

Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física

Lentes y modelo del ojo humano

Objetivos

- 1. Estudiar la óptica del ojo humano
- 2. Explorar problemas de visión y su corrección.
- 3. Demostrar la función de la retina y el cristalino.

Materiales y equipo

- 1. Mesa óptica
- 2. Modelo del ojo humano
- 3. Lentes de plástico (2 juegos de 6 piezas)
- 4. Pantalla cristalina, calibrador óptico y lente ajustable

Figura 1: Modelo del ojo humano

Marco teórico

Lentes

Las lentes forman imágenes al desviar los rayos de luz cuando cruzan interfaces entre materiales con diferentes índices de refracción. El índice de refracción de un material es la proporción de la velocidad de la luz en el vacío respecto a su velocidad en el medio. Cuando la luz pasa a través de una lente, cruza dos interfaces: una al entrar y otra al salir. Esta desviación se cuantifica por la distancia focal de la lente, la cual depende de la curvatura de sus superficies y de los índices de refracción del material de la lente y su entorno.

Las lentes convergentes, con superficies convexas y más gruesas en el centro que en los bordes, tienen distancias focales positivas y hacen que los rayos paralelos se unan en un punto focal. Por otro lado, las lentes divergentes, con superficies cóncavas y más delgadas en el centro, tienen distancias focales negativas y hacen que los rayos paralelos se separen. La fuerza de una lente, que se refiere a su capacidad para desviar los rayos de luz, está determinada por su distancia focal: una lente con una distancia focal corta es más fuerte que una con una distancia focal larga.

Figura 2: Tipos de lentes

La formación de imágenes depende de la convergencia o divergencia de los rayos de luz que pasan a través de la lente. Una imagen real se forma por la convergencia de los rayos en un punto y puede verse en una pantalla colocada en ese punto. En cambio, una imagen virtual se forma por la divergencia de los rayos, y solo puede verse directamente si el ojo está posicionado de manera que los rayos divergentes entren en él. La distancia desde la lente hasta la imagen se llama distancia de la imagen: es positiva para imágenes reales y negativa para imágenes virtuales.

La distancia desde la lente hasta el objeto se llama distancia del objeto. En un sistema de una sola lente, esta distancia es positiva si el objeto está frente a la lente. En un sistema de dos lentes, la imagen formada por la primera lente actúa como objeto para la segunda lente. Si esta imagen-objeto está frente a la segunda lente, su distancia es positiva; si está detrás de la lente, la distancia es negativa. Este comportamiento determina cómo las lentes enfocan la luz y forman imágenes en diferentes configuraciones ópticas.

Figura 3: Tipos de lentes

Lentes delgados

Si el objeto está muy lejos de la lente, la distancia del objeto se considera infinita. En este caso, los rayos provenientes del objeto son paralelos, o es igual a cero, y la distancia de la imagen es igual a la distancia focal. Esto lleva a la definición del punto focal como el lugar donde una lente enfoca los rayos paralelos entrantes de un objeto distante. Una lente tiene dos puntos focales, uno a cada lado. La distancia desde la lente hasta cada punto focal es la distancia focal.

La ecuación de lentes delgadas se utiliza para relacionar la distancia de la imagen (d_i) con la distancia del objeto (d_o) y así obtener la distancia focal (f).

$$\frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_i} \tag{1}$$

El tamaño de una imagen puede ser diferente del tamaño del objeto. La construcción geométrica demuestra que el aumento lateral de la imagen es:

$$M = \frac{d_i}{d_o} = \frac{h_i}{h_o} \tag{2}$$

en donde h_i es la altura de la imagen y h_o es la altura del objeto.

Ojo humano

El ojo humano es un organo sensible a la luz. Se encarga de transformar la intensidad luminosa que recibe en señales eléctricas. Estas últimas recorren el nervio óptico para luego ser enviadas al cerebro en donde se genera la sensación de vista.

Al igual que una cámara, el ojo cuenta consigo con una abertura, un sistema de lentes y una superficie trasera sensible a la luz.

