LA DÉRIVATION E02C

EXERCICE N°4 Déterminer la fonction dérivée d'une fonction

Pour chaque fonction, préciser le domaine de définition, le domaine de dérivabilité et déterminer sa fonction dérivée.

1)
$$f_1: x \mapsto 5$$
 ; $f_2: x \mapsto \frac{15}{7}$; $f_3: x \mapsto \sqrt{3}$; $f_4: x \mapsto 2\pi$; $f_5: x \mapsto -3\pi + 5\sqrt{3}$

Ces cinq fonctions sont constantes, elles sont donc définies et dérivables sur \mathbb{R} et leur fonction dérivée est la fonction nulle .

Pour tout
$$x \in \mathbb{R}$$
,

$$f_1'(x) = 0$$
, $f_2'(x) = 0$, $f_3'(x) = 0$, $f_4'(x) = 0$, $f_5'(x) = 0$.

2)
$$g_1: x \mapsto x+2$$
 ; $g_2: x \mapsto x+3\pi\sqrt{7}$

Ces deux fonctions sont la somme de la fonction identité et d'une fonction constante, elles sont donc définies et dérivables sur \mathbb{R} et leur fonction dérivée est la fonction constante égale à 1.

Pour tout
$$x \in \mathbb{R}$$
, $g_1'(x) = 1$, $g_2'(x) = 1$.

3)
$$g_3: x \mapsto 4x + 5$$
; $g_4: x \mapsto \sqrt{7}x + 8.5$;

Ces deux fonctions sont la somme du produit de la fonction identité par une constante k (k=4 pour g_3 et $k=\sqrt{7}$ pour g_4) et d'une fonction constante, elles sont donc définies et dérivables sur $\mathbb R$ et leur fonction dérivée est la fonction constante égale à k.

Ainsi:
$$g_3': x \mapsto 4$$
 et $g_4': x \mapsto \sqrt{7}$

4)
$$h_1: x \mapsto 3x^2 - 4$$
 ; $h_2: x \mapsto 4x^2 + 5x - 1$; $h_3: x \mapsto -2.5x^2 + 6x + \sqrt{3}$

```
• Pour h_1:
```

```
h_1 est la forme 3 \times u + v
```

où
$$u: x \mapsto x^2$$
 et $v: x \mapsto -4$

Or:

$$u$$
 est définie et dérivable sur \mathbb{R} et $\forall x \in \mathbb{R}$, $u'(x) = 2x$

$$v$$
 est définie et dérivable sur \mathbb{R} et $\forall x \in \mathbb{R}$, $v'(x) = 0$

Done

 h_1 est définie et dérivable sur \mathbb{R} et $\forall x \in \mathbb{R}$,

$$h_1'(x) = 3u'(x)+v'(x)$$

= 3×2x+0

$$h_1'(x) = 6x$$

• Pour
$$h_2$$
:

$$h_2$$
 est la forme $4 \times u + 5 \times v + w$

où
$$u: x \mapsto x^2$$
, $v: x \mapsto x$ et $w: x \mapsto -1$

Or:

u est définie et dérivable sur
$$\mathbb{R}$$
 et $\forall x \in \mathbb{R}$, $u'(x) = 2x$

$$v$$
 est définie et dérivable sur \mathbb{R} et $\forall x \in \mathbb{R}, v'(x) = 1$

w est définie et dérivable sur
$$\mathbb{R}$$
 et $\forall x \in \mathbb{R}$, $w'(x) = 0$

Donc

$$h_2$$
 est définie et dérivable sur \mathbb{R} et $\forall x \in \mathbb{R}$,

$$h_2'(x) = 4u'(x) + 5 \times v'(x) + w'(x)$$

$$= 4 \times 2x + 5 \times 1 + 0$$

$$h_2'(x) = 8x + 5$$

```
Pour h_3:

h_3 est la forme -2.5 \times u + 6 \times v + w

où u: x \mapsto x^2, v: x \mapsto x et w: x \mapsto -1

Or:

u est définie et dérivable sur \mathbb{R} et \forall x \in \mathbb{R}, u'(x) = 2x

v est définie et dérivable sur \mathbb{R} et \forall x \in \mathbb{R}, v'(x) = 1

w est définie et dérivable sur \mathbb{R} et \forall x \in \mathbb{R}, w'(x) = 0

Donc

h_3 est définie et dérivable sur \mathbb{R} et \forall x \in \mathbb{R}, w'(x) = 0

h_3'(x) = -2.5u'(x) + 6 \times v'(x) + w'(x)

= -2.5 \times 2x + 6 \times 1 + 0

h_3'(x) = -5x + 6
```

5)
$$h_4: x \mapsto \frac{5}{2}x^3 - 4x^2 + 3x - 7\sqrt{11}$$
 ; $h_5: x \mapsto -\pi x^3 + \sqrt{5}x^2 - \frac{14}{3}x + 33$

• Pour h_4 :

$$h_4$$
 est la forme $\frac{5}{2} \times u - 4 \times v + 3 \times w - t$

où
$$u: x \mapsto x^3$$
, $v: x \mapsto x^2$, $w: x \mapsto x$ et $t: x \mapsto -7\sqrt{11}$

