Definiția 1. Polinoamele $B_n^k(x) = C_n^k x^k (1-x)^{n-k}$, $\forall x \in [0,1]$, $\forall k \in \overline{0,n}$, se numesc polinoamele Bernstein de grad n, unde $C_n^k = \frac{n!}{k!(n-k)!}$.

Definiția 2. Polinomul $B_n(x) = \sum_{k=0}^n f\left(\frac{k}{n}\right) B_n^k(x)$, $\forall x \in [0,1]$, se numește polinomul Bernstein de grad n asociat funcției f.

Teorema 1. (teorema lui Bernstein) $Dac\check{a} \ f \in C[0,1]$, atunci $B_n \xrightarrow{\|\cdot\|_{\mathcal{U}}} f$.

Teorema 2. (teorema lui Weierstrass) $Dac\check{a}$ $f \in C[a,b]$, atunci $\exists (P_n)$, un şir de polinoame cu coeficienți reali așa încât $P_n \xrightarrow{\|\cdot\|_u} f$.

Corolarul 1. Dacă $f \in C[a,b]$, atunci $\forall \varepsilon > 0$, $\exists Q$ un polinoam cu coeficienți raționali așa încât $||f - Q||_{u} < \varepsilon$.

Corolarul 2. Spațiul $(C[a,b], \|\cdot\|_{u})$ este separabil.

Teorema lui Bernstein este o teoremă fundamentală în analiza matematică. Prin acest rezultat, orice funcție continuă pe [0,1] (respectiv pe [a,b], dacă ținem seama de Teorema 2) se poate aproxima uniform cu polinoame, care sunt funcții cu o structură mai simplă. Cu alte cuvinte, orice funcție reală continuă pe [0,1] poate fi reprezentată cu o precizie arbitrar fixată, de o funcție polinomială. Din acest motiv, în CAGD (*Computer Aided Geometric Design*) se utilizează mai ales curbele și suprafețele polinomiale, prin intermediul cărora pot fi modelate o mare varietate de forme.

Fie
$$A_n = \{x \mid x(t) = a_0 + a_1 t + ... + a_n t^n, \ \forall t \in [0,1], \text{ unde } a_0, ..., a_n \in \mathbb{R} \}$$
 și $A = \bigcup_{n \in \mathbb{N}} A_n$.

Definiția 3. Prin curbă polinomială înțelegem orice curbă definită printr-o parametrizare polinomială: $\gamma:[0,1] \to \mathbb{R}^3$, $\gamma(t) = (x(t), y(t), z(t))$, $\forall t \in [0,1]$, unde x, $y, z \in A$. În acest caz, maximul gradelor polinoamelor x, y, z, se numește gradul curbei γ .

Fie $\gamma:[0,1] \to \mathbb{R}^3$, $\gamma(t) = (x(t),y(t),z(t))$, $\forall t \in [0,1]$, o curbă polinomială de grad n. Atunci există o mulțime de vectori $C_n = \left\{c_k = (x_k,y_k,z_k) \in \mathbb{R}^3 \mid k \in \overline{0,n}\right\}$ așa încât $\gamma(t) = \sum_{k=0}^n c_k t^k$, $\forall t \in [0,1]$. Cercetătorii în CAGD au încercat să descopere în ce măsură modificarea acestor coeficienți influențează geometria curbei, dar au ajuns la concluzia că baza canonică $\left\{1,t,t^2,\ldots\right\}$ nu este potrivită pentru design CAGD. În 1970, Pierre Bézier,

inginer la firma Renault, în dorința de a proiecta caroserii de automobile cu forme cât mai variate, a înlocuit baza canonică din A_n cu baza Bernstein: $B = \left\{B_n^0, B_n^1, ..., B_n^n\right\}$.

Fie $C_n = \{c_k = (x_k, y_k, z_k) \in \mathbb{R}^3 \mid k \in \overline{0, n}\}$. Vom numi această mulțime *poligon de control*.

