Problem Solutions

Chapter 4

Pierre Paquay

Problem 4.1

Below we plot the monomials of order i, $\phi_i(x) = x^i$.

It is easy to see that as the order i increases, so does the complexity of the curve (in the sense that it is able to fit more complex target functions).

Problem 4.2

We may write

$$h(x) = (1 -1 1) \begin{pmatrix} L_0(x) \\ L_1(x) \\ L_2(x) \end{pmatrix}$$
$$= L_0(x) - L_1(x) + L_2(x)$$
$$= \frac{3}{2}x^2 - x + \frac{1}{2}$$

So we get a degree 2 polynomial.

Problem 4.3

(a) We use the recursive definition of the Legendre polynomials to develop an algorithm to compute $L_k(x)$ given x.

```
Legendre <- function(x, k) {
  if (k == 0)
    return(1)
  if (k == 1)
    return(x)
  else
    return(((2 * k - 1) / k) * x * Legendre(x, k - 1) - ((k - 1) / k) * Legendre(x, k - 2))
}</pre>
```

Now we plot the first six Legendre polynomials below.

(b) We prove this fact by induction. For k = 0, we have $L_0(x) = 1$ which is a monomial of order 0. For k = 1, we have $L_1(x) = x$ which is a monomial of order 1. Now we assume that the result is true for all order less than k + 2, and we will prove it is still true for order k + 2. We will also assume that k is even (the case when it is odd is proved in the same way). We have

$$L_{k+2}(x) = \underbrace{\frac{2k+3}{k+2}}_{=c_1} x \cdot \underbrace{L_{k+1}(x)}_{=a_{k+1}x^{k+1} + a_{k-1}x^{k-1} + \dots + a_1 x} - \underbrace{\frac{k+1}{k+2}}_{=c_0} \cdot \underbrace{L_k(x)}_{=b_k x^k + b_{k-2}x^{k-2} + \dots + b_0}$$
$$= c_1 a_{k+1} x^{k+2} + (c_1 a_{k-1} - c_0 b_k) x^k + \dots + (c_1 a_1 - c_0 b_2) x^2 - c_0 b_0$$

which is actually a linear combination of monomials all of even order with highest order k + 2. In this case we obviously have

$$L_k(-x) = (-1)^k L_k(x).$$

(c) Once again we proceed by induction on k. For k = 1, we have

$$\frac{x^2 - 1}{1} \underbrace{\frac{dL_1(x)}{dx}}_{1} = x^2 - 1 = xL_1(x) - L_0(x).$$

Now we assume that the result is true for all order less than k, and we prove it is still true for k. We have that

$$\begin{split} &\frac{x^2-1}{k}\frac{dL_k(x)}{dx}\\ &= \frac{x^2-1}{k}\left(\frac{2k-1}{k}L_{k-1}(x) + \frac{(2k-1)x}{k}\frac{dL_{k-1}(x)}{dx} - \frac{k-1}{k}\frac{dL_{k-2}(x)}{dx}\right)\\ &= \frac{(x^2-1)(2k-1)}{k^2}L_{k-1}(x) + \frac{(2k-1)(k-1)x}{k^2}\underbrace{\frac{x^2-1}{k-1}\frac{dL_{k-1}(x)}{dx}}_{=xL_{k-1}(x)-L_{k-2}(x)} - \underbrace{\frac{(k-1)(k-2)}{k^2}\underbrace{\frac{x^2-1}{k-2}\frac{dL_{k-2}(x)}{dx}}_{=xL_{k-2}(x)-L_{k-3}(x)} \\ &= \frac{(2k-1)(kx^2-1)}{k^2}L_{k-1}(x) - \frac{(k-1)(3kx-3x)}{k^2}L_{k-2}(x) + \frac{(k-1)(k-2)}{k^2}L_{k-3}(x)\\ &= x\left(\frac{2k-1}{k}xL_{k-1}(x) - \frac{k-1}{k}L_{k-2}(x)\right) - \frac{2k-1}{k^2}L_{k-1}(x) - \frac{(k-1)^2}{k^2}\left(\frac{2k-3}{k-1}xL_{k-2}(x) - \frac{k-2}{k-1}L_{k-3}(x)\right)\\ &= xL_k(x) - \frac{(2k-1)+(k-1)^2}{k^2}L_{k-1}(x)\\ &= xL_k(x) - L_{k-1}(x). \end{split}$$

(d) We may write that

$$\begin{split} \frac{d}{dx}\bigg((x^2-1)\frac{dL_k(x)}{dx}\bigg) &= \frac{d}{dx}\bigg(xkL_k(x)-kL_{k-1}(x)\bigg) \\ &= kL_k(x)+xk\frac{dL_k(x)}{dx}-k\frac{dL_{k-1}(x)}{dx} \\ &= kL_k(x)+\frac{k^2x^2}{x^2-1}L_k(x)-\frac{k^2x}{x^2-1}L_{k-1}(x)-\frac{k(k-1)}{x^2-1}xL_{k-1}(x)+\frac{k(k-1)}{x^2-1}L_{k-2(x)} \\ &= \frac{kx^2-k+k^2x^2}{x^2-1}L_k(x)-\frac{k}{x^2-1}[(2k-1)xL_{k-1}(x)-(k-1)L_{k-2}(x)] \\ &= \frac{kx^2-k+k^2x^2}{x^2-1}L_k(x)-\frac{k^2}{x^2-1}L_k(x) \\ &= \frac{k}{x^2-1}[(x^2-1)+kx^2-k]L_k(x) \\ &= k(k+1)L_k(x). \end{split}$$

(e) We will first consider the case where $l \neq k$. We have that

$$\frac{d}{dx}\left((1-x^2)\frac{dL_k(x)}{dx}\right) + k(k+1)L_k(x) = 0$$

and

$$\frac{d}{dx}\left((1-x^2)\frac{dL_l(x)}{dx}\right) + l(l+1)L_l(x) = 0,$$

now we multiply the first identity by $L_l(x)$ and the second by $L_k(x)$, if we substract and integrate the two identities obtained, we get

$$\int_{-1}^{1} L_l(x) \frac{d}{dx} \left((1 - x^2) \frac{dL_k(x)}{dx} \right) - L_k(x) \frac{d}{dx} \left((1 - x^2) \frac{dL_l(x)}{dx} \right) dx + \left[k(k+1) - l(l+1) \right] \int_{-1}^{1} L_k(x) L_l(x) dx = 0.$$

Using integration by parts for the first integral, we get

$$\underbrace{\left(L_{l}(x)(1-x^{2})\frac{dL_{k}(x)}{dx}\Big|_{-1}^{1}}_{=0} - \underbrace{L_{k}(x)(1-x^{2})\frac{dL_{l}(x)}{dx}\Big|_{-1}^{1}}_{=0}\right) - \underbrace{\int_{-1}^{1}\frac{dL_{l}(x)}{dx}(1-x^{2})\frac{dL_{k}(x)}{dx} - \frac{dL_{k}(x)}{dx}(1-x^{2})\frac{dL_{l}(x)}{dx}}_{=0} - \underbrace{L_{k}(x)(1-x^{2})\frac{dL_{l}(x)}{dx}\Big|_{-1}^{1}}_{=0} - \underbrace{\int_{-1}^{1}\frac{dL_{l}(x)}{dx}(1-x^{2})\frac{dL_{k}(x)}{dx} - \frac{dL_{k}(x)}{dx}(1-x^{2})\frac{dL_{l}(x)}{dx}}_{=0} - \underbrace{L_{k}(x)(1-x^{2})\frac{dL_{l}(x)}{dx}\Big|_{-1}^{1}}_{=0} - \underbrace{L_{k}(x)(1-$$

