Logic gates

Lecture 3

Prepared by : Eng.Amani Safwat

Logic Gates

Logic gates are electronic circuits used to perform logical operations on binary signals (0 and 1).

They are the basic building blocks of digital circuits such as computers, processors, and embedded systems.

Why We Use Logic Gates

We use logic gates to control the flow of signals within digital systems and to perform logical and arithmetic operations such as addition, comparison, and data storage.

They form the foundation of all digital systems

Types of Logic Gates

- (Basic Gates):
- AND Gate
- OR Gate
- NOT Gate
- (Universal Gates):
- NAND Gate
- NOR Gate
- •(Special Gates):
- •XOR Gate (Exclusive OR)
- •XNOR Gate (Exclusive NOR)

Outputs 1 only if all inputs are 1 Used when all conditions must be true

Truth Table		
Α	В	Υ
0	0	0
1	0	0
0	1	0
1	1	1

A B Y

Equation:Y= AB OR Y=A.B

Outputs 1 if at least one input is 1 Used when only one condition needs to be true.

Truth Table		
Α	В	Υ
0	0	0
1	0	1
0	1	1
1	1	1

Equation:Y=A+B

Symbol

NOT Gate

Inverts the input; if input is 1, output is 0
Used to reverse logical states

Truth Table		
Α	Υ	
0	1	
1	0	

Equation:Y=A

The output is 0 only if all inputs are 1 (inverse of AND).

Used as a universal gate to build any logic circuit.

Truth Table		
Α	В	Υ
0	0	1
1	0	1
0	1	1
1	1	0

Symbol

Equation:Y=AB

Outputs 1 only when all inputs are 0 (inverse of OR).

Used as a universal gate to build any circuit

Truth Table		
Α	В	Υ
0	0	1
1	0	0
0	1	0
1	1	0

Symbol

Equation:Y=A+B

XOR Gate

Outputs 1 only when inputs are different Used in adder and comparator circuits

Truth Table		
Α	В	Υ
0	0	0
1	0	1
0	1	1
1	1	0

Equation:Y=A⊕B

Outputs 1 only when inputs are the same
Used in equality comparator circuits

Truth Table		
Α	В	Υ
0	0	1
1	0	0
0	1	0
1	1	1

Symbol

Equation:Y=A⊕B

Universal Gates

NOT using NAND:

 $Y = (A \cdot A)' \rightarrow gives the same output as NOT.$

AND using NAND:

 $Y = ((A \cdot B)')' \rightarrow We use two NAND gates.$

OR using NAND:

 $Y = ((A') \cdot (B'))' \rightarrow We$ use three NAND gates.

NOT using NOR:

 $Y = (A + A)' \rightarrow Same result as NOT$

OR using NOR:

 $Y = ((A + B)')' \rightarrow We use two NOR gates$

AND using NOR:

$$Y = ((A') + (B'))' \rightarrow We$$
 use three NOR gates

