机器视觉系统

—工业数字相机篇

主讲人:华雪

工业摄像机分类

按输出图像信号格式划分

- ■模拟摄像机
 - ▶ PAL (黑白为CCIR)
 - ▶NTSC (黑白为EIA)
- 数字摄像机
 - > IEEE1394
 - > USB2.0
 - Camera Link
 - GigE

工业摄像机分类

按像素排列方式划分

- ■面阵摄像机
 - > 黑白摄像机
 - > Bayer彩色相机
 - > 3CCD彩色相机(分光棱镜)
- ■线阵摄像机
 - > 黑白摄像机
 - > 3Line彩色摄像机
 - > 3CCD彩色摄像机(分光棱镜)

工业摄像机靶面尺寸和分辨率

靶面尺寸	1'	2/3'	1/1.8'	1/2'	1/3'	1/4'
宽x高(mm)	12. 8x9. 6	8. 8x6. 6	7. 18x5. 32	6. 4x4. 8	4. 8x3. 6	3. 6x2. 7

	VGA	SVGA	XGA	SXGA	UXGA
分辨率	659x494	782x582	1034x779	1392x1040	1628x1236

工业摄像机芯片分类

按芯片类型划分:

- CCD摄像机
- CMOS摄像机

Interline Transfer CCD Architecture

CMOS Image Sensor Integrated Circuit Architecture

CCD Sensor—全帧转移

- ▶ 优点:填充因子(fill factor)可以达到非常高, 甚至达到100%。这样 Sensor灵敏度非常大。
- 缺点:由于传输和读出使用的时钟相同,因此Sensor上面的部分曝光时间比下面的长,这会时间比下面的长,这会造成Smear现象。为了解决这个问题,必须使用机械快门或闪光灯。

CCD Sensor—帧传输

Light sensitive CCD-sensor

Shielded memory area

一优点:在曝光时间较长的情况下,Smear现象比Full Frame Array Sensor小很多

▶缺点: 由于需要两个

Sensor, 因此成本非常高

Readout register

CCD Sensor—行转移

- ▶转移时间约为1us,因此完全不存在Smear现象。
- ▶优点:由于转移时间非常短, 因此不需要使用机械快门或闪光 灯
- ▶缺点:由于屏蔽区占用了 Sensor的部分面积,因此使得此 种传感器填充因子只能在 20%~70%
- >添加微镜头可以增加填充因子

Output (Amplifier)

Horizontal shift registers

电子快门和微透镜

- ▶Overflow Drain主 要用来消除CCD Sensor的Blooming现 象,它也被用来实现 电子快门
- ▶通过Micro Lenses 可以将传感器的填充 因子提高。

CMOS Sensor

CCD vs CMOS

	CCD	CMOS
优	1. 图像质量高 2. 灵敏度高 3. 对比度高	1. 体积小 2. 片上数字化 3. 很多片上处理功能 4. 低功耗 5. 没有Blooming现象 6. 直接访问单个像素
		7. 高动态范围(120dB) 8. 帧率可以更高
劣	1. Blooming 2. 不能直接访问每个像 素 3. 没有片上处理功能	1. 一致性较差 2. 光灵敏度差 3. 噪声大

隔行扫描 和逐行扫描

隔行扫描

逐行扫描

行曝光和帧曝光

帧曝光

行曝光

彩色摄像机-Bayer彩色相机

彩色摄像机-3Lines相机

彩色摄像机-3CCD相机

www.daheng-image.com

工业数字摄像机主要接口类型

- > Usb2. 0
- > IEEE 1394
- > CameraLink
- > GigE

USB接口

标准	发布日期	传输速率	应用
Usb1. 0	1996年	1.5Mbps	NO
Usb1.1	1998年	12Mbps	Usb鼠标、键盘、家用扫描 仪、一些网络摄像机等
Usb2.0 High- speed	2000年	480Mbps	80%的带宽用于图像传输, 约38MB
Usb3.0 Super- peed	2008. 08	4.8Gbps	NO
			-A- 110 F21 (G)

