UTFPR – DAELN – Prof. Brero Sintonia PID discreto

Nesta versão N=pólo.

I.INTRODUÇÃO

Devido aos problemas que ocorrem na implementação do elemento derivativo isolado, na configuração prática do PID é incluído um pólo junto com o termo derivativo, onde <u>N é o valor do pólo</u>. Pode-se escolher N=100. A configuração do PID contínuo é mostrado na equação 1.

$$G_{PID}(s) = K_P (1 + \frac{1}{T_i s} + \frac{NT_d s}{(N+s)})$$
 (1)

Para obter a forma discreta pode-se usar qualquer discretização já vista na teoria. Para este exercício, será usada a discretização Backward difference (equação 2):

$$s = \frac{z - 1}{T_0 z} \tag{2}$$

Substituindo a equação 2 na equação 1, obtém-se a função de transferência do PID discreto, mostrado na equação 3:

$$G_{PID}(z) = K_P \left(1 + \frac{T_0 z}{T_i(z-1)} + \frac{NT_d(z-1)}{(z(T_0 N + 1) - 1)}\right)$$
(3)

II.IDENTIFICAÇÃO EM MALHA ABERTA

Identifique o sistema em malha aberta e calcule os valores de K_p , T_i e T_d , pelo método de Ziegler-Nichols. Verifique o funcionamento do controlador PID. Siga os passos a seguir:

1) Monte o sistema abaixo. Aplique um degrau unitário na entrada do processo a controlar. No sinal de saída trace uma tangente no ponto de inflexão. Identifique T, L e K_E . (Você pode copiar este sinal no Paint-brush e desenhar a linha tangente)

Para o Simulink, a planta está no site:

http://paginapessoal.utfpr.edu.br/brero/controle 1/material-didatico/9 Sintonia PID/planta.mdl/view Para o Scilab:

http://paginapessoal.utfpr.edu.br/brero/controle_1/material-didatico/9_Sintonia_PID/Planta.zcos/view

Figura 1 – Identificação da planta em malha aberta

2) Com estes valores (T, L e K_E), calcule K_p , T_i e T_d a partir da tabela de Ziegler-Nichols para identificação em malha aberta (tabela 1).

Tabela 1 – Sintonia PID malha aberta

Tipo de controlador	Função de transferência	K_p	T_i	T_d
P	K_p	$\frac{T}{KL}$	máximo	0
PI	$K_p(1+\frac{1}{T_is})$	$\frac{0.9T}{KL}$	$\frac{L}{0,3}$	0
PID	$K_p(1 + \frac{1}{T_i s} + T_d s)$	$\frac{1,2T}{KL}$	2L	0,5L

3) Implemente a equação do PID no Simulink ou no Scilab. Lembre-se também que N=100. Como a planta é contínua, será colocado um segurador de ordem zero na sua entrada, mostrado na figura 2.

Lembre-se de colocar nos blocos discreto o valor do período de amostragem: T_0 =0.1s. Lembre-se também que N=100.

Figura 2 – Estrutura PID discreto

4) Simule e verifique a resposta para o sistema com o compensador PID.

III.IDENTIFICAÇÃO EM MALHA FECHADA

Identifique o sistema em malha fechada e calcule os valores de K_p , T_i e T_d , pelo método de Ziegler-Nichols. Verifique o funcionamento do controlador PID digital, sendo T_0 =0,1s. Siga os passos abaixo:

1) Monte o sistema abaixo e varie K até que o sistema oscile com uma amplitude constante. Este ganho é chamado ganho crítico (K_{cr}). Meça o período de oscilação: P_{cr} .

Para o Simulink, a planta está no site:

http://paginapessoal.utfpr.edu.br/brero/controle_1/material-didatico/9_Sintonia_PID/planta.mdl/view Para o Scilab:

http://paginapessoal.utfpr.edu.br/brero/controle 1/material-didatico/9 Sintonia PID/Planta.zcos/view

- 2) Com estes valores (K_{cr} e P_{cr}), calcule K_p , T_i e T_d a partir da tabela de Ziegler-Nichols para identificação em malha fechada (tabela 1).
- 3) Com os valores do item 2, aplique na equação 3 para obter a equação do PID digital.
- 4) Implemente a equação do PID discreto no Simulink ou no Scilab. Como a planta é contínua, será colocado um segurador de ordem zero na sua entrada, mostrado na figura 4

Lembre-se de colocar nos blocos discreto o valor do período de amostragem: T_0 =0.1s. Lembre-se também que N=100.

Tipo de controlador	Função de transferência	K_p	T_i	T_d
P	K_p	$0,5K_{cr}$	máximo	0
PI	$K_p(1+\frac{1}{T_is})$	$0,45K_{cr}$	$\frac{P_{cr}}{1,2}$	0
PID	$K_p(1+\tfrac{1}{T_{is}}+T_ds)$	$0,6K_{cr}$	$0,5P_{cr}$	$0,125P_{cr}$

Tabela 1 - Sintonia PID malha fechada

Figura 4 – PID discreto

5) Simule e verifique a resposta para o sistema com o compensador PID.

OBS: Este método em malha fechada não pode ser usado em plantas industriais, pois a grande amplitude da oscilação poderia causar problemas. Na prática é colocado um relê na malha direta para limitar a amplitude do sinal de oscilação, e o método é denominado **Método do Relê**.

OBS: no bloco PID discreto do Matlab colocar os valores K_p , K_p/T_i e K_pT_d da tabela de Ziegler-Nichols para malha fechada (sistemas contínuos). Não é necessário colocar T_o .

IV. Método do Relê

Em sistemas reais é muito perigoso aplicar o método anterior, pois a oscilação da planta pode causar perdas no processo ou danificar alguns sistemas.

Além disso, é muito difícil encontrar o ponto exato que a oscilação se mantém. Um valor próximo, mas um pouco menor, fará que a oscilação diminua. Um valor próximo, mas um pouco maior, fará que o sistema fique instável e a saída irá para um valor máximo.

Uma forma de obter uma oscilação controlada é através da inclusão de um relê na malha direta.

O sistema irá ter uma oscilação limitada em torno do ponto de operação, o que pode ser aceitável ao processo.

O relê é modelado como um ganho e a análise de estabilidade é feita através do método da Função descritiva. A função descritiva é um método de análise, no qual se faz a linearização para grandes sinais e o modelo linear do relê é um ganho. A curva característica do relê é mostrado na figura 5.

Figura 5 – Curva característica do relê.

O ganho do relê, obtido pela análise da função descritiva, é mostrado na equação 4.

$$N(a) = \frac{4h}{\pi a} \tag{4}$$

Onde $\underline{\textbf{h}}$ é o valor da amplitude do sinal de saída do relê (v_{pico}) e $\underline{\textbf{a}}$ é o valor na entrada do relê (v_{pico}).

Se o sistema não oscilar pode-se amplificar a saída do relê. Neste caso mede-se o valor da saída do amplificador como sendo $\underline{\textbf{h}}$.

Figura 6 - Relê com amplitude 3

Fazendo $K_{cr} = N(a)$ e medindo o período P_{cr} , é possível calcular a sintonia através da tabela 1.

Exercício: Faça a identificação usando o método do relê, meça K_{cr} e P_{cr} . Com estes valores calcule K_p , T_i e T_d da tabela 1. Implemente estes valores no sistema da figura 2. Verifique a resposta.