INFORMATION REDUNDANCY — CODING

Information Redundancy - Coding

- *A data word with d bits is encoded into a codeword with c bits c>d
- *Not all 2^C combinations are valid codewords
- *To extract original data c bits must be decoded
- If the c bits do not constitute a valid codeword an error is detected
- *For certain encoding schemes some types of errors can also be corrected
- *Key parameters of code:
 - number of erroneous bits that can be detected
 - number of erroneous bits that can be corrected

*Overhead of code:

- additional bits required
- time to encode and decode

Hamming Distance

*The Hamming distance between two codewords - the number of bit positions in which the two words

differ

 $\ensuremath{\diamond} \text{Two words}$ in this figure are connected by an edge if their Hamming distance is 1

Hamming Distance - Examples

- *101 and 011 differ in two bit positions Hamming distance of 2
 - Need to traverse two edges to get from 101 to 011
- *101 and 100 differ by one bit position a single error in the least significant bit in either of these two codewords will go undetected
- *A Hamming distance of two between two codewords implies that a single bit error will not change one of the codewords into the other

Distance of a Code

- *The Distance of a code the minimum Hamming distance between any two valid codewords
- *Example Code with four codewords {001,010,100,111}
 - has a distance of 2
 - can detect any single bit error
- *Example Code with two codewords {000,111}
 - has a distance of 3
 - can detect any single or double bit error
 - if double bit errors are not likely to happen code can correct any single bit error

Detection vs. Correction

- ⋄To detect up to k bit errors, the code distance should be at least k+1
- *To correct up to k bit errors, the code distance should be at least 2k+1

Coding vs. Redundancy

- *Many redundancy techniques can be considered as coding schemes
- *The code {000,111} can be used to encode a single data bit
 - 0 can be encoded as 000 and 1 as 111
 - This code is identical to TMR
- *The code {00,11} can also be used to encode a single data bit
 - 0 can be encoded as 00 and 1 as 11
 - This code is identical to a duplex

Separability of a Code

- *A code is separable if it has separate fields for the data and the code bits
- *Decoding consists of disregarding the code bits
- *The code bits can be processed separately to verify the correctness of the data
- *A non-separable code has the data and code bits integrated together extracting the data from the encoded word requires some processing

Parity Codes

- *The simplest separable codes are the parity codes
- A parity-coded word includes d data bits and an extra bit which holds the parity
- *In even (odd) parity code the extra bit is set so that the total number of 1's in the (d+1)-bit word (including the parity bit) is even (odd)
- *The overhead fraction of this parity code is 1/d

Properties of Parity Codes

- *A parity code has a distance of 2 will detect all single-bit errors
- *If one bit flips from 0 to 1 (or vice versa) the overall parity will not be the same error can be detected
- *Simple parity cannot correct any bit errors

Encoding and Decoding Circuitry for Parity Codes

The encoder: a modulo-2 adder - generating a 0 if the number of 1's is even The output is the parity signal

(a) Encoder

(b) Decoder

Parity Codes - Decoder

*The decoder generates the from the received and compares it received parity bit

- If they match, the output of the exclusive-or gate is a 0 indicating no error has been detected
- ♦ If they do not match the output is 1, indicating an error
- *Double-bit errors can not be detected by a parity check
- *All three-bit errors will be detected

Even or Odd Parity?

- *The decision depends on which type of all-bits error is more probable
- *For even parity the parity bit for the all 0's data word will be 0 and an all-0's failure will go undetected it is a valid codeword
- *Selecting the odd parity code will allow the detection of the all-0's failure
- *If all-1's failure is more likely the odd parity code must be selected if the total number of bits (d+1) is even, and the even parity if d+1 is odd

Parity Bit Per Byte

- *A separate parity bit is assigned to every byte (or any other group of bits)
- *The overhead increases from 1/d to m/d (m is the number of bytes or other equalsized groups)
- *Up to m errors will be detected if they occur in different bytes.
- *If both all-0's and all-1's failures may happen select odd parity for one byte and even parity for another byte

