Week 2: Empirical Models of Competition with Differentiated Products

Ben Handel

UC-BERKELEY ECON 220A

January 26, 2022

Competition with Differentiated Products Why We Care

- Many important markets are composed of differentiated products
- This means that sellers have some residual market power, potentially even when there are many firms
- The nature of differentiation matters for consumer demand and firm strategy
- Important for:
 - Competition analysis
 - New product introduction
 - Merger Analysis
 - Much more
- Examples

Bresnahan (1987)

Competition with Differentiated Products

- Develop model to test competition in the automobile sector between 1954-1956
- One of first papers to empirically model differentiated products in a structural setup:
 - Borenstein and Shephard (1996) good example of paper with non-differentiated products. Slides / paper online.
 - Substantial structure on differentiation collapsing attributes into one 'quality' dimension
 - Static competition, no endogenous attributes
 - Very specific, structured firm competition environment
- Empirical Context:
 - 1955 autombile market anomaly relative to other years
 - 45% greater sales than in 2 surrounding years
 - Lower quality adjusted prices
 - Consistent with a supply-side shock

Overview of Contribution

- Rigorous empirical explanation for otherwise puzzling market evolution
- Explicit test of Bertrand-Nash and Collusive behavior:
 - Test relies on fact that prices for products 'near' each other respond differently under collusion vs. Bertrand
 - Leverages multi-product within firm pricing as source of identification
 - Conduct hypothesis have direct implications for price and quantity comparitive statics with respect to demand elasticities (without knowing MC!)
- Patterns suggest collusion (tacit) in 1954 and 1956, and Bertrand-Nash in 1955
- No discussion of repeated game literature, though it applies to tacit collusion explicitly

Facts about Automobile Markets Bresnahan (1987)

TABLE I

	(1)	(2)	(3) % Change	(4)	(5) Auto
Year	Auto Production ^a	Real Auto Price-CPI ^b	Auto Price- Cagan ^c	Auto Sales ^d	Quantity Index ^e
1953	6.13	1.01	NA	14.5	86.8
1954	5.51	0.99	NA	13.9	84.9
1955	7.94	0.95	-2.5	18.4	117.2
1956	5.80	0.97	6.3	15.7	97.9
1957	6.12	0.98	6.1	16.2	100.0

Notes: a Millions of units over the model year. [Source: Automotive News.]

^b(CPI New automobile component)/CPI. [Source: Handbook of Labor Statistics.]

Adjusted for quality change. [See Cagan (1971), especially pp. 232-3.]

^d Auto output in constant dollars, QIV of previous year through QIII of named year, in billions of 1957 dollars, [Source: National Income and Product Accounts.]

 $^{^{\}circ}(4)/(2)$, normalized so 1957 = 100.

Facts about Automobile Markets Bresnahan (1987)

TABLE II

	(6) P. G. i	(7)	(8)	(9)
Year	Per Capita Disposable Personal Income ^t	Interest Rate ⁸	Durables Expenditures (Non-Auto) ^h	Automakers Profits ⁱ
1953	1623	1.9	14.5	2.58
1954	1609	0.9	14.5	2.25
1955	1659	1.7	16.1	3.91
1956	1717	2.6	17.1	2.21
1957	1732	3.2	17.0	2.38

Notes: ^f Billions of 1957 dollars, QIV of previous year through QIII of named year. [Source: National Income and Product Accounts.]

⁸ Three-month T-bill rate. [Source: Statistical Abstract.]

^h Durables component of consumer expenditures minus component for automobiles and parts, billions of 1957 dollars. [Source: National Income and Product Accounts.]

Demand

- Continuum of potential buyers with unit demand with differences in taste for quality x denoted by v_i
- Strong assumptions about demand to make model tractable

$$U(x, Y, v) = vx + Y - P$$
 if buy
 $U(x, Y, v) = v\gamma + Y - E$ if no buy

- Y-P is money not spent on autos
- **Assumption:** v is uniformly distributed with density δ on $[0, V_{max}]$
- · What do you think?

