Семинар 6. Методы оптимизации. МФТИ. Осень 2016. Тренин С.А.

Градиентные методы.

Пусть $f: \mathbb{R}^n \to \mathbb{R}$ - непрерывно дифференцируемая функция. Направление Δx в точке x называется направлением убывания (роста), если $f(x + \varepsilon \Delta x) - f(x) < 0$ ($f(x + \varepsilon \Delta x) - f(x) > 0$) при всех достаточно малых ε .

1. Докажите, что если $\nabla f(x)^T \Delta x < 0$, то Δx является направлением убывания, а если $\nabla f(x)^T \Delta x > 0$, то Δx является направлением роста. Приведите примеры, когда $\nabla f(x)^T \Delta x = 0$, а Δx является направлением убывания, направлением роста, или ни тем, ни другим.

Методом спуска называется любой итеративный метод решения задачи безусловной минимизации $f(x) \to min$, при котором x_{k+1} выбирается по правилу $x_{k+1} = x_k + t_k \Delta x_k$, где Δx_k есть направление убывания в точке x_k , а $t_k > 0$. Величина t_k (размер шага) может выбираться по различным правилам:

- а) Правило одномерной минимизации: $t_k = \operatorname{argmin}_{s \ge 0} f(x_k + s\Delta x_k)$.
- b) Величина есть некоторая постоянная, либо заранее заданная последовательность. Например: $t_k = \frac{1}{\sqrt{k+1}}$.
- с) Правило обратного одномерного поиска (Армихо). Заданы два числа $0 < \alpha < 0.5, \, 0 < \beta < 1$. Размер шага вычисляется по следующей процедуре:

```
s = 1;

while (f(x + s\Delta x) > f(x) + \alpha s \nabla f(x)^T \Delta x) \{

s = \beta s;

t_k = s
```

- 2. Покажите, что процедура выбора шага по правилу Армихо завершается.
- 3. Покажите, что, если условие $f(x + s\Delta x) \leq f(x) + \alpha s \nabla f(x)^T \Delta x$ истинно для всех $s \in (0, s_0]$ 0 до s_0 , то процедура Армихо завершается при значении s принадлежащем интервалу $(\beta s_0, s_0]$ или при s = 1.

Градиентным методом называется любой метод спуска, в котором Δx_k является антиградиентом, т.е. $x_{k+1} = x_k - t_k \nabla f(x_k)$. Если при этом t_k выбирается по правилу одномерной минимизации, то метод называется методом скорейшего спуска.

- 4. Опишите метод скорейшего спуска для квадратичной функции $f(x) = \frac{1}{2} x^T A x b^T x. \ \text{А именно, напишите формулу, выражающую } t_k$ через x_k .
- 5. Пусть функция $f: \mathbb{R}^2 \to \mathbb{R}$ определяется формулой $f(x, y) = 2x^2 + xy + 3y^2$.

Сделайте 1 шаг градиентного метода решения задачи $f(x) \to min$ из начальной точки (1,-1) с выбором шага по правилу Армихо с параметрами $\alpha = 0.25$, $\beta = 0.5$.

Метод Ньютона

Методом Ньютона решения уравнения f(x) = 0 на прямой называют итеративный метод, в котором точка x_{k+1} выбирается, как точка пересечения касательной к графику в точке x_k и оси абсцисс.

6. Покажите, что указанная точка определяется условием

$$x_{k+1} = x_k - (\nabla f(x_k))^{-1} f(x_k).$$

- 7. Приведите пример, когда метод Ньютона на прямой зацикливается.
- 8. Приведите пример, когда метод Ньютона расходится.

Метод Ньютона можно обобщить на многомерные функции и применить к задачам оптимизации для поиска стационарной точки, в которой $\nabla f(x) = 0$. Таким образом, итерация метода Ньютона задаётся формулой

$$x_{k+1} = x_k - (\nabla^2 f(x_k))^{-1} \nabla f(x_k).$$

- 9. Покажите, что такая же формула получится при определении как точки минимума квадратичного приближения к функции в точке.
- 10.Пусть функция $f: \mathbb{R}^2 \to \mathbb{R}$ определяется формулой $f(x,y) = x^2 + e^{y^2}$. Сделайте 2 шага метода Ньютона решения задачи $f(x) \to min$ из начальной точки (1,1).
- 11.Всегда ли направление метода Ньютона является направлением спуска?