MAT 473: Intermediate Real Analysis II

Trey Manuszak Arizona State University January 23, 2020 **Problem 1.** Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by

$$f(x) = \begin{cases} \frac{|x_1|^a |x_2|^b}{\|x\|^c}, & \text{if } x \neq 0\\ 0, & \text{if } x = 0, \end{cases}$$

where a, b, and c are positive real numbers. Prove that $\lim_{x\to 0} f(x)$ exists if and only if a+b>c.

Proof. (\Longrightarrow): Suppose a+b>c. Then clearly a+b-c>0. Then for all $x\in\mathbb{R}^2$, we have

$$\left| \frac{|x_1|^a |x_2|^b}{\|x\|^c} - 0 \right| = \frac{|x_1|^a |x_2|^b}{\|x\|^c}$$

$$\leq \frac{\|x\|^a \|x\|^b}{\|x\|^c}$$

$$= \|x\|^{a+b-c}.$$
(By the fundamental inequalities)

Since a+b-c>0, $||x||^{a+b-c}$ converges to 0 as x converges to 0, and thus by the squeeze theorem, $|f(x)-0|=\left|\frac{|x_1|^a|x_2|^b}{||x||^c}-0\right|$ converges to 0, and thus $\lim_{x\to 0} f(x)=0$.

 (\Leftarrow) : Proof by contrapositive. We'll show that if $a + b \leq c$, then $\lim_{x\to 0} f(x)$ does not exist.

<u>Case 1</u>: Suppose a + b < c. Consider $Z = \{(t, t) : t \in \mathbb{R}^+\}$. Then,

$$\begin{split} \lim_{x \to 0} f \big|_{Z}(x) &= \lim_{t \to 0^{+}} \frac{|t|^{a} |t|^{b}}{\sqrt{t^{2} + t^{2}^{c}}} \\ &= \lim_{t \to 0^{+}} \frac{t^{a} + b}{(\sqrt{2}t)^{c}} \\ &= \lim_{t \to 0^{+}} \frac{1}{(\sqrt{2}t)^{c - a - b}} \\ &= \infty. \end{split} \tag{Since } c - a - b > 0 \end{split}$$

Thus, $\lim_{x\to 0} f|_{Z}(x)$ does not exist, which implies $\lim_{x\to 0} f(x)$ does not exist.

<u>Case 2</u>: Suppose a + b = c. Consider $Z_1 = \{(t, 0) : t \in \mathbb{R}^+\}$. Then we have,

$$\lim_{x \to 0} f \big|_{Z_1}(x) = \lim_{t \to 0^+} \frac{|t|^a |0|^b}{\sqrt{t^2 + 0^c}}$$

$$= \lim_{t \to 0^+} \frac{0}{t^c}$$

$$= 0.$$

Now consider $Z_2 = \{(t, t) : t \in \mathbb{R}^+\}$. Then,

$$\lim_{x \to 0} f \big|_{Z_2}(x) = \lim_{t \to 0^+} \frac{|t|^a |t|^b}{\sqrt{t^2 + 0^c}}$$

$$= \lim_{t \to 0^+} \frac{t^{a+b}}{\sqrt{2^c} t^c}$$

$$= \lim_{t \to 0^+} \frac{t^{a+b-c}}{\sqrt{2^c}}$$

$$= \lim_{t \to 0^+} \frac{t^0}{\sqrt{2^c}}$$
(Since $a + b = c$)
$$= \frac{1}{\sqrt{2^c}}$$
.

Thus, $\lim_{x\to 0} f\big|_{Z_1}(x) = 0 \neq \frac{1}{\sqrt{2}^c} = \lim_{x\to 0} f\big|_{Z_2}(x)$. Thus, $\lim_{x\to 0} f(x)$ does not exist. Therefore, in all cases, $\lim_{x\to 0} f(x)$ does not exist.

Problem 2. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by

$$f(x) = \begin{cases} \frac{x_1 x_2^3}{x_1^2 + x_2^6}, & \text{if } x \neq 0\\ 0, & \text{if } x = 0. \end{cases}$$

Prove that $\lim_{x\to 0} f(x)$ does not exist.

Proof. Suppose $f: \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}$. Let $Z_1 = \{(u,0)^t : u \in \mathbb{R} \setminus \{0\}\}$ and $Z_2 = \{(u^3,u)^T : u \in \mathbb{R} \setminus \{0\}\}$. We have

$$f(u,0) = \frac{u \cdot 0^3}{u^2 + 0^6} = \frac{0}{u^2} = 0$$
$$f(u^3, u) = \frac{u^3 \cdot u^3}{u^6 + u^6} = \frac{u^6}{2u^6} = \frac{1}{2}.$$

Thus, $\lim_{x\to 0} f\big|_{Z_1}(x) = 0 \neq \frac{1}{2} = \lim_{x\to 0} f\big|_{Z_2}(x)$. Therefore, $\lim_{x\to 0} f(x)$ does not exist. \square

Problem 3. Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a linear function.

(a) Prove that $\frac{f(x)}{\|x\|}$ is a bounded function of x on $\mathbb{R}^n \setminus \{0\}$. (Hint: if f is represented by a matrix, then f(x) equals a linear combination of the columns of that matrix.)

