四. 随机事件的关系及其运算

随机事件的三种关系:

包含: $A \subset B \longrightarrow A$ 发生必导致B发生

互斥: $AB = \Phi \longrightarrow A \to B$ 不同时发生

对立: $A \cup B = S, A \cap B = \Phi \longrightarrow A, B$ 中有且仅有一个发生

随机事件的三种运算:

和事件 $A \cup B$ 发生 \iff A, B 至少有一个发生 $AB \neq \Phi$

积事件 AB 发生 \Leftrightarrow A 与 B 同时发生

差事件 A-B 发生 \iff A 发生而 B 不发生

随机事件的关系及其运算

A AB B

 \boldsymbol{A}

B

随机事件的三种关系:

包含: $A \subset B \longrightarrow A$ 发生必导致B发生

互斥: $AB = \Phi \longrightarrow A 与 B$ 不同时发生

对立: $A \cup B = S$, $A \cap B = \Phi \longrightarrow A$, B中有且仅有一个发生

随机事件的三种运算:

和事件 $A \cup B$ 发生 A, B至少有一个发生 $AB \neq \Phi$ A, B有且仅有一个发生 $AB = \Phi$

积事件 AB 发生 \iff $A \subseteq B$ 同时发生 差事件 A-B 发生 \iff A 发生而 B 不发生 $A-B=A\overline{B}$

德. 摩根律: $\overline{A \cup B} = \overline{A} \cdot \overline{B}$ $\overline{AB} = \overline{A} \cup \overline{B}$

随机事件的关系及其运算

A AB B

 \boldsymbol{A}

B

随机事件的三种关系:

包含: $A \subset B \longrightarrow A$ 发生必导致B发生

互斥: $AB = \Phi \longrightarrow A 与 B$ 不同时发生

对立: $A \cup B = S$, $A \cap B = \Phi \longrightarrow A$, B中有且仅有一个发生

随机事件的三种运算:

和事件 $A \cup B$ 发生 A, B至少有一个发生 $AB \neq \Phi$ A, B有且仅有一个发生 $AB = \Phi$

积事件 AB 发生 \iff $A \subseteq B$ 同时发生 差事件 A-B 发生 \iff A 发生而 B 不发生 $A-B=A\overline{B}$

德. 摩根律: $\overline{A \cup B} = \overline{A} \cdot \overline{B}$ $\overline{AB} = \overline{A} \cup \overline{B}$

概率的公理化定义

设E是随机试验,S是它的样本空间,若对于E的每一个事件A都赋予一个实数 P(A),它满足以下三个条件:

- (1) 非负性: 对于每一事件A有: $0 \le P(A) \le 1$
- (2) 规范性: P(S)=1
- (3) 可列可加性: 设 $A_1, A_2, \cdots A_k \cdots$ 是两两互斥的事件,

则
$$P(A_1 \cup A_2 \cup \cdots \cup A_k \cdots) = P(A_1) + P(A_2) + \cdots + P(A_k) + \cdots$$
有且仅有一个发生

则称 P(A) 为事件A发生的概率。

三. 概率的性质

性质1 $P(\Phi)=0$

性质2 若
$$A_1, A_2$$
 互斥, $P(A_1 \cup A_2) = P(A_1) + P(A_2)$

性质4 一般情况,
$$P(A_1 \cup A_2) = P(A_1) + P(A_2) - P(A_1A_2)$$

$$P(A_1 \cup A_2 \cup A_3) =$$

$$P(A_1) + P(A_2) + P(A_3) - P(A_1A_2) - P(A_1A_3) - P(A_2A_3) + P(A_1A_2A_3)$$

性质3 若
$$A \subset B$$
,则有 $P(B-A) = P(B)-P(A)$

若
$$A \not\subset B$$
 , 则有 $P(B-A) = P(B) - P(AB) = P(B\overline{A})$

性质5
$$P(A) = 1 - P(A)$$

概率的性质

 \boldsymbol{A}

B

 $A \stackrel{(AB)}{=}$

性质1
$$P(\Phi)=0$$
 $P(A)=0$ $A=\Phi$

性质2
$$P(A \cup B) = P(A) + P(B)$$

$$AB = \Phi$$

性质4
$$P(A \cup B) = P(A) + P(B) - P(AB)$$

$$AB \neq \Phi$$

$$P(A_1 \cup A_2 \cup A_3) = P(A_1) + P(A_2) + P(A_3) - P(A_1A_2) - P(A_1A_3) - P(A_2A_3) + P(A_1A_2A_3)$$

性质3
$$P(B-A) = P(B) - P(A)$$

$$A \subset B$$

$$P(B-A) = P(B\overline{A}) = P(B) - P(AB)$$

$$A \not\subset B$$

性质5
$$P(\overline{A}) = 1 - P(A)$$

条件概率
$$P(A \mid B) = \frac{P(AB)}{P(B)} = \frac{k}{m}$$

A AB B

$$B - A = B - AB$$

概率的性质

 \boldsymbol{A}

B

 $A \stackrel{(AB)}{=}$

性质1
$$P(\Phi)=0$$
 $P(A)=0$ $A=\Phi$

性质2
$$P(A \cup B) = P(A) + P(B)$$

$$AB = \Phi$$

性质4
$$P(A \cup B) = P(A) + P(B) - P(AB)$$

$$AB \neq \Phi$$

$$P(A_1 \cup A_2 \cup A_3) = P(A_1) + P(A_2) + P(A_3) - P(A_1A_2) - P(A_1A_3) - P(A_2A_3) + P(A_1A_2A_3)$$

性质3
$$P(B-A) = P(B) - P(A)$$

$$A \subset B$$

$$P(B-A) = P(B\overline{A}) = P(B) - P(AB)$$

$$A \not\subset B$$

性质5
$$P(\overline{A}) = 1 - P(A)$$

条件概率
$$P(A \mid B) = \frac{P(AB)}{P(B)} = \frac{k}{m}$$

A AB B

$$B - A = B - AB$$

第一章小结

概率的计算

1) 统计定义:
$$f_n(A) \xrightarrow[n \to \infty]{}$$
 稳定值= $P(A)$

2) 概率的性质:
$$1\sim 5$$
 $P(A-B)$ $P(A \cup B)$ $P(\overline{A})$

3)等可能概型:
$$P(A) = \frac{m}{n}$$

4) 条件概率:
$$P(B|A) = \frac{k}{m} = \frac{P(AB)}{P(A)}$$
 独立

5) 乘法定理:
$$P(AB) = P(A)P(B|A) = P(A)P(B)$$

$$A = AB_1 \cup AB_2$$
 互斥

★ 6) 全概率公式:
$$P(A) = P(B_1)P(A|B_1) + P(B_2)P(A|B_2)$$

7) 贝叶斯公式:
$$P(B_1|A) = \frac{P(B_1)P(A|B_1)}{P(A)}$$

小结	随机变量			
	离散型随机变量	概率模型适用范围		
	1) (0-1)分布	检查产品的质量(正品与次品)		
	$P(X = k) = p^{k} (1 - p)^{1-k}$	有奖债券是否中奖(中与不中)		
重要分布	k = 0,1	对婴儿性别进行登记(男与女)		
	2) $B(n,p) \bigstar$	20台独立工作的相同设备中同 一时刻发生故障的台数		
	$P(X = k) = C_n^k p^k (1-p)^{n-k}$	4个婴儿中男孩的个数		
	$k=0,1,2,\cdots,n$	3个产品中的次品数		
		100名 北人山大石山石田東田山大米		
上述问题都具有相同的概率模型,但其中参数随问题不同				
而不同。可以根据抽样得到的大量随机数据,利用数理统				
计中的统计推断方法-Ch7参数估计得到这些参数的估计值。				

