

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problems Mailbox.**

PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM
Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation ⁶ : A61K 51/00	A2	(11) Internationale Veröffentlichungsnummer: WO 99/13920 (43) Internationales Veröffentlichungsdatum: 25. März 1999 (25.03.99)
(21) Internationales Aktenzeichen: PCT/EP98/05741		(81) Bestimmungsstaaten: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO Patent (GH, GM; KE, LS, MW, SD, SZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
(22) Internationales Anmeldedatum: 10. September 1998 (10.09.98)		
(30) Prioritätsdaten: 197 41 694.2 18. September 1997 (18.09.97) DE 197 41 695.0 18. September 1997 (18.09.97) DE 197 42 880.0 23. September 1997 (23.09.97) DE		
(71) Anmelder (<i>für alle Bestimmungsstaaten ausser US</i>): SCHERRING AKTIENGESELLSCHAFT [DE/DE]; Müllerstrasse 178, D-13353 Berlin (DE).		Veröffentlicht <i>Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.</i>
(72) Erfinder; und		
(75) Erfinder/Anmelder (<i>nur für US</i>): DINKELBORG, Ludger [DE/DE]; Ortwinstraße 7, D-13465 Berlin (DE). HILGER, Christoph-Stephan [DE/DE]; Ostender Strasse 3a, D-13353 Berlin (DE). HELDMANN, Dieter [DE/DE]; Krefelder Strasse 3, D-10555 Berlin (DE). BLUME, Friedhelm [DE/DE]; Nusshäherstrasse 47 t, D-13505 Berlin (DE).		

(54) Title: METHOD FOR TREATING PROLIFERATIVE DISEASES BY THERAPY

(54) Bezeichnung: VERFAHREN ZUR THERAPEUTISCHEN BEHANDLUNG PROLIFERATIVER ERKRANKUNGEN

(57) Abstract

The invention relates to a method for treating proliferative diseases by therapy, characterised in that an application catheter is first placed at the site of the lesion and a radioactive substance is applied locally. The catheter is then removed, leaving the radioactive substance at the site of the lesion. The invention also relates to the use of bis-amine-oxime derivative, N₂S₂ complex derivatives and radioactively marked colloidal solutions for producing agents which are applied locally in proliferative disease therapy.

(57) Zusammenfassung

Die Erfindung betrifft ein Verfahren zur therapeutischen Behandlung proliferativer Erkrankungen, das dadurch gekennzeichnet ist, daß zunächst ein Applikationskatheter am Ort der Läsion gesetzt wird und eine radioaktive Substanz über den Katheter lokal appliziert wird, anschließend der Katheter wieder entfernt wird und die radioaktive Substanz am Ort der Läsion verbleibt. Die Erfindung betrifft weiterhin die Verwendung von Bis-Amin-Oxim-Derivaten, N₂S₂-Komplexderivaten und radioaktiv markierten kolloidalen Lösungen zur Herstellung von Mitteln, die bei der Therapie proliferativer Erkrankungen lokal appliziert werden.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Ostereich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische Republik Mazedonien	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland			TR	Türkei
BG	Bulgarien	HU	Ungarn	ML	Mali	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasiliens	IL	Israel	MR	Mauritanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von Amerika
CA	Kanada	IT	Italien	MX	Mexiko	UZ	Usbekistan
CP	Zentralafrikanische Republik	JP	Japan	NE	Niger	VN	Vietnam
CG	Kongo	KE	Kenia	NL	Niederlande	YU	Jugoslawien
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik Korea	NZ	Neuseeland		
CM	Kamerun			PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumänien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		

Verfahren zur therapeutischen Behandlung proliferativer Erkrankungen

- 5 Die Erfindung liegt auf dem Gebiet der Therapie proliferativer Erkrankungen und insbesondere der Therapie von Gefäßerkrankungen wie zum Beispiel der Atherosklerose.

Es ist bekannt, daß ionisierende Strahlung die Proliferation von Zellen inhibiert. Eine Vielzahl von neoplastischen und nicht neoplastischen Erkrankungen wurde auf diese Weise bereits behandelt (Fletcher, Textbook of Radiotherapy, Philadelphia, P.A: Lea and Febiger, 1980, Hall, Radiobiology for the Radiologist, Philadelphia, P.A: Lippincott, 1988).

15 Es wurde auch schon versucht, atherosklerotische Erkrankungen mit Hilfe dieser Verfahren zu behandeln. Die Atherosklerose ist eine entzündliche, fibroproliferative Erkrankung, die für 50% aller Todesfälle in den USA, Europa und Japan verantwortlich ist (Ross 1993, Nature 362: 801-809). Mit ihrer peripheren Ausprägung bedroht sie den Erhalt der Extremitäten, mit ihrer koronaren Manifestation besteht das Risiko des tödlichen Herzinfarkts und mit supraortalem Befall droht der Schlaganfall.

20 Eine Behandlung der Atherosklerose erfolgt derzeit auf unterschiedlichen Wegen. So hat sich neben den konservativen Maßnahmen (z. B. die Senkung des Cholesterinspiegels im Blut) und der Bypass-Operation, auch die mechanische Dilatation (Angioplastie) sowie die intravasale Entfernung atheromatösen Gewebes (Atherektomie) verengter Segmente in peripheren Arterien und den Koronarien als Alternative im klinischen Alltag etabliert.

Wie nachfolgend ausgeführt, sind die genannten Methoden jedoch mit einer Vielzahl von Nachteilen behaftet.

30 So wird der Wert mechanisch rekanalisierender Verfahren akut durch Gefäßverschlüsse in Folge von Gefäßeinrissen und -dissektionen sowie akuten Thrombosen beeinträchtigt (Sigwart et al. 1987, N. Engl. J. Med. 316: 701-706). Der langfristige Erfolg wird durch das Wiederauftreten von Einengungen (Restenosen) gefährdet. So ergab die CAVEAT-Studie, daß von 1012 Patienten die Restenoserate sechs Monate nach Intervention bei der 35 koronaren Atherektomie 50% und bei der koronaren Angioplastie sogar 57% betrug (Topol et al. 1993, N. Engl. J. Med. 329: 221-227). Weiterhin traten in dieser Studie in 7% der Atherektomie- und in 3% der Angioplastie-Patienten abrupte Gefäßverschlüsse auf. Nicolini und Pepine (1992, Endovascular Surgery 72: 919-940) berichten von einer

Restenoserate zwischen 35 und 40% und einer akuten Verschlußrate von 4% nach angioplastischen Eingriffen.

- Um diesen Komplikationen zu begegnen, wurden verschiedene Techniken entwickelt.
- 5 Hierzu gehört die Implantation metallischer Endoprothesen (Stents), (Sigwart et al. 1987, N. Engl. J. Med. 316: 701-706; Strecker et al., 1990, Radiology 175: 97-102). Die Stentimplantation in großkalibrigen Arterien, z.B. bei Okklusionen in der Beckenachse hat bereits den Rang einer primär anzuwendenden Therapiemodalität erhalten. Der Einsatz von Stents in den Femoralarterien hat dagegen mit einer primären Offenheitsrate 10 von 49% und einer Reokklusionshäufigkeit von 43% enttäuschende Ergebnisse gezeigt (Sapoval et al., 1992, Radiology 184:833-839). Ähnlich unbefriedigende Resultate wurden mit bisher verfügbaren Stents in den Koronararterien erzielt (Kavas et al. 1992, J. Am. Coll. Cardiol 20: 467-474).
- 15 Alle bisherigen pharmakologischen und mechanischen Interventionen haben bis heute die Restenose nicht verhindern können (Muller et al. 1992, J. Am. Coll. Cardiol. 19:418-432, Popma et al. 1991, Circulation 84:14226-1436).
- Als Ursache für die nach mechanischen Eingriffen häufig auftretenden Restenosen wird 20 angenommen, daß die Eingriffe eine Proliferation und Migration glatter Muskelzellen in der Gefäßwand induzieren. Diese führen zu einer neointimalen Hyperplasie und den beobachteten Restenosen in den behandelten Gefäßabschnitten (Cascells 1992, Circulation 86, 723-729, Hanke et al. 1990, Circ. Res. 67, 651-659, Ross 1993, Nature 362, 801-809).
- 25 Ein alternatives Verfahren zur Behandlung von atherosklerotischen Erkrankungen verwendet ionisierende Strahlung. Die Verwendung von außen kommender ionisierender Strahlung auf die Restenose ist jedoch mit dem Nachteil behaftet, daß bei der Applikation die Strahlendosis nicht auf die gewünschte Stelle begrenzt ist, sondern darüber hinaus 30 umgebendes (gesundes) Gewebe unerwünschterweise ebenfalls der Strahlung ausgesetzt wird. So verliefen verschiedene Studien bislang wenig erfolgversprechend (Gellmann et al. 1991, Circulation 84 Suppl. II: 46A-59A, Schwartz et al. 1992, J. Am. Coll. Cardiol. 19:1106-1113).
- 35 Diese Nachteile, die bei der Verwendung von externen Strahlungsquellen auftreten, können überwunden werden, wenn Gammastrahlung z.B. über einen Katheter an die Gefäßbereiche mit Restenose direkt verbracht werden. Durch diese Form der Applikation mit Iridium-192 wird eine hohe Strahlendosis von 20 Gy an die Restenoseherde

verbracht. Einige Arbeiten berichten von der fast vollständigen Verhinderung der Restenose nach dieser Intervention (Wiedermann et al. 1994, Am. J. Physiol. 267:H125-H132, Böttcher et al. 1994, Int. J. Radiation Oncology Biol. Phys. 29:183-186, Wiedermann et al. 1994, J. Am. Coll. Cardiol. 23: 1491-1498, Liermann et al. 1994, Cardiovasc. Intervent. Radiol. 17: 12-16). Nachteil dieser Methode ist jedoch, daß die hierbei applizierte Strahlendosis von 20 Gy sehr hoch ist. Da die Läsionen irregulär an der Gefäßwand verteilt sind, ist eine gleichmäßige Applikation einer definierten Dosis mit Hilfe dieser Technik nicht möglich. Außerdem ist eine Behandlung großkalibriger Gefäße nicht möglich, da bedingt durch den Dosisabfall von der Iridiumquelle die applizierbare Dosis nicht ausreicht.

