# Hopf algebra structures of Multiple Zeta Values in positive characteristics

Hojin Kim (KAIST)

Workshop, Selected Topics in Arithmetic Algebraic Geometry. Hanoi

November 8th, 2024

Joint work with Bo-Hae Im, Khac Nhuan Le, Tuan Ngo Dac, and Lan Huong Pham



#### References

#### The talk is based on

- Im-K.-Le-Ngo Dac-Pham 2023, Hopf algebras and multiple zeta values in positive characteristic (preprint),
- Im-K.-Le-Ngo Dac-Pham 2023a, Hopf algebras and alternating multiple zeta values in positive characteristic (preprint),

#### Zeta values

Let  $n \geq 2$  be an integer. The <u>zeta value</u>  $\zeta(n) \in \mathbb{R}$  is defined by

$$\zeta(n) = \sum_{k=1}^{\infty} \frac{1}{k^n}.$$

Even zeta values are known in terms of Bernoulli numbers,  $\zeta(2) = \frac{\pi^2}{6}, \ldots, \ \zeta(2n) = \frac{B_{2n}}{2(2n)!} (2\pi)^{2n}$ . In particular,  $\frac{\zeta(2n)}{\pi^{2n}} \in \mathbb{Q}$ .

Not much is known about odd zeta values; what we know is not much more than the following theorems:

Theorem (Apéry, 1978):  $\zeta(3) \notin \mathbb{Q}$ .

Theorem (Zudilin, 2001):  $\{\zeta(5), \zeta(7), \zeta(9), \zeta(11)\} \not\subset \mathbb{Q}$ .

Multiple Zeta Values (MZV's) generalize the zeta values.

#### Multiple Zeta Values

Let  $n_1, \ldots, n_{r-1} \ge 1$ ,  $n_r \ge 2$  be integers.

$$\zeta(n_1,\ldots,n_r) := \sum_{0 < k_1 < \cdots < k_r} \frac{1}{k_1^{n_1} \ldots k_r^{n_r}} \in \mathbb{R}.$$

The weight and depth of the presentation  $\zeta(n_1, \ldots, n_r)$  are  $n_1 + \cdots + n_r$  and r, respectively. For example,  $\zeta(4,3)$  has weight 7 and depth 2.

MZV's are first introduced by Euler (as double zeta values) in 18c and Zagier in early 1990's.

Let  $\mathcal{Z}_w$  be the  $\mathbb{Q}$ -vector space spanned by the MZV's of weight w, and  $\mathcal{Z}=\oplus_{w\geq 0}\mathcal{Z}_w$  the  $\mathbb{Q}$ -vector space of all MZV's. (We let  $\mathcal{Z}_0=\mathbb{Q},\ \mathcal{Z}_1=\{0\}$ .)

It is known that the product of two MZV's can be written as a  $\mathbb{Q}$ -linear combinations of MZV's. For example,

#### Theorem (Euler, 1776.)

For 
$$n, m > 1$$
,  $\zeta(n)\zeta(m) = \zeta(n+m) + \zeta(n,m) + \zeta(m,n)$ .

This turns the vector space  $\mathcal{Z}$  into an algebra, and the linear relations of MZV's are to be studied.

#### Zagier-Hoffman Conjectures

(Zagier's conjecture) Let  $(d_n)_{n\geq 0}$  be a sequence with  $(d_0,d_1,d_2)=(1,0,1)$  and  $d_n=d_{n-3}+d_{n-2}$  for  $n\geq 3$ . Then

$$\dim_{\mathbb{Q}} \mathcal{Z}_w = d_w$$
 for all  $w \ge 0$ .

(Hoffman's conjecture) Further, and  $\mathcal{Z}_w$  is spanned by

$$\{\zeta(k_1,\ldots,k_r): k_1+\cdots+k_r=w, \ 2\leq k_i\leq 3\}.$$

Example. Zagier's conjecture implies  $\zeta(1,2)/\zeta(3) \in \mathbb{Q}$ . Indeed,  $\zeta(1,2) = \zeta(3)$ .

