හිටලු ම හිමිකම් ඇවිටම් (முழுப் பதிப்புரிமைபுடையது /All Rights Reserved)

(නව නිර්දේශය/பුනිய பாடத்திட்டம்/New Syllabus)

தினைக்களம் இல்வகைப் புடுக்கு இருக்கு இருந்து இருக்கு இருக்கு

අධායන පොදු සහතික පසු (උසස් පෙළ) විභාගය, 2019 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2019 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2019

க்**යුක්ත ගණිතය** II இணைந்த கணிதம் II Combined Mathematics II

2019.08.07 / 0830 - 1140

පැය භූනයි

மூன்று மணித்தியாலம் Three hours අමතර කියවීම කාලය - මිනිත්තු 10 යි மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time - 10 minutes

අමහර කියවීම් කාලය ලශ්න පතුය කියවා ලශ්න හෝරා ගැනීමටත් පිළිතුරු ලිවීමේදී පුමුබත්වය දෙන ලශ්න සංවිධානය කර ගැනීමටත් යොදාගන්න.

විභාග (අංකය								
---------	------	--	--	--	--	--	--	--	--

උපදෙස්:

🗱 මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ;

A කොටහ (පුශ්න 1 - 10) සහ B කොටත (පුශ්න 11 - 17).

* A නොටස:

තියලු ම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය.

* B කොටය:

පුශ්න පහකට පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.

* නියමිත කාලය අවසන් වූ පසු A **කොටගෙහි** පිළිතුරු පතුය, B **කොටගෙහි** පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා වීහාග ශාලාධිපතිට භාර දෙන්න.

espispilos:

- st පුශ්න පතුයෙහි f B කොටස පමණක් විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.
- 🗱 මෙම පුශ්න පතුයෙහි g මගින් ගුරුත්වජ ත්වරණය දැක්වෙයි.

පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

(10) සංයුක්ත ගණිතය II			
හොටස	උශ්න අංකය	ලකුණු	
	71 7.	p. 34 ;	
	2		
	3		
	4		
A	5	<u>_</u>	
A	6		
;	7		
·	8		
	9		
	10		
	11		
	12		
	13		
В	14		
,	15		
	16		
_	17		
	එකතුව		

	ලකුණුව
ඉලක්කමෙන්	
අකුරින්	

	Contract com
උත්තර පතු පරීක්ෂක	
පරීක්ෂා කලේ: ¹ 2	
අධීක්ෂණය කළේ:	

1.	එක එකක ස්කන්ධය m වූ A , B හා C අංශු තුනක් එම පිළිවෙළින්, සුමට නිරස් මේසයක් මත සරල රේඛාවක තබා ඇත. A අංශුවට u පුවේගයක් දෙනු ලබන්නේ එය B අංශුව සමග සරල ලෙස ගැටෙන පරිදි ය. A අංශුව සමග ගැටුන පසු, B අංශුව චලනය වී C අංශුව සමග සරල ලෙස ගැටේ. A හා B අතර පුනාහගති සංගුණකය e වේ. පළමු ගැටුමෙන් පසුව B හි පුවේගය සොයන්න.
	B හා C අතර පුතාාගති සංගුණකය ද e වේ. B සමග ගැටුමෙන් පසුව C හි පුවේගය ලියා දක්වන්න.
2.	තිරස් හා සිරස් සංරචක පිළිවෙළින් \sqrt{ga} හා $\sqrt{6ga}$ සහිත පුවේගයකින් තිරස් ගෙබිමක් මත වූ O ලක්ෂායක සිට අංශුවක් පුක්ෂේප
	කරනු ලැබේ. රූපයේ දැක්වෙන පරිදි, එකිනෙකට a තිරස් දුරකින් පිහිටි
	උස a හා b වූ සිරස් තාප්ප දෙකකට යාන්තමින් ඉහළින් අංශුව යයි. $\sqrt{6ga}$ b
	උස a වූ තාප්පය පසු කරන විට අංශුවේ පුවේගයෙහි සිරස් සංරචකය $lack a$
	$2\sqrt{ga}$ බව පෙන්වන්න. $\sqrt{\frac{1}{ga}}$ $\sqrt{\frac{1}{ga}}$
	$b=rac{5a}{2}$ බව තවදුරටත් පෙන්වන්න.

