hydrolyzing the Fluorine compound to convert the fluorine of the fluorine compound to hydrogen fluoride.

- A process according to claim 24, wherein the catalyst contains at least composite oxides of aluminum and nickel.
- A process according to claim 24, wherein the catalyst is prepared by using boehmite as a raw material for aluminum.
- --27. A process according to claim 24, wherein the catalyst is a mixture containing at least alumina and nickel oxide or a mixture containing at least alumina, nickel oxide and composite exides of aluminum and nickel, an atomic ratio of aluminum to hickel in the catalyst being 50 to 99 : 50 to
- A process according to claim 24, wherein the fluorine compound \(\mathbf{i} \mathbf{s} \) at least one member selected from the group consisting of CF_4 , C_2F_6 , C_3F_8 , C_4F_8 , C_5F_8 , CHF_3 , CH_2F_2 , CH_3F , C_2H_5 , $C_2H_2F_4$, $C_2H_3F_3$, $C_2H_4F_2$, C_2H_5F and CH_2OCF_2 .
- A process according to claim 24, wherein the catalyst further comprises zinc as a metallic component.
- --30. A process according to claim 29, wherein the catalyst is a mixture containing at least alumina, nickel oxide and zinc oxide, of a mixture containing at least alumina, nickel oxide, zinc oxide, composite oxides of aluminum and nickel, and composite oxides of aluminum and zinc.