Supervisory Control: Advanced Theory and Applications

Dr Rong Su S1-B1b-59, School of EEE

Nanyang Technological University

Tel: +65 6790-6042, Email: rsu@ntu.edu.sg

Course Grading Scheme and References

- Two Assignments (10% each)
- Final Exam (80%)

- Major reference books
 - W. M. Wonham. Supervisory Control of Discrete-Event Systems}.
 Systems Control Group, Dept. of ECE, University of Toronto. URL: www.control.utoronto.ca/DES.
 - John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages, and Computation, Addison-Wesley Publishing, Reading Massachusetts, 1979. ISBN 0-201-02988-X. Chapter 2: Finite Automata and Regular Expressions.

Introduction to Supervisory Control Theory

Outline

• Introduction to Supervisory Control

Ramadge-Wonham Supervisory Control Theory

Example – A Pusher-Lift System

Primary Goals of EE6226

The Concept of Discrete Event Systems (DES)

- A DES is a structure with 'states' having duration in time, 'events' happening *instantaneously* and *asynchronously*.
 - States: e.g. machine is idle, is operating, is broken down, is under repair
 - Events: e.g. machine starts work, breaks down, completes work or repair
- State space discrete in time and space.

State transitions 'labeled' by events.

The Motivation of Developing Supervisory Control Theory (SCT) for DES (till 1980)

• Control problems *implicit* in the literature (enforcement of resource constraints, synchronization, ...)

But

- Emphasis on modeling, simulation, verification
- Little formalization of control synthesis
- Absence of control-theoretic ideas
- No standard model or approach to control

Related Areas

- Programming languages for modeling & simulation
- Queues, Markov chains
- Petri nets
- Boolean models
- Formal languages
- Process algebras (CSP, CCS)

"Great" Expectations for SCT

- System model
 - Discrete in time and (usually) space
 - Asynchronous (event-driven)
 - Nondeterministic
 - support transitional choices
- Amenable to formal control synthesis
 - exploit control concepts
- Applicable: manufacturing, traffic, logistic,...

Relationship with Systems Control Concepts

- State space framework well-established:
 - Controllability
 - Observability
 - Optimality (Quadratic, H_{∞})
- Use of geometric constructs and partial order
 - Controllability subspaces
 - Supremal subspaces!

Ramadge-Wonham SCT (1982)

- Automaton representation
 - state descriptions for concrete modeling and computation
- Language representation
 - i/o descriptions for implementation-independent concept formulation
- Simple control "technology"

Outline

Introduction to Supervisory Control

Ramadge-Wonham Supervisory Control Theory

• Example – A Pusher-Lift System

Primary Goals of EE6226

RW paradigm is based on <i>lang</i>	guages, but implemented of	on finite-state automata

Basic Concepts of Languages

- Given an alphabet Σ (e.g. $\Sigma = \{ a, b, c, d \}$)
 - A string is a finite sequence of events from Σ , e.g. s = ababa
 - $-\Sigma^+ := \{ \text{ all strings generated from } \Sigma \}, \Sigma^* := \Sigma^+ \cup \{ \epsilon \}$
 - ε is called the *empty* string: $\varepsilon = \varepsilon s = s$
 - Given $s_1, s_2 \in \Sigma^*$, s_1 is a *prefix* substring of s_2 , if $(\exists t \in \Sigma^*)$ $s_1 t = s_2$
 - We use $s_1 \le s_2$ to denote that s_1 is a prefix substring of s_2
 - A language $W \subseteq \Sigma^*$: most time we require W to be *regular*
 - The *prefix closure* of a language W is : W := $\{s \in \Sigma^* \mid (\exists s' \in W) s \leq s'\}$
 - W is *prefix closed* if W = W

Finite-State Automaton (FSA)

- A finite-state automaton is a 5-tuple $G = (X, \Sigma, \xi, x_0, X_m)$, where
 - X: the state set
 - $-\Sigma$: the alphabet
 - x_0 : the initial state
 - $-X_{m}$: the marker state set (or the final state set)
 - $-\xi: X\times\Sigma \to X$: the transition map
 - ξ is called a *partial* map, if it is not defined at some pair $(x,\sigma) \in X \times \Sigma$.
 - Otherwise, it is called a *total* map.
 - Extension of the transition map: $\xi: X \times \Sigma^* \to X: (x, s\sigma) \mapsto \xi(x, s\sigma) := \xi(\xi(x, s), \sigma)$

