Grundpraktikum Bioinfo - Week 1 Biological Data Analysis

Carl Herrmann IPMB - Universität Heidelberg

7. Hypothesis testing

Are observations significant?

- For the cohort, we observe:
 - a difference in man/women weights
 - a non-zero correlation between age and cholesterol
- But:
 - would we observe this in another cohort??
 - Does this hold for the entire (unknown) population?
 - → is this difference/correlation significant?

Hypothesis testing: what do we need?

()Hestion		is there a GENERAL non-zero correlation between age/cholesterol?
Random variables	X _m , X _w = weights men/women	X _{age} , X _{chol} : age/ cholesterol level
Null hypothesis (H ₀)	no difference between the expectations of the random variables $E(X_m) = E(X_w)$	no correlation between age and cholesterol $cor(X_{age}, X_{chol}) = 0$
Alternative hypothesis (H ₁)	expectations of the random variables are different $E(X_m) \neq E(X_w)$	correlation of the random variable is not zero $cor(X_{age},X_{chol}) \neq 0$

We are considering the random variables, not the realizations!

- Study: effect of fertilizer F1 on plant growth
 - no-fertilizer: h = 1.5 m
 - fertilizer on n = 10 samples:

$$x = \{1.47, 1.62, 1.51, 1.61, 1.27, 1.51, 1.55, 1.49, 1.44, 1.5\}$$

Random variable: plant height X after treatment with F1

Question: does the treatment with fertilizer enhance plant growth?

$$\bar{x} = 1.497 \text{ m} \iff h = 1.5 \text{ m}$$

- Question: does the treatment with fertilizer enhance plant growth?
- **Hypothesis:**

• H0: no
$$\to E(X) \le h = 1.5m$$

• H1: yes
$$\rightarrow E(X) > h = 1.5m$$

$$\bar{x} - h = -0.003$$

s = standarddeviation of sample

What are typical values of t under the H_0 hypothesis?

- Distribution of t under the H_0 hypothesis
- Vertical line = observed value of test statistics t
- Green = probability to observe under H_0 a lower value of t
- Blue = probability to observe under H_0 a larger value of t
- Here: Blue = 53.9% of total area

Conclusion: if H0 (= no effect) is true, there is a 53.9% probability to observe a value of t larger or equal to the one observed → not unlikely, hence no reason to distrust H0 (= no effect)

Pvalue = 0.539

- **Study**: effect of fertilizer F2 on plant growth
 - no-fertilizer: h = 1.5m
 - fertilizer on n = 10 samples: $X = \{1.47, 1.62, 1.61, 1.61, 1.47, 1.51, 1.55, 1.59, 1.64, 1.5\}$
- Random variable: plant height X after treatment with F2
- Question: does the treatment with fertilizer enhance plant growth?
- Hypothesis:
 - H0: no $\to E(X) \le h = 1.5m$
 - H1: yes $\to E(X) > h = 1.5m$

• Effect size:
$$\bar{x}-h=0.057$$
 } $t=\frac{\bar{x}-h}{s/\sqrt{n}}=2.77$ • size of random effect: $s/\sqrt{n}=0.02$

$$s/\sqrt{n} = 0.02$$

$$t = \frac{x - n}{s / \sqrt{n}} = 2.77$$

s = standarddeviation of sample

What are typical values of t under the H_0 hypothesis?

- Distribution of t under the H_0 hypothesis
- Vertical line = observed value of test statistics t
- Green = probability to observe under H_0 a lower value of t
- Blue = probability to observe under H_0 a larger value of t
- Here: Blue = 0.3% of total area

Conclusion: if H0 (= no effect) is true, there is a 0.3% probability to observe a value of t larger or equal to the one observed → very unlikely, H0 is probably not true and should be rejected

Pvalue = 0.003

- **Study**: effect of fertilizer F2 on plant growth
 - no-fertilizer: h = 1.5m
 - fertilizer on n = 10 samples: $X = \{1.47, 1.62, 1.61, 1.61, 1.47, 1.51, 1.55, 1.59, 1.64, 1.5\}$
- Random variable: plant height X after treatment with F2
- Question: does the treatment with fertilizer influence plant growth?
- Hypothesis:

• H0: no
$$\rightarrow E(X) = h = 1.5m$$

• H1: yes $\to E(X) \neq h = 1.5m$

$$\bar{x} - h = 0.057$$

• Effect size:
$$\bar{x} - h = 0.057$$
 $t = \frac{\bar{x} - h}{s/\sqrt{n}} = 2.77$ • size of random effect: $s/\sqrt{n} = 0.02$

s = standarddeviation of sample

What are typical values of t under the H_0 hypothesis?