机场降洛的飞机致

随机变量

离散型随机变量

4) 几何分布 G(p)

$$P(X = k) = p(1-p)^{k-1}$$
 $k = 1, 2, \cdots$

$$k = 1, 2, \cdots$$

其它概率分布 (书上未列出) 5) 对数分布 *L(p)*

$$P(X = k) = -\frac{(1-p)^k}{(\ln p)k}$$

$$k=1,2,\cdots$$

6) 超几何分布 H(n,M,N)

$$P(X=k) = \frac{C_{N-M}^{n-k}C_M^k}{C_N^n}$$

$$N, M, n$$
 为整数

$$0 \le M, n \le N$$

随机变量

离散型随机变量

连续型随机变量

分布函数 $F(x) = P(X \le x)$

 $F(x) = \sum_{x_k \le x} p_k$ 右连续 $F(x) = \int_{-\infty}^{x} f(t) dt$ 连续

x左侧区间上的概率和

不直观

概率分布

概率1分布情况,直观

分布律:

 $\sum p_k = 1 \quad \text{概率密度:} \quad \int_{-\infty}^{+\infty} f(t) dt = 1$

概率计算

$$P(x_1 < X \le x_2) = \sum_{x_1 < x_k \le x_2} p_k$$

$$= F(x_2) - F(x_1)$$

$$P(x_1 < X \le x_2) = \int_{x_1}^{x_2} f(t) dt$$

$$= F(x_2) - F(x_1)$$

随机变量

	函数	布	分	
\boldsymbol{x}	$(X \leq$	= P	F(x)	ŀ

x左侧区间上的概率和

不直观

概率分布 概率1分布 情况,直观

离散型随机变量

 $F(x) = \sum p_k$ 右连续

连续型随机变量

$$F(x) = \int_{-\infty}^{x} f(t) dt$$

连续

分布律:

 $\sum p_k = 1$ 概率密度: $\int_{-\infty}^{+\infty} f(t) \mathrm{d}t = 1$

概率计算

$$P(x_1 < X \le x_2) = \sum_{x_1 < x_k \le x_2} P_k P(x_1 < X \le x_2) = \int_{x_1}^{x_2} f(t) dt$$

$$= F(x_2) - F(x_1)$$

$$P(x_1 < X \le x_2) = \int_{x_1}^{x_2} f(t) dt$$

$$= F(x_2) - F(x_1)$$

随机变量

	离散型随机变量	连续型随机变量
	1) $(0-1)$ 分布 $P(X = k) = p^{k} (1-p)^{1-k}$ $k = 0,1$	1) $U(a,b)$ \bigstar $f(x) = \begin{cases} 1/(b-a), & a < x < b \\ 0, & \exists \dot{\Sigma} \end{cases}$
	2) $B(n,p)$ $P(X=k) = C_n^k p^k (1-p)^{n-k}$ $k = 0,1,\cdots n$	2) $E(\theta)$ ★ $f(x) = \begin{cases} 1/\theta e^{-x/\theta}, & x > 0 \\ 0, & \text{其它} \end{cases}$
	3) $P(\lambda)$ $P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!} k = 0,1,2$	3) $N(\mu, \sigma^2)$ $f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} -\infty < x < \infty$

正态分布

$$F(x) = \int_{-\infty}^{x} f(t) dt$$

$N(\mu, \sigma^2)$

N(0,1)

概率密度

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$-\infty < x < \infty$$

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

$$-\infty < x < \infty$$

分布函数

$$F(x) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^{2}}{2\sigma^{2}}} dt$$

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^{2}}{2}} dt$$

$$-\infty < x < \infty$$

$$\Rightarrow \pm$$

$$-\infty < x < \infty$$

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$$
查表
$$-\infty < x < \infty$$

概率计算

$$F(x) = P(X \le x) = P(\frac{X - \mu}{\sigma} \le \frac{x - \mu}{\sigma}) = \Phi(\frac{x - \mu}{\sigma})$$

$$P(a \le X \le b) = P(\frac{a - \mu}{\sigma} \le \frac{X - \mu}{\sigma} \le \frac{b - \mu}{\sigma}) = \Phi(\frac{b - \mu}{\sigma}) - \Phi(\frac{a - \mu}{\sigma})$$

随机变量

连续型随机变量

其它概率分布

1) U(a,b)

$$f(x) = \begin{cases} 1/(b-a), & a < x < b \\ 0, & \text{其它} \end{cases}$$
 5) 贝塔分布 $\beta(p,q)$ 6) 伽马分布 $\Gamma(\alpha,\beta)$

- 4) 瑞利分布 $R(\mu)$

2)
$$E(\theta)$$

$$f(x) = \begin{cases} 1/\theta e^{-x/\theta}, & x > 0 \\ 0, & \text{其它} \end{cases} 8) t 分布 t(n)$$
 9) F 分布 $F(n_1, n_2)$ ✓

7) χ^2 分布 $\chi^2(n)$

3)
$$N(\mu,\sigma^2)$$

3)
$$N(\mu, \sigma^2)$$

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} -\infty < x < \infty$$

- 10) 威布尔分布 $W(m,\alpha)$
- 11) 柯西分布 $C(\mu,\alpha)$

三. 连续型随机变量的函数的分布

问题:已知Y=g(X)和 $f_X(x)$,求 $f_Y(y)$

分布函数法: $(1) 求 F_Y(y)$ $(2) F'_Y(y) = f_Y(y)$

$$(2) F_Y'(y) = f_Y(y)$$

复习

分布函数: $F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt$

概率计算:
$$P(x_1 < X \le x_2) = \int_{x_1}^{x_2} f(t) dt = F(x_2) - F(x_1)$$

概率密度性质: F'(x) = f(x)

高数求导:
$$Z(x) = \int_{p(x)}^{g(x)} z(t) dt \Rightarrow Z'(x) = z[g(x)] g'(x) - z[p(x)] p'(x)$$

