NATIONAL INSTITUTE OF TECHNOLOGY KARNATAKA NH 66, Srinivas Nagar, Surathkal, Mangaluru, Karnataka 575025, India

DEPARTMENT OF INFORMATION TECHNOLOGY, NITK SURATHKAL Course Plan Odd Semester 2022

Faculty Incharge:	Dr. Shrutilipi Bhattacharjee	Year and Semester:	Odd Semester 2022-23
Course Code:	IT300	Course Name:	Design and Analysis of Algorithms
Core/ Elective/MLC:	Program Core	L-T-P:	(3-0-2) 4
Pre-requisites:	Computer Programming, Data Structures and Algorithms, Advanced Data Structures and Algorithms	Contact Hours:	3 per week – Lecture 2 per week – Lab
Type of Course: (Lecture/ Tutorial/ Seminar/ Project)	Lecture and Lab	Course Assessment Methods: (both continuous and semester-end assessment)	20% Mid-sem Exam 40% End-sem Exam 10% Quiz 15% Assignments 15% Mini Project

Course Description:

This course exposes students to the concept of models of computation, algorithm analysis and asymptotic notation, time and space complexity, average and worst-case analysis, lower bounds, amortized analysis, algorithm design techniques: recursion, branch-and-bound, divide and conquer, greedy, dynamic programming, randomization, applications of the above techniques to a variety of problems: stable matching, linear-time selection, integer, polynomial and matrix multiplications, Fast Fourier Transforms (FFT): FFT Algorithms, computing shortest paths and minimum spanning trees, etc., reductions and the theory of NP completeness, approximation algorithms.

Objectives:

The main objective of the course is to learn the basic concepts of database systems **Aim:** On completing this course, the students should have acquired the following capabilities: **Bloom's Taxonomy levels:**

L1: Remembering, L2: Understanding, L3: Applying, L4: Analysing, L5: Evaluating L6: Creating

NATIONAL INSTITUTE OF TECHNOLOGY KARNATAKA NH 66, Srinivas Nagar, Surathkal, Mangaluru, Karnataka 575025, India

CO1 [L1, L2, L3]: To understand key concepts of algorithms, the basic and advanced building blocks, apply these concepts for different algorithm design techniques

CO2 [L4]: To analyse the space and time complexity of the different techniques

CO3[L5]: To evaluate the performance of the algorithms for variety of problems and applications

CO4 [L6]: To design, construct, appropriately apply different algorithms for problem solving, project implementations, and real applications

Course Plan:

(tentative)

Week 1	Overview of design and analysis of algorithms, concept of models of computer					
Week 2	Framework for algorithms analysis					
Week 3	Asymptotic notations, algorithm design techniques basics: time and space complexity, average and worst-case analysis, lower bounds, amortized analysis.					
Week 4	Algorithm design techniques: Divide-and-conquer					
Week 5	Algorithm design techniques: Divide-and-conquer					
Week 6	Algorithm design techniques: Divide-and-conquer					
Week 7	Algorithm design techniques: Greedy algorithms					
Week 8	Algorithm design techniques: Greedy algorithms					
Week 9	MidSem					
Week 10	Dynamic Programming					
Week 11	Dynamic Programming					
Week 12	Huffman Coding and stable matching					
Week 13	Randomization					
Week 14	NP Completeness and reduction					
Week 15	NP Completeness and reduction					
Week 16	Approximation Algorithms					
Week 17	Approximation Algorithms					
Week 18	EndSem					

NATIONAL INSTITUTE OF TECHNOLOGY KARNATAKA NH 66, Srinivas Nagar, Surathkal, Mangaluru, Karnataka 575025, India

Text Books and/or Reference Books:

- Jon Kleinberg and Eva Tardos, Algorithm Design, 1st Edition, Pearson Education India, 2013.
- S Dasgupta, C Papadimitriou, U Vazirani, Algorithms, McGraw-Hill Education, 2006.
- T H Cormen, C E Leiserson, R L Rivest, C Stein, Introduction to Algorithms, 3rd Edition, PHI, 2010.
- Steven S Skiena, The Algorithm Design Manual, 2nd Edition, Springer-Verlag, 2nd Edition, 2013.
- Michael T. Goodrich and Roberto Tamassia. Algorithm Design, Wiley, 1st Edition, 2006.
- Horowitz and Sahni, Fundamentals of Computer Algorithms, Galgotia Publications, 2nd Edition, 2009.

ASSESSING THE ATTAINMENT OF COURSE OUTCOMES (CO) FOR THE COURSE IT210 Data Structures and Algorithms

The Course Outcomes:

CO1 [L1, L2, L3]: To understand key concepts of algorithms, the basic and advanced notions, apply these concepts for different algorithm design techniques

CO2 [L4]: To analyse the space and time complexity of the different techniques

CO3[L5]: To evaluate the performance of the algorithms for variety of problems and applications

CO4 [L6]: To design, construct, appropriately apply different algorithms for problem solving, project implementations, and real applications

Evaluation:

20% Mid-sem Exam

40% End-sem Exam

15% **Quiz**

15% Assignments

10% Mini Project

Assessment CO Matrix:

	Cor	urse Out	comes (C	CO)
Assessment Types	CO1	CO ₂	CO3	CO4

NATIONAL INSTITUTE OF TECHNOLOGY KARNATAKA NH 66, Srinivas Nagar, Surathkal, Mangaluru, Karnataka 575025, India

Mid-sem Exam		
End-sem Exam		
Quiz		
Assignments		
Mini Project		

Dr. Shrutilipigitally signed by Dr. Bhattacharji hattacharje ate: 2022.11.08 e

Dr. Shrutilipi Bhattacharjee Course Instructor [Isighta]

Mr. Pragnesh Thaker Course Instructor