### MZV's in positive characteristics

Now we define MZV's in positive characteristics. Let

- $\mathbb{F}_q$  be a finite field of q elements with characteristic p > 0,
- $A = \mathbb{F}_q[\theta]$ ,  $A_+$  the set of monic polynomials in A,
- $K = \mathbb{F}_q(\theta)$ ,  $K_{\infty}$  be the completion of K at  $\infty$ .

#### MZV's in positive characteristics (Carlitz 1935, Thakur 2004)

Let  $s_1,\ldots,s_r\geq 1$  be integers. The MZV in positive characteristics is defined by

$$\zeta_A(s_1,\ldots,s_r):=\sum rac{1}{a_1^{s_1}\ldots a_r^{s_r}}\in \mathcal{K}_{\infty}$$

where the sum is over  $a_1, \ldots, a_r \in A_+$  and  $\deg(a_1) > \cdots > \deg(a_r)$ . In this presentation, weight and depth are  $s_1 + \cdots + s_r$  and r, resp.

From now on, we denote  $\mathcal{Z}_w$  the K-vector space spanned by MZV's of weight w.

### Zagier-Hoffman conjecture in positive characteristics

Zagier-Hoffman conjecture in positive characteristics was proved in positive characteristic case.

#### Zagier-Hoffman conj. in pos. char. (Im-K.-Le-Ngo Dac-Pham)

Let  $(d_n)_{n \geq 0}$  be a sequence with  $d_0 = 1$ ,  $d_w = 2^{w-1}$  for  $1 \leq w < q$ ,  $d_q = 2^{q-1} - 1$ , and  $d(w) = \sum_{i=1}^q d(w-i)$  for w > q. Then,

$$\dim_K \mathcal{Z}_w = d_w$$
 for all  $w \ge 0$ .

Further, we can exhibit a Hoffman-like basis of  $\mathcal{Z}_w$ .

This was proved for w < 2q-1 by Ngo Dac, and for all w by Im-K.-Le-Ngo Dac-Pham. (Also, by Chang-Chen-Mishiba independently).

### Composition space and shuffle product

#### Let

- $\Sigma = \{x_n\}_{n \in \mathbb{N}}$  be a set of 'letters',
- $\langle \Sigma \rangle = \{x_{n_1} \dots x_{n_r} : x_{n_i} \in \Sigma \text{ for } r \geq 0\}$  be set of 'words' over  $\Sigma$ with the empty word denoted by 1,
- $\mathfrak{C} = \mathbb{F}_a\langle \Sigma \rangle$  be the  $\mathbb{F}_q$ -vector space with basis  $\langle \Sigma \rangle$ , endowed with the *concatenation product* · (which can be omitted)

$$(x_{n_1}\ldots x_{n_r})\cdot (x_{m_1}\ldots x_{m_s})=x_{n_1}\ldots x_{n_r}x_{m_1}\ldots x_{m_s}.$$

The weight and depth of  $x_{n_1} \dots x_{n_r}$  are  $n_1 + \dots + n_r$  and r, resp. For each nonempty  $\mathfrak{a} \in \langle \Sigma \rangle$ , we can write  $\mathfrak{a} = x_a \cdot \mathfrak{a}_-$ .

Later, we identify  $\zeta_A(n_1,\ldots,n_r)$  and  $x_{n_1}\ldots x_{n_r}$ .

# Composition space and shuffle product

There is the notion of shuffle product in  $\mathfrak C$  defined by Chen's identity:  $\mathfrak u \sqcup \mathfrak 1 = \mathfrak 1 \sqcup \mathfrak u = \mathfrak u$  for  $\mathfrak u \in \langle \Sigma \rangle$ , and for nontrivial  $\mathfrak a$  and  $\mathfrak b$ 

$$\mathfrak{a} \sqcup \mathfrak{b} := x_{a}(\mathfrak{a}_{-} \sqcup \mathfrak{b}) + x_{b}(\mathfrak{a} \sqcup \mathfrak{b}_{-}) + x_{a+b}(\mathfrak{a}_{-} \sqcup \mathfrak{b}_{-}) + \sum_{0 < i < a+b} \Delta^{j}_{a,b}((\mathfrak{a}_{-} \sqcup \mathfrak{b}_{-}) \sqcup x_{j}).$$

