MATH 5591H HOMEWORK 1

BRENDAN WHITAKER

Section 10.1 Exercises

8. An element m of the R-module M is called a torsion element if rm = 0 for some nonzero element $r \in R$. The set of torsion elements is denoted:

$$Tor(M) = \{ m \in M : rm = 0 \text{ for some nonzero } r \in R \}.$$

(a) Prove that if R is an integral domain, then Tor(M) is a submodule of M (called the torsion sobumodle of M).

Proof. We know Tor(M) is a subset of M by its definition. We first prove it is an additive subgroup. Let $m \in Tor(M)$. Then $\exists r \in R, r \neq 0$ s.t. rm = 0. Then consider $-m \in M$. From exercise 1 we know -m = (-1)m, so we have:

$$r(-m) = r(-1)m = (-1)rm = (-1)0 = 0,$$

since R is commutative. So we have that $-m \in \text{Tor}(M)$ as well, hence we have additive inverses. We check that it has additive closure. Let $m, n \in \text{Tor}(M)$. Then we have $r, s \in R$, neither being zero, s.t. rm = 0, sn = 0. Now consider m + n. We have:

$$rs(m+n) = rsm + rsn = srm + rsn = s0 + r0 = 0.$$

Since we have no zero divisors, since R is an integral domain, we know $rs \neq 0$, so $m+n \in \operatorname{Tor}(M)$, we have additive closure, and $\operatorname{Tor}(M)$ is a subgroup of M. Now we need only check that it is closed under the left action of R. So let $r \in R$ and $m \in \operatorname{Tor}(M)$. Then consider rm. We assume $r \neq 0$, since otherwise rm = 0 which is in our subgroup. And we know $\exists s \in R, s \neq 0$ s.t. sm = 0. Now we have srm = rsm = r0 = 0, so rm is in $\operatorname{Tor}(M)$. So it's a submodule. \square

(b) Give an example of a ring R and an R-module M such that Tor(M) is not a submodule (consider the torsion elements in the R-module R).

So from the previous exercise, we know we must choose some R which is not an integral domain. We consider the torsion elements in the R-module R, which are:

$$Tor(R) = \{r \in R : sr = 0 \text{ for some nonzero } s \in R\},\$$

but these are exactly the right zero divisors of R. We consider the ring $R = \mathbb{Z}_6 \cong \mathbb{Z}/6\mathbb{Z}$, and the module of R over itself. Note that in R, $2 \cdot 3 = 6 = 0$, $4 \cdot 3 = 12 = 0$, and 1, 5 are not zero divisors, so we have:

$$Tor(R) = \{0, 2, 3, 4\}.$$

1

So note that $2, 3 \in \text{Tor}(R)$ and $1 \in R$, but $2+1\cdot 3=5 \notin \text{Tor}(R)$, so by the submodule criterion, it is not a submodule.

(c) If R has zero divisors, show that every nonzero R-module has nonzero torsion elements. Proof. Suppose R has zero divisors. So $\exists r,s \in R$ nonzero such that rs=0. Now let M be an R-module. We wish to show that $\exists m \in M \text{ s.t. } m \neq 0, tm=0$ for some nonzero $t \in R$. Let $n \in M$ s.t. $n \neq 0$. Now consider $sn \in M$ and $sn \in M$ and $sn \in M$ nonzero, so sn is a nonzero torsion element.

Date: SP18.

9. If N is a submodule of M, the annihilator of N in R is defined to be:

$$Ann_R(N) = \{r \in R : rn = 0 \text{ for all } n \in N\}.$$

Prove that the annihilator of N in R is a two-sided ideal of R.

Proof. Let $A = \operatorname{Ann}_R(N)$. We first show that A is an additive subgroup of R. We know it is nonempty since $0 \in A$, and it is a subset of R by construction. Now let $x, y \in A$. Consider x(-y) = -xy. Note $-xyn = -x(yn) = -x0 = 0 \ \forall n \in N$, so by the subgroup criterion, A is a subgroup. Let $r \in R$, $n \in N$, and $a \in A$. Observe:

$$ran = r(an) = r0 = 0,$$

$$arn = a(rn) = 0$$
,

since a annihilates n, and N is closed under the action of R, so $rn \in N$, and hence a also annihilates (rn). Since our n was arbitrary, this holds for all $n \in N$. Thus $ra \in A$ and $ar \in A$, and thus $RA \subseteq A$ and $AR \subseteq A$, so since it's also an additive subgroup, A is a two-sided ideal.

