Data Analytics Lab ASSIGNMENT-3

Name: Kapil Jhade Roll no: 17BCS013

***********Predictive Modeling 2: Time Series Analysis*******************

> Apply Time Series methods to analyze the data in any one time series data set

• I have chosen a quarterly visitors dataset for four different countries from 1998 to 2012.

library(igraph)
library(ggplot2)
library(tseries)
library("TTR")
library("forecast")
library(forecast)
visitors=read.table("/home/kapil/desktop/study material notes/6TH SEM/Data Analysis/DA
LAB/lab3/visitors.csv", sep = ",", header = TRUE)
visitors

Output:

> visitors

>	visitors	5			
	Date	Australia	China	Japan	United.Kingdom
1	1998Q4	20288	1089	5938	13831
2	1999Q1	22047	1492	6925	23271
3	1999Q2	14362	1450	4353	9756
4	1999Q3	15775	1551	6855	7899
5	1999Q4	21209	2020	6216	15778
6	2000Q1	25261	2364	7061	25362
7	2000Q2	15891	2541	4417	11618
8	2000Q3	17117	2729	7505	8553
9	2000Q4	22761	3292	6778	17512
10	2001Q1	27539	3771	8169	29409
11	2001Q2	17867	3529	5290	12008
12	2001Q3	19460	4542	7710	9611
13	2001Q4	23603	5674	6213	18316
14	2002Q1	28197	6910	7952	34025
15	2002Q2	17807	7734	5476	14763
16	2002Q3	19420	8716	7990	11494
17	2002Q4	24955	8928	7747	21094
18	2003Q1	30426	9432	8908	36605
19	2003Q2	19857	7314	5369	17073
20	2003Q3	20960	6354	7794	13392
21	2003Q4	28140	5880	7543	23566
22	2004Q1	35468	5528	8533	40104
23	2004Q2	23361	4519	5564	18008

24	2004Q3	24367	4601	6997	13533
25	2004Q4	29689	4766	6678	23879
26	2005Q1	37330	4884	7730	41352
27	2005Q2	22458	4117	4790	18906
28	2005Q3	23878	4239	6027	15460
29	2005Q4	29919	4626	5877	23830
30	2006Q1	37291	5071	7413	42281
31	2006Q2	24032	4422	4459	18743
32	2006Q3	24942	4360	5966	13084
33	2006Q4	32850	4796	5305	24059
34	2007Q1	37850	5331	6238	43611
35	2007Q2	23846	4473	3689	17097
36	2007Q3	26384	4677	5146	11683
37	2007Q4	33016	5072	4799	22492
38	2008Q1	41378	5536	6044	43604
39	2008Q2	24400	4321	3695	17534
40	2008Q3	26825	4389	4795	11827
41	2008Q4	33855	5003	4147	21274
42	2009Q1	39344	6129	5254	37951
43	2009Q2	25402	4742	2679	15028
44	2009Q3	29355	4740	3428	10144
45	2009Q4	36848	6140	3635	21083
46	2010Q1	43797	7271	5391	37139
47	2010Q2	26320	5597	3142	13047
48	2010Q3	30642	5811	3986	8844
49	2010Q4	37501	7266	3807	18189
50	2011Q1	43260	8120	4732	32693
51	2011Q2	25213	5705	2513	11568
52	2011Q3	29521	6414	3834	9795
53	2011Q4	37552	7767	3133	19498
54	2012Q1	41987	9782	4405	29694

> Building a Time Series object with the data.

```
df <- data.frame(visitors)
new_ts <- within(df, rm(Date))
visitors_timeseries <- ts(new_ts, frequency=4, start=c(1998,4)) #this creates time series object
visitors_timeseries</pre>
```

class(visitors_timeseries) #this shows class of time series object
output:

```
> class(visitors_timeseries)
[1] "mts" "ts" "matrix"
```

➤ Plotting using Time series object

plot.ts(visitors_timeseries)

