

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Робототехники и комплексной автоматизации

КАФЕДРА Системы автоматизированного проектирования (РК-6)

ОТЧЕТ О ВЫПОЛНЕНИИ ЛАБОРАТОРНОЙ РАБОТЫ

Студент	Головко Антон Павлович			
Группа	РК6-63			
Тип задания	лабораторная работа			
Тема лабораторной работы	Численное дифференцирование. Численное интегрирование. Быстрое преобразование Фурье.			
Студент	подпись, дата фамилия, и.о.			
	подпись, дата фамилия, и.о.			
Преподаватель	Соколов А.П.			
	подпись, дата фамилия, и.о.			
Оценка				

Задание

Задача 1 (численное дифференцирование) Дана функция

$$g(x) = xe^x, (1)$$

и узел $x_0 = 2$.

Требуется:

1. Вывести общую центральную формулу численного дифференцирования 4-го порядка вместе с остаточным членом, аппроксимирующую первую производную по 5 узлам:

$$f' \approx Af(x_0 - 2h) + Bf(x_0 - h) + Cf(x_0) + Df(x_0 + h) + Ef(x_0 + 2h).$$
 (2)

Продемонстрируйте, что формула действительно имеет 4-й порядок точности.

- 2. Написать функцию diff2(x_0 , h, f), которая возвращает значение первой производной функции f на основе центральной формулы численного дифференцирования 2-го порядка в точке x_0 для шага дифференцирования h.
- 3. Написать функцию diff4(x_0 , h, f), которая возвращает значение первой производной функции f на основе центральной формулы численного дифференцирования 4-го порядка в точке x 0 для шага дифференцирования h.
- 4. Рассчитать производную g'(x) в точке x0 = 2 для множества значений $h \in [10^{-16}; 1]$ сначала с помощью функции diff2, а затем с помощью функции diff4. Для обоих случаев постройте log-log графики зависимости абсолютной погрешности численного дифференцирования от шага дифференцирования. Для каждого случая ответьте на следующие вопросы:
- · Каким образом на log-log графике можно увидеть порядок формулы дифференцирования? Докажите это формульно и продемонстрируйте на графике по аналогии с лекциями.
- · Совпадает ли порядок выведенной формулы дифференцирования на log-log графике с ее действительным порядком?

- · Каков оптимальный шаг дифференцирования, при котором абсолютная погрешность минимальна? С чем связано существование такого минимума? Обоснуйте свой ответ, ссылаясь на данные log-log графика.
- 5. Сравните оптимальный шаг дифференцирования и соответствующую минимально достижимую погрешность для формул 2-го и 4-го порядка. Как вы думаете, чем обоснована разница между ними?

Задача 2 (численное интегрирование) Дана функция

$$g(x) = x^2 \sin 3x, (3)$$

заданная на интервале $x \in [0; \pi]$.

Требуется:

- 1. Написать функцию composite_simpson(a, b, n, f) численного интегрирования функции f на интервале [a; b] по n узлам с помощью составной формулы Симпсона.
- 2. Рассчитать интеграл $\int_0^\pi g(x) dx$ с помощью составной формулы Симпсона для множества значений $n \in [3; 9999]$. Постройте log-log график зависимости абсолютной погрешности численного интегрирования от шага интегрирования. Как и в предыдущем задании, объясните, каким образом по полученному графику можно определить порядок точности формулы. Сравните порядок формулы, полученный с помощью графика, с аналитическим порядком точности составной формулы Симпсона. Существует ли оптимальный шаг интегрирования для данной формулы, минизимирующий достижимую погрешность? Обоснуйте свой ответ.
- 3. С помощью теоремы о корнях многочленов Лежандра, доказанной в лекциях, вывести квадратуру Гаусса, имеющую степень точности 5. Сколько узлов необходимо для использования такой квадратуры?

- 4. Написать функцию gauss_quad5(f) численного интегрирования функции f с помощью квадратуры Гаусса пятой степени точности.
- 5. Доказать, что квадратура Гаусса имеет степень точности 5, с помощью следующего вычислительного эксперимента:
- · постройте последовательность полиномов P0(x), P1(x), P2(x), P3(x), P4(x), P5(x), P6(x), имеющих степени соответственно 0, 1, 2, 3, 4, 5, и 6, используя случайно сгенерированные значения коэффициентов полиномов;
- · проинтегрируйте их на интервале [0; 2] аналитически и с помощью выведенной квадратуры Гаусса;
- · посчитайте абсолютную погрешность и сделайте вывод о степени точности выведенной квадратуры;
- все выкладки и посчитанные значения должны быть в отчете.