Error-Correcting Parity Codes

Simplest scheme - data is organized in a 2-dimensional array

```
      0
      0
      0
      1
      1
      1
      1

      1
      0
      1
      0
      1
      1
      0

      1
      1
      0
      0
      0
      0
      0
      0

      0
      0
      0
      1
      1
      1
      1
      1

      1
      1
      1
      1
      1
      0
      0
      0
```

- *Bits at the end of row parity over that row
- &Bits at the bottom of column parity over column
- *A single-bit error anywhere will cause a row and a column to be erroneous
- *This identifies a unique erroneous bit
- *This is an example of overlapping parity each bit is covered by more than one parity bit

Overlapping Parity - General Model

- *Purpose identify every single erroneous bit
- *d data bits and r parity bits total of d+r bits
- *Assuming single-bit errors d+r error states + one no-error state total of d+r+1 states
- *We need d+r+1 distinct parity "signatures" (bit configurations) to distinguish among the states
- *r parity checks generate 2^r parity signatures
- *Hence, r is the smallest integer that satisfies

$$2^r \ge d + r + 1$$

Question - how are the parity bits assigned?

Assigning Parity Bits - Example

- &d+r+1=8 number of states the word can be in
- *A possible assignment of parity values to states
- *In (a₃ a₂ a₁ a₀ p₂ p₁ p₀), bit positions 0,1 and 2 are parity bits, the rest are data bits

p_0 0 4 2 p_2 3 6 5	
p_{I} 1	

	State	Erroneous parity check(s)	Syndrome
	No errors	None	000
ĺ	Bit 0 (p ₀) error	p ₀	001
	Bit 1 (\mathfrak{p}_1) error	\mathfrak{p}_1	010
? [Bit $2 (p_2)$ error	\mathfrak{p}_2	100
	Bit 3 (a ₀) error	p_0, p_1	011
	Bit $4 (a_1)$ error	p_0, p_2	101
	Bit 5 (a_2) error	$\mathfrak{p}_1,\mathfrak{p}_2$	110
	Bit 6 (a_3) error	p_0, p_1, p_2	111

Syndrome – indicator of error

(7,4) Hamming Single Error Correcting (SEC) Code

- *po check fails also when bit 3 (ao) is in error
 - Also bit 4 and bit 6
- *A parity bit covers all bits whose error it indicates
- *po covers positions $0,3,4,6 p_0 = a_0 \oplus a_1 \oplus a_3$
- *p1 covers positions $1,3,5,6 p_1 = a_0 \oplus a_2 \oplus a_3$
- *p2 covers positions $2,4,5,6 p_2 = a_1 \oplus a_2 \oplus a_3$

Definition - Syndrome

- $p_0 = a_0 \oplus a_1 \oplus a_3$
- $p_1 = a_0 \oplus a_2 \oplus a_3$
- $p_2 = a_1 \oplus a_2 \oplus a_3$
- *Example: $a_3a_2a_1a_0 = 1100$ and $p_2p_1p_0 = 001$
- *Suppose 1100001 becomes 1000001
- $Recalculate p_2p_1p_0 = 111$
- *Difference (bit-wise XOR) is 110
- *This difference is called syndrome indicates the bit in error
- *It is clear that a2 is in error and the correct data is a3a2a1a0=1100

Calculating the Syndrome - (7,4) Hamming Code

- *The syndrome can be calculated directly in one step from the bits a₃ a₂ a₁ a₀ p₂ p₁ p₀
- *This is best represented by the following matrix operation where all the additions are mod 2 $a_3 a_2 a_1 a_0 p_2 p_1 p_0$

 a_0

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_3 \\ a_2 \\ a_1 \end{bmatrix}$$

