Fiscal Policy and Inequality

13. Tax Inefficiencies & Optimal taxation

Elliott Ash

15 October 2018

Outline

Tax Distortions and Deadweight Loss

Optimal Taxation

Ramsey Model

Taxes and Labor Supply

Mirrlees (1971)

Laffer Curve

Saez (2001)

Distortionary Effects of Taxation

- ► The introduction of a tax affects the behavior of economic agents, moving them *away* from the existing equilibrium
 - Hence, we say that taxes are distortionary

Distortionary Effects of Taxation

- ► The introduction of a tax affects the behavior of economic agents, moving them *away* from the existing equilibrium
 - Hence, we say that taxes are distortionary
- Deadweight loss from (or excess burden) of taxation:
 - ▶ If we introduce a tax, and then redistribute all the revenue, how much economic output is lost?

Distortionary Effects of Taxation

- ► The introduction of a tax affects the behavior of economic agents, moving them *away* from the existing equilibrium
 - Hence, we say that taxes are distortionary
- Deadweight loss from (or excess burden) of taxation:
 - If we introduce a tax, and then redistribute all the revenue, how much economic output is lost?
- While incidence analysis focuses on prices, efficiency analysis focuses on quantities

Deadweight Loss (DWL)

► Consider a two-good, one-consumer, one-firm economy

- ► Consider a two-good, one-consumer, one-firm economy
- ► Consumer's utility function is $U = u(x_1, x_2) = x_1x_2$

- Consider a two-good, one-consumer, one-firm economy
- Consumer's utility function is $U = u(x_1, x_2) = x_1x_2$
- lacktriangle We only care about price ratios, so set $P_1=1$ and $P_2=c>0$

- Consider a two-good, one-consumer, one-firm economy
- ► Consumer's utility function is $U = u(x_1, x_2) = x_1x_2$
- lacktriangle We only care about price ratios, so set $P_1=1$ and $P_2=c>0$
- ightharpoonup Let the consumer have income Y=1

► Cobb-Douglas utility, general form: $u(x, z) = x^a z^b$

- ► Cobb-Douglas utility, general form: $u(x, z) = x^a z^b$
- ▶ Marginal rate of substitution: $MRS_{xz} = \frac{\partial u/\partial x}{\partial u/\partial z} = \frac{\partial z}{\partial x}$

- ► Cobb-Douglas utility, general form: $u(x, z) = x^a z^b$
- ► Marginal rate of substitution: $MRS_{xz} = \frac{\partial u/\partial x}{\partial u/\partial z} = \frac{\partial z}{\partial x}$
- Set MRS equal to price ratio to get optimal consumption:

$$z = \left(\frac{b}{a}\right) \left(\frac{p_x}{p_z}\right) x$$

- ► Cobb-Douglas utility, general form: $u(x, z) = x^a z^b$
- ▶ Marginal rate of substitution: $MRS_{xz} = \frac{\partial u/\partial x}{\partial u/\partial z} = \frac{\partial z}{\partial x}$
- Set MRS equal to price ratio to get optimal consumption: $z = \left(\frac{b}{a}\right) \left(\frac{p_x}{p_z}\right) x$
- ▶ Budget constraint: $Y = p_x x + p_z z$

- ► Cobb-Douglas utility, general form: $u(x, z) = x^a z^b$
- ▶ Marginal rate of substitution: $MRS_{xz} = \frac{\partial u/\partial x}{\partial u/\partial z} = \frac{\partial z}{\partial x}$
- Set MRS equal to price ratio to get optimal consumption: $z = \left(\frac{b}{a}\right) \left(\frac{p_x}{p_z}\right) x$
- ▶ Budget constraint: $Y = p_x x + p_z z$
- Substitute optimal z into budget constraint:

$$x^* = \left(rac{a}{a+b}
ight)rac{Y}{
ho_x}$$
 , $z^* = \left(rac{b}{a+b}
ight)rac{Y}{
ho_z}$

