

Mark Scheme (Results) January 2009

GCE

GCE Mathematics (6678/01)

January 2009 6678 Mechanics M2 Mark Scheme

Ques	stion ıber	Schomo		Ma	Marks	
1		R	F = ma parallel to the slope, $T - 1500g\sin\theta - 650 = 1500a$	M1*		
		650	Tractive force, $30000 = T \times 15$	M1*		
		1500 <i>g</i>	$a = \frac{\frac{30000}{15} - 1500(9.8)(\frac{1}{14}) - 650}{1500}$	d*M1		
			$0.2 \text{ (m s}^{-2})$	A1	(5) [5]	
2	(a)		$R(\uparrow): R = 25g + 75g (= 100g)$	B1		
		$S \leftarrow \nearrow B$	$F = \mu R \Rightarrow F = \frac{11}{25} \times 100g$	M1		
		c /	=44g (=431)	A1	(0)	
	(b)	75g	M(A): $25g \times 2\cos \beta + 75g \times 2.8\cos \beta$ $= S \times 4\sin \beta$ $R(\leftrightarrow): F = S$	M1 A2,1,0	(3)	
		$ \begin{array}{c c} & & & & \\ \hline & A & & & \\ \hline \end{array} $	$176g\sin\beta = 260g\cos\beta$	M1A1		
			$\beta = 56(^{\circ})$	A1	(1)	
	(c)	So that Reece's weight acts directly a	at the point C	B1	(6)	
	(0)	So that Record 5 weight acts directly a	a die point C.		[10]	

Question Number		Scheme		Marks	S
3	(a)	R (\$\(\frac{1}{2}\):	R = 10g	B1	
		$\mu R \longrightarrow 70$ $F = \mu R$	$R \Rightarrow F = \frac{4}{7} (10g) = 56$	B1	
		▼	against friction = $\frac{4}{7} (10g)(50)$	M1	
		10 <i>g</i> 2800(1	J)	A1	
Or		70(50) - "2800" = $\frac{1}{2}$ (10) $v^2 - \frac{1}{2}$ (10)(2) ² 700 = $5v^2 - 20$, $5v^2 = 720 \Rightarrow v^2 = 144$ Hence, $v = \underline{12}$ (m s ⁻¹) N2L(\rightarrow): $70 - \frac{4}{7}R = 10a$ $70 - \frac{4}{7} \times 10g = 10a$, $(a = 1.4)$ $AB(\rightarrow)$: $v^2 = (2)^2 + 2(1.4)(50)$		M1* A1ft d*M1 A1 cao M1* A1ft d*M1	(4)
		Hence, $v = 12 \text{ (m s}^{-1})$		A1 cao	(4)
					[8]
4		$v = 10t - 2t^{2}, \ s = \int v dt$ $= 5t^{2} - \frac{2t^{3}}{3}(+C)$ $t = 6 \implies s = 180 - 144 = 36 \text{ (m)}$ $s = \int v dt = \frac{-432t^{-1}}{3}(+K) = \frac{432}{3}(+K)$		M1 A1	(3)
	(b)	$\underline{s} = \int v dt = \frac{-432 t^{-1}}{-1} \left(+ K \right) = \frac{432}{\underline{t}} \left(+ K \right)$ $t = 6, s = "36" \Rightarrow 36 = \frac{432}{6} + K$ $\Rightarrow K = -36$		<u>B1</u> M1*	
		$\Rightarrow K = -36$		A1	
		At $t = 10$, $s = \frac{432}{10} - 36 = \frac{7.2}{10}$ (m)		d*M1 <u>A1</u>	(5) [8]

