04.03.2021 Week 2

Exercise 1 Let $\mathbf{X} \sim N_p(\boldsymbol{\mu}, \Sigma)$ a multivariate Gaussian random vector in \mathbb{R}^p . We consider the partition $\mathbf{X} = (\mathbf{X}_1', \mathbf{X}_2')'$ where $\mathbf{X}_1 \in \mathbb{R}^k$, for $1 \le k < p$ and $\mathbf{X}_2 \in \mathbb{R}^{p-k}$.

- 1. Derive the conditional density of $\mathbf{X}_1 \mid \mathbf{X}_2 = \mathbf{x}_2$.
 - Hint: It might be easier to consider the precision matrix $\Sigma^{-1} = \Psi = \begin{pmatrix} \Psi_{11} & \Psi_{12} \\ \Psi_{21} & \Psi_{22} \end{pmatrix}$ when writing the Gaussian densities above.
- 2. Derive the marginal density of X_1 .

Solution 1

1. The density of $\mathbf{X}_1 \mid \mathbf{X}_2 = x_2$ is proportional to

$$\begin{split} f_{\mathbf{X}_1|\mathbf{X}_2 = \mathbf{x}_2}(\mathbf{x}_1) &= \frac{f_{\mathbf{X}_1,\mathbf{X}_2}(\mathbf{x}_1,\mathbf{x}_2)}{f_{\mathbf{X}_2}(\mathbf{x}_2)} \\ &\overset{\mathbf{x}_1}{\propto} \exp\left(-\frac{1}{2}\left(\mathbf{x}_1 - \boldsymbol{\mu}_1\right)' \Psi_{11}\left(\mathbf{x}_1 - \boldsymbol{\mu}_1\right) - \left(\mathbf{x}_1 - \boldsymbol{\mu}_1\right)' \Psi_{12}\left(\mathbf{x}_2 - \boldsymbol{\mu}_2\right)\right) \\ &\overset{\mathbf{x}_1}{\propto} \exp\left(-\frac{1}{2}\mathbf{x}_1' \Psi_{11}\mathbf{x}_1 + \mathbf{x}_1' \left(\Psi_{11}\boldsymbol{\mu}_1 - \Psi_{12}\left(\mathbf{x}_2 - \boldsymbol{\mu}_2\right)\right)\right), \end{split}$$

which is proportional to a multivariate gaussian density. By identification, the precision matrix is Ψ_{11} and the mean is

$$\mu_{1|2} = \mu_1 - \Psi_{11}^{-1} \Psi_{12} \left(\mathbf{x}_2 - \boldsymbol{\mu}_2 \right)$$

