

$$\begin{array}{l}
\Rightarrow & \text{fol} \ P = P_0 \\
C_A = C_T \left(\frac{F_0}{F_T} \right) \left(\frac{T_0}{T_T} \right) \\
\Rightarrow & \text{k}_1 = 0.5 \text{ exp} \left(2 \left(1 - \frac{320}{T} \right) \right) \\
\Rightarrow & \text{k}_2 = \text{ki/kc} \\
\Rightarrow & \text{k}_3 = 0.005 \text{ exp} \left(4.8 \left(\frac{432}{T} - 1.5 \right) \right)
\end{array}$$

-) Constant value.

$$T_0 = 330$$
 $T_0 = 500$ $C_7 = 2$ $F_7 = 2$
 $\frac{UA}{f} = 16$ $\Delta h_{8x} n_1 = -1800$ $C_{PA} = 100$
 $\Delta h_{xx} n_2 = 1800$ $C_{PB} = 100$
 $\Delta h_{xx} n_3 = -1100$ $C_{PB} = 100$

-> Energy Balance.

$$|| (2 + 1 + 1)|_{\omega} - || (2 + 1 + 1)|_{\omega} ||_{\omega} + ||_{$$

- for coding burbose Fa, Fo, Fc, T - changes to Jr, 42/83/ 43

then obes changes.

$$\frac{dy_1}{dw} = 8A \qquad \frac{dy_2}{dw} = 86 \qquad \frac{dy_3}{dw} = 80$$

dya = 40 (3,- To) + (-8,A) (- DH ALA) + (-8,A) (-BHANN2)+ (-5,A) (+8,M) 81 CAR + 42 CAR + 83 CAC

and we let 8A, 8b, 8c, -81A, -82h, -83A in terms of 41, 42, 43, by in order to solve with ODE UT solver tool.

Parti

6 FAO = 1 mol/min FBo= 1 mol/min

To = 330 Fco = 0

means initial conditions:

 $y_{10} = 1$ $y_{20} = 1$ $y_{30} = 0$ $y_{40} = 330$

- we solve this workstition ODE with matlab Software with ODEUS solvertoop

```
to = 330;
ta = 500;
ct = 2;
ft = 2;
uabyrho = 16;
hrxn1 = -1800;
hrxn2 = 1800;
hrxn3 = -1100;
cpa = 100;
cpb = 100;
cpc = 100;
%k1 = 0.5*exp(2*(1-(320/T)));
%kc = 10*exp(4.8*((432/T)-1.5));
%k2 = (0.5*exp(2*(1-(320/T))))/(10*exp(4.8*((432/T)-1.5)));
%k3 = 0.005*exp(4.6*(1-(460/T)));
%ca = ct*(fa/ft)*(to/T);
%cb = ct*(fb/ft)*(to/T);
r1a = (0.5*exp(2*(1-(320/y(4)))))*(ct*(y(1)/ft)*(to/y(4)));
r2b = (0.5*exp(2*(1-(320/y(4)))))/(10*exp(4.8*((432/y(4))-
1.5)))*(ct*(y(2)/ft)*(to/y(4)));
r3a = 0.005*exp(4.6*(1-(460/y(4))))*(ct*(y(1)/ft)*(to/y(4)));
ra = -((0.5*exp(2*(1-(320/y(4)))))*(ct*(y(1)/ft)*(to/y(4))))+((0.5*exp(2*(1-(320/y(4))))))*(ct*(y(1)/ft)*(to/y(4)))))
(320/y(4)))))/(10*exp(4.8*((432/y(4))-1.5)))*(ct*(y(2)/ft)*(to/y(4))))-
(0.005*exp(4.6*(1-(460/y(4))))*(ct*(y(1)/ft)*(to/y(4))));
%rb = ((0.5*exp(2*(1-(320/y(4)))))*(ct*(y(1)/ft)*(to/y(4))))-((0.5*exp(2*(1-(320/y(4)))))))
(320/y(4))))/(10*exp(4.8*((432/y(4))-1.5)))*(ct*(y(2)/ft)*(to/y(4))));
rc = (0.005*exp(4.6*(1-(460/y(4))))*(ct*(y(1)/ft)*(to/y(4))));
f = @(w,y) [-((0.5*exp(2*(1-(320/y(4)))))*(ct*(y(1)/ft)*(to/y(4))))+((0.5*exp(2*(1-(320/y(4)))))*(ct*(y(1)/ft)*(to/y(4))))+((0.5*exp(2*(1-(320/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))+((0.5*exp(2*(1-(320/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))+((0.5*exp(2*(1-(320/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))+((0.5*exp(2*(1-(320/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))+((0.5*exp(2*(1-(320/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))+((0.5*exp(2*(1-(320/y(4))))))*(ct*(y(1)/ft)*(to/y(4)))))+((0.5*exp(2*(1-(320/y(4)))))*(ct*(y(1)/ft)*(to/y(4))))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4))))*(ct*(y(1)/ft)*(to/y(4))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4))))*(ct*(y(1)/ft)*(to/y(4))))*(ct*(y(1)/ft)*(to/y(4))))*(ct*(y(1)/ft)*(to/y(4))))*(ct*(y(1)/ft)*(to/y(4))))*(ct*(y(1)/ft)*(to/y(4))))*(ct*(y(1)/ft)*(to/y(4))))*((ct*(y(1)/ft)*(to/y(4))))*((ct*(y(1)/ft)*(to/y(4))))*((ct*(y(1)/ft)*(to/y(4))))*((ct*(y(1)/ft)*(to/y(4)))))*((ct*(y(1)/ft)*(to/y(4)))))*((ct*(y(1)/ft)*(to/y(4)))))*((ct*(y(1)/ft)*(to/y(4)))))*((ct*(y(1)/ft)*(to/y(4)))))*((ct*(y(1)/ft)*(to/y(4)))))*((ct*(y(1)/ft)*(to/y(4)))))*((ct*(y(1)/ft)*(to/y(4)))))*((ct*(y(1)/ft)*(to/y(4)))))*((ct*(y(1)/ft)*(to/y(4)))))*((ct*(y(1)/ft)*(to/y(4)))))*((ct*(y(1)/ft)*(to/y(4)))))*((ct*(y(1)/ft)*(to/y(4))))))*((ct*(y(1)/ft)*(to/y(4))))))*((ct*(y(1)/ft)*(to/y(4)))))*((ct*(y
(320/y(4))))/(10*exp(4.8*((432/y(4))-1.5)))*(ct*(y(2)/ft)*(to/y(4))))-
(0.005*exp(4.6*(1-(460/y(4))))*(ct*(y(1)/ft)*(to/y(4)))); ((0.5*exp(2*(1-
(320/y(4))))*(ct*(y(1)/ft)*(to/y(4))))-((0.5*exp(2*(1-
(320/y(4)))))/(10*exp(4.8*((432/y(4))-1.5)))*(ct*(y(2)/ft)*(to/y(4))));
(0.005*exp(4.6*(1-(460/y(4))))*(ct*(y(1)/ft)*(to/y(4)))); (uabyrho*(ta-y(4))+(-
((0.5*exp(2*(1-(320/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(-hrxn1)+(((0.5*exp(2*(1-(320/y(4))))))*(-hrxn1)+(((0.5*exp(2*(1-(320/y(4))))))*(-hrxn1)+(((0.5*exp(2*(1-(320/y(4)))))))*(-hrxn1)+(((0.5*exp(2*(1-(320/y(4))))))))))
(320/y(4)))))/(10*exp(4.8*((432/y(4))-1.5)))*(ct*(y(2)/ft)*(to/y(4)))))*(-
hrxn2+(-(0.005*exp(4.6*(1-(460/y(4))))*(ct*(y(1)/ft)*(to/y(4)))))*(-
hrxn3))/((y(1)*cpa)+(y(2)*cpb)+(y(3)*cpc))];
[w,y] = ode45(f,[0\ 100],[1;\ 1;\ 0;\ 330])
figure(1)
plot(w,y(:,1),'-o',w,y(:,2),'-o',w,y(:,3),'-o')
xlabel('w weight')
ylabel('y flowrate')
figure(2)
plot(w,y(:,4),'-o')
xlabel('w weight')
ylabel('y(4) tempearture')
```

0

0.0615

0.1231

0.1846

0.2461

0.5537

0.8614

1.1690

1.4766

1.7733

2.0699

2.3666

2.6633

2.9914

3.3196

3.6478

3.9759

4.3283

4.6806

5.0330

5.3854

5.7927

6.2001

6.6075

7.0148

7.5033

7.9918

8.4803

10.2242

10.8520

11.4797

12.4825

13.4853

14.4880

15.4908

16.4275

17.3641

18.3008

19.2374

19.9943

20.7511

21.5079

22.2648

22.9486

23.6325

24.3163

25.0002

25.7760

26.5517

27.3275

28.1033

29.0392

29.9752

30.9111

31.8470

32.8199

33.7928

36.5631

37.3878

38.2124

39.0371

39.7263

40.4156

41.1048

41.7941

42.5008

43.2074

43.9141

44.6208

45.4771

46.3334

47.1897

48.0460

49.0283

50.0107

50.9930

51.9753

52.8821

53.7889

54.6956

55.6024

56.3342

57.0660

57.7978

58.5297

59.1967

61.1978

61.9666

62.7354

63.5043

64.2731

65.2105

66.1479

67.0852

68.0226

68.9924

69.9622

70.9320

71.9018

72.7097

73.5175

74.3253

75.1331

75.8024

76.4716

77.1409

77.8101

78.5043

79.1985

79.8927

80.5868

81.4409

82.2950

83.1491

84.0032

86.9542

87.9378

88.6517

89.3656

90.0794

90.7933

91.5072

92.2210

92.9349

93.6488

94.5051

95.3615

96.2179

97.0742

97.8057

98.5371

99.2686

100.0000

y =

1.0000 1.0000 0.0000 330.0000

0.9760 1.0240 0.0000 330.4697

0.9529 1.0470 0.0001 330.9411

0.9309 1.0690 0.0001 331.4140

0.9097 1.0901 0.0002 331.8881

0.8170 1.1825 0.0004 334.2681

0.7436 1.2558 0.0006 336.6477

0.6865 1.3127 0.0008 339.0068

- 0.6427 1.3563 0.0010 341.3274
- 0.6107 1.3881 0.0012 343.5154
- 0.5873 1.4113 0.0014 345.6466
- 0.5710 1.4274 0.0016 347.7149
- 0.5604 1.4378 0.0018 349.7148
- 0.5539 1.4441 0.0020 351.8428
- 0.5519 1.4459 0.0022 353.8810
- 0.5534 1.4442 0.0024 355.8290
- 0.5574 1.4399 0.0026 357.6866
- 0.5638 1.4334 0.0029 359.5815
- 0.5716 1.4253 0.0031 361.3765
- 0.5806 1.4160 0.0034 363.0749
- 0.5901 1.4062 0.0037 364.6801
- 0.6014 1.3946 0.0040 366.4243
- 0.6128 1.3829 0.0043 368.0558
- 0.6240 1.3713 0.0047 369.5811
- 0.6349 1.3600 0.0051 371.0064
- 0.6472 1.3472 0.0056 372.5918
- 0.6588 1.3351 0.0060 374.0525
- 0.6697 1.3237 0.0065 375.3983
- 0.6798 1.3132 0.0071 376.6381
- 0.6915 1.3008 0.0077 378.0890
- 0.7020 1.2895 0.0085 379.3949
- 0.7114 1.2794 0.0092 380.5706
- 0.7199 1.2702 0.0099 381.6294
- 0.7318 1.2570 0.0112 383.1091
- 0.7491 1.2372 0.0138 385.4226
- 0.7554 1.2295 0.0151 386.3236
- 0.7615 1.2221 0.0164 387.0467
- 0.7662 1.2162 0.0176 387.6679

```
0.7689 1.2122 0.0189 388.2003
```

