Xiaoxiao Hu

February 24, 2020

Chapter 2. Lagrange's Method

Lagrange's Method

In this chapter, we will formalize the maximization problem with equality constraints and introduce a general method, called *Lagrange's Method* to solve such problems.

2.A. Statement of the problem

Recall, in Chapter 1, the maximization problem with the equality constriant is stated as follows:

$$\max_{x_1 \ge 0, x_2 \ge 0} U(x_1, x_2)$$

s.t.
$$p_1x_1 + p_2x_2 = I$$
.

Statement of the problem

In this chapter, we will temporarily ignore the non-negativity constraints on x_1 and x_2^1 and introduce a general statement of the problem, as follows:

$$\max_{x} F(x)$$

s.t.
$$G(x) = c$$
.

x is a vector of choice variables, arranged in a column:

$$x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}.$$

¹We will learn how to deal with non-negativity in Chapter 3.

Statement of the problem

- As in Chapter 1, we use $x^* = \begin{pmatrix} x_1^* \\ x_2^* \end{pmatrix}$ to denote the optimal value of x.
- F(x), taking the place of $U(x_1, x_2)$, is the *objective* function, the function to be maximized.
- G(x) = c, taking the place of $p_1x_1 + p_2x_2 = I$, is the constraint. However, please keep in mind that in general, G(x) could be non-linear.

- The essence of the arbitrage argument is to find a point where "no-arbitrage" condition is satisfied.
- That is, to find the point from which any infinitestimal change along the constraint does not yield a higher value of the objective function.

We reiterate the algorithm of finding the optimal point:

- (i) Start at any trial point, on the constraint.
- (ii) Consider a small change of the point along the constraint. If the new point constitutes a higher value of the objective function, use the new point as the new trial point, and repeat Step (i) and (ii).
- (iii) Stop once a better new point could not be found. The last point is the optimal point.

- Now, we will discuss the arbitrage argument behind the algorithm and derive the "non-arbitrage" condition.
- Consider initial point x^0 and infinitesimal change dx.
- Since the change in x^0 is *infinitesimal*, the changes in values could be approximated by the first-order linear terms in Taylor series.

Using subscripts to denote partial derivatives, we have

$$dF(x^{0}) = F(x^{0} + dx) - F(x^{0}) = F_{1}(x^{0})dx_{1} + F_{2}(x^{0})dx_{2};$$
 (2.1)

$$dG(x^0) = G(x^0 + dx) - G(x^0) = G_1(x^0)dx_1 + G_2(x^0)dx_2.$$
 (2.2)

Recall the concrete example in Chapter 1,

$$F_1(x) = MU_1 \text{ and } F_2(x) = MU_2;$$

 $G_1(x) = p_1 \text{ and } G_2(x) = p_2.$

- We continue applying the argitrage argument with the general model.
- The initial point x^0 is on the constraint, and after the change dx, $x^0 + dx$ is still on the contraint.
- Therefore, $dG(x^0) = 0$.

• $dG(x^0) = 0$ together with (2.2),

$$dG(x^{0}) = G_{1}(x^{0})dx_{1} + G_{2}(x^{0})dx_{2}.$$
 (2.2)

- We have $G_1(x^0)dx_1 = -G_2(x^0)dx_2 = dc$.
- Then,

$$dx_1 = dc/G_1(x^0)$$
 and $dx_2 = -dc/G_2(x^0)$. (2.3)

From (2.3) and (2.1)

$$dx_1 = dc/G_1(x^0)$$
 and $dx_2 = -dc/G_2(x^0)$ (2.3)

$$dF(x^{0}) = F_{1}(x^{0})dx_{1} + F_{2}(x^{0})dx_{2}$$
(2.1)

we get

$$dF(x^{0}) = F_{1}(x^{0})dc/G_{1}(x^{0}) + F_{2}(x^{0}) \left(-dc/G_{2}(x^{0})\right)$$
$$= \left[F_{1}(x^{0})/G_{1}(x^{0}) - F_{2}(x^{0})/G_{2}(x^{0})\right]dc. \qquad (2.4)$$

$$dF(x^0) = \left[F_1(x^0) / G_1(x^0) - F_2(x^0) / G_2(x^0) \right] dc.$$
 (2.4)

