# Normal functors[ions], [the irrelevance of] power series, and [a new model of] $\lambda$ -calculus.

Morgan Rogers, Thomas Seiller, William Troiani

University of Sorbonne Paris Nord, University of Melbourne

2022

# Where did Linear Logic come from?

Girard was considering a categorical model of the untyped  $\lambda$ -calculus where each term t in context  $\{x_1, \ldots, x_n\}$  is interpretted as a normal functor:

$$[x_1, \dots, x_n \mid t] : (\underline{\operatorname{Set}}^A)^n \longrightarrow \underline{\operatorname{Set}}^A$$

where A is any countably infinite set.

#### Definition

A functor  $F : \underline{\operatorname{Set}}^A \longrightarrow \underline{\operatorname{Set}}$  is **normal** if it

- preserves wide pullbacks,
- preserves filtered colimits.

## Girard's Normal Functor Theorem

#### Theorem

Let  $\mathscr{F}: \operatorname{Set}^A \longrightarrow \operatorname{Set}$  be a functor. Then the following are equivalent.

- ► The functor ℱ is normal.
- The functor \( \mathcal{F} \) is isomorphic to an analytic functor.
- The functor F satisfies the finite normal form property.

### Definition

A functor  $\mathscr{F}: \operatorname{Set}^A \longrightarrow \operatorname{Set}$  is **analytic** if there exists a family of sets  $\{C_G\}_{G \in \operatorname{Set}^A}$  such that for all objects  $F \in \operatorname{Set}^A$  and all morphisms  $\mu: F \longrightarrow G$  we have

$$\mathscr{F}(F) = \coprod_{G \in \mathrm{Int}(A)} (C_G \times \mathrm{Set}^A(G, F))$$



# Is all of this machinery necessary?

A critical definition of Girard's is the following.

#### **Definition**

Let A be a set. Define

$$\operatorname{Int}(A) \subseteq \operatorname{Set}^A$$

to be the set of integral functors G. That is

$$|\bigcup_{a\in A}G(a)|<\infty$$

and each  $G(a) \in \mathbb{N}$ . le, G(a) is one of the following sets

$$0 = \emptyset$$
,  $1 = \{0\} = \{\emptyset\}$ ,  $n = \{0, \dots, n-1\}$ ,...

So... why not replace I(A) with the set of finite multisets of A?

## Our new model

Girard's setup seems categorically unnatural. So we "decategorified" his model and came up with the following.

| Girard                 | Us                                                                                                |
|------------------------|---------------------------------------------------------------------------------------------------|
| $\operatorname{Set}^A$ | $\mathcal{Q}(A) \coloneqq \{f : A \longrightarrow \mathbb{N} \cup \{\infty\}\}$                   |
| Int(A)                 | $\mathcal{I}(A) \coloneqq \{f : A \longrightarrow \mathbb{N} \mid f \text{ has finite support}\}$ |
| Normal                 | Preserves supremums                                                                               |

We have the following important observation: let  $f: \mathcal{Q}(A) \longrightarrow \mathcal{Q}(A)$  be an order preserving function which preserves supremums, and let  $\underline{a} \in \mathcal{Q}(A)$  be arbitrary.

$$f(\underline{a}) = f(\sup_{\underline{a'} \in \mathcal{I}(A)} \underline{a'} \cdot \delta_{\underline{a'} \leq \underline{a}})$$
$$= \sup_{\underline{a'} \in \mathcal{I}(A)} f(\underline{a'} \cdot \delta_{\underline{a'} \leq \underline{a}})$$
$$= \sup_{\underline{a'} \leq \underline{a}} f(\underline{a'})$$

Thus f is determined by its restriction to  $\mathcal{I}(A)$ .



