASA National Aeronautics and Space Administration (USA)

NBP Net Biome Production

NCAR National Center for Atmospheric Research (USA)

NCC National Climate Centre (China)

NCDC National Climatic Data Center of NOAA (USA)

NCEP National Centers for Environmental Prediction of NOAA (USA)

NDVI Normalised Difference Vegetation Index

NEP Net Ecosystem Production

NESDIS National Environmental Satellite, Data and Information Service of NOAA (USA)

NIC National Ice Centre of NOAA (USA)

NIED National Research Institute for Earth Science and Disaster Prevention (Japan)

NIES National Institute for Environmental Studies (Japan)

NMAT Night Marine Air Temperature

NMHC Non-Methane Hydrocarbon

NOAA National Oceanic and Atmospheric Administration (USA)

NPP Net Primary Production

NPZD Nutrients, Phytoplankton, Zooplankton and Detritus

NRC National Research Council (USA)
NRL Naval Research Laboratory (USA)
NWP Numerical Weather Prediction

OC Organic Carbon

OCMIP Ocean Carbon-cycle Model Intercomparison Project

OCS Organic Carbonyl Sulphide
OGCM Ocean General Circulation Model
OLR Outgoing Long-wave Radiation

OPYC Ocean Isopycnal GCM

OxComp Tropospheric Oxidant Model Comparison

PC Principal Component
PCM Parallel Climate Model
PDF Probability Density Function
PDO Pacific Decadal Oscillation
PEM Pacific Exploratory Missions
PFT Plant Functional Type
PGR Post-Glacial Rebound

PhotoComp Ozone Photochemistry Model Comparison

PICASSO Pathfinder Instruments for Cloud and Aerosol Spaceborne Observations

PIK Potsdam Institute for Climate Impact Research (Germany)

PILPS Project for the Intercomparison of Land-surface Parameterisation Schemes

PIUB Physics Institute University of Bern (Switzerland)
PMIP Palaeoclimate Model Intercomparison Project

PNA Pacific-North American

PNNL Pacific Northwest National Laboratory (USA)

POC Particulate Organic Carbon

POLDER Polarisation and Directionality of the Earth's Reflectances

POPCORN Photo-Oxidant Formation by Plant Emitted Compounds and OH Radicals in North-eastern Germany

PSMSL Permanent Service for Mean Sea Level

PT Perturbation Lifetime
QBO Quasi-Biennial Oscillation

RAMS Regional Atmospheric Modelling System

RCM Regional Climate Model

RIHMI Research Institute for Hydrometeorological Information

SAGE Stratospheric Aerosol & Gas Experiment SAR IPCC Second Assessment Report

SAT Surface Air Temperature
SBUV Solar Backscatter Ultra Violet

SCAR-B Smoke Cloud and Radiation-Brazil SCE Snow Cover Extent

SCENGEN

SCSWP Small-scale Severe Weather Phenomena SDD Statistical-Dynamical Downscaling

Scenario Generator

SDGVM Sheffield Dynamic Global Vegetation Model
SEFDH Seasonally Evolving Fixed Dynamical Heating
SHEBA Surface Heat Balance of the Arctic Ocean
SHI State Hydrological Institute (Russia)
SIMIP Sea Ice Model Intercomparison Project
SIO Scripps Institution of Oceanography (USA)

SLP Sea Level Pressure

SMMR Scanning Multichannel Microwave Radiometer

SOA Secondary Organic Aerosol

SOC Southampton Oceanography Centre (UK)

SOHO Solar Heliospheric Observatory SOI Southern Oscillation Index

SOLSTICE Solar Stellar Irradiance Comparison Experiment

SON September, October, November

SONEX Subsonic Assessment Program Ozone and Nitrogen Oxide Experiment

SOS Southern Oxidant Study

SPADE Stratospheric Photochemistry, Aerosols, and Dynamics Expedition

SPARC Stratospheric Processes and Their Role in Climate

SPCZ South Pacific Convergence Zone

SRES IPCC Special Report on Emission Scenarios SSM/T-2 Special Sensor Microwave Water Vapour Sounder

SSM/I Special Sensor Microwave/Imager SST Sea Surface Temperature SSU Stratospheric Sounding Unit

STRAT Stratospheric Tracers of Atmospheric Transport

SUCCESS Subsonic Aircraft Contrail and Cloud Effects Special Study

SUNGEN State University of New York at Albany/NCAR Global Environmental and Ecological Simulation of

Interactive Systems

SUSIM Solar Ultraviolet Spectral Irradiance Monitor

TAR IPCC Third Assessment Report

TARFOX Tropospheric Aerosol Radiative Forcing Observational Experiment

TBFRA Temperate and Boreal Forest Resource Assessment

TBO Tropospheric Biennial Oscillation
TCR Transient Climate Response
TEM Terrestrial Ecosystem Model

TEMPUS Sea Surface Temperature Evolution Mapping Project based on Alkenone Stratigraphy

THC Thermohaline Circulation
TMR TOPEX Microwave Radiometer

TOA Top of the Atmosphere

TOMS Total Ozone Mapping Spectrometer

TOPEX/POSEIDON US/French Ocean Topography Satellite Altimeter Experiment

TOVS Television Infrared Observation Satellite Operational Vertical Sounder

TPI Trans Polar Index

TRIFFID Top-down Representation of Interactive Foliage and Flora Including Dynamics

TSI Total Solar Irradiance

UARS Upper Atmosphere Research Satellite
UCAM University of Cambridge (UK)
UCLUMENT OF Collifornia at Immin (US)

UCI University of California at Irvine (USA)
UD/EB Upwelling Diffusion-Energy Balance
UEA University of East Anglia (UK)

UGAMP University Global Atmospheric Modelling Project

UIO Universitetet I Oslo (Norway)

UIUC University of Illinois at Urbana-Champaign (USA)
UKHI United Kingdom High-resolution climate model

UKMO United Kingdom Met Office (UK)

UKTR United Kingdom Transient climate experiment ULAQ Università degli studi dell'Aquila (Italy)

UM Unified Model

UNEP United Nations Environment Programme

UNESCO United Nations Education, Scientific and Cultural Organisation UNFCCC United Nations Framework Convention on Climate Change

USSR Union of Soviet Socialist Republics
UTH Upper Tropospheric Humidity

UV Ultraviolet radiation

UVic University of Victoria (Canada)

VIRGO Variability of Solar Irradiance and Gravity Oscillations

VLM Vertical Land Movement

VOC Volatile Organic Compounds WAIS West Antarctic Ice Sheet

WASA Waves and Storms in the North Atlantic

WAVAS Water Vapour Assessment WBCs Western Boundary Currents

WCRP World Climate Research Programme
WMGGs Well-Mixed Greenhouse Gases
WMO World Meteorological Organization
WOCE World Ocean Circulation Experiment

WP Western Pacific

WRE Wigley, Richels and Edmonds YONU Yonsei University (Korea)

Units

SI (Systeme Internationale) Units:

Physical Quantity	Name of Unit	Symbol
length	metre	m
mass	kilogram	kg
time	second	S
thermodynamic temperature	kelvin	K
amount of substance	mole	mol

Fraction	Prefix	Symbol	Multiple	Prefix	Symbol	
10 ⁻¹	deci	d	10	deca	da	
10^{-2}	centi	c	10^{2}	hecto	h	
10^{-3}	milli	m	10^{3}	kilo	k	
10^{-6}	micro	μ	10^{6}	mega	M	
10^{-9}	nano	n	10^{9}	giga	G	
10^{-12}	pico	p	10^{12}	tera	T	
10 ⁻¹⁵	femto	f	10^{15}	peta	P	

