## Il teorema dell'elemento primitivo e di corrispondenza di Galois

## di Gabriel Antonio Videtta

**Nota.** Per K, L ed F si intenderanno sempre dei campi. Se non espressamente detto, si sottintenderà anche che  $K \subseteq L$ , F, e che L ed F sono estensioni costruite su K. Per [L:K] si intenderà  $\dim_K L$ , ossia la dimensione di L come K-spazio vettoriale. Per scopi didattici, si considerano solamente campi perfetti, e dunque estensioni che sono sempre separabili, purché non esplicitamente detto diversamente.

Si dimostrano in questo documento i due teoremi più importanti della teoria elementare delle estensioni di campo e di Galois, il teorema dell'elemento primitivo ed il teorema di corrispondenza di Galois.

**Teorema** (dell'elemento primitivo). Sia L/K un'estensione separabile e finita. Allora L/K è semplice.

Dimostrazione. Si distinguono i casi in cui K è un campo finito o infinito.

- (K finito) Poiché K è finito e L è un'estensione finita su K, a sua volta L è un campo finito. Pertanto  $L^*$  è un sottogruppo moltiplicativo finito di un campo, ed è pertant ciclico. Se  $\alpha \in L^*$  è allora un generatore di  $L^*$ , vale che L è uguale a  $K(\alpha)$ . Pertanto L/K è un'estensione semplice.
- (K infinito) Si fornisce una dimostrazione costruttiva del teorema, che permette di trovare algoritmicamente un elemento primitivo per L. Poiché L è un'estensione finita di K, L è finitamente generato da elementi algebrici su K.

Sia allora  $L = K(\alpha_1, \ldots, \alpha_n)$ , dove  $\{\alpha_i\}$  è una base di L/K come K-spazio. È sufficiente che  $K(\alpha_1, \alpha_2)$  sia semplice affinché anche L lo sia. Infatti si dimostrerebbe che  $K(\alpha_1, \alpha_2) = K(\gamma)$  per qualche  $\gamma \in K(\alpha_1, \alpha_2)$ , e quindi  $K(\alpha_1, \ldots, \alpha_n) = K(\gamma, \alpha_3, \ldots, \alpha_n)$ . Reiterando allora il processo su  $K(\gamma, \alpha_3)$  si troverà un elemento primitivo, e così, induttivamente, si dimostra che in particolare L è semplice. Se invece n = 1, la tesi è ovvia.

Sia allora, senza perdita di generalità,  $L = K(\alpha, \beta)$ . Sia [L : K] = n. Allora, poiché L è un'estensione separabile su K, esistono esattamente n distinte K-immersioni di L, dette  $\varphi_i$ . Si definisca allora  $p(x) \in \overline{K}[x]$  tale per cui:

$$p(x) = \prod_{1 \le i < j \le n} (x\varphi_i(\alpha) + \varphi_i(\beta) - x\varphi_j(\alpha) - \varphi_j(\beta)).$$

Si dimostra che p(x) non è nullo. Infatti, se lo fosse, almeno uno dei fattori della produttoria dovrebbe essere nullo. In tal caso si avrebbe  $\varphi_i(\alpha) = \varphi_j(\alpha)$  e  $\varphi_i(\beta) = \varphi_j(\beta)$ , e dunque  $\varphi_i \equiv \varphi_j$ , benché  $i \neq j$ , f. Allora deg  $p = \binom{n}{2} > 0$ . Dal momento che K è infinito, esiste f f f tale per cui f f f .

Detto  $\gamma = \alpha t + \beta$ ,  $\gamma$  ha esattamente n coniugati. Infatti  $\varphi_i(\gamma) \neq \varphi_j(\gamma) \ \forall i < j$ , altrimenti  $\gamma$  annullerebbe p(x). Pertanto  $[K(\gamma) : K] = n = [K(\alpha, \beta) : K]$ , da cui  $K(\alpha, \beta) = K(\gamma)$ , ossia la tesi.

