La Méthode MERISE

Conception et Modélisation des Systèmes d'Information

Brahim BOUSETTA

Organisation et système

- Organisation : On englobe sous ce terme l'ensemble des structures économiques qui existent :
 - les entreprises publiques,
 - les entreprises privées,
 - les administrations,
 - les associations...
- Un Système est un ensemble d'éléments organisés autour d'un but, et dont la modification d'un constituant entraîne la modification d'une partie, ou de l'ensemble des constituants du système.

Brahim BOUSETTA

2

La notion de système d'information

- **♦** Système d'information (SI)
 - Ensemble organisé de ressources:
 - matériel, logiciel, personnel, données, procédés,
 - permettant d'acquérir, traiter, stocker, communiquer des informations dans l'organisation
- Une « organisation » peut être modélisé comme comportant trois sous systèmes :
 - le système de pilotage (celui qui réfléchit, décide, oriente)
 - le système opérant (celui qui produit, transforme, agit)
 - le système d'information
- ◆ Le système d'information est la représentation de l'activité du système opérant , construite par et pour le système de pilotage pour en faciliter le fonctionnement.

Brahim BOUSETTA 3 Modélisation et Conception des SI

La notion de Méthode

- ◆Qu'est ce qu'une méthode?
- Une méthode comporte trois axes indispensables pour obtenir ce label « méthode » :
 - une démarche, ensemble coordonné d'étapes, de phases et de tâches indiquant le chemin à suivre [Hodos, le chemin en grec, serait une des étymologies de méthode] pour conduire un projet, ici, la conception d'un SI,
 - des raisonnements et des techniques nécessaires à la construction de l'objet projeté, traduits ici par des modélisations,
 - des moyens de mise en œuvre, en l'occurrence une organisation de projet et des outils.

Brahim BOUSETTA 4 Modélisation et Conception des SI

Merise

M éthode d' E tude et de R éalisation I nformatique pour les S ystèmes d' E ntreprise

Brahim BOUSETTA 5 Modélisation et Conception des SI

Merise

Les points forts :

- ◆ La méthode s'appuie sur une approche systémique : C'est donc une approche globale.
- ◆ Les concepts sont peu nombreux et simples.
- ◆ Elle est assez indépendante vis à vis de la technologie.
- ◆ Elle est la plus utilisée en France dans les domaines de gestion.

Brahim BOUSETTA 6 Modélisation et Conception des SI

Merise

Les critiques :

- ◆ Elle ne s'occupe pas de l'interface utilisateur.
- ◆ Elle est très adaptée à un contexte de création d'application mais pas forcément à un problème de maintenance ou de seconde informatisation.
- ◆ Elle ne permet pas réellement une validation rapide de la part des utilisateurs.
- ◆ Elle est davantage destinée à des sites centraux plus qu'à des développements en temps réel, ou sur micro.
- ◆ Il est très difficile de valider les traitements par rapport aux données et cela au niveau conceptuel ou organisationnel.

Brahim BOUSETTA 7 Modélisation et Conception des SI

Le Dictionnaire des données -1-

Pour être traitées de manière informatisée, les données doivent être décrites dans un formalisme compris par le système informatique qui va les gérer. Les formats génériques utilisés sont:

- ◆ Le type alphabétique (rien que des caractères)
- ◆ Le type alphanumérique (des caractères, des chiffres)
- ◆ Le type numérique (les nombres)
- **♦** Le type date
- ◆ Le type logique (o-1, Vrai-Faux, Oui-Non)

Brahim BOUSETTA 8 Modélisation et Conception des SI

Le Dictionnaire des données -2-

Le dictionnaire des données est un document qui permet de recenser, de classer et de trier les informations (les données) collectées lors des entretiens ou de l'étude des documents.

