INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO

PROF. DANIEL S. FREITAS

UFSC - CTC - INE

1 - LÓGICA E MÉTODOS DE PROVA

- 1.1) Elementos de Lógica Proposicional
- 1.2) Elementos de Lógica de Primeira Ordem
- 1.3) Métodos de Prova
- 1.4) Indução Matemática
- 1.5) Definições Recursivas

PROVA DE TEOREMAS

- Questões importantes na matemática:
 - quando um argumento matemático está correto?
 - métodos para construir argumentos matemáticos?

- Teorema: conjectura que se pode mostrar que é V.
 - "Proposições", "fatos" ou "resultados".

Prova: seqüência de declarações (argumento) que mostra que um teorema é V

PROVA DE TEOREMAS & CC

- Métodos de prova também servem diretamente em CC:
 - correção de programas
 - segurança de sistemas operacional é seguro
 - inferências para IA
 - consistência das especificações de um sistema
 - correção de protocolos (de rede, de segurança)
 - prova de resultados teóricos em CC
 - **•** (...)

PROVA DE TEOREMAS

- Objetivo da Prova ou Demonstração:
 - estabelecer a verdade de um teorema

- Construção de provas:
 - obter novas declarações a partir das já conhecidas

TEOREMAS NA LÓGICA PROPOSICIONAL

Teoremas = tautologias

- **•** Teorema mais comum: $p \rightarrow q$
 - p e q são proposições compostas
 - p é a hipótese
 - q é a conclusão

TEOREMAS NA LÓGICA PROPOSICIONAL

- Técnicas usuais de prova:
 - tabelas-verdade:
 - inviáveis para muitas variáveis
 - dedução formal:
 - m p
 ightarrow q só será teorema se for tautologia
 - (sempre que p for V, q também deverá ser)
 - ullet é possível deduzir q a partir de p

PROVAS

- Declarações em uma prova podem incluir:
 - hipóteses do teorema a ser provado
 - axiomas (ou postulados):
 - outras proposições que assume-se que são V
 - tautologias
 - "verdades evidentes"
 - teoremas já provados previamente
 - proposições derivadas através de regras de inferência

REGRAS DE INFERÊNCIA

- Regras de inferência:
 - "extraem conclusões" de afirmações prévias
 - "amarram" os passos de uma prova

- Justificam os passos usados para mostrar:
 - conclusão segue logicamente de hipóteses

Regra fundamental: Modus Ponens

- "se tanto uma implicação quanto sua hipótese são V, a conclusão desta implicação é V"
- baseada na tautologia: $(p \land (p \rightarrow q)) \rightarrow q$

Exemplo: Suponha que sejam verdadeiras:

a implicação: "Se fizer sol hoje, eu irei à praia."

e a hipótese: "Hoje o dia está ensolarado."

Então, por modus ponens, segue que é V a conclusão da implicação:

"Eu irei à praia."

Exemplo: Assuma que é V a implicação:

"Se
$$n > 3$$
, então $n^2 > 9$ ".

Agora assuma que sabemos que n é maior que 3

- Então, por modus ponens, segue que:
 - " n^2 é maior do que 9."

- Outras regras de inferência:
 - tabela a seguir (⇒)
 - todas podem ser verificadas com tabelas-verdade

Regra	Tautologia	Nome
$\therefore rac{p}{p ee q}$	p o (p ee q)	Adição
$p \wedge q \over p$	$(p \wedge q) o p$	Simplificação
$egin{array}{c} p \ rac{q}{p \wedge q} \end{array}$	$((p) \land (q)) ightarrow (p \land q)$	Conjunção
$egin{array}{c} p \ p ightarrow q \ \therefore q \end{array}$	$[p \land (p ightarrow q)] ightarrow q$	Modus Ponens
$\begin{array}{c} \neg q \\ p \rightarrow q \\ \therefore \overline{\neg p} \end{array}$	$[\neg q \land (p ightarrow q)] ightarrow eg p$	Modus Tollens
$egin{array}{c} p ightarrow q \ rac{q ightarrow r}{p ightarrow r} \end{array}$	$[(p \to q) \land (q \to r)] \to (p \to r)$	Silogismo hipotético
$ \begin{array}{c c} p \lor q \\ \vdots \overline{q} \end{array}$	$[(p \lor q) \land \neg p] o q$	Silogismo disjuntivo
$egin{array}{c} pee q \ orall pee r \ \hline \ \therefore qee r \end{array}$	$[(p \lor q) \land (\neg p \lor r)] \to (q \lor r)$	Resolução

- Exemplo 1(/3): Determine qual regra de inferência é base para o argumento: "Está nublado agora. Portanto, ou está nublado ou está chovendo agora."
 - Sejam as proposições:

p: "Está nublado agora."

q: "Está chovendo agora."

Então este argumento tem a forma:

$$\therefore \frac{p}{p \lor q}$$

ou seja, usa a regra da adição.

- Exemplo 2(/3): "Está nublado e chovendo agora. Portanto, está nublado agora."
 - Proposições:

p: "Está nublado agora."

q: "Está chovendo agora."

Este argumento tem a forma:

$$: rac{p \wedge q}{p}$$

ou seja, usa a regra da simplificação.

Exemplo 3(/3): "Se chover hoje, então hoje nós não teremos churrasco. Se não tivermos churrasco hoje, então teremos churrasco amanhã. Portanto, se chover hoje, teremos churrasco amanhã."

p: "Vai chover hoje."

q: "Não teremos churrasco hoje."

r: "Teremos churrasco amanhã."

Forma do argumento:

$$egin{array}{c} p
ightarrow q \ q
ightarrow r \ dots
ightarrow r \
ightarrow r \end{array}$$

ou seja, é um silogismo hipotético.

- Um argumento tem forma válida se:
 - sempre que hipóteses são V, conclusão também é V

- ullet Mostrar que $\,q\,$ segue das hipóteses $\,p_1,p_2,\ldots,p_n\,$:
 - mesmo que mostrar que é V a implicação:

$$(p_1 \wedge p_2 \wedge \cdots \wedge p_n) \rightarrow q$$

- Várias regras de inferência podem ser necessárias
 - argumento deve ser mostrado passo a passo
 - razão para cada passo deve ficar explícita.

■ Exemplo 1 (1/9): Mostre que as hipóteses "Não está fazendo sol esta tarde e está mais frio do que ontem", "Nós iremos nadar somente se fizer sol", "Se nós não formos nadar, então nós vamos velejar", e "Se nós formos velejar, então estaremos em casa no final da tarde." levam à conclusão: "Estaremos em casa no final da tarde."

p: "Está fazendo sol esta tarde."

q: "Está mais frio do que ontem."

r: "Nós iremos nadar."

s: "Nós iremos velejar."

t: "Estaremos em casa no final da tarde."