- 0.7742 1.2044 0.0213 388.9902
- 0.7764 1.2012 0.0224 389.2829
- 0.7775 1.1990 0.0235 389.5424
- 0.7785 1.1969 0.0246 389.7746
- 0.7799 1.1945 0.0256 389.9649
- 0.7810 1.1925 0.0265 390.1371
- 0.7817 1.1908 0.0275 390.2930
- 0.7823 1.1892 0.0285 390.4349
- 0.7831 1.1873 0.0297 390.5814
- 0.7837 1.1855 0.0308 390.7137
- 0.7840 1.1841 0.0319 390.8332
- 0.7842 1.1827 0.0331 390.9418
- 0.7848 1.1807 0.0344 391.0612
- 0.7851 1.1791 0.0358 391.1684
- 0.7850 1.1778 0.0372 391.2645
- 0.7849 1.1765 0.0386 391.3523
- 0.7856 1.1744 0.0400 391.4377
- $0.7857 \quad 1.1728 \quad 0.0415 \ 391.5153$
- 0.7848 1.1723 0.0429 391.5848
- 0.7842 1.1714 0.0443 391.6503
- 0.7850 1.1694 0.0456 391.7053
- 0.7852 1.1680 0.0468 391.7566
- 0.7843 1.1677 0.0480 391.8032
- 0.7836 1.1672 0.0492 391.8485
- 0.7839 1.1658 0.0503 391.8870
- 0.7840 1.1647 0.0513 391.9238
- 0.7836 1.1641 0.0523 391.9589
- 0.7833 1.1634 0.0533 391.9931
- 0.7833 1.1623 0.0544 392.0282

^{0.7713 1.2084 0.0203 388.6608}

```
0.7832 1.1614 0.0554 392.0624
```

- 0.7829 1.1606 0.0565 392.0956
- 0.7826 1.1598 0.0575 392.1283
- 0.7826 1.1586 0.0588 392.1678
- 0.7823 1.1576 0.0601 392.2064
- 0.7819 1.1567 0.0613 392.2441
- 0.7817 1.1543 0.0641 392.3249
- 0.7815 1.1530 0.0655 392.3673
- 0.7806 1.1524 0.0670 392.4080
- 0.7799 1.1516 0.0685 392.4489
- 0.7806 1.1496 0.0698 392.4889
- 0.7806 1.1483 0.0712 392.5274
- 0.7792 1.1482 0.0725 392.5631
- 0.7783 1.1478 0.0739 392.5994
- 0.7788 1.1462 0.0749 392.6313
- 0.7789 1.1451 0.0760 392.6622
- $0.7783 \quad 1.1446 \quad 0.0771 \ 392.6916$
- 0.7777 1.1441 0.0782 392.7211
- 0.7778 1.1430 0.0792 392.7492
- 0.7777 1.1421 0.0802 392.7769
- 0.7774 1.1414 0.0812 392.8041
- 0.7771 1.1408 0.0822 392.8313
- 0.7770 1.1397 0.0833 392.8632
- 0.7768 1.1388 0.0845 392.8948
- 0.7764 1.1380 0.0856 392.9261
- 0.7761 1.1372 0.0867 392.9575
- 0.7760 1.1359 0.0881 392.9964
- 0.7757 1.1347 0.0895 393.0350
- 0.7751 1.1340 0.0909 393.0728
- 0.7746 1.1331 0.0923 393.1109

```
0.7750 1.1313 0.0938 393.1521
```

- 0.7736 1.1297 0.0966 393.2303
- 0.7727 1.1292 0.0981 393.2691
- 0.7734 1.1273 0.0993 393.3042
- 0.7735 1.1260 0.1005 393.3381
- 0.7724 1.1259 0.1017 393.3698
- 0.7716 1.1255 0.1029 393.4020
- 0.7719 1.1242 0.1039 393.4305
- 0.7719 1.1232 0.1049 393.4586
- 0.7715 1.1226 0.1059 393.4858
- 0.7712 1.1220 0.1069 393.5131
- 0.7711 1.1210 0.1079 393.5421
- 0.7709 1.1201 0.1089 393.5710
- 0.7706 1.1194 0.1100 393.5994
- 0.7703 1.1187 0.1110 393.6280
-
- 0.7702 1.1176 0.1123 393.6636
- $0.7699 \quad 1.1165 \quad 0.1135 \ 393.6990$
- 0.7695 1.1157 0.1148 393.7340
- 0.7691 1.1149 0.1161 393.7692
- 0.7692 1.1133 0.1175 393.8108
- 0.7690 1.1120 0.1190 393.8519
- 0.7680 1.1115 0.1205 393.8916
- 0.7673 1.1107 0.1219 393.9317
- 0.7675 1.1095 0.1230 393.9622
- 0.7674 1.1085 0.1240 393.9922
- 0.7670 1.1079 0.1251 394.0215
- 0.7666 1.1073 0.1262 394.0509
- -----
- 0.7665 1.1063 0.1272 394.0811
- $0.7663 \quad 1.1054 \quad 0.1283 \ 394.1110$
- 0.7660 1.1047 0.1294 394.1405

^{0.7749 1.1299 0.0952 393.1924}

```
0.76561.10390.1304394.17020.76551.10280.1317394.20630.76531.10170.1330394.24220.76481.10100.1342394.27760.76441.10010.1355394.31320.76431.09910.1366394.34410.76411.09820.1377394.37490.76371.09750.1388394.40530.76341.09670.1399394.4359
```



```
to = 330;
ta = 500;
ct = 2;
ft = 2;
uabyrho = 16;
hrxn1 = -1800;
hrxn2 = 1800;
hrxn3 = -1100;
cpa = 100;
cpb = 100;
cpc = 100;
%k1 = 0.5*exp(2*(1-(320/T)));
%kc = 10*exp(4.8*((432/T)-1.5));
%k2 = (0.5*exp(2*(1-(320/T))))/(10*exp(4.8*((432/T)-1.5)));
%k3 = 0.005*exp(4.6*(1-(460/T)));
%ca = ct*(fa/ft)*(to/T);
%cb = ct*(fb/ft)*(to/T);
r1a = (0.5*exp(2*(1-(320/y(4)))))*(ct*(y(1)/ft)*(to/y(4)));
r2b = (0.5*exp(2*(1-(320/y(4)))))/(10*exp(4.8*((432/y(4))-
1.5)))*(ct*(y(2)/ft)*(to/y(4)));
r3a = 0.005*exp(4.6*(1-(460/y(4))))*(ct*(y(1)/ft)*(to/y(4)));
ra = -((0.5*exp(2*(1-(320/y(4)))))*(ct*(y(1)/ft)*(to/y(4))))+((0.5*exp(2*(1-(320/y(4))))))*(ct*(y(1)/ft)*(to/y(4)))))
(320/y(4)))))/(10*exp(4.8*((432/y(4))-1.5)))*(ct*(y(2)/ft)*(to/y(4))))-
(0.005*exp(4.6*(1-(460/y(4))))*(ct*(y(1)/ft)*(to/y(4))));
%rb = ((0.5*exp(2*(1-(320/y(4)))))*(ct*(y(1)/ft)*(to/y(4))))-((0.5*exp(2*(1-(320/y(4)))))))
(320/y(4))))/(10*exp(4.8*((432/y(4))-1.5)))*(ct*(y(2)/ft)*(to/y(4))));
rc = (0.005*exp(4.6*(1-(460/y(4))))*(ct*(y(1)/ft)*(to/y(4))));
f = @(w,y) [-((0.5*exp(2*(1-(320/y(4)))))*(ct*(y(1)/ft)*(to/y(4))))+((0.5*exp(2*(1-(320/y(4)))))*(ct*(y(1)/ft)*(to/y(4))))+((0.5*exp(2*(1-(320/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))+((0.5*exp(2*(1-(320/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))+((0.5*exp(2*(1-(320/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))+((0.5*exp(2*(1-(320/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))+((0.5*exp(2*(1-(320/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))+((0.5*exp(2*(1-(320/y(4))))))*(ct*(y(1)/ft)*(to/y(4)))))+((0.5*exp(2*(1-(320/y(4)))))*(ct*(y(1)/ft)*(to/y(4))))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4))))*(ct*(y(1)/ft)*(to/y(4))))*(ct*(y(1)/ft)*(to/y(4)))))*(ct*(y(1)/ft)*(to/y(4))))*(ct*(y(1)/ft)*(to/y(4))))*(ct*(y(1)/ft)*(to/y(4))))*(ct*(y(1)/ft)*(to/y(4))))*(ct*(y(1)/ft)*(to/y(4))))*(ct*(y(1)/ft)*(to/y(4))))*(ct*(y(1)/ft)*(to/y(4))))*((ct*(y(1)/ft)*(to/y(4))))*((ct*(y(1)/ft)*(to/y(4))))*((ct*(y(1)/ft)*(to/y(4))))*((ct*(y(1)/ft)*(to/y(4)))))*((ct*(y(1)/ft)*(to/y(4)))))*((ct*(y(1)/ft)*(to/y(4)))))*((ct*(y(1)/ft)*(to/y(4)))))*((ct*(y(1)/ft)*(to/y(4)))))*((ct*(y(1)/ft)*(to/y(4)))))*((ct*(y(1)/ft)*(to/y(4)))))*((ct*(y(1)/ft)*(to/y(4)))))*((ct*(y(1)/ft)*(to/y(4)))))*((ct*(y(1)/ft)*(to/y(4)))))*((ct*(y(1)/ft)*(to/y(4)))))*((ct*(y(1)/ft)*(to/y(4)))))*((ct*(y(1)/ft)*(to/y(4))))))*((ct*(y(1)/ft)*(to/y(4))))))*((ct*(y(1)/ft)*(to/y(4)))))*((ct*(y
(320/y(4))))/(10*exp(4.8*((432/y(4))-1.5)))*(ct*(y(2)/ft)*(to/y(4))))-
(0.005*exp(4.6*(1-(460/y(4))))*(ct*(y(1)/ft)*(to/y(4)))); ((0.5*exp(2*(1-(460/y(4)))))*((4.5*exp(2*(1-(460/y(4))))));
(320/y(4))))*(ct*(y(1)/ft)*(to/y(4))))-((0.5*exp(2*(1-
(320/y(4)))))/(10*exp(4.8*((432/y(4))-1.5)))*(ct*(y(2)/ft)*(to/y(4))));
(0.005*exp(4.6*(1-(460/y(4))))*(ct*(y(1)/ft)*(to/y(4)))); (uabyrho*(ta-y(4))+(-
((0.5*exp(2*(1-(320/y(4)))))*(ct*(y(1)/ft)*(to/y(4)))))*(-hrxn1)+(((0.5*exp(2*(1-(320/y(4)))))))*(-hrxn1)+(((0.5*exp(2*(1-(320/y(4)))))))))
(320/y(4)))))/(10*exp(4.8*((432/y(4))-1.5)))*(ct*(y(2)/ft)*(to/y(4)))))*(-
hrxn2+(-(0.005*exp(4.6*(1-(460/y(4))))*(ct*(y(1)/ft)*(to/y(4)))))*(-
hrxn3))/((y(1)*cpa)+(y(2)*cpb)+(y(3)*cpc))];
[w,y] = ode45(f,[0\ 100],[2;\ 0;\ 0;\ 330])
figure(1)
plot(w,y(:,1),'-o',w,y(:,2),'-o',w,y(:,3),'-o')
xlabel('w weight')
ylabel('y flowrate')
figure(2)
plot(w,y(:,4),'-o')
xlabel('w weight')
ylabel('y(4) tempearture')
```

