Presheaf Models of Polarized Higher-Order Abstract Syntax

Jacob Neumann

17 March 2023

Contents

1	Preliminaries	1
2	The Presheaf Model	4
3	Type Formers	5
4	Higher-Order Abstract Syntax	6
5	Polarized Type Theory	7
Nomenclature		
\mathbf{A}	Presheaf Model Calculations & Proofs	9
В	HOAS Calculations & Proofs	10

1 Preliminaries

Note 1.1

We'll work with three set universes in our metatheory, with implicit ("Russell-style") element operators.

$$\mathsf{Set}_0 : \mathsf{Set}_1 : \mathsf{Set}.$$

When convenient, we'll call elements of Set_0 small sets and elements of Set_1 large sets.¹ We freely make use of the following properties:

- These set universes are *cumulative*: any $X : \mathsf{Set}_0$ is also in Set_1
- Both Set_0 and Set_1 are closed under dependent products and sums: if $X : \mathsf{Set}_\ell$ and $P : X \to \mathsf{Set}_\ell$, then

$$\left(\prod_{x:X} P x\right) : \mathsf{Set}_{\ell} \quad \text{and} \quad \left(\sum_{x:X} P x\right) : \mathsf{Set}_{\ell}$$

ullet Both Set_0 and Set_1 form categories (which we'll also denote as Set_0 and Set_1 , respectively), which are both full subcategories of Set

¹We don't use these mutually exclusively: a large set could perhaps be a small set, and, by the cumulativity of the universes, all small sets are large.

• If \mathbb{C} is a *small category*, that is, $|\mathbb{C}|$: Set_0 and $\mathsf{Hom}_{\mathbb{C}}(I,J)$: Set_0 for all $I,J:|\mathbb{C}|$, then the collection of *small presheaves on* \mathbb{C} is a large set:

$$\left|\mathsf{Set}_0^{\mathbb{C}^\mathrm{op}}
ight|:\mathsf{Set}_1$$

• The empty set \emptyset , the singleton set $\mathbb{1}$, and the set of natural numbers \mathbb{N} are all small sets

For full generality, we might instead need to assume an infinite hierarchy Set_0 : Set_1 : Set_2 : ... – see Note 3.1.

Definition 1.1

Given a category \mathbb{C} and a presheaf $F : \mathbb{C}^{op} \Rightarrow \mathsf{Set}$, the **category of elements of** F – denoted $\int F$ – is the category whose

- objects are pairs (I, x), where I is an object of \mathbb{C} and x : F(I)
- morphisms $(I, x) \to (J, y)$ are \mathbb{C} -morphisms $j: I \to J$ such that $F \neq x$

Morphisms in $\int F$ are uniquely identified by their underlying \mathbb{C} -morphism and their codomain: for any $j:I\to J$ and y:F(J), we'll write $(j\mid y)$ to indicate the $\int F$ -morphism $(I,F\mid y)\to (J,y)$. We'll use the rule1 to type morphisms in categories of elements.

$$\frac{j \colon \mathbb{C}(I,J) \quad F \colon \mathbb{C}^{\text{op}} \Rightarrow \mathsf{Set} \quad F \ j \ y = x}{(j \mid y) \colon (\int F) \ (I,x) \ (J,y)} \tag{1}$$

Note 1.2

If \blacklozenge is the constant-1 presheaf $\mathbb{C}^{op} \Rightarrow \mathsf{Set}$, then

$$\int \Phi \cong \mathbb{C}$$
(2)

Definition 1.2

Let \mathbb{C} be any category, and consider the Yoneda embedding

$$\mathbf{y}:\mathbb{C}\Rightarrow\mathsf{Set}^{\mathbb{C}^{\mathrm{op}}}.$$

For any object $J: |\mathbb{C}|$, define the **slice category of** \mathbb{C} **over** J to be the category of elements of $\mathbf{y}(J)$:

$$\mathbb{C}/J = f(\mathbf{y}J).$$

Explicitly, the objects of \mathbb{C}/J are pairs $(I \mid j)$ where $I : |\mathbb{C}|$ and $j : \mathbb{C}(I, J)$. A morphism in \mathbb{C}/J from (I_0, j_0) to (I_1, j_1) is a \mathbb{C} -morphism $i_2 : I_0 \to I_1$ such that the triangle

commutes. So we specialize 1.

