Московский физико-технический институт Физтех-школа прикладной математики и информатики

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

IV CEMECTP

Лектор: Жуковский Сергей Евгеньевич

Авторы: Дмитрий Лизюра,

Яков Даниличев

Содержание

1	Автономные системы		2
	1.1	Основные понятия	2
	1.2	Свойства автономных систем	3
2	Автономные системы на плоскости		5
	2.1	Линейные автономные системы	5
		2.1.1 $\lambda_1, \lambda_2 \in \mathbb{R} \setminus \{0\}, \lambda_1 \neq \lambda_2 \dots \dots \dots \dots \dots \dots \dots \dots$	5
		$2.1.2 \lambda_1 = \lambda_2 = \lambda \in \mathbb{R} \dots \dots \dots \dots \dots \dots \dots$	7
		2.1.3 $\lambda_{1,2} = \alpha \pm \beta i \in \mathbb{C}, \ \beta \neq 0 \dots \dots \dots \dots \dots \dots \dots \dots \dots$	8
	2.2	Нелинейные автономные системы	10
3	Teo	еорема о выпрямлении траекторий	
4	Устойчивость по Ляпунову и асимптотическая устойчивость		16
	4.1	Определение и примеры	16
	4.2	Устойчивость линейных систем	17
5	Усл	ловия устойчивости	
6	Первые интегралы		22
	6.1	Первые интегралы нормальных ОДУ	22
	6.2	Первые интегралы автономных систем	24
	6.3	Множество всех первых интегралов	25
	6.4	Множество первых интегралов автономных систем	27
7	Ли	нейные однородные уравнения в частных производных	
8	Вариационное исчисление		30
	8.1	Простейшая задача вариационного исчисления	30
	8.2	Задача о брахистохроне	32
	8.3	Задача со свободным концом	34
	8.4	Задача для функционалов, зависящих от нескольких функций	35
	8.5	Функционалы, содержащие производные высших порядков	36

1 Автономные системы

1.1 Основные понятия

Пусть $\Omega\subset\mathbb{R}^n$ открыто, а функция $f\colon\Omega\to\mathbb{R}^n$ непрерывно дифференцируема. Рассмотрим систему

$$x' = f(x). (1)$$

Определение. Такая система называется *автономной*, а Ω — это её *фазовое пространство*.

Основная идея такой системы в том, что в правой части нет зависимости от t.

Определение. Пусть $x: I \to \mathbb{R}^n$ — непродолжаемое решение системы (1). Множество $\{x(t): t \in I\}$ называется фазовой траекторией.

Определение. Пусть есть $\hat{x} \in \Omega$ такой, что $x(t) \equiv \hat{x}$ является решением $(1) \Leftrightarrow f(\hat{x}) = 0$. Тогда вектор \hat{x} называется положением равновесия.

Рассмотрим несколько примеров.

1. Пусть $f: \mathbb{R} \to \mathbb{R}$, а также существует единственная точка $\widehat{x} \in \mathbb{R}: f(\widehat{x}) = 0$. Тогда решение \widehat{x} даёт нам одну фазовую траекторию — это будет просто одна точка в фазовом пространстве. Кроме того, будут ещё два решения: одно будет лежать выше \widehat{x} , а другое — ниже. Можно показать, что их фазовых траектории: это два открытых луча, расходящихся из положения равновесия в разные стороны.

Рис. 1: Фазовые траектории

2. Рассмотрим теперь двумерный случай: $x_1' = x_2$ и $x_2' = -x_1$. Это линейная система, её общее решение: $x_1 = r\cos(t + \alpha)$, $x_2 = r\sin(t + \alpha)$, где $r \geqslant 0$, $\alpha \in [0, 2\pi)$. В этом случае фазовыми траекториями будут начало координат (положение равновесия) и всевозможные концентрические окружности с центром в начале координат.

1.2 Свойства автономных систем

1. Если $x:(a,b)\to \mathbb{R}^n$ является непродолжаемым решением системы (1), то для любого $c\in \mathbb{R}$ функция $y(t)\coloneqq x(t+c)$, где $t\in (a-c,b-c)$ тоже является непродолжаемым решением.

Доказательство. Для начала покажем, что y(t) является решением (1). Действительно, для $t \in t \in (a-c,b-c)$ имеем:

$$y'(t) \equiv \frac{d}{dt}x(t+c) \equiv f(x(t+c)) \equiv f(y(t)).$$

Теперь докажем, что оно непродолжаемое. Предположим противное: пусть $z:(d,e)\to\mathbb{R}^n$ является решением (1), причём $(a-c,b-c)\subsetneq (d,e)$, при этом $z(t)\equiv y(t)$ для $t\in (a-c,b-c)$. Тогда функция z(t-c), где $t\in (d+c,e+c)$, является решением (1), $(a,b)\subsetneq (d+c,e+c)$, а также $z(t-c)\equiv y(t-c)\equiv x(t)\Rightarrow x$ не является непродолжаемым решением, противоречие.

2. Любые две фазовые траектории $X,Y\in\Omega$ либо не пересекаются, либо совпадают.

Доказательство. Пусть $X \cap Y \neq \emptyset$. Пусть $x_0 \in X \cap Y$. Переведём на язык решений: для X и Y соответственно существуют непродолжаемые решения $x \colon (a,b) \to \mathbb{R}^n, y \colon (c,d) \to \mathbb{R}^n$, а также точки $t_1 \in (a,b)$ и $t_2 \in (c,d) \colon x(t_1) = x_0 = y(t_2)$. Возьмём функцию $z(t) \coloneqq y(t+t_2-t_1), t \in (c-t_2+t_1,d-t_2+t_1)$, тогда по первому свойству она является непродолжаемым решением (1). При $t=t_1$ получаем $y(t+t_2-t_1) = x_0$. Значит, z(t) является решением задачи Коши

$$\begin{cases} x' = f(x) \\ x(t_1) = x_0 \end{cases} .$$

Заметим, что x тоже является непродолжаемым решением этой задачи, а тогда по теореме о существовании и единственности

$$x(t) \equiv z(t) \Rightarrow X = \{z(t) : t \in (c - t_2 + t_1, d - t_2 + t_1)\} = Y.$$

Следствие. Решение автономной системы не достигает положения равновесия за конечное время.

Понимать это можно следующим образом. Вспомним картинку из примера 1. Возьмём один из получившихся лучей в фазовом пространстве. Ему соответствует какое-то решение x(t). Начнём подставлять в x(t) разные t. Если для какого-то t_0 мы попадём в положение равновесия, то у нас пересекутся две фазовые траектории: выбранный луч и сама точка положения равновесия. Тогда они должны совпадать, но это невозможно. Поэтому ни для какого конечного t мы не попадём в положение равновесия.

3. Пусть $x \colon \mathbb{R} \to \mathbb{R}^n$ — непродолжаемое решение (1). Предположим, что нашлись $t_1 < t_2 : x(t_1) = x(t_2)$, причём $x(t) \not\equiv \text{const.}$ Тогда функция x — это периодическая функция с

положительным наименьшим периодом, а её фазовая траектория является замкнутой кривой без самопересечений.

Доказательство. Возьмём функцию $y(t) := x(t+t_2-t_1), t \in \mathbb{R}$, она является непродолжаемым решением (1). Более того, $y(t_1) = x(t_2) = x(t_1)$, а тогда функции x и y являются решениями одной и той же задачи Коши \Rightarrow по теореме о существовании и единственности $y(t) \equiv x(t)$. Положим $d = t_2 - t_1$, тогда это тождество переписывается в виде $x(t) \equiv x(t+d)$. Пусть P — это множество всех периодов функции x. Мы знаем, что оно непусто, так как $d \in P$.

Так как $x(t) \not\equiv \text{const}$, то существует $\tau \in \mathbb{R} : x(\tau) \not= x(t_1)$. Пусть $\varepsilon = \frac{1}{2}|x(\tau) - x(t_1)|$. В силу непрерывности функции x существует $\delta > 0 : x(t) \in (x(\tau) - \varepsilon, x(\tau) + \varepsilon)$ для любого $t \in (\tau - \delta, \tau + \delta)$. В силу выбора ε получаем, что $x(t) \not= x(t_1)$ для любого $t \in (\tau - \delta, \tau + \delta) \Rightarrow$ для любого $p \in P$ имеем $p > \delta$, а тогда $\widehat{p} := \inf P \geqslant \delta > 0$. Докажем теперь, что $\widehat{p} \in P$. Для этого рассмотрим последовательность $\{p_j\} \subset P$ такую, что $p_j \to \widehat{p}$ при $j \to \infty$. Тогда для любого j имеем $x(t+p_j) \equiv x(t)$. Переходя к пределу по j и пользуясь непрерывностью функции x, получаем, что $x(t+\widehat{p}) \equiv x(t)$, то есть $\widehat{p} \in P$. Таким образом, мы показали, что существует положительный наименьший период.

Осталось доказать, что фазовая траектория X функции x не имеет самопересечений, то есть для любых $\hat{t}_1,\hat{t}_2\in\mathbb{R}:|\hat{t}_1-\hat{t}_2|<\hat{p}$ выполняется $x(\hat{t}_1)\neq x(\hat{t}_2)$. Предположим противное: пусть существуют $\hat{t}_1,\hat{t}_2\in\mathbb{R}:\hat{t}_1<\hat{t}_2,\hat{t}_2-\hat{t}_1<\hat{p}$, при этом $x(\hat{t}_1)=x(\hat{t}_2)$. Тогда из начала доказательства получаем, что $\hat{t}_2-\hat{t}_1\in P$. Но тогда получаем противоречие с минимальностью \hat{p} .

- 4. Вывод: траектория это либо точка, либо замкнутая кривая без самопересечений, либо незамкнутая кривая без самопересечений.
- 5. (групповое свойство автономной системы) Рассмотрим задачу Коши

$$\begin{cases} x' = f(x) \\ x(0) = x_0 \end{cases}$$
 (2)

Обозначим через $\varphi(t, x_0)$ непродолжаемое решение (2), $x_0 \in \Omega$, $t \in \mathbb{R}$. Тогда справедливо тождество $\varphi(t, \varphi(\tau, x_0)) \equiv \varphi(t + \tau, x_0)$.

Доказательство. Зафиксируем τ . Тогда по свойству 1 функция $\varphi(t+\tau,x_0)$ является решением системы (1). В то же время по определению $\varphi(t,\varphi(\tau,\xi))$ тоже является решением (1). Рассмотрим t=0: тогда в левой части имеем $\varphi(0,\varphi(\tau,x_0))=\varphi(\tau,x_0)$, в правой — $\varphi(0+\tau,x_0)=\varphi(\tau,x_0)$. То есть в t=0 решения совпадают, а тогда по теореме о существовании и единственности для любого τ выполняется $\varphi(t+\tau,x_0)\equiv \varphi(t,\varphi(\tau,x_0))$.

6. Функция φ непрерывна.

Это верно в силу теоремы о непрерывной зависимости непродолжаемого решения задачи Коши от начального условия и параметра, которая доказывалась в прошлом семестре.

7. Рассмотрим множество отображений $\Phi := \{ \varphi(t, \cdot) \colon \Omega \to \Omega \mid t \in \mathbb{R} \}$. Зададим операцию композиции: $\varphi(t, \cdot) \circ \varphi(s, \cdot) = \varphi(t, \varphi(s, \cdot))$. Тогда (Φ, \circ) — это абелева группа.

Доказательство. Здесь нам помогает групповое свойство, которое мы только что доказали. Запишем следующее равенство:

$$\varphi(t, \varphi(s, \cdot)) \equiv \varphi(t + s, \cdot) \equiv \varphi(s, \varphi(t, \cdot)).$$

Из него получаем, что Φ замкнуто относительно композиции и операция коммутативна. Это же равенство показывает, что нейтральным элементом будет $\varphi(0,\cdot)$, а обратным к $\varphi(t,\cdot)$ будет $\varphi(-t,\cdot)$.

2 Автономные системы на плоскости

2.1 Линейные автономные системы

Нам дана невырожденная матрица $A \in \mathbb{R}^{2 \times 2}$. Рассмотрим автономную систему x' = Ax:

$$\begin{cases} x_1' = a_{11}x_1 + a_{12}x_2 \\ x_2' = a_{21}x_1 + a_{22}x_2 \end{cases}$$
 (1)

У неё гарантированно есть положение равновесия x=0. Чтобы понять, как система ведёт себя в окрестности нулевого положения равновесия, посмотрим на собственные значения λ_1, λ_2 матрицы A.

Примечание. Для удобства все фазовые портреты будем строить в системе координат для базиса (h_1, h_2) . Направление движения можно определить, устремив $t \to +\infty$. Кроме того, помним, что фазовые траектории не пересекаются.

