Инструкция по настройке РА2400

Результаты измерений Образца на «самотравке»:

Выходная мощность - +42dBm - «холодный», при нагреве радиатора падает до +41,2dBm.

Усиление — 39dBm (при раскачке не более +3dBm).

Напряжение питания - +26В.

Ток потребления - 0,43/0,8/2,1A (деж. режим/РТТ нажат/подана раскачка +3dBm).

Т.е. ток потребления в дежурном режиме - 0,43A,

ток потребления при нажатии РТТ, но без раскачки - 0,8А,

ток потребления при нажатии РТТ и поданной раскачке +3dBm - 2,1A.

Управление ПРИЕМ/ПЕРЕДАЧА сигналом РТТ (+/корпус).

Для **надежной** работы управление РТТ идет на УМ, а УМ уже выдает сигнал U ТХ= 0/+15V на трансвертер.

Радиатор должен рассеивать 30Вт.

Вентилятора нет, но лучше поставить.

Перед запайкой микросхемы MW4IC2020 спаять медной фольгой стороны платы в 4-х местах, как показано на рисунке, MW4IC2020 но пока не ставить.

Из-за выступающей снизу фольги обе платы УМ приподнять над радиатором, поставив на шайбы так, чтобы выводы микросхемы MW4IC2020 легли на платы, но без механических напряжений. MW4IC2020 примерить, но пока не ставить.

Настройка

1 Настройку начинать с Драйвера на AG604-89

- 1) AG604-89 не любит превышения напряжения питания, сразу вылетает.
- 2) Важно правильно поставить резистор по питанию и выставить соответствующее напряжение питания.

Recommended Component Values

Reference	Frequency (MHz)							
Designator	50	500	900	1900	2200	2500	3500	
L1	820 nH	220 nH	68 nH	27 nH	22 nH	18 nH	15 nH	
C1, C2, C4	.018 μF	1000 pF	100 pF	68 pF	68 pF	56 pF	39 pF	

1. The proper values for the components are dependent upon the intended frequency of operation. 2. The following values are contained on the evaluation board to achieve optimal broadband performance:

Ref. Desig.	Value / Type	Size
L1	39 nH wirewound inductor	0603
C1, C2	56 pF chip capacitor	0603
C3	0.018 μF chip capacitor	0603
C4	Do Not Place	
R1	10.0 Ω 1% tolerance	0805

Recommended Bias Resistor Values

Supply Voltage	R1 value	Size
6 V	11.2 ohms	0805
7 V	24.5 ohms	1210
8 V	38 ohms	1210
9 V	51 ohms	2010
10 V	65 ohms	2010
12 V	91 ohms	2512

The proper value for R1 is dependent upon the supply voltage and allows for bias stability over temperature WJ recommends a minimum supply bias of +6 V. A 1% tolerance resistor is recommended.

Например, у меня стабилизатор D3 выдает +6B, а резистор по питанию - R=12 Ом (два по 24 Ома в параллель).

- 3) Не любит перекачки по входу, практически по входу больше +3 dBm лучше вообще не подавать. ... дохнет сразу ...
- 4) Нагрузить конец линии (вход D1/6 незапаянной микросхемы **MW4IC2020**) на измеритель мощности и добиться, чтобы AG604-89 выдавал около +(16-20)dBm.
- 2 После настройки драйвера микросхему MW4IC2020 поставить на пластинку можно с пастой КПТ-8, если есть.

3 Добиться режимов **MW4IC2020** по постоянному току:

D1/2 - +25.1B

D1/5 - +25,2B

D1/8 - +4,12B — очень критичен,

D1/9 - +4,13B — очень критичен,

D1/10 - 0/+3,96B

D1/14 - +26B

D1/8 - +4,12B и D1/9 - **+4,13B** — очень критичны, если только +(3,5-3,8)B, то раскачки от AG604-89 может просто не хватить!

4 Изменение тока потребления в дежурном режиме - 0,43A, до тока потребления при нажатии РТТ, но без раскачки - до 0,8A свидетельствует о нормальной работе по постоянному току.

5 Возрастание тока потребления при нажатии РТТ и поданной раскачке +3dBm до 2-2,3A — о наличии выходной мощности порядка +40dBm (даже без мощемера).

6 Усиление MW4IC2020 сильно зависит от настройки выходной полосковой λ/4-линии совместно с конденсатором C* =6,8 пФ 0805, который хорошо виден на этом фото:

Двигая его по полосковой λ/4-линии, находят точку с максимальным усилением. Уменьшив раскачку следует повторить эту операции.

*ранее, на многих образцах, этот конденсатор «просился» гораздо ближе к выходу MW4IC2020, но в представленном образце резонанс наступил там.

7 Тонкую подстройку выходной мощности на максимум можно делать следующим способом:

- берем деревянную зубочистку, обрезаем конец, образуя плоскость Ø1мм, наносим зеленую мастику, минимум; можно пластилин;
- захватывая зубочисткой подборный SMD-конденсатор (0,47-30)пФ, «возим» его его линиям, поочередно **выходной и входной** (* с линии на землю);
- обнаружив «прибавку» мощности делаем карандашную риску и запаиваем подбор.

Печатная плата

Материал платы Roger RO4350, диэлектрическая проницаемость-3,48, толщина — 0,5 мм. Размеры: плата 1 — 58х42мм, плата 2 — 50х42мм.

MW4IC2020 Freescale https://www.nxp.com/docs/en/data-sheet/MW4IC2020.pdf

Схема

