SMART SIGNAL
Sharing session

Equipment Condition

Move Up the Curve

Stay Ahead of the Game

Difficult to achieve without advanced technology or extremely intensive analysis

Prevent significant damage and unplanned outages

Time Progression

Reactive Scramble

Easily observed effects, but failure already in progress

More damage, higher O&M, more downtime

Conventional Monitoring

Uses Hard Thresholds...

Challenge: Change is ambiguous in complex environments

The Smart Signal Difference

Multiple Variable, <u>Dynamic</u> Empirical Analysis in Real Time (5 Min Resolution)

Taxonomy of Modeling Techniques

Differentiated Data Technology

Curve Fitting

- First Principles Equations
- Parametric Modeling
- Neural Networks

Pattern Reconstruction

- Similarity Based Modeling
- 'n' Dimensional State Matrix
- Variable Based & Auto-Adaptation

Pattern Reconstruction in Action...

Informed by Data Modeling, Physics Models and/or Commissioning Curves

Normal variation is removed from actual patterns by subtracting the estimate thus producing a residual for improved analytics.

Easy User Interaction with Normalized Data

"Blue is True"

magination at work

Healthy Patterns

SBM Summarized

- Built on historical data, customized to a particular piece equipment
- 2. Summarizes normal, healthy equipment behavior
- Represents many different operational states and ambient conditions
- Takes advantage sensor relationships inherent in equipment and processes
- 5. Not OEM specific
- Predicts what the data should be reading, based on the current operation and its history for this type of operation

Diagnostic advisory

A notification of a change in equipment behavior that conforms to a fault pattern.

Fault patterns are a signature set of behavior specific to an equipment failure mode

The SmartSignal process

Proficy SmartSignal Suite

Easy to Deploy, Manage at Scale

Define Blueprint Templates, Globally Manage Designs

"Blueprint" Templates

Fast and Reliable Implementation

Individual pieces of equipment

Comprehensive Tag List

Model
A

Model
B

Model
C

SBM Technology

Diagnostic Advisories

Asset 2

Asset 1

Asset 3

For each asset:

- Map specific tags to the blueprint
- Import and filter data
- Customize deviation allowances

Asset 4

Passion to explore for a Sustainable nuture

Example: ST Blueprint

System	Sub System	Diagnostic
Performance	HP Performance	Efficiency Loss
	IP Performance	Control Valve Problem
	LP Performance	
	Control Valves	
Steam Seal System	Gland Seals	Gland Seal Steam Problem
Lubrication Oil System	Oil tank	Fouling
	Oil filter	Pump Problem
	Oil Cooler	Oil Leak
	Oil Pump	Filter Pluggage
		Temperature Control Problem
		Vapor Pressure Loss
Rotor	Journal Bearing (11)	Local Bearing Problem
	Thrust Bearing	Cooling Loss
		Axial Position Shift
		Sensor Problem
		Generator Rotor Thermal Problem
		Exciter Rotor Problem

Asset Center

Easy to Instantiate, Maintain, and Manage at Scale Import Templates for Assets, Individualize, Train, Maintain

Sentinel

Advisory List, Access to Charts and Metrics The central application of P-SS for user's

Gatekeeper

Transfer Center

Export and Import Assets across sites Collaboration / Deploy new designs

Modeling lifecycle

Template or blueprint of engineering information

Unique to each equipment type

Comprehensive and flexible list of tags

Calculation syntax

Model breakdown

Default threshold and model settings

Diagnostic fault pattern criteria

Model design process

- 1. Draw a boundary around Equipment
- 4. Identify fault identification tags

- 2. Identify model inputs
- 5. Identify key calculated variables
- 3. Establish equipment faults
- 6. Group related fault identification tags

2. Asset and Model building

Equipment

Individual Pieces of

Asset 3

Asset N

For each Asset:

- Map specific tags to the blueprint
- Import and filter data
- Customize deviation allowances

Tag mapping

Data selection

Data selection for each asset

Completing the asset build

Customize deviation settings, as appropriate

Test

- Test results replicate run-time results
- Normal data and faulted data are used during testing
- Iterative process
- Provides confidence in monitoring results

Real-time monitoring to provide early warning of equipment faults

- Deviation
- Persistence
- Fault patterns

Diagnostic tools

- Dynamic charting
- Historical information

Workflow management

Equipment notifications

4. Maintain the asset and models

- Adapt new data into the model
- Account for sensor availability
- Adjust performance deviation settings
- Change operating mode criteria
- Modify diagnostics

Model building steps

Proficy SmartSignal system configuration

RM&D – System architecture

Multiple experienced functional Roles provide analysis

Workflow and knowledge capture

RM&D – Achievement Case study

TGB Synthetic lube oil diagram

Location:

GBS Turbo compressor#1 (2X-3200); Gas generator Transfer gear box drain temperature 2TE-322954A/B

Effect:

2TE-322954A/B High High (101°C) -> Compressor DM -> 1 compressor train production loss

Transfer gear box

RM&D – Achievement Case study

Achievement

Production opportunity loss saving

227,382 USD

2017: Total Production opportunity loss saving = $\underline{1,437,805 \text{ USD}}$ Total Mechanical loss saving = $\underline{252,000 \text{ USD}}$

RM&D team keeps improving knowledge/monitoring skill set to achieve more saving which benefit the company wide.