REPORT No. 613

THE VARIATION WITH REYNOLDS NUMBER OF PRESSURE DISTRIBUTION OVER AN AIRFOIL SECTION

By Robert M. Pinkerton

SUMMARY

Pressures were simultaneously measured at 54 orifices distributed over the midspan section of a 5- by 30-inch rectangular model of the N. A. C. A. 4412 airfoil in the variable-density tunnel. These measurements were made at 17 angles of attack from -20° to 30° for eight values of the effective Reynolds Number from approximately 100,000 to 8,200,000. Accurate data were thus obtained for studying the variation of pressure distribution with Reynolds Number.

These results on the N. A. C. A. 4412 section indicate that the pressure distribution is practically unaffected by changes in Reynolds Number except where separation is involved.

INTRODUCTION

The need for pressure-distribution data over an airfoil section and the methods of obtaining those data are discussed in detail in reference 1. Briefly, such data provide directly the load distributions required for design purposes and, in addition, the comparison of measured pressures with those computed from potential-flow (nonviscous fluid) theory provides a means of studying the effects of viscous forces on the flow about the airfoil section. Moreover, with the wide range of Reynolds Numbers in use, it is desirable to know how the pressure distribution varies with Reynolds Number. Indications of changes in the character of the flow with Reynolds Number may also be deduced from the measured pressure distributions.

An extensive investigation of the pressure distribution over one section of the N. A. C. A. 4412 airfoil has been carried out in the variable-density wind tunnel. The purpose was twofold: First, to provide adequate experimental data to compare with theoretical results; and second, to study the variations with Reynolds Number. Reference 1 presents the most important phase of the investigation and is divided into two parts. The first part gives a detailed discussion of the experimental technique and a presentation of the results at the highest Reynolds Number. In the second part a comparison is made of experimental with calculated pressure distributions, and a modified method of calcu-

lation, giving more accurate results than those obtained by the usual potential-flow method, is developed.

The present report presents the complete experimental data for the same airfoil at eight values of the Reynolds Number and an analysis of the variations with Reynolds Number.

APPARATUS AND TESTS

The model used in this pressure-distribution investigation was a standard duralumin airfoil of N. A. C. A. 4412 section with a span of 30 inches and a chord of 5 inches. Pressure orifices, placed in two rows one-quarter inch apart, were located at 54 stations around the midspan section as given in table I. In order to evaluate the pressure force parallel to the chord, a relatively large number of orifices were located at the nose of the airfoil (fig. 1); well-defined distributions of pressure along a normal to the chord were thus assured.

FIGURE 1.—Distribution of pressure orifices about the N. A. C. A. 4412 profile.

Pressures were measured at 17 angles of attack from -20° to 30° to obtain data throughout the range including the stall at both positive and negative angles of attack. These measurements were made at eight values of the Reynolds Number obtained by varying the density of the air in the tank that houses the tunnel (reference 2). Values of the effective Reynolds Number, obtained by multiplying the test Reynolds Number by the turbulence factor 2.64 (reference 3), and the corresponding tank pressures are given below.

1 0 1	
Tank pressure (atmospheres):	Effective Reynolds Number
14	0. 10×10°
1/2	24
1	45
2	90
4	1.80
8	3. 40
15	6. 30
21	8. 20

Figure 2(a) to 2(p).—Pressure-distribution diagrams for the N. A. C. A. 4412 airfoil.

FIGURE 2.—Continued. Pressure-distribution diagrams for the N. A. C. A. 4412 airfoil.

FIGURE 2.—Continued. Pressure-distribution diagrams for the N. A. C. A. 4412 airfoil,

FIGURE 2.—Continued. Pressure-distribution diagrams for the N. A. C. A. 4412 airfoil.

FIGURE 3.—Lift curves for the N. A. C. A. 4412 airfoll at several values of the Reynolds Number.

In order to keep the pressure measurements as accurate as possible, it was necessary to obtain large deflections of the manometer liquids, which was accomplished by using three liquids of widely different specific gravities.

Liquid:	Specific gravity
Mercury	
Tetrabromoethane	3. 0
Alcohol	. 9

The proper choice of the angle of attack and Reynolds Number groups and of the liquid enabled the use of large and comparable deflections throughout all conditions of the investigation. Repeat tests using the same and different manometer liquids provided data on the precision of the tests.

The values of the pressure coefficient $P=(p-p_{\infty})/q$ at each orifice on the airfoil and for all angles of attack are tabulated in table I; the table is divided into sections (a) to (h), each section comprising the data for one value of the Reynolds Number. The pressures p and p_{∞} are, respectively, the pressures at the orifice and in the undisturbed stream.

As in reference 1, the data were reduced to the following section coefficients for the midspan section of the airfoil.

$$c_{n} = \frac{1}{c} \int P dx$$

$$c_{c} = \frac{1}{c} \int P dy$$

$$c_{m_{c/4}} = \frac{1}{c^{2}} \left[\int P(c/4 - x) dx + \int P y dy \right]$$

where c_n is the section normal-force coefficient.

ce, section chord-force coefficient.

 $c_{m_c/4}$, section pitching-moment coefficient.

Lift coefficients were obtained from the pressure measurements by the following equation:

$$c_l = c_n \cos \alpha - c_c \sin \alpha$$

FIGURE 4.-Variation of Cines with Reynolds Number.

The effective angle of attack is given by

$$\alpha_0 = \alpha - \alpha_i$$

and the induced angle of attack of the midspan section by

$$\alpha_1 = 1.584 \ c_1$$

where α is the geometric angle of attack measured from the mean direction of flow in the tunnel.

α_t, the angle that the flow in the region of the airfoil section makes with the direction of the undisturbed flow.

Values of c_n , c_c , $c_{mc/4}$, c_i , a_i , and a_0 for the 17 values of α are given in table II; the sections (a) to (h) correspond to the respective Reynolds Numbers of table I(a) to-(h).

Isometric plots of normal pressure against position along the chord are presented in figure 2, one set of plots containing the pressures for the eight Reynolds Numbers at each angle of attack. The effect of Reynolds Number on the lift characteristics is shown in figures 3 and 4.

⁽a) Effective Reynolds Number, 100,000; $\alpha = -4^{\circ}$.

⁽b) Effective Reynolds Number, 450,000; $\alpha = -4^{\circ}$.

⁽c) Effective Reynolds Number, 3,400,000; $\alpha = 24^{\circ}$.

⁽d) Effective Reynolds Number, 3,400,000; $\alpha = 4^{\circ}$.

⁽e) Effective Reynolds Number, 1,800,000; $\alpha = 12^{\circ}$.

⁽f) Effective Reynolds Number, 6,300,000; $\alpha = 12^{\circ}$.

(a) Effective Reynolds Number, 450,000.(b) Effective Reynolds Number, 1,800,000.

s Number, 450,000. (c) Effective Reynolds Number, 3,400,000. (d) Effective Reynolds Number, 8,200,000.

FIGURE 6.—Pressure-distribution diagrams showing the spread of separation at four values of the Reynolds Number.

PRECISION

The precision of the pressure measurements at Reynolds Numbers other than that for the data published in reference 1 is indicated by the diagrams given in figure 5. At the lowest Reynolds Number (fig. 5 (a)) the capacity to repeat measured pressures is markedly less than for higher Reynolds Numbers. It should be noted, however, that the precision was good enough to establish the occurrence of the supposedly laminar separation near the leading edge. The precision at Reynolds Numbers corresponding to the atmospheric runs and at higher values is consistently good even when the section has stalled, as in the diagram for 24°.

DISCUSSION

The general nature of the variation of the pressure distribution with Reynolds Number may be observed by means of the isometric plots in figure 2. At normal angles of attack, where stalling is not involved, the distributions are practically unaffected and hence the modified method of calculation presented in reference 1 is applicable at those attitudes for any Reynolds Number. Differences that do occur in the pressure diagrams are entirely of a local nature; they are probably associated with separation and the changes in the character of the boundary layer as the Reynolds Number is varied.

Boundary layer and the pressure distribution.—The formation of the boundary layer due to the viscous forces and the resulting effect on the pressure distribution is discussed in reference 1. A comparison of actual pressures with those computed for a potential, or non-viscous, fluid led to the development of the previously mentioned modified method of calculation, which gives good results at attitudes where separation is not involved.

Separation of the flow from the surface would be expected to be indicated on the pressure diagrams by a region of approximately constant pressures. The start and growth of separation are best observed in figure 6, which presents isometrically the pressure diagrams for an increasing angle-of-attack range. Calculated diagrams obtained by the method of reference 1 for a non-separated viscous flow are superposed for comparison. The differences between the measured and calculated distributions are attributed to separation and hence the shaded area may be considered as a measure of the effect of separation. The inclusion of four groups of diagrams, one for each of four values of the Reynolds Number, provides a means of studying the scale effect on separation phenomena.

The occurrence of separation is markedly affected by changes in the Reynolds Number, as may be seen in figure 6. Moreover, the only observable scale effects on pressure distributions (fig. 2) are probably due to the nature of the separation and the changes in the separa-

tion phenomena experienced with changing Reynolds Number. Most of these changes, of course, appear near either the positive or negative stall but at low Reynolds Numbers (below $R_{\bullet}=900,000$ approximately) some effects of separation, even in the low-drag range, are apparent from a careful analysis of the distributions. The presence of some such effects is indicated especially by pressure-drag integrations which, in this range, show a definite increase of drag with decreasing Reynolds Number. These results, however, are not presented as such since pressure-drag determinations are subject to some uncertainty owing to the inherent difficulty in obtaining them. The following analysis is based on changes in pressure distribution occurring near the stall.

A detailed discussion of these phenomena based on analyses of force tests of a large number of airfoils of widely different shapes is given in reference 3. The pressure-distribution data presented herein provide confirmatory and supplementary information for one particular type of airfoil section represented by the N. A. C. A. 4412 airfoil. This airfoil is one of medium thickness and camber producing a fairly gradual stall (type D lift-curve peak, reference 3). The stalling process of this section is a complicated one involving both trailing- and leading-edge types of separation.

At the low Reynolds Number (fig. 6 (a)) separation occurs prior to the stall as indicated in two distinct regions on the N. A. C. A. 4412 airfoil: One in the turbulent boundary layer near the rear of the airfoil, and the other in what is probably the laminar boundary layer near the nose. Instability of the laminar flow after separation results in a breakdown of the smooth laminae into an eddying flow. The scouring action of the eddying flow may then sweep the dead air from the surface and cause the reestablishment of unseparated flow with a turbulent boundary layer instead of the laminar layer. This laminar separation and the subsequent establishment of eddying flow account for the so-called "bubble" of dead air occurring in the flow at the low Reynolds Numbers. The turbulent layer, unable to maintain itself at high angles of attack, starts separating near the trailing edge and spreads forward as the angle is increased until the stall, resulting from the combined laminar and turbulent separations, is reached.

At the highest Reynolds Numbers (fig. 6) marked local laminar separation near the nose of the airfoil is apparently prevented. This prevention is accounted for by a transition from laminar to turbulent flow nearly at the laminar separation point or before the laminar flow has reached separation conditions. A movement forward of this transition region with increasing Reynolds Number has been observed in smokeflow studies. Moreover, figure 6 indicates that, for the N. A. C. A. 4412 airfoil in the Reynolds Number range included, the separation in the turbulent bound-

ary layer is slightly delayed with increasing Reynolds Number. Hence, at the high Reynolds Number, with possibly a delayed turbulent separation and no marked local laminar separation, the airfoil section increased its lift to a higher angle before stalling than was possible at the low Reynolds Number.

This analysis of the separation phenomena and the changes with Reynolds Number has been confirmed in some respects by measurements in the boundary layer of the N. A. C. A. 4412 airfoil at several values of the Reynolds Number. These data are a part of an N. A. C. A. investigation of boundary-layer phenomena.

Concluding remarks.—The results of this investigation indicate that the pressure distribution except near maximum lift is practically unaffected by changes in the Reynolds Number above a certain critical value, which is below the usual full-scale range. This critical value is probably the value at which there is no definite local separation.

Langley Memorial Aeronautical Laboratory, National Advisory Committee for Aeronautics, Langley Field, Va., July 14, 1937.

REFERENCES

- Pinkerton, Robert M.: Calculated and Measured Pressure Distributions Over the Midspan Section of the N. A. C. A. 4412 Airfoil. T. R. No. 563, N. A. C. A., 1936.
- Jacobs, Eastman N., and Abbott, Ira H.: The N. A. C. A. Variable-Density Wind Tunnel. T. R. No. 416, N. A. C. A., 1932.
- Jacobs, Eastman N., and Sherman, Albert: Airfoil Section Characteristics as Affected by Variations of the Reynolds Number. T. R. No. 586, N. A. C. A., 1937.

