Indian Institute of Technology, Guwahati

CH-101

Department of Chemistry Date: 27 November 2017; 2:00-5.00 p.m.

End-Semester Exam Maximum Marks = 60 Name: Division: Signature of Invigilator:

Roll No.: Signature of Student

Answer only in this sheet. Only fully correct answers will be accepted. All questions are compulsory. Rough work is mandatory

1.	Given the Planck's radiation law	<i>γ</i> ρ(υ) =	$= \frac{8\pi h v^3}{c^3} \frac{1}{\frac{hv}{e^{kT}-1}} $ and	$\frac{N_2}{N_1} =$	$e^{-\Delta E/kT} = e^{-h\upsilon/kT}$	kT, the relations	hip between Eins	tein A and B
	coefficients i.e., A/B would be:							2.0 Marks
	(Z)	(Y)	$8\pi h$		(X)		(W)	

The angle between the two hybridized orbitals $\Psi_1=0.45~\Psi_{2s}+~0.71~\Psi_{2p_y}+~0.55~\Psi_{2p_z}$ and $\Psi_1=0.45~\Psi_{2s}-0.71~\Psi_{2p_y}+~0.55~\Psi_{2p_z}$ 2. 180.0° (G) 120.0° (E) 109.0° 104.5°

The C-H bond (harmonic oscillator) vibrational frequency is 9.0 x 10¹³ Hz. The force required to stretch the C-H bond (harmonic oscillator) by 0.2 Å is 250 pN. The vibrational frequency of the C-H bond in Hz is: 2.0 Marks (C) 9.0×10^{13} (B) 9.0×10^{12} (A) 4.5×10^{12} (D) 4.5 x 10¹³

A proton (1.67×10⁻²⁷ kg) is confined in an infinite one-dimensional square well of width 10 fm (1 fm = 10^{-15} m). h = 6.62×10^{-15} kg 10^{-34} Is: $c = 3.0 \times 10^8$ ms⁻¹. The approximate wavelength of the photon (in fm) emitted when the proton undergoes a transition from the second excited state (n = 3) to the first excited state (n = 2) is: 2.0 Marks

(J) 202 242 303

Butadiene molecule is a conjugated molecule and can be considered (for particle-in-a-box model) to be linear with length of 578 pm. With the mass of electron, 9.109×10^{-31} kg and Planck's constant being 6.626×10^{-34} Js, the absorbance band due to energy difference of 9.02 x 10⁻¹⁹ J would be due to transitions between quantum states, 2.0 Marks

(0) 1 and 2 2 and 3 3 and 4

For a two-electron system when the spatial part of the wavefunction is $\Psi_+ = \left[\frac{1}{\sqrt{2}}\{\Psi_a(r_1)\Psi_b(r_2) + \Psi_b(r_1)\Psi_a(r_2)\}\right]$, the spin-6. part of the wavefunction can then be written as 2.0 Marks

(Q) $\frac{1}{\sqrt{2}} \{ \alpha(1)\beta(2) - \beta(1)\alpha(2) \}$

7. For a solution of 10% transmission at 600 nm, the absorbance (A) is 2.0 Marks

10.0 (B) 100.0 (U)

If the wave function for an electron circulating on a ring could be written as $\Psi(\varphi) = Ae^{im\varphi}$, then the value of A would be,

 $1/\sqrt{2\pi}$ (Y) 2.0 Marks (B) (A) $\sqrt{2\pi}$

Given the Planck's radiation law expressed in wavelength, $\rho(\lambda)d(\lambda) = \frac{8\pi hc}{\lambda^5} \frac{1}{e^{\frac{hc}{\lambda kT}}-1} d(\lambda)$ and considering $\lambda \ll \frac{hc}{kT}$, the wavelength at which the radiation would be maximum (λ_{max}) is, 2.0 Marks

5hc (C) 8hc hc(X) 5kT kT5kTkT

10. For nitrogen molecule at room temperature (T = 300 K), the typical rotational transition frequency is 30 GHz and $\delta v/v = 100$ 2.3×10^{-6} : where $\delta v = \frac{2v}{2} \left(\frac{2kT \ln 2}{r}\right)^{1/2}$ The linewidth would be about