Exemplo 1 (2/9):

Hipóteses: $\neg p \land q$, $r \rightarrow p$, $\neg r \rightarrow s$, $s \rightarrow t$

Conclusão: t

Uma demonstração de que as hipóteses levam à conclusão:

Passo	Justificativa
1. $\neg p \wedge q$	Hipótese

Exemplo 1 (3/9):

Hipóteses: $\neg p \land q$, $r \rightarrow p$, $\neg r \rightarrow s$, $s \rightarrow t$

Passo	Justificativa
1. $\neg p \wedge q$	Hipótese
2. ¬ <i>p</i>	1, Simplificação

Exemplo 1 (4/9):

Hipóteses: $\neg p \land q$, $r \rightarrow p$, $\neg r \rightarrow s$, $s \rightarrow t$

Passo	Justificativa
1. $\neg p \wedge q$	Hipótese
2. <i>¬p</i>	1, Simplificação
igg 3. $r o p$	Hipótese

Exemplo 1 (5/9):

Hipóteses: $\neg p \land q$, $r \rightarrow p$, $\neg r \rightarrow s$, $s \rightarrow t$

Passo	Justificativa
1. $\neg p \wedge q$	Hipótese
2. <i>¬p</i>	1, Simplificação
\mid 3. $r ightarrow p$	Hipótese
$4. \neg r$	2, 3, Modus Tollens

Exemplo 1 (6/9):

Hipóteses: $\neg p \land q$, $r \rightarrow p$, $\neg r \rightarrow s$, $s \rightarrow t$

Passo	Justificativa
1. $\neg p \wedge q$	Hipótese
2. ¬ <i>p</i>	1, Simplificação
$3. \ r ightarrow p$	Hipótese
4. ¬ <i>r</i>	2, 3, Modus Tollens
$\int 5. \ \neg r ightarrow s$	Hipótese

Exemplo 1 (7/9):

Hipóteses: $\neg p \land q$, $r \rightarrow p$, $\neg r \rightarrow s$, $s \rightarrow t$

Passo	Justificativa
1. $\neg p \wedge q$	Hipótese
2. ¬ <i>p</i>	1, Simplificação
$3. \ r ightarrow p$	Hipótese
4. ¬ <i>r</i>	2, 3, Modus Tollens
$\int 5. \ \neg r \rightarrow s$	Hipótese
6. <i>s</i>	4, 5, Modus Ponens

Exemplo 1 (8/9):

Hipóteses: $\neg p \land q$, $r \rightarrow p$, $\neg r \rightarrow s$, $s \rightarrow t$

Passo	Justificativa
1. $\neg p \wedge q$	Hipótese
2. ¬ <i>p</i>	1, Simplificação
$3. \ r ightarrow p$	Hipótese
4. ¬ <i>r</i>	2, 3, Modus Tollens
$\int 5. \ \neg r ightarrow s$	Hipótese
6. <i>s</i>	4, 5, Modus Ponens
7. $s \rightarrow t$	Hipótese

Exemplo 1 (9/9):

Hipóteses: $\neg p \land q, \quad r \rightarrow p, \quad \neg r \rightarrow s, \quad s \rightarrow t$

Passo	Justificativa	
1. $\neg p \wedge q$	Hipótese	
2. ¬ <i>p</i>	1, Simplificação	
igg 3. $r o p$	Hipótese	
4. ¬ <i>r</i>	2, 3, Modus Tollens	
$\int 5. \ \lnot r ightarrow s$	Hipótese	
6. <i>s</i>	4, 5, Modus Ponens	
7. $s \rightarrow t$	Hipótese	
8. <i>t</i>	6, 7, Modus Ponens	

■ Exemplo 2 (1/7): Mostre que as hipóteses "Se você me enviar um email, eu termino de escrever o programa", "Se você não me enviar um email, então eu vou dormir cedo", e "Se eu for dormir cedo, então eu vou acordar revigorado." levam à conclusão: "Se eu não terminar de escrever o programa, vou acordar revigorado."

p: "Você me envia um email."

q: "Eu termino de escrever o programa."

r: "Eu vou dormir cedo."

s: "Eu vou acordar revigorado."

Hipóteses: p o q, $\neg p o r$ e r o s.

Conclusão desejada: $\neg q \rightarrow s$ (\Rightarrow)

Exemplo 2 (2/7):

Hipóteses: p o q, $\neg p o r$, r o s

Passo	Justificativa
1. $p o q$	Hipótese

Exemplo 2 (3/7):

Hipóteses: p o q, $\neg p o r$, r o s

Passo	Justificativa
1. $p o q$	Hipótese
igg 2. $ eg q o eg p$	1, Contrapositiva

Exemplo 2 (4/7):

Hipóteses: p o q, $\neg p o r$, r o s

Passo	Justificativa
1. $p o q$	Hipótese
$igg $ 2. $\neg q ightarrow eg p$	1, Contrapositiva
$3. \ eg p ightarrow r$	Hipótese

Exemplo 2 (5/7):

Hipóteses: p o q, $\neg p o r$, r o s

Passo	Justificativa
1. $p o q$	Hipótese
igg 2. $ eg q ightarrow eg p$	1, Contrapositiva
igg 3. $ eg p o r$	Hipótese
$igg 4. \ eg q ightarrow r$	2, 3, Silogismo Hipotético

Exemplo 2 (6/7):

Hipóteses: p o q, $\neg p o r$, r o s

Passo	Justificativa
1. $p o q$	Hipótese
2. $\neg q \rightarrow \neg p$	1, Contrapositiva
$igg $ 3. $\neg p ightarrow r$	Hipótese
$igg 4. \ eg q ightarrow r$	2, 3, Silogismo Hipotético
$\int 5. \ r o s$	Hipótese

Exemplo 2 (7/7):

Hipóteses: p o q, $\neg p o r$, r o s

Passo	Justificativa
1. $p o q$	Hipótese
$2. \ \neg q ightarrow \neg p$	1, Contrapositiva
$3. \ eg p ightarrow r$	Hipótese
$4. \ \lnot q ightarrow r$	2, 3, Silogismo Hipotético
$\int 5. r \rightarrow s$	Hipótese
6. $\neg q \rightarrow s$	4, 5, Silogismo Hipotético □

Pode-se inserir uma tautologia em qualquer passo de uma prova.

Exemplo 3(a): A proposição "Meu cliente é canhoto. Mas, se o diário não desapareceu, então meu cliente não é canhoto. Logo, o diário desapareceu." é válida?

p: "Meu cliente é canhoto."

q: "O diário desapareceu."

Argumento: $[p \land (\neg q \rightarrow \neg p)] \rightarrow q$

Exemplo 3(a):

Argumento: $[p \land (\neg q \rightarrow \neg p)] \rightarrow q$

Passo	Justificativa	
1. <i>p</i>	Hipótese	
$2. \ \ \neg q ightarrow \neg p$	Hipótese	
3. $(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow q)$	Tautologia	

Exemplo 3(a):

Argumento: $[p \land (\neg q \rightarrow \neg p)] \rightarrow q$

Passo	Justificativa	
1. <i>p</i>	Hipótese	
2. $\neg q \rightarrow \neg p$	Hipótese	
3. $(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow q)$	Tautologia	
4. $p \rightarrow q$	2, 3, Modus Ponens	

Exemplo 3(a):

Argumento: $[p \land (\neg q \rightarrow \neg p)] \rightarrow q$

Passo	Justificativa
1. <i>p</i>	Hipótese
2. $\neg q \rightarrow \neg p$	Hipótese
3. $(\neg q \rightarrow \neg p) \rightarrow (p \rightarrow q)$	Tautologia
4. $p \rightarrow q$	2, 3, Modus Ponens
5. <i>q</i>	1, 4, Modus Ponens □

Exemplo 3(b): A prova do exemplo anterior pode ser simplificada para:

Argumento:
$$[p \land (\neg q \rightarrow \neg p)] \rightarrow q$$

Passo	Justificativa	
1. <i>p</i>	Hipótese	
$2. \ \ \neg q ightarrow \neg p$	Hipótese	
3. <i>q</i>	1, 2, Modus Tollens □	

- A validade da proposição depende apenas de sua forma lógica:
 - não tem a ver com o fato de seus componentes serem ou não realmente verdadeiros
 - no exemplo anterior, ainda não sabemos se o diário realmente desapareceu ou não...

