



2021/10/31

钢骨混凝土框架

- 材料
  - 型钢
  - 混凝土
  - 钢筋
- 特点
  - 刚性节点
  - 提高了框架结构的强度和刚度,减小了截面尺寸
  - 较纯钢结构,抗火性能良好
  - 节点配筋较为复杂

2021/10/31



# 4.1 框架结构

- 4.1.1 框架结构类型
- 钢筋混凝土框架结构
- 钢骨钢筋混凝土框架结构
- 钢框架结构
- 钢框架一(阻尼)支撑结构
- 钢框架一钢筋混凝土剪力墙结构
- 钢框架一筒体结构

2021/10/31

# 钢框架结构

- ■材料
  - 型钢
- 特点
  - 刚性节点,部分可能是铰接节点
  - 刚度较弱
  - 结构阻尼较小
  - 抗火性能差
  - 刚性节点较难施工
  - 用钢量相对较大

2021/10/31



# 钢筋混凝土框架

- ■材料
  - 混凝土
  - 钢筋
- 特点
  - 刚性节点
  - 刚度相对纯钢框架大
  - 刚度相对钢骨混凝土框架小
  - 阻尼相对较大
  - 较经济,在我国得到广泛应用
  - ■高度受限值

2021/10/31



# 钢框架一支撑结构

- ■材料
  - ■型钢
- 特点
  - 支撑提高了结构的整体刚度
  - 其余同纯钢结构

2021/10/31



#### 钢框架一支撑一阻尼结构

- ■材料
  - ■型钢
- 特点
  - 支撑提高了结构的整体刚度
  - 阻尼器提高了结构的阻尼,特别是大震下结构阻尼,从而降低地震作用
  - 其余同纯钢结构

2021/10/31

1/10/31



# 4.1 框架结构

- 4.1.2 框架结构震害
  - 钢筋混凝土框架结构震害

2021/10/31



#### 钢框架-混凝土剪力墙(筒体)结构

- ■材料
  - ■型钢
  - 钢筋混凝土剪力墙
- 特点
  - 剪力墙 (筒体) 提高了结构的整体刚度
  - 钢梁一钢柱连接做成铰接节点,便于施工
  - ■两道抗震防线

2021/10/31

4.1 框架结构

- □ 4.1.3 框架结构抗震等级
  - 钢筋混凝土框架抗震等级
  - 钢结构抗震等级

2021/10/31



# 钢框架筒体结构 (纯钢)

- ■材料
  - ■型钢
- 特点
  - ■密柱深梁构成简体极大地提高了结构的整体 刚度
  - ■其余同钢结构

2021/10/31

9

#### 钢筋混凝土房屋 抗震等级

框架结构 延性设计原则:

