

MNS Department Fall Semester, 2023 Midterm Examination

Course No: PHY 111(02)

Course Title: Principles of Physics I

Time: 1.5 hours Total Marks: 30 Date: November 08, 2023

## Answer all the questions. Marks are as indicated.

- 1. The two vectors  $\vec{a}$  and  $\vec{b}$  in Fig. 1 have equal magnitudes of 8.0 m and the angles are  $\theta_1 = 23^\circ$  and  $\theta_2 = 102^\circ$ .
  - (a) (3.5 marks) Calculate the magnitude and direction of  $\overrightarrow{R}$  where  $(\overrightarrow{b} 2\overrightarrow{a} + \overrightarrow{R}) = 0$ .
  - (b) (3.5 marks) Find the angle between  $\vec{c}$  and  $\vec{R}$ , where  $\vec{c}$  is a position vector which has the coordinate (3, -2, 5) from origin O.
  - (c) (3 marks) Calculate the value of  $(\overrightarrow{c} \times \overrightarrow{a}) \cdot \overrightarrow{b}$ .



- 2. A ball is thrown toward a wall at speed 29.0 m/s and at angle 30.0° above the horizontal. The wall is at a distance of 20 m from the release point of the ball.
  - (a) (3 marks) How far above the release point does the ball hit the wall?
  - (b) (3 marks) Find the velocity as it hits the wall?
  - (c) (4 marks) Calculate the horizontal range and maximum height of the projectile in the absence of the wall?
- 3. Body A in Fig. 2 weighs 102 N, and body B weighs 32 N. The coefficients of friction between A and the incline are  $\mu_s = 0.4$  and  $\mu_k = 0.25$ . Angle  $\Theta$  is 40°. Body A is moving down the incline.
  - (a) (3 marks) Draw a complete force free body diagram of body A and body B.
  - (b) (5 marks) Calculate the acceleration of each body.
  - (c) (2 marks) If the incline is frictionless, what is the required mass of body B to move the system at constant speed.