

INSTITUTO DE CIÊNCIAS EXATAS E TECNOLOLÓGICAS (ICET) DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO

GCC128 - INTELIGÊNCIA ARTIFICIAL

ERIC ARAÚJO

REDES NEURAIS ARTIFICIAIS

ATIVIDADE: #3

Tarefa

Considere a seguinte rede neural:

onde $a_i = \sum_j w_j^i z_j$, $z_i = f_i(a_i)$, para i = 1, 2, 3, 4, $z_5 = a_5$ (um neurônio de entrada), $f_2(x) = relu(x)$, e $f_1(x) = f_3(x) = f_4(x) = sigmoidal(x)$. relu(x) é a função de transferência de unidade linear retificada, definida como:

$$relux(x) = \begin{cases} x, & \text{se } x \ge 0 \\ 0, & \text{caso contrário.} \end{cases}$$

- 1. Escreva uma função para simular a rede neural.
- 2. Deduza as equações para calcular δ_i (o valor do erro por neurônio) para todos os neurônios. Escreva a função que, dada uma amostra de treinamento e os pesos da rede calcula $delta_i$ para cada neurônio.
- 3. Considerando que a matriz de pesos é:

	1	2	3	4
2	3			
3	-4	1		
4	-1	-3		
5			2	-10

use as funções dos itens 1 e 2 para calcular a saída de cada neurônio, z_i , e o erro, δ_i , para as seguintes amostras de treinamento:

- 4. Escreva uma função para treinar uma rede neural usando o algoritmo gradient descent.
- 5. Use uma função para treinar a rede com as seguintes amostras de dados:

Plote a evolução do erro e as predições para a rede treinada. Escreva os pesos da rede treinada.