Eine weitere Möglichkeit, die Restenose zu inhibieren, ist die Implantation von P-32-dotierten Stents (Fischell et al. Stents III, Entwicklung, Indikationen und Zukunft, Konstanz: Kollath und Liermann, 1995). In dieser Arbeit reichte eine Aktivität von 0,2 kBq P-32 pro Zentimeter Stentlänge aus (entspricht einer Strahlendosis von 0,25 Gy), um eine maximale Inhibition der glatten Gefäßmuskelzellen in-vitro zu erreichen. Damit konnte gezeigt werden, daß nicht nur γ - sondern auch β -Emitter die Proliferation glatter Muskelzellen verhindern. Vorteil dieser Methode ist, daß die applizierte Strahlendosis deutlich niedriger als bei allen bisher erwähnten Interventionen ist. Bei dieser geringen Dosis werden die das Gefäßbett auskleidenden Endothelzellen nicht geschädigt (Fischell et al. Stents III, Entwicklung, Indikationen und Zukunft, Konstanz: Kollath und Liermann, 1995). Diese Form der Intervention ist jedoch nur einmal, nämlich bei der Positionierung des Stents möglich. Weiterhin ist sie nur auf solche Interventionen beschränkt, bei denen Stents eingesetzt werden. Die bei den weitaus häufiger angewandten Interventionen wie Atherektomien und Angioplastien auftretenden Restenosen können mit dieser Methode nicht behandelt werden. Durch die geringe Reichweite der β -Strahlung gelingt es nicht, der gesamten Läsion eine gleichmäßige Energiedosis zu verabreichen.

Neben der Strahlentherapie werden auch eine Reihe anderer therapeutischer Strategien zur Inhibition neointimaler Hyperplasien (Restenosen) eingesetzt. Diese umfassen klassische Medikamente zur Restenos suppression wie Antithrombotika, Thrombozytenaggregationshemmer, Calcium-Antagonisten, anti-Entzündungs- und anti-proliferative Substanzen, aber auch gentherapeutische Ansätze. Hierbei ist die Hemmung von Wachstumsstimulatoren z.B. durch Antisense-Oligonukleotide bzw. die Verstärkung inhibitierender Faktoren durch Expressions-Vektor-Plasmide und die virusvermittelte Genintegration möglich. Auch Aptamer-Oligonukleotide können zur Inhibition

verschiedenster Rezeptoren-vermittelter Prozesse, die bei der Restenose eine entscheidende Rolle spielen, eingesetzt werden.

Mit großer Energie und Sorgfalt wurden über Jahre Substanzen untersucht, die unter 5 streng kontrollierten Bedingungen als Langzeittherapie verabreicht wurden, weil man theoretisch eine Herabsetzung der Restenoserate erhoffte (Herrmann et al., 1993, Drugs 46: 18-52).

Mehr als 50 kontrollierte Studien mit unterschiedlichen Substanzgruppen wurden 10 durchgeführt, ohne daß sich der eindeutige Nachweis ergab, daß die geprüften Substanzen die Restenoserate gravierend herabsetzen könnten. Dieses gilt auch für die lokale Applikation, bei der die Substanzen über spezielle Ballonkatheter an den jeweils gewünschten Wirkort gebracht werden. Es hat sich jedoch gezeigt, daß die bisher verwendeten Substanzen zu schnell aus der Gefäßwand 15 ausgewaschen werden, um therapeutisch wirksam werden zu können. Zudem werden durch diese druckvermittelten Flüssigkeitsinjektionen zusätzliche Gefäßwandveränderungen induziert, die sogar Restenose-fördernd wirken.

Aufgabe der vorliegenden Erfindung war es daher, ein Verfahren zur Therapie 20 proliferativer Erkrankungen zu entwickeln, das die Nachteile der bisher bekannten Therapieverfahren überwindet.

Diese Aufgabe wird durch die vorliegende Erfindung gelöst.

25 Es wurde ein Verfahren zur therapeutischen Behandlung proliferativer Erkrankungen entwickelt, das dadurch gekennzeichnet ist, daß zunächst ein Applikationskatheter am Ort der Läsion gesetzt wird und eine radioaktive Substanz über den Katheter lokal appliziert wird, anschließend der Katheter wieder entfernt wird und die radioaktive Substanz am Ort der Läsion verbleibt.

30 Dadurch, daß radioaktive Substanzen über einen Applikationskatheter gezielt an die Wand eines Blutgefäßes verbracht werden und dort verbleiben, hält die Konzentration des Radionuklids lange genug an, um die Proliferation der Zellen und somit eine Restenose zu inhibieren.

35 Das erfindungsgemäße Verfahren hat einige wesentliche Vorteile im Vergleich zu den bekannten Therapieverfahren. Im Vergleich zu einer Vielzahl von untersuchten Verbindungen aus unterschiedlichsten Klassen führt die lokale Applikation bestimmter

Substanzen und mit bestimmten Kathetern zu einer überraschend hohen radioaktiven Dosis an der gewünschten, pathologisch veränderten Stelle. Dieses Vorgehen führt zu einer hohen wirksamen Strahlendosis bei geringer systemischer Belastung. Die radioaktiven Substanzen haben am Applikationsort eine lange Verweildauer, was vor Ort 5 zu einer hohen effektiven Dosis führt. Sie verteilen sich vornehmlich und gleichmäßig in der pathologischen Region. Die nicht gebundenen radioaktiven Substanzen werden rasch eliminiert.

Dadurch, daß bestimmte radioaktive Substanzen, die im folgenden näher beschrieben 10 sind, in die Wand der atherosklerotisch veränderten Gefäße gelangen, werden nicht nur die dem Lumen zugewandten Zellen der Intima, sondern auch solche der Media und Adventitia an der Proliferation gehindert. Der Anteil der applizierten Dosis, der die Zellmembran passiert, führt zu einer hohen Strahlendosis, die nah am Zellkern wirksam ist.

15 Aufgrund der Empfindlichkeit proliferierender Zellen gegenüber ionisierender Strahlung ist das erfindungsgemäße Verfahren nicht nur für die Therapie von atherosklerotischen Erkrankungen, sondern auch für die Therapie anderer proliferativer Erkrankungen, wie z.B. Tumorerkrankungen, geeignet.

20 Geeignete radioaktive Substanzen sind solche, die eine genügend hohe Lipophilie aufweisen, um an der Plaque haften zu bleiben. Beispielsweise sind radioaktiv markierte Metallkomplexe geeignet, wie z.B. Metallkomplexe aus Bis-Amin-Oxim-Derivaten der allgemeinen Formel I

25

worin $n = 0 - 3$ und die Reste R^1 bis R^8 gleich oder verschieden sind und jeweils für ein 30 Wasserstoffatom und/oder für einen unverzweigten, verzweigten, cyclischen oder polycyclischen C₁-C₁₀₀-Alkyl-, -Alkenyl-, -Alkinyl-, -Aryl-, -Alkylaryl- und/oder - Arylalkylrest stehen, welcher gegebenenfalls mit Fluor-, Chlor-, Brom- und/oder Jodatomen und/oder Hydroxy-, Oxo-, Carboxy-, Aminocarbonyl-, Alkoxy carbonyl-, Amino-, Aldehyd- oder Alkoxygruppen mit bis zu 30 Kohlenstoffatomen substituiert ist

und/oder gegebenenfalls durch ein oder mehrere Heteroatome aus der Reihe N, P, As, O, S, Se unterbrochen und/oder substituiert ist, und wobei die Reste R² und R³, R⁴ und R⁵ sowie R⁶ und R⁷ zusammen gegebenenfalls für ein Sauerstoffatom stehen können.

- Diese Verbindungen bilden zusammen mit einem Radionuklid einen Metallkomplex, der
5 dann zur lokalen Applikation bei der Therapie von proliferativen Erkrankungen
verwendet wird.

Ebenso geeignet sind die Metallkomplexe der N₂S₂-Derivate der allgemeinen Formeln II und III

10

15

- wobei R⁹ bis R³² gleich oder verschieden sind und jeweils für ein Wasserstoffatom und/oder für einen unverzweigten, verzweigten, cyclischen oder polycyclischen C₁-C₁₀₀-Alkyl-, -Alkenyl-, -Alkinyl-, -Aryl-, -Alkylaryl- und/oder -Arylalkylrest stehen, welcher gegebenenfalls mit Fluor-, Chlor-, Brom- und/oder Jodatomen und/oder Hydroxy-, Oxo-,
20 Carboxy-, Aminocarbonyl-, Alkoxycarbonyl-, Amino-, Aldehyd- oder Alkoxygruppen mit bis zu 30 Kohlenstoffatomen substituiert ist und/oder gegebenenfalls durch ein oder mehrere Heteroatome aus der Reihe N, P, As, O, S, Se unterbrochen und/oder substituiert ist, und wobei die Reste R¹¹ und R¹², R¹³ und R¹⁴, R¹⁵ und R¹⁶ sowie R¹⁷ und R¹⁸ zusammen gegebenenfalls für ein Sauerstoffatom stehen können und n, m
25 und p unabhängig voneinander 1 oder 2 bedeuten.