2.1.1 $\lambda_1, \lambda_2 \in \mathbb{R} \setminus \{0\}, \ \lambda_1 \neq \lambda_2$

Пусть h_1 и h_2 — соответствующие собственные векторы. Тогда в базисе (h_1, h_2) система будет иметь вид

$$\begin{cases} y_1' = \lambda_1 y_1 \\ y_2' = \lambda_2 y_2 \end{cases}$$

и её решением будет

$$\begin{cases} y_1 = c_1 e^{\lambda_1 t} \\ y_2 = c_2 e^{\lambda_2 t} \end{cases}.$$

Напишем уравнение её траектории, исключив параметр t:

$$e^{\lambda_1 t} = \frac{y_1}{c_1} \Rightarrow y_2 = c_2 (e^{\lambda_1 t})^{\frac{\lambda_2}{\lambda_1}} = c_2 \left(\frac{y_1}{c_1}\right)^{\frac{\lambda_2}{\lambda_1}}$$

при $c_1 \neq 0$, а при $c_1 = 0$ получится уравнение $y_1 = 0$.

ightharpoonup Первый случай: $\lambda_1 \cdot \lambda_2 > 0$. На рисунке 2 слева изображён портрет для случая $\lambda_2 > \lambda_1 > 0$, а справа для случая $\lambda_1 > \lambda_2 > 0$.

Рис. 2: Неустойчивый узел

Определение. Полученный портрет называется неустойчивым узлом.

Если $\lambda_2 < \lambda_1 < 0$ или $\lambda_1 < \lambda_2 < 0$, то получатся аналогичные портреты, но с направлением к началу координат.

Определение. Тогда портрет называется устойчивым узлом.

Устойчивость означает, что при $t \to +\infty$ точка движется к положению равновесия.

 \triangleright Второй случай: $\lambda_1 \cdot \lambda_2 < 0$. На рисунке 3 слева изображён портрет для случая $\lambda_1 < 0, \lambda_2 > 0$, а справа для случая $\lambda_1 > 0, \lambda_2 < 0$.

Рис. 3: Седло

Определение. Полученный портрет называется седлом.

2.1.2 $\lambda_1 = \lambda_2 = \lambda \in \mathbb{R}$

 \triangleright Первый случай: A имеет два линейно независимых собственных вектора h_1 и h_2 . Тогда аналогично прошлым рассуждениям получаем, что кривая имеет вид

$$\begin{cases} y_2 = \frac{c_2}{c_1} y_1, & c_1 \neq 0 \\ y_1 = 0, & c_1 = 0 \end{cases}.$$

На рисунке 4 слева изображён портрет для случая $\lambda > 0$, а справа для случая $\lambda < 0$.

Рис. 4: Дикритический узел

Определение. Полученный портрет называется дикритическим узлом. При $\lambda > 0$ он называется неустойчивым, а при $\lambda < 0$ — устойчивым.

 \triangleright Второй случай: h_1 — собственный вектор, h_2 — присоединённый к нему. Тогда в базисе (h_1,h_2) система будет иметь вид

$$\begin{cases} y_1' = \lambda y_1 + y_2 \\ y_2' = \lambda y_2 \end{cases}$$

Найдём решение:

$$\begin{cases} y_1 = c_1 e^{\lambda t} + c_2 t e^{\lambda t} \\ y_2 = c_1 e^{\lambda t} \end{cases}$$

Выразим t (считаем, что $c_2 \neq 0$):

$$e^{\lambda t} = \frac{y_2}{c_2} \Rightarrow t = \frac{1}{\lambda} \ln \left(\frac{y_2}{c_2} \right).$$

Подставим в первое уравнение:

$$y_1 = c_1 \frac{y_2}{c_2} + \frac{c_2}{\lambda} \ln\left(\frac{y_2}{c_2}\right) \frac{y_2}{c_2}.$$

На рисунке 5 слева изображён портрет для случая $\lambda>0$, а справа для случая $\lambda<0$.

Рис. 5: Вырожденный узел

Определение. Этот портрет называется вырожденным узлом. При $\lambda > 0$ он называется неустойчивым, а при $\lambda < 0$ — устойчивым.

2.1.3 $\lambda_{1,2} = \alpha \pm \beta i \in \mathbb{C}, \ \beta \neq 0$

Тогда собственные векторы имеют вид $h_{1,2}=a\pm bi$, где a и b — линейно независимые векторы. Как известно, фундаментальной системой решений здесь будет

$$\begin{cases} x_1 = e^{\alpha t} (a\cos(\beta t) - b\sin(\beta t)) \\ x_2 = e^{\alpha t} (a\sin(\beta t) + b\cos(\beta t)) \end{cases}$$

B базисе (a, b) она имеет вид

$$\begin{cases} y_1 = e^{\alpha t} \begin{pmatrix} \cos(\beta t) \\ -\sin(\beta t) \end{pmatrix} \\ y_2 = e^{\alpha t} \begin{pmatrix} \sin(\beta t) \\ \cos(\beta t) \end{pmatrix} \end{cases}$$

Тогда общее решение имеет вид

$$y(t) = re^{\alpha t} \begin{pmatrix} \cos(\beta(t-\theta)) \\ \sin(\beta(t-\theta)) \end{pmatrix}.$$

для всех r и θ . Чтобы получить его, нужно просто расписать $c_1y_1+c_2y_2$ с помощью формул косинуса суммы, синуса суммы и дополнительного угла.

 \triangleright При $\alpha = 0$ получается уравнение окружности. На рисунке 6 слева изображён портрет для случая $\beta > 0$, а справа для случая $\beta < 0$.

Рис. 6: Центр

Определение. Такой портрет называется центром.

⊳ При $\alpha > 0$ расстояние от начала координат увеличивается при $t \to +\infty$, а ещё меняется угол, поэтому получается спираль, как на рисунке 7, вращающаяся против часовой стрелки при $\beta > 0$ (изображена слева) и по часовой при $\beta < 0$ (изображена справа). В окрестности нуля (при $t \to -\infty$) происходит бесконечное число витков, поэтому там обычно график не рисуют.

Рис. 7: Неустойчивый фокус

Определение. Полученный портрет называется неустойчивым фокусом.

ightharpoonup При $\alpha < 0$ получается всё то же самое, но теперь всё наоборот: направление к началу координат, при $\beta > 0$ спираль вращается по часовой стрелке (изображена справа), а при $\beta < 0$ — против часовой (изображена слева).

Рис. 8: Устойчивый фокус

Определение. Полученный портрет называется устойчивым фокусом.

Вообще говоря, есть ещё один случай: когда матрица A вырождена, но он нас интересовать не будет, так как при исследовании нелинейных систем нам будет нужна невырожденность.

2.2 Нелинейные автономные системы

Пусть нам даны открытое множество $\Omega \subset \mathbb{R}^2$, отображение $f \in C^2(\Omega, \mathbb{R}^2)$ и положение равновесия \widehat{x} , то есть $f(\widehat{x}) = 0$. Обозначим $A = \frac{\partial f}{\partial x}(\widehat{x})$, $\lambda_{1,2}$ — её собственные числа. Рассмотрим систему

$$x' = f(x). (2)$$

Тогда, раскладывая по формуле Тейлора в окрестности \hat{x} , получаем

$$f(x) = A(x - x_*) + o(x - \widehat{x}).$$

Оказывается, что при некоторых условиях остаток $o(x-\widehat{x})$ можно отбросить и рассматривать линейную систему. Этот процесс называется $nuneapusauue\check{u}$.

Теорема. (б/д) Пусть $\operatorname{Re}(\lambda_{1,2}) \neq 0$. Тогда существуют окрестности $U(\widehat{x})$, V(0) и существует диффеоморфизм $\Phi \colon U(\widehat{x}) \to V(0)$ такой, что он переводит траектории системы (2) в траектории системы (1), а Φ^{-1} переводит траектории системы (1) в траектории системы (2) с сохранением ориентации.

Покажем, что условие $\mathrm{Re}(\lambda_{1,2}) \neq 0$ существенно. Для этого рассмотрим следующую систему

$$\begin{cases} x_1' = -x_2 - x_1 |x|^2 \\ x_2' = x_1 - x_2 |x|^2 \end{cases}$$

Сделаем замену

$$\begin{cases} x_1(t) = r(t)\cos(\varphi(t)) \\ x_2(t) = r(t)\sin(\varphi(t)) \end{cases}.$$

Подставляя в исходное уравнение, получаем

$$\begin{cases} r'\cos(\varphi) - r\sin(\varphi)\varphi' = -r\sin(\varphi) - r^3\cos(\varphi) \\ r'\sin(\varphi) + r\cos(\varphi)\varphi' = r\cos(\varphi) - r^3\sin(\varphi) \end{cases}.$$

Умножив первое уравнение на $\cos(\varphi)$, второе — на $\sin(\varphi)$ и сложив, получим $r' = -r^3$. Теперь умножим первое на $-\sin(\varphi)$, второе — на $\cos(\varphi)$ и сложим, получим $\varphi' = 1$. Тогда имеем систему

$$\begin{cases} r' = -r^3 \\ \varphi' = 1 \end{cases}.$$

У неё решением будет спираль, вращающаяся по часовой стрелке, направление к началу координат.

Теперь рассмотрим очень похожую систему:

$$\begin{cases} x_1' = -x_2 + x_1 |x|^2 \\ x_2' = x_1 + x_2 |x|^2 \end{cases}.$$

Проделав те же самые преобразования, получим систему

$$\begin{cases} r' = r^3 \\ \varphi' = 1 \end{cases}.$$

Здесь решением снова будет спираль, но теперь она вращается против часовой стрелки и направление от начала координат.

В каждой системе положение равновесия — это начало координат, у обоих систем матрица Якоби (о-малое отбрасываем) выглядит так:

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

Почему же решения качественно отличаются? Дело в том, что собственные числа A — это $\lambda_{1,2}=\pm i$, то есть $\mathrm{Re}(\lambda_{1,2})=0$. Значит, это условие действительно важно.

3 Теорема о выпрямлении траекторий

Заданы открытое множество $\Omega \subset \mathbb{R}^n$ (будем считать, что $n \geqslant 2$), отображение $f \in C^1(\Omega, \mathbb{R}^n)$, точка $x_0 \in \Omega$ и автономная система

$$x' = f(x). (1)$$

Напоминание. Открытый шар в \mathbb{R}^n с центром в точке x и радиусом r мы обозначаем $O^n(x,r)$.

Теорема. Если $f(x_0) \neq 0$ (то есть x_0 не является положением равновесия), то существуют окрестности $X(x_0) \subset \Omega, Y(0) := (-\varepsilon, \varepsilon) \times O^{n-1}(0, \varepsilon) \subset \mathbb{R}^n$ для некоторого $\varepsilon > 0$ и существует

диффеоморфизм $\Psi: Y(0) \to X(x_0)$ такой, что:

1. для любого решения $y \colon I \to Y(0)$ системы

$$\begin{cases} y'_1 = 1 \\ \vdots \\ y'_{n-1} = 0 \\ y'_n = 0 \end{cases}$$
 (2)

функция $\Psi(y(t))$ является решением системы (1)

2. для любого решения $x: I \to X(x_0)$ системы (1) функция $\Psi^{-1}(x(t))$ является решением системы (2).

Заметим, что траектории системы (2) — это просто прямые. Тогда смысл теоремы в следующем: в окрестности точки x_0 траектории с точностью до диффеоморфизма являются кусочками прямых линий. Прежде чем перейти к доказательству, обсудим пару моментов касательно теоремы.

Рис. 9: Выпрямление траекторий

 \triangleright Говорят, что Ψ выпрямляет поле направлений f, то есть выпрямляются не только траектории, но и касательные векторы к ним. Докажем следующую связь между Ψ и f, которая верна в $X(x_0)$:

$$\frac{\partial \Psi^{-1}}{\partial x}(x)f(x) \equiv \begin{pmatrix} 1\\0\\\vdots\\0 \end{pmatrix}.$$

Возьмём какое-нибудь решение x(t), тогда с одной стороны

$$\frac{d\Psi^{-1}}{dt}(x(t)) \equiv \frac{\partial \Psi^{-1}}{\partial x}(x(t))x'(t) \equiv \frac{\partial \Psi^{-1}}{\partial x}(x(t))f(x(t)),$$

а с другой стороны верно следующее:

$$\frac{d\Psi^{-1}}{dt}(x(t)) \equiv \frac{d}{dt} \begin{pmatrix} t + C_1 \\ C_2 \\ \vdots \\ C_n \end{pmatrix} \equiv \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

Ну и поскольку для любой точки $x \in X(x_0)$ можно найти решение, траектория которого проходит через x, то можно в равенствах везде заменить x(t) на x.