In fact we have a pair of functions

$$\operatorname{Norm}\left(\mathcal{Q}(A)^{n} \times \mathcal{Q}(A), \mathcal{Q}(A)\right)$$

$$(-)^{-} \downarrow (-)^{+}$$

$$\operatorname{Norm}\left(\mathcal{Q}(A)^{n}, \mathcal{Q}(\mathcal{I}(A) \times A)\right)$$

defined as follows, where  $\alpha \in \mathcal{Q}(A)^n$ ,  $(\underline{a}, a) \in \mathcal{I}(A) \times A$ .

$$\begin{split} f^+(\alpha)(\underline{a}, a) &= f(\alpha, \underline{a})(a) \\ g^-(\underline{\alpha}, \underline{a})(a) &= \sup_{\underline{a}' \in \mathcal{I}(A)} g(\alpha)(\underline{a}', a) \cdot \delta_{\underline{a}' \leq \underline{a}} \end{split}$$

We think of this as currying.

#### Lemma

We have that  $(f^+)^- = f$ , but in general  $(g^-)^+ \neq g$ .



#### **Terms**

#### Definition

Let  $\underline{x} = \{x_1, \dots, x_n\}$  be a set of variables and let t be a  $\lambda$ -term for which  $\underline{x}$  is a valid context.

▶ The term t is a variable  $x_i \in \underline{x}$ . We define

to be the projection map.

# Application and abstraction

Since A is countably infinite, so is  $\mathcal{I}(A) \times A$ . We fix a bijection  $q: \mathcal{I}(A) \times A \longrightarrow A$  which induces a bijection  $\overline{q}: \mathcal{Q}(A) \longrightarrow \mathcal{Q}(\mathcal{I}(A) \times A)$ .

## Definition

The term t is an application  $t = t_1 t_2$ .

$$(\overline{q}[\underline{x} \mid t_1])^- \circ [\underline{x} \mid t_2] : \mathcal{Q}(A)^n \longrightarrow \mathcal{Q}(A)$$

The term t is an abstraction  $t = \lambda y.t'$ .

$$[\![\underline{x},y\mid t']\!]:\mathcal{Q}(A)^{n+1}\longrightarrow\mathcal{Q}(A)$$

We assume that this function is normal. We define

$$[\underline{x} \mid t] := \overline{q}^{-1}[\underline{x}, y \mid t']^+ : \mathcal{Q}(A)^n \longrightarrow \mathcal{Q}(A)$$



## Substitution Lemma, and denotation model Theorem

#### Lemma

Let t,s be  $\lambda$ -terms and  $\underline{x} = \{x_1,\ldots,x_n\}$  and y be such that  $\underline{x} \cup \{y\}$  is a valid context for t and  $\underline{x}$  is a valid context for s. Then for any  $\alpha \in \mathcal{Q}(A)^n$  we have

$$[\![\underline{x} \mid t[y \coloneqq s]]\!](\alpha) = [\![\underline{x}, y \mid t]\!](\alpha, [\![\underline{x} \mid s]\!](\alpha))$$

#### Theorem

This is a denotational model of the  $\lambda$ -calculus. That is, if t is a  $\lambda$ -term and  $\underline{x}$  a valid context for t and for s, then we have the following equality.

$$\llbracket \underline{x} \mid (\lambda y.t)s \rrbracket = \llbracket \underline{x} \mid t[y \coloneqq s] \rrbracket$$



# Extending to Linear Logic

- $\mathcal{I}(A)$  looks a lot like !A
- ▶ Recall that a normal function  $f: \mathcal{Q}(A) \longrightarrow \mathcal{Q}(A)$  is equivalent to an order preserving function  $\mathcal{I}(A) \longrightarrow \mathcal{Q}(A)$ .
- ▶ Is there a property which *f* may satisfy which means it is determined by its restriction to *A*? Yes! Assume *f* is linear:

Let  $\underline{a} \in \mathcal{Q}(A)$ 

$$f(\underline{a}) = f(\sum_{a \in A} \underline{a}(a) \cdot \delta_a)$$
$$= \sum_{a \in A} \underline{a}(a) \cdot f(\delta_a)$$

So this model has a concept of linearity: *linearity*.