$$\frac{i_2 \colon \mathbb{C}(I_0, I_1) \quad j_1 \circ i_2 = j_0}{(i_2 \mid j_1) \colon (\mathbb{C}/J) \ (I_0, j_0) \ (I_1, j_1)}$$
(3)

Proposition 1.1

If $\mathbb C$ is a small category, then, for any $J:|\mathbb C|$, the representable functor $\mathbf yJ$ is a small presheaf on $\mathbb C$

$$\mathbf{y}J\colon \mathbb{C}^{\mathrm{op}}\Rightarrow \mathsf{Set}_0$$

and, moreover, the slice category \mathbb{C}/J is also small.

Definition 1.3

A category with families (cwf) consists of the following data

- A category Con with terminal object •. For I, J: Con, write Sub I J for the hom-set $\mathsf{Hom}_{\mathsf{Con}}(I,J)$. We'll call objects I: Con contexts, and morphisms j: Sub I J substitutions or context morphisms.
- A presheaf

$$\mathsf{Ty}\colon \mathsf{Con}^{\mathrm{op}}\Rightarrow \mathsf{Set}$$

sending a context I to its set of types Ty I, and a substitution j: Sub I J to the map

$$-[j]: \mathsf{Ty}\ J \to \mathsf{Ty}\ I$$

• A presheaf

$$\mathsf{Tm}: (\int \mathsf{Ty})^{\mathrm{op}} \Rightarrow \mathsf{Set}$$

sending each J: Con and Y: Ty J to the set $\mathsf{Tm}(J,Y)$ of terms of type A in context I, and each j: Sub I J to the map

$$-[j]: \mathsf{Tm}(J,Y) \to \mathsf{Tm}(I,Y[j])$$

• For each $Y: \mathsf{Ty}\ J$, a context $J \triangleright Y: \mathsf{Con}$, called the *extension of* $J\ by\ Y$, such that there is an isomorphism

$$\mathsf{Sub}\: I\: (J \triangleright Y) \quad \cong \quad \sum_{j: \mathsf{Sub}\: I\: J} \mathsf{Tm}(I,Y[j])$$

natural in I.² We'll write $(\mathsf{p}_Y, \mathsf{v}_Y) : \sum_{\mathsf{Sub}\,(J \triangleright Y)\,J} \mathsf{Tm}(J \triangleright Y, Y[\mathsf{p}_Y])$ for the image of $\mathsf{id}_{J \triangleright Y}$ under this isomorphism (dropping the subscripts when possible), and write $\langle -, - \rangle$ for the reverse direction (e.g. $\langle \mathsf{p}, \mathsf{v} \rangle = \mathsf{id}_{J \triangleright Y}$).

Definition 1.4

A CwF (Con, Sub, Ty, Tm, ...) is called *small* if all the sets involved are in Set_0 , i.e.

- $|\mathsf{Con}| : \mathsf{Set}_0$
- Sub(I, J): Set_0 for all I, J
- Ty: $Con^{op} \Rightarrow Set_0$
- Tm: $(\int \mathsf{Ty})^{\mathrm{op}} \Rightarrow \mathsf{Set}_0$

$$\langle j_1, t \rangle \circ i_2 = \langle j_1 \circ i_2, t[i_2] \rangle$$
 (extend-natural)

where $t : \mathsf{Tm}(I_1, Y[j_1])$.

²That is,

2 The Presheaf Model

Definition 2.1

Let \mathbb{C} be any small category. The **presheaf model** (on \mathbb{C}) is the category $\widehat{\mathbb{C}} = \mathbb{C}^{op} \Rightarrow \mathsf{Set}_1$, endowed with a CwF structure in the following way.

