全集成,霍尔效应的线性电流传感器 与2.1 kVRMS电压绝缘及低电阳电流导体

特点和优点

- 低噪声模拟信号路径
- 器件的带宽是通过设置新的筛选器引脚
- 5 µs 输出响应上升时间步输入电流
- 80 kHz带宽
- 总输出误差1.5%在T A= 25°C
- · 小尺寸,低姿态SOIC8 包装
- 1.2 mΩ内部导体电阻
- 2.1 kV _{RMS} 从pins 1-4最小绝缘电压pins 5-8
- 5.0 V, 单电源操作
- 66到185 mV / A输出灵敏度
- 输出电压正比于电流AC或DC
- 工厂校准的准确性
- 极度稳定的输出偏移电压
- 几乎为零的磁滞
- 电源电压的成比例输出

包装: 8铅SOIC (后缀LC)

近似 规模1:1

说明

Allegro ® ACS712提供经济和精确的为AC或DC电流检测解决方案,在工业,商业和通讯系统. 该装置包装允许客户轻松实施. 典型应用包括电动机控制,载荷检测和管理,开关式电源和过电流故障保护.

该器件具有精确的低偏置线性霍尔 传感器电路与位于附近的铜传导路径 表面的电路小片. 外加电流流过这个铜 传导路径产生的磁场感应到 被集成霍尔IC比例转换成 电压. 器件精确度优化,通过密切

邻近的磁信号,霍尔传感器. 一 精确的,成比例的电压由低偏移, 斩波器稳定的BiCMOS霍尔IC, 这是编程 包装后的准确性.

该设备的输出具有正斜率(>V 当通过初级铜电流增加 传导路径从pins 1和2, (以pins 3和4),其中 是电流检测使用的路径.内部电阻 该传导路径是1.2 mΩ典型的,具有较低的功率

续下页...

典型应用

应用1.的ACS712输出一个模拟信号,V 该线性变化与uni-或双向AC或DC 初级感应电流,I p,指定的范围内.C 建议对噪音管理与价值,即 取决于应用程序.

OUT -

IOUT(Q)

F

说明(续)

损失. 在铜导体厚度允许生存 在注册设备5×过流条件. 该端子 传导通路的电气隔离传感器引线 (pins 5通过8). 这使得ACS712电流传感器可用于 在应用中使用而不需要使用电隔离 光电绝缘器或其它昂贵绝缘技术. 该ACS712提供了一个小型,表面装载 SOIC8 包装. 引脚架镀100%雾锡,这是兼容与标准无铅(Pb)印刷电路板汇编进程. 在内部,除了设备Pb-free,倒装高温铅基焊料球,目前从RoHS. 免征设备在发货前完全校准从工厂.

选择指南

部件号	Packing*	T _A (°C)	优化范围, I _P (A)	灵敏度, Sens (Typ) (mV/—)
ACS712ELCTR-05B-T	编带和卷轴,3000件/卷	- 40到85	±5	185
ACS712ELCTR-20A-T	编带和卷轴,3000件/卷	- 40到85	±20	100
ACS712ELCTR-30A-T	编带和卷轴,3000件/卷	- 40到85	±30	66

^{*}联系我们了解更多的包装选项快板.

绝对最大额定值

特征	符号	注释	额定值	单位
电源电压	V _{cc}		8	V
反向电源电压	V _{RCC}		-0.1	V
输出电压	V _{IOUT}		8	V
反向輸出电压	V _{RIOUT}		-0.1	V
		Pins 1-4和5-8; 60 Hz, 1分钟, T=25°C	2100	V
钢筋隔离电压	V _{ISO}	电压适用于基于引线框架(Ip+ pins), on IEC 60950	184	V _{peak}
		Pins 1-4和5-8; 60 Hz, 1分钟, T	1500	V
基本隔离电压	V _{ISO(bsc)}	电压适用于基于引线框架(Ip+ pins), on IEC 60950	354	V _{peak}
输出电流源	I _{IOUT(Source)}		3	mA
输出电流接收器	I _{IOUT(Sink)}		10	mA
过电流瞬时性	Ι _P	1脉搏, 100 ms	100	Α
额定工作环境温度	T _A	范围E	- 40到85	°C
最高结温	T _J (最大)		165	°C
贮藏温度	T _{stg}		- 65到170	°C

参数	规范
	CAN / CSA-C22. 2号60950-1-03
火灾和触电	UL 60950-1:2003
	EN 60950-1:2001

功能框图

引脚排列图

码头总表

数	名称	说明
1 and 2	IP+	当前正在码头感觉到,融合国内
3和4	IP-	当前正在码头感觉到,融合国内
5	GND	信号接地端子
6	过滤器	终端的外部电容器,sets带宽
7	VIOUT	模拟输出信号
8	VCC	设备的电源端子

