Universidade Federal da Grande Dourados Análise Numérica — Lista 4 Engenharia Mecânica — 2016.2 Prof. Adriano Barbosa

- 1. Calcule o polinômio interpolador de Lagrange de grau no máximo 1 e 2 para as funções abaixo e $x_0 = 0$, $x_1 = 0.6$ e $x_2 = 0.9$. Utilize o polinômio para aproximar o valor de f(0.45) e calcule o erro absoluto.
 - (a) $f(x) = \cos x$
 - (b) $f(x) = \sqrt{1+x}$
 - (c) $f(x) = \ln(x+1)$
 - (d) $f(x) = \tan x$
- 2. Use o Teorema do erro para as aproximações do exercício anterior. Compare com o erro absoluto calculado.
- 3. Use o polinômio interpolador de Lagrange de grau 1, 2 e 3 para aproximar cada um dos valores abaixo:
 - (a) f(8.4), onde f(8.1) = 16.94410, f(8.3) = 17.56492, f(8.6) = 18.50515, f(8.7) = 18.82091
 - (b) $f\left(-\frac{1}{3}\right)$, onde f(-0.75) = -0.07181250, f(-0.5) = -0.02475000, f(-0.25) = 0.33493750, f(0) = 1.10100000
 - (c) f(0.25), onde f(0.1) = -0.62049958, f(0.2) = -0.28398668, f(0.3) = 0.00660095, f(0.4) = 0.24842440
 - (d) f(0.9), onde f(0.6) = -0.17694460, f(0.7) = 0.01375227, f(0.8) = 0.22363362, f(1.0) = 0.65809197
- 4. Os valores do exercício anterior são das funções abaixo. Use a Teorema do erro para calcular o limitante do erro e compare com os resultados obtidos para os polinômios de grau 1 e 2.
 - (a) $f(x) = x \ln x$
 - (b) $f(x) = x^3 + 4.001x^2 + 4.002x + 1.101$
 - (c) $f(x) = x \cos x 2x^2 + 3x 1$
 - (d) $f(x) = \sin(e^x 2)$
- 5. Seja $P_3(x)$ o polinômio interpolador para o dado (0,0), (0.5,y), (1,3) e (2,2). O coeficiante de x^3 em $P_3(x)$ é 6. Calcule o valor de y.

Ano	1950	1960	1970	1980	1990	2000
População (mil)	151.326	179.323	203.302	226.542	249.633	281.422

- 6. A tabela abaixo apresenta a população dos Estados Unidos entre os anos 1950 e $2000. \,$
 - (a) Use o polinômio interpolador de Lagrange para aproximar os valores da população nos anos 1940, 1975 e 2020.
 - (b) Sabemos que a população em 1940 era aproximadamente 132.165.000. Quão precisas são as aproximações do item anterior para os anos de 1975 e 2020. Justifique.
- 7. O polinômio de Bernstein de grau n para $f \in C[0,1]$ é dado por

$$B_n(x) = \sum_{k=0}^n \binom{n}{k} f\left(\frac{k}{n}\right) x^k (1-x)^{n-k}$$

onde $\binom{n}{k} = \frac{n!}{k!(n-k)!}$. Esses polinômios são utilizados na prova do Teorema de Aproximação de Weierstrass, pois $\lim_{n\to\infty} B_n(x) = f(x)$, para cada $x \in [0,1]$.

Calcule $B_3(x)$ para as funções f(x) = x e f(x) = 1.

Respostas:

- 1. (a) n = 1 : 0.869, erro= 0.03145, n = 2 : 0.8981, erro= 0.00235
- (b) n = 1: 1.1987, erro= 0.00546, n = 2: 1.2034, erro= 7.59×10^{-4}
- (c) n = 1 : 0.3525, erro= 0.01906, n = 2 : 0.36829, erro= 0.03273
- (d) n = 1 : 0.5131, erro= 0.03005, n = 2 : 0.45461, erro= 0.02845
- 2. (a) 0.03375, 0.00506 (b) 0.08438, 0.001898 (c) 0.03375, 0.01013
- (d) 0.06779, 0.15104

3.

1	8.3, 8.6	17.87833
2	8.3, 8.6, 8.7	17.87716
3	8.3, 8.6, 8.7, 8.1	17.87714
c. <i>n</i>	x_0, x_1, \ldots, x_n	$P_n(0.25)$
1	0.2. 0.3	-0.138692

 x_0, x_1, \ldots, x_n

c. <i>n</i>	x_0, x_1, \ldots, x_n	$P_n(0.25)$
1	0.2, 0.3	-0.13869287
2	0.2, 0.3, 0.4	-0.13259734
3	0.2, 0.3, 0.4, 0.1	-0.13277477

b.	n	x_0, x_1, \ldots, x_n	$P_n(-1/3)$
	1	-0.5, -0.25	0.21504167
	2	-0.5, -0.25, 0.0	0.16988889
	3	-0.5, -0.25, 0.0, -0.75	0.17451852

d.	n	x_0, x_1, \ldots, x_n	$P_n(0.9)$
	1	0.8, 1.0	0.44086280
	2	0.8, 1.0, 0.7	0.43841352
	3	0.8, 1.0, 0.7, 0.6	0.44198500

4.

a.	n	Actual Error	Error Bound
	1	1.180×10^{-3}	1.200×10^{-3}
	2	1.367×10^{-5}	1.452×10^{-5}
		A1 E	E D 1
c.	n	Actual Error	Error Bound
c.	n 1	Actual Error 5.921×10^{-3} 1.746×10^{-4}	Error Bound 6.097×10^{-3} 1.813×10^{-4}

b.	n	Actual Error	Error Bound
	1 2	4.052×10^{-2} 4.630×10^{-3}	4.515×10^{-2} 4.630×10^{-3}
d.	n	Actual Error	Error Bound
	1 2	2.730×10^{-3} 5.179×10^{-3}	1.408×10^{-2} 9.222×10^{-3}

- 5. y = 4.256. 102.396, 953, 215.042, 718, 513.442, 9687. $B_3(x) = x, B_3(x) = 1$