

(19)日本国特許庁 (J P)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平9-69334

(43)公開日 平成9年(1997)3月11日

(51)Int.Cl. ⁶	識別記号	序内整理番号	F I	技術表示箇所
H 01 J 9/02			H 01 J 9/02	B
1/30			1/30	B
31/12			31/12	Z C

審査請求 未請求 請求項の数35 O.L (全 33 頁)

(21)出願番号	特願平7-320527
(22)出願日	平成7年(1995)12月11日
(31)優先権主張番号	特願平6-313440
(32)優先日	平6(1994)12月16日
(33)優先権主張国	日本 (JP)
(31)優先権主張番号	特願平6-314420
(32)優先日	平6(1994)12月19日
(33)優先権主張国	日本 (JP)
(31)優先権主張番号	特願平7-4581
(32)優先日	平7(1995)1月17日
(33)優先権主張国	日本 (JP)

(71)出願人	000001007 キヤノン株式会社 東京都大田区下丸子3丁目30番2号
(72)発明者	坂野 基和 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内
(72)発明者	三道 和宏 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内
(72)発明者	重岡 和也 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内
(74)代理人	弁理士 若林 忠

最終頁に続く

(54)【発明の名称】 電子放出素子、電子源基板、電子源、表示パネルおよび画像形成装置ならびにそれらの製造方法

(57)【要約】

【課題】 低コストで基板上に多数の電子放出素子を形成し得る電子放出素子の製造方法を提供し、その電子放出素子を用いた良好な電子源基板、電子源、表示パネル、画像形成装置を提供する。

【解決手段】 基板上に設けられた一对の電極の間にそれらの電極に接するようにしながら、金属元素を含有する溶液を液滴として付与して導電性薄膜を形成し、その薄膜に電子放出部を設けて電子放出素子とする。

【特許請求の範囲】

【請求項1】 基板上に一対の電極と、導電性薄膜とを、これらが接するように形成し、前記導電性薄膜を用いて電子放出部を構成する電子放出素子の製造方法において、前記基板上に金属元素を含有する液滴として付与し、前記導電性薄膜を形成することを特徴とする電子放出素子の製造方法。

【請求項2】 前記導電性薄膜の形成を、前記一対の電極の形成の後に行う請求項1に記載の電子放出素子の製造方法。

【請求項3】 前記導電性薄膜の形成を、前記一対の電極の形成の前に記載の電子放出素子の製造方法。

【請求項4】 前記液滴の付与をインクジェット方式で行う請求項1に記載の方法。

【請求項5】 前記インクジェット方式が、熱エネルギーによって溶滲内に気泡を形成させて該溶液を被滴として吐出させる方法である請求項4に記載の方法。

【請求項6】 一対の電極間に付与する液滴量を、前記基板と前記電極部によって形成される凹部の容積以下とする請求項2に記載の方法。

【請求項7】 前記導電性薄膜を構成する材料を含有する液滴液滴の状態で前記基板上に1以上付与する工程と、前記液滴の付与状態を検出し、付与状態にに関して得られた情報を基づいて、液滴の付与を再度行う工程を有する請求項1に記載の電子放出素子の製造方法。

【請求項8】 前記薄膜を構成する材料を含有する液を、該材料の分散液とする請求項7に記載の方法。

【請求項9】 前記薄膜を構成する材料を含有する液を、該材料が溶解した溶液とする請求項7に記載の方法。

【請求項10】 被滴の付与状態として検出する項目が、液の有無、付与された液の量および液が付与された位置のうちの少なくとも1つである請求項7に記載の方法。

【請求項11】 被滴が付与されていない場合に、再度同一条件の被滴付与を行なう請求項7に記載の製造方法。

【請求項12】 被滴の付与が過剰である場合に、付与された液滴の少なくとも一部を除去する請求項7に記載の方法。

【請求項13】 液滴の付与が不完全である場合に、吐出パラメータを調整して再度被滴付与を行なう請求項7に記載の方法。

【請求項14】 液滴の付与状態の検出による情報に基づいて、別の吐出位置における吐出パラメータの調整を行う請求項7に記載の方法。

【請求項15】 調整される吐出パラメータに液滴の吐出回数および吐出位置のうちの少なくとも一方が含まれる請求項13に記載の方法。

【請求項16】 液滴の付与状態の検出を、該被滴付与

位置へ照射した光の反射光および通過光のうちのいずれかの検知によって行なう請求項7に記載の方法。

【請求項17】 液滴の付与状態の検出を、所定の液滴付与位置と検出装置の位置合わせを行なってから行なう請求項7に記載の方法。

【請求項18】 前記液滴により形成されるドットと隣接するドットとの中心間距離が前記ドットの直径以下となるように前記液滴を複数個付与し、前記導電性薄膜を形成する請求項1に記載の方法。

10 【請求項19】 前記導電性薄膜によって構成される電子放出部の膜厚を、付与する液滴の量および数によって制御する請求項18に記載の製造方法。

【請求項20】 前記液滴を前記基板上に付与する前に、前記液滴の付与される基板表面が導水性となるよう前記基板の表面処理を行なう請求項1に記載の方法。

【請求項21】 請求項1に記載の方法によって得られる電子放出素子を前記基板上に複数個配して構成した電子源基板。

20 【請求項22】 請求項21に記載の電子源基板上の複数の電子放出素子を接続させて構成した電子源。

【請求項23】 請求項22に記載の電子源を有してなるリアブレートと、黒色膜を有するフェースプレートと、を対向配置し、前記電子源より放出される電子を前記黒色膜に照射して、画像表示を行なうようにしたことを特徴とする表示パネル。

【請求項24】 請求項23に記載の表示パネルに駆動回路を接続してなる画像形成装置。

【請求項25】 基板上に金属元素を含有する液滴を吐出しつけて付与する液滴付与手段と、前記液滴の付与状態を検出する検出手段と、該検出手段によって得られる情報に基づいて前記液滴付与手段の吐出パラメータを制御する制御手段とを有してなる電子放出素子の製造装置。

【請求項26】 前記検出手段が、液滴の有無および液滴の量を検出する液滴情報検出手段ならびに液滴が付与された位置を検出する着弾位置検出手段のうちの少なくとも1つを有している請求項25に記載の製造装置。

【請求項27】 被滴情報検出手段と着弾位置検出手段が、同一の検出光学系である請求項26に記載の製造装置。

【請求項28】 液滴情報検出と着弾位置検出を同時に行ない得る請求項26に記載の製造装置。

【請求項29】 被滴情報検出と着弾位置検出を連続的に行ない得る請求項26に記載の製造装置。

【請求項30】 検出手段によって得られる情報に基づいて位置合わせを行なう位置合わせ手段を有する請求項25に記載の製造装置。

【請求項31】 付与された液滴の少なくとも一部を除去する液滴除去手段を有する請求項25に記載の製造装置。

【請求項32】 液滴除去手段がガスを噴射して液滴をギヤンプ内から飛散させる機能を有する除去専用ノズルを備えたものである請求項31に記載の製造装置。

【請求項33】 液滴付与手段がインクジェット方式の装置である請求項25に記載の製造装置。

【請求項34】 インクジェット方式が、熱エネルギーによって溶液内に気泡を形成させて該溶液を液滴として吐出させる方式である請求項3に記載の製造装置。

【請求項35】 インクジェット方式が、圧電素子によつて溶液を液滴として吐出させる方式である請求項33に記載の製造装置。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】 本発明は、電子放出素子とその素子を用いた電子原基板、電子源、表示パネルおよび画像形成装置、ならびにそれらの製造方法に関する。

【0002】

【従来の技術】 従来、電子放出素子として熱電子源と冷陰極電子源の2種類が知られている。冷陰極電子源には電界放出型（以下、FE型と称する）、金属／絶縁層／金属型（以下、MIM型と称する）や、表面伝導型電子放出素子等がある。

【0003】 FE型の例としては、Dykeらの報告（W. P. Dyke and W. W. Dolan, "Field emission", Advance in Electron Physics, 8, 89(1956)）に記載のもの、Spindtの報告（C. A. Spindt, "Physical Properties of thin-film field emission cathodes with molybdenum cones", J. Appl. Phys., 47, 5248(1976)）に記載のもの等が知られている。

【0004】 MIM型の例としては、Meadの報告（C. A. Mead, J. Appl. Phys., 32, 646(1961)）に記載のもの等が知られている。

【0005】 表面伝導型電子放出素子の例としては、エリンソンの報告（O. I. Elinson, Radio Eng. Electron Phys., 10(1965)）に記載のもの等がある。

【0006】 表面伝導型電子放出素子は、基板上に形成された小面積の薄膜に、膜面に平行に电流を流すことにより、電子放出が生ずる現象を利用するものである。この表面伝導型電子放出素子としては、前記のエリンソンの報告に記載のSnO₂薄膜を用いたもの、A_xO_y薄膜によるもの（G. Dittmer, Thin Solid Films, 9, 317(1972)）、In₂O₃/SnO₂薄膜によるもの（M. Hartwell and C. G. Fonstad, IEEE Trans. ED Conf., 519(1975)）、カーボン薄膜によるもの（荒木ら, 真空, 第26卷, 第1号, 22頁(1983)）などが報告されてい

る。

【0007】 これらの表面伝導型電子放出素子の典型的な素子構成として前述のハートウェル(Hartwell)の素子の構成を図39に示す。同図において、1は基板である。4は導電性薄膜で、H型形状のパターンに、スパッ

タで形成された金属酸化物薄膜等からなり、後述の通電フォーミングと呼ばれる通電処理により電子放出部5が形成される。なお、図中の素子電極間隔Lは0.5~1mm、W'は0.1mmで設定されている。なお、電子放出部5の位置および形状については不明であるので、模式図として表した。

【0008】 従来、これらの表面伝導型電子放出素子においては、電子放出を行なう前に導電性薄膜4を予め通電フォーミングと呼ばれる通電処理によって電子放出部5を形成するのが一般的であった。すなわち、通電フォーミングとは前記の導電性薄膜4の両端に直流電圧正あるいは非常にゆるくした昇電圧例えば1V/分程度を印加通電し、導電性薄膜を局所的に破壊、変形もしくは変質せしめ、電気的に高抵抗な状態にした電子放出部5を形成することである。なお、電子放出部5は導電性薄膜4の一部に亀裂が発生し、その亀裂付近から電子放出が行なわれる。前記通電フォーミング処理を行なった表面伝導型電子放出素子は、導電性薄膜4に電圧を印加し、素子に電流を流すことによって、上述の電子放出部5より電子を放出せしめるものである。

【0009】 上述の表面伝導型電子放出素子は、構造が単純で製造も容易であることから、大面積で多数の素子を配列形成できる利点がある。そこで、その特徴を生かせるような色々な応用が研究されている。例としては、荷電ビーム源、画像表示装置等の表示装置が挙げられる。

【0010】 本出願人は、表面伝導型電子放出素子に着目しており、特開平2-56822号公報において、新規な電子放出素子の製造方法を提案した。図38に当該公報に開示された素子を示す。同図において、1は基板、2および3は素子電極、4は導電性薄膜、5は電子放出部である。この電子放出素子の製造方法は、例えば基板1に一般的な真空蒸着技術、フォトリソグラフィ技術により素子電極2および3を形成する。次いで、導電性薄膜4は、分散塗布法などによって導電性材料を基板1上に塗布した後、バーニングにより形成する。その後、素子電極2および3に電圧を印加し通電処理を施すことによって、電子放出部5を形成する。

【0011】

【発明が解決しようとする課題】 しかしながら、上記従来例による製造方法では、半導体プロセスを主とする方法で製造するものであるために、現行の技術では大面積にわたって多数の電子放出素子を形成することは困難であり、しかも特殊で高価な製造装置が必要となる。さらに、バーニングに伴う複数の工程が必要とされることから、これらの工程の簡略化が望まれているところである。すなわち、現在のところ、基板上に大面積にわたって多数の電子放出素子を形成する場合、生産コストが高くなってしまうというのが実状である。

【0012】 本発明は上述したような技術的課題に鑑み

てなされたものである。本発明の目的は、低コストで基板上に多数の電子放出素子を形成し得る電子放出素子の製造方法を提供することにある。

【0013】本発明の別の目的は、その電子放出素子を用いた電子源基板、電子源、表示パネル、画像形成装置を提供することにある。

【0014】本発明のさらには、バターニング工程を削減した電子放出素子の製造方法を提供することにある。

【0015】本発明のさらに別の目的は、基板上の所定の位置に所望の量の導電性材料を付与することができ、製造工程を低減した電子放出素子の製造方法を提供することにある。

【0016】本発明のさらに別の目的は、電子放出素子を用いた電子源基板、電子源、表示パネルおよび画像形成装置を提供することにある。

【0017】

【課題を解決するための手段】上述した目的を達成する本発明は、以下の構成のものである。

【0018】すなわち本発明の電子放出素子の製造方法の第1の態様は、基板上に1対の電極と、導電性薄膜とを、これらが接するように形成し、前記導電性薄膜を用いて電子放出部を構成する電子放出素子の製造方法において、前記基板上に金属元素を含有する溶液を被満として付与し、前記導電性薄膜を形成することを特徴とするものである。

【0019】本発明の電子放出素子の製造方法の第2の態様は、基板上に1対以上の相対向する電極間に電子放出部を構成する薄膜を以て電子放出素子の製造方法において、薄膜の材料を含有する液を液滴の状態で該電極間に1以上付与する工程と、該電極間に於ける該液滴の付与状態を検出し、付与状態に応じて得られた情報を基づいて、該電極間に液滴の付与を行う工程を有することを特徴とするものである。

【0020】本発明の電子放出素子の製造方法の第3の態様は、基板上に形成された1対の素子電極間に、導電性薄膜材料溶液の液滴を、隣接するドット同士の中心間距離が1ドットの直径以下となるよう複数個付与し、該複数のドットによって形成された導電性薄膜に通電処理を施して電子放出部を形成することを特徴とするものである。

【0021】本発明の電子放出素子の製造方法の第4の態様は、導電性薄膜を形成する材料の溶液を1対の素子電極間に液滴の状態で付与することによって導電性薄膜を形成する工程を含み、前記溶液が親水性であって、その溶液を素子電極を有する基板上に付与する際に、基板の表面上が疎水性になるように基板の表面処理を行うことを特徴とするものである。

【0022】本発明の電子放出素子の製造方法の第5の態様は、電子放出素子の製造方法において、導電性薄膜

を形成する材料を含む溶液を液滴の状態で少なくとも1滴付与することにより基板上にドット状の導電性薄膜を形成した後、該導電性薄膜に接するように一対の素子電極を形成することを特徴とするものである。

【0023】本発明は、本発明の電子放出素子の製造方法により得られた電子放出素子を包含する。

【0024】本発明の電子源基板は、本発明の電子放出素子が基板上に複数個配置されて成ることを特徴とするものである。

10 【0025】本発明の電子源は、本発明の電子源基板上の素子を接続して成ることを特徴とするものである。

【0026】本発明の表示パネルは、本発明の電子源を有してなるリアプレートと、蛍光膜を有するフェースプレートとを対向配置し、前記電子源より放出される電子を前記螢光膜に照射して、画像表示を行うようにしたことを特徴とするものである。

