

DS 02- Canne robotisée

PTSI

Samedi 16 novembre 2019

Table des matières

	Présentation générale	2
II	Analyse du cycle de la marche	3
Ш	Modélisation de la chaîne d'énergie de l'axe linéaire	4
IV	Modèle comportemental	5
V	Correction proportionnelle	6
VI	Correction avec action proportionnelle et intégrale généralisée	8
VII	Étude de l'exigence 3.1.6 « Commande des axes asservis »	10
VII	IIDessin	11
IX	Document réponse	13

Canne robotisée

I Présentation générale

L'amélioration de la mobilité des personnes âgées ou rencontrant des troubles de la marche demeure un des enjeux majeurs de l'assistance à la personne.

Un dispositif d'assistance à la marche peut être prescrit lors de l'apparition de troubles de la locomotion. Parmi les nombreux dispositifs proposés, la canne et le déambulateur demeurent les plus utilisés; l'utilisation de la canne étant privilégiée lors de troubles mineurs ou n'affectant qu'une des deux jambes.

Afin de contribuer à l'amélioration de l'assistance apportée par ces deux dispositifs conventionnels, la robotisation de ceux-ci a été entreprise. Ainsi, de nombreux déambulateurs robotisés ont été conçus afin d'offrir une assistance continue lors de la marche. En revanche, le développement des cannes robotisées s'est traduit par une différenciation marquée par rapport aux cannes conventionnelles (voir figure 1). En effet, l'utilisation de bases mobiles stables sur lesquelles sont fixées des cannes, conduit à l'obtention de dispositif encombrant.

Figure 1 – Évolution des dispositifs d'assistance à la locomotion de type canne et description du prototype de canne robotisée

Pour plus de compacité et pour garder les attributs d'une canne conventionnelle, le prototype de canne étudié dans ce sujet est composé d'un axe télescopique et d'une roue à son extrémité, tous deux motorisés. Il conserve ainsi un encombrement réduit et permet de synchroniser les mouvements avec le cycle de la marche. La canne suit ainsi activement le mouvement de la jambe « invalide » durant la phase de balancement et offre un point d'appui stable pendant la phase d'appui.

L'extrait du cahier des charges donné dans le tableau ci-dessous reprend les principales exigences attendues par le comportement de la canne.

Performance	Critère	Valeur
Précision	erreur statique	$\mu_s \leq 5\%$
Amortissement	1er dépassement	$D_{1\%} \le 5\%$
Rapidité	temps de réponse à 5%	$tr_{5\%} \le 60 \text{ ms}$
Stabilité	Marge de gain	$M_G \ge 45 \mathrm{db}$
	Marge de phase	$M_{\varphi} \geq 35^{\circ}$

Il Analyse du cycle de la marche

L'objectif de cette partie est d'étudier des cycles de marches saines et perturbées afin de mettre en évidence l'apport d'une canne d'assistance pour améliorer la marche. L'observation des jambes, effectuée dans le cadre d'un « cycle de marche », permet de distinguer pour chacune d'entre elle une phase d'appui et une phase de balancement (figure 2). Ce cycle débute par un appui simple de la jambe droite et le début du balancement de la jambe gauche. Il s'achève lors du décollement du pied gauche du sol.

Figure 2 – Représentation du cycle de la marche adopté dans le cadre de notre étude

Les résultats obtenus pour les différentes conditions sont présentés sur les figures 3 à 6. Ces courbes représentent l'évolution des efforts normaux (orthogonaux au sol) exercés par les jambes ou la canne sur le sol. Afin de faciliter l'observation des résultats, tous les résultats ont été normalisés, ceux relatifs à la jambe droite sont représentés en trait fort et ceux relatifs à la jambe gauche en trait fin. Les écarts-types associés aux résultats sont représentés en pointillés. Le trait continu représente la moyenne.

