Explicit CN Soundness Proof

Dhruv Makwana

July 5, 2021

1 Weakening

If $C; \mathcal{L}; \Phi; \mathcal{R} \sqsubseteq C'; \mathcal{L}'; \Phi'; \mathcal{R}'$ and $C; \mathcal{L}; \Phi; \mathcal{R} \vdash J$ then $C'; \mathcal{L}'; \Phi'; \mathcal{R}' \vdash J$.

PROOF STRATEGY: Induction over the typing judgements.

Assume: 1. $C; \mathcal{L}; \Phi; \mathcal{R} \sqsubseteq C'; \mathcal{L}'; \Phi'; \mathcal{R}'$. 2. $C; \mathcal{L}; \Phi; \mathcal{R} \vdash J$.

PROVE: $C'; L'; \Phi'; \mathcal{R}' \vdash J$.

2 Substitution

2.1 Weakening for Substitution

Weakening for substitution: as above, but with $J = (\sigma) : (\mathcal{C}''; \mathcal{L}''; \Phi''; \mathcal{R}'')$.

PROOF STRATEGY: Induction over the substitution.

Assume: 1. $C; \mathcal{L}; \Phi; \mathcal{R} \sqsubseteq C'; \mathcal{L}'; \Phi'; \mathcal{R}'$. 2. $C; \mathcal{L}; \Phi; \mathcal{R} \vdash (\sigma): (C''; \mathcal{L}''; \Phi''; \mathcal{R}'')$.

PROVE: $C': L': \Phi': R' \vdash (\sigma): (C'': L'': \Phi'': R'')$.

2.2 Substitution Lemma

If $C; \mathcal{L}; \Phi; \mathcal{R} \vdash (\sigma): (C'; \mathcal{L}'; \Phi'; \mathcal{R}')$ and $C'; \mathcal{L}'; \Phi'; \mathcal{R}' \vdash J$ then $C; \mathcal{L}; \Phi; \mathcal{R} \vdash \sigma(J)$.

PROOF STRATEGY: Induction over the typing judgements.

Assume: 1. C; \mathcal{L} ; Φ ; $\mathcal{R} \vdash (\sigma)$:(C'; \mathcal{L}' ; Φ' ; \mathcal{R}'). 2. C'; \mathcal{L}' ; Φ' ; $\mathcal{R}' \vdash J$.

PROVE: $C; \mathcal{L}; \Phi; \mathcal{R} \vdash \sigma(J)$. $\langle 1 \rangle 1$. Case: Ty_PVal_Var. $C'; \mathcal{L}'; \Phi' \vdash x \Rightarrow \beta$

- $\langle 2 \rangle 1$. Have $x:\beta \in \mathcal{C}'$ (or $x:\beta \in \mathcal{L}'$).
- $\langle 2 \rangle 2$. So $\exists pval. \ \mathcal{C}; \mathcal{L}; \Phi \vdash pval \Rightarrow \beta$ by Ty_Subs_Cons_{Comp,Log}.
- $\langle 2 \rangle 3$. Since $pval = \sigma(x)$, we are done.

 $\langle 1 \rangle 2$. Case: Ty_TPE_Let.

 $\mathcal{C}'; \mathcal{L}'; \Phi' \vdash \mathtt{let} ident_or_pattern = pexpr \mathtt{in} tpexpr \Leftarrow y_2:\beta_2. term_2.$

- $\langle 2 \rangle 1$. By induction,
 - 1. $C; \mathcal{L}; \Phi \vdash \sigma(pexpr) \Rightarrow y_1 : \beta. \sigma(term_1)$
 - 2. $\mathcal{C}, \mathcal{C}_1; \mathcal{L}, y_1:\beta; \Phi, term_1, \Phi' \vdash \sigma(tpexpr) \Leftarrow y_2:\beta. \sigma(term_2).$
- $\langle 2 \rangle 2$. C; L; $\Phi \vdash \sigma(\text{let } ident_or_pattern = pexpr in tpexpr) \Leftarrow y_2: \beta_2. \sigma(term_2)$ as required.
- $\langle 1 \rangle 3$. Case: Ty_TVal_Log.

 $\mathcal{C}'; \mathcal{L}'; \Phi'; \mathcal{R}' \vdash \mathtt{done}\,\mathit{pval},\,\, \overline{\mathit{spine_elem}_i}^{\,\,i} \Leftarrow \exists\, y{:}\beta.\,\, \mathit{ret}.$

- $\langle 2 \rangle 1$. By inversion and then induction,
 - 1. $C; \mathcal{L}; \Phi \vdash \sigma(pval) \Rightarrow \beta$
 - 2. $C; \mathcal{L}; \Phi; \mathcal{R} \vdash \sigma(\text{done } \overline{spine_elem}_i^i) \Leftarrow \sigma(pval/y, \cdot (ret)).$
- $\langle 2 \rangle 2$. Therefore $\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash \sigma(\mathtt{done}\,\mathit{pval},\,\overline{\mathit{spine_elem}_i}^i) \Leftarrow \exists\, y : \beta.\,\sigma(\mathit{ret}).$
- $\langle 1 \rangle 4$. Case: Ty_Spine_Res.

 $\mathcal{C}'; \mathcal{L}'; \Phi'; \mathcal{R}'_1, \mathcal{R}_2 \vdash x = res_term, \overline{x_i = spine_elem_i}^i :: res \multimap arg \gg res_term/x, \psi; ret$

- $\langle 2 \rangle 1$. By inversion and then induction,
 - 1. $C; \mathcal{L}; \Phi; \mathcal{R}_1 \vdash \sigma(res_term) \Leftarrow \sigma(res)$.
 - 2. $C; \mathcal{L}; \Phi; \mathcal{R}_2 \vdash \overline{x_i = \sigma(spine_elem_i)}^i :: \sigma(res) \multimap \sigma(arg) \gg \sigma(\psi); \sigma(ret).$
- $\langle 2 \rangle 2$. Hence $C; \mathcal{L}; \Phi; \mathcal{R}_1, \mathcal{R}_2 \vdash x = \sigma(res_term), \overline{x_i = \sigma(spine_elem_i)}^i :: \sigma(res \multimap arg) \gg \sigma(res_term/x, \psi); \sigma(ret)$ as required.

