

Universidade de Brasília

Departamento de Ciência da Computação

Aula 10 Aritmética Computacional Aritmética Fracionária

Representação de casas decimais em complemento de 2:

Ex.: 8 bits

Q3:
$$2^4$$
 2^3 2^2 2^1 2^0 , 2^{-1} 2^{-2} 2^{-3}

Menor valor: 10000000 $-2^4 = -16$

Maior valor: 01111111 $2^3 + 2^2 + 2^1 + 2^0 + 2^{-1} + 2^{-2} + 2^{-3} = 15,875$

Q1:
$$2^6 2^5 2^4 2^3 2^2 2^1 2^0$$
, 2^{-1}

Menor valor: 10000000 $-2^6 = -64$

Maior valor: 01111111 $2^5 + 2^4 + 2^3 + 2^2 + 2^1 + 2^0 + 2^{-1} = 63,5$

Q7:
$$2^{0}$$
, 2^{-1} 2^{-2} 2^{-3} 2^{-4} 2^{-5} 2^{-6} 2^{-7}

Menor valor: 10000000 $-2^0 = -1$

Maior valor: 01111111 $2^{-1} + 2^{-2} + 2^{-3} + 2^{-4} + 2^{-5} + 2^{-6} + 2^{-7} = 0,9921875$

Considerando 8 bits, calcule a representação em Q7

- □ 0.75 =
- □ -0.75 =
- □ 0.3 =

Considerando 16 bits, calcule a representação em Q15

- \Box 0.75 =
- □ -0.75 =
- □ 0.3 =

Ponto Fixo

- Operações Matemáticas: da mesma forma que inteiros usando mesmo Q.
 - □ Soma
 - □ Subtração
 - Multiplicação (algoritmos clássicos apenas para positivos!)
 - □ Divisão (ex.: 5/8)

Ex.: 8 bits

	Q0	Q2	Q7
01010001	81	20.25	0.6328125
+ 10111001	<u>-71</u>	<u>-17.75</u>	<u>-0.5546875</u>
00001010	10	2.50	0.0781250
00000110	6	1.5	0.046875

$$6 1.5$$
 $\times 10 \times 2.5$
 $60 3.75 0$

$$\times 2.5 \times 0.078125$$

3.75 0.003662109375

Ponto Fixo

- Vantagens:
 - Aritmética é simples e rápida
 (Processador menor, mais rápido e mais barato)
- Problemas:
 - □ Pequena faixa dinâmica
 - □ Precisão depende da faixa dinâmica

Ponto flutuante

- Precisamos de uma maneira de representar grande faixa dinâmica
 - números muito pequenos: 0,0000000000001182721226716
 - números muito grandes: 16728387635120000000000000000
- Notação Científica (base 10): Mantissa ou Significando Característica ou Expoente
 - \square Ex.: 1.182721226716×10⁻¹⁵ e 1.672838763512×10²⁹
 - □ Sempre normalizado, isto é, apenas 1 dígito não decimal (diferente de zero).

- Notação Científica (base 2)
 - \square Ex.: $1.010 \times 2^{-2} = 0.01010 = 0.3125 = (1+0.25) \times 2^{-2}$

- Representação:- sinal, expoente, significando: (-1)^S × M× 2^E
 - mais bits para o significando fornece mais precisão
 - mais bits para o expoente aumenta a faixa
- Padrão de ponto flutuante IEEE 754 (2008):
 - meia precisão: 16 bits: 1+5+10 Usada em processamento gráfico (GPU)
 - precisão simples: 32 bits: 1+8+23 tipo (float)
 - precisão dupla: 64 bits: 1+11+52 tipo (double)
 - precisão quádrupla: 128 bits: 1+15+112 Ainda pouco utilizado

S	Expoente	ı	ração		
15	14:10		9:0		
S	Expoente		Fraçã	ăo	
31	30:23		22:0)	
S	Expoente			Fraçã	io
63	62:52			51:0)
S	Expoente				Fraç
127	126:112			<u> </u>	111

