ENGR 250 Numerical Methods with MATLAB 2015 Winter Quarter

Homework Assignment #4

Due: Feb. 25 (Wednesday)

You should submit your M-file, named **HW4_yourEmailAccount**, by email "pandrist@greenriver.edu". As a reminder, due times will be: Wednesday before class, Thursday (any time), Friday (any time)

1. Least-Square : Linear Line

Write your own least-squares method to fit a straight line to:

Plot the data and the regression line with $0 \le x \le 19$ and $\Delta x = 0.1$. Comment out plot before submission. I will be checking to see if plot is there.

- save the regressed y value when x = 7.83 on **HW4_1.dat** file
- save the regressed y value when x = 14.04 on **HW4_2.dat** file
- save the y values of the regression line on $\mathbf{HW4_3.dat}$ file

Repeat the problem, but regress x versus y - that is, switch the variable. Plot the data and the regression line with $5 \le y \le 12$ and $\Delta y = 0.1$.

- save the regressed x value when y=6.24 on $\mathbf{HW4_4.dat}$ file
- save the regressed x value when y = 11.32 on **HW4_5.dat** file
- save the x values of the regression line on $\mathbf{HW4_6.dat}$ file

2. Least-Square: Power Model

Fit the following data with the power model $(y = ax^b)$ using Matlab's fminsearch to minimize the squared error. Start with an initial guess of a = 1, b = 1

Plot the data and the regression line with $2.5 \le x \le 20.2$ and $\Delta x = 0.1$.

- save the regressed f(9.8) value on **HW4_7.dat** file
- save the regressed f(18.75) value on **HW4_8.dat** file
- save the f(x) values of the regression line on $HW4_9.dat$ file

3. Least-Square: MatLab Commands

Use the MatLab commands, i.e., 'polyfit', 'polyval', 'interp1' and so on, make dat files.

With 'polyfit' (7th order polynomial) & 'polyval' command and $2.5 \le x \le 20$ and $\Delta x = 0.1$, make following dat files and submit them.

- save the regressed f(9.5) value on $\mathbf{HW4_10.dat}$ file
- save the regressed f(13) value on $\mathbf{HW4_11.dat}$ file
- save the f(x) values of the regression line on **HW4_12.dat** file

With 'interp1' command and $2.5 \le x \le 20$ and $\Delta x = 0.1$, make following dat files and submit them.

- save the regressed f(9.5) value on $\mathbf{HW4_13.dat}$ file
- save the f(x) values of the regression line on $\mathbf{HW4_14.dat}$ file

With 'interp1' (nearest option) command and $2.5 \le x \le 20$ and $\Delta x = 0.1$, make following dat files and submit them.

- save the regressed f(9.5) value on **HW4_15.dat** file
- save the f(x) values of the regression line on **HW4_16.dat** file

With 'interp1' (spline option) command and $2.5 \le x \le 20$ and $\Delta x = 0.1$, make following dat files and submit them.

- save the regressed f(9.5) value on $\mathbf{HW4_17.dat}$ file
- save the f(x) values of the regression line on **HW4_18.dat** file

4. Multi-Dimensional Interpolation

Temperatures are measured at various points on a heated plate.

	x = 0	x = 2	x = 4	x = 6	x = 8
y = 0	100.00	90.00	80.00	70.00	60.00
y=2	85.00	64.45	53.56	48.15	50.00
y=4	70.00	48.90	38.43	35	40.00
y = 6	55.00	38.79	30.39	27.27	30.00
y = 8	40.00	35.00	30.00	25.00	20.00

Make following dat files and submit them using Matlab's interp2 command with the linear (default) option.

- save the estimated temperature at $x=4.2,\,y=3.3$ on $\mathbf{HW4_19.dat}$ file
- save the estimated temperature at $x=4.4,\,y=2.8$ on $\mathbf{HW4_20.dat}$ file
- save the estimated temperature at $x=6.6,\,y=5.7$ on ${\bf HW4.21.dat}$ file
- save the estimated temperatures with $0 \le x \le 8,~0 \le y \le 8,$ and $\Delta x = \Delta y = 0.25$ on **HW4_22.dat** file