

MTH 309T LINEAR ALGEBRA EXAM 1

Name: Paul Seungy UB Person Number		Instruc	ctions:			
5 0 / 3 9 0 0 0 0 0 0 1 1 0 1 1 2 2 2 2 2 2 3 3 3 8 3 4 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 8 8 8 8 8 9 9 9 9	3 6 3 0 0 0 1 1 1 2 2 2 3 3 4 4 4 5 5 6 6 6 7 7 7 7 8 8 8 9 9	 Textbooks, calculators and any other electronic devices are not permitted. You may use one sheet of notes. For full credit solve each problem fully, showing all relevant work. 				
1 2 3	4 5	6	7	TOTAL	GRADE	

15	10	7	20	20	7	5		10	92	A-
1	2	3	4	5	6	7	PIAZZA	HILL	TOTAL	GRADE

1. (20 points) Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{v}_1 = \left[\begin{array}{c} 1 \\ 0 \\ 2 \end{array} \right], \quad \mathbf{v}_2 = \left[\begin{array}{c} -1 \\ 1 \\ -3 \end{array} \right], \quad \mathbf{v}_3 = \left[\begin{array}{c} 1 \\ 2 \\ 0 \end{array} \right], \quad \mathbf{w} = \left[\begin{array}{c} -2 \\ 2 \\ b \end{array} \right]$$

- a) Find all values of b such that $w \in \text{Span}(v_1, v_2, v_3)$.
- b) Is the set $\{v_1,v_2,v_3\}$ linearly independent? Justify your answer.

Aug most

Aug most

$$\begin{bmatrix}
1 & -1 & 1 & -2 \\
0 & 1 & 2 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 1 & 2 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 1 & 2 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 1 & 2 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -1 & 1 & -2
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 1 & 2 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -1 & -1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 1 & 2 & 2
\end{bmatrix}$$

$$\begin{bmatrix}
0 & -1 & -1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
0 & 1 & 2
\end{bmatrix}$$

$$\begin{bmatrix}$$

2. (10 points) Consider the following matrix:

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

Compute A^{-1} . $A \mid A \mid A$

$$\begin{bmatrix}
1 & -1 & 2 & | & 1 & 0 & 6 & 72 & 0 & | & -1 & 2 & | & 1 & 0 & 0 \\
1 & 0 & | & 0 & | & 0 & | & -1 & | & -1 & | & 1 & 0 & 0 \\
0 & 2 & -1 & | & 0 & | & 1 & | & -1 & 2 & | & 1 & 0 & 0 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & | & -2 & 3 & -1 & | & 0 & | & -1 & 2 & | & 1 & 0 & 0 \\
0 & 1 & -1 & | & -1 & | & 0 & | & -1 & | & -1 & | & 0 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & | & -2 & 3 & -1 & | & -1 & | & 0 & | & -1 & | & -1 & | & 0 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & | & -2 & 3 & -1 & | & -1 & | & 0 & | & -1 & | & -1 & | & 0 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & | & -2 & 3 & -1 & | & -1 & | & 0 & | & -1 & | & -1 & | & 0 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & | & -2 & 3 & -1 & | & -1 & | & 0 & | & -1 & | & -1 & | & 0 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & | & -2 & 3 & -1 & | & -1 & | & -1 & | & -1 & | & -1 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & | & -2 & 3 & -1 & | & -1 & | & -1 & | & -1 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & | & -2 & 3 & -1 & | & -1 & | & -1 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & | & -2 & 3 & -1 & | & -1 & | & -1 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & | & -2 & 3 & -1 & | & -1 & | & -1 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & | & -2 & 3 & -1 & | & -1 & | & -1 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & | & -2 & 3 & -1 & | & -1 & | & -1 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & | & -2 & 3 & -1 & | & -1 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & | & -2 & 3 & -1 & | & -1 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & | & -2 & 3 & -1 & | & -1 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & | & -2 & 3 & -1 & | & -1 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & | & -2 & 3 & -1 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & | & -2 & 3 & -1 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & | & -2 & 3 & -1 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & | & -2 & 3 & -1 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & | & -2 & 3 & -1 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & | & -2 & 3 & -1 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & | & -2 & 3 & -1 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & | & -2 & 3 & -1 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & | & -2 & 3 & -1 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & | & -2 & 3 & -1 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & | & -2 & 3 & -1 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & | & -2 & 3 & -1 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & | & -2 & 3 & -1 & |
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & 0 & | & -2 & 3 & -1 & |
\end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix} \circ \begin{bmatrix} -2 & 3 & -1 \\ 1 & -1 & 1 \\ 2 & -2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} -2 & 3 & -1 \\ 1 & -1 & 1 \\ 2 & -2 & 1 \end{bmatrix}$$