Output:

visitors_timeseries

For smoothing purpose plotting taking log

log_visitors_timeseries <- log(visitors_timeseries)
plot.ts(log_visitors_timeseries) #plot of log of ts object</pre>

log_visitors_timeseries

> Quarterly mean plot for number of visitors for different countries

```
(Below is the mean plot for no of visitors per year)
numrecords <- nrow(visitors)</pre>
numcountries <- ncol(visitors) - 1
#make all the country columns as numeric
for(i in 2:numcountries + 1) {
 visitors[, i] <- as.numeric(visitors[, i])</pre>
#Time series plot for all the 4 countries
for(symbol in 1:numcountries + 1) {
 # The ts function of R helps us to
 # construct a time series
 plot(ts(visitors[, symbol],
      start=c(1998, 4), end=c(2012, 1),
      frequency=4),
    main=paste("quarterly visitors for:",
          colnames(visitors)[symbol]),
    xlab="Year", ylab=paste("country:",
                  colnames(visitors)[symbol]),
    col="navy")
}
```

Output:

quarterly visitors for: Australia

quarterly visitors for: China

quarterly visitors for: Japan

quarterly visitors for: United.Kingdom

> Yearly boxplots and TS plot for mean number of visitors different countries

```
#Yearly mean plot of time series and box plot
for(symbol in 1:numcountries + 1) {
  x \leftarrow c()
  column <- colnames(visitors)[symbol]
  p <- head(visitors[[column]],1)</pre>
  x <- c(x,p)
  for(i in seq(from=2, to=53, by=4)){
   j <- j+3
   yearly_visitors <- visitors[i:j,]</pre>
   #print (yearly_visitors)
   m=mean(yearly_visitors$Australia)
   #print (m)
   x \leftarrow c(x,m)
  }
  column <- colnames(visitors)[symbol]
  q <- tail(visitors[[column]],1)
  x <- c(x,q)
  print (x)
  mean_list <- c()
  for(k in 1998:2012+1){
   mean_list <- c(mean_list,k)</pre>
  }
  print (mean_list)
  ml <- mean_list
  #TS plot for yearly mean of visitors
  plot(ts(x,ml),
     main=paste("yearly mean of visitors for:",
            colnames(visitors)[symbol]),
     xlab="Year", ylab=paste("mean:",
                    colnames(visitors)[symbol]),
```

```
col="navy")

#Box plot for yearly mean of visitors
ggplot() + geom_boxplot(mapping = aes(x = ml,y = x)) + labs(x = "Year", y = "Mean")
}
```

Output:

yearly mean of visitors for: Australia

yearly mean of visitors for: China

yearly mean of visitors for: United.Kingdom

Box plot for mean of all the visitor of different countries

Now for further Analysis we need single variant Time Series data, hence i have only taken the quarterly visitors of Australia from 1998 to 2012

Australia <- within(df, rm(Date,China,Japan,United.Kingdom))
Australia_ts <- ts(Australia, frequency=4, start=c(1998,4))
Australia_ts

Output:

```
> Australia ts
     Qtr1 Qtr2 Qtr3 Qtr4
1999 22047 14362 15775 21209
2000 25261 15891 17117 22761
2001 27539 17867 19460 23603
2002 28197 17807 19420 24955
2003 30426 19857 20960 28140
2004 35468 23361 24367 29689
2005 37330 22458 23878 29919
2006 37291 24032 24942 32850
2007 37850 23846 26384 33016
2008 41378 24400 26825 33855
2009 39344 25402 29355 36848
2010 43797 26320 30642 37501
2011 43260 25213 29521 37552
2012 41987
```

> Decomposing the time series using the stl function, trend, seasonality, and residue.

(Below mentioned piece of code decompose the seasonal time series data into different components)

```
Australia_ts.stl = stl(Australia_ts[,1], s.window="periodic")
plot(Australia_ts.stl)
```

Plot below represents the type of trend, seasonality and the remainder left after removing the seasonality and the trend.

 The above model is a multiplicative model it suggests that the components are multiplied together as follows:

- A multiplicative model is nonlinear, such as quadratic or exponential. Changes increase or decrease over time.
- Trend here is non-linear.
- Seasonality here is also non-linear and has an increasing or decreasing frequency and/or amplitude over time.
- Components of the time series is Systematic that are consistent or recurring and can be described and modeled.
- Residue shows the Time series after removing trend and seasonality.
- ➤ Building a model of the data using the HoltWinters method for the period upto about 75% of the data

#'alpha' is the exponential in the moving average model, 'beta' controls how trend is up and 'gamma' controls how is the updation of the seasonal value.

