

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Компьютерные системы и сети»

НАПРАВЛЕНИЕ ПОДГОТОВКИ «09.03.04 Программная инженерия»

ОТЧЕТ по лабораторной работе №3

Название: Исследование регистров

Дисциплина: Архитектура ЭВМ

Студент:	<u>ИУ7-43Б</u>		<u>26.04.2020</u>	А. В. Романов
	группа	подпись	дата	(И. О. Фамилия)
Преподаватель:				А. Ю. Попов
		подпись	дата	(И. О. Фамилия)

1. Цель работы

Изучение принципов построения регистров сдвига, способов преобразования параллельного кода в последовательный и обратно, сборка схем регистров сдвига их экспериментальное исследование.

2. Исследование регистра сдвига

Схема пятиразрядного регистра сдвига вправо.

Файл: 1.ms

Схема пятиразрядного регистра сдвига вправо в циклическом режиме

Файл: 2.ms

Схема пятиразрядного регистра сдвига влево

Файл: 3.ms

Схема пятиразрядного регистра сдвига влево в циклическом режиме

Файл: 4.ms

Количество триггеров и выходных сигналов равно разряду регистра. Чтобы получить циклический режим, соединяются первый и последний триггер.

3. Исследование универсального регистра на ИС K555ИP11 (74LS194)

Файлы: 5.ms и 6.ms

С помощью таких регистров можно обрабатывать информацию, подаваемую на входы. См. контрольный вопрос \mathbb{N}_6 .

4. Вывод

При выполнении этой лабораторной работы я изучил работу регистров сдвига (вправо и влево, а так же циклических), универсального регистра.

5. Контрольные вопросы

1. Что называется регистром? Какие функции выполняют регистры?

Регистр - операционный узел ЭВМ, предназначенный для выполнения микроопераций записи, хранения, преобразования и считывания слова (или части слова) данных и простейших поразрядных логических операций. Регистры осуществляют кратковременное хранение информации в течение одного или нескольких циклов работы устройства

2. Как классифицируются регистры по способу ввода-вывода информации?

По способу ввода и вывода:

- параллельные (или регистры памяти),
- последовательные,
- параллельно-последовательные,
- последовательно-параллельные,
- универсальные или многофункциональные
- **3.** Как работает параллельный регистр с однофазным и парафазным приемом информации?

 ${f B}$ однофазных — каждый разряд передается по одной линии (в виде прямого значения D_i или инверсии)

В парафазных – каждый разряд передается по двум линями (прямым D_i и инверсными значениям в каждом из рарзядов.)

4. Какие типы триггеров применяются в регистрах сдвига?

Регистры сдвига с однофазной синхронизацией строятся на синхронных D-триггерах с динамическим управлением записью.

5. Как работает регистр сдвига, выполненный на триггерах с двухступенчатым запоминанием информации? Как работает регистр сдвига на триггерах с динамическим управлением записью?

Входные данные D_R в последовательном коде поступают на вход D триггера нулевого разряда регистра сдвига. Для передачи сигналов из одного разряда в другой (при сдвиге вправо), выход Q тригера разряда i, соединен с входом D, который имет разряд i+1. С каждым тактовым сигналом C, поступающим на входы C всех триггеров регистра, происходит сдвиг разрядов, то есть перезапись.

6. Объясните работу универсального регистра сдвига.

По входам S0 и S1 можно выполнять некоторые операции. Таблицу операций привожу ниже.

S1	S0	Режим работы
0	0	Хранение
0	1	Сдвиг вправо
1	0	Сдвиг влево
1	1	Ввод данных (пареллельный)

Входы D_0 - D_7 — ячейки памяти в регистре. D_R (SR) и D_L (SL) — входы ввода данных в регистр последовательным кодом при сдвигах вправо и влево. Операясь на эти операции, можно реализовать некоторые арифметические операции. А с помощью арифметических операций можно построить что-нибудь более сложное.