通用操作特性

1 全系列超过T A, C_F = 1 nF, 和V _{CC} = 5 V,除非另有规定

特征	符号	测试条件	最小.	Тур.	最大.	单位
电气特性						
电源电压	V _{cc}		4.5	5.0	5.5	V
电源电流	Icc	V _{CC} = 5.0 V,输出开	-	10	13	mA
输出电容负载	C _{LOAD}	VIOUT到GND	-	-	10	nF
输出电阻负载	R _{LOAD}	VIOUT到GND	4.7	-	-	kΩ
初级导体电阻	R _{PRIMARY}	T _A = 25°C	-	1.2	-	mΩ
上升时间	t,	I _P = I _P (最大值)、	-	5	-	μs
频率带宽	f	-3 dB, T _A = 25°C; I _P 是10一个peak-to-peak	-	80	-	千赫
非线性	E _{LIN}	在全方位的IP	-	1.5	-	%
对称性	E _{SYM}	在全方位的IP	98	100	102	%
零电流输出电压	V _{IOUT(Q)}	Bidirectional; I _P = 0 A, T _A = 25°C	-	V _{cc} × 0.5	-	V
通电时间	t _{PO}	产量达到稳态水平,90% T 」= 25° C, 20礼 物 对引线框架	-	35	-	μs
磁耦合 2			-	12	-	克/阿
内部过滤阻力 3	R _{F(INT)}			1.7		kΩ
1设备 可以工作在更高的初级目	前的水平,I	p,和环境,T A,引线框架和内部温度,T	· 	供的最大		

1设备 可以工作在更高的初级目前的水平,I 结温,T 」(最大),是不是超

」(最大),是不是超标.

21G = 0.1 mT.

3R_{F(INT)} 形成了一个通过滤波器引脚RC电路.

常见热特性

			最小.	Тур.	最大.	单位
操作温度内部引线框架	T _A	E范围	-40	-	85	°C
					价值	単位
Junction-to-Lead热 电阻 ²	R _{euL}	安装在快板ASEK 712评估板			5	°C/W
Junction-to-Ambient热阻	R _{eJA}	在快板85-0322评估板安装,包括有权con- sumed由董事会			23	°C/W

x05B性能特点

TA = -40° C到85° C, CF = 1 nF, 和V CC = 5 V, 除非另有规定

YO2D T HC 1.3 \m/	$\Gamma_{A} = 40^{\circ} \text{ C}_{9} \text{ G}_{0} \text{ C}_{0} = 1^{\circ} \text{ Im}_{0} \text{ Adv} \text{ CC} = 3^{\circ} \text{ V}_{0} \text{ PAT-F} \text{TIF-AWLE}$					
特征	符号	测试条件	最小.	Тур.	最大.	单位
优化精度范围	l _P		-5	-	5	Α
灵敏度	Sens	在全方位的I _{P.} T _A = 25°C	180	185	190	n.∀ /βō]
噪音	V _{NOISE(PP)}	Peak-to-peak, T A = 25°C, 185 mV /编程的敏感性, C _F = 47 nF, C OUT =开放, 2 kHz带宽	_	21	-	mV
零电流输出斜率	ΔΙ _{ΟυΤ(Q)}	T _A = -40°C到25°C	-	-0.26	-	mV/°C
	DI OUT(Q)	T _A = 25° C到150° C	-	-0.08	-	mV/°C
灵敏度边坡	ΔSens	T _A = -40° C到25° C	_	0.054	-	mV/A/°C
	200110	T _A = 25° C到150° C	ı	-0.008	-	mV/A/°C
总输出 错误 2	E _{TOT}	I _P =±5 A, T _A = 25°C	-	±1.5	-	%

1设备 可以工作在更高的初级目前的水平,I 不超过.

P,和环境温度,T

x20A性能特点

 $T_{\rm A}$ = $-40\,^{\circ}$ C到85 $^{\circ}$ C, $C_{\rm F}$ = 1 nF,和V $_{\rm CC}$ = 5 V,除非另有规定

特征	符号	测试条件	最小.	Тур.	最大.	单位
优化精度范围	I _P		-20	-	20	Α
灵敏度	Sens	在全方位的I _{P.} T _A = 25°C	96	100	104	mV /βij
噪音		Peak-to-peak, T _A = 25° C, 100 mV /编程的敏感性, C _F = 47 nF, C _{OUT} =开放,2 kHz带宽	-	11	-	mV
零电流输出斜率	ΔI _{OUT(Q)}	T _A = -40°C到25°C	-	-0.34	-	mV/°C
		T _A = 25°C到150°C	-	-0.07	-	mV/°C
灵敏度边坡	ΔSens	T _A = -40°C到25°C	-	0.017	-	mV/A/°C
	200110	T _A = 25° C到150° C	-	-0.004	-	mV/A/°C
总输出 错误 2	E _{TOT}	I _P =±20 A, T _A = 25°C	-	±1.5	-	%

¹设备 可以工作在更高的初级目前的水平,I T」(最大),是不是超标.