Demand

Bresnahan (1987)

- Consumer will select product that maximizes $vx_j P_j$
- Aggregate into market demand by investigating indifferent consumers between two products h and i:

$$P_i - x_i v_{hi}$$
 $= P_h - x_h v_{hi} \Rightarrow$
 v_{hi} $= \frac{P_i - P_h}{x_i - x_h}$

If product j on other side of i then aggregate demand for i is:

$$q_i = \delta \left[\frac{P_j - P_i}{x_j - x_i} - \frac{P_i - P_h}{x_i - x_h} \right]$$

 Closer x imply cross-price derivative closer to own-derivative

Demand

Figure 1

Final Demand Equations

Bresnahan (1987)

Final demand equations from model:

$$q_{1} = \delta \left[\frac{P_{2} - P_{1}}{x_{2} - x_{1}} - \frac{P_{1} - E}{x_{1} - \gamma} \right]$$

$$q_{i} = \delta \left[\frac{P_{j} - P_{i}}{x_{j} - x_{i}} - \frac{P_{i} - P_{h}}{x_{i} - x_{h}} \right]$$

$$q_{n} = \delta \left[v_{max} - \frac{P_{n} - P_{n-1}}{x_{n} - x_{n-1}} \right]$$

• E, γ , v_{max} , and δ are parameters to estimate

Supply

Bresnahan (1987)

Firms are assumed to have cost function:

$$C(x,q) = A(x) + mc(x)q$$

• Assume that marginal cost is increasing and convex, μ parameter to estimate:

$$mc(t) = \mu e^t$$

Profit function is:

$$\pi_i = P_i q_i - mc(x_i) q_i - A(x_i)$$

Supply: Firm Interactions

- Bresnahan investigates two potential assumptions on firm interactions:
 - Collusion: All firms set prices to maximize sum of all profits
 - Nash-Bertrand: Each firm sets prices to maximize own profits
- Since quantities linear in prices, solution to profit maximization is linear in prices
- Only neighboring products have interactions with one another in supply and demand!!
 - Are these desirable substitution patterns?
 - What do you think about model of collusion?

Supply: Firm Interactions

Bresnahan (1987)

Nash-Bertrand FOC:

$$\pi'_i = q_i + (P_i - mc(x_i))\frac{\partial q_i}{\partial P_i} = 0$$

Multi-product or collusive FOC for i and i + 1:

$$\pi_i' = q_i + (P_i - mc(x_i))\frac{\partial q_i}{\partial P_i} + (P_{i+1} - mc(x_{i+1}))\frac{\partial q_{i+1}}{\partial P_i} = 0$$

- If products closely spaced, impact of multi-product behavior is high
 - Examples in reality?
- Simultaneous FOC solution for all products in equilibrium

Supply: Firm Interactions

Bresnahan (1987)

• Let matrix H_{ij} represent cooperation with $H_{ij} = 1$ if products are cooperating and 0 otherwise. Example:

$$\left(\begin{array}{cccc}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)$$

Given this, the model supply FOC for product i is:

$$0 = q_{i} + (P_{i} - mc(x_{i}))\frac{\partial q_{i}}{\partial P_{i}} + H_{i,i+1}(P_{i+1} - mc(x_{i+1}))\frac{\partial q_{i+1}}{\partial P_{i}} + H_{i,i-1}(P_{i-1} - mc(x_{i-1}))\frac{\partial q_{i-1}}{\partial P_{i}} = 0$$

• Changing $H_{i,i+1}$ from 0 to 1 increases margins

Supply Model Implications

Bresnahan (1987)

No full lines, model good for 50s.

