QEST + FORMATS 2025

Olivier Bouët-Willaumez¹, Adrien Le Coënt¹, Benoît Barbot¹, Nihal Pekergin¹

¹ LACL. Université Paris-Est Créteil. France

To analyze the dynamics of biochemical networks, a common modeling approach is to use Ordinary Differential Equations (ODE) systems.

Example: Michaelis-Menten / Enzyme-catalyzed kinetics

•
$$S + E \xrightarrow{k_1} ES \xrightarrow{k_3} P + E$$

$$\begin{cases} d[S]/dt = -k_1[S][E] + k_2[ES] \\ d[E]/dt = -k_1[S][E] + (k_2 + k_3)[ES] \\ d[ES]/dt = k_1[S][E] - (k_2 + k_3)[ES] \\ d[P]/dt = k_3[ES] \end{cases}$$

Modelisation and ODE formalism

To analyze the dynamics of biochemical networks, a common modeling approach is to use Ordinary Differential Equations (ODE) systems.

Example: Michaelis-Menten / Enzyme-catalyzed kinetics.

•
$$S + E \xrightarrow{k_1} ES \xrightarrow{k_3} P + E$$

$$\begin{cases}
d[S]/dt = -k_1[S][E] + k_2[ES] \\
d[E]/dt = -k_1[S][E] + (k_2 + k_3)[ES] \\
d[ES]/dt = k_1[S][E] - (k_2 + k_3)[ES] \\
d[P]/dt = k_3[ES]
\end{cases}$$

Modelisation and ODE formalism

To analyze the dynamics of biochemical networks, a common modeling approach is to use Ordinary Differential Equations (ODE) systems.

Example: Michaelis-Menten / Enzyme-catalyzed kinetics.

•
$$S + E \xrightarrow{k_1} ES \xrightarrow{k_3} P + E$$

$$\begin{cases}
\dot{x_1} = -k_1 x_1 x_2 + k_2 x_3 \\
\dot{x_2} = -k_1 x_1 x_2 + (k_2 + k_3) x_3 \\
\dot{x_3} = k_1 x_1 x_2 - (k_2 + k_3) x_3 \\
\dot{x_4} = k_3 x_3
\end{cases}$$

Parameter Estimation and classical approaches

In such systems, estimating parameters from experimental data is a central challenge (system biology).

ODE-based approaches

Introduction

- Repeatedly simulating ODEs and minimizing a cost function.
- Markov Chain Monte Carlo (MCMC), to tackle uncertainty and improve inference robustness.

⇒ High computational costs when the parameter space is large or when model stiffness is significant.

Parameter Estimation and classical approaches

In such systems, estimating parameters from experimental data is a central challenge (system biology).

ODE-based approaches:

- Repeatedly simulating ODEs and minimizing a cost function.
- Markov Chain Monte Carlo (MCMC), to tackle uncertainty and improve inference robustness.

⇒ High computational costs when the parameter space is large or when model stiffness is significant.

Parameter Estimation and classical approaches

In such systems, estimating parameters from experimental data is a central challenge (system biology).

ODE-based approaches:

- Repeatedly simulating ODEs and minimizing a cost function.
- Markov Chain Monte Carlo (MCMC), to tackle uncertainty and improve inference robustness.

 \implies High computational costs when the parameter space is large or when model stiffness is significant.

Probabilistic Approximations of ODEs

Transform ODE models into discrete probabilistic models \rightarrow Dynamic Bayesian Networks (DBNs):

- Faster cost function evaluation and avoid the need for repeated ODE simulations.
- Outperform classical ODE-based optimization for moderately sized system¹.

¹Liu, B. et al. Probabilistic Approximations of ODEs-Based Bio-Pathway Dynamics (2011).

Probabilistic Approximations of ODEs

Transform ODE models into discrete probabilistic models \rightarrow Dynamic Bayesian Networks (DBNs):

- Faster cost function evaluation and avoid the need for repeated ODE simulations.
- Outperform classical ODE-based optimization for moderately sized system¹.
- ⇒ Scalability limitations for larger models:
 - Exponential growth of the state space.
 - Complexity of computing and storing transition probabilities.