$2.3 \times 10^{\circ}$, where $0V = \frac{1}{c} \left(\frac{1}{m}\right)$		e about	2.0 Mai K5
(U) 70 GHz	(E) 70 Hz	(F) 70 MHz	(T) 70 kHz

	(T) and which are false (F).	om and Dad and compare it with	th the children (1-4) and tell w	which of the statements are tr 2.0 Mari	ks		
	(H) Child 2 is child of Mom but not Dad						
	(S) Child 1 and Child 4 are brother and sister						
	(R) Child 1 and Child 3 are children of both Mom and Dad						
	(G) Child 4 is not the child of Mom and Dad						
12.	The world-famous scientist Ste	ephen Hawking is suffering from (I) Huntington's disease	(J) Down's syndrome	(P) Tay-Sachs	ITK		
	()		() Down s syndrome	1.0 Ma	mlr.		
13.	Which of the DNA sequence is (K) 5'-GAATTC-3'	NOT palindromeic? (L) 5'-GAAUUC-3'	(N) 5'-CTTAAG-3'	(M) 5'-ACCGGT-3'	I'K		
	(K) 5'-GAATTC-3' 3'-CTTAAG-5'	3'-CTTAAG-5'	3'-GAATTC-5'	3'-TGGCCA-5'			
14.	The disaccharide that will be s	electively hydrolyzed by enzym	ne Lactase is	1.0 Ma	rk		
	HO HO HO CH.OH O OH	HO CH.OH O a (1-1,4-5) cos de linkage CH.OH O OH OH OH	HO CH_OH O a p-1,4-glycos de linkage HO OH O CH_OH O OH O OH o-galactose HO OH	HO CH, OH O HO HO HO Glickage at 1 HO H			
	the configuration of this sarbon is not specified			но сн.он			
15.	(i) Aspartame is a disaccha(ii) Sucralose is a disacchar(iii) Inverted sugar is sweete(iv) Gentamicin is a carbohy	aride; ide; er than normal sugar; vdrate based antibiotic;	dogo linkogo	1.0 Ma FALSE statements are (H) (i), (iii) and (v) (G) (ii), (iv) and (v) (F) (i), (iii) and (iv) (E) (i) and (v) only	2;		
		an has β -1,3' and β -1,3' glycosid	iase iiikage	1.0 Ma			
10.	Among the following statement(i) A thermal reaction take	es place without the absorption	of light:				
	(iii) For 1,3,5,7-octatriene sy(iv) In pericyclic reactions, i(v) A conjugated triene who	ntibonding, if the number of bouystem it has same number of π -reactants are in excited state for en undergo electrocyclic reaction	nding interaction is same as th bonding & π -antibonding MO; r both thermal & photochemicans will have lower λ max.	al reactions;	lly		
	 (iii) For 1,3,5,7-octatriene sy (iv) In pericyclic reactions, it (v) A conjugated triene who TRUE statements are; 7. Draw the configuration of triene (X) & (Y) that would lead (Y') under thermal conditions. 	ntibonding, if the number of borystem it has same number of π -reactants are in excited state for en undergo electrocyclic reaction (i), (iii) & (v) (G) (ii) photoisomerized ad to products (X') on. 1.0 Mark	nding interaction is same as th bonding & π -antibonding MO; r both thermal & photochemicans will have lower λ max.	al reactions; i) & (iv) (E) (i) & (v) on (Opp) Side)	X,		
	 (iii) For 1,3,5,7-octatriene sy (iv) In pericyclic reactions, to (v) A conjugated triene who TRUE statements are; 7. Draw the configuration of triene (X) & (Y) that would lea & (Y') under thermal condition. Among the following statements. 	ntibonding, if the number of borystem it has same number of π -reactants are in excited state for en undergo electrocyclic reaction (i), (iii) & (v) (G) (ii) photoisomerized ad to products (X') on. 1.0 Mark nts,	nding interaction is same as th bonding & π -antibonding MO; r both thermal & photochemicans will have lower λ max.	al reactions; i) & (iv) (E) (i) & (v) on (Op) Side 1.0 Ma	Y' ark		
