2nd-YEAR PHD REPORT

Orestis Melkonian October 11, 2021

YEAR 3: RECAP

RECAP

Mechanising the meta-theory of two separate objects of study:

- BitML: Bitcoin Modelling Language
- The (extended) UTxO model

UTxO [2018-2020]

UTxO [2018-2020]

WTSC @ FC'20

The Extended UTxO Model

M.Chakravarty, J.Chapman, K.MacKenzie, O.Melkonian, M.P.Jones, P.Wadler

ВітМL [2018-2020]

PhD-₹

YEAR 33: WHERE I'VE BEEN...

UTxO [2020-2021]

UTxO [2020-2021]

UTxO [2020-2021]

RSC @ **ISoLA'20**: *UTxO_{ma}*: *UTxO* with Multi-Asset Support

RSC @ ISoLA'20: Native Custom Tokens in the Extended UTxO Model

SEPARATION LOGIC FOR UTXO

- In collaboration with W.Swierstra (UU) and J.Chapman (IOHK)

SEPARATION LOGIC FOR UTXO

• In collaboration with W.Swierstra (UU) and J.Chapman (IOHK)

Blockchain		Concurrency Theory
ledgers	\longleftrightarrow	computer memory
memory locations	\longleftrightarrow	accounts
data values	\longleftrightarrow	account balances
smart contracts	\longleftrightarrow	programs accessing memory

SEPARATION LOGIC FOR UTXO

• In collaboration with W.Swierstra (UU) and J.Chapman (IOHK)

Blockchain		Concurrency Theory
ledgers	\longleftrightarrow	computer memory
memory locations	\longleftrightarrow	accounts
data values	\longleftrightarrow	account balances
smart contracts	\leftrightarrow	programs accessing memory

Transfer results from (Concurrent) Separation Logic!

HOARE-STYLE SEMANTICS AND CORRESPONDENCES

HOARE-STYLE SEMANTICS AND CORRESPONDENCES

SL: [FRAME] rule
$$\frac{l\#R \quad \{P\}l\{Q\}}{\{P*R\}l\{Q*R\}}$$

HOARE-STYLE SEMANTICS AND CORRESPONDENCES

SL: [FRAME] rule

$$\frac{l\#R \quad \{P\}l\{Q\}}{\{P*R\}l\{Q*R\}}$$

CSL: [PARALLEL] rule

$$\frac{l_1 \parallel l_2 = l \quad l_1 \# P_2 \quad l_2 \# P_1}{\{P_1\} l_1 \{Q_1\} \quad \{P_2\} l_2 \{Q_2\}}$$
$$\frac{\{P_1 * P_2\} l \{Q_1 * Q_2\}}{\{Q_1 * Q_2\}}$$

ВітМL [2020-2021]

PhD-₹

ВітМL [2020-2021]

BITML: COHERENCE

Definition 20 (Coherence). We inductively define the relation coher (Rs, Rc, r, txout, sechash, k), where (i) Rs is a symbolic run, (ii) Rc is a computational run, (iii) r is a randomness source, (iv) txout is an injective function from names x (occurring in R^s) to transaction ouputs (T, o) (where T occurs in Rc), respecting values; (v) sechash is a mapping from secret names a (occurring in Rs) to bitstrings; (vi) κ maps triples ($\{G\}C, D, A$), where D is a subterm of C, to public keys.

Base case: $coher(R^s, R^c, r, txout, sechash, \kappa)$ holds if all the following conditions hold: (i) $R^s = \Gamma_0 \mid 0$, with Γ_0 initial; (ii) $R^c = \Gamma_0 \cdot \cdot \cdot$ initial; (iii) all the public keys in R^c are generated from r, according to Definition 13; (iv) txout maps exactly the x of $(A, v)_x$ in Γ_0 to an output in Γ_0 of value $v\beta$, and spendable with $\hat{K}_A(r_A)$; (v) dom $sechash = \emptyset$; (vi) dom $\kappa = \emptyset$.

Inductive case: $coher(\dot{R}^s \xrightarrow{\alpha} \Gamma \mid t, \dot{R}^c X^c, r, txout, sechash, \kappa)$ holds if coher(Rs, Rc, r, txout', sechash', K') and one of the following cases applies.

