PROGRAMACION I

Nivel 1 Problemas, Soluciones y Programas

Universidad Pedagógica y Tecnológica de Colombia Escuela de Ingeniería de Sistemas – UniAndes

Herramientas y

Lenguajes

Programador

 Entender el problema que tiene el cliente

 Especificar TODA la información que suministre el cliente

Herramientas

<

Lenguajes

Programador

 Detallar las características que tendrá la solución

 Usando algún lenguaje (planos, dibujos, ecuaciones, diagramas, texto,
)

Herramientas

<

Lenguajes

Programador

 Implementar el programa a partir del diseño

Probar su correcto funcionamiento

Caso de Estudio: El Empleado

El Empleado

- Se quiere una aplicación que permita manejar la información de un empleado.
- El empleado tiene:
 - Nombre
 - Apellido
 - Sexo
 - Fecha de nacimiento
 - Imagen asociada
 - Fecha de ingreso a la misma
 - Salario básico asignado
- La aplicación debe permitir:
 - Modificar el salario del empleado
 - Realizar algunos cálculos con la información disponible
 - Edad actual
 - Antigüedad en la empresa
 - Prestaciones a las que tiene derecho. Para el cálculo de las prestaciones se utiliza la fórmula p = (a * s)/12 (p: prestaciones, a: antigüedad, s: salario).

El Empleado

🛔 Sistema de Empleado	S .	
Datos Personales		100 100 100 100 100 100 100 100 100 100
Nombre:	Pedro	
Apellido:	Matallana	
Sexo:	m	
Fecha de Nacimiento:	16-5-1982	$ \otimes \otimes $
Fecha de Ingreso:	6-4-1997	
Salario		
Sal	srio: \$2,300,000	Modificar
Cálculos		
	Calcular Edad	
C	olcular Antigüedad	
Ca	cular Prestaciones	
Puntos de Extensión		
	Opción 1 Opc	ión 2
	10.1	3.5

Programador

Se quiere una aplicación que permita manejar la información de un empleado.

1

Análisis del Problema

Análisis del Problema

 Entender el problema que tiene el cliente

 Especificar TODA la información que suministre el cliente

Qué quiere decir ESPECIFICACION ...

Especificación

Especificación

Requerimientos funcionales (RF)

- Las necesidades del cliente
- Operaciones o servicios que el programa debe proveer al usuario

El Empleado

- Se quiere una aplicación que permita manejar la información de un empleado.
- El empleado tiene:
 - Nombre
 - Apellido
 - Sexo
 - Fecha de nacimiento
 - Imagen asociada
 - Fecha de ingreso a la misma
 - Salario básico asignado
- La aplicación debe permitir:
 - Modificar el salario del empleado
 - Realizar algunos cálculos con la información disponible
 - Edad actual
 - Antigüedad en la empresa
 - Prestaciones a las que tiene derecho. Para el cálculo de las prestaciones se utiliza la fórmula p = (a * s)/12 (p: prestaciones, a: antigüedad, s: salario).

Requerimientos funcionales (RF)

Requerimientos Funcionales

- R1:Modificar el salario del empleado.
- R2: Calcular la edad actual.
- R3: Calcular la antigüedad en la empresa.
- R4: Calcular las prestaciones.

El Empleado

Especificación

- Contexto en el que ocurre el problema
- Elementos (datos, información) que intervienen en el problema

El Empleado

- Se quiere una aplicación que permita manejar la información de un empleado.
- El empleado tiene:
 - Nombre
 - Apellido
 - Sexo
 - Fecha de nacimiento
 - Imagen asociada
 - Fecha de ingreso a la misma
 - Salario básico asignado
- La aplicación debe permitir:
 - Modificar el salario del empleado
 - Realizar algunos cálculos con la información disponible
 - Edad actual
 - Antigüedad en la empresa
 - Prestaciones a las que tiene derecho. Para el cálculo de las prestaciones se utiliza la fórmula p = (a * s)/12 (p: prestaciones, a: antigüedad, s: salario).

Mundo del problema

Especificación

Requerimientos No Funcionales

- Restricciones o condiciones que impone el cliente al programa
- Ejemplos: Tiempo de entrega del programa, # de usuarios simultáneos, tiempo de ejecución del programa, ...

