State-Changing Systems

State-changing systems

Our main interest from now on is modelling state-changing systems.

Informally	Formally
At each time moment, the system is in a particular state.	This state can be characterized by values of some variables, called the state variables.
The system state is changing in time. There are actions (controlled or not) that change the state.	Actions change values of state variables.

State-changing systems

Our main interest from now on is modelling state-changing systems.

Informally	Formally
At each time moment, the system is in a particular state.	This state can be characterized by values of some variables, called the state variables.
The system state is changing in time. There are actions (controlled or not) that change the state.	Actions change values of state variables.

Reasoning about state-changing systems

- Build a formal model of this state-changing system which describes the behaviour of the system, or some abstraction thereof.
- 2. Using a logic to specify and verify properties of the system.

Reasoning about state-changing systems

- Build a formal model of this state-changing system which describes the behaviour of the system, or some abstraction thereof.
- 2. Using a logic to specify and verify properties of the system.

Running example: Vending Machine

Vending machine example

Consider an example state-changing system: a vending machine which dispenses drinks in a university department.

- ► The machine has several components, including at least the following: a storage space for storing and preparing drinks, a box for dispensing drinks and a coin slot for putting coins in.
- ▶ When the machine is operating, it goes through several states depending on the behavior of the current customer.
- ► Each action undertaken by the customer or by the machine itself may change the state of the machine. For example, when the customer inserts a coin in the coin slot, the amount of money stored in the slot changes.
- Actions which may change the state of the system are called transitions.

Vending machine example

Consider an example state-changing system: a vending machine which dispenses drinks in a university department.

- ► The machine has several components, including at least the following: a storage space for storing and preparing drinks, a box for dispensing drinks and a coin slot for putting coins in.
- ▶ When the machine is operating, it goes through several states depending on the behavior of the current customer.
- Each action undertaken by the customer or by the machine itself may change the state of the machine. For example, when the customer inserts a coin in the coin slot, the amount of money stored in the slot changes.
- Actions which may change the state of the system are called transitions.

Vending machine example

Consider an example state-changing system: a vending machine which dispenses drinks in a university department.

- ► The machine has several components, including at least the following: a storage space for storing and preparing drinks, a box for dispensing drinks and a coin slot for putting coins in.
- ▶ When the machine is operating, it goes through several states depending on the behavior of the current customer.
- Each action undertaken by the customer or by the machine itself may change the state of the machine. For example, when the customer inserts a coin in the coin slot, the amount of money stored in the slot changes.
- Actions which may change the state of the system are called transitions.

Modeling state-changing systems

To build a formal model of a particular state-changing system, we should define

- 1. What are the state variables.
- 2. What are the possible values of the state variables.
- What are the transitions and how they change the values of the state variables.

A transition system is a tuple $\mathbb{S} = (S, In, T, \mathcal{X}, dom)$, where

- 1. S is a finite non-empty set, called the set of states of S.
- 2. $ln \subseteq S$ is a non-empty set of states, called the set of initial states of M.
- **3.** $T \subseteq S \times S$ is a set of pairs of states, called the transition relation of S.

A transition system is a tuple $\mathbb{S} = (S, In, T, \mathcal{X}, dom)$, where

- 1. S is a finite non-empty set, called the set of states of S.
- 2. $ln \subseteq S$ is a non-empty set of states, called the set of initial states of M.
- T⊆S×S is a set of pairs of states, called the transition relation of S.

State Transition Graph of a transition system S:

- ► The nodes are the states of S.
- ▶ The arcs are elements of the transition relation: there is an arc from a state s to a state s' if and only if $(s, s') \in T$.

State Transition Graph of a transition system S:

- ► The nodes are the states of S.
- ▶ The arcs are elements of the transition relation: there is an arc from a state s to a state s' if and only if $(s, s') \in T$.

State Transition Graph of a transition system S:

- ► The nodes are the states of S.
- ▶ The arcs are elements of the transition relation: there is an arc from a state s to a state s' if and only if $(s, s') \in T$.

State Transition Graph of a transition system S:

- ► The nodes are the states of S.
- ▶ The arcs are elements of the transition relation: there is an arc from a state s to a state s' if and only if $(s, s') \in T$.