Special Names and Symbols for Certain SI-Derived Units:

Physical Quantity	Name of SI Unit	Symbol for SI Unit	Definition of Unit
force	newton	N	${ m kg~m~s^{-2}}$
pressure	pascal	Pa	$kg m^{-1} s^{-2} (=N m^{-2})$
energy	joule	J	$kg m^2 s^{-2}$
power	watt	W	$kg m^2 s^{-3} (=J s^{-1})$
frequency	hertz	Hz	s ⁻¹ (cycles per second)

Decimal Fractions and Multiples of SI Units Having Special Names:

Physical Quantity	Name of Unit	Symbol for Unit	Definition of Unit
length	Ångstrom	Å	$10^{-10} \mathrm{m} = 10^{-8} \mathrm{cm}$
length	micron	μm	10^{-6} m
area	hectare	ha	$10^4 \mathrm{m}^2$
force	dyne	dyn	10^{-5} N
pressure	bar	bar	$10^5 \text{ N m}^{-2} = 10^5 \text{ Pa}$
pressure	millibar	mb	$10^2 \text{ N m}^{-2} = 1 \text{ hPa}$
mass	tonne	t	$10^{3} \mathrm{kg}$
mass	gram	g	10^{-3} kg
column density	Dobson units	DU	2.687×10^{16} molecules cm ⁻²
streamfunction	Sverdrup	Sv	$10^6 \mathrm{m}^3 \mathrm{s}^{-1}$

Non-SI Units:

°C	degree Celsius (0 °C = 273 K approximately)
	Temperature differences are also given in °C (=K) rather than the more correct form of "Celsius degrees".
ppmv	parts per million (10 ⁶) by volume
ppbv	parts per billion (10 ⁹) by volume
pptv	parts per trillion (10^{12}) by volume
yr	year
ky	thousands of years
bp	before present

The units of mass adopted in this report are generally those which have come into common usage and have deliberately not been harmonised, e.g.,

gigatonnes of carbon (1 GtC = 3.7 Gt carbon dioxide)
petagrams of carbon (1 $PgC = 1 GtC$)
megatonnes of nitrogen
teragrams of carbon $(1 \text{ TgC} = 1 \text{ MtC})$
teragrams of methane
teragrams of nitrogen
teragrams of sulphur

Some chemical symbols used in this report

C	carbon (there are three isotopes: ¹² C, ¹³ C, ¹⁴ C)	DOC	dissolved organic carbon
Ca	calcium	H_2	hydrogen
CaCO ₃	calcium carbonate	halon-1211	CF ₂ ClBr
CCl ₄	carbon tetrachloride	halon-1301	CF ₃ Br
$\mathbf{CF_4}$	perfluoromethane	halon-2402	CF ₂ BrCF ₂ Br
C_2F_6	perfluoroethane	HCFC	hydrochlorofluorocarbon
C_3F_8	perfluoropropane	HCFC-21	CHCl ₂ F
C_4F_8	perfluorocyclobutane	HCFC-22	CHF ₂ Cl
C_4F_{10}	perfluorobutane	HCFC-123	$C_2F_3HCl_2$
C_5F_{12}	perfluoropentane	HCFC-124	CF ₃ CHClF
C_6F_{14}	perfluorohexane	HCFC-141b	CH ₃ CFCl ₂
CFC	chlorofluorocarbon	HCFC-142b	CH ₃ CF ₂ Cl
CFC-11	CFCl ₃ (trichlorofluoromethane)	HCFC-225ca	CF ₃ CF ₂ CHCl ₂
CFC-12	CF ₂ Cl ₂ (dichlorodifluoromethane)	HCFC-225cb	CCIF ₂ CF ₂ CHCIF
CFC-13	CF ₃ Cl (chlorotrifluoromethane)	HCFE-235da2	CF ₃ CHClOCHF ₂
CFC-113	CF ₂ ClCFCl ₂ (trichlorotrifluoroethane)	HCO ₃ ⁻	bicarbonate ion
CFC-114	CF ₂ ClCF ₂ Cl (dichlorotetrafluoroethane)	HFC	hydrofluorocarbon
CFC-115	CF ₃ CF ₂ Cl (chloropentafluoroethane)	HFC-23	CHF ₃
CF ₃ I	trifluoroiodomethane	HFC-32	CH_2F_2
CH_4	methane	HFC-41	CH ₃ F
C_2H_6	ethane	HFC-125	CHF ₂ CF ₃
C_5H_8	isoprene	HFC-134	CHF ₂ CHF ₂
C_6H_6	benzene	HFC-134a	CF ₃ CH ₂ F
C_7H_8	toluene	HFC-143	CH ₂ F CHF ₂
$C_{10}H_{16}$	terpene	HFC-143a	CH ₃ CF ₃
CH ₃ Br	methylbromide	HFC-152	CH ₂ FCH ₂ F
CH ₃ CCl ₃	methyl chloroform	HFC-152a	CH ₃ CHF ₂
CHCl ₃	chloroform/trichloromethane	HFC-161	CH ₃ CH ₂ F
CH ₂ Cl ₂	dichloromethane/methylene chloride	HFC-227ea	CF ₃ CHFCF ₃
CH ₃ Cl	methylchloride	HFC-236cb	CF ₃ CF ₂ CH ₂ F
CH ₃ OCH ₃	dimethyl ether	HFC-236ea	CF ₃ CHFCHF ₂
CO	carbon monoxide	HFC-236fa	CF ₃ CH ₂ CF ₃
CO ₂	carbon dioxide	HFC-245ca	CH ₂ FCF ₂ CHF ₂
CO ₃ ²⁻	carbonate ion	HFC-245ea	CHF ₂ CHFCHF ₂
DIC	dissolved inorganic carbon	HFC-245eb	CF ₃ CHFCH ₂ F