AL/	2019/10/S-II(NEW)	-3-	som domen				1		
3.	රූපයෙහි A, B හා C යනු ස්කන්ධ පිළිවෙළින් හා B අංශු සැහැල්ලු අවිතනා කන්තුවකින් සම් මේසයක් මත වූ C අංශුව, මේසයේ දාරයට සවිස මතින් යන තවත් සැහැල්ලු අවිතනා තන්තුවකි තන්තු සියල්ලම එකම සිරස් තලයක පිහිටයි. පද්ධතිය නිශ්චලතාවයේ සිට මුදා හරිනු ලැබේ. ආතතිය නිර්ණය කිරීමට පුමාණවත් සමීකරණ	ම්බන්ධ කර අ තර ඇති සුම බින් <i>B</i> ට ඇ . තන්තු නෙ . <i>A</i> හා <i>B</i> යා	ඇත. සුමට තිර ට කුඩා කප්පිය දිා ඇත. අංශු ද තාබුරුල්ව ඇති කරන තන්තුෙ	ස් ක් හා ව			***************************************	mol	
Į									
					•••••	•••••	· · · · · · · ·		*****
		• • • • • • • • • • • • • • • • • • • •			• • • • • •			• • • • • •	••••
		••••••••					• • • • • • • • • • • • • • • • • • • •		•••••
	**************************************		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
					• • • • • •	********	• • • • • • •		•••••
						,		*****	****
		••••	*************			•••••			••••
		************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • •	•••••	
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					• • • • • •	
		***********		*****		• • • • • • • • • • • • • • • • • • • •		• • • • • •	
								· · · · · · ·	
4.	ස්කන්ධය M kg හා P kW නියත ජවයකින් යුත පහළට චලනය වේ. එහි චලිතයට R (> Mg sin G	α) N නියත ද	ුතිරෝ ධයක් අ	ැත. එ					
4.	පහළට චලනය වේ. එහි චලිතයට R (> $M_g \sin \alpha$	α) N නියත ද රුරේ පුවේශ	පුතිරෝධයක් අ ය. ෂෞයන්න	ැත. එ	ක්තර	ා මොමෙ	ාතක ව	දී කාර	රයේ
4.	පහළට චලනය වේ. එහි චලිතයට R (> $Mg\sin au$	α) N නියත ද රුරේ පුවේශ	පුතිරෝධයක් අ ය. ෂෞයන්න	ැත. එ	ක්තර	ා මොමෙ	ාතක ව	දී කාර	රයේ
4.	පහළට චලනය වේ. එහි චලිතයට R (> $M_g \sin \alpha$	α) N නියත ද රුරේ පුවේශ	පුතිරෝධයක් අ ය. ෂෞයන්න	ැත. එ	ක්තර	ා මොමෙ	ාතක ව	දී කාර	රයේ
4.	පහළට චලනය වේ. එහි චලිතයට R (> $M_g \sin \alpha$	α) N නියත ද රුරේ පුවේශ	පුතිරෝධයක් අ ය. ෂෞයන්න	ැත. එ	ක්තර	ා මොමෙ	ාතක ව	දී කාර	රයේ
4.	පහළට චලනය වේ. එහි චලිතයට R (> $Mg \sin a$ ත්වරණය $a \cos^{-2}$ වේ. මෙම මොහොතේ දී කා මාර්ගය දිගේ පහළට කාරයට චලනය විය හැ a	α) N නියත ද oරයේ පුවේශ කි නියත වේ	පුතිරෝධයක් අ ගය සොයන්න. බගය <u>1000</u> <u>R – Mg</u> s	ැත. එ <u>p</u> in α	ක්තර ms ⁻¹ é	ා මොමේ බව අපෙ	ාතක ව	දී කාර	රයේ
4.	පහළට චලනය වේ. එහි චලිතයට R (> $M_g \sin \alpha$	α) N නියත ද oරයේ පුවේශ කි නියත වේ	පුතිරෝධයක් අ ගය සොයන්න. බගය <u>1000</u> <u>R – Mg</u> s	ැත. එ <u>p</u> in α	ක්තර ms ⁻¹ é	ා මොමේ බව අපෙ	ාතක ව	දී කාර	රයේ
4.	පහළට චලනය වේ. එහි චලිතයට R (> $Mg \sin a$ ත්වරණය $a \cos^{-2}$ වේ. මෙම මොහොතේ දී කා මාර්ගය දිගේ පහළට කාරයට චලනය විය හැ a	α) N නියත ද oරයේ පුවේශ කි නියත වේ	පුතිරෝධයක් අ ගය සොයන්න. බගය <u>1000</u> <u>R – Mg</u> s	ැත. එ <u>p</u> in α	ක්තර ms ⁻¹ é	ා මොමේ බව අපෙ	ාතක ව	දී කාර	රයේ