10. If I is a right ideal of R, the annihilator of I in M is defined to be:

$$Ann_M(I) = \{m \in M : am = 0 \text{ for all } a \in I\}.$$

Prove that the annihilator of I in M is a submodule of M.

Proof. Since I is a right ideal, we know $Ir \subseteq I \ \forall r \in R$. Let $A = \operatorname{Ann}_M(I)$ which we know is nonempty since $0 \in M$ since it is an abelian group, and $a0 = 0 \ \forall a \in I$. Let $m, n \in A$, let $a \in I$, and let $r \in R$. Observe:

$$a(m+rn) = am + arn = 0 + arn = (ar)n = 0,$$

since $a \in I \Rightarrow ar \in I$ (*I* is right ideal), hence *n* annihilates (ar). Thus $(m+rn) \in A$. Then by the submodule criterion, since this holds for arbitrary $m, n \in A$, $r \in R$, and *A* is nonempty, we know *A* is a submodule of *M*.

Section 10.2 Exercises

9. Let R be a commutative ring. Prove that $Hom_R(R,M)$ and M are isomorphic as left R-modules. [Show that each element of $Hom_R(R,M)$ is determined by its value on the identity of R.]

Proof. Recall:

$$H = \operatorname{Hom}_{R}(R, M) = \{ \phi : R \to M \},$$

where R and M are R-modules. Let $\phi \in H$. Recall that from the definition of H, we know:

$$\phi(rs+t) = r\phi(s) + \phi(t),$$

for all $r, s, t \in R$. So note that $\forall r \in R$, we have:

$$\phi(r) = r\phi(1_R),$$

hence ϕ is complete determined by its value on 1_R . Also observe that $\phi(1_R) \in M$, so define a map $\Phi: M \to H$ by $\Phi(m) = \phi_m$, where we define $\phi_m(1_R) = m$. We prove this map is an R-module isomorphism. We first prove it is an R-module homomorphism. So let $m, n \in M$, then we have:

$$\Phi(m) + \Phi(n) = \phi_m + \phi_n$$

Now we prove surjectivity. So let $\psi \in H$, then $\psi(1_R) = m$ for some $m \in M$, so we know $\psi = \phi_m$. Then note that $\Phi(m) = \phi_m$, so Φ is surjective.

Section 10.3 Exercises

7. Let N be a submodule of M. Prove that if both M/N and N are finitely generated, then so is M. Proof. Suppose M is not finitely generated. Then we have:

$$M/N = RA$$
,

where $A = \{x_1 + N, ..., x_n + N\}$. And since N is also finitely generated, we know $N = RA_N$, and M - N is not finitely generated. Now we know $x_i \in M - N$ since otherwise we would have $x_i + N = N$. So then since M is not finitely generated, we know $\exists y \in M - N$ s.t. $y \notin R\{x_i\}$, hence $y + N \notin RA = \{(rx_1) + N, ..., (rx_n) + N\}$, but since $y \in M - N$ we know $y + N \neq N$, hence $y + N \in M/N$. But we said M/N = RA, so this is a contradiction, so we must have that M is finitely generated.

- 12. Let R be a commutative ring and let A, B, and M be R-modules. Prove the following isomorphisms of R-modules:
 - (a) $Hom_R(A \times B, M) \cong Hom_R(A, M) \times Hom_R(B, M)$.

Proof. Let $H = \operatorname{Hom}_R(A \times B, M)$, $H_A = \operatorname{Hom}_R(A, M)$, and $H_B = \operatorname{Hom}_R(B, M)$. Let $\Phi : H_A \times H_B \to H$ be given by $\Phi((\phi, \psi)) = \phi + \psi$, where $\phi \in H_A, \psi \in H_B$. We prove this is an isomorphism of R-modules.

