Poisson Regression Part II

Rebecca C. Steorts (slide adaption from Maria Tacket) and material from Chapter 4 of Roback and Legler (2021).

Announcements

- 1. Homework 3 due Friday at 5 PM.
- 2. Quiz 1 will be released on Gradescope later this week along with a deadline. Coverage will be Chapters 1-3 of BMLR. This quiz is open note/open book and take home. If you use other resources, cite them and instructions will be on the quiz.
- 3. This quiz is to be completed individually. You will have one opportunity to submit it, so be careful regarding this.
- 4. Any questions should be sent through direct message in Canvas (or email). DO NOT make any group postings about quiz information!

Topics

- ▶ Define and calculate residuals for the Poisson regression model
- Use Goodness-of-fit to assess model fit
- Identify overdispersion
- Apply modeling approaches to deal with overdispersion
 - Quasi-Poisson
 - Negative binomial

Notes based on Sections 4.4 and 4.9 of Roback and Legler (2021) unless noted otherwise.

The data: Household size in the Philippines

The data fHH1.csv come from the 2015 Family Income and Expenditure Survey conducted by the Philippine Statistics Authority.

Goal: Understand the association between household size and various characteristics of the household

Response:

total: Number of people in the household other than the head

Predictors:

- location: Where the house is located
- age: Age of the head of household
- roof: Type of roof on the residence (proxy for wealth)

Other variables:

numLT5: Number in the household under 5 years old

The data

```
hh_data <- read_csv("data/fHH1.csv")</pre>
```

Poisson regression model

If $Y_i \sim Poisson$ with $\lambda = \lambda_i$ for the given values x_{i1}, \dots, x_{ip} , then

$$\log(\lambda_i) = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}$$

Poisson regression model

If $Y_i \sim Poisson$ with $\lambda = \lambda_i$ for the given values x_{i1}, \dots, x_{ip} , then

$$\log(\lambda_i) = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}$$

- ► Each observation can have a different value of λ based on its value of the predictors x_1, \ldots, x_p
- $ightharpoonup \lambda$ determines the mean and variance, so we don't need to estimate a separate error term

Model 1: Household vs. Age

term	estimate	std.error	statistic	p.value
(Intercept)	1.5499	0.0503	30.8290	0
age	-0.0047	0.0009	-5.0258	0

$$\log(\hat{\lambda}) = 1.5499 - 0.0047$$
 age

The mean household size is predicted to decrease by 0.47% (multiply by a factor of $e^{-0.0047}$) for each year older the head of the household is.

Model 2: Add a quadratic effect for age

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	-0.3325	0.1788	-1.8594	0.063	-0.6863	0.0148
age	0.0709	0.0069	10.2877	0.000	0.0575	0.0845
age2	-0.0007	0.0001	-11.0578	0.000	-0.0008	-0.0006

Determined Model 2 is a better fit than Model 1 based on the drop-in-deviance test.

Add *location* to model?

Use a drop-in-deviance test to determine if Model 2 or Model 3 (with location) is a better fit for the data.

```
anova(model2, model3, test = "Chisq") %>%
kable(digits = 3)
```

Resid. Df	Resid. Dev	Df	Deviance	Pr(>Chi)
1497	2200.944	NA	NA	NA
1493	2187.800	4	13.144	0.011

The p-value is small (0.01 < 0.05), so we conclude that Model 3 is a better fit for the data.

