

Automating Access Control Logics and Multimodal Logics in The Higher-Order Theorem Prover I FO-II¹

Christoph E. Benzmüller

Kestrel Institute, Palo Alto, CA, October 29, 2008

¹Funded by EPSRC grant EP/D070511/1 at Cambridge ⊌niversity ≥ ≥ → Q ?

Overview

1 Higher-Order Logic (HOL)

The Good Thing: Expressivitity

The Bad Thing: Automation is a Challenge

2 The LEO-II Prover

Motivation and Architecture

Solving Lightweight Problems: Sets

Less Lightweight Problems: Multimodal Logics

More Example Problems: Access Control Logics

Ongoing and Future Work

Church's Simple Type Theory

Higher-Order Logic (HOL)

Some folks say that HOL is like this:

I don't!

- Semantics (extensionality)
- Proof theory
- ATPs LEO and LEO-II

[PhD-99,JSL-04]

[IJCAR-06,LMCS-08]

[CADE-98,IJCAR-08]

Higher-Order Logic (HOL) - on one slide -

Property	FOL	HOL	Example
Quantification over - individuals - functions - predicates/sets/relations	√ - -	\checkmark	$\forall x P(F(x))$ $\forall F P(F(x))$ $\forall P P(F(x))$
Unnamed - functions - predicates/sets/relations		√ √	$(\lambda x_{\bullet} x) (\lambda x_{\bullet} x \neq 2)$
Statements about - functions - predicates/sets/relations	<u>-</u>	√ √	$continuous(\lambda x_{\bullet}x)$ reflexive(=)

$$A \cup B := \{x \mid x \in A \lor x \in B\}$$

$$A \cup B := (\lambda x_{n} x \in A \lor x \in B)$$

$$\cup := \lambda A_{n} \lambda B_{n} (\lambda x_{n} x \in A \lor x \in B)$$

$$symmetric := \lambda F_{\bullet}(\forall x, y_{\bullet}F(x, y) = F(y, x))$$

$$A \cup B := \{x \mid x \in A \lor x \in B\}$$

$$A \cup B := (\lambda x_{\bullet} x \in A \lor x \in B)$$

$$\cup := \lambda A_{\bullet} \lambda B_{\bullet} (\lambda x_{\bullet} x \in A \lor x \in B)$$

$$symmetric := \lambda F_{\bullet}(\forall x, y_{\bullet}F(x, y) = F(y, x))$$

$$A \cup B := \{x | x \in A \lor x \in B\}$$

$$A \cup B := (\lambda x_{\scriptscriptstyle \parallel} x \in A \lor x \in B)$$

$$U := \lambda A_{\scriptscriptstyle \parallel} \lambda B_{\scriptscriptstyle \parallel} (\lambda x_{\scriptscriptstyle \parallel} x \in A \lor x \in B)$$

$$symmetric := \lambda F_*(\forall x, y_*F(x, y) = F(y, x))$$

$$A \cup B := \{x \mid x \in A \lor x \in B\}$$

$$A \cup B := (\lambda x_{1} x \in A \lor x \in B)$$

$$\cup := \lambda A_{1} \lambda B_{1} (\lambda x_{1} x \in A \lor x \in B)$$

$$symmetric := \lambda F_{\bullet}(\forall x, y_{\bullet}F(x, y) = F(y, x))$$

$$A \cup B := \{x \mid x \in A \lor x \in B\}$$

$$A \cup B := (\lambda x_{1} x \in A \lor x \in B)$$

$$\cup := \lambda A_{1} \lambda B_{1} (\lambda x_{1} x \in A \lor x \in B)$$

$$symmetric := \lambda F_{\bullet}(\forall x, y_{\bullet}F(x, y) = F(y, x))$$

Sets and Relations in HOL

```
:= \lambda x \lambda A A(x)
\in
0
                         = \lambda x_{-} \mid
                         := \lambda A \lambda B (\lambda x x \in A \land x \in B)
                         := \lambda A \lambda B (\lambda x x \in A \lor x \in B)
                         := \lambda A \lambda B (\lambda x x \in A \land x \notin B)
                         := \lambda A \lambda B (\forall x x \in A \Rightarrow x \in B)
\mathcal{P}
                         := \lambda A (\lambda B B \subseteq A)
reflexive := \lambda R (\forall x R(x,x))
transitive := \lambda R_{\bullet}(\forall x, y, z_{\bullet}(R(x, y) \land R(y, z)) \Rightarrow R(x, z))
```

11

Types are Needed

Typed Sets and Relations in HOL

```
\begin{array}{lll}
\in & := & \lambda x_{\alpha} \cdot \lambda A_{\alpha \to o} \cdot A(x) \\
\emptyset & := & \lambda x_{\alpha} \cdot \bot \\
\cap & := & \lambda A_{\alpha \to o} \cdot \lambda B_{\alpha \to o} \cdot (\lambda x_{\alpha} \cdot x \in A \land x \in B) \\
\cup & := & \lambda A_{\alpha \to o} \cdot \lambda B_{\alpha \to o} \cdot (\lambda x_{\alpha} \cdot x \in A \lor x \in B) \\
\setminus & := & \lambda A_{\alpha \to o} \cdot \lambda B_{\alpha \to o} \cdot (\lambda x_{\alpha} \cdot x \in A \land x \notin B)
\end{array}
```

Polymorphism is a Challenge for Automation

► Another source of indeterminism / blind guessing

[TPHOLs-WP-07]

12

Automation is a Challenge

Undecidable and Infinitary Unification

$$\exists F_{\iota \to \iota} F(g(x)) = g(F(x))$$

$$(1)$$
 $F \leftarrow \lambda y_i y$

$$(2)$$
 $F \leftarrow \lambda y_i g(y)$

$$(3)$$
 $F \leftarrow \lambda y_i g(g(y))$

(4) ...

