01 始对象和终对象

LATEX Definitions are here.

泛性质

范畴由对象及其间箭头构成。本文重点 分析**余积闭范畴** C。首先给出如下定义:

1 为终对象当且仅当对任意 C 中对象
 c 都有且仅有唯一的箭头 :c!: c→1:

• 0 为**始对象**当且仅当对任意 C 中对象

c 都有且仅有唯一的箭头 $:ci: 0 \xrightarrow{c} c$:

i Note

•
$$\overset{\mathsf{C}}{\mathrm{Di}}:\overset{\mathsf{C}}{\overset{\mathsf{Cat}}{\longrightarrow}}\overset{\mathsf{Cat}}{(\mathbb{1}\overset{\mathsf{Cat}}{\longrightarrow}\mathsf{C})}$$
• $\overset{\circ}{\mathrm{C}}:\overset{\mathsf{C}}{\overset{\mathsf{C}}{\longrightarrow}}\overset{\mathsf{Cat}}{\overset{\mathsf{Cat}}{\longrightarrow}\mathsf{C}}$
• $\overset{\circ}{\mathrm{C}}:\overset{\mathsf{C}}{\overset{\mathsf{Cat}}{\longrightarrow}\mathsf{C}}$
• $\overset{\circ}{\mathrm{Di}}:\overset{\mathsf{C}}{\overset{\mathsf{Cat}}{\longrightarrow}\mathsf{C}}$
• $\overset{\mathsf{C}}{\overset{\mathsf{Cat}}{\longrightarrow}\mathsf{C}}$
• $\overset{\mathsf{C}}{\overset{\mathsf{Cat}}{\longrightarrow}\mathsf{C}}$
• $\overset{\mathsf{C}}{\overset{\mathsf{Cat}}{\longrightarrow}\mathsf{C}}$
• $\overset{\mathsf{C}}{\overset{\mathsf{C}}{\longrightarrow}\mathsf{C}}$

① 为仅含单个函子的范畴,1 为其中的对象;仅含有单个对象的范畴可被等价地视作为 ①。

若范畴 C 中真的含有 0 和 1 分别作为 始对象和终对象 则根据上述信息可知

- 形如 1→1 的箭头 只有一个,即 :1id;
- 形如 0→0 的箭头 只有一个,即 :0id;

元素与全局元素

对任意对象 $\mathbf{c}_1, \mathbf{c}_1', \mathrm{etc}$, $\mathbf{c}_2, \mathbf{c}_2', \mathrm{etc}$, \mathbf{c}_3 及任意的映射 i 我们进行如下的规定 :

- **i** 为 c₂ 的**元素**当且仅当 **i** tar = c₂;
- i 为 c_1 的**全局元素**当且仅当 i $tar = c_1$ 且 i src = 1
- i 不存在仅当 i tar = 0。

i Note

其他范畴中刚才的断言未必成立。

02-03 范畴当中的箭头

LATEX Definitions are here.

沿用上一节提到的自由变量。我们规定:

• $c_1 \xrightarrow{c} c_2 =$ 所有从 c_1 射向 c_2 的箭头构成的集 。

(i) Note

上述断言仅对于**局部小范畴**成立, 其他范畴里 $c_1 \xrightarrow{c} c_2$ 未必构成集。

范畴 C 中特定的箭头可以进行复合运算:

$$\stackrel{\mathsf{C}}{\circ} : \underbrace{ (\mathsf{c}_1 \stackrel{\mathsf{C}}{\rightarrow} \mathsf{c}_2) }^{\mathsf{Set}} \stackrel{\mathsf{C}}{\times} \underbrace{ (\mathsf{c}_2 \stackrel{\mathsf{Set}}{\rightarrow} \mathsf{c}_3) }^{\mathsf{Set}} \stackrel{\mathsf{C}}{\longrightarrow} \underbrace{ (\mathsf{c}_1 \stackrel{\mathsf{C}}{\rightarrow} \mathsf{c}_3) }_{\mathsf{C}_1}$$

如果我们还知道箭头 f_1 , i , f_2 分别属于 $c_1 \to c_1'$, $c_1 \to c_2$, $c_2 \to c_2'$ 那么便可知

• $(f_1^{\text{op}} \circ i) \circ f_2 = f_1^{\text{op}} \circ (i \circ f_2),$ 即箭头复合运算具有**结合律**。

另外固定住一侧实参便可获得新的函数:

$$\bullet \quad \overbrace{(f_1^{\operatorname{op}} \circ _)}^{\operatorname{C}} : \underbrace{(\operatorname{c}_1 \to _)}^{\operatorname{C}} \xrightarrow{\overset{\operatorname{Cat}}{\longrightarrow} \operatorname{Set}} \underbrace{(\operatorname{c}_1' \to _)}_{(f_1^{\operatorname{op}} \circ i)}$$

称作前复合。下图有助于形象理解:

