It seems there is a little problem with the degree and dimension. I assume that $\mathcal{T} \in \mathcal{D}^p(\widehat{X})$ and $\mathcal{S} \in \mathcal{D}^{n-p+1}(X)$.

We need to show that the super-potential of $q_*\mathcal{T}$, which is a function defined on smooth forms in $\mathcal{D}^{n-q+1,0}(X)$, can be extended to a continuous function on $\mathcal{D}^{n-q+1,0}(X)$. Let α be a smooth closed (p,p)-form cohomologous to $q_*\mathcal{T}$ and define $\beta:=q^*\alpha$. By hypothesis, we have $q^*q_*\mathcal{T}=\mathcal{T}$. It follows that \mathcal{T} is cohomologous to β . Fix a potential U of $q_*\mathcal{T}-\alpha$ which is smooth near the blowup locus. We have $dd^cU=q_*\mathcal{T}-\alpha$ and therefore $dd^cq^*U=\mathcal{T}-\beta$. The smoothness of U near the blowup locus implies that $q_*(q^*U)=U$.

Since α is smooth, it is enough to show that the superpotential \mathcal{U} of $q_*\mathcal{T} - \alpha$ can be extended to a continuous function on $\mathcal{D}^{n-q+1,0}(X)$. Since the last current has a vanishing cohomology class, its superpotential doesn't depend on the normalization.

Claim 1. Let (S_n) be a bounded sequence of smooth forms in $\mathcal{D}^{n-p+1}(X)$. Then the sequence $\mathcal{U}(S_n)$ is bounded.

Proof of Claim 1. Since S_n is smooth, we have

$$\mathcal{U}(\mathcal{S}_n) = \langle U, \mathcal{S}_n \rangle = \langle q^*(U), q^* \mathcal{S}_n \rangle = \widehat{\mathcal{U}}(q^* \mathcal{S}_n),$$

where $\widehat{\mathcal{U}}$ denotes the superpotential of $\mathcal{T} - \beta$. Since the action of q^* on cohomology is bounded and the mass of a positive closed current only depends on its cohomology class, we see that $q^*\mathcal{S}_n$ is bounded in $\mathcal{D}^{n-p+1,0}(\widehat{X})$. Since \mathcal{T} has a continuous superpotential, we deduce that $\widehat{\mathcal{U}}(q^*\mathcal{S}_n)$ is bounded and hence $\mathcal{U}(\mathcal{S}_n)$ is bounded as claimed.

Claim 2. Let (S_n) be a bounded sequence of smooth forms in $\mathcal{D}^{n-p+1}(X)$ converging to 0. Then $\mathcal{U}(S_n)$ tends to 0.

Proof of Claim 2. By extracting a subsequence, we can assume that $q^*\mathcal{S}_n$ converges to some current \mathcal{R} supported by the exceptional divisor. By hypothesis, we have $q_*(\mathcal{R}) = 0$. Using the computation in Claim 1, and the fact that $\widehat{\mathcal{U}}$ is continuous, we get

$$\lim \mathcal{U}(\mathcal{S}_n) = \widehat{\mathcal{U}}(\mathcal{R}).$$

Now, since q^*U is smooth near the exceptional divisor which supports \mathcal{R} , we deduce that

$$\widehat{\mathcal{U}}(\mathcal{R}) = \langle q^* U, \mathcal{R} \rangle = \langle U, q_* \mathcal{R} \rangle = 0.$$

This proved the claim.

To finish the proof, let S be any current in $\mathcal{D}^{n-p+1,0}(X)$. Choose a bounded sequence \mathcal{R}_n of smooth forms in $\mathcal{D}^{n-p+1,0}(X)$ converging to S. By Claim 1, extracting a subsequence allows to assume that $\mathcal{U}(\mathcal{R}_n)$ converges to some real number l. Consider now an arbitrary bounded sequence of (S_n) of smooth forms in $\mathcal{D}^{n-p+1,0}(X)$ converging to S. To show that \mathcal{U} extends to a continuous function at S, it is enough to check that $\mathcal{U}(S_n)$ converges to l. This is a consequence of Claim 2 applied to the sequence $S_n - \mathcal{R}_n$.