0

0.0000

0.0001

0.0001

0.0002

0.0004

0.0007

0.0009

0.0011

0.0023

0.0035

0.0047

0.0059

0.0118

0.0177

0.0236

0.0295

0.0591

0.0886

0.1182

0.1477

0.2955

0.4432

0.5910

0.7388

0.9923

1.2459

1.4995

2.3417

2.6360

2.9303

3.2387

3.5471

3.8554

4.1638

4.4865

4.8091

5.1318

5.4545

5.8112

6.1679

6.5246

6.8814

7.2981

7.7147

8.1314

8.5481

9.0549

9.5617

10.0685

10.5752

11.2383

11.9014

12.5645

13.2276

14.3693

15.5109

18.4657

19.1373

19.8089

20.4805

21.1521

21.8237

22.4953

23.1669

24.0597

24.9525

25.8453

26.7381

27.7891

28.8402

29.8913

30.9424

31.6411

32.3397

33.0384

33.7370

34.4357

35.1344

35.8330

36.5317

37.4134

38.2951

39.1769

40.0586

41.0770

44.1323

44.8390

45.5457

46.2525

46.9592

47.6659

48.3726

49.0793

49.7860

50.6586

51.5313

52.4039

53.2765

54.2722

55.2679

56.2636

57.2593

57.9721

58.6848

59.3975

60.1103

60.8230

61.5357

62.2485

62.9612

63.8265

64.6918

65.5571

66.4224

69.3535

70.3306

71.2167

72.1027

72.9888

73.8749

74.5917

75.3085

76.0253

76.7421

77.4092

78.0763

78.7433

79.4104

80.1892

80.9679

81.7467

82.5254

83.4675

84.4096

85.3517

86.2938

87.2482

88.2026

89.1569

90.1113

90.8983

91.6853

92.4724

94.5822

95.2436

95.9050

96.6061

97.3071

98.0082

98.7093

99.0320

99.3546

99.6773

100.0000

y =

1.99990.00010.0000330.00021.99990.00010.0000330.00041.99980.00020.0000330.00081.99950.00050.0000330.00171.99930.00070.0000330.00271.99900.00100.0000330.00361.99880.00120.0000330.00461.99750.00250.0000330.01411.99500.00500.0000330.01891.99380.00620.0000330.02371.98750.01250.0000330.0477

1.9813 0.0187 0.0000 330.0718

2.0000 0.0000 0.0000 330.0000

- 1.9751 0.0249 0.0000 330.0960
- 1.9689 0.0310 0.0000 330.1203
- 1.9384 0.0616 0.0001 330.2437
- 1.9084 0.0915 0.0001 330.3699
- 1.8790 0.1208 0.0002 330.4989
- 1.8502 0.1496 0.0002 330.6305
- 1.7141 0.2854 0.0005 331.3261
- 1.4790 0.5202 0.0008 332.8796
- 1.3778 0.6212 0.0010 333.7229
- 1.2260 0.7727 0.0013 335.2495
- 1.0989 0.8995 0.0016 336.8536
- 0.9929 1.0052 0.0018 338.5118
- 0.9050 1.0929 0.0021 340.2029
- 0.8220 1.1757 0.0023 342.1834
- 0.7564 1.2410 0.0025 344.1641
- 0.7055 1.2917 0.0028 346.1284
- 0.6665 1.3305 0.0030 348.0614
- 0.6359 1.3609 0.0032 350.0404
- 0.6141 1.3825 0.0034 351.9645
- 0.5994 1.3970 0.0036 353.8276
- 0.5904 1.4058 0.0038 355.6244
- 0.5854 1.4105 0.0041 357.4296
- 0.5842 1.4115 0.0043 359.1578
- 0.5860 1.4095 0.0046 360.8092
- 0.5898 1.4054 0.0048 362.3837
- 0.5957 1.3992 0.0051 364.0363
- 0.6029 1.3918 0.0054 365.5996
- 0.6110 1.3834 0.0057 367.0771
- 0.6195 1.3745 0.0060 368.4719
- 0.6295 1.3641 0.0064 370.0011

- 0.6396 1.3537 0.0067 371.4289
- 0.6495 1.3434 0.0071 372.7617
- 0.6590 1.3335 0.0076 374.0050
- 0.6698 1.3221 0.0081 375.4046
- 0.6799 1.3114 0.0086 376.6904
- 0.6894 1.3014 0.0092 377.8718
- 0.6981 1.2922 0.0097 378.9570
- 0.7083 1.2812 0.0105 380.2449
- 0.7175 1.2712 0.0113 381.3980
- 0.7256 1.2623 0.0121 382.4306
- 0.7328 1.2543 0.0129 383.3559
- 0.7439 1.2417 0.0144 384.7328
- 0.7526 1.2315 0.0159 385.8738
- 0.7586 1.2240 0.0174 386.8175
- 0.7636 1.2174 0.0190 387.6039
- 0.7669 1.2132 0.0199 388.0067
- 0.7696 1.2095 0.0208 388.3686
- $0.7716 \quad 1.2066 \quad 0.0218 \ 388.6938$
- 0.7734 1.2038 0.0227 388.9870
- 0.7752 1.2011 0.0237 389.2522
- 0.7768 1.1986 0.0247 389.4918
- 0.7780 1.1964 0.0256 389.7083
- 0.7791 1.1943 0.0266 389.9045
- 0.7805 1.1917 0.0279 390.1382
- 0.7822 1.1873 0.0305 390.5255
- 0.7828 1.1854 0.0318 390.6868
- 0.7840 1.1827 0.0333 390.8560
- 0.7846 1.1805 0.0349 391.0039
- 0.7842 1.1794 0.0364 391.1327
- 0.7840 1.1780 0.0379 391.2479

- 0.7846 1.1765 0.0390 391.3193
- 0.7848 1.1752 0.0400 391.3855
- 0.7847 1.1743 0.0410 391.4467
- 0.7845 1.1734 0.0421 391.5043
- 0.7847 1.1722 0.0431 391.5592
- 0.7847 1.1712 0.0441 391.6110
- 0.7845 1.1703 0.0452 391.6599
- 0.7844 1.1694 0.0462 391.7065
- 0.7844 1.1681 0.0475 391.7629
- 0.7840 1.1659 0.0501 391.8666
- 0.7837 1.1649 0.0514 391.9150
- 0.7839 1.1631 0.0530 391.9701
- 0.7838 1.1617 0.0545 392.0223
- 0.7828 1.1612 0.0560 392.0711
- 0.7822 1.1603 0.0575 392.1191
- 0.7824 1.1591 0.0585 392.1532
- 0.7824 1.1580 0.0596 392.1862
- 0.7820 1.1574 0.0606 392.2180
- 0.7816 1.1567 0.0617 392.2495
- 0.7816 1.1557 0.0627 392.2813
- 0.7814 1.1548 0.0638 392.3125
- 0.7811 1.1540 0.0648 392.3432
- 0.7808 1.1533 0.0659 392.3736
- $0.7807 \quad 1.1521 \quad 0.0672 \ 392.4114$
- 0.7805 1.1510 0.0685 392.4487
- 0.7800 1.1502 0.0698 392.4853
- 0.7796 1.1493 0.0711 392.5218
- $0.7798 \quad 1.1477 \quad 0.0726 \quad 392.5645$
- 0.7796 1.1464 0.0740 392.6063
- 0.7786 1.1459 0.0755 392.6464

```
0.7779 1.1451 0.0770 392.6869
```

- 0.7780 1.1428 0.0791 392.7470
- 0.7776 1.1422 0.0802 392.7759
- 0.7772 1.1416 0.0812 392.8050
- 0.7772 1.1405 0.0823 392.8347
- 0.7770 1.1396 0.0834 392.8641
- 0.7767 1.1389 0.0844 392.8932
- 0.7763 1.1382 0.0855 392.9223
- 0.7762 1.1370 0.0868 392.9582
- 0.7760 1.1360 0.0880 392.9938
- 0.7755 1.1352 0.0893 393.0290
- 0.7751 1.1343 0.0906 393.0642
- 0.7752 1.1327 0.0921 393.1053
- 0.7750 1.1315 0.0935 393.1456
- 0.7741 1.1309 0.0950 393.1845
- 0.7734 1.1302 0.0964 393.2239
- 0.7740 1.1282 0.0977 393.2622
- 0.7740 1.1269 0.0991 393.2992
- 0.7727 1.1269 0.1004 393.3337
- 0.7718 1.1265 0.1017 393.3689
- 0.7723 1.1250 0.1028 393.3999
- 0.7723 1.1238 0.1038 393.4300
- 0.7717 1.1234 0.1049 393.4588
- 0.7712 1.1228 0.1060 393.4878
- 0.7713 1.1218 0.1070 393.5159
- 0.7712 1.1209 0.1079 393.5436
- 0.7708 1.1202 0.1089 393.5710
- 0.7705 1.1195 0.1099 393.5984
- 0.7704 1.1185 0.1111 393.6308
- 0.7702 1.1176 0.1122 393.6631