- Recall, $dc = G_1(x^0)dx_1 = -G_2(x^0)dx_2$.
- Since we do not impose any boundary for x, so x^0 must be an *interior point*, and dc could be of either sign.
- If the expression in the bracket is **positive**, then $F(x^0)$ could increase by choosing dc > 0.
- Similarly, if it is **negative**, then choose dc < 0.

$$dF(x^0) = \left[F_1(x^0) / G_1(x^0) - F_2(x^0) / G_2(x^0) \right] dc.$$
 (2.4)

- The same argument holds for all other interior points along the constraint.
- Therefore, for the interior optimum x^* , we must the following "non-arbitrage" condition:

$$F_1(x^*)/G_1(x^*) - F_2(x^*)/G_2(x^*) = 0$$

$$\Longrightarrow F_1(x^*)/G_1(x^*) = F_2(x^*)/G_2(x^*)$$
(2.5)

$$F_1(x^*)/G_1(x^*) = F_2(x^*)/G_2(x^*)$$
 (2.5)

- It is important to distinguish between the interior optimal point x^* and the points that satisfy (2.5).
- The correct statement is as follows:

Remark. If an interior point x^* maximizes F(x) subject to G(x) = c, then (2.5) holds.

Remark. If an interior point x^* is a maximum, then (2.5) $F_1(x^*)/G_1(x^*) = F_2(x^*)/G_2(x^*)$ holds.

- The reverse statement may **not** be true.
- That is to say, (2.5) is only the **necessary** condition for an interior optimum.
- We will discuss it in detail in Subsection 2.E.

• Now, we come back to Condition (2.5):

$$F_1(x^*)/G_1(x^*) = F_2(x^*)/G_2(x^*)$$
 (2.5)

• Recall in Chapter 1, Condition (2.5) is equivalent to

$$MU_1/p_1 = MU_2/p_2.$$

• We used λ to denote the marginal utility of income, which equals to $MU_1/p_1 = MU_2/p_2$.

• Similarly, in the general case, we also define λ as

$$\lambda = F_1(x^*)/G_1(x^*) = F_2(x^*)/G_2(x^*)$$

$$\Longrightarrow F_j(x^*) = \lambda G_j(x^*), \ j = 1, 2. \tag{2.6}$$

- Here, λ corresponds to the change of $F(x^*)$ with respect to a change in c.
- We will learn this interpretation and its implications in Chapter 4.

A few Digressions

$$F_j(x^*) = \lambda G_j(x^*), j = 1, 2.$$
 (2.6)

Before we continue the discussion of *Lagrange's Method* following Equation (2.6), several digressions will be discussed in Subsections 2.C Constraint Qualification, 2.D Tangency Argument and 2.E Necessary vs. Sufficient Consitions.

• You may have already noticed that (2.3)

$$dx_1 = dc/G_1(x^0)$$
 and $dx_2 = -dc/G_2(x^0)$ (2.3)

requires $G_1(x^0) \neq 0$ and $G_2(x^0) \neq 0$.

• The question now is "what happens if $G_1(x^0) = 0$ or $G_2(x^0) = 0$?"²

²The case $G_1(x^0) = G_2(x^0) = 0$ will be considered later.

• If, say, $G_1(x^0) = 0$, then infinitesimal change of x_1^0 could be made without affecting the constraint.

$$dG(x^{0}) = G_{1}(x^{0})dx_{1} + G_{2}(x^{0})dx_{2}.$$
 (2.2)

• Thus, if $F_1(x^0) \neq 0$, it would be desirable to change x_1^0 in the direction that increases $F(x^0)$.

$$dF(x^0) = F_1(x^0)dx_1 + F_2(x^0)dx_2.$$
 (2.1)

• This process could be applied until either $F_1(x) = 0$, or $G_1(x) \neq 0$.

- Intuitively, for the consumer choice model we discussed in Chapter 1, $G_1(x^0) = p_1 = 0$ means that good 1 is free.
- Then, it is desirable to consume the free good as long as consuming the good increases the consumer's utility, or until the point where good 1 is no longer free.

- Note x^0 could be any interior point.
- In particular, if the point of consideration is the optimum point x^* , then, if $G_1(x^*) = 0$, it must be the case that $F_1(x^*) = 0$.