2.3 Identity Extension

If $C; \mathcal{L}; \Phi; \mathcal{R} \vdash (\sigma): (C'; \mathcal{L}'; \Phi'; \mathcal{R}')$ then $C; \mathcal{L}; \Phi; \mathcal{R}_1, \mathcal{R} \vdash (\sigma, id): (C, C'; \mathcal{L}, \mathcal{L}'; \Phi, \Phi'; \mathcal{R}_1, \mathcal{R}')$.

PROOF SKETCH: Induction over the substitution.

Assume: $C: \mathcal{L}: \Phi: \mathcal{R} \vdash (\sigma): (C': \mathcal{L}': \Phi': \mathcal{R}')$.

PROVE: $C; \mathcal{L}; \Phi; \mathcal{R}_1, \mathcal{R} \vdash (\sigma, id) : (C, C'; \mathcal{L}, \mathcal{L}'; \Phi, \Phi'; \mathcal{R}_1, \mathcal{R}').$

 $\langle 1 \rangle 1$. $C; \mathcal{L}; \Phi; \mathcal{R}_1 \vdash (id): (C; \mathcal{L}; \Phi; \mathcal{R}_1)$.

PROOF: By induction on each of C; L; Φ ; R_1 .

 $\langle 1 \rangle 2$. $C; \mathcal{L}; \Phi; \mathcal{R}_1, \mathcal{R} \vdash (\sigma, id) : (\mathcal{C}, \mathcal{C}'; \mathcal{L}, \mathcal{L}'; \Phi, \Phi'; \mathcal{R}_1, \mathcal{R}')$

PROOF: By induction on σ with base case as above.

2.4 Let-friendly Substitution Lemma

If $C; \mathcal{L}; \Phi; \mathcal{R} \vdash (\sigma): (C'; \mathcal{L}'; \Phi'; \mathcal{R}')$ and $C, C'; \mathcal{L}, \mathcal{L}'; \Phi, \Phi'; \mathcal{R}_1, \mathcal{R}' \vdash J$ then $C; \mathcal{L}; \Phi; \mathcal{R}_1, \mathcal{R} \vdash \sigma(J)$.

PROOF SKETCH: Apply identity extension then substitution lemma.

Assume: 1. \mathcal{C} ; \mathcal{L} ; Φ ; $\mathcal{R} \vdash (\sigma)$: $(\mathcal{C}'; \mathcal{L}'; \Phi'; \mathcal{R}')$.

2. $\mathcal{C}, \mathcal{C}'; \mathcal{L}, \mathcal{L}'; \Phi, \Phi'; \mathcal{R}_1, \mathcal{R}' \vdash J$.

PROVE: $C; \mathcal{L}; \Phi; \mathcal{R}_1, \mathcal{R} \vdash \sigma(J)$.

- $\langle 1 \rangle 1$. $C; \mathcal{L}; \Phi; \mathcal{R} \vdash (\sigma, id) : (C, C'; \mathcal{L}, \mathcal{L}'; \Phi, \Phi'; \mathcal{R}_1, \mathcal{R}')$. PROOF: Apply identity extension to 1.
- $\langle 1 \rangle 2$. $C; \mathcal{L}; \Phi; \mathcal{R}_1, \mathcal{R} \vdash (\sigma, \mathrm{id})(J)$. PROOF: Apply substitution lemma (2.2) to $\langle 1 \rangle 1$.
- $\langle 1 \rangle 3. \ \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R}_1, \mathcal{R} \vdash \sigma(J).$ PROOF: $\mathrm{id}(J) = J.$

3 Progress

If $\cdot; \cdot; \cdot; \mathcal{R} \vdash e \Leftrightarrow t$ then either value(e) or $\forall h : R. \exists e', h'. \langle h; e \rangle \longrightarrow \langle h'; e' \rangle$.

PROOF STRATEGY: Induction over the typing rules.

Assume: $\cdot; \cdot; \cdot; \mathcal{R} \vdash e \Leftrightarrow t$.

PROVE: either value(e) or $\forall h : R. \exists e', h'. \langle h; e \rangle \longrightarrow \langle h'; e' \rangle$.

4 Framing

If $\langle h_1; e \rangle \longrightarrow \langle h'_1; e' \rangle$ and h_1, h_2 disjoint then $\langle h_1 + h_2; e \rangle \longrightarrow \langle h'_1 + h_2; e' \rangle$.

PROOF STRATEGY: Induction over the operational rules.

Assume: 1. $\langle h_1; e \rangle \longrightarrow \langle h'_1; e' \rangle$. 2. h_1, h_2 disjoint.

PROVE: $\langle h_1 + h_2; e \rangle \longrightarrow \langle h'_1 + h_2; e' \rangle$.

5 Type Preservation

5.1 Ty_Spine_* and Decons_Arg_* construct same substitution and return type

If $C; \mathcal{L}; \Phi; \mathcal{R} \vdash \overline{x_i = spine_elem_i}^i :: arg \gg \sigma; ret \text{ and } \overline{x_i = spine_elem_i}^i :: arg \gg \sigma'; ret' \text{ then } \sigma = \sigma' \text{ and } ret = ret'.$

PROOF SKETCH: Induction over arg.

5.2 Pointed-to values have type β_{τ}

For $pt = \overrightarrow{\rightarrow}_{\tau} pval$, if $\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash pt \Leftarrow pt$ then $\mathcal{C}; \mathcal{L}; \Phi \vdash pval \Rightarrow \beta_{\tau}$.

