Assignment 5

$Computational\ Intelligence,\ SS2018$

Team Members		
Last name	First name	Matriculation Number
Lee	Eunseo	11739623
Shadley	Alex	11739595
Lee	Dayeong	11739321

1 Classication/ Clustering

1.1 2 dimensional feature

1.1.1 Perform all of the above-mentioned tasks for the EM algorithm.

In the process of initializing the parameters, we used random function to select m points for calculating means. Therefore, the result is different for each process. We selected the best results from 10 trials.

• Compare the result with the labeled data set (i.e., consider labels as well). Make a scatter plot of the data and plot the Gaussian mixture model over this plot.

Figure 1: label data

First array is EM algorithm classification. Second array is answer classification. Three points are mis-classified.

Figure 2: Three gaussian with scatter data points

EM algorithm succeeded to find three gaussian model and classified the data points well.

• For your tests, select the correct number of components (K = 3), but also check the result when you use more or less components. How do you choose your initialization θ 0? Does this choice have an inuence on the result

When the number of components is 2, the result is the following figure.

Figure 3: K = 2

When the number of components is 4, the result is the following figure.

Figure 4: K = 4

For initialization $\theta 0$, we referred to the class pdf. The following figure is the reference class pdf.

```
4.2.1 Initialisierung Eine Möglichkeit \Theta^0 zu initialisieren ist: 1. \ \alpha_m^0 \ \text{auf uniforme Verteilungsfunktion} \ \alpha_m^0 = \frac{1}{M} 2. \ \Sigma_m^0 \ \text{wird auf die Kovarianzmatrix} \ \Sigma \ \text{der Daten X gesetzt d.h.} \ \Sigma = \frac{1}{N} \sum_{n=1}^N (\mathbf{x}_n - \boldsymbol{\mu}) (\mathbf{x}_n - \boldsymbol{\mu})^T \ \text{wobei} \boldsymbol{\mu} = \frac{1}{N} \sum_{n=1}^N x_n. 3. \ \text{Für } \boldsymbol{\mu}_m^0 \ \text{wählt man } m \ \text{Samples zufällig aus oder man verwendet den k-means Algorithmus.}
```

Figure 5: The initialization process in the class pdf

The result of more or fewer clusters than 3, while clearly not ideal, is nonetheless fairly logical. One can see that, as more clusters are added, what was originally a single cluster begins to be broken up into smaller, similarly sized and shaped clusters. I also believe that K-means is a better algorithm for when distances between clusters are larger, since the algorithm seems to struggle especially with tightly packed clusters.

• plot the log-likelihood function over the iterations! What is the behavior of this function over the iterations?

Figure 6: The log-likelihood function over iterations

As shown in Figure 4, the log-likelihood increases over iterations. That is, likelihood increased over iterations. And about 50th iteration, the function looks convering to the value, -112.96270776709655. Therfore, the process stops even though it didn't reach the max iteration number.

• Make a scatter plot of the data that shows the result of the soft-classication that is done in the E-step

Figure 7: The EM algorithm soft-classification

Figure 8: The answer classification

The EM algorithm classifies well the points when it is compared with the answer classification. EM algorithm fails to classify the points near the boundary of iris-Versicolor and iris-Virgnica.

1.1.2 Perform all of the above-mentioned tasks for the K-means algorithm

The algorithm for K-means initialization selects N different points at random from the dataset as the starting positions for N clusters. This ensures that all centers classify at least one point during the first iteration, producing better results.

• Compare the result with the labeled data set (i.e., consider labels as well). Make a scatter plot of the data and plot the Gaussian mixture model over this plot.

Figure 9: label data

First array is EM algorithm classification. Second array is answer classification. Three points are mis-classified.

Figure 10: K-means clustering with 3 centers

The K-means algorithm mostly succeeded in properly identifying the 3 clusters. A couple points were misclassified, which we hypothesize is largely due to the limited explanatory power of the K-means approach. Which is to say, since K-means classifies solely on euclidean distance, it lacks the finesse of the EM algorithm, which can employ a covariance matrix to describe more complex structures.

• For your tests, select the correct number of components (K = 3), but also check the result when you use more or less components. How do you choose your initialization θ 0? Does this choice have an inuence on the result

The following image depicts a K-means clustering with 2 centers.

