Policy Gradient

虎尾科技大學 40723115 林于哲

January 16 2021

Contents

1	Definition	1
2	Mokov chain	2
3	為什麼不用 value-base 而是 policy-base	2
4	Proof Policy Gradient Theorem	3
5	Policy Gradient Theorem	4
6	Actor Crtic	4
7	Stochastic Policy Gradient	5
1	Definition	
π : policy		

s: States

a: Actions

r: Rewards

 S_t, A_t, R_t : State, Action and Reward at time step 't' of one trajectory

 γ : Discount Factor; 懲罰不確定的未來 reward

 G_t : Return; Discounted future reward $G_t = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$

P(s',r|s,a): 伴隨著現在的 a 和 r 的 state 前往下一個 state's' 的轉移機率矩陣 (單階)

 $\pi(a|s)$: 隨機策略 (agent 的行為策略)

 $\pi_{\theta}(.)$:被 θ 參數化的策略

 $\mu(s)$: 確定的策略; we also lable this as $\pi(s)$ using a different letter gives better distinction so that we can easily tell when the policy is stochastic or deterministic

V(s): '狀態值函數' 測量 state 的預期收益 (報酬率)

 $V^{\pi}(s)$: 根據 policy 的狀態值函數 $V^{\pi}(s) = \mathbb{E}_{a \sim \pi}[G_t | S_t = s]$

Q(s,a): '行為值函數'評估一對 state and action 的預期收益

 $Q_w(.)$:被w參數化的行為值函數

 $Q^{\pi}(s,a)$: 根據 policy 的行為值函數 $Q^{\pi}(s,a) = \mathbb{E}_{a \sim \pi}[G_t | S_t = s, A_t = a]$

A(s,a): Advantage Function,A(s,a)=Q(s,a)-V(s); 像是另一種版本的 Q-value; 由狀態值為基準降低方差

參數化: 待軟體建置於一給定環境時,再依該環境的實際需求填選參數,即可成為適合該環境的軟體。

The goal of reinforcement learning: Find an optimal behavior strategy for the agent to obtain optimal reward

The goal of policy gradient: Modeling and optimizing the policy directly

The value of reward function: 取決於策略,克應用各種算法 optimize θ ,已獲得最佳 reward defined as:

$$J(\theta) = \sum_{s \in \mathcal{S}} d^{\pi}(s) V^{\pi}(s) = \sum_{s \in \mathcal{S}} d^{\pi}(s) \sum_{a \in \mathcal{A}} \pi_{\theta}(a|s) Q^{\pi}(s,a)$$

2 Mokov chain

stochastic process:將隨著時間變化的狀態,以數學模式表示

+

Mokov property: 在目前以及所有過去事件的條件下,任何未來事件發生的機率,和過去的事件不相關僅和目前狀態相關 $d^{\pi}(s)$: π_{θ} 的 Mokov chain 的平穩分布 (在 π 下的策略狀態分佈) $d^{\pi}(s) = \lim_{t \to \infty} P(s_t = s | s_0, \pi_{\theta})$

* 當策略在其他函數的下標時,將省略 π_{θ} 的 θ e.g. $d^{\pi}(s)$ and Q^{π} should be $d^{\pi\theta}(s)$ 、 $Q^{\pi\theta}$ stationary probability for π_{θ} : 隨著時間進展,結束一個狀態保持不變的機率分布

3 為什麼不用 value-base 而是 policy-base

因為要估計其值得動作和狀態數不勝數,因此在連續空間計算成本太高, θ 向 $\nabla_{\theta}J(\theta)$ 建議方向移動,已找到 $\pi\theta$ 的最佳 θ ,從而產生最高回報。

4 Proof Policy Gradient Theorem

計算 $\nabla_{\theta}J(\theta)$ depends on 動作選擇和目標選擇行為之後狀態的靜態分布,而導致計算困難。 Policy gradient theorem:為目標函式的導數重新建構,使它不涉及 $d^{\pi}(.)$ 的導數。

$$\begin{split} \nabla_{\theta} J(\theta) &= \nabla_{\theta} \sum_{s \in \mathcal{S}} d^{\pi}(s) \sum_{a \in \mathcal{A}} Q^{\pi}(s, a) \pi_{\theta}(a|s) \propto \sum_{s \in \mathcal{S}} d^{\pi}(s) \sum_{a \in \mathcal{A}} Q^{\pi}(s, a) \nabla_{\theta} \pi_{\theta}(a|s) \\ \nabla_{\theta} J(\theta) &= \nabla_{\theta} V^{\pi}(s_0) = \sum_{s \in \mathcal{S}} d^{\pi}(s) \sum_{a \in \mathcal{A}} \pi_{\theta}(a|s) Q^{\pi}(s, a) \frac{\nabla_{\theta} \pi_{\theta}(a|s)}{\pi_{\theta}(a|s)} \\ &= \mathbb{E}_{\pi} [Q^{\pi}(s, a) \nabla_{\theta} \ln \pi_{\theta}(a|s)]_{;Because(\ln x)' = 1/x} \end{split}$$