Pour ces figures, le cycle de la marche adopté durant l'étude débute par l'appui simple sur la jambe droite. La jambe gauche sera la jambe équipée des dispositifs contraignants dans le cadre de la marche perturbée et assistée d'une canne. Pour ce dernier cas, la canne est placée du côté de la jambe valide, c'est-à-dire du côté de la jambe droite.

Question 1 A partir de l'étude des figures 3 et 5, comparer et commenter les évolutions des efforts normaux de chacune des jambes sur le sol et les durées de chacune des phases pour les différents cas : marche saine et marche perturbée.

Question 2 A partir de l'étude des figures 4 et 6, préciser le rôle de la canne lors d'une marche assistée.

Figure 3 – Efforts normaux générés par les jambes durant un cycle de marche normale à $V=0.45\,\mathrm{m/s}$

Figure 4 – Efforts normaux générés par les jambes durant un cycle de marche assistée à allure moyenne, $V=0,22\,\mathrm{m/s}$

Figure 5 – Efforts normaux générés par les jambes durant un cycle marche perturbée à allure moyenne, $V = 0.22 \,\text{m/s}$

Figure 6 – Efforts normaux générés par la canne durant un cycle de marche assistée à allure moyenne, $V=0,22\,\mathrm{m/s}$

III Modélisation de la chaîne d'énergie de l'axe linéaire

On considère que le moteur de l'axe linéraire (figure 1) adopte le même comportement que celui d'un moteur à courant continu. Les équations de comportement sont rappelées ci-après :

$$u_m(t) = e(t) + Ri_m(t) + L\frac{\mathrm{d}i_m(t)}{\mathrm{d}t}, \qquad e(t) = K_e \omega_m(t) \quad \text{et} \quad c_m(t) = K_c i_m(t).$$

On notera $U_m(p)$ respectivement $I_m(p)$, $C_m(p)$ et E(p) les transformées de Laplace des variables $u_m(t)$, la tension moteur, respectivement $i_m(t)$, le courant moteur, $c_m(t)$, le couple moteur et e(t), la force contre-électromotrice.

Une étude énergétique a permis d'obtenir l'équation du mouvement

$$J_{eq} \frac{\mathrm{d}\omega_m(t)}{\mathrm{d}t} + f \,\omega_m(t) = c_m(t) - \frac{pas}{2\pi} F_p(t)$$

où $F_p(t)$ correspond à l'action mécanique (force) de la main de la personne sur la canne et où R, L, K_e , K_c , J_{eq} et f sont des constantes du moteur et pas correspond au pas du système vis/écrou (pièces

3 et 4 sur la figure 1).

Question 3 En supposant les conditions initiales nulles, déterminer, dans le domaine de Laplace, l'équation du mouvement précédente et compléter le schéma-blocs.

Soient $H_1(p)$ et $H_2(p)$ les fonctions de transfert telles que : $\Omega_m(p) = H_1(p) \cdot U_m(p) + H_2(p) \cdot F_p(p)$.

Question 4 Déterminer les expressions littérales des formes canoniques des fonctions de transfert $H_1(p)$ et $H_2(p)$ en fonction des constantes du problème.

Le dispositif vis/écrou (figure 1), permettant la transformation de l'angle de rotation de la vis sans fin 4 (de $pas=3\,\mathrm{mm}$) en déplacement de l'écrou 3, est modélisé par un gain pur $K_{ve}=\frac{pas}{2\pi}=0.477\,\mathrm{mm\,rad^{-1}}$.

Le comportement du codeur incrémental est modélisé par un gain pur $K_{codeur} = 79,6$ inc rad⁻¹. La sortie de ce bloc est de type numérique (en incréments) et son entrée est une position angulaire (en radians).

Afin d'asservir en déplacement le mouvement de la canne, un adaptateur de gain pur K_{adapt} est placé en amont du comparateur de manière à convertir la consigne $X_c(p)$ en une grandeur en incréments directement comparable à la sortie $\theta_{mes}(p)$ du capteur. La valeur du gain pur K_{adapt} est prise de manière à ce que l'écart $\varepsilon(p)$ soit nul lorsque $X_c(p) = X(p)$.