Weitere geeignete Verbindungen, die nach Komplexierung mit geeigneten Radioisotopen für die lokale Therapie geeignet sind, sind Tetrofosmin-, Sestamibi- und Furifosmin-Derivate. 99m Tc-Tetrofosmin ist unter dem Handelsnamen MyoviewTM von der Firma Amersham erhältlich, 99m Tc-Sestamibi wird unter dem Handelsnamen Cardiolite[®] von der Firma DuPont vertrieben, und 99m Tc-Furifosmin ist unter dem Handelsnamen TechneScan Q-12 von der Firma Mallinckrodt Medical zu erwerben.

Alle diese Verbindungen bilden zusammen mit einem Radionuklid einen Metallkomplex, der dann zur lokalen Applikation bei der Therapie von proliferativen Erkrankungen verwendet werden kann.

Zur Bildung eines Metallkomplexes können Radionuklide eingeführt werden, die Alpha-, Beta- und/oder Gamma-Strahler, Positronen-Strahler, Auger-Elektronen-Strahler und Fluoreszenz-Strahler sind, wobei β - sowie kombinierte β/γ -Strahler für therapeutische Zwecke bevorzugt sind.

Entsprechende Radionuklide sind dem Fachmann bekannt. Beispielhaft genannt seien die Radionuklide der Elemente der Ordnungszahlen 27, 29 - 32, 37 - 39, 42 - 51, 62, 64, 70, 75, 77, 82 oder 83.

Bevorzugt sind die Nuklide 99m Tc, 186 Re, 188 Re, 67 Cu, 90 Y, und 107 Ag, besonders bevorzugt sind die Nuklide 186 Re, 188 Re und 67 Cu.

Die Herstellung der Bis-Amin-Oxim-Derivate ist in den Patentschriften US 5,506,345 und US 5,387,692 beschrieben, die Herstellung der N_2S_2 -Derivate ist in der Patentschrift US 5,279,811 beschrieben.

Die Herstellung von Tetrofosmin-Derivaten ist in der europäischen Patentanmeldung EP 303 374 beschrieben, die Herstellung von Furifosmin-Derivaten wird in der US-Patentschrift 5,112,595 beschrieben. Sestamibi-Derivate und ihre Herstellung werden in der internationalen Patentanmeldung WO 89/02433 beschrieben.

Weitere geeignete Metallkomplexe haben Liganden, die von Ethylendiamintetraessigsäure (EDTA), Diethylentriaminpentaessigsäure (DTPA) oder einer makrozyklischen Verbindung wie z.B. Tetraazacyclododecan abgeleitet sind. Die Herstellung dieser Verbindungen ist dem Fachmann bekannt und wird darüberhinaus in den nachfolgenden Beispielen ausführlich beschrieben.

Andere geeignete Liganden sind z.B. Porphyrinderivate, wie sie z.B. in der DE 42 32 925 A1 und der DE 43 05 523 A1 beschrieben sind. Auch aus diesen Liganden können mit Radionukliden für das erfindungsgemäße Verfahren geeignete Metallkomplexe hergestellt werden.

5

Ebenfalls geeignet sind radioaktive Thalliumverbindungen der Isotope ^{201}Tl , ^{207}Tl , ^{209}Tl und ^{210}Tl , besonders geeignet ist $^{201}\text{TlCl}$.

Radioaktiv markierte kolloidale Lösungen sind ebenfalls zur Therapie proliferativer
10 Erkrankungen und insbesondere für die lokale Applikation hervorragend geeignet.

Geeignete kolloidale Lösungen sind die in den Beispielen beschriebenen Zinn-Kolloide,
besonders geeignet sind die Zinnkolloide, die mit Hilfe eines Kits der Firma Amersham
hergestellt werden können ("Amerscan Zinnkolloid (^{99m}Tc) - Markierungskit für die
15 Leberszintigraphie"). Andere geeignete Kolloide sind z.B. radioaktives Goldsol (^{198}Au -
Kolloid) und radioaktiv markiertes Schwefelkolloid sowie andere physiologisch
verträgliche, radioaktive kolloidale Lösungen.

Geeignete Radionuklide zur radioaktiven Markierung der kolloidalen Lösungen sind dem
20 Fachmann bekannt. Beispielhaft genannt seien die Radionuklide der Elemente Ag, As, At,
Au, Ba, Bi, Br, C, Co, Cr, Cu, F, Fe, Ga, Gd, Hg, Ho, I, In, Ir, Lu, Mn, N, O, P, Pb, Pd,
Pm, Re, Rh, Ru, Sb, Sc, Se, Sm, Sn, Tb, Tc oder Y.

Bevorzugt sind die Nuclide ^{99m}Tc , ^{186}Re , ^{188}Re , ^{67}Cu , ^{90}Y , ^{153}Sm , ^{160}Tb , ^{162}Tb , ^{198}Au
25 und ^{107}Ag .

Die Herstellung der kolloidalen Lösungen erfolgt in der Regel über eine Redoxreaktion
oder die Änderung des pH-Wertes in einer wässrigen oder alkoholischen Lösung in
Gegenwart eines radioaktiven Salzes. Das Kolloid kann in Gegenwart eines Stabilisators
30 gebildet werden oder auch nachträglich mit einem Tensid oder einer anderen
stabilisierenden amphiphilen Substanz versetzt werden. Weitere Herstellungsmethoden für
geeignete kolloidale Lösungen sind elektrochemische Methoden, wie sie z.B. von M. T.
Reetz et al. in Angew. Chem. 1995, Vol. 107, S. 2461 ff. beschrieben sind. Die
Herstellung der Zinnkolloide ist in den nachfolgenden Beispielen sowie in der
35 Gebrauchsinformation des Markierungskits der Firma Amersham beschrieben. Die
Herstellung eines Goldkolloids für diagnostische Zwecke ist in der Patentschrift
DE 24 20 531 C3 beschrieben.

Die Größe der gebildeten Partikel liegt im Bereich zwischen 5 und 1000 nm, im Fall des Zinnkolloids zwischen 300 und 600 nm.

Als Katheter, die für die lokale Applikation der erfindungsgemäßen Substanzen geeignet
5 sind, können die in Fig. 3 skizzierten Katheter eingesetzt werden. Besonders geeignet
sind Mehrkammer-Ballonkatheter (wie z.B. DispatchTM, SciMed) und mikroperforierte
Ballonkatheter.

In den nachfolgenden Beispielen wird das Verfahren im Tierversuch beschrieben.
10 Außerdem wird die Herstellung einiger für die Verwendung in diesem Therapieverfahren
geeigneter Verbindungen beschrieben. In den Beispielen 1 bis 5 wird das Verfahren mit
 ^{99m}Tc -markiertem HMPAO durchgeführt, wobei der Ligand HMPAO folgende Struktur
besitzt:

15

(siehe auch Radiopharmaceuticals, Chemistry and Pharmacology, edited by Adrian D. Nunn, 1992, Seite 53).

Beispiel 1

Lokale Applikation von ^{99m}Tc -HMPAO

5

Das Versuchstier, ein weißes Neuseeländerkaninchen (interne Tierkenn-Nr.:1708, männlich, 3,7 kg Körpergewicht) wurde 4 Wochen vor dem eigentlichen Applikations-Experiment wie folgt vorbereitet:

- 10 In Narkose (Rompun/Ketavet 1:2, 1 ml/kg Körpergewicht, i.m.-Gabe) wurde mit einem 2F Fogarthy Ballonkatheter in der Arteria carotis dextra das Endothel geschädigt (Ballondenudation). Anschließend erhielt das Tier eine Spezialdiät mit einem Zusatz von 0.2% Cholesterin. Durch diese Vorbehandlung entwickelt das Versuchstier an der ballondenuzierten Stelle eine atherosklerotische Läsion.

15

Die lokale Applikation des mit Technetium 99m markierten HMPAO erfolgt am narkotisierten Versuchstier (Narkosetyp s.o.) über einen Coronary Perfusion/Infusion Catheter (Dispatch 3.0, Xtra slippery coating, Hersteller: Boston Scientific Corporation, Ratingen) direkt an der Läsion in der A. carotis. Die radioaktive Dosis von 0.48 mCi (=

20 17.76 MBq) wurde in einem Volumen von 0.85 ml appliziert.

Während des gesamten Experimentes befindet sich das Versuchstier unter einer Gamma-Kamera (Elscint SP4 HR), um die Verteilung der Radioaktivität im Körper zu messen. Die Aktivität an der Läsion wird zu der (zu diesem Zeitpunkt im Tier gemessenen) Gesamtaktivität ins Verhältnis gesetzt. Bei diesem Versuchstier befanden sich :

25

5 Minuten post Applikationem 55.38 % der Dosis an der Läsion

4 Stunden post Applikationem 46.78 % der Dosis an der Läsion

24 Stunden post Applikationem 21.45 % der Dosis an der Läsion

Beispiel 2

30

Lokale Applikation von ^{99m}Tc -HMPAO

35

Das Versuchstier, ein weißes Neuseeländerkaninchen (interne Tierkenn-Nr.:1856, männlich, 3,3 kg Körpergewicht) wurde 4 Wochen vor dem eigentlichen Applikations-Experiment wie folgt vorbereitet:

In Narkose (Rompun/Ketavet 1:2, 1 ml/kg Körpergewicht, i.m.-Gabe) wurde mit einem 2F Fogarthy Ballonkatheter in der Arteria carotis dextra das Endothel geschädigt

(Ballondenudation). Anschließend erhielt das Tier eine Spezialdiät mit einem Zusatz von 0.2% Cholesterin. Durch diese Vorbehandlung entwickelt das Versuchstier an der ballondenuzierten Stelle eine atherosklerotische Läsion.