 $^{^{1}}$ Liu, B. et al. Probabilistic Approximations of ODEs-Based Bio-Pathway Dynamics (2011).

Model reduction

Introduction

Simplify the system while preserving key dynamical properties.

These approaches can generally be divided into two categories:

- **Structural simplification** methods → Conservation Analysis²
- Component reduction methods → Classical lumping techniques³ Equivalence-based reductions using backward bisimulation principles⁴.

²Vallabhajosyula, R.R. et al.. Conservation Analysis of Large Biochemical Networks (2006).

³Dokoumetzidis, A. et al.. Proper lumping in systems biology models (2009)

⁴Cardelli, L. et al.. Symbolic computation of differential equivalences (2016)

Model reduction

Simplify the system while preserving key dynamical properties.

These approaches can generally be divided into two categories:

August 25-30, 2025

Model reduction

O Bouët-Willaumez et al.

Simplify the system while preserving key dynamical properties.

These approaches can generally be divided into two categories:

- Structural simplification methods → Conservation Analysis².
- Component reduction methods → Classical lumping techniques³, Equivalence-based reductions using backward bisimulation principles⁴.

Conservation Analysis and Approximations

⁴Cardelli, L. et al.. Symbolic computation of differential equivalences (2010)

 $^{^2\}mbox{Vallabhajosyula},\ R.R.$ et al.. Conservation Analysis of Large Biochemical Networks (2006).

³Dokoumetzidis, A. et al.. Proper lumping in systems biology models (2009)

Model reduction

Simplify the system while preserving key dynamical properties.

These approaches can generally be divided into two categories:

- Structural simplification methods → Conservation Analysis².
- **Component reduction** methods \rightarrow Classical lumping techniques³. Equivalence-based reductions using backward bisimulation principles⁴.

²Vallabhajosyula, R.R. et al.. Conservation Analysis of Large Biochemical Networks (2006).

³Dokoumetzidis, A. et al.. Proper lumping in systems biology models (2009).

⁴Cardelli, L. et al.. Symbolic computation of differential equivalences (2016).

Parameter Estimation pipeline

Parameter Estimation pipeline

Performed once and for all

Conservation Analysis

Objective: learn the parameter k of the ODE system:

$$\dot{x_1} = \mathbf{k}x_1$$
$$\dot{x_2} = -0.9\mathbf{k}x_1$$

 ODE solution trajectory for an unknown parameter k value.

Objective: learn the parameter k of the ODE system:

$$\dot{x_1} = \mathbf{k}x_1$$
$$\dot{x_2} = -0.9\mathbf{k}x_1$$

Observe only at discrete time points $0, t_1, t_2, ..., T$.

Objective: learn the parameter k of the ODE system:

$$\dot{x_1} = \mathbf{k}x_1$$
$$\dot{x_2} = -0.9\mathbf{k}x_1$$

- Each species has bounds: $x_1, x_2 \in [0, 10]^2$.
- Discretize the trajectories with a given number of subintervals.
- Discretize the parameters.

Objective: learn the parameter k of the ODE system:

$$\dot{x_1} = \mathbf{k}x_1$$

$$\dot{x_2} = -0.9\mathbf{k}x_1$$

• Run a number of simulations, with randomized initial conditions and parameter values.

Objective: learn the parameter k of the ODE system:

$$\dot{x_1} = \mathbf{k}x_1$$

$$\dot{x_2} = -0.9\mathbf{k}x_1$$

Discretize the trajectories.

Objective: learn the parameter k of the ODE system:

$$\dot{x_1} = kx_1$$

$$\dot{x_2} = -0.9kx_1$$

 Under the Markov property and time-homogeneity assumptions, the process forms a discrete-time Markov chain (DTMC).

Objective: learn the parameter k of the ODE system:

$$\dot{x_1} = \mathbf{k}x_1$$
$$\dot{x_2} = -0.9\mathbf{k}x_1$$

Compute the transition probabilities from the simulations.

• $\mathbb{P}((s,t_i) o (s',t_{i+1}))$ is the fraction of trajectories in s at t_i that land in s' at t_{i+1} .

