Sviluppi in serie di Taylor con c=0 delle funzioni elementari			
Funzione	Sviluppo in forma troncata	Sviluppo in forma compatta	
$\sin(x)$	$\sin(x) = x - \frac{x^3}{6} + \frac{x^5}{120} - \frac{x^7}{5040} + o(x^7), \forall x \in \mathbb{R}$	$\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}, \forall x \in \mathbb{R}$	
$\cos(x)$	$\cos(x) = 1 - \frac{x^2}{2} + \frac{x^4}{24} - \frac{x^6}{720} + \frac{x^8}{40320} + o(x^8), \forall x \in \mathbb{R}$	$\cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}, \forall x \in \mathbb{R}$	
tan(x)	$\tan(x) = x + \frac{x^3}{3} + \frac{2}{15}x^5 + o(x^5), \qquad x < \frac{\pi}{2}$		
sec(x)	$\sec(x) = 1 + \frac{x^2}{2} + \frac{5}{24}x^4 + \frac{61}{720}x^6 + \frac{277}{8064}x^8 + o(x^8), \qquad x < \frac{\pi}{2}$		
$\arcsin(x)$	$\arcsin(x) = x + \frac{x^3}{6} + \frac{3}{40}x^5 + \frac{5}{112}x^7 + \frac{35}{1152}x^9 + o(x^9), \qquad x < 1$		
$\arccos(x)$	$\arccos(x) = \frac{\pi}{2} - x - \frac{x^3}{6} - \frac{3}{40}x^5 - \frac{5}{112}x^7 - \frac{35}{1152}x^9 + o(x^9), \qquad x < 1$		
$\arctan(x)$	$\arctan(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \frac{x^9}{9} + o(x^9), \qquad x < 1$		
e^x	$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \frac{x^5}{120} + o(x^5), \forall x \in \mathbb{R}$	$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \forall x \in \mathbb{R}$	
$\ln(1+x)$	$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} + o(x^5), \qquad x < 1$	$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n}, \qquad x < 1$	
$(1+x)^{\alpha}$	$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2}x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{6}x^3 + o(x^3), \qquad x < 1$		
$\frac{1}{1-x}$	$\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + o(x^4), \qquad x < 1$	$\sum_{n=0}^{\infty} x^n, \qquad x < 1$	
$\frac{1}{1+x^2}$	$\frac{1}{1+x^2} = 1 - x^2 + x^4 - x^6 + o(x^6), \qquad x < 1$	$\sum_{n=0}^{\infty} (-1)^n x^{2n}, \qquad x < 1$	
$\sinh(x)$	$x + \frac{x^3}{6} + \frac{x^5}{120} + \frac{x^7}{5040} + o(x^7)$		
$\cosh(x)$	$1 + \frac{x^2}{2} + \frac{x^4}{24} + \frac{x^6}{720} + o(x^6)$		

