MODULE 4

CORONA

When an alternating potential difference is applied across two conductors whose spacing is large as compared to their diameters, there is no apparent change in the condition of atmospheric air surrounding the wires if the applied voltage is low. However, when the applied voltage exceeds a certain value, called critical disruptive voltage, the conductors are surrounded by a faint violet glow called corona.

The phenomenon of corona is accompanied by a hissing sound, production of ozone, power loss and radio interference. The higher the voltage is raised, the larger and higher the luminous envelope becomes, and greater are the sound, the power loss and the radio noise. If the applied voltage is increased to breakdown value, a flash-over will occur between the conductors due to the breakdown of air insulation If the conductors are polished and smooth, the corona glow will be uniform throughout the length of the conductor, otherwise the rough points will appear brighter. With d.c. voltage, there is difference in the appearance of the two wires. The positive wire has uniform glow about it, while the negative conductor has spotty glow.

Theory of corona formation

Some ionisation is always present in air due to cosmic rays, ultraviolet radiations and radioactivity. Therefore, under normal conditions, the air around the conductors contains some ionised particles and neutral molecules. When p.d. is applied between the conductors, potential gradient is set up in the air which will have maximum value at the conductor surfaces. Under the influence of potential gradient, the existing free electrons acquire greater velocities. The greater the applied voltage, the greater the potential gradient and more is the velocity of free electrons. When the potential gradient at the conductor surface reaches about 30 kV per cm (max. value), the velocity acquired by the free electrons is sufficient to strike a neutral molecule with enough force to dislodge one or more electrons from it. This produces another ion and one or more free electrons, which is turn are accelerated until they collide with other neutral molecules, thus producing other ions. Thus, the process of ionisation is cumulative. The result of this ionisation is that either corona is formed or spark takes place between the conductors.

DEPT OF EEE, AMCEC

Factors Affecting Corona

The phenomenon of corona is affected by the physical state of the atmosphere as well as by the conditions of the line. The following are the factors upon which corona depends:

(i)Atmosphere

As corona is formed due to ionisation of air surrounding the conductors, therefore, it is affected by the physical state of atmosphere. In the stormy weather, the number of ions is more than normal and as such corona occurs at much less voltage as compared with fair weather.

(ii) Conductor size.

The corona effect depends upon the shape and conditions of the conductors. The rough and irregular surface will give rise to more corona because unevenness of the surface decreases the value of breakdown voltage. Thus a stranded conductor has irregular surface and hence gives rise to more corona that a solid conductor.

(iii) Spacing between conductors.

If the spacing between the conductors is made very large as compared to their diameters, there may not be any corona effect. It is because larger distance between conductors reduces the electro-static stresses at the conductor surface, thus avoiding corona formation.

(iv) Line voltage.

The line voltage greatly affects corona. If it is low, there is no change in the condition of air surrounding the conductors and hence no corona is formed. However, if the line voltage has such a value that electrostatic stresses developed at the conductor surface make the air around the conductor conducting, then corona is formed.

Advantages and Disadvantages of Corona

Corona has many advantages and disadvantages. In the correct design of a high voltage overhead line, a balance should be struck between the advantages and disadvantages.

Advantages

- (i) Due to corona formation, the air surrounding the conductor becomes conducting and hence virtual diameter of the conductor is increased. The increased diameter reduces the electrostatic stresses between the conductors.
- (ii) Corona reduces the effects of transients produced by surges.

Disadvantages

- (i) Corona is accompanied by a loss of energy. This affects the transmission efficiency of the line.
- (ii) Ozone is produced by corona and may cause corrosion of the conductor due to chemical action.
- (iii) The current drawn by the line due to corona is non-sinusoidal and hence no sinusoidal voltage drop occurs in the line. This may cause inductive interference with neighbouring communication lines.

