

# Photonics

R. Baets - E. Bente

## **Semiconductor detectors - Part A**

Phototubes, Photoconductors

# **Types of detectors**

Bolometers: thermal detectors

light onto absorbing object →
heating due to optical input power →
measure temperature increase (e.g. temperature sensitive resistance)

Photo-electric detectors

light → mobile carriers → current

### Superconducting nanowire single photon detectors



Ferrari, Simone, Schuck, Carsten and Pernice, Wolfram. "Waveguide-integrated superconducting nanowire single-photon detectors" *Nanophotonics*, vol. 7, no. 11, 2018, pp. 1725-1758. https://doi.org/10.1515/nanoph-2018-0059

## The photo-electric effect

- External: electrons are kicked out of the material
  - → photo-electrical emission
- Internal (semiconductors): valence electrons become conduction electrons → photoconductivity







### **Phototubes**

- Free electrons are accelerated to the anode by an electrical field
- Each photon creates max 1 electron
  - → Current is proportional to photon flux





## **Photomultiplier**

Electrons are accelerated and create new free electrons on dynodes: cascade effect

Can detect single photons



# **Photomultiplier**



Voltage divider and high voltage Capacitors to be connected here

Advantage: ideal current source – large detection area Photomultiplier tube - Stock Image - C020/7895 - Science Photo Library

# **Dynodes**



CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=121682



# **Application in neutrino detector**

Kamioka Observatory, University of Tokyo, Japan

11000 PM tubes

http://www-sk.icrr.u-tokyo.ac.jp/sk/gallery/index-e.html

### **Semiconductor detectors**

- Photoconductor
- Light flux is measured through photoconductivity
  - measure resistivity
  - uniform material
    - → no doping
    - → carrier recombination



- Photodiode
- Light flux is measured through generated photocurrent
  - measure current
  - p-n diode
  - → carrier separation



# Quantum efficiency

- Quantum efficiency: probability that an incident photon contributes an electron to the photocurrent
- Reduction of the efficiency by
  - Reflection at the surface
  - Exponential decrease of intensity
  - Charge recombination



- Quantum efficiency  $\eta = (1-R)[1-e^{-\alpha}]\zeta$ 
  - $\blacksquare$  R = reflection
  - d = thickness depletion layer
  - $\blacksquare$   $\zeta$  = fraction of  $e^-h^+$  pairs that contributes to current
  - $\blacksquare$   $\alpha$  = absorption coefficient



### **Photoconductor**

• Light flux is measured through change in photoconductivity  $\Delta \sigma$ 

$$\Delta \sigma = e \Delta n (\mu_e + \mu_h)$$

 $\Delta n \sim \Phi$   $\Phi$  Incoming photon flux  $\Delta n$  change in carrier density  $\mu_e$   $\mu_h$  electron and hole mobilities

- Implementation: semiconductor on insulator
- Contacts:
  - large spacing: more light sensitive area
  - close together: faster transit time of carriers
  - → compromise: inter-digitated contact



#### **Photoconductor**

Rate of generation of e-h+ pairs:

$$G_L = \frac{\eta \Phi}{wA} = \frac{\eta}{wA} \cdot \frac{P_0}{h\nu}$$

- $\blacksquare$   $\eta$  = internal quantum efficiency
- $\blacksquare$   $\Phi$  = photon flux





 $\blacksquare$   $\tau$  = lifetime of photo-electrons and holes (excess carriers)





$$\Delta n = \frac{\eta \tau \Phi}{wA}$$



## **Electron and hole mobility**

 $\Delta n$  = photo-electron concentration  $\tau$  = lifetime of photo-electron

• Increase of conductivity  $\Delta \sigma$  proportional to photon flux  $\Phi$ 

$$\Delta \sigma = e \Delta n (\mu_e + \mu_h)$$

The material specific parameters  $\mu_e$  and  $\mu_h$  are the electron and hole mobility.

The mobility parameters relate the drift velocity of the charge carriers and the electric field strength:

$$v_e = \mu_e E$$
  $v_h = \mu_h E$  Typically:  $\mu_e \gg \mu_h$ 

Increase of conductivity

$$\Delta \sigma = e \Delta n (\mu_e + \mu_h) = \frac{e \eta \tau \Phi(\mu_e + \mu_h)}{wA}$$

### **Photoconductor**

Uniform electric field in the semiconductor

$$J_{ph} = \Delta \sigma \cdot E$$

Velocity of the carriers

$$v_e = \mu_e E$$
  $v_h = \mu_h E$ 

Photocurrent density:

$$J_{ph} = \frac{e\eta\tau(v_e + v_h)}{wA}\Phi$$
$$i_{ph} = \frac{e\eta\tau(v_e + v_h)}{w}\Phi$$

