CS 375 – Analysis of Algorithms

Professor Eric Aaron

Lecture – M W 1:00pm

Lecture Meeting Location: Davis 117

Business

- Smaller Assignment 0 returned already
 - Let me know if there are problems accessing it

Please read the emailed Classwide Comments

- Smaller Assignment 1, due already
- Problem Set 0 out, due Sept. 21
- Project 1 due Sept. 28
 - Please direct project-specific questions to me, rather than to TAs
 - Questions about general concepts that show up on the project (e.g., Theta notation), though, rather than specifics, can go to TAs
 - Everyone was on a team as of yesterday
 - Let me know if there are problems / concerns with team assignments

Business, pt. 2

- Class will be cancelled Monday, Sept. 26
 - Will be an optional make-up class later in the semester
- Let's go over SA0 Exercise 1.f
 - If $A=\{x,y,z\}$ and $B=\{x,y\}$, what is AxB?
 - AxB is, by definition, a set of ordered pairs—please be sure to use the correct notation and concepts (notation and semantics matter to CS! Just ask your compiler!)

Asymptotic Analysis / Big-O Notation

• With insertion sort, if we gloss over minor details, we can see the number of operations (worst case) is *on the order of* n^2

$$\left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right)n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right)n - (c_2 + c_4 + c_5 + c_8).$$

- i.e., it is $c*n^2$ + (lower order terms)
- ... for some constant c
- ... where n is the size of the input
- Definition: An algorithm runs in time O(f(n)) (read: "order of f(n)") means:

 So, we'd say Insertion sort is $O(n^2)$
 - There exist c > 0, $n_0 > 0$ s.t. ...
 - ...for all $n \ge n_0$, the running time of the algorithm is less than c*f(n)
 - (Basically, that means that for every input "big enough," the running time is less than a constant times f(n))

Asymptotic Analysis / Big-O Notation

- Definition: An algorithm runs in time O(f(n)) (read: "order of f(n)") means:
 - There exist c > 0, $n_0 > 0$ s.t. ...

Defn. repeated from prev. slide

- ... for all $n \ge n_0$, the running time of the algorithm is less than c*f(n)
- (Basically, that means that for every input "big enough," the running time is less than a constant times f(n))
- Informal Intuition: Big-O is about *upper bounds*
 - If a runtime T(n) is O(f(n)), then for "big enough" n, T(n) is upper bounded by c*f(n) for some leading constant c

Note: This figure from your textbook uses f(n) for runtime and g(n) for the bounding function, but it's the same idea—f(n) is O(g(n)), upper bounded by $c^*g(n)$ for all $n \ge n_0$

Breaking Down the Phrase "Big-O Asymptotic Complexity"

- Major takeaways about Big-O Asymptotic Complexity
- In fact, there's one major takeaway for each of the three words in the phrase "Big-O Asymptotic Complexity", based on their meaning.
- It's best to work from the end of that phrase to the beginning...
 - Complexity: It's about describing the resource usage of an algorithm
 - Asymptotic: It describes complexity based on behavior on large input sizes n small inputs aren't really the point
 - Big-O: It's an upper bound on complexity on large inputs

Big-O: In this picture, for large enough n (that is, $n \ge n_0$), f(n) is upper bounded by a leading constant c times g(n)

Asymptotic Analysis / Big-O Notation

- Definition: An algorithm runs in time O(f(n)) (read: "order of f(n)") means:
 - There exist c > 0, $n_0 > 0$ s.t. ...

Defn. repeated from prev. slide

- ...for all $n \ge n_0$, the running time of the algorithm is less than c*f(n)
- (Basically, that means that for every input "big enough," the running time is less than a constant times f(n))

Recall: Big-O is about upper bounds

- This runtime measure captures some essential characteristic of an algorithm
 - $O(n^2)$ algorithms differ from $O(n^3)$, from $O(n \log n)$, etc.
- Can talk about asymptotic complexity classes
 - We say Insertion sort is in complexity class $O(n^2)$