Using the results of exercise 3, we obtain

$$\mu_{1|2} = \mu_1 + \Sigma_{12} \Sigma_{22}^{-1} (\mathbf{x}_2 - \mu_2)$$

$$\Sigma_{1|2} = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}.$$

2. The marginal density can be computed by integrating the joint density and completing the squares. Indeed,

$$\begin{split} f(\mathbf{x}_1) &= \int f(\mathbf{x}_1, \mathbf{x}_2) d\mathbf{x}_2 \\ &\propto \int \exp\left\{-\frac{1}{2}(\mathbf{x}_1 - \boldsymbol{\mu}_1)' \Psi_{11}(\mathbf{x}_1 - \boldsymbol{\mu}_1) - \frac{1}{2}(\mathbf{x}_2 - \boldsymbol{\mu}_2)' \Psi_{22}(\mathbf{x}_2 - \boldsymbol{\mu}_2) - (\mathbf{x}_2 - \boldsymbol{\mu}_2)' \Psi_{21}(\mathbf{x}_1 - \boldsymbol{\mu}_1)\right\} d\mathbf{x}_2 \\ &\propto \exp\left\{-\frac{1}{2}(\mathbf{x}_1 - \boldsymbol{\mu}_1)' \Psi_{11}(\mathbf{x}_1 - \boldsymbol{\mu}_1) + \boldsymbol{\mu}_2' \Psi_{21}(\mathbf{x}_1 - \boldsymbol{\mu}_1)\right\} \times \int \exp\left\{-\frac{1}{2}\mathbf{x}_2' \Psi_{22}\mathbf{x}_2 + \mathbf{x}_2' \Psi_{22}\boldsymbol{\mu}_2 - \mathbf{x}_2' \Psi_{21}(\mathbf{x}_1 - \boldsymbol{\mu}_1)\right\} d\mathbf{x}_2 \\ &\propto \exp\left\{-\frac{1}{2}(\mathbf{x}_1 - \boldsymbol{\mu}_1)' \Psi_{11}(\mathbf{x}_1 - \boldsymbol{\mu}_1) + \boldsymbol{\mu}_2' \Psi_{21}(\mathbf{x}_1 - \boldsymbol{\mu}_1)\right\} \times \int \exp\left\{-\frac{1}{2}\mathbf{x}_2' \Psi_{22}\mathbf{x}_2 + \mathbf{x}_2' \Psi_{22}\underbrace{\left[\boldsymbol{\mu}_2 - \boldsymbol{\Psi}_{22}^{-1} \Psi_{21}(\mathbf{x}_1 - \boldsymbol{\mu}_1)\right]}_{:=\boldsymbol{\nu}}\right\} d\mathbf{x}_2 \\ &\propto \exp\left\{-\frac{1}{2}(\mathbf{x}_1 - \boldsymbol{\mu}_1)' \Psi_{11}(\mathbf{x}_1 - \boldsymbol{\mu}_1) + \boldsymbol{\mu}_2' \Psi_{21}(\mathbf{x}_1 - \boldsymbol{\mu}_1)\right\} \times \int \exp\left\{-\frac{1}{2}\mathbf{x}_2' \Psi_{22}\mathbf{x}_2 + \mathbf{x}_2' \Psi_{22}\boldsymbol{\nu} - \frac{1}{2}\boldsymbol{\nu}' \Psi_{22}\boldsymbol{\nu} + \frac{1}{2}\boldsymbol{\nu}' \Psi_{22}\boldsymbol{\nu}\right\} d\mathbf{x}_2 \\ &\propto \exp\left\{-\frac{1}{2}(\mathbf{x}_1 - \boldsymbol{\mu}_1)' \Psi_{11}(\mathbf{x}_1 - \boldsymbol{\mu}_1) + \boldsymbol{\mu}_2' \Psi_{21}(\mathbf{x}_1 - \boldsymbol{\mu}_1) + \frac{1}{2}\boldsymbol{\nu}' \Psi_{22}\boldsymbol{\nu}\right\} \times \int \exp\left\{-\frac{1}{2}\mathbf{x}_2' \Psi_{22}\mathbf{x}_2 + \mathbf{x}_2' \Psi_{22}\mathbf{x}_2 + \mathbf{x}_2' \Psi_{22}\boldsymbol{\nu} - \frac{1}{2}\boldsymbol{\nu}' \Psi_{22}\boldsymbol{\nu}\right\} d\mathbf{x}_2 \\ &\propto \exp\left\{-\frac{1}{2}(\mathbf{x}_1 - \boldsymbol{\mu}_1)' \Psi_{11}(\mathbf{x}_1 - \boldsymbol{\mu}_1) + \boldsymbol{\mu}_2' \Psi_{21}(\mathbf{x}_1 - \boldsymbol{\mu}_1) + \frac{1}{2}\boldsymbol{\nu}' \Psi_{22}\boldsymbol{\nu}\right\} \times \underbrace{\int \exp\left\{-\frac{1}{2}(\mathbf{x}_2 - \boldsymbol{\nu})' \Psi_{22}(\mathbf{x}_2 - \boldsymbol{\nu})\right\} d\mathbf{x}_2}_{:=C} \\ &\propto \exp\left\{-\frac{1}{2}(\mathbf{x}_1 - \boldsymbol{\mu}_1)' \Psi_{11}(\mathbf{x}_1 - \boldsymbol{\mu}_1) + \boldsymbol{\mu}_2' \Psi_{21}(\mathbf{x}_1 - \boldsymbol{\mu}_1) + \frac{1}{2}\left[\boldsymbol{\mu}_2 - \Psi_{22}^{-1} \Psi_{21}(\mathbf{x}_1 - \boldsymbol{\mu}_1)\right]' \Psi_{22}\left[\boldsymbol{\mu}_2 - \Psi_{22}^{-1} \Psi_{21}(\mathbf{x}_1 - \boldsymbol{\mu}_1)\right]\right\} \\ &\propto \exp\left\{-\frac{1}{2}(\mathbf{x}_1 - \boldsymbol{\mu}_1)' \Psi_{11}(\mathbf{x}_1 - \boldsymbol{\mu}_1) + \boldsymbol{\mu}_2' \Psi_{21}(\mathbf{x}_1 - \boldsymbol{\mu}_1) + \frac{1}{2}(\mathbf{x}_1 - \boldsymbol{\mu}_1)' \Psi_{12}\Psi_{22}(\mathbf{x}_1 - \boldsymbol{\mu}_1)\right\right\} \\ &\propto \exp\left\{-\frac{1}{2}(\mathbf{x}_1 - \boldsymbol{\mu}_1)' \Psi_{11}(\mathbf{x}_1 - \boldsymbol{\mu}_1) + \boldsymbol{\mu}_2' \Psi_{21}(\mathbf{x}_1 - \boldsymbol{\mu}_1) + \frac{1}{2}(\mathbf{x}_1 - \boldsymbol{\mu}_1)' \Psi_{12}\Psi_{22}^{-1}\Psi_{21}(\mathbf{x}_1 - \boldsymbol{\mu}_1)\right\right\} \\ &\propto \exp\left\{-\frac{1}{2}(\mathbf{x}_1 - \boldsymbol{\mu}_1)' \Psi_{11}(\mathbf{x}_1 - \boldsymbol{\mu}_1) + \boldsymbol{\mu}_2' \Psi_{21}(\mathbf{x}_1 - \boldsymbol{\mu}_1) + \frac{1}{2}(\mathbf{x}_1 - \boldsymbol{\mu}_1)' \Psi_{12}\Psi_{22}^{-1}\Psi_{21}(\mathbf{x}_1 - \boldsymbol{\mu}_1)\right\right\} \\ &\propto \exp\left\{-\frac{1}{2}(\mathbf{x}_1 - \boldsymbol{\mu}_1)' \Psi_{11}(\mathbf{x}_1 - \boldsymbol{\mu}_1) + \boldsymbol{\mu}_2' \Psi_{21}($$