Figure 11: K = 2

With 4 centers, K-means produces the following.

Figure 12: K = 4

For initialization $\theta 0$, we referred to the class pdf. The following figure is the reference class pdf.

```
4.2.1 Initialisierung Eine Möglichkeit \Theta^0 zu initialisieren ist: 1. \ \alpha_m^0 \ \text{auf uniforme Verteilungsfunktion} \ \alpha_m^0 = \frac{1}{M} 2. \ \Sigma_m^0 \ \text{wird auf die Kovarianzmatrix} \ \Sigma \ \text{der Daten X gesetzt d.h.} \ \Sigma = \frac{1}{N} \sum_{n=1}^N (\mathbf{x}_n - \boldsymbol{\mu}) (\mathbf{x}_n - \boldsymbol{\mu})^T \ \text{wobei} \boldsymbol{\mu} = \frac{1}{N} \sum_{n=1}^N x_n. 3. \ \text{Für} \ \boldsymbol{\mu}_m^0 \ \text{wählt man } m \ \text{Samples zufällig aus oder man verwendet den k-means Algorithmus.}
```

Figure 13: The initialization process in the class pdf

The initialization process influences the EM algorithm result. When the randomly selected points, for calculating mean value, is well chosen, the result is accurate. That is, the result is accurate when the first random selected points are from first answer label group, the second random selected points are from second answer label group and the third random selected points are from third answer label group.

• plot the log-likelihood function over the iterations! What is the behavior of this function over the iterations?

Figure 14: The log-likelihood function over iterations

As shown in Figure 4, the log-likelihood increases over iterations. That is, likelihood increased over iterations. And about 50th iteration, the function looks convering to the value, -112.96270776709655. Therfore, the process stops even though it didn't reach the max iteration number.

• Make a scatter plot of the data that shows the result of the soft-classication that is done in the E-step

Figure 15: The EM algorithm soft-classification

Figure 16: The answer classification

The EM algorithm classifies well the points when it is compared with the answer classification. EM algorithm fails to classify the points near the boundary of iris-Versicolor and iris-Virgnica.

1.1.3 You may additionally choose any other pair of features; how would this change the classication accuracy

The following figures are the scatter plots when two of four data columns are selected.

As shown in above figures, when first and third column are selected, we can draw a line to seperate the Iris-Virgnica and the Iris-Versicolor. That is, it is easy to differentiate these two groups. When other columns are selected, these two groups are mixed together. Therfore, EM algorithm also can not classify these two groups as different groups. For example, the worst one is when first and second columns are selected. When first and second columns are selected, the result is the following graph.

Figure 17: The answer classification

Figure 18: EM algorithm classification

As expected, the EM alogirthm result is not classified well when first and second columns are selected. That is, the EM algorithm accuracy decreased.

Therfore, the column selection influences the EM algorithm accuracy.

1.2 4 dimensional feature

1.2.1 EM algorithm tasks

• Compare the result with the labeled data set (i.e., consider labels as well). Make a scatter plot of the data and plot the Gaussian mixture model over this plot.

Figure 19: label data

First array is EM algorithm classification. Second array is answer classification. Four points are mis-classified.

Figure 20: Three gaussian with scatter data points

EM algorithm succeeded to find three gaussian model and classified the data points well.

• For your tests, select the correct number of components (K = 3), but also check the result when you use more or less components. How do you choose your initialization θ 0? Does this choice have an inuence on the result When the number of components is 2, the result is the following figure.

Figure 21: K = 2

When the number of components is 4, the result is the following figure.

Figure 22: K = 4

Initalization $\theta 0$ is the same with the dimension 2. As written in section 1.1.1, the initialization process affects the result.

• plot the log-likelihood function over the iterations! What is the behavior of this function over the iterations?

Figure 23: The log-likelihood function over iterations

As shown in Figure 4, the log-likelihood increases over iterations. That is, likelihood increased over iterations. And about 25th iteration, the function looks convering to the value, -87.41158191236445.. Therfore, the process stops even though it didn't reach the max iteration number.

• Make a scatter plot of the data that shows the result of the soft-classication that is done in the E-step

Figure 24: The EM algorithm soft-classification

Figure 25: The answer classification

The EM algorithm classifies well the points when it is compared with the answer classification. EM algorithm fails to classify the points near the boundary of iris-Versicolor and iris-Virgnica.

1.2.2 How do the convergence properties and the accuracy of you classication change in comparison to scenario 2.1?

• EM-algorithm

The convergence value of log likelihood function increased. In the scenario 2.1, the value was -112.96. However, in the scenario 2.2, the value increased to -87.41. Also, the total iteration decreased in the scenario 2.2. The value decreased from 75 to 26.

Also, we compared the scenario 2.1 and 2.2 with each 10 trials. Overall, the EM classifies the data points better in 2.2 scenario. The accuarcy of 2.2 scenario is higher than that of 2.1 scenario. Because the EM algorithm in 2.2 scenario has more additional information about the dataset.

1.2.3 Within your EM-function conne the structure of the covariance matrices to diagonal matrices! What is the inuence on the result.

1.3 Processing the data with PCA

1.3.1 How much of the variance in the data is explained this way?

- \bullet original variance(sum of eigenvalues) 4.499157046979866
- \bullet associated eigenvalues 4.15886089, 0.23573307
- \bullet the amount of explained variance 0.9767594057574307

1.3.2 How does the performance of your algorithms compare to scenario 2.1 and scenario 2.2?

Scenario 2.1 has no difference at performance for both algorithms. Actually it takes more time to do PCA. The amount of explained variance is 1. The data from PCA is rotated original data that eigenvectors are the axes.

Figure 26: answer for pca scenario 1

Figure 28: log-likelihood plot for scenario 1. EM

Figure 30: scatter plot for scenario 1. K-means

Figure 27: scatter plot for scenario 1. EM

Figure 29: scatter plot with Gaussian for scenario 1. EM

Figure 31: cumulative distance for k-means plot for scenario 1. K-means

EM showed better performance in scenario 2.2. PCA reduced the dimension of data to 2 so it took less time and showed more accuracy.

Figure 32: answer for pca scenario 2

Figure 34: log-likelihood plot for scenario 2. EM $\,$

Figure 36: scatter plot for scenario 2. K-means

Figure 33: scatter plot for scenario 2. EM

Figure 35: scatter plot with Gaussian for scenario 2. $\rm EM$

Figure 37: cumulative distance for k-means plot for scenario 2. K-means

1.3.3 Apply PCA with whitening, so that the transformed data has zero mean and a unit covariance matrix. How does this influence the choice of your initialization?

Compared PCA without whitening and PCA with whitening on scenario 2(4 dimension \rightarrow 2 dimension), initialization result is below.

• EM

```
- without whitening
    * \alpha
      [0.33333333 \quad 0.33333333 \quad 0.33333333]
      mean
       1.13021491
                   -0.01001823
                                  1.13587265
       0.23478179
                                 -0.42093766
                    0.11992288
     covariance
        4.15886089e + 00
                           4.15886089e + 00
                                               4.15886089e + 00
       -8.58001217e - 16
                          -8.58001217e - 16
                                              -8.58001217e - 16
       -8.58001217e - 16
                          -8.58001217e - 16
                                              -8.58001217e - 16
       2.35733074e - 01
                           2.35733074e - 01
                                               2.35733074e - 01
- with whitening
    * \(\alpha\)
      [0.333333333
                  * mean
                                  -2.74090941
       0.65215026
                    -2.61884422
                    -0.0246702
                                  -0.2064007
       -0.1535649
      covariance
        1.72961239e + 01
                           1.72961239e + 01
                                               1.72961239e + 01
       -1.05433932e - 15
                          -1.05433932e - 15
                                              -1.05433932e - 15
```

-1.05433932e - 15

5.55700821e - 02

The mean of sample means became close to 0 after whitening, assumed that the number of choosen samples in each class is same. The covariances also changed. Theoritically, the covariance matrix with 4 dimension should be identity matrix. However, our covariances is not covariance matrix with 4 data dimension. Whitening influenced somehow to initialize EM.

-1.05433932e - 15

5.55700821e - 02

• K-means

-1.05433932e - 15

5.55700821e - 02

Calcutated mean value of initial values in each dimension became close to 0 after whitening.

- 2 Samples from a Gaussian Mixture Model
- 2.1 Write a function Y = sample-GMM(alpha, mu, cov, N)
- 2.2 Using a GMM of your choice (K > 3), demonstrate the correctness of your function