State Transition Graph of a transition system S:

- ► The nodes are the states of S.
- ▶ The arcs are elements of the transition relation: there is an arc from a state s to a state s' if and only if $(s, s') \in T$.

State Transition Graph of a transition system S:

- ► The nodes are the states of S.
- ▶ The arcs are elements of the transition relation: there is an arc from a state s to a state s' if and only if $(s, s') \in T$.

State Transition Graph of a transition system S:

- ► The nodes are the states of S.
- ▶ The arcs are elements of the transition relation: there is an arc from a state s to a state s' if and only if $(s, s') \in T$.

A transition system is a tuple $\mathbb{S} = (S, In, T, \mathcal{X}, dom)$, where

- 1. \mathcal{X} and *dom* define a PLFD:
 - \triangleright \mathcal{X} is a finite set of variables, called state variables.
 - ▶ dom is a mapping from \mathcal{X} such that for every state variable $v \in \mathcal{X}$ dom(v) is a non-empty set, called the domain for v.

Denote the set of all interpretations for this instance of PLFD by ${\mathbb I}$.

- 2. S is a finite non-empty subset of I, called the set of states of S. A state can be identified with the values of the variables at this state, i.e. an interpretation in PLFD.
- 3. $ln \subseteq S$ is a non-empty set of states, called the set of initial states of S.
- T ⊆ S × S is a set of pairs of states, called the transition relation of S.

The transition system is said to be finite-state if for every state variable v, the domain dom(v) for this variable is finite.

We will only study finite-state transition systems.

A transition system is a tuple $\mathbb{S} = (S, In, T, \mathcal{X}, dom)$, where

- 1. \mathcal{X} and *dom* define a PLFD:
 - \triangleright \mathcal{X} is a finite set of variables, called state variables.
 - ▶ dom is a mapping from \mathcal{X} such that for every state variable $v \in \mathcal{X}$ dom(v) is a non-empty set, called the domain for v.

Denote the set of all interpretations for this instance of PLFD by ${\mathbb I}$.

- 2. S is a finite non-empty subset of I, called the set of states of S. A state can be identified with the values of the variables at this state, i.e. an interpretation in PLFD.
- 3. $ln \subseteq S$ is a non-empty set of states, called the set of initial states of S.
- T ⊆ S × S is a set of pairs of states, called the transition relation of S.

The transition system is said to be finite-state if for every state variable v, the domain dom(v) for this variable is finite.

We will only study finite-state transition systems.

A transition system is a tuple $\mathbb{S} = (S, In, T, \mathcal{X}, dom)$, where

- 1. \mathcal{X} and *dom* define a PLFD:
 - X is a finite set of variables, called state variables.
 - ▶ dom is a mapping from \mathcal{X} such that for every state variable $v \in \mathcal{X}$ dom(v) is a non-empty set, called the domain for v.

Denote the set of all interpretations for this instance of PLFD by I.

- 2. S is a finite non-empty subset of I, called the set of states of S. A state can be identified with the values of the variables at this state, i.e. an interpretation in PLFD.
- 3. $ln \subseteq S$ is a non-empty set of states, called the set of initial states of \mathbb{S} .
- T ⊆ S × S is a set of pairs of states, called the transition relation of S.

The transition system is said to be finite-state if for every state variable v, the domain dom(v) for this variable is finite.

We will only study finite-state transition systems.

State Transition Graph of a transition system S:

- ► The nodes are the states of S.
- ▶ The arcs are elements of the transition relation: there is an arc from a state s to a state s' if and only if $(s, s') \in T$.

Assume two boolean-valued variables *x*, *y*

State Transition Graph of a transition system S:

- The nodes are the states of S.
- ▶ The arcs are elements of the transition relation: there is an arc from a state s to a state s' if and only if $(s, s') \in T$.

Assume two boolean-valued variables x, y.