The step written in blue corresponds to adding and removing the same term in order to complete the squares; Indeed, this allows us to obtain the density function of a Gaussian random vector with mean $\boldsymbol{\nu}$ et precision matrix Ψ_{22} inside the integral. We notice that we have omitted the normalisation constant $C = 1/\sqrt{2\pi \|\Psi_{22}^{-1}\|}^{p-k}$. Since for the density function f, $\int f(\mathbf{x}_2)d\mathbf{x}_2 = 1$, we can replace the unknown integral above by the constant C. In conclusion, the marginal density is proportional to

$$\exp \left\{ -\frac{1}{2} (\mathbf{x}_1 - \boldsymbol{\mu}_1)' (\Psi_{11} - \Psi_{12} \Psi_{22}^{-1} \Psi_{21}) (\mathbf{x}_1 - \boldsymbol{\mu}_1) \right\}$$

so we can identify it as a Gaussian density with precision matrix $\Psi_{11} - \Psi_{12}\Psi_{22}^{-1}\Psi_{21}$ (which is equal to Σ_{11}^{-1} , see Ex.4, Serie 1) and mean equal to μ_1 .

Exercise 2 We consider $\mathbf{X} \sim N_p(\boldsymbol{\mu}_X, \Sigma_X)$ and $\mathbf{Y} \mid \mathbf{X} = \mathbf{x} \sim N_q(\boldsymbol{\alpha} + \beta \mathbf{x}, \Sigma)$ where $\boldsymbol{\mu} \in \mathbb{R}^p$, $\Sigma_X \in R^{p \times p}$, $\boldsymbol{\alpha} \in \mathbb{R}^q$, $\boldsymbol{\beta} \in \mathbb{R}^{q \times p}$ and $\Sigma \in \mathbb{R}^{q \times q}$.

1. Prove that $(\mathbf{X}', \mathbf{Y}')' \sim N_{p+q}$, compute its mean and show that

$$V(\mathbf{X}', \mathbf{Y}')' = \begin{pmatrix} \Sigma_X & \Sigma_X \beta' \\ \beta \Sigma_X & \Sigma + \beta \Sigma_X \beta' \end{pmatrix}$$

Hint: Start by setting $\mathbf{U} = \mathbf{Y} - \boldsymbol{\alpha} - \beta \mathbf{X}$ and showing that \mathbf{X} and \mathbf{U} are independent, then find a matrix A and a vector \mathbf{c} such that $(\mathbf{X}', \mathbf{Y}')' = A(\mathbf{X}', \mathbf{U}')' + \mathbf{c}$.

