Teorema de Cantor

Clase 17

IIC 1253

Prof. Pedro Bahamondes

Outline

Cardinalidad

Conjuntos no enumerables

Teorema de Cantor

Epílogo

Cardinalidad

Definición

Sean A y B dos conjuntos cualesquiera. Diremos que A es equinumeroso con B (o que A tiene el mismo tamaño que B) si existe una función biyectiva $f: A \rightarrow B$. Lo denotamos como

 $A \approx B$

A y B tienen el mismo tamaño si los elementos de A se pueden poner en correspondencia con los de B.

Cardinalidad

Definición

La cardinalidad de un conjunto A es su clase de equivalencia bajo \approx :

$$|A| = [A]_{\approx}$$

Definición

Diremos que A es un conjunto finito si $A \approx n$, para algún $n \in \mathbb{N}$. Es decir, si existe una función biyectiva $f: A \to n = \{0, \dots, n-1\}$.

En tal caso, se tiene que $|A| = \lceil n \rceil_{\approx}$.

- Por simplicidad, diremos que |A| = n.
- También podremos decir que A tiene n elementos.

Definición

Un conjunto A se dice enumerable si $|A| = |\mathbb{N}|$.

Ejercicio

Demuestre que \mathbb{Z} es enumerable.

Podemos tomar $f: \mathbb{N} \to \mathbb{Z}$ dada por

$$f(n) = \begin{cases} \frac{n}{2} & \text{si } n \text{ es par} \\ -\left(\frac{n+1}{2}\right) & \text{si } n \text{ es impar} \end{cases}$$

la cual es claramente biyectiva (se deja como ejercicio), y entonces $|\mathbb{Z}| = |\mathbb{N}|$.

Definición

Un conjunto A es enumerable si y sólo si todos sus elementos se pueden poner en una lista infinita; es decir, si existe una sucesión infinita

$$(a_0, a_1, a_2, \ldots, a_n, a_{n+1}, \ldots)$$

tal que *todos* los elementos de *A* aparecen en la sucesión *una única vez* cada uno

Hay una biyección implícita entre índices y elementos de la lista:

$$f: A \to \mathbb{N} \text{ con } f(a_i) = i$$

Ejercicio

Demuestre que:

- $\mathbb{N} \times \mathbb{N}$ es enumerable.
- \mathbb{N}^n es enumerable.
- Q es enumerable.

Ejercicio (propuesto ★)

¿Cuál es la cantidad de programas válidamente escritos en { INSERTE SU LENGUAJE FAVORITO AQUÍ }?

Ejercicio

Demuestre que:

- $\mathbb{N} \times \mathbb{N}$ es enumerable.
- Q es enumerable.

Solución: Apuntes Jorge Pérez, Sección 1.6.2, Teorema 1.6.5, página 52.

Ejercicio

Demuestre que \mathbb{N}^n es enumerable.

Por inducción sobre n:

BI: La base es n = 2, demostrado anteriormente.

<u>HI:</u> Supongamos que \mathbb{N}^n es enumerable, con $n \ge 2$.

TI: PD: $\mathbb{N}^{n+1} = \mathbb{N}^n \times \mathbb{N}$ es enumerable.

Como por HI sabemos que \mathbb{N}^n es enumerable, existe una lista $(a_0,a_1,\ldots,a_i,\ldots)$ que contiene a todas las tuplas de \mathbb{N}^n exactamente una vez cada una. Luego, de manera similar a la demostración de $\mathbb{N} \times \mathbb{N}$, ponemos las tuplas de $\mathbb{N}^n \times \mathbb{N}$ en una matriz, la cual recorremos por las diagonales, que son los pares en que el índice de la primera componente en la lista de \mathbb{N}^n más la segunda componente suman k.

Ejercicio

Demuestre que \mathbb{N}^n es enumerable.

TI: De esta manera, la lista sería algo como:

$$((a_0,0),(a_0,1),(a_1,0),(a_0,2),(a_1,1),(a_2,0),\ldots)$$

Concluimos entonces que \mathbb{N}^n es enumerable para todo $n \in \mathbb{N}$.

Ejercicio

¿Cuál es la cantidad de programas válidamente escritos en { INSERTE SU LENGUAJE FAVORITO AQUÍ }?

Solución: Apuntes Jorge Pérez, Sección 1.6.2, páginas 52 y 53.