【0027】本発明の画像形成装置は、本発明の表示パネルに、少なくとも駆動回路が接続されてなることを特徴とするものである。

20 【0028】本発明は、電子放出素子の製造装置を包含する。

【0029】本発明の電子放出素子の製造装置は、基板上の相対向する電極間に微粒子膜の材料となる金属元素を含有する液滴を吐出して付与する液滴付与手段と、該電極間への液滴の付与状態を検出する検出手段と、該検出手段によって得られる情報に基づいて該液滴付与装置の吐出パラメータを割り当てる割り当手段とを有することを特徴とするものである。

【0030】本発明は、下述する方法をも包含する。

30 【0031】本発明の電子源基板の製造方法は、基板上に複数個の素子電極対を形成し、各電極対間に金属元素を含有する溶液を1滴以上の液滴として付与して該電極間に導電性薄膜を形成して、複数個の電子放出素子を形成する工程を有することを特徴とする。

【0032】本発明の電子源の製造方法は、基板上に複数個の素子電極対を形成し、各電極対間に金属元素を含有する溶液を1滴以上の液滴として付与して該電極間に導電性薄膜を形成して、複数個の電子放出素子を形成する工程と、該基板上の素子間を配線によって接続する工程を有することを特徴とする。

40 【0033】本発明の表示パネルの製造方法は、基板上に複数個の素子電極対を形成し、各電極対間に金属元素を含有する溶液を1滴以上の液滴として付与して該電極間に導電性薄膜を形成して、複数個の電子放出素子を形成する工程と、該基板上の素子間を配線によって接続する工程と、該電子放出素子が形成された基板を有してなるリアプレートと蛍光膜を有するフェースプレートとを、再プレートが対向するように支持枠を介して接合させることを特徴とする。

50 【0034】本発明の画像形成装置の製造方法は、基板

上に複数個の素子電極対を形成し、各電極対間に金属元素を含有する溶液を1滴以上の液滴として付与して該電極間に導電性薄膜を形成して、複数個の電子放出素子を形成する工程と、該基板上の素子間を配線によって接続する工程と、該電子放出素子が形成された基板を有してなるリアフレートと蛍光膜を有するフェースプレートとを、両フレートが対向するように支持棒を介して接合させる工程を行って表示パネルを形成し、該表示パネルに少なくとも駆動回路を接続することを特徴とする。

【0035】上述した本発明にすれば、前述した解決すべき技術的課題が解決され、前述した目的が達成される。

【0036】本発明の電子放出素子の製造方法によれば、電子放出部を構成する導電性薄膜を金属元素を含有する溶液を液滴の形態で付与して形成することから、所定の位置に所量の液を付与することができ、電子放出素子の製造工程を大幅に低減することができる。

【0037】さらに、本発明の電子放出素子の製造方法の第2の態様によれば、液滴の情報を検出し液滴に基づいて吐出条件および吐出位置を補正、液滴の再付与を行うことにより、欠陥の極めて少ない均一な薄膜を形成できる。これにより、素子特性均一性の飛躍的な向上が実現でき、大面積化に伴う歩留り低下の問題を解決できる。

【0038】さらにこのような電子放出素子を用いると、性能の優れた電子源基板、電子源、表示パネルおよび画像形成装置を得ることができる。

【0039】さらに、本発明の電子放出素子の製造方法の第3の態様によれば、電子放出部を構成する金属材料を、分散または溶解した含有溶液を液滴の形態で複数個付与する工程において、個々のドットの中心間の距離を1ドットの直径より短い距離で付与してマルチパターン(パッド)を形成することにより、電子放出部を構成する導電性膜を極めて高い精度で形成できる。

【0040】さらに、本発明の電子放出素子の製造方法の第4の態様によれば、付与する液滴の溶液を親水性とし、その溶液を素子電極を有する基板上に付与する際に、基板の表面上が導水性になるよう基板の表面処理を行うことによって、導電性薄膜が再現性よく形成でき、均質な表面伝導型電子放出素子を作製するため、大面積にわたって多数の表面伝導型電子放出素子を作製した場合でも、均一な電子放出特性を得ることができる。

【0041】さらに本発明の電子放出素子の製造方法の第5の態様によれば、導電性薄膜を形成した後に素子電極を形成することで、本発明の電子放出素子の製造方法を適用し得る態様を拡大し得る。

【0042】また、上述した本発明の電子源、電子源基板、表示パネル、画像形成装置は、電子放出素子を構成する導電性薄膜が均一に配されることか

ら、優れた特性を安定して發揮できる。

【0043】

【発明の実施の形態】以下、図面を用いて本発明を詳細に説明する。

【0044】図1は本発明の電子放出素子の製造方法の1例を示す模式図、図2および図3は本発明の製造方法によつて作製される表面伝導型電子放出素子の1例を示す図である。

【0045】図1、2および3において、1は基板、2および5は素子電極、4は導電性薄膜、5は電子放出部、7は液滴付与装置、2-4は液滴である。

【0046】本例においてはまず、基板1上に素子電極2および3をL1の距離を隔てて形成する(図1(a))。次いで、金属性元素を含有する溶液となる液滴2を液滴付与装置(インクジェット記録装置)7より吐出させ(図1(b))、導電性薄膜4を素子電極2、3に接するように形成する(図1(c))。次に、例えば示するフォーミング処理により、導電性薄膜中に亀裂を生ぜしめ、電子放出部5を形成する。

【0047】このような液滴付与法を用いることにより、含有溶液の微小な液滴を所望の位置のみに選択的に形成することができるため、素子部を構成する材料を無駄にすることがない。また高価な装置を必要とする真空プロセス、多数の工程を含むフローリングライナーによるバーニングが不要であり、生産コストを大幅に下げることができる。

【0048】液滴付与装置7の具体例を挙げるならば、任意の液滴を形成できる装置であればどのような装置を用いても構わないが、特に、十数n mから數十n g程度の範囲で制御が可能かつ10n m程度から數十n gの微小量の液滴が容易に形成できるインクジェット方式の装置がよい。

【0049】インクジェット方式の装置としては、圧電素子等を用いたインクジェット噴射装置、熱エネルギーによって液体内に気泡を形成させてその液体を液滴として吐出させる方式(以下、バブルジェット方式と称する)によるインクジェット噴射装置などが挙げられる。

【0050】導電性薄膜4は良好な電子放出特性を得るために微粒子で構成された微粒子膜が特に好ましく、そ

の膜厚は、素子電極2および3へのステップカバージ、素子電極2・3間の抵抗値および後述する通電フォーミング条件等によって適宜設定されるが、好ましくは数Å～数k Aで、特に好ましくは10 Å～500 Aである。そのシート抵抗値は、 $10^3 \sim 10^7 \Omega/\square$ である。

【0051】導電性薄膜4を構成する材料は、Pd、Pt、Ru、Ag、Au、Ti、In、Cu、Cr、Fe、Zn、Sn、Ta、W、Pb等の金属、PdO、SnO₂、In₂O₃、PbO、Sb₂O₃等の酸化物、HfB₂、ZrB₂、LaB₆、CeB₆、YB₆、GdB₄等の硼化物、TiC、ZrC、HfC、TaC、SiC、W

C等の炭化物、TiN、ZrN、HfN等の窒化物、Si、Ge等の半導体、カーボン等が挙げられる。

【0052】なお、ここで述べる微粒子膜とは、複数の微粒子が集合した膜であり、その微細構造として、微粒子が個々に分散配置した状態のみならず、微粒子が互いに隣接あるいは重なり合った状態（島状も含む）の膜を指しており、微粒子の粒径は、数Å～數千Å、好ましくは10Å～200Åである。

【0053】液滴24の基になる溶液は、上述した導電性薄膜の構成材料を水や溶剤等に溶かしたものや有機金属溶液等が挙げられるが、液滴を生じさせる粘度のものであることが必要である。

【0054】また、素子電極間に付与する液の量は、下記式で示されるように基板と1対の素子電極によって形成される凹部の容積を超えないようにすることが好ましい。

【0055】

【数1】凹部の容積=素子電極の長さ×素子電極の幅(W)×素子電極間隔(L)

基板1としては石英ガラス、Na等の不純物含有量の少ないガラス、青板ガラス、SiO₂を表面に形成したガラス基板およびアルミナ等のセラミックス基板が用いられる。

【0056】素子電極2および3の材料としては、一般的な導電性体が用いられ、例えば、Ni、Cr、Au、Mo、W、Pt、Ti、Al、Cu、Pd等の金属または合金、ならびにPd、Ag、Au、RuO₂、Pd-Ag等の金属または金屬酸化物とガラス等から構成される印刷導体、In₂O₃-SnO₂等の透明導電膜およびポリシリコン等の半導体材料等から適宜選択される。

【0057】素子電極間隔Lは、好ましくは数百Å～数百μmである。また、素子電極間に印加する電圧は低い方が望ましく、再現よく作製することが要求されるため、好ましい素子電極間隔は、数百μm～数十μmである。

【0058】素子電極長さW'は、電極の抵抗値および電子放出特性の観点から、数百μm～数百μmであり、また素子電極2および3の膜厚dは、数百Å～數μmが好ましい。

【0059】電子放出部5は導電性薄膜4の一部により形成された高抵抗の亀裂であり、通電フォーミング等により形成される。また、亀裂内には数Å～数百Åの粒径の導電性微粒子を有することもある。この導電性微粒子は導電性薄膜4を構成する物質の少なくとも一部の元素を含んでいる。また、電子放出部5およびその近傍の導電性薄膜4は、炭素および炭素化合物を有することもある。

【0060】また、電子放出部5は、導電性薄膜4ならびに素子電極2および3が形成されてなる素子の通電フォーミングと呼ばれる通電処理を行うことによって形成される。通電フォーミングは、素子電極2・3間に不図

示の電源により通電を行い、導電性薄膜4を局所的に破壊、変形もしくは変質せしめ、構造を変化させた部位を形成させるものである。この局所的に構造変化させた部位を電子放出部5と呼ぶ。通電フォーミングの電圧波形の例を図4に示す。

【0061】電圧波形は特にパルス形状が好ましく、パルス波高値が一定の電圧パルスを連續的に印加する場合（図4(a)）と、パルス波高値を増加させながら電圧パルスを印加する場合（図4(b)）とがある。まず、10 パルス波高値が一定電圧とした場合（図4(a)）について説明する。

【0062】図4におけるT1およびT2は電圧波形のパルス幅とパルス間隔であり、T1を1μ秒～10ミリ秒、T2を10μ秒～100ミリ秒とし、三角波の波高値（通電フォーミング時のピーク電圧）は表面伝導型電子放出素子の形態に応じて適宜選択し、適当な真空度、例えば 1×10^{-6} Torr程度の真空雰囲気下で、数秒から數十分印加する。なお、素子の電極間に印加する波形は三角波に限定する必要はなく、矩形波など所望の波形を用いてもよい。

【0063】図4(b)におけるT1およびT2は、図4(a)の場合と同様であり、三角波の波高値（通電フォーミング時のピーク電圧）は、例えば0.1Vステップ程度ずつ増加させ適当な真空雰囲気下で印加する。

【0064】なお、この場合の通電フォーミング処理は、パルス間隔T2中に、導電性薄膜4を局所的に破壊・変形しない程度の電圧、例えば0.1V程度の電圧で、素子電流を測定し、抵抗値を求め、例えば1MΩ以上の抵抗を示した時に通電フォーミング終了とする。

【0065】次に通電フォーミングが終了した素子に活性化工程と呼ばれる処理を施すことが望ましい。

【0066】活性化工程とは、例えば、 $10^{-4} \sim 10^{-5}$ Torr程度の真空度で、通電フォーミング同様、パルス波高値が一定の電圧パルスを繰り返し印加する処理のことであり、真空中に存在する有機物質に起因する炭素および炭素化合物を導電薄膜上に堆積させ素子電流I_f、放出電流I_eを著しく変化させる処理である。活性化工程は素子電流I_fと放出電流I_eを測定しながら、例えば、放出電流I_eが飽和した時点で終了する。また、印40 加する電圧パルスは動作駆動電圧で行うことが好ましい。

【0067】なお、ここで炭素および炭素化合物とは、グラファイト（単結晶および多結晶の両方を指す。）非晶質カーボン（非晶質カーボンおよび多結晶グラファイトの混合物を指す）であり、その膜厚は500Å以下が好ましく、より好ましくは300Å以下である。

【0068】こうして作製した電子放出素子は、通電フォーミング工程、活性化工程における真空度よりも高い真空度の雰囲気下に置いて動作駆動させるのがよい。また、さらに高い真空度の雰囲気下で、80°C～150°C

の加熱後に動作駆動させることができほしい。

【0069】なお、通電フォーミング工程、活性化処理した真空度より高い真空度とは、例えば約 10^{-6} Torr 以上の真空度であり、より好ましくは超高真空系であり、新たに炭素および炭素化合物が導電薄膜上にほとんど堆積しない真空度である。こうすることによって、電子電流 I_e 、放出電流 I_o を安定化させることができるとなる。

【0070】本発明で用いる電子放出素子は、単純構成で製法が容易な表面伝導型電子放出素子が好適である。

【0071】本発明によって製造することができる表面伝導型電子放出素子としては、基本滴に平面型表面伝導型電子放出素子である。

【0072】本発明の電子放出素子の製造方法の最も特徴なことは、金属元素を含有する被滴を基板上に被滴として付与し、導電性薄膜を形成することである。この要件を満足する態様には、種々のものがある。

【0073】I. 本発明は、基板上に付与された被滴の付与状態を検出し、付与状態に関して得られた情報に基づいて被滴の付与を再度行うものをも包含する。以下、その態様について説明する。

【0074】図14、図16および図17は、本例で使用可能な電子放出素子の製造装置の各種実施態様を示す概略構成図であり、図15は本例の電子放出素子の製造方法の実施態様の工程を示すフローチャートである。

【0075】図14、図16および図17において、7はインクジェット噴射装置（液滴付与装置）、8は発光手段、9は受光手段、10はステージ、11はコントローラ、12は制御手段を示す。なお、ここで言う発光手段および受光手段においては、発光・受容する対象は光に限定されるものではなく、信号として認識できるものであればどのようなものを用いてもよく、例としては発光ダイオード、赤外線レーザーなどがある。また、受光手段は、発光手段に合わせて信号を受けることができるものであればよい。さらに、これらの発光手段および受光手段は、絶縁性基体を通してまたは反射する信号を発生または受信する構成のものであればよい。

【0076】本例の電子放出素子の製造方法および製造装置において検出される被滴の状態に関する項目は、1対の素子電極間の凹部であるギャップ内に付与された被滴量、その被滴の位置、被滴自体の有無などである。そのような項目に関する取得情報に基づいて、吐出回数や吐出位置、さらに圧電素子を用いたインクジェット噴射装置では駆動条件も含めてインクジェット噴射装置の吐出パラメータを、制御手段によって制御する。

【0077】さらに、上記の検出を行う手段としては、インクジェット法によってノズルから吐出された被滴の電極間ギャップにおける有無およびその量を検出する被滴情報検出手段と被滴が着弾した位置を検出する着弾位

