COMP 3270 Introduction to Algorithms

Homework 2

1. Use the Master Method to solve the following three recurrence relations and state the complexity orders of the corresponding recursive algorithms.

(a)
$$T(n) = 2T(99n/100) + 100n$$

$$T(n) = 2T(99n/100) + 100n$$

 $T(n) = 2T(n/(100/99)) + 100n$

 $n^{(logb\ a)} = n^{(log100/99^2)} = n^{(68.97)} n^{(logb\ a)} = n^{(log100/99^2)} = n^{(68-97)} > f(n) = 100n$ Time complexity is $0(n^68.97)$

(b)
$$T(n) = 16T(n/2) + n^3 lgn$$

 $T(n) = 16T(n/2) + n^3 \log n$ a = 16, b = 2, $n^{\log a} = n(\log 2 + 16) = n^4 > f(n) = n^3 \log n$, Time complexity is $\theta(n4) = n^4 > f(n) = n^3 \log n$

(c)
$$T(n) = 16T(n/4) + n^2$$

 $T(n) = 16T(n/4) + n^2$

a = 16, b = 4, $n^{\log a} = n^{\log 4} = n^2$, $n^{\log a} = n^{\log 4} = n^2$ same as $f(n) = n^2$, so, time complexity is $\theta(f(n) \log n) = \theta(n^2 \log n)$

2. Use the Substitution Method to solve the following recurrence relation. Give an exact solution:

$$T(n) = T(n-1) + n/2$$

3. Use Strassen's algorithm to compute the matrix product. Show detailed procedure of your work.

$$\begin{pmatrix} 1 & 3 \\ 7 & 5 \end{pmatrix} \begin{pmatrix} 6 & 8 \\ 4 & 2 \end{pmatrix}.$$

4. Using pages 4-16 of the slides (which can be found under the file section on Canvas) of Chapter 4 as a model, illustrate the operation of PARTITION on the array $A = [13, 19, 9, 5, 12, 8, 7, 4, 21, 2, 6, 11]$.
5. Show that the running time of QUICKSORT is $\Theta(n^2)$ when the array A contains distinct elements and is sorted in decreasing order.