Задача 3 (БПФ) Даны функции

$$f_1(x) = 5 + 4\cos 2x + 2\sin 3x - \cos 4x,$$

$$f_2(x) = |x|,$$

$$f_3(x) = \begin{cases} -1 & -\pi \le x < 0 \\ 1 & 0 \le x \le \pi \end{cases}$$
(4)

заданные на интервале $x \in [-\pi; \pi]$.

Требуется:

- 1. Используя алгоритм Кули–Тьюки, написать функцию fft_coeff(y_nodes), которая вычисляет и возвращает комплексные коэффициенты тригонометрического полинома, интерполирующего узлы y_nodes, равномерно распределенные на отрезке $[-\pi; \pi]$.
- 2. Протестировать корректность результатов работы функции fft_coeff(y_nodes) с помощью БПФ для функции $f_1(x)$. Пользуясь выкладками из лекций,

объясните, как связаны возвращаемые комплексные коэффициенты (и их индексы) с исходной функцией.

- 3. Написать функцию trigonometric_interpolant(x, coeffs), которая вычисляет значение тригонометрического полинома с коэффициентами coeffs в точке x.
- 4. Используя функции trigonometric_interpolant и fft_coeff, произвести тригонометрическую интерполяцию функции $f_2(x)$ для $N=2^{\tilde{n}}$, где $\tilde{n}\in 1,\ldots,8$ и вывести результаты в виде графиков. Проанализируйте непрерывность функции $f_2(x)$ и исходя из графиков сделайте вывод о сходимости подобного приближения:
- является ли сходимость равномерной?
- является ли сходимость среднеквадратической?
- 5. Повторите те же шаги для функции $f_3(x)$ и ответьте на те же вопросы. В чем по вашему мнению причина различий?

Оглавление

Це	ль выполнения лабораторной работы	7
Зад	дачи, выполненные в процессе реализации лабораторной работы	7
1.	Численное дифференцирование.	. 10
2.	Численное интегрирование	. 13
3.	Быстрое преобразование Фурье.	. 17
3aı	ключение	. 21

Цель выполнения лабораторной работы

Цель выполнения лабораторной работы — изучить основы языка python для реализации задач вычислительной математики; реализовать функции для численного дифференцирования, численного интегрирования и функцию для быстрого преобразования Фурье.

Задачи, выполненные в процессе реализации лабораторной работы

1. Разработана функция diff2(x_0 , h, f), которая возвращает значение первой производной функции f на основе центральной формулы численного дифференцирования 2-го порядка в точке x_0 для шага дифференцирования h (листинг 1.1).

Листинг 1.1 -Код функции diff $2(x_0, h, f)$

```
def diff2(x_0,h,f):
    difF2 = ((1/(2*h))*f(x_0+h))-((1/(2*h))*f(x_0-h))
    return difF2
```

2. Разработана функция diff4(x_0 , h, f), которая возвращает значение первой производной функции f на основе центральной формулы численного дифференцирования 4-го порядка в точке x_0 для шага дифференцирования h (листинг 1.2).

Листинг 1.2 – Код функции diff $4(x_0, h, f)$

```
def diff4(x_0, h, f):
    A = 1 / (12 * h)
    B = -2 / (3 * h)
    C = 0
    D = -B
    E = -A

    difF4 = A * f(x_0 - 2 * h) + B * f(x_0 - h) + C * f(x_0) + D * f(x_0 + h) + E * f(x_0 + 2 * h)

    return difF4
```

3. Разработана функция composite_simpson(a, b, n, f) численного интегрирования функции f на интервале [a; b] по n узлам с помощью составной формулы Симпсона (листинг 1.3).