The Famous "Small Machine" Model

•
$$G = (X, \Sigma, \xi, x_0, X_m)$$

 $-X = \{0, 1, 2\}$
 $-\Sigma = \{a, b, c, d\}$
 $-x_0 = 0$
 $-X_m = \{0\}$

a: starts work

b: finishes work

c: machine fails

d: machine is repaired

Connection between Language and FSA

- Give a FSA $G = (X, \Sigma, \xi, x_0, X_m),$
 - closed behavior of G:

$$L(G) := \{ s \in \Sigma^* | \xi(x_0, s) \text{ is defined} \}$$

- marked behavior of G, i.e. the language recognized by G,

$$L_m(G) := \{ s \in L(G) \mid \xi(x_0, s) \in X_m \}$$

- G is *nonblocking*, if $L_m(G) = L(G)$.
- A language is regular, if it is recognizable by a FSA.
 - We can use Arden's rule to derive a language from a FSA.

Natural Projection over Languages

• Given Σ and $\Sigma'\subseteq\Sigma$, $P:\Sigma^*\to\Sigma'^*$ is a natural projection if

$$\bullet P(\varepsilon) = \varepsilon$$

$$\bullet (\forall \sigma \in \Sigma) P(\sigma) = \begin{cases} \sigma & \text{if } \sigma \in \Sigma' \\ \varepsilon & \text{if } \sigma \notin \Sigma' \end{cases}$$

•
$$(\forall s \sigma \in \Sigma^*) P(s\sigma) = P(s)P(\sigma)$$

• The inverse image map of P is P^{-1} : $pwr(\Sigma'^*) \rightarrow pwr(\Sigma^*)$ with $(\forall A \subset \Sigma'^*) P^{-1}(A) := \{s \in \Sigma^* | P(s) \in A\}$

$$abcaccd \xrightarrow{\Sigma = \{a, b, c, d\}} \xrightarrow{\Sigma' = \{a, d\}} a \qquad a \qquad d$$

Synchronous Product over Languages

• Builds a more complex automaton

with more complex language

$$L_m(A_1) \parallel L_m(A_2) = P_1^{-1}(L_m(A_1)) \cap P_2^{-1}(L_m(A_2))$$
 expressed by natural projections

$$P_i$$
: $(\Sigma_1 \cup \Sigma_2)^* \rightarrow \Sigma_i^*$ $(i = 1,2)$

Implement Synchronous Product by Automaton Operation

- Let $G_1 = (X_1, \Sigma_1, \xi_1, X_{0,1}, X_{m,1})$ and $G_2 = (X_2, \Sigma_2, \xi_2, X_{0,2}, X_{m,2})$,
- Let

$$G_1 \times G_2 = (X_1 \times X_2, \Sigma_1 \cup \Sigma_2, \xi_1 \times \xi_2, (x_{0,1}, x_{0,2}), X_{m,1} \times X_{m,2})$$

where

$$\xi_1 \times \xi_2((\mathbf{x}_1, \mathbf{x}_2), \sigma) \coloneqq \begin{cases} (\xi_1(\mathbf{x}_1, \sigma), \mathbf{x}_2) & \text{if } \sigma \in \Sigma_1 - \Sigma_2 \\ (\mathbf{x}_1, \xi_2(\mathbf{x}_2, \sigma)) & \text{if } \sigma \in \Sigma_2 - \Sigma_1 \\ (\xi_1(\mathbf{x}_1, \sigma), \xi_2(\mathbf{x}_2, \sigma)) & \text{if } \sigma \in \Sigma_1 \cap \Sigma_2 \end{cases}$$

- Result:
 - $L(G_1)||L(G_2)=L(G_1\times G_2)|$
 - $L_m(G_1) || L_m(G_2) = L_m(G_1 \times G_2)$

For Example

Automaton product implements synchronous product!

