UNIVERSITE BADJI MOKHTAR-ANNABA

FACULTÉ DES SCIENCES DE L'INGENIEUR DÉPARTEMENT D'INFORMATIQUE

Normalisation

BDD 2LMD Partie 1

Présenté par : Dr BELLEILI Habiba

Plan

- Définitions
- " Redondances
 - . Anomalies
- Dépendances Fonctionnelles
- " Axiomes d'Amstrong
- " DF élémentaire / DF augmentée
- Réécriture de DF
- Fermeture transitive
- " Couverture minimale / Graphe minimum
- Clé d'une relation

Définitions

- La théorie de la normalisation est une théorie destinée à concevoir un **bon** schéma d'une base de données sans redondance d'information et sans risques d'anomalie de mise à jour.
- **Redondance d'information**: les informations sont répétées à plusieurs endroits de la base de données
- Elles constituent des sources de problèmes puisqu'elles sont l'une des Causes d'incohérence dans la BDD

Redondances

Livraison (Nofourn, adrF, Noprod, couleur, prixP, date, quantité)

NoFourn	adrF	Noprod	couleur	prixP	date	quantité
1233	Annaba	P56	rouge	147	12/09/19	5
1582	Skikda	P963	vert	245	16/10/19	2
1233	Annaba	P69	noir	159	30/11/19	3
1698	Alger	P56	rouge	258	15/12/19	2
1582	Skikda	P33	noir	168	10/01/20	5
1233	Annaba	P56	rouge	147	12/01/20	3

Anomalies de mise à jour

Anomalies d'insertion

A chaque nouvelle livraison je dois insérer le numéro de fournisseur et son adresse

"Si je me trompe dans l'adresse je vais avoir une incohérence

1233 Ar	nnaba P56	rouge	147	12/03/20	3
---------	-----------	-------	-----	----------	---

Redondances

- La relation qui présente des redondances est incorrecte
- " Il faut la décomposer
- " On parle alors de normalisation
- La normalisation d'une relation est un processus de décomposition d'une relation présentant des mise à jour complexes en plusieurs relations à mises à jour simples.

Fournisseur (N°fourn, adrF)

Exemple

/	NoFourn	adrF	Noprod	couleur	prixP	date	quantité
•	1233	Annaba	P56	rouge	147	12/09/19	5
	1582	Skikda	P963	vert	245	16/10/19	2
	1233	Annaba	P69	noir	159	30/11/19	3
	1698	Alger	P56	rouge	258	15/12/19	2
	1582	Skikda	P33	noir	168	10/01/20	5
	1233	Annaba	P56	rouge	147	12/01/20	3

NoFourn	adrF	Noprod	couleur
1233	Annaba	P56	rouge
1582	Skikda	P963	vert
1698	Alger	P69	noir
		P33	rouge

Livraison (N°fourn, N°prod, Prix, date, qté)

NoFourn	Noprod	prixP	date	qté
1233	P56	147	12/09/19	5
1582	P963	245	16/10/19	2
1233	P69	159	30/11/19	3
1698	P56	258	15/12/19	2
1582	P33	168	10/01/20	5 8
1233	P56	147	12/01/20	3

Notion de Dépendances Fonctionnnelles (DF)

- Définition: Les DF permettent d'établir des **liens sémantiques** entre attributs ou groupe d'attributs
- Soit R une relation de schéma R(X,Y,Z,...)
- " il existe une "**DF**", de Y vers Z, notée Y→Z, si :
- " Etant donné deux tuples quelconques de R,
- " s'ils ont même valeur pour Y, alors ils ont **nécessairement** même valeur pour Z.

On appelle Y **source** de la DF, et Z **cible** de la DF

Exemple

 $A \rightarrow B$ n'est pas une DF

 $B \rightarrow A$ est une DF

 $D \rightarrow E$ n'est pas est une DF

 $E \rightarrow D$ est une DF

Propriétés des DF Axiomes d'Armstrong

Réflexivité: Soient X et Y des attributs :

Augmentation: Soient X, Y et Z des attributs :

$$\begin{array}{c} X \nearrow Y \\ \hline \\ X \nearrow Z \\ \hline \\ X \nearrow Z \\ \hline \\ X \nearrow Y \end{array}$$

Transitivité: Soient X, Y et Z des attributs :

$$X \rightarrow Y \text{ et}$$
 $Y \rightarrow Z$
 $X \rightarrow Z$

Axiomes d'Amstrong

```
Pseudo-transitivité: Soient, W, X, Y et Z des
attributs
 X \rightarrow Y \text{ et } WY \rightarrow Z \Rightarrow (WX \rightarrow Z)
 Démonstration:
X \rightarrow Y \Rightarrow WX \rightarrow WY (réflexivité)
 WX \rightarrow WY \text{ et } WY \rightarrow Z \Rightarrow WX \rightarrow Z \text{ (transitivité)}
Union: Soient X, Y et Z des attributs
                                                                                                transitivité
 X \rightarrow Y et X \rightarrow Z \Rightarrow X \rightarrow YZ
                                                             Augmentation
 Démonstration
                                                                   X \rightarrow Y
 (X \rightarrow Y \text{ et } X \rightarrow Z \Rightarrow X \rightarrow XX \text{ et } XX \rightarrow XY
  X \rightarrow XY et YX \rightarrow YZ \Rightarrow X \rightarrow YZ
                 Augmentation
                                          transitivité
                       X \rightarrow Z
                                                                                                          12
```