PROOF SKETCH: Induction over the typing judgements. Only TY_ACTION_STORE create such permissions, and its premise $C; \mathcal{L}; \Phi \vdash pval_1 \Rightarrow \beta_{\tau}$ ensures the desired property. TY_ACTION_LOAD simply preserves the property.

5.3 Deconstructing a pattern leads to a well-typed substitution

First, computational part.

Assume: 1. $\cdot; \cdot; \cdot \vdash pval \Rightarrow \beta_1$.

2. $ident_or_pattern:\beta \leadsto \mathcal{C}$ with term.

3. $ident_or_pattern = pval \leadsto \sigma$.

PROVE: $\cdot; \cdot; \cdot; \cdot \vdash (\sigma) : (\mathcal{C}; \cdot; \cdot; \cdot)$.

PROOF SKETCH: By induction over 2.

 $\langle 1 \rangle$ 1. Case: Ty_Pat_Sym_Or_Pattern_Sym and Ty_Pat_Comp_Sym_Annot. $\sigma = pval/x$, \cdot and $\mathcal{C} = \cdot, x$: β .

PROOF: By Ty_Subs_Cons_Comp and 1 and Ty_Subs_Cons_Phi.

 $\langle 1 \rangle 2.$ Case: Ty_Pat_No_Sym_Annot and Ty_Pat_Comp_Nil. σ and $\mathcal C$ are empty.

PROOF: By TY_SUBS_EMPTY, we are done.

(1)3. CASE: TY_PAT_COMP_{SPECIFIED, CONS, TUPLE, ARRAY}.

PROOF: By induction (and concatenating well-typed substitutions).

Now, resource part.

- - 2. $res_pattern: res \leadsto \mathcal{L}; \Phi; \mathcal{R}'$.
 - 3. $res_pattern = res_term \rightsquigarrow \sigma$.

PROVE: $\cdot; \cdot; \cdot; \mathcal{R} \vdash (\sigma): (\cdot; \mathcal{L}; \Phi; \mathcal{R}').$

PROOF SKETCH: By induction over 2.

 $\langle 1 \rangle 1$. Case: Ty_Pat_Res_Empty.

 $res_pattern = res_term = res = emp. \ \sigma, \mathcal{L}, \Phi, \mathcal{R}, \mathcal{R}'$ are all empty.

PROOF: By TY_SUBS_EMPTY, we are done.

 $\langle 1 \rangle 2$. Case: Ty_Pat_Res_PointsTo.

 $res_pattern = res_term = res = pt. \ \sigma = \cdot, \ \mathcal{L} = \cdot, \ \Phi = \cdot, \ \mathcal{R} = \mathcal{R}' = \cdot, pt.$

PROOF: By TY_SUBS_CONS_RES_ANON.

 $\langle 1 \rangle 3$. Case: Ty_Pat_Res_Var.

 $res_pattern = r, \ \sigma = res_term/x, \cdot, \ \mathcal{L} = \cdot, \ \Phi = \cdot, \ \mathcal{R}' = \cdot, x : res.$

PROOF: By TY_SUBS_CONS_RES_NAMED.

 $\langle 1 \rangle 4$. Case: Ty_Pat_Res_SepConj.

PROOF: By induction (and concatenating well-typed substitutions).

 $\langle 1 \rangle 5$. Case: Ty_Pat_Res_Conj.

PROOF: By induction and Ty_Subs_Cons_Phi.

 $\langle 1 \rangle 6$. Case: Ty_Pat_Res_Pack.

 $res_pattern = pack(x, res_pattern'), res_term = pack(pval, res_term'), res = \exists x:\beta. res'.$

 $\sigma = pval/x, \sigma', \mathcal{L} = \mathcal{L}', x:\beta, \mathcal{R} = \mathcal{R}'.$

PROOF: By induction and TY_SUBS_CONS_LOG.

Now, full proof.

Assume: 1. $\overline{ret_pattern_i} = spine_elem_i^{\ i} \leadsto \sigma$.

- $2. : : : : : \mathcal{R} \vdash \text{done } \overline{spine_elem_i}^i \Leftarrow ret.$
- 3. $\overline{ret_pattern_i}^i : ret \leadsto \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R}'.$

PROVE: $\cdot; \cdot; \cdot; \mathcal{R} \vdash (\sigma): (\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R}').$

PROOF SKETCH: Induction on 3. Base case by TY_SUBS_EMPTY. TY_RET_PAT_{COMP,RES} by induction, well-typed computational / resource substitutions and concatenating well-typed substitutions. TY_RET_PAT_{LOG,PHI} by induction and TY_SUBS_CONS_{LOG,PHI}.

5.4 Type Preservation Statement and Proof

If $\cdot; \cdot; \cdot; \mathcal{R} \vdash e \Leftrightarrow t$ then $\forall h : \mathcal{R}, e', h' : \mathcal{R}'$. $\langle h; e \rangle \longrightarrow \langle h'; e' \rangle \implies \cdot; \cdot; \cdot; \mathcal{R}' \vdash e' \Leftrightarrow t$.

PROOF SKETCH: Induction over the typing rules.

Assume: 1. $\cdot; \cdot; \cdot; \mathcal{R} \vdash e \Leftrightarrow t$

2. arbitrary $h: \mathcal{R}, e', h': \mathcal{R}'$

3. $\langle h; e \rangle \longrightarrow \langle h'; e' \rangle$.

PROVE: $\cdot; \cdot; \cdot; \mathcal{R}' \vdash e' \Leftrightarrow t$.

 $\langle 1 \rangle 1$. Case: Ty_PE_Array_Shift.