Here 
$$\Delta^j_{a,b} = (-1)^{a-1} \binom{j-1}{a-1} + (-1)^{b-1} \binom{j-1}{b-1} \in \mathbb{F}_q$$
 when  $(q-1) \mid j$ , and  $\Delta^j_{a,b} = 0$  otherwise.

N.B. the Chen's identity,

$$\zeta_A(a)\zeta_A(b) = \zeta_A(a,b) + \zeta_A(b,a) + \zeta_A(a+b) + \sum_{0 < j < a+b} \Delta^j_{a,b}\zeta_A(j);$$

 $\sqcup$  in  $\mathfrak C$  is defined to satisfy  $\zeta(\mathfrak a \sqcup \mathfrak b) = \zeta(\mathfrak a) \times \zeta(\mathfrak b) \in \mathcal K_\infty$  when we identify  $\zeta(x_{n_1} \ldots x_{n_r})$  and  $\zeta_A(n_1, \ldots, n_r)$ .

Note that  $\sqcup$  preserves the weight; i.e.  $w(\mathfrak{a} \sqcup \mathfrak{b}) = w(\mathfrak{a}) + w(\mathfrak{b})$ .

### Hopf algebra

In her thesis, Shuhui Shi (2015) proposed that the MZV's in positive characteristics have a Hopf algebra structure with the shuffle product  $\square$  and the coproduct  $\Delta_{Shi}$  (which will be defined later).

Before proceeding ahead, we introduce a brief notion of Hopf algebra.

# (But what is Hopf algebra?)

Hopf algebra is an algebraic structure arising in many areas of mathematics, including algebraic topology, representation theory, and combinatorics.

A bialgebra over a field k is a k-vector space which is both (co)unital (co)associative algebra and coalgebra, with compatibilities between two structures.

In other words, it is a quintuple  $(A, M, u, \Delta, \epsilon)$ , where

- A is a k-vector space,
- $M: A \otimes A \to A$  the product; we write  $M(\mathfrak{a}, \mathfrak{b}) = \mathfrak{a} * \mathfrak{b}$ ,
- $u: k \to A$  the unit map,
- $\Delta : A \rightarrow A \otimes A$  the coproduct, and
- $\epsilon \colon A \to k$  the counit map (or augmentation map), with the following properties (next slide).

### (But what is Hopf algebra?)

#### Bialgebra axioms are as follows:

- associativity,  $M \circ (M \otimes id) = M \circ (id \otimes M)$ , i.e.  $(\mathfrak{a} * \mathfrak{b}) * \mathfrak{c} = \mathfrak{a} * (\mathfrak{b} * \mathfrak{c})$  for all  $\mathfrak{a}, \mathfrak{b}, \mathfrak{c} \in A$ ,
- unitary property, i.e. there exist  $I \in A$  with  $I * \mathfrak{a} = \mathfrak{a} * I = \mathfrak{a}$ . The unit map will be given as  $u(f) = f \cdot I$ ,
- ullet coassociativity,  $(\mathsf{id} \otimes \Delta) \circ \Delta = (\Delta \otimes \mathsf{id}) \circ \Delta$
- counitary,  $(\epsilon \otimes id) \circ \Delta = (id \otimes \epsilon) \circ \Delta = id$ ; This can be understood as the counit map  $\epsilon$  collapses (or 'undo') the extra structure from the coproduct  $\Delta$  on the both sides and recover the original element.
- compatibilities for M and  $\Delta$ , u and  $\Delta$ , M and  $\epsilon$ , and u and  $\epsilon$ . i.e.  $\Delta(\mathfrak{a}*\mathfrak{b}) = \Delta(\mathfrak{a})*\Delta(\mathfrak{b}), \ \Delta(I) = I \otimes I \ \text{(where } I = u(1)),$   $\epsilon(\mathfrak{a}*\mathfrak{b}) = \epsilon(\mathfrak{a})\epsilon(\mathfrak{b}), \ \text{and} \ \epsilon(I) = 1.$

$$(\text{In } A \otimes A, (a_1 \otimes a_2) * (b_1 \otimes b_2) := (a_1 * b_1) \otimes (a_2 * b_2).)$$