	_
9	
7	

正态分布

$$F(x) = \int_{-\infty}^{x} f(t) dt$$

N	$(\mu,$	σ^2)
_ ▼	$(\mu,$	•	,

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
$$-\infty < x < \infty$$

分布函数

$$F(x) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt$$

$$-\infty < x < \infty$$

概率计算

$$P(a \le X \le b) = \int_{x_1}^{x_2} f(t) dt = F(x_2) - F(x_1)$$

一	

正态分布

$$F(x) = \int_{-\infty}^{x} f(t) dt$$

	$N(\mu, \sigma^2)$	N(0,1)
概率密度	$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ $-\infty < x < \infty$	$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$ $-\infty < x < \infty$
分布函数	$F(x) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt$ $-\infty < x < \infty$	$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$ 查表 $-\infty < x < \infty$
		旦 农
概率计算	$F(x) = P(X \le x) = P(\frac{X - \mu}{\sigma} \le x)$ $P(a \le X \le h) = P(\frac{a - \mu}{\sigma} \le \frac{X - \mu}{\sigma} \le x)$	$\leq \frac{x - \mu}{\sigma} = \Phi\left(\frac{x - \mu}{\sigma}\right)$ $= \frac{\mu}{\sigma} \leq \frac{b - \mu}{\sigma} = \Phi\left(\frac{b - \mu}{\sigma}\right) - \Phi\left(\frac{a - \mu}{\sigma}\right)$
	σ	$\sigma = \sigma = \sigma = \sigma$

第二章小结

计算 $P(x_1 < X \le x_2)$ 的方法

离散型: 分布律 分布函数 \longrightarrow $P(x_1 < X \leq x_2)$ $P(x_1 < X \le x_2) = \sum p_k = F(x_2) - F(x_1)$ 随机 f 连续型: 概率密度 分布函数 → $f(x_1 < X \le x_2)$ 变量 非离散型: $\begin{cases} P(x_1 < X \le x_2) = \int_{x_1}^{x_2} f(t) dt = F(x_2) - F(x_1) \\ - \triangle$ 公本派数 $\longrightarrow P(x_1 < X)$ 分布函数 $\longrightarrow P(x_1 < X \leq x_2)$ $P(x_1 < X \le x_2) = F(x_2) - F(x_1)$ 概率密度 分布律 $X \sim (0,1)$ $X \sim U(a,b)$ $X \sim B(n, p)$ $X \sim E(\theta)$ $X \sim P(\lambda)$ $X \sim N(\mu, \sigma^2)$

小结	随机变量				
	离散型随机变量	连续型随机变量			
	1) $(0-1)$ 分布 $P(X = k) = p^{k} (1-p)^{1-k}$	1) $U(a,b)$			
	k = 0,1	$f(x) = \begin{cases} 1/(b-a), & a < x < \\ 0, & 其它 \end{cases}$			
重要分布	2) $B(n,p)$ $P(X=k) = C_n^k p^k (1-p)^{n-k}$ $k = 0,1, \dots n$	2) $E(\theta)$ ★ $f(x) = \begin{cases} 1/\theta e^{-x/\theta}, & x > 0 \\ 0, & \sharp $ 它			
	3) $P(\lambda)$ $P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}$ $k = 0, 1, 2$	3) $N(\mu, \sigma^2) \star$ $f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$			
函数的分布 $Y = g(X)$	X 的分布律 $\longrightarrow Y$ 的分布律	$f_X(x) \rightarrow f_Y(y) = F_Y'(y)$			

Y = g(X)

	- 第二章 -	第一节	第二节 一	第三节 ——	一 第四节 一
两章 关系	一维 X	二维(X,Y)	边缘分布	相依(条件分布)	独立
分布 函数	F(x)	F(x,y)	$F_{X}(x)$ $F_{Y}(y)$	$P(A B) = \frac{P(AB)}{P(B)}$	P(AB) = P(A)P(B)
离散型 分布律	$P\{X = x_k\}$ $= p_k$	$P\{X = x_i, Y = y_j\}$ $= p_{ij}$	$P\{X = x_i\}$ $P\{Y = y_i\}$	$P\{Y = y_j X = x_i\}$ $P\{X = x_i Y = y_j\}$	$P\{X = x_i, Y = y_j\}$ $= P\{X = x_i\} \cdot P\{Y = y_j\}$
连续型 概率 密度	f(x)	f(x,y)	$f_{X}(x) \bigstar f_{Y}(y)$	$f_{Y}(y X = x)$ $f_{X}(x Y = y)$	$f(x,y) = f_X(x) \cdot f_Y(y)$
算概率	$P(x_1 < X \le$	$x_2) = \int_{x_1}^{x_2} f(x) dx$ $= \sum_{x_1 < x_k \le x_2} p_k$	$P\{(X,Y)$	$\in G\} = \iint_G f(x, y) dx$ $= \sum_{(x_i, y_i) \in G} p_{ij}$	xdy ★
函数	Y = g(X)		Z = g(X,Y)	<i>***</i>	
分布 	$f_X(x)$	$f_{Y}(y)=F_{Y}'(y)$	f(x,y)	$F_Z(z) = F_Z'(z)$ 分布	函数法 ★★

3. 二维随机变量的分布函数

复习:一维随机变量的分布函数

设X是一个一维随机变量,

$$\longrightarrow \chi$$

$$F(x) = P(X \le x)$$

复习:一维连续型随机变量

X 为连续型随机变量:

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t) dt$$

性质1
$$f(x) \ge 0$$

性质2
$$\int_{-\infty}^{\infty} f(x) dx = 1$$

性质3
$$P(x_1 < X \le x_2) = F(x_2) - F(x_1) = \int_{x_1}^{x_2} f(x) dx$$

性质4
$$F'(x) = f(x)$$

一维离散型随机变量的分布律

X的分布律:

X	0	1	2	3	4	5	
P_{k}	$\frac{1}{12}$	1 6	$\frac{1}{3}$	$\frac{1}{12}$	2 9	$\frac{1}{9}$	

▶分布律需满足: $(1)p_k \ge 0$, $(2)\sum_{k=1}^{\infty} p_k = 1$

两章	第二章	第一节	第二节	第三节	一 第四节 一		
州早 关系	一维 X	二维(X,Y)	边缘分布	相依(条件分布)	独立		
分布 函数	F(x)	F(x,y)			P(AB) = P(A)P(B)		
离散型	$P\{X=x_k\}$	$P\{X=x_i,Y=y_i\}$	$P\{X=x_i\}$		$P\{X = x_i, Y = y_j\}$		
分布律	$= p_k$	$=p_{ij}$	$P\{Y=y_i\}$		$= P\{X = x_i\} \cdot P\{Y = y_j\}$		
连续型		f(u, v)	$f_X(x) \bigstar$		f(x,y) =		
概率 密度	f(x)	f(x,y)	$f_{_{Y}}(y)$		$f_X(x)\cdot f_Y(y)$		
算概率	$P(x_1 < X \le x_2) = \int_{x_1}^{x_2} f(x) dx$		$P\{(X,Y) \in G\} = \iint_G f(x,y) dxdy \bigstar$				
		$=\sum_{x_1 < x_k \le x_2} p_k$		$=\sum_{(x_i,y_j)\in G}p_{ij}$			
函数 分布	Y = g(X)						
	$f_X(x)$	$f_Y(y) = F_Y'(y)$					

二维随机变量的分布函数

设 (X,Y) 是二维随机变量,对任意的实数 x,y,

二元函数 $F(x,y) = P(X \le x, Y \le y)$ (积事件) 称为二维随机变量 (X,Y) 的分布函数或 X与Y 的联合分布函数。

注:

 $\triangleright F(x, y)$ 几何意义:

将(X, Y)看成是随机点的坐标,则

F(x, y) = 随机点 (X, Y)落在以 (x, y)

为顶点的左下方无穷矩形内的概率.