- $\triangleright s_1 \models x$
- \triangleright $s_2 \models x \land y$
- \triangleright $s_3 \models x \leftrightarrow y$

- $\triangleright s_1 \models x$
- $\triangleright s_2 \models x \land y$
- \triangleright $s_3 \models x \leftrightarrow y$

- \triangleright $s_1 \models x$
- \triangleright $s_2 \models x \land y$
- \triangleright $s_3 \models x \leftrightarrow y$

- \triangleright $S_1 \models X$
- \triangleright $s_2 \models x \land y$
- $ightharpoonup s_3 \models \mathsf{x} \leftrightarrow \mathsf{y}$

Symbolic representation of

state-changing systems

Main issue with graph representation of state-changing systems:

The number of nodes in the graph = number of states = 2

Symbolic Representation of Sets of States:

Let $\mathbb{S} = (S, In, T, \mathcal{X}, dom)$ be a finite-state transition system. Then every formula F defines a set states:

$$\{s \mid s \models F\}.$$

We say that F (symbolically) represent this set of states..

Main issue with graph representation of state-changing systems: The number of nodes in the graph = number of states = 2^N

Symbolic Representation of Sets of States:

Let $\mathbb{S} = (S, ln, T, \mathcal{X}, dom)$ be a finite-state transition system. Then every formula F defines a set states:

$$\{s \mid s \models F\}.$$

We say that F (symbolically) represent this set of states.

Main issue with graph representation of state-changing systems: The number of nodes in the graph = number of states = 2^N

Symbolic Representation of Sets of States:

Let S = (S, In, T, X, dom) be a finite-state transition system. Then every formula F defines a set states:

$$\{s \mid s \models F\}.$$

We say that F (symbolically) represent this set of states.

- \triangleright X \leftrightarrow y
- x ∧ y
- ▶ ¬X

Assume we have n variables x_1, \ldots, x_n . How many states the formula $\neg x_1$ symbolically represents $\widehat{x}_1, \ldots, \widehat{x}_n$

- \rightarrow $x \leftrightarrow y$
- ▶ ¬X

Assume we have n variables x_1, \ldots, x_n . How many states the formula $\neg x_1$ symbolically represents

- ▶ $x \leftrightarrow y$ represents $\{s_2, s_3\}$
- ➤ x ∧ y
- → X

Assume we have n variables x_1, \ldots, x_n . How many states the formula $\neg x_1$ symbolically represents

- ▶ $x \leftrightarrow y$ represents $\{s_2, s_3\}$
- ➤ x ∧ y
- ▶ ¬X

Assume we have n variables x_1, \ldots, x_n . How many states the formula $\neg x_1$ symbolically represents

Symbolic Representation of Sets of States

- ▶ $x \leftrightarrow y$ represents $\{s_2, s_3\}$
- x ∧ y represents {s₂}
- ▶ ¬X

Assume we have n variables x_1, \ldots, x_n . How many states the formula $\neg x_1$ symbolically represents

Symbolic Representation of Sets of States

- ▶ $x \leftrightarrow y$ represents $\{s_2, s_3\}$
- x ∧ y represents {s₂}
- ▶ ¬X

Assume we have *n* variables x_1, \ldots, x_n . How many states the formula $\neg x_1$ symbolically represents '

Symbolic Representation of Sets of States

- ▶ $x \leftrightarrow y$ represents $\{s_2, s_3\}$
- x ∧ y represents {s₂}
- ▶ $\neg x$ represents $\{s_3, s_4\}$

Assume we have n variables x_1, \ldots, x_n . How many states the formula $\neg x_1$ symbolically represents ?

Vending machine

- The vending machine contains a drink storage, a coin slot, and a drink dispenser. The drink storage stores drinks of two kinds: beer and coffee. We are only interested in whether a particular kind of drink is currently being stored or not, but not interested in the amount of it.
- 2. The coin slot can accommodate up to three coins.
- The drink dispenser can store at most one drink. If it contains a drink, this drink should be removed before the next one can be dispensed.
- 4. A can of beer costs two coins. A cup of coffee costs one coin.
- 5. There are two kinds of customers: students and professors. Students drink only beer, professors drink only coffee.
- 6. From time to time the drink storage can be recharged.