# (But what is Hopf algebra?)

A bialgebra  $(A, M, u, \Delta, \epsilon)$  is said to be a Hopf algebra if the antipode map  $S: A \rightarrow A$  exists, satisfying the following commutative diagram:



(S can be understood as an 'inverse element' of  $id_A: A \rightarrow A$  in  $\mathsf{Hom}(A,A)$  wrt. the convolution product  $f\star g:=M\circ (f\otimes g)\circ \Delta$ .)

### Example of Hopf algebra: Group algebra

Let k a field and G be a (finite) group, and kG be the group algebra. Then kG is a Hopf algebra with the following structure:

- $\bullet$   $\Delta(g) = g \otimes g$ ,
- $u(a) = a1_G$ ,
- $\epsilon(g) = 1_k$ , and
- $S(g) = g^{-1}$  for all  $g \in G$ .

### Example of Hopf algebra: Shuffle algebra

Let k a field and  $\Sigma = \{x_n\}_{n \in \mathbb{N}}$ .

Let  $\langle \Sigma \rangle = \{x_{n_1} \dots x_{n_r} : x_{n_i} \in X \text{ for } r \geq 0\}$  be the set of words over X with the empty word 1 and the concatenation  $\cdot \cdot$ '.

Let  $\mathfrak{S} = k\langle X \rangle$  be the k-vector space with basis  $\langle X \rangle$ , endowed with the shuffle product \* defined as

$$1 * w = w * 1 = w \quad (\forall w \in \langle X \rangle),$$
  
$$(x_a \mathfrak{a}_-) * (x_b \mathfrak{b}_-) = x_a \cdot (\mathfrak{a}_- * \mathfrak{b}) + x_b \cdot (\mathfrak{a} * \mathfrak{b}_-).$$

Then  $\mathfrak S$  is a Hopf algebra with the 'de-concatenation' coproduct

$$\Delta_{deconcat}(w) := \sum_{uv=w} u \otimes v,$$

e.g. 
$$\Delta_{deconcat}(xyz) = 1 \otimes xyz + x \otimes yz + xy \otimes z + xyz \otimes 1$$
.

# Hopf algebra structure of MZV's in positive characteristics

Shi (2015) suggested the definition of coproduct  $\Delta_{Shi}$  compatible to the shuffle product  $\coprod$  in  $\mathfrak{C}$ .

She then proved that  $\mathfrak C$  has a Hopf algebra structure, under the assumptions of (1) the associativity of  $\coprod$ , (2) the coassociativity of  $\Delta_{Shi}$ , and (3) the compatibility of  $\coprod$  and  $\Delta_{Shi}$ .

We (Im-Kim-Le-Ngo Dac-Pham, 2023) proved that € is indeed a Hopf algebra with  $\coprod$  and  $\Delta_{Shi}$ .

#### Shi's construction of the coproduct

Shi gave the inductive definition of the coproduct  $\Delta_{Shi}$  on  $\mathfrak{C}$ .

$$\Delta_{Shi}(1) := 1 \otimes 1, \quad \Delta_{Shi}(x_1) := 1 \otimes x_1 + x_1 \otimes 1.$$
 (initial cases)

Now assume that we've defined all  $\Delta(\mathfrak{u})$  of weight( $\mathfrak{u}$ ) < w. First, for a word  $\mathfrak{a} = x_a \mathfrak{a}_-$  with weight w and depth > 1 with

$$\Delta_{Shi}(x_a) =: 1 \otimes x_a + \sum \mathfrak{a}_1 \otimes \mathfrak{a}_2,$$

$$\Delta_{\textit{Shi}}(\mathfrak{a}_{-}) =: \sum \mathfrak{u}_{1} \otimes \mathfrak{u}_{2}, \quad \text{(known by the induction hypothesis)}$$

