David Delahaye

Faculté des Sciences David.Delahaye@lirmm.fr

Master Informatique M2 2021-2022

Syntaxe

```
formula ::= formula \land formula \mid (formula)\midatom atom ::= sum op sum op ::= = \mid \leq \mid < sum ::= term \mid sum + term term ::= identifier \mid constant \mid constant identifier
```

Domaines : \mathbb{Q} (polynomial) ou \mathbb{Z} (NP-complet).

Exemple

Trouver une solution (rationnelle ou entière) au système suivant :

$$3x_1 + 2x_2 \le 5x_3 \wedge 2x_1 - 2x_2 = 0$$

Solveurs

- Sur les rationnels, on utilise la méthode du simplexe :
 - Algorithme de résolution des problèmes d'optimisation linéaire.
 - ▶ Introduit par George Dantzig à partir de 1947.
 - Minimiser une fonction sur un ensemble défini de contraintes.
 - lci, nous ne sommes pas intéressés par la fonction objectif.
 - On utilise la méthode du simplexe généralisé.
 - Dijectif : décider si l'ensemble de contraintes est satisfiable.
- Sur les entiers, on utilise la méthode du Branch and Bound :
 - Séparation et évaluation en français.
 - Algorithme de résolution de problèmes d'optimisation combinatoire.
 - Minimiser une fonction dans un ensemble dénombrable
 - On adapte l'algorithme pour se passer de la fonction objectif.

Solveurs

- Sur les rationnels, on utilise la méthode du simplexe :
 - Algorithme de résolution des problèmes d'optimisation linéaire.
 - ► Introduit par George Dantzig à partir de 1947.
 - Minimiser une fonction sur un ensemble défini de contraintes.
 - Ici, nous ne sommes pas intéressés par la fonction objectif.
 - On utilise la méthode du simplexe généralisé.
 - Dijectif : décider si l'ensemble de contraintes est satisfiable.
- Sur les entiers, on utilise la méthode du Branch and Bound :
 - Séparation et évaluation en français.
 - Algorithme de résolution de problèmes d'optimisation combinatoire.
 - Minimiser une fonction dans un ensemble dénombrable
 - On adapte l'algorithme pour se passer de la fonction objectif.

Contraintes

Deux types de contraintes :

- **1** Des égalités de la forme : $a_1x_1 + \ldots + a_nx_n$
- ② Des bornes sur les variables : $l_i \le x_i \le u_i$, où l_i et u_i sont des constantes représentant respectivement les bornes inférieures et supérieures sur x_i . Ces bornes sont optionnelles, l'algorithme peut traiter des variables non bornées.

Forme générale

Cette représentation du système de contraintes est appelé forme générale. On peut toujours se ramener à une forme générale.

Algorithme pour se ramener à une forme générale

On considère que le système est de la forme $L \bowtie R$, où L et R sont des formules, et $\bowtie \in \{=, \leq, \geq\}$.

Soit *m* le nombre de contraintes.

Pour la i-ième contrainte t.q. $1 \le i \le m$:

- Passer tous les termes de R à gauche de manière à obtenir $L' \bowtie b$, où b est une constante.
- ② Introduire une nouvelle variable s_i et ajouter les contraintes :

$$L'-s_i=0$$
 et $s_i\bowtie b$

Si \bowtie est l'égalité, réécrire s = b en $s_i \le b$ et $s_i \ge b$.

Exemple de transformation en forme générale

On considère le système de contraintes suivant :

$$x + y \ge 2 \quad \land \\ 2x - y \ge 0 \quad \land \\ -x + 2y \ge 1$$

Exemple de transformation en forme générale

Le système est réécrit dans sa forme générale comme suit :

$$x + y - s_1 = 0 \quad \land \\ 2x - y - s_2 = 0 \quad \land \\ -x + 2y - s_3 = 0 \quad \land \\ s_1 \ge 2 \quad \land \\ s_2 \ge 0 \quad \land \\ s_3 \ge 1$$

Transformation en forme générale

- Les variables s_1, \ldots, s_m sont appelées variables additionnelles.
- Les variables x_1, \ldots, x_n dans les contraintes intitiales sont appelées les variables du problème.
- On a donc *n* variables du problème et *m* variables additionnelles.
- Une variable additionnelle est introduite seulement si L' n'est pas réduite à une variable du problème ou si elle n'a pas déjà été affectée à une variable additionnelle précédemment.

Arithmétique linéaire

Représentation matricielle

- On peut représenter les coefficients du système de contraintes comme une matrice A de dimension $m \times (n + m)$.
- Les variables $x_1, \ldots, x_n, s_1, \ldots, s_m$ sont écrites comme un vecteur x.
- Avec cette notation, notre problème est équivalent à rechercher l'existence d'un vecteur x t.q. :

$$Ax = 0$$
 et $\bigwedge_{i=1}^{m} I_i \leq s_i \leq u_i$

où $l_i \in \{-\infty\} \cup \mathbb{Q}$ est la borne inférieure de s_i et $u_i \in \{+\infty\} \cup \mathbb{Q}$ est la borne supérieure de s_i .