TABLE IS.—EXPERIMENTAL DATA

[N. A. C. A. 4412 airfoil; effective Raynolds Number, 100,000; test, variable-density tunnel 1007-4; manometer liquid, alcohol]

Orifico	18							Values of	pressure o	oefficient,	$P = \frac{p - p}{q}$	≅, for diff	ferent ang	les of atta	ok				
Designation	Station (percent c from L. E. of chord)	Ordinate (percent c above chord)	20°	16°	-12°	8°	6°	4°	3°	0°	2°	4*	88	120	16*	18*	20°	24°	30°
28	100, 00 97, 92 94, 86 89, 90 84, 94	0 16 16 22 28	-0. 538 568 603 603 688	-0, 498 -, 498 -, 533 -, 568 -, 568	-0.289 324 350 394 463	-0.080 080 080 080 160	-0, 118 -, 045 -, 045 -, 045 -, 045	-0.150 115 080 045 045	-0, 115 -, 045 -, 010 -, 010 -, 010	-0.045 .025 .059 .059	0, 094 .094 .094 .094 .059	0.059 .094 .094 .129 .129	0, 018 . 055 . 055 . 091 . 091	0.080 .064 .097 .164 .164	-0. 204 104 003 . 064 . 130	-0, 438 804 , 204 , 070 , 003	-0, 568 -, 894 -, 254 -, 150 -, 080	-0.608 429 289 150 080	-0.608 428 254 115 010
31	74, 92 04, 94 54, 48 49, 98 44, 90	52 84 1. 24 1. 44 1. 64	608 608 603 707 603	568 , 608 , 608 , 672 , 603	, 583 , 608 , 638 , 672 , 672	185 254 359 498 498	-, 080 , 150 , 220 , 824 , 254	080 115 185 254 185	-,010 -,045 -,080 -,115 -,115	.089 .024 010 080 045	. 059 . 059 . 059 —, 045 . 024	. 129 . 094 . 094 . 024 . 094	.127 ,127 ,127 ,055 .127	. 231 . 231 . 264 . 197 . 381	. 231 . 231 . 264 . 231 . 365	.097 .164 .197 .197 .204	.060 ,094 ,199 ,199 ,238	.060 .129 .199 .164 .802	129 199 308 288 408
34 5 35 6	39, 98 84, 90 29, 96 24, 90 19, 98	-1.86 -2.10 -2.30 -2.54 -2.76	608 608 608 608 568	, 608 , 603 , 603 , 603 , 608	-, 672 -, 742 -, 742 -, 742 -, 742	, 568 , 672 , 777 , 916 1, 091	289 359 394 588 742	, 254 , 254 , 824 , 859 , 538	-, 150 -, 185 -, 254 -, 324 -, 403	-, 080 -, 115 -, 150 -, 185 -, 254	.024 .024 010 045 080	. 094 . 094 . 059 . 059 . 024	. 164 , 164 , 164 , 200 , 200	.881 .886 .805 .898 .481	. 365 . 481 . 431 . 405 . 498	, 298 , 381 , 365 , 398 , 431	, 308 , 388 , 373 , 408 , 448	.888 .378 .408 .477 .512	. 448 . 477 . 512 . 582 . 652
78	14, 94 9, 06 7, 88 4, 94 2, 92	-2.00 -2.86 -2.72 -2.46 -2.06	, 588 , 568 , 568 , 588 , 588	, 588 , 568 , 568 , 538 , 568	-,742 -,743 -,742 -,672 -,672	-1, 265 -1, 800 -1, 265 -1, 280 -1, 265	-1,800 -1,474 -1,474 -1,474 -1,578	951 1. 091 1. 160 1. 280 1. 489	498 688 742 847 1. 021	, 289 , 894 , 463 , 583 , 603	-, 115 , 150 , 185 , 160 , 115	.024 .024 .024 .094 .199	. 278 . 309 . 345 . 491 . 709	. 498 . 599 . 666 . 799 . 983	. 599 . 699 . 799 . 900 1,000	. 582 . 682 . 699 . 833 . 988	.547 .617 .686 .791 .896	. 582 . 686 . 756 . 861 1. 000	. 721 . 826 . 861 1, 000 1, 000
80 10 40 11 41	1, 66 , 92 , 86 0 0	-1.60 -1.20 70 0	-, 568 -, 568 -, 742 -, 707 -, 045	, 568 , 608 , 847 , 568 -104	742 812 1, 056 , 568 -, 268	-1.860 -1.578 -1.787 951 .164	-1,787 -2,066 -2,186 986 .233	-1.718 -1.822 -1.618 468 547	-1.125 -1.056 707 -268 -881	, 538 , 824 -, 094 -, 756 -, 965	,050 ,804 ,052 1,000 ,861	.878 .617 .895 .980 478	.855 1,000 .801 .164 ,927	1.000 .900 .204 1.140 2.612	938 - 666 204 1, 876 8, 281	1,000 .866 .365 672 1. 609	1,000 ,980 ,547 —,824 —1,091	1.000 .895 .448 859 951	. 895 . 721 . 129 638 881
12	,44 ,94 1,70 2,94 4,90	1.56 2.16 2.78 8.64 4.68	.721 .895 1,000 .930 .826	. 826 . 980 . 965 . 861 . 721	, 895 , 965 , 965 , 826 , 652	. 861 . 980 . 980 . 791 . 582	. 895 , 965 , 895 . 721 . 512	, 980 . 895 . 756 . 582 . 873	.980 .791 .582 .878 .164	. 686 . 448 . 233 . 024 , 185	, 378 , 059 -, 150 -, 324 -, 498	184 462 602 741 845	-1.727 -1.872 -1.872 -1.800 -1.691	-3. 181 -3. 013 -2. 779 -2. 478 -2. 244	-3.381 -8.018 -2.746 -2.679 -2.511	-1,709 -1,475 -1,308 -1,274 -1,241	-1.195 986 847 812 812	812 707 638 638 638	, 678 , 638 , 603 , 603 , 603
15	7, 50 9, 96 12, 58 14, 92 17, 44	5, 74 6, 56 7, 84 7, 88 8, 40	.721 .547 .448 .878 .808	, 582 , 443 , 808 , 238 , 164	. 477 . 838 . 283 . 164 . 004	. 408 . 804 . 120 . 094 . 024	, 338 , 283 , 094 , 024 —, 045	.164 .024 115 150 220	010 115 254 280 324	, 289 , 394 , 498 , 588 , 568	-, 603 -, 672 -, 742 -, 777 -, 777	881 950 985 950	-1. 618 -1, 545 -1. 545 -1. 509 -1. 480	-2,048 -1,948 -1,848 -1,742 -1,642	-2.478 -2.478 -2.844 -1.910 -1.508	-1,241 -1,274 -1,241 -1,174 -1,040	-, 812 -, 812 -, 847 -, 847 -, 812	688 638 672 672 638	603 608 638 638 603
17	24,92 27,44	8, 80 9, 16 9, 52 9, 62 9, 76	. 199 . 129 . 094 . 024 —, 045	-,094 -,115 -,010 -,080 -,115	. 024 , 185 , 080 , 185 , 185	, 045 , 254 , 115 , 185 , 185	-, 118 -, 289 , 150 , 188 , 220	-, 254 -, 254 -, 324 -, 394 -, 359	-, 394 -, 463 -, 894 -, 429 -, 468	-, 608 -, 538 -, 638 -, 638	811 707 742 742 742	985 845 916 951 881	-1, 400 -1, 182 -1, 255 -1, 258 -1, 218	-1.575 -1.241 -1.408 -1.341 -1.274	-1.808 -1.074 -1.107 -1.074 -1.007	-1,007 -,878 -,839 -,839 -,806	-,777 -,742 -,707 -,742 -,707	-, 638 -, 638 -, 608 -, 638 -, 608	608 638 568 608 608
49		9, 90 9, 84 9, 64 9, 22 8, 76	-,115 ,150 ,220 ,254 ,254	-, 185 -, 254 -, 289 -, 824 -, 324	254 254 289 324 289	, 254 , 254 , 254 , 230	, 254 , 254 , 254 , 254 , 185	-, 394 -, 394 -, 359 -, 324 -, 254	-, 468 -, 429 -, 894 -, 859 -, 824	, 638 , 568 , 583 , 498 , 463	, 707 , 638 , 608 , 568 , 498	847 742 707 672 638	-1.145 -1.073 -1.036 -1.000 891	-1, 107 978 873 789 605	906 773 672 605 505	778 706 672 672 605	-, 672 , 672 , 672 , 672 , 638	-, 603 -, 603 -, 603 -, 608	638 638 638 608
22	69, 85 74, 90	8, 16 7, 54 6, 76 5, 88 4, 92	-, 850 -, 894 -, 894 -, 429 -, 429	894 894 894 429 429	324 859 324 824 289	, 220 , 220 , 185 , 150 , 115	185 185 150 115 115	, 289 , 220 , 185 , 186 , 150	, 289 , 254 , 220 , 220 , 220	429 894 859 894 859	-, 498 , 498 , 468 , 468 , 429	638 638 603 583 859	, 745 , 600 , 455 , 382 , 309	, 538 , 438 , 388 , 271 , 171	488 405 388 388 271	689 605 572 605 572	-, 672 -, 672 -, 672 -, 672 -, 688	, 638 , 638 , 638 , 638 , 638	, 638 , 638 , 638 , 638 , 603
25	84,88 89,88 94,90 98,00 100,00	8, 88 2, 74 1, 48 , 68	, 468 , 463 , 498 , 498	-, 429 -, 429 -, 468 -, 468	, 254 , 254 , 289 , 254	, 080 , 045 , 048 , 045	, 080 , 080 , 080 , 080	-, 115 -, 115 -, 150 -, 150	-, 185 -, 185 -, 185 -, 150	-, 824 -, 289 -, 185 -, 080	-, 824 -, 150 -, 045 , 024	-, 185 -, 090 -, 010 , 024	, 200 , 127 , 055 , 018	, 104 , 087 , 008 -, 030	287 287 287 204	, 588 , 505 , 472 , 488	, 608 , 608 , 568 , 538	-, 603 -, 608 -, 603 -, 568	, 603 , 603 , 603 , 608

[N. A. C. A. 4412 airfoil; effective Reynolds Number, 240,000; test, variable-density tunnel 1097-3; manometer liquid, alcohol]

