Carbohydrates

- ➤ Biological molecule (macromolecule)
- Consisting of C, H and O
- \triangleright General formula: $C_x(H_2O)_y$

Classification

- Number of sugar units
- Monosaccharides: simple sugars with multiple OH groups.
- **Disaccharides:** 2 monosaccharide covalently linked.
- Polysaccharides: chains of monosaccharide units covalently linked.

Monosaccharides

Classifications

(based on number of carbon atom)

Triose=3, Tetrose=4, Pentose=5, Hexose=6

Monosaccharides with eight or more carbons are rarely observed as they are quite unstable.

Aldoses with an aldehyde group at one end

Hexose=6 (no of carbon atom)

Glucose: C₆H₁₂O₆

Hexose=6 (no of carbon atom)

Ketoses with a keto group, usually at C2

Fructose : $C_6H_{12}O_6$

Glucose: Most important sugar in our diet Fructose: It is sweetest of all sugars

Chiral center/carbon

Chiral carbon Asymmetric carbon - 4 different groups are attached to it

Is the 'blue' carbon chiral?

Stereoisomers

Carbohydrate exists as stereoisomers.

Stereoisomers are isomers that have the same composition but differ in the spatial orientation

- ✓ Same molecular formula and the same structural formula
- ✓ The same order and types of bonds
- ✓ Having at least one chiral carbon
- ✓ <u>Differ in the spatial arrangement of the atoms in the molecule.</u>

L- and D- glyceraldehyde (Triose monosaccharide)

Two compounds that are stereoisomers of each other have the same physical properties but differ in the optical properties.

Latin words dexter (on the right) and laevus (on the left)

Hydroxyl (-OH) group right: **D** sugar left: **L** sugar

Pairs of stereoisomers or enantiomers are mirror images of one another.

The number of stereoisomers is 2^n , where n is the number of asymmetric centers.

This aldotetrosose, has 2 chiral carbon atoms and a total of $2^2 = 4$ possible stereoisomers

Glycoside formation

• Cyclic monosaccharide can form link with another one (or more).

Disaccharides

Maltose

CHOH H OH H OH OH H OH Glucose Glucose

Lactose (Milk sugar)

Sucrose (Plants)

Polysaccharides

They are long chain polymeric carbohydrates composed of monosaccharide units bound together by glycosidic linkages.

• Energy storage

Lipids

- 1. Naturally occurring macromolecules
- 2. Includes fatty acids, fats and oils, phospholipids
- 3. Functions:

Signaling

Storing energy

Formation of structural components of cell membranes

Fatty acids

Fatty acids are naturally occurring carboxylic acids with an <u>unbranched carbon chain</u> and an <u>even</u> number of carbon atoms.

Saturated fatty acid

Only carbon-carbon single bonds

Unsaturated fatty acid

- Those molecules that contain one or more double bonds are said to be unsaturated.
- There are mono- and polyunsaturated fatty acids.

Number of carbons	Common name	Systematic name Structure	
Saturated 12	lauric acid	dodecanoic acid	COOH
14	myristic acid	tetradecanoic acid	СООН
16	palmitic acid	hexadecanoic acid	СООН
18	stearic acid	octadecanoic acid	СООН
20	arachidic acid	eicosanoic acid	COOH
Unsaturated			
16	palmitoleic acid	(9Z)-hexadecenoic acid	COOH
18	oleic acid	(9Z)-octadecenoic acid	COOH
18	linoleic acid	(9Z,12Z)-octadecadienoic acid	COOH
18	linolenic acid	(9Z,12Z,15Z)-octadecatrienoic acid	СООН
20	arachidonic acid	(5Z,8Z,11Z,14Z)-eicosatetraenoic acid	СООН
20	EPA	(5Z,8Z,11Z,14Z,17Z)-eicosapentaenoic acid	COOH

Ester formation

Esters are formed when the **carboxylic** acid is heated with the **alcohol** in the presence of a catalyst.

(Where R and R' are general hydrocarbon groups)

Oils and fats

These are the esters of Fatty acid and trihydric alcohol (eg. Glycerol) are called triacylglycerols

(Trihydric alcohol)

Reaction formation of triacylglicerols

Phospholipid bilayer of cell membrane

Phospholipids

There are the <u>triesters of glycerol</u>:

2 -OH groups are esterified with fatty acids

1 is esterified with phosphoric acid, which in turn is esterified to an alcohol.