Photocurrent:

$$i_{ph} = \frac{e\eta\tau(v_e + v_h)}{w}\Phi$$

transfer time  $\tau_e$ :

$$v_h \ll v_e$$
  $au_e = rac{w}{v_e}$ 

Definition of <u>responsivity</u>:

$$\Re\left[\frac{A}{W}\right] = \frac{photo\ current}{optical\ power}$$



#### Exercise: Graphene vs GaAs photoconductor

- we have a photoconductor made from Graphene or GaAs with w=100μm and l=10μm and thickness d
- treat graphene as refractive index 1
- all carriers contribute to photoconductivity

|                        | Graphene           | GaAs     |
|------------------------|--------------------|----------|
| $\mu_e/\mu_h[cm^2/Vs]$ | 12000/12000        | 1000/150 |
| d [nm]                 | 0.5 nm             | 80 nm    |
| α [/ <b>cm</b> ]       | 400000             | 14000    |
| n                      | 1 (for simplicity) | 3.6      |
| τ [ps]                 | 4                  | 60       |



- What is the efficiency in each case?
- We illuminate homogeneously with an irradiance of E<sup>e</sup>=1000W/m<sup>2</sup> at 720nm. What is the current for V=2V?
- What is the efficiency of the combination: graphene on top of 80 nm GaAs?



# Photonics

R. Baets – E. Bente

## **Semiconductor detectors - Part B**

Photodiodes

# pn-junction recap



# $\rho (C/cm^3)$ n p $+eN_d$ $-x_p$ $+x_n$ $-eN_a$ Charge distribution n p $+x_n$ x = 0 $-x_p$ Electric field strength

# Pn-junction: Built-in potential



Electric band diagram

#### **Photodiode**

- Photon hits semiconductor
- Absorption leads to e-h pair
- Internal electric field from p-n junction separates electrons and holes and leads to an external current
- At strong internal fields
  - Electrons and holes collide with crystal lattice and give rise to multiple electrons and holes (impact ionization)
  - This leads to internal amplification
  - → Avalanche photodiodes



### Photodiode structure

Photodiode= LED

■ LED: forward biased

■ PD: reverse biased

- Created electrons and holes recombine, unless they are created in the depletion region
  - $\rightarrow$  electrons to n-side
  - → holes to p-side
- Absorption of incident light
   Fast decrease intensity
   Creation of eh pairs



## **Efficiency**

- Reduction of efficiency by
  - Reflection at surface
  - Exponential decrease of intensity: only absorption inside depletion region useful
  - Charge recombination
- Quantum efficiency

$$\eta = (1 - R) \left[ 1 - e^{-\alpha_{dep} d} \right] e^{-\alpha_{clad} D} \zeta$$

- $\blacksquare$  *R* = reflection
- $\blacksquare$  *d* = thickness depletion layer
- $\blacksquare$  *D* = depth depletion layer
- $\blacksquare$   $\zeta$  = fraction of eh pairs that contribute to current
- $\blacksquare$   $\alpha$  = absorption coefficient



## **Diode Responsivity**

- Ideal photodiode: every photon creates an e<sup>-</sup>h<sup>+</sup> pair
  - → responsivity

$$\Re\left[\frac{A}{W}\right] = \frac{photo\ current}{optical\ power} = \frac{e}{hv} = \frac{e\lambda}{hc}$$

Non-ideal photodiode

$$\Re = \frac{\eta e}{h \nu} = \frac{\eta \lambda \left[\mu m\right]}{1.24 \ V \ \mu m}$$

■ efficiency < 100% → not all photons are absorbed



Detector with amplification (avalanche diode, photoconductor)

$$\Re > \frac{e}{h\nu}$$

## I-V characteristic of a photodiode(1)

- Diode without incident light
  - Exponentially increasing currentwhen V > 0
  - Almost no current when V < 0 (dark current)</p>
- Under illumination
  - Extra current proportional with incident light intensity
  - Responsivity \( \mathfrak{R} \)

$$I_{rev} = \eta e \Phi = \frac{\eta e P_{opt}}{h \nu} = \Re P_{opt}$$

$$\Re = \frac{\eta e}{h \nu} = \frac{\eta \lambda \ [\mu m]}{1.24 \ V \ \mu m}$$

+ optically generated charges

$$J = J_S \left[ exp\left(\frac{eV_a}{k_B T}\right) - 1 \right] J_S = e\left(\frac{D_n n_{p0}}{L_n} + \frac{D_p p_{n0}}{L_p}\right)$$



