

AMRL-TR-79-60

HELMET MOUNTED DISPLAYS:
AN EXPERIMENTAL INVESTIGATION OF DISPLAY LUMINANCE AND CONTRAST

B. J. COHEN

J. R. BLOOMFIELD

K. J. MCALEESE

Honeywell Systems and Research Center 2700 Ridgway Parkway Minneapolis, Minnesota 55413

JULY 1979

Approved for public release; distribution unlimited

AEROSPACE MEDICAL RESEARCH LABORATORY
AEROSPACE MEDICAL DIVISION
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

DATA SHEET

PHOTOGRAPH

THIS SHEET

AMRL-TR-79-60

DOCUMENT IDENTIFICATION

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

DISTRIBUTION STATEMENT

Accession For				
NTIS GRALI				
DDC I	AB	7		
Unann	ounced			
Justi	rication	<u> </u>		
			1	
Ву	Ву			
Distribution/				
Avai	Availability Codes			
	Avail and	or ,	Ì	
Dist	special.		l	
N	l i		,	
H				
₹′		1		

DISTRIBUTION STAMP

79 07 31 043

DATE RECEIVED IN DOC

PHOTOGRAPH THIS COPY

NOTICES

When US Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Please do not request copies of this report from Aerospace Medical Research Laboratory. Additional copies may be purchased from:

National Technical Information Service 5285 Port Royal Road Springfield, Virginia 22161

Federal Government agencies and their contractors registered with Defense Documentation Center should direct requests for copies of this report to:

Defense Documentation Center Cameron Station Alexandria, Virginia 22314

TECHNICAL REVIEW AND APPROVAL

AMRL-TR-79-60

This report has been reviewed by the Information Office (OI) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

Chief

Human Engineering Division

Aerospace Medical Research Laboratory

UNCLASS

DD 1 JAN 75 1473

Residence of the second second

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

	REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS	
1	REPORT NUMBER		BEFORE COMPLETING FORM 3. RECIPIENT'S CATALOG NUMBER	
1	AMRL-TR-79-60	551. 76567 7677 766		
 -		<u></u>		
1"	TITLE (and Sublifie) HELMET MOUNTED DISPLAYS:		5. TYPE OF REPORT & PERIOD COVERED	
i	AN EXPERIMENTAL INVESTIGATION OF DISPLAY		Technical Report	
1	LUMINANCE AND CONTRAST		6. PERFORMING ORG. REPORT NUMBER	
ı			or a morning of the transfer from our	
7.	AUTHOR(*)		8. CONTRACT OR GRANT NUMBER(*)	
1	B. J. Cohen			
	J. R. Bloomfield			
_	K. J. McAleese		F33615-72-C-0420/P20002	
9.	PERFORMING ORGANIZATION NAME AND ADDRESS Honeywell Systems and Research Co	enter	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
	2700 Ridgway Parkway			
	Minneapolis, Minnesota 55413		Project 5973	
11	CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE	
l'''	Aerospace Medical Research Labora	tory, Aerospace	July 1979	
	Medical Division, Air Force Syste		13. NUMBER OF PAGES	
	Wright-Patterson Air Force Base,	Ohio 45433	72	
14.	MONITORING AGENCY NAME & ADDRESS(If differen	t from Controlling Office)	15. SECURITY CLASS. (of this report)	
			UNCLASSIFIED	
			15a. DECLASSIFICATION/DUWNGRADING SCHEDULE	
16.	DISTRIBUTION STATEMENT (of this Report)			
"	DISTRIBUTION STATEMENT, TO THE REPORT,			
].	Approved for public release; dist	ribution unlimit	ed	
ł				
<u> </u>				
17.	DISTRIBUTION STATEMENT (of the abstract entered	in Block 20, if different from	n Report)	
ŀ				
1				
18.	18. SUPPLEMENTARY NOTES			
			1	
19.	19. KEY WORDS (Continue on reverse side if necessary and identify by block number)			
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)				
	This study was carried out in order to validate experimentally the predictions			
	of previous analytic work (Cohen, 1973). The objective was to determine the			
	best combination of filter coatings and display luminances required for view-			
ing the Helmet Mounted Display (HMD) against a wide, but operationally realis-				
	tic variety of background luminances. The predictions relating beamsplitter			
	transmittance, visor transmittance and display luminance to performance were			
	largely supported by the data.			
- - 	the second section of the second section is the second section of the second section is the second section of the second section is the second section of the second section s	حشرا فاساكر وسيدا المدارات والمسادرة والأسيالة		

EDITION OF 1 NOV 65 IS OBSOLETE

SECURILY CLASSIFICATION OF THIS PAGE (When Date Snicred)

ACKNOWLEDGEMENTS

The authors wish to thank Harry L. Task of the Performance Requirements Branch, Human Engineering Division, Aerospace Medical Research Laboratory at Wright-Patterson AFB, Ohio. Thanks are extended also to Carl Graf, Connie Walters, Helen Paul, Sally Booth and Len Lorence for their help.

TABLE OF CONTENTS

		Page
SECTION I.	INTRODUCTION	1
	Objective	1
	Background	1
	Statement of the Problem	1
SECTION II.	VARIABLES AFFECTING VISUAL PERFORMANCE	3
	Independent Variables	3
	Dependent Variables	5
	Visual Performance Criteria	7
SECTION III.	METHOD	8
DIJGTION III.	Subjects	8
	Apparatus	8
	Procedure	11
-	Test Conditions	12
SECTION IV.	RESULTS	14
SECTION V.	CONCLUSIONS	23
SECTION VI.	RÉFERÈNCES	24
APPENDIX A.	INSTRUCTIONS TO SUBJECTS	
APPENDIX B.	CALIBRATION DATA	
APPENDIX C.	EXPERIMENTAL DATA	

FIGURES

Figures No.	Title	Page
1	Block Diagram of Independent Variables Which Influence HMD Luminance and Contrast	4
2	Experimental Set-up	9
3	Stimulus Slides	10
4	Mean Resolution as a Function of C for Imagery Displayed on the HMD	16
5	Mean Resolution as a Function of C for Background Imagery	17
6	Mean Resolution as a Function of B_{Δ} for Imagery Displayed on the HMD	18
7	Mean Resolution as a Function of B_{Δ} for Background Imagery	19
8	Mean Resolution as a Function of ${f B}_{f V}$	20
9	Mean Resolution as a Function of $L_{\overline{D}}$	21
10	Mean Resolution as a Function of B_{χ}	22

LIST OF TABLES

Table No.	Title	Page
1	Values of L_D , B_V , and B_X	13
B-1	Calibration of Resolution for the Right Field with the Background Projector Only	3-2
B-2	Calibration of Resolution for the Displayed Image with Image Projector Only	B-3
B-3	Calibration of Resolution for the Left Field with Background Projector Only	В-3
B-4	Calibration of Resolution for the Right Field under All 175 Experimental Conditions	B-4
B-5	Calibration of Luminance for the Right Field with Background Projector Only	B-14
B-6	Calibration of Luminance for the Left Field with Background Projector Only	B-14
B-7	Calibration of Luminance for Displayed Image with Image Projector Only	B-15
B-8	Calibration of Luminance for the Right Field under All 175 Experimental Conditions	B-16
C-1	Experimental Data Averaged Across the Four Observers for All 175 Conditions	C-2
C-2	Horizontal Resolution and Time Collapsed Across $\mathbf{L}_{\mathbf{D}}$ for the Display-Projected Chart	C-9
C-3	Horizontal Resolution and Time Across $\mathbf{L}_{\mathbf{D}}$ for the Background-Projected Chart	C-10
C-4	Horizontal Resolution and Time Collapsed Across B_{X} for the Display-Projected Chart	C-11
C-5	Horizontal Resolution and Time Collapsed Across B _v for the Background-Projected Chart	C-12

SECTION I

INTRODUCTION

OBJECTIVE

The objective of this study was to determine under controlled laboratory conditions the best combination of filter coatings and display luminances required for employing the Helmet-Mounted Display against a wide but operationally realistic variety of background luminances.

BACKGROUND

The Helmet Mounted Display (HMD) is a unique display system. It projects a collimated cathode ray tube (CRT) image onto a partially reflective beamsplitter located in front of one of the observer's eyes -- usually the right. The beamsplitter reflects approximately 90 percent of the display luminance projected onto it. Also, it transmits approximately seven percent of the light from the outside world, so that the observer is able to see through the display with his "display eye". The helmet visor, on which the display is presented, transmits approximately 14 percent of the external light. The two eyes are, therefore, exposed to both different amounts of light and different visual images.

The interocular difference in luminance varies as a function of the following four variables: ambient light, display luminance, visor transmittance, and beamsplitter reflectance/transmittance. By optimizing the values of these variables, the display will be visible against background conditions ranging from 10,000 ft-Lamberts in bright sunlight at high altitudes, to 10 ft-Lamberts during night time operations.

STATEMENT OF THE PROBLEM

The wide ranges of background luminance to which operators are exposed produce a variety of problems unique to see-through displays. High levels of ambient light will wash out the displayed imagery. The contrast between this imagery and the background can be increased in two ways:

(a) Background luminance can be attenuated by increasing the density of the visor. However, when the ambient light level is low, it will be correspondingly difficult to see through the visor at all.

(b) In order to allow the visor to be used under low ambient lighting conditions, the transmittance of the beamsplitter rather than of the visor should be reduced. Then the two eyes would receive very different imagery. If the luminances of the two images are similar, the observer can readily attend to either image by alternating his attention. However, when the light levels of the two images become very different, the brighter image may actually suppress the other image, effectively blinding the observer in one eye. For example, if the display luminance was significantly greater than the light transmitted to the non-display eye, the observer might not be able to read his cockpit instruments.

Cohen (1973) evaluated the effects of 480 possible combinations of display luminance, background luminance, and light attenuation on anticipated visual performance. These predictions in conjunction with the empirical data obtained in this study represent a significant contribution to the determination of human visual requirements for designers of visually coupled systems.

SECTION II

VARIABLES AFFECTING VISUAL PERFORMANCE

INDEPENDENT VARIABLES

Under ideal conditions, we would like to maximize the contrast of the HMD imagery, while at the same time delivering equal amounts of light energy to the two eyes. The visor-transmitted light going to both eyes, and the CRT imagery going to the display eye, must be modulated in some way so that acceptable visual performance is obtained under a wide variety of background luminance conditions. Figure 1 shows how this modulation occurs.