置検出手段とを備えることが好ましい。

【0078】その場合、着弾位置検出手段としては、吐出前に電極パターンまたは専用に設けたアライメントマークを光学的に検出するか、吐出後被滴による透過率の変調を光学的に検知することによって着弾後の被滴の位置を検出するものである。なお被滴の位置検出は、ギャップ内およびギャップ近傍の領域で複数ポイントの透過率を検出し、それらの相間を取ることによって行われる。

【0079】さらに、本例の製造装置では、位置検出専用の光学系を設ける必要がないように、前述の液滴情報検出手と着弾位置検出手とは同一の光学検出系によって行われるようにすることが好ましい。さるに望ましくは、液滴情報検出と位置検出を同一の光学系によって連続的または同時にを行う。

【0080】図15に示したように、本例の製造方法では、電極間隔を利用して発光手段と受光手段により電極間を通過する光または反射する光を検出することで被滴の付与位置を検出し、電極間に被滴を付与できる位置にインクジェット噴射装置のヘッドを移動させる（位置合わせ工程）。次に、インクジェット噴射装置によって被滴を電極間に付与し（液滴付与工程）、位置合わせ工程と同様に電極間を通過または反射する信号によって、例えば被滴が電極間に付与されているか否か（上述の被滴自体の有無に関する情報）を検出する（液滴検出工程）。そして、液滴検出工程で所望の位置の所望の量に液滴が付与されなければ次の電極間の位置合わせ工程へ進み、液滴が付与されなければ再度液滴を付与する。

【0081】また、インクジェット噴射装置とステージの移動・搬送においては、ステージのみ、もしくはインクジェット噴射装置のみ、もしくはその両方など、どのような組合せで、X、Y、θの移動・搬送を行ってもよい。

【0082】また、液滴付与工程中、インクジェット噴射装置またはステージは、移動・搬送または停止のどちらの状態であっても構わないが、移動・搬送の状態で液滴を付与する場合、液滴の着弾位置がずれない程度の移動・搬送が好ましい。

【0083】本例の製造装置における光学的な検出手段には、様々なバリエーションがあり得る。図18にはそのうち、検出光学系の焦点において光学系の光軸と吐出ノズルの吐出方向軸とが交わるよう双方の相対位置が配置されるタイプを示す。このタイプでは、吐出ノズル301、検出光学系302、素子基板（絶縁性基体）1の相対位置を固定したまままで溶液の吐出および付与された液滴に関する情報の検出を交互に連続的に繰り返すことが可能である。図18（a）は出射系と検出系のコンパクトな一体化が可能な垂直反射型、図18（b）は出射系と検出系とが吐出ノズルを挟んで配置される斜方反射型、図18（c）は出射系と検出系とが素子基板を挟

んで配置される垂直透造型である。

【0084】また、図19および図20は、検出光学系の光軸と吐出方向軸とが交点を持たないタイプであり、図19が反射型、図20が透造型である。このタイプで液滴の吐出、情報検出を繰り返す場合、図に示すように変位制御機構403または503を矢印の方向に駆動してそれぞれの軸がギャップ中央の位置に合うように交互に移動する必要がある。

【0085】吐出条件の制御方法としては、液滴情報の検出信号差分成分を補正信号として、検出値が最適値に保持されるように駆動バルス高、バルス幅、バルスタイミング、バルス数等のパラメータのうちの少なくとも1つを実時間で場調節制御する方法や、検出値の最適値からのずれの量に応じて予め決められたアルゴリズムに従ってパラメータのうちの少なくとも1つを補正する方法等がある。

【0086】また、これらの図においては、情報検出の対象となる液滴が素子電極間のギャップに形成される場合について示されているが、本発明の方法および装置においては、情報検出のためのダミー液滴を素子電極間以外の箇所に予備吐出し、その検出結果に基づいて吐出条件を適正なものに設定してから素子電極間への液滴吐出を行なうという形態であってもよい。

【0087】さらに本例の別の態様として、付与された液滴の少なくとも一部を除去するための液滴除去手段を設けて、液滴情報検出の結果、ギャップ内の液滴量が最適値より多いと判断される場合に、液滴の一部を除去して最適値に戻すかあるいは液滴を全量除去した後に再吐出を行うことができる。

【0088】そのような液滴除去手段としては、窒素などのガスを噴射して液滴をギャップ内から飛散させる機能を有する除去専用ノズルを備えたものなどがある。除去専用ノズルは専用の位置制御機構を設けるが必要ないように、吐出ノズル近傍に配置するのが望ましい。例えば吐出ノズルがマルチアレイ配列になっている場合には、アレイ内に除去専用ノズルを周期的に設けるようにしてもよい。吐出による溶液の付与のみでなく除去もできる手段を備えることによって、液滴のより厳密な制御が実現される。

【0089】本例の製造装置においては、液滴が着弾する位置に関する情報を光学的に検出する手段と、検出される位置情報を基づいて吐出位置合わせ、位置微調整等の位置制御を行う手段を備える。

【0090】位置検出手段は、吐出前に電極パターンまたは専用に設けたアライメントマークを光学的に検出するか、吐出後液滴による透過率の変調を光学的に検知することによって着弾後の液滴の位置を検出する。その場合、液滴の位置検出は、ギャップ内およびギャップ近傍の領域で複数ポイントの透過率を検出し、それらの相関をとることによって行われる。

【0091】本例においては、位置検出手用の光学系を設ける必要がないように、前述の液滴に関する情報の検出と液滴の着弾位置検出とが同一の光学検出系によって行なうことが好ましい。さらに好ましくは、情報検出と位置検出とを同一の光学系によって連続的にまたは同時に行なうようする。

【0092】11. 次に、液滴のドット径と、付与する位置に工夫を凝らした態様について説明する。

【0093】図32は本例の製造方法により作成される表面伝導型電子放出素子のマルチパターン（パッド）を示す図である。図32において、(a)は、隣接するドット間の距離およびドット径を示す図であり、(b)は上記のパッドの1例の図である。なおここで、隣接するドットという表現は、例えば図32(a)において上下・左右で隣り合うドットを表し、斜め方向に隣り合うドット同士には適用されないものとする。

【0094】図32において、1は基板、2および3は素子電極、4は導電性薄膜、5は電子放出部、28は液滴を基板に付与した後形成される液状または固体状の円形の膜（ドット）である。

【0095】まず予め、前述の材料によって形成されるドットの直径 ϕ を求める。すなわち、有機溶剤等で充分洗浄し乾燥させた絶縁基板上に、液滴付与装置を用いてドットを形成し、その直径 ϕ を測定する。

【0096】次に、基板洗浄後、真空蒸着技術およびフォトリソグラフィ技術を用いて素子電極の形成された基板に、図32(b)に示すような複数のドットを付与してマルチパターン（パッド）を形成する。ここで、個々のドットの重心間距離 P_1 および P_2 は、1ドットの直径 ϕ より下し、隣接するドットが重なるように付与する。そうすることによって、液滴が基板上で広がる幅 W_2 がほぼ一定になったパッドが得られる。なおパッドの大きさは、幅 W_2 が素子電極幅 W_1 以下で、パッドの長さ T はギャップ間隔 L_1 以上であることが好ましく、さらには求める抵抗値、素子電極の幅、ギャップ幅およびアライメント精度によって決定される。

【0097】以上のように方法で薄膜を付与した後、300～600℃の温度で加熱処理し、溶媒を蒸発させて導電性薄膜を形成する。これに続くフォーミング等は、前述したものと同様に行なう。

【0098】111. 本発明は、液滴を付与する基板の表面状態に工夫を凝らしたものも包含する。本発明は、液滴を付与する基板表面に疎水化処理を行なうものを包含する。

【0099】本例では、液滴を、素子電極を備えた基板上に付与する際には、基板の表面状態が疎水性であるように基板の表面処理を行なう。具体的には、HMDS（ヘキサメチルジシラザン）、PHAMS、GMS、MAP、PES等のシリコンカッピング剤による疎水化処理を行う。

【0100】疊水化処理の方法は、例えば、スピナー等で上記のシランカップリング剤を塗布し、次いでオブンで100℃～300℃、例えば200℃に加熱し、数十分～数時間、例えば15分間ペークを行う。

【0101】上述の表面処理を行うことによって、液滴付と塗装により基板上に液滴を付与した際、基板上での液滴の形状安定性が向上する。そのため、液滴が基板上で不規則な形状に広がることがなく、液滴の量と形状によって、導電性薄膜の形状を容易に制御することが可能となり、導電性薄膜の寸法・厚さの再现性や均一性が向上する。その結果、大面積にわたって多数の電子放出素子を形成する場合でも、電子放出特性の均一性が良好な電子放出素子を得ることができる。

【0102】次に、本発明の画像形成装置について説明する。

【0103】画像形成装置に用いられる電子源基板は複数の表面伝導型電子放出素子を基板上に配列することにより形成される。

【0104】表面伝導型電子放出素子の配列の方式には、表面伝導型電子放出素子を並列に配置し、個々の素子の両端を配線で接続するはしご型配線（以下、はしご型配置電子源基板と称する）や、表面伝導型電子放出素子の一対の素子電極のそれぞれX方向配線、Y方向配線を接続した単純マトリクス配線（以下、マトリクス型配置電子源基板と称する）が挙げられる。なお、はしご型配置電子源基板を有する画像形成装置には、電子放出素子からの電子の飛翔を制御する電極である制御電極（グリッド電極）を必要とする。

【0105】以下、この原理に基づいて作製した電子源の構成について、図6を用いて説明する。図中、91は電子源基板、92はX方向配線、93はY方向配線、94は表面伝導型電子放出素子、95は結線である。なお、表面伝導型電子放出素子94は前述した平面型あるいは垂直型のどちらであってよい。

【0106】同図において、電子源基板91に用いる基板は前述したガラス基板等であり、用途に応じて形状が適宜設定される。

【0107】m本のX方向配線92は、Dx1、Dx2、…、Dxmからなり、Y方向配線93はDy1、Dy2、…、Dynのn本の配線よりなる。

【0108】また多数の表面伝導型電子放出素子にほぼ均等な電圧が供給されるように、材料、膜厚、配線幅は適宜設定される。これらm本のX方向配線92とn本のY方向配線93間は不図示の層間絶縁層により電気的に分離されてマトリクス配線を形成する（m、nはともに正の整数）。

【0109】不図示の層間絶縁層は、X方向配線92を形成した電子源基板91の全面あるいは一部の所望の領域に形成される。X方向配線92とY方向配線93はそれぞれ外部端子として引き出される。

【0110】さらに表面伝導型電子放出素子94の素子電極（不図示）がm本のX方向配線92とn本のY方向配線93と結線95によって電気的に接続されている。

【0111】また表面伝導型電子放出素子は基板あるいは不図示の層間絶縁層上のどちらに形成してもよい。

【0112】また詳しくは後述するが、前記X方向配線92にはY方向に配列する表面伝導型電子放出素子94の行への入力信号に応じて走査するための走査信号を印加するための不図示の走査信号発生手段と電気的に接続されている。

【0113】一方、Y方向配線93には、Y方向に配列する表面伝導型電子放出素子94の列の各列を力信号に応じて変調するための変調信号を印加するための不図示の変調信号発生手段と電気的に接続されている。

【0114】さらに、表面伝導型電子放出素子の各素子に印加される駆動電圧はその素子に印加される走査信号と変調信号の差電圧として供給されるものである。

【0115】上記構成において、単純なマトリクス配線だけで個別の素子を選択して独立に駆動可能なこと。

【0116】次に、以上のようにして製作した単純マトリクス配線の電子源を用いた画像形成装置について、図7、図8および図9を用いて説明する。図7は画像形成装置の基本構成を示す図であり、図8は蛍光屏、図9はNTSC方式のテレビ信号に応じて表示するための駆動回路のフロック図であり、その駆動回路を含む画像形成装置を表す。

【0117】図7において、91は電子放出素子を基板上に作製した電子源基板、1081は電子源基板91を固定したアリプレート、1086はガラス基板1083

30 の内面に蛍光膜1084とメタルバック1085等が形成されたフェースプレート、1082は支持枠であり、これらの部材によって外周器1088が構成される。

【0118】94は電子放出素子であり、92および93は表面伝導型電子放出素子の一対の素子電極と接続されたX方向配線およびY方向配線である。

【0119】外周器1088は、上述のごとくフェースプレート1086、支持枠1082、アリプレート1081で構成されているが、アリプレート1081は主に電子源基板91の強度を補強する目的で設けられたた

40 め、電子源基板91自分で十分な強度を持つ場合は、別体のアリプレート1081は不要であり、電子源基板91に直接支持枠1082を接合し、フェースプレート1086、支持枠1082および電子源基板91にて外周器1088を構成してよい。

【0120】図8中、1092は蛍光体である。蛍光体1092はモノクロームの場合は蛍光体のみからなるが、カラーの蛍光膜の場合は蛍光体の配列によりブラックストライプあるいはブラックマトリクスなどと呼ばれる黒色導電材1091と蛍光体1092とで構成され50 る。ブラックストライプ（ブラックマトリクス）が設け

られる目的は、カラー表示の場合、必要となる三原色蛍光体の各蛍光体1092間の塗り分け部を黒くすることと混色等を目立たなくすることと、蛍光膜1084における外光反射によるコントラストの低下を抑制することである。ブラックストライプの材料としては、通常良く使用される墨鉛を主成分とする材料だけでなく、導電性があり、光の透過および反射が少ない材料であれば使用可能である。

【0121】ガラス基板1093に蛍光体を塗布する方法としては、モノクロームであるかカラーであるかによらず、沈澱法や印刷法が用いられる。

【0122】また、蛍光膜1084(図7)の内面側には通常メタルパック1085(図7)が設けられる。メタルパックの目的は、蛍光体の発光のうち内面側への光をフェースプレート1086側へ鏡面反射することにより輝度を向上させること、電子ビーム加速電圧を印加するための電極として作用すること、外囲器内で発生した負イオンの衝突によるダメージからの蛍光体の保護等である。メタルパックは蛍光膜作製後、蛍光膜の内面側表面の平滑化処理(通常フィルミングと呼ばれる)を行い、その後A1を真空蒸着等で堆積することで作製できる。

【0123】フェースプレート1086にはさらに、蛍光膜1084の導電性を高めるため、蛍光膜1084の外側に透明電極(不図示)を設けてもよい。

【0124】前述の封着を行う際、カラーの場合は各色蛍光体と電子放出素子とを対向させなくてはならず、十分な位置合わせを行なう必要がある。

【0125】外囲器108は図8に示す構成の排気管を通じ10⁻⁷Torr程度の真空中にされ、封止が行われる。また、外囲器108の封止後の真空度を維持するためにゲッター処理を行う場合もある。これは、外囲器108の封止を行なう直前あるいは封止後の所定の位置(不図示)に配置されたゲッターを加熱し、蒸着膜を形成する処理である。ゲッターは通常B₄等が主成分であり、その蒸着膜の吸着作用により、例えば1×10⁻⁵Torr～1×10⁻⁷Torrの真空度を維持するものである。なお、表面伝導型電子放出素子の遮電フォーミング以降の工程は適宜設定される。

