

OpenVINO Toolkit Overview

Alexander Nesterov, Deep Learning Software Engineer

Internet of Things Group

What is OpenVINO Toolkit?

Different applications

- Solutions for emulate human vision
 - ✓ Convolution neural networks
 - ✓ Traditional computer vision
- Supports heterogeneous execution
 - ✓ CPU, iGPU, FPGA, VPU
- Easy-to-use library of pre-optimized kernels

Deep neural network

What can be done with DNN?

Learning

Inference

What can be done with DNN?

Deep Learning Deployment Toolkit Drivers and runtimes for OpenCL

Media SDK

OpenCV

OpenVX

Open Model Zoo

Deep Learning Deployment Toolkit Drivers and runtimes for OpenCL

Media SDK

OpenCV

OpenVX

Open Model Zoo

<INSTALL_DIR>/deployment_tools/model_optimizer

python3 mo.py --input_model INPUT_MODEL

python3 mo.py --framework tf --input_model /user/models/model.pb

Inference Engine (Sync)

OpenVINO

timeline

Inference Engine (Async)

timeline


```
#include <inference engine.hpp>
using namespace InferenceEngine;
Core ie;
CNNNetwork network = ie.ReadNetwork(input model, input weights);
InputInfo::Ptr input info = network.getInputsInfo().begin()->second;
std::string input name = network.getInputsInfo().begin()->first;
input info->getPreProcess().setResizeAlgorithm(RESIZE BILINEAR);
input_info->setLayout(Layout::NHWC);
input info->setPrecision(Precision::U8);
```



```
DataPtr output info = network.getOutputsInfo().begin()->second;
std::string output name = network.getOutputsInfo().begin()->first;
output info->setPrecision(Precision::FP32);
ExecutableNetwork executable network = ie.LoadNetwork(network, device name);
InferRequest infer request = executable network.CreateInferRequest();
cv::Mat image = imread(input image path);
Blob::Ptr imgBlob = wrapMat2Blob(image);
infer request.SetBlob(input name, imgBlob);
infer request.Infer();
Blob::Ptr output = infer request.GetBlob(output name);
```

Inference Engine (Python)

```
from openvino.inference engine import IENetwork, IECore
configPath = `path to model config.xml`
weightsPath = `path to model weights.bin`
ie = IECore()
net = IENetwork(model = configPath, weights = weightsPath)
exec net = ie.load network(network = net, device name = 'CPU')
input blob = next(iter(load net.inputs))
output blob = next(iter(load net.outputs))
res = exec_net.infer(inputs={input blob: images})
out = res[output blob]
```


Accuracy Checker Tool

```
OpenVINO
```

```
models:
    name: model_name
    launchers:
        - framework: caffe
            model: public/alexnet/caffe/bvlc_alexnet.prototxt
            weights: public/alexnet/caffe/bvlc_alexnet.caffemodel
            adapter: classification
            batch: 128

datasets:
            - name: dataset_name
```


https://docs.openvinotoolkit.org

Deep Learning Deployment Toolkit Drivers and runtimes for OpenCL

Media SDK

OpenCV

OpenVX

Open Model Zoo

C/C++

Python

Java

Matlab

JavaScript

imgproc

imgcodecs

videoio

highgui

core

video

calib3d

features2d

objdetect

dnn

ml

flann

photo

stitching

gapi

tracking


```
import cv2
import numpy as np

img = cv2.imread('watch.jpg',cv2.IMREAD_GRAYSCALE)
cv2.imwrite('watchgray.png',img)
```

```
#include <opencv2/opencv.hpp>
#include <iostream>
using namespace cv;
using namespace std;
int main(int argc, char** argv)
   Mat image = imread("D:/OCV/lol.jpg");
   imwrite("C:/OCV/lol.jpg", image)
   return 0;
```

Deep Learning Deployment Toolkit Drivers and runtimes for OpenCL

Media SDK

OpenCV

OpenVX

Deep Learning Deployment Toolkit Drivers and runtimes for OpenCL

Media SDK

OpenCV

OpenVX

Deep Learning Deployment Toolkit Drivers and runtimes for OpenCL

Media SDK

OpenCV G-API

OpenVX

OpenCV G-API

OpenVINO

OpenVX

Deep Learning Deployment Toolkit Drivers and runtimes for OpenCL

Media SDK

OpenCV

OpenVX

Media SDK

Deep Learning Deployment Toolkit Drivers and runtimes for OpenCL

Media SDK

OpenCV

OpenVX


```
./downloader.py --all
./downloader.py --all --output_dir my/download/directory
./downloader.py --name face-detection-retail-0004 --precisions FP16,INT8
```


Demos

OpenVINO

Object recognition

Action recognition

Segmentation

Tracking

Object detection

Image processing

Text processing

Audio processing

OpenVINO pipeline

Questions & Answers

Internet of Things Group