JP 405152273 A JUN 1993

3 (54) SHEET CLEANING OVERFLOW BATH

(11) 5-152273 (A)

(43) 18.6.1993 (19) JP

(21) Appl. No. 3-357381 (22) 29.11.1991

(71) SUGAI K.K. (72) TETSUO KOYANAGI(3)

(51) Int. Cls. H01L21/304

PURPOSE: To provide a titledly reformed bath free from recontamination of the surface of a substrate such as a wafer cleaned with a cleaning liquid during cleaning.

CONSTITUTION: In an overflow bath where a cleaning chamber 1 containing a cleaning liquid, with a substrate 3 held vertical, is supplied with a cleaning liquid at the bottom and forms an ascending current by overflow from the top of the cleaning chamber to use it for sheet cleaning of cleaning a substrate, overflow is made from only one face side of the substrate. The flow amount (flow speed) of an ascending current of a cleaning liquid is made different across the substrate, and overflow is made from only one face side of the substrate.

【特許請求の範囲】

【請求項1】 洗浄液を収容した洗浄室内に、一枚の基 板を垂直に保持し、

洗浄室内底部に洗浄液を供給すると共に、洗浄室上部よ りオーバーフローさせて上昇流を形成し、基板を洗浄す る枚葉洗浄用オーバーフロー槽において、

- (a) 洗浄室とオーパーフローした洗浄液を貯留するオ ーバーフロー液貯留室とが、壁を隔てて基板の直径又は 幅方向にて隣接していること、
- 方向にて洗浄室上部開口の一方向のみに設けられている こと、
- (c) 前記洗浄室とオーバーフロー液貯留室とが、前記 溝で連通していること、
- (d) 前記洗浄室内底部に、各々少なくとも一つの洗浄 液の給液口と排液口あるいは、少なくとも一つの給排液 兼用口を有すること、
- (e) 前記オーバーフロー液貯留室の内底部に、少なく とも一つの排液口を有すること、

を特徴とする枚葉洗浄用オーバーフロー槽。

【請求項2】 前記洗浄室内底部に、整流用多孔板を形 成したことを特徴とする請求項1の枚葉洗浄用オーバー フロー搏。

【請求項3】 前記整流用多孔板の流出口が、基板の直 径又は幅方向と平行に基板を隔てて各々一列縦隊に設け られたことを特徴とする請求項2の枚葉洗浄用オーバー フロー槽。

【請求項4】 前記各々一列総隊に設けられた多数の流 出口の大きさを、基板を隔てて相違させたことを特徴と する請求項3の枚葉洗浄用オーバーフロー槽

【請求項5】 前記オーバーフロー部に近い方の前記上 方に向けた一列縦隊の流出口の大きさを、前記オーバー フロー部に遠い方の前記上方に向けた一列総隊の流出口 の大きさよりも大なるように形成して成ることを特徴と する請求項4の枚葉洗浄用オーバーフロー槽。

【請求項6】 前記洗浄液の給液口が、先端が閉じられ 胴部に上方に向けて多数の流出口を有する1本のパイプ から成り、その軸線が基板の直径又は幅方向に平行に取 付けられたことを特徴とする請求項1の枚葉洗浄用オー バーフロー槽。

【請求項7】 前記上方に向けた多数の流出口が、基板 の直径又は幅方向と平行に、基板を隔てて各々一列総隊 に設けられたことを特徴とする請求項6の枚葉洗浄用オ ーパーフロー槽。

【請求項8】 前記各々一列縦隊に設けられた多数の流 出口の大きさを、基板を隔てて相違させたことを特徴と する請求項7の枚葉洗浄用オーバーフロー槽。

【請求項9】 前記オーバーフロー部に近い方の前記上 方に向けた一列総隊の流出口の大きさを、前記オーバー フロー部に遠い方の前記上方に向けた一列縦隊の流出口 50 冷液が洗浄室1の上部開口に設けられた4つの堰1a,