- A more tricky question is "what if $G_1(x^0) = G_2(x^0) = 0$?"
- There would be no problem if $G_1(x^0) = G_2(x^0) = 0$ only means that x_1^0 and x_2^0 are free and should be consumed to the point of satiation.
- However, this case is tricky since it could be arising from the quirks of algebra or calculus.

• As a concrete example, let's reconsider the consumer choice model in Chapter 1:

$$\max_{x_1, x_2} U(x_1, x_2)$$
s.t. $p_1 x_1 + p_2 x_2 - I = 0$.

• That problem has an equivalent formulation as follows:

$$\max_{x_1, x_2} U(x_1, x_2)$$
s.t. $(p_1 x_1 + p_2 x_2 - I)^3 = 0$.

25

• Under the new formulation:

$$G_1(x) = 3p_1(p_1x_1 + p_2x_2 - I)^2 = 0,$$

 $G_2(x) = 3p_2(p_1x_1 + p_2x_2 - I)^2 = 0.$

- However, the goods are not free at the margin.
- The contradiction of $G_1(x) = G_2(x) = 0$ and $p_1, p_2 > 0$ makes our method not working.

- To avoid running into such problems, the theory assumes the condition of **Constraint Qualification**.
- For our particular problem, Constraint Qualification requires $G_1(x^*) \neq 0$, or $G_2(x^*) \neq 0$, or both.

Remark. Failure of Constraint Qualification is a rare problem in practice. If you run into such a problem, you could rewrite the algebraic form of the constraint, just as in the budget constraint example above.

• The optimization condition

$$F_1(x^*)/G_1(x^*) = F_2(x^*)/G_2(x^*)$$
 (2.5)

could also be recovered using the tangency argument.

- Recall in our Chapter 1 example, the optimality requires the tangency of the budget line and the indifference curve.
- In the general case, similar observation is still valid.

We could obtain the optimality condition with the help of the graph:

- The curve G(x) = c is the constraint.
- The curves F(x) = v, F(x) = v', F(x) = v'' are samples of indifference curves.
- The indifference curves to the right attains higher value compares to those on the left.
- The optimal x^* is attained when the constraint G(x) = c is tangent to an indifference curve F(x) = v.

- We next look for the tangency condition.
- For G(x) = c, tangency means dG(x) = 0. From (2.2), we have

$$dG(x) = G_1(x)dx_1 + G_2(x)dx_2 = 0 (2.2)$$

$$\Longrightarrow dx_2/dx_1 = -G_1(x)/G_2(x). \tag{2.7}$$

• Similarly, for the indifference curve F(x) = v, tangency means dF(x) = 0. From (2.1), we have

$$dF(x) = F_1(x)dx_1 + F_2(x)dx_2 = 0$$
 (2.1)

$$\Longrightarrow dx_2/dx_1 = -F_1(x)/F_2(x). \tag{2.8}$$

Recall,

$$dx_2/dx_1 = -G_1(x)/G_2(x);$$
 (2.7)

$$dx_2/dx_1 = -F_1(x)/F_2(x). (2.8)$$

- Since G(x) = c and F(x) = v are mutually tangential at $x = x^*$, we get $F_1(x^*)/F_2(x^*) = G_1(x^*)/G_2(x^*)$.
- The above condition is equivalent to (2.5):

$$F_1(x^*)/G_1(x^*) = F_2(x^*)/G_2(x^*)$$
 (2.5)

• Note that if $G_1(x) = G_2(x) = 0$, the slope in (2.7) is not well defined.³

$$dx_2/dx_1 = -G_1(x)/G_2(x).$$
 (2.7)

• We avoid this problem by imposing the *Constraint Qualification* condition as discussed in Subsection 2.C.

³Only $G_2(x) = 0$ is not a serious problem. It only means that the slope is vertical.

2.E. Necessary vs. Sufficient Conditions

• Recall, in Subsection 2.B, we established the result:

Remark. If an interior point x^* is a maximum, then $(2.5) F_1(x^*)/G_1(x^*) = F_2(x^*)/G_2(x^*)$ holds.

- In other words, (2.5) is only a necessary condition for optimality.
- Since the first-order derivatives are involved, it is called the first-order necessary condition.

- First-order necessary condition helps us narrow down the search for the maximum.
- However, it does not guarantee the maximum.

