Optimization Theory

Lecture 10

Fudan University

luoluo@fudan.edu.cn

Outline

Self-Concordant Functions

2 Classical Quasi-Newton Methods

3 Limited-Memory Quasi-Newton Methods

Outline

Self-Concordant Functions

2 Classical Quasi-Newton Methods

3 Limited-Memory Quasi-Newton Methods

Damped Newton Method

The damped Newton method is based on

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \frac{1}{1 + M_f \lambda_f(\mathbf{x}_t)} (\nabla^2 f(\mathbf{x}_t))^{-1} \nabla f(\mathbf{x}_t),$$

where $M_f > 0$ and

$$\lambda_f(\mathbf{x}_t) = \sqrt{\left\langle \nabla f(\mathbf{x}_t), \left(\nabla^2 f(\mathbf{x}_t) \right)^{-1} \nabla f(\mathbf{x}_t) \right\rangle}.$$

This method has global convergence guarantee under mild assumptions.

Self-Concordant Functions

Definition

We say $f: \mathbb{R}^d \to \mathbb{R}$ is M-strongly self-concordant, if it is twice differentiable and holds

$$abla^2 f(\mathbf{x}) -
abla^2 f(\mathbf{y}) \leq M \|\mathbf{x} - \mathbf{y}\|_{\nabla^2 f(\mathbf{z})} \nabla^2 f(\mathbf{w}),$$

for any $\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{w} \in \mathbb{R}^d$ and some M > 0.

- The strong self-concordant property is affine invariant.
- ② If $f: \mathbb{R}^d \to \mathbb{R}$ is μ -strongly convex and has L_2 -Lipschitz continuous Hessian, then it is M-strongly self-concordant with

$$M = \frac{L_2}{\mu^{3/2}}.$$

1 The M-strong self-concordance leads to (M/2)-self-concordance.

Self-Concordant Functions

Definition

A function $f: \mathbb{R}^d \to \mathbb{R}$ is called self-concordant if there exists a constant $M_f \geq 0$ such that the inequality

$$|D^3 f(\mathbf{x})[\mathbf{h}, \mathbf{h}, \mathbf{h}]| \le 2M_f \|\mathbf{h}\|_{\nabla^2 f(\mathbf{x})}^3$$

holds for any $\mathbf{x}, \mathbf{h} \in \mathbb{R}^d$.

Lemma

A function $f: \mathbb{R}^d \to \mathbb{R}$ is self-concordant if and only if for any $\mathbf{x} \in \mathbb{R}^d$ and any triple of directions $\mathbf{h}_1, \mathbf{h}_2, \mathbf{h}_3 \in \mathbb{R}^d$, we have

$$|D^3 f(\mathbf{x})[\mathbf{h}_1, \mathbf{h}_2, \mathbf{h}_3]| \le 2M_f \prod_{i=1}^3 \|\mathbf{h}_i\|_{\nabla^2 f(\mathbf{x})}^3$$

Global Convergence

To the ease of presentation, we take $M=2\ (M_f=1)$. Then iteration

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \frac{1}{1 + \lambda_f(\mathbf{x}_t)} (\nabla^2 f(\mathbf{x}_t))^{-1} \nabla f(\mathbf{x}_t)$$

leads to global convergence of $\lambda_f(\mathbf{x}_t)$.

• For $\lambda_f(\mathbf{x}_t) \geq 1/4$, we have

$$f(\mathbf{x}_{t+1}) - f(\mathbf{x}_t) \le -\frac{1}{38}.$$

② For $\lambda_f(\mathbf{x}_t) \leq 1/4$, we have

$$\lambda_f(\mathbf{x}_{t+1}) \leq 2(\lambda_f(\mathbf{x}_t))^2.$$

Convergence Analysis

Let
$$\rho(z) = -\ln(1-z) - z$$
 and

$$\delta = \sqrt{(\mathbf{y} - \mathbf{x})^\top \nabla^2 f(\mathbf{x}) (\mathbf{y} - \mathbf{x})} < 1,$$

then we have

$$\rho(-\delta) \le f(\mathbf{y}) - f(\mathbf{x}) - \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle \le \rho(\delta),$$

$$(1 - \delta)^2 \nabla^2 f(\mathbf{x}) \le \nabla^2 f(\mathbf{y}) \le \frac{1}{(1 - \delta)^2} \nabla^2 f(\mathbf{x})$$

and

$$\left\|\nabla f(\mathbf{x})^{-1/2} \left(\nabla f(\mathbf{y}) - \nabla f(\mathbf{x}) - \nabla^2 f(\mathbf{x})(\mathbf{y} - \mathbf{x})\right)\right\|_2 \leq \frac{\delta^2}{1 - \delta}.$$

Outline

Self-Concordant Functions

2 Classical Quasi-Newton Methods

3 Limited-Memory Quasi-Newton Methods

Secant Condition

For quadratic function

$$Q(\mathbf{x}) = \frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x} - \mathbf{b}^{\top} \mathbf{x},$$

we have $\nabla Q(\mathbf{x}_{t+1}) - \nabla Q(\mathbf{x}_t) = \nabla^2 Q(\mathbf{x}_{t+1})(\mathbf{x}_{t+1} - \mathbf{x}_t)$.