Parity check matrix

$$\left[a_3 \right] = \left[s_2 s_1 s_0 \right]$$

$$p_0 = a_0 \oplus a_1 \oplus a_3$$

$$p_1 = a_0 \oplus a_2 \oplus a_3$$

$$p_2 = a_1 \oplus a_2 \oplus a_3$$

Selecting Syndromes

State	Erroneous parity check(s)	Syndrome
No errors	None	000
Bit $0 (p_0)$ error	po	001
Bit 1 (p_1) error	\mathfrak{p}_1	010
Bit 2 (\mathfrak{p}_2) error	\mathfrak{p}_2	100
Bit 3 (a_0) error	p ₀ , p ₁	011
Bit $4 (a_1)$ error	p ₀ , p ₂	101
Bit 5 (a_2) error	p ₁ ,p ₂	110
Bit 6 (a ₃) error	p_0, p_1, p_2	111

- Data and parity bits
 can be reordered so that: calculated syndrome minus 1
 will be the index of the erroneous bit
- ♦In Example the order a3a2a1p2a0p1p0
- *In general if $2^r > d + r + 1$ we need to select d + r + 1 out of the 2^r binary combinations to be syndromes
- *Combinations with many 1s should be avoided less 1s in parity check matrix simpler circuits for the encoding and decoding operations

Selecting Check Matrix - Example

- *d=3 r=3
- *Only 7 out of the 8 3-bit binary combinations needed *Two possible parity check matrices:

$$\begin{bmatrix} a_{2} a_{1} a_{0} p_{2} p_{1} p_{0} \\ 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} a_{2} a_{1} a_{0} p_{2} p_{1} p_{0} \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$(a) \qquad (b)$$

- *(a) uses 111 (b) does not
- *Encoding circuitry for (a) requires one XOR gate for p₁ and p₂ but two XOR gates for p₀
- *Encoding circuitry for (b) requires one XOR gate for each parity bit

Improving Detection

$$\begin{bmatrix} a_3 a_2 a_1 a_0 p_2 & p_1 & p_0 \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & a_1 \end{bmatrix} \begin{bmatrix} a_3 \\ a_2 \\ a_1 \end{bmatrix} = \begin{bmatrix} s_2 s_1 s_0 \end{bmatrix}$$

 a_0

- *Previous code can correct a single bit error but not detect a double error
- *Example 1100001 becomes 1010001
 - a2 and a1 are erroneous syndrome is 011
- *Indicates erroneously that bit ao should be corrected
- One way of improving error detection capabilities adding an extra check bit which is the parity bit of all the other data and parity bits
- *This is an (8,4) single error correcting/double error detecting (SEC/DED) Hamming code

Syndrome Generation for (8,4) Hamming Code

- ◆ p³ parity bit of all data and check bits a single bit error will change the overall parity and yield S³=1
- ◆ The last three bits of the syndrome will indicate the bit in error to be corrected as before as long as S₃=1
- ♦ If S₃=0 and any other syndrome bit is nonzero - a double error is detected

```
\begin{bmatrix} a_3 \\ a_2 \\ a_1 \\ a_0 \\ p_3 \\ p_2 \\ p_1 \\ p_0 \end{bmatrix}
```

Example

- *Single error 11001001 becomes 10001001
- *Syndrome is 1110 indicating that **a**₂ is erroneous
- *Two errors 11001001 becomes 10101001
- *Syndrome is 0011 indicating an uncorrectable error

Comparing Overlapping Parity Codes

- *As d increases, the parity overhead r/d decreases
- *The probability of having more than one bit error in the d+r bits increases
- *f probability of a bit error & assume bit errors
 occur independently of one another
- Probability of more than one bit error in a field of d+r bits -

$$\Phi(d,r) = 1 - (1-f)^{d+r} - (d+r)f(1-f)^{d+r-1}$$

$$\approx 0.5(d+r)(d+r-1)f^2$$
 (for $f << 1$)

Comparison - Cont.