Si illustrano adesso i prerequisiti per dimostrare il Teorema di corrispondenza di Galois:

**Definizione.** Sia L/K un'estensione di Galois. Allora, se  $H \leq \operatorname{Gal}(L/K)$ , si definisce  $L^H = \operatorname{Fix}(H)$  come la sottoestensione di L su K degli elementi fissati da ogni  $\varphi \in H$ , ossia:

$$L^{H} = \{ \alpha \in L \mid \varphi(\alpha) = \alpha \ \forall \varphi \in H \}.$$

**Lemma.** Sia L/K un'estensione di Galois. Allora, se  $H \leq \operatorname{Gal}(L/K)$  vale che:

$$L^H = K \iff H = \operatorname{Gal}(L/K).$$

 $\begin{array}{l} \textit{Dimostrazione}. \text{ Sia } H = \operatorname{Gal}(\overset{L}{\diagup}_K). \text{ Allora sicuramente } K \subseteq L^H. \text{ Si mostra che non può valere } K \subsetneq L^H. \text{ Se infatti } K \subsetneq L^H, \text{ varrebbe che } [L^H:K] > 1, \text{ e quindi esisterebbe una } K\text{-immersione non banale di } L^H, \text{ detta } \varphi:L^H \to \overline{K}. \text{ In particolare } \varphi \text{ può estendersi a una } K\text{-immersione di } L, \text{ detta } \tilde{\varphi}. \text{ In particolare } \tilde{\varphi} \in \operatorname{Gal}(\overset{L}{\diagup}_K), \text{ e quindi } \tilde{\varphi} \text{ deve fissare } L^H \text{ per ipotesi. Tuttavia } \tilde{\varphi} \text{ ristretta a } L^H \text{ non fissa } L^H \text{ per ipotesi, } \ell. \text{ Pertanto } L^H = K. \end{array}$ 

Sia adesso  $L^H = K$ . Per il Teorema dell'elemento primitivo,  $\exists \alpha \in L^H$  tale per cui  $L = K(\alpha)$ . Si consideri allora il polinomio p a coefficienti in  $\overline{K}$  tale per cui:

$$p(x) = \prod_{\varphi \in H} (x - \varphi(\alpha)).$$

<sup>&</sup>lt;sup>1</sup>A livello algoritmico è sufficiente valutare p(x) in al più n+1 valori distinti in K per ottenere un x funzionale per la tesi.

Poiché l'identità di  $\operatorname{Gal}({}^{L}\!\!/_{K})$  appartiene ad H,  $(x-\alpha)\mid p(x)$ , e quindi  $p(\alpha)=0$ . Inoltre p è in realtà un polinomio a coefficienti in  $L^{H}$ . Se infatti  $\rho\in H$ ,

$$\rho(p(x)) = \prod_{\varphi \in H} (x - \rho(\varphi(\alpha))) = p(x),$$

dove l'uguaglianza è dovuta al fatto² che le mappe  $\{\rho \circ \varphi\}$  sono esattamente le mappe  $\{\varphi\}$ . Pertanto  $\left|\operatorname{Gal}(L/K)\right| = [L:K] = [K(\alpha):K] \leq \deg p(x) = |H|$  dal momento che  $\alpha$  è radice di p(x). Dal momento che vale anche che  $\left|\operatorname{Gal}(L/K)\right| \geq |H|$ , allora  $H = \operatorname{Gal}(L/K)$ , da cui la tesi.

**Proposizione.** Sia  $\sigma \in \operatorname{Gal}^{L}/_{K}$ . Allora, se  $H \leq L/_{K}$ , vale che  $\sigma(L^{H}) = L^{\sigma H \sigma^{-1}}$ .

Dimostrazione. Si osserva che:

$$\sigma(L^H) = \{ \sigma(\alpha) \mid \alpha \in L, \ \varphi(\alpha) = \alpha \ \forall \varphi \in H \} = \{ \beta \in L \mid \varphi(\sigma^{-1}(\beta)) = \sigma^{-1}(\beta) \ \forall \varphi \in H \},$$

dove si è sfruttato in modo cruciale il fatto che  $\varphi \in H$  è bigettiva. Si conclude allora che:

$$\varphi(L^H) = \{ \beta \in L \mid \sigma(\varphi(\sigma^{-1}(\beta))) = \beta \ \forall \varphi \in H \} = L^{\sigma H \sigma^{-1}}.$$

Si può adesso dimostrare il Teorema di corrispondenza di Galois:

**Teorema** (di corrispondenza di Galois). Sia  $\mathcal E$  l'insieme delle sottoestensioni di  $L_K$  estensione di Galois. Sia  $\mathcal G$  l'insieme dei sottogruppi di  $\operatorname{Gal}(L_K)$ . Allora  $\mathcal E$  è in bigezione con  $\mathcal G$  attraverso la mappa  $\alpha:\mathcal E\to\mathcal G$  tale per cui:

$$F \stackrel{\alpha}{\mapsto} \operatorname{Gal}(L/F) \leq \operatorname{Gal}(L/K),$$

la cui inversa  $\beta: \mathcal{G} \to \mathcal{E}$  è tale per cui:

$$H \stackrel{\beta}{\mapsto} L^H \subset L.$$

Inoltre, una sottoestensione  $F_K$  di  $L_K$  è normale su K se e solo se il corrispondente sottogruppo di  $\operatorname{Gal}(L_K)$  è normale. Infine, se  $F_K$  è normale, F è in particolare di Galois³ e vale che:

$$\operatorname{Gal}(^F\!\!/_K)\cong {\operatorname{Gal}(^L\!\!/_K)}\!\!/_{\operatorname{Gal}(^L\!\!/_F)}.$$

<sup>&</sup>lt;sup>2</sup>In particolare è stato applicato l'*embedding* di Cayley su H attraverso l'elemento  $\rho \in H$ , e quest'azione si è rivelata essere transitiva.