Les valeurs infinies sont pour les cas où il n'y a pas de borne.

Représentation matricielle

- On peut représenter les coefficients du système de contraintes comme une matrice A de dimension $m \times (n + m)$.
- Les variables $x_1, \ldots, x_n, s_1, \ldots, s_m$ sont écrites comme un vecteur x.
- Avec cette notation, notre problème est équivalent à rechercher l'existence d'un vecteur x t.q. :

$$Ax = 0$$
 et $\bigwedge_{i=1}^{m} I_i \leq s_i \leq u_i$

où $l_i \in \{-\infty\} \cup \mathbb{Q}$ est la borne inférieure de s_i et $u_i \in \{+\infty\} \cup \mathbb{Q}$ est la borne supérieure de s_i .

Les valeurs infinies sont pour les cas où il n'y a pas de borne.

Exemple de représentation matricielle

Pour le système de contraintes suivant :

$$x + y - s_1 = 0 \land 2x - y - s_2 = 0 \land -x + 2y - s_3 = 0 \land 2 \le s_1 \land 0 \le s_2 \land 1 \le s_3$$

On a la représentation matricielle suivante :

$$\left(\begin{array}{ccccc} 1 & 1 & -1 & 0 & 0 \\ 2 & -1 & 0 & -1 & 0 \\ -1 & 2 & 0 & 0 & -1 \end{array}\right)$$

Représentation sous forme de tableau

- Une partie de la matrice est diagonale de dimension $m \times m$ dont les coefficients sont -1 (conséquence directe de la forme générale).
- L'ensemble des m variables est appelé ensemble des variables basiques (ou dépendantes) et est noté \mathcal{B} .
- ullet L'ensemble des autres n variables est appelé ensemble des variables non basiques et est noté ${\mathcal N}$
- On peut représenter A sous la forme d'un tableau, qui est simplement A sans la matrice diagonale et qui est indexé par les variables basiques en ligne et par les variables non basiques en colonne.

Exemple de représentation sous forme de tableau

Pour la représentation matricielle suivante :

$$\left(\begin{array}{ccccc}
1 & 1 & -1 & 0 & 0 \\
2 & -1 & 0 & -1 & 0 \\
-1 & 2 & 0 & 0 & -1
\end{array}\right)$$

On aura le tableau suivant :

	X	у
<i>s</i> ₁	1	1
<i>s</i> ₂	2	-1
s 3	-1	2

Représentation sous forme de tableau

• Le tableau est simplement une représentation différente de A, puisque Ax = 0 peut être réécrit en :

$$\bigwedge_{x_i \in \mathcal{B}} (x_i = \sum_{x_j \in \mathcal{N}} a_{ij} x_j)$$

• L'algorithme du simplexe travaillera sur cette représentation.

Affectation et initialisation de l'algorithme

- En plus de la structure de tableau, le simplexe maintient une affectation des variables $\alpha: \mathcal{B} \cup \mathcal{N} \to \mathbb{Q}$.
- L'algorithme est initialisé comme suit :
 - L'ensemble \mathcal{B} est initialisé avec les variables additionnelles.
 - lacktriangle L'ensemble ${\cal N}$ est initialisé avec les variables du problème.
 - $\alpha(x_i) = 0$, pour tout x_i avec $i \in \{1, \ldots, n+m\}$.
 - On se donne un ordre fixe sur les variables x_i avec $i \in \{1, \dots, n+m\}$.
- Si l'affectation initiale de zéro à toutes les variables satisfait toutes les bornes inférieures et supérieures des variables basiques, alors la formule peut être déclarée satisfiable (les variables non basiques n'ont pas de bornes explicites).
- Sinon l'algorithme doit changer son affectation.

Algorithme

- S'il n'y a pas de variable de base qui ne respecte pas ses bornes, retourner « Satisfiable ». Sinon, x_i est la première variable basique dans l'ordre sur les variables qui ne respecte pas ses bornes.
- **2** Rechercher la première variable non basique appropriée x_j dans l'ordre sur les variables pour la faire pivoter avec x_i . S'il n'y a pas de telle variable, retourner « Insatisfiable ».
- **3** Effectuer l'opération de pivot sur x_i et x_j .
- Aller à l'étape 1.

Algorithme

- L'algorithme maintient deux invariants :
 - ► (Inv-1) Ax = 0
 - ▶ (Inv-2) les variables non basiques sont dans leurs bornes :

$$l_j \leq \alpha(x_j) \leq u_j$$
, pour tout $x_j \in \mathcal{N}$

• Ces deux invariants sont satisfaits initialement car toutes les variables dans x sont à 0, et les variables non basiques non pas de bornes.

