(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-251301

(P2002-251301A) (43)公開日 平成14年9月6日(2002.9.6)

(51) Int.CL7		徽別記号	FΙ				テーマコード(参考)		
G06F	11/30	3 1 0		G06F	11/30		310K	5 B 0 1 1	
		320					320D	5 B 0 4 2	
	1/28			G05F	1/10		301A	5 B O 5 4	
	1/24				3/30			5H410	
# G05F	1/10	301		G06F	1/00		333D	5 H 4 2 0	
			審査請求	未請求 請求	表項の数4	OL	(全 8 頁)	最終頁に続く	

(21)出願番号 特願2001-47361(P2001-47361)

平成13年2月22日(2001.2.22)

(71) 出頭人 000003207

トヨタ自動車株式会社

(72)発明者 星川 周重

愛知県豊田市トヨタ町1番地 愛知県豊田市トヨタ町1番地 トヨタ自動

車株式会社内

(74)代理人 100070150

弁理士 伊東 忠彦

最終頁に続く

(54) 【発明の名称】 CPU監視回路

(57)【專約】

(22) 出版日

【課題】 本発明は、CPU監視回路に関し、バッテリ 電圧の変動が生じても、CPUのクロック信号を検出す るための監視時間が変動するのを防止することを目的と する。

【解決手段】 WD監視回路12に 常報で放電され CPU10が所定問期で発するWD信号が供給された場 合に充電されるコンデンサ26と、コンデンサ26の電 圧を基準電圧と比較し、コンデンサ26の電圧が基準電 圧まで低下した場合にCPU10にリセット起動を要求 する信号を供給するヒス付きコンパレータ24と、を設 ける。基準電圧をバンドギャップ電圧VOUTに基づい た電圧とする。

【特許請求の範囲】

て、

【請求項1】 CPUの発するクロック信号に従って充 放電が行われる容量性素子と、前記容量性素子の電圧を 所定の基準電圧と比較する第1のコンパレータと、を備 え、前記第1のコンパレータの比較結果に応じて前記C PUに対してリセット信号を供給するCPU監視回路で

1

前記所定の基準電圧が、バンドギャップ電圧に基づいた 電圧であることを特徴とするCPU監視回路。

【請求項2】 請求項1記載のCPU監視回路におい

前記第1のコンパレータの電源電圧の低下を監視すべ く、該電源電圧をバンドギャップ電圧に基づいた電源比 較基準電圧と比較する第2のコンパレータを備え. 前記所定の基準電圧が、前記電源比較基準電圧よりも低

く設定されていることを特徴とするCPU監視回路。 【請求項3】 CPUの発するクロック信号に従って充 放電が行われる容量性素子と、前記容量性素子の電圧を 第1及び第2の基準電圧と比較するヒス付きコンパレー タと、を備え、前記容量性素子の電圧が前記第1又は第 20 2の基準電圧から前記第2又は第1の基準電圧に達した 場合に前記CPUに対してリセット信号を供給するCP U監視回路であって.

前記第1及び第2の基準電圧がそれぞれ、バンドギャッ プ電圧に基づいた電圧であることを特徴とするCPU監 提同路.

【請求項4】 請求項3記載のCPU監視回路におい

前記とス付きコンパレータの電源電圧の低下を監視すべ く、該電源電圧をバンドギャップ電圧に基づいた電源比 30 ック信号を検出するための監視時間が変動するのを防止 較基準電圧と比較する監視用コンパレータを備え、 前記第1及び第2の基準電圧がそれぞれ、前記電源比較 基準電圧よりも低く設定されていることを特徴とするC PU監視回路。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、CPU監視回路に 係り、特に、CPUから発せられるクロック信号に従っ て充放電が行われる容量性素子の電圧変化に基づいて、 CPUの作動状態を判定・監視するCPU監視回路に関 40 する.

