EE281

First Order Circuits

Dr. M. Mert ANKARALI

First-Order Circuits

- Contains one independent energy storage element (capacitor or inductor)
- Can be described using a first-order differential equation
- Two types: RC or RL circuits
- Electrical RC Circuit and Hydraulic Analogy

RC Circuits

Assume that at t=0, the capacitor voltage is equal to V_o

RC Circuits

Assume that at t=0, the capacitor voltage is equal to V_o

RC Circuits

Assume that at t=0, the capacitor voltage is equal to V_o

Exponential Decay

• Chemical Reactions, Fluid Dynamics, Heat Transfer, Atmospheric Pressure, Radioactivity

RC Example

• Initial voltage of the capacitor is 60 V, then determine $V_{c\,\&}$ io

RC Example

$$R_{eq} = \left[8 + \left(\frac{12 \cdot 6}{12 + 6} \right)^{-1} \right] \Omega = 12\Omega$$

$$\tau = R_{eq}C = 4s$$

$$R_{eq} = \left[8 + \left(\frac{12 \cdot 6}{12 + 6} \right)^{-1} \right] \Omega = 12\Omega$$

$$V_c(t) = 60 e^{-t/4}$$

$$\tau = R_{eq}C = 4s$$

$$i_o(t) = -5 e^{-t/4} A$$

RL Circuits

• Assume that at t=0, the inductor current is equal to Io

RL Circuits

• Assume that at t=0, the inductor current is equal to Io

$$au = L/R$$

$$I_0(t) = I_0 e^{\frac{-t}{\tau}} = I_0 e^{\frac{-R}{L}t}$$

RL Circuits

RL Example

- Assume that at t<0 the switch is in closed condition and the circuit had reached steady-state conditions
- At t = 0, we open the switch. Compute $I_0(t)$

RL Example

- Assume that at t<0 the switch is in closed condition and the circuit had reached steady-state conditions
- At t = 0, we close the switch. Compute $I_o(t)$

RL Example 2

