Система оценивания проверочной работы

Номер задания	13	14	15	16	17	Итого
Баллы	2	2	2	2	2	10

Решение и указания к оцениванию Баллы Решение. 1) Обозначим $\sin x = t$. Тогда получим уравнение $2t^2 + 3\sqrt{2}t + 2 = 0$, откуда $t = -\sqrt{2}$ или $t = -\frac{\sqrt{2}}{2}$. 13 Уравнение $\sin x = -\sqrt{2}$ не имеет решений, а из 0 уравнения $\sin x = -\frac{\sqrt{2}}{2}$ получаем, что $x = -\frac{\pi}{4} + 2\pi n$, 15π $n \in \mathbb{Z}$; $x = -\frac{3\pi}{4} + 2\pi m$, $m \in \mathbb{Z}$. 2) С помощью числовой окружности отберём корни, принадлежащие отрезку [8; 13]. Получим числа: $\frac{13\pi}{4}$; $\frac{15\pi}{4}$. Otbet: 1) $-\frac{\pi}{4} + 2\pi n$, $n \in \mathbb{Z}$; $-\frac{3\pi}{4} + 2\pi m$, $m \in \mathbb{Z}$; 2) $\frac{13\pi}{4}$; $\frac{15\pi}{4}$. Возможно другое решение Обоснованно получены верные ответы в обоих пунктах Дан верный ответ в пункте 1. Ход решения верный для обоих пунктов, но допущена вычислительная ошибка Решение не соответствует ни одному из критериев, перечисленных выше 0

Решение и указания к оцениванию	
Решение.	
Преобразуем левую часть неравенства. Получим:	
$\frac{\left(x+1\right)^2}{\left(x+1\right)\left(x-5\right)} \ge 0 \; ; \; \frac{x+1}{x-5} > 0 \; , \; \text{откуда} \; \; x < -1 \; \text{или} \; \; x > 5 \; .$	
Other: $(-\infty; -1), (5; +\infty)$.	
Возможно другое решение	
Обоснованно получен верный ответ	2
Решение доведено до конца, но допущены вычислительные ошибки, с их учётом	1
дальнейшие шаги выполнены верно	
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	2

Максимальный балл

Баллы

Ответ и указания к оцениванию	
Ответ:	
1)	
y y y y y y y y y y	
Верно построен график функции, и дан верный ответ в пункте 2	2
Верно построен график функции, искомые значения параметра не найдены	1
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	2

Решение и указания к оцениванию

(16)

v	
Решение.	
В треугольнике ABC проведём высоту AH . Отрезок AH является проекцией наклонной A_1	
A_1H на плоскость ABC , значит, по теореме	
о трёх перпендикулярах $A_1H \perp BC$. Таким	
образом, угол A_1HA является линейным углом	
двугранного угла между плоскостями ABC и A_1BC .	
В прямоугольном треугольнике АВС	
$BC = \sqrt{AB^2 + AC^2} = 17,$ $A = \sqrt{AB^2 + AC^2}$	
$AH = \frac{AB \cdot AC}{BC} = \frac{15 \cdot 8}{17} = \frac{120}{17}$	
Из прямоугольного треугольника A_1HA	
получаем, что $\operatorname{tg} \angle A_1 H A = \frac{A_1 A}{A H} = \frac{30 \cdot 17}{120} = \frac{17}{4}$.	
Значит, $\angle A_1 HA = \operatorname{arctg} \frac{17}{4}$.	
Other: $arctg \frac{17}{4}$.	
Возможно другое решение	
Обоснованно получен верный ответ	2
Решение в целом верное, но содержит недостатки или вычислительные ошибки	1
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	2

(17

Решение и указания к оцениванию	
Решение.	
Пусть $p = 0,2$ – вероятность успешной передачи при одной попытке,	
q = 1 - p = 0.8 — вероятность неудачи. Если потребуется больше двух попыток,	
значит первые две попытки неудачные. Вероятность этого равна $q^2 = 0,64$.	
Ответ: 0,64.	
Возможно другое решение	
Обоснованно получен верный ответ	
Решение в целом верное, но содержит несущественные недостатки или	1
вычислительные ошибки	
Решение не соответствует ни одному из критериев, перечисленных выше	
Максимальный балл	2

Система оценивания выполнения всей работы

Максимальный первичный балл за выполнение работы — 22.

Рекомендуемая таблица перевода баллов в отметки по пятибалльной шкале

Отметка по пятибалльной шкале	«2»	« 3 »	«4»	«5»
Первичные баллы	0–5	6–11	12–17	18–22