Ambient light, expressed in terms of L_B , the background luminance, reaches the observer's eyes via the helmet visor. The visor reduces the level of the incoming light, only transmitting a portion of it. The attenuation is expressed in terms of visor transmittance, V_X . The resultant visor-transmitted light, B_V is given by

$$B_{V} = L_{R} \cdot V_{X} \tag{1}$$

This light goes to the non-display eye without further attenuation.

The visor has a partially reflective, partially transmissive area on which the CRT picture can be delivered. This surface further reduces the incoming light. And this reduction is expressed in terms of beamsplitter transmittance, B_X . The net background luminance on the beamsplitter, B_B is given by

$$B_{B} = B_{V} \cdot B_{X} \tag{2}$$

The beamsplitter, in addition to reducing visor-transmitted light, also reflects the light projected to it from the face of the CRT display to the observer's display eye. The amount of display luminance, L_D, transmitted to the observer is a function of how much of the display energy is reflected from the posterior surface of the beamsplitter, and how much is absorbed by the beamsplitter. Absorption typically amounts to 1 to 2 percent and it was assumed that it could be ignored, thus simplifying the present analysis. Since the sum of beamsplitter transmittance (Bx) and beamsplitter reflectance.

Figure 1. Block Diagram of Independent Variables which Influence HMD Luminance and Contrast

(BR) was assumed to equal unity, then it follows that

$$B_{R} = 1 - B_{X} \tag{3}$$

The net display luminance on the beamsplitter, BD, is given by

$$B_D = L_D \cdot B_R + B_B \tag{4}$$

Using the above formulations the following four independent variables were systematically varied in the present study:

- (1) background luminance, LB;
- (2) visor transmittance, Vx;
- (3) beamsplitter transmittance, Bx;
- (4) display luminance, LD.

DEPENDENT VARIABLES

Selected values of L_{D} , B_{X} , V_{X} and L_{B} were used to predict visual performance in terms of display contrast and interocular luminance differences.

Contrast is expressed as a ratio. It indicates the relative luminance of a figure with respect to the luminance of the background. Most commonly it is expressed as the proportional increase in luminance contributed by the figure, thus:

Contr.st =
$$\frac{L_{\text{Figure}} - L_{\text{Background}}}{L_{\text{Background}}}$$
(5)

Classical contrast work, like the Tiffany study (Blackwell, 1946) and more recent work by Carel (1965) use this expression. Van Nes and Bouman (1967) suggest the use of a contrast modulation function:

$$C = \frac{B_{\text{max}} - B_{\text{min}}}{B_{\text{max}} + B_{\text{min}}}$$
 (6)

Where B_{max} and B_{min} are the highest and lowest luminance values of the display, respectively.

With a see-through display, the display luminance will always be greater than the background luminance. Using equation (5), the contrast values in the present study can take any value between zero and infinity.

However, to make the data compatible with the contrast values used in engineering specifications for CRT displays, equation (6) was used in this study.

An equation (5) contrast value, C_D , can be converted to an equation (6) modulation contrast, C_M , as follows:

$$C_{D} = \frac{2C_{M}}{1 - C_{M}} \tag{7}$$

To derive contrast for the HMD, it is necessary to know the maximum and minimum luminances of the display that could be obtained given fixed values of $L_{\rm B}$, $V_{\rm X}$, and $L_{\rm D}$. Maximum luminance would be achieved when maximum net background luminance is combined with maximum display luminance on the inner (posterior) surface of the beamsplitter. Thus, maximum luminance would be equal to $\Sigma_{\rm D}$. Minimum luminance would involve the net background luminance alone, $B_{\rm B}$. Given these maximum and minimum luminances, the resulting contrast is the maximum possible contrast, $C_{\rm max}$. This is given by

$$C_{\text{max}} = \frac{B_{\text{D}} - B_{\text{B}} \cdot (100)}{B_{\text{D}} + B_{\text{B}}}$$
 (8)

C_{max} is expressed as a percentage by equation (8).

Interocular luminance differences are a function of the difference between the light transmitted to the display eye, B_D , and to the non-display eye, B_V . There are several combinations of values of L_D , B_X , V_X , and L_B that produce situations where B_D and B_V are close enough in luminance for the observer to feel no effect. Then, if the C_{max} is high enough for the observer to see the display comfortably, we would have a good visual environment with optimal performance likely. On the other hand, if B_D and B_V differ greatly, even an ideal C_{max} value could not guarantee optimal performance.

Differences in luminance may result in phenomena such as "binocular rivalry" (Cohen and Markoff, 1972), where the observer's attention would alternate from one eye to the other. If the interocular luminance difference was great enough, alternation would give way to suppression with the dimmer field of view not being seen at all. Such a situation could be particularly bad in the air-to-air combat situation, where a very bright display not only would occlude the display eye, but also might suppress the field of view of the non-display eye. onvenient expression for the difference in luminance to the two eyes is interocular luminance difference ratio, B_{Λ} , which is given by

$$B_{\Delta} = \frac{B_{D}}{B_{V}} \tag{9}$$

When B $_{\Delta}$ = 1, the two eyes would receive equal light energy. When B $_{\Delta}$ > 1 more luminance would be transmitted to the display eye, with the reverse occurring when B $_{\Delta}$ < 1.

VISUAL PERFORMANCE CRITERIA

There is a minimum value of C_{max} below which the display would be so degraded that effective visual performance could not be obtained. There are values of B_{Δ} that would also produce unacceptable performance.

Cohen (1973) determined acceptable levels of C_{max} and B_Δ . He concluded that any combination of L_D , B_X , V_X , and L_B that resulted in $C_{max} < 23\%$ or $0.25 > B_\Delta > 4.00$ would not be acceptable because of its likely effect on visual performance. The present study is an experimental validation of these performance criteria. If the analytical criteria correspond to actual human visual performance criteria, then the performance predictions of the previous study will have a general applicability to the design and development of future visually coupled systems.

SECTION III

METHOD

The experiment was designed to investigate the effects of various combinations of display luminance, background luminance, and light attenuation on visual performance.

SUBJECTS

Four male undergraduate students from colleges in the Twin Cities participated in the study. All were paid for their rarticipation, and all had normal vision with no specific ocular pathology.

APPARATUS

Figure 2 shows the experimental set-up. Briefly, the system contained the following equipment:

- Two 12-inch by 12-inch rear-projection screens, on which a resolution chart or background pattern was projected by a pair of 1600-watt Xenon-arc sources.
- A Rollei slide projector for projecting an image on one screen. Slide mounted filters provided precise control of the display luminance. In addition, light from this source was filtered to approximate the color of a P-1 phosphor.
- . Intertrial adaptation lights. The output of these lights was continuously variable over a wide luminance range.
- A filter system for precise control of background luminance. A filter wheel, simulating the helmet beamsplitter, further attenuated the amount of light available to the display eye.
- . An optical assembly which enabled stimuli to be presented independently to either of the subject's eyes.

Stimulus materials consisted of 2-inch by 2-inch slides of a standard Air Force tri-bar chart and a randomly generated reticulated pattern. Figure 3 illustrates both kinds of stimuli. The system was calibrated both in terms

A STATE OF THE PARTY OF THE PAR

Figure 2. Experimental Set-up

Figure 3. Stimulus Slides

of resolution and luminance. The results of the calibration procedure are given in Appendix B.

PROCEDURE

The subject was initially trained to recognize and identify tri-bar positions on an enlarged resolution chart. Once familiar with this procedure, the subject sat in a dental chair before the apparatus and placed his head on a padded rest on the optical stand. In this position, distinct, non-overlapping fields of view were presented to each eye.

Next, the experimenter read the instructions aloud (the instructions are given in Appendix A). Subjects were told to maintain proper head position and to use both eyes at all times. The subject's task was to report the positions of the smallest vertical and horizontal bar patterns he could resolve.

The study consisted of five blocks of 35 conditions. Each block represented one value of combiner transmittance (B_X) with transmissivity increasing across blocks. Within these blocks, five levels of display luminance, L_D , were presented in order of increasing luminance. For each L_D value seven levels of background luminance were presented, always increasing in luminance.

Subjects received all test conditions. There were ten trials per condition. On five consecutive trials the chart was presented to the display eye only, by means of the slide projector, against a reticulated pattern from the lamphouse presented to both eyes. This situation presumably evaluated the subject's ability to utilize the displayed imagery against a wide variety of luminance conditions. In the remaining five trials, it was presented to both eyes via the lamphouses, while the right eye received an additional background pattern from the slide projector. Here, the "see-through" case was being evaluated, i.e., the subject's ability to resolve visual stimuli of varying intensity outside the visor was being tested as a function of net display luminance. The order of chart position was counterbalanced across conditions.

Between trials, the subject's eyes were light adapted to a field matching the background luminance level of the next trial, which was, as previously mentioned, always more intense. This procedure was adopted to minimize any adaptation level phenomena that might have interferred with the subject's performance.

Each subject received ten practice trials. Response time and bar positions were recorded. These values provided base levels during later analysis. Upon completion of the practice trials, formal data collection began. Response time and bar positions were recorded for each trial. The experimental sessions lasted one hour. Subjects could rest whenever they telt fatigued. There were approximately 16 sessions per subject.

TEST CONDITIONS

Section II of this report identified the following independent variables as crucial to visual performance with a see-through, monocular HMD:

- 1. LB, background luminance
- 2. LD, display luminance
- 3. V_X, visor transmittance
- 4. Bx. beamsplitter transmittance

Representative levels of these variables are given in Table 1. Note that values of background luminance, $L_{\rm B}$, and visor transmittance, $V_{\rm X}$, have been combined as the visor transmitted light, $B_{\rm V}$, using equation (1), viz:

$$B_V = L_B \cdot V_X$$

Values in Table 1 are given for both chart location conditions.

1.	Display Luminance (L_D) (ft-Lamberts)		
	. A	12.3	
	В	23.7	
	\mathbf{c}	50.5	
	D	150.0	
	${f E}$	231.0	
C,S	Visor Transmitted Light (B _V)		
	A.	0.7	
	В	2.4	
	c	6.4	
	D	27.5	
	${f E}$	88.0	
	${f F}$	310.0	
	G	975.0	
3,	Combiner Transmittance (B_X)		
-	A	0%	
	В	4%	
Ì	C	10%	
	D	25%	
	E	Trichroic	

SECTION IV

RESULTS

The display luminance and contrast experiment provides a test of the analytic work completed earlier in the contract and previously submitted to AMRL (Cohen, 1973).

