Online Algorithms and Scheduling

Profesor: Andreas Wiese. Auxiliar: Andrés Cristi.

Clase Auxiliar 6 23 de Abril

P1. Slack Coverage Algorithm

En el espacio (\mathbb{R}^2, d) , con d la distancia Euclideana, definimos

$$slack(x, y, r) = d(y, x) + d(x, r) - d(y, r)$$

que por la desigualdad triangular es siempre un valor no negativo.

Para el problema 2-server consideremos el algoritmo Slack-Coverage(γ) (que abreviamos SC_{γ}), con $\gamma \in [0, 1]$. Este algoritmo frente a un request r si x es el servidor más cercano, mueve el otro servidor, y, hacia el servidor x una distancia $\gamma \cdot \text{slack}(x, y, r)$ y luego sirve r con x.

Consideremos el potencial

$$\Phi = aM_{\min} + b \cdot d(x, y)$$

donde M_{\min} es el valor del matching mínimo entre los servidores de SC_{γ} y OPT, y a, b son parámetros positivos.

- a) Pruebe que cuando OPT sirve un request, Φ aumenta en a lo más $a \cdot c_{\text{OPT}}$, con c_{OPT} la distancia que mueve OPT.
- b) Denotando x_0, y_0 a las posiciones de los servidores de SC_{γ} antes de servir r, pruebe que

$$\Delta d(x, y) < d(y_0, r) + d(x_0, y_0).$$

c) Sean s_1 y s_2 los servidores de OPT, donde s_1 es el que acaba de servir r. Suponga que antes de que SC_{γ} mueva, x estaba emparejado con s_1 en M_{\min} . Pruebe que

$$\Delta\Phi \le a(\gamma \cdot \operatorname{slack}(x, y, r) - d(x, r)) + b(d(y, r) - d(x, y)).$$

d) En el caso en que y era el que estaba emparejado con s_1 , pruebe que

$$\Delta \Phi \le a (d(x, y) - \gamma \cdot \operatorname{slack}(x, y, r) - d(y, r)) + b (d(y, r) - d(x, y))$$

- e) Encuentre las condiciones sobre (a, b, γ) para que SC_{γ} sea a-competitivo.
- f) Pruebe que SC_{γ} es 3-competitivo y que este es el mejor factor que permite este método.