Padrão de ponto flutuante IEEE 754

- O bit "1" inicial do significando está implícito (aumenta a precisão)
- O expoente possui um off-set para facilitar a ordenação
 - Off-set de 15 para meia precisão 127 para precisão simples
 1023 para precisão dupla 16383 para precisão quádrupla
 - Formato:

$$(-1)^{\text{sinal}} \times (1 + \text{Fração}) \times 2^{(\text{Expoente} - \text{offset})}$$

Converter o número decimal N = -5,0 para IEEE754 precisão simples Colocar no formato: N = $(-1)^S \times M \times 2^E$ onde $1 \le M < 2$

$$S = 1$$

E = floor(log₂(|N|)) = floor(log₂(5,0)) = floor(2,3219) = 2 => Expoente=129 M = $|N| / 2^E = 5.0 / 2^2 = 5.0/4 = 1.25 \Rightarrow 1.01_2$

Assim: $-5.0 = (-1)^1 \times (1.01_2) \times 2^{(129-127)}$

0xC0A00000

Dado o número em FP IEEE754: 0xC1100000 qual o número decimal representado?

1100 0001 0001 0000 0000 0000 0000 0000

1 10000010 00100000000000000000000

$$E = 130 - 127 = 3$$

 $M = 1.001$

Logo:
$$(-1)^1 \times (1.001) \times 2^3 = -(1001.0) = -9.0$$

Como representar 0?

Precisão	Simples	Precisã	Objete	
Expoente	Fração	Expoente	Fração	Objeto
0	0	0	0 0	
0	≠0	0	≠0	±Número desnormalizado
1-254	\forall	1-2046	\forall	±Número Ponto Flutuante
255	0	2047	0	±∞
255	≠0	2047	≠0	NaN

Obs.: Número desnormalizado: Considera 0 inicial na mantissa

Qual a faixa dinâmica dos números representáveis em precisão simples e dupla sem overflow ou underflow?

Operações em Ponto Flutuante

Adição e Subtração em IEEE 754:

Procedimento idêntico às operações em Notação Científica base 10.

 Converte-se o número com menor expoente para igualar ao expoente do maior e somase (subtrai-se) as mantissas

Ex.: Em notação científica Decimal

com limite de representação de 4 dígitos fracionários na mantissa

$$9.9999 \times 10^2 + 1.7100 \times 10^{-1} = 9.9999 \times 10^2 + 0.00171 \times 10^2 =$$

= $9.9999 \times 10^2 + 0.0017 \times 10^2 = 10.0016 \times 10^2 = 1.00016 \times 10^3 =$
= 1.0002×10^3
 $999.99 + 0.171 = 1000.161 \rightarrow 1000.2$

Ex.: Em notação científica Binária

com limite de representação de 4 bits fracionários na mantissa

$$1.1110 \times 2^2 + 1.1100 \times 2^{-1} = 1.1110 \times 2^2 + 0.00111 \times 2^2$$

= $1.1110 \times 2^2 + 0.0011 \times 2^2 = 10.0001 \times 2^2 = 1.00001 \times 2^3$
= 1.0000×2^3
 $7.5 + 0.875 = 8.375 \rightarrow 8.000$

Adição de ponto flutuante

Operações em Ponto Flutuante

Multiplicação e Divisão em IEEE 754:

Procedimento idêntico às operações em Notação Científica base 10:

- Multiplica-se as mantissas e soma-se os expoentes ou
- Divide-se as mantissas e subtrai-se os expoentes

Ex.: Decimal

$$3,2300\times10^2\times3,4150\times10^{-1} = 11,03045\times10^1$$

(4 dígitos) = $1,1030\times10^2$

Ex.: Binário

$$1,1000 \times 2^{-1} \times (-1,1101 \times 2^{-2}) = -10,10111 \times 2^{-3}$$

(4 bits) = -1,0101×2⁻²

Overflow: |resultado| > MAX : |resultado|=infinito

Underflow: |resultado| < MIN : |resultado|=0,0

Obs.: IEEE 754

Expoentes com offset, logo diminuir 1 offset da soma dos expoentes!