^{0.7781 1.1438 0.0781 392.7172}

- 0.7698 1.1168 0.1134 393.6951
- 0.7694 1.1146 0.1160 393.7667
- 0.7692 1.1135 0.1174 393.8059
- 0.7685 1.1128 0.1188 393.8443
- 0.7679 1.1119 0.1202 393.8830
- 0.7684 1.1100 0.1216 393.9241
- 0.7683 1.1087 0.1230 393.9643
- 0.7670 1.1086 0.1244 394.0021
- 0.7661 1.1081 0.1258 394.0407
- 0.7668 1.1062 0.1270 394.0753
- 0.7668 1.1050 0.1282 394.1088
- 0.7658 1.1048 0.1294 394.1402
- 0.7651 1.1044 0.1305 394.1721
- 0.7653 1.1032 0.1315 394.2007
- 0.7653 1.1022 0.1325 394.2287
- 0.7649 1.1016 0.1335 394.2561
- 0.7646 1.1010 0.1345 394.2835
- 0.7643 1.0991 0.1365 394.3427
- 0.7640 1.0984 0.1376 394.3718
- 0.7637 1.0977 0.1386 394.4011
- 0.7636 1.0973 0.1391 394.4147
- 0.7634 1.0965 0.1401 394.4418
- 0.7633 1.0962 0.1405 394.4554

$$A \leftrightarrow P + D$$
 $A \longrightarrow B + C$
 $A + D \longrightarrow E + F$

(3)

$$8 = \begin{cases}
\sqrt{8_{1}} + 8_{1P} = 8_{1D} = 9 & (1-10) \text{ exp} (-0.08539 - \frac{10925}{7}) & (PA - PPP) \\
82 + \left(8_{2}A\right) + 8_{2g} = 8_{2c} = 9 & (1-10) \text{ exp} (13.2392 - \frac{10925}{7}) & (PA) \\
83 + \left(8_{2}A\right) + \left(8_{3}a\right) = 8_{3} = 8_{3} = 9 & (1-10) \text{ exp} (0.2961 - 1000) & (PA)
\end{cases}$$

$$\begin{cases}
\sqrt{8_{1}} + 8_{1P} = 8_{1D} = 9 & (1-10) \text{ exp} (13.2392 - \frac{10925}{7}) & (PA) \\
\sqrt{8_{1}} + 8_{2}A + 8_{2}A$$

mole balante"

$$\frac{df_B}{dV} = g_B = g_{ZB} = g_Z$$

$$\frac{dFc}{dv} = \delta_C = \delta_{2C} = \delta_2$$

$$\frac{dF_{E}}{dV} = Y_{3E} = Y_{3}$$

$$\frac{dF_{F}}{dV} = Y_{3F} = X_{3}$$

$$\frac{dF_{F}}{dV} = Y_{3F} = X_{1}$$

$$\frac{dF_{F}}{F_{F}} = Y_{F} = X_{1}$$

$$\frac{dF_{F}}{F_{F}} = Y_{F} = X_{1}$$

$$F_{T} = F_{A} + F_{B} + F_{C} + F_{B} + F_{E} + F_{F} + F_{F}$$

$$F_{K} = F_{A} + F_{B} + F_{C} + F_{B} + F_{E} + F_{F} + F_{F}$$

$$F_{K} = F_{A} + F_{B} + F_{C} + F_{B} + F_{E} + F_{F} + F_{F}$$

$$F_{K} = F_{A} + F_{B} + F_{C} + F_{B} + F_{E} + F_{F} + F_{F}$$

$$F_{F} = F_{A} + F_{B} + F_{C} + F_{B} + F_{E}$$

$$F_{F} = 2137 \text{ kg/m}^{3} \qquad \emptyset = 0.4$$

$$K_{F} = 2434 \text{ kg/m}^{3} \qquad \emptyset = 0.4$$

$$K_{F} = 2434 \text{ kg/m}^{3} \qquad \emptyset_{2} = -1.302 \times 10^{4}$$

$$F_{A} = 299 \text{ kg/m}^{3} \qquad F_{B} = 24.3000 \text{ kg/m}^{3}$$

$$F_{A} = 299 \text{ kg/m}^{3} \qquad F_{B} = 24.3000 \text{ kg/m}^{3}$$

$$F_{F} = 2490000 \qquad F_{F} = 68000 \qquad F_{F} = 30000$$

$$F_{F} = 2490000 \qquad F_{F} = 44$$

$$F_{F} = 45 \qquad F_{F} = 47 \qquad F_{F} = 47$$

$$F_{F} = 45 \qquad F_{F} = 47$$

$$F_{F} = 45 \qquad F_{F} = 47$$

$$F_{F} = 47 \qquad F_{F} = 47$$

od)

5)

Energy balance:

Energy balance:

UACTA-T J = d [E Fihi]

E Fidhi + E hi dFi | Z D

EFI dhi = EFI (dhi) (dt) = (dt) EFI (p)

E hi dFi = Ehi (E Sij)

The start of the start o

$$\frac{dT}{dv} = \frac{\sum_{j=1}^{k} y_j}{\sum_{i=1}^{k} F_i (\Delta h_{i} x_i x_i)_j}$$

 $\frac{dT}{dv} = \frac{(-8_{1A})(-haxni) + (-8_{2A})(-haxni)}{EFicpi} + (-8_{3A})(-haxni)$

Tracpatification of the series of the series

[Assume > [Pseream = (pi) | Meterial access is stream.

 $\frac{dT}{dV} = \frac{(\delta_1)(h_{AXN_1}) + (\delta_2)(h_{AXN_2}) + (\delta_3)(h_{AXN})}{f_{A}(p_A + f_B(p_B + f_C(p_C + f_B(p_D + f_E(p_E + f_F(p_E + f_F($

$$\frac{dy_2}{dv} = \delta_B$$

$$\frac{dy_3}{dv} = \kappa_c$$

1-' Because temperature is decreasing as we known story and story = is (the) there endothermic > tory then we have to but '-' in front of (dt)

The selectivity of desired product
$$(SP/BE)$$
 of.

SP/BE = $\frac{Fp}{Fg+F_E} = \frac{y_+}{y_2+y_5}$

(a) $To = 800K$.

 $SP/BE = \frac{Fp}{Fg+F_E} = \frac{y_+}{y_2+y_5}$
 $SP/BE = 19.0124$

Matlab code

```
hrxn1 = 118000.0;
hrxn2 = 105200.0;
hrxn3 = -53900.0;
cpa = 299.0;
cpb = 201.0;
cpc = 90.0;
cpd = 30.0;
cpe = 249.0;
cpf = 68.0;
cpp = 273.0;
cpstream = 40.0;
rho = 2173.0;
fhi = 0.4;
b1 = -17.34;
b2 = -13020.0;
b3 = 5.051;
b4 = -0.0000000002314;
b5 = 0.000001302;
b6 = -0.004931;
fi = 0.04988;
pt = 2.4;
%kp1 = exp(b1+(b2/y(8))+b3*log(y(8))+((b4*y(8)+b5)*y(8)+b6)*y(8));
ft = y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi;
pa = y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi));
pp = y(7)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi));
pd = y(4)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi));
%r1 = rho*(1-fhi)*exp(-0.08539-
(10925/y(8)))*((y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))-
```

```
(5)+y(6)+y(7)+fi))/(exp(b1+(b2/y(8))+b3*log(y(8))+((b4*y(8)+b5)*y(8)+b6)*y(8)))));
%r2 = rho*(1-fhi)*exp(13.2392-
(25000/y(8)))*(y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)));
%r3 = rho*(1-fhi)*exp(0.2961-
2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi));
%ra =(-(rho*(1-fhi)*exp(-0.08539-
(10925/y(8)))*((y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))-
(5)+y(6)+y(7)+fi)/(exp(b1+(b2/y(8))+b3*log(y(8))+((b4*y(8)+b5)*y(8)+b6)*y(8)))))
+(-(rho*(1-fhi)*exp(13.2392-
(25000/y(8)))*(y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))))+(-(rho*(1-y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))))
fhi)*exp(0.2961-
2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi))))
%rb = rho*(1-fhi)*exp(13.2392-
(25000/y(8)))*(y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))
%rc = rho*(1-fhi)*exp(13.2392-
(25000/y(8)))*(y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))
%rd = (rho*(1-fhi)*exp(-0.08539-
(10925/y(8)))*((y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))-
(5)+y(6)+y(7)+fi)/(exp(b1+(b2/y(8))+b3*log(y(8))+((b4*y(8)+b5)*y(8)+b6)*y(8)))))
+(-(\text{rho}*(1-\text{fhi})*\exp(0.2961-
2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi))))
%re = rho*(1-fhi)*exp(0.2961-
2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi))
%rf = rho*(1-fhi)*exp(0.2961-
2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))
%rp = rho*(1-fhi)*exp(-0.08539-
(10925/y(8)))*((y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))-
(5)+y(6)+y(7)+fi)/(exp(b1+(b2/y(8))+b3*log(y(8))+((b4*y(8)+b5)*y(8)+b6)*y(8))))
% ((rho*(1-fhi)*exp(-0.08539-
(10925/y(8)))*((y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))-
(5)+y(6)+y(7)+fi)/(exp(b1+(b2/y(8))+b3*log(y(8))+((b4*y(8)+b5)*y(8)+b6)*y(8)))))
*(hrxn1)+(rho*(1-fhi)*exp(13.2392-
-fhi)*exp(0.2961-
2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))*(hrxn3))/(y(1)*cpa+y(2)*cpb+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(
(5)*cpe+y(6)*cpf+y(7)*cpp+fi*cpstream)
f = @(v,y) [(-(rho*(1-fhi)*exp(-0.08539-
(10925/y(8)))*((y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))-
(5)+y(6)+y(7)+fi)/(exp(b1+(b2/y(8))+b3*log(y(8))+((b4*y(8)+b5)*y(8)+b6)*y(8)))))
+(-(rho*(1-fhi)*exp(13.2392-
(25000/y(8)))*(y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))))+(-(rho*(1-y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))))
fhi)*exp(0.2961-
2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi))))); rho*(1-fhi)*exp(13.2392-
(25000/y(8)))*(y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi))); rho*(1-
fhi)*exp(13.2392-
(25000/y(8)))*(y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi))); (rho*(1-
```

```
fhi)*exp(-0.08539-
(10925/y(8)))*((y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))-
(5)+y(6)+y(7)+fi))/(exp(b1+(b2/y(8))+b3*log(y(8))+((b4*y(8)+b5)*y(8)+b6)*y(8)))))
+(-(\text{rho}*(1-\text{fhi})*\exp(0.2961-
2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))); rho*(1-fhi)*exp(0.2961-
2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)); rho*(1-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-f
2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)); rho*(1-fhi)*exp(-0.08539-
(10925/y(8)))*((y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))-
(5)+y(6)+y(7)+fi)/(exp(b1+(b2/y(8))+b3*log(y(8))+((b4*y(8)+b5)*y(8)+b6)*y(8))));
-((rho*(1-fhi)*exp(-0.08539-
(10925/y(8)))*((y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))-
(5)+y(6)+y(7)+fi)/(exp(b1+(b2/y(8))+b3*log(y(8))+((b4*y(8)+b5)*y(8)+b6)*y(8)))))
*(hrxn1)+(rho*(1-fhi)*exp(13.2392-
-fhi)*exp(0.2961-
2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))*(hrxn3))/(y(1)*cpa+y(2)*cpb+y(3)*cpc+y(4)*cpd+y
(5)*cpe+y(6)*cpf+y(7)*cpp+fi*cpstream);
[v,y] = ode15s(f,[0 10],[0.00344; 0; 0; 0; 0; 0; 0; 800])
selectivity = y(15,7)/(y(15,2)+y(15,5))
```

