- Chapitre 1.

Fonctions convexes

Dans ce chapitre, on considère un convexe C de \mathbb{R}^n .

Définition 1. On dit qu'une fonction $f: C \to \mathbb{R}$ est convexe si

$$f(\lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y), \text{ pour tout } x,y \in C, \lambda \in [0,1].$$

On dira que f est strictement convexe si

$$f(\lambda x + (1-\lambda)y) < \lambda f(x) + (1-\lambda)f(y), \ \text{ pour tout } x \neq y \in C, \lambda \in (0,1).$$

On dira que f est concave si -f est convexe.

Figure 1.1: Illustration de l'inégalité de convexité dans la Définition-Définition 1: la corde liant les deux points (x, f(x)) et (y, f(y)) est au dessus du graphe de f.

Exemple 1. Voici quelques examples de fonctions convexes:

- Les normes: $f(x) = ||x|| \operatorname{sur} \mathbb{R}^n$.
- Les fonctions affines: $f(x) = a^T x + b$, $a \in \mathbb{R}^n$ et $b \in \mathbb{R}$.
- La fonction $f(x) = -\log(x)$ est convexe sur \mathbb{R}_+^* .
- La fonction $f(x) = e^{\lambda x}$ est convexe sur \mathbb{R} pour tout $\lambda \in \mathbb{R}$.
- La fonction $f(x) = |x|^p$ est convexe sur \mathbb{R} pour tout $p \ge 1$.

D'après la Définition-1, une fonction f est convexe si l'image par f, d'une combinaison convexe de deux points x et y, par f est plus petite que la combinaison convexe des valeurs f(x) et f(y). Cette propriété s'étant à la combinaison convexe de n'importe quel nombre de vecteurs.

Théorème 1 (Inégalité de Jensen). Soit $f:C \to \mathbb{R}$ une fonction convexe. Alors pour tout

 $x_1, \ldots, x_m \in C \text{ et } \lambda \in \Delta_m :$

$$f\left(\sum_{i=1}^{m} \lambda_i x_i\right) \le \sum_{i=1}^{m} \lambda_i f(x_i).$$

Preuve. Par récurrence. Laissée en exercice.

Remarque 1. L'inégalité de convexité dans Définition 1 est parfois appelée inégalité de Jensen. Historiquement, le résultat démontré par Jensen était $f(\frac{x+y}{2}) \leq \frac{f(x)+f(y)}{2}$. On rencontre d'autres versions de l'inégalité de Jensen en probabilités et théorie de la mesure et intégration. Typiquement, si f est une fonction convexe définie sur un convexe C de \mathbb{R}^n et X une variable aléatoire à valeurs dans C telle que l'espérance $\mathbb{E}(X)$ existe, alors $f(\mathbb{E}(X)) \leq \mathbb{E}(f(X))$. Un autre exemple est le suivant. Si (X, \mathcal{M}, μ) est un espace probabilisé (où μ est une mesure positive avec $\mu(X) = 1$), I un intervalle non vide de \mathbb{R} , $\phi: I \to \mathbb{R}$ une fonction convexe, $f: X \to I$ une fonction dans \mathcal{L}^1_μ alors

$$\phi\Big(\int_X f \mathbf{d}\mu\Big) \le \int_X \phi \circ f \mathbf{d}\mu$$

Le résultat suivant est une conséquence immédiate de Théorème 1.

Corollaire 1. Soit $f: \mathbb{R}^n \to \mathbb{R}$ convexe. Pour toute combinaison convexe $x = \sum_{i=1}^m \lambda_i x_i$, avec $\lambda_i \geq 0, \sum_{i=1}^m \lambda_i = 1$ et $x_1, \ldots, x_m \in \mathbb{R}^n$, on a

$$f(x) \leq \max_{i=1}^{m} f(x_i).$$

Preuve. On a par l'inégalité de Jensen

$$f(x) = f(\sum_{i=1}^{m} \lambda_i x_i) \le \sum_{i=1}^{m} \lambda_i f(x_i) \le \max_{i=1,\dots,m} f(x_i) \sum_{i=1}^{m} \lambda_i = \max_{i=1,\dots,m} f(x_i).$$

Le résultat suivant récapitule quelques opérations préservant la convexité de fontions.

Théorème 2. 1. Soit f une fonction convexe sur C et $\alpha \in \mathbb{R}^+$. Alors αf est convexe sur C.

- 2. Soient f_1, \ldots, f_m des fonctions convexes sur C. Alors $f = \sum_{i=1}^m f_i$ est convexe sur C.
- 3. Soient f_1, \ldots, f_m des fonctions convexes sur C. Alors $f = \sup_{i=1,\ldots,m} f_i$ est convexe sur C.
- 4. Si $f: C \to \mathbb{R}$ est convexe et $A \in \mathbb{R}^{n \times m}, b \in \mathbb{R}^n$. Alors g(x) = f(Ax + b) est convexe sur

$$D = \{ y \in \mathbb{R}^m : Ay + b \in C \}.$$

Preuve. 1. Immédiat.

2. Soient $x, y \in C$ et $\lambda \in [0, 1]$. Comme les f_i sont convexes, alors pour tout $i = 1, \ldots, m$

$$f_i(\lambda x + (1 - \lambda)y) \le \lambda f_i(x) + (1 - \lambda)f_i(y),$$

donc

$$\sum_{i=1}^{m} f_i(\lambda x + (1-\lambda)y) \le \sum_{i=1}^{m} \left(\lambda f_i(x) + (1-\lambda)f_i(y)\right) = \lambda \sum_{i=1}^{m} f_i(x) + (1-\lambda) \sum_{i=1}^{m} f_i(y),$$

soit

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

donc f est convexe.

