WL-TR-94-4056 Volume 5, Chapter 8, 2 of 2

DAMAGE TOLERANT DESIGN HANDBOOK

D.A. Skinn, J.P. Gallagher, A.P. Berens, P.D. Huber, J. Smith

University of Dayton Research Institute 300 College Park Dr Dayton, OH 45469-0120

May 1994 Final Report for Period June 1991 - May 1994

Approved for public release; distribution unlimited

Materials Directorate
Wright Laboratory
Air Force Materiel Command
Wright Patterson AFB, Ohio 45433-7734

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden. to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204. Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE MAY 1994 3. REPORT TO MAY 1994	LE AND DATES 19791-05/19/94
DAMAGE TOLERANT DESIGN HANDBOOK VOL 5, CHAPTER 8, 2 OF 2 AUTHOR(S).A. SKINN, J.P. GALLAGHER, A.P. BERENS, P.D. HUBER, J. SMITH	5. FUNDING NUMBERS C F33615-91-C-5610 PE 62102 PR 2418 TA 04 WU 91
UNIVERSITY OF DAYTON RESEARCH INSTITUTE 300 COLLEGE PARK DAYTON OH 45469-0120	8. PERFORMING ORGANIZATION REPORT NUMBER
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) MATERIALS DIRECTORATE WRIGHT LABORATORY AIR FORCE MATERIEL COMMAND WRIGHT PATTERSON AFB OH 45433-7734	10. SPONSORING / MONITORING AGENCY REPORT NUMBER WL-TR-94-4056
I1. SUPPLEMENTARY NOTES	f
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.	12b. DISTRIBUTION CODE
13. ABSTRACT (Maximum 200 words)	

This report presents a compilation of mechanical property data that are useful for damage tolerant design and analyses. The data of this handbook combines the old data that were previously presented in MCIC-HB-OIR (Damage Tolerant Design Handbook, December 1983) and more recent data that were collected from various sources. The fracture toughness, crack growth, R-curve, sustained load and threshold data are for alloy and stainless steels, nickel based super alloys, titanium alloys and aluminum alloys.

14. SUBJECT JERMS MECHANICAL PRO	and the second s	VES INED LOAD	15. NUMBER OF PAGES
FRACTURE TOUGH SUBCRITICAL CR		•	16. PRICE CODE
17. SECURITY CLASSIFICATION	18. SECURITY CLASSIFICATION	19. SECURITY CLASSIFICATION	20. LIMITATION OF ABSTRACT
OF REPORT UNCLASSIFIED	OF THIS PAGE UNCLASSIFIED	OF ABSTRACT UNCLASSIFIED	UL

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that this information be consistent with the rest of the report, particularly the cover and title page. Instructions for filling in each block of the form follow. It is important to *stay within the lines* to meet *optical scanning requirements*.

- Block 1. Agency Use Only (Leave blank).
- **Block 2.** Report Date. Full publication date including day, month, and year, if available (e.g. 1 Jan 88). Must cite at least the year.
- Block 3. Type of Report and Dates Covered. State whether report is interim, final, etc. If applicable, enter inclusive report dates (e.g. 10 Jun 87 30 Jun 88).
- Block 4. <u>Title and Subtitle</u>. A title is taken from the part of the report that provides the most meaningful and complete information. When a report is prepared in more than one volume, repeat the primary title, add volume number, and include subtitle for the specific volume. On classified documents enter the title classification in parentheses.
- Block 5. Funding Numbers. To include contract and grant numbers; may include program element number(s), project number(s), task number(s), and work unit number(s). Use the following labels:

C - Contract

PR - Project TA - Task

G - Grant PE - Program Element

WU - Work Unit Accession No.

Block 6. <u>Author(s)</u>. Name(s) of person(s) responsible for writing the report, performing the research, or credited with the content of the report. If editor or compiler, this should follow the name(s).

- Block 7. Performing Organization Name(s) and Address(es). Self-explanatory.
- **Block 8.** <u>Performing Organization Report</u>
 <u>Number</u>. Enter the unique alphanumeric report number(s) assigned by the organization performing the report.
- **Block 9.** Sponsoring/Monitoring Agency Name(s) and Address(es). Self-explanatory.
- **Block 10.** Sponsoring/Monitoring Agency Report Number. (If known)

Block 11. Supplementary Notes. Enter information not included elsewhere such as: Prepared in cooperation with...; Trans. of...; To be published in.... When a report is revised, include a statement whether the new report supersedes or supplements the older report.

Block 12a. <u>Distribution/Availability Statement</u>. Denotes public availability or limitations. Cite any availability to the public. Enter additional limitations or special markings in all capitals (e.g. NOFORN, REL, ITAR).

DOD - See DoDD 5230.24, "Distribution

Statements on Technical

Documents."

DOE - See authorities.

NASA - See Handbook NHB 2200.2.

NTIS - Leave blank.

Block 12b. Distribution Code.

DOD - Leave blank.

DOE - Enter DOE distribution categories from the Standard Distribution for

Unclassified Scientific and Technical

Reports.

NASA - Leave blank.

NTIS - Leave blank.

Block 13. Abstract. Include a brief (Maximum 200 words) factual summary of the most significant information contained in the report.

- **Block 14.** <u>Subject Terms</u>. Keywords or phrases identifying major subjects in the report.
- **Block 15.** <u>Number of Pages</u>. Enter the total number of pages.
- **Block 16.** <u>Price Code</u>. Enter appropriate price code (NTIS only).
- Blocks 17. 19. <u>Security Classifications</u>. Self-explanatory. Enter U.S. Security Classification in accordance with U.S. Security Regulations (i.e., UNCLASSIFIED). If form contains classified information, stamp classification on the top and bottom of the page.
- Block 20. <u>Limitation of Abstract</u>. This block must be completed to assign a limitation to the abstract. Enter either UL (unlimited) or SAR (same as report). An entry in this block is necessary if the abstract is to be limited. If blank, the abstract is assumed to be unlimited.

Table of Contents

VOLUME 1

Chapter			Page
1	Hand	lbook Organization and Content	. 1-1
	1.0	Overview	. 1-1
	1.1	Organization	. 1-2
	1.2	Data Ordering and Abbreviations	. 1-5
	1.3	Material Chapter Summaries 1.3.1 Available Data Summary 1.3.2 Plane Strain Fracture Toughness Material Data Summary	1-12
		1.3.3 Plane Stress and Transitional Fracture Material Data Summary	1-15
		1.3.4 Fatigue Crack Growth Rate Material Data Summary	
	1.4	Alloy Section Summaries	1-21
	1.5	Alloy Fracture Toughness Subsection Formats	1-25 1-25
	1.6	Subcritical Crack Growth Subsection Formats	1-31 1-36
2	Meth	ods of Calculation	. 2-1
	2.0	Overview	. 2-1 . 2-3

	2.1	Plane-Strain Fracture Toughness (K _{Ic}) 2-12
	2.2	Critical Plane Stress Fracture Toughness
		Toughness
		Toughness Testing
	2.3	The Apparent Fracture Toughness 2-26
	2.4	R-Curve (K_R Versus Δa_{eff})
	2.5	Fatigue Crack Growth Rate 2-30
		2.5.1 Fatigue Crack Growth Behavior 2-30
		2.5.2 Data Acceptance Criteria
		2.5.3 Data Reduction Procedures 2-33
		2.5.4 Data Reporting Procedures 2-35
	2.6	Sustained-Load Crack Growth Rates
		2.6.1 Sustained-Load Crack Growth Behavior 2-38
		2.6.2 Data Acceptance Criteria 2-40
		2.6.3 Data Reduction Procedures 2-40
		2.6.4 Data Reporting Procedures
	2.7	Threshold Stress Intensity (K _{Iscc}) 2-41
		2.7.1 The Threshold
		2.7.2 Conditions for Validity of Data
3	Alloy	Steel Sections
	3.0	Alloy Steel Material Summaries
		3.0.1 Available Data Summary
		3.0.2 K_{Ic} Summary
		3.0.3 K _c Summary (Without Buckling Constraints) 3-27
		3.0.4 FCGR at Defined ΔK Levels
		3.0.5 K _{Iscc} Summary
	3.1	10Ni Steel
	3.2	12-9-2(MAR)
	3.3	12Ni-5Cr-3Mo
	3.4	18Ni(180)(MAR)
	3.5	18Ni(200)(MAR)
	3.6	18Ni(250)
	3.7	18Ni(250)(MAR)
	3.8	18Ni(280)(MAR)
	3.9	18Ni(300)
	3.10	18Ni(300)(MAR) 3-70