Finally, we obtain

$$\int_{-1}^{1} L_k(x)L_l(x)dx = 0.$$

Now, we consider the case where l = k. We have that

$$A_{k} = \int_{-1}^{1} L_{k}^{2}(x) = \frac{2k-1}{k} \int_{-1}^{1} x L_{k}(x) L_{k-1}(x) dx - \frac{k-1}{k} \underbrace{\int_{-1}^{1} L_{k}(x) L_{k-2}(x) dx}_{=0}$$

$$= \frac{(2k-1)(k+1)}{k(2k+1)} \underbrace{\int_{-1}^{1} L_{k+1}(x) L_{k-1}(x) dx}_{=0} + \frac{(2k-1)k}{k(2k+1)} \int_{-1}^{1} L_{k-1}^{2}(x) dx$$

$$= \frac{2k-1}{2k+1} \int_{-1}^{1} L_{k-1}^{2}(x) dx.$$

Finally, we are able to obtain that

$$A_{k} = \frac{2k-1}{2k+1} A_{k-1}$$

$$= \frac{2k-1}{2k+1} \cdot \frac{2k-3}{2k-1} A_{k-2}$$

$$= \frac{2k-1}{2k+1} \cdot \frac{2k-3}{2k-1} \cdots \frac{3}{5} \frac{1}{3} \underbrace{A_{0}}_{=2}$$

$$= \frac{2}{2k+1}.$$

Problem 4.4

The following code is an implementation of the experimental framework used to study various aspects of overfitting.

```
Legendre2 <- function(x, q) {
   vec <- rep(NA, q + 1)
   for (k in 0:q) {
      vec[k + 1] <- (choose(q, k))^2 * (x - 1)^(q - k) * (x + 1)^k / 2^q
   }

   return(sum(vec))
}

f <- function(x, Qf, aq) {
   Lq <- rep(0, Qf + 1)
   for (k in 0:Qf) {</pre>
```

```
Lq[k + 1] \leftarrow Legendre2(x, k)
 return(sum(aq * Lq))
f <- Vectorize(f, vectorize.args = "x")</pre>
experiment <- function(Qf, N, sigma, Ntest) {</pre>
  aq \leftarrow rnorm(Qf + 1)
  norm \leftarrow rep(0, Qf + 1)
  for (q in 0:Qf)
    norm[q + 1] \leftarrow 1 / (2 * q + 1)
  norm_fac <- 1 / sqrt(sum(norm))</pre>
  aq <- norm_fac * aq
  xn \leftarrow runif(N, min = -1, max = 1)
  eps <- rnorm(N)
  yn \leftarrow f(xn, Qf, aq) + sigma * eps
  D \leftarrow data.frame(x = xn, y = yn)
  y <- D$y
  D2 \leftarrow data.frame(x = D$x, x_sq = D$x^2)
  Z2 <- as.matrix(cbind(1, D2))</pre>
  Z2_cross <- solve(t(Z2) %*% Z2) %*% t(Z2)</pre>
  w2 <- as.vector(Z2_cross %*% y)</pre>
  D10 <- data.frame(x = D$x, x_sq = D$x^2, x_cub = D$x^3, x_quad = D$x^4,
                      x_quint = D$x^5, x_six = D$x^6, x_seven = D$x^7,
                      x_{eight} = D_x^8, x_{nine} = D_x^9, x_{ten} = D_x^10)
  Z10 <- as.matrix(cbind(1, D10))</pre>
  Z10_cross <- solve(t(Z10) %*% Z10) %*% t(Z10)
  w10 <- as.vector(Z10_cross %*% y)
  x \leftarrow runif(Ntest, min = -1, max = 1)
  eps <- rnorm(Ntest)</pre>
  y \leftarrow f(x, Qf, aq) + sigma * eps
  Dtest \leftarrow data.frame(x = x, y = y)
  Eout2 <- mean((as.matrix(cbind(1, Dtest$x, Dtest$x^2)) %*% w2 - Dtest$y)^2)</pre>
  Eout10 <- mean((as.matrix(cbind(1, Dtest$x, Dtest$x^2, Dtest$x^3, Dtest$x^4,</pre>
                                      Dtest$x^5, Dtest$x^6, Dtest$x^7, Dtest$x^8,
                                       Dtest$x^9, Dtest$x^10)) %*% w10 - Dtest$y)^2)
  return(c(Eout2, Eout10))
```

(a) To normalize f, we compute $\mathbb{E}_{a,x}[f^2]$ as follows,

$$\mathbb{E}_{a,x}[f^2] = \mathbb{E}_x[\mathbb{E}_{a|x}[f^2|x]]$$

$$= \mathbb{E}_x[\underbrace{\operatorname{Var}_{a|x}[f]}_{=\sum_q L_q^2(x)} + (\underbrace{\mathbb{E}_{a|x}[f]}_{=1})^2]$$

$$= \sum_q L_q^2(x) \underbrace{\operatorname{Var}_{a|x}[a_q]}_{=1} = \sum_q L_q(x) \underbrace{\mathbb{E}_{a|x}[a_q]}_{=0}$$

$$= \sum_{q=0}^{Q_f} \mathbb{E}_x[L_q^2(x)].$$

Moreover, we may write that

$$\mathbb{E}_x[L_q^2(x)] = \frac{1}{2} \int_{-1}^1 L_q^2(x) dx = \frac{1}{2q+1},$$

with which we can conclude that

$$\mathbb{E}_{a,x}[f^2] = \sum_{q=0}^{Q_f} \frac{1}{2q+1}.$$

This means that, to normalize f, we have to multiply each coefficient a_q by the constant factor $1/\sqrt{\sum_q \frac{1}{2q+1}}$. Obviously, if the signal f is normalized to $\mathbb{E}[f^2] = 1$, this implies that the noise level σ^2 is automatically calibrated to the signal level.

(b) To obtain g_2 and g_{10} , we first transform the original data $x \in \mathcal{X}$ with a second (resp. tenth) order transformation $z = \Phi_2(x) \in \mathcal{Z}_2$ (resp. $z = \Phi_{10}(x) \in \mathcal{Z}_{10}$). Then, we find the best linear fit for the data in \mathcal{Z}_2 -space (resp. \mathcal{Z}_{10} -space) to find $\tilde{g}_2 = \tilde{w}^T z$ (resp. $\tilde{g}_{10} = \tilde{w}^T z$). And finally, we get the best fit in \mathcal{X} -space

$$g_2(x) = \tilde{g}_2(\Phi_2(x)) = \tilde{w}^T \Phi_2(x) \text{ (resp. } g_{10}(x) = \tilde{g}_{10}(\Phi_{10}(x)) = \tilde{w}^T \Phi_{10}(x)).$$

(c) To compute analytically E_{out} for a given g_{10} we have to compute

$$E_{out}(g_{10}) = \mathbb{E}_{x,y}[(g_{10}(x) - y(x))^2] = \mathbb{E}_{x,y}[(g_{10}(x) - f(x) - \sigma\epsilon)^2] = \mathbb{E}_x[\mathbb{E}_{y|x}[(g_{10}(x) - f(x) - \sigma\epsilon)^2 | x]].$$

(d) Below we plot the extent of overfitting depending on certain parameters of the learning problem. In the first plot, we fix $Q_f = 20$ to study the stochastic noise.

```
# Grid search with Qf = 20
Nexp <- 1000
grid \leftarrow expand.grid(N = seq(20, 120, by = 5), sigma_sq = seq(0, 2, by = 0.05))
E_out_Overfit <- foreach(i = 1:nrow(grid), .combine = "rbind") %dopar% {</pre>
                    set.seed(1975)
                    Eout H2 <- numeric(Nexp)</pre>
                    Eout H10 <- numeric(Nexp)</pre>
                    for (n in 1:Nexp) {
                      tmp <- experiment(Qf = 20, grid$N[i], sqrt(grid$sigma[i]), Ntest = 100)</pre>
                      Eout_H2[n] \leftarrow tmp[1]
                      Eout_H10[n] \leftarrow tmp[2]
                    c(mean(Eout_H2), mean(Eout_H10))
Eout <- cbind(grid, E_out_Overfit)</pre>
colnames(Eout) <- c("N", "sigma_sq", "Eout_H2", "Eout_H10")</pre>
Eout["Overfit"] <- Eout$Eout_H10 - Eout$Eout_H2</pre>
Eout$Overfit <- ifelse(Eout$Overfit > 0.2, 0.2, Eout$Overfit)
```

```
Eout$Overfit <- ifelse(Eout$Overfit < -0.2, -0.2, Eout$Overfit)

ggplot(Eout, aes(N, sigma_sq, fill = Overfit)) + geom_raster(interpolate = TRUE) +
    xlab("N") + ylab("Sigma_sq") +
    scale_fill_gradient2(low = "blue", mid = "green", high = "red")</pre>
```


In the second plot, we fix $\sigma^2 = 0.1$ to study the deterministic noise.

```
# grid search with sigma_sq = 0.1
Nexp <- 200
grid <- expand.grid(Qf = seq(1, 80, by = 1), N = seq(20, 120, by = 5))
E out Overfit <- foreach(i = 1:nrow(grid), .combine = "rbind") %dopar% {
                   set.seed(1975)
                   Eout_H2 <- numeric(Nexp)</pre>
                   Eout_H10 <- numeric(Nexp)</pre>
                   for (n in 1:Nexp) {
                     tmp <- experiment(grid$Qf[i], grid$N[i], sqrt(0.1), Ntest = 10)</pre>
                     Eout_H2[n] <- tmp[1]</pre>
                     Eout_H10[n] <- tmp[2]</pre>
                   c(mean(Eout_H2), mean(Eout_H10))
Eout <- cbind(grid, E_out_Overfit)</pre>
colnames(Eout) <- c("Qf", "N", "Eout_H2", "Eout_H10")</pre>
Eout["Overfit"] <- Eout$Eout_H10 - Eout$Eout_H2</pre>
Eout$Overfit <- ifelse(Eout$Overfit > 0.2, 0.2, Eout$Overfit)
Eout$Overfit <- ifelse(Eout$Overfit < -0.2, -0.2, Eout$Overfit)</pre>
ggplot(Eout, aes(N, Qf, fill = Overfit)) + geom_raster(interpolate = TRUE) +
  xlab("N") + ylab("Q_f") +
  scale_fill_gradient2(low = "blue", mid = "green", high = "red")
```


(e) We take the average over many experiments because we want estimates of the expected out-of-sample error for a given learning scenario (Q_f, N, σ) using \mathcal{H}_2 and \mathcal{H}_{10} .