- α = advertise({G}C), X = A → * : C, where C is obtained by encoding $\{G\}C$ as a bitstring, representing each x in it as the transaction output txout'(x). Further, txout' = txout, sechash' = sechash and $\kappa' = \kappa$.
- (2) α = A : {G}C, Δ, where: (i) for some B, R^c contains B → * : C, where C is obtained from IGIC and trout' as in Item 1. Note that Re might contain several such messages; below, we let C represent the first occurrence. (ii) for some B, $\lambda^{c} = B \rightarrow * : (C, \vec{h}, \vec{k})$ (signed by A), where \vec{h} is a sequence comprising a bitstring h_i with $|h_i| = \eta$ for each secret a_i in Δ , and \vec{k} is a sequence of keys, as the one produced by the stipulation protocol. We require that λ^c is the first occurrence, in the run R^c , of such a message after C. (iii) Let N_i be the length of a_i fixed in Δ . If $N_i \neq \bot$, we require that \dot{R}^{c} contains, for some B, a query to the oracle B \rightarrow O : m_{i} , and a subsequent reply $O \rightarrow B : h_i$ such that $|m_i| = \eta + N_i$. Otherwise, if $N_i = \bot$, we require that h_i does not occur as a reply from O to any query of length $\geq \eta$. (iv) No hash is reused: the h_i are pairwise distinct, and also distinct from sechash'(b) for any $b \in dom(sechash')$, (v) txout = txout'. (vi) sechash extends sechash' so that for each secret ai we have $sechash(a_i) = h_i$. (vii) If $A \in Hon$, we define κ by extending κ' according to \vec{k} , so to record the public keys of all participants occurring in G for each subterm D of C. If κ' already defines such keys, or $A \notin Hon$, we let $\kappa = \kappa'$.
- (3) $\alpha = A : \{G\}C, x$, where: (i) $\mathcal{X} = B \rightarrow * : m$ for some B, where m is the signature of the transaction T_{init} of $B_{adv}(\{G\}C)$ relatively to the input x with $\hat{K}_A(r_A)$. The parameters of the compiler are set as follows: part, Part G and val are inferred from G, we let txout = txout', sechash = sechash', and $K(B) = \hat{K}_{p}^{p}(r_B), K(D, B) = \kappa'(\{G\}C, D, B)$ for each B,

- in Body ((G)C). The needed compiler parameters are obtained as in Item 3. (iii) sechash = sechash', $\kappa = \kappa'$, and txout extends txout', mapping z to Tinit.
- (5) α = A : x, D, where: (i) R^s contains (C', v)_x with C' = D+Σ_i D_i for some D = A : D', (ii) In R^s , we find that $(C', v)_v$ has $\{G\}C$ as its ancestor advertisement. (iii) $\lambda^{c} = B \rightarrow *: m$, where m is a signature with key $\kappa'(\{G\}C, D, A)$ of the first transaction T in Bn(D, D, T', o, v, PartG, 0), where (T', o) = txout'(x). The compiler parameters are obtained as in Item 3. (iv) txout = txout', sechash = sechash', and $\kappa = \kappa'$. (v) \dot{R}^c contains $B \to * : T$ for some B, and m is the first signature of T in $R^c X^c$ after the first broadcast of T.
- (6) $\alpha = put(\vec{x}, \vec{a}, y)$, where: (i) $\vec{x} = x_1 \cdots x_k$. (ii) In Γ_{ir} , the action α consumes $\langle D + C, v \rangle_{ij}$ and the deposits $\langle A_i, v_i \rangle_{x_i}$ to produce $(C', v')_{n'}$, where $D = \cdots : put \cdots reveal \cdots : C'$ Let t be maximum deadline in an after in front of D. (iii) In \dot{R}^s , we find that $(D + C, v)_{ij}$ has $\{G\}C''$ as its ancestor advertisement, for some G and C". (iv) $\lambda^{c} = T$ where T is the first transaction of $B_C(C', D, T', o, v', \vec{x}, PartG, t)$, where (T', o) = txout'(y). The compiler parameters are obtained as in Item 3. (v) txout extends txout' so that y' is mapped
- to (T, 0), sechash = sechash', and $\kappa = \kappa'$. (7) $\alpha = A : a$, where: (i) $\lambda^c = B \rightarrow * : m$ from some B with |m| > n.(ii) $\dot{R}^{C} = \cdots (B \rightarrow O : m)(O \rightarrow B : sechash'(a)) \cdots$. for some B. (iii) txout = txout', sechash = sechash' and $\kappa = \kappa'$, (iv) In \dot{R}^s we find an A: $\{G\}C$, Δ action, with a in G, with a corresponding broadcast in \dot{R}^c of m' = (C, h, k). (v) X is the first broadcast of m in Rc after the first broad-
- (8) $\alpha = split(y)$, where: (i) In \dot{R}^s , the action α consumes $\langle D + C, v \rangle_H$ to obtain $(C_0, v_0)_{x_0} | \cdots | (C_k, v_k)_{x_k}$ where $D = \cdots$: split $\vec{v} \rightarrow \vec{C}$ and $\vec{C} = C_0 \dots C_k$. Let t be the maximum deadline in an after in front of D. (ii) In R^s , we find that $(D + C, v)_H$ has $\{G\}C'$ as its ancestor advertisement. (iii) $\lambda^{c} = T$ where Tis the first transaction of $\hat{B}_{max}(\vec{C}, D, T', o, PartG, t)$ where (T', o) = txout'(u). The compiler parameters are obtained as for Item 3. (iv) txout extends txout' mapping each x_i to (T, i), sechash = sechash', and $\kappa = \kappa'$.
- (9) α = withdraw(A, v, u), where: (i) In R^s, the action α consumes $(D + C, v)_n$ to obtain $(A, v)_n$, where $D = \cdots$: withdraw A. (ii) In \dot{R}^s , we find that $(D + C, v)_w$ has (G)C' as its ancestor advertisement. (iii) X = T where T is the first transaction of $B_D(D, D, T', o, v, PartG, 0)$ where (T', o) = txout'(v). The compiler parameters are obtained as for Item 3. (iv) txout extends txout' mapping x to (T,0), sechash = sechash', and $\kappa = \kappa'$.
- (10) α = A : x, x', where: (i) In R^s we find (A, v), and (A, v'). (ii) In \dot{R}^c we find $B \rightarrow * : T$ for some B, T, where T has as its two inputs txout'(x) and txout'(x'), and a single output of

