$\sigma_1^{\#2} = \sigma_1^{\#1}$	$t_1^{\#1}$ $i \sqrt{2} k$	$\sigma_{1^{-}\alpha}^{\#1}$	$\sigma_{1}^{\#2}$	$t_{1}^{\#1}\alpha$	$ au_{1}^{\#2}\alpha$
$\frac{t_1 + k^2 t_1}{1} \frac{t_1 + k^2 t_1}{(1 + k^2)^2 t_1}$		0	0	0	0
		0	0	0	0
0		$\frac{2(t_1+t_3)}{3t_1t_3}$	$-\frac{\sqrt{2} (t_1-2t_3)}{3(1+2k^2)t_1t_3}$	0	$-\frac{2ikt_1-4ikt_3}{3t_1t_3+6k^2t_1t_3}$
0	I , I 	$\sqrt{2} (t_1 - 2t_3)$ $3 (1 + 2k^2) t_1 t_3$	$\frac{t_1+4t_3}{3(1+2k^2)^2t_1t_3}$	0	$\frac{i\sqrt{2}k(t_1+4t_3)}{3(1+2k^2)^2t_1t_3}$
0		0	0	0	0
$0 \qquad \frac{2i}{3t_1}$	$\frac{2}{i}$	$\frac{2ikt_1-4ikt_3}{3t_1t_3+6k^2t_1t_3}$	$\frac{i\sqrt{2}k(t_1+4t_3)}{3(1+2k^2)^2t_1t_3}$	0	$\frac{2 k^2 (t_1 + 4 t_3)}{3 (1 + 2 k^2)^2 t_1 t_3}$

					_		
$f_{1^-}^{\#2} \alpha$	0	0	0	$\frac{1}{3}$ # $k(t_1 - 2t_3)$	$\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)$	0	$\frac{2}{3} k^2 (t_1 + t_3)$
$f_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\omega_{1^{^{-}\alpha}}^{\#2}$	0	0	0	$\frac{t_1-2t_3}{3\sqrt{2}}$	$\frac{t_1+t_3}{3}$	0	$-\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)$
$\omega_{1^{^{-}}\alpha}^{\#1}$	0	0	0	$\frac{1}{6}(t_1+4t_3)$	$\frac{t_1-2t_3}{3\sqrt{2}}$	0	$-\frac{1}{3}\bar{l}k(t_1-2t_3)\Big _{-\frac{1}{3}}\bar{l}$
$f_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}~\omega_{1}^{\#2}{}_{\alpha\beta}~f_{1}^{\#1}{}_{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\#1}{}_+\alpha\beta$	- t 1	$-\frac{t_1}{\sqrt{2}}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
	$\omega_{1}^{\#1} +^{\alpha\beta}$	$\omega_1^{\#2} + ^{\alpha\beta}$	$f_{1}^{\#1} + \alpha \beta$	$\omega_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\omega_{1}^{\#2} +^{\alpha}$	$f_{1}^{\#1} \dagger^{\alpha}$	$f_{1}^{#2} + \alpha$

Lagrangian density

Source constraints SO(3) irreps	$\tau_{0+}^{\#2} == 0$ $\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	$t_{1}^{\#2}\alpha + 2 i k \sigma_{1}^{\#2}\alpha == 0$ $t_{1}^{\#1}\alpha == 0$ $t_{1}^{\#1}\alpha\beta + i k \sigma_{1}^{\#2}\alpha\beta == 0$	$\tau_{1+1}^{*}\alpha\beta - 2ik \ \sigma_{2+1}^{*}\alpha\beta = 0$	Total #:
	$\sigma_{0}^{\#1}$	$\tau_0^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\sharp 1}$
$\sigma_{0}^{\#1}$ †	$\frac{1}{(1+2k^2)^2t_3}$	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	0	0
$ au_{0}^{\#1}$ †	$\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$ au_{0}^{\#2}$ †	0	0	0	0
$ \tau_{0^{+}}^{\#2} \dagger \\ \sigma_{0^{-}}^{\#1} \dagger $	0	0	0	$\frac{1}{k^2 r_2 - t_1}$

	$\omega_{2}^{\#1}_{\alpha\beta}$	$f_{2+\alpha\beta}^{\#1}$	$\omega_2^{\#1}_{\alpha\beta\chi}$		
$\omega_{2}^{#1} \dagger^{\alpha\beta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0		
$f_{2+}^{\#1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0		
$\omega_2^{\#1}$ † $^{lphaeta\chi}$	0	0	<u>t</u> 1 2		
2 3 3 3 11 11 #					

$\sigma_{2^{-}}^{\#1}lphaeta\chi$	0	0	$\frac{2}{t_1}$
$\tau_{2}^{\#1}{}_{\alpha\beta}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_{2}^{\#1}{}_{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
	$\sigma_2^{#1} + \alpha \beta$	$\tau_{2}^{\#1} + \alpha \beta$	$\sigma_{2}^{\#1} +^{lphaeta\chi}$

 $\omega_{0^{\text{-}}}^{\#1}$

 $\omega_{0}^{\#1}$

16

 $\int_{1}^{t_{1}} \alpha \beta - 2 \, i \, k \, \sigma_{2}^{\#1} \, \alpha \beta = 0$

0

0

 $-i\sqrt{2}kt_3$

*t*³

 $\omega_{0}^{\#1}$ \dagger

0

0

 $2 k^2 t_3$

 $\sqrt{2} kt_3$

 $f_{0}^{\#1}$ †

0

0

0

0

 $f_{0}^{\#2} + \omega_{0}^{\#1} + \omega_{0}^{\#1}$

0

0

0

	Massive partic	le
?	Pole residue:	$-\frac{1}{r_2} >$
$J^P = 0^-$	Polarisations:	1
?	Square mass:	$\frac{t_1}{r_2} > 0$
	Spin:	0
	Parity:	Odd

	Massive partic	le
?	Pole residue:	$-\frac{1}{r_2} > 0$
$J^P = 0^-$	Polarisations:	1
$\overrightarrow{k^{\mu}}$	Square mass:	$\frac{t_1}{r_2} > 0$
?	Spin:	0
	Parity:	Odd

Unitarity conditions $r_2 < 0 \&\& t_1 < 0$	(No massless partic