の大きさよりも大なるように形成して成ることを特徴と する請求項8の枚葉洗浄用オーパーフロー槽。

【請求項10】 前記洗浄液の給液口が、先端が閉じら れ胴部に上方に向けて多数の流出口と、下方に向けて前 記上方に向けた多数の流出口よりは少数の流出口とを有 する1本のパイプから成り、その軸線が基板の直径又は 福方向に平行に取付けられたことを特徴とする請求項1 の枚葉洗浄用オーバーフロー槽。

【請求項11】 前記上方に向けた多数の流出口が基板 (b) 堰と溝から成るオーバーフロー部が、基板の厚み 10 の直径又は幅方向と平行に、基板を隔てて各々一列縦隊 に設けられると共に、前記下方に向けた少数の流出口が 前記パイプの軸線上に一列縦隊に設けられたことを特徴 とする請求項10の枚葉洗浄用オーバーフロー槽。

> 【請求項12】 前記各々上方に向けて一列総隊に設け られた多数の流出口の大きさを、基板を隔てて相違させ たことを特徴とする請求項11の枚業洗浄用オーバーフ 口一槽。

【請求項13】 前記オーバーフロー部に近い方の上方 に向けた一列経隊の流出口の大きさを、前記オーバーフ 20 ロー部に遠い方の前記上方に向けた一列経隊の流出口の 大きさよりも大なるように形成して成ることを特徴とす る請求項12の枚葉洗浄用オーバーフロー槽。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、半導体基板や液晶ガラ ス基板等の薄板状の基板を、洗浄液を用いて一枚づつ洗 浄する枚葉式洗浄装置に用いるオーバーフロー槽に関す

[0002]

【従来の技術】半導体装置もサブミクロン時代を迎える と共に半導体基板 (以下、ウエハと称する) の直径が現 在では、150mm~200mmのものが主流となり、 大口径化が進んでいる。従って、一枚のウエハに対する 清浄度の向上が要求されてきている。このため従来の方 法において、複数枚のウエハを収載したキャリアを洗浄 液に投入して、複数枚のウエハを同時に洗浄する方法か ら、図19~図20に示す様なウエハを一枚づつ洗浄す る、いわゆる枚葉式洗浄方法に移行してきた。図19は 従来の枚葉式洗浄装置の構成図、図20はその右側面図 40 で、石英ガラス、PFA、PTFE、SiC等から成る 枚葉洗浄用オーバーフロー槽Iと洗浄液の供給系IIと から構成され、洗浄液を収容した洗浄室1内に、図示し ないチャッキングアームでウエハ3を浸漬し、洗浄室1 内に形成され各々ウエハ3の厚みよりやや幅広の溝を有 するウエハ保持部4に載置して保持し、循環ポンプ5に よって洗浄液を循環させると、洗浄液はろ過フィルタ 6、三方弁8aを通り、洗浄液の給液ロ7の多数の流出 ロ7aから洗浄室1内に流入する。洗浄液が充満した洗 浄室1内にさらに洗浄液が流入することにより余った洗 3

1 b, 1 c, 1 d を乗り越えオーバーフローし、オーバーフロー部 2 に流れ込む。この時、洗浄室 1 内に洗浄液の上昇流を生じ、ウエハ表面 3 a とウエハ裏面 3 b に付着した汚染物質を剥離して、オーバーフローする洗浄液と共に持ち去り、三方弁 8 b、ポンプ 5 を通り、ろ過フィルタ 6 を通して洗浄液中の汚染物質を除去し、洗浄液のみが再び洗浄室 1 に戻る。上記のように処理時間洗浄液を循環させることにより、ウエハ 3 が清浄化される。