3. On a $f(\lambda x + (1-\lambda)y) = \max_{i=1,\dots,m} f_i(\lambda x + (1-\lambda)y) \le \max_{i=1,\dots,m} \left(\lambda f_i(x) + (1-\lambda)f_i(y)\right)$. En utilisant le fait que, si $(\alpha_i)_{i=1}^m$, $(\beta_i)_{i=1}^m$ sont deux suites de réels, alors $\max_i (\alpha_i + \beta_i) \le \max_i \alpha_i + \max_i \beta_i$. Donc

$$f(\lambda x + (1 - \lambda)y) \le \lambda \max_{i=1,\dots,m} f_i(x) + (1 - \lambda) \max_{i=1,\dots,m} f_i(y) = \lambda f(x) + (1 - \lambda)f(y).$$

4. Tout d'abord, remarquons que D est convexe. Soient $y_1, y_2 \in D$ et définissons $x_i = Ay_i + b$ avec i = 1, 2. Par définition, $x_1, x_2 \in D$. Soit donc $\lambda \in [0, 1]$. On a par convexité de f

$$f(\lambda(Ay_1 + b) + (1 - \lambda)(Ay_2 + b) \le \lambda f(Ay_1 + b) + (1 - \lambda)f(Ay_2 + b),$$

soit

$$f(A(\lambda y_1 + (1 - \lambda)) + b) \le \lambda g(y_1) + (1 - \lambda)g(y_2),$$

donc

$$g(\lambda y_1 + (1 - \lambda)y_2) \le \lambda g(y_1) + (1 - \lambda)g(y_2),$$

d'où la convexité de g.

 $f = \sup_{i=1,2,3} f_i$ f_3 f_1 (a)

Figure 1.2: Convexité du la fonction sup de trois fonctions f_1, f_2, f_3 .

Exemple 2. Soit $f(x) = \frac{\|Ax+b\|^2}{c^Tx+d}$ avec $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^n, c \in \mathbb{R}^n \setminus \{0\}$ et $d \in \mathbb{R}$. Alors f est convexe sur $D = \{x : c^Tx+d>0\}$. En effet, on remarque que $f(x) = g(Ax+b, c^Tx+d)$ avec $g(x,t) = \frac{\|x\|^2}{t}$ qui est convexe sur $\{\binom{x}{t} \in \mathbb{R}^{m+1}: y \in \mathbb{R}^m, t>0\}$ puisque $g(x,t) = \sum_{i=1}^m g_i(x,t)$ avec $g_i(x,t) = \frac{y_i^2}{t}$ qui est convexe sur $\mathbb{R} \times \mathbb{R}_+^*$ (voir TD).

Théorème 3. Soit $f: C \to \mathbb{R}$ une fonction convexe et $g: I \subset \mathbb{R} \to \mathbb{R}$ une fonction convexe croissante. Supposons que $f(C) \subset I$. Alors $\phi(x) = g(f(x))$ est convexe sur C.

Preuve. Soient $x, y \in C$ et $\lambda \in [0, 1]$. On a

$$\phi(\lambda x + (1 - \lambda)y) = g(f(\lambda x + (1 - \lambda)y))$$

$$\leq g(\lambda f(x) + (1 - \lambda)f(y)) \text{ par convexit\'e de f et monotonie de g}$$

$$\leq \lambda g(f(x)) + (1 - \lambda)g(f(y)) \text{ par convexit\'e de g}$$

$$= \lambda \phi(x) + (1 - \lambda)\phi(y).$$

$$(1.1)$$

Exemple 3. La fonction $\phi(x) = e^{\|x\|^2}$ est convexe sur \mathbb{R}^n . En effet $\phi(x) = g(f(x))$ avec $f(x) = e^x$ qui est croissante et $f(x) = \|x\|^2$ qui est convexe. Plus généralement, pour toute fonction convexe f, $e^{f(x)}$ est convexe.

Soient $C \subset \mathbb{R}^d$ et $D \subset \mathbb{R}^k$ deux convexe et $f: C \times D \to \mathbb{R}$ une fonction convexe. Le résultat suivant montre la préservation de la convexité de f avec la minimisation partielle.

Théorème 4. La fonction $g(x) = \inf_{y \in D} f(x, y)$ est convexe sur C.

Preuve. Soient $x_1, x_2 \in C$ et $\varepsilon > 0$. Il existe $y_1, y_2 \in D$ tel que $f(x_i, y_i) \leq g(x_i) + \varepsilon, i = 1, 2$. Soit $\lambda \in [0, 1]$. On a

$$g(\lambda x_{1} + (1 - \lambda)x_{2}) \inf_{y \in D} f(\lambda x_{1} + (1 - \lambda)x_{2}, y)$$

$$f(\lambda x_{1} + (1 - \lambda)x_{2}, \lambda y_{1} + (1 - \lambda)y_{2})$$

$$\lambda f(x_{1}, y_{1}) + (1 - \lambda)f(x_{2}, y_{2})$$

$$\lambda g(x_{1}) + (1 - \lambda)g(x_{2}) + \varepsilon.$$
(1.2)

L'inégalité étant vraie pour tout $\varepsilon > 0$, on obtient $g(\lambda x_1 + (1 - \lambda)x_2) \le \lambda g(x_1) + (1 - \lambda)g(x_2)$. Ce qui termine la preuve.

