Unità 1

Le architetture di rete

Architettura di rete: strati, protocolli e interfacce

Un'architettura di rete è definita dall'insieme dei protocolli di comunicazione e delle interfacce.

I progettisti di architetture di reti hanno scelto come riferimento il **modello** a **strati** (o **a livelli**), una struttura logica che consente di suddividere la complessità della comunicazione tra sistemi in funzioni elementari e di assegnarle a strati diversi.

Un **livello** deve definire:

- le interfacce per passare il messaggio ai livelli adiacenti;
- i **protocolli** per la comunicazione tra pari livello (*peer level*) di sistemi diversi.

Architettura di rete: il modello a strati

Architettura di rete: l'incapsulamento

Il principio alla base delle architetture di rete che usano il modello a strati è l'**incapsulamento**.

II modello ISO/OSI

L'**ISO** ha definito un **modello**, denominato *Open System Interconnection* (**OSI**), allo scopo di specificare le modalità di comunicazione tra sistemi differenti.

Il modello prevede **sette livelli**, ognuno dei quali svolge un insieme di funzionalità specifiche, i primi tre in supporto alla rete e gli ultimi quattro all'utente.

OSI è da considerarsi solo un modello di riferimento soprattutto per i livelli bassi, essendo ormai universalmente adottata l'**architettura TCP/IP**.

II modello ISO/OSI: gli strati

n° livello

7	Application Layer	Si occupa delle applicazioni che usano la rete
6	Presentation Layer	Fornisce una rappresentazione standard dei dati per le applicazioni
5	Session Layer	Gestisce le sessioni tra le applicazioni
4	Transport Layer	Fornisce la connessione end-to-end con controllo della congestione
3	Network Layer	Gestisce la connessione alla rete
2	Data Link Layer	Provvede alla trasmissione dei dati sulla rete fisica
1	Physical Layer	Definisce le caratteristiche fisiche della rete

Lo stack TCP/IP

L'architettura TCP/IP prevede quattro livelli, il primo dei quali è ulteriormente scomposto in 2 sottolivelli.

Sviluppata prima della creazione del modello OSI e destinata a essere sostituita da questo, ha avuto negli anni sempre maggiore diffusione.

I suoi **protocolli** fondamentali sono alla base del funzionamento della rete Internet e sono:

- **IP**, per il livello rete;
- TCP, per il livello trasporto.

Gli enti di standardizzazione

Gli standard sono importanti nelle reti perché permettono l'interoperabilità di prodotti e servizi.

Importanti **enti di riferimento** sono:

IETF è l'organismo che emette le linee guida per la rete Internet, che rappresentano degli standard *de facto*.

Gli enti di standardizzazione

Gli standard sono importanti nelle reti perché permettono l'interoperabilità di prodotti e servizi.

Importanti enti di riferimento sono:

- IEEE, organismo composto da ingegneri che definisce principalmente standard per i protocolli di rete e similari;
- **ISO**, che regola le terminologie e i dispositivi, comprendendo come utilizzarli e definendo le linee guida in senso più ampio;
- **IETF** è l'organismo che emette le linee guida per la rete Internet, che rappresentano degli standard *de facto*.

Architetture di rete

Cos'è un'architettura di rete?

- Struttura logica che definisce l'organizzazione, i componenti e le modalità di comunicazione in una rete informatica
- Determina come i dispositivi interagiscono e condividono risorse
- Influenza prestazioni, scalabilità e sicurezza della rete

Principali tipi di architettura:

- Architettura Client-Server
 - Pro:
 - Gestione centralizzata delle risorse
 - Maggiore sicurezza e controllo degli accessi
 - Facilità di backup e manutenzione
 - Contro:
 - Dipendenza dal server (singolo punto di fallimento)
 - Costi elevati per l'infrastruttura server
 - Possibile congestione in caso di molte richieste simultanee

Architetture di rete

Architettura Peer-to-Peer

Si intende con <u>peer</u> (pari) l'host della rete che può sia inviare che ricevere.

Pro:

- Nessuna dipendenza da un server centrale
- Scalabilità e resistenza ai guasti (ridondanza)
- Condivisione diretta delle risorse tra i nodi

Contro:

- Difficoltà nel garantire la sicurezza
- Prestazioni variabili in base ai nodi connessi
- Complessità nella gestione e nel controllo della rete