

• General Description

The AGM310MAP combines advanced trench MOSFET technology with a low resistance package to provide extremely low $R_{DS(ON)}$.

This device is ideal for load switch and battery protection applications.

Features

- Advance high cell density Trench technology
- Low R_{DS(ON)} to minimize conductive loss
- Low Gate Charge for fast switching
- Low Thermal resistance
- 100% Avalanche tested
- 100% DVDS tested

Application

- MB/VGA Vcore
- SMPS 2nd Synchronous Rectifier
- POL application
- BLDC Motor driver

Product Summary

BVDSS	RDSON	ID
30V	11mΩ	20A
-30V	19mΩ	-18A

PDFN3.3*3.3 Pin Configuration

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
AGM310MAP	AGM310MAP	PDFN3.3*3.3	330mm	12mm	5000

Table 1. Absolute Maximum Ratings (TA=25°C)

		Rating		
Symbol	Parameter	N-Ch	P-Ch	Units
V _{DS}	Drain-Source Voltage (V _{GS} =0V)	30	-30	V
V_{GS}	Gate-Source Voltage (V _{DS=} 0V)	±20	±20	V
	Drain Current-Continuous(TC=25°C) (Note 1)	20	-18	Α
I_D	Drain Current-Continuous(TC=100°C)	15	-14	А
IDM (pluse)	Drain Current-Pulsed (Note 2)	80	-72	Α
	Total Power Dissipation(TC=25℃)	37	37	W
P_D	Total Power Dissipation(TC=100°C)	15	15	W
EAS	Avalanche energy (Note 3)	49	72	mJ
TJ,TSTG	Operating Junction and Storage Temperature Range	-55 To 150	-55 To 150	°C

Table 2. Thermal Characteristic

Symbol	Parameter	Тур	Max	Unit
R _{θJA}	Thermal Resistance Junction-ambient (Steady State) ¹		50	°C/W
R _{eJC}	Thermal Resistance Junction-Case ¹		3.4	°C/W

Table 3. N- Channel Electrical Characteristics (TJ=25℃unless otherwisenoted)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
On/Off State	es					
BVDSS	Drain-Source Breakdown Voltage	VGS=0V ID=250μA	30			V
IDSS	Zero Gate Voltage Drain Current	VDS=30V,VGS=0V			1	μA
IGSS	Gate-Body Leakage Current	VGS=±20V,VDS=0V			±100	nA
VGS(th)	Gate Threshold Voltage	VDS=VGS,ID=250µA	1.2	1.6	2.2	V
gFS	Forward Transconductance	VDS=10V,ID=5A		7.0		S
RDS(on)	Drain-Source On-State Resistance	VGS=10V, ID=10A		11	17	mΩ
230(011)		VGS=4.5V, ID=5A		17	25	mΩ
Dynamic C	Characteristics					
Ciss	Input Capacitance	VDS=15V,VGS=0V,		636		pF
Coss	Output Capacitance	F=1MHZ		114		pF
Crss	Reverse Transfer Capacitance			98		pF
Rg	Gate resistance	VGS=0V, VDS=0V,f=1.0MHz		0.8		Ω
Switching	Times					
td(on)	Turn-on Delay Time			4.7		nS
tr	Turn-on Rise Time	VGS=10V,VDS=15V,		11		nS
td(off)	Turn-Off Delay Time	RL=0.75Ω,RGEN=3.3Ω		17		nS
tf	Turn-Off Fall Time			5.6		nS
Qg	Total Gate Charge			16		nC
Qgs	Gate-Source Charge	VGS=10V, VDS=15V, ID=10A		3		nC
Qgd	Gate-Drain Charge	_ ID-10A		3.8		nC
Source-Dr	ain Diode Characteristics		•	•		
ISD	Source-Drain Current(Body Diode)				20	А
VSD	Forward on Voltage	VGS=0V,IS=10A			1.2	V
trr	Reverse Recovery Time	IF=10A , dI/dt=100A/μs ,				ns
Qrr	Reverse Recovery Charge	TJ=25℃				nc

Notes 1. The maximum current rating is package limited.

