### Recommender System for Amazon Beauty Products

Providing the best shopping experience for customers is a top priority for eCommerce companies. To this end, constructing a sufficient recommender system is crucial. Amazon is one of the biggest eCommerce companies that sell a variety of products from beauty to home decoration to name a few.

In this project, we build a recommendation system for Amazon beauty products based on the product, user, and rating information.

### Data

The dataset is one of Tensorflow's ready-to-use datasets that has the variables 'customer\_id', 'helpful\_votes', 'marketplace', 'product\_category', 'product\_id', 'product\_part', 'product\_title', 'review\_body', 'review\_date', 'review\_headline', 'review\_id', 'star\_rating', 'total\_votes', 'verified purchase'

For our recommendation system, we use only the variables customer\_id, product\_id, and rating.

### Method

There are three main types of recommenders used in practice today:

- 1. Content-based filter: Recommending future items to the user that have similar innate features with previously "liked" items. Basically, content-based relies on similarities between features of the items & needs good item profiles to function properly.
- 2. Collaborative-based filter: Recommending products based on a similar user that has already rated the product. Collaborative filtering relies on information from similar users, and it is important to have a large explicit user rating base (doesn't work well for new customer bases).
- 3. Hybrid Method: Leverages both content & collaborative based filtering. Typically, when a new user comes into the recommender, the content-based recommendation takes place. Then after interacting with the items a couple of times, the collaborative/user-based recommendation system will be utilized.

We use a user-based recommendation system that predicts the rating that a user would give to a certain product.

# **Data Cleaning**

The model is based on three variables, namely: customer ID, product ID, and rating. The data does not require extensive cleaning as the data types and format are appropriate for the ML model.

## **EDA**

#### 1. The Distribution of Rating

The following graph displays the distribution of rating



Most of the rating values are above 4. There are almost 200,000 out of 2M items that received a rating of 1. And, almost 300,000 items rated as 4. The majority of the rating values are above 4.5

### Summary Statistics for Rating

| Mean     | 4.15 |
|----------|------|
| Std. dev | 1.31 |
| Min      | 1    |
| Max      | 5    |
| Q1       | 4    |
| Q3       | 5    |

### 2. Most rated products (Top 10)

We also want to know what products received the most ratings



As we can see on the above graph that the product 'B001MA0QY2' ('Ceramic Tourmaline Ionic Flat Iron Hair Straightener') is rated more than 7000 times with an average rating of 4.32

Number of times that the product is rated and the average rating per product

|            | mean     | count |
|------------|----------|-------|
| ProductId  |          |       |
| B001MA0QY2 | 4.321386 | 7533  |
| B0009V1YR8 | 3.568839 | 2869  |
| B0043OYFKU | 4.310456 | 2477  |
| B0000YUXI0 | 4.405040 | 2143  |
| B003V265QW | 4.365421 | 2088  |
| B000ZMBSPE | 4.422342 | 2041  |
| B003BQ6QXK | 4.625652 | 1918  |
| B004OHQR1Q | 4.465782 | 1885  |
| B00121UVU0 | 4.538085 | 1838  |
| B000FS05VG | 4.159849 | 1589  |

#### 3. Average rating and the number of ratings by user



Above, we see the average rating and the number of times that a user rated. As we can see that user 'A3KEZLJ59C1JVH' rated items 389 times with an average rating of 3.7. There is a user who rated 275 times with an average rating of 2.22

# Algorithms and Machine Learning

We used Tensorflow to build the recommendation model with the following steps.

- 1. Load the data using TensorFlow's load function
- 2. Choose the basic variables (Customer Id, product ID, and rating
- 3. Split the data (80-20)
- 4. Use unique customers and products
- 5. Create the embeddings
- 6. Use the embeddings as inputs to make predictions
- 7. Cache the data before fitting

We use the MeanSquaredError and RMSE Keras loss in order to predict the ratings. Finally, we test the model on our test data.

# **Training Performance**

The following graphs show the performance of the training stage in terms of loss and RMSE





As we can see, on the graphs above, as the model is trained the loss and RMSE decrease.

We evaluated the model on the test data and obtained the following results

| 1.296741 | root_mean_squared_error |
|----------|-------------------------|
| 1.672668 | loss                    |
| 0.000000 | regularization_loss     |
| 1.672668 | total_loss              |

### Comparison of loss and RMSE for training and test data.

|      | Train | Test  |
|------|-------|-------|
| Loss | 1.697 | 1.672 |
| RMSE | 1.289 | 1.297 |

Based on the table above, the performance of the model on the training and the test data is quite similar.

# Future Improvements

The model above gives us a decent start towards building a ranking system. Of course, making a practical ranking system requires much more effort. In most cases, a ranking model can be substantially improved by using more features rather than just user and candidate identifiers.