	 (iii) For 1,3,5,7-octatriene sy (iv) In pericyclic reactions, it (v) A conjugated triene who TRUE statements are; 7. Draw the configuration of triene (X) & (Y) that would lea & (Y') under thermal condition. Among the following statement (i) Photoexcitation is slow 	ntibonding, if the number of borystem it has same number of π -reactants are in excited state for en undergo electrocyclic reaction (i), (iii) & (v) (G) (ii) photoisomerized ad to products (X') on. 1.0 Mark	nding interaction is same as the bonding & π -antibonding MO; reboth thermal & photochemical photochemical will have lower λ max. (iv) & (v) (F) (i), (ii) (F) (ii), (iii) (F) (F) (F) (F) (F) (F) (F)	al reactions; i) & (iv) (E) (i) & (v) on (Opp) Side)	Y' ark s are;		
	 (iii) For 1,3,5,7-octatriene sy (iv) In pericyclic reactions, iv) A conjugated triene who TRUE statements are; 7. Draw the configuration of triene (X) & (Y) that would lea & (Y') under thermal condition. Among the following statemen (i) Photoexcitation is slow (ii) A triplet sensitizer excit (iii) A sensitizer absorb light (iv) During photoreduction. 	ntibonding, if the number of body ystem it has same number of π -reactants are in excited state for en undergo electrocyclic reaction (i), (iii) & (v) (G) (ii) photoisomerized ad to products (X') on. 1.0 Mark (er than molecular vibration;	nding interaction is same as the bonding & π-antibonding MO; reboth thermal & photochemical sons will have lower λmax. (iv) & (v) (F) (i), (ii) (iv) & (v) (F) (ii), (iii) (iv) & (v) (F) (iii) (iiii) (iv) & (v) (F) (iiii) (iiiiii) (iv) & (v) (F) (iiiiii) (iiiiiii) (iv) & (v) (F) (iiiiiiii) (iiiiiiiii) (iv) & (v) (F) (iiiiiiiiii) (iiiiiiiiii) (iv) & (v) (F) (iiiiiiiiiiiii) (iiiiiiiiiiiiiiiii	al reactions; i) & (iv) (E) (i) & (v) on (I) & (ii) & (v) on TRUE statements (H) (i), (iii) and (G) (ii), (iv) and (iv) and (iv).	Y' ark s are; d (v) nd (v) d (iv)		
18	 (iii) For 1,3,5,7-octatriene sy (iv) In pericyclic reactions, iv) A conjugated triene who TRUE statements are; 7. Draw the configuration of triene (X) & (Y) that would lea & (Y') under thermal condition. Among the following statemen (i) Photoexcitation is slow (ii) A triplet sensitizer excit (iii) A sensitizer absorb light (iv) During photoreduction. 	ntibonding, if the number of borystem it has same number of π-reactants are in excited state for en undergo electrocyclic reaction (i), (iii) & (v) (G) (ii) photoisomerized ad to products (X') on. 1.0 Mark (rer than molecular vibration; tes another molecule to its triple at of same wavelength to that of of benzophenone to benzopinal are of number of molecules undergraphs (ii) has a same wavelength to that of of benzophenone to benzopinal are of number of molecules undergraphs (iii) has a same variety of the same wavelength to that of of benzophenone to benzopinal are of number of molecules undergraphs.	nding interaction is same as the bonding & π-antibonding MO; reboth thermal & photochemical same is will have lower λmax. ((iv) & (v) (F) (i), (ii) (iv) & (v) (F) (ii), (iii) (iv) & (v) (F) (iii), (iiii) (iv) & (v) (F) (iiii) (iv) & (v) (F) (iiiii) (iv) & (v) (F) (iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	al reactions; (i) & (iv) (E) (i) & (v) on (b) & (ii) & (v) on (c) & (ii) & (v) on (d) & (ii) & (iii) and (e) & (ii) & (iii) and (f) & (ii) & (iii) and (g) & (ii) & (iv) and (g) & (iv) & (iv) and (g) & (iv) & (i	ark s are; d (v) nd (v) d (iv) only		