Properties of Projection and Synchronous Product

- [Chain Rule] Given Σ_1 , Σ_2 and Σ_3 , suppose $\Sigma_3 \subseteq \Sigma_2 \subseteq \Sigma_1$.
 - Let $P_{12}:\Sigma_1^* \to \Sigma_2^*$, $P_{23}:\Sigma_2^* \to \Sigma_3^*$ and $P_{13}:\Sigma_1^* \to \Sigma_3^*$ be natural projections
 - Then $P_{13} = P_{23}P_{12}$

- [Distribution Rule] Given $L_1 \subseteq \Sigma_1^*$ and $L_2 \subseteq \Sigma_2^*$, let $\Sigma' \subseteq \Sigma_1 \cup \Sigma_2$.
 - Let $P:(\Sigma_1 \cup \Sigma_2)^* \to \Sigma'^*$ be the natural projection. Then
 - $P(L_1 || L_2) \subseteq P(L_1) || P(L_2)$
 - $\Sigma_1 \cap \Sigma_2 \subseteq \Sigma' \Rightarrow P(L_1 \parallel L_2) = P(L_1) \parallel P(L_2)$

We now talk about control ...

The Control Architecture

- Given a plant G and a requirement SPEC, compute a supervisor S
 - $L_{m}(S/G) := L_{m}(S)||L_{m}(G) \subseteq L_{m}(G)||L_{m}(SPEC)$
 - S should not disable the occurrence of any uncontrollable event
 - S should make a move only based on observable outputs of G
 - S/G is nonblocking

General Control Issues

Q1: Is there a control that enforces both **safety**, and **liveness** (nonblocking), and which is maximally permissive?

Q2: If so, can its design be automated?

Q3 : If so, with acceptable computing effort?

Solution to Question 1

• Fundamental **definition**

A sublanguage $K \subseteq L_m(G)$ is *controllable* (w.r.t. G) if

$$\overline{K}\Sigma_{uc} \cap L(G) \subseteq \overline{K}$$

- "Once in K, you can't skid out on an uncontrollable event."

$$\Sigma = \{a,b,c,d\}$$

$$\Sigma_{\rm c} = \{a,c,d\}$$

$$\Sigma_{\rm uc} = \{b\}$$

Supremal Controllable Sublanguage

- Given a plant G and a specification SPEC (both over Σ), let
 C(G,SPEC):={K⊆L_m(G)∩L_m(SPEC)|K is controllable w.r.t. G}
- C(G,SPEC) is a poset under set inclusion and closed under arbitrary union
 - The largest element is called the *supremal* controllable sublanguage,

Fundamental Result

• There exists a (unique) *supremal* controllable sublanguage

$$K_{\text{sup}} \subseteq L_{\text{m}}(G) \cap L_{\text{m}}(SPEC)$$

- SPEC is an automaton model of a specification
- Furthermore K_{sup} can be effectively computed.

Lattice View of Solution to Question 1

Solution to Question 2

• Given G and SPEC, compute K_{sup}

$$K_{\text{sup}} = L_{\text{m}}(\text{SUPER})$$

 $\text{SUPER} = \text{Supcon} (G, \text{SPEC})$

• Given SUPER, implement K_{sup}

Supervisor Reduction

SUPER and SIMSUP is control equivalent if

- $L(G)) \cap L(SUPER) = L(G)) \cap L(SIMSUP)$
- $L_m(G)) \cap L_m(SUPER) = L_m(G)) \cap L_m(SIMSUP)$

Supervisor Reduction

Controlled behavior has state size

$$||L_m(SUPER)|| \le ||L_m(G)|| \times ||L_m(SPEC)||$$

• Compute *reduced*, *control- equivalent* SIMSUP, often with

$$||L_m(SIMSUP)|| << ||L_m(SUPER)||$$

- In TCT:
 - CONSUPER = Condat(G,SUPER)
 - SIMSUP = Supreduce(G,SUPER,CONSUPER)

A solution to Question 3 is	s modular/distributed/hierarchical c	ontrol
	EE6226, Discrete Event Systems	33