The average resolution and average response time of the four observers is shown in Table C-1 of Appendix C for all 175 conditions. These data provide the basis for Figures 4-10. The predictions made relating beamsplitter transmittance, $B_{\rm X}$, visor transmittance, $B_{\rm V}$, and display luminance, $L_{\rm D}$, to resolution performance were supported by the data. Specific findings were:

- For imagery displayed on the HMD, contrast or C_{max} becomes critical at 23 percent (as is clear from Figure 4). Below this value visual performance deteriorates markedly. Above 23 percent visual performance remains stable. The value obtained here coincides with that predicted in the analysis.
- 2. As Figure 5 shows, resolution ability for background imagery is unaffected until C_{\max} exceeds 98 percent; i.e. "see-through" ability is unchanged as C_{\max} ranges from 0-98 percent.
- 3. Figure 6 shows that, when the interocular luminance ratio, B, (luminance in display eye divided by luminance in other eye) falls below 0.3, visual performance deteriorates markedly for imagery displayed on the HMD. A value of 0.25 was expected from the analysis.
- 4. Interocular luminance ratios above 10.0 significantly interfere with the subject's ability to see through the visor with both eyes open. This is illustrated by Figure 7. Analysis had predicted an upper value of 4.0.
- 5. Figure 8 shows that, when visor transmitted light (B_V) approaches 1,000 ft-Lamberts (10 percent visor at 10,000 ft-Lambert ambient), display luminances L_D , at the eye of less than 200 ft-Lambert sharply degrade visual performance.

- 6. The same figure (8) shows that, when visor transmitted light (B_V) is less than five ft-Lamberts, even a 12 ft-Lambert display interferes with outside-the-visor visual performance, and it does so regardless of beamsplitter transmittance (amount of see-through in the display area).
- 7. Figure 9 shows that the lower the display luminance, (L_D) is, the lower the beamsplitter transmittance (B_X) must be in order to resolve targets presented on the display.
- 8. However, as display luminance, L_D , increases above 100 ft-Lamberts, beamsplitter transmittance, B_X , becomes less critical as a determiner of visual resolution (Figure 9).
- 9. Figure 10 shows that, as visor transmitted light, B_V , increases above 100 ft-Lamberts, visual resolution of the display deteriorates as beam-splitter transmittance, B_X , increases.

i Harandini i

Figure 6. Mean Resolution as a Function of B_Δ for Imagery Displayed on the HMD

A STATE OF THE STA

Figure 7. Mean Resolution as a Function of B_Δ for Background Imagery

Figure 8. Mean Resolution as a Function of $B_{\mbox{\scriptsize V}}$ (DH - imagery displayed on HMD; BH - background imagery)

是一个人,他们就是一个人,他们也不是一个人,他们也不是一个人,他们也不是一个人,他们也不是一个人,他们也不会一个,他们也是一个人,他们也不会一个人,他们也不是一

Eggenta d

Parties with

S. C. D. W.

granden alver

The Property of the Party of th

Poly graph per p

A steel to A

A separate of the separate of

(DH - imagery displayed on HMD; BH - background imagery)

(DH - imagery displayed on HMD; BH - background imagery)

SECTION V

CONCLUSIONS

This study confirmed the conclusion of our analytic work (Cohen, 1973) that no single combination of visor transmittance (V_X), beamsplitter transmittance (E_X), and display luminance (E_D) will allow acceptable visual performance, from the standpoint of both display contrast (E_{max}) and interocular luminance differences (E_A), across the anticipated operational range of background luminance conditions, with E_B ranging from 10 to 10,000 ft-Lamberts.

In summary, the study demonstrates the need for:

- (a) A variable transmission visor with a range from close to 100% down to less than 1%.
- (b) A variable transmission beamsplitter with an approximate range of 25% down to 0%.
- (c) A maximum display luminance, at the eye, of approximately 200 foot-Lamberts.

SECTION VI

REFERENCES

- 1. Blackwell, H. R., "Contrast thresholds of the human eye". Journal of the Optical Society of America, 1946, 36, 624-643.
- 2. Carel, W. L., <u>Pictorial displays for flight</u>. Hughes Aircraft Co., Culver City, California, Technical Report 2732.01/40 (AD 627 669), December 1965.
- 3. Cohen, B. J., Helmet mounted displays: A computer-assisted analysis of day-night visual requirements. Honeywell, Inc., Minneapolis Minnesota, Systems and Research Division Report Number IHMS/D SR5, July 1973.
- 4. Cohen, B. J. and Markoff, J. I., Integrated helmet mounted sight and display special human factors report: The presentation of different visual information to each eye. Honeywell, Inc., Minneapolis, Minnesota, Systems and Research Report Number IHMS/D-SR1, December, 1972.
- 5. Van Nes, F. L. and Bouman, M. A., "Spatial m. ulation transfer in the human eye". <u>Journal of the Optical Society of America</u>, 1967, <u>57</u>, 401-406.

THE PERSON

. see .

APPENDIX A

INSTRUCTIONS TO SUBJECTS

- 1. "In this study, we want to evaluate a series of lighting conditions that may affect human vision".
- 2. "Your job will be to identify and report the smallest group of three bars you can resolve -- that is, distinguish between the black bars and white spaces between bars".
- 3. Experimenter shows subject an $8\frac{1}{2}$ x 11 resolution chart and demonstrates how to read it. Then E points rapidly to different bar groupings and has S verbally identify the groups until he can correctly report ten without error.
- 4. "This resolution chart will be shown on the screen in front of you. Please look only at the screen. During its presentation, I want you to do two things:
 - a) Report the smallest group of vertical bars that you can resolve without squinting.
 - b) Now do the same for the horizontal bars".
- 5. "We will be measuring the time it takes you to respond, but we are more interested in the accuracy of your response. Remember, accuracy is more important than speed. If you are not sure of your response, tell us. Please report only the group of lines that you can see clearly".
- 6. "It is very important that you report only what you can see. If you are not sure, don't report it. Please do not guess".
- 7. "Please keep both eyes open at all times". (Repeat)
- 8. "You will be participating in this study for a number of days. The task is tiring and will require frequent rests. If you feel any fatigue or eye strain, please tell me immediately and we will take a break".

- 9. Seat S and adjust chair until comfortable. Then go through condition 19 until S is able to perform both tasks easily for ten consecutive trials.
- 10. "All right -- it looks as if you are ready to begin. Any questions? If not, let's begin".

APPENDIX B

CALIBRATION DATA

Tables B-1 through B-4 show the results of resolution calibrations made for the night field alone, the displayed image alone, the left field alone for the night field under all 175 experimental conditions.

Tables B-5 through B-8 show similarly the results of luminance calibrations.

A . . A

- Section of the last

publications

Table B-1.

Calibration of Resolution for the Right Field with the Background Projector Only

B _X	B _V (ft- Lamberts)	Vertical Bars	Horizontal Bars	Average Resolution (Minutes of Arc)
4%	0.7	0-1	0-1	17.65
	2.4	1-1	1-1	8.83
	6.4	1-4	1-4	6.20
	27.5	2-4	2-4	3.10
	88.0	2-6	2-6	2.48
	310.0	4-1	4-1	1.10
	975.0	5-1	5-1	0.55
10%	0.7	0-5	0-5	11.05
	2.4	1-4	1-4	6.20
	6.4	2-2	2-2	3.93
	27.5	2-6	2-6	2.48
	38.0	3-1	3-1	2.21
	310.0	1-2	4-2	0.98
	975.0	5-2	5-2	0.49
25%	0.7	1-1	1-1	8.83
	2.4	1-6	1-6	4.94
	6.4	2-3	2-3	3.48
	27.5	2-5	2-5	2.76
	88.0	2-6	2-6	2.48
	310.0	4-2	4-2	0.98
	975.0	5-1	5-1	0.55
Trichroic	0.7 2.4 6.4 27.5 88.0 310.0 975.0	0-1 1-6 2-2 3-1 3-2 4-4 5-2	0-1 1-5 2-2 3-1 3-2 4-4 5-2	17.65 5.53 3.93 2.21 1.97 0.77

S A Se sive AND

Table B-2.

Calibration of Resolution for the Displayed Image with Image Projector Only

L _D (ft-Lamberts)	rts) Vertical Ho Bars		Average Resolution (Minutes of A.rc)		
12,3	4-1	4-1	1.10		
23.7	4-1	4-1	1.10		
50.5	4-1	4-1	1.10		
105.0	4-1	4-i	1.10		
231.0	4-1	4-1	1.10		
		<u></u>	<u> </u>		

Table B-3.

Calibration of Resolution for the Left Field with Background Projector Only

B _V (ft-Lamberts)	Vertical Bars	Horizontal Bars	Average Resolution (Minutes of Arc)
0.7	2-6	2-6	2.48
2.4	3-1	3-1	2,21
6.4	3-3	3-3	1.74
27.5	3-4	3-4	1.55
88.0	3-5	3-5	1.38
310.0	4-2	4-2	0.98
975.0	4-4	4-4	0.77

Table B-4.

Calibration of Resolution for the Right Field Under All 175 Experimental Conditions

Smallest Resolvable Bars for All Conditions

Condition	вх	L _D (ft- Lamberts)	B _V (ft- Lamberts)	Chart Loca- tion	Ver- tical Bar	Hori- zontal Bar	Average Resolution (Minutes of Arc)
1.	4%	12.3	0,7	D	3-5	3-5	1.38
2.			2.4	B D	3-6	3-6	1.24
3.			6.4	B D	4-1	4-1	1.10
4.			27.5	B D	3-6	3-6	1.24
5.			88.0	B D	3-6	3-6	1.24
6.			310.0	B D	0-3 3-6	0-3 3-6	13.90 1.24
7.			975.0	B D B	3-4 3-3 4-6	3-4 3-3 4-6	1.25 1.74 0.62
8.	4%	23.7	0.7	D B	4-1	4-1	1.10
9.			2.4	D B	4-1	4-1	1.10
10.			6.4	D B	3-6	3-6	1.24
11.			27.5	D B	3-5	3-5	1.38
12.			88.0	D B	3-5	3-5	1.38
13.			310.0	D B	3-5 2-2	3-5 2-2	1.38 3.93
14.			975.0	D B	3-4 4-6	3-4 4-6	1.55 0.62
15.	4%	50.5	0.7	D	4-1	4-1	1.10
16.			2.4	B D B	4-1	4-1	1.10

Table B-4.