18	(iii) For 1,3,5,7-octatriene sy (iv) In pericyclic reactions, i (v) A conjugated triene who TRUE statements are; (H) 7. Draw the configuration of triene (X) & (Y) that would lea & (Y') under thermal condition . Among the following statemen (i) Photoexcitation is slow (ii) A triplet sensitizer excit (iii) A sensitizer absorb ligh (iv) During photoreduction (v) Chemical yield is measure. Which of the following production Which of the following production CH3	ntibonding, if the number of body ystem it has same number of π-reactants are in excited state for en undergo electrocyclic reaction (i), (iii) & (v) (G) (ii) photoisomerized ad to products (X') on. 1.0 Mark (Y') on. 1.0 Mark (Y') on the same wavelength to that of the of benzophenone to benzopinal are of number of molecules under the same wavelength to that of the same wavelength to	nding interaction is same as the bonding & π-antibonding MO; reboth thermal & photochemical photoch	al reactions; (i) & (iv) (E) (i) & (v) on 1.0 Ma TRUE statements (H) (i), (iii) and (G) (ii), (iv) an (E) (i) and (v) 1.0 Ma Ph CH ₃ (V) (VI)	ark s are; d (v) nd (v) d (iv) only ark		
18	(iii) For 1,3,5,7-octatriene sy (iv) In pericyclic reactions, iv) A conjugated triene who TRUE statements are; (H) 7. Draw the configuration of triene (X) & (Y) that would lea & (Y') under thermal condition. Among the following statement (i) Photoexcitation is slow (ii) A triplet sensitizer excit (iii) A sensitizer absorb light (iv) During photoreduction (v) Chemical yield is measured. Which of the following production (v) Chemical yield is measured. Which of the following production (v) Chemical yield is measured.	ntibonding, if the number of body ystem it has same number of π-reactants are in excited state for en undergo electrocyclic reaction (i), (iii) & (v) (G) (ii) photoisomerized ad to products (X') on. 1.0 Mark yr nts, er than molecular vibration; tes another molecule to its triple at of same wavelength to that of of benzophenone to benzopina ture of number of molecules under the company of the photoisomerized and the products (X') yr nts, er than molecular vibration; tes another molecule to its triple at of same wavelength to that of the photoisomerized and to products (X') yr nts, er than molecular vibration; tes another molecules to its triple at of same wavelength to that of the photoisomerized and to products (X') yr nts, er than molecular vibration; the photoisomerized and the photoi	nding interaction is same as the bonding & π-antibonding MO; reboth thermal & photochemical photoch	al reactions; ii) & (iv) (E) (i) & (v) on I.0 Ma TRUE statements (H) (i), (iii) and (G) (ii), (iv) and (E) (i) and (v) 1.0 Ma CH ₃ (V) (VI) (P) (iii), (iv) and (vi)	ark s are; d (v) nd (v) d (iv) only ark		
18	(iii) For 1,3,5,7-octatriene sy (iv) In pericyclic reactions, iv) A conjugated triene who TRUE statements are; (H) TRUE statements are; (H) Triene (X) & (Y) that would leave (Y') under thermal condition. Among the following statement (i) Photoexcitation is slow (ii) A triplet sensitizer excit (iii) A sensitizer absorb light (iv) During photoreduction (v) Chemical yield is measure. Which of the following production (V) Chemical yield is measure. (Q) (ii), (iv) and (vi)	ntibonding, if the number of bodystem it has same number of π-reactants are in excited state for en undergo electrocyclic reaction (i), (iii) & (v) (G) (ii) photoisomerized ad to products (X') on. 1.0 Mark nts, ter than molecular vibration; tes another molecule to its triple at of same wavelength to that of the of benzophenone to benzophina are of number of molecules under of the complex of	nding interaction is same as the bonding & π-antibonding MO; reboth thermal & photochemical photoch	al reactions; (i) & (iv) (E) (i) & (v) on 1.0 Ma TRUE statements (H) (i), (iii) and (F) (i), (iii) and (E) (i) and (v) 1.0 Ma Ph CH ₃ (V) (VI) (P) (iii), (iv) and (vi) 1.0 Ma	ark s are; d (v) nd (v) d (iv) only ark		