For general $f(\mathbf{x})$ with Lipschitz continuous Hessian, we have

$$\nabla f(\mathbf{x}_{t+1}) - \nabla f(\mathbf{x}_t) = \nabla^2 f(\mathbf{x}_{t+1})(\mathbf{x}_{t+1} - \mathbf{x}_t) + o(\|\mathbf{x}_{t+1} - \mathbf{x}_t\|_2),$$

which leads to

$$\nabla f(\mathbf{x}_{t+1}) - \nabla f(\mathbf{x}_t) \approx \nabla^2 f(\mathbf{x}_{t+1})(\mathbf{x}_{t+1} - \mathbf{x}_t).$$

Classical Quasi-Newton Methods

Motivated by

$$\nabla f(\mathbf{x}_{t+1}) - \nabla f(\mathbf{x}_t) \approx \nabla^2 f(\mathbf{x}_{t+1})(\mathbf{x}_{t+1} - \mathbf{x}_t),$$

classical Quasi-Newton methods target to find \mathbf{G}_{t+1} such that

$$\nabla f(\mathbf{x}_{t+1}) - \nabla f(\mathbf{x}_t) = \mathbf{G}_{t+1}(\mathbf{x}_{t+1} - \mathbf{x}_t)$$

and update the variable as

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \mathbf{G}_t^{-1} \nabla f(\mathbf{x}_t).$$

We typically take $\mathbf{G}_0 = \delta_0 \mathbf{I}$ with some $\delta_0 > 0$.

For given \mathbf{G}_t or \mathbf{G}_t^{-1} , we hope

- $\mathbf{0}$ $\{\mathbf{x}_t\}$ converges to \mathbf{x}^* efficiently;
- **2** \mathbf{G}_{t+1} is close to \mathbf{G}_t ;
- **3** \mathbf{G}_{t+1} or \mathbf{G}_{t+1}^{-1} can be constructed/stored efficiently.

Woodbury Matrix Identity

The Woodbury matrix identity is

$$(\mathbf{A} + \mathbf{UCV})^{-1} = \mathbf{A}^{-1} - \mathbf{A}^{-1}\mathbf{U}(\mathbf{C}^{-1} + \mathbf{VA}^{-1}\mathbf{U})^{-1}\mathbf{VA}^{-1},$$

where $\mathbf{A} \in \mathbb{R}^{d \times d}$, $\mathbf{C} \in \mathbb{R}^{k \times k}$, $\mathbf{U} \in \mathbb{R}^{d \times k}$ and $\mathbf{V} \in \mathbb{R}^{k \times d}$.

For
$$\mathbf{A} = \mathbf{G}_t$$
, $\mathbf{U} = \mathbf{Z}_t$, $\mathbf{V} = \mathbf{Z}_t^{\top}$ and $\mathbf{C} = \mathbf{I}$, we let

$$\mathbf{G}_{t+1} = \mathbf{G}_t + \mathbf{Z}_t \mathbf{Z}_t^{\top},$$

then

$$\mathbf{G}_{t+1}^{-1} = \mathbf{G}_t^{-1} - \mathbf{G}_t^{-1} \mathbf{Z}_t (\mathbf{I} + \mathbf{Z}_t^{\top} \mathbf{G}_t^{-1} \mathbf{Z}_t)^{-1} \mathbf{Z}_t^{\top} \mathbf{G}_t^{-1}$$

can be computed within $\mathcal{O}(kd^2)$ flops for given \mathbf{G}_t^{-1} .

Classical SR1 Method

We consider secant condition and the symmetric rank one (SR1) update

$$\begin{cases} \mathbf{y}_t = \mathbf{G}_{t+1} \mathbf{s}_t, \\ \mathbf{G}_{t+1} = \mathbf{G}_t + \mathbf{z}_t \mathbf{z}_t^\top. \end{cases}$$

where $\mathbf{s}_t = \mathbf{x}_{t+1} - \mathbf{x}_t$ and $\mathbf{y}_t = \nabla f(\mathbf{x}_{t+1}) - \nabla f(\mathbf{x}_t)$.

