Lecture 11

Coordinates

(pages 218-221)

Once we have a basis $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ for a vector space \mathbb{V} , the Unique Representation Theorem tells us that for any given vector $\mathbf{x} \in \mathbb{V}$, there is a unique way to write \mathbf{x} as a linear combination of the vectors in \mathcal{B} . That is, there is a unique collection of scalars $x_1, \dots, x_n \in \mathbb{R}$ such that

$$\mathbf{x} = x_1 \mathbf{v}_1 + \dots + x_n \mathbf{v}_n$$

This leads to a situation similar to the one that lead to the creation of matrices. That is, if we take the basis \mathcal{B} as a given, do we really need to write the vectors $\mathbf{v}_1, \ldots, \mathbf{v}_n$ every time? The real information is contained in the list of scalars, so let's just write those. Since we are only looking at a single list of numbers, this is best represented as a vector from \mathbb{R}^n .

<u>Definition</u>: Suppose that $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is a basis for the vector space \mathbb{V} . If $\mathbf{x} \in \mathbb{V}$ with $\mathbf{x} = x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \dots + x_n\mathbf{v}_n$, then the **coordinate vector** of \mathbf{x} with respect to the basis \mathcal{B} is

$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

We also refer to $[\mathbf{x}]_{\mathcal{B}}$ as "the coordinates of \mathbf{x} with respect to \mathcal{B} ", or "the \mathcal{B} -coordinates of \mathbf{x} ."

The easiest examples of coordinates are those we get using the standard bases of our common vector spaces. Easiest of all is when we use the standard basis for \mathbb{R}^n to find the coordinates of a vector in \mathbb{R}^n , since they are the same.

Example: Let $\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$ be the standard basis for \mathbb{R}^3 . If

$$\mathbf{x} = \begin{bmatrix} 2 \\ -5 \\ 7 \end{bmatrix}$$
, then we have that

$$[\mathbf{x}]_{\mathcal{B}} = \left[\begin{array}{c} 2\\ -5\\ 7 \end{array} \right]$$

since
$$\begin{bmatrix} 2 \\ -5 \\ 7 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} - 5 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + 7 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
. In general, if $\mathbf{x} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$, then

$$[\mathbf{x}]_{\mathcal{B}} = \left[\begin{array}{c} a \\ b \\ c \end{array} \right]$$

since
$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = a \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + b \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + c \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$$

Things get at least a little more interesting when we look at matrix spaces or polynomial spaces.

Example: Let $\mathcal{B} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ be the standard basis for M(2,2). If $\mathbf{x} = \begin{bmatrix} 3 & -9 \\ -8 & 2 \end{bmatrix}$, then

$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 3\\ -9\\ -8\\ 2 \end{bmatrix}$$

since

$$\begin{bmatrix} 3 & -9 \\ -8 & 2 \end{bmatrix} = 3 \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} - 9 \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} - 8 \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + 2 \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

Example: Let $\mathcal{B} = \{1, x, x^2, x^3, x^4, x^5\}$ be the standard basis for P_5 . If $\mathbf{x} = 5 - 3x + 7x^2 + x^4 - 8x^5$, then

$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 5 \\ -3 \\ 7 \\ 0 \\ 1 \\ -8 \end{bmatrix}$$

since $5 - 3x + 7x^2 + x^4 - 8x^5 = 5(1) - 3(x) + 7(x^2) + 0(x^3) + 1(x^4) - 8(x^5)$.

Of course, things get really interesting when we use something that is not a standard basis.

Example: In Lecture 1h, we showed that

$$\mathcal{A} = \left\{ \begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ -1 & 2 \end{bmatrix}, \begin{bmatrix} 3 & 2 \\ 8 & -3 \end{bmatrix}, \begin{bmatrix} -1 & 4 \\ 1 & 7 \end{bmatrix} \right\}$$

is a basis for M(2,2). If we note that

$$2\begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix} + 5\begin{bmatrix} -1 & 0 \\ -1 & 2 \end{bmatrix} - 2\begin{bmatrix} 3 & 2 \\ 8 & -3 \end{bmatrix} + \begin{bmatrix} -1 & 4 \\ 1 & 7 \end{bmatrix} = \begin{bmatrix} -10 & 4 \\ -14 & 25 \end{bmatrix}$$

then we see that

$$\begin{bmatrix} -10 & 4 \\ -14 & 25 \end{bmatrix}_{\mathcal{A}} = \begin{bmatrix} 2 \\ 5 \\ -2 \\ 1 \end{bmatrix}$$

But usually we start with a vector, and want to find it's coordinates with respect to our basis. To that end, let's try to find the \mathcal{A} coordinates for $\begin{bmatrix} -7 & 18 \\ 2 & 38 \end{bmatrix}$. That is, we want to find scalars x_1 , x_2 , x_3 , and x_4 such that

$$x_1 \begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix} + x_2 \begin{bmatrix} -1 & 0 \\ -1 & 2 \end{bmatrix} + x_3 \begin{bmatrix} 3 & 2 \\ 8 & -3 \end{bmatrix} + x_4 \begin{bmatrix} -1 & 4 \\ 1 & 7 \end{bmatrix} = \begin{bmatrix} -7 & 18 \\ 2 & 38 \end{bmatrix}$$