• $\widehat{\mathsf{Con}} = \mathbb{C}^{\mathsf{op}} \Rightarrow \mathsf{Set}_1$. A morphism $\sigma : \widehat{\mathsf{Sub}} \ \Delta \ \Gamma$ is a natural transformation of presheaves

$$\sigma: \int_{I:\mathbb{C}} \Delta I \to \Gamma I$$

- The constant-1 presheaf is the terminal object, which we'll denote ♦ : Con
- For $\Gamma : \widehat{\mathsf{Con}}$, $\widehat{\mathsf{Ty}}(\Gamma)$ is defined as the set of small presheaves on the category of elements of Γ :

$$\widehat{\mathsf{Ty}}(\Gamma) = (\int \Gamma)^{\mathrm{op}} \Rightarrow \mathsf{Set}_0$$
 (Defn. $\widehat{\mathsf{Ty}}$)

Explicitly, $A:\widehat{\mathsf{Ty}}(\Gamma)$ assigns to each $J:\mathbb{C},\ \gamma:\Gamma J$ a small set $A(J,\gamma),$ and to each $j:I\to J$ a function

$$A(j \mid \gamma) \colon A(J, \gamma) \to A(I, \Gamma j \gamma)$$
 (*)

• For a natural transformation $\sigma : \widehat{\mathsf{Sub}} \ \Delta \ \Gamma$ and some $A : \widehat{\mathsf{Ty}}(\Gamma)$, define $A[\sigma] : \widehat{\mathsf{Ty}}(\Delta)$ (i.e. $A[\sigma] : (\int \Delta)^{\mathrm{op}} \to \mathsf{Set}_0$) by

$$A[\sigma](I,\vartheta) = A(I,\sigma_I\vartheta)$$
 (Defn. $A[\sigma]$)

$$A[\sigma](j \mid \delta) = A(j \mid \sigma_J\delta)$$

The definition of the morphism part is well-typed, by Fig. A.1.

• Given $\Gamma : \widehat{\mathsf{Con}}$ and $A : \widehat{\mathsf{Ty}}(\Gamma)$, define

$$\widehat{\mathsf{Tm}}(\Gamma, A) = \int_{I:\mathbb{C}} (\phi : \Gamma I) \to A(I, \phi).$$

Explicitly, a term $M:\widehat{\mathsf{Tm}}(\Gamma,A)$ consists of a dependent function

$$M:(I:\mathbb{C})\to (\phi:\Gamma I)\to A(I,\phi)$$

satisfying this condition: for any j and γ ,

$$M_I(\Gamma j \gamma) = A (j \mid \gamma) (M_J \gamma).$$
 (Nat. M)

• Given $\sigma : \widehat{\mathsf{Sub}} \ \Delta \ \Gamma$ and $M : \widehat{\mathsf{Tm}}(\Gamma, A)$, define

$$M[\sigma]: \int_{I:\mathbb{C}} (\vartheta: \Delta I) \to A[\sigma](I, \vartheta)$$

by

$$(M[\sigma])_I \vartheta = M_I (\sigma_I \vartheta).$$
 (Defn. $M[\sigma]$)

This is natural, by Fig. A.2.

• Given $A : \widehat{\mathsf{Ty}}(\Gamma)$, define $\Gamma \triangleright A : \widehat{\mathsf{Con}}$ by

$$(\Gamma \triangleright A) \ I = \sum_{\phi: \Gamma I} A(I, \phi)$$
$$(\Gamma \triangleright A) \ j \ (\gamma, a) = (\Gamma \ j \ \gamma, \ A \ (j \mid \gamma) \ a)$$

Proposition 2.1

In the presheaf model, there is an isomorphism

$$\widehat{\mathsf{Sub}}\ \Delta\ (\Gamma.A) \cong \sum_{\sigma: \widehat{\mathsf{Sub}}\ \Delta\ \Gamma} \widehat{\mathsf{Tm}}(\Delta, A[\sigma])$$

natural in Δ .