Simple example: solution

$$u(x_1, x_2) = x_1x_2, P_1 = 1, P_2 = c, Y = 1$$

- No taxation:
 - ► Consumption levels: $x_1 = \frac{1}{2}$; $x_2 = \frac{1}{2c}$
 - ► Consumer's utility: $U \equiv u\left(\frac{1}{2}, \frac{1}{2c}\right) = \frac{1}{4c}$

Simple example: solution

$$u(x_1, x_2) = x_1x_2, P_1 = 1, P_2 = c, Y = 1$$

- ► No taxation:
 - ► Consumption levels: $x_1 = \frac{1}{2}$; $x_2 = \frac{1}{2c}$
 - Consumer's utility: $U \equiv u\left(\frac{1}{2}, \frac{1}{2c}\right) = \frac{1}{4c}$
- With a tax t on good 2, $P_2' = c + t$. and new budget constraint after revenue returned as lump-sum transfer T:

$$x_1+(c+t)x_2\leq T+1$$

Simple example: solution

$$u(x_1, x_2) = x_1x_2, P_1 = 1, P_2 = c, Y = 1$$

- ► No taxation:
 - ► Consumption levels: $x_1 = \frac{1}{2}$; $x_2 = \frac{1}{2c}$
 - ► Consumer's utility: $U \equiv u\left(\frac{1}{2}, \frac{1}{2c}\right) = \frac{1}{4c}$
- With a tax t on good 2, $P_2' = c + t$. and new budget constraint after revenue returned as lump-sum transfer T:

$$x_1+(c+t)x_2\leq T+1$$

► Consumption levels (demand): $x_1' = \frac{1+T}{2}$; $x_2' = \frac{1+T}{2(c+t)}$

▶ In equilibrium: $T = tx_2'$. Therefore: $T = \frac{t}{2c+t}$

- ▶ In equilibrium: $T = tx_2'$. Therefore: $T = \frac{t}{2c+t}$
- Substitute into demands: $x_1' = \frac{t+c}{2c+t}$; $x_2' = \frac{1}{2c+t}$

- ▶ In equilibrium: $T = tx_2'$. Therefore: $T = \frac{t}{2c+t}$
- ► Substitute into demands: $x'_1 = \frac{t+c}{2c+t}$; $x'_2 = \frac{1}{2c+t}$
- ▶ Overall consumer's utility: $U^t = \left(\frac{c+t}{2c+t}\right)\left(\frac{1}{2c+t}\right)$

- ▶ In equilibrium: $T = tx_2'$. Therefore: $T = \frac{t}{2c+t}$
- ► Substitute into demands: $x_1' = \frac{t+c}{2c+t}$; $x_2' = \frac{1}{2c+t}$
- $lackbox{ Overall consumer's utility: } U^t = \left(rac{c+t}{2c+t}
 ight) \left(rac{1}{2c+t}
 ight)$
- ▶ Difference in utility = deadweight loss (DWL):

DWL =
$$U - U^{t} = \frac{t^{2}}{4c(2c+t)^{2}} > 0, \forall t > 0$$

- ▶ In equilibrium: $T = tx_2'$. Therefore: $T = \frac{t}{2c+t}$
- ► Substitute into demands: $x_1' = \frac{t+c}{2c+t}$; $x_2' = \frac{1}{2c+t}$
- ▶ Overall consumer's utility: $U^t = \left(\frac{c+t}{2c+t}\right)\left(\frac{1}{2c+t}\right)$
- ▶ Difference in utility = deadweight loss (DWL):

DWL =
$$U - U^{t} = \frac{t^{2}}{4c(2c+t)^{2}} > 0, \forall t > 0$$

Note that

$$\frac{\partial DWL}{\partial t} = \frac{t}{(2c+t)^3} > 0, \forall t > 0$$

increasing taxes has a small but accelerating positive effect on on deadweight loss.

Outline

Tax Distortions and Deadweight Loss

Optimal Taxation

Ramsey Mode

Taxes and Labor Supply

Mirrlees (1971)

Laffer Curve

Saez (2001)

- "Optimal" tax theory must combine lessons from deadweight loss and tax incidence:
 - Optimal size of the pie? Efficiency
 - How is the pie distributed? Equity
- What is the best way to design taxes given equity and efficiency concerns?