- \triangleright Условие $f(x_0) \neq 0$ существенно, а именно, верно следующее: если $f(x_0) = 0$, то траектории нельзя выпрямить, то есть не существует подходящих $X(x_0), \varepsilon, \Psi$ из теоремы. Действительно, точка x_0 является траекторией. Если бы выполнялась теорема, то в Y(0) существовала бы прямая траектория, которую Ψ переводил бы в x_0 . Но тогда Ψ не инъективен \Rightarrow не диффеоморфизм, противоречие.
- ightharpoonup Теорема носит локальный характер и обобщить её, к сожалению, нельзя. Именно, если для всех $x \in \Omega$ верно $f(x) \neq 0$, то траектории на Ω не всегда можно выпрямить. На конкретном примере примерно поймём, почему это может быть так.

Возьмём систему

$$\begin{cases} x_1' = -\cos(x_2) \\ x_2' = \sin(x_2) \end{cases}.$$

Её траектории выглядят как-то так:

Рис. 10: Пример Арнольда

Интуитивно, если бы Ψ переводил прямые траектории в эти траектории, то он и отрезок между прямыми переводил бы в отрезок кривой между траекториями. Но этот отрезок между прямыми пересекает все прямые траектории, лежащие между его концами, которых бесконечно много, а отрезок кривой между траекториями на картинке будет пересекать лишь конечное число траекторий.

Доказательство. Разобьём доказательство теоремы на три этапа.

1. Сначала построим отображение Ψ . Так как вектор $f(x_0) \neq 0$, то мы можем дополнить его n-1 вектором так, чтобы получился базис $(f(x_0), e_2, \ldots, e_n)$ в \mathbb{R}^n . Пусть $\varphi(\cdot, \xi)$ — это непродолжаемое решение задачи Коши

$$\begin{cases} x' = f(x) \\ x(0) = \xi \in \Omega \end{cases}.$$

Область определения функции φ открыта в \mathbb{R}^{n+1} (это мы доказывали в прошлом семестре) и содержит точку $(0,x_0)$. Тогда зададим отображение Ψ следующим образом: $\Psi(y) \coloneqq \varphi(y_1,x_0+\sum_{i=2}^n y_i e_i)$. Область определения Ψ — это окрестность точки 0 в \mathbb{R}^n (так как мы можем взять близкие к нулю числа y_1,\ldots,y_n так, чтобы вектор $(y_1,x_0+\sum_{i=2}^n y_i e_i)$ попал в окрестность точки $(0,x_0)$). Кроме того, φ непрерывно дифференцируема $\Rightarrow \Psi$ тоже непрерывно дифференцируема.

2. Теперь построим окрестности $X(x_0)$ и Y(0) так, чтобы отображение Ψ стало диффеоморфизмом. Для начала укажем некоторые свойства, которые нам потребуются:

 \triangleright так как $\varphi(\cdot,x_0)$ является решением задачи Коши, то

$$\left. \frac{\partial \varphi}{\partial t}(t, x_0) \right|_{t=0} = f(\varphi(t, x_0))|_{t=0} = f(x_0);$$

 \triangleright для всех $\xi \in \Omega$ верно $\varphi(0,\xi) \equiv \xi$.

Теперь посчитаем частные производные Ψ . По y_1 она выглядит так:

$$\frac{\partial \Psi}{\partial y_1}(0) = \frac{\partial \varphi}{\partial y_1}(y_1, x_0) \Big|_{y_1=0} = f(x_0).$$

При $j \ge 2$ они выглядят следующим образом:

$$\frac{\partial \Psi}{\partial y_j}(0) = \left. \frac{\partial \varphi}{\partial y_j}(0, x_0 + y_j e_j) \right|_{y_j = 0} = \left. \frac{\partial}{\partial y_j}(x_0 + y_j e_j) \right|_{y_j = 0} = e_j.$$

Собираем всё вместе, и получаем следующую матрицу Якоби:

$$\frac{\partial \Psi}{\partial u}(0) = (f(x_0) \mid e_2 \mid \dots \mid e_n).$$

Теперь вспомним, что мы специально выбирали столбцы этой матрицы, чтобы они были базисом, поэтому $\operatorname{rk} \frac{\partial \Psi}{\partial y}(0) = n \Rightarrow$ можем в нуле применить теорему об обратной функции. Из неё получаем, что существуют окрестности $X(x_0)$ и $Y(0) = (-\varepsilon, \varepsilon) \times O^{n-1}(0,\varepsilon)$ для некоторого $\varepsilon > 0$ такие, что отображение $\Psi \colon Y(0) \to X(x_0)$ является диффеоморфизмом.

3. Теперь осталось показать, что выполняются пункты 1 и 2 из теоремы. Берём решение

 $y: I \to Y(0)$ системы (2), тогда

$$y(t) \equiv \begin{pmatrix} t + C_1 \\ C_2 \\ \vdots \\ C_n \end{pmatrix}.$$

Применим к нему отображение Ψ :

$$x(t) := \Psi(y(t)) \equiv \varphi(t + C_1, x_0 + \sum_{j=2}^{n} C_j e_j).$$

Так как в автономных системах сдвиг по t не влияет на свойство «быть решением», то x(t) является решением системы $(1) \Rightarrow$ первый пункт выполняется.

Теперь покажем, что второй пункт тоже верен. К сожалению, технически это будет довольно неприятно. Берём решение $x\colon I\to X(x_0)$ системы (1). Хотим показать, что функция $\Psi^{-1}(x(t))$ является решением системы (2). Пусть $t^*\in I$ и

$$y^* := \Psi^{-1}(x(t^*)) = \begin{pmatrix} y_1^* \\ \vdots \\ y_n^* \end{pmatrix}.$$

Через точку y^* проходит траектория какого-то решения y(t), тогда оно должно выглядеть как-то так:

$$y(t) \coloneqq \begin{pmatrix} t + y_1^* - t^* \\ y_2^* \\ \vdots \\ y_n^* \end{pmatrix}.$$

Первая координата так странно выглядит, так как мы хотим, чтобы она попадала в ε -окрестность нуля. Это будет так, если $t \in I^* := (-\varepsilon + t^* - y_1^*, \varepsilon + t^* - y_1^*)$. Подействуем теперь на эту траекторию отображением Ψ , тогда по уже доказанному первому пункту она перейдёт в какую-то траекторию решения системы (1). Нам нужно, чтобы эта траектория совпала с траекторией решения x(t).

Распишем, куда переходит при действии Ψ точка $y(t^*)$:

$$\Psi(y(t^*)) = \Psi(y^*) = \Psi(\Psi^{-1}(x(t^*))) = x(t^*).$$

Получили, что в точке t^* решения x(t) и $\Psi(y(t))$ совпадают, но тогда по теореме о существовании и единственности решения получаем, что $\Psi(y(t)) \equiv x(t) \Leftrightarrow y(t) \equiv \Psi^{-1}(x(t))$ при $t \in I \cap I^*$. Это почти то, что нам нужно, только мы хотим, чтобы это тождество выполнялось на всём I. Докажем, что на самом деле $I \subset I^*$.

Пусть $I \nsubseteq I^*$. Тогда либо $\sup I^* \in I$, либо $\inf I^* \in I$. Без ограничения общности рассмотрим первый случай. Возьмём последовательность $\{t_n\} \subset I^*$, сходящуюся к $\sup I^*$. Поймём, куда сходится $y(t_n)$. Первая координата этого вектора, согласно тому, как мы задавали функцию y, равна $t_n + y_1^* - t^* \to \sup I^* + y_1^* - t^*$. По построению интервала I^* следует, что $\sup I^* = \varepsilon + t^* - y_1^*$. Тогда первая координата сходится к $\varepsilon \Rightarrow$

 $\lim_{n\to\infty} y(t_n) \notin Y(0)$, так первая координата попала на границу окрестности $(-\varepsilon,\varepsilon)$. С другой стороны $y(t_n) = \Psi^{-1}(x(t_n))$. Так как композиция непрерывных функций непрерывна, получаем, что $y(t_n) \to \Psi^{-1}(x(\sup I^*)) \in Y(0)$. Получили противоречие.

4 Устойчивость по Ляпунову и асимптотическая устойчивость чивость

4.1 Определение и примеры

Снова заданы открытое множество $\Omega \subset \mathbb{R}^n$, отображение $f \in C^1(\Omega, \mathbb{R}^n)$, положение равновесия $\widehat{x} \in \Omega$ и автономная система

$$x' = f(x). (1)$$

Пусть $\varphi(\cdot,\xi)$ — непродолжаемое решение задачи Коши

$$\begin{cases} x' = f(x) \\ x(0) = \xi \end{cases} .$$

Определение. Положение равновесия \hat{x} называется устойчивым по Ляпунову, если:

- 1. существует r>0 такое, что для любого $\xi\in O(\widehat{x},r)$ отображение $\varphi(\cdot,\xi)$ определено на $[0,+\infty);$
- 2. для любого $\varepsilon > 0$ существует $\delta > 0$ такое, что для всех $\xi \in O(\widehat{x}, \delta)$ и для всех $t \in [0, +\infty)$ верно $\varphi(t, \xi) \in O(\widehat{x}, \varepsilon)$.

Определение. Положение равновесия \hat{x} называется асимптотически устойчивым, если:

- 1. оно устойчиво по Ляпунову;
- 2. существует d>0 такое, что для всех $\xi\in O(\widehat{x},d)$ функция $\varphi(t,\xi)\to \widehat{x}$ при $t\to +\infty$.

Примеры.

ightharpoonup Пусть $\Omega \subset \mathbb{R}$ и \widehat{x} — изолированное положение равновесия, то есть существует окрестность \widehat{x} такая, что в ней нет других положений равновесия. Тогда один из возможных случаев: это когда в этой окрестности функция $f \geqslant 0$ и равна нулю только в точке \widehat{x} . Посмотрим на интегральные кривые. Есть горизонтальная прямая, соответствующая решению $x(t) \equiv \widehat{x}$. Если берём начальное условие $\xi < \widehat{x}$, то соответствующее решение будет монотонно возрастать в силу положительности производной, тогда из теоремы о существовании и единственности следует, что горизонтальная прямая будет его асимптотой. Если же берём начальное условие выше \widehat{x} , то решение снова будет возрастать. Тогда здесь нет даже устойчивости по Ляпунову. А вот если рассмотреть

случай, когда функция f(x) > 0 при $x < \hat{x}$ и f(x) < 0 при $x > \hat{x}$, то аналогичным образом можно показать, что там будет асимптотическая устойчивость, а тогда и устойчивость по Ляпунову.

 $ightharpoonup \Pi$ усть теперь $\Omega \subset \mathbb{R}^2$, f(x) = Ax и $\widehat{x} = 0$. Возвращаясь к случаям из предыдущего параграфа, устойчивость по Ляпунову будет на всех устойчивых портретах, а ещё для центра. Они же, но уже за исключением центра, будут и асимптотически устойчивы.

4.2 Устойчивость линейных систем

Пусть даны матрица $A \in \mathbb{R}^{n \times n}$ и система

$$x' = Ax. (2)$$

Пусть в ЖНФ матрицы A есть жордановы клетки K_1, \ldots, K_m , причём для каждой клетки K_j её размер равен k_j и ей соответствует собственное число $\lambda_j = \alpha_j + i\beta_j$. Без ограничения общности будем считать, что $\lambda_1, \ldots, \lambda_s \in \mathbb{C}$, при этом им соответствуют сопряжённые числа $\lambda_{s+1} = \overline{\lambda_1}, \ldots, \lambda_{2s} = \overline{\lambda_s}$, а $\lambda_{2s+1}, \ldots, \lambda_m \in \mathbb{R}$.

Теорема.

- 1. Если все $\text{Re}(\lambda_i) < 0$, то $\hat{x} = 0$ асимптотически устойчивое положение равновесия.
- 2. Если все $\text{Re}(\lambda_j) \leq 0$, а для j таких, что $\text{Re}(\lambda_j) = 0$, выполнено $k_j = 1$, то $\widehat{x} = 0$ устойчиво по Ляпунову, но не асимптотически устойчиво.
- 3. В остальных случаях $\hat{x} = 0$ не устойчиво по Ляпунову.

Доказательство. Из прошлого семестра мы знаем, что любое решение x(t) системы (2) представимо в виде

$$x(t) = \sum_{j=1}^{s} P_j(t)e^{\alpha_j t} \cos(\beta_j t) + \sum_{j=s+1}^{2s} P_j(t)e^{\alpha_{j-s} t} \sin(\beta_{j-s} t) + \sum_{j=2s+1}^{m} P_j(t)e^{\lambda_j t},$$

причём $\deg P_i \leqslant k_i - 1$.