Selected model

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	-0.384	0.182	-2.111	0.035	-0.744	-0.031
age	0.070	0.007	10.190	0.000	0.057	0.084
age2	-0.001	0.000	-10.944	0.000	-0.001	-0.001
locationDavaoRegion	-0.019	0.054	-0.360	0.718	-0.125	0.086
locationIlocosRegion	0.061	0.053	1.158	0.247	-0.042	0.164
locationMetroManila	0.054	0.047	1.154	0.248	-0.038	0.147
locationVisayas	0.112	0.042	2.685	0.007	0.031	0.195

Selected model

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	-0.384	0.182	-2.111	0.035	-0.744	-0.031
age	0.070	0.007	10.190	0.000	0.057	0.084
age2	-0.001	0.000	-10.944	0.000	-0.001	-0.001
locationDavaoRegion	-0.019	0.054	-0.360	0.718	-0.125	0.086
locationIlocosRegion	0.061	0.053	1.158	0.247	-0.042	0.164
locationMetroManila	0.054	0.047	1.154	0.248	-0.038	0.147
locationVisayas	0.112	0.042	2.685	0.007	0.031	0.195

Does this model sufficiently explain the variability in the mean household size?

Goodness of Fit

- ► Pearson residuals
- ► Deviance residuals

Pearson residuals

We can calculate two types of residuals for Poisson regression: Pearson residuals and deviance residuals

Pearson residual_i =
$$\frac{\text{observed} - \text{predicted}}{\text{std. error}} = \frac{Y_i - \hat{\lambda}_i}{\sqrt{\hat{\lambda}_i}}$$

Pearson residuals

We can calculate two types of residuals for Poisson regression: Pearson residuals and deviance residuals

$$\mathsf{Pearson} \; \mathsf{residual}_i = \frac{\mathsf{observed} - \mathsf{predicted}}{\mathsf{std.} \; \mathsf{error}} = \frac{Y_i - \hat{\lambda}_i}{\sqrt{\hat{\lambda}_i}}$$

- Similar interpretation as standardized residuals from linear regression
- Expect most to fall between -2 and 2
- Used to calculate overdispersion parameter (more on this soon)

Deviance residuals

► The deviance residual describes how the observed data deviates from the fitted model

deviance residual_i = sign
$$(Y_i - \hat{\lambda}_i) \sqrt{2 \left[Y_i \log \left(\frac{Y_i}{\hat{\lambda}_i} \right) - (Y_i - \hat{\lambda}_i) \right]}$$

where

$$\operatorname{sign}(Y_i - \hat{\lambda}_i) = \begin{cases} 1 & \text{if } (Y_i - \hat{\lambda}_i) > 0 \\ -1 & \text{if } (Y_i - \hat{\lambda}_i) < 0 \\ 0 & \text{if } (Y_i - \hat{\lambda}_i) = 0 \end{cases}$$

▶ Good fitting models ⇒ small deviances

Selected model: Residual plots

```
model3_aug_pearson <-
  augment(model3, type.residuals = "pearson")
model3_aug_deviance <-
  augment(model3, type.residuals = "deviance")</pre>
```


A "good fit" in a residual plot appears as random, evenly spread points around the horizontal axis (zero) without a discernible pattern.

Goodness-of-fit

▶ **Goal**: Use the (residual) deviance to assess how much the predicted values differ from the observed values.

deviance =
$$\sum_{i=1}^{n} (\text{deviance residual})_{i}^{2}$$

▶ When a model is true, we expect

deviance
$$\sim \chi^2_{df}$$

where df is the model's residual degrees of freedom

Goodness-of-fit

▶ **Goal**: Use the (residual) deviance to assess how much the predicted values differ from the observed values.

$$deviance = \sum_{i=1}^{n} (deviance residual)_{i}^{2}$$

▶ When a model is true, we expect

deviance
$$\sim \chi_{df}^2$$

where df is the model's residual degrees of freedom

▶ Question to answer: What is the probability of observing a deviance larger than the one we've observed, given this model sufficiently fits the data?

$$P(\chi_{df}^2 > \text{deviance})$$

Goodness-of-fit calculations

```
model3$deviance

## [1] 2187.8

model3$df.residual

## [1] 1493
```

Goodness-of-fit calculations

```
model3$deviance
## [1] 2187.8
model3$df.residual
## [1] 1493
pchisq(model3$deviance, model3$df.residual,
       lower.tail = FALSE)
## [1] 3.153732e-29
```

Goodness-of-fit calculations

The probability of observing a deviance greater than 2187.8 is \approx 0, so there is significant evidence of **lack-of-fit**.