HFC-245fa	CHF ₂ CH ₂ CF ₃	HFOC-134	CF ₂ HOCF ₂ H
HFC-263fb	CF ₃ CH ₂ CH ₃	HFOC-143a	CF ₃ OCH ₃
HFC-338pcc	CHF ₂ CF ₂ CF ₂ CF ₂ H	HFOC-152a	CH ₃ OCHF ₂
HFC-356mcf	CF ₃ CF ₂ CH ₂ CH ₂ F	HFOC-245fa	CHF ₂ OCH ₂ CF ₃
HFC-356mff	CF ₃ CH ₂ CH ₂ CF ₃	HFOC-356mmf	CF ₃ CH ₂ OCH ₂ CF ₃
HFC-365mfc	CF ₃ CH ₂ CF ₂ CH ₃	HG-01	CHF ₂ OCF ₂ CF ₂ OCHF ₂
HFC-43-10mee	CF ₃ CHFCHFCF ₂ CF ₃	HG-10	CHF ₂ OCF ₂ OCHF ₂
HFC-458mfcf	CF ₃ CH ₂ CF ₂ CH ₂ CF ₃	H-Galden 1040x	CHF ₂ OCF ₂ OC ₂ F ₄ OCHF ₂
HFC-55-10mcff	CF ₃ CF ₂ CH ₂ CH ₂ CF ₃ CF ₃	HNO ₃	nitric acid
HFE-125	CF ₃ OCHF ₂	HO_2	hydroperoxyl
HFE-134	CF ₂ HOCF ₂ H	HO _x	the sum of OH and HO ₂
HFE-143a	CF ₃ OCH ₃	H_2O	water vapour
HFE-152a	CH ₃ OCHF ₂	H ₂ SO ₄	sulphuric acid
HFE-227ea	CF ₃ CHFOCF ₃	N_2	molecular nitrogen
HFE-236ea2	CF ₃ CHFOCHF ₂	NF ₃	nitrogen trifluoride
HFE-236fa	CF ₃ CH ₂ OCF ₃	NH_3	ammonia
HFE-245cb2	CF ₃ CF ₂ OCH ₃	$\mathrm{NH_4}^+$	ammonium ion
HFE-245fa1	CHF ₂ CH ₂ OCF ₃	NMHC	non-methane hydrocarbon
HFE-245fa2	CHF ₂ OCH ₂ CF ₃	NO	nitric oxide
HFE-254cb2	CHF ₂ CF ₂ OCH ₃	NO_2	nitrogen dioxide
HFE-263fb2	CF ₃ CH ₂ OCH ₃	NO_x	nitrogen oxides (the sum of NO and NO ₂)
HFE-329mcc2	CF ₃ CF ₂ OCF ₂ CHF ₂	NO_3	nitrate radical
HFE-338mcf2	CF ₃ CF ₂ OCH ₂ CF ₃	NO_3^-	nitrate ion
HFE-347mcc3	CF ₃ CF ₂ CF ₂ OCH ₃	N_2O	nitrous oxide
HFE-347mcf2	CF ₃ CF ₂ OCH ₂ CHF ₂	O_2	molecular oxygen
HFE-356mec3	CF ₃ CHFCF ₂ OCH ₃	O_3	ozone
HFE-356mff2	CF ₃ CH ₂ OCH ₂ CF ₃	OCS	organic carbonyl sulphide
HFE-356pcc3	CHF ₂ CF ₂ CF ₂ OCH ₃	OH	hydroxyl radical
HFE-356pcf2	CHF ₂ CF ₂ OCH ₂ CHF ₂	PAN	peroxyacetyl nitrate
HFE-356pcf3	CHF ₂ CF ₂ CH ₂ OCHF ₂	PFC	perfluorocarbon
HFE-365mcf3	CF ₃ CF ₂ CH ₂ OCH ₃	SF ₆	sulphur hexafluoride
HFE-374pc2	CHF ₂ CF ₂ OCH ₂ CH ₃	SF ₅ CF ₃	trifluoromethyl sulphur pentafluoride
HFE-7100	$C_4F_9OCH_3$	SO_2	sulphur dioxide
HFE-7200	$C_4F_9OC_2H_5$	SO_4^{2-}	sulphate ion
HFOC-125	CF ₃ OCHF ₂	VOC	volatile organic compounds

Index

[†] Term also appears in Appendix I: Glossary. Numbers in italics indicate a reference to a table or diagram. Numbers in bold indicate a reference to an entire chapter.

A		sea salt	297-299, 314, 320, 332, 374
Absorption		size distributi	on 294, 369
anomalous	433	soil dust – see	e Aerosols, mineral dust
Aerosol(s) [†]	93, 289-34	sources and s	inks 295-307, 330-335
biogenic	299, 300-303, 312, 33	stratospheric	304, 379-380, 395
black carbon [†]	294, 299-300, 306, 314, 332-334, 369-372, 395	, sulphates	314, 320, 324, 367-369, 375-377, 378, 395, 397,
	397, 400-402	2	400-402, 548, 593-596
carbonaceous† 299	9-300, 314, 369-372, 377-378, 395, 397, 400-402	trends – see A	Aerosol(s), concentration(s) past and current
cloud condensation	n nuclei (CCN) 308-310	uncertainties	322-324, 328-330, 334-335, 374, 395, 404
concentration(s) pa	ast and current 300	volatile organ	ic compounds (VOC) 300, 331
direct effect	293-295, 304, 322-324, 367-374, 400-404	volcanic	303-304, 379-380
effect on clouds	307-312, 324-325, 328-330, 379, 395, 397-399	, Afforestation † –	see Forests
	404	Agriculture	
from biomass burn	ning 299-300, 309, 322, 323, 324, 395, 397	, CH ₄ sources	and sinks 248
	400-402	CO ₂ sources	and sinks 194
from fossil fuel bu	rning 299-300, 301, 322, <i>323</i> , 369-372	N_2O sources	and sinks 251
future concentration	on(s) 330-33:	Aircraft	259-260, 262, 263, 296, 312, 366-367, 391, 395, 399
ice nuclei (IN)	311-312	Albedo [†]	380, 425, 429, 434, 443-446, 448
indirect effect(s) †	293-295, 307-312, 324-330, 375-379, 395	single scatter	ing 293, 306
industrial dust	299	Ammonia	246, 267, 260, 278, 296, 303, 330, 332
interactions with tr	ropospheric ozone and OH 27	Antarctic ice she	et – see Ice sheets
lifetimes	293, 299	Antarctic Oscilla	92, 154, 568-570
mineral dust 296	-297, 314, 320, 331-332, 372-373, 378, 395, 39	Anthropogenic c	limate forcing – see Radiative forcing
modelling	313-330, 781-782	Arctic Oscillation	n 153, 568-570
nitrates	303, 332-334, 373	3 Artificial Neural	Network 591, 618
observations	304-306, 314-318, 374, 378-379	Atmosphere	
optical properties	293-295, 295, 318-322, 367-373	definition	87-88
organic	299-300, 306, 314, 320, 370-372	Atmosphere ocea	an general circulation models (AOGCMs)
precursors	295, 300-303	- see Clii	mate modelling
radiative forcing fr	rom 322-324, 328-330, 367-380, 391-399	, Atmosphere/ocea	an interaction – see also El Niño-Southern
	400-404	Oscillation	436, 449-451
	emissions – see also IS92 and	=	undary Layer – see Boundary Layer
SRES scenario	s 330-335	Atmospheric che	emistry 239-287