Problem 4.5

If we consider the following constrained optimization problem

$$\min_{w} E_{in}(w)$$
 subject to $w^T w \geq C$,

the theory of Lagrange multipliers tells us that this problem is equivalent to the following unconstrained optimization problem

$$\min_{w} (E_{in}(w) - \lambda_C' w^T w) \; ; \; \lambda_C' \ge 0.$$

If we let $\lambda_C = -\lambda'_C$, we get that the original constrained optimization problem is equivalent to minimizing the augmented error

$$E_{aug}(w) = E_{in}(w) + \lambda_C w^T w \; ; \; \lambda_C \le 0.$$

So, we may conclude that the soft order constraint corresponding to this problem is $w^T w \geq C$.

Problem 4.6

(a) We begin by noting that

$$E_{in}(w_{reg}) = \frac{(w_{reg} - w_{lin})^T Z^T Z(w_{reg} - w_{lin}) + y^T (I - H) y}{N} \ge \frac{y^T (I - H) y}{N} = E_{in}(w_{lin}).$$

Now we suppose that $||w_{reg}|| > ||w_{lin}||$, in this case we may write that

$$E_{aug}(w_{reg}) = E_{in}(w_{reg}) + \lambda ||w_{reg}||^2 > E_{in}(w_{lin}) + \lambda ||w_{lin}||^2 = E_{aug}(w_{lin}),$$

which is not possible since $w_{reg} = \operatorname{argmin}_w E_{aug}(w)$. So, we may conclude that $||w_{reg}|| \le ||w_{lin}||$.

(b) First, we note that if v_i are eigenvectors with eigenvalues λ_i of a matrix A, then $Av_i = \lambda_i v_i$, and consequently

$$v_i = \lambda_i A^{-1} v_i \Leftrightarrow A^{-1} v_i = \frac{1}{\lambda_i} v_i \Rightarrow A^{-2} v_i = \frac{1}{\lambda_i^2} v_i,$$

which means that v_i are also eigenvectors of A^{-2} with eigenvalues $1/\lambda_i^2$.

Now, let v_i be the orthogonal eigenvectors of non-zero eigenvalues λ_i of Z^TZ (since Z^TZ is invertible and symmetric). We have that

$$||w_{reg}||^2 = y^T Z (Z^T Z + \lambda I)^{-2} Z^T y = u^T (Z^T Z + \lambda I)^{-2} u,$$

and

$$||w_{lin}||^2 = y^T Z (Z^T Z)^{-2} Z^T y = u^T (Z^T Z)^{-2} u$$

where $u = Z^T y$; if we let $V = (v_0, \dots, v_O)$ be the orthogonal matrix of eigenvectors, we get

$$V^T Z^T Z V = \operatorname{diag}(\lambda_i)$$

and

$$V^{T}(Z^{T}Z + \lambda I)V = V^{T}Z^{T}ZV + \lambda V^{T}V = \operatorname{diag}(\lambda_{i} + \lambda).$$

If we expand u in the eigenbasis of Z^TZ , we get that $u = \sum_i \alpha_i v_i$ and

$$||w_{reg}||^2 = \sum_{i,j} \alpha_i \alpha_j v_i^T (Z^T Z + \lambda I)^{-2} v_j$$

$$= \sum_{i,j} \alpha_i \alpha_j \frac{1}{(\lambda_i + \lambda)^2} v_i^T v_j$$

$$= \sum_i \frac{\alpha_i^2}{(\lambda_i + \lambda)^2}$$

$$\leq \sum_i \frac{\alpha_i^2}{\lambda_i^2} = \sum_{i,j} \alpha_i \alpha_j v_i^T (Z^T Z)^{-2} v_j = ||w_{lin}||^2;$$

for the above inequality to be true, we have to note that since Z^TZ is (at least) semi positive definite, its eigenvalues are non-negative.

Problem 4.7

Here, for our $(N \times d)$ matrix Z, we assume that N > d, and in this case U is a $(N \times d)$ orthogonal matrix, Γ is a $(d \times d)$ diagonal matrix and V is a $(d \times d)$ orthogonal matrix. We begin by noting that

$$Z^TZ = V\Gamma U^T U\Gamma V^T = V\Gamma^2 V^T.$$

Let us first consider the vector Hy, we have

$$\begin{array}{rcl} Hy & = & Z(Z^TZ)^{-1}Z^Ty \\ & = & U\Gamma V^T(V^T)^{-1}\Gamma^{-2}V^{-1}V\Gamma U^Ty \\ & = & UU^Ty; \end{array}$$

moreover, we also have for $H(\lambda)y$ that

$$\begin{split} H(\lambda)y &= Z(Z^TZ + \lambda I)^{-1}Z^Ty \\ &= U\Gamma V^T (V\Gamma^2 V^T + \lambda I)^{-1}V\Gamma U^Ty \\ &= U\Gamma V^T [V\underbrace{(\Gamma^2 + \lambda I)}_{=\mathrm{diag}(\sigma_i^2 + \lambda)} V^T]^{-1}V\Gamma U^Ty \\ &= U\Gamma V^T (V^T)^{-1}\mathrm{diag}\bigg(\frac{1}{\sigma_i^2 + \lambda}\bigg) V^{-1}V\Gamma U^Ty \\ &= U\mathrm{diag}\bigg(\frac{\sigma_i^2}{\sigma_i^2 + \lambda}\bigg) U^Ty. \end{split}$$

Putting all of the above together, we get

$$(I - H(\lambda))y = (I - H)y + (H - H(\lambda))y = (I - H)y + U\operatorname{diag}\left(1 - \frac{\sigma_i^2}{\sigma_i^2 + \lambda}\right)U^T y,$$

and consequently

$$\begin{split} E_{in}(w_{reg}) &= \frac{1}{N} y^T (I - H(\lambda))^2 y \\ &= \frac{1}{N} y^T (I - H(\lambda))^T (I - H(\lambda)) y \\ &= \frac{1}{N} [y^T (I - H)y + 2y^T (I - H)U \operatorname{diag} \left(1 - \frac{\sigma_i^2}{\sigma_i^2 + \lambda}\right) U^T y + y^T U \operatorname{diag} \left(1 - \frac{\sigma_i^2}{\sigma_i^2 + \lambda}\right) U^T U \operatorname{diag} \left(1 - \frac{\sigma_i^2}{\sigma_i^2 + \lambda}\right) U^T y] \\ &= \frac{1}{N} [y^T (I - H)y + y^T U \operatorname{diag} \left(1 - \frac{\sigma_i^2}{\sigma_i^2 + \lambda}\right)^2 U^T y + 2y^T \underbrace{(I - H)U}_{=U - HU = U - UU^T U = 0} \operatorname{diag} \left(1 - \frac{\sigma_i^2}{\sigma_i^2 + \lambda}\right) U^T y \\ &= E_{in}(w_{lin}) + \frac{1}{N} \sum_i a_i^2 \left(1 - \frac{\sigma_i^2}{\sigma_i^2 + \lambda}\right)^2. \end{split}$$

Problem 4.8

First, we compute $\nabla E_{aug}(w)$, we immediately have

$$\nabla E_{auq}(w) = \nabla E_{in}(w) + 2\lambda w.$$

So the gradient descent update rule becomes

$$w(t+1) \leftarrow w(t) - \eta \nabla E_{auq}(w(t)) = (1 - 2\eta \lambda)w(t) - \eta \nabla E_{in}(w(t)).$$