Proof. Define $g: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}^m$ by $g(x) = \frac{f(x)}{\|x\|}$ for all $x \in \mathbb{R}^n \setminus \{0\}$. Let $x \in \mathbb{R}^n \setminus \{0\}$. Then,

$$\left\| \frac{\sum_{i=1}^{m} \left(\sum_{j=1}^{n} f_{i}(e_{j}^{(n)}) x_{j} \right) e_{i}^{(m)}}{\|x\|} \right\| \leq \sum_{i=1}^{m} \left| \frac{\left(\sum_{j=1}^{n} f_{i}(e_{j}^{(n)}) x_{j} \right)}{\|x\|} \right|$$

$$\leq \frac{\sum_{i=1}^{m} \sum_{j=1}^{n} \left| f_{i}(e_{j}^{(n)}) \right| \|x_{j}\|}{\|x\|}$$

$$\leq \frac{\sum_{i=1}^{m} \sum_{j=1}^{n} \left| f_{i}(e_{j}^{(n)}) \right| \|x\|}{\|x\|}$$

$$= \sum_{i=1}^{m} \sum_{j=1}^{n} \left| f_{i}(e_{j}^{(n)}) \right| < \infty.$$

Thus, $\frac{f(x)}{\|x\|}$ is bounded.

(b) Suppose that f is not the zero map. Prove that $\lim_{x\to 0} \frac{f(x)}{\|x\|}$ does not exist. (Hint: if $f(v) \neq 0$ consider x = tv for $t \in \mathbb{R} \setminus \{0\}$.)

Proof. Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a linear function that is not the zero map. Fix $v \in \mathbb{R}^n$ such that $f(v) \neq 0$. Let $Z_1 = \{kv : k \in \mathbb{R}^+\}$ and $Z_2 = \{kv : k \in \mathbb{R}^-\}$. Then,

$$\lim_{x \to 0} \frac{f|_{Z_1}(x)}{\|x\|} = \lim_{t \to 0^+} \frac{f|_{Z_1}(tv)}{\|tv\|}$$

$$= \lim_{t \to 0^+} \frac{tf|_{Z_1}(v)}{|t| \|v\|}$$

$$= \frac{f|_{Z_1}(v)}{\|v\|} \cdot \lim_{t \to 0^+} \frac{t}{|t|}$$

$$= \frac{f|_{Z_1}(v)}{\|v\|}$$

$$> 0$$

and

$$\lim_{x \to 0} \frac{f|_{Z_2}(x)}{\|x\|} = \lim_{t \to 0^-} \frac{f|_{Z_2}(tv)}{\|tv\|}$$

$$= \lim_{t \to 0^-} \frac{tf|_{Z_2}(v)}{|t| \|v\|}$$

$$= \frac{f|_{Z_2}(v)}{\|v\|} \cdot \lim_{t \to 0^-} \frac{t}{|t|}$$

$$= \frac{-f|_{Z_2}(v)}{\|v\|}$$

$$< 0.$$

Thus, the limit does not exist.

Problem 4. Let V and W be normed vector spaces. Recall that $B(V, W) = \{T \in L(V, W) : \sup_{\|x\| < 1} \|Tx\| < \infty\}.$

(a) Prove that B(V, W) is a vector space.

Proof. Let V and W be normed vector spaces. First, we'll show that L(V, W) is a vector space. Suppose $T_1, T_2, T_3 \in L(V, W)$ and $\alpha, \beta \in \mathbb{K}$ and $x \in V$. Note, L(V, W) is clearly closed from Definition 2.1. This leaves the following properties.

(1) Commutativity:

$$(T_1 +_L T_2)(x) = T_1 x +_W T_2 x$$
 (Addition on $L(V, W)$)
 $= T_2 x +_W T_1 x$ (Commutativity of addition in W)
 $= (T_2 +_L T_1)(x)$. (Addition on $L(V, W)$)

(2) Associativity:

$$(T_1 +_L (T_2 +_L T_3))(x) = T_1 x +_W (T_2 +_L T_3)(x)$$
 (Addition on $L(V, W)$)
 $= T_1 x +_W (T_2 x +_W T_3 x)$ (Addition on $L(V, W)$)
 $= (T_1 x +_W T_2 x) +_W T_3 x$ (Associativity in W)
 $= (T_1 +_L T_2)(x) +_W T_3 x$ (Addition on $L(V, W)$)
 $= ((T_1 +_L T_2) +_L T_3)(x)$. (Addition on $L(V, W)$)

(3) Zero: Let $0_L \in L(V, W)$ be the zero map.

$$(T_1 +_L 0_L)(x) = T_1 x +_W 0_L x$$
 (Addition on $L(V, W)$)
= $T_1 x +_W 0_W$ (Definition of zero map)
= $T_1 x$. (Addition of 0_W)

(4) Additive inverse: Define $-T_1: V \to W$ by $-T_1(v) = T_1(-v)$ for all $v \in V$. Then,

$$(T_1 +_L - T_1)(x) = T_1 x +_W - T_1 x$$

$$= -T_1 x +_W T_1 - x$$

$$= T_1 (x +_V (-x)) \qquad \text{(Linearity of } T_1\text{)}$$

$$= T_1 \cdot 0_V \qquad \text{(Addititive inverse in } V\text{)}$$

$$= 0_W. \qquad \text{(Linearity of } T_1\text{)}$$

Since $x \in V$ was arbitrary, this is true for all $x \in V$. Thus, $T_1 +_L -T_1 = 0_L$.