Methods of Reducing Corona Effect

It has been seen that intense corona effects are observed at a working voltage of 33 kV or above. Therefore, careful design should be made to avoid corona on the sub-stations or bus-bars rated for 33 kV and higher voltages otherwise highly ionized air may cause flash-over in the insulators or between the phases, causing considerable damage to the equipment. The corona effects can be reduced by the following methods

(i) By increasing conductor size.

By increasing conductor size, the voltage at which corona occurs is raised and hence corona effects are considerably reduced. This is one of the reasons that ACSR conductors which have a larger cross-sectional area are used in transmission lines.

(ii) By increasing conductor spacing

By increasing the spacing between conductors, the voltage at which corona occurs is raised and hence corona effects can be eliminated. However, spacing cannot be increased too much otherwise the cost of supporting structure (e.g., bigger cross arms and supports) may increase to a considerable extent.

UNDERGROUND CABLES

An underground cable essentially consists of one or more conductors covered with suitable insulation and surrounded by a protecting cover. Although several types of cables are available, the type of cable to be used will depend upon the working voltage and service requirements. In general, a cable must full fill the following necessary requirements:

(i) The conductor used in cables should be tinned stranded copper or aluminium of high conductivity. Stranding is done so that conductor may become flexible and carry more current.

- (ii) The conductor size should be such that the cable carries the desired load current without overheating and causes voltage drop within permissible limits.
- (iii) The cable must have proper thickness of insulation in order to give high degree of safety and reliability at the voltage for which it is designed.
- (iv) The cable must be provided with suitable mechanical protection so that it may withstand the rough use in laying it.
- (v) The materials used in the manufacture of cables should be such that there is complete chemical and physical stability throughout.

CONSTRUCTION OF CABLES

Fig shows the general construction of a 3-conductor cable. The various parts are

a) Cores or Conductors

A cable may have one or more than one core (conductor) depending upon the type of service for which it is intended. For instance, the 3- conductor cable shown in Fig. is used for 3phase service. The conductors are made of tinned copper or aluminium and are usually stranded in order to provide flexibility to the cable.

b) Insulation

Each core or conductor is provided with a suitable thickness of insulation, the thickness of layer depending upon the voltage to be withstood by the cable. The commonly used materials for insulation are impregnated paper, varnished cambric or rubber mineral compound.

c) Metallic sheath.

DEPT OF EEE, AMCEC

In order to protect the cable from moisture, gases or other damaging liquids (acids or alkalise) in the soil and atmosphere, a metallic sheath of lead or aluminium is provided over the insulation as shown in Fig.

d) Bedding.

Over the metallic sheath is applied a layer of bedding which consists of a fibrous material like jute or hessian tape. The purpose of bedding is to protect the metallic sheath against corrosion and from mechanical injury due to armouring.

e) Armouring.

Over the bedding, armouring is provided which consists of one or two layers of galvanized steel wire or steel tape. Its purpose is to protect the cable from mechanical injury while laying it and during the course of handling. Armouring may not be done in the case of some cables.

f) Serving.

In order to protect armouring from atmospheric conditions, a layer of fibrous material (like jute) similar to bedding is provided over the armouring. This is known as serving. It may not be out of place to mention here that bedding, armouring and serving are only applied to the cables for the protection of conductor insulation and to protect the metallic sheath from Mechanical injury.

INSULATING MATERIALS FOR CABLES

The satisfactory operation of a cable depends to a great extent upon the characteristics of insulation used. Therefore, the proper choice of insulating material for cables is of considerable importance. In general, the insulating materials used in cables should have the following

Properties

- (i) High insulation resistance to avoid leakage current.
- (ii) High dielectric strength to avoid electrical breakdown of the cable. (
- (iii) High mechanical strength to withstand the mechanical handling of cables.
- (iv) Non-hygroscopic i.e., it should not absorb moisture from air or soil. The moisture tends to decrease the insulation resistance and hastens the breakdown of the cable. In case the insulating material is hygroscopic, it must be enclosed in a waterproof covering like lead sheath.
- (v) Non-inflammable.
- (vi) Low cost so as to make the underground system a viable proposition.