3. (10 points) Let A be the same matrix as in Problem 2, and let

1 -1 2 5

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix} \qquad A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

Find a matrix C such that $A^TC = B$ (where A^T is the transpose of A).

$$\begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix} \begin{bmatrix} C_1 & C_2 & C_3 \\ C_4 & C_5 & C_6 \\ C_1 & S_8 & C_9 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} -2 & 3 & -1 \\ 1 & -1 & 1 \\ 2 & -2 & 1 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} -2 & 3 & -1 \\ 1 & -1 & 1 \\ 2 & -2 & 1 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} -2 & 1 & 2 \\ 3 & 3 & 2 \\ -1 & 2 & 3 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 3 & 2 \\ -1 & 2 & 3 \end{bmatrix}$$

$$C = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 3 & 2 \\ -1 & 2 & 3 \end{bmatrix}$$

4. (20 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation given by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 2x_2 \\ x_1 + x_2 \\ x_1 - 3x_2 \end{bmatrix}$$

- a) Find the standard matrix of \mathcal{T} .
- b) Find all vectors u satisfying $T(\mathbf{u}) = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$.

(a)
$$A\begin{bmatrix} y_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 \\ a_{21}x_1 + a_{32}x_2 \end{bmatrix} = \begin{bmatrix} x_1 - 2x_2 \\ x_1 + x_2 \\ x_1 - 3x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix}$$

(b)
$$T_{cu} = Au = \begin{bmatrix} 1 & -2 \\ 1 & 1 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} u_1 - 2u_2 \\ u_1 + u_2 \\ u_1 - 3u_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -3 \\ -2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -3 \\ -2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -3 \\ -2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0$$

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A : \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(\mathbf{v}) = A\mathbf{v}$ is one-to one or not. If T_A is not one-to-one, find two vectors \mathbf{v}_1 and \mathbf{v}_2 such that $T_A(\mathbf{v}_1) = T_A(\mathbf{v}_2)$.

vectors
$$\mathbf{v}_1$$
 and \mathbf{v}_2 such that $T_A(\mathbf{v}_1) = T_A(\mathbf{v}_2)$.

a) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$

b) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

(a) $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$

Since but $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Since but $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

A is one to one

(b) $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$

$$|V_1| = \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix} \qquad |V_2| = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \qquad |T_A(V_1)| = 0$$

$$|T_A(V_2)| = 0$$

- 6. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If u, v, w are vectors in \mathbb{R}^3 such that $w + u \in Span(u, v)$ then $w \in Span(u, v)$.

Thue If $W+u=G_1u+G_2v$ $C_3=C_1$ $W=C_1u+G_2v-u=C_3u+C_2v$ Thus $w\in Span(u,v)$

b) If u, v, w are vectors in \mathbb{R}^3 such that the set $\{u, v, w\}$ is linearly independent then the set $\{u, v\}$ must be linearly independent.

True

$$if \quad v = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad v = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

¿ u., if housto be lin ind for {u,u, w} to be lin ind

Why?

- **7.** (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If A is a 2×2 matrix and u, v are vectors in \mathbb{R}^2 such that Au, Av are linearly dependent then u, v also must be linearly dependent.

True set of vectors have to be linearly dependent for Au, Au to be linearly dependent

b) If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation and $u, v, w \in \mathbb{R}^2$ are vectors such that u is in Span(v, w) then T(u) must be in Span(T(v), T(w)).

CIV + CZW = GU

Since linear trans

T(C,V) + T(C,W) = T(W) => C, T(V) + C, T(W) = T(W)

Thus T(W) & Span (T(V), T(W))

So ... TRUE.