Order Of Growth 1

Tom Bohbot

September 2020

1 Introduction

The goal of this assignment is to understand how to prove runtimes and to understand the formal definitions of Big-O, Ω , and Θ .

```
NOTE 1: iff \equiv if and only if.
NOTE 2: s.t. \equiv such that.
```

Pick Your Constants: Big-O $\mathbf{2}$

2.1

```
Prove by selecting the appropriate constants and the definition used in lecture
that f(n) is O(n^2)
```

Given: $f(n) = 32n^2 + 17n + 1$

Claim: f(n) is $O(n^2)$

Formal Definition of Big-O: T(n) = O(f(n)) iff there exists positive constants, c and n_0 s.t. $T(n) \le c \times f(n)$ for all $n \ge n_0$

f(n) has a $O(n^2)$ runtime if, and only if, $f(n) \le c^*n^2$.

- 1) $32n^2 + 17n + 1 \le c * n^2$
- 2) let c = 50 and n = 1.
- 3) $32n^2 + 17n + 1 \le 50 * n^2$, plug in 50 for c
- 4) $\frac{32n^2 + 17n + 1}{n^2} \le 50$ 5) $\frac{32n^2}{n^2} + \frac{17n}{n^2} + \frac{1}{n^2} \le 50$ 6) $32 + \frac{17}{n} + \frac{1}{n^2} \le 50$ 7) $50 \le 50$, plug in 1 for n

- 8) If any n is inserted larger than one, the result will become increasingly smaller, and will always be less than 50. This proves that any $n \ge n_0$ cannot disprove this, and that f(n) has a runtime of $O(n^2)$.

2.2

Conversely: show, using counter-examples, that f(n) is neither O(n) nor O(nlogn)

Given: $f(n) = 32n^2 + 17n + 1$

General Claim: f(n) is not O(n) not O(nlogn)

Formal Definition of Big-O: T(n) = O(f(n)) iff there exists positive constants, c

and n_0 s.t. $T(n) \le c \times f(n)$ for all $n \ge n_0$

Claim 1: f(n) is not O(n).

Proof:

Prove by contradiction.

Assume f(n) is O(n).

If f(n) is O(n) then there is some equation that satisfies $f(n) \le c * n$

 $1)32n^2 + 17n + 1 \le c * n$

 $2)\frac{32n^2 + 17n + 1}{n} \le c$ $3)32n + 17 + \frac{1}{n} \le c$

4) Since the first term in the fraction was reduced to 32n, this can never be less than some constant factor. Since n can be any number multiplied by 32, it does not satisfy a number less than c. Namely, n can become infinity, and infinity will always be larger than some constant c. Therefore, this function cannot have a runtime of O(n).

Claim 2: f(n) is not O(nlogn).

Proof:

Prove by contradiction.

Assume f(n) is O(nlogn).

If f(n) is $O(n\log n)$ then there is some equation that satisfies $f(n) \le c * n\log n$

 $1)32n^2 + 17n + 1 \le c*nlogn$

2) $\frac{32n^2 + 17n + 1}{nlogn} \le c$ 3) $\frac{32n}{logn} + \frac{17}{logn} + \frac{1}{nlogn} \le c$

4) Since the first term in the fraction was reduced to $\frac{32n}{logn}$, this can never be less than some constant factor. Since n can be any number multiplied by 32, it does not satisfy a number less than c. Namely, n can become infinity, and infinity will always be larger than some constant c. Therefore, this function cannot have a runtime of O(nlogn).

It has now been proved that f(n) is neither O(n) nor $O(n\log n)$.

3 Pick Your Constants: Ω

3.1

Prove by selecting the appropriate constants and the definition used in lecture that f(n) is both $\Omega(n^2)$ and $\Omega(n)$.

Given: $f(n) = 32n^2 + 17n + 1$

General Claim: f(n) is both $\Omega(n^2)$ and $\Omega(n)$

Formal Definition of Ω runtime: $f(n) = \Omega(g(n))$ iff there exists positive constants c and n_0 s.t. $f(n) \ge c * g(n)$ for all $n \ge n_0$

Proof: f(n) has an $\Omega(n^2)$ and $\Omega(n)$ runtime iff there exist positive consants c and n_0 s.t. $T(n) \ge c \times f(n)$ for all $n \ge n_0$.

