APPROACHES TO LANGUAGE

Lecture 6:

Child Language Acquisition - Development of the Sound System

Overview

- Perception of speech
- Early vocalisations
- Babbling
- Development of discernable speech sounds vowels & consonants
- Adjusting to the adult model
- Speech perception vs. speech production

Approx. age	Typical sounds
Birth - 1 month	'reflexive sounds' - burps/crying/grunts
2 – 3 months	cooing
4 – 6 months	marginal babbling – squeals, yells, growls – made with the lips 'vocal play'
7 – 11 months	babbling/ 'the canonical stage'
10 – 18 months	first words/ 'the variegated stage'

Perception of speech sounds: prenata & post-natal

- Speech is heard in the womb salient characteristics - rhythm & intonation.
- **Evidence:**
 - infants turn heads to recognisable sounds;
- infants suck more vigorously on pacifiers when listening to familiar voices;

Post-natal recognition of consonants & vowels

- Measures of sucking & heart rate
- Contrasting [b] & [p]
- Each sound played for several minutes
 change of sound coincided with increased heart & sucking rates
- By 6 months children hear the difference between vowel sounds

Phonetic sensitivity

- Infants up to 6 to 8 months can discriminate phonemes from native and non-native languages
- 10-12 month-olds cannot
- Infants can perceive voicing contrast
- Japanese infants can distinguish between [r] and [l]; their parents cannot
- Babies can perceive voicing contrasts, [pa] vs. [ba]; place of articulation contrasts, [da] vs. [ga]; manner of articulation contrasts, [ra] vs. [la]

Eimas, Siqueland, Jusczyk & Vigorito (1971) Werker & Tees (1984) Recognising sounds in a sequence Minimal pairs

Heal /t/ - /k/ Minimal Pairs Picture Cards

- ▶ Bat vs. Cat
- ▶ Bin vs. Pin
- ► Goat vs. Boat

Minimal pairs: pairs of words which differ in only one phoneme and have distinct meanings.

Phonological development

- Children take time to master the range of sounds and sound structures relevant to their target language
- Children first acquire the small set of sounds common to all languages, e.g. [p], [s], [b], [m]; later stages: less common sounds of their own language
- As they do this they often make errors (simplification processes)
- There is considerable consistency between children in the types of errors that they make

From perception to production & from vocalisation to babbling

- ▶ 2-4 months: the "cooing" stage
- Develops alongside crying
- Child begins to respond to caregiver's smiles and speech
- Quieter, lower in pitch and more musical than crying
- Often consonant + vowel (CV) syllabic structures- [ga] [gu]
- ► End of this stage laughter begins to emerge

4-6 months

- ▶ 4-6 months: "vocal play"
- Much steadier and longer than cooing
- Sequences of CV syllables [ga ga ga]
- ► Seems to be a strong element of practice
- ▶ Parents often hear words which are not there ... [ma ma ma]

'The Canonical Stage'

- Sounds become recognisably like the adult model.
- Consist of syllabic reduplications e.g. CV [bababa] or CVC [panpanpan]
- Similar structure of babbling found in all languages studied
- Deaf children also make babbling sounds; babies of deaf parents exposed to sign language: manual babbling (Petito et al., 2001)
- However from 6 months infants from different language communities begin to babble distinctively (difference in intonation is marked).

Babbling

Babbling: the earliest stage in language acquisition; neurological studies: babbling linked to language centres in the brain → brain specialisation for language from an early age

http://www.youtube.com/watch?v=Zmf1kpXRlJg

Babbling

- Babbling increases in frequency and complexity until the age of about 12 months.
- Babbling doesn't seem to be crucial for the later development of speech.
- Degree of discontinuity between babbling & production of speech sounds.