Nom de la donnée	Format	Longueur	Туре		Règle de calcul	Règle de gestion	Document
			Elémentaire	Calculée	W		
Nom Client	Alphabétique	30	X				Facture

Brahim BOUSETTA 9 Modélisation et Conception des SI

Le Dictionnaire des données - cas pratique-

Liste des Achats

NumCli 156
Nom: JAZI
Prénom: SAMIR
Adresse: 45, Rue agadir
Code postal 20000
Ville Casablanca
Téléphone: 06 65 42.00.45

Date	CodeArticle	Désignation	Qté	Prix	Total
14/07/2012	RP003	Repas "poisson"	4	40	160
15/07/2012	B001	Café	1	10	10
15/07/2012	GL004	Glace "Magnum"	2	15	30
16/07/2012	BG020	Baguette	1	1,2	1,2
	•			Total dû:	201,2

Brahim BOUSETTA 10 Modélisation et Conception des SI

ı		ъ.				
	lacksquare		rtionnai	re des c	IONNEES -	cas pratique-
H			cionnai	ic acs c		cas pratique-

N d- l- d t-	F		Ту	pe	D) also de calcul	n) 1 11	D
Nom de la donnée	Format	Longueur	Elémentaire	Calculée	Règle de calcul	Règle de gestion	Document
NumCli	Numérique		x				Facture
Nom:	Alphabétique	30	x				Facture
Prénom:	Alphabétique	30	x		*		Facture
Adresse:	Alphanumérique	60	х				Facture
Code postal	Numérique		x				Facture
Ville	Alphabétique	20	X				Facture
Téléphone:	Alphanumérique	14	x				Facture
CodeArticle	Alphanumérique	15	x				Facture
Désignation	Alphabétique	50	x				Facture
Quatité	Numérique		x				Facture
Prix unitaire	Numérique		x		*		Facture
Date	date		х				Facture
Total ligne	Numérique			x	Prix* Qté		Facture
Total facture	Numérique			X	Somme des Total Ligne		Facture

Brahim BOUSETTA 11 Modélisation et Conception des SI

Les dépendances fonctionnelles

Brahim BOUSETTA 12 Modélisation et Conception des SI

Les dépendances fonctionnelles

- ◆Une donnée B dépend fonctionnellement (ou est en dépendance fonctionnelle) d'une donnée A lorsque la connaissance de la valeur de la donnée A nous permet la connaissance d'une et au maximum une seule valeur de B.
 - Exemple: la connaissance de la valeur d'un numéro de client nous permet de connaître sans ambiguïté la valeur d'un et d'un seul nom de client.
- ◆ Formalisme: Le formalisme de représentation d'une dépendance fonctionnelle est le suivant:
 - Numéro adhérent

 (Nom adhérent, prénom, adresse, code postal, ville, téléphone, email)

Brahim BOUSETTA 13 Modélisation et Conception des SI

Les dépendances fonctionnelles

- ◆ Dépendances fonctionnelles composées: Une dépendance fonctionnelle qui comporte plusieurs attributs est dite composée.
- **Exemple:**
 - (Code athlète, code sport) → (année de pratique)
 - (Numéro coureur, Numéro de course) → (Temps)
 - Connaissant le **n° de coureur** et **le n° de la course**, nous connaissons de façon certaine le temps chronométré d'un coureur précis sur une course précise.

Brahim BOUSETTA 14 Modélisation et Conception des SI

Les dépendances fonctionnelles

- ◆ Dépendances fonctionnelles élémentaire: Une dépendance fonctionnelle A B est élémentaire s'il n'existe pas une donnée C, sous-ensemble de A, décrivant une dépendance fonctionnelle de type C.
- **Exemple:**
 - RéférenceProduit → Désignation
 - NuméroCommande, RéférenceProduit → Quantité
 - NuméroCommande, RéférenceProduit → Désignation

La troisième dépendance fonctionnelle n'est élémentaire car il existe à l'intérieur d'elle: RéférenceProduit -> Désignation qui était déjà une dépendance fonctionnelle élémentaire. Pour connaître la désignation, Numéro de commande est dans ce cas superflu.

