"Confusion"은 모델의 예측이 오류를 포함 함으로써 야기되는 "혼동" 상황을 의미

Concept of Confusion Matrix

01 모델 만들어 데이터 분류해보기

코로나 판정 모델을 만들었다고 가정

02 이 모델은 쓸 만 한가?

이 상황에서 여러 가지 질문이 떠오릅니다....

- 1) 이 모델은 코로나 환자를 얼마나 정확하게 판정하는 모델인가?
- 2) 이 모델이 '양성'으로 판정했는데 사실은 그 환자 가 '정상'일 가능성은 얼마나 되는가?
- 3) 이 모델이 '음성'으로 판정했는데 사실은 그 환자 가 '감염'되었을 가능성은 얼마나 되는가?

:

근데 이런 질문에 답하려면 먼저 정답을 알아야 하겠지요?

⁰³ Model Prediction vs. Ground Truth

• 현실은 생각보다 추한 모습을 하고 있습니다. 실제 정답 데이터는 구부러진 모양의 파란색 곡선을 경계로 좌측이 '감염', 우측이 '정상'입니다. (빨강색 선은 '모델'이 만든 경계선)

04 각 영역별 정의 - True Positive

- 실제로 '감염'된 사람들을 모델이 '양성'이라고 잘 맞춘 사례 (8명 적중)
- 이런 사례를 True Positive (진양성) 이라고 부릅니다.

05 각 영역별 정의 - False Positive

- 감염되지 않은 '정상'인을 모델이 '양성'이라고 잘못 판정한 사례 (2명 오판)
- 이런 사례를 False Positive (위양성) 이라고 합니다.

06 각 영역별 정의 - True Negative

- 실제로 '정상'인 사람들을 모델이 '음성'이라고 잘 판정한 사례 (5명 적중)
- 이런 것들을 True Negative (진음성) 이라고 부릅니다.

07 각 영역별 정의 - False Negative

- 실제로는 '감염'된 사람들을 모델이 '음성'이라고 잘못 판정한 사례 (3명 오판)
- 이런 것들을 False Negative (위음성) 이라고 부릅니다.

08 표로 정리해봅니다

		실제 사실(Ground Truth)	
		감염자	정상인
모델의 예측 (Model Prediction)	양성	True Positive (진양성, TP)	False Positive (위양성, FP)
	음성	False Negative (위음성, FN)	True Negative (진음성, TN)

09 앞의 예에서 나온 숫자를 적용해봅니다

		실제 사실(Ground Truth)	
		감염자	정상인
모델의 예측 (Model Prediction)	양	8	2
	성	3	5

양성판정 10건

음성판정 8건

총 감염자 11명

총 정상인 7명

10 첫 번째 질문, 모델의 정확도는?

				_
		실제 사실(Ground Truth)	
		감염자	정상인	
모델의 예측 (Model Prediction)	양성	8	2	
	음성	3	5	

양성판정 10건

음성판정 8건

총 감염자 11명 총 정상인 7명

- 총 예측 개수 중에 정답을 맞춘 개수: (8 + 5) / (8 + 2 + 3 + 5) = 0.72
- 이 모델의 정확도는 72% 가 되겠습니다.

11 가장 기본적인 성능 평가 기준 4가지

		실제 사실(Ground Truth)	
		감염자	정상인
모델의 예측 (Model Prediction)	양성	TP	FP
	음성	FN	TN

● Accuracy(정확도) = TP+TN

TP+TN+FP+FN

모델의 전반적인 예측 정확도!

● Sensitivity, recall (민감도, 재현도) = TP + FN

감염자는 잘 안 놓쳐요!

● Precision(정밀도) = TP

감염자라고 판정하면 거의 감염자 맞아요!

● Specificity(특이도) = TN FP+TN

정상인은 잘 안 놓쳐요!

		실제 사실(Ground Truth)	
		감염자	정상인
모델의 예측 (Model Prediction)	양성	TP	FP
	음성	FN	TN

- AUC
- F1-score

등등...

[보너스 과제]

- 이 외에 어떤 기준이 더 있나 조사해 보고
- 각각의 의미도 생각해 봅시다

のは出産ないとはいのはかけまれれたのないで