 $\bullet \quad \stackrel{\mathsf{C}}{(_\circ f_2)} : \stackrel{\mathsf{C}}{(_\to c_2)} \xrightarrow{\stackrel{\mathsf{Cat}}{(-\to c_2)}} \stackrel{\mathsf{C}}{(-\to c_2')}$

称作后复合。 下图有助于形象理解:

根据上面的定义不难得出下述结论:

- $(f_1^{\text{op}} \circ _) \circ (_ \circ f_2) = (_ \circ f_2) \circ (f_1^{\text{op}} \circ _)$ $(f_1^{\text{op}} \circ _) \circ (f_1^{\text{op}} \circ _)$ $(f_1^{\text{op}} \circ _) \circ (f_2^{\text{op}} \circ _)$
- $(-\circ i)$ \circ $(-\circ f_2)$ = $(-\circ (i \circ f_2))$ 前复合与复合运算的关系
- $(i \circ _)$ \circ $(f_1^{\text{op}} \circ _)$ $= ((f_1^{\text{op}} \circ i) \circ _)$ 后复合与复合运算的关系

箭头对实参的应用

范畴论里函数的应用亦可视作复合。 假如 a_1 为 c_1 的全局元素则可规定

 $oldsymbol{c}_1i= \overline{c_1} \overset{\mathsf{c}}{\circ} i$

恒等箭头

范畴 C 内的每个对象都有恒等映射:

•
$$c_1 id : c_1 \xrightarrow{c} c_1$$
 $c_1 \mapsto c_1$

如此我们便可以得出下述重要等式:

$$\begin{array}{ccc}
\bullet & \underset{:c_1}{\overset{c}{\text{id}}} \circ i &= i \\
&= i \circ \cdot \cdot c & \text{id}
\end{array}$$

此外还可以得知

- $(c_1 id \circ _) : (c_1 \to _) \xrightarrow{c} c \xrightarrow{c} set c$ 为恒等自然变换,可记成是 $c_{ai} (c_1 \to _) id$;
- $(-\circ :_{c_2} id): (-\to c_2)$ $\xrightarrow{c_2} id$ $\xrightarrow{c_2} id$ $\xrightarrow{c_2} id$ 。

单满态以及同构

接下来给出单/满态和同构的定义。

• i 为**单态**当且仅当对任意 \mathbf{c}_1' 若有 $\mathbf{f}_1, \mathbf{f}_1': \mathbf{c}_1 \xrightarrow{\mathsf{c}} \mathbf{c}_1'$ 满足 $\mathbf{f}_1^{\mathrm{op}} \overset{\mathsf{c}}{\circ} \mathbf{i} = \mathbf{f}_1'^{\mathrm{op}} \overset{\mathsf{c}}{\circ} \mathbf{i}$ 则有 $\mathbf{f}_1^{\mathrm{op}} = \mathbf{f}_1'^{\mathrm{op}} \overset{\mathsf{c}}{\circ} \mathbf{i}$ 。详情见下图:

• i 为**满态**当且仅当对任意 c_2' 若有 f_2 , f_2' : $c_2 \to c_2'$ 满足 $i \circ f_2 = c \circ f_2'$ 则有 $f_2 = f_2'$ 。详情见下图:

• i 为**同构**当且仅当存在 i': $c_2 \xrightarrow{c} c_1$ 使得 $i \circ i' = {}_{:c_1} \mathrm{id} \perp \mathbf{l} = {}_{:c_2} \mathrm{id} \cdot \mathbf{l}$ 此时 $c_1, c_2 \in \mathbf{l}$ 间的关系可记作 $c_1 \cong c_2 \in \mathbf{l}$ 。

若还知道 $i = i_1$ 且 $i_2 : c_2 \rightarrow c_3$ 则有

- 若 i₁, i₂ 为单态 / 满态 / 同构
 则 i₁ i₂ 为单态 / 满态 / 同构 ;
- 若 i₁ o i₂ 为同构
 且 i₁ , i₂ 中有一个为同构
 则 i₁ , i₂ 两者皆构成同构 。

不仅如此我们还可以得出下述结论:

- c₁ 为单态 ,
 由 :c₁! 的唯一性可知 ;
- :0! = :1;为同构,
 因为 0 → 0 = {:0id}
 并且 1 → 1 = {:1id}

同构与自然性

下图即为自然性对应的形象解释。 后面会将自然性进行进一步推广。

现提供自然变换 η_2 满足自然性 —— 即对

任意 C 中对象 c, c' 以及

任意 C 中映射 $f: c \to c'$ 都有 $(f^{op} \to c_2)$ $c \to c'$ $c'^{\eta_2} = c^{\eta_2} \circ (f^{op} \to c'_2)$:

那么我们便会有下述结论:

• $c_2 \cong c_2'$ 当且仅当对任意 C 中的对象 cc⁷² 都是同构 。此时称 <mark>72</mark> 为**自然同构** 。

现提供自然变换 η_1 满足自然性 —— 即对

任意 C 中对象 c, c' 以及 任意 C 中映射 $f: c \to c'$ 都有 $(c_1 \to f)$ \circ $c'^{\eta_1} = c^{\eta_1} \circ (c'_1 \to f)$:

那么我们便会有下述结论:

 $c_1 \cong c_1'$ 当且仅当对任意 C 中的对象 $c_2 \cong c_1'$ **c⁷¹** 都是同构 。此时称 <mark>71</mark> 为**自然同构** 。

上一页的第一条定理若用交换图表示则应为

⇒ 易证, \leftarrow 用到了米田技巧 将 c 换成 c_2 :

为了方便就用 etc 表示 $c_2 id(c^{\eta_2})$ 。由上图 $f^{op}(c'^{\eta_2}) = (f^{op} \circ etc) (见右图底部和右侧箭头),$ 故 $c'^{\eta_2} = c' \rightarrow etc (注意到箭头 f^{op} : c' \rightarrow c);$ 而 $c'^{\eta_2} = c' \rightarrow etc = c' \circ etc$ 始终是同构 故 etc : $c_2 \rightarrow c'_2$ 也是同构 。

高亮部分省去了部分推理过程, 具体在米田嵌入处会详细介绍。

上一页的第二条定理若用交换图表示则应为

⇒ 易证, \leftarrow 用到了米田技巧 将 c 换成 c_1 :

为了方便就用 etc 表示 $_{:c_1}id(c^{\eta_1})$ 。由上图 知 $f(c'^{\eta_1}) = (etc \circ f)$ (见右图底部和右侧箭头), 故 $c'^{\eta_1} = \text{etc} \xrightarrow{c} c'$ (注意到箭头 $f: c \xrightarrow{c} c'$); 而 $c'^{11} = etc \xrightarrow{c} c' = c'^{(etc^{\circ})}$ 始终是同构 故 $\operatorname{etc}: \operatorname{c}_1 \to \operatorname{c}_1'$ 也是同构 。

高亮部分省去了部分推理过程, 具体在米田嵌入处会详细介绍。

04-05 类型的和与积

LATEX Definitions are here.

泛性质

默认函子 $\overset{c}{\times}: \overset{\mathsf{Cat}}{(\mathsf{C} \times \mathsf{C})} \overset{\mathsf{Cat}}{\longrightarrow} \mathsf{C}$ 在范畴 C 中有如下性质 :

• $(c \rightarrow c_1) \times (c \rightarrow c_2) \cong c \rightarrow (c_1 \times c_2)$ —— c 为任意 C 中对象。此即为积的 **泛性质**, 亦为**指数对乘法的分配律**。

默认函子 $\stackrel{c}{+}: \stackrel{Cat}{|(C \times C)|} \stackrel{Cat}{\longrightarrow} C$ 在范畴 C 中有如下性质 :

• $(c_1 \xrightarrow{c} c) \times (c_2 \xrightarrow{c} c) \cong (c_1 + c_2) \xrightarrow{c} c$ —— c 为任意 C 中对象。此即为和的 **泛性质**, 亦为**指数对加法的分配律**。

(i) Note

在上面的插图中

- $\overset{\mathsf{C}}{\mathop{\mathrm{Di}}}:\overset{\mathsf{C}}{\overset{\mathsf{Cat}}{\longrightarrow}}\overset{\mathsf{Cat}}{(\mathsf{C}\times\mathsf{C})}$ 为对角函子满足 $\mathsf{c}\longmapsto\overset{(\mathsf{c}\,.\,\mathsf{c})}{\longmapsto}$
- $egin{aligned} ext{Di}: & C & \longrightarrow (2 & \longrightarrow C) \ & @ & c & \longmapsto 常值函子 \ & C & \Longrightarrow C \ & @ & \longrightarrow C \ & 1 & \longmapsto c \ & 2 & \longmapsto c \ & f & \longmapsto :c & id \end{aligned}$

即为对角函子的第二种等价的定义。②为仅含两个对象的范畴,在此则作为一个指标范畴。1和2分别为其中的对象。

- $I: ② \xrightarrow{\mathsf{Cat}} \mathsf{C}$ 为函子,满足 $1 \longmapsto \mathsf{c}_1 \ 2 \longmapsto \mathsf{c}_2$
- 不难看出上图中

函子性

立 如何证明 × 构成函子呢?请看

- ×: (<u>:c'_iid . :c'_t</u>id) → : (c'_1 × c'_2) id — 即函子 × 保持**恒等箭头**;
- $\times : (f_1' \circ f_1 \cdot f_2' \circ f_2) \longmapsto (f' \circ f)$ —— 即函子 \times 保持**箭头复合运算**。

下图有助于形象理解证明的过程:

另外我们规定 $\overset{c}{\times}$ 在实参分别为 箭头和对象时的输出结果如下:

 $\begin{array}{ccc} \bullet & \overset{\mathsf{c}}{\underset{\mathsf{c}}{\times}} : [\boldsymbol{f_1} \cdot \mathsf{c_2}) & \longmapsto & [\boldsymbol{f_1} \overset{\mathsf{c}}{\underset{\mathsf{c}_2}{\times}} \mathrm{id}) \\ \times : [\mathsf{c_1} \cdot \boldsymbol{f_2}) & \longmapsto & [\cdot_{:\mathsf{c_1}} \mathrm{id} \times \boldsymbol{f_2}) \end{array}$

c 如何证明 + 构成函子呢?请看

- ←: (:c₁id . :cぇid) → :(c₁+c₂) id
 一 即函子 + 保持恒等箭头;
- $+: (f_1 \circ f'_1 \cdot f_2 \circ f'_2) \mapsto (f \circ f')$ —— 即函子 \times 保持**箭头复合运算**。 下图有助于形象理解证明的过程:

c 另外我们规定 + 在实参分别为 箭头和对象时的输出结果如下:

 $\begin{array}{c} \overset{\mathsf{C}}{\underset{\mathsf{C}}{+}} : [(f_1 \, . \, \mathsf{c}_2)] \longmapsto \overset{\mathsf{C}}{\underbrace{(f_1 \, + \, }_{ \dot{\mathsf{c}} \mathsf{c}_2} \mathrm{id})} \\ + : [(\mathsf{c}_1 \, . \, f_2)] \longmapsto \overset{\mathsf{C}}{\underbrace{(: \mathsf{c}_1 \mathrm{id} + f_2)}} \end{array}$

运算性质

对于函子 × 我们不难得知

 $\bullet \quad \begin{array}{c|c} c & c & c & c \\ \hline c_1 \times 1 \cong c_1 \times 1 \cong c_1 \end{array}$

— 乘法具有**幺元** 1。

下图有助于理解证明目标,即 $f_{1\cdot,c}$ 能唯一决定f和f'。

• $c_1 \times c_2 \cong c_2 \times c_1$

—— 乘法具有**交换律**。

下图有助于理解证明目标,即 $f_1 \cdot f_2$ 能唯一决定 f 和 f' 。

• $(c_1 \times c_2) \times c_3 \cong [c_1 \times (c_2 \times c_3)]$

—— 乘法具有**结合律** 。

下图有助于理解证明目标,即 (f_1, f_2) , f_3 唯一决定f和f'。

c 对于函子 + 我们不难得知

 $\bullet \quad \begin{array}{c|c} c & c & c & c \\ \hline c_1 + 0 \cong c_1 + 1 \cong c_1 \\ \end{array}$

—— 加法具有**幺元 0** 。

下图有助于理解证明目标,即 f_1 .。能唯一决定 f_1 和 f_2 。

 $\bullet \quad \mathsf{c}_1 + \mathsf{c}_2 \cong \mathsf{c}_2 + \mathsf{c}_1$

—— 加法具有**交换律**。 下图有助于理解证明目标,即 f_1 . f_2 能唯一决定 f 和 f'。

• $(c_1 + c_2) + c_3 \cong c_1 + (c_2 + c_3)$

—— 加法具有**结合律** 。

下图有助于理解证明目标,即 (f_1, f_2) , f_3 唯一决定f和f'。

幺半范畴

像刚才这样对象运算具有单位元以及结合律的范畴称作幺半范畴;

若上述范畴还具有交换律则称作对称幺半范畴;

很明显我们的范畴 C 是典型的对称幺半范畴。

幺半群

什么是幺半群呢?有两种定义方式:

- **幺半群 M** 是个范畴,其只含一个对象 m; 其中的复合运算正好有单位元以及结合律。
- 对象 m 属于幺半范畴 C,满足下述交换图:

其中

- $u: 1 \to m$ 其实就是 m 里面的幺元
- $u_l: \overset{\mathsf{c}}{(1 \times \mathsf{m})} \overset{\mathsf{c}}{\to} \mathsf{m}$ 表示 u 构成左幺元
- $\frac{\mathbf{u_r}}{\mathbf{u_r}}: \frac{\mathsf{c}}{(\mathsf{m} \times \mathsf{1})} \xrightarrow{\mathsf{c}} \mathsf{m}$ 表示 $\frac{\mathsf{u}}{\mathsf{u}}$ 构成右幺元
- $p: (m \times m) \xrightarrow{c} m$ 即为 m 中的二元运算
- $a: (m \times m) \times m \xrightarrow{c} m \times (m \times m)$ 表示 m 具有结合律

06 类型的幂

LATEX Definitions are here.

