Plan: Greedy Algorithm (MST Construction)

Review:

Graphs review (App. B)

Digraph: (directed graph) G=(V,E)

- · set V & vertices
- · set E of edges & VXV (ordered pair of vertices)

Undirected graph: E contains undirected pair of vortices

• |E| = O(V2) La because 2 Cm at most

- · if tis connected, then |E| > |V|-1
- · lg |E| & D(lg |V 1) for connected undirected graphs

Graph representation

1) Adjacency Matrix of G=(V,E) Where V={1,2,...,n} is the nxn matrix of A given by

$$A(i,j) = \begin{cases} 1 & \text{if } (i,j) \in E \\ 0 & \text{if } (i,j) \in E \end{cases}$$

· for weighted graph. I will be replaced 4/ weight

storage for adjacency matrix:
$$\theta(v^2)$$
good for dense representation

 \Rightarrow such as a complete graph

@ adjacency list of vEV is the list adj[v] of vertices adjacent to v

e.
$$\zeta$$
. A o ζ [1] = ζ 2, 3 ζ 2 = ζ 3 ζ 3 = ζ 4 = ζ 3 ζ

2 = {3}

3 = {}

4={3}

4={3}

0:/what's the length of the list.

| Adj[v] | = { degree (v) for whered |
out-degree (v) for directed

Thus for undirected graph, adjacency list cost $\theta(|v|+|\epsilon|)$ storage, same for disraphs

Adjacency list usually out-performs adjacency matrix but the matrix is used some of the very important algorithms due to the easiness of matrix operations.

Minimum spanning tree (MST)

Why?

Given a set of points (cities), how do you use the minimum amount of wire to connect these

FIGURE 9.1 Graph and its spanning trees; T_1 is the minimum spanning tree

Definitions

<u>Spanning tree</u> of a connected graph G: a connected acyclic subgraph of G that includes all of G's vertices

<u>Minimum spanning tree</u> of a weighted, connected graph G: a spanning tree of G of minimum total weight

Problem:

3

Input: Connected undirected graph G=(V,E) with weight function $N:E \rightarrow R$

For simplicity, all weights are distinct (i.e. the function is one to one) **Output:** A spanning tree T(connects all vertices) of minimum weight

$$W(T) = \sum_{(u,v) \in T} W(u,v)$$

There are many applications of MST on clustering, and point connecting problem e.g.

edges have its be in include 9 & 15

- · 3 has to be there because the obt unde has two choices to be connected.
 - . 6 is there for a similar reason
 - because we have 4 connected components to be connected.

Prim's algorithm

Idea: build the MST by adding in the **nearest** node into the tree in each iteration. (the greedy idea comes from the nearest)

Procedure

- Start with tree T_1 consisting of one (any) vertex and "grow" tree one vertex at a time to produce MST through a series of expanding subtrees $T_1, T_2, ..., T_n$
- On each iteration, construct T_{i+1} from T_i by adding vertex not in T_i that is closest to those already in T_i (this is a "greedy" step!)
- Stop when all vertices are included

Pseudo-code

```
PRIM(G, w, r)
Q = \emptyset
for each u \in G.V
u.key = \infty
u.\pi = \text{NIL}
INSERT(Q, u)
DECREASE-KEY(Q, r, 0) // r.key = 0
while Q \neq \emptyset
u = \text{EXTRACT-MIN}(Q)
for each v \in G.Adj[u]
if <math>v \in Q and w(u, v) < v.key
v.\pi = u
DECREASE-KEY(Q, v, w(u, v))
```

E.g. Find the MST on the example graph above

Then just add 9 and 15 to the tree

Notes

- Proof by induction that this construction actually yields MST
- Needs priority queue for locating closest fringe vertex
- Efficiency
 - \circ O(n^2) for weight matrix representation of graph and array implementation of priority queue
 - \circ O($m \log n$) for adjacency list representation of graph with n vertices and m edges and min-heap implementation of priority queue

Exercise

Tree vertices	Remaining vertices	Illustration			
a(-, -)	$\mathbf{b}(\mathbf{a}, 3) \ c(-, \infty) \ d(-, \infty)$ $\mathbf{c}(\mathbf{a}, 6) \ f(\mathbf{a}, 5)$	3 0 1 C 6 0 8			
b(a, 3)	$c(b, 1) d(-, \infty) e(a, 6)$ f(b, 4)	3 0 1 C 6 6 d 5 d 6 0 8			
c(b, 1)	d(c, 6) e(a, 6) f(b, 4)	3 5 4 4 5 6 d			
f(b, 4)	d(f, 5) $e(f, 2)$	3 5 4 4 5 6 d			
e(f, 2)	d (f , 5)	3 5 1 C 6 d B			
d(f, 5)		0			

FIGURE 9.2 Application of Prim's algorithm. The parenthesized labels of a vertex in the middle column indicate the nearest tree vertex and edge weight; selected vertices and edges are shown in bold.

Kruskal's algorithm

Idea: Since MST is a tree and we can build this tree, why not order the edges and build up the tree with edges that don't make circles.

Steps

- Sort the edges in nondecreasing order of lengths
- "Grow" tree one edge at a time to produce MST through a series of expanding forests F_1 , F_2 , ..., F_{n-1}

• On each iteration, add the next edge on the sorted list unless this would create a cycle. (If it would, skip the edge.)

e.g. same graph

Sort by edge: ef bc ab (g of cd be sh ef bc ab cs bf cdv

ef be abig of cd shv

done

Exercise

Tree edges	Sorted list of edges										Illustration
	bc 1	ef 2	ab 3	bf 4	cf 4	af 5	df 5	ae 6	cd 6	de 8	3 5 T 5 d 2 8
bc 1	bc 1	ef 2	ab 3	bf 4	cf 4	af 5	df 5	ae 6	cd 6	de 8	3 5 T 5 d 2 8
ef 2	bc 1	ef 2	ab 3	bf 4	cf 4	af 5	df 5	ae 6	cd 6	de 8	3 5 T 5 d 4 4 5 6 d 6 e 8
ab 3	bc 1	ef 2	ab 3	bf 4	cf 4	af 5	df 5	ae 6	cd 6	de 8	3 b 1 c 6 6 7 5 d
bf 4	bc 1	ef 2	ab 3	bf 4	cf 4	af 5	df 5	ae 6	cd 6	de 8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
df 5											

FIGURE 9.4 Application of Kruskal's algorithm. Selected edges are shown in bold.