【0126】図5は、電子放出特性を評価するための測定装置の概略構成図である。図5において、81は素子に素子電圧V_tを印加するための電源、80は素子電極2・3間に導電性薄膜4を流れる素子電流I_tを測定するための電流計、84は素子の電子放出部より放出される放出電流I_eを測定するためのアノード電極、83はアノード電極84に電圧を印加するための高圧電源、82は素子の電子放出部より放出される放出電流I_eを測定するための電流計、85は真空装置、86は排気ポンプである。

【0127】次に、単純マトリクス配置型基板を有する

電子源を用いて構成した画像形成装置について、NTSC方式のテレビ信号に基づきテレビジョン表示を行うための駆動回路概略構成を図9のブロック図を用いて説明する。1101は前記表示パネルであり、また1102は走査回路、1103は制御回路、1104はソフトレジスタ、1105はラインメモリ、1106は同期信号分離回路、1107は変調信号発生器、VxおよびVaiは直流電圧源である。

【0128】以下、各部の機能を説明する。

10 1101は前記表示パネル1101は端子Dox1～Doxm、端子Doy1～Doynおよび高圧端子Hvを介して外部の電気回路と接続している。このうち、端子Dox1～Doxmには、前記表示パネル内に設けられている電子素子、すなわちm行n列の行列状にマトリクス配線された表面伝導型電子放出素子群を一行(n個の素子)ずつ順次駆動していくための走査信号が印加される。

【0130】一方、端子Dy1～Dynには前記走査信号により選択された一行の表面伝導型電子放出素子の各素子の出力電子ビームを制御するための変調信号が印加される。また、高圧端子Hvには直流電圧源V_xよりも、例えば10kVの直流電圧が供給されるが、これは表面伝導型電子放出素子より出力される電子ビームに蛍光体を励起するのに十分なエネルギーを付与するための加速電圧である。

【0131】次に、走査回路1102について説明する。同回路は内部にm個のスイッチング素子を備えるもの(図中、S1～Smで示されている)、各スイッチング素子は直流電圧源V_xの出力電圧もしくは0(V)(グランドレベル)のいずれか一方を選択し、表示パネル1101の端子Dx1ないしDxmと電気的に接続するものである。S1～Smの各スイッチング素子は制御回路1103が outputする制御信号T_{scan}に基づいて動作するものであるが、実際には例えばFETののようなスイッチング素子を組み合せることにより構成することが可能である。

【0132】なお、前記直流電圧源V_xは前記表面伝導型電子放出素子の特性(電子放出閾値電圧)に基づき走査していない素子に印加される駆動電圧が電子放出閾値以下となるような一定電圧を出力するよう設定されて40いる。

【0133】また、制御回路1103は外部より入力する画像信号に基づいて適切な表示が行われるように各部の動作を整合させる働きを持つものである。次に説明する同期信号分離回路1106より得られる同期信号T_{sy}に基づいて各部に対してT_{scan}、T_{sf}およびT_{try}の各制御信号を発生する。

【0134】同期信号分離回路1106は外部から入力されるNTSC方式のテレビ信号から同期信号成分と輝度信号成分とを分離するための回路で周波数分離(フィルター)回路を用いれば構成できるものである。同期信50

号分離回路1106により分離された同期信号は、良く知られるように、垂直同期信号と水平同期信号より成るが、ここでは説明の便宜上、T sync信号として図示した。一方、前記テレビ信号から分離された画像の輝度信号成分を便宜上DATA信号と表すが、同信号はシフトレジスタ1104に入力される。

【0135】シフトレジスタ1104は時系列的にシリアルに入力される前記DATA信号を画面上の1ラインごとにシリアル／パラレル変換するためのもので、前記制御回路1103より送られる制御信号Tsf1に基づいて動作する（すなわち、制御信号Tsf1は、シフトレジスタ1104のシフトクロックであると言い換へてもよい）。

【0136】シリアル／パラレル変換された画像1ライン分（電子放出素子n素子分の駆動データに相当するもの）のデータは、Id1～Idnの個の並列信号として前記シフトレジスタ1104より出力される。

【0137】ラインメモリ1105は、画像1ライン分のデータを必要時間の間だけ記憶するための記憶装置であり、制御回路1103より送られる制御信号Ttryに従って通常Id1～Idnの内容を記憶する。記憶された内容はId1～Idnとして出力され、変調信号発生器1107に入力される。

【0138】変調信号発生器1107は、前記画像データId1～Idnの各々に応じて表面伝導型電子放出素子の各々を適切に駆動変調するための信号源で、その出力信号は端子Dey1～Deynを通じて表示パネル1101内の表面伝導型電子放出素子に印加される。

【0139】前述のように、本発明に開わる電子放出素子は、放出電流Ieに対して以下の基本特性を有している。すなわち、前述のように電子放出には明確な閾値電圧Vthがあり、Vth以上の電圧を印加された時のみ電子放出が生じる。

【0140】また、電子放出閾値以上の電圧に対しては素子への印加電圧の変化に応じて放出電流も変化していく。なお、電子放出素子の材料構成、製造方法を変えることによって、電子放出閾値電圧Vthの値や印加電圧に対する放出電流の変化の特性が変わる場合もあるが、いずれにしても以下のようなことが言える。

【0141】すなわち、本素子パルス状電圧を印加する場合、例えば電子放出閾値以下の電圧を印加しても電子放出は生じないが、電子放出閾値以上の電圧を印加する場合には電子ビームが出力される。その際、第一にはパルスの波高値Vmを変化させることにより、出力電子ビームの強度を制御することが可能である。第二には、パルスの幅Pwを変化させることにより出力される電子ビームの電荷の総量を制御することが可能である。

【0142】従って、入力信号に応じて電子放出素子を変調する方式としては、電圧変調方式、パルス幅変調方式等が挙げられ、電圧変調方式を実施するには変調信号

発生器1107としては一定の長さの電圧バルスを発生するが入力されるデータに応じて適宜バルスの波高値を変調するような電圧変調方式の回路を用いる。

【0143】またバルス幅変調方式を実施するには、変調信号発生器1107としては、一定波高値の電圧バルスを発生するが入力されるデータに応じて適宜電圧バルスの幅を変調するようなバルス幅変調方式の回路を用いるものである。

【0144】以上に説明した一連の動作により、本発明10の画像表示装置は表示パネル1101を用いてテレビジョンの表示を行える。なお、上記説明中に記載してなかったが、シフトレジスタ1104やラインメモリ1105はデジタル信号式のものでもアナログ信号式のものでもいずれでも差し支えなく、要是画像信号のシリアル／パラレル変換や記憶が所定の速度で行われればよい。

【0145】デジタル信号式を用いる場合には、同期信号分離回路1106の出力信号DATAをデジタル信号化する必要があるが、これは1106の出力部にA/D変換器を備えれば可能である。また、これと連関してラインメモリ1105の出力信号がデジタル信号アノログ信号により、変調信号発生器1107に用いられる回路が若干異なるものとなる。

【0146】まず、デジタル信号の場合について述べる。電圧変調方式においては変調信号発生器1107には、例えば良く知られるD/A変換回路を用い、必要に応じて増幅回路などを付け加えればよい。

【0147】また、バルス幅変調方式の場合、変調信号発生器1107は、例えば高速の発振器および発振器の出力する波数を計数する計数器（カウンタ）および計数器の出力値と前記メモリの出力値を比較する比較器（コンペアラー）を組み合せた回路を用いることにより構成できる。必要に応じて比較器の出力するバルス幅変調された変調信号を表面伝導型電子放出素子の駆動電圧まで電圧増幅するための増幅器を付け加えてもよい。

【0148】次に、アナログ信号の場合について述べる。電圧変調方式においては、変調信号発生器1107には、例えば良く知られるオペアンプなどを用いた增幅回路を用いればよく、必要に応じてレベルシフト回路などを付け加えてもよい。またバルス幅変調方式の場合に

40は、例えば良く知られた電圧制御型発振回路（VCO）を用いればよく、必要に応じて表面伝導型電子放出素子の駆動電圧にまで電圧増幅するための増幅器を付け加えてもよい。

【0149】以上のように完成した画像表示装置において、こうして各電子放出素子には、容器外端子Dox1～DoxmおよびDoy1～Doynを通じ、電圧を印加することにより、電子放出させ、高圧端子11vを通じ、メタルバック1108、あるいは透明電極（不図示）に高圧を印加し、電子ビームを加速し、蛍光膜に衝突させ、励起50・発光させることで画像を表示することができる。

【0150】以上述べた構成は、表示等に用いられる好適な画像形成装置を作製する上で必要な概略構成であり、例えば各部材の材料等、詳細な部分は上述の内容に限られるものではなく、画像形成装置の用途に適するよう適宜選択する。また、入力信号例として、NTSC方式を挙げたが、これに限定するものではなく、PAL、SECAM方式などの諸方式でもよく、また、これよりも多數の走査線から成るTV信号（例えばMUSE方式をはじめとする高品位TV）方式でもよい。

【0151】次に、前述のはしご型配置電子源基板およびそれを用いた画像表示装置について図10および図11を用いて説明する。

【0152】図10において、1110は電子源基板、1111は電子放出素子、1112のDx1～Dx10は前記電子放出素子に接続する共通配線である。電子放出素子1111は、基板1110上に、X方向に並列に複数個配置される（これを素子行と呼ぶ）。この素子行を複数個基板上に配置し、はしご型電子源基板となる。各素子行の共通配線間に適宜駆動電圧を印加することで、各素子行を独立に駆動することが可能になる。すなわち、電子ビームを放出させる素子行には、電子放出閾値以上の電圧の電子ビームを、放出させない素子行には電子放出閾値以下の電圧を印加すればよい。また、各素子行間の共通配線Dx2～Dx9を、例えばDx2、Dx3を同一配線とするようにしてもよい。

【0153】図11は、はしご型配置の電子源を備えた画像形成装置の構造を示す図である。1120はグリッド電極、1121は電子が通過するための空孔、1122はDox1、Dox2・・・Doxnなる容器外端子、1123はグリッド電極1120と接続されたG1、G2・・・Gnなる容器外端子、1124は前述のように各素子行間の共通配線を同一配線とした電子源基板である。なお、図7、図10と同一の符号は同一の部材を示す。前述の単純マトリクス配置の画像形成装置（図7）との違いは、電子源基板1110とフェースプレート1086の間にグリッド電極1120を備えていることである。

【0154】基板1110とフェースプレート1086の中間に、グリッド電極1120が設けられている。グリッド電極1120は、表面伝導型電子放出素子から放出された電子ビームを変調することができるもので、はしご型配置の素子行と直交して設けられたストライプ状の電極に電子ビームを通過させるため、各素子に対応して1個ずつ円形の開口1121が設けられている。グリッドの形状や設置位置は必ずしも図11のようなものでなくともよく、開口としてメッシュ状に多数の通過孔を設けることもあり、また例えば表面伝導型電子放出素子の周囲や近傍に設けてもよい。

【0155】容器外端子1122およびグリッド容器外端子1123は、不図示の制御回路と電気的に接続され

ている。

【0156】本画像形成装置では、素子行を1列ずつ順次駆動（走査）していくのと同期してグリッド電極に画像1ライン分の変調信号を同時に印加することにより、各電子ビームの蛍光体への照射を制御し、画像を1ラインずつ表示することができる。

【0157】また、本発明によればテレビジョン放送の表示装置のみならずテレビ会議システム、コンピュータ等の表示装置に適した画像形成装置を提供することができる。さらには感光性ドラム等で構成された光プリンターとしての画像形成装置として用いることができる。

【0158】

【実施例】以下、実施例によって本発明をより詳細に説明する。

【0159】（実施例1）以下に記載のフォトリソグラフィーで、図12に示したような素子電極がマトリクス状に形成された（X配線72とY配線73）基板を用いて、電子放出部形成領域1201に電子放出部を形成して複数の表面伝導型電子放出素子が配列された電子源基板を作製した。なお、X配線とY配線は、交差部において、不図示の絶縁部により電気的に絶縁されている。図13はその表面伝導型電子放出素子の断面構造を示す図である。さらに図2は、本実施例によって作製した表面伝導型電子放出素子の平面図および断面図である。

【0160】フォトリソグラフィーによる基板上への素子電極形成を以下の手順で行った。

【0161】（1）絶縁性基板1として、石英基板を用い、これを有機溶剤によって十分に洗浄した後、その基板1上に一般的な真空蒸着技術、フォトリソグラフィー技術により、Niからなる電極2および3を形成した（図1（a））。この時、素子電極の間隔L1は2μm、電極の幅W1は6000μm、その厚さは1000Åとした。

【0162】（2）次に、有機パラジウム含有溶液（東洋製薬（株）製、c c p-4230）を、波瀬付与装置7として圧電素子を用いたインクジェット噴射装置を用いて、薄膜4の幅W2が3000μmになるように、電極2・3間に体積60μm³の液滴24を1つ（ドット）付与した（図1（b））。なお、本実施例における絶縁性基板1と電極2・3との凹部の容積は1200μm³である。

【0163】（3）次に、300°Cで10分間の加熱処理を行って、酸化パラジウム（PdO）微粒子からなる微粒子膜を形成し、薄膜4とした（図1（c））。なお、ここで述べる微粒子膜とは、前述のように、複数の微粒子が集合した膜であり、その微細構造として、微粒子が個々に分散配置した状態のみならず、微粒子が互いに隣接あるいは重なり合った状態（島状も含む）の膜を指す。

【0164】（4）次に、電極2、3の間に電圧を印加

し、薄膜4を通過処理(通電フォーミング処理)することにより、電子放出部5を形成した(図1(d))。

【0165】こうして作製された電子源基板を用いて、前述したようにフェースプレート1086、支持枠1082、リアプレート1081とで外周器1088を形成し、封止を行って表示パネル、さらには図9に示すようなNTSC方式のテレビ信号に基づきテレビジョン表示を行うための駆動回路を有する画像形成装置を作製した。

【0166】その結果、上記の本実施例の製造方法により作製した電子放出素子ならびにそれを用いて作製した電子源基板、表示パネルおよび画像形成装置は、何ら問題のない良好な性能を示した。さらに、上記のように、本発明による表面伝導型電子放出素子の製造方法では、液滴を付与して薄膜4を形成することにより、薄膜4のパターン形成を省略することができた。また、1つ(1ドット)の像素のみで形成できることから、溶液の無駄を省くことができた。

【0167】(実施例2) 素子電極幅(W1)を600μm、素子電極間隔(L1)を2μm、素子電極の厚さを1000Åに形成したはしご状に配線された素子電極を有する基板(図13)を用い、実施例1と同様な方法で表面伝導型電子放出素子を作製した。図13中、1301は基板、1302は配線である。

【0168】得られた電子源基板を用いて、実施例1と同様な方法でフェースプレート1086、支持枠1082、リアプレート1081とで外周器1088を形成し、封止を行って、表示パネル、さらには図9に示すようなNTSC方式のテレビ信号に基づき、テレビジョン表示を行うための駆動回路を有する画像形成装置を作製した。その結果、実施例1と同様な効果を得ることができた。

【0169】(実施例3) マトリクス状に配線された素子電極を前述したような方法で形成した基板(図12)を用い、前述のバブルジェット方式のインクジェット噴射装置を用い、実施例1と同様に表面伝導型電子放出素子を作製した。