(5) Multiplication over \mathbb{K} :

$$\alpha \cdot (\beta \cdot T_1(x)) = \alpha \cdot (\beta T_1 x)$$
 (Definition of T_1)

$$= \alpha \beta (T_1 x)$$
 (Multiplication over \mathbb{K} in W)

$$= ((\alpha \beta) \cdot T_1)(x).$$
 (Definition of T_1)

(6) Unit of scalar multiplication:

$$(1 \cdot T_1)(x) = 1 \cdot T_1(x)$$
 (Linearity of scalar multiplication)
= $T(x)$. (Definition of 1)

(7) Distribution of scalar multiples:

$$(\alpha(T_1 +_L T_2))(x) = \alpha((T_1 +_L T_2)(x))$$
 (Linearity of scalar multiplication)

$$= \alpha(T_1 x +_W T_2 x)$$
 (Addition on $L(V, W)$)

$$= \alpha T_1 x +_W \alpha T_2 x$$
 (Distribution of scalar multiples on W)

$$(\alpha T_1 +_L \alpha T_2)(x) = (\alpha T_1) x +_W (\alpha T_2) x$$
 (Addition on $L(V, W)$)

$$= \alpha T_1 x +_W \alpha T_2 x.$$
 (Scalar multiplication on $L(V, W)$)

Therefore, L(V, W) is a vector space.

Now, we'll show B(V, W) is closed and thus a subspace of L(V, W). Let $T_1, T_2 \in B(V, W)$ and $\alpha, \beta \in \mathbb{K}$ and $x \in V$. Then,

$$\sup_{\|x\| \le 1} \|(\alpha T_1 +_B \beta T_2)(x)\| \le \sup_{\|x\| \le 1} (|\alpha| \|T_1 x\| + |\beta| \|T_2 x\|)$$
 (By triangle inequality)
$$\le |\alpha| \sup_{\|x\| \le 1} \|T_1 x\| + |\beta| \sup_{\|x\| \le 1} \|T_2 x\|$$
 (Definition of supremum)
$$= |\alpha| \|T_1\| + |\beta| \|T_2\|$$
 (Definition of $\|T_1\|$ and $\|T_2\|$)
$$< \infty.$$

Thus, $(\alpha T_1 +_B \beta T_2) \in B(V, W)$, which implies B(V, W) is a subspace of L(V, W). Therefore, B(V, W) is a vector space.

(b) For $T \in B(V, W)$, let $||T|| = \sup_{||x|| \le 1} ||Tx||$. Prove that $||\cdot||$ is a norm on B(V, W). Proof. Since $||T_1x||_W \ge 0$ for all $x \in V$ by positivity of $||\cdot||_W$, we have $\sup_{||x|| \le 1} ||T_1x||_W \ge 0$. Now suppose $||T_1|| = 0$. Then $\sup_{||x|| \le 1} ||T_1x|| = 0$. Suppose to the contrary there exists $v \in V$ such that $||T_1v|| > 0$. Then since $\sup_{||x|| \le 1} ||T_1x|| = 0$, ||v|| > 1. But then $||\frac{v}{||v||}|| = 1$, so $||T_1\frac{v}{||v||}|| = 0$. But, then $||T_1\frac{v}{||v||}|| = \left|\frac{1}{||v||}\right| ||T_1v|| = 0$, which implies $||T_1v|| = 0$. This is a contradiction. Therefore, T_1 is the zero map and we have positivity of $||\cdot||$.

Next,

$$\|\alpha T_1\| = \sup_{\|x\| \le 1} \|\alpha T_1 x\|$$
 (Definition of $\|\alpha T_1\|$)

$$= |\alpha| \sup_{\|x\| \le 1} \|T_1 x\|$$
 (Homogeneity of supremum norm)

$$= |\alpha| \|T_1\|.$$
 (Definition of $\|T_1\|$)

Thus, we have homogeneity of $\|\cdot\|$.

Lastly,

$$||T_1 +_B T_2|| = \sup_{\|x\| \le 1} ||(T_1 +_B T_2)(x)||$$
 (Definition of $||T_1 +_B T_2||$)
$$\leq \sup_{\|x\| \le 1} (||T_1 x|| + ||T_2 x||)$$
 (Triangle inequality of the norm on W)
$$\leq \sup_{\|x\| \le 1} ||T_1 x|| + \sup_{\|x\| \le 1} ||T_2 x||$$
 (Property of supremum norm)
$$= ||T_1|| + ||T_2||.$$
 (Definition of $||T_1||$ and $||T_2||$)

Thus, we have the triangle inequality of $\|\cdot\|$. Therefore, $\|\cdot\|$ is a norm on B(V, W).