Or :

$$u, v, w$$
 et t sont définies et dérivables sur \mathbb{R} et $\forall x \in \mathbb{R}$, $u'(x) = 3x^2$, $v'(x) = 2x$, $w'(x) = 1$ et $t'(x) = 0$

Donc

 h_4 est définie et dérivable sur \mathbb{R} et $\forall x \in \mathbb{R}$,

$$h_{4}'(x) = \frac{5}{2} \times u'(x) - 4 \times v'(x) + 3 \times w'(x) - t'(x)$$
$$= \frac{5}{2} \times 3x^{2} - 4 \times 2x + 3 \times 1 - 0$$

$$h_4'(x) = \frac{15}{2}x^2 - 8x + 3$$

On a bien compris comment ça marche mais franchement c'est long comme rédaction! On pourrait pas aller un peu plus vite?

• Pour h_5 :

 h_5 est une somme de fonctions de référence définie et dérivables sur $\mathbb R$, donc h_5 est définie et dérivable sur $\mathbb R$ et :

 $\forall x \in \mathbb{R}$,

$$h_5'(x) = \pi \times 3x^2 + \sqrt{5} \times 2x - \frac{14}{3} \times 1 + 0$$
On fait bien attention à arrêter le radical avant le x

6)
$$h_6: x \mapsto 3 x^n + 2 x^2 + \frac{3}{x}$$
; $h_7: x \mapsto 5 \sqrt{x} + 8 x^{15} - \frac{4}{x}$; $h_8: x \mapsto 5 \sqrt{x} + 7 |x| - \frac{7}{x}$

• Pour h_6 :

 h_6 est une somme de fonctions de référence définies et dérivables sur $]-\infty$; $0[\cup]0$; $+\infty[$ donc h_6 est définie et dérivable sur $]-\infty$; $0[\cup]0$; $+\infty[$ et :

« Qui peut le plus, peut le moins » :

 $x:\mapsto x^n$ et $x:\mapsto x^2$ sont définies et dérivables sur \mathbb{R} qui contient $]-\infty$; $0[\cup]0$; $+\infty[$ et $x:\mapsto \frac{1}{x}$ n'est définie et dérivable que sur $]-\infty$; $0[\cup]0$; $+\infty[$.

On ne garde que la partie commune pour tout le monde :

$$]-\infty$$
; $0[\cup]0$; $+\infty[\cap\mathbb{R} =]-\infty$; $0[\cup]0$; $+\infty[$

 $\forall x \in]-\infty ; 0[\cup]0 ; +\infty[,$

$$h_6'(x) = 3 \times nx^{n-1} + 2 \times 2x + 3 \times \left(-\frac{1}{x^2}\right)$$

$$h_6'(x) = 3 nx^{n-1} + 4x - \frac{3}{x^2}$$

• Pour h_7 :

 h_7 est une somme de fonctions de référence définies et dérivables sur]0; $+\infty[$, donc h_7 est définie et dérivable sur]0; $+\infty[$ et :

$$\forall x \in]0 ; +\infty[,$$

$$h_7'(x) = 5 \times \frac{1}{2\sqrt{x}} + 8 \times 15 x^{14} - 4 \times \left(-\frac{1}{x^2}\right)$$

$$h_{7}'(x) = \frac{5}{2\sqrt{x}} + 120x^{14} + \frac{4}{x^2}$$

• Pour h_8 :

 h_8 est une somme de fonctions de référence définies et dérivables sur]0; $+\infty[$, donc h_8 est définie et dérivable sur]0; $+\infty[$ et :

$$\forall x \in]0 ; +\infty[,$$

$$h_8'(x) = 5 \times \frac{1}{2\sqrt{x}} + 7 \times 1 - 7 \times \left(-\frac{1}{x^2}\right)$$

$$h_8'(x) = \frac{5}{2\sqrt{x}} + \frac{7}{x^2} + 7$$

On a « mis la constante à la fin »

7)
$$h_9: x \mapsto (3x+4)(2x-7)$$
 ; $h_{10}: x \mapsto (7-2x)^2$

À ce stade du cours, nous savons pas comment dériver des fonctions écrites sous cette forme. Comme d'habitude, on se ramène à quelque chose que l'on connaît...

• Pour h_9 :

$$\forall x \in \mathbb{R}$$
.

$$h_9(x) = (3x+4)(2x-7)$$

= $6x^2-21x+8x-28$

$$= 6x^2 - 13x - 28$$

Ainsi, h_9 est une somme de fonctions de référence définies et dérivables sur \mathbb{R} , donc h_9 est définie et dérivable sur \mathbb{R} et :

$$h_9'(x) = 6 \times 2x - 13 \times 1 - 0$$

$$h_9'(x) = 12x - 13$$

• Pour h_{10} :

$$\forall x \in \mathbb{R}$$
,

$$h_{10}(x) = (7-2x)^2$$
$$= 4x^2 - 28x + 49$$

Ainsi, h_9 est une somme de fonctions de référence définies et dérivables sur \mathbb{R} , donc h_9 est définie et dérivable sur \mathbb{R} et :

$$h_{10}'(x) = 4 \times 2x - 28 \times 1 - 0$$

$$h_{10}'(x) = 4x - 28$$