Primitive Substitution

Example Theorem: $\exists S_{\bullet} reflexive(S)$

Negation and Expansion of Definitions:

$$\neg \exists S (\forall x_{\iota} S(x,x))$$

Clause Normalisation (a(S) Skolem term):

$$\neg S(a(S), a(S))$$

Guess some suitable instances for 5

Cut rule

$$\frac{A \Rightarrow \mathbf{C} \quad \mathbf{C} \Rightarrow B}{A \Rightarrow B}$$

considered as bad in ATP

- Axiom of excluded middle
- Comprehension axioms
- ► Functional and Boolean extensionality ✓ [CAD]
- ▶ Leibniz and other definitions of equality ✓ [CADE-99,PhD-99]
- Axiom of induction
- Axiom of choice
- Axiom of description

Cut rule

$$\frac{A \Rightarrow \mathbf{C} \quad \mathbf{C} \Rightarrow B}{A \Rightarrow B}$$

considered as bad in ATP

[IJCAR-06]: Axioms that imply Cut Calculi that avoid axioms

- Axiom of excluded middle
- Comprehension axioms
- ► Functional and Boolean extensionality √[CADE-98,PhD-99]
- ▶ Leibniz and other definitions of equality √ [CADE-99,PhD-99]
- Axiom of induction
- Axiom of choice
- Axiom of description

Cut rule

$$\frac{A \Rightarrow \mathbf{C} \quad \mathbf{C} \Rightarrow B}{A \Rightarrow B}$$

considered as bad in ATP

Calculi that avoid axioms

LEO-II – A Cooperative Automatic Higher-Order Theorem Prover

LEO-II employs FO-ATPs:

E, Spass, Vampire

Architecture of LEO-II

Solving Lightweight Problems

Axiomatization in FO Set Theory

Assumptions:

$$\forall B, C, x_{\bullet}(x \in (B \cup C) \Leftrightarrow x \in B \lor x \in C)$$

$$\forall B, C, x_{\bullet}(x \in (B \cap C) \Leftrightarrow x \in B \land x \in C)$$

$$\forall B, C_{\bullet}(B \subseteq C \Leftrightarrow \forall x_{\bullet}x \in B \Rightarrow x \in C)$$

$$\forall B, C_{\bullet}(B \cup C = C \cup B)$$

$$\forall B, C_{\bullet}(B \cap C = C \cap B)$$

$$\forall B, C_{\bullet}(B = C \Leftrightarrow B \subseteq C \land C \subseteq B)$$

$$\forall B, C_{\blacksquare}(B = C \Leftrightarrow \forall x_{\blacksquare}x \in B \Leftrightarrow x \in C)$$

Proof Goal:

$$\forall B, C, D_{\bullet}$$

$$B \cup (C \cap D) = (B \cup C) \cap (B \cup D)$$

Performance: FO-ATP:

- % SPASS---3.0
 - Problem : SET171+3
- % SPASS beiseite: Ran out of time.
 - % E---0.999
- % Problem : SET171+3
- (time)
- % Vampire---9.0
- % Problem : SET171+3
- % Result : Theorem 68.6s

Performance: LEO-II + E

Eureka --- Thanks to Corina! Total Reasoning Time: 0.03s

Axiomatization in FO Set Theory

Assumptions:

$$\forall B, C, x_{\bullet}(x \in (B \cup C) \Leftrightarrow x \in B \lor x \in C)$$

$$\forall B, C, x_{\bullet}(x \in (B \cap C) \Leftrightarrow x \in B \land x \in C)$$

$$\forall B, C_{\bullet}(B \subseteq C \Leftrightarrow \forall x_{\bullet}x \in B \Rightarrow x \in C)$$

$$\forall B, C_{\bullet}(B \cup C = C \cup B)$$

$$\forall B, C_{\bullet}(B \cap C = C \cap B)$$

$$\forall B, C_{\bullet}(B = C \Leftrightarrow B \subseteq C \land C \subseteq B)$$

$$\forall B, C_{\bullet}(B = C \Leftrightarrow \forall x_{\bullet}x \in B \Leftrightarrow x \in C)$$

Proof Goal:

$$\forall B, C, D_{\bullet}$$

$$B \cup (C \cap D) = (B \cup C) \cap (B \cup D)$$

Performance: FO-ATP:

- % SPASS---3.0
 - Problem : SET171+3
- % SPASS beiseite: Ran out of time.
 - % E---0.999
- % Problem : SET171+3
- % Failure: Resource limit exceeded (time)
 - % Vampire---9.0
 - % Problem : SET171+3

Performance: LEO-II + E

Eureka --- Thanks to Corina! Total Reasoning Time: 0.03s

Axiomatization in FO Set Theory

Assumptions:

$$\forall B, C, x \mid (x \in (B \cup C) \Leftrightarrow x \in B \lor x \in C)$$

$$\forall B, C, x_{\bullet}(x \in (B \cap C) \Leftrightarrow x \in B \land x \in C)$$

$$\forall B, C (B \subseteq C \Leftrightarrow \forall x x \in B \Rightarrow x \in C)$$

$$\forall B, C_{\bullet}(B \cup C = C \cup B)$$

$$\forall B, C_{\bullet}(B \cap C = C \cap B)$$

$$\forall B, C_{\bullet}(B = C \Leftrightarrow B \subseteq C \land C \subseteq B)$$

$$\forall B, C_{\bullet}(B = C \Leftrightarrow \forall x_{\bullet}x \in B \Leftrightarrow x \in C)$$

Proof Goal:

$$\forall B, C, D_{\bullet}$$

$$B \cup (C \cap D) = (B \cup C) \cap (B \cup D)$$

Performance: FO-ATPs

% SPASS---3.0

% Problem : SET171+3

% SPASS beiseite: Ran out of time.

% E---0.999

% Problem : SET171+3

% Failure: Resource limit exceeded

(time)

% Vampire---9.0

% Problem : SET171+3

% Result : Theorem 68.6s

Performance: LEO-II + E

Eureka --- Thanks to Corina! Total Reasoning Time: 0.03s LEO-II (Proof Found!)