## I-V characteristic of a photodiode (2)

- 1<sup>st</sup> quadrant:
  - Electrical power in (I·V>0)
  - Light power out
  - → LED-operation
- 3<sup>rd</sup> quadrant:
  - Electrical power in (I·V>0)
  - Light power in
  - → Photodiode operation
- 4<sup>th</sup> quadrant
  - Electrical power out (I·V<0)
  - Light power in
  - → Solar cell



# Photodiode designs

- p-n photodiode:
   absorption in the depletion
   region (p\*n junction
- p-i-n photodiode thicker depletion layer
  - → improved absorption
- hetero junction photodiode:
  - → wide bandgap p-layer
  - → low loss in p layer
  - → higher responsivity



## The p-i-n photodiode

- Disadvantage of pn-photodiode: only absorption in thin depletion region
- p-i-n diode: intrinsic layer (i) between p<sup>+</sup>
   and n<sup>+</sup>
- i-layer is much thicker than depletion region
  - Almost no carriers at reverse bias
  - Electrical field at reverse bias
  - → Higher responsivity

$$\eta = (1 - R)[1 - e^{-\alpha_{dep}d}]e^{-\alpha_{clad}D}\zeta$$

$$d \sim d_{int}$$



## The heterojunction photodiode

- p-i-n photodiode: absorption close to surface gives rise to surface recombination
  - → reduced ζ
- heterojunction-photodiode
  - Surface material has large bandgap
  - → Less absorption in certain wavelength range
  - high quantum efficiency

$$\eta = (1 - R) \left[ 1 - e^{-\alpha_{dep} d} \right] e^{-\alpha_{clad} D} \zeta$$

$$\alpha_{\rm clad} \ll \alpha_{\rm dep}$$



**Photonics** 

Semiconductor Detectors

### **Modulation bandwidth**

• Modulation bandwidth: how well do electrical current variations  $\Delta I$  follow variations in incident power  $\Delta P$ 

response: 
$$R(f) = \frac{\Delta I}{\Delta P} = \frac{R(0)}{\sqrt{1 + 4\pi^2 f^2 \tau^2}}$$
  $P(t) = P_0 + \Delta P \sin(2\pi f \cdot t)$ 

- The modulation bandwidth is limited by
  - the time it takes for the carriers to be collected at the contacts  $\tau$  (10-100 ps)
  - limited by RC time constant:  $f_c = \frac{1}{2\pi RC} = \frac{1}{\tau}$
  - fixed load resistor
  - → Reduce C
  - → Make diode as small as possible

## Exercise: pn vs hetero junction

 Compare the efficiency of a pn and a heterostructure pin diode with the following structure, assume all charges are extracted:



|        | n   | $\alpha$ (780 nm) |
|--------|-----|-------------------|
| GaAs   | 3.6 | 12000/cm          |
| AlGaAs | 3.4 | 100/cm            |

• In each case how much optical power at 780nm is needed to generate 1mA?

## **Image sensors**

- Matrix of photodetectors (pixels); register photon flux as function of place and time
- Operation
  - photons generate free carriers
  - carriers are being collected / measured
  - processing of measurement results
  - → picture
- Two important types
  - CCD (Charge coupled device): charges in a pixel are brought to the side of the chip and are measured there (converted to voltage)
  - CMOS sensor: every pixel has its own circuit to transfer charge to voltage





## Charge collection in a MOS capacitor

- MOS = Metal Oxide Semiconductor
- MOS-capacitor: p-Silicon with isolator
  - Positive voltage on metal creates depletion region with negative space charge
  - Photon creats e<sup>-</sup>h<sup>+</sup> pair in depletion region
  - h+ migrates to p-region
  - e<sup>-</sup> trapped at isolator
- Collected charge proportional to integrated photon flux





# **Charge Coupled Device (CCD)**

- Charge is created on MOS capacitor
- Transfer charge at every clock cycle to neighbouring pixel
- At the edge
  - → voltage conversion
- Advantage
  - High sensitivity
  - Large useful area
- Disadvantage:
  - Relatively expensive
  - Serial read out (slow)



# **CMOS** image sensor

- Every MOS capacitor has its own circuit
- Advantage:
  - Cheap fabrication
  - Random access readout
  - Faster
- Disadvantage:
  - Less useful area
  - More noise





### **Color cameras**

- Film: layers sensitive for red, green, blue
- Digital camera: interleaved pixels with R,G or B filter
- New: 3 CMOS-sensor layers for the 3 colors on top of each other → red penetrates deepest in Silicon