Листинг 1.3 – Код функции composite_simpson(a, b, n,f)

```
def composite_simpson(a,b,n,f):
    h3 = ((b-a)/(n-1))/3
    x = np.linspace(a, b, n)
    oddX = x[2:-1:2]
    evenX = x[1:-1:2]
    integS = h3*(f(a)+2*sum(f(oddX))+4*sum(f(evenX))+f(b))
    return integS
```

4. Разработана функция gauss_quad5(f) численного интегрирования функции f с помощью квадратуры Гаусса пятой степени точности (листинг 1.4). Листинг 1.4 – Код функции gauss_quad5(f)

```
def gauss_quad5(f):
    a = 0
    b = 2

c1 = 8 / 9
    c2 = 10 / 18
    c3 = c2

x1 = 0.5 * (a + b)
    x2 = 0.5 * ((b - a)*(0.6 ** 0.5) + a + b)
    x3 = 0.5 * (a + b + (a - b)*(0.6**0.5))

integG = c1*f(x1) + c2*f(x2) + c3*f(x3)
    return integG
```

5. Разработана функция fft_coeff(k, y_nodes), которая вычисляет и возвращает комплексные коэффициенты тригонометрического полинома, интерполирующего узлы y_nodes, равномерно распределенные на отрезке $[-\pi; \pi]$ (листинг 1.5).

Листинг 1.5 – Код функции $fft_coeff(k,y_nodes)$

```
def fft_coeff(k,y_nodes):
    n = len(y_nodes)

if (n == 2):
    return y_nodes[0] + y_nodes[1]*((-1)**k)

evenY = y_nodes[0:n:2]
    oddY = y_nodes[1:n:2]

Ek = fft_coeff(k,evenY)
    Ok = fft_coeff(k,oddY)

e = exp((-1j * k * pi) / (n/2))
    return Ek + e*Ok
```

6. Разработана функция trigonometric_interpolant(x, coeffs), которая вычисляет значение тригонометрического полинома с коэффициентами coeffs в точке x (листинг 1.6).

Листинг 1.6 – Код функции trigonometric_interpolant(x, coeffs)

```
def trigonometric_interpolant(x,coeffs):
    m = len(coeffs) - 1
    fft = np.real(coeffs[0])
    for i in range(1,m):
        fft += 2*np.real(coeffs[i])*cos(i*x) -\
2*np.imag(coeffs[i])*sin(i*x)
    fft += np.real(coeffs[m])*cos(m*x)
    return fft
```

1. Численное дифференцирование.

Получим общую центральную формулу численного дифференцирования 4-го порядка с помощью разложения f(x) в ряд Тейлора. Формула первого порядка получается из разложения f(x) в точке x_1 и дальнейшем вычислении рядя в точке $x_1 + h$. Формула четвертого порядка получается аналогичным образом, однако требуются дополнительные вычисления в точках $x_1 - 2h$, $x_1 - h$, $x_1 + h$, $x_1 + 2h$:

$$f(x_1-2h)=f(x_1)-2hf'(x_1)+2h^2f''(x_1)-\frac{4}{3}h^3f'''(x_1)+\frac{2}{3}h^4f'^v(x_1)-\frac{2}{15}h^5f^v(\xi^1)\ \ (1.1),$$

$$f(x_1-h)=f(x_1)-hf'(x_1)+\frac{1}{2}h^2f''(x_1)-\frac{1}{6}h^3f'''(x_1)+\frac{1}{24}h^4f'^v(x_1)-\frac{1}{120}h^5f^v(\xi^2)\ \ (1.2),$$

$$f(x_1+h)=f(x_1)+hf'(x_1)+\frac{1}{2}h^2f''(x_1)+\frac{1}{6}h^3f'''(x_1)+\frac{1}{24}h^4f'^v(x_1)+\frac{1}{120}h^5f^v(\xi^3)\ \ \ (1.3),$$

$$f(x_1+2h)=f(x_1)+2hf'(x_1)+2h^2f''(x_1)+\frac{4}{3}h^3f'''(x_1)+\frac{2}{3}h^4f'^v(x_1)+\frac{2}{15}h^5f^v(\xi^4)\ \ \ \ \ \ (1.4),$$

$$\text{где}\quad \xi^1\in (x_1-2h;x_1),\ \xi^2\in (x_1-h;x_1),\ \xi^3\in (x_1;x_1+h),\ \xi^4\in (x_1;x_1+2h).$$

$$\text{Тогда отняв из } (1.4)\,(1.1)\,\text{и из } (1.3)\,(1.2)\,\text{получим:}$$

$$f(x_1 + h) - f(x_1 - h) = 2hf'(x_1) + \frac{1}{3}h^3f'''(x_1) + \frac{1}{120}h^5[f^v(\xi^3) + f^v(\xi^2)]$$
(1.5),
$$f(x_1 + 2h) - f(x_1 - 2h) = 4hf'(x_1) + \frac{8}{3}h^3f'''(x_1) + \frac{2}{15}h^5[f^v(\xi^4) + f^v(\xi^1)]$$
(1.6).