It implies

$$\mathbf{G}_{t+1} = \mathbf{G}_t + rac{(\mathbf{y}_t - \mathbf{G}_t \mathbf{s}_t)(\mathbf{y}_t - \mathbf{G}_t \mathbf{s}_t)^{\top}}{(\mathbf{y}_t - \mathbf{G}_t \mathbf{s}_t)^{\top} \mathbf{s}_t}.$$

and the corresponding update to inverse of Hessian estimator is

$$\mathbf{G}_{t+1}^{-1} = \mathbf{G}_t^{-1} + \frac{(\mathbf{s}_t - \mathbf{G}_t^{-1} \mathbf{y}_t)(\mathbf{s}_t - \mathbf{G}_t^{-1} \mathbf{y}_t)^{\top}}{(\mathbf{s}_t - \mathbf{G}_t^{-1} \mathbf{y}_t)^{\top} \mathbf{y}_t}.$$

Classical DFP Method

Let \mathbf{G}_{t+1} be the solution of following matrix optimization problem

$$egin{aligned} \min & & \min_{\mathbf{G} \in \mathbb{R}^{d imes d}} \|\mathbf{G} - \mathbf{G}_t\|_{\mathbf{\bar{G}}_t^{-1}} \ & ext{s.t.} & \mathbf{G} = \mathbf{G}^{ op}, & \mathbf{G}\mathbf{s}_t = \mathbf{y}_t, \end{aligned}$$

where the weighted norm $\|\cdot\|_{\bar{\mathbf{G}}_{\cdot}}$ is defined as

$$\|\mathbf{A}\|_{\mathbf{\bar{G}}_t} = \|\mathbf{\bar{G}}_t^{-1/2}\mathbf{A}\mathbf{\bar{G}}_t^{-1/2}\|_F \quad \text{with} \quad \mathbf{\bar{G}}_t = \int_0^1 \nabla^2 f(\mathbf{x}_t + \tau(\mathbf{x}_{t+1} - \mathbf{x}_t)) \, \mathrm{d}\tau.$$

It implies DFP update

$$\mathbf{G}_{t+1} = \left(\mathbf{I} - \frac{\mathbf{y}_t \mathbf{s}_t^\top}{\mathbf{y}_t^\top \mathbf{s}_t}\right) \mathbf{G}_t \left(\mathbf{I} - \frac{\mathbf{s}_t \mathbf{y}_t^\top}{\mathbf{y}_t^\top \mathbf{s}_t}\right) + \frac{\mathbf{y}_t \mathbf{y}_t^\top}{\mathbf{y}_t^\top \mathbf{s}_t}.$$

The corresponding update to inverse of Hessian estimator is

$$\mathbf{G}_{t+1}^{-1} = \mathbf{G}_t^{-1} - \frac{\mathbf{G}_t^{-1} \mathbf{y}_t \mathbf{y}_t^{\top} \mathbf{G}_t^{-1}}{\mathbf{y}_t^{\top} \mathbf{G}_t^{-1} \mathbf{y}_t} + \frac{\mathbf{s}_t \mathbf{s}_t^{\top}}{\mathbf{y}_t^{\top} \mathbf{s}_t}.$$

Classical BFGS Method

This algorithm is named after Charles G. Broyden, Roger Fletcher, Donald Goldfarb and David F. Shanno.

Classical BFGS Method

Let \mathbf{G}_{t+1}^{-1} be the solution of the following matrix optimization problem

$$\begin{aligned} & \min_{\mathbf{H} \in \mathbb{R}^{d \times d}} \|\mathbf{H} - \mathbf{H}_t\|_{\mathbf{\bar{G}}_t} \\ & \text{s.t.} \quad \mathbf{H} = \mathbf{H}^\top, \quad \mathbf{H} \mathbf{y}_t = \mathbf{s}_t, \end{aligned}$$

where $\mathbf{H}_t = \mathbf{G}_t^{-1}$ and the weighted norm $\|\cdot\|_{\mathbf{\tilde{G}}_t}$ is defined as

$$\|\mathbf{A}\|_{\mathbf{\bar{G}}_t} = \|\mathbf{\bar{G}}_t^{1/2}\mathbf{A}\mathbf{\bar{G}}_t^{1/2}\|_F \quad \text{with} \quad \mathbf{\bar{G}}_t = \int_0^1 \nabla^2 f(\mathbf{x}_t + \tau(\mathbf{x}_{t+1} - \mathbf{x}_t)) \, \mathrm{d}\tau.$$

It implies BFGS update

$$\mathbf{G}_{t+1}^{-1} = \left(\mathbf{I} - \frac{\mathbf{s}_t \mathbf{y}_t^\top}{\mathbf{y}_t^\top \mathbf{s}_t}\right) \mathbf{G}_t^{-1} \left(\mathbf{I} - \frac{\mathbf{y}_t \mathbf{s}_t^\top}{\mathbf{y}_t^\top \mathbf{s}_t}\right) + \frac{\mathbf{s}_t \mathbf{s}_t^\top}{\mathbf{y}_t^\top \mathbf{s}_t}.$$

The corresponding update to Hessian estimator is

$$\mathbf{G}_{t+1} = \mathbf{G}_t - \frac{\mathbf{G}_t \mathbf{s}_t \mathbf{s}_t^\top \mathbf{G}_t}{\mathbf{s}_t^\top \mathbf{G}_t \mathbf{s}_t} + \frac{\mathbf{y}_t \mathbf{y}_t^\top}{\mathbf{y}_t^\top \mathbf{s}_t}.$$

Superlinear Convergence

The following theorem implies SR1/DFP/BFGS converge superlinearly.