Axiomatization in FO Set Theory

Assumptions:

$$\forall B, C, x \mid (x \in (B \cup C) \Leftrightarrow x \in B \lor x \in C)$$

$$\forall B, C, x_{\bullet}(x \in (B \cap C) \Leftrightarrow x \in B \land x \in C)$$

$$\forall B, C \cdot (B \subseteq C \Leftrightarrow \forall x \cdot x \in B \Rightarrow x \in C)$$

$$\forall B, C_{\bullet}(B \cup C = C \cup B)$$

$$\forall B, C_{\bullet}(B \cap C = C \cap B)$$

$$\forall B, C_{\bullet}(B = C \Leftrightarrow B \subseteq C \land C \subseteq B)$$

$$\forall B, C_{\bullet}(B = C \Leftrightarrow \forall x_{\bullet}x \in B \Leftrightarrow x \in C)$$

Proof Goal:

$$\forall B, C, D_{\bullet}$$

$$B \cup (C \cap D) = (B \cup C) \cap (B \cup D)$$

Performance: FO-ATPs

% SPASS---3.0

% Problem : SET171+3

% SPASS beiseite: Ran out of time.

% E---0.999

% Problem : SET171+3

% Failure: Resource limit exceeded
(time)

% Vampire---9.0

% Problem : SET171+3

% Result : Theorem 68.6s

Performance: LEO-II + E

Eureka --- Thanks to Corina!
Total Reasoning Time: 0.03s
LEO-II (Proof Found!)

Results

Results

Problem	Vamp. 9.0	LEO+Vamp.	LEO-II+E	Problem	Va
014+4	114.5	2.60	0.300	648+3	
017 + 1	1.0	5.05	0.059	649+3	
066 + 1	_	3.73	0.029	651+3	
067 + 1	4.6	0.10	0.040	657+3	
076 + 1	51.3	0.97	0.031	669+3	
086 + 1	0.1	0.01	0.028	670+3	
096 + 1	5.9	7.29	0.033	671+3	
143+3	0.1	0.31	0.034	672+3	
171 + 3	68.6	0.38	0.030	673+3	
580 + 3	0.0	0.23	0.078	680+3	
601 + 3	1.6	1.18	0.089	683+3	
606 + 3	0.1	0.27	0.033	684+3	
607 + 3	1.2	0.26	0.036	716+4	
609 + 3	145.2	0.49	0.039	724+4	
611 + 3	0.3	4.00	0.125	741 + 4	
612 + 3	111.9	0.46	0.030	747+4	
614 + 3	3.7	0.41	0.060	752+4	
615 + 3	103.9	0.47	0.035	753+4	
623 + 3	_	2.27	0.282	764+4	
624 + 3	3.8	3.29	0.047		
630 + 3	0.1	0.05	0.025		
640 + 3	1.1	0.01	0.033	Vamp.	
646 + 3	84.4	0.01	0.032	LEO+Var	np.:
647 + 3	98.2	0.12	0.037	LEO-	II+E

Problem	Vamp. 9.0	LEO+Vamp.	LEO-II+E
648+3	98.2	0.12	0.037
649 + 3	117.5	0.25	0.037
651 + 3	117.5	0.09	0.029
657 + 3	146.6	0.01	0.028
669 + 3	83.1	0.20	0.041
670 + 3	_	0.14	0.067
671 + 3	214.9	0.47	0.038
672 + 3	_	0.23	0.034
673 + 3	217.1	0.47	0.042
680 + 3	146.3	2.38	0.035
683+3	0.3	0.27	0.053
684 + 3	_	3.39	0.039
716+4	_	0.40	0.033
724+4	_	1.91	0.032
741 + 4	_	3.70	0.042
747 + 4	_	1.18	0.028
752+4	_	516.00	0.086
753+4	_	1.64	0.037
764+4	0.1	0.01	0.032

Vamp. 9.0: 2.80GHz, 1GB memory, 600s time limit EO+Vamp.: 2.40GHz, 4GB memory, 120s time limit LEO-II+E: 1.60GHz, 1GB memory, 60s time limit

Less Lightweight Problems

Multimodal Logics

Logic Systems Interrelationships

John Halleck (U Utah): http://www.cc.utah.edu/~nahaj/ \$100 Modal Logic Challenge:

www.tptp.org

Example

$$54 = K$$

$$+ M(T): \Box a \Rightarrow a$$

$$+ 4: \Box a \Rightarrow \Box \Box a$$

Theorems:

$$54 \nsubseteq K$$
 (1) $\land 4$) \Leftrightarrow (refl.(R) \land trans.(R)) (2)

Experiments

Logic Systems Interrelationships

John Halleck (U Utah):

http://www.cc.utah.edu/~nahaj/

\$100 Modal Logic Challenge:

www.tptp.org

Example

$$S4 = K$$

$$+ M(T): \Box a \Rightarrow a$$

 $+ 4: \Box a \Rightarrow \Box \Box a$

Theorems:

$$S4 \subseteq K$$
 (1)

$$(M \land 4) \Leftrightarrow (refl.(R) \land trans.(R))$$
 (2)

Experiments

Logic Systems Interrelationships

Modal Logics Challenge

John Halleck (U Utah): http://www.cc.utah.edu/~nahaj/ \$100 Modal Logic Challenge:

www.tptp.org

Example

$$S4 = K$$

$$+ M(T): \square a \Rightarrow a$$

$$+ 4: \square a \Rightarrow \square \square a$$

Theorems:

$$\begin{array}{ccc} S4 & \not\subseteq & K & (1) \\ (M \land 4) & \Leftrightarrow & (refl.(R) \land trans.(R)) & (2) \end{array}$$

Experiments

FO-ATPs	$LEO ext{-II} + E$
[SutcliffeEtal-07]	[BePa-08]

$$s, t ::= p | \neg s | s \lor t | \square_r s$$

Simple, Straightforward Encoding

base type ι:

set of possible worlds

▶ (certain) terms of type $\iota \to o$:

multimodal logic formulas

200

$$s, t ::= p | \neg s | s \lor t | \square_r s$$

Simple, Straightforward Encoding

base type ι:

set of possible worlds

▶ (certain) terms of type $\iota \rightarrow o$:

multimodal logic formulas

$$|p| = p_{\iota \to o}$$

$$|r| = r_{\iota \to \iota \to o}$$

$$|\neg| = \lambda s_{\iota \to o} \lambda w_{\iota} \neg (a w)$$

$$|\lor| = \lambda s_{\iota \to o} \lambda t_{\iota \to o} \lambda w_{\iota} (s w) \lor (t w)$$

$$|\Box| = \lambda r_{\iota \to \iota \to o} \lambda s_{\iota \to o}$$

$$\lambda w_{\iota} \forall v_{\iota} (r w v) \Rightarrow (s v)$$

Encoding of Validity

$$\begin{array}{rcl} \operatorname{valid} s_{\iota \to o} &= & (\forall w_{\iota^{\bullet}}(s \, w)) \\ |\operatorname{valid}| &= & \lambda s_{\iota \to o^{\bullet}}(\forall w_{\iota^{\bullet}}(s \, w)) \end{array}$$

