

Green University of Bangladesh

Department of Computer Science and Engineering

Mid Assignment

Course Title: Statistics and Complex Variables

Course code: MAT-201

Date of Submission: 16.03.2021

Submitted to:

Name : Tanzila Yeasmin Nilu

Designation : Senior Lecturer

Department : CSE

Green university of Bangladesh

Submitted by:

Name : Jakirul Islam

ID : 193002101

Section : DC (193)

Department : CSE

Green university of Bangladesh

Ams to the Q. no: 1 (a)

Close interval	Tolly	frequency (fi)	Mid volue(ni)	fidi	$d_i = \frac{N_i - A}{C}$
50 -60	HI HI HI	30	55 (A)	0	0
60-70	等差三	27	65	27	
70-80	HI HI LM	17	75	34	2
80-90	111	3	85	9	3
total		N=77		Zsidi= 70	

Arithmetic mean by short-cut method;

we know that,

R=A+i=1 .C

255+ 77 ×10

= 64.09

Any.

Herce,

class interval, c = 10

Approximate mean, A 255

Ans to the Q. NO: 2 (b)

Profit (lokns)	no. of companies	cumulative frequency (1)	Continous class
0-9	25	25	0-9.5
10-19	100	125	9.5-19.5.
20-29	175	300	19.5 - 29.5
30-39	74	374	29.5 - 39.5
	66	440	39.5-49.5
40-49		475	49.5-59.5
50 -659	35	480	39.5-69.5
60-69	5	I B	
	N = 480		
	N2480		

1st quarafile:

NOW, Q1= L1+ 4-10.c $=9.5+\frac{120-25}{100}\times10$ And, 3rd quartile: Q3; Ni - 480x3 = 360 Herre, (29.5 - 39.5) is the 3rd quartile class because 360 th observation lies (29.5-39.5) in tuis class. Q3= L3+ -fe. C NOW,

Mow,

$$Q_3 = L_3 + \frac{Mi}{4} - \frac{1}{2} \cdot C$$

 $= 29.5 + \frac{360 - 300}{74} \times 10$
 $= 37.6081$

3

Ans to the Q. no: 2(a)

wages	continoues close interval	Mo. of Companies (Si)	Mid value	cumulative trequency	Sini	(n;-n)	Si(ni-x)2
300-399	270.5-390.5	9	349.5	9	3145.5	198916	1790244
400 - 499	399.5-499.5	12	449.5	21	5394	119716	1436592
500-599	499.5-599.5	17	549.5	38	3341.5	60516	1028772
600-699	599.5-699.5	22	649.5.	60	14 289	21316	468752
700-799	699.5-799.5	30	749.5	90	22485	2116	63480
800-899	799.5-899.5	45	849.5	135	38227.5	2916	13220
900-999	899.5 - 979.5	30	949.5	165	28485	23716	711480
1000-1099	999.5-1097.5	25	1049.5	190	26237.5	64516	1622900
100-1199	1099.5-109.5	10	1149.5	200	14495	125316	1253160
total		N = 200			Esini = 159100		2 filmi-57

we know,

Anithmetic mean,
$$\bar{n} = \frac{2 \text{ fix}}{N}$$

$$= \frac{159100}{200}$$

$$= 795.5$$

3rd Quartile:

Herce, (899.5-999.5) is the 3rd Quartile class become the 150th Observation lies in this class.

we know,

$$Q_3 = L_3 + \frac{N_i}{4} - fe$$
. e
$$= \frac{150 - 135}{30} \times 100$$

$$= 949.5 + \frac{150 - 135}{30} \times 100$$

Standard deviation:

= 206-11' An.

mean deviation using empirical relation:

mean deviation = $\frac{4}{5}$ x standard deviation

= $\frac{4}{5}$ x 206.11

- 164-89%

Ans to the Q. No: 2(6)

Class	Tolly	Frequency	Mid volue	camulative frequency
8-9		0	8.5	D
9-10	1111	4	9.5	4
10-11	WHAMINI	14	10-5	18
11-12	шшшшш	20	11.5	38
12-13	HTHH I	11	12.5	49
13-14		0	13.5	49
14-15		1	14.5	50
Itotal		N = 50		

Histotram:

- i) Variables con be expressed as continous class
 - ii) x-axis continous class interval
 - iii) y-axis frequency.

- i) x-axis appear limit of the continous clay
- ii) Y-axis cumulative frequency

beforce satisfaction level		After	After sotistaction level			
x	den-A	92	5	d=9-A	d ²	
69	-13	169	65	-3	9	
73	-9	91.	75	7	49	
58	-24	576	63	-5	25	
76	-6	36	75	100 Z	49	
82	0	0	. 82'	149	196	
65	-17.	289	68	0	0	
75	-7	49	\$71	•3	9	
CA	-18	324	65	6 -3	9	
97	5	25	85	17803	289	
70	-12	144	68	60	0	
En7-0	£d= -106	52 =	至5 = 列子	Ed = 37	20 = 635	
				•		

The co-efficient of variences:

Before Tokeover:

we know,

$$C.V = \frac{5}{10} \times 100$$

$$C.V = \frac{5}{10} \times 100$$

$$= \sqrt{\frac{20}{N} - (\frac{20}{N})^{2}}$$

$$= \sqrt{\frac{1693}{10} - (\frac{-106}{10})^{2}}$$

$$= \sqrt{56.94}$$

$$= 7.54$$

$$= 7.54$$

$$= 82 + \frac{20}{10}$$

$$= 7.4$$

$$CV_{x} = \frac{6}{x} \times 100$$

$$= \frac{7.54}{71.4} \times 100$$

$$= 10.560\%$$

After Tokeover:

we know,

$$C.V = \frac{6}{7} \times 100$$

$$= \sqrt{\frac{23^{2}}{N} - (\frac{23}{N})^{2}}$$

$$= \sqrt{\frac{635}{10} - (\frac{37}{10})^{2}}$$

$$= 7.057$$

$$= 7.7$$

$$= 7.7$$

$$= 7.7$$

$$= 7.057 \times 100$$

$$= 7.057 \times 100$$