- ► Efficiency perspective: finance the govt through lump-sum taxation
 - Fixed amount per person regardless of characteristics or actions

- ► Efficiency perspective: finance the govt through lump-sum taxation
 - Fixed amount per person regardless of characteristics or actions
 - ► Does not induce any behavioural responses, so this is most efficient tax available

- ► Efficiency perspective: finance the govt through lump-sum taxation
 - Fixed amount per person regardless of characteristics or actions
 - ► Does not induce any behavioural responses, so this is most efficient tax available
- Equity perspective: individualized lump-sum taxes
 - ► Tax higher-ability (higher earning power) individuals with larger lump sum

- ► Efficiency perspective: finance the govt through lump-sum taxation
 - Fixed amount per person regardless of characteristics or actions
 - Does not induce any behavioural responses, so this is most efficient tax available
- Equity perspective: individualized lump-sum taxes
 - ► Tax higher-ability (higher earning power) individuals with larger lump sum
 - Problem: we cannot observe ability directly
 - ► Hence we tax outcomes, such as income or consumption
 - Creates distortions & inefficiency

Outline

Tax Distortions and Deadweight Loss

Optimal Taxation

Ramsey Model

Taxes and Labor Supply

Mirrlees (1971)

Laffer Curve

Saez (2001)

1. No lump-sum or nonlinear taxes - only proportional tax au_i on each good i

- 1. No lump-sum or nonlinear taxes only proportional tax au_i on each good i
- 2. Raise total revenue $R = \sum_{i=1}^{n} \tau_i x_i$ to match fixed expenditures E

- 1. No lump-sum or nonlinear taxes only proportional tax au_i on each good i
- 2. Raise total revenue $R = \sum_{i=1}^n \tau_i x_i$ to match fixed expenditures E
- 3. Maximize utility for agents all agents identical with utility $u(x_0, x_1, ..., x_n)$
 - no redistributive concerns.

- 1. No lump-sum or nonlinear taxes only proportional tax au_i on each good i
- 2. Raise total revenue $R = \sum_{i=1}^n \tau_i x_i$ to match fixed expenditures E
- 3. Maximize utility for agents all agents identical with utility $u(x_0, x_1, ..., x_n)$
 - no redistributive concerns.
- 4. Cannot tax all commodities: x_0 (leisure) untaxed

Ramsey (1927): Elastic vs Inelastic Demand

A. More Elastic Demand

Intuition: tax inelastic goods to minimize efficiency costs

► The (simplified) Ramsey tax formula for the linear tax on good *i* is

$$au_i = rac{\lambda}{\epsilon_i}$$

where λ is a parameter summarizing the value of government spending, and ϵ_i is the elasticity of demand for good i.

► The (simplified) Ramsey tax formula for the linear tax on good *i* is

$$\tau_i = \frac{\lambda}{\epsilon_i}$$

where λ is a parameter summarizing the value of government spending, and ϵ_i is the elasticity of demand for good i.

ightharpoonup Low $\epsilon_i o \text{high } \tau_i$

The (simplified) Ramsey tax formula for the linear tax on good i is

$$\tau_i = \frac{\lambda}{\epsilon_i}$$

where λ is a parameter summarizing the value of government spending, and ϵ_i is the elasticity of demand for good i.

- ightharpoonup Low $\epsilon_i \rightarrow \text{high } \tau_i$
- Taxes on all goods, unless perfectly elastic demand

► The (simplified) Ramsey tax formula for the linear tax on good i is

$$\tau_i = \frac{\lambda}{\epsilon_i}$$

where λ is a parameter summarizing the value of government spending, and ϵ_i is the elasticity of demand for good i.

