ABSTRACT OF THE DISCLOSURE

New phenolic compounds of formula (I)

$$(X)_{m}$$
 $(X)_{m}$ $(X)_$

- R = C₃-C₁₇ dialkoxymethyl group, 1,3-dioxolan-2-yl group optionally substituted on peaks 4 and/or 5 by one or more C₁-C₈ alkyls or 1,3-dioxan-2-yl group optionally substituted on peaks 4 and/or 5 and/or 6 by one or more C₁-C₈ alkyls.
- n = 1, 2 or 3, the group or groups

are in o and/or p position of the OH of the cycle

m = from 0 to 4-n, X = functional group such as OH or Hal or C_1 - C_8 alkyl or alkoxy group or C_5 - C_{12} aryl group and optionally 1 or 2 heteroatoms such as N or O, or carboxy or –CO-Y group where Y = C_1 - C_8 alkyl or alkoxy or amido or amino or thiol group, on condition that at least one of the ortho or para positions of the phenolic cycle is substituted by a hydrogen, and their salts with the alkali metals, alkaline-earth metals and amines.