Free Resolutions Homework 3

Michael Nelson

Troughout this homework assignment, let R be a commutative ring with identity and let $\mathbf{x} = x_1, \dots, x_n \in R$.

Exercise 1

Lemma 0.1. (*R*-linearity of homology) Let $\varphi, \psi \colon (A, d) \to (A', d')$ be two chain maps and let $r, s \in R$. Then

$$H(r\varphi + s\psi) = rH(\varphi) + sH(\psi)$$

Proof. Let $\overline{a} \in H(A, d)$. Then

$$\begin{split} H(r\varphi+s\psi)(\overline{a}) &= \overline{(r\varphi+s\psi)(a)} \\ &= \overline{r\varphi(a)+s\psi(a)} \\ &= r\overline{\varphi(a)}+s\overline{\psi(a)} \\ &= rH(\varphi)(\overline{a})+sH(\psi)(\overline{a}). \\ &= (rH(\varphi)+sH(\psi))(\overline{a}). \end{split}$$

Definition 0.1. Let φ and ψ be two chain maps between R-complexes (A,d) and (A',d'). We say φ is **homotopic** to ψ if there exists a graded homomorphism $h: A \to A'$ of degree 1 such that

$$\varphi - \psi = d'h + hd.$$

In the case where $\psi = 0$, then we say φ is **null-homotopic**.

Proposition 0.1. Let φ and ψ be chain maps of chain complexes (A,d) and (A',d'). If φ is homotopic to ψ , then $H(\varphi) = H(\psi)$.

Proof. Showing $H(\varphi)=H(\psi)$ is equivalent to showing $H(\varphi-\psi)=0$. Thus, we may assume that φ is null-homotopic homotopic and that we are trying to show that $H(\varphi)=0$. Let $\bar{a}\in H(A,d)$. Then d(a)=0, and so

$$H(\varphi)(\overline{a}) = \overline{\varphi(a)}$$

$$= \overline{(d'h + hd)(a)}$$

$$= \overline{d'(h(a)) + h(d(a))}$$

$$= \overline{d'(h(a)) + h(0)}$$

$$= \overline{d'(h(a))}$$

$$= 0.$$

Exercises 2a,2b

Proposition 0.2. *Let* $\lambda \in [n]$ *. Then the homothety map*

$$(\mathcal{K}(\mathbf{x}), d^{\mathcal{K}(\mathbf{x})}) \xrightarrow{\cdot x_{\lambda}} (\mathcal{K}(\mathbf{x}), d^{\mathcal{K}(\mathbf{x})})$$

is null-homotopic. In particular, $x_{\lambda}H(\mathcal{K}(\mathbf{x})) = 0$.

Proof. Denote $d := d^{\mathcal{K}(\mathbf{x})}$ and let $h \colon \mathcal{K}(\mathbf{x}) \to \mathcal{K}(\mathbf{x})$ be the unique graded homomorphism of degree 1 such that

$$h(e_{\sigma}) = e_{\lambda}e_{\sigma}$$

for all $\sigma \subseteq [n]$. Then

$$(dh + hd)(e_{\sigma}) = d(e_{\lambda}e_{\sigma}) + e_{\lambda}d(e_{\sigma})$$

= $x_{\lambda}e_{\sigma} - e_{\lambda}d(e_{\sigma}) + e_{\lambda}d(e_{\sigma})$
= $x_{\lambda}e_{\sigma}$

for all $\sigma \subseteq [n]$. It follows that

$$dh + hd = \mu_{x_{\lambda}}$$

on all of $\mathcal{K}(\mathbf{x})$. Thus the homothety map $\mu_{x_{\lambda}}$ is null-homotopic.

Corollary. Let $\lambda \in [n]$. Then $x_{\lambda}H(\mathcal{K}(\mathbf{x})) = 0$.

Proof. Let $\overline{f} \in H(\mathcal{K}(\mathbf{x}))$. Combining Proposition (0.2) and (Proposition (0.1), we see that

$$0 = H(0)(\overline{f})$$

$$= H(\mu_{x_{\lambda}})(\overline{f})$$

$$= \overline{x_{\lambda}f}$$

$$= x_{\lambda}\overline{f}.$$

Exercise 2c

Proposition 0.3. The following conditions are equivalent.