- ightharpoonup Low $\epsilon_i \rightarrow \text{high } \tau_i$
- ► Taxes on all goods, unless perfectly elastic demand
- ► The ratio of the taxes on two goods is the inverse ratio of their demand elasticities:

$$\frac{\tau_i}{\tau_j} = \frac{\epsilon_j}{\epsilon_i}$$

Ramsey (1927): Limitations

► Restricted to linear taxes

Ramsey (1927): Limitations

- Restricted to linear taxes
- Does not take into account redistributive motives
 - Necessities usually more inelastic than luxuries
 - ▶ Thus, optimal Ramsey tax system is regressive

Outline

Tax Distortions and Deadweight Loss

Optimal Taxation

Ramsey Mode

Taxes and Labor Supply

Mirrlees (1971

Laffer Curve

Saez (2001)

Taxes and Labor Supply

- ► In April 2010, the British government raised the top income tax rate from 40% to 50%
- Assuming that taxable income had remained constant after the reform, tax revenues would have increased by 6.8 billion pounds (0.46% of GDP)
- ► Before the reform, the Treasury <u>projected</u> this reform to increase tax revenues by
 - ► £8.5 billion?
 - ► £6.8 billion?
 - ▶ £2.7 billion?
 - ► £0.68 billion?

Labor supply model

► The individual solves

$$\max_{\{c,h\}}u\left(c,h\right)$$

subject to c = wh + R

- ightharpoonup c = consumption
- ightharpoonup h = hours worked (supply of labor)
- $u(c,h) = \text{utility function, with } u_c > 0 \text{ and } u_h < 0$
 - people like consumption but don't like working
- ightharpoonup w = after-tax hourly wage
- ightharpoonup R = non-labor income

Labor supply elasticity

Substituting for consumption:

$$\max_{h} u(wh + R, h)$$

- ▶ Solve with FOC's to get labor supply function, h(w, R).
- ▶ Differentiate h with respect to wages/taxes to get labor supply elasticity

$$\varepsilon = \frac{\partial h}{\partial w} \frac{w}{h}$$

ightharpoonup "a 1% increase in wages (or decrease in taxes) will change hours by ϵ %."

Substitution effect and income effect

- Substitution effect:
 - increasing wages makes each hour of work more valuable in terms of consumption.
 - increases hours worked.

Substitution effect and income effect

- Substitution effect:
 - increasing wages makes each hour of work more valuable in terms of consumption.
 - increases hours worked.
- Income effect:
 - increasing wages gives me a higher overall income; I am now richer and therefore don't need to work as much.
 - decreases hours worked.

Substitution effect and income effect

- Substitution effect:
 - increasing wages makes each hour of work more valuable in terms of consumption.
 - increases hours worked.
- Income effect:
 - increasing wages gives me a higher overall income; I am now richer and therefore don't need to work as much.
 - decreases hours worked.
- Overall effect of wage increases (tax decrease) on hours worked:
 - could be positive or negative.

Outline

Tax Distortions and Deadweight Loss

Optimal Taxation

Ramsey Model

Taxes and Labor Supply

Mirrlees (1971)

Laffer Curve

Saez (2001)

Individual Problem

► Individual solves

$$\max_{c,h} u(c,h)$$

subject to c = wh - T(wh)

ightharpoonup T(wh) is the tax imposed on person with wage w.

Individual Problem

Individual solves

$$\max_{c,h} u(c,h)$$

subject to c = wh - T(wh)

- ightharpoonup T(wh) is the tax imposed on person with wage w.
- Individual optimization:

$$w\left(1-T'(\cdot)\right)\frac{\partial u}{\partial c}=\frac{\partial u}{\partial h}$$

marginal benefit of working equals marginal cost of working.

Government Problem

▶ Government chooses T(wh) to maximize:

$$\sum_{w} G(u(wh-T(wh),h))$$

- $ightharpoonup G(\cdot)$ is increasing and concave
- ightharpoonup summation is over all individuals, indexed by w

Government Problem

▶ Government chooses T(wh) to maximize:

$$\sum_{w} G(u(wh - T(wh), h))$$

- $ightharpoonup G(\cdot)$ is increasing and concave
- summation is over all individuals, indexed by w
- Government budget constraint:

$$\sum_{w} T(wh) = E$$

► Incentive compatibility constraint (taxpayer will optimize):

$$w\left(1-T'(\cdot)\right)\frac{\partial u}{\partial c}=\frac{\partial u}{\partial h}$$

Overview

Govt maximizes weighted sum of utilities of ex-post consumption

Overview

- Govt maximizes weighted sum of utilities of ex-post consumption
- With equal weights and diminishing marginal utility, we would equalize everyone's income
 - Utilitarianism leads to communism!