Problem 4.9

(a) Let Γ be the following matrix

$$\Gamma = \begin{pmatrix} - & \gamma_1^T & - \\ & \vdots & \\ - & \gamma_k^T & - \end{pmatrix},$$

now we construct a virtual example $(z_i, 0)$ where $z_i = \sqrt{\lambda} \gamma_i$ for $i = 1, \dots, k$. If $\mathcal{D} = \{(z'_1, y_1), \dots, (z'_N, y_N)\}$, this means that the matrix for the augmented data is

$$Z_{aug} = egin{pmatrix} -&z_1'^T&-\ dots\ -&z_1'^T&-\ -&z_1^T&-\ dots\ -&z_k^T&- \end{pmatrix} = egin{pmatrix} Z\\ \sqrt{\lambda}\Gamma \end{pmatrix}$$

and

$$y_{aug} = egin{pmatrix} y_1 \\ \vdots \\ y_N \\ 0 \\ \vdots \\ 0 \end{pmatrix} = egin{pmatrix} y \\ 0 \end{pmatrix}.$$

(b) If we solve the least squares problem with Z_{aug} and y_{aug} , we get

$$\begin{aligned} w_{lin} &= (Z_{aug}^T Z_{aug})^{-1} Z_{aug}^T y_{aug} \\ &= [(Z^T | \sqrt{\lambda} \Gamma^T) \left(\frac{Z}{\sqrt{\lambda} \Gamma} \right)]^{-1} (Z^T | \sqrt{\lambda} \Gamma^T) \left(\frac{y}{0} \right) \\ &= (Z^T Z + \lambda \Gamma^T \Gamma)^{-1} Z^T y = w_{reg}. \end{aligned}$$

Problem 4.10

- (a) If $w_{lin}^T \Gamma^T \Gamma w_{lin} \leq C$, then obviously $w_{reg} = w_{lin}$.
- (b) If $w_{lin}^T \Gamma^T \Gamma w_{lin} > C$, then we have that $w_{reg}^T \Gamma^T \Gamma w_{reg} = C$ (see the book illustration).
- (c) The original constrained problem is equivalent to solving the following unconstrained problem with Lagrange multipliers,

$$\min_{w} (\underbrace{E_{in}(w) - \lambda_C(-w^T \Gamma^T \Gamma w + C)}_{=L(w, \lambda_C)})$$

where $\lambda_C \geq 0$. We have that

$$\nabla_{w,\lambda_C} L(w,\lambda_C) = (\nabla_w L(w,\lambda_C), \frac{\partial}{\partial \lambda_C} L(w,\lambda_C))$$

where

$$\nabla_w L(w, \lambda_C) = \nabla E_{in}(w) + 2\lambda_C \Gamma^T \Gamma w$$
 and $\frac{\partial}{\partial \lambda_C} L(w, \lambda_C) = w^T \Gamma^T \Gamma w - C$.

Since w_{reg} is a solution to the original constrained problem, it must also be a solution to the equivalent unconstrained problem, this means that

$$\nabla E_{in}(w_{reg}) + 2\lambda_C \Gamma^T \Gamma w_{reg} = 0$$
 and $w_{reg}^T \Gamma^T \Gamma w_{reg} - C = 0$;

if we solve for λ_C , we get that

$$w_{reg}^T \nabla E_{in}(w_{reg}) + 2\lambda_C \underbrace{w_{reg}^T \Gamma^T \Gamma w_{reg}}_{=C} = 0,$$

and consequently

$$\lambda_C = -\frac{1}{2C} w_{reg}^T \nabla E_{in}(w_{reg}).$$

(d) (i) If $w_{lin}^T \Gamma^T \Gamma w_{lin} \leq C$, we know that $w_{reg} = w_{lin}$, and consequently $\nabla E_{in}(w_{reg}) = 0$, which implies that $\lambda_C = 0$.

(ii) If $w_{lin}^T \Gamma^T \Gamma w_{lin} > C$, let us assume that $\lambda_C = 0$, this means that w_{reg} minimizes

$$E_{in}(w) - \lambda_C(-w^T \Gamma^T \Gamma w + C) = E_{in}(w),$$

so we have $w_{reg} = w_{lin}$ and

$$w_{reg}^T \Gamma^T \Gamma w_{reg} = w_{lin}^T \Gamma^T \Gamma w_{lin} > C,$$

which is not possible since $w_{reg}^T \Gamma^T \Gamma w_{reg} \leq C$ by definition. In conclusion, we have that $\lambda_C > 0$.

(iii) As $w_{lin}^T \Gamma^T \Gamma w_{lin} > C$, we have that $\lambda_C > 0$ which means that $w_{reg}^T \nabla E_{in}(w_{reg}) < 0$. Now, if we compute the derivative relative to C, we get

$$\frac{d\lambda_C}{dC} = \frac{1}{2C^2} w_{reg}^T \nabla E_{in}(w_{reg}) < 0.$$

Problem 4.11

(a) We have immediately

$$w_{lin} = (Z^T Z)^{-1} Z^T y = (Z^T Z)^{-1} Z^T (Z w_f + \epsilon) = w_f + (Z^T Z)^{-1} Z^T \epsilon.$$

And so the average function \overline{q} is given by

$$\overline{g}(x) = \mathbb{E}_{\mathcal{D}}[g^{\mathcal{D}}(x)]
= \mathbb{E}_{\mathcal{D}}[\Phi(x)^T w_{lin}]
= \Phi(x)^T w_f + \mathbb{E}_{\mathcal{D}}[\Phi(x)^T (Z^T Z)^{-1} Z^T \epsilon]]
= \Phi(x)^T w_f + \mathbb{E}_Z[E_{y|Z}[\Phi(x)^T (Z^T Z)^{-1} Z^T \epsilon | Z]]
= \Phi(x)^T w_f + \mathbb{E}_Z[\Phi(x)^T (Z^T Z)^{-1} Z^T \underbrace{E_{y|Z}[\epsilon | Z]}_{=\mathbb{E}_{\epsilon}[\epsilon]=0}]
= \Phi(x)^T w_f = f(x),$$

which means that

$$bias(x) = (\overline{g}(x) - f(x))^2 = 0,$$

and consequently bias = $\mathbb{E}_x[\text{bias}(x)] = 0$.

(b) We may write that

$$\operatorname{var}(x) = \mathbb{E}_{\mathcal{D}}[(g^{\mathcal{D}}(x) - \overline{g}(x))^{2}]$$

$$= \mathbb{E}_{\mathcal{D}}[(g^{\mathcal{D}}(x) - f(x))^{2}]$$

$$= \mathbb{E}_{\mathcal{D}}[(\Phi(x)^{T}(w_{f} + (Z^{T}Z)^{-1}Z^{T}\epsilon) - \Phi(x)^{T}w_{f})^{2}]$$

$$= \mathbb{E}_{\mathcal{D}}[\underbrace{\epsilon^{T}Z(Z^{T}Z)^{-1}\Phi(x)\Phi(x)^{T}(Z^{T}Z)^{-1}Z^{T}\epsilon}_{=\operatorname{trace}(\Phi(x)\Phi(x)^{T}(Z^{T}Z)^{-1}Z^{T}\epsilon\epsilon^{T}Z(Z^{T}Z)^{-1})}$$

$$= \operatorname{trace}(\mathbb{E}_{Z}[\mathbb{E}_{y|Z}[\Phi(x)\Phi(x)^{T}(Z^{T}Z)^{-1}Z^{T}\epsilon\epsilon^{T}Z(Z^{T}Z)^{-1}|Z])$$

$$= \operatorname{trace}(\mathbb{E}_{Z}[\Phi(x)\Phi(x)^{T}(Z^{T}Z)^{-1}Z^{T}\underbrace{\mathbb{E}_{y|Z}[\epsilon\epsilon^{T}|Z]}_{=\mathbb{E}_{\epsilon}[\epsilon\epsilon^{T}]=\sigma^{2}I}]$$

$$= \sigma^{2}\operatorname{trace}(\mathbb{E}_{Z}[\Phi(x)\Phi(x)^{T}(Z^{T}Z)^{-1}])$$

where we have used the cyclic property of the trace. This allows us to write that

$$\operatorname{var} = \mathbb{E}_{x}[\operatorname{var}(x)]$$

$$= \sigma^{2}\operatorname{trace}(\mathbb{E}_{Z}[\mathbb{E}_{x}[\Phi(x)\Phi(x)^{T}(Z^{T}Z)^{-1}]])$$

$$= \sigma^{2}\operatorname{trace}(\mathbb{E}_{Z}[\underbrace{\mathbb{E}_{x}[\Phi(x)\Phi(x)^{T}]}(Z^{T}Z)^{-1}])$$

$$= \Sigma_{\Phi}$$

$$= \frac{\sigma^{2}}{N}(\Sigma_{\Phi}\mathbb{E}_{Z}[(\frac{1}{N}Z^{T}Z)^{-1}]).$$

(c) We know by the law of large numbers that $\frac{1}{N}Z^TZ$ converges in probability to Σ_{Φ} , this implies that $(\frac{1}{N}Z^TZ)^{-1}$ converges in probability to Σ_{Φ}^{-1} . With that in mind, to the first order in 1/N, we have that

$$\operatorname{var} pprox rac{\sigma^2}{N} \operatorname{trace}(\Sigma_{\Phi} \Sigma_{\Phi}^{-1}) = rac{\sigma^2 (Q+1)}{N}.$$