- *If we have a total of D data bits, we can reduce the probability of having more than one bit error by partitioning the D bits into D/d equal slices, with each slice being encoded separately
- *We therefore have a tradeoff between the probability of undetected error and the overhead r/d
- *The probability that there is an uncorrectable error in at least one of the D/d slices is

$$\Psi(D,d,r) = 1 - [1 - \Phi(d,r)]^{D/d}$$

$$\approx (D/d) \cdot \Phi(d,r)$$
 (for $\Phi(d,r) << 1$)

Numerical Comparisons (D=1024, f=10⁻¹¹)

d	r	Overhead r/d	$\Psi(D,d,r)$
2	3	1.5000	0.5120E-16
4	3	0.7500	0.5376E-16
8	4	0.5000	0.8448E-16
16	5	0.3125	0.1344E-15
32	6	0.1875	0.2250E-15
64	7	0.1094	0.3976E-15
128	8	0.0625	0.7344E-15
256	9	0.0352	0.1399E-14
512	10	0.0195	0.2720E-14
1024	11	0.0107	0.5351E-14

Checksum

- Primarily used to detect errors in data transmission on communication networks
- *Basic idea add up the block of data being transmitted and transmit this sum as well
- *Receiver adds up the data it received and compares it with the checksum it received
- *If the two do not match an error is indicated

Versions of Checksums

- *Data words d bits long
- *Single-precision version checksum is a modulo 2^d addition
- $_{ ilde{v}}$ Double-precision version modulo 2^{2d} addition
- *In general single-precision checksum catches fewer errors than double-precision
 - only keeps the rightmost d bits of the sum
- *Residue checksum takes into account the carry out of the d-th bit as an end-around carry
 - somewhat more reliable
- *The Honeywell checksum concatenates words into pairs for the checksum calculation (done modulo 2^{2d}) guards against errors in the same position

Comparing the Versions

0000	0000	0000	
0101	0101	0101	
1111	1111	1111	00000101
0010	0010	0010	11110010
0110	$\boxed{00010110}$	0111	11110111

- (a) Single-precision
- (b) Double-precision
- (c) Residue

(d) Honeywell

Comparison - Example

(a) Circuit

(b) Single-Precision

- (c) Honeywell
- In single-precision checksum transmitted checksum and computed checksum match
- In Honeywell checksum computed checksum differs from received checksum and error is detected
- *All checksum schemes allow error detection
- Do not allow error location
- Entire block of data must be retransmitted if an error is detected

M-of-N Codes

- Unidirectional error codes
 - one or more 1s turn to 0s and no 0s turn to 1s (or vice versa) (M)
- *Exactly M bits out of N are 1: (N) codewords
 - A single bit error (M+1) or (M-1) 1s
 - This is a non-separable code
- *To get a separable code:
 - Add M extra bits to the M-bit data word for a total of M 1s
 - This is an M-of-2M separable unidirectional error code
- *Example 2-of-5 code
 - for decimal digits:

Digit	Codeword
0	00011
1	00101
2	00110
3	01001
4	01010
5	01100
6	10001
7	10010
8	10100
9	11000

Berger Code

- *Low overhead unidirectional error code
- *Separable code
 - counts the number of 1s in the word
 - expresses it in binary
 - complements it
 - appends this quantity to the data

***Example**

- Encoding 11101
- four 1s
- 100 in binary
- 011 after complementing
- the encoded word 11101011

Overhead of Berger Code

*d data bits - at most d 1s - up to $\left|\log_2(d+1)\right|$ bits to describe

*Overhead = $\lceil \log_2(d+1) \rceil / d$

- *r number of check bits
- *If $d = 2^k 1$ (integer k)
 - r=k
 - maximum-length Berger code
- *Smallest number of check bits out of all separable codes (for unidirectional error detection)

d	r	Overhead
8	4	0.5000
15	4	0.2667
16	5	0.3125
31	5	0.1613
32	6	0.1875
63	6	0.0952
64	7	0.1094
127	7	0.0551
128	8	0.0625
255	8	0.0314
256	9	0.0352