On termine cette section par ce lemme qui nous sera utile par la suite.

Lemme 1. Une fonction $f: C \to \mathbb{R}$ est convexe, avec C convexe, si et seulement si pour tout $x, y \in C$ et $\alpha \geq 0$ tel que $y + \alpha(y - x) \in C$ on a

$$f(y + \alpha(y - x)) \ge f(y) + \alpha(f(y) - f(x)). \tag{1.3}$$

Preuve. Soient $x, y \in C, t \in (0,1]$ et considérons z = tx + (1-t)y. On a $x = \frac{1}{t}z - \frac{1-t}{t}y = z + \alpha(z-y)$ avec $\alpha = \frac{1-t}{t}$. Par (1.3)

$$f(x) \ge f(y) + \alpha(f(z) - f(y)),$$

i.e., $tf(x) \ge tf(z) + (1-t)(f(z)-f(y))$, soit $f(z) \le tf(x) + (1-t)f(y)$, d'où la convexité de f. Inversement, pour $t = \alpha/(1+\alpha)$ et $z = y + \alpha(y-x)$, on a y = (1-t)z + tx, comme f est convexe, on a par l'inégalité de Jensen

$$f(y) \le tf(x) + (1-t)f(z) = \frac{\alpha}{1+\alpha}f(x) + \frac{1}{1+\alpha}f(z),$$

multipliant par $\alpha + 1$ dans l'inégalité précédente, on obtient

$$(1+\alpha)f(y) \le \alpha f(x) + f(z),$$

soit $f(z) = f(y + \alpha(y - x)) \ge f(y) + \alpha(f(y) - f(x))$, qui n'est rien d'autre que (1.3)

1.1 Caractérisations des fonctions convexes différentiables

1.1.1 Caractérisations du premier ordre

Théorème 5. Soit $f: C \to \mathbb{R}$ une fonction de classe C^1 . Alors f est convexe si et seulement si

$$f(x) \ge f(y) + \langle \nabla f(y), x - y \rangle$$
 pour tout $x, y \in C$. (1.4)

Figure 1.3: Illustration du Théorème 5.

Preuve. Supposons que f est convexe et soient $x \neq y \in C$ et $\lambda \in (0,1)$. On a par définition

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y),$$

ce qui donne

$$\frac{f(\lambda x + (1 - \lambda)y) - f(y)}{\lambda} \le f(x) - f(y).$$

Quand $\lambda \to 0^+$, on obtient $f^{'}(y;x-y) \leq f(x)-f(y)$. Comme f est C^1 , $f^{'}(y;x-y) = \langle \nabla f(y),x-y\rangle$ et donc $f(y)+\langle \nabla f(y),x-y\rangle \leq f(x)$. Supposons maintenant que $f(x)\geq f(y)+\langle \nabla f(y),x-y\rangle$ pour tout $x,y\in C$ et montrons que f est convexe. Soient $u,v\in C$ et $\lambda\in(0,1)$. Posons $w=\lambda u+(1-\lambda)v$ et montrons que $f(w)\leq \lambda f(u)+(1-\lambda)f(v)$. On a

$$u - w = \frac{w - (1 - \lambda)v}{\lambda} - w = \frac{\lambda - 1}{\lambda}(v - w).$$

En appliquant (1.4) pour u, w et ensuite v, w on obtient

$$f(w) + \langle \nabla f(w), u - w \rangle \le f(u), \tag{1.5}$$

et.

$$f(w) + \langle \nabla f(w), v - w \rangle = f(w) - \frac{\lambda}{1 - \lambda} \langle \nabla f(w), u - w \rangle \le f(v),$$

soit

$$(1 - \lambda)f(w) - \lambda \langle \nabla f(w), u - w \rangle < (1 - \lambda)f(v). \tag{1.6}$$

En multipliant (1.5) par λ et sommant avec (1.6), on obtient le résultat.

Remarque 2. Dans la littérature, l'inégalité (1.4) est souvent appelée the gradient inequality. Elle affirme que les hyperplans tangents à une fonction convexe minorent la fonction.

Le résultat suivant est une caractérisation de la convexité en terme de la monotonie du gradient "au sens des opérateurs".

Théorème 6 (Monotonie du gradient). Soit $f: C \to \mathbb{R}$ une fonction de classe C^1 . Alors f est convexe si et seulement si

$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge 0$$
, pour tout $x, y \in C$. (1.7)

Preuve. Supposons que f est convexe et soient $x, y \in C$. Par (1.4) on a

$$f(x) + \langle \nabla f(x), y - x \rangle \le f(y)$$
, et $f(y) + \langle \nabla f(y), x - y \rangle \le f(x)$.