USB接口特点

- ➤USB2.0带宽: 480 Mbit/s
- > 支持热插拔
- > 使用便捷
- >相机可通过USB线缆供电

USB总线传输方式

- ➤ 等时(isochronous)传输方式。提供了确定的带宽和间隔时间,在传送数据发生错误时,USB并不处理这些错误,而是继续传送新的数据;
- ▶ 中断(interrupt)传输方式。传输数据量小,以达到实时效果;
- ➤ 控制(control)传输方式。双向传输,数据量也比较小;
- ➤ 批(bulk)传输方式。该方式用来传输要求正确无误的数据; 在这4种数据传输方式中,除等时传输方式外,其他3种方式 在数据传输发生错误时,都会试图重新发送数据以保证其准 确性。

USB传输距离

USB2.0, 单根5m, 加中继可达30m

USB接口的局限性

- > 没有标准协议
- ➤ 主从(Master-salve)结构, CPU占用率高
- > 带宽没有保证

USB线

IEEE1394 - FireWire接口

标准	发布日期	传输速率	特点及应用
1394a	IEEE 1394 - 1995 IEEE 1394 - 2000	400Mbps	主要应用于视频传输领域; 传输距离4.5m,单根线缆最长 可达到17.5m,加中继可达70m,
1394b	IEEE 1394 - 2002	800Mbps	光纤传输则可达100m 有标准DCAM协议,CPU占用低
1394c	IEEE 1394 - 2006 IEEE 1394 - 2008	800Mbps 3.2Gbps	

IEEE1394特点

- ➤ 带宽: 400 Mbit/s(1394a),800 Mbit/s(1394b)
- > 支持热插拔
- > 点对点的通讯方式
- ▶ 支持DMA,不占CPU
- > 有保证的带宽,确保万无一失的数据传输
- > 可通过1394总线供电

IEEE1394总线特征

IEEE1394总线特征

- > 1394总线的"心跳"周期是125 μs (8 kHz);
- >包长: 1394总线每125 μs 发送的同步数据包尺寸。

IEEE1394总线特征

Isochronous data have a guaranteed bandwidth:

- S100: max. 1024 Bytes / Cycle = 1024 Bytes / 125μs = 7.8125 MB/s
- S200: max. 2048 Bytes / Cycle = 2048 Bytes / 125μs = 15.625 MB/s
- S400: max. 4096 Bytes / Cycle = 4096 Bytes / 125µs = 31.25 MB/s
- S800: max. 8192 Bytes / Cycle = 8192 Bytes / 125μs = 62.50 MB/s

IEEE1394传输距离

- ▶ 1394a, 单根4.5m(S400), 加中继可达70m。高质量的线缆可达17.5m(S400)(AVT), 如果调整到S100或S200,则传输距离可达25m,甚至更长;
- ▶ 1394b, 单根10m(S800); 转网络传输,用Cat5线可达到100m(S100),使用Cat6线,在S400情况下可达60m;转光纤传输,可达500m(S400/S800); 直接光纤传输100m(S800)(AVT Pike和Stingray系列)

DCAM/IIDC规范

规范定义了未经压缩的视频数据在1394总线中的传输方式。

- 产在摄像机寄存器层定义了大量的地址。
- >定义了多种固定的视频格式和外部信号的动作。
- >允许摄像机生产商自行定义摄像机的"高级特性"

1394线缆

CameraLink

- ▶ 是由AIA协会推出的数字图像信号通讯接口协议, 是一种串行通讯协议;
- ➤ 采用LVDS接口标准,该标准速度快、抗干扰能力强、功耗低;
- ▶ 是在NSM (National Semiconductor 美国国家半导体制造商)的接口协议Channel Link基础上发展而来的:
- ▶协议使用MDR-26针连接器。

Channel Link

Channel Link

- ➤ Cameralink使用28位Channel Link芯片;
- ▶4个数据流、1个时钟信号,通过5组LVDS 线对传输;
- ➤ 传输24位图像数据和 4 位同步视频信号,包括: Frame Valid、Line Valid 、Data Valid、Spare。