From Markov Chains to Bayesian Networks

Markov chain: joint distribution over trajectory:

$$p(\boldsymbol{X}^{0:T}) = p(\boldsymbol{X}^0) \prod_{t=1}^T p(\boldsymbol{X}^t \mid \boldsymbol{X}^{t-1})$$

Problem: The transition table $p(X^t | X^{t-1})$ grows exponentially with the number of variables and discrete states.

Bayesian Networks: exploit conditional independencies

$$p(\boldsymbol{X}^t) = \prod_i p(X_i^t \mid \mathsf{Parents}(X_i^t))$$

 \implies Each X_i^t depends only on a subset of variables (its parents), enabling a compact representation.

From Markov Chains to Bayesian Networks

Markov chain: joint distribution over trajectory:

$$ho(oldsymbol{\mathcal{X}}^{0:T}) =
ho(oldsymbol{\mathcal{X}}^0) \prod_{t=1}^T
ho(oldsymbol{\mathcal{X}}^t \mid oldsymbol{\mathcal{X}}^{t-1})$$

Problem: The transition table $p(X^t | X^{t-1})$ grows exponentially with the number of variables and discrete states.

$$p(\boldsymbol{X}^t) = \prod_i p(X_i^t \mid \mathsf{Parents}(X_i^t))$$

Markov chain: joint distribution over trajectory:

$$ho(oldsymbol{X}^{0:T}) =
ho(oldsymbol{X}^0) \prod_{t=1}^T
ho(oldsymbol{X}^t \mid oldsymbol{X}^{t-1})$$

Problem: The transition table $p(\mathbf{X}^t \mid \mathbf{X}^{t-1})$ grows exponentially with the number of variables and discrete states.

Bayesian Networks: exploit conditional independencies:

$$p(\boldsymbol{X}^t) = \prod_i p(X_i^t \mid \mathsf{Parents}(X_i^t))$$

 \implies Each X_i^t depends only on a subset of variables (its parents), enabling a compact representation.

$$\begin{cases} \dot{x_1} = -k_1 x_1 x_2 + k_2 x_3 \\ \end{cases}$$

$$\mathsf{Parents}(X_1') = \{X_1, X_2, X_3, K_1, K_2\}$$

$$\begin{cases} \dot{x_1} = -k_1 x_1 x_2 + k_2 x_3 \\ \dot{x_2} = -k_1 x_1 x_2 + (k_2 + k_3) x_3 \end{cases}$$

$$\mathsf{Parents}(X_2') = \{X_1, X_2, X_3, K_1, K_2, K_3\}$$

$$\begin{cases} \dot{x_1} = -k_1 x_1 x_2 + k_2 x_3 \\ \dot{x_2} = -k_1 x_1 x_2 + (k_2 + k_3) x_3 \\ \dot{x_3} = k_1 x_1 x_2 - (k_2 + k_3) x_3 \end{cases}$$

$$\mathsf{Parents}(X_3') = \{X_1, X_2, X_3, K_1, K_2, K_3\}$$

$$\begin{cases} \dot{x_1} = -k_1 x_1 x_2 + k_2 x_3 \\ \dot{x_2} = -k_1 x_1 x_2 + (k_2 + k_3) x_3 \\ \dot{x_3} = k_1 x_1 x_2 - (k_2 + k_3) x_3 \\ \dot{x_4} = k_3 x_3 \end{cases}$$

Parents
$$(X_4') = \{X_3, X_4, K_3\}$$

$$\begin{cases} \dot{x_1} = -k_1 x_1 x_2 + k_2 x_3 \\ \dot{x_2} = -k_1 x_1 x_2 + (k_2 + k_3) x_3 \\ \dot{x_3} = k_1 x_1 x_2 - (k_2 + k_3) x_3 \\ \dot{x_4} = k_3 x_3 \end{cases}$$

Dynamic Bayesian Networks

Extending Bayesian networks to sequences of variables over time.