【従来の技術】従来より、例えば特開平8-11086 7号公報に開示される如く、コンデンサの充放電を利用 してCPUの作動状態を監視するCPU監視回路が知ら れている。このCPU監視回路は、CPUが作動時に一 定周期毎に発するクロック信号を検出する検出回路と、 常態で放電され、CPUのクロック信号が検出された場 合に充電されるコンデンサと、コンデンサの電圧を所定 の基準電圧と比較するコンパレータと、を備えている。 50 明によれば、電源電圧が変動しても、第1のコンパレー

この回路において、CPUのクロック信号が検出され ず、コンデンサが充電されない事態が継続すると、コン デンサの電圧が低下し、所定の基準電圧まで低下するこ ととなる。この際、コンパレータは、CPUに対してリ セット起動を促すリセット信号を供給する。従って、上 記従来の回路によれば、CPUのクロック信号が検出さ れない事態を異常として判定することができ、CPUの 作動状態を監視することが可能となる。

2

[00031

10 【発明が解決しようとする課題】一般に、コンパレータ の基準電圧は、バッテリ電圧により生成される。例え ば、上記したCPUが車両に搭載される場合には、14 V程度のバッテリ電圧から、5 V程度のコンパレータ基 進電圧が生成される。ところで、車両に搭載されるバッ テリ電圧は、エンジン始動時のクランキング等に起因し て5V以下まで大きく低下する場合がある。かかる事態 が生ずると、その際、或いは、その後バッテリ電圧が回 復した際に、コンパレータの基準電圧が変動してしま ì.

【0004】コンパレータの基準電圧が変動すると、コ ンデンサの電圧がその基準電圧に達するまでの期間(す なわち、クロック信号の監視時間) が短くなることがあ る。このため、CPUが正常に動作し正常な周期でクロ ック信号を出力するにもかかわらず、クロック信号が検 出される前にコンデンサ電圧が基準電圧まで低下し、そ の結果 監視回路からCPUヘリセット信号が供給され てしまうおそれがある。

【0005】本発明は、上述の点に鑑みてなされたもの であり、バッテリ電圧の変動が生じても、CPUのクロ することができるCPU監視回路を提供することを目的 とする。

[0006]

【課題を解決するための手段】上記の目的は、請求項1 に記載する如く、CPUの発するクロック信号に従って 売放電が行われる容易件素子と、前記容易件素子の電圧 を所定の基準電圧と比較する第1のコンパレータと、を 備え、前記第1のコンパレータの比較結果に応じて前記 CPUに対してリセット信号を供給するCPU監視回路 であって、前記所定の基準電圧が、バンドギャップ電圧 に基づいた電圧であることを特徴とするCPU監視回路 により達成される。

【0007】本発明において、第1のコンパレータは、 容量性素子の電圧を、バンドギャップ電圧に基づいた所 定の基準電圧と比較する。CPU監視回路は、第1のコ ンパレータの比較結果に応じてCPUへリセット信号を 供給する。バンドギャップ電圧は、一般に約1、2 V程 度の低い電圧であるので、電源電圧が低下した場合にも その影響を受けることはほとんどない。このため、本発

タの基準電圧が変動するのを回避することができ、クロ ック信号の監視時間の変動を防止することができる。 【0008】この場合、請求項2に記載する如く、請求 項1記載のCPU監視回路において、前記第1のコンパ レータの電源電圧の低下を監視すべく、該電源電圧をバ ンドギャップ電圧に基づいた電源比較基準電圧と比較す る第2のコンパレータを備え、前記所定の基準電圧が、 前記電源比較基準電圧よりも低く設定されていることと してもよい。

如く、CPUの発するクロック信号に従って充放電が行 われる容量性素子と、前記容量性素子の電圧を第1及び 第2の基準電圧と比較するヒス付きコンパレータと、を 備え、前記容量性素子の電圧が前記第1又は第2の基準 電圧から前記第2又は第1の基準電圧に達した場合に前 記CPUに対してリセット信号を供給するCPU監視回 路であって、前記第1及び第2の基準電圧がそれぞれ、 バンドギャップ電圧に基づいた電圧であることを特徴と するCPU監視回路により達成される。

