DM–IMECC–UNICAMP, MA502/Análise	e I, PROF. Marcelo M. Santos
2a. prova, $16/05/2012$	
Aluno:	RA:
Assinatura, como no RG:	
Observações: Tempo de prova: 100min;	Justifique sucintamente todas as
suas afirmações.	

- 1. a) (0,6 pontos) Defina série condicionalmente convergente e enuncie o Teorema de Riemann (sobre séries condicionalmente convergentes).
- **b)** (0,6) Falso ou verdadeiro? Seja $a_n = 1/(-n)^3$. Então, para qualquer bijeção $\varphi : \mathbb{N} \to \mathbb{N}$, a série $\sum a_{\varphi}(n)$ é convergente. (Não esqueça de justificar.)
- c) (0,8) Dê os quatro primeiros termos do rearranjo da série $\sum_{n=1}^{\infty} (-1)^n / \sqrt{n}$ tal que a soma seja nula, conforme a demonstração no livro-texto do Teorema de Riemann.
- 2. a) (0,6) Defina ponto interior, ponto aderente e ponto de acumulação.
 - b) (0,6) Defina conjunto aberto, conjunto fechado e conjunto compacto.
- c) (0,8) Seja $f: \mathbb{R} \to \mathbb{R}$ uma função contínua. Mostre que o conjunto $A := \{x \in \mathbb{R} ; f(x) > 0\}$ é um conjunto aberto e que $B := \{x \in [0,1]; f(x) \geq 0\}$ é um conjunto compacto.
- 3. (2,0) Seja $F \subset \mathbb{R}$ um conjunto fechado, não vazio, sem pontos isolados. Mostre que F não é enumerável. *Dica*: prova de que o conjunto de Cantor não é enumerável.
- **4.** a) (1,5) Mostre que o conjunto das frações $m/3^n$, com $n \in \mathbb{N}$ e $m = 0, 1, 2, \dots, 3^n$, é denso no intervalo [0, 1]. b) (0,5) Conclua que as diferenças positivas das extremidades dos intervalos retirados na construção do conjunto de Cantor é um conjunto denso no intervalo [0, 1].
- 5. Dê exemplo de
- a) (1,0) uma função $f: \mathbb{R} \to \mathbb{R}$ em que não existe o limite $\lim_{x\to a} f(x)$, qualquer que seja $a \in \mathbb{R}$.
- b) (1,0) uma função $f: I \to I$ não constante, em que I é um intervalo não degenerado e a imagem f(I) não é um intervalo.

Não esqueça de justificar todas as suas afirmações.

Boa prova!

Questão 1 a) (0.6 pontos) Defina série condicionalmente convergente e enuncie o Teorema de Riemann (sobre séries condicionalmente convergentes).

Uma série $\sum a_n$ é dita condicionalmente convergente se $\sum a_n$ é convergente e $\sum |a_n|$ é divergente. **0,3 pontos** até aqui.

Teorema de Riemann. Se $\sum_{n=1}^{\infty} a_n$ é uma série condicionalmente convergente então para todo $c \in \mathbb{R}$ existe um reordenamento (rearranjo) dos termos tal que a soma vale c (existe uma função $\varphi: \mathbb{N} \to \mathbb{N}$ tal que $\sum_{n=1}^{\infty} a_{\varphi(n)} = c$.) + 0,3 pontos

b) (0,6) Falso ou verdadeiro? Seja $a_n = 1/(-n)^3$. Então, para qualquer bijeção $\varphi: \mathbb{N} \to \mathbb{N}$, a série $\sum a_{\varphi}(n)$ é convergente. (Não esqueça de justificar.)

Verdadeiro, pois a série $\sum a_n$ é absolutamente convergente: $\sum |a_n|$ = $\sum 1/n^3$, p-série, p = 3 > 1, e temos o teorema que diz que toda série absolutamente convergente é comutativamente convergente.