Outline

• Introduction to Supervisory Control

Ramadge-Wonham Supervisory Control Theory

• Example – A Pusher-Lift System

• Primary Goals of EE6226

A Pusher-Lift System

Lift Model G_{lift}

Pusher Model G_{pu}

Product Model G_{pro}

Specifications

Monolithic Method – Supervisor Synthesis

- Plant: $G = G_{lift,lo} \times G_{pu} \times G_{pro}$ (use Sync in TCT (240, 956))
- Specification:
 - $E = E_1 \times E_2 \times E_3 \times E_4 \tag{64,288}$
 - $E = Selfloop(E_1 \times E_2 \times E_3 \times E_4, \Sigma (\Sigma_1 \cup \Sigma_2 \cup \Sigma_3 \cup \Sigma_4))$
- SUPER = Supcon(G, E) (636, 1369)
- SUPER = Condat(G, SUPER) : controllable
- SIMSUPER = Supreduce(G,SUPER,SUPER) (99, 476; slb=51)

Some Remarks

- Advantages of RW SCT
 - It is conceptually simple
 - Many real systems can be modeled in this framework
- Disadvantages of RW SCT
 - The computational complexity is very high for large systems
 - The implementation issues are not explicitly addressed
 - A procedure of signals—events (supervisory control)—signals is needed.
 - Performance issues are not well addressed
 - "Bad" behaviors are forbidden, but no specific "good" behavior is enforced.

Outline

• Introduction to Supervisory Control

Ramadge-Wonham Supervisory Control Theory

• Example – A Pusher-Lift System

• Primary Goals of EE6226

Goals of EE6226

- To introduce several techniques that are aimed to handle the complexity issue involved in supervisor synthesis.
 - Modular control
 - Distributed control
 - Hierarchical control
 - State-feedback control
- To deal with supervisory control under partial observations.
- To address a certain type of performance.

Basic Functions of Supervisor Synthesis Package

Developed by R. Su Nanyang Technological University

Create Automata

Automaton: B1.cfg

```
[automaton]
states = 0, 1, 2, 3, 4
alphabet = tau, R1-drop-B1, R1-pick-B1, R2-drop-B1, R2-pick-B1
controllable = R1-drop-B1, R1-pick-B1, R2-drop-B1, R2-pick-B1
observable = R1-drop-B1, R1-pick-B1, R2-drop-B1, R2-pick-B1
transitions = (0, 1, tau), (1, 2, R1-drop-B1), (2, 1, R2-pick-B1),
            (1, 3, R2-drop-B1), (3, 1, R1-pick-B1), (1, 4, R2-pick-B1),
            (1, 4, R1-pick-B1), (2, 4, R1-drop-B1), (3, 4, R2-drop-B1)
marker-states = 1
initial-state = 0
```

Check Size of Automaton

make_get_size.py

[user@host ~] \$ make_get_size

Please input model (.cfg): B1.cfg

Number of states: 5

Number of transitions: 9

Automaton Product

make_product.py

```
[user@host ~]$ make_product
```

Please input list of your input automata (comma-seperated list of automata): B1.cfg, B2.cfg

Please input product automaton (.cfg): B1-B2.cfg

Mon Mar 16 10:33:51 2009: Must do 1 product computations. (memory=9052160 bytes)

Mon Mar 16 10:33:51 2009: Product #1 done: 17 states, 65 transitions (memory=9052160 bytes)

Mon Mar 16 10:33:51 2009: Computed product (memory=9052160 bytes)

Number of states: 17

Number of transitions: 65

Mon Mar 16 10:33:51 2009: Product is saved in B1-B2.cfg (memory=9076736 bytes)

Automaton Abstraction

make_abstraction.py

```
[user@host ~]$ make_abstraction
```

Please input source automaton (.cfg): B1-B2.cfg

Please input list of preserved events (comma-seperated list of event names): tau, R1-drop-B1

Please input name of the abstraction (.cfg): B1-B2-abstraction.cfg

Mon Mar 16 10:40:54 2009: Computed abstraction (memory=8364032 bytes)

Number of states: 5

Number of transitions: 14

Mon Mar 16 10:40:54 2009: Abstraction is saved in B1-B2-abstraction.cfg (memory=8409088 bytes)