ス付きコンパレータにより、バンドギャップ電圧に基づ いた第1及び第2の基準電圧と比較される。CPU監視 回路は、容量性素子の電圧が第1又は第2の基準電圧か ら第2又は第1の基準電圧に達した場合。 コンパレータ 側からCPUヘリセット信号信号を供給する。バンドギ ャップ電圧は、一般に約1.2V程度の低い電圧である ので、電源電圧が低下した場合にもその影響を受けるこ とはほとんどない。このため、本発明によれば、電源電 圧が変動しても、コンパレータの基準電圧が変動するの を回避することができ、クロック信号の監視時間の変動 30 ミッタに接続していると共に、抵抗R18を介してpn を防止することができる。

【0011】この場合、請求項4に記載する如く、請求 項3記載のCPU監視回路において、前記ヒス付きコン バレータの電源電圧の低下を監視すべく、該電源電圧を バンドギャップ電圧に基づいた電源比較基準電圧と比較 する監視用コンパレータを備え、前記第1及び第2の基 進電圧がそれぞれ、前記電源比較基準電圧よりも低く設 定されていることとしてもよい。

[0012]

【発明の実施の形態】図1は、本発明の一実施例のシス 40 テム構成図を示す。本実施例のシステムは、例えば重載 コンピュータとして重両に搭載されるシステムである。 本実施例のシステムは、中央演算処理装置(以下、CP Uと称す)10、及び、ウォッチドッグ監視回路(以 下、WD監視回路と称す) 1 2を備えている。また、本 実飾例のシステムは、14V程度のバッテリ電圧を有す るバッテリ電源14を備えている。CPU10には、バ ッテリ電圧から降圧された所定の電圧VOM(例えば5 V)が供給される。CPU10は、ウォッチドッグ端子

4 10は、自己が正常に作動している間、所定周期毎にバ ルス状のウォッチドッグ信号(以下、WD信号と称す) をWD端子10aから出力する。

【0013】バッテリ電源14には、車両のイグニショ ンスイッチがオンされることによりバッテリ電圧が供給 される起動回路16が接続されている。起動回路16 は、バッテリ電圧が供給されることにより起動され、5 V程度の電圧を発生する回路である。起動回路16に は、バンドギャップ回路18が接続されている。バンド 【0009】また、上記の目的は、請求項3に記載する 10 ギャップ回路18は、起動回路16で生成された電圧か らバンドギャップ電圧VOUTを生成する回路である。 【0014】図2は、本実施例のバンドギャップ回路1 8の内部構成図を示す。図2に示す如く、バンドギャッ プ回路18は、シリコンを材料として構成されたnpn 型のトランジスタQ10を備えている。起動回路16の 出力端子は、トランジスタQ10のコレクタに接続して いると共に、定電流源20を介してトランジスタQ10 のベースに接続している。トランジスタQ10のエミッ タは、抵抗R10を介してnpn型のトランジスタ01 【0010】本発明において、容量性素子の電圧は、ヒ 20 2のコレクタ及びベースに接続している。トランジスタ Q12のエミッタは接地されている。トランジスタQ1 0のエミッタは、また、抵抗R12を介してпрп型の トランジスタQ14のコレクタに接続している。トラン ジスタ〇14は、上記したトランジスタ〇12と同一形 状を有している。トランジスタQ14のベースはトラン ジスタの12のベースに接続している。また エミッタ は抵抗R14を介して接地されている。

【0015】トランジスタ010のエミッタは、更に、 抵抗R16を介してpnp型のトランジスタQ16のエ p型のトランジスタQ18のエミッタに接続している。 トランジスタQ16のベースは、トランジスタQ18の ベースに接続していると共に、自己のコレクタに接続し ている。トランジスタQ16のコレクタは、npn型の トランジスタQ20のコレクタに接続している。トラン ジスタロ20のベースは、上記したトランジスタロ12 及びQ14のベースに接続している。また、トランジス タQ18のコレクタは、npn型のトランジスタQ22 のコレクタに接続している。トランジスタQ20のエミ ッタ及びトランジスタQ22のエミッタは共に、抵抗R 20を介して接地されている。