En sommant les deux inégalités on obtient que $\langle \nabla f(x) - \nabla f(y), x - y \rangle \geq 0$. Inversement, supposons que (1.7) est vérifiée et montrant que f est convexe. Définitions la fonction $\phi : t \in$

$$\begin{split} &(0,1)\mapsto f(x+t(y-x)). \text{ On a} \\ &f(y)=\phi(1)=\phi(0)+\int_0^1\phi^{'}(t)\mathbf{d}t \\ &=f(x)+\int_0^1\langle\nabla f(x+t(y-x)),y-x\rangle\mathbf{d}t \\ &=f(x)+\langle\nabla f(x),y-x\rangle+\int_0^1\langle\nabla f(x+t(y-x))-\nabla f(x),y-x\rangle\mathbf{d}t \\ &=f(x)+\langle\nabla f(x),y-x\rangle+\frac{1}{t}\int_0^1\underbrace{\langle\nabla f(x+t(y-x))-\nabla f(x),x+t(y-x)-x\rangle}\mathbf{d}t, \\ &=\sin(f(x))+\langle\nabla f(x),y-x\rangle+\frac{1}{t}\int_0^1\underbrace{\langle\nabla f(x+t(y-x))-\nabla f(x),x+t(y-x)-x\rangle}\mathbf{d}t, \\ &=\sin(f(x))+\langle\nabla f(x),y-x\rangle+\frac{1}{t}\int_0^1\underbrace{\langle\nabla f(x+t(y-x))-\nabla f(x),x+t(y-x)-x\rangle}\mathbf{d}t, \\ &=\cos(f(x))+\langle\nabla f(x),y-x\rangle+\frac{1}{t}\int_0^1\underbrace{\langle\nabla f(x+t(y-x))-\nabla f(x),x+t(y-x)-x\rangle}\mathbf{d}t, \\ &=\cos(f(x))+\langle\nabla f(x),y-x\rangle+\frac{1}{t}\int_0^1\underbrace{\langle\nabla f(x+t(y-x))-\nabla f(x),x+t(y-x)-x\rangle}\mathbf{d}t, \\ &=\cos(f(x))+\frac{1}{t}\int_0^1\underbrace{\langle\nabla f(x+t(y-x))-\nabla f(x)-x+t(y-x)-x\rangle}\mathbf{d}t, \\ &=\cos(f(x))+\frac{1}{t}\int_0^1\underbrace{\langle\nabla f(x+t(y-x))-\nabla f(x)-x+t(y-x)-x\rangle}\mathbf{d}t, \\ &=\cos(f(x))+\frac{1}{t}\int_0^1\underbrace{\langle\nabla f(x+t(y-x))-\nabla f(x)-x+t(y-x)-x+t(y-x)-x+t(y-x)-x+t(y-x)-x+t(y-x)-x+t(y-x)-x+t(y-x)-x+t(y-x)-x+t(y-x)-x+t(y-x)-x+$$

Quand la fonction est deux fois différentiable, alors la convexité de f est équivalente au fait que la matrice Hessienne est semi-définie positive.

1.1.2 Caractérisations du second ordre

Théorème 7. Soit $f: C \to \mathbb{R}$ une fonction de classe C^2 avec C un ouvert convexe de \mathbb{R}^n alors f est convexe si et seulement si la Hessienne $\nabla^2 f(x)$ est semi-définie positive, i.e.,

$$\nabla^2 f(x) \succeq 0 \text{ pour tout } x \in C.$$
 (1.9)

Preuve. Supposons que f est convexe de classe C^2 et soient $x \in C$ et $d \in \mathbb{R}^n$. Comme C est ouvert, il vient que $x_t := x + td \in C$ pour $t < \varepsilon$ avec $\varepsilon > 0$ suffisamment petit. Comme f est convexe, on a, par monotonie de ∇f

$$0 \le t^{-1} \langle \nabla f(x_t) - \nabla f(x), x_t - x \rangle = \langle \nabla f(x_t) - \nabla f(x), d \rangle = \int_0^t \langle \nabla^2 f(x_\tau), d, d \rangle d\tau$$

En faisant tendre $t \to 0^+$ on obtient que $\langle \nabla^2 f(x) d, d \rangle \geq 0$. Comme d est arbitraire, il s'en suit que $\nabla^2 f(x) \succeq 0$ pour tout $x \in C$. Maintenant, supposons que (1.9) est vérifiée, on a pour tout $x, y \in C$

$$f(y) = f(x) + \langle \nabla f(x), y - x \rangle + \int_0^1 \left(\int_0^s \underbrace{\langle \nabla^2 f(x_\tau)(y - x), y - x \rangle}_{\geq 0} \mathbf{d}\tau \right) \mathbf{d}s$$

$$\geq f(x) + \langle \nabla f(x), y - x \rangle, \tag{1.10}$$

ce qui implique par Théorème 5 la convexité de f.

Remarque 3. La condition (1.9) est liée à la notion de courbure. En effet, considérons la surface $\Gamma_f = \{(x, y, z) \in \mathbb{R}^2 : z = f(x, y)\}$ avec f de classe C^2 . La courbure de Gauss au point (x, y) est égale à

$$\kappa = \frac{\det(\nabla^2 f(x, y))}{(1 + \|\nabla f(x, y)\|^2)^2}.$$

Le signe de $\det(\nabla^2 f(x,y))$ (et donc de κ) donne une classification de la surface: elliptique, parabolique ou hyperbolique.

1.2 Continuité et différentiabilité des fonctions convexes

On commence par un premier résultat quand $C = \mathbb{R}^n$.

Théorème 8. Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction convexe. Alors f est continue en tout point en tout $x \in \mathbb{R}^n$.