Note 2.1

Given any closed type $E : \widehat{\mathsf{Ty}} \blacklozenge$, we can weaken E to be type in any context Γ by ignoring the elements of Γ :

$$\begin{split} E & : \widehat{\mathsf{Ty}} \, \Gamma \\ E(J,\gamma) & = E(J,\star) \\ E(j \mid \gamma) & = E(j \mid \mathsf{id}_\star) \end{split}$$

where \star is the unique element of 1. When we define *large types* (Defn. 3.1), the same will be true.

3 Type Formers

TODO: Dependent types in presheaf model

Note 3.1

The following construction will produce a universe U in the syntax of our type theory. However, U will not itself be a term of some larger universe. If we want U to live in a universe, we need to assume a further set-theoretic universe and repeat this construction to obtain U_1 . But then U_1 will not live in a universe, and so on. To completely avoid this problem will require an infinite hierarchy

$$\mathsf{Set}_0 \colon \mathsf{Set}_1 \colon \mathsf{Set}_2 \colon \ldots \colon \mathsf{Set}.$$

We avoid doing this, for simplicity.

Definition 3.1

A large type in context Γ is a large presheaf on the category of elements of Γ :

$$\mathbf{X} \colon (\int \ \Gamma)^{\mathrm{op}} \to \mathsf{Set}_1$$

Proposition 3.1

There is an isomorphism

$$\widehat{\mathsf{Con}} \cong \widehat{\mathsf{Ty}} \blacklozenge.$$

Proposition 3.2

We can extend the definition of $\widehat{\mathsf{Tm}}$ to large types: given any $\mathbf{X}:\widehat{\mathsf{Ty}}\;\Gamma,$

$$\widehat{\mathsf{Tm}}(\Gamma, \mathbf{X}) = \int_{I:\mathbb{C}} (\phi : \Gamma I) \to \mathbf{X}(I, \phi).$$

In the special case where the large type in question is some $\mathbf{E} : \widehat{\mathsf{Ty}} \blacklozenge$, weakened to be a large type in Γ (care of Note 2.1), then this definition is just natural transformations from Γ to \mathbf{E} (taken as a context, care of Prop. 3.1):

$$\mathsf{Tm}(\Gamma, \mathbf{E}) \cong \int_{I:\mathbb{C}} \Gamma I \to \mathbf{E}I$$
 (4)

$$= \widehat{\mathsf{Sub}} \; \Gamma \; \mathbf{E}. \tag{5}$$

Theorem 3.3

There is a large closed type $\mathbf{U}: \widehat{\mathsf{Ty}} \blacklozenge \mathsf{such}$ that

$$\widehat{\mathsf{Tm}}(\Gamma, \mathbf{U}) \cong \mathsf{Ty} \; \Gamma.$$

$$\frac{\widehat{\mathsf{Sub}}\;\Gamma\;\mathbf{U}}{(\int\Gamma)^{\mathrm{op}}\Rightarrow\mathsf{Set}_0} \tag{Fundamental Property of }\mathbf{U})$$

Proposition 3.4

$$\frac{\widehat{\mathsf{Sub}} \blacklozenge (\Gamma \Rightarrow \Delta)}{\widehat{\mathsf{Sub}} \Gamma \Delta} \tag{6}$$

4 Higher-Order Abstract Syntax

Definition 4.1

Observe that the base CwF type presheaf $Ty : \mathbb{C}^{op} \Rightarrow \mathsf{Set}_0$ can be regarded as a closed *type* in the presheaf model, $Ty : \widehat{Ty} \blacklozenge$, care of 2. A **closed base type** is a term $A : \widehat{Tm}(\blacklozenge, Ty)$.