	3.11	18Ni(350)
	3.12	18Ni(350)(MAR) 3-89
	3.13	300M 3-90
	3.14	300M(AM)
	3.15	300M(VAR)
	3.16	300M(VM)
	3.17	4140
	3.18	4330V 3-148
	3.19	4330V(MOD)
	3.20	4340 3-149
	3.21	4340(AM)
	3.22	4340(DH)
	3.23	4340(EFM)
	3.24	4340(MOD)
	3.25	4340(VAR)
	3.26	4340V
	3.27	A286
	3.28	AF1410
	3.29	AF1410(VIM-VAR) 3-222
	3.30	D6AC 3-233
	3.31	H11
	3.32	HP9-420
	3.33	HP9-420(CEVM)
	3.34	HP9-425(VAR)
	3.35	HP9-430
	3.36	HP9-445
	3.37	HY-150
	3.38	HY-180
	3.39	HY-80
	3.40	HY-TUF
	3.41	Alloy Steel References
	0.41	Thioy bleef References
4	Stoin	less Steel Sections
'±	Stain	less bleef beculons 4-1
	4.0	Stainless Steel Material Summeries
	4.0	Stainless Steel Material Summaries 4-3
		4.0.1 Available Data Summary 4-3
		4.0.2 K _{Ic} Summary
		4.0.4 FCGR at Defined ΔK Levels 4-11
		4.0.5 K_{Iscc} Summary
	4.1	15-5PH 4-17
	4.2	15-5PH(AM)
	4.3	15-5PH(VM) 4-48
	4.4	17-4PH
	4.5	17-7PH
	4.6	21-6-9 NI40
	4.7	304
	4.8	316
		~~~ ··································

	4.9	347
	4.10	
	4.11	AFC 77 4-98
	4.12	
	4.13	AM 355
	4.14	AM 362
	4.15	AM 364
	4.16	CUSTOM 455
	4.17	PH13-8Mo
	4.18	PH14-8Mo
	4.19	PH15-7Mo
	4.20	Stainless Steel References
VOLUN	Æ 2	
5	Nick	el Based Super Alloys Sections 5-1
	F 0	Nielel Danel Comm. Allers Metariel Commercia
	5.0	Nickel Based Super Alloys Material Summaries 5-3 5.0.1 Available Data Summary 5-3
		5.0.1 Available Data Summary
		5.0.2 K _{Ic} Summary (Buckling not Constrained) 5-7
		5.0.4 FCGR at Defined $\Delta$ K Levels 5-8
	•	5.0.5 K _{Iscc} Summary
	5.1	ASTROLOY 901
	5.2	ASTROLOY P/M-H
	5.3	ASTROLOY P/M-W
	5.4	IN100
	5.5	IN100 P/M-G
	5.6	INCOLOY 901
	5.7	INCONEL 600 5-56
	5.8	INCONEL 625 5-63
	5.9	INCONEL 718 5-68
	5.10	NASA IIB-7 P/M
	5.11	P/M RENE 95
		RENE 95 (H&F) 5-170
		WASPALOY 5-171
	5.14	Nickel Based Super Alloys Reference 5-198
6	Titan	ium Alloys Sections 6-1
	6.0	Titanium Alloys Material Summaries 6-3
		6.0.1 Available Data 6-3
		6.0.2 K _{Ic} Summary
		6.0.3.1 K _c Summary (Buckling not Constrained) 6-18
		6.0.3.2 K. Summary (Buckling Constrained) 6-19
		6.0.4 FCGR at Defined $\Delta K$ Levels
		6.05 K. Summary 6-35

	6.1	BETA 6-38
	6.2	BETA C
	6.3	BETA III
	6.4	BETA Ti 6-59
	6.5	CORONA 5
	6.6	IMI-834
	6.7	Ti-*
	6.8	Ti-10-2-3
	6.9	Ti-4Al-3Mo-1V
	6.10	Ti-5-2.5 ELI
	6.11	Ti-5Al-2.5Sn
	6.12	Ti-6-2-2-2
	6.13	Ti-6-2-4-2
	6.14	Ti-6-2-4-2 ELI
	6.15	Ti-6-2-4-6
	6.16	Ti-6Al-4V
	6.17	Ti-6Al-4V ELI
	6.18	Ti-6Al-6V-2Sn
	6.19	
	6.20	Ti-6Al2Sn4Zr6Mo
	6.21	Ti-8Al-1Mo-1V
	6.22	Ti-Mo8V2Fe3Al
	6.23	Ti-5Al2.5Sn ELI 6-569
	6.24	Ti-6Al6V2Sn ELI
	6.25	Titanium Alloys References 6-573
VOLUI	ME 3	
7	Alum	inum 2000/6000 Series Alloys Sections
•	7.0	Aluminum 2000/6000 Series Material Summaries 7-3
	1.0	7.0.1 Available Data
		7.0.1 Available Data
		7.0.3.1 K _c Summary (Buckling not Constrained) 7-10
		7.0.3.2 K _c Summary (Buckling Constrained) 7-10
		7.0.3.2 $R_c$ Summary (Bucking Constrained) 7-12 7.0.4 FCGR at Defined $\Delta K$ Levels
		7.0.5 K _{Iscc} Summary
		Tisce Summary
	7.1	2014
	7.2	2020
	7.3	2020 (ALCLAD)
	7.4	2021
	7.5	2024
	7.6	2024 (ALCLAD)
	7.7	2048
	7.8	2091 7-416
	7.9	2124 7-451

	7.10	2214 7-556
	7.11	2219
	7.12	2324
	7.13	2419
	7.14	2618
	7.15	6061
	7.16	A201
	7.17	A357
	7.18	AL905XL
	7.19	IN905XL
	7.20	Aluminum 2000/6000 Series References 7-719
VOLUM	Œ 4	
8	Alum	inum 7000/8000 Series Alloys Sections 8-1
	8.0	Aluminum 7000/8000 Series Material Summaries 8-3
	0.0	8.0.1 Available Data
		8.0.2 K _{Ic} Summary
		8.0.3.1 K. Summary (Buckling not Constrained) 8-16
		8.0.3.2 K Summary (Buckling Constrained) 8-19
		8.0.4 FCGR at Defined ΔK Levels 8-20
		8.0.5 K _{Iscc} Summary
	8.1	7001
	8.2	7005
	8.3	7007 8-62
•	8.4	7010 8-63
	8.5	7039 8-80
	8.6	7049 8-81
	8.7	7050 8-136
	8.8	7050 (ALCLAD)
	8.9	7075 8-452
	8.10	7075 (ALCLAD)
VOLUM	E 5	
	8.11	7079 8-766
	8.12	7079 (ALCLAD)
	8.13	7080
	8.14	7149
	8.15	7150 8-849
	8.16	7175 8-877
		7178 8-969
		7178 (ALCLAD)
		7475 8-1020
	9 90	7475 (ATCLAD) 8 1909

8.21	8009	8-1323
8.22	8090	8-1328
8.23	X7090	8-1344
	X7091	
8.25	Aluminum 7000/8000 Series References	8-1354

x

#### **Foreword**

This report summarizes the results of a damage tolerant, material property data collection and reporting program conducted under USAF Contract F33615-91-C-5610. The work was sponsored by the Materials Directorate of Wright Laboratory with Mr. Jack Coate of the Systems Support Division serving as the project monitor. The technical effort was conducted between June 1991 and January 1994. The work was performed by the University of Dayton Research Institute under the general supervision of Dr. Joseph P. Gallagher with Dr. Alan P. Berens serving as Principal Investigator.

This final report comprises eight chapters which are presented in five volumes as follows:

<b>VOLUME</b>	<b>CHAPTER</b>	<u>DESCRIPTION</u>
1	1	Handbook organization and content
	2	Methods of calculation
	3	Alloy Steels
	4	Stainless Steels
2	5	Nickel Based Super Alloys
	6	Titanium Alloys
3	7	Aluminum 2000/6000 Series Alloys
4 & 5	8	Aluminum 7000/8000 Series Alloys

A detailed listing of the materials represented in the Handbook is contained in the preceding Table of Contents. In the body of the Handbook, the pages are numbered within chapters and the relevant portion of the table of contents is repeated at the beginning of each chapter.

#### CHAPTER 8 (CONTINUED) ALUMINUM 7000/8000 SERIES ALLOYS SECTIONS

<b>VOLUME 4</b>	
8.0	Aluminum 7000/8000 Series Material Summaries 8-3
8.0.1	Available Data 8-3
8.0.2	K _{Ic} Summary 8-12
8.0.3.1	K. Summary (Buckling not Constrained) 8-16
8.0.3.2	K. Summary (Buckling Constrained) 8-19
8.0.4	FCGR at Defined ΔK Levels 8-20
8.0.5	K _{Isec} Summary 8-41
8.1	7001 8-45
8.2	7005 8-53
8.3	7007 8-62
8.4	7010 8-63
8.5	7039 8-80
8.6	7049 8-81
8.7	7050 8-136
8.8	7050 (ALCLAD) 8-435
8.9	7075 8-452
VOLUME 5	
8.10	7075 (ALCLAD) 8-745
8.11	7079 8-766
8.12	7079 (ALCLAD) 8-833
8.13	7080 8-836
8.14	7149 8-837
8.15	7150 8-849
8.16	7175 8-877
8.17	7178 8-969
8.18	7178 (ALCLAD) 8-1019
8.19	7475 8-1020
8.20	7475 (ALCLAD) 8-1292
8.21	8009 8-1323
8.22	8090 8-1328
8.23	X7090 8-1344
	2000
<b>8.24</b>	X7091

#### **TABLE 8.10.1.1**

FOR ALUMINUM 7000/8000 SERIES ALLOY 7075 (ALCLAD) AT ROOM TEMPERATURE MEAN PLANE STRAIN FRACTURE TOUGHNESS

			п	:
		S-L	Std Dev	i
			Mean K _{le}	i
<u>a</u>	ntation	T-T	u	26
$K_{Ic}~(ksi\sqrt{in})$	n Orie		Std Dev	1.9
$K_{Ic}$	Specimen Orientation		Mean K _{lo}	25.2
	<i>3</i> 2		£	3
		L-T	Std Dev	2.2
			Mean K _{Io}	28.6
	Condition/Heat Treatment			T7651
Product	Form			Plate

**TABLE 8.10.1.2** 

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7075 (ALCLAD) AT ROOM TEMPERATURE

ļ		2 5000000000000000000000000000000000000	1 0000000000					
			100.0					
	(9)	0	60.0					
Air	⁸ in/cycl	Ksivir.	20.0	73.65			285.41	
T: Lab	FCGR (10 ⁻⁶ In/cycle)	ΔK Level (Ksiγlin)	10.0	7.23			13.06	
ENVIRONMENT: Lab Air	FCC	ΔĒ	5,0		0.44	0.72		
NVIRO			2.5			90.0		0.17
E	FREG	(Hz)		13.3	30	30	13.3	30
		Ħ		0.	0.05	0.2	0.33	0.4
: T-L	PRODITET	FORM				SHEET		
ORIENTATION: T-L	NOTHINGS	HEAT TREATMENT				776		

#### TABLE 8.10.2.1

				ALU	ALUMINUM		7075 (ALCLAD)	CLAD)	K,						
	PROI	PRODUCT				SC.	SPECIMEN	z	CRACK			K _{Io}			
CONDITION	FORM	THICK (in.)	TEST TEMP (°F)	SPEC	YTELD STR (Ksl)	WIDTH (in.) W	THICK (in.)	DESIGN	LENGTH (in.) A	2.6 • (K _{e,} ,TYS)* (in.)	K. (Kelvin.)	K. MBAN	STAN DEV	DATE	REFER
		0.62		i	0.99	2.002	0.617	CT	1.021	0.48	29.10			1978	MPC01
17651	Plate	0.62	R.T.	7	0.99	2.008	0.617	Ę,	1.064	0.52	30.50	28.6	2.2	1978	MPC01
		0.62			67.6	2.011	0.637	CT	1.086	96.0	26.20			1978	MPC01
		0.62			ï	2.017	0.636	CT	1.049	:	23.10			1978	MPC01
		0.62		1	62.6	2.000	0.632	CT	1.000	0.44	26.40			1978	MPC01
		0.62		1	62.6	1.985	0.632	CT	1.032	0.46	27.10			1978	MPC01
		0.62	<del></del>	1	62.6	1.996	0.632	CT	1.018	0.46	27.10			1978	MPC01
		0.62			64.1	1.984	0.625	CT	0.992	0.46	27.90			1978	MPC01
		0.62			64.1	1.984	0.623	СŢ	0.992	0.48	28.70			1978	MPC01
		0.62			64.1	1.998	0.624	CT	1.039	0.46	27.80			1978	MPC01
		0.50		1	64.4	1.000	0.506	СI	0.520	0.27	21.80	y= a - u- a - q		1978	MPC01
		0.50		!	64.4	1.006	0.506	CT	0.503	0.28	22.50			1978	MPC01
17000	Ē	09:0	E	<del></del>	64.8	1.012	0.502	CT	0.516	0.28	22.20			1978	MPC01
1,001	FIRE	0.62	 		65.0	2.006	0.615	CJ	1.023	0.42	26.90	25.2	1.9	1978	MPC01
		0.62			65.0	2.005	0.615	CT	1.002	0.40	26.60			1978	MPC01
		0.62		I	65.0	2.000	0.617	CT	1.000	0.42	26.90			1978	MPC01
		0.62			67.5	2.011	0.617	C.T.	1.066	0.32	24.80			1978	MPC01
		0.62		1	67.5	1.984	0.617	cr	1.091	0.36	26.00			1978	MPC01
		0.62			67.5	1.990	0.617	ст	1.015	0.32	24.50			1978	MPC01
		09:0			67.8	2.018	0.605	CT	1.009	0.34	25.60			1978	MPC01
		0.62		1	67.8	2.002	0.605	CT	1.001	0.94	25.70			1978	MPC01
		0.62			67.8	2.002	0.605	CT	1.001	0.94	25.20			1978	MPC01
		0.62			68.7	2.012	969'0	CT	1.006	0:30	24.20			1978	MPC01

				ALI	ALUMINUM		7075 (ALCLAD)	CLAD)	Kıc						
	PROI	PRODUCT				oz.	SPECIMEN	z	CRACK			K _I °		-	
CONDITION	FORM	THICK (in.)	TEST TEMP (°F)	SPEC	YIELD STR (Kel)	WIDTH (in.) W	THICK (in.) B	DESIGN	LENGTH (in.) A	2.5 • (K, IYS) ² (in.)	K. (Kelvin.)	K. MEAN	STAN	DATE	REFER
		0.62		•	68.7	2.006	0.635	CT	1.023	72.0	22.70			1978	MPC01
		0.62			69.3	2.016	0.611	Ç	1.008	0.30	24.50			1978	MPC01
17651	Plate	0.62	R.T.	Ţ.Ľ	69.3	2.018	0.609	CT	0.989	0.28	24.20			1978	MPC01
Cont'd	Cont'd	0.62	Cont'd	Cont'd	71.2	2.016	0.624	CT	1.008	0.27	23.70	Cont'd	Cont'd	1978	MPC01
		0.62			71.2	2.015	0.625	LO	1.068	0.28	24.90			1978	MPC01
		0.62			71.2	1.984	0.625	CT	0.992	0.27	23.70			1978	MPC01
		0,50			62.3	1.000	0.502	CT	0.527	0.33	22.50			1973	86213
		0.50			62.3	1.000	0.502	ст	0.531	0.36	23.60			1973	86213
	1	0.50			62.3	1.000	0.502	ст	0.516	96.0	23.60			1973	86213
17651	Plate	0.50	87	3	64.5	1.000	0.503	CT	0.516	0.33	23.40	23.3	9.4	1973	86213
		0.50			64.5	1.000	0.503	CT	0.517	0.33	23.50			1973	86213
		0.50			64.5	1.000	0.503	CT	0.516	0.33	23.40			1973	86213
		09'0			63.0	1.000	0.502	CT	0.538	0.29	21.40			1973	86213
		0.50		į	64.8	1.000	0.502	CT	0.510	0.29	22.20	·,		1973	86213
17661	Plate	0.50	Z 20	2	64.8	1.000	0.602	CT	0.516	0.29	22.20	21.8	0.4	1973	86213
	_	0.50			64.8	1.000	0.502	СT	0.501	0.28	21.50			1973	86213
		0.50			61.0	1.000	0.494	СŢ	0.514	0.40	24.50			1973	86213
<del> </del>		0.62			62.8	1.500	0.612	CI	0.773	0.41	25.30	y		1973	86213
	ı	0.62			62.8	1.500	0.612	cr	0.787	0.41	25.40			1973	86213
17651	Flate	0.62	£	3	63.2	1.500	0.603	CT	0.768	0.37	24.20	25.9	-1:	1973	86213
		0.62			63.7	1.600	0.615	CT	0.778	0.47	27.60			1973	86213
		0.62			63.7	1.500	0.614	CT	0.778	0.45	27.10			1973	86213

					ALUMINUM		7075 (ALCLAD)	(TAD)	K _{Io}						
	PROI	PRODUCT				SC	SPECIMEN	7	CRACK			<b>⊼</b>			
CONDITION	FORM	THICK (in.)	TEST TEMP (°F)	SPEC	YTRLD STR (Kel)	WIDTH (in.)	THICK (in.) B	DESIGN	LENGTH (in.) A	2.5 • (K _{L,} TYS)* (in.)	K. (Kelvin.)	K. MEAN	STAN	DATE	REFER
-		0.50		I	64.0	1.000	0.505	CT	0.532	0.43	26.50			1973	86213
T7651 Cont'd	Plate Cont'd	0.62	84 Cont'd	Cont'd	64.9	1.500	0.602	Ğ	0.755	0.40	25.90	Cont'd	Cont'd	1973	86213
		0.62			64.9	1.500	0.601	ฮี	0.791	0.41	26.20			1973	86213
		0.50			61.2	1.000	0.494	ಕ	0.527	0.34	22.70			1973	86213
		0.50			61.2	1.000	0.494	៦	0.518	0.34	22.50			1973	86213
		0.50			61.2	1.000	0.494	تا تا	0.517	0.33	22.30			1973	86213
		0.62			62.4	1.500	0.603	CT	0.771	0.33	22.50			1973	86213
		0.62			62.4	1.500	0.603	CT	0.767	0.33	22.70			1973	86213
		0.62			63.0	1.500	0.612	СŢ	0.779	0.40	25.30			1973	86213
17651	Plate	0.62	8	T.L	63.0	1.500	0.615	CT	0.827	0.40	25.20	23.2	1.0	1973	86213
		0.62			64.0	1.500	0.602	CT	0.771	0.35	23.80			1973	86213
		0.62			64.0	1.500	0.601	cr	0.755	0.32	22.90			1973	86213
		0.50		1	64.4	1.000	0.506	CT	0.503	0.33	23.50			1973	86213
		0.50			64.4	1.000	0.506	СT	0.520	0.91	22.60			1973	86213
		0.62	· ····		64.6	1.500	0.612	cr	0.764	0.31	22.60			1973	86213
		0.62			64.6	1.500	0.612	CT	0.797	0.33	23.30			1973	86213
		0.62			59.3	1.500	0.611	CT	0.771	0.47	25.70			1973	86213
		0.62			59.3	1.500	0.611	CT.	0.818	0.48	25.90			1973	86213
13044	Ē	0.50	8	E	59.6	1.000	0.500	CT	0.534	0.40	23.80			1973	86213
1001	T I I I	0.60	6	 	69.6	1.000	0.500	Ę	0.515	0.40	23.70	26.5	1.2	1973	86213
		0.50			69.6	1.000	0.500	CT	0.514	0.40	23.70			1973	86213
		0.62			62.6	1.500	0.615	CT	0.773	0.43	26.00			1973	86213

# TABLE 8.10.2.1 (CONCLUDED)

				ALU	ALUMINUM		7075 (ALCLAD)	(TAD)	K _{Io}							
	PROI	PRODUCT				ozi I	SPECIMEN	7	CRACK			Kı				<del></del>
CONDITION	FORM	THICK (in.)	TEST TEMP (°F)	SPEC	YIELD STR (Kel)	WIDTH (In.)	THICK (in.)	DESIGN	LENGTH (in.) A	2.6 * (K _{ke} ,TYS)* (in.)	K. (Kelvin.)	K, MEAN	STAN DEV	DATE	REFER	
		0.62		I	62.6	1.500	0.615	cr	0.787	0.43	26.00			1973	86213	_
		0.62			63.0	1.500	0.620	CT	0.788	0.46	27.00			1973	86213	
17651	Plate	0.62	98	5	63.0	1.500	0.622	CT	0.750	0.48	27.50			1973	86213	
Cont'd	Cont'd	0.62	Cont'd	Cont'd	64.2	1.500	969'0	cr	0.780	0.42	26.20	Cont'd	Cont'd	1973	86213	
		0.62			65.8	1.500	0.615	cr	0.762	0.38	25.70			1973	86213	
		0.62			65.8	1.500	0.615	cr	0.781	0.37	25.30			1973	86213	
		0.62			59.2	1.500	0.615	CT	0.768	0.40	23.80			1973	86213	
		0.62			59.2	1.500	0.615	CI	0.775	0.41	24.10			1973	86213	
		0.62			59.4	1.500	969.0	CT	0.771	0.39	23.40			1973	86213	
		0.62			69.4	1.500	0.596	CT	0.773	0.37	22.70			1973	86213	
		0.62			9.09	1.500	0.611	CT	0.796	0.38	23.50			1973	86213	
		0.62			9:09	1.500	0.611	cT	0.759	0.36	23.10			1973	86213	
17651	Plate	0.50	98	T.L	61.0	1.000	0.500	cr	0.507	0.94	22.50	 83.1	=	1973	86213	
		0.50			61.0	1.000	0.500	CT	0.512	0.31	21.60			1973	86213	
		0.50			61.0	1.000	0.500	СТ	0.508	0:30	21.30	rï		1973	86213	
		0.62		<del>'</del>	63.5	1.500	0.621	CT	0.768	0.36	24.20			1973	86213	
		0.62			63.5	1.500	0.620	CT	0.780	0.39	25.10	-		1973	86213	
		0.62			65.0	1.500	0.615	Į.	0.763	0.30	22.50			1973	86213	
		0.62			65.0	1.500	0.615	ст	0.762	0.30	22.70			1973	86213	

#### TABLE 8.10.2.2

						¥	ALUMINUM	KUM	7075	7075 (ALCLAD)	(AD)	κ _c							
	PROI	PRODUCT	1000	ļ		SPECIMEN	MEN	CRACK LENGTH	ЭК ТН	GROSS	SS SS		Керр			K _c			
CONDITION HEAT TREAT	FORM	THICK (in.)	TEMP (°F)	SPEC		WIDTH 1 W	THICK (in.)	INIT 1 (in.) 2a.	FINAL (in.) 2a,	ONSET (Kei) o.	MAX (Kei)	K. (Keivin)	K,	STAN	K _e (Ksi√in)	K _e MEAN	STAN	DATE	REFER
							BUCKI	ING OF	BUCKLING OF CRACK EDGES RESTRAINED	DGES RE	STRAINE	Q							
		90.08		L	73.1	6.900	6.00	1.580	1.970	ŀ	36.70	60.51			69.39			1965	70485
		90:08			73.1	6.900	6.00	1.580	;	ı	32.10	52.93			1			1965	70485
		90.0			73.1	6.900	0.079	0.790	0.980	1	47.40	53.39			59.83			1965	70485
		90:08			73.1	2.900	6.0.0	0.390	:	ı	67.00	44.73*			ı			1965	70485
		90.08		!	73.1	6.900	0.079	3.150	:	:	19.60	53.32			i			1965	70485
Ē	3	90.0	E		73.1	2.900	0.079	0.790	0.980	38.80	42.80	48.21			54.02			1965	70485
9	Sneet	90.08		<u>-</u>	73.1	6.900	0.079	0.390	:	51.50	68.50	45.91*	53.5	3.2	1	60.1	5.1	1965	70485
		90:0	·	i	73.1	5.900	0.079	0.790	0.980	ı	46.50	52.38			68.70			1965	70485
		90.08			73.1	2.900	6.00	3.150	:	ı	20.10	54.69			1			1965	70485
		90.08		1	73.1	6.900	0.079	0.390	0.670	1	58.90	46.23*			60.91			1965	70485
		90.0		1	73.1	2.900	0.079	3.150	3.420	19.50	19.80	53.87			58.60			1965	70485
		90'0			73.1	2.900	0.079	1.580	2.010	-	31.40	51.78			60.16			1965	70485
		90.0		L	73.1	11.800	0.079	4.720	6.860	19.20	21.00	63.57			75.57			1965	70485
		90.0	<del></del>		73.1	11.800	0.079	2.360	2.950	30.20	32.20	63.57			72.11			1965	70485
		90.0			73.1	11.800	0.079	0.980	1.380	42.10	48.80	60.81			72.46			1965	70485
3L	Sheet	90.08	R.T.	<u>.</u>	73.1	11.800	0.079	1.770	2.130	25.50	33.30	56.31	61.5	6.8	62.16	70.1	7.2	1965	70485
		90.08			73.1	11.800	620.0	0.980	1.260	41.60	46.40	67.82			65.74			1965	70485
		0.08			73.1	11.800	620.0	1.770	2.280	21.90	34.30	68.00			66.45			1965	70485
		90'0			73.1	11.800	6.00	2.360	2.600	25.90	32.30	63.77			67.30			1965	70485

* NOTE: NET SECTION STRESS EXCEEDS 80% OF YIELD STRENGTH. VALUE NOT INCLUDED IN MEAN OR STANDARD DEVIATION.

2 of 11

TABLE 8.10.2.2 (CONTINUED)

						A	ALUMINUM	NUM	707	7075 (ALCLAD)	(TAD)	К _с							
	PRODUCT	UCT	TODE		4	SPECIMEN	MEN	CRACK	СК ЭТН	GROSS	SS		Kapp			Кc			
CONDITION HEAT TREAT	РОВМ	THICK (in.)	TEMP (°F)	SPEC	STR (Kei)	WIDTH (in.)	THICK (In.)	INIT (in.) 2a.	FINAL (in.) 2a,	ONSET (Kei)	MAX (Kei)	K (Kelvin)	K. MEAN	STAN	K _e (Ketvin)	K, MEAN	STAN	DATE	REFER
							BUCK	LING OF	? CRACK	BUCKLING OF CRACK EDGES RESTRAINED	ESTRAINE	Q;							
		90.0			73.1	11.800	0.079	3.540	4.210	18.60	32.30	80.69			90.25			1965	70485
		0.08			73.1	11.800	0.079	3.540	3.940	18.00	23.00	57.46			61.50	•		1965	70485
		0.08			73.1	11.800	080.0	066.0	1.260	36.70	45.60	57.11			64.61			1966	65697
		0.08			73.1	11.800	0.080	2.360	3.340	17.60	30.80	60.81			74.25			1966	65697
	Sheet	0.08	R.T.		73.1	11.800	0.080	2.360	2.800	24.20	32.20	63.57			69.97			1966	65697
Cont'd	Cont'd	90.0	Cont'd	Cont'd	73.1	11.800	0.080	2.360	3.150	ì	33.20	65.55	Cont'd	Cont'd	77.27	Cont'd	Cont'd	9961	65697
		90.0			73.1	11.800	0.080	2.360	2.840	23.20	28.30	55.87			62.00			1966	65697
		90.0		1	73.1	11.800	080.0	0.990	1.320	34.30	49.20	61,62			71.40			1966	65697
		0.08		4	73.1	11.800	0.080	0.990	1.280	35.30	46.00	57.61			65.70			1966	65697
		90.0			73.1	11.800	0.080	0.990	1.400	21.00	49.00	61.37			73.30			1966	65697
	ā	0.01	E		67.4	15.000	0.00	7.500	9.380	i	17.80	72.66			91.70			1966	86734
	Sheet	0.01	ж. 1.	1.	67.4	15.000	0.00	7.500	8.480	ı	18.70	76.33	74.5	2.6	85.92	88.8	4.1	1966	86734
		0.08			73.1	23.600	0.079	1.580	1.890	35.60	39.70	62.72			68.68			1965	70485
		0.08			73.1	23.600	0.079	0.790	1.300	ı	45.50	50.72			65.14			1965	70485
	i	90:0	Ē		73.1	23.600	0.079	4.720	5.000	16.60	22.70	63.38			65.44			1965	70485
	Sugar	0.08	<u>:</u>	<u> </u>	73.1	23.600	0.079	6.300	6.700	14.20	18.90	62.21	62.4	8.6	64.55	69.3	10.4	1965	70485
		0.08			73.1	23.600	0.079	0.630	0.870	46.10	48.00	47.77			56.16			1965	70485
		90:08			73.1	23.600	0.079	3.940	6.200	22.20	28.90	73.16			85.16			1965	70485

* NOTE: NET SECTION STRESS EXCREDS 80% OF YIRLD STRENGTH. VALUE NOT INCLUDED IN MEAN OR STANDARD DEVIATION.

	- M.					A	ALUMINUM	MDY	7075	7075 (ALCLAD)	ΨP)	K							
	PRO]	PRODUCT	TRAT	<u> </u>	4	SPECIMEN	MEN	CRACK	CK TTH	GROSS	SS		Карр			Kc	-		
CONDITION HEAT TREAT	FORM	ТНІСК (In.)	TEMP (°F')	SPEC	STR (Kel)	WIDTH 1	THICK 1 (ln.)	(ln.) 2a,	FINAL (in.) 2s,	ONSET (Kei) G	MAX (Kst)	K (Kelvin)	K MEAN	STAN DEV	K _e (Kel√in)	K _e MEAN	STAN DEV	DATE	REFER
							BUCKL	ING OF	CRACK E	BUCKLING OF CRACK EDGES RESTRAINED	STRAINE	Q							
		90.0			73.1	23.600	0.079	1.180	1.380	38.00	45.10	61.50			66.54			1965	70485
		80.0		L	73.1	23.600	0.079	1.180	1.380	44.30	46.50	63.41			68.61			1965	70485
		90.0		1	73.1	23.600	0.079	4.720	5.000	17.10	20.60	57.52			59.38			1965	70485
		90.0			73.1	23.600	9 6.0.0	6.300	6.850	15.90	21.20	87.69		<del>,</del>	73.39			1965	70485
		0.08			73.1	23.600	0.079	1.580	2.240	1	29.90	47.23			56.40			1965	70485
X		90.08		1	73.1	23.600	0.079	1.180	1.540	38.20	45.10	61.50			70.33			1965	70485
Te	Sheet	0.08	R.T.		73.1	23.600	0.079	2.360	2.680	28.50	33.00	63.93			68.25			1965	70485
Cont'd	Cont'd	90.08	Cont'd	Cont'd	73.1	23.600	0.079	1.580	2.560	33.80	37.20	58.77	Cont'd	Cont'd	75.14	Cont'd	Cont'd	1965	70485
		0.08			73.1	23.600	0.079	2.360	2.950	24.50	32.20	62.38			66.69			1965	70485
		0.08			73.1	23.600	0.079	3.150	3.580	22.60	29.30	65.90			70.48			1965	70485
		90.0		1	73.1	23.600	0.079	0.790	0.990	:	47.50	52.95			69.30			1965	70485
		0.08			73.1	23.600	0.079	3.150	3.460	24.00	29.70	66.80			70.17			1965	70485
		90.08			73.1	23.600	0.079	3.150	3.700	21.00	28.30	63.65			69.28			1965	70485
		90:08			73.1	23.600	0.079	11.80	13.220	10.00	18.10	92.67			103.33			1966	70485
				f	-		SUCKLIN	G OF CE	VACK ED	BUCKLING OF CRACK EDGES NOT RESTRAINED	RESTRAI	VED							
		0.04			8.69	7.500	0.040	3.000	i	:	18.00	43.44			i			1966	86734
æ	Sheet	0.04	R.T.	7	8.69	7.500	0.040	3.000	1	- <b>-</b>	21.20	51.17	47.3	e e	1			1966	86734
		90:04			8.69	7.500	0.040	3.000		ı	19.65	47.42	?	}	ı		i	1966	86734

• NOTE: NET SECTION STRESS EXCEEDS 80% OF YIELD STRENGTH. VALUE NOT INCLUDED IN MEAN OR STANDARD DEVIATION.

		et		_		<b></b>			_	T_		_		_	_	_	_	-	1	_	-	
		REFER		86734	86734	86734	86734	62311	62311	62311	62311	62311	62311	62311	62311	62311	62311	62311	62311	62311	62311	62311
		DATE		1966	1966	1966	1966	1965	1965	1965	1965	1965	1965	1965	1965	1965	1965	1965	1965	1965	1965	1965
		STAN			:		:								2.3	!						
	Kc	K, MEAN			ı										55.0							
		K _e (Kai√in)		1	ı	;	1	59.90*	57.46*	47.70	57.33	47.45	48.27	45.61	64.72	52.06	61.43	62.50*	62.11*	67.81	58.66	€8.62*
		STAN			3.1	L	. 1								5.7		<u></u> _					<b>.</b>
	Kapp	K,			52.6		;				- :				51.4							
Kc	K	K (Kelvin)		83.26*	64.77	50.44	65.27	53.68*	51.14*	44.05	53.15	44.63	46.39	43.67	60.52	50.26	55.17	43.36*	41.50*	68.10	56.83	62.71*
			TRAINE																_			
CLAL	GROSS STRESS	(Ket)	T RES	34.50	34.80	20.90	22.90	56.10	55.40	11.40	19.90	11.60	11.80	11.30	35.10	28.80	20.70	64.20	64.90	33.80	20.00	47.40
7075 (ALCLAD)	GR	ONSET (Kei)	DGES N	i	;	:		53.60	62.60	6.90	11.10	6.90	10.70	9.70	31.90	15.80	17.10	62.90	64.00	30.60	19.20	89.90
	CRACK	FINAL (in.) 2a,	BUCKLING OF CRACK EDGES NOT RESTRAINED	i	1	ı		0.720	0.680	5.840	4.030	5.740	5.740	5.680	2.030	1.960	4.180	0.600	0.680	2.350	4.120	096'0
INUM	CR	INIT (in.) 2a.	ING OF	3.000	1.500	3.000	3.000	0.580	0.540	5.480	3.650	5.460	5.560	5.480	1.800	1.840	3.640	0.290	0.260	1.790	3.960	0.780
ALUMINUM	SPECIMEN	THICK (in.)	BUCKL	0.064	0.064	0.064	0.125	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040
	SPEC	WIDTH (In.) W		7.500	7.500	7.500	7.500	9.000	9.000	9.000	9.000	9.000	9.000	9.000	9.000	9.000	9.000	9.00	9.000	9.00	9.000	9.000
		STR (Kel)		69.1	69.1	69.2	689	63.0	63.0	63.0	63.0	63.0	63.0	63.0	63.0	63.0	63.0	63.0	63.0	63.0	63.0	63.0
		SPEC			LT		1.7								7.							
	Į.	TEMP (°F)			R.T.		R.T.								R.T.					_		
	ucr	THICK (in.)		90.0	90:0	90:0	0.12	90.04	90.04	9.04	90.04	90.04	0.04	90.0	0.04	0.04	0.04	0.04	0.04	0.04	90.0	0.04
	PRODUCT	FORM		<b>!</b>	Sheet		Sheet		!	1		1			Sheet		1		i	1		
		CONDITION HEAT TREAT			T6		T6								Te							

• NOTE: NET SECTION STRESS EXCREDS 80% OF YIELD STRENGTH. VALUE NOT INCLUDED IN MEAN OR STANDARD DEVIATION.

						A.	ALUMINUM	NUM	707	7075 (ALCLAD)	(TAD)	Жc								
	PRODUCT	ucr	TO GET		4	SPECIMEN	MEN	CRACK	CK ;TH	GROSS	SS		Карр			K _c				
CONDITION HEAT TREAT	FORM	THICK (ib.)	TEMP (°F)	SPEC		WIDTH 1	THICK (in.)	(in.)	FINAL (in.) 2a,	ONSET (Kei)	MAX (Kei)	K (Kelvin)	K. MEAN	STAN	K _o (Kei√in)	K _e MEAN	STAN	DATE	REFER	
							BUCKLIN	IG OF C	RACKED	BUCKLING OF CRACK EDGES NOT RESTRAINED	RESTRA	INED								
		90.04			63.0	9.000	0.040	3.640	4.030	10.60	19.60	52.24			56.47			1965	62311	
T6 Cont'd	Sheet Cont'd	0.04	R.T. Cont'd	Cont'd	63.0	9.000	0.040	0.790	1.130	42.20	46.70	52.27*	Cont'd	Cont'd	62.83*	Cont'd	Cont'd	1965	62311	
		0.04			63.0	9.000	0.040	1.860	1.940	15.80	29.30	51.44			52.66			1965	62311	_
		0.09		1	63.0	9.000	0.091	3.540	3.740	23.20	27.50	71.83			74.78			1965	62311	
		60.0	·		63.0	9.000	0.091	3.680	3.800	25.60	26.50	71.20			72.93			1965	62311	-
		0.09		1	63.0	9.000	0.091	1	1.960	i	38.00	:			68.70			1965	62311	
	•	60.0	·	Ь	63.0	9.000	0.091	1.780	2.220	29.10	35.70	61.18			69.28			1965	62311	
		60.0			63.0	9.000	0.091	5.360	5.540	14.00	17.20	64.79			67.33			1965	62311	
		0.09			63.0	9.000	0.091	5.320	2.600	16.50	16.70	62.38			66.24			1965	62311	
		60.0			63.0	9.000	0.091	3.840	4.080	24.80	25.50	70.74			74.20			1965	62311	
	<b>-</b>	60.0			63.0	9.000	160.0	5.320	5.440	14.00	16.70	62.38	_		63.98			1965	62311	
T6	Sheet	0.09	R.T.	1.7	63.0	9.000	0.091	1.960	2.270	36.00	36.90	66.71	64.5	6.1	72.54	20.0	3.6	1965	62311	
		0.09			63.0	9.000	160'0	1.780	2.200	28.20	36.00	61.69			69.50			1965	62311	
-		60.0			63.0	9.000	0.091	0.750	1.080	39.50	46.50	€0.69			61.11•			1965	62311	
		0.09			63.0	9.000	0.091	3.500	3.960	23.20	25.90	67.10			73.59			1965	62311	
		0.09			63.0	9.000	0.091	0.290	0.700	69.70	61.10	41.26*			64.31			1965	62311	
		0.09			63.0	9.000	0.091	0.540	0.900	47.60	51.50	47.54*			61.61			1965	62311	
		0.09			63.0	9.000	0.091	0.540	0.800	48.30	61.60	47.63*			58.13*			1965	62311	
		0.09			63.0	9.00	160:0	0.780	1.170	39.60	44.40	49.38	_		60.83*			1965	62311	
		0.09			63.0	9.000	0.091	6.360	9.500	15.90	17.20	64.79			66.76			1965	62311	

• NOTE: NET SECTION STRESS EXCEEDS 80% OF YIELD STRENGTH. VALUE NOT INCLUDED IN MEAN OR STANDARD DEVIATION.

	K _C	STAN K _q K _q STAN DATE REFER DEV (Kelvlin) MEAN DEV		19.67	0.9 85.14 82.4 3.9 1966 86734	89.58 1966 86734	6.5         76.30         82.9         9.4         1966         86734	54.68 1965 62311	45.47 1965 62311	62.25 1965 62311	52.58 62311	68.41 1965 62311	H	53.52	1965	1965 61.9 3.1 1965	51.97 51.9 3.1 1965 53.86 1965	51.97 50.89 51.9 3.1 1965 1965 1965 1965 1965 1965 1965 196	50.89 51.9 3.1 1965 50.89 51.9 3.1 1965 51.17 1965 48.03 1965	51.97 50.89 53.86 51.07 51.97 51.9 51.9 51.9 51.9 51.9 1965 1965 1965 48.03 1965	51.97 50.89 51.97 53.86 51.17 48.03 52.70 51.95 1965 1965 1965 1965
Kapp		MEAN		39	88.8	91.19	71.43 75.3 6.1		1		:		•		1 1 1	!	:	!	!	!	!
	S	(Kel) (Kelvin)	1	0.020 7.500 8.640 17.00 69.39	16.70 68.17	19.40 79.	17.50 71.	27.50	9.20	29.60	16.00	32.10									
	GROSS	ONSET R (Ket) (	•	-	1			:	:	-	:	1		:							
	CRACK	FINAL (in.) 2a,	28,	8.640	9.300	8.520	8.050	2.470	10.530	1.960	6.100	2.080		2.420	2.420	2.420 2.440 6.220	2.420 2.440 6.220 10.530	2.420 2.440 6.220 10.530 3.860	2.420 2.440 6.220 10.530 7.300	2.420 2.440 6.220 10.530 7.300	2.420 6.220 10.530 3.860 7.300 7.300 2.400
-	CR	INIT (in.) 2a.	2a,	7.500	7.500	7.500	7.500	i	i	;	;	!		:	1 1	1 1 1	: : : :	: : : : :	1 1 1 1 1	: : : : : : :	
	SPECIMEN	THICK (in.) B	В	0.020	0.020	0:030	0:030	0.040	0.040	0.040	0.040	0.040		0.040	0.040						
	SPEC	WIDTH (In.) W	*	15.000	15.000	15.000	15.000	20.000	20.000	20.000	20.000	20.000	_	20.000	20.000	20.000	20.000 20.000 20.000 20.000	20.000 20.000 20.000 20.000	20.000 20.000 20.000 20.000 20.000	20.000 20.000 20.000 20.000 20.000 20.000	20,000 20,000 20,000 20,000 20,000 20,000 20,000
	V lain	STR (Kel)		70.3	70.3	68.8	68.8	63.0	63.0	63.0	63.0	63.0		63.0	63.0	63.0	63.0 63.0 63.0	63.0 63.0 63.0	63.0 63.0 63.0 63.0	63.0 63.0 63.0 63.0 63.0	63.0 63.0 63.0 63.0 63.0 63.0
		SPEC			LT		5	1				'	•		E	7.7	1.7	7.7	7	7	5
	100	TEMP (°F)			R.T.	Ē	K.I.								Đ	R.T.	R.T.	R.T.	R.T.	F. T.	H.
	UCT	THICK (ln.)		20:0	0.02	0.03	0.03	90.04	90.04	0.04	0.04	90.04		0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
	PRODUCT	FORM			Sheet		Sheet				1				j j	Sheet	Sheet	Sheet	Sheet	Sheet	Sheet
		CONDITION HEAT TREAT			TG	Ě	9								Ę	Te	9L	<b>1</b> .	91	<b>1</b> 2	94

* NOTE: NET SECTION STRESS EXCEEDS 80% OF YIELD STRENGTH. VALUE NOT INCLUDED IN MEAN OR STANDARD DEVIATION.

	-	STAN DATE REFER	-	1965 62311	1965 62311	1965 62311	1965 62311	1965 62311	3.7 1965 62311	1965 62311	1965 62311	1965 62311	1965 62311	1966 86734	1966 86734	1966 86734	1966 86734	1966 86734	1966 86734	1966 86734	6.2 1966 86734	1000
	K,	K _c				\ <u>.</u>	4		6 61.8	۰	80	6					!			6	1 90.0	1
		N Ko		66.90	63.48	58.71	62.24	61.43	64.06	65.65	57.68	62.49	54.95		:	-	-	:	'	94.39	85.61	62.71
		STAN							2.9								16.9				9.0	
	Керр	K. MEAN							56.4		-		I				64.9				73.9	
Кc		K (Kel√in)	AINED	58.62	59.25	54.95	57.96	57.18	56.19	60.14	52.08	56.03	51.22	80.81	78.51	81.57	49.23	48.99	50.46	73.31	74.46	50.80
(LAD)	GROSS STRESS	MAX (Kal)	r RESTR.	34.30	24.20	15.20	19.00	18.60	32.70	24.60	11.00	15.50	10.80	14.00	13.60	16.90	15.64	10.15	23.10	12.70	12.90	8.80
7075 (ALCLAD)	GROSS	ONSET (Kei) 0.	BUCKLING OF CRACK EDGES NOT RESTRAINED	17.60	15.70	10.80	12.10	12.40	19.20	15.40	6.60	10.80	6.90	:	1	:	:	į	:	1	1	ı
	CRACK	FINAL (in.) 2a,	CRACK E	2.380	4.150	7.780	6.070	6.150	2.400	4.280	11.180	8.250	10.850	:	;	i	:	i	:	19.060	17.300	18.420
INUM	CR	INIT (In.) 2a,	ING OF	1.840	3.660	7.070	5.400	5.470	1.860	3.650	10.05	7.070	10.07	15.00	15.00	12.00	000.9	12.00	3.000	15.00	15.00	15.00
ALUMINUM	SPECIMEN	THICK (fp.)	BUCKE	0.091	0.091	0.091	0.091	0.091	0.091	0.091	0.091	0.091	0.091	0.039	0.039	0.040	0.040	0.040	0.040	090.0	090.0	0.081
,		WIDTH (fn.)		20.000	20.000	20.000	20.000	20.000	20.000	20.000	20.000	20.000	20.000	30.000	30.000	30.000	30.000	30.000	30.000	30.000	30.000	30.000
	VIELD	STR (Ket)		63.0	63.0	63.0	63.0	63.0	63.0	63.0	63.0	63.0	63.0	71.1	11.1	69.8	72.7	72.9	73.4	71.8	71.8	72.9
		SPEC						F	3							F	3			F	;	
	TRAT.	TEMP (°F)			······································			Ę	<u>:</u>							Ē	<u>:</u>			£		
	PRODUCT	THICK (in.)		0.09	60.0	60:0	60:0	60:00	60:0	0.09	0.09	0.09	60:00	0.04	0.04	0.04	90.0	0.04	90.0	90:0	90'0	90:08
		FORM						i	18							10010	i k			100		
		CONDITION HEAT TREAT						Į.								£				£		i

• NOTE: NET SECTION STRESS EXCREDS 80% OF YIELD STRENGTH. VALUE NOT INCLUDED IN MEAN OR STANDARD DEVIATION.

8 of 11

TABLE 8.10.2.2 (CONTINUED)

						¥	ALUMINUM	MON	7075	7075 (ALCLAD)	AD)	Kc							
	PRO	PRODUCT				SPECIMEN	MEN	CRACK	СК	GROSS	SS		Kapp			К _с			
CONDITION HEAT TREAT	FORM	THICK (in.)	TEMP (°F)	SPEC	STR (Kal)	WIDTH 7	THICK (in.)	(in.) 2a.	FINAL (In.)	ONSET (Ket) G	MAX (Kel)	K. (Kelvin)	K	STAN	K _e (Kelvin)	K _c MEAN	STAN DEV	DATE	REFER
							BUCKLIN	(G OF CI	RACK RDO	BUCKLING OF CRACK EDGES NOT RESTRAINED	RESTRAI	NED							
		0.09			69.0	3.000	0.089	1.120	2.016		33.90	49.27			85.94*			1973	86213
		0.09			69.0	3.000	0.089	1.230	2.141	ï	31.80	49.43			88.38*			1973	86213
1	i	60:0	1		69.0	3.000	0.089	1.170	2.140		33.60	50.36			93.38*			1973	86213
<b>2</b>	Sheet	60.0	28	5	69.2	3.000	0.089	1.170	2.005	ï	32.70	49.01	49.5	9.0	82.20*	i	i	1973	86213
		0.09			69.2	3.000	0.089	1.210	2.062	i	32.40	49.76			84.91*			1973	86213
		60.0			69.2	3.000	680.0	1.230	2.162	i	31.70	49.27			89.63*			1973	86213
		0.09		,	0.69	3.000	0.089	1.210	2.058	;	32.50	49.91			84.92*			1973	86213
16	Sheet	0.09	2	-	69.0	3.000	0.089	1.220	2.115	:	31.80	49.13	49.5	9.0	86.63*	;	i	1973	86213
		0.12		•	71.0	3.000	0.125	1.210	1.947	;	34.00	52.21*			82.10*	<del>,</del>		1973	86213
		0.12			71.0	3.000	0.126	1.190	2.100	ï	34.60	62.49*			93.27*			1973	86213
	;	0.12			71.0	3.000	0.126	1.250	2.081	1	33.90	53.33*			90.02*			1973	86213
2	Sheet	0.12	£	3	71.7	3.000	0.126	1.190	1.964	ı	35.90	54.47*	i	!	87.76*	;	ı	1973	86213
		0.12			71.7	3.000	0.126	1.230	2.059	·	34.40	53.47*			*68.68			1973	86213
		0.12			71.7	3.000	0.126	1.220	2.021	ı	34.60	53.46*			87.96*			1973	86213
		0.09			69.7	3.000	0.089	1.160	2.116	i	33.30	49.60			90.85*	1	···-	1973	86213
J.	Sheet	0.09	8	<b>1</b> 7	69.7	3.000	0.089	1.260	2.178	ı	30.80	48.75	49.2	0.4	88.20*	ŀ	;	1973	86213
		0.09			69.7	3.000	0.089	1.240	2.146	:	31.50	49.26			87.95*			1973	86213
		0.12			71.8	3.000	0.126	1.230	2.024	-	34.10	63.00			86.94*			1973	86213
<b>3</b> E	Sheet	0.12	- <del>-</del> -	Ŀī	71.8	3.000	0.126	1.180	2.018	i	34.70	52.33	i	1	\$8.09◆	; 	ı	1973	86213
		0.12			71.8	3.000	0.126	1.370	2.227	1	31.60	53.40*			94.10*			1973	86213

• NOTE: NET SECTION STRESS EXCEEDS 80% OF YIELD STRENGTH. VALUE NOT INCLUDED IN MEAN OR STANDARD DEVIATION.

					¥	ALUMINUM	NUM	707	7075 (ALCLAD)	LAD)	К							
	PRODUCT	£ S		1	SPECIMEN	MEN	CRACK	CK 3TH	GROSS	SS	1	Кирр			Кc	-		
	THICK (in.)	TEMP (°F)	SPEC	STR (Kei)	WIDTH (in.)	THICK (in.) B	INIT (in.) 2a,	FINAL (in.)	ONSET (Kei)	MAX (Kel)	K (Kaivlin)	K, MEAN	STAN DEV	R _e (Kei√in)	K _e MEAN	STAN	DATE	REFER
					Ì	BUCKE	VG OF C	RACK ED	BUCKLING OF CRACK EDGES NOT RESTRAINED	RESTRA	INED							
	0.16			73.4	3.000	0.160	1.207	2.539	:	29.90	45.81			121.98*			1973	86213
	0.16			73.4	3.000	0.160	1.210	1.994	:	30.30	46.53			75.63*			1973	86213
	0.16			73.4	3.000	0.160	1.203	1.943	ı	30.10	46.00			72.48*			1973	86213
	0.16			70.4	3.000	0.164	1.157	1.726	ı	35.90	53.35*			75.15*			1973	86213
Sheet	0.16	88	7	70.4	3.000	0.164	1.087	1.580	i	36.80	52.36*	167	6.6	70.47*			1973	86213
	0.16			70.4	3.000	0.164	1.200	1.747	÷	35.00	53.42*		}	74.19*			1973	86213
	0.16			71.2	3.000	0.164	1.230	1.647	:	33.50	52.07			*92'99			1973	86213
	0.16			71.2	3.000	0.164	1.220	1.654	ï	33.60	51.91			67.29*			1973	86213
- 1	0.16			71.2	3.000	0.164	1.207	1.659	ŀ	34.00	52.09			68.25*			1973	86213
5	0.04	£ a	Ē	65.8	7.500	0.040	3.000	:	ì	19.25	46.46						1966	86734
,	0.04		3	66.2	7.500	0.040	3.000	:	÷	18.54	44.75	45.6	1.2	ı	i	;	1966	86734
Ch ₂₀₀ 4	0.01	E O	E	67.1	15.000	0.010	7.500	8.380	1	14.40	58.78			65.36			1966	86734
;	0.01		2	67.1	15.000	0.010	7.500	8.590	ı	13.90	56.74	67.8	1.4	64.74	65.1	9.4	1966	86734
rhoot.	0.02	E		65.8	15.000	0.020	7.500	8.560	i	16.50	67.35			76.57			1966	86734
	0.02		:	65.8	15.000	0.020	7.500	8.610	1	17.20	70.21	68.8	2.0	16.08	78.4	5.6	1966	86734
, de .	0.03	6-	F	9.69	15.000	0:030	7.500	9.360	:	17.60	71.84			90.43			1966	86734
. 1	0.03		:	9.69	15.000	0.030	7.500	9.150	ı	18.10	73.88	72.9	1.4	90.49	90.6	0.0	9961	86734
50	90:04	£ C	Ē	6.69	30.000	0.039	15.00	!	:	11.10	64.07						1966	86734
ŧ	0.04	;	2	6.69	30.000	0.039	15.00	ŀ	1	11.70	67.54	65.8	2.5	1	ı	i	1966	86734

• NOTE: NET SECTION STRESS EXCREDS 80% OF YIELD STRENGTH. VALUE NOT INCLUDED IN MEAN OR STANDARD DEVIATION.

		ER.		86734	86734	86734	86734	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	
		REFER			_	_								_								L
		DATE		1966	1966	1966	1966	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	
		STAN			0.4		1.0							ı						i		
	К _с	K, MEAN			75.5		62.0		1					ı	-					1		
		K _e (Kel√in)		75.74	75.18	52.76	51.33	70.71*	€6.89*	68.50*	*68.99	68.95*	70.37*	66.03	74.01*	+09.01	73.79*	79.09*	69.71*	70.32*	*91.69	
		STAN DEV			0.0		0.4		0.2					9.0						8.0		
	Kapp	K.			68.1		47.0		44.6					43.4						46.9		
Kc	H	K. (Keivlin)	C.D.	68.12	68.12	47.33	46.76	44.46	44.72	44.74	44.15	43.58	43.16	43.64	43.04	43.09	47.69	47.82	45.92	46.91	47.06	
(i)	80	MAX (Ket) (1	ESTRAIN	11.80	11.80	8.20	8.10	27.10	29.30	28.10	27.40	27.70	27.60	26.60	28.20	26.90	28.90	30.40	29.90	30.00	31.40	
7075 (ALCLAD)	GROSS	ONSET N	es not ri	:		:		- :			:	:	-		-	1	:	ì	1	!	:	
7075	JK TH	FINAL O	BUCKLING OF CRACK BDGBS NOT RESTRAINED	16.760	16.640	16.800	16.550	2.056	1.862	1.960	1.962	1.990	2.025	1.987	2.064	2.065	2.026	2.052	1.894	1.902	1.821	
ACM.	CRACK	INIT F (in.) 2a,	GOPCI	15.00	15.00	15.00	15.00	1.320	1.200	1.270	1.290	1.250	1.240	1.320	1.200	1.280	1.330	1.250	1.210	1.240	1.170	
ALUMINUM	(IEN	THICK I	SUCKEIN	0.064	0.064	0.081	0.081	0.089	680.0	0.089	0.088	0.088	0.088	0.089	0.089	0.089	0.125	0.125	0.126	0.127	0.127	
IA	SPECIMEN	T HTCIW	-	30.000	30.000	30.000	30.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	
		STR W		69.8	69.8	69.2	69.2	67.2	67.2	67.2	67.4	67.4	67.4	67.7	67.7	67.7	69.4	69.4	9.69	69.4	9.69	
		SPECOR					3		7: 				!							1 <u>:</u>		
		TEMP (°F)		E	K.T.	E	. IV. I.		83				8	2					8	2		
		THICK (in.)		90.0	90.0	90:08	90:08	60:0	60:0	60:00	60.0	0.09	60.0	60.0	60.0	60:0	0.12	0.12	0.12	0.12	0.12	9
	PRODUCT	FORM			Sheet		oneer.		Sheet		1		! ā	and a second	1		!		I	1		
		CONDITION HEAT TREAT		1	91	į	2		Te				Ē	<u>e</u>					Ē	2		

• NOTE: NET SECTION STRESS EXCEEDS 80% OF YIELD STRENGTH. VALUR NOT INCLUDED IN MEAN OR STANDARD DEVIATION.

# TABLE 8.10.2.2 (CONCLUDED)

		REFER		86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	
				<u> </u>	_					_			_		<u> </u>	├	_	_	-	╀
		DATE		1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	5
		STAN			I									90	}					1.6
	ικ _c	K _c MEAN			į			i						49.7						67.8
		Ke (Kelvin)		67.61*	64.72*	70.28*	73.19*	69.22*	71.44*	52.40*	50.12	49.24	74.65*	74.18*	57.14*	71.21*	57.92*	57.46*	68.90	86.78
		STAN						8.0						6.2		·				7.
	Карр	MEAN			43.5			47.3						44.0		<del></del>				59.2
К _с		K. Ketvin)	YED	43.31	43.57	43.52	48.14	47.17	- 46.59	41.42	39.40	40.26	46.94	45.49	45.50	46.25	45.10	46.07	59.46	58.94
AD)	SS	MAX (Kat)	RESTRAD	27.20	28.20	28.00	30.60	29.10	27.90	27.20	24.60	25.90	30.20	29.80	29.70	30.30	32.30	30.70	22.80	22.60
7075 (ALCLAD)	GROSS	ONSET (Kai)	BUCKLING OF CRACK EDGES NOT RESTRAINED	!	i	i	ı	1	ı	ı	ı	ı	1	:	ı	1	:	ŀ	16.60	18.10
707	CRACK	FINAL (in.) 2a,	RACKED	1.989	1.871	2.003	1.932	1.925	2.031	1.590	1.683	1.568	1.981	1.991	1.589	1.906	1.470	1.542	6.100	4.920
NOM	CR	INIT (in.) 2a.	NG OF	1.270	1.220	1.230	1.250	1.300	1.350	1.197	1.280	1.230	1.230	1.200	1.207	1.201	1.067	1.173	4.000	4.000
ALUMINUM	MEN	THICK (in.) B	BUCKL	0.089	680.0	0.089	0.125	0.126	0.126	0.160	0.160	0.160	0.163	0.163	0.163	0.164	0.164	0.164	0.089	060:0
<b>V</b>	SPECIMEN	WIDTH (In.) W		3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	16.000	16.000
		STR (Kei)		0.69	0.69	0.69	69.1	69.1	69.1	70.6	70.6	70.6	69.2	69.2	9.69	69.2	9.69	9.69	69.1	69.1
	· · · · ·	SPEC			<u>-</u>		1	- <u>-</u> -1				1	1			i			i	<u>-</u>
		TEMP (°F)		<del></del>	84			84					*****	<b>&amp;</b>	<del></del>					£
	ucr	THICK (In.)		0.09	60.0	60.0	0.12	0.12	0.12	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.16	0.09	60:0
	PRODUCT	РОВМ		1	Sheet		1	Sheet			1			Sheet	1	1				Sheet
		CONDITION HEAT TREAT			<b>3</b> £			Te						Te					Ě	<u></u>

• NOTE: NET SECTION STRESS EXCREDS 80% OF YIRLD STRENGTH. VALUR NOT INCLUDED IN MEAN OR STANDARD DEVIATION.



Figure 8.10.3.1.1

7075 (ALCLAD) R Condition/Ht: T6 Yield Strength: 47.2 ksi Form: Sheet Ult. Strength: 68.2 ksi Specimen Type: CCP (max stress specified) Specimen Thk: 0.09 in. Orientation: T-L Specimen Width: 14 in. Frequency: 30 Hz Ref: EFM01 Environment: LAB AIR; RT (2 of 2) (1 of 2) $\Delta K (MPa\sqrt{in})$  $\Delta$ K (MPa $\sqrt{in}$ ) 10 100 100 40 10 40 انانيانا <u>, 1 , 1, 1, 1, 1, 1</u> 10° 10° Stress Ratio: 0.2 Stress Ratio: 0.05 10 -2 10-2 10-1 10⁻¹ 10⁻³ 10⁻³ da/dN (in/cycle) 10-2 da/dN (in/cycle) 10 10⁻⁶ 10⁻⁶ 10⁻⁵ 10⁻⁵ 10⁻⁷ 10⁻⁷ 10⁻⁶ 10 6 10⁻⁸ 10 8 4 10 40 100 40 100 10 ΔK (Ksi√in) ΔK (Ksi√in)  $da/dN (10^{-6}in/cycle)$ ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) **Δ**K (Ksi√in) 2.49 (min) 2.5 3. 3.5 0.0807 0.0818 2.83 (min) 0.107 3. 3.5 0.143 0.190 4. 5. 4. 5. 1.91 6.96 (max) 3.90 6.09 (max) Life Prediction Ratio Summary RMS & Life Prediction Ratio Summary RMS % Error Error 6.87 7.34 0. .5 1.25 2. Ö. .5 .8 1.25 2. .8



Figure 8.10.3.1.3



Figure 8.10.3.1.4

### **TABLE 8.11.1.1**

MEAN PLANE STRAIN FRACTURE TOUGHNESS FOR ALUMINUM 7000/8000 SERIES ALLOY 7079 AT ROOM TEMPERATURE

Product					$K_{Le}$	$K_{lc}~(ksi\!\sqrt{in})$	<u>6</u>			
Form	Condition/Heat Treatment			<b>3</b> 2	Specimen Orientation	n Orier	itation			
			L-T			T-L			S-L	
		Mean K _{to}	Std Dev	и	Mean K _{Ie}	Std Dev	u	Mean K _{Io}	Std Dev	u
	Te	33.	2.9	8	-	•••	:	:		:
Plate	T651	27.6	1.8	39	23.3	2.	27	18.6	3.2	10
	T851	28.6	1.6	7	21.3	3.4	2	:		i
Forging	T652	27.8	2.2	13	23.1	2.2	10	18.1	0.7	12

TABLE 8.11.1.2.1

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7079 AT ROOM TEMPERATURE

ENVIRONMENT: Lab Air	FCGR (10-6 in/cycle)         ΔK Level (Ksi√in)         5.0       10.0       20.0       50.0       100.0	15.47
ENVIRO	2.5	
H	FREQ (Hz)	5.17
	Ж	0.33
: <b>L</b> -S	PRODUCT FORM	FORGING
ORIENTATION: L-S	CONDITION/ HEAT TREATMENT	T652

**TABLE 8.11.1.2.2** 

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR  $\Delta K$  7079 AT ROOM TEMPERATURE

ORIENTATION: L-T

ENVIRONMENT: Lab Air

MODIFICANO	animona		Cada		FC(	JH (10-	FCGR (10° inferelo)	9	
HEAT TREATMENT	FORM	Ħ	(AH)		ΔF	[ Level	ΔK Level (Ksiv/in)	(1	
				2.5	5.0	10.0	20.0	50.0	100.0
	E	0.05	2				64.8		
Тв	SHEET	0.5	2				360.68		
	BILLET	0.02	1-30			10.4	108.02		
T651	SHEET	0.05	2			16.1	93.89		
T652	FORGING	0.33	5.17			22.35	144.68		

1 of 1

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR  $\Delta K$  7079 AT ROOM TEMPERATURE

ORIENTATION: T-S

ENVIRONMENT: H.H.A.

FCGR (10 ⁻⁶ in/cycle)  AK Level (Ksi\/in)  2.5 5.0 10.0 20.0 50.0 100.0	17.14
FCGR (10 ⁻⁶ in/cycle) ΔK Level (Ksiv/in)  5.0 10.0 20.0 50.0	17.14
FCGR (10 ⁶ in/cycle) ΔK Level (Ksii/in)  5.0 10.0 20.0 50.0	17.14
FCGR (10 ⁶ in/cycle) ΔK Level (Ksii/in)  5.0 10.0 20.0 50.0	17.14
FCGR (10-6 try cyc AK Level (Ksi/1	17.14
FCGR (10-6 try cyc AK Level (Ksi/1	17.14
FCGR (10-6 try cyc AK Level (Ksi/1	17.14
FCGR (10-6 in/cy/  AK Level (Ksi/i	17.14
FCGR (10-6 in/cy/  AK Level (Ksi/i	17.14
FCGR (10-6 in/cy/  AK Level (Ksi/i	17.14
G.	17.14
ić.	17.14
ić.	17.14
G.	17.
G.	
G.	
ić.	
G.	
2.5	
2.5	
2.5	
2.8	-
2.5	
N	
FREQ (Hz)	_
<b>.</b>	
Ē N I	2
22 as	5.17
_	
	m
2	0.33
	_
PRODUCT	
Oe .	-
26	FORGING
	3
FO !	ž
XĒ I	Ĭ,
#	
H	
_	_
Ħ	
programme (1990)   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990   1990	
Z	
Z Z	
ŽĘ	
ON/	
ION/	
TION/	7.7
HTTON/ EATIMEN	7,021
DITION/ REATMEN	7,652
NDITION TREATMEN	79AI.
ONDITTION/	Z99.I.
CONDITION/ VI TREATMEN	7,007
CONDITION/	Z9AI.
CONDITION/	7991.
CONDITION/ HEAT TREATMENT	799.1.
CONDITION/ HEAT TREATMEN	7,652

**TABLE 8.11.1.2.4** 

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7079 AT ROOM TEMPERATURE

	0.0	
	100.0	
	(b)	
	(9); (9)	
	6 in/eycle (Ksi\in)	
H.A		
	7 (10 Level	8.6
Ë	GGR T	
ENVIRONMENT: L.H.A.	FC A A	
NO	9	
/IR	25.25	
EN	8	
	29(2)	7
2.1	FREQ (Hz)	5.17
· .		
	R	0.33
	RODUCI	VG.
	RODUC	FORGING
<b>70</b> 0	PRC	F
. T-		
ORIENTATION: T-S		
ATI	E	
Z	NE.	
RIE	rio AT)	2
Ō	TRE	T652
	CONDITION/ HEAT TREATMENT	
	EA	
	E	

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7079 AT ROOM TEMPERATURE

100.0 60.0 FCGR (10⁻⁶ m/cycle) AK Level (Ksivin) 20.0 60.49 ENVIRONMENT: Lab Air 10.0 10.3 0.0 0.0 5 5 FREQ (Hz) 5.17 0.33 ¥ PRODUCT FORM FORGING ORIENTATION: T-S HEAT TREATMENT CONDITION T652

1 of 1

**TABLE 8.11.1.2.6** 

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7079 AT ROOM TEMPERATURE

	106.0	
	0.0	
	ycle) /in)	
Fog	FCGR (10 ⁻⁶ in/eycle)           ΔK Level (Ksiv/in)           0         10.0         20.0         5	
Salt	7R (10*	19.42
Z : E	CCR AK L	19
ENVIRONMENT: Salt Fog	FCI Al	
RON		
INN	2.5	
臼	FREQ (Hz)	5.17
	FH (I	19
-	R	0.33
	Г	
	RODUCI	FORGING
	RODUC	FOR
: T-S	P	
ORIENTATION: T-S	_	
TAI	II ENTI	
LEN	NUN	:
OF	VDE TREE	T652
	CONDITION/ HEAT TREATMENT	
	HIE	

#### **TABLE 8.11.1.2.7**

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7079 AT ROOM TEMPERATURE

60.0 FCGR (10⁻⁶ m/cycle) ΔK Level (Ksiγin) 28.0 72.89 ENVIRONMENT: H.H.A. 10.0 15.93 9.0 4.02 1.87 0.27 (A) FREQ (Hz) 0.05 2 9.0 PRODUCT FORM FORGING ORIENTATION: T-L HEAT TREATMENT CONDITION/ 33

100.0

**TABLE 8.11.1.2.8** 

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7079 AT ROOM TEMPERATURE

ORIENTATION: T-L	: T-L			NVIRO	NMEN	ENVIRONMENT: Lab Air	Air		
CONDITION/ HEAT TREATMENT	PRODUCT FORM	R	FREQ. (Hz)	2.8	FCI AI	FCGR (10 ⁻⁶ inγcycle) ΔK Level (Ksiγin)  0 100 200 1	d ingere	(b)	0.001
Ē		0.05	6		0.44	7.72	42.69		
16	FORGING	0.5	6	0.19	2.15	26.8	:		
T652	FORGING	0.33	5.17			17.05			

**TABLE 8.11.1.2.9** 

FATIGUE CKACK GROWTH KATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7079 AT ROOM TEMPERATURE	ENVIRONMENT: Lab Air	FCGR (10 ⁻⁶ in/cycle)   AK Lovel (Ksi/in)	18.3
OF SI	NVIE	2.5	
EVELS MPERA	-	FREQ (Hz)	5.17
OM TE	•	R	0.33
TH KATE AT DEFINED LEVELS OF ST 7079 AT ROOM TEMPERATURE	: S-T	PRODUCT FORM	FORGING
FALIGUE CRACK GROW	ORIENTATION: S-T	CONDITION/ HEAT TREATMENT	T652

TABLE 8.11.1.2.10

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7079 AT ROOM TEMPERATURE

	9.0	
	100.0	
	(a) (b)	
	(9)	
	yell Vin	
i,	Ksi Ksi	
ENVIRONMENT: Lab Air	AK Level (Ksiy/in)	
La	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	9.73
Ë	CH K I	3
E	FC A.	
Ž	ú	
20		
	2.5	
EN		
•	FREQ (Hz)	5.17
	ER.	5.
• •		
•	R	0.33
		0
	H	
	RODUCT	ZG.
	RODUC	FORGING
_	, RC	F
S-L	Ь	
ORIENTATION: S-L		$\dashv$
10	-	
'AT	Z	
E	CONDITION/ VI TREATME	
SIE	FIC	
OF	DE	T652
	Z.F.	
	27	
	CONDITION/ HEAT TREATMENT	

#### TABLE 8.11.2.1

					ALUI	ALUMINUM	1 7079	9 K _{Ie}							
	PRODUCT	vucr				S	SPECIMEN	z	CRACK			K _{Ie}		-	
CONDITION	FORM	THICK (in.)	TEST TEMP (°F)	SPEC	YTELD STR (Kel)	WIDTH (in.)	THICK (in.) B	DESIGN	LENGTH (in.) A	2.6 * (K _{L,} /TYS)* (in.)	K. (Kelvin.)	K, MBAN	STAN	DATE	REFER
TR	Plate	3.00	-75	LT	68.6	2.550	1.000	cr	0.881	0.55	32.30	:	ı	1966	76411
TG	Plate	3.00	-40	LT	68.5	2.550	1.000	CT	0.896	0.44	28.80	:		1966	76411
Tß	Plate	3.00	0	LT	69.2	2.550	1.000	CT	1.017	99'0	35.00			1966	76411
TR	Plate	3.00	32	LT	65.7	2.550	1.000	CT	0.918	09:0	32.20		-:	1966	76411
		3.00			65.0	2.550	1.000	СТ	0.875	0.56	30.70			1966	76411
	وردودار سروران	3.00			65.0	2.550	1.000	ст	0.958	0.52	29.50			1966	76411
		3.00	-		65.0	2.660	1.000	CT	0.932	99.0	33.50			1966	76411
1	ì	3.00	į	! ,	65.0	2.550	1.000	CT	1.080	0.71	34.50			1966	76411
18	Plate	3.00	H H		65.0	2.660	1.000	ст	1.058	0.87	38.50	93.0	2.9	1966	76411
		3.00			65.0	2.660	1.000	CT	0.966	0.70	34.30			1966	76411
		3.00			65.0	2.550	1.000	СТ	0.911	0.54	30.40			1966	76411
		3.00			65.0	2.650	1.000	CT	1.107	0.64	32.80			1966	76411
Tre	Plate	3.00	100	LT	62.0	2.550	1.000	CT	0.977	0.73	33.40	I	i	1966	76411
TR	Plate	3.00	150	LT	63.0	2.550	1.000	CT	0.978	0.80	35.60	ı	!	1966	76411
Te	Forging	0.89	R.T.	T-L	67.7	0.500	0.249	NB	0.258	0.23	20.60	I	1	1973	86213
			!		67.6	1.500	0.750	СТ	0.750	0.23	20.50			1972	82879
76	Forging	:	R.T.	Cil	67.6	1.500	0.750	СТ	0.750	0.22	20.30	20.4	0.1	1972	82879
TG	Forging	0.89	84	T.	67.6	1.500	0.750	CT	0.814	0.21	19.40	1	ı	1973	86213
9L	Forged Bar	4.50	R.T.	T·L	67.4	0.500	0.250	NB	0.277	0.25	21.10	!	i	1973	86213
		1.38			90.6	3.000	1,380	NB	1.450	0.20	25.90			1971	84288
1851	Plate	1.38	-320	TL	90.6	3.000	1.380	NB	1.560	0.20	26.90	26.7	1.3	1971	84288
		1.38			9.06	3.000	1.380	NB	1.530	0.24	28.20			1971	84288

		REFER	84288	84288	MPC01	86213	86213	86213	86213	86213	86213	86213	86213	MPC01	MPC01	MPC01	86213	MPC01	MPC01	MPC01	MPC01	86213	86213	86213	86213
	-	DATE	1971	1971	1978	1973	1973	1973	1973	1973	1973	1973	1973	1978	1978	1978	1973	1978	1978	1978	1978	1973	1973	1973	1973
		STAN		2.0												1.8								,	
	K _{Io}	K. MBAN		26.1												27.6								·	_
		K. (Kelvin.)	27.50	24.70	27.40	27.20	26.80	25.50	25.90	28.70	30.30	30.00	30.80	26.60	25.90	25.10	29.50	26.70	26.60	28.90	26.50	25.30	27.70	27.50	27.80
		2.6 * (K _{L/} TYS)* (in.)	0.23	0.19	0:30	0.43	0.41	0.37	0.38	0.36	0.41	0.40	0.42	0:30	0.28	0.27	0.38	0.30	0.30	0.36	0.28	0.28	0.33	0.33	0.33
	CRACK	LENGTH (in.) A	1.652	1.695	0.512	1.023	1.014	1.008	1.018	1.569	1.607	1.506	1.645	0.975	1.469	1.484	1.528	1.016	1.546	1.511	1.582	1.445	1.502	1.569	1.587
9 K _{Io}	z	DESIGN	NB BA	NB	CT	C.T.	C.T.	CT	cr	NB	NB	NB	NB	CT	NB	NB	ΝB	CT	NB	NB	MB	NB BA	NB	NB BR	NB
[ 7079	SPECIMEN	THICK (in.) B	1.383	1.385	0.501	1.001	1.001	1.001	1.002	1.398	1.398	1.398	1.397	1.003	1.379	1.383	1.381	1.002	1.381	1.381	1.382	1.379	1.379	1.383	1.381
ALUMINUM	18	WIDTH (in.) W	3.000	3.000	1.004	2.000	2.000	2.000	2.000	3.000	3.000	3.000	3.000	1.990	2.998	3.029	3.000	1.990	2.973	3.022	2.985	3.000	3.000	3.000	3.000
ALU		YIELD STR (Kel)	81.2	81.2	77.6	65.8 66.4 66.4 66.4 75.2 75.2 76.0 76.0 76.0 76.0 76.0 76.0 76.0														76.0					
		SPEC	E	7:I	L-S																				
		TEST TEMP (°P)	:	-112	R.T.					,						<u>:</u>							- 1		
	ucr	THICK (in.)	1.38	1.38	1.37	6.00	6.00	6.00	6.00	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37
	PRODUCT	FORM	Ē	riate	Plate											FIRTE									
		CONDITION	2400	1001	T651										, as the second	1691									

ON         TRICK (UL)						ALU	ALUMINUM	f 7079	9 K _{Ie}							
THING (IA.)         TEACH (IA.)         WILL (IA.)         WILL (IA.)         WILL (IA.)         MATH		PROI	DUCT				<b>32</b>	PECIME	Z	CRACK			K _{Io}			
1.87         1.87         760         2.00         1.001         CT         1.002         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201         0.201 </th <th>CONDITION</th> <th>FORM</th> <th>THICK (in.)</th> <th>TEST TEMP (°F)</th> <th>SPEC</th> <th>YTELD STR (Ksl)</th> <th>WIDTH (in.) W</th> <th>THICK (in.)</th> <th>DESIGN</th> <th>LENGTH (in.) A</th> <th>2.6 * (K_{Le},TYS)* (in.)</th> <th>K. (Keivin.)</th> <th>K. MBAN</th> <th>STAN</th> <th>DATE</th> <th>REFER</th>	CONDITION	FORM	THICK (in.)	TEST TEMP (°F)	SPEC	YTELD STR (Ksl)	WIDTH (in.) W	THICK (in.)	DESIGN	LENGTH (in.) A	2.6 * (K _{Le} ,TYS)* (in.)	K. (Keivin.)	K. MBAN	STAN	DATE	REFER
1.37			1.37			76.0	2.000	1.001	cr	1.002	0.32	27.40			1973	86213
137			1.37			76.0	2.000	1.002	CT	1.013	0.31	26.70			1973	86213
1377   1377   1377   1370   1380   1380   1370   1380   1370   1380   1370   1380   1370   1380   1370   1380   1370   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380   1380			1.87			76.0	2.000	1.003	cr	0.986	0.31	26.90			1973	86213
1.57			1.37			76.0	3.000	1.382	NB	1.630	0.34	27.90			1973	86213
Hate Hate Hate Hate Hate Hate Hate Hate			1.37			76.0	2.980	1.379	NB	1.490	0:30	27.30	<del></del> ,		1978	MPC01
Hate Light Light Light County County Light Light County Light Light County Light Light County Light Light Light County Light Light County Light Light Light Light County Light Light Light Light Light County Light Ligh			1.37			76.0	3.018	1.383	NB	1.509	0.27	25.60	<del></del>		1978	MPC01
1.37			1.37			76.0	3.000	1.383	NB	1.591	0.94	28.00	,——,		1973	86213
Plate 1.37         R.T. Contd 2.00 Contd 3.00			1.37			76.0	2.000	1.001	CT	1.000	0.32	27.40			1978	MPC01
Plate   1.37   R.T.   L.T.   7.76   3.002   1.385   NB   1.621   0.390   27.50   Contd   1973   1973     1.37   7.76   3.000   1.381   NB   1.621   0.42   25.10   7.76   1978   1978     1.37   7.76   3.002   1.381   NB   1.601   0.42   32.20   2.840   7.76   1978   1978     1.37   7.76   3.002   1.385   NB   1.631   0.42   28.30   2.940   7.76   1978     1.37   7.76   3.000   1.384   NB   1.631   0.390   27.00   7.70   1.987   0.865   CT   1.074   0.285   27.40   1978   1978     1.30   7.75   7.75   3.000   1.384   NB   1.631   0.390   27.00   7.70   1978     1.30   7.75   7.75   3.000   1.384   NB   1.631   0.390   27.00   7.70   1978     1.30   7.75   7.75   3.000   1.384   NB   1.631   0.285   28.40   7.70   1978     1.30   7.75   7.75   3.000   1.384   NB   1.631   0.295   27.40   7.70   1978     1.30   7.75   7.75   7.75   0.896   CT   0.601   0.27   24.80   24.70   24.80   24.70   24.80   24.70   24.80   24.70   24.80   24.70   24.80   24.70   24.80   24.70   24.80   24.70   24.80   24.70   24.80   24.70   24.80   24.70   24.80   24.70   24.80   24.70   24.80   24.70   24.80   24.70   24.80   24.70   24.80   24.70   24.80   24.70   24.80   24.70   24.70   24.80   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70   24.70			1.37			77.6	3.000	1.381	NB	1.510	0.35	28.90			1973	86213
1.37   77.6   3.002   1.386   NB   1.622   0.46   32.90   1.976   1973   1973   1973   1974   1.37   1.37   1.381   NB   1.671   0.255   25.10   1978   1978   1.37   1.37   1.382   NB   1.631   0.422   28.30   1.978   1.978   1.978   1.37   1.381   NB   1.631   0.422   28.30   2.320   1.978   1.978   1.37   1.381   1.381   NB   1.631   0.37   28.30   2.340   1.978   1.978   1.37   1.381   1.381   1.381   0.381   0.381   2.340   1.978   1.978   1.978   1.378   1.381   1.381   0.381   0.381   2.340   1.978   1.978   1.978   1.378   1.381   1.381   1.381   0.381   0.381   2.340   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.378   1.37	T651 Cont'd	Plate Cont'd	1.37	R.T. Cont'd	Cont'd	77.6	3.002	1.384	NB	1.501	0.30	27.50	Cont'd		1978	MPC01
1,37         77.6         3,002         1,381         NB         1,471         0,255         25.10         1978         1978           1,37         77.6         3,002         1,381         NB         1,600         0,322         28.60         1978         1978           1,37         77.6         3,002         1,385         NB         1,613         0,27         28.30         1978         1978           1,37         77.6         3,000         1,386         NB         1,655         0,30         27.00         1973         1978           1,00         7,7         77.6         3,000         1,384         NB         1,651         0,30         27.00         1973         1978           1,00         7,7         7,7         1,384         0,865         CT         1,073         0,27         28.80         27.00         1978           1,00         7,7         1,387         0,865         CT         1,074         0,220         27.40         27.00         1978         1978           1,101         1,37         1,37         1,42         1,002         0,500         CT         0,420         27.00         27.00         1978         1978			1.37			77.6	3.000	1.385	NB	1.522	0.45	32.90			1973	86213
1.37         77.6         3.000         1.381         NB         1.500         0.32         28.50         1.871         1.670         0.42         28.50         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978<			1.37			77.6	3.002	1.381	NB	1.471	0.25	25.10			1978	MPC01
1.37   7.76   3.026   1.385   NB   1.61   0.42   32.20   1.976   1978   1978   1978   1.37   1.37   1.37   1.38   1.38   NB   1.65   0.50   27.00   27.00   1.973   1.973   1.973   1.973   1.973   1.53   0.27   26.30   27.00   1.384   NB   1.65   0.50   27.00   27.00   1.973   1.973   1.973   1.974   1.987   0.966   CT   1.074   0.227   24.80   24.70   1.978   1.978   1.978   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.979   1.			1.37			77.6	3.000	1.381	NB	1.500	0.32	28.60			1978	MPC01
1.37   1.37   77.6   3.026   1.385   NB   1.615   0.27   26.30   1.975   1978   1978   1978   1.37   1.37   1.38   1.84   NB   1.656   0.30   27.00   27.00   1.973   1.973   1.973   1.987   1.987   0.366   CT   1.074   0.28   27.40   24.80   1.978   1.978   1.987   1.987   1.087   0.500   CT   0.501   0.277   24.80   24.70   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978			1.37			77.6	3.002	1.385	NB	1.501	0.42	32.20			1978	MPC01
1.37   1.37   1.36   3.000   1.386   NB   1.656   0.30   27.00   1.973   1973   1973   1973   1.37   1.397   1.387   1.387   0.366   CT   1.073   0.27   26.80   27.40   1978   1978   1.37   1.387   1.389   0.566   CT   1.074   0.28   27.40   27.80   1978   1978   1.37   1.37   1.37   1.387   1.387   1.387   0.501   0.501   0.27   24.80   24.7   1.978   1978   1978   1978   1978   1978   1978   1.37   1.37   1.37   1.38   0.500   CT   0.488   0.27   24.80   24.7   0.1   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   1978   19			1.37			77.6	3.026	1.383	NB	1.513	0.27	26.30			1978	MPC01
Hole Hole Hole Hole Hole Hole Hole Hole			1.37			77.6	3.000	1.385	NB	1.655	0.30	27.00			1973	86213
1.00   1.00   1.807   1.887   0.865   CT   1.074   0.285   27.40   1.978   1978   1978   1.978   1.002   1.002   0.500   CT   0.501   0.277   24.80   24.7   1.978   1978   1978   1.978   1.37   1.37   1.42   0.896   0.500   CT   0.488   0.277   24.80   24.7   0.1   1978   1978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.978   1.97			1.37			77.6	3.000	1.384	NB	1.631	0.33	28.40			1973	86213
Hate H. T. S. H.			1.00			79.7	1.987	0.965	СŢ	1.073	0.27	26.80	.,		1978	MPC01
Plate         1.37         R.T.         T·S         74.2         1.002         0.500         CT         0.501         0.27         24.80         24.7         0.1         1978			1.00			79.7	1.989	996.0	CT	1.074	0.28	27.40			1978	MPC01
1.37 A.1. 1.5 74.2 0.996 0.500 CT 0.488 0.27 24.60 24.7 0.1 1978	ì	Ē	1.37	Ē	ē	74.2	1.002	0.500	CT	0.501	0.27	24.80			1978	MPC01
	1651	Flate	1.37	7. T.	2	74.2	966.0	0.500	CT.	0.488	0.27	24.60	24.7	0.1	1978	MPC01

																							-	-	
		REFER	86213	86213	86213	82880	86213	MPC01	82880	86213	82880	MPC01	82880	MPC01	86213	82880	82880	MPC01	82880	82880	82880	82880	MPC01	MPC01	MPC01
		DATE	1973	1973	1973	1972	1973	1978	1972	1973	1972	1978	1972	1978	1973	1972	1972	1978	1972	1972	1972	1972	1978	1978	1978
		BTAN DEV												2.0											
	K _{Io}	K. MBAN												23.3											
		K. (Kalvin.)	26.60	25.00	25.00	25.10	23.70	24.50	24.30	24.70	21.90	24.00	23.30	24.70	23.20	24.90	22.80	22.70	18.60	23.60	22.30	23.50	24.30	21.20	24.90
	l .	2.6 * (KTYS)* (in.)	0.42	0.37	0.36	0.30	0.26	0.27	0.28	0.29	0.23	0.26	0.26	0.27	0.25	0.29	0.25	0.24	0.16	0.26	0.23	0.26	0.25	0.19	0.27
	CRACK		1.050	1.044	1.019	0.487	1.008	0.998	1.628	1.003	0.486	1.471	1.034	1.491	1.000	0.781	1.078	0.984	1.128	1.677	1.617	0.757	1.462	1.473	1.500
9 K _{Ie}	z	DESIGN	Ğ	CT	CT	NB	CT	CT	NB	CT	NB	NB	NB	NB	CT	NB	NB	cr	NB	NB	NB	NB	NB NB	NB	Æ
7079	SPECIMEN	THICK (fn.) B	1.001	1.001	1.001	0.500	1.001	1.000	1.380	1.000	0.500	1.382	1.000	1.384	1.002	0.750	1.000	1.002	1.000	1.380	1.380	0.750	1.386	1.384	1.385
ALUMINUM	SP	WIDTH (fn.) W	2.000	2.000	2.000	1.000	2.000	1.996	3.000	2.000	1.000	3.002	2.000	2.982	2.000	1.500	2.000	2.008	2.000	3.000	3.000	1.500	2.984	3.006	3.000
ALU	WYBLD W STR (Kal)								72.8 72.8 72.8 72.8 72.8 72.8 72.8 72.8 72.8 72.8 72.8 72.8 72.8 72.8													74.2			
		SPEC	1											15											
		TEST TEMP (°P)												R.T.											
	PRODUCT	THICK (in.)	6.00	6.00	5.00	1.38	1.37	1.37	1.38	1.37	1.38	1.37	1.38	1.37	1.37	1.38	1.38	1.37	1.38	1.38	1.38	1.38	1.37	1.37	1.37
	PROI	FORM												Plate											
		CONDITION												T651											

					ALU	ALUMINUM	1079	9 K _{Io}							
	PROI	PRODUCT				SC.	SPECIMEN	z	CRACK			<b>⊼</b>		·	
CONDITION	FORM	THICK (in.)	TEST TEMP (°F)	SPEC	YTRI.D STR (Kel)	WIDTH (in.)	THICK (In.) B	DESIGN	LENGTH (in.) A	2.5 • (K _{la} ,TYS)* (in.)	K. (Kelvin.)	E. MEAN	BTAN	DATE	REFER
		1.37		1	74.2	3.000	1.384	NB	1.470	0.19	21.50			1978	MPC01
1661	Plate	1.37	R.T.	<u>-</u>	74.2	3.000	1.384	NB	1.560	0.26	23.70			1973	86213
Cont'd	Cont'd	1.00	Cont'd	Contra	74.8	2.006	0.968	cr	1.063	0.14	18.20	Cont'd	Cont'd	1978	MPC01
		1.37			75.6	3.000	1.397	NB NB	1.612	0.21	20.80			1973	86213
		6.00			9.09	2.000	1.001	CT	0.994	0.33	21.90			1973	86213
		2.00			9.09	2.000	1.001	CT	1.002	0.37	23.40			1973	86213
		6.00			61.6	2.000	1.001	Ç	1.024	0.31	21.80			1973	86213
		6.00	<del>va</del>		61.6	2.000	1.001	CT	1.015	0:30	21.50			1973	86213
1991	Plate	1.37	E-		67.3	1.000	0.501	Ę	0.485	0.14	15.90			1973	86213
		1.37		L	67.3	1.000	0.501	cr	0.480	0.15	16.90	18.6	3.2	1978	MPC01
		1.37		L	67.3	1.011	0.501	CT	0.465	0.13	15.70			1978	MPC01
		1.37			67.3	1.000	. 0.500	Ę	0.473	0.15	16.50			1973	86213
		1.37		. I	67.3	1.008	0.501	CT	0.484	0.13	15.80			1978	MPC01
		1.37			67.3	1.000	0.500	СŢ	0.472	0.14	16.10			1973	86213
1382	Pate	1.37	8	E	77.6	2.000	1.00.1	CT	1.007	62.0	26.40		<u> </u>	1973	86213
	T I I I I	1.37	3	5	77.6	2.000	1.001	CT	1.010	0:30	26.80	26.6	0.3	1973	86213
		1.37			74.2	2.000	1.001	G.	1.017	0.21	21.50			1973	86213
T651	Plate	1.37	82	T·L	74.2	2.000	1.000	СŢ	1.012	0.22	22.10	21.7	0	1973	86213
		1.37			74.2	2.000	1.001	CT	1.007	0.21	21.60			1973	86213
		1.37		!	69.1	1.000	0.500	ភ	0.505	0.17	17.90			1973	86213
T651	Plate	1.37	98	J.S.	69.1	1.000	0.500	CT	0.490	0.16	17.40	17.1	1.0	1973	86213
		1.37			69.1	1.000	0.500	Ç	0.507	0.13	16.00			1973	86213

					ALUI	ALUMINUM	1079	9 K _{Ic}							
	PRODUCT					oo.	SPECIMEN	Z	CRACK			Kıc			
CONDITION	FORM	THICK (in.)	TEST TEMP (°F)	SPEC	YIRLD STR (Ket)	WIDTH (in.)	THICK (in.)	DESIGN	LENGTH (in.) A	2.6 • (K _{t.,} TYS)* (in.)	K. (Kalvin.)	K. MEAN	BTAN	DATE	REFER
	Plate	1.37	88	Ŀs	77.6	1.000	0.500	CT	0.504	0.35	28.90	i	:	1973	86213
		6.00			6.99	2.000	1.001	ст	1.014	0.38	26.20			1973	86213
	Plate	6.00	80	L	6.99	2.000	1.002	CT	1.035	0.37	25.70	26.0	9.4	1973	86213
	Ē	1.37	G		74.2	1.000	0.500	CT	0.488	0.27	24.50			1973	86213
	Flate	1.37	ŝ	5.1	74.2	1.000	0.500	CT	109'0	0.31	26.00	25.3	1.1	1973	86213
		6.00	;		65.5	2.000	1.002	ст	1.047	0.36	25.00			1973	86213
	Plate	6.00	88	T:T	65.5	2.000	1.001	СТ	1.019	0.36	24.70	24.9	0.2	1973	86213
		1.37		1	69.1	1.000	0.500	CT	0.523	0.15	17.20			1973	86213
	Flate	1.37	99	r.	69.1	1,000	0.500	cr	0.483	0.15	16.70	17.0	0.4	1973	86213
		6.00			60.5	2.000	1.001	CT	1.016	0.31	21.30			1973	86213
		6.00			60.5	2.000	1.001	ст	1.022	0.33	22.00			1973	86213
	Plate	6.00	8	7.	61.8	2.000	1.002	cr	1.030	0.33	22.60	22.0	0.5	1973	86213
		6.00			61.8	2.000	1.001	CT	1.024	0.32	22.10			1973	86213
		6.00			63.9	4.000	2.001	NB	1.990	0.67	33.10			1970	77720
		9.00			63.9	4.000	2.001	NB	2.065	0.51	28.80			1970	17720
		9.00			63.9	4.000	2.001	NB	1.942	0.50	28.50	·		1970	17720
	Forging	6.00	R.T.	LT	65.6	3.000	1.602	NB	1.495	0.37	25.10	27.8	2.2	1970	77720
		6.00			65.6	3.000	1.500	NB	1.593	0.43	27.10			1970	77720
		4.00			68.0	3.000	1.500	NB NB	1.587	0.40	27.10			1970	17720
		4.00			68.0	3.000	1.500	NB	1.573	0.37	26.20			1970	77720

					ALU	ALUMINUM	f 7079	9 K _{Io}							
	PROI	PRODUCT				02	SPECIMEN	z	CRACK			K _I °			
CONDITION	FORM	THICK (in.)	TEST TEMP (°P.)	SPEC	YTRLD STR (Kel)	WIDTH (in.)	THICK (in.) B	DESIGN	LENGTH (in.) A	2.6 * (K _{Le} /TYB)* (in.)	K. (Kelvin.)	K, MEAN	BTAN	DATE	REFER
		4.00			68.0	3.000	1.500	NB	1.570	0.38	26.40			1970	77720
		3.00			68.7	2.000	1.000	NB	1.022	68:0	27.10			1970	77720
T652	Forging	3.00	R.T.		68.7	2.000	0.999	NB	1.015	0.40	27.70			1970	77720
Cont'd	Cont'd	2:00	Cont'd	Cont'd	71.0	1.490	0.753	NB	0.753	86.0	27.70	Cont'd	Cont'd	1970	77720
		2.00			71.0	1.490	0.751	NB	0.846	25'0	30.80			1970	77720
		2.00			71.0	1.500	0.750	NB	0.733	28:0	25.40			1970	77720
T652	Forging	90.9	R.T.	T-S	59.1	4.000	2.002	CT	2.167	0.38	22.90		•••	1973	86213
		6.00			67.5	4.000	2.001	NB	2.170	0.44	24.10			1970	77720
		6.00		1	57.5	4.000	2.001	NB	2.035	0.38	22.40			1970	77720
		6.00		i	57.5	4.000	2.001	NB	2.092	0.46	24.60			1970	77720
		6.00			61.4	3.000	1.500	NB NB	1.627	0.44	25.60			1970	77720
O D D D	, i	5.00	8	I	61.4	3.000	1.500	NB	1.578	0.34	22.50			1970	77720
7001	<b>9</b>	4.00	 i	J	63.0	3.000	1.500	NB	1.602	0.24	19.50	23.1	2.2	1970	77720
		2.00			64.9	1.500	0.751	NB	0.797	98'0	24.70			1970	77720
		3.00		1	65.7	2.000	1.000	NB	1.032	0.39	26.00			1970	77720
		3.00			66.7	2.000	0.998	NB	0.990	0.24	20.50			1970	77720
		3.00			65.7	2.000	0.998	NB	0.963	0.26	21.10			0261	17720

# TABLE 8.11.2.1 (CONCLUDED)

					ALUI	ALUMINUM	7079	9 K ₁₀							
	PRODUCT	oucr			<b>_</b>	. 2G }	SPECIMEN	z	CRACK			K _{Io}			
CONDITION	FORM	THICK (fn.)	TEST TEMP (°F)	SPEC	YTELD STR (Kal)	WIDTH (fn.)	THICK (in.) B	DESIGN	LENGTH (ln.) A	2.6 * (K _{b,} TYB)* (in.)	K. (Kelvin.)	K, MEAN	STAN DEV	DATE	REFER
		6.00		1	68.1	1.000	0.500	NB	0.495	0.23	17.60			1970	77720
		9.00			58.1	1.000	0.500	NB	0.493	0.26	18.70			1970	77720
		9.00		4	58.1	1.000	0.499	NB	0.482	0.24	18.00			1970	77720
		5.00		1	58.3	1.000	0.500	NB	0.485	0.22	18.30			1970	77720
		2.00			58.3	1.000	0.500	NB NB	0.617	0.22	18.10			1970	77720
Case	Ē	2.00	£		68.3	1.000	0.500	NB	0.487	0.22	18.30			1970	77720
7007	Forging	9.00	.I.		58.5	2.000	1.000	CT	0.978	0.23	17.60	18.1	0.7	1973	86213
		6.00			68.5	2.000	1.000	CT	0.981	62:0	17.70			1973	86213
		9.00			58.5	2.000	1.000	ст	966.0	0.25	18.60			1973	86213
		4.00		<b>.</b>	62.9	0.500	0.250	NB	0.257	0.19	17.20			1970	77720
		4.00		<u></u>	62.9	0.500	0.250	NB	0.263	0.18	17.10			1970	77720
		4.00			62.9	0.500	0.250	NB	0.282	0.24	19.70			1970	77720
		1.37		1	75.2	2.982	1.397	NB	1.640	0.28	25.90			1978	MPC01
		1.37		ŗ	75.2	2.994	1.398	NB	1,657	0.36	28.70			1978	MPC01
		1.37			75.2	2.984	1.398	NB	1.622	0.32	27.20			1978	MPC01
T861	Plate	1.37	R.T.	1.7	76.2	3.020	1.397	NB	1.540	0.40	30.60	28.6	1.6	1978	MPC01
		1.37			75.2	3.010	1.398	NB	1.605	0.38	29.90			1978	MPC01
		1.50		·············	76.8	2.016	1.002	CT	1.109	98.0	29.70			1978	MPC01
		1.50			76.8	2.006	1.002	CT	1.083	0.32	28.40			1978	MPC01
, and the second	E	1.37	E	Ë	72.6	2.988	1.397	NB	1.524	0.16	18.90			1978	MPC01
1001	Flate	1.50	K.T.	T-T.	74.4	2.006	1.001	CT	1.063	0.24	23.70	21.3	3.4	1978	MPC01

#### **TABLE 8.11.2.2**

		62			Ī	T		[	Ī											Ī _	
		REFER		86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	
		DATE		1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	
	•	STAN						i						;				ı			
	К _с	K _e MEAN						:						:				ı			
		K _e (Kei√in)		81.31*	17.77*	53.68*	56.95*	51.42*	72.43*	73.79*	73.79*	68.70*	ï	68.61*	72.51*	69.55*	69.55*	68.14	65.01	87.04*	
		STAN				<u> </u>		i						0.5				i			;
	Kapp	K, MEAN						ı						53.8				i			,
