Feature Driven and Point Process Approaches for Popularity Prediction

Swapnil Mishra, Marian-Andrei Rizoiu, Lexing Xie

The Australian National University and Data61, Australia

http://www.nytimes.com/2015/02/27/...

http://www.nytimes.com/2015/02/27/...

Which cascade will gather more attention?

- A. tw₁
- B. tw₂
- C. same(∓5%)

10²

#followers

http://www.nytimes.com/2015/02/27/...

240s

210s

270s

300s

120s

150s

Which cascade will gather more attention?

- A. $\mathsf{tw}_{_1}$
- B. tw₂
- C. same (∓5%)

http://www.nytimes.com/2015/02/27/...

Which cascade will gather more attention?

Prediction is difficult!

How to use event times and user features?

Popularity

Problem: predict the number of retweets on Twitter

Why do we care about it??

- Monetisation
- Personalization

Our Contributions

- Bridge gap:
 - Approaches: feature-driven vs generative
 - o Problem setting: regression vs classification
- One new benchmark dataset:
 - Features
 - Event times

Outline

Popularity prediction problem

- Self-exciting point process
- Feature-driven approaches

Results

Existing Solutions

Approach:

Feature Driven: Cheng(2014), Martin(2016), Pinto(2013) Generative: Zhao(2015), Ding(2015), Shen(2014)

Problem Setting:

Regression: Zhao(2015), Shen(2014) Classification: Cheng(2014), Shamma(2011)

Open Questions:

- Can we have best of both generative and feature-driven models?
- How useful are features computed over data available through Public APIs?

Self-Exciting Point Processes

Self-Exciting Point Processes

Self-Exciting Point Processes

Kernel for Marked Hawkes

Estimating Marked Hawkes Proc.

$$\mathcal{L}(\kappa,\beta,c,\theta) = \sum_{i=2}^{n} \log \kappa + \sum_{i=2}^{n} \log \left(\sum_{t_j < t_i} \frac{(m_j)^{\beta}}{(t_i - t_j + c)^{1+\theta}} \right) \\ -\kappa \sum_{i=1}^{n} (m_i)^{\beta} \left[\frac{1}{\theta c^{\theta}} - \frac{(T + c - t_i)^{-\theta}}{\theta} \right]$$

To have n^* 1, we use IPOPT(Wächter2006)

$$n^* = \kappa \left(\frac{\alpha - 1}{\alpha - \beta - 1} \right) \frac{1}{\theta c^{\theta}},$$
 for $\beta < \alpha - 1$ and $\theta > 0$

Estimating Marked Hawkes Proc.

$$\mathcal{L}(\kappa,\beta,c,\theta) = \sum_{i=2}^{n} \log \kappa + \sum_{i=2}^{n} \log \left(\sum_{t_j < t_i} \frac{(m_j)^{\beta}}{(t_i - t_j + c)^{1+\theta}} \right) \\ -\kappa \sum_{i=1}^{n} (m_i)^{\beta} \left[\frac{1}{\theta c^{\theta}} - \frac{(T + c - t_i)^{-\theta}}{\theta} \right]$$

To have n^* 1, we use IPOPT(Wächter2006)

$$n^* = \kappa \left(\frac{\alpha - 1}{\alpha - \beta - 1} \right) \frac{1}{\theta c^{\theta}},$$

$$\text{for } \beta < \alpha - 1 \text{ and } \theta > 0$$

From Event Series to Predictions

From Event Series to Predictions

$$N_{\infty} = n_{obs} + \sum_{i=1}^{\infty} A_i$$
$$= n_{obs} + \left(\frac{A_1}{1 - n^*}\right)$$

Further Improving Prediction

Limitations for predictions:

- #followers approximates influence
- Assumes fixed parametric kernel
- Local minima in parameter estimation

Further Improving Prediction

Limitations for predictions:

- #followers approximates influence
- Assumes fixed parametric kernel
- Local minima in parameter estimation

Predictive Layer:

$$\hat{N}_{\infty} = n_{obs} + \omega \left(\frac{A_1}{1 - n^*} \right)$$

 $\omega = RandomForest(c, \theta, A_1, n^*)$

Prediction error reduction vs. A₁

Outline

Popularity prediction problem

• Self-exciting point process

• Feature-driven approaches

Results

Features

Criterion for selection:

- can be computed on data from Public API's
- shown to perform well

User Features (Cheng2014, Martin 2016) Temporal Features Early volume (Cheng2014)

Past Success (Szabo2010, Pinto2013) (Bakshy2011, Martin2016)

Datasets

Tweet-1Mo

- Provided by Zhao et.al(SEISMIC)
- One month tweets
- Random Sample of 30.5K cascades > 50

NEWS

- April'15 to July'15 english news
- 49.7 million tweets
- 110K cascades > 50

Datasets

Tweet-1Mo

- Provided by Zhao et.al(SEISMIC)
- One month tweets
- Random Sample of 30.5K cascades > 50

NEWS

- April'15 to July'15 english news
- 49.7 million tweets
- 110K cascades > 50

—Feature-Driven

NEWS Available Now

Generative

Evaluation Setup

- 10-fold cross-validation for training
- Absolute Relative Error(ARE): $\frac{\left|\hat{N}_{\infty}-N_{real}\right|}{N}$

Results on Tweet-1Mo

Results on NEWS

Example Prediction

• Established common benchmark to compare feature driven and generative approaches

- Established common benchmark to compare feature driven and generative approaches
- Generative explanatory model with a predictive layer outperforms current state of the art

- Established common benchmark to compare feature driven and generative approaches
- Generative explanatory model with a predictive layer outperforms current state of the art
- Small set of features with only message content and basic user features generalizes over problem space

- Established common benchmark to compare feature driven and generative approaches
- Generative explanatory model with a predictive layer outperforms current state of the art
- Small set of features with only message content and basic user features generalizes over problem space
- Future: interplay between related cascades and RNN based popularity models

Data+Code: https://github.com/s-mishra/featuredriven-hawkes