Hafta 8: Ayrık-zaman Fourier Dönüşümü

Ele Alınacak Ana Konular

- Ayrık-zaman Fourier dönüşümü
- Ayrık-zaman periyodik işaretler için Fourier dönüşümü
- Ayrık-zaman Fourier dönüşümünün özellikleri
- Doğrusal, sabit katsayılı fark denklemleriyle tanımlanan sistemler

- Aperiyodik bir işaret, periyodik bir işaretin periyod sonsuza giderken limit hali gibi düşünülebilir. Periyodik işaret Fourier serisine açılır ve periyodun sonsuza gitmesi durumunda serinin davranışı incelenir.
- Aşağıda, periyodik olmayan sonlu süreli bir işaret x[n] ile bu işaretten türetilen ve bir periyodu sonlu süreli işarete eşit olan periyodik bir işaret $\tilde{x}[n]$ verilmiştir.

• $\widetilde{x}[n]$ Fourier serisine açılabilir. $-N_1 \le n \le N_2$ için , $x[n] = \widetilde{x}[n]$ ve aralığın dışında x[n] = 0 olduğundan

$$\widetilde{x}[n] = \sum_{k=\langle N \rangle} a_k e^{jk(2\pi/N)n}$$

$$a_k = \frac{1}{N} \sum_{n=\langle N \rangle} \widetilde{x}[n] e^{-jk(2\pi/N)n} = \frac{1}{N} \sum_{n=-N_1}^{N_2} x[n] e^{-jk(2\pi/N)n} = \frac{1}{N} \sum_{n=-\infty}^{\infty} x[n] e^{-jk(2\pi/N)n}$$

- $X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}$ şeklinde tanımlansın.
- O halde, $a_k = \frac{1}{N} X(e^{jk\omega_0})$
- Bulunan katsayılar, Fourier serisinde yerine konulur ve $2\pi/N=\omega_0$ olduğu göz önünde bulundurulursa

$$\widetilde{X}[n] = \sum_{k=< N>} \frac{1}{N} X(e^{jk\omega_0}) e^{jk\omega_0 n} = \frac{1}{2\pi} \sum_{k=< N>} X(e^{jk\omega_0}) e^{jk\omega_0 n} \omega_0$$

• Son toplamadaki her bir terim, yüksekliği $X(e^{jk\omega_0})e^{jk\omega_0 n}$ ve genişliği ω_0 olan bir dikdörtgenin alanıdır. $\omega_0 \to 0$ limit durumunda, toplama $X(e^{j\omega})e^{j\omega n}$ fonksiyonunun integraline yakınsar. O halde, $N \to \infty$ için $\tilde{x}[n] \to x[n]$ gerçeğini kullanırsak, aşağıda verilen ayrık-zaman Fourier dönüşüm çiftini elde ederiz.

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$
$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}$$

- Sürekli-zaman ve ayrık-zaman Fourier dönüşümleri incelendiğinde önemli farklar olduğu göze çarpmaktadır.
- İlk olarak, sürekli-zaman durumunda analiz ve sentez denklemlerinin ikisi de integral olup, integral aralığı sonsuzdur. Ayrık-zaman durumunda, analiz denklemi sonsuz bir toplama iken sentez denklemi 2π aralığında sonlu bir integraldir.
- Ikinci olarak, sürekli-zaman Fourier dönüşümü periyodik değilken (özel durumlar hariç), ayrık-zaman Fourier dönüşümü 2π ile periyodiktir.
- Bu farklılıkların nedeni, harmonik ilişkili sonlu sayıda karmaşık üstel işaret olmasıdır.
- Ayrıca, ayrık-zamanda 0 veya 2π 'nın katlarına yakın frekanslar yavaş değişen işaretlerden, π 'nin katlarına yakın frekanslar ise hızlı değişen işaretlerden kaynaklanmaktadır.