なお、三方弁8a,8bは枚薬洗浄用オーバーフロー 槽Iへの洗浄液の供給や、排液を制御するもので、図示 10 しないコントローラで駆動制御される。

【0003】上記においてオーバーフロー槽は1基のみ用いて説明したが、実際にはスループット(生産高)を上げる為、数基を連設して使用される。例えば4基のオーバーフロー槽を用いて拡散前洗浄をする場合、第1のオーバーフロー槽には希ブッ酸を収容し、第2と第4のオーバーフロー槽には純水を収容し、第3のオーバーフロー槽には過酸化水素水を収容して、ウエハをチャッキングアームで第1のオバーフロー槽から第4のオーバーフロー槽まで順番に投入し洗浄する。あるいは、4基各 20々のオーバーフロー槽で、希フッ酸→純水→過酸化水素水→純水の順に洗浄する。

[0004]

【発明が解決しようとする課題】ウエハの裏面は各プロセス装置内で、搬送ベルトや真空チャック等との接触が多いため汚染が著しく、従来の方法では以下に示す問題点があった。すなわち、図18(図20のオーバーフロー槽の一部を拡大示した図)を参照して、ウエハ3を洗浄中、ウエハ裏面3bより剥離した汚染物質9が4方向オーバーフローだと、洗浄室上部からオーバーフローし 30 きれずに、一部がウエハ表面3a側に回り込み、洗浄室内壁面を逆流し、ウエハ表面3aに再付着し汚染してしまうという問題点があった。

【0005】それゆえに、本発明は洗浄液により洗浄されたウエハ等の基板表面が、洗浄中に再び汚染されることのない改良された枚菜洗浄用オーバーフロー槽を提供することにある。

[0006]

【課題を解決するための手段】本発明は上記の目的を違成するため、洗浄液を収容した洗浄室内に、被洗浄物で 40 ある一枚の基板を垂直に保持し、洗浄室内底部に洗浄液を供給すると共に、洗浄室上部よりオーバーフローさせて上昇流を形成し、基板を洗浄する枚葉洗浄装置に用いるオーバーフロー構において、基板の一面側のみからオーバーフローさせる構造にしたものである。

【0007】また、前記上昇する洗浄液の流量(流速)を、基板を隔てて基板の表面と裏面とで相違させ、汚染度の高い裏面側の洗浄液の流量を表面側の流量よりも多くなる構造にしたものである。

[0008]

【作 用】本発明によれば、上記したように、オーバーフローを基板の裏面側のみからさせるようにしたことにより、あるいは、洗浄液の流量を基板表面側より基板裏面側を多くしたことにより、洗浄中に汚染度の高い基板裏面から剥離した汚染物質が、基板表面に再付着することがなく基板を清浄にすることができる。

[0009]

【実施例】本発明を、従来例と同様ウエハの洗浄に適用 した実施例を図面により説明する。図1は本発明の第一 実施例を示す正面図、図2は図1の平面図、図3は図1 のA-A断面図、図4は図3の一部拡大図であり、従来 例を示す図19~図20と同じ部分には同一番号を付し て説明を省略する。従来例との違いは、洗浄液のオーバ ーフローのやり方を4方向から1方向に変えた点にあ る。すなわち、洗浄室1の上部開口の1辺のみに堰1 a と溝11から成るオーバーフロー部を設け、洗浄室1と オーバーフローした洗浄液を一時貯留するオーバーフロ 一液貯留室12とが洗浄室1の壁13を隔ててウエハの 直径方向にて隣接し、前記溝11により連通するよう構 成した。14はオーバーフロー液貯留室の排液口、15 は給排液兼用口、16は給排液兼用口15から洗浄室1 内に流入した洗浄液を整流するための整流用多孔板で、 ウエハ3を隔てて、ウエハ表面3a側及びウエハ裏面3 b側に各々一列縦隊に多数の孔16 aが形成されてい る。17は装置に組込むための取付孔である。なお堰1 aには多数の三角堰1eが設けてあるが、これは三角堰 1 eを設けた方が、堰1 aからのオーバーフローが堰1 aの全域にわたって均一になる為である。