Exemplo 4 (1/3): "Se a taxa para importação diminuir, o comércio interno aumentará. A taxa federal de desconto diminuirá ou o comércio interno não irá aumentar. A taxa para importação vai diminuir. Portanto, a taxa federal de desconto vai diminuir."

p: "A taxa para importação vai diminuir."

q: "O comércio interno vai aumentar."

r: "A taxa federal de desconto vai diminuir."

Argumento: $[(p
ightarrow q) \land (r \lor \neg q) \land p]
ightarrow r$

Exemplo 4 (2/3): "Se a taxa para importação diminuir, o comércio interno aumentará. A taxa federal de desconto diminuirá ou o comércio interno não irá aumentar. A taxa para importação vai diminuir. Portanto, a taxa federal de desconto vai diminuir."

Argumento:
$$[(p
ightarrow q) \land (r \lor \neg q) \land p]
ightarrow r$$

Passo	Justificativa	
1. $p o q$	Hipótese	
igg 2. $r ee eg q$	Hipótese	
3. <i>p</i>	Hipótese	
4. <i>q</i>	1, 3, Modus Ponens	

Exemplo 4 (3/3): "Se a taxa para importação diminuir, o comércio interno aumentará. A taxa federal de desconto diminuirá ou o comércio interno não irá aumentar. A taxa para importação vai diminuir. Portanto, a taxa federal de desconto vai diminuir."

Argumento:
$$[(p \rightarrow q) \land (r \lor \neg q) \land p] \rightarrow r$$

Passo	Justificativa	
1. $p o q$	Hipótese	
$2. r \lor \neg q$	Hipótese	
3. <i>p</i>	Hipótese	
4. q	1, 3, Modus Ponens	
5. r	2, 4, Silogismo Disjuntivo	

- Exemplo 5(1/3): "Você está a ponto de sair para o trabalho de manhã e descobre que está sem óculos. Você sabe os fatos a seguir. Onde estão os seus óculos?"
 - Se meus óculos estão sobre a mesa da cozinha, então eu os vi no café da manhã.
 - 2. Eu estava lendo o jornal na sala ou na cozinha.
 - 3. Se eu estava lendo o jornal na sala, então meus óculos estão sobre a mesa de café.
 - 4. Eu não vi meus óculos no café da manhã.
 - 5. Se eu estava lendo meu livro na cama, então meus óculos estão sobre a mesinha de cabeceira.
 - 6. Se eu estava lendo o jornal na cozinha, então meus óculos estão sobre a mesa da cozinha.

- Exemplo 5(2/3): "Onde estão os seus óculos?"
 - Proposições simples ("idéias atômicas"):
 - p: "Meus óculos estão sobre a mesa da cozinha"
 - q: "Eu vi meus óculos no café da manhã"
 - r: "Eu estava lendo o jornal na sala"
 - s: "Eu estava lendo o jornal na cozinha"
 - t: "Meus óculos estão sobre a mesa do café"
 - u: "Eu estava lendo meu livro na cama"
 - v: "Meus óculos estão sobre a mesinha de cabeceira"
 - Argumento:

- (a) $p \rightarrow q$
- (b) $r \vee s$
- (c) $r \rightarrow t$
- (d) $\neg q$
- (e) $u \rightarrow v$
- (f) $s \rightarrow p$

Exemplo 5(3/3): "Onde estão os seus óculos?"

Argumento:

- (a) $p \rightarrow q$
- (b) $r \vee s$
- (c) $r \rightarrow t$
- (d) $\neg q$
- (e) u o v
- (f) $s \rightarrow p$

Passo	Justificativa	
?	?	

Exemplo 5(3/3): "Onde estão os seus óculos?"

Argumento:

- (a) $p \rightarrow q$
- (b) $r \vee s$
- (c) $r \rightarrow t$
- (d) $\neg q$
- (e) u o v
- (f) $s \rightarrow p$

Passo	Justificativa	
1. <i>¬p</i>	a,d, Modus Tollens	

Exemplo 5(3/3): "Onde estão os seus óculos?"

Argumento:

- (a) $p \rightarrow q$
- (b) $r \vee s$
- (c) $r \rightarrow t$
- (d) $\neg q$
- (e) u o v
- (f) $s \rightarrow p$

Passo	Justificativa	
1 . ¬ <i>p</i>	a, d , Modus Tollens	
2. ¬ <i>s</i>	f, 1, Modus Tollens)	

Exemplo 5(3/3): "Onde estão os seus óculos?"

Argumento:

- (a) $p \rightarrow q$
- (b) $r \vee s$
- (c) $r \rightarrow t$
- (d) $\neg q$
- (e) u o v
- (f) $s \rightarrow p$

Passo	Justificativa	
1. ¬ <i>p</i>	a, d , Modus Tollens	
2. <i>¬s</i>	f, 1, Modus Tollens)	
3. <i>r</i>	b, 2, Silogismo Disjuntivo	

Exemplo 5(3/3): "Onde estão os seus óculos?"

Argumento:

- (a) $p \rightarrow q$
- (b) $r \vee s$
- (c) $r \rightarrow t$
- (d) $\neg q$
- (e) $u \rightarrow v$
- (f) $s \rightarrow p$

Passo	Justificativa	
1. ¬ <i>p</i>	a, d , Modus Tollens	
2. ¬ <i>s</i>	f, 1, Modus Tollens	
3. <i>r</i>	b, 2, Silogismo Disjuntivo	
4. <i>t</i>	c , 3, Modus Ponens \Box	

NOTA 1: USO DE TABELAS-VERDADE

- Uma demonstração por tabela-verdade seria possível para o exemplo anterior
 - mas exigiria a análise de $2^7 = 128$ possibilidades (!!)

- É melhor aplicar as regras de inferência
 - mesmo em um processo de tentativa e erro

NOTA 2: PREMISSAS FALSAS

- Argumento correto pode levar a conclusão incorreta
 - se uma ou mais premissas falsas forem usadas.
- Exemplo: Argumento válido por Modus Ponens:

Se
$$\sqrt{2}>\frac{3}{2}$$
, então: $(\sqrt{2})^2>(\frac{3}{2})^2$

- $ule{1}$ ora, "sabemos que": $\sqrt{2}>rac{3}{2}$
- consequentemente: $(\sqrt{2})^2 > (\frac{3}{2})^2$ (!!?)

NOTA 2: PREMISSAS FALSAS

- Argumento correto pode levar a conclusão incorreta
 - se uma ou mais premissas falsas forem usadas.
- Exemplo: Argumento válido por Modus Ponens:

Se
$$\sqrt{2}>\frac{3}{2}$$
, então: $(\sqrt{2})^2>(\frac{3}{2})^2$

- $ule{1}$ ora, "sabemos que": $\sqrt{2}>rac{3}{2}$
- consequentemente: $(\sqrt{2})^2 > (\frac{3}{2})^2$ (!!?)
- No entanto, a conclusão deste argumento é falsa
 - ullet ocorre que a premissa " $\sqrt{2}>rac{3}{2}$ " é falsa
 - logo, a conclusão podia mesmo ser falsa.