二维连续型随机变量的概率密度

定义 对于二维随机变量(X,Y) 的分布函数F(x,y), 若存在非 负函数 f(x,y), 对任意的x,y有:

$$F(x,y) = P\{X \le x, Y \le y\} = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) du dv$$

则称 (X,Y) 是二维连续型随机变量,f(x,y)为 (X,Y) 的联合概率密度.

概率密度的性质

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) du dv$$

性质1 $f(x,y) \ge 0$

性质2
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) \, \mathrm{d}x \, \mathrm{d}y = 1$$

概率密度曲面下面的体积是1

性质3
$$\frac{\partial^2 F(x,y)}{\partial x \partial y} = f(x,y)$$

性质4 设 $G \in XOY$ 平面上的一个区域,则点(X,Y)落在G内的概率为:

 $\triangleright D$ 是积分区域G和概率密度取值非零区域的交集

$$\mathbf{1}^{0} \quad \stackrel{}{\text{ZE}} f(x,y) = \begin{cases} \frac{1}{(b_{1} - a_{1})(b_{2} - a_{2})} & a_{1} \leq x \leq b_{1} \\ (b_{1} - a_{1})(b_{2} - a_{2}) & a_{2} \leq y \leq b_{2} \end{cases}$$
其它

则称 (X,Y)在矩形区域上服从均匀分布。

$$X \sim U(a,b)$$

$$f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & 其它 \end{cases}$$

$$\mathbf{1}^{0} \quad \stackrel{\text{ZE}}{=} \begin{cases} \frac{1}{A} & (x,y) \in D \\ \mathbf{0} & \text{其它} \end{cases}$$

则称 (X,Y) 平面区域D上服从均匀分布,A是D的面积。

$$X \sim U(a,b)$$

$$f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & \sharp \dot{\Xi} \end{cases}$$

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) \, \mathrm{d}x \, \mathrm{d}y = 1$$

(X,Y) 只能在平面有限 区域上服从均匀分布。

则称 (X,Y) 服从参数为 λ 的指数分布.

$$X \sim E(\lambda)$$

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0 \\ 0, & \text{ 其他} \end{cases}$$

$$3^0$$
 若 $f(x,y)$

$$= \frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1-\rho^{2}}}e^{-\frac{1}{2(1-\rho^{2})}\left[\frac{(x-\mu_{1})^{2}}{\sigma_{1}^{2}}-2\rho\frac{(x-\mu_{1})(y-\mu_{2})}{\sigma_{1}\sigma_{2}}+\frac{(y-\mu_{2})^{2}}{\sigma_{2}^{2}}\right]}$$

其中: $\mu_1, \mu_2, \sigma_1, \sigma_2, \rho$ 为5个常数,

则称 (X,Y) 服从参数为 $\mu_1,\mu_2,\sigma_1,\sigma_2,\rho$ 的 正态分布.

$$(X,Y) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$$

$$X \sim N(\mu, \sigma^2) \quad f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

正态曲面下面的体积是1

离散型随机变量的联合分布律和边缘分布律

二维随机变量 (X,Y) 的联合分布律:

X	$\boldsymbol{y_0}$	y_1	• • •	y_{j}	• • •	$P(X = x_i)$
$\boldsymbol{x_0}$	p_{00}	p_{01}	• • •	p_{0j}		P_{0ullet}
x_1 :	p_{10}	$p_{_{11}}$		$p_{_{1j}}$		P _{1•}
x_{i}	p_{i0}	p_{i1} .	• • •	$p_{_{ij}}$	••	P_{iullet}
$P(Y = y_j)$	$P_{ullet 0}$	$P_{\bullet 1}$	•••	$oldsymbol{P_{ullet j}}$: 1

$$P_{\bullet j} = P(Y = y_j) = \sum_{i=0}^{+\infty} p_{ij}$$
 称为 Y 的边缘分布律

$$P_{i\bullet} = P(X = x_i) = \sum_{j=0}^{+\infty} p_{ij}$$
 称为 X 的边缘分布律

第三章小结

二维随机变量(X,Y)

	离散型	连续型		
(X,Y) 整体	联合分布律 $P(X = x_i, Y = y_j) = p_{ij}$	联合概率密度 $f(x,y)$		
(X,Y) ↑ 体	边缘分布律 $P(X = x_i) = \sum_{j=1}^{\infty} p_{ij} = p_{i.}$	边缘概率密度		
概率 计算	$P\{(X,Y)\in G\} = \sum_{(x_i,y_j)\in G} p_{ij}$			
X与Y 独立	$P(X = x_i, Y = y_j)$ $= P(X = x_i)P(Y = y_j)$	$f(x,y) = f_X(x)f_Y(y)$		

复习

设二维随机变量 (X,Y) 的概率密度为

$$f(x,y) = \begin{cases} 21/4 x^2 y, & x^2 \le y \le 1 \\ 0, & \sharp \dot{\Xi} \end{cases}$$

求: 边缘概率密度 $f_X(x)$, $f_Y(y)$.

解:
$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$$

当
$$x \le -1$$
 或 $x \ge 1$ 时, $f(x,y) = 0$, $f_X(x) = 0$

$$f_X(x) = \begin{cases} \frac{21}{8}x^2(1-x^4), & -1 < x < 1 \\ 0, & \sharp \dot{\Xi} \end{cases}$$

- 1. 投影
- 2. 积分(分区间)
- 3. 画线(确定上下限)

第三章中计算难点

1)
$$P\{(X,Y) \in G\} = \iint_G f(x,y) dx dx = \iint_D f(x,y) dx dx$$

3)
$$f_Z(z) = \int_{-\infty}^{+\infty} f(z-y,y) dy = \int_{-\infty}^{+\infty} f_X(z-y) f_Y(y) dy$$
 非零区域 分区间

Z = X + Y

4)
$$Z = g(X,Y)$$
 $f(x,y) \longrightarrow f_Z(z) = ?$ $f_Z(z) = F_Z'(z)$

$$F_{Z}(z) = P(Z \le z) = P\{g(X,Y) \le z\} = \iint_{g(x,y) \le z} f(x,y) dxdy$$
$$= \iint_{D(z)} f(x,y) dxdy$$