- Şimdiye kadar yapılan tartışmadan, periyodik bir ayrık-zaman işaretin Fourier serisi katsayılarının, işaretin bir periyodunun ayrık-zaman Fourier dönüşümü cinsinden ifade edilebileceği anlaşılmaktadır.
- $\tilde{x}[n]$, N ile periyodik olsun ve Fourier serisi katsayıları a_k ile gösterilsin. $\tilde{x}[n]$ nin bir periyoduna eşit sonlu süreli bir işaret x[n] ve Fourier dönüşümü $X(e^{j\omega})$ ile belirtilsin. O halde,

$$a_k = \frac{1}{N} X(e^{j\omega}) \bigg|_{\omega = k\omega_0}$$

- Tartışma, sonlu süreli işaretler için yapılmıştır. İşaret sonlu olmasa bile, analiz denklemindeki toplama yakınsayabilir ve bu tür işaretler için ayrık-zaman Fourier dönüşümü bulunabilir.
- Ayrık-zaman Fourier dönüşümünün yakınsaması için yeterli olan koşullar sürekli durumdakinden farklıdır.

Ayrık-zaman Fourier dönüşümü için yakınsama koşulu

Koşul: İşaret mutlak toplanabilir veya sonlu enerjiye sahip olmalıdır:

$$\sum_{n=-\infty}^{\infty} |x[n]| < \infty, \qquad \sum_{n=-\infty}^{\infty} |x[n]|^2 < \infty$$

Sentez denklemi için yakınsama problemi yoktur çünkü sentez denklemi sonlu bir integraldir.

O halde, sentez denklemi hesaplanırken sürekli-zaman durumunda karşılaşılan Gibbs olayı ile ayrık-zaman durumunda karşılaşılmaz.

ÖRNEK: $x[n] = a^n u[n]$, |a| < 1 işaretinin Fouier dönüşümünü hesaplayınız, genlik ve faz spektrumunu çiziniz.

ÇÖZÜM: Fourier dönüşüm denkleminden

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n} = \sum_{n=0}^{\infty} a^n e^{-j\omega n} = \sum_{n=0}^{\infty} \left(ae^{-j\omega}\right)^n = \frac{1}{1 - ae^{-j\omega}}$$

Görüldüğü gibi, işaret gerçel olmasına rağmen Fourier dönüşümü karmaşık değerli olabilmektedir. O halde, ω'nın fonksiyonu olarak Fourier dönüşümünün genliğini (genlik spektrumu) ve fazını (faz spektrumunu) belirleyebilir ve çizebiliriz.

Pozitif ve negatif a değerleri için genlik ve faz spektrumları aşağıda çizilmiştir. Her iki durumda da spektrumların 2π ile periyodik olduğuna dikkat ediniz.

a>0 için işaretin tüm değerleri pozitif olup işaret yavaş değiştiğinden Fourier dönüşümü 0 ve 2π 'nin katlarında bileşenlere sahiptir. a<0 için işaretin değeri bir pozitif, bir negatif olup işaret hızlı değiştiğinden Fourier dönüşümü π 'nin katlarında frekans bileşenlerine sahiptir.

ÖRNEK: $x(t) = a^{|n|}$, |a| < 1 işaretinin Fouier dönüşümünü hesaplayınız ve frekansın fonksiyonu olarak çiziniz.

ÇÖZÜM: Fourier dönüşüm denkleminden

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n} = \sum_{n=-\infty}^{-1} a^{-n}e^{-j\omega n} + \sum_{n=0}^{\infty} a^{n}e^{-j\omega n}$$
$$= \sum_{n=0}^{\infty} \left(ae^{-j\omega}\right)^{n} + \sum_{n=1}^{\infty} \left(ae^{j\omega}\right)^{n}$$
$$= \frac{1}{1 - ae^{-j\omega}} + \frac{ae^{j\omega}}{1 - ae^{j\omega}} = \frac{1 - a^{2}}{1 - 2a\cos(\omega) + a^{2}}$$

Bu durumda Fourier dönüşümü gerçel çıkmıştır. İşaret ve Fourier dönüşümü aşağıda 0 < a < 1 için çizilmiştir.

ÖRNEK: Ayrık-zaman impuls işaretinin Fouier dönüşümünü hesaplayınız

ÇÖZÜM:
$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n} = 1e^{-j\omega 0} = 1$$

İmpuls işaretinin Fourier dönüşümü tüm frekanslarda eşit bileşenlere sahiptir.

ÖRNEK: Dikdörtgen darbenin Fourier dönüşümünü hesaplayınız

$$x[n] = \begin{cases} 1, & |n| < N_1 \\ 0, & |n| > N_1 \end{cases}$$

$$\vec{\text{COZUM:}} \quad X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n} = \sum_{n=-N_1}^{N_1} e^{-j\omega n} = \frac{\sin[\omega(N_1 + 1/2)]}{\sin(\omega/2)}$$

Sürekli durumda olduğu gibi, darbenin Fourier dönüşümü sinc fonksiyonudur. Ancak, sürekli-zamanda yan lobların genliği devamlı azalırken ayrık-zamanda periyodiklikten dolayı bu durum geçerli değildir.

