Importing libraries

```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

C:\Users\Srushti\anaconda3\Lib\site-packages\pandas\core\arrays\ma
sked.py:60: UserWarning: Pandas requires version '1.3.6' or newer
of 'bottleneck' (version '1.3.5' currently installed).
 from pandas.core import (

Reading file in python

In [2]: data=pd.read_csv(r"C:\Users\Srushti\OneDrive\excel files\iphone dat
 print(data)

	Gender	Age	Salary	Purchase Iphone
0	Male	19	19000	0
1	Male	35	20000	0
2	Female	26	43000	0
3	Female	27	57000	0
4	Male	19	76000	0
				•••
395	Female	46	41000	1
396	Male	51	23000	1
397	Female	50	20000	1
398	Male	36	33000	0
399	Female	49	36000	1

[400 rows x 4 columns]

Getting information about my data

Finding top rows

```
In [3]: data.head()
```

Out[3]:

	Gender	Age	Salary	Purchase Iphone
0	Male	19	19000	0
1	Male	35	20000	0
2	Female	26	43000	0
3	Female	27	57000	0
4	Male	19	76000	0

Finding last rows

```
In [4]: data.tail()
```

Out[4]:

	Gender	Age	Salary	Purchase Iphone
395	Female	46	41000	1
396	Male	51	23000	1
397	Female	50	20000	1
398	Male	36	33000	0
399	Female	49	36000	1

Finding total number of rows and columns

```
In [5]: data.shape
Out[5]: (400, 4)
```

Finding info of the given data

```
In [6]: data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 400 entries, 0 to 399
Data columns (total 4 columns):
```

#	Column	Non-Null Count	Dtype
0	Gender	400 non-null	object
1	Age	400 non-null	int64
2	Salary	400 non-null	int64
3	Purchase Iphone	400 non-null	int64

dtypes: int64(3), object(1)
memory usage: 12.6+ KB

Describing the data

In [7]: data.describe()

Out[7]:

	Age	Salary	Purchase Iphone
count	400.000000	400.000000	400.000000
mean	37.655000	69742.500000	0.357500
std	10.482877	34096.960282	0.479864
min	18.000000	15000.000000	0.000000
25%	29.750000	43000.000000	0.000000
50%	37.000000	70000.000000	0.000000
75%	46.000000	88000.000000	1.000000
max	60.000000	150000.000000	1.000000

Finding name of all columns

```
In [8]: data.columns
```

Data Preprocessing

Missing values

As we can see here there are no missing values present inside the dataset

Duplicates Values

```
In [10]: duplicate=data.duplicated()
    sum(duplicate)
```

Out[10]: 20

As here are duplicate values we will use drop commands to drop the duplicates values

```
In [11]: data=data.drop_duplicates()
    data
```

Out[11]:

	Gender	Age	Salary	Purchase Iphone
0	Male	19	19000	0
1	Male	35	20000	0
2	Female	26	43000	0
3	Female	27	57000	0
4	Male	19	76000	0
395	Female	46	41000	1
396	Male	51	23000	1
397	Female	50	20000	1
398	Male	36	33000	0
399	Female	49	36000	1

380 rows × 4 columns

Checking if the duplicated values are removed or not

```
In [12]: duplicate=data.duplicated()
sum(duplicate)
```

Out[12]: 0

Label-Encoding

We would prefrom this to convert the categorical (text) data into numbers, so that machine learning models can understand it.

```
In [13]:
          from sklearn.preprocessing import LabelEncoder
          label=LabelEncoder()
          label
Out[13]:
               LabelEncoder (1) ?
                                (https://scikit-
                                learn.org/1.5/modules/generated/sklearn.preprocessing.Lab
           LabelEncoder()
          data["Gender"]=label.fit_transform(data["Gender"])
In [14]:
          data.head()
Out[14]:
              Gender
                     Age
                          Salary Purchase Iphone
           0
                   1
                       19
                           19000
                                              0
```

Outlier Removal

```
In [15]: fig,ax=plt.subplots()
    ax.boxplot(data.iloc[:,:])
    plt.show()
```


There are no outliers present in this plot

Visualisation

Histogram- View distribution of numeric data.