Let: $term = mem_ptr +_{ptr} (mem_int \times size_of(\tau)).$

Assume: 1. $\cdot; \cdot; \cdot \vdash \text{array_shift}(mem_ptr, \tau, mem_int) \Rightarrow y:\text{loc.} \ y = term.$

2. $\langle array_shift(mem_ptr, \tau, mem_int) \rangle \longrightarrow \langle mem_ptr' \rangle$.

PROVE: $\cdot; \cdot; \cdot \vdash mem_ptr' \Rightarrow y:loc. y = term.$

PROOF: By TY_PVAL_OBJ_INT, TY_PVAL_OBJ, TY_PE_VAL and construction of mem_ptr' (inversion on 2).

 $\langle 1 \rangle 2$. Case: Ty_PE_Member_Shift.

PROOF SKETCH: Similar to TY_ARRAY_SHIFT.

 $\langle 1 \rangle 3$. Case: Ty_PE_Not.

Assume: 1. $\cdot; \cdot; \cdot \vdash \text{not}(bool_value) \Rightarrow y:\text{bool}. y = \neg bool_value.$

2. $\langle \mathtt{not}(\mathtt{True}) \rangle \longrightarrow \langle \mathtt{False} \rangle \text{ or } \langle \mathtt{not}(\mathtt{False}) \rangle \longrightarrow \langle \mathtt{True} \rangle$.

PROVE: $\cdot; \cdot; \cdot \vdash bool_value' \Rightarrow y$:bool. $y = \neg bool_value$.

PROOF: By Ty_PVAL_{TRUE,FALSE}, Ty_PE_VAL and 2.

 $\langle 1 \rangle 4$. Case: Ty_PE_Arith_Binop.

Let: $term = mem_int_1 binop_{arith} mem_int_2$.

Assume: 1. $\cdot; \cdot; \cdot \vdash mem_int_1 \ binop_{arith} \ mem_int_2 \Rightarrow y$:integer. y = term.

2. $\langle mem_int_1 \ binop_{arith} \ mem_int_2 \rangle \longrightarrow \langle mem_int \rangle$.

PROVE: $\cdot; \cdot; \cdot \vdash mem_int \Rightarrow y$:integer. y = term.

PROOF: By TY_PVAL_OBJ_INT, TY_PVAL_OBJ, TY_PE_VAL and construction of mem_int (inversion on 2).

 $\langle 1 \rangle$ 5. Case: Ty_PE_{Rel,Bool}_Binop.

PROOF SKETCH: Similar to TY_PE_ARITH_BINOP.

 $\langle 1 \rangle 6$. Case: Ty_PE_Call.

PROOF: See Ty_Seq_E_Call for a more general case and proof.

 $\langle 1 \rangle 7$. Case: Ty_PE_Assert_Undef.

Assume: 1. \cdot ; \cdot ; \cdot hassert_undef (True, UB_name) \Rightarrow y:unit. y = unit.

2. $\langle assert_undef(True, UB_name) \rangle \longrightarrow \langle Unit \rangle$.

PROVE: $\cdot; \cdot; \cdot \vdash \text{Unit} \Rightarrow y : \text{unit}. \ y = \text{unit}.$

PROOF: By TY_PVAL_UNIT and TY_PE_VAL.

 $\langle 1 \rangle 8$. Case: Ty_PE_Bool_To_Integer.

Let: $term = if bool_value then 1 else 0$.

Assume: 1. $\cdot; \cdot; \cdot \vdash bool_to_integer(bool_value) \Rightarrow y:integer. y = term.$

2. $\langle bool_to_integer(True) \rangle \longrightarrow \langle 1 \rangle$ or $\langle bool_to_integer(False) \rangle \longrightarrow \langle 0 \rangle$.

PROVE: $\cdot; \cdot; \cdot \vdash mem_int \Rightarrow y$:integer. y = term

PROOF: By cases on bool_value, then applying TY_PVAL_{TRUE,FALSE} and TY_PE_VAL.

 $\langle 1 \rangle 9$. Case: Ty_PE_WrapI.

PROOF SKETCH: Similar to TY_PE_BOOL_TO_INTEGER, except by cases on $abbrev_2 \leq \max_{i=1}^{n} t_i$, then applying TY_PVAL_OBJ_INT, TY_PVAL_OBJ and TY_PE_VAL.

 $\langle 1 \rangle 10$. Case: Ty_TPE_IF.

PROOF: See Ty_Seq_TE_IF for a more general case and proof.

 $\langle 1 \rangle 11$. Case: Ty_TPE_Let.

PROOF: See Ty_SEQ_TE_LET for a more general case and proof.

 $\langle 1 \rangle 12$. Case: Ty_TPE_LetT.

PROOF: See Ty_Seq_TE_LetT for a more general case and proof.

 $\langle 1 \rangle 13$. Case: Ty_TPE_Case.

PROOF: See Ty_Seq_TE_Case for a more general case and proof.

 $\langle 1 \rangle 14$. Case: Ty_Action_Create.

Let: $pt = mem_ptr \stackrel{\times}{\mapsto}_{\tau} pval$.

 $term = \texttt{representable} (\tau *, y_p) \land \texttt{alignedI} (mem_int, y_p).$

$$ret = \sum y_p : loc. \ term \land \exists \ y : \beta_\tau. \ y_p \stackrel{\times}{\mapsto}_\tau \ y \otimes I.$$

ASSUME: 1. $\cdot; \cdot; \cdot; \cdot \vdash \texttt{create}(mem_int, \tau) \Rightarrow ret$.

2. $\langle \cdot ; \mathtt{create} (mem_int, \tau) \rangle \longrightarrow \langle \cdot + \{pt\}; \mathtt{done} \ mem_ptr, pval, pt \rangle$.