- (11) $\alpha = join(x, y)$, where: (i) In R^s the action α spends and $(A, v')_{v'}$ to obtain $(A, v + v')_{u}$. (ii) $\mathcal{F} = T$ is action having as inputs txout'(x) and txout'(x'), a ing one output of value v + v' redeemable with (iii) txout extends txout' mapping u to (T, 0), sechasi and $\kappa = \kappa'$
- (12) α = A : x, v, v'. Similar to Item 10.
- (13) α = divide(x, v, v'). Similar to Item 11.
- (14) α = A : x, B. Similar to Item 10.
- (15) α = donate(x, B), Similar to Item 11.
- (16) $\alpha = A : \vec{y}, j$, where: (i) $\vec{y} = y_1 \cdots y_k$. (ii) In \hat{R}^g $(B_i, v_i)_u$, for $i \in 1..k$, with $B_i = A$. (iii) In R^c : B → * : T for some B, T, where T has as its $txout'(y_i)$ for $i \in 1...k$, and possibly others not in ran (iv) $X = B \rightarrow * : m \text{ from some } B, m \text{ where } m \text{ is }$ ture of T with $\hat{K}_{A}(r_{A})$, corresponding to the i-ti (v) λ^c is the first broadcast of m in \dot{R}^c after the first cast of T. (vi) & does not correspond to any of th cases, i.e. there is no other symbolic action α for $\dot{R}^{s}\alpha$ would be coherent with $\dot{R}^{c}\lambda^{c}$. (vii) txout = sechash = sechash', and $\kappa = \kappa'$.
- (17) $\alpha = destroy(\vec{x})$, where: (i) $\vec{x} = x_1 \cdots x_L$, (ii) In \hat{R}^s sumes $(A_i, v_i)_v$ to obtain 0. (iii) $\lambda^c = T$ from some ing as inputs $txout'(x_1), \dots, txout'(x_k)$, and possi ers not in ran txout'. (iv) X does not correspond to the other cases, i.e. there is no other symbolic action which $\dot{R}^s \alpha$ would be coherent with $\dot{R}^c \mathcal{X}$. (v) txout = sechash = sechash', and $\kappa = \kappa'$.
- (18) $\alpha = \delta = \lambda^c$, and txout = txout', sechash = sechast

Inductive case 2: the predicate coher(R^s , $R^c\lambda^c$, r, txout, sec holds if coher (R8, Rc, r, txout, sechash, K), and one of the fo cases applies:

- λ^c = T where no input of T belongs to ran txout.
- (2) $\lambda^c = A \rightarrow O : m \text{ or } \mathcal{E} = O \rightarrow A : m \text{ for some } A, n$
- (3) λ^c = A → * : m, where X does not correspond symbolic move, according to the first inductive ca

We write $R^s \sim_r R^c$ iff $coher(R^s, R^c, r, txout, sechash, \kappa)$ for txout, sechash, and k.

