24 - Distributed OLAP Databases

1. Star Schema vs. Snowflake Schema

A. Star schema

- i. fact table and one level dimension table.
- ii. Query is more faster because less join operations are needed

B. Snowflake schema

- i. Fact table and one or more level dimension table
- ii. Take up less storage space

2. Execution Models

A. Push vs. Pull

- i. Push: send query to node that has data (shared nothing)
- ii. Pull: bring data to node that executes query (shared disk)

B. Query Fault Tolerance

 i. Save snapshots of intermediate result of query to redo the query fast if it fails

3. Query Planning

A. Physical operators

- i. Generate single query plan, and break it up into partition-specific fragments.
- ii. Most common solution

B. SQL

- i. Rewrite query into partition-specific query
- ii. Local optimization is possible

4. Distributed Join Algorithms

A. Scenarios

- i. One table is replicated every nodes
 so we can join local data in every nodes, and combine results
- ii. Every tables are partitioned on the join keyso we can join local data in every nodes, and combine results
- iii. Every tables are partitioned on the different keys ranges if one table is small, DBMS broadcasts that table to all nodes.
- iv. Every tables are not partitioned on the join keysDBMS copies the table to shuffle them and join the tables.

B. Semi-Join

- i. Result: join key column from left table
- ii. Copying entire records is expensive,Semi-Join need to send just join key, not entire records

5. Cloud Systems

A. Approaches

- i. Managed DBMSs: no significant changes of DBMS
- ii. Cloud-Native DBMS: cloud-specific system

B. Severless databases

- If tenants become idle, system evicts them and save there buffer pool to disk
- ii. Others can re-use evicted tenants' node, and all tenants can pay just for storage