4.	පහළට චලනය වේ. එහි චලිතයට R (> $Mg \sin a$ ත්වරණය $a \cos^{-2}$ වේ. මෙම මොහොතේ දී කා මාර්ගය දිගේ පහළට කාරයට චලනය විය හැ a	α) N නියත ද oරයේ පුවේශ කි නියත වේ	පුතිරෝධයක් අ ගය සොයන්න. බගය <u>1000</u> <u>R – Mg</u> s	ැත. එ <u>p</u> in α	ක්තර ms ⁻¹ é	ා මොමේ බව අපෙ	ාතක ව	දී කාර	රයේ
4.	පහළට චලනය වේ. එහි චලිතයට R (> $Mg \sin a$ ත්වරණය $a \cos^{-2}$ වේ. මෙම මොහොතේ දී කා මාර්ගය දිගේ පහළට කාරයට චලනය විය හැ a	α) N නියත ද oරයේ පුවේශ කි නියත වේ	පුතිරෝධයක් අ ගය සොයන්න. බගය <u>1000</u> <u>R – Mg</u> s	ැත. එ <u>p</u> in α	ක්තර ms ⁻¹ é	ා මොමේ බව අපෙ	ාතක ව	දී කාර	රයේ
4.	පහළට චලනය වේ. එහි චලිතයට R (> $Mg \sin a$ ත්වරණය $a \cos^{-2}$ වේ. මෙම මොහොතේ දී කා මාර්ගය දිගේ පහළට කාරයට චලනය විය හැ a	α) N නියත ද oරයේ පුවේශ කි නියත වේ	පුතිරෝධයක් අ ගය සොයන්න. බගය <u>1000</u> <u>R – Mg</u> s	ැත. එ <u>p</u> in α	ක්තර ms ⁻¹ é	ා මොමේ බව අපෙ	ාතක ව	දී කාර	රයේ
4.	පහළට චලනය වේ. එහි චලිතයට R (> $Mg \sin a$ ත්වරණය $a \cos^{-2}$ වේ. මෙම මොහොතේ දී කා මාර්ගය දිගේ පහළට කාරයට චලනය විය හැ a	α) N නියත ද oරයේ පුවේශ කි නියත වේ	පුතිරෝධයක් අ ගය සොයන්න. බගය <u>1000</u> <u>R – Mg</u> s	ැත. එ <u>p</u> in α	ක්තර ms ⁻¹ é	ා මොමේ බව අපෙ	ාතක ව	දී කාර	රයේ
4.	පහළට චලනය වේ. එහි චලිතයට R (> $Mg \sin a$ ත්වරණය $a \cos^{-2}$ වේ. මෙම මොහොතේ දී කා මාර්ගය දිගේ පහළට කාරයට චලනය විය හැ a	α) N නියත ද oරයේ පුවේශ කි නියත වේ	පුතිරෝධයක් අ ගය සොයන්න. බගය <u>1000</u> <u>R – Mg</u> s	ැත. එ <u>p</u> in α	ක්තර ms ⁻¹ é	ා මොමේ බව අපෙ	ාතක ව	දී කාර	රයේ
4.	පහළට චලනය වේ. එහි චලිතයට R (> $Mg \sin a$ ත්වරණය $a \cos^{-2}$ වේ. මෙම මොහොතේ දී කා මාර්ගය දිගේ පහළට කාරයට චලනය විය හැ a	α) N නියත ද oරයේ පුවේශ කි නියත වේ	පුතිරෝධයක් අ ගය සොයන්න. බගය <u>1000</u> <u>R – Mg</u> s	ැත. එ <u>p</u> in α	ක්තර ms ⁻¹ é	ා මොමේ බව අපෙ	ාතක ව	දී කාර	රයේ
4.	පහළට චලනය වේ. එහි චලිතයට R (> $Mg \sin a$ ත්වරණය $a \cos^{-2}$ වේ. මෙම මොහොතේ දී කා මාර්ගය දිගේ පහළට කාරයට චලනය විය හැ a	α) N නියත ද oරයේ පුවේශ කි නියත වේ	පුතිරෝධයක් අ ගය සොයන්න. බගය <u>1000</u> <u>R – Mg</u> s	ැත. එ <u>p</u> in α	ක්තර ms ⁻¹ é	ා මොමේ බව අපෙ	ාතක ව	දී කාර	රයේ
4.	පහළට චලනය වේ. එහි චලිතයට R (> $Mg \sin a$ ත්වරණය $a \cos^{-2}$ වේ. මෙම මොහොතේ දී කා මාර්ගය දිගේ පහළට කාරයට චලනය විය හැ a	α) N නියත ද oරයේ පුවේශ කි නියත වේ	පුතිරෝධයක් අ ගය සොයන්න. බගය <u>1000</u> <u>R – Mg</u> s	ැත. එ <u>p</u> in α	ක්තර ms ⁻¹ é	ා මොමේ බව අපෙ	ාතක ව	දී කාර	රයේ
4.	පහළට චලනය වේ. එහි චලිතයට R (> $Mg \sin a$ ත්වරණය $a \cos^{-2}$ වේ. මෙම මොහොතේ දී කා මාර්ගය දිගේ පහළට කාරයට චලනය විය හැ a	α) N නියත ද oරයේ පුවේශ කි නියත වේ	පුතිරෝධයක් අ ගය සොයන්න. බගය <u>1000</u> <u>R – Mg</u> s	ැත. එ <u>p</u> in α	ක්තර ms ⁻¹ é	ා මොමේ බව අපෙ	ාතක ව	දී කාර	රයේ
4.	පහළට චලනය වේ. එහි චලිතයට R (> $Mg \sin a$ ත්වරණය $a \cos^{-2}$ වේ. මෙම මොහොතේ දී කා මාර්ගය දිගේ පහළට කාරයට චලනය විය හැ a	α) N නියත ද oරයේ පුවේශ කි නියත වේ	පුතිරෝධයක් අ ගය සොයන්න. බගය <u>1000</u> <u>R – Mg</u> s	ැත. එ <u>p</u> in α	ක්තර ms ⁻¹ é	ා මොමේ බව අපෙ	ාතක ව	දී කාර	රයේ