DBN parameter estimation

Conservation Analysis

ODE matrix form

Recall:

$$\begin{cases} \dot{x_1} = -k_1 x_1 x_2 + k_2 x_3 \\ \dot{x_2} = -k_1 x_1 x_2 + (k_2 + k_3) x_3 \\ \dot{x_3} = k_1 x_1 x_2 - (k_2 + k_3) x_3 \\ \dot{x_4} = k_3 x_3 \end{cases}$$

The system is written

$$\dot{x}_i(t) = f_i(\mathbf{x}(t), \mathbf{k}), i \in 1, \ldots, n$$

with $\mathbf{x}(t) = (x_1(t), \dots, x_n(t))$, $\mathbf{k} = (k_1, \dots, k_m)$, and the f_i , $i \in 1, \dots, n$

ODE matrix form

Recall:

$$\begin{cases} \dot{x_1} = -k_1 x_1 x_2 + k_2 x_3 \\ \dot{x_2} = -k_1 x_1 x_2 + (k_2 + k_3) x_3 \\ \dot{x_3} = k_1 x_1 x_2 - (k_2 + k_3) x_3 \\ \dot{x_4} = k_3 x_3 \end{cases}$$

The system is written:

$$\dot{x}_i(t) = f_i(\mathbf{x}(t), \mathbf{k}), i \in 1, \ldots, n$$

with $\mathbf{x}(t) = (x_1(t), \dots, x_n(t))$, $\mathbf{k} = (k_1, \dots, k_m)$, and the $f_i, i \in 1, \dots, n$ are rational functions

ODE matrix form

The ODE can be written in matrix form as follows:

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{N} \cdot \boldsymbol{v}(\boldsymbol{x}(t), \boldsymbol{k})$$

where:

- $\mathbf{v}(\mathbf{x}(t), \mathbf{k}) = (v_1(\mathbf{x}(t), \mathbf{k}), \dots, v_r(\mathbf{x}(t), \mathbf{k}))^T$ is the rate vector of the r reactions in the network.
- The Stoichiometric matrix **N** is $n \times r$ dimensional.

Example:

$$\begin{cases} \dot{x_1} = -k_1 x_1 x_2 + k_2 x_3 \\ \dot{x_2} = -k_1 x_1 x_2 + (k_2 + k_3) x_3 \\ \dot{x_3} = k_1 x_1 x_2 - (k_2 + k_3) x_3 \\ \dot{x_4} = k_3 x_3 \end{cases} \iff \underbrace{\begin{pmatrix} -1 & 1 & 0 \\ -1 & 1 & 1 \\ 1 & -1 & -1 \\ 0 & 0 & 1 \end{pmatrix}}_{N} \cdot \underbrace{\begin{pmatrix} k_1 x_1 x_2 \\ k_2 x_3 \\ k_3 x_3 \end{pmatrix}}_{V}$$

Conservation analysis⁵ separates species into independent (x_i) and dependent (x_d) sets by analyzing the linear dependence of the Stoichiometric matrix **N** rows.

⁵Vallabhajosyula, R.R. et al.. Conservation Analysis of Large Biochemical Networks (2006).

Conservation analysis⁵ separates species into independent (x_i) and dependent (x_d) sets by analyzing the linear dependence of the Stoichiometric matrix N rows.

In practice, we perform a full pivoting QR decomposition of N using Householder reflections to extract a link matrix L_0 .

This enhance numerical stability, even for systems with large condition number.

 $^{^5}$ Vallabhajosyula, R.R. et al.. Conservation Analysis of Large Biochemical Networks (2006).

By rearranging rows, N can be written:

$$\mathbf{N} = \begin{bmatrix} \mathbf{N}_I \\ \mathbf{N}_D \end{bmatrix}, \text{ with } \mathbf{N}_D = \mathbf{L}_0 \cdot \mathbf{N}_I$$

$$\dot{\mathbf{x}}_i(t) = \mathbf{N}_I \cdot \mathbf{v}(t)$$

$$\dot{\mathbf{x}}_d(t) = \mathbf{L}_0 \cdot \dot{\mathbf{x}}_i(t)$$

By rearranging rows, N can be written:

$$\mathbf{N} = \begin{bmatrix} \mathbf{N}_I \\ \mathbf{N}_D \end{bmatrix}, \text{ with } \mathbf{N}_D = \mathbf{L}_0 \cdot \mathbf{N}_I$$