2. Show that the conditional distribution of $X \mid Y = y$ is Gaussian with

$$E[\mathbf{X} \mid \mathbf{Y} = \mathbf{y}] = \boldsymbol{\mu}_X + \beta \Sigma_X (\Sigma + \beta \Sigma_{\mathbf{X}} \beta')^{-1} (\mathbf{y} - \boldsymbol{\alpha} - \boldsymbol{\mu}_X \beta),$$

$$V[\mathbf{X} \mid \mathbf{Y} = \mathbf{y}] = \Sigma_X - \Sigma_X \beta' (\Sigma + \beta \Sigma_X \beta')^{-1} \beta \Sigma_X,$$

assuming that the matrices $\Sigma, \Sigma_X, (\Sigma + \beta \Sigma_X \beta')$ are invertible.

Solution 2

1. We set $\mathbf{U} = \mathbf{Y} - \boldsymbol{\alpha} - \beta \mathbf{X}$. We will show that \mathbf{X} and \mathbf{U} are independent using the characteristic function.

$$\Phi_{(\mathbf{X}',\mathbf{U}')'}\begin{pmatrix} \mathbf{t}_1 \\ \mathbf{t}_2 \end{pmatrix} = \mathbf{E} \left[\exp \left(\mathbf{i} \begin{pmatrix} \mathbf{t}_1 & \mathbf{t}_2 \end{pmatrix} \begin{pmatrix} \mathbf{X} \\ \mathbf{U} \end{pmatrix} \right) \right]$$
(1)

$$= \int \int \exp\left[i\mathbf{t}_1\mathbf{x} + i\mathbf{t}_2\mathbf{u}\right] f_{X,U}(\mathbf{x}, \mathbf{u}) d\mathbf{x} d\mathbf{u}$$
 (2)

$$= \int \int \exp\left[i\mathbf{t}_{1}\mathbf{x} + i\mathbf{t}_{2}\mathbf{u}\right] f_{X,Y}(\mathbf{x}, \mathbf{u} + \beta\mathbf{x} + \boldsymbol{\alpha}) d\mathbf{x} d\mathbf{u}$$
(3)

$$= \int \int \exp\left[i\mathbf{t}_1\mathbf{x} + i\mathbf{t}_2\mathbf{u}\right] f_{Y|X=\mathbf{x}}(\mathbf{u} + \boldsymbol{\alpha} + \beta\mathbf{x}) f_X(\mathbf{x}) d\mathbf{x} d\mathbf{u}$$
(4)

$$\propto \int \int \exp\left[i\mathbf{t}_1\mathbf{x} + i\mathbf{t}_2\mathbf{u}\right] \exp\left(-\frac{1}{2}\mathbf{u}'\Sigma^{-1}\mathbf{u}\right) \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_X)'\Sigma_X^{-1}(\mathbf{x} - \boldsymbol{\mu}_X)\right) d\mathbf{x} d\mathbf{u}$$
 (5)

$$\propto \int \exp\left[i\mathbf{t}_1\mathbf{x} - \frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_X)'\Sigma_X^{-1}(\mathbf{x} - \boldsymbol{\mu}_X)\right] d\mathbf{x} \int \exp\left[i\mathbf{t}_2\mathbf{u} - \frac{1}{2}\mathbf{u}'\Sigma^{-1}\mathbf{u}\right] d\mathbf{u}$$
 (6)

From line (2) to (3), we considered the transformation

$$\begin{pmatrix} \mathbf{X} \\ \mathbf{U} \end{pmatrix} = \begin{pmatrix} I_p & 0_{p \times q} \\ -\beta & I_q \end{pmatrix} \begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \end{pmatrix} + \begin{pmatrix} 0_p \\ -\alpha \end{pmatrix},$$

for which the determinant of the Jacobian is 1. We then obtain

$$\Phi_{(\mathbf{X}',\mathbf{U}')'}\begin{pmatrix}\mathbf{t}_1\\\mathbf{t}_2\end{pmatrix} = \Phi_{\mathbf{X}}(\mathbf{t_1})\Phi_{\mathbf{U}}(\mathbf{t_2})$$

