PREVISÃO DO CONSUMO DE COMBUSTÍVEL DAS VIATURAS DA PMPE

EQUIPE

Ana Pereira

Graduanda do curso de Engenharia da Computação da UPE.

Hitalo Silva

Doutorando em Engenharia da Computação da UPE.

Hugo Amorim

Graduando do curso de Engenharia da Computação da UPE.

João Lima

Mestrando em Engenharia da Computação da UPE.

Messias Batista

Mestrando em Engenharia da Computação da UPE. O Fuzzy

STAKEHOLDERS

George Fragoso

Integrante da equipe de TI da PMPE.

Edilson Fernandes

Integrante da CPA da PMP.

COMISSÃO PERMANENTE DE AUDITORIA (CPA)

Órgão técnico de **assessoria** da Polícia Militar de Pernambuco

O PROBLEMA...

J101

21111111010012

J010101000100010001011110 00100100101001011010101000010000100 JU. J011101010111001011110010000101111111

~~~^0100001110100001010010001^\*100010101(

JU 1000010

J10100100010

/1000100001010010010

0101011 (11010101111101001) 010010110111111110100 210010100010000101001 J0001010100010001000101 i . J100100101001011010101001000001000101 า1111110101

11110000010100100101000

....iu0001010010100111111110 J10100100010110001010101011110 .1000011101000010100100010110001010101 

010 J0100000100LUIUIL

~~~~010000111010000101001000<sup>1</sup>^~100010101010111101010101111<sup>0</sup>10010<sup>1</sup>101110<sup>2</sup> ~~100010110

1000100010 10111111110100101 000100001010010010

00010001000101111010101010101111011 JU1001001010010 101010100100000100010100101010100010 1010010100001110100 10100101010010100101001010010010010111101 2100100001000010010 0001000010100100100000100001010100101001 101000101000011100000001071 241101000000 224000400

Análise dos dados de combustível

É COMPLEXO:

Grande volume de dados

Análise Manual

82 unidades de gestão

Relatórios Mensais

Quadro reduzido de auditores

Subjetividade

OBJETIVO

Desenvolver um MVP para

prever o consumo de combustível

das viaturas da PMPE.

Solução:

Aplicar Mineração de Dados (Regressão) para obtenção da previsão dos dados sazonais do

consumo de **combustível** das viaturas.

Spoiler:

Utilizamos o algoritmo SARIMA para a previsão...

Aplicação de CRISP-DM na "tora"

Entendimento do funcionamento e organização da PMPE

Entendimento da frota de veículos

Entendimento do consumo de combustível das viaturas

Pré-processamento

Modelagem

Execução das previsões

Datalake

Base do IMETRO*

Dados sobre o consumo médio dos modelos de carros vendido no Brasil.

Dados da PMPE

Base de dados sobre os serviços executados nas viaturas da PMPE

EMPREL*

Dados sazonais sobre o trânsito no Recife

^{*} Bases não utilizadas. :(- Trabalhos futuros...

173 modelos diferentes de veículos de 27 marcas

4.373 veículos

9.466 condutores

97 Centros de Custo

187 cidades

11 tipos diferentes de serviços

~600k linhas

Dicionário de Dados

| Atributo | Descrição | Atributo | Descrição | |
|----------------|---|-----------------|---|--|
| Autorização | Gerado pelo Sistema e único para cada evento de abastecimento | Num cartão | Número do cartão de abastecimento | |
| Hodômetro | Marcação de KM no momento do abastecimento | Tipo Veículo | Tipo do veículo abastecido | |
| Nome Fantasia | Nome de fantasia do posto de combustível | Modelo Veículo | Modelo do Veículo | |
| Cidade | Cidade de Abastecimento | Deslocamento | O Deslocamento é obtido pela medição do
hodômetro. deslocamento = hodometro
[i+1] - hodometro [i] | |
| UF | UF de abastecimento | Consumo | Deslocamento/Quantidade | |
| Serviço | Combustível abastecido | Condutor | Motorista | |
| Quantidade | Total de litros abastecido | Veículo | Veículo utilizado | |
| Unitário | Valor por litro | Centro de custo | setor da PM responsável pelo veículo | |
| Valor | Total da despesa | Ano FAB | Ano de fabricação | |
| DataHora Trans | Data e hora da transação | Ano MOD | Ano do modelo | |

Mãos à obra!

Caminho dos Dados

Pré-Processamento dos Dados

Limpeza dos Dados

Etapa 2

Redução

Etapa 3

Transformação

SARIMA:

Obtendo previsão em dados sazonais.

Comportamento do consumo

Indicadores de viabilidade

Tabela de intervalo

| | lower | Consumo | upper | Consumo |
|------------|-------|----------|-------|----------|
| Data | | | | |
| 2020-01-01 | | 6.238682 | | 7.339516 |
| 2020-01-02 | | 6.306911 | | 7.407745 |
| 2020-01-03 | | 6.209585 | | 7.310418 |
| 2020-01-04 | | 6.310259 | | 7.411092 |
| 2020-01-05 | | 6.212971 | | 7.313805 |
| | | *** | | |
| 2020-09-26 | | 6.515878 | | 7.616711 |
| 2020-09-27 | | 6.485532 | | 7.586366 |
| 2020-09-28 | | 6.504249 | | 7.605082 |
| | | | | |

Resultado da Previsão

Resultado da Previsão

Taxa de acerto

Erro Médio Quadrático

Raiz Erro Médio Quadrático

84.43%

0.13

0.36

Dificuldades encontradas

- Tempo
- Normalização dos dados

Trabalhos futuros

- integrar com outras bases de dados
- fazer análises com outros atributos além de consumo (análise mais acurada)
- testar com mais algoritmos
- usar informações de manutenção

Obrigada!