Overview

- Govt maximizes weighted sum of utilities of ex-post consumption
- With equal weights and diminishing marginal utility, we would equalize everyone's income
 - Utilitarianism leads to communism!
- Is maximizing total ex-post utility the right objective function?
 - Deep debate dating back to Rawls, Nozick, Sen...

- ▶ Mirrlees formulas are complicated, only a few general results:
 - 1. $T'(\cdot) \leq 1$: Obvious, because otherwise no one works

- ▶ Mirrlees formulas are complicated, only a few general results:
 - 1. $T'(\cdot) \leq 1$: Obvious, because otherwise no one works
 - 2. $T'(\cdot) \ge 0$: Non-trivial. Rules out wage subsidies.

- ▶ Mirrlees formulas are complicated, only a few general results:
 - 1. $T'(\cdot) \leq 1$: Obvious, because otherwise no one works
 - 2. $T'(\cdot) \ge 0$: Non-trivial. Rules out wage subsidies.
 - 3. $T'(\cdot) = 0$ at the bottom of the skill distribution (assuming everyone works)

- Mirrlees formulas are complicated, only a few general results:
 - 1. $T'(\cdot) \leq 1$: Obvious, because otherwise no one works
 - 2. $T'(\cdot) \ge 0$: Non-trivial. Rules out wage subsidies.
 - 3. $T'(\cdot) = 0$ at the bottom of the skill distribution (assuming everyone works)
 - 4. $T'(\cdot) = 0$ at the top of the skill distribution (if skill distribution is bounded)

Mirrlees (1971): Results

- ▶ Mirrlees model had big impact in fields like contract theory
 - Models with asymmetric information

Mirrlees (1971): Results

- ▶ Mirrlees model had big impact in fields like contract theory
 - ► Models with asymmetric information
- But little impact on practical tax policy

Mirrlees (1971): Results

- Mirrlees model had big impact in fields like contract theory
 - ► Models with asymmetric information
- But little impact on practical tax policy
- Recently, connected to empirical tax literature:
 - ▶ Diamond (AER, 1998), Saez (REStud, 2001)
 - Sufficient statistic formulas in terms of elasticities

Outline

Tax Distortions and Deadweight Loss

Optimal Taxation

Ramsey Mode

Taxes and Labor Supply

Mirrlees (1971)

Laffer Curve

Saez (2001)

- ► Useful benchmark for optimal rate
- ▶ Let tax revenue be $R(\tau) = \tau \cdot z((1-\tau))$
 - Notice: reported income $z(\cdot)$ is a function of net-of-tax rate $(1-\tau)$

- Useful benchmark for optimal rate
- Let tax revenue be $R(\tau) = \tau \cdot z((1-\tau))$
 - Notice: reported income $z(\cdot)$ is a function of net-of-tax rate (1- au)
- $ightharpoonup R(\tau)$ has an inverse-U shape:
 - ▶ No taxes: $R(\tau = 0) = 0$
 - Confiscatory taxes: $R(\tau = 1) = 0$

▶ Revenue maximizing rate, τ^* :

$$R'(\tau^*) = 0$$

$$z - \tau \frac{\partial z}{\partial (1 - \tau)} = 0$$

$$z \left[\frac{(1 - \tau)}{z} \right] - \tau \underbrace{\frac{\partial z}{\partial (1 - \tau)} \left[\frac{(1 - \tau)}{z} \right]}_{\varepsilon} = 0$$

$$1 - \tau - \tau \varepsilon = 0$$

$$\Rightarrow \tau^* = \frac{1}{1 + \varepsilon}$$

Strictly inefficient to have $au > au^*$ (Why?)