feedbacks – see Feedbacks, chemical	Terrestrial Biogeochemical Models (TBMs) 213
impacts of climate change 278	terrestrial carbon processes 191-197, 779
modelling 264-266, 267-271, 277-278, 781	Carbon dioxide $(CO_2)^{\dagger}$ 183-237
possible future changes 267-277	and land-use change 193-194, 204-205, 212-213, 215, 224
Atmospheric circulation 97, 715	concentration(s) past and current 185, 187, 201-203, 205-208
observed changes 103, 150-154	during ice age cycles 202-203
projections of future changes 565-570, 602	enhancing ocean uptake by iron fertilisation 198, 200, 202
regimes 435	equivalent – see Equivalent carbon dioxide (CO ₂)
Atmospheric composition 87-88, 92-93	fertilisation [†] 195-196, 219
Attribution of climate change – see Detection and	from fossil-fuel burning 204, 205, 224
attribution of climate change	future concentration 186, 219-224
Aviation induced cirrus 395	geological history 201-202
	Global Warming Potential (GWP) 388
В	interannual variability of concentrations 208-210
Baseline climatological data 749-750	missing sink 208
Biogenic aerosol(s) – see Aerosol(s)	radiative forcing from 356-357, 358-359, 391-396
Biological pump – see Carbon cycle	scenarios of future emissions 219-224
Biomass burning – see also Aerosols, from biomass burning 257-258,	sources and sinks 192, 193-194, 195-197, 199, 204-208,
262, 296, 299, 300, 322, 323, 361, 372, 377	210-213, 215, 216-218, 224
Biosphere [†]	spatial distribution 210-212
marine 89, 197-198, 200	stabilisation of concentration 224
terrestrial 89, 191-197, 456	trends - see Carbon dioxide, concentration(s) past and current
Black carbon aerosol(s) – see Aerosol(s)	Carbon isotopes 207, 216-218, 248
Blocking 154, 506, 566-567	Carbon monoxide (CO) 256, 365-366, 387-390
Bölling-Alleröd warm period 137	Carbonaceous aerosol(s) – see Aerosol(s)
Borehole measurements (of temperature) 130, 132	CFCs 255, 357-359
Boundary-layer 428-429, <i>441</i>	Chemical transport models – see Atmospheric chemistry, modelling
Budget of greenhouse gases – see Greenhouse gases	Climate [†]
	definition 87
C	Climate change [†]
Calcium carbonate (CO ₃ ²⁻) 198, 199, 200, 202, 203, 216, 224	definition 87
Calcium carbonate (CO ₃ ²⁻) 198, 199, 200, 202, 203, 216, 224 Canonical Correlation Analysis 617	definition 87 detection and attribution – see Detection and attribution
Canonical Correlation Analysis 617	detection and attribution - see Detection and attribution
Canonical Correlation Analysis617Carbon budget185, 205-208	detection and attribution – see Detection and attribution of climate change
Canonical Correlation Analysis 617 Carbon budget 185, 205-208 Carbon cycle† 183-237, 777-779 biological pump 197-198, 778 carbon management 224	detection and attribution – see Detection and attribution of climate change Climate change commitment 531-536, 675-679
Canonical Correlation Analysis 617 Carbon budget 185, 205-208 Carbon cycle† 183-237, 777-779 biological pump 197-198, 778 carbon management 224 description 191-193, 197-199	detection and attribution – see Detection and attribution of climate change Climate change commitment 531-536, 675-679 Climate change signals – see also Detection and attribution of climate change 532-536, 538-540, 543-554, 565-570, 593-603, 607, 613-615, 622-623, 664-666, 757-759
Carbon budget 185, 205-208 Carbon cycle† 183-237, 777-779 biological pump 197-198, 778 carbon management 224 description 191-193, 197-199 Dynamic global vegetation models (DGVMs) 213, 219	detection and attribution – see Detection and attribution of climate change Climate change commitment Climate change signals – see also Detection and attribution of climate change 532-536, 538-540, 543-554, 565-570, 593-603, 607, 613-615, 622-623, 664-666, 757-759 Climate extremes 92, 432
Canonical Correlation Analysis 617 Carbon budget 185, 205-208 Carbon cycle† 183-237, 777-779 biological pump 197-198, 778 carbon management 224 description 191-193, 197-199 Dynamic global vegetation models (DGVMs) 213, 219 effects of nitrogen deposition 196-197, 215	detection and attribution – see Detection and attribution of climate change Climate change commitment 531-536, 675-679 Climate change signals – see also Detection and attribution of climate change 532-536, 538-540, 543-554, 565-570, 593-603, 607, 613-615, 622-623, 664-666, 757-759
Canonical Correlation Analysis 617 Carbon budget 185, 205-208 Carbon cycle [†] 183-237, 777-779 biological pump 197-198, 778 carbon management 224 description 191-193, 197-199 Dynamic global vegetation models (DGVMs) 213, 219 effects of nitrogen deposition 196-197, 215 feedbacks 91, 186, 194-195, 200, 208-210, 219-220, 224	detection and attribution – see Detection and attribution of climate change Climate change commitment 531-536, 675-679 Climate change signals – see also Detection and attribution of climate change 532-536, 538-540, 543-554, 565-570, 593-603, 607, 613-615, 622-623, 664-666, 757-759 Climate extremes 92, 432 modelling – see Climate modelling observed changes 97, 103-104, 155-163, 575, 774-775
Canonical Correlation Analysis 617 Carbon budget 185, 205-208 Carbon cycle [†] 183-237, 777-779 biological pump 197-198, 778 carbon management 224 description 191-193, 197-199 Dynamic global vegetation models (DGVMs) 213, 219 effects of nitrogen deposition 196-197, 215 feedbacks 91, 186, 194-195, 200, 208-210, 219-220, 224 inverse modelling 210-212	detection and attribution – see Detection and attribution of climate change Climate change commitment Climate change signals – see also Detection and attribution of climate change 531-536, 675-679 Climate change 532-536, 538-540, 543-554, 565-570, 593-603, 607, 613-615, 622-623, 664-666, 757-759 Climate extremes 92, 432 modelling – see Climate modelling observed changes 97, 103-104, 155-163, 575, 774-775 projections of future changes 570-576, 602-603, 606, 615, 774-775
Canonical Correlation Analysis 617 Carbon budget 185, 205-208 Carbon cycle† 183-237, 777-779 biological pump 197-198, 778 carbon management 224 description 191-193, 197-199 Dynamic global vegetation models (DGVMs) 213, 219 effects of nitrogen deposition 196-197, 215 feedbacks 91, 186, 194-195, 200, 208-210, 219-220, 224 inverse modelling 210-212 model evaluation 213-218	detection and attribution – see Detection and attribution of climate change Climate change commitment 531-536, 675-679 Climate change signals – see also Detection and attribution of climate change 532-536, 538-540, 543-554, 565-570, 593-603, 607, 613-615, 622-623, 664-666, 757-759 Climate extremes 92, 432 modelling – see Climate modelling observed changes 97, 103-104, 155-163, 575, 774-775 projections of future changes 570-576, 602-603, 606, 615, 774-775 representation in climate scenarios – see Climate scenarios
Canonical Correlation Analysis 617 Carbon budget 185, 205-208 Carbon cycle [†] 183-237, 777-779 biological pump 197-198, 778 carbon management 224 description 191-193, 197-199 Dynamic global vegetation models (DGVMs) 213, 219 effects of nitrogen deposition 196-197, 215 feedbacks 91, 186, 194-195, 200, 208-210, 219-220, 224 inverse modelling 210-212 model evaluation 213-218 modelling 213-218, 219-224, 443	detection and attribution – see Detection and attribution of climate change Climate change commitment 531-536, 675-679 Climate change signals – see also Detection and attribution of climate change 532-536, 538-540, 543-554, 565-570, 593-603, 607, 613-615, 622-623, 664-666, 757-759 Climate extremes 92, 432 modelling – see Climate modelling observed changes 97, 103-104, 155-163, 575, 774-775 projections of future changes 570-576, 602-603, 606, 615, 774-775 representation in climate scenarios – see Climate scenarios Climate forcing – see Radiative forcing
Canonical Correlation Analysis 617 Carbon budget 185, 205-208 Carbon cycle [†] 183-237, 777-779 biological pump 197-198, 778 carbon management 224 description 191-193, 197-199 Dynamic global vegetation models (DGVMs) 213, 219 effects of nitrogen deposition 196-197, 215 feedbacks 91, 186, 194-195, 200, 208-210, 219-220, 224 inverse modelling 210-212 model evaluation 213-218 modelling 213-218, 219-224, 443 ocean carbon processes 197-200, 216, 778	detection and attribution – see Detection and attribution of climate change Climate change commitment Climate change signals – see also Detection and attribution of climate change 531-536, 675-679 Climate change 532-536, 538-540, 543-554, 565-570, 593-603, 607, 613-615, 622-623, 664-666, 757-759 Climate extremes 92, 432 modelling – see Climate modelling observed changes 97, 103-104, 155-163, 575, 774-775 projections of future changes 570-576, 602-603, 606, 615, 774-775 representation in climate scenarios – see Climate scenarios Climate forcing – see Radiative forcing Climate modelling
Canonical Correlation Analysis 617 Carbon budget 185, 205-208 Carbon cycle [†] 183-237, 777-779 biological pump 197-198, 778 carbon management 224 description 191-193, 197-199 Dynamic global vegetation models (DGVMs) 213, 219 effects of nitrogen deposition 196-197, 215 feedbacks 91, 186, 194-195, 200, 208-210, 219-220, 224 inverse modelling 213-218 model evaluation 213-218 modelling 213-218, 219-224, 443 ocean carbon processes 197-200, 216, 778 ocean models 216-218	detection and attribution – see Detection and attribution of climate change Climate change commitment 531-536, 675-679 Climate change signals – see also Detection and attribution of climate change 532-536, 538-540, 543-554, 565-570, 593-603, 607, 613-615, 622-623, 664-666, 757-759 Climate extremes 92, 432 modelling – see Climate modelling observed changes 97, 103-104, 155-163, 575, 774-775 projections of future changes 570-576, 602-603, 606, 615, 774-775 representation in climate scenarios – see Climate scenarios Climate forcing – see Radiative forcing Climate modelling atmospheric circulation 435
Canonical Correlation Analysis 617 Carbon budget 185, 205-208 Carbon cycle [†] 183-237, 777-779 biological pump 197-198, 778 carbon management 224 description 191-193, 197-199 Dynamic global vegetation models (DGVMs) 213, 219 effects of nitrogen deposition 196-197, 215 feedbacks 91, 186, 194-195, 200, 208-210, 219-220, 224 inverse modelling 210-212 model evaluation 213-218 modelling 213-218, 219-224, 443 ocean carbon processes 197-200, 216, 778 ocean models 216-218 response to climate change 186, 194, 200, 215, 219-220	detection and attribution – see Detection and attribution of climate change Climate change commitment S31-536, 675-679 Climate change signals – see also Detection and attribution of climate change 532-536, 538-540, 543-554, 565-570, 593-603, 607, 613-615, 622-623, 664-666, 757-759 Climate extremes 92, 432 modelling – see Climate modelling observed changes 97, 103-104, 155-163, 575, 774-775 projections of future changes 570-576, 602-603, 606, 615, 774-775 representation in climate scenarios – see Climate scenarios Climate forcing – see Radiative forcing Climate modelling atmospheric circulation 435 boundary layer 428-429
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	detection and attribution – see Detection and attribution of climate change Climate change commitment Climate change signals – see also Detection and attribution of climate change 531-536, 675-679 Climate change 532-536, 538-540, 543-554, 565-570, 593-603, 607, 613-615, 622-623, 664-666, 757-759 Climate extremes 92, 432 modelling – see Climate modelling observed changes 97, 103-104, 155-163, 575, 774-775 projections of future changes 570-576, 602-603, 606, 615, 774-775 representation in climate scenarios – see Climate scenarios Climate forcing – see Radiative forcing Climate modelling atmospheric circulation 435 boundary layer 428-429 cloud processes and feedbacks 427-431, 484, 775-776
Canonical Correlation Analysis 617 Carbon budget 185, 205-208 Carbon cycle [†] 183-237, 777-779 biological pump 197-198, 778 carbon management 224 description 191-193, 197-199 Dynamic global vegetation models (DGVMs) 213, 219 effects of nitrogen deposition 196-197, 215 feedbacks 91, 186, 194-195, 200, 208-210, 219-220, 224 inverse modelling 210-212 model evaluation 213-218 modelling 213-218, 219-224, 443 ocean carbon processes 197-200, 216, 778 ocean models 216-218 response to climate change 186, 194, 200, 215, 219-220	detection and attribution – see Detection and attribution of climate change Climate change commitment S31-536, 675-679 Climate change signals – see also Detection and attribution of climate change 532-536, 538-540, 543-554, 565-570, 593-603, 607, 613-615, 622-623, 664-666, 757-759 Climate extremes 92, 432 modelling – see Climate modelling observed changes 97, 103-104, 155-163, 575, 774-775 projections of future changes 570-576, 602-603, 606, 615, 774-775 representation in climate scenarios – see Climate scenarios Climate forcing – see Radiative forcing Climate modelling atmospheric circulation 435 boundary layer 428-429