D是积分区域 $g(x,y) \le z = f(x,y)$ 取值非零区域的交集

随机变量的数学期望

	离散型随机变量	连续型随机变量
X	$E(X) = \sum_{k=1}^{\infty} x_k p_k$	$E(X) = \int_{-\infty}^{+\infty} x \cdot f(x) \mathrm{d}x$
Y = g(X) g 连续	$E(Y) = E[g(X)]$ $= \sum_{k=1}^{\infty} g(x_k) p_k$	$E(Y) = E[g(X)]$ $= \int_{-\infty}^{+\infty} g(x) f(x) dx$
Z = g(X,Y) g连续	$E(Z) = E[g(X,Y)]$ $= \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} g(x_i, y_j) p_{ij}$	$E(Z) = E[g(X,Y)]$ $= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x,y) f(x,y) dx dy$

随机变量的数学期望

	离散型随机变量	连续型随机变量
X	$E(X) = \sum_{k=1}^{\infty} x_k p_k$	$E(X) = \int_{-\infty}^{+\infty} x f(x) dx$
Y = g(X) g连续	$E(Y) = E[g(X)]$ $= \sum_{k=1}^{\infty} g(x_k) p_k$	$E(Y) = E[g(X)]$ $= \int_{-\infty}^{+\infty} g(x)f(x)dx$
Z = g(X,Y) g连续	$E(Z) = E[g(X,Y)]$ $= \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} g(x_i, y_j) p_{ij}$	$E(Z) = E[g(X,Y)]$ $= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x,y) f(x,y) dx dy$
<i>E(X)</i> 性质	E(c) = c $E(cX) = cE(X)$ X,Y 独立, $E(XY) = E(X)$	

三种常见分布的数学期望和方差

	概率分		E(X)	D(X)
	(0-1)分布	$X \sim B(1, p)$	p	
离散型	二项分布	$X \sim B(n, p)$	np	
型	泊松分布	$X \sim P(\lambda)$	λ	
ኍ	均匀分布	$X \sim U(a,b)$	(a+b)/2	
连 续 型	指数分布	$X \sim E(\theta)$	$oldsymbol{ heta}$	
	正态分布	$X \sim N(\mu, \sigma^2)$	μ	

随机变量的数字特征

<i>E(X</i>)性质	E(cX) = cE(X) $E(XY) = E(X)I$	E(X+Y) = E(X) + E(Y) $E(Y)$
D (X)性质		$D(X) = E(X^{2}) - [E(X)]^{2}$ $+ D(Y) D(X) = 0 \Leftrightarrow P(X = c) = 1$

随机变量的数学期望与方差

	离散型随机变量	连续型随机变量	
X 数学期望	$E(X) = \sum_{k=1}^{\infty} x_k p_k$	$E(X) = \int_{-\infty}^{+\infty} x f(x) dx$	
Y = g(X)	E(Y) = E[g(X)]	E(Y) = E[g(X)]	
函数数学期望	$=\sum_{k=1}^{\infty}g(x_k)p_k$	$= \int_{-\infty}^{+\infty} g(x) f(x) \mathrm{d}x$	
Z = g(X,Y)	E(Z) = E[g(X,Y)]	E(Z) = E[g(X,Y)]	
函数数学期望	$=\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}g(x_i,y_j)p_{ij}$	$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x,y) f(x,y) dx dy$	
X方差	$D(X) = E[X - E(X)]^{2} = E(X^{2}) - [E(X)]^{2}$		

数学期望与方差的性质

<i>E(X)</i> 性质	E(c)=c $E(c X)=c E(X)$ $E(X+Y)=E(X)+E(Y)$ X,Y 独立, $E(XY)=E(X)E(Y)$
D (X)性质	$D(c) = 0$ $D(cX) = c^2D(X)$ $D(X) = 0 \Longrightarrow P(X = c) = 1$ $X, Y \stackrel{\circ}{=} \stackrel{\circ}{=} D(X) + D(Y)$

常见分布的数学期望和方差

	概率分		E(X)	D(X)
	(0-1)分布	$X \sim B(1, p)$	p	
离散型	二项分布	$X \sim B(n, p)$	np	
型	泊松分布	$X \sim P(\lambda)$	λ	
ኍ	均匀分布	$X \sim U(a,b)$	(a+b)/2	
连 续 型	指数分布	$X \sim E(\theta)$	$oldsymbol{ heta}$	
	正态分布	$X \sim N(\mu, \sigma^2)$	μ	

六种常见分布的数学期望和方差

	概率分	介	E(X)	D(X)
	(0-1)分布	$X \sim B(1, p)$	p	pq
离散型	二项分布	$X \sim B(n, p)$	np	npq
空	泊松分布	$X \sim P(\lambda)$	λ	λ
许	均匀分布	$X \sim U(a,b)$	(a+b)/2	$(b-a)^2/12$
连 续 型	指数分布	$X \sim E(\theta)$	$oldsymbol{ heta}$	θ^2
	正态分布	$X \sim N(\mu, \sigma^2)$	μ	$oldsymbol{\sigma}^2$

小结:

研究两个随机变量X,Y之间的关系:

X与Y正相关时,

$$\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) > 0$$

X与Y负相关时,

$$\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) < 0$$

X与Y不相关时,

$$\frac{1}{n}\sum_{i=1}^{n}(x_{i}-\overline{x})(y_{i}-\overline{y})<0 \qquad \frac{1}{n}\sum_{i=1}^{n}(x_{i}-\overline{x})(y_{i}-\overline{y})=0$$

结论:可以用 $\frac{1}{n}\sum_{i=1}^{n}(x_i-\bar{x})(y_i-\bar{y})$ 的取值情况来描述X与Y的相互关系.

随机变量的数字特征

$$E(X)$$
性质
$$E(C) = c \quad E(c \mid X) = c \mid E(X) \quad E(X+Y) = E(X) + E(Y)$$
 X,Y 独立
$$E(XY) = E(X)E(Y)$$

$$D(X)$$
性质
$$D(X) = E(X^2) - [E(X)]^2 \quad D(c) = 0 \quad D(c \mid X) = c^2 D(X)$$
 X,Y 独立,
$$D(X+Y) = D(X) + D(Y) \quad D(X) = 0 \Longrightarrow P(X=c) = 1$$

$$Cov(X,Y) = E\{[X-E(X)][(Y-E(Y)]\}$$

$$= E(XY) - E(X)E(Y) \quad \text{独立}$$

$$D(X+Y) = D(X) + D(Y) + 2 \operatorname{cov}(X,Y) = D(X) + D(Y)$$

$$(1)Cov(X,Y) = Cov(Y,X)$$

$$(2)Cov(X,c) = 0$$

$$(3)Cov(aX,bY) = ab \ Cov(X,Y)$$

$$(4)Cov(X_1 + X_2,Y) = Cov(X_1,Y) + Cov(X_2,Y)$$

随机变量的数学期望与方差

	离散型随机变量	连续型随机变量
X数学期望	$E(X) = \sum_{k=1}^{\infty} x_k p_k$	$E(X) = \int_{-\infty}^{+\infty} x f(x) dx$
Y = g(X) 函数数学期望	$E(Y) = E[g(X)]$ $= \sum_{k=1}^{\infty} g(x_k) p_k$	$E(Y) = E[g(X)]$ $= \int_{-\infty}^{+\infty} g(x)f(x)dx$
Z = g(X,Y) 函数数学期望	$E(Z) = E[g(X,Y)]$ $= \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} g(x_i, y_j) p_{ij}$	$E(Z) = E[g(X,Y)]$ $= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x,y) f(x,y) dx dy$
X方差	$D(X) = E[X - E(X)]^2 =$	$E(X^2) - [E(X)]^2$