INTEGRAZIONE PER PARTI

$$\int f'(x) \cdot g(x) dx = f(x) \cdot g(x) - \int f(x) \cdot g'(x) dx$$

INTEGRAZIONE PER SOSTITUZIONE

$$\int f(x) dx = \int \frac{\mathbf{v}}{f(g(t))} \cdot \underline{g'(t)} dt$$

$$x = g(t)$$

$$dx = g'(t) dt$$

INTEGRAZIONE FUNZIONI FRATTE

$$\int \frac{P_1(x)}{P_2(x)} dx = \int Q(x) dx + \int \frac{R(x)}{P_2(x)} dx$$

Integrale fondamentale	Integrale in forma generalizzata
$\int x^n dx = \frac{x^{n+1}}{n+1} + c, n \in \mathbb{R}, \ n \neq -1$	$\int f(x)^n \cdot f'(x) dx = \frac{f(x)^{n+1}}{n+1} + c, n \in \mathbb{R}, \ n \neq -1$
$\int x^{-1} dx = \int \frac{1}{x} dx = \ln x + c$	$\int f(x)^{-1} \cdot f'(x) dx = \int \frac{f'(x)}{f(x)} dx = \ln f(x) + c$
$\int \sin x dx = -\cos x + c$	$\int \sin[f(x)] \cdot f'(x) dx = -\cos[f(x)] + c$
$\int \cos x dx = \sin x + c$	$\int \cos[f(x)] \cdot f'(x) dx = \sin[f(x)] + c$
$\int \frac{1}{\cos^2 x} dx = \tan x + c$	$\int \frac{1}{\cos^2[f(x)]} \cdot f'(x) dx = \tan[f(x)] + c$
$\int \frac{1}{\sin^2 x} dx = -\cot x + c$	$\int \frac{1}{\sin^2[f(x)]} \cdot f'(x) dx = -\cot[f(x)] + c$
$\int a^x dx = \frac{a^x}{\ln a} + c$	$\int a^{f(x)} \cdot f'(x) dx = \frac{a^{f(x)}}{\ln a} + c$
$\int e^x dx = e^x + c$	$\int e^{f(x)} \cdot f'(x) dx = e^{f(x)} + c$
$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + c$	$\int \frac{1}{\sqrt{1 - [f(x)]^2}} \cdot f'(x) dx = \arcsin[f(x)] + c$
$\int \frac{-1}{\sqrt{1-x^2}} dx = \arccos x + c$	$\int \frac{-1}{\sqrt{1 - [f(x)]^2}} \cdot f'(x) dx = \arccos[f(x)] + c$
$\int \frac{1}{1+x^2} dx = \arctan x + c$	$\int \frac{1}{1 + [f(x)]^2} \cdot f'(x) dx = \arctan[f(x)] + c$

Tabella delle derivate fondamentali

Funzione	1 Derivata
y = c (costante)	. y'=0
y=x	y'=1
$y = x^{\alpha}$	$y' = \alpha x^{\alpha-1}$
$y = \sqrt{x}$	$y' = \frac{1}{2\sqrt{x}}$
y = ∜x***	$\begin{vmatrix} y' = \frac{m}{x^n} & \frac{m}{x^n} \\ y' = \frac{m}{x^n} & \frac{m}{n \sqrt[n]{x^{m-n}}} \end{vmatrix}$
$y = \operatorname{sen} x$	$y' = \cos x$
$y = \cos x$	$y' = - \operatorname{sen} x$
y = tan <i>x</i>	$y' = \frac{1}{\cos^2 x} = 1 + \tan^2 x$
/ = cot x	$y' = -\frac{1}{\sin^2 x} = -(1+\cot^2 x)$
' = ln x	$y' = \frac{1}{x}$
$=\log_a x$	$y' = \frac{1}{x \ln a} = \frac{1}{x} \log_a e$
$=e^x$	$y'=e^x$
$=a^{x}$	$y' = a^x \ln a$

Funzione $f(x)$	Derivata $f'(x)$
f(x)	f'(x)
a f(x) + b g(x)	a f'(x) + b g'(x)
f(x) g(x)	g(x)f'(x)+f(x)g'(x)
f(x) g(x) h(x)	g(x) h(x) f'(x) + f(x) h(x) g'(x) + $f(x) g(x) h'(x)$
$\frac{f(x)}{g(x)}$	$\frac{f'(x)}{g(x)} - \frac{f(x)g'(x)}{g(x)^2}$
$f(x)^{g(x)}$	$f(x)^{g(x)} \left(\frac{g(x) f'(x)}{f(x)} + \log(f(x)) g'(x) \right)$
$\log(f(x))$	$\frac{f'(x)}{f(x)}$
$\log\left(\frac{f(x)}{g(x)}\right)$	$\frac{g(x)\left(\frac{f'(x)}{g(x)} - \frac{f(x)g'(x)}{g(x)^2}\right)}{f(x)}$
$e^{f(x)}$	$e^{f(x)} f'(x)$
$a^{f(x)}$	$\log(a) a^{f(x)} f'(x)$
$\log(a^{f(x)})$	$\log(a) f'(x)$
$\frac{f(x)}{ag(x)}$	$a^{-g(x)} f'(x) - \log(a) f(x) a^{-g(x)} g'(x)$
f(g(x))	g'(x) f'(g(x))