CameraLink架构

- Base Configuration
- Medium Configuration
- > Full Configuration

CameraLink架构

Base Configuration

- > 数据量 2.04 Gbit/s (255 MB/s)
- ➤ Channel Link芯片数:1 ; 线缆数量: 1
- ▶ 5个LVDS线对传输串行视频数据(24bits数据及4位视频同步信号,分别是: FVAL(帧有效)、LVAL(行有效)、DVAL(数据有效)、Spare(保留))一组同步信号
- ➤ 传送4个LVDS线对控制信号(cc1~cc4)
- > 2个LVDS线对串口信号与相机通讯

CameraLink架构

CameraLink架构

Medium Configuration

- > 数据量 4.08 Gbit/s (510 MB/s)
- ➤ Channel Link芯片数: 2; 线缆数量: 2
- >在Base的基础上提供了额外的24bits数据通道
 - ,用于传递图像数据,达到48bits

CameraLink架构

Full Configuration

- > 数据量 5.44Gbit/s (680 MB/s)
- ➤ Channel Link芯片数: 3 ; 线缆数量: 2
- ➤ 在Medium基础上提供额外的16bit数据带宽,达到64bits

CameraLink线缆

CameraLink优点

连接简单

>线缆紧凑简单(用5个线对可传28bits数据)

高带宽

Base:250MB/s;Medium:510MB/s;Full:680MB/s

- ➤由AIA (Automated Imaging Association) 创建并 推广
- >适于工业成像应用,通过网络传输无压缩视频信号
- > 第一个使用价格低廉线缆长距离传输图像的标准
- ▶ 即使是不同厂家的硬件和软件,只要符合GigE Vision标准,也可以实现无缝的千兆网连接

GigE Vision的特点

- ➤ 高带宽 (1000Mbps), 有效带宽100MB/s
- > 单根网线传输100米的距离
- ➤ 标准的Gigabit Ethernet硬件允许单个/多个相机连接到一台/多台电脑
- ➤ 价格低廉的线缆(CAT5e 或者CAT6e)和标准的连接器,可以很容易进行集成,而且集成费用很低
- ▶ 具备较高的可升级性,可适应网络带宽的增长。由于 10GigE变成主流,GigE Vision将会成为工业中最快的 连接;

Windows Standard GigE

Standard for Machine Vision!

Filter driver

	TCP/IP	UDP
连接	面向连接	非面向连接
对系统资源的要求	较多	少
传输模式	流模式	数据报模式
数据的正确性	保证数据的正确性	UDP可能丢包
数据顺序	保证数据顺序	UDP不保证

GigE Vision是基于UDP协议的

OSI Model TCP/IP Model GigE Vision Application Layer **GVCP** GVSP Application Layer Presentation Layer Session Layer Host-to-Host UDP Transport Layer Transport Layer Internet layer IΡ **ICMP** Network Layer ARP Network layer Ethernet Data Link Layer Physical Layer

- Screw lock is located in the both side of RJ-45 Connector. For Machine vision.
- Standard CAT5 or CAT6 cable can be connected.

数字相机常用接口比较

	CameraLink	Usb2. 0	1394a	1394b	GigE
速度	Base: 255MB/s Full: 680MB/s	38MB/s	32MB/s	64MB/s	100MB/s
距离	10m	5m	4.5m	10m	100m
优势	1. 带宽高 2. 有带预处理功能的采集设备 3. 抗干扰能力强	1. 易用 2. 价格低 3. 多相机	1. 易用,价格低, 多相机 2. 传输距离远,实 际线缆可达到17.5m, 光纤传输可达100m 3. 有标准DCAM协议 4. CPU占用最低		1. 易用,价格低,多 相机 2. 传输距离远,线缆 价格低 3. 标准GigE Vision 协议
缺点	1. 价格高 2. 线中不带供电	1. 无标准协 议 2. CPU占用 高	1. 长距离作价格稍贵	专输线缆	1. CPU占用稍高 2. 对主机配置要求高 3. 有时存在丢包现象 大恒冒镖

中国大恒(集团)有限公司北京图像视觉技术分公司

谢谢

E-mail: huaxue@daheng-image.com