Then, we can deduce the independent and dependent species subsystems such as:

$$\dot{\boldsymbol{x}}_i(t) = \boldsymbol{N}_l \cdot \boldsymbol{v}(t)$$

and

$$\dot{\mathbf{x}_d}(t) = \mathbf{L_0} \cdot \dot{\mathbf{x}_i}(t)$$

By rearranging rows, N can be written:

$$\mathbf{N} = \begin{bmatrix} \mathbf{N}_I \\ \mathbf{N}_D \end{bmatrix}, \text{ with } \mathbf{N}_D = \mathbf{L}_0 \cdot \mathbf{N}_I$$

Then, we can deduce the independent and dependent species subsystems such as:

$$\dot{\boldsymbol{x}}_i(t) = \boldsymbol{N}_l \cdot \boldsymbol{v}(t)$$

and

$$\mathbf{x}_d(t) = \mathbf{x}_d(0) + \mathbf{L}_0 \cdot [\mathbf{x}_i(t) - \mathbf{x}_i(0)]$$

Example

The original system:

$$\begin{cases} \dot{x_1} = -k_1 x_1 x_2 + k_2 x_3 \\ \dot{x_2} = -k_1 x_1 x_2 + (k_2 + k_3) x_3 \\ \dot{x_3} = k_1 x_1 x_2 - (k_2 + k_3) x_3 \\ \dot{x_4} = k_3 x_3 \end{cases}$$

can be reduced to a subsystem of only 2 independent species:

$$\begin{cases} \dot{x_1} = -k_1 x_1 x_2 + k_2 x_3 \\ \dot{x_2} = -k_1 x_1 x_2 + (k_2 + k_3) x_3 \end{cases}$$

with
$$x_3(t) = -x_2(t) + x_3(0) + x_2(0)$$
.

Example

The original system:

$$\begin{cases} \dot{x_1} = -k_1 x_1 x_2 + k_2 x_3 \\ \dot{x_2} = -k_1 x_1 x_2 + (k_2 + k_3) x_3 \\ \dot{x_3} = k_1 x_1 x_2 - (k_2 + k_3) x_3 \\ \dot{x_4} = k_3 x_3 \end{cases}$$

can be reduced to a subsystem of only 2 independent species:

$$\begin{cases} \dot{x_1} = -k_1 x_1 x_2 + k_2 x_3 \\ \dot{x_2} = -k_1 x_1 x_2 + (k_2 + k_3) x_3 \end{cases}$$

with
$$x_3(t) = -x_2(t) + x_3(0) + x_2(0)$$
.

 ction
 Probabilistic Approximations
 Conservation Analysis
 Reduced DBN Structures
 Con

 0
 000000
 000000
 000000
 000000

Reduced DBN Structures

How to represent the following reduced subsystem with a BN ?

$$\begin{cases} \dot{x_1} = -k_1 x_1 x_2 + k_2 x_3 \\ \dot{x_2} = -k_1 x_1 x_2 + (k_2 + k_3) x_3 \end{cases}$$

We propose 4 different reduced BN structures:

- Merged model
- Stacked model, Unstacked model
- No-var model

How to represent the following reduced subsystem with a BN?

$$\begin{cases} \dot{x_1} = -k_1 x_1 x_2 + k_2 x_3 \\ \dot{x_2} = -k_1 x_1 x_2 + (k_2 + k_3) x_3 \end{cases}$$

We propose 4 different reduced BN structures:

- Merged model
- Stacked model, Unstacked model
- No-var model

How to represent the following reduced subsystem with a BN?

$$\begin{cases} \dot{x_1} = -k_1 x_1 x_2 + k_2 x_3 \\ \dot{x_2} = -k_1 x_1 x_2 + (k_2 + k_3) x_3 \end{cases}$$

We propose 4 different reduced BN structures:

- Merged model
- Stacked model, Unstacked model
- No-var model

How to represent the following reduced subsystem with a BN ?

$$\begin{cases} \dot{x_1} = -k_1 x_1 x_2 + k_2 (-x_2 + x_3(0) + x_2(0)) \\ \dot{x_2} = -k_1 x_1 x_2 + (k_2 + k_3) (-x_2 + x_3(0) + x_2(0)) \end{cases}$$