Tabella riassuntiva dei limiti notevoli

esponenziali e logaritmici

$$1) \lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x = e$$

$$2)\lim_{x\to-\infty} \left(1+\frac{1}{x}\right)^x = e$$

$$3) \lim_{x \to +\infty} \left(1 + \frac{a}{x} \right)^x = e^a$$

$$4) \lim_{x \to +\infty} \left(1 + \frac{a}{x} \right)^{nx} = e^{na}$$

$$5)\lim_{x\to\infty} \left(1 - \frac{1}{x}\right)^x = \frac{1}{e}$$

6)
$$\lim_{x\to 0} (1+ax)^{\frac{1}{x}} = e^{a}$$

7)
$$\lim_{x \to 0} \lg_a (1+x)^{\frac{1}{x}} = \frac{1}{\lg_e a}$$

8)
$$\lim_{x \to 0} \frac{\lg_a(1+x)}{x} = \lg_a e = \frac{1}{\ln a}$$

9)
$$\lim_{x\to 0} \frac{a^x - 1}{x} = \ln a$$

$$10)\lim_{x\to 0} \frac{(1+x)^a - 1}{x} = a$$

$$11)\lim_{x\to 0}\frac{(1+x)^a-1}{ax}=1$$

12)
$$\lim_{x\to 0} x^r \lg_a x = 0 \quad \forall a \in \mathbb{R}^+ - \{1\}, \forall r \in \mathbb{R}^+$$

13)
$$\lim_{x \to 0} \frac{\lg_a x}{x^r} = 0 \quad \forall a \in \mathbb{R}^+ - \{1\}, \forall r \in \mathbb{R}^+$$

14)
$$\lim_{x \to +\infty} x^r a^x = \lim_{x \to +\infty} a^x \qquad \forall a \in \mathbb{R}^+ - \{1\}, \forall r \in \mathbb{R}^+$$

15)
$$\lim_{x \to -\infty} |x|^r a^x = \lim_{x \to -\infty} a^x \quad \forall a \in \mathbb{R}^+ - \{1\}, \forall r \in \mathbb{R}^+$$

16)
$$\lim_{x \to +\infty} \frac{e^x}{x^r} = \lim_{x \to +\infty} a^x \qquad \forall r \in \mathbb{R}^+$$

17)
$$\lim_{x \to +\infty} \frac{x^r}{\rho^x} = \lim_{x \to +\infty} a^x \quad \forall r \in \mathbb{R}^+$$