Periyodik İşaretlerin için Fourier Dönüşümü

- Ayrık-zaman periyodik işaretlerinde Fourier dönüşümünü hesaplamak mümkündür. periyodik işaretlerin Fourier dönüşümü impuls fonksiyonu içermek zorundadır.
- Fourier dönüşümü $X(e^{j\omega}) = \sum_{l=-\infty}^{\infty} 2\pi \delta(\omega \omega_0 2\pi l)$ olan işareti bulalım $x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\sum_{l=-\infty}^{\infty} 2\pi \delta(\omega \omega_0 2\pi l) \right) e^{j\omega n} d\omega = \int_{-\pi}^{\pi} \delta(\omega \omega_0) e^{j\omega n} d\omega = e^{j\omega_0 n}$

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\sum_{l=-\infty}^{\infty} 2\pi \delta(\omega - \omega_0 - 2\pi l) \right) e^{j\omega n} d\omega = \int_{-\pi}^{\pi} \delta(\omega - \omega_0) e^{j\omega n} d\omega = e^{j\omega_0 n} d\omega$$

- Periyodik bir ayrık-zaman işaret Fourirer serisine açılabilir: $x[n] = \sum_{k=< N>} a_k e^{jk(2\pi/N)n}$
- Açılımındaki karmaşık üstel terimlerin Fourier dönüşümü temel frekansın katlarında impulslardır. Doğrusallık özelliğinden, sonsuz adet işaretin toplamının Fourier dönüşümü, tek tek Fourier dönüşümlerinin toplamına eşittir. O halde,

$$X(e^{j\omega}) = \sum_{k=-\infty}^{\infty} 2\pi a_k \delta(\omega - k\omega_0) = \sum_{k=-\infty}^{\infty} 2\pi a_k \delta\left(\omega - k\frac{2\pi}{N}\right)$$

Periyodik İşaretlerin için Fourier Dönüşümü

ÖRNEK: $x[n] = \sum_{k=-\infty}^{\infty} \delta[n-kN]$ ile verilen periyodik işaretin Fourier dönüşümü nedir?

ÇÖZÜM: Fourier serisi katsayıları tüm n değerleri için 1/N olarak bulunmuştu.

$$X(e^{j\omega}) = \sum_{k=-\infty}^{\infty} 2\pi \, a_k \delta \left(\omega - k \, \frac{2\pi}{N}\right) = \frac{2\pi}{N} \sum_{k=-\infty}^{\infty} \delta \left(\omega - k \, \frac{2\pi}{N}\right)$$

Periyodik İşaretlerin için Fourier Dönüşümü

ÖRNEK: $x[n]=\cos(\omega_0 n)$ periyodik işaretinin Fourier dönüşümü nedir?

$$\zeta \ddot{\mathbf{O}} \ddot{\mathbf{Z}} \ddot{\mathbf{U}} \mathbf{M} : \qquad x[n] = \cos(\omega_0 n) = \frac{1}{2} e^{j\omega_0 n} + \frac{1}{2} e^{-j\omega_0 n}$$

$$X(e^{j\omega}) = \sum_{l=-\infty}^{\infty} 2\pi a_1 \delta(\omega - \omega_0 - 2\pi l) + \sum_{l=-\infty}^{\infty} 2\pi a_{-1} \delta(\omega + \omega_0 - 2\pi l)$$

$$= \sum_{l=-\infty}^{\infty} \pi \delta(\omega - \omega_0 - 2\pi l) + \sum_{l=-\infty}^{\infty} \pi \delta(\omega + \omega_0 - 2\pi l)$$