1	Variables - v						
	v ×						
	15x1 double						
	1	2	3	4			
1	0	_					
2	0.1608						
3	0.3215						
4	0.4823						
5	1.2086						
6	1.9350						
7	2.6613						
8	3.3876						
9	4.3876						
10	5.3876						
11	6.3876						
12	7.3876						
13	8.3876						
	0.2076						
14	9.3876						
14 15	9.3876						
	10						
	Variables - y	×					
	Variables - y v y y 15x8 double	×	3	4	5		6
	Variables - y	×	3 0	4 0	5 0		6 0
15	Variables - y v × y 15x8 double	2	0	_			0
15	Variables - y v × y 15x8 double 1 0.0034	2 0	0	0	0	5.796	0 8e-08
1 2	10 Variables - y v y 15x8 double 1 0.0034 0.0034	2 0 4.6373e-07	0 4.6373e-07 9.0056e-07	0 3.3901e-05 6.6641e-05	0 5.7968e-08 1.7695e-07	5.7968e	e-08 e-07
15	10 Variables - y v × y 15x8 double 1 0.0034 0.0034 0.0034	2 0 4.6373e-07 9.0056e-07 1.3122e-06	0 4.6373e-07 9.0056e-07 1.3122e-06	0 3.3901e-05 6.6641e-05 9.8245e-05	0 5.7968e-08 1.7695e-07	5.7968e-(1.7695e-(3.5242e-(08 07 07
1 2 3 4	10 Variables - y v	2 0 4.6373e-07 9.0056e-07 1.3122e-06 2.9435e-06	0 4.6373e-07 9.0056e-07 1.3122e-06	0 3.3901e-05 6.6641e-05 9.8245e-05 2.2923e-04	0 5.7968e-08 1.7695e-07 3.5242e-07 1.6330e-06	5.7968e-0 1.7695e-0 3.5242e-0 1.6330e-0	8 7 7 6
15 1 2 3 4 5	10 Variables - y v y 15x8 double 1 0.0034 0.0034 0.0034 0.0033 0.0032 0.0031	2 0 4.6373e-07 9.0056e-07 1.3122e-06 2.9435e-06 4.2407e-06	0 4.6373e-07 9.0056e-07 1.3122e-06 2.9435e-06	0 3.3901e-05 6.6641e-05 9.8245e-05 2.2923e-04 3.4150e-04	0 5.7968e-08 1.7695e-07 3.5242e-07 1.6330e-06 3.6023e-06	5.7968e-06 1.7695e-07 3.5242e-07 1.6330e-06 3.6023e-06	3 7 7 5
15 1 2 3 4 5 6	10 Variables - y v y 15x8 double 1 0.0034 0.0034 0.0034 0.0033 0.0032 0.0031	2 0 4.6373e-07 9.0056e-07 1.3122e-06 2.9435e-06 4.2407e-06	0 4.6373e-07 9.0056e-07 1.3122e-06 2.9435e-06 4.2407e-06	0 3.3901e-05 6.6641e-05 9.8245e-05 2.2923e-04 3.4150e-04	0 5.7968e-08 1.7695e-07 3.5242e-07 1.6330e-06 3.6023e-06	5.7968e-08 1.7695e-07 3.5242e-07 1.6330e-08 3.6023e-08 6.0313e-08	3 7 7 5
15 1 2 3 4 5 6 7	10 Variables - y v y 15x8 double 1 0.0034 0.0034 0.0033 0.0032 0.0031 0.0030	2 0 4.6373e-07 9.0056e-07 1.3122e-06 2.9435e-06 4.2407e-06 5.2932e-06	0 4.6373e-07 9.0056e-07 1.3122e-06 2.9435e-06 4.2407e-06 5.2932e-06	0 3.3901e-05 6.6641e-05 9.8245e-05 2.2923e-04 3.4150e-04 4.3739e-04	0 5.7968e-08 1.7695e-07 3.5242e-07 1.6330e-06 3.6023e-06 6.0313e-06	5.7968e-08 1.7695e-07 3.5242e-07 1.6330e-06 3.6023e-06 6.0313e-06 8.7506e-06	3 7 5 5
15 1 2 3 4 5 6 7 8 9	10 Variables - y v y 15x8 double 1 0.0034 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029	2 0 4.6373e-07 9.0056e-07 1.3122e-06 2.9435e-06 4.2407e-06 5.2932e-06 6.1694e-06	0 4.6373e-07 9.0056e-07 1.3122e-06 2.9435e-06 4.2407e-06 5.2932e-06 6.1694e-06	0 3.3901e-05 6.6641e-05 9.8245e-05 2.2923e-04 3.4150e-04 4.3739e-04 5.1913e-04	0 5.7968e-08 1.7695e-07 3.5242e-07 1.6330e-06 3.6023e-06 6.0313e-06 8.7506e-06 1.2777e-05	5.7968e-08 1.7695e-07 3.5242e-07 1.6330e-08 3.6023e-08 6.0313e-08 8.7506e-08 1.2777e-09	3 7 7 5 5 5
15 1 2 3 4 5 6 7 8	10 Variables - y v y 15x8 double 1 0.0034 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028	2 0 4.6373e-07 9.0056e-07 1.3122e-06 2.9435e-06 4.2407e-06 5.2932e-06 6.1694e-06 7.1697e-06	0 4.6373e-07 9.0056e-07 1.3122e-06 2.9435e-06 4.2407e-06 5.2932e-06 6.1694e-06 7.1697e-06	0 3.3901e-05 6.6641e-05 9.8245e-05 2.2923e-04 3.4150e-04 4.3739e-04 5.1913e-04 6.1177e-04	0 5.7968e-08 1.7695e-07 3.5242e-07 1.6330e-06 3.6023e-06 6.0313e-06 8.7506e-06	5.7968e-08 1.7695e-07 3.5242e-07 1.6330e-06 3.6023e-06 6.0313e-06 8.7506e-06 1.2777e-09 1.6958e-09	3 7 7 5 5 5
15 1 2 3 4 5 6 7 8 9 10	10 Variables - y v y 15x8 double 1 0.0034 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027	2 0 4.6373e-07 9.0056e-07 1.3122e-06 2.9435e-06 4.2407e-06 5.2932e-06 6.1694e-06 7.1697e-06 8.0110e-06	0 4.6373e-07 9.0056e-07 1.3122e-06 2.9435e-06 4.2407e-06 5.2932e-06 6.1694e-06 7.1697e-06 8.0110e-06	0 3.3901e-05 6.6641e-05 9.8245e-05 2.2923e-04 3.4150e-04 4.3739e-04 5.1913e-04 6.1177e-04 6.8532e-04	0 5.7968e-08 1.7695e-07 3.5242e-07 1.6330e-06 3.6023e-06 6.0313e-06 8.7506e-06 1.2777e-05 1.6958e-05	5.7968e-08 1.7695e-07 3.5242e-07 1.6330e-06 3.6023e-06 6.0313e-06 8.7506e-06 1.2777e-05 1.6958e-05 2.1197e-05	3 7 7 5 5 5 5 5 5
15 1 2 3 4 5 6 7 8 9 10 11	10 Variables - y v y 15x8 double 1 0.0034 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026	2 0 4.6373e-07 9.0056e-07 1.3122e-06 2.9435e-06 4.2407e-06 5.2932e-06 6.1694e-06 7.1697e-06 8.0110e-06 8.7453e-06	0 4.6373e-07 9.0056e-07 1.3122e-06 2.9435e-06 4.2407e-06 5.2932e-06 6.1694e-06 7.1697e-06 8.0110e-06 8.7453e-06	0 3.3901e-05 6.6641e-05 9.8245e-05 2.2923e-04 3.4150e-04 4.3739e-04 5.1913e-04 6.1177e-04 6.8532e-04 7.4339e-04	0 5.7968e-08 1.7695e-07 3.5242e-07 1.6330e-06 3.6023e-06 6.0313e-06 8.7506e-06 1.2777e-05 1.6958e-05 2.1197e-05	5.7968e-08 1.7695e-07 3.5242e-07 1.6330e-06 3.6023e-06 6.0313e-06 8.7506e-06 1.2777e-05 1.6958e-05 2.1197e-05 2.5453e-05	3
15 1 2 3 4 5 6 7 8 9 10 11 12	10 Variables - y y 15x8 double 1 0.0034 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026 0.0026	2 0 4.6373e-07 9.0056e-07 1.3122e-06 2.9435e-06 4.2407e-06 5.2932e-06 6.1694e-06 7.1697e-06 8.0110e-06 8.7453e-06 9.4028e-06	0 4.6373e-07 9.0056e-07 1.3122e-06 2.9435e-06 4.2407e-06 5.2932e-06 6.1694e-06 7.1697e-06 8.0110e-06 8.7453e-06 9.4028e-06	0 3.3901e-05 6.6641e-05 9.8245e-05 2.2923e-04 3.4150e-04 4.3739e-04 5.1913e-04 6.8532e-04 7.4339e-04 7.8893e-04	0 5.7968e-08 1.7695e-07 3.5242e-07 1.6330e-06 3.6023e-06 6.0313e-06 8.7506e-06 1.2777e-05 1.6958e-05 2.1197e-05 2.5453e-05	5.7968e-08 1.7695e-07 3.5242e-07 1.6330e-06 3.6023e-06 6.0313e-06 8.7506e-06 1.2777e-05 2.1197e-05 2.5453e-05 2.9707e-05	
15 1 2 3 4 5 6 7 8 9 10 11 12 13	10 Variables - y v y 15x8 double 1 0.0034 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026 0.0025	2 0 4.6373e-07 9.0056e-07 1.3122e-06 2.9435e-06 4.2407e-06 5.2932e-06 6.1694e-06 7.1697e-06 8.0110e-06 8.7453e-06 9.4028e-06 1.0003e-05	0 4.6373e-07 9.0056e-07 1.3122e-06 2.9435e-06 4.2407e-06 5.2932e-06 6.1694e-06 7.1697e-06 8.0110e-06 8.7453e-06 9.4028e-06 1.0003e-05	0 3.3901e-05 6.6641e-05 9.8245e-05 2.2923e-04 3.4150e-04 4.3739e-04 5.1913e-04 6.8532e-04 7.4339e-04 7.8893e-04 8.2432e-04	0 5.7968e-08 1.7695e-07 3.5242e-07 1.6330e-06 3.6023e-06 6.0313e-06 8.7506e-06 1.2777e-05 1.6958e-05 2.1197e-05 2.5453e-05 2.9707e-05	0 5.7968e-08 1.7695e-07 3.5242e-07 1.6330e-06 3.6023e-06 6.0313e-06 8.7506e-06 1.2777e-05 1.6958e-05 2.1197e-05 2.5453e-05 2.9707e-05	

(8)
$$\tau_0 = 930K$$
.

