Interpret measures of uncertainty in regression

Goal of Reading

In this reading, we will continue exploring uncertainty in regression analysis, specifically through confidence intervals, confidence bands, and p-values. Together, we will:

- Review key concepts
- Discuss how to interpret measures of uncertainty
- Review sample graphs

Review of Concepts

Recall that we can represent a simple linear regression line as $y=\beta 0+\beta 1X$.

Since regression analysis utilizes **estimation** techniques, there is always a level of uncertainty surrounding the predictions made by regression models. To represent the error, we can actually rewrite the equation to include an error term, represented by the letter ϵ (pronounced "epsilon"): $y=\beta 0+\beta 1X+\epsilon$.

There is one residual, also known as the difference between the predicted and actual value, for each data point in the dataset used to construct the model. We can then quantify how uncertain the entire model is through a few measures of uncertainty:

- Confidence intervals around beta coefficients
- **P-values** for the beta coefficients
- Confidence band around the regression line

You can refer to the glossary of terms to check any key terms and definitions, but we've provided the two key terms here:

- Confidence interval: a range of values that describes the uncertainty surrounding an estimate
- **P-value:** the probability of observing results as extreme as those observed when the null hypothesis is true

Interpreting Uncertainty

Let's first revisit the summary of results from the linear regression model we created together in prior videos:

OLS Regression Results Dep. Variable: body_mass_g R-squared: 0.769 Model: OLS Adj. R-squared: 0.768 Method: Least Squares F-statistic: 874.3 Date: Mon, 11 Apr 2022 Prob (F-statistic): 1.33e-85 Time: 21:11:50 Log-Likelihood: -1965.8 No. Observations: 265 AIC: 3936. 263 BIC: 3943. Df Residuals: Df Model: Covariance Type: nonrobust coef std err P>|t| [0.025]Intercept -1707.2919 205.640 -8.302 0.000 -2112.202 -1302.382 bill_length_mm 141.1904 4.775 29.569 0.000 131.788 150.592 2.060 **Durbin-Watson:** 2.067 Prob(Omnibus): 0.357 Jarque-Bera (JB): 2.103 Skew: 0.210 Prob(JB): 0.349 Kurtosis: 2.882 Cond. No. 357.

According to the simple linear regression model we built, β 1° is 141.1904. So for every one-millimeter increase in the bill length of a penguin, we would expect a penguin to have about 141.1904 more grams in body mass. The estimate has a p-value of 0.000, which is less than 0.05, meaning that the coefficient is "statistically significant." Additionally our estimate has a 95% confidence interval of 131.788 and 150.592. Let's review these short sentences a bit more.

Previously you may have learned about p-values and confidence intervals within the context of hypothesis testing. Even though it may seem unintuitive, even in regression analysis we are testing hypotheses.

P-values

When running regression analysis, you want to know if X is

really correlated with y or not. So we do a hypothesis test on the regression results. In regression analysis, for each beta coefficient, we are testing the following set of null and alternative hypotheses:

- H_o (null hypothesis): $\beta 1=0$
- H₁ (alternative hypothesis): β1 = 0

In our example, because the p-value is less than 0.05, we can reject the null hypothesis that β 1 is equal to 0, and state that the coefficient is statistically significant, which means that a difference in bill length of a penguin is truly correlated with a difference in body mass.

Confidence Intervals

Each beta coefficient also has a confidence interval associated with its estimate. A 95% interval means the interval itself has a 95% chance of containing the true parameter value of the coefficient. So there is 5% chance that our confidence interval [131.788, 150.592] does not contain the true value of β 1. More precisely, this means that if you were to repeat this experiment many times, 95% of the confidence intervals would contain the true value of β 1.

But, since there is uncertainty in both of the estimated beta coefficients, then the estimated y values also have

uncertainty. This is where confidence bands become useful.

Example Graph

Confidence band: the area surrounding the line that
describes the uncertainty around the predicted
outcome. You can think of the confidence band as
representing the confidence interval surrounding each
point estimate of y. Since there is uncertainty at every
point in the line, we use the confidence band to
summarize the confidence intervals across the
regression model. The confidence band is always
narrowest towards the mean of the sample and widest
at the extremities.

Key Takeaways

- Regression analysis utilizes **estimation** techniques, so there is always uncertainty around the predictions.
- We can measure uncertainty using confidence intervals, p-values, and confidence bands.
- For every coefficient estimate, we are testing the hypothesis that the coefficient equals 0.