Figura 4: Anatomía del ojo humano

El sistema de lentes del ojo humano actua como un solo lente convergente. Los rayos de luz provenientes de los objetos atraviesan dicho lente y convergen en la retina, por medio de refracción. La retina es el lugar en donde se enfoca y construye una imagen invertida. Al transcurrir dicha construcción, el nervio optico se encarga de transmitir dicha información visual al cerebro en donde se generará una visión no invertida.

Figura 5: Formación de imágenes en la retina

Procedimiento experimental - óptica del ojo humano

Imágenes formadas en el ojo

- 1. No llene el modelo del ojo con agua todavía. Coloque la pantalla de la retina en la ranura del medio, marcada como NORMAL. Coloque el lente de +400 mm en la ranura etiquetada como SEPTUM.
- 2. Coloque la fuente de luz frente al modelo del ojo, a unos 50 cm de la córnea. ¿Puede ver una imagen en la pantalla de la retina? Mueva la fuente de luz hacia arriba, abajo, izquierda y derecha. ¿Cómo se mueve la imagen?
- 3. Observe la imagen que se ve en la retina ¿La imagen en la retina está invertida? Voltee el dibujo boca abajo. ¿Cómo se ve ahora la imagen? Haga un dibujo de la imagen en la retina y dibuje una copia del dibujo original al lado.

Acomodación

En el proceso de acomodación, los músculos en el ojo cambian la forma del cristalino para cambiar su longitud focal. Inicialmente, modelará la acomodación variando la longitud focal del cristalino usando el lente de enfoque ajustable. Más adelante, cuando el modelo esté lleno de agua, la acomodación se logrará reemplazando el cristalino con lentes fijos de diversas longitudes focales.

- 1. No llene aún el modelo del ojo con agua. Reemplaze el lente en la ranura SEPTUM con el lente de enfoque ajustable. Posicione el modelo del ojo a unos 25 cm de la pantalla iluminada. ¿Puede ver la imagen en la retina? Mueva el émbolo de la jeringa para ajustar el lente y formar la imagen más nítida posible. ¿El lente es cóncavo o convexo? ¿Es un lente convergente o divergente?
- 2. Aleje el modelo del ojo de la pantalla iluminada a unos 50 cm. Ajuste nuevamente el lente para formar la imagen más nítida. ¿Aumentó o disminuyó el poder del lente? ¿Aumentó o disminuyó la longitud focal?
- 3. Reemplaze el lente de enfoque ajustable con el lente de +400 mm en la ranura SEPTUM. Ajuste la distancia de la pantalla iluminada para formar una imagen nítida. Marque la posición del modelo del ojo para que pueda volver al mismo lugar después de llenarlo con agua.
- 4. Llene el modelo del ojo con agua hasta dejar entre 1 y 2 cm del borde superior sin llenar. Vuelva a colocarlo en la misma posición que en el paso 3. ¿La imagen sigue enfocada? Pruebe cambiando la distancia; ¿puede lograr que se enfoque? Explique. ¿Qué efecto tienen los humores acuoso y vítreo (modelados por el agua) en la longitud focal del sistema de lentes del ojo?.