【0170】得られた電子源基板を用いて、実施例1と同様な方法でフェースプレート1086、支持枠1082、リアプレート1081とで外周器1088を形成し、封止を行って、表示パネル、さらには図9に示すようなNTSC方式のテレビ信号に基づき、テレビジョン表示を行うための駆動回路を有する画像形成装置を作製した。その結果、実施例1と同様な効果を得ることができた。

【0171】(実施例4) はしご状に配線された素子電極を前述したような方法で形成した基板(図13)を用い、バブルジェット方式のインクジェット噴射装置を用い、実施例1と同様に表面伝導型電子放出素子を作製した。

【0172】得られた電子源基板を用いて、実施例1と同様な方法でフェースプレート1086、支持枠1082、リアプレート1081とで外周器1088を形成し、封止を行って、表示パネル、さらには図9に示すようなNTSC方式のテレビ信号に基づき、テレビジョン表示を行うための駆動回路を有する画像形成装置を作製した。その結果、実施例1と同様な効果を得ることができた。

【0173】(実施例5) 薄膜4を形成する溶液に酢酸Pdの0.05wt%水溶液を用いる以外は、実施例1と同様にして表面伝導型電子放出素子を形成した。その結果、使用した溶液が異なるにもかかわらず、実施例1と同様の良好な素子を形成することができた。

【0174】得られた電子源基板を用いて、実施例1と同様な方法でフェースプレート1086、支持枠1082、リアプレート1081とで外周器1088を形成し、封止を行って、表示パネル、さらには図9に示すようなNTSC方式のテレビ信号に基づき、テレビジョン表示を行うための駆動回路を有する画像形成装置を作製した。その結果、実施例1と同様な効果を得ることができた。

【0175】(実施例6) 液滴量を300μm³とし、液滴を2つ(2ドット)付与した以外は、実施例1と同様にして表面伝導型電子放出素子を作製した。その結果、実施例1と同様の良好な素子を形成することができたことから、所定の液滴量を付与すれば、所望の薄膜を形成することができることが明らかになった。

【0176】得られた電子源基板を用いて、実施例1と同様な方法でフェースプレート1086、支持枠1082、リアプレート1081とで外周器1088を形成し、封止を行って、表示パネル、さらには図9に示すようなNTSC方式のテレビ信号に基づき、テレビジョン表示を行うための駆動回路を有する画像形成装置を作製した。その結果、実施例1と同様な効果を得ることができた。

【0177】(実施例7) 液滴量を2000μm³とした以外は、実施例1と同様に表面伝導型電子放出素子を作製した。

【0178】その結果、図3に示したように、電極2・3の幅より薄膜4の幅が広がったが、電子放出特性には問題のない電子放出素子を得ることができた。

【0179】このようにして得られた電子源基板を用いて、実施例1と同様な方法でフェースプレート1086、支持枠1082、リアプレート1081とで外周器1088を形成し、封止を行って、表示パネル、さらには図9に示すようなNTSC方式のテレビ信号に基づき、テレビジョン表示を行うための駆動回路を有する画像形成装置を作製した。その結果、実施例1と同様な効果を得ることができた。

50 【0180】しかしながら、電子放出部5の長さが素子

電極の長さを上回った分だけ放出部形成にバラツキを生じたためか、面質としては実施例1～6のものの方が本実施例のものより優れていた。

【0181】(実施例8) 図14に示した装置を用いて電子放出素子を作製した。被滴付与の工程は図15のフローチャートに従った。これらの図を参照しながら説明する。

【0182】これらの図において、1は絶縁性基板、2および3は電極、24は被滴、7はインクジェット噴射装置、8は発光手段、9は受光手段、10はステージ、11はコントローラを示す。

【0183】本例における製造工程は以下の通りである。

【0184】(1) 電極形成工程

絶縁性基板1として青板ガラスを用い、有機溶剤により十分に洗浄した後、真空成膜技術、フォトリソグラフィー技術を用いて、Niからなる素子電極2、3を形成した。この時、素子電極の間隔は1.0μmとし、素子電極の幅は5.00μm、その厚さは1.000Åとした。

【0185】(2) 位置合わせ工程
インクジェット噴射装置7として、気泡により液体を吐出させるインクジェット噴射記録ヘッドを用い、受光手段9に光を電気信号として検出する光センサを併設した。素子電極2および3が設けられた絶縁性基板1をステージ10に固定し、絶縁性基板1の裏面より、発光手段8に発光ダイオードを用いて光を照射した。次いで、ステージ10をコントローラ11により搬送し、素子電極2・3間に通り通過して来る光を受光手段9により受光し、素子電極2・3間にインクジェットとの位置合わせを行った。

【0186】(3) 被滴付与工程

薄膜(微粒子膜)4の材料となる有機パラジウム(奥野製薬(株)、c c p-4-230)を含有する溶液を用い、インクジェット7によって素子電極2・3間に被滴24を付与した。

【0187】(4) 被滴検出工程

位置合わせ工程と同様の方法で、被滴24が付与されているか否かを検出した。

【0188】本例では、所定の位置に被滴24が形成されていたが、被滴24が素子電極2・3間に付与されていない場合は、再度被滴付与工程を行い、被滴検出工程によって被滴24が付与されたことを検出・確認するまで繰返し行うことで、薄膜4の塗布形成時の欠陥を減少させることができる。

【0189】(5) 加熱処理工程

被滴24が形成された絶縁性基板1に300℃で10分間の加熱処理を行って、酰化パラジウム(PdO)微粒子(平均粒径7.0Å)からなる微粒子膜を形成し、薄膜4とした。その薄膜の径は1.00μmで、素子電極2および3のほぼ中央部に形成した。また、膜厚は1.00

A. シート抵抗値は $5 \times 10^4 \Omega/\square$ であった。

【0190】なお、ここで述べる微粒子膜とは、前述のように、複数の微粒子が集合した膜であり、その微細構造として、微粒子が個々に分散配置した状態のみならず、微粒子が互いに隣接あるいは重なり合った状態(島状も含む)の膜を指し、その粒径とは、前記状態で粒子形状が認識可能な状態についての径を指す。

【0191】このようにして作製した表面伝導型電子放出素子を通電処理したところ、良好な素子特性を持った10素子が得られた。

【0192】(実施例9) 図16に、本例に用いた製造装置による被滴付与工程を示す。

【0193】本例においては、実施例8と同様にして電極を形成した。次に、併設されたインクジェット7と受光手段9を移動させる制御手段12を設け、ステージ10に固定された絶縁性基板1を移動・搬送せずインクジェット7および受光手段9を移動・搬送する以外は、実施例8と同様にして位置合わせを行った。そして、それ以下の被滴付与工程、被滴検出工程、加熱処理工程は実施例8と同様にして、表面伝導型電子放出素子を得た。本例における発光手段8には、受光手段9と同期して移動する機構(不図示)が設けられている。

【0194】このようにして作製した表面伝導型電子放出素子も、実施例8同様の良好な素子特性を示した。

【0195】(実施例10) 図17に、本例に用いた製造装置による被滴付与工程を示す。

【0196】本例においては、実施例8と同様にして電極を形成した。次に、発光手段をインクジェット7と受光手段9とともに併設し、発光手段8から照射された光の反30射光により素子電極2・3間を検出する以外は実施例8と同様にして位置合わせを行った。そして、それ以下の被滴付与工程、被滴検出工程、加熱処理工程は実施例8と同様にして、表面伝導型電子放出素子を得た。

【0197】このようにして作製した表面伝導型電子放出素子も、実施例8同様の良好な素子特性を示した。

【0198】(実施例11) 本例では、図21に示す電子源基板を用いた電子線発生装置を作製した。

【0199】まず、実施例8と同様の製造方法で、複数の電子放出素子を絶縁性基板1の上に形成した。次いで、絶縁性基板1の上方に電子通路14を有するグリッド(変調電極)13を素子電極2・3と直交する方向に配置し、電子線発生装置とした。

【0200】以上のように作製した電子源を動作させたところ、グリッド13の情報信号に応じて電子放出素子から放出された電子線のオン-オフ制御、電子線の電子量を連続的に変化させ得たばかりか、各々の電子放出素子から放出された電子線の電子量のバラツキの極めて小さい電子線発生装置を得ることができた。

【0201】(実施例12) 実施例11と同様の方法で50複数の電子放出素子を作製した基板を用いて、図11に

示したグリッドを有する画像形成装置を形成した。その結果、何ら問題のない良好な性能を示す画像形成装置が得られた。

【0202】(実施例13) 実施例1と同様の方法で複数の電子放出素子を作製した基板を用いて、図7に示した画像形成装置を形成了。その結果、何ら問題のない良好な性能を示す画像形成装置が得られた。

【0203】(実施例14) 次に、図22に示すように、本発明のインクジェット法による表面伝導型電子放出素子を 10×10 マトリクス配線電極基板上に形成した。図22において、140は表面伝導型電子放出素子、141および142は配線である。各ユニットセルの拡大図を図1(a)に示す。各ユニットセルは、直交する配線電極241、242と各配線電極より引き出される相対する素子電極23によって構成されている。配線電極241、242は印刷法によって形成され、交差部において不図示の絶縁部材により電気的に絶縁されている。相対する素子電極23は蒸着膜であり、フォトリソグラフィー技術によってマニピュレーションされる。素子電極間ギャップの幅は、約10μm、ギャップ長は500μm、膜厚は30nmである。本発明によるインクジェット法によって電極間ギャップ中央に有機パラジウム含有溶液(Pd濃度0.5wt%)をインクを複数回吐出し、液滴7を形成した後、乾燥、焼成(350°C、30分)を経てPd微粒子によって構成される膜厚20nm、径300μmの円形の導電性薄膜が形成される。

【0204】図23は、インクジェット法による薄膜形成における吐出制御システムの概略ブロック図である。1は各ユニットセルにおける基板、2および3は相対する素子電極である。1501はインクジェット噴射装置の吐出ノズル、1502は液滴の情報検出光学系である。1503は吐出ノズル、インクタンク、供給系によって構成されるインクジェットカートリッジと検出光学系を搭載する変位制御機構であり、マトリクス配線電極基板上のユニットセル間の搬送を行う粗動機構と、ユニットセル内の水平位置微調整および基板と吐出ノズル間距離の調整を行う微動機構によって構成される。本実施例では、インクジェット噴射装置として圧電素子によるピエゾジエット方式の装置を行い、検出光学系としては前述の垂直反射型のものを用いた。

【0205】以下、本例における液滴情報の検出および検出情報に基づく吐出制御の方法について詳細に説明する。

【0206】本例においては、液滴量の制御を吐出回数によって行い、1回当たりの吐出量は一定量に固定される場合について説明する。ピエゾ式インクジェット装置では、インクを押し出すビエゾ素子に給電される電圧パルスのパルス高、パルス幅によって1回当たりの吐出量が決定される。本例では、吐出ノズルの1回当たりの吐

出量が10ngとなるように駆動条件を選択し、100ngの液滴を10回の吐出によって形成することを標準吐出条件に設定している。

【0207】変位制御機構を予め設定された座標情報を従って駆動し、吐出ノズル先端をユニット内の素子電極ギャップ中央上5mmの位置にセットする。予め決められた駆動条件に従って吐出を開始すると同時に、検出光学系によって素子電極間ギャップ中央における液滴情報を検出が開始される。

【0208】図24に垂直反射型検出光学系の詳細図を示す。半導体レーザー161より射出する直線偏光光は、ミラー1-2で反射されビームスプリッターレンズ1-3、1/4板1-74、集光レンズ1-65を通して液滴に垂直に入射する。液滴を透過した光線は、基板表面において一部反射されて戻り光となり、再び液滴を透過して1/4板1-64に再入射する。戻り光は、1/4板1-64を2回通過するために、入射光線に対して90°回転した直線偏光となり、ビームスプリッターレンズ1-63において90°進路を曲げられてフォトダイオード等の光検出器1-66に射入する。戻り光の強度は液滴内を2回通過する過程で起こる吸収、散乱によって変調を受けるため、反射光強度を検出することによって液滴の厚みを検知できる。

【0209】フォトダイオード出力は、光学情報検出回路1504において増幅され基準信号回路1505に送られる。基準信号回路1505では基準値との差分信号が形成される。基準値は焼成後の膜厚が20nmとなるような液滴の厚みに相当する反射光強度が予め実験的に求められ、設定されている。反射光強度は液滴厚みが大きくなるに連れて減少するため、(検出信号+基準信号)で定義される差分出力は、液滴厚みが基準値に近づくに連れて最適値でゼロとなり、最適値を超えるとマイナス極性に転じる。基準信号比較回路1505から出力された差分出力は吐出条件補正回路1506に送られる。吐出条件補正回路1506では差分出力がプラス極性の場合H1レベル信号が、マイナス極性の場合LOWレベル信号が送出され、吐出条件制御回路1507に送られる。吐出条件制御回路1507では、吐出信号補正回路1506からのレベル信号がH1の間、固定条件の40吐出を一定間隔で継続して行い、レベル信号LOWになった時点で吐出を終了する。

【0210】液滴形成後、 10×10 マトリクス配線電極基板を350°C、30分の条件で焼成したところ、液滴はPd微粒子による薄膜となった。素子電極間の抵抗を測定したところ、異常な吐出回数を示したセルにおいても3kΩ程度の正常な抵抗値を示した。次に、素子電極間に順次電圧を印加し、薄膜を通電処理(フォーミング処理)することにより、各セルの素子電極ギャップ中央部に電子放出部を形成した。

【0211】こうして形成された電子源基板を、前述し

た図5の電子放出特性評価装置に取付け、電子放出させたところ、100個の全素子の電子放出特性は均一であった。

【0212】さらに、素子数を増やした大面積基板（例えは、図12）を用いて、 10×10 基板と同様に図23の吐出制御システム、ビエゾジェット式のインクジェット噴射装置、垂直反射型の検出光学系等により、各セルにわたって液滴を塗布した。これを 350°C 、30分の条件で焼成し、PdOの微粒子薄膜を全セルに形成された。素子電極間の抵抗を測定したところ、異常な吐出回数を示したセルにおいても、 $3 k\Omega$ 程度の正常な抵抗値を示した。次に、素子電極間に順次電圧を印加し、薄膜を通電処理（フォーミング処理）することにより、各セルの素子電極ギャップ中央部に電子放出部を形成した。

【0213】こうして形成された電子源基板を用いて、図7を用いて前述したようにフェースプレート1086、支持枠1082、リアプレート1081とで外側枠1088を形成し、封止を行なって、表示パネル、さらには図9に示すようなNTSC方式のテレビ信号に基づきテレビジョン表示を行なうための駆動回路を有する画像形成装置を作成した。そうしたところ、異常な吐出回数を示したセルを含めて全素子が電子放出し、特性は均一であった。これにより、輝度バラツキのない良好なTV画像を形成することができた。

【0214】以上述べてきたように、吐出ノズルの異常、基板濡れ性の異常、着弾位置異常などの原因によつて異常な吐出回数を示したセルにおいても素子電極ギャップ内では均一な組成モロジー、厚膜を有する薄膜が形成されていることが確認され、本発明による吐出制御法の有効性が示された。

