

KURS RÓWNANIA RÓŻNICZKOWE

Lekcja 2
Równania różniczkowe sprowadzalne
do zmiennych rozdzielonych
przez podstawienie

ZADANIE DOMOWE

Część 1: TEST

Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa).

Pytanie 1

Do typu równania y' = f(ax + by + c) stosujemy podstawienie :

- a) t = a + b + c
- b) t = ay + bx + c
- c) t = ax + by + c
- d) t = x + y

Pytanie 2

Przykładem równania typu y' = f(ax + by + c) jest równanie:

a)
$$y' = \cos(3x-6y+1)-4x-7y+1$$

b)
$$\sin(3x+y-1)+3y'-2(3x+y-1)=0$$

c)
$$x + 2y + xy' = 3$$

d)
$$xy' = 3 - y - x$$

Pytanie 3

Do typu równania $y' = f\left(\frac{y}{x}\right)$ stosujemy podstawienie :

a)
$$t = \frac{y}{x}$$

b)
$$t = \frac{x}{y}$$

c)
$$t = xy$$

d)
$$t = x + y$$

Pytanie 4

Równaniem typu $y' = f\left(\frac{y}{x}\right)$ nie jest równanie:

a)
$$y' = \sin\left(\frac{y}{x}\right) + \frac{y}{x}$$

b)
$$\frac{y}{x} + \frac{y}{x} \cdot y' = 0$$

c)
$$\left(\frac{y}{x}\right)^2 + \sin\left(\frac{y}{x}\right) \cdot y' + y = 0$$

d)
$$\left(\frac{y}{x}\right)^3 + \frac{y}{x} \cdot y' = 0$$

Pytanie 5

Równanie typu $y' = f\left(\frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2}\right)$ rozwiązujemy:

a) podstawiając
$$t = \frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2}$$

b) na dwa sposoby – w zależności od tego, czy różnica $a_1b_2-b_1a_2$ jest równa zero, czy różna od zera

c) podstawiając
$$t = \frac{x + y + c_1}{x + y + c_2}$$

d) podstawiając
$$t = \frac{x}{y}$$

Pytanie 6

Podstawienie w równaniu $y' = -\frac{y+x}{x}$ będzie miało postać:

- a) $t = \frac{y}{x}$ (choć wymaga to wcześniejszego przekształcenia równania)
- b) $t = -\frac{y}{x}$ (choć wymaga to wcześniejszego przekształcenia równania)
- c) t = xy (choć wymaga to wcześniejszego przekształcenia równania)
- d) t = x + y (choć wymaga to wcześniejszego przekształcenia równania)

Pytanie 7

Podstawienie w równaniu $y \frac{dy}{dx} + x + y = 0$ będzie miało postać:

- a) t = x + y (choć wymaga to wcześniejszego przekształcenia równania)
- b) $t = -\frac{y}{x}$ (choć wymaga to wcześniejszego przekształcenia równania)
- c) t = xy (choć wymaga to wcześniejszego przekształcenia równania)
- d) $t = \frac{y}{x}$ (choć wymaga to wcześniejszego przekształcenia równania)

Pytanie 8

Podstawienie w równaniu y' = 4x - 8y - 9 będzie miało postać:

- a) t = x + y
- b) t = 4x 8y 9
- c) t = xy
- d) $t = \frac{y}{x}$

Pytanie 9

Czy równanie różniczkowe typu $y'=f\left(\frac{y}{x}\right)$ może być jednocześnie równaniem o zmiennych rozdzielonych?

- a) Tak
- b) Nie

Pytanie 10

Czy jest możliwe rozwiązanie tego samego równania różniczkowego dwiema różnymi metodami?

- a) Nie
- b) Tak

Część 2: ZADANIA

Równania typu y' = f(ax + by + c)

Zadanie 1

Rozwiąż równanie:

a)
$$\frac{dy}{dx} = 2x - 4y + 6$$

b)
$$\frac{dy}{dx} = x + 2y + 1$$

c)
$$y' = \frac{1}{4x - y} + 4x - y + 4$$

d)
$$3x - y + (6x - 2y + 1)y' = 0$$

e)
$$2x+3y-1+(4x+6y-5)y'=0$$

f)
$$2x - y + (4x - 2y + 3)y' = 0$$

g)
$$y' = \sin(x - y)$$

Równania typu
$$y' = f\left(\frac{y}{x}\right)$$

Zadanie 2

Znajdź rozwiązanie równania:

a)
$$y' = \frac{y}{x} - \left(\frac{y}{x}\right)^2$$

b)
$$y' = \frac{y}{x} + ctg \frac{y}{x}$$

c)
$$x \frac{dy}{dx} + y = 2x$$
 z warunkiem początkowym $y(1) = 2$

d)
$$xy' = 2y + x$$

e)
$$\frac{y}{x} (4 + \ln x - \ln y) + y' = \frac{y}{x}$$

Równania typu
$$y' = f\left(\frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2}\right)$$

Zadanie 3

Rozwiąż równanie:

a)
$$3x-6y+2+(x-2y-1)y'=0$$

b)
$$2x+3y-1+(4x+6y-5)y'=0$$

c)
$$2x - y + (4x - 2y + 3)y' = 0$$

KONIEC