5 Die lokale Applikation des mit Technetium 99m markierten HMPAO erfolgt am narkotisierten Versuchstier (Narkosetyp s.o.) über einen Coronary Perfusion/Infusion Catheter (Dispatch 3.0, Xtra slippery coating, Hersteller: Boston Scientific Corporation, Ratingen) direkt an der Läsion in der A. carotis. Die radioaktive Dosis von 1.91 mCi (= 70.67 MBq) wurde in einem Volumen von 1.0 ml appliziert (Nachspülen mit 0.3 ml physiologischer Saline-Lösung).

10 Während des gesamten Experimentes befindet sich das Versuchstier unter einer Gamma-Kamara (Elscint SP4 HR), um die Verteilung der Radioaktivität im Körper zu messen. Die Aktivität an der Läsion wird zu der (zu diesem Zeitpunkt im Tier gemessenen) Gesamtaktivität ins Verhältnis gesetzt. Bei diesem Versuchstier befanden sich :

15 5 Minuten post Applikationem 40.74 % der Dosis an der Läsion
4 Stunden post Applikationem 35.13% der Dosis an der Läsion
24 Stunden post Applikationem 23.69% der Dosis an der Läsion

20 **Beispiel 3**

Lokale Applikation von 99mTc-HMPAO

Das Versuchstier ist ein weißes Neuseeländerkaninchen (interne Tierkenn-Nr.:1584, 25 männlich, 3,4 kg Körpergewicht).

In Narkose (Rompun/Ketavet 1:2, 1 ml/kg Körpergewicht, i.m.-Gabe) wurde mit einem Ballonkatheter in der infraranalen Aorta das Endothel geschädigt (Ballondenudation). Anschließend wurden dem Versuchstier über einen Zeitraum von 5 Minuten Technetium 30 99m markiertes HMPAO über einen mikroperforierten Ballonkatheter (4 mm Match-35 PTA, Fa. Schneider, FRG) appliziert. Die radioaktive Dosis von 0.64 mCi (= 23.68 MBq) wurde in einem Volumen von 1 ml appliziert.

Während des gesamten Experimentes befindet sich das Versuchstier unter einer Gamma-Kamara (Elscint SP4 HR), um die Verteilung der Radioaktivität im Körper zu messen. 35 Die Aktivität an der Läsion wird zu der (zu diesem Zeitpunkt im Tier gemessenen) Gesamtaktivität ins Verhältnis gesetzt. Bei diesem Versuchstier befanden sich :

5 Minuten post Applikationem 38.45 % der Dosis an der Läsion
4 Stunden post Applikationem 35.64 % der Dosis an der Läsion
24 Stunden post Applikationem 16.63 % der Dosis an der Läsion

Beispiel 4

Lokale Applikation von ^{99m}Tc -HMPAO

- 5 Das Versuchstier war ein weißes Neuseeländerkaninchen (interne Tierkenn-Nr.:1587, männlich, 3,5 kg Körpergewicht).
- 10 In Narkose (Rompun/Ketavet 1:2, 1 ml/kg Körpergewicht, i.m.-Gabe) wurde mit einem Ballonkatheter in der infraranalen Aorta das Endothel geschädigt (Ballondenudation). Anschließend wurden dem Versuchstier über einen Zeitraum von 5 Minuten Technetium 99m markiertes HMPAO über einen mikroperforierten Ballonkatheter (4 mm Match-35 PTA, Fa. Schneider, FRG) appliziert. Die radioaktive Dosis von 1.18 mCi (= 43.66 MBq) wurde in einem Volumen von 1 ml appliziert.
- 15 15 Während des gesamten Experimentes befindet sich das Versuchstier unter einer Gamma-Kamara (Elscint SP4 HR), um die Verteilung der Radioaktivität im Körper zu messen. Die Aktivität an der Läsion wird zu der (zu diesem Zeitpunkt im Tier gemessenen) Gesamtaktivität ins Verhältnis gesetzt. Bei diesem Versuchstier befanden sich :
- 20 5 Minuten post Applikationem 37.06 % der Dosis an der Läsion
4 Stunden post Applikationem 32.03 % der Dosis an der Läsion
24 Stunden post Applikationem 20.01 % der Dosis an der Läsion

Beispiel 5

Lokale Applikation von ^{99m}Tc -HMPAO

- 25 Das Versuchstier war ein weißes Neuseeländerkaninchen (interne Tierkenn-Nr.:1586, männlich, 3,3 kg Körpergewicht).
- 30 30 In Narkose (Rompun/Ketavet 1:2, 1 ml/kg Körpergewicht, i.m.-Gabe) wurde mit einem Ballonkatheter in der infraranalen Aorta das Endothel geschädigt (Ballondenudation). Anschließend wurden dem Versuchstier über einen Zeitraum von 5 Minuten Technetium 99m markiertes HMPAO über einen mikroperforierten Ballonkatheter (4 mm Match-35 PTA, Fa. Schneider, FRG) appliziert. Die radioaktive Dosis von 0.45 mCi (= 16.65 MBq) wurde in einem Volumen von 1 ml appliziert.
- 35 Während des gesamten Experimentes befindet sich das Versuchstier unter einer Gamma-Kamara (Elscint SP4 HR), um die Verteilung der Radioaktivität im Körper zu messen. Die Aktivität an der Läsion wird zu der (zu diesem Zeitpunkt im Tier gemessenen) Gesamtaktivität ins Verhältnis gesetzt. Bei diesem Versuchstier befanden sich :

5 Minuten post Applikationem 45.56 % der Dosis an der Läsion
4 Stunden post Applikationem 36.39 % der Dosis an der Läsion
24 Stunden post Applikationem 15.24 % der Dosis an der Läsion

5

Beispiel 6

Herstellung von 1-{3-[N-(2-Methoxyethyl)-octadecylsulfamoyl]-2-hydroxy-propyl}-4,7,10-tetraaza-cyclododecan, Yttrium-90-Komplex

10

5 mg 1-{3-[N-(2-Methoxyethyl)-octadecylsulfamoyl]-2-hydroxypropyl}-4,7,10-tetraaza-cyclodo-decan (hergestellt nach DE 4340809.5) werden in 500 µl Dimethylsulfoxid und 50 µl 0.1M Natriumacetatpuffer (pH = 4.0) gelöst. Nach Zugabe von 37 MBq Yttrium-90-trichlorid-Lösung erhitzt man das Reaktionsgemisch für 10 min auf 100°C. Die so präparierte Y-90-Komplexlösung kann ohne weitere Reinigung verwendet werden.

15

Beispiel 7

20 a) Herstellung von N,N'-Bisundecyl-diethylen-triamin-pentaessigsäure-diamid

3.57 g (10 mmol) Diethylen-triamin-pentaessigsäure-bisanhydrid werden zusammen mit 4.05 g (40 mmol) Triethylamin in 100 ml absolutem Dimethylformamid suspendiert. 25 Anschließend tropft man bei Raumtemperatur eine Lösung von 3.42 g (20 mmol) Undecylamin, gelöst in 50 ml absolutem Dichlormethan, zum Reaktionsgemisch. Der Reaktionsansatz wird 6 h bei Raumtemperatur gerührt, filtriert und im Feinvakuum eingedampft. Der Rückstand wird dreimal in 100 ml Dimethylformamid gelöst und jeweils im Feinvakuum eingedampft. Das schaumige Reaktionsprodukt wird mit 50 ml absolutem 30 Diethylether übergossen und über Nacht verrührt. Man filtriert und trocknet im Feinvakuum.

Ausbeute: 6.3 g (90%), weißes Pulver.

35 Elementaranalyse: Ber.: C 61.77 H 9.94 N 10.01 O 18.86
Gef.: C 61.52 H 9.63 N 9.91 O

b) Herstellung von N,N'-Bisundecyl-diethylentriamin-pentaessigsäure-diamid, Yttrium-90-Komplex

5 mg N,N'-Bisundecyl-diethylentriamin-pentaessigsäurediamid (Beispiel 7a) werden in
5 500 µl Dimethylsulfoxid und 50 µl 0.1 M Natriumacetatpuffer (pH = 4.0) gelöst. Nach
Zugabe von 37 MBq Yttrium-90-trichlorid-Lösung lässt man das Reaktionsgemisch für 10
min bei Raumtemperatur stehen. Die so präparierte Y-90-Komplexlösung kann ohne
weitere Reinigung verwendet werden.

10

Beispiel 8

a) Herstellung von N-Benzylloxycarbonyl-glycyl-N'-undecyl-glycinamid

15 3.63 g (10 mmol) N-Benzylloxycarbonyl-glycyl-glycin-N-hydroxysuccinimidester und
1.71 g (10 mmol) Undecylamin werden in 100 ml absolutem Dichlormethan gelöst. Man
führt das Reaktionsgemisch 6 h bei Raumtemperatur. Anschließend wird mit 100 ml
Dichlormethan verdünnt, die organische Phase zweimal mit 50 ml gesättigter
20 Natriumhydrogencarbonat-Lösung und einmal mit 50 ml Wasser gewaschen. Man
trocknet über Magnesiumsulfat und verdampft das Lösungsmittel im Vakuum. Das
Rohprodukt wird durch Chromatographie an Kieselgel (Eluens: Dichlormethan/Methanol
95:5) gereinigt.

Ausbeute: 3.8 g (90.6%), weißes Pulver.

25

Elementaranalyse:	Ber.: C 65.84	H 8.89	N 10.01	O 15.25
	Gef.: C 65.71	H 9.02	N 10.10	O

30 b) Herstellung von Glycyl-N'-undecyl-glycinamid

3 3 g (7.15 mmol) N-Benzylloxycarbonyl-glycyl-N'-undecyl-glycinamid (Beispiel 8a)
werden in 100 ml absolutem Ethanol gelöst. Nach Zugabe von 300 mg Palladium auf
Kohle (10%-ig) hydriert man 2 h bei Raumtemperatur (1 atm Wasserstoff). Es wird
35 filtriert und im Vakuum eingedampft. Das resultierende Amin wird ohne weitere
Reinigung für die Folgereaktion eingesetzt.