Un teorema útil (sobre todo para el caso infinito):

Teorema (Cantor-Schröder-Bernstein)

 $A \approx B$ si y sólo si existen funciones inyectivas $f : A \rightarrow B$ y $g : B \rightarrow A$.

El teorema CSB es una alternativa a construir una biyección (eso puede ser muy difícil!!)

Ejemplo

Demuestre que $A = \{2^i \cdot 3^j \mid i, j \in \mathbb{N}\}$ es enumerable.

Ejemplo

Demuestre que $A = \{2^i \cdot 3^j \mid i, j \in \mathbb{N}\}$ es enumerable.

Tomamos las siguientes funciones:

- $f: A \to \mathbb{N}$ dada por f(x) = x, la cual es claramente inyectiva.
- $g: \mathbb{N} \to A$ dada por $g(x) = 2^x \cdot 3^x = 6^x$. $g(x) = g(x) \Rightarrow 6^x = 6^y \Rightarrow x = y$, y por lo tanto es inyectiva.

Por teorema de CSB, concluimos que $|A| = |\mathbb{N}|$.

Objetivos de la clase

- □ Demostrar la existencia de conjuntos no enumerables
- □ Comprender la técnica de diagonalización
- Comprender el teorema de Cantor y sus consecuencias sobre la jerarquía de cardinalidades
- □ Demostrar el teorema de Cantor

Outline

Cardinalidad

Conjuntos no enumerables

Teorema de Cantor

Epílogo

¿Existen conjuntos infinitos no enumerables?

Teorema

El intervalo real $(0,1)\subseteq\mathbb{R}$ es infinito pero no enumerable.

¿Existen conjuntos infinitos no enumerables?

Teorema

El intervalo real $(0,1) \subseteq \mathbb{R}$ es infinito pero no enumerable.

Ejercicio

Demuestre el teorema.

Teorema

El intervalo real $(0,1) \subseteq \mathbb{R}$ es infinito pero no enumerable.

<u>Demostración</u>. Por contradicción, supongamos que (0,1) es enumerable.

Entonces existe una lista infinita de los reales en (0,1):

$$r_0, r_1, r_2, r_3, \ldots$$

donde cada real en (0,1) aparece exactamente una vez.

Notemos que cada r_i es un número decimal de la forma

$$r_i = 0, d_{i0}d_{i1}d_{i2}d_{i3}..., \text{ con } d_{ij} \in \{0,...,9\}$$

Reales	Representación decimal							
<i>r</i> ₀	0,	d_{00}	d_{01}	d_{02}	d_{03}	d_{04}	•••	
r_1	0,	d_{10}	d_{11}	d_{12}	d_{13}	d_{14}	•••	
<i>r</i> ₂	0,	d_{20}	d_{21}	d_{22}	d_{23}	d_{24}		
<i>r</i> ₃	0,	d_{30}	d_{31}	d_{32}	d_{03} d_{13} d_{23} d_{33} d_{43}	d_{34}		
<i>r</i> ₄	0,	d_{40}	d_{41}	d_{42}	d_{43}	d_{44}	•••	
:		÷	÷	:	÷	÷	٠.	

Reales	Representación decimal							
<i>r</i> ₀	0,	d_{00}	d ₀₁	d ₀₂	d ₀₃	d ₀₄	•••	
r_1	0,	d_{10}	d_{11}	d_{12}	d_{13}	d_{14}		
<i>r</i> ₂	0,	d_{20}	d_{21}	d ₂₂	d_{23}	d_{24}		
<i>r</i> ₃	0,	d_{30}	d_{31}	d_{32}	d ₃₃	d_{34}	•••	
<i>r</i> ₄	0,	d_{40}	d_{41}	d_{42}	d_{43}	d ₄₄		
:		÷	:	÷	÷	:	٠.	

Para cada
$$i \ge 0$$
, definimos $d_i = \begin{cases} d_{ii} + 1 & d_{ii} < 9 \\ 0 & d_{ii} = 9 \end{cases}$

Sea ahora el número real r = 0, $d_0 d_1 d_2 d_3 d_4 d_5 d_6 \dots$

Para cada
$$i \ge 0$$
, definimos: $d_i = \begin{cases} d_{ii} + 1 & d_{ii} < 9 \\ 0 & d_{ii} = 9 \end{cases}$

Sea ahora el número real r = 0, $d_0d_1d_2d_3d_4d_5d_6...$

¿Aparece r en la lista?