【0016】トランジスタ0.22のコレクタは、コンデ ンサ22を介してベースに接続している。 トランジスタ Q22のベースは、上記したトランジスタQ14のコレ クタに接続している。トランジスタQ22のコレクタ は、また、pnp型のトランジスタQ24のベースに接 続している。トランジスタQ24のコレクタは接地され ている。また、エミッタは、npn型のトランジスタQ 26のエミッタに接続している。トランジスタQ26の (以下、WD端子と称す)10aを有している。CPU 50 コレクタは、ベースに接続していると共に、上記した定 電流源20及びトランジスタQ10のベースに接続して いる。

【0017】かかるバンドギャップ回路18において は、抵抗R12に流れる電流と抵抗R14に流れる電流 が暗等しくなると共に、トランジスタQ12とQ14と が同一邦状を有しているので、それらのベース・エミッ 関固の熱和電池は等しくなる、従って、バンドギャッ プ回路18においては、延動回路16から電圧が供給さ れると、トランジスタQ10のエミッタに、必定(1) に示守施EVOUTが現れる。

【0018】VOUT=VBE1+R2/R3・kT/q・1n(R2/R1)・・・(1)但し、VBE1はトランジスタ012のペース・エミック間電圧、R1は 抵抗R10の販抗値、R2は抵抗R12の販抗値、R3 は拡抗R14の販抗値、Kはポルツマン定数、Tは絶対 温度、また、4は電子の電荷を、それぞれ表している。【0019】この電圧VOUTは、バンドギャップ電圧として、温度特性がほぼせつの基準電圧となる。具体的には、トランジスタQ12及びQ14がシリコンを材料として構成されているので、約1.2V程度の電圧となる。

【0020】図1に示す如く、バンドギャップ回路18 には、上記したWD監視回路12が接続されている。W D 監視同路 1 2は、ヒステリシス付きコンパレータ(以 下、単にヒス付きコンパレータと称す)24を備えてい る。ヒス付きコンパレータ2.4には バッテリ雷源1.4 から生成された5V程度の電源電圧VOMが電源として 供給されている。 ヒス付きコンパレータ24の非反転入 カ端子には、バンドギャップ回路18で生成されたバン ドギャップ電圧VOUTに基づいた2つの基準電圧VT 30 L.1. VTH1 (VTL1<VTH1)が供給されてい る。また、この2つの基準電圧VTL1、VTH1は、 ヒス付きコンパレータ24の出力によって切り替わる。 反転入力端子には、一端が接地されたコンデンサ26の 他端が接続されており、コンデンサ26の他端に生ずる 電圧(DI下、コンデンサ電圧と称す) VCTが供給され る。コンデンサ26は、所定の容量を有している。ヒス 付きコンパレータ24は、コンデンサ電圧を監視する回 路である。

【0021】図3は、本実施例のヒス付きコンパレータ 24の人出力物性を表した図を示す。図3に示す如く、 上気付きコンルータ24は、出力がロー状態にある状 況下において、コンデンサ電圧VCTがVTL1を超え ている場合は出力をロー大態に維持し、VTL1以下と なる場合に出力をハイ状態に切り替える。また、出力が ハイ状態にある状況下において、コンデンサ電圧VCT がVTH1を下回っている場合は出力をハイ状態に維持 し、VTH1以上となる場合に出力をハイ状態に維持 し、VTH1以上となる場合に出力をロー状態に維持 と、VTH1以上となる場合に出力をロー状態に維持 える。

【0022】図1に示す如く、ヒス付きコンパレータ2 50 のWD監視回路12の動作を説明するためのタイムチャ

4の出力端子には、インバータ28を介して上記したC PU10のリセット端子10 bが接続されている。リセ ット端子10 bには、ヒス付きコンバレータ24におけるコンデンサ巡上VCTと基準電圧VTL1、VTH1 との比較結果に応じた信号(以下、リセット信号と除 す)が供給される。CPU10は、供給されてリセット 信号がバイ果郎からロー状態に変化した場合には、自己 に異常・基定が生じたとしたリセット起動を行う。