1

Análisis del Problema

Especificación de Requerimientos Funcionales

Requerimientos Funcionales

- Se describen a través de 4 elementos:
 - Identificador y nombre
 - Resumen de la operación
 - Entradas que debe dar el usuario para que el programa pueda realizar la operación
 - Resultado de la operación
 - Modificación de un valor en el mundo del problema
 - Cálculo de un valor
 - Mezcla de los dos anteriores

Ejemplo RF

Nombre	R4 – Calcular las prestaciones del empleado			
Resumen	Calcula las prestaciones del empleado			
Entradas				
Resultados				

Ejemplo RF

Nombre	R1 – Actualizar el salario básico del empleado	
Resumen	Permite la modificación del salario básico de un empleado	

Entradas

Nuevo salario

Resultados

Se modificó el salario básico del empleado

Caso de Estudio: El Simulador Bancario

El Simulador bancario

- Se quiere una aplicación que haga la simulación en el tiempo de la cuenta bancaria de un cliente.
- Un cliente tiene:
 - Nombre
 - Número de cédula (identifica la cuenta)
- Una cuenta tiene:
 - Una cuenta de ahorro
 - Una cuenta corriente
 - Certificado de depósito a término (CDT)
- Se quiere que el programa permita a una persona simular el manejo de sus productos bancarios:
 - Hacer las operaciones necesarias sobre los productos que conforman la cuenta
 - Avanzar mes por mes en el tiempo, para que el cliente pueda ver el resultado de sus movimientos bancarios y el rendimiento de sus inversiones

El Simulador Bancario

	Bancario				
Datos Person	ales				
	Nombre:	Sergio Lá	pez Cédula: 50	1.152.468 Mes: 1	
Saldo					
	Saldo Corriente:		\$ 0,00		
	Saldo A	Ahorros:	\$ 0,00 [0.6%]		
	Saldo CDT:		\$ 0,00 [0.0%]	Total: \$ 0,00	
Cálculos					
Abrir	inversion CDT	Cor	signar cuenta corriente	Consignar cuenta ahorro	Opcion1
Corrar	inversion CDT	B	rtirar cuenta corriente	Retirar cuenta ahorro	Opcion2

1

Análisis del Problema

Mundo del Problema

Modelo del mundo del problema

- Esta actividad está basada en un proceso de "observación" del problema.
- El objetivo es identificar los elementos que allí aparecen y describirlos de la mejor manera.
- Cuatro actividades para llevar a cabo esta etapa:

Para expresar el modelo del mundo, usamos diagramas de clases del lenguaje de modelos UML (estándar).

Ejercicio

- Identifique los elementos que hacen parte del mundo del problema en el simulador bancario
 - Cuenta bancaria
 - Cuenta de ahorros
 - Cuenta corriente
 - CDT
 - Cliente
 - Cedula
 - Nombre
 - Mes (de simulación)

- Saldo cuenta corriente
- Saldo cuenta ahorro
- Saldo CDT
- Saldo total
- Intereses CDT
- Interés cuenta de ahorro
- Inversión CDT (monto)

Modelo del mundo del problema

- Esta actividad está basada en un proceso de "observación" del problema.
- El objetivo es identificar los elementos que allí aparecen y describirlos de la mejor manera.
- Cuatro actividades para llevar a cabo esta etapa:

Para expresar el modelo del mundo, usamos diagramas de clases del lenguaje de modelos UML (estándar).

Identificar las Entidades

- Elementos relevantes del mundo que intervienen en el problema
 - Concretos (persona, vehículo)
 - Abstractos (cuenta bancaria)
- Se les da un nombre significativo
- Pista para ubicarlos: sustantivos del problema
- En POO las llamamos CLASES
- Convención: los nombres de las clases empiezan por mayúscula

Elementos del mundo del problema

- Cuenta bancaria
- Cuenta de ahorros
- Cuenta corriente
- CDT
- Cliente
- Cedula
- Nombre
- Mes (de simulación)

- Saldo cuenta corriente
- Saldo cuenta ahorro
- Saldo CDT
- Saldo total
- Intereses CDT
- Interés cuenta de ahorro
- Inversión CDT (monto)

Elementos del mundo del problema

- Cuenta bancaria
- Cuenta de ahorros
 - Cuenta corriente
- CDT
- Cliente
- Cedula
- Nombre
- Mes (de simulación)

