Zadaci za dodatnu vježbu (gradivo 2. knjižice):

1. Naći jednadžbu sinusoide $y = A\sin(ax+b)$, ako je jedna od točaka maksimuma $(\frac{5}{2},3)$, a (1,0) i (4,0) su dvije susjedne nul-točke.

Skicirati grafove sljedećih funkcija:

2.
$$f(x) = e^{-x} + 1$$
,

3.
$$f(x) = 1 - e^x$$
,

4.
$$f(x) = \ln(x+1)$$
,

$$5. \ f(x) = \arcsin(x-1),$$

6.
$$f(x) = \frac{\pi}{2} + arcsinx$$
,

7.
$$f(x) = \arccos(2x)$$
,

8.
$$f(x) = 2arctgx$$
,

9.
$$f(x) = \pi - arcctgx$$
,

10.
$$f(x) = 1 - chx$$
,

11.
$$f(x) = 3thx$$
,

$$12. \ f(x) = 1 + cthx,$$

13.
$$f(x) = cth(x+1)$$
,

14.
$$f(x) = arch(x+1)$$
,

15.
$$f(x) = arth(x-1)$$
,

16.
$$f(x) = arth(2x)$$
,

17.
$$f(x) = arcth(2x - 1)$$
.

Za svaku od sljedećih funkcija ispitati je li parna i je li neparna:

18.
$$f(x) = \sin(3x + \frac{\pi}{2})$$
,

$$19. \ f(x) = \sin^2 x,$$

$$20. \ f(x) = \cos^3 x,$$

21.
$$f(x) = e^x - e^{-x}$$
,

22.
$$f(x) = e^x - 1$$
,

23.
$$f(x) = \ln\left(\frac{1-x}{1+x}\right)$$
.

Odrediti prirodno područje definicije funkcije:

24.
$$f(x) = \sqrt{x^2 + 7x + 10}$$

25.
$$f(x) = \sqrt{x^3 + 2x^2 - 31x + 28}$$

26.
$$f(x) = \sqrt{x^3 + 3x^2 + 3x + 2}$$
,

27.
$$f(x) = \ln(2 - |x - 4|)$$
,

28.
$$f(x) = \ln(1 - |x^2 - 3|)$$

29.
$$f(x) = \frac{\sqrt{x^2 - 1}}{\sqrt[3]{x} - 2}$$
,

30.
$$f(x) = \sqrt{\frac{x-1}{x^2-x-6}}$$

31.
$$f(x) = \sqrt{\frac{\ln^2 x - 1}{\ln^2 x - 4}}$$
,

32.
$$f(x) = \sqrt{\arcsin\left(\frac{x-2}{2x+3}\right)},$$

33.
$$f(x) = \arccos\left(\frac{1}{x-3}\right)$$
,

34.
$$f(x) = arth(\frac{1}{x^2 - 4}),$$

35.
$$f(x) = \ln(chx - 1)$$
,

36.
$$f(x) = \frac{1}{6sh(\ln x) - x}$$
,

37.
$$f(x) = \sqrt{arcctgx - \frac{\pi}{4}}$$
,

38.
$$f(x) = \ln(4x - x^2) \cdot \sqrt{\ln(2\sin(2\pi x))}$$
.