Brahim BOUSETTA 15 Modélisation et Conception des SI

Les dépendances fonctionnelles

- ◆ Dépendances fonctionnelles élémentaire directe: on dit que la dépendance fonctionnelle A→B est directe s'il n'existe aucun attribut C tel que l'on puisse avoir A → C et C →B. En d'autres termes, cela signifie que la dépendance entre A et B ne peut être obtenue par transivité.
- **Exemple:**
 - NumClasse —— NumElève
 - NumElève
 — NomElève
 - NumClasse
 NomElève

La troisième dépendance fonctionnelle n'est pas directe car nous pourrions écrire:

NumClasse
NumElève
NomElève

Brahim BOUSETTA

16

Les dépendances fonctionnelles

- ◆ Le Graphe des dépendances fonctionnelles
- ◆ Le graphe des dépendances est une étape intéressante car il épure le dictionnaire en ne retenant que les données non déduites et élémentaires et permet une représentation spatiale de ce que sera le futur MCD.

Numéro adhérent

Brahim BOUSETTA 17 Modélisation et Conception des SI

Les dépendances fonctionnelles

- ◆ Méthodologie d'élaboration des dépendances fonctionnelles:
- ◆L'élaboration des dépendances fonctionnelles est réalisée à l'aide du dictionnaire des données. La démarche consiste à chercher :
 - Les dépendances fonctionnelles formées par deux rubriques, élémentaires et directe.
 - Les dépendances fonctionnelles composées.

Brahim BOUSETTA 18 Modélisation et Conception des SI

Déper	ndances '	fonctionn	ielles: - cas	oratique-
Popu.	.aaccs		Cus Cus	pracique

			Ту	pe	201111	->	_
Nom de la donnée	om de la donnée Format Longueur Elémentaire Calculée		Règle de calcul	Règle de gestion	Document		
NumCli	Numérique		х				Facture
Nom:	Alphabétique	30	x				Facture
Prénom:	Alphabétique	30	х		*		Facture
Adresse:	Alphanumérique	60	х				Facture
Code postal	Numérique		x				Facture
Ville	Alphabétique	20	х				Facture
Téléphone:	Alphanumérique	14	x				Facture
CodeArticle	Alphanumérique	15	x				Facture
Désignation	Alphabétique	50	х				Facture
Quatité	Numérique		x				Facture
Prix unitaire	Numérique		х		9		Facture
Date	date		х				Facture
Total ligne	Numérique			X	Prix* Qté		Facture
Total facture	Numérique			x	Somme des Total Ligne		Facture

Brahim BOUSETTA 19 Modélisation et Conception des SI

Dépendances fonctionnelles: - cas pratique-

- ◆ CodeArticle → (Désignation, Prix unitaire)
- ♦ (NumCli, CodeArticle, Date) Quantité

Brahim BOUSETTA 20 Modélisation et Conception des SI

MCD: Entité

◆Une Entité est une population d'individus homogènes. Par exemple, les produits ou les articles vendus par une entreprise peuvent être regroupés dans une même entité articles, car d'un article `a l'autre, les informations ne changent pas de nature (a chaque fois, il s'agit de la désignation, du prix unitaire, etc.).

Brahim BOUSETTA 23 Modélisation et Conception des SI

MCD: Association

◆Une <u>Association</u> est une liaison qui a une signification précise entre plusieurs entités. Dans notre exemple, l'association commander est une liaison évidente entre les entités articles et clients, tandis que l'association livrer établit le lien sémantique entre les entités articles et fournisseurs.

Brahim BOUSETTA

MCD: Attribut

◆Un <u>Attribut</u> est une propriété d' une entité ou d' une association. Toujours dans notre exemple, le prix unitaire est un attribut de l'entité articles, le nom de famille est un attribut de l'entité clients, la quantité commandée est un attribut de l'association commander et la date de livraison est un attribut de l'association livrer.

Brahim BOUSETTA 25 Modélisation et Conception des SI

MCD: Cardinalité

◆La <u>Cardinalité</u> d' un lien entre une entité et une association précise le minimum et le maximum de fois qu' un individu de l' entité peut être concerné par l' association.