- 5. Coloque el modelo del ojo a unos 35 cm de la fuente de luz. Reemplaze el lente de +400 mm en la ranura SEPTUM con el lente de +62 mm. ¿La imagen está enfocada ahora? Acerque el modelo del ojo lo más posible a la fuente de luz manteniendo la imagen enfocada. Describa la imagen en la pantalla de la retina.
- 6. Mida la distancia del objeto,O, desde la pantalla de la fuente de luz hasta el borde superior del modelo del ojo. (El frente del borde es un lugar conveniente para medir y marque el centro del sistema de dos lentes del modelo del ojo). Registre esta distancia, que es el punto cercano del modelo del ojo cuando está equipado con el lente de +62 mm. El ojo humano promedio tiene un punto cercano para la visión nítida de aproximadamente 25 cm.
- 7. La óptica de un sistema de dos lentes se puede simplificar observando el efecto combinado de las lentes y la longitud focal total efectiva del sistema. Mida la distancia de la imagen (d_i) , desde el borde del modelo hasta el mango de la retina. Calcule la longitud focal total efectiva (f) del sistema de dos lentes usando la fórmula (1) de la lente delgada
- 8. Aumente la capacidad del modelo del ojo para enfocar un objeto cercano agregando el lente de +400 mm a la ranura B. Esta combinación modela una longitud focal diferente para el cristalino. ¿Qué tan cerca puede enfocar el ojo ahora?
- 9. Mantenga el lente de +400 mm en la ranura B y reemplaze el lente en la ranura SEPTUM con el lente de +120 mm. ¿A qué distancia enfoca ahora el modelo del ojo? ¿Qué hace un ojo humano real para cambiar la longitud focal de su cristalino?
- 10. Quite ambos lentes y coloque el lente de +62 mm en la ranura SEPTUM. Ajuste la distancia ojo-fuente a la distancia del "punto cercano" para este lente (que encontró en el paso 6) para que la imagen esté enfocada. Mientras observa la imagen, coloque la pupila redonda en la ranura A. ¿Qué cambios ocurren en el brillo y la claridad de la imagen? Mueva la fuente de luz varios centímetros más cerca del modelo del ojo. ¿La imagen sigue enfocada? Quite la pupila y observe el cambio en la claridad de la imagen. Tanto con como sin la pupila, ¿cuánto puede cambiar la distancia ojo-fuente y aún tener una imagen nítida? Prediga qué pasará con la imagen cuando coloque la pupila de "gato. en la ranura A. Inténtelo y registre tus observaciones.
- 11. Haga un dibujo detallado que muestre el objeto, la imagen, la pupila y ambas lentes. Identifique qué lente modela el lente corneal y cuál modela el cristalino.
- 12. Posicione el modelo del ojo (sin la pupila) de manera que mire hacia un objeto distante. ¿La imagen en la retina está enfocada? Reemplaze el lente en la ranura SEPTUM con uno que haga una imagen clara del objeto distante; este es el lente para visión lejana. Registre la longitud focal marcada en el mango del lente.
- 13. Calcule la longitud focal total efectiva del sistema de lentes, como lo hiciste en el paso 7. ¿Qué valor debe usar como la distancia del objeto para la visión lejana? ¿Cómo introduce ese valor en una calculadora? (Pista: a medida que la distancia del objeto,o, aumenta hacia el infinito, la inversa de la distancia del objeto, d_0 , disminuye hacia cero).
- 14. Un tratamiento para cataratas es eliminar quirúrgicamente el cristalino. Quite el cristalino del modelo del ojo y observe la imagen del objeto distante en la retina. ¿Puede un ojo sin ayuda enfocar objetos distantes sin el cristalino? Coloque el lente de +400 mm en la ranura 1 para que actúe como un lente de gafas. ¿Esto restaura la visión clara? Gire el modelo del ojo para mirar la fuente de luz cercana. ¿Puede ajustar la distancia del objeto cercano para formar una imagen clara? Reemplaze el lente de gafas en la ranura 1 con el lente de +120 mm. ¿Ahora puede ajustar la distancia del objeto para formar una imagen clara?

Hipermetropía

Una persona afectada por hipermetropía tiene un globo ocular más corto de lo normal, lo que hace que la retina esté demasiado cerca del sistema de lentes. Esto provoca que las imágenes de objetos cercanos se formen detrás de la retina.