Problem 4.12

(a) We may write that

$$w_{reg} = (Z^T Z + \lambda I)^{-1} Z^T (Z w_f + \epsilon)$$

$$= (Z^T Z + \lambda I)^{-1} [(Z^T Z w_f + \lambda w_f) - \lambda w_f] + (Z^T Z + \lambda I)^{-1} Z^T \epsilon$$

$$= w_f - \lambda (Z^T Z + \lambda I)^{-1} w_f + (Z^T Z + \lambda I)^{-1} Z^T \epsilon.$$

(b) The average function \overline{g} is given by

$$\overline{g}(x) = \mathbb{E}_{\mathcal{D}}[g^{\mathcal{D}}(x)]
= \mathbb{E}_{\mathcal{D}}[\Phi(x)^{T}w_{reg}]
= \mathbb{E}_{\mathcal{D}}[\Phi(x)^{T}(w_{f} - \lambda(Z^{T}Z + \lambda I)^{-1}w_{f} + (Z^{T}Z + \lambda I)^{-1}Z^{T}\epsilon)]
= \mathbb{E}_{Z}[\Phi(x)^{T}w_{f} - \lambda\Phi(x)^{T}(Z^{T}Z + \lambda I)^{-1}w_{f} + \Phi(x)^{T}(Z^{T}Z + \lambda I)^{-1}Z^{T}\underbrace{\mathbb{E}_{y|Z}[\epsilon|Z]}_{=0}]
= \Phi(x)^{T}w_{f} - \lambda\Phi(x)^{T}\mathbb{E}_{Z}[(Z^{T}Z + \lambda I)^{-1}]w_{f}.$$

Thus, thanks to the cyclic property of the trace, the bias(x) is equal to

$$bias(x) = (\overline{g}(x) - f(x))^{2}$$

$$= \lambda^{2} w_{f}^{T} \mathbb{E}_{Z}[(Z^{T}Z + \lambda I)^{-1}] \Phi(x) \Phi(x)^{T} \mathbb{E}_{Z}[(Z^{T}Z + \lambda I)^{-1}] w_{f}$$

$$= \lambda^{2} trace(\Phi(x)^{T} \Phi(x) \mathbb{E}_{Z}[(Z^{T}Z + \lambda I)^{-1}] w_{f} w_{f}^{T} \mathbb{E}_{Z}[(Z^{T}Z + \lambda I)^{-1}]),$$

consequently, we have that

bias =
$$\mathbb{E}_{x}[\text{bias}(x)]$$

= $\lambda^{2} \text{trace}(\underbrace{\mathbb{E}_{x}[\Phi(x)^{T}\Phi(x)]}_{=I} \mathbb{E}_{Z}[(Z^{T}Z + \lambda I)^{-1}]w_{f}w_{f}^{T}\mathbb{E}_{Z}[(Z^{T}Z + \lambda I)^{-1}])$
= $\lambda^{2} \text{trace}(\mathbb{E}_{Z}[\underbrace{(Z^{T}Z + \lambda I)^{-1}}_{\approx \frac{1}{N+\lambda}I}]w_{f}w_{f}^{T}\mathbb{E}_{Z}[\underbrace{(Z^{T}Z + \lambda I)^{-1}}_{\approx \frac{1}{N+\lambda}I}])$
 $\approx \frac{\lambda^{2}}{(N+\lambda)^{2}}\underbrace{\underbrace{\text{trace}(w_{f}w_{f}^{T})}_{=\text{trace}(w_{f}^{T}w_{f})=||w_{f}||^{2}}}_{=\text{trace}(w_{f}^{T}w_{f})=||w_{f}||^{2}}$
 $\approx \frac{\lambda^{2}}{(N+\lambda)^{2}}||w_{f}||^{2},$

since $Z^T Z \approx N \Sigma_{\Phi} = N I$.

Now, if we compute var(x), we get

$$\operatorname{var}(x) = \mathbb{E}_{\mathcal{D}}[(g^{\mathcal{D}} - \overline{g}(x))^{2}]$$

$$= \mathbb{E}_{\mathcal{D}}[(\lambda \Phi(x)^{T} (\underbrace{\mathbb{E}_{Z}[(Z^{T}Z - \lambda I)^{-1}]}_{\approx \frac{1}{N+\lambda}I} - \underbrace{(Z^{T}Z - \lambda I)^{-1}}_{\approx \frac{1}{N+\lambda}I}) w_{f} + \Phi(x)^{T} (Z^{T}Z + \lambda I)^{-1} Z^{T} \epsilon)^{2}]$$

$$\approx \mathbb{E}_{\mathcal{D}}[\epsilon^{T}Z(Z^{T}Z + \lambda I)^{-1}\Phi(x)\Phi(x)^{T} (Z^{T}Z + \lambda I)^{-1} Z^{T} \epsilon]$$

$$\approx \mathbb{E}_{Z}[\operatorname{trace}(\underbrace{\mathbb{E}_{y|Z}[\epsilon \epsilon^{T}]}_{=\sigma^{2}I} Z(Z^{T}Z + \lambda I)^{-1} \Phi(x)\Phi(x)^{T} (Z^{T}Z + \lambda I)^{-1} Z^{T}]$$

$$\approx \sigma^{2}\mathbb{E}_{Z}[\operatorname{trace}(\Phi(x)\Phi(x)^{T} (Z^{T}Z + \lambda I)^{-1} Z^{T} Z(Z^{T}Z + \lambda I)^{-1})].$$

And finally we get the variance below,

$$\operatorname{var} = \mathbb{E}_{x}[\operatorname{var}(x)]$$

$$\approx \sigma^{2}\mathbb{E}_{Z}[\operatorname{trace}(\underbrace{\mathbb{E}_{x}[\Phi(x)\Phi(x)^{T}]}_{=I}(Z^{T}Z + \lambda I)^{-1}Z^{T}Z(Z^{T}Z + \lambda I)^{-1})]$$

$$\approx \sigma^{2}\mathbb{E}_{Z}[\operatorname{trace}(\underbrace{I}_{\approx \frac{1}{N}Z^{T}Z}(Z^{T}Z + \lambda I)^{-1}Z^{T}Z(Z^{T}Z + \lambda I)^{-1})]$$

$$\approx \frac{\sigma^{2}}{N}\mathbb{E}_{Z}[\operatorname{trace}(Z(Z^{T}Z + \lambda I)^{-1}Z^{T}Z(Z^{T}Z + \lambda I)^{-1}Z^{T})]$$

$$\approx \frac{\sigma^{2}}{N}\mathbb{E}_{Z}[\operatorname{trace}(H(\lambda)^{2})].$$

Problem 4.13

(a) When $\lambda = 0$, we have $H(0) = Z(Z^TZ)^{-1}Z^T$ and $H(0)^2 = Z(Z^TZ)^{-1}Z^TZ(Z^TZ)^{-1}Z^T = H(0)$, which means that

$$\operatorname{trace}(H(0)) = \operatorname{trace}(H(0)^2) = \operatorname{trace}(Z^T Z (Z^T Z)^{-1}) = \operatorname{trace}(I_{\tilde{d}+1}) = \tilde{d} + 1.$$

So, for (i), we get

$$d_{eff}(0) = 2(\tilde{d}+1) - (\tilde{d}+1) = \tilde{d}+1,$$

for (ii), we get

$$d_{eff}(0) = \tilde{d} + 1,$$

and for (iii), we get

$$d_{eff}(0) = \tilde{d} + 1.$$

(b) Here again, for our $(N \times (\tilde{d}+1))$ matrix Z, we assume that $N > (\tilde{d}+1)$, and in this case $Z = U\Gamma V^T$ where U is a $(N \times (\tilde{d}+1))$ orthogonal matrix, Γ is a $((\tilde{d}+1) \times (\tilde{d}+1))$ diagonal matrix and V is a $((\tilde{d}+1) \times (\tilde{d}+1))$ orthogonal matrix. From Problem 4.7, we know that

$$Z^T Z = V \Gamma^2 V^T$$
 and $H(\lambda) = U \operatorname{diag} \left(\frac{\sigma_i^2}{\sigma_i^2 + \lambda} \right) U^T;$

we begin by considering (ii), in this case we have

$$0 \le d_{eff} = \operatorname{trace}(H(\lambda)) = \operatorname{trace}(U^T U \operatorname{diag}\left(\frac{\sigma_i^2}{\sigma_i^2 + \lambda}\right)) = \sum_{i=0}^{\tilde{d}} \frac{\sigma_i^2}{\sigma_i^2 + \lambda} \le \sum_{i=0}^{\tilde{d}} 1 = \tilde{d} + 1$$