Calibration of Resolution for the Right Field
Under All 175 Experimental Conditions (continued)

Condition	$\mathbf{E}_{\mathbf{X}}$	L _D (ft- Lamberts)	B _V (ft- Lamberts)	Chart Loca- tion	Ver- tical Bar	Hori- zontal Bar	Average Resolution (Minutes of Arc)
17.	4%	50.5	6.4	D	4-1	4-1	1.10
18.			27.5	B D	3-6	3-6	1.24
19.			88.0	B D B	4-1	4-1	1.10
20.		:	310.0	D B	4-1 1-5	4-1 1-5	1.10 5.53
21.			975.0	D B	4-1 4-3	4-1 4-3	1.10 0.87
22.	4%	105.0	0.7	D	4-2	4-2	0.98
23.			2.4	B D B	4-2	4-2	0.98
24.			6.4	D B	4-1	4-1	1,10
25.		-	27.5	D B	4-1	4-1	1.10
26.	-		88.0	Ď B	4-1	4-1 	1.10
27.		A delication of the second of	310.0	D B	4-1 9-1	4-1 0-1	1.10 17.65
28.			975.0	D B	3-6 5-6	3-6 3-6	1.24 1.24
29.	4%	231.0	0.7	D	3-6	3-6	1.24
30.			2.4	B D B	3-6	3-6	1,24
31.			6.4	D B	3-6	3-6	1.24
32.			27.5	D B	3~6	3-6	1.24
33.			88.0	D B	4-1	4-1	1.10
34.			310.0	D B	3-6	3-6	1.24

Table B-4.

Calibration of Resolution for the Right Field
Under All 175 Experimental Conditions (continued)

Condition	ВХ	L _D (ft- Lamberts)	B _V (ft- Lamberts)	Chart Loca- tion	Ver- tical Bar	Hori- zontal Bar	Average Resolution (Minutes of Arc)
35.	4%	231.0	975.0	D B	3-6 2-1	3-6 2-1	1.24 4.41
36.	10%	12.3	0.7	D	4-1	4-1	1.10
37.			2.4	B D	4-1	4-1	1.16
38.			6.4	B D B	4-1	4-1	1.10
39.			27.5	D	4-1	4-1	1.10
40.			88.0	B D B	0-4 3-6 1-3	0-4 3-6	12.39 1.24
41.			310.0	D B	4-1 4-1	1-3 4-1 4-1	6.95 1.10
42.			975.0	D B	4-1 4-6	4-1 4-6	1.10 1.10 0.62
43.	10%	23.7	0.7	D	4-1	4-1	1.10
44.			2.4	B D	4-1	4-1	1.10
45.			6.4	B D B	4-1	4-1	1.10
46.			27.5	D B	4-1	4-1	1,10
47.			88.0	D B	3-6 0-4	3-6 0-4	1.24 12.39
48.			310.0	D B	4-1 3-4	4-1 3-4	1.10 1.55
49.			975.0	D B	4-1 4-5	4-1 4-5	1.10 0.69
50.	10%	50.5	0.7	D	4-1	4-1	1.19
51.			2.4	B D	4-1	4-1	1.10
52.			6.4	B D B	4-1	4-1	1,10
L	<u> </u>		<u> </u>				

Table B-4.

Calibration of Resolution for the kight Field
Under All 175 Experimental Conditions (continued)

Condition	ВХ	L _D (ft- Lamberts)	B _V (ft- Lamberts)	Chart Loca- tion	Ver- tical Bar	Hori- zontal Bar	Average Resolution (Minutes of Arc)
53.	10%	50.5	27.5	D	4-1	4-1	1.10
54.			88.0	B D B	4-1 0-3	4-1 0-3	1.10 13.90
55.			310.0	D	4-1	4-1	1.10
56.			975.0	B D B	3-2 4-1 4-4	3-2 4-1 4-4	1.97 1.10 0.77
57.	10%	105.0	0.7	D	3-6	3-6	1.24
58.			2.4	B D B	3-6	3+ú	1.24
59.			6.4	D	3-6	3-6	1.24
60.			27.5	B D	3-6	3-6	1.24
61.			88.0	B D	3-6	3-6	1.24
62.			310.0	B D	0-1 3-6	0-1 3-6	17.65 1.24
63.			975.0	B D B	3-2 3-6 4-2	3-2 3-6 4-2	1.97 1.24 0.98
64.	10%	231.0	0.7	D	3-6	3-6	1.24
65.			2.4	B D	3-6	3-6	1.24
66.			6.4	B D	3-6	3-6	1.24
67.			27.5	B D	3-6	3-6	1.24
68.			88.0	B D B	3-6	3-6	1.24
69.			310.5	D	3-6	3-6	1.24
70.			975.0	B D B	1-1 3-6 3-5	1-1 3-6 3-5	8.83 1.24 1.38

Porte Street,

Table B-4.

Calibration of Resolution for the Right Field
Under All 175 Experimental Conditions (continued)

Condition	$\mathbf{B}^{\mathbf{X}}$	L _D (ft- Lamberts)	B _V (ft- Lamberts)	Chart Loca- tion	Ver- tical Bar	Hori- zontal Bar	Average Resolution (Minutes of Arc)
71.	25%	12.3	0.7	D	4-1	4-1	1,10
72.			2.4	D B	4-1	4-1	1.10
				${\tt B}$	~~~		
73.			6.4	D B	4-1	4-1	1.10
74.			27.5	D	3-6	3-6	1.24
75.			88.0	B D	1-4 3-6	1-4 3-6	$\begin{array}{c} 6.20 \\ 1.24 \end{array}$
10,				B	1-6	1-6	4.95
76.			310.0	D	3-3	3-3	1.74
77.			975.0	B D	4-3 1-3	4-3 1-3	0.87 6.95
* * •				13	5-1	5-1	0.55
78.	25%	23.7	0.7	D	4-1	4-1	1.10
79.			2.4	B D	4-1	4-1	1.10
	}			В		***-	
80.			6.4	D B	4-1	4-1	1.10
81.			27.5	D	4-1	4-1	1.10
00			88.0	B	0-3 4-1	0~3 4~1	13.90
82.			00.0	В	1-3	1-3	1.10 6.95
83.			310.0	D	3-4	3-4	1.55
84.			975.0	B	4-2 2-6	4-2 2-6	0.98 2.48
0.1,				В	4-6	4-6	0.62
85.	25%	50.5	0.7	D	4-1	4-1	1.10
86.			2.4	B	4-1	4-1	1.10
				13			
87.			6.4	D B	4-1	4-1	1.10
88.			27.5	a	4-1	4-1	1,10
_				В			

Table B-4.

Calibration of Resolution for the Right Field
Under All 175 Experimental Conditions (continued)

Condition	ВХ	L _D (ft- Lamberts)	B _V (ft- Lamberts)	Chart Loca- tion	Ver- tical Bar	Hori- zontal Bar	Average Resolution (Minutes of Arc)
89.	25%	50.5	88.0	D	4-1	4-1 1-2	1.10
90.			310.0	B D	1-2 4-1	4-1	7.86 1.10
91.			975.0	B D B	3-4 3-3 4-4	3-4 3-3 4-4	1.55 1.74 0.77
92.	25%	105.0	0.7	D	3-6	3-6	1,24
93.			2.4	B D	3-6	3-6	1.24
94.			6.4	B D	3-6	3-6	1.24
95.			27.5	B D	3-6	3-6	1.24
96.			88.0	B D	3-6	3-6	1.24
97.			310.0	B D	0-2 3-6	0-2 3-6	15.73 1.24
98.			975.0	B D B	3-3 3-5 4-3	3~3 3~5 4~3	1.74 1.38 0.87
99.	25%	231.0	0.7	D	4-1	4-1	1.10
100.			2.4	B D	4-1	4-1	1.10
101.			6.4	B D	4-1	4-1	1.10
102.			27.5	B D	4-1	4-1	1.10
103.			88.0	B	4-1	4-1	1.10
104.			310.0	B	4-1	4-1	1,10
105.			975.0	B D B	2-5 4-1 4-3	2-5 4-1 4-3	2.76 1.10 0.87

Table B-4.

Calibration of Resolution for the Right Field
Under All 175 Experimental Conditions (continued)

Condition	$^{\mathrm{B}}\mathrm{_{X}}$	L _D (ft- Lamberts)	B _V (ft- Lamberts)	Chart Loca- tion	Ver- tical Bar	Hori- zontal Bar	Average Resolution (Minutes of Arc)
106.		12.3	0.7	D B	4-1	4-1	1.10
107.			2.4	D B	4-1 	4-1	1.10
108.	ic		6.4	D	4-1	4-1	1.10
109.	Trichroic		27.5	B D B	4-1 0-4	4-1 0-4	1.10 12.39
110.	Tri		88.0	D B	4-1 1-4	4-1 1-4	1.10 6.20
111.			310.0	D	3-6	3-6	1.24
112.			975.0	B D B	4-3 3-3 5-1	4-3 3-3 5-1	0.87 1.74 0.55
113.		23.7	0.7	D	4-1	4-1	1.10
114.	O		2.4	B D	4-1	4-1	1.10
115.	Trichroic		6.4	B D	4-1	4-1	1.10
116.	Tric		27.5	B D	4-1 0-3	4-1 0-3	1.10
117.			88.0	B D	4-1	4-1	13.90 1.10
118.			310.0	B D	0-8 3-6	0-6 3-6	9.91 1.24
119.			975.0	B D B	4-1 3-3 4-6	4-1 3-3 4-6	1.10 1.74 0.62
120.	ic	50.5	0.7	D	4-1	4-1	1.10
121.	Trichroic		2.4	B	4-1	4-1	1.10
122.	Tri		6.4	B D B	4-1	4-1	1,10

Description and a

Headilland the Wall

.

A to the service of

Table B-4.

Calibration of Resolution for the Right Field
Under All 175 Experimental Conditions (continued)

Condition	вх	L _D (ft- Lamberts)	B _V (ft- Lamberts)	Chart Loca- tion	Ver- tical Bar	Hori- zontal Bar	Average Fesolution (Minutes of Arc)
123. 124.	Trichroic	50.5	27.5 88.0	D B D	4-1 4-1	4-1 4-1	1.10 1.10
125.	Trick		310.0	B D B	0-4 4-1 3-5	0-4 4-1 3-5	12.39 1.10 1.38
126.			975.0	D B	3-6 4-3	3-6 4-3	1.24
127. 128.	۵۱	105.0	0.7 2.4	D B D	4-1 4-1	4-1 4-1	1.10 1.10
129.	Trichroic		6.4	B D B	4-1	4-1	1.10
130.	Tric		27.5	D B	4-1 	4-1	1.10
131. 132.			88.0 310.0	D B D	4-1 0-1 3-6	4-1 0-1 3-6	1.10 17.65 1.10
133.			975.0	B D B	2-4 3-6 4-2	2-4 3-6 4-2	3.10 1.74 0.98
134.		231.0	0.7	D B	4-1	4-1	1.10
135.	ic		2.4	D B	4-1	4-1	1.10
136. 137.	Trichroic		6.4 27.5	D B D	4-1 4-1	4-1 4-1	1.10 1.10
138.	Tr		88.0	B D B	4-1	4-1	1,10
139.			310.0	D B	4-1 1-3	4-1 1-3	1.10 6.95
140.			975.0	D B	4-1 4-2	4-1 4-2	1.10 0.98

Table B-4.