What was the question again?

Two tail test p-value

Pvalue = 0.006

blue area = 0.6%: H0 very unlikely

P-value

the p-value is the probability of obtaining a

- larger (one-sided upper tail)
- smaller (one-sided lower tail)
- more extreme (two-sided or two tailed)

value of the test statistics if H₀ is valid!

The probability of the two sided test is **twice** the smallest probability of the upper-tail or lower-tail test

 $p_{2sided} = 2 \min(p_{lower-tail}, p_{upper-tail})$

Significance

- When is a probability low, very low, or high?
- Define a significance level α
- p < α:
 - H₀ hypothesis can be rejected
 - the observed effect is significant
 - H₁ is statistically proven
- $p > \alpha$:
 - effect is not sufficient to reject H₀
 - observed effect is compatible with statistical fluctuations
 - H₀ is not proven, maybe with a larger sample, the effect could become significant
- $\alpha = 0.05$ has become a standard value (but no golden rule!)

7. Hypothesis testing

Testing the mean - t-tests

Test on mean values

- Hypothesis on mean values can be investigated using a t-test
- Family of tests with different version:
 - one-sample test: is the mean body temperature 37.7 C?
 - two-sample test, unpaired: do men and women have different mean cholesterol levels?
 - **two-sample test, paired**: is there a change in cholesterol level after a one-month egg rich diet?

(do both samples have equal variance?)

two-sample unpaired, two-sided

t = test statistics df = degrees of freedom

confidence interval differences of the means

```
> t.test(weight.m, weight.f, var.equal=TRUE)
        Two Sample t-test
data: weight.m and weight.f
t = 1.8265, df = 400, p-value = 0.06852
alternative hypothesis: true difference in
means is not equal to 0
95 percent confidence interval:
 -0.5669448 15.4259192
sample estimates:
mean of x mean of y
 181.9167
          174.4872
```


two-sample unpaired, one-sided

t = test statistics df = degrees of freedom

confidence interval differences of the means

```
>t.test(weight.m, weight.f, alternative="greater", va
r.equal=TRUE)
        Two Sample t-test
       weight.m and weight.f
data:
t = 1.8265, df = 400, p-value = 0.03426
alternative hypothesis: true difference in means
is greater than 0
95 percent confidence interval:
 0.723444
               Inf
sample estimates:
mean of x mean of y
 181.9167
          174.4872
```


one-sided t-test
→ significant

two-sided t-test

→ non significant

two-sample Welch unpaired, one-sided

t = test statistics
df = degrees of
freedom

confidence interval differences of the means

```
>t.test(weight.m, weight.f, alternative="greater")
        Welch Two Sample t-test
data: weight.m and weight.f
t = 1.8453, df = 372.446, p-value = 0.0329
alternative hypothesis: true difference in means
is greater than 0
95 percent confidence interval:
 0.7903498
                 Inf
sample estimates:
mean of x mean of y
 181.9167
          174.4872
```

Paired t-test

- 2 samples with equal number of elements
- each element of sample A can be associated to one element of sample B
 - patients before (A) and after (B) treatment
 - technical replicates

$$t = \frac{\bar{x_D} - \mu}{s_D / \sqrt{n}}$$

 $\bar{x_D}$ = mean of differences μ = expected difference

Treatment against anorexia Weight before/after treatment

unpaired: $p = 5 \cdot 10^{-3}$

When can we apply t-test?

