Exercise 3: Solution Normalization DBS

- Multiple correct solutions are possible.
- The model solutions provide only one correct solution/direction (along with some assumptions \rightarrow identify those assumptions).
- You must write your additional assumptions together with your solution.
- Discuss your alternative solutions and assumptions with the TA.

- Key: AD
- □ By first decomposing on $B \rightarrow C$, we first get R1(B, C) and R2(A, B, D).
- R2 is not in BCNF, so we must decompose further: R3(A,D) and R4(B, D).

- Second choice:
- □ By first decomposing on $D \rightarrow B$, we first get R1(B, C, D) and R2(A, D).
- R1 is not in BCNF, so we must decompose further.
- In both cases, we end up with three relations, Ra(A, D), Rb(B, C) and Rc(B, D).

- Case 1: There are no nontrivial FDs. AB is key; so we have AB→AB, which trivial. (only nontrivial FDs can violate BCNF)
- Case 2: A→B holds, but B→A does not. A is the key. The only nontrivial FD is A→B; no BCNF violation.
- □ Case 3: $B\rightarrow A$ holds, but $A\rightarrow B$ does not. A is the key. The only nontrivial FD is $B\rightarrow A$; no BCNF violation.
- □ Case 4: Both A→B and B→A hold. A and B are both keys; no BCNF violation.

Question 3(a)

- The usual procedure to find the keys is to take the closure of all 63 nonempty subsets.
- However, if we notice that none of the right sides of the FDs contains attributes H and S.
- Thus we know that attributes H and S must be part of any key.
- We eventually will find out that HS is the only key for the Courses relation.

Question 3(b)

- Check if any of the FDs can be removed.
- If we remove any one of the five FDs, the remaining four FDs do not imply the removed FD.
- Check if any of the LHS attribute of an FD can be removed without losing the dependencies.
- This is not the case for the four FDs that contain two attributes on the left side.
- Thus, the given set of FDs is a minimal basis.

Question 3(c)

- Since the only key is HS, the given set of FDs has some dependencies that violate 3NF.
- We also know that the given set of FDs is a minimal basis.
- Thus the decomposed relations are CT, HRC, HTR, HSR and CSG.
- Since the relation HSR contains a key, we do not need to add an additional relation.
- The final set of decomposed relations is CT, HRC, HTR, HSR and CSG.

- \Box G ={Z \rightarrow W, Y \rightarrow X, Y \rightarrow Z, XW \rightarrow Y}, where G is a minimal basis
- Use closure method to find keys
- Possible keys: Y, WX, XZ
- Decomposed relations: R1(Z, W), R2(X, Y, Z), R3(X, Y, W)
- Then all LHS of FDs are superkeys; therefore relations are in BCNF

Question 5(a)

- \square FDs: A \rightarrow BC, E \rightarrow A, CD \rightarrow E, B \rightarrow D
- Keys? A? E? CD?
- (a) Decomposition: R1(A,B,C) and R2(A,D,E)
- (b) Decomposition: R3(A,B,C,D) and R4(C,D,E)
- Is decomposition lossless (can be joined back)?
- Is decomposition dependency preserving (no FDs lost)?

Question 5(a)

- Decomposition is lossless since
 - The two tables have a common attribute A, and
 - A is a superkey for R1(A,B,C)
- FDs that hold on R1(A,B,C)
 - A → BC since R1 contains A, B, and C
- FDs that hold on R2(A,D,E)
 - \blacksquare E \rightarrow A, since R2 contains A and E
- \square Two other FDs need to be checked: CD \rightarrow E, B \rightarrow D
 - \blacksquare Given A \rightarrow BC and E \rightarrow A, we have:
 - \blacksquare {B}+ = {B}, so B \rightarrow D is not preserved
 - \blacksquare {CD}+ = {CD}, so CD \rightarrow E is not preserved
- Decomposition is NOT dependency-preserving

Question 5(b)

- Decomposition is lossless since
 - The two tables have common attributes CD, and
 - CD is a superkey for R4(C,D,E)
- FDs that hold on R3(A,B,C,D)
 - \blacksquare A \rightarrow BC, CD \rightarrow A, and B \rightarrow D since R1 contains A, B, C, and D
- FDs that hold on R4(C,D,E)
 - \square CD \rightarrow E, E \rightarrow CD
- \square One other FDs needs to be checked: E \rightarrow A
 - **□** Given $A \rightarrow BC$, $CD \rightarrow A$, $CD \rightarrow E$, $E \rightarrow CD$ and $B \rightarrow D$, we have:
 - \blacksquare {E}+ = {E, C, D, A, B}, so $\blacksquare \rightarrow A$ is preserved
- Decomposition is dependency-preserving

- □ No.
- Unless A → B or A → C is satisfied in R, R1 join R2 may generate entries that do not belong to R.