Calibration of Resolution for the Right Field
Under All 175 Experimental Conditions (continued)

Condition	$\mathbf{B}_{\mathbf{X}}$	L _D (ft- Lamberts)	B _V (ft- Lamberts)	C' art a- tion	Ver- tical Bar	Hori- zontal Bar	Average Resolution (Minutes of Arc)
141.	0%	12.3	0.7	D	4-1	4-1	1.10
142.			2.4	B D	4-1	4-1	1.10
143.			6.4	D B	4-1	4-1	1.10
144.			27.5	B D	4-1	4-1	1.10
145.			88.0	B D	4-1	4-1	1,10
146.			310.0	B D	 4-1	4-1	1.10
147.			975.0	B D B	4-1 	4-1	1.10
148.	0%	23.7	0.7	D	4-1	4-1	1.10
149.			2.4	B D	4-1	4-1	1.10
150.			6.4	B D	4-1	4-1	1.10
151.			27.5	B D	 4-1	4-1	1.10
152.			88.0	B D	 4-1	 4-1	1.10
153.			310.0	B D	 4-1	 4-1	1.10
154.			975.0	B D B	4-1	4-1 	1.10
155.	0%	50.5	0.7	D	4-1	4-1	1.10
156.			2.4	B D	 4-1	 4~1	1.10
157.			6.4	B D B	4-1 	4-1 	1.10

Table B-4.

Calibration of Resolution for the Right Field
Under All 175 Experimental Conditions (concluded)

Condition	BX	L _D (ft- Lamberts)	B _V (ft- Lamberts)	Chart Loca- tion	Ver- tical Bar	Hori- zontal Bar	Average Resolution (Minutes of Arc)
158.	0%	50.5	27.5	D	4-1	4-1	1.10
159.			88.0	B D B	4-1	4-1	1.10
160.			310.0	D B	4-1	4-1	1.10
161.			975.0	D B	4-1	4-1	1.10
162.	0%	105.0	0.7	D B	4-1	4-1	1.10
163.			2.4	D B	4-1	4-1	1.10
164.			6.4	D B	4-1	4-1	1.10
165.			27.5	D B	4-1	4-1	1.10
166.			88.0	D B	4-1	4-1	1.10
167.			310.0	D B	4-1	4-1	1.10
168.			975.0	D B	4-1	4-1	1.10
169.	0%	231.0	0.7	D B	4-1	4-1	1.10
170.			2,4	D B	4-1	4-1	1.10
171.			6.4	D B	4-1	4-1	1.10
172.			27.5	D B	4-1	4-1	1.10
173.			88.0	D B	4-1	4-1	1.10
174.			310.0	D B	4-1	4-1	1.10
175.			975.0	D B	4-1	4-1	1.10

Table B-5. Calibration of Luminance for Right Field with Background Projector Only

B _V	Projected	Luminar (ft-Lan	ice Range iberts)	Average Luminance
(ft-Lamberts)	Image	High	Low	(ft-Lamberts)
0.7	C	0.7	0.5	0.6
	P	0.5	0.4	0.5
2.4	C	2.4	0.7	1.8
6.4	P	1.1	0.9	1.0
	C	6.4	1.4	4.8
27.5	P	2.8	1.9	2.4
	C	27.5	2.2	19.7
88.0	P	13.0	6.7	10.4
	C	88.0	4.7	61.5
	P	38.5	19.3	31.7
310.0	C	310.0	15.3	216.8
	P	163.0	43.5	118.1
975.0	C	975.0	41.0	687.7
	P	475.0	127.0	305.5

Table B-6. Calibration of Luminance for Left Field with Background Projector Only

B _V	Projected		ce Range nberts)	Average Luminance
(ft-Lamberts)	Image 	High	Low	(ft-Lamberts)
0.7	C P	1.4 1.2	0.7 0.8	1.1
2.4	C P	2.3	0.7 1.3	2.1
6.4	C P	7.0	0.9 2.2	5.2 3.0
27.5	C P	26.9 11.5	3.2 6.3	19.4 10.1
88.0	C P	94.5 40.1	10.1 18.3	67.6 32.7
310.0	C P	287.0 135.0	37.0 50.0	207.2 104.0
975.0	C P	990.0 410.0	50.5 195.0	690.1 311.2

C = USAF Tri-bar Chart
P = Randomly generated reticulated pattern

Table B-7.

Calibration of Luminance for Displayed Image with Image Projector Only

L _D	Projected Luminance Range (ft-Lamberts)		Average Luminance	
(ft-Lamberts)	Image	High	Low	(ft-Lamberts)
12.3	C	12.3	0.7	8.2
	P	7.7	1.3	4.6
23.7	C	23.7	1.1	15.5
	P	15.7	4.3	11.3
50.5	C	50.5	1.8	34.2
	P	33.5	5.9	21.7
105.0	C	105.0	3.4	67.8
	P	72.5	29.6	51.5
231.0	C	231.0	11.3	162.6
	P	187.0	33.0	151.5

C = USAF Tri-bar Chart P * Randomly Generated Reticulated Pattern

Table B-8.

Calibration of Luminance for Right Field
Under All 175 Experimental Conditions

, , , , , , , , , , , , , , , , , , , 	····			
Condition	Chart	Luminance Range		Average
	Position	(ft-Lamberts)		Luminance
	. 0.2.0.0	High	Low	(ft-Lamberts)
1.	D	10.5	0.6	5.6
	B	5.6	3.3	4.3
2.	D	10.8	0.8	7.2
	B	6.1	3.3	4.6
3.	D B	11.0 6.1	0.9 3.2	7.3 4.7
4.	D B	11.3 6.4	$\frac{1.2}{3.7}$	7.6 5.3
õ.	D	11.9	2,2	8.3
	B	8.6	4,5	7.1
6.	D	15.3	4.5	11.2
	B	18.0	7.4	14.0
7.	D	23.5	10.5	18.8
	B	47.5	13.6	36.1
8.	D	21.1	1,1	12.4
	B	12.5	4,6	10.3
9.	D	21.0	1.4	13,2
	B	12.7	4.7	10,4
10.	D	21.3	1,5	13,6
	B	12.7	4.9	10,4
11.	D	22.0	1.6	14.2
	B	13.3	5.9	10.9
12.	D	22.7	2,4	15,2
	B	14.7	7,9	12,1
13.	D	25.6	5.5	18.5
	B	23.3	10.3	19.2
14.	D	34.5	13.3	27.3
	B	50.0	17.6	39.9
15.	D	45.0	1.7	27.1
	B	21.7	9.6	14.2

Table B-8.

Calibration of Luminance for Right Field
Under All 175 Experimental Conditions (continued)

Condition	Chart Position	Luminano (ft-Lam		Average Luminance
		High	Low	(ft-Lamberts)
16.	D	34.5	1.8	27.3
	B	21.7	11.9	15.9
17.	D	45.0	2.1	29.6
	B	25.0	11.9	17.0
18.	D	45.5	2.6	30.1
	B	24.7	14.0	18.8
19.	D	47.0	3.2	30.6
	B	28.0	14.3	20.4
20.	D	49.5	6.0	33.4
	B	38.0	16.9	27.7
21.	D	61.5	14.3	41.9
	B	58.5	23.8	47.3
22.	D	93.0	2.9	55.5
	B	39.0	20.0	28.6
23.	D	94.0	3.6	59.1
	B	42.5	20.7	29.8
24.	Б	94.5	3.8	60.4
	D	44.0	21.2	30.5
25.	D	94.5	4.3	61.2
	B	46.5	21.5	32.0
26.	D	96.5	5.7	62.5
	B	62.0	21.0	40.7
27.	D	100.2	7.7	65.1
	B	71.5	31.0	49.2
28.	D	107.0	15.3	72.8
	B	91.0	43.0	70.5
29.	D	186.0	7.1	119.3
	B	87.5	48.0	65.5
30.	D	187.0	7.1	119.5
	B	101.0	48.5	69.4

Table B-8.

Calibration of Luminance for Right Field
Under All 175 Experimental Conditions (continued)

Condition	Chart	Luminan (ft-Lan	ce Range iberts)	Average Luminance
	Positich	High	Low	(ft-Lamberts)
31.	D	187.0	7.2	119.3
	B	103.0	52.0	73.5
32.	. D	187.0	7,5	120.5
	B	103.0	52.0	74.0
33.	B	187.0 107.0	3.4 56.5	121.1 80.1
34.	D	187.0	10.9	121.2
	B	130.0	59.0	84.1
35.	D	200.0	17.3	131.1
	B	123.0	65.5	95.2
36.	D	10.5	0.8	7.0
	B	3.5	1.8	2.9
37.	D	16.7	0.9	7.2
	B	5.5	1.9	3.6
38.	D	11.0	1.9	7.4
	B	5.9	2.6	4.2
39,	D	12.0	1.6	8.1
	B	7.5	4.1	6.0
40.	D	13.7	3.3	9.6
	B	12.7	7.7	11.0
41.	D	21.7	11.3	17.6
	B	36.5	20.7	27.2
42.	D	49.5	32.5	42.0
	B	97.0	15.1	73.8
43.	D	20.3	1.1	11.9
	B	16.0	7.4	12.1
44.	D	20.3	1.2	13.1
	B	17.5	7.7	13.0
45.	D	22.0	1.4	14.0
	B	18.6	8.3	13.6

Table B-8.

Calibration of Luminance for Right Field
Under All 175 Experimental Conditions (continued)

Condition	Chart Position	Luminand (ft-Lan		Average Luminance (ft-Lamberts)
46.	D	22.0	2.2	14.7
	B	18.6	9.5	14.2
47.	D	24.9	4.0	19.1
	B	21.6	13.3	19.1
48.	D	32.0	10.9	24.6
	B	44.0	17.6	37.0
49.	D	54.5	35.0	48.7
	B	109.0	23.5	83.2
50.	D	43.5	1.9	28.1
	B	26.9	15.4	21.3
51.	Q	44.0	2.0	28.3
	a	27.0	16.2	21.6
52.	D	44.5	2.2	28.4
	B	33.0	18.3	23.9
53.	D	45.5	2.6	29.2
	B	34.0	17.5	24.8
54.	D	48.5	5.6	31.6
	B	43.0	19.7	29.8
55.	D	56.5	14.1	39.3
	B	61.5	22.5	45.9
56.	D	86.5	40.5	63.9
	B	123.0	34.0	91.0
57.	D	89.0	3.5	57.0
	B	67.5	28.0	47.2
58.	D	89.5	3.7	58.4
	B	72.5	28.0	48.6
59.	D	90.5	3.8	59.2
	B	74.5	28.5	53.7
60.	D	93.5	4.4	59.6
	B	74.5	36.5	58.1

Table B-8.

Calibration of Lumirance for Right Field
Under All 175 Experimental Conditions (continued)

Condition	Chart Position		ce Range mberts)	Average Luminance
		High	Low	(fr-Lamberts)
61.	D	97.0	7.6	62.1
	B	81.5	39.0	61.4
62.	D	100.9	16.0	69.2
	B	94.0	42.5	74.2
63.	D	120.0	39.0	92.1
	B	140.0	57.0	114.7
64.	D	177.0	6.8	114.7
	B	177.0	41.0	76.6
65.	D	177.0	7.1	114.8
	B	134.0	53.0	87.4
66.	D	177.0	7.2	115.3
	B	134.0	55.5	88.1
67.	D	182.0	7.9	116.7
	B	137.0	57.0	91.1
68.	D	183.0	9,6	118.4
	B	147.0	63,5	99.4
69.	D	183.0	14,9	119.2
	B	155.0	68,5	113.4
70.	D	205.0	30.3	140.1
	B	200.0	76.5	147.9
71.	D	10.2	0.8	6.8
	B	5.1	2.9	4.0
72.	D	10.3	1.0	6.9
	B	5.3	3.3	4.3
73.	D	10.7	1.4	7.3
	B	6.6	4.2	5.3
74.	D	12.6	3.1	9.3
	B	11.7	4.7	9.5
75.	D	17.5	7.8	14.1
	B	27.9	5.8	21.3

Table B-8.

Calibration of Luminance for Right Field
Under All 175 Experimental Conditions (continued)

Condition	Chart Position		ce Range mberts)	Average Luminance (ft Lamberts)
		High	Low	(It Lamberts)
76.	D	37.0	24.4	33.2
	B	93.5	9.8	68.8
77.	D	97.0	74.0	89.5
	B	279.0	20.0	200.7
78.	D B	20.1 12.3	$\substack{\textbf{1.2}\\ \textbf{7.5}}$	12.6 10.2
79.	D B	20.5 12.7	$\frac{1.3}{7.9}$	12.8 10.6
80_	D	21,1	1.7	13.4
	B	14.0	9.4	11.5
81.	D	21.0	3.3	15.4
	B	20.0	10.7	15.9
82.	D	28.7	7.7	20.6
	B	37.5	11.9	28.4
83.	D	50.2	23.6	40.8
	B	103.5	16.5	76.6
84.	D	116.0	71.9	98.2
	B	294.0	71.9	210.9
85.	D	42.0	1.8	26.9
	B	23.6	11.9	16.1
86.	D	13.2	2.1	27.3
	B	26.0	14.0	17.8
87.	D B	43.5 49.5	$\substack{2.5\\12.6}$	27.7 25.6
88.	D	45.2	4.5	30.0
	B	34.2	15.2	20.7
89.	D	52.9	10.0	35.6
	B	48.5	16.5	33.2
90.	D	79.9	30.1	56.8
	B	110.0	20.6	79.3

Table B-8.

Calibration of Luminance for Right Field
Under All 175 Experimental Conditions (continued)

Condition	Chart Position	Luminano (ft-Lan		Average Luminance (ft-Lamberts)
		High	Low	(It-Lamperts)
91.	D	156.0	88.8	115.7
	B	297.0	31.0	209.7
92.	D B	84.0 43.3	$\begin{array}{c} 3.4 \\ 17.2 \end{array}$	54.5 34.4
93.	D	84.5	3,8	54.9
	B	45.2	18.0	35.7
94.	D	85.5	4.2	55.9
	B	50.5	28.9	40.2
95.	B	91.0	6.6	58.2
	D	58.0	29.6	45.0
96.	D	97.5	11.9	65.1
	B	73.5	35.2	54.3
97.		123.0	32.2 37.5	83.4
98.	E	211.0	95.2	149.3
	D	309.0	42.0	224.0
99.	B	.76.0	6.8	114.1
	D	84.5	51.5	66.4
100.	D	175.0	7.1	113.8
	B	92.3	60.0	75.4
101.	D	178.0	7.4	114.5
	B	91.5	62.0	76.1
102.	D	175.0	8.6	114.6
	B	104.0	62.2	80.0
103.	D	186.0	13.5	121.1
	B	105.3	64.0	87.1
104.	D	211.0	31.0	139.5
	B	168.0	68.5	128.6
105.	D	297.0	89.5	202.1
	B	312.0	78.5	237.4

Table B-8.

Calibration of Luminance for Right Field
Under All 175 Experimental Conditions (continued)

Condition	Chart	Luminan	ce Range	Average
	Position	(ft-Lan	nberts)	Luminance
	0	High	Low	(ft-Lamberts)
106.	D	10.2	0.9	6.8
	B	5.7	3.1	4.3
107.	D	10.2	0.9	6.9
	B	6.1	3.2	4.9
108.	B	10.7	1.1	6.9
	D	5.7	3.2	4.6
109.	D	11.5	1.9	7.9
	B	9.4	3.6	7.3
110.	D	14.7	4.0	10.2
	B	16.5	4.7	12.5
111.	D	27.5	12.6	21.0
	B	49.0	9.4	35.5
112.	D	57.5	32.7	46.9
	B	143.0	17.3	95.9
113.	D B	19.9 11.4	$\begin{array}{c} 1.2 \\ 7.0 \end{array}$	13.1 9.9
114.	D	20.3	1.3	13.2
	B	13.6	7.2	10.7
115.	D	20.8	1.5	13.2
	B	13.8	7.9	10.8
116.	D B	21.2 16.5	$\begin{array}{c} \textbf{2.3} \\ \textbf{10.3} \end{array}$	13.8 12.8
117.	D	23.0	4.0	15.8
	B	23.9	11.8	18.1
118.	D	33.2	11.0	24.9
	B	53.5	15.3	40.1
119.	D	68.5	30.5	52.1
	B	145.0	24.5	99.4
120.	D	43.9	1.9	27.8
	B	22.7	11.6	17.1

Table B-8.

Calibration of Luminance for Right Field
Under All 175 Experimental Conditions (continued)

Condition	Chart Position	(ft-Lar	ce Range nberts)	Average Luminance (ft-Lamberts)
		High	Low	(It Languer to)
121.	D	43.9	2.2	27.8
	B	27.1	13.7	20.7
122.	D	44.5	2.3	28.2
	B	29.0	13.9	21.6
123.	D	45.0	3.2	26.8
	B	32.3	16.8	23.8
124.	D	47.5	5.2	31.3
	B	39.5	17.4	29.3
125.	D	53.0	13.3	37.6
	B	70.5	22.7	51.9
126.	D	82.5	36.5	62.6
	B	160.0	31.3	112.8
127.	D	90.5	3.5	56.9
	B	58.3	17.7	40.1
128.	D	91.5	3.6	58.3
	B	58.5	18.0	40.1
129.	D	92.5	3.9	59.3
	B	62.0	32.5	46.5
130.	D	94.5	4.7	60.5
	B	63.0	36.0	48.0
131.	D	97.0	6.5	62.0
	B	65.0	36.5	50.7
132.	D	104.0	14.6	70.8
	B	97.0	41.0	74.7
133.	D	122.0	32.5	92.4
	B	167.0	48.5	125.6
134.	D	176.0	6.7	111.0
	B	84.5	48.5	64.6
135.	D	177.0	6.7	114.4
	B	85.0	48.5	65.4

iskininganasiya N

Table B-8.

Calibration of Luminance for Right Field
Under All 175 Experimental Conditions (continued)

-Condition	Chart Position			Average Luminance
		High	Low	(it-Lämberts)
136.	D B	177.0 99.0	6.9 52.5	114.7 70.0
137.	D B	177.0 95.6	7.8 55.5	115.2 70.3
138.	D B	176.0 107.0	10.0 61.5	115.7 77.1
139.	D B	187.0 122.0	19.0 75.5	123.5 96.7
140.	D B	215.9 199.0	45.5 84.5	146.1 148.4
141.	D B	10.5 6.7	0.8 1.5	6.4 4.1
142.	D B	10.5 6.6	0.8 2.2	6.9 4.3
143.	D B··	10.7 -6.8.	0.9 2.8	7.1 4.6
144.	D B	10.9 6.8	1.0 2.3	7.3 4.5
145.	D B	11.1 6.6	1.2 3.0	7.5 5.2
146.	D B	11.7 9.5	1.9 4.3	8.3 7.7
147.	D B	13.7 16.3	3.8 7.6	10.4 12.9
148.	D B	19.7 9.7	1.1 3.6	12.7 7.4
149.	D B	20.5 14.3	1,2 6,1	13.0 9.9
150.	D B	20.1 14.0	1.2 4.8	13.1 8.9

Table B-8.

Calibration of Luminance for Right Field
Under All 175 Experimental Conditions (continued)

Condition	Chart - Position -	Luminano (ft-Lan		Average Luminance
		High	Jow	(ft-Lamberts)
151.	D	20.1	1.3	13.2
	B	12.5	6.7	9.5
152.	D	20.3	1.5	13.3
	B	13.3	8.4	10.2
153.	D	21.0	2.2	14.0
	B	13.0	10.1	11.8
154.	D	22,8	4.1	16.4
	B	22,0	12.3	18.5
155.	D	41.0	1.6	25.5
	B	20.8	8.0	15.7
156.	D	41.5	1.9	26.8
	B	24.8	7.8	16.9
157.	D	42.5	2.0	27.2
	B	22.2	6.8	15.4
158.	D	43.0	2.0	27.4
	B	26.3	. 7.5	17.2
159.	D	43.0	2.3	27.6
	B	24.8	7.5	16.7
160.	D	43.5	3.0	28.7
	B	28.0	13.0	20.0
161.	D	46.5	4.8	31.1
	B	38.2	15.5	29.0
162.	D	89.9	3.7	56.3
	B	48.5	18.3	33.8
163.	D	89.9	3.5	57.6
	B	53.0	18.5	36.5
164.	D	89.5	3.6	57.9
	B	58.0	16.5	39.9
165.	D	89.5	3.7	56.9
	B	55.0	21.3	40.2

Table B-8.