18)
$$\lim_{x \to \infty} e^x x^r = 0$$
 $\forall r \in \mathbb{R}^+$

goniometrici

$$1)\lim_{x\to 0}\frac{sen\ x}{x}=1$$

$$2)\lim_{x\to 0}\frac{sen\ ax}{bx}=\frac{a}{b}$$

3)
$$\lim_{x\to 0} \frac{tg \ x}{r} = 1$$

$$4)\lim_{x\to 0}\frac{tg\ ax}{bx} = \frac{a}{b}$$

$$5) \lim_{x \to 0} \frac{1 - \cos x}{x} = 0$$

6)
$$\lim_{x\to 0} \frac{1-\cos x}{x^2} = \frac{1}{2}$$

$$7) \lim_{x \to 0} \frac{arcsen x}{x} = 1$$

$$8) \lim_{x \to 0} \frac{arcsen \, ax}{bx} = \frac{a}{b}$$

$$9)\lim_{x\to 0}\frac{arctg\ x}{x}=1$$

$$10)\lim_{x\to 0} \frac{arctg\ ax}{bx} = \frac{a}{b}$$

$$11)\lim_{x\to 0}\frac{senh\ x}{x}=1$$

$$12)\lim_{x\to 0} \frac{settsenh\ x}{x} = 1$$

$$13)\lim_{x\to 0}\frac{tgh\ x}{x}=1$$

$$14)\lim_{x\to 0}\frac{settgh\ x}{x}=1$$

15)
$$\lim_{x\to 0} \frac{x - sen x}{x^3} = \frac{1}{6}$$

16)
$$\lim_{x\to 0} \frac{x - arctg \ x}{x^3} = \frac{1}{3}$$

Se la serie $\sum_{k=0}^{+\infty} a_k$ è convergente, allora si deve avere

$$\lim_{n \to +\infty} a_n = 0.$$

Considerazioni generali sulle serie a termini non negativi

- 1 $\{\forall k \geq 1 \ a_k \geq 0\} \Leftrightarrow \{\text{ la successione } s \text{ delle somme parziali è monotòna non decrescente}\}$ Infatti per ogni $k \geq 1$ si ha $s_k = s_{k-1} + a_k$ quindi $\{a_k \geq 0\} \Leftrightarrow \{s_k \geq s_{k-1}\}$
- 2 $\{ \forall k \geq 1 \ a_k \geq 0 \} \Rightarrow \{ \{ \text{ la successione } s \text{ è limitata} \} \Leftrightarrow \{ \text{ la serie} \sum_{k=0}^{+\infty} a_k \text{ converge } \} \}$

Infatti, per 1, se gli a_k sono ≥ 0 per $k \geq 1$ deduciamo che la la successione s è monotòna non decrescente. Per un teorema fondamentale di Analisi A, una successione monotòna ha limite finito se e solo se è limitata. Ma, per la definizione di serie, dire che s ha limite finito coincide

col dire che la serie $\sum_{k=0}^{+\infty} a_k$ converge.

Criterio del confronto (versione-base). Siano a e b due successioni tali che

$$0 \le a_k \le b_k \qquad \forall k \in \mathbb{N} \tag{3}$$

Allora

$$\{ \text{ la serie.} \sum_{k=0}^{+\infty} \frac{b_k}{b_k} \text{ converge } \} \Rightarrow \{ \text{ la serie} \sum_{k=0}^{+\infty} \frac{a_k}{a_k} \text{ converge } \}.$$

Criterio del rapporto asintotico. Sia a una successione a termini positivi (cioè tale che $a_k > 0$ per ogni $k \in \mathbb{N}$). Consideriamo il limite

$$\lim_{k \to +\infty} \frac{a_{k+1}}{a_k}.\tag{8}$$

Si ha allora

se il limite (8)
$$\begin{cases}
\grave{\text{e}} \text{ minore di 1} & \text{allora la serie } \sum_{k=0}^{+\infty} a_k \text{ converge} \\
 \grave{\text{e}} \text{ maggiore di 1} & \text{allora la serie } \sum_{k=0}^{+\infty} a_k \text{ diverge} \\
 \grave{\text{e}} \text{ uguale a 1, oppure non esiste} & \text{allora il criterio } \grave{\text{e}} \text{ inefficace.}
\end{cases}$$

CONVERGENZA ASSOLUTA

Teorema(della convergenza assoluta). Sia a una successione di numeri reali. Se la serie

$$\sum_{k=0}^{+\infty} |a_k| \tag{10}$$

è convergente, allora anche la serie

$$\sum_{k=0}^{+\infty} a_k \tag{11}$$

converge.

Teorema di Leibniz(sulle serie a termini di segno alterno). Sia p una successione di numeri reali monotòna non crescente, cioè verificante

$$p_0 \ge p_1 \ge p_2 \ge \dots \ge p_k \ge \dots \tag{15}$$

e infinitesima, cioè verificante

$$\lim_{k \to +\infty} p_k = 0. \tag{16}$$

Costruiamo una nuova successione a_k come

$$\mathbf{a}_k = (-1)^k p_k. \tag{17}$$

Allora (tesi): la serie

$$\sum_{k=0}^{+\infty} a_k \tag{18}$$

converge.

- TABELLA DEGLI INTEGRALI IMPROPRI NOTEVOLI

Caso 1: integrali di potenze con intervallo di integrazione $[0,\alpha)$

Sia $\alpha > 0$. Allora

$$\int_0^\alpha \frac{1}{x^p} dx \begin{cases} \text{converge} & \text{se } p < 1 \\ \text{diverge} & \text{se } p \ge 1 \end{cases}$$

Possiamo generalizzare il precedente integrale con:

$$\int_{a}^{b} \frac{1}{(x-a)^{p}} dx = \begin{cases} \text{converge} & \text{se } p < 1\\ \text{diverge} & \text{se } p \ge 1 \end{cases}$$