泛性质

默认函子 $\stackrel{c}{ o}$: $(C \times C) \stackrel{Cat}{ o} C$ 在范畴 C 中有下述性质 :

• $(c_1 \times c) \xrightarrow{c} c_2 \cong c \xrightarrow{c} (c_1 \xrightarrow{c} c_2) \cong c_1 \xrightarrow{c} (c_1 \xrightarrow{c} c_2)$ —— c 为任意 C 中对象 。此即为幂的泛性质 , 亦表示了**指数加乘法之间的运算关系** 。

函子性

如何证明 → 构成函子呢?请看

- $\overset{\mathsf{c}}{\to} : [(\underline{\mathsf{c}_1}\mathrm{id} \cdot \underline{\mathsf{c}_2}\mathrm{id})] \longmapsto \underline{\mathsf{c}_1 \overset{\mathsf{c}}{\to} \mathsf{c}_2}]\mathrm{id}$ 即函子 \to 能**保持恒等箭头**;
- $\overset{\mathsf{c}}{\to} : (f_1 \overset{\mathsf{c}}{\circ} f_1' \cdot f_2 \overset{\mathsf{c}}{\circ} f_2') \longmapsto (f \overset{\mathsf{c}}{\circ} f')$ —— 即函子 $\overset{\mathsf{c}}{\to}$ **保持箭头复合运算** 。

 下图有助于形象理解证明过程:

下图 (自上到下分别为图 1 和图 2)后面会用到。

范畴 C 内任意两对象 c_1 和 c_2 间的箭头构成一个集合 $c_1 \xrightarrow{c} c_2$, 说明 \xrightarrow{c} 只能将两个对象打到一个集合;下面使 \xrightarrow{c} 升级为函子: 若还知道箭头 f_1^{op} : $c_1' \xrightarrow{c} c_1$ 以及 f_2 : $c_2 \xrightarrow{c} c_2'$,则规定

• $(_ \to c_2) : C^{op} \xrightarrow{\mathsf{Cat}} C^{\mathsf{cat}} \to \mathsf{Set}$ 为函子且 $(_ \to c_2) : \mathsf{c} \mapsto (\mathsf{c} \to \mathsf{c}_2) = \mathsf{J} \mathsf{J} \mathsf{H} \mathsf{E} = \mathsf{f}^{op} : \mathsf{c}' \to \mathsf{c} = \mathsf{f} = \mathsf{c} = \mathsf{c}$

图 2 有助于理解。

i Note

不难看出

・ よ: $C \xrightarrow{\mathsf{Cat}} (C^{\mathsf{op}} \xrightarrow{\mathsf{Set}} \mathsf{Set})$ $\mathsf{c}_2 \longmapsto (\mathsf{c}_2 \xrightarrow{\mathsf{C}_2}) = (-\overset{\mathsf{C}}{\to} \mathsf{c}_2)$ 构成一个函子 $f_2 \longmapsto (f_2 \xrightarrow{\mathsf{C}_2}) = (-\overset{\mathsf{C}}{\to} \mathsf{f}_2) = (-\overset{\mathsf{C}}{\to} \mathsf{f}_2)$ 构成一个函子间映射,即自然变换 该风子称作是**米田嵌入**。

• $(c_1 \xrightarrow{c}): C^{op} \xrightarrow{c_{at}} C \xrightarrow{c_{at}} Set$ 为函子且 $(c_1 \xrightarrow{c}): c \longmapsto (c_1 \xrightarrow{c}), 且对任意 <math>f: c \xrightarrow{c} c'$ 有 $(c_1 \xrightarrow{c}): f \longmapsto (c_1 \xrightarrow{f}) = (c_1 \text{id} \xrightarrow{f}) = c_1 \xrightarrow{c_{at}}$ 图 2 有助于理解。

(i) Note

不难看出

• 尤:
$$C^{op} \xrightarrow{Cat} (C \xrightarrow{Set} Set)$$

 $c_1 \longmapsto (c_1 \xrightarrow{c})$ 构成一个函子
 $f_1^{op} \longmapsto (f_1^{op} \xrightarrow{c}) = (f_1^{op} \overset{c}{\circ})$ 构成一个函子间映射,即自然变换
该函子戏称为**尤达嵌入**。

积闭范畴

这里插个题外话:

若范畴包含终对象,所有类型的积以及指数,则可将其称作积闭范畴;

若范畴包含始对象,所有类型的和,则可将其称作是余积闭范畴;

若范畴满足上述条件,则可称作双积闭范畴。

很明显我们讨论的范畴 C 就是**双积闭范畴**。

07 递归类型

I₽TEX Definitions are here.

08-09 函子与自然变换

LATEX Definitions are here.