【0010】次に、上記実施例の装置を用いた洗浄方法 について説明すると、洗浄液の収容された洗浄室1内 に、図示しないチャッキングアームによりウエハ3を浸 漬し、ウエハ裏面3bを堰1a側に向けてウエハ保持部 4に載置し、循環ポンプ5を作動させて洗浄液を循環さ せると、洗浄液はろ過フィルタ6、三方弁8aを通り洗 浄液の給排液兼用口15から洗浄室1内に流入する。流 入した洗浄液は、整流用多孔板16の多数の孔16aに より整流されて上昇する。 洗浄液が充満した洗浄室1内 にさらに洗浄液が流入することにより、余った洗浄液が 洗浄室1の堰1aを乗り越えオーバーフローし、溝11 を伝わってオーバーフロー液貯留室12に流れ込む。オ ーパーフロー液貯留室12に一時貯留された洗浄液は排 液口14、三方弁8 bを通ってポンプ5に戻される。こ の時洗浄室1内に洗浄液の上昇流を生じ、ウエハ表面3 aとウエハ裏面3bに付着した汚染物質を剥離してオー パーフローする洗浄液と共に持ち去り、ろ過フィルタ6 を通して洗浄液中の汚染物質を除去し、洗浄液のみが再 び洗浄室1に戻る。上記のように処理時間洗浄液を循環 させることによりウエハ3が清浄化される。

【0011】次に、本発明の第2実施例について図5を 50 用いて説明する。本実施例は、前記第1実施例に加え、

20

ウエハ表面3 a 倒を流れる洗浄液の流量よりも、ウエハ 裏面3b側を流れる洗浄液の流量を多くしたものであ る。すなわち、ウエハ3を洗浄室1の真ん中でウエハ保 持部4により保持すると、洗浄室1はウエハ3により、 ウエハ表面3aと洗浄室1の内壁面とで囲まれる容積 と、ウエハ裏面3 bと洗浄室1の内壁面とで囲まれる容 **箱とがほぼ等しくなるように二分される。そこで、給排** 液兼用口15に洗浄液が導入されると、整流用多孔板1 6にはウエハの直径方向と平行に、ウエハ表面3a側に 一列経隊に多数の流出ロ16aと、ウエハ裏面3b側に 一列総隊に多数の流出口16bとが設けられ、流出口1 6 b の直径は流出口16 a の直径よりも大きく形成され ているので、洗浄液は圧力損失の小さい方へ流れようと し流出口16 b側からの方が流出口16 a側からよりも 多く流出し、従ってウエバ裏面3 b 側の方がウエハ表面 3 a 側よりも多く流れるため、ウエハ裏面3 b の方がウ エハ表面3aよりも早く、しかも多く洗浄される。

【0012】次に、本発明の第3実施例について図6~ 図10を用いて説明する。図6は正面図、図7は図6の 平面図、図8は図6のB-B断面図、図9は図6のC-C断面一部拡大図、図10は図8の一部拡大図で、前記 第1及び第2実施例では、洗浄室1の内底部に給排液兼 用口15と、整流用多孔板16とを設けたが、本実施例 では、洗浄室1の内底部に2本の排液口18と、先端が 閉じられ胴部に上方に向けて多数の流出口19aを有す る1本のパイプから成り、その軸線がウエハの幅方向と 平行に取付けられた給液口19を設けている。前記多数 の流出口19aは図9から明らかなように、ウエハ3を 隔ててウエハの直径方向と平行に各々一列総隊に設けて あり、洗浄液が給液口19に導入されると、洗浄液が流 30 ムで保持したままの状態で洗浄するようにしても良い。 出口19aから流出し、ウエハ表面3a及びウエハ裏面 3 bを伝ってほぼ平行に上昇流を形成しウエハを洗浄す る。なお20は排液口18に接続された二方弁で、図示 しないコントローラで三方弁8bと共に駆動制御され る.