六种常见分布的数学期望和方差

	概率分		E(X)	D(X)
	(0-1)分布	$X \sim B(1, p)$	p	pq
离散型	二项分布	$X \sim B(n, p)$	np	npq
型	泊松分布	$X \sim P(\lambda)$	λ	λ
ኍ	均匀分布	$X \sim U(a,b)$	(a+b)/2	$(b-a)^2/12$
连 续 型	指数分布	$X \sim Exp(\theta)$	$oldsymbol{ heta}$	$ heta^2$
	正态分布	$X \sim N(\mu, \sigma^2)$	μ	$oldsymbol{\sigma}^2$

随机变量的数字特征

$$E(X)$$
性质 $E(C) = c \quad E(CX) = c \, E(X) \quad E(X+Y) = E(X) + E(Y)$ X,Y 独立 $E(XY) = E(X) \, E(Y)$ $D(X)$ 性质 $D(X) = E(X^2) - [E(X)]^2 \quad D(c) = 0 \quad D(cX) = c^2 D(X)$ X,Y 独立, $D(X+Y) = D(X) + D(Y) \quad D(X) = 0 \longrightarrow P(X=c) = 1$ 协方差 $Cov(X,Y) = E\{[X-E(X)][(Y-E(Y)]\}$ $= E(XY) - E(X)E(Y)$ 独立 $D(X+Y) = D(X) + D(Y) + 2 cov(X,Y) = D(X) + D(Y)$ $\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{D(X)} \cdot \sqrt{D(Y)}}$ $(1) |\rho_{XY}| \le 1$ $(2) |\rho_{XY}| = 1 \Leftrightarrow$ 存在常数 α , b , 使得: $P(Y=aX+b) = 1$

常用统计量

设 X_1, X_2, \ldots, X_n 是来自总体X的一个样本,

样本均值:
$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$
 $E(X)$ $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i} \xrightarrow{P} E(X)$ Ch5 大数定律
样本方差: $S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$ $D(X)$ 样本 k 阶矩: $A_{k} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{k}$ $E(X^{k})$ $A_{k} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{k} \xrightarrow{P} E(X^{k})$ Ch5 大数定律

χ^2 分布	$X_i \sim N(0,1) \ i = 1,2,\dots,n \ 独立$	$\frac{\chi^{2}_{\alpha}(n)}{\chi^{2}_{\alpha}(n)}$
t 分布	$X \sim N(0,1), Y \sim \chi^2(n),$ 独立	$t_{\alpha}(n)$ $t_{\alpha}(n) = -t_{1-\alpha}(n)$

$$\chi^2$$
 分布

$$X_i \sim N(0,1) \ i = 1,2,\dots,n$$
 独立

$$\star \chi^2 = \sum_{i=1}^n X_i^2 \sim \chi^2(n)$$

$$X \sim N(0,1), Y \sim \chi^{2}(n),$$
 独立

$$\star t = \frac{X}{\sqrt{Y/n}} \sim t(n)$$

$$X \sim N(\mu, \sigma^{2})$$

$$X_{1}, X_{2}, \dots, X_{n}$$

$$\overline{X}, S^{2}$$

$$X \sim N(\mu, \sigma^2)$$
 大 Th1 $\overline{X} \sim N(\mu, \sigma^2/n)$, 独立

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$
 $S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$

$$\frac{Th2}{S} \neq \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1)$$

$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$$

小	结
---	---

X	$\sim N(\rho$	(u,σ^2)
X_1	X_2	$\cdot \cdot, X_n$

			$\frac{1}{1}$, $\frac{1}{2}$, $\frac{1}{1}$ $\frac{1}{n}$
	统计量	概率分布	
χ^2 统计量	$\chi^2 = \sum_{i=1}^n X_i^2$	$\sim \chi^2(n)$	$X_i \sim N(0,1)$ $i = 1,2,\dots,n$ 独立
t 统计量	$t = \frac{X}{\sqrt{Y/n}}$	$\sim t(n)$	$X \sim N(0,1), Y \sim \chi^2(n),$ 独立
样本均值	$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$	$\sim N(\mu, \frac{\sigma^2}{n})$	$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$
样本方差	$\frac{(n-1)S^2}{\sigma^2}$	$\sim \chi^2(n-1)$	$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$
	$\frac{\overline{X} - \mu}{S / \sqrt{n}}$	$\sim t(n-1)$	

4	
77	

 $X \sim N(\mu, \sigma^2)$ $E(X) = \mu$ 未知 X_1, X_2, \dots, X_n $D(X) = \sigma_2^2$

	统计量	概率分布	3
χ^2 统计量	$\chi^2 = \sum_{i=1}^n X_i^2$	$\sim \chi^2(n)$	$X_i \sim N(0,1)$ $i = 1,2,\dots,n$ 独立
t 统计量	$t = \frac{X}{\sqrt{Y/n}}$	$\sim t(n)$	$X \sim N(0,1), Y \sim \chi^{2}(n),$ 独立
样本均值	$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$	$\sim N(\mu, \frac{\sigma^2}{n})$	$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$
样本方差	$\frac{(n-1)S^2}{\sigma^2}$	$\sim \chi^2(n-1)$	$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$
	$\frac{\bar{X} - \mu}{S / \sqrt{n}}$	$\sim t(n-1)$	$\frac{(n-1)S^2}{\sigma^2} = \sum_{i=1}^n \left(\frac{X_i - \overline{X}}{\sigma}\right)^2$

			<u> </u>
	统计量	概率分布	
χ^2 统计量	$\chi^2 = \sum_{i=1}^n X_i^2$	$\sim \chi^2(n)$	$X_i \sim N(0,1)$ $i = 1,2,\cdots,n$ 独立
t 统计量	$t = \frac{X}{\sqrt{Y/n}}$	$\sim t(n)$	$X \sim N(0,1), Y \sim \chi^{2}(n),$ 独立
样本均值	$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$	$\sim N(\mu, \frac{\sigma^2}{n}) \sqrt{\frac{\sigma^2}{n}}$	$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$
样本方差	$\frac{(n-1)S^2}{\sigma^2}$	$\sim \chi^2(n-1)$	$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$
	$\frac{\overline{X} - \mu}{S / \sqrt{n}}$	$\sim t(n-1)$	