	1	K (Kelvin)	TED	44.69*	44.90	44.58	45.13*	45.44*	45.95*	45.53*	45.53*	53.47	54.54*	54.68*	54.14	56.88⁴	€6.95	56.22*	56.77*	53.04	Γ
К _с	SS	MAX (Ksl)	ESTRAIN	42.40	42.60	42.30	42.90	43.20	43.60	43.20	43.20	39.70	40.50	40.60	40.20	42.40	42.40	42.00	42.30	36.00	
7079	GROSS	ONSET (Kei) G	ES NOT F			:		ı	:	÷	1	;	1	:	:		ı	ı	:	:	-
NOM	JK TH	FINAL (in.)	BUCKLING OF CRACK EDGES NOT RESTRAINED	1.270	1.220	0.820	0.870	0.750	1.120	1.150	1.150	1.410	1	1.370	1.480	1.320	1.320	1.300	1.210	1.949	-
ALUMINUM	CRACK	(in.)	G OF CI	0.625	0.625	0.624	0.622	0.623	0.625	0.625	0.625	1.000	1.000	1.000	1.000	0.995	0.997	0.991	966.0	1.143	_
V	MEN	THICK (in.)	BUCKLIP	0.061	0.061	0.062	0.062	0.062	0.063	0.063	0.063	0.112	0.112	0.112	0.112	0.119	0.119	0.120	0.120	0.128	
	SPECIMEN	WIDTH (In.)		2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	3.000	3.000	3.000	3.000	3.000	3.000	2.990	2.990	3.000	
				70.2	70.2	64.0	64.0	64.0	70.2	70.2	70.2	75.6	75.6	75.6	75.6	72.0	72.0	72.0	72.0	74.2	
		SPEC OR					! :	l	!	1		J	I	1 S		!		1 		!    	_
	£	TEMP (°P)		•				 ¥		••,			£	<u> </u>			E	<u>.</u>		i	Ξ.
	UCT	THICK (in.)		90.0	90:00	90.0	90.0	90.0	90.0	90:0	90:0	0.10	0.10	0.10	0.10	0.12	0.12	0.12	0.12	0.14	
	PRODUCT	FORM					l :	aneet oneet		1		1	l	13316				is and		l	Sheet
		CONDITION HEAT TREAT		_			į	9					9E	2			2	9			91.

• NOTE: NET SECTION STRESS EXCEEDS 80% OF YIELD STRENGTH. VALUE NOT INCLUDED IN MEAN OR STANDARD DEVIATION.

						*	MOT	ALUMINUM	7079	<b>⊼</b>		:						
***************************************	PRODUCT		<b> </b>	3		SPECIMEN	CR	CRACK	GROSS	SS		K _{app}			$\mathbf{K}_{\mathbf{c}}$			
CONDITION HEAT TREAT FORM	M THICK (in.)	CK TEMP (°F)	SPEC		WIDTH (In.)	THICK (in.) B	INIT (in.) 2a,	FINAL (fn.) 2a,	ONSET (Kst)	MAX (Kei) ^G h.	K (Kelvin)	K,	STAN	K _e (Kai√in)	K _e MEAN	STAN	DATE	REFER
						BUCKL	INGOF	BUCKLING OF CRACK EDGES NOT RESTRAINED	IGES NOT	RESTRAL	NED							
	0.14			75.7	3.000	0.136	1.133	1.873		35.70	52.27			82.04*			1973	86213
10 Sheet	et 0.14	4 R.1.	7	75.7	3.000	0.136	1.107	1.951	:	36.20	52.15	52.2	0.1	87.65*	i	i	1973	86213
	0.10			72.5	3.000	0.099	1.110	2.010	i	37.10	53.59			93.65*			1973	86213
199UC 91	0.10	0	3	72.5	3.000	0.099	1.150	2.032	:	35.50	52.56	:	:	91.03*	:	ŀ	1973	86213
	0.10		·	71.6	3.000	0.099	1.150	2.145	1	35.50	52.56*			98.96*			1973	86213
19905	0.10	01		71.6	3.000	0.099	1.130	2.041	ı	35.50	51.91	i	ŀ	91.56*	ŀ	1	1973	86213
	0.06	ا پو		62.4	2.000	0.061	0.624	0.850	i	41.00	43.21*			53.46*			1973	86213
	90.0	g		62.4	2.000	0.062	0.623	0.800	1	40.90	43.02*			50.97			1973	86213
	90:0	۾		62.4	2.000	0.062	0.622	0.830	ı	41.80	43.97*			53.53*			1973	86213
9	90:0	g .	Ē	67.3	2.000	0.062	0.625	1.040	1	40.30	42.48*			62.26*			1973	86213
Taguic OI	90.0			67.3	2.000	0.062	0.625	1.180	i	41.10	43.32*	i	1	72.21	ı	ı	1973	86213
	90.0	- -		67.3	2.000	0.062	0.625	1.260	ï	41.10	43.32*			78.04*			1973	86213
	0.	90.0		67.3	2.000	0.062	0.625	1.110	1	39.80	41.95*			65.52*			1973	86213
	0.0	90:0	_	67.3	2.000	0.062	0.625	1.060	:	41.30	43.53*			64.96*			1973	86213
£		01.0		68.3	3.000	0.09	1.150	2.035	1	33.80	50.04			86.80*			1973	86213
130000	-	0.10	-	68.3	3.000	0.099	1.160	2.005	ı	33.60	•90.09	i	-	84.46*	i	i	1973	86213
		0.10		73.8	3.000	0.112	1.000	1.320	:	36.60	49.29			60.04			1973	86213
an a		0.10 K.T.	1.	73.8	3.000	0.112	1.000	1.520	ı	36.30	48.89	49.1	0.8	67.06*	1	ı	1973	86213

* NOTE: NET SECTION STRESS EXCEEDS 80% OF YIELD STRENGTH. VALUE NOT INCLUDED IN MEAN OR STANDARD DEVIATION.

TEST   SPEC   STEAT   CRACK   CROSS   STEAT								A	ALUMINUM	NOM	7079	K								
Porm   Thirtical   Train   Park   Train   Porm   Thirtical   Thi		PROI	oucr	£			SPECI	MEN	CRA	СК	GROS	38 38		Kapp			K _c			
Sheet 0.10 R.T. T.L 696 2.990 0.112 1.000 1.430 39.20 6.241*  Sheet 0.12 R.T. T.L 696 2.990 0.119 0.992 1.350 39.20 6.241*  Sheet 0.13 R.T. T.L 696 2.990 0.119 0.992 1.350 39.20 6.241*  Sheet 0.14 R.T. T.L 713 3.000 0.129 1.360 31.50 47.25  Sheet 0.14 R.T. T.L 713 3.000 0.129 1.360 31.50 47.25  Sheet 0.10 84 T.L 73.7 3.000 0.137 1.160 1.902 31.50 47.24  Sheet 0.10 84 T.L 73.7 3.000 0.137 1.160 1.902 31.00 46.46  O.12 C. 743 3.000 0.124 1.000 1.300 20.70 46.79  Sheet 0.10 84 T.L 73.7 3.000 0.137 1.160 1.902 31.00 46.46  O.12 C. 743 3.000 0.126 1.000 1.300 20.70 38.10 61.31  Sheet 0.10 84 T.L 73.1 3.000 0.126 1.000 1.300 20.70 38.10 61.31  Sheet 0.10 84 T.L 73.1 3.000 0.126 1.000 1.300 20.70 38.10 61.31  O.12 T.A 3.000 0.126 1.000 1.300 20.70 50.70 50.70 61.31  Sheet 0.12 T.A 3.000 0.126 1.000 1.300 20.70 50.70 61.31  Sheet 0.12 T.A 3.000 0.126 1.000 1.300 20.70 50.70 61.31  O.12 T.A 3.000 0.126 1.000 1.300 20.70 61.30 60.67  O.13 T.A 3.000 0.126 1.000 1.300 20.70 60.70 60.70  O.14 T.A 3.000 0.126 1.000 1.000 1.000 60.70 60.70 60.70  O.15 T.A 3.000 0.126 1.000 1.000 60.70 60.70 60.70  O.15 T.A 3.000 0.126 1.000 1.000 60.70 60.70 60.70  O.15 T.A 3.000 0.126 1.000 1.000 60.70 60.70 60.70  O.15 T.A 3.000 0.126 1.000 1.000 60.70 60.70 60.70  O.15 T.A 3.000 0.126 1.000 1.000 60.70 60.70 60.70  O.15 T.A 3.000 0.126 1.000 1.000 60.70 60.70 60.70  O.15 T.A 3.000 0.126 1.000 1.000 60.70 60.70 60.70  O.15 T.A 3.000 0.126 1.000 1.000 60.70 60.70 60.70  O.15 T.A 3.000 0.126 1.000 1.000 60.70 60.70 60.70  O.15 T.A 3.000 0.126 1.000 1.000 60.70 60.70 60.70  O.15 T.A 3.000 0.126 1.000 1.000 60.70 60.70 60.70  O.15 T.A 3.000 0.126 1.000 1.000 60.70 60.70 60.70 60.70  O.15 T.A 3.000 0.126 1.000 1.000 60.70 60.70 60.70  O.15 T.A 3.000 0.126 1.000 1.000 60.70 60.70 60.70 60.70  O.15 T.A 3.000 0.126 1.000 1.000 60.70 60.70 60.70 60.70  O.15 T.A 3.000 0.126 1.000 1.000 60.70 60.70 60.70 60.70 60.70  O.15 T.A 3.000 0.126 1.000 1.000 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70 60.70	ONDITION EAT TREAT	FORM	THICK (fp.)	TEMP (°F)	SPEC	STR (Kal)		THICK (In.)		FINAL (in.) 2a,	ONSET (Kei) G	MAX (Kei)	K. (Keivin)	K	STAN	K _c (Kel√in)	K _o MEAN	STAN	DATE	REFER
Sheet 0.10 R.T. T.L 636 2.990 0.119 1.000 1.430 35.70 48.08 Cont.4 c								BUCKLI	VG OF C	RACK ED	IGES NOT	RESTRAI	NED							
Sheet 0.12 R.T. T.L 696 2.990 0.119 0.995 1.360 37.10 49.97 Cont.4  Sheet 0.12 R.T. T.L 696 2.990 0.119 0.992 1.360 38.10 61.07*  Sheet 0.14 R.T. T.L 7.1 3.000 0.129 1.360 31.80 47.35 31.80 47.35 31.80 47.35 31.80 47.35 31.80 47.35 31.80 47.35 31.80 47.35 31.80 47.35 31.80 47.35 31.80 47.35 31.80 47.35 31.80 47.35 31.80 47.35 31.80 47.35 31.80 47.35 31.80 47.35 31.80 47.35 31.80 47.35 31.80 47.35 31.80 47.35 31.80 47.35 31.80 47.35 31.80 47.35 31.80 47.35 31.80 47.35 31.80 47.35 31.80 47.35 31.80 47.35 31.80 47.35 31.80 47.35 31.80 47.35 31.80 47.35 31.80 47.35 31.80 47.35 31.80 47.35 31.80 47.35 31.80 47.35 31.80 47.35 31.80 47.35 31.80 47.35 31.80 47.35 31.80 47.35 31.80 47.34 31.80 47.35 31.80 47.35 31.80 47.35 31.80 47.34 31.80 47.34 31.80 47.35 31.80 47.34 31.80 47.34 31.80 47.34 31.80 47.35 31.80 47.34 31.80 47.34 31.80 47.34 31.80 47.35 31.80 47.34 31.80 47.34 31.80 47.34 31.80 47.35 31.80 47.34 31.80 47.34 31.80 47.34 31.80 47.35 31.80 47.34 31.80 47.34 31.80 47.34 31.80 47.34 31.80 47.34 31.80 47.34 31.80 47.34 31.80 47.34 31.80 47.34 31.80 47.34 31.80 47.34 31.80 47.34 31.80 47.34 31.80 47.34 31.80 47.34 31.80 47.34 31.80 47.34 31.80 47.34 31.80 47.34 31.80 47.34 31.80 47.34 31.80 47.34 31.80 47.34 31.80 47.34 31.80 47.34 31.80 47.34 31.80 47.34 31.80 47.34 31.80 47.34 31.80 47.34 31.80 47.34 31.80 47.34 31.80 47.34 31.80 47.34 31.80 47.34 31.80 47.34 31.80 47.34 31.80 47.34 31.80 47.34 31.80 47.34 31.80 47.34 31.80 47.34 31.80 47.34 31.80 47.34 31.80 47.34 31.80 47.34 31.80 47.34 31.80 47.34 31.80 47.34 31.80 47.34 31.80 47.34 31.80	75	Sheet	0.10	R.T.	Ţ.	73.8	3.000	0.112	1.000	1.430	ı	35.70	48.08			62.51*			1973	86213
Sheet 0.12 R.T. T-L 69.6 2.990 0.119 0.992 1.350 39.20 62.00	Cont'd	Cont'd	0.10	Cont'd	Cont'd	73.8	3.000	0.112	1.000	:	i	37.10	49.97	Cont'd	Cont'd	!	Cont'd	Cont'd	1973	86213
Sheet         0.12         R.T.         T.L.         69.6         2.990         0.119         0.992         1.350          36.10         61.07*            Sheet         0.14         R.T.         T.L.         71.3         3.000         0.128         1.180         1.964          37.30         60.00*           Sheet         0.14         R.T.         T.L.         71.3         3.000         0.129         1.180         1.962          30.20         47.56           Sheet         0.14         R.T.         T.L.         73.7         3.000         0.137         1.160         1.902          29.10         47.36         47.6           Sheet         0.10         R.T.         73.7         3.000         0.137         1.160         1.902          29.70         44.24         43.8           Sheet         0.10         R.T.         69.1         3.000         0.137         1.160         1.902          29.70         44.24         43.8           O.12         0.10         1.30         0.120         1.10         1.902          31.00         46.1         46.1         46.1			0.12		1	9'69	2.990	0.119	0.995	1.300	:	39.20	52.61*			63.60*			1973	86213
Sheet 0.14 R.T. T.L. 71.3 3.000 0.129 1.180 1.964 37.30 60.00*  Sheet 0.14 R.T. T.L. 71.3 3.000 0.129 1.240 1.962 30.20 47.23 47.6  Sheet 0.14 R.T. T.L. 73.7 3.000 0.137 1.160 1.902 29.10 47.23 47.6  Sheet 0.10 84 T.L 69.1 3.000 0.137 1.160 1.911 29.70 44.24 43.8  Sheet 0.10 84 T.L 69.1 3.000 0.100 1.110 2.047 31.70 46.46  0.12 A. 3.000 0.126 1.000 1.360 20.70 88.10 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 61.31 6	T6	Sheet	0.12	R.T.	T:1	9.69	2.990	0.119	0.992	1.350	ı	38.10	61.07*		:	63.69*	:	:	1973	86213
Sheet 0.14 R.T. T.L 713 3.000 0.129 1.240 31.80 47.95 47.65			0.12			9.69	2.990		0.992	1.350	:	37.30	\$00.00			62.35*			1973	86213
Sheet 0.14 R.T. T-L 73.7 3.000 0.129 1.240 1.962 29.10 47.23 47.6  Sheet 0.14 R.T. T-L 73.7 3.000 0.137 1.160 1.911 29.70 44.24 43.8  Sheet 0.10 84 T-L 69.1 3.000 0.137 1.160 1.911 29.70 44.24 43.8  O.12 A.S. Sheet 0.10 1.24 1.000 1.110 2.047 31.70 46.46  O.12 A.S. Sheet 0.12 A.S. S.000 0.124 1.000 1.360 29.10 38.10 61.31  O.12 A.S. Sheet 0.12 A.S. S.000 0.126 1.000 1.430 20.70 38.10 61.04  O.12 A.S. Sheet 0.12 A.S. S.000 0.126 1.000 1.430 20.50 50.50  Sheet 0.12 A.S. S.000 0.126 1.000 1.400 1.400 50.00 61.04 50.00  O.12 A.S. Sheet 0.12 A.S. S.000 0.126 1.000 1.400 1.400 50.00 61.04 50.00  O.12 A.S. Sheet 0.12 A.S. S.000 0.126 1.000 1.400 1.400 50.00 61.04 50.00  O.12 A.S. Sheet 0.12 A.S. S.000 0.126 1.000 1.400 20.50 50.00 61.04 50.00  O.12 A.S. Sheet 0.12 A.S. S.000 0.126 1.100 1.300 20.50 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.	ě	ē	0.14	E	'	71.3	3.000	0.128	1.180	1.964		31.80	47.95			77.74*			1973	86213
Sheet 0.14 R.T. T.L 73.7 3.000 0.137 1.160 1.902 29.10 43.35 43.8	9	neet	0.14	K.I.	7-1	71.3	3.000	0.129	1.240	1.962	i	30.20	47.23	47.6	0.5	73.72*	:	:	1973	86213
Sheet 0.14 A.1. 1.1 2.00 0.137 1.150 1.911 29.70 44.24 43.8  Sheet 0.10 84 T.L 69.1 3.000 0.039 1.170 1.993 31.00 46.46 46.1  0.12 8.4 7.L 69.1 3.000 0.124 1.000 1.360 20.70 38.10 46.79 46.1  0.12 74.3 3.000 0.125 1.000 1.300 20.70 38.10 51.31 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.01 51.31 51.31 51.31 51.31 51.31 51.31 51.31 51.31 51.31 51.31 51.31	£	5	0.14	F C		73.7	3.000	0.137	1.160	1.902	į	29.10	43.35			68.21*			1973	86213
Sheet 0.10 84 T.L 69.1 3.000 0.099 1.170 1.993 31.00 46.46 46.1  0.12 69.1 3.000 0.124 1.000 1.360 23.10 37.10 49.97  0.12 74.9 3.000 0.125 1.000 1.300 20.70 38.10 61.31  0.12 R.T. 1.T 76.1 3.000 0.125 1.000 1.400 37.50 50.50  Sheet 0.12 R.T. 1.T 76.1 3.000 0.126 1.000 1.400 22.30 37.50 61.04  0.12 8.T. 1.T 76.1 3.000 0.126 1.000 1.450 20.50 36.30 60.67  0.13 3.000 0.126 1.000 1.450 20.50 36.30 60.67  1.43 3.000 0.126 1.100 1.390 20.50 35.30 60.67	2	120000	0.14	i.i.	2:	73.7	3.000	0.137	1.160	1.911	ı	29.70	44.24	43.8	9.0	€9.99*	ı	ı	1973	86213
0.12	ž.	Chool	0.10	3	- F	69.1	3.000	0.099	1.170	1.993	i	31.00	46.46			77.27*			1973	86213
0.12  0.12  0.12  R.T.  L.T  74.9  3.000  0.126  1.000  1.360  23.10  37.10  49.97  49.97  1.012  1.000  1.300  1.300  20.70  38.10  51.31  50.50  38.10  51.31  50.50  38.10  51.31  50.50  38.10  51.31  50.50  38.10  51.31  50.50  38.10  50.50  38.10  50.50  50.50  49.92  50.70  49.97  49.97  1.000  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.100  1.1000  1.1000  1.1000  1.1000  1.1000  1.1000  1.1000  1.1000  1	2	Ollect	0.10	5	3	69.1	3.000	0.100	1.110	2.047	:	31.70	45.79	46.1	0.5	82.11*	i	:	1973	86213
9,12  0,12  R.T.  L.T  74,3  3,000  0,126  1,000  1,510  20,70  38,10  51,31  50,50  1,510  23,60  37,50  50,50  49,92  Sheet  0,12  1,090  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,410  1,			0.12			74.9	3.000	0.124	1.000	1.360	23.10	37.10	49.97			62.32*			1973	86213
Sheet 0.12  Sheet 0.13  Sheet			0.12		1	74.3	3.000	0.125	1.000	1.300	20.70	38.10	51.31			61.76*			1973	86213
Sheet 0.12 R.T. L-T 76.1 3.000 0.125 1.090 1.430 19.40 35.00 49.92  0.12 74.3 3.000 0.126 1.100 1.390 20.50 35.30 50.67  0.12 74.3 3.000 0.126 1.130 1.530 18.70 33.90 49.57			0.12		t	74.9	3.000	0.126	1.000	1.510	23.60	37.50	50.50			€8.86			1973	86213
0.12         76.1         3.000         0.126         1.000         1.460         22.30         37.90         51.04         50.7           0.12         74.3         3.000         0.126         1.100         1.390         20.50         35.30         60.67           0.12         74.3         3.000         0.126         1.130         1.630         18.70         33.90         49.57	TEK1	ghoa	0.12	£ p	E-	74.9	3.000	0.125	1.090	1.430	19.40	35.00	49.92			61.29*			1973	86213
74.3         3.000         0.126         1.100         1.390         20.60         35.30           74.3         3.000         0.126         1.130         1.630         18.70         33.90			0.12	<u>.</u>	<del></del> -	76.1	3.000	0.125	0001	1.460	22.30	37.90	51.04	2002	1.2	67.56	i	ı	1973	86213
74.3 3.000 0.126 1.130 1.630 18.70 33.90			0.12		1	74.3	3.000	0.126	1.100	1.390	20.50	35.30	50.67			60.37			1973	86213
			0.12			74.3	3.000	0.126	1.130	1.530	18.70	33.90	49.57			€3.00*			1973	86213
74.3 3.000 0.126 1.000 1.540 21.20 36.00			0.12			74.3	3.000	0.126	1.000	1.540	21.20	36.00	48.48			67.30*			1973	86213

• NOTE: NET SECTION STRESS EXCEEDS 80% OF YIELD STRENGTH. VALUE NOT INCLUDED IN MEAN OR STANDARD DEVIATION.

▎ 此				AI	ALUMINUM I	NOM	7079	Kc								
SPECIMEN		SPEC	Ĕ	LEN L	CRACK	CK	GROSS	SS SS		Kapp		Ī	Кc			
SPEC STR WIDTH (Ret) (to.)		VIDTH (la.) W		THICK 1	INIT 1	FINAL (in.)	ONSET (Kel) G.	MAX (Kei)	K. (Kelvin)	K,	STAN DEV	Ke (Kelvin)	K _o MEAN	STAN DEV	DATE	REFER
			B	UCKLIN	G OF C	RACK ED	BUCKLING OF CRACK EDGES NOT RESTRAINED	RESTRAU	ŒŊ							
74.9 3.000	$\vdash$	3.000		0.126	1.090	1.530	21.10	35.90	51.21			66.71*			1973	86213
LT 76.1 3.000		3.000		0.126	1.110	1.500	17.30	36.00	52.00			65.71*			1973	86213
Cont'd 76.1 3.000		3.000		0.126	1.000	1.320	19.90	37.60	50.64	Cont'd	Cont'd	61.68*	Cont'd	Cont'd	1973	86213
76.1 3.000		3.000		0.126	1.120	1.560	18.90	36.60	53.19	-		69.25*			1973	86213
74.7 3.000		3.000		0.250	1.230	1.630	i	26.70	41.50			52.69			1973	86213
LT 74.7 3.000	_	3.000		0.251	1.160	1.630	1	26.60	39.62	40.2	:	52.50	51.6	1.8	1973	86213
74.7 3.000		3.000		0.251	1.000	1.370	ı	29.30	39.46			49.51			1973	86213
74.3 20.000		20.000	. I	1.000	7.000	10.370	1	13.30	47.76			64.80			1973	86213
74.3 20.000		20.000		1.000	7.000	9.330	:	12.80	45.97			56.84			1973	86213
74.3 20.000		20.000		1.000	7.000	9.750	1	12.90	46.32			59.46			1973	86213
74.3 20.000	$\dashv$	20.000	_	1.000	7.000	10.260	:	12.70	45.61			61.27			1973	86213
74.9 20.000		20.000		1.000	7.000	10.660	:	12.50	44.89			62.51			1973	86213
74.9 20.000	$\dashv$	20.000		1.000	7.000	10.340	;	13.00	46.68			63.17			1973	86213
74.9 20.000	$\dashv$	20.000		1.000	7.000	9.980	;	12.50	44.89	49.0	5.1	58.81	64.9	7.6	1973	86213
74.9 20.000		20.000		1.000	7.000	9.880		12.40	44.53			67.82			1973	86213
76.1 20.000		20.000		1.000	7.000	10.100	:	15.50	99.29			73.71			1973	86213
76.1 20.000		20.00		1.000	7.000	9.770	ŀ	14.00	50.28			64.65			1973	86213
76.1 20.000		20.00	-	1.000	7.000	10.650	i	16.20	58.18			80.94			1973	86213
76.1 20.000		20.00	_	1.000	7.000	9.850	ı	16.00	67.46			74.41			1973	86213

• NOTE: NET SECTION STRESS EXCREDS 80% OF YIELD STRENGTH. VALUE NOT INCLUDED IN MEAN OR STANDARD DEVIATION.

	1		Logococc	1	7	ī	1	<del></del>	T .		ī	<del> </del>	_	· ·	T	Ŧ
		REFER		86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	
		DATE		1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	
		STAN							90	}						96
	Кc	K _o MEAN							7							40.5
		K _e (Kelvin)		58.66*	53.76*	53.49*	56.46*	51.13	52.94	52.39	57.41*	51.68	54.12*	55.16*	38.65	
		STAN				-			80							0.5
	Карр	K. MEAN							44.3							31.0
		K (Ksi√in)	INED	46.19	45.93	45.52	42.15	41.39	43.20	44.85	42.51	43.63	46.33	45.84	31.37	1 2
Kc	SS	MAX (Ket)	RESTRA	34.30	32.00	33.80	31.30	29.20	29.00	33.30	29.80	30.40	34.40	30.40	20.80	8
7079	GROSS	ONSET (Kei) G	GES NOT	21.30	18.90	22.80	21.40	17.00	15.10	20.20	16.90	18.50	20.00	17.50	ı	
INUM	CRACK LENGTH	FINAL (In.) 2a,	BUCKLING OF CRACK EDGES NOT RESTRAINED	1.390	1.360	1.260	1.480	1.430	1.500	1.250	1.590	1.380	1.250	1.490	1.530	200
ALUMINUM	CR	INIT (in.) 2a,	ING OF	1.000	1.100	1.000	1.000	1.080	1.160	1.000	1.090	1.100	1.000	1.180	1.180	9
	SPECIMEN	THICK (in.) B	BUCKL	0.125	0.125	0.126	0.126	0.126	0.126	0.126	0.126	0.126	0.126	0.126	0.250	0.081
		WIDTH (In.) W		3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3,000
		STR (Kei)		72.6	72.6	71.4	71.4	71.4	71.4	72.2	72.2	72.2	72.6	72.6	72.6	79 B
		SPEC							T·L						i	7.
	teaget	TEMP (°F)							R.T.						E	R.T.
	OUCT	THICK (In.)		0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.25	0.25
	PRODUCT	FORM							Sheet						E	Plate
		CONDITION HEAT TREAT							T651						į	1651

* NOTE: NET SECTION STRESS EXCEEDS 80% OF YIELD STRENGTH. VALUE NOT INCLUDED IN MEAN OR STANDARD DEVLATION.

TABLE 8.11.2.2 (CONCLUDED)

		<u> </u>				3	E		m	က	8	3	3	3	Ī
		REFER		86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	
		DATE		1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	
		STAN								1.2					
	Kc	K _c MEAN								38.1					
		K _c (Keivin)		36.26	37.18	39.18	38.83	38.01	37.18	35.63	38.89	38.31	38.81	38.92	
		STAN								6.0					
	Карр	K. MEAN						,		31.2					
		K (Kelvin)	INED	30.52	31.24	30.88	31.60	30.52	30.88	29.81	30.17	31.96	32.32	32.68	
Кc	SS	MAX (Kei)	RESTRA	8.50	8.70	8.60	8.80	8.50	8.60	8.30	8.40	8.90	9.00	9.10	
7079	GROSS	ONSET (Kei)	BUCKLING OF CRACK EDGES NOT RESTRAINED	-	÷	:	ı	:	:	ı	:	;	:	:	
NOM	CRACK LENGTH	FINAL (in.) 2a,	RACK ED	8.880	8.900	9.620	9.260	9.410	9.030	8.950	9.800	8.980	9.000	8.910	
ALUMINUM	CRACK	INIT (in.) 2a,	NG OF C	7.000	7.000	7.000	7.000	7.000	7.000	7.000	7.000	7.000	7.000	7.000	
V	MEN	THICK (in.) B	BUCKLI	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	
	SPECIMEN	WIDTH (in.) W		20.000	20.000	20.000	20.000	20.000	20.000	20.000	20.000	20.000	20.000	20.000	
		STR (Ksl)		71.3	71.3	71.3	71.3	72.2	72.2	72.2	72.2	72.6	72.6	72.6	
		SPEC OR								<u>.</u>					
	£	TEMP (°F)							É	;					
	UCT	THICK (in.)		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
	PRODUCT	FORM		!	الـــــــــــــــــــــــــــــــــــــ	!	<u>_</u>	1	I	I	!	<u></u> 1		!	
		CONDITION HEAT TREAT								Icai	•	<del></del>			

• NOTE: NET SECTION STRESS EXCEEDS 80% OF YIELD STRENGTH. VALUE NOT INCLUDED IN MEAN OR STANDARD DEVIATION.

This page intentionally left blank



Figure 8.11.3.1.1





Figure 8.11.3.1.3



Figure 8.11.3.1.4



Figure 8.11.3.1.5

1 7079 <del>| R</del> Condition/Ht: T651 Yield Strength: Form: 0.16 in. Sheet Specimen Type: CCP (max load specified) Ult. Strength: 79.1 ksi Specimen Thk: 0.16 - 0.161 in. Orientation: L-T Specimen Width: 3 in. Frequency: 2 Hz Ref: 86734 Environment: LAB AIR; RT (1 of 1) $\Delta K (MPa\sqrt{in})$  $\Delta K$  (MPa $\sqrt{in}$ ) 100 100 10° Stress Ratio: 0.05 10-2 10-2 10-1 10 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10⁻⁶ 10-6 10 -5 10⁻⁵ 10⁻⁷ 10⁻⁷ 10 -6 10⁻⁶ 10 8 10⁻⁸ 4 40 100 10 10 40 100 ΔK (Ksi√in) ΔK (Ksi√in) da/dN ( $10^{-6}in/cycle$ ) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) ΔK (Ksi√in) 5.75 (min) 6. 7. 8. 8.92 (max) 2.88 3.20 4.87 6.81 Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary RMS & Error Error 12.23 Ó. .5 1.25 2. 0. .8 1.25 2. .8 .5



Figure 8.11.3.1.7

1 7079 H Condition/Ht: T652 Form: 6 in. Forging Yield Strength: Specimen Type: CCP (max load specified) Ult. Strength: Orientation: L-T Specimen Thk: 0.75 in. Specimen Width: 3 in. Frequency: 5.2 Hz Ref: 77720 Environment: LAB AIR; RT (1 of 1) $\Delta$ K (MPa $\sqrt{in}$ )  $\Delta K$  (MPa $\sqrt{in}$ ) 100 100 10⁰ 10° Stress Ratio: 0.33 10-2 10-2 10-1 10⁻¹ 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10-6 10-6 10⁻⁵ 10⁻⁵ 10⁻⁷ 10-7 10⁻⁶ 10⁻⁶ 10-8 10-8 10 40 100 10 40 100 ΔK (Ksi√in) ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) da/dN ( $10^{-6}in/cycle$ ) 5.59 (min) 6. 7. 8. 10. 13. 16. 20. 21.86 (max) Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary RMS % ⊕∆ □ Error Error 18.41 .5 1.25 0. .5 8. 1.25 2. 0. .8 2.

Figure 8.11.3.1.8



Figure 8.11.3.1.9



Figure 8.11.3.1.9 (Concluded)



Figure 8.11.3.1.10

┨ 7079 ┠ Condition/Ht: T652 Form: 6 in. Forging Yield Strength: Specimen Type: CCP (max load specified) Ult. Strength: Orientation: S-T Specimen Thk: 0.75 in. Specimen Width: 3 in. Frequency: 5.2 Hz Ref: 77720 Environment: LAB AIR; RT (1 of 1) $\Delta$ K (MPa $\sqrt{in}$ ) ΔK (MPa√in) 10 100 100 77147 10° 10° Stress Ratio: 0.33 10⁻² 10-2 10-1 10-1 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10⁻⁶ 10 6 10 5 10⁻⁵ 10⁻⁷ 10⁻⁷ 10 6 10⁻⁶ 10-8 10 8 10 40 100 10 40 100 ΔK (Ksi√in) ΔK (Ksi√in) da/dN ( $10^{-6}in/cycle$ ) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) 5.58 (min) 6. 7. 8. 8.40 9. 11.52 (max) 29.9 Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary RMS & Error Error 12.33 2. 0. .5 .8 1.25 2. 0. .5 .8 1.25

Figure 8.11.3.1.11



This page intentionally left blank





Figure 8.11.3.2.2



Figure 8.11.3.2.2 (Continued)



Figure 8.11.3.2.2 (Concluded)



This page intentionally left blank



Figure 8.11.3.2.4



Figure 8.11.3.2.4 (Concluded)





Figure 8.11.3.2.5 (Continued)



Figure 8.11.3.2.5 (Continued)



Figure 8.11.3.2.5 (Concluded)



Figure 8.11.3.2.6





Figure 8.11.3.2.6 (Continued)



Figure 8.11.3.2.6 (Concluded)



Figure 8.11.3.2.7



Figure 8.11.3.2.7 (Continued)



Figure 8.11.3.2.7 (Continued)



Figure 8.11.3.2.7 (Continued)



Figure 8.11.3.2.7 (Continued)



Figure 8.11.3.2.7 (Concluded)



Figure 8.11.3.2.8



Figure 8.11.3.2.8 (Concluded)



Figure 8.11.3.2.9



Figure 8.11.3.2.10

K_{isce} SUMMARY FOR ALUMINUM ALLOY 7079

,	F	Test	7	Yield		S	Specimen		Prod			1	Test		
Condition Frod Temp Spec Str Heat Treat Form (°F) Or. (Ksi)	Form	Temp (°F)	Spec Or.	Str (Ksi)	Envir.	Design	Width (in)	Thick (in)	Thk (in)	Crack (in)	Ro (Ksi√in)	Rive (Ksi√in)	Time (min)	Test Date	Refer
						DCB	4	1	1	1	16.2	7.8	1	1961	84329
					35% NaCl	DCB	3.5	-	1			4.3	•	1968	84330
T6	д	R.T.	S-L	!		DCB	4	1	1		15.6	7.2	••	1961	84329
					Dist Water	DCB	4	1	1	1	1	9.2		1961	84329
				92	3.5% NaCl	DCB	4	1	1	•	16		1	1968	84331
				64	3.5% NaCl	DCB	9	1	1	2.0	30	8	i	1969	78313
					Industrial Atm	CT	2	1	2.5		19.2	6	1	1973	88998
T651	Q,	R.T.	S-L	9.99	Salt-Dichromate- Acetate	$\mathbf{cr}$	2	1	2.5	I	19.2	9	i	1973	86688
					Seacoast Atm	CI	2	1	2.5	÷	19.2	6	••	1973	86988

### TABLE 8.12.2.2

						¥	ALUMINUM	NUM	707	7079 (ALCLAD)	[AD)	K _c							
	PRO]	PRODUCT	tog		2	SPECIMEN	MEN	CRACK	СК ўТН	GROSS	SS		Карр			Кc			
CONDITION HEAT TREAT	FORM	THICK (In.)	TEMP (°F)	SPEC	STR (Kei)	WIDTH (in.)	THICK (in.)	INIT (in.)	FINAL (in.) 2a,	ONSET (Kei)	MAX (Kei)	K. (Ksi√in)	MEAN	STAN	K _o (Kelv[n])	K _c MEAN	STAN	DATE	REFER
							BUCKLIN	KG OF C	RACK ED	BUCKLING OF CRACK EDGES NOT RESTRAINED	RESTRA	INED							
		90.0			61.2	2.000	0.062	0.625	1.200	1	39.10	41.21*			70.02*			1973	86213
T6	Sheet	90.0	R.T.	L.T.	61.2	2.000	0.062	0.625	1.180	ı	39.60	41.74*	:	i	69.58	i	!	1973	86213
		90.0			61.2	2.000	0.062	0.625	1.280	;	38.20	40.26*			74.00*			1973	86213
		90.0			71.2	2.000	690.0	0.614	1.040	!	41.80	43.61*			64.57*			1973	86213
2,4	Choos	90.0	E	E	71.2	2.000	690'0	0.612	1.020	ı	42.60	44.36*			64.64			1973	86213
	19310	90.0	i	<u> </u>	71.2	2.000	690.0	0.613	1.090	:	41.60	43.32*	ı	:	67.24	i	i	1973	86213
		90.0			71.2	2.000	690'0	0.616	1.100	;	42.20	44.12*		•	68.83*		-	1973	86213
2,1	Choose	0.11	E		73.1	3.000	0.109	1.150	2.024	:	38.00	56.26*			96.89*			1973	86213
2	133110	0.11		5	73.1	3.000	0.109	1.180	2.085	:	37.40	56.40*	i .		99.61	;	:	1973	86213
٤	Shoot	90.0	2	F.	6.69	3.000	0.058	1.230	2.353	1	34.50	53.63*			114.95*			1973	86213
2	183	90.0	5	3	6.69	3.000	0.058	1.200	2.088	:	34.40	52.51	;	:	91.90*	i	į	1973	86213
£	Glood	60.0		E	72.1	3.000	0.087	1.230	2.264	ï	36.30	56.42*			111.65*			1973	86213
2	193116	0.09	<b>*</b>	5	72.1	3.000	0.088	1.190	2.281	i	37.60	67.05*	i	i	117.28*	i	i	1973	86213
		90.0			58.7	2.000	0.062	0.625	1.080	:	37.00	39.00*			€9.26*			1973	86213
ST.	Sheet	90.0	R.T.	1.5	58.7	2.000	0.062	0.625	1.150	1	36.40	38.37*	i	i	62.18*	;	ŀ	1973	86213
		90:0			58.7	2.000	0.062	0.625	1.120	i	36.50	38.47*			60.64*		!	1973	86213

• NOTE: NET SECTION STRESS EXCREDS 80% OF YIELD STRENGTH. VALUE NOT INCLUDED IN MEAN OR STANDARD DEVIATION.

# TABLE 8.12.2.2 (CONTINUED)

						A	ALUMINUM	NOM	707	7079 (ALCLAD)	[AD)	Ж							
	PRODUCT	ucr	60			SPECIMEN	MEN	CRACK	СК	GROSS	SS		Kapp			Кc			
CONDITION HEAT TREAT	FORM	THICK (in.)	TEMP (°F)	SPEC		WIDTH '	THICK (in.) B	INIT (in.) 2a,	FINAL (in.) 2a,	ONSET (Kei)	MAX (Kst)	K. (Ketvin)	MEAN	STAN	Ke (Kelvin)	K _o MEAN	STAN	DATE	REFER
							BUCKLD	NG OF C	RACK ED	BUCKLING OF CRACK EDGES NOT RESTRAINED	RESTRA	INED							
		90:0		1	68.7	2.000	690.0	0.616	0.975	:	39.70	41.51*			57.82*			1973	86213
2	100	90.0	E		68.7	2.000	0.069	0.617	0.930		39.80	41.61*			65.74*			1973	86213
	oneet	90.0		 <u>?</u>	68.7	2.000	0.069	0.614	0.990	:	39.60	41.32*	i	ŀ	58.50*	ŀ	ı	1973	86213
		90.0			68.7	2.000	0.069	0.618	0.910		39.80	41.70*			54.75*			1973	86213
		0.04			63.2	3.000	0.037	1.163	1.954	:	33.70	50.26*			81.82*			1973	86213
T.e	Sheet	0.04	R.T.	1:1	63.2	3.000	0.037	1.142	2.184	ı	32.30	47.59*	ŀ	!	92.94*	ı	;	1973	86213
		0.04			63.2	3.000	0.037	1.125	1.883	ŀ	34.00	49.54*			78.65*			1973	86213
		90.02			67.0	3.000	0.050	1.152	2.087	i	34.40	50.99*			91.76*			1973	86213
T6	Sheet	0.05	R.T.	7.F.	67.0	3.000	0.050	1.155	2.084	ı	34.70	51.50*	!	ì	92.42*	1	ı	1973	86213
		90.0			67.0	3.000	0:020	1.153	2.091	:	34.60	51.29*			92.57*			1973	86213
¥	Shoot	0.11	£		69.5	3.000	0.109	1.590	2.421	:	25.70	49.51			91.63*			1973	86213
	193116	0.11	•	2	69.5	3.000	0.110	1.280	2.066	ı	31.80	50.94	50.2	1.0	83.58*	ı	i	1973	86213
¥	100	90.0	3	E	64.3	3.000	0.049	1.190	2.305	ı	32.70	49.61*			104.20*			1973	86213
,	18010	90.02	ő	3	64.3	3.000	0.049	1.030	2.156	ı	35.00	48.06*	1	:	98.49*	ı	i	1973	86213
-		90'0		I	68.2	3.000	0.058	1.130	1.952	1	33.00	48.26			*10.08			1973	86213
2	100	90.0	3		68.2	3.000	0.068	1.200	2.126	1	31.90	48.69			*07.78			1973	86213
•	199110	90.0	\$	3	67.2	3.000	0.062	1.160	2.267	1	35.80	53.33*	48.5	0.3	*16,911	ı	ı	1973	86213
		0.06			67.2	3.000	0.062	1.230	2.273	1	34.90	54.25*	-		108.10*			1973	86213

• NOTE: NET SECTION STRESS EXCEEDS 80% OF YIRLD STRENGTH. VALUR NOT INCLUDED IN MEAN OR STANDARD DEVIATION.

# TABLE 8.12.2.2 (CONCLUDED)

				A	ALUMINUM	NUM		7079 (ALCLAD)	('AD)	Kc							
PRODUCT	-			SPECIMEN	MEN	CRACK	CTH	GROSS	SS SS:		Карр			K,	-		
THICK (°F)	. ^.	SPEC	STR (Kel)	WIDTH (In.) W	THICK (in.) B	INIT (in.) 2a.	FINAL (in.) 2a,	ONSET (Kei)	MAX (Kel)	K (Keivin)	MEAN	STAN	K _e (Kelvin)	K _o MEAN	STAN	DATE	REFER
	*****I				ВИСКЦІ	NG OF C	RACK ED	BUCKLING OF CRACK EDGES NOT RESTRAINED	RESTRAI	INED							
60.0			1.99	3.000	0.087	1.230	2.347	i	32.70	50.83*			108.33*			1973	86213
60:0			66.1	3.000	0.087	1.250	2.124	:	32.30	50.81*			88.67*			1973	86213
60.0		Ē	68.3	3.000	0.088	1.170	2.096	1	31.80	47.66			85.46*			1973	86213
60.0		2	69.3	3.000	0.088	1.220	2.086	:	33.10	51.14*	48.2	8.0	88.29	:	i	1973	86213
0.09			68.3	3.000	0.089	1.230	2.129	ı	31.40	48.81			86.46*			1973	86213
60:0			69.3	3.000	0.089	1.200	2.166	ı	33.80	51.59*			95.87*			1973	86213
0.19		E	66.4	3.000	0.194	1.160	2.162	i	32.60	48.56			92.17*			1973	86213
0.19		2	66.4	3.000	0.194	1.177	2.192	i	32.00	48.14	48.4	0.3	92.67*	ı	i	1973	86213

• NOTE: NET SECTION STRESS EXCREDS 80% OF YIELD STRENGTH. VALUE NOT INCLUDED IN MEAN OR STANDARD DEVIATION.

#### **TABLE 8.13.2.1**

		ER.	621	621	13	86213	86213	86213
		REFER	82879	82879	86213	862	862	862
		DATE	1972	1972	1973	1973	1973	1973
		STAN		8.0		0.7		0.1
	K _{Ie}	K. MEAN		18.7		21.9		23.2
		K. (Kei •	18.10	19.20	21.40	22.40	23.10	23.20
		2.6 (K. TYS)* (In.)	0.21	0.24	0.44	0.48	0.51	0.52
	CRACK	LENGTH (in.) A	0.750	0.750	0.715	0.758	0.822	0.754
10 K _{Ie}	z	DESIGN	cr	CT	CT	CT	ст	CT
M 7080	SPECIMEN	THICK (in.) B	0.750	0.750	0.748	0.749	0.753	0.752
ALUMINUM	3	HTCIW (in.) W	1.500	1.500	1.500	1.500	1.500	1.500
		YIELD STR (Kel)	62.2	62.2	51.0	61.0	51.0	61.0
		SPEC	1.0	7-5	É	1-17	Ě	7.
		TEST TEMP (°P)		W.1:	82		6	8
	JCT	THICK (in.)	•••		4.50	4.50	4.50	4.50
	PRODUCT	FORM	Doening	Singra	To Forest	r organizati		roiged Dat
		CONDITION	4		4		3	

#### **TABLE 8.14.1.1**

MEAN PLANE STRAIN FRACTURE TOUGHNESS FOR ALUMINUM 7000/8000 SERIES ALLOY 7149 AT ROOM TEMPERATURE

			u	:
		S-L	Std Dev	1
			Mean K _{ie}	1
(g)	ntation		ч	3
$K_{Ic}~(ksi\sqrt{in})$	Specimen Orientation	T-T	Std Dev	0.3
$K_{I_c}$	Specime		Mean K _{le}	24.2
	62		Ħ	3
		L-T	Std Dev	9.0
			Mean Kr	31.5
	Condition/Heat Treatment			T73511
Product	Form			Extrusion

TABLE 8.14.1.2.1

FATIGITE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK

FALIGUE CRACA GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AR 7149 AT ROOM TEMPERATURE	ENVIRONMENT: Lab Air		<b>¥</b>	2.5 5.0 10.0 20.0 50.0 100.0	0.1 2-10 1.61 8.05 54.43	0.1 1-20 1.65
FAIIGUE ORACA GROWIN KAIE A 7149	ORIENTATION: L-T	CONDITION/ PRODUCT	EX		<del></del>	LIGOTI

## **TABLE 8.14.1.2.2**

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR  $\Delta K$  7149 AT ROOM TEMPERATURE

	OBIENTATION: I				) divine	TATA CITY		44.	
PRODUCT         R         FREQ (Hz)         FREQ (Hz)         AK Lovel (Ksii/in)           EXTRUSION         0.1         1.10         1.68         24.56         16.01         20.00         60.0	ALION.			ı	LIN V LIKE	MINIE	2.0 : IV	.w.	
PRODUCT         R         FREQ         AK Lovel (Ksi/in)           EXTRUSION         0.1         1.10         1.68         24.26         158.16						'AA	טט מט	6 in/amily	
FORM (Hz)						5	A 1 4 1 1 1	(ando hir	
EXTRUSION 0.1 1-10 1.68 24.26 158.16	HEATTERATMENT	PRODUCT	×	FREQ					
2.5 5.6 16.0 20.0 50.0 0.1 0.1 1.68 24.26 158.16	1	FUND		(ZE)		ΔI	ĭ Level	(Ksiv/in)	
2.5         6.0         10.0         20.0         50.0         60.0           0.1         1.10         1.68         24.26         158.16         -					Ī			-	
0.1 1-10 1.68 24.26					2.5	6.0	10.0	*******	
		EXTRUSION	0.1	1-10		1.68	24.26	158.16	

1 of 1

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7149 AT ROOM TEMPERATURE

ORIENTATION: T-L

ENVIRONMENT: Lab Air

			100.0			
(0)		(1)	60.0			
6 in/cycl		(Ksi/ir	10.0 20.0	167.45	94.91	
FCGR (10 ⁻⁸ in/cycle)		ΔK Level (Ksi√in)	10.0	12.55	12.39	8.89
FC		V	5.0			1.91
			2.5			
	FREG	(Hz)		10	10-13	10-20
		Ä		0.1	0.1	0.1
	PRODUCT	FORM			EXTRUSION	
	CONDITION	HEAT TREATMENT			173511	

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7149 AT ROOM TEMPERATURE

ORIENTATION: T-L

ENVIRONMENT: S.S.W.

29.27 211.54	2.77	1-10	0.1	EXTRUSION	T73511
10.0 20.0 50.0 100.0	2.5 5.0				
an Level (nshim)	AA.				
1.00	44 •	(Hz)	3	FORM	HEAT TREATMENT
		iii dana ii	Ā	PRODUCE	CONDITION
					Carrie Indiana
FCGK (10° m/cycle)	HUCH				

## **TABLE 8.14.2.1**

					ALI	ALUMINUM		7149 K _{Ie}							
	PRODUCT	UCT					SPECIMEN	7	CRACK			K _{Ie}			
CONDITION	FORM	THICK (in.)	TEST TEMP (°F)	SPEC	YIELD STR (Kal)	WIDTH (in.)	THICK (in.) B	DESIGN	LENGTH (in.) A	2.5 (K _L /TYS) ² (in.)	K. (Kei *	K. MEAN	STAN	DATE	REFER
		3.00			66.3	2.001	1.007	CT	1.038	0.59	32.32			1976	NC001
173511	Extrusion	3.00	R.T.	7	66.3	2.002	1.007	cT	1.032	0.54	30.82	31.5	8.0	1976	NC001
		3.00			66.3	2,002	1.007	CT	1.025	99.0	31.42			1976	NC001
		3.00			63.7	2.002	1.007	CT	1.028	0.37	24.65			1976	NC001
173511	Extrusion	3.00	R.T.	T.I.	63.7	2.001	1.007	ст	1.033	96.0	24.08	24.2	0.3	1976	NC001
		3.00			63.7	2.001	1.007	CT	1.001	0.35	24.07			1976	NC001

This page intentionally left blank



Figure 8.14.3.1.1



Figure 8.14.3.1.2



Figure 8.14.3.1.3



Figure 8.14.3.1.3 (Concluded)



Figure 8.14.3.1.4

**TABLE 8.15.1.2.1** 

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR  $\Delta K$  7150 AT ROOM TEMPERATURE

ENVIRONMENT: H.H.A.	FCGR (10 ⁶ in/cycle)           ΔK Level (Ksiv/in)           5.0         10.0         20.0         100.0	3.64 24.77 199.35
NVIRON	2.2	0.11 3.
E	FREQ (Hz)	25
	Ħ	0.33
i L-T	PRODUCT FORM	PLATE
ORIENTATION: L-T	CONDITION/ HEAT TREATMENT	T651

1 of 1

**TABLE 8.15.1.2.2** 

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7150 AT ROOM TEMPERATURE

ORIENTATION: L-T	L-T		<b>日</b>	ENVIRONMENT: Lab Air	NMEN	T: Lab	Air		
The Control of the Co					FC	GR (10	FCGR (10.4 in/cycle)	(e)	
HEAT TREATMENT	FORM	Я	HE (HZ)		Δ.	K Lovel	ΔK Level (Ksiv/in)	1)	
				2.5	5.0	10.0	0.02	50.0	100.0
		0.1	3		0.52	7.76			
		0.1	5	0.08	0.71	7.54			
		0.1	10	60.0	0.49	7.31			
T7751	PLATE	0.4	5	0.14	2.11	14.37			
		0.4	10	0.14	1.87	14.89			
		0.4	15	0.15	1.6	11.49			
		0.8	10	0.5	6.53				
		0.1	20	0.16	2.61	9.15	60.08		
	VAC TOTAL MANAGE	0.1	25	0.34	3.46	8.07			
110//1	EAIROSION	0.4	20	0.87	2.07	4.02			
		0.8	20	0.78	6.45				



Figure 8.15.2.3.1



Figure 8.15.2.3.2





Figure 8.15.2.3.3



Figure 8.15.2.3.4 8-854



Figure 8.15.2.3.5



**Figure 8.15.2.3.6** 8-856



Figure 8.15.2.3.7



**Figure 8.15.2.3.8** 8-858



Figure 8.15.2.3.9



Figure 8.15.2.3.10



Figure 8.15.2.3.11



Figure 8.15.2.3.12



Figure 8.15.2.3.13



Figure 8.15.2.3.14 8-864



Figure 8.15.2.3.15



Figure 8.15.2.3.16

This page intentionally left blank



Figure 8.15.3.1.1

1 7150 Condition/Ht: T7751 Yield Strength: 81 - 82.6 ksi Form: 1.12 - 1.25 in. Plate Ult. Strength: Specimen Type: CT Specimen Thk: 0.499 - 0.5 in. Orientation: L-T Specimen Width: 2.002 - 2.003 in Frequency: 5 Hz Ref: DA008 Environment: LAB AIR; RT (2 of 2) (1 of 2) $\Delta K (MPa\sqrt{in})$ ΔK (MPa√in) 100 10 10 100 40 40 لىلىلىك 1-1-1-1-1 10° 10° Stress Ratio: 0.4 Stress Ratio: 0.1 10⁻² 10-2 10⁻¹ 10-1 10⁻³ 10⁻³ da/dN (in/cycle) 10 10-6 10⁻⁶ 10⁻⁵ 10 5 10⁻⁷ 10⁻⁷ 10 6 10-6 10⁻⁸ 10 40 100 10 40 100 ΔK (Ksi√in) ΔK (Ksi√in) da/dN ( $10^{-6}in/cycle$ ) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) 2.08 (min) 2.5 3. 3.5 1.55 (min) 0.0549 0.0775 1.6 2. 2.5 3. 3.5 0.124 4. 5. 6. 7. 9. 10. 9. 13. 10. 16. 12.13 (max) 16.83 (max) RMS % Life Prediction Ratio Summary Life Prediction Ratio Summary RMS % Error Error  $\Box$   $\Diamond$ 52.58 34.83 2. Ó. 1.25 0. .5 .8 1.25 .5 .8 2.

Figure 8.15.3.1.2



Figure 8.15.3.1.3

1 7150 <del>|</del> R Condition/Ht: T7751 Yield Strength: 81 - 82.2 ksi Form: 1.12 - 1.25 in. Plate Specimen Type: CT Ult. Strength: Orientation: L-T Specimen Thk: 0.499 - 0.5 in. Specimen Width: 2 - 2.002 in. Frequency: 10 Hz Environment: LAB AIR; RT Ref: DA008 (3 of 3) $\Delta$ K (MPa $\sqrt{in}$ )  $\Delta K$  (MPa $\sqrt{in}$ ) 10 100 10 100 40 40 7 7 7 7 7 7 ابليليا 10° 10° Stress Ratio: 0.8 10-2 10-2 10⁻¹ 10-1 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10⁻⁶ 10-6 10 -5 10⁻⁵ 10⁻⁷ 10⁻⁷ 10 6 10⁻⁶ 10⁻⁸ 10-8 10 40 10 40 100 100 ΔK (Ksi√in) ΔK (Ksi√in) ΔK (Ksi√in)  $da/dN (10^{-6}in/cycle)$ ΔK (Ksi√in) da/dN ( $10^{-6}in/cycle$ ) 1.26 (min) 0.0446 1.3 0.0447 1.6 0.0691 5. 5.22 (max) Life Prediction Ratio Summary Life Prediction Ratio Summary RMS % RMS % Error Error 79.56 .5 0. .5 1.25 0. .8 1.25 2. .8 2.

Figure 8.15.3.1.3 (Concluded)



Figure 8.15.3.1.4

Condition/Ht: T7751 Yield Strength: 81 ksi Form: 0.25 in. Plate Specimen Type: CCP (max load specified) Ult. Strength: Orientation: L-T Specimen Thk: 0.25 in. Specimen Width: 24.94 in. Stress Ratio: 0.1 Ref: DA008 Environment: LAB AIR; RT (2 of 2) (1 of 2) $\Delta$ K (MPa $\sqrt{in}$ )  $\Delta K$  (MPa $\sqrt{in}$ ) 10 100 10 100 40 40  $\Gamma$ 11111 بلبليل 10° 10° Frequency: 5. Hz Frequency: 3. Hz 10-2 10 2 10-1 10⁻¹ 10⁻³ 10-3 da/dN (in/cycle) da/dN (in/cycle) 10-6 10-6 10 -5 10⁻⁵ 10⁻⁷ 10⁻⁷ 10 6 10 -6 10-8 10⁻⁸ 10 10 40 40 100 100 ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle)  $da/dN (10^{-6}in/cycle)$ ΔK (Ksi√in) ΔK (Ksi√in) 3.02 (min) 3.5 0.128 0.174 13.90 (min) 23.4 34.9 50.8 16. 17.30 (max) 4. 5. 0.518 1.90 8. 9. 3.26 10. 13. 19.0 14.59 (max) RMS % Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary Error Error ⍗ 2.39 >100.0 0. .5 .8 1.25 0. 1.25 2. .5 .8 2.



Figure 8.15.3.1.6

d 7150 ⊢R Condition/Ht: T77511 Yield Strength: 86.5 - 90.5 ksi Form: 0.7 - 1.45 in. Extrusion Ult. Strength: Specimen Type: CT Orientation: L-T Specimen Thk: 0.493 - 0.498 in. Specimen Width: 1.997 - 2 in. Frequency: 20 Hz Ref: DA008 Environment: LAB AIR; RT (3 of 3) $\Delta$ K (MPa $\sqrt{in}$ ) ΔK (MPa√in) 100 40 100 10 40 10° 10° Stress Ratio: 0.8 10-2 10-2 10-1 10 1 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10-6 10-6 10 -5 10⁻⁵ 10⁻⁷ 10-7 10 6 10 -6 10⁻⁸ 10 8 10 10 40 100 40 100 ΔK (Ksi√in) ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) 1.22 (min) 1.3 0.0441 0.0985 1.6 0.506 2. 2.5 3. 3.5 0.966 6.45 5.46 (max) 11.8 Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary RMS % Error Error 77.68 .5 1.25 .5 1.25 2. 0. 8. 2. 0. .8

Figure 8.15.3.1.6 (Concluded)



Figure 8.15.3.1.7

# MEAN PLANE STRAIN FRACTURE TOUGHNESS FOR ALUMINUM 7000/8000 SERIES ALLOY 7175 AT ROOM TEMPERATURE

Product					$K_{I_G}$	$K_{Ic}~(ksi\sqrt{in})$	<u>a</u>			
Form	Condition/Heat Treatment			<i>3</i> 2	pecime	Specimen Orientation	ntation			
			L-T			T-L			S-L	
		Mean K _{te}	Std Dev	ជ	Mean K _{lo}	Std Dev	и	Mean K _{le}	Std Dev	g
	T66	:		••	23.2	3.1	2	20.8	1.1	7
	T73		•	•••	ł	1	:	27.1	1.2	4
Forging	T7352	1	:		24.5	9.0	2	:	:	:
	T736	31.2	3.8	4	26.4	3.6	10	25.3	2.1	23
	T73652	32.7	8.	2	i	i	:	:	:	;
Kytmiejon	T73511	32.8	6.5	17	27.	4.9	12	ŀ		:
Holenbary	T76511	32.9	3.5	48	22.6	2.5	36	20.9	1.3	3

1 of 1

TABLE 8.16.1.2.1

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7175 AT ROOM TEMPERATURE

ORIENTATION: L-T	: L-T			ENVIRONMENT: Dry Air	NMEN	T: Dry	Air		
CONDITION	PRODUCT		FREG		FC	<i>3R</i> (10	FCGR (10 ⁶ in/cycle)	(9)	
HEAT TREATMENT	FORM	¥	(Hz)		IV	Z Lovel	ΔK Level (Ksivlin)	G	
				2.5	5.0	10.0	20.0	50.0	100.0
T7354	FORGING	0.1	9		1.15	10.68	83.04		
		0.1	8		1.1	11.84			
T736	FORGING	0.3	6		3.76	19.57			
		0.33	5.2			15.96			
		0.1	20		1.45	12.71			
T76511	EXTRUSION	0.1	20		1.3	12.64			
		0.1	30	0.15	1.11				

**TABLE 8.16.1.2.2** 

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7176 AT ROOM TEMPERATURE

	2(b) (D)	
C.S.	dinter	
INT: F.	<i>XGR</i> (10 K Level	10.79
ENVIRONMENT: F.C.S.	FC	1.32
ENVIE	22.25	
	FREQ (Hz)	1
	R	90'0
	UCT	NG
L-T	PRODUCT	FORGING
ORIENTATION: L	IN	
RIENT	CONDITION/ HEAT TREATMENT	T73652
0	COND	T73
	HE	

1 of 1

**TABLE 8.16.1.2.3** 

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7175 AT ROOM TEMPERATURE

ORIENTATION: L-T	: L-T	-	<b>H</b>	ENVIRONMENT: H.H.A.	NME	VT: H.I	I.A.		
Web This Comment of the Comment of t	morationa		Constant.		FC	PCGR (10 ⁻⁸ ity/cycle)	e in/cyc	(9)	
HEAT TREATMENT	FORM	æ	HEEQ (HZ)		N	ΔK Level (Kak/in)	(Ksiv'ii	(a	
				2.5	5.0	10.0	20.0	60.0	100.0
		0.1	-		2.03	11.22	55.07		
	CMISGOS	0.3	1		1.77	15.31			,
	CONGING	0.33	5.2			19.65			
		0.5	1	-	2.97	17.29			

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7175 AT ROOM TEMPERATURE

100.0 60.0 PCGR (10 * in/cycle) ΔK Level (Ksi/in) ENVIRONMENT: JP-4 Jet Fuel 20.0 47.58 35.42 10.0 6.67 3.83 6,0 0.44 0.36 SQ CN FREQ (Hz) 1-20 1-20 æ 0.02 0.02 PRODUCT FORM FORGING FORGING ORIENTATION: L-T HEAT TREATMENT CONDITION T73652 T74

**TABLE 8.16.1.2.5** 

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7175 AT ROOM TEMPERATURE

ORIENTATION: L-T	: L-T		1	ENVIRONMENT: L.H.A.	ONME	YT: L.F	I.A.		
CONDITION	PRODUCT		FREG		FC	FCGR (10 ⁶ in/cycle)	⁶ in/cyc	(ep	
HEAT TREATMENT	FORM	¥	(Hz)		V	ΔΚ Level (Ksiγin)	(Ksi/ii	n)	
				2.5	5.0	10.0	20.0	50.0	100.0
		0.08	0.1			10.3			
		0.08	1		0.43	9.41	51.46		
CACCEE		0.08	9			5.67			
7,7002	FORGING	0.08	9			8.49			
		0.08	9			5.92	36.84		
		0.3	9		0.53	10.12			

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR $\Delta K$	WTH RATE AT DEFINED LEVELS OF ST 7175 AT ROOM TEMPERATURE	FINED L	EVELS (	OF STE	ESS II	NTENS	ITY FA	CTOR	$\Delta \mathbf{K}$
ORIENTATION: L-T	4: L-T		<b>A</b>	NVIR	NME	ENVIRONMENT: Lab Air	Air		
CONTINUES	THE		Odda		FC	FCGR (10.4 in/cycle)	⁶ in/cyc	le)	
HEAT TREATMENT	FORM	В	r neg (Hz)		Δ	ΔΚ Level (Ksiγin)	(Kai/li	(a	
				2.5	5.0	10.0	20.0	50.0	100
T736	FORGING	0.02	10			10.52	57.48		
		0.02	1-15	0.12					
T73652	FORGING	0.02	1-18	0.12	92.0	7.48			
		0.02	0.1-20			8.39	37.54		
		0.02	0.08-10			3.44	38.3		
		0.02	0.1-20		0.51	8.78	33.73		
		0.02			0.16	2.43	35.19		
		0.02			0.31	7.65	46.92		
-		0.1	10			9.23	64.01		
	CALCO	0.1	10		1.5	96.6			
174	FORMING	0.1	25	0.13	1.77				
		0.5	10		2.68	16.24			
		0.5	20		2.29	16.19			
		0.5	25	0.14					
		0.8	10		4.68				
		0.8	20	0.2	3.05				
	UNSPECIFIED	0.1	10			4.07	67.09		

TABLE 8.16.1.2.7

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7175 AT ROOM TEMPERATURE

ORIENTATION: L-1	: L-T			ENVIRONMENT: S.S.W.	)NME	NT: S.S	.w.		
CONDITION/ HEAT TREATMENT	PRODUCT	æ	FREQ (Hz)		FC	FCGR (10 ⁻⁶ in/cycle)  AK Level (Ksi\/in)	an/csc (Ksi/ii	(0)	
				2.5	5.0	10.0	20.0	60.0	100.0
T73652	FORGING	0.02	0.1-20		1	11.65	66.39		
T74	FORGING	0.02	0.1-20		1	11.52	66.1		

**TABLE 8.16.1.2.8** 

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7175 AT ROOM TEMPERATURE

ORIENTATION: L-T

ENVIRONMENT: S.T.W.

(a)	50.0 100.0					
FCGR (10 ⁻⁸ in/cycle)  AK Level (Kak/in)	10.0 20.0	02		78	39	28
FCGR	5.0 10	0.63 27.02	1.57	6.28 56.78	3.24 29.39	33.28
	2.5			0.33		
FREQ (Hz)		1	1	-	1	1
Я		0.1	0.1	0.5	0.3	0.5
PRODUCT		FORGING	POPOLING	ronging	PARTICIPAL DE LA COMPANIA DEL COMPANIA DEL COMPANIA DE LA COMPANIA	FORGING
CONDITION/ HEAT TREATMENT		T7354	2000	100	HOADEO	1,0002

**TABLE 8.16.1.2.9** 

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7175 AT ROOM TEMPERATURE

		_
	100.0	
	(6)	
Fog	6 infeyes (Ksi/in	
F: Salt	FCGR (10 ⁻⁶ in/cycle)  AK Level (Ksi\/in)	41.76
NMEN	FCC AF	
ENVIRONMENT: Salt Fog	97	
E	FREQ.	5.2
	R	0.33
L-T	PRODUCT	FORGING
ORIENTATION: L-T	CONDITION/ HEAT TREATMENT	T736

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7175 AT ROOM TEMPERATURE

	0.001		
ir	in/cycle) Ksi/in)		
<b>ENVIRONMENT: Dry Air</b>	AK Level (Ksiv/in)	16.23	12.47
ONME	FC A		
INVIR	2.5		
	FREQ (Hz)	5.2	18.3
	R	0.33	0.33
i: T-L	PRODUCT	CMICGOS	FORGING
ORIENTATION: T-1	CONDITION/ HEAT TREATMENT	T738	

TABLE 8.16.1.2.11

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7175 AT ROOM TEMPERATURE

I: H.H.A.	FCGR (10 ⁻⁶ in/cycle)  AK Level (Kaivin)	18.22	23.76
ENVIRONMENT: H.H.A.	FCC. ΔK		
<b>설</b>	FREQ	5.2	18.3
	R	0.33	0.33
: T-L	PRODUCT FORM		FORGING
ORIENTATION: T-L	CONDITION/ HEAT TREATMENT	,	1736

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7175 AT ROOM TEMPERATURE

**ORIENTATION: T-L** 

ENVIRONMENT: JP-4 Jet Fuel

	o :	-	
	e		
	100.0		
		<u> </u>	
6	()		
FCGR (10. ⁴ in/cycle)		-	
<b>(3)</b>	Z Level (Ksi/ii	7.	56
ĝ.	12 8	74.87	79.05
φ	2	l	Ľ
•	1 6		
T T	6 2	5.18	5.46
22	H   2	10	10,
Ž	M -		<u> </u>
E	Δ.		
	8.0	0.67	0.68
			_
	2.5		
	24		
	(EH)		
Ž	á 🛱	Ŏ.	õ
		1-20	1-20
į į	-		
		_	
	K	0.02	0.02
	-	°	°
_			
ş	3.		
2	52	Š	Š
Ē	FORM	FORGING	FORGING
	92	OR	OR
2	4 🖽	4	1
-	4		
	HEAT TREATMENT		
2	<u> </u>		
2	<b>X</b>		
_	46		
	£.4	652	4
Ž.	5 2	T73652	T74
Z	78	[]	
Ċ	) <b>L</b>		
ζ	7-4		
			ŀ
	H		

1 of 1

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7175 AT ROOM TEMPERATURE

-L ENVIRONMENT: L.H.A.	PRODUCT R FREG	r UMW (HZ)	2.5	9 80:0	FORGING 0.08 6
ORIENTATION: T-1			*********		

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7175 AT ROOM TEMPERATURE

ORIENTATION: T-L

ENVIRONMENT: Lab Air

0.41 10.27 48.92	1-20	0.02	FORGING
50.27	1-20	0.02	
2.5 5.0 10.0 20.0 50.0 100.0	2.0		
ΔK Level (Ksiγin)	(Hz)	2	-
	FREG		£.
FCGR (10 ⁻⁶ in/cycle)			

1 of 1

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7175 AT ROOM TEMPERATURE

FCGR (10⁻⁸ m/cycle) ΔK Level (Ksiγin) 9.08 80.08 76.62 72.11 ENVIRONMENT: S.S.W. 10.0 9.17 9.61 6.0 0.97 0.57 S N FREQ (Hz) 0.1-201-20 0.02 0.02 ĸ PRODUCT FORM FORGING FORGING ORIENTATION: T-L HEAT TREATMENT CONDITION! T73652 T74

0.00I

**20** 

TABLE 8.16.1.2.16

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7175 AT ROOM TEMPERATURE

	190.0	
	0.00	
.W.	fitheye Ksiylir	
T.S.T	FCGR (10 ⁻⁶ in/cycle)	36.01
ONME	ECA AA	1.15
ENVIRONMENT: S.T.W.	2.5	
	FREQ (Hz)	1
	R	0.1
: T-L	PRODUCT	FORGING
ORIENTATION: T-I	CONDITION/ HEAT TREATMENT	T7364

TABLE 8.16.1.2.17

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7175 AT ROOM TEMPERATURE

CONDITION/ HEAT TREATMENT         PRODUCT FORM         R         FREQ (Hz)         AK Lovel (Ksi/in)           T736         FORGING         0.33         5.2         5.0         10.0         51.63	ORIENTATION: T-L	F. T-L		田	NVIRO	NMEN	ENVIRONMENT: Salt Fog		
PRODUCT         R         FREQ           FORM         (Hz)         2.5         5.2           FORGING         0.33         5.2         5.2         5.2						E)CH	2R (10-6 in/ew	[6]	
FORGING 0.33 6.2 5.0 5.0 6.33 18.3	CONDITION	PRODUCT	2	FREQ		i		6	
FORGING 0.33 5.2 5.0 10.0 31.47	EAT TREATMENT	FORM	4	(HZ)		77	ΔK Level (Ksi√in)	u)	
FORGING 0.33 5.2 0.33 18.3					2.5	5.0	20.0	50.0	100.0
CARCING 0.33 18.3	T-7-19	DMINGO	0.33	5.2			31.47		
		FONGING	0.33	18.3			21.63		

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7175 AT ROOM TEMPERATURE

**ORIENTATION: S-T** 

**ENVIRONMENT: Dry Air** 

		-
	100.0	
	[ 8]	
	<del>       </del>	_
l	(II)	
	[ 9]	
	2	
FCGR (10 ⁻⁸ in/cycle)		
<b>1</b>	ΔK Lovel (Ksi/in)	
, a	7 Lovel (Ksi/li	
2	3   9	
	22   S	
- 1		_
	10.0	9
<b>6</b> -2		į
-		Ì
, y		_
, y	4	
<b>1</b>	Δ.	
	i i	
		_
	<b>12</b>	
	2.5	
		-
	(HZ)	
	X College	
	HE HE	5
		4
	<b>54</b>	
	<u> </u>	2
	<b>H</b>	5
	The state of the s	
		i
	<b>H</b>	
	O _—	
	PRODUCT FORM	!
	<b>a 4</b>	
	<b>5</b> 0 ×	
	<b>₩</b> ₩ 12	1
		1
	2	
		ļ
		ļ
		ل
		Į
		ļ
	Z	
	<b>~</b> ₽	
	Z	
	<b>F F</b>	ļ
	<b>4</b>	١
	<b>CE.</b> 1736	
	<b>Δ</b> ₩   Σ	١
	72	ļ
	#S	J
	<b>***</b> *********************************	1
	<del></del>	
	02	Į
	C HEA!	
	CONDITION/ HEAT TREATMENT	
	HEAT	

1 of 1

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7176 AT ROOM TEMPERATURE

	106.0	
	6) ) 50.0 100.0	
	cle) iii) iii) 50	
Ą.	4 in/cyc	
ENVIRONMENT: H.H.A.	AK Level (Ksiv/in)	14
N.	M L	17.14
NME	FC A	
IRO	2.5	
EN	778	
•	FREQ (Hz)	18.3
	H.H.	
	R	0.33
	CT	
	PRODUCT	FORGING
<b>.</b> T	PRC	Ŗ
N:S		
ORIENTATION: S-T	Πλ	
ENT	ON/	
ORII	CONDITION/ AT TREATME	T736
	INONI TI TH	
	CONDITION/ HEAT TREATMENT	

					ALI	ALUMINUM	1 7175	K _{Ie}							
	PRODUCT	UCT					SPECIMEN		CRACK			K			
CONDITION	FORM	THICK (in.)	TEST TEMP (°F)	SPEC	YIRLD STR (Kel)	WIDTH (in.)	THICK (in.)	DESIGN	LENGTH (in.)	2.5 (K _{r.,} TYS) ³ (in.)	Kai •	K. MEAN	STAN	DATE	RRFER
T86	Forging	1.00	R.T.	L.T.	82.4	1.000	0.500	ст	0.541	0.49	36.30	,		1973	86213
Tre	Formula a	1.00	E	<del>-</del>	80.2	1.000	0.499	CT	0.551	0.25	25.40			1973	86213
	10 TO T	1.00	i.i.	2	80.2	1.000	0.499	CI	0.541	0.17	21.00	23.2	3.1	1973	86213
		1.00			70.4	1.000	0.499	CT	0.535	0.25	22.30			1973	86213
		1.00		1	70.4	1.000	0.500	CT	0.525	0.23	21.50			1973	86213
		1.00			70.4	1.000	0.499	CT	0.523	0.19	19.40	•		1973	86213
166	Forging	1.00	R.T.	3.F	73.0	1.000	0.500	cr	0.539	0.20	20.70	20.8	-	1973	86213
		1.00		1	73.0	1.000	0.500	CT	0.633	0.18	19.40		:	1973	86213
		1.00			73.0	1.000	0.499	cr	0.528	0.23	21.90		·	1973	86213
		1.00			73.0	1.000	0.500	CT	0.503	0.20	20.60		<b></b>	1973	86213
186	Foreine	0.50	8	E -	80.4	1.000	0.500	CT	0.538	0.47	34.90			1973	86213
	0	0.50	3	5	80.4	1.000	0.501	C	0.541	0.46	34.50	34.7	0.3	1973	86213
186	Forging	0.50	68	T:L	82.2	1.000	0.500	CT	0.531	0.24	25.70	i	1	1973	86213
173	Forging	8.50	R.T.	T.L	47.7	1.500	0.750	CT	0.775	0.52	21.80	;	,	1973	86213
		1.00			64.9	1.000	0.500	CT	0.517	0.46	27.90			1973	86213
T73	Porging	1.00	£		64.9	1.000	0.500	cr	0.520	0.41	26.40			1973	86213
	66	1.00	<del></del>	3	64.9	1.000	0.500	cr	0.480	0.40	25.80	27.1	1.2	1973	86213
		1.00			64.9	1.000	0.500	CT	0.525	0.47	28.20	-		1973	86213
173	Extrusion	4.50	82	ទ	62.2	2.000	1.002	. CT	1.062	0.87	36.60	1	1	1973	86213
		1.30		L	62.4	2.000	1.017	CT	1.040	0.59	30.50			1977	LG001
T73611	Extrusion	1.30	£	E.	63.5	2.497	1.250	CT	1.320	0.58	30.79			1977	LG001
		1.30	3		9.29	2.997	1.500	CT	1.562	0.55	30,90	34.5	4.5	1977	LG001
		1.30			65.8	2.501	1.250	cr	1.360	1.00	41.70			1977	LG001

																					<del></del>			==
		REFER	LG001	LG001	LG001	1,0001	1,0001	LG001	LG001	LG001	LG001	LG001	LG001	LG001	1,G003	1,4001	1,0001	1,G001	LG001	LG001	LG001	1,0001	LG001	LG001
		DATE	1977	1977	1977	1977	1977	1977	1977	1977	1977	1977	1977	1977	1981	1977	1977	1977	1977	1977	1977	1977	1977	1977
	-	STAN		Cont'd						4.4										6.5				
	$K_{Ic}$	K. MEAN		Cont'd						26.7										32.8				
		K. (Kel • (in.)	39.40	34.70	33.20	26.10	19.29	25.90	20.50	31.20	28.60	30.50	26.60	31.40	36.90	47.40	38.80	30.40	30.40	29.10	30.29	30.90	24.90	29.60
	•	(K, TYS)*	0.85	0.65	09'0	0.45	0.25	0.45	0.28	0.59	0.49	0.56	0.41	0.57	0.87	1.28	0.84	0.51	0.51	0.47	0.50	0.53	0.33	0.47
	CRACK	LENGTH (In.)	1.084	1.572	0.749	1.306	1.520	1.147	1.504	0.765	1.353	1.118	1.325	0.763	:	1.532	1.516	1.292	1.045	0.770	1.019	0.765	0.786	1.088
K _{Ie}	7	DESIGN	CT	CT	CT	CT	CT	CT	CT	СТ	cr	CT	CT	CT	CT	CT	CT	CT	CT	cr	C.	CI	Į.	CT
7175	SPECIMEN	THICK (in.) B	1.020	1.503	0.750	1.250	1.500	1.013	1.499	0.752	1.250	1.008	1.251	0.751	1.500	1.500	1.500	1.250	1.001	0.749	1.000	0.746	0.752	1.000
ALUMINUM	202	WIDTH (In.)	1.999	2.994	1.498	2.501	3.000	2.000	3.003	1.501	2.501	1.990	2.501	1.499	3.000	2.999	2.999	2.495	2.003	1.503	2.002	1.503	1.500	2.000
ALU		YIELD STR (Kel)	67.2	67.6	67.6	6.09	60.9	60.9	6.09	64.0	64.0	64.0	65.6	65.6	62.4	66.1	66.7	6.99	67.1	67.1	67.1	67.1	68.0	68.0
		SPEC OR		L-T Cont'd			·!			Ţ.Ľ										<u>.</u>				
		TERF TEMP (°F)		-65 Cont'd						59-									E	K.T.				
	cr	THICK (in.)	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.80	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30
	PRODUCT	FORM		Extrusion Cont'd						Extrusion										Extrusion				
		CONDITION		T73511 Cont'd						T73511					-					173511				

					ALI	ALUMINUM	A 7175	5 K _{Io}							
,	PRODUCT	UCT				<b>J.</b>	SPECIMEN	z	CRACK			K			
	FORM	THICK (in.)	TEST TEMP (°F)	SPEC	YIELD STR (Kal)	WIDTH (in.) W	THICK (in.) B	DESIGN	LENGTH (in.) A	%.6 (KTYS)* (in.)	K. (Kai •	K. MEAN	STAN	DATE	REFER
		1.30		1	68.0	2.400	1.200	CT	1.288	0.45	29.00			1977	100571
		1.30		1	68.0	1.000	0.501	CT	0.534	67.0	23.40			1977	1,00D,1
		1.30		<b>-</b>	68.3	2.505	1.250	CT	1.310	0.72	36.90			1977	1,005,1
	Extrusion Cont'd	1.30	R.T. Cont'd	Cont'd	68.7	2.505	1.250	CT	1.355	0.40	27.70	Cont'd	Conti	1977	100571
		1.30			68.7	3.000	1.505	CT	1.580	0.87	40.70			1977	LG001
		1.30		<b>_</b>	68.8	3.000	1.505	CT	1.550	0.91	41.70			1977	100D/I
		1.30			70.6	3.001	1.500	CT	1.621	0.44	29.79			1977	LG001
		1.30	-		62.6	2.501	1,250	CT	1.345	0.67	29.90			1977	LG001
		1.80			63.2	3.000	1.500	CT	1	6.79	35.50			1981	LG003
		1.30			63.7	1.605	0.749	CT	0.825	0.29	21.79			1977	LG001
		1.30			63.7	3.000	1.499	СТ	1.633	12.0	21.00			1977	100571
		1.30			64.1	1.500	0.751	CT	0.807	09'0	28.70			1977	LG001
	Defense	1.30	Ę	I	64.7	1.998	1.012	CT	1.063	0.48	28.40			1977	LG001
		1.30	į	2	64.8	1.000	0.501	CT	0.633	0.40	26.10	27.0	4.9	1977	17001
		1.30			65.0	2.500	1.251	CT	1.203	0.39	25.70			1977	LG001
		1.30		1	65.0	2.500	1.243	CT	1.294	0.31	22.90			1977	LG001
		1.30			67.1	2.000	1.005	CT	1.047	0.23	20.50			1977	LG001
		1.30			68.0	2.000	1.000	CT	1.088	0.59	33.20			1977	LG001
		1.30			68.0	2.400	1.200	CT	1.290	0.49	30.40			1977	LG001
	Porging	0.75	Ę	Ē	63.9	1.500	0.622	NB	0.754	0.53	24.80			1973	86213
	F0281118	0.76	i	2	63.9	1.500	0.622	NB	0.729	0.50	24.10	24.5	9.0	1973	86213
	Forging	2.75	82	LS	8.09	2.000	0.998	CI	1.023	96'0	37.70	:		1973	86213
!															

																									٠
		REFER	86213	86213	86213	86213	83068	83058	83058	83058	83058	83058	86213	86213	86213	85880	86213	84368	86213	84368	84368	84368	86213	84368	86213.
		DATE	1973	1973	1973	1973	1972	1972	1972	1972	1972	1972	1973	1973	1973	1973	1973	1972	1973	1972	1972	1972	1973	1972	1973
		STAN		0.1		0.4		4.0			0.4			7.5			3.8		:			3.6			
	K _{Ie}	K, MEAN		30.7		24.5		26.3			26.6			32.1			31.2					26.4			
		K. (Kei • √in.)	30.80	30.60	24.20	24.80	26.00	26.70	26.10	26.30	26.40	27.10	37.40	26.80	27.40	36.40	29.60	31.50	21.10	27.10	26.90	26.10	24.70	24.70	26.10
	3	(K _n ,TYS)* (In.)	0.87	0.86	0.47	0.49	0.38	0.40	0.38	0.40	0.40	0.42	0.86	0.42	0.41	0.67	0.46	0.42	0.31	0.51	0.50	0.39	0.35	0.35	0.39
	CRACK	LENGTH (in.) A	1.015	1.045	1.018	1.015	1.000	1.000	1.000	1.000	1.000	1.000	1.073	1.012	0.804	0.740	0.825	0.480	1.025	1.090	1.070	1.100	1.086	1.090	1.104
. K _{Ic}	7	DESIGN	CT	CT	CI	CT	ÇĪ	CT	CT	CŢ	CT	CT	ст	CT	cr	cr	cr	CL	CT	CT	CT	CT	CT	CT	cr
7175	SPECIMEN	THICK (in.) B	1.000	1.000	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.749	0.698	0.750	0.500	1.000	1.000	1.000	1.000	0.998	1.000	0.998
ALUMINUM	Sci	WIDTH (fn.)	1.990	1.990	1.990	1.990	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	1.500	1.400	1.500	1.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000
ALT		YIELD STR (Kel)	52.2	52.2	55.8	55.8	66.6	66.6	66.6	62.9	629	62.9	63.9	65.7	68.0	68.5	69.0	76.9	59.7	6.69	69.9	65.7	65.7	65.7	65.7
		SPEC	1	T:T		7		r.			P.T.			23			<u>.</u>					Ţ.Ľ			
		TEST TEMP (°F)	;	£	8	96		æ			•		į	ж. Т.		Ē	K. I.					R.T.			
	JCT	THICK (in.)	3.00	3.00	3.00	3.00	2.50	2.50	2.50	2.60	2.60	2.50	3.00	3.00	2.00	1	3.00	1.00	3.00	4.00	4.00	3.00	3.00	3:00	3:00
	PRODUCT	FORM		Forging	ŗ	rorging		Forging			Forging			rorging			Forging					Forging			
		CONDITION		17352	C de constitución de constituc	17,392		T736			T736		e constant	1736		COAR	1736					1736			-

CONDITION         FOLIA CT         TATE         STREEDING TO CONDITION         STREEDING TO CONDITION         CALTAGE (4.5.)         6.5.         CALTAGE (4.5.)						ALT	ALUMINUM	A 7175	5 K _{Ie}							
Poreside   Trace   T		PROD	UCT				<b></b>	SPECIME	7	CRACK			K _{le}	·		
Parietria   2.50   Parietria   2.50   1.000   0.500   CT   1.000   0.250   0.47   31.50   Court   1.000   CT   0.250   0.48   31.00   CT   1.000   0.600   0.48   CT   1.000   CT   0.500   CT   0	ONDITION	FORM	THICK (fn.)	TEST TEMP (°F)	SPEC	YIELD STR (Kei)	WIDTH (in.)	THICK (in.)	DESIGN	LENGTH (in.) A	2.6 (K _{*/} TYS)* (In.)	K. (Kei • √in.)	K. MEAN	BTAN	DATE	REFER
Partial   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00			2.50			66.3	2.000	1,000	CT	1.000	0.29	22.70			1972	83068
Purging   Purg	T736 Cont'd	Forging Cont'd	1.00	R.T. Cont'd	T-T Cont'd	73.0	1.000	0.500	CT	0.526	0.47	31.50	Cont'd	Contid	1973	86213
Forging 2.80 RT: 8-7 6-6-9 2-000 1500 CT 1500 0-67 83160 RT: 8-7 6-9-9 2-000 1500 CT 1500 0-66 8310 RT: 8-7 6-9-9 2-000 1500 CT 1500 0-66 8310 RT: 8-7 6-9-9 2-000 1500 CT 1500 0-66 8310 RT: 8-7 6-9-9 2-000 CT 1500 0-6-0 2-0-9 1500 RT: 8-7 8-9-9 RT: 8-7 6-9-9 8-9-9 RT: 8-7 8-9-9 RT:			:			75.4	1.000	0.500	CT	0.500	0.48	33.10			1972	83068
Fivefine 2.00			2.50		I.	64.9	2.000	1.000	ct	1.000	0.67	33.50			1972	83058
Poweling         2.50         R.T.         5.7         64.5         1.000         CT         1.000         0.45         27.70         4.00         1.000         0.500         CT         1.000         0.45         27.70         1.07         1.07         1.000         0.70         0.70         0.70         0.70         1.000         1.000         0.45         27.70         1.07         1.07         1.000         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70			2.50			64.9	2.000	1.000	CT	1.000	0.65	33.10		1	1972	83068
1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00	T736	Forging	2.50	R.T.	r s	64.9	2.000	1.000	CT	1.000	0.50	29.10	29.7	6	1972	83058
1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00			;		I	65.5	1.000	0.500	CT	0.500	0.45	27.70		}	1972	83058
4.00         61.4         2.00         1,000         CT         1,010         0.31         21.70         1972         1972           2.00         2.00         1,000         CT         1,010         0.32         22.10         1972         1972           2.00         2.00         1,000         CT         0.701         0.05         22.10         1972         1972           2.00         2.00         0.702         CT         0.701         0.701         1.00         1972         1972           2.00         1.00         0.702         CT         0.701         0.701         1.00         1972         1972           8.00         1.00         0.702         CT         0.701         0.701         1.001         1.071         1.071         1.071         1.072         1.072         1.072         1.072         1.072         1.072         1.072         1.072         1.072         1.072         1.072         1.072         1.072         1.072         1.072         1.072         1.072         1.072         1.072         1.072         1.072         1.072         1.072         1.072         1.072         1.072         1.072         1.072         1.072         1.072			:			65.5	1.000	0.500	CT	0.500	0.37	25.20		<del></del>	1972	83068
4.00         61.4         2.00         1.00         CT         1.01         0.32         22.10         1972         1972           2.50         2.50         62.6         1.50         0.749         CT         0.781         0.69         27.60         1972         1972           2.50         2.50         62.6         1.50         0.749         CT         0.781         0.69         1890         1873         1873           3.00         62.6         1.50         0.749         CT         0.781         0.69         1870         1873         1873           1.00         62.6         1.50         0.760         CT         0.781         0.69         1870         1872         1873           1.00         65.7         1.50         0.760         CT         0.890         0.40         28.00         1872         1872           2.00         1.00         0.50         CT         0.890         0.40         28.00         1872         1872           3.00         65.5         1.00         0.50         CT         0.60         0.40         28.00         1872         1872           1.00         65.7         1.00         0.60         C			4.00		1	61.4	2.000	1.000	CT	1.040	0.31	21.70			1972	84368
2.00			4.00		I.	61.4	2.000	1.000	CT	1.010	0.32	22.10		<b></b>	1972	84368
2.50         R. C.			2.00			62.6	1.500	0.750	CT	0.800	0.49	27.60		<u> </u>	1972	84368
2.50         62.6         1.50         0.749         CT         0.797         0.49         27.60         1973         1973           3.00         1.00         62.6         1.500         0.750         CT         0.780         0.680         28.80         1972         1972             65.5         1.500         0.760         CT         0.600         0.40         26.00         1972         1972           3.00          65.6         1.000         0.500         CT         0.600         0.46         28.10         1972         1972           1.00         65.6         2.000         1.000         0.500         CT         1.080         0.31         23.00         1972         1972           1.00         65.6         2.000         1.000         0.500         CT         1.081         0.31         23.00         1972         1972           1.00         65.6         2.000         0.598         CT         1.084         0.31         23.00         1973         1973           1.00         65.7         1.000         0.500         CT         0.481         0.31         24.90         1972           1.00 <td></td> <td></td> <td>2.50</td> <td></td> <td> I</td> <td>62.6</td> <td>1.500</td> <td>0.749</td> <td>CT</td> <td>0.781</td> <td>0.53</td> <td>28.80</td> <td></td> <td>·</td> <td>1973</td> <td>86213</td>			2.50		I	62.6	1.500	0.749	CT	0.781	0.53	28.80		·	1973	86213
Forging         R.T.         8.L.         65.2         1.500         CT         0.780         0.630         0.640         28.80         28.80         1972         1972           Forging          65.2         1.500         0.760         CT         0.600         0.46         26.00         25.3         2.1         1972         1972            3.00         65.6         1.000         0.500         CT         1.084         0.31         23.00         1972         1972           1.00         65.6         2.000         1.000         0.500         CT         1.084         0.31         23.00         1972         1973           1.00         65.7         1.000         0.500         CT         1.084         0.31         23.00         1973            65.7         1.000         0.500         CT         0.481         0.31         23.00         1973             65.7         1.000         0.500         CT         0.481         0.31         24.80         1973             65.7         1.000         0.500         CT         0.650         CT         0.650         CT <td></td> <td></td> <td>2.50</td> <td></td> <td>1</td> <td>62.6</td> <td>1.500</td> <td>0.749</td> <td>CT</td> <td>0.797</td> <td>0.49</td> <td>27.60</td> <td></td> <td></td> <td>1973</td> <td>86213</td>			2.50		1	62.6	1.500	0.749	CT	0.797	0.49	27.60			1973	86213
Porging         1.00         R.T.         9-L         65.2         1.500         0.760         CT         0.830         0.40         26.00         26.30         26.00         26.30         26.00         26.31         26.00         26.31         26.30         27.31         1972         7         1972         7         1972         7         1972         7         1972         7         1972         7         1972         7         1972         7         1972         7         1972         7         1972         7         1972         7         1972         7         1972         1972         1972         1972         1972         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         1973         197			3.00		J	62.6	1.500	0.750	CT	0.780	0.63	28.80		<b>4</b>	1972	84368
	T736	Poreing	1.00	E-	5	65.2	1.500	0.750	Ç	0.830	0.40	26.00		•	1972	84368
655.6         1,000         0,500         CT         0,600         CT         1,080         0,46         28,10         1972           65.6         2,000         1,000         CT         1,084         0,31         23,00         1972           65.7         1,000         0,500         CT         0,481         0,31         23,00         1973           65.7         1,000         0,500         CT         0,600         CT         0,500         1973         1973           65.7         1,000         0,500         CT         0,607         0,38         25,70         1973			:		L	65.5	1.000	0.500	CT	0.500	0.39	26.00	25.3	2.1	1972	83058
65.6         2.000         1.000         CT         1.080         0.31         23.00         1972           65.7         2.000         0.598         CT         1.084         0.31         23.00         1973           65.7         1.000         0.500         CT         0.481         0.33         23.70         1973           65.7         1.000         0.500         CT         0.600         CA         0.500         T           65.7         1.000         0.500         CT         0.607         0.38         25.70         1973			i		1	65.5	1.000	0.500	CT	0.500	0.46	28.10			1972	83068
