MIDS W207 Applied Machine Learning

Week 10 Live Session Slides

K-Means Revision

K-Means Limitations

Gaussian Distribution

Probability density function f(x) is a function of x given μ and σ 1 1 x –

$$N(x \mid \mu, \sigma^2) = \frac{1}{\sigma \sqrt{2\pi}} \exp(-\frac{1}{2} (\frac{x - \mu}{\sigma})^2)$$

Gaussian Mixture Models

Linear combination of Gaussians

Gaussian Mixture Models

Gaussian Distribution Contd.

$$f(x\mid \mu,\sigma^2) = rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

Gaussian Distribution Contd.

$$f(x \mid \mu, \Sigma) = \frac{1}{\sqrt{2\pi |\Sigma|}} \exp \left[-\frac{1}{2}(x - \mu)^{t} \Sigma^{-1}(x - \mu)\right]$$

Expectation Maximization

E-Step

$$r_{ic} = rac{ ext{Probability Xi belongs to c}}{ ext{Sum of probability Xi belongs to c., c., ... c.}} = rac{\pi_c \mathcal{N}(x_i \; ; \; \mu_c, \Sigma_c)}{\sum_{c'} \pi_{c'} \mathcal{N}(x_i \; ; \; \mu_{c'}, \Sigma_{c'})}$$

M-Step

$$\prod = \frac{\text{Number of points assigned to cluster}}{\text{Total number of points}}$$

$$\mu = \frac{1}{\text{Number of points}} \sum_{i} r_{ic} x$$
assigned to cluster

$$\sum_{c} = \frac{1}{\sum_{\text{Number of points} \text{assigned to cluster}} \sum_{i} r_{ic} (x_{i} - \mu_{c})^{T} (x_{i} - \mu_{c})$$

Expectation Maximization

Code Review

Speaker Identification Problem

Speaker Identification Problem

Breakout Session Exercise