1

LINEAR SYSTEMS AND SIGNAL PROCESSING ASSIGNMENT 5

GANJI VARSHITHA - AI20BTECH11009

Download latex codes from

https://github.com/VARSHITHAGANJI/

EE3900_VECTORS_ASSIGNMENTS/blob/main/

QUADRATIC_FORMS_ASSIGNMENT5/ QUADRATIC_FORMS_ASSIGNMENT5.tex

Download all python codes from

https://github.com/VARSHITHAGANJI/

EE3900_VECTORS_ASSIGNMENTS/blob/main/

QUADRATIC_FORMS_ASSIGNMENT5/plot_code.py

QUESTION

Quadratic Forms 2.6

Find the area lying in the first quadrant and bounded by the circle $\mathbf{x}\mathbf{x}^{\mathsf{T}} = 4$ and the lines $\mathbf{x} = 0$ and $\mathbf{x} = 2$.

SOLUTION

The general equation of a circle is

$$\mathbf{x}\mathbf{x}^{\top} - 2\mathbf{O}^{\top}\mathbf{x} + \|O\|^2 - r^2 = 0 \tag{0.0.1}$$

Given equation of the circle is

$$\mathbf{x}\mathbf{x}^{\mathsf{T}} = 4 \tag{0.0.2}$$

Comparing (0.0.2) with (0.0.1), we get

$$\mathbf{O} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{0.0.3}$$

$$r = 2 \tag{0.0.4}$$

Given lines are

$$L_1: \mathbf{x} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} + \alpha \begin{pmatrix} 0 \\ 1 \end{pmatrix} \tag{0.0.5}$$

$$L_2: \mathbf{x} = \begin{pmatrix} 2\\0 \end{pmatrix} + \beta \begin{pmatrix} 0\\1 \end{pmatrix} \tag{0.0.6}$$

where α and β are real numbers. We know the points of intersection of the line

$$L: \mathbf{x} = \mathbf{q} + \mu \mathbf{m} \tag{0.0.7}$$

with the circle in (0.0.2) is given by

$$\mathbf{x_i} = \mathbf{q} + \mu_i \mathbf{m} \tag{0.0.8}$$

where

$$\mu_i = \frac{1}{\mathbf{m}^{\top} \mathbf{Im}} \left(-\mathbf{m}^{\top} \left(\mathbf{Iq} + \mathbf{O} \right) \right)$$
$$\pm \sqrt{\left[-\mathbf{m}^{\top} \left(\mathbf{Iq} + \mathbf{O} \right) \right]^2 - \left(\mathbf{q}^{\top} \mathbf{Iq} + \mathbf{O}^{\top} \mathbf{q} - r^2 \right) \left(\mathbf{m}^{\top} \mathbf{Im} \right)}$$

Solving for α and β , we get

$$\alpha = \pm 2 \qquad \beta = 0 \qquad (0.0.9)$$

Points of intersection of line L_1 are $\begin{pmatrix} 0 \\ 2 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ -2 \end{pmatrix}$

and line L_2 is $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$.

The angle made by lines L_1 and L_2 with the x axis i.e $\begin{pmatrix} 0 & 1 \end{pmatrix} \mathbf{x} = 0$ is

$$\cos \theta = \frac{\begin{pmatrix} 1 \\ 0 \end{pmatrix}^{\top} \begin{pmatrix} 0 & 1 \end{pmatrix}}{\| \begin{pmatrix} 1 & 0 \end{pmatrix} \| \| \begin{pmatrix} 0 & 1 \end{pmatrix} \|} \tag{0.0.10}$$

$$=0$$
 (0.0.11)

$$\implies \theta = 90^{\circ} \tag{0.0.12}$$

The area of sector thus obtained is

$$\frac{\theta^{\circ}}{360^{\circ}}\pi r^2 = \frac{90^{\circ}}{360^{\circ}}\pi r^2 \tag{0.0.13}$$

$$=\frac{\pi}{4}2^2\tag{0.0.14}$$

$$=\pi \tag{0.0.15}$$

Fig. 1: Plotting the region bounded by circle and lines in first quadrant