Testy zgodności

Martyna Kobielnik

Spis treści

1 Testy zgodności w Statistice

1 5

2 Zadania

1 Testy zgodności w Statistice

Przy pomocy modułu Nieparametryczne dostępnego w zakładce Statystyka można wykonać test χ^2 dla dowolnego rozkładu teoretycznego. Potrzebny nam będzie jedynie szereg rozdzielczy i liczebności oczekiwane. Zweryfikujemy hipotezę $H_0: F(x) = F_0(x)$, gdzie F_0 jest dystrybuantą rozkładu normalnego N(5,2) przeciwko hipotezie $H_1: F(x) \neq F_0(x)$. W arkuszu przedstawionym na rys. 1a $(02_Testy_zgodnosci_ex1.sta)$ zawarty jest pewien szereg rozdzielczy. Ostatnia kolumna zawiera liczebności oczekiwane, wyznaczone z rozkładu normalnego N(5,2) wg wzoru

$$np_i = n \left(F_0(a_{i+1}) - F_0(a_i) \right),$$

gdzie a_i i a_{i+1} są lewą i prawą granicą i—tej klasy.

(b) Statystyki nieparametryczne

Rysunek 1: Test χ^2

W oknie z wyborem testów nieparametrycznych przedstawionym na rys. 1b wybieramy *Chi*^2 dla liczności obserwowanych wz. oczekiwanych. Wybieramy zmienne zawierające liczebności empiryczne i teoretyczne. W wyniku otrzymamy arkusz przedstawiony na rys. 2. W górnej części

podana jest wartość statystyki testowej oraz wartość p. W tym przypadku nie mamy podstaw do odrzucenia hipotezy mówiącej o tym, że rozkład badanej cechy jest rozkładem normalnym ze średnią $\mu = 5$ i odchyleniem standardowym $\sigma = 2$.

		Liczności obserwowane i oczekiwane (04_Testy_zgodności_ex1.sta)								
		Chi kwadrat= 2,151441 df = 9 p = ,988840								
		UWAGA: Różne sumy oczekiwanych i obserwowanych								
		obserw.	oczekiw.	obs-ocz	(ob-oc)2					
Przypadek		liczność empiryczna	liczność oczekiwana		/ocz					
C:	1	1,00000	1,11339	-0,113387	0,011547					
C:	2	3,00000	2,62362	0,376375	0,053993					
C:	3	5,00000	4,83910	0,160897	0,005350					
C:	4	6,00000	6,98665	-0,986653	0,139335					
C:	5	7,00000	7,89651	-0,896506	0,101782					
C:	6	7,00000	6,98665	0,013347	0,000025					
C:	7	5,00000	4,83910	0,160897	0,005350					
C:	8	3,00000	2,62362	0,376375	0,053993					
C:	9	2,00000	1,11339	0,886613	0,706027					
C:	10	1,00000	0,36979	0,630212	1,074038					
Sun	1	40,00000	39,39183	0,608169	2,151441					

Rysunek 2: Wyniki testu χ^2

Dla wybranych rozkładów, test χ^2 można wykonać w module *Dopasowanie rozkładu* dostępnego w zakładce *Statystyka*. Jest tam dostępny również test Kołmogorowa–Smirnowa. Proces przeprowadzenia testów zgodności zostanie zaprezentowany na przykładzie danych zawartych w pliku 02 Testy zgodności ex2.sta.

W pierwszej kolejności, w oknie z rys. 3a, należy wybrać rozkład, który chcemy dopasować do danych. Do wyboru mamy rozkłady ciągłe i dyskretne.

Rysunek 3: Dopasowanie rozkładu

Dla przykładu, do zmiennych Zmn1 i Zmn2 spróbujemy dopasować rozkład wykładniczy. W zakładce Parametry należy wybrać parametry rozkładu, który próbujemy dopasować. Automatycznie pola te zostaną uzupełnione parametrami empirycznymi. W zakładce Opcje widocznej na rys. 3b mamy możliwość wyboru, czy w razie za małej liczebności w klasie, powinna ona zostać połączona z sąsiednią. Możemy również zdecydować, czy ma zostać wykonany dodatkowo test Kołmogorowa–Smirnowa. Do wyboru mamy wersję ciągłą (opartą na pojedynczych wartościach z próby) i skategoryzowaną (przed przeprowadzeniem testu dane zostaną podzielone na klasy). W

przypadku dużych zbiorów danych ten wybór może znacząco wpłynąć na czas obliczeń. Wynik analizy dla obu zmiennych przedstawiony został na rys. 4.

