be counter bola-ad by the wider a form

Then:

$$\Rightarrow \frac{\mathcal{E}_{\overline{V}}}{\mathcal{E}_{\overline{V}}} > \frac{\mathcal{P}_{\overline{V}}}{\mathcal{F}_{C}}$$

maybe assure that: $t_q = t_c + \varepsilon_{\tau}$ with $0 \leq \varepsilon_{\tau}$ small 8 $p_{\overline{\nu}} + \varepsilon_{\overline{\nu}} = q_{\overline{\nu}}$ with $0 \leq \varepsilon_{-} \leq \varepsilon_{\overline{\nu}}$.

· ohay, it is dear that any pries for as for sq will pull dose & towards sy; show that, by new likelihood, the same would is expected; so set: Ex=0

Computational Pragmatics

Michael Franke

Two views of language

"If I say to any one, 'I saw some of your children to-day', he might be justified in inferring that I did not see them all, not because the words mean it, but because, if I had seen them all, it is most likely that I should have said so."

(Mill 1867)

"[O]ne of my avowed aims is to see talking as a special case or variety of purposive, indeed rational, behaviour."

(Grice 1975)

Maxim of Quality

Try to make your contribution one that is true.

- (i) Do not say what you believe to be false.
- (ii) Do not say that for which you lack adequate evidence.

Maxim of Quantity

- (i) Make your contribution as informative as is required for the current purposes of the exchange.
- (ii) Do not make your contribution more informative than is required.

Maxim of Relation

(i) Be relevant.

Maxim of Manner

Be perspicuous.

- (i) Avoid obscurity of expression.
- (ii) Avoid ambiguity.
- (iii) Be brief (avoid unnecessary prolixity).
- (iv) Be orderly.

rational interpreter

rational speaker

rational interpreter

	\forall	$\exists\neg\forall$
"all"	1	0
"some"	O	1

rational speaker

	"all"	"some"
\forall	1	0
$\exists \neg \forall$	0	1

	\forall	$\exists\neg\forall$
"all"	1	0
"some"	.5	.5

rational interpreter

	\forall	$\exists\neg\forall$
"all"	.9	.1
"some"	. 1	.9

approximately rational speaker

	"all"	"some"
\forall	.9	.1
$\exists \neg \forall$. 1	.9

	\forall	$\exists\neg\forall$
"all"	1	0
"some"	.5	.5

rational interpreter

	\forall	$\exists\neg\forall$
"all"	.9	.1
"some"	. 1	.9

listener behavior

$$U \to \Delta(S)$$

approximately rational speaker

	"all"	"some"
\forall	.9	.1
$\exists \neg \forall$.1	.9

speaker behavior

$$S \to \Delta(U)$$

	\forall	$\exists\neg\forall$
"all"	1	0
"some"	.5	.5

pragmatic listener
$$L_1$$
 $P_{L_1}(s \mid u) \propto P_{S_1}(u \mid s) \cdot P(s)$

pragmatic speaker
$$S_1$$
 $P_{S_1}(u \mid s) \propto \exp(\alpha(\underbrace{\log P_{L_0}(s \mid u) - \operatorname{Cost}(u)}_{\text{Exp.Utility}(u \mid s)}))$

literal listener

$$P_{L_0}(s \mid u) = P(s \mid \llbracket u \rrbracket)$$

pragmatic listener

pragmatic speaker

$$S_1$$
 $P_{S_1}(u \mid s) \propto \exp(\alpha(\log P_{L_0}(s \mid u) - \operatorname{Cost}(u)))$

Exp. Utility (u|s)

literal listener

$$P_{L_0}(s \mid u) = P(s \mid \llbracket u \rrbracket)$$

world knowledge

semantic meaning

pragmatic listener

 $L_1 P_{L_1}(s \mid u) \propto P_{S_1}(u \mid s) \cdot P(s)$

pragmatic speaker

rational choice

linguistic preference

 S_1 $P_{S_1}(u \mid s) \propto \exp(\alpha(\log P_{L_0}(s \mid u) - \operatorname{Cost}(u)))$

Exp. Utility (u|s)

information flow

literal listener

 $P_{L_0}(s \mid u) = P(s \mid \llbracket u \rrbracket)$

pragmatic listener

pragmatic speaker

$$S_1$$
 $P_{S_1}(u \mid s) \propto \exp(\alpha(\log P_{L_0}(s \mid u) - \operatorname{Cost}(u)))$ Exp.Utility(u|s)

literal listener

$$P_{L_0}(s \mid u) = P(s \mid \llbracket u \rrbracket)$$

This course

applications

referential communication (epistemic) scalar implicatures non-literal language use vagueness politeness

. . .

technicalities

WebPL Bayesian Data Analysis

. . .

referential communication

context
set of objects/referents

utterances
single properties of objects

$$U = \{\text{"square"}, \text{"circle"}, \text{"green"}, \text{"blue"}\}$$

which object do you think a speaker meant when she selects "blue"?

RSA for reference games (example)

rational interpreter

"square"	.82	0	.18
"circle"	0	1	0
"green"	0	0	1
"blue"	.82	.18	0

rational speaker

 "square"	"circle"	"green"	"blue"
.5	0	0	.5
0	.89	0	.11
.11	0	.89	0

"square"	.5	0	.5
"circle"	0	1	0
"green"	0	0	1
"blue"	.5	.5	0