Shi defined

$$\Delta_{\mathit{Shi}}(x_{\mathsf{a}}\mathfrak{a}_{-}) := 1 \otimes \mathfrak{a} + \sum (\mathfrak{a}_{1} \cdot \mathfrak{u}_{1}) \otimes (\mathfrak{a}_{2} \sqcup \mathfrak{u}_{2}).$$

Finally, Shi defined  $\Delta_{Shi}(x_w)$  to satisfy

$$\Delta_{Shi}(x_1 \sqcup x_{w-1}) = \Delta_{Shi}(x_1) \sqcup \Delta_{Shi}(x_{w-1}).$$

Note that  $x_1 \coprod x_{w-1} = x_w + \text{(other terms)}$ ; the coproduct of all other terms are known in this step.

# We introduce a different definition of coproduct $\Delta$ on $\mathfrak C$ .

We first define  $\triangleright$  on  ${\mathfrak C}$  recursively. As initial cases we let

$$1 \triangleright \mathfrak{u} := \mathfrak{u} =: \mathfrak{u} \triangleright 1$$
 for all  $\mathfrak{u}$ .

For nontrivial word  $\mathfrak{a} = x_a \mathfrak{a}_-$ , we define

$$\mathfrak{a} \triangleright \mathfrak{b} := x_{\mathsf{a}} \cdot (\mathfrak{a}_{-} \sqcup \mathfrak{b}).$$

N.B.  $x_a \triangleright \mathfrak{u} = x_a \cdot \mathfrak{u}$ , but  $\mathfrak{u} \triangleright \mathfrak{v} \neq \mathfrak{u} \cdot \mathfrak{v}$ , and  $\triangleright$  is not commutative nor associative in general.

Construction of  $\Delta$  is then similar to  $\Delta_{Shi}$ , but the concatenation in

$$\Delta_{Shi}(x_a\mathfrak{a}_-):=1\otimes\mathfrak{a}+\sum(\mathfrak{a}_1\cdot\mathfrak{u}_1)\otimes(\mathfrak{a}_2\sqcup\mathfrak{u}_2)$$

is replaced by the triangle product, i.e.,

$$\Delta(x_{\mathsf{a}}\mathfrak{a}_{-}) := 1 \otimes \mathfrak{a} + \sum (\mathfrak{a}_{1} \triangleright \mathfrak{u}_{1}) \otimes (\mathfrak{a}_{2} \sqcup \mathfrak{u}_{2}).$$

### Our construction of the coproduct

Now we have two questions:

Introduction

- (Q1) Is it true that  $\Delta = \Delta_{Shi}$ ?
- (Q2) Does  $\Delta$  satisfy the Hopf algebra axioms?

We proved that  $\coprod$  is associative, and  $\Delta$  satisfies the compatibility and coassociativity and properties, i.e.

$$\begin{split} (\mathfrak{a} \sqcup \mathfrak{b}) \sqcup \mathfrak{c} &= \mathfrak{a} \sqcup (\mathfrak{b} \sqcup \mathfrak{c}), \\ \Delta(\mathfrak{u}) \sqcup \Delta(\mathfrak{v}) &= \Delta(\mathfrak{u} \sqcup \mathfrak{v}), \quad (\mathsf{id} \otimes \Delta) \circ \Delta = (\Delta \otimes \mathsf{id}) \circ \Delta. \end{split}$$

Also, we proved that  $\Delta(x_n) = \sum \mathfrak{u} \otimes \mathfrak{v}$  satisfies the condition  $depth(\mathfrak{u}) < 1$  for all n > 1.

With this we first answer (Q1), and then according to Shi's proof of the remaining Hopf algebra axioms for  $\Delta_{Shi} = \Delta$ , we answer (Q2).