[හතරවැනි පිටුව බලන්න.

3.	එක එකක ස්කන්ධය m වූ A හා B අංශු දෙකක්, අචල සුමට කප්පියක් මතින් යන සැහැල්ලු
	අවිතනා තන්තුවක දෙකෙළවරට ඈඳා සමතුලිතතාවයේ එල්ලෙයි. A ට සිරස්ව a දුරක්
	ඉහළින් වූ ලක්ෂායකින් නිශ්චලතාචයේ සිට මුදා හරින ලද ස්කන්ධය m ම වූ C කුඩා
	පබළුවක් ගුරුත්වය යටතේ නිදහසේ චලනය වී A සමග ගැටී හා වේ. (රූපය බලන්න.) m ු Φ
	A හා C අතර ගැටුම සිදු වන මොහොතේ දී තන්තුවේ ආවේගය ද ඉහත ගැටුමෙන්
	මොහොතකට පසු B ලබා ගන්නා පුවේගය ද නිර්ණය කිරීමට පුමාණවත් සමීකරණ ලියා
	දක්වන්න.
	\downarrow_A \downarrow_B
	m m

	•••••••••••••••••••••••••••••••••••••••

6	MINOR M. MINOR MAIN A MONTH MAN MONTH AND A COMMIN COMM READ CO. RES RECORDED
6.	සුපුරුදු අංකනයෙන්, O අවල මූලයකට අනුබද්ධයෙන් A හා B ලක්ෂා දෙකක පිහිටුම් දෙශික පිළිවෙළින්
6.	$2\mathbf{i} + \mathbf{j}$ හා $3\mathbf{i} - \mathbf{j}$ ගැයි ගනිමු. $A\hat{O}C = A\hat{O}D = \frac{\pi}{2}$ හා $OC = OD = \frac{1}{3}AB$ වන පරිදි වූ C හා D පුහින්න ලක්ෂා
6.	· · · · · · · · · · · · · · · · · · ·
6.	$2\mathbf{i} + \mathbf{j}$ හා $3\mathbf{i} - \mathbf{j}$ ගැයි ගනිමු. $A\hat{O}C = A\hat{O}D = \frac{\pi}{2}$ හා $OC = OD = \frac{1}{3}AB$ වන පරිදි වූ C හා D පුහින්න ලක්ෂා
6.	$2\mathbf{i} + \mathbf{j}$ හා $3\mathbf{i} - \mathbf{j}$ ගැයි ගනිමු. $A\hat{O}C = A\hat{O}D = \frac{\pi}{2}$ හා $OC = OD = \frac{1}{3}AB$ වන පරිදි වූ C හා D පුහින්න ලක්ෂා
6.	$2\mathbf{i}+\mathbf{j}$ හා $3\mathbf{i}-\mathbf{j}$ යැයි ගනිමු. $A\hat{O}C=A\hat{O}D=rac{\pi}{2}$ හා $OC=OD=rac{1}{3}$ AB වන පරිදි වූ C හා D පුභින්න ලක්ෂා දෙකෙහි පිහිටුම් දෛශික සොයන්න.
6.	$2\mathbf{i} + \mathbf{j}$ හා $3\mathbf{i} - \mathbf{j}$ ගැයි ගනිමු. $A\hat{O}C = A\hat{O}D = \frac{\pi}{2}$ හා $OC = OD = \frac{1}{3}AB$ වන පරිදි වූ C හා D පුහින්න ලක්ෂා
6.	$2\mathbf{i}+\mathbf{j}$ හා $3\mathbf{i}-\mathbf{j}$ යැයි ගනිමු. $A\hat{O}C=A\hat{O}D=rac{\pi}{2}$ හා $OC=OD=rac{1}{3}$ AB වන පරිදි වූ C හා D පුභින්න ලක්ෂා දෙකෙහි පිහිටුම් දෛශික සොයන්න.
6.	$2\mathbf{i}+\mathbf{j}$ හා $3\mathbf{i}-\mathbf{j}$ යැයි ගනිමු. $A\hat{O}C=A\hat{O}D=rac{\pi}{2}$ හා $OC=OD=rac{1}{3}$ AB වන පරිදි වූ C හා D පුභින්න ලක්ෂා දෙකෙහි පිහිටුම් දෛශික සොයන්න.
6.	$2\mathbf{i}+\mathbf{j}$ හා $3\mathbf{i}-\mathbf{j}$ යැයි ගනිමු. $A\hat{O}C=A\hat{O}D=rac{\pi}{2}$ හා $OC=OD=rac{1}{3}$ AB වන පරිදි වූ C හා D පුභින්න ලක්ෂා දෙකෙහි පිහිටුම් දෛශික සොයන්න.
6.	$2\mathbf{i}+\mathbf{j}$ හා $3\mathbf{i}-\mathbf{j}$ යැයි ගනිමු. $A\hat{O}C=A\hat{O}D=rac{\pi}{2}$ හා $OC=OD=rac{1}{3}$ AB වන පරිදි වූ C හා D පුභින්න ලක්ෂා දෙකෙහි පිහිටුම් දෛශික සොයන්න.
6.	$2\mathbf{i}+\mathbf{j}$ හා $3\mathbf{i}-\mathbf{j}$ යැයි ගනිමු. $A\hat{O}C=A\hat{O}D=rac{\pi}{2}$ හා $OC=OD=rac{1}{3}$ AB වන පරිදි වූ C හා D පුභින්න ලක්ෂා දෙකෙහි පිහිටුම් දෛශික සොයන්න.
6.	$2\mathbf{i}+\mathbf{j}$ හා $3\mathbf{i}-\mathbf{j}$ යැයි ගනිමු. $A\hat{O}C=A\hat{O}D=rac{\pi}{2}$ හා $OC=OD=rac{1}{3}$ AB වන පරිදි වූ C හා D පුභින්න ලක්ෂා දෙකෙහි පිහිටුම් දෛශික සොයන්න.
6.	$2\mathbf{i}+\mathbf{j}$ හා $3\mathbf{i}-\mathbf{j}$ යැයි ගනිමු. $A\hat{O}C=A\hat{O}D=rac{\pi}{2}$ හා $OC=OD=rac{1}{3}$ AB වන පරිදි වූ C හා D පුභින්න ලක්ෂා දෙකෙහි පිහිටුම් දෛශික සොයන්න.
6.	$2\mathbf{i}+\mathbf{j}$ හා $3\mathbf{i}-\mathbf{j}$ යැයි ගනිමු. $A\hat{O}C=A\hat{O}D=rac{\pi}{2}$ හා $OC=OD=rac{1}{3}$ AB වන පරිදි වූ C හා D පුභින්න ලක්ෂා දෙකෙහි පිහිටුම් දෛශික සොයන්න.
6.	$2\mathbf{i}+\mathbf{j}$ හා $3\mathbf{i}-\mathbf{j}$ යැයි ගනිමු. $A\hat{O}C=A\hat{O}D=rac{\pi}{2}$ හා $OC=OD=rac{1}{3}$ AB වන පරිදි වූ C හා D පුභින්න ලක්ෂා දෙකෙහි පිහිටුම් දෛශික සොයන්න.
6.	$2\mathbf{i}+\mathbf{j}$ හා $3\mathbf{i}-\mathbf{j}$ යැයි ගනිමු. $A\hat{O}C=A\hat{O}D=rac{\pi}{2}$ හා $OC=OD=rac{1}{3}$ AB වන පරිදි වූ C හා D පුභින්න ලක්ෂා දෙකෙහි පිහිටුම් දෛශික සොයන්න.
6.	$2\mathbf{i}+\mathbf{j}$ හා $3\mathbf{i}-\mathbf{j}$ යැයි ගනිමු. $A\hat{O}C=A\hat{O}D=rac{\pi}{2}$ හා $OC=OD=rac{1}{3}$ AB වන පරිදි වූ C හා D පුභින්න ලක්ෂා දෙකෙහි පිහිටුම් දෛශික සොයන්න.
6.	$2\mathbf{i}+\mathbf{j}$ හා $3\mathbf{i}-\mathbf{j}$ යැයි ගනිමු. $A\hat{O}C=A\hat{O}D=rac{\pi}{2}$ හා $OC=OD=rac{1}{3}$ AB වන පරිදි වූ C හා D පුභින්න ලක්ෂා දෙකෙහි පිහිටුම් දෛශික සොයන්න.
6.	$2\mathbf{i}+\mathbf{j}$ හා $3\mathbf{i}-\mathbf{j}$ යැයි ගනිමු. $A\hat{O}C=A\hat{O}D=rac{\pi}{2}$ හා $OC=OD=rac{1}{3}$ AB වන පරිදි වූ C හා D පුභින්න ලක්ෂා දෙකෙහි පිහිටුම් දෛශික සොයන්න.