Definiția 4. Se numește curbă Bézier definită de poligonul de control C_n , funcția $b_n:[0,1] \to \mathbb{R}^3$, $b_n(t) = \sum_{k=0}^n c_k B_n^k(t)$, $\forall t \in [0,1]$. În acest caz, punctele c_k , $k \in \overline{0,n}$, se numesc puncte de control ale curbei b_n .

Deoarece $B_n^k(t) \ge 0$ și $\sum_{k=0}^n B_n^k(t) = 1$, $\forall t \in [0,1]$, rezultă că $b_n(t)$ este o combinație convexă a punctelor de control, $\forall t \in [0,1]$.

În desenele următoare avem reprezentate câteva curbe Bézier plane.

Fig. 1. Curbă Bézier cu 3 puncte de control

Fig. 2. Curbă Bézier cu 4 puncte de control

Fig. 3. Curbă Bézier cu 4 puncte de control

Fig. 4. Curbă Bézier cu 8 puncte de control

Fie acum mulțimea curbelor din \mathbb{R}^3 :

$$C = \left\{ \gamma : [0,1] \to \mathbb{R}^3 | \ \gamma(t) = \left(f(t), g(t), h(t) \right), \ \forall t \in [0,1], \ \text{unde } f, g, h \in C[0,1] \right\}.$$

Considerăm funcția $\|\cdot\|_u: C \to \mathbb{R}_+$, $\|\gamma\|_u = \sup_{t \in [0,1]} \|\gamma(t)\|_{\infty}$, $\gamma \in C$. Ținând seama că $\|\cdot\|_{\infty}$ este o

normă pe $\,\mathbb{R}^3$, se arată fără dificultate că $\left\|\cdot\right\|_u$ este o normă pe $\,C$.

Fie $(\gamma_n) \subset C$ și $\gamma \in C$. Presupunem că $\gamma_n = (f_n, g_n, h_n)$, $\forall n$ și $\gamma = (f, g, h)$. Au loc de asemenea echivalentele:

$$\gamma_{n} \xrightarrow{\|\cdot\|_{u}} \gamma \Leftrightarrow \gamma_{n} \xrightarrow{uniform} \gamma \Leftrightarrow \begin{cases} f_{n} \xrightarrow{uniform} f \\ g_{n} \xrightarrow{uniform} g \\ h_{n} \xrightarrow{uniform} h \end{cases}$$

Fie $\gamma \in C$, $\gamma = (f, g, h)$, unde $f, g, h \in C[0,1]$. Atunci din teorema lui Bernstein obţinem că:

$$\sum_{k=0}^n f\left(\frac{k}{n}\right) B_n^k \xrightarrow{uniform} f \ , \ \sum_{k=0}^n g\left(\frac{k}{n}\right) B_n^k \xrightarrow{uniform} g \ , \ \sum_{k=0}^n h\left(\frac{k}{n}\right) B_n^k \xrightarrow{uniform} h \ .$$

Considerăm poligonul de control $C_n = \left\{ \left(f\left(\frac{k}{n}\right), g\left(\frac{k}{n}\right), h\left(\frac{k}{n}\right) \right) | k \in \overline{0,n} \right\}$ și fie b_n curba

Bézier asociată lui C_n . Acestea vor fi numite *curbele Bézier asociate lui \gamma*. Ținând seama de observațiile de mai sus, rezultă că $b_n \xrightarrow{\|\cdot\|_u} \gamma$. Prin urmare, curba γ poate fi reprezentată prin curbele Bézier asociate.

În prezent, în CAGD curbele Bézier sunt utilizate aproape în exclusivitate.

Problemă:

Să se scrie un applet care care să permită desenarea unei curbe Bezier cu 4 puncte de control.

Temă:

Să se modifice appletul pentru un număr oarecare de puncte de control, n, furnizat din documentul HTML. Să se testeze appletul pentru n=30.