NOTA 3: FALÁCIAS (1/4)

- Erro comum em demonstrações: utilização de falácias.
 - Falácias parecem-se com regras de inferência
 - mas: são baseadas em contingências

- **Exemplo 1:** a proposição $[(p o q) \land q] o p$
 - ullet é F quando p é F e q é V
 - Erro comum: tratá-la como tautologia
 - falácia de "afirmar a conclusão".

NOTA 3: FALÁCIAS (2/4)

Exemplo: "Se você resolver todos os problemas da lista de exercícios, então você vai aprender Matemática Discreta. Você aprendeu Matemática Discreta. Logo, você resolveu todos os problemas da lista de exercícios."

Proposições:

p: "Você resolveu todos os problemas da lista de exercícios."

q: "Você aprendeu Matemática Discreta."

Vemos que o argumento consiste em:

se $p \rightarrow q$ e q, então p ("falácia de afirmar a conclusão")

- É plenamente possível aprender MD sem resolver toda a lista:
 - você pode, por ex., resolver alguns (mas não todos) os problemas da lista, resolver outros exercícios, etc.

NOTA 3: FALÁCIAS (3/4)

- **Exemplo 2:** a proposição $[(p o q) \land \neg p] o \neg q$
 - ullet é F quando p é F e q é V
 - Falácia de "negar a hipótese"
 - Muitos argumentos incorretos a usam como regra

NOTA 3: FALÁCIAS (4/4)

- Exemplo: Assuma que é correto que: "Se você resolver todos os problemas da lista de exercícios, então você vai aprender Matemática Discreta."
 - Então, "Se você não resolveu todos os problemas da lista",
 - será que é correto concluir que: "você não aprendeu MD"??

Resposta:

- "Falácia de negar a hipótese".
- É possível que você tenha aprendido MD mesmo que você não tenha resolvido todos os problemas da lista...

Inferências na Lógica de Predicados (1/6)

Regra de Inferência	Nome	Observação
$\forall x P(x)$	Instanciação	$oldsymbol{c}$ específico
P(c)	Universal	
P(c) para um c arbitrário	Generalização	$oldsymbol{c}$ arbitrário
$\therefore \forall x P(x)$	Universal	
$\exists x P(x)$ $\therefore P(c)$ para algum elemento c	<i>Instanciação</i> Existencial	$oldsymbol{c}$ específico (não conhecido)
$P(oldsymbol{c})$ para algum elemento c	Generalização	c específico
$\exists x P(x)$	Existencial	e conhecido

- Exemplo 1: Mostre que as premissas "Todos nesta turma de Fundamentos já cursaram Cálculo" e "Manoel é um estudante nesta turma" implicam na conclusão "Manoel já cursou Cálculo".
 - Declarações básicas:

F(x): "x está nesta turma de Fundamentos"

C(x): "x já cursou Cálculo"

Premissas:

$$\forall x (F(x) \to C(x))$$

F(Manoel)

Exemplo 1:

ullet Premissas: orall x(F(x)
ightarrow C(x))

F(Manoel)

Estabelecendo a conclusão a partir das premissas:

Passo	Justificativa
1. $\forall x(F(x) \rightarrow C(x))$	Premissa
2. $F(Manoel) \rightarrow C(Manoel)$	Instanciação universal de (1)

Exemplo 1:

ullet Premissas: orall x(F(x)
ightarrow C(x))

F(Manoel)

Estabelecendo a conclusão a partir das premissas:

Passo	Justificativa
1. $\forall x(F(x) o C(x))$	Premissa
2. $F(Manoel) \to C(Manoel)$	Instanciação universal de (1)
3. $F(Manoel)$	Premissa

Exemplo 1:

ullet Premissas: orall x(F(x)
ightarrow C(x))

F(Manoel)

Estabelecendo a conclusão a partir das premissas:

Passo	Justificativa
1. $\forall x(F(x) o C(x))$	Premissa
2. $F(Manoel) \rightarrow C(Manoel)$	Instanciação universal de (1)
3. $F(Manoel)$	Premissa
4. $C(Manoel)$	(2), (3), Modus Ponens

Inferências na Lógica de Predicados (3/6)

Exemplo 2 (1/10): Mostre que as premissas "Tem um estudante nesta turma que não leu o livro-texto" e "Todos nesta turma se saíram bem na primeira prova" implicam na conclusão "Alguém que se saiu bem na primeira prova não leu o livro-texto".

Declarações básicas:

T(x): "x está nesta turma"

L(x): "x leu o livro-texto"

P(x): "x se saiu bem na primeira prova"

• Premissas: $\exists x (T(x) \land \neg L(x))$

 $\forall x (T(x) \rightarrow P(x))$

Exemplo 2 (2/10):

Premissas: $\exists x (T(x) \land \neg L(x))$ e $\forall x (T(x) \rightarrow P(x))$

Passo	Justificativa
1. $\exists x (T(x) \land \neg L(x))$	Premissa

Exemplo 2 (3/10):

Premissas: $\exists x (T(x) \land \neg L(x))$ e $\forall x (T(x) \rightarrow P(x))$

Passo	Justificativa
1. $\exists x (T(x) \land \neg L(x))$	Premissa
2. $T(a) \wedge \neg L(a)$	Instanciação existencial de (1)

Exemplo 2 (4/10):

Premissas: $\exists x (T(x) \land \neg L(x))$ e $\forall x (T(x) \rightarrow P(x))$

Passo	Justificativa
1. $\exists x (T(x) \land \neg L(x))$	Premissa
2. $T(a) \wedge \neg L(a)$	Instanciação existencial de (1)
3. T(a)	Simplificação de (2)

Exemplo 2 (5/10):

Premissas: $\exists x (T(x) \land \neg L(x))$ e $\forall x (T(x) \rightarrow P(x))$

Passo	Justificativa
1. $\exists x (T(x) \land \neg L(x))$	Premissa
2. $T(a) \wedge \neg L(a)$	Instanciação existencial de (1)
3. T(a)	Simplificação de (2)
4. $\forall x (T(x) \rightarrow P(x))$	Premissa

Exemplo 2 (6/10):

Premissas: $\exists x (T(x) \land \neg L(x))$ e $\forall x (T(x) \rightarrow P(x))$

Passo	Justificativa
1. $\exists x (T(x) \land \neg L(x))$	Premissa
2. $T(a) \wedge \neg L(a)$	Instanciação existencial de (1)
3. $T(a)$	Simplificação de (2)
4. $\forall x (T(x) \rightarrow P(x))$	Premissa
5. $T(a) o P(a)$	Instanciação Universal de (4)

Exemplo 2 (7/10):

Premissas: $\exists x (T(x) \land \neg L(x))$ e $\forall x (T(x) \rightarrow P(x))$

Passo	Justificativa
1. $\exists x (T(x) \land \neg L(x))$	Premissa
2. $T(a) \wedge \neg L(a)$	Instanciação existencial de (1)
3. $T(a)$	Simplificação de (2)
4. $\forall x (T(x) \rightarrow P(x))$	Premissa
5. $T(a) o P(a)$	Instanciação Universal de (4)
6. $P(a)$	(3), (5), Modus Ponens

Exemplo 2 (8/10):

Premissas: $\exists x (T(x) \land \neg L(x))$ e $\forall x (T(x) \rightarrow P(x))$

