Viện Điện	Đề thi cuối kỳ	Người ra đề	Cán bộ phụ trách
Bộ môn:	Môn: Lý thuyết điều khiển tuyến tính		
Điều khiển tự động	Ngày thi: 15/7/2020		
	Thời gian: 90 phút Đề số: 01	Nguyễn Hoài Nam	

Câu 1: (4 điểm) Cho đối tượng có hàm truyền $G(s) = \frac{2}{(s+2)(10s+1)}$

- a) Thiết kế bộ điều khiển sử dụng phương pháp tối ưu độ lớn.
- b) Đánh giá độ dự trữ ổn định pha của hệ thống khi sử dụng bộ điều khiển thiết kế ở trên.
- c) Tính độ quá điều chỉnh và thời gian xác lập $T_{2\%}$ của hệ kín.

Câu 2: (4 điểm) Cho đối tượng có mô hình như sau: $\underline{\dot{x}} = A\underline{x} + Bu$, $y = C\underline{x}$ với $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -2 & -3 & -4 \end{bmatrix}$, $B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ và

 $C = [1 \ 0 \ 0].$

- a) Kiểm tra tính ổn định và tính điều khiển được của đối tượng.
- b) Thiết kế bộ điều khiển phản hồi trạng thái sao cho hệ kín có các điểm cực là: $s_1 = s_2 = s_3 = -4$.
- c) Tìm đầu ra y của đối tượng khi dùng bộ điều khiển đã được thiết kế ở trên, biết $y = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \underline{x}$ và các điều kiện đầu đều bằng không.
- d) Kiểm tra tính quan sát được. Thiết kế bộ quan sát trạng thái với các điểm cực là: $p_1 = p_2 = p_3 = -5$.

Câu 3: (2 điểm) Cho động cơ một chiều được mô tả bởi hệ các phương trình vi phân như sau: $u = Ri + L\frac{di}{dt} + e$, $e = d\frac{d\theta}{dt}$, $a\frac{d^2\theta}{dt^2} + b\frac{d\theta}{dt} = ci$ với a, b, c, d, R và L là các hằng số đã biết, u là điện áp đặt lên động cơ, i là dòng điện, θ là vị trí góc quay của trục động cơ.

- a) Tìm hàm truyền đạt cho hệ thống $G(s) = \frac{I(s)}{U(s)}$.
- b) Kiểm tra tính ổn định của hệ thống.

------ Hết -----

Chú ý: Sinh viên được sử dụng 2 tờ A4.

Viện Điện	Đề thi cuối kỳ	Người ra đề	Cán bộ phụ trách
Bộ môn:	Môn: Lý thuyết điều khiển tuyến tính		
Điều khiển tự động	Ngày thi: 15/7/2020		
	Thời gian: 90 phút Đề số: 01	Nguyễn Hoài Nam	

Câu 1: (4 điểm) Cho đối tượng có hàm truyền $G(s) = \frac{3}{(s+3)(10s+1)}$

- a) Thiết kế bộ điều khiển sử dụng phương pháp tối ưu độ lớn.
- Đánh giá độ dự trữ ổn định pha của hệ thống khi sử dụng bộ điều khiển thiết kế ở trên.
- c) Tính độ quá điều chỉnh và thời gian xác lập $T_{2\%}$ của hệ kín.

Câu 2: (4 điểm) Cho đối tượng có mô hình như sau: $\underline{\dot{x}} = A\underline{x} + Bu$, $y = C\underline{x}$ với $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -3 & -2 & -4 \end{bmatrix}$, $B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ và

 $C = [1 \ 0 \ 0].$

- a) Kiểm tra tính ổn định và tính điều khiển được của đối tượng.
- b) Thiết kế bộ điều khiển phản hồi trạng thái sao cho hệ kín có các điểm cực là: $s_1 = s_2 = s_3 = -4$.
- c) Tìm đầu ra y của đối tượng khi dùng bộ điều khiển đã được thiết kế ở trên, biết $y = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \underline{x}$ và các điều kiện đầu đều bằng không.
- d) Kiểm tra tính quan sát được. Thiết kế bộ quan sát trạng thái với các điểm cực là: $p_1 = p_2 = p_3 = -5$.

Câu 3: (2 điểm) Cho động cơ một chiều được mô tả bởi hệ các phương trình vi phân như sau: $u = Ri + L\frac{di}{dt} + e$, $e = d\frac{d\theta}{dt}$, $a\frac{d^2\theta}{dt^2} + b\frac{d\theta}{dt} = ci$ với a, b, c, d, R và L là các hằng số đã biết, u là điện áp đặt lên động cơ, i là dòng điện, θ là vị trí góc quay của trục động cơ.

- a) Tìm hàm truyền đạt cho hệ thống $G(s) = \frac{I(s)}{U(s)}$.
- b) Kiểm tra tính ổn định của hệ thống.

------ Hết -----