Examen de Computabilidad y Complejidad

(CMC)

14 de junio de 1996

- (I) Cuestiones (justifique formalmente las respuestas)
- 1. Sean M_1 y M_2 dos máquinas de Turing que generan los lenguajes $G(M_1)$ y $G(M_2)$. Se definen las funciones $g_1, g_2 : \mathbb{N} \longrightarrow \mathbb{N}$ que enumeran los lenguajes $G(M_1)$ y $G(M_2)$. Pronúnciese acerca de la veracidad o falsedad del siguiente enunciado " $G(M_1) \subseteq G(M_2) \Leftrightarrow \exists r : \mathbb{N} \longrightarrow \mathbb{N}$ (función recursiva total) tal que para todo valor $n g_1(n) = g_2(r(n))$ " (1 pto)
- 2. Sean M_1 y M_2 dos máquinas de Turing de forma que para toda cadena de entrada w, M_1 para al computar w si y sólo si M_2 no para al computar w.
 - (a) $L(M_1) = \overline{L(M_2)}$?
 - (b) \downarrow Es $L(M_1)$ recursivo? (1 pto)
- 3. Demostrar que si $a^*(bb)^*c^* \cup \{a^nb^{2m+1}c^k \mid (m \ge 0) \text{ y } (\exists i \ge 0 : k+n=i^2\} \text{ es incontextual entonces } \{0^{j^2} \mid (j > 0)\} \text{ también lo sería.}$ (1 pto)
- 4. Se define la función $sig: \Sigma^* \longrightarrow \Sigma^*$ que para una cadena nos devuelve la siguiente cadena de Σ^* en orden lexicográfico. Sea L un lenguaje y se define $F(L) = \{x \in L : sig(x) \in L\}$. Pronúnciese acerca de la veracidad o falsedad del siguiente enunciado: "Si L es recursivo entonces F(L) también lo es." (1.5 ptos)
- 5. Sea G una gramática incontextual y se define $L_n(G)$ como aquellas cadenas derivadas en G aplicando menos de n reglas de producción. L Es $L_n(G)$ incontextual?

(1.5 ptos)

(II) PROBLEMAS:

- 6. Sea la gramática G definida por las reglas $S \to SSabS \mid ba$. Sea la sustitución σ definida como $\sigma(a) = \{\lambda\}$ y $\sigma(b) = L(G')$ donde G' se define a partir de las reglas $S \to aSb \mid \lambda$. Se pide obtener una gramática incontextual para el lenguaje $\sigma(L(G)^rL(G)) \cup \sigma(L(G))^r$ (2 ptos)
- 7. Dada la gramática G, se pide obtener una gramática incontextual en Forma Normal de Greibach que genere $(L(G) \{\lambda\})$.