İşaret	Fourier Dönüşümü	Fourier Serisi Katsayıları
$\sum_{k=-\infty}^{\infty} a_k e^{jk(2\pi/N)n}$	$2\pi \sum_{k=-\infty}^{\infty} a_k \delta \left(\omega - \frac{2\pi k}{N}\right)$	a_k
$e^{j\omega_{_{\!\scriptscriptstyle 0}} n}$	$2\pi\sum_{l=-\infty}^{\infty}\delta(\omega-\omega_0-2\pi l)$	$\omega_0 = 2\pi m/N \Rightarrow \text{periyodik}$ $a_k = \begin{cases} 1, & k = m, m \pm N, m \pm 2N, \dots \\ 0, & \text{aksi halde} \end{cases}$
$\cos(\omega_0 n)$	$\pi \sum_{l=-\infty}^{\infty} \left(\delta(\omega - \omega_0 - 2\pi l) + \delta(\omega + \omega_0 - 2\pi l) \right)$	$\omega_0 = 2\pi m/N \Rightarrow \text{periyodik}$ $a_k = \begin{cases} 1/2, & k = \pm m, \pm m \pm N, \pm m \pm 2N, \dots \\ 0, & \text{aksi halde} \end{cases}$
$\sin(\omega_0 n)$	$ \frac{\pi}{j} \sum_{l=-\infty}^{\infty} \left(\delta(\omega - \omega_0 - 2\pi l) - \delta(\omega + \omega_0 - 2\pi l) \right) $	$\omega_0 = 2\pi m/N \Rightarrow \text{periyodik}$ $a_k = \begin{cases} 1/2j, & k = m, m \pm N, m \pm 2N, \dots \\ -1/2j, & k = -m, -m \pm N, -m \pm 2N, \dots \\ 0, & \text{aksi halde} \end{cases}$
x[n] = 1	$2\pi\sum_{l=-\infty}^{\infty}\delta(\omega-2\pi l)$	$a_k = \begin{cases} 1, & k = 0, \pm N, \pm 2N, \dots \\ 0, & \text{aksi halde} \end{cases}$
Periyodik kare dalga $x[n] = \begin{cases} 1, & n < N_1 \\ 0, & N_1 < n < N/2 \end{cases}$	$\sum_{k=-\infty}^{\infty} 2\pi a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$	$a_k = \begin{cases} \frac{\sin[(2\pi k/N)(N_1 + 1/2)]}{N\sin(\pi k/N)}, & k \neq 0, \pm N, \dots \\ (2N_1 + 1)/N, & k = 0, \pm N, \dots \end{cases}$
$\sum_{k=-\infty}^{\infty} \delta(n-kN)$	$\frac{2\pi}{N} \sum_{k=-\infty}^{\infty} \delta(\omega - \frac{2\pi k}{N})$	$a_k = \frac{1}{N}, \ \forall k$

İşaret	Fourier Dönüşümü	Fourier Serisi Katsayıları
$a^n u[n], a < 1$	$\frac{1}{1-ae^{-j\omega}}$	İşaret periyodik değil
$x[n] = \begin{cases} 1, & n \le N_1 \\ 0, & n > N_1 \end{cases}$	$\frac{\sin[\omega(N_1+1/2)]}{\sin(\omega/2)}$	İşaret periyodik değil
$\frac{\sin(Wn)}{\pi n} = \frac{W}{\pi} \operatorname{sinc}\left(\frac{Wn}{\pi}\right)$	$X(e^{j\omega}) = \begin{cases} 1, & 0 \le \omega \le W \\ 0, & W < \omega \le \pi \end{cases}$	İşaret periyodik değil
$\delta[n]$	1	İşaret periyodik değil
u[n]	$\frac{1}{1-e^{-j\omega}} + \sum_{k=-\infty}^{\infty} \pi \delta(\omega - 2\pi k)$	İşaret periyodik değil
$\delta[n-n_0]$	$e^{-\omega n_0}$	İşaret periyodik değil
$(n+1)a^nu[n], a <1$	$\frac{1}{\left(1-ae^{-j\omega}\right)^2}$	İşaret periyodik değil
$\frac{(n+r-1)!}{n!(r-1)!}a^n u[n], a < 1$	$\frac{1}{\left(1-ae^{-j\omega}\right)^r}$	İşaret periyodik değil

• Kolaylık olması bakımından, ayrık-zaman Fourier dönüşümü ve tersini belirtmek için sırasıyla $F\{x[n]\}$ ve $F^{-1}\{X(e^{j\omega})\}$ kısa gösterilimini kullanacağız. Ayrıca, sürekli-zaman Fourier dönüşüm çiftini belirtmek için

$$x(t) \stackrel{F}{\longleftrightarrow} X(e^{j\omega})$$

notasyonunu kullanacağız.