Theorem (Dennis-Moré Condition)

If sequence $\{\mathbf x_t\}$ converges to $\mathbf x^*$ such that $\nabla f(\mathbf x^*) = \mathbf 0$ and $\nabla^2 f(\mathbf x^*) \succ \mathbf 0$ and the search direction satisfies

$$\lim_{t\to\infty} \frac{\left\|\nabla f(\mathbf{x}_t) + \nabla^2 f(\mathbf{x}_t)(\mathbf{x}_{t+1} - \mathbf{x}_t)\right\|_2}{\left\|\mathbf{x}_{t+1} - \mathbf{x}_t\right\|_2} = 0.$$

Then $\{\mathbf{x}_t\}$ converges to \mathbf{x}^* superlinearly.

For quasi-Newton iteration $\mathbf{x}_{t+1} = \mathbf{x}_t - \mathbf{G}_t^{-1} \nabla f(\mathbf{x}_t)$, the condition in above theorem can be written as

$$\lim_{t\to\infty}\frac{\left\|(\mathbf{G}_t-\nabla^2 f(\mathbf{x}_t))(\mathbf{x}_{t+1}-\mathbf{x}_t)\right\|_2}{\left\|\mathbf{x}_{t+1}-\mathbf{x}_t\right\|_2}=0,$$

which only requires that \mathbf{G}_t converges to Hessian along with the search direction.

Outline

Self-Concordant Functions

2 Classical Quasi-Newton Methods

3 Limited-Memory Quasi-Newton Methods

Quasi-Newton Methods

Classical quasi-Newton methods are too expensive for large d.

- **1** Each iteration requires $\mathcal{O}(d^2)$ complexity.
- ② The space complexity is $\mathcal{O}(d^2)$.

Limited-Memory BFGS (L-BFGS)

The BFGS update can be written as

$$\mathbf{H}_{t+1} = \mathbf{V}_t^{\top} \mathbf{H}_t \mathbf{V}_t + \rho_t \mathbf{s}_t \mathbf{s}_t^{\top},$$

where $\rho_t = (\mathbf{y}_t^{\top} \mathbf{s}_t)^{-1}$ and $\mathbf{V}_t = \mathbf{I} - \rho_t \mathbf{y}_t \mathbf{s}_t^{\top}$.

Limited-memory BFGS method keeps the *m* most recent vector pairs

$$\{\mathbf{s}_i, \mathbf{y}_i\}_{i=k-m}^{k-1}$$

and applying BFGS update m times on some initial estimator $\mathbf{H}_{k,0}$.

Limited-Memory BFGS (L-BFGS)

The update of L-BFGS can be written as

$$\begin{aligned} \mathbf{H}_{k} = & (\mathbf{V}_{k-1}^{\top} \dots \mathbf{V}_{k-m}^{\top}) \mathbf{H}_{k,0} (\mathbf{V}_{k-m} \dots \mathbf{V}_{k-1}) \\ &+ \rho_{k-m} (\mathbf{V}_{k-1}^{\top} \dots \mathbf{V}_{k-m+1}^{\top}) \mathbf{s}_{k-m} \mathbf{s}_{k-m}^{\top} (\mathbf{V}_{k-m+1} \dots \mathbf{V}_{k-1}) \\ &+ \rho_{k-m+1} (\mathbf{V}_{k-1}^{\top} \dots \mathbf{V}_{k-m+2}^{\top}) \mathbf{s}_{k-m+1} \mathbf{s}_{k-m+1}^{\top} (\mathbf{V}_{k-m+2} \dots \mathbf{V}_{k-1}) \\ &+ \dots \\ &+ \rho_{k-1} \mathbf{s}_{k-1} \mathbf{s}_{k-1}^{\top}. \end{aligned}$$

The iteration of L-BFGS is efficient for small m.

- **1** Computing $\mathbf{H}_k \nabla f(\mathbf{x}_k)$ requires $\mathcal{O}(md)$ flops for given $\nabla f(\mathbf{x}_k)$.
- ② The storage of $\{\mathbf{s}_i, \mathbf{y}_i\}_{i=k-m}^{k-1}$ requires $\mathcal{O}(md)$ space complexity.
- 3 The idea also works for SR1 and DFP.

What is the convergence rate of L-BFGS?