by the cyclic property of the trace. Obviously, if λ increases, d_{eff} decreases. Now, we consider (iii), here we have

$$0 \le d_{eff} = \operatorname{trace}(H(\lambda)^2) = \operatorname{trace}(U^T U \operatorname{diag}\left(\frac{\sigma_i^4}{(\sigma_i^2 + \lambda)^2}\right)) = \sum_{i=0}^{\tilde{d}} \frac{\sigma_i^4}{(\sigma_i^2 + \lambda)^2} \le \sum_{i=0}^{\tilde{d}} 1 = \tilde{d} + 1;$$

here also, if λ increases d_{eff} decreases. Finally, we consider (i), and we get

$$0 \le d_{eff} = 2\sum_{i=0}^{\tilde{d}} \frac{\sigma_i^2}{\sigma_i^2 + \lambda} - \sum_{i=0}^{\tilde{d}} \frac{\sigma_i^4}{(\sigma_i^2 + \lambda)^2} = \sum_{i=0}^{\tilde{d}} \frac{\sigma_i^4 + 2\sigma_i^2 \lambda}{(\sigma_i^2 + \lambda)^2} \le \sum_{i=0}^{\tilde{d}} 1 = \tilde{d} + 1;$$

and here again, if λ increases, then d_{eff} increases.

Problem 4.14

We know from Problem 4.7 that

$$E_{in}(w_{reg}) = \frac{1}{N} y^T (I - H(\lambda))^2 y$$

$$= \frac{1}{N} (f^T + \epsilon^T) (I - H(\lambda))^2 (f + \epsilon)$$

$$= \frac{1}{N} [f^T (I - H(\lambda))^2 f + 2f^T (I - H(\lambda))^2 \epsilon + \epsilon^T (I - H(\lambda))^2 \epsilon].$$

Now, if we compute the expectation of $E_{in}(w_{reg})$ relative to ϵ , we get

$$\mathbb{E}_{\epsilon}[E_{in}(w_{reg})] = \frac{1}{N} [f^{T}(I - H(\lambda))^{2} f + 2f^{T}(I - H(\lambda))^{2} \underbrace{\mathbb{E}_{\epsilon}[\epsilon]}_{=0} + \mathbb{E}_{\epsilon}[\epsilon^{T}(I - H(\lambda))^{2} \epsilon]]$$

$$= \frac{1}{N} [f^{T}(I - H(\lambda))^{2} f + \mathbb{E}_{\epsilon}[\operatorname{trace}(\epsilon \epsilon^{T}(I - H(\lambda))^{2})]]$$

$$= \frac{1}{N} [f^{T}(I - H(\lambda))^{2} f + \operatorname{trace}(\underbrace{\mathbb{E}_{\epsilon}[\epsilon \epsilon^{T}]}_{=\operatorname{diag}(\sigma^{2})} (I - H(\lambda))^{2})]$$

$$= \frac{1}{N} f^{T}(I - H(\lambda))^{2} f + \frac{\sigma^{2}}{N} \operatorname{trace}((I - H(\lambda))^{2});$$

moreover, we also have that

$$\operatorname{trace}((I - H(\lambda))^{2}) = \underbrace{\operatorname{trace}(I_{N})}_{=N} - 2\operatorname{trace}(H(\lambda)) + \operatorname{trace}(H(\lambda)^{2}) = N - d_{eff}(\lambda),$$

with which we conclude that

$$\mathbb{E}_{\epsilon}[E_{in}(w_{reg})] = \frac{1}{N} f^{T} (I - H(\lambda))^{2} f + \sigma^{2} \left(1 - \frac{d_{eff}(\lambda)}{N}\right).$$

- (a) The term involving σ^2 should be $\sigma^2 d_{eff}/N$.
- (b) It is clear that, if d_{eff} increases, the expected in-sample error $\mathbb{E}_{\epsilon}[E_{in}(w_{reg})]$ decreases, which is exactly the behaviour exhibited by the number of parameters in the simpler case of linear regression. That explains why d_{eff} is seen as an effective number of parameters in this more complex case.

Problem 4.15

Here also, for our $(N \times (d+1))$ matrix \tilde{Z} , we assume that N > (d+1), and in this case $\tilde{Z} = USV^T$ where U is a $(N \times (d+1))$ orthogonal matrix, S is a $((d+1) \times (d+1))$ diagonal matrix and V is a $((d+1) \times (d+1))$ orthogonal matrix. As $\tilde{Z} = Z\Gamma^{-1}$, we have $Z = \tilde{Z}\Gamma$; in this case, we also have that

$$\begin{split} H(\lambda) &= Z(Z^TZ + \lambda \Gamma^T \Gamma)^{-1} Z^T \\ &= \tilde{Z} \Gamma [\Gamma^T (\tilde{Z}^T \tilde{Z} + \lambda I) \Gamma]^{-1} \Gamma^T \tilde{Z}^T \\ &= \tilde{Z} (\tilde{Z}^T \tilde{Z} + \lambda I)^{-1} \tilde{Z}^T \\ &= USV^T (VS^T \underbrace{U^T U}_{=I} SV^T + \lambda VV^T)^{-1} VSU^T \\ &= US(\underbrace{S^T S}_{=S^2} + \lambda I)^{-1} SU^T \\ &= U \mathrm{diag} \left(\frac{s_i^2}{s_i^2 + \lambda} \right) U^T \end{split}$$

since $S^2 = \operatorname{diag}(s_i^2)$. In much the same way, we get that

$$H(\lambda)^2 = U \operatorname{diag}\left(\frac{s_i^2}{s_i^2 + \lambda}\right) \underbrace{U^T U}_{=I} \operatorname{diag}\left(\frac{s_i^2}{s_i^2 + \lambda}\right) U^T = U \operatorname{diag}\left(\frac{s_i^4}{(s_i^2 + \lambda)^2}\right) U^T.$$

All of the above implies that

$$\operatorname{trace}(H(\lambda)) = \operatorname{trace}(\underbrace{U^{T}U}_{=I}\operatorname{diag}\left(\frac{s_{i}^{2}}{s_{i}^{2} + \lambda}\right))$$

$$= \sum_{i=0}^{d} \frac{s_{i}^{2}}{s_{i}^{2} + \lambda}$$

$$= \sum_{i=0}^{d} \left(\frac{s_{i}^{2} + \lambda}{s_{i}^{2} + \lambda} - \frac{\lambda}{s_{i}^{2} + \lambda}\right)$$

$$= d + 1 - \sum_{i=0}^{d} \frac{\lambda}{s_{i}^{2} + \lambda},$$

and also that

$$\begin{aligned} & \operatorname{trace}(H(\lambda)^2) &= & \operatorname{trace}(U^T U \operatorname{diag}\left(\frac{s_i^4}{(s_i^2 + \lambda)^2}\right)) \\ &= & \sum_{i=0}^d \frac{s_i^4}{(s_i^2 + \lambda)^2} \\ &= & \sum_{i=0}^d \left(\frac{s_i^4 + 2\lambda s_i^2 + \lambda^2}{(s_i^2 + \lambda)^2} - \frac{2\lambda s_i^2 + \lambda^2}{(s_i^2 + \lambda)^2}\right) \\ &= & d + 1 - \sum_{i=0}^d \frac{2\lambda s_i^2 + \lambda^2}{(s_i^2 + \lambda)^2}. \end{aligned}$$

(a) In this case, we may write that

$$\begin{split} d_{eff}(\lambda) &= 2 \mathrm{trace}(H(\lambda)) - \mathrm{trace}(H(\lambda^2)) \\ &= 2(d+1) - 2 \sum_{i=0}^d \frac{\lambda}{s_i^2 + \lambda} - (d+1) + \sum_{i=0}^d \frac{2\lambda s_i^2 + \lambda^2}{(s_i^2 + \lambda)^2} \\ &= d + 1 - \sum_{i=0}^d \frac{\lambda^2}{(s_i^2 + \lambda)^2}. \end{split}$$

(b) In this case, we immediately have that

$$d_{eff}(\lambda) = \operatorname{trace}(H(\lambda)) = d + 1 - \sum_{i=0}^{d} \frac{\lambda}{s_i^2 + \lambda}.$$

(c) Here we also immediately have that

$$de_{eff}(\lambda) = \operatorname{trace}(H(\lambda)^2) = \sum_{i=0}^{d} \frac{s_i^4}{(s_i^2 + \lambda)^2}.$$

Problem 4.16

Here, we seek w_{reg} that minimizes $E_{aug}(w)$, where

$$E_{aug}(w) = \frac{1}{N}||Zw - y||^2 + \frac{\lambda}{N}w^T\Gamma^T\Gamma w$$
$$= \frac{1}{N}(w^TZ^TZw - 2y^TZw + y^Ty) + \frac{\lambda}{N}w^T\Gamma^T\Gamma w$$

where we assume that $\lambda > 0$. If we take the gradient of the previous expression, we get

$$\nabla E_{aug}(w) = \frac{2}{N} (Z^T Z w - Z^T y + \lambda \Gamma^T \Gamma w).$$

The critical point is found by solving the equation $\nabla E_{aug}(w) = 0$, which gives us

$$w = (Z^T Z + \lambda \Gamma^T \Gamma)^{-1} Z^T y$$

provided that Γ is of full rank (since in this case $\Gamma^T\Gamma$ is positive definite, which consequently makes $Z^TZ + \lambda \Gamma^T\Gamma$ positive definite and thus invertible). For this w to be w_{reg} , we must show that it is actually a minimum, to do that we compute the Hessian, that is

$$\nabla^2 E_{aug}(w) = \frac{2}{N} (Z^T Z + \lambda \Gamma^T \Gamma)$$

which is positive definite; this means that $w_{reg} = w$.