65.6         2.000         0.598         CT         1.084         0.31         23.00         1973           65.7         1.000         0.500         CT         0.481         0.33         23.70         1973           65.7         1.000         0.500         CT         0.500         0.36         24.80         1972           65.7         1.000         0.500         CT         0.627         0.38         25.70         1973			3.00			65.6	2.000	1.000	CT	1.080	0.31	23.00		<u> </u>	1972	84368
65.7         1.000         0.500         CT         0.481         0.33         23.70         1973           65.7         1.000         0.500         CT         0.600         0.36         24.80         1972           65.7         1.000         0.500         CT         0.627         0.38         25.70         1973			3.00			65.6	2.000	0.998	G	1.084	0.31	23.00		<u> </u>	1973	86213
65.7         1.000         0.500         CT         0.600         0.36         24.80         1972           65.7         1.000         0.500         CT         0.627         0.38         25.70         1973			1.00		1	65.7	1.000	0.500	CT	0.481	0.33	23.70		·	1973	86213
65.7 1.000 0.500 CT 0.827 0.38 25.70 1973			:		1	65.7	1.000	0.500	CT	0.500	98.0	24.80		L	1972	83242
			1.00			65.7	1.000	0.500	CT	0.527	0.38	25.70			1973	86213

Ī		e:			Č.	C2			en en	<b>80</b>	80	, e	ေ	ေ	က	က	6	8	<u> </u>	83	ဌ	13	13	13
		REFER	83242	86213	83242	83242	84368	86213	84368	84368	84368	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213
	-	DATE	1972	1973	1972	1972	1972	1973	1972	1972	1972	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973
	-	STAN					Cont'd						2.4			1.4					2.6			
	K _{Io}	K. MEAN					Cont'd						28.7			26.2					24.9			
		K. (Kei • √in.)	24.80	27.20	24.80	24.80	26.30	24.10	25.10	25.80	22.70	27.20	27.50	31.50	26.90	27.10	24.60	21.70	22.10	30.30	26.40	26.00	26.00	26.30
		(K _{x,} TYS)* (In.)	0.36	0.43	0.36	0.36	0.39	0.33	0.35	0.37	0.28	0.37	0.38	0.42	0.50	0.51	0.28	0.31	0.32	0.54	0.41	0.40	0.38	0.39
	CRACK	LENGTH (In.) A	0.500	0.509	0.500	0.500	0.830	0.827	0.490	0.500	0.490	0.517	0.539	0.477	1.074	1.087	1.102	1.037	1.009	0.804	0.820	0.830	0.497	0.832
5 K _{Ie}	Z	DESIGN	CT	СТ	CT	ст	CT	CT	СТ	cr	cr	CT	CŢ	cr	ст	cr	СT	cı	r.	Ţ.	<u>ئ</u>	cr	ರ	ਰ
[ 7175	SPECIMEN	THICK (in.)	0.500	0.500	0.500	0.500	0.750	0.750	0.500	0.500	0.500	0.500	0.501	0.499	1.000	0.998	0.999	0.998	0.998	0.750	0.749	0.750	0.500	0.749
ALUMINUM	Œ	WIDTH (in.)	1.000	1.000	1.000	1.000	1.500	1.500	1.000	1.000	1.000	1.000	1.000	0.990	1.990	1.990	2.000	2.000	2.000	1.500	1.500	1.500	1.000	1.500
ALU		YIELD STR (Ket)	65.7	65.7	65.7	65.7	66.4	66.7	67.4	67.4	68.4	70.6	70.6	76.9	69.9	69.9	73.8	61.4	61.4	65.1	65.1	65.2	66.3	66.4
		SPEC					S-L Cont'd						ጟ			T-L					S-L			
		TERF TEMP (°F)					R.T. Cont'd						83			82					82			
	ucr	THICK (in.)	:	1.00	i	:	2.00	2.00	2.00	1.00	2.00	0.50	0.50	1.50	4.00	4.00	2.75	4.00	4.00	2.50	2.50	1.50	1.00	2:00
	PRODUCT	FORM					Forging Cont'd						Forging			Forging					Forging			
		CONDITION					T736 Cont'd						T736			T736					T736			

					ALL	ALUMINUM	1 7175	K _I							
	PRODUCT	UCT					SPECIMEN	7	CRACK			K			
CONDITION	FORM	THICK (in.)	TEMP TEMP (°F)	SPEC	YIELD STR (Kel)	WIDTH (In.)	THICK (in.)	DESIGN	LENGTH (in.) A	K.,TYS)* (in.)	K. (Kel •	K. MEAN	STAN	DATE	REFER
		3.00			67.1	1.000	0.498	CT	0.528	0.39	26.40			1973	86213
		1.50			67.4	1.000	0.499	CT	0.500	0.37	25.80			1973	86213
		1.50		1	67.4	0.890	0.499	CT	0.492	0.35	25.10			1973	86213
T736 Cont'd	Forging Cont'd	3.00	82 Cont'd	S-L Cont'd	67.7	1.000	0.500	CT	0.545	96.0	25.70	Cont'd	Cont'd	1973	86213
		1.50			68.4	0.990	0.499	CT	0.490	0.28	22.70		:	1973	86213
		3.00			8.69	1.500	0.749	cr	0.759	0.21	20.20			1973	86213
		3.00			8.69	1.490	0.750	cr	0.804	0.28	23.20			1973	86213
		6.00		1	62.1	2.990	1,500	CT	1.639	0.73	33.60			1973	86213
T736	Forging	2.00	25	፤	65.6	2.000	1.000	CT	1.097	0.73	35.40	34.3	6.0	1973	86213
		2.00			67.1	2.000	1.000	CT	1.088	0.64	34.00			1973	86213
		6.00			70.0	2.991	1.500	CT	1.694	0.38	27.40			1973	86213
SCAL	F.	5.00			70.0	2.991	1.500	CT	1.586	0.43	29.00			1973	86213
0011	Rusking	3.00	<u> </u>		74.2	2.000	1.001	cr	1.072	0.26	23.40	25.3	3.5	1973	86213
		3.00			74.2	2.000	0.999	C.	1.070	0.21	21.40			1973	86213
		3.00		<b>!</b> .	62.8	1.490	0.750	CT	0.791	0.62	31.30			1973	86213
T736	Forging	0.76	84		66.3	1.000	0.501	CT	0.554	0.46	28.30	28.8	2.3	1973	86213
		0.75			66.3	1.000	0.501	cr	0.536	0.41	26.80		,	1973	86213
1736	Forging	3.00	28	7.	71.6	2.000	0.999	Ç	1.107	0.73	38.60	1	1	1973	86213
T736	Forging	3.00	982	T:L	73.8	2.000	1.000	cr	1.093	0.32	26.60	ı	1	1973	86213
T736	Forging	3.00	88	S-T	76.5	1.500	0.749	CT	0.810	0.24	23.50	I	!	1973	86213
0000	ģ	3.00	ć	Ē	69.3	2.000	1.000	cr	1.097	0.30	23.90			1973	86213
1130	Forging	3.00	8	3	69.4	2.000	1.000	ដ	1.099	0.27	22.70	23.3	9.0	1973	86213

					ALC	ALUMINUM	[ 7175	Kı							
	PRODUCT	ucr				G2	SPECIMEN		CRACK			K _{Ie}			
CONDITION	FORM	THICK (in.)	TEST TEMP (°F)	SPEC	YIELD STR (Kal)	WIDTH (In.)	THICK (in.)	DESIGN	LENGTH (in.) A	2.6 (K, TYS)* (in.)	K (Kel	K. MEAN	STAN	DATE	REFER
		3.00			66.2	1.000	0.498	cr	0.639	0.40	26.50			1973	86213
1736	Forging	3.00	88	I	66.3	1.000	0.498	CT	0.532	0.38	25.70	25.6	<u> </u>	1973	86213
		3.00			68.5	1.000	0.500	СТ	0.552	0.32	24.50			1973	86213
7736	Forging	0.50	ď	<del></del>	67.1	1.000	0.501	CT	0.549	0.43	27.90			1973	86213
	rotging	0.50	20	7.6	67.1	1.000	0.500	cr	0.531	0.38	26.30	27.1	=	1973	86213
		2.50			60.5	2.000	1.000	cr	1.000	0.74	33.00			1972	83058
T736	Forging	2.50	200	r.s	60.5	2.000	1.000	CT	1.000	0.81	34.40	34.1	9	1972	83058
		2.50			60.5	2.000	1.000	СТ	1.000	0.84	35.00	;	?	1972	83058
173852	Forming	1.25	£	I	63.5	2.501	1.251	CT	1.308	0.45	27.00			1977	MA005
30011	8111810.1	3.10		1 5	71.7	2.506	1.250	ст	1.343	0.71	38.30	32.7	9.0	1981	MA002
T73652	Forging	1.25	R.T.	T.L	63.5	2.498	1.243	CT	1.335	0.34	23.50	1	:	1977	MA005
173652	Forging	3.75	82	1.7	62.9	4.000	1.999	СТ	2.162	1.00	39.80	;	:	1973	86213
		3.75			62.1	3.972	2.000	CT	2.105	0.93	38.40			1978	MPC01
		3.75			62.7	4.031	2.000	CT	2.056	0.90	37.70			1978	MPC01
		3.75			62.8	4.023	1.998	CT	2.092	0.90	38.10			1978	MPC01
		3.75			63.4	4.039	2.000	CT	2.100	0.90	38.30			1978	MPC01
		3.76			63.4	3.979	2.000	СТ	2.069	0.87	37.80			1978	MPC01
T76511	Extrusion	3.75	R.T.	7	63.5	3.977	2.000	cT	2.068	0.90	38.10	32.9	70	1978	MPC01
		3.75		<u>.</u>	63.7	4.029	2.000	CT	2.095	0.93	39.00		}	1978	MPC01
		3.75			64.0	3.987	2.000	CT	2.153	0.87	37.90			1978	MPC01
		3.75			64.1	3.990	2.000	CT	2.075	0.84	37.40			1978	MPC01
		3.75			64.4	4.010	2.000	CT	2.085	0.84	37.40			1978	MPC01
		3.75			64.5	3.979	2.000	CT	2.109	0.84	37.90			1978	MPC01

<del></del>	11		_	T			_	·	<del></del>	_	_	1	_	T	·		_		_		_	_		_
		REFER	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	LG003	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01
		DATE	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1861	1978	1978	1978	1978	1978	1978
		BTAN												Cont'd										
	K _I °	K. MBAN												Cont'd			•							
		K. (Kei	38.50	30.40	29.20	30.90	28.40	35.20	32.70	33.30	35.00	29.10	30.90	30.60	31.90	28.80	30.30	33.50	32.00	32.00	34.00	34.80	32.80	32.10
		(K, TYS)* (in.)	0.87	09'0	0.46	0.50	0.44	99'0	0.55	0.67	99.0	0.44	0.50	0.48	0.62	0.44	0.48	69.0	0.52	0.52	0.67	0.62	0.66	0.62
	CRACK	LENGTH (In.)	2.104	0.607	0.505	2.044	0.492	1.001	1.021	1.013	1.018	2.007	0.991	0.983	1.001	0.970	676.0	:	1.032	1.022	1.024	1.031	1.002	1.002
5 K _{Io}	z	DESIGN	CT	CT	CT	CT	CT	CT	CT	CT	CT	CT	CT	CT	CT	cr	ст	CT	CT	cT	CT	CT	CT	CT
I 7175	SPECIMEN	THICK (in.)	2.000	0.600	0.600	1.765	0.600	9660	966.0	0.996	966'0	1.764	0.999	0.999	0.999	0.999	0.999	1.500	0.999	0.999	0.997	0.997	0.996	0.998
ALUMINUM		WIDTH (in.)	3.970	0.994	1.010	4.008	1.004	2.002	2.002	1.986	1.996	4.014	1.982	2.006	2.002	1.980	1.998	3.000	1.985	2.004	2.008	1.983	2.004	2.004
ALT		YTELD STR (Kal)	64.7	67.5	67.5	67.5	67.5	68.3	68.3	68.3	68.3	68.3	68.5	68.5	68.5	68.5	68.5	68.8	69.5	69.6	69.5	69.5	69.5	69.5
		SPEC		<b></b>				1					7.	Cont'd					<b>----</b>					
		TEST TEMP (°F)											R.T.	Cont'd										
	UCT	THICK (in.)	3.75	1.40	1.40	1.80	1.40	3.00	3.00	3.00	3.00	1.80	3.50	3.50	3.50	3.50	3.50	1.80	3.00	3.00	3.50	3.50	3.00	3.00
	PRODUCT	FORM											Extrusion	Cont'd							-			
		CONDITION											T76511	Cont'd										

		-	ALU	ALUMINUM	7175	K _{Ie}							
				SC	SPECIMEN	7	CRACK	1		$\mathbf{K}_{\mathbf{I}\mathbf{c}}$	-	-	
TEST TEMP (°F)	56 ×	SPEC	YIBLD STR (Kel)	WIDTH (in.)	THICK (fn.)	DESIGN	LENGTH (in.) A	(K, TYS)* (in.)	K. (Kei • √in.)	K. MEAN	STAN	DATE	REFER
			69.5	2.000	0.999	ť	1.020	0.48	30.90			1978	MPC01
			69.5	2.004	0.999	ÇŢ	1.022	0.50	31.90			1978	MPC01
			69.5	1.990	0.995	CT	0.995	0.57	33.50			1978	MPC01
			69.5	2.004	0.998	CT	1.002	0.48	30.90			1978	MPC01
		1	69.5	2.008	966.0	CT	1.004	0.55	32.80			1978	MPC01,
			9.69	1.994	1.00.1	CT	0.997	0.42	29.10			1978	MPC01
		i	69.6	2.008	1.001	CT	1.024	0.38	27.80			1978	MPC01
R.T. Cont'd C		Cont'd	9.69	1.986	1.00.1	CT	0.993	0.38	27.60	Cont'd	Cont'd	1978	MPC01
			9.69	1.983	1.00.1	Сľ	1.051	0.38	27.70			1978	MPC01
			9.69	4.022	1.765	CT	1.971	0.44	29.40			1978	MPC01
<del></del>		1	9.69	2.004	1.00.1	CT	0.982	0.38	27.20			8261	MPC01
		1	70.5	1.990	1.000	СТ	1.015	0.46	30.80			1978	MPC01
		1	71.0	1.990	1.000	CT	0.995	0.48	31.50			1978	MPC01
			71.0	1.992	0.998	CT	0.996	0.48	31.90			1978	MPC01
			71.0	1.986	1.001	CT	0.993	0.52	33.00			1978	MPC01
			62.2	1.992	1.000	CT	1.016	0.36	24.00			1978	MPC01
			62.2	2.011	0.999	CT	1.066	0.38	24.60			1978	MPC01
		1	62.2	1.988	0.999	CT	1.014	0.36	24.00			1978	MPC01
R.T.	-	 ::	62.2	2.004	0.999	. CT	1.102	0.34	23.50	22.6	2.5	1978	MPC01
		1	62.2	2.006	0.999	CT	0.983	0:30	22.00			1978	MPC01
		1	63.0	2.014	0.999	CT	1.007	0.34	23.50			1978	MPC01
			63.0	2.002	0.999	r.	0.961	0.28	21.80			1978	MPC01

10 of 13

																							******	
		REFER	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	1,4903	MPC01	MPC01
		DATE	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1981	1978	1978
		STAN												Cont'd										
	K _{Io}	K. MEAN												Cont'd										
		K. (Kai •	21.70	21.50	21.20	21.20	22.10	21.40	21.80	21.00	20.80	21.30	21.00	21.00	21.40	21.70	21.20	21.70	20.40	27.20	27.40	31.70	21.40	21.20
		K.,TYS)* (In.)	0.28	0.28	0.27	0.27	0.28	0.27	0.28	0.25	0.25	0.27	0.25	0.25	0.27	0.27	0.25	0.27	0.24	0.42	0.42	0.56	0.24	0.24
	CRACK	LENGTH (in.) A	1.003	1.011	0.985	0.989	0.501	0.497	0.505	0.488	1.002	1.004	0.972	0.936	0.967	0.994	0.965	0.998	1.025	2.034	2.078	i	1.123	1.074
5 K _{Ie}	z	DESIGN	CT	cr	CT	CT	CT	CT	CT	CT	cr	CT	СT	CT	CT	CT	CT	CT	CT	CT.	CT.	cr	CT	CT
1175	SPECIMEN	THICK (in.) B	1.005	0.999	1.003	1.004	0.599	0,600	0.600	0,599	1.002	1.015	1.004	0.996	0.996	0.995	0.995	0.995	0.995	1.764	1.764	1.500	1.000	1.000
ALUMINUM		WIDTH (in.) W	2.006	1.982	2.010	2.018	1.002	0.994	1.010	966.0	2.004	2.004	1.984	1.992	2.015	1.988	2.010	1.996	2.010	3.988	3.996	3.000	2.005	1.989
ALU		YIRLD STR (Kel)	63.2	63.2	63.2	63.2	64.0	64.0	64.0	64.0	64.4	64.4	64.4	64.6	64.6	64.6	64.6	64.6	64.6	66.2	66.7	67.0	68.2	68.2
		SPEC	<b>-</b>										1:1	Cont'd		<b>-</b>	1						1	
		TEST TEMP (°F)											R.T.	Cont'd										
	UCT	THICK (In.)	3.00	3.00	3.00	3.00	1.40	1.40	1.40	1.40	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.50	1.80	1.80	1.80	1.40	1.40
	PRODUCT	FORM											Extrusion	Cont'd										
		CONDITION											176511	Cont'd										

Ī		<b>K</b>			-		-		Ţ	11	11	1	11	11	1	11	ı.	11	=	15	15	12	16	01
		REFER	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01
		DATE	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978
		STAN DEV				Cont'd											0.7							
	$ m K_{Ic}$	K. MEAN				Cont'd											21.4							
		K, (Kei * √in.)	20.80	20.40	20.70	22.40	23.00	25.60	27.60	21.50	20.70	21.90	21.00	20.60	21.80	21.40	21.20	20.60	21.90	20.70	20.90	19.60	21.70	21.40
	• # 0	(K,TYS)* (In.)	0.22	0.21	0.22	0.25	0.27	0.34	0.40	0:30	0.28	0.32	0.28	0.27	0.30	0.28	0.28	0.27	0:30	12:0	12.0	0.24	0:30	0.28
	CRACK	LENGTH (In.) A	1.027	1.088	1.072	1.009	0.993	1.031	2.059	0.991	0.960	0.968	0.981	0.939	0.970	0.991	0.976	0.975	0.945	996.0	1.004	0.975	1.012	0.971
K _{Ic}	7	DESIGN	CT	CT	CT	cr	CT	CT	CT	CI.	CT	T.	CT	CT	CT	cT	CT	CT	ст	CT	CT	CT	cr	Cđ
7175	SPECIMEN	THICK (in.) B	1.001	1.001	1.001	0.998	0.998	0.998	1.764	1.002	1.001	1.002	1.002	1.000	1.002	0.999	0.999	0.999	1.002	0.999	0.998	0.999	0.997	1.005
ALUMINUM	SC	WIDTH (in.) W	2.014	2.016	1.985	1.978	1.986	1.983	4.037	1.982	2.000	2.017	2.002	1.998	1.980	1.982	1.992	1.990	2.011	2.013	2.008	1.990	1.984	1.982
ALU		YIELD STR (Kei)	68.2	68.2	68.2	68.8	68.8	68.8	69.0	60.7	60.7	60.7	60.7	60.7	60.7	61.5	61.5	61.5	61.5	61.5	61.5	61.5	61.5	61.5
		SPEC				T-L Cont'd		<b>-1</b>						!			S-T				•			
		TEST TEMP (°F)				R.T. Cont'd											R.T.							
	JCT	THICK (fn.)	1.40	1.40	1.40	3.50	3.50	3.50	1.80	3.00	3.00	3.00	3.00	3.00	3.00	3.50	3.50	3.50	3.00	3.50	3.00	3.50	3.00	3.00
	PRODUCT	FORM	1		<u>.</u>	Extrusion Cont'd	•			***							Extrusion							
		CONDITION				T76511 Cont'd			-								T76511							

1	-			<del>T = </del>	<del></del>			_		_	7	_		Т	_	_	_	1	_
			REFER	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01
		-	DATE	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978
			STAN							Contid							,	8	}
		K _{Io}	K. MEAN							Contid								808	<u> </u>
			K. (Kei •	21.50	21.30	22.30	21.70	20.90	21.50	23.00	22.60	21.90	21.50	20.90	20.50	21.60	22.30	20.00	20.30
			E.O. (K.,TYS) ³ (in.)	0.28	0.28	0.30	0:30	0.27	0.28	0.32	0.30	0.28	0.25	0.24	0.22	0.25	0.27	0.22	0.22
		CRACK	LENGTH (in.) A	0.927	1.006	0.978	0.924	0.992	0.964	0.998	0.960	0.970	0.479	0.472	0.465	0.451	0.804	0.779	0.809
	o IVIo	z	DESIGN	CT	CT	CT	CT	CT	CT	CT	CT	CT	CT	CT	CT	cr	CT	CT	CT
	0/T/ X	SPECIMEN	THICK (in.) B	1.005	0.998	0.996	1.002	0.998	0.999	0.998	0.999	0.999	0.599	0.600	0.600	0.600	0.751	0.750	0.751
AT TIMINITIM	INTERNO	-	WIDTH (In.)	2.015	2.012	1.996	2.009	1.984	2.008	1.996	2.000	1.980	0.998	1.004	1.011	1.002	1.489	1.498	1.498
	ALC		YIRLD STR (Kel)	62.0	62.0	62.0	62.0	62.2	62.2	62.2	63.4	63.4	9.99	9.99	66.6	9.99	66.1	66.4	66.4
			SPEC				<b>.</b>			S-T Cont'd		•	<b>-</b>	<b>-</b>				3.L	
			TEST TEMP (°F)							R.T. Cont'd								R.T.	
		UCT	THICK (in.)	3.00	3.00	3.00	3.00	3.50	3.50	3.50	3.50	3.50	1.40	1.40	1.40	1.40	1.80	1.80	1.80
		PRODUCT	FORM							Extrusion Cont'd								Extrusion	
			CONDITION							T76511 Cont'd								176511	

							A	ALUMINUM	NUM	7175	Кc								
	PROJ	PRODUCT	TO CALL			SPECIMEN	TEN	CRACK	СК	GROSS	SS		Kapp			$K_{\rm c}$	-		
CONDITION HEAT TREAT	FORM	THICK (in.)	TEMP (°F)	SPEC		WIDTH 1	THICK (ID.) B	(in.)	FINAL (in.)	ONSET (Kei)	MAX (Kei)	K (Keivlin)	K,	STAN	K _o (Kaivin)	K _e MEAN	STAN	DATE	REPER
						-	SUCKLIN	GOFC	LACK ED	BUCKLING OF CRACK EDGES NOT RESTRAINED	RESTRAL	NED							
T73511	Extru- sion	1.30	R.T.	LT	63.4	6.910	0.551	1.880	ŀ	ı	34.20	62.80	ı		1			2261	1700571
		1.30		1	66.1	8.010	0.250	2.510	:	ŀ	39.90	84.40						1977	10001
		1.30			66.1	7.990	0.251	2.470	ï	ı	40.70	85.20			1			1977	100571
T73511	Extru- sion	1.30	R.T.	7	66.1	7.990	0.251	2.520	:	ij	40.90	86.80	84.7	2.1		1	i	1977	10007
		1.30		1	66.1	7.990	0.252	2.520	;	1	40.50	85.80						1977	100071
		1.30			65.2	7.990	0.256	2.250	:	:	41.00	81.20			ı			1977	1005/1
		1.30			66.8	8.010	0.497	2.150	i	ı	41.70	80.30						1977	LG001
		1.30			66.8	8.000	0.500	2.080	;	i	42.70	80.60			:			1977	LG001
· · · · · · · · · · · · · · · · · · ·		1.30			66.1	8.000	0.501	3.940	4.350	24.80	28.80	84.80*			92.89*			1977	1,00071
····	·······	1.30			66.1	8.000	0.501	2.250	3.300	35.20	37.40	74.00			95.36*			1977	LG001
173511	Extru- sion	1.30	R.T.		66.1	7.990	0.502	2.410	:	1	37.90	78.10	78.6	2.1	1	1	i	1977	I,G001
		1.30			66.8	8.000	0.503	2.440	i	35.30	37.80	78.60						1977	LG001
		1.30			8.99	8.010	0.504	2.530	:	ı	37.40	79.40						1977	LG001
		1.30			66.1	7.980	0.505	2.490	:	1	37.90	79.90			:			1977	LG001
		1.30			65.2	8.000	0.506	2.420	i	22.00	37.80	78.20			ī			1977	LG001
1000	Extra-	1.30	6		66.1	7.980	0.749	2.480	ı	1	37.30	78.30		,	1			1977	LG001
119911	eion	1.30	R.T.	3	8.99	7.990	0.749	2.540	i	1	33.90	72.30	75.3	4.2	I	1	i .	1977	LG001

• NOTE: NET SECTION STRESS EXCREDS 80% OF YIELD STRENGTH. VALUE NOT INCLUDED IN MEAN OR STANDARD DEVIATION.

## TABLE 8.16.2.2 (CONCLUDED)

****							¥	ALUMINUM	NOM	7175	K _c								
	PROI	PRODUCT	Į.			SPECIMEN	MEN	CRACK	CK	GROSS	SS		Kapp			K,			
CONDITION HEAT TREAT	FORM	THICK (in.)	TEMP (°F)	SPEC		WIDTH (in.)	THICK (fn.)	INIT (in.) 2a.	FINAL (in.) 2a,	ONSET (Kei) G	MAX (Kei)	K (Kelvin)	K	STAN	K _o (Kelvin)	K. MEAN	STAN	DATE	REFER
							BUCKLD	VG OF C	TACK ED	BUCKLING OF CRACK EDGES NOT RESTRAINED	RESTRA	INED							
		1.30			64.0	8.000	0.248	2.590	i	!	25.70	55,40			!			1977	1,0001
		1.30		1	64.0	7.990	0.250	2.570	:	ï	21.50	46.30			I			1977	1,0001
		1.30		1	64.0	8.010	0.250	2.490	i	:	29.20	61.50						1977	1,0001
		1.30		L	63.3	8.010	0.251	2.540	i	ı	22.80	48.50			1			1977	1,0001
173511	Extru- sion	1.30	R.T.	7	63.3	8.020	0.251	2.530	:	:	27.10	57.60	54.9	5.5		!	:	1977	1,0001
		1.30		1	64.0	8.030	0.251	2.520	:	ı	26.50	56.10			:			1977	1,0001
		1.30		1	65.6	7.980	0.252	2.260		15.90	25.80	51.30			!			1977	1,0001
		1.30		1	65.6	8.020	0.252	2.530	i	;	25.60	54.40			1			1977	1,0001
		1.30			64.0	8.000	0.253	2.540	i	;	29.60	63.00			ï			1977	1,0001
		1.30		L	63.3	8.010	0.498	2.150	1	ı	26.30	50.60			:			1977	1,0001
		1.30		1	64.0	7.980	0.499	2.680	ı	1	22.20	49.10						1977	1,0001
		1.30			64.0	7.990	0.499	2.130	:	ı	27.60	52.80			i			1977	1,0001
173511	Extru- sion	1.30	R.T.	7.	64.0	8.010	0.500	2.200	1	1	26.50	50.60	50.7	1.2	!	ı	ŀ	1977	1,0001
		1.30		1	65.6	7.940	0.502	2.460	:	:	23.90	49.90						1977	1,0001
		1.30		1	63.3	7.990	0.502	2.510	ï	1	23.70	60.10			1			1977	1,0001
		1.30			64.0	7.990	0.505	2.430	;	i	24.90	61.70			1			1977	1,0001
113661	Extru-	1.30	E	!	64.0	8.000	0.509	2.470	;	17.40	25.30	63.00			1			1977	1,0001
110011	elon	1.30		7.	66.6	8.010	0.509	2.400	ı	17.20	23.80	49.00	61.0	2.8	1	ı	- 1	1977	LG001



Figure 8.16.3.1.1



Figure 8.16.3.1.2



Figure 8.16.3.1.3



Figure 8.16.3.1.4



Figure 8.16.3.1.5

┨ 7175 ┠ Condition/Ht: T736 Yield Strength: 69.3 ksi Form: 1 in. Forging Ult. Strength: 78.7 ksi Specimen Type: CT Specimen Thk: 0.398 - 0.404 in. Orientation: L-T Specimen Width: 2.545 - 2.57 in. Frequency: 1 Hz Ref: GD001 Environment: H.H.A.; RT (3 of 3) $\Delta$ K (MPa $\sqrt{in}$ ) ΔK (MPa√in) 100 100 40 40 7 7 77 10° Stress Ratio: 0.5 10-2 10-2 10-1 10-1 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10 6 10-6 10-5 10 5 10⁻⁷ 10⁻⁷ 10⁻⁶ 10 6 10⁻⁸ 10-8 10 40 10 40 100 ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) ΔK (Ksi√in) 2.66 (min) 3. 3.5 9. 10. 13. 13.04 (max) Life Prediction Ratio Summary Life Prediction Ratio Summary RMS % RMS % Error  $\Box \circ$ Error

Figure 8.16.3.1.5 (Concluded)

.5 .8

1.25

2.

2.

18.03

.5 .8

0.

1.25



Figure 8.16.3.1.6

This page intentionally left blank

7175 H Condition/Ht: T736 Form: 4 - 5 in. Forging Yield Strength: 59.9 - 60.1 ksi Ult. Strength: 69.5 - 70.8 ksi Specimen Type: CT Specimen Thk: 1.501 - 1.502 in. Orientation: T-L Specimen Width: 3.8 in. Stress Ratio: 0.33 Ref: 86842 Frequency: 18.3 Hz (2 of 3) (1 of 3)ΔK (MPa√in)  $\Delta$ K (MPa $\sqrt{in}$ ) 100 100 10 11111 المليكي ليليثيات 10° 10° Environment: H.H.A.; R.T. Environment: Dry Air; R.T. 10-2 10-2 10-1 10 10⁻³ 10-3 da/dN (in/cycle) da/dN (in/cycle) 10⁻⁶ 10⁻⁶ 10⁻⁵ 10⁻⁵ 10⁻⁷ 10⁻⁷ 10⁻⁶ 10 -6 10 8 10⁻⁸ 40 100 10 40 100 10 ΔK (Ksi√in) ∆K (Ksi√in)  $\Delta$ K (Ksi $\sqrt{in}$ ) da/dN (10⁻⁶in/cycle) da/dN (10⁻⁶in/cycle) **Δ**K (Ksi√in) 6.39 9.65 6.01 (min) 5.85 (min) 6. 7. 8. 2.87 3.16 7. 8. 9. 10. 13.84 (max) 13. 16. 16.26 (max) 120. Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary RMS %  $\odot$ Error Error 5.72 .5 1.25 2. .8 0. 18.20 . 8. 2. .5 1.25 0.

Figure 8.16.3.1.7

Condition/Ht: T736 Yield Strength: 59.9 - 60.1 ksi Form: 4 - 5 in. Forging Specimen Type: CT Ult. Strength: 69.5 - 70.8 ksi Specimen Thk: 1.501 - 1.502 in. Orientation: T-L Specimen Width: 3.8 in. Stress Ratio: 0.33 Ref: 86842 Frequency: 18.3 Hz (3 of 3)ΔK (MPa√in)  $\Delta$ K (MPa $\sqrt{in}$ ) 100 100 10 40 TTTTT 10° 10° Environment: Salt Fog; R.T. 10-2 10-2 10-1 10 1 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10-6 10-6 10⁻⁵ 10⁻⁵ 10⁻⁷ 10⁻⁷ 10⁻⁶ 10 -6 10⁻⁸ 10⁻⁸ 10 40 100 100 10 ΔK (Ksi√in) ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) 5.96 (min) 6. 7. 8. 6.11 9.18 10. 13.62 (max) Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary RMS % Error Error 1.25 5.95 0. .5 8. 2. 0. .5 .8 1.25 2.

1 7175 <del>|</del> E



Figure 8.16.3.1.8

This page intentionally left blank

7175 Condition/Ht: T736 Yield Strength: 62.1 ksi Form: 5 in. Forging Specimen Type: CCP (max load specified) Ult. Strength: 72.5 ksi Specimen Thk: 0.744 - 0.747 in. Orientation: L-T Specimen Width: 3 in. Stress Ratio: 0.33 Ref: 86842 Frequency: 5.2 Hz (2 of 3) (1 of 3)∆K (MPa√in)  $\Delta$ K (MPa $\sqrt{in}$ ) 100 100 10 777 1-1-1-1-1-1 1,1111 10° 10° Environment: H.H.A.; R.T. Environment: Dry Air; R.T. 10-2 10-2 10-1 10-1 10⁻³ 10 10 -2 da/dN (in/cycle) da/dN (in/cycle) 10-3 10⁻⁶ 10-6 10⁻⁵ 10⁻⁵ 10⁻⁷ 10⁻⁷ 10⁻⁶ 10 6 10-8 10 8 100 40 10 100 10 40 ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) 6.04 (min) 7. 8. 6.32 (min) 7. 8. 9. 10. 19.7 10. 13. 13. 16. 16.99 (max) 16. 16.26 (max) Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary RMS % Error Error

Figure 8.16.3.1.9

2.

1.25

5.43

0.

.5

.8

3.47

0.

.5 .8

2.

1.25

┨ 7175 ┠ Condition/Ht: T736 Yield Strength: 62.1 ksi Form: 5 in. Forging Ult. Strength: 72.5 ksi Specimen Type: CCP (max load specified) Specimen Thk: 0.744 - 0.747 in. Orientation: L-T Specimen Width: 3 in. Stress Ratio: 0.33 Ref: 86842 Frequency: 5.2 Hz (3 of 3) $\Delta$ K (MPa $\sqrt{in}$ )  $\Delta$ K (MPa $\sqrt{in}$ ) 10 100 100 40 ابليليا 10° Environment: Salt Fog; R.T. 10-2 10-2 10⁻¹ 10-1 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10⁻⁶ 10-6 10 5 10 -5 10⁻⁷ 10⁻⁷ 10 6 10⁻⁶ 10⁻⁸ 10⁻⁸ 10 40 100 10 40 100 ΔK (Ksi√in) ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) da/dN ( $10^{-6}in/cycle$ ) 8.60 12.5 19.7 29.8 6.16 (min) 7. 8. 9. 10. 14.93 (max) 97.0 Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary RMS % Error Error  $\Box$ 2.57 Ó. .5 1.25 .5 8. 1.25 2. 0. .8 2.

Figure 8.16.3.1.9 (Concluded)



Figure 8.16.3.1.10

┨ 7175 ┠ Condition/Ht: T736 Yield Strength: 60.1 ksi Form: 5 in. Forging Ult. Strength: 69.5 ksi Specimen Type: CCP (max load specified) Specimen Thk: 0.743 - 0.751 in. Orientation: T-L Specimen Width: 3 in. Stress Ratio: 0.33 Ref: 86842 Frequency: 5.2 Hz (3 of 3) $\Delta$ K (MPa $\sqrt{in}$ )  $\Delta$ K (MPa $\sqrt{in}$ ) 10 100 100 77777 10° 10° Environment: Salt Fog; R.T. 10⁻² 10-2 10-1 10-1 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10-6 10-6 10⁻⁵ 10⁻⁵ 10⁻⁷ 10⁻⁷ 10-6 10⁻⁶ 10⁻⁸ 10⁻⁸ 10 40 100 10 40 100 ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) 5.94 (min) 6.29 6. 7. 8. 19.0 9. 10. 13. 16. 16.59 (max) Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary RMS % Error Error

Figure 8.16.3.1.10 (Concluded)

2.

1.25

0.

.5 .8

2.

16.64

.5

0.

8.

1.25



Figure 8.16.3.1.11

Condition/Ht: T736 Yield Strength: 69 - 71 ksi Form: 2 - 3 in. Forging Ult. Strength: 78 - 79 ksi Specimen Type: DCB Orientation: L-T Specimen Thk: 0.75 in. Specimen Width: 5.5 in. Stress Ratio: 0.02 Ref: 84360 Frequency: 10 Hz (2 of 2) (1 of 2) $\Delta$ K (MPa $\sqrt{in}$ )  $\Delta$ K (MPa $\sqrt{in}$ ) 100 100 10 11111 10° Environment: Lab Air; R.T. Environment: Dry Air; R.T. 10-2 10-2 10 -1 10-1 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle)  $\Box$ 띵 O 10⁻⁶ 10⁻⁶ 10⁻⁵ 10-5 10-7 10⁻⁷ 10 6 10⁻⁶ 10-8 10 -8 10 40 100 10 40 100 ΔK (Ksi√in) ΔK (Ksi√in) da/dN  $(10^{-6}in/cycle)$ ΔK (Ksi√in) da/dN ( $10^{-6}in/cycle$ ) **Δ**K (Ksi√in) Life Prediction Ratio Summary RMS & Life Prediction Ratio Summary RMS % Error Error Ö. .5 1.25 Ō. .8 .5 .8 1.25 2. 2.

┨ 7175 ┟

Figure 8.16.3.1.12



Figure 8.16.3.1.13

Condition/Ht: T73652 Yield Strength: 68 ksi Form: Forging Ult. Strength: 77 ksi Specimen Type: CT Specimen Thk: 1 in. Orientation: L-T Specimen Width: 7.4 in. Stress Ratio: 0.08 Ref: 88579 Frequency: 0.1 Hz (2 of 2) (1 of 2)  $\Delta$ K (MPa $\sqrt{in}$ )  $\Delta$ K (MPa $\sqrt{in}$ ) 100 10 100 40 10 40 11111 11111 1 1 1 1 1 1 1 100 10° Environment: S.T.W.; R.T. Environment: L.H.A.; R.T. 10⁻² 10-2 10 -1 10-1 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 0 10⁻⁶ 10⁻⁶ 10 -5 10⁻⁵ 10⁻⁷ 10⁻⁷ 10 6 10⁻⁶ 10⁻⁸ 10-8 40 100 10 10 40 100 ΔK (Ksi√in) ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) 7.94 (min) 8. 9. 10. 13. 17.28 (max) RMS % Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary Error Error 3.73 0. .5 1.25 2. Ó. .5 1.25 2. .8 .8

┨ 7175 ┠

Figure 8.16.3.1.14



Figure 8.16.3.1.15

d 7175 ⊢ Condition/Ht: T73652 Yield Strength: 68 ksi Form: Forging Ult. Strength: 77 ksi Specimen Type: CT Specimen Thk: 0.99 - 1 in. Orientation: L-T Specimen Width: 7.4 in. Stress Ratio: 0.08 Ref: 88579 Frequency: 1 Hz (3 of 3) $\Delta K (MPa\sqrt{in})$  $\Delta$ K (MPa $\sqrt{in}$ ) 10 100 40 100 10 40 1 1 1 1 1 1 1 10° 10° Environment: F.C.S.; R.T. 10-2 10-2 10 1 10-1 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10⁻⁶ 10-6 10 -5 10⁻⁷ 10⁻⁷ 10-6 10⁻⁶ 10-8 10⁻⁸ 10 40 100 40 100 10 1 ΔK (Ksi√in) ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle)  $\Delta$ K (Ksi $\sqrt{in}$ ) da/dN (10⁻⁶in/cycle) 2.82 (min) 3. 3.5 10. 13. 18.66 (max) Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary RMS % Error Error 5.01 .5 1.25 .8 2. 0. 0. .5 8. 1.25 2.

Figure 8.16.3.1.15 (Concluded)



Figure 8.16.3.1.16



Figure 8.16.3.1.17



Figure 8.16.3.1.18



Figure 8.16.3.1.19



Figure 8.16.3.1.20





 1
 7175

 F

Condition/Ht: T73652

Form: Forging

Specimen Type: CCP (max load specified)

Orientation: L-T Stress Ratio: 0.02

Environment: LAB AIR; RT

Yield Strength: 71.7 ksi Ult. Strength: 81.5 ksi

Specimen Thk: 0.107 - 0.11 in. Specimen Width: 3.947 - 3.951 in.

Ref: MA002





Figure 8.16.3.1.24

Condition/Ht: T73652 Yield Strength: 66.3 - 70.3 ksi Form: 1.25 in. Forging Ult. Strength: 76.8 - 79.3 ksi Specimen Type: WOL Specimen Thk: 1.25 in. Orientation: L-T Specimen Width: 5 in. Stress Ratio: 0.02 Ref: MA005 Frequency: 0.1 - 20 Hz (3 of 3) $\Delta$ K (MPa $\sqrt{in}$ ) ΔK (MPa√in) 100 100 40 10 لبليليك 11111 10° 10° Environment: S.S.W.; R.T. 10-2 10-2 10-1 10-1 10⁻³ 10⁻³ 10-2 da/dN (in/cýcle) da/dN (in/cycle) 10 6 10-6 10 -5 10-5 10⁻⁷ 10⁻⁷ 10⁻⁶ 10⁻⁶ 10⁻⁸ 10⁻⁸ 10 40 100 100 ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in)  $da/dN (10^{-6}in/cycle)$ ΔK (Ksi√in) 3.99 (min) 10. 13. 16. 20. 32.21 (max) Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary RMS % Error Error 10.90 .5 8. 1.25 2. .5 1.25 0. 0. .8 2.

7175 H

Figure 8.16.3.1.24 (Concluded)



Figure 8.16.3.1.25



Figure 8.16.3.1.25 (Concluded)



Figure 8.16.3.1.26





Figure 8.16.3.1.28



Figure 8.16.3.1.29





Figure 8.16.3.1.31



Figure 8.16.3.1.32

This page intentionally left blank



Figure 8.16.3.1.33



Figure 8.16.3.1.33 (Concluded)



Figure 8.16.3.1.34

7175 Condition/Ht: T74 Yield Strength: 59 - 64 ksi Form: Forging Specimen Type: WOL Ult. Strength: 70 - 72 ksi Specimen Thk: 1.25 in. Orientation: T-L Stress Ratio: 0.02 Specimen Width: 5 in. Ref: MD002 Frequency: 0.1 - 20 Hz (3 of 3)ΔK (MPa√in)  $\Delta$ K (MPa $\sqrt{in}$ ) 100 10 40 100 10⁰ 10° Environment: S.S.W.; R.T. 10-2 10-2 10-1 10 10⁻³ 10⁻³ 10 -2 da/dN (in/cycle) da/dN (in/cycle) 10⁻⁶ 10⁻⁶ 10 -5 10⁻⁵ 10⁻⁷ 10⁻⁷ 10⁻⁶ 10 6 10-8 10-8 40 100 10 40 100 10 ΔK (Ksi√in) ΔK (Ksi√in)  $\Delta$ K (Ksi $\sqrt{in}$ ) da/dN ( $10^{-6}in/cycle$ ) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) 0.263 0.282 3.89 (min) 4. 5. 6. 7. 13. 20. 26.80 (max) Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary RMS % Error Error 34.34 1.25 1.25 2. 0. .5 .8 2. 0. .5 8.

Figure 8.16.3.1.34 (Concluded)



Figure 8.16.3.1.35









Figure 8.16.3.1.39

This page intentionally left blank



Figure 8.16.3.2.1

┨ 7175 ┠ Condition/Ht: T66 Form: Forging Specimen Thk: 1 in. Specimen Width: 5 in. Specimen Type: DCB Orientation: S-L Ao: Yield Strength: K_{Iscc}: Ref: 78313 Ult. Strength: Kmax (MPa√in) 40 100 (1 of 1) Kmax (MPa√in) 4 10 40 100 11111 ابليليا 10² 10² Environment: Wet 3X/day with 3.5% NaCl 10° 10° 101 10¹ 10⁻¹ 10⁻¹ da/dt (in/hour) da/dt (in/hour) 10 10-4 10 10⁻³ 10⁻³ 10⁻⁵ 10⁻⁵ 10-4 10-4 10⁻⁶ 10⁻⁶ 4 10 40 Kmax (Ksi√in) 100 4 10 40 Kmax (Ksi√in) 100 Kmax (Ksi√in)  $da/dt (10^{-3}in/hour)$ Kmax (Ksi√in)  $da/dt (10^{-3}in/hour)$ 

RMS %

Error

RMS %

Error



#### **TABLE 8.16.3.3**

K_{lsce} SUMMARY FOR ALUMINUM ALLOY 7175

Condition/	Duck	Test		Yield		<u>δ</u> 2	Specimen		Prod		;	1	Test		
Heat Treat	Form	Temp (°F)	opec Or.	Str (Ksi)	Envir.	Design	Width (in)	Thick (in)	Thk (in)	Crack (in)	Kai√in)	K _{leo} (Ksi√in)	Time (min)	Test Date	Refer
						DCB	2	1	:	2.0	29	<5		1969	78318
T66	দ	R.T.	S-I	76	3.5% NaCl	DCB	2	-	***	2.0	62	- 42		6961	78313
						DCB	Ð	1	***	0.7	62	9>	i	1969	78313
						DCB	4.75	1	1.3	96.0	1	24.1	89280	1977	LG001
						DCB	4.75	1	1.3	1.01	:	22.6	89280	1977	LG001
						DCB	4.75	1	1.3	96.0	:	31.2	89280	1977	LG001
					•	DCB	4.75	1	1.3	0.93	i	24.4	89280	1977	LG001
T73511	臼	R.T.	S-L	ŀ	3.5% NaCl	DCB	4.75	1	1.3	0.94	i	24.6	89280	2261	LG001
					1	DCB	4.75	1	1.3	0.97		22.4	89280	1977	LG001
						DCB	4.75	1	1.3	1.13		20.5	89280	1977	LG001
						DCB	4.75	1	1.3	1.1	:	25.6	89280	1977	LG001
•						DCB	4.75	Н	1.3	6.0	:	24.1	89280	1977	LG001
T736	ţ	Ę	L-T	62.9	3.5% NaCi	TDCB	5	1.25	3.1			908	;	1971	84360
	4	11:47	S.L	65.7	3.5% NaCl	CT	1	0.5	:	ï	24.8	18.7	61740	1972	83242
					2 2 2	DCB	5.5	1	9		44	>27.6	76140	1976	RIOGE
T73659	Ŀ	£ 0	Ę	Q	F.C.D.	DCB	5.5	1	9		44	>27.8	76140	1976	R1006
	1		;	3	0 0	DCB	5.5	1	9	i	44	27.7	76200	1976	RI006
						DCB	5.5	-	9	ł	44	27.5	76200	1976	RI006

## **TABLE 8.16.3.3 (CONCLUDED)**

K_{lscc} SUMMARY FOR ALUMINUM ALLOY 7175

Gondition/		Test	L	Yield		\ \( \oldsymbol{\oldsymbol{O}}{\oldsymbol{O}} \)	Specimen		Prod		4	4	Test		
Condition Heat Treat	Form	Temp (°F)	Spec Or.	Str (Ksi)	Envir.	Design	Width (in)	Thick (in)	Thk (in)	Crack (in)	Rq (Ksi√in)	^{M_{lec} (Ksi√in)}	Time (min)	rest Date	Refer
						DCB	5.5	-	9		44	>21.5	133680	1976	R1006
			L-T	89		DCB	5.5	1	g	:	44	>21.5	133680	1976	R1006
			(cont'd)	ಲ	:#:Tio	DCB	5.5	1	9	•	44	>22.5	123600	1976	R1008
						DCB	5.5	1	9	•10	44	>22.5	133680	1976	R1006
					10 4 15.20	BWOL	3.085	1.252	1.25	1.37	:	>17	148320	1977	MA005
				ç	or-4 ruel	BWOL	3.087	1.252	1.25	1.4	-	>16.8	148320	1977	MA005
				63.b	Sim. Sea	BWOL	3.086	1.247	1.25	1.7		>17.7	132480	1977	MAOOS
T73652	ᅜ	R.T.	E		Water	TOME	3.087	1.248	1.25	141	***	>17.6	132480	1977	MAOOS
(cont'd)	(cont'd)	(cont'd)				DCB	5.5	1	9	ŀ	40	22	133680	1976	R1006
				Š	in e	DCB	5.5	1	9	I	40	>18	133680	1976	R1006
				# 6		DCB	5.5	1	9	i	40	>18.5	133680	1976	RI006
						DCB	5.5	1	9		40	>18.5	133680	1976	RI006
					1. 0 - 11	BWOL	3.086	1.248	1.25	1.41		>18.2	148320	1977	MA005
			5 0	u t	ar 4 ruei	BWOL	3.084	1.252	1,25	1.35		>17.9	148320	1977	MA005
				0.70	Sim. Sea	BWOL	3.084	1.248	1.25	1.38		>17	132480	1977	MA005
					Water	BWOL	3.086	1.248	1.25	1.37	:	>17.6	132480	1977	MA005

#### **TABLE 8.17.1.1**

# MEAN PLANE STRAIN FRACTURE TOUGHNESS FOR ALUMINUM 7000/8000 SERIES ALLOY 7178 AT ROOM TEMPERATURE

Product					$K_{Ic}$	$K_{lc}$ $(ksi\sqrt{in})$	<u>(a</u>		1	
Form	Condition/Heat Treatment			<b>U</b> 2	pecime	Specimen Orientation	itation			
			L-T			T-L			S.L	
		Mean K _{ie}	Std Dev	u	Mean K _{le}	Std Dev	ч	Mean K _{re}	Std Dev	E
0	T651	25.3	1.9	2	21.5	1.8	10	15.	0.3	အ
Llate	T7651	27.8	1.8	16	23.1	2.4	18	17.3	0.4	5
	T6510			:	18.5	1.3	9	14.5	0.1	2
Extrusion	T76510	30.5	6.0	9	26.8	1.1	ъ	16.2	0.4	2
	T76511	25.7	0.3	2			1	i	i	
Forged Bar	T76510	I	1	ì	19.2	1.2	5		•	:

**TABLE 8.17.1.2.1** 

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7178 AT ROOM TEMPERATURE

	6	
	100.0	
	11	
	(a) (a)	
	10.4	
	(ii)	
E .	L Clu	
Ę	8 3	_
Va	3/6	83.11
>	H H S	äö
Ď	FCGR (10 ⁻⁸ in/cycle) ΔK Level (Ksi/in) 0 100 200	
le	01 84	
Ï.	9 9	11.5
8	R	_
	D   M	
	FC Al	
1	F.	0.85
Z	19	0
<b>ENVIRONMENT: Distilled Water</b>		
Σ		
Z	2.5	
Q	2.	
<b>X</b>		
5		
5	FREQ (Hz)	
ō	REG (Hz)	
	T.	
7	**	
•		
	E	0.02
	1	0
	i	
	. b_	
	D.C.	Ħ
	B	SHEET
	PORM	SH
	Z H	
1	<b>A</b>	
ا ٺ		
Z		
0		
	ı	
A	Z	
$\Xi$	/ E	
Z	25	
$\Xi$	93	
<b>?</b> I	E. A.	
ORIENTATION: L-T	CONDICION/ HEAT TREATMENT	T76
	BR	
į	ZH	
	9.6	

### **TABLE 8.17.1.2.2**

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7178 AT ROOM TEMPERATURE

CONDITION/ HEAT TREATMENT         PRODUCT FORM         R         FREQ (Hz)         FREQ (Hz)         AK Laval (Kai/in)           10         9         0.0         9         0.79         21.79         0.06           10         0.05         9         0.71         10.46         0           10         0.05         9         0.71         10.46         0           10         0.05         9         0.71         10.46         0           10         0.05         9         0.71         146.22         0           0.05         9         0.71         10.46         0         0           0.05         9         0.71         146.22         0         0           0.05         9         0.71         146.22         0         0           0.05         9         0.22         2.99         0         0           0.05         9         0.22         2.99         0         0           0.05         9         0.32         2.99         0         0           0.07         0.08         9         0.03         0.04         0         0           0.07         0.08         9         <	ORIENTATION: L-T	i L-T			ENVIR	ONME	ENVIRONMENT: H.H.A.	H.A.	· i	
FORM (Hz) (Ex) (50 (50 (50 (50 (50 (50 (50 (50 (50 (50	CONTRICTORY	montaoan		Contacting the second		FC	<i>GR</i> (10	6 in/cyc	cle)	
0. 9 0.79 21.79 0.05 9 0.71 10.46 0.05 9 0.2 2.99 0.5 9 6.33 53.38 0.6 9 9.94 91.29	HEAT TREATMENT	FORM	R	rreų (Hz)		Δ.	K Leve	ľ (Ksi/i	(n)	
0.05 9 0.79 21.79 0.05 9 0.71 10.46 0.05 9 0.2 2.99 0.5 9 0.2 8.31 0.5 9 0.2 8.39 0.5 9 0.3 6.33 0.5 9 0.3 6.31					2.5	5.0	10.0	20.0	60.0	100.0
0.05 9 0.71 10.46 0.05 9 0.2 2.99 0.5 9 0.2 8.33 53.38			0.	6		0.79	21.79			
SHEET  0.05  9  0.2  24.71  0.6  9  0.2  2.99  24.71  0.6  9  0.2  9  9.94  91.29			0.05	9		17.0	10.46			
0.5     9     0.2     2.99       0.6     9     6.33       0.6     9     9.94	£	waan b	0.05	6			24.71	145.22		
9 6.33		Tagino	0.5	6	0.2	2.99				
9 9.94			0.5	6		6.33	63.38			
			9.0	8		9.94	91.29			

**TABLE 8.17.1.2.3** 

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR  $\Delta K$  7178 AT ROOM TEMPERATURE

ORIENTATION: L-T

ENVIRONMENT: Lab Air

			1	EINVILLINIE LAD AIL	TATAL	I. Lan	TITLE		
/NOLLIGNOD	PRODUCE		FREG		FC	<i>3B</i> (10-	FCGR (10 ⁻⁶ in/cycle)	(e)	
HEAT TREATMENT	FORM	4	(Hz)		ĮV	T. Level	ΔK Level (Ksi√in)	1)	
				2.5	6.0	10.0	20.0	60.0	100.0
		0.05	1				109.75		
		0.02	5			12.3			
		0.02	13			9.77			
176	SHEET	0.02	14			12.22	16:68		
		0.5	1			39.26			
		0.6	3			59.88			
		0.5	14			44.51			
	SHEET	0.02	0.1-12		0.92	15.34	104.72		
*400		0.	20		0.81	13.19	54.46		
1001	PLATE	0.02	0.1-12		1.12	17.2	151.49		
		0.02	0.1-12		0.91	14.1	86.56		
0 m H	Editalo	0.02	ï		0.64	. 7.18	58.42		
170	Sheet	0.02			0.59	7.09	64.88		
		0.33	6.2			13.65			
17651	PLATE	0.33	5.2			11.95			
		0.33	5.2			12.47			

## **TABLE 8.17.1.2.3 (CONCLUDED)**

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7178 AT ROOM TEMPERATURE

ORIENTATION: L-T

ENVIRONMENT: Lab Air

		0.001			
FCGR (10 ⁻⁶ in/cycle)	(Ksivin)	20.0 50.0			
CGR (10-	ΔK Level (Ksi\in)	10.0	12.63	12.29	13.47
Fi	7	5 5.0			
OH CH	(HZ)	2.5	5.2	5.2	5.2
*	R.		0.33	0.33	0.33
monacoun	FORM		MOISTIGENA	EATROSION	EXTRUDED BAR
MOLLANDIA	HEAT TREATMENT			T76510	

**TABLE 8.17.1.2.4** 

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7178 AT ROOM TEMPERATURE

		,	
	9		
	(b)		
₩.	1-6 in/cycl	140.35	153.99
T.S.T	FCGR (10 ⁻⁶ in/cycle)  AK Level (Kai/in)	22.93	29.27
NMEN	FCC AA	0.94	
ENVIRONMENT: S.T.W.	7 G		
<b>H</b>	FREQ (Hz)	20	8
	H	0.	0.01
: L-T	PRODUCT		PLATE
ORIENTATION: L-T	CONDITION/ HEAT TREATMENT	1	1,661

**TABLE 8.17.1.2.5** 

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7178 AT ROOM TEMPERATURE

ORIENTATION:	: T-T	•		NVIRON	<b>ENVIRONMENT: Lab Air</b>	ıb Air		
CONDITION/ HEAT TREATMENT	PRODUCT FORM	H	FREQ (Hz)	2.5	FCGR (10 ⁻⁴ ΔK Level	'in'cyc  (Ksi\ii	(c) (d)	1000
T651	PLATE	0.	20		0.56 12.12	82.3		
TZEKI	DI APPE	0.33	5.2		13.23			
4000	grant	0.33	5.2		16.22			

**TABLE 8.17.1.2.6** 

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR  $\Delta K$  7178 AT ROOM TEMPERATURE

	100.0	ľ
	001	
	7	
	0	
	(e) 1)	
	6 - 4	
	Jan	
	FCGR (10 ⁻⁶ in/cycle)  AK Level (Ksi/in)	_
	/c	196.46
>	in K	86
>	9	
$\vdash$	Je Je	
σ'n	11	24.57
•••	0 9	4.6
	H	81
Z	K K	
$\Xi$	) V	
Z	<i>T</i> 0	
ラ	FCC AK	
H		
$\approx$		
	5.5	
>	25	
ENVIRONMENT: S.T.W.		
虿		
•	~	
	FREQ (Hz)	
	T.	9
	H.	
	#	
٠.		
-		
	i.a.	=
	R	0.01
		l
	T	
	<u>ئ</u>	
	N.	囝
	LO H	ΑŢ
	RODUCI	PLATE
	×4	
. 1	Id	
<b>!!</b>		
H		
•••		
4		
9		
$\mathbf{z}$	.II	
	5	
7	/ E1	
5	ZE	
ORIENTATION: T-L	CONDITION/ HEAT TREATMENT	
Ę	F5	
Ř		21
0	67	T651
	92	j
	<b>#</b> 55	
	XE	
	75	
	₩.	

#### TABLE 8.17.2.1

					ALC	ALUMINUM	I 7178	K _{Ie}							
	PRODUCT	UCT					SPECIMEN	7	CRACK			K _{Ie}			
CONDITION	FORM	THICK (in.)	TEMP (°F)	SPEC	YIELD STR (Kei)	WIDTH (in.) W	THICK (in.)	DESIGN	LENGTH (ln.) A	(K. TY8)* (in.)	K. (Kel * (in.)	K. MEAN	STAN	DATE	REFER
		1.00		1	81.0	2.000	1.048	NB	1.060	0.27	26.50			1973	86213
		1.00		<b>-</b>	81.0	2.000	1.048	MB	1.050	0.24	25.10			1973	86213
T651	Plate	1.00	R.T.	2	81.0	2.000	1.048	NB	1.040	0.26	26.00	25.3	1.9	1973	86213
		1.00		1	81.0	2.000	1.048	NB	1.030	0.27	26.70			1973	86213
		0.50			82.4	1.000	0.500	NB	0.499	0.18	22.10			1969	77140
		1.37			77.8	2.000	0.999	CT	1.065	0.18	20.80			1969	77140
		1.37		1	77.8	2.000	0.999	CT	1.052	0.18	20.60			1969	77140
		1.37		1	8.77	1.930	666.0	SA NB	0.956	0.17	20.50			1969	77140
		1.37			77.8	1.940	0.999	NB	0.944	0.16	19.80			1969	77140
Fiote	£	0.50	8		78.8	0.990	0.460	NB	0.510	0.14	18.60			1969	77140
1691	Flate	0.50	K.T.		78.8	1.000	0.500	NB NB	0.496	0.17	20.80	21.5	1.8	1969	77140
		1.00			80.8	2.000	1.048	SS.	1.060	0.21	23.40			1973	86213
		1.00			80.8	2.000	1.048	æ	1.040	0.20	23.00			1973	86213
		1.00			80.8	2.000	1.048	SB BB	1.060	0.20	22.90			1973	86213
		1.00			80.8	2.000	1.048	NB	1.050	0.22	24.20			1973	86213
		1.37			68.1	1.000	0.500	cr	0.494	0.12	14.80			1973	86213
T651	Plate	1.37	R.T.	3.F	68.1	1.000	0.500	CT	0.508	0.12	15.00	15.0	0.3	1973	86213
		1.37			68.1	1.000	0.500	CT	0.483	0.13	15.30			1973	86213
1906	D	0.75	S		72.0	1.500	0.739	NB NB	0.725	0.27	23.70			1973	86213
1001	Extrueion	0.75	3		72.0	1.500	0.739	NB	0.787	0.29	24.40	24.1	9.0	1973	86213
		3.50		1	69.2	0.990	0.500	NB	0.461	0.14	16.50			1969	77140
T6510	Extrusion	3.50	R.T.	J.I.	69.2	2.000	1.00.1	СT	1.041	0.17	18.30	18.5	1.3	1969	77140
		3.50			69.2	1.990	1.000	CT	1.030	0.16	17.70			1969	77140

#### 2 of 5

## TABLE 8.17.2.1 (CONTINUED)

					_											_					—	<del>,</del>	<del></del>
		REFER	77140	77140	77140	77140	77140	MPC01	MPC01	MPC01	86213	86213	86213	86213	86213	MPC01	MPC01	86213	MPC01	MPC01	MPC01	MPC01	MPC01
		DATE	1969	1969	1969	1969	1969	1978	1978	1978	1973	1973	1973	1973	1973	1978	1978	1973	1978	1978	1978	1978	1978
		STAN		Cont'd			0.1									1.8							
	K	K. MEAN		Cont'd			14.5									27.8							
		K. (Kal•	20.40	19.20	18.80	14.50	14.40	29.90	29.50	29.00	28.80	29.00	31.20	28.50	29.80	26.00	26.10	26.30	26.40	26.30	26.70	25.40	26.50
		2.0 (K _L /TYS) ² (in.)	0.15	0.13	0.13	0.14	0.13	0.42	0.42	0.40	0.41	0.41	0.48	0.40	0.44	0:30	0:30	0.33	0.32	0.32	0.32	0.28	0:30
	CRACK	LENGTH (in.) A	0.742	0.701	0.697	0.994	0.997	0.519	0.505	0.530	0.507	0.499	1.030	0.525	1.060	1.007	1.086	0.997	1.000	0.991	1.002	1.062	1.079
ALUMINUM 7178 K _{lo}	7	DESIGN	NB	NB	NB	CT	СT	NB	NB	NB	NB	NB NB	NB NB	NB NB	SB BB	NB	CT	cr	CT	CT	NB	CT	СТ
	SPECIMEN	THICK (in.) B	0.626	0.648	0.625	0.998	1.00.1	0.447	0.446	0.483	0.447	0.446	1.001	0.482	1.00.1	1.001	0.999	1.000	1.000	1.000	1.001	0.970	0.972
	82	WIDTH (fn.) W	1.490	1.500	1.490	2.000	2.000	0.998	0.990	1.000	0.990	0.990	2.000	0.690	2.000	2.014	2.011	2.000	2.000	1.982	2.004	2.004	1.998
		YIELD STR (Ksl)	82.9 1.7 83.4 1.1 83.4 1.1			62.3	62.3	71.2	71.2	71.2	71.2	71.2	71.2	71.2	71.2	72.6	72.6	72.6	72.6	72.6	72.6	74.4	74.4
		SPEC		T-L Cont'd		5	7,5	. 4 4															
		TEST TEMP (°F)		R.T. Cont'd		E-									£	<u>;</u>							
	ucr	THICK (In.)	99.0	99.0	0.68	3.50	3.50	0.50	0.50	0.50	09'0	0.50	1.00	0.50	1.00	1.37	1.37	1.37	1.37	1.37	1.37	1.00	1.00
	PRODUCT	FORM		Extrusion Cont'd		Extransion									2	2007							
		CONDITION		T6510 Cont'd		T6510				•					179651								

## TABLE 8.17.2.1 (CONTINUED)

3 of 5

		REFER	MPC01	86213	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	86213	MPC01	86213	MPC01	86213	MPC01	MPC01	MPC01	MPC01	86213	MPC01	MPC01	86213
		DATE	1978	1973	1978	1978	1978	1978	1978	1978	1978	1978	1973	1978	1973	1978	1973	1978	1978	1978	1978	1973	1978	1978	1973
		STAN							<b></b>			2.4	L	L <u></u>		·		L					9.0		<u> </u>
	K,	K. MEAN					•					23.1										,	17.3		
		R. (fil)	23.70	21.80	23.30	24.10	24.10	25.40	19.10	19.30	28.30	27.70	22.80	23.00	22.10	23.30	22.40	22.30	21.20	22.60	16.80	17.60	17.10	17.90	17.20
		2.5 • (K _L ,TYS) ² (in.)	0.34	0.29	0.27	0.28	0.28	0.32	0.18	0.18	0.40	0.38	0.26	0.25	0.24	0.25	0.25	0.24	0.21	0.24	0.15	0.17	0.15	0.16	0.17
	CBACK	LENGTH (in.) A	2.201	2.105	0.467	0.520	0.521	0.529	1.041	1.061	1.080	1,040	1.022	0.994	0.993	1.046	1.048	1.000	1.020	1.015	0.480	0.494	0.495	0.501	0.487
K	1	DESIGN	NB	NB BB	NB	NB	NB	RB RB	CT	CT	NB	NB	cr	CT	NB	NB	NB	NB	CT						
1178	SPECIMEN	THICK (in.)	2.036	2.036	0.447	0.485	0.448	0.485	0.974	0.973	1.00.1	1.001	1.000	0.999	1.00.1	1.000	1.001	1.00.1	0.999	0.999	0.500	0.500	0.500	0.500	0.500
ALUMINUM		WIDTH (in.)	4.002	4.000	0.994	1.000	1.002	0.998	2,002	2.002	2.000	2.000	2.000	1.988	2.000	2.012	2.000	2.000	2.000	1.990	1.000	1.000	1.010	1.002	1.000
ALU		VIELD STR (Kei)	63.8	63.8	69.2	69.2	69.2	69.2	6.69	6.69	70.5	70.5	71.1	71.1	71.1	71.1	71.1	71.1	71.1	71.1	66.8	66.8	8.99	8.99	66.8
		SPEC		72															1	1	13.	1			
		TEST TEMP (°F)	F.F.											R.T.											
	UCT	THICK (in.)	2.00	2.00	0.50	0.50	0.50	0.50	1.00	1.00	1.00	1.00	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37
	PRODUCT	FORM	•			•		•			400		•					•					Plate		
		CONDITION									1354												17651		

## TABLE 8.17.2.1 (CONTINUED)

												<del></del> 1	- 1	_	-7					T	ī			
		REFER	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213
		DATE	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973
		STAN DEV		0.2				6:0					1:1				0.4	1.2						0.3
	$\mathbf{K}_{\mathrm{Ie}}$	K. MEAN		33.0				30.5					26.8				16.2			19.2				25.7
		K. (Kei • √in.)	32.80	33.10	30.00	30.30	29.90	31.60	29.40	31.70	26.90	28.50	27.10	26.90	25.70	15.90	16.40	19.30	17.70	18.50	19.60	20.90	25.50	25.90
	•	(K _{e,} TYS) ² (in.)	0.71	0.69	0.60	0.50	0.48	0.52	0.45	0.52	0.41	0.46	0.41	0.38	0.37	0.21	0.23	0.28	0.23	0.25	0.28	0.29	0.29	0.29
	CRACK	LENGTH (in.) A	1.029	1.096	1.012	0.702	0.665	0.767	0.673	0.772	0.670	0.703	0.708	0.670	0.780	0.937	0.946	0.473	0.943	0.931	0.482	0.459	0.467	1.671
K _{Ie}	7	DESIGN	NB	NB	NB	NB	NB	NB	NB	NB	NB	NB	NB	NB	NB	ст	CT	NB	CT	CT	NB	NB	NB	CT
7178	SPECIMEN	THICK (in.) B	1.001	1.002	1.000	0.655	0.656	0.663	0.659	0.620	0.658	0.625	0.658	0.624	0.649	1.000	666.0	0.500	1.00.1	1.001	0.500	0.500	0.401	1.400
ALUMINUM		WIDTH (in.) W	2.000	2.000	2.000	1.500	1.490	1.490	1.490	1.500	1.490	1.490	1.490	1.490	1.500	2.000	2.000	1.000	2.000	2.000	1.000	1.000	1.000	3.000
	YIELD STR (Kel)		61.4	63.0	61.4	61.4				69.4	66.2	66.2	66.7	66.7	66.7	54.4	54.4	57.2	58.4	58.4	68.4	61.9	74.7	9:91
	SPEC			Ls				5					Ţ.L			ı	7-8 1-8	T-L						LT.
	TEST TEMP (°F)		1	R.T.			R.T.					R.T.		R.T.		R.T.				R.T.				R.T.
	JCT	THICK (in.)	3.50	3.50	3.50	0.68	0.68	0.68	0.68	99.0	0.68	0.68	0.68	0.68	89'0	3.50	3.50	3.50	3.50	3.50	3.50	3.50	0.40	1.44
	PRODUCT	FORM		Extrusion		I—I		Extrusion					Extrusion				Extrusion			Forged Bar				Extrusion
		CONDITION		176510				176510					T76510				T76510			T76510				176511

5 of 5

					ALI	ALUMINUM	1 7178	K K							
	PRODUCT	UCT					SPECIMEN	7	CRACK			K	-		
CONDITION	FORM	THICK (ln.)	TEST TEMP (°F)	SPEC	YIELD STR (Kei)	WIDTH (in.)	THICK (In.)	DESIGN	LENGTH (in.)	2.5 (K, TYS)* (in.)	K. (Kei • (In.)	K. MEAN	STAN	DATE	REFER
T76511	Extrusion	1.44	R.T.	T-L	75.0	3.000	1.401	CT	1.578	0.18	20.30	:	:	1973	86213
T76511	Kytmiejon	1.25	8	E	68.5	3.000	1.227	NB	1.457	0.41	27.70			1973	86213
110011	Extrusion	1.25	8	3	68.5	3.000	1.217	NB	1.465	0.45	29.20	28.5	11	1973	86213
T76511	Peterseion	1.25	â	Ē	67.6	3.000	1.170	NB	1.470	0.37	26.00			1973	86213
	TOTON INVE	1.25	3	3	67.6	3.000	1.166	NB	1.463	0.37	26.00	26.0	0.0	1973	86213
T76511	Externation	1.44	2	5	69.1	2.000	0.821	CT	0.998	0.26	22.20			1973	86213
140014	TOTAL TRAINING	1.44	50	3.0	69.1	2.000	0.821	cr	1.000	0.17	18.00	20.1	3.0	1973	86213
1786511	Determine	2.00	Ġ		72.3	4.000	1.96.1	CT	2.078	0.34	26.50			1973	86213
1,0011	EAKI WBIOII	2.00	66	3	72.3	4.000	1.962	CT	2.077	0.32	25.90	26.2	9.4	1973	86213
T76511	Externation	2.00	28	5	64.4	1.500	0.750	CT	0.735	0.16	16.20			1973	86213
***	Town mercin	2.00	00	7.6	64.4	1.500	0.750	CT	0.746	0.16	16.20	16.2	0.0	1973	86213

	7	~			Ī	Ī	Ī	Ī	T		1	Ī	Ī		Ī				T		_	Ī	
		REFER		86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	650	
		DATE		1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	10.73	
		STAN					-			er er	9									9.0			
	Кc	K _o MEAN								46.3	}			,						50.4			
		K _e (Kei√in)		46.87	44.09	47.00	37.60	47.49	:	45.83	52.01*	48.99	49.65	47.70	45.40	49.04	43.01	44.87	45.32	53.01	52.41	45.76	
		STAN						L	! <u>.</u>	2.5	<b>L</b>			L	لــــا					4.1			
	Kapp	K, MEAN								39.9										40.9			
		K. (Keivin)	ED	39.05	37.48	38.81	32.99	38.05	37.48	39.84	44.61	42.58	42.29	41.84	40.58	43.34	34.43	36.24	37.14	44.22	44.50	36.76	
K,	, so	MAX (Kel)	ESTRAIN	37.20	35.70	36.90	31.30	36.10	35.70	37.80	42.50	40.40	40.20	39.70	38.50	41.20	25.60	27.00	27.60	31.00	31.20	27.40	
7178	GROSS	ONSET 1	BUCKLING OF CRACK EDGES NOT RESTRAINED	:	1	1	1	:	:	1	:	1	!	:	1	-	:	:	ī	1	!	i	
ALUMINUM	CK	FINAL (in.)	RACK EDC	0.812	0.790	0.825	092.0	0.860	:	0.770	0.780	0.770	0.790	092.0	0.740	0.750	1.360	1.340	1.320	1.390	1.360	1.350	
	CRACK	INIT (ln.) 2s.	NG OF C	0.621	0.621	0.622	0.625	0.625	0.620	0.625	0.621	0.624	0.622	0.625	0.624	0.622	666.0	0.994	0.998	1.090	1.090	0.994	
	MEN	THICK (in.) B	BUCKLI	0.064	0.064	0.064	0.064	0.064	0.064	0.064	0.064	0.064	0.064	0.064	0.064	0.065	0.122	0.123	0.123	0.123	0.123	0.123	
	SPECIMEN	WIDTH (in.) W		2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	3.000	2.990	2.990	3.000	3.000	3.000	
	YIELD STR (Kel)			82.4	82.4	82.4	82.4	82.4	82.4	82.4	82.6	83.4	83.4	83.4	83.4	82.6	83.6	83.6	83.6	83.6	83.6	83.6	
	SPEC			7 E-													7.						
		TEMP (°P)								R.T.							T.						
	UCT	THICK (in.)		90:0	90:0	90.0	90:0	90:0	90:0	90:0	90.0	90.0	90.0	90.0	90.0	90.0	0.12	0.12	0.12	0.12	0.12	0.12	
	PRODUCT	FORM			1				!	Sheet		1			1		1_		100	8			
		CONDITION HEAT TREAT								T6									¥	2			

* NOTE: NET SECTION STRESS EXCEEDS 80% OF YIELD STRENGTH. VALUE NOT INCLUDED IN MEAN OR STANDARD DEVIATION.

## TABLE 8.17.2.2 (CONTINUED)

							A1	ALUMINUM	NUM	7178	Кc									<del></del>
	PROI	PRODUCT	Ę.		u iaix	SPECIMEN	MEN	CRACK	СК	GROSS	88		K _{app}			Кc	-			
CONDITION HEAT TREAT	FORM	THICK (in.)	TEMP (°F)	SPEC		WIDTH (In.)	THICK (n.)	(ln.) 28.	FINAL (in.)	ONSET (Kai) 0.	MAX (Ksl)	K (Kei√in)	K,	STAN	K _e (Kel√in)	K _e MEAN	STAN	DATE	REFER	
							BUCKLIN	GOFC	ACK ED	BUCKLING OF CRACK EDGES NOT RESTRAINED	RESTRAI	UNED								100000
		0.12		1	76.3	3.000	0.124	1.000	1.340	1	35.30	47.54			58.60*			1973	86213	<del>,</del>
		0.12		1	75.3	3.000	0.124	1.000	1.320	i	33.50	45.12			54.95			1973	86213	<del>,</del> -
		0.12			83.3	3.000	0.125	1.000	1.370	ı	33.10	44.58			55.94			1973	86213	<del>,</del>
		0.12			83.3	3.000	0.125	1.000	1.400	i	34.10	45.92			58.66			1973	86213	
T6 Cont'd	Sheet	0.12	R.T. Cont'd	Contd	83.5	3.000	0.125	1.080	1.400	1	27.60	39.12	Cont'd	Cont'd	47.48	Cont'd	Cont'd	1973	86213	
		0.12			83.5	3.000	0.125	1.000	1.420	ı	29.50	39.73			51.35			1973	86213	
		0.12			83.5	3.000	0.125	1.060	1.330	;	27.80	38.91			45.88			1973	86213	
		0.12		1	82.5	3.000	0.128	1.000	1.470	ı	28.70	38.65			51.46			1973	86213	
		0.12			82.5	3.000	0.129	1.000	1.500	i	30.40	40.94			55.49			1973	86213	
		90.0			81.6	15.820	0.064	1.000	1.000	i	38.20	47.99			47.99			1973	86213	_
		90.0			81.6	15.820	0.064	4.000	4.000	i	17.20	44.90			44.90			1973	86213	_
<b>T6</b>	Sheet	90.0	R.T.	2	81.6	15.820	0.064	3.030	3.260	ı	21.20	47.33	46.5	1.7	49.27	47.8	2.2	1973	86213	
		90.0		1	81.6	15.810	9 290.0	6.000	6.320	ı	13.20	44.55			46.23			1973	86213	
		90.0			81.6	15.820	990.0	3.020	3.310	i	21.50	47.91			50.39			1973	86213	_
		90.0			8.77	2.000	0.064	0.625	0.740	ı	33.60	35.41			39.62			1973	86213	T
		90.0		L	77.8	2:000	0.064	0.622	0.795	;	35.30	37.13		• •	43.75			1973	86213	
22	Shoet	90.0	R.T.	1.	8.77	2.000	0.064	0.621	0.785	1	36.90	38.74	36.7	.23	45.32	44.6	2.6	1973	86213	=
		90'0			8.77	2.000	0.064	0.623	0.805	1	37.10	39.02			46.41			1973	86213	
		90'0			77.8	2.000	0.064	0.625	0.780	ı	36.90	38.89	_		45.16			1973	86213	

• NOTE: NET SECTION STRESS EXCEEDS 80% OF YIELD STRENGTH. VALUE NOT INCLUDED IN MEAN OR STANDARD DEVIATION.

## TABLE 8.17.2.2 (CONTINUED)

ALUMINUM SPECIMEN CRACK	. 11	· III	· II	LUMINUM	NUM		7178 GROSS	K _c		<b>1</b>			2	-		
TEST TEMP (°F)	T SPEC	YIRLD STR (Kel)	WIDTH (fn.)	THICK (in.)	LENGTH INIT FINA	GTH FINAL	STRESS ONSET MA	<b>3</b> 5	او	d L	STAN	X.	R _C	STAN	DATE	REFER
	-		) M	BUCKLE	Za. NG OF C	2a,	BUCKLING OF CRACK EDGES NOT RESTRAINED	G. C. RESTRAI	(Keivin)	MEAN	DEV	(Kelvin)	MEAN	DEV		
		77.8	2.000	0.064	0.625	0.920	1	33.00	34.78			45.80			1973	86213
		77.8	2.000	0.064	0.619	0.845	1	35.60	37.30			46.17			1973	86213
		80.4	2.000	0.065	0.627	0.850	ï	37.00	39.08			48.24			1973	86213
R.T		80.4	2.000	0.065	0.628	0.850	:	32.30	34.18			42.12			1973	86213
Cont'd		d 81.0	2.000	0.065	0.627	0.850	ı	32.30	34.11	Cont'd	Cont'd	42.12	Cont'd	Cont'd	1973	86213
		81.0	2.000	0.065	0.627	0.830	1	37.90	40.03			48.54			1973	86213
		80.4	2.000	990.0	0.626	0.860	ı	33.10	34.96			43.55			1973	86213
		80.4	2.000	990.0	0.627	0.900	ı	31.70	33.48			43.22			1973	86213
		79.4	2.990	0.123	966.0	1.250	:	21.30	28.63			33.54			1973	86213
		79.4	3.000	0.123	966.0	1.200	ŀ	21.20	28.48			32.36			1973	86213
		75.3	3.000	0.125	1.000	1.000	:	25.90	34.88			34.88			1973	86213
		75.3	3.000	0.125	1.000	1.000	;	25.90	34.88			34.88			1973	86213
		77.4	3.000	0.125	1.060	1.440	ï	23.50	32.89			41.40			1973	86213
R.T.	T.	77.4	3.000	0.126	1.060	1.440	1	24.50	34.29	33.4	2.3	43.16	38.8	8.8	1973	86213
		77.4	3.000	0.125	1.060	1.270	:	23.50	32.89			37.42			1973	86213
		78.0	3.000	0.125	1.000	1.230	1	26.20	35.29			40.72			1973	86213
		78.0	3.000	0.125	1.000	1.300	1	25.90	34.88		,	41.98			1973	86213
		79.2	3.000	0.125	1.110	1.300	į	23.60	34.09			38.26			1973	86213
	_	79.2	3.000	0.125	1.080	1.380	i	24.20	34.30			41.14			1973	86213

## TABLE 8.17.2.2 (CONTINUED)

,						Y	ALUMINUM	NOM	7178	K								
PRODUCT		100E			SPECIMEN	MEN	CRACK	СК	GROSS	SS		K ₄pp			K _c			
FORM	THICK (in.)	TEMP (°F)	SPEC	STR (Kel)	WIDTH (In.) W	THICK (in.) B	(in.)	FINAL (in.) 2a,	ONSET (Kei)	MAX (Kai)	K (Keivin)	MEAN	STAN	K _c (Keivin)	K _o MEAN	STAN	DATE	REFER
░┟						BUCKLD	VG OF CI	RACK ED	BUCKLING OF CRACK EDGES NOT RESTRAINED	RESTRA	INED							
Sheet	0.12	R.T.	7:	78.0	3.000	0.128	1.000	1.390	:	25.30	34.07			43.26			1973	86213
_	0.12	Cont'd	Cont'd	78.0	3.000	0.128	1.000	1.320	:	25.40	. 34.21	Cont'd	Cont'd	41.67	Cont'd	Cont'd	1973	86213
	90.0			78.6	15.810	0.065	3.010	3.230	:	19.90	44.26			46.01			1973	86213
	90.0			78.6	15.820	0.065	1.000	1.460	:	32.10	40.33			48.87			1973	86213
Sheet	90.0	R.T.	1.7	78.6	15.820	0.065	4.000	4.550	:	16.20	42.29	49.1	14	45.66	46.6	•	1973	86213
	90.06			78.6	15.820	0.065	6.000	6.480	:	12.40	41.84		:	44.23	7.02	3	1973	86213
- 1	90:0			78.6	15.820	0.065	1.010	1.310	ï	33.20	41.92			47.83			1973	86213
Plate 1	0.25	E-	E-	84.3	4.000	0.254	1.330	1.960	:	23.40	36.33			48.45			1973	86213
	0.25		5	84.3	4.000	0.255	1.430	2.290	i	21.40	34.86	35.6	1.0	51.46	50.0	2.1	1973	86213
Plate	0.25	£ p	F	79.5	4.000	0.247	1.420	1.680	:	15.10	24.48			27.60			1973	86213
	0.25		2	79.5	4.000	0.247	1.390	1.560	ŀ	15.60	24.93	24.7	0.3	27.00	27.3	9.4	1973	86213
	0.25	-		80.4	4.000	0.254	1.330	1.330	:	16.80	26.08			26.08			1973	86213
Plate	0.25	R.T.	1.7	80.4	4.000	0.254	1.440	2.070	:	15.20	24.88	25.7	0.0	33.06	9	,	1973	86213
- 1	0.25			80.4	4.000	0.256	1.330	1.330	1	16.90	26.24		;	26.24	0.03	} }	1973	86213
	1.00			71.2	20.000	1.005	7.000	8.640	i	11.90	42.73			49.69			1973	86213
Plate	1.00	R.T.	5	71.2	20.000	1.005	7.000	8.570	ì	11.50	41.30	42.1	0.7	47.72	889	5	1973	86213
	1.00			71.2	20.000	1.005	7.000	8.600	:	11.80	42.37		,	49.09	P	3	1973	86213

## TABLE 8.17.2.2 (CONCLUDED)

							¥	LUM	ALUMINUM		7178 K _c								
		PRODUCT				SPECIMEN	MEN	CRACK	CRACK	GROSS	SS		Kapp			Kc	-		
CONDITION HEAT TREAT	FORM	THICK (in.)	TEMP (°F)	SPEC	STR (Kel)	WIDTH (fn.) W	THICK (in.) B	INIT (in.) 2a,	FINAL (in.) 2s,	ONSET (Kat) G	MAX (Kei)	K (KsiVin)	K,	STAN	K _q (Ksivin)	K _e MEAN	STAN	DATE	REFER
							BUCKLI	NG OF C	RACK EL	BUCKLING OF CRACK EDGES NOT RESTRAINED	RESTRA	UMED							
	1	0.25	1	i	71.0	4.000	0.247	1.410	1.610	!	19.80	31.95			35.06			1973	86213
17651	Plate	0.25	R.T.	T-L	71.0	4.000	0.247	1.460	1.730		19.80	32.71	32.3	9.0	37.01	36.0	1.4	1973	86213
		1.00			70.5	20.000	1.005	7.000	7.850		8.20	29.45			31.88			1973	86213
17651	Plate	1.00	R.T.	1:1	70.5	20.000	1.005	2.000	8.050	-	8.40	30.17	29.8	9.4	33.26	33.1	1.2	1973	86213
		1.00			70.5	20.000	1.005	7.000	8.500	1	8.30	29.81			34.22			1973	86213

This page intentionally left blank



Figure 8.17.3.1.1

d 7178 ⊢R Condition/Ht: T6 Form: 0.2 in. Sheet Yield Strength: 81.8 - 86 ksi Specimen Type: CCP (max load specified) Ult. Strength: 88.2 - 90.5 ksi Orientation: L-T Specimen Thk: 0.2 in. Specimen Width: 11.5 in. Frequency: 1 Hz Environment: LAB AIR; RT Ref: 86088 (2 of 2) (1 of 2)∆K (MPa√in)  $\Delta$ K (MPa $\sqrt{in}$ ) 100 100 11111  $\Gamma$ 10⁰ 10⁰ Stress Ratio: 0.02 Stress Ratio: 0.5 10-2 10-2 10-1 10-1 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10 6 10⁻⁶ 10⁻⁵ 10⁻⁵ 10⁻⁷ 10⁻⁷ 10 6 10-6 10 8 10⁻⁸ 10 100 10 40 100 ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) da/dN (10⁻⁶in/cycle) **Δ**K (Ksi√in) ΔK (Ksi√in) 11.70 (min) 5.94 (min) 13. 16. 20. 110. 8. 9. 390. 29.76 (max) 1458. 10. 13.88 (max) Life Prediction Ratio Summary RMS % RMS \$ Life Prediction Ratio Summary Error Error DA O 43.83 22.62 .5 8. 1.25 2. .5 0. 0. .8 1.25 2.

Figure 8.17.3.1.2



Figure 8.17.3.1.3

1 7178 F Condition/Ht: T6 Form: 0.2 in. Sheet Yield Strength: 86 ksi Specimen Type: CCP (max load specified) Ult. Strength: 90.2 ksi Orientation: L-T Specimen Thk: 0.2 in. Specimen Width: 11.5 in. Stress Ratio: 0.02 Environment: LAB AIR; RT Ref: 86088 (3 of 3) $\Delta K (MPa\sqrt{in})$  $\Delta$ K (MPa $\sqrt{in}$ ) 10 100 100 10° Frequency: 13. Hz 10-2 10-2 10⁻¹ 10 1 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10⁻⁶ 10⁻⁶ 10⁻⁵ 10⁻⁵ 10⁻⁷ 10-7 10 6 10-6 10-8 10⁻⁸ 10 40 100 10 40 100 ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) 5.30 5.68 7.54 9.77 7.78 (min) 8. 9. 10. 13. 16.74 (max) RMS % Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary Error Error δ. 2.53 .5 .8 1.25 2. 0. .5 .8 1.25 2.

Figure 8.17.3.1.3 (Concluded)



Figure 8.17.3.1.4

1 7178 ⊢_R Condition/Ht: T6 Yield Strength: 82 ksi Form: Sheet Ult. Strength: 89.7 ksi Specimen Type: CCP (max load specified) Orientation: L-T Specimen Thk: 0.19 in. Specimen Width: 6 in. Frequency: 9 Hz Ref: BW001 Environment: H.H.A.; RT (2 of 2) (1 of 2) $\Delta K (MPa\sqrt{in})$ ΔK (MPa√in) 100 40 100 40 11111 10⁰ 10° Stress Ratio: 0.05 Stress Ratio: 0.5 10-2 10-2 10-1 10-1 10⁻³ 10⁻³ 10-2 da/dN (in/cycle) da/dN (in/cycle) 10-3 10 10 6 10-6 10⁻⁵ 10-5 10⁻⁷ 10⁻⁷ 10⁻⁶ 10⁻⁶ 10⁻⁸ 10⁻⁸ 10 40 100 10 ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in)  $da/dN (10^{-6}in/cycle)$ ΔK (Ksi√in) 3.65 (min) 7.65 (min) 8. 9. 5. 6. 10. 13. 16. 20. 25. 30. 10. 13. 4018. 33.50 (max) 10142. 17.91 (max) 3484. Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary RMS % Error Error 86.64 51.34 0. .5 .8 1.25 2. 0. .5 .8 1.25 2.

Figure 8.17.3.1.5

Condition/Ht: T6 Yield Strength: 85 - 86 ksi Form: 0.2 in. Sheet Ult. Strength: 90.2 - 90.5 ksi Specimen Type: CCP (max load specified) Specimen Thk: 0.2 in. Orientation: L-T Specimen Width: 11.5 in. Stress Ratio: 0.5 Ref: 86088 Environment: LAB AIR; RT (2 of 3) (1 of 3) $\Delta K$  (MPa $\sqrt{in}$ )  $\Delta$ K (MPa $\sqrt{in}$ ) 100 10 10 40 TTTTT 10° <del>1 - 1 - 1 - 1 - 1 - 1</del> 10° Frequency: 3. Hx Frequency: 2. Hz 10-2 10-2 10⁻¹ 10-1 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10-3 10 10⁻⁶ 10⁻⁶ 10 -5 10 -5 10⁻⁷ 10-7 10 -6 10 -6 10⁻⁸ 40 100 10 100 10 40 ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) 7.96 9.25 5.65 (min) 6. 7. 8. 9. 59.9 10. 280. 13. 16. 1340. 16.38 (max) Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary RMS % Error Error

Figure 8.17.3.1.6

2.

1.25

.5

0.

.8

14.07

0.

.5

.8

2.

1.25

 →
 7178

 →

 F

Condition/Ht: T6 Form: 0.2 in. Sheet

Specimen Type: CCP (max load specified)

Orientation: L—T Stress Ratio: 0.5

Environment: LAB AIR; RT

Yield Strength: 85 - 86 ksi Ult. Strength: 90.2 - 90.5 ksi

Specimen Thk: 0.2 in. Specimen Width: 11.5 in.

Ref: 86088





Figure 8.17.3.1.7

7178 <del>R</del>

Condition/Ht: T651 Form: 0.13 in. Sheet

Specimen Type: CCP (max stress specified)

Orientation: L-T

Frequency: 0.1 - 12 Hz Environment: LAB AIR; RT Yield Strength: 82.5 ksi Ult. Strength: 88.5 ksi Specimen Thk: 0.063 in. Specimen Width: 6 in.

Ref: MA011



7178 H Condition/Ht: T651 Yield Strength: 81.5 ksi Form: 0.25 in. Plate Ult. Strength: 89.7 ksi Specimen Type: CCP (max stress specified) Specimen Thk: 0.125 in. Orientation: L-T Specimen Width: 8 in. Stress Ratio: 0. Ref: RI002 Frequency: 20 Hz (2 of 2)(1 of 2) $\Delta$ K (MPa $\sqrt{in}$ )  $\Delta$ K (MPa $\sqrt{in}$ ) 10 100 100 10 Libria 1 , 1 , 1 , 1 , 1 , 1 11111 10° 10° Environment: S.T.W.; R.T. Environment: Lab Air; R.T. 10-2 10-2 10 1 10-1 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) اِ قَ مَا 10 -3 10⁻⁶ 10 6 10 -5 10⁻⁵ 10⁻⁷ 10⁻⁷ 10-6 10⁻⁶ 10⁻⁸ 10 8 10 40 100 40 100 10 ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle)  $da/dN (10^{-6}in/cycle)$ ΔK (Ksi√in) ΔK (Ksi√in) 4.58 (min) 5. 6. 7. 8. 4.82 (min) 5. 0.509 0.634 0.806 6. 7. 6.24 8. 9. 10. 10. 13. 70.0 16. 20. 25. 29.56 (max) 362. 30.28 (max) Life Prediction Ratio Summary Life Prediction Ratio Summary RMS % RMS % Error Error 11.89 12.84 0. .5 8. 1.25 2. 2. 0. .5 8. 1.25

Figure 8.17.3.1.9

Condition/Ht: T651 Form: 0.25 in. Plate Yield Strength: 81.5 ksi Ult. Strength: 89.7 ksi Specimen Type: CCP (max stress specified) Orientation: L-T Specimen Thk: 0.125 in. Frequency: 6 Hz Specimen Width: 8 in. Environment: S.T.W.; RT Ref: RI002 (1 of 1) $\Delta$ K (MPa $\sqrt{in}$ )  $\Delta$ K (MPa $\sqrt{in}$ ) 10 40 100 10 40 100 1111 10° 10° Stress Ratio: 0.01 10-2 10-2 10-1 10-1 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10-6 10-6 10 -5 10 -5 10⁻⁷ 10-7 10 -6 10 -6 10⁻⁸ 10-8 100 10 40 10 40 100 ΔK (Ksi√in) ΔK (Ksi√in)  $\Delta$ K (Ksi $\sqrt{in}$ )  $\Delta K$  (Ksi $\sqrt{in}$ ) da/dN (10⁻⁶in/cycle)  $da/dN (10^{-6}in/cycle)$ 5.01 (min) 6. 7. 8. 9. 10. 13. 16. 20. 25. 29.40 (max) RMS % Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary Error Error 4.95 0. .5 .8 1.25 2. 0. .5 8. 1.25 2.

1 7178 H

Figure 8.17.3.1.10

7178 Condition/Ht: T651 Yield Strength: 81.5 ksi Form: 0.25 in. Plate Specimen Type: CCP (max stress specified) Ult. Strength: 89.7 ksi Specimen Thk: 0.125 in. Orientation: T-L Specimen Width: 8 in. Frequency: 20 Hz Ref: RI002 Environment: LAB AIR; RT (1 of 1)  $\Delta$ K (MPa $\sqrt{in}$ )  $\Delta$ K (MPa $\sqrt{in}$ ) 10 100 10 100 40 10° 10° Stress Ratio: 0.0 10-2 10-2 10-1 10 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10⁻⁶ 10⁻⁶ 10 -5 10 5 10⁻⁷ 10⁻⁷ 10 6 10 -6 10-8 10 8 10 40 100 40 100 10 ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle)  $\Delta K$  (Ksi $\sqrt{in}$ ) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) 4.35 (min) 5. 6. 7. 8. 9. 13. 16. 20. 25. 27.90 (max) Life Prediction Ratio Summary Life Prediction Ratio Summary RMS % RMS % Error Error 0. 1.25 2. .5 .8 18.95 .5 0. .8 1.25 2.

Figure 8.17.3.1.11

┨ 7178 ┠ Condition/Ht: T651 Form: 0.25 in. Plate Yield Strength: 81.5 ksi Specimen Type: CCP (max stress specified) Ult. Strength: 89.7 ksi Orientation: T-L Specimen Thk: 0.125 in. Frequency: 6 Hz Specimen Width: 8 in. Environment: S.T.W.; RT Ref: RI002 ΔK (MPa√in) 10 40 (1 of 1) $\Delta$ K (MPa $\sqrt{in}$ ) 100 10 100 10° 10° Stress Ratio: 0.01 10-2 10-2 10-1 10-1 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10⁻⁶ 10-6 10 5 10⁻⁵ 10⁻⁷ 10-7 10⁻⁶ 10 6 10⁻⁸ 10⁻⁸ 10 40 100 10 40 100 ΔK (Ksi√in) ΔK (Ksi√in) ΔK (Ksi√in)  $da/dN (10^{-6}in/cycle)$ ΔK (Ksi√in) da/dN ( $10^{-6}in/cycle$ ) 5.16 (min) 6. 7. 8. 9. 10.0 10. 13. 16. 20. 25. 25.29 (max) 875. RMS % Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary Error 凹 Error 8.20 Ó. .5 .8 1.25 2. 0. .5 .8 1.25 2.

Figure 8.17.3.1.12



Figure 8.17.3.1.13



Figure 8.17.3.1.14

7178 h Condition/Ht: T76 Form: 0.1 - 0.19 in. Sheet Yield Strength: 70.5 - 75 ksi Specimen Type: CCP (max stress specified) Ult. Strength: 79 - 81.5 ksi Specimen Thk: 0.1 in. Orientation: L-T Specimen Width: Stress Ratio: 0.02 Ref: MA012 Frequency: (1 of 2) (2 of 2)  $\Delta$ K (MPa $\sqrt{in}$ ) ∆K (MPa√in) 10 100 100 10 11111 11111 100 Environment: Distilled Water; R.T. Environment: Lab Air; R.T. 10-2 10-2 10-1 10-1 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10⁻⁶ 10⁻⁶ 10⁻⁵ 10⁻⁵ 10⁻⁷ 10⁻⁷ 10 -6 10⁻⁶ 10⁻⁸ 10 8 40 100 100 10 10 40 ΔK (Ksi√in) ∆K (Ksi√in)  $da/dN^{-}(10^{-6}in/cycle)$ da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) ΔK (Ksi√in) 4.00 (min) 5. 6. 7. 8. 9. 4.01 (min) 5. 6. 7. 8. 0.358 0.851 10. 13. 10. 13. 25. 30. 30. 396. 830. 35. 35. 1209. 40. 50. 50.42 (max) 56.27 (max) 4280. Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary RMS % Error Error 23.15 40.36 0. .5 1.25 2. 8. 2. 0. .5 8. 1.25

Figure 8.17.3.1.15



Figure 8.17.3.1.16

7178 H Condition/Ht: T7651 Yield Strength: 72.6 ksi Form: 1.38 in. Plate Specimen Type: CCP (max load specified) Ult. Strength: 81.3 ksi Specimen Thk: 0.748 in. Orientation: L-T Specimen Width: 3 in. Frequency: 5.2 Hz Ref: 86213 Environment: LAB AIR; RT (1 of 1)  $\Delta$ K (MPa $\sqrt{in}$ )  $\Delta K (MPa\sqrt{in})$ 10 100 100 11111 10° 10° Stress Ratio: 0.33 10⁻² 10-2 10 10 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) اق ق 10⁻³ 10⁻⁶ 10⁻⁶ 10⁻⁵ 10⁻⁵ 10⁻⁷ 10⁻⁷ 10 6 10 6 10 8 10 40 100 100 40 10 ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle)  $\Delta K$  (Ksi $\sqrt{in}$ ) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) 5.52 (min) 6. 7. 8. 9. 10. 13. 16.23 (max) Life Prediction Ratio Summary Life Prediction Ratio Summary RMS % RMS % Error DA O Error Ò. .5 1.25 2. 8. 11.92 .5 1.25 2. .8 0.