# Algebra structure (Associativity of □)

#### $\mathsf{Theorem}$ .

In particular, the space  $(\mathfrak{C}, \sqcup)$  is commutative  $\mathbb{F}_q$ -algebra with algebra homomorphism  $Z_{\sqcup \sqcup} \colon K \otimes_{\mathbb{F}_a} \mathfrak{C} \to \mathcal{Z}$  given by  $\mathfrak{a} \mapsto \zeta_A(\mathfrak{a})$ .

The proof relies on huge amount of technical calculation. One of the key fact is

#### Lemma (Partial Fractions)

Let  $r, s \in \mathbb{Z}_{\geq 1}$ . As rational functions in  $\mathbb{Q}(X, Y)$ ,

$$\frac{1}{X^rY^s} = \sum_{\substack{i+j=r+s\\i,j\in\mathbb{Z}_{\geq 0}}} \left( \binom{j-1}{s-1} \frac{1}{X^i(X+Y)^j} + \binom{j-1}{r-1} \frac{1}{Y^i(X+Y)^j} \right).$$

This is the fact which Chen used to find the coefficients  $\Delta^{J}_{a,b}$ .



# Algebra structure (Associativity of 📖)

Let  $r, s, t \geq 1$ . We expanded two different partial fractions for

$$\frac{1}{A^rB^s}\cdot\frac{1}{C^t}=\frac{1}{A^r}\cdot\frac{1}{B^sC^t}.$$

For each  $d \in \mathbb{Z}_{>1}$ , we partitioned the indices  $(a, b, c) \in A^3_+(d)$  into  $M_0 = \{(a, b, c) : a = b = c\},\$ 

 $M_1 = \{(a, b, c) : \text{only two are the same}\}$  and

 $M_2 = \{(a, b, c) : a \neq b \neq c \neq a\}$  which is partitioned further into

- $N_0$  with  $b-a=\lambda f$ ,  $c-a=\mu f$ , and  $\lambda \neq \mu$ ,
- $N_1$  with  $b-a=\lambda f$ ,  $c-a=\mu u$ .
- $N_2$  with  $b-a=\mu u$ .  $c-a=\lambda f$ .
- $N_3$  with  $b-a=\lambda f$ ,  $c-a=\lambda f+\mu u$ .
- $N_4$  with  $b-a=\lambda f$ ,  $c-a=\mu f+\eta u$ , and  $\lambda\neq\mu$ ,

for some  $\lambda, \mu, \eta \in \mathbb{F}_q^{\times}$  and  $f, u \in A_+$  with  $\deg(u) < \deg(f) < d$ .



# Algebra structure (Associativity of $\sqcup$ )

By calculating and comparing the sums  $\sum \frac{1}{a^r b^s} \cdot \frac{1}{c^t}$  and  $\sum \frac{1}{a^r} \cdot \frac{1}{b^s c^t}$  over each partition, we deduce that the sums over

- M<sub>0</sub> induce the same expression of depth one MZV's,
- $M_1 \sqcup N_0$  induce the same expression of depth two MZV's, and
- $N_1 \sqcup N_2 \sqcup N_3 \sqcup N_4$  induce the same expression of depth three MZV's

of the associativity equation

$$(\zeta_A(r)\zeta_A(s))\zeta_A(t) = \zeta_A(r)(\zeta_A(s)\zeta_A(t))$$

in terms of power sums, which is translated into the associativity of  $\mbox{\ } \mbox{\ } \mbo$ 

For general case we can proceed with the induction on the sum of depths.