DF élémentaire

- " une DF, X -> B est **élémentaire si B est un attribut** unique, et si X est un ensemble minimum d'attributs (ou un attribut unique)
 - . NoFourn, Noprod, date \rightarrow quantité est élémentaire
- " DF non élémentaires:
 - . Côté source :
 - ″ J'ai A→B alors AX→B est non élémentaire (augmentée)
 - " la cible est inclus dans la source : AB→A A ⊂AB. Elle est dite triviale
 - Côté cible : la cible est un groupe d'attributs AB→C,B
 C,B est un groupe d'attributs.

DF augmentée

- "Une DF non élémentaire est dite Augmentée : si X→Y alors <u>quelque soit</u> A A,X→Y est une DF Augmentée
 - . NoFourn -) adrF est élémentaire
 - . NoFour, Noprod \rightarrow adr F est augmentée

Réécriture de DF

- On peut toujours réécrire un ensemble de DF en un ensemble de DFE (DF élémentaires):
 - . en supprimant les DF triviales obtenues par réflexivité,
 - en décomposant les DF à partie droite non atomique en plusieurs DFE
- AB→A n'est pas considérée car c'est une DF triviale obtenu par réflexivité.
- $^{\prime\prime}$ A→B,C sera réécrite: A→B et A→C
- ″ AB→CB est décomposée en
 - . $AB \rightarrow C$ et
 - . AB B triviale

Fermeture Transitive

- On appelle fermeture transitive F+ d'un ensemble F de DFE, l'ensemble de toutes les DFE qui peuvent être composées par transitivité ou pseudo transitivité à partir des DFE de F
 - . $F = \{A \rightarrow B, B \rightarrow C, B \rightarrow D, A \rightarrow E\}.$
 - La fermeture transi②ve de F est F+ = { $A \rightarrow B$, $B \rightarrow C$, $B \rightarrow D$, $A \rightarrow E$, $A \rightarrow C$, $A \rightarrow D$ }
- La fermeture transitive permet de retrouver toutes les DFE

Couverture minimale des DFE

- La couverture minimale (CM)d'un ensemble de DFE (notée DFE*) est un sous-ensemble minimum des DFE permettant de générer toutes les autres DFE.
- Tout ensemble de DFE admet au moins une CM
- " Un ensemble de DFE peut avoir plusieurs CM

$$F=\{A \rightarrow B, A \rightarrow C, B \rightarrow C, C \rightarrow B\}$$

A
$$\rightarrow$$
 B
B \rightarrow C
DFE*={A \rightarrow B, A \rightarrow C, B \rightarrow C, C \rightarrow B}
2 Couvertures Minimales
A \rightarrow C
C \rightarrow B
DFE*={A \rightarrow B, A \rightarrow C, B \rightarrow C, C \rightarrow B}

Couverture minimale: Algorithme

```
Entrée: F un ensemble de dépendances fonctionnelles
Sortie: G une couverture minimale de F
Début
1.G := F
2.Décomposer: Pour chaque DF ∈ G , appliquer la règle de décomposition (axiome d'Armstrong)
X-->ABC sera décomposé en X-->A; X-->B; X-->C
3. Déterminer les DFs élémentaires en supprimant les DF augmentées: Supprimer les attributs en surnombre à gauche :
Pour tout X --> Y, s'il existe dans G un Z⊆X tel que Z-->Y alors remplacer X-->Y par Z-->Y
4. Supprimer les DF déduites :
Une DF X-->A est déduite si elle peut être retrouvée par transitivité ou pseudo transitivité si X-->Z et Z-->A alors (par transitivité) X-->A
```

si X-->Y et Y,Z-->A alors (par pseudo transitivité) X,Z --> A voir diapo 12

Fin

Graphe minimum des DF

- On appelle graphe minimum des DF de la relation, tout ensemble de DF élémentaires non déduites,
 - . DF élémentaires → Pas de DF augmentée
 - . DF non déduite → par transitivité
- les DF augmentées et déduites doivent être supprimer du graphe des DF pour obtenir un graphe minimum des DF.

Le graphe minimum des DF sert essentiellement à définir des relations normalisées.

DF déduite?

- "Une méthode pour savoir si une DF, X→ Y, est déduite des autres DF est la suivante:
 - . établir un graphe de toutes les DF, (non minimum)
 - . supprimer la DF $X \rightarrow Y$ du graphe,
 - parcourir tous les chemins possibles partant de X et suivant les DF. La DF, X→Y, est déduite si un (ou plusieurs) de ces chemins atteint Y.