Figure 8.17.3.1.17

Condition/Ht: T7651 Form: 0.44 in. Plate Yield Strength: 70.9 ksi Specimen Type: CCP (max load specified) Ult. Strength: 80 ksi Orientation: L-T Specimen Thk: 0.444 in. Frequency: 5.2 Hz Specimen Width: 3 in. Environment: LAB AIR; RT Ref: 86213 (1 of 1) $\Delta$ K (MPa $\sqrt{in}$ )  $\Delta K (MPa\sqrt{in})$ 100 100 40 10 40 <u>. 1 .1.11</u> 1 11111 10° 10° Stress Ratio: 0.33 10-2 10-2 10 1 10-1 10⁻³ 10-3 da/dN (in/cycle) da/dN (in/cycle) 10⁻⁶ 10⁻⁶ 10 -5 10⁻⁵ 10⁻⁷ 10⁻⁷ 10 -6 10 6 10⁻⁸ 10⁻⁸ 10 40 100 10 40 100 ΔK (Ksi√in) ΔK (Ksi√in) ΔK (Ksi√in)  $\Delta K$  (Ksi $\sqrt{in}$ )  $da/dN (10^{-6}in/cycle)$  $da/dN (10^{-6}in/cycle)$ 5.99 (min) 6. 7. 8. 9. 3.39 3.40 10. 13. 15.78 (max) RMS % Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary Error Error 2.21 0. .5 .8 1.25 2. 0. .5 8. 1.25 2.

7178 F

7178 Condition/Ht: T7651 Yield Strength: 69.2 - 70.9 ksi Form: 0.48 - 0.49 in. Plate Specimen Type: CCP (max load specified) Ult. Strength: 80 ksi Specimen Thk: 0.481 - 0.486 in. Orientation: L-T Specimen Width: 2.999 - 3 in. Frequency: 5.2 Hz Ref: 86213 Environment: LAB AIR; RT (1 of 1)  $\Delta$ K (MPa $\sqrt{in}$ )  $\Delta$ K (MPa $\sqrt{in}$ ) 10 100 100 10 40 10° 10° Stress Ratio: 0.33 10-2 10 2 10-1 10-1 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10⁻⁶ 10⁻⁶ 10 -5 10 5 10⁻⁷ 10⁻⁷ 10 -6 10 6 10⁻⁸ 10 8 10 40 100 40 100 10 ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle)  $\Delta K$  (Ksi $\sqrt{in}$ ) 5.37 (min) 6. 7. 8. 9. 4.57 10. 15.40 (max) 60.9 Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary RMS % Error Error

2.

12.28

0.

.5

.8

1.25

Ō.

.5 .8

1.25

2.

7178 H

Condition/Ht: T7651 Form: 1.38 in. Plate

Specimen Type: CCP (max load specified)

Orientation: T-L Frequency: 5.2 Hz

Environment: LAB AIR; RT

Yield Strength: 71.1 ksi Ult. Strength: 80.5 ksi Specimen Thk: 0.751 in. Specimen Width: 3 in.

Ref: 86213



7178 Condition/Ht: T7651 Yield Strength: 69.2 ksi Form: 0.49 in. Plate Specimen Type: CCP (max load specified) Ult. Strength: 79.1 ksi Specimen Thk: 0.485 in. Orientation: T-L Specimen Width: 3 in. Frequency: 5.2 Hz Ref: 86213 Environment: LAB AIR; RT (1 of 1)  $\Delta$ K (MPa $\sqrt{in}$ )  $\Delta$ K (MPa $\sqrt{in}$ ) 100 10 100 40 771111 10° 10⁰ Stress Ratio: 0.33 10-2 10-2 10-1 10-1 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10⁻⁶ 10⁻⁶ 10⁻⁵ 10⁻⁵ 10⁻⁷ 10⁻⁷ 10 -6 10 6 10-8 10 8 40 100 10 40 100 10 ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle)  $\Delta K$  (Ksi $\sqrt{in}$ ) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) 5.59 (min) 6. 7. 8. 9. 10. 13. 16.70 (max) Life Prediction Ratio Summary Life Prediction Ratio Summary RMS % RMS % Error Error .5 1.25 0. .8 2. 13.63 0. .5 8. 1.25 2.



7178 Condition/Ht: T76510 Yield Strength: 65.3 ksi Form: 0.69 in. Extrusion Specimen Type: CCP (max load specified) Ult. Strength: 76 ksi Specimen Thk: 0.628 in. Orientation: L-T Specimen Width: 3 - 3.006 in. Frequency: 5.2 Hz Ref: 86213 Environment: LAB AIR; RT (1 of 1) $\Delta$ K (MPa $\sqrt{in}$ )  $\Delta$ K (MPa $\sqrt{in}$ ) 100 10 11111 10⁰ 1 1 1 1 1 10° Stress Ratio: 0.33 10-2 10⁻² 10-1 10-1 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10⁻³ 10⁻⁶ 10 6 10⁻⁵ 10 -5 10⁻⁷ 10⁻⁷ 10 6 10 -6 10 8 10 8 10 40 100 40 100 10 ∆K (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) da/dN (10⁻⁶in/cycle)  $\Delta K$  (Ksi $\sqrt{in}$ ) ΔK (Ksi√in) 6.04 (min) 7. 8. 9. 10. 15.78 (max) Life Prediction Ratio Summary Life Prediction Ratio Summary RMS % RMS % Error 0 🖺 Error 1.25 7.16 0. .5 .8 2. 2. .5 8. 1.25 0.

Figure 8.17.3.1.23

7178 Condition/Ht: T76510 Form: 3.5 in. Extruded Bar Yield Strength: 63.4 ksi Specimen Type: CCP (max load specified) Ult. Strength: 73.6 ksi Orientation: L-T Specimen Thk: 0.75 - 0.752 in. Frequency: 5.2 Hz Specimen Width: 2.998 - 3.004 in Environment: LAB AIR; RT Ref: 86213 (1 of 1)ΔK (MPa√in)  $\Delta$ K (MPa $\sqrt{in}$ ) 100 100 10⁰ Stress Ratio: 0.33 10-2 10-2 10-1 10-1 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10⁻⁶ 10⁻⁶ 10 5 10 -5 10⁻⁷ 10⁻⁷ 10 6 10-6 10⁻⁸ 10⁻⁸ 10 40 100 10 ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) ΔK (Ksi√in) 5.65 (min) 6. 7. 8. 9. 13. 16. 16.84 (max) Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary RMS & 回る回 Error Error 9.47 .5 0. .8 1.25 2. 0. .5 8. 1.25 2.



Condition/Ht: T651+ 1HR AT 320F

Form: 1 in. Plate Specimen Type: DCB Orientation: T—L Yield Strength: Ult. Strength: Specimen Thk: Specimen Width:

K_{Iscc}: Ref: 85543





┨ 7178 ├ Condition/Ht: T651+ 12HR AT 320F Form: 1 in. Plate Specimen Thk: Specimen Width: Specimen Type: DCB Ao: Orientation: T-L Yield Strength: KIscc: Ref: 85543 Ult. Strength: Kmax (MPa√in) 40 100 (1 of 1) Kmax (MPa√in) 1 10 40 100 11111 1 1 1 1 1 1 1 1 1 111111 10² 10² Environment: R.T. 10⁰ 10° 10¹ 10¹ 10-1 10⁻¹ da/dt (in/hour) da/dt (in/hour) 10-4 10 10⁻³ 10⁻³ 10⁻⁵ 10-5 10-4 10-4 10⁻⁶ 10⁻⁶ 4 10 40 Kmax (Ksi√in) 100 4 10 40 Kmax (Ksi√in) 100 Kmax (Ksi√in)  $da/dt (10^{-3}in/hour)$ Kmax (Ksi√in)  $da/dt (10^{-3}in/hour)$ RMS % RMS %

Error

Error



#### TABLE 8.18.2.2

						<b>■</b>	ALUMINUM	NOM	7178	7178 (ALCLAD)	(QV)	K,							
	PROI	PRODUCT	1001		4181	SPECIMEN	MEN	CRACK	CK 7TH	GROSS	SS		Kapp			Кc			
CONDITION HEAT TREAT	FORM	THICK (in.)	TEMP (°F)	SPEC	STR (Kel)	WIDTH (In.)	THICK (in.)	INIT (in.) 2a.	FINAL (in.) 2a,	ONSET (Ksi) _G	MAX (Kei) Ohen	K (Ket Vin)	K	STAN DEV	K _e (Kelvin)	K _o MEAN	STAN	DATE	REFER
							BUCKLI	VG OF C	RACK ED	BUCKLING OF CRACK EDGES NOT RESTRAINED	RESTRA	ONED							
		90:0	·.		82.2	3.000	0.063	1.260	1.883	1	24.80	39.25			57.36*			1973	86213
75	Sheet	90.0	R.T.	7	82.2	3.000	0.063	1.200	1.828	ı	26.40	40.30	39.0	1.5	58.95*	1	ı	1973	86213
		90:0			82.2	3.000	0.063	1.100	1.762	:	26.00	37.32			55.67			1973	86213
į	ž	0.12	8		81.8	3.000	0.123	1.160	2.102	ı	29.10	43.35			78.56*			1973	86213
9	19000	0.12	:	3	81.8	3.000	0.124	1.200	2.066	:	26.10	39.84	41.6	2.5	•09'89	i	1	1973	86213
ğ	9	0.02	E		78.6	3.000	0.021	1.120	1.879	ı	29.10	42.29			67.13*			1973	86213
70	Sheet	0.02	. i.	3	78.6	3.000	0.021	1.140	2.016	,	28.60	42.08	42.2	0.1	72.50*	I	:	1973	86213
Т6	Sheet	90:0	R.T.	T.L	79.4	3.000	0.063	1.170	1.768	1	23.90	35.82			51.37			1973	86213
È	ä	0.12	E		77.0	3.000	0.125	1.200	2.055	:	20.30	30.99			52.89*			1973	86213
0.7	19auc	0.12	F. I.	3	77.0	3.000	0.125	1.300	2.033	ı	19.20	31.12	31.1	0.1	49.23	ı	i	1973	86213
į	j	90:0	E	E	71.6	3.000	0.064	1.200	2.059	1	32.00	48.84			83.62*			1973	86213
0	oneet	90:0		1	71.6	3.000	0.064	1.120	2.010	ı	35.40	51.45	60.1	1.8	*96.98	ı	ł	1973	86213
, in	ā	0.12	6		67.4	3.000	0.130	1.150	2.093	ı	34.20	€0.63*			91.64*			1973	86213
9/1	Sheet	0.12	K.T.	-	67.4	3.000	0.131	1.260	2.150		31.80	50.33*	1	ı	*20.68	i	I	1973	86213
į	ā	90.06	£		71.4	3.000	0.064	1.140	1.824	ı	29.70	43.70			66.15*			1973	86213
911	120110	90.0	T. I.	2	71.4	3.000	0.065	1.240	1.910	ı	27.30	42.69	43.2	0.7	64.33*	ı	i	1973	86213
JAL		0.12	E	Ė	6.99	3.000	0.132	1.210	2.089	i	29.50	45.30		,	*18.81			1973	86213
011	18800	0.12	W.I.	1:1	66.8	3.000	0.132	1.200	2.015	i	30.00	45.79	45.5	0.3	*96'92	ı	1	1973	86213

• NOTE: NET SECTION STRESS EXCREDS 80% OF YIELD STRENGTH. VALUE NOT INCLUDED IN MEAN OR STANDARD DEVIATION.

MEAN PLANE STRAIN FRACTURE TOUGHNESS FOR ALUMINUM 7000/8000 SERIES ALLOY 7475 AT ROOM TEMPERATURE

Product					$K_{Ic}$	$K_{Ic}~(ksi\!\sqrt{in})$	<u>1</u>			
Form	Condition/Heat Treatment			S	Specimen Orientation	n Orien	itation			
			L-T			T-L			T-S	
		Mean K _{le}	Std Dev	u	Mean K _{te}	Std Dev	u	Mean K _{Ie}	Std Dev	£
	T651	40.1	2.4	19	34.6	3.5	120	32.9	2.5	8
	T651 (SP)	35.3	1.9	8	34.4	2.1	11	27.3	1.6	10
į	T7351	47.1	4.9	150	37.2	4.	109	30.6	2.7	09
Flate	T7361 (SP)	:	1	:	37.6	2.5	17	:	•	:
	T7651	42.1	3.7	11	34.	2.9	8	27.6	0.8	2
	T7651 (SP)	42.4	2.9	က	35.7	9.4	3	27.3	2.1	9

TABLE 8.19.1.2.1

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7475 AT ROOM TEMPERATURE

**TABLE 8.19.1.2.2** 

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK
7475 AT ROOM TEMPERATURE

ORIENTATION: L-T

ENVIRONMENT: Distilled Water

					TOTAL TOTAL TOTAL TOTAL				
CONDITION	PRODUCT	1	FREG		FC	<i>3R</i> (10	FCGR (10 ⁶ trycycle)	(6)	
HEAT TREATMENT	FORM	4	(Hz)		IΔ	X Lovel	ΔK Level (Ksi√in)	1)	
				2.5	5,0	10.0	20.0	60.0	100.0
	LEUT ALL	0.05	1			5.97	40.97		
17381	FLATE	0.8	1		2.64				
		0.05	1			7.27			
		0.05	1			7.04	52.88		
• • • • • • • • • • • • • • • • • • • •	£	0.05	1			7.85	79.12		
10/1	OUEET	0.8	1		2.72				
		0.8	1	0.4	3.02				
		0.8	1		3.74				
* 10000	1 TO 1	0.05	1			5.82	34.93		
1,001	FDATE	0.8	1		2.86		,		
THE STATE STATE	107 14	0.05	1			3.91	51.69		
1 (001; Z00f 4fik	FLATE	0.8	1		2.62	,			

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7475 AT ROOM TEMPERATURE

ORIENTATION: L-T

ENVIRONMENT: Dry Air

	T	,		744444	ENVIRONMENT. DIS MI		TITO		
CONDITION	PRODUCE		FREG		FC	<i>GR</i> (10	FCGR (10 ⁶ ín/cycle)	(e)n	
HEAT TREATMENT	FORM	R	(ZH)		Δ.	K Level	ΔΚ Level (Ksivin)	(a	
				2.5	6,0	10.0	0.02	60.0	100.0
T61	SHEET	0.33	13.3			10.24			
		0.1	9		0.25	2.71	43.48		
13000	E 4 10	0.3	8		0.34	68'9	69.13		
1,001	FUAIR	0.33	2-20			4:94			
		0.5	6		9.0	8.83	75.52		
1761	SHEET	0.33	13.3			8.66	59.23		
		-0.2	9		0.18	3.73	31.55		
		0.1	8			3.64	39.02		
T7651	PLATE	0.1	20		1.04	5.63			
		0.3	9		0.61				
		0.5	9	0.11	1.14	11.83			

**TABLE 8.19.1.2.4** 

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7475 AT ROOM TEMPERATURE

			100.0																
-	le)	ı)	60.0			962.28													
[.A.	⁶ ir/cyc	(Ksi/ii	20.0	42.27	67.03			302.31		242.07	48.06		100.48	,	87.6				
Tr: H.H	FCGR (10.º in/cycle)	ΔK Level (Ksiv'in)	10.0				28.74	33.3		35.45	3.17		10.2		.13.03		20.57	19.22	6.27
NMEN	FCI	Δŀ	5,0							0.93		0.26			0.91				
ENVIRONMENT: H.H.A.			2.5						0.05					0.03	90.0	0.11			
E	FREG	(HZ)		2	2	2	13.3	5.2	25		**	9-30	9-30	5.5-33	25	6-33	6-33	13.3	0.1
		¥		0.05	0.05	0.05	0.33	0.33	0.33	0.33	0.1	0.1	0.1	0.25	0.33	0.5	0.5	0.33	0.1
: L-T	PRODUCT	FORM			Edulio	. Tagus			PLATE					PLATE				SHEET	PLATE
ORIENTATION: L-T	CONDITION	HEAT TREATMENT			TOT	101			T651					17351				T761	T7651

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7475 AT ROOM TEMPERATURE

	0.0	
	100.0	
	cle) n)	
	(9)	
[e]	/m	
F	2/c	43.15
4	B 11.	4
ENVIRONMENT: JP-4 Jet Fuel	ECGR (10 ⁶ in/cycle) ΔΚ Level (Ksiv/in)  0   100   200   τ	
4-	00 107	4.46
H		•
ä	Δ. Δ. L. C.	
Ż	PC Δ.	0.46
Æ		
Ź		
0	2.5	
11		
Ž	G.	
$\Xi$	(Hz)	0.1-20
	E.H.	0
•		
•		
	H	0.02
	PRODUCT	9
	OC	PLATE
	RC F	
H.	d	
H		
Ż		
)į		
AT	5	
1	4/ (F)	
	AO M	
<b>E</b>	FI.	_
ORIENTATION: L-	CONDITION/ HEAT TREATMENT	T7351
i	ZH	,,
	O,H	
	¥.A	
	H	
	<b>II</b> :	

**TABLE 8.19.1.2.6** 

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7475 AT ROOM TEMPERATURE

ORIENTATION: L-T

**ENVIRONMENT: Lab Air** 

				> 1133333	N TOTAL TOTA	TWO CHANTELL TOOL THE			
PRODUC	H	;	FREG		FC	FOGR (10 ⁻⁶ in/cycle)	⁶ in/cyc	(e)	
FORM		¥	(Hz)		V	ΔΚ Level (Ksi√in)	(Ksių'ii	(u	
				2.5	5.0	10.0	20.0	50.0	100.0
		0.1	æ				45.57		
		0.1	10			4.74			
SHEET		0.3	10			9.35	77.1		
		0.5	5		2.14				
		0.5	10			12.44			
PLATE		0.1	20			6.53			
SHEET		0.1	20			5.12	43.17		
PLATE		0.33	25		1.03	18.69			
		٠.	1					801.56	
		-1	2-15		0.4		-		
		0.02	0.1-20		0.21	4.39	40.96		
THE STATE OF THE S		0.05	5	0.05	0.55	. 5.31	39.92	575.67	
gien		0.1	10		0.25	4.99			
		0.1	5-10			6.44	66.02		
		0.1	5-20	0.03	0.34	5.49	49.68		
		0.1	20			5.65			

**TABLE 8.19.1.2.6 (CONTINUED)** 

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7475 AT ROOM TEMPERATURE

ORIENTATION: L-T

ENVIRONMENT: Lab Air

			100.0																
	(e)	(1	60.0						994.06										
AIL	⁶ in/eyc	(Ksi/ii	20.0		64.81				44.02	39.95	40.61	32.53	58.93	69.11			41.52		
T: TAD	FCGR (10 ⁻⁶ in/cycle)	ΔΚ Level (Κθίγίπ)	10.0		10.09	14.52				8.75	7.27	5.65	13.29	19.64	- 16.04	23.06	4.2		
TATATETY.	FC	ΔF	6.0	0.95	1.03	1.05	2.43	2.46		6.0	9.0		1.61	1.74	3.67	2.02		0.28	1.02
ENVIRONMENT: LAD AIR			2.5		0.15		0.16	0.14		0.07	0.09		0.14	0.13	0.3	0.07			
2	FREG	(HZ)		5-15	20	10	20	5-30	3	7	3-20	20	סי	5-15	10	3-15	8	30	30
	1	<b>±</b>		0.4	0.4	0.5	0.8	8.0	0.1	0.1	0.1	0.1	4.0	9.4	0.8	9.0	o.	0.	0.4
	PRODUCT	FORM				PLATE (Contd)					. 1	нааны	Idano					SHEET	
THE PROPERTY OF THE PROPERTY O	CONDITION	HEAT TREATMENT				T7351 (Cont'd)						1781						T7651	

**TABLE 8.19.1.2.6 (CONCLUDED)** 

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7475 AT ROOM TEMPERATURE

ıb Air	РССЯ (10 ⁶ іц/сусів)	ΔK Level (Ksi√in)	20.0 50.0 100.0	76.25			512.41	44.83		46.88				90.38 665.88			
I UKE ENVIRONMENT: Lab Air	FCGR (1	ΔK Le	0 10.0		21.49	11		6.47	34	93 8.86	38	4.04	2.25	0.39 7.59	,	1.53	3.34 19.14
ONM			5.0			3.51			0.24	0.93	0.88	4.(	2.5	0.5		1,1	
URE			2.5								0.08		0.14			0.1	0.25
IFERA!	FREG	(Hz)		i	2	5-10	3	9	5-10	10	20	10	30	8	5	5-15	10-15
OM LEW		#		0.4	0.8	9.0	0.	0.05	0.05	0.4	0.4	0.8	0.8	0.05	4.0	0.4	8.0
7475 AI KUUM IEMPEKAIUKE LT ENVIR	PRODUCT	FORM			SHEET (Contd)					PLATE						PLATE	
ORIENTATION: L-T	NOLLIGNOD	HEAT TREATMENT						17651	(Contd)							17651; 255F 4HR	

TABLE 8.19.1.2.7

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7475 AT ROOM TEMPERATURE

	100.0	
	(e)	
W.	in/cycl I (Ksi/in	62.57
VT: S.S	FCGR (10 ⁻⁶ in/cycle)	6.73
ENVIRONMENT: S.S.W.	FCC AH	0.43
ENVIR	2.5	
	FREQ (Hz)	0.1-20
	Я	0.02
l: L-T	PRODUCT	PLATE
ORIENTATION: L-T	CONDITION/ HEAT TREATMENT	T7351

**TABLE 8.19.1.2.8** 

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7475 AT ROOM TEMPERATURE

ORIENTATION: L-T	L-T		<b>Y</b>	ENVIRONMENT: S.T.W.	NME	T: S.T	W.		
/NOLLHIUNO)	ESTITUDAG		FPEC		FCC	7R (10-	PCGR (10 ⁴ in/cycle)	(0)	
HEAT TREATMENT	FORM	<b>H</b>	(HZ)		ΔŁ	Level	ΔΚ Level (Ksi√in)	9	
				2.5	5.0	10.0	20.0	60.0	100.0
		-0.2				3.02			
		0.1	1			21.06	131.96		
		0.1	1		0.72	13.32			
		0.1	9			8.55			
T7351	PLATE	0.3	1			45.97	174.12		
		0.3	1		99.0	30.24			
		0.33	2-20			22.15			
		0.5	1		1.63	65.27	338.64		
		0.5	1		4.57	43.67			
		0.	1			27.14			
	SHEET	0.01	1-5			31.99			
		-0.2	1		0.38	20.48			
T7651		0.1	0.1			14.93	186.07		
	PLATE	0.1	1		0.3	26.41	122.35		
		0.3	1		1.16	36.33	162.49		
		0.5	1		4.07	44.79	,		

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK
7475 AT ROOM TEMPERATURE

		1	T
	100.0		
	50.0		
Fog	6 in/cycl (Ksi/in		184.56
ENVIRONMENT: Salt Fog	FCGR (10 ⁻⁶ in/cycle)	43.76	35.76
NMEN	FCC AB		
NVIRO	2.5		
E	FREQ (Hz)	13.3	13.3
-	A _	0.33	0.33
,			_
	BUCT	ET	ET
L-T	PRODUCT	SHEET	SHEET
ORIENTATION: L-	-		
NTAT	IN/ MENT		
ORIE	CONDITION/ AT TREATME	T61	T761
	CONDITION/ HEAT TREATMENT		
	HE		

**TABLE 8.19.1.2.10** 

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7475 AT ROOM TEMPERATURE

3.5% NaCl	PCGR (10 ⁻⁶ ir/cycle) ΔK Level (Ksi/in)  10.0 20.0 50.0 100.0	190.67	147.17
ENVIRONMENT: 3.5% NaCl	2.5 5.1		
	R FREG	0.05	0.05
i: T-L	PRODUCT FORM	SHEET	SHEET
ORIENTATION: T-L	CONDITION/ HEAT TREATMENT	T61	1761

# FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR $\Delta K$ 7475 AT ROOM TEMPERATURE

ORIENTATION: T.L

ENVIRONMENT: Dry Air

	(e	-	50.0 100.0								
	FCGR (10 ⁶ in _f cycle)	ΔΚ Level (Ksi√in)	20.0	89.65			53.54	65.97		73.63	
6	<i>GR</i> (10	K Lovel	10.0	11.47	8.87	8.52	3.33	7.64		10.8	8.21
	FC	Δ.	5.0			0.89	0.24	0.39	0.75		
			2.5								
	FREG	(Hz)		13.3	13.3	1	9	9	9	13.3	13.3
		4		0.33	0.33	0.1	0.1	0.3	0.6	0.33	0.33
	PRODUCT	FORM		MARILIO	OREEL	PLATE		PLATE		#41100	199116
	CONDITION	HEAT TREATMENT		126	101	T651		T7351		1997	70.4

**TABLE 8.19.1.2.12** 

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7475 AT ROOM TEMPERATURE

100.0 60.0 PCGR (10.º in/cycle) AK Level (Ksiv/in) 20.0 113.02 180.58 50.43 49.24 59.88 ENVIRONMENT: H.H.A. 10.0 19.96 10.96 19.94 21.32 26.31 12.6 3.58 4.5 9 5 3 FREQ (Hz) 13.3 13.3 13.3 2-20 13.3 0.1 0.33 0.33 0.33 0.33 0.330.250.1 Ľ 0.1 PRODUCT FORM SHEET SHEET PLATE ORIENTATION: T-L HEAT TREATMENT CONDITION T7351 T761 181

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7475 AT ROOM TEMPERATURE

ORIENTATION: T-L

ENVIRONMENT: L.H.A.

		100.0					
cle)	in)	50.0					
 1-6 III/CSV	I (Ksiv)	20.0	114.75		62.02	57.6	
FCGR (10 ⁻⁸ in/cycle)	ΔΚ Level (Kst/ln)	10.0	4.72	4.08	1.96	4.08	3.93
FC	V	5.0		0.3		0.19	0.36
		2.5					
FREC	(HZ)		2-20	2-30	30	2-30	2-30
1	K		0.33	0.33	0.33	0.33	0.33
PRODUCT	FORM				PLATE		
CONDITION/	HEAT TREATMENT				T7351		

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7475 AT ROOM TEMPERATURE

ORIENTATION: T-L	1: I-T		<u>덕</u>	<b>ENVIRONMENT: Lab Air</b>	ENT: Lab	Air		
CONDITION/ HEAT TREATMENT	PRODUCT	R	FREQ (Hz)	F 1	FCGR (106 in/cycle)           ΔK Level (Ksi\/in)           0         100         20π         5	6 in/cyc. (Ksi/ii	00	100.0
T8151	SHEET	0.1	20		6.79	46.35		
176	SHEET	0.33	13.3		9.29			
1761	SHEET	0.1	20		4.27	43.73		

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR  $\Delta K$  7475 AT ROOM TEMPERATURE

ORIENTATION: T-L

ENVIRONMENT: S.T.W.

		100.0							
(e)	n)	60.0							
⁶ 114/c3/c	(Ksiųli	20.0	124.08	221.11					370.99
FCGR (10 ⁴ in/cycle)	ΔK Level (Ksiγin)	10.0	7.62	42.7	39.16	22.07	21.93		44.89
7.0	Ψ	5.0		0.34			1.18	1.27	1.41
		2.5							
DHHH	(Hz)		1	1	2	20	20	30	1
	R		0.1	0.3	0.33	0.33	0.33	0.33	0.5
PRODICT	FORM					PLATE			
NOLLIGNOS	HEAT TREATMENT					T7351			

**TABLE 8.19.1.2.16** 

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7475 AT ROOM TEMPERATURE

ORIENTATION: T-L	1: T-L			ENVIRONMENT: Salt Fog	NMEN	T: Salt	Fog		
					FC	<i>GR</i> (10	FCGR (10 ⁻⁶ in/cycle)	(6)	
CONDITION/	PRODUKT		FREG				i.		
HEAT TREATMENT	FORM	범	(Hz)		77	T. Lovel	ΔK Level (Ksi√in)	n)	
				2.5	5.0	10.0	20.0	50.0	100.0
		0.33	13.3			40.19	208.85	_	
161	SHEET	0.33	13.3			30.03			
TOTO:		0.33	13.3			39.31	191.15		
1 (61	SHEET	0.33	13.3			33.86			

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7475 AT ROOM TEMPERATURE

ORIENTATION: S-1	1: S-L	-	田	ENVIRONMENT: Dry Air	NMEN	T: Dry	Air		
CONDITION/ HEAT TREATMENT	PRODUCT FORM	Я	FREQ (Hz)	4.24	FCc AI	7R (10 ⁻	FCGR (10 ⁻⁶ in/cycle)  AK Level (Ksiv/in)	) 1 50.0	100:0
		0.1	9		0.79	7.48	141.92		
T7351	PLATE	0.33	2-20			5.52			
		0.5	9		1.37	25.12			

1 of 1

**TABLE 8.19.1.2.18** 

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7475 AT ROOM TEMPERATURE

	100.0	
	5	
	(b)	
	0	
	0.0	
	6 2	
	fitycyc (Ksik/ii	
	2 £ 0	
ا د	S S S	
4.		
I	g- I	
_:	1.00   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	
I	0 6	11.63
••	2 7	1
	FK	
4		$\vdash$
2	7.2	
5	F 6.0	
テ	15	
=		
ENVIRONMENT: H.H.A.		$\vdash$
Ξ,		
7	2.5	
	100	1
4		
4		
	(Hz)	
	'REG	2-20
	H	8
	(H	
-		
	R	0.33
	#	0
	ı.I	
	₹5 <u></u>	
	× 2	63
	) ( R.	
	RODUC	PLATE
	22	
	RODUCI	
7	<b>—</b>	
'n		
<i>91</i>		
7.		$\vdash$
7		
<b>ゴ</b>		
	L	
⋖	Z	
	/ E	
Z	25	
3		
☴	I.	ا ا
ORIENTATION: S-L	CONDITION/ HEAT TREATMENT	<u>15</u>
		T7351
-		[
	- 6T	
	9 H	
	- O-4	
	<u> </u>	
	<b>-</b>	
	I	
	<b>N</b>	ıl

**TABLE 8.19.1.2.19** 

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7475 AT ROOM TEMPERATURE

: L.H.A.	FCGR (10 ° in/cycle)	6.79
ENVIRONMENT: L.H.A.	FCGR AK I	1.1 6
<b>2</b>	FREQ (Hz)	2-30
	R	0.33
: S-L	PRODUCT FORM	PLATE
ORIENTATION:	CONDITION/ HEAT TREATMENT	T7351

**TABLE 8.19.1.2.20** 

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7475 AT ROOM TEMPERATURE

**ORIENTATION: S-L** 

ENVIRONMENT: S.T.W.

in/cycle)	Ksi√in)	20.0 50.0 100.0				
FCGR (10 ⁻⁶ in/cyclė)	ΔK Level (Ksi/in)	10.0	35.29	45.75	23.15	58.2
FC	LA.	5.0	2.07	4.21		4.71
		2.5				
FREQ	(Hz)		1	1	20	1
£	4		0.1	0.3	0.33	0.5
LONGONA	FORM				FLATE	
CONDITION	AT TREATMENT			ra con	1,001	

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR  $\Delta K$ 7475 AT ROOM TEMPERATURE

ENVIRONMENT: 3.5% NaCl	R FREQ AK Level (Kolyin)  2.5 8.0 10.0 80.0 100.0	0.1 1 26.41
specified	PRODUCT	PLATE
ORIENTATION: Unspecified	CONDITION/ HEAT TREATMENT	T7651

**TABLE 8.19.1.2.22** 

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7475 AT ROOM TEMPERATURE

				<del></del> ]		
			100.0			
			50.0			
	(clo)	(iii				
Air	in/cy	(Ksiv)	20.0	41.23	37.18	19.35
F: Dry	FCGR (10 ⁻⁶ in/cycle)	AK Level (Ksk/in)	10.0	9.31	5.76	3.36
MEN	FCC	ΔK	6.0			
<b>ENVIRONMENT: Dry Air</b>			2.5	·		
EN		FREG (Hz)		20	20	20
		HH E		.,		.,
		#		0.1	0.1	0.1
		K				
q		RODUCT FORM			PLATE	
<b>ORIENTATION: Unspecified</b>		PRO FC			Ā	
Unsi						
ION		CONDITION/ HEAT TREATMENT				-
<b>LAT</b>		NON				
EN		DII RE/			1851	
OR		CONDITION/ AT TREATME				
		HEA				

					ALUI	ALUMINUM	1475	75 K _{Ie}							
	PRODUCT	UCT				80	SPECIMEN	Z	CRACK			K _I °			
CONDITION	FORM	THICK (in.)	TEST TEMP (°F)	SPEC	YTELD STR (Kel)	WIDTH (in.) W	THICK (in.)	DESIGN	LENGTH (in.) A	2.5 • (KTYS)* (ln.)	K. (Kelvin.)	K. MEAN	STAN	DATE	REFER
ş	5	1.62	60		9.69	1.000	0.499	cr	0.529	0.46	29.80			1973	86213
OT	Filte	1.62	2	7	9.69	1.000	0.499	CT	0.552	0.47	30.30	30.1	4.0	1973	86213
	<b></b>	96.0		I	72.3	2.004	0.958	CT	1.042	0.75	40.40			1978	MPC01
		0.92			72.3	2.979	0.960	CT	1.549	0.81	41.90			1978	MPC01
		0.92			74.3	3.017	0.931	CT	1.569	0.87	44.00		_	1978	MPC01
		96.0		1	74.3	1.985	0.931	CT	1.032	0.72	40.60			1978	MPC01
2		96.0		i	74.5	2.009	0.950	CT	1.065	0.70	40.10			1978	MPC01
		0.92	*****	L	74.5	3.014	0.962	CT	1.637	0.78	42.20			1978	MPC01
		96.0		, <u>.</u>	74.8	1.996	0.934	CT	1.058	0.72	40.50			1978	MPC01
		0.92			74.8	3.021	0.935	CT	1.671	0.81	43.20			1978	MPC01
	I.	0.92		1	74.8	2.011	0.918	CT	1.086	0.78	42.60			1978	MPC01
T651	Plate	96.0	R.T.	7	76.1	1.996	0.931	CT	1.038	0.78	42.40	40.1	2.4	1978	MPC01
	L	0.87		1	76.6	2.975	0.860	CT	1.647	0.67	40.10			1978	MPC01
		0.92			76.6	1.985	0.903	CT	1.072	0.72	41.60			1978	MPC01
		0.87		1	76.6	2.017	0.859	CT	1.049	0.65	39.10			1978	MPC01
		0.92		1	76.9	2.992	0.951	CT	1.496	0.62	36.00			1978	MPC01
	<u>L</u>	0.95		1	76.9	2.012	0.949	CT	1.046	0.62	35.40			1978	MPC01
		0.92		1	77.5	2.992	0.910	CT	1.526	09:0	38.70			1978	MPC01
		0.92			77.5	1.996	0.904	CT	1.098	0.66	36.80			1978	MPC01
	<u> </u>	0.92		1	78.0	3.004	0.932	CT	1.532	0.67	38.00			1978	MPC01
		0.92			78.0	2.000	0.932	CT	1.040	09:0	38.70			1978	MPC01

Ę		~																	-	_		_	_	_	
		REFER	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01													
	-	DATE	1978	1978	1978	1978	8261	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978
		BTAN DEV												3.5											
	K _{Ie}	K. MEAN												34.6											
		K. (Katvin.)	38.80	34.00	40.50	41.80	35.30	34.70	35.30	38.10	35.30	34.00	38.30	38.00	38.80	34.50	35.20	41.60	30.40	37.80	35.70	34.00	41.20	37.30	36.80
	·	2.6 • (K,_TY8)* (in.)		09'0	0.84	0.90	0.62	0.60	0.62	0.72	0.62	0.57	0.72	0.70	0.72	0.57	0.60	0.84	0.44	0.70	0.62	0.67	0.84	0.67	99.0
			1.049	1.541	1.056	1.605	1.036	1.045	1.510	1.035	1.004	1.063	1.540	1.494	1.049	1.086	1.018	1.549	1.071	1.542	1.066	1.040	1.000	1.025	1.580
5 K _{Io}	z	DESIGN	CT	CT	C.	C,T	CT	CT	CT	CT	CT	CT	cr	CT	CT	r T	ст	CT	Ç	CT	СТ	Ę	CT	CI	CI
7475	SPECIMEN	THICK (in.) B	1.000	1.501	0.999	1.025	0.886	0.947	0.888	0.866	0.876	1.001	0.880	0.882	0.999	0.969	0.880	1.006	0.873	0.993	0.990	0.889	0.871	0.871	0.873
ALUMINUM	8	WIDTH (in.)	2.017	3.022	1.993	3.028	1.992	2.010	3.020	1.990	2.008	1.987	3.020	2.988	2.017	2.011	1.996	2.979	1.983	3.024	1.993	2.000	2.000	2.010	2.981
ALU		YIRLD STR (Ket)	ŀ	69.0	0.69	0.69	69.5	69.5	69.5	9.69	8.69	8.69	8.69	70.6	70.6	70.6	70.6	70.6	7.07	7.07	7.07	70.8	71.0	11.1	11.1
		SPEC	1					1		1				T.L											
		TEST TEMP (°P)												R.T.								•			
	UCT	THICK (in.)	1.00	1.50	1.00	1.00	0.87	0.92	0.87	0.87	0.87	1,00	0.87	0.87	1.00	0.92	0.87	1.00	0.87	1.00	0.1	0.87	0.87	0.87	0.87
	PRODUCT	FORM												Plate											
		CONDITION												T651											

PRODUCTON   PORM   Care   Ca						ALU	ALUMINUM	1 7475	5 K _I							
PORM   THICK   TEMP   OR   Graft   William   THICK   Graft   A   LEGAL   Graft   A   Graft   Graft   A   Graft   Graft   A   Graft   Graft   A   Graft   A   Graft   Graft   A   Graft   Graft   A   Graft   Graft   A   Graft   A   Graft   Graft   A   Graft   Graft   A		PRO	DUCT				SC	PECIME	z	CRACK			K _{Io}		-	
0.87         71.2         2,012         0,670         CT         1,026         0,620         53.20           0.87         71.2         2,002         0,882         CT         1,061         0,644         41.30           1.00         71.3         1,693         0,889         CT         1,066         0,656         84.10           1.10         1,10         71.4         2,072         1,027         CT         1,024         0,691         40.80           0.87         71.4         2,072         1,002         CT         1,024         0,695         83.10           0.87         71.5         2,002         0,884         CT         1,002         0,77         83.80           0.87         71.7         2,002         0,884         CT         1,002         0,72         83.80           0.82         71.7         1,881         0,881         CT         1,002         0,72         83.40           0.82         71.7         1,881         0,891         CT         1,002         0,891         0,891           0.82         71.0         1,881         0,891         CT         1,004         0,87         83.40           0.82         72<	CONDITION	FORM	THICK (in.)		SPEC	YIELD STR (Kel)	WIDTH (In.)	THICK (in.)	DESIGN	LENGTH (in.)	8.6 • (K _{he} TYS)* (in.)	K. (Kelvin.)	K. MEAN	STAN	DATE	REFER
0.87         71.2         2.022         0.889         CT         1.06         0.84         41.30           1.00         71.3         1.890         0.899         CT         1.066         0.05         34.10           1.00         0.877         71.4         2.078         1.007         CT         1.031         0.70         38.30           0.877         71.4         2.002         1.002         CT         1.024         0.80         38.10           0.877         71.5         2.009         0.884         CT         1.024         0.80         38.50           0.877         71.7         1.886         0.885         CT         1.000         0.72         38.80           0.877         1.00         0.72         1.000         0.72         38.40         0.74         31.50           0.877         1.00         0.77         1.022         0.74         31.50         0.74         31.50           0.877         1.00         0.77         1.00         0.72         38.40         0.74         31.50           0.877         1.00         0.77         1.00         0.72         38.40         0.74         31.50           0.82			0.87		1	71.2	2.012	0.870	G	1.026	0.62	33.20			1978	MPC01
1,00			0.87			71.2	2,002	0.882	CT	1.061	0.84	41.30			1978	MPC01
1,00			0.87		1	71.3	1.993	0.869	CL	1.056	99'0	34.10			1978	MPC01
1,00			1.00			71.4	2.978	1.007	CT	1.519	0.81	40.80			1978	MPC01
0.87         7.16         2.008         0.844         CT         1.024         0.60         35.10           0.87         7.1         2.000         0.845         CT         1.000         0.72         38.80           0.82         7.1         1.986         0.821         CT         1.062         0.62         32.40           0.82         7.1         1.986         0.821         CT         1.062         0.62         33.40           Contid         1.00         R.T.         7.1         1.986         0.821         CT         1.069         0.62         37.60           Contid         0.22         7.1         1.986         0.827         CT         1.064         0.62         37.80           0.22         7.20         1.086         0.877         CT         1.064         0.62         37.80           0.22         7.20         1.986         0.827         CT         1.044         0.65         38.40           0.82         7.2         1.081         0.827         CT         1.044         0.65         38.40           0.82         7.2         1.084         0.7         1.044         0.65         38.40           0.82			1.00			71.4	2.002	1.002	CT	1.021	0.70	38.30			1978	MPC01
O.87			0.87			71.6	2.008	0.884	CT	1.024	09:0	35.10			1978	MPC01
0.87			0.87	•	1	71.6	2.000	0.865	CT	1.000	0.72	38.80			1978	MPC01
Plate         1.00         R.T.         71.7         2.996         0.921         CT         1.629         0.652         33.40           Optical Control         1.00         R.T.         71.7         1.986         0.920         CT         1.032         0.46         31.50           Control         0.92         Centrol         71.9         1.086         0.927         CT         1.089         0.65         33.60           0.92         Centrol         71.9         1.086         0.927         CT         1.062         0.65         33.60           0.92         72.0         1.086         0.927         CT         1.064         0.62         33.60           0.92         72.0         1.081         0.927         CT         1.044         0.67         38.10           0.82         72.0         1.089         0.927         CT         1.040         0.65         34.60           0.82         72.1         2.014         0.987         CT         1.040         0.65         34.60           0.82         72.4         2.000         0.891         CT         1.040         0.62         38.40           0.82         72.4         2.006         0.891 </td <td></td> <td></td> <td>0.87</td> <td>•</td> <td>!</td> <td>71.7</td> <td>1.985</td> <td>0.895</td> <td>CT</td> <td>1.052</td> <td>0.50</td> <td>32.40</td> <td></td> <td></td> <td>1978</td> <td>MPC01</td>			0.87	•	!	71.7	1.985	0.895	CT	1.052	0.50	32.40			1978	MPC01
Phate Control 0.92         R.T. T.L. T.L. T.L. T.L. T.L. T.L. T.L.			0.92			71.7	2.998	0.921	CT	1.529	0.52	33.40			1978	MPC01
Plate 0.92         R.T. T. Cont'd 0.92         71.9			0.92			71.7	1.986	0.920	ÇŢ	1.032	97.0	31.50			1978	MPC01
Cont'd         Cont'd         Cont'd         71.9         2.017         0.884         CT         1.069         0.665         87.30         Cont'd           0.922         71.9         1.886         0.827         CT         1.062         0.622         83.40           0.922         72.0         1.881         0.862         CT         1.004         0.652         83.40           0.92         72.0         1.881         0.827         CT         1.004         0.65         82.90           0.92         72.0         1.899         0.827         CT         1.047         0.65         84.00           0.92         72.1         1.099         0.827         CT         1.047         0.65         84.00           0.92         72.4         1.996         0.891         CT         1.047         0.65         84.00           0.92         72.4         1.996         0.891         CT         1.040         0.62         84.0           0.92         72.6         2.018         0.891         CT         1.040         0.65         84.0           0.92         72.6         2.018         0.891         CT         1.040         0.65         83.0 <td>T651</td> <td>Plate</td> <td>1.00</td> <td></td> <td><u>-</u></td> <td>71.8</td> <td>1.982</td> <td>1.001</td> <td>ភ</td> <td>1.090</td> <td>0.50</td> <td>32.60</td> <td></td> <td></td> <td>8/61</td> <td>MPC01</td>	T651	Plate	1.00		<u>-</u>	71.8	1.982	1.001	ភ	1.090	0.50	32.60			8/61	MPC01
71.9         1.885         0.827         CT         1.062         0.62         33.60           72.0         2.008         0.907         CT         1.004         0.62         33.40           72.0         1.981         0.962         CT         1.030         0.50         32.90           72.0         1.989         0.927         CT         1.047         0.65         34.60           72.4         2.000         0.831         CT         1.040         0.62         38.90           72.4         1.996         0.921         CT         1.018         0.62         38.60           72.5         2.018         0.929         CT         1.029         0.62         38.30           72.6         2.000         0.887         CT         1.040         0.60         38.30           72.6         2.000         0.897         CT         1.040         0.60         38.30           72.7         1.986         0.894         CT         1.040         0.62         38.30	Cont'd	Cont'd	0.92		Cont'd	71.9	2.017	0.894	ij	1.069	99.0	37.30	Cont'd	Cont'd	1978	MPC01
72.0         2.008         0.907         CT         1.004         0.62         38.40           72.0         1.981         0.962         CT         1.030         0.60         32.90           72.0         1.989         0.927         CT         1.064         0.67         36.10           72.1         2.014         0.867         CT         1.047         0.65         34.60           72.4         2.000         0.831         CT         1.040         0.62         36.40           72.5         2.018         0.929         CT         1.018         0.62         38.60           72.6         2.000         0.897         CT         1.040         0.50         39.30           72.7         1.986         0.894         CT         1.040         0.50         39.70			0.92		1	71.9	1.985	0.927	5	1.062	0.62	33.60			1978	MPC01
72.0         1.981         0.962         CT         1.030         0.50         32.90           72.0         1.989         0.927         CT         1.064         0.67         36.10           72.1         2.014         0.867         CT         1.047         0.65         34.60           72.4         2.000         0.831         CT         1.040         0.62         38.90           72.4         1.996         0.921         CT         1.018         0.62         38.40           72.5         2.018         0.929         CT         1.029         0.62         38.60           72.6         2.000         0.887         CT         1.040         0.50         38.30           72.7         1.986         0.894         CT         1.042         0.52         38.70			0.92			72.0	2.008	0.907	Ç	1.004	0.62	33.40			1978	MPC01
72.0         1.889         0.827         CT         1.064         0.67         36.10           72.1         2.014         0.867         CT         1.047         0.65         34.60           72.4         2.000         0.891         CT         1.040         0.62         38.90           72.5         2.018         0.821         CT         1.018         0.62         38.60           72.6         2.000         0.887         CT         1.040         0.50         38.30           72.7         1.986         0.894         CT         1.042         0.52         38.70			0.92			72.0	1.981	0.962	Ç	1.030	0.50	32.90			1978	MPC01
72.1         2.014         0.867         CT         1.047         0.55         34.60           72.4         2.000         0.831         CT         1.040         0.62         36.90           72.4         1.996         0.921         CT         1.018         0.62         38.40           72.5         2.018         0.929         CT         1.029         0.62         33.60           72.6         2.000         0.887         CT         1.040         0.50         38.30           72.7         1.985         0.894         CT         1.032         0.52         39.70			0.92			72.0	1.989	0.927	CT	1.054	0.67	35.10			1978	MPC01
72.4         2.000         0.831         CT         1.040         0.622         36.90           72.4         1.996         0.821         CT         1.018         0.622         38.40           72.5         2.018         0.929         CT         1.029         0.62         33.60           72.6         2.000         0.887         CT         1.040         0.60         33.30           72.7         1.985         0.834         CT         1.032         0.62         33.70			0.87		1	72.1	2.014	0.867	ភ្ជ	1.047	0.66	34.60			1978	MPC01
72.4         1.996         0.921         CT         1.018         0.62         36.40           72.5         2.018         0.929         CT         1.029         0.62         33.60           72.6         2.000         0.887         CT         1.040         0.50         33.30           72.7         1.985         0.894         CT         1.032         0.52         33.70			0.92			72.4	2.000	0.831	ĘŢ.	1.040	0.62	36.90			1978	MPC01
72.5 2.018 0.929 CT 1.029 0.62 33.60 72.6 2.000 0.887 CT 1.040 0.50 38.30 72.7 1.986 0.934 CT 1.082 0.62 39.70			0.92			72.4	1.996	0.921	ÇŢ	1.018	0.62	36.40			1978	MPC01
72.6 2.000 0.887 CT 1.040 0.50 33.30 72.7 1.986 0.894 CT 1.032 0.52 33.70			0.92			72.5	2.018	0.929	CT	1.029	0.62	33.60			1978	MPC01
72.7 1.986 0.834 CT 1.032 0.52 33.70			0.87			72.6	2.000	0.887	CT	1.040	0.60	33.30			1978	MPC01
			0.92			72.7	1.986	0.834	CT.	1.032	0.52	33.70			1978	MPC01

					ALU	ALUMINUM	I 7475	75 K _{Ie}							
	PRODUCT	oucr				S2	SPECIMEN	Z	CRACK			K _{Ie}			
CONDITION	FORM	THICK (in.)	TEST TEMP (°F)	SPEC	YIELD STR (Kel)	WIDTH (ln.) W	THICK (fn.) B	DESIGN	LENGTH (in.) A	2.6 * (K _w TYS)* (in.)	K. (Keivin.)	K. MBAN	STAN DEV	DATE	REFER
		0.62			72.7	2.990	0.646	ţ	1.509	0.45	30.80			1973	86213
		0.62			72.7	3.000	0.646	cr	1.516	0.63	33.60			1973	86213
		0.92			72.7	2.000	0.928	CT	1.040	0.52	34.00			1978	MPC01
		0.92		1	72.7	1.971	0.904	CT	1.025	0.60	35.70			1978	MPC01
		0.92			72.8	2.012	0.921	СŢ	1.046	0.50	33.30			1978	MPC01
		0.87			72.8	2.015	968.0	CŢ	1.048	0.50	33.30			1978	MPC01
		0.87			72.9	1.987	0.878	CT	1.063	0.62	36.50			1978	MPC01
		0.92			73.0	1.989	0.932	CT	1.064	0.48	32.70			1978	MPC01
		0.87			73.1	1.989	0.888	CT	1.034	0.50	33.20	·····		1978	MPC01
		96.0			73.2	2.010	0.954	CT	1.005	0.62	36.60	,		1978	MPC01
T651	Plate	0.62	R.T.	17	73.2	3.000	0.645	ÇŢ	1.539	0.49	32.30	<del></del>		1973	86213
Cont'd	Cont'd	0.62	Cont'd	Cont'd	73.2	3.000	0.646	cr	1.476	0.41	29.80	Cont'd	Cont'd	1973	86213
		0.95			73.2	2.004	0.962	СT	1.062	0.65	37.50			1978	MPC01
		0.95			73.2	1.992	0.966	СŢ	1.036	0.67	35.40			1978	MPC01
		0.92			73.3	2.006	0.932	CT	1.043	0.52	34.20			1978	MPC01
	o	0.92			73.4	2.014	0.929	CT	1.007	0.60	36.10			1978	MPC01
		1.00			73.4	2.013	0.978	C.I	1.067	0.42	30.20			1978	MPC01
		1.00			73.4	1.983	0.993	cr	1.071	0.48	32.70			1978	MPC01
		0.87			73.6	3.018	0.881	CT	1.509	0.48	32.70	<del></del>		1978	MPC01
		0.87			73.6	1.998	0.878	C.	1.039	09'0	32.00	·		1978	MPC01
		0.87			73.7	1.984	0.865	CT	0.972	0.81	42.30	· r		1978	MPC01
		0.87			73.7	1.994	0.872	CT	0.937	0.87	43.60			1978	MPC01

	ALUMINUM 7475	$\mathbf{K}_{\mathbf{Ie}}$						
17HCK TEMP OR GRID OR (Grid) OR (Gri	SPECIMEN	CRACK			K _{Ie}		-	
0.87 0.87 0.87 0.82 0.92 0.87 0.87 0.87 0.87 0.87 0.82 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.9	FTR WIDTH THICK (Ksi) (ib.) DEGIGN W B		2.5 * (K _{to} TYS)* (in.)	K. (Kalvin.)	K. MEAN	STAN D	DATE	REFER
0.87 0.82 0.92 0.92 0.87 0.87 0.87 0.87 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82	73.9 2.992 0.873 CT	T 1.556	0.40	29.60			1978	MPC01
0.92 73.9 73.9 73.9 73.9 73.9 73.9 73.9 73.9	73.9 2.013 0.886 CT	T 1.087	0.44	31.70			1978	MPC01
0.92 0.92 0.92 0.87 0.87 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92	73.9 1.980 0.873 CT	T 1.010	0.38	29.50			1978	MPC01
0.92 0.92 0.87 0.87 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92	73.9 1.981 0.922 CT	T 1.030	0.52	34.10			1978	MPC01
0.92 0.92 0.87 0.87 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92	74.0 1.990 0.911 CT	T 1.035	0.57	36.10		L	1978	MPC01
0.95 0.87 0.87 0.87 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92	74.0 1.996 0.927 CT	T 1.038	09'0	33.70		<u> </u>	1978	MPC01
0.87 0.87 0.87 0.82 0.92 0.92 0.92 0.92 1.00 1.00 0.87 0.87 0.87	74.1 2.012 0.956 CT	T 1.046	0.72	40.40		L	1978	MPC01
0.87 R.T. T.L. 74.3 (0.92 Cont'd Cont'd Cont'd 74.3 (0.92 1.00 1.00 1.00 74.5 (1.00 1.00 1.00 1.00 1.00 74.5 (1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	74.2 1.989 0.918 CT	T 1.034	99:0	35.30			1978	MPC01
0.87 R.T. T-L 74.3 Contd 0.92 Contd 74.3 74.3 74.3 74.5 1.00 74.5 74.5 74.5 74.5 74.5 74.5 74.5 74.5	74.3 1.998 0.872 CT	T 1.019	0.38	29.30		L <u> </u>	1978	MPC01
0.92 Cont'd Cont'd 74.3 0.92 74.3 0.92 74.4 1.00 74.5 1.00 74.5 0.87 74.5	74.3 2.998 0.879 CT	T 1.499	0.42	31.10		L	1978	MPC01
0.92 Cont'd Cont'd 74.3 0.92 74.3 1.00 74.5 1.00 74.5 0.87 74.5 0.67 74.5	74.3 2.015 0.877 CT	T 1.088	99.0	35.00			1978	MPC01
74.3	74.3 2.004 0.920 CT	T 1.042	0.48	32.90	Cont'd	Cont'd	1978	MPC01
74.5 74.5 74.5 74.5 74.5 74.5 74.5 74.5	74.3 3.026 0.919 CT	Т 1.643	0.62	37.20			1978	MPC01
74.5 74.5 74.5 74.5 74.5 74.5 74.5 74.5	74.3 1.988 0.903 CT	т 0.994	0.57	36.00			1978	MPC01
745 745 745 745	74.4 2.002 0.920 CT	Т 1.001	0.46	32.50	-		1978	MPC01
74.5	74.5 2.000 1.011 CT	T 1.020	0.36	28.50			1978	MPC01
74.5	74.5 1.983 1.011 CT	Т 1.061	98.0	28.90			1978	MPC01
74.5	74.5 1.993 0.860 CT	т 1.066	0.44	31.70			1978	MPC01
3.47	74.5 1.979 1.011 CT	T 1.049	0.36	28.80			1978	MPC01
976	74.6 4.956 0.751 CT	Т 2.627	0.72	40.30			1978	MPC01
74.0	74.6 2.013 0.866 CT	T 0.966	0.78	41.90			1978	MPC01
0.92 74.8 3.02	74.8 3.024 0.908 CT	T 1.642	0.67	36.30			1978	MPC01

									_												1		1	
		REFER	MPC01	MPC01	MPC01	86213	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01							
	·	DATE	1978	1978	1978	1973	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978
		STAN												Cont'd										
	K _I e	K. MBAN												Cont'd								₁		
		K. (Kelvin.)	36.70	33.50	29.80	33.00	40.30	30.30	31.00	30.00	33.10	32.40	39.50	34.10	37.80	39.20	31.80	30.80	31.60	30.30	35.20	34.20	36.80	32.40
		2.5 * (K _{w/TYS)} * (in.)	0.60	0.48	0.38	0.48	0.70	0.40	0.42	0.38	0.46	0.44	0.67	09:0	0.62	0.65	0.44	0.40	0.42	0.40	0.62	0.50	0.67	0.44
	CRACK	LENGTH (in.) A	1.042	1.038	1.030	1.026	2.533	1.062	1.060	1.046	1.031	1.014	2.521	1.012	1.533	2.623	1.056	1.070	1.031	1.063	1.018	1.029	1.047	1.079
5 K _I	z	DESIGN	៦	CT	СT	cr	CI	CT	L	СТ	cr	СŢ	CT	CT	CT	cr	CT	cr						
7475	SPECIMEN	THICK (In.) B	0.908	0.919	0.907	0.964	0.759	1.010	1.010	1.010	0.925	0.904	0.749	0.917	0.918	0.748	1.002	1.002	0.867	1.003	0.873	0.881	0.870	0.982
ALUMINUM	<b>S</b> 2	WIDTH (fn.)	2.004	1.996	1.981	2.000	4.967	1.985	2.000	2.012	1.983	1.988	4.943	1.984	3.006	5.046	1.993	2.019	1.983	1.987	1.996	1.979	2.014	1.998
ALUI		YIELD STR (Kel)	74.8	74.9	75.0	75.0	76.1	75.4	75.4	75.4	76.4	75.4	75.4	75.5	76.5	75.6	75.7	75.7	75.7	75.7	75.9	76.0	76.1	76.1
		SPEC											Ţ.Ľ	Cont'd										
		TEST TEMP (°F)											R.T.	Cont'd			····							
	ucr	THICK (in.)	0.92	0.92	0.92	1.00	0.75	1.00	1.00	1.00	0.92	0.92	0.75	0.92	0.92	0.75	1.00	1.00	0.87	1.00	0.87	0.87	0.87	1.00
	PRODUCT	FORM											Plate	Cont'd										
		CONDITION										*	7651	Cont'd										

					ALU	ALUMINUM	I 7475	5 K _I							
9 9 9 9 9	PRO	PRODUCT				82	SPECIMEN	Z	CRACK			K _I		·	
CONDITION	FORM	THICK (in.)	TEST TEMP (°F)	SPEC	YIELD STR (Kal)	WIDTH (In.) W	THICK (in.)	DESIGN	LENGTH (in.) A	2.6 * (K, TYS)* (in.)	K. (Kelvin.)	K. MRAN	STAN DEV	DATE	REFER
		1.00			76.5	2.018	1.006	CT	1.029	0.40	90.70			1978	MPC01
		1.00		L	76.5	1.985	1.006	CT	1.062	0.42	31.80			1978	MPC01
		1.00			76.5	1.996	1.004	CT	1.038	0.38	30.50			1978	MPC01
		0.75		L	76.6	4.969	0.741	CT	2.534	0.67	40.50			1978	MPC01
T651 Cont'd	Plate Cont'd	0.87	R.T. Cont'd	T-L Cont'd	76.7	1.989	0.876	CT	1.034	0.48	34.50	Cont'd	Contid	1978	MPC01
		0.92			76.8	1.994	0.950	CT	1.017	0.34	28.70			1978	MPC01
		0.92			76.9	2.011	0.905	CT	1.086	0.40	31.10			1978	MPC01
		0.92		1	77.1	1.988	0.932	cr	0.994	0.38	30.30			1978	MPC01
		1.00			77.3	1.996	1.005	CT	1.038	0:30	27.20			1978	MPC01
		2.62		<u>_</u>	61.7	2.000	1.001	cr	0.976	0.73	33.30			1973	86213
		2.62		1	61.8	2.000	1.001	CT	0.981	99'0	31.80			1973	86213
		2.62		1	62.2	2.000	1.001	CT	0.990	0.63	31.30			1973	86213
To Fr	5	2.62	E	Ł	62.2	2.000	1.001	cr	0.985	0.62	28.40			1973	86213
100	91412	2.62		1 b	62.2	2.000	1.001	CT	1.015	92.0	34.40	32.9	2.6	1973	86213
		2.62		1	62.6	2.000	1.000	cr	1.010	0.85	36.50			1973	86213
		2.62		1	62.7	2.000	1.001	CT	1.011	0.78	35.10			1973	86213
		2.62			63.8	2.000	1.001	CT	1.002	0.64	32.30			1973	86213
		1.62		I	73.0	1.490	0.750	cr	0.747	0.49	32.40			1973	86213
785	9	1.62	8	i	73.0	1.490	0.739	CT	0.737	0.53	33.70			1973	86213
1004		1.62	3	3	74.6	1.490	0.750	СT	0.755	0.41	30.30	31.5	1.9	1973	86213
		1.62			74.6	1.490	0.750	Ç	0.738	0.39	29.50			1973	86213
1851	Plate	1.62	83	S-L	68.1	1.000	0.499	CT	0.499	0.32	24.50	!	!	1973	86213

					ALU	ALUMINUM	7475	5 K _{Ie}							
	PROI	PRODUCT				Sc	SPECIMEN	Z	CRACK			<b>⊼</b>			
CONDITION	FORM	THICK (fn.)	TEST TEMP (°F)	SPEC	YTELD STR (Kai)	WIDTH (In.)	THICK (in.)	DEBIGN	LENGTH (ID.) A	2.6 • (K _{L.} /TYS)* (in.)	K. (Keivin.)	K, MBAN	BTAN DEV	DATE	REFER
		1.30		1	75.0	3.000	1.281	CT	1.603	0.63	97.70			1973	86213
		1.30	-	,,,.l	75.0	3.000	1.282	CT	1.595	09:0	38.60			1973	86213
		1.30			77.4	3.000	1.305	CT	1.614	0.52	35.40			1973	86213
(ID) LEAD	E	1.30	E		4.77	3.000	1.304	ст	1.600	09:0	34.50			1973	86213
(35) 1001	riate	1.30	<u>.</u>	<u> </u>	78.5	3.000	1.293	CT	1.611	0.57	37.40	35.3	1.9	1973	86213
		1.30			79.0	3.000	1.314	CT	1.608	0.50	35.20	,		1973	86213
		1.30		1	81.3	3.000	1.277	CT	1.610	0.41	32.80			1973	86213
		1.30			81.3	3.000	1.278	СT	1.607	0.41	32.90			1973	86213
		2.00			70.5	3.990	2.032	cr	2.110	0.62	35.10			1973	86213
		2.00		1	70.5	4.000	2.030	cr	2.120	0.58	33.90			1973	86213
		1.30			72.3	3.000	1.283	CT	1.584	0.65	36.90			1973	86213
		1.30			72.3	3.000	1.281	CT	1.579	0.65	36.80			1973	86213
		1.76			73.1	4.000	1.784	CT	2.182	0.41	29.60			1973	86213
T661 (SP)	Plate	1.30	R.T.	T.L	74.9	3.000	1.305	СŢ	1.617	0.54	34.70	94.4	2.1	1973	86213
		1.30			74.9	3.000	1.305	CT	1.584	0.61	33.70			1973	86213
		1.30		1	75.5	3.000	1.336	CT	1.601	0.50	33.80			1973	86213
		1.30			7.97	3.000	1.313	Ę.	1.599	0.51	34.70			1973	86213
		1.30			77.3	3.000	1.290	CT	1.600	0.55	36.40			1973	86213
		1.30			78.1	3.000	1.276	CT	1.613	0.45	33.20			1973	86213
		1.30		•	66.8	1.000	0.498	CT	0.496	0.48	29.20			1973	86213
Test (sp)	Ş	1.30	E p	-	67.2	1.000	0.499	СT	0.501	0.47	29.20			1973	86213
1 10 1001	3	1.30	<u> </u>	3	67.8	1.000	0.498	Ð	0.489	0.41	27.30	27.3	1.6	1973	86213
		1.30			67.8	1.000	0.498	C.	0.512	0.37	26.00			1973	86213
		Ì		:											

<b></b>						ī	<u> </u>	<u> </u>	Ī	<del></del>		T		Г										_
		REFER	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	86213	GD006	GD006	GD006	GD006	DA004
	-	DATE	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1978	1978	1978	1978	1987
		STAN				Cont'd				1.1		7.2			9.0			9.0			9.0		1:1	1
	K _{Io}	K. MEAN				Cont'd				38.5		25.0			36.7			29.4			35.4		91.0	1
		K. (Kelvin.)	27.20	29.80	25.60	25.30	27.10	26.70	37.70	39.20	33.20	19.90	21.80	36.00	37.60	36.60	30.10	29.20	29.00	35.00	35.70	31.79	30.20	45.10
		2.6 • (KTYS)* (in.)	0.40	0.48	0.35	0.34	0.37	0.36	0.62	0.67	0.70	0.23	0.27	99.0	0.71	0.68	0.48	0.46	0.44	0.81	0.84	0.76	69'0	1.11
	CRACK	LENGTH (in.) A	0.502	0.506	0.504	0.500	909'0	0.513	2.658	2.704	0.768	0.478	0.496	0.783	0.798	0.774	0.510	0.490	0.481	2.581	2.612	1.046	1.049	1.633
5 K ₁₀	z	DESIGN	ŧ	CT	CT	cr	СТ	CT	CT	СT	CT	cT	cr	G.	C.T	CI	CT	C.	CT	CT	CT	CT	ст	CT
7475	SPECIMEN	THICK (in.) B	0.498	0.498	0.498	0.499	0.499	0.498	1.343	1.343	0.748	0.500	0.489	0.749	0.750	0.750	0.600	0.501	0.499	2.505	2.605	1.000	1.000	1.501
ALUMINUM	<b>S</b> S	WIDTH (in.)	1.000	1.000	1.000	1.000	1.000	1.000	6.000	2.000	1.490	1.000	1.000	1.490	1.490	1.490	1.000	1.000	1.000	4.998	4.897	1.997	2.004	3.000
ALU		YIRLD STR (Kal)	68.0	68.0	68.4	68.4	70.8	70.8	75.5	75.5	62.6	66.3	66.3	70.0	70.4	70.4	68.9	68.9	69.1	61.3	61.3	67.4	67.4	67.6
		SPEC	1		J	Cont'd	J			3		S.L	-		1:			3-E			7.1		3-17	LT
		TEST TEMP (°P)			R.T.	Cont'd			Ş	70		82			83			83		8	7.1-	ŧ	7.1.	99-
	UCT	THICK (in.)	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	2.00	1.75	1.75	1.62	1.62	1.62	1.62	1.62	1.62	3.00	3.00	3.00	3.00	1.75
	PRODUCT	FORM			Plate	Cont'd			Ē	FIBIG		Plate			Plate			Plate		Ē	Flate	Ē	Flate	Plate
		CONDITION			T651 (SP)	Cont'd			1000	1001		T661 (SP)			T73			T73		, Acces	1,001	, accept	1,001	T7351

				_			T					-	Y									1	_	_	_
		REFER	DA004	RA006	MPC01	MPC01	RA004	MPC01	RA003	MPC01	MPC01	RA003	MPC01	RA006	RA003	MPC01	MPC01	MPC01							
	-	DATE	1987	1977	1978	1978	1977	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1977	1978	1978	1978	1978
		STAN	:												4.9								•		
	<b>K</b> _{I°}	K. MBAN	ï												47.1										
		K. (Ked /In.)	44.30	39.40	47.00	48.80	42.70	56.70	67.00	61.70	64.20	54.80	53.50	61.70	60.00	47.80	47.60	51.20	47.70	47.90	42.59	41.50	49.50	60.20	49.60
		2.6 • (K _{a/} IY8) ³ (in.)	1.07	1.27	1.76	1.89	1.42	2.50	2.50	2.07	2.25	2.30	2.20	2.02	1.89	1.74	1.72	1.98	1.72	1.72	1.36	1.28	1.80	1.84	1.80
	CRACK	LENGTH 2. (in.)	1.508	1.625	2.583	2.607	1.454	3.049	3.061	2.692	2.568	2.584	2.575	2.575	2.568	2.677	2.562	2.620	2.663	2.541	1.485	2.597	2.563	2.991	2.993
$5  ext{ }  ext{K}_{lc}$	z	DESIGN	cr	CT	cr	CT	cr	CJ	CT	ţ	CT	Ę													
7475	SPECIMEN	THICK (in.) B	1.500	1.498	2.500	2.500	1.500	2.983	3.000	2.500	2.601	2.503	2.500	2.500	2.499	2.503	2.500	2.500	2.499	2.500	1.487	2.501	2.500	2.757	2.759
ALUMINUM	80	WIDTH (in.)	2.995	3.003	4.967	5.014	3.000	5.978	5.982	4.985	5.035	4.969	5.049	6.049	5.035	5.003	5.024	5.039	4.999	4.982	3.005	6.000	5.026	5.982	5.986
ALU		YIRLD STR (Kal)	67.6	56.2	56.3	65.8	56.5	56.7	56.7	56.7	56.7	56.7	56.7	67.0	67.1	57.2	67.3	67.3	57.4	67.5	67.6	67.8	67.9	67.9	67.9
		SPEC	T-L	1				!	L	L		1		F	<u>_</u>		L			1	I	1	•		
		TEST TEMP (°F)	-65	<del></del>										E-	<u> </u>										
	oucr	THICK (in.)	1.76	4.00	3.50	3.50	3.64	3.00	3.00	3.50	3.00	3.00	3.50	3.50	3.50	3.00	3.50	3.50	3.00	2.80	3.62	3.00	2.75	2.75	2.75
	PRODUCT	FORM	Plate											Plate	2										
		CONDITION	17351											17351											

PRODUCT         TESP         TESP         FREAD         THICK         THICK         COLOR         THICK         ALTICK         COLOR         ALTICK						ALU.	ALUMINUM	A 7475	75 K _{Ie}		:					
1500         TREAT (RP) (RP) (RP) (RP) (RP) (RP) (RP) (RP)		PROI	oucr				oz.	PECIME	N.	CRACK			¥,		·	
3.00         R8.1         4.986         2.800         CT         2.848         2.11         63.90         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         <		FORM	THICK (fn.)	TEST TEMP (°P)	SPRC	YIRLD STR (Kal)	WIDTH (in.) W	THICK (in.)	DESIGN	LENGTH (in.) A	2.5 • (K _{t.,} TYS)* (in.)	K. (Kelvin.)	K. MBAN	BTAN	DATE	REFER
3.00         R.1         4.86         CT         2.67         1.11         38.80         18.80         18.80         18.80         18.80         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         1.89         <			3.50		l	58.1	4.996	2.500	CT	2.548	2.11	53.90			1978	MPC01
3.00         Feb. 1         4.897         2.493         CT         2.882         1.41         4370         1978         1978           4.00         4.00         2.00         CT         2.602         1.48         46.10         1978         1978           3.50         6.83         6.866         3.001         CT         2.602         1.48         46.10         1978         1978           3.50         6.83         4.986         2.499         CT         2.632         1.54         46.80         1978         1978           3.50         6.81         4.986         2.499         CT         2.632         1.54         46.80         1978         1978           3.50         8.81         6.83         6.894         2.690         CT         2.619         1.76         46.80         1978         1978           3.50         8.81         6.81         3.00         CT         2.620         1.44         46.60         1978         1978           3.50         8.82         6.016         2.70         2.620         CT         2.620         1.44         46.60         1978         1978           3.80         8.80         6.016         2.706 <td></td> <td></td> <td>3.00</td> <td></td> <td></td> <td>58.1</td> <td>4.995</td> <td>2.498</td> <td>CT</td> <td>2.577</td> <td>11.1</td> <td>38.80</td> <td></td> <td>•</td> <td>1980</td> <td>RA005</td>			3.00			58.1	4.995	2.498	CT	2.577	11.1	38.80		•	1980	RA005
3.50         F82         6.04         2.500         CT         2.602         1.46         4.610         HBPB         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978         1.978 <td></td> <td></td> <td>3.00</td> <td></td> <td></td> <td>58.1</td> <td>4.997</td> <td>2.493</td> <td>CT</td> <td>2.582</td> <td>1.41</td> <td>43.70</td> <td></td> <td></td> <td>1978</td> <td>RA003</td>			3.00			58.1	4.997	2.493	CT	2.582	1.41	43.70			1978	RA003
4.00         Horizon         68.3         6.986         3.01         CT         3.178         2.36         67.00         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978			3.50	-	I	58.2	5.004	2.500	CT	2.602	1.48	45.10		<b></b>	1978	MPC01
3.00         R. S.			4.00			68.3	6.996	3.001	СŢ	3.178	2.35	67.00		<b></b>	1978	MPC01
3.00         4.89         2.499         CT         2.636         1.64         46.80         1978         1978           3.50         3.50         68.3         4.897         2.489         CT         2.649         1.21         40:70         1978         1978           3.50         R.         68.3         6.037         2.600         CT         2.649         1.24         40:30         1978         1978           3.50         R.         2.600         2.500         CT         2.631         1.76         40:30         1978         1978           3.50         4.00         2.500         CT         2.630         1.44         44.60         Contd         1978         1978           3.50         4.00         2.500         CT         2.630         1.44         44.60         Contd         1978         1978           3.50         4.00         2.204         CT         2.630         1.72         49.20         1978         1978           3.50         5.80         5.80         2.74         CT         2.64         1.60         61.70         1978         1978           3.50         5.80         5.80         CT         2.64			3.50			68.3	4.966	2.500	cr	2.632	1.89	60.80		•	1978	MPC01
3.50         A. Sea at 1,997         2.499         CT         2.619         1.21         40.70         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978			3.00			58.3	4.996	2.499	CT	2.635	1.64	45.80			1978	RA003
3.50         R. T.         68.3         6.037         2.500         CT         2.619         1.89         60.10         1978         1978           3.50         R.T.         68.6         4.964         2.500         CT         2.631         1.76         49.30         1978         1978           3.50         R.T.         68.6         6.000         2.500         CT         2.600         1.44         44.60         Contd         1978           3.50         S.M.         6.016         3.002         CT         2.630         1.76         49.70         1978         1978           3.50         S.M.         S.M.         C.T.         3.107         1.72         49.20         1978         1978           4.00         S.M.         S.M.         C.T.         3.160         1.76         49.50         1978         1978           2.26         S.M.         S.M.         C.T.         3.160         1.76         49.50         1978         1978           3.00         S.M.         S.M.         C.T.         2.649         1.67         48.40         1978         1978           3.00         S.M.         S.M.         S.M.         S.M.         S.M.<			3,00		1	58.3	4.997	2.499	CT	2.649	1.21	40.70		•	1978	RA003
3.50         RT.         LT         68.6         4.964         2.500         CT         2.630         1.44         44.60         Contd         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978         1978 <th< td=""><td></td><td>A</td><td>3.50</td><td></td><td></td><td>58.3</td><td>5.037</td><td>2.500</td><td>CT</td><td>2.619</td><td>1.80</td><td>50.10</td><td></td><td><u> </u></td><td>1978</td><td>MPC01</td></th<>		A	3.50			58.3	5.037	2.500	CT	2.619	1.80	50.10		<u> </u>	1978	MPC01
3.50         R.T. L.T (contd sa. 6.004)         6.84         6.004         2.500         CT (contd sa. 6.000)         1.44         44.60         Contd sa. 6.016         1.504         CT (contd sa. 6.000)         CT			3.50			58.5	4.964	2.500	cr	2.631	1.76	49.30			1978	MPC01
3.50         Cont ⁴ Cont ⁴ 68.7         6.046         2.276         CT         3.128         1.89         61.70         Cont ⁴ 1978           3.50         5.60         6.016         3.00         CT         3.128         1.76         49.70         1.87         1978           4.00         6.81         6.976         3.00         CT         3.160         1.72         49.20         1.978         1978           2.26         6.89         5.992         2.294         CT         3.160         1.78         49.50         1.978         1978           3.00         6.81         6.036         2.276         CT         2.649         1.67         48.00         1.978         1978           3.50         6.91         6.017         3.000         CT         2.649         1.67         48.00         1.978         1.978         1978           3.50         6.91         6.017         3.000         CT         3.154         1.80         60.70         1978           2.25         6.91         6.036         2.282         CT         3.018         1.72         49.20         1.99         1.978           2.26         6.26		Plate	3.50	R.T.		58.6	6.000	2.500	CT	2.600	1.44	44.60			1978	MPC01
68.8         6.015         3.002         CT         3.128         1.76         49.20         1978           68.8         5.962         2.994         CT         3.160         1.72         49.20         1978           68.9         5.962         2.994         CT         3.160         1.76         49.50         1978           69.1         4.996         2.494         CT         2.649         1.67         48.40         1978           69.1         6.017         3.000         CT         3.129         1.84         61.20         1978           69.1         4.999         2.496         CT         3.164         1.80         50.70         1978           69.1         4.999         2.496         CT         2.664         1.39         44.00         1978           59.2         6.086         2.252         CT         3.018         1.72         49.20         1978           59.2         6.042         2.253         CT         3.021         1.69         48.80         1978		Cont'd	2.25	Cont'd	Cont'd	58.7	5.046	2.276	Ţ.	2.523	1.93	61.70	Cont'd	Cont'd	1978	MPC01
68.8         6.962         2.994         CT         3.107         1.72         49.50         1978           68.9         6.902         2.276         CT         3.160         1.76         49.50         1978           69.1         4.996         2.276         CT         2.649         1.87         48.40         1978           69.1         6.017         3.000         CT         3.129         1.84         61.20         1978           69.1         4.999         2.496         CT         3.154         1.80         60.70         1978           69.1         4.999         2.496         CT         3.154         1.80         60.70         1978           69.1         4.999         2.496         CT         3.154         1.80         60.70         1978           69.2         6.086         2.252         CT         3.018         1.72         49.20         1978           59.2         6.042         2.253         CT         3.021         1.69         48.80         1978			3.50		<del>-</del>	58.8	6.015	3.002	CŢ	3.128	1.76	49.70			1978	MPC01
68.8         6.962         2.964         CT         3.160         1.76         49.50         1978           68.1         6.808         2.276         CT         2.649         1.67         48.40         1978           69.1         4.996         2.494         CT         2.649         1.67         48.40         1978           69.1         6.017         3.000         CT         3.129         1.84         61.20         1978           69.1         6.91         6.92         CT         2.644         1.80         60.70         1978           69.1         4.999         2.496         CT         2.644         1.38         44.00         1978           69.2         6.042         2.252         CT         3.018         1.72         49.20         1978           69.2         6.042         2.253         CT         3.021         1.69         48.80         1978			3.50			68.8	5.975	3.000	CT	3.107	1.72	49.20			1978	MPC01
68.9         6.008         2.276         CT         2.554         1.89         61.60         1978           69.1         4.996         2.494         CT         2.649         1.67         48.40         1978           69.1         6.017         3.000         CT         3.129         1.84         61.20         1978           69.1         6.961         3.000         CT         3.154         1.80         60.70         1978           69.2         4.999         2.496         CT         2.664         1.38         44.00         1978           69.2         6.036         2.252         CT         3.018         1.72         49.20         1978           69.2         6.042         2.253         CT         3.021         1.68         48.80         1978			4.00		L	68.8	5.962	2.994	CT	3.160	1.76	49.50			1978	MPC01
69.1         4.996         2.484         CT         2.649         1.67         48.40         1978           69.1         6.017         3.000         CT         3.129         1.84         61.20         1978           69.1         6.91         5.861         3.000         CT         3.154         1.80         50.70         1978           69.1         4.989         2.496         CT         2.644         1.38         44.00         1978           69.2         6.042         2.252         CT         3.018         1.72         49.20         1978           1978         4.02         2.253         CT         3.021         1.69         48.80         1978			2.25			68.9	6.008	2.276	ÇŢ	2.554	1.89	51.60			1978	MPC01
69.1         6.017         3.000         CT         3.129         1.84         61.20         1978           69.1         6.91         5.651         3.000         CT         3.154         1.80         56.70         1978           69.1         4.999         2.496         CT         2.664         1.38         44.00         1978           59.2         6.086         2.252         CT         3.018         1.72         49.20         1978           59.2         6.042         2.253         CT         3.021         1.69         48.80         1978			3.00		I	69.1	4.996	2.494	ÇŢ	2.649	1.67	48.40			1978	RA003
69.1         6.961         3.000         CT         3.154         1.80         60.70         1978           69.1         4.889         2.486         CT         2.664         1.38         44.00         1978           59.2         6.036         2.262         CT         3.018         1.72         49.20         1978           59.2         6.042         2.263         CT         3.021         1.68         48.80         1878		<b>.</b>	3.50			69.1	6.017	3.000	CT	9.129	1.84	51.20		·	1978	MPC01
69.1         4.989         2.496         CT         2.664         1.38         44.00         1978           69.2         6.086         2.262         CT         3.018         1.72         49.20         1978           69.2         6.042         2.263         CT         3.021         1.69         48.80         1978	*****	A	3.60		1	59.1	5.951	3.000	Ę.	3.154	1.80	50.70			1978	MPC01
692         6.086         2.252         CT         3.018         1.72         49.20         1978           692         6.042         2.253         CT         3.021         1.68         48.80         1978	**···		3.00		1	59.1	4.999	2.496	СŢ	2.664	1.38	44.00			1978	RA003
59.2 6.042 2.253 CT 3.021 1.69 48.80 1978			2.25		1	59.2	6.036	2.252	CT	3.018	1.72	49.20			1978	MPC01
			2.25			59.2	6.042	2.253	ಕ	3.021	1.68	48.80			1978	MPC01