# Algebra structure (Associativity of $\sqcup$ )

Example. Let q = 3. Chen's identity yields

$$\zeta_A(1)\cdot\zeta_A(1)=2\zeta_A(1,1)+\zeta_A(2).$$

This is not only true as values in  $K_{\infty}$ , but also gives the equality of the elements in  $\mathfrak{C}$ , i.e.

$$x_1 \sqcup x_1 = 2x_1x_1 + x_2.$$

By applying the Chen's identity again, we have

$$\begin{split} (\zeta_A(1) \cdot \zeta_A(1)) \cdot \zeta_A(2) &= 2\zeta_A(1,1,2) + 2\zeta_A(1,2,1) + 2\zeta_A(1,3) \\ &+ 2\zeta_A(2,1,1) + 2\zeta_A(3,1) + \zeta_A(4) \end{split}$$
 yields  $(x_1 \sqcup x_1) \sqcup x_2 = 2x_1x_1x_2 + 2x_1x_2x_1 + \cdots + 2x_3x_1 + x_4.$ 

Further, as the expression calculated by Chen's identity for  $\zeta_A(1) \cdot (\zeta_A(1) \cdot \zeta_A(2))$  is the same as the above, then we conclude that  $(x_1 \sqcup x_1) \sqcup x_2 = x_1 \sqcup (x_1 \sqcup x_2)$ .

### Hopf algebra structure (Axioms for coproduct $\Delta$ )

Recall  $1 \triangleright \mathfrak{a} = \mathfrak{a} \triangleright 1 = \mathfrak{a}$ , and  $\mathfrak{a} \triangleright \mathfrak{b} = x_a \cdot (\mathfrak{a}_- \sqcup \mathfrak{b})$  for nonempty  $\mathfrak{a}$ . We define  $\diamond$  on  $\mathfrak{C}$  with  $1 \diamond \mathfrak{a} = \mathfrak{a} \diamond 1 = \mathfrak{a}$ , and for nonempty  $\mathfrak{a}$  and  $\mathfrak{b}$ ,

$$\mathfrak{a} \diamond \mathfrak{b} := x_{a+b}(\mathfrak{a}_- \sqcup \mathfrak{b}_-) + \sum_{0 < j < a+b} \Delta^j_{a,b} \cdot ((\mathfrak{a}_- \sqcup \mathfrak{b}_-) \sqcup x_j).$$

By introducing the new operators  $\diamond$  and  $\triangleright$  and the new definition for  $\Delta$  (and another huge amount of calculations), we could prove the compatibility and coassociativity results. Some key lemmas follow.

#### Lemmas

- $\mathfrak{a} \sqcup \mathfrak{b} = \mathfrak{a} \diamond \mathfrak{b} + \mathfrak{a} \triangleright \mathfrak{b} + \mathfrak{b} \triangleright \mathfrak{a}$  (Definition),
- $\mathfrak{a} \diamond \mathfrak{b} = (x_a \diamond x_b) \triangleright (\mathfrak{a}_- \sqcup \mathfrak{b}_-),$
- $\Delta(\mathfrak{u}) = 1 \otimes \mathfrak{u} + \sum \mathfrak{u}_1 \otimes \mathfrak{u}_2$  with  $\mathfrak{u}_1 \neq 1$ ,
- $(\Delta(\mathfrak{u}) 1 \otimes \mathfrak{u}) \triangleright \Delta(\mathfrak{v}) = \Delta(\mathfrak{u} \triangleright \mathfrak{v}) 1 \otimes (\mathfrak{u} \triangleright \mathfrak{v})$ , when  $(\mathfrak{u}_1 \otimes \mathfrak{u}_2) \triangleright (\mathfrak{v}_1 \otimes \mathfrak{v}_2) := (\mathfrak{u}_1 \triangleright \mathfrak{v}_1) \otimes (\mathfrak{u}_2 \sqcup \mathfrak{v}_2)$ .

# Hopf algebra structure (Comparison to $\Delta_{Shi}$ )

(Q1) is remaining:  $\Delta = \Delta_{Shi}$ ?

We introduce braket operator, [1] = 1 and

$$[x_{n_1}\dots x_{n_r}]:=\left((-1)^r\cdot \Delta_{1,w+1}^{n_1}\dots \Delta_{1,w+1}^{n_r}\right)\left(x_{n_1}\sqcup \ldots \sqcup x_{n_r}\right).$$

N.B.  $[\mathfrak{u}] = 0$  if  $(q-1) \nmid \text{weight}(\mathfrak{u})$ ,  $[\mathfrak{a} \cdot \mathfrak{b}] := [\mathfrak{a}] \coprod [\mathfrak{b}]$ .