- Ayrık-zaman Fourier dönüşümünün aşağıda verilen özellikleri aracılığıyla, Fourier dönüşümü bilinen işaretlerden çoğu işaretin Fourier dönüşümünü elde etmek kolaylaşmaktadır.
- Aşağıda sadece en önemli özelliklerin ispatı verilecektir. Diğer özelliklerin ispatı benzer şekilde yapılabilir.

Zamanda öteleme: $x[n] \stackrel{F}{\longleftrightarrow} X(e^{j\omega}) \Rightarrow x[n-n_0] \stackrel{F}{\longleftrightarrow} e^{-j\omega n_0} X(e^{j\omega})$

İspat: Ters Fourier dönüşüm denkleminden $x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$

Eşitliğin her iki tarafında n yerine n- n_0 yazılırsa

$$x[n-n_0] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega(n-n_0)} d\omega = \frac{1}{2\pi} \int_{-\pi}^{\pi} (X(e^{j\omega}) e^{-j\omega n_0}) e^{j\omega n} d\omega$$

Yorum: Bir sürekli-zaman işaret ötelendiğinde, Fourier dönüşümünün genliği değişmez, fazı ise öteleme ile doğru orantılı bir şekilde ötelenir.

$$F\{x[n]\} = X(e^{j\omega}) = |X(e^{j\omega})|e^{j \prec X(e^{j\omega})}$$

$$F\{x[n-n_0]\} = e^{-j\omega n_0}X(e^{j\omega}) = |X(e^{j\omega})|e^{j(-\chi X(e^{j\omega}) - \omega n_0)}$$

Frekansta türev alma: $x[n] \stackrel{F}{\longleftrightarrow} X(e^{j\omega}) \Rightarrow nx[n] \stackrel{F}{\longleftrightarrow} j \frac{dX(e^{j\omega})}{d\omega}$

İspat: Fourier dönüşüm denkleminden $X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$

Eşitliğin her iki tarafında ω 'ya göre türevi alınırsa

$$\frac{dX(e^{j\omega})}{d\omega} = \sum_{n=-\infty}^{\infty} (-jnx[n])e^{-j\omega n}$$

Son eşitliğin her iki tarafı j ile çarpılırsa sonuç elde edilmiş olur.

Konvolüsyon özelliği: $y[n] = x[n] * h[n] \Rightarrow Y(e^{j\omega}) = X(e^{j\omega})H(e^{j\omega})$

İspat: Konvolüsyon denkleminden $y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$

O halde,

$$Y(e^{j\omega}) = F\{y[n]\} = \sum_{n=-\infty}^{\infty} \left[\sum_{k=-\infty}^{\infty} x[k]h[n-k] \right] e^{-j\omega n}$$
$$= \sum_{k=-\infty}^{\infty} x[k] \left[\sum_{n=-\infty}^{\infty} h[n-k]e^{-j\omega n} \right]$$

Zamanda öteleme özelliğinden parantez içindeki terim $e^{-j\omega k}H(e^{j\omega})$ dir. O halde,

$$Y(j\omega) = \sum_{k=-\infty}^{\infty} x[k]e^{-j\omega k}H(e^{j\omega})$$
$$= H(e^{j\omega})\sum_{k=-\infty}^{\infty} x[k]e^{-j\omega k} = X(e^{j\omega})H(e^{j\omega})$$

Yorum: İki işaretin konvolüsyonunun Fourier dönüşümü, Fourier dönüşümlerinin çarpımına eşittir. Yani, iki işaretin konvolüsyonunu bulmak için, Fourier dönüşümleri çarpılır ve çarpımın ters Fourier dönüşümü alınır.

ÖRNEK: $x[n]=\beta^n u[n]$ $|\beta|<1$ ve $h[n]=\alpha^n u[n]$ $|\alpha|<1$ işaretlerinin konvolüsyonunu Fourier dönüşümünden yararlanarak hesaplayınız.