- There are several conditions that must be fulfilled to apply a t-test
- Normality: data must be (approximately) normaly distributed
 - → check using
 - QQ-plot
 - statistical tests: Shapiro-Wilks / Kolmogorov-Smirnov
 - if not, apply non-parametrical test
- Variance of samples must be equal
 - if so: Student t-test
 - if not: Welch t-test
- Independance: independent samples: values in one sample should not be influenced by those in the second sample

7. Hypothesis testing

proportion tests

Proportion tests

- This class of tests can be used when searching for
 - relation between different categorical variables
 Is there a relation between social background and school grades?
 - comparison of observed vs. expected counts Is there a significant gender bias in the math department if 4 professors out of 10 are women?
- Two tests are generally used
 - Fisher-Exact test (FET): gives an exact p-value, used for small samples
 - chi-square test: for larger samples (n>5 in each category)
 - both tests are equivalent for large n

Fisher Exact Test

- Tests for a significant relationship between 2 variables
- Starting point: contingency table

	iPhone	other	Total
Men	4	1	5
Women	2	3	5
Total	6	4	10

Proportion iPhone/other:

- Men: 4/1 = 4

- Women: 2/3 = 0.66

Odds-Ratio:

OR = (4/1)/(2/3) = 6

If we would <u>randomly</u> distribute 6 iPhone and 4 other smartphones to 5 men and 5 women, how often would we get a larger/smaller*/more extreme** odds-ratio?

*smaller: < 1/6

**More extreme: > 6 or < 1/6

What is H0?

	iPhone	other	Total
Men	3	2	5
Women	3	2	5
Total	6	4	10

H₀: The proportion of men with iPhone is **equal** to the proportion of women with iPhones (2-sided)

$$OR = 1$$

H₀:The proportion of men with iPhones is **not higher** that the proportion of women with iPhones (1-sided)

$$OR \leq 1$$

H₀:The proportion of men with iPhones is **not lower** that the proportion of women with iPhones (1-sided)

$$OR \ge 1$$

Random permutations

If I randomly distribute 6 iPhones and 4 other phones to 5 women and 5 men, how likely it is to obtain this table?

	iPhone	other	Total
Men	4	1	5
Women	2	3	5
Total	6	4	10

J

MoBi students

	iPhone	other	Total
Men	8	19	27
Women	16	16	32
Total	24	35	59

Fisher's Exact Test for Count Data

data: X
p-value = 0.1831
alternative hypothesis: true odds
ratio is not equal to 1
95 percent confidence interval:
 0.1230632 1.3943512
sample estimates:
odds ratio
 0.4273899

chi-square test

- The chi-square test compares observed and expected counts
- Starting point is a contingency table
- Test statistics

$$\chi^2 = \sum_{i=1}^n \frac{(O_i - E_i)^2}{E_i}$$

H₀: expected and observed proportions are equal

- H₀ distribution: chi2 distribution with n-1 degrees of freedom for n
 observations
- Application possible when $O_i > 2$ and $O_i > 5$ in 80% of observations
- Note: the chi-square test is always a 1-sided upper tail test!

Observed

	iPhone	other	Total
Men	14	30	44
Women	5	20	25
Total	19	50	69

	iPhone	other	Total
Men	31.8%	68.2%	100%
Women	20%	80%	100%
Total	27.5%	72.5%	100%

Expected counts under H0

	iPhone	other	Total
Men	12.1	31.9	44
Women	6.9	18.1	25
Total	19	50	69

= 0.6022

H0 proportions

	iPhone	other	Total
Men	27.5%	72.5%	100%
Women	27.5%	72.5%	100%
Total	27.5%	72.5%	100%

$$\chi^2 = \frac{(14 - 12.1)^2}{12.1} + \frac{(30 - 31.9)^2}{31.9} + \frac{(5 - 6.9)^2}{6.9} + \frac{(20 - 18.1)^2}{18.1}$$

degrees of freedom = (rows-1) x (columns-1)

chi-square distribution

Critical values

	0.025	0.05	0.1
df = 1	5.02	3.84	2.71
df = 2	7.38	5.99	4.61
df = 3	9.35	7.81	6.25
df = 4	11.14	9.49	7.78
df = 5	12.83	11.07	9.24
df = 6	14.45	12.59	10.64
df = 7	16.01	14.07	12.02
df = 8	17.53	15.51	13.36
df = 9	19.02	16.92	14.68
df = 10	20.48	18.31	15.99