Ausbeute: 1.92 g (94.1%), weißer Schaum.

Elementaranalyse: Ber.: C 63.12 H 10.95 N 14.72 O 11.21
 Gef.: C 63.03 H 11.04 N 14.57 O

5

c) Herstellung von N-(S-Acetyl-mercaptoacetyl)-glycyl-N'-undecyl-glycinamid

285.4 mg (1 mmol) Glycyl-N'-undecyl-glycinamid (Beispiel 8b) und 231.2 mg (1 mmol)
 10 S-Acetyl-mercapto-essigsäure-N-hydroxy-succinimidester werden zusammen in 20 ml absolutem Dichlormethan gelöst. Man röhrt das Reaktionsgemisch 6 h bei Raumtemperatur. Anschließend wird mit 20 ml Dichlormethan verdünnt, die organische Phase zweimal mit 5 ml halbgesättigter Natriumhydrogencarbonat-Lösung und einmal mit 15 5 ml Wasser gewaschen. Man trocknet über Magnesiumsulfat und verdampft das Lösungsmittel im Vakuum. Das Rohprodukt wird durch Chromatographie an Kieselgel (Eluens: Dichlormethan/Methanol 93:7) gereinigt.

Ausbeute: 362 mg (90.1%), weißes Pulver.

20 EA: Ber.: C 56.83 H 8.79 N 10.46 O 15.94 S 7.98
 Gef.: C 56.67 H 8.93 N 10.18 O S 7.72

d) Herstellung von N-(Mercaptoacetyl)-glycyl-N'-undecyl-glycinamid

25

201 mg (0.5 mmol) N-(S-Acetyl-mercaptoacetyl-glycyl-N'-undecyl-glycinamid (Beispiel 8c) werden in 15 ml absolutem Ethanol gelöst. Man sättigt mit Argon und leitet für 30 min einen Ammoniak-Strom durch die Lösung. Anschließend wird eingedampft und der Rückstand in 20 ml Dichlormethan aufgenommen. Die organische Phase wird einmal mit 30 2%-iger wässriger Citronensäure geschüttelt und über Natriumsulfat getrocknet. Man verdampft das Lösungsmittel im Vakuum und chromatographiert den Rückstand an Kieselgel (Eluens: Dichlormethan/Methanol 9:1).

Ausbeute: 153 mg (85.1%), weißes Pulver.

35

EA: Ber.: C 56.79 H 9.25 N 11.69 O 13.35 S 8.92
 Gef.: C 56.67 H 9.43 N 11.48 O S 8.71

e) Herstellung von N-(Mercaptoacetyl)-glycyl-N'-undecyl-glycinamid, Re-186 - Komplex

- 5 5 mg N-(Mercaptoacetyl)-glycyl-N'-undecyl-glycinamid (Beispiel 8d) werden in 800 µl Ethanol gelöst. Nach Zugabe von 5 mg Dinatrium-L-Tartrat, 50 µl 0.1 M Natriumhydrogenphosphat-Puffer (pH = 8.5) werden 37 MBq Perrhenat und 10 µl Zinndichlorid-dihydrat-Lösung (5 mg SnCl₂·x2H₂O/1ml 0.1M HCl) hinzugefügt. Man erhitzt das Reaktionsgemisch für 5 min auf 60°C. Die so präparierte Lösung des Re-186-
10 Komplexes des N-(Mercaptoacetyl)-glycyl-N'-undecyl-glycinamids kann ohne weitere Reinigung verwendet werden.

Beispiel 9

- 15 **Herstellung von N,N'-Bis[3,6,9,9-tetra(hydroxycarboxymethyl)-1-oxo-3,6,9-triaza-non-1-yl]-mesoporphyrin-IX-13,17-dihydrazid, Y-90-Komplex**

5 5 mg des N,N'-Bis[3,6,9-tri(hydroxycarboxymethyl)-9-(ethoxycarboxymethyl)-1-oxo-
20 3,6,9-triaza-non-1-yl]-mesoporphyrin-IX-13,17-dihydrazids (hergestellt nach DE 42 32
925 A1, Beispiel 1a) werden in 5 ml 0.1M NaOH unter Argonatmosphäre 3h bei Raumtemperatur gerührt. Nach erfolgter Verseifung des Bis-ethylesters (DC-Kontrolle) wird mit Eisessig pH = 6 eingestellt und 37 MBq Yttrium-90-trichlorid-Lösung zum Ansatz gegeben. Man röhrt 15 min bei Raumtemperatur. Die HPLC-Analyse zeigt einen
25 95%igen Einbau des Radioisotopes.

Beispiel 10

- 30 **Herstellung von 5,10,15,20-Tetrakis-[3-(carboxymethoxy)-phenyl]-porphyrin, Yttrium-90-Komplex**

2,0 mg 5,10,15,20-Tetrakis-[3-(carboxymethoxy)-phenyl]-porphyrin (hergestellt nach DE 43 05 523 A1, Beispiel 13a) werden in 5 ml Essigsäure gelöst und mit einer salzauren Lösung von 1,0 mCi Yttrium-90-chlorid versetzt. Man autoklaviert das
35 Reaktionsgemisch eine Stunde bei 140°C, dampft das Lösungsmittel im Vakuum ab und nimmt den Rückstand in 5 ml Wasser auf. Durch Zutropfen von wässriger Natriumhydrogencarbonatlösung wird pH 7,3 eingestellt und die entstandene rote Lösung

über ein Membranfilter filtriert. Durch HPLC-Kontrolle des Filtrats läßt sich eine Einbaurate von > 95 % der eingesetzten Aktivität in den Porphyrinliganden feststellen.

Beispiel 11

5

Herstellung von 5,10,15,20-Tetrakis-[3-(carboxymethoxy)-phenyl]-porphyrin, Kupfer-67-Komplex

Die Herstellung des Komplexes ist in der DE 43 05 523 A1, Beispiel 14, beschrieben.

10

Beispiel 12

Herstellung eines Technetium-99m-Zinn-Kolloids

15 555 MBq Natriumpertechnetat-99m in 2 ml 0.9%iger Natriumchloridlösung werden bei Raumtemperatur mit 20 µl Zinn-II-chloridlösung (5 mg Zinn-II-chlorid-dihydrat/1 ml 0.01M HCl) versetzt. Nach 10 min verdünnt man mit 1 ml PBS-Puffer. Die erhaltene Lösung ist leicht opaleszierend.

20 **Beispiel 13**

Herstellung eines Rhenium-186-Zinn-Kolloids

25 37 MBq Natriumperrhenat-186 in 2 ml 0.9%iger Natriumchloridlösung werden bei Raumtemperatur mit 40 µl Zinn-II-chloridlösung (5 mg Zinn-II-chlorid-dihydrat/1 ml 0.01M HCl) versetzt. Nach 10 min verdünnt man mit 1 ml PBS-Puffer. Die erhaltene Lösung ist leicht opaleszierend.

30 **Beispiel 14**

Lokale Applikation eines Zinn-Kolloids

Das Versuchstier ist ein weißes Neuseeländerkaninchen (interne Tierkenn-Nr.: 1852, 35 männlich, 3,5 kg Körpergewicht).

In Narkose (Rompun/Ketavet 1:2, 1 ml/kg Körpergewicht, i.m.-Gabe) wurde mit einem Ballonkatheter in der infraranalen Aorta das Endothel geschädigt (Ballondenudation).

Anschließend wurden dem Versuchstier über einen Zeitraum von 5 Minuten mit einem mikroperforierten Match Katheter (Ballonkatheter mit 5 mm Durchmesser; Hersteller: Fa. Schneider, Düsseldorf) Zinnkolloid, welches nach dem Kit der Fa. Amersham ("Amerscan Zinnkolloid (^{99m}Tc) - Markierungskit für die Leberszintigraphie") hergestellt wurde,
5 appliziert. Die radioaktive Dosis von 0.4 mCi (= 14.8 MBq) wurde in einem Volumen von 0,1 ml appliziert.

Während des gesamten Experimentes befindet sich das Versuchstier unter einer Gamma-Kamara (Elscint SP4 HR), um die Verteilung der Radioaktivität im Körper darzustellen. In Fig. 1 ist im oberen Teil die Situation vor Applikation dargestellt. Man sieht deutlich
10 den Katheter, der das Zinnkolloid enthält. Der Pfeil zeigt den Ballon des Katheters, der sich an der gewünschten Applikationsstelle befindet. Im unteren Teil der Aufnahme ist der gleiche Situs 1,5 Stunden nach Applikation und Entfernen des Katheters dargestellt. Deutlich ist die an der Applikationsstelle verbliebene Menge Zinnkolloid zu erkennen.

15

Beispiel 15

Lokale Applikation eines Zinn-Kolloids

20 Das Versuchstier ist ein weißes Neuseeländerkaninchen (interne Tierkenn-Nr.:1839, männlich, 3,7 kg Körpergewicht)

In Narkose (Rompun/Ketavet 1:2, 1 ml/kg Körpergewicht, i.m.-Gabe) wurde mit einem Ballonkatheter in der infraranalen Aorta das Endothel geschädigt (Ballondenudation).
25 Anschließend wurden dem Versuchstier über einen Zeitraum von 5 Minuten mit einem mikroperforierten Match Katheter (Ballonkatheter mit 5 mm Durchmesser; Hersteller: Fa. Schneider, Düsseldorf) Zinnkolloid, welches nach dem Kit der Fa. Amersham ("Amerscan Zinnkolloid ^{99m}Tc - Markierungskit für die Leberszintigraphie") hergestellt wurde,
appliziert. Die radioaktive Dosis von 0.47 mCi (= 17.39 MBq) wurde in einem Volumen
30 von 0,1 ml appliziert.