18	 (iii) For 1,3,5,7-octatriene sy (iv) In pericyclic reactions, iv) A conjugated triene who TRUE statements are; 7. Draw the configuration of triene (X) & (Y) that would lea & (Y') under thermal condition. Among the following statement (i) Photoexcitation is slow (ii) A triplet sensitizer excit (iii) A sensitizer absorb light (iv) During photoreduction (v) Chemical yield is measured. 9. Which of the following production (V) Chemical yield is measured. 10. Which of the following photochemical yield is measured. 11. Which of the following photochemical yield is measured. 12. Which of the following photochemical yield is measured. 13. Which of the following photochemical yield is measured. 14. Which of the following photochemical yield is measured. 15. Which of the following photochemical yield is measured. 16. Which of the following photochemical yield is measured. 16. Which of the following photochemical yield is measured. 17. Which of the following photochemical yield is measured. 18. Which of the following photochemical yield is measured. 18. Which of the following photochemical yield is measured. 18. Which of the following photochemical yield is measured. 18. Which of the following photochemical yield is measured. 18. Which of the following photochemical yield is measured. 18. Which of the following photochemical yield is measured. 18. Which of the following photochemical yield is measured. 18. Which of the following photochemical yield is measured. 18. Which of the following photochemical yield is measured. 18. Which of the following photochemical yield is measured. 18. Which of the following photochemical yield is measured. 18. Which of the following photochemical yield is measured. 18. Which of the following photochemical yield is measured. 18. Which of the following y	ntibonding, if the number of body ystem it has same number of π-reactants are in excited state for en undergo electrocyclic reaction (i), (iii) & (v) (G) (ii) photoisomerized ad to products (X') on. 1.0 Mark yr nts, er than molecular vibration; tes another molecule to its triple at of same wavelength to that of of benzophenone to benzopina ture of number of molecules under the company of the photoisomerized and the products (X') yr nts, er than molecular vibration; tes another molecule to its triple at of same wavelength to that of the photoisomerized and to products (X') yr nts, er than molecular vibration; tes another molecules to its triple at of same wavelength to that of the photoisomerized and to products (X') yr nts, er than molecular vibration; the photoisomerized and the photoi	nding interaction is same as the bonding & π -antibonding MO; reboth thermal & photochemical photo	al reactions; ii) & (iv) (E) (i) & (v) on I.0 Ma TRUE statements (H) (i), (iii) and (G) (ii), (iv) and (E) (i) and (v) 1.0 Ma CH ₃ (V) (VI) (P) (iii), (iv) and (vi)	ark s are; d (v) nd (v) d (iv) only ark		

