$$\alpha = \sqrt{2} + \sqrt{3}$$
, $\operatorname{deg}_{\mathbb{Q}}(\alpha) = 4 \iff \mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt{2}, \sqrt{3})$

Lil2/F
$$= \left\{ \frac{\sum x_i \beta_i}{\sum y_i S_j} : \alpha_i, y_i \in L_i, \beta_i, S_j \in L_2 \right\}$$
Composite

bout if Liff, Lz/F one finite, we don't need to divide.

Theorem if Li/F, Lz/F wefinite, Li, Lz SK,

 $\{x_1,...,x_n\}$ generates L_1 over F. $\{\beta_1,...,\beta_m\}$ generates L_2 over F, Then $\{d_i\beta_j: l\in \{i\in m\}, l\in j\in m\}$ generates L_1L_2 over F. $\{\delta_0\}$ $\{l\in \{i\in m\}, l\in \{i\in m\}\}$ generates $\{i\in m\}$ $\{i\in m\}$.

 $\begin{array}{l} \underbrace{\text{prof}} \quad L_{1}L_{2} = F\left(\alpha_{1},...,\alpha_{n},\beta_{1},...,\beta_{m}\right). \\ \\ = F\left[\alpha_{1},...,\alpha_{n},\beta_{1},...,\beta_{m}\right] \end{array}$ $= \left[\alpha_{1},...,\alpha_{n},\beta_{1},...,\beta_{m}\right]. \\ \\ \underbrace{S_{0}} \quad \text{any} \quad \forall \in L_{1}L_{2} = \sum U_{k}V_{k} \quad , U_{k} \in L_{1}, V_{k} \in L_{2}. \end{array}$

L₁ L₂ $n_1 \leq n_2$, $n_1 \leq n_1$ L₁ $n_2 \leq n_2$, $n_1 \leq n_1$ Also $n_1 \mid n_1$ and $n_2 \mid n_1$ $n_2 \leq n_2$ So $lem(n_1, n_2) \mid n_1$ So $lem(n_1, n_2) \leq n_1 \leq n_1 \leq n_2$

Corollary: if $(n_1, n_2) = 1$, $N = N_1 \cdot N_2$

 $L_1 \otimes L_2 \longrightarrow L_1 L_2$ is surjective if L_1/F , L_2/F are finite. $(\alpha_1 \beta) \longmapsto \alpha \beta$

if [L, Lz: F] = [L,: F] · [Lz: F], it's an isomorphism.

K/F is transcendental otherwise.

my finite extension is algebraic

Theorem: an algebraic extension is finite iff it is finitely generated, $K = F(\alpha_1, \ldots, \alpha_n)$.

Finite \Rightarrow choose basis $\{\alpha_1, \dots, \alpha_n\}$ F.G. \Rightarrow top of a finite tower of simple extensions $F(\alpha_1, \dots, \alpha_n)/F(\alpha_1, \dots, \alpha_{n-1})/\dots/F(\alpha_n)/F$.

Theorem: if L./F, Lz/F are algebraic, then
L, Lz/F is alguaraic.

If K/L and L/F are algebraic, then

K/F is algebraic

If let $\alpha \in L, L_2$, then $\alpha = \frac{\sum \beta_i \lambda_j}{\sum \delta_i \tau_i} \beta_i, \delta_i \in L$,

So de F (B.,..., Bn, 8,,..., 8n, 8,,..., 8m, T,,..., Tm) - finite.

Let $\alpha \in K$. Then α is a root of $f(x) = x^n + \beta_{n-1} x^{n-1} + \dots + \beta_i x + \beta_i$, with $\beta_i \in L$. Then α is algebraic over $F(\beta_0, \dots, \beta_{n-1})$.

So $F(\alpha, \beta_0, ..., \beta_{n-1})/F(\beta_0, ..., \beta_{n-1})$ is finite, and $F(\beta_0, ..., \beta_{n-1})/F$ is finite, so $F(\alpha, \beta_0, ..., \beta_{n-1})/F$ is finite & so algebraic, so α is algebraic over F. So K/F is algebraic.

Corolloy: d, β are algebraic over F $\Rightarrow \alpha \pm \beta, \alpha \cdot \beta, \frac{\alpha}{\beta} \text{ are algebraic.}$

So if K/F is any extension, then

{ XEK: X is algebraic on F3/F is

A Subextension.

(Maxil algeronie subfield of K).

Quadratic extension: [K:F]=2. (char $F\neq 2$)

 $\alpha \in K \setminus F$, $\deg_F m_\alpha = 2$. $m_{\alpha} = \chi^2 + \alpha \chi + b$.

So $\alpha = -\frac{\alpha}{2} \pm \sqrt{\frac{\alpha^2}{4} - b}$

Let $S = \int_{\frac{a^2}{4}}^{\frac{a^2}{4}} - b$. Then $S \neq F$,

So K = F(8).

 $D = {^2eF}$, so $K = F(r_0)$

8 Bigundratic extension $K = F(\overline{p}, \overline{p}_2)$ S.t. [K : F] = 4.

Mis is so iff √D, , √D, √D, ₽ F.

If $\sqrt{D_1D_2} \in F$, then $K = F(\sqrt{D_2})$ and $(K:F) \le 2$ if $\sqrt{D_1D_2} \in F$, then $\sqrt{D_2} = \frac{\alpha}{\sqrt{D_1}} \in F(\sqrt{D_1})$ so $K = F(\sqrt{D_1})$.

if $\sqrt{D_1}$, $\sqrt{D_2}$, $\sqrt{D_1D_2} \notin F$, Then $\begin{vmatrix} 1^2 \\ F(\sqrt{D_1}) \end{vmatrix} \Rightarrow \begin{vmatrix} 1 \\ 4 \end{vmatrix}$.

$$F(\sqrt{p_i}) \implies |4|.$$

$$|2| F$$

$$F$$