Programa de Asignatura

Historia del programa

Lugar y fecha de elaboración	Participantes	Observaciones (Cambios y justificaciones)
Cancún, Q. Roo, 12/03/2017	Dr. David Israel Flores Granados	Creación de la asignatura para integrarse como asignatura básica de Ingeniería en Datos e Inteligencia Organizacional.

Relación con otras asignaturas

Anteriores	Posteriores
IT0210- Programación Orientada a Objetos	D0413-Procesamiento de datos en la nube
Tema(s) Todos	Tema(s) Todos

Nombre de la asignatura	Departamento o Licenciatura
Cómputo de alto desempeño	Ingeniería en Datos e Inteligencia Organizacional

Ciclo	Clave	Créditos	Área de formación curricular
4 - 4	ID0411	8	Licenciatura Básica

Tipo de asignatura	Horas de estudio			
	HT	HP	TH	Н
Seminario	32	32	64	64

Objetivo(s) general(es) de la asignatura

Objetivo cognitivo

Revisar la teoría que sustenta los principios del diseño, la programación y la operación de los sistemas de cómputo de alto desempeño para el mejoramiento de procesamiento de cómputo en las organizaciones

Objetivo procedimental

Experimentar con diversas arquitecturas de cómputo de alto desempeño para la implementación de soluciones a problemas reales.

Objetivo actitudinal

Propiciar el espíritu proactivo y emprendedor en la búsqueda de oportunidades para la aplicación del cómputo de alto desempeño.

Unidades y temas

Unidad I. FUNDAMENTOS DEL CÓMPUTO DE ALTO DESEMPEÑO

Revisar los conceptos y elementos principales relacionados al cómputo de alto desempeño para la adquisición de un marco conceptual.

- 1) Ciclo de vida de los datos (DLM).
- 2) Interoperabilidad, seguridad y portabilidad
- 3) Tipos y componentes de los procesadores actuales
 - a) Pipelining
 - b) Superescalabilidad
 - c) Jerarquía de memorias
 - d) Multinúcleos y multihilos
 - e) Vectores
 - f) Nubes y Grids

Unidad II. OPTIMIZACIÓN DE CÓDIGO SECUENCIAL Y DE ACCESO A DATOS

-	el funcionamiento de las principales técnicas de optimización de código secuencial para su aplicación en miento paralelo o distribuido.
	1) Caracterización escalar
	2) Conjunto de instrucciones para una instrucción múltiples datos (SIMD)
	3) El papel de los compiladores
	4) Análisis de balance y estimaciones de velocidad
	5) Orden de almacenamiento
	6) Casos de estudio (Algoritmo de Jacobi, multiplicación de matrices esparcidas)
Unidad	III. CÓMPUTO PARALELO
Emplear paraleliz	factores relevantes en los lenguajes de programación especializados para la implementación de códigos ables
	1) Definiciones básicas de paralelismo
	2) Arquitecturas
	3) Programación de Computadoras con memoria compartida (OpenMP)
	4) Programación de Computadoras con memoria distribuida (MPI)
	5) Programación para multi núcleos en GPUS (CUDA)
	6) Programación para Redes (Concurrencia e hilos con Sockets)
	7) Programación para Grids (Interface Definition Language)

Unidad IV. APLICACIONES DE CÓMPUTO DE ALTO DESEMPEÑO

Resolver situaciones específicas para la aplicación de metodologías y herramientas de cómputo de alto desempeño en organizaciones modernas.

- 1) Métodos numéricos
- 2) Bioinformática
- 3) Graficación y video juegos
- 4) Aplicaciones para minería de datos

Actividades que promueven el aprendizaje

Docente

Promover el trabajo individual en la definición de propuestas de solución a problemas determinados.

Coordinar la discusión de casos prácticos. Realizar demostraciones de herramientas y métodos

Fomentar la investigación de tópicos en el área. Definir estrategias para identificar las principales ventajas del Cómputo de alto desempeño.

Estudiante

Realizar tareas asignadas Participar en el trabajo individual y en equipo Resolver casos prácticos

Discutir temas en el aula

Participar en actividades extraescolares

Actividades de aprendizaje en Internet

Elaborar resúmenes sobre arquitecturas de cómputo paralelo mediante una investigación documental de forma individual y por equipos usando los enlaces de Internet:

http://ac.els-cdn.com/S1877050915005268/1-s2.0-S1877050915005268-main.pdf?_tid=e5221736-0747-11e7-bd08-00000aab0f27{ (Consultado el 12/03/2017)

h http://31.210.87.4/ebook/pdf/High_Performance_Computing.pdf (Consultado el 12/03/2017) http://cluster.fs.uni-lj.si/sites/default/files/HPC_for_dummies.pdf (Consultado el 20/01/2017)

Criterios y/o evidencias de evaluación y acreditación

Criterios

Porcentajes

Examen	30	
Evidencias individuales (investigación, ensayos, lecturas, etc.)	20	
Evidencias equipo (ejercicios, casos, proyectos, etc.)	30	
Evidencias grupales (asambleas, lluvias de ideas, etc.)	20	
Total	100	

Fuentes de referencia básica

Bibliográficas

Berry, M. W., Gallivan, K. A., Gallopoulos, E. J., Grama, A., Philippe, B., Saad, Y., & Saied, F. (2012). High-performance scientific computing. (2a. edición) EUA: Springer.

Hager, G., & Wellein, G. (2010). Introduction to high performance computing for scientists and engineers. (1a. edición) EUA: CRC Press.

JáJá, J. (1992). An introduction to parallel algorithms (Vol. 17). (1a. edición) EUA: Addison-Wesley.

McCool, M. D., Robison, A. D., & Reinders, J. (2012). Structured parallel programming: patterns for efficient computation. (1a. edición) EUA: Elsevier.

Storti, D., & Yurtoglu, M. (2015). CUDA for Engineers: An Introduction to High-performance Parallel Computing. (1a. edición) EUA: Addison-Wesley Professional.

Web gráficas

•

Fuentes de referencia complementaria

Bibliográficas

Culler, D. E., Singh, J. P., & Gupta, A. (1999). Parallel computer architecture: a hardware/software approach. (1a. edición) EUA: Gulf Professional Publishing.

Dongarra, J. J., Duff, I. S., Sorensen, D. C., & Van der Vorst, H. A. (1998). Numerical linear algebra for high-performance computers. (1a. edición) EUA: Society for Industrial and Applied Mathematics.

Pharr, M., & Fernando, R. (2005). Gpu gems 2: programming techniques for high-performance graphics and general-purpose computation. (2a. edición) EUA: Addison-Wesley Professional.

Web gráficas

.

Perfil profesiográfico del docente

Académicos

Maestría en Ciencias de la Computación, Maestría en Ciencia de Datos.

Docentes

Tener experiencia docente a nivel superior mínima de 3 años.

Profesionales

Tener experiencia en desarrollo de programas con enfoque de alto desempeño.