

Première année Licence informatique, 2023 – 2024 Structure Machine 2

Dimanche 28/04/2024 - Durée: 1h30

Contrôle Continu

NB: Documents et calculatrice non autorisés

Exercice 1 (9 points):

1) Simplifiez par la table de Karnaugh la fonction logique f suivante (2 points) :

$$f(a, b, c, d) = \sum m (1,4,6,8,9,10,11,12,14)$$

L'expression simplifiée est : $f(a, b, c, d) = a.\overline{b} + \overline{b}.\overline{c}.d + b.\overline{d}$

- Chaque groupe sur 0.25 + chaque terme sur 0.25 + expression finale simplifié sur 0.5.
- 2) Réaliser la fonction f par un multiplexeur MUX 8:1. (2 points)

0.25 pts pour chaque état

جامعة أبو بكر بلقايد ۱۰۵۸،۱۱۶۲ ،۱۸۵۵،۵۱۵ عداده، ۱۸۱۷ER UNIVERSITÉ DE TLEMCEN

3) Soit la fonction S défini comme suit : $S(x,y,z) = \sum m$ (1,4,6,7) Réaliser la fonction S par un démultiplexeur DEMUX 1:8. (2 points)

44) Simplifiez par la table de Karnaugh la fonction logique g suivante (3 points) :

$$g(a,b,c,d) = \sum m(1,2,6,8,11,12,14) + d(7)$$

ou d (7) représente un cas indifférent.

(· / F				
cd ab	00	01	11	10	$a. \bar{c}. \bar{d}$
00	0	0	1	1)	$\rightarrow \bar{a}.\bar{b}.\bar{c}.d$
01 (1)_	0	0	0	$\rightarrow a.b.c.a$ $\rightarrow a.\bar{b}.c.d$
11	0	X	0 (1	
10	1	1)	1	0	
		:	1		•
		`	λ_h	. c. ā	
	\bar{a} . c	. $ar{d}$	D	. c. u	\mathbf{a} . b . \bar{d}

$$g(a, b, c, d) = a. \overline{c}. \overline{d} + \overline{a}. \overline{b}. \overline{c}. d + a. \overline{b}. c. d + \overline{a}. c. \overline{d} + b. c. \overline{d}$$

Ou bien :

$$g(a,b,c,d) = a.\,\overline{c}.\,\overline{d} + \overline{a}.\,\overline{b}.\,\overline{c}.\,d + a.\,\overline{b}.\,c.\,d + \overline{a}.\,c.\,\overline{d} + a.\,b.\,\overline{d}$$

- Chaque groupe sur 0.25 + chaque terme sur 0.25 + expression finale simplifié sur 0.5.

Exercice 02 (6 points):

- 1) Réaliser un demi-Additionneur (1 bit A avec 1 bit B) : (4 points)
- Ecrire la table de vérité :

A	В	S	R
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Donner les expressions logiques simplifiées de sortie.

$$S = A \oplus B$$

$$R = A.B$$

• Dessiner le circuit logique (les portes logiques disponibles : AND, OR, NOT, XOR).

Demi-Additionneur

2. En comparant le circuit du demi-additionneur avec celui d'un demi-soustracteur, concevoir le circuit logique (les portes logiques disponibles : AND, OR, NOT, XOR) appelé demi-additionneur/soustracteur, qui à partir d'un signal de commande C et des entrées A et B, simule le demi-additionneur sur A et B lorsque la commande C est à 0, et le demi-soustracteur sur A et B lorsque la commande C est à 1. (2 points)