Passo	Justificativa
1. $\exists x (T(x) \land \neg L(x))$	Premissa
2. $T(a) \wedge \neg L(a)$	Instanciação existencial de (1)
3. $T(a)$	Simplificação de (2)
4. $\forall x (T(x) \rightarrow P(x))$	Premissa
5. $T(a) \rightarrow P(a)$	Instanciação Universal de (4)
6. $P(a)$	(3), (5), Modus Ponens
7. $\neg L(a)$	Simplificação de (2)

Exemplo 2 (9/10):

Premissas: $\exists x (T(x) \land \neg L(x))$ e $\forall x (T(x) \rightarrow P(x))$

Passo	Justificativa
1. $\exists x (T(x) \land \neg L(x))$	Premissa
2. $T(a) \wedge \neg L(a)$	Instanciação existencial de (1)
3. $T(a)$	Simplificação de (2)
4. $\forall x (T(x) \rightarrow P(x))$	Premissa
5. $T(a) o P(a)$	Instanciação Universal de (4)
6. $P(a)$	(3), (5), Modus Ponens
7. $\neg L(a)$	Simplificação de (2)
8. $P(a) \wedge \neg L(a)$	Conjunção de (6) e (7)

INFERÊNCIAS NA LÓGICA DE PREDICADOS (4/6)

Exemplo 2 (10/10):

Premissas: $\exists x (T(x) \land \neg L(x))$ e $\forall x (T(x) \rightarrow P(x))$

Conclusão: $\exists x (P(x) \land \neg L(x))$

Passo	Justificativa	
1. $\exists x (T(x) \land \neg L(x))$	Premissa	
2. $T(a) \wedge \neg L(a)$	Instanciação existencial de (1)	
3. $T(a)$	Simplificação de (2)	
4. $\forall x(T(x) \rightarrow P(x))$	Premissa	
5. $T(a) \rightarrow P(a)$	Instanciação Universal de (4)	
6. $P(a)$	(3), (5), Modus Ponens	
7. $\neg L(a)$	Simplificação de (2)	
8. $P(a) \wedge \neg L(a)$	Conjunção de (6) e (7)	
9. $\exists x (P(x) \land \neg L(x))$	Generalização Existencial de (8)	

INFERÊNCIAS NA LÓGICA DE PREDICADOS (5/6)

- Nota 1: É comum que apareçam tanto uma regra de inferência proposicional quanto uma para quantificadores.
- Por exemplo, Instanciação Universal e Modus Ponens são frequentemente usadas juntas:
 - combinando $\forall x (P(x) \rightarrow Q(x))$ e P(c),
 - onde c é um elemento do UD
 - ullet obtemos que Q(c) é Verdadeiro.

INFERÊNCIAS NA LÓGICA DE PREDICADOS (6/6)

- Nota 2: Muitos teoremas omitem o quantificador ao definir que uma propriedade vale para todos os elementos de um conjunto.
- Por exemplo, o real significado de:
 - "Se x > y, onde x e y são reais positivos, então $x^2 > y^2$ "
 - é: "Para todos os reais positivos x e y, se x > y, então $x^2 > y^2$ ".
- É comum a lei de generalização universal ser usada implicitamente:
 - no início da prova, seleciona-se um elemento geral do UD
 - passos subseqüentes mostram que este elemento tem a propriedade em questão
 - conclui-se que o teorema vale para todos os elementos do UD.

PROVA DE TEOREMAS MATEMÁTICOS

- Tarefa difícil.
- Veremos uma "bateria" de diferentes métodos.
- Relembrando:

"p o q só não é V quando p é V e q é F."

- Observações úteis:
 - $m{s}$ o inteiro n é par se existe um inteiro k tal que n=2k
 - m s o inteiro n é **impar** se existe um inteiro k tal que n=2k+1

PROVAS DIRETAS

- **Princípio**: para provar $p \rightarrow q$:
 - 1. assumir que *p* é verdadeiro
 - 2. usar regras de inferência e teoremas já provados para mostrar que *q* também deve ser V.

PROVAS DIRETAS

- **Princípio**: para provar $p \rightarrow q$:
 - 1. assumir que p é verdadeiro
 - 2. usar regras de inferência e teoremas já provados para mostrar que *q* também deve ser V.
- **Exemplo:** "se n é ímpar, então n^2 é ímpar"
 - assuma a hipótese: n é ímpar
 - ullet então: n=2k+1
 - segue que:

$$n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$$

ullet portanto: n^2 é ímpar

PROVAS INDIRETAS

- Princípio: mostrar que a contrapositiva de $p \rightarrow q$ é V, usando outras técnicas de demonstração.
- **Exemplo:** "se 3n+2 é impar, então n é impar"
 - assuma que a conclusão desta implicação é F
 - ullet então: n=2k, para algum k
 - daí: 3n+2=3(2k)+2=6k+2=2(3k+1)

PROVAS INDIRETAS

- **Princípio**: mostrar que a contrapositiva de $p \rightarrow q$ é V, usando outras técnicas de demonstração.
- **Exemplo:** "se 3n+2 é impar, então n é impar"
 - assuma que a conclusão desta implicação é F
 - ullet então: n=2k, para algum k
 - daí: 3n+2=3(2k)+2=6k+2=2(3k+1)
 - ullet de modo que: 3n+2 é par
 - Jogo, uma vez que a negação da conclusão implica que a hipótese é F, a implicação original é V.

Provas por Vácuo

- **Princípio**: $p \rightarrow q$ é V se p é F, de modo que:
 - prova-se $p \Rightarrow q$ estabelecendo que p é sempre F
- Provam casos especiais de teoremas do tipo $\forall nP(n)$.

Provas por Vácuo

- **Princípio**: $p \rightarrow q$ é V se p é F, de modo que:
 - ullet prova-se $p\Rightarrow q$ estabelecendo que p é sempre F
- Provam casos especiais de teoremas do tipo $\forall nP(n)$.

- **▶ Exemplo:** mostre que a proposição P(0) é V, aonde P(n) é "se n>1, então $n^2>n$ ".
 - P(0) é a implicação: "se 0>1, então $0^2>0$ "
 - uma vez que a hipótese é F:
 - a implicação P(0) é automaticamente V. \Box

PROVAS TRIVIAIS

- **Princípio**: $p \rightarrow q \text{ \'e V}$ se q 'e V, de modo que:
 - ullet pode-se provar $p\Rightarrow q$ apenas estabelecendo que q é sempre \forall
- Importantes quando casos especiais de teoremas precisam ser provados (por ex.: em provas por casos e na indução matemática).

PROVAS TRIVIAIS

- **Princípio**: $p \rightarrow q \text{ \'e V}$ se q 'e V, de modo que:
 - pode-se provar $p \Rightarrow q$ apenas estabelecendo que q é sempre \forall
- Importantes quando casos especiais de teoremas precisam ser provados (por ex.: em provas por casos e na indução matemática).
- **Exemplo:** Mostre que a proposição P(0) é Verdadeira em:
 - P(n): "se a e b são inteiros positivos com $a \geq b$, então $a^n \geq b^n$ "
 - $m{ ilde{P}}(0)$ é: "se $a\geq b$, então $a^0\geq b^0$ "
 - ullet uma vez que $\,a^0=b^0=1\,$, a conclusão de P(0) é V $\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,$
 - (a hipótese, "a > b", não é necessária)

ESTRATÉGIAS DE PROVA

- Primeiro, tentamos uma prova direta.
- Quando não há modo óbvio de seguir, às vezes uma prova indireta funciona tranquilamente...

