Топологическая сортировка

Материал из Википедии — свободной энциклопедии

Топологическая сортировка — упорядочивание вершин <u>бесконтурного ориентированного графа</u> согласно <u>частичному</u> порядку, заданному ребрами орграфа на множестве его вершин.

Содержание

Пример

Алгоритм Кана (1962)

Пример работы алгоритма

Алгоритм Тарьяна (1976)

Пример

Применение

См. также

Ссылки

Литература

Пример

— Для графа $G = \Big(\big\{ 2, 3, 5, 7, 8, 9, 10, 11 \big\}, \big\{ (3, 8), (3, 10), (5, 11), (7, 11), (7, 8), (8, 9), (11, 2), (11, 9), (11, 10) \big\} \Big)$

существует несколько согласованных последовательностей его вершин, которые могут быть получены при помощи топологической сортировки, например:

- **7**, 5, 11, 3, 8, 2, 9, 10
- **3**, 7, 5, 8, 11, 10, 9, 2

Видно, что в последовательности могут быть переставлены любые две стоящие рядом вершины, которые не входят в отношение <u>частичного порядка</u> \boldsymbol{E} .

Бесконтурный ориентированный граф

Алгоритм Кана (1962)

Один из первых алгоритмов, и наиболее приспособленный к исполнению вручную.

Пусть дан бесконтурный ориентированный простой граф G = (V, E). Через $A(v), v \in V$ обозначим множество вершин таких, что $u \in A(v) \Leftrightarrow (u, v) \in E$. То есть, A(v) — множество всех вершин, из которых есть дуга в вершину v. Пусть P — искомая последовательность вершин.

```
egin{array}{ll} \mathsf{пока} \ |P| < |V| \ & \mathsf{выбрать} \ \mathit{любую} \ \mathsf{вершину} \ v \ \mathsf{такую,} \ \mathsf{что} \ A(v) = \varnothing \ \mathsf{u} \ v 
otin P \leftarrow P, v \ & \mathsf{удалить} \ v \ \mathsf{us} \ \mathsf{всех} \ A(u), u 
eq v \ \end{array}
```

i

Наличие хотя бы одного контура в графе приведёт к тому, что на определённой <u>итерации</u> цикла не удастся выбрать новую вершину \boldsymbol{v} .

Пример работы алгоритма

Пусть	задан	граф
$G=\Big(ig\{a,b,c,d,eig\},ig\{(a,b,c,d,e,e,e,e)\}\Big)$	$(a,b),(a,c),(a,d),(a,e),(b,d),(c,d),(c,e),(d,e)\}\Big)$.	В
таком случае алгоритм в	ыполнится следующим образом:	

шаг	$oldsymbol{v}$	A(a)	A(b)	A(c)	A(d)	A(e)	P
0	_	Ø	\boldsymbol{a}	\boldsymbol{a}	a,b,c	a, c, d	Ø
1	\boldsymbol{a}	Ø	Ø	Ø	b, c	c,d	\boldsymbol{a}
2	\boldsymbol{c}	Ø	Ø	Ø	b	d	a, c
3	b	Ø	Ø	Ø	Ø	d	a,c,b
4	d	Ø	Ø	Ø	Ø	Ø	a,c,b,d
5	e	Ø	Ø	Ø	Ø	Ø	a,c,b,d,e

На втором шаге вместо $oldsymbol{c}$ может быть выбрана вершина $oldsymbol{b}$, поскольку порядок между $oldsymbol{b}$ и $oldsymbol{c}$ не задан.

Алгоритм Тарьяна (1976)

На компьютере топологическую сортировку можно выполнить за O(n) времени и памяти, если обойти все вершины, используя поиск в глубину, и выводить вершины в момент выхода из неё.

Другими словами алгоритм состоит в следующем:

- Изначально все вершины белые.
- Для каждой вершины делаем шаг алгоритма.

Шаг алгоритма:

- Если вершина чёрная, ничего делать не надо.
- Если вершина серая найден цикл, топологическая сортировка невозможна.
- Если вершина белая
 - Красим её в серый
 - Применяем шаг алгоритма для всех вершин, в которые можно попасть из текущей
 - Красим вершину в чёрный и помещаем в окончательный список.

Пример

Пример будет на том же графе, однако порядок, в котором выбираем вершины для обхода — c, d, e, a, b.

Шаг	Текущая	Белые	Стек (серые)	Выход (чёрные)
0	_	a, b, c, d, e	_	_
1	С	a, b, d, e	С	_
2	d	a, b, e	c, d	_
3	е	a, b	c, d, e	_
4	d	a, b	c, d	е

5	С	a, b	С	d, e
6	_	a, b	_	c, d, e
7	d	a, b	_	c, d, e
8	е	a, b	_	c, d, e
9	а	b	a	c, d, e
10	b	_	a, b	c, d, e
11	а	_	a	b, c, d, e
12	_	_	_	a, b, c, d, e
13	b	_	_	a, b, c, d, e

Применение

При помощи топологической сортировки строится корректная последовательность выполнения действий, всякое из которых может зависеть от другого: последовательность прохождения учебных курсов студентами, установки программ при помощи пакетного менеджера, сборки исходных текстов программ при помощи Makefile'ов.

Можно построить список отображения объектов в изометрической проекции зная парные порядковые отношения между объектами (какой из двух объектов должен быть прорисован раньше).

См. также

Алгоритм Демукрона

Ссылки

- Пример алгоритма топологической сортировки на Python, C++, Pascal (http://acm.mipt.ru/twiki/bin/view/Algorit hms/TopologicalSort)
- Топологическая сортировка при помощи поиска в глубину реализация на C++ (http://e-maxx.ru/algo/topological_sort)
- Топологическая сортировка на Pascal за O(n + m) от Никлауса Вирта (http://math.scu.edu/~dsmolars/ma169/mpss02/ada.html)

Литература

- <u>Левитин А. В.</u> Глава 5. Метод уменьшения размера задачи: Топологическая сортировка // <u>Алгоритмы.</u> Введение в разработку и анализ М.: Вильямс, 2006. С. 220–224. 576 с. ISBN 978-5-8459-0987-9
- *Кормен, Т., Лейзерсон, Ч., Ривест, Р., Штайн, К.* **Глава 22.4. Топологическая сортировка** // Алгоритмы: построение и анализ = Introduction to Algorithms / Под ред. И. В. Красикова. 2-е изд. <u>М.</u>: Вильямс, 2005. C. 632-635. ISBN 5-8459-0857-4.

Источник — https://ru.wikipedia.org/w/index.php?title=Топологическая_сортировка&oldid=97449632

Эта страница в последний раз была отредактирована 13 января 2019 в 15:14.

Текст доступен по <u>лицензии Creative Commons Attribution-ShareAlike</u>; в отдельных случаях могут действовать дополнительные условия.

... Wikipedia® — зарегистрированный товарный знак некоммерческой организации Wikimedia Foundation, Inc.