DEPT OF EEE, AMCEC

(vii) Unaffected by acids and alkalise to avoid any chemical action. No one insulating material possesses all the above mentioned properties. Therefore, the type of insulating material to be used depends upon the purpose for which the cable is required and the quality of insulation to be aimed at. The principal insulating materials used in cables are rubber, vulcanized India rubber, impregnated paper, varnished cambric and polyvinyl chloride.

Rubber

Rubber may be obtained from milky sap of tropical trees or it may be produced from oil products. It has relative permittivity varying between 2 and 3, dielectric strength is about 30 kV/mm and resistivity of insulation is 1017 cm. Although pure rubber has reasonably high insulating properties, it suffers form some major drawbacks viz., readily absorbs moisture, maximum safe temperature is low (about 38°C), soft and liable to damage due to rough handling and ages when exposed to light. Therefore, pure rubber cannot be used as an insulating material.

Vulcanised India Rubber (V.I.R.)

It is prepared by mixing pure rubber with mineral matter such as zinc oxide, red lead etc., and 3 to 5% of sulphur. The compound so formed is rolled into thin sheets and cut into strips. The rubber compound is then applied to the conductor and is heated to a temperature of about 150°C. The whole process is called vulcanisation and the product obtained is known as vulcanised India rubber. Vulcanised India rubber has greater mechanical strength, durability and wear resistant property than pure rubber. Its main drawback is that sulphur reacts very quickly with copper and for this reason, cables using VIR insulation have tinned copper conductor. The VIR insulation is generally used for low and moderate voltage cables.

Impregnated paper

It consists of chemically pulped paper made from wood chippings and impregnated with some compound such as paraffinic or naphthenic material. This type of insulation has almost superseded the rubber insulation. It is because it has the advantages of low cost, low capacitance, high dielectric strength and high insulation resistance. The only disadvantage is that paper is hygroscopic and even if it is impregnated with suitable compound, it absorbs moisture and thus lowers the insulation resistance of the cable. For this reason, paper insulated cables are always provided with some protective covering and are never left unsealed. If it is required to be left unused on the site during laying, its ends are temporarily

covered with wax or tar. Since the paper insulated cables have the tendency to absorb moisture, they are used where the cable route has a few joints. For instance, they can be profitably used for distribution at low voltages in congested areas where the joints are generally provided only at the terminal apparatus. However, for smaller installations, where the lengths are small and joints are required at a number of places, VIR cables will be cheaper and durable than paper insulated cables.

Dielectric Stress In Cable

Under operating conditions, the insulation of a cable is subjected to electrostatic forces. This is known as dielectric stress. The dielectric stress at any point in a cable is in fact the potential gradient (or electric intensity) at that point. Consider a single core cable with core diameter d and internal sheath diameter D. As proved in Art 8, the electric intensity at a point x metres from the centre of the cable is

$$E_x = \frac{Q}{2\pi \, \varepsilon_o \, \varepsilon_r \, x} \text{ volts/m}$$

By definition, electric intensity is equal to potential gradient. Therefore, potential gradient g at a point x meters from the Centre of cable is

or
$$g = E_x$$
$$g = \frac{Q}{2\pi \epsilon_o \epsilon_r x} \text{ volts/m} \qquad ...(i)$$

As proved, potential difference V between conductor and sheath is

$$V = \frac{Q}{2\pi\varepsilon_o\varepsilon_r}\log_e \frac{D}{d} \text{ volts}$$
or
$$Q = \frac{2\pi\varepsilon_o\varepsilon_r V}{\log_e \frac{D}{d}} \qquad ...(ii)$$

Substituting the value of Q from exp. (ii) in exp. (i), we get,

$$g = \frac{2\pi \varepsilon_o \varepsilon_r V}{\log_e D/d} = \frac{V}{x \log_e \frac{D}{d}} \text{ volts/m} \qquad ...(iii)$$