Nota:

- O número real r é **racional** se existem inteiros p e q, com $q \neq 0$, tais que r = p/q.
- Um real que não é racional é chamado de irracional.

ESTRATÉGIAS DE PROVA

- Exemplo: Prove que a soma de dois números racionais é sempre racional:
 - tentando uma prova direta...
 - sejam r e t números racionais
 - então, existem inteiros:

$$p$$
 e q , com $q \neq 0$, tais que: $r = p/q$ u e v , com $v \neq 0$, tais que: $t = u/v$

ullet daí, adicionando r e t:

$$r+t=rac{p}{q}+rac{u}{v}=rac{p.v+q.u}{q.v}$$

- ullet como q
 eq 0 e v
 eq 0, segue que q.v
 eq 0
- ullet isto significa que r+t é racional
 - (nossa tentativa direta deu certo...)

ESTRATÉGIAS DE PROVA

- **Exemplo:** Prove que se n é um inteiro e n^2 é impar, então n é impar:
 - tentando uma prova direta:
 - n^2 é impar $\Rightarrow \exists k$ tal que $n^2 = 2k + 1$
 - será que isto serve para mostrar que n é impar??
 - ullet ora, resolvendo para n, obtemos: $\pm \sqrt{2k+1}$
 - o que não é muito útil...
 - prova indireta:
 - assumimos que n não é impar
 - $m{ ilde{\wp}}$ então n=2k
 - ullet elevando os dois lados ao quadrado: $n^2=4k^2=2(2k^2)$
 - o que implica que n^2 é par.

OUTRAS TÉCNICAS

- Provas por contradição:
 - ullet assuma que p o q seja F
 - $oldsymbol{\mathfrak{s}}$ isto é: que p seja V e q seja F
 - com regras de inferência, derive uma contradição desta hipótese.
 - $r \wedge \neg r$, por exemplo
- **Exemplo 1:** Prove que $\sqrt{2}$ é irracional.

- **Exemplo 1 (1/4):** Provar que p: " $\sqrt{2}$ é irracional" é V.
 - ullet assuma que $\neg p$ é V, ou seja: $\sqrt{2}$ é racional
 - ullet logo, existem inteiros a e b tais que $\sqrt{2}=a/b$
 - onde a e b não têm fatores em comum

- **Exemplo 1 (2/4):** Provar que p: " $\sqrt{2}$ é irracional" é V.
 - ullet assuma que $\neg p$ é V, ou seja: $\sqrt{2}$ é racional
 - ullet logo, existem inteiros a e b tais que $\sqrt{2}=a/b$
 - onde a e b não têm fatores em comum
 - ullet mas, como $\sqrt{2}=a/b$, segue que $\,2=a^2/b^2$
 - ullet logo, $2b^2=a^2$, ou seja, a^2 é par
 - logo: a é par

- **Exemplo 1 (3/4):** Provar que p: " $\sqrt{2}$ é irracional" é V.
 - ullet assuma que $\neg p$ é V, ou seja: $\sqrt{2}$ é racional
 - ullet logo, existem inteiros a e b tais que $\sqrt{2}=a/b$
 - onde a e b não têm fatores em comum
 - ullet mas, como $\sqrt{2}=a/b$, segue que $\,2=a^2/b^2$
 - ullet logo, $2b^2=a^2$, ou seja, a^2 é par
 - logo: a é par
 - ullet então, a=2c, para algum inteiro c
 - ullet logo: $2b^2=4c^2$ de modo que $b^2=2c^2$
 - ullet ou seja: b^2 é par e b é par também
 - contradição: assumimos que a e b não tinham fatores em comum

- **Exemplo 1 (4/4):** Provar que p: " $\sqrt{2}$ é irracional" é V.
 - ullet assuma que $\neg p$ é V, ou seja: $\sqrt{2}$ é racional
 - ullet logo, existem inteiros a e b tais que $\sqrt{2}=a/b$
 - onde a e b não têm fatores em comum
 - ullet mas, como $\sqrt{2}=a/b$, segue que $\,2=a^2/b^2$
 - ullet logo, $2b^2=a^2$, ou seja, a^2 é par
 - logo: a é par
 - ullet então, a=2c, para algum inteiro c
 - ullet logo: $2b^2=4c^2$ de modo que $b^2=2c^2$
 - ullet ou seja: b^2 é par e b é par também
 - contradição: assumimos que a e b não tinham fatores em comum
 - portanto: p é que é V.

PROVAS POR CASOS

Princípio: $p_1 \lor p_2 \lor \ldots \lor p_n \to q$ é equivalente a:

$$(p_1 \rightarrow q) \land (p_2 \rightarrow q) \land \ldots \land (p_n \rightarrow q)$$

ullet ou seja: provar $\operatorname{\mathsf{cada}}$ um dos $p_i o q$ individualmente

Exemplo: Use a prova por casos para mostrar que |xy| = |x||y|, onde x e y são reais.

$$|x|=-x$$
, se $x\leq 0$

PROVAS POR CASOS

- **Exemplo (1/2):** Mostre que |xy| = |x||y|.
 - Sejam:
 - $m{p}$: "x e y são números reais"
 - q: "|xy| = |x||y|"
 - Note que p é equivalente a $p_1 \vee p_2 \vee p_3 \vee p_4$, onde:
 - $m{p}_1$: " $x \geq 0 \land y \geq 0$ "
 - p_2 : " $x \ge 0 \land y < 0$ "
 - p_3 : " $x < 0 \land y > 0$ "
 - p_4 : " $x < 0 \land y < 0$ "

PROVAS POR CASOS

Exemplo (2/2): Mostre que |xy| = |x||y|.

4 casos para provar:

- 1. $p_1 \rightarrow q$ é V, pois:
 - $m{y} \quad xy \geq 0$ quando $x \geq 0$ e $y \geq 0$
 - ullet de modo que: |xy|=xy=|x||y|
- 2. $p_2 \rightarrow q$ é V, pois:
 - ullet se $x\geq 0$ e y<0, então $xy\leq 0$
 - ullet de modo que: |xy|=-xy=x.(-y)=|x||y|
- 3. $p_3 \rightarrow q$ é V, pois:
 - ullet se x < 0 e $y \geq 0$, então $xy \leq 0$
 - ullet de modo que: |xy|=-xy=(-x).y=|x||y|
- 4. $p_4 \rightarrow q$ é V, pois:
 - ullet se x<0 e y<0, então xy>0
 - de modo que: |xy| = xy = (-x).(-y) = |x||y|

- Provas de teoremas que são bicondicionais.
- **9** Usar a tautologia: $(p \leftrightarrow q) \Leftrightarrow [(p \rightarrow q) \land (q \rightarrow p)]$
- Ou seja, "p se e somente se q" pode ser provada ao serem provadas as implicações:
 - ullet "se p, então q"
 - ullet "se q, então p"

- **Exemplo:** Prove o teorema: "O inteiro n é impar sse n^2 é impar."
 - ullet Teorema da forma: "p sse q", aonde:
 - $m{p}$ é dado por: "n é ímpar"
 - $m{ ilde{}} q$ é dado por: " n^2 é ímpar"
 - Temos que provar $p \rightarrow q$ e $q \rightarrow p$.
 - O que já foi feito:

Pode-se ter que mostrar que várias proposições são equivalentes:

$$p_1 \leftrightarrow p_2 \leftrightarrow \cdots \leftrightarrow p_n$$

Prova-se que são mutuamente equivalentes usando a tautologia:

$$[p_1 \leftrightarrow p_2 \leftrightarrow \cdots \leftrightarrow p_n] \leftrightarrow [(p_1 \to p_2) \land \cdots \land (p_n \to p_1)]$$

- Muito mais eficiente do que provar todos contra todos...
- Qualquer encadeamento de declarações é igualmente válido.