	7mienna: 7m	n1 Rozkład W	/kładniczy (0	4 Testy zgodn	osci ex2 sta)					
	Zmienna: Zmn1, Rozklad: Wykladniczy (04_Testy_zgodnosci_ex2.sta) d Kolmogorowa-Smirnowa 0.37629, p < 0.01									
	Chi-kwadrat = 70,66148, df = 5 (dopasow.), p = 0,00000									
Górna	Obserw.	Skumulow.	Procent	Skumul. %	Oczekiwana	Skumulow.	Procent	Skumul, %	Obserw	
Granica	Liczność	Obserw.	Obserw.	Obserw.	Liczność	Oczekiwana	Oczekiwana	Oczekiwana	Oczekiwana	
<= 1,00000	0	0	0,00000	0,0000	4,439414	4,43941	8,87883	8,8788	-4,4394	
2,00000	0	0	0,00000	0,0000	4,045246	8,48466	8,09049	16,9693	-4,0452	
3,00000	1	1	2,00000	2,0000	3,686076	12,17074	7,37215	24,3415	-2,6860	
4,00000	1	2	2,00000	4,0000	3,358795	15,52953	6,71759	31,0591	-2,3588	
5,00000	0	2	0,00000	4,0000	3,060574	18,59011	6,12115	37,1802	-3,0605	
6,00000	1	3	2,00000	6,0000	2,788831	21,37894	5,57766	42,7579	-1,7888	
7,00000	4	7	8,00000	14,0000	2,541215	23,92015	5,08243	47,8403	1,4587	
8,00000	5	12	10,00000	24,0000	2,315585	26,23574	4,63117	52,4715	2,6844	
9,00000	5	17	10,00000	34,0000	2,109988	28,34572	4,21998	56,6914	2,8900	
10,00000	5	22	10,00000	44,0000	1,922646	30,26837	3,84529	60,5367	3,0773	
11,00000	3	25	6,00000	50,0000	1,751938	32,02031	3,50388	64,0406	1,2480	
12,00000	4	29	8,00000	58,0000	1,596386	33,61669	3,19277	67,2334	2,4036	
13,00000	6	35	12,00000	70,0000	1,454646	35,07134	2,90929	70,1427	4,5453	
14,00000	6	41	12,00000	82,0000	1,325490	36,39683	2,65098	72,7937	4,6745	
15,00000	5	46	10,00000	92,0000	1,207802	37,60463	2,41560	75,2093	3,7922	
16,00000	1	47	2,00000	94,0000	1,100563	38,70520	2,20113	77,4104	-0,1005	
17,00000	1	48	2,00000	96,0000	1,002846	39,70804	2,00569	79,4161	-0,0028	
18,00000	2	50	4,00000	100,0000	0,913805	40,62185	1,82761	81,2437	1,0861	
<nieskończoność< td=""><td>0</td><td>50</td><td>0,00000</td><td>100,0000</td><td>9,378153</td><td>50,00000</td><td>18,75631</td><td>100,0000</td><td>-9,3781</td></nieskończoność<>	0	50	0,00000	100,0000	9,378153	50,00000	18,75631	100,0000	-9,3781	

(a) Wyniki dla Zmn1

Zmienna: Zmn2, Rozkład: Wykładniczy (04_Testy_zgodnosci_ex2.sta)									
	d Kolmogorowa-Smirnowa 0,09269, p = n.i.								
	Chi-kwadrat = 1,72159, df = 2 (dopasow.) , p = 0,42283								
Górna	Obserw.	Skumulow.	Procent	Skumul. %	Oczekiwana	Skumulow.	Procent	Skumul. %	Obserw
Granica	Liczność	Obserw.	Obserw.	Obserw.	Liczność	Oczekiwana	Oczekiwana	Oczekiwana	Oczekiwana
<= 5,00000	18	18	36,00000	36,0000	19,60185	19,60185	39,20370	39,2037	-1,60185
10,00000	13	31	26,00000	62,0000	11,91720	31,51905	23,83440	63,0381	1,08280
15,00000	10	41	20,00000	82,0000	7,24522	38,76426	14,49043	77,5285	2,75478
20,00000	3	44	6,00000	88,0000	4,40482	43,16909	8,80965	86,3382	-1,40482
25,00000	1	45	2,00000	90,0000	2,67797	45,84706	5,35594	91,6941	-1,67797
30,00000	2	47	4,00000	94,0000	1,62811	47,47516	3,25621	94,9503	0,37189
35,00000	2	49	4,00000	98,0000	0,98983	48,46499	1,97966	96,9300	1,01017
40,00000	0	49	0,00000	98,0000	0,60178	49,06677	1,20356	98,1335	-0,60178
<nieskończoność< td=""><td>1</td><td>50</td><td>2,00000</td><td>100,0000</td><td>0,93323</td><td>50,00000</td><td>1,86645</td><td>100,0000</td><td>0,06677</td></nieskończoność<>	1	50	2,00000	100,0000	0,93323	50,00000	1,86645	100,0000	0,06677

(b) Wyniki dla Zmn2

Rysunek 4: Wyniki testów χ^2 i Kołmogorowa–Smirnowa

Na rys. 5 przedstawione są wykresy liczebności i dystrybuanty z dopasowanymi funkcjami teoretycznymi dla Zmn1.

