

Departamento de Matemáticas 4º Académicas

Examen final de trimestre 1

Nombre:	Fecha:
11011101101	i cena.

Tiempo: 50 minutos Tipo: A

Esta prueba tiene 6 ejercicios. La puntuación máxima es de 25. La nota final de la prueba será la parte proporcional de la puntuación obtenida sobre la puntuación máxima. Para la recuperación de pendientes de 3° se tendrán en cuenta los apartados: 1.a y 4.a

Ejercicio:	1	2	3	4	5	6	Total
Puntos:	3	1	1	1	1	18	25

- 1. Calcula:
 - (a) (1 punto) Racionaliza y simplifica: $\frac{\sqrt{3}}{2\sqrt{3}-\sqrt{2}}$

Solución:
$$=\frac{\sqrt{3}\cdot\left(2\sqrt{3}+\sqrt{2}\right)}{\left(2\sqrt{3}-\sqrt{2}\right)\left(2\sqrt{3}+\sqrt{2}\right)} = \frac{6\sqrt{6}}{12-2} = \frac{6\sqrt{6}}{10}$$

(b) (1 punto) Aplica la definición de logaritmo para calcular: $\log_4 \sqrt{0,25}$

Solución:
$$\rightarrow 4^x = \sqrt{\frac{1}{4}} \rightarrow 4^x = 4^{-1/2} \rightarrow \log_4 \sqrt{0,25} = -\frac{1}{2}$$

(c) (1 punto) Aplica la definición de logaritmo para calcular: $\log_5 \sqrt[3]{25}$

Solución:
$$\rightarrow 5^x = \sqrt[3]{5^2} \rightarrow 5^x = 5^{2/3} \rightarrow \log_5 \sqrt[3]{25} = \frac{2}{3}$$

- 2. (1 punto) Utilizando el teorema del resto para el polinomio $P(x) = -2x^3 + x^2 3x 6$, resuelve:
 - (a) Valor numérico para x = -1

(b) ¿Es divisible P(x) por x + 1? Justifica tu respuesta

Solución: Sí. Por el teorema del resto

3. (1 punto) Halla el valor de k para que la siguiente división sea exacta: $(3x^2+kx-2)$: (x+2)

Solución:
$$\to 10 - 2k = 0 \to k = 5$$

4. (1 punto) Simplifica la fracción algebraica:

$$\frac{2x^3 - 5x^2 + 3x}{2x^2 + x - 61}$$

Solución:
$$=\frac{2x(x-1)\left(x-\frac{3}{2}\right)}{2(x+2)\left(x-\frac{3}{2}\right)} = \frac{x(x-1)}{x+2}$$

5. (1 punto) Simplifica la fracción algebraica:

$$\frac{2x^4 - 6x^3 + 6x^2 - 2x}{6x^3 - 12x^2 + 6x}$$

Solución:
$$=\frac{2x(x-1)^3}{6x(x-1)^2} = \frac{x-1}{3}$$

6. Resuelve las siguientes ecuaciones:

(a) (2 puntos)

$$\frac{2x}{x+1} - \frac{1}{x} = \frac{5}{6}$$

Solución:
$$\rightarrow \frac{12x^2}{6x(x+1)} - \frac{6(x+1)}{5x(x+1)(x+1)} = \frac{5}{6x(x+1)} \rightarrow 12x^2 - 6x - 6 = 5x^2 + 5x \rightarrow 7x^2 - 11x - 6 = 0 \rightarrow x = 2 \ x = -\frac{3}{7}$$

(b) (2 puntos)

$$\frac{6x+1}{x^2-4} - \frac{x}{x-2} = \frac{x+1}{x+2}$$

Solución:
$$\rightarrow \frac{6x+1}{(x+2)(x-2)} - \frac{x(x+2)}{(x+2)(x-2)} = \frac{(x+1)(x-2)}{(x+2)(x-2)} \rightarrow 6x + 1 - x^2 - 2x = x^2 - 2x + x - 2 \rightarrow 0 = 2x^2 - 5x - 3 \rightarrow x = \frac{5 \pm \sqrt{25 + 24}}{4} = \frac{5 \pm 7}{4} = \begin{cases} x = -\frac{1}{2} \\ x = 3 \end{cases}$$

(c) (2 puntos)

$$2x^4 - 6x^3 + 6x^2 - 2x = 0$$

Solución: $P(x)2x^4 - 6x^3 + 6x^2 - 2x = 2x(x-1)^3$. Soluciones: x = 0 y x = 1 triple

(d) (2 puntos)

$$6x^3 - 12x^2 + 6x = 0$$

Solución: $P(x) = 6x^3 - 12x^2 + 6x = 6x(x-1)^2$. Soluciones: x = 0 y x = 1 doble

(e) (2 puntos)

$$\sqrt{x+1} + 5 = x$$

Solución: $\to x+1 = (x-5)^2 \to x+1 = x^2+25-10x \to 0 = x^2-11x+24$ Soluciones: x=8 válida y x=3 no válida

(f) (2 puntos)

$$\sqrt{3x-2} + \sqrt{x-1} = 3$$

Solución: $\rightarrow \sqrt{3x-2} = 3 - \sqrt{x-1} \rightarrow 3x - 2 = 9 + x - 1 - 6\sqrt{x-1} \rightarrow 6\sqrt{x-1} = 9 + x - 1 - 3x + 32 \rightarrow 6\sqrt{x-1} = 10 - 2x \rightarrow 3\sqrt{x-1} = 5 - x \rightarrow x - 1 = 25 + x^2 - 10x \rightarrow x^2 - 19x + 34 = 0$. Soluciones: x = 2 (Sí) y x = 17 No

(g) (2 puntos)

$$2\log x - \log(3x - 5) = \log 5x - 1$$

Solución: $\rightarrow 2 \log x - \log (3x - 5) = \log 5x - \log 10 \rightarrow \log \frac{x^2}{3x - 5} = \log \frac{5x}{10} \rightarrow \frac{x^2}{3x - 5} = \frac{x}{2} \rightarrow 2x^2 = 3x^2 - 5x \rightarrow 0 = x^2 - 5 \rightarrow 0 = x(x - 5) \rightarrow x = 0 \ y \ x = 5 \rightarrow$

 \rightarrow de las dos soluciones, la única válida es x=5 ya que $\log 0$ no existe

(h) (2 puntos)

$$\log(x-1) + \log 2 = \log(x^2+3) - \log x$$

Solución: $\rightarrow 2(x-1) = \frac{x^2+3}{x} \rightarrow 2x^2-2x = x^2+3 \rightarrow x^2-2x-3 = 0 \rightarrow x = \frac{2\pm\sqrt{4+12}}{2} = \begin{cases} x = 3 \rightarrow \text{es solución} \\ x = -1 \rightarrow \text{no es solución, no existen los logaritmos de negativos} \end{cases}$

(i) (2 puntos) $(x^2 - 5x + 5) \log 5 + \log 20 = \log 4$

Solución: $\rightarrow 5^{(x^2-5x+5)} \cdot 20 = 4 \rightarrow 5^{(x^2-5x+5)} = \frac{1}{5} \rightarrow 5^{(x^2-5x+5)} = 5^{-1} \rightarrow x^2 - 5x + 5 = -1 \rightarrow x^2 - 5x + 6 = 0 \rightarrow x = \frac{5\pm\sqrt{25-24}}{2} = \begin{cases} x = 3 \rightarrow \text{es solución} \\ x = 2 \rightarrow \text{es solución} \end{cases}$