

Quantentechnologien 1

Prof. Dr. Roland Nagy

CV Roland Nagy

- □ 2011-2013 Master of Science, Electrical Engineering, FAU Erlangen
- □ 2013-2015 Visiting Scientist, IBM Thomas J. Watson Research Center, Physical Analytics, Yorktown Heights, USA
- □ 2015-2019 PhD, Silicon Vacancy Defects in 4H-Silicon Carbide for Quantum Applications, University of Stuttgart
- □ 2019-2020 Quantum Technology Expert, Carl-Zeiss AG, Oberkochen
- □ 10/2020- Professor, Research Topic: Applied Quantum Technologies, LEB, FAU Erlangen

Forschungsschwerpunkt

- Quantensensorik
- Quantenkommunikation
- Quantencomputing

Einteilung von Quantentechnologien

Quantensensorik

Quantencomputer

Quantensimulation

Quantenkommu nikation

[3,4]

[5,6]

nikation

[7,8]

[1] N. Aslam et al.,Science (2017) Vol. 357

[2] T. Staudacher et al.,Science (2013) Vol. 339

[3] J. M. Gambetta et al., npj Quantum Information (2017)

[4] A. W. Harrow, Nature (2017), Vol. 549 [5] J. Zhang et al.,Nature (2017) Vol. 551[6] H. Bernien et al.,Nature (2017) Vol. 551

[7] H. J. Kimble,Nature (2008), Vol. 453[8] G. Waldherr,

Nature (2014), Vol. 506

Warum sind Quantentechnologien für Ingenieure wichtig?

1948

- ☐ Entwicklung der Theorie durch Physiker
- □ Erste Demonstration

- ☐ Weiterentwicklung durch Ingenieure
- Kommerziell erhältlich

Warum sind Quantentechnologien für Ingenieure wichtig?

2021

2040

- ☐ Entwicklung der Theorie durch Physiker
- □ Demonstration der Funktionalität durch Physiker

- ☐ Für eine Kommerzialisierung muss die Anzahl an Qubits skaliert werden
- Quantencomputer müssen kleiner und besser zugänglich sein
- Quantencomputer müssen zur Anwendung gebracht werden

Themenschwerpunkte der einzelnen Vorlesungen

- 1. Vorlesung: Vorstellung der Vorlesung und Übung. Planck'sches Wirkungsquantum
- 2. Vorlesung: Doppeltspaltexperiment, Deutung der Wahrscheinlichkeitsdichte von Wellenfunktionen
- 3. Vorlesung: Materiewellen, Schrödinger Gleichung
- 4. Vorlesung: Heisberg'sche Unschärferelation, Statistische Interpretation von Wellengleichungen
- 5. Vorlesung: Impuls- und Ortsdarstellung, Kommutatoren von Operatoren, Messungen in der Quantenmechanik
- 6. Vorlesung: Bra- und Ket-Notation, Hilbert-Raum
- Vorlesung: Lineare/Spezielle Operatoren und Eigenwertprobleme
- 8. Vorlesung: Physikalische Interpretation von Messungen, Postulate und Dichtematrixformalismus
- 9. Vorlesung: Zeitentwicklung im Hilbert-Raum
- 10. Vorlesung: Energie-Zeit-Unschärferelation und Korrespondenzprinzip
- 11. Vorlesung: Lösungen der Schrödinger Gleichung und Potentialtopf
- 12. Vorlesung: Der Quantenmechanische harmonische Oszillator

Übersicht zu den Vorlesungen, Übungen und Totorien

Тур	Beschreibung	Datum
1. Vorlesung	Vorstellung der Vorlesung und Übung. Planck'sches Wirkungsquantum	17.04.2023
1. Übung/Tutorium	Vorstellung Übungsblatt 1 und Nachbearbeitung der Vorlesung	20.04.2023
2. Vorlesung	Doppeltspaltexperiment, Deutung der Wahrscheinlichkeitsdichte von Wellenfunktionen	23.04.2023
2. Übung	Vorstellung Übungsblatt 2	04.05.2023
3. Vorlesung	Materiewellen, Schrödinger Gleichung	08.05.2023
2. Tutorium	Nachbearbeitung der Vorlesung	11.05.2023
4. Vorlesung	Heisberg'sche Unschärferelation, Statistische Interpretation von Wellengleichungen	15.05.2023
3. Übung	Vorstellung Übungsblatt 3	18.05.2023
5. Vorlesung	Impuls- und Ortsdarstellung, Kommutatoren von Operatoren, Messungen in der Quantenmechanik	22.05.2023
3. Tutorium	Nachbearbeitung der Vorlesung	25.05.2023