【0215】（実施例14）実施例14では、制御対象となる吐出パラメーターが吐出回数の場合について述べたが、本実施例ではその他の吐出パラメーターとして吐出駆動バ尔斯高またはバ尔斯幅を制御対象とする場合について示す。前述のようにビエゾ式インクジェット装置では、インクを押し出すエゾ素子に給電される電圧バ尔斯のバ尔斯高、バ尔斯幅によって1回当たりの吐出量が決定されるため、液滴情報に基づいてバ尔斯高、バ尔斯幅のうちの少なくとも一つを制御することによって液滴量を補正することが可能である。本実施例では吐出回数を2回に固定し、吐出ノズルの1回あたりの標準吐出量が 50ng となるような駆動条件で吐出を2回行ない、 100ng の液滴を形成することを標準吐出条件に設定している。

【0216】以下、本例における液滴情報の検出及び検出情報に基づく吐出制御の方法について述べる。制御方法以外の実施形態は実施例14と同様である。検出光学系としては実施例14と同様な垂直反射型を用いる。変位制御機構を予め設定された座標情報を従つて駆動し、

吐出ノズルの先端をユニット内の素子電極間ギャップ中心上 5mm の位置にセットする。予め決められた 50ng 液滴相当の駆動条件に従つて1回目の吐出を行なった後、検出光学系によって素子電極間ギャップ中央における液滴情報の検出が行なわれる。

【0217】1回目の吐出による液滴情報のフォトダイオード出力は光学情報検出回路において増幅され基準信号比較回路に送られる。基準信号比較回路は基準値との差分信号が形成される。基準値は2回の吐出による液滴

10 の成後の膜厚が 20nm になる条件における1回目吐出後の液滴の厚みに相当する反射光強度が求め実験的に求められて設定されている。反射光強度は液滴厚みが大きくなるにつれて減少するため、（検出信号+基準信号）で定義される差分出力は液滴厚みの逆正値からのズレ量と1対1の相関を持っている。基準信号比較回路から出力された差分出力は吐出条件補正回路に送られる。吐出条件補正回路には差分出力とズレ量との相関関係に基づく補正信号データが予め実験的に求められ記憶されており、このデータに従つて差分出力に相当する補正信号が20 出力され、吐出条件補正回路に送られる。吐出条件制御回路では吐出信号補正回路からの補正信号に基づいて駆動条件のバ尔斯高またはバ尔斯幅の補正を行ない2回目の吐出を行なう。

【0218】液滴形成後 10×10 マトリクス記録電極基板を 350°C 、20分の条件で焼成したところ液滴はPdO微粒子よりも薄膜となつた。素子電極間の抵抗を測定したところ1回目の吐出で異常を示したセルにおいても $3 k\Omega$ 程度の正常な抵抗値を示した。次に素子電極間に順次電圧を印加し、薄膜を通電処理（フォーミング処理）することにより各セルの素子電極ギャップ中央部に電子放出部が形成された。

【0219】こうして形成された電子源基板を、前述した図5の電子放出特性評価装置に取付け、電子放出させたところ、100個の全素子の電子放出特性は均一であった。

【0220】さらに、素子数を増やした大面積基板（例えは、図12）を用いて、 10×10 基板と同様に図40の吐出制御方法で、ビエゾジェット式のインクジェット噴射装置等により、各セルにわたって液滴を塗布した。これを 350°C 、30分の条件で焼成し、PdOの微粒子薄膜を全セルに形成された。素子電極間の抵抗を測定したところ、1回目の吐出で異常を示したセルにおいても、 $3 k\Omega$ 程度の正常な抵抗値を示した。次に、素子電極間に順次電圧を印加し、薄膜を通電処理（フォーミング処理）することにより、各セルの素子電極ギャップ中央部に電子放出部を形成した。

【0221】こうして形成された電子源基板を用いて、図7を用いて前述したようにフェースプレート1086、支持枠1082、リアプレート1081とで外側枠1088を形成し、封止を行ない表示パネル、さらには

図9に示すようなNTSC方式のテレビ信号に基づきテレビジョン表示を行うための駆動回路を有する画像形成装置を作成した。そうしたところ、異常な吐出回数を示したセルを含め全ての素子が電子放出し、特性は均一であった。これにより、輝度バラツキのない良好なTV画像を形成することができた。

【0222】以上述べたように、吐出ノズルの異常、基板濡れ性の異常、着弾位置異常などの原因によつて1回目の吐出で異常を示したセルにおいても素子電極ギャップ内では均一な組成、モロジー、膜厚を有する薄膜が形成されていることが確認された。

【0223】(実施例1) 実施例1.4および1.5では液滴情報の検出手順として光学的検出手用を用いたが、本実施例では電気的検出手用を用いる場合について述べる。検出手方法以外の実施形態は実施例7と同様である。

【0224】図25によって本発明のインクジェット法による薄膜形成法について更に詳しく説明する。図中、1は各ユニットセルにおける基板、2および3は相対向する素子電極である。1.010はインクジェット噴射装置の吐出ノズル、1.008は液滴の電気物性測定系である。1.030は吐出ノズル、インクタンク、供給系によって構成されるインクジェットカートリッジを搭載する変位制御機構であり、マトリックス配線電極基板上のユニットセル間の搬送を行なう粗動機構と、ユニットセル内の水平位置微調整および基板と吐出ノズル間距離の調整を行なう微動機構によって構成される。本実施例では、インクジェット噴射装置としてバブルジェット方式の装置を用いる。

【0225】以下本発明による液滴情報の検出手および検出手情報に基づく吐出制御の方法について述べる。本実施例においては、実施例1.4と同様、液滴量の制御を吐出回数によって行ない、1回あたりの吐出量は一定量に固定される場合について説明する。本実施例では、1.00ngの液滴を10回の吐出によって形成することを標準吐出条件に設定している。

【0226】変位制御機構1.030を予め設定された座標情報を従って駆動し、吐出ノズル先端をユニット内の素子電極2・3間にギャップ中心上5mmの位置にセットする。予め決められた駆動条件に従って吐出を開始すると同時に、電気物性測定系1.008によって素子電極間ギャップ内の液滴情報を検出手が開始される。

【0227】電気物性測定系1.008では素子電極2・3間に一定の検出電圧を印加し、その応答電流を測定することによって液滴の電気的な物性を検知する。検出される電気物性としては液滴の抵抗、液滴の容量等があり、これらの物性値と液滴との相關に基づいて素子電極間ギャップ内の液滴量を推測することができる。検出電圧はDC電圧でもよいが、溶液内のガス発生等の化学反応を抑制するために、1.00Hz～1.00kHzの比較的高い周波数、1.0mV～5.00mV程度の比較

的微小な振幅のAC電圧が好適である。AC電圧を位相検波し印加電圧と位相の電流成分と90°位相の遅れた電流成分を検出することによって、液滴の抵抗および電気容量を同時に検知することができる。本実施例では液滴抵抗のみを検知する場合について示す。インクは溶被抵抗の測定が可能であればとくに規定されないが、本実施例ではイオン導電性に優れる水溶性液の高分子ラジカル含有水溶液(Pd濃度0.5wt%)を用いる。

【0228】電気物性測定系1.008の応答電流出力は電気情報検出手回路1.009において電流電圧変換、增幅、ロッキングアンプによる位相検波、演算というプロセスを経て抵抗値が印出され、基準信号比較回路1.810に送られる。基準信号比較回路1.810では基準値との差分信号が形成される。基準値は焼成後の膜厚が2.0nmになるような液滴の厚みに相当する抵抗値が予め実験的に求められ設定されている。有機ラジカル含有水溶液(Pd濃度0.5wt%)による液滴の基準値は7.0kΩである。抵抗値はギャップ内の液滴量が多くなるにつれて減少するため、(検出信号-基準信号)で定義される差分出力は液滴厚みが過正値に近づくにつれて減少し最適値で0となり、最適値を超えるとマイナス極性に転じる。基準信号比較回路1.810から出力された差分出力は吐出条件補正回路1.811に送られる。吐出条件補正回路1.811では差分出力がプラス極性の場合H1レベル信号が、マイナス極性の場合にLOWレベル信号が出力され、吐出条件制御回路1.807に送られる。吐出条件制御回路1.807では吐出信号補正回路1.811からのレベル信号がHIの間、固定条件の吐出を一定間隔で継続して行ない、レベル信号がLOWになった時点で吐出を終了する。

【0229】こうして形成された電子顕微鏡を、前述した図5の電子放出特性評価装置に取付け、電子放出させたところ、1.00個の全素子の電子放出特性は均一であった。

【0230】さらに、素子数を増やした大面積基板(例えば、図12)を用いて、1.0×1.0基板と同様に図23の吐出制御システム、ピエゾジェット式のインクジェット噴射装置、垂直反射型の検出手光学系等により、各セルにわたって液滴を塗布した。これを350℃、30分の条件で焼成し、PdOの微粒子薄膜を全セルに形成できた。素子電極間の抵抗を測定したところ、異常な吐出回数を示したセルにおいても、3kΩ程度の正常な抵抗値を示した。次に、素子電極間に順次電圧を印加し、薄膜を電通処理(フォーミング処理)することにより、各セルの素子電極ギャップ中央部に電子放出部を形成した。

【0231】以上述べてきたように、吐出ノズルの異常、基板濡れ性の異常、着弾位置異常などの原因によつて異常な吐出回数を示したセルにおいても素子電極ギャップ内では均一な組成、モロジー、膜厚を有する薄膜

が形成されていることが確認され、本発明による吐出制御法の有効性が示された。

【0232】(実施例17) 図26は電気的検出と光学的検出の2系統液滴情報検出系による吐出条件制御のブロック図である。詳しい説明は省略するが、2系統情報の相關に基づいて誤差補完するようなアルゴリズムによって、より精度の高いハイブリッド情報を用いて吐出制御が可能となる。

【0233】(実施例18) 本実施例では除去ノズルを備える液滴量補正システムについて説明する。除去ノズルを備える液滴量補正是以下の2つの方式に大別される。液滴情報検出の結果ギャップの液滴量が最適値よりも多いと判断される場合に、液滴の一部を除去して最適値に戻す方式および液滴を全て除去した後再吐出を行なう方式である。除去方式としては液滴を吸引するかまたは窒素等ガスを噴射し液滴をギャップ内から飛散させる方式がある。本実施例では吸引式除去ノズルを備え、液滴を全て除去する方式について説明する。

【0234】以下図27によって、本発明による液滴情報の検出および検出情報に基づく吐出制御の方法について述べる。除去ノズル以外の実施形態は実施例14と同様である。除去専用ノズル20012は専用の位置制御機構を設ける必要のないように吐出ノズル、検出光学系と同一の位置制御機構2003に搭載されている。本実施例では吐出ノズル20010の1回あたりの標準吐出量が100ngとなるような駆動条件で吐出を行ない、100ngの液滴を1回の吐出で形成することを標準吐出条件に設定している。

【0235】変位制御機構2103を予め設定された座標情報を従って駆動し、吐出ノズル2001の先端をユニット内の素子電極2・3間ギャップ中心上5mmの位置にセットする。予め決められた駆動条件に従って吐出を行なった後、検出光学系2002によって素子電極間ギャップ中央における液滴情報を検出が行なわれる。

【0236】フォトダイオード出力は光学情報検出回路2004において増幅され、基準信号比較回路2005に送られる。基準信号比較回路2005では基準値との差分信号が形成される。基準値は液滴の焼成後の膜厚が20nmになる液滴の厚みに相当する反射光強度が予め実験的に求められ設定されている。反射光強度は液滴厚みが大きくなるにつれて減少するため、(検出信号-基準信号)で定義される差分出力は液滴厚みの適正値からのズレ量と1対1の相関を持つており、液滴厚みが適正値に近づくにつれて減少し最適値0となり、最適値を超えるとマイナス値に転じる。基準信号比較回路2005から出力された差分出力は吐出条件補正回路2006に送られる。吐出条件補正回路2006では差分出力がプラス極性の場合LOWレベル信号が、マイナス極性の場合H1レベル信号が高出力され除去ノズル制御回路2013に送られる。同時に吐出条件補正回路2006

では、差分出力とズレ量との相関関係に基づく補正信号データに従い差分出力に相当する補正信号が高出力され、吐出条件制御回路2007に送られる。H1レベル信号の場合には除去ノズル制御回路2013は作動せず、吐出条件制御回路2007において補正信号に基づいて駆動条件のバース高またはパルス幅が決まれば補正吐出が行なわれる。LOWレベル信号の場合には、まず除去ノズル制御回路2013が作動し除去ノズル2012によって液滴が全て吸引除去された後に、吐出条件制御回路2013において補正吐出が行なわれる。

【0237】以上のようにして $10 \times 10 \text{ マトリクス配線電極板上}$ の 100 ユニットセル について液滴形成を行なったところ、殆どのセルで1回の吐出後に液滴厚みは適正値を示したが、数%のセルでは適正値を越える液滴厚みを示した。図28(a)は吐出異常に1回の吐出量が非常に多くなり液滴厚みが適正値を超えた場合であり、除去ノズルによって液滴を全て吸引した後、補正された条件で再吐出が行われた結果蓮座状の液滴が得られた例である。図28(b)は基準の繰り上がり異常に低いセルで、吐出量は適正であったが液滴厚みが異常に大きくなつた場合であり、図28(a)と同様の手続きによりギャップ中央での液滴厚みは正常値を示した。

【0238】液滴形成後 $10 \times 10 \text{ マトリクス配線電極板上}$ を 350°C 、30分の条件で焼成したところ液滴は PdO 微粒子よりなる薄膜となつた。素子電極間に抵抗を測定したところ1回目の吐出で異常を示したセルにおいても $3k\Omega$ 程度の正常な抵抗値を示した。次に素子電極間に順次電圧を印加し、薄膜を通過電処理(フォーミング処理)することにより各セルの素子電極ギャップ中央部に電子放出部が形成された。

【0239】こうして形成された電子源基板を、前述した図5の電子放出特性評価装置に取付け、電子放出させたところ、100個の全素子の電子放出特性は均一であった。

【0240】さらに、素子数を増やした大面积基板(例えば、図12)を用いて、 10×10 基板と同様に図27の除去ノズルを備えた吐出制御システム、ビエゾジェットのインクジェット噴射装置等により、各セルにわたって液滴を散布した。これを 350°C 、30分の条件で焼成し、 PdO の微粒子薄膜を全セルに形成できた。素子電極間に抵抗を測定したところ、異常な吐出回数を示したセルにおいても、 $3k\Omega$ 程度の正常な抵抗値を示した。次に、素子電極間に順次電圧を印加し、薄膜を通過電処理(フォーミング処理)することにより、各セルの素子電極ギャップ中央部に電子放出部が形成された。

【0241】こうして形成された電子源基板を用いて、図7を用いて前述したようにフェースプレート1086、支持枠1082、アラブレート1081と外開器1088を形成し、封止を行ない表示パネル、さらには図9に示すようなNTSC方式のテレビ信号に基づきテ

レビジョン表示を行なうための駆動回路を有する画像形成装置を作成した。そうしたところ、異常な吐出回数を示したセルを含め全ての素子が電子放出し、特性は均一であった。これにより、再度バラツキのない良好なTV画像を形成することができた。