Proving f(n) has an $\Omega(n^2)$ runtime:

- 1) $f(n) \ge c \times n^2$
- 2) $32n^2 + 17n + 1 \ge c \times n^2$
- 3) let c = 32 and n = 1
- 4) $32n^2 + 17n + 1 \ge 32 \times n^2$, plug in 32 for c

- 4) $32\ln^2 + 17\ln + 1 \ge 32 \times \ln^2$, plug in 5) $\frac{32(n)^2 + 17(n) + 1}{(n)^2} \ge 32$ 6) $\frac{32(n)^2}{(n)^2} + \frac{17n}{(n)^2} + \frac{1}{(n)^2} \ge 32$ 7) $32 + \frac{17}{n} + \frac{1}{(n)^2} \ge 32$ 8) $32 + \frac{17}{(1)} + \frac{1}{(1)^2} \ge 32$, plug in 1 for n
- 9) $50 \ge 32$
- 10) If any n is inserted larger than one, become increasing smaller, but will always be greater than or equal to 32. In fact, if n is substituted by infinity then the function will equal 32, as the second and third term would just equal zero, and then there would only be a constant of 32 leftover. This proves that any $n \ge n_0$ cannot disprove this, and that f(n) has a runtime of $\Omega(n^2)$.

Proving f(n) has an $\Omega(n)$ runtime:

- 1) $f(n) \ge c \times n$
- 2) $32n^2 + 17n + 1 \ge c \times n$
- 3) let c = 50 and n = 1
- 4) $32n^2 + 17n + 1 \ge 50 \times n$, plug in 50 for c
- 5) $\frac{32(n)^2 + 17(n) + 1}{n} \ge 50$ 6) $\frac{32(n)^2}{n} + \frac{17n}{n} + \frac{1}{n} \ge 50$ 7) $32n + 17 + \frac{1}{n} \ge 50$
- 8) $50 \ge 50$, plug in 1 for n
- 9) If any n is inserted larger than one, the result will become increasingly larger, and will always be greater than or equal to 50. This proves that any $n \geq n_0$ cannot disprove this, and that f(n) has a runtime of $\Omega(n)$.

Since f(n) has both a $\Omega(n)$ and $\Omega(n^2)$ runtime, the original claim above has now been proved. The original claim being that f(n) is both $\Omega(n)$ and $\Omega(n^2)$.

3.2

Conversely, show using counter-examples, that f(n) is not $\Omega(n^3)$.

Given: $f(n) = 32n^2 + 17n + 1$

Claim: f(n) is not $\Omega(n^3)$.

Formal Definition of Ω runtime: $f(n) = \Omega(g(n))$ iff there exists positive constants c and n_0 s.t. $f(n) \ge c * g(n)$ for all $n \ge n_0$

Proof:

Prove through contradiction.

Assume f(n) has a $\Omega(n^3)$ runtime.

If this is true then there is some equation that satisfies $f(n) \ge c * n^3$

- 1) $f(n) \ge c \times n^3$
- 2) $32n^2 + 17n + 1 \ge c \times n^3$

- 3) $\frac{32(n)^2+17(n)+1}{n^3} \ge c$ 4) $\frac{32}{n} + \frac{17}{n^2} + \frac{1}{n^3} \ge c$ 5) Since there are terms that have n as a denominator, f(n) can never be greater than some constant factor. Since n can be any number, namely infinity, it does not satisfy a number greater than c, as any number divided by infinity is zero. Therefore, this function cannot have a runtime of $\Omega(n^3)$.

Pick Your Constants: Θ 4

4.1

Claim: f(n) is $\Theta(n^2)$.

Formal Definition of Θ runtime: $f(n) = \Theta(g(n))$ iff there exist positive constants

 $c_1, c_2, and n_0 s.t. c_1 x g(n) \le f(n) \le c_2 x g(n) for all n \ge n_0$

Given: $f(n) = 32n^2 + 17n + 1$

Proof:

Claim: $f(n) \le c_2 * n^2$.

