

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Irradiation dose(Mrad)	Hardness (JIS A)
non-irradiated	78
10	84
20	85
50	84

Fig. 5

Fig. 6A

Fig. 6B

Fig. 6C

Fig. 7A

Fig. 7B

Fig. 7C

05932266 04/2020

Fig. 7D

Fig. 8A

Fig. 8B

Fig. 8C

0 5 0 3 2 2 0 0 5 - 0 3 0 2 0 0

Fig. 9

Relation between irradiation dose and mechanical properties

		Irradiation atmosphere	Irradiation dose (Mrad)	Modulus of elasticity at 100% elongation (Mpa)	Strength at break (Mpa)
Example 1	Polymer only	N ₂	0	1.5	1.1
		N ₂	10	1.5	3.5
		N ₂	20	1.5	2.8
		N ₂	50	1.5	2.9
Example 2	Composition having carbon black	N ₂	0	6.5	4.2
		N ₂	10	6.8	11.0
		N ₂	20	8.1	10.8
		N ₂	50	10.5	10.3

Fig. 10

Fig. 11

Fig. 12

Fig. 13

Fig. 14A

Fig. 14B