Orifices		:						Values of p	oressure co	efficient,	$P = \frac{p - p_{o}}{q}$	°, for diff	erent ang	es of attac	ok			_	
Designation	Station (percent c from L. E, of chord)	Ordinate (percent c above chord)	-20°	16°	-12°	-8°	-6°	-4°	2°	0°	2°	4°	8°	12°	16°	18°	20°	24°	. 80°
28 1. 29 2. 30.	100.00 97.92 94.86 89.90 84.94	0 -, 16 -, 16 -, 22 -, 28	-0.491 509 509 525 541	-0.448 460 492 525 557	-0.238 254 286 318 366	-0,029 018 013 018 045	0.003 .052 .052 .052 .052	0.068 .116 .100 .100	0. 181 . 131 . 115 . 098 . 082	0. 148 . 148 . 148 . 131 . 115	0. 148 . 148 . 181 . 131 . 115	0. 181 . 131 . 131 . 131 . 131	0, 115 131 148 164 164	0.033 .066 .098 .148 .180	-0.230 098 016 .082	-0.443 279 164 049	0.495 384 206 093 029	-0. 574 377 262 181 049	-0. 574 377 246 115 016
31	74, 92 64, 94 54, 48 49, 98 44, 90	52 84 1. 24 1. 44 1. 64	541 541 525 557 525	574 557 574 574 557	481 511 575 608 624	093 158 254 286 350	.008 045 098 -:141 158	.051 .003 029 061 077	.066 .033 016 016 049	.098 .082 .049 .016 .016	. 115 . 098 . 066 . 083 . 049	.181 .115 .098 .082 .115	. 180 . 197 . 197 . 180 . 230	.213 .246 .279 .262 .312	. 197 . 246 . 295 . 312 . 344	.098 .180 .230 .262 .295	.084 .164 .228 .244 .298	.082 .164 .230 .246 .312	. 181 . 230 . 312 . 828 . 410
34	39. 98 84. 90 29. 96 24. 90 19. 98	1.86 2.10 2.30 2.54 2.76	525 509 509 509 509	- 557 - 557 - 541 - 541 - 541	640 672 672 672 672	447 527 624 752 881	190 238 302 383 479	109 158 206 270 350	065 098 148 213 311	016 033 065 115 164	.049 .033 .016 016 049	.098 .098 .098 .082 .049	.230 .230 .246 .246 .262	. 328 . 344 . 377 . 410 . 426	. 377 . 410 . 443 . 476 . 525	.312 .361 .394 .426 .476	. 825 . 357 . 405 . 437 . 470	. 344 . 377 . 426 . 459 . 508	.443 .492 .525 .574 .639
7	14.94 9.96 7.38 4.94 2.92	-2.90 -2.86 -2.72 -2.46 -2.06	491 509 509 491 491	525 525 525 525 525	656 656 656 640 624	-1.042 -1.283 -1.331 -1.283 -1.283	608 1. 379 1. 556 1. 556 1. 653	-, 527 -, 918 -, 994 -1, 122 -1, 331	426 557 639 787 918	230 311 377 443 475	082 148 164 098	.049 .049 .066 .115 .230	. 295 . 344 . 410 . 525 . 705	.508 .590 .672 .808 .934	. 607 . 705 . 803 . 918 L 000	. 557 . 656 . 754 . 853 . 951	. 550 . 646 . 727 . 823 . 936	. 590 . 689 . 754 . 869 . 967	.721 .803 .885 .951 1,000
39 10 40 11 41	1. 66 . 92 . 35 0	-1.60 -1.20 70 0	509 509 624 640 000	509 525 721 525 218	640 672 929 511 . 825	-1.881 -1.508 -1.797 929	-1.894 -2.183 -2.199 977	-1, 556 -1, 621 -1, 395 -, 254 . 678	1.000 902 541 .394 .934	410 229 . 180 . 836 1. 000	.033 .279 .656 .967 .852	.410 .656 .902 .934 .492	.869 .984 .885 .213 —.869	. 984 . 860 . 246 -1. 230 -2. 787	. 918 . 623 426 2. 328 3. 951	.951 .771 .066 -1,279 -2,426	1.000 .920 .486 431 1.186	. 984 . 885 . 459 861 918	.918 .721 .148 — 639 — 820
12 42 13 43 14	. 44 . 94 1. 70 2. 94 4. 90	1. 56 2. 16 2. 78 3. 64 4. 68	. 788 . 918 . 967 . 951 . 836	.869 1.000 1.000 .918 .770	. 920 1,000 1,000 . 871 . 695	,920 1,000 ,968 ,823 ,630	, 936 1, 000 , 920 , 759 , 534	1.000 .936 .791 .566 .357	. 934 . 738 . 541 . 812 . 082	. 705 . 450 . 246 . 016 —. 180	.844 .066 148 328 492	- 180 - 459 - 606 - 738 - 836	-1.623 -1.738 -1.721 -1.656 -1.590	-3.328 -3.164 -2.902 -2.500 -2.344	-4.000 -3.574 -3.311 -3.164 -3.115	-2.410 -2.115 -2.000 -1.984 -1.984	-1. 184 977 913 881 913	738 656 639 628 639	-, 606 -, 590 -, 590 -, 574 -, 574
44 16	7. 50 9. 96 12. 58 14. 92 17. 44	5. 74 6. 56 7. 34 7. 88 8. 40	. 688 . 557 . 442 . 361 . 295	. 606 . 476 . 844 . 278 . 180	.518 .389 .260 .196 .116	. 453 . 325 . 196 . 116 . 051	.357 .228 .084 .019 —,045	.164 .085 077 141 206	082 196 311 360 393	311 410 508 541 574	590 656 721 738 754	- 885 - 918 - 951 - 951 - 951	-1.492 -1.443 -1.410 -1.361 -1.295	-2. 131 -1. 984 -1. 862 -1. 738 -1. 623	-3.016 -2.197 -1.738 -1.639 -1.557	-1. 951 -1. 639 -1. 361 -1. 229 -1. 147	913 897 849 817 784	- 639 - 639 - 639 - 639 - 623	574 574 590 590 574
17 47 18 18 48	19. 96 22. 44 24. 92 27. 44 29. 88	8. 80 9. 16 9. 52 9. 62 9. 78	. 213 . 062 . 098 . 016 —. 016	.114 .000 .000 065 098	. 051 061 029 093 125	018 093 093 158 174	109 158 174 222 238	270 366 302 350 350	442 526 475 508 508	-, 606 -, 574 -, 623 -, 639 -, 623	770 705 770 787 770	951 836 902 902 869	-1.262 -1.082 -1.180 -1.148 -1.115	-1. 541 -1. 459 -1. 377 -1. 828 -1. 262	-1. 459 -1. 410 -1. 295 -1. 213 -1. 131	-1.082 -1.098 967 984 902	768 838 704 704 704	623 639 606 623 623	590 606 574 590 590
49. 20. 50. 21.	34. 98 39. 90 44. 90 49. 92 54. 92	9, 90 9, 84 9, 64 9, 22 8, 76	098 147 213 245 262	164 213 262 279 279	~. 190 ~. 206 ~. 238 ~. 288 ~. 238	206 223 222 222 190	254 270 270 254 222	-, 366 -, 350 -, 334 -, 318 -, 286	508 478 459 426 877	606 574 541 492 442	721 672 623 574 525	820 770 721 672 628	-1.088 967 902 786 639	-1, 131 -, 984 -, 885 -, 754 -, 639	967 803 688 574 459	820 754 705 672 639	688 672 672 672 656	606 606 623 623 623	, 590 , 606 , 606 , 606 , 606
22. 52. 23. 24.	59. 94 64. 90 69. 86 74. 90 79. 92	8. 16 7. 54 6. 76 5. 88 4. 92	295 345 361 393 398	-, 311 -, 344 -, 344 -, 360 -, 377	, 254 , 270 , 254 , 254 , 254	190 174 141 109 077	~. 206 ~. 190 ~. 158 ~. 125 ~. 093	270 238 206 174 158	860 811 278 262 245	410 398 360 344 311	508 475 459 410 278	606 557 442 311 218	-, 541 -, 459 -, 398 -, 311 -, 229	567 459 361 279 197	410 361 311 295 279	, 623 , 606 , 590 , 574 , 541	656 656 640 624	639 639 639 639	- 606 -, 623 -, 606 -, 623 -, 606
25 54 26 27 28	84.88 89.88 94.90 96.00 100.00	3.88 2.74 1.48 .06	426 443 475 475	398 410 426 426	, 228 , 222 , 222 , 223	061 029 045 029	077 077 077 029	125 125 077 . 019	229 180 033 . 082	229 082 . 049 . 115	148 049 . 033 . 096	181 065 - 016 - 082	148 049 - 033 - 082	-, 115 -, 049 -, 016 -, 016	246 246 230	525 508 475 443	502 550 543 511	623 606 590 557	-, 590 -, 590 -, 574 -, 574

TABLE IC.—EXPERIMENTAL DATA

[N. A. C. A. 4112 airfoil; effective Reynolds Number, 450,000; test, variable-density tunnel 1097-1; manometer liquid, alcohol]

Orifice	8						`	values of p	oressure oc	efficient,	$P = \frac{p - p_0}{q}$	e, for diffe	rent angle	s of attack	τ.	_		·	
Designation	Station (percent c from L. R, of chord)	Ordinate (percent c above chord)	20°	16°	12°	8°	6°	⊷4°	2°	0°	2*	4°	8°	12°	16°	18°	20°	24°	30°
28	100, 00 97, 92 94, 86 89, 90 84, 94	0 , 16 , 16 , 22 , 28	-0.477 485 502 518 526	-0.896 420 458 485 518	-0, 201 -, 209 -, 242 -, 282 -, 823	0.067 .083 .075 .058 .034	0. 148 . 148 . 181 . 115 . 083	0, 164 , 164 , 148 , 128 , 099	0, 172 . 156 . 140 . 128 . 107	0. 172 . 156 . 148 . 131 . 123	0, 172 , 172 , 172 , 169 , 148	0, 186 . 172 . 172 . 172 . 172	0, 181 , 148 , 164 , 180 , 198	0, 002 , 058 , 117 , 150 , 172	-0, 234 -, 104 -, 015 . 085 . 128	-0, 364 -, 218 -, 103 , 002 , 068	-0, 461 -, 274 -, 161 , 047 , 026	-0, 558 , 880 , 250 , 120 , 047	0, 558 , 856 , 209 : 071 010
31	04,48 49,98	52 84 1, 24 1, 44 1, 64	- 526 - 526 - 518 - 502 - 502	, 534 , 542 , 542 , 534 , 526	-, 404 -, 485 -, 575 -, 615 -, 656	-, 015 -, 071 -, 158 -, 193 -, 242	.042 006 063 096 128	. 087 . 018 031 080 080	.075 .050 .001 006 081	. 108 . 088 . 058 . 034 . 026	, 145 , 123 , 117 , 091 , 091	. 169 . 169 . 148 . 148 . 145	. 218 . 221 . 220 . 221 . 245	, 221 , 253 , 278 , 296 , 310	. 205 . 261 . 310 . 334 . 367	. 156 . 221 . 278 . 318 . 843	. 181 , 218 , 269 , 310 , 848	.075 .164 .237 .278 .318	. 148 . 246 . 835 . 888 . 424
84 5 85 36	89. 98 34, 90 29. 96 24. 90 19. 98	-1.86 -2.10 -2.30 -2.54 -2.76	502 502 494 485 485	-, 526 -, 518 -, 518 -, 510 -, 502	689 718 729 729 729	- 307 - 388 - 494 - 615 - 709	-, 169 -, 209 -, 274 -, 861 -, 477	112 188 201 274 872	055 080 120 177 266	-,010 ,015 ,055 ,104 ,161	,078 ,067 ,012 ,010 —,028	. 131 . 181 . 115 . 117 . 001	, 258 , 261 , 269 , 278 , 294	. 884 . 851 . 875 . 417 . 482	. 888 . 415 . 464 . 497 . 587	. 875 . 407 . 448 . 489 . 587	, 867 , 407 , 440 , 481 , 521	.851 .891 .482 .472 .518	, 464 , 505 , 545 , 594 , 651
7	7, 88 4, 94 2, 92	-2.90 -2.86 -2.72 -2.46 -2.06	477 485 477 477 409	-, 494 , 494 , 485 , 487	-, 721 -, 713 -, 696 -, 688 -, 680	, 940 -1, 200 1, 476 1, 785 1, 719	-, 628 -, 818 -1, 408 -1, 727 -1, 841	-, 494 -, 794 -1, 029 -1, 159 -1, 886	404 558 648 786 982	218 315 872 145 477	-, 055 -, 120 -, 128 -, 186 -, 088	.075 .058 .075 .125 .287	. 828 . 875 . 440 . 554 . 716	. 497 . 586 . 675 . 797 . 927	. 610 . 716 . 818 . 919 . 902	. 610 . 707 . 797 . 903 . 976	. 494 . 692 . 773 . 878 . 976	. 504 . 692 . 765 . 862 . 969	.732 .821 .886 .959 1,000
89	1, 66 . 92 . 86 0	-1.60 -1.20 70 0	-, 469 -, 469 -, 526 -, 615 026	-, 477 -, 485 -, 623 -, 494 , 287	-, 672 -, 696 -, 982 -, 542 , 802	-1, 687 -1, 906 -2, 289 -1, 224 .067	-2, 101 -2, 898 -2, 877 -1, 087 , 851	-1, 622 -1, 708 -1, 408 -, 258 -683	-1, 018 , 940 , 574 -388 , 935	445 250 156 813 984	- 084 278 659 984 854	,416 ,651 ,919 ,944 ,411	.894 1,000 .908 .198 : 891	. 992 . 870 . 221 1, 205 2, 815	. 919 . 595 502 2, 506 4, 203	. 919 . 685 815 2. 019 8. 407	1,000 .984 .883 ,648 1,461	984 886 456 — 855 — 891	. 927 . 724 . 156 599 745
12	,44	1, 56 2, 16 2, 78 8, 64 4, 68	.756 .951 1.000 .976 .870	. 878 . 992 1, 000 . 919 , 778	, 919 1, 000 , 984 , 870 , 700	, 886 1, 000 , 968 , 830 , 685	, 959 1, 000 , 927 , 740 , 529	1,000 ,927 ,781 ,562 ,326	, 935 , 748 , 554 , 818 , 099	. 708 . 448 . 287 . 010 185	. 351 . 042 , 136 , 328 , 485	185 458 899 721 826	-1, 684 -1, 744 -1, 719 -1, 646 -1, 573	-3, 383 -3, 180 -2, 912 -2, 620 -2, 869	-4, 275 -8, 846 -8, 578 -8, 464 -8, 826	-3, 261 -3, 010 -2, 912 -2, 896 -2, 612	-1, 330 -1, 192 -1, 195 -1, 183 -1, 167	-, 680 -, 648 -, 640 -, 640 -, 648	-, 567 , 567 , 558 , 591 , 591
44	7. 50 9, 96 12, 58 14, 92 17, 44	5, 74 6, 56 7, 84 7, 88 8, 40	. 724 . 610 . 489 . 590 . 818	. 619 . 489 . 367 . 296 . 205	, 521 , 399 , 269 , 188 , 115	,448 ,310 ,172 ,091 ,026	.826 ,188 .067 ,015 ,080	, 181 , 002 , 112 , 185 , 242	-, 080 -, 185 -, 201 -, 347 -, 806	828 420 502 542 567	; 588 ; 648 ; 705 ; 729 ; 737	-, 867 -, 899 -, 982 -, 932 -, 932	-1, 484 -1, 427 -1, 894 -1, 846 -1, 806	-2, 125 -1, 980 -1, 800 -1, 708 -1, 597	-2, 068 -1, 922 -1, 883 -1, 711 -1, 589	-1,800 -1,672 -1,500 -1,894 -1,281	-1,062 -,997 -,956 -,916 -,888	, 656 , 648 , 648 , 640 , 640	-, 591 -, 575 -, 575 -, 575 -, 591
17	24, 92 27, 44 29, 88	8, 80 9, 16 9, 52 9, 62 9, 76	. 245 . 140 . 115 . 058 . 018	, 128 , 042 , 010 , 088 , 080	-, 042 , 031 , 055 , 104 , 128	, 039 , 104 , 128 , 168 , 193	, 186 , 242 , 218 , 258 , 274	-, 291 -, 206 -, 356 -, 380 -, 396	, 487 , 477 , 485 , 510 , 510	- 599 - 628 - 628 - 640 - 681	-, 761 -, 787 -, 761 -, 761 -, 745	-: 982 859 907 899 867	-1, 278 -1, 192 -1, 192 -1, 189 -1, 127	-1, 582 -1, 886 -1, 886 -1, 821 -1, 256	-1,484 -1,888 -1,299 -1,200 -1,004	-1.192 -1.110 -1.018 940 867	- 859 - 859 - 810 - 785 - 709	-, 640 -, 688 -, 681 -, 631 -, 681	-, 575 -, 631 -, 575 -, 575 -, 588
49	94, 98 39, 90 44, 80 49, 92 54, 92	9, 90 9, 84 9, 64 9, 22 8, 76	, 063 , 120 , 185 , 209 , 234	, 144 , 185 , 284 , 250 , 258	, 185 , 201 , 234 , 242 , 234	, 226 , 242 , 258 , 242 , 226	299 299 815 291 258	-, 412 -, 404 -, 396 -, 364 -, 881	, 502 , 485 , 469 , 487 , 896	-, 615 -, 575 -, 542 -, 494 -, 453	-, 705 -, 664 -, 628 -, 567 -, 518	- 810 - 761 - 705 - 668 - 607	1, 029 , 982 , 884 , 705 , 599	-1, 127 -, 981 -, 883 -, 745 -, 640	; 916 ; 745 ; 615 ; 494 ; 404	-,745 -,648 -,588 -,542 -,502	-, 721 -, 696 -, 680 -, 664 -, 640	-, 681 -, 681 -, 640 -, 640 -, 640	-, 588 -, 591 -, 591 -, 591 -, 591
22 53 23 24 58	59. 04 64, 90 60 84	8, 16 7, 54 6, 76 5, 88 4, 92	274 815 889 864 889	, 291 , 815 , 328 , 339 , 347	, 250 , 258 , 250 , 242	-, 218 -, 209 -, 185 -, 161 -, 186	, 250 , 284 , 209 , 177 , 144	, 815 , 291 , 258 , 226 , 201	864 889 807 274 234	, 420 , 888 , 847 , 299 , 209	-, 485 -, 445 -, 364 -, 291 -, 193	-, 584 -, 437 -, 347 -, 282 -, 217	534 469 388 299 218	-, 542 , 445 , 847 , 266 , 185	-, 847 -, 823 -, 299 -, 282 -, 266	494 477 461 461 445	-, 631 -, 623 -, 615 -, 607 -, 591	-, 648 , 656 , 656 , 656 , 648	-, 591 -, 607 -, 599 -, 599 -, 599
25	84, 88 89, 88 94, 90 98, 00 100, 00	8, 88 2, 74 1, 48 , 68 0	412 429 461 477	, 364 , 864 , 880 , 888	-, 226 -, 209 -, 193 -, 185	-, 104 -, 071 -, 047 , 010	, 120 , 088 , 006 , 091	169 096 . 084 . 115	-, 161 -, 047 . 060 , 118	-, 112 , 089 , 050 , 128	, 128 , 039 , 050 , 123	, 144 , 055 , 042 , 125	-, 128 , 039 . 050 , 118	-, 104 -, 065 -, 028 , 002	, 266 , 268 , 250 , 242	-, 429 -, 420 -, 404 -, 380	, 567 , 550 , 501 , 477	, 681 , 615 , 591 , 567	-, 591 -, 575 -, 591 -, 568