7 .	තිරස සමග පිළිවෙළින් $lpha$ හා $rac{\pi}{3}$ කෝණ සාදන AP හා BP $A = A = A = A = A = A = A = A = A = A $
	සැහැල්ලු අවිතනා තන්තු දෙකක් මගින් තිරස් සිවිලිමකින්
	එල්ලා ඇති බර W වූ P අංශුවක්, රූපයේ දැක්වෙන පරිදි
	සමතුලිතතාවයේ පවතී. AP තන්තුවේ ආතතිය, W හා $lpha$
	ඇසුරෙන් සොයන්න. \checkmark_{P}
	ඒ නගීන්. මෙම ආතතියේ අවම අගයත් එයට අනුරූප a හි අගයත් සොයන්න.
8.	දිග $2a$ හා බර W වූ ඒකාකාර AB දණ්ඩක් එහි A කෙළවර රඑ තිරස්
	ගෙබිමක් මත ද B අකළවර සුමට සිරස් බිත්තියකට එරෙහිව ද $B \longrightarrow rac{W}{2}$
	තබා ඇත. බීත්තියට ලම්බ සිරස් තලයක දණ්ඩ සමතුලිතතාවයේ
	තබා ඇත්තේ A කෙළවරේ දී බීන්නිය දෙසට යෙදූ විශාලන්වය P
	වන තිරස් බලයක් මගිනි. රූපයේ F හා R මගින් පිළිවෙළින් A හි දී
	සර්ෂණ බලය හා අහිලම්බ පුතිකිුයාව දක්වා ඇත. B හි දී බිත්තිය
	මගින් ඇති කරන පුතිකිුයාව, රූපයේ පෙන්වා ඇති පරිදී $rac{W}{2}$ ද
	දණ්ඩ හා ගෙබීම අතර ඝර්ෂණ සංගුණකය $\frac{1}{4}$ ද නම්, $\frac{W}{A} \le P \le \frac{3W}{4}$ බව පෙන්වන්න.
	4 (Sie, 4 S 7 S 4 (S 6 C S C S S S)

9.	A හා B යනු Ω නියැදි අවකාශයක සිද්ධි දෙකක් යැයි ගනිමු. සුපුරුදු අංකනයෙන්, $P(A)=rac{3}{5}$, $P(A\cap B)=rac{2}{5}$
	හා $P(A'\cap B)=rac{1}{10}$ බව දී ඇත. $P(B)$ හා $P(A'\cap B')$ සොයන්න; මෙහි A' හා B' වලින් පිළිවෙළින් A හා
	B හි අනුපූරක සිද්ධි දැක්වේ.

	•••••••••••••••••••••••••••••••••••••••
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	•••••••••••••••••••••••••••••••••••••••

	······································

4 1	A COLUMN TO THE PARTY OF THE PA
10.	එක එකක් 5 ට අඩු ධන තිබිල පහකට මාතයන් දෙකක් ඇති අතර ඉන් එකක් 3 වේ. ඒවායේ මධානායෙ හා
10.	එක එකක් 5 ට අඩු ධන නිබල පහකට මාතයන් දෙකක් ඇති අතර ඉන් එකක් 3 වේ. ඒවායේ මධාෘතායෙ හා මධාස්ථය යන දෙකම 3 ට සමාන වේ. මෙම නිඛිල පහ සොයන්න.
10.	•
10.	මධාස්ථය යන දෙකම 3 ට සමාන වේ. මෙම නිඛිල පහ සොයන්න.
10.	මධාසේථය යන දෙකම 3 ට සමාන වේ. මෙම නිඛිල පහ සොයන්න.
10.	මධාස්ථය යන දෙකම 3 ට සමාන වේ. මෙම නිඛිල පහ සොයන්න.
10.	මධාස්ථය යන දෙකම 3 ට සමාන වේ. මෙම නිඛ්ල පහ සොයන්න.
10.	මධාස්ථය යන දෙකම 3 ට සමාන වේ. මෙම නිඛිල පහ සොයන්න.
10.	මධාසේථය යන දෙකම 3 ට සමාන වේ. මෙම නිඛ්ල පහ සොයන්න.
10.	මධාස්ථය යන දෙකම 3 ට සමාන වේ. මෙම නිඛිල පහ සොයන්න.
10.	මධාසේථය යන දෙකම 3 ට සමාන වේ. මෙම නිඛිල පහ සොයන්න.
10.	මධාස්ථය යන දෙකම 3 ව සමාන වේ. මෙම නිඛිල පහ සොයන්න.
10.	මධාස්ථය යන දෙකම 3 ට සමාන වේ. මෙම නිඛල පහ සොයන්න.
10.	මධාසේථය යන දෙකම 3 ට සමාන වේ. මෙම නිඛ්ල පහ සොයන්න.
10.	මධාසේථය යන දෙකම 3 ට සමාන වේ. මෙම නිඛිල පහ සොයන්න.
10.	මධාස්ථය යන දෙකම 3 ට සමාන වේ. මෙම නිඛ්ල පහ සොයන්න.
10.	මධාස්ථය යන දෙකම 3 ට සමාන වේ. මෙම නිඛල පහ සොයන්න.

සියලු ම හිමිකම් ඇවිටිනි / முழுப் பதிப்புநிமையுடையது /All Rights Reserved}

නව නිර්දේශය/பුනිய பாடத்திட்டம்/New Syllabus

oddත්තුව ලී ලංකා විභාග දෙපාර්ත**ැන්වූව යුතුව ලියා විභාග දෙපාර්තරම්**ත්තුව ලී ලංකා විභාග දෙපාර්තරම්ත්තුව திணைக்களும் இலங்கைப் புறுவைக்கூறும் இலங்கைப் பூறுவில் பூறுவில

අධායයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2019 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2019 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2019

සංයුක්ත ගණිතය இணைந்த கணிதம்

II II

Combined Mathematics II

* පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න.

B කොටස

(මෙම පුශ්න පතුයෙහි දු මගින් ගුරුත්වජ ක්වරණය දැක්වෙයි.)

- $11.\,(a)$ P හා Q මෝටර් රථ දෙකක් සෘජු පාරක් දිගේ නියත ත්වරණ සහිතව එකම දිශාවකට චලනය වේ. කාලය t=0 හි දී P හි පුවේගය u m s^{-1} ද Q හි පුවේගය (u+9) m s^{-1} ද වේ. P හි නියත ත්වරණය f m s $^{-2}$ ද Q හි නියත ත්වරණය $\left(f + \frac{1}{10}\right)$ m s $^{-2}$ ද ලව්.
 - (i) $t \ge 0$ සඳහා P හා Q හි චලිතවලට, එකම රූපයක හා
 - (ii) $t \ge 0$ සඳහා P ට සාපේක්ෂව Q හි චලිතයට, වෙනම රූපයක,

පුවේග-කාල වකුවල දළ සටහන් අඳින්න.

