Problem Set 1

D. Zack Garza

November 9, 2019

Contents

1	Prob	blem 6																			1
	1.1	Part 1					_			 	_					 			 		1

1 Problem 6

1.1 Part 1

Let $M=S^2$ as a smooth manifold, and consider a vector field on M,

$$X:M\to TM$$

We want to show that there is a point $p \in M$ such that X(p) = 0.

Every vector field on a compact manifold without boundary is complete, and since S^2 is compact with $\partial S^2 = \emptyset$, X is complete.

Thus every integral curve of X exists for all time, yielding a well-defined flow

$$\phi: M \times \mathbb{R} \to M$$
,

and thus a one-parameter family

$$\phi_t: M \to M \in \mathrm{Diff}(M,M).$$

In particular, $\phi_0 = \mathrm{id}_M$, and ϕ_1 is an arbitrary diffeomorphism of M, and moreover ϕ_0 is homotopic to ϕ_1 with homotopy given by

$$H: M \times I \to M(p,t) \mapsto \phi_t(p)$$