Beta-Binomial Model Summary

1. Purpose of the Model

The Beta-Binomial model is a Bayesian approach for estimating proportions or probabilities ($\theta \in [0,1]$). It solves problems involving:

- Estimating success probability in Bernoulli trials
- Quantifying uncertainty about proportions
- Making predictions about future outcomes
- Updating beliefs as new data arrives

Example problems:

- Estimating coin fairness after observing flips
- Predicting click-through rates in marketing
- Assessing treatment effectiveness in clinical trials

2. Prior and Likelihood Definition

Prior Distribution

The prior is a Beta distribution: $(p(\theta) = Beta(\theta|a_0, b_0))$

$$p(heta|a_0,b_0) = rac{1}{B(a_0,b_0)} heta^{a_0-1}(1- heta)^{b_0-1}$$

where:

- $(a_0, b_0 > 0)$ are hyperparameters
- (B(ao,bo)) is the Beta function (normalization constant)

Common prior choices:

- Uniform prior: $(a_0 = b_0 = 1)$
- Jeffreys prior: $(a_0 = b_0 = 0.5)$
- Weakly informative: $(a_0 = b_0 = 2)$

Likelihood

The likelihood is a Binomial distribution: $(p(y|\theta) = Binomial(y|N, \theta))$

$$p(y| heta) = inom{N}{y} heta^y (1- heta)^{N-y}$$

where:

- (N) = number of trials
- (y) = number of successes
- (θ) = probability of success

3. Posterior Distribution Computation

The posterior is computed analytically using Bayes' theorem:

$$p(heta|y) = rac{p(y| heta)p(heta)}{p(y)}$$

For the Beta-Binomial model, the posterior is also a Beta distribution (conjugacy):

$$p(\theta|y) = \mathrm{Beta}(\theta|a_0+y,b_0+N-y)$$

Key property: The Beta distribution is the conjugate prior for the Binomial likelihood.

Posterior Parameters:

- Updated alpha: $(a_n = a_0 + y)$
- Updated beta: $(b_n = b_0 + N y)$

4. Posterior Predictive Distribution

The posterior predictive distribution for a new observation y* given N* new trials:

$$p(y^*|y) = \int p(y^*| heta) p(heta|y) d heta$$

This yields the Beta-Binomial distribution:

$$p(y^*|y) = inom{N^*}{y^*} rac{B(y^* + a_n, N^* - y^* + b_n)}{B(a_n, b_n)}$$

where
$$(a_n = a_0 + y)$$
 and $(b_n = b_0 + N - y)$.

5. Making Predictions with the Model

Several approaches for point predictions:

Posterior Mean (Expected value)

$$\hat{ heta}_{ ext{mean}} = \mathbb{E}[heta|y] = rac{a_0 + y}{a_0 + b_0 + N}$$

Posterior Mode (MAP estimate)

For (a_n, b_n > 1):
$$\hat{ heta}_{
m mode} = rac{a_0 + y - 1}{a_0 + b_0 + N - 2}$$

Credible Intervals

For uncertainty quantification, use quantiles of Beta(a_n, b_n).

Model Evidence

The marginal likelihood (model evidence) can be computed analytically:

$$p(y) = \int p(y| heta)p(heta)d heta = inom{N}{y}rac{B(y+a_0,N-y+b_0)}{B(a_0,b_0)}$$

Summary

The Beta-Binomial model provides:

- 1. Analytically tractable inference due to conjugacy
- 2. **Uncertainty quantification** through posterior distribution
- 3. **Sequential updating** as new data arrives
- 4. Flexible prior specification through a₀, b₀ parameters

This makes it ideal for proportion estimation problems where we want both point estimates and uncertainty measures.