So U and X are independent and the variance of (X', U')' is

$$V\begin{pmatrix} \mathbf{X} \\ \mathbf{U} \end{pmatrix} = \begin{pmatrix} \Sigma_X & 0_{p \times q} \\ 0_{q \times p} & \Sigma \end{pmatrix}.$$

Now, we write

$$\begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \end{pmatrix} = \begin{pmatrix} I_p & 0_{p \times q} \\ \beta & I_q \end{pmatrix} \begin{pmatrix} \mathbf{X} \\ \mathbf{U} \end{pmatrix} + \begin{pmatrix} 0_p \\ \boldsymbol{\alpha} \end{pmatrix}.$$

Hence

$$E\begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \end{pmatrix} = \begin{pmatrix} \boldsymbol{\mu}_X \\ \boldsymbol{\alpha} + \beta \boldsymbol{\mu}_X \end{pmatrix}$$

and

$$V\begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \end{pmatrix} = \begin{pmatrix} \Sigma_X & \Sigma_X \beta' \\ \beta \Sigma_X & \Sigma + \beta \Sigma_X \beta' \end{pmatrix}$$

2. We can directly apply the results of question 1 in Exercise 1, where we consider $X_1 = X$ and $X_2 = Y$.

Exercise 3 Let $\mathbf{X}_1, \dots, \mathbf{X}_n$ be i.i.d. random vectors in \mathbb{R}^p with mean $\boldsymbol{\mu}$ and covariance matrix Σ . Consider the sample mean $\bar{\mathbf{X}}$ and the sample variance-covariance matrix S and show that $T_0^2 = n(\bar{\mathbf{X}} - \boldsymbol{\mu})' S^{-1}(\bar{\mathbf{X}} - \boldsymbol{\mu})$ is invariant under all the afine transformations $\mathbf{Y}_i = A\mathbf{X}_i + \mathbf{b}$, where A is an invertible matrix of constants and \mathbf{b} is a vector of constants.

Solution 3

$$\begin{split} T_0^2(\mathbf{Y}) &= n(\bar{\mathbf{Y}} - \boldsymbol{\mu}_Y)' \, S_Y^{-1}(\bar{\mathbf{Y}} - \boldsymbol{\mu}_Y) \\ &= n(A\bar{\mathbf{X}} - A\boldsymbol{\mu}_X)' \, (AS_XA')^{-1}(A\bar{\mathbf{X}} - A\boldsymbol{\mu}_X) \\ &= n(\bar{\mathbf{X}} - \boldsymbol{\mu}_X)' S_X^{-1}(\bar{\mathbf{X}} - \boldsymbol{\mu}_X) = T_0^2(\mathbf{X}). \end{split}$$

Exercise 4 (Simulation of Gaussian random vectors in R)

We consider the random vector \mathbf{X} in \mathbb{R}^2 from a standard gaussian distribution $N_2(\mathbf{0}, \mathbf{1})$.

- 1. Generate N = 1000 independent random replicates $\mathbf{X}_1, \dots, \mathbf{X}_n$ of \mathbf{X} . Hint: The function rnorm(n) generates n independent replicates of a univariate random distribution.
 - a) Estimate the sample mean and covariance matrix.
 - b) plot the sample and draw diagnostic plots of the marginal distributions.
- 2. We define another Gaussian vector \mathbf{Y} satisfying : $\mathbb{E}[Y_1] = 5$, $\mathbb{E}[Y_2] = 5$, $\operatorname{Var}(Y_1) = 1$, $\operatorname{Var}(Y_2) = 1$ and $\operatorname{Cov}(Y_1, Y_2) = 0.9$.
 - a) Generate N=1000 independent replicates $\mathbf{Y}_1,\ldots,\mathbf{Y}_n$ starting from $\mathbf{X}_1,\ldots,\mathbf{X}_n$. Hint: The function chol computes the Choleski factorization of Σ and returns \mathbf{A} such that $\mathbf{A}'\mathbf{A}=\Sigma$.
 - b) plot the sample and draw visual diagnostic plots of the marginal distributions.

Solution 4 See R script.