Order of acquisition of sounds

The order of acquisition of classes of sounds begins with **vowels**

- Initially highly variable
- Highly accurate from age 2
- → Therefore the acquisition of consonants has been the major focus

Common & uncommon sounds during the babbling phase (O'Grady 2005:150)

Frequently found	Infrequently found							
consonants	consonants							
p b m	f v th							
t d n	sh ch j							
k g	l r ng							
s h								
w y								

The Variegated Stage

- Consonants and vowels change [badu]
- ▶ By 10 months the sounds have settled to a recognisable L1 range
- ▶ By 13-14 months children start to produce recognisable words although these may be realised differently, e.g. one child used following pronunciation for 'the':
 - duh, deh, tuh, zuh, luh, dl, dee, the

Early vowels & consonants

5 vowel sounds typically acquired early:

```
[i:] "ee"
[a:] "ah"
[u:] "oo"
[ðu] "oh"
[ɜː] "uh"
```

Most common consonants in word-initial position are "b", "d", "m", "n" and "h".

Consonants are acquired in a front-to-back order, (where front and back refer to the origin of the articulation of the sound).

Thus [t k f b g ŋ j d s ... before

... $1 r \int t \int dz v z \delta \theta$

- Vowels seem to be acquired in a back-to-front order, with "or" (ball) and "e" (tell) preceding "ee" (meet) and "u" (mud).
- It appears that two variables dominate this process: visibility of articulators and ease of articulation

Typical consonant inventory by 2 years (O'Grady 2005:152)

Correlation between these sounds and the distribution of these sounds in the world's languages – sounds acquired early are generally found in more languages than the sounds that are acquired late. Some sounds are easier for the human vocal tract to produce.

Typical Consonant Inventory (Age 4)

Child Articulations

What happens when a child can't pronounce an adult target form/sound?

- delete it
- substitute it

MANNER

Phonological error patterns

PLACE

CONSONANTS (PULMONIC)

© 2005 IPA

	Bila	abial	Labio	dental	Den	tal	Alve	eolar	Postalveolar	Reti	oflex	Pal	atal	Ve	elar	Uv	ular	Phary	ngeal	Glo	ttal
Plosive	p	b				7,0	t	d	io .	t	d	c	J	k	g	q	G			3	er.
Nasal		m		m				n			η		ŋ		ŋ		N				
Trill		В						r	,								R				
Tap or Flap				V				ſ			t										
Fricative	ф	β	f	V	θ	ð	S	Z	J 3	Ş	Z	ç	j	X	Y	χ	R	ħ	ſ	h	ĥ
Lateral fricative			3		4	*	1	ß													
Approximant				υ				I			Į.		j		щ						
Lateral approximant								1			1		λ		L						

Deletion

- dog > dah
- cat > ca
- foot > foo

CVC CV

cat > ca

CV consonants are favoured internationally.

•Consonant cluster reduction: two or more consonants are reduced to a single consonant 'snow'/snəʊ/→ /no/, CCV→ CV

Deletion: consonant clusters

- When a consonant at the beginning of the word is followed by 'l' or 'r' - drop the 'l' or 'r': blanket -> "banket" or "bankie" bring -> "bing"
- When a nasal consonant ('m', 'n', 'ng') is followed by 'p', 't' or 'k' at the end of the word, delete the nasal: bump -> "bup" tent -> 'tet'
- When 's' is followed by another consonant, drop the 's': stop -> "top" test -> "tet"

- ask -> "aks"
- spaghetti -> "pas-ghetti"

Child finds it easier to pronounce "s" at the end of the syllable than at the beginning if it's next to another consonant.

Substitution: 1. The stopping process

The stopping process: replace a consonant that is produced with a continuous flow of air (e.g. 's', 'z', 'sh') by one that stops air flow (e.g. 't', 'd'):

Word	Child's pronun.	Substit- ution
sing	ting	s>t
see	tee	s>t
zebra	debra	z>d
thing	ting	th>t
this	dit	th>d
shoes	tooz	sh>t

2. The gliding process

► Replace 'l' or 'r' with 'y' or 'w'

Word	Child's	Substitution
	pronunciation	
lion	yion	1 > y
leep	yeep	1 > y
look	wook	1 > w
rock	wock	1 > w
story	stowy	r > w

3. The denasalisation process

Replace a nasal sound ('n', 'm', ng') with a non-nasal sound ('b', 'd')

Word	Child pronun.	Substit- ution
	pronun	
jam	dab	m > b
room	woob	m > b
spoon	bood	sp > b $n > d$
		n > d

4: The fronting process

Replace a sound with one made towards the front of the mouth.