Obs.: Projetar o hardware!

- O IEEE754 permite 5 tipos de arredondamentos
 - □ Sempre para + ∞ (cima, *ceil*): 2.1 \rightarrow 3 2.5 \rightarrow 3 2.9 \rightarrow 3
 - □ Sempre para $-\infty$ (baixo, *floor*) : 2.1 \rightarrow 2 2.5 \rightarrow 2 2.9 \rightarrow 2
 - □ Ao mais próximo (*round*): $2.1 \rightarrow 2$ $2.9 \rightarrow 3$ $2.5 \rightarrow ? \uparrow \downarrow ?$

Ao zero:
$$2.5 \rightarrow 2 \downarrow -2.5 \rightarrow -2 \uparrow$$

À maior magnitude: $2.5 \rightarrow 3 \uparrow$ $-2.5 \rightarrow -3 \downarrow$

Ao dígito par: $2.5 \rightarrow 2 \downarrow 3.5 \rightarrow 4 \uparrow$

Os arredondamentos se aplicam também ao último bit de precisão da mantissa.

Obs.: Em precisão finita operações lineares passam a ser não-lineares!

Ex.:
$$(x+y)+z \neq x+(y+z)$$

$$x + (y + z) = -1.5 \times 10^{38} + (1.5 \times 10^{38} + 1.0) = 0.0$$

$$(x + y) + z = (-1,5 \times 10^{38} + 1,5 \times 10^{38}) + 1,0 = 1,0$$

- ☐ F: Single precision
- □ D: Double precision
- Q: Quad precision
- 32 Registradores de 64 bits:
 - f0, f1,..., f30, f31 com convenção
- Float-point Control and Status Register (fcsr)

31 8	7 5	4	3	2	1	0
Reserved	Rounding Mode (frm)	Accru	ied Ex	ceptio	ns (ff	lags)
		NV	DZ	OF	UF	NX
24	3	1	1	1	1	1

Modos de Arredondamento: Flags de exceção

000: ao número par (round) NV = Operação Inválida

001: para o zero (round) DZ = Divisão por zero

010: para baixo (floor) OF = Overflow O11: para cima (ceil) UF = Underflow

100: para a maior magnitude (round) NX = Inexato

Registers		Floating Point				
Name	Number	Value				
ft0	0	0x000000000000000000				
ftl	1	0x000000000000000000				
ft2	2	0x00000000000000000				
ft3	3	0x000000000000000000				
ft4	4	0x00000000000000000				
ft5	5	0x000000000000000000				
ft6	6	0x000000000000000000				
ft7	7	0x000000000000000000				
fs0	8	0x00000000000000000				
fsl	9	0x00000000000000000				
fa0	10	0x00000000000000000				
fal	11	0x000000000000000000000000000000000000				
fa2	12	0x00000000000000000				
fa3	13	0x00000000000000000				
fa4	14	0x000000000000000000000000000000000000				
fa5	15	0x000000000000000000000000000000000000				
fa6	16	0x000000000000000000000000000000000000				
fa7	17	0x000000000000000000000000000000000000				
fs2	18	0x00000000000000000				
fs3	19	0x000000000000000000000000000000000000				
fs4	20	0x000000000000000000000000000000000000				
fs5	21	0x000000000000000000000000000000000000				
fs6	22	0x00000000000000000				
fs7	23	0x00000000000000000				
fs8	24	0x00000000000000000				
fs9	25	0x00000000000000000				
fs10	26	0x00000000000000000				
fsll	27	0x00000000000000000				
ft8	28	0x00000000000000000				
ft9	29	0x00000000000000000				
ft10	30	0x00000000000000000				
ft11	31	0x00000000000000000				