- **Question 5** Donner l'expression, puis la valeur numérique et l'unité du gain pur K_{adapt} permettant de satisfaire cette condition.
- **Question 6** Compléter alors le schéma-bloc à retour unitaire du document réponse en fonction de $K_{codeur}, K_{ve}, C(p), H_1(p)$ et $H_2(p)$. En déduire la fonction de transfert en boucle ouverte du système sans perturbation $H_{BO1}(p)$.

IV Modèle comportemental

Afin de proposer une modélisation simplifiée de la chaîne d'énergie de l'axe linéaire, une simulation du modèle précédent en boucle ouverte non perturbé notée $H_{BO1}(p)$ a été réalisée. On considère que $H_{BO1}(p)$ est de la forme $H_{BO1}(p) = \frac{K_{BO}}{p(1+T_1p)(1+T_2p)}$ avec $T_1 < T_2$. Le document réponse présente la réponse fréquentielle du système en boucle ouverte à l'aide du diagramme de Bode (courbe de gain $G_{BO}(\omega)$ et courbe de phase $\varphi_{BO}(\omega)$).

Question 7 Représenter le tracé asymptotique de $H_{BO1}(p)$ sur le diagramme de Bode et en déduire les valeurs de T_1 , T_2 et K_{BO} . On rappelle que $10^{3/2} = \sqrt{1000} \approx 32$.

On considère que la fréquence maximale de déplacement de l'axe linéaire de la canne (liée au mouvement de la marche) est fixée à $F_{max}=4\,\mathrm{Hz}$. Une première approximation du comportement du système en boucle ouverte est proposée par une fonction de transfert $H_{BO}(p)$ de la forme $H_{BO}(p)=\frac{K_{BO}}{m}$ avec $K_{BO}=1/30$ pour des fréquences inférieures à F_{max} .

Question 8 Justifier la validité de cette modélisation approchée à l'aide de la réponse fréquentielle du système en boucle ouverte (voir DR Q7).

V Correction proportionnelle

Pour la suite, on modélise le comportement du système en boucle ouverte par $H_{BO}(p)=\frac{K_{BO}}{p}$ avec $K_{BO}=1/30$. On considère un correcteur à action proportionnelle tel que $C(p)=K_{corr}$. Le schéma-bloc du système non perturbé correspond alors à celui de la figure 7.

Figure 7 – Schéma-bloc simplifié du système non perturbé avec $C(p) = K_{corr}$

- Question 9 Déterminer l'expression littérale de la forme canonique de $H_{BF}(p) = \frac{X(p)}{Xc(p)}$, fonction de transfert en boucle fermée de la modélisation de la figure 7.
- **Question 10** Déterminer les paramètres caractéristiques de $H_{BF}(p)$ et en déduire les performances de cette modélisation pour $C(p) = K_{corr} = 1$. Conclure vis-à vis des exigences d'asservissement de l'axe linéaire.

On se propose de modifier la valeur de K_{corr} de manière à vérifier l'exigence de rapidité de l'asservissement.

- **Question 11** Quelle est l'influence de la modification du gain K_{corr} sur les diagrammes de Bode de la fonction de transfert en boucle ouverte.
- **Question 12** Déterminer la valeur numérique à donner à K_{corr} pour assurer le temps de réponse à 5% lié à l'exigence de rapidité de de l'asservissement de l'axe linéaire.

La figure 8 donne l'évolution de la réponse temporelle x(t) du système réel non perturbé à un échelon en déplacement de valeur finale $x_0=10\,\mathrm{mm}$, pour une correction proportionnelle $K_{corr}=1500$.

Figure 8 – Évolution de la réponse temporelle x(t) du système réel non perturbé à un échelon de valeur $x_0=10\,\mathrm{mm}$, pour $K_{corr}=1500\,\mathrm{mm}$

Question 13 L'évolution de la réponse du système est-elle cohérente avec le comportement du modèle retenu? Justifier. Quelle modification faudrait-il apporter au modèle approché pour retrouver cette forme de réponse temporelle?