Brahim BOUSETTA 26

MCD: Les règles de Normalisation -1-

Un bon schéma entités-associations doit répondre à 9 règles de normalisation, que le concepteur doit connaître par cœur.

Brahim BOUSETTA 27 Modélisation et Conception des SI

MCD: Les règles de Normalisation -2-

Un bon schéma entités-associations doit répondre à 9 règles de normalisation, que le concepteur doit connaître par cœur.

- 1. Normalisation des entités (importante) : toutes les entités qui sont remplaçables par une association doivent être remplacées.
- 2. Normalisation des noms : le nom d'une entité, d'une association ou d'un attribut doit être unique.
- 3. Normalisation des identifiants : chaque entité doit posséder un identifiant.
- 4. Normalisation des attributs (importante) : remplacer les attributs en plusieurs exemplaires en une association supplémentaire de cardinalités maximales n et ne pas ajouter d'attribut calculable à partir d'autres attributs.
- 5. Normalisation des associations (importante) : il faut éliminer les associations fantômes redondantes ou en plusieurs exemplaires .
- 6. Normalisation des cardinalités : une cardinalité minimale est toujours 0 ou 1 (et pas 2, 3 ou n) et une cardinalité maximale est toujours 1 ou n (et pas 2, 3, ...).

Brahim BOUSETTA 28 Modélisation et Conception des SI

MCD: Les règles de Normalisation -3-

◆ A ces 6 règles de normalisation, il convient d'ajouter les 3 premières formes normales traditionnellement énoncées pour les schémas relationnels, mais qui trouvent tout aussi bien leur place en ce qui concerne les schémas entités-associations.

Brahim BOUSETTA 33 Modélisation et Conception des SI

1FN - première forme normale :

◆ Relation dont tous les attributs :

- contiennent une valeur atomique (les valeurs ne peuvent pas être divisées en plusieurs sous-valeurs dépendant également individuellement de la clé primaire)
- contiennent des valeurs non répétitives (le cas contraire consiste à mettre une liste dans un seul attribut).
- sont constants dans le temps.
- Le non respect de deux premières conditions de la 1FN rend la recherche parmi les données plus lente parce qu'il faut analyser le contenu des attributs. La troisième condition quant à elle évite qu'on doive régulièrement mettre à jour les données.

2FN - deuxième forme normale

- ◆ la relation respectant la première forme normale et dont :
 - Tout attribut ne composant pas un identifiant dépend de tout l' identifiant.
 - Le non respect de la 2FN entraine une redondance des données qui encombrent alors inutilement la mémoire et l'espace disque.
 - chaque attribut qui n'appartient pas à la clé (l'ensemble des attributs permettant d'identifier de manière unique un tuple de l'entité) ne dépend pas uniquement d'une partie de la clé
- ◆ Autrement dit, toute dépendance Clé → A est élémentaire (si A n'appartient pas à une clé).

Brahim BOUSETTA 35 Modélisation et Conception des SI

Admettons que la clé de cette table soit une clé composite (produit - fournisseur). Dans le cas d'un changement d'adresse d'un fournisseur, il faudra faire preuve de beaucoup d'attention pour n'oublier aucun endroit où l'adresse est mentionnée. En effet, on constate que le champ adresse ne dépend que d'une partie de la clé : le champ fournisseur, ce qui induit la possibilité d'une redondance au sein de la table. Il convient donc de scinder la table en deux:

 De cette manière, un changement d'adresse ne donne lieu qu'à une seule modification dans la table des fournisseurs

Brahim BOUSETTA 36 Modélisation et Conception des SI

3FN - troisième forme normale

- ◆ la relation respectant la seconde forme normale et dont :
 - Tout attribut ne composant pas un identifiant dépend directement d'un identifiant.
 - Le non respect de la 3FN peut également entrainer une redondance des données.
 - les attributs qui ne font pas partie de la clé ne dépendent pas d'attributs ne faisant pas non plus partie de la clé (les attributs sont donc complètement indépendants les uns des autres).