Local Definition Expansion

$$|\operatorname{valid} \square_r \top| = |\operatorname{valid}| |\square| ||r|| |\top|$$
$$= \beta \eta \quad \forall w , \forall v , (r w v) \Rightarrow \top$$

Encoding of Validity

$$\begin{array}{rcl} \operatorname{valid} s_{\iota \to o} &= & (\forall w_{\iota^{\bullet}}(s \, w)) \\ |\operatorname{valid}| &= & \lambda s_{\iota \to o^{\bullet}}(\forall w_{\iota^{\bullet}}(s \, w)) \end{array}$$

Local Definition Expansion

$$|\operatorname{valid} \square_r \top| = |\operatorname{valid}| |\square| ||r|| |\top|$$
$$= \beta^{\eta} \quad \forall w... \forall v... (r w v) \Rightarrow \top$$

(Normal) Multimodal Logic in HOL

Encoding of Validity

$$\begin{array}{rcl} \operatorname{valid} s_{\iota \to o} &=& (\forall w_{\iota^{\bullet}}(s \, w)) \\ |\operatorname{valid}| &=& \lambda s_{\iota \to o^{\bullet}}(\forall w_{\iota^{\bullet}}(s \, w)) \end{array}$$

Local Definition Expansion

$$|\operatorname{valid} \square_r \top| = |\operatorname{valid}| |\square| |r| |\top|$$
$$=^{\beta\eta} \forall w_{\iota^{\bullet}} \forall y_{\iota^{\bullet}} (r \ w \ y) \Rightarrow \top$$

Even simpler: Reasoning within Multimodal Logics

Problem	LEO-II + E
$ valid \square_r \top $	0.025s
$ \text{valid }\Box_r a \Rightarrow \Box_r a $	0.026s
$ valid \square_r a \Rightarrow \square_s a $	_
$ \text{valid }\Box_s\left(\Box_ra\Rightarrow\Box_ra\right) $	0.026s
$ \text{valid }\Box_r(a \wedge b) \Leftrightarrow (\Box_r a \wedge \Box_r b) $	0.044s
$ \text{valid} \lozenge_r (a \Rightarrow b) \Rightarrow \square_r a \Rightarrow \lozenge_r b $	0.030s
$ \text{valid} \neg \lozenge_r a \Rightarrow \square_r (a \Rightarrow b) $	0.029s
$ \text{valid }\Box_r\ b\Rightarrow\Box_r\ (a\Rightarrow b) $	0.026s
$ \text{valid} (\lozenge_r a \Rightarrow \square_r b) \Rightarrow \square_r (a \Rightarrow b) $	0.027s
$ \text{valid} (\lozenge_r a \Rightarrow \square_r b) \Rightarrow (\square_r a \Rightarrow \square_r b) $	0.029s
$ \text{valid} (\lozenge_r a \Rightarrow \square_r b) \Rightarrow (\lozenge_r a \Rightarrow \lozenge_r b) $	0.030s

$$|\text{valid }\square_s\left(\square_r\,a\Rightarrow\square_r\,a\right)|$$

Initialisation of problem

$$\neg | \text{valid } \square_s (\square_r \, a \Rightarrow \square_r \, a) |$$

Definition expansion

$$\neg(\forall x_{\iota^{\blacksquare}} \forall y_{\iota^{\blacksquare}} \neg s(x,y) \lor ((\neg(\forall u_{\iota^{\blacksquare}} \neg r(y,u) \lor a(u))) \lor (\forall v_{\iota^{\blacksquare}} \neg r(y,v) \lor a(v)))$$

Normalisation (x, y, u are now Skolem constants, V is a free variable)

$$s(x, y)$$
 $\neg a(u)$
 $r(y, u)$ $a(V) \lor \neg r(y, V)$

$$|\text{valid }\square_s\left(\square_r\,a\Rightarrow\square_r\,a\right)|$$

Initialisation of problem

$$\neg | \text{valid } \square_s (\square_r \, a \Rightarrow \square_r \, a) |$$

Definition expansion

$$\neg(\forall x_{\iota^{\blacksquare}} \forall y_{\iota^{\blacksquare}} \neg s(x,y) \lor ((\neg(\forall u_{\iota^{\blacksquare}} \neg r(y,u) \lor a(u))) \lor (\forall v_{\iota^{\blacksquare}} \neg r(y,v) \lor a(v)))$$

Normalisation (x, y, u are now Skolem constants, V is a free variable)

$$s(x, y)$$
 $\neg a(u)$
 $r(y, u)$ $a(V) \lor \neg r(y, V)$

$$|\text{valid }\square_s\left(\square_r\,a\Rightarrow\square_r\,a\right)|$$

Initialisation of problem

$$\neg | \text{valid } \square_s (\square_r \, a \Rightarrow \square_r \, a) |$$

Definition expansion

$$\neg(\forall x_{\iota} \neg \forall y_{\iota} \neg \neg s(x,y) \lor ((\neg(\forall u_{\iota} \neg \neg r(y,u) \lor a(u))) \lor (\forall v_{\iota} \neg \neg r(y,v) \lor a(v)))$$