Exemple

 $^{"}$ R(A,B,C,D,E,F,G)

DF=
$$\{F \rightarrow A, F \rightarrow B, G \rightarrow E, F,G \rightarrow C, C \rightarrow D\}$$

Clé d'une relation

- La clé d'une relation peut être cherchée à partir d'un ensemble initial de DF (Couverture Minimale ou quelconque)
- Les méthodes pour trouver la clé d'une relation:
 - L' Algorithme de la fermeture transitive sur les attributs via l'ensemble de DF
 - Ou en appliquant les règles d'Armstrong sur l'ensemble des DF
 - . Ou intuitivement
 - . à partir de la **superclé**

Clé: Algorithme par fermeture transitive d'un attribut

- " **Données:** F un ensemble de DF et X un ensemble d'attributs
- " **Résultat:** X⁺ fermeture transitive de X
- " Algorithme de saturation:
- 1. Initialiser $(X)^+$ à X,
- 2. Trouver une DF \in F possédant en partie gauche des attributs inclus dans $(X)^+$,
- 3. Ajouter dans (X)+ les attributs placés en partie droite de la DF
- 4. Répéter les étapes 2) et 3) jusqu'à ce que (X)⁺ n'évolue plus.

```
R(A,B,C,D,E,F)
                                                                                                   Clé par fermeture transitive
" F=\{AB \rightarrow C, C \rightarrow A, BC \rightarrow D, ACD \rightarrow B, BE \rightarrow C, CE \rightarrow BD, CE \rightarrow FA, D \rightarrow EF\}
                                                                                                  sur les attributs
     Clé (s) de la relation R
(C)<sup>+</sup>={C} // initialisation
      1^{ière} itération (C)+={C,A},
      2<sup>ième</sup> itération (C)+= {CA} reste inchangé je m'arrête // C + ={C,A}
(D) + = \{D\}
   1^{ière} itération (D)+ ={D,E,F} (D \rightarrow EF),
     2<sup>ième</sup> itération (D)+ = {D,E,F} reste inchangé je m'arrête
(AB)+ = \{A,B\}
      1^{ière} itération (AB)+ ={A,B,C} (AB\rightarrowC), (AB)+ ={A,B,C,D}(BC\rightarrowD), (AB)+ ={A,B,C,D,E,F} (D\rightarrowEF)
     2<sup>ième</sup> itération (AB)+= ={A,B,C,D,E,F} reste inchangé ARRET //de plus tous les attributs sont obtenus à
      partir de AB donc (AB) une clé candidate
(BC)+=\{B,C\}
      1<sup>ière</sup> itération(B,C)+={BCAD} (C \rightarrow A,BC \rightarrow D) (BC)+={B,C,A,D,E,F} (D \rightarrow EF)
      2<sup>ième</sup> itération (BC) )+={B,C,A,D,E,F} reste inchangé ARRET // (BC) clé candidate (génère tous les attributs)
(BE)+ = \{B,E\}
1^{i\text{ère}} itération (BE)+={B,E,C} (BE\rightarrowC), (BE)+={B,E,C,A,D,F},
2<sup>ième</sup> itération (BE)+={B,E,C,A,D,F} reste inchangé ARRET // (BE) clé candidate
(CE) + = \{C, E\}
      1<sup>ière</sup> itération (CE)+={C,E,B,D,A,F},
      2itération (CE )+={C,E,B,D,A,F}, reste inchangé ARRET // (CE) clé candidate
```

Superclé

- On Appelle une **superclé** d'une relation R une clé contenant:
 - . Tous les attributs de la relation
 - Ou, pour optimiser, c'est l'union de toutes les parties gauches des DF
 - . Exemples:
 - . $R(A,B,C,D,E) F=\{A \rightarrow BD, CD \rightarrow E, B \rightarrow E\}$
 - . Superclé= (ABCDE) ou (ABCD)

Clé par réduction de la superclé

- On peut obtenir la clé d'une relation par réduction de la superclé
 - . Exemple:R(A,B,C,D,E) $F=\{A \rightarrow B, CD \rightarrow E, B \rightarrow E\}$
 - . Superclé= (ABCDE)
 - . ABCDE $\xrightarrow{A \to B}$ ACDE $\xrightarrow{CD \to E}$ ACD (2 étapes)
 - . ACD est une clé

Une meilleure superclé est l'union des parties gauches des DF = $ACDB \longrightarrow ACD$ (1 seule étape)

Clés d'une relation: a partir GM

- Les Clés peuvent aussi être cherchées à partir du graphe minimum des DF,
- Les Clés correspondent à l'ensemble minimum d'attributs qui nous permettent, en suivant, les DF d'atteindre tous les autres attributs.

27

Clés Candidates et clé primaires

- Si une relation comporte plusieurs clés, chacune est dite clé candidate
- " On choisit une en particulier pour être la clé primaire.
- Toutes les clés candidates sont des clés, pas seulement la clé primaire.
- Les clés candidates se déterminent mutuellement
 . Clé1 → Clé2 et aussi Clé2 → Clé1 (Clé1 ← Clé2)
- "Si une relation R n'admet aucune clé K (sous ensemble des attributs A1..An de R)
- " **alors** la clé K=A1..An est composée de *tous les attributs* de R.

Fin Normalisation Partie 1