

FORMATO DE SYLLABUS Código: AA-FR-003

Macroproceso: Direccionamiento Estratégico

Proceso: Autoevaluación y Acreditación

Versión: 01

Fecha de Aprobación: 27/07/2023

Otros:

Cuál:

FACULTAD: Tecnológica PROYECTO CURRICULAR: Tecnología en Electrónica Industrial CÓDIGO PLAN DE ESTUDIOS: I. IDENTIFICACIÓN DEL ESPACIO ACADÉMICO NOMBRE DEL ESPACIO ACADÉMICO: TEORÍA DE LA INFORMACIÓN 24704 2 Código del espacio académico: Número de créditos académicos: HTC HTD 2 2 Distribución horas de trabajo: 2 HTA Tipo de espacio académico: Cátedra Asignatura Х NATURALEZA DEL ESPACIO ACADÉMICO: Obligatorio Obligatorio Electivo Electivo Intrínseco Básico Complementario Extrínseco CARÁCTER DEL ESPACIO ACADÉMICO: Teórico Práctico Teórico-Práctico Otros: Cuál: MODALIDAD DE OFERTA DEL ESPACIO ACADÉMICO:

II. SUGERENCIAS DE SABERES Y CONOCIMIENTOS PREVIOS

Virtual

Para un aprovechamiento óptimo de la asignatura, se recomienda que el estudiante tenga conocimientos en probabilidad y estadística, matemáticas discretas, fundamentos de telecomunicaciones y nociones de programación. Estas bases permitirán un mejor abordaje de los conceptos de entropía, codificación, y capacidad de canal, claves en la ingeniería de las comunicaciones modernas.

III. JUSTIFICACIÓN DEL ESPACIO ACADÉMICO

La Teoría de la Información es fundamental para la comprensión de los sistemas de telecomunicaciones actuales y futuros, donde la eficiencia en la transmisión y almacenamiento de datos es esencial. Su aplicación es transversal en redes 5G y 6G, comunicaciones seguras, inteligencia artificial, blockchain, y sistemas de compresión y recuperación de datos. Esta asignatura permite al estudiante adquirir las competencias para modelar, analizar y diseñar sistemas que optimicen el uso del espectro y garanticen confiabilidad en la transmisión.

IV. OBJETIVOS DEL ESPACIO ACADÉMICO (GENERAL Y ESPECÍFICOS)

Objetivo General:

Presencial

Aplicar los principios fundamentales de la teoría de la información en el diseño y análisis de sistemas de comunicaciones digitales modernos.

Objetivos Específicos:

Comprender la naturaleza cuantitativa de la información mediante el concepto de entropía.

Analizar la capacidad de canales en términos de ruido, ancho de banda y redundancia.

Presencial con

incorporación de TIC

Diseñar e implementar códigos de compresión y corrección de errores.

Simular y evaluar el desempeño de esquemas de codificación y decodificación usando software especializado.

V. PROPÓSITOS DE FORMACIÓN Y DE APRENDIZAJE (PFA) DEL ESPACIO ACADÉMICO

Propósitos de formación:

Desarrollar competencias en la modelación y análisis matemático de procesos de comunicación.

Promover la aplicación de la teoría de la información a problemas reales en redes, IoT y sistemas inteligentes.

Fortalecer la capacidad de diseño de sistemas resilientes a ruido, pérdidas y errores.

Resultados de aprendizaje:

Interpreta y calcula la entropía, información mutua y capacidad de canal.

Aplica técnicas de codificación para mejorar la eficiencia espectral.

Diseña y simula esquemas de compresión y corrección de errores.

Evalúa el desempeño de sistemas de comunicación digital mediante métricas como BER y SNR.

VI. CONTENIDOS TEMÁTICOS

1. Fundamentos de la Información

Historia y aplicaciones modernas de la teoría de la información.

Definiciones: información, entropía, redundancia.

Información mutua y medidas de dependencia.

2. Modelos y Canales de Comunicación

Modelo general de comunicación.

Canales discretos sin memoria y con memoria.

Modelos probabilísticos de ruido.

3. Capacidad de Canal y Límites Teóricos

Capacidad de canal con y sin ruido.

Teorema de Shannon para canales ruidosos.

Capacidad en canales binarios y gaussianos.

4. Compresión de Datos

Codificación de fuente: teorema de Shannon.

Códigos de Huffman, Shannon-Fano y aritméticos.

Compresión con pérdida: transformadas y cuantización.

