РАСЧЁТНОЕ ЗАДАНИЕ № 1 ПО ДИСЦИПЛИНЕ «СОВРЕМЕННЫЕ МЕТОДЫ ИССЛЕДОВАНИЯ ПОВЕРХНОСТИ ПОЛУПРОВОДНИКОВ»

Резерфордовское обратное рассеяние

Ионы с энергией 2,5 МэВ бомбардируют поверхность плёнки толщиной t, напылённой на подложку и сверху покрытой тонким слоем металла.

I. Выполнить:

- 1. Постройте кривые зависимости сечения торможения от энергии иона для каждого из элементов плёнки и подложки, а также для материала самой плёнки и подложки на одном графике в диапазоне энергий от 0,5 до 3 МэВ.
- 2. Постройте спектр обратного рассеяния, укажите особенности спектра (начало, конец, высоту и ширину).

<u>Примечание</u>: оценка «отлично» выставляется при полном правильном расчёте спектра с учётом зависимости сечения торможения от энергии, при использовании упрощённой формулы сечения торможения только с учётом энергии входной и выходной максимальная оценка составляет «хорошо».

II. Исходные данные для задания:

No	ФИО студента	Подложка	Плёнка	Толщина плёнки <i>t</i> , нм	Металл	Ион
1	Асташкин С.В.	SiO ₂	SnO ₂	200	Zn	¹ H ⁺
2	Блохин Н.А.	Ga ₂ O ₃	PbS	250	Pt	¹ H ⁺
3	Бондарев Р.А.	SiO ₂	PbSe	300	W	¹ H ⁺
4	Зубарев В.Р.	Ga ₂ O ₃	In_2O_3	350	Ni	⁴ He ⁺
5	Княжев Ф.Р.	GaAs	Al_2O_3	200	In	⁴ He ⁺
6	Крымская А.А.	Si ₃ N ₄	PbS	150	Au	¹ H ⁺
7	Мамаев А.В.	GaAs	PbSe	200	V	$^{1}H^{+}$
8	Маринин Н.С.	Ga ₂ O ₃	VO ₂	250	In	⁴ He ⁺
9	Острецов М.Д.	ZnO	SiO ₂	100	Zn	⁴ He ⁺
10	Сибилёв А.Е.	SiO ₂	SnO ₂	150	Pt	$^{1}H^{+}$
11	Сукоркин А.В.	GaAs	SiO ₂	200	W	⁴ He ⁺
12	Чурилин Д.А.	Ga ₂ O ₃	Al_2O_3	250	Ni	⁴ He ⁺
13	Шутов М.Е.	SiO ₂	PbS	300	In	¹ H ⁺
14	Щетинина Е.В.	Ga ₂ O ₃	PbSe	350	Au	¹ H ⁺

Ток пучка ионов равен 10 мкА, длительность бомбардировки – 30 сек.

Угол рассеяния составляет 170° . Площадь приёмного окна детектора составляет 0.1 см^2 , расстояние от мишени до детектора – 5 см. Разрешение детектора принять равным 20 кэB. Энергия нулевого канала – 0.1 МэВ, ширина канала – 5 кэB.

III. Срок выполнения расчётного задания – 8 неделя.

IV. Дополнительные сведения: домашнее задание выполняется на компьютере в машинописной форме. Необходимо предоставить схему эксперимента с указанием расстояния от плёнки до детектора, площади приёмного окна детектора, структуры исследуемого объекта. Отчёт по заданию выполняется в одном из текстовых процессоров типа Microsoft Word, LibreOffice, OpenOffice и тому подобное и предоставляется в виде PDF-файла на почту преподавателя через ОСЭП.

Пример выполнения расчёта (плёнка Si_3N_4 с Au на Ga_2O_3).

1. Сечение торможения

$$\varepsilon = k_c^2 \cdot \frac{2\pi Z_1^2 e^4}{E} \cdot Z_2 \cdot \frac{M_1}{m_0} \cdot \ln \frac{4m_0 E}{M_1 I},$$

где $k_c = 9 \cdot 10^9$ м/Ф, $m_0 = 0.00055$ а.е.м., $I = 10Z_2, Z_1 = 2, Z_2 = 14 - 7 - 79, M_1 = 4$ а.е.м., $M_2 = 28 - 14 - 197$ а.е.м.

Сечение торможения на плёнке $\mathrm{Si_3N_4}$ по правилу Брэгга $\varepsilon\left(Si_3N_4\right)=3\varepsilon\left(Si\right)+4\varepsilon(N)$

Таблица 1

Кинематический фактор для элементов (рассеяние ионов ⁴He⁺ под углом 170°)

Атомный номер	Элемент	Масса, а.е.м.	Кинематический фактор
7	N	14	
8	0	16	
13	Al	26	
14	Si	28	
31	Ga		
32	Ge		
33	As		
	Zn		
	Cu		
	Se		
	V		
	Pb		
	S		
	Se		
	In		
	Pt		
	W		
79	Au	197	
	Mo		
	Ni		