```
In [16]: sns.histplot(data['Salary'], kde=True, color='skyblue')
    plt.title("Distribution of Salary")
    plt.xlabel("Values")
    plt.ylabel("Frequency")
    plt.show()
```

C:\Users\Srushti\anaconda3\Lib\site-packages\seaborn_oldcore.py:1 119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before oper ating instead.

with pd.option context('mode.use inf as na', True):

Boxplot-Detect outliers and spread of numeric data

```
In [17]: sns.boxplot(x=data['Salary'], color='lightgreen')
    plt.title("Boxplot of Salary")
    plt.xlabel("Values")
    plt.show()
```

Boxplot of Salary

Countplot-Show counts of each category. Used when you want to see frequency of labels.

```
In [18]: sns.countplot(data=data, x='Gender', palette='Set2')
    plt.title("Count of Each Category in Gender")
    plt.xticks(rotation=45)
    plt.show()
```


Barplot-Compare categories based on a numeric value (like average). We can use it when we want to compare groups

```
In [19]: sns.barplot(data=data, x='Gender', y='Salary', palette='pastel')
    plt.title("Bar Plot of Salary by Gender")
    plt.xticks(rotation=45)
    plt.show()
```


Heatmap- Show correlation between numeric features

In [20]: sns.heatmap(data.corr(numeric_only=True), annot=True, cmap='coolwar
plt.title("Correlation Heatmap of Numeric Features")
plt.show()

Scatter Plot-Visualize relationship between two numeric variables

```
In [21]: sns.scatterplot(data=data, x='Age', y='Salary', hue='Gender')
    plt.title("Scatter Plot between Age and Salary")
    plt.show()
```


Pie Chart-Show proportion/percentage of categories. Used when you want to visualize share of each group.

Age

Pie Chart of Purchase Iphone

Insights of the visuals

1. Histogram - Salary Distribution

Most people earn below ₹80,000, with the salary data slightly right-skewed showing a few high earners.

2.Boxplot - Salary

The salary data has no strong outliers, and most salaries lie between ₹43,000 and ₹88,000.

3.Countplot - Gender

The dataset has a nearly equal number of males and females, ensuring a balanced gender distribution.

4. Barplot - Gender vs Salary

Males have a slightly higher average salary than females, but the difference is not very large.

5. Heatmap - Correlation

Salary is positively correlated with iPhone purchase, meaning higher income increases the chance of buying.

6. Scatter Plot - Age vs Salary

There's no strong trend, but younger people tend to have lower salaries than older ones.

7. Pie Chart - Purchase iPhone

Only 36% of people bought an iPhone, indicating an imbalance in the target variable.

EDA

statistical analysis

first moment of business decision

```
data.median()
In [24]:
Out[24]: Gender
                                 0.0
         Age
                                37.0
         Salary
                             70500.0
         Purchase Iphone
                                 0.0
         dtype: float64
In [25]: from scipy import stats
         stats.mode(data)
Out[25]: ModeResult(mode=array([
                                                           0], dtype=int64),
                                     0,
                                           35, 72000,
         count=array([198, 31, 10, 240], dtype=int64))
         second moment of business decision
In [26]: data.std()
Out[26]: Gender
                                 0.500215
         Age
                                10.592492
                             34604.155483
         Salary
         Purchase Iphone
                                 0.483012
         dtype: float64
In [27]:
         data.var()
Out[27]: Gender
                             2.502152e-01
         Age
                             1.122009e+02
                             1.197448e+09
         Salary
         Purchase Iphone
                             2.333009e-01
         dtype: float64
In [28]:
         range=max(data.Salary)-min(data.Salary)
         range
Out[28]: 135000
         third moment of business decision
         data.skew()
In [29]:
Out[29]: Gender
                             0.084620
         Age
                             0.239843
         Salary
                             0.461275
         Purchase Iphone
                             0.547709
```

dtype: float64

fourth moment of business decision

In [30]: data.kurtosis()

Out[30]: Gender -2.003412

Age -0.674733 Salary -0.490309 Purchase Iphone -1.709038

dtype: float64