Enhancing Group Fairness in Online Settings Using Oblique Decision Forests

Somnath Basu Roy Chowdhury^{1,3} Nicholas Monath² Kumar Avinava Dubey¹ Amr Ahmed¹ Ahmad Beirami¹ Rahul Kidambi¹ Snigdha Chaturvedi³

Motivation

Machine Bias

There's software used across the country to predict future criminals. And it's biased against blacks.

by Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublica

May 23, 2016

- ML systems often produce unfair decisions against certain groups
- We study the challenging problem of achieving fairness in online settings

Group Fairness

Group Fairness techniques focus on enhancing the fairness of ML algorithms by ensuring that different groups receive equal treatment.

Batch-wise Group Fairness

• In batch-wise settings, a learning function f can be optimized as shown:

$$\min_{f} L(f(x), y), \text{ subject to } |\mathbb{E}[f(x|a = 0)] - \mathbb{E}[f(x|a = 1)]| < \epsilon.$$

$$a \text{ is the sensitive attribute}$$

$$(e.g., gender)$$

Batch-wise Group Fairness

• In batch-wise settings, a learning function f can be optimized as shown:

$$\min_{f} L(f(x), y), \text{ subject to } |\mathbb{E}[f(x | a = 0)] - \mathbb{E}[f(x | a = 1)]| < \epsilon.$$

Prediction for group 0

Batch-wise Group Fairness

• In batch-wise settings, a learning function f can be optimized as shown:

$$\min_{f} L(f(x), y), \text{ subject to } |\mathbb{E}[f(x | a = 0)] - \mathbb{E}[f(x | a = 1)]| < \epsilon.$$

Difference between predictions of two groups

Online Setting

• In online setup, input points x_1, x_2, \ldots arrive one at a time

Online Setting

Overview of Aranyani

Online Learning For Group Fairness

Discrimination $< \epsilon$

$$f(x) = \frac{n_1 n_2 \theta_0}{n_1 n_2 \theta_0} + \frac{n_1 (1 - n_2) \theta_1}{n_1 n_2 \theta_0} + \frac{(1 - n_1) n_3 \theta_2}{n_1 n_2 \theta_0} + \frac{(1 - n_2) \theta_1}{n_1 n_2 \theta_0} + \frac{(1 - n_2) \theta_1$$

Fairness Gradient Estimation

• The fairness gradient estimation process is shown below:

$$G(\Theta) = \nabla_{\Theta} L(f(x), y) + \lambda \sum_{i,j} \nabla_{\Theta} H_{\delta}(F_{ij})$$

Differentiable Huber loss for node-level decisions

Fairness Gradient Estimation

• The fairness gradient estimation process is shown below:

$$G(\Theta) = \nabla_{\Theta} L(f(x), y) + \lambda \sum_{i,j} \nabla_{\Theta} H_{\delta}(F_{ij})$$

$$\nabla_{\Theta} H_{\delta}(F_{ij}) = \begin{cases} F_{ij} \nabla_{\Theta} F_{ij}, & \text{if } |F_{ij}| < \delta \\ \delta \cdot \operatorname{sgn}(F_{ij} - \delta/2) \nabla_{\Theta} F_{ij}, & \text{otherwise} \end{cases}$$

Fairness Gradient Estimation

• The fairness gradient estimation process is shown below:

$$G(\Theta) = \nabla_{\Theta} L(f(x), y) + \lambda \sum_{i,j} \nabla_{\Theta} H_{\delta}(F_{ij})$$

$$\nabla_{\Theta} H_{\delta}(F_{ij}) = \begin{cases} F_{ij} \nabla_{\Theta} F_{ij}, & \text{if } |F_{ij}| < \delta \\ \delta \cdot \operatorname{sgn}(F_{ij} - \delta/2) \nabla_{\Theta} F_{ij}, & \text{otherwise} \end{cases}$$

$$\int \delta \cdot \operatorname{sgn}(F_{ij} - \delta/2) \nabla_{\Theta} F_{ij}, \quad \text{otherwise}$$

$$\nabla_{\Theta} F_{ij} = \mathbb{E}[\nabla_{\Theta} n_{ij}(x \mid a = 0)] - \mathbb{E}[\nabla_{\Theta} n_{ij}(x \mid a = 1)]$$

These can be estimated using *aggregate statistics* of node gradients alleviating the need for storing samples.

Theoretical Results

• Estimation error of fairness gradients is bounded: $\delta B/2$

 δ : Huber constant, B: input bound

Theoretical Results

- Estimation error of fairness gradients is bounded: $\delta B/2$
- The gradient norm Φ_T is bounded by

$$\Phi_T \le \left(\epsilon + 2^{h-2}\lambda^2\delta^2B^2\right)$$

h: tree height, λ : loss hyperparamater

Experiments

- Experiments show effectiveness in *Tabular, Vision, and Language* datasets
- During online learning, at each step we measure the task performance and fairness
- ullet We report the average performances at the final step, T

Tabular Datasets

Tabular Datasets

Vision & Language Datasets

Summary

We propose **Aranyani** to achieve group fairness in online environments

Aranyani leverages oblique decision forests for efficient online gradient computation

Fairness gradient estimation using aggregate statistics achieves impressive performance in real-world scenarios

Thank You!

Contact Info:

Somnath Basu Roy Chowdhury

UNC Chapel Hill

somnath@cs.unc.edu

Paper

Code