Sequential Automaton Abstraction

make_sequential_abstraction.py

(memory=8327168 bytes)

```
[user@host ~]$ make_sequnetial_abstraction
Please input list of your input automata (comma-seperated list of automata): B1.cfg, B2.cfg
Please input list of preserved events (comma-seperated list of event names): tau, R1-drop-B1
Please input abstraction (.cfg): B1-B2-sequential-abstraction.cfg
Mon Mar 16 13:01:23 2009: Started (memory=8249344 bytes)
Mon Mar 16 13:01:23 2009: #states after adding 1 automata: 5 (memory=8257536 bytes)
Mon Mar 16 13:01:23 2009: #states and #transitions after abstraction: 4, 9(memory=8265728 bytes)
Mon Mar 16 13:01:23 2009: #states of 2 automata: 5; #states and #transitions of product: 13 51 (memory=8278016 bytes)
Mon Mar 16 13:01:23 2009: #states and #transitions after abstraction: 5, 14(memory=8294400 bytes)
Mon Mar 16 13:01:23 2009: Abstraction is saved in B1-B2-sequential-abstraction.cfg
```

Natural Projection

make_natural_projection.py

[user@host ~]\$ make_natural_projection

Please input source automaton (.cfg): B1-B2.cfg

Please input list of preserved events (comma-seperated list of event names): tau, R1-drop-B1

Please input name of the abstraction (.cfg): B1-B2-natural-projection.cfg

Mon Mar 16 10:46:04 2009: Computed projection (memory=8376320 bytes)

Number of states: 3

Number of transitions: 3

Mon Mar 16 10:46:04 2009: Projected automaton is saved in B1-B2-natural-projection.cfg (memory=8417280 bytes)

Check Language Equivalence

Make_language_equivalence_test.py

[user@host ~]\$ make_language_equivalence_test

Please input first model (.cfg): B1-B2-abstraction.cfg

Please input second model (.cfg): B1-B2-natural-projection.cfg

Language equivalence HOLDS

Supervisor Synthesis

make_supervisor.py

```
[user@host ~]$ make_supervisor
```

Please input plant model (.cfg): plant.cfg

Please input specification model (.cfg): spec.cfg

Please input supervisor (.cfg): supervisor.cfg

Mon Mar 16 12:49:59 2009: Computed supervisor (memory=14548992 bytes)

Number of states: 140

Number of transitions: 288

Mon Mar 16 12:49:59 2009: Supervisor saved in supervisor.cfg (memory=14536704 bytes)

Nonconflict Check

make_nonconflicting_check.py

ok

Mon Mar 16 12:56:24 2009: #states and #transitions after abstraction: 3, 6(memory=15036416 bytes)

Check Controllability

make_controllability_check.py [user@host ~]\$ make_controllability_check Please input plant model (.cfg): plant.cfg Please input supervisor model (.cfg): supervisor.cfg States with disabled controllable events: (1, 1): {R2-pick-B2, R3-pick-B2} (4, 2): {R2-drop-B2} (5, 3): {R3-drop-B2, R2-pick-B2, R3-drop-P33, R3-drop-B3} (10, 4): {R3-drop-B3, R2-drop-B2, R3-drop-P33} (799, 121): {R2-pick-B2, R3-pick-B2}

Supervisor is correct (no disabled uncontrollable events)

Compute Feasible Supervisor

make_feasible_supervisor.py

```
[user@host ~]$ make_feasible_supervisor
```

Please input plant model (.cfg): plant.cfg

Please input supervisor model (.cfg): supervisor.cfg

Please input feasible supervisor filename (.cfg): feasible_supervisor.cfg

Mon Mar 16 13:09:43 2009: Computed supervisor (memory=10522624 bytes)

Number of states: 82

Number of transitions: 196

Mon Mar 16 13:09:43 2009: Supervisor saved in feasible_supervisor.cfg (memory=10547200 bytes)

Batch Operation

```
Batch_Operation.py
#!/usr/bin/env python
from automata import frontend
#Compute product
frontend.make_product('B1.cfg, B2.cfg', 'B1-B2.cfg')
#Compute automaton abstraction
frontend.make_abstraction('B1-B2.cfg', 'tau,R1-drop-B1', 'B1-B2-abstraction.cfg')
#Compute supervisor
frontend.make_supervisor('plant.cfg', 'spec.cfg', 'supervisor.cfg')
#Check controllability
frontend.make_controllability_check('plant.cfg', 'supervisor.cfg')
```