Which of the products will be obtained by Norrish type I path (both primary and secondary process? (ii), (iii), (iv), (v) and (vii) only (i), (ii), (iii), (vi) and (vii) only

Which of the above compounds (I-VIII) shall have the following ¹H NMR spectra. Answer: (_________

(i), iii), (iii), (v) and (viii) only Highlight the major product in the following photochemical reaction;

(i), (ii), (iii), (iv), (v) and (vi) only

1.0 Mark

23. In the reaction given below which of the TWO products will NOT be obtained.

24. Suggest appropriate reaction conditions (thermal or photochemical) for the following interconversions.

1.0 Mark

1.0 Mark

1	THERMAL
2	PHOTOCHEMICAL
3	THEODMAI

Suggest the exact types of reaction (including numbering) / conditions for the following

1.0 + 1.0 Marks

26. Which one of the following product will NOT be obtained when the following deuterared substrate undergo 1,3-sigmatropic rearrangement(s). 1.0 Mark

	[1,3]-sigmatropic
CD ₃	

	P
CD ₂	CD2
D (L)	(N)

27. Identify the diene and dienophiles in the reaction given below 1.0 Mark

	0	
1	M	1
	1	/

(7)	DIENC	PHI
(2)		
	DIE	NE

28.	Generate 18 electron homoleptic complexes of Mn, Ti, Cr and V with CO as ligand and arrange them in the increasing order of their carbonyl stretching frequency ν_{CO} 2 Marks									
		$^{2-}<[V(CO)_{6}]^{-}<[Cr($								
29.	Arrange the complexes $Mo(CO)_3(PR_3)$ with $R = OMe$, Cl , F and Ph in the increasing order of their M - C bond strength $Mo(CO)_3(PF_3) < Mo(CO)_3(PCl_3) < Mo(CO)_3(POMe)_3 < Mo(CO)_3(PPh_3)$									
30.	Draw the product obtained when Vaska's complex [IrCl(CO OC Manage PPh3 Ph3P CI (i)			O)(PPh	CI	with (i) CH ₄ H ₃ CI	and (i) CF	_{1₃} Br 1	+ 1 Marks	
31.	Indicate the	e number of valence	e electro	n on each metal co	mplex.				(0.5)	(4) Marks
		H CO CO		Cr N	CI CI	Ni Cl Ni	.mCl	OC Fe	Ph Ph Co	О
	Electron Count	18	17		16			18		
32.	Indicate if th	the following exhibit	t Strong	` ` ` ` `				10,		(4) Marks
	Strength of	f Jahn-Teller distor	tion	[Fe(ox) ₃] ³⁻ N	[Fe(e	en) ₃] ³⁺	[Ti(H ₂ O) ₆	<u>á</u>]3+	[Cr(H ₂ O) ₆	6]2+
33.	respectively. Indicate the corresponding frontier orbitals i π -donating Ligands			complex with σ -donor ligands are t_{2g} (non-bonding) and $e_g(\sigma^*)$ in the case of π -donating and π -accepting ligands π -accepting Ligands $t_{2g}(\pi)$ and $e_g(\sigma^*)$				and $e_g(\sigma^*)$ 2 Marks		
34.	Assign the to	$t_{2g}(\pi^*)$ and $e_g(\sigma^*)$ Assign the transitions for the following bands observed in 670 nm Transition: ${}^4A_{2g}{\to}{}^4T_{2g}$ 440 nm Transition: ${}^4A_{2g}{\to}{}^4T_{2g}$		the ele	the electronic absorption spect		-	-	2 Marks	
35.		tive ground state te	rm for [(-						2 Marks
	(U) ² E an			$^{2}E_{g}$ and $^{5}T_{2}$	- 7-3	(X) 2T_2 and 2E_g		(Y)	⁵ T ₂ and ⁵ ₽	
36.	Using Slater's rules, calculate the effective nuclear charge and electron 4.30			for a 3d and a 4s electron in vanadium 4s electron 3.30				1 Mark		
37.	The magnitu	ude of the differenc	e in the (CFSE (ignoring pair	ring ene	ergy), of [Fe(CN	N)6] ^{4—} and [[Fe(H2O)6	6] ²⁺ is	1 Mark
	(U) 2.0 Δ	70	(V) 1	1.0 ∆₀		(X) 0.0 ∆ _O		(Y)	3.3 ∆ ₀	
38.	Arrange the complex ions, $([Cr(NH_3)_6]^{3+}, [CrCl_6]^{3-}, [Cr(H_2O)_6]^{3+}, [Cr(CN)_6]^{3-})$ in the decreasing order of their wavelength cabsorption						velength of 1 Mark			
39.	Draw and n	name the molecular	geometr	ry of [XeOF ₅]					1 Mai	rk
	(i) Film, Sunt	: ₹F	<u> </u>			(ii) pentagon or pentagona				
40.		e elements (B, F, Li, e < C < O < N < F	C, N, O a	nd Be) in the incre	asing or	rder of their fir	rst ionizatio	n potentia	ત્રી.	1 Mark
										Ī