Two Important Isolated Results

1. Stochastic Gradient Descent

Often, especially in machine learning, you get a **stochastic** estimate of the gradient.

$$\min_{ heta} \sum_{(x,y) \in \mathcal{D}} \operatorname{loss}(m(x; heta),y)$$

$$f(heta) = \sum_{(x,y) \in \mathcal{D}} ext{loss}(m(x; heta),y)$$

$$abla_{ heta}f = \sum_{(x,y) \in \mathcal{D}}
abla_{ heta} \operatorname{loss}(m(x; heta),y)$$

$$egin{aligned} \widehat{
abla_{ heta}f} &= \sum_{(x,y) \in \mathcal{B}}
abla_{ heta} \operatorname{loss}(m(x; heta),y) \ \mathcal{B} \subset \mathcal{D} \end{aligned}$$

Stochastic Gradient Descent

loop:

$$\mathbf{x}_{k+1} \leftarrow \mathbf{x}_k - lpha_k \widehat{
abla_{\mathbf{x}} f}$$

1. Stochastic Gradient Descent

Stochastic Gradient Descent

loop:

$$\mathbf{x}_{k+1} \leftarrow \mathbf{x}_k - \alpha_k \widehat{
abla_{\mathbf{x}} f}$$

Convergence Guarantee (roughly):

If these assumptions are satisfied:

1.
$$E\left[\widehat{
abla f}
ight] =
abla f$$

- 2. $\sum_{k=1}^{\infty} \alpha_k = \infty$ (steps not too small)
- 3. $\sum_{k=1}^{\infty} \alpha_k^2 < \infty$ (steps not too big)
- 4. Other very mild assumptions

e.g.
$$\alpha_k = \frac{1}{k}$$

Then

$$\lim_{k o\infty}
abla f(\mathbf{x}_k) o 0$$

with probability 1!

2. Solution-Time Guarantees for Convex Optimization Problems

This is not a course on convex optimization, but the field is extremely rich. See *Convex Optimization* by Boyd and Vandenberghe for:

- Rules for proving convexity
- Examples showing how seemingly nonconvex problems can be made convex
- Algorithms for solving convex optimization problems (focus is on interior point)
- Theoretical guarantees on performance

2. Solution-Time Guarantees for Convex Optimization Problems

Most important properties of convex optimization problems:

- Any local minimum is a global minimum
- A global minimum can be found in a predictable, finite number of steps

Example from Boyd and Vandenberghe, section 11.5

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$,

Additional assumptions:

- $tf_0 + \phi$ is self concordant
- Sublevel sets are bounded

$$\phi$$
 is the barrier, e.g. $\phi = -\sum_{i=1}^m \log(-f_i)$

self concordant means $|f'''(x)| \leq 2f''(x)^{3/2}$

2. Solution-Time Guarantees for Convex Optimization Problems

Interior point method:

1. Solve "Phase 1" problem to find a feasible point

minimize
$$s$$

subject to $f_i(x) \le s$, $i = 1, ..., m$
 $Ax = b$

- 2. Start with $t=t^{(0)}$ and Loop
 - 1. Solve

$$egin{array}{ll} ext{maximize} & tf_0 + \phi \ ext{subject to} & f_i \leq 0, & Ax = b \end{array}$$

2.
$$t \leftarrow \mu t$$

Solution to each barrier subproblem moves along the "central path"

2. Solution-Time Guarantees for **Convex Optimization Problems**

Interior point method:

1. Phase I: find a feasible point

minimize
$$s$$

subject to $f_i(x) \le s$, $i = 1, ..., m$
 $Ax = b$

- 2. Phase II: Start with $t=t^{(0)}$ and Loop:
 - 1. Solve maximize $tf_0 + \phi$ subject to Ax = b
 - 2. $t \leftarrow \mu t$

Section 9.6.4 shows that the number of Newton steps for a convex self-concordant problem without inequality constraints is

$$\frac{f(x^{(0)}) - p^{\star}}{\gamma} + \frac{\log_2 \log_2(1/\epsilon)}{c = 6}$$

$$\frac{1}{\gamma} = \frac{20 - 8\alpha}{\alpha\beta(1 - 2\alpha)^2}$$
 α , β : backtracking params

 p^* : optimal value, ϵ : accuracy

For entire Phase II:

$$N = \left\lceil \frac{\log(m/(t^{(0)}\epsilon))}{\log \mu} \right\rceil \left(\frac{m(\mu - 1 - \log \mu)}{\gamma} + c \right)$$

$$c = 6, \qquad \gamma = 1/375, \qquad m/(t^{(0)}\epsilon) = 10^5, \qquad m = 100$$

$$m = 100$$

2. Solution-Time Guarantees for **Convex Optimization Problems**

Interior point method:

1. Phase I: find a feasible point

minimize
$$s$$

subject to $f_i(x) \le s$, $i = 1, ..., m$
 $Ax = b$

- 2. Phase II: Start with $t = t^{(0)}$ and Loop:
 - 1. Solve maximize $tf_0 + \phi$ subject to Ax = b
 - 2. $t \leftarrow \mu t$

$$N_{\rm I} = \left\lceil \sqrt{m+2} \log_2 \frac{(m+1)(m+2)GR}{|\bar{p}^{\star}|} \right\rceil \left(\frac{1}{2\gamma} + c \right)$$

R: Radius of feasible set

 \bar{p}^{\star} : optimal value of Phase I

$$G = \max_i \|\nabla f_i(0)\|_2$$

$$N_{ ext{II}} = \left\lceil \sqrt{m+1} \log_2 rac{(m+1)(M-p^\star)}{\epsilon}
ight
ceil \left(rac{1}{2\gamma} + c
ight)$$
 $M \geq \max\left\{f_0(x^{(0)}), p^\star
ight\}$

Depends on
$$\sqrt{m}$$
, $\dim(x)^3$,

$$\log_2 \frac{GR}{|\bar{p}^{\star}|},$$

$$\log_2 \frac{GR}{|\bar{p}^{\star}|}, \qquad \log_2 \frac{M - p^{\star}}{\epsilon}.$$