# A genuine bijection

In fact we have a pair of bijections.

$$\operatorname{Add}\left(\prod_{i=1}^{n} \mathcal{Q}(A_{i}) \times \mathcal{Q}(A), \mathcal{Q}(B)\right)$$

$$(-)^{\div} \downarrow \downarrow (-)^{\times}$$

$$\operatorname{Add}\left(\prod_{i=1}^{n} \mathcal{Q}(A_{i}), \mathcal{Q}(A \times B)\right)$$

Defined as follows, for  $\alpha \in \prod_{i=1}^n \mathcal{Q}(A_i), \underline{a} \in \mathcal{Q}(A), (a,b) \in A \times B$ .

$$f^{\times}(\alpha)(a,b) = f(\alpha,\delta_a)(b)$$
$$g^{\div}(\alpha,\underline{a}) = \sum_{a \in A} \underline{a}(a) \cdot g(\alpha)(a,b)$$

We use this to define a model of multiplicative, exponential linear logic.

## A taste

Say the last rule of  $\pi$  is given by  $(R \multimap)$ .

$$\begin{array}{c}
\pi' \\
\vdots \\
\frac{\Gamma, A, \Delta \vdash B}{\Gamma, \Delta \vdash A \multimap B}
\end{array} (R \multimap)$$

We define

$$\llbracket \pi \rrbracket \coloneqq \llbracket \pi' \rrbracket^{\times}$$
 Say  $\Gamma = A_1, \dots, A_n, \Delta = B_1, \dots, B_m$  
$$\frac{\llbracket \pi' \rrbracket \colon \prod_{i=1}^n \mathcal{Q}(A_i) \times \mathcal{Q}(A) \times \prod_{i=1}^m \mathcal{Q}(B_i) \longrightarrow \mathcal{Q}(B)}{\llbracket \pi \rrbracket = \llbracket \pi' \rrbracket^{\times} \colon \prod_{i=1}^n \mathcal{Q}(A_i) \times \prod_{i=1}^m \mathcal{Q}(B_i) \longrightarrow \mathcal{Q}(A \times B)} \times$$

## A taste

$$\pi' \qquad \pi''$$

$$\vdots \qquad \vdots$$

$$\frac{\Gamma \vdash A \qquad B, \Delta \vdash C}{A \multimap B, \Gamma, \Delta \vdash C} \text{ (L $\multimap$)}$$

$$\llbracket \pi' \rrbracket : \prod_{i=1}^{n} \mathcal{Q}(A_i) \longrightarrow \mathcal{Q}(A)$$

$$\llbracket \pi'' \rrbracket : \prod_{i=1}^{m} \mathcal{Q}(B) \times \mathcal{Q}(B_i) \longrightarrow \mathcal{Q}(C)$$

We define

$$\llbracket \pi \rrbracket : \mathcal{Q}(A \times B) \times \prod_{i=1}^{n} \mathcal{Q}(A_{i}) \times \prod_{i=1}^{m} \mathcal{Q}(B_{i}) \longrightarrow \mathcal{Q}(C)$$
$$(f, \underline{\alpha}, \beta) \longmapsto \llbracket \pi'' \rrbracket (\beta, \sum_{a \in A} \llbracket \pi' \rrbracket (\alpha)(a) \cdot f(a, (-))$$

# (cut)-reduction invariance

In the special case where  $f = [\![\zeta]\!]^{\times}(\gamma)$  for some  $\gamma \in \prod_{i=1}^{k} \mathcal{Q}(C_i)$ , we obtain

$$(\alpha, \beta, \gamma) \longmapsto \llbracket \pi'' \rrbracket \Big( \beta, \sum_{a \in A} \llbracket \pi' \rrbracket (\alpha) (a) \cdot \llbracket \zeta \rrbracket (\gamma) (a, -) \Big)$$

$$= \llbracket \pi'' \rrbracket \Big( \beta, (\llbracket \zeta \rrbracket^{\times})^{\div} (\gamma, \llbracket \pi' \rrbracket) (\alpha) \Big)$$

$$= \llbracket \pi'' \rrbracket \Big( \beta, \llbracket \zeta \rrbracket (\gamma, \llbracket \pi' \rrbracket) (\alpha) \Big)$$

