DEVOIR SURVEILLÉ N°3

Nom: Prénom: Classe:

EXERCICE N°1 10 points

Un hôpital a mené une étude sur deux types de patients, ceux atteints de diabète de type 2 et ceux souffrant d'hypertension artérielle. Les résultats de l'étude sur un échantillon de 400 patients sont les suivants :

- 200 patients sont atteints de diabète de type 2.
- 150 patients souffrent d'hypertension artérielle.
- 25 % des patients diabétiques de type 2 présentent également une hypertension artérielle.

1) Recopier et compléter le tableau croisé d'effectifs ci-dessous :

	Patients Diabétiques de type II	Patients non Diabétiques de type II	Total
Patient avec Hypertension artérielle	50	100	150
Patient sans Hypertension artérielle	150	100	250
Total	200	200	400

2) Quel est le pourcentage de patients n'ayant aucune des deux affections?

$$\frac{100}{400} = 0.25$$
, 25 % des patients n'ont aucune des deux affections.

3) L'affirmation suivante est-elle vraie : « Au moins 20 % des patients ont les deux affections ? Justifier.

$$\frac{50}{400} = 0.125$$
, 12,5 % des patients ont les deux affections donc l'affirmation est fausse

4) On note H l'événement « Le patient souffre d'hypertension artérielle » et \overline{H} l'événement contraire.

On note D l'événement « Le patient a un diabète de type II» et \overline{D} l'événement contraire.

4.a) Calculer $f_H(D)$. On arrondira à 10^{-3} près.

$$f_H(D) = \frac{Card(D \cap H)}{Card(H)} = \frac{50}{150} = \frac{1}{3}$$
 , $f_H(D) \approx 0.33$

4.b) Calculer $f(\overline{H} \cap D)$.

$$f(\overline{H} \cap D) = \frac{150}{400} = \frac{3}{8}$$
 , $f(\overline{H} \cap D) = 0.375$

EXERCICE N°2

Un centre médical a mené une étude sur deux types de vaccinations : la vaccination contre la grippe et la vaccination contre la Covid. Sur un échantillon de 300 patients, les résultats sont les suivants :

- 120 patients ont été vaccinés contre la grippe.
- 30 % des patients vaccinés contre la grippe ont refusé le vaccin contre la Covid.
- 6 patients allergiques au vaccin contre la grippe se sont faits vaccinés contre la Covid.

1) Recopier et compléter le tableau suivant qui récapitule les résultats de l'enquête.

		[
	Vaccinés contre la grippe	Non vaccinés contre la grippe	Total
Vaccinés contre la Covid	84	6	90
Non vaccinés contre la Covid	36	174	210
Total	120	180	300

On note:

- G: l'événement « Le patient est vacciné contre la grippe »
- C: l'événement « Le patient est vacciné contre la Covid»
- 2) Calculer la fréquence de l'événement G.

$$f(G) = \frac{120}{300} = \frac{2}{5}$$
 , $f(G) = 0.4$

3) Calculer la fréquence de l'événement C.

$$f(C) = \frac{90}{300} = \frac{3}{10}$$
 , $f(G) = 0.3$

4) Calculer la fréquence, arrondie à 10⁻², des patients vaccinés contre la Covid parmi ceux qui n'ont pas fait le vaccin contre la grippe.

$$f_{\overline{G}}(C) = \frac{Card(\overline{G} \cap C)}{Card(\overline{G})} = \frac{6}{90} = \frac{1}{15}$$
, $f_{\overline{C}}(G) \approx 0.07$

5) Calculer la fréquence, arrondie à 10^{-2} , des patients vaccinés contre la grippe parmi ceux n'ayant pas fait le vaccin contre la Covid.

$$f_{\overline{c}}(G) = \frac{Card(\overline{C} \cap G)}{Card(\overline{C})} = \frac{36}{210} = \frac{6}{35}$$
, $f_{\overline{c}}(G) \approx 0.17$