dependence on resolution	509-511, 603-607, 774	Climate models† – see also Clir	mate modelling 94-95
Earth System models	476	high resolution	587, 589-590, 603-607
Energy Balance Models	577, 670-673	intercomparison	479-512
ENSO	503-504, 567-568	nested	587, 590, 607
evaluation	471-523 , 591-593, 603-607, 760	types	475-476
extra-tropical storms	508, 573	variable resolution	587, 589-590, 603-607
extreme events	432, 499-500, 503-509, 570-576,	Climate projection† – see Clim	
	592-593, 604, 610-613, 774-775	Climate response	94, 532-534, 559-565, 705-712
flux adjustment	94, 449-450, 476-479, 530-532, 773	time-scales	563-565
General Circulation Models	s (GCMs), description 94-95, 475,	to anthropogenic forcing – s	ee Detection and attribution
	476-479	of climate change	
initialisation	476, 773	to natural forcing - see Dete	ection and attribution of
land ice	448-449, 615, 652-653	climate change	
land surface 440-44	3, 490-493, 493-496, 570-572, 779-781	transient	533, 538-540, 561-562, 593-596, 600
Madden-Jullian Oscillation	(MJO) 505-506	Climate scenarios [†]	739-768
mean sea level pressure	479-484, 548, 592	analogue	748
mixed layer models	530-531	application to impact assess	ment 743-745, 752
monsoons	484, 505, 568, 572-573, 612-613	baseline climate	749-751
North Atlantic Oscillation	506, 568-570, 573, 715	definition	743-744
ocean processes, circulation	and feedbacks 421, 435-440, 486-489,	derived from climate models	s 748-759, 750-751
	493, 561-565, 646-647	expert judgement	749
orographic processes	435	inconsistencies	760-761
Pacific North American (PN	NA) pattern 506	incremental	746-748
parametrization	94, 427-432, 436-438, 440-443	pattern scaling	756-757
precipitation processes	431-432, 479-484, 572-573,	representing uncertainty	745, 755-760
	591-592, 604, 610	risk assessment	759-760
projections of future climate	e: description	variability and extremes	752-755
of methods 94-96	5, 476-479, 532-536, 588-591, 593-603,	weather generators	617, 619-620, 750, 753
	617-618, 622-623, 666-679	Climate sensitivity [†]	353-355, 596, 755-756
projections of future climate		effective	534, 559-562, 577
for individual variables		equilibrium	93, 530-531, 532-536, 559-561, 577
	613-615, 666-679	Climate system [†]	85-98
radiative processes	432-434	components	87-89
sea ice	445-446, 489, 543, 548	description	87-89
simple climate models	94-95, 475-476, 531-532, 533, 554-558,	Climate variability [†]	452-453
	577, 646-647, 670-673, 749	human-induced	92-97
simulation of 20th century		modelling – see Climate mo	-
simulation of past climates	493-496	natural	89-92, 702-705
snow	543, 548	observed changes	155-163
stratospheric climate	434-435, 484-486	projections of future change	
temperature	479-484, 591-592, 604, 610		enarios – see Climate scenarios
thermohaline circulation	439, 439-440, 486-488, 562-563, 565,	Cloud condensation nuclei (CO	$(CN)^{T}$ – see Aerosol(s), cloud
4	577, 776-777	condensation nuclei	
tropical cyclones	508-509, 574, 606, 774-775		see Clouds, processes and feedbacks
	2-493, 511-512, 531-532, 536, 554-558,	Clouds	A 16 N
	3, 577, 591, 601-602, 755-756, 772-782 2, 499-500, 503-509, 534-536, <i>538-540</i> ,	influence of aerosol(s) on –	
variability 432		modelling – see Climate mo	-
water vapour and water vap	565-570, 592-593, 604, 610-613 our feedback 424, 425-426, 484	observed changes	103, 148-149
water vapour and water vap	424, 423-420, 484	processes and feedbacks	90, 91, 421, 423-431