В итоге, домножив (1.5) на 8 и отняв из (1.6) получим:

$$f(x_1 + 2h) - f(x_1 - 2h) - 8(f(x_1 + h) - f(x_1 - h))$$

$$= -12hf'(x_1) + h^5 \left[\frac{2}{15} (f^{\nu}(\xi^4) + f^{\nu}(\xi^1)) - \frac{1}{15} (f^{\nu}(\xi^3) + f^{\nu}(\xi^2)) \right] (1.7).$$

Для получения формулы общей центральной формулы численного дифференцирования 4-го порядка вместе с остаточным членом осталось выразить первую производную из (1.7).

$$f'(x_1) = \frac{8(f(x_1 - h) - f(x_1 + h)) - (f(x_1 + 2h) - f(x_1 - 2h))}{12h} + \frac{h^4}{180} [4(f^{\nu}(\xi^1) - f^{\nu}(\xi^4)) - (f^{\nu}(\xi^2) - f^{\nu}(\xi^3))]$$
(1.8).

Из (1.8) можно выделить коэффициенты A,B,C,D,E:

$$A = \frac{1}{12h'}$$
 $B = -\frac{2}{3h'}$ $C = 0$, $D = \frac{2}{3h'}$ $E = -\frac{1}{12h}$. (1.9)

Степень остаточного члена в формуле (1.8) равна 4. Используя данную формулу можно точно вычислить производные функций, степень которых строго меньше 5. В этом случае остаточный член содержащий $f^{v}(\xi)$, будет обращаться в ноль.

Была разработана функции diff2(x_0, h, f), которая возвращает значение первой производной функции f на основе центральной формулы численного дифференцирования 2-го порядка в точке x_0 для шага дифференцирования h. Функция использует следующую формулу дифференцирования:

$$f'(x_1) = \frac{f(x_1 + h) - f(x_1 - h)}{2h} + \frac{h^2}{3}f'''(\xi)$$
(1.10)

Также разработана функция diff4(x_0 , h, f), которая возвращает значение первой производной функции f на основе центральной формулы численного дифференцирования 4-го порядка в точке x_0 для шага дифференцирования h.

Рис. 1 Зависимость погрешности от шага дифференцирования функции (1), а) с использованием формулы второго порядка (1.10), б) 4-ого порядка (1.8).

Для определения порядка точности формулы дифференцирования на графике, нужно выявить зависимости вида $E(h) = \alpha h^{\gamma}$. Для графиков выше (Рис. 1) зависимости следующие:

- a) $E \sim h^2$,
- б) $E \sim h^4$,

то есть для а) порядок формулы равен 2, а для б) равен 4, это соответствует порядку остаточного члена (1.8) (1.10). На графике (Рис. 1) зависимости обозначены прямой линией.

Из графиков (Рис. 1) следует, что:

- оптимальный шаг дифференцирования для формулы численного дифференцирования 2-ого порядка для функции g(x)(1) $h \approx 10^{-5}$,
- оптимальный шаг дифференцирования для формулы численного дифференцирования 4-ого порядка для функцuи g(x)(1) $h \approx 10^{-3}$.

Это связано с неустойчивостью формул численного дифференцирования (при бесконечно малом шаге погрешность стремится к бесконечности), постоянное уменьшение шага дифференцирования не приводит к увеличению точности. Таким образом, при определённом шаге вычислительная погрешность начнёт увеличиваться обратно пропорционально шагу дифференцирования.

Так как (1.8) имеет меньшую степень остаточного члена чем (1.10), то и оптимальное значение шага h для формулы 4-ого порядка меньше, чем для формулы 2-ого порядка.

2. Численное интегрирование.

Была разработана функция composite_simpson(a, b, n, f) численного интегрирования функции f на интервале [a; b] по n узлам с помощью составной формулы Симпсона.

Рассчитан интеграл $\int_0^\pi g(x)dx$ с помощью составной формулы Симпсона для множества значений $n \in [3; 9999]$. Постройте log-log график зависимости абсолютной погрешности численного интегрирования от шага интегрирования (Рис. 2).

Рис. 2 log-log график зависимости абсолютной погрешности численного интегрирования от шага интегрирования функции $g(x) = x^2 sin 3x$ с помощью составной формулы Симпсона.

