#### NATIONAL UNIVERSITY OF SINGAPORE

#### **EXAMINATION FOR**

(Semester I : 2014/2015)

## EE2023 – SIGNALS & SYSTEMS

Nov/Dec 2014 - Time Allowed: 2.5 Hours

## **INSTRUCTIONS TO CANDIDATES**

- 1. This paper contains EIGHT (8) questions and comprises ELEVEN (11) printed pages.
- 2. Answer ALL questions in Section A and ANY THREE (3) questions in Section B.
- 3. This is a **CLOSED BOOK** examination.
- 4. Programmable calculators are not allowed.
- 5. Tables of Fourier Transforms, Laplace Transforms and trigonometric identities are provided in Pages 9, 10 and 11, respectively.

# **SECTION A: Answer ALL questions in this section**

Q1. Consider the system in Figure Q1 whose transfer function is given by  $G(s) = \frac{1}{s}e^{-3s}$ .



Figure Q1 : System, G(s)

(a) Derive the response of G(s) to a unit impulse,  $x(t) = \delta(t)$ . Sketch the resulting impulse response. (4 marks)

(b) <u>Derive</u> and <u>sketch</u> the response of G(s) to an input, x(t) given in Figure Q1. Label your sketch clearly. (6 marks)



Figure Q1 : Input to G(s)

- Q2. The signal  $x(t) = \text{sinc}^2(2t)$  is sampled at 8 Hz to produce the sampled signal  $x_s(t)$ .
  - (a) Derive the expression for  $x_s(t)$ .

(3 marks)

(b) Derive the Fourier transform of  $x_s(t)$ .

(3 marks)

(c) Sketch the spectrum of  $x_s(t)$ .

(4 marks)

Q3. A energy signal x(t) is given by

$$x(t) = \exp(-\pi t^2).$$

(a) Determine the energy spectral density,  $E_x(f)$ , of x(t).

(4 marks)

(b) Find the 3 dB bandwidth of x(t).

(3 marks)

(c) In computing the total energy of x(t), would the time-domain or frequency-domain approach lead to a simpler solution, and why?

(3 marks)

Q4. The pole-zero diagrams for 2 systems (I and II) are shown in Figure Q4.



Figure Q4: Pole-zero diagrams

(a) What is the damped natural frequency, undamped natural frequency and damping ratio of System I?

(3 marks)

(b) Following a step change of magnitude 3, the steady state output of System II is 15. Derive the transfer function of System II using the pole-zero diagram and the steady-state information.

(4 marks)

(c) Suppose Systems I and II have the same DC gain. Will System I or System II exhibit a larger overshoot following a step change in the input signal? Justify your answer.

Hint: Overshoot is governed by the damping ratio of the system.

(3 marks)

## **SECTION B: Answer 3 out of the 4 questions in this section**

Q5. The space booster in Figure Q5 has a transfer function, G(s), given by

$$\frac{\Phi(s)}{F(s)} = G(s) = \frac{1}{s^2 - 0.04}$$

where  $\Phi(s)$  and F(s) are Laplace transforms of  $\phi(t)$  and f(t), respectively.



Figure Q5: A Space Booster

(a) <u>Describe</u> what happens to the space booster when it is fired up with  $f(t) = \delta(t)$ , where  $\delta(t)$  is a unit impulse function. Sketch the impulse response,  $\phi(t)$ .

(4 marks)

(b) A control system is then developed for the space booster such that the overall closed loop control system has a transfer function given by

$$G_{cl}(s) = \frac{K_p}{s^2 + K_D s + K_p - 0.04}.$$

i. If  $K_D = 0$ , what is the minimum value of  $K_p$  required for the closed loop system to have bounded outputs? Justify your answer.

(4 marks)

ii. If  $K_p = 0$ , why is  $K_D$  alone not able to stabilize the closed loop system? (4 marks)

iii Design  $K_p$  and  $K_D$  so that the closed loop system has poles at  $s_{1,2} = -0.2 \pm 0.3 \, j \, .$ 

(4 marks)

iv Find the damping ratio and the undamped natural frequency of the closed loop system with poles at  $s_{1,2} = -0.2 \pm 0.3 j$ . Sketch the impulse response of this closed loop system.