Supply Model Implications

Equilibrium

Bresnahan (1987)

 Equilibrium solves the demand equations and supply equations simultaneously:

$$p = p^*(x, H, \gamma, V_{max}, \delta, \mu)$$

$$q = q^*(x, H, \gamma, V_{max}, \delta, \mu)$$

- In equilibrium cars spaced further apart in the product space are impacted less by change in firm behavior regimes.
- Prices are mapped to quality in equilibrium model: substitution patterns!
- Argue that options are discrete enough with differences in product space, which is good for model
 - Large cars further apart, made mostly by GM
 - Small cars a lot of different firms, close together

Econometric Model

Bresnahan (1987)

• **Assumption:** Proxies for quality from hedonic models like Rosen (1974) depend on both tastes and technology:

$$x(c) = \sqrt{\beta_0 + \Sigma_j z_j \beta_j}$$

- Functional form is arbitrary
- Steps to compute predicted prices and quantities conditional on β , γ , μ , δ , V_{max} and Z:
 - Product assigned quality depending on β and z
 - Products ordered highest to lowest
 - Everything used to solve for P* and Q* and plugged plugged into likelihood function

Econometric Model

- Data: quantity aggregation problem
 - Definition of different products central to study
 - Autombile is model only if distinct in attributes implying 80-85 models per year
 - Level of disaggregation of model finer than some data: aggregate predicted values
 - Have to deal with heeroskedasticity
- Likelihood function with assumed independent normal errors on price and quantity:

$$\prod_{i=1}^{N_p} \frac{1}{\sqrt{2\pi^2 p}} \exp\left[-\frac{(P_i - P_i^*)^2}{2\sigma^2 p}\right] \\ * \prod_{j=1}^{N_q} \frac{1}{\sqrt{2\pi k_j \sigma^2 q}} \exp\left[-\frac{(q_j - \sum q^* k_j k I_j)^2}{2k_j \sigma^2 q}\right]$$

Econometric Model

Bresnahan (1987)

- Alternative models to test hypotheses
- Hedonic price model follows Rosen (1974) but firm dummies for oligopoly:
 - Prices and quantities set in a recursive structure
 - Should hold if prices set in some non-maximizing way
 - Really different supply side might matter

$$P_i^* = exp[\alpha_0 + \Sigma_j \alpha_j z_{ij} q_j^* = exp[\lambda_0 + \lambda_1 (P_j - P_j^*)]$$

Also look at identity matrix product model

Empirical Results

- Cox Hypothesis Tests of different supply models:
 - Confronted with data, and alternative non-nested hypothesis
 - Likelihood ratio of two hypothesis is central test statistic
 - Computed assuming hypothesis true, test statistic asymptotically normal
 - Possible for two models to be rejected against each other
- Intuition for hypothesis test: If the residuals under null H_0 can be explained by statistically significant extent by H_1 , then H_0 is rejected
- Collage of evidence

Empirical Results Bresnahan (1987)

TABLE III COX TEST STATISTICS				
Hypotheses	c	N-C	'p'	Н
a—1954				
Collusion Nash-Competition "Products" Hedonic	-2.325 -3.978 -12.37	0.8951 — 3.029 —10.94	0.9464 -0.8878 - - -13.02	-1.934 -2.819 -1.604
b—1955				
Collusion Nash-Competition "Products" Hedonic	-1.594 -0.7598 -3.353	-10.36 -4.379 -8.221	-9.884 1.260 -5.950	-13.36 0.6341 -1.527
c—1956				
Collusion Nash-Competition "Products" Hedonic	-2.426 -3.153 -5.437	1.227 — 0.9951 —9.671	0.8263 -4.586 - -11.58	1.629 0.8314 4.731

- **1954 and 1956:** Product and hedonic rejected, Nash rejected against coll. and hedonic, collusive not rej.
- 1955: Collusion rejected always, Nash never rejected
- Coincidence with product expansion is interesting

Empirical Results: Overview

- When non-rejected hypotheses are examined over time, the rest of the parameters are quite consistent!
- When you look at one hypotheis over time (e.g. collusion) parameters are not consistent in manner you expect. Other parameters have to fit conduct changes.
- β are generally consistent with what we would expect for different attributes in terms of sign
- Discussion of how competition model and significant expansion in quantity in 1955 are independent events. Not sure I completely understand this.