Normalisation (x, y, u are now Skolem constants, V is a free variable)

$$s(x, y)$$
 $\neg a(u)$
 $r(y, u)$ $a(V) \lor \neg r(y, V)$

$$|\text{valid }\square_s\left(\square_r\,a\Rightarrow\square_r\,a\right)|$$

Initialisation of problem

$$\neg | \text{valid } \square_s (\square_r \, a \Rightarrow \square_r \, a) |$$

Definition expansion

$$\neg(\forall x_{\iota} \neg \forall y_{\iota} \neg \neg s(x,y) \lor ((\neg(\forall u_{\iota} \neg \neg r(y,u) \lor a(u))) \lor (\forall v_{\iota} \neg \neg r(y,v) \lor a(v)))$$

Normalisation (x, y, u are now Skolem constants, V is a free variable)

$$s(x, y)$$
 $\neg a(u)$
 $r(y, u)$ $a(V) \lor \neg r(y, V)$

A simple equation between modal logic formulas

$$\forall r \ \forall a \ \forall b \ |\Box_r (a \lor b)| \doteq |\Box_r (b \lor a)|$$

where \doteq is defined as $\lambda u, v. \forall p_{\bullet}(p u) \Rightarrow (p v)$

initialisation, definition expansion and normalisation:

$$(p(\lambda W_{\iota}.\forall y_{\iota} \neg ((r W) y) \lor (a y) \lor (b y)))$$
$$\neg (p(\lambda W_{\iota}.\forall y_{\iota} \neg ((r W) y) \lor (b y) \lor (a y)))$$

43

A simple equation between modal logic formulas

$$\forall r. \forall a. \forall b. |\Box_r (a \lor b)| \doteq |\Box_r (b \lor a)|$$

where \doteq is defined as $\lambda u, v. \forall p_{\blacksquare}(p u) \Rightarrow (p v)$

resolution:

$$(p(\lambda W_{\iota}.\forall y_{\iota} \neg ((rW)y) \lor (ay) \lor (by)))$$

$$\neq$$

$$(p(\lambda W_{\iota}.\forall y_{\iota} \neg ((rW)y) \lor (by) \lor (ay)))$$

A simple equation between modal logic formulas

$$\forall r. \forall a. \forall b. |\Box_r (a \lor b)| \doteq |\Box_r (b \lor a)|$$

where \doteq is defined as $\lambda u, v. \forall p_{\blacksquare}(p u) \Rightarrow (p v)$

decomposition:

$$(\lambda W_{\iota}.\forall y_{\iota^{\blacksquare}}\neg((r W) y) \lor (a y) \lor (b y))$$

$$\neq$$

$$(\lambda W_{\iota}.\forall y_{\iota^{\blacksquare}}\neg((r W) y) \lor (b y) \lor (a y))$$

A simple equation between modal logic formulas

$$\forall r. \forall a. \forall b. |\Box_r (a \lor b)| \doteq |\Box_r (b \lor a)|$$

where \doteq is defined as $\lambda u, v. \forall p_{\bullet}(p u) \Rightarrow (p v)$

functional extensionality:

$$(\forall y_{\iota^{\bullet}} \neg ((r w) y) \lor (a y) \lor (b y)) \neq (\forall y_{\iota^{\bullet}} \neg ((r w) y) \lor (b y) \lor (a y))$$

A simple equation between modal logic formulas

$$\forall r \ \forall a \ \forall b \ |\Box_r (a \lor b)| \doteq |\Box_r (b \lor a)|$$

where \doteq is defined as $\lambda u, v. \forall p_{\bullet}(p u) \Rightarrow (p v)$

Boolean extensionality:

$$\neg((\forall y_{\iota^{\blacksquare}} \neg((r w) y) \lor (a y) \lor (b y))$$

$$\Leftrightarrow$$

$$(\forall y_{\iota^{\blacksquare}} \neg((r w) y) \lor (b y) \lor (a y)))$$

A simple equation between modal logic formulas

$$\forall r \forall a \forall b |\Box_r (a \lor b)| \doteq |\Box_r (b \lor a)|$$

where \doteq is defined as $\lambda u, v. \forall p_{\bullet}(p u) \Rightarrow (p v)$

normalisation:

```
40: (b V) \lor (a V) \lor \neg ((r w) V) \lor \neg ((r w) W) \lor (b W) \lor (a W)
```

$$41: ((r w) z) \vee ((r w) v)$$

$$42: \neg(az) \lor ((rw)v)$$

$$43: \neg (bz) \lor ((rw)v)$$

44:
$$((\dot{r} w) z) \vee \neg (\dot{a} v)$$

$$45: \neg(az) \lor \neg(av)$$

$$46: \neg(bz) \lor \neg(av)$$

$$47:((rw)z)\vee\neg(bv)$$

48:
$$\neg(az) \lor \neg(bv)$$

$$49: \neg(bz) \lor \neg(bv)$$

Architecture of LEO-II

In modal logic ${\bf K}$, the axioms ${\cal T}$ and 4 are equivalent to reflexivity and transitivity of the accessibility relation ${\cal R}$

$$\forall r \cdot (\forall a \cdot | \text{valid } \square_r \ a \Rightarrow a | \land | \text{valid } \square_r \ a \Rightarrow \square_r \square_r \ a |)$$

$$\Leftrightarrow ((\text{reflexive } r) \land (\text{transitive } r))$$

- processing in LEO-II analogous to previous example
- now 70 clauses are passed to E
- ▶ E generates 21769 clauses before finding the empty clause
- total proving time 2.4s
- this proof cannot be found in LEO-II alone

Architecture of LEO-II

 $S4 \subseteq K$: Axioms T and 4 are not valid in modal logic K

$$\neg \forall r. \forall a. \forall b. | \text{valid} \square_r a \Rightarrow a | \land | \text{valid} \square_r b \Rightarrow \square_r \square_r b |$$

- ▶ LEO-II shows that axiom T is not valid
- ► *R* is instantiated with $\lambda x \cdot \lambda y \cdot (H \times y) \neq (H' \times y)$ via primitive substitution
- total proving time 17.3s

Architecture of LEO-II

Representation (and the right System Architecture) Matters!