radiative forcing – see also Aerosol(s), indirect	El Niño – see El Niño-Southern Oscillat	ion
forcing and effect on clouds	429-431, 430	El Niño-Southern Oscillation (ENSO)	
Contrails	379, 395, 399	and behaviour of carbon cycle	208-210
Convection	, ,	•	1, 123, 130, 143-145, 148, 151,
atmospheric	428		52-153, 453-455, 567-568, 588
oceanic	436-437	modelling – see Climate modelling	, , , ,
Corals	130, 131		7, 103, 139-140, 141, 150, 154
Cosmic rays (effect on clouds)	384-385	projections of future changes	567-568
Coupled ocean/atmosphere models – se	ee Climate modelling	representation in climate scenarios	754
Cryosphere [†]	456	Emission scenarios† – see IS92 and SRI	
definition	88, 444-449	Energy Balance Model – see Climate n	
processes and feedbacks	444-449	Ensembles of climate integrations	534-536, 543-554,
processes and recovering		22.00 01 01.00 01 01.00 01.00 01.00 01.00 01.00 01.00 01.00 01.00 01.00 01.00 01.00 01.00 01.00 01.00 01.00 01	593-596, 602, 774
D		Equilibrium climate change [†]	
Dansgaard-Oeschger events	<i>137</i> , 140-141, 203	definition	530, 533
Deforestation [†] 193	2, 193, 194, 204-205, 212-213	Equivalent carbon dioxide (CO ₂) [†]	533, 761
CO ₂ released from – see Carbon diox	ide	Eustasy [†]	643, 654-656, 661
Detection and attribution of climate ch	ange [†] 97, 695-738	Evaporation	
circulation patterns	715	observed changes	148
conclusions	730-731	External variability (of climate system	91
definition(s)	700-701	Extra-tropical cyclones	
estimates of internal variability	702-705, 713, 729	modelling – see Climate modelling	
hydrological indicators	715	observed changes	161, 664
observed data	701	projections of future changes	573, 602-607, 675
optimal methods - see Optimal detec	tion of climate change	Extreme events† – see Climate extremes	S
pattern correlation methods	718-721		
qualitative comparison of observation	with models 713-716	F	
response to anthropogenic forcing	711-712, 729	$Feedback(s)^{\dagger}$	91, 93, 275, 417-470
response to natural forcing	708-709, 729	carbon cycle - see Carbon cycle, fee	edbacks
uncertainties	725-727, 729	chemical	245-246, 247, 278
using horizontal temperature patterns	711-712, 714, 718-720	cloud - see Clouds, processes and fe	eedbacks
using temperature time-series	709, 714, 716-718	ice albedo	445-446
using vertical temperature patterns	711, 714-715, 720-721	land ice - see Land ice, processes an	nd feedbacks
Dimethylsulphide $(DMS)^{\dagger}$	301, 331	land surface - see Land surface, feed	dbacks
Diurnal temperature range (DTR) – se	e Temperature	ocean – see Ocean processes and feedbacks	
Downscaling	619-621	sea ice – see Sea ice, processes and t	feedbacks
empirical/statistical	587, 591, 616-621	temperature/moisture – see Tempera	ture/moisture feedback
issues	619-620	water vapour - see Water vapour, fee	edback
predictors and predictands	616-617, 619-620	Fingerprint methods – see Optimal det	ection of climate change
statistical/dynamical	587, 591, 616-621, 751-752	Flux adjustment [†] – see Climate modelli	ing
Drought	572-573, 603, 615	Forcing – see Radiative forcing	
observed changes	143-145, 161-162	Forests [†]	192, 193, 204-205, 212-213
Dust – see Aerosol(s)		Fossil fuel burning 204	4, 205, 248, 251-252, 257-258,
		25	59-260, 296, 299-301, 322, 323
\mathbf{E}		Framework Convention on Climate C	=
Earth System Models – see Climate mo	-	Nations Framework Convention	
Eemian	<i>137</i> , 141	Future climate – see Climate modelling	
El Chichon	107, 121	individual variables and phenome	ena

G		I	
General circulation models (GCMs) [†] – see Climate modelling		Ice age(s)	136-142, 136, 654-656
Glacial/interglacial cycles –	see Ice ages	Ice caps [†]	647-650, 665, 667-668, 677, 680
Glaciers [†]	647-650, 680	Ice cores	131, 137
mass balance	647-649	CO ₂ measurements from	202-203
observed changes 102, 1	27-129, 133-135, 138, 153, 647-649, 665	methane measurements from	249, 250
projections of future chan		nitrous oxide measurements from	n 253
Global energy balance	90	temperature derived from	133, 249
Global Warming Potential (GWP) [†] 385-391	Ice nuclei	311-312
Absolute (AGWP)	385-386	Ice sheets†	448-449, 648, 665
definition of	385-386	Antarctic	650-654, 668-670, 677-680
direct	386-387	Greenland	650-654, 668-670, 677-680
indirect	387-391	mass balance	650-652
net	391	Ice shelves [†]	125-126, 650-654, 678-679
values of	386-391	Ice thickness	102, 126-127
Greenhouse effect [†]	300-371	Industrial dust – see Aerosol(s)	102, 120-127
description	89-90, 93	Infrared (or long-wave) radiation [†]	89, 293, 297
enhanced	93	Internal variability (of climate syst	
Greenhouse gases† – see also		Inverse modelling [†] (of carbon cycle	
_	89-90, 93, 183-237 , 239-287 , 391-396	inverse modelling	= see Carbon cycle,
individual gases	243, 246-247	IS92 scenarios	05 214 220 541
budgets definition of lifetime	,		95, 314, 330, 541
	247	emissions	266
derivation of sink strength		implications for future climate	541
derivation of source streng		implications for future concentra	
radiative forcing from	356-359, 361-365, 391-395,	implications for future radiative f	-
. 1	397, 400-402, 709-711	Isostasy [†]	643, 654-656, 661
trends	246-247		
Greenland ice sheet – see Ice		J	
Gross Primary Production (***	
Groundwater	657-658, 680-681	K	242 242 224 242
**		Kyoto Protocol †	212-213, 224, 243
Н	101.160.160.770	_	
Hail	104, 162-163, 573	L	
Halocarbons [†]	255, 357-359, 390-391	La Niña – see El Niño-Southern Osc	
HCFCs	243, 244, 245, 253-254, 266, 358, 391	Lake ice	129, 163
Heinrich events	<i>137</i> , 140-141, 202	Land ice – see also Glaciers, Ice she	•
·	40, 141, 142, 493-495, 654-656, 659-661	modelling – see Climate modelli	
	e – see Detection and attribution of	processes and feedbacks	445, 448-449, 596, 615
climate change		Land surface	88-89
Hurricanes – see Tropical cyc		change – see also Land-use chan	-
Hydrocarbons	257-258, 300	modelling – see Climate modelli	ng
Hydrofluorocarbons (HFCs)		processes and feedbacks	440-444, 493-496
Global Warming Potential		S	3-94, 193-194, 204-205, 212-213,
Hydrogen (H ₂)	256	215, 380, 395	5, 399-400, 443, 500-503, 782-783
Hydrogen Sulphide (H ₂ S)	296, 303	CO ₂ sources and sinks – see Carl	bon dioxide
Hydrological cycle	142, 161-162, 164, 421, 779-781	Last Glacial Maximum	137, 140, 495-496, 654-656
$Hydrosphere^{\dagger}$		Latent Heat	423, 431, 432, 445, 449-452, 454
definition	88	Lifetime of greenhouse gases – see	Greenhouse gases
Hydroxyl radical (OH)	263-266, 365	Liquid Water Path	307-308, 310, 311