Empirical Results: Overview

- Two central parameters V_{max} and δ show diverse tastes for automobile quality
 - 20 million wide and 0.4 deep which is pretty diffuse.
 Estimating a rectangle.
 - Used cars are not that close substitutes for lowest quality new car
- Counterfactual shows 25% quantity gain in 1955 under collusion, rather than 40% actual in data. This is shift in demand vs. shift in competitive model.
- Robustness: quality shocks and durability

Empirical Results Bresnahan (1987)

TABLE IV

Table IV
Parameter Estimates 1954–56, Maintained Specification

Parameters	1954ª	1955ь	1956ª
Physical Characteristics			
Quality Proxies			
Constant	47.91 (32.8)	48.28 (43.2)	50.87 (29.4)
Weight #/1000	0.3805 (0.332)	0.5946 (0.145)	0.5694
Length "/1000	0.1819	0.1461	0.1507
Horsepower/100	(0.128) 2.665	(0.059)	3.248
Cylinders	(0.692) 0.7387	(0.535) -0.9375	(0.620) 0.9639
Hardtop Dummy	(0.205) 0.9445 (0.379)	(0.115) 0.4531 (0.312)	(0.186) 0.4311 (0.401)
Demand/Supply			
μ-Marginal Cost	0.1753 (0.024)	0.1747 (0.020)	0.1880 (0.035)
γ-Lower Endpoint	4.593 (1.49)	3.911 (2.08)	4.441 (1.46)
$V_{\mathrm{max}}-Upper\ Endpoint$	1.92E + 7	2.41E + 7	2.83E + 7
$\delta-$ Taste Density	(8.44 <i>E</i> + 6) 0.4108 (0.138)	(9.21 <i>E</i> + 6) 0.4024 (0.184)	(7.98E + 6) 0.4075 (0.159)

Empirical Results Bresnahan (1987)

Table V(i)
Parameter Estimates 1954–56, Collusive Specification

Parameters	1954	1955	1956
Constant	47.91	-23.37	50.87
	(32.8)	(24.5)	(29.4)
Weight	0.3805	0.0103	0.5694
-	(0.332)	(5.43E-2)	(0.374)
Length	0.1819	-2.88E-3	0.1507
•	(0.128)	(0.102)	(0.146)
Horsepower	2.665	0.1165	3.248
•	(0.692)	(0.106)	(0.620)
Cylinders	-0.7387	-1.309	-0.9639
•	(0.205)	(1.52)	(0.186)
Hardtop	0.9445	1.468	0.4311
	(0.379)	(1.08)	(0.401)
u	0.1753	1.344	0.1880
	(0.024)	(0.151)	(0.035)
,	4.593	1.604	4.441
	(1.49)	(4.83)	(1.46)
$V_{\rm max}$	1.92E + 7	1.46E + 8	2.83E + 7
	(8.44E+6)	(6.74E+6)	(7.98E+6)
5	0.4108	5.75E - 2	0.4075
	(0.138)	(8.28E-2)	(0.159)

Note: Figures in parentheses are asymptotic standard errors.

Final Thoughts and Discussion

- Structural model and trade-offs between assumptions and credibility:
 - Data discussion not really big part of paper. Why? Probably because it's not very good.
 - Product differentiation is very stylized
 - Assumed supply side
- Maybe trust the collusive vs. competitive test, but would we be comfortable doing much more with this model?
 - Wouldn't want to do welfare
 - Wouldn't want to do new products
- No discussion of endogeneity as all product quality is subsumed in x. Correlation between errors and prices likely, not discussed here.
- Great example of clear structural work with product differentiation and supply side without BLP additions