【0013】次に、本発明の第4実施例について図11 ~図12 (各々第3実施例の図9及び図10に相当する 図)を用いて説明する。本実施例は前記第3実施例に加 え、ウエハ表面3 a 側を流れる洗浄液の流量よりも、ウ エハ裏面3 b 側を流れる洗浄液の流量を多くしたもので ある。すなわち、ウエハ3を洗浄室1の真ん中でウエハ 保持部4により保持すると、洗浄室1はウエハ3により ウエハ3aと洗浄室1の内壁面とで囲まれる容積と、ウ エハ裏面3 b と洗浄室1の内壁面とで囲まれる容積とが ほぼ等しくなるように二分される。そこで、給液口19 に洗浄液が導入されると、給液口19にはウエハの直径 方向と平行に、ウエハ表面3a側に一列縦隊に多数の流 出口19aとウエハ裏面3b側に一列縦隊に多数の流出 口19bとが設けられてあり、流出口19bの直径は流 出口19aの直径よりも大きく形成されているので、洗 50 1基のみ用いて説明したが、実際には3基、4基と連設

浄液は圧力損失の小さい方へ流れようとし、流出口19 b 側からの方が流出口19 a 側からよりも多く流出し、 従ってウエハ裏面3b 側の方がウエハ表面3a 側よりも 多く流れるため、ウエハ裏面3bの方がウエハ表面3a よりも早く、しかも多く洗浄される。

ĥ

【0014】次に、本発明の第5実施例について図13 (第3実施例の図10に相当する図)を用いて説明す る。本実施例は、第3実施例の給液口19の胴部に下方 に向けて、上方に向けた多数の流出口より少数の流出口 19cを付け加えたもので、給液口19に洗浄液が導入 されると、洗浄液が流出口19aから流出し上昇流を形 成すると共に、流出口19cより下方にわずかに流出す る。流出口19cから洗浄液がわずかに流出することに より、洗浄室内底部での洗浄液のよどみを無くすことが できる。なお流出口19cの直径は流出口19aの直径 と同等もしくは小なることが望ましい。

【0015】次に、本発明の第6実施例について図14 (第4実施例の図12に相当する図)を用いて説明す る。本実施例は、第4実施例の給液口19の胴部に下方 に向けて、上方に向けた多数の流出口19a及び19b より少数の流出口19cを付け加えたもので、給液口1 9に洗浄液が導入されると、洗浄液が流出口19a及び 19 bから流出し上昇流を形成すると共に流出口19 c よりわずかに流出する。流出口19cから洗浄液がわず かに流出することにより、第5実施例と同様、洗浄室内 底部での洗浄液のよどみを無くすことができる。なお上 記全実施例においては、ウエハ3を図示しないチャッキ ングアームからウエハ保持部4に移載しているが、洗浄 室1にウエハ保持部4を設けず、前記チャッキングアー 【0016】次に、上記本発明の実施例によるとウエハ

の清浄度を高められる理由について図15 (図3のオー バーフロー権の一部を拡大示した図)を用いて説明す る。洗浄室1には堰1aと溝11から成るオーパーフロ 一部が上部開口の一方向のみ(この場合ウエハの裏面側 のみ) にしか設けてなく、循環ポンプ5で洗浄液を循環 させると、オーバーフローはウエハの裏面3b側のみし か生じないので、洗浄室1の上層部での流れにおいてウ エハ表面3a側えの流れはほとんど生じえない。従っ て、ウエハ裏面3 bに付着していた汚染物質9はウエハ 表面3a側には逆流せず、ウエハ表面3a側に付着して いた汚染物質10と共にウエハ裏面3b側からオーバー フローされ、洗浄中にウエハ表面3a側に再付着するこ とがない。しかも第2、第4、第6実施例においては洗 浄液がウエハ裏面3b側の方がウエハ表面3a側よりも 多く流れるため、汚染度の高いウエハ裏面3bがウエハ 表面3aより早くしかも多く洗浄され、ウエハ3を高い 清浄度に保つことができる。