【0023】WD監視回路12は、また、CPU10の WD電子10aから出力されたWD信号が入力するウェッチドッグ信号処理回路(以下、WD信号処理回路と終す)30を備えている。WD信号処理回路30は、CP U10から機合さんWD信号の立ち下がりを明りし、WD信号が立ち下がった場合にトリガ信号を出力する回路である。WD信号処理回路30がトリガ信号を出力すると、上記したコンデンサで自任金組電電される。WD監視回路12は、コンデンサ電圧VCTがヒス付きコンパレータ24の基準低圧VTH1に達さる比較の記されてコンデンサ電圧VCTが基準低圧VTH1に達さると、コンデンサ26の水電が解除され、コンデンサ26の水電が解除され、コンデンサ26の水電が解除され、コンデンサ26の水電が解除され、コンデンサ26の水電が解除され、コンデンサ26の水電が解除され、コンデンサ26の水電が解除され、コンデンサ26の水電が解除され、コンデンサ26の水電が解除され、コンデンサ26の水電が解除され、コンデンサ26の水電が解除され、コンデンサ26の水電が解除され、コンデンサ26の水電が解除され、コンデンサ26の水電が開発される。

【0024】コンデンサ26の機能には、ヒス付きコン・
バレータ24の反脈入力端子と共に、スイッチ32、3
4の一端が接続されている。スイッチ32の他端は、交 流電流漏36を介して接地されている。また、スイッチ 34の他端は、交流電流流38を介して電流電圧VOM が接続されている。スイッチ32は、ヒス付きコンパレーク24の出力がいイ状態にある場合にオフ状態に地持 され、ロー状態にある場合にオン状態となるスイッチで ある。一方、スイッチ34は、ヒス付きコンパレータ2 4の出力がハイ状態にある場合にオン状態となるスイッチで 施にある場合にオン状態となるスイッチで が膨にある場合にオン状態となるスイッチである。

6。
【0025】WD監視回路12は、更に、コンパレータ
40を備えている。コンパレータ40は、電源電圧VO
がが低電圧に低下したか否かを監視するための回路であ
。コンパレータ40の状た入力第子には、バンドギャップ電圧V
0U丁が供給されており、パンドギャップ電圧V
0U丁が供給されている。コンパレータ40の非反転入
カポイは、抵抗42を介して電源電圧VOMに接続されている。ま
た、コンパレータ40には、電源電圧VOMが電源とし
使持されている。コンパレータ40は、電源電圧VOMが電源とし
で供給されている。コンパレータ40は、電源電圧VOMが電源とし
で供給されている。コンパレータ40は、電源電圧VOMが電源とし
で持合されている。コンパレータ40は、電源電圧VOMが電源とし
で持合されている。コンパレータ40は、電源電圧VOMが電源とし
に持合されている。コンパレータ40は、電源電圧VOMが電源とし
に持合されている。コンパレータ40は、電源電圧VOMが電源とし
のが4V程度に設定されたしきい値VTH2以下にある
か否かを判定し、VOM≦VTH2が成立する場合に
10026〕次に、図4を実施して、本実施例のWD監

ートを示す。尚、図4には、CPU10からWD信号が 入力されない状況下における各部位の電圧がそれぞれ示 されている。

【0027】 ヒス付きコンパレータ24の出力がロー状 態にある状況下においては、CPU10に供給されるリ セット信号がハイ状態に維持される。この際、CPU1 0は、正常に動作していると判定する。また、かかる状 況下では、スイッチ32がオン状態となり、スイッチ3 4がオフ状態となるので、コンデンサ26は放電状態と なる。かかる状態でWD監視回路12にWD信号が入力 10 れば、コンデンサ26の充放電を利用してCPU10の されない場合は、コンデンサ電圧VCTが低下し、いず れ基準電圧VTL1に達する。コンデンサ電圧VCTが 基準電圧VTL1まで低下すると、ヒス付きコンパレー タ24の出力がロー状態からハイ状態に切り替わる(図 4において時刻t1)。

