MA347 – HW8

Jonathan Lam

February 18, 2021

Let $n \in \mathbb{N}$ and $\mathbb{K} = \mathbb{Q}$, \mathbb{R} , or \mathbb{C} . For $A \in GL(n, \mathbb{K})$, define $f_{A,b} : \mathbb{K}^n \to \mathbb{K}^n$ by $f_{A,b}(x) = Ax + b$. Then $Aff(n, \mathbb{K}) = \{f_{A,b} : A \in GL(n, \mathbb{K}), b \in \mathbb{K}^n\}$ is a group under composition.

1. Define $\varphi : GL(n, \mathbb{K}) \to Aff(n, \mathbb{K})$ by $\varphi(A) = f_{A,0}$, where 0 is the zero element of \mathbb{K}^n . Prove that φ is a group homomorphism. Find Ker φ .

Proof of Homomorphism. We already know that $\mathrm{GL}(n,\mathbb{K})$ and $\mathrm{Aff}(n,\mathbb{K})$ are groups, so all that is left to show is that the mapping φ satisfies the equality:

$$\varphi(AB) = \varphi(A) \circ \varphi(B) \ \forall A, B \in GL(n, \mathbb{K})$$

Let $A, B \in GL(n, \mathbb{K})$. Then, $\forall x \in \mathbb{K}^n$:

$$\begin{split} (\varphi(AB))(x) &= ABx + 0 & (\text{def. } \varphi, f_{AB,0}) \\ &= A(Bx) + 0 & (\text{associativity of group GL}(n, \mathbb{K})) \\ &= f_{A,0}(Bx) & (\text{def. } f_{A,0}, \varphi) \\ &= (\varphi(A))(Bx + 0) & (0 \text{ is identity of } \mathbb{K}^n) \\ &= (\varphi(A))((\varphi(B))(x)) & (\text{def. } f_{B,0}, \varphi) \\ &= (\varphi(A) \circ \varphi(B))(x) & (\text{def. } \circ) \end{split}$$

Since the result of $\varphi(AB)$ and $\varphi(A) \circ \varphi(B)$ match for all values of $x \in \mathbb{K}^n$, then $\varphi(AB) = \varphi(A) \circ \varphi(B)$.

The identity element of $\mathrm{Aff}(n,\mathbb{K}^n)$ is $e'=f_{I_n,0}$ (shown in HW5), so $\mathrm{Ker}\,\varphi=\varphi^{-1}(e')=\{I_n\}$ by inspection.

2. Define $\psi : \mathbb{K}^n \to \text{Aff}(n,\mathbb{K})$ by $\psi(b) = f_{I_n,b}$, where I_n is the identity element of $\text{GL}(n,\mathbb{K})$. Prove that ψ is a group homomorphism. Determine $\text{Ker } \psi$.

Proof of homomorphism. The method is the same as in the earlier problem, except that \mathbb{K}^n is an additive group so we want the result (same homomorphism idea but denoted differently):

$$\psi(a+b) = \psi(a) \circ \psi(b)$$

Let $a, b \in \mathbb{K}^n$. Then $\forall x \in \mathbb{K}^n$:

$$(\psi(a+b))(x) = I_n x + (a+b) \qquad (\text{def. } \psi, f_{I_n,a+b})$$

$$= I_n x + (b+a) \qquad (\text{commutativity of group } \mathbb{K}^n)$$

$$= (I_n x + b) + a \qquad (\text{associativity of group } \mathbb{K}^n)$$

$$= ((\psi(b))(x)) + a \qquad (\text{def. } f_{I_n,b},\psi)$$

$$= I_n((\psi(b))(x)) + a \qquad (I_n \text{ is identity of } K^n)$$

$$= (\psi(a))((\psi(b))(x)) \qquad (\text{def. } f_{I_n,a},\psi)$$

$$= (\psi(a) \circ \psi(b))(x) \qquad (\text{def. } \circ)$$

Since the result of $\psi(a+b)$ and $\varphi(a) \circ \varphi(b)$ match for all values of $x \in \mathbb{K}^n$, then $\varphi(a+b) = \varphi(a) \circ \varphi(b)$.

Again, the identity element of the codomain is $e' = f_{I_n,0}$, so Ker $\psi = \psi^{-1}(e') = \{0\}$ by inspection.