PROVE: $\cdot; \cdot; \cdot; \cdot, pt \vdash \text{done } mem_ptr, pval, pt \Leftarrow ret.$

- $\langle 2 \rangle 1. : : : : \vdash mem_ptr \Rightarrow loc$ by TY_PVAL_OBJ_INT and TY_PVAL_OBJ.
- $\langle 2 \rangle 2$. smt $(\cdot \Rightarrow term)$ by construction of mem_ptr .
- $\langle 2 \rangle 3. \ \ ; \ ; \cdot \vdash pval \Rightarrow \beta_{\tau}$ by construction of pval.
- $\langle 2 \rangle 4. \ \ ; ; ; ; , pt \vdash pt \Leftarrow pt \text{ by Ty_Res_PointsTo}.$
- $\langle 2 \rangle$ 5. By TY_TVAL_I and then $\langle 2 \rangle$ 4 $\langle 2 \rangle$ 1 with TY_TVAL_{RES,LOG,PHI,COMP} respectively, we are done.
- $\langle 1 \rangle 15$. Case: Ty_Action_Load.

Let: $pt = mem_ptr \xrightarrow{\checkmark} pval$.

$$ret = \sum y : \beta_{\tau}. \ y = pval \land pt \otimes I.$$

Assume: 1. $\cdot; \cdot; \cdot; \cdot, pt \vdash load(\tau, mem_ptr, _, pt) \Rightarrow ret$.

 $2. \ \langle \cdot + \{pt\}; \texttt{load} \ (\tau, mem_ptr, _, pt) \rangle \longrightarrow \langle \cdot + \{pt\}; \texttt{done} \ pval, pt \rangle.$

PROVE: $\cdot; \cdot; \cdot; \cdot, pt \vdash \text{done } pval, pt \Leftarrow ret$

 $\langle 2 \rangle 1. \quad \because \because \because pt \vdash pt \Leftarrow pt$, by inversion on 1.

- $\langle 2 \rangle 2$. smt $(\cdot \Rightarrow pval = pval)$ trivially.
- $\langle 2 \rangle 3. : : : \vdash pval \Rightarrow \beta_{\tau} \text{ by } \langle 2 \rangle 1 \text{ and lemma 5.2.}$
- $\langle 2 \rangle 4$. By TY_TVAL_I and then $\langle 2 \rangle 1 \langle 2 \rangle 3$ with TY_TVAL_{RES,PHI,COMP} respectively, we are done.
- $\langle 1 \rangle 16$. Case: Ty_Action_Store.

Let: $pt = mem_{pt}r \stackrel{\checkmark}{\mapsto}_{\tau}$.

 $pt' = mem_ptr \xrightarrow{\checkmark} pval.$

 $ret = \Sigma$::unit. $pt' \otimes I$.

Assume: 1. $\cdot; \cdot; \cdot; \cdot, pt \vdash \mathsf{store}(\neg, \tau, pval_0, pval_1, \neg, pt) \Rightarrow ret.$

2. $\langle \cdot + \{pt\}; \mathtt{store}(\cdot, \tau, mem_ptr, pval, \cdot, pt) \rangle \longrightarrow \langle \cdot + \{pt'\}; \mathtt{done}\,\mathtt{Unit}, pt' \rangle$.

PROVE: $\cdot; \cdot; \cdot; pt' \vdash \text{done Unit}, pt' \Leftarrow ret.$

- $\langle 2 \rangle 1. : ; \cdot ; \cdot \vdash Unit \Rightarrow unit by TY_PVAL_UNIT.$
- $\langle 2 \rangle 2. \ \ ; ; ; ; , pt' \vdash pt' \Leftarrow pt' \text{ by TY_Res_PointsTo}.$
- $\langle 2 \rangle 3.$ By TY_TVAL_I and $\langle 2 \rangle 1$ and $\langle 2 \rangle 2$ with TY_TVAL_{RES,COMP} respectively, we are done.
- $\langle 1 \rangle 17$. Case: Ty_Action_Kill_Static.

Let: $pt = mem_{-}ptr \mapsto_{\tau}$.

Assume: 1. $\cdot; \cdot; \cdot; \cdot, pt \vdash kill (static \tau, pval_0, pt) \Rightarrow \Sigma$:unit. I.

2. $\langle \cdot + \{pt\}; \texttt{kill} (\texttt{static} \, \tau, mem_ptr, pt) \rangle \longrightarrow \langle h; \texttt{done} \, \texttt{Unit} \rangle$.

PROVE: $\cdot; \cdot; \cdot; \cdot \vdash \text{done Unit} \Leftarrow \Sigma_{::}$ unit. I

PROOF: By Ty_TVAL_I, Ty_PVAL_UNIT and then Ty_TVAL_COMP.

 $\langle 1 \rangle 18$. Case: Ty_Memop_Rel_Binop.

PROOF: Similar TY_PE_REL_BINOP, except with TY_TVAL_{I,PHI,COMP} at the end.

 $\langle 1 \rangle 19$. Case: Ty_Memop_IntFromPtr.

Let: $ret = \sum y$:integer. $y = \text{cast_ptr_to_int} \ mem_ptr \land I$.

ASSUME: 1. $\cdot; \cdot; \cdot; \cdot \vdash \text{intFromPtr}(\tau_1, \tau_2, mem_ptr) \Rightarrow ret.$

2. $\langle \cdot; \mathtt{intFromPtr}(\tau_1, \tau_2, mem_ptr) \rangle \longrightarrow \langle \cdot; \mathtt{done}\ mem_int \rangle$.

PROVE: $\cdot; \cdot; \cdot; \cdot \vdash \text{done } mem_int \Leftarrow ret$

- $\langle 2 \rangle 1$. smt ($\cdot \Rightarrow mem_int = \texttt{cast_ptr_to_int} \ mem_ptr$) by construction of mem_int (inversion on 2).
- $\langle 2 \rangle 2. : : : : \vdash mem_int \Rightarrow integer by TY_PVAL_OBJ_INT and TY_PVAL_OBJ.$
- $\langle 2 \rangle 3$. By TY_TVAL_I and $\langle 2 \rangle 1$ and $\langle 2 \rangle 2$ with TY_TVAL_{PHI,COMP} respectively, we are done.
- $\langle 1 \rangle 20$. Case: Ty_Memop_PtrFromInt.