Fournisseur	Adresse fournisseur	Ville	Pays	
VIDEO SA	13 rue du cherche-midi	PARIS	FRANCE	
HITEK LTD	25 Bond Street	LONDON	ENGLAND	

 Le pays de l'adresse n'est pas dépendant de la clé de la table, à savoir le nom du fournisseur, mais est fonction de la ville de l'adresse. De nouveau, il est préférable de scinder la table en deux

Fournisseur	Adresse fournisseur	Ville	Ville	Pays
VIDEO SA	13 rue du cherche-midi	PARIS	PARIS	FRANCE
HITEK LTD	25 Bond Street	LONDON	LONDON	ENGLAND
			0.7	

Brahim BOUSETTA

Modélisation et Conception des SI

Exercice

Un médecin fixe le prix de sa consultation tous les ans. Son carnet de consultations indique ses rendez-vous. A chaque consultation, il reçoit un ou plusieurs malades s'ils sont de la même famille. L'examen clinique lui permet de détecter les symptômes (température, mal de tête, fréquence cardiaque élevée, souffle au coeur,) et de diagnostiquer une ou plusieurs maladies ou pathologies (rhume, crise de foie, spasmophilie, acouphènes, hypoglycémie...). A chaque maladie peuvent être associés un ou plusieurs symptômes. Cette même maladie peut être diagnostiquée plusieurs fois, à chaque consultation.

Brahim BOUSETTA

Règles de gestion

Contraintes d'intégrité du modèle (lois de l'univers réel modélisé dans le SI)

Contraintes statiques

Portent sur:

- une propriété (liste de valeurs possibles ...)
- plusieurs pptés d'une même relation ou entité cde(no,date-cde,date-livr) avec date-cde < dte-livr
- des pptés d'occurrences distinctes d'une relation ou entité
- des propriété d'entités/relations différentes
- les cardinalité
- les dépendances fonctionnelles

Contraintes dynamiques : règles d'évolution

ex: un salaire ne doit pas baisser

Brahim BOUSETTA 39 Modélisation et Conception des SI

Exemple

40

RG1 Tout enseignant enseigne en principe au moins une matière, mais certains d'entre eux peuvent être dispensés d'enseignement en raison de leur travaux de recherche

RG2 Toute matière est enseignée dans au moins un cursus

RG3 Toute classe a au moins trois enseignements

Brahim BOUSETTA

40

Exemple de construction de MCD

On considère un SI contenant essentiellement les propriétés figurant sur des bons de commandes de la forme :

N° BON			DATE		
NOM CLIENT					
ADRESSE					
NOM REPRESE	ENTANT				
REF	DESIGN	QTE		PU	MONTANT
				TOTAL	HT
				-	TVA
				TOTAL	TTC

Brahim BOUSETTA 43 Modélisation et Conception des SI

Recueil des informations

44

On récolte les informations par une suite d'interviews avec les différents postes de travail

On obtient ainsi les règles de gestion suivantes :

R1: Un client peut passer une ou plusieurs commandes ou aucune commandes

R2: Une commande peut concerner un ou plusieurs produits

R3: Une commande est passée à un représentant qui n'est pas toujours le même pour un client donné

On établit également la liste des propriétés à partir des documents et des fichiers

lci, on imagine qu'il y a des codes pour identifier les entités évidentes comme par exemple les clients, les représentants

S'il s'agit d'un système manuel, ces codes n'existent pas forcément, dans ce cas, on peut par exemple les marquer avec une étoile.

