StarGAN

Pattern Recognition & Machine Learning Laboratory
Tae-jin Woo
Aug 17, 2021

StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation [Y. Choi et al., 2018] (1/7)

Goal

> Solving scalability and robustness in handling more than two domains

Motivation

- Improving network efficiency in multi-domain image-to-image translation
- Learning general features in multi-domain image-to-image translation

Contribution

- Proposing a single network for multi-domain image-to-image translation
- Proposing joint training method on multi-dataset
- Achieving State-of-the-Art (SOTA) in image-to-image translation

Multi-domain image-to-image translation results

StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation [Y. Choi et al., 2018] (2/7)

Introduction

- Background
 - Required prior knowledge in image-to-image translation
 - Attribute: Meaningful feature inherent in an image ex) color, gender
 - Attribute value: Particular value of an attribute ex) black, female
 - Domain: A set of images sharing the same attribute value
 - Problems of previous cross-domain models
 - Separate network required for each domain in multi-domain image translation
 - Unable to fully utilize the existing global features from entire training data
- Proposals
 - Discriminator
 - Applying domain classification
 - Enable to handle multi-domain task
 - Generator
 - Applying domain classification
 - Applying reconstruction
 - Enable to learn general features
 - Others
 - Applying mask vector
 - Enable to handle multi-domain task

Comparison between cross-domain models and StarGAN

StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation [Y. Choi et al., 2018] (3/7)

Architecture

- Modules
 - Discriminator
 - Learning to distinguish between real and fake images
 - Classifying the real images to its corresponding domain
 - Generator
 - Taking in as input both the image and target domain and generates an fake image
 - Learning to reconstruct the original image from the fake and original domain
 - Learning the reconstructed image to be similar to the original image
 - Generating images indistinguishable from real images and classifiable

Overview of StarGAN architecture

StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation [Y. Choi et al., 2018] (4/7)

Training for multi-domain image-to-image translation

Loss functions

Adversarial loss

$$- \mathcal{L}_{adv} = E_x[\log D_{src}(x)] + E_{x,c}[\log(1 - D_{src}(G(x,c)))]$$

- x: Input real image
- D_{src}(x): Probability distribution over sources given by G
- c: Target domain label
- Domain classification loss
 - $\mathcal{L}_{cls}^r = E_{x,c'}[-\log D_{cls}(c'|x)]$ for real images
 - c': Original domain label
 - $D_{cls}(c'|x)$: Probability distribution over original domain labels
 - $\mathcal{L}_{cls}^f = E_{x,c}[-\log D_{cls}(c|G(x,c))]$ for fake images
- Reconstruction loss

$$- \mathcal{L}_{rec} = E_{x,c,c'}[||x - G(G(x,c),c')||_1]$$

- Adopting the L1 norm as reconstruction loss
- Translating into target domain first, and then reconstructing the original image
- Full objective loss

$$-\mathcal{L}_D = -\mathcal{L}_{adv} + \lambda_{cls} \mathcal{L}_{cls}^r$$
 for discriminator

$$-\mathcal{L}_{G} = \mathcal{L}_{adv} + \lambda_{cls} \mathcal{L}_{cls}^{f} + \lambda_{rec} \mathcal{L}_{rec}$$
 for generator

- λ_{cls} , λ_{rec} : Hyper-parameters that control the relative importance among losses

StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation [Y. Choi et al., 2018] (5/7)

Training with multiple dataset

- Mask vector
 - Previous problems
 - Only partially known label information is given when learning multiple dataset
 - Solution
 - Introducing mask vector $\tilde{c} = [c_1, c_2, \dots, c_n, m]$
- Training strategy
 - Cross-over method
 - Ignoring and focusing on specified labels by taking mask vector as an input

Overview of StarGAN training with both CelebA and RaFD

StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation [Y. Choi et al., 2018] (6/7)

Experiments

- Qualitative evaluation
 - Reasons for SOTA
 - Regularization effect through multi-domain
 - Learning reliable features universally
 - Maintaining spatial information using ConvNet

	Method	H+G	H+A	G+A	H+G+A
1	DIAT	20.4%	15.6%	18.7%	15.6%
1	CycleGAN	14.0%	12.0%	11.2%	11.9%
	IcGAN	18.2%	10.9%	20.3%	20.3%
	StarGAN	47.4%	61.5%	49.8%	52.2%

AMT perceptual evaluation results

- Quantitative evaluation
 - AMT perceptual evaluation
 - Achieving 1st ranking on both single and multi-attribute transfer task
 - Efficiency
 - Having fewer parameters than others

Method	Classification error	# of parameters
DIAT	4.10	$52.6M \times 7$
CycleGAN	5.99	$52.6M \times 14$
IcGAN	8.07	$67.8M \times 1$
StarGAN	2.12	$53.2M \times 1$
Real images	0.45	- \

Classification errors and the number of parameters

Facial attribute transfer results on the CelebA dataset

Facial attribute transfer results on the CelebA dataset

StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation [Y. Choi et al., 2018] (7/7)

- Effect of joint training
 - Qualitative evaluation
 - Showing higher visual quality in joint training, not blurry and gray backgrounds
 - Reasons for higher visual quality
 - Enable to learn with both datasets in joint training, but not in single training
 - Enable to improve low-level tasks, which is beneficial to learning
- Effect of mask vector
 - Testing method
 - Intentionally making to training G with wrong mask vector
 - Qualitative evaluation
 - Showing fails to synthesis facial expressions
 - Enable to confirm that mask vector makes StarGAN better

Facial expression synthesis results of single and joint dataset

Learned role of the mask vector