Lack-of-fit

There are a few potential reasons for observing lack-of-fit:

- Missing important interactions or higher-order terms
- Missing important variables (perhaps this means a more comprehensive data set is required)
- ► There could be extreme observations causing the deviance to be larger than expected (assess based on the residual plots)
- ▶ There could be a problem with the Poisson model
 - ightharpoonup Only one parameter λ to describe mean and variance
 - May need more flexibility in the model to handle overdispersion

Overdispersion

- ▶ The Poisson model only has one parameter, λ , which must describe both the mean and the variance
- Often, the variance can appear larger than the corresponding means.
- ▶ In this case, the response is more variable than assumed by the Poisson model, and the response is said to be overdispersed.

Overdispersion

Overdispersion: There is more variability in the response than what is implied by the Poisson model

Overall

mean var 3.685 5.534 by Location

location	mean	var
CentralLuzon	3.402	4.152
DavaoRegion	3.390	4.723
Ilocos Region	3.586	5.402
${\sf MetroManila}$	3.707	4.863
Visayas	3.902	6.602

Why overdispersion matters

If there is overdispersion, then there is more variation in the response than what's implied by a Poisson model. This means

The standard errors of the model coefficients are artificially small

- \Rightarrow The p-values are artificially small
- \Rightarrow Could lead to models that are more complex than what is needed

Why overdispersion matters

If there is overdispersion, then there is more variation in the response than what's implied by a Poisson model. This means

The standard errors of the model coefficients are artificially small

- \Rightarrow The p-values are artificially small
- \Rightarrow Could lead to models that are more complex than what is needed

We can take overdispersion into account by

- inflating standard errors by multiplying them by a dispersion factor
- using a negative-binomial regression model

Quasi-Poisson

Dispersion parameter

The **dispersion parameter** is represented by ϕ

$$\hat{\phi} = \frac{\sum_{i=1}^{n} (\text{Pearson residuals})^2}{n-p}$$

where p is the number of terms in the model (including the intercept)

Dispersion parameter

The **dispersion parameter** is represented by ϕ

$$\hat{\phi} = \frac{\sum_{i=1}^{n} (\text{Pearson residuals})^2}{n-p}$$

where p is the number of terms in the model (including the intercept)

- lacksquare If there is no overdispersion $\hat{\phi}=1$
- lacksquare If there is overdispersion $\hat{\phi}>1$

Accounting for dispersion

 \blacktriangleright We inflate the standard errors of the coefficient by multiplying the variance by $\hat{\phi}$

$$SE_Q(\hat{eta}) = \sqrt{\hat{\phi}} * SE(\hat{eta})$$

- "Q" stands for quasi-Poisson, since this is an ad-hoc solution
- The process for model building and model comparison is called quasilikelihood (similar to likelihood without exact underlying distributions)

Quasi-Poisson model

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	-0.3843	0.2166	-1.7744	0.0762	-0.8134	0.0358
age	0.0704	0.0082	8.5665	0.0000	0.0544	0.0866
I(age^2)	-0.0007	0.0001	-9.2000	0.0000	-0.0009	-0.0006
locationDavaoRegion	-0.0194	0.0640	-0.3030	0.7619	-0.1451	0.1058
locationIlocosRegion	0.0610	0.0626	0.9735	0.3304	-0.0620	0.1837
locationMetroManila	0.0545	0.0561	0.9703	0.3320	-0.0552	0.1649
locationVisayas	0.1121	0.0497	2.2574	0.0241	0.0156	0.2103