1	、结
---	----

	统计量	概率分布	
χ^2 统计量	$\chi^2 = \sum_{i=1}^n X_i^2$	$\sim \chi^2(n) \sqrt{{2}}}$	$X_i \sim N(0,1)$ $i = 1,2,\cdots,n$ 独立
t 统计量	$t = \frac{X}{\sqrt{Y/n}}$	$\sim t(n)$	$X \sim N(0,1), Y \sim \chi^{2}(n),$ 独立
样本均值	$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$	$\sim N(\mu, \frac{\sigma^2}{n})$	$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$
样本方差	$\frac{(n-1)S^2}{\sigma^2}$	$\sim \chi^2(n-1)$	$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$
	$\frac{\overline{X} - \mu}{S / \sqrt{n}}$	$\sim t(n-1)$	

			-19-29 $9-n$
	统计量	概率分布	
χ^2 统计量	$\chi^2 = \sum_{i=1}^n X_i^2$	$\sim \chi^2(n) \sqrt{{2}}}$	$X_i \sim N(0,1)$ $i = 1,2,\cdots,n$ 独立
t 统计量	$t = \frac{X}{\sqrt{Y/n}}$	$\sim t(n)$	$X \sim N(0,1), Y \sim \chi^{2}(n),$ 独立
样本均值	$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$	$\sim N(\mu, \frac{\sigma^2}{n})$	$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$
样本方差	$\frac{(n-1)S^2}{\sigma^2}$	$\sim \chi^2(n-1)$	$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$
	$\frac{\overline{X} - \mu}{S / \sqrt{n}}$	$\sim t(n-1)$	

			-1 j -2 j $-j$ $-n$
	统计量	概率分布	
χ^2 统计量	$\chi^2 = \sum_{i=1}^n X_i^2$	$\sim \chi^2(n)$	$X_i \sim N(0,1)$ $i = 1,2,\cdots,n$ 独立
t 统计量	$t = \frac{X}{\sqrt{Y/n}}$	$\sim t(n)$	$X \sim N(0,1), Y \sim \chi^{2}(n),$ 独立
样本均值	$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$	$\sim N(\mu, \frac{\sigma^2}{n})$	$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$
样本方差	$\frac{(n-1)S^2}{\sigma^2}$	$\sim \chi^2(n-1)$	$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$
	$\frac{\overline{X} - \mu}{S / \sqrt{n}}$	$\sim t(n-1)\sqrt{}$	

参数估计问题

复习

设总体 $X \sim F(x,\theta)$, θ 是未知参数, 对未知参数 θ 进行估计 ---- 参数估计

$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx$$

方法: $EX_i = EX$ $DX_i = DX$

1) 抽样: X_1, X_2, \dots, X_n (独立且与X同分布) x_1, x_2, \dots, x_n

不含任何未知量

2) 构造统计量: $g(X_1, X_2, \dots, X_n)$ --- θ 的估计量 $g(x_1, x_2, \dots, x_n)$ --- θ 的估计值

点估计: 给出 θ 的估计值或近似值 $\hat{\theta}$ 参数估计 $\left\{ \right.$

区间估计:给出 θ 的估计值或近似值 $\hat{\theta}$

的误差范围与可信程度。

设总体 $X \sim F(x,\theta)$, θ 是未知参数, 对未知参数 θ 进行估计 ---- 参数估计

方法:

- 1) 抽样: X_1, X_2, \dots, X_n (独立且与X同分布) x_1, x_2, \dots, x_n
- 2) 构造统计量: $g(X_1, X_2, \dots, X_n)$ --- θ 的估计量 $g(x_1,x_2,\cdots,x_n)$ --- θ 的估计值-

➢ 需要讨论估计量的评价标准 § 7.3

统计量的无偏性

设 X_1, X_2, \ldots, X_n 是总体 X 的一个样本

样本均值:
$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

$$E(\bar{X}) = E(X)$$

样本方差:
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

$$E(S^2) = D(X)$$

样本
$$k$$
 阶矩: $A_k = \frac{1}{n} \sum_{i=1}^n X_i^k$

$$E(X^k)$$

$$E(A_k) = E(X^k)$$

结论: \bar{X} , S^2 , A_k 分别是 E(X), D(X), $E(X^k)$ 的无偏估计量.

参数估计问题

设总体 $X \sim F(x,\theta), \theta$ 是未知参数, 对未知参数 θ 进行估计 ---- 参数估计

方法: $EX_i = EX$ $DX_i = DX$

- 1) 抽样: X_1, X_2, \dots, X_n (独立且与 X 同分布) x_1, x_2, \cdots, x_n
- 2) 构造统计量: $g(X_1, X_2, \dots, X_n) \theta$ 的估计量 $g(x_1, x_2, \dots, x_n)$ --- θ 的估计值

点估计: 给出 θ 的估计值或近似值 $\hat{\theta}$

参数估计 $\left\{ egin{array}{ll} egin{array}$

的误差范围及可信程度。

设总体 $X \sim F(x,\theta)$, θ 是未知参数, 对未知参数 θ 进行估计 ---- 参数估计

方法:

- 1) 抽样: X_1, X_2, \dots, X_n (独立且与X同分布) x_1, x_2, \dots, x_n
- 2) 构造统计量: $g(X_1, X_2, \dots, X_n)$ --- θ 的估计量 $g(x_1, x_2, \dots, x_n)$ --- θ 的估计值

 ϕ 数估计 ϕ 的矩估计量 ϕ 数估计 ϕ 的设态 ϕ 的设备 ϕ 的过格 ϕ

➢ 需要讨论估计量的评价标准: 1. 无偏性 2. 有效性

一. 无偏性

设未知参数 θ 的估计量和估计值分别为:

$$\hat{\theta} = \hat{\theta} (X_1, X_2, \dots, X_n) \qquad \hat{\theta} = \hat{\theta} (x_1, x_2, \dots, x_n)$$

估计量是随机变量,对于不同的样本值会得到不同的估计值。 希望估计值在未知参数真值 θ 附近摆动,即它的期望值等于 未知参数的真值 $E(\hat{\theta}) = \theta$ 。 $\left| E(\hat{\theta}) - \theta \right|$ 系统误差

定义: 设 $\hat{\theta}$ 是 θ 的估计量,若 $E(\hat{\theta})$ 存在且 $E(\hat{\theta}) = \theta$ 则称 $\hat{\theta}$ 是 θ 的无偏估计量.

统计量的无偏性

设 $X \sim F(x,\theta), X_1, X_2, \dots, X_n$ 是总体 X 的一个样本

样本均值:
$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

$$E(\bar{X}) = E(X)$$

样本方差:
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

$$E(S^2) = D(X)$$

样本
$$k$$
 阶矩: $A_k = \frac{1}{n} \sum_{i=1}^n X_i^k$

$$E(X^k)$$

$$E(A_k) = E(X^k)$$

结论: \bar{X} , S^2 , A_k 分别是 E(X), D(X), $E(X^k)$ 的无偏估计量.