Rysunek 5: Wykresy liczności i dystrybuanty

Testy zgodności można wykonać również przy okazji tworzenia niektórych wykresów. Tworząc histogram, możemy wybrać jeden z rozkładów. Wtedy, krzywa gęstości tego rozkładu zostanie naniesiona na wykres. Jeśli wybrany został rozkład normalny, to dodatkowo możemy wykonać test Kołmogorowa–Smirnowa lub test Shapiro–Wilka. Histogram zawierający wyniki obu testów dla zmiennej Zmn1 znajduje się na rys. 6a.

Rysunek 6: Histogram i wykres normalności

Wybierając Wykres normalności możliwe jest wykonanie przy okazji testu Shapiro-Wilka. Taki wykres dla zmiennych Zmn1 i Zmn2 przedstawiony jest na rys. 6b. Skala dla wykresu dobrana jest tak, aby rozkładowi normalnemu odpowiadała linia prosta. Próba jest układana w szereg wariacyjny, wartości są rangowane, a następnie wyznacza się oczekiwane wartości dla poszczególnych rang przy założeniu, że rozkład jest normalny. Tak powstałe punkty, jeśli założenie o normalności jest spełnione, powinny tworzyć linię prostą. Im bliżej wykreślonej prostej znajdują się punkty,

tym większe wskazanie na normalność rozkładu. Na wykresie widzimy, że dla zmiennej Zmn2 odchylenia od prostej są o wiele większe niż dla Zmn1. W lewym dolnym rogu widoczne są wyniki testu Shapiro–Wilka, które potwierdzają wcześniejszą obserwację.

Poza wymienionymi wyżej możliwościami, możliwe jest utworzenie wykresów pomocnych przy ocenie, czy próba pochodzi z populacji o określonym rozkładzie. Są to wykres kwantyl-kwantyl i wykres prawdopodobieństwo-prawdopodobieństwo. Oba wykresy przedstawione zostały na rys. 7. Na ich podstawie możemy dokonać wizualnej oceny dopasowania.

Rysunek 7: Wykresy

Wykres kwantyl-kwantyl tworzony jest poprzez wykreślenie punktów, gdzie jedna ze współrzędnych jest kwantylem teoretycznym, a druga, kwantylem empirycznym wyznaczonym na podstawie próby. Jeśli rzeczywiście rozkład empiryczny jest zgodny z teoretycznym, punkty te powinny układać się w linii prostej, która jest prostą regresji (temat regresji liniowej omawiany będzie pod koniec semestru).

Wykres prawdopodobieństwo-prawdopodobieństwo tworzą punkty, których współrzędnymi są $(F_n(x_i), F(x_i))$, gdzie F_n to dystrybuanta empiryczna wyznaczona na podstawie próby n-elementowej, a F to dystrybuanta teoretyczna.

2 Zadania

Raport z zadań należy zapisać w pliku 02_imie_nazwisko.pdf i umieścić w odpowiednim miejscu na PZE. Należy w nim uwzględnić wszystkie wyniki pośrednie wraz z ich krótkim omówieniem.

1. Na poziomie istotności $\alpha=0.07$ zweryfikuj hipotezę mówiącą o tym, że rozkład zmiennej, z której próba znajduje się w arkuszu 02_Testy_zgodności_zad1.sta jest rozkładem wykładniczym. Parametr μ rozkładu oszacuj na podstawie wyników z próby. Pamiętaj o uwzględnieniu wag przypadków.

- 2. Na podstawie arkusza 02_Testy_zgodnosci_zad2.sta 1 sprawdź, czy pierwsza zmienna może pochodzić z rozkładu jednostajnego a druga z rozkładu geometrycznego. Parametry należy oszacować na podstawie dostępnych prób. Za poziom istotności przyjmij $\alpha=0.1$. Dla obu zmiennych utwórz histogram z naniesioną gęstością dopasowywanego rozkładu oraz wykres dystrybuanty empirycznej z teoretyczną.
- 3. Sprawdź, które ze zmiennych w arkuszu 02_Testy_zgodnosci_zad2.sta mogą pochodzić z rozkładu normalnego. Odpowiedź uzasadnij i zwizualizuj przy pomocy odpowiednich wykresów.

 $^{^1\}mathrm{Przed}$ przystąpieniem do rozwiązywania zadania należy przejść do zakładki Dane, wybrać opcję Przeliczi przeliczyć wartości wszystkich zmiennych