Performing the calculation on the left, this becomes

$$\begin{bmatrix} x_1 - x_2 + 3x_3 - x_4 & 2x_1 + 2x_3 + 4x_4 \\ 3x_1 - x_2 + 8x_3 + x_4 & x_1 + 2x_2 - 3x_3 + 7x_4 \end{bmatrix} = \begin{bmatrix} -7 & 18 \\ 2 & 38 \end{bmatrix}$$

Setting the entries equal, we get the following system of linear equations:

$$\begin{array}{cccccc} x_1 & -x_2 & +3x_3 & -x_4 & = -7 \\ 2x_1 & & +2x_3 & +4x_4 & = 18 \\ 3x_1 & -x_2 & +8x_3 & +x_4 & = 2 \\ x_1 & +2x_2 & -3x_3 & +7x_4 & = 38 \end{array}$$

To solve this system, we will row reduce its augmented matrix as follows:

$$\begin{bmatrix} 1 & -1 & 3 & -1 & | & -7 \\ 2 & 0 & 2 & 4 & | & 18 \\ 3 & -1 & 8 & 1 & | & 2 \\ 1 & 2 & -3 & 7 & | & 38 \end{bmatrix} \xrightarrow{R_2 - 2R_1} \sim \begin{bmatrix} 1 & -1 & 3 & -1 & | & -7 \\ 0 & 2 & -4 & 6 & | & 32 \\ 0 & 2 & -1 & 4 & | & 23 \\ 0 & 3 & -6 & 8 & | & 45 \end{bmatrix} (1/2)R_2$$

$$\sim \begin{bmatrix} 1 & -1 & 3 & -1 & | & -7 \\ 0 & 1 & -2 & 3 & | & 16 \\ 0 & 2 & -1 & 4 & | & 23 \\ 0 & 3 & -6 & 8 & | & 45 \end{bmatrix} \xrightarrow{R_3 - 2R_2} \times \begin{bmatrix} 1 & -1 & 3 & -1 & | & -7 \\ 0 & 1 & -2 & 3 & | & 16 \\ 0 & 0 & 3 & -6 & 8 & | & 45 \end{bmatrix} \times \begin{bmatrix} 1 & -1 & 3 & -1 & | & -7 \\ 0 & 1 & -2 & 3 & | & 16 \\ 0 & 0 & 3 & -2 & | & -9 \\ 0 & 0 & 0 & -1 & | & -3 \end{bmatrix} \times \begin{bmatrix} 1 & -1 & 3 & -1 & | & -7 \\ 0 & 1 & -2 & 3 & | & 16 \\ 0 & 0 & 3 & -2 & | & -9 \\ 0 & 0 & 0 & 0 & 1 & | & 3 \end{bmatrix} \xrightarrow{R_1 + R_4} \times \begin{bmatrix} 1 & -1 & 3 & 0 & | & -4 \\ 0 & 1 & -2 & 0 & | & 7 \\ 0 & 0 & 3 & 0 & | & -3 \\ 0 & 0 & 0 & 0 & 1 & | & 3 \end{bmatrix} \times \begin{bmatrix} 1 & -1 & 3 & 0 & | & -4 \\ 0 & 1 & -2 & 0 & | & 7 \\ 0 & 0 & 1 & 0 & | & -1 \\ 0 & 0 & 0 & 0 & 1 & | & 3 \end{bmatrix} \xrightarrow{R_1 + R_2} \times \begin{bmatrix} 1 & 0 & 0 & 0 & | & 4 \\ 0 & 1 & 0 & 0 & | & 5 \\ 0 & 0 & 1 & 0 & | & -1 \\ 0 & 0 & 0 & 1 & | & 3 \end{bmatrix}$$

And so, from our RREF matrix, we see that the solution is $x_1 = 4$, $x_2 = 5$, $x_3 = -1$, $x_4 = 3$. This means that

$$4\begin{bmatrix} 1 & 2 \\ 3 & 1 \end{bmatrix} + 5\begin{bmatrix} -1 & 0 \\ -1 & 2 \end{bmatrix} - \begin{bmatrix} 3 & 2 \\ 8 & -3 \end{bmatrix} + 3\begin{bmatrix} -1 & 4 \\ 1 & 7 \end{bmatrix} = \begin{bmatrix} -7 & 18 \\ 2 & 38 \end{bmatrix}$$

and so we have

$$\begin{bmatrix} -7 & 18 \\ 2 & 38 \end{bmatrix}_{\mathcal{A}} = \begin{bmatrix} 4 \\ 5 \\ -1 \\ 3 \end{bmatrix}$$

One last thing to note in regards to coordinates is that the order of the basis vectors matters. That is to say, the set $\{1, x, x^2\}$ is not the same basis for P_2 as the set $\{x, x^2, 1\}$, simply because the order we wrote the basis vectors in changed. And this change results in different coordinates for our vectors.

Example: Let $\mathcal{E} = \{1, x, x^2\}$ be the standard basis for P_2 , let $\mathcal{B} = \{x, x^2, 1\}$

be another basis for
$$P_2$$
, and let $p(x) = 6 - 2x + 2x^2$. Then we have that $[p(x)]_{\mathcal{E}} = \begin{bmatrix} 6 \\ -2 \\ 2 \end{bmatrix}$, since $p(x) = 6(1) - 2(x) + 2(x^2)$, while $[p(x)]_{\mathcal{B}} = \begin{bmatrix} -2 \\ 2 \\ 6 \end{bmatrix}$, since $p(x) = -2(x) + 2(x^2) + 6(1)$.