The following lemma is the active contracts analogous of I

Both results are proved by induction on the definition of col Lemma 6. Let coher(Rs, Rc, r, txout, sechash, x). For each contract (C, v) - occurring in \(\Gamma_{\text{ps}}\), there exists a corresponding transaction output (T, o) in Bgc with value v. Further, T is ge by the invoking the compiler as $B_C(C, D_0, T', o', v, I, P, t)$ values of D_{θ} , T', σ' , I, P, t, or as $B_{nar}(\vec{C}, D_{\theta}, T'\sigma', \vec{v}, P, t)$ fvalues of \vec{C} , D_0 , T', o', \vec{v} , P, t such that $C = \vec{C}_{o+1}$ and v:

using parameters trout sechash K

AGDA2HS

```
data Tree {l u : Nat} : Set where
   Leaf : \{pf: l \le u\} \rightarrow \mathsf{Tree} \{l\} \{u\}
   Node: (x: Nat)
     \rightarrow Tree \{l\} \{x\} \rightarrow Tree \{x\} \{u\}
     \rightarrow Tree {l} {u}
{-# COMPILE AGDA2HS Tree #-}
insert : \{l \ u : Nat\} (x : Nat)
  \rightarrow Tree \{l\}\{u\}
  \rightarrow \{l \le x\} \rightarrow \{x \le u\}
  \rightarrow Tree \{l\}\{u\}
insert x Leaf \{l \le x\} \{x \le u\} =
   Node x (Leaf {pf = l \le x}) (Leaf {pf = x \le u})
insert x (Node y l r) {l \le x} {x \le u} =
  case compare x y of \lambda where
     (LT \{ pf = x \le y \}) \rightarrow Node \ y (insert \ x \ l \{ l \le x \} \{ x \le y \}) \ r
     (EQ \{pf = x \equiv y\}) \rightarrow Node \ y \ l \ r
     (GT \{pf = y \le x\}) \rightarrow Node \ y \ l \ (insert \ x \ r \{y \le x\} \{x \le u\})
{-# COMPILE AGDA2HS insert #-}
```

AGDA2HS: TYPECLASSES

```
record Show (a: Set): Set where
  field show
                    : a \rightarrow String
        showsPrec : Nat \rightarrow a \rightarrow ShowS
        showList : List a \rightarrow ShowS
record Show<sub>1</sub> (a: Set): Set where
  field showsPrec: Nat \rightarrow a \rightarrow ShowS
  show: a \rightarrow String
  show x = \text{showsPrec } 0 \ x'''
  showl ist: List a \rightarrow ShowS
  showList = defaultShowList (showsPrec 0)
record Show<sub>2</sub> (a: Set): Set where
  field show: a \rightarrow String
  showsPrec: Nat \rightarrow a \rightarrow ShowS
  showsPrec x s = \text{show } x ++ s
  showl ist: List a \rightarrow ShowS
  showList = defaultShowList (showsPrec 0)
open Show {{...}}
{-# COMPILE AGDA2HS Show class Show, Show, #-}
instance
  ShowMaybe : \{\{Show\ a\}\}\rightarrow Show\ (Maybe\ a)
  ShowMaybe \{a = a\} = \text{record } \{\text{Show}_1 \text{ s}_1\}
    where
    s_1: Show<sub>1</sub> (Maybe a)
    s_1.Show<sub>1</sub>.showsPrec n = \lambda where
       Nothing → showString "nothing"
       (lust x) \rightarrow showParen true
         (showString "just " ∘ showsPrec 10 x)
{-# COMPILE AGDA2HS ShowMaybe #-}
```

```
class Show a where
show :: a -> String
showsPrec :: Natural -> a -> ShowS
showList :: [a] -> ShowS
{-# MINIMAL showsPrec | show #-}
show x = showsPrec 0 x ""
showList = defaultShowList (showsPrec 0)
showsPrec _ x s = show x ++ s

instance (Show a) => Show (Maybe a) where
showsPrec n = \case
Nothing -> showString "nothing"
(Just x) -> showParen True
(showString "just " . showsPrec 10 x)
```

