Endereçamento de redes João Carlos Lopes Fernandes

Abril/2018

Mascara: 255.255.255.0

Endereçamento IP

Cascateamento

Cascateamento X Empilhamento

- Cascateamento: conecta-se a porta de um switch a uma porta de outro switch através de um cabo crossover.
- Empilhamento: a conexão é feita por uma porta especial chamada: backplane.

Interligação por empilhamento

Vantagens

- Não ocupa portas frontais para a interligação, aumentando a quantidade de portas para hosts
- Aumento da velocidade no canal de interligação

Desvantagens

- Só é possível entre equipamentos do mesmo fabricante
- Os switches precisam estar próximos (de fato empilhados) devido ao tamanho curto dos cabos de stack (para estruturas hierárquicas deve-se usar cascateamento)

Switch

Gerenciável:

Possui uma CPU interna que administra as funções que o chipset do switch e o sistema operacional contido no mesmo são capazes de executar

Oferece diversas funcionalidades avançadas:

Permite criar VLAN's.

Classificação de pacotes 802.1p.

Roteamento RIP, OSPF, BGP, IPV6, etc.

Roteamento multicast, controle de banda por porta, marcação e remarcação de pacotes, protocolos avançados para a formação de anéis com convergência rápida, monitoramento das portas e geração de alarmes, etc.

Não gerenciável:

Possui apenas a inteligência básica de direcionamento de pacotes corretas para as portas

Endereçamento IPv4

O IP é o endereço da Camada 03, que tem a função de identificar a localização da rede e do host.

O endereçamento IP é composto de 32 bits divididos em 04 octetos, exibidos em 04 números decimais separados por pontos.

Um computador conectado a duas redes diferentes, precisa de duas interfaces de rede, cada uma com um endereço de rede e um endereço de host exclusivo nessa rede.

Caminho de Comunicação da Camada de Rede:

Usando o endereço IP da rede de destino, um roteador pode entregar um pacote para a rede correta.

Quando o pacote chega a um roteador conectado à rede de destino, esse roteador usa o endereço IP para localizar o computador específico conectado a essa rede.

O endereço representa o caminho das conexões dos meios

O endereço IP tem duas partes:

rede: identifica a rede a qual o sistema está conectado;

host: identifica o sistema específico na rede.

O limite entre a parte de host e de rede, é definido pela máscara coringa.

Rede	Host
1	1
	2
	3
2	1
3	1

Classes de Endereços IP de Rede

Classe A	Rede	Host			
Octeto	1	2	3	4	

Classe B	Rede		Host		
Octeto	1	2	3	4	

Classe C	Rede	Host		
Octeto	1	2	3	4

Clas	se D	Host			
Octe	to	1	2	3	4

Os endereços de Classe D são usados para grupos multicast. Não é necessário alocar octetos ou bits para separar os endereços de rede e host. Os endereços de Classe E são reservados apenas para pesquisas.

As **classes de endereços IP** oferecem uma faixa de 256 a 16,8 milhões de hosts, que podem ser subdivididas em sub-redes menores.

Endereços IP Classes A, B, C, D e E

Classe de endereços IP	Intervalo de endereços IP (Valor Decimal do Primeiro Octeto)
Classe A	1-126 (00000001-01111110) *
Classe B	128-191 (10000000-10111111)
Classe C	192-223 (11000000-11011111)
Classe D	224-239 (11100000-11101111)
Classe E	240-255 (11110000-11111111)

Classe D: multicast, é um endereço de rede exclusivo que direciona os pacotes de destino para grupos predefinidos de endereços IP.

Classe E: IETF reserva esses endereços para suas próprias pesquisas.

Endereços IP Reservados

Existem **endereços reservados** que não podem ser atribuídos a nenhum dispositivo na rede, tais como:

Endereço de rede: endereço utilizado para identificar a rede;

Endereço de broadcast: endereço utilizado para uma origem enviar dados para todos os hosts em uma rede.

Endereços IP Públicos e Privados

Os hosts que estiverem conectados a rede pública (Internet) precisam de um endereço IP exclusivo que é gerenciado pela IANA, porém o rápido crescimento da Internet, originou a escassez de IPs.

Endereços IP Públicos e Privados

Classe	Intervalo de endereços internos RFC 1918
Α	10.0.0.0 to 10.255.255.255
В	172.16.0.0 to 172.31.255.255
С	192.168.0.0 to 192.168.255.255

O CIDR e o IPV6 são esquemas de endereçamento que foram criados para solucionar esse problema.

Os **Endereços IP Privados** são uma outra solução para a escassez de IPs, pois as redes privadas não conectadas diretamente à Internet podem usar qualquer endereço e usar a técnica **NAT** para converter um endereço privado em público, a fim de navegar na Internet.