一些特殊的范畴

现在规定几种特殊的范畴。

- 离散范畴: 只有对象不含箭头(恒等箭头除外)的范畴。
- Set: **所有集合构成的范畴**, 为局部小范畴, 满足
 - Set 中对象为任意集合;
 - Set 中箭头为集合间映射。
- Cat: **所有范畴构成的范畴**,满足
 - Cat 中任何对象都构成一个范畴;
 - Cat 中任何箭头都构成一个函子。

若 C , D 为 Cat 中对象 , 则:

- C^{op}: **反范畴**,满足
 - C^{op} 中对象皆形如 c, c 为任意 C 中的对象;
 - C^{op} 中箭头皆形如 i^{op} : $c_2 \longrightarrow c_1$, i: $c_1 \rightarrow c_2$ 可为任意 C 中的箭头。
- - C_× D 中对象皆形如 c . d ,
 c , d 分别为任意 C , D 中的对象 ;
 - C×D 中箭头皆形如 *i* · *j* ,
 i · *j* 分别为任意 C , D 中的箭头 。
- C→ Cat D : 所有 C 到 D 的函子的范畴 , 满足
 - C → D 中任何对象
 都是 C 到 D 的函子;
 - $C \xrightarrow{Cat} D$ 中任何箭头 都是函子间自然变换。
- C/c: **俯范畴**, 这里 c 为任意 C 中对象; 满足
 - C/c₂ 中对象皆形如 c.1.i, 其中 c 和
 i: c→c₂ 分别为 C 中任意的对象和箭头;
 - c_2/C 中箭头皆形如 f_{ic_2} 1d 且满足下述交换图 , 其中 c , c' 为 C 中任意对象且 f , i , i' 为 C 中任意箭头 ; TODO

- c₁/C: 仰范畴, 这里 c 为任意 C 中对象; 满足
 - c_1/C 中对象皆形如 $1.\overline{c}$. i, 其中 c 和 i: $c_1 \rightarrow c$ 分别为 C 中任意的对象和箭头;
 - C/c₁ 中箭头皆形如 f 且满足下述交换图,其中
 c, c'为 C 中任意对象且 f, i, i' 为 C 中任意箭头; TODO

函子

接下来我们来提供函子的正式定义:

- **F**: C → D 为**函子**当且仅当
 - 对任意 C 中对象 c , cF 为
 D 中对象且 :cidF = :cF id ;
 - 对任意 C 中箭头 i_1 : $c_1 \xrightarrow{c} c_2$ 和 i_2 : $c_2 \xrightarrow{c} c_3$, 始终都有等式 $(i_1 \circ i_2)$ $F = i_1$ $F \circ i_2$ 成立。

若已确信 $F: C \xrightarrow{Cat} D$ 为函子且 还知 C 中有对象 c_1, c_2 以及 C 中有箭头 $i: c_1 \xrightarrow{C} c_2$ 则

- 若 i 为单态 / 满态 / 同构
 则 iF 为单态 / 满态 / 同构;
- 若 iF 为同构
 则 i 为同构。

i Note

不难发现函子具有保持 对象 / 态射性质的能力。

函子的复合运算

若还知道 $G: D \xrightarrow{Cat} E$ 为函子则

• $F \overset{\mathsf{Cat}}{\circ} G : C \overset{\mathsf{Cat}}{\longrightarrow} E$ 也构成一个函子。

恒等函子

对于函子我们也有恒等映射,即:

$$\bullet \quad \underset{:C}{\overset{\mathsf{Cat}}{\circ}} F = F \\
= F^{\mathsf{Cat}}_{\circ :D} \mathrm{Id}$$

忠实,完全和本质满函子

若 C, D, E 皆为局部小范畴,则

- **F** 是**忠实的**当且仅当对任意 C 中的对象 c_1, c_2 , $c_1 \rightarrow c_2$ 与 $c_1 \stackrel{D}{F} \rightarrow c_2 \stackrel{D}{F}$ 之间始终都存在单射 ;
- **F** 是**完全的**当且仅当对任意 C 中的对象 c_1, c_2 , $c_1 \rightarrow c_2$ 与 $c_1 \stackrel{D}{F} \rightarrow c_2 \stackrel{D}{F}$ 之间始终都存在满射 ;
- **F** 是**完全忠实的**当且仅当任意 C 中对象 c_1, c_2 , $c_1 \rightarrow c_2$ 与 $c_1 \stackrel{D}{F} \rightarrow c_2 \stackrel{D}{F}$ 之间始终都存在双射 。

(i) Note

刚才提到的"单/满/双射"针对的都是范畴的箭头部分。

• F 是**本质满的**当且仅当对任意 D 中对象 d 都存在 C 中对象 c 使 $cF \xrightarrow{D} d$ 之间有双射。

根据刚才的信息我们不难得知

- 若 F, G 为忠实 / 完全 / 完全忠实 / 本质满函子
 则 F G 为忠实 / 完全 / 完全忠实 / 本质满 函子;
- 若 F o G 为完全忠实函子
 且知道 G 为完全忠实函子
 则可知 F 为完全忠实函子;