- Saldo cuenta corriente
- Saldo cuenta ahorro
- Saldo CD1
- Saldo total
- Intereses CDT
- Interés cuenta de ahorro
- Inversión CDT (monto)

Clases del simulador bancario

- Cuenta bancaria
- Cuenta de ahorros
- Cuenta corriente
- CDT
- Cliente
- Cedula
- Nombre
- Mes (de simulación)

- Saldo cuenta corriente
- Saldo cuenta ahorro
- Saldo CDT
- Saldo total
- Intereses CDT
- Interés cuenta de ahorro
- Inversión CDT (monto)

TODOS LOS DEMAS ELEMENTOS DEL PROBLEMA SON CARACTERISTICAS DE LAS CLASES

Clases del simulador bancario

- CuentaBancaria
- CuentaCorriente
- CuentaAhorros
- CDT
- Mes

Hacen parte de la CuentaBancaria

Modelo del mundo del problema

- Esta actividad está basada en un proceso de "observación" del problema.
- El objetivo es identificar los elementos que allí aparecen y describirlos de la mejor manera.
- Cuatro actividades para llevar a cabo esta etapa:

Para expresar el modelo del mundo, usamos diagramas de clases del lenguaje de modelos UML (estándar).

Modelar las características

- A cada característica le debemos asociar:
 - Nombre significativo
 - Descripción del conjunto de valores que dicha característica puede tomar
- En POO las llamamos ATRIBUTOS
- Convención: los nombres de los atributos empiezan por minúscula, sin espacios en blanco

Atributo	Valores posibles
nombre	Cadena de caracteres
apellido	Cadena de caracteres
sexo	Masculino o Femenino
salario	Valores enteros positivos

Para expresar el modelo del mundo, usamos diagramas de clases del lenguaje de modelos UML (estándar).

Características o atributos

nombre apellido sexo salario

nombre de la entidad o clase

Ejercicio sobre el Simulador Bancario

Clase: CuentaBa	Valores posibles	Diagrama IIMI
Atributo	Valores posibles	Diagrama UML
		1 1
		20
		20
Class: Cuenta Ca	rriente	20
		20
	orriente Valores posibles	Diagrama UML
		Diagrama UML
Clase: CuentaCo Atributo		Diagrama UML

Ejercicio sobre el Simulador Bancario

Clase: CDT Atributo	Valores posibles	Diagrama UML
Athbuto	valores posibles	Diagrama OIVIL
		
	4 9	<u> </u>
	218	li:
	5 Si	i i
Clase: Mes	7 (5)	I:
	L Valores posibles	I Diograma LIMI
Clase: Mes Atributo	Valores posibles	Diagrama UML
	Valores posibles	Diagrama UML

Modelo del mundo del problema

- Esta actividad está basada en un proceso de "observación" del problema.
- El objetivo es identificar los elementos que allí aparecen y describirlos de la mejor manera.
- Cuatro actividades para llevar a cabo esta etapa:

Para expresar el modelo del mundo, usamos diagramas de clases del lenguaje de modelos UML (estándar).

Las relaciones entre las Entidades

- Identificar las relaciones que existen entre las distintas entidades del mundo (clases).
- Dar un nombre a cada relación
- En POO las llamamos ASOCIACIONES

Las relaciones entre las Entidades

- Identificar las relaciones que existen entre las distintas entidades del mundo (clases).
- Dar un nombre a cada relación
- En POO las llamamos ASOCIACIONES

- El empleado tiene una fecha de nacimiento
- Esta fecha es una entidad del mundo representada por la clase Fecha

- El empleado tiene una fecha de ingreso
- La dirección de la flecha indica que la clase que contiene a la otra:
 - El empleado tiene una fecha, pero la fecha NO tiene un empleado

Diagrama de clases del modelo del mundo para el simulador bancario

CuentaAhorros		

Diagrama de clases del modelo del mundo para el simulador bancario

Solucionar un Problema = Construir un Programa

Herramientas

<

Lenguajes

Programador

 Detallar las características que tendrá la solución

 Usando algún lenguaje (planos, dibujos, ecuaciones, diagramas, texto,

Solucionar un Problema = Construir un Programa

Herramientas

Programador

 Implementar el programa a partir del diseño

 Probar su correcto funcionamiento

3

Construcción de la Solución