39. Neka je $f(x) = \frac{1+\ln x}{1-\ln x}$. Odrediti $f^{-1}(x)$. Odrediti prirodnu domenu i sliku funkcije f.

40. Neka je $f(x) = \frac{2^{x+1}-1}{2^{x-1}+1}$. Odrediti $f^{-1}(x)$. Odrediti prirodnu domenu i sliku funkcije f.

Rješenja dodatnih zadataka za vježbu - 2. knjižica

- 1. Neka je jednadžba sinuoside $y = A \sin(a(x x_0))$. Očito je A = 3 i $x_0 = 1$. Nadalje je $a = \frac{2\pi}{T}$, gdje je T temeljni period sinusoide. Vrijedi T = 6, pa je $a = \frac{\pi}{3}$.
 - Dakle, jednadžba sinusoide je $y = 3\sin\left(\frac{\pi}{3}(x-1)\right)$.
- 2. Zrcalimo krivulju $y=e^x$ s obzirom na os "y" i translatiramo za 1 "prema gore".
- 3. Zrcalimo krivulju $y=e^x$ s obzirom na os "x'' i translatiramo za 1 "prema gore".
- 4. Translatiramo krivulju $y = \ln x$ za 1 "u lijevo".
- 5. Translatiramo krivulju y = arcsinx za 1 "u desno".
- 6. Translatiramo krivulju $y = \arcsin x$ za $\frac{\pi}{2}$ "prema gore".
- 7. Kontrakcija krivulje y = arccosx za faktor 2 u smjeru osi "x".
- 8. Dilatacija krivulje y = arctgx za faktor 2 u smjeru osi "y".
- 9. Zrcalimo krivulju y = arcctgx s obzirom na os "x'' i translatiramo za π "prema gore".
- 10. Zrcalimo krivulju y = chx s obzirom na os "x'' i translatiramo za 1 "prema gore".
- 11. Dilatacija krivulje y = thx za faktor 3 u smjeru osi "y".
- 12. Translatiramo krivulju y = cthx za 1 "prema gore".
- 13. Translatiramo krivulju y = cthx za 1 "u lijevo".
- 14. Translatiramo krivulju y = arcthx za 1 "u lijevo".
- 15. Translatiramo krivulju y = arthx za 1 "u desno".
- 16. Kontrakcija krivulje y = arthx za faktor 2 u smjeru osi "x".
- 17. Kontrakcija krivulje y = arcthx za faktor 2 u smjeru osi "x'' i translacija za $\frac{1}{2}$ "u desno".

Rješenja nekih zadataka za dodatnu vježbu (gradivo 2. knjižice):

- $1. \ y = 3\sin\left(\frac{\pi}{3}(x-1)\right)$
- 18. parna
- 19. parna
- 20. parna
- 21. neparna
- 22. ni parna ni neparna
- 23. neparna
- 24. Mora biti $x^2 + 7x + 10 = (x+5)(x+2) \ge 0$, pa je $D(f) = (-\infty, -5] \cup [-2, +\infty)$.
- 25. Mora biti $x^3 + 2x^2 31x + 28 \ge 0$. Odredimo najprije nul-točke polinoma $P(x) = x^3 + 2x^2 31x + 28$. Vodeći je koeficijent 1, pa znamo da cjelobrojne nul-točke polinoma moraju biti djelitelji slobodnog člana, tj. djelitelji broja 28, dakle, neki od brojeva $\pm 1, \pm 2, \pm 4, \pm 7, \pm 14, \pm 28$. Uvrštavanjem zaključujemo da je 1 nul-točka polinoma P. Dijeljenjem P(x) s x-1 dobivamo $Q(x) = x^2 + 3x 28$, čije su nul-točke -7 i 4.

Dakle, konačno smo dobili $x^3 + 2x^2 - 31x + 28 = (x+7)(x-1)(x-4) \ge 0$, odnosno $D(f) = [-7, 1] \cup [4, +\infty)$.

26. Mora biti $x^3 + 3x^2 + 3x + 2 \ge 0$. Odredimo najprije nul-točke polinoma $P(x) = x^3 + 3x^2 + 3x + 2$. Vodeći je koeficijent 1, pa znamo da cjelobrojne nul-točke polinoma moraju biti djelitelji broja 2, dakle, neki od brojeva $\pm 1, \pm 2$. Uvrštavanjem zaključujemo da je -2 nul-točka polinoma P. Dijeljenjem P(x) s x + 2 dobivamo $Q(x) = x^2 + x + 1$, koji nema realnih nul-točaka.

Dakle, konačno smo dobili $x^3+3x^2+3x+2=(x+2)(x^2+x+1)\geq 0$, odnosno $D(f)=[-2,+\infty).$

- 27. Mora biti 2 |x 4| > 0, tj. |x 4| < 2. Geometrijski interpretirajući, tražimo x koji su udaljeni od 4 za ne više od 2, pa je D(f) = (2, 6).
- 28. Mora vrijediti $1-|x^2-3|>0$, tj. $|x^2-3|<1$. Dakle, mora biti $x^2-3<1$ i $x^2-3>-1$, odnosno $x^2<4$ i $x^2>2$. Dakle, $D(f)=(-2,-\sqrt{2})\cup(\sqrt{2},2)$.
 - 29. Mora vrijediti $x^2 1 \ge 0$ i $\sqrt[3]{x} \ne 2$, tj. $D(f) = (-\infty, -1] \cup [1, 8) \cup (8, +\infty)$.
- 30. Mora vrijediti $\frac{x-1}{x^2-x-6} \ge 0$, tj. $x-1 \ge 0$ i $x^2-x-6 > 0$ ili $x-1 \le 0$ i $x^2-x-6 < 0$, pa je $D(f) = (-2,1] \cup (3,+\infty)$.