Word	Child's	Substitution
	pronunciation	
thumb	fum	th > f
ship	sip	sh > s
go	doe	g > d

Assimilation

- **ASSIMILATION**: Context-sensitive voicing—one sound will made more similar to or exactly the same as another one.
- a. Consonant voicing: voiceless consonants (beginning of words)followed by a vowel tend to become voiced

'pet'/pet/ \rightarrow /bet/

b.Consonant devoicing: voiced consonants at the end of words → voiceless

'pig'/pīg/→/bīk/

Assimilation

Word	Child's	Change
	pronunciation	
pig	big	p > b
push	bush	
tell	dell	
soup	zoop	

Reduplication

- "water" [wowo]
- "chip" [tɪtɪ]
- "tigger" [tɪdɪ]
- "chicken" [kıki]
- "money" [mimi]
- "scissors"; "house" [dɪdɪ]
- "necklace" [nene]
- "take" [keke]

Brief overview + additional strategies

- Children tend to produce sounds at the beginnings of syllables first
 and front consonants and back vowels first
- ► They avoid consonant clusters
 - "sky" is often pronounced [kai] or [gai]
- Unstressed syllables are dropped
 - "nana" instead of "banana"
- Consonants "harmonise" with each other
 - "cat" is [tat]
- [w] and [j] are used instead of [l]
- Fricative sounds are "stopped"
 - "scissors" is pronounced as [dɪdɪ]

Why do children make these errors? Problems in speech perception?

• No. Children are able to discriminate a phonemic contrast before they are able to produce it.

C: fis

A: This is your fis?

C: No, my fis.

A: Oh, this is your fish.

C: Yes. My fis.

Berko & Brown (1960)

Why do children make these errors? Problems in speech perception?

• No. Children aged 14-15 months can detect even quite subtle mispronunciations

'opple' vs. 'apple'

Swingley & Aslin (2002)

Speech perception > Speech production

Linguist Neil Smith and his 2 year-old son Amahl; Amahl's pronunciation of "mouth" is [maus].

NS: What does [maus] mean?

A: Like a cat.

NS: Yes, what else?

A: Nothing else.

NS: It's part of your head.

A: (fascinated)

NS: (touching A's mouth) What's this?

A: [*ma*ʊ*s*]

Speech perception > Speech production

- Amahl realized that his word for "mouse" and his word for "mouth" were the same.
- Children hear the correct adult pronunciation: they are unable to produce it accurately themselves.

Why do children make these errors? Problems with articulation?

- The substituted sounds are easier to produce...
- The deleted sounds are more difficult to produce...

Why do children make these errors? A phonological component.

- Articulation skills do play a part...
- ... but the kinds of errors children make demonstrate they're acquiring a system.
- Phonological error patterns: simplifications of the adult pronunciation → easier articulation
- Phonological substitutions/other error patterns: systematic & rule-governed (not random rules) found in the very early stages of acquisition; they generally reflect natural phonological processes (adult language), e.g. syllable-final consonant devoicing (German)

Summary

- Newborn children can recognise the speech of their parents and can discriminate amongst speakers.
- ► Age 2 they recognise and are acquiring the sounds of their language.
- Difficulties in pronunciation are dealt with systematically by: substitution, deletion and reduplication.
- Phonological errors are not due to speech perception problems: speech perception > speech production

Concepts introduced

- Babbling
- Canonical stage
- Deletion
- Minimal pairs
- Reduplication
- Reflexive sounds
- Syllabic structure
- Substitution
- Variegated stage

Post-class reading & references

- Fromkin, Rodman & Hyams
- Trask, chapter 8
- Yule, chapter 14
- Bloomer et al Ch 10
- Crystal encyclopaedia, section 42
- O'Grady, W. (2005) How Children Learn Language. Cambridge: Cambridge University Press.