二. 有效性

若 $\hat{\theta}$ 和 $\hat{\theta}$ 都是参数 θ 的无偏估计量,

则可通过比较 $E(\hat{\theta}_1 - \theta)^2$ 和 $E(\hat{\theta}_2 - \theta)^2$ 的大小来决定二者谁更优。

定义: 设
$$\hat{\theta}_1 = \hat{\theta}_1(X_1, X_2, \dots, X_n)$$
 与 $\hat{\theta}_2 = \hat{\theta}_2(X_1, X_2, \dots, X_n)$

都是 θ 的无偏估计量,且两个样本的容量相等。

若 $D(\hat{\theta}_1) \leq D(\hat{\theta}_2)$, 则称 $\hat{\theta}_1$ 较 $\hat{\theta}_2$ 有效。

$$\chi^2$$
 分布

$$X_1, X_2, \dots, X_n \sim N(0,1), \; \text{独立}$$

$$\chi^2 = X_1^2 + X_2^2 + \dots + X_n^2 \sim \chi^2(n)$$

$$X \sim N(0,1), Y \sim \chi^{2}(n), 独立$$
$$t = \frac{X}{\sqrt{Y/n}} \sim t(n)$$

$$EX = \mu, DX = \sigma^{2}$$

$$X \sim N(\mu, \sigma^{2})$$

$$X_1, X_2, \cdots, X_n$$

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Th1
$$\bar{X} \sim N(\mu, \sigma^2/n)$$
, 独立

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

Th2

$$\frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t(n-1)$$

$$\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \sim N(0,1)$$

	统计量	置信区间
1)求 μ 的置信区间 σ^2 为已知	$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$	$(\overline{X}\pm\frac{\sigma}{\sqrt{n}}z_{\alpha/2})$

 x_1, x_2, \cdots, x_{16}

例1. 某实验室测量铝的比重 16 次,得平均值 $\bar{x} = 2.705$,设总体 $X \sim N(\mu, 0.029^2)$,求: μ 的 95% 的置信区间.

解: 由已知: $\therefore 1-\alpha=95\%$ $\therefore \alpha=5\%$,

$$(\overline{X} \pm \frac{\sigma}{\sqrt{n}} z_{\alpha/2})$$

查正态分布表得: $z_{\alpha/2} = z_{0.05/2} = z_{0.025}$

$$\Phi(z_{0.025}) = 1 - 0.025 = 0.975$$
 $z_{0.025} = 1.96$

复习

$$\Phi(z_{\alpha}) = \int_{-\infty}^{z_{\alpha}} \varphi(x) dx = 1 - \alpha$$
(附表2上)

	统计量	置信区间
1)求 μ 的置信区间 σ^2 为已知	$\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \sim N(0,1)$	$(\overline{X}\pm \frac{\sigma}{\sqrt{n}}z_{lpha/2})$
2)求 μ 的置信区间 σ^2 为未知	$\frac{\bar{X}-\mu}{S/\sqrt{n}}\sim t(n-1)$	$(\bar{X} \pm \frac{S}{\sqrt{n}} t_{\alpha/2}(n-1))$

	统计量	置信区间
1)求 μ 的置信区间 σ^2 为已知	$\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \sim N(0,1)$	$(\overline{X} \pm \frac{\sigma}{\sqrt{n}} z_{\alpha/2})$
2)求 μ 的置信区间 σ^2 为未知	$\frac{\bar{X}-\mu}{S/\sqrt{n}}\sim t(n-1)$	$(\bar{X}\pm\frac{S}{\sqrt{n}}t_{\alpha/2}(n-1))$
3)求 σ '的置信区间	$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$	$(\frac{(n-1)S^2}{\chi^2_{\alpha/2}(n-1)}, \frac{(n-1)S^2}{\chi^2_{1-\alpha/2}(n-1)})$

总体 $X \sim F(x,\theta)$, 对 θ 进行估计

$$X_1X_2, \dots, X_n$$

 x_1x_2, \dots, x_n

统计量
$$\hat{\theta} = \hat{\theta}(X_1, X_2, \dots, X_n) \rightarrow \theta$$
 的估计量

- 点估计 \bigstar 1)矩估计法: 求解: $E(X^k) = A_k, k = 1,2$
 - \bigstar 2)极大似然估计法: 求解: $L(\hat{\theta}) = \max L(\theta)$

评选标准

估计量的 \uparrow 1)无偏性: $E(\hat{\theta}) = \theta$

2)有效性: $D(\hat{\theta}_1) < D(\hat{\theta}_2)$

★区间估计

$$P(\underline{\theta} < \theta < \overline{\theta}) = 1 - \alpha$$

 (θ,θ) 是置信度为 $1-\alpha$ 的置信区间

- $X \sim N(\mu, \sigma^2)$, 对 μ, σ^2 进行区间估计
- 1) 求 μ 的置信区间, σ^2 为已知
- 2) 求 μ 的置信区间, σ^2 为未知
- 3) 求 σ^2 的置信区间

	统计量	置信区间
1)求 μ 的置信区间 σ^2 为已知	$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$	$(\overline{X}\pm\frac{\sigma}{\sqrt{n}}z_{\alpha/2})$
2)求 μ 的置信区间 σ^2 为未知	$\frac{\bar{X}-\mu}{S/\sqrt{n}}\sim t(n-1)$	$(\bar{X}\pm\frac{S}{\sqrt{n}}t_{\alpha/2}(n-1))$
3)求 σ '的置信区间	$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$	$(\frac{(n-1)S^2}{\chi^2_{\alpha/2}(n-1)}, \frac{(n-1)S^2}{\chi^2_{1-\alpha/2}(n-1)})$

	统计量	置信区间
1)求 μ 的置信区间 σ^2 为已知	$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$	$(\overline{X} \pm \frac{\sigma}{\sqrt{n}} z_{\alpha/2})$
2)求 μ 的置信区间 σ^2 为未知	$\frac{\bar{X}-\mu}{S/\sqrt{n}}\sim t(n-1)$	$(\bar{X}\pm\frac{S}{\sqrt{n}}t_{\alpha/2}(n-1))$
3)求 σ '的置信区间	$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$	$(\frac{(n-1)S^2}{\chi^2_{\alpha/2}(n-1)}, \frac{(n-1)S^2}{\chi^2_{1-\alpha/2}(n-1)})$

	统计量	置信区间
$oldsymbol{\mu}$ 的置信区间 $oldsymbol{\sigma}^2$ 为已知	$\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \sim N(0,1)$	$(\overline{X}\pm \frac{\sigma}{\sqrt{n}}z_{lpha/2})$
$2)$ 求 μ 的置信区间 σ^2 为未知	$\frac{\bar{X}-\mu}{S/\sqrt{n}}\sim t(n-1)$	$(\bar{X} \pm \frac{S}{\sqrt{n}} t_{\alpha/2} (n-1))$

复习

统计量的无偏性

设 X_1, X_2, \ldots, X_n 是总体 X 的一个样本

样本均值:
$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

$$E\bar{X} = EX$$

样本方差:
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

$$ES^2 = DX$$

样本
$$k$$
 阶矩: $A_k = \frac{1}{n} \sum_{i=1}^n X_i^k$

$$E(X^k)$$

$$EA_k = E(X^k)$$

结论: \bar{X} , S^2 , A_k 分别是 E(X), D(X), $E(X^k)$ 的无偏估计量.