自然变换

如果还知道 $F': \overline{C} \xrightarrow{Cat} \overline{D}$ 为函子 , 那么

η: F → F' 为自然变换当且仅当对任意
 C 中对象 c, c' 始终都会有下述交换图成立:

自然变换的复合

若已知 $\eta: \overset{\mathsf{Cat}}{F} \xrightarrow{\mathsf{Cat}} F'$ 构成自然变换且 还知道 $\eta': \overset{\mathsf{F'}}{F'} \xrightarrow{\mathsf{Cat}} F''$ 为自然变换则

• $\eta \circ \eta' : F \xrightarrow{Cat} F''$ 为自然变换,称作 η 和 η' 的**纵复合** 。

如果还知道 $G': D \xrightarrow{Cat} E$ 也是个函子 及自然变换 $\theta: G \xrightarrow{D \to E} G'$ 那么便有

• $\eta \circ \theta$: $F \circ G \xrightarrow{Cat} F' \circ G'$ 为 自然变换,称作 η 和 θ 的横复合。

若 $heta': \overset{\overset{\mathsf{Cat}}{\bigcap \longrightarrow \mathsf{E}}}{G} \overset{\mathsf{G}'}{\longrightarrow}$ 为自然变换则

• $(\eta \circ \theta)$ \circ $(\eta' \circ \theta') = (\eta \circ \eta') \circ (\theta \circ \theta')$, 即便改变横纵复合先后顺序也不影响最终结果。

恒等自然变换

同样对于自然变换也有恒等映射。

• :**F** : **F**

自然同构

自然同构与你想象中的同构不太像。

• $\eta: \stackrel{\stackrel{Cat}{\longrightarrow} D}{F} \longrightarrow F'$ 为**自然同构**当且仅当 c^η 总是同构,这里 c 为任意 c 中对象。 此时 c 的关系可用 c 全 c 表示

范畴等价的定义

我们用自然同构来定义范畴的等价 。

• $C \cong D$ 当且仅当 存在函子 $F_{\text{cat}} : C \xrightarrow{\text{Cat}} D$ 及 $F' : D \xrightarrow{\text{Cat}} C$ 使 $F \circ F' \cong :_{\text{C}} id$ 并且有 $F' \circ F \cong :_{D} id$ 。

反协变米田引理

若知 $F_2: \stackrel{\mathsf{Cop}}{\longrightarrow} \overset{\mathsf{Cat}}{\longrightarrow} \mathsf{Set}$ 则 反变米田引理的陈述如下:

• $((_ \to C_2) \xrightarrow{C_{\text{op}} \to S_{\text{et}}} S_{\text{et}} \cong (C_2 F_2)$ -堆自然变换

反变米田引理的证明如下:

1. \leftarrow : 考虑任意 (c_2F_2) 中的 etc: 根据 etc 及其所对应的上方右侧的交换图 我们可为每个对象 c' 定义其所对应的 c'^{n_2} , 于是便可构建一个完整的 η_2 。 易知 η_2 是一个自然变换 。

2. \Rightarrow : 考虑任意等式左侧的 η_1 : 若上述交换图成立 则可对任意 η_1 指派 $\mathrm{etc} = \frac{1}{2} \mathrm{id}(\mathbf{c}^{\eta_1})$ 为 $\mathbf{c}_2 F_2$ 中与之对应的元素;

为何构成同构呢?因为 1 和 2 的自然变换表达式本质上是一样的! c_2 唯一地确定了 η_2 , 反之 η_2 也唯一确定了 c_2 。

若还知 $F_1: C \xrightarrow{Cat} Set$ 则 协变米田引理的陈述如下:

协变米田引理的证明如下:

1. \leftarrow : 考虑任意 (c_1F_1) 中的 etc: 根据 etc 及其所对应的上方右侧的交换图 我们可为每个对象 c' 定义其所对应的 c'^{n_1} , 于是便可构建一个完整的 η_1 。 易知 η_1 是一个自然变换。

2. \Rightarrow : 考虑任意等式左侧的 $\frac{\eta_1}{\eta_1}$: 若上述交换图成立 则可对任意 $\frac{\eta_1}{\eta_1}$ 指派 etc $=\frac{1}{2}$ [c₁ $\frac{1}{\eta_1}$] 为 $\frac{1}{\eta_1}$ 中与之对应的元素;

为何构成同构呢?因为 1 和 2 的自然变换表达式本质上是一样的! c_1 唯一地确定了 $\frac{\eta_1}{\eta_1}$,反之 $\frac{\eta_1}{\eta_1}$ 也唯一确定了 c_1 。

可表和余可表函子的泛性质

接下来定义一个重要的概念:

• F_2 为**可表函子**当且仅当 存在 C^{op} 中对象 c_2 使得 $(_{-} \rightarrow c_2) = c_2$ は $\cong F_2$ 成立,即 c_2 よ 与 F_2 间存在自然同构。 此时称 F_2 可由对象 c_2 表出。

