

Database Systems

Session 4 Chapter 2 - Relational Model of data - Part 3

Objectives

Understand why do we need Algebraic Query Language

Understand how Algebraic Query Language work

Contents

- Why do we need Algebraic Query Language
- 2 An Algebraic Query Language

2.4.1. Why do we need a special Query Language?

- One should ask why we need a new kind of programming languages for databases?
- The surprising answer is that RA is useful because it is less powerful than C or Java. By limiting what we can do in RA, we get two huge rewards:
 - Ease of programming
 - The ability of the compiler to produce highly optimized code.

2.4.2. What is an Algebra?

- An algebra, in general, consist of operators and atomic operands.
- RA is another example of an algebra: its atomic operands are:
 - Variables = relations
 - Constants = finite relations

2.4.2. Relational algebra definition

- Relational algebra, an offshoot of algebra of sets via operators
- Operators operate on one or more relations to create a new relation

2.4.3 Overview of relational algebra

- 4 kinds of operations of the traditional RA:
 - Set operations: UNION, INTERSECTION, DIFFERENCE
 - Operations that remove parts of a relation: SELECTION and PROJECTION
 - Operations that combine the tuples of two relations: Cartesian PRODUCT, JOIN
 - Renaming operation

2.4.4. Set Operations on Relations - Set Union

Sells1

bar	beer	price
Joe's	Bud	2.50
Joe's	Miller	2.75
Sue's	Bud	2.50

Sells2

bar	beer	price
Joe's	Bud	2.50
Joe's	Miller	2.75
Sue's	Miller	3.00

Sells1 U Sells2

bar	beer	price
Joe's	Bud	2.50
Joe's	Miller	2.75
Sue's	Bud	2.50
Sue's	Miller	3.00

2.4.4. Set Operations on Relations - Set Except

Sells1

bar	beer	price
Joe's	Bud	2.50
Joe's	Miller	2.75
Sue's	Bud	2.50

Sells2

bar	beer	price
Joe's	Bud	2.50
Joe's	Miller	2.75
Sue's	Miller	3.00

Sells1 \ Sells2 or Sells1 - Sells2

bar	beer	price
Sue's	Bud	2.50

2.4.4. Set Operations on Relations - Set Intersection

Sells1

bar	beer	price
Joe's	Bud	2.50
Joe's	Miller	2.75
Sue's	Bud	2.50

Sells2

bar	beer	price
Joe's	Bud	2.50
Joe's	Miller	2.75
Sue's	Miller	3.00

Sells1 ∩ Sells2

bar	beer	price
Joe's	Bud	2.50
Joe's	Miller	2.75

2.4.5. Projection

$R1 := \mathbf{\Pi}_L(R2)$

- L is a list of attributes from the schema of R2.
- R1 is constructed by looking at each tuple of R2, extracting the attributes on list L, in the order specified, and creating from those components a tuple for R1.
- Eliminate duplicate tuples, if any.

Example: Projection

Relation Sells:

bar	beer	price
Joe's	Bud	2.50
Joe's	Miller	2.75
Sue's	Bud	2.50
Sue's	Miller	3.00

Prices := $\pi_{beer, price}(Sells)$:

beer	price
Bud	2.50
Miller	2.75
Miller	3.00
Miller	2.75

Extended Projection

- ❖ Using the same T_L operator, we allow the list L to contain arbitrary expressions involving attributes:
 - 1. Arithmetic on attributes, e.g., *A+B->C*.
 - 2. Duplicate occurrences of the same attribute.

Example: Extended Projection

$$R = (A B)$$
 $1 2$
 $3 4$

$$\pi_{A+B->C, A, A}(R) = \begin{array}{c|c} C & A1 \\ \hline 3 & 1 \\ \hline 7 & 3 \end{array}$$

2.4.6. Selection

$$R1 := \sigma_C(R2)$$

- C is a condition (as in "if" statements) that refers to attributes of R2.
- R1 is all those tuples of R2 that satisfy C.

Example: Selection

Relation Sells:

bar	beer	price
Joe's	Bud	2.50
Joe's	Miller	2.75
Sue's	Bud	2.50
Sue's	Miller	3.00

JoeMenu := $\sigma_{bar="Joe's"}(Sells)$:

bar	beer	price
Joe's	Bud	2.50
Joe's	Miller	2.75

2.4.7. Cartesian Product

◆R3 := R1 X R2

- Pair each tuple t1 of R1 with each tuple t2 of R2.
- Concatenation t1t2 is a tuple of R3.
- Schema of R3 is the attributes of R1 and then R2, in order.
- But beware attribute A of the same name in R1 and R2: use R1.A and R2.A.

Example: R3 := R1 XR2

R1(Α,	В)
	1	2	
	3	4	

R2(B, C)
5 6
7 8
9 10

R3(Α,	R1.B,	R2.B	, C	,
	1	2	5	6	
	1	2	7	8	
	1	2	9	10	
	3	4	5	6	
	3	4	7	8	
	3	4	9	10	

2.4.8. Natural Join

- A useful join variant (*natural* join) connects two relations by:
 - Equating attributes of the same name, and
 - Projecting out one copy of each pair of equated attributes.
- \bullet Denoted R3 := R1 \bowtie R2.

