Übungsaufgaben:

Formuliere die Protolysereaktion (mit Summenformeln) und benenne alle Stoffteilchen.

Ordne die Begriffe Säure/Protonendonator und Base/Protonenakzeptor sowie saure Lösung zu.

- a. Salpetersäure und Wasser
- b. Schwefelsäure und Wasser
- c. Phosphorsäure und Wasser

Die **Carboxygruppe** als funktionelle Gruppe für <u>organische Säuren</u> ist in der Lage, ein Proton abzuspalten und deshalb auch für die Säurewirkung dieser Stoffklasse verantwortlich.

Wichtige anorganische Säuren

Name der Säure	Formel	Säurerest-Ion	Formel	
Chlorwasserstoff	HCI	Chlorid-Ion	CI ⁻	→ Salzsäure
Fluorwasserstoff	HF	Fluorid-Ion	F ⁻	→ Flusssäure
Salpetersäure	HNO ₃	Nitrat-Ion	NO ₃	
Oxoniumion	H ₃ O ⁺	Wasser	H ₂ O	
Schwefelsäure	H ₂ SO ₄	Sulfat-Ion	SO ₄ ²⁻	
Schweflige Säure	H ₂ SO ₃	Sulfit-Ion	SO ₃ ²⁻	Zweiprotonige Säuren
Kohlensäure	H ₂ CO ₃	Carbonat-Ion	CO ₃ ²⁻	
Phosphorsäure	H ₃ PO4	Phosphat-Ion	PO ₄ ³⁻	→ Dreiprotonige Säure