- 1. Configura el modelo del ojo para la visión cercana normal (coloca el lente de 62 mm en la ranura SEPTUM, quita otros lentes y asegúrate de que la retina esté en la posición NORMAL). Posiciona el ojo para mirar hacia la fuente de luz cercana. Ajusta la distancia ojo-fuente a la distancia del punto cercano para que la imagen esté enfocada.
- 2. Mueve la pantalla de la retina a la ranura hacia adelante, etiquetada como FAR. Describe lo que le sucede a la imagen. Esto es lo que una persona hipermétrope ve cuando intenta mirar un objeto cercano. Reduce el tamaño de la pupila colocando la pupila redonda en la ranura A. ¿Qué sucede con la claridad de la imagen? Quita la pupila.
- 3. Gira el modelo del ojo para mirar el objeto distante y describe la imagen. ¿Tiene una persona hipermétrope dificultades para ver objetos distantes? ¿Por qué no fue necesario cambiar el lente para mirar de lejos?
- 4. Devuelve el modelo del ojo a mirar hacia la fuente de luz cercana. Ahora corregirás la hipermetropía colocando gafas en el modelo. Encuentra un lente que enfoque la imagen cuando lo coloques frente al ojo en la ranura 1. Registra la longitud focal de este lente. Gira el lente de las gafas en la ranura. ¿Esto afecta la imagen en la retina?
- 5. Un lente correctivo no se describe normalmente por su longitud focal, sino por su poder de refracción, que se mide en unidades llamadas dioptrías. Para calcular el poder de un lente en dioptrías, toma el recíproco de su longitud focal en metros. ¿Cuál es el poder del lente de las gafas que seleccionaste para el modelo del ojo?
- 6. Asegúrate de que la imagen todavía esté enfocada. Quita las gafas. Añade el lente de +120 mm en la ranura B para simular lo que sucede cuando el cristalino aumenta su poder mediante la acomodación. ¿La imagen se vuelve más nítida? Esto muestra que el ojo puede compensar la hipermetropía si puede acomodar lo suficiente.

Miopía

Una persona afectada por miopía tiene un globo ocular más largo de lo normal, lo que hace que la retina esté demasiado lejos del sistema de lentes. Esto provoca que la imagen de un objeto distante se forme delante de la retina.

- 1. Configura el modelo del ojo para visión cercana normal (coloca el lente de +62 mm en la ranura SEPTUM, quita otros lentes y coloca la pantalla de la retina en la posición NORMAL). Con el modelo del ojo mirando hacia la fuente de luz cercana, ajusta la distancia ojo-fuente para que la imagen esté enfocada.
- 2. Mueve la pantalla de la retina a la ranura trasera, etiquetada como NEAR. Describe lo que sucede con la imagen. Reduce el tamaño de la pupila colocando la pupila redonda en la ranura A. ¿Qué sucede con la claridad de la imagen? Quita la pupila.
- 3. Ahora corregirás la miopía colocando gafas en el modelo. Encuentra un lente que enfoque la imagen cuando lo coloques frente al ojo en la ranura 1. Registra la longitud focal de este lente. Calcula su poder en dioptrías. ¿Afecta la imagen al girar el lente de las gafas en la ranura?
- 4. Quita las gafas. Ajusta la distancia ojo-fuente para que la imagen esté enfocada. ¿Esta distancia es diferente a la distancia normal del punto cercano que encontraste en el paso 1? ¿Por qué?
- 5. Gira el modelo del ojo para mirar el objeto distante. Describe la imagen. Reemplaza el lente en la ranura SEPTUM con el lente de visión lejana normal (que encontraste en la Parte 1, paso 12, en la página 17). ¿Está la imagen enfocada? Esto es lo que una persona miope ve cuando intenta mirar un objeto distante. El lente en la ranura SEPTUM representa el cristalino en su estado más relajado, con su longitud focal más larga posible. ¿Puede un ojo compensar la miopía mediante la acomodación?