Example: Natural Join

Sells(bar,	beer,	price
	Joe's	Bud	2.50
	Joe's	Miller	2.75
	Sue's	Bud	2.50
	Sue's	Coors	3.00

Bars(bar,	addr)
	Joe's	Maple St.	
	Sue's	River Rd.	

BarInfo := Sells ⋈ Bars

Note: Bars.name has become Bars.bar to make the natural join "work."

BarInfo(

bar,	beer,	price,	addr	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Joe's	Bud	2.50	Maple St.	
Joe's	Milller	2.75	Maple St.	
Sue's	Bud	2.50	River Rd.	
Sue's	Coors	3.00	River Rd.	

2.4.9 Theta Join

$$R\bowtie_{\theta} S$$

The result of theta join consists of all combinations of tuples in two relations R and S that satisfy θ condition

Example: Theta Join

R

A	В
1	1
1	2
2	3

S

С	D
2	2
3	2
4	1

$$R\bowtie_{B>=C}S$$

Α	В	С	D
1	2	2	2
2	3	2	2
2	3	3	2

2.4.11. Renaming

- The ρ operator gives a new schema to a relation.
- ❖R1 := $\rho_{R1(A1,...,An)}$ (R2) makes R1 be a relation with attributes A1,...,An and the same tuples as R2.
- ❖Simplified notation: R1(A1,...,An) := R2.

Example: Renaming


```
Bars( name, addr
Joe's Maple St.
Sue's River Rd.
```

R(bar, addr) := Bars

R(bar, addr Joe's Maple St. Sue's River Rd.

2.4.11 Combining Operations to Form Queries/

- Movies (title, year, length, genre, studioName)
- What are titles and years of movies made by Fox that are at least 100 minutes long?
- To answer above question, see the steps represented as an expression tree:

2.4.12 Relationships among operations

Some operations can be expressed by other operations

$$R \cap S = R - (R - S)$$

$$R \bowtie_C S = \sigma_C(R \times S)$$

2.4.13 Exercises

- A database schema consist of 4 relations:
 - (Exercise 2.4.1, page 52-55)
 - Product(maker, model, type)
 - PC(model, speed, ram, hd, price)
 - Laptop(model, speed, ram, hd, screen, price)
 - Printer(model, color, type, price)

2.4.13 Exercises

Product

Samples data for 4 relations

	maker	model	type		model	speed	ram	hd	price	
	A	1001	рс		1001	2.66	1024	250	2114	
	A	1002	pc		1002	2.10	512	250	995	
	A	1003	рс	PC	1003	1.42	512	80	478	
	A	2004	laptop	10	1004	2.80	1024	250	649	
	A	2005	laptop		1005	3.20	512	250	630	
	A	2006	laptop		1006	3.20	1024	320	1049	
	В	1004	рc							
	В	1005	рc						1	1 .
	В	1006	рс		model	speed	ram	hd	screen	price
!	В	2007	laptop		2001	2.00	2048	240	20.1	3673
	C	1007	рс		2002	1.73	1024	80	17.0	949
	D	1008	рc	Laptop	2003	1.80	512	60	15.4	549
	D	1009	рc		2004	2.00	512	60	13.3	1150
	D	1010	рc		2005	2.16	1024	120	17.0	2500
	D	3004	printer							
	D	3005	printer		model	color	type	Ì	price	
	E	1011	pc		3001	true	ink-	jet	99	
	E	1012	pc	Printer	3002	false	lase	_	239	
	E	1013	pc		3003	true	lase		899	
	E	2001	laptop		3004	true	ink-	jet	120	
	E	2002	laptop		3005	false	lase	- 1	120	
						•	-			

2.4.13 Exercises

- Write expression of relational algebra to answer the following queries:
 - a) What types of product made by manufacturer A?
 - b) What PC models have a speed of at least 3.00?
 - c) What types of product made by both manufacturers A and D?
 - d) What types of product made by manufacturer A but not by manufacturer D?
 - e) Which manufacturers make laptops with a hard disk of at least 100GB?
 - f) Find the model numbers and price of all products (of any type) made by manufacturer B?
 - g) Find the model number of all color laser printers?
 - h) Find those manufacturers that sell Laptops, but not PC's.
 - i) Find those hard-disk sizes that occur in two or more PC's.
 - j) Find the manufacturers of the computer with the highest available speed.
 - k) Find those manufacturers of at least two different computers (PC or laptop) with speeds of at least 2.80.

Summary

- RA is more useful than C or Java because it is less powerful.
- RA is an algebra: its atomic operands are:
 - Variables that stand for relations
 - Constants, which are finite relations
- The six primitive operators of RA are: Selection, Projection, Product, Union, Difference and Rename
- Other operators of RA are: Natural Join, Theta Join, ...