REPORT NO. 613-NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TABLE Id.—EXPERIMENTAL DATA

[N. A. C. A. 4412 airfoll; effective Reynolds Number, 900,000; test, variable-density tunnel, 1097-2; manometer liquid, alcohol]

Orifice	98			-			Ve	dues of pr	essure coe	fficient, P	$p-p_{\infty}$	for differ	ent angle	of attack	ε				
Designation	Station (percent c from L. E. of chord)	Ordinate (percent c above chord)	-20°	-16°	-12°	-8°	-6°	-4°	-2°	0°	2°	4°	8°	120	16°	18°	20°	24°	30°
28	100.00 97.92 94.86 89.90 84.94	0 16 16 22	-0.457 486 506 526 534	-0.400 437 469 506 588	-0. 180 , 197 , 225 , 262 , 302	0. 158 . 145 . 129 . 101 . 076	0. 186 . 162 . 187 . 118 . 084	0. 198 . 178 . 153 . 183 . 105	0. 190 . 170 . 145 . 130 . 109	0.219 .210 .194 .182 .170	0. 190 . 178 . 170 . 162 . 153	0. 198 . 202 . 194 . 198 . 190	0.149 .166 .178 .198 .206	0.031 .101 .145 .190 .214	~0.225 ~.087 .007 .092 .145	-0.363 193 083 .023 .088	-0.437 266 152 088 .081	-0.526 339 217 091 005	-0.547 368 225 087 .003
31	74, 92 64, 94 54, 48 49, 98 44, 90	52 84 1. 24 1. 44 1. 64	584 580 522 506 506	-, 587 -, 575 -, 579 -, 571 -, 575	388 473 571 608 669	.023 034 103 181 184	.039 013 074 095 140	.072 .027 026 038 074	.076 .044 .007 —.005 —.034	. 145 . 125 . 092 . 084 . 068	. 145 . 129 . 105 . 101 . 088	. 186 . 178 . 170 . 170 . 166	. 223 . 231 . 239 . 251 . 259	. 259 . 298 . 316 . 337 . 349	. 227 . 280 . 328 . 361 . 385	. 186 . 255 . 312 . 349 . 377	. 141 . 214 . 276 . 320 . 348	.113 .198 .276 .320 .349	.141 .285 .324 .877 .414
34 5 35	89, 98 34, 90 29, 96 24, 90	-1, 86 *2, 102, 302, 542, 76	506 498 494 490 490	567 563 555 547 534	709 746 770 787 787	237 298 380 490 640	176 221 286 372 -, 494	107 140 193 266 359	058 087 123 180 258	. 056 . 085 . 007 050 115	.076 .064 .089 .011 026	. 162 . 158 . 145 . 129 . 113	. 267 . 276 . 284 . 292 . 300	. 369 . 389 . 414 . 438 . 471	. 414 . 446 . 479 . 520 . 569	. 414 . 446 . 487 . 528 . 577	.877 .414 .447 .487 .586	. 386 . 430 . 467 . 508 . 556	. 455 . 499 . 544 . 593 . 850
7 87 8	14, 94 9, 96 7, 38 4, 94 2, 92	-2.90 -2.86 -2.72 -2.46 -2.06	481 481 481 481 477	526 518 518 514 514	779 758 762 750 754	835 1. 133 1. 287 1. 873 2. 561	656 906 -1. 051 -1. 759 -2. 012	486 697 937 -1. 174 -1. 401	376 559 652 795 945	188 278 835 412 453	066 115 181 144 091	.096 .088 .105 .145 .263	. 828 . 385 . 451 . 552 . 727	. 528 . 621 . 711 . 825 . 963	. 638 . 748 . 841 . 943 1, 010	. 654 . 768 . 853 . 951 1. 000	. 605 . 707 . 796 . 886 . 976	. 680 . 727 . 808 . 902 . 992	. 723 . 821 . 894 . 959 1. 000
89	1.66 .92 .36 0	-1.60 -1.20 70 0	477 477 502 608 . 035	510 510 587 514 214	738 750 925 604 . 263	-2.578 -2.928 -3.139 -1.869 225	-2.284 -2.578 -2.501 -1.141 .227	-1. 687 -1. 723 -1. 475 249 .708	-1,035 966 591 - 382 - 985	416 238 . 174 . 849 1. 024	. 085 . 271 . 650 . 984 . 853	. 488 . 678 . 961 . 967 . 508	. 894 1.000 . 906 . 207 880	1. 016 . 898 . 255 1. 257 2. 842	. 638 . 552 636 2. 797 1. 621	.870 .455 819 -3.001 -4.763	.959 .768 .080 1.149 2.077	1.008 .902 .459 859 864	. 985 . 731 . 166 596 709
12	1.70	1.56 2.16 2.78 3.64 4.68	.768 ,951 1.008 .972 .862	.862 .984 .992 .910 .764	. 902 1. 000 . 976 . 866 . 699	.841 1.000 1.000 .878 .688	.951 1.000 .927 .748 .528	1.010 .939 .788 .561 .333	.927 .752 .548 .308 .086	.752 .495 .276 .056 148	.338 .052 152 335 498	168 438 587 710 811	-1.646 -1.731 -1.711 -1.629 -1.560	-8.403 -8.192 -2.915 -2.606 -2.825	-4. 785 -4. 258 -3. 994 -3. 742 -2, 553	-4. 683 -4. 250 -4. 100 -3. 729 -2. 415	-1.865 -1.792 -1.743 -1.625 -1.405	648 640 636 652 656	571 571 571 571 575
14 15 45 16 46	7.50 9.96 12.58 14.92 17.44	5. 74 6. 56 7. 34 7. 88 8. 40	.715 .597 .479 .894 .308	.601 .475 .353 .267 .186	. 524 . 389 . 267 . 186 . 113	.491 .349 .223 .138 .064	.838 .194 .068 005 077	.141 .015 103 168 229	001 200 302 355 408	286 876 461 498 580	-, 505 , 656 , 713 , 734 , 754	-, 852 -, 880 -, 913 -, 913 -, 913	-1.470 -1.409 -1.873 -1.328 -1.287	-2.036 -1.857 -1.748 -1.646 -1.564	-2. 297 -2. 089 -1. 928 -1. 776 -1. 646	-2.188 -1.902 -1.707 -1.540 -1.898	-1, 295 -1, 206 -1, 141 -1, 080 -1, 019	652 648 652 648 648	-: 575 -: 571 -: 575 -: 575 -: 575
17	19. 96 22. 44 24. 92 27. 44 29. 88	8.80 9.16 9.52 9.62 9.76	. 235 . 158 . 109 . 052 . 011	.117 .048 001 050 087	.044 018 066 111 140	001 058 099 140 164	186 193 221 254 274	278 339 847 876 888	449 502 498 518 518	563 571 587 600 595	-, 762 -, 718 -, 766 -, 766 -, 754	910 864 893 880 852	-1.255 -1.201 -1.173 -1.133 -1.088	-1.491 -1.380 -1.365 -1.300 -1.230	-1.532 -1.434 -1.320 -1.222 -1.116	1. 251 1. 145 1. 007 897 799	966 925 872 844 807	648 648 636 640 636	575 583 579 587 587
49	34. 98 39. 90 44. 80 49. 92 54. 92	9, 90 9, 84 9, 64 9, 22 8, 76	066 119 176 200 229	156 197 245 257 274	188 213 245 241 245	201 217 287 221 209	298 302 311 286 266	400 392 392 355 323	518 494 481 437 400	575 548 518 469 420	-: 713 664 628 571 522	803 742 693 628 534	986 876 795 685 595	-1.092 958 852 718 604	921 734 604 481 412	648 547 502 477 465	762 722 705 677 609	632 628 636 636 640	591 591 596 604 604
22	59. 94 64, 90 69. 86 74, 90 79. 92	8. 16 7. 54 6. 76 5. 88 4. 92	262 302 327 351 376	298 327 343 351 363	, 251 , 270 , 262 , 254 , 245	201 197 176 156 123	, 249 , 241 , 209 , 180 , 148	302 282 254 216 172	~.368 343 302 254 188	384 347 286 221 164	457 392 327 266 206	453 404 339 270 205	530 457 375 290 205	506 412 319 225 140	363 343 828 815 302	461 461 457 457 457	652 652 683 620 604	636 648 644 640 636	604 608 604 604 505
25	84.88 89,88 94,90 98.00 100.00	3.88 2.74 1.48 .68	-, 400 , 412 , 441 , 457	376 380 392 400	-, 237 -, 217 -, 197 -, 184	087 038 . 081 . 096	099 , 084 - 052 - 125	,111 ,050 -,056 -,130	123 042 - 048 - 121	095 018 .090 .158	~, 136 -, 045 .056 .133	123 090 . 076 . 145	115 018 . 072 . 121	074 026 . 008 . 023	294 296 278 262	, 449 , 445 , 429 , 400	579 551 506 469	620 595 567 543	-, 587 -, 579 -, 567 -, 555