Während des gesamten Experimentes befindet sich das Versuchstier unter einer Gamma-Kamara (Elscint SP4 HR) um die Verteilung der Radioaktivität im Körper darzustellen. In Fig. 2 ist im oberen Teil die Situation vor Applikation dargestellt. Man sieht deutlich
35 den Katheter, der das Zinnkolloid enthält. Der Pfeil zeigt den Ballon des Katheters, der sich an der gewünschten Applikationsstelle befindet. Im unteren Teil der Aufnahme ist der gleiche Situs 1,5 Stunden nach Applikation und Entfernen des Katheters dargestellt. Deutlich ist die an der Applikationsstelle verbliebene Menge Zinnkolloid zu erkennen.

Patentansprüche

1. Verfahren zur therapeutischen Behandlung proliferativer Erkrankungen,
dadurch gekennzeichnet,
daß zunächst ein Applikationskatheter am Ort der Läsion gesetzt wird und eine
radioaktive Substanz über den Katheter lokal appliziert wird, anschließend der
Katheter wieder entfernt wird und die radioaktive Substanz am Ort der Läsion
verbleibt.
- 10 2. Verfahren zur therapeutischen Behandlung atherosklerotischer Erkrankungen,
dadurch gekennzeichnet,
daß zunächst ein Applikationskatheter am Ort der Läsion gesetzt wird und eine
radioaktive Substanz über den Katheter lokal appliziert wird, anschließend der
Katheter wieder entfernt wird und die radioaktive Substanz am Ort der Läsion
verbleibt.
- 15 3. Verfahren gemäß Anspruch 1 oder 2,
dadurch gekennzeichnet,
daß die radioaktive Substanz ein Metallkomplex ist.
- 20 4. Verfahren gemäß Anspruch 1 oder 2,
dadurch gekennzeichnet,
daß die radioaktive Substanz ein Metallkomplex ist, dessen Ligand ein Bis-Amin-
Oxim-Derivat der allgemeinen Formel I ist,

25

30

worin n = 0 - 3 und die Reste R¹ bis R⁸ gleich oder verschieden sind und jeweils
für ein Wasserstoffatom und/oder für einen unverzweigten, verzweigten,
cyclischen oder polycyclischen C₁-C₁₀₀-Alkyl-, -Alkenyl-, -Alkinyl-, -Aryl-, -
Alkylaryl- und/oder -Arylalkylrest stehen, welcher gegebenenfalls mit Fluor-,
Chlor-, Brom- und/oder Jodatomen und/oder Hydroxy-, Oxo-, Carboxy-,
Aminocarbonyl-, Alkoxycarbonyl-, Amino-, Aldehyd- oder Alkoxygruppen mit bis
zu 30 Kohlenstoffatomen substituiert ist und/oder gegebenenfalls durch ein oder

mehrere Heteroatome aus der Reihe N, P, As, O, S, Se unterbrochen und/oder substituiert ist, und wobei die Reste R² und R³, R⁴ und R⁵ sowie R⁶ und R⁷ zusammen gegebenenfalls für ein Sauerstoffatom stehen können und dessen Zentralatom ein Radionuklid der Elemente der Ordnungszahlen 27, 29 - 32, 5 37 - 39, 42 - 51, 62, 64, 70, 75, 77, 82 oder 83 ist.

5. Verfahren gemäß Anspruch 1 oder 2,
dadurch gekennzeichnet,
daß die radioaktive Substanz ein Metallkomplex ist, dessen Ligand ein N₂S₂-Derivat
10 der allgemeinen Formel II ist,

- wobei R⁹ bis R²⁰ gleich oder verschieden sind und jeweils für ein Wasserstoffatom
15 und/oder für einen unverzweigten, verzweigten, cyclischen oder polycyclischen C₁-C₁₀₀-Alkyl-, -Alkenyl-, -Alkinyl-, -Aryl-, -Alkylaryl- und/oder -Arylalkylrest stehen, welcher gegebenenfalls mit Fluor-, Chlor-, Brom- und/oder Jodatomen und/oder Hydroxy-, Oxo-, Carboxy-, Aminocarbonyl-, Alkoxy carbonyl-, Amino-, Aldehyd- oder Alkoxygruppen mit bis zu 30 Kohlenstoffatomen substituiert ist und/oder gegebenenfalls durch ein oder
20 mehrere Heteroatome aus der Reihe N, P, As, O, S, Se unterbrochen und/oder substituiert ist,
und wobei die Reste R¹¹ und R¹², R¹³ und R¹⁴, R¹⁵ und R¹⁶ sowie R¹⁷ und R¹⁸ zusammen gegebenenfalls für ein Sauerstoffatom stehen können und n, m und p unabhängig voneinander 1 oder 2 bedeuten,
25 und dessen Zentralatom ein Radionuklid der Elemente der Ordnungszahlen 27, 29 - 32, 37 - 39, 42 - 51, 62, 64, 70, 75, 77, 82 oder 83 ist.

6. Verfahren gemäß Anspruch 1 oder 2,
dadurch gekennzeichnet,
30 daß die radioaktive Substanz ein Metallkomplex ist, dessen Ligand ein N₂S₂-Derivat der allgemeinen Formel III ist,

- wobei R²¹ bis R³² gleich oder verschieden sind und jeweils für ein Wasserstoffatom und/oder für einen unverzweigten, verzweigten, cyclischen oder polycyclischen C₁-C₁₀₀-
- 5 Alkyl-, -Alkenyl-, -Alkinyl-, -Aryl-, -Alkylaryl- und/oder -Arylalkylrest stehen, welcher gegebenenfalls mit Fluor-, Chlor-, Brom- und/oder Jodatomen und/oder Hydroxy-, Oxo-, Carboxy-, Aminocarbonyl-, Alkoxycarbonyl-, Amino-, Aldehyd- oder Alkoxygruppen mit bis zu 30 Kohlenstoffatomen substituiert ist und/oder gegebenenfalls durch ein oder mehrere Heteroatome aus der Reihe N, P, As, O, S, Se unterbrochen und/oder
- 10 substituiert ist,
- und dessen Zentralatom ein Radionuklid der Elemente der Ordnungszahlen 27, 29 - 32, 37 - 39, 42 - 51, 62, 64, 70, 75, 77, 82 oder 83 ist.
7. Verfahren gemäß Anspruch 4, 5 oder 6,
15 dadurch gekennzeichnet,
daß der verwendete Metallkomplex ein Zentralatom enthält, das aus der Gruppe
99mTc, 186Re, 188Re, 67Cu, 90Y und 107Ag ausgewählt ist.
8. Verfahren gemäß Anspruch 1 oder 2,
20 dadurch gekennzeichnet,
daß die radioaktive Substanz ein Metallkomplex ist, dessen Ligand ein
Porphyrinderivat ist.
9. Verfahren gemäß Anspruch 1 oder 2,
25 dadurch gekennzeichnet,
daß die radioaktive Substanz eine Thalliumverbindung der Isotope ²⁰¹Tl, ²⁰⁷Tl, ²⁰⁹Tl
und ²¹⁰Tl ist.
10. Verfahren gemäß Anspruch 1 oder 2,
30 dadurch gekennzeichnet,
daß die radioaktive Substanz ²⁰¹TlCl ist.

11. Verfahren gemäß Anspruch 1 oder 2,
dadurch gekennzeichnet,
daß die radioaktive Substanz ein Tetrofosmin-Derivat ist.
- 5 12. Verfahren gemäß Anspruch 1 oder 2,
dadurch gekennzeichnet,
daß die radioaktive Substanz ein Sestamibi-Derivat ist.
- 10 13. Verfahren gemäß Anspruch 1 oder 2,
dadurch gekennzeichnet,
daß die radioaktive Substanz ein Furifosmin-Derivat ist.
- 15 14. Verfahren gemäß Anspruch 1 oder 2,
dadurch gekennzeichnet,
daß die radioaktive Substanz eine kolloidale Lösung mit Teilchengrößen zwischen 5 und 1000 nm ist.
- 20 15. Verfahren gemäß Anspruch 1 oder 2,
dadurch gekennzeichnet,
daß die radioaktive Substanz ^{99m}Tc -Zinnkolloid oder ^{186}Re -Zinnkolloid ist.
- 25 16. Verfahren gemäß Anspruch 1 oder 2,
dadurch gekennzeichnet,
daß der verwendete Katheter ein mikroporöser Ballonkatheter ist.
17. Verfahren gemäß Anspruch 1 oder 2,
dadurch gekennzeichnet,
daß der verwendete Katheter ein Mehrkammer-Ballonkatheter ist.
- 30 18. Verwendung von Komplexen, deren Ligand ein Bis-Amin-Oxim-Derivat der allgemeinen Formel I ist

worin $n = 0 - 3$ und die Reste R^1 bis R^8 gleich oder verschieden sind und jeweils für ein Wasserstoffatom und/oder für einen unverzweigten, verzweigten, cyclischen oder polycyclischen C₁-C₁₀₀-Alkyl-, -Alkenyl-, -Alkinyl-, -Aryl-, -Alkylaryl- und/oder -Arylalkylrest stehen, welcher gegebenenfalls mit Fluor-, Chlor-, Brom- und/oder Jodatomen und/oder Hydroxy-, Oxo-, Carboxy-, Aminocarbonyl-, Alkoxycarbonyl-, Amino-, Aldehyd- oder Alkoxygruppen mit bis zu 30 Kohlenstoffatomen substituiert ist und/oder gegebenenfalls durch ein oder mehrere Heteroatome aus der Reihe N, P, As, O, S, Se unterbrochen und/oder substituiert ist, und wobei die Reste R^2 und R^3 , R^4 und R^5 sowie R^6 und R^7 zusammen gegebenenfalls für ein Sauerstoffatom stehen können,

und deren Zentralatom ein Radionuklid der Elemente der Ordnungszahlen 27, 29 - 32, 37 - 39, 42 - 51; 62, 64, 70, 75, 77, 82 oder 83 ist, zur Herstellung von Mitteln, die bei der Therapie von proliferativen Erkrankungen lokal appliziert werden.

