Math 225B Differential Geometry: Homework 3 $\,$

Jan 25th, 2019

Professor Peter Petersen

Anish Chedalavada

Exercise 1 (ACITDG Spivak, Chapter 4 Exercise 5).

Proof. i) Suppose the quantity $\lambda^i \mu_i$ is an invariant, and let λ^i by the component of any arbitrary covariant vector field. We have that:

$$\lambda^{j}\mu_{j} = \lambda'^{i}\mu'_{i} \implies \lambda^{j}\mu_{j} = \lambda^{j}\frac{\partial x'_{i}}{\partial x'_{j}}\mu'_{i} \implies \lambda^{j}\left(\mu_{j} - \frac{\partial x'_{i}}{\partial x_{j}}\mu'_{i}\right) = 0$$

And as λ^j was assumed to be the components of any arbitrary vector it is clear that μ_j satisfies the contravariant property symmetric logic applies for when μ_i is assumed to be the components of an arbitrary contravariant vector.

ii) We have that locally, n independent vector fields yield a basis for the vector space at each trivialization and the result clearly holds in a neighborhood with coordinates (x, U) by previous homework. It suffices to show that this expression is invariant of parametrization. Let x' be a new system of coordinates for the neighborhood. We have:

$$a^{\alpha} \lambda_{\alpha|}^{\prime i} = \frac{\partial x_i^{\prime}}{\partial x_i} (a^{\alpha} \lambda_{\alpha|}^i) = \lambda^{\prime i}$$

And thus a^{α} is an invariant.

- iii) This is only true as a local condition: from earlier, we
- iv) Suppose $a^{ij} = a^{ji}$ are the components of a vector field. For any other coordinate system, we have the associated equations:

$$a^{\prime ij}T = a^{\prime ji}T$$

For T an associated transformation for a vector field from one coordinate to another for a^{ij} tensor field. Cancelling out the T's yields the result.

- v) Suppose a^{ij} and b^{ij} are tensor fields. Then both satisfy the same property $a'^{kl}T = a^{ij}$ for Tassociated transformation from old coordinates to new; furthermore, both have the same transformation matrix. Thus, $(a'^{kl} + b'^{kl})T = a'^{kl}T + b'^{kl}T = a^{ij} + b^{ij}$.
- vi) Applying similar logic as in part i) yields that a^{ij} and a^{ji} must be tensors, and part v) yields the property that $a^{ij} + a^{ji}$ must be a tensor. We have that $b_{ij} = a_{ij} + a_{ji}$ is such that $b_{ij} = b_{ji}$.
- viii) If $ba_{ss} + ca_{ss} = 0$ then either b = -c in which case $a_{rs} = a_{sr}$ and a is symmetric, or $a_{ss} = 0$ and $ba_{sr} = -ca_{rs} \implies -\frac{b}{c} = \frac{a_{rs}}{a_{sr}}$ which implies $-\frac{b}{c} = -\frac{c}{b}$ and thus $b = \pm c$, so a is either symmetric or skew-symmetric.
- ix) Under transformations of coordinates we have $A_{ij} = A'_{kl}T$ with T being a scaling matrix, which preserves rank of $A = (a_{ij})$, and thus rank is invariant under all transformations of coordinates.
- x) We have that the tensor a_ib_j with components two vectors a_i and b_j has rank 1 as any column vector in the mamtrix a_ib_j is proportional to the the first column vector by multiplying by $\frac{a_1}{a_i}$. For the symmetric tensor $a_ib_j + a_jb_i$ we have that for $a_i \neq xb_j$ for x a constant there are at least two columns k, l s.t. $a_ib_k + a_kb_i \neq x(a_ib_l + a_lb_i)$ for some i (as if this were not true then b_i would necessarily have to be a multiple of a_i . Thus, there are at least two linearly independent columns, $A + A^T$ can only have a maximum rank equal to the sum of the ranks, i.e. the rank is 2.
- xi) $a_j^i \lambda_i = \alpha \lambda_j \implies a_j^i \lambda_j \alpha \lambda_j = 0 \implies \lambda_j \alpha \delta_j^i \lambda_i = 0$ and thus the result, as d_j^i represents the change of basis matrix from i to j via $V^* \otimes V \cong End(V)$. If the result holds for arbitrary vectors we have that in particular it holds for each coordinate and thus $a_j^i = \alpha \delta_j^i$.
- xii) Suppose $a_j^i = \alpha \delta_j^i$ for λ_i s.t. $\mu^i \lambda_i = 0$; we may look at each vector λ_i and decompose it into some sum $v + c_0 y$ for $v \in ker \mu^i$. Thus, by linearity, a_j^i is completely determined by the value it takes on the unit vector \vec{u} not in the kernel of μ_i , which can be given by some vector $\eta_j = a_j^i \vec{u}$. Writing $\sigma_j = a_j^i \vec{u} \eta_j$, the result follows.
- xiii) Consider the multilinear map given by $\det(\mu'^{i_m}(\lambda'_{j_n}))$ for the m,n matrix with m,n=1,...,p for μ'^{i_m} any contravariant and λ'_{j_n} any covariant vector. We know that under a coordinate transformation, we have

that

$$\det(\mu^{k_m}(\lambda_{l_n})) = \det\left(\frac{\partial x_{l_m}}{\partial x'_{j_n}} \frac{\partial x'_i}{\partial x_k} \mu'^{i_m} \lambda'_{j_n}\right)$$

Which, expanding out the determinant using the generalized Kronecker delta to keep track of the sign of each pattern, we have the following:

$$\sum \delta_{j_1,...,j_p}^{i_1,...,i_p}(\mu^{i_1}(\lambda_{j_1}),...,\mu^{i_p}(\lambda_{j_p})) = \sum \delta_{l_1,...,l_p}^{k_1,...,k_p}(\mu^{i_1}(\lambda_{j_1}),...,\mu^{i_p}(\lambda_{j_p})) \cdot \frac{\partial x_{l_1}}{\partial x'_{j_1}},...,\frac{\partial x_{l_p}}{\partial x'_{j_p}} \frac{\partial x'_i}{\partial x_k},...,\frac{\partial x'_p}{\partial x_p}$$

Which gives us the result.

Exercise 2 (Exercise 6 Chapter 1V Spivak).