【0017】上記実施例において、オーパーフロー槽は

40

7

して使用される。その場合、図16~図17に示すようにオーバーフロー液貯留室2の排液口14が、互いに隣接するオーバーフロー糖において重ならないよう千鳥状に設けることが望ましい。何故なら、洗浄室1の排液口18が二方弁20にチューブ21とジョイント22とで接続されているのと同様、オーバーフロー液貯留室2の排液口14は三方弁8bにチューブ23とジョイント24とで接続されているが、液量の関係で排液口14は排液口18よりも直径が大きく、従ってジョイント24もジョイント22よりも大きくなり、オーバフロー槽を隣近17と2よりも大きくなり、オーバフロー槽を降びョイント22よりも大きくなり、オーバフロー槽を降びまイント部が相互に干渉してしまい、槽間を明けなければならないが、排液口14を千鳥状に配置することにより、槽間を明けることなく密接に連設できるからである。

[0018]

【発明の効果】以上詳細に説明したように、本発明の枚葉洗浄用オーバーフロー槽を用いればオーバーフローの過程において、基板裏面側のみからオーバーフローさせたことにより、あるいは、汚染度の高い基板裏面側を流れる洗浄液の流量を基板表面側を流れる洗浄液の流量よのも多くすると共に、基板裏面側のみからオーバーフローさせたことにより、基板を洗浄中に基板裏面から剥っした汚染物質が基板表面に再付着することがなく洗い流され、清浄な状態で次工程に搬送することができ歩留まりを向上させることができる。

【0019】また、本発明の枚葉洗浄用オーバーフロー 檜を用いれば、上記効果に加え、従来の4方向オーバー フローから一方向オーバーフローに改良したことにより、槽を薄く小型に製造でき、3基、4基と連設して使 用する場合にはプロセス装置全体を小さくまとめること 30 ができ、半導体工場の省スペース化が計れる。

【図面の簡単な説明】

【図1】本発明の第1実施例を示す枚葉洗浄用オーバーフロー槽の正面図。

【図2】図1の平面図。

【図3】図1のA-A断面図。

【図4】図3の一部拡大図。

【図5】本発明の第2実施例を示す図で、図4に相当する図。

【図6】本発明の第3実施例を示す正面図。

【図7】図6の平面図。

【図8】図6のB-B断面図。

【図9】図6のC-C断面一部拡大図。

【図10】図8の一部拡大図。

【図11】本発明の第4実施例を示す図で、図9に相当 する図。

【図12】本発明の第4実施例を示す図で、図10に相当する図。

【図13】本発明の第5実施例を示す図で、図10に相当する図。

【図14】本発明の第6実施例を示す図で、図12に相当する図。

【図15】本発明によるとウエハの清浄度を高められる 理由を説明するために、図3に示す枚葉洗浄用オーバー フロー槽の一部を拡大示した図。

【図16】本発明の枚葉洗浄用オーバーフロー槽を連設して用いる場合の説明図で、図6に相当する一部拡大図

【図17】図16の底面図。

【図18】従来の枚葉洗浄用オーバーフロー槽における 問題点を説明するために、図20を一部拡大示した図。

② 【図19】従来の枚葉洗浄用オーバーフロー槽を用いた 枚葉式洗浄装置の構成図。

【図20】図19の右側面図。

【符号の説明】

1 洗浄室

la 堰

3 ウエハ

3 a ウエハ表面 3 b ウエハ裏面

4 ウエハ保持部

30 11. 潭

12 オーバーフロー液貯留室

13 壁

14 排液口

15 給排液兼用口

16 整流用多孔板

16a 流出口

16b 流出口

18 排液口

19 給液口

40 19a 流出口

196 流出口

19c 流出口

【図20】

[図17]

【図19】

フロントページの続き

(72) 発明者 上田 勉

大阪府東大阪市永和2丁目2番32号 株式 会社スガイ内