This calculation proves equality of the interpretations of the two proofs:

$$(\alpha, \beta, \gamma) \longmapsto \llbracket \pi'' \rrbracket \Big( \beta, \sum_{a \in A} \llbracket \pi' \rrbracket (\alpha)(a) \cdot \llbracket \zeta \rrbracket (\gamma)(a, -) \Big)$$

$$(\alpha, \beta, \gamma) \longmapsto \llbracket \pi'' \rrbracket \Big( \beta, \llbracket \zeta \rrbracket (\gamma, \llbracket \pi' \rrbracket (\alpha)) \Big)$$

$$\begin{matrix} \zeta & \pi' & \pi'' \\ \vdots & \vdots \\ \vdots & \vdots \\ \Theta, A \vdash B \\ \Theta \vdash A \multimap B \end{matrix} (R \multimap) \qquad \frac{\Gamma \vdash A \qquad \Delta, B \vdash C}{A \multimap B, \Gamma, \Delta \vdash C} \text{ (L } \multimap)$$

$$\begin{matrix} \Theta, \Gamma, \Delta \vdash C \\ & \longrightarrow \end{matrix}$$

$$\begin{matrix} \pi' & \zeta \\ \vdots & \vdots & \pi'' \\ \hline \Gamma \vdash A \qquad \Theta, A \vdash B \\ \hline \Gamma, \Theta \vdash B \qquad \text{(cut)} \qquad \Delta, B \vdash C \end{matrix} \text{ (cut)}$$

# Can we go further?

- Now that we have decategorified Girard's model, can we re-categorify it? At the moment, we are not anticipating our model to be an instance of a \*-autonomous category with a comonad satisfying the relevant conditions, it seems as though we have something else.
- Once a more general framework is established, can we recover the famous relational model? Taking Q = P and relaxing the requirement that our functions be order preserving is a start...
- Once we have recovered the relational model, can we transfer the differential structure across to obtain a model of the differential  $\lambda$ -calculus?

- G. Boole, An Investigation into the Laws of Thought (1854).
- D. Cox, J. Little, D. O'Shea, *Ideals, Varieties, and Algorithms* Fourth Edition, Springer (2015).
- J.-Y. Girard, *Linear Logic*, Theoretical Computer Science 50 (1), 1–102 (1987).
- J.-Y. Girard, *Multiplicatives*, Logic and Computer Science: New Trends and Applications. Rosenberg & Sellier. pp. 11–34 (1987).
- J.-Y. Girard, *Towards a geometry of interaction*, In J. W. Gray and A. Scedrov, editors, Categories in Computer Science and Logic, volume 92 of Contemporary Mathematics, 69–108, AMS (1989).
- J.-Y. Girard, *The Blind Spot: lectures on logic*, European Mathematical Society, (2011).

- J.-Y. Girard, Y. Lafont, and P. Taylor, *Proofs and Types*, Cambridge Tracts in Theoretical Computer Science 7, Cambridge University Press (1989).
- W. A. Howard, The formulae-as-types notion of construction, in Seldin and Hindley To H.B. Curry: essays on Combinatory logic, Lambda calculus and Formalism, Academic press (1980).
- O. Laurent, An Introduction to Proof Nets, http://perso.ens-lyon.fr/olivier.laurent/pn.pdf (2013).
- D. Murfet, Logic and Linear Algebra: An Introduction, preprint https://arxiv.org/abs/1407.2650v3 (2017).
- D. Murfet and W. Troiani, *Gentzen-Mints-Zucker duality*, preprint https://arxiv.org/abs/2008.10131 (2020).
- W. Troiani, *Linear logic*, lecture notes https://williamtroiani.github.io/MathNotes/LinearLogic.pdf (2020).