15

19. Verwendung von Komplexen, deren Ligand ein N₂S₂-Derivat der allgemeinen Formel II ist

20

wobei R^9 bis R^{20} gleich oder verschieden sind und jeweils für ein Wasserstoffatom und/oder für einen unverzweigten, verzweigten, cyclischen oder polycyclischen C₁-C₁₀₀-Alkyl-, -Alkenyl-, -Alkinyl-, -Aryl-, -Alkylaryl- und/oder -Arylalkylrest stehen, welcher gegebenenfalls mit Fluor-, Chlor-, Brom- und/oder Jodatomen und/oder Hydroxy-, Oxo-, Carboxy-, Aminocarbonyl-, Alkoxycarbonyl-, Amino-, Aldehyd- oder Alkoxygruppen mit bis zu 30 Kohlenstoffatomen substituiert ist und/oder gegebenenfalls durch ein oder mehrere Heteroatome aus der Reihe N, P, As, O, S, Se unterbrochen und/oder substituiert ist, und wobei die Reste R^{11} und R^{12} , R^{13} und R^{14} , R^{15} und R^{16} sowie R^{17} und R^{18} zusammen gegebenenfalls für ein Sauerstoffatom stehen können und n , m und p unabhängig voneinander 1 oder 2 bedeuten,

und deren Zentralatom ein Radionuklid der Elemente der Ordnungszahlen 27, 29 - 32, 37 - 39, 42 - 51, 62, 64, 70, 75, 77, 82 oder 83 ist, zur Herstellung von Mitteln, die bei der Therapie von proliferativen Erkrankungen lokal appliziert werden.

- 5 20. Verwendung von Komplexen, deren Ligand ein N₂S₂-Derivat der allgemeinen Formel III ist

- 10 wobei R²¹ bis R³² gleich oder verschieden sind und jeweils für ein Wasserstoffatom und/oder für einen unverzweigten, verzweigten, cyclischen oder polycyclischen C₁-C₁₀₀-Alkyl-, -Alkenyl-, -Alkinyl-, -Aryl-, -Alkylaryl- und/oder -Arylalkylrest stehen, welcher gegebenenfalls mit Fluor-, Chlor-, Brom- und/oder Jodatomen und/oder Hydroxy-, Oxo-, Carboxy-, Aminocarbonyl-, Alkoxycarbonyl-, Amino-, Aldehyd- oder Alkoxygruppen mit bis zu 30 Kohlenstoffatomen substituiert ist und/oder gegebenenfalls durch ein oder mehrere Heteroatome aus der Reihe N, P, As, O, S, Se unterbrochen und/oder substituiert ist,
- 15 20. und deren Zentralatom ein Radionuklid der Elemente der Ordnungszahlen 27, 29 - 32, 37 - 39, 42 - 51, 62, 64, 70, 75, 77, 82 oder 83 ist, zur Herstellung von Mitteln, die bei der Therapie von proliferativen Erkrankungen lokal appliziert werden.
- 25 21. Verwendung von Verbindungen gemäß einem der Ansprüche 18 bis 20, dadurch gekennzeichnet,
daß das Radionuklid ausgewählt ist aus der Gruppe ^{99m}Tc, ¹⁸⁶Re, ¹⁸⁸Re, ⁶⁷Cu, ⁹⁰Y und ¹⁰⁷Ag.
- 30 22. Verwendung von kolloidalen Lösungen zur Herstellung von Mitteln für die Therapie proliferativer Erkrankungen,
dadurch gekennzeichnet,

daß die kolloidale Lösung mit einem Radionuklid der Elemente Ag, As, At, Au, Ba, Bi, Br, C, Co, Cr, Cu, F, Fe, Ga, Gd, Hg, Ho, I, In, Ir, Lu, Mn, N, O, P, Pb, Pd, Pm, Re, Rh, Ru, Sb, Sc, Se, Sm, Sn, Tb, Tc oder Y markiert ist.

- 5 23. Verwendung von kolloidalen Lösungen gemäß Anspruch 22,
 dadurch gekennzeichnet,
 daß die kolloidale Lösung mit einem Radionuklid ausgewählt aus der Gruppe ^{99m}Tc ,
 ^{186}Re , ^{188}Re , ^{67}Cu , ^{90}Y , ^{153}Sm , ^{160}Tb , ^{162}Tb , ^{198}Au und ^{107}Ag markiert ist.
- 10 24. Verwendung von kolloidalen Lösungen gemäß Anspruch 22,
 dadurch gekennzeichnet,
 daß das Kolloid durch eine Redoxreaktion in Gegenwart eines radioaktiven Salzes
 hergestellt wird.
- 15 25. Verwendung von kolloidalen Lösungen gemäß Anspruch 22,
 dadurch gekennzeichnet,
 daß das Kolloid durch Änderung des pH-Wertes in einer wässrigen oder alkoholischen
 Lösung in Gegenwart eines radioaktiven Salzes hergestellt wird.
- 20 26. Verwendung von kolloidalen Lösungen gemäß Anspruch 22,
 dadurch gekennzeichnet,
 daß die Teilchengröße der kolloidalen Partikel zwischen 5 und 1000 nm liegt.
- 25 27. Verwendung von kolloidalen Lösungen gemäß Anspruch 22,
 dadurch gekennzeichnet,
 daß die Teilchengröße der kolloidalen Partikel zwischen 300 und 600 nm liegt.
- 30 28. Verwendung von kolloidalen Lösungen gemäß Anspruch 22,
 dadurch gekennzeichnet,
 daß die kolloidale Lösung mit Hilfe von Tensiden oder anderen amphiphilen
 Substanzen stabilisiert wird.
- 35 29. Verwendung von radioaktiv markierten Schwefelkolloiden zur Herstellung von
 Mitteln für die Therapie proliferativer Erkrankungen.

Fig.1

W.N.1852 Katheter

W.N.1852 dyn., 1h

Fig. 2

W.N.1839 Katheter

W.N.1839 dyn., 1h

Fig. 3

PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM

Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6 : A61K 51/12		A3	(11) Internationale Veröffentlichungsnummer: WO 99/13920 (43) Internationales Veröffentlichungsdatum: 25. März 1999 (25.03.99)
(21) Internationales Aktenzeichen:	PCT/EP98/05741	(81) Bestimmungsstaaten: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO Patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).	
(22) Internationales Anmeldedatum:	10. September 1998 (10.09.98)		
(30) Prioritätsdaten:	197 41 694.2 18. September 1997 (18.09.97) DE 197 41 695.0 18. September 1997 (18.09.97) DE 197 42 880.0 23. September 1997 (23.09.97) DE		
<p>(71) Anmelder (<i>für alle Bestimmungsstaaten ausser US</i>): SCHERRING AKTIENGESELLSCHAFT [DE/DE]; Müllerstrasse 178, D-13353 Berlin (DE).</p> <p>(72) Erfinder; und</p> <p>(75) Erfinder/Anmelder (<i>nur für US</i>): DINKELBORG, Ludger [DE/DE]; Ortwinstrasse 7, D-13465 Berlin (DE). HILGER, Christoph-Stephan [DE/DE]; Osterder Strasse 3a, D-13353 Berlin (DE). HELDMANN, Dieter [DE/DE]; Krefelder Strasse 3, D-10555 Berlin (DE). BLUME, Friedhelm [DE/DE]; Nusshäherstrasse 47 t, D-13505 Berlin (DE).</p>			Veröffentlicht <i>Mit internationalem Recherchenbericht.</i> <i>Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist. Veröffentlichung wird wiederholt falls Änderungen eintreffen.</i>
			(88) Veröffentlichungsdatum des internationalen Recherchenberichts: 6. Mai 1999 (06.05.99)

(54) Title: METHOD FOR TREATING PROLIFERATIVE DISEASES BY THERAPY**(54) Bezeichnung:** VERFAHREN ZUR THERAPEUTISCHEN BEHANDLUNG PROLIFERATIVER ERKRANKUNGEN**(57) Abstract**

The invention relates to a method for treating proliferative diseases by therapy, characterised in that an application catheter is first placed at the site of the lesion and a radioactive substance is applied locally. The catheter is then removed, leaving the radioactive substance at the site of the lesion. The invention also relates to the use of bis-amine-oxime derivative, N₂S₂ complex derivatives and radioactively marked colloidal solutions for producing agents which are applied locally in proliferative disease therapy.

