Chapitre 11

Fonction exponentielle

1 Définition de la fonction exponentielle

Propriété

Il existe une unique fonction f définie et dérivable sur \mathbf{R} vérifiant :

pour tout nombre réel x f'(x) = f(x) et f(0) = 1.

Preuve

L'existence de cette fonction est admise. La démonstration de l'unicité pourra être faite en exercice.

Définition

La fonction exponentielle est la fonction, notée exp, définie et dérivable sur R telle que exp(0) = 1 et exp' = exp.

Méthode

Déterminer la fonction f définie et dérivable sur R telle que f' = f et f(0) = 3.

On pose : pour tout $x \in \mathbb{R}$, $f(x) = 3 \exp(x)$.

Cette égalité définit la fonction f qui est bien définie et dérivable sur ${\bf R}$.

Pour $x \in \mathbb{R}$, $f'(x) = 3 \exp'(x) = 3 \exp(x) = f(x)$.

2 Propriétés algébriques

Propriété

La fonction exponentielle est **strictement positive**: pour tout $x \in \mathbb{R}$, $\exp(x) > 0$.

Preuve

La démonstration pourra être faite en exercice.

Propriété: Relation fonctionnelle

Pour tous nombres réels x et y, $\left| \exp(x+y) = \exp(x) \times \exp(y) \right|$

Preuve

Soit y un nombre réel fixé.

On définit la fonction f par : pour tout $x \in \mathbf{R}$, $f(x) = \frac{\exp(x+y)}{\exp(x)}$.

f est dérivable sur ${\bf R}$ comme quotient de fonctions dérivables sur ${\bf R}$ et, pour tout réel x,

$$f'(x) = \frac{\exp(x+y)\exp(x) - \exp(x+y)\exp(x)}{[\exp(x)]^2} = 0$$

On en déduit que f est une fonction **constante**. Ainsi, pour tout $x \in \mathbb{R}$, $f(x) = f(0) = \exp(y)$. On a donc montré que $\frac{\exp(x+y)}{\exp(x)} = \exp(y)$. Ainsi $\exp(x+y) = \exp(x) \times \exp(y)$.

Propriété

Pour tout nombre réel x, $\exp(x) \times \exp(-x) = 1$ et $\exp(-x) = \frac{1}{\exp(x)}$.

Preuve

Soit x un nombre réel.

On applique le théorème précédent à x et -x. On obtient :

$$\exp(x) \times \exp(-x) = \exp(x - x)$$
$$= \exp(0)$$
$$= 1$$

Ainsi, pour tout $x \in \mathbb{R}$, $\exp(x)$ et $\exp(-x)$ sont inverses l'un de l'autre. Donc $\exp(-x) = \frac{1}{\exp(x)}$.

Propriété

Pour tous nombres réels x et y, $\exp(x-y) = \frac{\exp(x)}{\exp(y)}$.

Preuve

En exercice

Propriété (admise)

Pour tout réel x et tout entier relatif n, $\left[\exp(x)\right]^n = \exp(nx)$

Exemples

$$\exp(3) \times \exp(7) = \exp(3+7)$$

$$= \exp(10)$$

$$\exp(-5) = \frac{1}{\exp(5)}$$

$$(\exp(2))^4 = \exp(4 \times 2)$$

$$= \exp(8)$$

Exercice 1

Simplifier les expressions suivantes :

1. $\exp(5) \times \exp(8) \times [\exp(2)]^3$

2. $\exp(5) \times (\exp(5))^{-1} \times \exp(10)$

3 Le nombre e

Définition

On note $\exp(1) = e$

Remarques

- \cdot e est un nombre réel irrationnel.
- $e \approx 2,718$
- Pour tout $n \in \mathbb{N}$, $\exp(n) = \exp(n \times 1) = [\exp(1)]^n = e^n$.

Notation

Par extension, pour tout $x \in \mathbf{R}$, on notera : $\exp(x) = e^x$.

Propriété

Avec cette notation, les propriétés vues précédemment s'écrivent : Pour tous x,y réels et tout n entier relatif,

$$\cdot e^{x+y} = e^x \times e^y \quad \cdot e^x \times e^{-x} = 1 \qquad \cdot e^{-x} = \frac{1}{e^x} \qquad \cdot e^{x-y} = \frac{e^x}{e^y} \qquad \cdot (e^x)^n = e^{nx}$$

Exemple

$$\frac{\left(e^7\right)^4 \times e^3}{e^4} = \frac{e^{7 \times 4} \times e^3}{e^4}$$
$$= \frac{e^{28} \times e^3}{e^4}$$
$$= e^{28+3-4}$$
$$= e^{27}$$

4 La fonction exponentielle

Propriété

La fonction exponentielle est strictement croissante sur R.

Preuve

Pour tout $x \in \mathbf{R}, \exp'(x) = \exp(x) > 0$.

la fonction dérivée de la la fonction exponentielle est strictement positive sur **R** donc la fonction exponentielle est strictement croissante sur **R**.

Propriété

Soient a et b deux nombres réels. On définit la fonction f sur \mathbf{R} par $f(x) = e^{ax+b}$. La fonction f est dérivable sur \mathbf{R} et pour tout $x \in \mathbf{R}$, $f'(x) = a e^{ax+b}$.

Preuve

Soient a et b deux nombres réels.

On a vu dans le chapitre 8 que la dérivée de f définie par f(x) = g(ax + b) était donnée par : $f'(x) = a \ g'(ax + b)$.

On applique cette propriété avec $g = \exp$ et on obtient le résultat.

Exemple

Étude des variations d'une fonction :

La fonction h définie sur \mathbf{R} par $h(x) = -3 e^{2x-5} + 1$ est dérivable sur \mathbf{R} et pour tout $x \in \mathbf{R}$,

$$h'(x) = 2 \times (-3 e^{2x-5}) + 0$$

= -6 e^{2x-5}

 $\text{Pour tout } x \in \mathbf{R}, \quad e^{2x-5} > 0, \quad \text{donc } h'(x) < 0.$

La fonction h est donc strictement décroissante sur \mathbf{R} .

5 Applications : résolutions d'équations et d'inéquations

Propriétés

Pour tous nombres réels a et b:

•
$$e^a = e^b \Leftrightarrow a = b$$

$$e^a < e^b \Leftrightarrow a < b$$

Exemples

· Résolution d'équation :

Résoudre dans $\mathbf{R} \quad e^{2x} = \frac{1}{e}$ Soit $x \in \mathbf{R}$

$$e^{2x} = \frac{1}{e} \quad \Leftrightarrow \quad e^{2x} = e^{-1}$$
$$\Leftrightarrow \quad 2x = -1$$
$$\Leftrightarrow \quad x = -\frac{1}{2}$$

L'équation $e^{2x} = \frac{1}{e}$ a pour unique solution $-\frac{1}{2}$.

· Résolution d'inéquation :

Résoudre dans $\mathbf{R} \quad e^{-3x+4}+1\geqslant 2.$ Soit $x\in\mathbf{R}.$

$$\begin{array}{ccc} e^{-3x+4}+1\geqslant 2 & \Leftrightarrow & e^{-3x+4}\geqslant 1\\ & \Leftrightarrow & e^{-3x+4}\geqslant e^0\\ & \Leftrightarrow & -3x+4\geqslant 0\\ & \Leftrightarrow & x\leqslant \frac{4}{3} \end{array}$$

L'ensemble des solutions de l'inéquation $e^{-3x+4}+1\geqslant 2$ est l'intervalle $\left[-\infty\;;\;\frac{4}{3}\right].$

À retenir