Control and Status

Registers	Float	ing Point	Coi	ntrol and Status	
Name		Numb	er	Value	
ustatus			0	0x00000	00
fflags			1	0x00000	00
frm			2	0x00000	00
fcsr			3	0x00000	00
uie			4	0x00000	00
utvec			5	0x00000	00
uscratch			64	0x00000	00
uepc			65	0x00000	00
ucause			66	0x00000	00
utval			67	0x00000	00
uip			68	0x00000	00
misa			769	0x40001	12
cycle			3072	0x00000	00
time			3073	0x00000	00
instret			3074	0x00000	00
cycleh			3200	0x00000	00
timeh			3201	0x00000	00
instreth			3202	0x00000	00

Operações com precisão simples

- \square Adição: fadd.s f0, f1, f2 # f0 = f1 + f2
- □ Subtração: fsub.s f0, f1, f2 # f0 = f1 f2
- □ Multiplicação: fmul.s f0, f1, f2 # f0 = f1 × f2
- \square Divisão: fdiv.s f0, f1, f2 # f0 = f1 ÷ f2
- □ Raiz Quadrada: fsqrt.s f0, f1 # f0 = $\sqrt{f1}$
- □ Comparação:

```
feq.s t1, f1, f2 # se f1 = f2 então t1=1 senão t1=0
```

fle.s t1, f1, f2 # se f1
$$\leq$$
 f2 então t1=1 senão t1=0

flt.s t1, f1, f2 # se f1 < f2 então t1=1 senão t1=0:

```
fmax.s f0, f1, f2 # f0 = max(f1,f2)
fmin.s f0, f1, f2 # f0 = min(f1,f2)
```


Transferências de dados

- □ Load: flw f1, -100(t0) # f1 = Mem[t0 100]
- □ Store: fsw f1, -100(t0) # Mem[t0 100] = f1
- Movimentação sem conversão:

```
fmv.x.s t0, f1 # transfere os bits t0 = f1
```

fmv.s.x f1, t0 # transfere os bits f1 = t0

☐ Movimentação com conversão:

```
fcvt.s.w f1, t0 # converte inteiro → float
```

fcvt.s.wu f1, t0 # converte inteiro sem sinal → float

fcvt.w.s t0, f1 # converte float → inteiro

fcvt.wu.s t0, f1 # converte float → inteiro sem sinal

Exemplo: Conversor de Temperatura

```
float fahr2c(float fahr)
  return 5.0*(fahr-32.0) / 9.0;
# constantes no segmento de dados ou em imediatos (o que é + eficiente?)
.data
const5: .float 5.0
const9: .float 9.0
.text
fahr2c:
       la t0,const5
                           # ft0=5.0
      flw ft0,0(t0)
                           # ft1=9.0
      flw ft1,4(t0)
      li t0,32
                           # Não requer acesso à memória de dados!!!
      fcvt.s.w ft2,t0
      fsub.s fa0, fa0, ft2
      fmul.s fa0, fa0, ft0
      fdiv.s fa0, fa0, ft1
      ret
```

Complexidades do ponto flutuante

- As operações aritméticas são mais complexas
- Além do overflow podemos ter underflow
- A precisão pode ser um grande problema
 - O IEEE 754 mantém dois bits extras, guarda e arredondamento
 - cinco modos de arredondamento
 - positivo dividido por zero produz infinito
 - zero dividido por zero produz um não-número (NaN)
 - outras complexidades...
- Implementar o padrão pode ser arriscado
- Não usar o padrão pode ser ainda pior
 - x86 e o bug da instrução fdiv do Pentium! (jul, set, nov, dez de 1994)

Conclusões

- A aritmética do computador é restrita por uma precisão limitada
- Os conjuntos de bit não têm um significado inerente mas existem padrões (convenções)
 - sem sinal
 - complemento de dois
 - ponto fixo
 - ponto flutuante IEEE 754
- As instruções determinam o "significado" dos conjuntos de bit
- O desempenho e a precisão são importantes; portanto, existem muitas complexidades nas máquinas reais
- A escolha do algoritmo é importante e pode levar a otimizações de hardware para espaço e tempo (por exemplo, multiplicação)