$$\ddot{\mathbf{C}}\ddot{\mathbf{C}}\ddot{\mathbf{C}}\ddot{\mathbf{U}}\mathbf{M}: \qquad X(e^{j\omega}) = \frac{1}{1 - \beta e^{-j\omega}}, \ H(j\omega) = \frac{1}{1 - \alpha e^{-j\omega}}, \ Y(j\omega) = \frac{1}{\left(1 - \beta e^{-j\omega}\right)\left(1 - \alpha e^{-j\omega}\right)}$$

$$Y(e^{j\omega})$$
 basit kesirlere açılırsa $Y(e^{j\omega}) = \frac{A}{1 - \alpha e^{-j\omega}} + \frac{B}{1 - \beta e^{-j\omega}} = \frac{1}{\alpha - \beta} \left[\frac{\alpha}{1 - \alpha e^{-j\omega}} - \frac{\beta}{1 - \beta e^{-j\omega}} \right]$

y[n]'yi elde etmek için ters Fourier dönüşümü almak yeterlidir.

$$y[n] = F^{-1} \left\{ Y(e^{j\omega}) \right\} = F^{-1} \left\{ \frac{1}{\alpha - \beta} \left[\frac{\alpha}{1 - \alpha e^{-j\omega}} - \frac{\beta}{1 - \beta e^{-j\omega}} \right] \right\}$$

$$= \frac{\alpha}{\alpha - \beta} \alpha^{n} u[n] - \frac{\beta}{\alpha - \beta} \beta^{n} u[n]$$

$$= \frac{1}{\alpha - \beta} \left[\alpha^{n+1} - \beta^{n+1} \right] u[n]$$

Çarpma (modülasyon) özelliği: $y[n] = x_1[n]x_2[n] \stackrel{F}{\longleftrightarrow} Y(e^{j\omega}) = \frac{1}{2\pi} \left[X_1(e^{j\omega}) * X_2(e^{j\omega}) \right]$

İspat: Fourier dönüşüm denkleminden $Y(e^{j\omega}) = \sum_{n=-\infty}^{\infty} y[n]e^{-j\omega n} = \sum_{n=-\infty}^{\infty} x_1[n]x_2[n]e^{-j\omega n}$

 $x_1[n]$ yerine ters Fourier dönüşüm ifadesi kullanılır ve toplama ile integralin sırası değiştirilirse

$$\begin{split} Y(e^{j\omega}) &= \sum_{n=-\infty}^{\infty} \left\{ \frac{1}{2\pi} \int_{2\pi} X_1(e^{j\theta}) e^{j\theta n} d\theta \right\} x_2[n] e^{-j\omega n} \\ &= \frac{1}{2\pi} \int_{2\pi} X_1(e^{j\theta}) \left[\sum_{n=-\infty}^{\infty} x_2[n] e^{-j(\omega-\theta)n} \right] d\theta \\ &= \frac{1}{2\pi} \int_{2\pi} X_1(e^{j\theta}) X_2(e^{j(\omega-\theta)}) d\theta \\ &= \frac{1}{2\pi} \left[X_1(e^{j\omega}) * X_2(e^{j\omega}) \right] \end{split}$$

Özellik	Aperiyodik İşaret	Fourier dönüşümü
	x[n] y[n]	$X(e^{j\omega})$ $Y(ej\omega)$
Doğrusallık	ax[n]+by[n]	$aX(e^{j\omega})+bY(e^{j\omega})$
Zamanda öteleme	$x[n-n_0]$	$e^{-j\omega n_0}X(e^{j\omega})$
Frekansta öteleme	$e^{j\omega_0 n}x[n]$	$X(e^{j(\omega-\omega_0)})$
Eşlenik alma	$x^*(t)$	$X^*(-j\omega)$
Zamanda tersine çevirme	x[-n]	$X(e^{-j\omega})$
Zamanda ölçekleme	$x_{ k }[n] = \begin{cases} x[n/k], & \text{n, k'nunkat1} \\ 0, & \text{aksi halde} \end{cases}$	$X(e^{jk\omega})$
Konvolüsyon	x[n] * y[n]	$X(e^{j\omega})Y(e^{j\omega})$
Zamanda çarpma	x[n]y[n]	$\frac{1}{2\pi} \Big[X(e^{j\omega}) * Y(e^{j\omega}) \Big]$