 $SP/BE = \frac{F_A}{F_B + F_E} |_{at \tau_0 = 930K} = \frac{930}{92 + 95} |_{at \tau_0 = 930K}$

Matlab code

```
hrxn1 = 118000.0;
hrxn2 = 105200.0;
hrxn3 = -53900.0;
cpa = 299.0;
cpb = 201.0;
cpc = 90.0;
cpd = 30.0;
cpe = 249.0;
cpf = 68.0;
cpp = 273.0;
cpstream = 40.0;
rho = 2173.0;
fhi = 0.4;
b1 = -17.34;
b2 = -13020.0;
b3 = 5.051;
b4 = -0.0000000002314;
b5 = 0.000001302;
b6 = -0.004931;
fi = 0.04988;
pt = 2.4;
%kp1 = exp(b1+(b2/y(8))+b3*log(y(8))+((b4*y(8)+b5)*y(8)+b6)*y(8));
%ft = y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi;
%pa = y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi));
pp = y(7)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi));
%pd = y(4)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi));
%r1 = rho*(1-fhi)*exp(-0.08539-
(10925/y(8)))*((y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))-
(5)+y(6)+y(7)+fi)/(exp(b1+(b2/y(8))+b3*log(y(8))+((b4*y(8)+b5)*y(8)+b6)*y(8))));
%r2 = rho*(1-fhi)*exp(13.2392-
(25000/y(8)))*(y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)));
%r3 = rho*(1-fhi)*exp(0.2961-
2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi));
%ra =(-(rho*(1-fhi)*exp(-0.08539-
(10925/y(8)))*((y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))-
```

```
(5)+y(6)+y(7)+fi))/(exp(b1+(b2/y(8))+b3*log(y(8))+((b4*y(8)+b5)*y(8)+b6)*y(8)))))
+(-(\text{rho}*(1-\text{fhi})*\exp(13.2392-
(25000/y(8)))*(y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))))+(-(rho*(1-y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))))
fhi)*exp(0.2961-
2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi))))
%rb = rho*(1-fhi)*exp(13.2392-
(25000/y(8)))*(y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))
%rc = rho*(1-fhi)*exp(13.2392-
(25000/y(8)))*(y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))
%rd = (rho*(1-fhi)*exp(-0.08539-
(10925/y(8)))*((y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))-
(5)+y(6)+y(7)+fi))/(exp(b1+(b2/y(8))+b3*log(y(8))+((b4*y(8)+b5)*y(8)+b6)*y(8)))))
+(-(\text{rho}*(1-\text{fhi})*\exp(0.2961-
2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi))))
%re = rho*(1-fhi)*exp(0.2961-
2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi))
%rf = rho*(1-fhi)*exp(0.2961-
2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))
%rp = rho*(1-fhi)*exp(-0.08539-
(10925/y(8)))*((y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))-
(5)+y(6)+y(7)+fi))/(exp(b1+(b2/y(8))+b3*log(y(8))+((b4*y(8)+b5)*y(8)+b6)*y(8)))))
% ((rho*(1-fhi)*exp(-0.08539-
(10925/y(8)))*((y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))-
(5)+y(6)+y(7)+fi))/(exp(b1+(b2/y(8))+b3*log(y(8))+((b4*y(8)+b5)*y(8)+b6)*y(8))))))
*(hrxn1)+(rho*(1-fhi)*exp(13.2392-
-fhi)*exp(0.2961-
2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))*(hrxn3))/(y(1)*cpa+y(2)*cpb+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(
(5)*cpe+y(6)*cpf+y(7)*cpp+fi*cpstream)
f = @(v,y) [(-(rho*(1-fhi)*exp(-0.08539-
(10925/y(8)))*((y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))-
(5)+y(6)+y(7)+fi)/(exp(b1+(b2/y(8))+b3*log(y(8))+((b4*y(8)+b5)*y(8)+b6)*y(8)))))
)+(-(rho*(1-fhi)*exp(13.2392-
(25000/y(8)))*(y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))))+(-(rho*(1-y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))))
fhi)*exp(0.2961-
2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi))))); rho*(1-fhi)*exp(13.2392-
(25000/y(8)))*(y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi))); rho*(1-
fhi)*exp(13.2392-
(25000/y(8)))*(y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi))); (rho*(1-
fhi)*exp(-0.08539-
(10925/y(8)))*((y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))-
(5)+y(6)+y(7)+fi))/(exp(b1+(b2/y(8))+b3*log(y(8))+((b4*y(8)+b5)*y(8)+b6)*y(8)))))
+(-(\text{rho}*(1-\text{fhi})*\exp(0.2961-
2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi))))); rho*(1-fhi)*exp(0.2961-
2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)); rho*(1-fhi)*exp(0.2961-
```

```
2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)); rho*(1-fhi)*exp(-0.08539-
(10925/y(8)))*((y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))-
(5)+y(6)+y(7)+fi)/(exp(b1+(b2/y(8))+b3*log(y(8))+((b4*y(8)+b5)*y(8)+b6)*y(8))));
-((rho*(1-fhi)*exp(-0.08539-
(10925/y(8)))*((y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))-
(5)+y(6)+y(7)+fi)/(exp(b1+(b2/y(8))+b3*log(y(8))+((b4*y(8)+b5)*y(8)+b6)*y(8)))))
*(hrxn1)+(rho*(1-fhi)*exp(13.2392-
-fhi)*exp(0.2961-
2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))*(hrxn3))/(y(1)*cpa+y(2)*cpb+y(3)*cpc+y(4)*cpd+y
(5)*cpe+y(6)*cpf+y(7)*cpp+fi*cpstream)];
[v,y] = ode15s(f,[0 10],[0.00344; 0; 0; 0; 0; 0; 930])
selectivity = y(29,7)/(y(29,2)+y(29,5))
```


		_						
21	4.3638							
22	4.8953							
23	5.4268							
24	6.2573	_						
25	7.0879							
26	7.9184							
27	8.7489							
28	9.5795							
29	10							
30								
1	Variables - y	,						
	v × y	×						
	29x8 double							
	1	2	3	4	5	6	7	8
1	0.0034	0	0	0	0	0	C	930
2	0.0034	5.6181e-06	5.6181e-06	3.5000e-05	6.2597e-08	6.2597e-08	3.5062e-05	928.4374
3	0.0034	1.0936e-05	1.0936e-05	6.8866e-05	1.9134e-07	1.9134e-07	6.9058e-05	926.9281
4	0.0033	1.5972e-05	1.5972e-05	1.0164e-04	3.8158e-07	3.8158e-07	1.0202e-04	925.4701
5	0.0032	3.3201e-05	3.3201e-05	2.1844e-04	1.5151e-06	1.5151e-06	2.1996e-04	920.2892
6	0.0031	4.7559e-05	4.7559e-05	3.2298e-04	3.2274e-06	3.2274e-06	3.2621e-04	915.6749
7	0.0030	5.9649e-05	5.9649e-05	4.1706e-04	5.3621e-06	5.3621e-06	4.2242e-04	911.5391
8	0.0029	6.9970e-05	6.9970e-05	5.0229e-04	7.7930e-06	7.7930e-06	5.1009e-04	907.8039
9	0.0027	8.6269e-05	8.6269e-05	6.4800e-04	1.3115e-05	1.3115e-05	6.6111e-04	901.4414
10	0.0025	9.9029e-05	9.9029e-05	7.7187e-04	1.8794e-05	1.8794e-05	7.9066e-04	896.0466
11	0.0024	1.0940e-04	1.0940e-04	8.7889e-04	2.4577e-05	2.4577e-05	9.0347e-04	891.3905
12	0.0023	1.1802e-04	1.1802e-04	9.7229e-04	3.0347e-05	3.0347e-05	0.0010	887.3267
13	0.0022	1.2529e-04	1.2529e-04	0.0011	3.6041e-05	3.6041e-05	0.0011	883.7523
14	0.0021	1.3447e-04	1.3447e-04	0.0012	4.4539e-05	4.4539e-05	0.0012	879.0573
15	0.0019	1.4197e-04	1.4197e-04	0.0013	5.2701e-05	5.2701e-05	0.0013	875.1093
16	0.0018	1.4829e-04	1.4829e-04	0.0013	6.0507e-05	6.0507e-05	0.0014	871.7537
17	0.0018	1.5371e-04	1.5371e-04	0.0014	6.7971e-05	6.7971e-05	0.0015	868.8821
18	0.0017	1.5848e-04	1.5848e-04	0.0014	7.5110e-05	7.5110e-05	0.0015	866.4103
19	0.0016	1.6609e-04	1.6609e-04	0.0015	8.7842e-05	8.7842e-05	0.0016	862.6262
20	0.0015	1.7249e-04	1.7249e-04	0.0016	9.9691e-05	9.9691e-05	0.0017	859.7282
21	0.0014	1.7806e-04	1.7806e-04	0.0016	1.1082e-04	1.1082e-04	0.0018	857.4887
22	0.0013	1.8302e-04	1.8302e-04	0.0017	1.2135e-04	1.2135e-04	0.0018	855.7554
23	0.0013	1.8753e-04	1.8753e-04	0.0017	1.3140e-04	1.3140e-04	0.0018	854.4167
24	0.0012	1.9393e-04	1.9393e-04	0.0017	1.4631e-04	1.4631e-04	0.0019	852.9163
25	0.0012	1.9984e-04	1.9984e-04	0.0017	1.6043e-04	1.6043e-04	0.0019	851.9164
26	0.0011	2.0544e-04	2.0544e-04	0.0017	1.7395e-04	1.7395e-04	0.0019	851.2563
27	0.0011	2.1076e-04	2.1076e-04	0.0017	1.8698e-04	1.8698e-04	0.0019	850.8380
28	0.0011	2.1585e-04	2.1585e-04	0.0017	1.9961e-04	1.9961e-04	0.0019	850.5937