Preuve. Sans perte de généralité, on suppose que x = 0. Soit $(x_k)_k \ge 0$ telle que $x_k \to x^* = 0$ quand $k \to \infty$. On a, par convexité de f

$$f(x_k) \le (1 - ||x_k||)f(0) + ||x_k||f(x_k/||x_k||).$$

Comme $(x_k/\|x_k\|)_i \in [-1,1]$ pour tout $i=1,\ldots,n$, il vient que $x_k/\|x_k\| \in [-1,1]^n$, donc $x_k/\|x_k\| = \sum_{i=1}^{2^n} \lambda_i e_i$ avec $\lambda \in \Delta_{2^n}$. On déduit par le Corollaire 1 que $f(x_k/\|x_k\|) \leq \max_{i=1,\ldots,n} f(\pm e_i) := K$. Il s'en suit que

$$\lim \sup_{k \to \infty} f(x_k) \le (1 - ||x^*||) f(0) + ||x^*|| K = f(0).$$

De même, en remarquant que

$$f(0) \le \frac{\|x_k\|}{1 + \|x_k\|} f(-x_k/\|x_k\|) + \frac{1}{1 + \|x_k\|} f(x_k),$$

on déduit que $f(0) \leq \liminf_{k \to \infty} f(x_k)$, et par la suite $\lim_{k \to \infty} f(x_k) = f(0)$. D'où la continuité de f en 0.

Sur un convexe $C \subseteq \mathbb{R}^n$, on peut obtenir un résultat similaire (meilleur même) à Théorème 8 pour les point intérieurs à C. En effet, on peut démontrer qu'une fonction convexe est localement Lipschitzienne en tout $x \in \text{int}(C)$. La raison de se restreindre aux points intérieurs est le comportement d'une fonction convexe au bords qui peut créer des discontinuités. Pour illustrer ceci, considérons la fonction $f:[0,1] \to \mathbb{R}$ définie par f(0)=1 et $f(x)=x^2$ pour $x \in (0,1]$. Cette fonction est évidemment convexe (faites un dessin) mais n'est pas continue.

On a le résultat suivant.

Théorème 9. Soit $f: C \to \mathbb{R}$ une fonction convexe définie sur un convexe C de \mathbb{R}^n et soit $x_0 \in \text{int}(C)$. Alors il existe L > 0 et $\varepsilon > 0$ tels que $B(x_0, \varepsilon) \subset C$ et

$$|f(x) - f(x_0)| < L||x - x_0||, \ \forall x \in B(x_0, \varepsilon).$$
 (1.11)

Preuve. Soit $x_0 \in \text{int}(C)$, il existe alors $\varepsilon > 0$ tel que $B_{\infty}(x_0, \varepsilon) \subset C$. On commence par montrer que f est bornée supérieurement sur $B_{\infty}(x_0, \varepsilon)$. Comme $B_{\infty}(x_0, \varepsilon)$ est convexe et compact, avec

$$\operatorname{ext}(B_{\infty}(x_0,\varepsilon)) = \{z_i = x_0 + \varepsilon \theta_i, \text{ avec } \theta_i \in \{\pm 1\}, i = 1, 2, \dots, 2^n\},\$$

on déduit par le théorème de Krein-Milman que tout $x \in B_{\infty}(x_0, \varepsilon)$ s'écrit de la forme $\sum_{i=1}^{2^n} \lambda_i z_i$ avec $\lambda \in \Delta_{2^n}$. Donc par Corollaire 1 $f(x) \leq K := \max_{i=1,2,\dots,2^n} f(z_i)$. Comme $B(x_0, \varepsilon) \subset B_{\infty}(x_0, \varepsilon)$ on en déduit que $f(x) \leq K$ pour tout $x \in B(x_0, \varepsilon)$.

Soit $x \in B(x_0, \varepsilon)$ avec $x \neq x_0$. On définit $z = x_0 + \alpha^{-1}(x - x_0)$ avec $\alpha = \|x - x_0\|/\varepsilon$. On voit que $0 < \alpha \le 1$ et $\|z - x_0\| = \varepsilon$, i.e., $z \in B(x_0, \varepsilon)$ et donc $f(z) \le K$. Comme $x = \alpha z + (1 - \alpha)x_0$, on a par convexité de f

$$f(x) \le \alpha f(z) + (1 - \alpha)f(x_0) = f(x_0) + \alpha(f(z) - f(x_0)) \le f(x_0) + \alpha(K - f(x_0)), \tag{1.12}$$

i.e., $f(x) - f(x_0) \le L \|x - x_0\|$, avec $L = (K - f(x_0))\varepsilon^{-1}$. Pour finir la preuve, montrons que $f(x) - f(x_0) \ge -L \|x - x_0\|$. Définissons $w = x_0 + (x_0 - x)\alpha^{-1}$ et remarquons que $\|w - x_0\| = \varepsilon$ et donc $f(w) \le K$. Comme $x = x_0 + \alpha(x_0 - w)$, on a par Lemma 1

$$f(x) = f(x_0) + \alpha(x_0 - w) \ge f(x_0) + \alpha(f(x_0) - f(w))$$

$$\ge f(x_0) - \alpha(K - f(x_0)),$$
(1.13)

i.e., $f(x) - f(x_0) \ge -L\|x - x_0\|$. En conclusion, on obtient que (1.11) pour tout $x \in B(x, \varepsilon)$ avec $L = (K - f(x_0))\varepsilon^{-1}$.