$$\alpha = 0.05$$

$$\chi^2 = 0.6022$$
 not significant...
$$df = 1$$

More than 2 categories

Side effects

	weak	medium	strong	Total
Drug A	25	11	13	49
Drug B	9	14	11	34
Total	34	25	24	83

> table(side	effect)	
SideEffe	ect	
Drug weak me	dium stro	ng
A 25	11	13
В 9	14	11
> chisq.test	(table(sid	deeffect))
Pear	son's Chi-	-squared test
data: table	e(sideeffed	ct)
X-squared =	5.5257, di	f = 2, p-value = 0.06311
> fisher.tes	st(table(s:	ideeffect))
Fish	er's Exact	t Test for Count Data
data: table	(sideeffed	ct)
p-value = 0.		
alternative	hypothesis	s: two.sided

	weak	medium	strong	Total
Drug A	51%	22.5%	26.5%	100%
Drug B	26.5%	41.2%	32.3%	100%
Total	41%	30.1%	28.9%	100%

8. Power of a test

Reliability of statistical test

- A reliable test should have a small number of false-positives and false-negatives
- Increasing significance level leads to ???? false-positives and ??? false-negatives

	H ₀ is valid	H ₀ is NOT valid	
H ₀ rejected (p < α)	False-positive (type 1 error)	True positive	test positive
H ₀ not rejected (p > α)	True negative		test negative
	negative	positive	

Reliability of statistical test

	H ₀ is valid	H₀ is NOT valid	
H ₀ rejected (p < α)	FP	TP	test positive
H ₀ not rejected (p > α)	TN	FN	test negative
	negative	positive	

false-negative rate (FNR) =
$$\frac{FN}{\text{positives}} = \frac{FN}{FN + TP}$$
 false-positive rate (FPR) = $\frac{FP}{\text{negatives}} = \frac{FP}{FP + TN}$

false-positive rate (FPR) =
$$\frac{FP}{\text{negatives}} = \frac{FP}{FP + TN}$$

false-discovery rate (FDR) =
$$\frac{FP}{\text{test positives}} = \frac{FP}{FP + TP}$$

$$precision = \frac{TP}{test positives} = \frac{TP}{FP + TP} \qquad recall = \frac{TP}{positives} = \frac{TP}{FN + TP}$$

P-value distribution under H₀

- What are typical p-values under H₀?
- Experiment: draw 2 sets (S₁ & S₂) of 50 random numbers each from the same distribution
- H₀: the expectation of both distributions are equal (TRUE!)
- Compute t-test between S₁ and S₂, and determine P-value
- Repeat this experiment 1000 times, and plot the distribution of the 1000 p-values

Distribution of p-values under H₀ = uniform distribution

Type 1 errors

Red area:

with $\alpha = 5\%$, we would have wrongly rejected H0

→ FALSE POSITIVE

• How often would that occur?

→ red area compared to the total area = 5% because uniform distribution

Distribution of p-values under H₀

α is the FALSE-POSITIVE RATE (FPR)

P-value distribution under H₁

- Experiment: draw 2 sets (S₁ & S₂) of 50 random numbers each from two distributions with different expectation
- H₀: the expectation of both distributions are equal (FALSE!)
- compute p-value using a 2 sample t-test
- Repeat 1000 times and plot distribution of p-values

Many small p-values

→ H₀ would have been rejected

Some large p-values

→ H₀ would have NOT been rejected

Type 2 errors

- Occur when a false H₀ hypothesis is NOT rejected by the test
 - → False-negative (Type 2 errors)
- Probability of a type 2 error:
 β value
- Probability for a type 2 error NOT to occur
 → power of a test = 1- β

This area represents the cases for which H0 will not be rejected

→ false-negatives

Power of a test

- Generate 2 datasets of length n
 - one from a normal distribution with mean 0
 - one from a normal distribution with mean 0.2
- H₀: expectation of both underlying distributions is identical (False!)
- perform t-test, compute p-values for various values of n

$$\beta \xrightarrow{n \to \infty} 0$$

Power of a test

- The power depends on:
 - Significance level α
 - Sample size n
 - Effect-size: how strong is the observed effect?