0.0017 2.0587e-04 2.0587e-04

850.5192

0.0019

0.0011 2.1835e-04 2.1835e-04

29

(c)
$$T_0 = 1100K$$

$$S_{P/BE} = \frac{F_P}{F_B + F_E} \left| \frac{2}{4 + 7} \right| = \frac{47}{4 + 7} \left| \frac{2}{4 + 7} \right| = 1100K$$

$$S_{P/BE} = 0.9447$$

Matlab code

```
hrxn1 = 118000.0;
hrxn2 = 105200.0;
hrxn3 = -53900.0;
cpa = 299.0;
cpb = 201.0;
cpc = 90.0;
cpd = 30.0;
cpe = 249.0;
cpf = 68.0;
cpp = 273.0;
cpstream = 40.0;
rho = 2173.0;
fhi = 0.4;
b1 = -17.34;
b2 = -13020.0;
b3 = 5.051;
b4 = -0.0000000002314;
b5 = 0.000001302;
b6 = -0.004931;
fi = 0.04988;
pt = 2.4;
% kp1 = exp(b1+(b2/y(8))+b3*log(y(8))+((b4*y(8)+b5)*y(8)+b6)*y(8));
%ft = y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi;
%pa = y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi));
%pp = y(7)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi));
%pd = y(4)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi));
%r1 = rho*(1-fhi)*exp(-0.08539-
(10925/y(8)))*((y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))-
(5)+y(6)+y(7)+fi)/(exp(b1+(b2/y(8))+b3*log(y(8))+((b4*y(8)+b5)*y(8)+b6)*y(8))));
%r2 = rho*(1-fhi)*exp(13.2392-
(25000/y(8)))*(y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)));
```

```
%r3 = rho*(1-fhi)*exp(0.2961-
2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi));
%ra =(-(rho*(1-fhi)*exp(-0.08539-
(10925/y(8)))*((y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))-
(5)+y(6)+y(7)+fi)/(exp(b1+(b2/y(8))+b3*log(y(8))+((b4*y(8)+b5)*y(8)+b6)*y(8)))))
+(-(rho*(1-fhi)*exp(13.2392-
(25000/y(8)))*(y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))))+(-(rho*(1-y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))))
fhi)*exp(0.2961-
2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi))))
%rb =rho*(1-fhi)*exp(13.2392-
(25000/y(8)))*(y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))
%rc = rho*(1-fhi)*exp(13.2392-
(25000/y(8)))*(y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))
%rd = (rho*(1-fhi)*exp(-0.08539-
(10925/y(8)))*((y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))-
(5)+y(6)+y(7)+fi)/(exp(b1+(b2/y(8))+b3*log(y(8))+((b4*y(8)+b5)*y(8)+b6)*y(8)))))
+(-(\text{rho}*(1-\text{fhi})*\exp(0.2961-
2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi))))
%re = rho*(1-fhi)*exp(0.2961-
2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi))
%rf = rho*(1-fhi)*exp(0.2961-
2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi))
%rp = rho*(1-fhi)*exp(-0.08539-
(10925/y(8)))*((y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))-
(5)+y(6)+y(7)+fi))/(exp(b1+(b2/y(8))+b3*log(y(8))+((b4*y(8)+b5)*y(8)+b6)*y(8)))))
% ((rho*(1-fhi)*exp(-0.08539-
(10925/y(8)))*((y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))-
(5)+y(6)+y(7)+fi)/(exp(b1+(b2/y(8))+b3*log(y(8))+((b4*y(8)+b5)*y(8)+b6)*y(8)))))
*(hrxn1)+(rho*(1-fhi)*exp(13.2392-
(25000/y(8)))*(y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi))))*(hrxn2)+(rho*(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))
-fhi)*exp(0.2961-
2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))*(hrxn3))/(y(1)*cpa+y(2)*cpb+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(
(5)*cpe+y(6)*cpf+y(7)*cpp+fi*cpstream)
f = @(v,y) [(-(rho*(1-fhi)*exp(-0.08539-
(10925/y(8)))*((y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))-
(5)+y(6)+y(7)+fi))/(exp(b1+(b2/y(8))+b3*log(y(8))+((b4*y(8)+b5)*y(8)+b6)*y(8))))))
+(-(rho*(1-fhi)*exp(13.2392-
(25000/y(8)))*(y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))))+(-(rho*(1-y(1)+y(2)+y(3)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))))
fhi)*exp(0.2961-
2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))); rho*(1-fhi)*exp(13.2392-
(25000/y(8)))*(y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi))); rho*(1-
fhi)*exp(13.2392-
(25000/y(8)))*(y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi))); (rho*(1-y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)));
fhi)*exp(-0.08539-
(10925/y(8)))*((y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))-
(5)+y(6)+y(7)+fi)/(exp(b1+(b2/y(8))+b3*log(y(8))+((b4*y(8)+b5)*y(8)+b6)*y(8)))))
```

```
+(-(\text{rho}*(1-\text{fhi})*\exp(0.2961-
2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))); rho*(1-fhi)*exp(0.2961-
2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)); rho*(1-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-fhi)*exp(0.2961-f
2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)); rho*(1-fhi)*exp(-0.08539-
(10925/y(8))*((y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))-
(5)+y(6)+y(7)+fi)/(exp(b1+(b2/y(8))+b3*log(y(8))+((b4*y(8)+b5)*y(8)+b6)*y(8))));
-((rho*(1-fhi)*exp(-0.08539-
(10925/y(8)))*((y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))-
(5)+y(6)+y(7)+fi)/(exp(b1+(b2/y(8))+b3*log(y(8))+((b4*y(8)+b5)*y(8)+b6)*y(8)))))
*(hrxn1)+(rho*(1-fhi)*exp(13.2392-
(25000/y(8)))*(y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi))))*(hrxn2)+(rho*(1)+y(2)+y(3)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))
-fhi)*exp(0.2961-
2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))*(hrxn3))/(y(1)*cpa+y(2)*cpb+y(3)*cpc+y(4)*cpd+y
(5)*cpe+y(6)*cpf+y(7)*cpp+fi*cpstream)];
[v,y] = ode15s(f,[0 10],[0.00344; 0; 0; 0; 0; 0; 0; 1100])
selectivity = y(52,7)/(y(52,2)+y(52,5))
```

1	Variables - v
	v ×
	52x1 double
	1
1	
2	0.0018
3	0.0036
4	0.0054
5	0.0116
6	0.0179
7	0.0241
8	0.0303
9	0.0425
10	0.0547
11	0.0668
12 13	0.0790
14	0.1105
15	0.1299
16	0.1492
17	0.1686
18	0.1880
19	0.2226
20	0.2571
21	0.2917
22	0.3263
23	0.3609
24	0.4191
25	0.4774
26	0.5356
27	0.5939
28	0.6522
29	0.7488
30	0.8454
31	0.9420
32	1.0386
33	1.1352
34	1.2946
35	1.4541
36	1.6135
37	1.7730
38	1.9325
39	2.2369
40	
10	2.54.14

41	2.8459
42	3.1503
43	3.4548
44	4.0551
45	4.6554
46	5.2557
47	5.8560
48	6.4563
49	7.4563
50	8.4563
51	9.4563
52	10

🌠 Variables - y

y ×

☐ 52x8 double

	1	2	3	4	5	6	7	8
1	0.0034	0	0	0	0	0	0	1100
2	0.0034	2.6531e-05	2.6531e-05	1.5854e-05	1.3004e-08	1.3004e-08	1.5867e-05	1.0985e+03
3	0.0034	5.1954e-05	5.1954e-05	3.1291e-05	3.9965e-08	3.9965e-08	3.1331e-05	1.0970e+03
4	0.0033	7.6320e-05	7.6320e-05	4.6323e-05	8.0122e-08	8.0122e-08	4.6403e-05	1.0955e+03
5	0.0032	1.5423e-04	1.5423e-04	9.5781e-05	2.9694e-07	2.9694e-07	9.6078e-05	1.0909e+03
6	0.0031	2.2273e-04	2.2273e-04	1.4139e-04	6.2645e-07	6.2645e-07	1.4202e-04	1.0867e+03
7	0.0030	2.8339e-04	2.8339e-04	1.8364e-04	1.0464e-06	1.0464e-06	1.8469e-04	1.0829e+03
8	0.0029	3.3757e-04	3.3757e-04	2.2297e-04	1.5375e-06	1.5375e-06	2.2450e-04	1.0795e+03
9	0.0027	4.2821e-04	4.2821e-04	2.9254e-04	2.6490e-06	2.6490e-06	2.9519e-04	1.0736e+03
10	0.0026	5.0403e-04	5.0403e-04	3.5454e-04	3.8948e-06	3.8948e-06	3.5844e-04	1.0685e+03
11	0.0025	5.6890e-04	5.6890e-04	4.1052e-04	5.2222e-06	5.2222e-06	4.1574e-04	1.0641e+03
12	0.0023	6.2524e-04	6.2524e-04	4.6151e-04	6.5992e-06	6.5992e-06	4.6811e-04	1.0601e+03
13	0.0022	6.7471e-04	6.7471e-04	5.0829e-04	8.0050e-06	8.0050e-06	5.1629e-04	1.0565e+03
14	0.0021	7.4221e-04	7.4221e-04	5.7554e-04	1.0272e-05	1.0272e-05	5.8581e-04	1.0515e+03
15	0.0020	7.9915e-04	7.9915e-04	6.3548e-04	1.2533e-05	1.2533e-05	6.4802e-04	1.0471e+03
16	0.0019	8.4807e-04	8.4807e-04	6.8950e-04	1.4764e-05	1.4764e-05	7.0426e-04	1.0432e+03
17	0.0018	8.9065e-04	8.9065e-04	7.3856e-04	1.6950e-05	1.6950e-05	7.5551e-04	1.0398e+03
18	0.0017	9.2810e-04	9.2810e-04	7.8342e-04	1.9085e-05	1.9085e-05	8.0250e-04	1.0367e+03
19	0.0016	9.8481e-04	9.8481e-04	8.5472e-04	2.2753e-05	2.2753e-05	8.7748e-04	1.0318e+03
20	0.0014	0.0010	0.0010	9.1704e-04	2.6231e-05	2.6231e-05	9.4327e-04	1.0277e+03