- $\xi r = r_0$? No, porque difieren en el primer dígito decimal.
- $r = r_1$? No, porque difieren en el segundo dígito decimal.
-
- $r = r_i$? No, porque el *i*-ésimo digito de r es distinto al de r_i :

$$d_i \neq d_{ii}$$

Por lo tanto, r no aparece en la lista $\rightarrow \leftarrow$

Como (0,1) no puede ponerse en una lista, no es enumerable.

El argumento anterior se llama diagonalización.

■ ¿Por qué?

El argumento anterior se llama diagonalización.

- ¿Por qué?
- Es clave para establecer muchos resultados en matemáticas y computación.

Usando estas ideas se puede demostrar que un computador no puede resolver todo problema

Teorema

 $(0,1) \approx \mathbb{R} \approx \mathcal{P}(\mathbb{N}).$

Outline

Cardinalidad

Conjuntos no enumerables

Teorema de Cantor

Epílogo

Entonces, ¿dónde hay más elementos, en \mathbb{N} o en \mathbb{R} ?

Definición

Dados conjuntos A y B, diremos que $A \le B$ (A no es más grande que B) si existe una función inyectiva $f: A \to B$.

¿Es ≤ una relación de orden?

Entonces, ¿dónde hay más elementos, en \mathbb{N} o en \mathbb{R} ?

Definición

Dados conjuntos A y B, diremos que $A \le B$ (A no es más grande que B) si existe una función inyectiva $f: A \to B$.

¿Es < una relación de orden?

Si $A \le B$, diremos que $|A| \le |B|$.

Definición

Dados conjuntos A y B, diremos que A < B (A es menos numeroso que B) si $A \le B$ pero $A \not \in B$.

¿Cómo se define esta noción usando funciones?

- **E**xiste función inyectiva $f: A \rightarrow B...$
- ... pero no existe función biyectiva $g: A \rightarrow B$.

Si A < B, diremos que |A| < |B|.

Ejemplo

 $\mathbb N$ es menos numeroso que $\mathbb R$, y por lo tanto decimos que $|\mathbb N|<|\mathbb R|$.

¡Hay estrictamente menos números naturales que reales!

Ejemplo

 $\mathbb N$ es menos numeroso que $\mathbb R$, y por lo tanto decimos que $|\mathbb N|<|\mathbb R|$.

¡Hay estrictamente menos números naturales que reales!

Corolario

 $|\mathbb{N}| < |\mathcal{P}(\mathbb{N})|$.

Ejemplo

 $\mathbb N$ es menos numeroso que $\mathbb R$, y por lo tanto decimos que $|\mathbb N|<|\mathbb R|$.

¡Hay estrictamente menos números naturales que reales!

Corolario

 $|\mathbb{N}| < |\mathcal{P}(\mathbb{N})|$.

Demostramos algo parecido para el caso finito... veremos que aplica para **todo conjunto**

Cardinalidad de A vs $\mathcal{P}(A)$

Dado un conjunto A (no necesariamente finito):

Teorema (Cantor)

A es menos numeroso que su conjunto potencia $(|A| < |\mathcal{P}(A)|)$.

Cardinalidad de A vs $\mathcal{P}(A)$

Dado un conjunto A (no necesariamente finito):

Teorema (Cantor)

A es menos numeroso que su conjunto potencia $(|A| < |\mathcal{P}(A)|)$.

¡Podemos repetir este proceso ad eternum! $|A| < |\mathcal{P}(A)| < |\mathcal{P}(\mathcal{P}(A))| < |\mathcal{P}(\mathcal{P}(\mathcal{P}(A)))| < \cdots$

Cardinalidad de A vs $\mathcal{P}(A)$

Teorema (Cantor)

A es menos numeroso que su conjunto potencia $(|A| < |\mathcal{P}(A)|)$.

Ejercicio

Demuestre el teorema.

<u>Demostración.</u> Primero, es claro que $|A| \le |\mathcal{P}(A)|$. Basta tomar

$$f: A \to \mathcal{P}(A)$$
 dada por $f(a) = \{a\}$

la cual es claramente inyectiva.

Cardinalidad de A vs $\mathcal{P}(A)$

Teorema (Cantor)

A es menos numeroso que su conjunto potencia $(|A| < |\mathcal{P}(A)|)$.