A,提供的最高结温,

2对I ,百分比I = 20 A.输出过滤.

x30A性能特点

 $T_{\rm A}$ = $-40\,^{\circ}$ C到85 $^{\circ}$ C, $C_{\rm F}$ = 1 nF,和V $_{\rm CC}$ = 5 V,除非另有规定

特征	符号	测试条件	最小.	Тур.	最大.	单位
优化精度范围	I _P		-30	-	30	Α
灵敏度	Sens	在全方位的I _P , T _A = 25°C	64	66	68	m.∀ /β0]
噪音		Peak-to-peak, T A = 25° C, 66 mV /编程的敏感性, C _F = 47 nF, C OUT =开放,2 kHz带宽	-	7	-	mV
零电流输出斜率	ΔΙ _{ΟυΤ(Ω)}	T _A = -40°C到25°C	-	-0.35	-	mV/°C
		T _A = 25° C到150° C	-	-0.08	-	mV/°C
灵敏度边坡	ΔSens	T _A = -40°C到25°C	-	0.007	-	mV/A/°C
		T _A = 25° C到150° C	_	-0.002	-	mV/A/°C
总输出 错误 2	E _{TOT}	I _P = ±30 A , T _A = 25°C	-	±1.5	-	%

设备 可以工作在更高的初级目前的水平,I T_J(最大),是不是超标。

p,和环境温度,T

▲,提供的最高结温*,*

性能特点

I_P = 5 A,除非另有规定

_P,和环境温度,T

25 50

-25

性能特点 Ip= 20 A,除非另有规定

-25 -20 -15 -10

TA (°C)

精度的定义特征

灵敏度(Sens). 在响应变化的传感器输出 1通过初级一个导体的变化. 敏感度是 产品的磁电路的灵敏度(G / A)与线性 IC放大器增益(mV/克).放大器增益的线性IC是亲 CKSEL必须编程在优化灵敏度(mV / A)转换为工厂 全面设备的电流.

噪声(V _{噪音}). 该放大器增益的线性IC产品(mV / G)和霍尔效应的快板底噪声线性IC (≈1 G).本底噪声是来自热,投篮命中 观察到霍尔元件的噪声. 除以噪声(mV) 灵敏度(mV / a)条规定的最小电流,该装置是

线性 (B $_{
m LIN}$). 该度到其电压输出不同的传感器的电流成正比初级 通过全面的幅度. 在输出非线性可 归因于选矿厂的焊剂接近饱和 满量程电流,下面的公式用于计算 线性:

其中 Viour_full-scale安培 感应电流接近全面±I

=輸出电压时(V)

对称性(B SYM). 对其中的度绝对电压 从传感器输出不同的比例可以是积极的 或负全面初级电流. 下面的公式是 用于计算对称:

100
$$\frac{V_{\text{IOUT}}$$
+全面安培 - $V{\text{IOUT}(\Omega)}$ _ 「 $\overline{V}_{\text{IOUT}(\Omega)}$ - $\overline{V}_{\text{IOUT}}$ _ -全面的安

静态输出电压 (V lout(Q)). 该传感器的输出 当初级电流为零. 对于一个单极电源电压,

电气失调电压(v

OE). 该设备的出偏差,

cc / 2由于无磁性 把其理想的V静态值

原因. 将其转换电压安培,除以设备

敏感性, Sens.

精度(E 道法)。准确度代表最大偏差,tion从它的理想值的实际输出.这也称为 作为总ouput错误. 精度是在图形说明 在右侧的与当前图表输出由压

动态响应特性的定义

po). 当供应ramped其操作机构, 通电时间(t ing 电压,这种装置需要一个有限的时间来增强其内部 组件在回应一个输入磁场. 通电时间,t PO,是指在一定时间它的产量占

电压,以解决其稳态值内±10%下

外加磁场后,已达到其电源

指定的最低工作电压, V

cc (分钟),如图所示,在

图右.

上升时间(t,).a)之间的时间间隔,当传感器 达到10%的全面价值,当它达到b)90% 它的全面价值. 上升时间为阶跃响应是用来 推导出电流传感器的带宽, 其中f(-3 dB) = 0.35 / t. 都 t ,和 t _{响应} 涡是产生不利影响 电流损耗观察导电IC地面平面. 精度分为四个方面:

- 0在25° C. 精度为零25° C, 感应电流 没有温度的影响.
- ・ 0一个以上温度. 零电流检测精度 情况,包括温度的影响.
- ・ 满量程电流25°C. 检测精度的全面 在25°C,目前没有温度的影响.
- 满量程电流超过 △温度. 检测精度全 量程电流流动,包括温度的影响.