Vending machine

- The vending machine contains a drink storage, a coin slot, and a drink dispenser. The drink storage stores drinks of two kinds: beer and coffee. We are only interested in whether a particular kind of drink is currently being stored or not, but not interested in the amount of it.
- 2. The coin slot can accommodate up to three coins.
- The drink dispenser can store at most one drink. If it contains a drink, this drink should be removed before the next one can be dispensed.
- 4. A can of beer costs two coins. A cup of coffee costs one coin.
- 5. There are two kinds of customers: students and professors. Students drink only beer, professors drink only coffee.
- 6. From time to time the drink storage can be recharged.

Vending Machine: Variables and Domains

variable	domain	explanation
st_coffee	{0, 1}	drink storage contains coffee
st_beer	{0, 1}	drink storage contains beer
disp	{none, beer, coffee}	content of drink dispenser
coins	<i>{</i> 0 <i>,</i> 1 <i>,</i> 2 <i>,</i> 3 <i>}</i>	number of coins in the slot
customer	{none, student, prof}	customer

Example

Let us represent the set of states in which the machine is ready to dispense a drink. In every such state, a drink should be available, the drink dispenser empty, and the coin slot contain enough coins.

This can be expressed by:

```
(st_coffee \lor st_beer) \land disp = none \land ((coins = 1 \land st_coffee) \lor coins = 2 \lor coins = 3)
```

Example

Let us represent the set of states in which the machine is ready to dispense a drink. In every such state, a drink should be available, the drink dispenser empty, and the coin slot contain enough coins.

This can be expressed by:

Symbolic representation of transition relations

When we model systems, we will usually represent the transition relation as a union of so-called transitions.

- ▶ A transition *t* is any set of pairs of states.
- A transition t is applicable to a state s if there exists a state s' such that $(s, s') \in t$.
- ▶ A transition t is deterministic if for every state s there exists at most one state s' such that $(s, s') \in t$.

A transition is a relation on pairs of states. It brings the system to the current state and the next state. Formulas of PLFD can only express properties of a single state. How can we represent transitions using formulas?

- ▶ In addition to the set of current state variables $\mathcal{X} = \{x_1, \dots, x_n\}$, introduce a set of next state variables $\mathcal{X}' = \{x'_1, \dots, x'_n\}$.
- ▶ Pairs of states as interpretations. For every variable $x \in \mathcal{X}$ define

$$(s, s')(x) \stackrel{\text{def}}{=} s(x);$$

 $(s, s')(x') \stackrel{\text{def}}{=} s'(x).$

▶ Symbolic representation. Formula F of variables $\mathcal{X} \cup \mathcal{X}'$ represents a transition t if $t = \{(s, s') \mid (s, s') \models F\}$.

A transition is a relation on pairs of states. It brings the system to the current state and the next state. Formulas of PLFD can only express properties of a single state. How can we represent transitions using formulas?

- ▶ In addition to the set of current state variables $\mathcal{X} = \{x_1, \dots, x_n\}$, introduce a set of next state variables $\mathcal{X}' = \{x'_1, \dots, x'_n\}$.
- ▶ Pairs of states as interpretations. For every variable $x \in \mathcal{X}$ define

$$(s,s')(x) \stackrel{\text{def}}{=} s(x);$$

 $(s,s')(x') \stackrel{\text{def}}{=} s'(x).$

▶ Symbolic representation. Formula F of variables $\mathcal{X} \cup \mathcal{X}'$ represents a transition t if $t = \{(s, s') \mid (s, s') \models F\}$.

A transition is a relation on pairs of states. It brings the system to the current state and the next state. Formulas of PLFD can only express properties of a single state. How can we represent transitions using formulas?

- ▶ In addition to the set of current state variables $\mathcal{X} = \{x_1, \dots, x_n\}$, introduce a set of next state variables $\mathcal{X}' = \{x'_1, \dots, x'_n\}$.
- ▶ Pairs of states as interpretations. For every variable $x \in \mathcal{X}$ define

$$(s, s')(x) \stackrel{\text{def}}{=} s(x);$$

 $(s, s')(x') \stackrel{\text{def}}{=} s'(x).$

▶ Symbolic representation. Formula F of variables $\mathcal{X} \cup \mathcal{X}'$ represents a transition t if $t = \{(s, s') \mid (s, s') \models F\}$.

A transition is a relation on pairs of states. It brings the system to the current state and the next state. Formulas of PLFD can only express properties of a single state. How can we represent transitions using formulas?

