Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

Отчёт по курсовой работе

Задачи анализа временных рядов, теория метода «Анализ Сингулярного Спектра» SSA

Выполнил:

Яковлев Денис Михайлович

Научный руководитель:

к.ф.-м. н., доцент

В. В. Некруткин

Оглавление

	1.	Введен	ведение																
	2.	Постановка задачи											Ş						
		2.1.	Метод А	CC															Ş
	3.	Результаты													٦				
		3.1.	Теоретич	еские зада	иР														٦
			3.1.1.	Задача М	<u>•</u> 1														7
	4.	Заключение										8							
\sim																			
Список литературы												(

1. Введение

Целью этой научно-исследовательской работы является решение прикладных задача анализа временных рядов с применением теоретических знаний о методе SSA (Singular Spectrum Analysis), или «Анализ Сингулярного Спектра» (сокращенно, АСС). В ходе учебной практики будут изучены теоретическая часть метода АСС и её применение. Ознакомиться с методом АСС можно [1], в [2] описывается теоретическая часть метода АСС.

2. Постановка задачи

2.1. Метод АСС

Остановимся сначала на том варианте метода ACC, который обсуждается в настоящей работе, подробное описание этого метода можно найти в [1].

Рассматривается вещественный *сигнал* $H = (h_0, ..., h_n, ...)$, причем предполагается, что ряд H управляется линейной рекуррентной формулой (ЛРФ) порядка d

$$h_n = \sum_{k=1}^d a_k h_{n-k}, \quad n \ge d \tag{1}$$

с $a_d>0$, которая является минимальной в том смысле, что не существует ЛРФ меньшего порядка, управляющей рядом Н. Кроме того, вводится nomexa $\mathbf{E}=(e_0,\ldots,e_n,\ldots)$ и предполагается, что наблюдается ряд $\widetilde{\mathbf{H}}_N=\mathbf{H}_N+\delta\mathbf{E}_N$, где \mathbf{H}_N и \mathbf{E}_N — согласованные отрезки длины N сигнала и помехи, а δ является формальным параметром возмущения. Иначе говоря,

$$H_N = (h_0, \dots, h_{N-1}), \quad E_N = (e_0, \dots, e_{N-1}) \quad \text{if } \widetilde{H}_N = (h_0 + \delta e_0, \dots, h_{N-1} + \delta e_{N-1}).$$

Общая задача состоит в (приближенном) выделении сигнала H_N из суммы \widetilde{H}_N , причем предполагается, что известно только значение порядка d ЛРФ (1). В первую очередь нас будет интересовать оценка ряда H_N .

Краткое описание метода. Метод АСС в этом случае выглядит следующим образом.

1. Выбирается ∂ лина окна L < N и из ряда $\widetilde{\mathbf{H}}_N$ строится ганкелева траекторная матрица $\mathbf{H}(\delta)$ размерности $L \times K, K = N - L + 1,$ с элементами $\mathbf{H}(\delta) = (\widetilde{h}_{i+j-2}),$

 $0 \le i < L, \ 0 \le j < K.$ При этом предполагается, что $\min(L, K) \ge d.$ В [1] эта операция называется вложением.

Если обозначить **H** и **E** ганкелевы матрицы, полученные из рядов H_N и E_N операцией вложения $\mathcal{T}_{L,N} = \mathcal{T}$ с той же длиной окна L, то, конечно, $\mathbf{H}(\delta) = \mathcal{T}(H_N + \delta E_N)$.

2. Для матрицы $\mathbf{H}(\delta)$ вычисляется сингулярное разложение и суммируются d главных (то есть соответствующих наибольшим сингулярным числам) элементарных матриц этого разложения. А именно, выбирается ортонормированная система собственных (левых сингулярных) векторов $\mathbf{H}(\delta)\mathbf{H}(\delta)^{\mathrm{T}} - \{U_i\}_{i=1}^L$ и собственных (правых сингулярных) векторов $\mathbf{H}(\delta)^{\mathrm{T}}\mathbf{H}(\delta) - \{V_i\}_{i=1}^K$, вычисляются собственные числа $\mathbf{H}(\delta)\mathbf{H}(\delta)^{\mathrm{T}} - \{\lambda_i\}_{i=1}^L$. Если расположить все собственные числа в неубывающем порядке и обозначить m — число ненулевых собственных чисел, то

$$\mathbf{H}(\delta) = \sum_{i=1}^{m} \sqrt{\lambda_i} U_i V_i^{\mathrm{T}},$$

где U_i , V_i соответствуют λ_i . Результат

$$\widetilde{\mathbf{H}}(\delta) = \sum_{i=1}^{d} \sqrt{\lambda_i} U_i V_i^{\mathrm{T}}.$$