 $<sup>{}^3\</sup>mathrm{Si}$  ricorda che si considera K un campo perfetto.

Dimostrazione. Le mappe  $\alpha$  e  $\beta$  sono ovviamente ben definite. Si mostra direttamente che sono l'una l'inversa dell'altra. Sia  $H \leq \operatorname{Gal}(L/K)$ . Si osserva che:

$$\alpha(\beta(H)) = \alpha(L^H) = \operatorname{Gal}(L/L^H).$$

Sia  $L^H = M$ . Se si pone  $K = \operatorname{Gal}(L/L^H)$ , vale chiaramente che  $H \leq K$  dal momento che H fissa per definizione tutti gli elementi di  $L^H$ . Dacché allora  $L^H = M$ , per il lemma precedente H = K, e quindi  $\alpha(\beta(H)) = H$ .

Analogamente si osserva che per  $K \subseteq F \subseteq K$  vale che:

$$\beta(\alpha(F)) = \beta(\operatorname{Gal}(L/F)) = L^{\operatorname{Gal}(L/F)}.$$

Pertanto, detto  $H = \operatorname{Gal}(L/F)$ , per il lemma precedente vale che  $L^H = F$ , e quindi  $\beta(\alpha(F)) = F$ , dimostrando la prima parte del teorema.

Sia ora  $F_K$  una sottoestensione normale di  $L_K$ . Allora, se  $\varphi \in \operatorname{Gal}(L_F)$  e  $\sigma \in \operatorname{Gal}(L_K)$ ,  $\tau = \sigma \circ \varphi \circ \sigma^{-1}$  è ancora un elemento di  $L_K$ . Pertanto,  $\tau$  si può restringere ad una K-immersione di F. Poiché allora F è normale su K,  $\tau(F) = F$ , e quindi  $\tau \in \operatorname{Gal}(L_F)$ , e dunque  $\operatorname{Gal}(L_F) \leqslant \operatorname{Gal}(L_K)$ .

Sia adesso  $\operatorname{Gal}(L/F) \leqslant \operatorname{Gal}(L/K)$ . Sia  $\varphi$  una K-immersione di F su  $\overline{K}$ . Allora  $\varphi$  può essere estesa ad un elemento  $\tilde{\varphi} \in \operatorname{Gal}(L/K)$ . In particolare, se  $H = \operatorname{Gal}(L/F)$ ,  $\varphi(F) = \tilde{\varphi}(F) = L^{\varphi H \varphi^{-1}} = L^H = F$ , dove si è sfruttata la normalità di H in  $\operatorname{Gal}(L/K)$ . Pertanto F è normale su K, e dunque, in quanto separabile per ipotesi, di Galois.

Si consideri adesso l'omomorfismo  $\tau: \operatorname{Gal}(^L/_K) \to \operatorname{Gal}(^F/_K)$  dato dalla restrizione delle immersioni di  $\operatorname{Gal}(^L/_K)$  su F. Chiaramente  $\tau$  è una mappa surgettiva, dal momento che ogni K-immersione di  $\operatorname{Gal}(^F/_K)$  può estendersi a K-immersione di  $\operatorname{Gal}(^L/_K)$ . Inoltre vale che  $\operatorname{Ker} \tau$  è esattamente il sottogruppo di  $\operatorname{Gal}(^L/_K)$  che fissa F, ossia  $\operatorname{Gal}(^L/_F)$ . Applicando allora il Primo teorema di isomorfismo vale che:

$$\operatorname{Gal}(^F\!\!/_K)\cong {\operatorname{Gal}(^L\!\!/_K)}\!\!/_{\operatorname{Gal}(^L\!\!/_F)},$$

da cui la tesi.  $\Box$ 

**Esempio** (studio dei sottocampi di  $\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q}$ ). Dal momento che  $L:=\mathbb{Q}(\sqrt{2},\sqrt{3})$  è il campo di spezzamento dei polinomi  $x^2-2$  e  $x^2-3$ , tale estensione è normale su  $\mathbb{Q}$ , e quindi di Galois. Inoltre, dal momento che  $\sqrt{3}\notin\mathbb{Q}(\sqrt{2})$ ,  $[L:\mathbb{Q}]=2\cdot 2=4$ , dal Teorema delle torri algebriche. Pertanto  $\mathrm{Gal}(L/\mathbb{Q})$  è un gruppo di ordine 4.