【0242】以上述べたように、吐出ノズルの異常、基板濡れ性の異常、着弾位置異常などの原因によって1回目の吐出で異常を示したセルにおいても素子電極ギャップ内では均一な組成、モロジー、膜厚を有する薄膜が形成されていることが確認された。

【0243】(実施例19) 本実施例では、液滴情報の検出情報に基づく吐出条件制御に加えて、液滴の着弾位置情報を光学的に検出する手段と、検出される位置情報をに基づいて吐出位置合わせ、位置微調整等の位置制御を行う手段とを備えるシステムについて説明する。

【0244】図29は本発明による液滴情報の検出および検出情報に基づく位置制御および吐出制御システムのプロック図である。光学検出系以外の実施形態は実施例14と同様である。吐出制御に関しては他の実施例で詳しく述べているため本実施例では特に位置制御についてのみ説明する。

【0245】本実施例で用いられる検出光学系2202は実施例14と同様の垂直反射型だが、液滴情報検出用ビームの他に位置検出用サブビームを備えたマルチビーム方式であり、コンバクトディスクのトラッキング用検出光学系と共通的方式である。半導体レーザーより射出するビームは回折格子によって一列の3ビームに分かれ異なる3つの位置で反射、変調された後、分割センサーにおいて各々の反射光強度の相間が検出されることによって位置情報を得ることができる特徴がある。

【0246】位置の検出および制御は、吐出前に電極パターンまたは専用に設けたアライメントマークに対して行なわれてもよい。吐出後の液滴に対して行なわれてもよい。液滴の着弾位置検出法に関しては、吐出後の3ビーム間の反射光強度を比較してもよいし、吐出前での強度変化を比較してもよい。位置検出と吐出のタイミングについては、まず予備吐出を行ない吐出位置の補正をした後に本吐出を行うようにしてもらとい、吐出の度に位置検出、補正を行ってもらよい。

【0247】図30は液滴に対する位置制御、吐出制御の様子を示している。1回目の吐出後素子電極2、3間ギャップに直交する方向に配置された3ビーム列の反射光強度が分割センサーによって検出・比較され、液滴着弾位置の素子電極ギャップ中央からのズレ量が検出される。ズレ量を補正信号として変位制御機構2203(図29)による位置の補正が行われ、2回目以降の吐出が適正位置に行われギャップ中央に適正な厚みの液滴が形成された。

【0248】(実施例20) 以上述べてきた実施例14～19では吐出位置は固定され、1つの液滴によって電

子放出部薄膜を形成する素子構成であるが、何らこの素子構成に限定されるものではなく様々なバリエーションが考えられる。図31に他の素子構成の例をいくつか示す。図31(a)は実施例14～19の実施例における素子構成、(b)は吐出位置を変化させ素子電極ギャップ内にインクジェット法による液滴を構成する場合、(c)は電子放出部薄膜のみではなく素子電極の一部もインクジェット法による液滴配列によって構成する場合を示す。いずれの場合も各技術に対応して実施例14～19

10と同様の吐出制御、位置制御を行うことが可能である。

【0249】また実施例14～19の実施例においては配線電極としてマトリクス状配線構成について述べたが、本発明は何らこれに限定されるものでなく、例えばはしご配線型等、様々な配線構成に適用可能なことは前述の通りである。

【0250】(実施例21) マトリクス状に配線され、素子電極を前述したように形成した基板を用い、表面伝導型電子放出素子を作製した。その手順を以下に説明する。

20 20【0251】図33(a)は本実施例によって作製した表面伝導型電子放出素子の平面図である。図32および図33を参照して説明する。

(1) 絶縁基板として石英基板を用い、これを有機溶剤等により充分に洗浄後、120°Cで乾燥させた。

(2) 前述の洗浄工程を施した基板上に、有機ペラジウム含有溶液(奥野製薬(株)c c p -4230)を、液滴付与装置として圧電素子を用いたインクジェット噴射装置を用いて、液滴付与を行い、液滴の直径を求めたところ(図32(a))、1ドットあたりの直径 ϕ は50μmであった。

(3) その基板1上に一般的な真空成膜技術およびフォトリソグラフィ技術を用いてNiからなる素子電極2および3を形成した、そのとき素子電極のギャップ間隔 L は2000μm、電極の幅W1は600μm、その厚さdは1000Åとした。

(4) 次に前述の有機ペラジウム含有溶液(奥野製薬(株)c c p -4230)を、液滴付与装置として圧電素子を用いたインクジェット噴射装置を用い、ドット径が50μmになるように調整して、素子電極2および3の間に図33(a)のように液滴付与を行った。200μmのギャップに対し、前記の(2)で説明した直径 ϕ 50μmのドットを、隣り合うドット同士の中心間距離P1を $\phi/2$ すなわち25μmとすることで1つのドットがその左右のドットと25μmずつつながるようになしながら、11個付与した。液滴付与後、重なり合った部分は広がって、長さ方向のエッジは直線状になつた。つまり、幅W2=50μm、長さT=3000μmの1列のドット列(パッド)を形成した。

(5) 次に300°Cで10分間の加熱処理を行って、酸化ペラジウム(PdO)微粒子からなる微粒子膜を形成

し、薄膜4とした。

(6) 次に電極2・3間に電圧Vを印加し、薄膜4を通電処理(フォーミング処理)することにより、電子放出部5を形成した。

【0252】以上のような方法で作成した電子源基板では、1つのパッドの中で、ドットを重ねて付与することにより、パッドの幅W2が一定となり、長さ方向のずれによる幅W2のばらつきはなかった。さらに、塗布むらが小さく、膜厚分布が狭かつたことから、抵抗のばらつきも小さかった。

【0253】また、PdOからなる微粒子膜のパッドが、電子電極のギャップに対して垂直方向および水平方向のいずれにおいても数十μmの余裕があるため、アライメントが容易になり、位置ずれによる欠陥が減少した。

【0254】なお、液滴付与の順序は、端から順に付与する場合に限らず、1ドットおきに付与してから、その1つおきに形成されたドット間に次の液滴を付与していく等の方法も可能であって、特に順序に制限があるわけではない。

【0255】さらに1ドット当たりの液滴数を2としたところ、膜厚が約2倍となり、抵抗が約半分となった。すなわち、1ドット当たりの液滴数を変えることにより、所望の導電性薄膜抵抗を得ることができることがわかった。

【0256】また1ドット当たりの液滴量を2倍にしたところ、前述の液滴数を2とした場合と同様の結果が得られ、1ドット当たりの液滴量を変えることにより、所望の導電性薄膜抵抗を得ることができることがわかった。

【0257】以上のように、本発明の方法によって、複数個素子を形成した場合の素子間のばらつきを小さくすることができて、製造歩留まりが向上した。また薄膜4のバーニングが省略できることから、コストを抑えることができた。

【0258】こうして作製されたマトリクス配線の電子源基板を用いて、前述のフェースプレート、支持枠、リアプレートとで外縁器を形成し、封止を行い、表示パネル(図7)とさらにはテレビジョン表示を行うための駆動回路を有する両側形成装置(図9)を作製したところ、輝度むらや欠陥が少なかった。

【0259】(実施例22) 素子電極幅W1を600μm、素子電極ギャップ間隔L1を200μm、素子電極の厚さdを1000Åで形成された素子電極がはしご型に配線された基板を用い、実施例21と同様の方法で表面伝導型電子放出素子を作製した。得られた電子源基板を用いて、実施例21と同様な方法でフェースプレート、支持枠、リアプレートとで外縁器を形成し、封止を行い画像形成装置を作製した。その結果、実施例21と同様な効果が得られた。

【0260】(実施例23) 実施例21と同様に、ギャップ間隔L1を200μm、電極の幅W1を600μm、その厚さdを1000Åの素子電極を形成した基板に、同様のインクジェット噴射装置を用いて有機バラジウム含有溶液を付与した。但し、パッドの形状を図33

(b) のように付与した。200μmギャップに対し、実施例21の(2)に説明したようなより直徑(φ)50μmのドットを、隣接ドットの中心間距離P1およびP2をいずれも25μm(φ/2)として右下・上下的

- 10 ドット間に25μmずつ重なるように1列11個づつ、2列付与した。つまり幅W2は75μm、長さT=300μmの長方形形状のパッドを形成した。パッドの形状以外は実施例21と同様に電子放出素子を作製したところ、実施例21と同様な素子間のばらつきの小さい良好な素子が得られた。また、上下方向のドット裂けを2列にすることにより、抵抗が半分になった。すなわち、ドット列数を変えることにより、所望の抵抗を得ることができる。このことから、パッドの幅W2は、素子電極幅W1以下で、求める抵抗値、素子電極の幅およびギャップ幅、アライメント精度により決定することができる。

【0261】(実施例24) 素子電極のギャップ間隔を20μmとした以外は、実施例21と同様の基板に図3(c)のようなパッド形状に液滴付与を行ったところ、実施例21と同様な素子間のばらつきの小さい良好な素子が得られた。さらに素子電極のギャップ間隔が短いため、実施例21、22および23の場合よりギャップに垂直な方向のアライメントが容易であった。また図3(c)のようなパッドでも、同様な効果が得られた。

- 30 【0262】(実施例25) 実施例21～24で用いた压電素子を用いるインクジェット噴射装置に替えて、パルスジェット方式の液滴付与装置を用いたところ、それら実施例21～24の場合と同様の良好な素子および画像形成装置が得られた。

【0263】(実施例26) フォトリソグラフィーによりマトリクス状に配線された素子電極を備えた基板を用い、表面伝導型電子放出素子を形成し、素子電極基板を作製した。図2には、本実施例で作製した表面伝導型電子放出素子の平面図(a)および断面図(b)を示す。以降、表面伝導型電子放出素子について、図2を参照しながら製造工程1～4に従って説明する。

【0264】製造工程1：絶縁性の基板(1)として石英基板を用い、これを有機溶剤により十分に洗浄した。この基板上に真空成膜技術およびフォトリソグラフィー技術により、Niからなる素子電極(2、3)を形成した。このとき、素子電極の間隔(L)を2μm、素子電極の幅(W1)を400μm、素子電極の厚さを100Åとした。

【0265】製造工程2：素子電極(2、3)が形成された基板を純水によって超音波洗浄し、その後、温純水

による引き上げ乾燥を行った。次いで、HMDSを用いて碳化処理を行い（スピナーでHMDSを塗布し、オーブンで200°C、15分間ペークを行い）、基板表面を疎水性とした。この疎水化された基板上の素子電極（2、3）の間をねらって、圧電素子を備えたインクジェット噴射装置を用い、液滴付与装置から酢酸パラジウムの0.5wt%水溶液を1滴（ドット）付与した。このとき、基板上での液滴の形状は、着弾後でも広がることもなく、安定性・再現性ともに良好であった。

【0266】製造工程3：液滴の付与後、300°Cで10分間加熱処理をして、酢酸パラジウム（PdO）の微粒子からなる微粒子膜（導電性薄膜4）を形成した。なお、ここで説明する微粒子膜とは、複数の微粒子が集合した膜であり、その微粒子膜の構造は、微粒子が個々に分散配置した状態のみならず、微粒子が互いに隣接あるいは重なり合った状態（島状も含む。）の膜を指す。このときの薄膜の幅（W2）は、基板上での液滴の形状から1対1で決まるため、前述の液滴の形状の安定性・再現性が良好であったため、薄膜の幅（W2）も一定の値でそろっていた。本発明の製造方法によって、導電性薄膜4のパターン形成の工程を省略できる。

【0267】製造工程4：素子電極（2、3）の間に電圧を印加し、導電性薄膜4を通電処理（フォーミング処理）することにより電子放出部5を形成した。

【0268】以上のようにして作製した表面伝導型電子放出素子を備えたマトリクス配線による電子源基板を用いて、前述の図7のフェースプレート1086と支持枠1082とアブレート1081とで外器1088を形成し、封止を行って表示パネルを作製し、さらにNTSC方式のテレビ信号に基づいてテレビジョン表示を行うための図9に示すような駆動回路を有する画像形成装置を作製した。

【0269】本発明の画像形成装置から得られた画像は、大画面の全領域にわたって均一で良好であった。

【0270】（実施例27）素子電極（2、3）の幅（W1）を6.00μm、素子電極の間隔（L）を2μm、素子電極の厚さを1.000オングストロームとして形成し、はしご状に配線した素子電極を備えた基板（図13）を用い、実施例21と同様な方法で表面伝導型電子放出素子を作製し、電子源基板を形成した。得られた電子源基板を用いて、前述の図11のフェースプレート1086とグリッド電極1120、支持枠1082、アブレート1124とで外器を形成し、封止を行って表示パネルを作製し、さらにNTSC方式のテレビ信号に基づいてテレビジョン表示を行うための図9に示すような駆動回路を有する画像形成装置を作製した。

【0271】そうしたところ、実施例26と同様な効果が得られた。

【0272】（実施例28）フォトリソグラフィーによ

りマトリクス状に配線された素子電極を備えた基板（図3）を用い、バブルジェット方式のインクジェット装置を使用し、実施例26と同様な方法でフェースプレート1086と支持枠1082とアブレート1081とで外器1088を形成し、封止を行って表示パネルを作製し、さらにNTSC方式のテレビ信号に基づいてテレビジョン表示を行うための図9に示すような駆動回路を有する画像形成装置を作製した。

【0273】そうしたところ、実施例26と同様な効果が得られた。

【0274】（実施例29）フォトリソグラフィーによりはしご状に配線された素子電極を備えた基板（図3）を用い、バブルジェット方式のインクジェット装置を使用し、実施例26と同様にして表面伝導型電子放出素子を形成し、電子源基板を作製した。得られた電子源基板を用いて、前述したようにして表示パネルを作製し、さらにNTSC方式のテレビ信号に基づいてテレビジョン表示を行うための図9に示すような駆動回路を有する画像形成装置を作製した。

【0275】そうしたところ、実施例26と同様な効果が得られた。

【0276】（実施例30）フォトリソグラフィーによりマトリクス状に配線された素子電極を備えた基板（図2）を用い、表面伝導型電子放出素子を形成し、電子源基板を作製した。図34には、本実施例で作製した表面伝導型電子放出素子の平面図を示す。以下に、表面伝導型電子放出素子について、製造工程1～4に從って説明する。

【0277】製造工程1：絶縁性の基板（1）として石英基板を用い、これを有機溶剤により十分に洗浄した。この基板上に真空成膜技術およびフォトリソグラフィー技術により、Niからなる素子電極（2、3）を形成した。このとき、素子電極の間隔（L）を2μm、素子電極の幅（W1）を6.00μm、素子電極の厚さを1.000オングストロームとした。

【0278】製造工程2：素子電極（2、3）が形成された基板を純水によって超音波洗浄し、その後、温純水による引き上げ乾燥を行った。次いで、HMDSを用いて碳化処理を行い（スピナーでHMDSを塗布し、オーブンで200°C、15分間ペークを行い）、基板表面を疎水性とした。この疎水化された基板上の素子電極（2、3）の間をねらって、圧電素子を備えたインクジェット噴射装置を用い、液滴付与装置から酢酸パラジウムの0.5wt%水溶液を2滴（2ドット）並べて付与した。このとき、基板上での液滴の形状は、着弾後でも広がることもなく、安定性・再現性とともに良好であった。

【0279】製造工程3：液滴の付与後、300°Cで10分間加熱処理をして、酢酸パラジウム（PdO）の微

粒子からなる微粒子膜(導電性薄膜4)を形成した。なお、ここで説明する微粒子膜とは、複数の微粒子が集合した膜であり、その微粒子膜の構造は、微粒子が個々に分散配置した状態のみならず、微粒子が互いに隣接あるいは重なり合った状態(島状も含む)の膜を指す。このときの薄膜の幅(W2)は、基板上での液滴の形状から1対1で決まるため、前述の液滴の形状の安定性・再現性が良好であったため、薄膜の幅(W2)も一定の値でそろっていた。本発明の製造方法によって、導電性薄膜4のパターン形成の工程を省略できる。

【0280】製造工程4: 素子電極(2, 3)の間に電圧を印加し、導電性薄膜(4)を通電処理(フォーミング処理)することにより電子放出部(5)を形成した。

【0281】以上のようにして作製した表面伝導型電子放出素子を備えた電子源基板を用いて、前述の図7のようにフェースプレート1086と支持棒1082とアリアプレート1081とで外周器1088を形成し、封止を行って表示パネルを作製し、さらにNTSC方式のテレビ信号に基づいてテレビジョン表示を行ったもの図9に示すような駆動回路を有する画像形成装置を作製した。

【0282】そうしたところ、実施例26と同様な効果が得られた。

【0283】(実施例31) フォトリソグラフィーによりマトリクス状に配線された素子電極を備えた基板(図12)を用い、素子電極間に付与する液滴数を1つの導電性薄膜の形成に対して2つとした以外は、実施例26と同様にして表面伝導型電子放出素子を形成し、電子源基板を作製した。液滴の付与工程において、液滴付与装置および液滴付与時の諸条件は実施例26と同様とし、さきに液滴の1滴(1ドット)あたりの液滴量も実施例26の場合と同一とした。このとき形成された導電性薄膜の厚さは、実施例26の場合の2倍であった。このように付与する液滴の液滴量や液滴数によって形成する導電性薄膜の膜厚が制御できる。

【0284】以上のようにして作製した表面伝導型電子放出素子を備えた電子源基板を用いて、実施例26と同様な方法でパネルおよび画像形成装置を作製した。

【0285】そうしたところ、実施例26と同様な効果が得られた。

【0286】(実施例32) 以上、これまで述べてきた全ての電子放出素子の製造手順は、基板上に素子電極(あるいは素子電極および配線電極の両者)を作製した後に液滴を付与し、それを焼成して導電性薄膜を形成するという順序であったが、まず最初に液滴を付与・焼成し導電性薄膜を形成した後に、素子電極(あるいは素子電極および配線電極の両者)を形成しても一向に構わない。この素子電極の形成に先だって、液滴を付与・焼成により導電性薄膜を形成する手法においては、液滴の素子電極への吸い込みを防止することができるため、制御性良く導電性薄膜を形成することができる。この製造手

順による実施例を以下に説明する。

【0287】図35は、単素子の製造方法を示す図である。

【0288】この絶縁性の基板としての石英基板1を用い、これを有機溶剤により十分に洗浄した。この基板上ほぼ中央に圧電素子によるインクジェット噴射装置7より酢酸バラジウムの0.05wt%水溶液24を1滴付与した(図35(a1)、(a2))。(この場合、1滴であるが、所望の膜が得られるよう複数滴でもよい)。

10 【0289】液滴付与後、300°Cで10分間加熱焼成して、酢酸バラジウム(PdO)微粒子のドット状導電性薄膜4を形成した(図35(b1)、(b2))。

【0290】上記のようにドット状の導電性薄膜が形成された基板に真空成膜およびフォトリソグラフィー技術により、N1からなる素子電極2、3を形成した(図35(c1)、(c2))。このとき、素子電極間隔L1を1.0μm、素子電極の幅W1を4.00μm、素子電極の膜厚を1000Åとし、また、素子電極間隔の中心とドット状の導電性薄膜の中心とはほぼ一致するようにした。

【0291】素子電極2、3の間に電圧を印加し、導電性薄膜4を通電処理(フォーミング処理)することにより、電子放出部5を形成した(図35(c1)、(c2))。

【0292】以上の方針は、単素子の作製法であるが、同様にして表面伝導型電子放出素子を複数個備えたマトリクス配線による電子源基板を作製することもできる。作製した電子源基板を図36に示す。ここで、マトリクス状配線の素子電極は、真空成膜・フォトリソグラフィー法で作製したもので、X配線とY配線とは交差部において不図示の絶縁部材により電気的に絶縁されている。さらに前述の図7のようにフェースプレート1086と支持棒1082とアリアプレート1081とで外周器1088を形成し、封止を行って表示パネルを作製した。さらに、NTSC方式のテレビ信号に基づいてテレビジョン表示を行ったもの図9に示すような駆動回路を有する画像形成装置を作製した。なお、電子源基板としては、図37に示したものをも使用することができます。

【0293】本例の画像形成装置の画像もこれまでの場合と同様、大画面の全領域にわたって均一で良好であった。

【0294】(実施例33) ドット状導電性薄膜を実施例32と全く同様の方法で複数個形成後、素子電極2、3の幅W1を6.00μm、素子電極間隔を1.0μm、素子電極の厚さを1000Åとしたはしご式配線付きの複数個の素子電極がドット状導電性薄膜上に来るよう真空成膜・フォトリソグラフィー法により、図37のような電子源基板を形成した。さらに、前述の図11のようにフェースプレート1086と支持棒1082とアリアプレート1084とで外周器を形成し、封止を行って表示パ

ネルを作製した。さらに、NTSC方式のテレビ信号に基づいてテレビジョン表示を行うための図9に示すような駆動回路を有する画像形成装置を作製した。

【0295】本例の画像形成装置も、実施例3-2と同様に優れた画像を安定して表示できた。

【0296】(実施例4) 上記実施例3-2および3-3では、インクジェット噴射装置に圧電素子を用いるタイプを用いたが、熱により気泡を発生させるバルジット式のインクジェット装置を用いることもできる。その方法によって、マトリクス配線による電子源基板を用いた画像形成装置、ならびに、はしご型配線を用いた画像形成装置を作製したところ、実施例3-2、3-3と同様のものを作製できた。

【0297】

【発明の効果】以上説明した通り、本発明の電子放出素子の製造方法によれば、電子放出部を構成する導電性薄膜を金属元素を含有する溶液を被膜の形態で付与して形成することから、所定の位置に所望の量を付与することができ、電子放出素子の製造工程を大幅に低減することができる。

【0298】さらに、本発明の電子放出素子の製造方法によれば、被膜の情報を検出し液滴に基づいて吐出条件および吐出位置の補正、被膜の再付与を行うことにより、欠陥を極めて少ない均一な薄膜を形成できる。これにより、离子等性均一性の飛躍的な向上が実現でき、大面积化に伴う歩留り低下の問題を解決できる。

【0299】さらにこのような電子放出素子を用いると、性能の優れた電子源基板、電子源、表示パネルおよび画像形成装置を得ることができる。

【0300】さらに、本発明の電子放出素子の製造方法によれば、電子放出部を構成する金属材料を、分散または溶解した含有溶液を被膜の形態で複数付与する工程において、個々のドットの中心間の距離を1ドットの直径より短く距離で付与してマルチバーン(バンド)を形成することにより、電子放出部を構成する導電性膜を極めて高い精度で形成できる。

【0301】さらに、本発明の電子放出素子の製造方法によれば、付与する液滴の溶液は親水性とし、その溶液を素子電極を有する基板上に付与する際に、基板の表面上が疎水性になるよう基板の表面処理を行うことによって、導電性薄膜が再現性よく形成でき、均質な表面伝導型電子放出素子を作製できるため、大面积にわたって多数の表面伝導型電子放出素子を作製した場合でも、均一な電子放出特性を得ることができる。

【0302】さらに本発明の電子放出素子の製造方法によれば、導電性薄膜を形成した後に素子電極を形成することで、本発明の電子放出素子の製造方法を適用し得る範囲を拡大し得る。

【0303】また、上述した本発明の電子源、電子源基板、表示パネル、画像形成装置は、電子放出素子を構成

する導電性薄膜が的確な位置に均一に配されることから、優れた特性を安定して発揮できる。

【図面の簡単な説明】

【図1】本発明の電子放出素子の製造手順の1例を示す工程図である。

【図2】本発明の電子放出素子の1例を示す模式図である。

【図3】本発明の電子放出素子の別の1例の模式的平面図である。

【図4】本発明の電子放出素子製造時の通電フォーミングにおける電圧波形を示すグラフであり、(a)はバルス波高値が一定の場合、(b)はバルス波高値が増加する場合である。

【図5】電子放出特性を測定するための測定評価装置の概略構成図である。

【図6】本発明の単純マトリクス配置の電子源の1例を示す模式的部分平面図である。

【図7】本発明の画像形成装置の1例の概略構成図である。

【図8】蛍光膜の構成を示す模式的部分図であり、(a)はブラックストライプの設けられたもの、(b)はブラックマトリクスの設けられたもの図である。

【図9】本発明の画像形成装置の1例における駆動回路であって、NTSC方式のテレビ信号に応じて表示を行うための駆動回路のブロック図である。

【図10】はしご配置の電子源の模式図である。

【図11】本発明の画像表示装置の1例を示す、一部を破断した概観斜視図である。

【図12】素子電極がマトリクス状に形成された基板の模式図である。

【図13】はしご状に配線された素子電極を有する基板の模式図である。

【図14】本発明の製造方法における液滴付与工程の1例を示す概略図である。

【図15】本発明の製造方法の1例についての流れを示すフローチャートである。

【図16】本発明の製造方法における液滴付与工程の他の1例を示す概略図である。

【図17】本発明の製造方法における液滴付与工程の別の1例を示す概略図である。

【図18】本発明の製造装置における検出光学系／吐出ノズルの構成を示す概略図であり、(a)は垂直反射型、(b)は斜方反射型および(c)は垂直透過型のものである。

【図19】本発明の製造装置における垂直反射型検出光学系／吐出ノズルの動作を示す概略図であり、(a)は液滴情報検出時、(b)は吐出時を示す図である。

【図20】本発明の製造装置における垂直透過型検出光学系／吐出ノズルの動作を示す概略図であり、(a)は液滴情報検出時、(b)は吐出時の図である。

【図21】本発明の製造方法により作製された素子を用いて形成した電子線発生装置の1例の概略を示す斜視図である。	8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 279 280 281 282 283 284 285 286 287 288 289 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 309 310 311 312 313 314 315 316 317 318 319 319 320 321 322 323 324 325 326 327 328 329 329 330 331 332 333 334 335 336 337 338 339 339 340 341 342 343 344 345 346 347 348 349 349 350 351 352 353 354 355 356 357 358 359 359 360 361 362 363 364 365 366 367 368 369 369 370 371 372 373 374 375 376 377 378 379 379 380 381 382 383 384 385 386 387 388 389 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 409 410 411 412 413 414 415 416 417 418 419 419 420 421 422 423 424 425 426 427 428 429 429 430 431 432 433 434 435 436 437 438 439 439 440 441 442 443 444 445 446 447 448 449 449 450 451 452 453 454 455 456 457 458 459 459 460 461 462 463 464 465 466 467 468 469 469 470 471 472 473 474 475 476 477 478 479 479 480 481 482 483 484 485 486 487 488 489 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 509 510 511 512 513 514 515 516 517 518 519 519 520 521 522 523 524 525 526 527 528 529 529 530 531 532 533 534 535 536 537 538 539 539 540 541 542 543 544 545 546 547 548 549 549 550 551 552 553 554 555 556 557 558 559 559 560 561 562 563 564 565 566 567 568 569 569 570 571 572 573 574 575 576 577 578 579 579 580 581 582 583 584 585 586 587 588 589 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 609 610 611 612 613 614 615 616 617 618 619 619 620 621 622 623 624 625 626 627 628 629 629 630 631 632 633 634 635 636 637 638 639 639 640 641 642 643 644 645 646 647 648 649 649 650 651 652 653 654 655 656 657 658 659 659 660 661 662 663 664 665 666 667 668 669 669 670 671 672 673 674 675 676 677 678 679 679 680 681 682 683 684 685 686 687 688 689 689 690 691 692 693 694 695 696 697 697 698 699 700 701 702 703 704 705 706 707 708 709 709 710 711 712 713 714 715 716 717 718 719 719 720 721 722 723 724 725 726 727 728 729 729 730 731 732 733 734 735 736 737 738 739 739 740 741 742 743 744 745 746 747 748 749 749 750 751 752 753 754 755 756 757 758 759 759 760 761 762 763 764 765 766 767 768 769 769 770 771 772 773 774 775 776 777 778 779 779 780 781 782 783 784 785 786 787 788 789 789 790 791 792 793 794 795 796 797 797 798 799 800 801 802 803 804 805 806 807 808 809 809 810 811 812 813 814 815 816 817 818 819 819 820 821 822 823 824 825 826 827 828 829 829 830 831 832 833 834 835 836 837 838 839 839 840 841 842 843 844 845 846 847 848 849 849 850 851 852 853 854 855 856 857 858 859 859 860 861 862 863 864 865 866 867 868 869 869 870 871 872 873 874 875 876 877 878 879 879 880 881 882 883 884 885 886 887 888 889 889 890 891 892 893 894 895 896 897 897 898 899 900 901 902 903 904 905 906 907 908 909 909 910 911 912 913 914 915 916 917 918 919 919 920 921 922 923 924 925 926 927 928 929 929 930 931 932 933 934 935 936 937 938 939 939 940 941 942 943 944 945 946 947 948 949 949 950 951 952 953 954 955 956 957 958 959 959 960 961 962 963 964 965 966 967 968 969 969 970 971 972 973 974 975 976 977 978 979 979 980 981 982 983 984 985 986 987 988 989 989 990 991 992 993 994 995 996 997 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1198 1199 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1298 1299 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1398 1399 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1498 1499 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1598 1599 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1698 1699 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1798 1799 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1898 1899 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1998 1999 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2039 2040 2041 2042 2043 2044 2045 2046

【図1】

【図2】

(a)

(b)

【図1.5】

【図3】

【図4】

(a)

(b)

【図5】

【図8】

【図6】

【図9】

图 7

[图10]

(圖 1-1)

图 1.8.7

【図12】

【図13】

【図14】

【図16】

【図30】

【図17】

【図19】

【図20】

【図21】

【図38】

【図22】

【図23】

【図24】

【図25】

【図28】

【図34】

【図26】

【図27】

【図29】

【図31】

【図32】

(a)

(b)

【図33】

(a)

(b)

(c)

(d)

【図35】

(a1)

(a2)

(b1)

(b2)

(c1)

(c2)

(d)

【図36】

【図37】

【図39】

フロントページの続き

(31) 優先権主張番号 特願平7-156321

(72) 発明者 黄志 悅朗

(32) 優先日 平7(1995)6月22日

東京都大田区下丸子3丁目30番2号 キヤ

(33) 優先権主張国 日本(JP)

ノン株式会社内

(72) 発明者 長谷川 光利

(72) 発明者 宮本 猛彦

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

ノン株式会社内