SECURITE INFORMATIQUE - Fiche TD N°3 Symétrique par Bloc (DES)/Asymétrique (RSA) et applications (FH,DS, DHKX)

																IP								<i>IP</i> −1						
																58	50	42	34	26	18	10 2	40	8 48	16	56	24	64	32	
10	Λ	0	4.4	0	0	4.5	۲.	- 4	10	10	7	44	1	0								12 4								
10	U	9	14	0	3	19	9	1	13	12	- (11	4	2								14 6								
13	7	0	9	3	1	6	10	9	8	5	14	19	11	15								16 8								
																57	49	41	33	25	17	9 1	36	4 44	12	52	20	60	28	
13	6	4	9	8	15	3	0	11	- 1	2	12	5	10	14	7	59	51	43	35	27	19	11 3	35	3 43	11	51	19	59	27	
4	10	10	0	0	0	0	17	4	4.6	4.4	0	4.4	F	0	10	61	53	45	37	29	21	13 5 15 7	34	2 42	10	50	18	58	26	
1	10	13	U	0	9	ð	7	4	19	14	3	11	9	2	12	63	55	47	39	31	23	15 7	33	1 41	9	49	17	57	25	

Exc 01 1. x1 = 000000, x2 = 000001 2. x1 = 111111, x2 = 100000 3. x1 = 101010, x2 = 010101 S1(x1) = 000000 S1(x2) = 0000000 S1(x1) + S1(x2) = 00000000 (1) X1 + x2 = 0000000 S1(x1 + x2) = 00000000 (2) on (1)!= (2) non lineare

Exc 02 IP(X)=IP($x_1x_2...x_{64}$)= $x_{58}x_{50}x_{42}...x_7$ = Y= $y_1y_2...y_{64}$ on a y_1 = $x_{58}y_2$ = $x_{50}y_{40}$ = $x_1...y_{25}$ = x_{64} IP-1(Y) =IP-1($y_1y_2...y_{64}$)= $y_{40}y_8y_{48}...y_{25}$ = $x_1x_2...x_{64}$ =X

Exc 03 cas des 0 :

 $K=0^{56}$, $K1 = PC1(ROT1(PC(0^{56}))) = 0^{48}$ parceque toute les operations ne changent pas les bits. $B=0^{64} => DES(B) = IP-1(R16(..(R1(IP(B)))..))$

On IP*(0^{64}) = 0^{64} la permutation ne modifie pas les bits juste change leurs places R1(0^{64})= R(0^{32} , 0^{32}) = (0^{32} , 0^{32} + f(0^{32} , 0^{48})) =(0^{32} , 0^{32} + P(S(E(0^{32})+ 0^{48})))) =(0^{32} , 0^{32} + P(S(0^{48}))) =(0^{32} , 0^{32} + P(S(0^{48}))) =(0^{32} , P((14^{38})) =(0^{32} , (1110^{38}) = 0^{32} (1110)8

Exc 06. 1- Symétrique. n(n-1)/2, 2- Asymétrique.: 2n

Exc 07. Soit deux nombres premiers p=41 et q=17 donnés comme paramètres du RSA. Un calcul 1- Lequel des deux paramètres e1= 32, e2=49 est un exposant RSA valide? Un calcul Un calcul 2- Calculer la clé privée correspondante (utiliser EE algo pour trouver l'inverse)

Exc 08. Pour les messages suivants en utilisant les paramètres RSA correspondants : Un calcul 1- Crypter : : x=2, e=79, n=101, (* x=3, e=197, n=101) Un calcul 2- Décrypter : p=3, q=11, d=7, x=5, (* p=3, q=11, e=3, x=9)

Exc 10. Décrypter et crypter les messages suivants en utilisant RSA avec p=29, q=37, M='HELLO'. On va prendre le code ASCII de chaque caractère et on les met bout à bout H 72 E 69 L 76 O 79 (solution trouvée dans presentation cours)

Exc 11. En donnant un schéma DS avec RSA dont $K_{pb}(n = 9797, e = 131)$ quelle DS est valide? Un calcul 1. (x = 123, sig(x) = 6292) 2. (x = 4333, sig(x) = 4768) 3. (x = 4333, sig(x) = 1424)

Exc 12. Calculer 2 clés publiques et la clé partagée pour **DHKE** avec p = 467, $\alpha = 2$, Un calcul 1. a = 3, b = 5 2. a = 400, b = 134 3. a = 228, b = 57.