Question Number		Scheme					Ma	rks
5	(a)		7		\bigcirc			
		MR	108	18π	$108 + 18\pi$		B1	
		$x_i (\rightarrow)$ from AD	4	6			B1	
		$y_i \ (\downarrow)$ from BD	6	$-\frac{8}{\pi}$	- y			
		<i>AD</i> (→): 108(4) + 183	π (6) = (108 -	- ⊦18 <i>π</i>) <i>x</i>			M1	
		$\bar{x} = \frac{432 + 108\pi}{108 + 18\pi} = 4.$	68731 =	4.69 (cm) (3 sf)	AG		A1	(4)
	(b)	$y_i (\downarrow)$ from BD	6	$-\frac{8}{\pi}$	- y		В1 о	e
		$BD(\downarrow)$: 108(6) + 18 π	,				M1 A1ft	
		$\overline{y} = \frac{504}{108 + 18\pi} = 3.0$	6292 = 3	.06 (cm) (3 sf)			A1	
	(c)							(4)
		D 12-	<u></u>	vertical B			M1	
		G		$\theta = \frac{\overline{y}}{12 - 4.68731}$			dM1	
		$\theta = \text{required angle} \qquad \qquad = \frac{3.06392}{12 - 4.68731}$					A1	
		<i>θ</i> = 22.72641 = <u>23</u>	3 (nearest deg	gree)			A1	(4)
								[12]

Question Number	Scheme	Mai	rks
6 (a)	Horizontal distance: $57.6 = p \times 3$ p = 19.2	M1 A1	(2)
(b)	Use $s = ut + \frac{1}{2}at^2$ for vertical displacement.	M1	
	$-0.9 = q \times 3 - \frac{1}{2} g \times 3^2$	A1	
	$-0.9 = 3q - \frac{9g}{2} = 3q - 44.1$		
	$q = \frac{43.2}{3} = 14.4$ *AG*	A1 cs	
(c)	initial speed $\sqrt{p^2 + 14.4^2}$ (with their p)	M1	(3)
	$=\sqrt{576} = 24 \text{ (m s}^{-1})$	A1 ca	0 (2)
(d)	$\tan \alpha = \frac{14.4}{p} (= \frac{3}{4})$ (with their p)	B1	
(e)	When the ball is 4 m above ground:		(1)
	$3.1 = ut + \frac{1}{2}at^2 \text{ used}$	M1	
	$3.1 = 14.4t - \frac{1}{2}gt^2 \text{ o.e } (4.9t^2 - 14.4t + 3.1 = 0)$	A1	
	$\Rightarrow t = \frac{14.4 \pm \sqrt{(14.4)^2 - 4(4.9)(3.1)}}{2(4.9)}$ seen or implied	M1	
	$t = \frac{14.4 \pm \sqrt{146.6}}{9.8} = 0.023389 \text{ or } 2.70488 \text{ awrt } 0.23 \text{ and } 2.7$	A1	
	duration = 2.70488 0.23389 = 2.47 or 2.5 (seconds)	M1 A1	
or 6 (e)			(6)
	$t = \frac{14.4 \pm \sqrt{146.6}}{9.8}$	A1	
	Duration $2 \times \frac{\sqrt{146.6}}{9.8}$ o.e.	M1	
40	= 2.47 or 2.5 (seconds)	A1	(6)
(f)	Eg. : Variable 'g', Air resistance, Speed of wind, Swing of ball, The ball is not a particle.	B1	(1)
			[15]