Si definisce  $\varphi_{ij}$  con  $i, j \in \{0, 1\}$  come le  $\mathbb{Q}$ -immersioni di L tali per cui  $\sqrt{2} \xrightarrow{\varphi_{ij}} (-1)^i \sqrt{2}$  e analogamente  $\sqrt{3} \xrightarrow{\varphi_{ij}} (-1)^j \sqrt{3}$ . Dal momento che le varie  $\varphi_{ij}$  sono distinte, che ogni  $\varphi_{ij}$  ha ordine 2 e che ogni gruppo di ordine 4 è abeliano (o, più semplicemente, le varie  $\varphi_{ij}$  commutano tra loro), vale che  $\operatorname{Gal}(L/\mathbb{Q}) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ .

Ogni sottoestensione di L ha grado su  $\mathbb Q$  divisore di  $[L:\mathbb Q]$ , e quindi ha grado 1, 2 o 4. Se il grado è 4, la sottoestensione considerata è proprio L, mentre se il grado è 1 la sottoestensione è  $\mathbb Q$  stesso. Si studiano ora le sottoestensioni di grado 2. Tali sottoestensioni corrispondono ai sottogruppi di  $\operatorname{Gal}(L/\mathbb Q)$  di ordine 4/2=2. Inoltre, a priori, essendo  $\operatorname{Gal}(L/\mathbb Q)$  abeliano, tutte le sottoestensioni sono normali su  $\mathbb Q$ .

Ogni sottogruppo di ordine 2 è ciclico e generato da elementi di ordine 2, e quindi, mantenendo la corrispondenza con  $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ , da (1,0), (0,1) o (1,1). Pertanto esistono esattamente 3 sottoestensioni distinte di grado 2 su  $\mathbb{Q}$ .

In particolare queste sottoestensioni corrispondono ai sottocampi di L fissati da  $\varphi_{10}$ ,  $\varphi_{01}$  e  $\varphi_{11}$ , ossia  $\mathbb{Q}(\sqrt{3})$ ,  $\mathbb{Q}(\sqrt{2})$  e  $\mathbb{Q}(\sqrt{6})$ .

Inoltre  $\alpha := \sqrt{2} + \sqrt{3}$  è un elemento primitivo di L, dal momento che non può appartenere né a  $\mathbb{Q}(\sqrt{3})$  né a  $\mathbb{Q}(\sqrt{2})$  (altrimenti tali sottoestensioni coinciderebbero con  $L, \mathcal{E}$ ), e così nemmeno a  $\mathbb{Q}(\sqrt{6})$  (altrimenti  $\alpha$  si scriverebbe come combinazione lineare di  $1 \in \sqrt{6}, \mathcal{E}$ ). Alternativamente  $\alpha$  ha esattamente 4 coniugati tramite le varie<sup>4</sup>  $\varphi_{ij}$ , e quindi ha grado 4 su  $\mathbb{Q}$ . In particolare vale che:

$$\mu_{\alpha}(x) = \prod_{i=0}^{1} \prod_{j=0}^{1} (x + (-1)^{i} \sqrt{2} + (-1)^{j} \sqrt{3}) = x^{4} - 10x^{2} + 1.$$

In modo analogo si ottengono i polinomi minimi di  $\sqrt{2}+\sqrt{3}$  su  $\mathbb{Q}(\sqrt{2})$ ,  $\mathbb{Q}(\sqrt{3})$  e  $\mathbb{Q}(\sqrt{6})$ , rispettivamente  $x^2-2\sqrt{2}x-1=(x-\sqrt{2})^2-3$ ,  $x^2-2\sqrt{3}x-1=(x-\sqrt{3})^2-2$  e  $x^2-(\sqrt{2}+\sqrt{3})^2=x^2-2\sqrt{6}-5$ . Tutte le informazioni sono infine raccolte nel seguente diagramma di estensioni:



<sup>&</sup>lt;sup>4</sup>Tali 4 coniugati sono distinti dal momento che  $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$  è una base di L come  $\mathbb{Q}$ -spazio.

Tramite la corrispondenza di Galois abbiamo fatto corrispondere questo diagramma al seguente diagramma di gruppi:

