Protein families classification using Machine/Deep Learning

Abishek Adhikari Springboard 2021

Motivation/Objective:

- Proteins are the complex biomolecules that plays an important role in living organism.
- Proteins are made up of amino acids; a long chain of chemical units represented by alphabets
- There are 20 most common amino acids that are arranged randomly in a sequence which generates millions of unique proteins
- Traditional experimental methods uses chemical and physical properties to classify protein families, which is complex and time consuming
- This project aims to classify protein families using several Machine/Deep Learning approaches.

Data wrangling

- Protein sequence data is downloaded from Kaggle.
 (https://www.kaggle.com/shahir/protein-data-set)
- There are two data files, one contains protein sequence whereas other is physical and chemical properties of protein.
- More than 85000 instances are present in the datasets
- Each features are carefully examine for missing values and the missing instances are removed from the data set.
- After cleaning, approximately 75000 instances are available for the further steps.

Understanding data

Dataset 1

Data	a columns (total 14 columns):			
#	Column	Non-Null Count	Dtype	
0	structureId	141401 non-null	object	
1	classification	141399 non-null	object	
2	experimentalTechnique	141401 non-null	object	
3	macromoleculeType	137636 non-null	object	
4	residueCount	141401 non-null	int64	
5	resolution	128589 non-null	float64	
6	structureMolecularWeight	141401 non-null	float64	
7	crystallizationMethod	96242 non-null	object	
8	crystallizationTempK	97039 non-null	float64	
9	densityMatthews	124724 non-null	float64	
10	densityPercentSol	124749 non-null	float64	
11	pdbxDetails	118534 non-null	object	
12	phValue	105110 non-null	float64	
13	publicationYear	117602 non-null	float64	

Dataset 2

#	Column	Non-Null Count	Dtype
0	structureId	104813 non-null	object
1	chainId	104812 non-null	object
2	sequence	104812 non-null	object
3	residueCount	104813 non-null	int64
4	macromoleculeType	101336 non-null	object

Amino acids are represented by alphabets

Amino Acid	3-Letter Code	1-Letter Code
Alanine	Ala	A
Cysteine	Cys	C
Aspartic acid or aspartate	Asp	D
Glutamic acid or glutamate	Glu	Е
Phenylalanine	Phe	F
Glycine	Gly	G
Histidine	His	Н
Isoleucine	Ile	I
Lysine	Lys	K
Leucine	Leu	L
Methionine	Met	M
Asparagine	Asn	N
Proline	Pro	P
Glutamine	Gln	Q
Arginine	Arg	R
Serine	Ser	S
Threonine	Thr	T
Valine	Val	V
Tryptophan	Trp	W
Tyrosine	Tyr	Y

'Ivase'

"Hydrolase" family with 286 amino acid units

'TYTTRQIGAKNTLEYKV YIEKDGKPVSAFHDIPLY ADKENNIFNMVVEIPRWT NAKLEITKEETLNPIIOD TKKGKLRFVRNCFPHHGY IHNYGAFPQTWEDPNVSH PETKAVGDNEPIDVLEIG ETIAYTGQVKQVKALGIM ALLDEGETDWKVIAIDIN DPLAPKLNDIEDVEKYFP GLLRATNEWFRIYKIPDG KPENOFAFSGEAKNKKYA LDIIKETHDSWKOLIAGK SSDSKGIDLTNVTLPDTP TYSKAASDAIPPASLKAD APIDKSIDKWFFISGSV'

: 6

Protein families 'hydrolase' 'In the last of the last in hibitary' Numerical Labels: 11

'hydrolase/hydrolase inhibitor': 13'immune system': 4'isomerase': 12'ligase': 14

Exploratory Data Analysis

87% of Macromolecules belong to Protein

Protein family class (label)

Exploratory Data Analysis

Normalized frequency distribution:

Majority of sequences have lengths less than 500 units

number of residues in macromolecules

a residue refers to a single unit that makes up an amino acid in a protein

Exploratory Data Analysis

Acidic: PhValue < 7 Basic: PhValue > 7 Neutral: PhValue = 7

Features correlation with the classes label

Part I: Machine Learning Models

Three ML algorithms (Random Forest, Decision Tree, and KNN) are trained and tested.

