MA 523: Homework 1

Carlos Salinas

August 30, 2016

PROBLEM 1.1 (TAYLOR'S FORMULA)

Let $f: \mathbb{R}^n \to \mathbb{R}$ be smooth, $n \geq 2$. Prove that

$$f(x) = \sum_{|\alpha| \le k} \frac{1}{\alpha!} D^{\alpha} f(0) x^{\alpha} + O(|x|^{k+1})$$

as $x \to 0$ for each k = 1, 2, ..., assuming that you know this formula for n = 1.

Hint: Fix $x \in \mathbb{R}^n$ and consider the function of one variable g(t) := f(tx). Prove that

$$\frac{\mathrm{d}^m}{\mathrm{d}t^m}g(t) = \sum_{|\alpha|=m} \frac{m!}{\alpha!} D^{\alpha} f(tx) x^{\alpha},$$

by induction on m.

Solution. ightharpoonup Taking the hint, fix $x \in \mathbb{R}^n$ and consider the function of one variable g(t) := f(tx). We claim that

$$\frac{\mathrm{d}^m}{\mathrm{d}t^m}g(t) = \sum_{|\alpha|=m} \frac{m!}{\alpha!} D^{\alpha} f(tx) x^{\alpha}.$$

The proof of this follows from Leibniz's formula (which I found easier to prove)

Lemma (Leibniz's rule). Let $u, v : \mathbb{R}^n \to \mathbb{R}$ be smooth. Then

$$D^{\alpha}uv = \sum_{\beta \leq \alpha} {\alpha \choose \beta} D^{\beta}uD^{\alpha-\beta}v.$$

Proof of lemma. We proceed by induction on $m = |\alpha|$. For m = 1, we have

$$D^{\alpha}uv = \frac{\partial}{\partial x_{i}}uv$$

$$= u_{x_{i}}v + uv_{x_{i}}$$

$$= \sum_{\beta \leq \alpha} {\alpha \choose \beta} D^{\beta}uD^{\alpha-\beta}v.$$

Now assume the result for all $n \le m - 1$. Then for $|\alpha| = m$ we have

$$D^{\alpha}uv = \frac{\partial}{\partial x_i}D^{\alpha'}uv$$

where $\alpha' = \alpha - (0, \dots, 1, \dots, 0)$ in the *i*-th position

$$= \frac{\partial}{\partial x_i} \left[\sum_{\beta \le \alpha'} {\alpha' \choose \beta} D^{\beta} u D^{\alpha' - \beta} v \right]$$

=

MA 523: Homework 1

CARLOS SALINAS PROBLEM 1.2

PROBLEM 1.2

Write down the characteristic equation for the p.d.e.

$$u_t + b \cdot Du = f \tag{*}$$

on $\mathbb{R}^n \times (0, \infty)$, where $b \in \mathbb{R}^n$. Using the characteristic equation, solve (*) subject to the initial condition

$$u = g$$

on $\mathbb{R}^n \times \{t = 0\}$. Make sure the answer agrees with formula (5) in §2.1.2 of [E].

Solution. ▶

4

MA 523: Homework 1 2

CARLOS SALINAS PROBLEM 1.3

PROBLEM 1.3

Solve using the characteristics:

(a)
$$x_1^2 u_{x_1} + x_2^2 u_{x_2} = u^2$$
, $u = 1$ on the line $x_2 = 2x_1$.

(b)
$$uu_{x_1} + u_{x_2} = 1$$
, $u(x_1, x_2) = x_1/2$.

(c)
$$x_1u_{x_1} + 2x_2u_{x_2} + u_{x_3} = 3u, u(x_1, x_2, 0) = g(x_1, x_2).$$

Solution. ▶

- ◀

MA 523: Homework 1 3

CARLOS SALINAS PROBLEM 1.4

PROBLEM 1.4

For the equation

$$u = x_1 u_{x_1} + x_2 u_{x_2} + \frac{1}{2} \left(u_{x_1}^2 + u_{x_2}^2 \right)$$

find a solution with $u(x_1, 0) = (1 - x_1^2)/2$.

Solution. ▶

MA 523: Homework 1