(4 marks)

Q.6 Consider the periodic signal x(t) shown in Figure Q6 which comprises periodic Gaussian pulses, where

$$x(t) = \sum_{k=-\infty}^{\infty} e^{-(t-4k)^2/0.25}$$
.



(a) Derive the Fourier transform, X(f), of x(t).

(7 marks)

(b) Derive the Fourier series coefficient,  $X_k$ , of x(t).

(3 marks)

(c) Derive an expression for the average power of x(t).

(3 marks)

(d) Let the  $M^{th}$  harmonic of x(t) be the harmonic that is closest to the 98% power containment bandwidth of x(t). Explain how M could be found.

(7 marks)

Q7. Radio station X transmits the signal  $x(t) = 10 \cdot \text{sinc}(10t) \cdot \cos(2000\pi t)$ , and radio station Y transmits the signal

$$y(t) = m(t) \cdot \cos(2\pi f_c t)$$

where the spectrum of m(t) is given by  $M(f) = \operatorname{tri}\left(\frac{f}{B}\right)$ , and  $f_c >> 2B$ . Radio interference between the two stations will occur if the spectra of their transmissions overlap.

- (a) Sketch of the spectrum, X(f), of x(t). Show all the important dimensions in your sketch. (5 marks)
- (b) Suppose B = 8. What is the range of  $f_c$  values that should be avoided by radio station Y so as to avoid radio interference between the two stations? (5 marks)
- (c) Suppose  $f_c = 1020$ . Find the maximum value of B that can be used by radio station Y without causing radio interference between the two stations. (5 marks)
- (d) Suppose y(t) is sampled to form  $y_s(t)$ . Suggest a sampling frequency,  $f_s$ , so that m(t) can be recovered without distortion by passing  $y_s(t)$  through a suitably designed ideal lowpass filter. Explain your answer.

  (5 marks)

- Q8. Most loudspeakers are not capable of covering the entire audio spectrum with negligible distortion. Consequently, most hi-fi speaker systems use a combination of loudspeakers, each catering to a different frequency band. Filter systems are used to split the audio signal into frequency bands that can be separately routed to loudspeakers optimized for those bands i.e. a lowpass filter is used to isolate signals for the woofer loudspeaker and the output signal of a highpass filter drives the tweeter loudspeaker.
  - (a) Derive the transfer functions of the two filter circuits shown in Figure Q8. (8 marks)



Figure Q8: Series resistor-capacitor and resistor-inductor filtering circuits

(b) Sketch the straight line asymptotic Bode Magnitude diagrams of the resistor-capacitor  $(R_1C)$  and resistor-inductor  $(R_2L)$  filtering circuits, clearly labelling the corner frequencies and the slope of the asymptotes. Hence, or otherwise, determine if the output signal of the  $R_1C$  circuit should be used to drive the woofer or the tweeter loudspeaker?

(5 marks)

- (c) A bandpass filtering system for generating audio signals in the mid-frequency range may be constructed by cascading the  $R_1C$  and  $R_2L$  filtering circuits shown in Figure Q8, and ensuring that  $R_1C > \frac{L}{R_2}$ .
  - Sketch the straight line asymptotic Bode Magnitude diagram of the bandpass filter, clearly labelling the corner frequencies.

(3 marks)

ii. Suppose  $R_1 = R_2 = 8\Omega$  and the bandpass system should not distort signals between 800 Hz and 3000 Hz. Design suitable values for C and L.

(4 marks)

This page is intentionally left blank to facilitate detachment of the formula sheet for easy reference.