Pour la suite, on modélise la fonction de transfert en boucle ouverte du système par

$$H_{BO}(p) = \frac{1}{p} \cdot \frac{K_{BO}}{1 + \tau_{BO}p}$$
 avec $K_{BO} = \frac{1}{30} \text{s}^{-1}$ et $\tau_{BO} = 9 \text{ ms.}$

- Question 14 Donner la forme canonique de la nouvelle fonction de transfert $H_{BF}(p) = \frac{X(p)}{Xc(p)}$ toujours pour une correction proportionnelle de gain K_{corr} et identifier ses paramètres caractéristiques.
- **Question 15** Quelle valeur maximale de K_{corr} , notée K_{corr}^{MAX} , permet de vérifier les critères de précision et de dépassement de l'asservissement de l'axe linéaire?
- **Question 16** Déterminer la valeur du temps de réponse à 5 % de ce modèle pour $K_{corr} = K_{corr}^{MAX}$ à partir de l'abaque du temps de réponse réduit (figure 9).

Figure 9 – Abaque des temps de réponse réduit

La figure 10 donne les évolutions des réponses temporelles x(t) du système réel avec prise en compte de la perturbation (F_p constante et égale à 175 N) à un échelon en déplacement de valeur finale $x_0=10\,\mathrm{mm}$, pour une correction proportionnelle $K_{corr}=1500\,\mathrm{et}$ pour $K_{corr}=K_{corr}^{MAX}$.

Figure 10 – Réponses indicielles x(t) du système perturbé ($x_c=10\,\mathrm{mm}$), pour différents gains de correction proportionnelle K_{corr}

Question 17 Conclure sur les capacités de la correction à action proportionnelle pure vis-à-vis des performances à atteindre.

VI Correction avec action proportionnelle et intégrale généralisée

Le correcteur finalement retenu est un correcteur avec action proportionnelle et intégrale généralisée. La fonction de transfert C(p) prend alors la forme suivante :

$$C(p) = K_{corr} \cdot \frac{1 + T_d p}{p}$$
 avec $K_{corr} \gg 1$ et $T_d < 1$ s.

Question 18 Montrer que
$$FTBO(p) = \frac{K_{BO} \cdot K_{corr} \cdot (1 + T_d p)}{p^2 \cdot (1 + \tau_{BO} \cdot p)}$$

Question 19 Montrer qu'il existe un ω_1 et un ω_2 , tel que :

— si $\omega < \omega_1$, alors $(1 + T_d j\omega) \approx 1$ et $(1 + \tau_{BO} j\omega) \approx 1$,

— si $\omega_1 < \omega < \omega_2$, alors $(1 + T_d j\omega) \approx T_d j\omega$ et $(1 + \tau_{BO} j.\omega) \approx 1$

— si $\omega_2 < \omega$, alors $(1 + T_d j\omega) \approx T_d j\omega$ et $(1 + \tau_{BO} j\omega) \approx \tau_{BO} j.\omega$,

Déterminer ω_1 et un ω_2 .

Question 20 En utilisant les approximations précédentes, déterminer l'expression simplifiée de FTBO(p) dans les 3 cas précédents et compléter le tableau du document réponse.

La figure 11 représente les diagrammes de Bode du système en boucle ouverte avec correcteur PI Généralisé pour $K_{corr}=1000$ et $T_d=0.2$ s.

Figure 11 – Diagrammes de Bode du système en boucle ouverte avec correcteur PI Généralisé avec $K_{corr} = 1000$ et $T_d = 0.2$ s

Question 21 Justifier le comportement asymptotique des diagrammes de Bode à partir des résultats précédents.

Avec cette correction, le système est précis mais les valeurs de marge de gain 1 et marge de phase 2 sont telles que le système n'est pas assez rapide. La valeur du gain K_{corr} a donc été ajustée pour se rapprocher des valeurs limites de marges de gain et de phase autorisées.