1. $\langle \mathbf{x} \rangle = R$,

2. $H(\mathcal{K}(\mathbf{x})) \cong 0$

3. $H_0(\mathcal{K}(\mathbf{x})) \cong 0$.

Proof. Throughout this proof, we denote $d := d^{\mathcal{K}(\mathbf{x})}$.

(1 \Longrightarrow 2) Since $\langle \mathbf{x} \rangle = R$, there exists $y_1, \dots, y_n \in R$ such that

$$\sum_{\lambda=1}^{n} x_{\lambda} y_{\lambda} = 1.$$

Choose such $y_1, \ldots, y_n \in R$. Let $\overline{f} \in H(\mathcal{K}(\mathbf{x}))$. So $f \in \text{Ker}(d)$ is a representative of the coset \overline{f} (meaning d(f) = 0). Then

$$d\left(\sum_{\lambda=1}^{n} y_{\lambda} e_{\lambda} f\right) = \sum_{\lambda=1}^{n} y_{\lambda} d(e_{\lambda} f)$$

$$= \sum_{\lambda=1}^{n} y_{\lambda} (d(e_{\lambda}) f - e_{\lambda} d(f))$$

$$= \sum_{\lambda=1}^{n} y_{\lambda} x_{\lambda} f$$

$$= \left(\sum_{\lambda=1}^{n} y_{\lambda} x_{\lambda}\right) f$$

$$= f.$$

Thus, $f \in \text{Im}(d)$, and this implies $H(\mathcal{K}(\mathbf{x})) = 0$.

(2 \Longrightarrow 3) $H(\mathcal{K}(\mathbf{x})) = 0$ if and only if $H_i(\mathcal{K}(\mathbf{x})) = 0$ for all $i \in \mathbb{Z}$. In particular, $H(\mathcal{K}(\mathbf{x})) = 0$ implies $H_0(\mathcal{K}(\mathbf{x})) = 0$.

 $(3 \Longrightarrow 1)$ We have $0 \cong H_0(\mathcal{K}(\mathbf{x})) = R/\langle \mathbf{x} \rangle$, which implies $\langle \mathbf{x} \rangle = R$.

Appendix

In this appendix, we introduce notation and show that the Koszul complex is a DG algebra.

Ordered Sets

An **ordered set** is a set with a total linear ordering on it. The **ordered set** [n] is the set $\{1, \ldots, n\}$ equipped with the natural ordering $1 < \cdots < n$. Let σ be a subset of $\{1, \ldots, n\}$. Then the natural ordering on $\{1, \ldots, n\}$ induces a natural ordering on σ . If we want to think of σ as a set equipped with this natural ordering, then we will write $[\sigma]$. If $\sigma = \{\lambda_1, \ldots, \lambda_k\}$, where $1 \le \lambda_1 < \cdots < \lambda_k \le n$, then we will also write $[\sigma] = [\lambda_1, \ldots, \lambda_k]$. For each $i \in \mathbb{Z}$ such that $0 \le i \le n$, we denote

$$S_i[n] := \{ \sigma \subseteq \{1, \ldots, n\} \mid |\sigma| = i \}.$$

Signature

Let σ , $\tau \subseteq [n]$ such that $\sigma \cap \tau = \emptyset$. Suppose that

$$[\sigma] = [\lambda_1, \dots, \lambda_k]$$
 and $[\sigma'] = [\lambda_{k+1}, \dots, \lambda_{k+m}].$

where $1 \le \lambda_1 < \cdots < \lambda_k \le n$ and $1 \le \lambda_{k+1} < \cdots < \lambda_{k+m} \le n$. Then we have

$$[\sigma \cup \sigma'] = [\lambda_{\pi(1)}, \dots, \lambda_{\pi(k)}, \lambda_{\pi(k+1)}, \dots, \lambda_{\pi(k+m)}],$$