- 1) $32n^2 + 17n + 1 \le c_2 * n^2$
- 2) let $c_2 = 50$ and n = 1.
- 3) $32n^2 + 17n + 1 \le 50 * n^2$, plug in 50 for c
- 4) $\frac{32n^2 + 17n + 1}{n^2} \le 50$ 5) $\frac{32n^2}{n^2} + \frac{17n}{n^2} + \frac{1}{n^2} \le 50$ 6) $32 + \frac{17}{n} + \frac{1}{n^2} \le 50$
- 7) $50 \le 50$, plug in 1 for n
- 8) If any n is inserted larger than one, the result will become increasingly smaller, and will always be less than 50. This proves that any $n \ge n_0$ cannot disprove this, and that $f(n) \le c^*n^2$.

Claim from definition: $c_1 \times g(n) \leq f(n)$:

Proving:

- 1) $f(n) \ge c_1 \times n^2$
- 2) $32n^2 + 17n + 1 \ge c_1 \times n^2$
- 3) let $c_1 = 32$ and n = 1
- 4) $32n^2 + 17n + 1 \ge 32 \times n^2$, plug in 32 for c

- 4) $3211 + 1711 + 1 \ge 32 \times 11$, plug in 5) $\frac{32(n)^2 + 17(n) + 1}{(n)^2} \ge 32$ 6) $\frac{32(n)^2}{(n)^2} + \frac{17n}{(n)^2} + \frac{1}{(n)^2} \ge 32$ 7) $32 + \frac{17}{n} + \frac{1}{(n)^2} \ge 32$ 8) $32 + \frac{17}{(1)} + \frac{1}{(1)^2} \ge 32$, plug in 1 for n

- 9) $50 \ge 32$
- 10) If any n is inserted larger than one, become increasing smaller, but will always be greater than or equal to 32. In fact, if n is substituted by infinity then the function will equal 32, as the second and third term would just equal zero, and then there would only be a constant of 32 leftover. This proves that any $n \ge n_0$ cannot disprove this, and that $c_1 \times g(n) \le f(n)$.

Since we have determined that both $c_1 \times g(n) \leq f(n)$ and $f(n) \leq c_1 \times g(n)$, this means that $c_1 \times g(n) \le f(n) \le c_2 \times g(n)$ is true which satisfies the original definition of Θ runtime, which means that this function is $\Theta(n^2)$.

4.2

Conversely, show using counter-examples, that f(n) is neither $\Theta(n)$ nor $\Theta(n^3)$. Given: $f(n) = 32n^2 + 17n + 1$ General Claim: f(n) is neither $\Theta(n)$ nor $\Theta(n^3)$. Formal Definition of Θ runtime: $f(n) = \Theta(g(n))$ iff there exist positive constants $c_1, c_2, and n_0 s.t. c_1 \times g(n) \leq f(n) \leq c_2 \times g(n) \text{ for all } n \geq n_0$ Proof:

Prove through contradiction:

Proving f(n) is not $\Theta(n)$.

Assume f(n) is $\Theta(n)$ s.t. $c_1 \times g(n) \le f(n) \le c_2 \times g(n)$ for all $n \ge n_0$

Proving $f(n) \leq c_2 \times g(n)$:

- 1) $f(n) \le c_2 * n$, let g(n) be n as this is the claim.
- 2) $32n^2 + 17n + 1 \le c_2 *n$
- 3) $\frac{32n^2 + 17n + 1}{n} \le c_2$ 4) $32n + 17 \frac{1}{n} \le c_2$
- 5) Since the first term is still in terms of n, this equation can never be true. If n were to be substituted with infinity it would surely be larger than c_2 , meaning that it is impossible for f(n) to be $\Theta(n)$.

Proving f(n) is not $\Theta(n^3)$.

Assume f(n) is $\Theta(n)$ s.t. $c_1 \times g(n) \le f(n) \le c_2 \times g(n)$ for all $n \ge n_0$

Proving $f(n) \ge c_2 \times g(n)$:

- 1) $f(n) \ge c_2 * n^3$, let g(n) be n^3 as this is the claim.
- 2) $32n^2 + 17n + 1 \ge c_2 * n^3$

- 3) $\frac{32n^2+17n+1}{n^3} \ge c_2$ 4) $\frac{32}{n} + \frac{7}{n^2} + \frac{1}{n^3} \ge c_2$ 5) Since the first term, and the other terms, are still in terms of n, this equation can never be true. If n were to be substituted with infinity it would surely be smaller than c₂. It would be smaller because anything divided by infinity is zero. This means that it is impossible for f(n) to be $\Theta(n^3)$.