TABLE IC.—EXPERIMENTAL DATA

[N. A. C. A. 4112 airfolf; effective Reynolds Number 1,800,000; test numbers and manameter liquids given in footnotes]

Orlfices							v	alues of p	ressure co	efficient,	$P = \frac{p - p_{\alpha}}{q}$	e for diffe	rent angl	es of attac	ık				<u> </u>
Designation	Station (percent of from L. E. of chord)	Ordinata (percent c above chord)	-30°	•16°	€—12°	b⊷8°	p	≱4°	b2°	≱ 0°	f 3a	₽ 4°	₽ 8 •	▶ 12°	≠ 16°	- 18*	4 20°	« 24°	■ 30°
28	100, 00 97, 92 94, 86 89, 90 84, 94	0 -, 16 -, 16 -, 22 -, 28		-0.809 881 852 888 410	0.048 .048 .000 029 072	0. 181 . 156 . 130 . 097 . 067	0, 198 , 170 , 146 , 116 , 099	0. 199 , 176 , 184 , 128 , 103	0. 201 . 178 . 156 . 186 . 128	0, 198 , 170 , 154 , 188 , 126	0, 191 176 166 158 150	0. 178 . 172 . 168 . 168 . 166	0, 184 . 184 . 170 . 191 . 201	0. 016 , 085 , 180 , 178 , 205	-0, 194 -, 058 - 029 - 115 - 178	-0, 824 187 036 . 065 . 187	-0.881 209 094 .029 .108	-0. 547 817 187 050 . 048	-0.540 828 187 050
31	74, 92 64, 94 54, 48 49, 98 44, 90	52 84 -1. 24 -1. 44 -1. 64		467 525 576 597 626	-, 144 , 223 , 205 , 410 , 388	.012 ,047 ,120 ,158 ,199	.048 010 071 101 186	. 067 . 024 —. 028 —. 068 —. 079	. 089 , 055 , 014 , 004 , 024	. 105 . 088 . 053 . 034 . 028	. 140 . 126 . 106 . 093 . 098	. 165 . 158 . 148 . 140 . 142	, 219 , 231 , 289 , 248 , 256	. 249 , 280 , 306 , 320 , 341	. 245 . 802 . 244 . 874 . 403	. 230 , 302 , 353 , 388 , 417	. 216 . 295 . 360 . 398 . 482	. 165 . 259 . 331 . 381 . 410	, 165 , 266 , 353 , 396 , 432
34	39, 98 34, 90 29, 96 24, 90 19, 98	, 86 2, 10 2, 80 2, 54 2, 76		640 676 691 727 755	-, 460 -, 496 -, 590 -, 669 -, 791	, 247 , 306 , 879 , 491 , 687	-, 174 -, 228 -, 284 -, 377 -, 497	110 150 199 274 , 871	, 047 , 076 , 112 , 170 , 247	. 014 006 030 075 186	. 085 . 073 . 053 . 018 —, 020	, 140 , 134 , 128 , 108 , 091	, 266 , 276 , 284 , 290 , 800	, 863 , 885 , 410 , 484 , 469	. 489 . 468 . 504 . 547 . 597	. 453 . 489 . 525 . 566 . 620	.468 .511 .547 .604 .655	. 458 . 496 . 532 . 590 . 640	. 478 . 526 . 568 . 619 . 669
7	14, 94 9, 96 7, 38 4, 94 2, 92	-2, 90 -2, 86 -2, 72 -2, 46 -2, 06		-,784 -,892 -,943 -,971 -1,007	-1,007 -1,881 -1,676 -2,151 -2,921	-, 848 -1, 189 -1, 450 -1, 842 -2, 785	-, 671 -, 987 -1, 180 -1, 508 -2, 079	-, 507 -, 712 -, 882 -1, 191 -1, 456	, 349 , 525 , 643 , 789 , 941	, 217 , 312 , 369 , 486 , 478	-, 061 -, 110 -, 128 -, 184 -, 081	, 075 , 069 , 083 , 180 , 249	. 327 . 385 . 454 . 556 . 780	, 528 , 621 , 708 , 826 , 968	. 662 . 777 . 863 . 957 1, 007	. 698 . 820 . 809 . 978 1, 000	. 727 . 849 . 928 1. 014 1. 022	.712 .820 .906 .964 1,000	,741 ,834 ,809 ,971 1,007
39	1,66 .92 .36 0	-1.60 -1.20 70 0		-, 978 -1, 086 -1, 007 -1, 022 -, 187	-4,072 -4,028 -5,360 -8,906 -1,655	-8, 881 -3, 761 -4, 018 -2, 863 -, 497	-2, 406 -2, 696 -2, 651 -1, 181 .223	-1, 693 -1, 783 -1, 547 -, 281 -, 688	-1,024 ,955 ,584 -400 -,947	, 428 , 248 , 176 , 830 , 984	. 049 . 288 . 660 . 939 . 844	. 486 . 667 . 983 . 987 . 458	, 901 1, 006 , 905 , 178 , 974	1,008 ,870 ,185 1,488 8,007	. 878 . 432 	. 806 . 266 -1, 259 -8, 799 -5, 820	. 820 . 288 -1, 201 -8, 604 -5, 468	. 856 410 019 2, 691 3, 676	. 985 . 727 . 144 , 583 , 640
19	. 44 . 94 1, 70 2, 94 4, 90	1, 56 2, 16 2, 78 8, 64 4, 68		. 748 . 957 1. 014 . 971 . 835	.817 .806 .996 .996 .871	. 769 . 976 . 994 . 884 . 694	. 985 1, 000 . 923 . 744 . 528	1,004 .988 .781 .562 .828	. 988 . 747 . 546 . 810 . 083	. 686 . 424 . 207 , 014 , 217	. 812 . 028 , 176 , 857 , 817	, 281 , 487 , 645 , 765 , 862	-1,765 -1,808 -1,769 -1,669 -1,592	-8, 722 -3, 367 -3, 065 -2, 718 -2, 863	-5, 403 -4, 820 -4, 248 -8, 338 -2, 892	-5, 755 -5, 151 -4, 360 -8, 845 -2, 850	-5.802 -4.763 -3,849 -2.985 -2,888	-3. 259 -3. 259 -2. 554 -1. 410 -1. 278	-, 568 -, 576 -, 568 -, 561 -, 561
44	7, 50 9, 96 12, 58 14, 92 17, 44	5. 74 6. 56 7. 84 7. 88 8, 40		. 688 . 554 . 482 . 845 . 259	. 705 . 568 . 446 . 360 . 266	.407 .358 .225 .140 .061	. 825 . 185 . 061 , 016 , 085	. 138 . 006 , 108 , 174 , 235	087 201 300 355 406	, 358 , 444 , 528 , 560 , 594	, 611 , 678 , 780 , 748 , 769	-, 901 -, 920 -, 959 -, 957 -, 957	-1. 495 -1. 488 -1. 898 -1. 847 -1. 802	-2.065 -1.909 -1.805 -1.706 -1.628	-2, 475 -2, 280 -2, 048 -1, 892 -1, 763	-2. 874 -2, 079 -1. 849 -1. 047 -1. 489	-1,892 -1,582 -1,281 -1,065 -,985	-1, 029 -, 904 -, 892 -, 870 -, 849	-, 554 -, 554 -, 551 -, 561 -, 561
17	19, 96 22, 44 24, 92 27, 44 29, 88	8, 80 9, 16 9, 52 9, 62 9, 76		. 187 . 128 . 072 . 022 —. 007	. 201 . 129 . 086 . 036 . 000	006 063 108 146 172	-, 146 -, 197 -, 231 -, 266 -, 284	, 285 , 329 , 389 , 888 , 894	, 444 , 479 , 497 , 518 , 517	, 623 , 645 , 658 , 657 , 058	-, 788 -, 798 -, 791 -, 785 -, 771	, 955 , 951 , 987 , 921 , 897	~1, 264 -1, 285 -1, 189 -1, 146 -1, 093	-1, 548 -1, 498 -1, 414 -1, 347 -1, 274	-1, 640 -1, 547 -1, 480 -1, 324 -1, 216	-1.817 -1.187 -1.029 914 701	, 784 , 719 , 640 , 612 , 568	842 827 827 820 827	-, 561 -, 561 -, 561 -, 568 -, 568
49	84, 98 89, 90 44, 80 49, 92 54, 92	9, 90 9, 84 9, 64 9, 22 8, 76		-, 079 -, 122 -, 165 -, 172 -, 194	-, 058 -, 086 -, 122 -, 115 -, 120	, 211 , 215 , 241 , 227 , 213	-, 310 -, 312 -, 320 -, 204 -, 270	, 408 , 398 , 394 , 357 , 325	515 491 477 428 385	688 594 566 507 450	-, 782 -, 680 -, 641 -, 566 -, 498	-,842 -,771 -,712 -,619 -,542	-1,002 -,892 -,819 -,708 -,617	1, 140 , 998 , 890 , 758 , 639	-1, 029 -, 827 -, 676 -, 518 -, 489	662 568 582 504 511	554 582 582 525 532	818 813 806 777 791	, 576 , 583 , 583 , 583 , 590
22	50, 94 64, 90 69, 86 74, 90 79, 92	8, 16 7, 54 6, 76 5, 88 4, 92		-, 209 , 287 , 252 , 250 , 280	137 144 137 129 122	-, 211 -, 201 -, 178 -, 150 -, 122	258 241 218 174 140	-, 804 -, 280 -, 248 -, 199 -, 158	-, 359 -, 825 -, 278 -, 227 -, 178	412 867 814 260 208	-, 448 -, 400 -, 841 -, 278 -, 215	-, 495 -, 488 -, 871 -, 298 -, 229	-, 548 -, 471 -, 385 -, 298 -, 213	-, 542 -, 444 -, 389 -, 241 -, 156	367 345 817 902 288	, 489 , 496 , 482 , 475 , 468	-, 525 -, 532 -, 525 -, 518 -, 511	-, 748 , 770 , 755 , 785 , 712	, 583 , 590 , 590 , 590 , 590
25	84, 88 89, 88 94, 90 98, 00 100, 00	3, 88 2, 74 1, 48 , 68		280 , 287 , 295 , 824	-, 108 -, 079 -, 029 -, 007	, 088 , 026 -, 043 -, 105	, 098 , 080 -, 049 -, 118	, 105 , 085 -, 088 -, 126	, 120 , 041 -, 051 -, 128	-, 138 -, 051 , 047 , 124	, 142 , 051 -, 055 -, 180	-, 150 -, 053 , 055 , 128	-, 120 -, 020 . 067 . 114	087 039 012 . 004	-, 273 -, 260 -, 252 -, 230	-, 453 -, 482 -, 896 -, 860	, 504 , 482 , 489 , 410	-, 691 -, 647 -, 612 -, 588	—, 576 —, 568 —, 554 —, 547

Test, variable-density tunnel 1099-1; manometer liquid, tetrabromoethane,
 Test, variable-density tunnel 1097-5; manometer liquid, alcohol.