PROOF: Similar to TY_MEMOP_INTFROMPTR, swapping base types integer and loc.

(1)21. Case: Ty_Memop_PtrValidForDeref.

Let: $pt = mem_{-}ptr \stackrel{\checkmark}{\mapsto}_{\tau}$.

 $ret = \sum y$:bool. $y = \texttt{aligned} (\tau, mem_ptr) \land pt \otimes I$.

Assume: 1. \cdot ; \cdot ; \cdot ; $\mathcal{R} \vdash \mathsf{ptrValidForDeref}(\tau, mem_ptr, pt) \Rightarrow ret$.

 $2. \ \langle \cdot + \{pt\}; \mathtt{ptrValidForDeref} \ (\tau, mem_ptr, pt) \rangle \longrightarrow \langle \cdot + \{pt\}; \mathtt{done} \ bool_value, pt \rangle.$

PROVE: $\cdot; \cdot; \cdot; \mathcal{R} \vdash \text{done } bool_value, pt \Leftarrow ret.$

- $\langle 2 \rangle 1. : : : : : \mathcal{R} \vdash pt \Leftarrow pt$, by inversion on 1.
- $\langle 2 \rangle 2$. $R = \cdot, pt$, by Ty_Res_PointsTo.
- $\langle 2 \rangle 3. \ bool_value = \texttt{aligned} \ (\tau, mem_ptr) \ \text{by construction of} \ bool_value \ (inversion on 2).$
- $\langle 2 \rangle 4. : : : \vdash bool_value \Rightarrow bool by TY_PVAL_{TRUE,FALSE}.$
- $\langle 2 \rangle 5.$ By TY_TVAL_I, and then $\langle 2 \rangle 2$ $\langle 2 \rangle 4$ with TY_TVAL_{RES,PHI,COMP} respectively, we are done.
- $\langle 1 \rangle 22$. Case: Ty_Memop_PtrWellAligned.

Let: $ret = \sum y$:bool. $y = aligned(\tau, mem_ptr) \land I$.

ASSUME: 1. $\cdot; \cdot; \cdot; \cdot \vdash \mathsf{ptrWellAligned}(\tau, mem_ptr) \Rightarrow ret.$

2. $\langle \cdot; \mathtt{ptrWellAligned} (\tau, mem_ptr) \rangle \longrightarrow \langle \cdot; \mathtt{done} \ bool_value \rangle$.

PROVE: $\cdot; \cdot; \cdot; \cdot \vdash \text{done } bool_value \Rightarrow ret.$

- $\langle 2 \rangle 1. \text{ smt } (\cdot \Rightarrow bool_value = \texttt{aligned} (\tau, mem_ptr)) \text{ by construction of } bool_value \text{ (inversion on 2)}.$
- $\langle 2 \rangle 2. : : : \vdash bool_value \Rightarrow bool by TY_PVAL_{TRUE,FALSE}.$
- $\langle 2 \rangle 3.$ By TY_TVAL_I and $\langle 2 \rangle 1$ and $\langle 2 \rangle 2$ with TY_TVAL_{PHI,COMP} respectively, we are done.
- $\langle 1 \rangle 23.$ Case: Ty_Memop_PtrArrayShift. Proof: Similiar to Ty_PE_Array_Shift, except with Ty_TVal_{I,Phi,Comp} at the end.
- $\langle 1 \rangle 24$. Case: Ty_Seq_E_CCall.

2. $\langle h; \mathsf{ccall}(\tau, pval, \overline{spine_elem_i}^i) \rangle \longrightarrow \langle h; \sigma'(texpr) : \sigma'(ret) \rangle$.

PROVE: $\cdot; \cdot; \cdot; \mathcal{R} \vdash \sigma(texpr) \Leftarrow \sigma(ret)$

- $\langle 2 \rangle 1$. $pval:arg \equiv \overline{x_i}^i \mapsto texpr \in Globals$ by inversion (on either assumption).
- $\langle 2 \rangle 2. \ \ :; :; :; \mathcal{R} \vdash \overline{x_i = spine_elem_i}^i :: arg \gg \sigma; ret \text{ by inversion on } 1.$
- $\langle 2 \rangle 3$. $\sigma = \sigma'$ and ret = ret' by induction on arg. PROOF: Follows from lemma 5.1.
- $\langle 2 \rangle 4$. Let: $\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R}'$ be the the type of substitution $\sigma: \cdot; \cdot; \cdot; \mathcal{R} \vdash (\sigma): (\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R}')$. PROOF: Constructing such a substitution requires $\mathcal{C}; \mathcal{L}; \Phi \vdash pval_i \Rightarrow \beta_i$ for each $x_i: \beta_i \in \mathcal{C}$ or $x_i: \beta_i \in \mathcal{L}$ and $\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R}' \vdash res_term_i \Leftarrow res_i$ for each $res_i \in \mathcal{R}'$ which can be deduced from $\langle 2 \rangle 2$.
- $\langle 2 \rangle$ 5. $\mathcal{C}''; \mathcal{L}''; \Phi''; \mathcal{R}'' \vdash texpr \Leftarrow ret''$ where $\overline{x_i}^i :: arg \leadsto \mathcal{C}''; \mathcal{L}''; \Phi''; \mathcal{R}'' \mid ret''$ formalises the assumption that all global functions and labels are well-typed.
- $\langle 2 \rangle 6$. C = C'', $\Phi = \Phi''$, $\mathcal{L} = \mathcal{L}''$, $\mathcal{R}' = \mathcal{R}''$ and ret = ret''. Proof: By induction on arg.