Access Control Logics

Access Control Logics

Access Control Logic

Example (from [GargAbadi08]): file-access scenario

If admin says that file1 should be deleted, then this must be the case.

```
(admin says deletefile1) \supset deletefile1
```

admin trusts Bob to decide whether file1 should be deleted.

```
admin says ((Bob says deletefile1) > deletefile1)
```

Bob wants to delete file1.

```
Bob says deletefile1
```

Is deletion permitted?

```
deletefile1
```


Access Control Logic

Deepak Garg, Martín Abadi:

A Modal Deconstruction of Access Control Logics FoSSaCS 2008: 216-230, LNCS 4962 © Springer

- translation of a logic of access control with "says" operator into classical modal logic S4
- sound and complete
- extends to logics with
 - "speaks for" relation (ICL⇒)
 - Boolean combinations of principals (ICL^B)

So, let's combine this with our previous work ... and apply LEO-II

Access Control Logic

Deepak Garg, Martín Abadi:

A Modal Deconstruction of Access Control Logics FoSSaCS 2008: 216-230, LNCS 4962 © Springer

- translation of a logic of access control with "says" operator into classical modal logic S4
- sound and complete
- extends to logics with
 - "speaks for" relation (ICL⇒)
 - Boolean combinations of principals (ICL^B)

So, let's combine this with our previous work ... and apply LEO-II

$$s, t ::= p \mid s \wedge t \mid s \vee t \mid s \supset t \mid \bot \mid \top \mid A \text{ says } s$$

```
Translation [.] (of Garg and Abadi) into S4
                         \lceil p \rceil = \square p
                   \lceil s \wedge t \rceil = \lceil s \rceil \wedge \lceil t \rceil
                   \lceil s \lor t \rceil = \lceil s \rceil \lor \lceil t \rceil
                  \lceil s \supset t \rceil = \square(\lceil s \rceil \Rightarrow \lceil t \rceil) \text{ (fixed on 05.11.2008)}
                         [\top] = \top
                        \begin{bmatrix} \bot \end{bmatrix} = \bot
          [A \text{ says } s] = \square(A \vee [s])
```


$$s, t ::= p | s \wedge t | s \vee t | s \supset t | \bot | \top | A$$
says s

```
Translation ||.|| to HOL
                       |r| (we fix one single r!!!)
            = |\Box_r p|
  ||p||
 ||A||
         = |A|
 \|\wedge\|
         = \lambda s \lambda t |s \wedge t|
         = \lambda s \lambda t |s \vee t|
 \|\vee\|
         = \lambda s \lambda t |\Box_r (s \Rightarrow t)| (fixed on 05.11.2008)
 \| \supset \|
 \|\top\|
  \|\bot\|
          = |\bot|
 \|\mathbf{says}\| = \lambda A_{\bullet} \lambda s_{\bullet} | \Box_{r} (A \lor s) |
```


$$s, t ::= p \mid s \wedge t \mid s \vee t \mid s \supset t \mid \bot \mid \top \mid A \text{ says } s$$

```
Translation ||.|| to HOL
                               r_{t \to t \to o} (we fix one single r!!!)
                      = \lambda x_{i} \forall y_{i} r_{i \rightarrow i} x y \Rightarrow p_{i \rightarrow 0} Y
  ||p||
  ||A||
                      = a_{t \to 0} ((distinct from the p_{t \to 0})
  \|\wedge\|
                      = \lambda s_{\iota \to o} \lambda t_{\iota \to o} \lambda w_{\iota} s w \wedge t w
                      = \lambda s_{t \to c} \lambda t_{t \to c} \lambda w_{t} s w \vee t w
  \|\vee\|
                     = \lambda s_{t \to o} \lambda t_{t \to o} \lambda w_{t} \forall y_{t} r_{t \to t \to o} w y \Rightarrow (s y \Rightarrow t y) (fixed on
  \|\supset\|
  \|\top\|
                      = \lambda s_{i \rightarrow o} \top
  \|\bot\|
                    = \lambda s_{\iota \to o} \bot
                    = \lambda A_{t \to 0} \lambda s_{t \to 0} \lambda w_t \forall y_t r_{t \to t \to 0} w y \Rightarrow (A y \lor s y)
  ||says||
```


Notion of Validity

Addition of Modal Logic Axioms for S4

$$\forall p_{\iota \to o}. | \text{valid } \square_r \ p \Rightarrow p |$$

$$\forall p_{\iota \to o}$$
. | valid $\Box_r p \Rightarrow \Box_r \Box_r p$ |

Soundness of Embedding

see [SR-2008-01]: employs transformation from Kripke models into corresponding Henkin models

Notion of Validity

Addition of Modal Logic Axioms for S4

$$\forall p_{\iota \to o}. | \text{valid } \square_r p \Rightarrow p |$$

$$\forall p_{\iota \to o}. | \text{valid} \square_r p \Rightarrow \square_r \square_r p |$$

Soundness of Embedding

see [SR-2008-01]: employs transformation from Kripke models into corresponding Henkin models

Notion of Validity

Addition of Modal Logic Axioms for S4

$$\forall p_{\iota \to o}. | \text{valid } \square_r p \Rightarrow p |$$

$$\forall p_{\iota \to o}. | \text{valid} \square_r p \Rightarrow \square_r \square_r p |$$

Soundness of Embedding

see [SR-2008-01]: employs transformation from Kripke models into corresponding Henkin models

Example (from [GargAbadi08]): file-access scenario

If admin says that file1 should be deleted, then this must be the case.

```
\| \mathtt{iclval} \; (\mathtt{admin} \, \mathtt{says} \, \mathtt{deletefile1}) \supset \mathtt{deletefile1} \|
```

admin trusts Bob to decide whether file1 should be deleted.

```
\|	ext{iclval admin says}\left(\left(	ext{Bob says deletefile1}
ight)\supset 	ext{deletefile1}
ight)\|
```

Bob wants to delete file1.

```
||iclval Bobsaysdeletefile1||
```

Is deletion permitted?

```
||iclval deletefile1||
```


Example (from [GargAbadi08]): file-access scenario

If admin says that file1 should be deleted, then this must be the case.

```
\| \mathtt{iclval} \ (\mathtt{admin} \ \mathtt{says} \ \mathtt{deletefile1}) \ \supset \ \mathtt{deletefile1} \|
```

admin trusts Bob to decide whether file1 should be deleted.

```
\|	ext{iclval admin says}\left(\left(	ext{Bob says deletefile1}
ight)\supset 	ext{deletefile1}
ight)\|
```