Given a closed base type A and some $I : \mathbb{C}$, write $A_I : \mathsf{Ty}\ I$ for the I-component of A (recalling that $\widehat{\mathsf{Tm}}(\blacklozenge, \mathsf{Ty})$ consists of natural transformations from \blacklozenge to Ty).³ Then define

$$\mathsf{Tm}_A : \mathbb{C}^{\mathrm{op}} \Rightarrow \mathsf{Set}_0$$
 $\mathsf{Tm}_A I = \mathsf{Tm}(I, A_I)$
 $\mathsf{Tm}_A i_2 = \mathsf{Tm}(i_2 \mid A_{I_1})$

See Fig. B.1.

Ty
$$i_2 A_{I_1} = A_{I_0}$$
 (7)

³The naturality condition says: for all i_2 : $\mathbb{C}(I_0, I_1)$,

HOAS	Semantics in presheaf model	translated into category theory	Note
U type	U: Ty ♦	$\mathbf{U}\colon \mathbb{C}^{\mathrm{op}}\Rightarrow Set_1$	
Ty: U	Ty: $\widehat{Tm}(\blacklozenge,\mathbf{U})$	$Ty \colon \mathbb{C}^\mathrm{op} \Rightarrow Set_0$	Fig. B.2
$Tm\colon Ty\to \mathbf{U}$	$Tm \colon \widehat{Tm} \left(\blacklozenge, Ty \Rightarrow \mathbf{U} \right)$	$Tm \colon (\int Ty)^{\mathrm{op}} \Rightarrow Set_0$	Fig. B.3
$\begin{array}{c} \Sigma \colon (A : Ty) \to \\ (Tm \ A \to Ty) \to Ty \end{array}$	$\frac{A \colon \widehat{Tm}(\blacklozenge, Ty) B \colon \widehat{Sub} \; Tm_A \; Ty}{\Sigma AB \colon \widehat{Tm}(\blacklozenge, Ty)}$		

5 Polarized Type Theory

Definition 5.1

A polarized category with families (PCwF) consists of a CwF with two 'copies' of each structure: a 'positive' and a 'negative' version. More precisely, it includes the following data.

- A category Con with terminal object and hom-sets denoted Sub
- Two presheaves

$$\mathsf{Ty} \colon \mathsf{Con}^\mathrm{op} \Rightarrow \mathsf{Set} \qquad \mathsf{Ty}^- \colon \mathsf{Con}^\mathrm{op} \Rightarrow \mathsf{Set}$$

sending a context I to its set of positive types Ty I and set of negative types Ty⁻ I, respectively, and sending a substitution j: Sub I J to the maps

$$-[j]: \mathsf{Ty}\ J o \mathsf{Ty}\ I \qquad -[j^-]: \mathsf{Ty}^-\ J o \mathsf{Ty}^-\ I$$

We require that Ty and Ty⁻ agree on the empty context:

$$\mathsf{Ty} \bullet = \mathsf{Ty}^- \bullet$$

• Two presheaves

$$\mathsf{Tm}:(\int \mathsf{Ty})^{\mathrm{op}} \Rightarrow \mathsf{Set} \qquad \mathsf{Tm}^-:(\int \mathsf{Ty}^-)^{\mathrm{op}} \Rightarrow \mathsf{Set}$$

sending each $J: Con \text{ and } Y: Ty^s J \text{ to the set } Tm^s(J,Y), \text{ and each } j: Sub I J \text{ to the map}$

$$-[j^s]: \mathrm{Tm}^s(J,Y) \to \mathrm{Tm}^s(I,Y[j^s])$$

where here, and henceforth, s is a metavariable for either negative or positive.

• For each $Y: \mathsf{Ty}^s J$, a context $J \triangleright^s Y: \mathsf{Con}$, called the s-extension of J by Y, such that there is an isomorphism

$$\operatorname{Sub} I \ (J \triangleright^s Y) \quad \cong \quad \sum_{j: \operatorname{Sub} I} \operatorname{Tm}^s(I, Y[j^s])$$

natural in I.