- 强柱弱梁
- 强剪弱弯
- 强节点弱构件

抗规( GB50011-2010) 高规(JGJ 3-2010)中 根据A级和B级房屋分别给出抗 震等级

2021/10/31

|           | 808  | -            |     |     |     | 16        | . RS | BI  | R          |     |        |    |
|-----------|------|--------------|-----|-----|-----|-----------|------|-----|------------|-----|--------|----|
|           | 日刊美  | -            |     | 6   |     | 7         |      |     |            |     |        | ,  |
|           | *    | <b>食</b> (m) | <24 | >24 | <2  | 4         | >24  | <2  | 4          | >24 | <      | 24 |
| 框架        |      | 框架           | п   | Ξ   | Ξ   |           | =    | =   | Т          | -   |        | -  |
|           | 大門   | 大跨度框架        |     |     |     | =         |      |     | -          |     |        | -  |
| 框架-       | *    | <b>食</b> (m) | <60 | >60 | <24 | 25~<br>60 | >60  | <24 | 25~<br>60  | >60 | <24    | 21 |
| (は関連)     |      | 框架           | п   | Ξ   | m   | Ξ         | =    | Ξ   | Ξ          | -   | Ξ      | ŀ  |
|           | 抗菌培  |              | -   |     | Ξ   |           | =    | Ξ   |            | _   |        | =  |
| 抗菌培       | *    | 度 (m)        | <80 | >80 | <24 | 25~<br>80 | >80  | ≤24 | 25~<br>80  | >80 | <24    | 25 |
|           | ,    | 有力境          | 25  | Ξ   | п   | Ξ         | =    | Ξ   | =          | -   | =      | ŀ  |
| 部分框       | *    | 度 (m)        | <80 | >80 | <24 | 25~<br>80 | >80  | <24 | 25 ~<br>80 |     |        | ,  |
| 支抗薬       | 抗翼   | 一般部位         | m   | Ξ   | п   | Ξ         | =    | Ξ   | =          | 1/  | ١.,    | /  |
| 堆结构       | *    | 加强郵位         | 至   | =   | Ξ   | Ξ         | -    | =   | -          | 1/  | /      |    |
|           | 48.1 | 北层框架         | :   |     | -   |           | -    |     | _          | V   | V      |    |
| 框架-       |      | 框架           |     |     |     | Ξ         |      |     | -          |     |        | _  |
| 核心質<br>筋构 | _    | <b>医心間</b>   |     | =   |     | =         |      |     | -          |     | _      | Ξ  |
| 幾中質       |      | 外間           | . 1 | E.  |     | =         |      |     |            |     |        |    |
| 旗钩        |      | 内質           | 1   | E   |     | =         |      | -   |            |     | =      |    |
| 板柱-       |      | 度 (m)        |     | >35 | <   | 15        | >35  | <3  |            | >35 |        |    |
| 抗業権       |      | 微柱的柱         | Ξ.  | =   | -   | -         | ÷    | -   | -          | _   | 1/     |    |
| 55 49     | _    | 九粟塘          | -   | -   | _   |           | _    | _=  |            | _   | $\sim$ |    |

定线票号號;
3 大跨客型接跨度不小于 18mm 的框架;
4 真實不顧过 6mm 的框架 <del>核小规划外的框架,块置</del>墙的要求设计时,应按表中框架,快置墙结构的规定确定实统置号级。

#### 钢筋混凝土房屋 抗震等级

高规(JGJ 3-2010)对于A 级高度的房屋,抗震等级规定 同《抗震规范》,但取消了低 层房屋的抗震等级一栏;

对于B级高度的房屋,取消高度 作为变量的一栏,并适当提高 了抗震等级。没有9度区的数据 即,不建议在9度区建B级高度 的建筑。

| #A          | 构类型        |    | 別度  |     |
|-------------|------------|----|-----|-----|
| -           |            | 6度 | 7度  | 8度  |
| 枢架-劳力培      | 似保         | =  | -   | -   |
| 15.96-9777年 | 前力塘        | =  | -   | 特一  |
| 80 O/A      | 努力項        | =  |     | -   |
|             | 非底部加强認位努力場 | =  | -   | -   |
| につわる例 戸場    | 底部加强部位背力填  | -  |     | 16- |
|             | 框支框架       |    | 15- | 15- |
| 化苯 医心体      | 框架         | =  | -   | -   |
| a s trons   | 网络         | =  | -   | 18- |
| 62 (4-83    | 外筒         | =  | -   | 16- |
| Br. 41-195  | 内筒         | =  | -   | 15- |

2021/10/31

#### 4.2 框架结构的计算



#### 4.2.1 结构整体计算

- 计算简图采用三维空间整体模型
- 梁柱均为空间杆系单元
- 节点根据设计要求可选刚性、半刚性节点和铰节点
- 采用结构计算软件进行结构整体分析和构件设计
- 结构自振周期和振型是重要的整体信息
- 结构的位移是重要的控制指标
- 构件的承载力是基本的设计要求
- 注意轴压比、配筋率、截面尺寸等

2021/10/31



#### 钢结构房屋抗震等级

抗震规范(GB50011-2010)首次对钢结构房屋,根据房屋高 度规定了相应的抗震等级,(表 8.1.3)。

| 建筑物高度 6 7       | 8 |   |
|-----------------|---|---|
|                 |   | 9 |
| ≤50m / 四        | 三 | = |
| >50m <u>四</u> 三 | = | _ |



14

#### 4.2.2 平面框架的简化计算

- 1. 竖向荷载下的框架计算——分层法
  - 计算模型一分层独立
  - 计算假定:
    - 按无侧移框架分析;
    - ■本层梁竖向荷载只对本层梁和与之相连的框架柱 产生弯距和剪力,而对其他楼层框架和隔层框架 柱不产生影响;
    - 框架柱端的约束为固定支座。