Aust_ts <- ts(Australia_ts, frequency=4, start=c(1998,4),end=c(2008,3))

Australia_mean <- HoltWinters(Aust_ts, gamma = FALSE)

#n.ahead below represent the 25% of my data as i have 54 rows

Australia.pred <- predict(Australia_mean,n.ahead=14,prediction.interval = TRUE)

#plotting prediction for rest 25% of data

 $plot.ts(Australia_ts, xlim = c(1998, 2020), ylim = c(0,60000))$

lines(Australia_mean\$fitted[,1],col="green")

lines(Australia.pred[,1], col="blue")

lines(Australia.pred[,2], col="red")

lines(Australia.pred[,3], col="red")

Output:

Parameter values at gamma= FALSE

Australia_mean <- HoltWinters(Aust_ts, gamma = FALSE)

Australia_mean

OUTPUT:

> Australia mean

Holt-Winters exponential smoothing with trend and without seasonal component.

Call:

HoltWinters(x = Aust ts, gamma = FALSE)

```
Smoothing parameters:
```

alpha: 0.1016998

beta : 1

gamma: FALSE

Coefficients:

[,1]

a 31015.0454

b 104.6343

• Fine tuning the model by changing alpha, beta and gamma.

Australia_mean <- HoltWinters(Aust_ts, alpha = 0.8, beta = 0.1,gamma = FALSE)

#prediction plot at above parameters

Output:

(red lines represents the upper and the lower bound of the prediction and the blue line represents the prediction fit for the rest 25% of the data compared with the actual data)

• Computing the rms error between the predicted and actual values.

```
sqrt(Australia_mean2$SSE)
```

Output:

```
> sqrt(Australia_mean$SSE)
```

```
[1] 46827.84
```

- > Building an ARIMA model for the period up to about 75% of the data.
- Calculating autocorrelation function for 75% of data i.e. upto 2008,3
 Aust_ts <- ts(Australia_ts, frequency=4, start=c(1998,4),end=c(2008,3))</p>
 acf(diff(log(Aust_ts))) #q=0

 Output:

Series diff(log(Aust_ts))

(This gives q=0 as second line is accepted)

• Calculating partial autocorrelation function for 75% of data i.e. upto 2008,3

 $pacf(diff(log(Aust_ts)))$ #p=-1

Output:

Series diff(log(Aust_ts))

(here p=-1 as first line is accepted)

Plotting log differential of the 75% of the time series data
 plot(diff(log(Aust_ts)))
 output:

• Prediction for next 15 months

#c(p,d,q) where p is the number of autoregressive terms, d is the number of nonseasonal differences needed for stationarity, and q is the number of lagged forecast errors in the prediction equation.

 $fit=arima(log(Aust_ts),c(-1,1,0),seasonal = list(order=c(-1,1,0),period=4))$

fit

pred = predict(fit, n.ahead = 1.3*4) #predicting for 15 months(1.3yrs) and 4(quarterly data) $pred1 = round(2.718^pred^pred,0)$ #converting prediction to decimal value $pred1 = round(2.718^pred^pred,0)$ #converting prediction to decimal value $pred1 = round(2.718^pred^pred,0)$ #plotting actual data and prediction for next 15 months $pred1 = round(2.718^pred^pred,0)$ #plotting actual data and prediction for next 15 months $pred1 = round(2.718^pred^pred,0)$ #plotting actual data and prediction for next 15 months $pred1 = round(2.718^pred^pred,0)$ #plotting actual data and prediction for next 15 months $pred1 = round(2.718^pred^pred,0)$ #plotting actual data and prediction for next 15 months

(In above plot dotted line predicts for the next 15 months of the time series data)

• Computing the rms error between the predicted and actual values.

sqrt(fit\$SSE)

Output:

> sqrt(fit\$SSE)

[1] 37416.07

- Here the plot is finely tuned using the p and q values obtained from the acf and pacf plots. And we observe that the rms value of predicted and the original data decreases on fine tuning.
- ★ Based on my experiments, in forecasting seasonal data I would say the **Arima model is better** as it takes more parameters and provides better prediction than HoltWinters model which does not model the variables per se, they give you a procedure to forecast a given variable and is based on smoothing factors.
- ★ In order to implement these methods I had to convert my dataset from multivariate to univariant, as many time series functions are not applicable on multivariate data.