Conventional Wisdom about Big-O Classes

- If two algorithms are in different big-O classes, then there seems to be something substantially different about their speeds
 - Even though, for some small values of n, an $O(2^n)$ algorithm could be faster than an $O(n^2)$ algorithm...
 - It is nonetheless true that 2ⁿ grows faster than n²...
 - Thus, an $O(2^n)$ algorithm is, in a relevant sense, *inherently* slower than an $O(n^2)$ algorithm

Important Vocab (see CLRS, pg. 28): These functions of n have very different orders of growth—i.e., how fast they grow as n gets larger

- For an O(n) algorithm (called "linear")
 - Doubling the input size does what to the running time?
 - Increasing input size by factor of 100 does what to running time?
- For an O(n²) algorithm ("quadratic")
 - Doubling the input size does what to the running time?
 - Increasing input size by factor of 100 does what to running time?
- For an O(2ⁿ) algorithm ("exponential")
 - Doubling the input size does what to the running time?

Common complexity measures and how they relate to input sizes

- Algorithms are sometimes described by their time complexity. There are
 - Logarithmic algorithms
 - Quadratic algorithms
 - Exponential algorithms
 - Factorial algorithms
 - etc.
- To see which kind is fastest, see how these functions grow with increases in the input size:

n	log ₁₀ n	n ²	2 ⁿ	n!
1	0	1	2	1
10	1	100	1024	3628800
50	1.70	2500	1.13e15	3.04e64
100	2	10000	1.27e30	9.44e157

Using the Big-O Definition

- Definition: $O(g(n)) = \{f(n) \mid \text{ \ exists } c, n_0 > 0 \text{ s.t. \ \ forall } n \ge n_0, \\ 0 \le f(n) \le c * g(n) \}$
- Is each of the below statements true? Explain your answers!
 - 1. $100n + 5 = O(n^2)$
 - 2. $n^2/2 3n = O(n^2)$
 - 3. $100n^2 = O(n^2)$
 - 4. $100n^2 = O(n^3)$
 - 5. $0.01n^3 = O(n^2)$
 - 6. $n \lg n = O(\lg^2 n)$
 - 7. $2^{n+1} = O(2^n)$
 - 8. $2^{2n} = O(2^n)$

Using the Big-O Definition

- Definition: $O(g(n)) = \{f(n) \mid \text{exists } c, n_0 > 0 \text{ s.t. } \text{for all } n \ge n_0, 0 \le f(n) \le c^{\frac{n}{2}}g(n)\}$
- Is each of the below statements true? Explain your answers!
 - 1. $100n + 5 = O(n^2)$
 - 2. $n^2/2 3n = O(n^2)$
 - 3. $100n^2 = O(n^2)$
 - 4. $100n^2 = O(n^3)$
 - 5. $0.01n^3 = O(n^2)$
 - 6. $n \lg n = O(\lg^2 n)$
 - $7. \quad 2^{n+1} = O(2^n)$
 - 8. $2^{2n} = O(2^n)$

Pro Tip on how to explain these: In general, when explaining why an existential ("\exists") statement is true, explicitly give some witness value(s) that make it true as part of the explanation.

Here, if a statement is true, can you give specific values for c, n_0 that make it true?

Big "Oh... there's more?" Notation

- Theta notation: Asymptotically tight bound
 - Definition: $\theta(g(n)) = \{f(n) \mid \text{ \exists } c1, c2, n_0 > 0$ s.t. \forall $n \ge n_0, \ 0 \le c1 * g(n) \le f(n) \le c2 * g(n) \}$

Big "Oh... there's more?" Notation

- Theta notation: Asymptotically tight bound
 - Definition: $\theta(g(n)) = \{f(n) \mid \text{ \ lexists } c1, c2, n_0 > 0$ s.t. \\forall $n \ge n_0, \ 0 \le c1 * g(n) \le f(n) \le c2 * g(n) \}$

Reminder--defn of Big-O: $O(g(n)) = \{f(n) \mid \text{ \center} c, \ n_0 > 0 \}$ s.t. \forall $n \geq n_0$, $0 \leq f(n) \leq c^*g(n)$

