Mixed Dominating Set
State of the art and new results
Inapproximability
Exact algorithms
Super-polynomial approximation

Mixed Dominating Set

Louis Dublois

Supervisors: Vangelis Th. Paschos, Michail Lampis

Journée du Lamsade, April 18, 2019

Sommaire

- Mixed Dominating Set
- 2 State of the art and new results
- Inapproximability
- Exact algorithm
- 5 Super-polynomial approximation

Domination

Mixed Dominating Set

Mixed Dominating Set

Mixed Dominating Set ≤ Vertex Cover

Mixed Dominating Set \geq Edge Dominating Set

State of the art

- NP-complete problem (Majumbar, Clemson University, 1992)
- 2-approximation using maximum matching (Hatami, Discussiones Mathematicae Graph Theory, 2010)
- Exact algorithm: $O^*(2^n)$
- FPT algorithm parameterized by the solution size: O*(7.465^k)
 (Jain, Jayakrishnan, Panolan, Sahu, International Workshop on Graph-Theoretic Concepts in Computer Science, 2017)
- FPT algorithm parameterized by the treewidth: $O^*(6^{tw})$ (*ibid.*)

Our results

- 3-approximation using an improved maximal matching
- 2-inapproximability under Unique Games Conjecture
- Exact algorithm: $O^*(2.1889^n)$
- FPT algorithm parameterized by the solution size: $O^*(4.27^k)$
- FPT algorithm parameterized by the treewidth: $O^*(5^{tw})$
- PTAS in planar graphs: (1+1/k)-approximation in time $O(5^{3k+5}n)$
- FPT approximation schema: $(1+\varepsilon)$ -approximation in time $O^*(4.27^{(1-\varepsilon)k})$

Mixed Dominating Set
State of the art and new results
Inapproximability
Exact algorithm
Super-polynomial approximation

Inapproximability

Definition

For some NP-hard problem Π : under a certain conjecture, it is impossible to have approximation ratio better than r, for some r.

Unique Games Conjecture (UGC)

Definition

The problem of determining the approximate value of a certain type of game (unique game) has NP-hard complexity.

Inapproximability of Edge Dominating Set

Theorem (Dudycz, Lewandowski, Marcinkowski, 2018)

Assuming UGC, it is NP-hard to approximate Edge Dominating Set with constant ratio better than 2.

$\mathsf{Reduction}\;\mathsf{EDS} \leq \mathsf{MDS}$

Reduction EDS \leq MDS

Lemma

$$alg(G') \leq alg(G) + 1$$

Reduction EDS \leq MDS

Lemma

$$opt(G') \ge opt(G)$$

Reduction EDS \leq MDS

$$\frac{\textit{alg}(\textit{G})}{\textit{opt}(\textit{G})} \leq \textit{r} \Leftrightarrow \frac{\textit{alg}(\textit{G}')}{\textit{opt}(\textit{G}')} \leq \frac{\textit{alg}(\textit{G}) + 1}{\textit{opt}(\textit{G})} \leq \frac{\textit{alg}(\textit{G})}{\textit{opt}(\textit{G})} + \frac{1}{\textit{opt}(\textit{G})} \leq \textit{r} + \varepsilon$$

Inapproximability of Mixed Dominating Set

Theorem

Assuming UGC, it is NP-hard to approximate Mixed Dominating Set with constant ratio better than 2.

${\sf Mixed Dominating Set} = {\sf Matching} + {\sf Vertex Cover}$

Lemma

For any graph G = (V, E), G has a mixed dominating set of size k iff G has a mixed dominating set $D \cup M$ of size k where $V(M) \cap D = \emptyset$ and M is a matching.

${\sf Mixed\ Dominating\ Set} = {\sf Matching\ } + {\sf Vertex\ Cover}$

Mixed Dominating Set = Matching + Vertex Cover

Lemma

The graph G has a mixed dominating set of size k iff there exists $V' \subseteq V$ such that G[V'] has a perfect matching and $G[V \setminus V']$ has a vertex cover of size $k - \frac{|V'|}{2}$.

Exact algorithm

Algorithm:

- For all $V' \subseteq V$ which contains a perfect matching M, calculate a vertex cover D on $G[V \setminus V']$.
- Return the union $M \cup D$ of minimum size.

Complexity

• The Vertex Cover problem can be solved in time $O^*(1.1889^n)$ (Robson, LaBRI, 2001)

$$\sum_{i=0}^{n/2} \binom{n}{2i} \cdot 1.1889^{n-2i} \le \sum_{i=0}^{n} \binom{n}{i} \cdot 1.1889^{n-i} = \sum_{i=0}^{n} \binom{n}{i} \cdot 1.1889^{i} = 2.1889^{n}$$

Mixed Dominating Set
State of the art and new results
Inapproximability
Exact algorithm
Super-polynomial approximation

Exact algorithm

Theorem

The Mixed Dominating Set problem can be solved in time $O^*(2.1889^n)$.

Classical paradigms

Classical paradigms

Super-polynomial approximation

Super-polynomial approximation of MDS

Mixed Dominating Set State of the art and new results Inapproximability Exact algorithm Super-polynomial approximation

Merci!