

Some background

- Buildup of smoke during evenings at Ohanapecosh Campground as a result of campfire burning
- Smoke buildup suspected to be largely meteorologically driven
- Short-term exposure to high amounts of fine particles (i.e. smoke) can be dangerous!

Photo taken by Jeremiah Johnson 2013

Broad Objectives & Goals of Research

- To better understand how the meteorology and geography of Ohanapecosh relate to smoke build up in the campground.
- To develop a tool that can forecast nightly PM_{2.5} concentrations at the campground

Investigation 1

What influenced PM_{2.5} levels in the campground at night?

Data Used:

MetOne E-BAM PM2.5 concentrations

North American Mesoscale Modeled Meteorological Data (12 km resolution)

Visibility webcam at the park to detect cloud presence.

Characteristics of PM2.5 data

- 213 nights of PM2.5 data and meteorological data from summer 2009, 2010, 2013
- Peaks in smoke generally occurred from ~9pm-1am.
- Daily average PM2.5 never exceeds EPA daily limit (35 μg·m³),
- Nightly average from 9pm-1am exceeded 35 µg·m³ on 65/213 nights

Variables Used

- NAM Meteorological Data
 - Temperature
 - Relative humidity
 - Mixing height
 - Wind speed
- The presence of clouds
- PM_{2.5} from the previous night

Preparing Data for Analysis

- Grouped dataset by night (from 9pm-1am)
- Developed new time-lagged variables
- Transformed PM_{2.5} data to get normal distribution using Box-Cox Transformation

$$\begin{cases} y = \frac{x^{\lambda} - 1}{\lambda} \text{ where } \lambda \neq 0 \end{cases}$$

Cloud Effect on PM2.5 at Ohana 140 120 100 E-BAM PM2.5 (ug m-3) 80 60 40.1 40 20 0 No clouds Clouds

The strongest indicator:

PM_{2.5} is noticeably higher at the campground when:

- There are clear skies in the late afternoon and evening
- It is warm at night
- It is dry at night
- Wind speeds are low
- There is a large difference between the afternoon and evening mixing height

Multi-variate regression between meteorological data and E-BAM $PM_{2.5}$ from 2009-2013

Use meteorological variables Evening temperature (F)

Evening relative humidity

Evening wind speed (m/s)

The difference b/w the afternoon and evening mixing heights (m)

The presence of clouds at sunset

Previous evening PM_{2.5}

Build an equation that is used to forecast PM_{2.5} levels at night in 2020

Used data collected in summer 2020 to evaluate the model built from historical data:

- PurpleAir PM2.5
- Daily NOAA/NWS Forecast

NATIONAL WEATHER SERVICE

Predicted vs. Actual Forecasting Model: Summer 2020

Results:

- $R^2 = 0.525$ for 2009-2013 data;
- $R_2 = 0.289$ when tested on data collected in 2020
- Mean Absolute Error = 10.49
 μg·m³

Model is good at predicting when concentrations will be low!

78 of 200 campsites were closed during the sampling period in 2020 due to maintenance at the campground → this could lead to over prediction...

The model predicted general trends fairly well considering the closures...