Big "Oh... there's more?" Notation

- Theta notation: Asymptotically tight bound
 - Definition: $\theta(g(n)) = \{f(n) \mid \text{ exists } c1, c2, n_0 > 0$ s.t. \\forall $n \ge n_0, \ 0 \le c1 * g(n) \le f(n) \le c2 * g(n) \}$

Reminder--defn of Big-O: $O(g(n)) = \{f(n) \mid \text{\circ} c, n_0 > 0 \text{ s.t. \forall } n \geq n_0, 0 \leq f(n) \leq c^*g(n)\}$

- Big-Omega notation: Asymptotic lower bound

Big "Oh... there's more?" Notation

- Theta notation: Asymptotically tight bound
 - Definition: $\theta(g(n)) = \{f(n) \mid \text{ \exists } c1, c2, n_0 > 0 \text{ s.t. \emptyselen} \}$ $0 \le c1 * g(n) \le f(n) \le c2 * g(n) \}$
- Big-Omega notation: Asymptotic lower bound
 - Definition: $\Omega(g(n)) = \{f(n) \mid \text{ \exists } c, n_0 > 0 \text{ s.t. \exist} \}$ $0 \le c * g(n) \le f(n) \}$
- What is the relationship among big-O, big-Omega, and Theta

classes?

A Big-Symbols Theorem

- Definition: $\theta(g(n))=\{f(n)\mid \text{ exists } c1,\ c2,\ n_0>0 \text{ s.t. } \text{ \forall } n\geq n_0,\ 0\leq c1*g(n)\leq f(n)\leq c2*g(n)\}$
- Definition: $\Omega(g(n)) = \{f(n) \mid \text{exists } c, n_0 > 0 \text{ s.t. } \text{forall } n \ge n_0, 0 \le c * g(n) \le f(n) \}$
- *Theorem*: For any two functions f(n) and g(n), $f(n) = \theta(g(n))$ iff f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.

Using the θ , Ω Definitions

- Definition: $\theta(g(n))=\{f(n)\mid \text{ exists } c1,\ c2,\ n_0>0 \text{ s.t. } \text{ \forall } n\geq n_0,\ 0\leq c1*g(n)\leq f(n)\leq c2*g(n)\}$
- Definition: $\Omega(g(n)) = \{f(n) \mid \text{ exists } c, n_0 > 0 \text{ s.t. } \text{ for all } n \ge n_0, 0 \le c * g(n) \le f(n) \}$
- Is each of the below statements true?
 - 1. $100n + 5 = \theta(n^2)$
 - 2. $100n + 5 = \Omega(n^2)$
 - 3. $n^2/2 3n = \theta(n^2)$
 - 4. $n^2/2 3n = \Omega(n^2)$
 - 5. $100n^2 = \theta(n^3)$
 - $6. \quad 0.01n^3 = \Omega(n^2)$
 - $7. \quad 2^{n+1} = \theta(2^n)$
 - $8. 2^{2n} = \Omega(2^n)$

Conventions: Order of Growth (to within a constant multiple)

- Two different levels of detail can be useful with asymptotic complexity:
 - Formal definitions and detailed explanations
 - Informal, high-level understanding and explanations
- When informally talking about asymptotic complexity, we often talk about the *order of growth* of runtime functions, to *within a (leading) constant multiple*
 - We don't say exactly what the leading constant c or n_0 threshold is
 - Order of growth of the highest order / dominant term is most important

In CS375, unless specified otherwise, feel free to use the informal, high-level approach

Log It: Questions about exponents

- When solving equations, we may want to know the value of an exponent
 - E.g., in equation $2^x=375$, we might want to ask what value of x makes that true
 - How could we even phrase that question?
- The *logarithm* function lets us ask the question
 - So, for $2^x = 375$, we'd say $x = log_2 375$ (read as "log base 2 of 375")
 - Examples: $log_3 81 = 4$; $log_4 16 = 2$; $log_2 1024 = 10$
- Logarithms *are* exponents, so rules of exponentiation apply
 - E.g., $log_b(m^*n) = log_b m + log_b n$ If $b^* = m$ and $b^y = n$, then $b^{**}b^y = b^{**}y = m^*n$