Notes 2.Repetitive Rating: Pulse width limited by maximum junction temperature

Notes 3.EAS condition: TJ=25°C,VDD=15V,Vgs=10V,ID=14A, L=0.5mH,RG=25ohm

Table 3. P-Channel Electrical Characteristics (TJ=25℃unless otherwisenoted)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
On/Off Sta	ites					
BVDSS	Drain-Source Breakdown Voltage	VGS=0V ID=-250µA	-30			V
IDSS	Zero Gate Voltage Drain Current	VDS=-24V,VGS=0V			-1	μA
IGSS	Gate-Body Leakage Current	VGS=±20V,VDS=0V			±100	nA
VGS(th)	Gate Threshold Voltage	VDS=VGS,ID=-250μA	-1.2	-1.5	-2.2	V
gFS	Forward Transconductance	VDS=-10V,ID=-5A		7		S
RDS(on)	Drain-Source On-State Resistance	VGS=-10V, ID=-10A		19	23	mΩ
1.20(0.1.)		VGS=-4.5V, ID=-5A		28	32	mΩ
Dynamic C	Characteristics					
Ciss	Input Capacitance	VDS=-15V,VGS=0V,		854		pF
Coss	Output Capacitance	F=1MHZ		142		pF
Crss	Reverse Transfer Capacitance			129		pF
Rg	Gate resistance	VGS=0V, VDS=0V,f=1.0MHz		9.8		Ω
Switching	Times					
td(on)	Turn-on Delay Time			8		nS
tr	Turn-on Rise Time	VGS=-10V,VDS=-15V,		18		nS
td(off)	Turn-Off Delay Time	ID=-15A,RGEN=3.3Ω		32		nS
tf	Turn-Off Fall Time			18		nS
Qg	Total Gate Charge			45		nC
Qgs	Gate-Source Charge	VGS=-10V, VDS=-25V, ID=-12A		6.0		nC
Qgd	Gate-Drain Charge			9.0		nC
Source-Dr	ain Diode Characteristics					
ISD	Source-Drain Current(Body Diode)				-18	А
VSD	Forward on Voltage	VGS=0V,IS=-1A			-1.2	V
trr	Reverse Recovery Time	IF=-1A , dl/dt=100A/μs ,				ns
Qrr	Reverse Recovery Charge	TJ=25℃				nc
	· -	1				

Notes 1. The maximum current rating is package limited.

Notes 2. Repetitive Rating: Pulse width limited by maximum junction temperature Notes

3.EAS condition: TJ=25 $^{\circ}\text{C}$,VDD=-15V,Vgs=-10V,ID=-17A,L=0.5mH,RG=25ohm

•N Channel characteristics curve

Fig.1 Power Dissipation

Fig.2 Typical output Characteristics

Fig.3 Threshold Voltage V.S Junction Temperature Fig.4 Resistance V.S Drain Current

Fig.5 On-Resistance VS Gate Source Voltage

Fig.6 On-Resistance V.S Junction Temperature

•Test Circuit CHANNEL-N

Fig.1 Switching Time Measurement Circuit

Fig.2 Gate Charge Waveform

Fig.3 Switching Time Measurement Circuit

Fig.4 Gate Charge Waveform

Fig.5 Avalanche Measurement Circuit

Fig.6 Avalanche Waveform

•P Channel characteristics curve

Fig.1 Power Dissipation Derating Curve

Fig.2 Typical output Characteristics

Fig.3 Threshold Voltage V.S Junction Temperature

Fig.4 Resistance V.S Drain Current

Fig.5 On-Resistance VS Gate Source Voltage

30 20 20 0 3 5 7 9 V_{GS}(-V)

Fig.6 On-Resistance V.S Junction Temperature

•Test Circuit CHANNEL-P

Fig.7 Switching Time Measurement Circuit

Fig.8 Gate Charge Waveform

Fig.9 Switching Time Measurement Circuit

Fig.10 Gate Charge Waveform

Fig.11 Avalanche Measurement Circuit

Fig.12 Avalanche Waveform

•Dimensions (PDFN3.3*3.3)

SYMBOL	MILLIMETER			
SIMDUL	MIN	MAX		
A	0.700	0.900		
A1	0. 152	PREF.		
A2	0~0	. 05		
D	3.000	3. 200		
D1	0.935	1. 135		
D2	0.280	0.480		
Е	2.900	3. 100		
E1	3. 150	3. 450		
E2	1.535	1.935		
b	0.200	0.400		
е	0.550	0.750		
L	0.300	0.500		
L1	0.180	0.480		
L2	0~0.100			
L3	0~0.100			
Н	0.315	0.515		
θ	8°	12°		

C 1 1	Millimeters				
Symbols	MIN.	NOM.	MAX.		
A	0.65	0.75	0.85		
b	0.25	0.30	0.35		
С	0.15	0.20	0.25		
D	3.00	3. 10	3. 20		
D1	2.40	2.50	2.60		
D2/D3	1.00	1.05	1.10		
d	0.30	0.40	0.50		
Е	3. 20	3.30	3.40		
E1	3.00	3. 10	3. 20		
E2	1.72	1.82	1.92		
е	0.	. 65 BSC			
H1	0.21	0.31	0.41		
Н2	0.30	0.40	0.50		
K	0.67	0.77	0.87		
L1/L2	0.10 REF.				
θ	11°	12°	13°		
N	0	_	0.15		
0	0.2 REF.				

PDFN3.3*3.3 Marking Instructions:

Disclaimer:

The information provided in this document is believed to be accurate and reliable. however, Shenzhen Core Control Electronics Technology Co., Ltd. does not assume any responsibility for the following consequences. Do not consider the use of such information or use beyond its scope.

The information mentioned in this document may be changed at any time without notice.

The products and information provided in this document do not infringe patents. Shenzhen Core Control Electronics Technology Co., Ltd. assumes no responsibility for any infringement of any other rights of third parties. The result of using such products and information.

This document is the sixth version issued on March 10th, 2024. This document replaces all previously provided information.

It is a registered trademark of Shenzhen Core Control Electronics Technology Co., Ltd.

Copyright © 2017 Shenzhen Core Control Electronics Technology Co., Ltd. all rights reserved.