1. Из условия $\operatorname{Re} \lambda_j < 0$ следует, что $|x(t)| \to 0$ при $t \to +\infty$. Пусть $X(t) - \Phi$ MP. Так как столбцы X(t) являются решениями, $||X(t)|| \to 0$ при $t \to +\infty$. Тогда ||X(t)|| равномерно ограничена некоторым числом c > 0. Кроме того, имеем следующее неравенство:

$$|\varphi(t,\xi)| = |X(t)\xi| \leqslant \|X(t)\| \cdot |\xi|.$$

Заметим, что $\varphi(\cdot,\xi)$ при любом ξ определено на $[0,+\infty)$, так как (2) является линейной системой с постоянными коэффициентами. Зафиксируем $\varepsilon > 0$. Чтобы выполнялся второй пункт из определения устойчивости по Ляпунову, можно взять $\delta = \frac{\varepsilon}{2c}$, тогда при $\xi \in O(0,\delta)$ из неравенства выше получаем, что

$$|\varphi(t,\xi)| \leqslant c \cdot \frac{\varepsilon}{2c} = \frac{\varepsilon}{2} < \varepsilon.$$

Асимптотическая устойчивость следует из того, что $||X(t)|| \to 0$, а $|\xi|$ ограничен.

2. Если $\text{Re}(\lambda_j) < 0$, то соответствующее слагаемое стремится к нулю \Rightarrow ограничено на $[0,+\infty)$. Остаётся случай $\text{Re}(\lambda_j) = 0 \Rightarrow k_j = 1$. Тут мы пользуемся тем, что $\deg P_j(t) \leqslant 1-1=0 \Rightarrow$ многочлен P_j — это просто константа. Тогда и всё соответствующее слагаемое будет константой \Rightarrow ограничено. Значит, каждое решение x(t) на $[0,+\infty)$ ограничено, тогда существует такое число c>0, что $\|X(t)\| \leqslant c$ для всех $t\in [0,+\infty)$. Далее работает такое же рассуждение, как в первой части, поэтому получаем устойчивость по Ляпунову. Вывод об асимптотической устойчивости мы так сразу сделать не можем, так как не все решения стремятся к нулю. Покажем, что здесь её просто не может быть, предъявив явное решение.

Пусть j таково, что $\text{Re }\lambda_j=0, k_j=1$. Тогда если $\lambda_j\in\mathbb{C}$, то берём решение $x(t):=r(v_j\cos(\beta_jt)+u_j\sin(\beta_jt))$, где $r>0,\ u_j,v_j\in\mathbb{R}^n$. Уменьшая r, мы можем попасть в сколь угодно малую окрестность нуля, но при этом $x(t)\nrightarrow 0$. Если же $\lambda_j\in\mathbb{R}$, то возьмём решение $x(t):=rv_j$. Оно опять же не стремится к нулю.

3. Пусть существует j такое, что $Re(\lambda_j) > 0$. Если $\lambda_j \in \mathbb{C}$, то берём решение $x(t) \coloneqq re^{\alpha_j t}(P_j(t)\cos(\beta_j t) + P_{j+s}(t)\sin(\beta_j t))$. Для любого r > 0 оно не ограничено \Rightarrow нет устойчивости по Ляпунову. Если же $\lambda_j \in \mathbb{R}$, то подойдёт решение $x(t) \coloneqq re^{\lambda_j t}v_j$, r > 0, $v_j \in \mathbb{R}^n$.

Остался случай, когда все $\operatorname{Re} \lambda_j \leqslant 0$ и существует j такое, что $\operatorname{Re} \lambda_j = 0$, но при этом $k_j \geqslant 2$. Тогда если $\lambda_j \in \mathbb{C}$, то есть неограниченное комплексное решение $x(t) \coloneqq r(a+bt)e^{\lambda_j t}, \ r>0, \ b\neq 0$. Тогда либо $\operatorname{Re} x(t)$, либо $\operatorname{Im} x(t)$ не ограничено \Rightarrow нет устойчивости по Ляпунову. Если же $\lambda_j \in \mathbb{R}$, то возьмём решение $x(t) \coloneqq r(at+b), \ a,b \in \mathbb{R}^n, \ a\neq 0, \ r>0$. Снова x(t) не ограничено \Rightarrow нулевое положение равновесия не устойчиво по Ляпунову.

5 Условия устойчивости

Пусть $f: \mathbb{R}^n \to \mathbb{R}^n, x^* \in \mathbb{R}^n$ — положение равновесия, то есть $f(x^*) = 0$. Рассмотрим систему

$$x' = f(x), (1)$$

для которой $\varphi(\cdot,\xi)$ является непродолжаемым решением задачи Коши

$$\begin{cases} x' = f(x) \\ x(0) = \xi. \end{cases}$$

Пусть $\Omega \subset \mathbb{R}^n$ открыто, $v : \Omega \to \mathbb{R} \in C^1$.

Определение. Производной в силу системы (1) называется

$$\frac{dv}{dt}\Big|_{(1)}(x) := \langle v'(x), f(x) \rangle,$$

где $x \in \Omega$. Пусть $x(\cdot)$ — решение системы (1). Тогда

$$\frac{d}{dt}v(x(t)) \equiv \langle v'(x(t)), x'(t) \rangle \equiv \langle v'(x(t)), f(x(t)) \rangle \equiv \frac{dv}{dt} \Big|_{(1)} (x(t)).$$

Теорема. (Ляпунова об устойчивости) Пусть существует $\rho > 0$, и $v \in C^1(B_\rho(x^*), \mathbb{R})$, такие что $v(x^*) = 0$, v(x) > 0 при $x \neq x^*$ и для всех x выполнено $\frac{dv}{dt}\big|_{(1)}(x) \leqslant 0$. Тогда x^* устойчиво по Ляпунову.

Геометрическая интуиция: если взять достаточно маленький ε , то множество $\{x:v(x)=\varepsilon\}$ (линия уровня) образует замкнутую кривую вокруг x^* . А условие на производную говорит, что при попадании на границу решение будет двигаться внутрь, то есть не выйдет за кривую.

Доказательство. Зафиксируем $\varepsilon > 0$, будем считать, что $\varepsilon < \rho$. Положим $m := \min_{|x-x^*|=\varepsilon}(v(x))$. По условию m > 0. В частности, найдётся $\delta > 0$, такое что для всех $x \in B_{\delta}(x^*)$ верно v(x) < m.

Зафиксируем $\xi \in B_{\delta}(x^*)$. Допустим, что $\varphi(\cdot,\xi)$ не определено на $[0,+\infty)$ или $\varphi(\cdot,\xi)$ не содержится в шаре $B_{\varepsilon}(x^*)$ — отрицание устойчивости по Ляпунову. Вспомним теорему о продолжении решения до границы компакта: если рассмотреть цилиндр $\{(t,x):|x-x^*|\leqslant \varepsilon\}$, то в первом случае решение должно выйти из него в какой-то точке t_1 , то есть $|\varphi(t_1,\xi)-x^*|=\varepsilon$. Во втором случае допускается то же самое, поэтому существование такой точки мы и хотим опровергнуть.

По выбору m мы знаем, что $v(x(t_1)) \geqslant m$ и $v(x(0)) = v(\xi) < m$. Теперь вспомним, что у нас было условие на производную:

$$\frac{d}{dt}v(x(t)) \equiv \frac{dv}{dt}\Big|_{(1)}(x(t)) \leqslant 0.$$

То есть v не возрастает, но при этом в ξ она меньше m, а в $t_1 > \xi$ — больше, противоречие.

Пример.

$$\begin{cases} x_1' = -x_2 \\ x_2' = x_1 \end{cases}, x^* = (0,0)^T.$$

Положим $v(x) = x_1^2 + x_2^2$. Тогда v(0) = 0 и v(x) > 0 при $x \neq 0$. Найдём производную:

$$\frac{dv}{dt}\Big|_{(1)}(x) = \langle (2x_1, 2x_2)^T, (-x_2, x_1)^T \rangle \equiv 0.$$

Следовательно, по теореме Ляпунова ноль устойчив. Но асимптотической устойчивости нет: портретом является центр.

Теорема. (Ляпунова об асимптотической устойчивости) Пусть существует $\rho > 0$, и $v \in C^1(B_\rho(x^*), \mathbb{R})$, такие что $v(x^*) = 0$, v(x) > 0 при $x \neq x^*$ и для всех $x \neq x^*$ выполнено $\frac{dv}{dt}|_{(1)}(x) < 0$. Тогда x^* асимптотически устойчиво. От предыдущей теоремы отличается только последним условием.

Доказательство. По предыдущей теореме x^* устойчиво по Ляпунову. Положим $\varepsilon = \frac{\rho}{2}$, δ возьмём из определения устойчивости. Вновь будем доказывать от противного: допустим, что существует $\xi \in B_{\delta}(x^*)$, r > 0 и возрастающая $t_j \to +\infty$, такая что $|\varphi(t_j, \xi) - x^*| \geqslant r$. Будем считать, что $r < \varepsilon$, также будем обозначать $x(t) = \varphi(t, \xi)$. По условию существует $\mu > 0$, такое что для всех x, таких что $r \leqslant |x - x^*| \leqslant \varepsilon$, выполнено $v(x) \geqslant \mu$. Из условия на производную мы знаем, что v(x(t)) строго убывает на $[0, +\infty)$.

Отсюда следует, что $v(x(t))\geqslant \mu$ для всех $t\in [0,+\infty)$. Обосновывается это тем, что для любого t найдётся $t_j>t$ из допущения, такая что $|\varphi(t_j,\xi)-x^*|\geqslant r$, а это значит, что $v(x(t_j))\geqslant \mu$. В силу убывания и $v(x(t))\geqslant v(x(t_j))\geqslant \mu$. По непрерывности v существует $\delta_1>0$, такое что $v(x)<\mu$ при $|x-x^*|<\delta_1$. Из доказанного $|x(t)-x^*|\geqslant \delta_1$. Ещё существует $\beta>0$, такое что $\frac{dv}{dt}|_{(1)}(x)\leqslant -\beta$ для всех x, таких что $\delta_1\leqslant |x-x^*|\leqslant \varepsilon$. Это следует из определения производной в силу системы: функция непрерывна. Теперь по формуле Ньютона-Лейбница

$$v(x(t)) - v(x(0)) \equiv \int_0^t \frac{d}{ds} v(x(s)) dx \equiv \int_0^t \frac{dv}{dt} \Big|_{(1)} (x(s)) ds \leqslant -\beta t$$

в силу неравенства выше.

Следовательно, перенося v(x(0)) в правую часть, при $t \to +\infty$ получаем $v(x(t)) \le v(x(0)) - \beta t$. Выражение справа стремится к $-\infty$, что противоречит тому, что $v(x) \ge 0$.

Пример. Пусть $n=1, f: \mathbb{R} \to \mathbb{R}, f(x^*)=0, f(x)>0$ при $x< x^*, f(x)<0$ при $x> x^*.$ Положим $v(x):=(x-x^*)^2.$ Найдём производную:

$$\left. \frac{dv}{dx} \right|_{(1)}(x) = 2(x - x^*)f(x).$$

После разбора случаев можно заметить, что это меньше нуля при $x \neq x^*$.

Определение. Функция v в обеих теоремах называется функцией Ляпунова.

Теорема. (Хассело-..., б/д) Теоремы Ляпунова — это не только достаточное условие, но и необходимое.

Теперь остаётся важный вопрос: как найти функцию v? Обычно это сложная задача, но в одном частном случае это можно сделать:

Теорема. (Об устойчивости по первому приближению) Пусть $f(x) = A(x-x^*) + o(x-x^*)$. Пусть все $Re(\lambda) < 0$ для собственных значений λ матрицы A. Тогда x^* асимптотически устойчиво.