^{1.} Marge de gain M_G : différence entre le gain réel pour la pulsation particulière ω telle que pour cette pulsation la phase soit égale à -180° et le gain nul.

^{2.} Marge de phase M_{φ} : différence entre $-180\,^{\circ}$ et la phase réelle pour la pulsation ω_1 telle que pour cette pulsation le gain en décibel soit égal à $0\,\mathrm{dB}$.

Les figures 12a et 12b, donnent les évolutions temporelles de la position x(t) du système simulé, perturbé et corrigé du déplacement x(t) (en mm) et de l'intensité simulée (en Ampères) circulant au sein du moteur pour une consigne de déplacement $x_c(t) = x_0 u(t)$ d'amplitude $x_0 = 10$ mm.

- (a) Déplacement (mm) en fonction du temps (s)
- **(b)** Intensité simulée (A) en fonction du temps (s)

Figure 12 – Évolutions temporelles du déplacement x(t) et de l'inténsité i(t) du système simulé, perturbé et corrigé, soumis à un échelon d'amplitude $x_0 = 10$ mm

Le variateur du moteur permet de protéger les éléments électroniques des surintensités qui pourraient apparaître lors de la commande. Afin de prendre en compte cette protection, on décide d'ajouter un bloc saturation de valeur $\pm 20 \,\mathrm{A}$ dans le modèle causal (voir question 3).

Question 22 Préciser, juste avant ou juste après quel bloc du schéma-blocs de la question 3, il faudra placer ce bloc saturation.

Les figures 14a et 14b donnent respectivement la réponse temporelle du déplacement (en mm) à un échelon de consigne $x_0=10$ mm et l'évolution de l'intensité simulée (en Ampère) circulant au sein du moteur pour le système corrigé avec perturbation et ajout du bloc saturation ± 20 Å.

- (a) Déplacement (mm) en fonction du temps (s)
- **(b)** Intensité simulée (A) en fonction du temps (s)

Figure 13 – Évolutions temporelles du déplacement x(t) et de l'intensité i(t) du système simulé, perturbé et corrigé, soumis à un échelon d'amplitude $x_0 = 10$ mm avec bloc de saturation ± 20 A

Question 23 Quel est l'effet de l'ajout du bloc saturation en intensité sur les performances du système ? Conclure vis-à-vis des exigences du cahier des charges.

VII Étude de l'exigence 3.1.6 « Commande des axes asservis »

Cette partie a pour objectif d'analyser le mode de distinction des différentes phases de fonctionnement de la canne robotisée.

Lors de la marche avec une canne conventionnelle, il est possible de constater une synchronisation du mouvement de la canne conventionnelle avec celui de la jambe qu'elle assiste. Ainsi, une forte corrélation est observée entre l'angle de la canne et celui de la hanche de la jambe invalide.

Figure 14 – Synchronisation souhaitée du prototype de canne robotisée avec la marche

Selon la figure 14, le mode de commande suivant a été retenu pour contrôler le mouvement du proto-type de canne robotisée.

- Lors de la phase de balancement de la jambe invalide, l'angle de la canne active par rapport à la verticale est asservi sur l'angle de la hanche de la jambe invalide. Cette tâche est accomplie en gardant la hauteur de la poignée h 0 constante afin de ne pas perturber la position de la main de l'utilisateur,
- Lors de la phase d'appui de la jambe invalide, la roue est asservie à une vitesse nulle afin d'offrir un point d'appui immobile pour le patient. La longueur de l'axe télescopique est asservie pour garder la hauteur de la poignée h 0 constante de la canne.

Il est donc nécessaire de maintenir la hauteur de poignée h 0 constante pour les deux phases. Ceci impose une relation entre l'inclinaison de la canne et sa longueur.

Figure 15 – Modélisation cinématique et paramétrage du prototype de canne robotisée

La figure 15 présente le modèle cinématique et les notations retenues pour le paramétrage du prototype de canne. Sur cette figure, l(t) représente la longueur AH, $\theta(t)$ correspond à l'angle d'inclinaison

de la canne avec la verticale et R est le rayon de la roue. On note de plus h la hauteur de poignée de la canne par rapport au sol.

