PROBABILITY

T SIVA PARVATHI - FWC22089

- 13.4.5 ¹ Find the probability distribution of the number of successes in two tosses of a die, where a success is defined as
 - (a) number greater than 4
 - (b) six appears on at least one die

Solution: Given that a die tossed two times,

Variable	Values	Description
n	2	Number of tosses of a die
X_1	{1,2,3,4,5,6}	1st toss outcomes of a die
X_2	{1,2,3,4,5,6}	2st toss outcomes of a die
p_1	$\frac{1}{3}$	$\Pr\left(X > 4\right)$
q_1	$1 - p_1$	$\Pr\left(X \leq 4\right)$
p_2	$\frac{1}{6}$	$\Pr\left(X=6\right)$
q_2	$1 - p_2$	$\Pr\left(X \neq 6\right)$

Table 2: Variable Description

Refer 2 for numericals,

(a) number greater than 4

 X_1 and X_2 are independent events, so the desired outcome is

$$X = X_1 + X_2 \tag{13.4.1.1}$$

In n Bernoulli trials with k success and (n-k) failures, the probability of k success in n-Bernoulli trials can be given as,

$$p_{X_i}(k) = \begin{cases} {}^{n}C_k p^k q^{n-k} & 0 \le k \le n \\ 0 & \text{otherwise} \end{cases}$$
 (13.4.1.2)

Probability distribution of getting number greater than 4,

$$p_X(k) = {}^{n}C_k p_1{}^{k} q_1{}^{n-k}, 0 \le k \le 2$$
(13.4.1.3)

(b) six appears on at least one die

 X_1 and X_2 are independent events, so the desired outcome is

$$X = X_1 + X_2 \tag{13.4.2.4}$$

Probability distribution of getting six on atleast one die is,

$$p_X(k) = {}^{n}C_k p_2 {}^{k} q_2 {}^{n-k}, 0 \le k \le 2$$
(13.4.2.5)

¹Read question numbers as (CHAPTER NUMBER).(EXERCISE NUMBER).(QUESTION NUMBER)