Informationen zur Übung

Sie bekommen von uns keine Lösungen zu den Übungsblätter!

Alle zwei Wochen wird ein Übungsblatt präsentiert
 Markierte Übungen vom Übungsblatt sind für die Prüfung relevant
 Jede zweite Vorlesungswoche findet eine Übungsstunde statt
 Es werden Tutorien als Hilfestellung während des Semesters angeboten
 Die Übungsblätter thematisieren Aufgaben zum Vorlesungsinhalt
 Sie müssen Gruppenweise die Übungsblätter lösen und einreichen.
 In den Übungsstunden wird jeweils ein zufälliger Student ausgewählt, welcher die Übung an der Tafel vorrechnen muss (vorbereitet sein)
 Die eingereichten Übungsblätter werden korrigiert und mit Hinweisen versehen an Sie zurück gegeben, damit Sie weiter rechnen können. Mit den Hinweisen sollen Sie die Aufgaben selbstständig lösen.

Informationen zur Prüfung

Möglichkeit 1 Mündlich

- □ 25 % → Verständnisfragen aus einem Fragenkatalog (wird online im laufe der Woche zur Verfügung gestellt)
- □ 75 % → Vorrechnen einer markierten Übungsaufgabe mit Fragen

Möglichkeit 2 Schriftlich

- □ 60 % → Markierte Rechenaufgaben aus den Übungsblätter
- □ 20 % → Transferrechenaufgaben
- 20 % → Fragenkatalog

Gibt es Fragen zur Vorlesung, Übung oder der Prüfung?

Grenzen der klassischen Physik?

- ☐ Klassische Physik (Mechanik) wurde im 17. Jahrhundert von Galilei, Huygens, Newton usw. entwickelt.
- ☐ Ein charakteristisches Merkmal der klassischen Mechanik ist der **Determinismus**.

□ Solange wir den Weg kennen, können wir x (t,v) die Position des Fahrzeugs zu jedem Zeitpunkt bestimmen.

Existieren physikalische Limitierungen?

Ja, bei Lichtgeschwindigkeit

 $2,9978 \cdot 10^{8} \, m/s$

Relativitätstheorie

Ja, bei einzelnen Quanten

z. B. Abmessungen $\sim 10^{-9}$ m und kleiner

Quantenmechanik

Die Geburtsstunde der Quantenmechanik

□ Das Ende des 19. Jahrhunderts hat die Physik vor neue Fragenstellungen gestellt, die weder mit der klassischen Mechanik noch der Relativitätstheorie beantwortet werden konnten.

Beispiel: Wärmestrahlung eines Körpers

- Heiße Körper emittieren Photonen im sichtbaren Bereich
- Alte Körper emittieren
 Photonen im nicht sichtbaren
 Bereich, die wir als Temperatur
 (Wärmestrahlung) wahrnehmen
- Beide Effekte haben jedoch den gleichen physikalischen Ursprung

Beispiel: Schwarzer Körper

- Ein schwarzes Loch kann durch eine Hohlkugel und ein kleines Loch angenähert werden
- ☐ Die Wahrscheinlichkeit, dass eingefangene Strahlung das Loch verlässt, ist gering
- Die aus dem Loch kommende Strahlung bezeichnet man als "Schwarze Strahlung"

Ein Schwarzer Körper in der Physik

☐ Die austretende Strahlung ist identisch mit der Wärmestrahlung auf den Wänden innerhalb des

x 10⁻¹⁰

Schwarzen Körpers.