Nous avons vu qu'en les points intérieurs à C, une fonction convexe $f: C \to \mathbb{R}$ est localement Lipschitzienne, i.e., vérifie (1.11). Maintenant, on montrera que les dérivées directionnelles de f en tout point intérieur existent. Rappelons qu'étant donnés $x \in \text{int}(C)$ et $0 \neq d \in \mathbb{R}^n$, on dira que f est différentiable en x dans la direction d si la limite

$$\lim_{t \to 0^+} t^{-1}(f(x+td) - f(x)) := f'(x;d),$$

existe.

Théorème 10. Soit $f: C \to \mathbb{R}$ une fonction convexe définie sur un convexe $C \subset \mathbb{R}^n$ et soit $x \in \text{int}(C)$. Alors f'(x; d) existe pour tout $0 \neq d \in \mathbb{R}^n$.

Preuve. Soit $x \in \text{int}(C)$, $d \in \mathbb{R}^n$, $0 < \alpha \le 1$ et $\varepsilon > 0$ tel que $x + td \in C$ pour tout $0 < t \le \varepsilon$. On note $h(t) := t^{-1}(f(x+td) - f(x))$. Comme $\alpha t \le t$ et $x + td = (1-\alpha)x + \alpha(x+td)$, on a par l'inégalité de Jensen

$$f(x + \alpha td) \le (1 - \alpha)f(x) + \alpha f(x + td),$$

soit

$$h(t) = t^{-1}(f(x+td) - f(x)) \ge (\alpha)t^{-1}(f(x+t\alpha d) - f(x)) = h(\alpha t).$$

Ce qui prouve que h est décroissante. De même, on montre que pour tout $t_0 >$ tel que $x-t_0d \in C$, on a que $h(t) \geq t_0^{-1}(f(x) - f(x + t_0d))$, i.e., h est bornée inférieurement. Par conséquence $\lim_{t\to 0^+} h(t)$ existe, i.e., la dérivée directionnelle f'(x;d) existe.

1.3 Sous-ensembles de niveau de fonctions convexes:

Définition 2. Soit $f: S \subset \mathbb{R}^n \to \mathbb{R}$ une fonction. Le sous-ensemble de f de niveau $\alpha \in \mathbb{R}$ est l'ensembles

$$\mathbf{Lev}(f, \alpha) = \{x \in S : f(x) \le \alpha\}.$$

On a le résultat suivant

Théorème 11. Soit $f: C \to \mathbb{R}$ une fonction convexe et avec C un ensemble convexe. Alors pour tout $\alpha \in \mathbb{R}$, l'ensembles $\mathbf{Lev}(f, \alpha)$ est convexe.

Preuve. Soient $x, y \in \mathbf{Lev}(f, \alpha)$ et $\lambda \in [0, 1]$ avec $\alpha \in \mathbb{R}$. Comme $f(x), f(y) \leq \alpha$, il vient par convexité de f que

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y) \le \lambda \alpha + (1 - \lambda)\alpha = \alpha.$$

Remarque 4. La réciproque dans le Théorème-11 est fausse comme le montre la fonction $f(x) = \sqrt{|x|}$ (voir Figure-1.4) qui n'est pas convexe mais dont tout les sous-ensembles de niveau sont convexe. En effet, d'une part, pourt $\alpha < 0$, $\mathbf{Lev}(f,\alpha) = \emptyset$. D'autre part, pour $\alpha \ge 0$, on $\mathbf{Lev}(f,\alpha) = [-\alpha^2, \alpha^2]$ qui est convexe. Une telle fonction est dite quasi-convexe.

Définition 3. Soit $C \subset \mathbb{R}$ un convexe. On dit qu'une fonction $f: C \to \mathbb{R}$ est quasi-convexe si pour tout $\alpha \in \mathbb{R}$, l'ensemble $\mathbf{Lev}(f, \alpha)$ est convexe. De même, f est dite quasi-concave si -f est quasi-convexe.

Figure 1.4: $f(x) = \sqrt{|x|}$ comme exemple de fonction quasi-convexe.

Figure 1.5: Sous-ensembles de niveau de la fonction $f(x,y) = 1/2(x^2 + 4y^2)$.

Exemple 4. 1. Évidemment, une fonction convexe est quasi-convexe.

2. L'application $x \in \mathbb{R}^n \mapsto \operatorname{card}(x) = \{\text{nombre des composantes non nuls de } x\}$ est quasiconcave:

$$\operatorname{card}(x+y) \ge \min\{\operatorname{card}(x), \operatorname{card}(y)\}.$$

3. L'application $M \in \mathbb{R}^{n \times n} \mapsto \operatorname{rang}(M)$ est quasi-concave sur \mathcal{S}^n_+ :

$$rang(M+N) \ge min\{rang(M), rang(N)\}.$$

- 4. Un exemple important est celui des fonctions continue sur \mathbb{R} . En effet, si $f:\mathbb{R}\to\mathbb{R}$ est continue alors f est quasi-convexe ssi l'une des propriétés suivantes est vérifée
 - (a) f est croissante;
 - (b) f est décroissante;
 - (c) il existe $x^* \in \mathbb{R}$ tel que pour tout $x \leq x^*$ f est décroissante, et pour tout $x \geq x^*$ est croissante (cf. Fig. 1.6).

Figure 1.6: Exemple de fonction quasi-convexe sur \mathbb{R} .