TABLE If .- EXPERIMENTAL DATA

[N. A. C. A. 4412 airfoil; effective Reynolds Number, 3,400,000; test numbers and manameter liquids given in footnotes]

Orifice	28					:		Values of	pressure	coefficient	$p = \frac{p-p}{q}$	o, for dif	ferent ang	cles of atta	ack			-	
Designation	Station (percent c from L. E. of chord)	Ordinate (percent c above chord)	4—20°	16°	a−12°	•—8°	4—6°	a—4°	=2°	a()°	•20	a¥o ,,	-8°	¢12°	=16°	18°	•20°	e24°	-30°
28	100.00 97.92 94.86 89.90 84.94	0 - 16 - 16 - 22 - 28	-0.378 406 432 468 493	-0. 170 177 209 249 292	0, 178 .157 .128 .092 .056	0. 193 - 168 - 139 - 103 - 074	0. 196 182 167 125 . 099	0. 200 . 168 . 146 . 121 . 108	0. 200 . 183 . 160 . 142 . 128	0. 186 . 171 . 157 . 146 . 139	0. 175 . 178 . 164 . 164 . 160	0. 150 . 150 . 153 . 157 . 160	0, 110 , 132 , 156 , 178 , 196	0. 013 . 082 . 128 . 175 . 203	-0.134 .006 .085 .164 .214	-0.178 .061 .134 .220 .268	0. 388 019 . 077 . 188 . 236	-0.511 285 152 019	-0. 568 324 177 033 . 067
31 32 33 4	74. 92 64, 94 54. 48 49, 98 44. 90	- 52 - 84 -1.24 -1,44 -1.64	-, 539 , 582 , 633 , 658 , 668	385 471 586 686 694	-: 015 -: 091 -: 184 -: 238 -: 295	020 044 112 155 195	.053 001 062 094 127	.067 .024 030 055 080	.099 .064 .020 :005 :019	.121 .099 .067 .046 .042	.149 .135 .117 .106 .106	. 160 . 158 . 146 . 139 . 142	. 214 . 225 . 236 . 239 . 254	. 246 . 278 . 308 . 318 . 348	. 282 . 340 . 383 . 404 . 487	.348 .395 .443 .522	. 331 . 395 . 469 . 522	. 192 . 283 . 365 . 890 . 440	. 207 . 308 . 397 . 433 . 487
34 5 35 6 36	39. 98 84. 90 29. 96 24. 90 19. 98	-1.86 -2.10 -2.30 -2.54 -2.76	676 701 704 722 772	740 805 841 898 959	360 453 550 694 891	241 318 374 485 683	-, 163 -, 227 -, 277 -, 367 -, 498	-, 105 -, 163 -, 195 -, 274 -, 874	087 084 109 170 245	.031 012 016 058 116	.103 .089 .074 .046 .006	.142 .135 .132 .110 .089	. 268 . 272 . 286 . 290 . 300	. 368 . 382 . 408 . 436 . 469	. 469 . 498 . 534 . 578 . 627	. 554 . 586 . 618 . 660 . 714	. 570 . 602 . 650 . 683 . 745	. 483 . 528 . 569 . 620 . 677	. 584 . 580 . 680 . 677 . 742
7 37 8 8 38	14,94 9,96 7,38 4,94 2:92	-2.90 -2.86 -2.72 -2.46 -2.06	808 887 916 978 -1. 056	-1:002 -1:049 -1:063 -1:140 -1:861	-1,185 -1,662 -2,071 -2,739 -3,776	-, 851 -1, 196 -1, 469 -1, 913 -2, 552	672 948 -1. 156 -1. 490 -1. 989	-: 518 -: 725 -: 877 -1: 142 -1: 480	- 356 - 507 - 622 - 805 - 977	195 299 863 489 478	044 091 112 119 062	.067 .058 .074 .107 .221	.825 .383 .448 .552 .781	. 526 . 623 . 709 . 828 . 968	. 697 . 818 . 896 . 986 1, 025	.809 .904 .984 1.064 I.000	. 809 . 920 1,000 L,032 . 968	.756 .867 .935 1,000 .989	.817 .921 .978 .978 .978
39	1,66 .92 .36 0	-1.60 -1.20 70 0	-1,551 -1,601 -2,947 -1,978 -1,232	-2,089 -2,577 -4,077 -2,617 -1,472	-4. 985 -6. 884 -7. 407 -5. 265 -2. 685	3. 860 3. 923 4. 167 2, 383 , 572	-2. 495 -2. 821 -2. 778 -1. 232 . 164	-1.734 -1.840 -1.605 299 .666	1,070 1,020 658 -368 -946	435 267 . 157 . 842 1, 007	.067 .800 .688 1.021 .871	.401 .638 .925 .957 .501	907 L 014 . 918 . 121 — 928	1.004 .864 .150 -1.670 -3.108	.857 .854 -1, 153 -4, 034 -5, 717	.745 .061 1.819 4.755 6.930	115 -2, 089 -5, 035 -7, 158	.781 .275 -1.088 -3,456 -4,544	.709 186 -1,174 -8,151 -8,977
12 42 18 45 14 45 15	.44 .94 1.70 2.94 4,90	1.56 2.16 2.78 3.64 4.68	. 390 . 760 . 968 1. 014 . 950	. 369 . 767 . 986 I. 022 . 943	023 . 641 . 985 1, 007 . 928	756 978 1,000 896 702	. 960 1, 022 . 950 . 774 . 552	1. 011 . 948 . 792 . 580 . 347	.957 .774 .577 .343	.716 .440 .232 .010 , 180	.340 .038 148 335 478	- 170 - 478 - 604 - 715 - 798	-1.678 -1.824 -1.752 -1.652 -1.544	-3. 650 -8. 474 -8. 058 -2. 042 -2. 887	-5.728 -5.225 -4.274 -3.578 -3,065	-6, 750 -5, 920 -4, 750 -3, 890 -3, 268	-6.884 -5.911 -4.669 -3.775 -8.045	-4. 206 -3. 467 -2. 545 -1. 784 -1. 217	-8. 824 -2. 833 -1. 598 -1. 138 878
16	14.92 17.44	5.74 6.56 7.34 7.88 8.40	. 881 . 718 . 602 . 512 . 426	.806 .684 .566 .476 .390	. 778 . 645 . 519 . 426 . 340	.512 .868 .239 .158 .074	. 354 . 214 . 092 . 017 —, 058	153 024 084 155 216	055 166 263 317 871	328 410 489 525 561	597 640 686 704 722		-1.454 -1.897 -1.350 -1.311 -1.275	-2. 075 -1. 931 -1. 809 -1. 716 -1. 634	-2.613 -2.858 -2.154 -1.996 -1.863	-2.725 -2.438 -2.200 -2.024 -1.855	-2.471 -2.187 -1.884 -1.648 -1.452	,920 ,819 ,806 ,780 ,780	859 808 826 765 769
17 47 18 48 19 19 19 19 19 19 19 19 19 19 19 19 19	29, 88	8, 80 9, 16 9, 52 9, 62 9, 78	.851 .282 .218 .164 .117	.818 .247 .193 .142 .103	. 264 . 196 . 142 . 096 . 004	051 051 091 127 152	116 170 202 284 252	270 313 338 360 371	406 442 453 471 471	586 618 615 618 611	, 788 , 758 , 740 , 737 , 719	902 912 884 873 841	1,285 1,221 1,164 1,128 1,074	1, 555 1, 504 1, 418 1, 850 1, 275	1,741 1,648 1,526 1,429 1,325	-1.722 -1.611 -1.500 -1.372 -1.261	-1.293 -1.166 -1.038 911 847	, 758 , 747 , 740 , 783 , 715	729 729 704 704 683
49	34, 98 39, 90 44, 80 49, 92 54, 92	9.90 9.84 9.64 9.22 8.76	. 085 015 073 098 180	.028 012 062 076 094	.003 033 066 066 069	, 198 , 202 , 220 , 202 , 191	, 281 , 281 , 292 , 263 , 245	385 371 371 328 302	475 446 439 389 353	507 554 532 468 417	686 688 597 521 464	794 726 676 886 514	984 877 801 686 597	-1, 146 -1, 006 -, 895 -, 755 -, 636	1, 185 948 787 615 485	-1,038 846 687 500 496	704 656 608 592 576	704 686 683 668 676	676 661 661 658 661
22 52 23 24 53	59. 94 64. 90 69. 86 74. 90 79. 92	8, 16 7, 54 6, 76 5, 88 4, 92	170 206 227 249 277	127 148 156 159 178	, 087 , 087 , 080 , 055	191 184 163 130 109	, 241 , 224 , 196 , 189 , 180	292 267 231 188 148	835 299 256 206 159	396 351 299 238 184	-, 420 -, 374 -, 313 -, 249 -, 191	471 414 346 274 206	525 446 868 274 191	, 543 , 446 , 342 , 238 , 155	, 396 , 328 , 281 , 249 , 231	432 401 337 305 273	, 545 , 529 , 496 , 464	672 679 668 661 681	661 665 661 654 651
25 54 26 27 28	84.88 89.88 94.90 95.00 100.00	8.88 2.74 1.48 .68 0	303 317 385 396	180 177 177 195	088 .010 .060 .108	009 015 .056 .117	, 064 , 023 -, 060 -, 124	- 098 - 026 - 060 - 128	- 102 - 026 - 071 - 135	116 033 - 067 - 182	-,116 -,026 .084 .135	- 123 - 030 - 064 - 121	098 008 - 067 - 096	087 041 012 . 003	206 191 178 163	273 258 242 226	464 449 401 858	625 567 550 529	636 622 586 572

Test, variable-density tunnsl 1999-2; manameter liquid, tetrabromoethaus.
 Test, variable-density tunnsl 1996-1; manameter liquid, mercury.

التوال والمتعاد والمتعاد المتعاد المتع

TABLE Ig.—EXPERIMENTAL DATA

[N. A. C. A. 4412 airfoil; effective Reynolds Number, 6,300,000; test numbers and manometer liquids given in footnotes]