කාලය t=0 හි දී P මෝටර් රථය Q මෝටර් රථයට වඩා මීටර 200 ක් ඉදිරියෙන් සිටි බව තවදුරටත් දී ඇත. P පසුකර යෑමට Q මගින් ගනු ලබන කාලය සොයන්න.

(b) සමාන්තර ඍජු ඉවුරු සහිත පළල a වූ ගඟක් u ඒකාකාර පුවේගයෙන් ගලයි. රූපයෙහි, $A,\,B,\,C$ හා Dයන ඉවුරු මත වූ ලක්ෂා සමචතුරසුයක ශීර්ෂ වේ. ජලයට සාපේක්ෂව නියත $v\,(>u)$ වේගයෙන් චලනය චන B_1 හා B_2 බෝට්ටු දෙකක් එකුම මොහොතක A සිට ඒවායේ ගමන් ආරම්භ කරයි. B_1 බෝට්ටුව පළමුව \overline{AC} දිගේ C වෙත ගොස් ඉන්පසු CD දිශාවට ගඟ දිගේ ඉහළට D වෙත යයි. B_{γ} බෝට්ටුව පළමුව AB දිශාවට ගඟ දිගේ පහළට B වෙත ගොස් ඉන්පසු BD දිගේ D වෙත යයි. එකම රූපයක, B_1 හි A සිට C දක්වා ද B_2 හි B සිට D දක්වා ද චලිත සඳහා පුවේග තිුකෝණවල දළ සටහන් අඳින්න.

ඒ නගින්. A සිට C දක්වා චලිතයේ දි B_1 බෝට්ටුවේ චේගය $\frac{1}{\sqrt{2}}\Big(\sqrt{2v^2-u^2}+u\Big)$ බව පෙන්වා B සිට Dදක්වා චලිතයේ දී B_2 බෝට්ටුවේ වේගය සොයන්න.

 B_1 හා B_2 බෝට්ටු දෙකම එකම මොහොතක දී D වෙත ළඟා වන බව තවදුරටත් පෙන්චන්න.

12.(a) රූපයෙහි ABC හා LMN තිකෝණ, $A\hat{C}B=L\hat{N}M=rac{\pi}{3}$ හා $A\hat{B}C=L\hat{M}N=rac{\pi}{2}$ වූ BC හා MN අඩංගු

මුහුණත් සුමට ති්රස් ගෙබිමක් මත තබන ලද පිළිවෙළින් X හා Y සර්වසම සුමට ඒකාකාර කූඤ්ඤ දෙකක ගුරුත්ව කේන්දු තුළින් වූ සිරස් හරස්කඩ වේ. ස්කන්ධය 3m වූ X කුඤ්ඤය ගෙබිම මත චලනය වීමට

නිදහස් වන අතර Y කුඤ්ඤාය අවලව තබා ඇත. AC හා LNරේඛා අදාළ මුහුණත්වල උපරිම බෑවුම් රේඛා වේ. A හා L හි සවිකර ඇති සුමට කුඩා කප්පි දෙකක් මතින් යන සැහැල්ලු අවිතන $ilde{x}$ තන්තුවක දෙකෙළවර ස්කන්ධ පිළිවෙළින් m හා 2mවූ P හා Q අංශු දෙකකට ඈඳා ඇත. රූපයේ පරිදි ආරම්භක පිහිටීමේ දී, තන්තුව නොබුරුල්ව හා AP = AL = LQ = a වන ලෙස P හා Q අංශු පිළිවෙළින් AC හා LN මත අල්වා තබා ඇත. පද්ධතිය නිශ්චලතාවයෙන් මුදා හරිනු ලැබේ. Y වෙත

යාමට X ගනු ලබන කාලය, a හා g ඇසුරෙන් නිර්ණය කිරීමට පුමාණවක් සමීකරණ ලබා ගන්න.

(b) රූපයේ පෙන්වා ඇති පරිදි සුමට සිහින් ABCDE බටයක් සිරස් කලයක සවිකර ඇත. දිග $2\sqrt{3}a$ වූ AB කොටස සෘජු වන අතර එය B හි දී අරය 2a වූ BCDE වෘත්තාකාර කොටසට ස්පර්ශක වේ. A හා E අන්ත O කේන්දුයට සිරස්ව ඉහළින් පිහිටයි. ස්කන්ධය m වූ P අංශුවක් A හි දී බටය තුළ තබා තිශ්චලතාවයේ සිට සීරුචෙන් මුදා හරිනු ලැබේ. \overrightarrow{OA} සමග $\theta\left(\frac{\pi}{3} < \theta < 2\pi\right)$ කෝණයක් \overrightarrow{OP} සාදන විට P අංශුවේ වේගය, v යන්න, $v^2 = 4ga(2 - \cos\theta)$ මගින් දෙනු ලබන බව පෙන්වා, එම මොහොතේ දී P අංශුව මත බටයෙන් ඇති කරන පුතිකිුයාව සොයන්න.

P අංශුව A සිට B දක්වා චලිතයේ දී එය මත බටයෙන් ඇති කරන පුතිකිුිිිිිිිිිි ද සොයන්න.

P අංශුව B පසු කරන විට P අංශුව මත බටයෙන් ඇති කරන පුතිකිුිිිිිිිිිි පාතිකව චෙනස් වන බව පෙන්වන්න.

13. තිරසට $\frac{\pi}{6}$ කෝණයකින් ආනත සුමට අවල තලයක උපරිම බෑවුම් රේඛාවක් මත OA = a හා AB = 2a වන පරිදි O පහළම ලක්ෂාය ලෙස ඇතිව O, A හා B ලක්ෂා එම පිළිවෙළින් පිහිටා ඇත. ස්වාභාවික දිග a හා පුතාහස්ථතා මාපාංකය mg වූ සැහැල්ලු පුතාහස්ථ තන්තුවක එක් කෙළවරක් O ලක්ෂායට ඇඳා ඇති අතර අනෙක් කෙළවර ස්කන්ධය m වූ P අංශුවකට ඇඳා ඇත. P අංශුව B ලක්ෂාය කරා ළඟා වන තෙක් තන්තුව OAB රේඛාව දිගේ අදිනු ලැබේ. ඉන්පසු P

අංශුව තිශ්චලතාවයේ සිට මුදා හරිනු ලැබේ. B සිට A දක්වා P හි චලිත සමීකරණය, $0 \le x \le 2a$ සඳහා, $\ddot{x} + \frac{g}{a} \left(x + \frac{a}{2} \right) = 0$ මගින් දෙනු ලබන බව පෙන්වන්න; මෙහි AP = x වේ.