44

Brahim BOUSETTA

Dictionnaire des données

NOM	SIGNIFICATION	TYPE	LONG	Nature	Nature	Règle de calcul
		ANAN		E CO CA	M SIG SITU	ou d'intégrité
NOBON	N° Bon de cde	N	4	Е	M	
DATE	Date commande	N	6	E	M	Forme jjmmaaaa
						jj 01 31
						mm 01 12
*COCLI	Code client	?	?	E	SIG	A créer
NOMCLI	Nom client	A	30	E	SIG	
ADRESSE	Adresse client	AN	60	CO	SIG	Rue + Ville
RUCLI	Rue client	AN	30	E	SIG	
VILCLI	Ville client	A	30	E	SIG	
*COREP	Code représentant	?	?	E	SIG	A créer
NOMREP	Réf produit	A	30	E	SIG	
REF	Désignation	AN	5	E	SIG	1 lettre + 3 chiffre
DESIGN	Quant. cdée	A	30	E	SIG	
QTE	Prix unitaire	N	3	E	M	Entier > 0
PU	Montant ligne	N	7	E	SIG	Forme 9999.99
MONTANT	Total cde	N	8	CA	M	PU * QTE
TOTAL	oáticaso) Mumáricas	N	8	CA	M	Σ Montants

A(Iphabétique), N(umérique), A(Iphab)N(umérique), E(lémentaire), CO(ncaténée), CA(Iculée), M(ouvement), SIG(nalétique), SITU(atio)

Brahim BOUSETTA

45

Modélisation et Conception des SI

Une technique: Graphe des DFs

Liste des propriétés du DD sauf concaténées ou calculées. (ex tout sauf ADRESSE, MONTANT et TOTAL)

examen des documents et identifiants évidents : liste des DF dont le domaine de départ ne contient qu'une seule propriété non concaténée

S'il reste des propriétés isolée, on cherche des DF qui conduisent à ces propriétés à partir de propriétés concaténées. Si on en trouve pas la ppté reste isolée.

Elimination des cycles

Fermeture des df (propriétés transitivité et pseudo-transitivité)

Brahim BOUSETTA

46

Modélisation et Conception des SI

23

MLD: Modèle logique de données

Tables, lignes et colonnes:

Lorsque des données ont la même structure, on peut les organiser en table dans laquelle les colonnes décrivent les champs en commun et les

lignes contiennent les valeurs de ces champs pour chaque enregistrement.

nom	prénom	adresse
Dupont	Michel	127, rue
Durand	Jean	314, boulevard
Dubois	Claire	51, avenue
Dupuis	Marie	2, impasse
	Dupont Durand Dubois	Dupont Michel Durand Jean Dubois Claire

Clés primaires et clés étrangères:

Les lignes d'une table doivent être uniques, cela signifie qu'une colonne (au moins) doit servir à les identifier. Il s'agit de la clé primaire de la table

clients(<u>numéro client</u>, nom client, prénom, adresse client)
commandes(<u>numéro commande</u>, date de commande, #numéro client (non vide))

Brahim BOUSETTA 51 Modélisation et Conception des SI

MLD: Schémas relationnels

◆ On peut représenter les tables d'une base de données relationnelle par un schéma relationnel dans lequel les tables sont appelées relations et les liens entre les clés étrangères et leur clé primaire est symbolisé par un connecteur

Brahim BOUSETTA 52 Modélisation et Conception des SI

MLD: Traduction d'un MCD en un MLDR

- ◆ Pour traduire un MCD en un MLDR, il suffit d'appliquer cinq règles.
- ◆ Notations : on dit qu'une association binaire (entre deux entités ou réflexive) est de type :
 - -1:1 (un à un) si aucune des deux cardinalités maximales n'est n;
 - -1: n (un à plusieurs) si une des deux cardinalités maximales est n;
 - -n:m (plusieurs `a plusieurs) si les deux cardinalités maximales sont n.

Brahim BOUSETTA

53

Modélisation et Conception des SI

MLD: Traduction d'un MCD en un MLDR

- **♠ Règle 1**: toute entité devient une table dans laquelle les attributs deviennent les colonnes. L'identifiant de l'entité constitue alors la clé primaire de la table.
- ♦ Règle 2 : une association binaire de type 1 : n disparait, au profit d'une clé étrangère dans la table côté.

Brahim BOUSETTA

54

