

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «МИРЭА - Российский технологический университет» РТУ МИРЭА

Институт информационных технологий (ИТ) Кафедра инструментального и прикладного программного обеспечения (ИиППО)

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

На тему: Стартап "Обучающее ПО по работе со стерильным помещением: Симуляция химической лаборатории с использованием фотореалистичный трехмерных клонов"

Выполнил студент группы ИКБО-20-19 Московка Артём Александрович

Руководитель ВКР: к.т.н. доцент С.Б. Плотников Консультант ВКР: старший преподаватель И.В. Белоусова

Актуальность и новизна выпускной квалификационной работы

Актуальность: создание новых технологий и оборудования для обучения специалистов различных отраслей, основанных на достижениях информационных технологий.

Новизна:

- 1. Тесное междисциплинарное взаимодействие информационных технологий и таких дисциплин естественных наук, как химия, биология и фармацевтика.
- 2. Использование информационных технологий в образовательном процессе.
- 3. Работа над НИР производилась при поддержке Московского Института Тонких Химических Технологий им. Ломоносова, предоставившего необходимые данные и материалы для качественной и точной работы в помещениях реальной стерильной комнаты, в которой производились замеры и были получены фото- и видеоматериалы устройства и эксплуатации оборудования.

Цели и задачи выпускной квалификационной работы

Цель: спроектировать и разработать виртуальное пространство лаборатории, а также разработать алгоритмы взаимодействия пользователя с элементами окружения.

Задачи:

- 1. Анализ существующих областей применения цифровых симуляций и конкурентных технических решений цифровых симуляций, используемых в пространстве IT технологий.
- 2. Выбор и обоснование средств разработки приложения, трехмерных моделей и алгоритмов виртуальной лаборатории.
- 3. Разработка архитектуры системы, моделей цифровых двойников и их алгоритмов.
- 4. Разработка бизнес-логики приложения.
- 5. Тестирование приложения.
- 6. Планирование работ по теме и расчет полной стоимости проведения работ.

Анализ существующих областей применения цифровых симуляций

Можно выделить **три** основных ситуации, в которых будет полезна цифровая симуляция:

- 1) объект еще не существует в реальном мире, но есть потребность в интерактивной визуализации и ускорении его проектирования;
- 2) объект в физически труднодоступном месте, а эксплуатация неподготовленным оператором или даже нахождение в помещении опасно;
- 3) объект является уникальным прототипом, существующем в единственном экземпляре либо очень узком объеме и доступе, а тестирование или обучение на нем кадров должно быть произведено большим количеством человек.

Рисунок 1 — Пример интерактивной VR-модели газораспределительной станции

Анализ конкурентных решений цифровых симуляций, используемых в пространстве IT технологий

Рисунок 2 – Пример цифровой симуляции лаборатории Labster

Рисунок 3 – Пример виртуальной лаборатории ChemCollective

Выбор и обоснование средств разработки приложения, трехмерных моделей и алгоритмов виртуальной лаборатории

Рисунок 4 – Autodesk 3Ds Max

Рисунок 5 – Adobe Substance Painter

Рисунок 6 — Unreal Engine 5

Рисунок 7 — Базовая архитектура классов в Unreal Engine

Рисунок 8 – Взаимодействие классов Gameplay Framework

Рисунок 9 — Процесс моделирования герметичного шлюза стерилизации

Рисунок 10 — Помещения разрабатываемой виртуальной химической лаборатории

Рисунок 11 — Готовая виртуальная химическая лаборатория

Разработка алгоритмов виртуальных объектов симуляции

Рисунок 12 — Пример блюпринта герметичного шлюза передачи

Рисунок 13 – График функции Ymovement

Рисунок 14 – Демонстрация работы кнопки стерилизации герметичного шлюза

Разработка алгоритмов виртуальных объектов симуляции

Рисунок 15 — Пример звукового блюпринта создания вентиляционного шума

Рисунок 16 — Пример звукового блюпринта ходьбы персонажа

Рисунок 17 – Интерфейс взаимосвязи анимации персонажа со звуками ходьбы

Разработка бизнес-логики приложения

Рисунок 18 — Диаграмма взаимодействия пользователя со слоями системы

Тестирование приложения

Рисунок 19 — Результаты проведения unit-тестирования и гистограмма производительности симуляции

Рисунок 20 – Счетчик кадров в секунду при ручном тестировании симуляции

Планирование работ по теме и расчет полной стоимости проведения работ

График проведения работ (Рисунок 21):

Рисунок 21 – График проведения работ

Договорная цена будет представлять собой:

$$ДЦ = C + \Pi + HДC = 354583 + 106374 + 92191 = 553 148$$
 руб.

Результаты выпускной квалификационной работы

- 1. Проведен анализ предметной области и конкурентных технических решений цифровых симуляций, используемых в пространстве IT технологий.
- 2. Выбраны и обоснованы средства разработки приложения, трехмерных моделей и их алгоритмов.
- 3. Разработана бизнес-логика приложения.
- 4. Спроектировано и разработано виртуальное пространство лаборатории, а также алгоритмы взаимодействия пользователя с элементами окружения.
- 5. Проведено тестирование разработанного ПО.
- 6. Проведен расчет себестоимости проекта.

Апробация выпускной квалификационной работы

Рисунок 22 — Сертификат публикации учебнометодического материала

Рисунок 23 — Сертификат участия в научном гранте от Фонда содействия инновациям «УМНИК»

БЛАГОДАРЮ ЗА ВНИМАНИЕ!