#### **Proposition**

$$\Delta(x_n) = 1 \otimes x_n + \sum_{\substack{r \in \mathbb{Z}_{\geq 1}, \mathfrak{a} \in \langle \Sigma \rangle \\ r + w(\mathfrak{a}) = n}} \binom{r + depth(\mathfrak{a}) - 2}{depth(\mathfrak{a})} x_r \otimes [\mathfrak{a}],$$

in particular,  $\Delta(x_n) = 1 \otimes x_n + \sum \mathfrak{u} \otimes \mathfrak{v}$  with depth $(\mathfrak{u}) = 1$  for all n.

#### **Proposition**

We have  $\Delta = \Delta_{Shi}$ .

#### Hopf algebra structure

#### **Theorem**

 $(\mathfrak{C}, \sqcup, u, \Delta, \epsilon)$  is a connected graded Hopf algebra of finite type over  $\mathbb{F}_a$ .

### Remark on the coproduct of letters

We also found some explicit formulae for  $\Delta(x_n)$ .

#### Proposition

When  $n \leq q$ ,  $\Delta(x_n) = 1 \otimes x_n + x_n \otimes 1$ .

When  $q < n < q^2$ ,

$$\Delta(x_n) = 1 \otimes x_n + x_n \otimes 1 + \sum_{i=1}^k (-1)^i \binom{n-1+i}{i} x_{n-i(q-1)} \otimes x_{i(q-1)}$$

when k is integer with  $kq < n \le (k+1)q$ .

You can find the numerical results for  $\Delta(x_n)$  for  $n \leq q^3 + q^2$  and q=3,5 cases in our paper.

#### Remark on the stuffle Hopf algebra structure

Instead of  $\sqcup$  we can define the *stuffle product* \* as

$$1 * \mathfrak{a} = \mathfrak{a} * 1 = \mathfrak{a}$$
 for all  $\mathfrak{a}$ ,  $\mathfrak{a} * \mathfrak{b} = x_a(\mathfrak{a}_- * \mathfrak{b}) + x_b(\mathfrak{a} * \mathfrak{b}_-) + x_{a+b}(\mathfrak{a}_- * \mathfrak{b}_-)$  for nontrivial  $\mathfrak{a}$ ,  $\mathfrak{b}$ .

#### Theorem

 $\mathfrak C$  with \* and coproduct  $\Delta_{deconcat}$  attains the connected graded Hopf algebra of finite type over  $\mathbb F_q$ .

N.B. As stuffle algebra,  $Z_* \colon \mathfrak{C} \otimes_{\mathbb{F}_q} K \to \mathcal{Z}$ ;  $\mathfrak{a} \mapsto \mathsf{Li}(\mathfrak{a})$  is K-algebra homomorphism, where Li is the Carlitz multiple polylogarithms which spans the same space as the MZV's.

### Remark on the Alternating MZV's

Finally we remark that the Hopf algebra structure of the alternating MZV's (abbreviated as AMZV's) in positive characteristics is also proved in (Im-Kim-Le-Ngo Dac-Pham 2023a), where AMZV's are defined (Harada, 2021) as

$$\zeta_A \begin{pmatrix} \varepsilon_1 & \dots & \varepsilon_r \\ s_1 & \dots & s_r \end{pmatrix} := \sum \frac{\varepsilon_1^{\deg a_1} \dots \varepsilon_r^{\deg a_r}}{a_1^{s_1} \dots a_r^{s_r}}$$

for positive integers  $s_i$ 's and  $\varepsilon_i \in \mathbb{F}_q^{\times}$ , where the sum is over all monic polynomials  $a_i$ 's with  $\deg(a_1) > \cdots > \deg(a_r)$ , with the similarly defined shuffle product and coproduct.

#### Thank you for your attention!

Thank you for your attention!

Questions are welcome!