Fourier Series: 
$$\begin{cases} X_k = \frac{1}{T} \int_{\tilde{t}}^{\tilde{t}+T} x(t) \exp(-j2\pi k t/T) dt \\ x(t) = \sum_{k=-\infty}^{\infty} X_k \exp(j2\pi k t/T) \end{cases}$$

| FOURIER TRANSFORMS OF BASIC FUNCTIONS |                                                 |                                                                  |
|---------------------------------------|-------------------------------------------------|------------------------------------------------------------------|
|                                       | x(t)                                            | X(f)                                                             |
| Constant                              | K                                               | $K\delta(f)$                                                     |
| Unit Impulse                          | $\delta(t)$                                     | 1                                                                |
| Unit Step                             | u(t)                                            | $\frac{1}{2} \left[ \delta(f) + \frac{1}{j\pi f} \right]$        |
| Sign (or Signum)                      | $\operatorname{sgn}(t)$                         | $\frac{1}{j\pi f}$                                               |
| Rectangle                             | $\operatorname{rect}\!\left(\frac{t}{T}\right)$ | $T\operatorname{sinc}(fT)$                                       |
| Triangle                              | $\operatorname{tri}\!\left(\frac{t}{T}\right)$  | $T\operatorname{sinc}^2(fT)$                                     |
| Sine Cardinal                         | $\operatorname{sinc}\left(\frac{t}{T}\right)$   | $T \operatorname{rect}(fT)$                                      |
| Complex<br>Exponential                | $\exp(j2\pi f_o t)$                             | $\delta(f-f_o)$                                                  |
| Cosine                                | $\cos(2\pi f_o t)$                              | $\frac{1}{2} \left[ \delta (f - f_o) + \delta (f + f_o) \right]$ |

 $\sum^{\infty} \delta(t - mT)$ 

Sine

Gaussian

Comb

 $\frac{\sin(2\pi f_o t)}{\exp\left(-\frac{t^2}{\alpha^2}\right)} \qquad \frac{-\frac{j}{2}\left[\delta(f - f_o) - \delta(f + f_o)\right]}{\alpha\pi^{0.5}\exp\left(-\alpha^2\pi^2f^2\right)}$   $\sum_{n = -\infty}^{\infty} \delta(t - mT) \qquad \frac{1}{T}\sum_{k = -\infty}^{\infty} \delta\left(f - \frac{k}{T}\right)$ 

Fourier Transform: 
$$\begin{cases} X(f) = \int_{-\infty}^{\infty} x(t) \exp(-j2\pi ft) dt \\ x(t) = \int_{-\infty}^{\infty} X(f) \exp(j2\pi ft) df \end{cases}$$

| FOURIER TRANSFORM PROPERTIES       |                                                                               |                                                                                                 |
|------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
|                                    | Time-domain                                                                   | Frequency-domain                                                                                |
| Linearity                          | $\alpha x_1(t) + \beta x_2(t)$                                                | $\alpha X_1(f) + \beta X_2(f)$                                                                  |
| Time scaling                       | $x(\beta t)$                                                                  | $\frac{1}{ \beta } X \left( \frac{f}{\beta} \right)$                                            |
| Duality                            | X(t)                                                                          | x(-f)                                                                                           |
| Time shifting                      | $x(t-t_o)$                                                                    | $X(f)\exp(-j2\pi ft_o)$                                                                         |
| Frequency shifting (Modulation)    | $x(t)\exp(j2\pi f_o t)$                                                       | $X(f-f_o)$                                                                                      |
| Differentiation in the time-domain | $\frac{d^n}{dt^n}x(t)$                                                        | $(j2\pi f)^n X(f)$                                                                              |
| Multiplication in the time-domain  | $x_1(t)x_2(t)$                                                                | $\int_{-\infty}^{\infty} X_1(\zeta) X_2(f - \zeta) d\zeta$ or $X_1(f) * X_2(f)$                 |
| Convolution in the time-domain     | $\int_{-\infty}^{\infty} x_1(\zeta) x_2(t-\zeta) d\zeta$ or $x_1(t) * x_2(t)$ | $X_1(f)X_2(f)$                                                                                  |
| Integration in the time-domain     | $\int_{-\infty}^t x(\tau)d\tau$                                               | $\frac{1}{j2\pi f}X(f) + \frac{1}{2}X(0)\delta(f)$ $\frac{1}{j2\pi f}X(f) \text{ if } X(0) = 0$ |

