

Nidham Gazagnadou ¹ Samy Jelassi ² Francis Bach ³ Robert M. Gower ¹ Othmane Sebbouh ¹

informatics mathematics

¹LTCI, Télécom Paris, Institut Polytechnique de Paris ²ORFE Department, Princeton University ³INRIA, École Normale Supérieure, PSL Research University

Goal: Empirical Risk Minimization

Consider the optimization problem

$$x^* = \arg\min_{x \in \mathbb{R}^d} \left\{ f(x) := \frac{1}{n} \sum_{i=1}^n f_i(x) \right\} ,$$
 (1)

where

- f is L-smooth and μ -strongly convex
- \bullet each f_i is L_{\max} -smooth

Stochastic Variance Reduced Gradient

Algorithm 1 SVRG [4]

Parameters: inner loop size $m \gtrsim \frac{L_{\text{max}}}{u}$, step size α , $p_t := \frac{1}{m}$ Initialization: $w_0 = x_0^m \in \mathbb{R}^d$ for s = 1, 2, do $x_s^0=w_{s-1}$ for t = 0, 1, ..., m - 1 do Sample i_t uniformly at random in $\{1, \ldots, n\}$ $g_s^t = \nabla f_{i_t}(x_s^t) - \nabla f_{i_t}(w_{s-1}) + \nabla f(w_{s-1})$ $x_s^{t+1} = x_s^t - \alpha g_s^t$ end for $w_s = \sum_{t=0}^{m-1} p_t x_s^t$ end for

Problem: SVRG differs from practice

- Constraint on the size of the loop m
- First iterate reset to the average of past iterates
- No theoretical justification for benefits of mini-batching

Motivations

- Close gap between theory and practice of SVRG
- Offer theoretical convergence guarantees
- Demonstrate benefits from mini-batching

Stochastic Reformulation

Problem (1) can be reformulated as

$$x^* = \arg\min_{x \in \mathbb{R}^d} \mathbb{E}_{v \sim D} \left[\frac{1}{n} \sum_{i=1}^n v_i f_i(x) \right] =: \mathbb{E}_{v \sim D} \left[f_v(x) \right] , \quad (2)$$

where $\mathbb{E}_{v\sim D}[v]=\mathbf{1}_n$. To solve (2), we can use SVRG:

$$x_s^{t+1} = x_s^t - \alpha \left(\nabla f_{v_t}(x_s^t) - \nabla f_{v_t}(w_{s-1}) + \nabla f(w_{s-1}) \right) ,$$

where $v_t \sim \mathcal{D}$ is sampled at each iteration.

Arbitrary sampling includes all types of sampling.

Example: mini-batching without replacement

Let $S \subset \{1, \ldots, n\}$ be a random set such that $\mathbb{P}[S = B] = 1/\binom{n}{b}$ for all $B \subset \{1, \dots, n\}, |B| = b$. $v_i = \begin{cases} n/b & \text{if } i \in S \\ 0 & \text{otherwise} \end{cases}$

Then,
$$f_v(x) = \frac{1}{b} \sum_{i \in S} f_i(x)$$
 and $\nabla f_v(x) = \frac{1}{b} \sum_{i \in S} \nabla f_i(x)$.

Proposed algorithm: Free-SVRG

Algorithm 2 Free-SVRG (or 1-SVRG [5]) Parameters: Free inner loop length m, step size α , $p_t := (1 - \alpha \mu)^{m-1-t} / \sum_{i=0}^{m-1} (1 - \alpha \mu)^{m-1-i}$ Initialization: $w_0 = x_0^m \in \mathbb{R}^d$ for s = 1, 2, do $x_s^0=x_{s-1}^m$ for t = 0, 1, ..., m - 1 do Sample $v_t \sim \mathcal{D}$ $g_s^t = \nabla f_{v_t}(x_s^t) - \nabla f_{v_t}(w_{s-1}) + \nabla f(w_{s-1})$ $x_s^{t+1} = x_s^t - \alpha g_s^t$ end for $w_s = \sum_{t=0}^{m-1} p_t x_s^t$ end for

Solves several issues with SVRG

- Inner iterates (x_s^t) continuously updated (no resetting)
- Free choice of the inner loop size
- Much easier analysis

Algorithm analysis

An essential constant for the analysis:

Lemma: Expected smoothness

Let $v \sim \mathcal{D}$ be a sampling vector. There exists $\mathcal{L} \geq 0$ such that for all $x \in \mathbb{R}^d$,

$$\mathbb{E}_{v \sim D} \left[\|\nabla f_v(x) - \nabla f_v(x^*)\|_2^2 \right] \le 2\mathcal{L} \left(f(x) - f(x^*) \right) .$$

Example: mini-batching without replacement [1, 2]

$$\mathcal{L} = \mathcal{L}(\boldsymbol{b}) = \frac{1}{\boldsymbol{b}} \frac{n - \boldsymbol{b}}{n - 1} L_{\text{max}} + \frac{n \boldsymbol{b} - 1}{\boldsymbol{b} n - 1} L.$$

In particular, $\mathcal{L}(\mathbf{1}) = L_{\text{max}}$ and $\mathcal{L}(\mathbf{n}) = L$.

Lyapunov Convergence Theorem 1

Let
$$\phi_s := \|x_s^m - x^*\|_2^2 + 8\alpha^2 \mathcal{L} S_m(f(w_s) - f(x^*)),$$

where $S_m = \sum_{i=0}^{m-1} (1 - \alpha \mu)^{m-1-i}$. If $\alpha \leq 1/6\mathcal{L}$, then the iterates of Algorithm 2 converge with $\mathbb{E}\left[\phi_s\right] \leq \beta^s \phi_0$, where $\beta = \max\left\{(1 - \alpha \mu)^m, \frac{1}{2}\right\}$.