 31. Mora vrijediti $\frac{\ln^2 x-1}{\ln^2 x-4} \ge 0$, tj. $\ln^2 x-1 \ge 0$ i $\ln^2 x-4 > 0$ ili $\ln^2 x-1 \le 0$
- 31. Mora vrijediti $\frac{\ln^2 x 1}{\ln^2 x 4} \ge 0$, tj. $\ln^2 x 1 \ge 0$ i $\ln^2 x 4 > 0$ ili $\ln^2 x 1 \le 0$ i $\ln^2 x 4 < 0$, odnosno $\ln^2 x > 4$ ili $\ln^2 x \le 1$, tj. $\ln x \in (-\infty, -2) \cup [-1, 1] \cup (2, +\infty)$. Konačno imamo $D(f) = (0, e^{-2}) \cup [e^{-1}, e] \cup (e^2, +\infty)$. 32. Mora vrijediti $-1 \le \frac{x-2}{2x+3} \le 1$ i $\arcsin(\frac{x-2}{2x+3}) \ge 0$. Drugi uvjet je ek-
- 32. Mora vrijediti $-1 \le \frac{x-2}{2x+3} \le 1$ i $\arcsin(\frac{x-2}{2x+3}) \ge 0$. Drugi uvjet je ekvivalentan uvjetu $\frac{x-2}{2x+3} \ge 0$. Zaključujemo da treba naći sve x za koje vrijedi $0 \le \frac{x-2}{2x+3} \le 1$.

Rješenje nejednadžbe $\frac{x-2}{2x+3} \ge 0$ je $(-\infty, -\frac{3}{2}) \cup [2, +\infty)$. Nejednadžba $\frac{x-2}{2x+3} \le 1$ je ekvivalentna s $\frac{-x-5}{2x+3} \le 0$, a njezino rješenje je $(-\infty, -5] \cup (-\frac{3}{2}, +\infty)$.

Presjek rješenja tih dviju nejednadžbi je prirodno područje definicije funkcije

- f, a to je $D(f) = (-\infty, -5] \cup [2, +\infty)$. 33. Mora vrijediti $-1 \le \frac{1}{x-3} \le 1$, tj. $\frac{1}{|x-3|} \le 1$ uz $x \ne 3$, odnosno $|x-3| \ge 1$ (za x=3 ova nejednadžba nije zadovoljena pa ne moramo pisati uvjet $x\neq 3$).
- Njezino rješenje je (geometrijski očevidno) $D(f)=(-\infty,2]\cup[4,+\infty)$. 34. Mora vrijediti $-1<\frac{1}{x^2-4}<1$, tj. $\frac{1}{|x^2-4|}<1$, uz $x^2\neq 4$, odnosno $|x^2-4|>1$ (za $x^2=4$ i onako nejednadžba nije zadovoljena, pa taj uvjet više nećemo navoditi).

Dakle, mora biti $x^2-4>1$ ili $x^2-4<-1$, odnosno $x^2>5$ ili $x^2<3$. Konačno je $D(f) = (-\infty, -\sqrt{5}) \cup (-\sqrt{3}, \sqrt{3}) \cup (\sqrt{5}, +\infty).$

- 35. Mora biti chx > 1, tj. $x \neq 0$, pa je $D(f) = (-\infty, 0) \cup (0, \infty)$.
- 36. Mora biti x > 0. Za x > 0 je $f(x) = \frac{x}{2x^2 3}$, pa je $D(f) = (0, \infty) \setminus \{\sqrt{\frac{3}{2}}\}$.
- 37. Mora vrijediti $arcctgx \ge \frac{\pi}{4}$, odnosno $x \le 1$. Dakle, $D(f) = (-\infty, 1]$.
- 38. Mora vrijediti $4x x^2 > 0$ i $2\sin(2\pi x) > 1$.

Drugu nejednadžbu moramo rješavati grafički, jer funkcija sinus nije monotona. Njezino rješenje je $\bigcup_{k \in \mathbf{Z}} \left[\frac{1}{12} + k, \frac{5}{12} + k \right]$. Prva nejednadžba ima rješenje (0,4).

Dakle, prirodno područje definicije je $[\frac{1}{12}, \frac{5}{12}] \cup [\frac{13}{12}, \frac{17}{12}] \cup [\frac{25}{12}, \frac{29}{12}] \cup [\frac{37}{12}, \frac{41}{12}].$

39.
$$f^{-1}(x) = e^{\frac{x-1}{x+1}}$$
, domena: $D(f) = (0, \infty) \setminus \{e\}$, slika: $Im(f) = \mathbf{R} \setminus \{-1\}$.
40. $f^{-1}(x) = \log_2\left(\frac{2x+2}{4-x}\right)$, domena: $D(f) = \mathbf{R}$, slika: $Im(f) = (-1, 4)$.

40.
$$f^{-1}(x) = \log_2\left(\frac{2x+2}{4-x}\right)$$
, domena: $D(f) = \mathbb{R}$, slika: $Im(f) = (-1, 4)$.