AGDA2HS: TYPECLASSES

```
record Show (a: Set): Set where
field show : a \rightarrow String
showsPrec: Nat \rightarrow a \rightarrow ShowS
showList: List a \rightarrow ShowS
record Show, (a: Set): Set where
field showsPrec: Nat \rightarrow a \rightarrow ShowS
show: a \rightarrow String
show x = showsPrec 0 x'''
```

CPP @ POPL'22

Reasonable Agda is Correct Haskell: Intrinsic Program Verification using AGDA2Hs

J.Cockx, O.Melkonian, J.Chapman, U.Norell + TU Delft students

```
showList = defaultShowList (showsPrec 0)
open Show {{...}}
{# COMPILE AGDA2HS Show class Show₁ Show₂ #}
instance
ShowMaybe : {{Show a}} → Show (Maybe a)
ShowMaybe {a = a} = record {Show₁ s₁}
where
s₁: Show₁ (Maybe a)
s₁. Show₁, showsPrec n = λ where
Nothing → showString "nothing"
(Just x) → showParen true
(showString "just" * showsPrec 10 x)
{-# COMPILE AGDA2HS ShowMaybe #-}
```

setup-agda: Clinfrastructure for Agda

```
name: CI
on: push: {branches: master}
jobs:
  build-deploy:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v2.3.1
      - uses: omelkonian/setup-agda@v0.1
        with:
          agda-version: 2.6.1.3
          stdlib-version: 1.6
          libraries: |
            omelkonian/formal-prelude#92ef
            omelkonian/formal-bitcoin#0341
            omelkonian/formal-bitml#4382
          main: Main
          token: ${{ secrets.GITHUB_TOKEN }}
```

Modular Automatic Solvers for Agda proofs

- define strategies for automatic proof search
- should be able to define solvers incrementally for specific types
- primarily achieved with Agda's reflection

Modular Automatic Solvers for Agda proofs

- define strategies for automatic proof search
- should be able to define solvers incrementally for specific types
- primarily achieved with Agda's reflection

```
open import Prelude.Init using (List)
open import Prelude.Semigroup
open import Prelude.Membership
open import Prelude.Solvers
```

```
\_: \forall \{A : \mathsf{Set}\} \{y : A\} \{xs \ ys \ zs : \mathsf{List} \ A\}

\longrightarrow y \in ys \longrightarrow y \in xs \diamond ys \diamond zs

\_= \mathsf{solve}
```

YEAR JJJ: WHERE I'M GOING...

BITML [2021 - MID 2022]

- 1. Finish up coherence
- 2. Symbolic \rightarrow computational runs
- 3. Prove computational soundness: compiler preserves coherence
- 4. Write a paper about it!

BITML [2021 - MID 2022]

- 1. Finish up coherence
- 2. Symbolic \rightarrow computational runs
- 3. Prove computational soundness: compiler preserves coherence
- 4. Write a paper about it!

BITML [2021 - MID 2022]

- 1. Finish up coherence
- 2. Symbolic \rightarrow computational runs
- 3. Prove computational soundness: compiler preserves coherence
- 4. Write a paper about it!

SEPARATION LOGIC FOR BLOCKCHAIN [2021 - MID 2022]

- 1. Obvious next step: extend results to UTxO ledgers
- 2. Write a paper about it!

THESIS WRITE-UP [MID 2022 - LATE 2022]

- Hopefully by then, enough material to fill a thesis
- Ideally, two more papers on BitML and UTxO at prestigious venues
- Realistically, UTxO exploration alongside thesis writing

Discussion

- More ambitious directions (alas, no time)
 - AGDA2HS: extract executable programs from my mechanisations
 - **BitML**: improve/re-formulate (e.g. $BitML \rightarrow EUTxO$)
 - EUTxO: further extentions / state machine verification

Discussion

- More ambitious directions (alas, no time)
 - AGDA2HS: extract executable programs from my mechanisations
 - **BitML**: improve/re-formulate (e.g. BitML \rightarrow EUTxO)
 - EUTxO: further extentions / state machine verification
- Internship?
 - some interesting positions/projects so far

is it worth it though?

Discussion

- More ambitious directions (alas, no time)
 - AGDA2HS: extract executable programs from my mechanisations
 - **BitML:** improve/re-formulate (e.g. $BitML \rightarrow EUTxO$)
 - EUTxO: further extentions / state machine verification
- Internship?
 - some interesting positions/projects so far
 - is it worth it though?
- Extension?
 - · a few more months would lead to more results
 - **(3)**

is it worth it though?