# Unilateral Laplace Transform: $X(s) = \int_{0^{-}}^{\infty} x(t) \exp(-st) dt$

| LAPLACE TRANSFORMS OF BASIC FUNCTIONS |                                       |                                                       |
|---------------------------------------|---------------------------------------|-------------------------------------------------------|
|                                       | x(t)                                  | X(s)                                                  |
| Unit Impulse                          | $\delta(t)$                           | 1                                                     |
| Unit Step                             | u(t)                                  | 1/s                                                   |
| Ramp                                  | tu(t)                                 | $1/s^2$                                               |
| n <sup>th</sup> order Ramp            | $t^n u(t)$                            | $\frac{n!}{s^{n+1}}$                                  |
| Damped Ramp                           | $t\exp(-\alpha t)u(t)$                | $1/(s+\alpha)^2$                                      |
| Exponential                           | $\exp(-\alpha t)u(t)$                 | $1/(s+\alpha)$                                        |
| Cosine                                | $\cos(\omega_o t)u(t)$                | $s/(s^2+\omega_o^2)$                                  |
| Sine                                  | $\sin(\omega_o t)u(t)$                | $\omega_o/(s^2+\omega_o^2)$                           |
| Damped Cosine                         | $\exp(-\alpha t)\cos(\omega_o t)u(t)$ | $\frac{s+\alpha}{\left(s+\alpha\right)^2+\omega_o^2}$ |
| Damped Sine                           | $\exp(-\alpha t)\sin(\omega_o t)u(t)$ | $\frac{\omega_o}{\left(s+\alpha\right)^2+\omega_o^2}$ |

| LAPLACE TRANSFORM PROPERTIES    |                                                          |                                                                                   |
|---------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------|
|                                 | Time-domain                                              | s-domain                                                                          |
| Linearity                       | $\alpha x_1(t) + \beta x_2(t)$                           | $\alpha X_1(s) + \beta X_2(s)$                                                    |
| Time shifting                   | $x(t-t_o)u(t-t_o)$                                       | $\exp(-st_o)X(s)$                                                                 |
| Shifting in the s-domain        | $\exp(s_o t)x(t)$                                        | $X(s-s_o)$                                                                        |
| Time scaling                    | $x(\alpha t)$                                            | $\frac{1}{ \alpha }X\left(\frac{s}{\alpha}\right)$                                |
| Integration in the time-domain  | $\int_{0^{-}}^{t} x(\zeta) d\zeta$                       | $\frac{1}{s}X(s)$                                                                 |
| Differentiation in the          | $\frac{dx(t)}{dt}$                                       | $sX(s)-x(0^-)$                                                                    |
| time-domain                     | $\frac{d^n x(t)}{dt^n}$                                  | $s^{n}X(s) - \sum_{k=0}^{n-1} s^{n-1-k} \frac{d^{k}x(t)}{dt^{k}}\bigg _{t=0^{-}}$ |
| Differentiation in the s-domain | -tx(t)                                                   | $\frac{dX(s)}{ds}$                                                                |
|                                 | $\left(-t\right)^{n}x(t)$                                | $\frac{d^n X(s)}{ds^n}$                                                           |
| Convolution in the time-domain  | $\int_{-\infty}^{\infty} x_1(\zeta) x_2(t-\zeta) d\zeta$ | $X_1(s)X_2(s)$                                                                    |
| Initial value theorem           | $x(0^+) = \lim_{s \to \infty} sX(s)$                     |                                                                                   |
| Final value theorem             | $\lim_{t \to \infty} x(t) = \lim_{s \to 0} sX(s)$        |                                                                                   |