- ▶ In addition to the set of current state variables $\mathcal{X} = \{x_1, \dots, x_n\}$, introduce a set of next state variables $\mathcal{X}' = \{x'_1, \dots, x'_n\}$.
- ▶ Pairs of states as interpretations. For every variable $x \in \mathcal{X}$ define

$$(s, s')(x) \stackrel{\text{def}}{=} s(x);$$

 $(s, s')(x') \stackrel{\text{def}}{=} s'(x).$

Symbolic representation. Formula F of variables $\mathcal{X} \cup \mathcal{X}'$ represents a transition t if $t = \{(s, s') \mid (s, s') \models F\}$.

Vending machine

- The vending machine contains a drink storage, a coin slot, and a drink dispenser. The drink storage stores drinks of two kinds: beer and coffee. We are only interested in whether a particular kind of drink is currently being stored or not, but not interested in the amount of it.
- 2. The coin slot can accommodate up to three coins.
- The drink dispenser can store at most one drink. If it contains a drink, this drink should be removed before the next one can be dispensed.
- 4. A can of beer costs two coins. A cup of coffee costs one coin.
- 5. There are two kinds of customers: students and professors. Students drink only beer, professors drink only coffee.
- 6. From time to time the drink storage can be recharged.

Vending machine

- The vending machine contains a drink storage, a coin slot, and a drink dispenser. The drink storage stores drinks of two kinds: beer and coffee. We are only interested in whether a particular kind of drink is currently being stored or not, but not interested in the amount of it.
- 2. The coin slot can accommodate up to three coins.
- The drink dispenser can store at most one drink. If it contains a drink, this drink should be removed before the next one can be dispensed.
- 4. A can of beer costs two coins. A cup of coffee costs one coin.
- 5. There are two kinds of customers: students and professors. Students drink only beer, professors drink only coffee.
- 6. From time to time the drink storage can be recharged.

Transitions for the Vending Machine

- Recharge which results in the drink storage having both beer and coffee.
- Customer_arrives, after which a customer appears at the machine.
- 3. Customer_leaves, after which the customer leaves.
- 4. *Coin_insert*, when the customer inserts a coin in the machine.
- Dispense_beer, when the customer presses the button to get a can of beer.
- Dispense_coffee, when the customer presses the button to get a cup of coffee.
- 7. *Take_drink*, when the customer removes a drink from the dispenser.

Example

The transition *Recharge*:

 $customer = none \land st_coffee' \land st_beer'.$

But this formula includes describes a very strange transition after which, for example

- coins may appear in and disappear from the slot;
- dfrinks may appear in and disappear from the dispenser.
- **.** . . .

Example

The transition *Recharge*:

 $customer = none \land st_coffee' \land st_beer'.$

But this formula includes describes a very strange transition after which, for example

- coins may appear in and disappear from the slot;
- dfrinks may appear in and disappear from the dispenser.

Frame problem

One has to express explicitly, maybe for a large number of state variables, that the values of these variables do not change after a transition. For example,

$$(coins = 0 \leftrightarrow coins' = 0) \land (coins = 1 \leftrightarrow coins' = 1) \land (coins = 2 \leftrightarrow coins' = 2) \land (coins = 3 \leftrightarrow coins' = 3).$$

This frame problem arises in artificial intelligence, knowledge representation, and reasoning about actions.

Notation for the frame formula

Abbreviations (we assume dom(x) = dom(y)):

$$x \neq v \stackrel{\text{def}}{=} \neg(x = v)$$

 $x = y \stackrel{\text{def}}{=} \bigwedge_{v \in dom(x)} (x = v \leftrightarrow y = v).$

Let $\mathbb S$ be a transition system and $\{x_1,\ldots,x_n\}\subseteq\mathcal X$ be a set of state variables of $\mathcal L(\mathbb S)$. Define

only
$$(x_1,\ldots,x_n) \stackrel{\text{def}}{=} \bigwedge_{y\in\mathcal{X}\setminus\{x_1,\ldots,x_n\}} y=y'$$

This formula expresses that x_1, \ldots, x_n are the only variables whose values can be changed by the transition.