2021/10/31 17



2021/10/31

# 4.1 框架结构

- 4.1.4 高层建筑中框架结构的特点
  - 有无特别要求
  - 轴压比限值
  - 位移限值
  - 构造要求
  - (除抗震等级不同之外,还有什么不同)

2021/10/31 15





# 分层法

#### 修正:

- 1) 对固定支座的修正: 柱的刚度×0.9; 底层柱的线刚度不变。
- 2) 柱的弯距传递系数取1/3;
- 3) 不平衡节点弯距再做一次弯距分配。

2021/10/31

21/10/31



4

# 2. 水平荷载下的框架计算——

反弯点法

#### 计算模型

- 计算假定:
  - 同层柱具有相同的位移;
  - 同层柱的侧移刚度相同;
  - 梁的线刚度远大于柱的线刚度;
  - 柱的反弯点在柱的中点,底层柱在距支座2/3处;
  - 梁的反弯点在梁的中点。

2021/10/31

















#### 修正后的反弯点高度

- 反弯点高度取决于柱上下端转角的比值;
- 影响因素:
  - 框架总层数、所在层数  $\mathbf{j}$ 、梁柱线刚度比值 $\mathbf{K}$ 、 荷载作用形式  $\rightarrow y_0$
  - 上下横梁线刚度 → y₁
  - 上下楼层高度 → y<sub>2</sub>, y<sub>3</sub>

 $yh = (y_0 + y_1 + y_2 + y_3)h$ 

2021/10/31

27



#### 4.3 构件承载力计算及参数调整

- 整体计算
  - ⇒ 整体变形验算

⇒ 构件承载力验算

- 取最不利内力组合
- 根据相应规范进行承载力验算

2021/10/31





4. 4 钢筋混凝土框架的设计
4.4.1 框架梁设计
4.4.2 框架柱设计
4.4.3 框架节点设计



4.4.1 框架梁设计

破坏形态
梁端: 弯曲破坏、剪切破坏、钢筋 锚固不足拔出; 跨中: 弯曲破坏、钢筋拉断 钢筋锈蚀引起开 裂导致破坏等





#### □ 梁设计需考虑的因素

- 跨高比
  - 跨高比小于**2**,极易发生剪切破坏。

  - 一般规定:

 $\frac{l_n}{h_0} \ge 4$ 

2021/10/31

| □ 梁                 | e设计需考虑的因                                                | 素      | 2            |                                                        |
|---------------------|---------------------------------------------------------|--------|--------------|--------------------------------------------------------|
| _                   |                                                         |        |              |                                                        |
| ■ 梁纵筋ы              | 最小配筋率                                                   |        |              |                                                        |
|                     |                                                         |        |              |                                                        |
| 4                   |                                                         |        |              |                                                        |
|                     | 级钢筋直径不宜小于2Φ14                                           | P 25 5 | 5 <b>4</b> ⊓ |                                                        |
|                     | 级钢肋直径小直小于2 <b>0</b> 14<br>小于1/4纵向钢筋较大配筋截                | 面面面面面  | 面积           |                                                        |
|                     |                                                         |        | 面积           |                                                        |
| ■不宜                 | 小于1/4纵向钢筋较大配筋截                                          |        | 面积           |                                                        |
|                     | 小于1/4纵向钢筋较大配筋截<br>框架梁纵向受拉钢筋最小配筋百分率(%                    | )      |              | 跨中(取較大值                                                |
| ■不宜                 | 小于1/4纵向钢筋较大配筋者<br>框架梁纵向受拉钢筋最小配筋百分率(%<br>概 面             | )      |              |                                                        |
| ■不宜/                | 小于1/4纵向钢筋较大配筋在<br>框架梁纵向受拉钢筋最小配筋百分率(%<br>概 面<br>支座(取較大值) | )      |              | 0.3和65f <sub>1</sub> /f <sub>y</sub>                   |
| ■不宜/<br>抗震等級<br>- 級 | 小于1/4纵向钢筋较大配筋套<br>框架梁纵向受拉钢筋最小配筋百分率(%<br>数 面<br>支座(取較大值) | )      |              | 跨中(取较大值<br>0.3和65f//f/<br>0.25和55f//f/<br>0.20和45f//f/ |