этой операции является наилучшим приближением матрицы $\mathbf{H}(\delta)$ с помощью матриц ранга d в норме Фробениуса, то есть

$$\arg\min_{\mathbf{A}\in\mathbb{R}^{L\times K},\,\mathrm{rank}\;\mathbf{A}\leqslant d}\|\mathbf{H}(\delta)-\mathbf{A}\|=\widetilde{\mathbf{H}}(\delta).$$

- 3. Ищется ганкелева матрица $\widehat{\mathbf{H}}(\delta)$, которая является ближайшей к $\widetilde{\mathbf{H}}(\delta)$ в той же норме Фробениуса. В явном виде это означает, что на каждой побочной диагонали i+j=const все элементы матрицы $\widetilde{\mathbf{H}}(\delta)$ заменяются их средним значением. Поэтому в [1] эта операция названа диагональным усреднением. Обозначая её \mathcal{S} получим, что $\widehat{\mathbf{H}}(\delta) = \mathcal{S}\widetilde{\mathbf{H}}(\delta)$.
- 4. Наконец, применяя к $\widehat{\mathbf{H}}(\delta)$ операцию, обратную к операции вложения, приходим к восстановленному ряду $\widetilde{\mathrm{H}}_N(\delta) = \mathcal{T}^{-1}(\widehat{\mathbf{H}}(\delta))$, который объявляется приближением к сигналу H_N .

3. Результаты

3.1. Теоретические задачи

Введём несколько объектов:

- **H**, **E** вещественнозначные ненулевые матрицы $\mathbb{R}^K \to \mathbb{R}^L$. Матрицу **H** будем называть *сигнальной матрицей*, а **E** *шумовой матрицей*. В условиях поставленной задачи рассматривается возмущённая матрица **H**(δ) и *сигнальное подпространство*, образованное столбцами матрицы **H**;
- $\mathbf{A} = \mathbf{H}\mathbf{H}^{\mathrm{T}} -$ самосопряжённый неотрицательно определённый оператор $\mathbf{A} \colon \mathbb{R}^L \to \mathbb{R}^L$;
- $d = \operatorname{rank} \mathbf{H} < \min(L, K)$ ранг матрицы \mathbf{H} ;
- Σ набор собственных значений $\{\mu_n\}_{n=1}^L$ оператора **A**. Из свойств оператора **A**, $\Sigma \subset [0, +\infty)$;
- $\mu_{min} = \min\{\mu \in \Sigma \mid \mu > 0\};$
- І тождественный оператор $\mathbb{R}^L \to \mathbb{R}^L$;
- \mathbf{P}_0 ортогональный проектор на собственное подпространство \mathbb{U}_0 , соответствующее нулевым собственным значениям \mathbf{A} ;
- $\mathbf{P}_0^{\perp} = \mathbf{I} \mathbf{P}_0$ ортогональный проектор на \mathbb{U}_0^{\perp} , соответствующее ненулевым собственным значениям;
- $\|\cdot\|$ спектральная норма.

