Übungen zur Vorlesung Differentialgeometrie I

Blatt 11

Aufgabe 42. (3 Punkte)

Sei $\Omega \in \mathbb{R}^n$ offen, beschränkt und sei $\partial \Omega$ glatt. Zeige, dass

$$\Delta \nabla d^2 = H \nu$$

gilt.

Aufgabe 43. (6 Punkte)

Sei $\Omega \in \mathbb{R}^n$ offen, beschränkt und sei $\partial \Omega \in C^2$ mit $H(\partial \Omega) \geq 0$. Sei $\varphi \in C^2(\bar{\Omega})$ und M > 0. Sei $U_{\delta} := \{x \in \Omega : d(x) < \delta\}$. Dann gibt es $\varepsilon_0 > 0$ und für alle $\varepsilon \in (0, \varepsilon_0)$ eine Funktion $w \in C^2(U_{\varepsilon})$ mit

$$\begin{cases} \operatorname{div}\!\left(\frac{\nabla w}{\sqrt{1+|\nabla w|^2}}\right) \leq 0 & \text{in } U_{\varepsilon} \\ w = \varphi & \text{auf } \partial \Omega \\ w \geq M & \text{auf } \partial U_{\varepsilon} \cap \Omega \,. \end{cases}$$

Hinweis: Betrachte die Funktion $w = \varphi + \psi$ mit $\psi = \delta \cdot \log(1 + \sigma \cdot d)$ für geeignet gewählte $\delta, \sigma \in \mathbb{R}_{>0}$.

Aufgabe 44. (4 Punkte)

Beweise Lemma 10.3:

Sei $X \circ (\varphi^{-1} \times \operatorname{Id})$ eine lokale Lösung des mittleren Krümmungsflusses. Sei (V, ψ) eine weitere Karte. Seien (U, φ) und (V, ψ) C^2 -verträglich, d.h. sei $\varphi \circ \psi^{-1} : \psi(U \cap V) \to \varphi(U \cap V)$ ein C^2 -Diffeomorphismus. Dann erfüllt $X \circ (\psi^{-1} \times \operatorname{Id}) : \psi(U \cap V) \times [0, T) \to \mathbb{R}^{n+1}$ ebenfalls lokal den mittleren Krümmungsfluss.

Aufgabe 45. (Sphären) (3 Punkte)

Führe die Details zu Beispiel 10.4 über Sphären aus:

Sei $M=\mathbb{S}^n\subset\mathbb{R}^{n+1}$. Sei R>0. Dann ist $X:M\times\left[0,\frac{R^2}{2n}\right)\to\mathbb{R}^{n+1}$ mit $X(p,t):=p\cdot\sqrt{R^2-2nt}$ eine Lösung des mittleren Krümmungsflusses.

Abgabe: Bis Donnerstag, 25.01.2018, 10.00 Uhr, in die Mappe vor Büro F 402.