#### □ 梁设计需考虑的因素

■ 塑性铰区的箍筋

确保足够的封闭箍筋可以提高塑性铰区的转动能力。

| 采用   | 区长度<br> 較大值)<br>mm) | <br>館館最大间<br>(采用最小(<br>(mm) |    | 雜筋最小直径<br>(mm) |
|------|---------------------|-----------------------------|----|----------------|
| 24   | ,500                | <br>h <sub>b</sub> /4,6d,1  | 90 | 10             |
| 1.5  | h, 500              | h <sub>b</sub> /4,8d,1      | 00 | 8              |
| 1. 5 | h, 500              | h <sub>b</sub> /4,8d,1      | 50 | 8              |
| 1.5  | h, 500              | h <sub>b</sub> /4,8d,1      | 50 | 6              |

的最大闹距应允许适当放宽,但不得大于 150r

2021/10/31

#### □ 梁设计需考虑的因素

- 梁纵筋最大配筋率
  - 不宜大于2.5%,不应大于2.75%, 一般不宜大于2.0%(抗震要求),

超过,箍筋直径加大2mm(加密)

- 一二三级框架中,穿越框架柱的梁纵筋直径,不应 大于矩形框架柱该边边长的1/20;圆形截面弦长的 1/20;
- 对于其他结构, ...... 不宜......

2021/10/31



### □ 梁设计需考虑的因素

■ 梁端剪力设计——强剪弱弯

$$V = \eta_{Vb} \frac{M_b^l + M_b^r}{l_n} + V_{Gb}$$

 $\eta_{Vb}$  = 1.3,1.2,1.1分别对应一级、二级、三级抗震

$$V = 1.1 \frac{M_{bua}^{l} + M_{bua}^{r}}{l} + V_{Gb} : 9$$
度区和一级抗震

2021/10/31

39



#### □梁设计需考虑的因素

- 框架梁
  - 材料: 不应低于C30, 不宜大于C40。
  - 梁高: h=(1/10~1/18)L, h >=400mm。
  - 梁宽: b=(1/2~1/3)h。
  - 梁高>450 mm , 设腰筋, 间距不宜大于200 mm 。
  - 边梁的抗扭问题——<mark>设置抗扭钢筋</mark>
  - 边支座的连接方式——足够的纵筋锚固长度
  - 高层建筑中,扁梁应用较普遍(为什么?)

2021/10/31

#### 4.4 钢筋混凝土框架的设计

#### 4.4.2 框架柱设计

#### 受力性能

- 破坏形态
  - 柱端破坏严重
  - 压弯破坏
  - 剪切破坏
  - 剪压破坏

2021/10/31

柱设计 需考虑的因素 轴压比限值

- Q: 为什么要限制?
- Q: IV类场地
- Q: 较高建筑?
- Q: 剪跨比?
- Q: 箍筋形式?
- Q: 如何提高轴压比 限值?

2021/10/31

表 6.3.6 柱轨压比限值 抗震等级 结构类型 - ∴ ± 0.65 0.75 0.85 0.90 框架-抗震墙,板柱-抗震墙、 框架-核心筒及筒中筒 0.75 0, 85 0, 90 0.95 部分框支抗環境

- 要求确定: 5 柱输压比不应大于 1.05。

### □柱设计需考虑的因素

柱设计——强柱弱梁

$$V_c = \eta_{vc} \frac{M_c^l + M_c^r}{H_n}$$

 $\eta_{Vc}$  = 1.5,1.3,1.2,1.1对应 1级、2级、3级和 4级

$$V_c = 1.2 \frac{M_{cua}^l + M_{cua}^r}{H}$$
:9度区和一级抗震

2021/10/31

□柱设计需考虑的因素

- λ≥2时(长细比≥4),为长柱,破坏形式为压弯型, 有一定变形能力。
- 1.5 ≤ λ < 2 时 ( 3 ≤ 长细比 < 4 ) ,为短柱,破坏 形式为剪切型或剪压型;
- $\lambda$  <1.5 时(长细比<3),为极短柱,破坏形式为 剪压型,设计时应尽量避免。

2021/10/31





柱体积配箍率

 $\rho_V \geq \lambda_V \frac{f_c}{f_{con}}$ 

- 与混凝土强度有关
- 与箍筋强度有关
- 与轴压比有关
- 与箍筋方式有关

2021/10/31















#### □柱设计需考虑的因素

- 材料: 不应低于C30,9度区不宜大于C60,8 度区不宜大于C70;
- 截面: 满足轴压比要求
- 满足截面抗剪要求;
- 柱边长不小于300mm;
- 纵筋无支撑距离不宜大于200。
- 宜采用复合箍

