

Functional Analysis I

Tutorial Assignment 8

Martin Genzel, Mones Raslan

Summer Term 2019

Exercise 1: Let $X = \{1, 2, 3, 4\}$. Which of the following systems \mathcal{T}_i , i = 1, 2, 3, define a topology on X,

- (i) $\mathcal{T}_1 = \{\{1, 2, 3\}, \{1\}, \{2\}, \{3\}\},\$
- (ii) $\mathcal{T}_2 = \{ \{ \emptyset, \{1\}, X \}, \}$
- (iii) $\mathcal{T}_3 = \{\emptyset, X, \{1, 2, 3\}, \{1\}, \{2\}, \{3\}\} \}$?

In case (X, \mathcal{T}_i) is a topological space, find the corresponding closed sets.

Exercise 2: Prove Lemma 6.18:

Let $X \neq \emptyset$, and let γ be a set of subsets of X, i.e., $\gamma \subset \mathcal{P}(X)$. By \mathcal{L} denote the set consisting of all finite intersections of sets in γ , the empty set \emptyset , and X itself. Further, let \mathcal{T} be the set which consists of all unions of sets in \mathcal{L} . Then \mathcal{T} is a topology on X, and \mathcal{L} is a basis for \mathcal{T} .

Exercise 3: Let (X, \mathcal{T}) be a topological space and $A \subset X$. The closure \overline{A} of A is defined as the intersection of all closed sets containing A. Prove that \overline{A} is indeed closed and that $x \in \overline{A}$ if and only if for all $U \in \mathcal{T}$ with $x \in U$ we have that $U \cap A \neq \emptyset$.

Exercise 4: Let $(X_1, \mathcal{T}_1), (X_2, \mathcal{T}_2)$ be topological spaces and γ be a subbasis for \mathcal{T}_2 . Show that a mapping $f: X_1 \to X_2$ is continuous if and only if $f^{-1}(V) \in \mathcal{T}_1$ for all $V \in \gamma$.

Exercise 5: Let E be a normed space and let \mathcal{T} be the topology of E. Show that $\sigma(E, E^*) \subset \mathcal{T}$.

Exercise 6: Let E be a normed space. Show that if E is reflexive, then $\sigma(E^*, E) = \sigma(E^*, E^{**})$.

Exercise 7: Prove, that sequences in Hausdorff spaces can have at most one limit.

Exercise 8: Prove that every compact subset $C \subset X$ of a Hausdorff space (X, \mathcal{T}) is closed.

Exercise 9: A topological space (X, \mathcal{T}) is called *Hausdorff space* if for each $x, y \in X$, $x \neq y$, there exist neighborhoods $U_x, U_y \in \mathcal{T}$ of x and y, respectively, such that $U_x \cap U_y = \emptyset$. Let E be a normed space. Prove that $(E, \sigma(E, E^*))$ and $(E^*, \sigma(E^*, E))$ are Hausdorff spaces.