SOLUTION FOR HOMEWORK ASSIGNMENT NO. 06

Nils Hoyer, Maurice Morgenthaler

Exercise 6.1

We are asked to derive the extenden likelihood function for the binned case.

We start by looking at the content in each bin, i.e.

$$n_b(\theta) = n_{\text{tot}} \int_{x_0 + h(b-1)}^{x_0 + hb} dx \cdot f(x \mid \theta)$$
(1)

where h is the width of the bin and b the bin number.

For a Poissonian distribtion we then get

$$f(m, n(\theta)) = \frac{n_{tot}^m e^{-n_{tot}}}{m_{tot}!} \cdot \frac{m_{tot}!}{m_1! \dots m_N!} \left(\frac{n_1}{n_{tot}}\right)^{m_1} \dots \left(\frac{n_N}{n_{tot}}\right)^{m_N} = \prod_{i=1}^N \frac{n_i^{m_i}}{m_i!} e^{-n_i}$$
(2)

Therefore

$$\mathcal{L} = \ln\left(\sum_{i=1}^{N} f(m, n(\theta))\right) = \sum_{i=1}^{N} m_i \cdot \ln(n_i) - \ln(m_i!) - n_i \approx \sum_{i=1}^{N} m_i \cdot (\ln(n_i) - \ln(m_i)) - (m_i + n_i)$$
(3)

where I used Stirling's formula.

Exercise 6.2

Given a PDF

$$f(t \mid \tau) = \frac{e^{-t/\tau}}{\tau} \tag{4}$$

we are asked to generate 100 pseudo events for $\tau_{\rm true}=1.0\,{\rm s}$. Using the unbinned maximum likelihood function we are asked to find the best fit value for τ by computing a local minimum using Minuit. Afterwards we should repeat this process for the binned case with $\Delta t=0.5\,{\rm s}$ where

$$\nu_i(\tau) = n_{\text{tot}} \int_{t_i^{\text{min}}}^{t_i^{\text{max}}} dt \cdot f(t \mid \tau).$$
 (5)

Eventually we shall use different binning values and see what happens if $\Delta t \to 0$ and $\Delta t \to \infty$.

The resulting plot for the randomly generated values of the exponential function and the overlying function with the fitted value for τ is shown in figure 1.

Figure 1: The plot shows the distribution of randomly generated values x following a exponential distribution with $\tau = 1.0$. The overlying function shows the exponential function together with τ given by Minuit.