Dê os quatro primeiros termos do rearranjo da série $\sum_{n=1}^{\infty} (-1)^n / \sqrt{n}$ tal que a soma seja nula, conforme a demonstração no livrotexto do Teorema de Riemann.

$$\sum_{n=1}^{\infty} (-1)^n / \sqrt{n} = -1 + \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{4}} - \cdots$$

 $\sum_{n=1}^{\infty} (-1)^n/\sqrt{n} = -1 + \tfrac{1}{\sqrt{2}} - \tfrac{1}{\sqrt{3}} + \tfrac{1}{\sqrt{4}} - \cdots$ O primeiro termo positivo $\tfrac{1}{\sqrt{2}}$ já é maior do que 0 (zero - o valor da nova soma). Então tomemos este como sendo o novo 1o. termo. (O primeiro termo também pode ser -1, o primeiro termo da série dada, que é menor do que 0.0,2

Passando aos termos negativos, somamos na ordem em que aparecem até a nova soma ficar menor do que 0: $\frac{1}{\sqrt{2}} + (-1) < 0$; logo, o 2o. termo é -1.

Passamos aos termos positivos: $\frac{1}{\sqrt{2}} + (-1) + \frac{1}{\sqrt{4}} = \frac{1}{\sqrt{2}} - 1 + \frac{1}{2} = \frac{1}{\sqrt{2}} - \frac{1}{2} > 0$; logo, o 3o. termo é $\frac{1}{\sqrt{2}}$ logo, o 3o. termo é $\frac{1}{\sqrt{4}}$

Passando aos termos negativos, o próximo é $-\frac{1}{\sqrt{5}}$. Então a nova série (a série reordenada para que a soma seja nula) é $\frac{1}{\sqrt{2}}$ $-1 + \frac{1}{\sqrt{4}} - \frac{1}{\sqrt{5}} + \cdots$.

Questão 2 a) (0,6) Defina ponto interior, ponto aderente e ponto de acumulação.

Sejam $X \subset \mathbb{R}$ e $a \in X$. $a \in X$ é um ponto interior a X se $(a-\epsilon, a+\epsilon) \subset X$ para algum número $\epsilon > 0$. $\mathbf{0}, \mathbf{2}$

a é um ponto aderente a X se é limite de uma sequência de pontos de X.

+0, 2

a é um ponto acumulação de X se toda vizinhança de a contém um ponto de X diferente de a. + **0**, **2**

b) (0,6) Defina conjunto aberto, conjunto fechado e conjunto compacto. Um conjunto X é dito aberto quando todo ponto de X é um ponto interior a X.

Fechado, se contém todos os seus pontos aderentes. +0,2

Compacto, se é fechado e limitado. +0,2

c) (0,8) Seja $f: \mathbb{R} \to \mathbb{R}$ uma função contínua. Mostre que o conjunto $A := \{x \in \mathbb{R} ; f(x) > 0\}$ é um conjunto aberto e que $B := \{x \in [0,1] ; f(x) \geq 0\}$ é um conjunto compacto.

Devemos mostrar que todo ponto de A é um ponto interior a A. Seja a um ponto de A, i.e. f(a)>0. Seja $\epsilon=\frac{f(a)}{2}$. Como f é contínua, i.e. contínua em todos os pontos do seu domínio \mathbb{R} , existe um número $\delta>0$ tal que $x\in(a-\delta,a+\delta)\Rightarrow f(x)\in(f(a)-\epsilon,f(a)+\epsilon)=(\frac{f(a)}{2},3\frac{f(a)}{2})\Rightarrow f(x)>\frac{f(a)}{2}>0\Rightarrow x\in A$. Logo, $(a-\delta,a+\delta)\subset A$ e, portanto, a é um ponto interior.

0, 4

B é limitado, pois, por definição, $B \subset [0,1]$. + **0**, **1** Resta então mostrar que B é fechado, i.e. que todo ponto aderente a B pertence a B. Seja a um ponto aderente a B. Pela definição de ponto aderente, existe uma sequência (x_n) de pontos de B, i.e. $f(x_n) \geq 0$, tal que $a = \lim x_n$. Como f é contínua, daí temos que $f(a) = \lim f(x_n) \geq 0$, logo $a \in B$.

Questão 3 (2,0) Seja $F \subset \mathbb{R}$ um conjunto fechado, não vazio, sem pontos isolados. Mostre que F não é enumerável. Dica: prova de que o conjunto de Cantor não é enumerável.

