Mathematics Paper - XI

1۔ ہر سوال کے سامنے چار دائرے دیے گئے ہیں، صرف صحیح جواب والادائرہ بھر دیں۔ 2۔ دائر وں کوشیر (بھرنے) کے لئے شلے پاکا لے رنگ کامار کر استعمال کریں۔

3-جواب میں ایک سے زائد دائرے بھرنے سے جواب فلط تصور ہوگا۔

Time Allowed: 20 Minutes		SECTION – A						Marks: 20	
1	If Z = a + ib then Z -Z =	\bigcirc	Z	\bigcirc	$ Z ^2$	\bigcirc	- Z	\bigcirc	Z
2	The matrix A has an inverse if A is matrix.	\bigcirc	Square	\bigcirc	Singular	\bigcirc	None Singular	\bigcirc	Rectangular
3	(-i) ⁻¹⁹ =	\bigcirc	i	\bigcirc	-i	\bigcirc	1	\bigcirc	– 1
4	If $A = \begin{bmatrix} 2 & 3 & 1 & 4 \\ 0 & 5 & 2 & 1 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & 1 & 4 \end{bmatrix}$ then $ A = \dots$	0	30	0	60	0	80	0	120
5	A unit vector in the direction of the vector 4i-3j is	\bigcirc	4i – 3j 5	\bigcirc	$\frac{4i}{5} + \frac{3j}{5}$	\bigcirc	4i – 3j 25	\bigcirc	$\frac{4i+3j}{25}$
6	If α , β , γ are the direction angles of a vector r, then $\frac{y}{\sqrt{x^2 + y^2 + z^2}} = \dots$	0	$\cos \alpha$	0	Cos β	0	Cos γ	0	Sin β
7	If i, j and k be the unit vectors then i.k×j=	\bigcirc	j.i.×k	\bigcirc	k.i.×j	\bigcirc	j.k.×i	\bigcirc	j×i.k
8	The nth term of the sequence 1,5,9,13,is	\bigcirc	3n – 2	\bigcirc	4n – 1	\bigcirc	4n – 3	\bigcirc	4n – 2
9	The sequence where t_1 =1 and t_{n+1} = T_n + $(n+1)$, n = 1,2,3, is called	\bigcirc	Factorial sequence	\bigcirc	Triangle number sequence	\bigcirc	Pascal sequence	\bigcirc	Arithmetic sequence
10	The number of functions defined on n-points if each functional value is either '0' or '1' is	\bigcirc	2 ⁿ⁻¹	\bigcirc	2 ⁿ	\bigcirc	2-n	\bigcirc	2 ⁿ⁺¹
11	If A and B are independent events then $P(A \cap B)$ =	\bigcirc	P(A) – P(B)	\bigcirc	P(A) + P(B)	\bigcirc	P(A) P(B)	\bigcirc	P(A) P(A/B)
12	$n^4 > 3n^2 + 2n + 1$ is true for	\bigcirc	$n \geq 1 \\$	\bigcirc	$n \geq 3$	\bigcirc	$n \geq 2$	\bigcirc	$n \geq 4$
13	$\binom{K+1}{0} = \dots$	\bigcirc	$\begin{pmatrix} K \\ 1 \end{pmatrix}$	\bigcirc	$\begin{pmatrix} K+1\\1 \end{pmatrix}$	\bigcirc	$\begin{pmatrix} K-1 \\ 1 \end{pmatrix}$	\bigcirc	$\begin{pmatrix} K \\ 0 \end{pmatrix}$
14	The function $f(x) = 3x + 7$ is	\bigcirc	Even	\bigcirc	Odd	\bigcirc	Both even and odd	\bigcirc	None of these
15	The solution set of $2x + y < 5$ is	\bigcirc	(3, -2)	\bigcirc	(3, 2)	\bigcirc	(4, -1)	\bigcirc	(-1, 8)
16	$\operatorname{Tan}\left(\frac{3\pi}{2} + \theta\right) = \cdots$	\bigcirc	Cot θ	\bigcirc	– Cot θ	\bigcirc	Tan θ	\bigcirc	– Tan θ
17	The reciprocal of the period is called	\bigcirc	Wave length	\bigcirc	Amplitude	\bigcirc	Frequency	\bigcirc	Time period
18	Period of $\frac{1}{2}$ Tan 3x is	\bigcirc	3π	\bigcirc	$\frac{\pi}{3}$	\bigcirc	$\frac{3\pi}{2}$	\bigcirc	π
19	In half angle formula $\frac{(S-b)(S-c)}{bc} = \dots$	\bigcirc	$\sin \frac{\alpha}{2}$	\bigcirc	$\sin^2 \frac{\alpha}{2}$	\bigcirc	$\cos^2 \frac{\alpha}{2}$	\bigcirc	$\cos \frac{\alpha}{2}$
20	If Sec ⁻¹ $2 = \theta$ then $\theta \in = \dots$	\bigcirc	$\left[0,\pi\right]-\left\{\frac{\pi}{2}\right\}$	\bigcirc	$\left[0,\frac{\pi}{2}\right]$	\bigcirc	$\left[0, \frac{3\pi}{2}\right] - \left\{\pi\right\}$	\bigcirc	$\left[0,2\pi\right]-\left\{\frac{\pi}{2}\right\}$