5. Codificación de Canal y Corrección de Errores

Códigos detectores y correctores.

Códigos lineales, convolucionales y LDPC.

Turbocódigos y códigos para redes 5G/6G.

6. Aplicaciones y Simulaciones

Aplicaciones en IoT, 5G/6G, blockchain y sistemas inteligentes.

Implementación de códigos en MATLAB/Python.

Análisis de BER, eficiencia espectral y latencia.

VII. ESTRATEGIAS DE ENSEÑANZA QUE FAVORECEN EL APRENDIZAJE

Se empleará metodología activa centrada en el estudiante, mediante clases magistrales interactivas, ejercicios de simulación en MATLAB o Python, y desarrollo de miniproyectos. Se promoverá el trabajo en equipo, el aprendizaje colaborativo y la solución de problemas aplicados mediante el uso de casos reales y retos por parejas.

VIII. EVALUACIÓN

De acuerdo con el estatuto estudiantil vigente (Acuerdo No. 027 de 1993 expedido por el Consejo Superior Universitario y en su Artículo No. 42 y al Artículo No. 3, Literal d) el profesor al presentar el programa presenta una propuesta de evaluación como parte de su propuesta metodológica.

Para dar cumplimiento a lo dispuesto en el estatuto estudiantil, los porcentajes por corte se definen como se indica a continuación, con base en las fechas establecidos por el Consejo Académico en el respectivo calendario académico.

Primer corte (hasta la semana 8) à 35%

Segundo corte (hasta la semana 16) à 35%

Proyecto final (hasta la semana 18) à 30%

En todo caso, la evaluación será continua e integral, teniendo en cuenta los avances del estudiante en los siguientes aspectos: i) comprensión conceptual (pruebas escritas, talleres); ii) aplicación práctica (laboratorios, informes técnicos); iii) proyecto integrador final (análisis, diseño, montaje y presentación); y iv) participación y trabajo en equipo. Asimismo, se debe valorar el desarrollo de competencias comunicativas, resolución de problemas, uso de instrumentos, pensamiento lógico y creatividad. Las pruebas se concertarán con el grupo y se ajustarán a las fechas establecidas en el respectivo calendario académico.

IX. MEDIOS Y RECURSOS EDUCATIVOS

Para el adecuado desarrollo de este espacio académico, se requiere el uso de medios institucionales y recursos individuales que faciliten los procesos de enseñanza y aprendizaje, tanto en ambientes presenciales como virtuales. Las actividades teóricas se apoyarán en aulas de clase dotadas de medios audiovisuales (tablero, videobeam, sillas) y plataformas virtuales institucionales como Microsoft Teams o Google Meet. Además, será fundamental el acceso a presentaciones digitales, textos base, hojas de datos, artículos técnicos y bibliotecas digitales.

En cuanto al trabajo práctico, se utilizarán aulas de laboratorio equipadas con fuentes de voltaje DC, generadores de señales, osciloscopios, multímetros y otros instrumentos de medición. Adicionalmente se cuenta con laboratorio de cómputo con MATLAB, Python (con bibliotecas de comunicación como scikit-dsp-comm, pyldpc, CommPy), simuladores online.

Como recursos propios, el estudiante debe disponer de una calculadora científica, conexión estable a internet que la universidad proporciona, un sistema para la toma de apuntes (cuaderno, tablet o computador) y acceso a los materiales de clase. Será responsabilidad del estudiante descargar los insumos digitales y contar con los elementos necesarios que serán especificados previamente en cada práctica o proyecto.

X. PRÁCTICAS ACADÉMICAS - SALIDAS DE CAMPO

Se incentivará la participación en congresos o ferias tecnológicas, y se organizarán visitas a empresas de telecomunicaciones para observar implementaciones reales de sistemas de codificación y compresión de datos. En algunos casos, se articulará la asignatura con semilleros de investigación para proyectos de aula.

XI. BIBLIOGRAFÍA

MacKay, D. J. C. (2003). Information Theory, Inference and Learning Algorithms. Cambridge University Press.			
Stone, J. (2015). Information Theory: A Tutorial Introduction. Sebtel Press.			

Cover, T. M., & Thomas, J. A. (2006). Elements of Information Theory. Wiley. Sayood, K. (2017). Introduction to Data Compression. Morgan Kaufmann.

	XII. SEGUIMIENTO Y ACTUALIZACIÓN DEL SYLLABUS				
Fecha revisión por Consejo Curricular:					
Fecha aprobación por Consejo Curricular:		Número de acta:			