(a) We have that

$$\hat{y} = Zw_{req} = Z(Z^TZ + \lambda \Gamma^T \Gamma)^{-1} Z^T y = H(\lambda)y.$$

(b) If $\Gamma = Z$, we get that

$$w_{reg} = (Z^T Z + \lambda Z^T Z)^{-1} Z^T y = \frac{1}{\lambda + 1} (Z^T Z)^{-1} Z^T y = \frac{1}{\lambda + 1} w_{lin}.$$

Problem 4.17

First, we have the following computation

$$\frac{1}{N} \sum_{n=1}^{N} (w^{T} \hat{x}_{n} - y_{n})^{2} = \frac{1}{N} \sum_{n=1}^{N} [(w^{T} x_{n} - y_{n}) + w^{T} \epsilon_{n}]^{2}$$

$$= \frac{1}{N} \sum_{n=1}^{N} (w^{T} x_{n} - y_{n})^{2} + \frac{2}{N} \sum_{n=1}^{N} (w^{T} x_{n} - y_{n}) w^{T} \epsilon_{n} + \frac{1}{N} \sum_{n=1}^{N} (w^{T} \epsilon_{n})^{2}$$

$$= E_{in}(w) + \frac{2}{N} \sum_{n=1}^{N} (w^{T} x_{n} - y_{n}) w^{T} \epsilon_{n} + \frac{1}{N} \sum_{n=1}^{N} (w^{T} \epsilon_{n})^{2}.$$

Then, we take the expectation relative to $\epsilon_1 \cdots \epsilon_N$ and we get

$$\hat{E}_{in}(w) = \mathbb{E}_{\epsilon_1 \cdots \epsilon_N} \left[\frac{1}{N} \sum_{n=1}^N (w^T \hat{x}_n - y_n)^2 \right] \\
= E_{in}(w) + \frac{2}{N} \sum_{n=1}^N (w^T x_n - y_n) w^T \mathbb{E}_{\epsilon_1 \cdots \hat{\epsilon}_n \cdots \epsilon_N} [\underline{\mathbb{E}}_{\epsilon_n} [\epsilon_n]] + \frac{1}{N} \sum_{n=1}^N w^T \mathbb{E}_{\epsilon_1 \cdots \hat{\epsilon}_n \cdots \epsilon_N} [\underline{\mathbb{E}}_{\epsilon_n} [\epsilon_n \epsilon_n^T] w] \\
= E_{in}(w) + \frac{\sigma_x^2}{N} \sum_{n=1}^N w^T w \\
= E_{in}(w) + \sigma_x^2 w^T w.$$

Here, the parameters for the Tikhonov regularizer are $\Gamma = I$ and $\lambda = N\sigma_x^2$.

Problem 4.18

(a) We know from Problem 4.16 that

$$w_{reg} = \frac{1}{1+\lambda} w_{lin}$$

and from Problem 3.14 that

$$\mathbb{E}_{\mathcal{D}}[w_{lin}^T x] = f(x).$$

We may now write that

$$\overline{g}(x) = \mathbb{E}_{\mathcal{D}}[g^{\mathcal{D}}(x)] = \frac{1}{1+\lambda} \mathbb{E}_{\mathcal{D}}[w_{lin}^T x] = \frac{1}{1+\lambda} f(x);$$

and consequently

bias
$$(x) = (\overline{g}(x) - f(x))^2 = \frac{\lambda^2}{(1+\lambda)^2} f(x)^2.$$

We are now able to compute the bias, and we get

bias =
$$\mathbb{E}_x[\text{bias}(x)]$$

= $\frac{\lambda^2}{(1+\lambda)^2} w_f^T \underbrace{\mathbb{E}_x[xx^T]}_{=I} w_f$
= $\frac{\lambda^2}{(1+\lambda)^2} ||w_f||^2$.

(b) We have that

$$\operatorname{var}(x) = \mathbb{E}_{\mathcal{D}}[(g^{\mathcal{D}}(x) - \overline{g}(x))^{2}]$$

$$= \frac{1}{(1+\lambda)^{2}} \mathbb{E}_{\mathcal{D}}[(\underbrace{(w_{lin} - w_{f})^{T}}_{=((X^{T}X)^{-1}X^{T}\epsilon)^{T}} x)^{2}]$$

$$= \frac{1}{(1+\lambda)^{2}} \mathbb{E}_{X}[x^{T}(X^{T}X)^{-1}X^{T}\underbrace{\mathbb{E}_{y|X}[\epsilon\epsilon^{T}|X]}_{=\mathbb{E}_{\epsilon}[\epsilon\epsilon^{T}]=\sigma^{2}I} X(X^{T}X)^{-1}x]$$

$$= \frac{\sigma^{2}}{(1+\lambda)^{2}} x^{T} \mathbb{E}_{X}[(X^{T}X)^{-1}]x.$$

The above allows us to compute the variance, and we get that

$$\operatorname{var} = \mathbb{E}_{x}[\operatorname{var}(x)]$$

$$= \frac{\sigma^{2}}{(1+\lambda)^{2}} \mathbb{E}_{x}[\underbrace{x^{T} \mathbb{E}_{X}[(X^{T}X)^{-1}]x}_{=\operatorname{trace}(xx^{T} \mathbb{E}_{X}[(X^{T}X)^{-1}])}]$$

$$= \frac{\sigma^{2}}{(1+\lambda)^{2}} \operatorname{trace}(\underbrace{\mathbb{E}_{x}[xx^{T}]}_{=I} \mathbb{E}_{X}[(X^{T}X)^{-1}])$$

$$= \frac{\sigma^{2}}{N(1+\lambda)^{2}} \operatorname{trace}(\mathbb{E}_{X}[\underbrace{\frac{1}{N}X^{T}X^{T}X^{-1}}])$$

$$\approx \frac{\sigma^{2}(d+1)}{N(1+\lambda)^{2}}$$

by the cyclic property of the trace.

(c) We know from Problem 2.22 that

$$\mathbb{E}_{\mathcal{D}}[E_{out}(w)] = \sigma^2 + \text{bias} + \text{var}$$

$$\approx \sigma^2 + \frac{\lambda^2}{(1+\lambda)^2} ||w_f||^2 + \frac{\sigma^2(d+1)}{N(1+\lambda)^2}$$

$$\approx \sigma^2 + \frac{1}{N} \frac{N\lambda^2 ||w_f||^2 + \sigma^2(d+1)}{(1+\lambda)^2};$$

to determine the optimal regularization parameter, we have to compute the derivative relative to λ , we get

$$\frac{\partial}{\partial \lambda} \mathbb{E}_{\mathcal{D}}[E_{out}(w)] \approx \frac{1}{N} \frac{2N||w_f||^2 \lambda^2 + (2N||w_f||^2 - 2\sigma^2(d+1))\lambda - 2\sigma^2(d+1)}{(1+\lambda)^4}.$$

If we equal the above expression to 0, and solve this equation for λ , we obtain

$$\lambda^* = \frac{-2N||w_f||^2 + 2\sigma^2(d+1) + (2N||w_f||^2 + 2\sigma^2(d+1))}{4N||w_f||^2} = \frac{\sigma^2(d+1)}{N||w_f||^2}.$$

(d) If we write λ^* and y in the following way

$$\lambda^* = \frac{(d+1)/N}{||w_f||^2/\sigma^2}$$

and

$$y = \sigma \left(X \frac{w_f}{\sigma} + \frac{\epsilon}{\sigma} \right),$$

we may see that λ^* can be seen as the relation between the ratio of the dimension to the number of data points and the σ -regularized weight norm. This means that if the number of dimensions (d+1) is big compared to the number N of data points, the regularization parameter λ^* will be big also; and if σ^2 is small compared to $||w_f||^2$, the regularization parameter λ^* will be small also.