Теперь введём матрицу с возмущением $\mathbf{H}(\delta) = \mathbf{H} + \delta \mathbf{E}$. Тогда возмущение оператора \mathbf{A} :

$$\mathbf{A}(\delta) = \mathbf{H}(\delta)\,\mathbf{H}(\delta)^{\mathrm{T}} = \mathbf{H}\,\mathbf{H}^{\mathrm{T}} + \delta(\mathbf{H}\,\mathbf{E}^{\mathrm{T}} + \mathbf{E}\,\mathbf{H}^{\mathrm{T}}) + \delta^2\,\mathbf{E}\,\mathbf{E}^{\mathrm{T}}$$

Положим $\mathbf{A}^{(1)} = \mathbf{H} \mathbf{E}^{\mathrm{T}} + \mathbf{E} \mathbf{H}^{\mathrm{T}}, \ \mathbf{A}^{(2)} = \mathbf{E} \mathbf{E}^{\mathrm{T}}, \ \mathbf{B}(\delta) = \delta \mathbf{A}^{(1)} + \delta^2 \mathbf{A}^{(2)}$. Заметим, что $\mathbf{A}^{(1)}$ и $\mathbf{A}^{(2)}$ — самосопряжённые операторы, а $\mathbf{A}(\delta)$ — неотрицательный полуопределённый оператор для любых $\delta \in \mathbb{R}$.

Цель поставленных теоретических задач — сравнить возмущённый проектор $\mathbf{P}_0^{\perp}(\delta)$ с невозмущённым проектором \mathbf{P}_0^{\perp} .

Определим \mathbf{S}_0 — матрица, псевдообратная к $\mathbf{H}\mathbf{H}^{\mathrm{T}}$. Положим $\mathbf{S}_0^{(0)} = -\mathbf{P}_0$ и $\mathbf{S}_0^{(k)} = \mathbf{S}_0^k$ для $k \geqslant 1$, $\left\|\mathbf{S}_0^{(k)}\right\| = 1/\mu_{min}^k$.

Далее — рассуждения раздела 5.3 [2].

А именно, если обозначить $r_i(N) = \widetilde{h}_i(\delta) - h_i$ — остаток от разности между i-ми элементами рядов \widetilde{H}_N и H_N , а $\mathbf{N}(\delta) = \mathbf{N}_N(\delta)$ — оператор, то из того, что $\|\mathbf{C}\|_{\max} \leq \|\mathbf{C}\|$, следует, что

$$\max_{0 \le i \le N} |r_i(N)| \le \|(\mathbf{P}_0^{\perp}(\delta) - \mathbf{P}_0^{\perp} - \mathbf{N}) \mathbf{H}(\delta)\| + \|\mathbf{N} \mathbf{H}(\delta) + \delta \mathbf{P}_0^{\perp} \mathbf{E}\|_{\max}.$$
(2)

Если первое слагаемое в правой части последнего неравенства стремится к нулю при $N \to \infty$, то остается исследовать второе слагаемое. Перед тем, как приступить к решению теоретических задач, введём следующие определения:

Определение 1.

$$\mathbf{W}_{p}(\delta) = (-1)^{p} \sum_{l_{1} + \dots + l_{p+1} = p, \, l_{j} \geqslant 0} \mathbf{W}_{p}(l_{1}, \dots, l_{p+1}),$$

a

$$\mathbf{W}_{p}(l_{1},\ldots,l_{p+1}) = \mathbf{S}_{0}^{(l_{1})} \, \mathbf{B}(\delta) \, \mathbf{S}_{0}^{(l_{2})} \ldots \mathbf{S}_{0}^{(l_{p})} \, \mathbf{B}(\delta) \, \mathbf{S}_{0}^{(l_{p+1})} \, .$$

Определение 2.

$$\mathbf{V}_{0}^{(n)} = \sum_{p=[n/2]}^{n} (-1)^{p} \sum_{\substack{s_{1}+\dots+s_{p}=n, s_{i}=1,2\\l_{1}+\dots+l_{p+1}=p, l_{i}\geqslant 0}} \mathbf{V}_{0}^{(n)}(\mathbf{s}, \mathbf{l}),$$

$$s = (s_1, \dots, s_p), I = (l_1, \dots, l_{p+1}), u$$

$$\mathbf{V}_0^{(n)}(\mathsf{s},\mathsf{l}) = \mathbf{S}_0^{(l_1)}\,\mathbf{A}^{(s_1)}\,\mathbf{S}_0^{(l_2)}\ldots\mathbf{A}^{(s_p)}\,\mathbf{S}_0^{(l_{p+1})}\,.$$

Теперь можно ввести теорему из [2]:

Теорема 1. Пусть $\delta_0 > 0$ и

$$\|\mathbf{B}(\delta)\| < \mu_{min}/2 \tag{3}$$

для всех $\delta \in (-\delta_0, \delta_0)$. Тогда для возмущённого проектора $\mathbf{P}_0^{\perp}(\delta)$ верно представление:

$$\mathbf{P}_0^{\perp}(\delta) = \mathbf{P}_0^{\perp} + \sum_{p=1}^{\infty} \mathbf{W}_p(\delta). \tag{4}$$

Более того,

$$\mathbf{P}_0^{\perp}(\delta) = \mathbf{P}_0^{\perp} + \sum_{n=1}^{\infty} \delta^n \mathbf{V}_0^{(n)}.$$
 (5)

Замечание 1. (4) и (5) сходятся в спектральной норме.

Введём

$$B(\delta) = |\delta| \|\mathbf{A}^{(1)}\| + \delta^2 \|\mathbf{A}^{(2)}\|.$$

Если $\delta_0 > 0$ и $B(\delta_0) = \mu_{min}/2$, то тогда неравенство (3) верно для любых δ таких, что $|\delta| < \delta_0$.

3.1.1. Задача №1

Оценить выражение сверху $\forall n \in \mathbb{N} : \left\| \mathbf{P}_0^{\perp}(\delta) - \mathbf{P}_0^{\perp} - \sum_{p=1}^n \mathbf{W}_p(\delta) \right\|$. Воспользуемся вспомогательными теоремами и леммами из [2].

Теорема 2. Если $\delta_0 > 0$ и $\frac{\|\mathbf{B}(\delta)\|}{\mu_{min}} < \frac{1}{4}$ для всех $\delta \in (-\delta_0, \delta_0)$, то $\|\mathbf{P}_0^{\perp}(\delta) - \mathbf{P}_0^{\perp}\| \le 4C \frac{\|\mathbf{S}_0 \mathbf{B}(\delta) \mathbf{P}_0\|}{1 - 4 \|\mathbf{B}(\delta)\| / \mu_{min}}$, $C = e^{1/6} / \sqrt{\pi} \approx 0.667$.

Лемма 1. Если
$$0 < \beta < \frac{1}{4}$$
, $k \geqslant 0$, то $\sum_{p=k}^{\infty} {2p \choose p} \beta^p \leqslant C \frac{(4\beta)^k}{1-4\beta}$, $C = e^{1/6}/\sqrt{\pi}$.

Доказательство. Сначала оценим выражение в случае, когда n=2:

$$\begin{split} & \left\| \mathbf{P}_{0}^{\perp}(\delta) - \mathbf{P}_{0}^{\perp} - \mathbf{W}_{1}(\delta) - \mathbf{W}_{2}(\delta) \right\| = \left\| \sum_{p=3}^{\infty} \mathbf{W}_{p}(\delta) \right\| \leqslant \sum_{p=3}^{\infty} \| \mathbf{W}_{p}(\delta) \| = \\ & \sum_{p=3}^{\infty} \left\| (-1)^{p} \sum_{l_{1} + \dots + l_{p+1} = p, \, l_{j} \geqslant 0} \mathbf{W}_{p}(l_{1}, \dots, l_{p+1}) \right\| \leqslant \\ & \sum_{p=3}^{\infty} \sum_{l_{1} + \dots + l_{p+1} = p, \, l_{j} \geqslant 0} \left\| \mathbf{S}_{0}^{(l_{1})} \, \mathbf{B}(\delta) \, \mathbf{S}_{0}^{(l_{2})} \dots \mathbf{S}_{0}^{(l_{p})} \, \mathbf{B}(\delta) \, \mathbf{S}_{0}^{(l_{p+1})} \right\| = \\ & \sum_{p=3}^{\infty} \sum_{l_{1} + \dots + l_{p+1} = p, \, l_{j} \geqslant 0} \left\| \mathbf{S}_{0}^{(l_{1})} \, \mathbf{B}(\delta) \, \mathbf{S}_{0}^{(l_{2})} \dots \mathbf{S}_{0}^{(l_{j} - 1)} \, \mathbf{S}_{0} \, \mathbf{B}(\delta) \mathbf{P}_{0} \dots \mathbf{S}_{0}^{(l_{p})} \, \mathbf{B}(\delta) \, \mathbf{S}_{0}^{(l_{p+1})} \right\| \leqslant \\ & \left\| \mathbf{S}_{0} \, \mathbf{B}(\delta) \mathbf{P}_{0} \right\| \sum_{p=3}^{\infty} \left(\frac{2p}{p} \right) \left\| \mathbf{B}(\delta) \right\|^{p-1} \left\| \mathbf{S}_{0} \right\|^{p-1} \leqslant \\ & C \sum_{p=3}^{\infty} \left\| \mathbf{S}_{0} \, \mathbf{B}(\delta) \mathbf{P}_{0} \right\| \left(\frac{\left\| \mathbf{B}(\delta) \right\|}{\mu_{min}} \right)^{p-1} \, 4^{p} = 4C \left(\frac{4 \, \left\| \mathbf{B}(\delta) \right\|}{\mu_{min}} \right)^{2} \frac{\left\| \mathbf{S}_{0} \, \mathbf{B}(\delta) \mathbf{P}_{0} \right\|}{1 - 4 \, \left\| \mathbf{B}(\delta) \right\| / \mu_{min}}. \end{split}$$