1.4 Fonctions à valeurs réelles étendues

Dans la pratique on peut être amené à travailler et considérer des fonctions qui peuvent prendre des valeurs infinies. En effet, considérons une fonction $f: \mathbb{R}^n \to \bar{\mathbb{R}} = [-\infty, \infty]$. La définition de convexité (1) reste valable pour de telles fonctions tenant compte des opération arithmétiques classiques

$$a + \infty = \infty + a = \infty \qquad (-\infty < a < \infty),$$

$$a - \infty = -\infty + a = -\infty \qquad (-\infty < a < \infty),$$

$$a \cdot \infty = \infty \cdot a = \infty \qquad (0 < a < \infty),$$

$$a \cdot (-\infty) = (-\infty) \cdot a = -\infty \qquad (0 < a < \infty),$$

$$a \cdot \infty = \infty \cdot a = -\infty \qquad (-\infty < a < 0),$$

$$a \cdot (-\infty) = (-\infty) \cdot a = \infty \qquad (-\infty < a < 0),$$

$$a \cdot (-\infty) = (-\infty) \cdot a = \infty \qquad (-\infty < a < 0),$$

ainsi qu'avec la règle "moins usuelle" $0 \cdot \infty = 0 \cdot (-\infty) = 0$. Néanmoins, on s'intéresse plutôt à des fonctions qui ne prennent pas la valeur $-\infty$ et dont le domaine est non vide.

Définition 4 (Domaine effectif). Soit $f: \mathbb{R}^n \to [-\infty, \infty]$, le domaine (ou domaine effectif) de f est définit par

 $dom(f) = \{ x \in \mathbb{R}^n : \ f(x) < \infty \}.$

Exemple 5. Si $C \subset \mathbb{R}^n$, l'indicatrice de C au sens d'analyse convexe est définie par

$$\delta_C(x) = \begin{cases} 0, & \text{si } x \in C, \\ \infty & \text{sinon,} \end{cases}$$

alors dom $(\delta_C) = C$.

Définition 5. On dit que $f: \mathbb{R}^n \to [-\infty, \infty]$ est propre si $-\infty \notin f(\mathbb{R}^n)$ et dom $(f) \neq \emptyset$, i.e., il existe $x_0 \in \mathbb{R}^n$ tel que $f(x_0) < \infty$.

Une autre caractérisation géométrique des fonctions convexes est donnée par l'ensemble suivant.

Définition 6 (Epigraphe). Soit $f: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$, on définit l'épigraphe de f par

$$\operatorname{epi}(f) = \left\{ \begin{pmatrix} x \\ t \end{pmatrix} \in \mathbb{R}^{n+1} : f(x) \le t \right\}.$$

Clairement, si $\binom{x}{t} \in \text{epi}(f)$, alors $x \in \text{dom}(f)$. Contrairement aux sous-ensembles de niveaux, la convexité de l'épigraphe est équivalente à celle de f.

Théorème 12 (et définition). f est convexe \Leftrightarrow epi(f) est convexe.

Exemple 6. 1. Si $f(x) = a^T x - \alpha$ avec $a \in \mathbb{R}^n, \alpha \in \mathbb{R}$. On a

$$\operatorname{epi}(f) = \left\{ \begin{pmatrix} x \\ t \end{pmatrix} \in \mathbb{R}^{n+1} : \left\langle \begin{pmatrix} a \\ -1 \end{pmatrix}, \begin{pmatrix} x \\ t \end{pmatrix} \right\rangle \leq \alpha \right\},$$

est un demi-espace donc convexe.

- 2. Si $f(x) = 1/2||x||^2$, alors epi(f) est la région du l'espace au dessus de la parabole (cf. Fig. 1.7).
- 3. Pour l'indicatrice d'un ensemble

$$\operatorname{epi}(\delta_C) = \left\{ \begin{pmatrix} x \\ t \end{pmatrix} \in \mathbb{R}^{n+1} : \delta_C(x) \le t \right\} = C \times \mathbb{R}^+,$$

qui est donc convexe si et seulement si C est convexe.

Figure 1.7: L'épigraphe de $\frac{1}{2}||x||^2$.

Le résultat suivant montre la préservation de la convexité du supremum de fonctions convexe et est à comparer avec Théorème 2.

Théorème 13. Soient $f_i: \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ des fonctions convexes avec $i \in I$ (la famille d'indices I est quelconque). Alors la fonction $f(x) = \sup_{i \in I} f_i(x)$ est convexe.

Preuve. Comme les f_i sont convexes, les épigraphes $\operatorname{epi}(f_i)$ sont aussi convexes pour tout $i \in I$. On conclue on remarquant que $\operatorname{epi}(f) = \bigcap_{i \in I} \operatorname{epi}(f_i)$.

Définition 7 (Fonction fermée). Une fonction $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ est dite fermée si epi(f) est fermé.

Exemple 7. Revenons à l'exemple de la fonction indicatrice δ_C d'un sous-ensemble C de \mathbb{R}^n . Comme epi $(\delta_C) = C \times \mathbb{R}^+$, on a

 δ_C et fermée $\Leftrightarrow C \times \mathbb{R}^+$ et fermé $\Leftrightarrow C$ et fermé.

Définition 8 (Semi-continuité inférieure). Une fonction $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ est dite semi-continue inférieurement (sci) en $x \in \mathbb{R}^n$ si

$$f(x) \le \liminf f(x_n),$$

pour toute suite $(x_n)_n$ telle que $x_n \to x$ quand $n \to \infty$.

