

岛트(Yacht)

[문제] 동력 장치를 사용하지 않고 오로지 바닷 바람만 이용해서 움직이는 요트(yacht)가 있다.1) 이 요트는 아침 정해진 항구에서 출발하여 이미 설치된 여러 곳의 통발에 들어간 고기를 수집하여 저녁 무렵에 다시 출발한 항구로 되돌아온다. 즉 요트는 바닷가에 부표로 표시된 특정 지점(통발이 설치된)을 모두 방문한 뒤 되돌아 와야 한다. 그 다음 잡은 고기는 모두 들어내고 통발 속의 미끼는 새로운 미끼로 교체하는 일을 한다.

단 이 요트는 오전에는 해변에서 바닷가 쪽으로, 즉 x축 기준으로 앞으로(오른쪽)으로만 움직이고 오후에는 바람의 영향으로 반대 방향, 바닷가에서 해변 쪽으로만, 즉 x축 기준으로 왼쪽으로만 움직일 수 있다. 아래 그림 왼쪽과 같이 그림-1 (a)와 같이 지점-1번을 방문한 뒤에 다시지점-2번으로 뒤로 갔다가 다시 앞 지점-3번으로 나가는 방식의 이동은 불가능하다.

요트는 그림-1 (b)와 같이 아침에 오른쪽으로 계속 나아가다가 제일 끝을 찍은 그 다음, 돌아올때에는 왼쪽으로만 이동하며 이전에 방문하지 않은 점을 모두 거쳐서 다시 최초의 시작점 S로 돌아와야 한다. 즉 시작해서 오른쪽으로 쭉-한번, 그 마지막 점에서 왼쪽으로 쭉 한번, 이렇게 이동하여모든 점을 빠짐없이 방문한 뒤 다시 처음 지점으로 되돌아 와야 한다.

그림-1: S점에서 시작하여 요트를 몰아서 다시 S로 돌아오는 경로(tour)의 예

여러분은 이런 제약조건으로 요트를 몰아나갈 때 모든 통발을 수거한 뒤에 방문하고 돌아오는 길 중에서 가장 짧은 경로(shortest tour)를 찾아서 그 길이를 출력해야 한다. 각 어망의 위치 (x,y)는 정수 점이다. 그리고 두 점 (x,y)와 (p,q)의 2차원 거리는 실제 거리의 그 정수 부분만 사용된다. 즉 그 실제 거리가 $\sqrt{125}$ 이라면 $\sqrt{125}$ =11.18 이므로 계산에서는 11로 계산된다. 단 이문제에서 시작 점 S는 (0,500)으로 고정되어 있다.

¹⁾ 신기하게도 요트는 맞바람이 불어도 지그재그로 움직이며 나아갈 수 있다. 이것이 요트 항해의 핵심이다.

[입출력] 입력과 출력은 모두 표준 입출력을 사용한다. 입력 화일 첫 줄에 정수 N (3 < N < 100)이 주 어진다. 요트가 출발하는 항수 S의 좌표는 S=(0,500)으로 고정되어 있다. 여러분은 항상 이 점 (0,500)에서 출발해야 한다. 그 다음 이어지는 N개의 줄에는 각 점의 정수 좌표 (x_i,y_i) 가 x_i,y_i 로 주어진다. 각 좌표의 범위는 $1 \le x, y \le 1,000$ 이다. 여러분은 S에서 출발하여 모든 통발을 수거하고 다시 S로 되돌아오는 경로 중에서 가장 짧은 경로를 찾아서 그 길이를 정수로 출력해 야 한다. 단 앞서 말했든지 두 통발 사이의 거리는 실제 2차워 거리의 정수 부분만으로 계산한 다.

[예제]

	stdio	stdout
7 34 123 56 45 340 65 100 300 788 39 407 90 205 654	// 7개의 통발 //끝 점. 반환점	2610
15 37 159 105 21 76 20 27 67 29 38 108 31 149 116 127 143 122 72 52 118 176 174 97 192 156 141 15 152 120 15	// 15개의 통발 //끝 점. 반환점	1328

[제한조건] 프로그램 이름은 yacht. {c, cpp, py}이며 수행시간은 최대 1초, token은 600개까지 가능.

[도움말] 어떤 경로를 선택하든 '끝'을 찍고 방향을 바꾸는 마지막 점은 x축 기준으로 가장 큰 값의 점이 되어야 한다. 이 점을 제외한 N-1개의 통발이 배치된 상황의 답을 모두 알고 있다고 가정하고 오 른쪽 끝에 1개의 점을 추가되었을 경우를 고려해야 한다.

> N=1이라면 다른 선택의 여지가 없기 때문에 S에서 출발하기 그 곳을 찍고 바로 돌아와야 한 다. 즉 이 문제는 trivial하다. N=2라면 가능한 경로는 삼각형 하나 뿐이므로 이것 역시 간단하게 해결된다. N=3, [s, a, b, t] 일 때를 생각해보자. 이 순서는 x축 기준으로 정렬된 것이다. 따라서 return point는 오른쪽 끝 점 t가 된다. 이 경우 가능한 경로는 s-a-b-t-s이거나 s-a-t-b-s이거나 s-t-b-a-s 경우가 가능하다. 즉 t에 도착하기 바로 이전의 점은 {s, a, b }가 가능하며 t 방문 후 거쳐가는 지점은 {s, b, s}가 가능하다. 만일 N=1, 2, 3의 답을 모두 알고 있다고 가정할 때 N=4의 경우는 쉽게 해결된다. 이러한 방법으로 k-1개가 해결된 상황에서 추가 1개의 지점 (가장 오른쪽)이 추가된 경우를 푸는 방식으로 접근해야 한다.