MTH 3105: Discrete Mathematics

Take Home Assignment I

1.

(a) Prove that there is no positive integer solutions for:

$$4a^3 + 2b^3 = c^3$$
 (5 Marks)

(b) Define $F_0 = 0$, $F_1 = 1$, $F_{n+2} = F_{n+1} + F_n$ for n = 0, 1, 2,... Prove that for any $n \ge 0$ we have: (5 Marks)

$$F_n \le \left(\frac{1+\sqrt{5}}{2}\right)^{n-1}$$

2.

(a) Determine whether or not the following arguments are valid:

a.
$$\frac{\neg p \rightarrow q, \neg q}{p}$$
 (4 Marks)
b. $\frac{\neg p \rightarrow \neg q}{p \rightarrow q}$ (4 Marks)

- (b) If the tuple (a, b, c) satisfy the following conditions:
 - a, b and c are consecutive odd integers.
 - *a*, *b* and *c* are all primes.

Then we call it a super prime tuple. Prove that (3, 5, 7) is the only super prime tuple.

(4 Marks)

3.

(a) Prove that $\sqrt{6}$ is irrational.

(4 Marks)

- (b) A detective has interviewed five witnesses to a crime. From their stories, the detective has concluded that:
 - If both Tom and Jesse are lying, then Leo is telling the truth.
 - If Tom or Hackson is lying, then Jesse is also lying.
 - If Tom is telling the truth, then John is lying.
 - John is a well-respected teacher so he never lies.
 - Either Leo or Hackson is lying.

What conclusion can you make? There may be more than one liar. Show your steps.

(6 Marks)

4.

(a) Prove that if p is prime and p|ab, then p|a or p|b.

(4 Marks)

(b) Let X be the set $\{x \in \mathbb{Z} \mid x+3 \text{ is a multiple of } 7\}$.

Let Y be the set $\{y \in \mathbb{Z} \mid y-4 \text{ is a multiple of 7}\}.$

Prove that X = Y. (4 Marks)

END

This assignment is due 1 week from the 1st (SE) and 2nd (CS) of October, 2018.