Foundational Statistics Complex Objects, S-A-C, and Plotting basics

Nesting functions and indexing in R

```
> col_vect <- c("blue","green","yellow","purple","salmon")
> col_vect_sort <- sort(col_vect)
> col_vect_sort_top3 <- head(col_vect_sort, n=3)
> "yellow"==col_vect_sort_top3
[1] FALSE FALSE FALSE
>
> "yellow"==sort(c("blue","green","yellow","purple","salmon"))[1:3]
[1] FALSE FALSE FALSE
```

similar to "piping" in UNIX

```
> cat col_vect.txt | sort | head -3 | awk '{if ($0 ~ /yellow/) {print "TRUE"} else {print "FALSE"}}'
```

Useful R functions for structured vectors

sort(x)

Returns an alphanumerically sorted vector (default: increasing order)

seq(from, to, by)

Generates an incremental (or decremental) numeric series

rep(x, times)

Repeats an operation N times and produces a single concat. Vector

Useful R functions for random vectors

```
sample(x, size, replace) "Shuffle" a vector or take a
                             random sample of size n
rnorm(n, mean, sd)
                             Randomly draw a sample
rbinom()
                             of size n from a specific
rpois()
                             prob. distribution
                             Set seed for R's random
set.seed(n)
                             number generator
```

Complex data objects in R

list

1 2 3

"one" "two"

NA

data frame

	CO	colnames		
	ID	trt	val	
6 1	Ind1	Mut	3.4	
E 2	Ind2	WT	0.4	
Sownames 3	Ind5	Mut	2.3	
2 ₄	Ind8	WT	1.1	

matrix

	1	2	3
1	0.5	0	3.4
2	1.1	1.3	0.4
3	6.7	3.4	2.3

Indexing!

```
[[]]
mylist[[2]]
```

```
[,]
mydf[1,2]

$
mydf$ID
```

```
[,]
mymatrix[1,2]
```

Basic R programming fundamentals

"if else" evaluation with ifelse()

```
Boolean logical of "TRUE" Otherwise evaluation do this
```

```
> vec_1 <- c("hot","cold","cold","cold","hot")
>
> ifelse(vec_1=="hot", "red", "blue")
[1] "red" "blue" "blue" "blue" "red"
```

"Split-Apply-Combine"

mean(

val)

2.85

0.75

	ΙD	trt	val
1	Ind1	Mut	3.4
2	Ind2	WT	0.4
3	Ind5	Mut	2.3
4	Ind8	WT	1.1

trt

Mut

 WT

What are the val means for Mut and WT?

Combine

Apply	y
-------	---

	ΙD	trt	val	
1	Ind1	Mut	3.4	$\bar{x}_{Mut} =$
3	Ind5	Mut	2.3	

 $\bar{x}_{WT} = 0.75$

	ΙD	trt	val
2	Ind2	WT	0.4
4	Ind8	WT	1.1

Useful R functions related to "S-A-C"

Reproduces an expression (e.g. a replicate() randomization or sample) n times Applies a function to all rows or all apply() columns tapply() Applies a function on one variable (e.g. mean of a numeric) in a factor-level-wise manner. aggregate() Similar to tapply(), but applies function to multiple variables

A very brief note on "for loops"

When we want to iterate a process for a defined number of cycles, or according to the length of an object (like a vector)

Basic plotting functions in R

hist(x)

frequency distribution of variable x

boxplot(y~x)