Astigmatismo

- 1. Configura el modelo del ojo para visión cercana normal (coloca el lente de +62 mm en la ranura SEPTUM, quita otros lentes y coloca la pantalla de la retina en la posición NORMAL). Con el modelo del ojo mirando hacia la fuente de luz cercana, ajusta la distancia ojo-fuente para que la imagen esté enfocada.
- 2. Coloca el lente cilíndrico de -128 mm en la ranura A. El lado del mango del lente marcado con la longitud focal debe estar hacia la fuente de luz. Describe la imagen formada por el ojo con astigmatismo.
- 3. Gira el lente cilíndrico. ¿Qué sucede con la imagen? Esto muestra que el astigmatismo puede tener diferentes direcciones dependiendo de cómo se oriente el defecto en el sistema de lentes del ojo.
- 4. Ahora corregirás el astigmatismo con gafas. Coloca el lente cilíndrico de +307 mm en la ranura 1. El lado del mango del lente marcado con la longitud focal debe estar hacia la fuente de luz. Gira el lente correctivo y describe lo que sucede con la imagen. Encuentra la orientación del lente de las gafas en la que la imagen sea más nítida. ¿Cuál es el ángulo entre los ejes cilíndricos del cristalino y el lente correctivo?
- 5. Un ojo puede tener más de un defecto. Haz que el modelo del ojo tenga tanto astigmatismo como hipermetropía (visión lejana) moviendo la pantalla de la retina a la ranura FAR. ¿Qué lente adicional de gafas tienes que colocar en la ranura 2 para que la imagen vuelva a estar enfocada?

Conclusiones

Imágenes formada por el ojo

1. Dado que la imagen en la retina está invertida, ¿por qué no vemos las cosas al revés? Si escribieras algo en un pedazo de papel y lo sostuvieras boca abajo frente al ojo, ¿Cómo se vería en la retina? ¿Serías capaz de leerlo fácilmente?

Acomodación

- 1. En el paso 13, la longitud focal efectiva f y la distancia de la imagen d_i eran las mismas. ¿Por qué? ¿Para qué caso especial f es igual a d_i ?
- 2. En un ojo humano real, la acomodación se logra mediante músculos que cambian la curvatura del cristalino. Cuando un ojo cambia la acomodación de un objeto distante a un objeto cercano, ¿aumenta o disminuye la curvatura del cristalino? ¿Por qué disminuye el rango de acomodación del ojo con la edad?

Hipermetropía

- 1. ¿Por qué reducir el tamaño de la pupila hizo que la imagen fuera más clara? ¿Una persona con hipermetropía vería mejor con luz brillante o con luz tenue?
- 2. Un lente fuerte (de alta potencia) tiene una longitud focal larga o corta? ¿Cuál es el poder y la longitud focal de una pieza delgada y plana de vidrio sin curvatura? Observa detenidamente los lentes de +62 mm y +400 mm. ¿Qué lente tiene una mayor curvatura?

Miopía

- 1. ¿Por qué reducir el tamaño de la pupila hizo que la imagen fuera más clara? ¿Una persona con miopía vería mejor con luz brillante o con luz tenue?
- 2. Para corregir la miopía, ¿es necesario mover la imagen formada por el ojo más cerca o más lejos del sistema de lentes del ojo? ¿Esto requiere un lente convergente o divergente? ¿Este lente correctivo suma o resta al poder de refracción del sistema de lentes del ojo? ¿La curvatura de este lente es cóncava o convexa?

Astigmatismo

1. ¿Por qué girar el lente correctivo para el astigmatismo afecta la imagen, pero girar un lente correctivo para hipermetropía o miopía no lo hace? ¿Qué prueba podrías hacer para averiguar si las gafas de una persona tienen una corrección para el astigmatismo? ¿Alguien en tu grupo de laboratorio usa gafas que corrijan el astigmatismo?

Bibliografía

- Fisica para Ciencias de la Salud. Wilson, Buffa, Lou, Giancoli. 2da edicion. Pearson.
- Fısica, Serway, R y Faughn, J. 5ta Edicion. Prentice Hall. 2001.
- Fisica para ciencias de la Vida. Jou, D; Llebot, J y Garcia, C. McGraw Hill. 1994.
- Física para ciencias e ingeniería . Cengage. Serway , R., & Jewett, J. (2008).