Notation for the frame formula

Abbreviations (we assume dom(x) = dom(y)):

$$x \neq v \stackrel{\text{def}}{=} \neg(x = v)$$

 $x = y \stackrel{\text{def}}{=} \bigwedge_{v \in dom(x)} (x = v \leftrightarrow y = v).$

Let $\mathbb S$ be a transition system and $\{x_1,\ldots,x_n\}\subseteq\mathcal X$ be a set of state variables of $\mathcal L(\mathbb S)$. Define

only
$$(x_1, \ldots, x_n) \stackrel{\text{def}}{=} \bigwedge_{y \in \mathcal{X} \setminus \{x_1, \ldots, x_n\}} y = y'.$$

This formula expresses that x_1, \dots, x_n are the only variables whose values can be changed by the transition.

Preconditions and postconditions

When we represent a transition symbolically using a formula F of variables $\mathcal{X} \cup \mathcal{X}'$, the formula F is usually represented as the conjunction $F_1 \wedge F_2$ of two formulas:

- 1. F_1 expresses some conditions on the variables \mathcal{X} which are necessary to execute the transition (precondition);
- 2. F_2 expresses some conditions relating variables in \mathcal{X} to those in \mathcal{X}' , i.e., conditions which show how the values of the variables after the transition relate to their values before the transition (postcondition).

Preconditions and postconditions

When we represent a transition symbolically using a formula F of variables $\mathcal{X} \cup \mathcal{X}'$, the formula F is usually represented as the conjunction $F_1 \wedge F_2$ of two formulas:

- 1. F_1 expresses some conditions on the variables \mathcal{X} which are necessary to execute the transition (precondition);
- 2. F_2 expresses some conditions relating variables in \mathcal{X} to those in \mathcal{X}' , i.e., conditions which show how the values of the variables after the transition relate to their values before the transition (postcondition).

Transitions for the Vending Machine

- Recharge which results in the drink storage having both beer and coffee.
- Customer_arrives, after which a customer appears at the machine.
- 3. Customer_leaves, after which the customer leaves.
- 4. *Coin_insert*, when the customer inserts a coin in the machine.
- Dispense_beer, when the customer presses the button to get a can of beer.
- Dispense_coffee, when the customer presses the button to get a cup of coffee.
- Take_drink, when the customer removes a drink from the dispenser.

```
Recharge
                  customer = none \land
                  st coffee' ∧ st beer' ∧
                  only(st_coffee, st_beer).
```

```
Recharge
                  customer = none \land
                  st coffee' ∧ st beer' ∧
                  only(st_coffee, st_beer).
```

```
Recharge
                            customer = none \land
                            st coffee' \wedge st beer' \wedge
                            only(st_coffee, st_beer).
Customer arrives
                            customer = none \land customer' \neq none \land
                            only(customer)
```

```
Recharge
                            customer = none \land
                            st coffee' \wedge st beer' \wedge
                            only(st_coffee, st_beer).
Customer arrives
                            customer = none \land customer' \neq none \land
                            only(customer)
```

```
Recharge
                           customer = none \land
                            st coffee' \wedge st beer' \wedge
                            only(st_coffee, st_beer).
Customer arrives
                            customer = none \land customer' \neq none \land
                            only(customer)
Customer leaves
                            customer \neq none \land customer' = none \land
                            only(customer).
```

```
Recharge
                           customer = none \land
                            st coffee' \wedge st beer' \wedge
                            only(st_coffee, st_beer).
Customer arrives
                            customer = none \land customer' \neq none \land
                            only(customer)
Customer leaves
                            customer \neq none \land customer' = none \land
                            only(customer).
```

```
Recharge
                               customer = none \land
                               st coffee' \( \) st beer' \( \)
                               only(st_coffee, st_beer).
Customer arrives
                               customer = none \land customer' \neq none \land
                               only(customer)
Customer_leaves
                               customer \neq none \land customer' = none \land
                               only(customer).
       Coin insert
                               customer \neq none \wedge coins \neq 3 \wedge
                               (coins = 0 \rightarrow coins' = 1) \land
                                (coins = 1 \rightarrow coins' = 2) \land 
                                (\mathsf{coins} = 2 \to \mathsf{coins}' = 3) \land 
                               only(coins).
```