(Repetição da prova de que o conjunto de Cantor não é enumerável. Vista em aula e no livro-texto.) Seja $E = \{x_1, x_2, x_3, \cdots\}$ uma enumeração (arbitrária) de pontos de F (i.e. $x_n = f(n)$, para alguma função injetiva $f: \mathbb{N} \to X$). Devemos provar que $E \neq F$, ou seja, que existe um ponto $c \in F/E$. Isto é obtido tomando uma sequência de intervalos compactos $I_1 \supset I_2 \supset \cdots$ tais que $x_n \notin I_n, I_n \cap F \neq \emptyset$ e com o comprimento de I_n menor

do que 1/n. Isto é possível, tendo em vista que $F \neq \emptyset$ não contém pontos isolados. 1,0

Pelo Teorema dos Compactos Encaixados, temos que existe um ponto $c \in \bigcap_{n=1}^{\infty} I_n$. Tomando $y_n \in I_n \cap F$, temos que $\lim y_n = c$, pois $c \in I_n$ para todo n e $y_n, c \in I_n$ implica que $|y_n - c|$ é menor do que ou igual ao comprimento de I_n (< 1/n). + **0**, **5**

Daí, temos que o ponto c pertence ao conjunto F, tendo em vista que o mesmo é fechado. Mas $c \notin E$ ($c \neq x_n$, qualquer que seja n) pois $c \in I_n$ para todo $n \in x_n \notin I_n$.

Questão 4 a) (1,5) Mostre que o conjunto das frações $m/3^n$, com $n \in \mathbb{N}$ e $m = 0, 1, 2, \dots, 3^n$, é denso no intervalo [0, 1]. b) (0,5) Conclua que as diferenças positivas das extremidades dos intervalos retirados na construção do conjunto de Cantor é um conjunto denso no intervalo [0, 1].

(Exercício da Lista.) Devemos mostrar que dados $a \in [0,1]$ e $\epsilon > 0$, existe alguma fração $m/3^n$ tal que $|a - \frac{m}{3^n}| < \epsilon$. Seja n tal que $1/3^n < \epsilon$. A união dos intervalos $[(m-1)/3^n, m/3^n)$ com $m=1,2,\cdots,3^n$ é o intervalo [0,1], logo, $a \in [(m-1)/3^n, m/3^n)$ para algum $m \in \{1,2,\cdots,3^n\}$. Daí, temos que $|a - \frac{m}{3^n}| < 1/3^n < \epsilon$. (1,5)

b) As diferenças mencionadas são as frações no item **a)**. (Na primeira etapa da construção, fazendo as diferenças, obtemos 0, 1/3, 2/3, 1; na segunda, $1/3^2, 2/3^2, 4/3^2, 5/3^2, 7/3^2, 8/3^2$; e assim por diante.) Logo, pelo item **a)**, temos que as mesmas formam um conjunto denso no intervalo [0, 1]. (0,5)

Questão 5 Dê exemplo de

- a) (1,0) uma função $f : \mathbb{R} \to \mathbb{R}$ em que não existe o limite $\lim_{x\to a} f(x)$, qualquer que seja $a \in \mathbb{R}$.
- b) (1,0) uma função $f: I \to I$ não constante, em que I é um intervalo não degenerado e a imagem f(I) não é um intervalo.

Seja f(x) = 0 se $x \in \mathbb{Q}$ e 1, se $x \notin \mathbb{Q}$. Como todo intervalo aberto contém números racionais e irracionais, para todo $n \in \mathbb{N}$, existem $x_n, y_n \in (a - \frac{1}{n}, a + \in \frac{1}{n})$ tais $x_n \in \mathbb{Q}$ e $y_n \notin \mathbb{Q}$. (Os racionais e os irracionais são conjuntos densos em \mathbb{R}). Daí temos $\lim x_n = a$, $\lim y_n = a$, $\lim f(x_n) = \lim 0 = 0$ e $\lim f(x_n) = \lim 1 = 1$. Logo, não existe o limite $\lim_{x\to a} f(x)$, já que temos duas sequências convergindo para a, com as sequências das imagens convergindo para valores distintos. 1,0

b) Seja $f: \mathbb{R} \to \mathbb{R}$ $(I = \mathbb{R})$ definida por f(x) = 0 se $x \le 0$ e 1, se x > 0. Temos que $f(\mathbb{R}) = \{0, 1\}$ não é um intervalo.