* 當狀態和動作分布都遵循策略 π_{θ} 時 \mathbb{E}_{π} 表示 $\mathbb{E}_{\pi \sim d\pi, a \sim \pi_{\theta}}$

Proof
$$\nabla_{\theta} J(\theta = \nabla_{\theta} V^{\pi}(s_0) \quad \nabla_{\theta} V^{\pi}(s)$$

$$= \nabla_{\theta} \Big(\sum_{a \in \mathcal{A}} \pi_{\theta}(a|s) Q^{\pi}(s,a) \Big)$$

$$= \sum_{a \in \mathcal{A}} \Big(\nabla_{\theta} \pi_{\theta}(a|s) Q^{\pi}(s,a) \Big) + \pi_{\theta}(a|s) Q^{\pi}(s,a) \Big)$$

$$= \sum_{a \in \mathcal{A}} \Big(\nabla_{\theta} \pi_{\theta}(a|s) Q^{\pi}(s,a) + \pi_{\theta}(a|s) red \nabla_{\theta} Q^{\pi}(s,a) \Big); Derivative product rule.$$

$$= \sum_{a \in \mathcal{A}} \left(\nabla_{\theta} \pi_{\theta}(a|s) Q^{\pi}(s,a) + \pi_{\theta}(a|s) red \nabla_{\theta} \sum_{s',r} P(s',r|s,a) (r + V^{\pi}(s')) \right); \textit{Extend} Q^{\pi} \textit{with future state value}.$$

$$= \sum_{a \in \mathcal{A}} \left(\nabla_{\theta} \pi_{\theta}(a|s) Q^{\pi}(s,a) + \pi_{\theta}(a|s) red \sum_{s',r} P(s',r|s,a) \nabla_{\theta} V^{\pi}(s') \right) P(s',r|s,a) orrisnota funcof \theta$$

$$= \sum_{a \in \mathcal{A}} \Big(\nabla_{\theta} \pi_{\theta}(a|s) Q^{\pi}(s,a) + \pi_{\theta}(a|s) red \sum_{s'} P(s'|s,a) \nabla_{\theta} V^{\pi}(s') \Big); \textit{BecauseP}(s'|s,a) = \sum_{r} P(s',r|s,a) e^{-ist} P(s',r|s,a) + \sum_{s'} P(s',s') e^{-ist} P($$

Let $\phi(s)=\sum_{a\in\mathcal{A}}\nabla_{\theta}\pi_{\theta}(a|s)Q^{\pi}(s,a)$;當 K = 1,我們把所有可能動作總結到目標狀態的轉移機率 $\rho^{\pi}(s\to x,k+1)=\sum_{s'}\rho^{\pi}(s\to s',k)\rho^{\pi}(s'\to x,1)$

$$red\nabla_{\theta}V^{\pi}(s)$$

$$= \phi(s) + \sum_{a} \pi_{\theta}(a|s) \sum_{s'} P(s'|s, a) red \nabla_{\theta} V^{\pi}(s')$$

$$= \phi(s) + \sum_{s'} \sum_{a} \pi_{\theta}(a|s) P(s'|s, a) red \nabla_{\theta} V^{\pi}(s')$$

$$=\phi(s)+\sum_{s'}\rho^{\pi}(s\to s',1)red\nabla_{\theta}V^{\pi}(s')$$

$$= \phi(s) + \sum_{s'} \rho^{\pi}(s \to s', 1) red \nabla_{\theta} V^{\pi}(s')$$

$$=\phi(s)+\sum_{s'}\rho^{\pi}(s\rightarrow s',1)red[\phi(s')+\sum_{s''}\rho^{\pi}(s'\rightarrow s'',1)\nabla_{\theta}V^{\pi}(s'')]$$

$$=\phi(s)+\sum_{s'}\rho^{\pi}(s\rightarrow s',1)\phi(s')+\sum_{s''}\rho^{\pi}(s\rightarrow s'',2)red\nabla_{\theta}V^{\pi}(s''); Considers' as the middle point for s\rightarrow s''$$

$$= \phi(s) + \sum_{s'} \rho^{\pi}(s \to s', 1)\phi(s') + \sum_{s''} \rho^{\pi}(s \to s'', 2)\phi(s'') + \sum_{s'''} \rho^{\pi}(s \to s''', 3)red\nabla_{\theta}V^{\pi}(s''')$$