Calibration of Luminance for Right Field
Under All 175 Experimental Conditions (concluded)

Condition	Chart Position	(ft-Lan	ce Range nberts)	Average Luminance (ft-Lamberts)
		High	Low	
166.	D	90.5	3.9	57.3
	B	55.5	22.5	39.4
167.	D	91.0	4.6	58.4
	B	56.5	17.3	39.6
168.	D	92.5	6.7	60.8
	B	54.5	26.0	45.3
169.	D	174.0	6.3	108.6
	B	99.5	33.0	70.6
170.	D	174.0	6,4	110.7
	B	100.0	33.5	70.7
171.	D	174.0	6.5	111.2
	B	100.0	33.5	71.0
172.	D	170.0	6.6.	111.0
	B	101.0	34.5	71.5
173.	D	176.0	6.8	113.8
	B	102.5	35.0	72.5
174.	D	176.0	7.8	114.4
	B	103.0	37.5	74.9
175.	D	179.0	9.6	116.6
	B	107.0	42.5	80.6

APPENDIX C

EXPERIMENTAL DATA

Table C-1 presents the experimental data averaged across the four subjects for all 175 conditions.

In Tables C-2 and C-3 this data is averaged across subjects and display luminance, $\rm L_D$, for both the display and background projected charts respectively.

In Tables C-4 and C-5 it is averaged across subjects and beamsplitter transmittance, $B_{\rm X}$, for the display and background charts respectively.

Table C-1.

Experimental Data Averaged Across the Four Observers for All 175 Conditions

Condition	Avërage Resolution (Minutes of Arc)	(Seconds)		S.D.	C _{max} (%)	В
1.	1.75	0.28	7.93	6.29	99.49	16.91
2.	1.79	0.34	7.47	6.36	99.08	4.96
3.	1.82	0.39	6.71	4.90	95.78	1.89
4.	1.76	0.25	7.54	5.72	84.30	0.47
5.	1.78	0.27	7.47	7.01	62.79	0.17
6.	2.26	0.97	9.25	8.22	32,25	0.08
7.	6.25	5.06	12,21	10.88	13.15	0.05
8.	1.69	0.26	6.66	6.41	99.75	32.54
9.	1.73	0.26	5.83	4.57	99.16	9.52
10.	1.66	0.27	5,35	3.38	97.80	3.59
11.	1.68	0.30	5.91	4.03	91.18	0.87
12.	1.61	0.27	6.01	3.24	76.37	0.30
13.	1.75	0.39	5.54	3.37	47.85	0.11
14.	2.56	1.22	6.57	5.24	22.58	0.06
15.	1.64	0.20	5.03	3.20	99.88	69.30
16.	1.60	0.17	4.32	2.43	99.61	20.24
17.	1.63	0.23	4.91	3.16	99.47	7.61
18.	1.66	0.34	4.63	2.92	95.66	1.80
19.	1.57	0.23	5.00	3.23	87.32	0.59
20.	1.58	0,23	4.54	2.48	66.17	0.20
21.	1.71	0.19	4.61	2.48	38.33	0.09
22.	1.63	0.21	4.89	2.87	99.94	144.04
23.	1.59	0.16	7.47	1.40	99.81	42.04
24.	1.59	0.19	4.41	2.17	99.49	15.79
25.	1.60	0.16	3.90	1.74	97.86	3.70

Table C-1.

Experimental Data Averaged Across the Four Observers for All 175 Conditions (continued)

· Condition	Average Resolution (Minutes of Arc)	s.d.	Average Time (Secorus)	S.D.	C _{max} . (%)	ВΔ.
26.	1.63	0.19	3,83	1.79	93.47	1.18
27.	1.61	0.13	4.08	1.97	80.25	0.36
28.	1.70	0.15	4.08	2.14	56.38	0.14
23.	1.70	0.22	4, 28	2.15	99.97	316.84
30.	1.65	0.17	4.46	2.60	99.91	92.44
31.	1.64	0.19	4.21	2.30	99.77	34.69
32.	1.66	0.23	4.88	4.46	99.02	8.10
33.	1.73	0.25	4,24	1.94	96.92	2.56
34.	1.36	0.21	3.97	2.12	89.94	0.75
35.	1.70	0.26	4.92	3.04	73.98	0.27
36.	1.77	0.15	4.61	2.31	98.75	15.91
37.	1.76	0.16	4.69	2,37	95.84	4.71
38.	1.77	0.17	4.24	1.99	89.63	1.83
39.	1.76	0.19	4.26	1.75	66.81	1.75
40	1.81	0.17	4.65	2.01	38.61	0.22
41.	3.64	2.09	5,57	2,45	15.15	0.14
42.	10.07	5,28	8.20	6.00	5.37	0.11
43.	1.73	0.21	4.53	2.26	99.35	30.57
44.	1.67	0.16	4.05	2.10	97.80	8.99
45.	1.68	0.17	4.18	1.63	94.34	3.43
46.	1,71	0.14	4.04	1.83	79.50	0.88
47.	1.66	0.09	4.07	1.84	54.79	0.34
48.	2.20	0.18	4.56	2.02	25,60	0.17
49.	6.84	2,99	5.91	2.92	9.80	0.12
50.	1.65	0.12	3.82	1.86	99.69	65.03

Table C-1.

Experimental Data Averaged Across the Four Observers for All 175 Conditions (continued)

Condition	Average Resolution (Minutes of Arc)	s.d.	Average Time (Seconds)	S.D.	C _{max} (%)	ВД
51.	1.61	0.13	4.45	1.28	99,00	19.94
52.	1.56	0.11	3.34	1.35	97.56	8.10
53.	1.57	0.09	3.68	2.13	89,22	1.75
54.	1.59	0.11	3,88	2.11	72.08	0.62
55.	1,78	0.13	4,22	1.89	42.30	0.25
56.	2.19	0.36	4.58	2.75	18.90	0.15
57.	1.57	0.13	3.83	1.86	99.85	135.10
58.	1.53	0.12	3.13	1.19	99.49	39.47
59.	1.52	0.12	3.16	1.17	99.66	14.87
60.	1.52	0.11	2,92	0.94	94.50	3.54
61.	1.53	0.12	3.74	1,50	84.30	1.17
62.	1.56	U.16	3.40	1.34	60.38	0.40
63.	1.71	0.12	3.46	1.49	32.64	0.20
64.	1.57	0.13	3,33	1.30	99.93	297.10
65.	1.55	0.13	3,68	1.90	99.77	86.72
66.	1.51	0.16	3.33	1.51	99.39	32.58
67.	1.52	0.18	3.16	1,43	97.42	7.66
68.	1.53	0.18	3.01	1.38	92.19	2.46
69.	1.56	0.20	3.38	1.17	77.02	0.77
70.	1.63	0.18	3,67	1.53	51.60	0.31
71.	1.69	0.11	3.92	1.77	96.34	13,43
72.	1.70	0.13	3.13	1,45	88.49	4.09
73.	1.70	0.17	3.14	1,46	74.24	1.69
74.	1.71	0.17	5.36	1.75	35.25	0.70
75.	1.81	0.23	3,05	1.07	17.33	0.35

Table C-1.

Experimental Data Averaged Across the Four Observers for All 175 Conditions (continued)

Condition	Average Resolution (Minutes of Arc)	S.D.	Average Time (Seconds)	S.D.	C _{max} (%)	В
76.	7.18	5,45	4.44	2.49	5.62	0.28
77.	12.90	5.65	4.49	3.41	1.86	0.26
78.	1.63	0.09	3,42	1.44	98.07	25.63
79.	1.66	0.15	3.25	1.67	93.67	7.65
80.	1.60	0.08	3.57	1.93	84.74	3.03
81.	1.59	0.07	3.42	1.51	56.38	0.90
82.	1.71	0.12	3.30	1.44	28.77	0.45
83.	3.39	1.32	5.26	3.05	10.28	0.31
84.	11.90	5,22	4.94	2.45	3.52	0.27
85.	1.62	0.10	3.73	1.77	99.08	54.34
86.	1.63	0.09	3,20	1.48	96.93	16.03
87.	1.58	0.06	3.08	1.17	92.21	6.17
88.	1.59	0.07	2.96	1.11	73.37	1.63
89.	1.62	0.10	3.19	1.20	46.27	0.68
90.	2.03	0.30	4.40	2.48	19.63	0.37
91.	6.65	2,92	5,63	3.23	7.21	0.29
92.	1.59	0.09	3.56	1,57	99.56	112.74
93.	1.61	0.08	3.54	1.47	98.50	33.06
94.	1.61	0.12	3,33	1.68	96.09	12.55
95.	1.59	0.11	3.30	1.72	85.14	3.11
96.	1.58	0.12	3.43	1.44	64.15	1.14
97.	1.80	0.15	4.23	1.93	33.69	0.50
98.	3.64	2.44	4.96	2,36	13.91	0.33
99.	1.76	0.45	3.45	1.75	99.80	247.74
100.	1.59	0.44	3.19	1.58	99.31	72.44

Table C-1.

Experimental Data Averaged Across the Four Obscrvers for All 175 Conditions (continued)

	Condition.	Average Resolution (Minutes of Arc)	S.D.	Average Time (Seconds)	S. D.,	C _{max}	B ₄
ſ	101.	1.65	0.24	3,42	2.09	98.19	27.32
l	102.	1.60	0.17	2.79	1.18	92.65	6.55
١	103.	1.59	0.18	2.88	1.14	79.75	2.22
l	104.	1.71	0.24	3.05	1.34	53.78	0.81
l	105.	2.02	0.43	4.50	2.64	26.22	0.43
l	106.	1.67	0.11	3.77	1.88		
l	107.	1.70	0.16	2.96	1.12		
	108.	1,69	0.15	3.28	1.59		
ļ	109.	1.72	0.16	3.75	2.08		
I	110.	1.76	0.21	3.93	2.01		
l	111.	2,20	0.39	4.64	2.49		
l	112.	6.28	2.31	6.42	4.58		
l	113.	1.35	0.09	3.67	1.89		
١	114.	1.65	0.09	2.83	1.18		
l	115.	1.65	0.09	3.17	1.87		
l	116.	1.65	0.09	3.39	2.35		
	117.	1.66	0.12	3.93	2.46		
	118.	1.79	0.09	3.91	2.30		
	119.	4,23	2.67	4.44	2.45		
l	120.	1.66	0.14	4.01	2.44		
	121.	1.67	0.13	3.67	2.18		
Ì	122.	1.67	0.11	4.38	3.23		
	123.	1.65	0.09	4.05	3.20		
	124.	1,68	0.13	4.10	3.06		
	125.	1.73	0.15	3.88	2,21		

Table C-1.