Nomenclature

Base CwF

 ${\Bbb C}$: Small category Category of contexts for the base CwF

Sub : $|\mathbb{C}| \to |\mathbb{C}| \to \mathsf{Set}_0$ Substitutions in the base CwF,

homsets of \mathbb{C}

 $\mathbf{y} : \mathbb{C} \Rightarrow \mathbb{C}^{\mathrm{op}} \Rightarrow \mathsf{Set}_0$ Yoneda embedding (object part is given by Sub)

 $I, J, I_0, I_1, K : |\mathbb{C}|$ Contexts in the base CwF

• : $|\mathbb{C}|$ Empty context in the base CwF

 i_2 : $\mathbb{C}(I_0, I_1)$, a.k.a. $\mathsf{Sub}(I_0, I_1)$ Substitution, context morphism

 j_0 : $\mathbb{C}(I_0, I_1)$, a.k.a. $\mathsf{Sub}(I_0, J)$

 j_1 : $\mathbb{C}(I_1, J)$, a.k.a. $\mathsf{Sub}(I_1, J)$

 $k : \mathbb{C}(J,K)$, a.k.a. $\mathsf{Sub}(J,K)$

Ty : $\mathbb{C}^{op} \Rightarrow \mathsf{Set}_0$ Family of Types of the base CwF

 $\mathsf{Tm} : (\int \mathsf{Ty})^{\mathrm{op}} \Rightarrow \mathsf{Set}_0$ Family of Terms of the base CwF

Y: Type in context J

Presheaf Model

 $\widehat{\mathbb{C}}$: Category Category of contexts for the presheaf model,

category of large presheaves on \mathbb{C}

lacktriangle: $\widehat{\mathsf{Con}}, \text{ i.e. } \mathbb{C}^{\mathrm{op}} \Rightarrow \mathsf{Set}_1$ Empty context, the terminal presheaf

 Δ, Γ : $\widehat{\mathsf{Con}}$, i.e. $\mathbb{C}^{\mathrm{op}} \Rightarrow \mathsf{Set}_1$ Contexts in presheaf model, presheaves over \mathbb{C}

 σ : $\widehat{\mathsf{Sub}} \Delta \Gamma$ Substitutions in the presheaf model, natural

transformations of presheaves

 $\phi \qquad : \Gamma I$ Element of Γ at I

 $\gamma : \Gamma J$ Element of Γ at J

 ϑ : ΔI Element of Δ at I

 $\delta : \Delta J$ Element of Δ at J

 $A : \widehat{\mathsf{Ty}} \Gamma$ Type in context Γ

 $E : \widehat{\mathsf{Ty}} \, lacktriangle$ Closed type

 $M : \widehat{\mathsf{Tm}}(\Gamma, A)$ Term of type A in context Γ

 $a : A(I, \phi)$ Element of A at (I, ϕ)

 $\mathbf{X} : (\int \Gamma)^{\mathrm{op}} \Rightarrow \mathsf{Set}_1$ Large type in context Γ

 $\mathbf{E} : \mathbb{C}^{\mathrm{op}} \Rightarrow \mathsf{Set}_1$ Large closed type

A Presheaf Model Calculations & Proofs

$$\underbrace{\frac{\sigma : \widehat{\mathsf{Sub}} \, \Delta \, \Gamma}{\Gamma \, j \, (\sigma_J \delta) : A(J, \sigma_J \delta) \to A(I, \Gamma \, j \, (\sigma_J \delta))}_{A(j, \sigma_J \delta) : A(J, \sigma_J \delta) \to A(I, \sigma_J \delta)} \frac{(j \mid \delta) : (f \mid \Delta) \, (I, \vartheta) \, (J, \delta)}{\Delta \, j \, \delta = \vartheta}}_{A(j, \sigma_J \delta) : A(J, \sigma_J \delta) \to A(I, \sigma_I \vartheta)} (1)$$

Figure A.1: Calculation: Well-typedness of type substitution in presheaf model

$$(M[\sigma])_{I}(\Delta j \delta) = M_{I}(\sigma_{I}(\Delta j \delta)$$

$$= M_{I}(\Gamma j (\sigma_{J}\delta))$$

$$= A(j \mid \sigma_{J}\delta) (M_{J} (\sigma_{J}\delta))$$

$$= A[\sigma] (j \mid \delta) (M_{J} (\sigma_{J}\delta))$$

$$= A[\sigma] (j \mid \delta) ((M[\sigma])_{J} \delta)$$

$$(Defn. M[\sigma])$$

$$(Defn. M[\sigma])$$

Thus $M[\sigma]$ satisfies the requisite "naturality" condition to be a term of type $A[\sigma]$.