|                                                                                             | $y_{step}(t)$                                                                                                                                                                                                                                                                                | $Y_{step}(s)$                        | SYSTEM PARAMETERS                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Step response of 1 <sup>st</sup> order system                                               | $K\bigg[1-\exp\Bigl(-\frac{t}{T}\Bigr)\bigg]u(t)$                                                                                                                                                                                                                                            | $\frac{1}{s} \cdot \frac{K}{(sT+1)}$ | (T: System Time-constant         K: System Steady-state (or DC) Gain                                                                                                                                                                                                                                                                                                                                                  |
| Step response of $2^{nd}$ order $\frac{underdamped}{system}$ : $\left(0 < \zeta < 1\right)$ | $K \left[ 1 - \frac{\exp(-\omega_n \zeta t)}{\left(1 - \zeta^2\right)^{0.5}} \sin\left(\omega_n \left(1 - \zeta^2\right)^{0.5} t + \phi\right) \right] u(t)$ $K \left[ 1 - \left(\frac{\sigma^2 + \omega_d^2}{\omega_d^2}\right)^{0.5} \exp(-\sigma t) \sin(\omega_d t + \phi) \right] u(t)$ |                                      | $ \begin{pmatrix} \omega_n : \text{ System Undamped Natural Frequency} \\ \zeta : \text{ System Damping Factor} \\ \omega_d : \text{ System Damped Natural Frequency} \\ K : \text{ System Steady-state (or DC) Gain} \end{pmatrix} \begin{pmatrix} \sigma = \omega_n \zeta \\ \omega_d^2 = \omega_n^2 \left(1 - \zeta^2\right) \\ \omega_n^2 = \sigma^2 + \omega_d^2 \\ \tan(\phi) = \omega_d/\sigma \end{pmatrix} $ |
| $2^{nd} \text{ order system} - \text{RESONANCE} - \left(0 \le \zeta < 1/\sqrt{2}\right)$    | RESONANCE FREQUENCY: $\omega_r = \omega_n (1 - 2\zeta^2)^{0.5}$                                                                                                                                                                                                                              |                                      | RESONANCE PEAK: $M_r = \left  H(j\omega_r) \right  = \frac{K}{2\zeta (1-\zeta^2)^{0.5}}$                                                                                                                                                                                                                                                                                                                              |

| TRIGONOMETRIC IDENTITIES                                                    |                                                                                                                                                                     |
|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\exp(\pm j\theta) = \cos(\theta) \pm j\sin(\theta)$                        | $\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$                                                                                      |
| $\cos(\theta) = \frac{1}{2} \left[ \exp(j\theta) + \exp(-j\theta) \right]$  | $\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$                                                                                      |
| $\sin(\theta) = \frac{1}{j2} \left[ \exp(j\theta) - \exp(-j\theta) \right]$ | $\tan(\alpha \pm \beta) = \frac{\tan(\alpha) \pm \tan(\beta)}{1 \mp \tan(\alpha)\tan(\beta)}$                                                                       |
| $\sin^2(\theta) + \cos^2(\theta) = 1$                                       | $1 + \tan(\alpha)\tan(\beta)$                                                                                                                                       |
| $\sin(2\theta) = 2\sin(\theta)\cos(\theta)$                                 | $\sin(\alpha)\sin(\beta) = \frac{1}{2}[\cos(\alpha-\beta)-\cos(\alpha+\beta)]$                                                                                      |
| $\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)$                           | $\cos(\alpha)\cos(\beta) = \frac{1}{2}\left[\cos(\alpha-\beta) + \cos(\alpha+\beta)\right]$                                                                         |
| $\sin^2(\theta) = \frac{1}{2} \Big[ 1 - \cos(2\theta) \Big]$                | $\sin(\alpha)\cos(\beta) = \frac{1}{2}\left[\sin(\alpha-\beta) + \sin(\alpha+\beta)\right]$                                                                         |
| $\cos^2(\theta) = \frac{1}{2} \Big[ 1 + \cos(2\theta) \Big]$                | $\mathbf{C}\cos(\theta) - \mathbf{S}\sin(\theta) = \sqrt{\mathbf{C}^2 + \mathbf{S}^2}\cos\left[\theta + \tan^{-1}\left(\frac{\mathbf{S}}{\mathbf{C}}\right)\right]$ |