- $\langle 2 \rangle$ 7. Apply substitution lemma (2.2) to $\langle 2 \rangle$ 4 and $\langle 2 \rangle$ 5 to finish proof.
- (1)25. Case: Ty_Seq_E_Proc. Proof: Similar to Ty_Seq_E_CCall.
- (1)26. Case: Ty_Is_E_Memop.

 Proof: By induction on Ty_Memop* cases.
- $\langle 1 \rangle$ 27. Case: Ty_Is_E_{Neg_}Action. Proof: By induction on Ty_Action* cases.
- $\langle 1 \rangle 28$. Case: Ty_Seq_TE_LetP.

PROOF SKETCH: Only covering case $\langle pexpr \rangle \longrightarrow \langle pexpr' \rangle$ here.

See Ty_Seq_TE_Let for a more general version and proof for the remaining $\langle pexpr \rangle \longrightarrow \langle tpexpr:(y:\beta.\ term) \rangle$ case.

Assume: 1. \cdot ; \cdot ; \cdot : let $ident_or_pattern = pexpr$ in $tpexpr \Leftarrow y_2:\beta_2$. $term_2$.

2. $\langle \text{let} ident_or_pattern = pexpr \, \text{in} \, tpexpr \rangle \longrightarrow \langle \text{let} ident_or_pattern = pexpr' \, \text{in} \, tpexpr \rangle$.

PROVE: $\cdot; \cdot; \cdot \vdash \text{let } ident_or_pattern = pexpr' \text{ in } tpexpr \Leftarrow y_2:\beta_2. term_2.$

- $\langle 2 \rangle 1. \ 1. \ \cdot; \cdot; \cdot \vdash pexpr \Rightarrow y : \beta. \ term.$
 - 2. $ident_or_pattern:\beta \leadsto C_1 \text{ with } term_1.$
 - 3. C_1 ; ·; ·, $term_1/y$, ·(term), Φ_1 ; $\mathcal{R} \vdash texpr \Leftarrow ret$.

PROOF: Invert assumption 1.

- $\langle 2 \rangle 2$. $\langle pexpr \rangle \longrightarrow \langle pexpr' \rangle$. PROOF: Invert assumption 2.
- $\langle 2 \rangle 3. : ; : ; \cdot \vdash pexpr' \Rightarrow y : \beta. term.$

PROOF: By induction on $\langle 2 \rangle 1.1$ and $\langle 2 \rangle 2$.

- $\langle 2 \rangle 4.$ $: : : : \vdash \text{let } ident_or_pattern = pexpr' \text{ in } tpexpr \Leftarrow y_2 : \beta_2. term_2.$ Proof: By Ty_Seq_TE_LetP using $\langle 2 \rangle 1.2,3$ and $\langle 2 \rangle 3.$
- (1)29. CASE: TY_SEQ_TE_LETPT.

 PROOF: See TY_SEQ_TE_LETT for a more general case and proof.
- $\langle 1 \rangle 30$. Case: Ty_Seq_TE_Let.

PROVE: $\cdot; \cdot; \cdot; \mathcal{R}', \mathcal{R} \vdash \text{let } \frac{\cdot}{ret_pattern_i}^i : ret_1 = texpr_1 \text{ in } texpr_2 \Leftarrow ret_2.$

- $\langle 2 \rangle 1. \ 1. \ \vdots; \cdot; \cdot; \mathcal{R}' \vdash seq_expr \Rightarrow ret_1.$
 - 2. $\overline{ret_pattern_i}^i : ret_1 \leadsto \mathcal{C}_1; \mathcal{L}_1; \Phi_1; \mathcal{R}_1.$
 - 3. $C_1; L_1; \Phi_1; \mathcal{R}, \mathcal{R}_1 \vdash texpr \Leftarrow ret_2$.

PROOF: By inversion on 1.

- $\langle 2 \rangle 2$. $\langle h; seq_expr \rangle \longrightarrow \langle h; texpr_1: ret'_1 \rangle$. PROOF: By inversion on 2.

 $\langle 2 \rangle 4$. $ret_1 = ret'_1$.

PROOF: By cases Ty_Seq_E_{CCall,PCall}.

- $\langle 2 \rangle$ 5. By TY_SEQ_TE_LET with $\langle 2 \rangle$ 1.2,3 and $\langle 2 \rangle$ 3, we are done.
- $\langle 1 \rangle 31$. Case: Ty_Seq_TE_LetT.

NOTE: $h: \mathcal{R}', \mathcal{R}$ and $h: \mathcal{R}_1, \mathcal{R}$.

PROVE: $\cdot; \cdot; \cdot; \mathcal{R}', \mathcal{R} \vdash \sigma(texpr_2) \Leftarrow \sigma(ret_2)$.

- $\langle 2 \rangle 1. \ 1. \ \cdot; \cdot; \cdot; \mathcal{R}' \vdash \text{done } \overline{spine_elem}_i^i \Leftarrow ret_1.$
 - 2. $\overline{ret_pattern_i}^i : ret_1 \leadsto \mathcal{C}_1; \mathcal{L}_1; \Phi_1; \mathcal{R}_1.$
 - 3. C_1 ; L_1 ; Φ_1 ; R_1 , $R \vdash texpr_2 \Leftarrow ret_2$.

PROOF: By inversion on 1.

 $\langle 2 \rangle 2$. $\overline{ret_pattern_i = spine_elem_i}^i \rightsquigarrow \sigma$.

PROOF: By inversion on 2.

 $\langle 2 \rangle 3. : : : : : \mathcal{R}' \vdash (\sigma) : (\mathcal{C}_1; \mathcal{L}_1; \Phi_1; \mathcal{R}_1).$

PROOF: By $\langle 2 \rangle 1.1,2$ and $\langle 2 \rangle 2$ using lemma 5.3.

