02 Set Theory

02 02 Subsets and Power Sets

Two sets A and B are equal, denoted A = B, if A and B have the same elements. For example,

$$\{1, 2, 3, 4, 5\} = \{3, 2, 1, 5, 4\};$$

 $\{x : x \text{ is a positive integers less than } 16\}$

$$= \{1, 2, 3, \ldots, 14, 15\}.$$

Note that A = B is the same as (or if and only if) that for each a in A (or $a \in A$), a is in B (or $a \in B$) and for each b in B (or $b \in B$), b is in A (or $b \in A$).

A set A is a subset of a set B, denoted $A \subseteq B$, if and only if each element of A is also an element of B. In this case, we can also say B is a superset of A. For example,

$$\{1, 2, 3\} \subseteq \{2, 1, 3\};$$

$$\{2, 3, 1\} \subseteq \{3, 1, 2, 7\};$$

N = the set of natural numbers = $\{1, 2, 3, \ldots\}$

Z =the set of integers = $\{..., -3, -2, -1, 0, 1, 2, 3,\}$.

The Venn diagram for A is a subset of B.

Note that for any set S, we have

$$S \subseteq S$$
 and $\emptyset = \{\} \subseteq S \subseteq U$.

Note also that A = B is the same as (or if and only if) that $A \subseteq B$ and $B \subseteq A$.

If $A \subseteq B$ and $A \ne B$, we say A is a proper subset of B. In this case, we can also say B is a proper superset of A. For instance, $\{2, 3, 1\}$ is a proper subset of $\{3, 1, 2, 7\}$ and **Z** is a proper superset of **N**.

Note that A is a proper subset B (or B is a proper supset of A) if and only if for each element $a \in A$, $a \in B$, and there is one element in B which is not in A.

The Venn diagram for A is a proper subset of B.

Note that A is not a subset of B means there is one element in A which is not in B.

The Venn diagrams for A is not a subset of B.

or

If a set S contains n elements, where n is a non-negative integer, then we say that <u>S is finite</u>. Otherwise, it is infinite. The <u>cardinality (or size)</u> of a finite set A, denoted |A|, is the number of elements in A. For instance, if $S = \{2, 4, 6, 8, 10\}$, then $|S| = |\{2, 4, 6, 8, 10\}| = 5$. Also,

$$|\emptyset| = |\{\}| = 0,$$

$$|\{\emptyset\}|=1,$$

The set of integers is infinite.

The power set of a set A, denoted P(A) (or 2^A), is a set

consists of all the subsets of A. For instance,

$$\begin{split} P(\emptyset) &= P(\{\,\}) = \{\emptyset\}, \\ P(\{a\}) &= \{\emptyset, \{a\}\}, \\ P(\{1,2\}) &= \{\emptyset, \{1\}, \{2\}, \{1,2\}\}, \\ P(\{1,2,3\}) &= \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{2,3\}, \{3,1\}, \\ \{1,2,3\}\}. \end{split}$$

Note that $|P(A)| = 2^{|A|}$ if A is a finite set.