Orifice	s						Values	of pressur	e coefficie	nt, <i>P</i> = -	$\frac{-p_{\infty}}{q}$, for q	lifferent a	ngles of a	ttack					
Designation	Station (percent c from L. B. of chord)	Ordinate (percent s above chord)	20°	•16°	«—12°	48°	▶ ~6°	1-4°	1—2°	» 0°	1 2°	b 4°	- 8°	ŀ 12°	e 16°	# 18°	4 20°	4 34°	# 80°
28	100, 00 97, 92 94, 86 80, 90 84, 94	0 , 15 , 16 , 22 , 28		-0. 106 185 286 272 838	0, 207 . 155 . 129 . 059 . 042	0.284 ,146 ,112 ,077 ,042	0, 208 , 177 , 145 , 118 , 078	0, 208 177 150 128 . 092	0, 205 . 186 . 167 . 148 . 118	0. 196 . 181 . 108 . 156 . 129	0, 186 . 177 . 171 . 168 . 143	0. 167 . 167 . 165 . 169 . 154	0. 181 . 162 . 179 . 200 . 194	0.068 .128 .162 .204 .209	-0,011 ,085 ,155 ,216 ,251	-0. 124 . 016 . 103 . 181 . 225	-0. 194 045 . 051 . 146 . 208	-0. 588 806 167 028 . 042	-0.620 -,815 -,167 -,028 ,059
81	74, 92 64, 94 54, 48 49, 98 44, 90	-, 52 -, 84 -1, 24 -1, 44 -1, 64		-, 411 -, 506 -, 620 -, 628 -, 725	019 115 202 254 306	011 068 141 176 228	-, 044 , 006 , 071 , 105 , 184	. 068 027 025 056 076	. 104 . 072 . 080 . 008 008	. 126 . 122 . 072 . 048 . 046	, 150 , 187 , 114 , 100 , 100	, 169 , 164 , 152 , 150 , 152	. 230 , 244 . 251 . 258 . 271	. 268 . 297 . 322 . 833 . 341	.312 .356 .390 .416 .452	. 295 . 855 . 408 . 425 . 468	. 294 . 373 . 425 . 451 . 504	. 172 , 268 . 355 . 416 , 425	. 198 , 803 , 899 , 452 , 468
34	89, 98 84, 90 29, 96 24, 90 19, 98	-1, 86 -2, 10 -2, 80 -2, 54 -2, 76		-, 776 -, 829 -, 890 -, 984 -, 985	—, 359 —, 455 —, 559 —, 690 —, 899	272 333 408 515 664	177 225 282 877 490	118 149 194 278 872	085 064 096 155 231	. 027 . 010 014 057 113	. 087 . 078 . 066 . 087 . 002	, 142 , 142 , 138 , 124 , 102	. 276 . 289 . 804 . 311 . 320	. 275 , 890 . 426 , 452 , 484	, 495 , 512 , 547 , 599 , 052	. 521 . 588 . 582 . 625 . 686	. 580 . 504 . 617 . 669 . 721	,477 ,521 ,564 ,617 ,669	.512 .564 .608 .660 .721
7	14. 94 9. 96 7. 88 4. 94 2. 92	-2.90 -2.85 -2.72 -2.46 -2.06		-1.055 -1.117 -1.256 -1.879 -1.985	-1, 186 -1, 700 -2, 110 -2, 790 -8, 825	881 -1, 221 -1, 482 -1, 951 -2, 589	676 975 -1, 159 -1, 508 -1, 992	-, 811 -, 722 -, 869 -1, 122 -1, 466	-, 834 -, 482 -, 585 -, 765 -, 935	, 184 , 282 , 347 , 432 , 475	-, 048 -, 118 -, 126 -, 148 -, 006	,077 ,059 ,081 ,116 ,284	. 848 . 894 . 467 . 569 . 745	, 537 , 630 , 722 , 838 , 973	,718 ,826 ,918 ,991 1,000	. 756 . 852 . 980 . 991 . 922	.800 .896 .965 1,000 .852	. 789 . 848 . 918 . 980 . 861	,782 ,869 ,930 ,955 ,904
80	1.66 .92 .86 0	-1.60 -1.20 70 0		-8.000 -4.520 -5.600 -4.410 -2.810	-5,070 -6,510 -7,400 -5,460 -2,660	-8, 400 -8, 965 -4, 210 -2, 485 -, 608	-2, 493 -2, 825 -2, 770 -1, 286 , 164	-1,781 -1,840 -1,599 -,341 ,607	1, 029 , 966 , 608 -, 892 -, 958	, 480 , 259 , 154 , 830 1, 010	, 087 , 264 , 658 1, 004 , 868	, 418 , 649 , 985 , 971 , 109	.916 1,015 ,918 .185 ,989	1, 008 . 665 . 120 -1, 530 -8, 278	,800 ,225 1,379 4,035 6,257	-, 582 , 202 2, 222 5, 880 7, 755	890 611 8. 016 0. 530 9, 080	, 521 , 236 2, 100 4, 855 6, 680	, 684 , 050 1, 842 8, 225 4, 863
12	. 44 . 94 1, 70 2, 94 4, 90	1, 58 2, 16 2, 78 3, 64 4, 68		086 . 582 . 896 1, 000 . 956	071 . 617 . 918 1, 000 . 918	. 780 . 922 . 965 . 887 . 695	, 949 1, 996 . 936 . 758 . 589	1, 008 , 948 , 794 , 573 , 841	.950 .771 .567 .327 .101	, 726 , 459 , 345 , 017 , 189	, 862 .072 , 128 , 819 , 486	-, 189 -, 436 -, 593 -, 711 -, 880	-1,700 -1,798 -1,744 -1,680 -1,544	8, 762 3, 423 3, 072 2, 658 2, 860	-6, 261 -5, 420 -4, 590 -8, 818 -8, 250	-7, 475 -6, 255 -5, 270 -4, 840 -8, 642	-8, 480 -6, 820 -5, 725 -4, 655 -8, 820	-5,890 -4,770 -3,790 -2,850 -2,080	-8,780 -2,482 -1,671 -1,001 -,760
44	7, 50 9, 96 12, 58 14, 92 17, 44	5, 74 0, 56 7, 84 7, 88 8, 40		.826 .721 .608 .529 .448	.705 .026 .495 .416 .812	. 486 . 847 . 216 . 188 . 051	.844 .204 .084 .005 061	. 156 , 028 , 066 , 155 , 208	, 068 , 181 , 278 , 326 , 368	-, 816 -, 406 -, 480 -, 515 -, 543	, 559 , 616 , 668 , 690 , 710	-, 824 -, 874 -, 905 -, 896 -, 902	-1.424 -1.891 -1.869 -1.811 -1.272	-2,070 -1,983 -1,860 -1,728 -1,644	-2,768 -2,492 -2,284 -2,128 -1,989	-8, 050 -2, 720 -2, 476 -2, 285 -2, 129	-8, 148 -2, 763 -2, 400 -2, 240 -2, 050	-1.585 -1.264 -1.125 -1.064 985	-, 723 -, 705 -, 705 -, 706 -, 699
17	19, 96 22, 44 24, 92 27, 44 29, 88	8, 80 0, 16 0, 52 9, 62 9, 76		.878 .813 .251 .207 .164	. 234 . 164 . 112 . 077 . 051	010 072 , 106 182 , 158	-, 120 -, 181 -, 206 -, 282 -, 250	-, 261 -, 814 -, 824 -, 358 -, 300	, 410 , 460 , 463 , 475 , 475	-, 574 -, 612 -, 606 -, 610 -, 599	-, 726 -, 759 -, 786 -, 784 -, 718	-, 902 -, 919 -, 886 -, 871 -, 840	-1, 287 -1, 280 -1, 170 -1, 128 -1, 075	-1, 571 -1, 528 -1, 441 -1, 809 -1, 298	-1,874 -1,770 -1,665 -1,560 -1,466	-1, 989 -1, 875 -1, 752 -1, 640 -1, 526	-1,875 -1,752 -1,570 -1,422 -1,282	-, 925 , 908 , 865 , 840 , 829	-, 689 -, 680 -, 680 -, 688 -, 680
49	84, 98 89, 90 44, 80 49, 92 54, 92	9, 90 9, 84 9, 64 9, 22 8, 76		. 108 . 049 002 011 028	, 002 , 045 , 088 , 087	-, 176 -, 211 -, 219 -, 202	-, 280 -, 280 -, 295 -, 268 -, 244	-, 377 -, 866 -, 368 -, 828 -, 299	-, 476 -, 452 -, 442 -, 301 -, 850	, 587 , 546 , 526 , 401 , 414	, 681 , 627 , 503 , 515 , 458	, 794 , 728 , 677 , 585 , 519	-, 988 -, 882 -, 806 -, 694 -, 602	-1, 164 -1, 027 -, 920 -, 779 -, 666	-1, 281 -1, 125 -, 969 -, 811 -, 672	-1, 809 -1, 126 -, 951 -, 777 -, 629	-1, 021 820 673 585 515	-, 795 , 777 , 760 , 750 , 750	-, 671 -, 688 -, 688 -, 688 -, 688
22	59, 94 64, 90 69, 86 74, 90 79, 92	8, 16 7, 54 0, 76 5, 88 4, 92		068 080 088 097 097	124 115 106 080 080	-, 211 -, 185 -, 168 -, 115 -, 098	, 244 , 219 , 190 , 185 , 122	-, 294 , 261 , 223 , 181 , 141	-, 885 -, 296 -, 250 -, 200 -, 152	, 891 , 889 , 288 , 228 , 174	, 425 , 868 , 807 , 245 , 181	-, 471 -, 410 -, 840 -, 267 -, 198	-, 586 -, 458 -, 872 -, 282 -, 198	-, 582 -, 480 -, 877 -, 272 -, 179	-, 568 , 437 , 832 , 228 , 158	, 524 , 411 , 388 , 272 , 246	, 472 , 429 , 876 , 859 , 888	750 784 707 707 690	, 688 , 686 , 686 , 688 , 680
25	84, 88 89, 88 94, 90 98, 00 100, 00	8, 88 2, 74 1, 48 , 08 0		-, 106 -, 097 -, 106 -, 132	, 086 . 007 . 077 . 112	, 054 , 002 . 077 . 155	, 076 , 012 , 068 , 185	-, 088 -, 015 , 072 , 141	094 016 . 078 . 148	-, 106 , 021 . 076 . 146	107 016 . 084 . 148	-, 116 -, 022 . 080 . 187	, 105 , 010 -, 076 -, 116	, 090 , 017 -, 080 -, 085	106 071 086 028	202 176 159 150	306 289 254 219	664 629 578 542	-, 671 -, 653 -, 628 -, 610

^{*} Test, variable-density tunnel 1093-2; manometer liquid, mercury.

Test, variable-density tunnel 1099-3; manometer liquid, tetrabromoethane.

REPORT NO. 618-NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TABLE Ih.—EXPERIMENTAL DATA

[N. A. C. A. 4412 airfoll; effective Reynolds Number, 8,200,000; test numbers and manometer liquids given in footnotes]

	Orifi	lces						8,200,000; Values of	pressure c						ack	•			-,
Designation	Station (percent c from L. E. of chord)	Ordinate (percent c above chord)	5—20°	€—16°	€—12°	8°	δ—6°	6 4°	ა —2°	აცი	\$3°	14°	18°	el2º	*16°	•18°	-20°	≈24°	430°
2829	100.00 97.92 94.86 89.90 84.94	0 16 16 22 28	-0, 421 -, 454 -, 466 -, 505 -, 588	-0.199 251 291 330 882	0.114 .159 .107 .074 .035	0.198 .224 .185 .153 .107	0.217 .181 .152 .122 .072	0. 204 . 178 . 151 . 128 . 082	0, 207 .180 .158 .140 .098	0. 200 . 188 . 166 . 156 . 118	0. 181 . 164 . 184 . 152 . 118	0.158 .157 .158 .160 .158	0. 184 . 167 . 180 . 208 . 211	0. 101 .140 .166 .190 .212	0.010 .121 .179 .231 .257	-0.062 .094 .166 .287 .270	-0.173 .049 .127 .224 .288	-0.466 291 160 030	-0.518 304 167 086
31	74. 92 64. 94 54. 48 49. 98 44. 90	52 84 1. 24 1. 44 1. 64	558 564 571 571 571	454 589 643 695 721	043 101 199 252 304	.055 .002 082 115 160	.049 .000 063 099 128	.068 .028 024 053 076	.095 .062 .021 005 017	. 126 . 104 . 072 . 050 . 048	.136 .120 .100 .091 .088	.158 .154 .157 .134 .140	. 281 . 244 . 250 . 252 . 268	. 251 . 283 . 309 . 316 . 342	.822 .374 .414 .426 .459	.848 .407 .452 .472 .508	. 374 . 453 . 492 . 581 . 570	. 179 . 270 . 348 . 381 . 413	. 179 . 289 . 368 . 407 . 446
34 5 35 6 36 37 37 8 38 9 10 10 41 11 41 12 42 13 14 14 15 16 16 17	39, 98 84, 90 29, 96 24, 90 19, 98	-1.86 -2.10 -2.30 -2.54 -2.76	558 551 545 545 551	754 778 786 806 819	368 447 545 688 896	206 258 330 427 591	169 217 274 367 490	105 146 190 266 865	041 073 105 165 244	. 031 010 011 054 111	.071 .066 .048 .025 —.011	.136 .133 .116 .115 .093	. 265 . 290 . 293 . 318 . 321	.362 .387 .414 .438 .472	. 485 . 516 . 551 . 589 . 627	. 544 . 576 . 609 . 661 . 687	.609 .642 .687 .726 .752	. 466 . 504 . 557 . 609 . 642	. 498 . 544 . 596 . 648 . 700
7	14. 94 9. 96 7. 38 4. 94 2. 92	-2.90 -2.86 -2.72 -2.46 -2.06	558 561 577 571 702	825 832 916 807 -1. 242	-1.178 -1.660 -2.070 -2.807 -3.745	799 -1. 143 -1. 407 -1. 861 -2. 468	-, 663 -, 946 -1, 158 -1, 490 -1, 981	-, 502 , 716 -, 867 -1, 106 -1, 380	-, 348 -, 501 -, 596 -, 777 -, 932	180 279 333 428 467	053 111 131 150 098	.076 .059 .071 .109 .231	.845 .402 .462 .568 .748	. 518 . 616 . 718 . 818 . 948	.713 .818 .896 .980	. 785 . 883 . 961 1. 018 . 948	.857 .948 1.019 1.046 .909	. 733 . 824 . 902 . 948 . 883	.778 .876 .941 .980
39 10 40 11 41	1.66 .92 .36	-1, 60 -1, 20 -, 70 0	-1. 058 -2. 082 -8. 204 -2. 623 -1. 178	-1.947 -3.212 -4.300 -3.433 -1.549	-4, 940 -6, 177 -7, 337 -5, 480 -2, 625	-3. 198 -3. 770 -4. 052 -2. 397 538	-2.478 -2.765 -2.732 -1.232 .184	-1. 709 -1. 812 -1. 559 296 . 681	1. 059 995 631 . 856 . 945	436 -, 266 . 156 . 834 1. 010	. 028 . 254 . 639 . 989 . 854	. 409 . 643 . 924 . 952 . 473	. 916 1. 018 . 905 . 157 -1. 000	. 974 . 831 . 094 1. 555 3. 250	.791 .264 1.379 3.648 6.230	. 596 173 2. 285 5. 060 7. 775	- 433 - 518 - 8.012 - 6.078 - 8.941	. 602 . 003 -1, 671 -3, 695 -5, 660	.713 .244 1.059 2.382 3.730
12 42 13 48	. 44 . 94 1. 70 2. 94 4. 90	1.50 2.16 2.78 3.64 4.68	. 323 . 739 . 928 . 987 . 922	.231 .720 .935 1.000 .985	043 . 596 . 883 . 974 . 896	. 765 . 974 1. 000 . 896 . 718	. 955 1. 009 . 939 . 761 . 542	. 994 . 939 . 782 . 559 . 838	. 948 . 770 . 569 . 382	.720 .468 .246 .018 - —.179	. 836 . 055 —. 148 —. 836 —. 485	202 456 611 728 813	-1.740 -1.798 -1.748 -1.647 -1.547	-3.738 -3.399 -3.058 -2.637 -2.343	-5. 961 -5. 210 -4. 478 -3. 765 -3. 190	-7. 125 -6. 110 -5. 190 -4. 285 -8. 570	-7.954 -6.681 -5.620 -4.562 -8.731	-4.698 -3.881 -3.010 -2.200 -1.529	-2.552 -2.006 -1.249 786 695
45	7.50 9.96 12.58 14.92 17.44	5. 74 6. 56 7. 34 7. 88 8. 40	. 804 . 687 . 583 . 498 . 414	.798 .687 .576 .485 .407	. 752 . 622 . 498 . 407 . 329	. 498 . 374 . 263 . 178 . 100	. 344 . 208 . 089 . 014 052	. 189 . 017 091 152 210	066 168 271 309 360	, 312 , 388 , 468 , 500 , 537	568 623 676 700 721	881 872 899 912 910	-1.482 -1.891 -1.850 -1.306 -1.272	-2.057 -1.912 -1.802 -1.769 -1.620	-2.709 -2.440 -2.240 -2.149 -1.952	-2.981 -2.662 -2.415 -2.285 -2.062	-3.060 -2.681 -2.382 -2.180 -1.984	-1.235 -1.059 -1.007 955 910	644 630 611 604 604
47 18 18 19	22.44 24.92 27.44 20.88	8. 80 9. 16 9. 52 9. 62 9. 76	. 835 . 263 . 212 . 166 . 114	. 385 . 257 . 211 . 165 . 183	. 257 . 172 . 140 . 100 . 068	.086 024 068 096 114	111 176 196 228 241	262 322 832 855 864	402 452 454 471 409	568 609 599 606 594	, 740 , 769 , 746 , 742 , 722	914 930 895 881 851	-1.239 -1.224 -1.163 -1.122 -1.071	-1.548 -1.502 -1.418 -1.347 -1.280	-1.841 -1.758 -1.640 -1.535 -1.438	-1.927 -1.822 -1.692 -1.573 -1.463	-1.815 -1.685 -1.592 -1.391 -1.254	870 851 825 812 786	-, 598 -, 591 -, 591 -, 591 -, 591
49	34, 98 39, 90 44, 80 49, 92 54, 92	9. 90 9. 84 9. 64 9. 22 8. 76	.086 017 095 121 147	. 085 . 009 044 086 089	009 080 069 075	, 154 , 178 , 194 , 173 , 161	275 272 291 256 238	381 370 371 329 303	478 447 429 389 851	596 542 519 455 406	698 636 609 525 471	804 782 691 595 527	962 880 809 690 601	-1.144 -1.007 902 759 649	-1.269 -1.099 961 786 649	-1.255 -1.059 910 734 584	-1,005 -,798 -,655 -,538 -,473	760 727 720 715 700	591 584 591 591 591
52 52 23 24 53		8. 16 7. 54 6. 76 5. 88 4. 92	, 199 , 225 , 252 , 277 , 297	101 108 121 128 147	095 082 082 056 069	161 128 115 082 076	244 214 181 148 115	298 264 225 183 144	342 296 250 200 155	391 334 282 222 169	438 378 819 262 191	487 421 351 279 210	-, 541 -, 456 -, 371 -, 285 -, 199	576 460 375 264 190	551 414 316 212 147	460 343 264 212 178	414 369 387 810 291	695 688 682 655 642	501 501 584 584 578
25. 64. 26. 27. 28.	84.88 89.88 94.90 98.00 100.00	3.88 2.74 1.48 .68	830 856 888 454	154 161 174 200	024 . 022 . 075 . 127	024 .028 .100 .165	066 006 . 078 . 141	091 019 .009 .189	094 016 .078 .147	101 017 . 082 . 150	116 026 . 076 . 148	118 082 .070 .127	- 106 - 009 - 079 - 120	082 004 .062 .088	082 043 016 004	140 114 095 075	271 245 226 200	604 565 519 479	565 582 519 506