Exemplo: Mostre que as afirmações a seguir são equivalentes:

 p_1 : n é um inteiro par

 p_2 : n-1 é um inteiro ímpar

 p_3 : n^2 é um inteiro par

Prova (1/3):

- ullet Mostrar que são V as implicações: $p_1
 ightarrow p_2, \ p_2
 ightarrow p_3$ e $p_3
 ightarrow p_1$
- Mostrando $p_1 \rightarrow p_2$ (prova direta):

Exemplo: Mostre que as afirmações a seguir são equivalentes:

 p_1 : n é um inteiro par

 p_2 : n-1 é um inteiro ímpar

 p_3 : n^2 é um inteiro par

Prova (2/3):

- ullet Mostrar que são V as implicações: $p_1
 ightarrow p_2, \ p_2
 ightarrow p_3$ e $p_3
 ightarrow p_1$
- lacksquare Mostrando $p_1 \rightarrow p_2$ (prova direta):
 - n é par \Rightarrow n=2k \Rightarrow n-1=2k-1=2(k-1)+1
- ullet Mostrando $p_2 \rightarrow p_3$ (prova direta):
 - $m{\rlap/ \square} \quad m{n-1}$ é ímpar $\Rightarrow \quad n-1=2k+1 \quad \Rightarrow \quad n=2k+2$
 - ho logo: $n^2 = (2k+2)^2 = 4k^2 + 8k + 4 = 2(2k^2 + 4k + 2)$ (par)

Exemplo: Mostre que as afirmações a seguir são equivalentes:

 p_1 : n é um inteiro par

 p_2 : n-1 é um inteiro ímpar

 p_3 : n^2 é um inteiro par

Prova (3/3):

- ullet Mostrar que são V as implicações: $p_1
 ightarrow p_2, \ p_2
 ightarrow p_3$ e $p_3
 ightarrow p_1$
- lacksquare Mostrando $p_1 \rightarrow p_2$ (prova direta):

• n é par
$$\Rightarrow$$
 $n=2k$ \Rightarrow $n-1=2k-1=2(k-1)+1$

ullet Mostrando $p_2 \rightarrow p_3$ (prova direta):

$$m{P}$$
 $n-1$ é ímpar \Rightarrow $n-1=2k+1$ \Rightarrow $n=2k+2$

$$ho$$
 logo: $n^2 = (2k+2)^2 = 4k^2 + 8k + 4 = 2(2k^2 + 4k + 2)$ (par)

- Mostrando $p_3 \rightarrow p_1$ (prova indireta):
 - $m{\wp}$ ou seja, devemos provar que: "se $m{n}$ não é par, então $m{n^2}$ não é par"
 - já provado (provas diretas)

TEOREMAS COM QUANTIFICADORES

• Muitos teoremas são propostos como proposições que envolvem quantificadores.

Veremos alguns dos métodos mais importantes para provar teoremas deste tipo.

Provas de existência

- Muitos teoremas são asserções de que existem objetos de um tipo em particular:
 - ou seja, são proposições da forma: $\exists x P(x)$

- Modos de provar estes teoremas:
 - ullet Provas **construtivas**: encontrar elemento a tal que P(a) é \forall
 - Provas não-construtivas: mostrar que a negação da proposição implica em uma contradição.

Provas de existência

Exemplo: Mostre que existe um inteiro positivo que pode ser escrito como a soma de cubos de inteiros positivos de duas formas diferentes.

Solução:

Após uma busca computacional, descobrimos que:

$$1729 = 10^3 + 9^3 = 12^3 + 1^3$$

PROVAS DE EXISTÊNCIA

- **Exemplo:** Mostre que existem números irracionais x e y tais que x^y é racional.
 - Sabemos que $\sqrt{2}$ é irracional.
 - Agora considere o número $\sqrt{2}^{\sqrt{2}}$:
 - ullet se ele for racional, já temos x e y irracionais com x^y racional

Provas de existência

- **Exemplo:** Mostre que existem números irracionais x e y tais que x^y é racional.
 - Sabemos que $\sqrt{2}$ é irracional.
 - Agora considere o número $\sqrt{2}^{\sqrt{2}}$:
 - ullet se ele for racional, já temos x e y irracionais com x^y racional
 - ullet mas se ele for irracional, podemos re-escolher x e y como:

$$x=\sqrt{2}^{\sqrt{2}}$$
 e $y=\sqrt{2}$ $\Rightarrow x^y=(\sqrt{2}^{\sqrt{2}})^{\sqrt{2}}=2$

PROVAS DE EXISTÊNCIA

- **Exemplo:** Mostre que existem números irracionais x e y tais que x^y é racional.
 - Sabemos que $\sqrt{2}$ é irracional.
 - Agora considere o número $\sqrt{2}^{\sqrt{2}}$:
 - ullet se ele for racional, já temos x e y irracionais com x^y racional
 - ullet mas se ele for irracional, podemos re-escolher x e y como:

$$x=\sqrt{2}^{\sqrt{2}}$$
 e $y=\sqrt{2}$ $\Rightarrow x^y=(\sqrt{2}^{\sqrt{2}})^{\sqrt{2}}=2$

- Um dos dois casos demonstra o que foi pedido.
- Prova não-construtiva: mostramos que existe um par de números com a propriedade, mas não sabemos qual dos dois é o certo. (!)

PROVAS DE UNICIDADE

- Alguns teoremas afirmam que um elemento com a propriedade especificada existe e é único.
 - Ou seja: existe exatamente um elemento com esta propriedade.
- Logo, uma prova de unicidade tem duas partes:
 - 1. **Existência:** mostra-se que um elemento x com a propriedade desejada existe.
 - 2. **Unicidade:** mostra-se que, se $y \neq x$, então y não possui a propriedade desejada.
 - Nenhum outro elemento tem esta propriedade.
- ullet Mesmo que provar: $\exists x (P(x) \land \forall y (y \neq x \rightarrow \neg P(y)))$

PROVAS DE UNICIDADE

- Exemplo: Mostre que todo inteiro tem uma única inversa aditiva.
 - Se p é um inteiro, p+q=0 para o inteiro q=-p.
 - Logo: existe um inteiro q tal que p + q = 0.

PROVAS DE UNICIDADE

- Exemplo: Mostre que todo inteiro tem uma única inversa aditiva.
 - Se p é um inteiro, p+q=0 para o inteiro q=-p.
 - Logo: existe um inteiro q tal que p + q = 0.
 - Agora, seja um inteiro $r \neq q$ tal que p + r = 0.
 - Então: p+q=p+r.
 - m s Só que, subtraindo p de ambos os lados, segue que: q=r \cdot o que contradiz a hipótese q
 eq r
 - ullet Logo, só existe um único inteiro q tal que p+q=0.

- Podemos mostrar que uma declaração do tipo $\forall x P(x)$ é falsa com um contra-exemplo.
 - Ou seja, um exemplo de x para o qual P(x) é falsa.

