

《自适应信号处理》 课程实验报告

任课教师	许文龙	学生姓名	胡森康
作业日期	2021年6月	学号	1120183150
	■ 原理验证	班 级	05961808
作业类型	□ 综合设计	学院	信息与电子学院
	□ 自主创新	专业	电子信息工程
成 绩		同组同学	无

SCHOOL OF INFORMATION AND ELECTRONICS

目 录

1	第 3 章最小均方 (LMS) 算法 26 题	. 1
	1.1 Question Statement	. 1
	1.2 Solution	. 1
2	第 4 章基于 LMS 准则的算法 13 题	. 4
	2.1 Question Statement	
	2.2 Solution	. 4

1 第 3 章最小均方 (LMS) 算法 26 题

1.1 Question Statement

在系统辨识问题中,假设输入信号为四进制 QAM 信号,并具有下列形式

$$x(k) = x_{re}(k) + jx_{im}(k)$$
 (1-1)

其中, $x_{re}(k)$ 和 $x_{im}(k)$ 为随机产生的 ± 1 。未知系统表示为

$$H(z) = 0.32 + 0.21j + (-3 + 0.7j)z^{-1} + (0.5 - 0.8)z^{-2} + (0.2 + 0.5j)z^{-3}$$
 (1-2)

自适应滤波器也是一个三阶 FIR 滤波器,加性噪声是方差为 $\sigma_n^2 = 0.4$ 的零均值高斯白噪声。采用复数 LMS 算法,选取适当的 μ 值,运行 20 次实验,画出平均学习曲线。

1.2 Solution

We have the plots:

 \boxtimes 1-1: Evolution of the 1st coefficient (real and imaginary part), $\mu = 0.1$

图 1-2: Evolution of the 1st coefficient (real and imaginary part), $\mu = 0.2$

图 1-3: Learning Curve for MSE, $\mu=0.1$

图 1-4: Learning Curve for MSE, $\mu = 0.2$

We choose $\mu=0.1$ and run this program 20 times , and we have the average learning curve (Figure (1-5)) for MSE:

图 1-5: Average Learning Curve for MSE (20 times)

2 第 4 章基于 LMS 准则的算法 13 题

2.1 Question Statement

采用符号误差算法辨识 7 阶时变未知系统,其系数为一阶马尔可夫过程,并且 $\lambda_w = 0.999$, $\sigma_w^2 = 0.001$ 。时变系统乘积系数的初始值为

$$\boldsymbol{w}_{o}^{\mathrm{T}} = [0.03490 \ -0.011 \ -0.06864 \ 0.22391 \ 0.55686 \ 0.35798 \ -0.0239 \ -0.07594] \ (2\text{--}3)$$

输入信号为 $\sigma_x^2 = 7$ 的高斯白噪声,测量噪声是与输入信号以及 $n_w(k)$ 的元素独里、方差为 $\sigma_n^2 = 0.01$ 的高斯白噪声。若 $\mu = 0.01$,对上述实验进行仿真,并得到超量 MSE 的测量值。

2.2 Solution

We have the plots:

图 2-6: Evolution of the 1st Coefficient

图 2-7: Learning Curve for MSEmin

图 2-8: Learning Curve for MSEmin (A Posteriori Error)

And we get the excess MSE by measuring the plot, the excess MSE approximately is 1.2589.