Welche Strahlung verlässt den Schwarzen Körper durch eine Öffnung?

Wien'sches Gesetz

Theoretische Modelle zur Beschreibung der Wärmestrahlung

$$w = \int_{0}^{\infty} f(v,T) = v^{3}ae^{-b\overline{T}}$$

$$v = Frequenz$$

$$T = Temperatur$$

$$a, b Konstante$$

Rayleigh-Jeans-Formel

$$w_v dv = \frac{8\pi v^2}{c^3} k_B T dv$$

$$k_B = Boltzmannkonstante$$

Ein Schwarzer Körper in der Physik

- Beide theoretischen Modelle konnten nicht den vollen Kurvenverlauf darstellen.
- □ Das Wien'sche Gesetz stimmt bei kleinen Wellenlängen mit der gemessenen Wärmestrahlung überein.
- Die Rayleigh-Jeans-Formel stimmt bei hohen Wellenlängen mit der gemessenen Wärmestrahlung überein.

Was passiert, wenn wir die Rayleigh-Jeans-Formel integrieren?

$$\int_0^\infty w_\lambda d\lambda = \frac{8\pi k_B T}{\lambda^4} d\lambda = \infty$$

Die Energiedichte wäre unendlich!!
Dies kann nicht der Realität entsprechen

Dieses Problem ist bekannt als Ultraviolette Katastrophe in der Physik

Das Versagen der klassischen Physik - Ultraviolette Katastrophe

Wieso stimmt die Theorie nicht mit dem Experiment überein?

Alle Ansätze aus der Theorie haben bis jetzt auf Annahmen der klassischen Mechanik gesetzt. Gibt es alternative Lösungsansätze?

- Max Planck hat als Ausgangslage seiner Theorie angenommen das jedes Wand-Atom im Hohlraum durch einen harmonischen Oszillator ersetzt werden soll.
- Jeder dieser Oszillatoren besitzt eine Eigenfrequenz.
- □ Der Oszillator schwingt mit dieser Eigenfrequenz und tauscht mit dem Elektromagnetischen Feld im Hohlraum Energie aus.
- □ Aufgrund der hohen Anzahl an linearen Oszillatoren in einem Hohlraum wird sich statistisch ein Gleichgewicht einstellen.
- Jeder Oszillator besitzt ein kontinuierliches Energiespektrum, sodass dieser auch jede beliebige Strahlungsenergie austauschen kann.
- ☐ Die erste Rechnung hat gezeigt, dass das hier angenommene Modell nicht stimmen kann!

Nächster Ansatz: Planck'sche Hypothese

Die Oszillatoren können sich nur in solchen Zuständen befinden, deren Energien ganzzahlige Vielfache eines elementaren Energiequants ϵ_0 sind:

$$E_n = n\epsilon_0 \& n = 0, \pm 1, \pm 2$$
 usw.

Diskrete Werte in der Physik?

Dass Oszillatoren (Atome) nur diskrete Werte annehmen können, steht im direkten Widerspruch zur klassischen Physik!

Annahme von Planck:

$$N = \sum_{n=0}^{\infty} N(n); \qquad E = \sum_{n=0}^{\infty} N(n)n\varepsilon_0$$

Die Gesamtzahl der Oszillatoren ist N. Davon sind N(n) in einem Zustand E_n

$$\overline{\varepsilon} = \frac{\sum_{n=0}^{\infty} N(n) n \varepsilon_0}{\sum_{n=0}^{\infty} N(n)}$$

Mittlere Energie pro Oszillator

Aus der klassischen Boltzmann-Statistik folgt $mit \beta = \frac{1}{k_B T}$

 $N(n) \sim e^{-\beta n \varepsilon_0}$

Setzt man N(n) in $\overline{\varepsilon}$ ein, folgt Folgendes

$$\overline{\varepsilon} = \frac{\sum_{n=0}^{\infty} N(n) n \varepsilon_0}{\sum_{n=0}^{\infty} N(n)} = \frac{\sum_{n=0}^{\infty} e^{-\beta n \varepsilon_0} n \varepsilon_0}{\sum_{n=0}^{\infty} e^{-\beta n \varepsilon_0}} = -\frac{d}{d\beta} \ln \left[\sum_{n=0}^{\infty} e^{-\beta n \varepsilon_0} \right]$$

