

#### Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н. Э. Баумана)

# Визуализация процесса извержения вулкана

Группа: ИУ7-54Б

Студент: Бугаков Иван Сергеевич

Научный руководитель: Романова Татьяна Николаевна

# Цель и задачи работы

**Цель работы** – разработка программного обеспечения для визуализации процесса извержения вулкана.

#### Задачи:

- провести анализ алгоритмов удаления невидимых линий и поверхностей, построения освещения, визуализации и выбрать наиболее подходящие для решения задачи;
- спроектировать программное обеспечение;
- выбрать средства реализации программного обеспечения и разработать его;
- провести исследование характеристик разработанного программного обеспечения.

# Объекты сцены





Вулкан — геологическое образование, имеющее выводное отверстие, из которого горячая лава и вулканические газы поступают на поверхность из недр планеты при извержении;

Столб тефры — материал выбрасываемый в воздух при извержении.

# Выбор трехмерной модели



Для визуализации вулкана была выбрана поверхностная модель, в связи с распространенностю STL-моделей для представления карты высот реального ландшафта земной поверхности, полученной в результате радарной спутниковой топографической съемки.

# Выбор модели движения дыма

| Модель                 | Скорость | Ресурсоемкость |
|------------------------|----------|----------------|
| Система чистиц         | Низкая   | Высокая        |
| Уравнения Навье—Стокса | Средняя  | Средняя        |

В результате анализа была выбрана модель на основе уравнений Навье—Стокса.

#### Модель движения дыма

Уравнеения Навье — Стокса — система дифференциальных уравнений в частных производных, описывающая движение вязкой ньютоновской жидкости.

**Уравнение скорости** определяет изменение поля скорости во времени:

$$\frac{\partial \vec{u}}{\partial t} = -(\vec{u} \cdot \nabla)\vec{u} + \nu \nabla^2 \vec{u} + f.$$

- $-\frac{\partial ec{u}}{\partial t}$  производная скорости по времени;
- $-(\vec{u}\cdot\nabla)\vec{u}$  изменение скорости из-за движения дыма;
- $\nu \nabla^2 \vec{u}$  вязкость (диффузия);
- $-\vec{f}$  внешние силы.

**Уравнение плотности** определяет изменение распределения плотности во времени:

$$\frac{\partial \rho}{\partial t} = -(\vec{u} \cdot \nabla)\rho + \kappa \nabla^2 \rho + S.$$

- $\rho$  плотность жидкости или газ;
- $(\vec{u} \cdot \nabla) \rho$  изменение плотности дыма из-за потока жидкости или газа;
- $-\kappa 
  abla^2 
  ho$  диффузия дыма;
- S -источник дыма.

#### Модель освещения

Для визуализации освещения была выбрана модель на основе закона Ламберта:

$$I = I_1 k_d \cos(\theta)$$
.

- / интенсивность отраженного света,
- $I_I$  интенсивность падающего света от точечного источника,
- $-k_d$  коэффициент диффузного отражения,
- $\theta$  угол между направлением падающего света L и нормалью к поверхности N.

Эта модель была выбрана, так как STL-модели не предоставляют никаких сведений о материале объекта визуализации.

# Алгоритмы визуализации

| Задача                                  | Алгоритм решения       |
|-----------------------------------------|------------------------|
| Удаление невидимых линий и поверхностей | Z-буфер                |
| Модель освещения                        | Ламберта               |
| Модель поведения дыма                   | Уравнения Навье—Стокса |

#### Схема алгоритма, использующего z-буфер



## Схема алгоритма на основе уравнений Навье—Стокса



Общий вид алгоритма Вычиление изменения распределения плотности

Вычисление изменения поля скорости

#### Диаграмма классов



### Реализация алгоритмов

```
Язык программирования — C++. Графический интерфейс — Qt. Визуализация — SFML. Параллельные вычисления — OpenMP.
```

# Результат работы программы



#### Исследование



Без параллельных вычислений общее время работы — 0.372 сек

С параллельными вычислениями общее время работы — 0.185 сек

Наиболее длительными частями алгоритма являются решения СЛАУ и вычисления адвекций. Применение к ним параллельных вычислений позволяет добиться двухкратного ускорения работы алгоритма.

#### Заключение

Цель курсовой работы – разработка программного обеспечения для визуализации процесса извержения вулкана — была достигнута. Для этого были выполнены поставленные задачи:

- проведен анализ алгоритмов удаления невидимых линий и поверхностей, построения освещения, визуализации и выбраны наиболее подходящие для решения задачи;
- спроектировано программное обеспечение;
- выбраны средства реализации программного обеспечения и проведена его разработка;
- проведено исследование характеристик разработанного программного обеспечения.