Ejercicio

Demuestre el teorema.

<u>Demostración.</u> Primero, es claro que $|A| \le |\mathcal{P}(A)|$. Basta tomar

$$f: A \to \mathcal{P}(A)$$
 dada por $f(a) = \{a\}$

la cual es claramente inyectiva.

Ahora mostraremos que no existe una función biyectiva entre A y $\mathcal{P}(A)$.

Por contradicción, supongamos que sí existe una biyección f entre A y $\mathcal{P}(A)$.

Considere el siguiente conjunto:

Definición (complemento de la diagonal)

$$\bar{D} = \{ a \in A \mid a \notin f(a) \}$$

Considere el siguiente conjunto:

Definición (complemento de la diagonal)

$$\bar{D} = \{ a \in A \mid a \notin f(a) \}$$

Notemos que $\bar{D} \subseteq A$, y por lo tanto $\bar{D} \in \mathcal{P}(A)$. Luego, como f es biyectiva, debe existir $x \in A$ tal que $f(x) = \bar{D}$.

Considere el siguiente conjunto:

Definición (complemento de la diagonal)

$$\bar{D} = \{ a \in A \mid a \notin f(a) \}$$

Notemos que $\bar{D} \subseteq A$, y por lo tanto $\bar{D} \in \mathcal{P}(A)$. Luego, como f es biyectiva, debe existir $x \in A$ tal que $f(x) = \bar{D}$. Considere ahora los siguientes casos:

- Si $x \in f(x)$, entonces $x \in \bar{D}$ (porque $f(x) = \bar{D}$), pero por definición de $\bar{D}, x \notin f(x)$.
- Si $x \notin f(x)$, entonces $x \notin \bar{D}$ (porque $f(x) = \bar{D}$), pero por definición de $\bar{D}, x \in f(x)$.

Considere el siguiente conjunto:

Definición (complemento de la diagonal)

$$\bar{D} = \{ a \in A \mid a \notin f(a) \}$$

Notemos que $\bar{D} \subseteq A$, y por lo tanto $\bar{D} \in \mathcal{P}(A)$. Luego, como f es biyectiva, debe existir $x \in A$ tal que $f(x) = \bar{D}$. Considere ahora los siguientes casos:

- Si $x \in f(x)$, entonces $x \in \overline{D}$ (porque $f(x) = \overline{D}$), pero por definición de $\overline{D}, x \notin f(x)$.
- Si $x \notin f(x)$, entonces $x \notin \bar{D}$ (porque $f(x) = \bar{D}$), pero por definición de $\bar{D}, x \in f(x)$.

Luego, $x \in f(x)$ si y sólo si $x \notin f(x)$, lo cual es una contradicción. Por lo tanto, no existe una biyección entre A y $\mathcal{P}(A)$.

Dos preguntas

¿Cuántos "infinitos" existen?

Dos preguntas

- ¿Cuántos "infinitos" existen?
- ¿Hay algún infinito entre $|\mathbb{N}|$ y $|\mathbb{R}|$?

Infinitos!

Dos preguntas

¿Cuántos	"infinitos"	existen?
----------------------------	-------------	----------

 $_{\blacksquare}$ ¿Hay algún infinito entre $|\mathbb{N}|$ y $|\mathbb{R}|?$

Infinitos!

???

Dos preguntas

- ¿Cuántos "infinitos" existen?
- ¿Hay algún infinito entre $|\mathbb{N}|$ y $|\mathbb{R}|$?

Infinitos!

???

Hipótesis del continuo

No existe conjunto A tal que $|\mathbb{N}| < |A| < |\mathbb{R}|$

¿Por qué se llama hipótesis?

- ¿Qué implica todo lo anterior para la computación?
 - ¿Qué cosas es capaz de hacer un computador?
 - ¿Qué cosas no es capaz de hacer?
 - ¿Existen problemas computacionales para los cuales no existan algoritmos que los resuelvan?
 - Respuesta: IIC2213:)

Outline

Cardinalidad

Conjuntos no enumerables

Teorema de Cantor

Epílogo

Objetivos de la clase

- □ Demostrar la existencia de conjuntos no enumerables
- □ Comprender la técnica de diagonalización
- Comprender el teorema de Cantor y sus consecuencias sobre la jerarquía de cardinalidades
- □ Demostrar el teorema de Cantor