Preliminar notes on maximum-flow problem solved in FCPP. Notation:

 \bullet G will denote the directed weighted graph of capacities, s and t will denote respectively source and sink of our graph.

We will assume that capacities are nonnegative and symmetrical.

• For a path \mathfrak{p} we will denote with $|\mathfrak{p}|$ its length.

When it will be convenient, we will treat a directed weighted graph G as a function $G: V \times V \to \mathbb{R}_+$, where V is its set of vertices. With a little abuse of notation we will say that the edge from a node δ to a node δ' is in G, or $(\delta, \delta') \in G$, in place of $G(\delta, \delta') \neq 0$.

Likewise we will say that a path \mathfrak{p} is contained in G, or $\mathfrak{p} \subset G$, if every edg

• For a field Φ , \mathcal{R}_{Φ} will denote the directed weighted graph of residual capacities respect to Φ :

$$\mathcal{R} = G - \Phi \tag{1}$$

 $\bullet \;$ We define a dmissible path respect to Φ a path γ in G from source to sink such that

$$\Phi|_{\gamma} < G|_{\gamma}$$

• We say that a flow Φ is maximal if there are no admissible paths in G respect to Φ .

Proposizione 0.1. Φ is a maximum flow iff \mathcal{R}_{Φ} does not have paths from source to sink.

For a field-value f in δ we define $|f|:=\sum_{\delta\sim\delta'}f(\delta')$. We now formalize functions involved in the algorithm. We define $\Phi^*(\delta,\delta'):=\Phi(\delta',\delta)$.

Definition 1. Let Φ be a field with values in \mathbb{R} and let d be a locally constant field d with values in $\mathbb{N} \cup \{\infty\}$. We say that the couple (Φ, d) is admissible for G if, for all devices $\delta \sim \delta'$, the following are satisfied:

(i)
$$\Phi(\delta, \delta) = 0 \land -G \leq \Phi \leq G \land (\Phi < 0 \rightarrow \Phi^* \geq 0);$$

(ii) d(t) = 0;

(iii)
$$(d(\delta') < \infty \land d(\delta) = d(\delta') + 1) \rightarrow (\Phi(\delta, \delta') < G(\delta, \delta')).$$

Example 1. For a flow Φ , $(\Phi, \operatorname{dist}_{\mathcal{R}_{\Phi}}(\cdot, t))$ is admissible.

Example 2. $(0, \delta \neq t \mapsto \infty)$ is admissible.

Example 3. Let (Φ, d) be admissible for G. If H is a subgraph of G then $(\Phi_{|H}, d_{|H})$ is admissible for H.

Example 4. Let (Φ, d) be admissible for G. If H is a supergraph of G then (Φ_H, d_H) is admissible for H, where Φ_H is the extension of Φ with default 0 and d_H is the extension of d with default ∞ .

Proposizione 0.2. Let G and G' be two graphs on the set of devices. Suppose that G and G' are compatible, i.e. for all devices δ , δ' one has $(G \neq 0 \land G' \neq 0) \rightarrow (G = G')$.

If (Φ, d) is an admissible couple for G, then $((\Phi_{|G \cap G'})_{G'}, (\Phi_{|G \cap G'})_{G'})$ is compatible for G'.

Proof. (SKETCH) It's a consequence of the two previous examples. \Box

Definition 2. Given an admissible couple (Φ, d) for G, we define by co-induction:

$$\begin{split} & \Phi_0 := \Phi \\ & \mathcal{R}_n := \mathcal{R}_{\Phi_n} \\ & e_n(\delta) := \begin{cases} \infty & \text{if } \delta = s \\ -\infty & \text{if } \delta = t \\ |\Phi_n(\delta)| & \text{otherwise} \end{cases} \\ & d_0 := d \\ & d_n(\delta) := \begin{cases} 0 & \text{if } \delta = t \\ \min \{ d_{n-1}(\delta') + 1 \mid \mathcal{R}_{n-1}(\delta, \delta') > 0 \} & \text{otherwise} \end{cases} \\ & I_n := \operatorname{trunc}((G + \Phi_{n-1}^*) \cdot (d_{n-1}^* < d_n), e(\Phi_{n-1}^*)) \\ & \Phi_n := -\Phi_{n-1}^* + I_n + \operatorname{trunc}(\Phi_{n-1}^*, e(\Phi_{n-1}^* - I_n)) \\ & X_n := \{ \delta \mid d_n(\delta) = \infty \} \end{split}$$

Lemma 0.3. Eventually $\{X_n\}_n$ stabilizes to a set of devices X.

Proof. For every $n \in \mathbb{N}$ let's consider the set $T_n = \{\delta \mid \mathrm{dist}_G(\delta,t) \leq n\}$. We prove by induction that for $\delta \not\in T_n$ we have $d_n(\delta) = \infty$. Base step: $T_0 = \{t\}$, and condition on d_0 holds by definition. Inductive step: suppose that $\forall \delta' \not\in T_{n-1} \ d_{n-1}(\delta') = \infty$ and consider a $\delta \not\in T_n$. We have $d_n(\delta) = \min\{d_{n-1}(\delta') + 1 \mid \mathcal{R}_{n-1}(\delta,\delta') > 0\}$ and since no $\delta' \sim \delta$ is in T_{n-1} , condition on d_n holds by inductive hypothesis.

As a consequence, for a $\delta \in T_n$

$$d_n(\delta) = \min_{\delta' \in T_{n-1}} \left\{ d_{n-1}(\delta') + 1 \mid \mathcal{R}_{n-1}(\delta, \delta') > 0 \right\}$$

Now we want to show by induction that $\forall n \ X_n \cap T_n \subseteq X_{n+1} \cap T_{n+1}$. Base step: $X_0 \cap T_0 = \emptyset$ and we have done.

Inductive step: let δ be a device in $X_n \cap T_n$ and $\delta' \in T_{n-1}$ such that $\delta' \sim \delta$. We have $d_{n-1}(\delta') = \infty \ \lor \ \mathcal{R}_{n-1}(\delta, \delta') = 0$. If $d_{n-1}(\delta') = \infty$ then $d_n(\delta') = \infty$ by inductive hypothesis. Otherwise let's suppose $d_{n-1}(\delta') < \infty$, $\mathcal{R}_{n-1}(\delta, \delta') = 0$ and $d_n(\delta') < \infty$. In this case $e(I_n(\delta')) = e(\Phi_{n-1}^*(\delta'))$, i.e.

.

$$\forall \delta' \sim \delta \quad \mathcal{R}_{n-1}(\delta, \delta') \cdot (d_{n-1}(\delta') < d_n(\delta)) = 0$$

and thus $I_n(\delta)$ is a zero field-value. So we have