Little Ice Age	102, 127, 133-136	radiative forcing from	357, 358-359
		scenarios of future emissions	266-267
M		sources and sinks	251, 252
Madden-Julian Oscillation	505-506	trends - see Nitrous oxide, concentrat	ion(s) past and current
Markov chain	617	Non-linear climate processes †	91, 96, 455-456
Maximum temperature(s) – see Temperature	, maximum	Non-methane hydrocarbons (NMHC)	257-258, 365-366, 391
Medieval Climate Optimum – see Medieval	Warm Period	North Atlantic Oscillation $(NAO)^{\dagger}$	92, 451-452, 456, 588, 715
Medieval Warm Period	102, 133-136	modelling – see Climate modelling	
Mesoscale eddies (in ocean) – see Ocean prod	esses and feedbacks	observed changes	103, 117, 152-153
Methane (CH ₄)	248-251	projection of future changes	568-570, 573
adjustment time	247, 250-251		
atmospheric chemistry	248, 365	0	
concentration(s) past and current	248-250	Observations of climate and climate ch	nange – see also
future concentration	275	Detection and attribution of clima	ite change
Global Warming Potential (GWP)	244-245, 387, 388	and entries for individual variable	96, 99-181
indirect forcing	247, 365-366	Ocean circulation – see also Ocean proce	esses and feedbacks
interannual variability of concentrations	248-250	modelling - see Climate modelling	
lifetime	248, 250-251	observed changes	103
radiative forcing from	357, 358-359, 391-396	Ocean heat transport – see Ocean proce	sses and feedbacks
scenarios of future emissions	266-267	Ocean processes and feedbacks 435-440	0, 493, 588, 609, 644-647, 680
sources and sinks	248	circulation	438-439
trends - see Methane, concentration(s) pas	t and current	heat transport	449-450
Mid-Holocene – see Holocene		mesoscale eddies	437-438
Mid-latitude storms – see Extra-tropical cycle	ones	mixed layer 4	
Minimum temperature(s) – see Temperature,	minimum	mixing	437
Model – see Climate model		modelling - see Climate modelling	
Monsoons	451-452	Ocean/atmosphere interaction – see atm	nosphere/ocean interaction
modelling – see Climate modelling		Optimal detection of climate change	721-729
observed changes	152	multiple fixed pattern studies	722-723
projections of future changes	568, 600, 602, 613-615	single pattern studies	721-722
Montreal Protocol [†]	243, 255-256	using spatially and temporally varying	g patterns 723-728
MSU (Microwave Sounder Unit) – see also 7	emperature,	Organic aerosol(s) [†] – see Aerosol(s)	
upper air	119, 122, 145	Organic carbon – see also Aerosol(s)	
Mt. Pinatubo (eruption of)	107	Organic carbon aerosol(s) – see Aerosol	(s)
		Orography	435
N		OxComp	267-268
Natural climate forcing – see Radiative forcing	ng	Ozone (O ₃); stratospheric	255-256
Net Ecosystem Production (NEP) †	191	depletion of	256, 277-278, 359-361
Net Primary Production (NPP) †	191, 197-198	future concentration	361
Nitrate (NO ₃) $aerosol(s)$ – see $Aerosol(s)$		radiative forcing from	359-361, 393, 400-402
Nitrogen fertilisation [†] – see Carbon cycle, effe	cts of nitrogen deposition	Ozone $(O_3)^{\dagger}$, tropospheric	260-263, 278
Nitrogen oxides (NO _x)	259-260, 366, 391	chemical processes	262
Nitrous oxide (N ₂ O)	251-253, 391-396	concentration past and current	262
concentration(s) past and current	252-253	future concentration	272, 275, 364-365
future concentration	275	radiative forcing from	361-365, 393-395, 400-402
Global Warming Potential (GWP)	244, 388	sources and sinks	262
interannual variability of concentrations	252-253	Ozone hole† – see Ozone, stratospheric	
lifetime	252	Ozone layer [†] – see Ozone, stratospheric	

P		Rapid climate change† – see also Non	-linear climate
Pacific Decadal Oscillation (PDO)	150, 504-505	processes	96, 136, 455-456
Pacific oscillation(s)	150, 151-152	Reanalyses data	96, 120-121
Pacific-North American (PNA)	152-153, 451-452	Reforestation [†] – see Forests	
Palaeoclimate	101, 130-133, <i>137</i> , 143-145, 748	Regional climate change	97, 583-638
Palaeo-drought	143-145	climate variability and extremes	602-603, 607, 615
Parametrization [†] – see Climate mod	delling	mean climate	593-602, 607, 613-615
Perfluorocarbons (PFCs)	254	Regional climate change information	
Permafrost	127, 444-445, 657-658, 665	methods of deriving	587-591, 622-623
Photochemistry	263-266	Regional climate models (RCMs)	589-590, 607-616
Photosynthesis [†]	191, 195, 442	derivation of climate scenarios – se	e also Climate scenarios 751
Precipitation		projection of future climate using	613-615
extremes – see Climate extremes	1	simulation of current climate	609-613
modelling – see Climate modelli	ng	Regionalisation	587-588, 621-623
observed changes 101, 103-104	, 142-145, 157-160, 163, 164, <i>575</i>	Resolution (of models) – see Climate	modelling and Climate models
processes	431-432	Respiration [†]	191, 442
projections of future changes	<i>538-540</i> , 541-554, 566, 572-573,	River flow	143, 159-160
<i>575</i> , 593-602	2, 607, 613-615, 653-654, 668-670	River ice	129, 163
Predictability (of climate)	91, 95-96, 422-423	Runoff	444
Projection of future climate – see C	Climate modelling and entries		
under individual variables and		S	
	•	S Stabilisation profiles	224, 557-559
Q		Salinity (of oceans)	118, 138
Quasi-biennial Oscillation (QBO)	434	Satellite altimeter observations of sea	
			45, 147, 148-149, 163, 380-381
R		Scenarios [†] – see Climate scenarios and	
Radiative balance	89	Sea ice	445-448
Radiative forcing † – see also the ent		Antarctic	124-127, 129, 448
gases and aerosols	349-416		27, 129, 153, 445, 447-448, 777
and climate response relationship		modelling – see Climate modelling	
and commute response relationship	400, 532-534, 706-712	observed changes	124-127, 129, 446
anthropogenic 353	, 356-359, 379, 391-396, 397-399,	processes and feedbacks	445, 446, 596
	2-534, 554-558, 577, 709-711, 729	Sea level	639-693
definition of	90-91, 353	acceleration in sea level rise	663, 665-666
description	405-406	changes since last glacial period	654-656, 659-661
from land-use change – see Land			664, 675
from volcanoes – see Volcanoes	i-use change	extremes observed changes over last 100 to 2	,
geographic distribution	396-400, 711	· ·	•
global mean estimates	391-396	processes contributing to change	644-659
giodai ilicali estilliates		projections of future changes	666-679
-	5-367 375-370 305 307-300 404	ragional changes	
indirect 365	5-367, 375-379, 395, 397-399, 404	regional changes	
indirect 365 natural 89-91, 353, 379-380	5-367, 375-379, 395, 397-399, 404 0, 391-396, 400-402, 706-709, 729	scenarios	761
indirect 365 natural 89-91, 353, 379-380 solar – see Solar variability	0, 391-396, 400-402, 706-709, 729	scenarios uncertainties	761
indirect 365 natural 89-91, 353, 379-380 solar – see Solar variability strengths/limitations of concept	355, 396	scenarios uncertainties Sea salt – see Aerosol(s)	761 679-682
indirect 365 natural 89-91, 353, 379-380 solar – see Solar variability strengths/limitations of concept time evolution	0, 391-396, 400-402, 706-709, 729	scenarios uncertainties Sea salt – see Aerosol(s) Severe weather	761 679-682 162-163
indirect 365 natural 89-91, 353, 379-380 solar – see Solar variability strengths/limitations of concept time evolution Radiative processes	355, 396 400-404	scenarios uncertainties Sea salt – see Aerosol(s) Severe weather Simple climate models – see Climate in	761 679-682 162-163 modelling
indirect 365 natural 89-91, 353, 379-380 solar – see Solar variability strengths/limitations of concept time evolution Radiative processes modelling – see Climate modelli	355, 396 400-404	scenarios uncertainties Sea salt – see Aerosol(s) Severe weather Simple climate models – see Climate to Sink strength of greenhouse gases – see	761 679-682 162-163 modelling ee Greenhouse gases
indirect 365 natural 89-91, 353, 379-380 solar – see Solar variability strengths/limitations of concept time evolution Radiative processes modelling – see Climate modelli stratosphere	0, 391-396, 400-402, 706-709, 729 355, 396 400-404 ng 433-434	scenarios uncertainties Sea salt – see Aerosol(s) Severe weather Simple climate models – see Climate sink strength of greenhouse gases – see Snow cover	761 679-682 162-163 modelling ee Greenhouse gases 444-445
indirect 365 natural 89-91, 353, 379-380 solar – see Solar variability strengths/limitations of concept time evolution Radiative processes modelling – see Climate modelli	0, 391-396, 400-402, 706-709, 729 355, 396 400-404 ng 433-434 432-433	scenarios uncertainties Sea salt – see Aerosol(s) Severe weather Simple climate models – see Climate sink strength of greenhouse gases – see Snow cover	ee Greenhouse gases 444-445 02, 123-124, 129, 142, 159-160