Consider the following unconstrained maximization problem:

- We want to maximize F(x).
- The first-order necessary condition for this problem is

$$F'(x) = 0. (2.9)$$

- All x_1 , x_2 , x_3 and x_4 satisfy condition (2.9).
- However, only x_3 is the global maximum that we are looking for.

First-order necessary condition: local maximum

- x_1 is a local maximum but not a global one.
- The problem occurs since when we apply first-order approximation, we only check whether F(x) could be improved by making infinitesimal change in x.
- Therefore, we obtain a condition for local peaks.

First-order necessary condition: minimum

- x_2 is a minimum.
- This problem occurs since first-order necessary condiition for minimum is the same as that for maximum.
- More specifically, this is because minimizing F(x) is the same as maximizing -F(x).
- First-order necessary condition: F'(x) = 0

First-order necessary condition: saddle point

- x_4 is called a *saddle point*.
- You could think of $F(x) = x^3$ as a concrete example.
- We have F'(0) = 0, but x = 0 is neither a maximum nor a minim

- We used unconstrained maximization problem for easy illustration.
- The problems remain for constrained maximization problem.

Stationary point

- Any point satisfying the first-order necessary conditions is called a stationary point.
- The global maximum is one of these points.
- We will learn how to check whether a point is indeed a maximum in Chapters 6 to Chapter 8.

2.F. Lagrange's Method

In this subsection, we will explore a general method, called Lagrange's Method, to solve the constrained maximization problem restated as follows:

$$\max_{x} F(x)$$

s.t.
$$G(x) = c$$
.

• We introduce an unknown variable λ^4 and define a new function, called the Lagrangian:

$$\mathcal{L}(x,\lambda) = F(x) + \lambda \left[c - G(x) \right] \tag{2.10}$$

• Partial derivatives of \mathcal{L} give

$$\mathcal{L}_j(x,\lambda) = \partial \mathcal{L}/\partial x_j = F_j(x) - \lambda G_j(x)$$
 (\mathcal{L}_j)

$$\mathcal{L}_{\lambda}(x,\lambda) = \partial \mathcal{L}/\partial \lambda = c - G(x)$$
 (\mathcal{L}_{λ})

⁴You would see in a minute that this λ is the same as that in Subsection 2.B.

• Restate (\mathcal{L}_j)

$$\mathcal{L}_j(x,\lambda) = \partial \mathcal{L}/\partial x_j = F_j(x) - \lambda G_j(x)$$
 (\mathcal{L}_j)

• Recall first-order necessary condition (2.5)

$$F_1(x^*)/G_1(x^*) = F_2(x^*)/G_2(x^*) = \lambda$$
 (2.5)

• First-order necessary condition is just

$$\mathcal{L}_j(x,\lambda) = 0.$$

• Restate (\mathcal{L}_{λ})

$$\mathcal{L}_{\lambda}(x,\lambda) = \partial \mathcal{L}/\partial \lambda = c - G(x) \tag{\mathcal{L}_{λ}}$$

- Recall constraint: G(x) = c.
- The constraint is simply

$$\mathcal{L}_{\lambda}(x,\lambda) = 0.$$

Theorem 2.1 (Lagrange's Theorem). Suppose x is a two-dimensional vector, c is a scalar, and F and G functions taking scalar values. Suppose x^* solves the following maximization problem:

$$\max_{x} F(x)$$

s.t.
$$G(x) = c$$
,

and the constraint qualification holds, that is, if $G_j(x^*) \neq 0$ for at least one j.

Theorem 2.1 (continued).

Define function \mathcal{L} as in (2.10):

$$\mathcal{L}(x,\lambda) = F(x) + \lambda \left[c - G(x) \right]. \tag{2.10}$$

Then there is a value of λ such that

$$\mathcal{L}_j(x^*, \lambda) = 0 \text{ for } j = 1, 2 \qquad \mathcal{L}_{\lambda}(x^*, \lambda) = 0.$$
 (2.11)

- Please always keep in mind that the theorem only provide necessary conditions for optimality.
- Besides, Condition (2.11) do not guarantee existence or uniqueness of the solution.