Özellik	Aperiyodik İşaret	Fourier Dönüşümü
Zamanda fark alma	x[n]-x[n-1]	$(1-e^{-j\omega})X(e^{j\omega})$
Zamanda toplama	$\sum_{k=-\infty}^{n} x[k]$	$\frac{1}{1-e^{-j\omega}}X(e^{j\omega}) + \pi X(e^{j0}) \sum_{k=-\infty}^{\infty} \delta(\omega - 2\pi k)$
Frekansta türev alma	nx[n]	$j\frac{dX(e^{j\omega})}{d\omega}$
Gerçel işaretler için eşlenik simetriklik	x[n] gerçel	$\begin{cases} X(e^{j\omega}) = X^*(e^{-j\omega}) \\ \Re\{X(e^{j\omega})\} = \Re\{X(e^{-j\omega})\} \\ \Im\{X(e^{j\omega})\} = -\Im\{X(e^{-j\omega})\} \\ X(e^{j\omega}) = X(e^{-j\omega}) \\ \prec X(e^{j\omega}) = -\prec X(e^{-j\omega}) \end{cases}$
Gerçel ve çift işaretler Gerçel ve tek işaretler	x(t) gerçel ve çift $x(t)$ gerçel ve tek	$X(e^{j\omega})$ gerçel ve çift $X(e^{j\omega})$ saf karmaşık ve tek
Gerçel işaretlerin çift-tek ayrıştırması	$x_e[n] = \text{Ev}\{x[n]\} [x[n] \text{ gerçel}]$ $x_o[n] = \text{Od}\{x[n]\} [x[n] \text{ gerçel}]$	$\Re\{X(e^{j\omega})\}\ j\Im\{X(e^{j\omega})\}$

Aperiyodik İşaretler için Parseval İlişkisi

$$\sum_{n=-\infty}^{\infty} \left| x[n] \right|^2 = \frac{1}{2\pi} \int_{2\pi} \left| X(e^{j\omega}) \right|^2 d\omega$$

Doğrusal, Sabit Katsayılı Fark Denklemleriyle Tanımlanan Sistemler

Girişi-çıkış ilişkisi aşağıda verilen ayrık-zaman sistemin frekans yanıtını bulalım

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]$$

Konvolüsyon özelliğinden,
$$Y(e^{j\omega}) = X(e^{j\omega})H(e^{j\omega}) \Rightarrow H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})}$$

Fark denkleminin her iki tarafının Fourier dönüşümü alınır ve dönüşümünün öteleme özelliği kullanılırsa frekans yanıtı bulunabilir:

$$F\left\{\sum_{k=0}^{N} a_{k} y[n-k]\right\} = F\left\{\sum_{k=0}^{M} b_{k} x[n-k]\right\} \Rightarrow \sum_{k=0}^{N} a_{k} F\left\{y[n-k]\right\} = \sum_{k=0}^{M} b_{k} F\left\{x[n-k]\right\}$$

$$\sum_{k=0}^{N} a_{k} e^{-j\omega k} Y(e^{j\omega}) = \sum_{k=0}^{M} b_{k} e^{-j\omega k} X(e^{j\omega}) \Rightarrow H(e^{j\omega}) = \frac{\sum_{k=0}^{M} b_{k} e^{-j\omega k}}{\sum_{k=0}^{N} a_{k} e^{-j\omega k}}$$

Doğrusal, Sabit Katsayılı Diferansiyel Denklemlerle Tanımlanan Sistemler

ÖRNEK: Giriş-çıkış ilişkisi aşağıda verilen sistemin frekans yanıtını ve impuls yanıtını bulunuz.

$$y[n] - \frac{3}{4}y[n-1] + \frac{1}{8}y[n-2] = 2x[n]$$

ÇÖZÜM: Her iki tarafın Fourier dönüşümü alınırsa

$$Y(e^{j\omega}) - \frac{3}{4}e^{-j\omega}Y(e^{j\omega}) + \frac{1}{8}e^{-j2\omega}Y(e^{j\omega}) = 2X(e^{j\omega})$$

$$\Rightarrow H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})} = \frac{2}{1 - \frac{3}{4}e^{-j\omega} + \frac{1}{8}e^{-j2\omega}}$$

 $H(e^{j\omega})$ 'nın ters Fourier dönüşümü alınırsa impuls yantı elde edilir.

$$h[n] = F^{-1} \left\{ H(e^{j\omega}) \right\} = F^{-1} \left\{ \frac{4}{1 - \frac{1}{2} e^{-j\omega}} - \frac{2}{1 - \frac{1}{4} e^{-j\omega}} \right\}$$

$$\Rightarrow h[n] = 4 \left(\frac{1}{2} \right)^n u[n] - 2 \left(\frac{1}{4} \right)^n u[n]$$