Algorithme

- La boucle principale de l'algorithme vérifie s'il existe une variable basique qui ne respecte pas ses bornes.
- S'il n'y a pas de telle variable, alors les variables basiques et non basiques satisfont leurs bornes.
- En raison de l'invariant Inv-1, ceci signifie que l'assignation courante α satisfait :

$$Ax = 0$$
 et $\bigwedge_{i=1}^{m} I_i \leq s_i \leq u_i$

et l'algorithme retourne « Satisfiable ».

Algorithme

- Sinon, soit x_i la variable basique qui ne respecte pas ses bornes, et supposons, sans perte de généralité, que $\alpha(x_i) > u_i$, c'est-à-dire que la borne supérieure de x_i n'est pas respectée.
- Comment pouvons-nous modifier l'affectation de x_i pour qu'elle satisfasse ses bornes? Nous devons trouver un moyen de réduire la valeur de x_i .
- Rappelons comment cette valeur est calculée :

$$x_i = \sum_{x_j \in \mathcal{N}} a_{ij} x_j$$

Algorithme

- La valeur de x_i peut être réduite :
 - En diminuant la valeur d'une variable non basique x_j telle que $a_{ij} > 0$ et que son affectation actuelle est supérieure à sa borne inférieure l_j .
 - Ou en augmentant la valeur d'une variable x_j telle que $a_{ij} < 0$ et que son affectation actuelle est inférieure à sa borne supérieure u_j .
- Une variable x_j qui remplit l'une de ces conditions est dite appropriée ou acceptable. S'il n'y a pas de variables appropriées, alors le problème est insatisfiable et l'algorithme se termine.

Algorithme

• Soit θ qui dénote de combien nous devons augmenter (ou diminuer) $\alpha(x_j)$ afin de respecter la borne supérieure u_i de x_i :

$$\theta = \frac{u_i - \alpha(x_i)}{a_{ij}}$$

- Augmenter (ou diminuer) x_j de θ place x_i dans ses bornes. En revanche, x_j ne satisfait plus nécessairement ses bornes, et peut donc ne plus respecter l'invariant Inv-2.
- Il faut donc intervertir x_i et x_j dans le tableau, c'est-à-dire que nous rendons x_i non basique et x_j basique. Cela nécessite une transformation du tableau, qui se fait selon la méthode du pivot.
- L'opération de pivotement est répétée jusqu'à ce qu'une jusqu'à ce qu'une affectation satisfaisante soit trouvée, ou que le système soit déterminé comme étant insatisfiable.

Méthode du pivot

- Supposons que nous souhaitons intervertir x_i avec x_j .
- L'élément a_{ij} est appelé le pivot. La colonne de x_j est appelée la colonne pivot. La ligne i est appelée la ligne pivot.
- Une précondition pour intervertir deux variables x_i et x_j est que le pivot est non nul, à savoir $a_{ij} \neq 0$.
- L'opération de pivotement est réalisée comme suit :
 - **1** Résoudre la ligne i pour x_j .
 - 2 Pour toutes les lignes $l \neq i$, éliminer x_j en utilisant l'égalité pour x_j obtenue à partir de la ligne i.

Suite de l'exemple

- La borne inférieure de s₁ est 2 et elle n'est pas respectée.
- La variable non basique qui est la plus basse dans l'ordre est x.
- La variable x a un coefficient positif, mais pas de borne supérieure.
- La variable *x* convient donc pour l'opération de pivotement.
- On doit augmenter s_1 de 2 afin de respecter la borne inférieure, ce qui signifie que x doit également être augmentée de 2 ($\theta = 2$).

Suite de l'exemple

• La première étape est de résoudre la ligne de s_1 pour x:

$$s_1 = x + y \Leftrightarrow x = s_1 - y$$

• On utilise cette égalité pour remplacer x dans les autres lignes :

$$s_2 = 2(s_1 - y) - y \Leftrightarrow s_2 = 2s_1 - 3y$$

 $s_3 = -(s_1 - y) + 2y \Leftrightarrow s_3 = -s_1 + 3y$

Suite de l'exemple

Le résultat de l'opération de pivotement est le suivant :

- La borne inférieure de s₃ n'est pas respectée.
- La seule variable appropriée pour le pivotement est *y*.
- On doit ajouter 3 à s_3 afin de respecter la borne inférieure, d'où :

$$\theta=\frac{1-(-2)}{3}=1$$

Suite de l'exemple

Après avoir pivoté avec s_3 et y, on obtient :

- L'affectation satisfait les bornes (des variables basiques).
- Le système initial de contraintes est donc satisfiable.
- L'affectation $\{x \mapsto 1, y \mapsto 1\}$ est une solution.