Bob wants to delete file1.

```
|\text{valid }\Box_r (\text{Bob} \vee \Box_r \text{ deletefile1})|
```

Is deletion permitted?

```
||iclval deletefile1||
```


Example (from [GargAbadi08]): file-access scenario

If admin says that file1 should be deleted, then this must be the case.

```
\|iclval (admin says deletefile1) \supset deletefile1\|
```

admin trusts Bob to decide whether file1 should be deleted.

```
\|	ext{iclval admin says}((	ext{Bob says deletefile1})\supset 	ext{deletefile1})\|
```

Bob wants to delete file1.

$$\forall w_{\iota^{\blacksquare}}(\forall y_{\iota^{\blacksquare}}(r \ w \ y) \Rightarrow ((Bob \ y) \lor \forall u_{\iota^{\blacksquare}}(r \ w \ u) \Rightarrow (delete file 1 \ u)))$$

Is deletion permitted?

```
||iclval deletefile1||
```

LEO-II: 0.149 seconds

Exp.: Access Control Logic in HOL

Logic ICL:

Name	Problem	LEO (s)
unit	$\{\mathtt{R},\mathtt{T}\} \vdash \ \mathtt{ICLval}\ s\supset (A\mathtt{says}\ s)\ $	0.048
cuc	$\{\mathtt{R},\mathtt{T}\} \vdash \ \mathtt{ICLval}\ (A\mathtt{says}\ (s\supset t))\supset (A\mathtt{says}\ s)\supset (A\mathtt{says}\ t)\ $	0.055
idem	$\{\mathtt{R},\mathtt{T}\} \vdash \ \mathtt{ICLval}\ (A\mathtt{says}\ A\mathtt{says}\ s)\supset (A\mathtt{says}\ s)\ $	0.048
Ex1	$\{R, T, ICLval(1.1) , \dots, ICLval(1.3) \} \vdash ICLval(1.4) $	0.149
unit ^K	$\vdash \ \text{ICLval } s \supset (A \text{ says } s) \ $	-
cuc^K	$\vdash \ \texttt{ICLval} \ (A \texttt{says} \ (s \supset t)) \supset (A \texttt{says} \ s) \supset (A \texttt{says} \ t) \ $	0.041
$idem^K$	$\vdash \ \text{ICLval } (A \text{ says } A \text{ says } s) \supset (A \text{ says } s) \ $	_
Ex1 ^K	$\{\ \text{ICLval }(1.1)\ , \dots, \ \text{ICLval }(1.3)\ \} \vdash \ \text{ICLval }(1.4)\ $	0.053

R, T: reflexivity and transitivity axioms as seen before

Exp.: Access Control Logic in HOL

Logic ICL⇒:

Name	Problem	LEO (s)
refl	$\{\mathtt{R},\mathtt{T}\} \vdash \ \mathtt{ICLval}\ A \Rightarrow A\ $	0.052
trans	$\{\mathtt{R},\mathtt{T}\}\vdash \ \mathtt{ICLval}\;(A\Rightarrow B)\supset (B\Rightarrow C)\supset (A\Rightarrow C)\ $	0.044
spfor	$\{\mathtt{R},\mathtt{T}\} \vdash \ \mathtt{ICLval}\ (A\Rightarrow B)\supset (A\mathtt{says}s)\supset (B\mathtt{says}s)\ $	0.052
handoff	$\{\mathtt{R},\mathtt{T}\} \vdash \ \mathtt{ICLval}\ (B\mathtt{says}\ (A\Rightarrow B))\supset (A\Rightarrow B)\ $	0.044
Ex2	$\{R, T, ICLval(2.1) , \dots, ICLval(2.4) \} \vdash ICLval(2.5) $	0.251
$refl^K$	$\vdash \ \mathtt{ICLval} \ A \Rightarrow A \ $	0.034
$trans^K$	$\vdash \ \mathtt{ICLval} \ (A \Rightarrow B) \supset (B \Rightarrow C) \supset (A \Rightarrow C) \ $	0.043
$spfor^K$	$\vdash \ \texttt{ICLval} \ (A \Rightarrow B) \supset (A \texttt{says} \ s) \supset (B \texttt{says} \ s) \ $	0.039
$handoff^K$	$\vdash \ \texttt{ICLval} \; (B \texttt{says} (A \Rightarrow B)) \supset (A \Rightarrow B) \ $	_
Ex2 ^K	$\{\ \text{ICLval }(2.1)\ , \dots, \ \text{ICLval }(2.4)\ \} \vdash \ \text{ICLval }(2.5)\ $	-

R, T: reflexivity and transitivity axioms as seen before

Exp.: Access Control Logic in HOL

Logic ICL B :

Name	Problem	LEO (s)
trust	$\{\mathtt{R},\mathtt{T}\} \vdash \ \mathtt{ICLval}\ (\perp\mathtt{says} s)\supset s\ $	0.044
untrust	$\{\mathtt{R,T}, \ \mathtt{ICLval}\ A \equiv \top \ \} \vdash \ \mathtt{ICLval}\ A\mathtt{says} \bot \ $	0.046
cuc'	$\{\mathtt{R},\mathtt{T}\} \vdash \ \mathtt{ICLval}\ ((A\supset B)\mathtt{says}\ s)\supset (A\mathtt{says}\ s)\supset (B\mathtt{says}\ s)\ $	0.048
Ex3	$\{R, T, ICLval(3.1) , \dots, ICLval(3.3) \} \vdash ICLval(3.4) $	0.060
$trust^K$	$\vdash \ \mathtt{ICLval} \ (\bot \mathtt{says} \ s) \supset s \ $	1
$untrust^K$	$\{\ \mathtt{ICLval}\ A \equiv \top\ \} \vdash \ \mathtt{ICLval}\ A \mathtt{says}\bot\ $	0.035
cuc' ^K	$\vdash \ \texttt{ICLval} \ ((A \supset B) \texttt{says} s) \supset (A \texttt{says} s) \supset (B \texttt{says} s) \ $	0.044
Ex3 ^K	$\{\ \text{ICLval }(3.1)\ , \dots, \ \text{ICLval }(3.3)\ \} \vdash \ \text{ICLval }(3.4)\ $	_

R, T: reflexivity and transitivity axioms as seen before

Conclusion

What makes LEO-II strong? The combination of

- expressive higher-order representations
- reduction to first-order representations
- cooperation with first-order ATPs
- higher-order termsharing and termindexing techniques

Try LEO-II (running under Ocaml 3.10)

- ► Website: http://www.ags.uni-sb.de/~leo
 - download version, very easy to install
 - online demo
- Systems on TPTP: http://www.cs.miami.edu/~tptp/cgi-bin/SystemOnTPTP

... there is much left to be done!