- If conditions in (2.11) have no solution, it may be that
 - the maximization problem itself has no solution,
 - or the *Constraint Qualification* may fail so that the first-order conditions are not applicable.
- If (2.11) have multiple solutions, we need to check the second-order conditions.⁵

⁵We will learn Second-Order Conditions in Chapter 8.

In most of our applications, the problems will be well-posed and the first-order necessary condition will lead to a unique solution.

2.G. Examples

In this subsection, we will apply the Lagrange's Theorem in examples.

Example 1. Preferences that Imply Constant Budget Shares.

- Consider a consumer choosing between two goods x
 and y, with prices p and q respectively.
- His income is I, so the budget constraint is px+qy=I.
- Suppose the utility function is

$$U(x,y) = \alpha \ln(x) + \beta \ln(y).$$

• What is the consumer's optimal bundle (x, y)?

Example 1: Solution.

First, state the problem:

$$\max_{x,y} U(x,y) \equiv \max_{x,y} \alpha \ln(x) + \beta \ln(y)$$
 s.t. $px + qy = I$.

Then, we apply Lagrange's Method.

i. Write the Lagrangian:

$$\mathcal{L}(x, y, \lambda) = \alpha \ln(x) + \beta \ln y + \lambda \left[I - px - qy \right].$$

Example 1: Solution (continued)

ii. First-order necessary conditions are

$$\partial \mathcal{L}/\partial x = \alpha/x - \lambda p = 0,$$
 (2.12)

$$\partial \mathcal{L}/\partial y = \beta/y - \lambda q = 0,$$
 (2.13)

$$\partial \mathcal{L}/\partial \lambda = I - px - py = 0.$$
 (2.14)

Solving the equation system, we get

$$x = \frac{\alpha I}{(\alpha + \beta)p}, \qquad y = \frac{\beta I}{(\alpha + \beta)q}, \qquad \lambda = \frac{(\alpha + \beta)}{I}.$$

Example 1: Solution (continued)

$$x = \frac{\alpha I}{(\alpha + \beta)p}, \qquad y = \frac{\beta I}{(\alpha + \beta)q}.$$

We call this demand implying constant budget shares since the share of income spent on the two goods are constant:

$$\frac{px}{I} = \frac{\alpha}{\alpha + \beta}, \qquad \frac{qy}{I} = \frac{\beta}{\alpha + \beta}.$$

Example 2: Guns vs. Butter.

- Consider an economy with 100 units of labor.
- It can produce guns x or butter y.
- To produce x guns, it takes x^2 units of labor; likewise y^2 units of labor are needed to produce y butter.
- Therefore, the economy's resource constraint is

$$x^2 + y^2 = 100.$$

Example 2: Guns vs. Butter.

- Let a and b be social values attached to guns and butter.
- And the objective function to be maximized is

$$F(x,y) = ax + by.$$

• What is the optimal amount of guns and butter?

Example 2: Solution.

First, state the problem:

$$\max_{x,y} F(x,y) \equiv \max_{x,y} ax + by$$
 s.t. $x^2 + y^2 = 100$.

Then, we apply Lagrange's Method.

i Write the Lagrangian:

$$\mathcal{L}(x, y, \lambda) = ax + by + \lambda \left[100 - x^2 - y^2 \right].$$

Example 2: Solution (continued)

ii. First-order necessary conditions are

$$\partial \mathcal{L}/\partial x = a - 2\lambda x = 0,$$

 $\partial \mathcal{L}/\partial y = b - 2\lambda y = 0,$
 $\partial \mathcal{L}/\partial \lambda = 100 - x^2 - y^2 = 0.$

Solving the equation system, we get

$$x = \frac{10a}{\sqrt{a^2 + b^2}}, \qquad y = \frac{10b}{\sqrt{a^2 + b^2}}, \qquad \lambda = \frac{\sqrt{a^2 + b^2}}{20}.$$

Example 2: Solution (continued)

$$x = \frac{10a}{\sqrt{a^2 + b^2}}, \qquad y = \frac{10b}{\sqrt{a^2 + b^2}}.$$

- Here, the optimal values x and y are called homogeneous of degree 0 with respect to a and b.
 - If we increase a and b in equal proportions, the values of x and y would not change.
 - In other words, x would increase only when a increases relatively more than the increment of b.

Example 2: Solution (continued)

Remark. It is always useful to use graphs to help you think.

