2024 Digital IC Design Homework II

NAME	盧尚毅		
Student ID	N26124264		
Student ID			
	Funct	tional Simulation Resu	<u>lt</u>
FIFO Pass		LIFO Pass	CIPU Pass
		Stage 1	
	*****	******	*****
	****	Simulation Start	******

		0 (- PTPC	
	inere are total	0 errors in FIFO !!	
		Stage 2	
		Stage 3	
	There are total	0 errors in FIFO2 !!	
	******	*****	
	* *	ratulations!! **	1_11
	** Congr	ratulations!! **	/ 0.0
	** Simul	** Lation PASS!! **	/
	**	**	^ ^ ^ ^ \w
	******		\mm_ _
	Correct /	/ Total : 100 / 100	
	Desc	cription of your design	

Description of your design

1. FIFO:

先設計一個 counter 與一個 FSM,counter 用於紀錄目前儲存了多少個元素,以便後續取值可以正確的 FIFO,FSM 狀態共有7個,分別是 idle (等待 ready_fifo 來時,進入 input_people 狀態), input_people (利用輸入的peple_thing_in 進行判斷,如果遇到 ascii 碼範圍在 8'h41~8'h5A,就將他們儲存到 FIFO 中,並將 counter+1,當 peple_thing_in 為\$時進入下一階段), in_people_end(此階段停止一個 clk 確保資料正確存入 fifo, 接著進入下一階段), out_people_ready(此階段開始在 fifo 中取值,因為此階段取得的值需要在下一個 clk 才會送出,所以要用總數有多少個來判斷下一階段是要前往 out_people 或是 outpeople_end), out_people (開始將值一一輸出,但counter 為 1 時,進入下一階段), out_people_end (此時最後一個取得的值會輸出,並進入下一階段), out_people_end (此時段將 done 拉起,與 tb.v 溝

通,完成後回到 idle 以準備下一次資料傳入),整體 FSM 如下圖所示。

圖 1 FIFO 有限狀態機

2. LIFO

與前議題類似,一開始先設計一個 counter 與 FSM,counter 在 thing_in 值 為分號時,將 thing_num 讀入,在後續輸出數值時一一減一。而 FSM 共有 9 個 state,idle (當 vaid_lifo 為 1 時進入下一狀態), input_thing (此狀態開始讀取資料,將 thing_in 的數值都讀入,並一一推入到 thing_lifo中,若讀到\$就會進入 d_lifo 結束狀態,讀到;時,會進入 in_thing_end 狀態), in_thing_end (此狀態用於判斷 thing_num 是否為 0,若為 0 則進入 pop_none 狀態,其他情況的話進入 pop_thing_ready 狀態),pop_thing_ready (此狀態與第一題的 ready 狀態用法相同,都是先準備第一個值,以便在 pop_thing 狀態時輸出正確的值), pop_thing (此狀態一一將值從 thing_lifo 的第一個輸出,並將其他值往 0 的方向向前一,確保每次都能拿到最後放入的值,當 counter 為 1 時進入 pop_thing_end),pop_thing_end (此狀態將最後一個值輸出), pop_thing_done (pop 結束,接著進入 idle 狀態), pop_none (將輸出值設為 0), d_lifo (此狀態時表示 lifo 結束,會將 done_lifo 拉起)。整體 FSM 如圖 2 所示。

3. FIFO2

此題也與前面類似,先建議一個 counter 與 FSM,counter 在前面一個狀態機的狀態為 input_thing 時+1,確定目前在陣列中的數字有幾個,而在目前的狀態機狀態為 out_thing_fifo_ready 與 out_thing_fifo 或是前一狀態機狀態為 pop_thing_ready 或 pop_thing 時-1,確定目前陣列共有幾個元素。此題的有限狀態機共有六個狀態,idle (當 lifo 執行完,done_lifo 為 1 時進入下一狀態),out_thing_fifo_ready (準備從陣列中取出值,取出值的座標為 thing_lifo[(8 * (thing_fifo_num) -1) -: 8]), out_thing_fifo (與前階段相同,一一將值取出。) ,out_thing_fifo_end (此步時,將最後的值取出,並歸零陣列),out_thing_fifo_done (將 done_fifo2 訊號拉起),完整 FSM 如圖 3 所示。

