

Institutt for matematiske fag

Eksamensoppgave i TMA4120 Matematikk 4K				
Faglig kontakt under eksamen: Katrin Grunert ^a , Eduardo Ortega-Esparza ^b				
TIf:				
F I. 1. 40 1 2045				
Eksamensdato: 10. desember 2015				
Eksamenstid (fra-til): 09:00-13:00				
Hjelpemiddelkode/Tillatte hjelpemidler: Kode C: Bestemt, enkel kalkulator Rottmann: Matematisk formelsamling				
Annen informasjon: Alle svar skal begrunnes. Du må ta med så mye mellomregning at fremgangsmåten fremgår tydelig av besvarelsen.				
Målform/språk: bokmål Antall sider: 2 Antall sider vedlegg: 1				
Kontrollert av:				

Sign

Dato

Oppgave 1 Løs initialverdiproblemet

$$y'(t) + 4y(t) = \delta(t-2) + e^{4t}, \quad y(0) = 0,$$

der δ er deltafunksjonen.

Oppgave 2 La funksjonen f være definert ved f(x) = x for $-\pi < x < \pi$. Finn Fourierrekken til f(x). Skisser summen av Fourierrekken til f(x) på intervallet $[-2\pi, 2\pi]$. Finn verdien til Fourierrekken til f(x) i punktet $x = \pi$.

Oppgave 3

a) Finn alle løsninger av den partielle differensialligningen

$$u_{xx}(x,t) + 4u(x,t) = u_t(x,t), \quad x \in [0,\pi], \quad t \ge 0,$$
 (1)

på formen u(x,t) = F(x)G(t) som tilfredsstiller randbetingelsene

$$u(0,t) = u_x(\pi,t) = 0, \quad t \ge 0.$$
 (2)

b) Finn en løsning u(x,t) av (1) som i tillegg til randbetingelsene (2) også tilfredsstiller initialbetingelsen

$$u(x,0) = \sin(\frac{3}{2}x) + 2\sin(\frac{5}{2}x) + 3\sin(\frac{7}{2}x), \quad 0 \le x \le \pi.$$

Oppgave 4 Bestem den reelle funksjonen u(x, y) slik at den komplekse funksjonen

$$f(z) = u(x, y) + i(y + 2xy)$$
, hvor $z = x + iy$, $x, y \in \mathbb{R}$,

blir en hel funksjon, dvs. at f(z) er analytisk i hele \mathbb{C} , og f(0) = 1.

Oppgave 5 La

$$f(z) = e^{\frac{1}{z-2}} + \frac{1}{z(z-2)}.$$

- a) Finn og klassifiser de singulære punktene til funksjonen f(z).
- b) Finn begge Laurentrekkene til f(z) med sentrum i z=2.

Oppgave 6 La funksjonen f være definert ved

$$f(x) = \frac{1}{x^2 - 2x + 2}.$$

a) La S_R betegne halvsirkelen med radius R i øvre halvplan. La w>0 og bruk ML-ulikheten til å vise at

$$\lim_{R\to\infty}\int_{S_R}f(x)e^{ixw}dx=0.$$

Vis alle estimater.

b) Bruk resultatet fra a) og residueregning til å finne $\hat{f}(-\pi)$, den Fouriertransformerte til f(x) i punktet $x = -\pi$.

Table of Laplace transforms

f(t)	$\mathcal{L}(f)$
1	$\frac{1}{s}$
t	$\frac{1}{s^2}$
$t^n \ (n=0,1,2,\dots)$	$\frac{n!}{s^{n+1}}$
e^{at}	$\frac{1}{s-a}$
$\cos \omega t$	$\frac{s}{s^2 + \omega^2}$
$\sin \omega t$	$\frac{\omega}{s^2 + \omega^2}$
$\cosh at$	$\frac{s}{s^2 - a^2}$
$\sinh at$	$\frac{a}{s^2 - a^2}$
$e^{at}\cos\omega t$	$\frac{s-a}{(s-a)^2+\omega^2}$
$e^{at}\sin\omega t$	$\frac{\omega}{(s-a)^2 + \omega^2}$