Аналогично, можно выделить следующее:

Следствие 1.

$$\left\| \mathbf{P}_0^{\perp}(\delta) - \mathbf{P}_0^{\perp} - \sum_{p=1}^n \mathbf{W}_p(\delta) \right\| \leqslant 4C \left(\frac{4 \left\| \mathbf{B}(\delta) \right\|}{\mu_{min}} \right)^n \frac{\left\| \mathbf{S}_0 \mathbf{B}(\delta) \mathbf{P}_0 \right\|}{1 - 4 \left\| \mathbf{B}(\delta) \right\| / \mu_{min}}.$$
 (6)

Тогда можно применить результат из неравенства (6) для оценки первого слагаемого правой части из (2). Для этого можно ограничиться условиями из теоремы (2):

$$\left\| \left(\mathbf{P}_0^{\perp}(\delta) - \mathbf{P}_0^{\perp} - \mathbf{W}_1(\delta) - \mathbf{W}_2(\delta) \right) \mathbf{H}(\delta) \right\| \leqslant 4C \left(\frac{4 \left\| \mathbf{B}(\delta) \right\|}{\mu_{min}} \right)^2 \frac{\left\| \mathbf{S}_0 \mathbf{B}(\delta) \mathbf{P}_0 \right\| \left(\left\| \mathbf{H} \right\| + \delta \left\| \mathbf{E} \right\| \right)}{1 - 4 \left\| \mathbf{B}(\delta) \right\| / \mu_{min}}.$$

4. Заключение

В ходе проделанных работ были изучены теоретическая часть метода АСС, связанная со сравнением возмущённого проектора $\mathbf{P}_0^{\perp}(\delta)$ и невозмущённого проектора \mathbf{P}_0^{\perp} , а также дана оценка $\left\|\mathbf{P}_0^{\perp}(\delta) - \mathbf{P}_0^{\perp} - \sum_{p=1}^n \mathbf{W}_p(\delta)\right\|$. В дальнейшем планируется оценить $\left\|\left(\mathbf{P}_0^{\perp}(\delta) - \mathbf{P}_0^{\perp} - \delta \mathbf{V}_0^{(n)}\right) \mathbf{H}(\delta)\right\|$ и сравнить его с $\left\|\left(\mathbf{P}_0^{\perp}(\delta) - \mathbf{P}_0^{\perp} - \mathbf{W}_1(\delta) - \mathbf{W}_2(\delta)\right) \mathbf{H}(\delta)\right\|$, после чего продолжить изучение теории по общей задаче.

Список литературы

- 1. Golyandina, N., Nekrutkin, V. and Zhigljavsky, A. (2001). Analysis of Time Series Structure. SSA and Related Techniques. Champan & Hall/CRC, Boca Raton-London-New York-Washington D.C.
- 2. Nekrutkin, V. (2010). Perturbation expansions of signal subspaces for long signals. Statistics and Its Interface. 3, 297–319.