It is clear from exp. (iii) that potential gradient varies inversely as the distance x. Therefore, potential gradient will be maximum when x is minimum i.e., when x = d/2 or at the surface of the conductor. On the other hand, potential gradient will be minimum at x = D/2 or at sheath surface. Maximum potential gradient is

$$g_{max} = \frac{2V}{d \log_e \frac{D}{d}} \text{ volts/m} \qquad [Putting } x = d/2 \text{ in exp. (iti)}]$$
Minimum potential gradient is
$$g_{min} = \frac{2V}{D \log_e \frac{D}{d}} \text{ volts/m} \qquad [Putting } x = D/2 \text{ in exp. (iti)}]$$

$$\therefore \qquad \frac{g_{max}}{g_{min}} = \frac{\frac{2V}{d \log_e D/d}}{\frac{2V}{D \log_e D/d}} = \frac{D}{d}$$

The variation of stress in the dielectric is shown in Fig.14. It is clear that dielectric stress is maximum at the conductor surface and its value goes on decreasing as we move away from the conductor. It may be noted that maximum stress is an important consideration in the design of a cable. For instance, if a cable is to be operated at such a voltage that maximum stress is 5 kV/mm, then the insulation used must have a dielectric strength of at least 5 kV/mm, otherwise breakdown of the cable will become inevitable.

GRADING OF CABLES

The process of achieving uniform electrostatic stress in the dielectric of cables is known as grading of cables.

It has already been shown that electrostatic stress in a single core cable has a maximum value (gmax) at the conductor surface and goes on decreasing as we move towards the sheath. The maximum voltage that can be safely applied to a cable depends upon gmax i.e., electrostatic stress at the conductor surface. For safe working of a cable having homogeneous

dielectric, the strength of dielectric must be more than g max. If a dielectric of high strength is used for a cable, it is useful only near the conductor where stress is maximum. But as we move away from the conductor, the electrostatic stress decreases, so the dielectric will be unnecessarily over strong.

The unequal stress distribution in a cable is undesirable for two reasons. Firstly, insulation of greater thickness is required which increases the cable size.

Secondly, it may lead to the breakdown of insulation. In order to overcome above disadvantages, it is necessary to have a uniform stress distribution in cables. This can be achieved by distributing the stress in such a way that its value is increased in the outer layers of dielectric. This is known as grading of cables. The following are the two main methods of grading of cables:

- (i) Capacitance grading
- (ii) Intersheath grading

(i) Capacitance Grading

The process of achieving uniformity in the dielectric stress by using layers of different dielectrics is known as capacitance grading

In capacitance grading, the homogeneous dielectric is replaced by a composite dielectric. The composite dielectric consists of various layers of different dielectrics in such a manner that relative permittivity r of any layer is inversely proportional to its distance from the center.

Under such conditions, the value of potential gradient any point in the dielectric is constant and is independent of its distance from the centre. In other words, the dielectric stress in the cable is same everywhere and the grading is ideal one. However, ideal grading requires the use of an infinite number of dielectrics which is an impossible task. In practice, two or three dielectrics are used in the decreasing order of permittivity, the dielectric of highest permittivity being used near the core. The capacitance grading can be explained beautifully by referring to Fig. There are three dielectrics of outer diameter d1, d2 and D and of relative permittivity 1, 2 and 3 respectively. If the permittivity are such that 1 > 2 > 3 and the three dielectrics are worked at the same maximum stress, then,

or
$$\frac{1}{\varepsilon_1 d} = \frac{1}{\varepsilon_2 d_1} = \frac{1}{\varepsilon_3 d_2}$$

$$\varepsilon_1 d = \varepsilon_2 d_1 = \varepsilon_3 d_2$$

Potential difference across the inner layer is

$$\begin{aligned} V_1 &= \int_{d/2}^{d_1/2} g \, dx = \int_{d/2}^{d_1/2} \frac{Q}{2\pi \, \varepsilon_0 \, \varepsilon_1 \, x} dx \\ &= \frac{Q}{2\pi \, \varepsilon_0 \, \varepsilon_1} \log_e \frac{d_1}{d} = \frac{g_{max}}{2} \, d \log_e \frac{d_1}{d} \left[\because \frac{Q}{2\pi \, \varepsilon_0 \, \varepsilon_1} = \frac{*g_{max}}{2} \, d \right] \end{aligned}$$

