Exo2 D_f = domaine de définition

$$y^2+1 \ge 1 \implies \ln y^2+1 \text{ defin}, \forall y \in \mathbb{R}$$

 $\implies x \ln y^2+1 \text{ defin}, \forall (x,y) \in \mathbb{R}^2$

domaine de def de fi= IR2

Pour que l'expression (ac-y) ln (x²-y²) soit définie

$$3c^2-y^2>0 \iff 3c^2>y^2 \iff 3c>y>0$$

$$x^2 + y^3$$
 bien définie $\forall (x,y) \in \mathbb{R}^2 \Rightarrow Df_3 = \mathbb{R}^2$
et ouy bien définie $\forall (x,y) \in \mathbb{R}^2$

 x^2 bien definie $\forall (x,y) \in \mathbb{R}^2$ $\Rightarrow \mathbb{R}^2 \setminus \{y = -4x\}$ x+2y bien definie $\forall (x,y) \in \mathbb{R}^2$ $x+2y \neq 0$ si $y \neq -4x$ Indications pour les dénvées

$$\frac{2}{2x} \approx \ln(y^2+1) = \ln(y^2+1)$$

$$\frac{2}{2y} \approx \ln(y^2+1) = \frac{2}{2y} \ln(y^2+1)$$

$$\frac{\partial}{\partial a_{1}} (\alpha - y) \ln(x^{2} - y^{2}) = \ln(x^{2} - y^{2}) \frac{\partial}{\partial a_{1}} (\alpha - y)$$

$$+ (\alpha - y) \frac{\partial}{\partial a_{1}} \ln(x^{2} - y^{2})$$

$$\frac{\partial}{\partial x} \frac{x^2}{x+2y} = \frac{x+2y\frac{\partial}{\partial x}x^2 - x^2\frac{\partial}{\partial x}x+2y}{(x+2y)^2}$$

$$\frac{\partial}{\partial y} \frac{x^2}{x+2y} = -\frac{x^2}{2x} \frac{\partial}{\partial x} \frac{x+2y}{(x+2y)^2}$$