where $\pi: S_{k+m} \to S_{k+m}$ is the permutation which puts everything in the correct order. We define

$$\langle \sigma, \tau \rangle := \operatorname{sign}(\pi).$$

Remark. Let $\lambda \in [n]$ and let $\sigma \subseteq [n]$. To clean notation, we often drop the curly brackets around singleton elements $\{\lambda\}$. For instance, we will write $\sigma \setminus \lambda$ instead of $\sigma \setminus \{\lambda\}$ and $\sigma \cup \lambda$ instead of $\sigma \cup \{\lambda\}$. We will also write $\langle \lambda, \sigma \rangle$ or $\langle \sigma, \lambda \rangle$ instead of $\langle \{\lambda\}, \sigma \rangle$ or $\langle \sigma, \{\lambda\} \rangle$.

Example 0.1. Consider n = 4. We perform some computations:

$$\langle 2, [1,4] \rangle = -1$$

 $\langle 2,3 \rangle = 1$
 $\langle [1,4],2 \rangle = -1$
 $\langle 2, [1,3,4] \rangle = -1$
 $\langle [1,3,4],2 \rangle = 1$
 $\langle [1,3], [2,4] \rangle = -1$
 $\langle [2,4], [1,3] \rangle = -1$

Signature Identities

Proposition 0.4. *Let* σ , $\tau \subseteq [n]$ *such that* $\sigma \cap \tau = \emptyset$ *. If* $\lambda \in \sigma$ *, then*

$$\langle \sigma, \tau \rangle = \langle \sigma \backslash \lambda, \tau \rangle \langle \lambda, \tau \rangle.$$

Similarly, if $\mu \in \tau$, then

$$\langle \sigma, \tau \rangle = \langle \sigma, \mu \rangle \langle \sigma, \tau \backslash \mu \rangle. \tag{1}$$

Proof. Suppose $\lambda \in \sigma$. We can set $\sigma \cup \tau$ into proper order by moving λ all the way to the left of σ , then set $\sigma \setminus \lambda \cup \tau$ into proper order, then set $\lambda \cup (\sigma \setminus \lambda \cup \tau)$ into proper order. This gives us

$$\langle \sigma, \tau \rangle = \langle \lambda, \sigma \backslash \lambda \rangle \langle \sigma \backslash \lambda, \tau \rangle \langle \lambda, (\sigma \backslash \lambda) \cup \tau) \rangle$$

$$= \langle \lambda, \sigma \backslash \lambda \rangle \langle \sigma \backslash \lambda, \tau \rangle \langle \lambda, \sigma \backslash \lambda \rangle \langle \lambda, \tau \rangle$$

$$= \langle \sigma \backslash \lambda, \tau \rangle \langle \lambda, \tau \rangle$$

An analagous argument gives (1).

Koszul Complex

Definition 0.2. The **Koszul complex** of \underline{x} , denoted $(\mathcal{K}(\underline{x}), d^{\mathcal{K}(\underline{x})})$ is the *R*-complex whose graded *R*-module $\mathcal{K}(x)$ has

$$\mathcal{K}_i(\underline{x}) := \begin{cases} \bigoplus_{\sigma \in S_i[n]} Re_{\sigma} & \text{if } 0 \leq i \leq n \\ 0 & \text{if } i > n \text{ or if } i < 0. \end{cases}$$

as its ith homogeneous component, and whose differential $d^{\mathcal{K}(\underline{r})}$ is uniquely determined by

$$d^{\mathcal{K}(\underline{x})}(e_{\sigma}) = \sum_{\lambda \in \sigma} \langle \lambda, \sigma \backslash \lambda \rangle x_{\lambda} e_{\sigma \backslash \lambda}$$

for all nonempty $\sigma \subseteq \{1, ..., n\}$.

Differential Graded R-Algebras

Definition 0.3. A **differential graded** R**-algebra** is an R-complex (A, d) equipped with a chain map

$$m: (A \otimes_R A, d^{A \otimes_R A}) \to (A, d),$$

denoted $a \otimes b \mapsto m(a \otimes b)$ (or just $a \otimes b \mapsto ab$ if context is clear) such that the underlying graded R-module A becomes an associative and unital R-algebra with respect to m.