Question 24 Établir la relation entre l(t), $\theta(t)$ et R pour assurer une hauteur constante $h = h_0$.

Figure 16 – Modélisation et paramétrage du prototype de canne robotisée

Dans la suite, on se propose de déterminer par une étude géométrique la relation entre $\beta(t)$, les données dimensionnelles R et h et l'angle $\theta(t)$. Pour cela, on introduit la base $(\vec{u}, \vec{v}, \vec{k_0})$ et on note $\lambda(t)$ la distance IH, telle que $\overrightarrow{IH} = \lambda(t).\vec{v}$.

Question 25 En développant une fermeture vectorielle en projection dans la base B_0 , donner deux équations algébriques. En déduire la relation entre $\beta(t)$, $\theta(t)$, l(t) et R.

Question 26 Montrer à partir de ce résultat et de celui de la question que :

$$tan(\beta(t)) = \frac{h-R}{h}.tan(\theta(t))$$

VIII Dessin

Question 27 Compléter les vues manquantes sur le document réponse. Suivre l'exemple du premier dessin complété.

- FIN -

IX Document réponse

Question 1:

Efforts normaux et durées des phases de marche pour des marches saine et perturbée.

Question 2:

Rôle de la canne lors d'une marche assistée.

Question 3:

Transformée de Laplace de l'équation du mouvement et schéma-blocs à compléter.

Question 4:

Expressions littérales sous forme canonique de $H_1(p)$ et $H_2(p)$.

Question 5:

Expression de K_{adapt} et application numérique.

Question 6:

Schéma-bloc en fonction de $K_{codeur}, K_{ve}, C(p), H_1(p)$ et $H_2(p)$. En déduire $H_{BO1}(p)$.

Question 7:

Tracés asymptotiques de $H_{BO1}(p)$. Valeurs de T_1 , T_2 et K_{BO} .

Figure 17 – Diagrammes de Bode de H_{BO}

Question 8:

Justification de la modélisation approchée.

Paramètres de $H_{BF}(p)$ et performances pour $K_{corr}=1$. Conclusions vis-à-vis des exigences.

Question 11:

Influence du gain K_{corr} sur les diagrammes de Bode.

Question 12:

Valeur de K_{corr} pour assurer l'exigence de rapidité.

Question 13:

Le modèle est-il cohérent ? Justifier. Quel(s) changement(s) faudrait-il faire ?

Donner la nouvelle $H_{\mathit{BF}}(p)$ et identifier ses paramètres caractéristiques.

Question 15:

Valeur de K_{corr} qui permet de vérifier les critères de précision et de dépassement.

Question 16:

Valeur de $tr_{5\%}$ de ce modèle pour $K_{corr} = K_{corr}^{MAX}$

Question 17:

Conclusion sur le correcteur proportionnel vis-à-vis des exigences.

Question 18:

Nouvelle expression de FTBO(p).

Question 19:

Justification et détermination de ω_1 et ω_2 .

Question 20:

ω	$-\infty \omega_1$	$\omega_1 \omega_2$	$\omega_2 + \infty$
	1	12	
Phase			
Pente			

Question 21:

Justifier le comportement asymptotique.

uestion 22:																
luestion 22: lise en place du sa	aturateur s	ur le sch	éma	-bloc) <u>.</u>											
,																
uestion 23:																
nfluence de la prés	sence du s	aturateu	r. Co	nclus	sions	sur	es e	exig	enc	es dı	ı cal	nier c	les	char	ges.	
)																
Question <mark>24:</mark> Première fermeture	aéométric	niie														
Termere lermetare	geometric	ηue.														
Question 25:																
Deuxième fermetur	e géométr	ique.														
Question 26:																
Équation reliant eta ϵ	et θ .															
																7
															4	

Question 27:

Compléter les vues manquantes.