Total complexity for mini-batching

The **total complexity** of finding an $\epsilon > 0$ approximate solution that satisfies $\mathbb{E}\left[\left\|x_s^m - x^*\right\|_2^2\right] \leq \epsilon \phi_0$ is

$$C_m(\mathbf{b}) := 2\left(\frac{n}{m} + 2\mathbf{b}\right) \max\left\{\frac{3\mathcal{L}(\mathbf{b})}{\mu}, m\right\} \log\left(\frac{1}{\epsilon}\right).$$

And for **mini-batching** (dropping the log term):

$$C_m(\mathbf{b}) := 2\left(\frac{n}{m} + 2\mathbf{b}\right) \max\left\{\frac{3n - \mathbf{b}L_{\max}}{\mathbf{b}n - 1} + \frac{3n\mathbf{b} - 1L}{\mathbf{b}n - 1\mu}, m\right\}.$$

Alternative algorithm: L-SVRG-D

Problem: SVRG requires the strong convexity

• SVRG relies on knowing μ

Solution: [3] proposed a **loopless** version of SVRG. Improvement: when the variance of the estimate of the gradient is high, decrease the step size.

Algorithm 3 L-SVRG-D (Loopless-SVRG-Decrease)

Parameters: step size $\alpha, p \in (0, 1]$ Initialization: $w^0 = x^0 \in \mathbb{R}^d$, $\alpha_0 = \alpha$ for k = 0, 1, 2, ... do Sample $v_k \sim \mathcal{D}$ $g^k = \nabla f_{v_k}(x^k) - \nabla f_{v_k}(w^k) + \nabla f(w^k)$ $x^{k+1} = x^k - \alpha_k g^k$ $(w^{k+1}, \alpha_{k+1}) = \begin{cases} (x^k, \alpha) & \text{with prob. } p \\ (w^k, \sqrt{1 - p} \alpha_k) & \text{with prob. } 1 - p \end{cases}$ end for

Lyapunov Convergence Theorem 2

Consider the iterates of Algorithm 3 and let

$$\phi^k := \|x^k - x^*\|_2^2 + \frac{8\alpha_k^2 \mathcal{L}}{p(3 - 2p)} \left(f(w^k) - f(x^*) \right) .$$

If $p \approx \frac{1}{n}$ and $\alpha \lesssim 2/7\mathcal{L}$, then

$$\mathbb{E}\left[\phi^k\right] \le \beta^k \phi^0$$
, where $\beta = \max\left\{1 - \frac{2}{3}\alpha\mu, 1 - \frac{p}{2}\right\}$.

Benefits

- **Bigger step size** for the first iterations of the loop, when the **variance** is low
- Smaller step size for the last iterations of the loop, when the **variance** is high

Same total complexity and optimal parameter settings as Free-SVRG (up to constants).

How to set the inner loop size?

We found a **range of values** minimizing the total complexity. If $m \in [\min(n, L_{\max}/\mu), \max(n, L_{\max}/\mu)]$, then

$$C_m(1) = O\left(\left(n + \frac{L_{\max}}{\mu}\right)\log\left(\frac{1}{\epsilon}\right)\right).$$

 \wedge Includes the practical choice $m = n \wedge$

How to set the mini-batch size?

For any fixed inner loop size m

- the total complexity is a convex function of b
- the step size is an increasing function of b

Figure: The total complexity (left) and the step size (right) as b increases.

We obtain the optimal mini-batch size for Free-SVRG (resp. L-SVRG-D) for the usual choice m=n (resp. $p=\frac{1}{n}$):

$$b^* = \begin{cases} 1 & \text{if } n \ge \frac{3L_{\text{max}}}{\mu} \\ \left\lfloor \min(\tilde{b}, \hat{b}) \right\rfloor & \text{if } \frac{3L}{\mu} < n < \frac{3L_{\text{max}}}{\mu} \\ \left\lfloor \hat{b} \right\rfloor & \text{otherwise, if } n \le \frac{3L}{\mu} \end{cases}$$

where
$$\hat{b}:=\sqrt{\frac{n}{2}\frac{L_{\max}-L}{nL-L_{\max}}}$$
 and $\tilde{b}:=\frac{3n(L_{\max}-L)}{n(n-1)\mu-3(nL-L_{\max})}$.

Experiments

Figure: Theoretical settings for SVRG, Free-SVRG and L-SVRG-D. Left: l_2 -regularized logistic regression on ijcnn1. Right: l_2 -regularized ridge regression on YearPredictionMSD.

Figure: Different mini-batch sizes for Free-SVRG for a l_2 -regularized ridge regression problem on the *slice* data set.

Figure: Different inner loop sizes for Free-SVRG for a l_2 -regularized logistic regression problem on the *ijcnn1* data set.

References

- [1] N. Gazagnadou, R. M. Gower, and J. Salmon. Optimal Mini-Batch and Step Sizes for SAGA International Conference on Machine Learning, 2019.
- [2] R. M. Gower, N. Loizou, X. Qian, A. Sailanbayev, E. Shulgin, and P. Richtárik. SGD: General Analysis and Improved Rates. International Conference on Machine Learning, 2019.
- [3] T. Hofmann, A. Lucchi, S. Lacoste-Julien, and B. McWilliams. Variance Reduced Stochastic Gradient Descent with Neighbors. In Advances in Neural Information Processing Systems, 2015.
- [4] R. Johnson and T. Zhang. Accelerating Stochastic Gradient Descent using Predictive Variance Reduction In Advances in Neural Information Processing Systems, 2013.
- [5] A. Raj and S. U. Stich. k-SVRG: Variance Reduction for Large Scale Optimization. arXiv:1805.00982, 2018.