2021/10/31



#### 4.4.3 节点设计

设计原则——强节点弱构件

受剪截面限值条件——确定节点的最小截面

$$V_{j} \leq \frac{1}{\gamma_{RE}} (0.3 \eta_{j} \beta_{c} f_{c} b_{j} h_{j})$$

 $\eta_i$  - 直交梁对节点的约束作用系数,

 $\eta_i = 1.5 \sim 1$ 

2021/10/31



#### 4.4.3 节点设计

设计原则——强节点弱构件

■ 顶层中间节点

$$V_{j} = \eta_{jb} \frac{M_{b}^{l} + M_{b}^{r}}{h_{b0} - a_{s}^{'}}$$

 $\eta_{ib}$  = 1.35,1.2,分别对应一级、二级

$$V_{j} = 1.15 \frac{M_{bua}^{l} + M_{bua}^{r}}{h_{bo} - a_{s}^{r}}$$

2021/10/31



### □节点设计需考虑的因素

- 材料:
  - <mark>混凝土强度</mark>: 不应低于C30,9度区不宜大于C60,8度 区不宜大于C70;
  - 钢筋:符合抗震性能指标的热轧钢筋
    - 1)纵向钢筋宜选用不低于HRB400,也可选用HRB335,
    - 2) 箍筋宜选用不低于HRB335, 也可选用HPB300
  - 钢材:
    - 1) 钢材的屈服强度实测值与抗拉强度实测值的比值不应 大于0.85,
    - 2) 钢材应有明显的屈服台阶,且伸长率不应小于20%;
    - 3) 钢材需有良好的焊接性和合格的冲击韧性。

2021/10/31



# 4.4.3 节点设计

设计原则——强节点弱构件

■ 其他楼层节点

$$V_{j} = \eta_{jb} \frac{M_{b}^{l} + M_{b}^{r}}{h_{b0} - a_{s}^{l}} (1 - \frac{h_{b0} - a_{s}^{l}}{H_{c} - h_{b}})$$

 $\eta_{_{jb}}$  = 1.35,1.2,分别对应一级、二级

$$V_{j} = 1.15 \frac{M_{bua}^{l} + M_{bua}^{r}}{h_{b0} - a_{s}} (1 - \frac{h_{b0} - a_{s}}{H_{c} - h_{b}})$$

2021/10/31

#### □异形柱结构

#### ■ 设计规定

#### 3 结构设计的基本规定

3.1. 结构体系 3.1.1 异形柱结构可采用框架结构和框架-剪力墙结构体系。 根据建筑布置及结构受力的需要,异形柱结构中的框架柱,可全部采用异形柱,也可部

当根据建筑功能需要设置底部大空间时, 可通过框架底部抽杆并设置转换梁, 形成底部 抽柱带转换层的异形柱结构, 其结构设计应符合本规程附录 A 的规定。

3.1.4 异形柱结构体系应通过技术、经济和使用条件的综合分析比较确定,除应符合国家现 行标准对一般钢筋混凝土结构的有关要求外,还应符合下列规定:

- 1 异形柱结构中不应采用部分由砌体墙承重的混合结构形式;
- 2 抗震设计时,异形柱结构不应采用多塔、连体和错层等复杂结构形式,也不应采用 单跨框架结构:
- 异形柱结构的楼梯间、电梯井应根据建筑布置及结构抗侧向作用的需要,合理地布
- 置剪力墙或一般框架柱; 4 异形柱结构的柱、梁、剪力墙均应采用现浇结构

2021/10/31

## □异形柱结构

#### ■ 设计规定

显形柱结构话用的房屋最大高度(m)

#### 结构最大高度限值

|          |       | 抗震设计    |                                            |                                                                                    |                                                                                                       |  |  |  |
|----------|-------|---------|--------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--|--|--|
| 结构体系     | 非抗震设计 | 6度      | 7度                                         |                                                                                    | 8度                                                                                                    |  |  |  |
|          |       | 0.05g   | 0. 10g                                     | 0.15g                                                                              | 0. 20g                                                                                                |  |  |  |
| 框架结构     | 24    | 24      | 21                                         | 18                                                                                 | 12                                                                                                    |  |  |  |
| 框架-剪力墙结构 | 45    | 45      | 40                                         | 35                                                                                 | 28                                                                                                    |  |  |  |
|          | 框架结构  | 框架结构 24 | 0.05g           框架结构         24         24 | 结构体系     非抗震设计     6 度     7       0.05g     0.10g       框架结构     24     24     21 | 结构体系     非抗震设计     6 度     7 度       0.05g     0.10g     0.15g       框架结构     24     24     21     18 |  |  |  |