Figure A.2: Calculation: Naturality of term substitution in presheaf model

Proposition A.1 (Theorem 3.3)

There is a large closed type $U : \widehat{\mathsf{Ty}} \blacklozenge \mathsf{such}$ that

$$\widehat{\mathsf{Tm}}(\Gamma,\mathbf{U})\cong\mathsf{Ty}\;\Gamma.$$

Proof. —

We'll define **U** as a large presheaf on \mathbb{C} . To see what the definition of $\mathbf{U}(I)$ must be, we use the Yoneda Lemma:

$$\mathbf{U} \ I \cong \widehat{\mathsf{Sub}} \ (\mathbf{y}I) \ \mathbf{U}$$
 (Yoneda)
$$\cong \widehat{\mathsf{Tm}}(\mathbf{y}I, \mathbf{U})$$
 (Prop. 3.2)
$$\cong \widehat{\mathsf{Ty}}(\mathbf{y}I)$$
 (Desired Property of \mathbf{U})
$$= \mathsf{Set}_0^{(f \mathbf{y}I)^{\mathrm{op}}}$$
 (Defn. $\widehat{\mathsf{Ty}}$)
$$= \mathsf{Set}_0^{(\mathbb{C}/I)^{\mathrm{op}}}$$
 (Defn. 1.2)

This motivates this definition: on objects, U is defined as

$$\mathbf{U} I = \mathsf{Set}_0^{(\mathbb{C}/I)^{\mathrm{op}}}.$$
 (Defn. \mathbf{U})

Then, for a \mathbb{C} -morphism $k: J \to K$, we must give $\mathbf{U}(k): \mathbf{U}K \to \mathbf{U}J$. Given $F: (\mathbb{C}/K)^{\mathrm{op}} \Rightarrow \mathsf{Set}_0$, define $\mathbf{U} \ k \ F: (\mathbb{C}/J)^{\mathrm{op}} \Rightarrow \mathsf{Set}_0$ by

$$\mathbf{U} \ k \ F \ (I,j) = F(I,k \circ j) \tag{8}$$

$$\mathbf{U} \ k \ F \ (i_2 \mid j_1) = F \ (i_2 \mid k \circ j_1) \tag{9}$$

where the last line makes sense by Fig. A.3.

It remains to check that U is indeed a functor, and that we have the bijection

$$\widehat{\operatorname{Sub}}\;\Gamma\;\mathbf{U}\cong\widehat{\operatorname{Ty}}\;\Gamma$$

This bijection is given as a generalization of the proof of the Yoneda Lemma: given $\beta \colon \widehat{\mathsf{Sub}} \Gamma \mathbf{U}$, define $B \colon \widehat{\mathsf{Ty}} \Gamma$, that is, $B \colon (\int \Gamma)^{\mathrm{op}} \Rightarrow \mathsf{Set}_0$ by

$$B(I,\phi) = \beta_I \phi (I, \mathsf{id}_I) \tag{10}$$

$$B(i_2 \mid \phi_1) = \beta_I \ \phi_1 \ i_2 \tag{11}$$

and, oppositely, given B, define

$$\beta_J \gamma : (\mathbb{C}/J)^{\mathrm{op}} \Rightarrow \mathsf{Set}_0$$
 (12)

$$\beta_J \gamma (I, j) = B(I, \Gamma j \gamma) \tag{13}$$

$$\beta_J \gamma (i_2 \mid j_1) = B(i_2 \mid \Gamma j_1 \gamma) \tag{14}$$

That these definitions are well-typed and constitute a bijection is confirmed in Fig. A.4. . We can then conclude

$$\mathsf{Tm}(\Gamma, \mathbf{U}) \cong \widehat{\mathsf{Sub}} \; \Gamma \; \mathbf{U} \cong \mathsf{Ty} \; \Gamma.$$