Quest		Scheme	Marks
7	(a)	Before $\frac{2u}{P(3m)}$ $\frac{u}{(2m)Q}$ Correct use of NEL	M1*
		After \xrightarrow{x} $y-x=e(2u+u)$ o.e.	A1
		CLM (\rightarrow): $3m(2u) + 2m(-u) = 3m(x) + 2m(y)$ ($\Rightarrow 4u = 3x + 2y$)	B1
		Hence $x = y - 3eu$, $4u = 3(y-3eu) + 2y$, $(u(9e+4) = 5y)$	d*M1
		Hence, speed of $Q = \frac{1}{5}(9e+4)u$ AG	A1 cso
			(5)
	(b)	$x = y - 3eu = \frac{1}{5}(9e + 4)u - 3eu$	M1 [#]
		Hence, speed P = $\frac{1}{5}(4-6e)u = \frac{2u}{5}(2-3e)$ o.e.	A1
		$x = \frac{1}{2}u = \frac{2u}{5}(2 - 3e) \Rightarrow 5u = 8u - 12eu, \Rightarrow 12e = 3$ & solve for e	d [#] M1
		gives, $e = \frac{3}{12} \implies e = \frac{1}{4}$ AG	A1
			(4)
Or	(b)	Using NEL correctly with given speeds of P and Q	M1 [#]
		$3eu = \frac{1}{5}(9e+4)u - \frac{1}{2}u$	A1
		$3eu = \frac{9}{5}eu + \frac{4}{5}u - \frac{1}{2}u$, $3e - \frac{9}{5}e = \frac{4}{5} - \frac{1}{2}$ & solve for e	d [#] M1
		$\frac{6}{5} \mathbf{e} = \frac{3}{10} \implies \mathbf{e} = \frac{15}{60} \implies \mathbf{e} = \frac{1}{4}.$	A1
			(4)
	(c)	Time taken by Q from A to the wall $=\frac{d}{\underline{y}} = \left\{\frac{4d}{5u}\right\}$	M1 [†]
		Distance moved by P in this time $=\frac{u}{2} \times \frac{d}{y} = \left(=\frac{u}{2} \left(\frac{4d}{5u} \right) = \frac{2}{5}d \right)$	A1
		Distance of P from wall = $d - x \left(\frac{d}{y} \right)$; = $d - \frac{2}{5}d = \frac{3}{5}d$ AG	d [†] M1; A1 cso
			(4)
or	(c)	Ratio speed P:speed Q = x:y = $\frac{1}{2}u : \frac{1}{5}(\frac{9}{4} + 4)u = \frac{1}{2}u : \frac{5}{4}u = 2:5$	M1 [†]
		So if Q moves a distance d , P will move a distance $\frac{2}{5}d$	A1
		Distance of <i>P</i> from wall = $d - \frac{2}{5}d$; = $\frac{3}{5}d$ AG cso	d [†] M1; A1
			(4)

Question Number	Scheme	Marks
(d)	After collision with wall, speed $Q = \frac{1}{5}y = \frac{1}{5}\left(\frac{5u}{4}\right) = \frac{1}{4}u$ their y	B1ft
	Time for P , $T_{AB} = \frac{\frac{3d}{5} - X}{\frac{1}{2}u}$, Time for Q , $T_{WB} = \frac{X}{\frac{1}{4}u}$ from their y	B1ft
	Hence $T_{AB} = T_{WB} \Rightarrow \frac{\frac{3d}{5} - X}{\frac{1}{2}u} = \frac{X}{\frac{1}{4}u}$	M1
	gives, $2(\frac{3d}{5} - x) = 4x \implies \frac{3d}{5} - x = 2x$, $3x = \frac{3d}{5} \implies x = \frac{1}{5}d$	A1 cao
		(4)
or (d)	After collision with wall, speed $Q = \frac{1}{5}y = \frac{1}{5}\left(\frac{5u}{4}\right) = \frac{1}{4}u$ their y	B1ft
	speed $P = x = \frac{1}{2}u$, speed P : new speed $Q = \frac{1}{2}u : \frac{1}{4}u = 2:1$ from their y	B1ft
	Distance of B from wall = $\frac{1}{3} \times \frac{3d}{5}$; = $\frac{d}{5}$ their $\frac{1}{2+1}$	M1; A1
		(4)
2 nd or (d)	After collision with wall, speed $Q = \frac{1}{5}y = \frac{1}{5}\left(\frac{5u}{4}\right) = \frac{1}{4}u$ their y	B1ft
	Combined speed of P and $Q = \frac{1}{2}u + \frac{1}{4}u = \frac{3}{4}u$	
	Time from wall to 2^{nd} collision $=\frac{\frac{3d}{5}}{\frac{3u}{4}} = \frac{3d}{5} \times \frac{4}{3u} = \frac{4d}{5u}$ from their y	B1ft
	Distance of B from wall = (their speed)x(their time) = $\frac{u}{4} \times \frac{4d}{5u}$; = $\frac{1}{5}d$	M1; A1
		(4)
		[17]