Доказательство. Положим $\psi(t,\xi)=e^{tA}\xi$ для $t\geqslant 0,\ \xi\in\mathbb{R}^n$. Заметим, что это является решением задачи Коши

$$\begin{cases} y' = Ay \\ y(0) = \xi \end{cases},$$

то есть линеаризованной версии исходной системы. Тогда существуют $c, \alpha > 0$, такие что

 $|\varphi(t,\xi)| \leqslant c \cdot e^{-\alpha t} |\xi|$ — следует из $Re(\lambda) < 0$. Положим

$$v(x) = \int_0^{+\infty} |\psi(\tau, x)|^2 d\tau = \int_0^{+\infty} |e^{\tau A} \cdot x|^2 d\tau =$$

В силу неравенства выше эта функция определена для всех x. Заметим, что это является квадратичной формой, в которую подставлен x:

$$= \int_0^{+\infty} \left\langle e^{\tau A} x, e^{\tau A} x \right\rangle d\tau = \int_0^{+\infty} \left\langle (e^{\tau A})^T e^{\tau A} \cdot x, x \right\rangle d\tau =$$

Тепеь можно два раза вынести x из интеграла:

$$= \left\langle \int_0^{+\infty} (e^{\tau A})^T e^{\tau A} x \cdot d\tau, x \right\rangle = \left\langle \int_0^{+\infty} (e^{\tau A})^T e^{\tau A} d\tau \cdot x, x \right\rangle.$$

Положим $Q = \int_0^{+\infty} (e^{\tau A})^T e^{\tau A} d\tau$, тогда это всё равно $\langle Qx,x \rangle$. Более того, Q положительно определена, так как это интеграл квадрата.

Подставим ψ в функцию v:

$$v(\psi(t,\xi)) = \int_0^{+\infty} |e^{\tau A}e^{tA}\xi|^2 d\tau = \int_t^{+\infty} |e^{sA}\xi|^2 ds$$

— в конце сделали замену $s = t + \tau$.

Теперь найдём производную от этого:

$$\frac{d}{dt}v(\psi(t,\xi))|_{t=0} = -|e^{tA}\xi|^2|_{t=0} = -|\xi|^2.$$

И производную в силу системы (2) (линеаризованной):

$$\frac{dv}{dt}\Big|_{(2)} = \frac{d}{dt}v(\psi(t,\xi))|_{t=0} = -|\xi|^2.$$

Тогда

$$\frac{dv}{dt}\Big|_{(1)} = \langle v'(\xi), f(\xi) \rangle = \langle v'(\xi), A\xi + o(\xi) \rangle =$$

$$= \langle v'(\xi), A\xi \rangle + \langle v'(\xi), o(\xi) \rangle = \frac{dv}{dt}\Big|_{(2)} (\xi) + \langle 2Q\xi, o(\xi) \rangle =$$

$$= -|\xi|^2 + \langle 2Q\xi, o(\xi) \rangle.$$

Так как второе слагаемое — о-малое, в некоторой окрестности это всё не превосходит $-\frac{1}{2}|\xi|^2$. Следовательно, x^* асимптотически устойчиво.

Замечание. (б/д) Если существует собственное число λ матрицы A, такое что $Re(\lambda) > 0$, то x^* не устойчиво по Ляпунову.

Замечание 2. Таким образом, мы охарактеризовали все системы, кроме тех, у которых

все собственные значения мнимые, но они встечаются редко.

6 Первые интегралы

6.1 Первые интегралы нормальных ОДУ

Пусть нам даны $n \in \mathbb{N}$, открытое $\Omega \subset \mathbb{R}^{n+1}$ и отображение $f: \Omega \to \mathbb{R}^n, f \in C^1$. Рассмотрим систему

$$x' = f(t, x). (1)$$

Определение. Первым интегралом в области $D \subset \Omega$ уравнения (1) называется функция $v: D \to \mathbb{R}$, такая что $v \in C^1$ и для любого решения $\varphi(\cdot)$ системы (1), для которого $\forall t \ (t, \varphi(t)) \in D, \ v(t, \varphi(t))$ является константой.

Замечание. Первый интеграл всегда существует, например, v = C.

Определение. Производная в силу системы для функции v в этом случае определяется, как

$$\frac{dv}{dt}\Big|_{(1)}(t,x) := \frac{\partial v}{\partial t}(t,x) + \left\langle \frac{\partial v}{\partial x}(t,x), f(t,x) \right\rangle.$$

Утверждение. Функция $v: D \to \mathbb{R}, v \in C^1$ является первым интегралом системы (1) тогда и только тогда $\frac{dv}{dt}|_{(1)}(t,x) = 0$ для всех $(t,x) \in D$.

Доказательство. \Rightarrow . Зафиксируем $(\tau,\xi)\in D$. Как известно, существует решение $\varphi(\cdot)$ задачи Коши

$$\begin{cases} x' = f(t, x) \\ x(\tau) = \xi \end{cases} .$$

Сужая при необходимости область определения $\varphi(\cdot)$, будем считать, что все $(t,\varphi(t)) \in D$. Так как функция $t \mapsto v(t,\varphi(t))$ — константа, $\frac{d}{dt}(v(t,\varphi(t))) \equiv 0$. Тогда

$$\frac{\partial v}{\partial t}(t,\varphi(t)) + \left\langle \frac{\partial v}{\partial x}(t,\varphi(t)), f(t,\varphi(t)) \right\rangle \equiv 0$$

по производной композиции, также воспользовались тем, что $\frac{\partial \varphi}{\partial t}(t) = f(t,\varphi(t))$. Подставляя $t=\tau$ и $\xi=\varphi(t)$, получаем требуемое.

←. Аналогично, но в обратную сторону.

Определение. Пусть v_1, \ldots, v_k — первые интегралы системы (1). Они называются *неза-висимыми* в области D, если $\operatorname{rk}\left(\frac{\partial v_i}{\partial x_j}(t,x)\right) = k$.

Замечание. Зачем это всё нужно? Пусть n=2, и (t_0,x_0) — какая-то точка в \mathbb{R}^3 . Возьмём два первых интеграла, проходящих через неё, v_1,v_2 . Тогда $A=\{(t,x):v_1(t,x)=v_1(t_0,x_0)\}$ и $B=\{(t,x):v_2(t,x)=v_2(t_0,x_0)\}$ — это какие-то поверхности, и ux пересечение является решением системы. Это утверждение является теоремой, которая не будет доказываться.

Теорема. Для любой точки $(t_0, x_0) \in \Omega$ существует окрестность $D \subset \Omega$, а в ней — независимые в D первые интегралы v_1, \ldots, v_n .

Доказательство. Для любого $(t_0, \xi) \in D$ существует единственное непродолжаемое решение $\varphi(\cdot, \xi)$ задачи Коши, ещё и непрерывно дифференцируемое:

$$\begin{cases} x' = f(t, x) \\ x(t_0) = \xi \end{cases}$$

Решим уравнение $x-\varphi(t,\xi)=0$ относительно ξ с параметрами (t,x) в окрестности (t_0,x_0) , соответствующей решению $x=x_0,\ t=t_0,\ \xi=x_0$. Тогда $\varphi(t_0,\xi)\equiv \xi$ по определению φ . Теперь

$$\frac{\partial}{\partial \xi} (x - \varphi(t, \xi)) \bigg|_{\substack{t = t_0 \\ x = x_0}} (x_0) = -E.$$

 (x_0) встречается дважды, так как сначала мы подставили параметр $x=x_0$, а потом неизвестную $\xi=x_0$)

Следовательно, применима теорема о неявной функции: существует окрестность $D_1 \subset \Omega$ точки (t_0, x_0) и отображение $V = (v_1, \dots, v_n) : D_1 \to \mathbb{R}^n$, такое что:

- $\triangleright V \in C^1$.
- \triangleright Для всех $(t,x) \in D_1$ выполнено $x \varphi(t,V(t,x)) \equiv 0$.
- $\triangleright V(t_0, x_0) = x_0.$
- \triangleright Так как количество уравнений совпадает с количеством неизвестных, существует окрестность Δ точки x_0 , такая что если $u \in \Delta$ и $x \varphi(t, u) = 0$, то u = V(t, x).

Продифференцируем по x второе свойство:

$$E \equiv \frac{\partial \varphi}{\partial \xi}(t, V(t, x)) \cdot \frac{\partial V}{\partial x}(t, x).$$

Подставим (t_0, x_0) : заметим, что $V(t_0, x_0) = x_0$, откуда это будет равно

$$E = \frac{\partial \varphi}{\partial \xi}(t_0, x_0) \cdot \frac{\partial V}{\partial x}(t_0, x_0).$$

Первый множитель равен E, поэтому

$$E = \frac{\partial V}{\partial x}(t_0, x_0).$$

Отсюда ранг этой матрицы равен n, а значит, существует окрестность $D\subset D_1$, такая что в ней $\operatorname{rk}\left(\frac{\partial V}{\partial x}(t,x)\right)=n$.

Пусть $x(\cdot)$ — решение задачи Коши $x'=f(t,x),\ x(t_0)=\xi$. По второму свойству x(t) — $\varphi(t,V(t,x(t)))\equiv 0$. Более того, из обозначений $x(t)-\varphi(t,\xi)\equiv 0$. Уменьшая область определения $x(\cdot)$, можно добиться того, чтобы x(t) всегда попадал в Δ , откуда по четвёртому свойству решение единственно и должно совпадать, поэтому $V(t,x(t))\equiv \xi$, то есть $v_i(t,x(t))\equiv \xi_i$ — константы.

6.2 Первые интегралы автономных систем

Пусть нам даны $n \in \mathbb{N}$, открытое $\Omega \subset \mathbb{R}^n$ и отображение $f: \Omega \to \mathbb{R}^n$, $f \in C^1$. Рассмотрим систему

$$x' = f(x). (2)$$

Теорема. Для любого $x_0 \in \Omega$, такого что $f(x_0) \neq 0$ существует окрестность $D \subset \Omega$ точки x_0 и n-1 независимых первых интегралов $v_i : D \to \mathbb{R}$. От предыдущего случая отличается тем, что v_i не зависит от t.

Доказательство. Так как $f(x_0) \neq 0$, у него существует ненулевая координата. Без ограничения общности это n-ая: $f_n(x_0) \neq 0$. Из непрерывности f_n получаем, что $f_n(x) \neq 0$ в некоторой окрестности x_0 . Рассмотрим неавтономную систему

$$\frac{dx_i}{dx_n} = \frac{f_i(x)}{f_n(x)}. (3)$$

Здесь (n-1) уравнение, откуда по теореме из предыдущего пункта существует окрестность D точки x_0 и независимые первые интегралы системы (3) $v_1, \ldots, v_{n-1}: D \to \mathbb{R}$.

Пусть $\varphi(\cdot) = (\varphi_1(\cdot), \dots, \varphi_n(\cdot))$ — какое-то решение системы (2), такое что для всех $t \varphi(t) \in D$, то есть $\varphi'_n(t) = f_n(\varphi(t)) \neq 0$ Итак, мы получили строго монотонную функцию $\varphi_n(t)$ на интервале — по первому семестру матанализа существует обратная к ней функция $t(\varphi_n)$. Обозначим $x_i(x_n) = \varphi_i(t(x_n))$. Тогда

$$\frac{dx_i}{dx_n}(x_n) \equiv \frac{d\varphi_i}{dt}(t(x_n)) \cdot \frac{dt}{dx_n}(x_n) \equiv f_i(\varphi(t(x_n))) \cdot \frac{1}{\varphi'_n(t(x_n))} \equiv \frac{f_i(\varphi(t(x_n)))}{f_n(\varphi(t(x_n)))} \equiv \frac{f_i(x)}{f_n(x)}.$$

Вернёмся к первым интегралам: по определению для всех i

$$v_i(\varphi_1(t(x_n)),\ldots,\varphi_{n-1}(t(x_n)),x_n)\equiv const.$$

Обозначая $\tau = t(x_n)$, получаем

$$v_i(\varphi_1(\tau),\ldots,\varphi_n(\tau)) \equiv const.$$

Значит, v_i являются первыми интегралами системы (2). Проверим их независимость. Мы знаем, что они независимы в системе (3), тогда векторы

$$\left(\frac{\partial v_i}{\partial x_1}(x), \dots, \frac{\partial v_i}{\partial x_{n-1}}(x)\right)$$

линейно независимы. Нам нужны n-мерные векторы, поэтому добавим к ним ещё одну координату:

$$\left(\frac{\partial v_i}{\partial x_1}(x), \dots, \frac{\partial v_i}{\partial x_{n-1}}(x), \frac{\partial v_i}{\partial x_n}(x)\right).$$

При добавлении новой координаты линейная независимость не ломается, поэтому они подходят в систему (2). Таким образом, ранг матрицы

$$\left(\frac{\partial v_i}{\partial x_j}\right)_{\substack{i=\overline{1,n-1}\\j=1,n}}$$

равен n-1, то есть v_1, \ldots, v_{n-1} — искомые первые интегралы.

Замечание. Зачем: возьмём n=2 и первый интеграл v_1 . Тогда кривая $v_1(x)=v_1(x_0)$ является фазовой траекторией. Аналогично в трёхмерном случае, но тогда будет пересечение поверхностей.

