Лабораторная работа №1

1. Текстовое описание датасета

В качестве набора данных будем использовать набор данных по классификации цветков ирисов

Набор данных содержит следующие колонки:

- sepal length (cm) длина чашелистика в см
- sepal width (cm) ширина чашелистика в см
- petal length (cm) длина лепестка в см
- petal width (cm) ширина лепестка в см
- target целевой признак, определяющий, к какому виду относится цветок:

```
0 - Iris Setosa1 - Iris Versicolor2 - Iris Virginica
```

Импортируем библиотеки с помощью команды import:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set(style="ticks")
sns.set_palette(sns.cubehelix_palette())
from sklearn.datasets import *
```

Загрузим датасет с помощью библиотеки Pandas:

2. Основные характеристики датасета

```
In []: # Первые 5 строк датасета data.head()
```

Out[]:		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
	0	5.1	3.5	1.4	0.2	0.0
	1	4.9	3.0	1.4	0.2	0.0
	2	4.7	3.2	1.3	0.2	0.0

```
4
                       5.0
                                       3.6
                                                       1.4
                                                                      0.2
                                                                             0.0
In [ ]:
         # Размер датасета - 150 строк, 5 колонок
         data.shape
         (150, 5)
Out[]:
In [ ]:
         total_count = data.shape[0]
         print('Bcero ctpok: {}'.format(total_count))
         Всего строк: 150
In [ ]:
         # Список колонок
         data.columns
         Index(['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)',
Out[]:
                'petal width (cm)', 'target'],
               dtype='object')
In [ ]:
         # Список колонок с типами данных
         data.dtypes
         sepal length (cm)
                              float64
Out[]:
         sepal width (cm)
                              float64
         petal length (cm)
                              float64
         petal width (cm)
                              float64
                              float64
         target
         dtype: object
In [ ]:
         # Проверим наличие пустых значений
         # Цикл по колонкам датасета
         for col in data.columns:
              # Количество пустых значений - все значения заполнены
              temp_null_count = data[data[col].isnull()].shape[0]
              print('{} - {}'.format(col, temp_null_count))
         sepal length (cm) - 0
         sepal width (cm) - 0
         petal length (cm) - 0
         petal width (cm) - 0
         target - 0
In [ ]:
         # Основные статистические характеристки набора данных
         data.describe()
Out[]:
               sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)
                                                                                  target
```

sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) target

1.5

3.1

0.2

0.0

3

4.6

150.000000

5.843333

0.828066

4.300000

150.000000

3.057333

0.435866

2.000000

150.000000

3.758000

1.765298

1.000000

150.000000

1.199333

0.762238

0.100000

150.000000

1.000000

0.819232

0.000000

count

mean

std

min

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
25%	5.100000	2.800000	1.600000	0.300000	0.000000
50%	5.800000	3.000000	4.350000	1.300000	1.000000
75%	6.400000	3.300000	5.100000	1.800000	2.000000
max	7.900000	4.400000	6.900000	2.500000	2.000000

```
In []:
# Определим уникальные значения для целевого признака
data['target'].unique()
# Целевой признак содержит только значения 0, 1 и 2

Out[]:
array([0., 1., 2.])
```

3. Визуальное исследование датасета

Проверим зависимость длины чашелистика и длины лепестка:

```
fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, x='sepal length (cm)', y='petal length (cm)', data=data, hue=
Out[]:
cmatplotlib.axes._subplots.AxesSubplot at 0x7f4cac44ae90>
```


Плотность вероятности распределения длины чашелистиков:

```
fig, ax = plt.subplots(figsize=(10,10))
sns.distplot(data['sepal length (cm)'])

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning:
    `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexib ility) or `histplot` (an axes-level function for histograms).
    warnings.warn(msg, FutureWarning)

Out[]:
```


Проверим зависимость ширины чашелистика и ширины лепестка:

```
In [ ]: sns.jointplot(x='sepal width (cm)', y='petal width (cm)', data=data, hue='target')
Out[ ]: <seaborn.axisgrid.JointGrid at 0x7f4cabe38f90>
```