Notation. On note par $\Gamma_0(\mathbb{R}^n)$ la classe de fonctions convexes, propres et semi-continuité inférieurement à valeurs dans $\mathbb{R} \cup \{\infty\}$.

Le résultat suivant établit un lien entre la semi-continuité inférieure et la fermeture de son épigraphe et sous-ensembles de niveaux.

Théorème 14. Soit $f: \mathbb{R}^n \to \overline{\mathbb{R}}$. On a $f \text{ est sci} \Leftrightarrow f \text{ est fermée} \Leftrightarrow \mathbf{Lev}(f, \alpha) \text{ est fermé} \ \forall \alpha \in \mathbb{R}.$ Preuve. Exercice.

1.4.1 Maxima de fonctions convexes

Avant de commencer le nouveau chapitre sur l'optimisation convexe; dans lequel on s'intéressera essentiellement à la minimisation de fonctions convexes, on essayera de dégager quelques propriétés des maximas de fonctions convexes sur un convexe.

Théorème 15. Soit $f: C \to \mathbb{R}$ une fonction convexe non constante avec C un convexe. Alors f n'atteint pas son maximum à l'intérieur de C.

Preuve. Supposons qu'il existe $x^* \in \int(C)$ tel que $f(x^*) \geq f(x)$ pour tout $x \in C$. Comme f est non constante, il existe $x_* \in C$ tel que $f(x_*) < f(x^*)$. Comment x^* est un point intérieur à C, il existe $\varepsilon > 0$, suffisamment petit tel que $z := x^* + \varepsilon(x^* - x_*) \in C$. En particulier $x^* = \frac{\varepsilon}{1+\varepsilon}x_* + \frac{1}{1+\varepsilon}z$, et par convexité de f

$$f(x^*) \le \frac{\varepsilon}{1+\varepsilon} f(x_*) + \frac{1}{1+\varepsilon} f(z),$$

en multipliant des deux cotés de l'inégalité pas $1+\varepsilon$ et en réarrangeant les termes on obtient

$$f(x^*) < f(x^*) + \varepsilon(\underbrace{f(x^*) - f(x_*)}_{>0}) \le f(z),$$

cela contredit la maximalité de x^* .

En renforçant les hypothèses sur C, on obtient qu'au moins un des maxima de f est un point extrémal de C.

Théorème 16. Soit $f: C \to \mathbb{R}$ une fonction convexe continue avec C un convexe compact. Alors il existe au moins un maximum de f qui est un point extrémal de C.

Preuve. Soit x^* un point maximum de f (dont l'existence sera admise pour le moment et sera traitée dans le chapitre suivant). Si $x^* \in \text{ext}(C)$ rien à démontrer. Sinon, par Krein-Milman, écrivons $x = \sum_{i=1}^m \lambda_i x_i$ avec $x_i \in \text{ext}(C), \lambda_i > 0$ pour tout $i = 1, \ldots, m$ et $\lambda \in \Delta_m$. Par l'inégalité de Jensen $f(x^*) \leq \sum_{i=1}^m \lambda_i f(x_i)$, et donc

$$\sum_{i=1}^{m} \underbrace{\lambda_i}_{>0} \underbrace{(f(x_i) - f(x^*))}_{<0} \ge 0,$$

il s'agit donc d'une somme positive ou nulle de quantités négatives ou nulles, et par conséquence $f(x_i) = f(x^*)$ pour tout i = 1, ..., m, i.e., les points extrémaux $x_1, ..., x_m$ sont des maxima de f.

Exemple 8. Considérons la fonction $f: x \in C \mapsto x^T A x$ avec $A \in \mathcal{S}_n^+$ et $C = B_{\infty}(0,1)$. Comme $\text{ext}(C) = \{\pm 1\}^n$ (voir TD), on déduit qu'il existe un maximum de f sur C qui appartient à $\{\pm 1\}^n$, i.e., toutes ses coordonnées sont soit -1 ou 1.

1.5 Inégalités et convexité

On présente ici comme application, quelques inégalités qui peuvent se démontrer grâce à la convexité.

Proposition 1 (Inégalité arithmético-géométrique). Pour tous réels $x_1, \ldots, x_n \geq 0$, on a

$$\frac{1}{n} \sum_{i=1}^{n} x_i \ge \sqrt[n]{\prod_{i=1}^{n} x_i}.$$

Plus généralement, pour tout $\lambda \in \Delta_n$

$$\sum_{i=1}^{n} \lambda_i x_i \ge \prod_{i=1}^{n} x_i^{\lambda_i}.$$

Proposition 2 (Inégalité de Young). Soient $a,b\geq 0$ et p,q>1 avec $\frac{1}{p}+\frac{1}{q}=1$. On a

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}.$$

Le résultat suivant est une généralisation de l'inégalité de Cauchy-Shwarz.

Proposition 3 (Inégalité de Hölder). Pour tout $x, y \in \mathbb{R}^n$ et $p, q \ge 1$ avec $\frac{1}{p} + \frac{1}{q} = 1$, on a

$$|\langle x, y \rangle| \le ||x||_p ||y||_q.$$

Proposition 4. Soit $p \geq 1$. Alors pour tout $x, y \in \mathbb{R}^n$, on a

$$||x + y||_p \le ||x||_p + ||y||_p.$$