We propose 4 different reduced BN structures:

- Merged model
- Stacked model, Unstacked model
- No-var model

How to represent the following reduced subsystem with a BN ?

$$\begin{cases} \dot{x_1} = -k_1 x_1 x_2 + k_2 \left(-x_2 + x_3(0) + x_2(0) \right) \\ \dot{x_2} = -k_1 x_1 x_2 + \left(k_2 + k_3 \right) \left(-x_2 + x_3(0) + x_2(0) \right) \end{cases}$$

We propose 4 different reduced BN structures:

- Merged model
- Stacked model, Unstacked model
- No-var model

How to represent the following reduced subsystem with a BN ?

$$\begin{cases} \dot{x_1} = -k_1 x_1 x_2 + k_2 x_3 \\ \dot{x_2} = -k_1 x_1 x_2 + (k_2 + k_3) x_3 \end{cases}$$

We propose 4 different reduced BN structures

- Merged model
- Stacked model, Unstacked model
- No-var model

$$x_3(t) = -x_2(t) + x_3(0) + x_2(0)$$

Applications and implementation

Case study: EGF-NGF signaling pathway:

- 32 species,
- 48 parameters,
- 26 reactions.

Implementation: The approach was implemented in Python and is available online as a prototype called BayeSBML⁶.

⁶https://git.lacl.fr/barbot/bayesbml

- 32 species,

Implementation: The approach was implemented in Python and is available online as a prototype called BayeSBML⁶.

Fan-in analysis

Cumulative (Cum) Fan-in: The total number of arcs in the Bayesian Network (BN).

Maximum (Max) Fan-in: The highest number of incoming arcs to any derivative node.

- Original model: $(Cum, Max) = (20,6) \rightarrow 172500$ total CPT rows.
- Merged model: (Cum, Max) = $(11,6) \rightarrow 93750$ total CPT rows.

Cumulative (Cum) Fan-in: The total number of arcs in the Bayesian Network (BN).

Maximum (Max) Fan-in: The highest number of incoming arcs to any derivative node.

Enzyme-catalyzed reaction:

- Original model: (Cum,Max) = $(20,6) \rightarrow 172500$ total CPT rows.
- Merged model: (Cum,Max) = $(11.6) \rightarrow 93750$ total CPT rows.

EGF-NGF

- ullet Original model: (Cum,Max) = (206,11) ightarrow 1.01e6 total CPT rows
- Merged model: (Cum,Max) = $(94,11) \rightarrow 4.66e5$ total CPT rows.

Fan-in analysis

Cumulative (Cum) Fan-in: The total number of arcs in the Bayesian Network (BN).

Maximum (Max) Fan-in: The highest number of incoming arcs to any derivative node.

- Original model: (Cum, Max) = $(20.6) \rightarrow 172500$ total CPT rows.
- Merged model: (Cum, Max) = $(11,6) \rightarrow 93750$ total CPT rows.

FGF-NGF:

- Original model: (Cum, Max) = $(206,11) \rightarrow 1.01e6$ total CPT rows.
- Merged model: (Cum, Max) = $(94,11) \rightarrow 4.66e5$ total CPT rows.

Numerical results: Enzyme-catalyzed reaction

Numerical results: EGF NGF case study

Original Model: \approx 10 hours, Merged Model: \approx 4 hours.

 Probabilistic Approximations
 Conservation Analysis
 Reduced DBN Structures
 Conclusion

 ○○○○○
 ○○○○○○
 ●○○○

Conclusion

Conclusion

The proposed novel approach leverages a model simplification technique that directly impacts the structure of our probabilistic approximation.

- Marginal accuracy loss.
- Significant performance gains.
- Enhance the method's applicability to high-dimensional case studies.
- Implementation available online.

Future Work

- Collaborate with biologists to apply our methods to real-world data.
- Integrate efficient CPU parallelization and batching into our existing framework:
 - ⇒ Accelerate numerical simulations (CPTs construction time).
 - ⇒ Accelerate parameter optimization (exploration phase).

Thank You!

Any Questions?

Olivier Bouët-Willaumez LACL, Université Paris-Est Créteil, France https://olivbw.github.io/