More data needed

A Spreadsheet for Park Officials

Forecast	Date	RH_night 1	T_night	WS_night	MD_diff	clouds_2	0 pm25_prev_day	Predicted PM2.5	Actual PM2.5	Error +/-	Abs. Error		
NAM12	07/03/2020	90	50	2.5	264		1 34	7.0	7	0.02	0.02		coef
NAM12	07/04/2020	88	51	2.2	776		1 7	9.3	34	-24.70	24.70	constant	3.124
NAM12	07/05/2020	90	51	2.2	847		1 34	11.9	25	-13.08	13.08	RELHUMID	-0.0272
NAM12	07/06/2020	93	50	3.5	388		1 25	5.5	2	3.55	3.55	AIRTEMP_F	0.052
NAM12	07/07/2020	97	48	3	256		1 2	3.7	1.6	2.14	2.14	WS_ms	-0.3143
NAM12	07/08/2020	91	53	2.7	543		1 1.6	6.8	2.2	4.60	4.60	MD_diff	0.0013
NAM12	07/09/2020	95	53	2.7	230		1 2.2	4.9	2.1	2.78	2.78	clouds_20	-0.8461
NAM12	07/10/2020	81	51	1.2	967		0 2.1	20.8	35	-14.17	14.17	pm25_prev_day	0.0148
NAM12	07/11/2020	94	52	3.5	654		1 35	8.0	3	4.95	4.95	Lambda	0.242
NAM12	07/12/2020	85	48	2.8	544		0 3.2	10.6	16	-5.41	5.41		
NAM12	07/13/2020	67	50	1.9	1509		0 16	33.1	36	-2.94	2.94		
NAM12	07/14/2020	47	53	2.4	1343		0 36	42.8	22	20.83	20.83		
NAM12	07/15/2020	68	57.5	2.8	945		0 22	25.8	32.6	-6.84	6.84	Error	
NOAA	07/16/2020	90	56	2.2	500		1 32.6	10.6	2.25	8.34	8.34	MAE-NAM12	8.16
NOAA	07/17/2020	87	52	3	450		1 2.25	6.2	7.8	-1.61	1.61	MAE-NOAA	12.10
NOAA	07/18/2020	70	58	2.6	800		0 7.8	21.7	39.4	-17.65	17.65	MAE-ALL	10.49
NOAA	07/19/2020	74	63	0.5	700		0 39.4	36.3	30	6.30	6.30		
NOAA	07/20/2020	78	64	1	900		0 30	34.9	39	-4.10	4.10		
NOAA	07/21/2020	80	59	0.5	500		1 39	18.5	17	1.50	1.50		
NOAA	07/22/2020	90	55	2.5	400		1 17	7.9	1	6.87	6.87		
NOAA	07/23/2020	85	53	2	600		1 1	8.9	2.6	6.34	6.34		
NOAA	07/24/2020	90	50	3.2	600		1 2.6	6.0	7	-1.00	1.00		
NOAA	07/25/2020	72	57	0.89	1000		0 7	29.7	39	-9.34	9.34		

Investigation 2

2500-2000-Height (m) 1500-1000-500-Temperature (F)

Check for inversions & their effect: Temploggers + PM_{2.5} Collection

Orange over blue = Inversion

Orange over blue = Inversion

Inversion Effect on PM2.5 at Ohana 35 PA PM2.5 (ug m-3) 10 No inversion Inversion

Conclusions

- 20 of 33 nights after campground opened experienced inversions
- PM2.5 was significantly higher on these nights
- Clouds can prevent inversions from forming
- Clouds correctly predicted whether an inversion would occur 72% of the time (24/33 nights)
 - Clouds present at sunset = no inversion
 - Clear skies at sunset = inversion

Relationship b/w Clouds & Inversions

- The Earth's surface cools more rapidly on clear nights and more slowly on cloudy nights
- During the day, clouds can absorb longwave radiation (infrared) from the ground.
- At night, clouds prevent the ground from cooling off quickly because they supply the ground with radiation they absorbed before, keeping the air temperature at the surface warmer than the overlying air and preventing the inversion
- The opposite is true on clear nights. The ground cools off quickly, and the air just above the ground loses its heat to the ground by conduction throughout the night, resulting in the air near the surface being cooler than the air above it, creating an inversion.

Difference in afternoon and evening mixing depth a good predictor of Inversions?

Investigation 3

Compare low-cost Purple Air Sensors with MetOne E-BAM

Plots

Regional Campfire Ban

What AQI category does the park (and its immediately surrounding regions) fall under according to AirNow.gov?

Decision-Making Flowchart

Can one or more current readings validate AirNow forecast?:

- Nearby AirNow PM2.5 station
- Tahoma Woods PM2.5 nephelometer
- Regional PurpleAir Sensors

Can field validation of unhealthy air quality be provided?

- Difficulty breathing?
- Eye-irritation?
- Reduced visibility distinct from fog (webcam)?
- Smoke present?

If the case to support poor air quality in the park is:

- Weak follow the above procedures again at 11:30am
- <u>Supportive</u> refer to the corresponding procedures
- Worse than forecasted refer to the corresponding procedures and provide a final update at 11:30am

Moderate	Unhealthy for Sensitive Groups	Unhealthy	Very Unhealthy	Hazardous
AQI (50-100)	AQI (101-150)	AQI (151-200)	AQI (201-300)	AQI (301-500)
PM _{2.5} (12.1-35.4 ug/m ³)	PM _{2.5} (35.5-55.4 ug/m ³)	PM _{2.5} (55.5-150.4 ug/m³)	PM _{2.5} (150.5-250.4 ug/m³)	PM _{2.5} (>254.5 ug/m³)
 Recommend groups to not 	Prohibit individual campfires	Prohibit the use of campfires	Prohibit the use of campfires	Prohibit the use of campfires
use campfires if anyone in	and setup group campfire	across the park.	across the park.	across the park.
the group is sensitive to poor	locations in the major			
air quality	campgrounds			
 Encourage small groups to 	Require all campfires to be			
keep campfires small or to	completely extinguished by			
combine with other groups	11pm			
Encourage groups to				
completely extinguish				
campfires upon completion				