Remark. Let us flesh out what this means. Let $i, j \in \mathbb{Z}$ and let $a \otimes b \in A_i \otimes_R A_j$. Then for m to be a chain map, we need

$$d(ab) = d(a)b + (-1)^{i}ad(b)$$
(2)

We call (??) the Leibniz law.

Proposition 0.5. The Koszul complex is a DG algebra, with multiplication being uniquely determined on elementary tensors: for $\sigma, \tau \subseteq [n]$, we map $e_{\sigma} \otimes e_{\tau} \mapsto e_{\sigma}e_{\tau}$, where

$$e_{\sigma}e_{\tau} = \begin{cases} \langle \sigma, \tau \rangle e_{\sigma \cup \tau} & \text{if } \sigma \cap \tau = \emptyset \\ 0 & \text{if } \sigma \cap \tau \neq \emptyset \end{cases}$$
(3)

Proof. Throughout this proof, denote $d := d^{\mathcal{K}(\underline{\mathbf{x}})}$. We first note that e_{\emptyset} serves as the identity for the multiplication rule (3). Indeed, let $\sigma \subseteq [n]$. Then since $\sigma \cap \emptyset = \emptyset$, we have

$$e_{\sigma}e_{\emptyset}=e_{\sigma}=e_{\emptyset}e_{\sigma}.$$

Moreover, multiplication by e_{\emptyset} and e_{σ} given in (3) satisfies Leibniz law:

$$d(e_{\sigma})e_{\emptyset} - e_{\sigma}d(e_{\emptyset}) = d(e_{\sigma})e_{\emptyset}$$
$$= d(e_{\sigma})$$
$$= d(e_{\sigma}e_{\emptyset}),$$

and similarly

$$d(e_{\emptyset})e_{\sigma} + e_{\emptyset}d(e_{\sigma}) = e_{\emptyset}d(e_{\sigma})$$
$$= d(e_{\sigma})$$
$$= d(e_{\emptyset}e_{\sigma}),$$

Next, let $\lambda \in [n]$. Suppose $\tau \subseteq [n]$ and $\lambda \notin \tau$. Then

$$d(e_{\lambda})e_{\tau} - e_{\lambda}d(e_{\tau}) = x_{\lambda}e_{\tau} - e_{\lambda} \sum_{\mu \in \tau} \langle \mu, \tau \backslash \mu \rangle x_{\mu}e_{\tau \backslash \mu}$$

$$= x_{\lambda}e_{\tau} - \sum_{\mu \in \tau} \langle \mu, \tau \backslash \mu \rangle \langle \lambda, \tau \backslash \mu \rangle x_{\mu}e_{\tau \backslash \mu \cup \lambda}$$

$$= x_{\lambda}e_{\tau} - \sum_{\mu \in \tau} \langle \mu, \tau \backslash \mu \rangle \langle \lambda, \tau \rangle \langle \lambda, \mu \rangle x_{\mu}e_{\tau \backslash \mu \cup \lambda}$$

$$= x_{\lambda}e_{\tau} + \sum_{\mu \in \tau} \langle \lambda, \tau \rangle \langle \mu, \tau \backslash \mu \rangle \langle \mu, \lambda \rangle x_{\mu}e_{\tau \backslash \mu \cup \lambda}$$

$$= x_{\lambda}e_{\tau} + \sum_{\mu \in \tau} \langle \lambda, \tau \rangle \langle \mu, \tau \backslash \mu \cup \lambda \rangle x_{\mu}e_{\tau \backslash \mu \cup \lambda}$$

$$= \langle \lambda, \tau \rangle \langle \lambda, \tau \rangle x_{\lambda}e_{\tau} + \sum_{\mu \in \tau} \langle \lambda, \tau \rangle \langle \mu, \tau \backslash \mu \cup \lambda \rangle x_{\mu}e_{\tau \backslash \mu \cup \lambda}$$