= ...; Repeatedly unrolling the part of $\nabla_{\theta} V^{\pi}(.)$

$$= \sum_{x \in \mathcal{S}} \sum_{k=0}^{\infty} \rho^{\pi}(s \to x, k) \phi(x)$$

$$\begin{split} &\nabla_{\theta}J(\theta) = \nabla_{\theta}V^{\pi}(s_{0}); Starting from a random states_{0} \\ &= \sum_{s} blue \sum_{k=0}^{\infty} \rho^{\pi}(s_{0} \to s, k) \phi(s); Let blue \eta(s) = \sum_{k=0}^{\infty} \rho^{\pi}(s_{0} \to s, k) \\ &= \sum_{s} \eta(s) \phi(s) = \left(\sum_{s} \eta(s)\right) \sum_{s} \frac{\eta(s)}{\sum_{s} \eta(s)} \phi(s); Normalize \eta(s), s \in \mathcal{S} to be a probability distribution. \\ &\propto \sum_{s} \frac{\eta(s)}{\sum_{s} \eta(s)} \phi(s) \sum_{s} \eta(s) is a constant \\ &= \sum_{s} d^{\pi}(s) \sum_{a} \nabla_{\theta} \pi_{\theta}(a|s) Q^{\pi}(s, a) d^{\pi}(s) = \frac{\eta(s)}{\sum_{s} \eta(s)} is stationary distribution. \end{split}$$

$$\nabla_{\theta} J(\theta) \propto \sum_{s \in \mathcal{S}} d^{\pi}(s) \sum_{a \in \mathcal{A}} Q^{\pi}(s, a) \nabla_{\theta} \pi_{\theta}(a|s)$$

$$= \sum_{s \in \mathcal{S}} d^{\pi}(s) \sum_{a \in \mathcal{A}} \pi_{\theta}(a|s) Q^{\pi}(s, a) \frac{\nabla_{\theta} \pi_{\theta}(a|s)}{\pi_{\theta}(a|s)}$$

$$= \mathbb{E}_{\pi} [Q^{\pi}(s, a) \nabla_{\theta} \ln \pi_{\theta}(a|s)]_{;Because(\ln x)' = 1/x}$$

5 Policy Gradient Theorem

Policy Gradient 通過反覆估計梯度來最大化預期的總 reward $g = \nabla_{\theta} \mathbb{E}[\sum_{t=0}^{\infty} r_t]$; $g = \mathbb{E}[\sum_{t=0}^{\infty} \psi_t \nabla_{\theta} log \pi_{\theta}(a_t | s_t)]$ ψ_t may be one of following:

- $\sum_{t=0}^{\infty} r$: total reward of trajectory
- $\sum_{t'=t}^{\infty} r'$: reward following action a_t
- $\sum_{t'=t}^{\infty} r_t' b(s_t)$: baseline version of previous formula
- $Q^{\pi}(s_t, a_t)$: state-action value function
- $A^{\pi}(s_t, a_t)$: Advantage Function
- $r_t + V^{\pi}(s_t + 1) V^{\pi}(s_t)$: TD residual

The letter formulas use the definitions

$$V^{\pi}(s_t) = \mathbb{E}_{st+1:\infty,at:\infty} \left[\sum_{l=0}^{\infty} r_t + l \right]$$

$$Q^{\pi}(s_t, a_t) = \mathbb{E}_{st+1:\infty,at+1:\infty} \left[\sum_{l=0}^{\infty} r_t + l \right]$$

$$A^{\pi}(s_t, a_t) = Q^{\pi}(s_t, a_t) - V^{\pi}(s_t) \left(AdvantageFunction \right)$$

6 Actor Crtic

原始的 policy gradient 沒有 bias,但方差大;Many following algorithms were proposed to reduce variance while keeping thebias unchanged

$$g = \mathbb{E}\left[\sum_{t=0}^{\infty} \psi_t \nabla_{\theta} log \pi_{\theta}(a_t|s_t)\right]$$

Actor-Critic: reduce gradient variance in vanilla policy consist of two models

Critic: updates the value function parameter w and depending on the algorithm it could be action-value $Q_w(a|s)$ or state-value $V_w(s)$

Actor: update the policy parameters θ for $\pi_{\theta}(a|s)$, in direction suggested by critic How it work in a simple action-value actor-critic:

- Initialize s, θ ,w at random;sample a $\sim \pi_{\theta}(a|s)$
- For $t = 1 \sim T$:
 - 1 Sample reward $\mathbf{r}_{t} \sim R(s, a)$ and next state $s' \sim P(s'|s, a)$
 - 2 The sample the next action $a' \sim \pi_{\theta}(a'|s')$
 - 3 Update the policy parameters θ :

$$\theta \leftarrow \theta + \alpha_{\theta} Q_w(s, a) \nabla_{\theta} ln \pi_{\theta}(a|s)$$

4 Compute the correction (TD error) for action-value at time t:

$$\delta = r_t + \gamma Q_w(s', a') - Q_w(s, a)$$

and use it to update the parameters of action - value function:

$$w \leftarrow w + \alpha_w \delta \nabla_w Q_w(s, a)$$

5 Update $a \leftarrow a' and s \leftarrow s'$; learning rate : a_{θ} and a_{w}