Dispense_beer
Dispense_coffee
Take_drink

Dispense_beer Dispense_coffee Take_drink

```
Dispense_beer
                             customer = student \land st beer \land
                             disp = none \land (coins = 2 \lor coins = 3) \land
                             disp' = beer \wedge
                             (coins = 2 \rightarrow coins' = 0) \land
                             (coins = 3 \rightarrow coins' = 1) \land
                             only(st_beer, disp, coins).
```

Dispense_coffee Dispense_coffee Take_drink

```
Dispense_beer
                             customer = student \land st beer \land
                             disp = none \land (coins = 2 \lor coins = 3) \land
                             disp' = beer \wedge
                             (coins = 2 \rightarrow coins' = 0) \land
                             (coins = 3 \rightarrow coins' = 1) \land
                             only(st_beer, disp, coins).
```

Dispense_beer Dispense_coffee Take_drink

```
Dispense_beer = def =
                               customer = student \land st beer \land
                               disp = none \land (coins = 2 \lor coins = 3) \land
                               disp' = beer \wedge
                               (coins = 2 \rightarrow coins' = 0) \land
                               (coins = 3 \rightarrow coins' = 1) \land
                               only(st_beer, disp, coins).
Dispense_coffee
                               customer = prof \land st\_coffee \land
                               disp = none \land coins \neq 0 \land
                               disp' = coffee \wedge
                               (coins = 1 \rightarrow coins' = 0) \land
                               (coins = 2 \rightarrow coins' = 1) \land
                               (coins = 3 \rightarrow coins' = 2) \land
                               only(st_coffee, disp, coins).
```

Dispense_coffee Dispense_coffee Take_drink

```
Dispense_beer = def =
                               customer = student \land st beer \land
                               disp = none \land (coins = 2 \lor coins = 3) \land
                               disp' = beer \wedge
                               (coins = 2 \rightarrow coins' = 0) \land
                               (coins = 3 \rightarrow coins' = 1) \land
                               only(st_beer, disp, coins).
Dispense_coffee
                               customer = prof \land st\_coffee \land
                               disp = none \land coins \neq 0 \land
                               disp' = coffee \wedge
                               (coins = 1 \rightarrow coins' = 0) \land
                               (coins = 2 \rightarrow coins' = 1) \land
                               (coins = 3 \rightarrow coins' = 2) \land
                               only(st_coffee, disp, coins).
```

Dispense_beer Dispense_coffee Take_drink

```
Dispense_beer <sup>def</sup> =
                                customer = student \land st beer \land
                                 \mathsf{disp} = \mathit{none} \land (\mathsf{coins} = 2 \lor \mathsf{coins} = 3) \land
                                 disp' = beer \wedge
                                 (coins = 2 \rightarrow coins' = 0) \land
                                 (coins = 3 \rightarrow coins' = 1) \land
                                 only(st_beer, disp, coins).
Dispense_coffee
                                 customer = prof \land st\_coffee \land
                                 disp = none \land coins \neq 0 \land
                                 disp' = coffee \wedge
                                 (coins = 1 \rightarrow coins' = 0) \land
                                  (coins = 2 \rightarrow coins' = 1) \land
                                 (coins = 3 \rightarrow coins' = 2) \land
                                 only(st_coffee, disp, coins).
       Take drink
                                 customer \neq none \land disp \neq none \land
                                 disp' = none \wedge
                                 only(disp).
```

Summary

State-changing systems:

- $ightharpoonup \mathbb{S} = (S, In, T, \mathcal{X}, dom)$
- states are identified with interpretations in PLFD
- Explicit representation: using state transition graphs
- Symbolic representation: using formulas:
 - states: PLFD over X
 - transitions: PLFD over current state variables X and next state variables X'.
 - frame problem

Next: Temporal properties of transition systems: LTL

Summary

State-changing systems:

- $ightharpoonup \mathbb{S} = (S, In, T, \mathcal{X}, dom)$
- states are identified with interpretations in PLFD
- Explicit representation: using state transition graphs
- Symbolic representation: using formulas:
 - states: PLFD over X
 - transitions: PLFD over current state variables X and next state variables X'.
 - frame problem

Next: Temporal properties of transition systems: LTL