Homomorphism: Observe:

$$\Phi((\phi_1, \psi_1) + (\phi_2, \psi_2)) = \Phi((\phi_1 + \phi_2, \psi_1 + \psi_2)) = \phi_1 + \psi_1 + \phi_2 + \psi_2
= \Phi((\phi_1, \psi_1)) + \Phi((\phi_2, \psi_2)).$$
(1)

In the above expression, the first equality comes from the definition of addition in $H_A \times H_B$. The second and third equalities comes from the definition of Φ . And we also know:

$$\Phi(r(\phi,\psi)) = \Phi((r\phi,r\psi)) = r\phi + r\psi = r(\phi + \psi) = r\Phi((\phi,\psi)),$$

hence Φ preserves mult. by R, by the definition of scalar multiplication on the R-module $H_A \times H_B$, and the definition of Φ .

Surjectivity: Let $\varphi \in H$. Then $\varphi : A \times B \to M$. So let $\phi \in H_A$ be given by $\phi(a) = \varphi(a,0)$, and let $\psi \in H_B$ be given by $\phi(b) = \varphi(0,b)$. Then we have: $\Phi((\phi,\psi)) = \varphi$. Then Φ is surjective. **Injectivity:** Let $\Phi((\phi_1,\psi_1)) = \phi_1 + \psi_1 = \phi_2 + \psi_2 = \Phi((\phi_2,\psi_2)) \in H_A \times H_B$. Then note that

$$(\phi_1 + \psi_1)(a, 0) = \phi_1(a) = \phi_2(a) = (\phi_2 + \psi_2)(a, 0),$$

and the same holds when we let a=0, and use an arbitrary b value, so we get that $\psi_1=\psi_2$ as well. Hence Φ is injective. And thus it is an isomorphism.

(b) $Hom_R(M, A \times B) \cong Hom_R(M, A) \times Hom_R(M, B)$.

Proof. Let $H = \operatorname{Hom}_R(M, A \times B)$, $H_A = \operatorname{Hom}_R(M, A)$, and $H_B = \operatorname{Hom}_R(M, B)$. Let $\Phi : H_A \times H_B \to H$ be given by $\Phi((\phi, \psi)) = (\phi, \psi) \in H$, where $\phi \in H_A$, and $\psi \in H_B$. We prove this map is an isomorphism.

Homormorphism: Observe:

$$\Phi((\phi_1, \psi_1) + (\phi_2, \psi_2)) = \Phi((\phi_1 + \phi_2, \psi_1 + \psi_2)) = (\phi_1 + \phi_2, \psi_1 + \psi_2)
= (\phi_1, \psi_1) + (\phi_2, \psi_2) = \Phi((\phi_1, \psi_1)) + \Phi((\phi_2, \psi_2)).$$
(2)

The first equality follows from addition in the R-module $H_A \times H_B$, the second comes from the definition of Φ , the third comes from addition in H, and the last again comes from the definition of Φ . And we also know:

$$\Phi(r(\phi,\psi)) = \Phi((r\phi,r\psi)) = (r\phi,r\psi) = r(\phi,\psi) = r\Phi((\phi,\psi)),$$

by the definition of scalar mult. in H, hence since Φ preserves addition and scalar multiplication, we know it is a homomorphism.

Surjectivity: Let $\varphi \in H$, then we know $\varphi : M \to A \times B$. Then the image of any element of M under φ is a two dimensional vector whose first component lives in A, and whose second component lives in B. So let $\phi : M \to A$ be given by $\phi(m) = \varphi(m)_1$, the first component of $\varphi(m)$, and let $\psi(m) = \varphi(m)_2$. Then $\Phi((\phi, \psi)) = (\phi, \psi) = \varphi$. Hence Φ is surjective.

Injectivity: Let $\Phi((\phi_1, \psi_1)) = (\phi_1, \psi_1) = (\phi_2, \psi_2) = \Phi((\phi_2, \psi_2))$. Then we must have $\phi_1 = \phi_2$, and $\psi_1 = \psi_2$, since otherwise we do not have equality of these ordered pairs of homsms in H. But then we have shown that the arguments of Φ are equal in this case, so Φ must be injective.