 $I_{0} \xrightarrow{i_{2}} I_{1}$ $\downarrow k$ K $\frac{(i_{2} \mid j_{1}) \colon (\mathbb{C}/J) \ (I_{0}, j_{0}) \ (I_{1}, j_{1})}{\sum_{j_{1}} (1 \mid j_{1}) \colon (\mathbb{C}/K) \ (I_{0}, j_{0}) \ (I_{1}, j_{1})} (3)}$ $\frac{i_{2} \colon \mathbb{C}(I_{0}, I_{1}) \qquad \frac{j_{1} \circ i_{2} = j_{0}}{k \circ j_{1} \circ i_{2} = k \circ j_{0}} (3)}{\sum_{k \circ j_{1} \circ i_{2} = k \circ j_{0}} (3)}$ $\frac{F \colon (\mathbb{C}/K)^{\mathrm{op}} \Rightarrow \mathsf{Set}_{0} \qquad \frac{(i_{2} \mid k \circ j_{1}) \colon (\mathbb{C}/K) \ (I_{0}, k \circ j_{0}) \ (I_{1}, k \circ j_{1})}{F(i_{2} \mid k \circ j_{1}) \colon F(I_{0}, k \circ j_{0}) \to F(I_{1}, k \circ j_{1})} \qquad (3)}$

Figure A.3: Calculation: Well-typedness of the definition of the morphism part of \mathbf{U} k F

TODO

Figure A.4: Calculation: Correctness of the bijection proof of Theorem 3.3

B HOAS Calculations & Proofs

$$\frac{I_2 \colon \mathbb{C}(I_0,I_1) \quad \overline{\mathsf{Ty}} \ i_2 \ A_{I_1} = A_{I_0}}{\mathsf{Tm} \colon (\int \mathsf{Ty})^{\mathrm{op}} \Rightarrow \mathsf{Set}_0 \quad \frac{i_2 \colon \mathbb{C}(I_0,I_1) \quad \overline{\mathsf{Ty}} \ i_2 \ A_{I_1} = A_{I_0}}{\mathsf{Tm}(i_2 \downharpoonright A_{I_1}) \colon \mathsf{Tm}(I_1,A_{I_1}) \to \mathsf{Tm}(I_0,A_{I_0})} (1)}$$

Figure B.1: Calculation: Well-typedness of the Tm_A construction

$$\widehat{\mathsf{Tm}}(\blacklozenge, \mathbf{U}) \cong \widehat{\mathsf{Sub}} \blacklozenge \mathbf{U} \tag{5}$$

$$\cong (\int \blacklozenge)^{\mathrm{op}} \Rightarrow \mathsf{Set}_0 \tag{Fundamental Property of } \mathbf{U})$$

$$\cong \mathbb{C}^{\mathrm{op}} \Rightarrow \mathsf{Set}_0 \tag{2}$$

Figure B.2: Calculation: Meaning of Ty: U in the presheaf model

$$\widehat{\mathsf{Tm}}(\blacklozenge,\mathsf{Ty}\Rightarrow \mathbf{U})\cong \widehat{\mathsf{Sub}} \blacklozenge (\mathsf{Ty}\Rightarrow \mathbf{U})$$

$$\cong \widehat{\mathsf{Sub}} \; \mathsf{Ty} \; \mathbf{U}$$

$$\cong (\int \mathsf{Ty})^{\mathrm{op}} \Rightarrow \mathsf{Set}_0$$
(5)
(6)
(6)
(6)
(7)

Figure B.3: Calculation: Meaning of $\mathsf{Tm} \colon \mathsf{Ty} \to \mathbf{U}$ in the presheaf model