Poisson vs. Quasi-Poisson models

Poisson	Quasi-Poisson						
term	estimate	std.error	estimate	std.error			
(Intercept)	-0.3843	0.1821	-0.3843	0.2166			
age	0.0704	0.0069	0.0704	0.0082			
age2	-0.0007	0.0001	-0.0007	0.0001			
location Davao Region	-0.0194	0.0538	-0.0194	0.0640			
locationIlocosRegion	0.0610	0.0527	0.0610	0.0626			
location Metro Manila	0.0545	0.0472	0.0545	0.0561			
locationVisayas	0.1121	0.0417	0.1121	0.0497			

Quasi-Poisson: Inference for coefficients

T .	
1 221	statistic
I CJL	Julious

estimate	std.error	$\hat{eta} = 0$
-0.3843	0.2166	$t = \frac{\beta}{SE_Q(\hat{\beta})} \sim t_{n-p}$
0.0704	0.0082	$\mathcal{I}=\mathcal{Q}(\mathcal{P})$
-0.0007	0.0001	
-0.0194	0.0640	
0.0610	0.0626	
0.0545	0.0561	
0.1121	0.0497	
	-0.3843 0.0704 -0.0007 -0.0194 0.0610 0.0545	-0.3843

Quasi-Poisson model

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	-0.3843	0.2166	-1.7744	0.0762	-0.8134	0.0358
age	0.0704	0.0082	8.5665	0.0000	0.0544	0.0866
I(age^2)	-0.0007	0.0001	-9.2000	0.0000	-0.0009	-0.0006
locationDavaoRegion	-0.0194	0.0640	-0.3030	0.7619	-0.1451	0.1058
locationIlocosRegion	0.0610	0.0626	0.9735	0.3304	-0.0620	0.1837
locationMetroManila	0.0545	0.0561	0.9703	0.3320	-0.0552	0.1649
locationVisayas	0.1121	0.0497	2.2574	0.0241	0.0156	0.2103

Negative binomial regression model

Another approach to handle overdispersion is to use a **negative binomial regression model**

 \blacktriangleright This has more flexibility than the quasi-Poisson model, because there is a new parameter in addition to λ

Another approach to handle overdispersion is to use a **negative binomial regression model**

 \blacktriangleright This has more flexibility than the quasi-Poisson model, because there is a new parameter in addition to λ

Let Y be a **negative binomial random variable**, $Y \sim \textit{NegBinom}(r, p)$, then

$$P(Y = y_i) = {y_i + r - 1 \choose r - 1} (1 - p)^{y_i} p^r \quad y_i = 0, 1, 2, \dots, \infty$$
$$E(Y) = \frac{r(1 - p)}{p} \quad SD(Y) = \sqrt{\frac{r(1 - p)}{p^2}}$$

▶ Main idea: Generate a λ for each observation (household) and generate a count using the Poisson random variable with parameter λ

If
$$Y|\lambda \sim Poisson(\lambda)$$
 and $\lambda \sim Gammaigg(r, rac{1-p}{p}igg)$ then $Y \sim \textit{NegBinom}(r, p)$

- ▶ Main idea: Generate a λ for each observation (household) and generate a count using the Poisson random variable with parameter λ
 - Makes the counts more dispersed than with a single parameter

If
$$Y|\lambda \sim Poisson(\lambda)$$
 and $\lambda \sim Gamma\left(r, \frac{1-p}{p}\right)$ then $Y \sim \textit{NegBinom}(r, p)$

- ▶ Main idea: Generate a λ for each observation (household) and generate a count using the Poisson random variable with parameter λ
 - ▶ Makes the counts more dispersed than with a single parameter
- \blacktriangleright Think of it as a Poisson model such that λ is also random

If
$$Y|\lambda \sim Poisson(\lambda)$$
 and $\lambda \sim Gammaigg(r, rac{1-p}{p}igg)$ then $Y \sim \textit{NegBinom}(r, p)$

Negative binomial regression in R

Use the glm.nb function in the **MASS** R package.