observed changes	102, 123-124	Temperature	
Soil carbon – see Carbon cycle		20th century trends	101, 108, 115
Soil dust – see Aerosol(s)		consistency of surface and upper air	
Soil moisture [†]	444, 570-573	diurnal range (DTR)	101, 108, 129, 570-572, 575
Solar cycle [†] – see Solar variability	,	during Holocene	138-140
	9, 293, 297, 380-385	during last glacial	140-141
Solar forcing of climate – see Solar variability	, _, _, _, _, , , , , , , , , , , , , ,	during previous inter-glacials	141-142
Solar variability		extreme(s)	156-157
influence on climate 91, 120, 136, 380-38	5. 500-502. 708-709	instrumental record	105-119
, , ,	0-385, 395, 400, 706	land surface	105-110
Soot † – see Aerosol(s), black carbon	3 200, 232, 100, 700	maximum	108-110, 570-572, 575
Source strength of greenhouse gases – see Green	house gases	minimum	108-110, 570-572, 575
Southern Oscillation Index (SOI)	455	night marine air (NMAT)	108, 110
SRES scenarios [†]	95	observed changes	101-103, 105-130
emissions	266-267, 755	ocean	110-112, 118-119, 644-646
implications for future climate	541-543, 554-558,	over past 1,000 years	130-133
implications for ractic climate	600-601, 670-673	projections of future changes	<i>538-540</i> , 541-554, 570-572,
implications for future concentrations	223, 224, 274-275,	• •	07, 613-615, 649, 653-654, 669
implications for factire concentrations	330, 332-334	satellite record	120, 121-123
implications for future radiative forcing	402-404	sea surface	108, 110-112
markers 266, 531-532, 541-54		stratospheric	122
Stabilisation of climate – see also WRE and S	3, 334-338, 000-001	sub-surface land	132, 136
stabilisation profiles	557-558, 675-677	upper air	119-121, 122
Stabilisation of concentrations – see entries unde		Temperature/moisture feedback	432
individual gases and aerosols	557-558	Terrestrial (or long-wave) radiation	89-90
Statistical downscaling – see Downscaling	337-336	Terrestrial storage (of water)	657-658, 680-681
Storm surges [†]	664, 675	-	44-647, 665, 666-667, 675-677
Storms – see Tropical Storms, Tropical Cyclones	004, 073		8, 141, 436, 439-440, 456, 565
and Extra-tropical cyclones		modelling – see Climate modelling	0, 141, 430, 439-440, 430, 303
Stratosphere†		projection of future changes	562 562 677
aerosol(s) – see Aerosol(s)		Tide gauge observations of sea level	562-563, 677 661-664
		Time-slice AGCM experiment	589-590, 603-607
cooling – see Temperature, stratospheric	434-435		
dynamics influence on surface climate		Tornadoes Transfer function	162-163, 573
	435	Transient climate change [†]	617, 620
modelling – see Climate modelling, stratosphe	ric ciiniate	definition	522
temperatures – see Temperature, stratospheric water vapour – see Water vapour, stratospheric		Transient climate response [†] – see Clim	533
Stratospheric ozone – see Ozone		=	-
•	424	Tree rings	130, 131, 133
Stratospheric/tropospheric coupling	434	Tropical cyclones	455
Sulphate aerosol(s) – see Aerosol(s) Sulphur dioxide (SO ₂) – see also Aerosol(s)	201 202	modelling – see Climate modelling observed changes	160 161 575
	301, 303	· ·	160-161, 575
Sulphur hexafluoride (SF ₆)	254	projections of future changes	574, 575, 606, 675
Surface Poundary Leven and Poundary lever	381-382	Tropical monsoons – see monsoons Tropical storms	160 455 574 606
Surface Boundary Layer – see Boundary layer		Tropical storms	160, 455, 574, 606
т		Tropospheric aerosol(s) – see Aerosol(s)	
T	104 105	Tropospheric OH – see Hydroxyl radio	ai (OH)
Taiga	194-195	Tropospheric ozone – see Ozone	and Charles 1 1 1
Tectonic land movements	658-659	Tropospheric/stratospheric coupling -	- see Stratospheric/
Teleconnections	139, 151, 451-452	tropospheric coupling	

Tundra	194-195	observed changes	103, 146-148
Typhoons – see Tropical cyclones		representation in climate models - see Climate modelling	
		stratospheric	146-148, 263, 366-367
U		surface	146-147
United Nations Framework Convention	on Climate Change	tropospheric	146-148
(UNFCCC) Article 2	557-558	Weather balloons (radiosondes)	
Upwelling-diffusion model	646-647, 670-673	temperature measurements from	119-120
Urban heat island – see Urban influence of	on temperature	water vapour measurements from	147
Urban influence on temperature	94, 106, 163	Weather generators – see Climate scenarios	
UV radiation	88, 89	Weather typing	617-618, 620
		Well-mixed greenhouse gas(es) 356-359,	386-387, 393-395, 400-402
V		 see also individual entries for CO₂, C 	CH ₄ , N ₂ O, halocarbons
Volatile organic compounds (VOCs)	257-259	West Antarctic Ice Sheet – see Ice Sheets	
Volcanoes – see also Mt. Pinatubo and El G	Chichon	WRE stabilisation profiles	557-558
as source of aerosol(s) – see Aerosol(s)			
influence on climate	91, 136, 500-502, 708	X	
radiative forcing from	379-380, 395, 400-402, 706		
		Y	
W		Younger-Dryas	<i>137</i> , 140
Warming commitment – see Climate char	nge, commitment		
Water vapour (H ₂ O)		${f z}$	
feedback	93, 421, 423-427		