Пример. Рассмотрим систему

$$\begin{cases} x_1' = -x_2 \\ x_2' = x_1 \end{cases}$$

и её положение равновесия $x_0 = (0,0)$. Так как $f(x_0) = (0,0)$, предположение теоремы нарушается. Проверим, что следствие теоремы тоже нарушится: от противного, пусть существует первый интеграл $v(x_1,x_2)$ в окрестности x_0 . Мы ещё требуем невырожденность, поэтому

$$\left(\frac{\partial v}{\partial x_1}(0,0), \frac{\partial v}{\partial x_2}(0,0)\right) \neq (0,0).$$

Без ограничения общности $\frac{\partial v}{\partial x_1}(0,0) > 0$, тогда это верно и в некоторой окрестности нуля. По определению первого интеграла производная в силу системы должна быть тождественным нулём:

$$-x_2 \frac{\partial v}{\partial x_1}(x_1, x_2) + x_1 \frac{\partial v}{\partial x_2}(x_1, x_2) \equiv 0.$$

Возьмём $x_1=0$ и $x_2=\frac{1}{N}$, где N — какое-то достаточно большое число. Тогда из доказанного выше $\frac{\partial v}{\partial x_1}(x_1,x_2)>0$. Вернёмся к тождеству выше:

$$-x_2 \frac{\partial v}{\partial x_1}(x_1, x_2) \equiv 0.$$

Но мы взяли x_1 , x_2 так, что оба множителя не равны нулю — противоречие.

6.3 Множество всех первых интегралов

Утверждение. Если у нас есть n первых интегралов $v_1(t,x), \ldots, v_n(t,x)$, то любая функция вида $F(v_1(t,x),\ldots,v_n(t,x))$ является первым интегралом для $F \in C^1$.

Доказательство. Действительно, пусть $x(\cdot)$ — это решение системы (1), тогда

$$F(v_1(x_1(t)), \dots, v_k(x_n(t))) \equiv F(const_1, \dots, const_n) \equiv const.$$

Возникает логичный вопрос: все ли первые интегралы представимы в таком виде, если v_1, \ldots, v_n независимы? Ответ положительный.

Теорема. Пусть D — окрестность точки $(t_0, x_0), v_1, \ldots, v_n : D \to \mathbb{R}$ — независимые первые интегралы системы (1). Обозначим $v := (v_1, \ldots, v_n) : D \to \mathbb{R}^n$ и $c_0 = v(t_0, x_0)$. Тогда

- \triangleright Если $x(\cdot)$ решение задачи Коши $x' = f(t,x), x(t_0) = x_0$, то $x(\cdot)$ является решением алгебраической системы $v(t_0,x) = c_0$.
- ightharpoonup Если $\varphi(\cdot,c)$ это решение алгебраической системы v(t,x)=c и c достаточно близко к c_0 , то $\varphi(\cdot,c)$ это решение системы (1).

В каком-то смысле дифференциальная система и алгебраическая система на первых интегралах эквивалентны.

Доказательство. Первая часть: для любого t

$$v(t, x(t)) \equiv (v_i(t, x(t)))_{i=\overline{1,n}} \equiv const = v(t_0, x(t_0)) = c_0,$$

что и требовалось.

Вторая часть: пусть v_1, \ldots, v_n — независимые первые интегралы, тогда ранг матрицы

$$\left(\frac{\partial v_i}{\partial x_j}(t_0, x_0)\right)_{i,j=\overline{1,n}}$$

равен n. Пусть $x(\cdot)$ — решение системы (1). По первому пункту x является решением системы $v(t,x)=v(t_0,x_0)$. Тогда по теореме о неявной функции $\varphi(\cdot,c)$, как второе решение этой системы, совпадает с x(t). Следовательно, $\varphi(t,v(t_0,x(t_0)))$ — решение системы (1). (Что здесь происходит...)

Утверждение. Пусть D — окрестность $(t_0, x_0), v_1, \ldots, v_n : D \to \mathbb{R}$ — независимые первые интегралы системы (1), v и c_0 из теоремы. Тогда существует окрестность $D' \subset D$ точки (t_0, x_0) , такая что любой первый интеграл $\omega : D' \to \mathbb{R}$ системы (1) представим в виде $\omega(t, x) = F(v(t, x))$.

Доказательство. Пусть $\varphi(t,c)$ — решение системы v(t,x)=c, тогда $\varphi(\cdot,c)$ по теореме является решением системы (1). Пусть $\varphi(t,v(t,\xi))$ — решение системы $v(t,x)=v(t,\xi)$. Тогда по теореме о неявной функции существует окрестность $D'\subset D$, такая что $x=\xi$ — единственное решение для всех x, достаточно близких к x_0 , такое что для всех $(t,\xi)\in D'$ выполняется $\varphi(t,v(t,\xi))\equiv \xi$.

Положим $F(c) := \omega(t_0, \varphi(t_0, c))$. По определению первого интеграла $\omega(t, \varphi(t, c))$ — константа по t. Подставим $t_0 : \omega(t_0, \varphi(t_0, c)) = F(c)$. Теперь подставим $c = v(t, \xi) : \omega(t, \xi) \equiv F(v(t, \xi))$ — ровно искомое тождество.

Смысл доказательств — переход от дифференциальных уравнений к алгебраическим и последующее применение теоремы о неявной функции.

6.4 Множество первых интегралов автономных систем

Будем доказывать те же теоремы для автономных систем. Преамбула такая же, как и в пункте 2.

Лемма. Пусть $f_n(x_0) \neq 0$, где $x_0 \in \Omega$, функции $v_1, \dots, v_{n-1} : \Omega \to \mathbb{R}$ — независимые первые интегралы системы (2). Тогда v_1, \dots, v_{n-1} — независимые первые интегралы системы $\frac{dx_i}{dx_n} = \frac{f_i(x)}{f_n(x)}$. Это аналог теоремы из пункта 2, но теперь в роли времени выступает x_n .

Доказательство. Из определения первого интеграла для любого j выполняется

$$\sum_{i=1}^{n} \frac{\partial v_j}{\partial x_i}(x) f_i(x) \equiv 0.$$

Тогда можно разделить на $f_n(x)$:

$$\sum_{i=1}^{n-1} \frac{\partial v_j}{\partial x_i}(x) \frac{f_i(x)}{f_n(x)} + \frac{\partial v_j}{\partial x_n}(x) \equiv 0.$$

По признаку для неавтономных систем получаем, что v_j являются первыми интегралами системы $\frac{dx_i}{dx_n}$. Докажем их независимость. Рассмотрим матрицу

$$\left(\frac{\partial v_j}{\partial x_i}(x)\right)_{\substack{i=\overline{1,n}\\j=\overline{1,n-1}}}.$$

Её ранг равен n-1 для всех x, причём её последняя строка, из доказанного, выражается через первые n-1. Следовательно, ранг матрицы

$$\left(\frac{\partial v_j}{\partial x_i}(x)\right)_{\substack{i=\overline{1,n-1}\\j=\overline{1,n-1}}}$$

равен n-1, что доказывает независимость первых интегралов.

Теорема. (О множестве первых интегралов) Пусть $v_1, \ldots, v_{n-1} : D \to \mathbb{R}$ — независимые первые интегралы автономной системы $(2), x_0 \in D, f(x_0) \neq 0$. Тогда существует окрестность $D' \subset D$ точки x_0 , такая что для любого первого интеграла системы $(2) \omega : D' \to \mathbb{R}$ существует функция $F \in C^1$, такая что $\omega(x) \equiv F(v_1(x), \ldots, v_{n-1}(x))$.

Доказательство. Без ограничения общности $f_n(x_0) \neq 0$, причём, уменьшая, при необходимости, D, это верно на всём D. По лемме v_1, \ldots, v_{n-1} является первыми интегралами системы $\frac{dx_i}{dx_n}$, откуда из утверждения для неавтономных систем существует окрестность D' точки x_0 , такая что выполняется всё, что нужно.

7 Линейные однородные уравнения в частных производных

Пусть $\Omega \subset \mathbb{R}^n$ — область, $a:\Omega \to \mathbb{R}^n$ — вектор-функция, $a\in C^1$. Рассмотрим уравнение

$$a_1(x) \cdot \frac{\partial u}{\partial x_1}(x) + \dots + a_n(x) \cdot \frac{\partial u}{\partial x_n}(x) = 0.$$
 (1)

Его решением является функция $u:D\to\mathbb{R}$, где $D\subset\Omega$ — область и $u\in C^1$, при подстановке которой получается тождественный ноль. В сокращённой записи

$$\left\langle a(x), \frac{\partial u}{\partial x}(x) \right\rangle = 0.$$

Определение. Такое уравнение называется линейным однородным уравнением в частных производных первого порядка.

Определение. Система

$$x' = a(x) \tag{2}$$

называется характеристической системой уравнения.

Найдём связь между решениями уравнения (1) и его характеристической системы (2). Пусть $\overline{x} \in \Omega$ — какая-то точка, причём $a(\overline{x}) \neq 0$.

Теорема. 1) Любой первый интеграл системы (2) является решением системы (1).

2) Пусть $v_1, \ldots, v_{n-1}: \Omega \to \mathbb{R}$ — независимые первые интегралы системы (2). Тогда существует окрестность D точки \overline{x} , такая что для любого решения $u: D \to \mathbb{R}$ уравнения (1) существует гладкая функция F, такая что $u(x) \equiv F(v_1(x), \ldots, v_{n-1}(x))$.

Доказательство. 1) Пусть $u(\cdot)$ — первый интеграл (2). По критерию первого интеграла $\left\langle a(x), \frac{\partial u}{\partial x}(x) \right\rangle \equiv 0$, что мы и хотели.

2) По теореме о первом интеграле существует окрестность D, такая что любой первый интеграл в ней представим в виде $F(v_1(x), \dots, v_{n-1}(x))$. Рассмотрим произвольное решение $u: D \to \mathbb{R}$ уравнения (1). Раз решение, то $\langle a(x), \frac{\partial u}{\partial x}(x) \rangle \equiv 0$, а значит, $u(\cdot)$ — первый интеграл системы (2), то есть имеет искомое представление в окрестности D.

Пусть заданы гладкие функции $g,\varphi:\Omega\to\mathbb{R}$, причём $\frac{\partial g}{\partial x}(x)\neq 0$ на Ω , и $g(\overline{x})=0$. Тогда существует непустое множество $\gamma:=\{x:g(x)=0\}$, более того, это (n-1)–мерная поверхность. Рассмотрим задачу Коши

$$\begin{cases} \left\langle a(x), \frac{\partial u}{\partial x}(x) \right\rangle \equiv 0 \\ u(x) = \varphi(x) \text{ при } x \in \gamma \end{cases}$$
 (3)

Как и у любой уважающей себя задачи Коши, для неё есть теорема о существовании и единственности решения, но это чуть позже.

Определение. \overline{x} называется $xapaxmepucmuческой точкой задачи (3), если <math>\langle a(\overline{x}), \frac{\partial u}{\partial x}(\overline{x}) \rangle = 0$.

Теорема. Пусть точка \overline{x} не является характеристической. Тогда существует окрестность D точки \overline{x} и функция $u:D\to\mathbb{R}$, такая что u является единственным решением (3) в этой окрестности.

Доказательство. Мы знаем, что $a(\overline{x}) \neq 0$. Поэтому можно применить теорему о первых интегралах: существует область \widetilde{D} точки \overline{x} , в которой есть независимые первые интегралы $v_1,\dots,v_{n-1}:\widetilde{D}\to\mathbb{R}$ системы (2). Рассмотрим систему

$$\begin{cases} v_1(x) = u_1 \\ \vdots \\ v_{n-1}(x) = u_{n-1} \\ g(x) = \Theta \end{cases}$$

(здесь все значения в правых частях — это параметры) Хотим применить теорему об обратной функции, проверим, что условия выполнены. Для этого рассмотрим матрицу Якоби:

$$A = \begin{pmatrix} \frac{\partial v_1}{\partial x}(\overline{x}) \\ \vdots \\ \frac{\partial v_{n-1}}{\partial x}(\overline{x}) \\ \frac{\partial g}{\partial x}(\overline{x}) \end{pmatrix}$$

Докажем от противного, что она невырождена: пусть

$$\frac{\partial g}{\partial x}(\overline{x}) = \sum_{j=1}^{n-1} \lambda_j \frac{\partial v_j}{\partial x}(\overline{x}).$$

Это рассматривать достаточно, так как первые n-1 строк точно линейно независимы. Тогда

$$\left\langle a(\overline{x}), \frac{\partial g}{\partial x}(\overline{x}) \right\rangle = \sum_{j=1}^{n-1} \lambda_j \left\langle a(\overline{x}), \frac{\partial v_j}{\partial x}(\overline{x}) \right\rangle = 0,$$

так как это первые интегралы. Противоречие с тем, что \overline{x} не является характеристической точкой.