The Laffer Curve

Outline

Tax Distortions and Deadweight Loss

Optimal Taxation

Ramsey Model

Taxes and Labor Supply

Mirrlees (1971)

Laffer Curve

Saez (2001)

Using Elasticities to Derive Optimal Tax Rates

Saez (2001) derives optimal tax rate τ using "perturbation" argument

Using Elasticities to Derive Optimal Tax Rates

- Saez (2001) derives optimal tax rate τ using "perturbation" argument
- Assumptions:
 - no income effects on labor elasticity
 - Diamond (1998) shows this is a key theoretical simplification

Using Elasticities to Derive Optimal Tax Rates

- Saez (2001) derives optimal tax rate τ using "perturbation" argument
- ► Assumptions:
 - no income effects on labor elasticity
 - Diamond (1998) shows this is a key theoretical simplification
 - \triangleright N individuals above earnings z^*
 - Let $z^m((1- au))$ be average income function of these individuals

Effect of increasing top-brakeey tax rate

- ▶ Three effects of small $\Delta \tau > 0$ reform above z^* :
 - 1. Mechanical increase in tax revenue:

$$\Delta M = N \cdot [z^m - z^*] \, \Delta \tau$$

Effect of increasing top-brakeey tax rate

- ▶ Three effects of small $\Delta \tau > 0$ reform above z^* :
 - 1. Mechanical increase in tax revenue:

$$\Delta M = N \cdot [z^m - z^*] \, \Delta \tau$$

2. Behavioural response:

$$\Delta B = N\tau \Delta z^{m} = N\tau \left(-\Delta \tau \frac{\Delta z^{m}}{\Delta (1 - \tau)} \right)$$
$$= -N \frac{\tau}{1 - \tau} \bar{\varepsilon} z^{m} \Delta \tau$$

Effect of increasing top-brakcey tax rate

- ▶ Three effects of small $\Delta \tau > 0$ reform above z^* :
 - 1. Mechanical increase in tax revenue:

$$\Delta M = N \cdot [z^m - z^*] \, \Delta \tau$$

2. Behavioural response:

$$\Delta B = N\tau \Delta z^{m} = N\tau \left(-\Delta \tau \frac{\Delta z^{m}}{\Delta (1 - \tau)} \right)$$
$$= -N \frac{\tau}{1 - \tau} \bar{\varepsilon} z^{m} \Delta \tau$$

3. Welfare effect:

$$\Delta W = -\bar{g}\Delta M$$

where $\bar{g} \in [0,1]$ is government value on rich consumption (relative to value of government expenditure, or value of lump sum transfers to everyone else)

► Optimal tax rate equalizes marginal gains and losses:

$$\Delta M + \Delta W + \Delta B = 0$$

Optimal tax rate equalizes marginal gains and losses:

$$\Delta M + \Delta W + \Delta B = 0$$

After some algebra:

$$\frac{\tau^{*top}}{1 - \tau^{*top}} = \frac{\left(1 - \bar{g}\right) \left[\frac{z^m}{z^*} - 1\right]}{\bar{\varepsilon}\left(\frac{z^m}{z^*}\right)}$$

Optimal tax rate equalizes marginal gains and losses:

$$\Delta M + \Delta W + \Delta B = 0$$

► After some algebra:

$$\frac{\tau^{*top}}{1 - \tau^{*top}} = \frac{\left(1 - \bar{g}\right) \left[\frac{z^m}{z^*} - 1\right]}{\bar{\varepsilon}\left(\frac{z^m}{z^*}\right)}$$

- ▶ Top tax rate τ^{*top} is higher when:
 - $ightharpoonup \downarrow ar{g}$: less weight on welfare of the rich

Optimal tax rate equalizes marginal gains and losses:

$$\Delta M + \Delta W + \Delta B = 0$$

After some algebra:

$$\frac{\tau^{*top}}{1 - \tau^{*top}} = \frac{\left(1 - \bar{g}\right) \left[\frac{z^m}{z^*} - 1\right]}{\bar{\varepsilon}\left(\frac{z^m}{z^*}\right)}$$

- ▶ Top tax rate τ^{*top} is higher when:
 - $ightharpoonup \downarrow \bar{g}$: less weight on welfare of the rich
 - $ightharpoonup \downarrow \bar{\varepsilon}$: lower elasticity of taxable income

