Self-organized Multi-robot Task Allocation

Md Omar Faruque Sarker

PhD Student
Cognitive Robotics Research Centre
Newport Business School
University of Wales, Newport

12 October 2010

Outline

Introduction

Task Allocation by Attractive Field Model (AFM)

Communication Models

Implementation

Results

Conclusions

Multi-robot Task Allocation (MRTA)

What is MRTA?

In a multi-tasking environment dynamically allocate appropriate tasks to appropriate robots considering the changes in task-requirements, team-performance and environment.

Why MRTA is difficult?

In typical large distributed multi-robot teams:

- No centralized planner or coordinator
- Robots have limited ability
 - → to sense, communicate and interact locally
- Robots have limited world-views
 - → knowledge of past, present and future actions of others

Major Approaches for MRTA

Explicit allocation

Through explicit modelling of environment, tasks, robot capabilities. Some forms are: knowledge based, market based, role/value based, control theoretic.

- Pros: Straight-forward to design, implement and analyse formally.
- ► Cons: Not suitable for large teams (> 10) and heavy dependency on explicit global broadcast communication.

Self-organized allocation

Through emergent group behaviour produced by the local interaction and implicit or local communication. Most common form is: response threshold based approach.

- Pros: Suitable for large teams, no explicit model, implicit/local communication
- Cons: Difficult to design, implement, analyse and limited to one specific global task.

Self-organization

What is Self-organization?

Pattern formation in both biological and physical systems through the interactions internal to the system (Camazine et al. 2001).

Why Self-organized approach to MRTA?

- ► Implementing simple agent behaviours is economical → no sophisticated cognitive agents.
- Easily scalable for large robot-teams and tasks
 - \rightarrow no explicit modelling of environment.
- Fault-tolerant
 - \rightarrow no leaders, templates or blue-prints.
- Energy-efficient
 - → no costly communication or computation overhead.

Ingredients of Self-organization

Figure: The four ingredients of self-organization

Self-regulation of an Agent

Self-organization in hirds neeting /media/Preload/Pub20

Figure: Three major interfaces of a self-organized agent

Sell-Organization	in birds nesting
Simple behavioural rules	Follow: "I nest close where you nest
010/Thought	s <mark>uinsedUphima</mark> ges/o
Local communication	Communications through local broad- cast signals
Local interactions	Courtship display with neighbours

Attractive Field Model (AFM)

Features of AFM

- Interdisciplinary: From the observation of ant, human and robotic social systems.
- Abstraction: Sufficient abstraction to accommodate different sensing and communication models.

Requirements of AFM

- Concurrence: The simultaneous presence of several options or tasks, at least a single task and the option of not doing any task.
- Continuous flow of information: Establish a flow of information to perceive tasks and receive feedback on system performance.
- Sensitization: Each individual must have different levels of preference or sensitivity to the available tasks.
- Forgetting: A mechanism by which the sensitisation levels are reduced or forgotten e.g. a slow general decay of sensitisation.

AFM as a Bipartite Network

		Source nodes (o)	tasks to be allocated to agents
		Agent nodes (x)	E.g., ants, humans, or robots
		Black solid edges	attractive fields that cor-
	/media/Preload/Pub20	10/Thoughts	respond to an agent's
			each task
		Green edges	attractive fields of no-
			task option shown as a particular task (w)
		Red lines	not edges, but represent
Figure	The attractive filed model (AFM)		how each agent is allocated to a single task.
			•

Properties of Agents under AFM

The probability of an agent choosing to perform a task:

$$P_{j}^{i} = \frac{S_{j}^{i}}{\sum_{j=0}^{J} S_{j}^{i}}$$
 where, $S_{0}^{i} = S_{RW}^{i}$ (1)

The strength of an attractive field varies according to the sensitivity of the agent is to that task, k_j^i , the distance between the task and the agent, d_{ij} , and the urgency, ϕ_j of the task.

$$S_{j}^{i} = tanh\{\frac{k_{j}^{i}}{d_{ij} + \delta}\phi_{j}\}\tag{2}$$

Delta distance δ , is a small constant, to avoid division by zero, in the case when a robot has reached to a task.

AFM and Self-organization

Positive feedback through learning
 Example: Increasing task-sensitization of agents

If task is done:
$$k_j^i \rightarrow k_j^i + k_{INC}$$
 (3)

Negative feedback through forgetting Exampel: Decreasing task-sensitization of agents

If task is not done:
$$k_j^i \rightarrow k_j^i - k_{DEC}$$
 (4)

- Multiple interactions through continuous flow of information.
- Randomness through stochastic task-selection.

Related issues for using AFM in real-world application

Figure: Modelling real-world application to a laboratory scenario

Map tasks & robot capabilities

- workload ⇔ task-urgency
 - 2. work done ⇔ task-urgency decrease 3. work pending ⇔ task-urgency increase

Enable continuous flow of info

- 2. Local communication
- 3. Stigmergic communication

Other issues

- Enable learning/forgetting in controller
- 2. Perception of distance ⇔ localization
- Provide multiple tasks (include random-walk)

A Manufacturing Shop-Floor Interpretation of AFM

	Initial task urgency	workload x $\delta\phi_{INC}$
	If task unattended	work-load increases by $\delta\phi_{\mathit{INC}}$
	If task served	work-load decreases by $\delta\phi_{DEC}$
/media/Preload/Pub2010/RAS-D	raft/image Average Production Completion Delay (APCD)	ട്ര(1ർള്ളിന്റായ്വ്വായ്യാന time - Actual production time)/ Ideal production time
	Average	(Total pending mainte- nance work in all ma-
Figure: Production and maintenance cycle of a manufacturing shop-floor	Pending Maintenance Work (APMW)	chines)/Total no. of ma- chines.