【0028】 ヒス付きコンパレータ24の出力がオン状 態に変化すると、CPU10に供給されるリセット信号 がロー状態となる。この際、CPU10は、異常・暴走 したと判定し、リセット起動を行う、また、かかる状況 下では、スイッチ32がオフ状態となり、スイッチ34 がオン状態となるので、コンデンサ26は電源電圧VO Mの供給を受けて充電状態となる。コンデンサ26の充 電が継続し、コンデンサ電圧VCTが基準電圧VTH1 に達すると、ヒス付きコンパレータ24の出力がオン状 顔からオフ状態に切り替わる(図4において時刻も 2).

【0029】ヒス付きコンパレータ24の出力がオフ状 態に変化すると、CPU10にハイ状態のリセット信号 が供給され、CPU10がリセット状態を解除され、正 常状態に復帰する。また、コンデンサ26の充電が解除 30 され、スイッチ3クがオン状態となり、かつ、スイッチ 34がオフ状態となるので、コンデンサ26が再び放電 状態となる。そして、WD監視回路12にWD信号が入 力されない場合は、コンデンサ電圧VCTが基準電圧V TL1に低下するまでその放電が継続する(図4におい て時刻±3)、以下、同様に、WD監視回路12にWD 信号が入力されない場合は、上述した処理が繰り返され 3.

【0030】このようにWD監視回路12においては、 WD信号が入力されない場合、コンデンサ電圧VCTが 40 基準電圧VTH1からVTL1へ達する毎に、CPU1 ①のリセット起動を指示する信号が出力される。一方。 WD信号が供給されると、コンデンサ26は急速充電さ れる。このため、本実施例のWD監視回路12において は、コンデンサ電圧VCTが基準電圧VTL1に達する 前に、CPU10からWD信号が出力され、WD監視回 路12に供給されれば、コンデンサ26が急速充電さ れ、コンデンサ電圧VCTが基準電圧VTL1に達する ことなく上昇する。この場合、CPU10のリセット起 動を指示する信号が出力されるのは回避される。

【0031】すなわち、WD監視回路12は、コンデン サ電圧VCTが基準電圧VTH1からVTL1へ達する までにCPU10からWD信号が供給されるか否かに基 づいてCPU10の作動状態を判定する回路である。具 体的には、コンデンサ電圧VCTが基準電圧VTL1に 達しない場合にはCPU10の作動状態が正常であると 判定し、一方、コンデンサ電圧VCTが基準電圧VTL 1に達した場合にCPU10の作動状態が異常であると 判定する。このように本実施例のWD監視回路12によ 作動状態を監視することが可能となる。

Ω

【0032】尚、本実施例において、コンデンサ電圧V CTが基準電圧VTH1からVTL1へ達する時間(図 4 において t 3 - t 2: DJ下. 監視時間Tと称す) は. 予め所定の時間が実現されるように、基準電圧VTH VTL1の値及び交流電流源36の電流I1により 適当に設定されている。また、CPU10がWD信号を 出力する時間周期は、監視時間Tに比して短い周期に設 定されている。

20 【0033】ところで、本実施例のシステムは、上述の 如く、車両に搭載されるシステムであるため、バッテリ 電源14のバッテリ電圧が、エンジン始動時におけるク ランキングに起因して大きく低下する場合、具体的に は、14V程度から5Vを下回るほどに低下する場合が ある。