$$= \langle \lambda, \tau \rangle \sum_{\mu \in \tau \cup \lambda} \langle \mu, (\tau \cup \lambda) \backslash \mu \rangle x_{\mu}e_{(\tau \cup \lambda) \backslash \mu}$$

$$= \langle \lambda, \tau \rangle d(e_{\tau \cup \lambda})$$

$$= d(e_{\lambda}e_{\tau}),$$

where we used Proposition (o.4) to get from the second line to the third line. Next suppose $\tau \subseteq [n]$ and $\lambda \in \tau$. Then

$$d(e_{\lambda})e_{\tau} - e_{\lambda}d(e_{\tau}) = x_{\lambda}e_{\tau} - e_{\lambda} \sum_{\mu \in \tau} \langle \mu, \tau \backslash \mu \rangle x_{\mu}e_{\tau \backslash \mu}$$

$$= x_{\lambda}e_{\tau} - \sum_{\mu \in \tau} \langle \mu, \tau \backslash \mu \rangle x_{\mu}e_{\lambda}e_{\tau \backslash \mu}$$

$$= x_{\lambda}e_{\tau} - \langle \lambda, \tau \backslash \lambda \rangle \langle \lambda, \tau \backslash \lambda \rangle x_{\lambda}e_{\tau}$$

$$= x_{\lambda}e_{\tau} - x_{\lambda}e_{\tau}$$

$$= 0$$

$$= d(0)$$

$$= d(e_{\lambda}e_{\tau}).$$

Thus we have shown (3) satisfies the Leibniz law for all pairs (λ, τ) where $\lambda \in [n]$ and $\tau \subseteq [n]$. We prove by induction on $|\sigma| = i \ge 1$ that (3) satisfies the Leibniz law for all pairs (σ, τ) where $\sigma, \tau \subseteq [n]$. The base case i = 1 was just shown. Now suppose we have shown (3) satisfies the Leibniz law for all pairs (σ, τ) where $\sigma, \tau \subseteq [n]$ such that $|\sigma| = i < n$. Let $\sigma, \tau \subseteq [n]$ such that $|\sigma| = i + 1$. Choose $\lambda \in \sigma$. Then

$$\begin{split} d(e_{\sigma}e_{\tau}) &= d(e_{\lambda}e_{\sigma\setminus\lambda}e_{\tau}) \\ &= x_{\lambda}e_{\sigma\setminus\lambda}e_{\tau} - e_{\lambda}d(e_{\sigma\setminus\lambda}e_{\tau}) \\ &= x_{\lambda}e_{\sigma\setminus\lambda}e_{\tau} - e_{\lambda}(d(e_{\sigma\setminus\lambda})e_{\tau} + (-1)^{|\sigma|-1}e_{\sigma\setminus\lambda}d(e_{\tau})) \\ &= (x_{\lambda}e_{\sigma\setminus\lambda} - e_{\lambda}d(e_{\sigma\setminus\lambda}))e_{\tau} + (-1)^{|\sigma|}e_{\sigma}d(e_{\tau}) \\ &= d(e_{\lambda}e_{\sigma\setminus\lambda})e_{\tau} + (-1)^{|\sigma|}e_{\sigma}d(e_{\tau}) \\ &= d(e_{\sigma})e_{\tau} + (-1)^{|\sigma|+1}e_{\sigma}d(e_{\tau}), \end{split}$$

where we used the base case on the pairs $(e_{\lambda}, e_{\sigma \setminus \lambda} e_{\tau})^{\mathbf{1}}$ and $(e_{\lambda}, e_{\sigma \setminus \lambda})$ and where we used the induction hypothesis on the pair $(e_{\sigma \setminus \lambda}, e_{\tau})$. and where we used the base case on the pair $(e_{\lambda}, e_{\sigma \setminus \lambda})$.

 $^{^1}$ If $e_{\sigma\setminus\lambda}e_{\tau}=0$, then obviously Leibniz law holds for the pair $(e_{\lambda},e_{\sigma\setminus\lambda}e_{\tau})$.