MC_Maze - Delayed Arm-Reaching Task Dataset

Paper: Cortical preparatory activity: representation of movement or first cog in a dynamical machine?

Experimental Task Structure

Subject reached repeatedly within a maze (each maze configuration specified by the target location x barrier location)

➤ Rich set of "straight" and "curved" reaching, all start at the center (0, 0)

Neural Decoding Problem

MC_RTT - Random Target Task Dataset

Paper: Superior arm-movement decoding from cortex with a new, unsupervised-learning algorithm

Experimental Task Structure

Subject reached continuously between randomly selected elements of an 8x8 grid. This task design differs significantly from typical reaching task (e.g. MC_Maze)

- ➤ Rich set of "straight" reaching: reach may be initiated from any location on the 8x8 grid
- ➤ Lacking clear trial structure, pre-movement delay periods for preparation

Neural Decoding Problem

Discrete Decoding

Area2_Bump - Arm Reach With Perturbation Task Dataset

Paper: Area 2 of primary somatosensory cortex encodes kinematics of the whole arm

Experimental Task Structure

Subject performed 8 target center out reach with perturbation. This task design differs from typical reaching task (e.g. MC_Maze) in passive condition

- ➤ In the passive trials, the manipulandum bumped the monkey's arm in the direction of one of the targets, forcing the monkey to correct and return the cursor to the center
- ➤ In the active trials, the monkey are performing the usual center-out reach

Neural Decoding Problem

Discrete Decoding

- 1) Active vs. Passive State
- 2) Reach target separate for active / passive state
- 3) Reach target for combined active and passive state

DMFC_RSG - Cognitive Timing Task Dataset

Paper: Bayesian computation through cortical latent dynamics

Experimental Task Structure

Neural Decoding Problem

Timing (t_s) conditions

Neural PSTH

Subject performed time interval reproduction task (ready-set-go).

- ➤ Monkey is rewarded by how close t_s (sampling interval) is to t_p (response interval)
- ➤ Sapling interval t_s: monkey resent with two visual cues ('Ready' and 'Set') separated by time interval t_s
- ➤ **Response interval t_p**: Performing action (joystick movement or eye saccade) after the 'Go' cue.

Discrete Decoding

- 1) Predict 8 t_s state with neural speed (average rate of change)
- 2) Predict 8 t_s state with neural firing rate (FR)
- 3) Predict 2 action state (joystick movement / eye saccade) with FR

Acknowledgement

Neural Latents Benchmark

A Benchmark for Models of Neural Data

Neural Latent Challenge https://neurallatents.github.io/challenge

Neural Latents Benchmark '21: Evaluating latent variable models of neural population activity

Felix Pei^{1*}, Joel Ye^{1,2*}, David Zoltowski⁴, Anqi Wu^{1,5}, Raeed H. Chowdhury⁶, Hansem Sohn⁷, Joseph E. O'Doherty⁸, Krishna V. Shenoy⁹, Matthew T. Kaufman¹⁰, Mark Churchland⁵, Mehrdad Jazayeri⁷, Lee E. Miller¹¹, Jonathan Pillow⁴, Il Memming Park¹², Eva L. Dyer^{1,3}, Chethan Pandarinath^{1,3†}

¹Georgia Institute of Technology, ²Carnegie Mellon University, ³Emory University,
⁴Princeton University, ⁵Columbia University, ⁶University of Pittsburgh,
⁷Massachusetts Institute of Technology, ⁸Neuralink Corp., ⁹Stanford University,
¹⁰University of Chicago, ¹¹Northwestern University, ¹²Stony Brook University