```
In [ ]: sns.pairplot(data=data, hue='target')
```

Out[]: <seaborn.axisgrid.PairGrid at 0x7f4ca9d65290>

In []:
 sns.boxplot(x='target', y='petal length (cm)', data=data)

Out[]: <matplotlib.axes._subplots.AxesSubplot at 0x7f4ca6cb7990>


```
In [ ]: sns.boxplot(x='target', y='petal width (cm)', data=data)
```

Out[]: <matplotlib.axes._subplots.AxesSubplot at 0x7f4ca543fb50>


```
In [ ]: sns.violinplot(x='target', y='sepal length (cm)', data=data)
```

Out[]: <matplotlib.axes._subplots.AxesSubplot at 0x7f4ca541f890>


```
In [ ]: sns.violinplot(x='target', y='sepal width (cm)', data=data)
```

Out[]: <matplotlib.axes._subplots.AxesSubplot at 0x7f4ca5350f10>

4) Информация о корреляции признаков

Проверка корреляции признаков позволяет решить две задачи:

Out[]:

- Понять какие признаки (колонки датасета) наиболее сильно коррелируют с целевым признаком ('target'). Именно эти признаки будут наиболее информативными для моделей машинного обучения.
- Понять какие нецелевые признаки линейно зависимы между собой.

```
In [ ]: data.corr()
```

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
sepal length (cm)	1.000000	-0.117570	0.871754	0.817941	0.782561
sepal width (cm)	-0.117570	1.000000	-0.428440	-0.366126	-0.426658
petal length (cm)	0.871754	-0.428440	1.000000	0.962865	0.949035
petal width (cm)	0.817941	-0.366126	0.962865	1.000000	0.956547
target	0.782561	-0.426658	0.949035	0.956547	1.000000

На основе корреляционной матрицы можно сделать следующие выводы:

- Целевой признак наиболее сильно коррелирует с шириной лепестков (0.96) и их длиной (0.95). Эти признаки обязательно следует оставить в модели.
- Целевой признак достаточно сильно коррелирует с длиной чашелистика (0.78). Этот признак стоит также оставить в модели.
- Длина и ширина лепестков очень сильно коррелируют между собой (0.96). Это неудивительно, ведь форма лепестков примерно одинакова, различен только их размер.

Для визуализации корреляционной матрицы используем "тепловую карту":

```
In [ ]: sns.heatmap(data.corr(), annot=True, fmt='.2f')
Out[ ]: <matplotlib.axes._subplots.AxesSubplot at 0x7f4ca52c8cd0>
```



```
In [ ]: sns.heatmap(data.corr().abs(), annot=True, fmt='.2f')
```

Out[]: <matplotlib.axes._subplots.AxesSubplot at 0x7f4ca51fd550>

Корреляционные матрицы, построенные разными методами:

```
fig, ax = plt.subplots(1, 3, sharex='col', sharey='row', figsize=(15,5))
sns.heatmap(data.corr(method='pearson'), ax=ax[0], annot=True, fmt='.2f')
sns.heatmap(data.corr(method='kendall'), ax=ax[1], annot=True, fmt='.2f')
sns.heatmap(data.corr(method='spearman'), ax=ax[2], annot=True, fmt='.2f')
ax[0].title.set_text('Pearson')
ax[1].title.set_text('Kendall')
ax[2].title.set_text('Spearman')
```



```
fig, ax = plt.subplots(1, 3, sharex='col', sharey='row', figsize=(15,5))
sns.heatmap(data.corr(method='pearson').abs(), ax=ax[0], annot=True, fmt='.2f')
sns.heatmap(data.corr(method='kendall').abs(), ax=ax[1], annot=True, fmt='.2f')
sns.heatmap(data.corr(method='spearman').abs(), ax=ax[2], annot=True, fmt='.2f')
ax[0].title.set_text('Pearson')
ax[1].title.set_text('Kendall')
ax[2].title.set_text('Spearman')
```