The **MASS** package has a select function that conflicts with the select function in **dplyr**. You can avoid this by (1) always loading **tidyverse** after **MASS**, or (2) use MASS::glm.nb instead of loading the package.

Negative binomial regression in R

term	estimate	std.error	statistic	p.value
(Intercept)	-0.3753	0.2076	-1.8081	0.0706
age	0.0699	0.0079	8.8981	0.0000
I(age^2)	-0.0007	0.0001	-9.5756	0.0000
IocationDavaoRegion	-0.0219	0.0625	-0.3501	0.7262
IocationIlocosRegion	0.0577	0.0615	0.9391	0.3477
location Metro Manila	0.0562	0.0551	1.0213	0.3071
locationVisayas	0.1104	0.0487	2.2654	0.0235

Negative binomial vs. Quasi-Poisson

Quasi-Poisson	Negative binomial			
term	estimate	std.error	estimate	std.error
(Intercept)	-0.3843	0.2166	-0.3753	0.2076
age	0.0704	0.0082	0.0699	0.0079
I(age ²)	-0.0007	0.0001	-0.0007	0.0001
location Davao Region	-0.0194	0.0640	-0.0219	0.0625
locationIlocosRegion	0.0610	0.0626	0.0577	0.0615
location Metro Manila	0.0545	0.0561	0.0562	0.0551
locationVisayas	0.1121	0.0497	0.1104	0.0487

Suppose

$$Y|\lambda \sim \mathsf{Poisson}(\lambda)$$
 (1)

$$\lambda \sim \mathsf{Gamma}\left(r, \frac{p}{1-p}\right).$$
 (2)

(3)

It follows that

$$Y \sim \mathsf{NegBinom}(r, p)$$
.

We are given that:

$$Y \mid \lambda \sim \mathsf{Poisson}(\lambda),$$

which means that the conditional probability mass function (PMF) of Y, given λ , is

$$P(Y = y \mid \lambda) = \frac{\lambda^{y} e^{-\lambda}}{y!}, \quad y = 0, 1, 2, \dots$$

Additionally, we are given that:

$$\lambda \sim \mathsf{Gamma}\left(r, \frac{p}{1-p}\right).$$

Thus,

$$p(\lambda) = \frac{1}{\Gamma(r)(\frac{p}{1-p})^r} \lambda^{r-1} e^{-\lambda(\frac{1-p}{p})}.$$

1. What is the marginal distribution of p(y)?

$$p(y) = \int_{\lambda} p(y, \lambda) d\lambda = \int_{\lambda} p(y \mid \lambda) p(\lambda) d\lambda.$$

2. Suppose we wished to find $p(\lambda \mid y)$. How can we derive this?

$$p(\lambda \mid y) = \frac{p(\lambda \mid y)}{p(y)}$$

$$= \frac{p(y \mid \lambda)p(\lambda)}{p(y)}$$

$$\propto p(y \mid \lambda)p(\lambda),$$
(5)

where

- \triangleright $p(y \mid \lambda)$ is the likelihood,
- \triangleright p(y) is the marginal, and
- \triangleright $p(\lambda)$ is called the prior distribution.

Verify empirically that a Poisson-Gamma mixture is in fact a Negative-Binomial distribution.

- 1. Draw λ from a Gamma distribution (a=3,b=1/2), corresponding to the shape and the rate parameters with n=10,000 samples.
- 2. Assuming step 1, simulate draws from a Poisson with λ corresponding to step 1 (and the same number of sample in step 1).
- 3. Now simulate from a Negative Binomial distribution, where the size is a and the probability is 1/(1+1/b).
- 4. Finally, we will compare the distributions (histograms) and summary statistics to verify that they match empirically.

Do you need to set a seed? Does the number of samples you choose matter?

References

Roback, Paul, and Julie Legler. 2021. Beyond multiple linear regression: applied generalized linear models and multilevel models in R. CRC Press.