Centralized and Local Communication Models

	I .					
		Centraliza	ed Model	Local I	Model	
		Global k	roadcast	Local	peer-to-pe	eer
	messa		ng	messa	ging	
	-	Commun	icate	Comm	unicate wh	ien
/media/Preloa	d/Pub201	. Gynehign	obsyaft	/ peer(s close o	escome contact (ins	i ⁱⁿ ral:
				range	r _{comm})	
	-	Modelled	after	Modell	ed after	
		Polistes	wasps:	Polybia	a wasps:	
		global	sensing	local	sensing lo	cal
	l		er-to-peer	comm	unication	
		communi	cation			

Figure: A centralized communication scheme

/media/Preload/Pub2010/RAS-Draft/images/taxonomy-ta-

Figure: Classification of MRTA solutions based on task-allocation and communication strategies

Figure: Information flow caused by different levels of communication and interaction

Hybrid-event Driven Architecture on D-Bus /media/Preload/Pub2010/RAS-Draft/images/RIL-Expt

Figure: Hardware and software setup for centralized communication experiments

Tracking e-puck robots

(c) E-puck marker

Results: Shop-floor Work-load and Active Workers

/media/Preload/Pub2010/RAS/Draft/Images/SB-P1010/R

Figure: Changes in task-urgency

Shop-floor work-load:

Sum of changes in task-urgencies of all M tasks at $(q+1)^{th}$ step:

$$\Delta \Phi_{j,q+1} = \sum_{i=1}^{M} (\phi_{j,q+1} - \phi_{j,q})$$
 (5)

Figure: Shop-floor work-load

Active worker ratio:

 $\frac{Active \ workers \ in \ all \ tasks}{Total \ available \ workers} \tag{6}$

Results: Task-Performance

Table: Shop-floor production and maintenance task performance

Series	APCD	APMW (time-step)
A. Centralized communication, 8 robots, 2 tasks, 2 <i>m</i> ² area	1.22	1
B. Centralized communication, 16 robots, 4 tasks, 4 <i>m</i> ² area	2.3	3
C. Local communication, 16 robots, 4 tasks, 4 m^2 area, r_{comm} =0.5m	1.42	5
D. Local communication, 16 robots, 4 tasks, 4 m^2 area, r_{comm} =1m	1.46	2

Results: Task-specialization

Overall group task-specialization in terms of peak values of sensitization of all robots:

$$K_{\text{avg}}^{G} = \frac{1}{N} \sum_{i=1}^{N} \max_{j=1}^{M} \left(k_{j,q}^{i} \right)$$
 (7)

Time-step values (*q*) taken to reach those peak values for all robots:

$$Q_{avg}^{G} = \frac{1}{N} \sum_{i=1}^{N} q_{k=k_{max}}^{i}$$
 (8)

Table: Task-specialization values of the robots

Series	K _{avg} (SD)	Q _{avg} (SD)
Α	0.40 (0.08)	38 (13)
В	0.30 (0.03)	18 (5)
С	0.39 (0.17)	13 (7)
D	0.27 (0.1)	11 (5)

Results: Energy-usage

Table: Sum of translations of robots in our experiments.

Series	Average translation (m)	SD
A. Centralized communication, 8 robots, 2 tasks, 2 <i>m</i> ² area	2.631	0.804
B. Centralized communication, 16 robots, 4 tasks, 4 m ² area	13.882	3.099
C. Local communication, 16 robots, 4 tasks, 4 m^2 area, r_{comm} =0.5m	4.907	1.678
D. Local communication, 16 robots, 4 tasks, 4 m^2 area, r_{comm} =1m	4.854	1.592

Conclusions

- ► AFM solves the MRTA issue for a relatively large group → under both centralized and local communication strategies.
- Task-performance varies under different strategies
 - $\ensuremath{\rightarrow}$ for small group, task-performance degrades in centralized communication
 - \rightarrow for large group, local communication increases task-specialization and significantly reduces motions.
- AFM can model complex multi-tasking environment
 - \rightarrow such as a dynamic manufacturing shop-floor.
- Maximizing information flow is not useful
 - \rightarrow under a stochastic task-allocation process, more information tends to cause more task-switching behaviours.

General Contributions

- Self-organization in artificial systems
 - \rightarrow Self-organized allocation produces specialized workers even when the group size is *small* (< 10).
- Role of communication in self-organization
 - \rightarrow Local communication in task-allocation outperforms centralized one in terms of group level task-specialization and energy usage.
- Large-scale system development
 - ightarrow Bottom-up de-coupled construction of *large* artificial system yields higher advantages particularly, flexibility and integration with inter-operable elements.

Specific Contributions

- Interpreted AFM
 - → as a basic mechanism for multi-robot task-allocation
- Validated the effectiveness of AFM
 - → with reasonably *large* number of real robots
- Compared the performances of two communication and sensing strategies:
 - 1. Centralized communication like Polistes wasps
 - 2. Local communication like Polybia wasps
- Developed a flexible multi-robot control architecture
 - → using **D-Bus** inter-process communication
- Classified MRTA solutions focusing three major issues:
 - 1. Organization of task-allocation
 - 2. Communication and
 - 3. Interaction

Future works

- Deploying our task-allocation model in various task settings
 → e.g. dynamic tasks, co-operative tasks, heterogeneous tasks.
- ► Find optimum communication range
 → as a property of self-regulation of individuals.
- Real-world implementation
 - \rightarrow e.g. warehouse automation, manufacturing shop-floor or any other multi-tasking environment.