LEO-II

- Equational Reasoning
- Termindexing
- Handling of Definitions

Cooperat. with Specialist Reasoners

- Monadic Second-Order Logic Prop. Logic, Arithmetic, . . .
- Logic Translations
- ► Feedback for LEO-II
- Proof Transf./Verification
- Agent-based Architecture

Integration into Proof Assistants

- Relevance of Axioms
- Proof Transf./Verification

International Infrastructure

- ► TPTP Language(s) for HOL
- Repository of Proof Problems
- ► HOL Prover Contest

Applications

Logic System Interrelationships, Ontology Reasoning (SUMO, CYC), Formal Methods, CL, . . .

LEO-II

- Equational Reasoning
- Termindexing
- Handling of Definitions

Cooperat. with Specialist Reasoners

- Monadic Second-Order Logic, Prop. Logic, Arithmetic, . . .
- Logic Translations
- Feedback for LEO-II
- Proof Transf./Verification
- Agent-based Architecture

Integration into Proof Assistants

- Relevance of Axioms
- Proof Transf./Verification

International Infrastructure

- ► TPTP Language(s) for HOL
- Repository of Proof Problems
- ► HOL Prover Contest

Applications

Logic System Interrelationships, Ontology Reasoning (SUMO, CYC), Formal Methods, CL, . . .

LEO-II

- Equational Reasoning
- Termindexing
- Handling of Definitions

Cooperat. with Specialist Reasoners

- ► Monadic Second-Order Logic, Prop. Logic, Arithmetic, . . .
- Logic Translations
- Feedback for LEO-II
- Proof Transf./Verification
- Agent-based Architecture

Integration into Proof Assistants

- ► Relevance of Axioms
- Proof Transf./Verification

International Infrastructure

- ► TPTP Language(s) for HOL
- Repository of Proof Problems
- ► HOL Prover Contest

Applications

Logic System Interrelationships, Ontology Reasoning (SUMO, CYC), Formal Methods, CL, . . .

LEO-II

- Equational Reasoning
- Termindexing
- Handling of Definitions

Cooperat. with Specialist Reasoners

- ► Monadic Second-Order Logic, Prop. Logic, Arithmetic, . . .
- Logic Translations
- Feedback for LEO-II
- Proof Transf./Verification
- Agent-based Architecture

Integration into Proof Assistants

- Relevance of Axioms
- Proof Transf./Verification

International Infrastructure

- ► TPTP Language(s) for HOL
- Repository of Proof Problems
- ► HOL Prover Contest

Applications

Logic System Interrelationships, Ontology Reasoning (SUMO, CYC), Formal Methods, CL, ...

LEO-II

- Equational Reasoning
- Termindexing
- Handling of Definitions

Cooperat. with Specialist Reasoners

- Monadic Second-Order Logic, Prop. Logic, Arithmetic, . . .
- Logic Translations
- Feedback for LEO-II
- Proof Transf./Verification
- Agent-based Architecture

Integration into Proof Assistants

- Relevance of Axioms
- Proof Transf./Verification

International Infrastructure

- ► TPTP Language(s) for HOL
- Repository of Proof Problems
- ► HOL Prover Contest

Applications

Logic System Interrelationships, Ontology Reasoning (SUMO, CYC), Formal Methods, CL, . . .

76

More Information on LEO-II

Website with online version of LEO-II:

http://www.ags.uni-sb.de/~leo

System description

[IJCAR-08]

► TPTP THF input syntax
Higher-Order TPTP Infrastructure

[IJCAR-THF-08] EU project THFTPTP

Reasoning in and about multimodal logic

[Festschrift-Andrews-08]

Term Graph for:

 $\neg \forall R. \forall A. (valid(\square_R A \Rightarrow A))$

Term graph videos: http://www.ags.uni-sb.de/~leo/art

Latest Application of LEO-II: Dancefloor Animation

Grooving to an animation of LEO-II's dynamically growing termgraph (while LEO-II is proving Cantor's theorem)

Termsharing

In LEO-II:

- ► Terms as unique instances
- Perfect Term Sharing
- Shallow data structures

Features:

- ightharpoonup eta- η -normalization
- DeBruijn indices
- local contexts for polymorphic type variables

LEO-II cannot prove the following example:

Modal logic K4 (which adds only axiom 4 to K) is not entailed in K:

$$\neg \forall R \cdot \forall B \cdot (\text{valid}(\square_R B \Rightarrow \square_R \square_R B))$$

LEO-II also cannot prove this related example:

$\neg \forall R_{\bullet} \operatorname{trans}(R)$

- reason: not a theorem; domain of possible worlds may well just consist of a single world w.
- LEO-II can in fact prove the latter example under the additional assumption

$$\neg \forall X ... \forall Y ... X = Y$$

LEO-II also cannot prove this related example:

$$\neg \forall R_{\bullet} trans(R)$$

- reason: not a theorem; domain of possible worlds may well just consist of a single world w.
- LEO-II can in fact prove the latter example under the additional assumption

$$\neg \forall X ... \forall Y ... X = Y$$

LEO-II also cannot prove this related example:

$$\neg \forall R$$
trans (R)

- reason: not a theorem; domain of possible worlds may well just consist of a single world w.
- ▶ LEO-II can in fact prove the latter example under the additional assumption

$$\neg \forall X \forall Y X = Y$$