75% data are used to train the model and the remaining 25% are tested

Hyperparameters are tuned in each model

Models	Accuracy	Recall	precision
Decision Tree	0.43	0.43	0.49
Random Forest	0.52	0.52	0.57
KNN	0.28	0.28	0.27

Predicted label

Part II: Deep Learning Models

amino acid units 'TYTTROIGAKNTLEYKV

"Hydrolase" family with 286

YIEKDGKPVSAFHDIPLY ADKENNIFNMVVEIPRWT

NAKLEITKEETLNPIIOD

TKKGKLRFVRNCFPHHGY

IHNYGAFPOTWEDPNVSH PETKAVGDNEPIDVLEIG

ETIAYTGOVKOVKALGIM

ALLDEGETDWKVTAIDIN DPLAPKLNDIEDVEKYFP

GLLRATNEWFRIYKIPDG

KPENOFAFSGEAKNKKYA

LDIIKETHDSWKOLIAGK

SSDSKGIDLTNVTLPDTP TYSKAASDAIPPASLKAD

APIDKSIDKWFFISGSV'

Protein families 'hvdrolase' 'hydrolase/hydrolase inhibitor'

'immune system' 'isomerase' 'ligase'

'Ivase

Numerical Labels:

Levels are converted to the : 13 : 4 numerical vectors by one : 12 hot encoding method

: 14 : 6

Tf-idf is used to convert to the numerical vectors

Character to numerical vectors:

ngram = 3. (it collects all the possible combinations of 3 adjacent letters from the whole datasets)

Tf-idf provides value between 0 to 1. Most important word has value closer to 1.

Brief intro of Sequential model

- RNN are the "time series version" of ANNs. They are meant to process sequences of data.
- A looping constraint on the hidden layer of ANN turns to RNN.
- An RNN can be thought of as multiple copies of the same network, each passing a message to a successor.

An unrolled recurrent neural network.

- RNNs can learn to use the past information but as that gap grows, RNNs become unable to learn to connect the information.
- Also, vanishing and exploding gradient issues come with a simple RNN.

Reference: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM & BILSTM

- "LSTMs" are a special kind of RNN, capable of learning long-term dependencies
- The key to LSTMs is the cell state

The LSTM does have the ability to remove or add information to the cell state, carefully regulated by structures called gates.

Forget gate: what is relevant to keep from the

Deep Learning Models (Model architecture):

LSTM

Layer (type)	Output Shape	Param #
lstm (LSTM)	(None, 1, 256)	5383168
dropout (Dropout)	(None, 1, 256)	0
lstm_1 (LSTM)	(None, 1, 256)	525312
dropout_1 (Dropout)	(None, 1, 256)	0
lstm_2 (LSTM)	(None, 256)	525312
dense (Dense)	(None, 15)	3855

Total params: 6,437,647 Trainable params: 6,437,647 Non-trainable params: 0

BiDirectional LSTM

Layer (type)	Output	Shape	Param #
bidirectional (Bidirectional	(None,	1, 512)	10766336
dropout_2 (Dropout)	(None,	1, 512)	0
bidirectional_1 (Bidirection	(None,	1, 512)	1574912
dropout_3 (Dropout)	(None,	1, 512)	0
bidirectional_2 (Bidirection	(None,	512)	1574912
dense_1 (Dense)	(None,	15)	7695

Total params: 13,923,855
Trainable params: 13,923,855
Non-trainable params: 0

Model evaluation

Models	Accuracy	Recall	precision	AUC
LSTM	0.59	0.59	0.61	0.83
BiLSTM	0.59	0.59	0.60	0.84

Summary and recommendation:

- This projects aims to classify 15 most common protein families using two separate approaches (Machine Learning and Deep Learning).
- Machine learning algorithm uses physical and chemical properties of protein whereas deep learning uses amino acid sequence to predict the protein families.
- Machine learning algorithms are not much useful to classify protein families because of the limited features.
- Both LSTM and BiLSTM are some how useful to classify protein families.

Recommendation:

- More features are need to ML model to improve its predictability.
- More data is needed for LSTM to improve its predictability.

Thank you.