[«] Test, variable-density tunnel 1998; manometer liquid, mercury.

» Test, variable-density tunnel 1999-4; manometer liquid, tetrabromoethane.

TABLE IIS.—INTEGRATED AND DERIVED CHARACTERISTICS

[N. A. O. A. 4412 airfoil; effective Reynolds Number, 100,000]

α (deg.)	c_	c.	C _{=e/t}	c _i	α; (deg.)	a (deg.)
-20 -16 -12 -8 -4 -2 0 2 1 8 12 16 18 20 24 30	-0.479425491504370191512722 1.061 1.229 1.011916874948	0. 0916 .0864 .0671 .0238 .0050 .0118 .0227 .0240 .0093 .0166 .0954 .1855 .2060 .0600 .0093 .0070 .0062	0. 023 . 016 . 025 . 028 . 061 . 067 . 080 . 114 . 108 . 108 . 063 . 063 . 058 . 114 . 127 . 127 . 143	-0. 418 354 466 496 367 191 226 317 221 1. 064 1. 238 1. 238 1. 238 980 884 795 818	-0.7 78 86 3 0 .58 1.1 1.20 1.64 1.3	-19.3 -15.4 -11.3 -7.2 -5.4 -3.7 -2.0 5 1.29 6.3 10.0 16.6 16.6 22.7 28.7

TABLE IIb.—INTEGRATED AND DERIVED CHARACTERISTICS

[N. A. C. A. 4412 airfoil; effective Reynolds Number, 240,000]

α (deg.)	6 .	c.	C _{ste/s}	c,	αι (deg.)	α (deg.)
-20 -16 -12 -8 -4 -2 0 24 8 12 16 18 20 24 30	-0. 428 425 464 422 236 045 161 350 522 690 999 1. 242 1. 281 1. 129 953 993	0. 0596 .0852 .0670 .0215 .0000 .0112 .0186 .0151 .0032 .0210 .0988 .1921 .2410 .1134 .0162 .0061	0. 013 . 020 . 019 . 049 085 104 104 100 093 082 082 134 137 143	-0. 371 384 440 415 234 046 350 521 680 1. 290 1. 108 1. 290 1. 108 810 809	-0.667774136811601221841133	-19.4 -15.4 -11.3 -7.6 -2.5 -2.5 -1.2 -1.6 12.9 16.0 18.6 22.7 28.7

Table IIc.—INTEGRATED AND DERIVED CHARACTERISTICS

[N. A. C. A. 4412 airfoil; effective Reynolds Number, 450,000]

α (deg.)	c _n	c.	C==/4	c,	ar (deg.)	a (deg.)
-20 -16 -12 -8 -4 -2 -4 -2 -4 -8 12 16 18 20 30	-0. 440 425 483 335 317 170 349 520 704 1. 014 1. 2243 1. 156 1. 028 948	0. 0912 0844 0655 0051 0079 0148 0113 - 0048 - 0244 - 0978 - 1922 - 2432 - 1677 - 0378 0091 0073	0.014 .023 .013 .013 .093 .099 .096 .093 .092 .080 .062 .086 086 135 139 149	-0.383 385 458 331 172 002 .171 .349 .520 .704 1.018 1.239 1.261 1.152 .975 .824 .817	-0.66 -7.53 0 .66 -7.53 11.60 21.83 11.33	-19.4 -15.4 -11.3 -7.5 -6.7 -4.0 -2.3 -2.6 1.2 2.9 6.4 10.0 16.2 18.5 22.7 28.7

Table IId.—INTEGRATED AND DERIVED CHARACTERISTICS

[N. A. C. A. 4412 airfoil; effective Reynolds Number, 900,000]

æ (deg.)	C _m	c.	C _{ma/4}	c,	αι(deg.)	α (deg.)
-20 -16 -12 -8 -6 -4 -2 0 2 18 12 16 18 20 24 30	-0. 442 487 494 190 003 . 344 . 521 . 696 L 201 L 290 L 231 L 290 L 231 L 290 S 388 . 934	0.0900 .0856 .0654 .0199 .0098 .0051 .0122 .0108 .0033 .0248 .0990 .1948 .2587 .2587 .2380 .0747 .0074	0.018 .025 .011 096 096 097 097 092 083 076 131 143 142	-0.3843964703411900081623445206961.2441.311244353906	-0.66 -7.53 0.35 11.60 22.07 11.43	-19.4 -15.4 -11.5 -17.5 -5.7 -4.0 -2.3 5 1.2 6.4 10.0 13.9 16.0 18.8 22.6 28.7

TABLE IIe.—INTEGRATED AND DERIVED CHARACTERISTICS

[N. A. C. A. 4412 airfoil; effective Reynolds Number 1,800,000]

α (deg.)	c.	c.	C===/\$	c,	α, (deg.)	a (deg.)
-20 -16 -12 -8 -6 -4 -2 0 2 4 8 12 16 18 20 24 30	-0. 582 640 368 182 009 170 . 581 1. 705 L. 277 L. 374 L. 335 L. 199 L. 198 . 950	0.0646 -0659 -0407 -0124 -0045 -0117 -0085 -0047 -0288 -1026 -2672 -2672 -2768 -1138 -0080	0.016 059 101 099 109 095 097 094 081 086 088 084 084 099 167 149	-0.542 -640 -370 -182 -000 -360 -360 -705 -1.019 -1.396 -1.396 -1.304 -1.140 -826	-0.9 -1.0 -1.5 0 s	-15.1 -11.0 -7.4 -5.7 -4.0 -2.3 -1.6 1.29 6.4 10.8 15.8 15.8 12.2 28.7

TABLE III.—INTEGRATED AND DERIVED CHARACTERISTICS

[N. A. C. A. 4412 airfoil; effective Reynolds Number, 3,400,000]

∝ (deg.)	C _R	c.	c _{me/4}	c,	ar(deg.)	α₀ (deg.)
-20 -15 -12 -8 -6 -4 -2 0 2 4 8 12 16 18 20 24 30	-0. 713 761 725 395 197 031 148 341 521 994 1. 275 1. 456 1. 547 1. 165 1. 160	0. 0411 .0058 1204 0405 0128 .0030 .0104 .0086 0040 0253 0933 2034 3171 3585 3292 1408 1015	0.028 .009 105 095 095 094 094 099 078 060 078 069 079 150 160	-0.656 730 734 397 194 031 .148 .341 .520 .997 1.290 1.488 1.581 1.495 1.121 1.048	-1.0 -1.2 -1.2 -1.3 0 .2 -1.5 11.6 2.0 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	-19.0 -14.8 -10.8 -7.4 -5.7 -4.0 -2.2 2.3 10.0 15.5 17.2 22.2 28.3

TABLE IIg.—INTEGRATED AND DERIVED CHARACTERISTICS

[N. A. C. A. 4412 airfoil; effective Reynolds Number, 6,300,000]

α (deg.)	C _M	c.	Cma/\$	c,	α₁(deg.)	α ₀ (deg.)
-20 -16 -12 -8 -4 -2 0 24 8 12 16 18 24 30	-0.869712410209036 .167 .333 .501 .674 1.002 1.550 1.605 1.605 1.300	-0.049712450417015800290118007900840256212634104020442523291019	0.026103089094093091087080087087171	-0.849722412210036157333500674 -1.006 -1.315584 -1.678 -1.681 -1.283 -1.014	-1.3 -1.17 -1.3 -1.3 -1.5 1.16 2.15 2.27 2.20 2.16	-14.7 -10.9 -7.3 -5.7 -4.0 -2.2 2.2 2.3 6.4 9.3.5 15.8 17.4 22.0 28.4

TABLE IIh.—INTEGRATED AND DERIVED CHARACTERISTICS

[N. A. C. A. 4412 airfoil; effective Reynolds Number, 8,200,000]

α (deg.)	c,	c.	C==e/4	c,	ar (deg.)	α, (deg.)
-20 -16 -12 -8 -4 -2 0 0 2 4 8 12 16 18 18 30	-0. 592 767 722 372 210 028 146 338 501 677 1. 020 1. 275 1. 548 1. 640 1. 212 1. 009	0. 0318 - 0170 - 1264 - 0445 - 0151 - 0017 - 0098 - 0034 - 0258 - 1003 - 2043 - 2043 - 3357 - 4040 - 1838 - 0776	0. 030 . 036 092 096 095 095 091 087 084 074 068 068 068 141 146	-0. 545 742 782 874 211 025 146 338 501 677 1. 024 1. 579 1. 671 1. 690 1. 182 913	-0.22 -1.26	- 19. 1 - 14. 8 - 10. 8 - 7. 7 - 4. 2 9 - 1. 2 9 - 6. 4 - 13. 8 - 15. 7 - 13. 8 - 15. 7 - 13. 8 - 15. 7 - 13. 8 - 15.