Для определения порядка точности формулы дифференцирования на графике, нужно выявить зависимости вида $E(h) = \alpha h^{\gamma}$. Для функции composite_simpson(a, b, n) (Рис. 2) зависимость имеет вид $E \sim h^4$, что

соответствует аналитическому порядку точности составной формулы Симпсона. В дифференцирования, отличие формулы численного интегрирования устойчивы, оптимального шага не существует, следовательно, полная погрешность интегрирования падает до тех пор, пока не достигнет значения, сравнимого машинного эпсилон.

С помощью теоремы о корнях многочленов Лежандра, доказанной в лекциях (теорема 3.2.8 [1, c.55]), выведем квадратуру Гаусса, имеющую степень точности 5. Для того чтобы проинтегрировать полином 5 степени, необходимо построить квадратуру для которой потребуется $n = \frac{6}{2} = 3$ узла.

Рассмотрим квадратуру:

$$\int_{-1}^{1} f(x)dx \approx \sum_{i=1}^{n} c_{i} f(x_{i}). \quad (2.1)$$

Она имеет 2n параметров, столько же параметров имеет полином 2n-1 степени. Перепишем соответственно квадратуру:

$$\int_{-1}^{1} P_m(x) dx \approx \sum_{i=1}^{n} c_i P_m(x_i), \quad m < 6 \quad (2.2)$$

где $x_1=0,\,x_2=\sqrt{\frac{3}{5}},\,x_3=-\sqrt{\frac{3}{5}}$ - корни многочлена Лежандра 3-ей степени,

$$c_i = \int_{-1}^1 l_i(x) dx = \int_{-1}^1 \prod_{\substack{j=1, j \neq i}}^3 \frac{x - x_j}{x_i - x_j} dx. \quad (2.3)$$

Тогда:

$$c_1 = \int_{-1}^{1} \frac{x - \sqrt{\frac{3}{5}}}{0 - \sqrt{\frac{3}{5}}} \cdot \frac{x + \sqrt{\frac{3}{5}}}{0 + \sqrt{\frac{3}{5}}} dx = \frac{8}{9}, \qquad (2.4)$$

$$c_2 = \int_{-1}^{1} \frac{x + \sqrt{\frac{3}{5}}}{\sqrt{\frac{3}{5}} + \sqrt{\frac{3}{5}}} \cdot \frac{x - 0}{\sqrt{\frac{3}{5}} - 0} dx = \frac{5}{9},$$
 (2.5)

$$c_3 = \int_{-1}^{1} \frac{x - \sqrt{\frac{3}{5}}}{-\sqrt{\frac{3}{5}} - \sqrt{\frac{3}{5}}} \cdot \frac{x - 0}{-\sqrt{\frac{3}{5}} - 0} dx = \frac{5}{9}, \qquad (2.6)$$

Подставим коэффициенты c_1, c_2, c_3 в (2.2) и получим искомую квадратуру.

$$\int_{-1}^{1} P_m(x) dx = \frac{8}{9} P_m(0) + \frac{5}{9} P_m \left(\sqrt{\frac{3}{5}} \right) + \frac{5}{9} P_m \left(-\sqrt{\frac{3}{5}} \right), m < 6$$

$$\text{где} \quad P_i(x) = \sum_{j=0}^{i} (j+1)x^j. \tag{2.8}$$

Проинтегрируем функцию(2.7) на интервале [0; 2] с помощью квадратуры Гаусса. Для получения абсолютной погрешности найдем значения интегралов для функций (2.7) аналитически и с помощью написанной функции gauss_quad5(f) и сравним их.

Таблица 2.1 Значения абсолютной погрешности интегрирования (Е), аналитическое решение интеграла и решение квадратурой Гаусса.

m	Аналитическое решение	Квадратурой Гаусса	E
0	2	2	0.0
1	6	6	0.0
2	14	14	0.0
3	30	30	0.0
4	62	61.(9)	~0
5	126	126.(0)	~0
6	254	253.68(0)	0.31(9)

Из данных, приведённых в таблице 2.1 видно, что полученная формула (2.7) действительно обеспечивает точное интегрирование полиномов со степенью меньше 5.

3. Быстрое преобразование Фурье.

Используя алгоритм Кули—Тьюки, написана функцию fft_coeff(k, y_nodes), которая вычисляет и возвращает комплексные коэффициенты тригонометрического полинома, интерполирующего узлы y_nodes, равномерно распределенные на отрезке $[-\pi; \pi]$.