Experimental Data Averaged Across the Four Observers for All 175 Conditions (continued)

Condition	Average Resolution (Minutes of Arc)	S.D.	Average Time (Seconds)	S.D.	max (%)	ΒΔ
126.	2.16	0.55	4.69	2,88		
127.	1.69	0.14	3.77	2.22		
128.	1.66	0.11	3.32	2.14		
129.	1.64	0.09	2.95	1.56		
130.	1.63	0.13	3.26	2.01		
131.	1.64	0.15	3.36	2.27		
132,	1.66	0.21	3.01	1.43		
133.	1.93	0.32	3,04	1.14		
134.	1,65	0.09	3.19	1.15		
135.	1.65	0.09	3.11	1.37		
136.	1.64	0.09	3.75	1.99		
137.	1.64	0.09	3.21	1.97		
138.	1.65	0.09	3.56	2.50		
139.	1.65	0.09	3.41	1.97		
140.	1.72	0.11	3.80	2.71		
141.	1.75	0.13	3.52	1.71	100.00	17.57
142.	1.85	0.49	3.00	1.47	100.00	5.12
143.	1.73	0.12	3.11	1.57	100.00	1,92
144.	1.70	0.10	2.91	1.01	100.00	0.45
145.	1.74	0.14	3.60	2.09	106.00	0.14
146.	1.75	0.15	3 18	1.43	100.00	0.04
147.	1.81	0.18	4.21	2,76	100.00	·.01
148.	1.76	0.10	3.68	1.80	100.00	33.86
149.	1.76	0.10	3.52	2,12	100.00	9.87
150.	1.76	6.10	3.66	2,54	100.00	3.70

Table C-1.

Experimental Data Averaged Across the Four Observers for all 175 Conditions (concluded)

Condition	Average Resolution (Minutes of Arc)	s.d.	Average Time (Seconds)	S.D.	C _{max} (%)	В
151.	1.76	0.08	2.90	1.23	100.00	0.86
152.	1.72	0.11	2.88	0.93	100.00	0.27
153.	1.72	0.09	3.28	1.85	100.00	0.08
154.	1.78	0.10	3.50	2.08	100.0	0.02
155.	1.68	0.11	3,44	1.93	100,00	72.14
156.	1.72	0.11	3.37	1.84	100.00	21.04
157.	1.75	0.13	3.52	2,21	100.00	7.89
158.	1.73	0.11	3.45	2.37	100.00	1.84
159.	:,.2	0.11	3.48	1.97	100.00	0.57
160.	1.69	0.11	3,85	2.77	100.00	0.16
161.	1.72	0.11	3.97	3.40	100.00	0.05
162.	1.70	0.13	3.16	1.78	100.00	150.00
163.	1,70	0.10	2,97	1,35	100.00	43.75
164.	1.69	0.11	2,77	0.90	100.00	16.41
165.	1.70	0.12	2.76	1.67	100.00	3.82
166.	1.67	0.11	2,69	0,81	100.00	1.19
167.	1.67	0.11	3.74	2,94	100.00	0.34
168.	1.73	0.15	3.31	1.74	100.00	0.11
169.	1.69	0.09	3,24	2.00	100.00	330.00
170.	1.68	0.11	2.63	0.90	100.00	96.25
171.	1,69	0.13	2.63	1,76	100.00	36.09
172.	1.73	0.13	3,03	2.08	100.00	8.40
173.	1.72	0.11	2.92	1.27	100.00	2.62
174.	1,69	0.13	2.79	1.55	100.00	0.74
175.	1.69	0.09	2.95	1.90	100.CO	0.24

Table C-2.

Horizontal Resolution and Time Collapsed Across L_{ID} for the Display-Projected Chart

Dependent Variable: Resolution (Minutes of Arc)

			B _V (ft-Lamberts)						
		0.7	2.4	6,4	27,5	88.0	310.0	975.0	Average
	4%	1.68	1.67	1.67	1.67	1.77	1.77	2.79	1,85
	10%	1.66	1.62	1.61	1.61	1.62	2,15	4.49	2.11
$ B_{X} $	25%	1.66	1.66	1.63	1.61	1.66	3,22	7.42	2.69
	Trichroic	1.66	1.67	1.66	1.65	1.68	1.81	3.26	1.91
	0%	1.72	1.75	1.73	1.73	1.71	1.71	1.75	1.73
	Avc∴ge	1.68	1.67	1.66	1.66	1.67	2,13	3.94	

			$^{ m B}_{ m V}$ (ft-Lamberts)						Average
		0.7	2.4	6.4	27.5	88.0	310.0	975.0	Average
	4%	5.76	5.31	5.12	5.37	5.27	5.48	6.48	5.54
	10%	4.00	3.78	3,65	3,61	3.86	4.21	5.18	4.04
$ B_{X} $	25%	3.62	3.26	3.31	3.17	3,17	4.28	4.90	3.67
	Trichroic	3.68	3.18	3.51	3,53	3.78	3,77	4.48	3.70
	0%	3.41	3.10	3.19	3.11	3.11	3.37	3,59	3,27
	Average	4.09	3.72	3.75	3.76	3,84	4.22	4.93	

Table C-3.

Horizontal Resolution and Time Across \mathbf{L}_{D} for the Background-Projected Chart

Dependent Variable: Resolution (Minutes of Arc)

		0,7	2.4	6.4	27.5	88.0	310.0	975,0	Average
	4%	4.64	2.85	2,25	2.03	1.87	1.64	1.42	2.36
	10%	5.24	2.71	2.38	2.15	1.99	1.70	1.42	2.51
$\mathbf{B}_{\mathbf{X}}$	25%	4.47	2.61	2.27	2.06	1.96	1.59	1.42	2.34
	Trichroic	4.51	2.59	2.29	2.16	1.98	1.67	1.38	2.37
	0%	4.60	2.89	2.26	2.18	2.04	1.78	1.52	2.47
	Average	4.69	2.69	2.29	2.12	1.97	1.68	1.43	

			$^{ m B}_{ m V}$ (ft-Lamberts)							
		0.7	2.4	6.4	27,5	88.0	310.0	975.0	Average	
ВХ	4%	6.67 [\]	6.24	5.04	5.27	5.70	5.13	5.11	5.59	
	10%	4.35	4.46	3.82	4.06	4.49	3.93	3.78	4.13	
	25%	4.03	3.94	3.77	4.30	4.14	3.90	3.56	3.95	
	Trichroic	3.71	4.16	3.86	4.30	4.24	3.87	4.03	4.02	
	0%	3.63	3.95	3,38	3.82	3.46	3.67	3.77	3.67	
	Average	4.48	4.55	3.97	4.35	4.40	4.10	4.05		

Table C-4.

Horizontal Resolution and Time Collapsed Across B_X for the Display-Projected Chart

Dependent Variable: Resolution (Minutes of Arc)

		0,7	2,4	6.4	27.5	88,0	310.0	975.0	Average
Lamberts)	12.3	1.73	1.76	1.74	1.73	1.78	3.40	7.46	2.80
dm	23.7	1.69	1.69	1.67	1.68	1.67	2.17	5.46	2.29
La	50.5	1.65	1.65	1.64	1.64	1.63	1.76	2.89	1.84
tt.	105.0	1.63	1.62	1.61	1,61	1,61	1.66	2.14	1.70
LD	231.0	1.68	1.65	1.63	1,63	1.64	1,65	1.75	1.66
	Average	1.68	1.67	1.66	1.66	1.67	2,13	3.94	

	B _V (ft-Lamberts)								
		0,7	2.4	6,4	27.5	88,0	310,0	975.0	Average
amberts)	12.3	4.75	4.25	4,10	4.37		5.41		4.93
pe	23.7	4.39	3.90	3,99	3,93	3.99	4.51	5.07	4.25
	50.5	4.01	3.58	3.84	3.76	3.93	4.18	4.72	.4.00.
t-1	105.0	3.82	3.49	3,32	3.33	3.41	3,69	3,77	3,55
) (ft	231.0	3.50	3.41	3.52	3.41	3,32	3.30	3,97	3,49
LD	Average	4.09	3.72	3.75	3.76	3.84	4,22	4.93	

Table C-5.

Horizontal Resolution and Time Collapsed Across $\mathbf{B}_{\mathbf{X}}$ for the Background-Projected Chart

Dependent Variable: Resolution (Minutes of Arc)

	B _V (ft-Lamberts)								
		0.7	2.4	6.4	27.5	88.0	310.0	975.0	Average
amberts)	12.3	4.90	2.66	2.31	2.16	1.97	1.64	1.41	2.44
ape	23.7	4.67	2.66	2.26	2.09	1.94	1.66	1.40	2.38
Lan	50.5	4.46	2.61	2.26	2.09	1.93	1.66	1.42	2.35
1 .	105.0	4.66	2.67	2.31	2.11	2.00	1.70	1.46	2,41
$\Gamma_{\mathcal{D}}(\mathrm{ft})$	231.0	4.76	2.86	2.30	2.13	2.01	1.73	1.45	2.46
	Average	4.69	2.69	2,29	2.12	1.97	1.68	1.43	

		Average							
<u> </u>		0.7	2.4	6.4	27.5	88.0	310.0	\$75.0	11VCLugo
Lamberts)	12.3	5.40	5.09	4.56	4.91	5.18	4.68	4.75	4.94
nhe	23.7	4.42	4.75	4.34	4.33	4.77	4.18	4.10	4.41
E	50.5	4.23	4.42	3,69	4.20	3.89	4.09	4.08	4.09
-t;	105.0	4.33	4.30	3.80	4.33	4.23	3.74	3.71	4.06
F.	231.0	4.01	4.19	3,47	3.99	3.94	3.81	3.62	3.86
	Average	4.47	4.54	3.97	4.35	4.40	4.10	4.05	