Optimal tax rate equalizes marginal gains and losses:

$$\Delta M + \Delta W + \Delta B = 0$$

After some algebra:

$$\frac{\tau^{*top}}{1 - \tau^{*top}} = \frac{\left(1 - \bar{g}\right) \left[\frac{z^m}{z^*} - 1\right]}{\bar{\varepsilon}\left(\frac{z^m}{z^*}\right)}$$

- ▶ Top tax rate τ^{*top} is higher when:
 - $ightharpoonup \downarrow \bar{g}$: less weight on welfare of the rich
 - $ightharpoonup \downarrow ar{arepsilon}$: lower elasticity of taxable income
 - $ightharpoonup \uparrow \frac{z^m}{z^*}$: higher income inequality

Pareto Distribution

- Assume income follows a Pareto distribution with parameter a
 - ▶ Then $\frac{z^m}{z^*}$ is approximated by $\left(\frac{a}{a-1}\right)$

Simplified formula:

$$\boxed{\tau^{*top} = \frac{1 - \bar{g}}{1 - \bar{g} + \varepsilon a}}$$

► Simplified formula:

$$\boxed{ au^{*top} = rac{1 - ar{g}}{1 - ar{g} + arepsilon a}}$$

- ▶ In the United States, $\frac{z^m}{z^*} \approx 3$ (average income of rich is three times the top tax bracket threshold)
 - ▶ pareto parameter given by $3 = \frac{a}{a-1} \Rightarrow a = 1.5$

Simplified formula:

$$\boxed{\tau^{*top} = \frac{1 - \bar{g}}{1 - \bar{g} + \varepsilon a}}$$

- ▶ In the United States, $\frac{z^m}{z^*} \approx 3$ (average income of rich is three times the top tax bracket threshold)
 - ▶ pareto parameter given by $3 = \frac{a}{a-1} \Rightarrow a = 1.5$
- We can estimate ε (next lecture)

► Simplified formula:

$$au^{*top} = rac{1 - ar{g}}{1 - ar{g} + arepsilon a}$$

- In the United States, $\frac{z^m}{z^*} \approx 3$ (average income of rich is three times the top tax bracket threshold)
 - ▶ pareto parameter given by $3 = \frac{a}{a-1} \Rightarrow a = 1.5$
- \blacktriangleright We can estimate ε (next lecture)
- ightharpoonup Society decides value of \bar{g} (relative weight of rich on SWF)

- \blacktriangleright How to set \bar{g} ?
 - Revenue-maximizing top tax rate can be calculated by setting $\bar{g}=0$

- ▶ How to set \bar{g} ?
 - Revenue-maximizing top tax rate can be calculated by setting $ar{g}=0$
 - Rawlsian social welfare function: $\bar{g} = 0$ for any $z^* > \min(z)$

- ▶ How to set \bar{g} ?
 - Revenue-maximizing top tax rate can be calculated by setting $\bar{g}=0$
 - Rawlsian social welfare function: $\bar{g} = 0$ for any $z^* > \min(z)$
 - ▶ Utilitarian social welfare function: $\bar{g} = u_c \left(z^m \right) \to 0$ when $z^* \to \infty$

- ▶ How to set \bar{g} ?
 - Revenue-maximizing top tax rate can be calculated by setting $ar{g}=0$
 - Rawlsian social welfare function: $\bar{g} = 0$ for any $z^* > \min(z)$
 - ▶ Utilitarian social welfare function: $\bar{g} = u_c\left(z^m\right) \to 0$ when $z^* \to \infty$
- lacksquare If $ar{g}=0$, we obtain $au^{*top}= au^{max}=rac{1}{1+ar{arepsilon}a}$

- ▶ How to set \bar{g} ?
 - Revenue-maximizing top tax rate can be calculated by setting $ar{g}=0$
 - Rawlsian social welfare function: $\bar{g}=0$ for any $z^*>\min{(z)}$
 - ▶ Utilitarian social welfare function: $\bar{g} = u_c\left(z^m\right) \to 0$ when $z^* \to \infty$
- ▶ If $\bar{g}=0$, we obtain $au^{*top}= au^{max}=rac{1}{1+ar{arepsilon}a}$
- Assuming a = 1.5: