MA557 Problem Set 3

Carlos Salinas

October 4, 2015

Problem 3.1

Find an example of a finitely generated ring extension $R \subset S$ where S is a Noetherian ring, but R is not.

Proof.

Problem 3.2

Consider the homomorphism of rings

$$R \xrightarrow{\varphi} T.$$

The fiber product of R and S over T is the subring $R \times_T S = \{(r,s) \mid \varphi(t) = \psi(s)\}$ of $R \times S$. Assume φ and ψ are surjective. Show that if R and S are Noetherian rings then so is $R \times_T S$.

Proof. Suppose that R and S are Noetherian rings with surjective ring maps $\varphi\colon R\to T$ and $\psi\colon S\to T$. Then, by (3.5), the product $R\times S$ is Noetherian. Define the ring map $\Phi\colon R\times S\to T\times T$ by $\Phi=(\varphi,\psi)$. Then the diagonal, $\Delta_T=\{\,(t,t)\mid t\in T\,\}$, of $T\times T$ is exactly the image of the fiber product of R and S under the ring map Φ . And this is not terribly difficult to see: It is clear, by the definition of the fiber product, that $\Phi(R\times_TS)\subset \Delta_T$. To show the reverse containment, take an element $(t,t)\in \Delta_T$. Then, since φ and ψ are surjective, there are corresponding elements r and s of the rings R and S, respectively, such that $\varphi(r)=t$ and $\psi(s)=t$. Hence, (t,t) are in the image $R\times_TS$ under Φ .

Now, it is clear that $R \times S$ and $T \times T$ have an $R \times S$ -module structure $(R \times S)$ by the usual ring multiplication and $T \times T$ by $(r,s)(t,t') = (\varphi(r)t,\psi(s)t')$ so they have an $R \times_T S$ -module structure by restriction to the subring $R \times_T S$ of $R \times S$. Consider the quotient module $T \times T/\Delta_T$. $T \times T/\Delta_T$ also inherits an $R \times_T S$ -module structure from $T \times T$. Note that the map $\Phi \colon R \times S \to T \times T$ is an $R \times_T S$ -linear map: It is clear that Φ is linear with respect to "+", what is not so obvious is that multiplication by scalars is preserved so take $(r', s') \in R \times_T S$ and $(r, s) \in R \times S$, then

$$\begin{split} \Phi((r',s')(r,s) &= \Phi(r'r,s's) \\ &= (\varphi(r'r),\psi(s's')) \\ &= (\varphi(r')\varphi(r),\psi(s')\psi(s)) \\ &= (\varphi(r'),\psi(s'))(\varphi(r),\psi(s)) \\ &= \Phi(r',s')\Phi(s,r) \end{split}$$

as desired. Therefore, Φ induces an $R \times_T S$ -linear map $\Phi^* \colon R \times S \to T \times T/\Delta_T$ via composition with the quotient map, i.e., $\Phi^* = \pi \circ \Phi$ and we have the following exact sequence of $R \times_T S$ -modules

$$0 \longrightarrow R \times_T S \stackrel{\iota}{\longrightarrow} R \times S \stackrel{\Phi^*}{\longrightarrow} \frac{T \times T}{\Delta_T} \longrightarrow 0.$$

By (3.4), $R \times_T S$ are Noetherian.

Problem 3.3

Let M be an R-module. Show that M is a flat R-module if and only if $M_{\mathfrak{m}}$ is a flat $R_{\mathfrak{m}}$ -module for every maximal ideal \mathfrak{m} of R.

Proof. \implies : Suppose that M is a flat R-module. ⇐:

Problem 3.4

Let M be an R-module and $\mathfrak a$ an R-ideal.

(a) Show that if $M_{\mathfrak{m}}=0$ for every maximal ideal \mathfrak{m} containing \mathfrak{a} , then $M=\mathfrak{a}M$. (b) Show that the converse holds in case M is finite.

Proof. (a) Suppose that $M_{\mathfrak{m}}$ for every maximal ideal \mathfrak{m} containing $\mathfrak{a}.$

Problem 3.5

Prove that every power of a maximal ideal is primary.

Proof.

Problem 3.6

- (a) Show that the radical of a primary ideal is prime.
- (b) Find an example of a power of a prime ideal that is not primary.
 (c) Let p be a prime ideal of a ring R and n ∈ N. The R-ideal p⁽ⁿ⁾ = R ∩ pⁿR_p s called the nth symbolic power of \mathfrak{p} . Show that $\mathfrak{p}^{(n)}$ is primary.

Proof.