Sub-redes

Notação decimal para o primeiro octeto de Host	Número de Sub-redes	Número de Hosts Classe A por Sub-rede	Número de Hosts Classe B por Sub-rede	Número de Hosts Classe C por Sub-rede
.192	2	4,194,302	16,382	62
.224	6	2,097,150	8,190	30
.240	14	1,048,574	4,094	14
.248	30	524,286	2,046	6
.252	62	262,142	1,022	2
.254	126	131,070	510	-
.255	254	65,534	254	-

As **sub-redes** permitem ao administrador, dividir e identificar redes independentes, além de serem necessárias para redes de grande porte e opcionais para redes pequenas.

Para serem criadas sub-redes, o administrador deverá manipular a **máscara de sub-rede**, pegando bits emprestados do campo de host.

A quantidade mínima de bits emprestados é 2 e deve-se deixar sobrando pelo menos 2 bits para hosts.

Endereço da Máscara de Sub-rede

É necessário compreender números binários e posições de bits para se criar sub-redes.

Ao pegar emprestado bits da parte do host, é necessário reservar pelo menos 02 bits no último octeto para permitir 02 endereços utilizáveis por sub-rede.

Bits emprestados	1	2	3	4	5	6	7	8
Valor	128	64	32	16	8	4	2	1

Formato com barras	/25	/26	/27	/28	/29	/30	N/A	N/A
Máscara	128	192	224	240	248	252	254	255
Bits emprestados	1	2	3	4	5	6	7	8
Valor	128	64	32	16	8	4	2	1

Endereço da Máscara de Sub-rede

A **máscara de sub-rede** indica o limite entre a parte do host e da rede em um endereço IP, sendo que é criada com o uso de 1s binários nas posições dos bits relativos à rede e sub-redes.

Formato com barras	/25	/26	/27	/28	/29	/30	N/A	N/A
Máscara	128	192	224	240	248	252	254	255
Bits emprestados	1	2	3	4	5	6	7	8
Valor	128	64	32	16	8	4	2	1
Total de Sub- redes		4	8	16	32	64		
Sub-redes Utilizáveis		2	6	14	30	62		
Total de Hosts		64	32	16	8	4		
Hosts Utilizáveis		62	30	14	6	2		

Um endereço class C com uma máscara /25 pega emprestado somente um bit, como mostrado na tabela acima. Entretanto, um endereco classe B com uma máscara /25 pega emprestado 9 bits. O número de bits que se deve pegar emprestado, depende do número de sub-redes e número de hosts em cada sub-rede desejada.

Calcula-se da seguinte maneira:

(2 elevado ao núm. de bits emprestados) – 2 = sub-redes utilizáveis.

(2 elevado ao núm. de bits restantes) – 2 = hosts utilizáveis.

Aplicação da Máscara de Sub-rede

No. da sub-rede	ID da sub-rede	Intervalo de Hosts	ID do broadcast
0	192.168.10.0	.130	192.168.10.31
1	192.168.10.32	.3362	192.168.10.63
2	192.168.10.64	.6594	192.168.10.95
3	192.168.10.96	.97126	192.168.10.127
4	192.168.10.128	.129158	192.168.10.159
5	192.168.10.160	.161190	192.168.10.191
6	192.168.10.192	.193222	192.168.10.223
7	192.168.10.224	.225254	192.168.10.255

A tabela é um exemplo das sub-redes e endereços criados pela atribuição de três bits ao campo de sub-rede. Isso criará oito sub-redes com 32 hosts por sub-rede.

Classes A e B em Sub-Redes

A divisão em sub-redes das classes A e B é idêntica a da classe C, exceto pelo número de bits disponíveis para atribuição ao campo de sub-rede.

Para saber quantos bits foram atribuídos à parte de rede é necessário ter a máscara de sub-rede e o endereço de rede.

	Hosts	Netmask	Number of Subnets
/30	4	255.255.255.252	64
/29	8	255.255.255.248	32
/28	16	255.255.255.240	16
/27	32	255.255.255.224	8
/26	64	255.255.255.192	4
/25	128	255.255.255.128	2
/24	256	255.255.255.0	1
/23	512	255.255.254.0	2
/22	1024	255.255.252.0	4
/21	2048	255.255.248.0	8
/20	4096	255.255.240.0	16
/19	8192	255.255.224.0	32
/18	16384	255.255.192.0	64
/17	32768	255.255.128.0	128
/16	65536	255.255.0.0	256

Site para treinar

http://www.subnettingquestions.com/

http://www.subnet-calculator.com/

