

Trabajo práctico Nº4

Autores:

- Mariano Alberto Condori Leg. 406455 (Coordinador)
- Ignacio Ismael Perea Leg. 406265 (Operador)
- Gonzalo Ezequiel Filsinger Leg. 403797 (Operador/Doc.)
- Marcos Acevedo Leg. 402898 (Doc)
- **Curso:** 3R1
- Asignatura: Dispositivos Electrónicos.
- Institución: Universidad Tecnológica Nacional Facultad Regional de Córdoba.

<u>Índice</u>

1.	Actividad 1: Corriente de Saturación I_{DSS}	1
	1.1. Simulación	1
	1.2. Laboratorio]
2.	Estrangulamiento del Canal $V_{GS(off)}$	1
	2.1. Simulación	
	2.2. Laboratorio]
3.	Actividad 3: Característica de transferencia universal	2
	3.1. Simulación	2
	3.2. Laboratorio	2
4.	Actividad 4: Característica de salida del JFET	2
	4.1. Simulación	2
	4.2. Laboratorio	2
5.	Actividad 5: Interpretación de las especificaciones del fabricante	3
	5.1. Actividad	3

1. Actividad 1: Corriente de Saturación IDSS

1.1. Simulación

Para la primera simulacion vamos a implementar el siguiente circuito al simulador (LTSpice).

Observando el comportamiento de I_DS con respecto a V_{DS} , obtenemos la siguiente gráfica:

Podemos ver que el valor de I_{DSS} es PONER VALOR, lo cual difiere con el obtenido en la hoja de datos el cual es de $20 \mathrm{mA}$

1.2. Laboratorio

Instrumental y Materiales

- Multimetro UNI-T UT89X
- Transistor JFET MPF102
- Resistor de
- Fuente de alimentación

Procedimiento

2. Estrangulamiento del Canal $V_{GS(off)}$

2.1. Simulación

Para la siguente simulacion añadiremos una fuente a la compuerta para extrangular el canal, obteniendo el siguiente circuito:

2.2. Laboratorio

Instrumental y Materiales

- Multimetro UNI-T UT89X
- Transistor JFET MPF102
- Resistor de
- Fuente de alimentación

Procedimiento

3. Actividad 3: Característica de transferencia universal

3.1. Simulación

Para la siguiente simulacion vamos a implementar el circuito mostrado en la sección anterior, pero esta vez PONER EN QUE SE DIFERENCIA

3.2. Laboratorio

Instrumental y Materiales

- Multimetro UNI-T UT89X
- Transistor JFET MPF102
- Resistor de
- Fuente de alimentación

Procedimiento

4. Actividad 4: Característica de salida del JFET

4.1. Simulación

El circuito a implementar es el mismo que antes, con la diferencia de que la fuente de Voltaje V2 ahora variará, obteniendo lo siguiente:

4.2. Laboratorio

Instrumental y Materiales

- Multimetro UNI-T UT89X
- Transistor JFET MPF102
- Resistor de
- Fuente de alimentación

Procedimiento

5. Actividad 5: Interpretación de las especificaciones del fabricante

5.1. Actividad

Para esta actividad vamos a buscar los siguientes datos en la en el datasheet del transistor seleccionado.

- \blacksquare I_{DS}
- \blacksquare V_{DS}
- \blacksquare V_{GS}
- $\blacksquare P_t$
- $\blacksquare V_{br}$
- $\quad \blacksquare \ V_{GS(off)}$