#### 结构最大高宽比限值

表 3.1.3 异形柱结构适用的最大高宽比

|          | 1, 0, 1, 0 | 抗震设计  |           |        |        |  |  |
|----------|------------|-------|-----------|--------|--------|--|--|
| 结构体系     | 非抗震设计      | 6度    | 7度        |        | 8度     |  |  |
|          |            | 0.05g | 5g 0. 10g | 0. 15g | 0. 20g |  |  |
| 框架结构     | 2.5        | 4     | 3. 5      | 3      | 2.5    |  |  |
| 框架-剪力墙结构 | 5          | 5     | 4. 5      | 4      | 3. 5   |  |  |

2021/10/31 61

#### □异形柱结构 ■ 计算要点

- 由于其截面的特殊性,截面存在不对称性。
- 当水平力较小时,可用平截面假定,按等代矩形截面计算
- 当水平力较大时,且水平力作用在非主轴方向,则翘曲应力不容忽视, 按平截面假定误差较大,则应对异形柱框架结构进行有限元分析,决 定内力和配筋位置及大小。
- 在进行内力计算和配筋计算时,宜选用带有异形柱计算功能的计算软件。现在有一些软件没有异形柱截面形式,如要用它进行计算,要先进行等刚度等面积换算成矩形柱,进行整体分析,得到双向内力后再进行异形柱的截面设计,其工作量相当大,且截面设计的可靠性不高。
- 常用的可直接进行异形柱截面内力计算和截面设计的软件
- PKPM中的TAT、SATWE程序,以及其他大型计算软件或省院等编著的程序。这些程序均用数值积分法进行正截面配筋设计,准确性较高。

021/10/31 64

# □异形柱结构 ■ 设计规定

#### 结构弹性水平位移限值

| 表 4.4.1 异形柱结 | 构弹性层间位移角限值         |
|--------------|--------------------|
| 结构体系         | [ E <sub>0</sub> ] |
| 框架结构         | 1/600 (1/700)      |
| 框架-剪力墙结构     | 1/850 (1/950)      |

注:表中括号内的数字用于底部抽柱带转换层的异形柱结构。

#### 结构弹塑性水平位移限值

| 结构体系     | [E,]          |
|----------|---------------|
| 框架结构     | 1/60 (1/70)   |
| 框架-剪力墙结构 | 1/110 (1/120) |

62

63

注:表中括号内的数字用于底部抽柱带转换层的异形柱结构。

2021/10/31



# □异形柱结构 ■ 计算要点

# **框架柱轴压比限值** 表 5.3.2-1 轴压比影响系数 5.

2021/10/31

| 轴压比  | ≤0.3                  | 0.4   | 0.5  | 0.6  | 0.7  | 0.8    | 0.9  |
|------|-----------------------|-------|------|------|------|--------|------|
| 5 x  | 1.00                  | 0. 98 | 0.95 | 0.90 | 0.88 | 0.86   | 0.84 |
| 1000 | 压比 N / (f。            |       |      |      |      |        |      |
|      | 压比 N / (f。<br>只A 和混凝土 |       |      |      |      | 轴向压力设i | 十值!  |

#### 框架节点验算时,考虑翼缘和截面高度的影响系数

| $h_j$  | < <     | 600 | 700       | 800          | 90             | 0     | 1000 |  |
|--------|---------|-----|-----------|--------------|----------------|-------|------|--|
| ζ,     |         | 1   | 0.9       | 0.85         | 0.             | 8     | 0.75 |  |
| hl     | o. (mm) | 表   | 5. 3. 4-1 | 異缘影响系<br>400 | 数 5, (等<br>500 | 600   | 700  |  |
| Dr t   | L形      | 1   | 1.05      | 1. 10        | 1.10           | 1. 10 | 1.10 |  |
| 5 · T形 |         | 1   | 1.25      | 1.30         | 1.35           | 1.40  | 1.40 |  |
|        | 十字形     | 1   | 1.40      | 1.45         | 1.50           | 1, 55 | 1.53 |  |