Теперь по теореме об обратной функции найдётся окрестность Γ точки $(v_1(\overline{x}), \dots, v_{n-1}(\overline{x}), 0)$ (в конце ноль, так как $g(\overline{x}) = 0$) и $\chi : \Gamma \to \mathbb{R}^n$, $\chi \in C^1$, такие что

$$\begin{cases} v_1(\chi(u_1, \dots, u_{n-1}, \Theta)) = u_1 \\ \vdots \\ v_{n-1}(\chi(u_1, \dots, u_{n-1}, \Theta)) = u_{n-1} \\ g(\chi(u_1, \dots, u_{n-1}, \Theta)) = \Theta \end{cases}$$

И

$$\chi(v_1(x),\ldots,v_{n-1}(x),g(x))\equiv x.$$

Тогда $\chi(u_1,\ldots,u_{n-1},\Theta)$ является единственным решением построенной системы, причём $\chi(v_1(\overline{x}),\ldots,v_{n-1}(\overline{x}),0)=\overline{x}$.

Теперь восстановим единственное решение задачи Коши. Положим $u(x) := \varphi(\chi(v_1(x), \dots, v_{n-1}(x), 0))$.

Возьмём достаточно малую окрестность D точки \overline{x} , такую что для всех $x \in D$ выполнено $(v_1(x), \ldots, v_{n-1}(x), 0) \in \Gamma$.

Почему это решение уравнения в частных производных? Потому что взяли гладкую функцию от первых интегралов. Почему это решение задачи Коши? При $x \in \gamma$ выполнено g(x) = 0, то есть $u(x) = \varphi(\chi(v_1(x), \dots, v_{n-1}(x), g(x))) = \varphi(x)$, так как обратная функция.

Единственность остаётся в качестве упражнения. Доказательство от автора конспекта: рассмотрим произвольное решение $F(v_1,\ldots,v_{n-1})$ и точку $x_1\in D$. Положим $x_2=\chi(v_1(x_1),\ldots,v_{n-1}(x_1),0)\in\gamma$. Заметим, что $v_i(x_2)=v_i(x_1)$ для всех i, так как χ — обратная к отображению $x\mapsto (v_1(x),\ldots,v_{n-1}(x),g(x))$. Следовательно, $F(v_1(x_1),\ldots,v_{n-1}(x_1))=F(v_2(x_2),\ldots,v_{n-1}(x_2))=\varphi(x_2)$, то есть $F(v_1,\ldots,v_{n-1})$ однозначно определено в x_1 .

8 Вариационное исчисление

8.1 Простейшая задача вариационного исчисления

Рассмотрим пространство функций $C^1[a,b]$, как нормированное пространство, и его подмножество M. Зададим на нём метрику $\rho(x_1,x_2) = \max_{t \in [a,b]} |x_1(t) - x_2(t)|$ и $\rho_1(x_1,x_2) = \rho(x_1,x_2) + \rho(x_1',x_2')$. Пусть у нас есть функционал $I: M \to \mathbb{R}$.

Определение. Точка $\widehat{x} \in M$ называется *слабым локальным минимумом* функционала I, если $\exists \varepsilon > 0 : \forall x \in M \ (\rho_1(x,\widehat{x}) < \varepsilon \Rightarrow I(\widehat{x}) \leqslant I(x))$ Аналогично для максимума.

Определение. Точка $\hat{x} \in M$ называется *сильным локальным минимумом*, если вместо ρ_1 используется ρ .

Утверждение. Если \hat{x} — сильный локальный минимум, то он также является слабым. Очевидно.

Рассмотрим дважды гладко дифференцируемую (в C^2) функцию $F:\mathbb{R}^3\to\mathbb{R}$ и числа $A,B\in\mathbb{R}.$ Положим

$$M = \{x \in C^1[a,b] : x(a) = A, x(b) = B\}$$

И

$$I(x) := \int_a^b F(t, x(t), x'(t)) dt, x \in M.$$

Определение. Простейшей задачей вариационного исчисления называется задача нахождения слабых локальных экстремумов функционала I.

Положим

$$\mathring{C}^1[a,b] := \{ x \in C^1[a,b] : x(a) = x(b) = 0 \}.$$

Тогда множество M замкнуто относительно прибавления функций из $\mathring{C}^1[a,b].$

Положим для $\widehat{x} \in M$, $\widehat{x} \in C^2$, $\eta \in \mathring{C}^1[a,b]$ функцию

$$\varphi(\mu) := I(\widehat{x} + \mu \eta) = \int_a^b F(t, \widehat{x}(t) + \mu \eta(t), \widehat{x}'(t) + \mu \eta'(t)) dt.$$

Продифференцируем её:

$$\varphi'(\mu)|_{\mu=0} = \int_a^b \left(\frac{\partial F}{\partial x}(t, \widehat{x}(t), \widehat{x}'(t)) \eta(t) + \frac{\partial F}{\partial x'}(t, \widehat{x}(t), \widehat{x}'(t)) \eta'(t) \right) dt =$$

Проинтегрируем по частям:

$$= \int_{a}^{b} \frac{\partial F}{\partial x}(t, \widehat{x}(t), \widehat{x}'(t)) \eta(t) dt + \frac{\partial F}{\partial x'}(\dots) \eta(t) \Big|_{a}^{b} - \int_{a}^{b} \frac{d}{dt} \frac{\partial F}{\partial x'}(\dots) \eta(t) dt =$$

Второе слагаемое рано нулю, так как $\eta(a) = \eta(b) = 0$

$$= \int_{a}^{b} \left(\frac{\partial F}{\partial x}(\dots) - \frac{d}{dt} \frac{\partial F}{\partial x'}(\dots) \right) \eta(t) dt.$$

Таким образом, если \hat{x} является слабым локальным минимумом, то 0 — стационарная точка функции φ .

Определение. $\delta I[\widehat{x},\eta]:=\varphi'(0)$ — первая вариация функционала I на \widehat{x} .

Утверждение. Если $\hat{x} \in M$ — слабый локальный экстремум, то для любого $\eta \in \mathring{C}^1[a,b]$ точка 0 является локальным экстремумом функции φ .

Доказательство. Будем считать, что мы работаем с точкой минимума. По определению существует $\varepsilon > 0$, такое что для любого $x \in M$, удовлетворяющему $\rho_1(x, \widehat{x}) < \varepsilon$ верно $I(x) \geqslant I(\widehat{x})$.

Тогда для любого $\eta \in \mathring{C}^1[a,b]$, не равного тождественному нулю, положим $\delta = \frac{\varepsilon}{\rho_1(\eta,0)}$. Возьмём произвольный $\mu \in (-\delta,\delta)$. Имеем

$$\rho_1(\widehat{x} + \mu \eta, \widehat{x}) = \max_{t \in [a,b]} |\mu \eta(t)| + \max_{t \in [a,b]} |\mu \eta'(t)| =$$

$$= |\mu| \left(\max_{t \in [a,b]} |\eta(t)| + \max_{t \in [a,b]} |\eta'(t)| \right) = |\mu| \cdot \rho_1(\eta,0) < \varepsilon.$$

Таким образом, мы попали в ε -окрестность функции \widehat{x} , то есть $\varphi(\mu) = I(\widehat{x} + \mu \eta) \geqslant I(\widehat{x}) = \varphi(0)$.

Утверждение. (Лемма Лагранжа) Пусть $v \in C[a,b]$, такая что $\forall \eta \in \mathring{C}^1[a,b]$ выполнено

$$\int_{a}^{b} v(t)\eta(t)dt = 0.$$

Тогда $v(t) \equiv 0$.

Доказательство. От противного: допустим, что существует $\tilde{\tau} \in [a,b]$, такое что $v(\tilde{\tau}) > 0$. Тогда существует $\tau \in (a,b)$, такое что $v(\tau) > 0$ из непрерывности. Отсюда существует $\varepsilon > 0$, такой что $(\tau - \varepsilon, \tau + \varepsilon) \subset [a,b]$ и $v(t) > \frac{v(\tau)}{2}$ для $t \in (\tau - \varepsilon, \tau + \varepsilon)$.

Теперь построим гладкую функцию, принимающую положительные значения на T:=

 $(\tau - \varepsilon, \tau + \varepsilon)$ и ноль вне этого интервала. В частности,

$$\eta(t) := \begin{cases} (t - (\tau - \varepsilon))^2 (t - (\tau + \varepsilon))^2, & t \in T \\ 0, & \text{иначе} \end{cases}.$$

Отсюда по условию

$$0 = \int_a^b v(t)\eta(t)dt = \int_T v(t)\eta(t)dt.$$

Противоречие, так как мы взяли интеграл по непустому интервалу произведения двух положительных функций.

Теорема. Пусть $F \in C^2$, $\widehat{x} \in M$, $\widehat{x} \in C^2$ — слабый локальный экстремум. Тогда \widehat{x} является решением уравнения Эйлера

$$\frac{\partial F}{\partial x}(t, x, x') - \frac{d}{dt}\frac{\partial F}{\partial x'}(t, x, x') = 0.$$

Доказательство. Поскольку \widehat{x} является слабым локальным экстремумом, по утверждению для любой $\eta \in \mathring{C}^1[a,b]$ точка 0 является локальным экстремумом функции φ , то есть $\varphi'(0)=0$. Выражение для $\varphi'(0)$ мы уже писали выше — теперь заметим, что по утверждению про локальный экстремум φ получаем $\varphi'(0)=0$, а по лемме Лагранжа —

$$\frac{\partial F}{\partial x}(t,\widehat{x},\widehat{x}'(t)) - \frac{d}{dt}\frac{\partial F}{\partial x'}(t,\widehat{x},\widehat{x}'(t)) \equiv 0.$$

Следовательно, \hat{x} является решением уравнения Эйлера.

Замечание. Повсюду мы говорили, что $\widehat{x} \in C^2$. Но теоретически экстремумом может являться и функция из C^1 . Пусть $F, \widehat{x} \in C^1$. Если \widehat{x} — слабый локальный экстремум, то функция

 $t \mapsto \frac{\partial F}{\partial x'}(t, \widehat{x}(t), \widehat{x}'(t))$

непрерывно дифференцируема, и \hat{x} является решением уравнения Эйлера. Иными словами, прошлая теорема верна и в этом случае, но доказывать мы это не будем.

Определение. Решение уравнения Эйлера называется *экстремальным*. Тогда прошлую теорему можно переформулировать, как "слабый локальный экстремум является экстремальным".

8.2 Задача о брахистохроне

Людям с острой непереносимостью физики рекомендуется пропустить. Остальным: для понимания достаточно школьных знаний.

Пусть у нас есть две материальные точки A и B, причём A выше B. Мы хотим провести между ними кривую, такую что материальная точка, двигаясь по ней исключительно под силой тяжести, достигнет точку B за минимальное время. Эта кривая называется

брахистрохоной.

Запишем закон сохранения энергии:

$$mg \cdot y(x) = \frac{mv^2(x)}{2}.$$

Тогда

$$v(x) = \sqrt{2g \cdot y(x)}.$$

Запишем скорость, как производную от пройденного пути s:

$$v(x) = \frac{ds}{dt} = \frac{ds}{dx} \cdot \frac{dx}{dt} = \frac{d}{dx} \int_0^x \sqrt{1 + (y'(\xi))^2} d\xi \cdot \frac{dx}{dt} = \sqrt{1 + (y'(x))^2} \cdot \frac{dx}{dt}.$$

Выразим dt:

$$dt = \frac{\sqrt{1 + (y'(x))^2}}{\sqrt{2g \cdot y(x)}} dx,$$

то есть

$$t = \int_0^b \sqrt{\frac{1 + (y'(x))^2}{2g \cdot y(x)}} \cdot dx.$$

Итак, итак, простейшая вариационная задача. Выкинем лишние константы:

$$t(y) = \int_0^b \sqrt{\frac{1 + (y')^2}{y}} dx \to \min.$$

Здесь y(0) = 0, y(b) = B. Уравнением Эйлера будем

$$\sqrt{1 + (y')^2} \left(-\frac{1}{2} \cdot \frac{1}{(\sqrt{y})^3} \right) - \frac{d}{dx} \cdot \frac{2y'}{\sqrt{y} \cdot 2 \cdot \sqrt{1 + (y')^2}} = 0.$$

Заметим, что это то же самое, что

$$\frac{d}{dx}\left(\sqrt{\frac{1+(y')^2}{y}} - \frac{(y')^2}{\sqrt{y(1+(y')^2)}}\right) = 0.$$

То есть $y(y+(y')^2)=c_1$ — константа. Сделаем замену: $y'(x(\tau))={\rm ctg}(\tau)$. Тогда

$$y(x(\tau)) = c_1 \sin^2(\tau) = \frac{1}{2}c_1(1 - \cos(2\tau)).$$

Теперь

$$dx = \frac{dy}{y'} = \frac{2c_1 \sin(\tau) \cos(\tau)}{\operatorname{ctg}(\tau)} d\tau = c_1(1 - \cos(2\tau)) d\tau.$$

Значит,

$$x(\tau) = c_2 + \frac{c_1}{2}(2\tau - \sin(2\tau)).$$

Теперь остаётся проверить, какие из них являются экстремумами, делается напрямую.