- Procuramos um contra-exemplo sempre que encontramos uma declaração do tipo $\forall x P(x)$ que:
 - acreditamos ser falsa,
 - tenha resistido a muitas tentativas de prova...

Exemplo: Mostre que é falsa a declaração:

"Todo inteiro positivo é igual à soma dos quadrados de três inteiros".

Possível com os 6 primeiros inteiros positivos:

$$1 = 0^2 + 0^2 + 1^2$$
 $2 = 0^2 + 1^2 + 1^2$ $3 = 1^2 + 1^2 + 1^2$
 $4 = 0^2 + 0^2 + 2^2$ $5 = 0^2 + 1^2 + 2^2$ $6 = 1^2 + 1^2 + 2^2$

Exemplo: Mostre que é falsa a declaração:

"Todo inteiro positivo é igual à soma dos quadrados de três inteiros".

Possível com os 6 primeiros inteiros positivos:

$$1 = 0^2 + 0^2 + 1^2$$
 $2 = 0^2 + 1^2 + 1^2$ $3 = 1^2 + 1^2 + 1^2$
 $4 = 0^2 + 0^2 + 2^2$ $5 = 0^2 + 1^2 + 2^2$ $6 = 1^2 + 1^2 + 2^2$

- Porém, não conseguimos fazer o mesmo com 7:
 - os únicos quadrados que poderíamos usar são: 0, 1 e 4
 (aqueles que não excedem 7)
 - e não há maneira de combinar estes 3 números para somar 7
- Logo, a declaração acima é falsa.

Um erro comum é achar que (apenas) um ou mais exemplos são suficientes para concluir que uma declaração é verdadeira.

- **Atenção**: não importa quantos exempos indiquem que P(x) é V:
 - ullet a quantificação $\forall x P(x)$ ainda pode ser falsa...

- Exemplo: Será que é verdade que todo inteiro positivo é a soma de 18 inteiros elevados à quarta potência??
 - Observa-se que todos os inteiros até 78 podem mesmo ser escritos desta maneira (!!).
 - Daí, se decidíssemos que já havíamos verificado o suficiente, chegaríamos a uma conclusão errada, pois:
 - 79 não é a soma de 18 quartas potências.

ERROS COMUNS EM PROVAS (1)

- Mais comuns: erros em aritmética ou álgebra básica.
- Cada passo de uma prova matemática deve ser correto.
- Muitos erros resultam da inclusão de passos que não seguem logicamente dos anteriores.

ERROS COMUNS EM PROVAS (1)

■ Exemplo 1: O que está errado com a "prova" abaixo para 1=2?

"**Prova:**" (a e b são dois inteiros positivos iguais)

Passo	Justificativa
1. $a = b$	Dado
2. $a^2 = ab$	Multiplicando os 2 lados de (1) por $oldsymbol{a}$
3. $a^2 - b^2 = ab - b^2$	Subtraindo b^2 dos 2 lados de (2)
4. $(a - b)(a + b) = b(a - b)$	Fatorando ambos os lados de (3)
5. $a + b = b$	Dividindo ambos os lados de (4) por $a-b$
6. $2b = b$	Substituindo a por b em (5) (pois $a=b$)
7. $2 = 1$	Dividindo ambos os lados de (6) por b

ERROS COMUNS EM PROVAS (1)

■ Exemplo 1: O que está errado com a "prova" abaixo para 1=2?

"Prova:" (a e b são dois inteiros positivos iguais)

Passo	Justificativa
1. $a = b$	Dado
$2. a^2 = ab$	Multiplicando os 2 lados de (1) por $oldsymbol{a}$
3. $a^2 - b^2 = ab - b^2$	Subtraindo b^2 dos 2 lados de (2)
4. $(a - b)(a + b) = b(a - b)$	Fatorando ambos os lados de (3)
5. $a + b = b$	Dividindo ambos os lados de (4) por $a-b$
6. $2b = b$	Substituindo a por b em (5) (pois $a=b$)
7. $2 = 1$	Dividindo ambos os lados de (6) por b

"Solução:"

Todos os passos são válidos, com exceção do passo 5, em que houve uma divisão por zero.

ERROS COMUNS EM PROVAS (2)

Um erro comum ocorre em provas por casos, aonde nem todos os casos são considerados...

ERROS COMUNS EM PROVAS (2)

Exemplo: O que está errado com esta "prova"?

"Teorema:" Se x é um número real, então x^2 é um real positivo.

"Prova:"

- sejam:
 - p_1 : "x é positivo"
 - $m{p_2}$: " $m{x}$ é negativo"
 - \mathbf{g} : " \mathbf{x}^2 é positivo"
- lacksquare provando $p_1 o q$:
 - $m{\wp}$ quando $m{x}$ é positivo, $m{x^2}$ é positivo, pois é o produto de dois positivos
- provando $p_2 \rightarrow q$:
 - $m{ ilde p}$ quando $m{x}$ é negativo, $m{x^2}$ é positivo, pois é o produto de dois negativos
- "Solução:" o suposto "teorema" é falso, pois está faltando o caso:
 - p_3 : "x = 0"

ERROS COMUNS EM PROVAS (3)

- Erro particularmente desagradável: falácia chamada de "usar a questão".
- Consiste em basear um ou mais passos de uma prova na verdade daquilo que está sendo provado.
 - Ou seja: provar uma declaração usando ela mesma (ou uma outra equivalente a ela).
 - Também chamada de raciocínio circular.

ERROS COMUNS EM PROVAS (3)

- **Exemplo:** O argumento a seguir supostamente mostra que n é um inteiro par sempre que n^2 é um inteiro par. Será que está correto??
 - Suponha que n^2 é par.
 - Então $n^2 = 2k$ para algum inteiro k.
 - Seja n=2l para algum inteiro l.
 - Isto mostra que n é par.

ERROS COMUNS EM PROVAS (3)

- **Exemplo:** O argumento a seguir supostamente mostra que n é um inteiro par sempre que n^2 é um inteiro par. Será que está correto??
 - Suponha que n^2 é par.
 - Então $n^2 = 2k$ para algum inteiro k.
 - Seja n = 2l para algum inteiro l.
 - Isto mostra que n é par.

Solução:

- Nada na prova permite concluir que n possa ser escrito como 2l.
- Isto é equivalente ao que está sendo provado ("n é par").
- Note que o resultado em si é correto: apenas o método de prova está errado.

ERROS COMUNS: COMENTÁRIOS FINAIS

- Cometer erros em provas é parte do processo de aprendizagem.
- Quando cometer um erro que seja encontrado por outros, certifique-se de não cometê-lo de novo.
- Mesmo matemáticos profissionais cometem erros em provas.
- Diversas provas incorretas enganaram muitas pessoas durante anos antes que erros sutis fossem encontrados nelas...
- Note que n\u00e3o existe um algoritmo para provar teoremas.
- A construção de provas deve ser aprendida através da experiência.
- Ainda veremos muitas provas ao longo deste curso...

NOTA: TIPOS DE TEOREMAS

- Lema: teorema simples usado na prova de outros teoremas.
 - Teoremas complicados são mais fáceis de provar quando sub-divididos em uma série de lemas a serem provados individualmente.
- Corolário: proposição que é consequência imediata de um teorema recém provado.
- Conjectura: declaração cujo valor-verdade não é conhecido.
 - Se for encontrada uma prova para a conjectura, ela se torna um teorema.

MÉTODOS DE PROVA

Final deste item.

Dica: fazer exercícios sobre Métodos de Prova...