- $\langle 2 \rangle 4$. By $\langle 2 \rangle 1.3$ and $\langle 2 \rangle 3$ and lemma 2.4, we are done.
- $\langle 1 \rangle 32$. Case: Ty_Seq_TE_LetT.

ASSUME: 1. $\cdot; \cdot; \cdot; \mathcal{R}', \mathcal{R} \vdash \text{let } \overline{ret_pattern_i}^i : ret_1 = texpr_1 \text{ in } texpr_2 \Leftarrow ret_2.$

2. $\langle h; \text{let } \overline{ret_pattern_i}^i : ret = texpr_1 \text{ in } texpr_2 \rangle \longrightarrow \langle h'; \text{let } \overline{ret_pattern_i}^i : ret = texpr'_1 \text{ in } texpr_2 \rangle$.

PROVE: $\cdot; \cdot; \cdot; \mathcal{R}'', \mathcal{R} \vdash \text{let } \frac{\cdot}{ret_pattern_i} i : ret_1 = texpr'_1 \text{ in } texpr_2 \Leftarrow ret_2.$

- $\langle 2 \rangle 1. \ 1. \ \cdot; \cdot; \cdot; \mathcal{R}' \vdash texpr_1 \Leftarrow ret_1.$
 - 2. $\overline{ret_pattern_i}^i : ret_1 \leadsto \mathcal{C}_1; \mathcal{L}_1; \Phi_1; \mathcal{R}_1.$
 - 3. C_1 ; L_1 ; Φ_1 ; R_1 , $R \vdash texpr_2 \Leftarrow ret_2$.

PROOF: By inversion on 1.

 $\langle 2 \rangle 2. \ \langle h; texpr_1 \rangle \longrightarrow \langle h'; texpr_1' \rangle.$

PROOF: By inversion on 2.

 $\langle 2 \rangle 3. \ \ ; ; ; ; \mathcal{R}'' \vdash texpr'_1 \Leftarrow ret_1.$

PROOF: By induction on $\langle 2 \rangle 1.1$ and $\langle 2 \rangle 2$.

- $\langle 2 \rangle 4$. By $\langle 2 \rangle 3$, $\langle 1 \rangle 32.2,3$ using Ty_Seq_TE_LetT, we are done.
- $\langle 1 \rangle 33$. Case: Ty_Seq_TE_Case.

ASSUME: 1. $\cdot; \cdot; \cdot; \mathcal{R} \vdash \mathsf{case}\,\mathit{pval}\,\mathsf{of}\,\overline{\mid \mathit{pattern}_i \Rightarrow \mathit{texpr}_i}^i\,\mathsf{end} \Leftarrow \mathit{ret}.$

2. $\langle h; \mathsf{case}\, pval\, \mathsf{of}\, \overline{\mid pattern_i \Rightarrow texpr_i}^i \; \mathsf{end} \rangle \longrightarrow \langle h; \sigma_j(texpr_j) \rangle$.

PROVE: $\cdot; \cdot; \cdot; \mathcal{R} \vdash \sigma_i(texpr_i) \Leftarrow ret.$

- $\langle 2 \rangle 1. \ 1. \ \cdot; \cdot; \cdot \vdash pval \Rightarrow \beta_1.$
 - 2. $\overline{pattern_i:\beta_1 \leadsto \mathcal{C}_i \text{ with } term_i}^i$.
 - 3. $\overline{C_i}$; \cdot ; \cdot , $term_i = pval$; $\mathcal{R} \vdash texpr_i \Leftarrow ret^i$.

PROOF: By inversion on 1.

- $\langle 2 \rangle 2$. 1. $pattern_j = pval \leadsto \sigma_j$. 2. $\forall i < j$. not $(pattern_i = pval \leadsto \sigma_i)$. PROOF: By inversion on 2.
- $\langle 2 \rangle 3. \quad :; :; : \vdash (\sigma_j) : (C_i; :; :; :).$ PROOF: By lemma 5.3.
- $\langle 2 \rangle 4. :; :; :; \mathcal{R} \vdash (\sigma_j) : (\mathcal{C}_i; :; :, term_j = pval_j; \mathcal{R}).$ PROOF: By $\langle 2 \rangle 3$, TY_SUBS_CONS_PHI and TY_SUBS_CONS_RES*.
- $\langle 2 \rangle$ 5. By $\langle 2 \rangle$ 1.3 and 2.2, we are done.
- $\langle 1 \rangle 34$. Case: Ty_Seq_TE_If.

Only covering True case, False is almost identical.

Assume: 1. $\cdot; \cdot; \cdot; \mathcal{R} \vdash \text{if True then } texpr_1 \text{ else } texpr_2 \Leftarrow ret.$

2. $\langle h; \text{ if True then } texpr_1 \text{ else } texpr_2 \rangle \longrightarrow \langle h; texpr_1 \rangle$.

PROVE: $\cdot; \cdot; \cdot; \mathcal{R} \vdash texpr_1 \Leftarrow ret$.

PROOF: Invert 1, note $\cdot; \cdot; \cdot; \mathcal{R} \vdash (id): (\cdot; \cdot; \cdot, \mathsf{true} = \mathsf{true}; \mathcal{R})$ and then apply substitution lemma (2.2).

- $\langle 1 \rangle 35.$ Case: Ty_Seq_TE_Run. Proof sketch: Similar to case Ty_Seq_E_{CCall,PCall}.
- ⟨1⟩36. CASE: TY_SEQ_TE_BOUND. PROOF: By inversion on the typing rule.
- $\langle 1 \rangle 37.$ Case: Ty_Is_TE_LetS. Proof sketch: Similar to Ty_Seq_TE_LetT.

6 Typing Judgements

7 Opsem Judgements