【0034】図5は 本実飾例のWD監視回路122対 比される、非反転入力端子に電源電圧VOMに基づいた 2つの基準電圧VTL1, VTH1が供給されるヒス付 きコンパレータ24を備えるWD監視回路(以下、対比 監視回路と称す)の動作を説明するためのタイムチャー トを示す。尚 図5には 図4の場合と同様に CPU 1 OからWD信号が入力されない状況下における各部位 の電圧がそれぞれ示されている。また、以下の記載にお いては、対比監視回路が、非反転入力端子に電源電圧V OMに基づいた2つの基準電圧VTL1, VTH1が供 給されるヒス付きコンパレータ24を備えていることを 除いて、上記図1に示すWD監視回路12と同一の構成 を有しているものとする。

【0035】上述の如く、バッテリ電源14から生成さ れる電源電圧VOMは、常態で5V程度に設定されてい る、従って、対比監視回路において、バッテリ電圧が5 Vを下回ると、それに伴って電源電圧VOMが5Vを下 回り、電源電圧VOMに基づいたヒス付きコンパレータ 24の基準電圧VTL1、VTH1が変動することとな る。また、その後、バッテリ電圧が常態の14Vに回復 した場合(図5において時刻も4)にも、それに伴って 電源電圧VOMが常能の5Vに復帰し、ヒス付きコンパ レータ24の基準電圧VTL1, VTH1が変動するこ ととなる.

50 【0036】かかる基準電圧VTL1, VTH1の変動

が、図5に示す時刻t4にコンデンサ26が故電されて いる状況下で生ずると、コンデンサ電圧VCTが基準電 圧VTH1から基準電圧VTL1に達する監視時間が短 くなる(図5における斜線部分)。このため、CPU1 Oが正常に動作し正常な周期でWD信号を出力していて も、対比監視回路にWD信号が供給される前にコンデン サ電圧VCTが基準電圧VTL1まで低下することがあ る。この場合には、ヒス付きコンパレータ24の出力が ハイ状態となるので、CPU10へ供給されるリセット 信号がロー状態となり、CPU10がリセット起動され 10 てしまう。従って、CPU10の作動状態を監視するW D監視回路においては、バッテリ電圧に変動が生じて も、ヒス付きコンパレータ24の基準電圧VTL1, V TH1が変動しない構成を有することが望ましい。 【0037】そこで、本実施例のWD監視回路12は、

バッテリ電圧に変動が生じても、ヒス付きコンパレータ

24の基準電圧VTL1, VTH1が変動しない構成を

有する点に特徴を有している。 【0038】本実施例のWD監視回路12において、と ス付きコンパレータ24の非反転入力端子には、1.2 20 圧」、「第1の基準電圧」、及び「第2の基準電圧」 V程度のバンドギャップ電圧VOUTを基に作成した2 つの基準電圧VTL1, VTH1が供給される。尚、こ の基準電圧VTL1, VTH1を1.2V以下の低電圧 に設定することがバッテリ電圧の変動の影響を受け難く する点で好ましいことが、実験的に解かっている。本実 施例においては、例えば、基準電圧VTL1が0.7 V、基準電圧VTH1が1.0Vに設定される。このた め、WD監視回路12においては、バッテリ電圧が5V を下回ることにより電源電圧VOMが5 Vを下回った 際、また、その後バッテリ電圧が回復することにより電 30 源電圧VOMが5Vに復帰した際にも、その基準電圧V TL1, VTH1に変動が生ずることはない。

【0039】従って、本実施例においては、バッテリ電 圧に変動が生じた際に、コンデンサ電圧VCTが基準電 圧VTH1から基準電圧VTL1に達する監視時間が短 くなることが防止される。このため 本実施例のWD監 視回路12によれば、CPU10が正常に動作し正常な 周期でWD信号を出力する状況下において、バッテリ電 圧の変動に伴ってコンデンサ電圧VCTがWD信号の供 給前に基準電圧VTL1まで低下することはなく、CP 40 U10を誤ってリセット記動させる事態を回避すること

【0040】また、バッテリ電圧に変動が生じた際にコ ンデンサ電圧VCTについての監視時間が変動する場合 には、CPU10にリセット起動を指示する信号が誤っ て供給されるのを回避すべく、コンデンサ電圧VCTに ついての監視時間を長期間に設定する必要がある。これ に対して、本実施例においては、上述の如く、バッテリ 電圧に変動が生じても監視時間が変動することが防止さ れるため、監視時間を長期間に設定することは不要であ 50 【図面の簡単な説明】