(57) Zusammenfassung

Die Erfindung betrifft ein Verfahren zur therapeutischen Behandlung proliferativer Erkrankungen, das dadurch gekennzeichnet ist, daß zunächst ein Applikationskatheter am Ort der Läsion gesetzt wird und eine radioaktive Substanz über den Katheter lokal appliziert wird, anschließend der Katheter wieder entfernt wird und die radioaktive Substanz am Ort der Läsion verbleibt. Die Erfindung betrifft weiterhin die Verwendung von Bis-Amin-Oxim-Derivaten, N₂S₂-Komplexderivaten und radioaktiv markierten kolloidalen Lösungen zur Herstellung von Mitteln, die bei der Therapie proliferativer Erkrankungen lokal appliziert werden.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische Republik Mazedonien	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland			TR	Türkei
BG	Bulgarien	HU	Ungarn	ML	Mali	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von Amerika
CA	Kanada	IT	Italien	MX	Mexiko	UZ	Usbekistan
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	VN	Vietnam
CG	Kongo	KE	Kenia	NL	Niederlande	YU	Jugoslawien
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik Korea	NZ	Neuseeland		
CM	Kamerun			PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumänien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		

INTERNATIONAL SEARCH REPORT

National Application No

PCT/EP 98/05741

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 A61K51/12

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
E	WO 98 48851 A (DINKELBORG LUDGER ;MIKLAUTZ HERIBERT (DE); NOLL BERNHARD (DE); SCH) 5 November 1998 see page 9, line 13 - line 15 --- -/-/	1

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "&" document member of the same patent family

Date of the actual completion of the international search

2 March 1999

Date of mailing of the International search report

16/03/1999

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patenttaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
 Fax: (+31-70) 340-3016

Authorized officer

Berte, M

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP 98/05741

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>DATABASE MEDLINE US NATIONAL LIBRARY OF MEDICINE (NLM), BETHESDA, MD, US AN=95174981, NAMBA H ET AL: "Assessment of the brain areas perfused by superselective intra-arterial chemotherapy using single photon emission computed tomography with technetium-99m-hexamethyl-propyleneamine oxime--technical note." XP002095231 see abstract & NEUROLOGIA MEDICO-CHIRURGICA, (1994 DEC) 34 (12) 832-5. JOURNAL CODE: NYD. ISSN: 0470-8105., Japan</p> <p>---</p> <p>DATABASE MEDLINE US NATIONAL LIBRARY OF MEDICINE (NLM), BETHESDA, MD, US AN=93317860, AOKI S ET AL: "Supraophthalmic chemotherapy with long tapered catheter: distribution evaluated with intraarterial and intravenous Tc-99m HMPAO." XP002095232 see abstract & RADIOLOGY, (1993 AUG) 188 (2) 347-50. JOURNAL CODE: QSH. ISSN: 0033-8419., United States</p> <p>---</p> <p>DATABASE MEDLINE US NATIONAL LIBRARY OF MEDICINE (NLM), BETHESDA, MD, US AN=7602463, DELGADO R ET AL: "Renal blood flow distribution during steady-state exercise and exhaustion in conscious dogs." XP002095233 see abstract & JOURNAL OF APPLIED PHYSIOLOGY, (1975 SEP) 39 (3) 475-8. JOURNAL CODE: HEF. ISSN: 0021-8987., United States</p> <p>---</p> <p>WO 98 12979 A (UNIV COLUMBIA ;WEINBERGER JUDAH Z (US)) 2 April 1998 see page 13, line 9 - line 16 see page 13, line 25 - page 14, line 5 see page 49, line 6 - line 22</p> <p>---</p> <p>-/-</p>	1-4,7, 14, 16-18, 21-29 1-4,7, 14, 16-18, 21-29 1-3 1-29
P,X		

INTERNATIONAL SEARCH REPORT

National Application No PCT/EP 98/05741
--

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P,X	WO 97 38730 A (TANGUAY JEAN FRANCOIS ;BILODEAU LUC (CA); BERTRAND OLIVIER (CA); M) 23 October 1997 see page 4, line 1 - line 16; claims see page 9, line 8 - line 18 see page 14, line 28 - page 15, line 26 ----	1-29
E	WO 98 48852 A (KRAUSE WERNER ;SCHERING AG (DE); HOECKER HARTWIG (DE); KLEE DORIS) 5 November 1998 see claims ----	1
X	DATABASE CHEMABS CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US AN=111:7326, SVENDSEN, JESPER H. ET AL: "Capillary permeability of technetium-99m-DTPA in canine myocardium determined by intracoronary bolus injection and residue detection" XP002095265 see abstract & CARDIOVASC. RES. (1989), 23(6), 512-19 CODEN: CVREAU;ISSN: 0008-6363,1989, ----	1-4,7
P,X	WO 98 30147 A (SCIMED LIFE SYSTEMS INC) 16 July 1998 see page 5, line 11 - line 23; claims 1,4,6,7 -----	1-4,7, 16,19, 21-23

INTERNATIONAL SEARCH REPORT

Information on patent family members

National Application No

PCT/EP 98/05741

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
WO 9848851	A	05-11-1998	DE	19724223 C	24-12-1998
			DE	19724230 C	26-11-1998
			AU	7910098 A	24-11-1998
WO 9812979	A	02-04-1998	AU	4596997 A	17-04-1998
WO 9738730	A	23-10-1997	AU	2501197 A	07-11-1997
			EP	0894012 A	03-02-1999
WO 9848852	A	05-11-1998	DE	19718339 A	12-11-1998
			AU	8015098 A	24-11-1998
WO 9830147	A	16-07-1998	NONE		

INTERNATIONALER RECHERCHENBERICHT

nationales Aktenzeichen

PCT/EP 98/05741

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 6 A61K51/12

Nach der internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 6 A61K

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
E	WO 98 48851 A (DINKELBORG LUDGER ;MIKLAUTZ HERIBERT (DE); NOLL BERNHARD (DE); SCH) 5. November 1998 siehe Seite 9, Zeile 13 - Zeile 15 --- -/-	1

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen :

"A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist

"E" Älteres Dokument, das jedoch erst am oder nach dem Internationalen Anmeldedatum veröffentlicht worden ist

"L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

"O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

"P" Veröffentlichung, die vor dem Internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

"T" Spätere Veröffentlichung, die nach dem Internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

"X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfandenscher Tätigkeit beruhend betrachtet werden

"Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfandenscher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

"A" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der Internationalen Recherche

Absendedatum des internationalen Recherchenberichts

2. März 1999

16/03/1999

Name und Postanschrift der Internationalen Recherchenbehörde

Europäisches Patentamt, P.B. 5818 Patentaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Berte, M

INTERNATIONALER RECHERCHENBERICHT

nationales Aktenzeichen

PCT/EP 98/05741

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	<p>DATABASE MEDLINE US NATIONAL LIBRARY OF MEDICINE (NLM), BETHESDA, MD, US AN=95174981, NAMBA H ET AL: "Assessment of the brain areas perfused by superslective intra-arterial chemotherapy using single photon emission computed tomography with technetium-99m-hexamethyl-propyleneamine oxime--technical note." XP002095231 siehe Zusammenfassung & NEUROLOGIA MEDICO-CHIRURGICA, (1994 DEC) 34 (12) 832-5. JOURNAL CODE: NYD. ISSN: 0470-8105., Japan</p> <p>----</p>	1-4, 7, 14, 16-18, 21-29
X	<p>DATABASE MEDLINE US NATIONAL LIBRARY OF MEDICINE (NLM), BETHESDA, MD, US AN=93317860, AOKI S ET AL: "Supraophthalmic chemotherapy with long tapered catheter: distribution evaluated with intraarterial and intravenous Tc-99m HMPAO." XP002095232 siehe Zusammenfassung & RADIOLOGY, (1993 AUG) 188 (2) 347-50. JOURNAL CODE: QSH. ISSN: 0033-8419., United States</p> <p>----</p>	1-4, 7, 14, 16-18, 21-29
X	<p>DATABASE MEDLINE US NATIONAL LIBRARY OF MEDICINE (NLM), BETHESDA, MD, US AN=7602463, DELGADO R ET AL: "Renal blood flow distribution during steady-state exercise and exhaustion in conscious dogs." XP002095233 siehe Zusammenfassung & JOURNAL OF APPLIED PHYSIOLOGY, (1975 SEP) 39 (3) 475-8. JOURNAL CODE: HEF. ISSN: 0021-8987., United States</p> <p>----</p>	1-3
P, X	<p>WO 98 12979 A (UNIV COLUMBIA ;WEINBERGER JUDAH Z (US)) 2. April 1998 siehe Seite 13, Zeile 9 - Zeile 16 siehe Seite 13, Zeile 25 - Seite 14, Zeile 5 siehe Seite 49, Zeile 6 - Zeile 22</p> <p>----</p> <p align="center">-/--</p>	1-29

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP 98/05741

C(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
P,X	WO 97 38730 A (TANGUAY JEAN FRANCOIS ; BILODEAU LUC (CA); BERTRAND OLIVIER (CA); M) 23. Oktober 1997 siehe Seite 4, Zeile 1 - Zeile 16; Ansprüche siehe Seite 9, Zeile 8 - Zeile 18 siehe Seite 14, Zeile 28 - Seite 15, Zeile 26 -----	1-29
E	WO 98 48852 A (KRAUSE WERNER ; SCHERING AG (DE); HOECKER HARTWIG (DE); KLEE DORIS) 5. November 1998 siehe Ansprüche -----	1
X	DATABASE CHEMABS CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US AN=111:7326, SVENDSEN, JESPER H. ET AL: "Capillary permeability of technetium-99m-DTPA in canine myocardium determined by intracoronary bolus injection and residue detection" XP002095265 siehe Zusammenfassung & CARDIOVASC. RES. (1989), 23(6), 512-19 CODEN: CVREAU; ISSN: 0008-6363, 1989, -----	1-4,7
P,X	WO 98 30147 A (SCIMED LIFE SYSTEMS INC) 16. Juli 1998 siehe Seite 5, Zeile 11 - Zeile 23; Ansprüche 1,4,6,7 -----	1-4,7, 16,19, 21-23

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

nationales Aktenzeichen

PCT/EP 98/05741

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
WO 9848851 A	05-11-1998	DE	19724223 C	24-12-1998
		DE	19724230 C	26-11-1998
		AU	7910098 A	24-11-1998
WO 9812979 A	02-04-1998	AU	4596997 A	17-04-1998
WO 9738730 A	23-10-1997	AU	2501197 A	07-11-1997
		EP	0894012 A	03-02-1999
WO 9848852 A	05-11-1998	DE	19718339 A	12-11-1998
		AU	8015098 A	24-11-1998
WO 9830147 A	16-07-1998	KEINE		