Caso 2: integrali di potenze con intervallo di integrazione $[\alpha, +\infty)$

Sia $\alpha > 0$. Allora:

$$\int_{\alpha}^{+\infty} \frac{1}{x^p} dx = \begin{cases} \text{converge} & \text{se } p > 1 \\ \text{diverge} & \text{se } p \leq 1 \end{cases}$$

Caso 3: integrale improprio con potenza e logaritmo in $[0,\alpha)$

Sia $0 < \alpha < 1$. Allora

$$\int_0^\alpha \frac{1}{x^a |\ln(x)|^b} = \begin{cases} \text{converge} & \text{se } \begin{cases} a < 1 & \forall b \in \mathbb{R} \\ a = 1 & b > 1 \end{cases} \\ \text{diverge} & \text{se } \begin{cases} a < 1 & \forall b \in \mathbb{R} \\ a = 1 & b > 1 \end{cases} \\ a = 1 & b \le 1 \end{cases}$$

Caso 4: Integrale improprio con potenza e logaritmo in $[\alpha, +\infty)$

Sia $\alpha > 1$. Allora:

$$\int_{\alpha}^{+\infty} \frac{1}{x^a \ln^b(x)} dx \begin{cases} \text{converge} & \text{se } \begin{cases} a > 1 \text{ e } b \in \mathbb{R} \\ \text{oppure} \\ a = 1 \text{ e } b > 1 \end{cases} \\ \text{diverge} & \text{se } \begin{cases} a < 1 \text{ e } b \in \mathbb{R} \\ \text{oppure} \\ a = 1 \text{ e } b \leq 1 \end{cases} \end{cases}$$

$$\lim_{n \to +\infty} \sqrt[n]{a_n} = l \begin{cases} l < 1 & allora \sum_{l=1}^{+\infty} a_n \ converge \\ l > 1 & allora \sum_{l=1}^{+\infty} a_n \ diverge \end{cases}$$

1 Criterio di confronto tra serie e integrale

Teorema 1 Sia $f:[1,+\infty[\to\mathbb{R}\ una\ funzione\ positiva\ e\ decrescente.\ Allora\ la\ serie$

$$\sum_{n=1}^{\infty} f(n) \tag{1.1}$$

e l'integrale

$$\int_{1}^{+\infty} f(x) \, dx,\tag{1.2}$$

convergono o divergono simultaneamente.

Tabella $(\varepsilon_n \to 0)$

- 1) $\sin \varepsilon_n \sim \varepsilon_n$
- 2) $\arcsin \varepsilon_n \sim \varepsilon_n$
- 3) $\tan \varepsilon_n \sim \varepsilon_n$
- 4) $\arctan \varepsilon_n \sim \varepsilon_n$
- 5) $1 \cos \varepsilon_n \sim \frac{\varepsilon_n^2}{2}$
- sinh ε_n ∼ ε_n
- 7) $\tanh \varepsilon_n \sim \varepsilon_n$
- 8) $\cosh \varepsilon_n 1 \sim \frac{\varepsilon_n^2}{2}$
- 9) $(1 + \varepsilon_n)^{1/\varepsilon_n} \sim e$
- 10) $e^{\varepsilon_n} 1 \sim \varepsilon_n$
- 11.a) $\log(1 + \varepsilon_n) \sim \varepsilon_n$
- 11.b) $\log a_n \sim a_n 1 \ [\text{se } a_n \to 1]$
- 12.a) $(1 + \varepsilon_n)^{\alpha} 1 \sim \alpha \varepsilon_n \quad [\text{con } \alpha \in \mathbb{R}]$
- 12.b) $(1 + \varepsilon_n)^{a_n} 1 \sim a_n \varepsilon_n \text{ [se } a_n \varepsilon_n \rightarrow 0]$
 - 13) $n! \sim e^{-n} n^n \sqrt{2\pi n}$ (de Moivre-Sterling)
 - 14) $\log n! \sim n \log n$
 - 15) $\sum_{k=1}^{n} \frac{1}{k} \sim \log n$ (Eulero-Mascheroni)