Fine-Tuning and Instruction Tuning of Llama 3.1 8B for Astronomy

Milad Nourizade

7 January 2025

Project Overview

Objective:

 Adapt a pre-trained LLM to the domain of astronomy using continued pretraining and instruction fine-tuning.

Constrains:

Should fit into 15 GB of RAM (free Google Colaboratory T4 GPU)

Approach Overview

Llama 3.1 8B

Continued Pre-training

Instruction Fine-tuning

Final Model

- At each step:
 - 4-bit quantization
 - LoRA fine-tuning
 - Merge LoRA adapters + model

Why Llama 3.1 8B?

- Strong general capabilities
- Superior astronomical recall (score = 73.7%)
- Resource efficient

Model	Score
Claude-3.5-Sonnet	85.0
LLaMA-3.1-405B	83.8
LLaMA-3.1-70B	80.1
Mixtral-8x22B-v0.1	77.7
Gemma-2-27B	75.3
LLaMA-3.2-11B	74.9
LLaMA-3.1-8B	73.7

[&]quot;AstroMLab 1: Who Wins Astronomy Jeopardy!?" (July 2024)

Unsloth

- 2.2x faster, uses 70% less VRAM
- Currently only supports one-GPU fine tuning
- Limited available models
- Supports only NVIDIA GPUs since 2018+.
- Compatibility with Hugging Face, PEFT and, BNB

"Trainer performance comparison: torchtune vs. axolotl vs. Unsloth" (June 2024)

Full Fine-tuning

- Adam optimizer
 - For <u>each</u> parameter: 2 bytes
 - Gradient: 2 bytes
 - Momentum term: 4 bytes
 - Adaptive term: 4 bytes
 - Parameter copy: 4 bytes
- Total Memory= Parameter + Gradient +Optimizer
- Llama 3.1 8B ≃ 128 GB VRAM

LoRA Fine Tuning

- Adds trainable low rank "adapters"
- $W_0 + \Delta W = W_0 + BA$ r : Hyper parameter
- A, B (16 bit)

Quantized LoRA Fine Tuning

- $W_0 + \Delta W = W_0 + BA$ r : Hyper parameter
- A, B (16 bit)

(Q)LoRA Fine Tuning

- Rank (r)
 - Lower rank (e.g., 8 or 16) → specific task
 - Higher rank (e.g., 32, 64) → teaching new concept
- Alpha (α)
 - Common starting point → Set α twice the r or equal
- Target modules
 - Targeting all linear layers increase the performance

(Q)LoRA Fine Tuning

- Continued pre-training
 - Embed tokens
 - Embedding domain-specific terms
 - Lm_head: producing probabilities for next token prediction
 - Adapting output distribution
 - Improving token generation
- Instruct fine-tuning
 - Attention block: (q_proj, k_proj, v_proj, o_proj)
 - Feedforward network: (gate_proj, up_proj, down_proj).

Rank-Stabilized LoRA (rsLoRA)

- LoRA performs well with lower rank (e.g., 4 to 32)
- BUT higher rank will not improve performance
- $h = W_0 x + (\alpha/r) BA x$
- (α/r) slows learning outside the lower rank regim
- New scaling factor = α / \sqrt{r}

Fine-tuning curves of LoRA vs rsLoRA for Llama 7B on a random subset of the instruction tuning dataset OpenOrca

Evaluation

- Traditional evaluation metrics are not suitable!
- Perplexity
 - Measures next token prediction performance.
 - ↓ perplexity ↑ next token prediction accuracy
- Domain- specific benchmarks:
 - MMLU:Astronomy
 - AstroBench
- General benchmarks:
 - IF-EVAL, BBH, MATH, GPQA, MUSR, and MMLU-PRO

Results

- Continued pre-training
 - Excluded "Embed_tokens"
 - Unstable training and validation loss
 - Highest possible rank 64 was ineffective
- Instruction fine-tuning
 - Converging training and validation loss