比例式功能意味着它的O A输出, 能谱仪.

V_{IOUT(Q)} , (名义上等于V _{CC}/2)和灵敏度, Sens, 是 cc.下列公式

其电源电压成正比, V

用于产生一个输出电压在0比例的变化,

△V_{IOUT (Q) 大鼠} (%).

100
$$\frac{V_{\text{IOUT}(Q)\text{VCC}} / V_{\text{IOUT}(Q)\text{SV}}}{V_{\text{CC}} / 5 \text{ V}}$$

该比例变化的敏感性,

ΔSens_{大鼠} (%),定义为:

$$100 \ \frac{Sens_{VCC} \ / \ Sens_{5V}}{\sqrt[9]{o} \ V_{CC} \ / 5 \ V}$$

感应电流与输出电压

在0 A和精度在满量程电流

削波器稳定技术

削波器稳定是一个创新的电路技术,是 以尽量减少对霍尔元件偏移电压和associated片上放大器. 快板发明了一种削波器 Stabiliza tion技术,几乎消除漂移引起的输出霍尔IC 受温度或包装应力的影响. 这抵消减少 技术是基于一个信号调制解调的过程. 调制是用来分隔不受欢迎的dc抵消信号 在频域磁感应信号. 然后, 使用低通滤波器,调制dc偏移抑制 而磁感应信号通过过滤器. 由于这种削波器镇定方法,输出结果 从霍尔IC电压不敏感的温度的影响, ture和机械应力. 该技术生产出的器件 有一个非常稳定的电气失调电压,是免疫的 热应力,并有精确的温度后可恢复 骑自行车.

这种技术成为可能,通过使用一种BiCMOS 过程,它允许采用低失调和低噪声放大器使用 在高密度的集成和样品的组合逻辑 和保持电路.

概念削波器稳定技术

典型应用

检测电路的应用2. 峰值

应用4.整流输出,3.3 V缩放和校正的应用 for A-to-D转换器。电流互感器替换用更简单的解决方案 ACS电路,C1是一个负载电阻和过滤功能所需。 R1可以省略,如果是理想品种齐全。

应用3. 此配置增加增益以610 mV /阿 (测试使用ACS712ELC-05A).

应用5. 10一个过流故障锁存. 故障阈值R1和设置 R2. 该电路闭锁过流故障,并持有它,直到5 V轨 断电.

提高传感系统准确度使用滤波器引脚

在低频率传感应用,往往是有利的添加一个简单的RC过滤器传感器的输出.这种低通滤波器提高了signal-to-noise比例,因此,分解,传感器的输出信号.然而,除了对一RC筛选到一个传感器输出IC可导致不良传感器输出衰减一甚至dc信号.

信号衰减, ΔV_{ATT} ,是一个电阻分压器结果 效果之间的外部滤波器,R阻力 $_{F}$ (见

_{F,}和

 ΔV_{ATT}

INTFC -

应用6),,输入阻抗和电阻 用户接口电路,R NTFC . 这个传递函数

 $\Delta V_{ATT} = V_{IOUT} \begin{vmatrix} R_{INTFC} \\ R_F + R_{INTFC} \end{vmatrix}$

即使R F和R INTFC 旨在匹配,二个人 电阻值将很可能是由不同数量的漂移

电阻分压器为:

温度.因此,信号衰減函数可以变化 温度.请注意,在许多情况下,输入阻抗, R_{INTFC} ,典型analog-to-digital转换器可作为(ADC) 低至10 k Ω .

ACS712装置适用于高精度应用的理想选择 不能承受的信号衰减与使用有关 外部RC低通滤波器.

应用6. 当低通滤波器的构造 外部的标准霍尔效应装置,电阻 分频器之间可能存在的滤波器电阻,R 对客户的接口电路,限1 这会导致过量电阻分压器衰减, 如来自传递函数为

应用7.使用滤波器引脚 在ACS712提供消除 电阻分压器的衰减效应 之间R _F和R _{NTFC},显示Appli -阳离子6.

包装 LC, 8-pin SOIC

包装品牌 两种可供选择的模式被用来

	ACS	快板电流传感器
	712	数字设备系列
	Т	指标100%雾锡电镀引脚框
ACS712T	R	工作环境温度范围代码
RLCPPP	LC	包装类型指示符
YYWWA	PPP	初级感应电流
	YY	日期代码: 日历年(最后两个数字)
	ww	日期代码: 日历周
	Α	日期代码:移位码

	ACS	快板电流传感器
	712	数字设备系列
ACS712T	T	指标100%雾锡电镀引脚框
	R	工作环境温度范围代码
RLCPPP	LC	包装类型指示符
LL YYWW	PPP	初级感应电流
	LL	批号
	YY	日期代码: 日历年(最后两个数字)
	ww	日期代码: 日历周