				<del></del>			-							-			_	==		-	ī	_	$\neg$	
		REFER	MPC01	MPC01	RA006	MPC01	GD006	GD006	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	RA003	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01	MPC01
		DATE	1978	1978	1977	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978
		STAN												Cont'd										
	K _{Ie}	K. MEAN												Cont'd									·	
		K. (Kelvin.)	63.60	68.20	35.80	41.40	48.90	49.80	47.80	62.30	45.80	61.50	60.90	46.90	48.40	47.80	42.09	47.70	66.20	61.00	49.40	47.00	48.70	46.70
		2.6 • (K _{t.,} TYS)* (in.)	2.02	2.40	0.91	1.19	1.68	1.76	1.60	1.89	1.44	1.84	1.76	1.62	1.60	1.56	1.22	1.66	2.16	1.76	1.68	1.48	1.60	1.48
	CRACK		2.615	3.192	1.500	3.048	2.572	2.570	2.522	2.553	2.621	2.560	3.240	2.628	2.647	2.638	2.582	2.627	3.083	2.543	2.579	3.009	2.540	3.016
5 K _{Io}	z	DESIGN	CT	CT	CT	cr	CT	CT	CT	ភ្	CT	CT	CT	CT	cr	CT	СT	C.	СT	CT	G.	cr	ÇŢ	CT
7475	SPECIMEN	THICK (in.) B	2.500	3.002	1.499	2.385	2.505	2.502	2.258	2.275	2.502	2.270	3.001	2.500	2.501	2.502	2.495	2.501	2.726	2.274	2.500	2.740	1.750	2.735
ALUMINUM	SC	WIDTH (fn.)	67079	6.023	3.003	5.977	4.998	5.002	5.044	5.006	6.040	6.020	6.000	4.969	4.994	4.977	4.992	4.967	6.045	4.986	4.960	6.018	4.980	6.032
ALUI		YIELD STR (Kel)	69.3	69.3	69.3	59.5	59.5	59.5	69.6	69.6	59.7	69.7	69.9	60.0	60.0	60.0	60.1	60.1	60.1	60.2	60.2	60.4	60.4	60.4
		SPEC											5.	Cont'd						·				
		TEST TEMP (°F)											R.T.	Cont'd										
	PRODUCT	THICK (in.)	3.50	4.00	3.25	2.40	3.00	3.00	2.30	2.25	3.00	2.25	4.00	4.00	3.00	3.00	3.00	3.00	2.75	2.25	3.50	2.75	2.75	2.76
	PROI	FORM											Plate	Cont'd										
		CONDITION											17361	Cont'd										

<u> </u>							_	1		<del>-</del>		<del></del>												
		REFER	MPC01	MPC01	MPC01	MPC01	MPC01	RA003	MPC01	RA006	MPC01	MPC01	MPC01	MPC01	MPC01	RA003	MPC01	MPC01	MPC01	MPC01	RA003	MPC01	MPC01	MPC01
	-	DATE	1978	1978	1978	1978	1978	1978	1978	11977	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	1978	8261	1978
		STAN												Cont'd										
	K _{Io}	K. MBAN												Cont'd										
		K. (Kelvin.)	46.60	51.00	46.90	49.40	49.80	38.70	49.70	40.90	60.60	49.70	60.20	51.10	44.80	33.80	43.20	41.70	61.30	48.90	38.80	54.00	58.90	63.50
		2.5 • (K _{1.,} TYS)* (in.)	1.48	1.76	1.48	1.64	1.68	1.02	1.68	1.13	1.72	1.68	1.68	1.76	1.33	0.77	1.22	1.15	1.76	1.60	1.00	1.93	2.30	1.89
	CRACK		2.578	2.556	2.614	2.606	2.575	2.575	2.608	1.586	2.606	2.645	2.562	2.650	2.660	2.604	2.554	2.632	2.567	2.566	2.625	2.528	2.617	2.552
5 K _{Io}	z	DESIGN	CT	cr	CT	CT	CT	cr	cr	CT	CT	ст	cr	CT	cr	CT	CT	CT	CT	CT	CI	СŢ	CT	СŢ
7475	SPECIMEN	THICK (in.) B	2.500	2.276	2.502	2.499	2.500	2.496	2.500	1.478	2.500	2.501	2.500	2.602	2.602	2.488	2.500	2.501	2.501	2.383	2.501	2.088	2.488	2.379
ALUMINUM	<b>S</b> 2	WIDTH (in.)	4.968	5.012	5.027	5.012	6.049	4.998	5.015	3.004	6.012	4.991	6.004	2.000	6.019	4.999	6.008	4.966	5.033	5.031	4.999	5.056	6.033	5.004
ALU		YIELD STR (Kal)	60.4	60.5	60.5	60.5	60.5	60.5	60.6	9.09	60.6	60.6	60.7	80.8	80.8	6.09	6.09	6.09	6.09	6.09	61.1	61.1	61.2	61.2
		SPEC		1		1				1			7	Cont'd		<b>.</b>								
		TEST TEMP (°F)											R.T.	Cont'd										
	PRODUCT	THICK (in.)	2.75	2.25	3.00	3.50	2.50	3.00	3.50	3.25	2.50	3.00	2.50	3.00	3.00	3.00	2.50	3.00	2.76	2.40	3.00	2.00	3.50	2.40
	PROI	FORM											Plate	Cont'd	- "									
		CONDITION											T7351	Cont'd										

ONDITION FOUR THEN SEND THE STATE OF THE ST						ALU	ALUMINUM	1 7475	75 K _{Io}							
Policy   Thirty   T		PROI	oucr				SC.	PECIME	N.	CRACK			$\mathbf{K}_{\mathbf{I}c}$		-	
250	ON	FORM	THICK (in.)	TEST TEMP (°F)	SPEC OR	YIELD STR (Kel)	WIDTH (in.) W	THICK (in.)	DESIGN	LENGTH (In.) A	2.6 • (K _{k./} TYB)* (In.)	K. (Kelvin.)	K. MEAN	STAN	DATE	REFER
250			2.50			61.4	4.967	2.500	CT	2.583	1.44	47.20			1978	MPC01
2.50			3.00		, <b>.</b>	61.5	4.998	2.496	ÇŢ	2.627	96'0	38.70			1978	RA003
2.30         4.16         6.963         2.736         CT         1.62         1.62         6.963         2.72         2.60         1.46         4.60         1.20         4.60         1.20         1.46         4.60         1.20         4.60         1.20         1.46         4.76         4.60         1.20         1.60         4.60         4.60         1.20         1.60         4.60         4.60         4.60         1.20         1.60         4.60         4.60         4.60         1.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60         4.60 <t< td=""><td></td><td></td><td>2.50</td><td></td><td>1</td><td>61.5</td><td>4.968</td><td>2.500</td><td>СŢ</td><td>2.578</td><td>1.26</td><td>44.10</td><td></td><td></td><td>1978</td><td>MPC01</td></t<>			2.50		1	61.5	4.968	2.500	СŢ	2.578	1.26	44.10			1978	MPC01
2.50   Fig. 6.06   2.60   CT 2.60   1.46   47.50   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   43.40   4			2.75		1	61.6	5.963	2.726	cr	3.041	1.52	48.60			1978	MPC01
1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00   1.00			2.30			61.6	4.961	2.263	cr	2.626	1.48	47.50			1978	MPC01
3.00         A. 1.89         6.18         6.19         CT         2.656         1.22         43.70           3.00         4.30         4.99         2.491         CT         2.698         1.06         40.40           2.40         2.40         61.9         4.897         2.491         CT         2.698         1.19         42.90           Contd         3.50         Contd         61.9         6.006         2.281         CT         2.696         1.44         47.20           Contd         3.50         Contd         61.9         4.992         2.499         CT         2.696         1.62         48.30           1.25         Contd         61.9         4.992         2.499         CT         2.696         1.62         48.30           1.26         Contd         61.9         4.996         2.499         CT         2.699         1.16         48.30           2.50         4.20         2.896         1.896         CT         2.699         1.16         44.09           2.50         4.20         2.896         1.896         CT         2.699         1.14         47.60           2.40         4.20         2.894         CT         2.6			2.50			61.6	5.026	2.500	CT	2.663	1.60	49.40			1978	MPC01
Note			3.00			61.8	5.012	2.501	cr	2.556	1.22	43.70			1978	MPC01
Plate   2.26   R.T.   L.T   61.9   6.000   2.333   CT   2.669   1.44   47.20			3.00			61.8	4.999	2.491	ст	2.628	1.06	40.40			1978	RA003
Plate Contided 3.50         R.T. L.T L.T L.T L.T L.T L.T L.T L.T L.T			3.00			61.9	4.987	2.502	CT	2.643	1.19	42.90			1978	MPC01
Plate Cont'd Subsider (Cont'd Subsider)         RT. LT (Cont'd Subsider)         LT (Cont'd Subsider) <td></td> <td></td> <td>2.40</td> <td></td> <td></td> <td>61.9</td> <td>9.000</td> <td>2.333</td> <td>CT</td> <td>2.550</td> <td>1.44</td> <td>47.20</td> <td></td> <td></td> <td>1978</td> <td>MPC01</td>			2.40			61.9	9.000	2.333	CT	2.550	1.44	47.20			1978	MPC01
Cont'd         3.50         Cont'd         G1.9         6.996         2.289         CT         2.996         1.52         48.30         Cont'd           3.00         4.99         2.283         CT         2.996         1.21         48.30         Cont'd           3.00         62.0         3.996         1.994         CT         2.639         1.15         42.90           2.50         62.0         3.996         1.494         CT         2.021         1.26         44.09           2.50         62.0         3.996         1.497         CT         1.657         0.64         39.50           2.40         62.4         6.24         6.041         2.604         CT         2.61         39.50           3.00         62.4         6.041         2.600         CT         2.671         1.06         41.10           3.00         62.4         6.040         1.760         CT         2.697         0.94         39.40           3.00         62.4         6.040         1.760         CT         2.697         0.94         39.40           3.00         62.4         6.040         1.760         CT         2.691         1.60         6.20		Plate	2.25	R.T.	7	61.9	8.008	2.261	CT	3.004	1.62	48.70			1978	MPC01
61.9         5.966         2.263         CT         2.998         1.62           62.0         3.996         1.995         CT         1.990         1.21           62.0         4.996         2.497         CT         2.639         1.15           62.0         3.996         1.994         CT         2.639         1.15           62.1         3.996         1.994         CT         2.639         1.15           62.2         3.003         1.497         CT         1.667         0.64           62.4         6.946         2.364         CT         2.671         1.06           62.4         4.996         2.493         CT         2.637         0.94           62.4         6.040         1.760         CT         2.620         1.60		Cont'd	3.50	Cont'd	Cont'd	61.9	4.992	2.499	cT	2.596	1.52	48.30	Cont'd	Cont'd	1978	MPC01
62.0         3.996         1.995         CT         1.990         1.21           62.0         4.996         2.497         CT         2.639         1.16           62.0         3.996         1.994         CT         2.021         1.26           62.2         3.003         1.497         CT         1.657         0.64           62.4         6.986         2.364         CT         3.063         1.44           62.4         6.041         2.600         CT         2.671         1.06           62.4         4.899         2.493         CT         2.697         0.94           62.4         6.040         1.750         CT         2.620         1.60           62.4         5.040         2.493         CT         2.620         1.60           62.4         5.040         2.750         2.620         1.60         1.70			2.26			61.9	966'9	2.263	CT	2.998	1.62	48.30			1978	MPC01
62.0         4.996         2.497         CT         2.639         1.15           62.0         3.996         1.994         CT         2.021         1.26           62.2         3.003         1.497         CT         1.657         0.64           62.4         6.986         2.364         CT         3.063         1.44           62.4         6.041         2.500         CT         2.571         1.06           62.4         4.999         2.493         CT         2.597         0.94           62.4         6.040         1.760         CT         2.520         1.60           62.4         6.040         1.760         CT         2.537         0.94			1.25			62.0	3.996	1.995	CŢ	1.990	1.21	43.30			1977	MA005
62.0         3.996         1.994         CT         2.021         1.28           62.2         3.003         1.497         CT         1.657         0.64           62.4         6.986         2.364         CT         3.063         1.44           62.4         6.041         2.600         CT         2.671         1.06           62.4         4.989         2.493         CT         2.697         0.94           62.4         6.040         1.760         CT         2.520         1.60           62.4         6.040         1.760         CT         2.520         1.60			3.00	-		62.0	4.996	2.497	C.	2.639	1.15	42.20			1978	RA003
62.2         3.003         1.497         CT         1.657         0.64           62.4         6.886         2.864         CT         3.053         1.44           62.4         6.041         2.600         CT         2.671         1.06           62.4         4.999         2.493         CT         2.597         0.94           62.4         6.040         1.750         CT         2.597         0.94           62.4         6.040         1.750         CT         2.597         1.60           62.4         6.822         2.500         CT         2.630         1.19			1.25			62.0	3.996	1.994	C.	2.021	1.26	44.09			1977	MA005
62.4         6.986         2.364         CT         3.063         1.44           62.4         6.041         2.500         CT         2.671         1.06           62.4         4.999         2.493         CT         2.697         0.94           62.4         6.040         1.750         CT         2.620         1.60           62.4         6.322         2.500         CT         2.651         1.19			2.50			62.2	3.003	1.497	CT	1.667	0.64	39.50			1977	RA006
62.4 6.041 2.500 CT 2.671 1.06 62.4 4.999 2.493 CT 2.697 0.94 62.4 6.040 1.750 CT 2.620 1.60 62.4 6.822 2.500 CT 2.661 1.19			2.40			62.4	5.986	2.364	CT	3.053	1.44	47.60			1978	MPC01
62.4 4.999 2.493 CT 2.597 0.94 62.4 5.040 1.750 CT 2.530 1.60 62.4 5.822 2.500 CT 2.651 1.19			3.00			62.4	5.041	2.500	CT	2.671	1.06	41.10			1978	MPC01
62.4 6.040 1.760 CT 2.620 1.60 62.4 6.322 2.500 CT 2.661 1.19			3.00			62.4	4.99	2.493	cT	2.597	0.94	38.40			1978	RA003
62.4 6.322 2.500 CT 2.661 1.19			1.75			62.4	5.040	1.750	Ç	2.520	1.60	60.20			1978	MPC01
			3.00			62.4	5.322	2.500	CT	2.661	1.19	43.10			1978	MPC01

					ALU	ALUMINUM	1 7475	5 K _{Io}							
	PRO	PRODUCT				8	SPECIMEN	z	CRACK			K			
CONDITION	FORM	THICK (in.)	TEST TEMP (°P)	SPEC	YIRLD STR (Kel)	WIDTH (In.)	THICK (in.) B	DESIGN	LENGTH (In.) A	2.6 • (K _{L.} /TYS)* (in.)	K. (Ketvin.)	K. MBAN	STAN	DATE	RRFER
		1.75			62.6	5.028	1.748	CT	2.514	1.68	51.90			1978	MPC01
		1.76			62.6	5.030	1.774	cr	2.515	1.33	45.90			1978	MPC01
		2.70			62.6	5.017	2.500	cr	2.609	2.25	60.00			1978	MPC01
		1.76		<u>-</u>	62.8	4.966	1.760	CT	2.527	1.62	49.60		•	1978	MPC01
		1.77			62.8	2.999	1.499	cT	1.587	1.01	39.80			1977	RA004
		1.77			62.8	2.999	1.499	cr	1.618	1.00	39.80		<u> </u>	1977	RA004
		3.00			63.0	4.997	2.498	CT	2.650	1.26	44.80		**********	1980	RA005
		3.00	· ·		63.0	5.025	2.501	CT	2.663	1.22	44.50			1978	MPC01
		2.40			63.3	5.028	2.380	CT	2.514	1.08	42.40			1978	MPC01
		2.76		1	63.4	5.949	2.726	CT	3.034	1.36	47.20		•	1978	MPC01
17351	Plate	1.75	R.T.		63.4	4.985	1.751	CT	2.592	1.44	48.40			1978	MPC01
Cont'd	Cont'd	2.00	Cont'd	Cont'd	63.4	4.994	2.075	CT	2.547	1.96	56.80	Cont'd	Cont'd	1978	MPC01
		3.00			63.4	4.960	2.502	CT	2.579	1.08	42.20			1978	MPC01
		2.40			63.4	6.049	2.367	CT	3.085	1.12	42.70			1978	MPC01
		2.40		1	63.5	4.994	2.383	CT	2.497	1.02	41.10			1978	MPC01
		1.76			63.5	5.004	1.741	CT	2.562	1.62	50.10			1978	MPC01
		2.50			63.6	3.002	1.503	CT	1.634	1.10	42.30			1977	RA006
		1.76		<b>-</b>	63.7	5.006	1.793	CT	2.563	1.68	52.70			1978	MPC01
		2.76		1	63.7	6.998	2.726	CT	3.059	1.60	51.00			1978	MPC01
		2.40		L	63.7	4.965	2.353	CT	2.532	1.22	45.00			1978	MPC01
		2.40		<del>-</del>	63.7	5.980	2.364	CT	3.050	1.22	44.60			1978	MPC01
		3.00			63.7	4.996	2.484	CT	2.615	0.89	38.09			1978	RA003

	ALUMINUM 74	7475 K _{lo}							
PRODUCT	SPECIMEN	MEN	CRACK			K _{Io}		-	
THICK TEMP OR (in.)	YIELD   WIDTH   THICK   (In.)   (In.	JK DESIGN	LENGTH (in.) A	2.6 * (K _w /TYS)* (in.)	K. (Kelvin.)	K. MEAN	STAN DRV	DATE	REFER
2.40	64.0 4.994 2.365	5 CT	2.647	1.12	42.90		•	1978	MPC01
2.40	64.2 4.978 2.378	8 CT	2.489	0.93	39.50			1978	MPC01
1.26	64.5 3.001 1.271	1 CT	1.549	0.89	38.50			1977	RA006
2.40	64.7 6.049 2.364	r4 CT	3.085	1.08	42.90			1978	MPC01
1.75	64.7 4.984 1.795	5 CT	2.542	1.26	46.40			1978	MPC01
1.75	64.7 4.982 1.755	56 CT	2.541	1.44	49.20			1978	MPC01
2.40	64.7 5.042 2.364	34 CT	2.521	0.99	40.90			1978	MPC01
2.25	64.8 2.997 1.499	99 CT	1.605	1.04	41.80			1977	RA004
1.75 R.T. L	L.T 64.8 4.980 1.746	16 CT	2.540	1.15	44.50			1978	MPC01
_	Cont'd 65.1 4.977 1.753	53 CT	2.538	1.19	45.40	Cont'd	Cont'd	1978	MPC01
1.76	65.2 4.965 1.753	53 CT	2.532	1.44	50.20			1978	MPC01
1.75	65.2 4.967 1.758	58 CT	2.533	1.33	47.80	-		1978	MPC01
1.76	65.3 4.975 1.755	56 CT	2.537	1.36	48.70			1978	100dW
1.76	65.6 4.965 1.755	55 CT	2.532	1.22	46.00			1978	MPC01
2.40	65.7 5.004 2.378	78 CT	2.662	1.08	43.80			1978	MPC01
1.76	66.0 5.000 1.742	42 CT	2.550	1.15	45.40			1978	MPC01
1.76	66.0 6.029 1.761	61 CT	2.565	1.22	46.20			1978	MPC01
1.75		1 750	2 546	1.06	43.80			1978	MPC01

					ALU	ALUMINUM	1 7475	75 K _{Io}							
	PRO	PRODUCT				8	SPECIMEN	z	CRACK			K			
CONDITION	FORM	THICK (in.)	TEST TEMP (°P)	SPEC	YIELD STR (Kel)	WIDTH (In.) W	THICK (in.) B	DESIGN	LENGTH (ln.) A	2.6 * (K _{Le} ,TYS)* (in.)	K. (Kalvin.)	K. MEAN	STAN	DATE	REFER
		4.00			54.6	3.005	1.497	CT	1.574	0.82	31.40			1977	RA006
		3.50			65.2	5.014	2.500	CT	2.607	1.22	39.10			1978	MPC01
		3.50			66.8	4.971	2.500	СŢ	2.585	1.29	40.20			1978	MPC01
		3.50		•	66.8	4.973	2.498	СT	2.586	1.84	48.30			1978	MPC01
		3.50			65.8	5.041	2.500	CT	2.671	1.33	41.00			1978	MPC01
		3.50			629	6.019	2.499	CT	2.610	1.19	38.80			1978	MPC01
		3.00			66.0	6.000	2.499	CT	2.657	0.83	32.40			1978	RA003
		3.50		•	66.0	6.039	2.500	CT	2.620	1.08	37.10			1978	MPC01
		3.50			66.0	4.985	2.500	cT	2.592	1.02	35.90			1978	MPC01
		3.50			56.3	4.970	2.500	CT	2.634	1.12	37.80			1978	MPC01
		3.00			56.5	4.998	2.494	CT	2.640	0.87	33.50			1978	RA003
17351	Plate	3.50	R.T.	T.L	56.5	5.012	2.500	CT	2.556	1.12	38.20	37.2	4.0	1978	MPC01
		3.50		•	56.5	6.000	2.500	CT	2.600	1.12	38.20		1	1978	MPC01
		3.50		•	56.6	5.033	2.500	CT	2.617	1.29	41.00			1978	MPC01
		3.00		•	6.99	4.997	2.497	CT	2.698	0.80	32.20			1978	RA003
		3.50			67.0	5.987	3,000	CT	3.173	1.02	36.80			1978	MPC01
		3.50	•		67.0	6.047	2.998	CJ	3.205	1.06	37.40			1978	MPC01
		3.50			67.0	4.964	2.500	CI	2.631	0.83	35.20			1978	MPC01
		3.50			67.0	6.021	3.001	CI	3.191	1.08	37.70			1978	MPC01
		3.50			67.0	6.979	3.000	ţ	3.169	0.99	36.20			1978	MPC01
		3.25			67.1	2.003	1.002	CT	1.017	0.63	28.79			1977	RA006
		3.00		···········	67.1	4.996	2.500	CT	2.656	0.94	35.09			1978	RA003
		3.50			67.1	4.989	2.500	Ð	2.594	1.44	43.50			1978	MPC01

					ALU	ALUMINUM	I 7475	5 K _{Io}							
	PROI	PRODUCT				8	SPECIMEN	N	CRACK			Kıc		-	
CONDITION	FORM	THICK (in.)	TEST TEMP (°F)	SPEC	YIELD STR (Kal)	WIDTH (In.) W	THICK (fn.) B	DESIGN	LENGTH (ln.) A	2.6 * (K, TY8)* (in.)	K. (Keivin.)	K, MEAN	STAN DEV	DATE	REFER
		3.00			57.2	4.996	2.494	CT	2.623	1.06	37.20			1978	RA003
		3.00			67.2	4.998	2.498	cr	2.653	0.79	32.20			1978	RA003
		3.50			57.4	900.9	2.500	CT.	2.603	1.48	44.60			1978	MPC01
		3.00			57.5	4.999	2.496	CT	2.592	0.81	32.80			1978	RA003
		3.54			67.6	2.994	1.499	Ç	1.488	1.01	36.70		_	1977	RA004
		2.75			67.6	6:039	2.756	cr	3.080	1.05	37.50	,		1978	MPC01
		2.76			67.6	6.036	1.250	CT	2.518	1.02	37.00			1978	MPC01
		2.75			67.6	6.049	1.760	CT	2.676	1.02	37.40			1978	MPC01
		2.75	•		67.6	6.049	2.755	cr	3.085	1.02	37.40			1978	MPC01
		2.75			67.6	5.052	2.500	CT	2.627	1.06	37.50			1978	MPC01
T7351	Plate	3.50	R.T.	T-L	67.9	4.987	2.500	cr	2.693	1.33	42.50			1978	MPC01
Cont'd	Cont'd	2.25	Cont'd	Cont'd	68.0	2.998	1.499	CT	1.559	1.14	39.20	Cont'd	Cont'd	1977	RA004
		3.62			68.3	3.002	1.498	CT	1.528	0.76	32.20			1977	RA006
		3.50			58.3	5.017	2.497	C.	2.609	0.96	96.70			1978	MPC01
		2.75			58.7	6.042	2.725	£	3.142	0.87	35.00			1978	MPC01
		2.76			68.7	6.067	2.744	Ç	3.089	0.87	36.00			1978	MPC01
		2.76			58.7	4.971	1.249	Ę.	2.535	0.93	35.90			1978	MPC01
		3.50			58.7	4.981	2.499	Ę.	2.590	0.93	36.20	··		1978	MPC01
		2.76			58.7	4.985	2.500	. Į	2.642	0.80	35.60			1978	MPC01
		3.50			68.9	4.966	2.500	CT	2.632	1.80	60.10			1978	MPC01
		2.25			69.0	6.969	2.249	CT	3.104	0.96	36.60			1978	MPC01
		2.25			69.0	6.035	2.257	CT	3.078	0.83	36.50			1978	MPC01

18 of 28

		REFER	MPC01	MPC01	RA003	MPC01	MPC01	MPC01	MPC01	MPC01	RA006	RA004	MPC01	MPC01	RA003	MPC01	MPC01	MPC01	RA004	MPC01	RA005	MPC01	MPC01	MPC01
		DATE	1978	1978	1978	1978	1978	1978	1978	1978	1977	1977	1978	1978	1978	1978	1978	1978	1977	1978	1980	1978	1978	1978
		STAN												Cont'd										
	K _{Ie}	K. MEAN												Cont'd										
		K. (Kelvin.)	45.00	35.20	33.59	38.80	40.20	40.20	36.30	40.80	30.40	38.59	38.20	39.30	33.59	41.00	49.50	34.90	39.00	39.00	34.40	42.20	30.60	37.60
		2.6 * (K _{L/} TYS)* (in.)	1.44	0.87	0.80	1.06	1.12	1.12	0.90	1.15	99'0	1.03	66'0	90'1	92.0	1.15	1.68	0.81	1.04	1.02	0.80	1.19	0.62	0.93
	CRACK	LENGTH (in.) A	2.608	2.566	2.591	2.641	2.635	2.636	2.638	2.534	1.692	1.560	2.658	2.664	2.552	2.670	2.614	2.588	1.648	2.541	2.691	2.641	2.599	3.064
5 K _{I0}	7	DESIGN	cr	CT	CT	cr	CT	CT	Сľ	CT	CT	CT	cr	CT	cr	CT	Ç	C.	cr	CT	ct	CT	CT	CT
7475	SPECIMEN	THICK (fn.)	2.498	2.501	2.496	2.502	2.500	2.502	2.498	2.501	1.499	1.499	2.498	2.501	2.495	2.502	2.500	2.500	1.499	1.747	2.498	2.502	2.500	2.262
ALUMINUM	S	WIDTH (in.)	5.005	6.031	4.999	4.983	4.972	4.974	4.977	4.970	3.003	2.998	5.015	5.026	5.001	6.038	6.027	4.977	2.997	4.982	4.995	4.983	4.998	800.9
ALU		YIRLD STR (Kei)	59.1	59.1	69.2	59.5	69.6	9.69	9.69	59.7	59.7	6.69	6.69	60.1	60.1	60.1	60.2	60.4	60.4	60.4	60.5	9.09	6.09	6.09
		SPEC		l									<u>-</u>	Cont'd				4						
		TEMP (FP)																						
	PRODUCT	THICK (in.)	3.50	3.75	3.00	3.00	3.00	3.00	3.50	3.00	3.25	2.26	3.00	3.00	3.00	3.00	3.50	3.25	2.26	1.76	3.00	3.00	3.00	2.25
	PROI	FORM											Plate	Cont'd										
		CONDITION											T7351	Cont'd										

					ALU	ALUMINUM	7475	5 K _{Io}							
	PROI	PRODUCT				SO.	SPECIMEN	Z	CRACK			K			
CONDITION	FORM	THICK (in.)	TEST TEMP (°F)	SPECOR	YIELD STR (Kel)	WIDTH (in.)	THICK (in.) B	DESIGN	LENGTH (in.) A	2.5 • (K _{s./} TYS) ² (in.)	K. (Keivin.)	K. MBAN	STAN	DATE	REFER
		2.25			6.09	6.045	2.260	CT	3.083	96.0	38.10			1978	MPC01
		3.00			6.09	4.992	2.500	cr	2.596	0.66	31.30			1978	MPC01
		3.00		<b></b>	6.09	5.037	2.501	CT	2.619	0.96	37.90			1978	MPC01
		3.00			60.9	5.002	2.500	CT	2.601	0.62	31.00			1978	MPC01
		3.00			61.0	5.032	2.501	CT	2.667	1.19	42.60			1978	MPC01
		3.00			61.0	4.997	2.499	CT	2.626	1.00	38.59			1980	RA005
		3.00			61.0	5.042	2.502	CT	2.622	0.75	33.80			1978	MPC01
		1.76			61.2	6.062	1.760	CŢ	3.026	0.99	38.60			1978	MPC01
		3.00			61.3	5.036	2.500	СŢ	2.669	0.93	37.40			1978	MPC01
		3.00			61.3	4.997	2.505	CT	2.610	0.91	87.09			1978	90000
T7351	Plate	3.00	R.T.	T.L	61.3	4.998	2.503	СŢ	2.620	1.00	38.80			1978	GD006
Cont'd	Cont'd	3.00	Cont'd	Cont'd	61.3	4.993	2.504	CT	2.626	0.94	97.76	Cont'd	Cont'd	1978	GD006
		3.00			61.4	4.998	2.495	ÇĪ	2.562	0.70	32.70			1978	RA003
		1.76			61.5	4.971	1.750	CT	2.536	0.99	39.10			1978	MPC01
		2.75			61.6	4.987	2.501	CT.	2.593	1.64	60.00			1978	MPC01
		3.00			61.6	4.989	2.502	CT	2.694	1.19	42.60			1978	MPC01
		3.00			61.8	6.019	2.501	СŢ	2.710	0.99	39.10			1978	MPC01
		3.00			61.9	5.001	2.491	CT	2.647	96.0	38.50			1978	RA003
		2.50			61.9	4.967	2.499	СT	2.583	0.70	33.10			1978	MPC01
		2.76			61.9	4.968	2.500	СŢ	2.633	0.81	35.60			1978	MPC01
		1.76			62.0	6.996	1.752	cr	3.068	1.02	39.70	,,		1978	MPC01
		1.76			62.0	5.965	1.755	CT	3.042	1.02	40.20			1978	MPC01

CONDITION FORM THICK TENT OR OR 2.60 3.00 3.00 3.00 2.80 2.80 3.00 2.80 2.80 2.80 2.80 2.80 2.80 2.80 2	C YTRLD STR (Kel) (Kel) (62.1 62.1 62.3 62.3 62.3		SPECIMEN THICK (in.)	7				<b>1</b>			
THEST TEMP (F)		(in.) W 5.039 3.004 5.000 4.997	THICK (in.)		CRACK			°I4			
3.00 2.50 3.00 3.00 3.00 2.50 2.00 Plate 2.00 2.00 2.00 2.00 2.00 2.00	62.1 62.3 62.3 62.3 62.3	5.039 3.004 5.000 4.997		DESIGN	LENGTH (in.) A	2.5 • (K _e ,TYB)* (in.)	K. (Kaivin.)	K. MBAN	STAN	DATE	REFER
2.50 3.00 3.00 2.50 3.00 2.00 2.00 2.00 2.00 2.00	62.3	3.004 5.000 4.997	2.500	CT.	2.620	0.78	34.80			1978	MPC01
3.00 3.00 3.00 3.00 3.00 2.87 3.00 2.00 2.00 2.00 2.00 2.00 2.00	62.3	6.000	1.496	cr	1.587	0.71	33.09			1977	RA006
3.00 3.00 3.00 2.37 2.00 Plate 2.50 2.00 2.00 2.00 2.00	62.3	4.997	2.500	CT	2.682	0.81	35.59		•	1978	RA003
2.50 3.00 3.00 2.37 3.00 2.00 2.00 2.00 2.00 2.00	62.3		2.498	cr	2.647	0.90	37.50		•	1978	RA003
3.00 2.00 2.00 Plate 2.50 2.00 2.00 2.00 2.00 2.00		4.964	2.500	СT	2.581	0.78	35.10		•	1978	MPC01
2.37 3.00 2.00 Plate 2.60 R.T. Contd 2.40 Contd 2.00 2.00 2.00	62.6	4.988	2.500	cr	2.649	0.84	36.40		<del></del>	1978	MPC01
3.00  2.00  Plate 2.50  R.T.  Cont'd 2.00  2.00  2.00  2.00	62.6	4.971	2.363	CT	2.585	0.93	38.50		1.	1978	MPC01
2.00 Plate 2.50 Contd 2.40 Contd 2.00 2.00 2.00 2.00 2.00	62.7	4.999	2.490	CT	2.671	0.70	33.30			1978	RA003
Plate 2.50 R.T. Cont'd 2.40 Cont'd 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	62.9	5.031	1.974	CT	2.566	0.87	37.30			1978	MPC01
Cont'd 2.40 Cont'd 2.00 2.00 2.00 2.00 2.00 2.00	62.9	5.012	2.500	CT	2.606	0.75	34.90		<del></del>	1978	MPC01
2.00	t'd 63.2	6.043	2.365	cr	3.082	0.81	36.60	Cont'd	Cont'd	1978	MPC01
1.25	63.2	3.004	1.498	СT	1.586	0.65	32.30			1977	RA006
2.00	63.2	5.031	1.972	CT	2.566	0.87	37.30			1978	MPC01
2.00	63.6	3.002	1.270	СŢ	1.506	0.61	31.60			1977	RA006
86	63.6	5.041	1.996	CT.	2.671	0.70	33.90			1978	MPC01
M.O	64.6	4.998	2.489	CT	2.611	99'0	33.80			1978	RA003
1.75	66.2	6.018	1.738	СT	2.659	0.81	37.60			1978	MPC01
1.77	66.0	2.997	1.498	ςŢ	1.509	0.58	31.79			1977	RA004
1.77	0.99	2.997	1.497	CT	1.556	0.60	32.59			1977	RA004
1.75	66.3	5.041	1.760	CT	2.571	0.75	97.00		·	1978	MPC01

ONNOTITION						ALU	ALUMINUM	1475	75 K _{Io}							
1.05		PROI	oucr		:		702	PECIME	Z	CRACK			K _{Ie}			
1.36	CONDITION	FORM	THICK (in.)	TEST TEMP (°F)	SPEC OR	YIELD STR (Kei)	WIDTH (in.) W	THICK (in.)	DEBIGN	LENGTH (in.) A	2.5 • (K _{L/} TYS)* (in.)		K. MEAN	BTAN DEV	DATE	REFER
3.00         63.9         2.00         0.89         CT         1.667         0.09         9.01           3.50         63.9         2.00         1.00         CT         1.60         0.99         39.0           3.50         63.9         2.00         1.00         CT         1.00         0.99         39.0           3.50         64.2         2.60         1.20         0.7         1.264         0.89         39.0           2.76         64.2         2.60         1.20         0.7         1.264         0.89         39.0           2.76         64.2         2.60         1.20         0.7         1.264         0.89         39.0           2.76         64.2         2.60         1.20         0.7         1.26         0.87         32.0           3.00         64.2         1.20         0.99         CT         1.00         0.87         32.0           3.00         64.3         1.00         0.7         1.00         0.89         39.0         39.0           3.00         64.3         1.20         0.99         0.7         1.00         0.89         39.0           3.00         64.4         1.20         1.20	٠		1.25		<b>!</b>	i	1.003	0.501	cr	0.526	***	28.10			1977	RA006
3.50         53.9         2.00         1,000         CT         1,100         CR         33.70           3.50         53.9         2.01         1,000         CT         1,006         0.84         33.70           3.50         64.2         2.028         1,251         CT         1,266         0.87         32.20           2.75         64.2         2.040         1,250         CT         1,007         0.87         32.20           3.00         64.3         2.044         1,000         CT         1,007         0.87         32.20           3.00         64.3         2.044         1,001         CT         1,007         0.87         32.20           3.00         64.3         2.040         1,289         CT         1,007         0.87         32.20           3.00         64.4         2.044			3.00		I	53.3	2.003	0.999	CT	1.067	0.79	30.10			1978	RA003
350         642         2589         1.501         GT         1.006         0.89         38.40           350         642         2.689         1.261         GT         1.284         0.84         31.70           2.76         2.76         1.260         GT         1.266         0.87         32.00           3.00         643         2.489         1.260         GT         1.007         0.87         32.00           3.00         643         2.014         1.000         GT         1.007         0.87         32.00           3.00         643         2.019         0.899         GT         1.069         0.87         32.00           3.00         643         2.010         0.899         GT         1.007         0.89         33.00           3.00         643         2.010         0.899         GT         1.007         0.89         33.00           4.00         643         1.001         GT         1.066         0.89         33.00           5.00         644         2.010         1.280         GT         1.007         0.89         33.00           8.00         8.00         644         2.010         1.280			3.50			63.9	2.000	1.000	CT	1.020	96.0	33.70			1978	MPC01
3.50			3.50			63.9	2.010	1.000	CT	1.005	0.93	33.40			1978	MPC01
2.75         64.2         2.480         1.280         CT         1.285         0.87         32.0           2.75         64.3         2.014         1.000         CT         1.007         0.87         32.0           3.00         64.3         2.016         0.899         CT         1.005         0.87         32.20           3.50         64.3         2.010         0.899         CT         1.005         0.87         32.20           3.50         64.3         1.994         1.001         CT         1.005         0.87         33.00           8.00         6.4         2.516         1.280         CT         1.007         0.87         32.50           8.00         6.4         2.516         1.200         CT         1.007         0.87         32.00           8.00         6.4         2.516         1.200         CT         1.007         0.87         32.0           8.00         6.4         2.506         1.001         CT         1.007         0.87         32.0           8.00         6.4         2.006         1.000         CT         1.004         0.89         32.0           8.00         6.4         2.006         <			3.50			64.2	2.528	1.251	CT	1.264	0.84	31.70			1978	MPC01
3.00         64.3         2.014         1.000         CT         1.007         0.87         32.00           3.00         64.3         2.03         0.899         CT         1.005         0.89         33.70           2.75         64.3         2.010         0.899         CT         1.005         0.89         33.70           3.50         8.50         64.3         1.091         CT         1.017         0.81         33.50           3.00         8.50         1.294         1.001         CT         1.017         0.81         33.50           3.00         8.50         8.70         1.249         CT         1.007         0.87         32.00           4.00         8.00         64.6         2.014         1.000         CT         1.036         0.89         23.79           4.00         64.6         1.086         1.000         CT         1.046         0.89         30.79           4.00         64.9         1.000         CT         1.046         0.89         32.79           5.00         64.9         1.000         CT         1.046         0.89         32.09           5.00         64.9         1.000         CT			3.50			54.2	2.480	1.250	CT	1.265	0.87	32.20			1978	MPC01
3.00			2.75		'	54.3	2.014	1.000	CT	1.007	0.87	32.10			1978	MPC01
2.76         64.3         2.010         0.696         CT         1.005         0.96         33.70           2.76         54.3         1.984         1.001         CT         1.017         0.61         31.30           9.80         3.50         R.T.         2.16         1.280         CT         1.026         0.87         32.60           3.00         64.4         2.516         1.289         CT         1.007         0.87         32.60         2.7           3.00         64.5         1.984         1.001         CT         1.046         0.89         32.90         2.7           3.00         64.5         1.986         1.001         CT         1.046         0.89         32.90         2.7           4.00         64.5         1.986         1.000         CT         1.046         0.89         2.89           3.00         64.0         1.089         CT         1.046         0.89         3.89         3.89           3.00         65.0         2.098         1.099         CT         1.046         0.99         38.90           2.76         2.66         2.098         1.099         CT         1.004         0.99         38.90			3.00			64.3	2.003	0.999	CT	1.050	0.87	32.20	· ·		1978	RA003
2.76         64.3         1.894         1.001         CT         1.017         0.81         31.30           9.50         R.T.         54.4         2.516         1.250         CT         1.285         0.87         32.50           3.50         R.T.         54.4         2.510         1.249         CT         1.285         0.87         32.40           3.00         64.4         2.014         1.000         CT         1.013         0.80         32.40           3.00         64.5         1.986         1.001         CT         1.013         0.80         32.80           4.00         64.5         2.033         1.000         CT         1.046         0.89         28.79           4.00         64.0         3.002         1.498         CT         1.046         0.89         32.90           3.00         65.0         2.008         1.000         CT         1.004         0.99         32.90           3.00         65.0         2.008         1.001         CT         1.004         0.89         35.00           2.76         2.76         1.004         0.99         36.90         34.90           2.76         2.78         1.000 <td></td> <td></td> <td>3.00</td> <td></td> <td></td> <td>54.3</td> <td>2.010</td> <td>0.899</td> <td>CT</td> <td>1.005</td> <td>96.0</td> <td>33.70</td> <td></td> <td></td> <td>1978</td> <td>MPC01</td>			3.00			54.3	2.010	0.899	CT	1.005	96.0	33.70			1978	MPC01
Phate         3.50         R.T.         54.4         2.510         1.250         CT         1.255         0.87         32.50           3.00         64.5         2.014         1.000         CT         1.075         0.87         32.40           3.00         64.5         1.866         1.001         CT         1.046         0.89         32.40           3.00         64.6         1.866         1.001         CT         1.046         0.89         287.9           4.00         64.7         1.899         1.000         CT         1.046         0.89         287.9           3.00         64.0         1.899         1.000         CT         1.046         0.89         32.90           3.00         65.0         2.008         0.899         CT         1.004         0.90         33.50           2.75         65.0         2.008         0.899         CT         1.004         0.90         34.90           2.76         65.0         2.008         1.001         CT         1.004         0.99         34.90           2.76         65.3         1.992         1.000         CT         1.016         0.99         34.90           2.50 <td></td> <td></td> <td>2.75</td> <td></td> <td></td> <td>54.3</td> <td>1.994</td> <td>1.001</td> <td>CT</td> <td>1.017</td> <td>0.81</td> <td>31.30</td> <td></td> <td></td> <td>1978</td> <td>MPC01</td>			2.75			54.3	1.994	1.001	CT	1.017	0.81	31.30			1978	MPC01
Piste         3.50         R.T.         S.L         6.44         2.510         1.249         CT         1.265         0.87         32.50         30.6         2.7           3.00         6.45         1.986         1.001         CT         1.013         0.90         32.80         2.7           3.00         6.45         1.886         1.001         CT         1.046         0.89         28.79           4.00         6.40         1.000         CT         1.046         0.89         28.79           4.00         6.47         1.999         1.000         CT         0.967         30.78           3.00         6.40         3.002         1.498         CT         1.046         0.79         39.79           3.00         6.60         2.008         0.999         CT         1.004         0.90         33.50           2.76         6.50         2.006         1.001         CT         1.008         0.99         34.90           2.76         6.53         2.018         1.000         CT         1.008         0.99         34.90           2.76         6.53         1.992         1.000         CT         1.016         0.99         34.90			3.50			54.4	2.516	1.250	CT	1.258	0.93	33.50			1978	MPC01
64.4         2.014         1.000         CT         1.007         0.87         32.40           64.5         1.986         1.001         CT         1.013         0.89         32.80           64.6         2.003         1.000         CT         1.046         0.69         28.79           64.9         3.002         1.498         CT         1.046         0.71         29.40           65.0         2.008         0.999         CT         1.004         0.90         33.50           65.0         2.008         1.001         CT         1.004         0.90         33.50           65.3         2.018         1.000         CT         1.004         0.99         35.00           65.3         1.992         1.000         CT         1.004         0.99         34.90           65.7         1.999         1.002         CT         1.024         0.67         28.90           65.8         1.990         1.001         CT         1.016         0.67         28.90	17351	Plate	3.50	R.T.	3·L	64.4	2.510	1.249	СT	1.255	0.87	32.50	30.6	2.7	1978	MPC01
64.6         1.886         1.001         CT         1.013         0.90         32.80           64.6         2.003         1.000         CT         1.046         0.89         28.79           64.7         1.899         1.000         CT         1.046         0.71         29.40           65.0         2.008         1.000         CT         1.064         0.90         33.09           65.0         2.008         0.899         CT         1.004         0.80         33.50           65.3         2.018         1.000         CT         1.009         0.99         35.00           65.3         2.018         1.000         CT         1.016         0.99         34.90           65.3         1.992         1.002         CT         1.024         0.67         28.90           65.7         1.999         1.001         CT         1.024         0.67         28.90			3.50			54.4	2.014	1.000	CT	1.007	0.87	32.40	· 1		1978	MPC01
64.6         2.003         1,000         CT         1,046         0.69         28.79           64.7         1.999         1,000         CT         0.967         0.79         30.79           65.0         2.008         0.999         CT         1,666         0.71         29.40           65.0         2.006         1,001         CT         1,004         0.90         33.50           65.3         2.018         1,000         CT         1,003         0.99         35.00           65.3         1,992         1,000         CT         1,016         0.99         34.90           65.7         1,999         1,002         CT         1,024         0.67         28.90           65.8         1,990         1,001         CT         1,016         0.67         28.90			3:00			64.5	1.986	1.001	ţ,	1.013	0.90	32.90			1978	MPC01
64.7         1.899         1.000         CT         0.967         0.79         30.79           64.9         3.002         1.498         CT         1.566         0.71         29.40           65.0         2.008         0.899         CT         1.004         0.90         33.50           65.0         2.006         1.001         CT         1.003         0.87         32.70           65.3         2.018         1.000         CT         1.009         0.99         34.90           65.3         1.992         1.002         CT         1.024         0.67         28.90           65.7         1.999         1.001         CT         1.024         0.67         28.90           65.8         1.990         1.001         CT         1.016         0.67         28.90			3.00			54.6	2.003	1.000	cr	1.046	0.69	28.79			1978	RA003
64.9         3.002         1.498         CT         1.566         0.71         29.40           55.0         2.008         0.999         CT         1.004         0.90         33.50           65.0         2.006         1.001         CT         1.003         0.87         32.70           65.3         2.018         1.000         CT         1.009         0.99         34.90           65.3         1.992         1.002         CT         1.024         0.67         28.90           65.7         1.999         1.001         CT         1.016         0.81         31.90			3.00			64.7	1.999	1.000	CT	0.967	0.79	30.79			1978	RA003
55.0         2.008         0.899         CT         1.004         0.80         33.50           56.0         2.006         1.001         CT         1.003         0.87         32.70           56.3         2.018         1.000         CT         1.009         0.99         35.00           56.7         1.999         1.002         CT         1.024         0.67         28.90           56.8         1.990         1.001         CT         1.016         0.81         31.90			4.00			54.9	3.002	1.498	CT	1.566	0.71	29.40			1977	RA006
65.0         2.006         1.001         CT         1.003         0.87         32.70           65.3         2.018         1.000         CT         1.009         0.99         35.00           65.3         1.992         1.002         CT         1.016         0.99         34.90           65.7         1.999         1.002         CT         1.024         0.67         28.90           65.8         1.990         1.001         CT         1.016         0.81         31.90			3.00			66.0	2.008	0.999	CT	1.004	0.90	33.50			1978	MPC01
55.3         2.018         1.000         CT         1.009         0.99         35.00           56.3         1.992         1.000         CT         1.016         0.99         34.90           56.7         1.999         1.002         CT         1.024         0.67         28.90           56.8         1.990         1.001         CT         1.016         0.81         31.90			3.00			66.0	2.006	1.001	CT	1.003	0.87	32.70			1978	MPC01
56.3         1.992         1.000         CT         1.016         0.99         34.90           56.7         1.989         1.002         CT         1.024         0.67         28.90           56.8         1.990         1.001         CT         1.016         0.81         31.90			2.76			55.3	2.018	1.000	CT	1.009	0.99	35.00			1978	MPC01
56.7         1.999         1.002         CT         1.024         0.67         28.90           56.8         1.990         1.001         CT         1.015         0.81         31.90			2.76			65.3	1.992	1.000	CT	1.016	0.99	34.90	- 1		1978	MPC01
55.8 1.990 1.001 CT 1.015 0.81 31.90			2.50			56.7	1.999	1.002	CT	1.024	0.67	28.90			1977	RA006
			3.00			65.8	1.990	1.001	5	1.015	0.81	31.90			1978	MPC01

					ALU	ALUMINUM	1 7475	75 K _{Io}							
	PROI	PRODUCT				σα 	SPECIMEN	z	CRACK			K _I °		-	
CONDITION	FORM	THICK (in.)	TEMP TEMP (°F)	SPEC	YIELD STR (Kai)	WIDTH (in.) W	THICK (in.)	DESIGN	LENGTH (in.) A	2.5 • (K _{ar} /TYS)* (in.)	K. (Kelvin.)	K. MEAN	BTAN	DATE	REFER
		3.62			65.8	2.002	686:0	cr	0.984	0.67	29.10			1977	RA006
		3.00			66.0	2.006	1.001	CT	1.003	82.0	31.80			1978	MPC01
		3.25			66.0	1.998	1.002	CT	0.947	69.0	25.90			1977	RA006
		3.50			56.2	1.992	1.000	CT	1.015	6.84	32.70			1978	MPC01
		3.50		4	56.2	2.000	1.000	cr	1.020	18'0	32.50			1978	MPC01
		3.00			56.4	2.000	1.000	CT	1.000	0.87	33.70			1978	MPC01
		3.00			56.6	2.010	0.999	CT	1.005	0.84	32.90			1978	MPC01
		3.00			56.7	1.999	1.006	CT	1.001	0.53	26.20			1978	RA003
		3.00			56.8	1.998	0.999	CT	1.009	69'0	27.70			1978	RA003
		3.54			6.99	2.000	0.998	cr	0.982	69'0	30.00			1977	RA004
T7361	Plate	3.64	R.T.	18	6.99	2.000	0.999	CT	0.963	12.0	30.40			1977	RA004
Cont'd	Cont'd	3.00	Cont'd	Cont'd	67.0	1.996	0.998	СТ	1.025	0.63	28.79	Cont'd	Cont'd	1978	RA003
		3.00			67.2	2.006	1.001	CI	1.003	0.78	32.60			1978	MPC01
		3.00			57.2	2.000	0.998	CT	0.965	0.59	28.00			1978	RA003
		3.00			67.2	1.996	1.001	CT	0.998	0.76	32.00			1978	MPC01
		3.00			67.3	1,001	1.001	СТ	1.074	0.67	29.70			1978	RA003
		3.00			67.3	2.000	0.998	CT	0.988	0.61	28.40			1980	RA005
		3.00			57.4	2.001	1.000	CT	1.033	0.87	33.90	,		1978	GD006
		3.00		· ·	57.4	1.999	0.999	СŢ	1.063	0.87	34.00			1978	GD006
		3.50			57.4	2.010	1.000	СŢ	1.005	0.75	31.80			1978	MPC01
		3.00			57.4	2.002	1.000	CT	1.039	0.99	36.30			1978	GD006
		3.00			97.9	2.000	1.008	ಕ	1.043	0.50	25.79			1978	RA003

23 of 28

	1										<u> </u>												Ī
		REFER	MPC01	RA003	RA003	MPC01	RA004	RA003	RA004	RA003	RA003	RA003	RA005	RA003	RA006	RA003	RA006	86213	86213	86213	86213	86213	86213
	-	DATE	1978	1978	1978	1978	1977	1978	1977	1978	1978	1978	1980	1978	1977	1978	1461	1973	1973	1973	1973	1973	1973
		STAN								Cont'd									9.4			9.0	:
	K _{Io}	K. MRAN								Cont'd									32.5			25.4	
		K. (Krivin.)	31.00	30.00	27.29	28.00	25.50	30.29	25.20	28.29	29.50	29.10	28.00	26.20	30.00	29.29	28.70	93.00	32.40	32.20	25.00	25.70	48.30
		2.6 * (KTYS)* (in.)	0.70	0.67	0.55	0.57	0.48	0.67	0.47	92'0	19.0	69'0	0.54	0.47	0.61	0.58	0.51	0.64	0.61	0.60	0.43	0.45	1.63
	CRACK	LENGTH (in.) A	0.995	0.967	1.032	1.016	0.771	1.056	0.766	0.975	1.027	1.075	0.985	1.066	1.013	1.063	0.790	0.728	0.730	0.727	0.484	0.487	2.195
5 K _{Ie}	7	DESIGN	cr	cr	cr	CT	C.	CT	CT	CT	CT	ÇĪ	CT	cr	CT	CT	cr	CT	CT	СŢ	СТ	CT	CT
7475	SPECIMEN	THICK (in.) B	1.000	0.999	1.005	1.000	0.747	1.000	0.746	0.999	1.007	1.000	0.998	1.001	1.001	1.000	0.750	0.750	0.750	0.749	0.500	0.499	1.798
ALUMINUM	SS	WIDTH (fn.)	1.990	1.999	1.999	1.992	1.498	2.000	1.498	1.999	2.000	2.001	2.000	2.001	1.999	2.001	1.503	1.490	1.490	1.490	1.000	1.000	4.000
ALUM		YIELD STR (Kel)	67.6	67.7	67.9	68.0	58.1	58.1	58.1	58.6	59.4	69.7	6.63	60.0	60.7	8.09	63.2	65.2	65.8	65.8	60.6	6.09	6.69
		SPEC	i					1		S-L Cont'd	L		1	1					1 <u>.</u>			3	LT
		TEST TERM CP)			2	R.T.																	
	UCT	THICK (In.)	<del>                                     </del>	1.62	1.62	1.62	1.62	1.62	1.75														
	PRODUCT	FORM	4	1				<del>-</del>		Plate Cont'd									Plate		1	Plate	Plate
		CONDITION								T7351 Cont'd				,					17361			17361	T7351 (SP)

					ALU	ALUMINUM	1 7475	5 K _I °							
	PROI	PRODUCT				80	SPECIMEN	z				K _{Io}		·	
CONDITION	FORM	THICK (in.)	TEST TEMP (°F)	SPEC	YTRLD STR (Kat)	WIDTH (In.)	THICK (in.)	DESIGN	LENGTH (in.) A	8.6 • (K _L ,TYS)* (in.)	K. (Kelvin.)	K. MBAN	STAN DEV	DATE	REFER
		3.25		1	54.2	4.000	2.002	Ç	2.177	1.40	40.50			1973	86213
		3.25			64.2	4.000	2.001	CT	2.156	1.34	39.70			1973	86213
		3.25			56.2	3.990	2.001	CT	2.152	1.12	37.60			1973	86213
		3.25		1	56.2	6.000	1.999	cr	3.161	1.16	38.20			1973	86213
		3.25			56.2	4.000	2.000	cr	2.187	1.08	37.00			1973	86213
		3.25			66.7	4.000	2.000	CT	2.197	1.12	37.90			1973	86213
		3.25			56.7	6.000	2.000	СТ	3.216	1.08	37.20			1973	86213
		2.50			57.4	2.500	1.252	CT	1.329	1.06	37.40			1973	86213
T7351 (SP)	Plate	2.50	R.T.	T.L	67.4	2.500	1.251	CT	1.296	1.10	38.10	37.6	2.6	1973	86213
		2.50			57.6	2.500	1.249	CT	1.312	1.24	40.50			1973	86213
		2.50			67.6	2.500	1.251	CT	1.294	1.09	38.10			1973	86213
		3.00			68.0	6.010	2.000	CT	3.176	66:0	96.50			1973	86213
		3.00			60.3	900.9	2.003	CT	3.221	1.16	41.10			1973	86213
		2.50			60.4	1.490	0.752	cr	0.736	0.71	92.10			1973	81798
		2.50			9.09	1.490	0.748	CT	0.756	69.0	31.80			1973	86213
		1.75			6.09	4.000	1.796	СŢ	2.188	0.94	37.30			1973	86213
		1.76			6.09	4.000	1.796	СТ	2.160	96.0	37.70			1973	86213
		3.25			54.7	1.990	1.002	СŢ	0.982	98.0	32.00			1973	86213
ATTO A PROPERTY	Ē	3.25	S	;	54.7	2.000	1.002	Ç	1.004	0.93	33.40			1973	86213
1,001 (35)	Ligite	3.26	70	3	65.0	1.990	1.002	CT	1.006	0.88	32.60	91.9	1.7	1973	86213
		3.25			65.0	1.990	1.001	CT	1.011	0.77	30.60			1973	86213

26 of 28

		D.						10	15		<b>4</b>	_	_	7		*	4	7	مِ	ور		4
		REFER	86213	86213	86213	86213	86213	DA005	DA005	DA004	DA004	RA007	RA007	RA007	RA001	DA004	DA004	RA007	DA005	DA005	86574	86574
		DATE	1973	1973	1973	1973	1973	1881	1987	1987	1987	1977	1977	1977	1977	1987	1987	1977	1987	1987	1973	1973
		STAN			Cont'd					3.7							3.7					
	K _I °	K. MBAN			Cont'd		:			39.3						-	42.1					
		K. (Kelvin.)	30.30	30.00	31.50	35.00	37.10	43.30	41.10	34.72	37.95	43.00	42.70	40.40	40.40	41.19	41.86	36.90	49.10	48.20	40.30	40.10
		8.6 * (K _{e.} /TYB)* (in.)	0.74	0.72	0.76	0.94	0.72	0.89	0.80	0.56	0.67	1.25	1.19	1.06	0.89	0.91	0.94	0.68	1.25	1.21	0.80	0.80
	CRACK	LENGTH (fn.) A	0,985	976.0	0.979	0.892	1.053	1.546	1.534	1.646	1.564	1.581	1.612	1.647	1.609	1.545	1.677	1.575	1.563	1.584	1.297	1.268
5 K _{Io}	z	DESIGN	CT	CT	cT	CT	Ç	CT	CT	CI	C.T.	CT	cr	cr	ст	cr	CT	ст	cr	C.T	cr	5
7475	SPECIMEN	THICK (in.) B	1.00.1	1.002	1.003	1.003	0.999	1.488	1.489	1.699	1.499	1.500	1.498	1.497	1.498	1.605	1.504	1.498	1.488	1.488	0.960	0.960
ALUMINUM	162 1	WIDTH (in.)	1.990	1,990	1.990	1.990	2.000	3.000	3.001	3.011	3.008	2.998	3.001	3.000	3.000	3.011	3.012	3.000	3.001	3.004	2.490	2.490
ALU		YIELD STR (Kel)	65.8	65.8	67.0	67.0	689	72.7	72.7	73.1	73.1	60.8	61.7	62.0	67.6	68.3	68.3	68.7	69.3	69.3	71.0	71.0
		SPEC	S. L. Contd																			
		TEST TEMP (°F)		82	Cont'd		82		ŧ	ę							R.T.					
	UCT	THICK (in.)	3.00	3.00	3.00	3.00	2.00	1.75	1.75	1.75	1.75	2.00	2.00	2.00	2.00	1.75	1.76	2.00	1.75	1.76	1.00	1.00
	PRODUCT	PORM		Plate	Cont'd		Forging		E	Flate							Plate		_			
		CONDITION		T7351 (SP)	Cont'd		1736		, in the second	1,001							17651					

	i				ALUI	ALUMINUM	1 7475	5 K _{Ie}								
	PRO	PRODUCT				SC	SPECIMEN	z	CRACK			<b>⊼</b>				
CONDITION	FORM	THICK (in.)	TEST TEMP (°F)	SPEC	YIELD STR (Kal)	WIDTH (In.)	THICK (in.)	DEBIGN	LENGTH (in.) A	2.5 • (K _{k.,} TYS)* (in.)	K. (Kalvin.)	K, MBAN	STAN DEV	DATE	REFER	
		2.00			62.3	2.998	1.500	CT	1.512	0.78	34.90			1977	RA007	-
		2.00			63.7	3.001	1.498	ct	1.576	0.71	34.00			1977	RA007	RAOC
		2:00		1	64.7	3.000	1.499	CT	1.564	69.0	34.09			1977	RA007	
TYPERI	575	2.00	E	I	67.7	3.000	1.499	ст	1.682	0.63	34.09			1977	RA007	
1,001	r Pilite	0.87	R. I.		69.5	3.000	0.892	cr	1.523	09'0	31.00	34.0	2.9	1973	86213	-
		2.00			8.69	3.000	1.498	CT	1.612	0.43	29.10			1977	RA007	
		1.00			70.2	2.000	0.965	СŢ	0.991	0.71	37.40			1973	86213	_
		1.00			70.2	2.000	0.965	CT	1.048	0.72	37.70			1973	86213	<u> </u>
		2:00			60.5	1.499	0.749	CT	0.770	09'0	82:12			1977	RA007	_
		2.00			60.9	1.498	0.750	CT	0.775	0.51	27.60			1977	RA007	<u> </u>
T7651	Plate	2:00	R.T.	S.L	61.1	1.499	0.750	CT	0.766	0.48	27.00	27.6	8.0	1977	RA007	_
		2.00			65.7	1.499	0.752	CI	0.802	0.42	27.00			1977	RA007	
		2:00			66.1	1.500	0.749	CT	0.798	0.47	28.90			1977	RA007	
		1.75			64.2	4.000	1.789	CT	2.208	1.27	45.80			1973	86213	
T7651 (SP)	Plate	2.00	R.T.	5	66.0	3.990	2.016	CT	2.109	96'0	40.60	42.4	2.9	1973	86213	
		2.00			0.99	4.000	2.017	CT	2.096	96.0	40.90			1973	86213	
		2.00		1	66.4	3.000	0.998	Ċ	1.499	0.70	35.20			1973	86213	
T7651 (SP)	Plate	2.00	R.T.	-1: -1:	66.7	4.000	2.018	cr	2.093	0.72	35.80	35.7	9.4	1973	86213	
		2:00			66.7	4.000	2.017	cr	2.105	0.73	36.00			1973	86213	

### TABLE 8.19.2.1 (CONCLUDED)

					ALU	ALUMINUM	I 7475	5 K _{Io}							
	PRODUCT	UCT				<b>22</b>	SPECIMEN	z	CRACK			K _I °			
CONDITION	FORM	THICK (in.)	TEST TEMP (°F)	SPEC	YIELD STR (Ket)	WIDTH (in.) W	THICK (in.) B	DESIGN	LENGTH (in.) A	2.5 * (K _{L,} TYS)* (in.)	K. (Kelvin.)	K. MEAN	STAN	DATE	REFER
		2.00			60.2	1.500	0.748	CT	0.793	69:0	30.30			1973	86213
		2.00			61.0	1.500	0.748	cr	0.776	99.0	28.90			1973	86213
T7651 (SP)	Plate	2.00	R.T.	e T	62.3	1.490	0.748	CT	0.765	0.50	27.80	28.8	=======================================	1973	86213
		2.00			62.4	1.490	0.748	СТ	0.759	0.49	27.70			1973	86213
		2.00			63.4	1.500	0.748	CT	0.787	0.54	29.40			1973	86213
		2.00			60.2	1.500	0.747	CT	0.779	09.0	29.60			1973	86213
		2.00			61.0	1.500	0.746	cr	0.765	0.48	26.60			1973	86213
		2.00	1		61.5	1.500	0.747	cr	0.746	0.41	24.90			1973	86213
17651 (SP)	Plate	2.00	.; .;		62.3	1.500	0.747	CT	0.744	0.64	28.90	27.3	2.1	1973	86213
		2.00			62.4	1.500	0.747	CT	0.755	0.40	25.10			1973	86213
		2.00			63.4	1.500	0.747	CT	0.756	0.62	28.80			1973	86213
		1.75			61.6	1.000	0.500	CT	0.492	0.37	23.70			1973	86213
T7651 (SP)	Plate	2.00	82	3-1	63.8	1.490	0.749	CT	0.752	0.54	29.60	27.4	3.2	1973	86213
		2:00			63.8	1.490	0.749	ដ	0.756	0.51	28.90			1973	86213

#### TABLE 8.19.2.2

		REFER		86213	86213	86213	86213	86842	86842	84368	84368	84368	84368	84368	84368	84368	86842	86213	86213	86842	86213	86213
		DATE		1973	1973	1973	1973	1973	1973	1972	1972	1972	1972	1972	1972	1972	1973	1973	1973	1973	1973	1973
		STAN DEV			L		<u> </u>		<u> </u>		<u> </u>	<u> </u>	-			<u> </u>		<u> </u>	3.2	<u> </u>		3.
										_												
	Kc	K _o MEAN			!		!		6. 6.		T	1		; 	T			г	1121	r		87.2
		K _e (Kei√in)		130.37*	124.03	125.72*	120.34	79.90	81.95	82.76	85.10	95.56	94.77	89.05	96.18*	88.95	108.82	111.22	111.95	116.56	89.59	84.76
		STAN			i		i		1.8				9.6					•	0.7	,		4.1
	Kapp	K			i		ı		77.5				84.1						9.66			83.0
		K (Kei√in)	VED	65.74*	66.15*	62.13*	62.48*	76.15	78.76	79.54	79.46	88.32	87.70	84.75	*77.77	85.02	99.88	100.69	89.68	99.10	85.85	80.11
R _c	SS	MAX (Kei)	RESTRAD	48.00	41.30	41.30	43.10	29.20	30.20	30.50	23.60	39.80	49.00	28.40	61.90	32.60	38.30	38.70	38.20	38.00	32.90	30.70
7475	GROSS	ONSET (Kei) °•	BUCKLING OF CRACK EDGES NOT RESTRAINED	ï	:	:	ï	÷	:	i	ı	ı	1	i	i	:	23.90	i	ŀ	i	;	i
ALUMINUM	CRACK	FINAL (in.) 2a,	RACK ED	2.111	2.237	2.252	2.146	4.340	4.280	4.280	6.600	3.460	2.320	5.400	1.520	4.320	4.620	4.700	4.850	6.220	4.300	4.400
TOM	CR	INIT (in.) 2s.	NG OF	1.027	1.280	1.177	1.117	4.000	4.000	4.000	6.000	3.000	2.000	5.000	1.000	4.000	4.000	3.980	4.000	4.000	4.000	4.000
A	MEN	THICK (in.) B	BUCKLI	0.090	0.090	0.127	0.127	0.039	0.040	0.062	0.063	0.063	0.063	0.063	0.063	0.063	0.089	0.090	0.090	0.091	0.100	0.100
	SPECIMEN	WIDTH (in.) W		3.000	3.000	3.000	3.000	16.000	16.000	16.000	16.000	16.000	16.000	16.000	16.000	16.000	16.000	15.880	15.880	16.000	15.880	15.880
	C SELA	STR (Kal)		76.0	76.0	78.4	78.4	77.1	76.2	75.7	74.1	74.1	74.1	74.1	74.1	74.1	73.7	76.4	76.4	74.2	75.8	75.8
		SPEC		E	5	E	5		3			1	7					£	;		E	<u>.</u>
	ta de	TEMP (°F)		E		E D	: I	Ē	ж.1.				R.T.					Ę-	:		£	1
	UCT	THICK (in.)		60.0	0.09	0.12	0.12	9.0	9.04	90.0	90.0	90:0	90:0	90:0	90:06	90:0	0.09	0.09	60.0	60.0	0.09	60.0
	PRODUCT	FORM		**************************************	18010	1	1989116	l	1aauc		<b>.</b>		Sheet		1		1	<u>-</u>			10040	130116
		CONDITION HEAT TREAT		151		22		Š	161				T61					12			Ē	

• NOTE: NET SECTION STRESS EXCEEDS 80% OF YIELD STRENGTH. VALUE NOT INCLUDED IN MEAN OR STANDARD DRYIATION.

					., ·	A	ALUMINUM	NUM	7475	Kc								
2	PRODUCT	1000		4 181	SPECIMEN	MEN	CRACK	СК ЭТН	GROSS	SS		Kapp			Kc			
F	THICK (ln.)	TEMP (°F)	SPEC	STR (Kel)	WIDTH (in.) W	THICK (in.)	INIT (in.) 2a.	FINAL (in.) 2a,	ONSET (Kei) G.	MAX (Kei)	K (Keivin)	K,	STAN	K _e (Ksivin)	K _e MEAN	STAN	DATE	REFER
:::::I						BUCKLE	IG OF C	RACK ED	BUCKLING OF CRACK EDGES NOT RESTRAINED	RESTRA	INED							
	0.12	R.T.	LT	74.5	16.000	0.110	4.000	4.780	18.20	38.60	100.66	1		112.00	ï	:	1973	86842
	0.12	R.T.	1-7	76.8	16.000	0.125	4.000	4.900	20.00	36.20	94.40			106.67	:	1	1973	86842
	0.18	£	E	75.0	16.000	0.182	4.000	5.400	:	36.70	95.71			115.08			1973	86842
	0.18	: I	5	75.6	16.000	0.186	4.000	2,000	:	32.90	85.80	8.09	7.0	98.18	106.6	12.0	1973	86842
	0.25	6		74.8	3.000	0.242	1.160	2:082		39.90	59.44*			106.12*			1973	86213
	0.25	к. 1.	1.5	74.8	3.000	0.242	1.190	2.206	:	39.70	60.23*	1	i	116.29*	1	!	1973	86213
	0.18	ş	F	77.3	3.000	0.178	1.190	2.202		43.40	65.84*			126.71			1973	86213
	0.18	30	5	77.3	3.000	0.178	1.110	2.111	:	45.70	66.01*	:	:	124.12*	ı	i	1973	86213
	0.25	ca	Ę	77.0	3.000	0.250	1.210	2.046	:	28.10	43.15			72.79*			1973	86213
	0.25	70	5	77.0	3.000	0.250	1.193	2.231	i	31.40	47.70	45.4	3.2	93.82*	1	!	1973	86213
Sheet	90.0	84	LT	75.6	16.000	0.063	3.000	3.560	26.80	34.20	75.89		i	83.44	i	:	1973	86213
	0.09			75.9	3.000	0.089	1.220	2.093	i	41.10	63.50			110.12*			1973	86213
94	0.09	ď	E.	75.9	3.000	0.089	1.235	2.070	ì	40.60	63.26*			107.02*	<del></del>		1973	86213
	0.09	3	5	76.4	3.000	160.0	1.160	1.915	:	44.70	66.59	ı	i	105.62*	1	!	1973	86213
	60:0			76.4	3.000	0.091	1.145	2.006	:	44.90	66.23*			113.02			1973	86213
tage of the same o	60:0	ď	£	75.8	3.000	0.101	1.185	2.030	:	40.10	60.62*			102.68*			1973	86213
- 1	0.09	3	;	75.8	3.000	0.101	1.190	2.072	i	39.40	59.78	ı	í	104.01*	ı	ı	1973	86213
	0.12	ď	E-	73.4	3.000	0.115	1.172	1.965	ï	41.60	62.42*			101.00*			1973	86213
- 1	0.12	3	1.3	73.4	3.000	0.116	1.208	2.012	ı	40.60	62.27	1	ı	102.63*	:	i	1973	86213

• NOTB: NET SECTION STRESS EXCREDS 80% OF YIELD STRENGTH. VALUE NOT INCLUDED IN MEAN OR STANDARD DEVIATION.

							<b>*</b>	ALUMINUM	NOM	7475	<b>K</b>									
	PRO	PRODUCT	Tear			SPECIMEN	MEN	CRACK	CK GTH	GROSS	SS		Карр			ΙΚ _C				
CONDITION HEAT TREAT	FORM	THICK (in.)	TEMP (°F)	SPEC		WIDTH (In.)	THICK (in.) B	INIT (In.) 2a,	FINAL (in.) 2a,	ONSET (Kei) G	MAX (Kei)	K (Kalvin)	K,	STAN	K _e (Keivin)	K _e MEAN	STAN	DATE	REFER	
							BUCKLD	VG OF C	BUCKLING OF CRACK EDGES NOT RESTRAINED	GES NOT	RESTRA	INED								Locotos
141	Shape	0.18	ยู		76.5	3.000	0.186	1.160	2.053	1	39.70	59.14*			103.28*			1973	86213	1
		0.18	3	5	76.5	3.000	0.186	1.153	2.081	í	39.70	58.85*	:	!	105.43*	:	:	1973	86213	
		90.0	,		75.6	16.000	0.062	6.000	6.920	13.30	21.70	73.06	,		81.11			1973	86213	
TG1	S.	90.0	ä	E	75.6	16.000	0.063	4.000	4.410	15.90	25.60	92.99			70.72			1973	86213	<del></del>
		90.0	3		75.6	16.000	0.063	1.000	1.380	41.70	61.50	77.26*	72.9	6.1	*96'06	78.6	6.9	1973	86213	_
		90.0			75.6	16.000	0.063	4.000	4.420	18.70	30.30	79.02			83.82			1973	86213	<del>,</del>
161	Sheed	60.0	E 2	-	72.5	3.000	0.090	1.157	2.147	ı	43.50	64.64*			121.46*			1973	86213	
		60.0		2	72.5	3.000	0.090	1.113	2.116	1	44.60	64.50*	ı	:	121.68*	i	i	1973	86213	1
Tr	Shoot	0.12	£		73.6	3.000	0.127	1.180	2.124	1	37.40	56.40*			102.67*			1973	86213	7
	12310	0.12			73.6	3.000	0.127	1.137	2.122	;	40.10	58.86*	ŀ		109.91	ı	;	1973	86213	_
161	Sh	0.18	t-		74.2	3.000	0.181	1.223	2.164	;	42.10	65.12*			119.22*			1973	86213	_
		0.18			74.2	3.000	0.182	1.150	2.234	:	43.70	64.70*	1	ı	131.02*	i	I	1973	86213	1
181	Shoot	0.04	E D	 F	72.9	16.000	0.040	4.000	4.520	ı	30.30	79.02			84.96			1973	86842	<del></del>
		90:04		2	72.1	16.000	0.042	4.000	4.360	ı	31.70	82.67	80.8	2.6	86.97	86.0	1.4	1973	86842	_
		90:0			73.8	16.000	0.062	4.000	4.380	-	29.30	76.41			1908			1972	84368	,
		90:0			72.6	16.000	0.063	3.000	3.600	1	38.10	84.55			93.54			1972	84368	_
T61	Sheet	90:0	R.T.	J.	72.6	16.000	0.063	2.000	2.060		45.90	82.15	80.4	3.9	83.21	85.8	80	1972	84368	_
		90:0		1_	72.6	16.000	0.063	9.000	6.800	-	22.20	74.74			81.87			1972	84368	_
		90'0			72.6	16.000	0.063	2.000	6.480	1	27.80	82.96			88.02			1972	84368	_

• NOTE: NET SECTION STRESS EXCEEDS 80% OF YIELD STRENGTH. VALUE NOT INCLUDED IN MEAN OR STANDARD DEVIATION.

						A	ALUMINUM	NUM	7475	Kc								
	PRODUCT	8			SPECIMEN	MEN	CRACK	СК ЭТН	GROSS	SS SSS		Kapp			K _c			
	THICK (in.)	TEMP (°F)	SPEC	STR (Kei)	WIDTH (In.)	THICK (in.) B	INIT (fn.) 2a.	FINAL (in.) 2a,	ONSET (Ket)	MAX (Ket)	K (Keivin)	K. MEAN	STAN	K _o (Kel√ĺn)	K, MEAN	STAN	DATE	REFER
						BUCKLI	NG OF C	RACK ED	BUCKLING OF CRACK EDGES NOT RESTRAINED	RESTRA	INED							
	90.0	R.T.	7:L	72.6	16.000	0.063	1.000	1.640		60.70	76.26*			*90.86			1972	84368
	90:0	Cont'd	Cont'd	72.6	16.000	0.063	4.000	4.520	ł	31.20	81,36	Cont'd	Cont'd	87.48	Cont'd	Cont'd	1972	84368
	0.09			9.17	16.000	060'0	4.000	5.120	1	36.80	95.97			111.48			1973	86842
	0.09			73.1	15.880	0.091	3.980	4.750	ŀ	33.00	85.86			95.46			1973	86213
	60.0	 H		73.1	15.880	0.091	3.980	4.320		35.10	91.32	90.6	4.2	95.84	100.9	7.5	1973	86213
	60.0			72.1	16.000	0.091	4.000	4.880	ï	34.30	89.45			100.81			1973	86842
	0.09	Ę		74.1	15.880	0.100	4.000	4.300		29.30	76.46			79.79			1973	86213
19auc	60.0	Tr.T.	?	74.1	15.880	0.101	4.000	4.350	ı	31.80	82.98	7.67	4.6	87.19	83.5	6.2	1973	86213
Sheet	0.12	R.T.	T-L	72.6	16.000	0.110	4.000	5.360	19.30	35.60	92.84	i	:	111.09	1	÷	1973	86842
Sheet	0.12	R.T.	T.L	73.1	16.000	0.126	4.000	4.600	18.80	29.70	77.45	!		84.17		1	1973	86842
-	0.18	Ē		72.3	16.000	0.181	4.000	6.000		30.90	80.58			92.21			1973	86842
Sheet	0.18	K.T.	1:r	72.6	16.000	0.186	4.000	4.870		27.70	72.24	76.4	6.9	81.31	86.8	7.7	1973	86842
	0.25	E	·	75.2	3.000	0.250	1.140	1.863	!	27.90	41.05			63.69*			1973	86213
riate	0.25	K.1.	T:F	75.2	3.000	0.250	1.130	1.592	-	27.90	40.80	40.9	0.2	53.81	ı	ı	1973	86213
5	0.25	8	F	72.4	3.000	0.243	1.243	2.152	:	37.50	58.71*			105.20*			1973	86213
.	0.25	8	7-1	72.4	3.000	0.243	1.220	2.113	ı	37.10	57.32*	i	ï	100.91*	ı	1	1973	86213
,	90:0	3	F	71.6	16.000	0.063	1.000	1.530	44.20	58.60	73.62*		,	91.36*			1973	86213
i eet	90.0	£6	3	71.6	16.000	0.064	3.000	3.480	25.40	36.50	81.00	!	i	87.92	i	i	1973	86213

• NOTE: NET SECTION STRESS EXCREDS 80% OF YIELD STRENGTH. VALUE NOT INCLUDED IN MEAN OR STANDARD DEVIATION.

PRODUCT   TEST   SPEC   STR   WIDTH   THICK   TEMP   OR   (In.)   (I		TWO LITTLE OF THE											
Sheet 0.09 85 T-L 74.5 3.000  Sheet 0.09 85 T-L 73.1 3.000  Sheet 0.09 85 T-L 74.1 3.000  Sheet 0.09 86 T-L 74.1 3.000  Sheet 0.09 88 T-L 73.5 3.000  Sheet 0.06 88 T-L 73.5 3.000	, i		RACK	GROSS	SS		Kapp			R _c			
Sheet 0.09 85 T-L 73.1 3.000 0.09 85 T-L 73.1 3.000 0.09 85 T-L 73.1 3.000 0.09 85 T-L 74.1 3.000 0.12 86 T-L 71.8 3.000 0.18 86 T-L 73.5 3.000 0.06 88 T-L 73.5 3.000 0.06 89.5 2.009 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	STR WIDTH (Kei) W			ONSET (Kei) 0.	MAX (Kal)	K (Kelvin)	K. MEAN	BTAN DEV	K _e (Ket√in)	K _c MEAN	STAN	DATE	REFER
Sheet 0.09 85 T.L 73.1 3.000 0.089 1.165 1.009 Sheet 0.099 85 T.L 73.1 3.000 0.091 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1.165 1	Bf	CKLING	F CRACK I	EDGES NOT	RESTRA	NED							
Sheet 0.09 85 T-L 73.1 3.000 0.091 1.150	3.000	+		;	40.40	60.33*			103.30*			1973	86213
Sheet 0.09	74.5 3.000			:	43.10	63.81*			109.57*			1973	86213
Sheet         0.09         F.L.         74.1         3.000         0.091         1.160           Sheet         0.09         85         T.L.         74.1         3.000         0.101         1.180           Sheet         0.12         86         T.L.         71.8         3.000         0.115         1.157           Sheet         0.18         86         T.L.         77.8         3.000         0.115         1.162           Sheet         0.18         86         T.L.         73.5         3.000         0.186         1.162           Sheet         0.06         88         T.L.         71.6         16.000         0.062         4.000           Sheet         0.06         88         T.L.         71.6         16.000         0.063         6.000           Sheet         3.00         R.T.         1.16         16.000         0.063	73.1 3.000	一		:	44.30	65.34*	ı	:	102.34	:	i	1973	86213
Sheet         0.09         85         T.L         74.1         3.000         0.101         1.180           Sheet         0.12         86         T.L         71.8         3.000         0.101         1.220           Sheet         0.18         86         T.L         71.8         3.000         0.115         1.157           Sheet         0.18         86         T.L         73.5         3.000         0.186         1.162           Sheet         0.08         88         T.L         71.6         16.000         0.062         4.000           Sheet         0.06         88         T.L         71.6         16.000         0.062         4.000           Sheet         3.00         88         T.L         71.6         16.000         0.062         4.000           Sheet         3.00         88         T.L         71.6         16.000         0.063         6.000           Phate         3.00         88         7.L         71.6         16.000         0.063         6.000           Sheet         3.00         8.8         7.L         71.6         16.000         0.063         6.000           Sheet         3.00         8.5	3.000				44.00	65.54*	***************************************	·····	105.24*			1973	86213