同理我们也有如下对偶概念:

• F_1 为**余可表函子**当且仅当存在 C 中对象 c_1 使得 $(c_1 \xrightarrow{c} _) = c_1 \stackrel{c}{\sqsubset} \stackrel{F_1}{\simeq}$ 成立。

即 $c_1 \stackrel{\mathcal{L}}{\vdash} 5$ 间存在自然同构。

此时称 F_1 可由对象 c_1 余可表出。

米田和尤达嵌入

根据前面的内容我们可知

构成一个函子间映射,即自然变换

构成一个完全忠实函子,该函子称作是米田嵌入。

证明如下:

よ是函子,因为

$$\begin{array}{ll} \bullet & \underset{:c_2}{\text{id}\, \gimel} = \overset{\mathsf{C}}{(_\circ : c_2 \text{id})} = \underset{:(c_2 \gimel)}{\overset{\mathsf{C}}{\text{id}}} \text{id} \\ \bullet & \underbrace{(f_2 \circ f_2') \gimel}_{} \gimel = \overset{\mathsf{C}}{(_\circ (f_2 \circ f_2'))} = \overset{\mathsf{C}}{(_\circ f_2)} \overset{\mathsf{Cat}}{\circ} \overset{\mathsf{Cat}}{(-\circ f_2')} = \overset{\mathsf{C}}{f_2 \gimel} \overset{\mathsf{Cat}}{\circ} \overset{\mathsf{Cat}}{\to} \overset{$$

由于函子具有保持对象/映射性质的能力,

故便可知 f_2 よ 为同构当且仅当 f_2 为同构。

よ 是完全忠实的 , 因为

将反变米田引理中的 F_2

换成 (**c**′₂ → _)

也就是

$$((c_2 \downarrow) \xrightarrow{C \to Set} (c_2' \downarrow))$$
 $\cong (c_2' \downarrow)$ $C \oplus bom-set$ $C_2 \oplus c_2$ $C \oplus bom-set$ $C_2 \oplus c_2$ $C \oplus bom-set$ $C_2 \oplus c_2 \oplus c_2$ $C \oplus bom-set$ $C \oplus bom-s$

(i) Note

由于函子能够保持态射的性质,

对任意左侧集合中的自然同构

右侧集合也会有同构与之对应, 反之亦然。

这也就证明了前面自然同构相关定理省略的部分。

根据前面的内容我们可知

• 尤:
$$C^{\mathrm{op}} \xrightarrow{\mathsf{Cat}} (C \xrightarrow{\mathsf{Set}} \mathsf{Set})$$
 $c_1 \longmapsto (c_1 \xrightarrow{\mathsf{C}} \mathsf{L})$ 构成一个函子
 $f_1^{\mathrm{op}} \longmapsto (f_1^{\mathrm{op}} \xrightarrow{\mathsf{C}} \mathsf{L}) = (f_1^{\mathrm{op}} \overset{\mathsf{C}}{\circ} \mathsf{L})$ 构成一个函子间映射,即自然变换

构成一个完全忠实函子,该函子称作是尤达嵌入。

证明如下:

• 尤是函子,因为

$$\begin{array}{ll} \bullet & \underset{:c_1}{\overset{\mathsf{C}}{\mathrm{id}}} \dot{\mathbb{H}} = \overset{\mathsf{C}}{(-\circ_{:c_1}\mathrm{id})} = \underset{:(c_1\dot{\mathbb{H}})}{\overset{\mathsf{C}}{\mathrm{op}}} \mathrm{id} \\ \bullet & \underbrace{(f_1\overset{\mathsf{C}^\mathrm{op}}{\circ}f_1')\dot{\mathbb{H}}} = \underbrace{((f_1\overset{\mathsf{C}^\mathrm{op}}{\circ}f_1')\circ_{-})}^{\mathsf{C}} = \underbrace{(f_1^\mathrm{op}\overset{\mathsf{C}}{\circ}-)\overset{\mathsf{C}}{\circ}-\overset{\mathsf{C}}{\circ}}^{\mathsf{Cat}} \circ \underbrace{(f_1'^\mathrm{op}\overset{\mathsf{C}}{\circ}-)}^{\mathsf{C}} \\ \end{array}$$

• 尤是完全且忠实的,因为

将协变米田引理中的 F_1

换成 $(\mathbf{c}_1' \rightarrow \underline{\hspace{0.5cm}})$

即可获得下述公式:

$$((c_1 \xrightarrow{c}) \xrightarrow{c_{at}} Set$$
 $(c_1' \xrightarrow{c}))$ $\stackrel{Set}{\simeq} (c_1' \xrightarrow{c} c_1)$ $\pm i$ 由然变换

也就是

(i) Note

由于函子能够保持态射的性质,

对任意左侧集合中的自然同构

右侧集合也会有同构与之对应,反之亦然。

这也就证明了前面自然同构相关定理省略的部分。