Similarly, potential across second layer (V2) and third layer (V3) is given by

$$V_2 = \frac{g_{\text{max}}}{2} d_1 \log_e \frac{d_2}{d_1}$$

$$V_3 = \frac{g_{\text{max}}}{2} d_2 \log_e \frac{D}{d_2}$$

Total p.d. between core and earthed sheath is

$$V = V_1 + V_2 + V_3$$

$$= \frac{g_{max}}{2} \left[d \log_e \frac{d_1}{d} + d_1 \log_e \frac{d_2}{d_1} + d_2 \log_e \frac{D}{d_2} \right]$$

$$V' = \frac{g_{max}}{2} d \log_e \frac{D}{d}$$

$$V = \frac{g_{1max}}{2} d \log_e \frac{d_1}{d} + \frac{g_{2max}}{2} d_1 \log_e \frac{d_2}{d_1} + \frac{g_{3max}}{2} d_2 \log_e \frac{D}{d_2}$$

If the cable had homogeneous dielectric, then, for the same values of d, D and gmax, the permissible potential difference between core and earthed sheath would have been

$$V' = \frac{g_{max}}{2} d \log_e \frac{D}{d}$$

(ii) Intersheath Grading

In this method of cable grading, a homogeneous dielectric is used, but it is divided into various layers by placing metallic inters heaths between the core and lead sheath. The inter sheaths are held at suitable potentials which are in between the core potential and earth potential. This arrangement improves voltage distribution in the dielectric of the cable and consequently more uniform potential gradient is obtained.

Consider a cable of core diameter d and outer lead sheath of diameter D. Suppose that two inters heaths of diameters d1 and d2 are inserted into the homogeneous dielectric and maintained at some fixed potentials. Let V1,V2 and V3 respectively be the voltage between core and intersheath 1, between inter sheath 1 and 2 and between inter sheath 2 and outer lead sheath. As there is a definite potential difference between the inner and outer layers of each

inter sheath, therefore, each sheath can be treated like a homogeneous single core cable Maximum stress between core and inter sheath 1 is

Similarly,
$$g_{1max} = \frac{V_1}{\frac{d}{2} \log_e \frac{d_1}{d}}$$

$$g_{2max} = \frac{V_2}{\frac{d_1}{2} \log_e \frac{d_2}{d_1}}$$

$$g_{3max} = \frac{V_3}{\frac{d_2}{2} \log_e \frac{D}{d_2}}$$

Since the dielectric is homogeneous, the maximum stress in each layer is the same i.e.,

$$g_{1max} = g_{2max} = g_{3max} = g_{max} \text{ (say)}$$

$$\frac{V_1}{\frac{d}{2} \log_e \frac{d_1}{d}} = \frac{V_2}{\frac{d_1}{2} \log_e \frac{d_2}{d_1}} = \frac{V_3}{\frac{d_2}{2} \log_e \frac{D}{d_2}}$$

As the cable behaves like three capacitors in series, therefore, all the potentials are in phase i.e. Voltage between conductor and earthed lead sheath is

$$V = V_1 + V_2 + V_3$$

Inter sheath grading has three principal disadvantages. Firstly, there are complications in fixing the sheath potentials. Secondly, the inter sheaths are likely to be damaged during transportation and installation which might result in local concentrations of potential gradient. Thirdly, there are considerable losses in the inter sheaths due to charging currents. For these reasons, inter sheath grading is rarely used.