る。すなわち、本実施例のWD監視回路12によれば、 コンデンサ電圧VCTについての監視時間を比較的短く 設定することができ、その結果、CPU10の異常、暴 走状態を早期に検出することが可能となる。従って、W D監視回路12においては、CPU10の作動状態を監 視する回路として性能の向上が図られていることとな

【0041】尚、上記の実施例においては、WD監視回 路12が特許請求の範囲に記載された「CPU監視回 路」に、CPU10が所定周期で出力するWD信号が特 許請求の範囲に記載された「クロック信号」に、コンデ ンサ26が特許請求の範囲に記載された「容量性素子」 に、ヒス付きコンパレータ24が特許請求の範囲に記載 された「第1のコンパレータ」に、コンパレータ40が 特許請求の範囲に記載された「第2のコンパレータ」及 び「監視用コンパレータ」に、バンドギャップ回路18 で生成されたバンドギャップ電圧VOUTに基づいたヒ ス付きコンパレータ24における基準電圧VTL1,V TH1が特許請求の範囲に記載された「所定の基準電 に、バンドギャップ電圧VOUTが特許請求の範囲に記 載された「電源比較基準電圧」に、それぞれ相当してい

【0042】ところで、上記の実施例においては、コン デンサ26を、CPU10からWD信号が供給された場 合に充電し、コンデンサ電圧VCTが基準電圧VTH1 に達した後に放電し、また、コンデンサ電圧VCTが基 進電圧VTL1まで低下した場合にCPU10にリセッ ト起動を指示する信号を出力することとしているが、逆 に、コンデンサ26を、CPU10からWD信号が供給 された場合に放電し、コンデンサ電圧VCTが放進電圧 VTL1に達した後に充電し、また、コンデンサ電圧V CTが基準電圧VTH1まで上昇した場合にCPU10 にリセット起動を指示する信号を出力することとしても In.

【0043】また、上記の実施例においては、コンデン サ電圧VCTと基準電圧との比較をヒステリシス付きの コンパレータ24を用いて行うこととしているが、単に 大小比較を行うコンパレータを組み合わせてコンデンサ 電圧VCTと基準電圧との比較を行うこととしてもよ W.

【0044】更に、上記の実施例は、東面に搭載される システムに適用することとしているが、本発明はこれに 限定されるものではなく、車両以外のシステムに適用す ることも可能である。

【発明の効果】上述の如く、請求項1乃至4記載の発明 によれば、バッテリ電圧の変動が生じても、CPUのク ロック信号を検出するための監視時間が変動するのを防 止することができる。

【図1】本発明の一実施例のCPU監視回路を備えるシ ステムの構成図である。

【図2】本実施例のCPU監視回路が備えるバンドギャ ップ回路の内部構成図である。

【図3】本実施例のヒス付きコンパレータの入出力特性 を表した図である。

【図4】本実施例のCPU監視回路の動作を説明するた

【図5】対比監視回路の動作を説明するためのタイムチ

【図1】

めのタイムチャートである。

ャートである。 【符号の説明】

10 CPU

12 WD監視回路(ウォッチドッグ監視回路)

14 バッテリ電源

24 ヒス付きコンパレータ (ヒステリシス付きコンパ

[図3]

レータ) 26 コンデンサ

40 コンパレータ

[#] —□~14 /12 WD監視回路 24 ヒス付き ノーコンパレ リセット出力 VTL1 VTH1

フロントページの続き

F ターム(参考) 58011 DA06 DA13 GG04 KK02 58042 GA38 GB08 JJ21 KK02 58054 CO1 DD13 DD25 581410 B802 CC02 CC09 EA10 EA12 FF03 FF26 HH01 LL01 LL12 LL20 58420 NA23 NA24 NB12 NB24 NC12 NC23 NC26 NB13 NB17 NB28