Рис. 3.1 Коэффициенты, найденные с помощью fft_coeff(k, y_nodes) для функции $f_1(x)$ (4), на рисунке а) амплитудные значения (A) для действительной части ($\cos(x)$) возвращаемого комплексного коэффициента степени k, б) амплитудные значения (A) для мнимой части ($\sin(x)$) возвращаемого комплексного коэффициента степени k.

Коэффициенты k при $A*\cos(kx)$ и $A*\sin(kx)$ соответствуют частоте тригонометрической функции. Соответственно A является амплитудой для действительной $(A*\cos(kx))$ и мнимой $(A*\sin(kx))$ части возвращаемого комплексного коэффициента степени k.

Была разработана функция trigonometric_interpolant(x, coeffs), которая вычисляет значение тригонометрического полинома с коэффициентами coeffs в точке x. Так же была проведена интерполяция функции $f_3(x) = \begin{cases} -1 & -\pi \leq x < 0 \\ 1 & 0 \leq x \leq \pi \end{cases}$ с помощью функции trigonometric_interpolant(x,coeffs). Функция была использована чтобы проинтерполировать тестовые функции $f_2(x) = |x|$, и $f_3(x) = |x|$

 $\begin{cases} -1 & -\pi \leq x < 0 \\ 1 & 0 \leq x \leq \pi \end{cases}$ на отрезке $x \in [-\pi; \pi]$. На рисунках (рис. 3.2 - рис.3.7) исходная функция представлена пунктирной линией, интерполянт представлен сплошной линией.

Рис. 3.2 Интерполяция тригонометрическими полиномами для максимального k=2, где k -коэффициент для функций $\cos(kx)$, $\sin(kx)$ а) функции $f_2(x)=|x|$,

б) функции
$$f_3(x) = \begin{cases} -1 & -\pi \le x < 0 \\ 1 & 0 \le x \le \pi \end{cases}$$

Рис. 3.3 Интерполяция для максимального k=4 a) функции $f_2(x)=|x|$, б) функции $f_3(x)= \begin{cases} -1 & -\pi \leq x < 0 \\ 1 & 0 \leq x \leq \pi \end{cases}$

Рис. 3.4 Интерполяция для максимального k=8 a) функции $f_2(x)=|x|$, б) функции $f_3(x)={1 \atop 1} \quad 0 \le x \le \pi$

Рис. 3.5 Интерполяция для максимального k=16 a) функции $f_2(x)=|x|$, б) функции $f_3(x)=$ $\begin{cases} -1 & -\pi \leq x < 0 \\ 1 & 0 \leq x \leq \pi \end{cases}$

Рис. 3.6 Интерполяция для максимального k=64 a) функции $f_2(x)=|x|$, б) функции $f_3(x)= \begin{cases} -1 & -\pi \leq x < 0 \\ 1 & 0 \leq x \leq \pi \end{cases}$

Рис. 3.7 Интерполяция для максимального k=256 a) функции $f_2(x)=|x|$, б) функции $f_3(x)=\begin{cases} -1 & -\pi \leq x < 0 \\ 1 & 0 \leq x \leq \pi \end{cases}$

Для функции $f_2(x) = |x|$ сходимость является равномерной и среднеквадратичной. Для функции $f_3(x) = \begin{cases} -1 & -\pi \le x < 0 \\ 1 & 0 \le x \le \pi \end{cases}$ есть среднеквадратичная сходимость, однако нет равномерной. Это связано с тем, что $f_3(x)$ имеет разрыв в точке 0.

Заключение

- 1. Так как при постоянном уменьшении шага дифференцирования абсолютная погрешность будет стремиться к бесконечности, формулы численного дифференцирования не являются устойчивыми. Существует оптимальное значение шага, для которого значение погрешности будет минимальным.
- 2. Операция численного интегрирования является вычислительно устойчивой, и при уменьшении шага интегрирования абсолютная погрешность будет уменьшаться вплоть до значения машинного эпсилон.
- 3. Интерполирование функций тригонометрическими полиномами даёт равномерную и среднеквадратичную сходимость для случая непрерывной функции. Однако если функция разрывная сходимость только среднеквадратичная, а вблизи точек разрыва возникают паразитные осцилляции.

Список использованных источников

[1] **Першин А.Ю.** Лекции по курсу «Вычислительная математика», 2018.