8.3 Задача со свободным концом

Пусть $F:\mathbb{R}^3 \to \mathbb{R} \in C^2$, числа $a,b,A \in \mathbb{R}$ фиксированы. Рассмотрим функционал

$$I(x) = \int_a^b F(t, x(t), x'(t))dt \tag{1}$$

при условии x(a) = A.

Мы хотим найти экстремумы $I: M \to \mathbb{R}$, где $M = \{x \in C^1[a,b]: x(a) = A\}$.

Теорема. Пусть $\widehat{x} \in M$, $\widehat{x} \in C^2$ — решение (1), то есть слабый локальный экстремум I. Тогда \widehat{x} является решением уравнения Эйлера

$$\frac{\partial F}{\partial x}(t, x, x') - \frac{d}{dt}\frac{\partial F}{\partial x'}(t, x, x') = 0,$$

а также

$$\frac{\partial F}{\partial x'}(b, \widehat{x}(b), \widehat{x}'(b)) = 0. \tag{2}$$

Доказательство. Зафиксируем допустимое приращение $\eta \in C^1[a,b], \eta(a) = 0$. Положим

$$\Phi(\alpha) := I(\widehat{x} + \alpha \eta) = \int_{a}^{b} F(t, \widehat{x}(t) + \alpha \eta(t), \widehat{x}'(t) + \alpha \eta'(t)) dt.$$

Найдём производную в нуле:

$$\Phi'(0) = \int_a^b \left(\frac{\partial F}{\partial x}(t, \widehat{x}(t), \widehat{x}'(t)) \eta(t) + \frac{\partial F}{\partial x'}(t, \widehat{x}(t), \widehat{x}'(t)) \eta'(t) \right) dt =$$

Проинтегрируем по частям

$$= \int_{a}^{b} \frac{\partial F}{\partial x}(\dots)\eta(t)dt + \frac{\partial F}{\partial x'}(t,\widehat{x}(t),\widehat{x}'(t))\eta(t)\Big|_{t=a}^{t=b} - \int_{a}^{b} \frac{d}{dt} \frac{\partial F}{\partial x'}(\dots)\eta(t)dt =$$

$$= \int_{a}^{b} \left(\frac{\partial F}{\partial x}(\dots) - \frac{d}{dt} \frac{\partial F}{\partial x'}(\dots)\right)\eta(t)dt + \frac{\partial F}{\partial x'}(b,\widehat{x}(b),\widehat{x}'(b))\eta(b),$$

так как $\eta(a) = 0$.

Как доказывалось в простейшей задаче вариационного исчисления, 0 является локальным экстремумом функции Φ , то есть $\Phi'(0) = 0$. Таким образом, выражение выше равно нулю.

Подставим в выражение выше функцию η с $\eta(b) = 0$, тогда останется только

$$\int_{a}^{b} \left(\frac{\partial F}{\partial x}(t, \widehat{x}(t), \widehat{x}'(t)) - \frac{d}{dt} \frac{\partial F}{\partial x'}(t, \widehat{x}(t), \widehat{x}'(t)) \right) \eta(t) dt = 0.$$

По лемме Лагранжа получаем уравнение Эйлера. Теперь остаётся только

$$\frac{\partial F}{\partial x'}(b, \widehat{x}(b), \widehat{x}'(b))\eta(b) = 0$$

для всех функций η , то есть

$$\frac{\partial F}{\partial x'}(b, \widehat{x}(b), \widehat{x}'(b)) \equiv 0.$$

Замечание. Опять же если $F, \hat{x} \in C^1$, то функция

$$\frac{\partial F}{\partial x'}(t, \widehat{x}(t), \widehat{x}'(t))$$

непрерывно дифференцируема по t, \hat{x} является решением уравнения Эйлера и выполняется (2).

Замечание 2. Можно рассматривать и задачу с другим свободным концом, тогда (2) будет иметь вид

$$\frac{\partial F}{\partial x'}(a, \widehat{x}(a), \widehat{x}'(a)) = 0.$$

А если оба конца свободны, то условие выше и условие (2) выполняются одновременно.

8.4 Задача для функционалов, зависящих от нескольких функций

Пусть у нас есть функция $F: \mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R} \in C^2$, заданы числа $a,b \in \mathbb{R}$ и $A,B \in \mathbb{R}^n$, где $A = (A_i)_{i=\overline{1,n}}$ и $B = (B_i)_{i=\overline{1,n}}$.

Рассмотрим задачу нахождения экстремумов функционала

$$I(x) = \int_{a}^{b} F(t, x(t), x'(t))dt,$$
(3)

где $I:M\to\mathbb{R}$ для $M=\{x\in C^1([a,b],\mathbb{R}^n)\mid x(a)=A,x(b)=B\}$. Мы будем искать слабый локальный минимум/максимум по метрике

$$\rho_1(x, u) = \max_{a \le t \le h} |x(t) - u(t)| + \max_{a \le t \le h} |x'(t) - u'(t)|.$$

Теорема. Пусть $\hat{x} \in M$, $\hat{x} \in C^2$ — решение (3), то есть слабый локальный экстремум I. Тогда \hat{x} является решением уравнения Эйлера

$$\frac{\partial F}{\partial x_i}(t, x, x') - \frac{d}{dt} \frac{\partial F}{\partial x'_i}(t, x, x') = 0$$

для всех $i = \overline{1, n}$.

Доказательство. Можно сделать те же самые рассуждения с леммой Лагранжа, как и в двух предыдущих случаях, но можно доказать проще с использованием уже полученных результатов.

Положим

$$M_1 := \{x_1 \in C^1[a, b] : x_a(a) = A_1, x_1(b) = B_1\}.$$

И

$$I_1(x_1) = \int_a^b F(t, x_1(t), \widehat{x}_2(t), \dots, \widehat{x}_n(t), x'_1(t), \widehat{x}'_2(t), \dots, \widehat{x}'_n(t)) dt.$$

Так как \hat{x} является решением (3), \hat{x}_1 является решением задачи нахождения экстремума $I_1(x_1)$, так как нужно внимательно посмотреть на то, что получается при подстановке.

Следовательно, по теореме для простейшей задачи вариационного исчисления

$$\frac{\partial F}{\partial x_1}(t,\widehat{x}_1(t),\ldots,\widehat{x}_n(t),\widehat{x}_1'(t),\ldots,\widehat{x}_n'(t)) -$$

$$-\frac{d}{dt}\frac{\partial F}{\partial x_1'}(t,\widehat{x}_1(t),\ldots,\widehat{x}_n(t),\widehat{x}_1'(t),\ldots,\widehat{x}_n'(t)) \equiv 0.$$

Теперь аналогично доказываем для x_2, \ldots, x_n .

8.5 Функционалы, содержащие производные высших порядков

Пусть у нас есть $F: \mathbb{R}^{n+2} \to \mathbb{R}, F \in C^{n+1}$, а также числа $a, b, A_i, B_i \in \mathbb{R}$ для $i = \overline{0, n-1}$. Рассмотрим функционал

$$I(x) = \int_{a}^{b} F(t, x(t), x'(t), \dots, x^{(n)}(t)) dt.$$
 (4)

при условиях $x^{(i)}(a) = A_i$ и $x^{(i)}(b) = B_i$ для всех i. Как обычно, положим

$$M = \{x \in C^n[a,b] : x^{(i)}(a) = A_i, x^{(i)}(b) = B_i$$
 для всех $i\}$.

Положим метрику

$$\rho_n(x, u) = \sum_{i=0}^n \rho(x^{(i)}, u^{(i)}).$$

Опять же хотим найти слабый локальный минимум.

Введём множество допустимых вариаций:

$$\mathring{C}^n[a,b] = \{ \eta \in C^n[a,b] : \eta^{(i)}(a) = \eta^{(i)}(b) = 0 \text{ для всех } i \}.$$

Возьмём произвольную допустимую вариацию $\eta \in \mathring{C}^n[a,b], \ \widehat{x} \in C^{2n}$ и положим

$$\Phi(\alpha) = I(\widehat{x} + \alpha \eta) = \int_a^b F(t, \widehat{x}(t) + \alpha \eta(t), \dots, \widehat{x}^{(n)}(t) + \alpha \eta^{(n)}(t)) dt.$$

Дифференцируем по параметру в нуле:

$$\Phi'(0) = \int_a^b \sum_{i=0}^n \frac{\partial F}{\partial x^{(i)}}(t, \widehat{x}(t), \dots, \widehat{x}^{(n)}(t)) \eta^{(i)}(t) dt =$$

Интегрируем, как обычно, по частям всё, кроме первого слагаемого, и сразу, как и раньше,

сокращаем нули

$$= \int_{a}^{b} \frac{\partial F}{\partial x}(\dots)\eta(t)dt - \int_{a}^{b} \sum_{i=1}^{n} \frac{d}{dt} \frac{\partial F}{\partial x^{(i)}}(\dots)\eta^{(i-1)}(t)dt =$$

Отправим первое слагаемое суммы в первое слагаемое всего выражения, а остаток проинтегрируем по частям

$$= \int_{a}^{b} \left(\frac{\partial F}{\partial x}(\dots) - \frac{d}{dt} \frac{\partial F}{\partial x^{(1)}}(\dots) \right) \eta(t) dt + \sum_{i=2}^{n} \frac{d^{2}}{dt^{2}} \frac{\partial F}{\partial x^{(i)}}(\dots) \eta^{i-2}(t) dt =$$

Делаем то же самое:

$$= \int_{a}^{b} \left(\frac{\partial F}{\partial x}(\dots) - \frac{d}{dt} \frac{\partial F}{\partial x^{(1)}}(\dots) + \frac{d^{2}}{dt^{2}} \frac{\partial F}{\partial x^{(2)}}(\dots) \right) \eta(t) dt + \dots =$$

По методу неполной индукции получаем, что это всё равняется

$$\int_{a}^{b} \left(\sum_{i=0}^{n} (-1)^{i} \frac{d^{i}}{dt^{i}} \frac{\partial F}{\partial x^{(i)}} (\dots) \right) \eta(t) dt.$$

Замечание. Если посмотреть на n-ое слагаемое полученной суммы, то можно увидеть, почему условия на непрерывную дифференцируемость функций именно такие.

Лемма. (Лагранжа) Пусть $f \in C[a,b]$ и $\int_a^b f(t)\eta(t)dt = 0$ для всех $\eta \in \mathring{C}^n[a,b]$. Тогда $f(t) \equiv 0$.

Доказательство. Всё так же, как и в одномерном случае. Точная формула для функции:

$$\eta(t) = \begin{cases} (t - (\tau + \varepsilon))^{2n} (t - (\tau - (\tau - \varepsilon))^{2n}, & t \in (\tau - \varepsilon, \tau + \varepsilon) \\ 0, & \text{иначе} \end{cases}.$$

Как альтернатива, можно использовать функцию пенёк из 3 семестра.

Теорема. Пусть $F \in C^{n+1}$, $\hat{x} \in M$ — слабый локальный экстремум, причём $\hat{x} \in C^{2n}$. Тогда \hat{x} является решением уравнения Эйлера, которое в этом случае имеет вид

$$\frac{\partial F}{\partial x}(t, x, x', \dots, x^{(n)}) - \frac{d}{dt} \frac{\partial F}{\partial x'}(t, x, x', \dots, x^{(n)}) + \frac{d^2}{dt^2} \frac{\partial F}{\partial x''}(\dots) + \dots +$$
$$+ (-1)^n \frac{d^n}{dt^n} \frac{\partial F}{\partial x^{(n)}}(\dots) \equiv 0.$$

Доказательство. Ничего не меняется. Если \widehat{x} — слабый локальный экстремум, то 0 — локальный экстремум функции Φ , то есть $\Phi'(0)$, откуда по равенству, полученному выше, и лемме Лагранжа получаем искомое.

Замечание. И то же самое замечание: достаточно C^n для всех функций.

 $\overline{\Phi\Pi M M \Phi T M}$, весна 2025