Sheet 0.09 0.1 T.L 71.8 3.000 0.101 1.220  Sheet 0.12 86 T.L 71.8 3.000 0.115 1.157  Sheet 0.18 86 T.L 71.8 3.000 0.116 1.162  Sheet 0.06 88 T.L 71.6 16.000 0.062 4.000  Sheet 0.06 88 T.L 71.6 16.000 0.062 4.000  Sheet 3.00 R.T. 1.S 69.5 2.009 0.303 0.750	74.1 3.000				40.40	60.92*			98.22*			1973	86213
Sheet         0.12         86         T-L         71.8         3.000         0.115         1.157           Sheet         0.18         86         T-L         71.8         3.000         0.116         1.162           Sheet         0.08         T-L         73.5         3.000         0.186         1.162           Sheet         0.06         T-L         71.6         16.000         0.062         4.000           Sheet         0.06         88         T-L         71.6         16.000         0.062         4.000           Sheet         0.06         88         T-L         71.6         16.000         0.062         4.000           Sheet         0.06         88         T-L         11.6         16.000         0.062         4.000           Sheet         3.00         R.T.         1.15         16.000         0.063         6.000           Plate         3.00         R.T.         L-S         59.5         2.009         0.303         0.750           R.T.         1.2         59.5         2.009         0.303         0.750           R.T.         1.2         59.5         2.009         0.303         0.750	74.1 3.000				40.30	62.26*	ı	ŀ	105.76*	i	i	1973	86213
Sheet 0.18 86 T-L 73.5 3.000 0.116 1.133  Sheet 0.08 8 T-L 73.5 3.000 0.086 1.168  Sheet 0.06 88 T-L 71.6 16.000 0.062 4.000  Sheet 3.00 R.T. L-S 69.5 2.009 0.303 0.750	71.8 3.000			:	40.10	59.59*			98.16			1973	86213
Sheet 0.18 86 T-L 73.5 3.000 0.186 1.162  Sheet 0.06 88 T-L 71.6 16.000 0.062 4.000  Sheet 0.06 88 T-L 71.6 16.000 0.062 4.000  3.00 R.T. 1-S 69.5 2.009 0.303 0.750  Bate 3.00 R.T. 1-S 69.5 2.009 0.303 0.750	71.8 3.000			;	41.40	€0.62	:	:	98.09*	ı	1	1973	86213
Sheet 0.06 88 T.L 71.6 16.000 0.062 4.000  O.06 88 T.L 71.6 16.000 0.062 4.000  O.06 8. T.L 71.6 16.000 0.063 6.000  Sheet 3.00 R.T L-S 69.5 2.009 0.303 0.750	73.5 3.000			:	38.30	57.12*			97.23*			1973	86213
Sheet 0.06 88 T-L 71.6 16.000 0.062 4.000 0.062 0.000 0.062 0.000 0.062 0.000 0.062 0.000 0.062 0.000 0.062 0.000 0.062 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	73.5 3.000	-		-	38.10	57.03*	!	1	103.95*	ı	ŀ	1973	86213
Sheet         0.06         88         T.L.         71.6         16.000         0.062         4.000           3.00         3.00         R.T.         1.6         16.000         0.063         6.000           Plate         3.00         R.T.         L.S         59.5         2.009         0.303         0.744           3.00         R.T.         L.S         69.5         2.009         0.303         0.750	16.000	$\rightarrow$	_	17.60	31.20	81.36			87.36			1973	86213
9.06 71.6 16.000 0.063 6.000 3.00 8.T. L-S 69.5 2.009 0.303 0.750 3.00 8.T. L-S 69.5 2.009 0.303 0.750	71.6 16.000			15.50	32.50	84.75	79.9	9.6	90.15	0.55	6.7	1973	86213
Plate 3.00 R.T. L.S 69.5 2.009 0.303 0.764 3.00 8.00 R.T. E9.5 2.009 0.303 0.760 8.10 8.10 8.10 8.10 8.10 8.10 8.10 8.1	16.000			10.10	21.90	73.73			77.46			1973	86213
Plate         3.00         R.T.         L-S         69.5         2.009         0.303         0.750           3.00         69.5         2.009         0.303         0.750	2.009			-	44.57	52.80*			87.20*			1979	GD011
3.00 69.5 2.009 0.303 0.750	59.5 2.009	$\dashv$	_	1	43.20	51.40*	1	i	85.10*	ı	1	1979	GD011
	2.009	$\dashv$		!	39.10	46.50*			80.10*			6/61	GD011
T7351 Plate 0.50 -80 L-T 64.9 16.000 0.266 4.000	64.9 16.000	-		ŀ	36.89	96.20	ı		160.30	ı	ì	1978	GD006
T7351 Flate 0.50 -80 L-T 64.9 16.000 0.364 4.000	64.9 16.000			ŀ	36.37	94.80	1	ı	150.50	ı	1	1978	GD006
T7351 Plate 0.50 -80 L.T 64.9 16.000 0.508 4.010	64.9 16.000			ı	37.21	97.30	1	1	129.30	ı	1	1978	GD006

• NOTE: NET SECTION STRESS EXCEEDS 80% OF YIELD STRENGTH. VALUE NOT INCLUDED IN MEAN OR STANDARD DRVIATION.

ALUMINUM	ALUMI	ALUMII	ALUMII	UMU,	11 F. II	NOM	7475	Kc								
VIRID		Sp	SPECIMEN	EN	CRACK	HT HT	GROSS	SS		Керр			Kc	-		
SPEC STR WIDTH OR (Kal) (In.)		(fp.)		THICK I	INIT F	(in.)	ONSET (Kel) G.	MAX (Kel)	Keivin)	K. MEAN	STAN	K _e (Kst√in)	K _c MEAN	STAN DEV	DATE	REFER
			9	UCKLIN	GOFCR	ACK ED	BUCKLING OF CRACK EDGES NOT RESTRAINED	RESTRAI	VED							
64.9 6.000		6.00		0.255	2.822	1	ı	33.85	82.90*			120.70*			1978	GD006
64.9 6.004		6.004		0.256	2.004	:	:	41.77	79.70*		i	116.40*	ï	:	1978	GD005
L-T 64.9 6.013		6.013		0.350	1.980	ı	:	42.55	80.50			116.60*	i		1978	GD005
L-T 64.9 6.080	-	6.080		0.507	2.008	i	ı	41.59	79.30*		ı	117.30*		:	1978	GD006
LT 64.9 6.070	-	6.070	_	0.514	2:032	-	ı	38.34	73.70*	ı	:	106.20*		:	1978	GD005
64.9 16.000		16.000	- 1	0.253	4.020	-	1	44.47	116.30*			166.30*			1978	GD005
64.9 16.000		16.000		0.256	4.030	·	:	44.68	117.00*			177.70*		ì	1978	GD00£
64.9 16.000		16.000		0.355	4.020	;	ı	47.84	125.10			198.90*			1978	GD006
64.9 16.020		16.020		0.358	4.000	ï	;	46.31	120.80*	:	:	186.20*	i	!	1978	GD005
64.9 16.000	$\overline{}$	16.000		0.507	3.980	i	ı	46.28	120.30*			193.70*			1978	GD005
LT 64.9 15.970		15.970		0.511	4.000	ï	ı	45.00	117.40*	ļ	i	178.30*	i	;	1978	GD005
64.9 15.990	-	15.990		0.514	4.010	1	1	45.93	120.00*			193.90			1978	GD006
LT 72.8 16.000	$\dashv$	16.000		0.032	4.000	4.460	;	27.00	70.41	:	ı	75.09	i	i	1973	86842
73.7 16.000		16.000		0.041	4.000	4.640	13.10	31.10	81.10			88.60			1973	86842
74.3 16.000		16.000		0.041	4.000	4.440	:	29.60	77.19	79.1	2.8	82.10	85.3	4.6	1973	86842
66.4 16.000	$\dashv$	16.000		0.061	4.000	4.720	;	35.70	93.10			102.78			1972	84368
70.5 16.000		16.00	ᅴ	0.061	2.000	5.740	;	27.40	81.77		,	89.48			1972	84368
70.5 16.000		16.00	٥	0.061	6.000	8.800	:	24.40	82.15	86.9	4.9	89.99	95.9	6.9	1972	84368
70.5 16.000		16.0	8	0.061	2.000	2.480	1	49.70	88.95*			*19'68			1972	84368

• NOTE: NET SECTION STRESS EXCEEDS 80% OF YIELD STRENGTH. VALUE NOT INCLUDED IN MEAN OR STANDARD DEVIATION.

							W	ALUMINUM	NOM	7475	<b>π</b>								
	PRO	PRODUCT				SPECIMEN	MEN	CRACK	XC TH	GROSS			Kapp			Kc			
CONDITION HEAT TREAT	FORM	THICK (in.)	TEMP (°F)	SPEC	STR (Ket)	WIDTH (In.)	THICK (in.)	(in.)	FINAL (in.)	ONSET (Kel) G.	MAX (Kei)	K (Kelvin)	K. MEAN	STAN DEV	K _e (Ketvin)	K _o MEAN	STAN DEV	DATE	REFER
							BUCKLIN	GOFC	ACK EDC	BUCKLING OF CRACK EDGES NOT RESTRAINED	TESTRAI	NED							
		90.0			70.5	16.000	0.062	1.000	1.660		61.40	77.14*			99.81•			1972	84368
T761 Cont'd	Sheet Cont'd	90.0	R.T. Cont'd	Cont'd	70.5	16.000	0.062	4.000	4.880	:	33.90	88.41	Cont'd	Cont'd	99.63	Contra	Contid	1972	84368
		90.0			70.5	16.000	0.062	3.000	3.520	:	40.20	89.21			97.45			1972	84368
		60.0		1	8.69	16.000	0.089	4.000	4.900	19.70	39.70	103.53			116.98*			1973	86842
		0.09			66.7	15.880	0.090	4.000	5.050		38.90	101.51			116.94*			1973	86213
1961	Choose	0.09	£	!	66.7	15.880	0.090	4.000	4.920	:	37.70	98.38			111.48*			1973	86213
	Tagello	60.0		<u> </u>	70.7	15.880	0.090	3.980	4.970	:	37.70	98.09	100.4	2.1	112.19	114.2	2.9	1973	86213
		60.0		I	70.7	15.880	0.090	3.970	5.150	1	38.20	99.25			116.28			1973	86213
		60.0			67.3	16.000	0.091	4.000	5.240	18.50	38.90	101.44			119.61*			1973	86842
1761	Sheet	0.12	£	I	66.4	16.000	0.125	4.000	2.300	17.50	41.30	107.70*			127.93*			1973	86842
		0.12		5	66.8	16.000	0.125	4.000	5.240	16.00	39.70	103.53	ŀ	1	122.07*	ı	i	1973	86842
1761	Sheet	0.18	R.T.	7.	66.4	16.000	0.185	4.000	0.000	17.60	42.00	109.53*	:	ı	141.40*	i	1	1973	86842
1941	Sheet	0.18	R.T.	7	69.3	16.000	0.192	4.000	5.880	17.80	46.20	120.48*	i	i	153.38*	i	1	1973	86842
17761	d de la	0.25	Ē	E-	67.0	16.000	0.245	4.000	5.120	:	42.70	111.35*			129.36*			1973	86842
		0.25			67.8	16.000	0.249	4.000	4.970	1	27.90	72.76	i	i	82.94	i	I	1973	86842
1761	Plate	0.25	83	<u>-</u>	9.99	3.000	0.240	1.130	2.209	1	39.80	58.20*			116.77*			1973	86213
		0.25	,		9.99	3.000	0.240	1.183	2.234		39.20	59.18*	1	í	117.52*	1	i	1973	86213
T761	Plate	0.25	82	 	72.2	3.000	0.250	1.150	1.743	-	34.20	50.63			72.31			1973	86213
		0.25			72.2	3.000	0.250	1.133	2.302		35.20	51.54	61.1	9.0	111.97	i	ı	1973	86213

• NOTE: NET SECTION STRESS EXCEEDS 80% OF YIELD STRENGTH. VALUE NOT INCLUDED IN MEAN OR STANDARD DEVIATION.

							A	ALUMINUM	NUM	7475	K _o								
	PROI	PRODUCT				SPECIMEN	MEN	CRACK	СК	GROSS	SS		Kapp			K	-		
CONDITION HEAT TREAT	FORM	THICK (in.)	TEMP (°F)	SPEC	STR (Kel)	WIDTH (in.)	THICK (in.) B	INIT (in.) 28.	FINAL (in.) 2n,	ONSET (Kei)	MAX (Kai)	K (Ksivin)	K,	STAN	K _o (Keivin)	K, MEAN	STAN DEV	DATE	REFER
							BUCKL	VG OF C	RACK ED	BUCKLING OF CRACK EDGES NOT RESTRAINED	RESTRAI	NED							
	i	0.12	5		75.2	3.000	0.129	1.230	2.278	:	40.10	62,33*			124.86			1973	86213
1761	Sheet	0.12	82	7	75.2	3.000	0.129	1.117	2.158		43.20	62.63*	:	I	121.76*	ı		1973	86213
-	i	90.0	ě		73.6	16.000	0.063	3.000	3.630	28.10	37.00	82.11			91.27			1973	86213
1401	Sheet	90.0	<b>*</b>	121	73.6	16.000	0.063	1.000	1.740	52.70	60.40	75.88*	ï	:	100.59*	i		1973	86213
		0.09			66.7	3.000	0.090	1.150	1.988	ı	40.70	60.26*			101.17*			1973	86213
	ā	0.09	8		66.7	3.000	0.090	1.170	1.988	:	40.70	61.00*			101.17*			1973	86213
10/1	Sheet	60'0	8	<u> </u>	7.07	3.000	0.095	1.185	1.981	1	40.90	61.83*	i	:	101.10*	i	ŀ	1973	86213
		0.09			7.07	3.000	0.095	1.160	1.972	1	40.00	59.58*			98.33*			1973	86213
-	ē	0.12	8		67.1	3.000	0.115	1.180	2.014	:	40.00	60.32*			101.26*			1973	86213
1761	Sheet	0.12	98	1.5	67.1	3.000	0.115	1.200	2.027	:	40.00	61.06*	ı	1	102.13*	ı	i	1973	86213
	,	90.0			73.6	16.000	0.063	4.000	4.170	19.40	28.90	75.37			17.22			1973	86213
1761	Sheet	90:0	88	1.7	73.6	16.000	0.063	6.000	6.140	9.00	19.20	64.64	74.0	8.7	65.70	75.8	9.6	1973	86213
		90:06			73.6	16.000	0.064	4.000	4.230	15.70	31.40	81.89			84.62			1973	86213
1024	5	0.12	5	Ē	72.2	3.000	0.129	1.133	2.164		42.60	62.37*			120.63*			1973	86213
1,61	oneet	0.12	K.I.	7	72.2	3.000	0.129	1.193	2.251		41.70	63.34*	!	:	126.73*	:	ı	1973	86213
1761	Sheet	0.03	R.T.	T-L	69.4	16.000	0.032	4.000	4.840	!	29.70	77.45	:	1	86.84		:	1973	86842
1	i	9.04	Ē	Ë	70.8	16.000	0.041	4.000	4.420	15.20	30.60	79.80		,	84.65			1973	86842
	18900	9.04	R. I.	3.	71.1	16.000	0.042	4.000	4.420	11.60	32.40	84.49	82.1	3.3	89.63	87.1	3.6	1973	86842

• NOTE: NET BECTION BTRESS EXCREDS 80% OF YIRLD STRENGTH. VALUR NOT INCLUDED IN MEAN OR STANDARD DEVIATION.

		REFER		84368	84368	84368	84368	84368	84368	84368	86842	86213	86213	86213	86213	86842	86842	86842	86842	86842	86842	86842
		DATE		1972	1972	1972	1972	1972	1972	1972	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973
		STAN												4.4				i	1	;		i
	К _с	K _e MEAN					27							103.1				i	1	1		ı
		K _e (Kel√in)		97.24	92.86	93.30	90.72	94.78*	102.21•	98.17	106.26	102.41	104.08	106.93	95.86	108.12*	115.00*	108.23	128.75*	125.14	191.34*	72.07
		STAN					3.1		•					4.0				4.1		,		ı
	Kapp	K, MEAN					86.4							93.4		!		94.7	ı	ŀ		i
		K (Keivin)	INED	89.87	83.86	86.32	82.82	76.64*	90.92*	88.93	97.01	90.03	91.85	97.97	88.07	95.45	97.53	91.80	103.79*	100.40	105.88*	66.76
Kc	SS	MAX (Ket)	RESTRA	40.50	28.10	33.10	24.60	61.00	60.80	34.10	37.20	34.50	35.20	37.60	33.80	36.60	37.40	35.20	39.80	38.50	40.60	25.60
7475	GROSS STRESS	ONSET (Kei) 0.	GES NOT	i	1		:		:	:	19.70	i	ï	i	i	17.40	17.00	17.00	18.20	1	1	ı
INUM	CRACK LENGTH	FINAL (in.) 2a,	BUCKLING OF CRACK EDGES NOT RESTRAINED	3.460	5.840	4.560	6.800	1.520	2.500	4.720	4.660	4.950	4.920	4.620	4.600	4.920	5.240	5.240	6.660	6.700	5.660	4.560
ALUMINUM	CR	(fn.) 2s.	ING OF	3.000	5.000	4.000	6.000	1.000	2.000	4.000	4.000	4.000	4.000	3.990	3.990	4.000	4.000	4.000	4.000	4.000	4.000	4.000
,	SPECIMEN	THICK (fa.) B	BUCKI	0.061	0.061	0.062	0.062	0.062	0.062	0.063	0.089	0.090	0.090	0.090	0.090	0.090	0.126	0.125	0.185	0.193	0.245	0.249
		WIDTH (In.)		16.000	16.000	16.000	16.000	16.000	16.000	16.000	16.000	15.880	15.880	15.880	15.880	16.000	16.000	16.000	16.000	16.000	16.000	16.000
		STR (Ket)		69.0	69.0	65.0	69.0	69.0	0.69	69.0	68.3	65.3	65.3	689	689	64.6	64.9	9.29	65.3	67.0	629	683
		SPEC				_	Ţŀ						F	₹			F	2	Ti	T.L	Ē	7
	Ę.	TEMP (°F)		· · · · · · · · · · · · · · · · · · ·		_	R.T.						£ p	<u>:</u>			£		R.T.	R.T.	£	
	PRODUCT	THICK (in.)		90'0	90:00	90.0	90.0	90:0	90:0	90:0	60:0	0.09	60:0	0.09	0.09	60:0	0.12	0.12	0.18	0.18	0.25	0.25
	PROI	FORM					Sheet						too 40				18		Sheet	Shoet	Q to D	Dian.
		CONDITION HEAT TREAT					T761						1761				1761		T761	T761	1761	

• NOTE: NET SECTION STRESS EXCEEDS 80% OF YIELD STRENGTH. VALUE NOT INCLUDED IN MEAN OR STANDARD DEVIATION.

10 of 10

### TABLE 8.19.2.2 (CONCLUDED)

							A)	ALUMINUM	MOM	7475	K								
	PROI	PRODUCT	40			SPECIMEN	ÆN	CRACK	JK TH	GROSS	SS SS		Kapp			К _с			
CONDITION HEAT TREAT	FORM	THICK (in.)	TEMP (°F)	SPEC	STR (Kei)	T HTCIIW (in.)	THICK (in.)	INIT   F	FINAL (in.)	ONSET (Kai) G	MAX (Ksi)	K. (Ksivin)	K,	STAN	K _c (Kei√in)	K _c MEAN	STAN	DATE	REFER
						-	NUCKLE	IQ OF CI	BUCKLING OF CRACK EDGES NOT RESTRAINED	ES NOT I	RESTRAL	NED							
į	Ē	0.25	8		64.5	3.000	0.240	1.203	2.220	:	37.50	67,31*			111.12*			1973	86213
101	riate	0.25	29	7:	64.5	3.000	0.240	1.157	2.276		38.50	57.21*	i	i	119.66*	ı	ı	1973	86213
1	Ē	0.25	8		70.6	3.000	0.250	1.147	2.146	1	34.60	51.10			96.61*			1973	86213
	Flate	0.25	79	<u>.</u>	70.6	3.000	0.250	1.127	2.288	!	35.50	51.79*		:	111.51*	ı	!	1973	86213
1944	100	90.0	3	Ė	71.4	16.000	0.064	1.000	1.840	43.90	58.60	73.62*			100.45*			1973	86213
10/1	199UC	90.0	\$6	7-1	71.4	16.000	0.064	3.000	3.460	23.00	34.20	75.89	:	:	82.11	:	1	1973	86213
		60'0			65.3	3.000	0.090	1.155	1.952	-	39.40	58.48			95.53*			1973	86213
1944	j	60.0	5	Ē	65.3	3.000	0.090	1.215	2.093	1	38.50	59.27*			103.16*			1973	86213
	1aauc	60.0	8	?	689	3.000	0.095	1.185	1.980	-	39.80	60.16*	ı	i	98.38*	ì	i	1973	86213
		0.09			689	3.000	0.095	1.155	1.989	ı	40.70	60.41*			101.17*			1973	86213
1000	į	0.12	Š	Ē	66.1	3.000	0.115	1.153	2.087		40.00	59.29*			106.70*			1973	86213
100/1	Sheet	0.12	80	<b>1</b> -1	66.1	3.000	0.115	1.198	2.012	ŀ	39.00	59.46*	i	i	98.59*	ı	1	1973	86213
		90.0			71.4	16.000	0.063	6.000	6.510	7.70	23.40	78.78			83.52			1973	86213
T761	Sheet	90.0	88	T.L	71.4	16.000	0.064	4.000	4.580	18.70	33.70	87.88	84.6	6.0	95.25	90.2	9	1973	86213
		90.0			71.4	16.000	0.064	4.000	4.380	13.70	33.40	87.10			91.89			1973	86213
T7651	Plate	0.50	R.T.	LT	70.6	16.000	0.258	4.020	1	:	40.80	106.70	i	1	168.00		:	1978	GD006
17651	Plate	0.50	R.T.	L.I	70.6	16.000	0.355	4.010	1	!	60.49	131.90*	i	, I	217.20*	**	1	1978	CD006
17651	Plate	0.50	R.T.	LT	70.6	15.900	0.512	4.000		ŀ	40.98	106.90	ï	1	130.20	1		1978	GD006

* NOTE: NET SECTION STRESS EXCEEDS 80% OF YIELD STRENGTH. VALUE NOT INCLUDED IN MEAN OR STANDARD DEVIATION.



Figure 8.19.2.3.1



Figure 8.19.2.3.2 8-1084





Figure 8.19.2.3.3



Figure 8.19.2.3.4

#### RESISTANCE CURVE



Figure 8.19.2.3.5



Figure 8.19.2.3.6





Figure 8.19.2.3.7



Figure 8.19.2.3.8 8-1090



Figure 8.19.2.3.9



Figure 8.19.2.3.10



Figure 8.19.2.3.11



Figure 8.19.2.3.12





Figure 8.19.2.3.13



Figure 8.19.2.3.14



Figure 8.19.2.3.15



Figure 8.19.2.3.16





Figure 8.19.2.3.17



**Figure 8.19.2.3.18** 8-1100



Figure 8.19.2.3.19



Figure 8.19.2.3.20



Figure 8.19.2.3.21



Figure 8.19.2.3.22 8-1104



Figure 8.19.2.3.23



Figure 8.19.2.3.24 8-1106



Figure 8.19.2.3.25



Figure 8.19.2.3.26



2.0 3.0 4.0 5.d Effective Crack Length ∆aeff (in)

.⊑

Change

Figure 8.19.2.3.27

KR



Figure 8.19.2.3.28

## RESISTANCE CURVE



Figure 8.19.2.3.29



Figure 8.19.2.3.30



Figure 8.19.2.3.31



Figure 8.19.2.3.32



Figure 8.19.2.3.33



Figure 8.19.2.3.34





Figure 8.19.2.3.35



Figure 8.19.2.3.36





Figure 8.19.2.3.37



Figure 8.19.2.3.38





Figure 8.19.2.3.39



Figure 8.19.2.3.40





Figure 8.19.2.3.41



Figure 8.19.2.3.42



Figure 8.19.2.3.43



Figure 8.19.2.3.44



Figure 8.19.2.3.45



Figure 8.19.2.3.46





Figure 8.19.2.3.47



Figure 8.19.2.3.48





Figure 8.19.2.3.49



Figure 8.19.2.3.50



Figure 8.19.2.3.51



Figure 8.19.2.3.52





Figure 8.19.2.3.53



Figure 8.19.2.3.54





Figure 8.19.2.3.55



Figure 8.19.2.3.56





Figure 8.19.2.3.57 8-1139



Figure 8.19.2.3.58





Figure 8.19.2.3.59



Figure 8.19.2.3.60





Figure 8.19.2.3.61



Figure 8.19.2.3.62







Figure 8.19.2.3.64
8-1146



Figure 8.19.2.3.65



Figure 8.19.2.3.66





Figure 8.19.2.3.67



Figure 8.19.2.3.68

## RESISTANCE CURVE



Figure 8.19.2.3.69



Figure 8.19.2.3.70





Figure 8.19.2.3.71



Figure 8.19.2.3.72





Figure 8.19.2.3.73



Figure 8.19.2.3.74



Figure 8.19.2.3.75



Figure 8.19.2.3.76

This page intentionally left blank

7475 H Condition/Ht: T6 Yield Strength: 71 ksi Form: Sheet Specimen Type: CCP (max load specified) Ult. Strength: Specimen Thk: 0.06 in. Orientation: L-T Specimen Width: 3.999 - 4 in. Stress Ratio: 0.1 Ref: RI008 Environment: LAB AIR; RT (2 of 2) (1 of 2) ΔK (MPa√in)  $\Delta$ K (MPa $\sqrt{in}$ ) 100 10 40 10 100 40 THE PERSON NAMED IN 1 1 1 1 1 1 10° 10° Frequency: 10. Hz Frequency: 5. Hz 10-2 10-2 10-1 10 1 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10⁻⁶ 10 6 10⁻⁵ 10 5 10⁻⁷ 10⁻⁷ 10 -6 10⁻⁶ 10⁻⁸ 10 8 40 100 10 100 10 40 ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) ΔK (Ksi√in) 6.05 (min) 12.44 (min) 13. 16. 0.923 8. 20.1 9. 3.27 20. 25. 26.43 (max) 10. 13. 209. 17.10 (max) Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary RMS % Error Error 2.85 .5 .8 1.25 2. 3.56 .5 .8 1.25 2. 0. 0.

Figure 8.19.3.1.1



Figure 8.19.3.1.2

7475 H Condition/Ht: T6 Yield Strength: 71 ksi Form: Sheet Specimen Type: CCP (max load specified) Ult. Strength: Specimen Thk: 0.06 - 0.061 in. Orientation: L-T Specimen Width: 3.999 - 4 in. Stress Ratio: 0.5 Ref: RI008 Environment: LAB AIR; RT (2 of 3) (1 of 3)∆K (MPa√in) ΔK (MPa√in) 100 10 40 100 1,111 للبليلي 10° 10° Frequency: 10. Hz Frequency: 5. Hz 10-2 10 -2 10-1 10⁻¹ 10⁻³ 10⁻³ 10-2 da/dN (in/cycle) da/dN (in/cycle) 10 -3 10⁻⁶ 10⁻⁶ 10 -5 10 5 10-7 10⁻⁷ 10 -6 10 6 10⁻⁸ 10⁻⁸ 10 40 100 40 100 10 ΔK (Ksi√in) ΔK (Ksi√in)  $\Delta K$  (Ksi $\sqrt{in}$ )  $da/dN (10^{-6}in/cycle)$ da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) 1.05 2.14 3.50 5.50 (min) 4.41 (min) 6. 7. 8. 9. 4.56 6.57 (max) 13. 15.18 (max) Life Prediction Ratio Summary Life Prediction Ratio Summary RMS % RMS % Error Error 3.23 .5 1.25 2. 8. 3.44 2. 0. Ò. .5 1.25 8.

Figure 8.19.3.1.3

7475 Condition/Ht: T6 Form: Sheet Yield Strength: 71 ksi Specimen Type: CCP (max load specified) Ult. Strength: Orientation: L-T Specimen Thk: 0.06 - 0.061 in. Stress Ratio: 0.5 Specimen Width: 3.999 - 4 in. Environment: LAB AIR; RT Ref: RI008 (3 of 3) $\Delta K_{a}(MPa\sqrt{in})$ ΔK (MPa√in) 100 10 40 10 100 11111 10° 10° Frequency: 20. Hz 10-2 10-2 10-1 10-1 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10⁻⁶ 10⁻⁶ 10 -5 10¯5 10⁻⁷ 10⁻⁷ 10⁻⁶ 10⁻⁸ 10 8 10 40 100 10 40 100 ΔK (Ksi√in) ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) da/dN ( $10^{-6}in/cycle$ ) RMS % Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary Error Error .5 0. 8. 1.25 2. 0. .5 .8 1.25 2.

Figure 8.19.3.1.3 (Concluded)



Figure 8.19.3.1.4

1 7475 Condition/Ht: T61 Form: 0.11 in. Sheet Yield Strength: 75.3 ksi Specimen Type: CCP (max load specified) Ult. Strength: 80.1 ksi Orientation: L-T Specimen Thk: 0.112 in. Frequency: 2 Hz Specimen Width: 23.98 in. Environment: H.H.A.; RT Ref: 86212 (1 of 1)  $\Delta$ K (MPa $\sqrt{in}$ )  $\Delta$ K (MPa $\sqrt{in}$ ) 100 10 40 100 . . . . . . . . . . . . . 100 10° Stress Ratio: 0.05 10-2 10-2 10-1 10⁻¹ 10-3 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10 10 10-6 10-6 10 -5 10 5 10⁻⁷ 10⁻⁷ 10 6 10 -6 10 8 10 8 10 40 100 10 40 100 ΔK (Ksi√in) ΔK (Ksi√in)  $\Delta$ K (Ksi $\sqrt{in}$ ) ΔK (Ksi√in)  $da/dN (10^{-6}in/cycle)$ da/dN ( $10^{-6}in/cycle$ ) 29.6 39.6 14.23 (min) 20. 28.96 (max) RMS % Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary Error Error

Figure 8.19.3.1.5

0.

.5 .8

1.25

2.

2.

2.78

0.

.5 .8

1.25

7475 Condition/Ht: T61 Yield Strength: 68.6 - 75.3 ksi Form: 0.11 in. Sheet Specimen Type: CCP (max load specified) Ult. Strength: 74.5 - 80.1 ksi Specimen Thk: 0.112 - 0.113 in. Orientation: L-T Specimen Width: 36 in. Stress Ratio: 0.05 Ref: 86212 Frequency: 2 Hz (2 of 2) (1 of 2)ΔK (MPa√in)  $\Delta$ K (MPa $\sqrt{in}$ ) 100 10 100 10 40 40 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11111 1 1 1 1 1 1 1 10° 10° Environment: 3.5% NACL; R.T. Environment: H.H.A.; R.T. 10-2 10-2 10-1 10 1 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10⁻⁶ 10⁻⁶ 10 -5 10 -5 10⁻⁷ 10⁻⁷ 10 6 10 -6 10 8 10⁻⁸ 40 100 10 40 100 10 ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) ΔK (Ksi√in) 68.2 12.56 (min) 13. 14.22 (min) 91.8 16. 20. 25. 30. 29.5 159. 16. 264. 20. 391. 25. 66.4 30. 33.00 (max) 441. 199. 39.58 (max) 305. Life Prediction Ratio Summary Life Prediction Ratio Summary RMS % RMS % Error Error 1.19 3.35 .5 1.25 2. 0. .5 .8 1.25 2. 0. .8

Figure 8.19.3.1.6

This page intentionally left blank

7475 H Condition/Ht: T61 Yield Strength: 76.8 ksi Form: 0.13 in. Sheet Specimen Type: CCP (max load specified) Ult. Strength: 82 ksi Specimen Thk: 0.126 in. Orientation: L-T Specimen Width: 4 in. Stress Ratio: 0.33 Ref: 86842 Frequency: 13.3 Hz (2 of 3)(1 of 3)ΔK (MPa√in)  $\Delta$ K (MPa $\sqrt{in}$ ) 10 100 10 100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10° 10° Environment: H.H.A.; R.T. Environment: Dry Air; R.T. 10-2 10-2 10 1 10 1 10⁻³ 10⁻³ 10 2 da/dN (in/cycle) da/dN (in/cycle) 10⁻⁶ 10⁻⁶ 10 -5 10 -5 10⁻⁷ 10⁻⁷ 10⁻⁶ 10 -6 10 8 10-8 40 100 10 40 100 10 ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) ΔK (Ksi√in) 6.33 (min) 7. 8. 9. 6.32 (min) 7. 8. 5.31 9. 10. 13. 10. 13. 18.76 (max) 18.93 (max) Life Prediction Ratio Summary Life Prediction Ratio Summary RMS % RMS % O Error Error 2.66 1.25 2. 8. 3.21 1.25 2. 0. .5 .5 .8 0.

Figure 8.19.3.1.7



Figure 8.19.3.1.7 (Concluded)



Figure 8.19.3.1.8

This page intentionally left blank



Figure 8.19.3.1.9



Figure 8.19.3.1.9 (Concluded)



Figure 8.19.3.1.10



Figure 8.19.3.1.10 (Concluded)



Figure 8.19.3.1.11





Figure 8.19.3.1.13



Figure 8.19.3.1.14



Figure 8.19.3.1.15

Condition/Ht: T651 Form: 0.51 in. Plate Yield Strength: 74.5 ksi Specimen Type: CCP (max load specified) Ult. Strength: 80 ksi Orientation: L-T Specimen Thk: 0.508 in. Frequency: 5.2 Hz Specimen Width: 3.025 - 3.026 in. Environment: H.H.A.; RT Ref: 86213 (1 of 1) $\Delta K (MPa\sqrt{in})$ ΔK (MPa√in) 10 40 100 10 100 10° 10° Stress Ratio: 0.33 10-2 10⁻² 10-1 1.0 10⁻³ 10-3 da/dN (in/cycle) da/dN (in/cycle) 10 -3 10⁻⁶ 10⁻⁶ 10 -5 10 -5 10⁻⁷ 10⁻⁷ 10 6 10⁻⁶ 10-8 10⁻⁸ 10 40 100 10 40 100 ΔK (Ksi√in) ΔK (Ksi√in) ΔK (Ksi√in)  $da/dN (10^{-6}in/cycle)$ ΔK (Ksi√in) da/dN ( $10^{-6}in/cycle$ ) 5.49 (min) 6. 7. 8. 9. 6.57 8.23 10. 13. 16. 20. 24.79 (max) RMS % Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary Error Error 5.45 0. .5 .8 1.25 2. .5 0. .8 1.25 2.

┨ 7475 ┠



Figure 8.19.3.1.17



Figure 8.19.3.1.18



Figure 8.19.3.1.19



Figure 8.19.3.1.20



Figure 8.19.3.1.21



Figure 8.19.3.1.22



Figure 8.19.3.1.23



Figure 8.19.3.1.24



Figure 8.19.3.1.25



Figure 8.19.3.1.26



Figure 8.19.3.1.27



Figure 8.19.3.1.28



Figure 8.19.3.1.29

Condition/Ht: T7351 Form: 1.75 in. Plate Yield Strength: 63.2 ksi Specimen Type: CT Ult. Strength: 73.7 ksi Specimen Thk: 0.499 in. Orientation: L-T Specimen Width: 1.999 in. Frequency: 5 Hz Environment: LAB AIR; RT Ref: DA004 (1 of 2)(2 of 2)  $\Delta$ K (MPa $\sqrt{in}$ )  $\Delta K (MPa\sqrt{in})$ 100 100 10 40 10 11111 17777 10⁰ 10° Stress Ratio: 0.4 Stress Ratio: 0.8 10-2 10-2 10-1 10-1 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10 6 10 10⁻⁵ 10 -5 10⁻⁷ 10⁻⁷ 10 6 10 6 10⁻⁸ 10⁻⁸ 40 100 10 10 40 100 ΔK (Ksi√in) ΔK (Ksi√in) ΔK (Ksi√in) ΔK (Ksi√in) da/dN  $(10^{-6}in/cycle)$ da/dN (10⁻⁶in/cycle) 2.48 3.23 5.71 6.79 3.40 5.13 7.72 6.64 (min) 5.17 (min) 6. 7. 8.48 (max) 8.37 (max) 18.6 RMS % Life Prediction Ratio Summary Life Prediction Ratio Summary RMS % Error Error σ. 3.26 1.84 .5 .5 1.25 1.25 2. .8 2. 0. 8.

7475



Figure 8.19.3.1.31







7475 Condition/Ht: T7351 Yield Strength: 63.2 - 68.8 ksi Form: 1.75 in. Plate Ult. Strength: 73.7 ksi Specimen Type: CT Specimen Thk: 0.25 in. Orientation: L-T Specimen Width: 1.994 - 2.001 in Stress Ratio: 0.8 Ref: DA005;DA004 (2 of 2)(1 of 2) $\Delta$ K (MPa $\sqrt{in}$ )  $\Delta$ K (MPa $\sqrt{in}$ ) 100 10 40 100 10 40 11111 1 1 1 1 1 1 1 10° لللللك 11111 10⁰ Environment: Distilled Water; Environment: Lab Air; R.T.; Frequency: 30. Hz R.T.; Frequency: 1. Hz 10-2 10-2 10-1 10-1 10⁻³ 10⁻³ cycle) da/dN (in/cycle) da/dN (in/cycle) (mm) 10 -3 10⁻⁵ 10⁻⁶ 10⁻⁶ 10⁻⁵ 10 -5 10⁻⁷ 10⁻⁷ 10⁻⁶ 10⁻⁶ 10⁻⁸ 40 100 10 100 10 40 ΔK (Ksi√in) ΔK (Ksi√in) da/dN ( $10^{-6}in/cycle$ ) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) 0.485 3.25 (min) 3.5 0.00875 1.23 (min) 1.3 0.732 0.0140 4. 5. 0.0473 1.6 0.0872 6. 7. 0.138 8. 3.5 18.0 1.03 4. 18.2 9.03 (max) 2.46 2.84 5.42 (max) Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary RMS % ⍗ Error Error 7.57 1.25 2. 0. .5 .8 11.89 1.25 2. .5 .8 0.

Figure 8.19.3.1.35

Condition/Ht: T7351 Form: 3 in. Plate Yield Strength: 61.3 ksi Specimen Type: CT Ult. Strength: 72.1 ksi Orientation: T-L Specimen Thk: 0.751 - 0.755 in. Frequency: 6 Hz Specimen Width: 5.005 in. Environment: DRY AIR; RT Ref: GD006 (1 of 2)(2 of 2)  $\Delta$ K (MPa $\sqrt{in}$ ) ΔK (MPa√in) 10 40 100 10 100 40 11111 111111 10° 10° Stress Ratio: 0.1 Stress Ratio: 0.3 10-2 10⁻² 10-1 10 1 10⁻³ 10⁻³ da/dN (in/cycle) 10 -2 da/dN (in/cycle) 10 -2 10⁻⁶ 10⁻⁶ 10 -5 10 5 10⁻⁷ 10⁻⁷ 10-6 10 6 10 8 10⁻⁸ 10 40 100 10 40 100 ΔK (Ksi√in) ΔK (Ksi√in) ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle)  $da/dN (10^{-6}in/cycle)$ 3.30 (min) 4.24 (min) 0.121 0.134 5. 3.5 6. 7. 8. 9. 4. 5. 6. 7. 8. 0.184 0.808 13. 16. 10. 20. 25. 13. 16. 120. 27.78 (max) 187. 20. 24.91 (max) RMS & Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary Error Error 24.91 6.77 .8 0. .5 1.25 2. 0. .5 .8 1.25 2.

┨ 7475 ┠



Figure 8.19.3.1.37



Figure 8.19.3.1.38



Figure 8.19.3.1.39

Condition/Ht: T7351 Form: 1 - 4 in. Plate Yield Strength: 54.2 - 59.4 ksi Specimen Type: CT Ult. Strength: 66 - 70 ksi Orientation: T-L Specimen Thk: 1 in. Frequency: 2 - 20 Hz Specimen Width: 3.805 in. Environment: L.H.A.; RT Ref: AL001 (1 of 1)  $\Delta$ K (MPa $\sqrt{in}$ )  $\Delta K (MPa\sqrt{in})$ 10 40 100 10 100 40 111111 11111 111111 10° Stress Ratio: 0.33 10-2 10-2 10-1 10 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10⁻⁶ 10⁻⁶ 10 -5 10 -5 10⁻⁷ 10-7 10 6 10⁻⁶ 10 8 10 8 40 100 10 10 40 100 ΔK (Ksi√in) ΔK (Ksi√in) ΔK (Ksi√in)  $da/dN (10^{-6}in/cycle)$  $\Delta$ K (Ksi $\sqrt{in}$ ) da/dN ( $10^{-6}in/cycle$ ) 5.68 (min) 6. 7. 8. 0.558 9. 10. 13. 16. 20. 20.85 (max) RMS % Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary Error Error 26.43 0. .5 .8 1.25 2. 0. .5 8. 1.25 2.

┨ 7475 ┠

Figure 8.19.3.1.40



Figure 8.19.3.1.41





Figure 8.19.3.1.43



Figure 8.19.3.1.44



Figure 8.19.3.1.45



Figure 8.19.3.1.46





Figure 8.19.3.1.48



Figure 8.19.3.1.49





Figure 8.19.3.1.51

This page intentionally left blank



Figure 8.19.3.1.52



Figure 8.19.3.1.52 (Concluded)



Figure 8.19.3.1.53



Figure 8.19.3.1.54





Figure 8.19.3.1.56



Figure 8.19.3.1.57





Figure 8.19.3.1.59

Condition/Ht: T7351 Form: 0.5 in. Plate Yield Strength: 59.5 ksi Specimen Type: CCP (max load specified) Ult. Strength: 69.1 ksi Orientation: L-T Specimen Thk: 0.199 - 0.205 in. Stress Ratio: 0.1 Specimen Width: 5.99 - 6 in. Environment: S.T.W.; RT Ref: GD006 (1 of 2)(2 of 2) ΔK (MPa√in) ΔK (MPa√in) 10 100 10 40 40 100 <del>1 1 1 1 1 1 1</del> 11111 1 - 1 1 1 1 1 1 1 10° 10° Frequency: 1. Hz Frequency: 6. Hz 10-2 10⁻² 10⁻¹ 10 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10 **J** 10⁻⁶ 10⁻⁶ 10 -5 10 -5 10⁻⁷ 10⁻⁷ 10 6 10⁻⁶ 10 8 10⁻⁸ 40 10 100 10 40 100 ΔK (Ksi√in) ΔK (Ksi√in) ΔK (Ksi√in)  $da/dN (10^{-6}in/cycle)$ ΔK (Ksi√in)  $da/dN (10^{-6}in/cycle)$ 6.13 (min) 7. 8. 3.77 (min) 0.208 0.285 4. 0.336 5. 6. 7. 8. 0.720 1.03 9. 10. 3.52 8.55 13. 16. 10. 16.61 (max) 13. 13.62 (max) Life Prediction Ratio Summary RMS % RMS % Life Prediction Ratio Summary Error Error 14.08 8.39 .5 0. 8. 1.25 2. 0. .5 .8 1.25 2.

7475

Figure 8.19.3.1.60

7475 Condition/Ht: T7351 Yield Strength: 57 ksi Form: 0.52 in. Plate Specimen Type: CCP (max stress specified) Ult. Strength: Specimen Thk: 0.524 in. Orientation: L-T Specimen Width: 4 in. Frequency: 5.5 - 33 Hz Ref: BL002 Environment: H.H.A.; RT (1 of 1) ΔK (MPa√in)  $\Delta$ K (MPa $\sqrt{in}$ ) 100 10 100 10 40 11111 10° 10° Stress Ratio: 0.25 10-2 10-2 10-1 10-1 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10-6 10-6 10⁻⁷ 10⁻⁷ 10-6 10⁻⁶ 10 8 10⁻⁸ 100 10 40 40 100 10 ΔK (Ksi√in) ΔK (Ksi√in) da/dN  $(10^{-6}in/cycle)$  $\Delta K$  (Ksi $\sqrt{in}$ ) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) 0.853 1.23 2.56 5.05 (min) 6. 6.65 (max) Life Prediction Ratio Summary Life Prediction Ratio Summary RMS % RMS % Error Error Ó. .5 1.25 8. 2. 9.97 Ö. .5 1.25 2. .8

1 7475 FR Condition/Ht: T7351 Form: 0.52 in. Plate Yield Strength: 57 ksi Specimen Type: CCP (max stress specified) Ult. Strength: Orientation: L-T Specimen Thk: 0.528 in. Frequency: 5.5 - 33 Hz Specimen Width: 4 in. Ref: BL002 Environment: H.H.A.; RT (1 of 1) $\Delta$ K (MPa $\sqrt{in}$ )  $\Delta K (MPa\sqrt{in})$ 10 100 100 10° 10° Stress Ratio: 0.25 10-2 10-2 10-1 10-1 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10⁻⁶ 10⁻⁶ 10⁻⁵ 10⁻⁵ 10⁻⁷ 10⁻⁷ 10 6 10 6 10 8 10⁻⁸ 40 100 10 40 100 10 ΔK (Ksi√in) ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle)  $\Delta K$  (Ksi $\sqrt{in}$ ) da/dN (10⁻⁶in/cycle) RMS % Life Prediction Ratio Summary RMS & Life Prediction Ratio Summary Error Error 0. 0. .5 .8 1.25 2. .5 8. 1.25 2.

Figure 8.19.3.1.62

7475 Condition/Ht: T7351 Yield Strength: 57 ksi Form: 0.52 in. Plate Specimen Type: CCP (max stress specified) Ult. Strength: Specimen Thk: 0.52 in. Orientation: L-T Specimen Width: 6 in. Frequency: 5.5 - 33 Hz Ref: BL002 Environment: H.H.A.; RT (1 of 1)  $\Delta K (MPa\sqrt{in})$  $\Delta$ K (MPa $\sqrt{in}$ ) 10 40 100 10 100 10° 11111 10° Stress Ratio: 0.25 10-2 10-2 10-1 10 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10⁻⁶ 10-6 10 -5 10 5 10⁻⁷ 10⁻⁷ 10 6 10 -6 10 8 10 8 40 100 10 40 100 10 ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) ΔK (Ksi√in) 2.50 (min) 3. 3.5 0.0973 4. 4.73 (max) Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary RMS % Error Error .5 1.25 2. .8 51.17 .<u>5</u> 2. 0. .8 1.25 0.

┨ 7475 ┠ Condition/Ht: T7351 Form: 0.52 in. Plate Yield Strength: 57 ksi Specimen Type: CCP (max stress specified) Ult. Strength: Orientation: L-T Specimen Thk: 0.53 in. Frequency: 5.5 - 33 Hz Specimen Width: 6 in. Environment: H.H.A.; RT Ref: BL002 (1 of 1)  $\Delta$ K (MPa $\sqrt{in}$ )  $\Delta$ K (MPa $\sqrt{in}$ ) 100 40 10 40 100 10° 10° Stress Ratio: 0.25 10-2 10-2 10 10-1 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10 -3 10⁻⁶ 10⁻⁶ 10⁻⁵ 10 5 10 10 10-6 10⁻⁶ 10-8 10⁻⁸ 10 40 100 10 40 100 ΔK (Ksi√in) ΔK (Ksi√in) ΔK (Ksi∜in) ΔK (Ksi√in) da/dN  $(10^{-6}in/cycle)$  $da/dN (10^{-6}in/cycle)$ 2.27 (min) 2.5 3. 0.00595 0.0253 4. 4.44 (max) 0.298 RMS & Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary Error ΔΟ Error >100.0 0. .5 .8 1.25 2. 0. .5 .8 1.25 2.



Condition/Ht: T7351 Form: 0.52 in. Plate Yield Strength: 57 ksi Specimen Type: CCP (max stress specified) Ult. Strength: Orientation: L-T Specimen Thk: 0.525 in. Frequency: 6 - 33 Hz Specimen Width: 4 in. Ref: BL002 Environment: H.H.A.; RT (1 of 1) ΔK (MPa√in) 10 40 ΔK (MPa√in) 100 100 10° 10° Stress Ratio: 0.5 10-2 10-2 10-1 10-1 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10⁻⁶ 10-6 10 -5 10 -5 10⁻⁷ 10-7 10 -6 10-6 10⁻⁸ 10-8 40 100 10 10 40 100 ΔK (Ksi√in) ΔK (Ksi√in) ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) da/dN (10⁻⁶in/cycle) 9.78 (min) 10. 13. 13.90 (max) Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary RMS % Error Od 🖽 Error 9.45 0. .5 .8 1.25 2. 0. .5 .8 1.25 2.

┨ 7475 ┠

1 7475 R Condition/Ht: T7351 Yield Strength: 57 ksi Form: 0.52 in. Plate Specimen Type: CCP (max stress specified) Ult. Strength: Specimen Thk: 0.53 in. Orientation: L-T Specimen Width: 6 in. Frequency: 6 - 33 Hz Ref: BL002 Environment: H.H.A.; RT (1 of 1)  $\Delta$ K (MPa $\sqrt{in}$ )  $\Delta$ K (MPa $\sqrt{in}$ ) 10 100 10 40 10° 10° Stress Ratio: 0.5 10-2 10-2 10-1 10-1 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10⁻⁶ 10-6 10⁻⁵ 10⁻⁵ 10⁻⁷ 10⁻⁷ 10 6 10-6 10 8 10-8 10 40 100 10 40 100 ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle)  $\Delta$ K (Ksi $\sqrt{in}$ ) da/dN (10⁻⁶in/cycle)  $\Delta$ K (Ksi $\sqrt{in}$ ) 0.0310 0.0473 0.106 1.84 (min) 2.80 (max) 0.145 Life Prediction Ratio Summary Life Prediction Ratio Summary RMS % RMS & Error Error 19.64 0. .5 .8 -1.25 2. .5 1.25 0. .8 2.







Figure 8.19.3.1.69 (Concluded)



Condition/Ht: T76 Yield Strength: 67 ksi Form: 0.09 in. Sheet Specimen Type: CCP (max load specified) Ult. Strength: 76.2 ksi Orientation: T-L Specimen Thk: 0.091 in. Specimen Width: 4 in. Frequency: 13.3 Hz Ref: 86213 Environment: LAB AIR; RT (1 of 1)ΔK (MPa√in) 10 40 ΔK (MPa√in) 100 10 40 100 10⁰ 10° Stress Ratio: 0.33 10-2 10-2 10-1 10-1 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10⁻⁶ 10⁻⁶ 10⁻⁵ 10 5 10⁻⁷ 10 10 -6 10 6 10 8 10⁻⁸ 40 100 10 40 100 10 ΔK (Ksi√in) ΔK (Ksi√in) ΔK (Ksi√in)  $da/dN (10^{-6}in/cycle)$ ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) 5.18 (min) 6. 7. 8. 9. 13. 19.87 (max) Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary RMS % Error Error 7.11 1.25 .5 2. 0. .5 .8 1.25 2. 0. .8

┨ 7475 ┠



Figure 8.19.3.1.72

Condition/Ht: T761 Form: 0.09 in. Sheet Yield Strength: 62.2 ksi Specimen Type: CT Ult. Strength: 70.2 ksi Orientation: L-T Specimen Thk: 0.089 in. Frequency: 20 Hz Specimen Width: 1.493 - 1.499 in. Environment: LAB AIR; RT Ref: 85363 (1 of 1) $\Delta K_{10} (MPa\sqrt{in})$  $\Delta K (MPa\sqrt{in})$ 10 40 100 100 111111 اللباتات 100 10° Stress Ratio: 0.1 10-2 10-2 10-1 10-1 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10 -2 10⁻⁶ 10⁻⁶ 10⁻⁵ 10⁻⁵ 10⁻⁷ 10⁻⁷ 10 6 10 6 10 8 10 -8 10 40 100 40 100 10 ΔK (Ksi√in) ΔK (Ksi√in)  $\Delta$ K (Ksi $\sqrt{in}$ )  $\Delta K$  (Ksi $\sqrt{in}$ ) da/dN (10⁻⁶in/cycle) da/dN (10⁻⁶in/cycle) 8.75 (min) 9. 10. 13. 16. 20. 25. 27.73 (max) RMS % Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary ÆTD. Error Error 20.53 .5 0. 1.25 .8 2. 0. .5 8. 1.25 2.

┨ 7475 ┠

7475 Condition/Ht: T761 Yield Strength: 62.2 ksi Form: 0.09 in. Sheet Ult. Strength: 70.2 ksi Specimen Type: CT Specimen Thk: 0.089 in. Orientation: T-L Specimen Width: 1.499 in. Frequency: 20 Hz Ref: 85363 Environment: LAB AIR; RT (1 of 1)  $\Delta$ K (MPa $\sqrt{in}$ )  $\Delta K (MPa\sqrt{in})$ 10 100 10 40 11111 10° 10° Stress Ratio: 0.1 10-2 10-2 10-1 10 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10⁻⁶ 10-6 10⁻⁵ 10⁻⁵ 10⁻⁷ 10⁻⁷ 10-6 10 -6 10 8 10 8 10 40 100 40 100 10 ΔK (Ksi√in) ΔK (Ksi√in) da/dN ( $10^{-6}in/cycle$ ) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) ΔK (Ksi√in) 8.76 (min) 10. 13. 16. 20. 25. 29.38 (max) Life Prediction Ratio Summary Life Prediction Ratio Summary RMS % RMS & Error Error **Œ**I∆ 18.04 .5 .8 1.25 2. .8 0. .5 1.25 2. 0.

1 7475 H Condition/Ht: T761 Form: 0.08 in. Sheet Yield Strength: 63.7 ksi Specimen Type: CCP (max load specified) Ult. Strength: 73.4 ksi Orientation: L-T Specimen Thk: 0.076 in. Frequency: 1 Hz Specimen Width: 3.864 in. Environment: DIST WATER; RT Ref: DA004 (1 of 2) (2 of 2)  $\Delta$ K (MPa $\sqrt{in}$ ) ΔK (MPa√in) 10 40 100 10 100 40 11111 لبليك 10⁰ 10° Stress Ratio: 0.05 Stress Ratio: 0.8 10-2 10⁻² 10-1 10 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10 10-6 10⁻⁶ 10⁻⁵ 10⁻⁵ 10⁻⁷ 10⁻⁷ 10 6 10⁻⁶ 10-8 10 8 10 40 100 10 40 100 ΔK (Ksi√in) ΔK (Ksi√in)  $da/dN (10^{-6}in/cycle)$  $da/dN (10^{-6}in/cycle)$ ΔK (Ksi√in) ΔK (Ksi√in) 6.70 (min) 3.99 (min) 7. 8. 9. 4. 5. 6. 7. 8. 10. 13. 16. 9.40 (max) 20.63 (max) 89.7 Life Prediction Ratio Summary RMS % RMS % Life Prediction Ratio Summary Error Error 6.23 7.02 0. .5 1.25 .8 2. 0. .5 8. 1.25 2.

Figure 8.19.3.1.75

7475 H R Condition/Ht: T761 Yield Strength: 63.2 ksi Form: 0.08 in. Sheet Specimen Type: CCP (max load specified) Ult. Strength: Specimen Thk: 0.077 in. Orientation: L-T Specimen Width: 3.951 - 3.953 in Frequency: 1 Hz Ref: DA005 Environment: DIST WATER; RT (2 of 2) (1 of 2)ΔK (MPa√in)  $\Delta$ K (MPa $\sqrt{in}$ ) 100 10 40 10 40 11111 1 1 1 1 1 1 1 <u> 111111</u> 10° 10° - Stress Ratio: 0.8 Stress Ratio: 0.05 10-2 10 2 10-1 10-1 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10-6 10⁻⁶ 10 -5 10 5 10⁻⁷ 10⁻⁷ 10 6 10 6 10 8 10 8 10 40 100 40 100 10 ΔK (Ksi√in) ∆K (Ksi√in) da/dN (10⁻⁶in/cycle) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) ΔK (Ksi√in) 2.10 2.72 4.35 6.61 (min) 7. 8. 4.32 (min) 5. 6. 9. 8. 10. 13. 9.85 (max) 16. 19.49 (max) 64.9 Life Prediction Ratio Summary Life Prediction Ratio Summary RMS % RMS % Error Error 2.19 3.73 1.25 2. .5 .8 0. .5 .8 1.25 2. 0.

Figure 8.19.3.1.76

Condition/Ht: T761 Yield Strength: 63.7 ksi Form: 0.08 in. Sheet Specimen Type: CCP (max load specified) Ult. Strength: 73.4 ksi Orientation: L-T Specimen Thk: 0.073 - 0.074 in. Stress Ratio: 0.1 Specimen Width: 11.977 - 12.008 in. Environment: LAB AIR; RT Ref: DA004 (1 of 2)(2 of 2) ΔK (MPa√in) ΔK (MPa√in) 10 40 100 10 40 100 للللك 10⁰ 10° Frequency: 3. Hz Frequency: 20. Hz 10-2 10-2 10-1 10 1 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10 -2 10 10⁻³ 10⁻⁶ 10⁻⁶ 10 -5 10 -5 10⁻⁷ 10-7 10-6 10 6 10-8 10⁻⁸ 10 40 100 40 100 10 ΔK (Ksi√in) ΔK (Ksi√in)  $\Delta$ K (Ksi $\sqrt{in}$ ) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle)  $da/dN (10^{-6}in/cycle)$ 2.27 (min) 2.5 3. 3.5 17.67 (min) 0.0793 20. 0.0908 25. 30. 75.0 0.130 35. 4. 5. 6. 7. 8. 9. 216. 40. 50. 60. 70. 79.15 (max) 20744. 13. 20. 25. 30. 62.3 118. (max) RMS % Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary Error Error 8.69 33.04 0. .5. .8 1.25 2. 0. .5 .8 1.25 2.



This page intentionally left blank



Figure 8.19.3.1.79



Figure 8.19.3.1.79 (Concluded)



Figure 8.19.3.1.80

7475 Condition/Ht: T761 Form: 0.08 in. Sheet Yield Strength: 63.7 ksi Specimen Type: CCP (max load specified) Ult. Strength: 73.4 ksi Orientation: L-T Specimen Thk: 0.072 in. Specimen Width: 12 - 12.01 in. Frequency: 3 - 15 Hz Ref: DA004 Environment: LAB AIR; RT (1 of 2)(2 of 2) $\Delta$ K (MPa $\sqrt{in}$ ) ΔK (MPa√in) 40 100 100 10 40 7 7 7 7 7 7 7 11111 10° 10° Stress Ratio: 0.4 Stress Ratio: 0.8 10-2 10-2 10 -1 10-1 10⁻³ 10⁻³ (cycle) 10⁻² da/dN (in/cycle) 10-3 10 10⁻⁶ 10⁻⁶ 10⁻⁵ 10⁻⁵ 10⁻⁷ 10⁻⁷ 10 -6 10 6 10 8 10⁻⁸ 10 40 100 10 40 100 ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) 1.85 (min) 2.39 (min) 0.0560 0.0507 2. 3. 4. 5. 6. 7. 8. 9. 10. 0.0685 2.5 0.0650 0.175 9. 10. 13. 216. 877. 18.96 (max) 53.82 (max) 4347. Life Prediction Ratio Summary Life Prediction Ratio Summary RMS % RMS % Error Error 8.53 16.72 .5 .8 1.25 0. 8. 1.25 2. 0. 2. .5

Figure 8.19.3.1.81



Figure 8.19.3.1.82



Figure 8.19.3.1.83



Figure 8.19.3.1.84

Condition/Ht: T761 Yield Strength: 65.3 ksi Form: 0.11 in. Sheet Specimen Type: CCP (max load specified) Ult. Strength: 74.5 ksi Orientation: T-L Specimen Thk: 0.115 in. Frequency: 2 Hz Specimen Width: 24.03 in. Environment: H.H.A.; RT Ref: 86212 (1 of 1)  $\Delta K (MPa\sqrt{in})$ 100 1,00 10° Stress Ratio: 0.25 10-2 10⁻² 10-1 10-1 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10 -3 10-6 10⁻⁶ 10 -5 10 -5 10⁻⁷ 10⁻⁷ 10 6 10 6 10 8 10-8 10 40 100 10 40 100 ΔK (Ksi√in) ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) 7.84 (min) 8. 4.82 5.28 9. 10. 13. 16. 20. 22.71 (max) RMS % Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary Error Error ₽. 5.57 .5 .8 1.25 2. .5 1.25 0. 8. 2.

1 7475

7475 Condition/Ht: T761 Yield Strength: 71.1 ksi Form: 0.04 in. Sheet Ult. Strength: 78.9 ksi Specimen Type: CCP (max load specified) Specimen Thk: 0.042 in. Orientation: T-L Specimen Width: 4 in. Stress Ratio: 0.33 Ref: 86842 Frequency: 13.3 Hz (2 of 3) (1 of 3) $\Delta K (MPa\sqrt{in})$  $\Delta$ K (MPa $\sqrt{in}$ ) 100 10 100 10 40 1111 1 1 1 1 1 1 1 11111 10° 10° Environment: H.H.A.; R.T. Environment: Dry Air; R.T. 10 -2 10-2 10-1 10-1 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10 -6 10-6 10 -5 10 -5 10⁻⁷ 10⁻⁷ 10⁻⁶ 10⁻⁶ 10 8 40 100 10 100 10 40 ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) ΔK (Ksi√in) 6.32 (min) 7. 8. 4.79 6.22 6.20 (min) 8. 9. 9. 10. 10. 13. 16.9 13. 29.9 16.34 (max) 17.65 (max) 39.3 Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary RMS % Error 四 Error 4.09 Ó. .8 1.25 2. 1.29 .5 .5 .8 1.25 2. 0.

Figure 8.19.3.1.86



Figure 8.19.3.1.86 (Concluded)

7475 E Condition/Ht: T761 Yield Strength: 65.6 ksi Form: 0.13 in. Sheet Specimen Type: CCP (max load specified) Ult. Strength: 76 ksi Specimen Thk: 0.126 in. Orientation: T-L Specimen Width: 4 in. Stress Ratio: 0.33 Ref: 86842 Frequency: 13.3 Hz (2 of 3) (1 of 3) $\Delta$ K (MPa $\sqrt{in}$ ) ΔK (MPa√in) 10 100 10 1 1 1 1 1 1 1 गागा 10° TITI 10° Environment: H.H.A.; R.T. Environment: Dry Air; R.T. 10-2 10-2 10-1 10-1 10~3 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10⁻⁶ 10-6 10 -5 10 -5 10⁻⁷ 10⁻⁷ 10⁻⁶ 10 6 10 8 10-8 40 100 10 40 100 10 ΔK (Ksi√in) ΔK (Ksi√in) ΔK (Ksi√in)  $da/dN (10^{-6}in/cycle)$ da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) 2.42 3.18 5.54 (min) 5.60 (min) 6. 7. 8. 9. 7. 8. 5.19 9. 10. 10. 13. 13. 16. 16. 20. 25. 25.01 (max) 20. 202. 24.97 (max) 236. RMS % Life Prediction Ratio Summary Life Prediction Ratio Summary RMS % ΔΟΟ Error Error 7.50 0. .5 .8 1.25 2. 5.68 .5 2. 8. 1.25 0.

Figure 8.19.3.1.87

Condition/Ht: T761 Form: 0.13 in. Sheet Yield Strength: 65.6 ksi Specimen Type: CCP (max load specified) Ult. Strength: 76 ksi Orientation: T-L Specimen Thk: 0.126 in. Specimen Width: 4 in. Stress Ratio: 0.33 Frequency: 13.3 Hz Ref: 86842 (3 of 3)ΔK (MPa√in) 10 40 ΔK (MPa√in) 100 100 11111 10° 10° Environment: Salt Fog; R.T. 10-2 10⁻² 10-1 10-1 10-3 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10⁻⁶ 10⁻⁶ 10 -5 10⁻⁵ 10⁻⁷ 10 10 -6 10⁻⁶ 10 8 10⁻⁸ 40 100 10 40 100 10 ΔK (Ksi√in) ΔK (Ksi√in) ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) da/dN (10⁻⁶in/cycle) 5.98 (min) 6. 7. 8. 6.66 6.76 9. 10. 13. 16. 22.77 (max) Life Prediction Ratio Summary Life Prediction Ratio Summary RMS % RMS % **Z** Error Error 6.12 .5 1.25 0. .5 .8 1.25 2. 0. .8 2.

7475

Figure 8.19.3.1.87 (Concluded)

7475 Condition/Ht: T7651 Yield Strength: 67.6 ksi Form: Sheet Ult. Strength: Specimen Type: CCP (max stress specified) Specimen Thk: 0.188 - 0.193 in. Orientation: L-T Specimen Width: 11.995 - 12.007 in. Stress Ratio: 0. Ref: DA001 (2 of 3)(1 of 3) $\Delta$ K (MPa $\sqrt{in}$ )  $\Delta K$  (MPa $\sqrt{in}$ ) 10 100 100 10 40 11111 11111 10° Environment: Lab Air; -65°F; Frequency: 20. Hz Environment: Lab Air; R.T.; Frequency: 6. Hz 10-2 10-2 10 1 10-1 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) , 5, 5, 10⁻⁶ 10⁻⁶ 10 -5 10 5 10⁻⁷ 10⁻⁷ 10 6 10 6 10⁻⁸ 10 8 10 40 100 40 100 10 ΔK (Ksi√in) ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) da/dN ( $10^{-6}in/cycle$ ) ΔK (Ksi√in) 11.25 (min) 3.32 9.10 (min) 13. 16. 20. 10. 13. 16. 29.01 (max) 23.91 (max) Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary RMS % Error Error 6.10 2. 2.12 0. .5 .8 1.25 .5 1.25 2. .8 0.

Figure 8.19.3.1.88

1 7475 | EF Condition/Ht: T7651 Yield Strength: 67.6 ksi Form: Sheet Specimen Type: CCP (max stress specified) Ult. Strength: Orientation: L-T Specimen Thk: 0.188-0.193 in. Stress Ratio: 0. Specimen Width: 11.995-12.007 in. Ref: DA001 (3 of 3)ΔK (MPa√in)  $\Delta$ K (MPa $\sqrt{in}$ ) 10 100 10 100 ابابايا TTTTTT100 10⁰ Environment: S.T.W.; R.T.; Frequency: 1. Hz 10-2 10⁻² 10 10-1 10⁻³ 10⁻³ 10 -2 da/dN (in/cycle) da/dN (in/cycle) 10⁻³ 7 10 10-6 10⁻⁶ 10 5 10 5 10⁻⁷ 10⁻⁷ 10 -6 10 6 10-8 10⁻⁸ 10 40 100 10 40 100 ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) 6.10 (min) 7. 8. 9. 0.772 13. 17.02 (max) RMS % Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary Error Error 16.11 0. .5 .8 1.25 2. 0. .5 .8 1.25 2.

Figure 8.19.3.1.88 (Concluded)

7475 Condition/Ht: T7651 Yield Strength: 67.6 ksi Form: Sheet Specimen Type: CCP (max stress specified) Ult. Strength: Specimen Thk: 0.188 in. Orientation: L-T Specimen Width: 4 - 4.002 in. Frequency: 30 Hz Ref: DA001 Environment: LAB AIR; RT (2 of 2) (1 of 2) $\Delta K (MPa\sqrt{in})$  $\Delta K (MPa\sqrt{in})$ 10 100 100 10 40 11111 10° 10° Stress Ratio: 0.4 Stress Ratio: 0.0 10-2 10-2 10 10 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10-6 10 10⁻⁵ 10 -5 10⁻⁷ 10⁻⁷ 10⁻⁶ 10-6 10 -8 10 8 10 40 100 40 100 10 ΔK (Ksi√in) ΔK (Ksi√in) ΔK (Ksi√in)  $da/dN (10^{-6}in/cycle)$ da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) 0.307 0.390 0.170 0.186 3.68 (min) 3.89 (min) 4. 5. 5.71 (max) 4. 5. 1.02 0.284 2.24 0.432 6.19 (max) Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary RMS % Error Error 2.36 .5 .8 1.25 2. 4.52 0. .8 2. .5 1.25 0.

7475 H Condition/Ht: T7651 Form: Sheet Yield Strength: 67.6 ksi Specimen Type: CCP (max stress specified) Ult. Strength: Orientation: L-T Specimen Thk: 0.191 in. Frequency: 1 - 5 Hz Specimen Width: 12.005 in. Environment: S.T.W.; RT Ref: DA001 (1 of 1) $\Delta K (MPa\sqrt{in})$  $\Delta K (MPa\sqrt{in})$ 100 100 100 10° Stress Ratio: 0.01 10-2 10-2 10-1 10-1 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10⁻⁶ 10-6 10⁻⁵ 10⁻⁵ 10⁻⁷ 10⁻⁷ 10⁻⁶ 10 6 10 8 10⁻⁸ 10 40 100 10 40 100 ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) 6.64 (min) 7. 8. 9. 18.0 13. 16. 18.16 (max) RMS & Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary Error Error 11.57 0. .5 .8 1.25 2. 0. .5 8. 1.25 2.

7475 Condition/Ht: T7651 Yield Strength: 67.6 ksi Form: Sheet Specimen Type: CCP (max stress specified) Ult. Strength: Specimen Thk: 0.187 in. Orientation: L-T Specimen Width: 12.004 in. Frequency: Ref: DA001 Environment: LAB AIR; RT ΔK (MPa√in) 10 40 (1 of 1)  $\Delta$ K (MPa $\sqrt{in}$ ) 100 100 10 40 1,1,1,1 1 1 1 1 1 1 10° Stress Ratio: 0.4 10 -2 10-2 10 1 10 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10⁻⁶ 10-6 10 5 10⁻⁵ 10⁻⁷ 10⁻⁷ 10 6 10 -6 10-8 10 40 100 40 100 10 ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) ΔK (Ksi√in) 10.40 (min) 13. 16. 20. 25. 28.77 (max) 146. 232. Life Prediction Ratio Summary Life Prediction Ratio Summary RMS % RMS % Error Error .8 1.25 .5 0. .5 2. 2.96. 8. 1.25 2. 0.

1 7475 EF

Condition/Ht: T7651

Form: Sheet

Specimen Type: CCP (max stress specified)

Orientation: L-T Stress Ratio: 0.8 Yield Strength: 67.6 ksi

Ult. Strength:

Specimen Thk: 0.188-0.19 in. Specimen Width: 12.002-12.004 in.

Ref: DA001



7475 H Condition/Ht: T7651 Yield Strength: 67.6 ksi Form: Sheet Specimen Type: CCP (max stress specified) Ult. Strength: Specimen Thk: 0.19 in. Orientation: L-T Specimen Width: 4.004 in. Frequency: 5 - 10 Hz Ref: DA001 Environment: LAB AIR; RT (1 of 1)  $\Delta$ K (MPa $\sqrt{in}$ )  $\Delta$ K (MPa $\sqrt{in}$ ) 10 100 10 100 40 لبليليا 10° 10° Stress Ratio: 0.8 10-2 10-2 10⁻¹ 10-1 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10-6 10 6 10⁻⁵ 10⁻⁵ 10⁻⁷ 10⁻⁷ 10⁻⁶ 10 -6 10⁻⁸ 10-8 40 100 40 100 10 10 ΔK (Ksi√in) ΔK (Ksi√in)  $\Delta K$  (Ksi $\sqrt{in}$ ) da/dN (10⁻⁶in/cycle) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) 3.62 (min) 4. 5. 6. 6.07 (max) Life Prediction Ratio Summary Life Prediction Ratio Summary RMS % RMS % Error Error .5 1.25 1.73 .8 2. .5 .8 1.25 2. 0. 0.

Figure 8.19.3.1.93



Figure 8.19.3.1.94



Figure 8.19.3.1.95



Figure 8.19.3.1.96



Figure 8.19.3.1.97



7475 Condition/Ht: T7651 Yield Strength: 70.6 ksi Form: 0.5 in. Plate Specimen Type: CCP (max load specified) Ult. Strength: 78.1 ksi Specimen Thk: 0.2 - 0.202 in. Orientation: L-T Specimen Width: 6.007 - 6.009 in Stress Ratio: -0.2 Ref: GD006 (2 of 2) (1 of 2)ΔK (MPa√in)  $\Delta$ K (MPa $\sqrt{in}$ ) 10 40 100 10 40 100 10° 10° Environment: S.T.W.; R.T.; Frequency: 1. Hz Environment: Dry Air; R.T.; Frequency: 6. Hz 10-2 10-2 10 1 10 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10 10 10 10 6 10⁻⁶ 10 -5 10 5 10⁻⁷ 10⁻⁷ 10 6 10-6 10 8 10 8 40 100 10 40 100 1 10 ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) 4.45 (min) 5. 0.0696 3.26 (min) 3.5 0.382 1.26 6. 7. 8. 0.0950 0.185 6. 7. 8. 0.379 9. 10. 13. 9. 10. 18.59 (max) 13. 10.1 16. 20. 25. 30. 89.0 128. 187. 39.76 (max) Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary RMS % Error Error 32.97 .8 1.25 2. 0. .5 10.46 .5 .8 1.25 2. 0.

Figure 8.19.3.1.99



Figure 8.19.3.1.100

7475 R Condition/Ht: T7651 Yield Strength: 67.6 ksi Form: 0.25 in. Plate Ult. Strength: Specimen Type: CCP (max stress specified) Specimen Thk: 0.252 in. Orientation: L-T Specimen Width: 3.998 in. Frequency: 30 Hz Environment: LAB AIR; RT Ref: DA001 (1 of 1) $\Delta K (MPa\sqrt{in})$  $\Delta$ K (MPa $\sqrt{in}$ ) 10 100 100 40 10 40 111111 10° 10° Stress Ratio: 0.0 10-2 10-2 10⁻¹ 10 -1 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10⁻⁶ 10-6 10 -5 10 -5 10⁻⁷ 10⁻⁷ 10-6 10 6 10 -8 10⁻⁸ 10 40 100 10 40 100 ΔK (Ksi√in) ∆K (Ksi√in) da/dN ( $10^{-6}in/cycle$ ) da/dN (10⁻⁶in/cycle)  $\Delta$ K (Ksi $\sqrt{in}$ ) ΔK (Ksi√in) 6.12 (min) 7. 8. 1.33 2.47 3.22 9.55 (max) Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary RMS % Error Error .5 1.25 4.52 .8 2. Ó. .5 .8 1.25 2. 0.

Figure 8.19.3.1.101

┨ 7475 ├_.

Condition/Ht: T7651 Form: 0.75 in. Plate

Specimen Type: CCP (max load specified)

Orientation: L—T Stress Ratio: 0.05

Environment: LAB AIR; RT

Yield Strength: 69 ksi

Ult. Strength:

Specimen Thk: 0.207 in. Specimen Width: 12.009 in.

Ref: DA005







Figure 8.19.3.1.104



Figure 8.19.3.1.105



7475 Condition/Ht: T7651 Yield Strength: 70.6 ksi Form: 0.5 in. Plate Ult. Strength: 78.1 ksi Specimen Type: CCP (max load specified) Specimen Thk: 0.198 - 0.203 in. Orientation: L-T Specimen Width: 6.005 - 6.009 in Stress Ratio: 0.5 Ref: GD006 (2 of 2)(1 of 2)ΔK (MPa√in)  $\Delta$ K (MPa $\sqrt{in}$ ) 100 10 40 10 100 40 1 1 1 لللللك 10° 10° Environment: S.T.W.; R.T.; Frequency: 1. Hz Environment: Dry Air; R.T.; Frequency: 6. Hz 10-2 10-2 10-1 10 -1 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10 10⁻⁶ 10 6 10⁻⁵ 10⁻⁵ 10⁻⁷ 10⁻⁷ 10 6 10 -6 10 -8 10 8 40 100 10 10 40 100 ΔK (Ksi√in) ΔK (Ksi√in)  $da/dN (10^{-6}in/cycle)$ ΔK (Ksi√in) ΔK (Ksi√in)  $da/dN (10^{-6}in/cycle)$ 3.02 (min) 3.5 2.38 (min) 2.5 3. 0.205 0.249 0.110 0.592 0.169 3.5 6. 4. 5. 6. 7. 8. 9. 10. 11.88 (max) 10. 36.9 15.98 (max) Life Prediction Ratio Summary Life Prediction Ratio Summary RMS % RMS % Error Error 26.02 .5 1.25 0. 8. 2. 6.81 .5 .8 1.25 2. 0.

Figure 8.19.3.1.107

<del>1</del> 7475 Condition/Ht: T7651 Form: 0.25 in. Plate Yield Strength: 67.6 ksi Specimen Type: CCP (max stress specified) Ult. Strength: Orientation: L-T Specimen Thk: 0.251 in. Frequency: 10 Hz Specimen Width: 4.002 in. Environment: LAB AIR; RT Ref: DA001 (1 of 1)ΔK (MPa√in) 10 40  $\Delta K (MPa\sqrt{in})$ 100 10 40 100 10° 10° Stress Ratio: 0.8 10-2 10⁻² 10-1 10-1 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10 -3 10-6 10-6 10 -5 10 -5 10⁻⁷ 10-7 10-6 10⁻⁶ 10-8 10⁻⁸ 100 10 40 10 40 100 ΔK (Ksi√in) ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) da/dN ( $10^{-6}in/cycle$ ) 3.18 (min) 3.5 4. 0.618 0.909 1.69 4.04 5.14 (max) Life Prediction Ratio Summary RMS % RMS % Life Prediction Ratio Summary Error Error 4.16 0. .5 .8 1.25 2. 0. .5 8. 1.25 2.



Figure 8.19.3.1.109



Figure 8.19.3.1.110



Figure 8.19.3.1.111

7475 Condition/Ht: T7651; 255F 4HR Form: 1.75 in. Plate Yield Strength: 68.3 ksi Specimen Type: CCP (max load specified) Ult. Strength: 77.6 ksi Orientation: L-T Specimen Thk: 0.201 in. Stress Ratio: 0.4 Specimen Width: 11.755 in. Environment: LAB AIR; RT Ref: DA004 (1 of 2)(2 of 2) ΔK (MPa√in) ΔK (MPa√in) 10 40 100 10 40 100 لبليليا 10° 10° Frequency: 5. Hz Frequency: 15. Hz 10-2 10-2 10-1 10-1 10⁻³ 10⁻³ 10⁻² (ol 2) da/dN (in/cycle) da/dN (in/cycle) 10⁻³ 10⁻⁶ 10⁻⁶ 10 -5 10⁻⁵ 10⁻⁷ 10-7 10 6 10⁻⁶ 10 8 10⁻⁸ 10 40 100 10 40 100 ΔK (Ksi√in) ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle)  $da/dN (10^{-6}in/cycle)$ ΔK (Ksi√in) 24.86 (min) 1.99 (min) 0.0585 0.0591 25. 30. 35. 40. 2. 2.5 3. 186. 304. 0.102 505. 3.5 785. 4. 5. 6. 7. 55.09 (max) 8.86 (max) 10.3 RMS & Life Prediction Ratio Summary RMS & Life Prediction Ratio Summary Error Error 4.75 8.07 .5 0. .8 1.25 2. 0. .5 .8 1.25 2.

Figure 8.19.3.1.112



Figure 8.19.3.1.113

This page intentionally left blank



┨ 7475 ┠ Condition/Ht: T761 Form: 0.04 in. Sheet Specimen Thk: 0.04 in. Specimen Type: CNT Specimen Width: 12 in. Orientation: T-L Ao: Yield Strength: 59.9 ksi Kiscc: Ult. Strength: Ref: 86212 Kmax (MPa√in) 40 100 Kmax (MPa√in) 40 100 (1 of 1) 111111 10² 10² Environment: 3.5% NaCl; R.T. 10° 10° 10 101 10⁻¹ 10-1 da/dt (in/hour) da/dt (in/hour) 10-4 10 10-3 10 3 10⁻⁵ 10⁻⁵ 10-4 10-4 10⁻⁸ 10⁻⁶ 4 10 40 Kmax (Ksi√in) 100 4 10 40 Kmax (Ksi√in) 10 100  $da/dt (10^{-3}in/hour)$ Kmax (Ksi√in) Kmax (Ksi√in)  $da/dt (10^{-3}in/hour)$ 

RMS %

Error

RMS &

Error

### **TABLE 8.19.3.3**

K_{lscc} SUMMARY FOR ALUMINUM ALLOY 7475

	9r	9	90	90	90	90	50	905	905	900	900	900	900	306	305	005	
	Refer	GD006	GDOOR	GD006	GD006	MAOOS	MAGOS	MA005	MA005	GD006	GD006	GD006	GD006	MAGGS	MA005	MA005	
	Test Date	1978	1978	1978	1978	1977	1977	1977	1977	1978	1978	1978	1978	1977	1977	1977	
Test	Time (min)	112020	112020	112020	112020	195840	195840	195840	195840	112020	112020	112020	112020	195840	195840	195840	
**	Ksi√in)	>37.5	>42.7	>38.6	>42.7	>35	>35.2	>35	>35.1	>31.5	>33.8	>31.5	>34.1	>30.3	>30.6	>30.7	
	Kai√in)	;	1			1	1		-			-	•••			•	
	Crack (in)	2.2	2.18	2.18	2.23	1.38	1.38	1.37	1.36	2.06	2.2	2.18	2.2	1.36	1.38	1.35	
Prod	Thk (in)	3	3	3	3	1.25	1.25	1.25	1.25	8	8	3	3	1.25	1.25	1.25	
	Thick (in)	2.503	2.503	2.5	2.503	1.252	1.255	1.25	1.254	2,503	2,505	2.502	2.503	1.253	1.254	1.25	L
Specimen	Width (in)	5.11	5.097	5.093	5.093	3,087	3.093	3.085	3.084	5.102	5,107	5.119	5.106	3,082	3.087	3.087	
S	Design	BWOL	BWOL	BWOL	BWOL	BWOL	BWOL	BWOL	BWOL	BWOL	BWOL	BWOL	BWOL	BWOL	BWOL	BWOL	
	Envir.		3.5% NAL.I		S.T.W.		JF4 Fuel		Sim. Sea Water		d.b% nau		S.T.W.		JP-4 Fuel		Sim. Sea Water
Yield	Str (Ksi)		) (	03.0			(	79			ç	61.3				97.9	
	Spec Or.					1-1								7:			
Test	Temp (°F)								Ę	K.T.					<u></u>	· · · · · · · · · · · · · · · · · · ·	
-	Form								f	<b>1</b> 4							
	Condition/ Heat Treat									17351							

# TABLE 8.19.3.3 (CONCLUDED)

K_{lsce} SUMMARY FOR ALUMINUM ALLOY 7475

Condition	Dund	Test	S C	Yield		S	Specimen			-			Test		
Heat Treat	Form	Temp (°F)	or.	Str (Ksi)	Envir.	Design	Width (in)	Thick (in)	Thk (in)	Crack (in)	Ko (Ksi√in)	_{Klac} (Ksi√in)	Time (min)	Test Date	Refer
					10 W 10 10	BWOL	2.554	1.063	57	111		>20.4	74400	1978	GD006
T7351	ф	R.T.	7	7	nation in	BWOL.	2.552	1.004	3	1.12		9'06≤	68700	1978	GD006
(cont'd)	(cont'd) (c	(cont'd)		*: 5	W F S	BWOL	2.545	1.004	3	1.11	***	>30.9	74400	1978	GD006
					D.1.W.	BWOL	2.554	1.006	က	1.09	ł	26.6	74400	1978	GD006
			E	202	WHE	BWOL	2.555	0.509	9.0	1.07	***	35.1+	104820	1978	GD006
			5	2	HITE	BWOL	2.555	0.509	0.5	1.08	***	90.9	104820	1978	GD006
T7651	Ω	t-			10°N %36	BWOL	2.558	0.509	0.5	1.1		35.7	104820	1978	GD006
1	4		E	200	9.9% INBUI	BWOL	2.557	0.509	0.5	1.12		35.7+	104820	1978	GD006
			7	0.2	WithS	BWOL	2,557	0.509	9'0	1.09		34.5*	104820	1978	GD006
					D. I. 111.	BWGL	2,556	0.509	9.0	1.13	-	808	104820	1978	GD006

* specimen thickness does not meet minimum requirements of 2.5  $(\frac{K_{l\infty}}{\sigma_{yy}})^2$ 

TABLE 8.20.1.2.1

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7475 (ALCLAD) AT ROOM TEMPERATURE

CONDITION/ HEAT TREATMENT  TEI	PRODUCT FORM	0.05	FREQ (Hz)	ENVIRONMENT: 3.5% NaCl	SNT: 3.5% NaCl  FCGR (10 ⁻⁶ in/cycle)  AK Level (Ksi/in)  10.0 20.0 105.87  116.93	ii) cle	000	100.0
1761	FEETS	0.05	2			86.75		
		0.25	7			126.28		

### **TABLE 8.20.1.2.2**

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7475 (ALCLAD) AT ROOM TEMPERATURE

ORIENTATION: L-T	t: L-T		¥	ENVIRON	ENVIRONMENT: H.H.A.	I.H.A.	-	
NORMANOO	#SHOOD		Cara		FCGR (	FCGR (10 ⁻⁶ in/cycle)	cle)	
HEAT TREATMENT	FORM	Ħ	(ZH)		AK Lo	ΔK Level (Ksi√in)	in)	
				2.5	5.0 10.0	20.0	0.03	100.0
1001	F100110	0.05	2			37.17		
101	SHEET	0.25	2		13.34	9.69		
		0.05	2			30.89		
124		0.05	2			25.11		
	Iggue	0.25	2		9.02	49.07		
		0.25	2		11.95	5 44.61		

1 of 1

**TABLE 8.20.1.2.3** 

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7475 (ALCLAD) AT ROOM TEMPERATURE

100.0 60.0 FCGR (10⁻⁸ in/cycle) ΔK Level (Ksiv/in) 20.0 31.78 33.04 52.97 57.7 **ENVIRONMENT: Lab Air** 10.0 12.36 10.71 6.37 5.6 6.0 5.5 2.5 FREQ (Hz) 13.3 13.3 13.3 13.3 0.33 0.33 Ľ ö ö PRODUCT FORM SHEET ORIENTATION: L-T HEAT TREATMENT CONDITION **1**8

### **TABLE 8.20.1.2.4**

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 74T5 (ALCLAD) AT ROOM TEMPERATURE

			<del>,</del>
	100.0		
	e) ) 50.0		
VaCl	FCGR (10-6 inyezele)           ΔK Level (Ksivlin)           1 10.0   20.0   E	103.65	90.2
3.5% I	5R (10-6)		
<b>ENVIRONMENT: 3.5% NaCl</b>	FCG.		
IRONI	2.5		
EN			
	FREQ (Hz)	23	8
	R	0.05	0.05
	XI.		
	PRODUCT	SHEET	SHEET
1: T-L	PR		
ORIENTATION: T.L	MŢ		
SIENT	CONDITION/ HEAT TREATMENT		_
O	CONDITION/ AT TREATME	T61	T761
	CHEAN		

**TABLE 8.20.1.2.5** 

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7475 (ALCLAD) AT ROOM TEMPERATURE

ORIENTATION: T-1	: T-L			ENVIRONMENT: H.H.A.	INT: H.	I.A.		
INCHARMANIA	morranoaa		Onum	Ħ	FCGR (10 ⁸ in/cycle)	⁶ in/cyc	(0)	
HEAT TREATMENT	FORM	#	(HZ)	Q	ΔK Level (Ksi√in)	l (Ksiv/ir	1)	
				2.5 5.0	10.0	20.0	60.0	100.0
		0.05	2			45.09		
		0.05	2					
161	SHEET	0.05	2			40.49		
		0.25	2		60.6	62.92		
		0.25	2		10.82	56.45		
		0.05	2			34.21		
T761	SHEET	0.05	2				602.53	
		0.25	2		10.31	54.57		

### **TABLE 8.20.1.2.6**

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 7475 (ALCLAD) AT ROOM TEMPERATURE

	cle)	in)	50.0 100.0				
Air	e in/cy	I (Ksiv).	20.0	22.04	33.83	32.92	48.15
Tr: Lak	FCGR (10 ⁻⁸ In/cycle)	ΔK Level (Kai√in)	10.0	8.56	10.48	6.13	10.27
NMEN	PC	Δ.	5,0				
ENVIRONMENT: Lab Air			2.5				
E	FREG	(HZ)		13.3	13.3	13.3	13.3
	I	Ķ		0.	0.33	0.	0.33
: T-L	PRODUCT	FORM		Edding	oneer	Batter	опкет
ORIENTATION:	CONDITION	HEAT TREATMENT		136	101	1970	1701

#### **TABLE 8.20.2.2**

CONDITION HEAT TREAT FORM (III (III (III (III (III (III (III (I	¥3 8												I I I I I I I I I I I I I I I I I I I					
FORM Sheet	<del></del>				SPECIMEN	MEN	CRACK	CK	GROSS	SS		Kapp			Kc			
	0.13	TEMP (°F)	SPEC	STR (Kei)	WIDTH 1 (in.)	THICK (in.)	(in.)	FINAL (in.) 2a,	ONSET (Kei) G	MAX (Kel)	K (Keivin)	K	STAN	К _с (Кеі√іп)	K _o MEAN	STAN DEV	DATE	REFER
	0.13					BUCKI	LINGOF	CRACK	BUCKLING OF CRACK EDGES RESTRAINED	STRAIN	æ							
				69.4	8.100	0.120	2.690	4.410	ı	37.70	83.00			122.70*			1982	1,5002
	0.13	R.T.	7	69.4	8.100	0.120	2.700	3.780	:	37.30	82.50*	ì	ŀ	105.40*	i	ı	1982	1,5002
	0.13			69.4	8.100	0.120	2.690	4.250	:	36.70	80.70			115.20*			1982	LG002
	0.13			69.4	12.130	0.120	3.990	5.940	i	34.40	92.40			123.80*			1982	LG002
	0.13	R.T.	7	69.4	12.130	0.120	4.000	5.590	:	36.10	97.10	93.3	3.5	123.70*	!	!	1982	LG002
	0.13			69.4	12.130	0.120	4.010	5.930	ı	33.60	90.30			121.00*			1982	LG002
	0.13		1	69.4	20.140	0.120	6.610	9.310		29.80	102.90			131.90			1982	LG002
161 Sheet	0.13	Ж :	3	69.4	20.180	0.120	6.580	8.880	:	30.00	103.30	103.1	0.3	127.70	129.8	3.0	1982	LG002
						BUCKLI	NG OF C	RACK FD	BUCKLING OF CRACK EDGES NOT RESTRAINED	RESTRA	INED							
	0.04		E	71.3	3.000	0.039	1.460	2.548	1	30.60	54.55*			126.43*			1973	86213
T61 Sheet	0.04	K.F.	7	71.3	3.000	0.039	1.380	2.573	ı	29.90	50.83	ŀ	:	127.48*	;	:	1973	86213
	90.0			71.8	16.000	0.063	4.000	4.280	:	26.90	70.15			73.00			1972	84368
	90:0			71.8	16.000	0.063	6.970	6.250	1	20.00	67.10			69.31			1972	84368
	90.0			71.8	16.000	0.063	3.020	3.320	1	31.20	69.49			73.20		-	1972	84368
	90.0	E		71.8	16.000	0.063	3.980	4.550	1	30.10	78.27			84.73			1972	84368
To I Sheet	90.0	: :	Š	71.8	16.000	0.063	1.000	1.500	;	56.70	71.23*	76.5	8.8	87.51*	84.3	12.0	1972	84368
	90.0			69.3	16.000	0.064	3.980	6.300		32.70	85.03	<del>,</del>		101.29			1972	84368
1	90.0			69.3	16.000	0.064	3.990	4.100	ŀ	31.50	82.03			83.34	<del></del>		1972	84368
	90.0			6.69.3	16.000	0.064	3.000	4.070	ı	37.30	82.77			98.26			1972	84368

• NOTE: NET SECTION STRESS EXCEEDS 80% OF YELD STRENGTH. VALUE NOT INCLUDED IN MEAN OR STANDARD DEVIATION.

, 11						V	ALUMINUM	NOM	747	7475 (ALCLAD)	LAD)	K _C							
4	ROD	PRODUCT	100			SPECIMEN	MEN	CRACK	CRACK	GROSS	SS		Kapp			Кc			
FORM	3.W	THICK (in.)	TEMP (°F)	SPEC OR	STR (Ksl)	WIDTH (in.) W	THICK (in.) B	INIT (in.) 2a.	FINAL (in.) 2n,	ONSET (Kei)	MAX (Kal)	K. (Kelvin)	K, MEAN	STAN DEV	K _q (Keivin)	K _c MEAN	STAN DEV	DATE	REFER
I							BUCKLI	NG OF C	RACK ED	BUCKLING OF CRACK EDGES NOT RESTRAINED	HESTRA	INED							
60	Sheet	90.0	R.T.	7	69.3	16.000	0.064	1.000	1.930	:	58.00	72.87*			101.90*			1972	84368
υ I	ont'd	90.0	Cont'd	Cont'd	69.3	16.000	0.064	6.000	7.500	!	22.80	76.76	Cont'd	Cont'd	16.06	Cont'd	Cont'd	1972	84368
-		60.0	Ę		73.9	15.880	0.089	3.990	4.720	:	33.60	87.55			96.82			1973	86842
	Sheet	0.09	K. I.	1.5	73.9	15.880	0.089	3.990	4.720	:	32.10	83.64	85.6	2.8	92.49	94.7	3.1	1973	86842
		0.04	8		65.6	3.000	0.041	1.130	2.764	:	28.80	42.12			170.92*			1973	86213
	199UC	90:04	70	3	65.6	3.000	0.041	1.350	2.307	1	37.40	62.46	:	1	119.39*	ŀ	:	1973	86213
	<del>-</del>	60:0	S	E	68.8	3.000	0.088	1.170	2.154	:	40.20	60.25*			112.95*			1973	86213
	18010	60.0	3	5	68.8	3.000	0.089	1.150	2.340	;	40.70	60.26*	ì	1	134.07*	1	i	1973	86213
	100	0.18	S	F	73.8	3.000	0.192	1.080	2.166	ı	43.50	61.66*			123.38*			1973	86213
	18210	0.18	70	5	73.8	3.000	0.192	1.163	2.274	!	40.10	59.81*	i	!	124.42*	1	ŧ	1973	86213
	460	0.25	â	E	9'69	3.000	0.243	1.133	2.311	:	38.10	55.79*			122.07*			1973	86213
	a lare	0.25	38	5	9.69	3.000	0.244	1.148	2.260	ı	38.50	56.93*	i	!	118.01•	i	i	1973	86213
	9049	0.09	3	£	73.6	3.000	0.089	1.060	2.071	ï	43.70	61.17*			115.20*			1973	86213
	1 Salin	60.0	5	5	73.6	3.000	0.089	1.080	2.147	!	43.50	61.66*	ï	:	121.46*	1	:	1973	86213
	to to	60.0	3	E -	71.0	3.000	0.098	1.090	2.196	!	42.20	60.19*			122.61*			1973	86213
	100	60.0	5	5	71.0	3.000	0.098	1.100	2.249	. 1	42.80	61.43*	ı	ı	129.85*	ı	ł	1973	86213
	<del>-</del>	0.12	3	ŧ	72.6	3.000	0.126	1.330	2.303	1	37.50	61.88*			119.28*			1973	86213
	180110	0.12	ř o	15	72.6	3.000	0.126	1.150	2.193	i	42.30	62.63*	1	ŀ	122.50*	i	I	1973	86213

* NOTE: NET SECTION STRESS EXCEEDS 80% OF YIELD STRENGTH. VALUE NOT INCLUDED IN MEAN OR STANDARD DEVIATION.

		Ħ		္က	3	2	2	3	6	23	23	6	13	12	12	13	13	68	68	89	89	89
		REFER		86213	86213	86842	86842	86213	86213	86842	86842	86213	86213	86842	86842	86213	86213	84368	84368	84368	84368	84368
		DATE		1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1973	1972	1972	1972	1972	1972
	-	STAN			Cont'd		ï					;					1			7.5		
	Ke	K _o MEAN			Cont'd		:					i					-			86.9		
		K _e (Kei√in)		120.48*	120.22*	95.48*	99.73*	104.82*	101.26*	95.47*	100.74*	95.59*	95.49*	98.35*	98.28*	113.98*	106.51*	81.99	75.36	78.30	81.62*	88.48
		STAN DEV			Cont'd		1					!					1				ال ــــــــــــــــــــــــــــــــــــ	
	d	K, 8			Cont'd							:					ı			78.6		
	Карр				ပိ																	
K		K. (Kelvin)	NED	59.91	60.77*	61.14*	€0.90	60.32*	58.64*	60.70	59.56*	60.23*	60.31	58.49	59.52*	49.91	68.75*	77.60	72.22	73.02	€9.39	81.00