21	0.0013	0.0011	0.0011	9.7219e-04	2.9519e-05	2.9519e-05	0.0010	1.0241e+03
22	0.0012	0.0011	0.0011	0.0010	3.2626e-05	3.2626e-05	0.0011	1.0209e+03
23	0.0012	0.0011	0.0011	0.0011	3.5563e-05	3.5563e-05	0.0011	1.0181e+03
24	0.0011	0.0012	0.0012	0.0011	4.0155e-05	4.0155e-05	0.0012	1.0140e+03
25	9.5198e-04	0.0012	0.0012	0.0012	4.4338e-05	4.4338e-05	0.0012	1.0105e+03
26	8.6643e-04	0.0012	0.0012	0.0012	4.8156e-05	4.8156e-05	0.0013	1.0075e+03
27	7.9195e-04	0.0013	0.0013	0.0013	5.1653e-05	5.1653e-05	0.0013	1.0049e+03
28	7.2672e-04	0.0013	0.0013	0.0013	5.4864e-05	5.4864e-05	0.0014	1.0026e+03
29	6.3486e-04	0.0013	0.0013	0.0014	5.9638e-05	5.9638e-05	0.0014	999.3860
30	5.5842e-04	0.0013	0.0013	0.0014	6.3820e-05	6.3820e-05	0.0015	996.7386
31	4.9400e-04	0.0014	0.0014	0.0014	6.7507e-05	6.7507e-05	0.0015	994.5164
32	4.3930e-04	0.0014	0.0014	0.0015	7.0773e-05	7.0773e-05	0.0016	992.6366
33	3.9264e-04	0.0014	0.0014	0.0015	7.3680e-05	7.3680e-05	0.0016	991.0401
34	3.2953e-04	0.0014	0.0014	0.0015	7.7821e-05	7.7821e-05	0.0016	988.8926
35	2.7966e-04	0.0014	0.0014	0.0016	8.1303e-05	8.1303e-05	0.0016	987.2087
36	2.3931e-04	0.0014	0.0014	0.0016	8.4258e-05	8.4258e-05	0.0017	985.8569
37	2.0674e-04	0.0015	0.0015	0.0016	8.6792e-05	8.6792e-05	0.0017	984.7755
38	1.8052e-04	0.0015	0.0015	0.0016	8.8988e-05	8.8988e-05	0.0017	983.9157
39	1.4346e-04	0.0015	0.0015	0.0016	9.2443e-05	9.2443e-05	0.0017	982.7250
40	1.1690e-04	0.0015	0.0015	0.0016	9.5188e-05	9.5188e-05	0.0017	981.8958
41	9.8736e-05	0.0015	0.0015	0.0016	9.7466e-05	9.7466e-05	0.0017	981.3575
42	8.6745e-05	0.0015	0.0015	0.0016	9.9434e-05	9.9434e-05	0.0017	981.0340
43	7.8640e-05	0.0015	0.0015	0.0016	1.0119e-04	1.0119e-04	0.0017	980.8451
44	6.9377e-05	0.0015	0.0015	0.0016	1.0423e-04	1.0423e-04	0.0017	980.7030
45	6.3929e-05	0.0015	0.0015	0.0016	1.0696e-04	1.0696e-04	0.0017	980.6889
46	6.0241e-05	0.0015	0.0015	0.0016	1.0951e-04	1.0951e-04	0.0017	980.7318
47	5.7789e-05	0.0016	0.0016	0.0016	1.1193e-04	1.1193e-04	0.0017	980.8141
48	5.6206e-05	0.0016	0.0016	0.0016	1.1426e-04	1.1426e-04	0.0017	980.9233
49	5.4453e-05	0.0016	0.0016	0.0016	1.1797e-04	1.1797e-04	0.0017	981.1287
50	5.2982e-05	0.0016	0.0016	0.0015	1.2154e-04	1.2154e-04	0.0017	981.3353
51	5.1529e-05	0.0016	0.0016	0.0015	1.2498e-04	1.2498e-04	0.0017	981.5344
52	5.0769e-05	0.0016	0.0016	0.0015	1.2680e-04	1.2680e-04	0.0016	981.6403

(d)

(d)

(d)

(d)

(exit D) (d)

(viewed)

(exit D) (d)

(ideal ideal temperatural got the braduction

(of P) parent

(of P)

Criver Steam = 58

then Fi = 58x0.00344 = 0.19952.

And other values are same.

then we find. For (yz) at the outlet of the seactor at Different To (inlet temperature)

- s show temp which we get highest FP (47) at that Point of inlet we get ours ideal inlet temp.
 - > First we put step size of so.

Find y at 800, 850, 900, 950, 1000, 1050, 100

To

```
-) we get maximum Fp at near 151000 k
- then are find to = 1000 ± 10 K
I then yind ytto= 990 K
- From table we can say that
 Maximum 47 plf 300-1000K.
-) then we find you at To = 995 K
-) from table we can say that
  maximum yz b/t 995-1000 K
-) then we find y + at To = 997.5 K
  we get maximum y + b/t 7995 - 997.5K
-) Ideal . inlet temperature (To)
                                *
    Range = 995-997.5 k
```

Ideal inlet temperature = 295 kelvin

	Α	В
1	To (inlet temperature)	fp (y7)
2	800	0.000493
3	850	0.000955
4	900	0.001551
5	950	0.002079
6	980	0.002243
7	990	0.00226
8	995	0.002261
9	997.5	0.002259
10	1000	0.002256
11	1050	0.001964
12	1100	0.001462
12		

Sample calculation for to = 800 and y7 (fp)

Matlab code:

```
hrxn1 = 118000.0;
hrxn2 = 105200.0;
hrxn3 = -53900.0;
cpa = 299.0;
cpb = 201.0;
cpc = 90.0;
cpd = 30.0;
cpe = 249.0;
cpf = 68.0;
cpp = 273.0;
cpstream = 40.0;
rho = 2173.0;
fhi = 0.4;
b1 = -17.34;
b2 = -13020.0;
b3 = 5.051;
b4 = -0.0000000002314;
b5 = 0.000001302;
b6 = -0.004931;
fi = 0.19952;
pt = 2.4;
%kp1 = exp(b1+(b2/y(8))+b3*log(y(8))+((b4*y(8)+b5)*y(8)+b6)*y(8));
%ft = y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi;
pa = y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi));
pp = y(7)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi));
pd = y(4)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi));
```

```
%r1 = rho*(1-fhi)*exp(-0.08539-
(10925/y(8)))*((y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))-
(5)+y(6)+y(7)+fi))/(exp(b1+(b2/y(8))+b3*log(y(8))+((b4*y(8)+b5)*y(8)+b6)*y(8))));
%r2 = rho*(1-fhi)*exp(13.2392-
(25000/y(8)))*(y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)));
%r3 = rho*(1-fhi)*exp(0.2961-
2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi));
%ra =(-(rho*(1-fhi)*exp(-0.08539-
(10925/y(8)))*((y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))-
(5)+y(6)+y(7)+fi)/(exp(b1+(b2/y(8))+b3*log(y(8))+((b4*y(8)+b5)*y(8)+b6)*y(8)))))
)+(-(rho*(1-fhi)*exp(13.2392-
(25000/y(8)))*(y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))))+(-(rho*(1-y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))))
fhi)*exp(0.2961-
2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi))))
%rb = rho*(1-fhi)*exp(13.2392-
(25000/y(8)))*(y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))
%rc = rho*(1-fhi)*exp(13.2392-
(25000/y(8)))*(y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))
%rd = (rho*(1-fhi)*exp(-0.08539-
(10925/y(8)))*((y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))-
(5)+y(6)+y(7)+fi))/(exp(b1+(b2/y(8))+b3*log(y(8))+((b4*y(8)+b5)*y(8)+b6)*y(8)))))
+(-(\text{rho}*(1-\text{fhi})*\exp(0.2961-
2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi))))
%re = rho*(1-fhi)*exp(0.2961-
2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi))
%rf = rho*(1-fhi)*exp(0.2961-
2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi))
%rp = rho*(1-fhi)*exp(-0.08539-
(10925/y(8)))*((y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))-
(5)+y(6)+y(7)+fi))/(exp(b1+(b2/y(8))+b3*log(y(8))+((b4*y(8)+b5)*y(8)+b6)*y(8))))
% ((rho*(1-fhi)*exp(-0.08539-
(10925/y(8)))*((y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))-
(5)+y(6)+y(7)+fi)/(exp(b1+(b2/y(8))+b3*log(y(8))+((b4*y(8)+b5)*y(8)+b6)*y(8)))))
*(hrxn1)+(rho*(1-fhi)*exp(13.2392-
(25000/y(8)))*(y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi))))*(hrxn2)+(rho*(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))
-fhi)*exp(0.2961-
2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))*(hrxn3))/(y(1)*cpa+y(2)*cpb+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(3)*cpc+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(4)*cpd+y(
(5)*cpe+y(6)*cpf+y(7)*cpp+fi*cpstream)
f = @(v,y) [(-(rho*(1-fhi)*exp(-0.08539-
(10925/y(8)))*((y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))-
(5)+y(6)+y(7)+fi)/(exp(b1+(b2/y(8))+b3*log(y(8))+((b4*y(8)+b5)*y(8)+b6)*y(8)))))
+(-(rho*(1-fhi)*exp(13.2392-
(25000/y(8)))*(y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))))+(-(rho*(1-y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))))
fhi)*exp(0.2961-
2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))); rho*(1-fhi)*exp(13.2392-
(25000/y(8)))*(y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi))); rho*(1-
```

```
fhi)*exp(13.2392-
(25000/y(8)))*(y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi))); (rho*(1-
fhi)*exp(-0.08539-
(10925/y(8)))*((y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))-
(5)+y(6)+y(7)+fi)/(exp(b1+(b2/y(8))+b3*log(y(8))+((b4*y(8)+b5)*y(8)+b6)*y(8)))))
+(-(\text{rho}*(1-\text{fhi})*\exp(0.2961-
2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))); rho*(1-fhi)*exp(0.2961-
2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)); rho*(1-fhi)*exp(0.2961-
2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)); rho*(1-fhi)*exp(-0.08539-
(10925/y(8))*((y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))-
(5)+y(6)+y(7)+fi)/(exp(b1+(b2/y(8))+b3*log(y(8))+((b4*y(8)+b5)*y(8)+b6)*y(8))));
-((rho*(1-fhi)*exp(-0.08539-
(10925/y(8)))*((y(1)*(pt/(y(1)+y(2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))-
(5)+y(6)+y(7)+fi)/(exp(b1+(b2/y(8))+b3*log(y(8))+((b4*y(8)+b5)*y(8)+b6)*y(8)))))
*(hrxn1)+(rho*(1-fhi)*exp(13.2392-
-fhi)*exp(0.2961-
2)+y(3)+y(4)+y(5)+y(6)+y(7)+fi)))*(hrxn3))/(y(1)*cpa+y(2)*cpb+y(3)*cpc+y(4)*cpd+y
(5)*cpe+y(6)*cpf+y(7)*cpp+fi*cpstream)];
[v,y] = ode15s(f,[0 10],[0.00344; 0; 0; 0; 0; 0; 800])
```

Matlab table for v and y

y ×

		_				
-	12	'x8	Ы	OI	ıb	مار

	1	2	3	4	5	6	7	8
1	0.0034	0	0	0	0	0	0	800
2	0.0034	6.5813e-07	6.5813e-07	4.7545e-05	2.9973e-08	2.9973e-08	4.7575e-05	799.3694
3	0.0033	1.2921e-06	1.2921e-06	9.3900e-05	9.2311e-08	9.2311e-08	9.3992e-05	798.7544
4	0.0033	1.9028e-06	1.9028e-06	1.3907e-04	1.8536e-07	1.8536e-07	1.3926e-04	798.1550
5	0.0032	2.5967e-06	2.5967e-06	1.9093e-04	3.2505e-07	3.2505e-07	1.9125e-04	797.4668
6	0.0032	3.2639e-06	3.2639e-06	2.4135e-04	4.9855e-07	4.9855e-07	2.4184e-04	796.7975
7	0.0031	3.9043e-06	3.9043e-06	2.9029e-04	7.0505e-07	7.0505e-07	2.9099e-04	796.1476
8	0.0031	4.5190e-06	4.5190e-06	3.3776e-04	9.4241e-07	9.4241e-07	3.3871e-04	795.5170
9	0.0030	5.1094e-06	5.1094e-06	3.8382e-04	1.2081e-06	1.2081e-06	3.8503e-04	794.9051
10	0.0030	5.6770e-06	5.6770e-06	4.2849e-04	1.4995e-06	1.4995e-06	4.2999e-04	794.3115
11	0.0030	6.2230e-06	6.2230e-06	4.7182e-04	1.8145e-06	1.8145e-06	4.7363e-04	793.7355
12	0.0029	6.4603e-06	6.4603e-06	4.9075e-04	1.9623e-06	1.9623e-06	4.9271e-04	793.4837