Die Summe von $\sum_{n=0}^{\infty}e^{-\beta n\varepsilon_0}$ ergibt folgende geometrische Reihe

$$\sum_{n=0}^{\infty} e^{-\beta n \varepsilon_0} = \frac{1}{1 - e^{-\beta \varepsilon_0}}$$

Die mittlere Energie pro Oszillator beträgt somit

$$\overline{\varepsilon} = \frac{\varepsilon_0}{e^{\beta \varepsilon_0} - \varepsilon_0}$$

Ersetzt man in der Formel von Rayleigh-Jeans die Energie k_BT durch $\overline{\varepsilon}$, so erhält man:

$$w_v = \frac{8\pi v^2}{c^3} \frac{\varepsilon_0}{e^{\beta \varepsilon_0} - 1}$$

Diese Formel kann ebenfalls in das Wien'sche Gesetz überführt werden, wenn ε_0 proportional zur Frequenz eines Oszillators ist

$$\varepsilon_0 \to h\iota$$

Planck'sche Strahlungsformel

Das resultierende Ergebnis ist die Planck'sche Strahlungsformel

$$w_v = \frac{8\pi v^2}{c^3} \frac{hv}{e^{\beta hv} - 1}$$

$$\frac{hv}{e^{\beta hv}-1} \sim \begin{cases} k_B T \ f \ddot{\mathbf{u}} r \ hv \ll k_B T \\ hv e^{\frac{hv}{k_B T}} \ f \ddot{\mathbf{u}} r \ hv \gg k_B T \end{cases}$$

Die Planck-Formel lässt sich in die Wien-Formel und Rayleigh-Jeans Formel überführen!

Die Proportionalitäts-Konstante h ist das Planck'sche Wirkungsquantum

$$h = 6,624 \cdot 10^{-34} Js$$

$$h = \frac{h}{2\pi} = 1,055 \cdot 10^{-34} Js$$

Die Erkenntnis, dass Energien auf kleinen Skalen nur diskrete Werte annehmen können, war der Beginn der Quantenmechanik

Gibt es bis hier Fragen?

Existieren noch andere Größen, die diskret sind?

- ightharpoonup Widerstand R_k von Kitzling Konstante
- Drehimpuls I
- Photon als Quant des Elektromagnetisches Feldes
- Phonon als Quant mechanischer Festkörperwellen
- Graviton als Quantelungsgröße des Schwerefeldes
- Spin S
- **_**____

In der mikroskopischen Ansicht sind Werte diskret.

Was bedeutet das?

Wir brauchen einen Weg, die mikroskopische Welt zu beschreiben.

Etablierung der Quantenmechanik (Wellenmechanik)

Kann man die Quantenmechanik mit ihren Eigenschaften visualisieren?

Das Doppeltspalt-Experiment

Das Doppeltspalt-Experiment Gemessene Elektronenverteilung Gedankenexperiment 2 auf dem Schirm Elektronenka Dieses Ergebnis stimmt nicht mit dem zu erwartenden Ergebnis überein..... Schirm

Das Doppeltspalt-Experiment

Erklärung zu Gedankenexperiment 2

Gemessene Elektronenverteilung auf dem Schirm

Das Doppeltspalt-Experiment

Erklärung zu Gedankenexperiment 2

Gemessene Elektronenverteilung auf dem Schirm

Durch Interferenzen und dem Beugungen kann dieses Ergebnis physikalisch erklärt werden.

Das Doppeltspalt-Experiment -> Zusammenfassung

Teilchen wie z. B. Elektronen scheinen sich wie Wellen zu verhalten

Nur durch Wellengleichungen lassen sich die Ergebnisse des Doppeltspalt-Experiments nachvollziehen.

Die Quantenmechanik wird aus diesem Grund auch Wellenmechanik genannt.

Gibt es Fragen?

Vielen Dank fürs Zuhören!