 $y=x+rac{a}{2}$ යැයි ගෙන ඉහත චලිත සමීකරණය $rac{a}{2} \le y \le rac{5a}{2}$ සඳහා $\ddot{y}+\omega^2 y=0$ ආකාරයෙන් නැවත ලියන්න; මෙහි $\omega=\sqrt{rac{g}{a}}$ වේ.

ඉහත සරල අනුවර්තී චලිතයේ කේන්දුය සොයා $\dot{y}^2=\omega^2\,(c^2-y^2\,)$ සූතුය භාවිතයෙන්, c විස්තාරය හා A වෙත ළඟා වන විට P හි පුවේගය සොයන්න.

O වෙත ළඟා වන විට P හි පුවේගය $\sqrt{7ga}$ බව පෙන්වන්න.

B සිට O දක්වා චලනය වීමට P මගින් ගනු ලබන කාලය $\sqrt{\frac{a}{g}}\left\{\cos^{-1}\left(\frac{1}{5}\right)+2k\right\}$ බවත් පෙන්වන්න; මෙහි $k=\sqrt{7}-\sqrt{6}$ වේ.

P අංශුව O වෙත ළඟා වන විට, තලයට ලම්බව O හි සවිකර ඇති සුමට බාධකයක් හා එය ගැටෙයි. බාධකය හා P අතර පුතාහාගති සංගුණකය e වේ. $0 < e \le \frac{1}{\sqrt{7}}$ නම්, පසුව සිදු වන P හි චලිතය සරල අනුවර්තී නොවන බව පෙන්වන්න.

14.(a) OACB යනු සමාන්තරාසුයක් යැයි ද D යනු AC මත AD:DC=2:1 වන පරිදි වූ ලක්ෂාය යැයි ද ගතිමු. O අනුබද්ධයෙන් A හා B ලක්ෂාවල පිහිටුම් දෛශික පිළිවෙළින් λa හා a හව a වේ; මෙහි a ව ෙව්. \overline{OC} හා \overline{BD} දෙශික, a, a හා a අහුරෙන් පුකාශ කරන්න.

දැන්, \overrightarrow{OC} යන්න \overrightarrow{BD} ට ලම්බ වේ සැයි ගනිමු. $3\left|\mathbf{a}\right|^2\lambda^2+2(\mathbf{a}\cdot\mathbf{b})\lambda-\left|\mathbf{b}\right|^2=0$ බව පෙන්වා $\left|\mathbf{a}\right|=\left|\mathbf{b}\right|$ හා $A\hat{O}B=\frac{\pi}{3}$ නම්, λ හි අගය සොයන්න.

(b) කේන්දුය O හා පැත්තක දිග 2a වූ \overrightarrow{ABCDEF} සවිධි ෂඩසුයක තලයෙහි වූ බල තුනකින් පද්ධතියක් සමන්විත වේ. මූලය O හි ද Ox-අක්ෂය \overrightarrow{OB} දිගේ ද Oy-අක්ෂය \overrightarrow{OH} දිගේ ද ඇතිව බල හා ඒවායේ කිුයා ලක්ෂා, සුපුරුදු අංකනයෙන්, පහත වගුවේ දක්වා ඇත; මෙහි H යනු CD හි මධා ලක්ෂාය වේ. (P නිව්වන වලින් ද a මීටර වලින් ද මනිනු ලැබේ.)

තුියා ලක්ෂපය	පිහිටුම් දෛශිකය	වලග
A	$a\mathbf{i} - \sqrt{3}a\mathbf{j}$.	$3Pi + \sqrt{3}Pj$
C	ai+√3aj	$-3Pi + \sqrt{3}Pj$
E	-2ai	-2√3Pj

පද්ධතිය යුග්මයකට තුලා වන බව පෙන්වා, යුග්මයේ සූර්ණය සොයන්න. දැන්, \overrightarrow{FE} දිගේ කිුයා කරන විශාලත්වය 6P N වූ අතිරේක බලයක් මෙම පද්ධතියට ඇතුළත් කරනු ලැබේ. නව පද්ධතිය ඌනනය වන තනි බලයේ විශාලත්වය, දිශාව හා කිුයා රේඛාව සොයන්න.

15.(a) එක එකක දිග 2a වූ AB හා BC ඒකාකාර දඬු දෙකක් B හි දී සුමට ලෙස සන්ධි කර ඇත. AB දණ්ඩේ බර W ද BC දණ්ඩේ බර 2W ද වේ. A කෙළවර අචල ලක්ෂාකට සුමට ලෙස අසව් කර ඇත. AB හා BC දඬු යටි අත් සිරස සමග පිළිවෙළින් α හා β කෝණ සාදමින් මෙම පද්ධතිය සිරස් තලයක සමතුලිතතාවයේ තබා ඇත්තේ, C හි දී රූපයේ පෙන්වා ඇති BC ට ලම්බ දිශාව ඔස්සේ යෙදූ $\frac{W}{2}$ බලයක් මගිනි. $\beta = \frac{\pi}{6}$ බව පෙන්වා, B සන්ධියේ දී AB දණ්ඩ මගින් BC දණ්ඩ මත යොදන පුතිකිුයාවෙහි තිරස් හා සිරස් සංරචක සොයන්න. $\tan \alpha = \frac{\sqrt{3}}{9}$ බවත් පෙන්වන්න.

(b) රූපයෙහි පෙන්වා ඇති රාමු සැකිල්ල ඒවායේ කෙළවරවල දී සුමට ලෙස සන්ධි කළ AB,BC,BD,DC හා AC සැහැල්ලු දඬු පහකින් සමන්විත වේ.