Problem 4.19

(a) First, we note that the lasso algorithm is equivalent to the following minimization problem

$$\min_{w} \frac{1}{N} \underbrace{\|Xw - y\|^{2}}_{=(w^{T}X^{T}Xw - 2y^{T}Xw + y^{T}y)} \text{ subject to } \sum_{i=0}^{d} |w_{i}| \leq C,$$

which is also equivalent to

$$\min_{w} (w^T X^T X w - 2y^T X w) \text{ subject to } \sum_{i=0}^{d} |w_i| \leq C.$$

To formulate the above problem into a quadratic program, we split each w_i as $w_i = w_i^+ - w_i^-$ where

$$w_i^+ = \frac{|w_i| + w_i}{2} \ge 0$$
 and $w_i^- = \frac{|w_i| - w_i}{2} \ge 0$;

in this case, we have $w = w^+ - w^-$ with

$$w^+ = \begin{pmatrix} w_0^+ \\ \vdots \\ w_d^+ \end{pmatrix} \text{ and } w^- = \begin{pmatrix} w_0^- \\ \vdots \\ w_d^- \end{pmatrix}.$$

Thus, the lasso algorithm may be formulated as the following quadratic program

$$\begin{cases} \min_{(w^+, w^-)} & \frac{1}{2}(w^{+T}, w^{-T})VV^T \begin{pmatrix} w^+ \\ w^- \end{pmatrix} + d^T \begin{pmatrix} w^+ \\ w^- \end{pmatrix} \\ \text{subject to} & A \begin{pmatrix} w^+ \\ w^- \end{pmatrix} \le C, \begin{pmatrix} w^+ \\ w^- \end{pmatrix} \ge 0 \end{cases}$$

where

$$V = \sqrt{2} \left(\frac{X^T}{-X^T} \right), \ d = \left(\frac{-2X^Ty}{2X^Ty} \right), \ \text{and} \ A = (1, \dots, 1 | 1, \dots, 1).$$

Below, we implement the lasso algorithm as a quadratic program.

```
experiment2 <- function(Qf, N, sigma, Ntest, C, deg) {
  aq \leftarrow rnorm(Qf + 1)
  norm \leftarrow rep(0, Qf + 1)
  for (q in 0:Qf)
    norm[q + 1] \leftarrow 1 / (2 * q + 1)
  norm_fac <- 1 / sqrt(sum(norm))</pre>
  aq <- norm_fac * aq
  xn \leftarrow runif(N, min = -1, max = 1)
  eps <- rnorm(N)
  yn \leftarrow f(xn, Qf, aq) + sigma * eps
  D \leftarrow data.frame(x = xn, y = yn)
  Ddeg \leftarrow data.frame(1, x = D$x)
  for (d in 2:deg) {
    Ddeg <- cbind(Ddeg, Ddeg$x^d)</pre>
  X <- as.matrix(Ddeg)</pre>
  d \leftarrow ncol(X) - 1
  Vmat <- t(cbind(X, -X, matrix(0, nrow = nrow(X)))) * sqrt(2)</pre>
  dvec \leftarrow as.vector(rbind(-2 * t(X) %*% as.matrix(D$y), 2 * t(X) %*% as.matrix(D$y), 0))
  Amat <- matrix(c(rep(1, 2 * (d + 1)), 1), nrow = 1)
  bOls <- lm.fit(X, D$y)$coefficients
  bvec <- c(min(C, sum(abs(b0ls))))</pre>
  uvec <- c(abs(b0ls), abs(b0ls), sum(abs(b0ls)))</pre>
  soln <- LowRankQP(Vmat, dvec, Amat, bvec, uvec, method = "LU", verbose = FALSE)
  w \leftarrow soln\{alpha[1:(d + 1)] - soln\{alpha[(d + 2):(2 * (d + 1))]\}
  x \leftarrow runif(Ntest, min = -1, max = 1)
  eps <- rnorm(Ntest)</pre>
  y \leftarrow f(x, Qf, aq) + sigma * eps
  Dtest \leftarrow data.frame(x = x, y = y)
  Dtestdeg <- data.frame(1, x = Dtest$x)</pre>
  for (d in 2:deg) {
    Dtestdeg <- cbind(Dtestdeg, Dtestdeg$x^d)</pre>
  Eout <- mean((as.matrix(Dtestdeg) %*% w - Dtest$y)^2)</pre>
  return(Eout)
}
```

Now, we plot the out of sample error E_{out} versus the regularization parameter C.

In the plot above, the minimum E_{out} is obtained for C = 26.01.

(b) The augmented error for the lasso is

$$E_{aug}(w) = E_{in}(w) + \lambda \sum_{i=0}^{d} |w_i|.$$

It is actually more convenient to optimize since this is an unconstrained problem as opposed to the original lasso problem.

(c) Here we compare the number of non-zero weights from the lasso versus the quadratic penalty for d=5 and N=3.

```
experiment3 <- function(Qf, N, sigma, deg, grid) {
    aq <- rnorm(Qf + 1)
    norm <- rep(0, Qf + 1)
    for (q in 0:Qf)
        norm[q + 1] <- 1 / (2 * q + 1)
    norm_fac <- 1 / sqrt(sum(norm))
    aq <- norm_fac * aq

xn <- runif(N, min = -1, max = 1)
    eps <- rnorm(N)
    yn <- f(xn, Qf, aq) + sigma * eps</pre>
```

```
D \leftarrow data.frame(x = xn, y = yn)
  Ddeg \leftarrow data.frame(1, x = D$x)
  for (d in 2:deg) {
    Ddeg <- cbind(Ddeg, Ddeg$x^d)</pre>
  X <- as.matrix(Ddeg)</pre>
  d \leftarrow ncol(X) - 1
  ridge <- glmnet(X, D$y, alpha = 0, lambda = grid, standardize = FALSE)
  lasso <- glmnet(X, D$y, alpha = 1, lambda = grid, standardize = FALSE)</pre>
  number_ridge <- apply(coef(ridge) != 0, 2, sum)</pre>
  number_lasso <- apply(coef(lasso) != 0, 2, sum)</pre>
  return(data.frame(ridge = number_ridge, lasso = number_lasso))
}
set.seed(10)
grid <-10^{seq}(1, -2, length = 100)
Num_nz_weights <- cbind(grid, experiment3(Qf = 20, N = 3, sigma = 1, d = 5, grid))
ggplot(Num_nz_weights, aes(x = grid, y = ridge)) + geom_line(aes(colour = "Quadratic")) +
  geom_line(aes(x = grid, y = lasso, colour = "Lasso")) +
  scale_color_manual("Type:", values = c("red", "green"))
     6 -
                                                                                     Type:

    Lasso

    Quadratic

         0.0
                          2.5
                                           5.0
                                                            7.5
                                                                            10.0
                                          grid
```

Problem 4.20

(a) We know that the optimal weights for the transformed problem are

$$\tilde{w} = (Z^T Z)^{-1} Z^T y$$

where

$$Z = \begin{pmatrix} - & z_1^T & - \\ & \vdots & \\ - & z_n^T & - \end{pmatrix} = \begin{pmatrix} - & x_1^T A^T & - \\ & \vdots & \\ - & x_n^T A^T & - \end{pmatrix} = XA^T \text{ and } \tilde{y} = \alpha y.$$

We may now write that

$$\begin{array}{lcl} \tilde{w} & = & (Z^T Z)^{-1} Z^T \tilde{y} \\ & = & (A X^T X A^T)^{-1} A X^T \alpha y \\ & = & \alpha (A^T)^{-1} (X^T X)^{-1} A^{-1} A X^T y \\ & = & \alpha (A^T)^{-1} w \end{array}$$

since $w = (X^T X)^{-1} X^T y$.

(b) In this case, we know from Problem 4.16 that

$$\tilde{w}_{reg}(\lambda) = (Z^T Z + \lambda Z^T Z)^{-1} Z^T \tilde{y}$$

$$= \frac{1}{1+\lambda} \tilde{w}$$

$$= \frac{1}{1+\lambda} \alpha (A^T)^{-1} w$$

$$= \alpha (A^T)^{-1} w_{reg}(\lambda)$$

since $w_{reg}(\lambda) = 1/(1+\lambda)w$.

Problem 4.21

As h(x) is a linear function, we immediately have that $\partial^2 h(x)/\partial x^2 = 0$, this implies that

$$\Omega(h) = \int \left(\frac{\partial^2 h(x)}{\partial x^2}\right) dx = 0;$$

and consequently $\Gamma = 0$.