Contents

1	Chapter 1]
2	Chapter 9	•

1 Chapter 1

§1.1

finite automaton - finite no. of states, like CPU Only current state can be viewed.

Notation A finite alphabet Elements of A: letters Finite seq. of letters is a word. Empty sequence/word symbolized by ϵ , Λ , or 1 Set of nonempty words symbolized by A^+ Concat non-commutative |uv| = |u| + |v| $u\epsilon = \epsilon u = u$

§1.2.1

Concat product: $KL = \{uv | u \in K \text{ and } v \in L\}$

Power notation: L^n , where $L^0 = \{\epsilon\}$

morphism

For alphabets A and B, a morphism from A^* to B^* is a mapping.

$$\phi:A^*\to B^*$$
 s.t. :

$$\phi(\epsilon) = \epsilon$$

$$\forall u, v \in A^*, \phi(u)\phi(v)$$

Rational (Regular) Languages: $RatA^*$ is least class of languages over the alphabet, A, s.t. :

- 1. the languages \emptyset and $\{a\}$ are rational $\forall a \in A$,
- 2. if K and L are rational languages, then $K \cup L, KL$ and L^* are also rational.

Extended rational operations: rational ops + intersection, compliment, morphic image (?)

Class of extended rational languages over A is X-Rat A^*

§1.2.2

2 Chapter 9