මෙහි AB = CB = a ද CD = 2a ද $B\hat{A}C = \frac{\pi}{6}$ ද බව දී ඇත. රාමු සැකිල්ල A හි දී අචල ලක්ෂායකට සුමට ලෙස අසව කර ඇත. D සන්ධියේ දී W භාරයක් එල්ලා, AC සිරස්ව ද CD තිරස්ව ද ඇතිව සිරස් තලයක රාමු සැකිල්ල සමතුලිතව තබා ඇත්තේ C සන්ධියේ දී AB දණ්ඩට සමාන්තරව රූපයේ පෙන්වා ඇති දිශාවට යෙදූ P බලයක් මගිනි. බෝ අංකනය භාවිතයෙන් D, B හා C සන්ධි සඳහා පුතාහමල සටහනක් අඳින්න.

- (i) ආතති ද තෙරපුම් ද යන්න පුකාශ කරමින් දඬු පහේම පුතාහබල, හා
- (ii) P හි අගයසොයන්න.

- ${f 16}.$ ${f (i)}$ අරය a වූ තුනී ඒකාකාර අර්ධ වෘත්තාකාර කම්බියක ස්කන්ධ කේන්දුය එහි කේන්දුයේ සිට ${2a\over \pi}$ දුරකින් ද
 - (ii) අරය a වූ තුනී ඒකාකාර අර්ධ ගෝලාකාර කබොළක ස්කන්ධ කේන්දුය එහි කේන්දුයේ සිට $\frac{a}{2}$ දුරකින් ද පිහිටන බව පෙන්වන්න.

කේන්දුය O හා අරය $2\,a$ වූ තුනී ඒකාකාර අර්ධ ගෝලාකාර කබොළකට රූපයේ දැක්වෙන පරිදි දිග $2\pi a$ වූ AB සෘජු කොටසකින් ද BD විෂ්කම්භය AB ට ලම්බ වන පරිදි, අරය a වූ BCD අර්ධ වෘත්තාකාර කොටසකින් ද සමන්විත ඒකාකාර කම්බියකින් සාදනු ලැබූ ABCD තුනී මිටක් දෘඪ ලෙස සවි කිරීමෙන් හැන්දක් සාදා ඇත. A ලක්ෂාය අර්ධ ගෝලයේ ගැට්ට මත ඇති අතර OA යන්න AB ට ලම්බ ද OD යන්න AB ට සමාන්තර ද වේ. තව ද BCD යන්න OABD හි තලයේ පිහිටා ඇත. අර්ධ ගෝලයේ ඒකක වර්ගඵලයක ස්කන්ධය σ ද මිටෙහි ඒකක දිගක ස්කන්ධය $\frac{a\sigma}{2}$ ද වේ. හැන්දේ ස්කන්ධ කේන්දුය, OA සිට පහළට $\frac{2}{19\pi}\Big(8\pi-2\pi^2-1\Big)a$ දුරකින් ද O හා D හරහා යන රේඛාවේ සිට $\frac{5}{19}a$ දුරකින් ද Oහා D හරහා යන රේඛාවේ සිට $\frac{5}{19}a$ දුරකින් ද Oහා Oහරහා යන රේඛාවේ සිට Oවින දාරකින් ද Oහා Oහරහා යන රේඛාවේ සිට O0 වෙන්වන්න.

රළු තිරස් මේසයක් මත, අර්ධ ගෝලාකාර පෘෂ්ඨය එය ස්පර්ශ කරමින්, හැන්ද තබා ඇත. අර්ධ ගෝලාකාර පෘෂ්ඨය හා මේසය අතර ඝර්ෂණ සංගුණකය $\frac{1}{7}$ කි. \overline{AO} දිශාවට A හි දි යොදනු ලබන තිරස් බලයක් මගින් OD සිරස්ව ඇතිව හැන්ද සමතුලිතතාවයේ තැබිය හැකි බව පෙන්වන්න.

- 17.(a) ආරම්භයේ දී එක එකක් සුදු පාට හෝ කළු පාට වූ, පාටින් හැර අන් සෑම අයුරකින්ම සමාන බෝල 3 ක් පෙට්ටියක අඩංගු වේ. දැන්, පාටින් හැර අන් සෑම අයුරකින්ම පෙට්ටියේ ඇති බෝලවලට සමාන සුදු පාට බෝලයක් පෙට්ටිය තුළට දමා ඉන්පසු සසම්භාවී ලෙස බෝලයක් පෙට්ටියෙන් ඉවතට ගනු ලැබේ. පෙට්ටියේ ඇති බෝලවල ආරම්භක සංයුති හතර සම සේ භවා වේ යැයි උපකල්පනය කරමින්,
 - (i) ඉවතට ගත් බෝලය සුදු පාට එකක් වීමේ,
 - (ii) ඉවතට ගත් බෝලය සුදු පාට එකක් බව දී ඇති විට ආරම්භයේ දී පෙට්ටිය තුළ හරියටම කළු පාට බෝල 2 ක් තිබීමේ,

සම්භාවිතාව සොයන්න.

(b) μ හා σ යනු පිළිවෙළින් $\left\{x_i:i=1,2,...,n\right\}$ අගයන් කුලකයේ මධානාස හා සම්මත අපගමනය යැයි ගනිමු. $\left\{\alpha x_i:i=1,2,...,n\right\}$ අගයන් කුලකයේ මධානාසය හා සම්මත අපගමනය සොයන්න; මෙහි α යනු නියනයකි.

එක්තරා සමාගමක සේවකයින් 50 දෙනකුගේ මාසික වැටුප් පහත වගුවේ සාරාංශගත කර ඇත:

මායික වැටුප (රුපියල් දහසේ ඒවායින්)	සේවකයින් ග ණන
5 – 15	9
15 – 25	11
25 – 35	14
35 – 45	10
45 – 55	6

සේවකයින් 50 දෙනාගේ මාසික වැටුප්වල මධානාය හා සම්මත අපගමනය නිමානය කරන්න.

වසරක ආරම්භයේ දී එක් එක් සේවකයාගේ මාසික වැටුප p% වලින් වැඩි කරනු ලැබේ. ඉහත සේවකයින් 50 දෙනාගේ නව මාසික වැටුප්වල මධානාංය රුපියල් $29\ 172$ බව දී ඇත. p හි අගය හා සේවකයින් 50 දෙනාගේ නව මාසික වැටුප්වල සම්මත අපගමනය නිමානය කරන්න.