(AD)	SS	MAX (Ket)	RESTRAI	37.40	40.30	40.30	39.90	40.00	40.00	41.00	39.40	41.60	41.50	39.90	40.70	32.50	38.80	29.80	21.50	28.00	55.80	36.50
7475 (ALCLAD)	GROSS	ONSET (Ket) 0.	BUCKLING OF CRACK EDGES NOT RESTRAINED	:	ï	:	ı	;	;	:	·	:	:	-:-	i	:	ı	;	ı		:	ï
7475	CK GTH	FINAL (in.) 2a,	KACK ED	2.316	2.228	1.919	1.997	2.062	2.014	1.893	2.028	1.872	1.874	1.976	1.947	2.404	2.124	4.380	6.350	4.500	1.350	3.520
NUM	CRACK	INIT (in.) 2a.	VG OF (	1.280	1.180	1.190	1.200	1.180	1.135	1.150	1.185	1.115	1.120	1.135	1.130	1.210	1.450	3.990	5.980	4.000	0.980	3.000
ALUMINUM	MEN	THICK (in.) B	BUCKLE	0.130	0:130	0.089	0.089	0.063	0.063	0.063	0.063	0.063	0.063	0.064	0.064	0.041	0.041	0.063	0.063	0.063	0.063	0.063
V	SPECIMEN	WIDTH (fn.) W		3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	3.000	16.000	16.000	16.000	16.000	16.000
		STR (Kei)		69.1	69.1	73.9	73.9	6.69	69.9	71.8	71.8	73.0	73.0	69.3	69.3	64.8	64.8	68.4	68.4	68.4	68.4	68.4
		SPEC		7.	Cont'd		L				ı	5					T-L			T·L		
		TEMP (°F)		84	Cont'd		82					98					R.T.			R.T.		
	JCT	THICK (in.)		0.12	0.12	60:0	0.09	90.0	90.0	90.0	90.0	0.06	90:0	0.06	90.0	0.04	0.04	90:0	90.0	0.06	0.06	0.06
	PRODUCT	FORM		Sheet	Cont'd		Sheet	:				Sheet					Sheet			Sheet		
		CONDITION HEAT TREAT		Tei	Cont'd		191				ì	191					T61			191		

• NOTE: NET SECTION STRESS EXCREDS 80% OF YIELD STRENGTH. VALUE NOT INCLUDED IN MEAN OR STANDARD DEVIATION.

						V	ALUMINUM	NOM	7475	7475 (ALCLAD)	(QV)	K _C							
	PRO!	PRODUCT				SPECIMEN	MEN	CRACK	CK	GROSS	SS		Kapp			К _с	-		
CONDITION HEAT TREAT	FORM	THICK (in.)	TEMP (°F)	SPEC OR	STR (Kal)	WIDTH (in.)	THICK (in.) B	INIT (ln.) 2a.	FINAL (in.)	ONSET (Kai)	MAX (Ksi)	K (Kelvin)	K.,	STAN DEV	K _e (Kel√in)	Ke	STAN	DATE	REFER
							BUCKLI	VG OF C	BUCKLING OF CRACK EDGES NOT RESTRAINED	GES NOT	RESTRAI	NED							
		90.0		······	66.5	16.000	0.064	1.000	1.780	j	67.30	71.99*			96.55*			1972	84368
		90.0			66.5	16.000	0.064	6.000	7.150	:	23.20	78.11			88.98			1972	84368
T61 Cont'd	Sheet Cont'd	90.0	R.T. Cont'd	T·L Cont'd	66.5	16.000	0.064	4.000	6.080	;	31.20	81.36	Contd	Cont'd	94.05	Conf'd	Conti	1972	84368
		90.0			66.5	16.000	0.064	3.000	3.680	1	37.40	82.99			92.97			1972	84368
		90.0			66.5	16.000	0.064	4.000	5.080	:	31.50	82.15			94.95			1972	84368
761	Sheed	60.0	F-	E	71.5	15.880	0.089	3.980	4.620	12.40	29.70	77.27			83.34			1973	86842
		60.0		2	71.5	15.880	0.089	3.960	4.270	ı	27.90	72.38	74.8	3.5	75.66	79.5	5.4	1973	86842
161	Shee	0.04	6	Ę	66.0	3.000	0.038	1.400	2.407	1	31.60	54.36*			111.05			1973	86213
		0.04	3		66.0	3.000	0.039	1.400	2.528	:	28.70	49.37*	i	ı	115.63*	ı	!	1973	86213
	Short	60.0	83	<u> </u>	66.4	3.000	0.088	1.130	2.320	:	39.70	€8.06			128.36*			1973	86213
		60.0		2	66.4	3.000	0.088	1.140	2.388	;	39.70	58.42*	i	ı	137.00	i	;	1973	86213
161	Sheet	0.18	68	E	71.6	3.000	0.192	1.142	2.201	1	39.30	57.90			114.55*			1973	86213
		0.18	;	2	71.6	3.000	0.193	1.160	2.256	ı	38.40	<b>67.20</b> *	:	1	117.30*	ł	i	1973	86213
191	Plate	0.25	â	Ę	67.8	3.000	0.244	1.157	2.113	1	36.10	53.64*			98.19*			1973	86213
		0.25	;	2	67.8	3.000	0.244	1.170	1.954	1	36.70	55.00*	ı	ı	89.10*	ł	1	1973	86213
12	5	0.12	6	Ē	6.99	3.000	0.130	1.280	2.381	ı	37.90	60.71*			129.76*			1973	86213
		0.12	3		6.99	3.000	0.130	1.170	2.210	:	39.40	€9.05	I	ı	115.79*	ı	:	1973	86213
T61	Sheet	0.09	84	7.5	71.8	3.000	0.089	1.180	2.176	-	40.30	•2.09	ı	1	115.03*	1	ı	1973	86213

• NOTE: NET SECTION STRESS EXCEEDS 80% OF YIELD STRENGTH. VALUE NOT INCLUDED IN MEAN OR STANDARD DEVIATION.

TEST   SPEC   SPECIMEN   LENGTH   STREES   TEST   STREES   STREE						¥	ALUMINUM	MOM	7475	7475 (ALCLAD)	(QV	K							
Sheet   Cob		RODUCT	£			SPECI	MEN	CRA	СК	GROS	SS		Kapp			K _c	-		
Sheet 0.09 84 T.L 68.4 3.000  Sheet 0.09 85 T.L 68.4 3.000  Sheet 0.09 85 T.L 71.5 3.000  O.09 85 T.L 71.5 3.000  Sheet 0.06 86 T.L 71.5 3.000  O.09 87 T.L 71.5 3.000  O.09 86 T.L 71.5 3.000  Sheet 0.06 86 3.000  Sheet 0.06 86 3.000  O.09 87 T.L 70.2 3.000  O.09 86 T.L 70.2 3.000  O.09 87 T.L 70.2 3.000  O.09 88 T.L 70.2 3.000  O.09 88 T.L 70.2 3.000  O.09 88 T.L 70.2 3.000  O.09 89 T.L 60.6 3.000  O.09 80 T.L 60.6 3.000				SPEC				·	FINAL (in.) 2a,	ONSET (Ket)	MAX (Ksl)	K (Kai√in)	K,,,	STAN	K _G (Kelvin)	K _o MEAN	STAN	DATE	REFER
Sheet 0.09 84 T.L 68.4 3.000 0.097 1.100 2.215  Sheet 0.12 84 T.L 68.6 3.000 0.126 1.150 2.213  Sheet 0.06 85 T.L 68.4 3.000 0.064 1.175 1.996  Sheet 0.09 85 T.L 715 3.000 0.099 1.190 1.925  0.09 85 T.L 715 3.000 0.099 1.190 1.872  0.06 86 T.L 715 3.000 0.099 1.190 1.872  0.06 86 T.L 715 3.000 0.099 1.190 1.872  0.06 86 T.L 715 3.000 0.099 1.190 1.874  0.06 86 T.L 702 3.000 0.093 1.150 1.874  0.06 86 T.L 702 3.000 0.093 1.150 1.874  0.09 87 T.L 702 3.000 0.093 1.150 1.874  0.09 88 T.L 702 3.000 0.093 1.150 2.009  0.09 89 T.L 702 3.000 0.093 1.150 2.000  0.09 0.093 1.150 2.000  0.09 0.093 1.150 2.000							BUCKLIN	₹G OF C	RACK ED	GES NOT	RESTRA	CNED							
Sheet 0.09			3	Ē	69.4	3.000		1.100	2.215	ı	41.70	59.85*			122.95*			1973	86213
Sheet 0.12 84 T.L 68.6 3.000 0.126 1.120 2.213  Sheet 0.06 85 T.L 68.4 3.000 0.064 1.175 1.996  O.09 85 T.L 71.5 3.000 0.069 1.190 1.925  Sheet 0.09 85 T.L 71.5 3.000 0.090 1.180 1.925  O.09 86 T.L 71.5 3.000 0.090 1.180 1.925  Sheet 0.06 86 T.L 71.5 3.000 0.090 1.180 1.925  O.06 86 T.L 71.5 3.000 0.090 1.180 1.925  O.06 86 T.L 70.2 3.000 0.063 1.180 1.874  O.06 86 T.L 70.2 3.000 0.063 1.180 1.874  O.06 86 T.L 70.2 3.000 0.063 1.180 2.039  Sheet 0.09 86 T.L 70.2 3.000 0.063 1.180 2.039  O.06 86 T.L 70.2 3.000 0.063 1.180 2.040  O.06 86 T.L 70.2 3.000 0.063 1.180 2.040  O.09 T.L 70.2 3.000 0.063 1.180 2.040  O.09 8 T.L 70.2 3.000 0.064 1.185 2.039  O.09 8 T.L 70.2 3.000 0.064 1.180 2.040			5	d-1	69.4	3.000		1.150	2.241	ı	41.00	60.70*	1	:	123.54*	i	i	1973	86213
Sheet 0.06	<u></u>		- T	Ė	9.89	3.000	-	1.220	2.213	;	39.70	61.34			116.86*			1973	86213
Sheet 0.06			<b>5</b> 0	7:1	68.6	3.000		1.140	2.192	;	41.70	61.36*	l	ı	120.76*	!	ı	1973	86213
Sheet 0.06 85 T-L 71.5 3.000 0.064 1.160 1.973  Sheet 0.09 85 T-L 71.5 3.000 0.090 1.190 1.925  0.09 71.6 3.000 0.090 1.185 2.029  0.06 67.2 3.000 0.062 1.225 2.044  0.06 86 T-L 70.2 3.000 0.062 1.110 2.011  0.06 86 T-L 70.2 3.000 0.063 1.150 1.874  0.06 66.5 3.000 0.064 1.185 2.039  0.06 66.5 3.000 0.064 1.185 2.039  0.09 82 L-T 60.6 3.000 0.089 1.150 2.400  0.09 82 L-T 60.6 3.000 0.089 1.150 2.400  0.09 82 L-T 60.6 3.000 0.089 1.150 2.400			- 1	Ė	68.4	3.000		1.175	1.996	:	38.30	57.54*			95.73*			1973	86842
Sheet 0.09 85 T·L 71.5 3.000 0.099 1.190 1.925  0.09 T·L 71.5 3.000 0.090 1.190 1.872  0.06 67.2 3.000 0.062 1.255 2.044  0.06 86 T·L 70.2 3.000 0.062 1.215 2.029  0.06 86 T·L 70.2 3.000 0.063 1.150 1.874  0.06 86 T·L 70.2 3.000 0.063 1.150 1.854  0.06 66.5 3.000 0.064 1.185 2.039  0.06 66.5 3.000 0.064 1.185 2.039  0.09 82 L·T 60.8 3.000 0.069 1.150 2.450  0.09 88 L·T 60.8 3.000 0.069 1.150 2.450  0.09 88 Bet 1.1 60.8 3.000 0.089 1.150 2.450		_	g	3:	68.4	3.000		1.160	1.973	ŀ	37.80	56.31*	I	:	92.92*	i	ı	1973	86842
Sheet 0.09 85 T·L 71.6 3.000 0.090 1.185 2.029  0.06 67.2 3.000 0.062 1.225 2.044  0.06 86 7·L 70.2 3.000 0.062 1.187 2.011  0.06 86 7·L 70.2 3.000 0.063 1.150 1.874  0.06 66.5 3.000 0.064 1.186 2.039  0.06 66.5 3.000 0.064 1.180 2.040  0.09 82 1.7 60.6 60.6 3.000 0.064 1.180 2.040  0.09 82 1.7 60.6 60.6 3.000 0.069 1.150 2.450  0.09 82 1.7 60.6 3.000 0.069 1.150 2.450  0.09 82 1.7 60.6 3.000 0.069 1.160 2.450		0.09	<u> </u>		71.5	3.000	0.089	1.190	1.925	:	38.20	57.96*			90.87*			1973	86842
90.09 71.6 3.000 0.090 1.185 2.029  0.06 67.2 3.000 0.062 1.225 2.044  0.06 86 T.L 70.2 3.000 0.063 1.150 1.874  0.06 86 7.L 70.2 3.000 0.063 1.150 1.854  0.06 66.5 3.000 0.064 1.185 2.039  0.09 82 L.T 60.6 3.000 0.064 1.180 2.040  0.09 82 L.T 60.6 3.000 0.089 1.150 2.450  0.09 82 L.T 60.6 3.000 0.089 1.150 2.450			<b>8</b>	1.	71.5	3.000	0.090	1.190	1.872	1	39.40	59.78*	i	-1	90.54*	:	!	1973	86842
Sheet 0.06		0.09			71.6	3.000	0.090	1.185	2.029	ı	40.60	61.37*			103.81*			1973	86213
Sheet 0.06		90.0	<del>- 1</del>		67.2	3.000	0.062	1.225	2.044	1	37.10	57.46*			95.96*			1973	86213
Sheet 0.06 86 T-L 70.2 3.000 0.063 1.150 1.874  0.06 66.5 3.000 0.064 1.185 2.039  0.09 66.5 3.000 0.064 1.180 2.040  0.09 82 L-T 60.6 3.000 0.089 1.150 2.450  68.6 3.000 0.089 1.150 2.450  68.6 3.000 0.089 1.150 2.450  68.6 3.000 0.089 1.160 2.410		90.0			67.2	3.000	0.062	1.110	2.011	;	39.00	56.33*			98.45*			1973	86213
Sheet 0.09			-		70.2	3.000	0.063	1.150	1.874	1	39.20	58.04*			90.20*			1973	86213
0.06 66.5 3.000 0.064 1.185 2.039  0.06 66.5 3.000 0.064 1.180 2.040  Sheet 0.09 82 L-T 60.6 3.000 0.089 1.150 2.450  0.09 68.5 3.000 0.089 1.145 2.438			8 	3	70.2	3.000	0.063	1.150	1.854	i	39.70	58.78*	!	!	90.16*	1	!	1973	86213
Sheet 0.09 62. L.T 60.6 3.000 0.089 1.150 2.040 60.6 3.000 0.089 1.150 2.450 60.6 3.000 0.089 1.145 2.410 60.9 6.65 3.000 0.089 1.105 2.428		90.0	<del>-  </del>		66.5	3.000	0.064	1.185	2.039	:	38.30	57.90*			98.64*			1973	86842
Sheet 0.09 82 LT 60.6 3.000 0.089 1.150 2.450 0.09 65 58.5 3.000 0.089 1.105 2.438		90.0			66.5	3.000	0.064	1.180	2.040	:	38.20	57.60			98.52*			1973	86842
0.09 68.5 3.000 0.089 1.145 2.410			<u> </u>	E	9.09	3.000	0.089	1.150	2.450	:	37.20	55.07			136.93*			1973	86213
58.5 3.000 0.088 1.105 2.428		$\dashv$	3		9.09	3.000	0.089	1.145	2.410	i	37.40	55.17*	ı	:	131.97*	1	ı	1973	86213
1 L 68		60:0	<u> </u>	Ē	58.5	3.000	0.088	1.105	2.428	i	37.40	53.82*			134.46*			1973	86213
0.09 0.09 3.000 0.089 1.200 2.417			*	7.	68.5	3.000	0.089	1.200	2.417	ı	35.60	54.34*	ı	ı	126.40	!	i	1973	86213

• NOTE: NET SECTION STRESS EXCREDS 80% OF YIELD STRENGTH. VALUE NOT INCLUDED IN MEAN OR STANDARD DRVIATION.

						Y	ALUMINUM	NUM	7475	7475 (ALCLAD)	(QV	, K							
	PRO	PRODUCT	100			SPECIMEN	MEN	CRACK	CK TH	GROSS	SS		Kapp			K _c			
CONDITION HEAT TREAT	FORM	THICK (fn.)	TEMP (°F)	SPEC	<u> </u>	WIDTH 1	THICK (in.)	(in.) 2a,	FINAL (in.) 2s,	ONSET (Kei)	MAX (Ksi)	K (KsiVin)	K,	STAN	K _e (Keivin)	R _o MBAN	STAN	DATE	REFER
							BUCKLIN	G OF CI	ACK ED	BUCKLING OF CRACK EDGES NOT RESTRAINED	RESTRAI	INED							
1731	Plate	0.25	8	E	60.1	3.000	0.245	1.180	2.554	ı	37.80	57.00*			157.39*			1973	86213
		0.25	3	5	60.1	3.000	0.245	1.185	2.558	ı	37.70	56.99*	i	-	157.79*	ı	ļ	1973	86213
1731	Sheet	0.25	2		58.8	3.000	0.245	1.233	2.580	-	36.60	56.96*			157.75*			1973	86213
		0.25	3	2	58.8	3.000	0.246	1.203	2.585	ı	37.10	56.70*	:	ı	160.78*	ı	1	1973	86213
		90:0			62.0	15.880	0.062	2.980	3.920	ı	39.50	87.37			101.87*			1973	86213
		90.0			62.0	15.880	0.062	1.000	2.000	ı	57.40	72.12*			102.75*			1973	86213
		90.0		<b>-</b> - <b>!</b>	6.99	15.880	0.062	2.980	3.500	1	36.30	80.29			87.76			1973	86213
		90.0			62.0	15.880	0.063	3.990	5.130	:	33.20	86.51			100.81			1973	86213
T761	Sheet	90:0	R.T.	7	62.0	15.880	0.063	6.000	7.500	:	24.20	81.60	83.0	4.4	96.74	92.3	ç	1973	86213
		90:0			62.0	15.880	0.063	4.000	4.920	ŀ	33.90	88.46			100.24	]	<u> </u>	1973	86213
		90.0		L	6.99	15.880	0.063	4.000	4.580	:	30.40	79.33			85.99			1973	86213
		90.0		!	6.99	15.880	0.063	1.000	1.520	32.90	52.50	65.96*			81.58*			1973	86213
		90:00			6.99	15.880	0.063	0.000	6.550	1	22.90	77.21			82.26			1973	86213
1761	Sheet	60:0	E	F.	66.5	15.880	0.089	4.000	2.000	18.60	37.00	96.55			110.53*			1973	86213
		60:00		5	66.5	15.880	0.089	4.000	4.950	12.80	36.60	95.51	96.0	0.7	108.64	1	I	1973	86213
1761	Sheet	0.09	8	<u>-</u>	61.4	3.000	0.087	1.160	2.267	-	37.40	55.71*			116.24*			1973	86213
		0.09	,	5	61.4	3.000	0.088	1.190	2.406	ı	36.40	65.22*	1	1	127.92*	ı	i	1973	86213
1761	Sheet	0.18	6		64.1	3.000	0.193	1.107	2.480	ı	41.00	*20.69			156.05*			1973	86213
	and a	0.18	70	5	64.1	3.000	0.193	1.090	2.495	1	40.80	58.20*	ı	i	157.81*	i	ı	1973	86213

• NOTE: NET SECTION STRESS EXCEEDS 80% OF YIELD STRENGTH. VALUE NOT INCLUDED IN MEAN OR STANDARD DEVIATION.

						A	ALUMINUM	MOM	7475	7475 (ALCLAD)	(QV)	K _c								ī —
	PROI	PRODUCT	60	<b> </b>		SPECIMEN	MEN	CRACK	CK TH	GROSS	S SS		Kapp			Кc	-			1
CONDITION HEAT TREAT	FORM	THICK (In.)	TEMP (°F)	SPEC		WIDTH 1	THICK (in.) B	INIT 1 1 22.	FINAL ((in.)	ONSET (Kel)	MAX (Kai)	K (Kai Vin)	MEAN	STAN	R _c (Keivin)	K _c MEAN	STAN	DATE	REFER	
							BUCKLIN	(G OF CI	VACK EDC	BUCKLING OF CRACK EDGES NOT RESTRAINED	TESTRAD	NED								
	Ē	0.25	8	I	6.09	3.000	0.246	1.145	2.610	ı	38.60	56.94*			173.56*			1973	86213	1
1011	Flate	0.25	29	3	60.9	3.000	0.246	1.138	2.622	:	39.00	67.31•	i	ŀ	155.97*	1	ı	1973	86213	T
		90:0			62.0	3.000	0.063	1.185	1.993	;	38.40	58.05*			95.71*			1973	86213	T
1361	O. P. C. C.	90.0	ly O		62.0	3.000	0.063	1.140	1.965	ı	38.00	55.91*			92.89*			1973	86213	I.
	18 uc	90.0	ê	<u>.</u>	6.99	3.000	0.063	1.140	2.041	:	38.80	57.09*	ļ	i	100.07*	ı	ı	1973	86213	T
		90.0			6.99	3.000	0.063	1.170	2.040	:	37.70	56.50*	- <b></b>		97.23*			1973	86213	T
1761	S. Pool	60.0	ų a	E-	66.5	3.000	0.088	1.200	2.065	1	38.20	58.31*			100.25*			1973	86213	T-
		60.0	3	5	66.5	3.000	0.088	1.150	2.057	;	39.40	58.33*	:	:	102.80*	ı	1	1973	86213	T
		90.0		1	60.5	15.880	0.062	4.000	6.050	1	33.90	88.46			*16.101			1973	86213	Ī
		90.0		I	60.5	15.880	0.062	4.000	5.000	:	33.20	86.63			99.17			1973	86213	Ī
		90'0			60.5	15.880	0.063	3.020	3.920	:	39.30	87.56			101.36*			1973	86213	
		90.0			60.5	15.880	0.063	6.010	7.240	:	24.30	82.03			94.35			1973	86213	ĺ
1761	Sheet	90'0	£-	Ę	60.5	15.880	0.063	1.000	1.980	-	55.10	69.23*			98.11*			1973	86213	
		90'0		2	64.9	15.880	0.063	3.000	3.430	;	35.50	78.80	82.6	4.8	84.86	90.1	6.9	1973	86213	
	-	0.06			64.9	15.880	0.063	1.000	1.420	:	68.00	72.87*			87.05*			1973	86213	
		90.0			64.9	15.880	0.063	4.000	4.660	ı	30.60	79.85			86.21			1973	86213	
		90:00			64.9	15.880	0.063	3.990	4.600	ı	33.30	86.77			94.45			1973	86213	
		90.0			64.9	15.880	0.063	2.990	6.600	1	22.50	75.78			81.28			1973	86213	Г

• NOTE: NET SECTION STRESS EXCEEDS 80% OF YIELD STRENGTH. VALUE NOT INCLUDED IN MEAN OR STANDARD DEVIATION.

# TABLE 8.20.2.2 (CONCLUDED)

						Y	ALUMINUM	NOM	747	7475 (ALCLAD)	[TVD)	Kc							
	PRO]	PRODUCT				SPECIMEN	MEN	CRACK	CK	GROSS	SS		Kapp			К _с			
CONDITION HEAT TREAT	FORM	THICK (in.)	TEMP (°F)	SPEC	STR (Kat)	WIDTH (In.)	THICK (in.) B	(in.)	FINAL (in.) 2a,	ONSET (Kel)	MAX (Kel)	K (Keivin)	K, MEAN	STAN	K _c (Kal√in)	K _e MEAN	STAN DEV	DATE	REFER
							BUCKLII	VG OF C	KACK ED	BUCKLING OF CRACK EDGES NOT RESTRAINED	RESTRA	INED							
1761	9	0.09	Ę	Ē	65.6	15.880	0.089	3.970	4.600	14.90	31.70	82.36			16:68			1973	86213
	130115	0.09		3	65.6	15.880	0.089	3.980	4.800	:	32.10	83.52	82.9	9.0	93.46	91.7	2.5	1973	86213
1974	Sheed	60.0	8		59.4	3.000	0.088	1.170	2.387	1	36.30	54.41			125.02*			1973	86213
		60.0	3	2	59.4	3.000	0.088	1.155	2.397	ŀ	36.70	54.47*	1	:	127.67*	i	!	1973	86213
1761	Shee	0.18	ca	Ė	62.9	3.000	0.193	1.188	2.413	ï	38.90	58.95*			137.55*			1973	86213
		0.18	3	2	62.9	3.000	0.193	1.240	2.551	ı	37.50	58.64*	ı	:	155.33*	1	i	1973	86213
1761	Plafe	0.25	ć		61.9	3.000	0.245	1.180	2.723	:	38.00	57.30°			206.31*			1973	86213
		0.25	3	2	61.9	3.000	0.245	1.197	2.580	į	37.70	67.41*	:	:	162.49*	ŀ	i	1973	86213
		90.0		<u>1</u>	60.5	3.000	0.063	1.140	2.190	į	37.40	55.03*			108.13*			1973	86213
1761	Short	90.0	£	F.	60.5	3.000	0.063	1.085	2.085	į	39.00	55.42*			103.88*			1973	86213
		90.0	}		64.9	3.000	0.063	1.165	2.046	ı	39.20	58.54*	1	:	101.54*	}	i	1973	86213
		90.0			64.9	3.000	0.063	1.150	1.923	1	39.90	59.07*			94.79*			1973	86213
1761	i G	0.09	¥		65.6	3.000	0.089	1.170	2.033	ı	39.00	58.45*			100.01			1973	86213
		0.09	3		65.6	3.000	0.089	1.150	2.066	ì	39.70	58.78*	ı	1	104.34*	į	i	1973	86213

• NOTE: NET SECTION STRESS EXCEEDS 80% OF YIELD STRENGTH. VALUE NOT INCLUDED IN MEAN OR STANDARD DEVIATION.

7475 (ALCLAD) | Condition/Ht: T61 Yield Strength: 73.6 ksi Form: 0.09 in. Sheet Specimen Type: CCP (max load specified) Ult. Strength: 79.8 ksi Specimen Thk: 0.087 - 0.088 in. Orientation: L-T Specimen Width: 4 in. Frequency: 13.3 Hz Ref: 86213 Environment: LAB AIR; RT (2 of 2)(1 of 2) $\Delta$ K (MPa $\sqrt{in}$ )  $\Delta$ K (MPa $\sqrt{in}$ ) 100 10 100 40 10 40 لبليك TTTTTانابليك 10° 10° Stress Ratio: 0.33 Stress Ratio: 0.0 10-2 10-2 10-1 10-1 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10 10 10 -6 10 6 10 -5 10 -5 10⁻⁷ 10⁻⁷ 10⁻⁶ 10 -6 10⁻⁶ 10-8 40 100 10 40 100 10 ΔK (Ksi√in) ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) 5.91 (min) 9.44 (min) 6. 7. 8. 3.68 10. 13. 16. 9. 20. 25. 30. 10. 13. 16. 35. 20. 40. 25. 27.65 (max) 169. 45.47 (max) 294. Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary RMS & +BA × O Error Error 14.79 1.25 .5 .8 2. 0. 5.95 0. .5 .8 1.25 2.

Figure 8.20.3.1.1



Figure 8.20.3.1.2

H 7475 (ALCLAD) H Condition/Ht: T61 Yield Strength: 65.7 ksi Form: 0.04 in. Sheet Specimen Type: CCP (max load specified) Ult. Strength: 73.6 ksi Specimen Thk: 0.04 in. Orientation: L-T Specimen Width: 23.97 - 24.01 in Frequency: 2 Hz Ref: 86212 Environment: H.H.A.; RT (2 of 2)(1 of 2)ΔK (MPa√in)  $\Delta$ K (MPa $\sqrt{in}$ ) 100 10 100 10 40 111111 10° 11111 10⁰ Stress Ratio: 0.25 Stress Ratio: 0.05 10-2 10-2 10 1 10-1 10⁻³ 10⁻³ 10 -2 da/dN (in/cycle) da/dN (in/cycle) 10⁻⁶ 10⁻⁶ 10 -5 10 5 10⁻⁷ 10⁻⁷ 10 -6 10-6 10⁻⁸ 10 8 40 100 10 100 10 40 ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) 8.78 (min) 11.50 (min) 13. 16. 9. 10. 37.2 72.5 13. 20. 16. 39.1 20. 130. 27.35 (max) 22.61 (max) Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary RMS % Error Error 13.39 .5 .8 1.25 2. 0. 6.09 .5 1.25 2. 0. .8



Figure 8.20.3.1.4

Condition/Ht: T61 Yield Strength: 68.2 ksi Form: 0.09 in. Sheet Specimen Type: CCP (max load specified) Ult. Strength: 78.6 ksi Specimen Thk: 0.089 - 0.09 in. Orientation: T-L Specimen Width: 4 in. Frequency: 13.3 Hz Ref: 86213 Environment: LAB AIR; RT (2 of 2) (1 of 2) $\Delta$ K (MPa $\sqrt{in}$ )  $\Delta$ K (MPa $\sqrt{in}$ ) 10 100 40 100 10 40 111111 <del>1 | 1 | 1 | 1</del> 10° 10° Stress Ratio: 0.33 Stress Ratio: 0.0 10-2 10-2 10⁻¹ 10 1 10⁻³ 10⁻³ 10 2 10-2 da/dN (in/cycle) da/dN (in/cycle) Ą 10⁻⁶ 10 6 10⁻⁵ 10 -5 10⁻⁷ 10⁻⁷ 10 6 10 -6 10 8 10 8 40 100 10 100 10 40 ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) da/dN (10⁻⁶in/cycle)  $\Delta K$  (Ksi $\sqrt{in}$ ) ΔK (Ksi√in) 6.05 (min) 8.89 (min) 4.66 7. 8. 9. 9. 13. 16. 13.3 10. 16.7 13. 20. 25. 30. 16. 20. 25. 27.65 (max) 38.72 (max) 487. Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary RMS % O 242 Error Error 11.06 .5 1.25 2. 0. 8. 6.50 .5 .8 1.25 2. 0.



Figure 8.20.3.1.6

7475 (ALCLAD) h Condition/Ht: T61 Yield Strength: 65.7 - 68.6 ksi Form: 0.04 in. Sheet Specimen Type: CCP (max load specified) Ult. Strength: 73.6 - 74.5 ksi Specimen Thk: 0.04 in. Orientation: T-L Specimen Width: 12 in. Frequency: 2 Hz Ref: 86212 Environment: H.H.A.; RT (1 of 1) $\Delta$ K (MPa $\sqrt{in}$ )  $\Delta$ K (MPa $\sqrt{in}$ ) 100 10 100 10 40 11111 10° 10° Stress Ratio: 0.05 10-2 10-2 10 10 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10⁻⁶ 10-6 10 5 10 5 10⁻⁷ 10⁻⁷ 10-6 10⁻⁶ 10⁻⁸ 10⁻⁸ 100 10 40 40 100 10 ∆K (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) 746. 1877. 45.66 (min) 50. 60. 70. 72.32 (max) 20509. Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary RMS % Error Error .5 1.25 2. 0. 8. 8.68 .5 .8 1.25 2. 0.



Figure 8.20.3.1.8

7475 (ALCLAD) | Condition/Ht: T61 Yield Strength: 65.7 ksi Form: 0.04 in. Sheet Specimen Type: CCP (max load specified) Ult. Strength: 73.6 ksi Specimen Thk: 0.04 in. Orientation: T-L Specimen Width: 35.8 in. Frequency: 2 Hz Ref: 86212 Environment: 3.5% NACL; RT (1 of 1)ΔK (MPa√in) 10 40 ΔK (MPa√in) 100 40 100 10 11111 10° 10° Stress Ratio: 0.05 10⁻² 10-2 10-1 10⁻¹ 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10⁻⁶ 10 6 10 -5 10-5 10⁻⁷ 10⁻⁷ 10 6 10 6 10-8 10 40 100 40 100 10 ΔK (Ksi√in) ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle)  $da/dN (10^{-6}in/cycle)$ ΔK (Ksi√in) 15.18 (min) 16. 20. 25. 30. 33.11 (max) Life Prediction Ratio Summary RMS \$ Life Prediction Ratio Summary RMS % Error Error 0. .5 .8 1.25 2. 2.07 .<u>5</u> 2. 1.25 0. .8

Figure 8.20.3.1.9



7475 (ALCLAD) ├ Condition/Ht: T761 Yield Strength: 59.8 ksi Form: 0.04 in. Sheet Specimen Type: CCP (max load specified) Ult. Strength: 68.7 ksi Specimen Thk: 0.04 in. Orientation: L-T Specimen Width: 36 in. Frequency: 2 Hz Ref: 86212 Environment: H.H.A.; RT (2 of 2) (1 of 2) $\Delta$ K (MPa $\sqrt{in}$ ) ΔK (MPa√in) 10 100 100 40 10 40 1 1 1 1 1 1 1 1 1 1,11,1 10⁰ 10° Stress Ratio: 0.25 Stress Ratio: 0.05 10-2 10-2 10-1 10-1 10⁻³ 10⁻³ 10⁻² da/dN (in/cycle) da/dN (in/cycle) 10 10 10⁻⁶ 10-6 10⁻⁵ 10 5 10⁻⁷ 10⁻⁷ 10⁻⁶ 10 -6 10 8 10⁻⁸ 40 100 10 40 100 10 ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) ΔK (Ksi√in) 6.51 7.21 9.02 8.57 (min) 11.08 (min) 9. 13. 10. 16. 13. 16.2 20. 25. 16. 20. 30. 25. 108. 35. 186. 30. 40. 31.95 (max) 270. 40.71 (max) Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary RMS % Error Error 3.30 0. .5 .8 1.25 2. 4.61 2. 0. .5 8. 1.25

Figure 8.20.3.1.11





Figure 8.20.3.1.13

4 7475 (ALCLAD) Condition/Ht: T761 Yield Strength: 59.9 ksi Form: 0.04 in. Sheet Specimen Type: CCP (max load specified) Ult. Strength: 67.3 ksi Orientation: T-L Specimen Thk: 0.04 in. Frequency: 2 Hz Specimen Width: 23.94 in. Ref: 86212 Environment: H.H.A.; RT (1 of 1)  $\Delta$ K (MPa $\sqrt{in}$ )  $\Delta$ K (MPa $\sqrt{in}$ ) 100 10 100 10 40 40 10° 10° Stress Ratio: 0.05 10-2 10-2 10 -1 10-1 10-3 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10⁻⁶ 10⁻⁶ 10 5 10 5 10-7 10⁻⁷ 10 6 10⁻⁶ 10 8 10⁻⁸ 40 100 10 10 40 100 ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) 26.64 (min) 30. 35. 37.33 (max) 69.3 106. 169. 224. Life Prediction Ratio Summary Life Prediction Ratio Summary RMS % RMS % Error Error 1.46 · 2. Ó. .5 .8 1.25 0. .5 .8 1.25 2.

7475 (ALCLAD) | R Condition/Ht: T761 Yield Strength: 59.9 ksi Form: 0.04 in. Sheet Specimen Type: CCP (max load specified) Ult. Strength: 67.3 ksi Specimen Thk: 0.041 in. Orientation: T-L Specimen Width: 36 - 36.02 in. Frequency: 2 Hz Ref: 86212 Environment: H.H.A.; RT (2 of 2) (1 of 2)∆K (MPa√in)  $\Delta K (MPa\sqrt{in})$ 10 100 100 10 40  $\frac{1}{1}$ البليل 10⁰ 11111 10° Stress Ratio: 0.25 Stress Ratio: 0.05 10 -2 10-2 10-1 10-1 10⁻³ 10⁻³ 10-2 da/dN (in/cycle) 10-2 da/dN (in/cycle) 10-3 10 10-6 10 10⁻⁵ 10 5 10⁻⁷ 10⁻⁷ 10 6 10 6 10 8 10 8 40 100 10 100 40 10 ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) 6.17 9.01 (min) 10.2 11.47 (min) 10.3 10. 13.1 13. 19.2 13. 20.4 16. 27.9 16. 20. 25. 34.2 20. 25. 30. 30. 208. 181. 35. 32.68 (max) 40. 309. 331. 40.45 (max) Life Prediction Ratio Summary Life Prediction Ratio Summary RMS % RMS % Error ╝ Error

Figure 8.20.3.1.15

2.

1.25

.5

0.

.8

3.48

3.29

1.25

.5

0.

8.

2.



R Condition/Ht: T761 Yield Strength: 59.9 ksi Form: 0.04 in. Sheet Specimen Type: CCP (max load specified) Ult. Strength: 67.3 ksi Specimen Thk: 0.04 in. Orientation: T-L Specimen Width: 35.99 in. Frequency: 2 Hz Ref: 86212 Environment: 3.5% NACL; RT (1 of 1) $\Delta$ K (MPa $\sqrt{in}$ )  $\Delta$ K (MPa $\sqrt{in}$ ) 100 10 40 100 10 40 7777 77777 10⁰ 10° Stress Ratio: 0.05 10⁻² 10-2 10⁻¹ 10-1 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10⁻⁶ 10⁻⁶ 10⁻⁵ 10 5 10⁻⁷ 10⁻⁷ 10 6 10 6 10⁻⁸ 10⁻⁸ 100 10 40 10 40 100 ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle)  $\Delta$ K (Ksi $\sqrt{in}$ ) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) 14.79 (min) 16. 60.5 90.2 20. 25. 127. 32.79 (max) Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary RMS % Error Error .5 1.25 2. 1.62 .5 .8 1.25 2. 0. .8 0.

Figure 8.20.3.1.17

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 8009 AT ROOM TEMPERATURE

ORIENTATION: L.T.

ORIENTATION: L-T	i: L-T			NVIRO	NMEN	ENVIRONMENT: Lab Air		
					, CA	(Jana 100 G 107.20	Solution	
CONDITION	PRODIET		CHAH		•	are and and	) Veriej	
HEAT TREATMENT	FORM	æ	(Hz)		ΔI	ΔK Level (Ksiγin)	/in)	
						-		
				2.5	0.0	10.0 20.0	60.0	100.0
INSPECIFIED	50000	0.1	20	0.29	1.05	4.43		
	193116	0.5	10	0.32	1.25	6.05		



Figure 8.21.3.1.1



Figure 8.21.3.1.2



Figure 8.21.3.1.3



Figure 8.21.3.1.4

1 of 1

**TABLE 8.22.1.1** 

MEAN PLANE STRAIN FRACTURE TOUGHNESS FOR ALUMINUM 7000/8000 SERIES ALLOY 8090 AT ROOM TEMPERATURE

Product					$K_{Ie}$	$K_{Ic}~(ksi\sqrt{in})$	<u>(c</u>	·		
Form	Condition/Heat Treatment			<i>S</i> 2	pecime	Specimen Orientation	tation			
			L-T			T-T			T-S	,
		Mean K _{Io}	Std Dev	ď	Mean K _{le}	Std Dev	п	Mean K _{le}	Std Dev	п
Extrusion	T651	20.4	6'9	5	÷	•••	i		·	:

TABLE 8.22.1.2.1

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR  $\Delta K$  8090 AT ROOM TEMPERATURE

ORIENTATION: L-T

ENVIRONMENT: H.H.A.

	23.55	4.58			10	0.5	MAINCECAL	100 (01
	9.35	2.85			80	o.	MOISIIGEAG	76. 996F 94 UDG
	24.63	5.24			25	0.1	NOISONIVA	1001
	19.32	1.8			10	0.1	MOIBIIGHAN	TASK 1
50.0 100.0	0.02	10.0	5.0	2.5				
n)	' (Ksiv/ii	ΔK Level (Ksi√in)	Δ		(Hz)	4	FORM	HEAT TREATMENT
(OT	⁶ in/cyc	FCGR (10 ⁻⁶ in/cycle)	FO		FREO		PRODUCT	CONDITION/

1 of 1

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 8090 AT ROOM TEMPERATURE

ENVIRONMENT: Lab Air	PRODUCT         R         FREQ         AK Level (Ksiv/in)           FORM         25         50         100         200         1	0.1 25	EATRUSION 0.33 25 0.27
ORIENTATION: L-T	CONDITION/ HEAT TREATMENT	* 4000	1001

## **TABLE 8.22.1.2.3**

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 8090 AT ROOM TEMPERATURE

ORIENTATION: T-L

ENVIRONMENT: H.H.A.

in/cycle)	Ksiv/in)	20.0 50.0 100.0				
FCGR (10 ⁻⁸ in/cycle)	ΔΚ Level (Ksiγin)	10.0	6.9	8.06	6.43	
FC	ΔI	5.0	0.55	0.37		1:31
		2.5				
CHHH	(HZ)		10	25	8	10
	R		0.1	0.1	0.	0.5
PRODUCT	FORM		MONTHUM	EALKUSION	MOTOTICANA	EALROSION
CONDITTION	HEAT TREATMENT		757	1001	2011/0 9260 -47F	LO, DOC CTAINS

1 of 1

**TABLE 8.22.1.2.4** 

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK 8090 AT ROOM TEMPERATURE

ENVIRONMENT: Lab Air	T FREQ AK Level (Ksiv/in)  2.5 5.0 10.0 50.0 100.0	0.1 25 0.25 0.34	0.33 25 0.49 5.12
r-L	PRODUCT	V.C. 121 LUTAN	NOSONICA
ORIENTATION: T-L	CONDITION/ HEAT TREATMENT	1954	1001

8-1332

					ALI	ALUMINUM	M 8090	K _{Io}							
	PRODUCT	UCT					SPECIMEN	7				K			
CONDITION	FORM	THICK (in.)	TEST TEMP (F)	SPEC	YIELD STR (Kel)	WIDTH (fn.) W	THICK (In.)	DESIGN	LENGTH (in.) A	(K. 778) (in.)	R Kal	K. MBAN	STAN	DATE	REFER
		1.00			58.0	3.004	0.251	CT	ì	0.67	27.70			1990	WL003
		1.00			59.6	1.991	0.291	СТ		0.47	25.80			1990	WL003
T651	Extrusion	1.00	R.T.	7.	64.1	1.992	0.291	СТ	:	0.16	16.30	904	ŭ	1990	WL003
		1.00		<del></del>	64.1	1.992	0.292	CT		0.15	15.90		}	1990	WL003
		1.00			64.1	1.992	0.291	СТ	:	0.16	16.10			1990	WL003
T651	Extrusion	1.00	R.T.	Ţ·L	68.7	3.006	0.254	CT	i	0.12	15.10	;	;	1990	WL003
T8; 338F 24HRS	Extrusion	1.00	R.T.	T.L	68.7	2.507	0.255	ħ	i	0.11	14.60	:	;	1990	WL003



Figure 8.22.3.1.1

1 8090 H Condition/Ht: T651 Form: 1 in. Extrusion Yield Strength: 57.9 ksi Specimen Type: CT Ult. Strength: 70.5 ksi Specimen Thk: 0.233 - 0.235 in. Orientation: L-T Specimen Width: 2 in. Frequency: Environment: H.H.A.;83°F -85°F Ref: WL003 (1 of 2)(2 of 2) ΔK (MPa√in) ΔK (MPa√in) 10 40 100 10 40 100 10⁰ 10° Stress Ratio: 0.1 - Stress Ratio: 0.33 10-2 10-2 10-1 10-1 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10 -3 10⁻⁶ 10 10 -5 10 -5 10⁻⁷ 10⁻⁷ 10⁻⁶ 10-6 10 8 10⁻⁸ 100 10 40 10 40 100 ΔK (Ksi√in) ΔK (Ksi√in) ΔK (Ksi√in) da/dN ( $10^{-6}in/cycle$ ) ΔK (Ksi√in) da/dN ( $10^{-6}in/cycle$ ) 4.03 (min) 5. 5.12 (min) 0.117 0.436 6. 7. 8. 9. 10. 13. 0.672 6. 7. 8. 9. 1.29 16. 13. 16. 22.42 (max) 28.0 16.11 (max) RMS & Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary Error Error 8.86 9.41 .5 0. 1.25 .8 2. 0. .5 .8 1.25 2.



Figure 8.22.3.1.3



Figure 8.22.3.1.4



Figure 8.22.3.1.5



Figure 8.22.3.1.6



Figure 8.22.3.1.7



Figure 8.22.3.1.8

1 8090 H Condition/Ht: T8; 338F 24HRS Yield Strength: 62.8 ksi Form: 1 in. Extrusion Ult. Strength: 71.1 ksi Specimen Type: CT Specimen Thk: 0.254 - 0.256 in. Orientation: L-T Specimen Width: 2.495 - 2.503 in Frequency: 8 - 10 Hz Ref: WL003 Environment: H.H.A.; RT (2 of 2)(1 of 2)ΔK (MPa√in) ΔK (MPa√in) 100 10 40 40 100 10 11111 11111 10° 10° Stress Ratio: 0.5 Stress Ratio: 0.0 10 -2 10-2 10-1 10 10⁻³ 10-3 da/dN (in/cycle) 10 -2 da/dN (in/cycle) 10⁻⁶ 10-6 10⁻⁵ 10 -5 10⁻⁷ 10⁻⁷ 10⁻⁶ 10⁻⁶ 10⁻⁸ 10 8 100 40 10 10 40 100 ΔK (Ksi√in) ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) 5.26 (min) 0.391 5.86 (min) 6. 7. 8. 9. 6. 7. 8. 0.449 1.10 9. 10. 13. 10. 13. 16. 16. 20. 20. 25. 30. 26.95 (max) 35. 41.66 (max) Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary RMS % Error Error 11.88 1.25 2. 19.25 0. .5 .8 .5 .8 1.25 2. 0.

Figure 8.22.3.1.9



Figure 8.22.3.1.10

1 of 1

**TABLE 8.23.1.2.1** 

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK X7090 AT ROOM TEMPERATURE

		ī	T
	100.0		
	(600		
	cle)		
VaCI	ECGR (10 ⁻⁶ in/cycle) ΔK Level (Ksiγln)  0 100 200 c		
.5% ]	(10 ⁻⁴		
T: 3	CGR NK I		
ME	F 1	11.57	14.63
ENVIRONMENT: 3.5% NaCl	2.5		
N			
田	FREQ (Hz)	0.13	0.2
•.	)		
	R	0.5	0.6
	T. I		
	RODUCT	£	FLATE
Ţ.	PRC		
ORIENTATION: S-T			
ATIO	HÞ		
INT	NE.		
ORII	CONDITION/ AT TREATME	TOBAO	2071
	ONI P TH	£	1
	CONDITION/ HEAT TREATMENT		
	H		

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR  $\Delta K$ X7090 AT ROOM TEMPERATURE

ENVIRONMENT: Nitrogen Gas	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.5 10 3.31	0.6 20 3.3
ORIENTATION: S-T	CONDITION/ HEAT TREATMENT FO	TO TOTAL	

X7090 H Condition/Ht: T7E69 Yield Strength: 60 - 70 ksi Form: 1 in. Plate Ult. Strength: Specimen Type: CT Specimen Thk: 0.508 - 0.509 in. Orientation: S-T Specimen Width: 1.028 - 1.03 in. Stress Ratio: 0.5 Ref: MR001 Environment: NITROGEN GAS; RT (2 of 2) (1 of 2)ΔK (MPa√in) ΔK (MPa√in) 100 40 100 1.1111111111 11111 10° 10° Frequency: 20. Hz Frequency: 10. Hz 10 -2 10 2 10⁻¹ 10-1 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10⁻⁶ 10⁻⁶ 10 -5 10 -5 10⁻⁷ 10⁻⁷ 10 -6 10 6 10⁻⁸ 10 8 40 100 10 10 40 100 ΔK (Ksi√in) ΔK (Ksi√in)  $\Delta K$  (Ksi $\sqrt{in}$ ) da/dN (10⁻⁶in/cycle) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) 1.57 1.55 2.20 2.22 3.53 (min) 3.86 (min) 4. 5. 6. 7. 7.04 (max) 4. 5. 6. 7. 7.30 (max) 3.30 10.0 12.4 Life Prediction Ratio Summary Life Prediction Ratio Summary RMS % RMS % Error Error 5.38 1.25 2. 11.42 0. .5 .8 2. 0. .5 .8 1.25

Figure 8.23.3.1.1

H X7090 ⊢F Condition/Ht: T7E69 Yield Strength: 65 ksi Form: 1 in. Plate Ult. Strength: Specimen Type: CT Specimen Thk: 0.509 - 0.51 in. Orientation: S-T Specimen Width: 1.029 in. Stress Ratio: 0.5 Ref: MR001 Environment: 3.5% NACL; RT (2 of 2) (1 of 2)  $\Delta K (MPa\sqrt{in})$  $\Delta$ K (MPa $\sqrt{in}$ ) 100 10 100 40 المليليات 10° 10° Frequency: 0.13 Hz Frequency: 0.2 Hz 10-2 10-2 10-1 10-1 10⁻³ 10⁻³ da/dN (in/cycle) da/dN (in/cycle) 10 6 10-6 10⁻⁵ 10-5 10⁻⁷ 10⁻⁷ 10 6 10⁻⁶ 10 -8 10 8 40 10 40 100 10 ΔK (Ksi√in) ΔK (Ksi√in) da/dN (10⁻⁶in/cycle) da/dN (10⁻⁶in/cycle) ΔK (Ksi√in) ΔK (Ksi√in) 5.62 7.18 3.94 (min) 3.77 (min) 4. 5. 9.63 14.6 5.94 (max) 6.31 (max) Life Prediction Ratio Summary RMS % Life Prediction Ratio Summary RMS % **1** 0 Error Error 16.66 24.78 .5 1.25 0. 1.25 2. .8 2. .5 .8 0.

Figure 8.23.3.1.2

1 of 1

**TABLE 8.24.1.2.1** 

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK X7091 AT ROOM TEMPERATURE

	0	
	100.0	
	(9)	
	(6)	
20	in	
3	C) Vis	
	in 37	
e e	9-1	
ENVIRONMENT: Nitrogen Gas	FCGR (10 ⁻⁸ in/cycle)   ΔK Level (Ksi/in)   0   100   200   t	22
	7 (10.10.10.10.10.10.10.10.10.10.10.10.10.1	21.35
Ź	3.	
<u>::</u>	77	
E	<i>FC</i> Δ	2.74
至	ū	2
Z		
Z	2.5	
2	2.5	
Ħ		
3	~	
色	FREQ (Hz)	0
	IR.)	20
:	EE .	
•		
-		
	R	0.5
	T.	
	RODUCI	
	RODUC	PLATE
:	10	PL/
	F	
ij	P	
Ė		
ORIENTATION: T-L		
6		
Ĭ	ı	
A	Ż	
	79	
	O A C	
$\Xi$	ET.	0
O	).	T7E70
	CONDITION/ HEAT TREATMENT	T
	S C	
	Ď.	
	THE STATE OF THE S	
	H	

# **TABLE 8.24.1.2.2**

FATIGUE CRACK GROWTH RATE AT DEFINED LEVELS OF STRESS INTENSITY FACTOR AK X7091 AT ROOM TEMPERATURE

ORIENTATION: S-T	Z: S-T		ENA	IRONI	IENT:	Nitrog	<b>ENVIRONMENT: Nitrogen Gas</b>		
CONDITION/ HEAT TREATMENT	PRODUCT	×	FREQ (Hz)	2.5	FCC A.H	7R (10 ⁻⁶ Level 1	in/cycl                	(6)	1000
CEGLE		0.1	50		3	12.92	109		
115.10	FLAIE	0.5	20		3.02	19.93			



Figure 8.24.3.1.1



Figure 8.24.3.1.2





Figure 8.24.3.1.4

#### **TABLE 8.25**

# REFERENCES FOR THE 7000 SERIES ALUMINUM ALLOY DATA

57210 7075 K_e

Unknown.

62306 7075 K_e

Eichenberger, T. W., "Fracture Resistance Data Summary," Report DA-20947, The Boeing Company (June 1962).

62309 7075 K_e

Batch, E. J., and Edwards, W. T., "Evaluation of Tear Resistance of 7079 Aluminum Alloys (Sheet Extrusions and Forgings)," Report SMN 86, Lockheed Aircraft Corporation, Marietta, Ga., (April 13, 1962).

62310 7075 K_e

Anon., "Fracture Toughness Data Summary of 2000 and 7000 Series Aluminum Alloys," The Boeing Company, received from J. P. Butler (April 1965).

62311 7075 (ALCLAD) K_c

Gurin, P. J., "Crack Propagation Tests for Some Aluminum Alloy Materials," LR 10498, Lockheed Aircraft Corporation (February 1955).

65697 7075 (ALCLAD) K_c

Broek, D., "The Residual Strength of Aluminum Alloy Sheet Specimens Containing Fatigue Cracks of Saw Cuts," NLR-TR M.2143, National Aerospace Laboratory, Amsterdam (March 1966).

70485 7075 (ALCLAD) K_c

Broek, D., "The Effect of Finite Specimen Width on the Residual Strength of Light Alloy Sheet," TR M.2152, National Aero- and Astronautical Research Institute, Amsterdam (September 1965).

75599 7075 K_e

Hudson, C. M., "Effect of Stress Ratios on Fatigue-Crack Growth in 7075-T6 and 2024-T3 Aluminum-Alloy Specimens," NASA TN D-5390, Langley Research Center (August 1969).

#### REFERENCES FOR THE 7000 SERIES ALUMINUM ALLOY DATA

75787

7075

K_{Iscc}

Procter, R. P. M., and Paxton, H. W., "Stress Corrosion of Aluminum Alloy 7075-T651 in Organic Liquids," Journal of Materials, 4 (3) 729-760 (September 1969).

76411

7079

 $K_{Ic}$ 

Wessel, E. T., et al., "Engineering Methods for the Design and Selection of Materials Against Fracture," Final Technical Report, Westinghouse Research Laboratories, Pittsburgh, PA, Contract DA-30-069-AMC-602 (T) (June 24, 1966).

76442

7079

da/dt

Beck, T. R., Blackburn, M. J., and Spiedel, M. O., "Stress Corrosion Cracking of Titanium Alloys", Boeing Scientific Research Laboratories, Contract NAS 7-489, Seattle, Washington, 98124, March 1969.

77140

7075

 $\begin{matrix} K_{Ic} \\ K_{Ic} \end{matrix}$ 

7178

Kaufman, J. G., Schilling, P. E., and Nordmark, G. E., "Fracture Toughness, Fatigue and Corrosion Characteristics of X7080-T7E41 and 7178-T651 Plate and 7075-T6510, 7075-T73510, X7080-T7E42, and 7178-T6510 Extruded Shapes," Report AFML-TR-67-C-1521 (November 1969).

77720

7075

K_{ie}; a-vs-N; da/dN

7079

K_r; a-vs-N; da/dN

Brownhill, D. J., et al., "Mechanical Properties, Including Fracture Toughness and Fatigue, Corrosion Characteristics and Fatigue-Crack Propagation Rates of Stress-Relieved Aluminum Alloy Hand Forgings," Report AFML-TR-70-10, Aluminum Company of America, Alcoa Research Laboratory, New Kensington, PA, Contract F33615-68-C-1385 (February 1970).

78313

7075

da/dt

7079

da/dt; K_{Iscc}

7175

da/dt; Krscc

Hyatt, M. V., "Use of Precracked Specimens in Stress-Corrosion Testing of High-Strength Aluminum Alloys," Summary Report D6-24466, The Boeing Company, Renton, Wash., ARPA Contract N00014-66-C-0365 (November 1969).

# REFERENCES FOR THE 7000 SERIES ALUMINUM ALLOY DATA

K, 7075 79089 Fedderson, C. E., and Hyler, W. S., "Fracture-Crack Propagation Characteristics of 7075-T7351 Aluminum Alloy Sheet and Plate Report No. G-8902, Battelle Memorial Institute, Columbus Laboratories (March 1970). 80073 7007  $K_{Iscc}$ Schwartzberg, F. R., et al., "Cryogenic Alloy Screening," Report NASA CR-72733, Martin Marietta Corporation, Denver, CO, Contract NAS 3-11203 (November 1970). Kic; Kisco 7075 82675 Chu, H. P., and Wacker, G. A., "Fracture Toughness and Stress Corrosion Properties of Aluminum Alloy Hand Forgings," Journal of Materials, 7 (1) 95-99 (March 1972). 82879 7075 7079 7080 Moore, R. L., et al., "Fatigue and Fracture Characteristics of Aluminum Alloy Cylinders Under Internal Pressure," Engineering Fracture Mechanics, 4 (1) 51-63 (March 1972).  $\begin{matrix} K_{Ic} \\ K_{Ic} \end{matrix}$ 82880 7075 7079 Nelson, F. G., et al., "The Effect of Specimen Size on the Results of Plane-Strain Fracture-Toughness Tests," Engineering Fracture Mechanics,  $\underline{4}$  (1) 33-50 (March 1972).  $K_{\text{Ic}}$ 7175 83058

Jones, R. E., "Fracture Toughness and Fatigue Crack Growth Properties of 7175-T736 Aluminum Alloy Forgings at Several Temperatures," Report AFML-TR-72-1, University of Dayton Research Institute, Dayton, OH, Contract F33615-71-C-1054 (February 1972).

 $83061 \hspace{1.5cm} \textbf{7049} \hspace{1.5cm} \textbf{K}_{\text{Ic}}; \hspace{0.1cm} \textbf{K}_{\text{Iscc}}$ 

Jones, R. E., "Mechanical Properties of 7049-T73 and 7049-T76 Aluminum Alloy Extrusions at Several Temperatures," Report AFML-TR-72-2, University of Dayton Research Institute, Dayton, OH, Contract F33615-71-C-1054 (February 1972).

#### REFERENCES FOR THE 7000 SERIES ALUMINUM ALLOY DATA

83242	7049	$K_{ic}$ ; $K_{iscc}$
	7175	K.: K

Harmsworth, C. L., "Evaluation of Landing Gears Fabricated from 7175-T736 Aluminum Alloys" Report No. LA 72-22, Air Force Materials Laboratory, Wright-Patterson AFB, OH, (May 25, 1972).

84284	7039	da/dt
	7049	da/dt
	7075	da/dt
	7079	da/dt
	7175	da/dt

Hyatt, M. V., "Use of Precracked Specimens in Stress Corrosion Testing of High Strength Aluminum Alloys," Corrosion, 26 (11), 487-503 (November 1970).

84286 7075 da/dt

Hyatt, M. V., "Use of Precracked Specimens in Selecting Heat Treatments for Stress-Corrosion Resistance in High Strength Aluminum Alloys," Corrosion, 27 (1), 49-53 (January 1971).

Nelson, F. G., and Kaufman, J. G., "Plane Strain Fracture Toughness of Aluminum Alloys at Room and Subzero Temperatures". ASTM STP 496, American Society for Testing and Materials, Philadelphia, PA, (1971).

Harrigan, M. J., "B-1 Fracture Mechanics Data for Air Force Handbook Usage," Report TFD-72-501, North American Rockwell, Los Angeles Division, Los Angeles, CA, (April 21, 1972).

84329 7079 K_{Isec}

Report of NRL Progress, Naval Research Laboratory, Washington, D. C., (October 1967).

# REFERENCES FOR THE 7000 SERIES ALUMINUM ALLOY DATA

84330

7079

da/dt; K_{lace}

Report of NRL Progress, Naval Research Laboratory, Washington, D. C., (April 1968).

84331

7005

 $K_{Iscc}$ 

7075

 $K_{Iscc}$ 

7079

Report of NRL Progress, Naval Research Laboratory, Washington, D. C., (January 1968).

84340

7075

K,

Allen, F. C., "Effect of Thickness on the Fracture Toughness of 7075 Aluminum in the T6 and T73 Conditions," ASTM STP 486, "Damage Tolerance in Aircraft Structures," p 16-38 (1971).

84360

7075

K_{Ic}; da/dN; K_{Iscc}

7175

da/dN: K....

McDonnell Aircraft Company, McDonnell Corp., St. Louis, Mo., Phase B Test Program, Report MDC A0913 (May 18, 1971).

84362

7050

 $K_{Iscc}$ 

7075

Dill, H. D., and Rich, D. L., "Evaluation of Aluminum Plate Alloys 7075-T7351, X7050-T73651 and 2021-T81," Report No. MDC Al755, McDonnell Aircraft Company, McDonnell Corporation, St. Louis, MO, (May 30, 1972).

84363

7050

7075

K_{Ic}; a-vs-N; da/dN

Rich, D. L., "MCAIR IRAD Data for Fracture Mechanics Engineering and Design Data Handbook," with enclosures (1) Materials Definition, (2) Mechanical Properties Test Data, (3) Plane Strain Fracture Toughness Test Data, and (4) Plane Strain Constant Amplitude Crack Growth Test Data, McDonnell Aircraft Company, McDonnell Douglas Corporation, St. Louis, MO (June 1972).

#### REFERENCES FOR THE 7000 SERIES ALUMINUM ALLOY DATA

84367 7075 K_e

McEvily, A. J., Illg, W., and Hardrath, H. F., "Static Strength of Aluminum-Alloy Specimens Containing Fatigue Cracks," NACA TN 3816, Langley Aeronautical Laboratories (October 1956).

Babilon, C. F., et al., "Mechanical Properties, Fracture Toughness, Fatigue, Environmental Fatigue Crack Growth Rates, and Corrosion Characteristics of High-Toughness Aluminum Alloy Forgings, Sheet and Plate," Fifth Technical Management Report, Aluminum Company of America, Alcoa Research Laboratories, New Kensington, PA, Contract F33615-71-C-1571 (August 1972).

85291 7050 K_{Ie}

Deel, O. L., and Mindlin, H., "Engineering Data on New Aerospace Structural Materials," Report AFML-TR-72-196, Volume 1, Battelle, Columbus Laboratories, Columbus, OH, Contract F33615-71-C-1262 (September 1972).

85363 7475 a-vs-N; da/dN

Cervay, R. R., "Engineering Design Data for Aluminum Alloy 7475 in the T761 and T61 Condition," Report AFML-TR-72-173, University of Dayton Research Institute, Dayton, OH, Contract F33615-71-C-1054, (September 1972).

85543 7075 da/dt 7079 da/dt 7178 da/dt

Speidel, M. O., "Current Understanding of Stress Corrosion Crack Growth in Aluminum Alloys," from the Theory of Stress Corrosion Cracking in Aluminum Alloys, the Proceedings of a Research Evaluation Conference, J. C. Scully (Editor), Published by NATO Scientific Affairs Division, Brussels, Belgium (1971).

"B-1 Fracture Toughness Data (K_{Ic}) - Rockwell International," Rockwell International Corporation, Los Angeles, CA, (April 24, 1973).

# REFERENCES FOR THE 7000 SERIES ALUMINUM ALLOY DATA

85837	7049	a-vs-N; da/dN
	7050	a-vs-N; da/dN
	7075	a-vs-N; da/dN
	7175	a-vs-N; da/dN

"Fracture Toughness Data Collection, Rockwell International Corporation, from B-1 Program," Rockwell International Corporation, Los Angeles, CA., April 1973.

85880 7050 K_{Ic} 7175 K_{Ic}; a-vs-N; da/dN

Garland, K., "Evaluation of X7050-T736 Die Forgings," Report 514-131.10, McDonnell Aircraft Company, McDonnell Douglas Corporation, St. Louis, MO, (February 20, 1973).

86088 7075 a-vs-N; da/dN 7178 a-vs-N; da/dN

Hudson, C. M., and Newman, J. C., Jr., "Effect of Specimen Thickness on Fatigue-Crack-Growth-Behavior and Fracture Toughness of 7075-T6, and 7178-T6 Aluminum Alloys," Report NASA TN D-7173, Langley Research Center, Hampton, VA (April 1973).

86210 7075 K_{Ie}

"Rockwell International, B-1 Fracture Toughness Data on Titanium and Aluminum Alloys of June 4, 1973," Rockwell International, Los Angeles, CA, (June 4, 1973).

McCarty, J. E., et al., "Materials Fracture Data From the Advanced Metallic Structures: Cargo Fuselage Design for Improved Cost, Weight and Integrity," The Boeing Company, Seattle, Washington, Contract F33615-72-C-1893 (June 15, 1973).

#### REFERENCES FOR THE 7000 SERIES ALUMINUM ALLOY DATA

86213	7001	K _{ie} ; K _e
	7005	K _{Ie} ; K _e
	7049	$K_{ic}$
	7050	K _{ic} ; a-vs-N; da/dN
	7075	K _{ic} ; Kc; a-vs-N; da/dN
	7075 (ALCLAD)	K _{Ic} ; Kc; a-vs-N; da/dN
	7079	$K_{Ic}; K_{e}$
	7079 (ALCLAD)	$K_{c}$
	7080	$K_{Ic}$
	7175	$\mathbf{K}_{\mathbf{fe}}$
	7178	$K_{lc}$ ; $K_{c}$ ; a-vs-N; da/dN
	7178 (ALCLAD)	K.
	7475	$K_{ic}$ ; $K_{c}$ ; a-vs-N; da/dN
	7475 (ALCLAD)	K; a-vs-N; da/dN

Wygonik, R. H., "Compilation of Fracture Mechanics Data," Aluminum Company of America, Alcoa Research Laboratories, New Kensington, PA, Subcontract on F33615-73-C-5051 (June 12, 1973).

86429 7050 K_{Ic}

"Fracture Toughness Data," Progress Report on Materials Test Program, General Dynamics Corporation, Fort Worth Division, Fort Worth, Texas, Contract F33615-72-C-2149 (Received July 6, 1973).

86493 7050 K_{Ic}

Deel, O. L., Ruff, P. E., and Mindlin, H., "Engineering Data on New Aerospace Structural Materials," Report AFML-TR-73-114, Battelle-Columbus Laboratories, Columbus, OH, Contract F33615-72-C-1280 (June 1973).

86574 7050 K_{Ic} 7475 K_{Ic}

Figge, F. A., and Wells. R. R., "Advanced Metallic Structure: Air Superiority Fighter-Wing Design for Improved Cost, Weight and Integrity," Report No. AFFDL-TR-73-52, Volume III, Northrop Corporation, Aircraft Division, Hawthorne, CA, Contract F33615-72-C-1891 (June 1973), with no original data for da/dN tests.

86575 7075 a-vs-N; da/dN

"Rockwell International, B-1 Program, da/dN Data, Center-Cracked Tension Specimens," Lockheed California Company, Burbank, CA, Report LR25152, (Received July 1973) (Memo from Ed Cawthorne dated July 10, 1973).

# REFERENCES FOR THE 7000 SERIES ALUMINUM ALLOY DATA

 $K_{lscc}$ 

86688 7075 7079

Sprowls, D. O., et al., "Evaluation of Stress Corrosion Cracking Susceptibility Using Fracture Mechanics Techniques," Final Report Part I, Aluminum Co., of America, Alcoa Technical Center, Alcoa, Pa., Contract NAS8-21487, May 31, 1973.

86734 7001 a-vs-N; da/dN 7005 a-vs-N; da/dN

7075 K_c 7075 (ALCLAD) K_c

7079 a-vs-N; da/dN

Smith, S. H., "Fracture Mechanics Application to Materials Evaluation and Selection for Aircraft Structure and Fracture Analysis," Report No. D6-17756, The Boeing Company, Commercial Airplane Division, Renton, Washington (July 19, 1966).

86842 7049 a-vs-N; da/dN 7175 a-vs-N; da/dN 7475 K_e; a-vs-N; da/dN

7475 (ALCLAD) K_e

Babilon, C. E., et al., "Mechanical Properties, Fracture Toughness, Fatigue, Environment Fatigue Crack Growth Rates and Corrosion Characteristics of High-Toughness Aluminum Alloy Forgings, Sheet and Plate," Report AFML-TR-73-83, Alcoa Research Laboratories, New Kensington, PA, Contract 71-C-15-71.

86844 7050 a-vs-N; da/dN

"Crack Growth Rate Data Generated Under Contract F33615-72-C-2165," Lockheed Aircraft Corporation, Lockheed-Georgia Company, Marietta, GA, Contract F33615-72-C-2165, Data Sheets received from AFFDL August 13, 1973.

Hall, L. R., Finger, R. W., and Spurr, W. F., "Corrosion Fatigue Crack Growth in Aircraft Structural Materials," Report AFML-TR-73-204, Boeing Aerospace Company, Seattle, WA. Contract AF33615-71-C-1687 (September 1973).

#### REFERENCES FOR THE 7000 SERIES ALUMINUM ALLOY DATA

88174

7050

K_r; a-vs-N; da/dN

Jones, R. E., and Fudge, K. A., "Engineering Design Data for Aluminum Alloy 7050-T73651 Plate," Report AFML-TR-73-269, University of Dayton Research Institute, Dayton, OH, Contract F33615-72-C-1282 (November 1973)., with supplementary data supplied by Russell R. Cervay on March 20, 1974.

88186

7050

 $K_{Ic}$ 

"Selected Pages from Materials Section of Final Report on Cargo/Tanker Phase IA (AFFDL-TR-73-51) Lockheed Report SMN 378," Summary Report, Lockheed-Georgia Company, Marietta, GA, Contract F33615-72-C-2165 (February 8, 1974).

88579

7049	a-vs-N; da/dN
7050	a-vs-N; da/dN
7075	a-vs-N; da/dN
7175	a-vs-N; da/dN

"B-1 Program da/dN Data for Aluminum Alloys," Rockwell International Corporation, memorandum to H. D. Moran from E. W. Cawthorne, Battelle's Columbus Laboratories (April 3, 1974).

90011

7075

 $K_{Ic}$ 

"Rockwell International, B-1 Program Fracture Toughness Data of August 5, 1974," with memorandum from E. W. Cawthorne to H. D. Moran of Battelle's Columbus Laboratories (August 5, 1974).

91123

7050

 $\begin{matrix} K_{Ic} \\ K_{Ic} \end{matrix}$ 

7075

McCarty, J. E., et al., "Advanced Metallic Structure: Cargo Fuselage Design for Improved Cost, Weight, and Integrity," Report AFFDL-TR-73-53, Boeing Commercial Airplane Company, Seattle, WA, Contract F33615-72-C-1893 (June 1973).

91332

7050

da/dN

7475

da/dN

Wells, R. R., "New Alloys for Advanced Metallic Fighter-Wing Structures," Northrop Corporation, Aircraft Division, Hawthorne, CA, AIAA/ASME/SAE 15th Structures, Structural Dynamics and Materials Conference, Las Vegas, NV (April 17-19, 1974).

## REFERENCES FOR THE 7000 SERIES ALUMINUM ALLOY DATA

AL001

7050

K_{Ie}; da/dN

7475

da/dN

Brownhill, D. G., et al., "Exploratory Development for Design Data on Structural Aluminum Alloys in Representative Environments," Alcoa Laboratories, Alcoa Center, PA, Contract No. F33615-74-C-5089, Report No. AFML-TR-77-102, July 1977.

AL002

7075

a-vs-N; da/dN

7475

a-vs-N; da/dN

Data Sheets Containing Fatigue-Crack Growth Rate Data Near the Threshold on Aluminum Alloys 2020, 2024, and 7475, sent from R. J. Bucci, Aluminum Company of America, ATC, February 1982.

AL003

7475

a-vs-N; da/dN

FCGR Data Sheets for Aluminum 7475-T651 Plate, Received from R. J. Bucci, Aluminum Company of America, Alcoa Laboratories, August 1982.

AL004

7050

a-vs-N; da/dN

FCGR Data Sheets on Aluminum Alloy 7050-T6511 and T73511, Received from R. J. Bucci, Aluminum Company of America, Alcoa Laboratories, August 1982.

**AL005** 

7075

a-vs-N; da/dN

FCGR Data Sheets on Aluminum Alloy 7075- Conditions T651, T6510, T7351, T73510, Plates, Bars, and Extrusions; Received from R. J. Bucci, Aluminum Company of America, Alcoa Laboratories, August 1982.

AL006

7050

a-vs-N; da/dN

FCGR Data Sheets on Aluminum Alloy 7050-T73511 Extrusions, Received from R. J. Bucci, Aluminum Company of America, Alcoa Laboratories, August 1982.

AL007

7050

a-vs-N; da/dN

FCGR Data Sheets on Aluminum Alloy 7050-T7351X Extrusions, Received from R. J. Bucci, Aluminum Company of America, Alcoa Laboratories, August 1982.

#### REFERENCES FOR THE 7000 SERIES ALUMINUM ALLOY DATA

**AL008** 

7050

a-vs-N; da/dN

FCGR Data Sheets on Aluminum Alloy 7050-T7651X Extrusions, Received from R. J. Bucci, Aluminum Company of America, Alcoa Laboratories, August 1982.

AL009

7475

a-vs-N; da/dN

FCGR Data Sheets on Aluminum Alloy 7475-T7351 Plate, Received from R. J. Bucci, Aluminum Company of America, Alcoa Laboratories, August 1982.

AL012

7050 (ALCLAD)

a-vs-N; da/dN

FCGR Data Sheets on Aluminum 7050-T76 (ALCLAD), Received from R. J. Bucci, Aluminum Company of America, Alcoa Laboratories, August 1982.

AL013

7050

a-vs-N: da/dN

FCGR Data Sheets on Aluminum Alloy 7050-T73651 Plate, Received from R. J. Bucci, Aluminum Company of America, Alcoa Laboratories, August 1982.

**AL014** 

7150

a-vs-N; da/dN

FCGR Data Sheets on Aluminum Alloy 7150-T651 Plate, Received from R. J. Bucci, Company of America, Alcoa Laboratories, August 1982.

AL015

7050

K_{Ic}; da/dN

FCGR Data Sheets on Aluminum Alloy 7050-T73651 Plate and 7050-T73652 Forging, Received from R. J. Bucci, Aluminum Company of America, Alcoa Laboratories, August 1982.

**BL001** 

7010

Kr.; Kree

Deel, O., "Engineering Data for New Aerospace Materials," Battelle's Columbus Laboratories, Columbus, OH, Contract No. F33615-78-C-5040, Report No. AFWAL-TR-80-4103, July 1980.

# REFERENCES FOR THE 7000 SERIES ALUMINUM ALLOY DATA

**BL002** 

7075

a-vs-N; da/dN

7475

a-vs-N; da/dN

Ruff, P. E., and Smith, S. H., "Development of Mil-Hdbk-5 Design Allowable Properties and Fatigue Crack-Propagation Data for Several Aerospace Materials," Battelle's Columbus Laboratories, Columbus, OH, Contract No. F33615-75-C-5063, Report No. AFML-TR-77-162, October 1977.

BW001

7075

da/dN

7079

da/dN

7178

da/dN

Horsley, J. J., and Harris, C. E., "Durability and Damage Tolerance Assessment (DADTA) of B-52 G/H Structure, Task II, Damage Tolerance Assessment Final Report," Boeing Company, Wichita, KS, Contract No. F34601-79-C-1515, Document No. D3-11560-3, June 1980.

BW002

7075

da/dN

7178

da/dN

Lambert, G., Mecham, P., and Mah, T., "Durability and Damage Tolerance Assessment (DADTA) of B-52 G/H Structure, Task III, Individual Airplane Crack Growth Tracking Program," Boeing Company, Wichita, KS, Contract No. F34601-79-C-2258, Document No. D3-11560-6, November 1981.

**DA001** 

7075

a-vs-N; da/dN

7475

a-vs-N; da/dN

Fatigue Crack Growth Rate Data Sheets on Aluminum Alloys 2024, 7010, 7050, 7075 and 7475, Stainless Steel Alloys 17-4PH and 17-7PH, and Alloy Steels 4340, A286, H-11, HY-180 and 12-9-2, Sent from Mr. Paul Abelkis, Douglas Aircraft Company, McDonnell Douglas Corporation, Long Beach, CA, March 1982.

**DA004** 

7050

K_{Ic}; a-vs-N; da/dN

7475

K_{1c}; a-vs-N; da/dN

Larson, B. F., "C-17 Material Specimen Tests for Fracture Mechanics Data Phase I, Lot 1 Aluminum Alloys Final Technical Report," Contract F33657-81-C-2108, Report MDC J9483-1, June 1987.

#### REFERENCES FOR THE 7000 SERIES ALUMINUM ALLOY DATA

**DA005** 

7050

K_{ie}; a-vs-N; da/dN

7475

K_{tc}; a-vs-N; da/dN

Kahandal, R. S., "C-17 Material Specimen Tests for Fracture Mechanics Data Phase I, Lot 2 Aluminum Alloys Final Technical Report," Douglas Aircraft Company, McDonnell Douglas Corporation, Contract F33657-81-C-2108, Report MDC J9483-2, April 22, 1988.

**DA008** 

7150

a-vs-N; da/dN

Gutierrez, J. T., "C-17A Fracture Mechanics Data for 7150-T77 Plate and Extrusion Final Technical Report," Douglas Aircraft Company, McDonnell Douglas Corporation, Contract F33657-81-C-2108, Report MDC K0810, April 1989.

EFM01

7075 (ALCLAD)

a-vs-N; da/dN

Mackay, T. L., "Fatigue Crack Propagation and Rate at Low Delta K of Two Aluminum Sheet Alloys - 2024-T3 and 7075-T6," Engineering Fracture Mechanics, Volume II, pp 753-761, 1979.

GD001

7175

a-vs-N; da/dN

Kaarlela, W. T., and Nordquist, F. C., "Precision Aluminum Forgings Test Program for the F-16 Airplane," General Dynamics, Fort Worth Division, Report No. 16 PR78, April 1978.

**GD002** 

7175

a-vs-N; da/dN

Kaarlela, W. T., and Nordquist, F. C., "Crack Growth Rate (da/dN) Characteristics of 7175-T7354 Bulkhead Forgings," General Dynamics, Fort Worth Division, Report No. 16 PR721, June 1977.

**GD005** 

7475

K,

Margolis, W. S., and Nordquist, F. C., "Plane Stress Fracture Toughness (K_c) of Aluminum Alloy 7475- One Half Inch Plate Tempers -T7651 and -T7351 and of Aluminum 2024 - One Eighth Inch Sheet -T81 and T62 Temper," General Dynamics, Fort Worth Division, TX, Report No. 16 PR889, February 1978.

# REFERENCES FOR THE 7000 SERIES ALUMINUM ALLOY DATA

**GD006** 

7475

K_{Ic}; a-vs-N; da/dN; K_{Iscc}

Margolis, W. S., "F-16 Material Test Allowables for Aluminum Alloy 7475, 3.0" Plate - T7351 Temper and 0.5" Plate (92" Width) - T7651 Temper and - T7351 Temper," General Dynamics, Fort Worth Division, Report No. 16PR926, April 1978.

**GD008** 

7075

a-vs-N; da/dN

Margolis, W. S., "F-16 Material Test Allowables of Aluminum Alloy Forgings 7075-T73 and 7049-T73," General Dynamics, Fort Worth Division, Report No. 16 PR956, July 1978.

GD011

7475

K,

Margolis, W. S., "Plane Stress (K_c) Fracture Toughness of Thin Elements from Thick Plate of 2124-T851 and 7475-T7351 Aluminum Alloys," General Dynamics, Fort Worth Division, Report No. 16 PR1287, October 1979.

LG001

7175

K_{Ic}; K_c; K_{Isce}

Carter, F. J., et al., "C-5A Wing Modification Program - Material Characteristics Program - 7175-T73511 Extrusions Final Report," Lockheed-Georgia Company, Marietta, GA, Contract No. F33657-75-C-0178, Report No. LG75ER 0186-2, September 1977.

LG002

7050 (ALCLAD)

K,

7475 (ALCLAD)

K

Fuselage Materials Tests - Kc Data on Aluminum 7050-T76 and 7475-T61 Materials - sent from E. J. Batch, Lockheed Georgia Company, Marietta, GA, October 1982.

LG003

7175

 $K_{tc}$ 

Wygonik, R. H., "Evaluation of the R-curve for Fracture Toughness Quality Assurance Testing of Thin 7175 Aluminum Extrusions," Alcoa Laboratories, Alcoa Center, PA, for Lockheed-Georgia, Contract PO-RW18554, December 1981.

#### REFERENCES FOR THE 7000 SERIES ALUMINUM ALLOY DATA

**MA002** 

7175

K_{Ie}; a-vs-N; da/dN

Fracture Toughness of Ti-6Al-4V Plate and Forging, Aluminum 2124-T851 Plate and 7175-T37652 Forging and Fatigue Crack Growth Rate for Ti-6Al-4V Plate and Forging, Ti-6Al-6V-2Sn Extrusion, Aluminum 2124-T851 Plate and Aluminum 7175-T73652 Forging, Data Submitted by D. L. Rich of McDonnell Aircraft Co., St. Louis, MO, Attachment #2, Received March 12, 1982.

**MA005** 

7050 da/dN; K_{Isce}
7075 K_{Ie}; da/dN; K_{Isce}
7175 K_{Ie}; da/dN; K_{Isce}
7475 K_{Ie}; da/dN; K_{Isce}

Garland, K., and Krieg, J. F., "Final Report - Basic Fracture Data for F-18 Material," McDonnell Aircraft Company, St. Louis, MO, Report No. 3 NA-66-7KW, Attachment #5, March 1977.

**MA006** 

7075

da/dN

Garland, K., and Krieg, J. F., "Evaluation of the Effect of Material Cyclic Softening and Hardening on Crack Initiation Life and Crack Growth, with and without Overloads as a Function of Stress Ratio," McDonnell Aircraft Company, St. Louis, MO, April 1978.

**MA007** 

7049

da/dN

7075

da/dN

Garland, K., and Krieg, J. F., "Environment-Load Interaction Effects on Crack Growth," McDonnell Aircraft Company, St. Louis, MO, Report No. 703-116, June 1978.

**MA008** 

7075

da/dN

Garland, K., and Krieg, J. F., "Evaluation of Stress Level Effects Under Plane Stress and Plane Strain Conditions," McDonnell Aircraft Company, St. Louis, MO, Report No. TR 301-346, TM 256-5597, July 1979.

**MA009** 

7075

da/dN

Garland, K., and Krieg, J. F., "Evaluation of Crack Growth Gages for Service Life Tracking Program," McDonnell Aircraft Company, St. Louis, MO, Report No. TR 703-325, TM 256-5298, December 1978.

# REFERENCES FOR THE 7000 SERIES ALUMINUM ALLOY DATA

MA011	7075	K _{Ie} ; da/dN
	7079	da/dN
	7178	da/dN

"Final Report, F/RF-4C/D Damage Tolerance and Life Assessment Study - Vol. II," McDonnell Aircraft Company, St. Louis, MO, Contract No. AFSC F33657-73-A-0062, Report No. MDC A2883, February 1975.

MA012 7075 K_{Ie}; da/dN 7178 da/dN

Model F-4E Slatted Airplane Fatigue and Damage Tolerance Assessment, Vol. II," McDonnell Aircraft Company, St. Louis, MO, Contract No. F33657-73-A-0004-0015, Report No. MDC A3390, July 1975.

7075 7075 (ALCLAD) 7079 7175 7178	$egin{array}{c} K_{_{ m Ic}} \ K_{_{ m Ic}} \ K_{_{ m Ic}} \ K_{_{ m Ic}} \end{array}$
7178	$K_{ic}$
7475	$K_{ic}$
	7075 (ALCLAD) 7079 7175 7178

Collis, S. F., et al., "Fracture Toughness Data Bank for Aluminum Alloy Mill Products," Aluminum Company of America, Alcoa Laboratories, Alcoa Center, PA, Data Submitted by Alcoa, Reynolds Metals, Kaiser Aluminum, and Martin Marietta Aluminum and Prepared for Metal Properties council, Inc., August 1979.

MR001 7075 K_{ic}; a-vs-N; da/dN X7090 a-vs-N; da/dN X7091 a-vs-N; da/dN

"Damage Tolerant Test Data on X7090, X7091, and 7075 Aluminum," Materials Research Laboratory, Ins, Glenwood, IL, Under Contract to ARRADCOM, (DAAK10-79-C-0278), Received June 1982.

Plane Strain Fracture Toughness Data Sets on Aluminum, Steel, and Titanium Alloys, Data sent from P. G. Porter of Northrop Corp., Hawthorne, CA, March 1, 1982.

#### REFERENCES FOR THE 7000 SERIES ALUMINUM ALLOY DATA

NC002

7050

a-vs-N; da/dN

7075

da/dN

7149

a-vs-N; da/dN

Fatigue Crack Growth Rate Data on Aluminum, Steel, and Titanium Alloy, Data sent from P. G. Porter of Northrop Corp., Hawthorne, CA, March 1, 1982.

**NC003** 

7050

7075

K_{Ic}; da/dN

Chanini, G. R., et al., "Methodology for Evaluation of Fatigue Crack-Growth Resistance of Aluminum Alloys Under Spectrum Loading," Northrop Corporation, Aircraft Division, Hawthorne, CA, Contract No. N00019-80-C-0427, April 1982.

**RA001** 

7475

K_{Ic}

Summary of Plane-Strain Fracture Toughness and Notch-Tensile Tests-Reynolds Metals Company, Metallurgical Research Division, Richmond, VA, Project 36-KFP-3M04, September 1978 - June 1980.

**RA003** 

7475

 $K_{tc}$ 

Summary of Plane-Strain Fracture Toughness and Notch-Tensile Tests-Reynolds Metals Company, Metallurgical Research Division, Richmond, VA, Project 38KFN-7475 Alloy, March 1978 - November 1978.

**RA004** 

7475

 $K_{tc}$ 

Summary of Plane-Strain Fracture Toughness and Notch-Tensile Tests-Reynolds Metals Company, Metallurgical Research Division, Richmond, VA, Project 37-KFN-7475 Alloy, August 1977 - December 1977.

**RA005** 

7475

K,

Summary of Plane-Strain Fracture Toughness and Notch-Tensile Tests-Reynolds Metals Company, Metallurgical Research Division, Richmond, VA, Project 38-KFN-3M04-7475 Alloy, May 1980.

**RA006** 

7475

 $K_{tc}$ 

Summary of Plane-Strain Fracture Toughness and Notch-Tensile Tests-Reynolds Metals Company, Metallurgical Research Division, Richmond, VA, Project 38-KFP-7475 Alloy, September 1977 - November 1977.

# REFERENCES FOR THE 7000 SERIES ALUMINUM ALLOY DATA

RA007

7475

 $K_{Ic}$ 

Summary of Plane-Strain Fracture Toughness and Notch-Tensile Tests-Reynolds Metals Company, Metallurgical Research Division, Richmond, VA, Project 37-KFP-7475 Alloy, 1977.

**RA008** 

7050

 $K_{tc}$ 

Summary of Plane-Strain Fracture Toughness and Notch-Tensile Tests-Reynolds Metals Company, Metallurgical Research Division, Richmond, VA, Project 37-KFP-7050 Alloy-T73651, January 1978.

RA009

7050

 $K_{tc}$ 

Summary of Plane-Strain Fracture Toughness and Notch-Tensile Tests-Reynolds Metals Company, Metallurgical Research Division, Richmond, VA, Project 37-KFN-7050 Alloy-T73651, 1977.

**RA010** 

7050

 $K_{lc}$ 

Summary of Plane-Strain Fracture Toughness and Notch-Tensile Tests-Reynolds Metals Company, Metallurgical Research Division, Richmond, VA, Project 38-KFP-7050 Alloy-T73651, 1977.

RI002

7178

a-vs-N; da/dN

Data Sheets Containing Fatigue Crack Growth Rate Data on 7178-T651 Aluminum Plate Supplied by J. Stolpestad, Rockwell International, North American Aircraft Division, March 1982.

**RI006** 

 $\begin{array}{ccc} 7049 & K_{\rm Iscc} \\ 7050 & K_{\rm Iscc} \\ 7075 & K_{\rm Iscc} \\ 7175 & K_{\rm Iscc} \end{array}$ 

Ferguson, R. R., and Berryman, R. C., "Fracture Mechanics Evaluation of B-1 Materials," Rockwell International, B-1 Division, Los Angeles, CA, Contract No. F33657-70-C-0800, Report No. AFML-TR-76-137, October 1976.

## REFERENCES FOR THE 7000 SERIES ALUMINUM ALLOY DATA

**RI008** 

7175

a-vs-N; da/dN

7475

a-vs-N; da/dN

"Crack Growth Test of 7175-T76511 Al Extr," Rockwell International, B-1 Program, Los Angeles, CA, 90009.

SA001

7075

a-vs-N; da/dN

Rungta, R., Deel, O., and Frey, N., "Fatigue-Crack-Propagation Behavior of Materials of Several H-53 Helicopter Materials," Sikorsky Aircraft Company, Stratford, CT, Data Submitted by Battelle, Columbus, OH, 43201, Received October 20, 1992.

SW001

7050

K_{ic}; a-vs-N; da/dN

7075

K_{Ic}; a-vs-N; da/dN

7175

a-vs-N; da/dN

Data submitted by Mr. Jack Fitzgerald, Southwest Research Institute, San Antonio, TX.

**UD002** 

7010

da/dN

Cervay, R. R., "An Empirical Model for Loading Ratio Effect on Fatigue Crack Growth Rate Data," University of Dayton Research Institute, Dayton, OH, Contract No. F33615-80-C-5011, Report No. AFWAL-TR-81-4140, November 1981.

**UD003** 

7010

K_{Ic}; da/dN; K_{Iscc}

Cervay, R. R., "Mechanical Property Evaluation on Aluminum Alloy 7010-T73651," University of Dayton Research Institute, Dayton, OH, Contract No. F33615-78-C-5002, Report No. AFWAL-TR-80-4094, July 1980.

**UD006** 

7075

da/dN

Ruschau, J. J., "The Effect of Negative R-Ratio on Fatigue Crack Growth Rate Properties for Aluminum 7075-T73 and 2024-T3," University of Dayton Research Institute, Dayton, OH, Contract No. F33615-78-C-5002, Technical Memorandum UDR-TM-80-07, March 1980.

# TABLE 8.25 (CONCLUDED)

# REFERENCES FOR THE 7000 SERIES ALUMINUM ALLOY DATA

**WA001** 

7049

K_{Ic}; da/dN

7050

Kic; da/dN

7075

K_{Ie}; da/dN

Petrak, G. J., "Effect of Purity Level on the Mechanical Properties of 7000-Series Aluminum," Air Force Wright Aeronautical Laboratories (AFWAL/MSLA). Air Force Systems Command, WPAFB, OH, Project No. 2418, April 1980.

WL003

8090

K_{Ic}; a-vs-N; da/dN

Phillips, M. A., and Thompson, S. R., "The Mechanical Property Data Base From an Air Force/Industry Cooperative Test Program on Advanced Aluminum Alloys (8090 Extrusion)," Wright Patterson Materials Laboratory, WPAFB, Dayton, OH, 45433-6533, Report WRDC-TR-90-4113, November 1990.

WL005

7075

a-vs-N; da/dN

Data submitted by Mr. Jim Harter from ASTM round robin, Wright Patterson Materials Labs, April 1992.