01: Fields

Mike Bernard

2021-01-19

Contents

T	Fields	1
2	Characteristics	2
3	Vector Spaces	2

1 Fields

A Field is loosely defined as a number system that models the usual conventions for addition, multiplication, subtraction, and division.

Example 1. Common Fields:

- \mathbb{Q} : Rational numbers; equivalence classes of pairs (m,n) of integers, with $n \neq 0$, such that $\frac{m}{n} = \frac{p}{q}$ iff mq = np.
- R: Real numbers; decimal expansions.
- \mathbb{C} : Complex numbers.

Definition 1. A Field F is a set of elements with:

- an additive identity element, denoted 0 or 0_F to avoid confusion
- a multiplicative identity element, denoted 1 or 1_F to avoid confusion
- an additive operation $+: F \times F \to F$
- a multiplicative operation $\cdot : F \times F \to F$ (oftened shortened from $x \cdot y$ to xy)

$with\ the\ properties\ that:$

- 1. $x + y = y + x \forall x, y \in F$ (additive commutativity)
- 2. $(x+y)+z=x+(y+z)\forall x,y,z\in F$ (additive associativity)
- 3. $x + 0 = 0 + x = x \forall x \in F \ (additive \ identity)$
- 4. $\forall x \in F, \exists -x \in F \text{ s.t. } x + (-x) = 0 \text{ (additive inverse)}$
- 5. $x \cdot y = y \cdot x \forall x, y \in F$ (multiplicative commutativity)
- 6. $(xy)z = x(yz) \forall x, y, z \in F$ (multiplicative associativity)
- 7. $x \cdot 1 = 1 \cdot x = x \forall x \in F$ (multiplicative identity)

- 8. $1 \neq 0$ and $\forall x \in F$ where $x \neq 0$, $\exists x^{-1} \in F$ s.t. $xx^{-1} = 1$ (multiplicative inverse)
- 9. $x(y+z) = xy + xz \forall x, y, z \in F$ (distributivity)

Remark 1. The set of integers \mathbb{Z} is not a field; it violates property 8 under Definition 1 (e.g. 2 does not have an integer multiplicative inverse).

Remark 2. 0 and 1 are always unique in a field.

Example 2. \mathbb{Z}_m is the set of equivalence classes of integers modulo $m, m \geq 2$.

Note that $\mathbb{Z}_2 = \{0,1\}$ meets the properties listed in Definition 1, and is therefore a field. In contrast, \mathbb{Z}_4 is not a field, since $2 \in \mathbb{Z}_4$ does not have a multiplicative inverse.

2 Characteristics

Definition 2. The characteristic of a field is defined as the number of times the multiplicative identity element must be added with itself to yield the additive identity element.

For example, in \mathbb{Z}_2 , 1+1=0, so char $\mathbb{Z}_2=2$.

If the sum never yields the additive identity, we denote the characteristic as 0 by convention. Exemplar fields include \mathbb{Q} , \mathbb{R} , and \mathbb{C} .

Note: Nonzero characteristics are always prime.

Note: Arithmetic geometry studies fields with positive characteristics.

Theorem 1. \mathbb{Z}_m is a field iff m is prime.

Remark 3. Using field axioms, we can obtain all the usual rules of arithmetic, for example,

- $\bullet \ \ 0 \cdot x = 0$
- associativity holds for any finite number of elements (not easily written out)
- subtraction can be defined as x y := x + (-y)

3 Vector Spaces

Definition 3. A set V is a vector space over a field F if it has:

- $\exists \vec{0} \in V \ (zero \ vector)$
- \bullet + : $V \times V \rightarrow V$ (vector addition)
- $\cdot: F \times V \to V$ (scalar multiplication)

with the properties:

- 1. $\vec{x} + \vec{y} = \vec{y} + \vec{x} \ \forall \vec{x}, \vec{y} \in V \ (additive \ commutativity)$
- 2. $(x+y)+z=x+(y+z) \ \forall x,y,z\in V \ (additive \ associativity)$
- 3. $x + \vec{0} = x \ \forall x \in V \ (additive \ identity)$
- 4. $\forall x \in V, \exists x^{-1} \in V \text{ s.t. } x + (-x) = \vec{0} \text{ (additive inverse)}$
- 5. $\alpha(\beta x) = (\alpha \beta)x \ \forall \alpha, \beta \in F, \forall x \in V \ (scalar \ multiplication)$
- 6. $1_F \cdot x = x \ \forall x \in V \ (multiplicative \ identity)$
- 7. $\alpha(x+y) = \alpha x + \alpha y \ \forall \alpha \in F, \ \forall x, y \in V \ (scalar \ distributivity)$
- 8. $(\alpha + \beta)x = \alpha x + \beta x \ \forall \alpha, \beta \in F, \ \forall x \in V \ (vector \ distributivity)$

Remarks on Vector Spaces

- F is called the "scalar field"
- The definition of a vector space V includes by necessity some scalar field F
- In introductory linear algebra, $F = \mathbb{R}$
- Best examples to keep in mind are \mathbb{R}^2 and \mathbb{R}^3
- We won't write arrows for vectors to save time as long as it can be understood that the element is in a vector space
- $\mathbb{R}^1 \cong \mathbb{R}$ is a vector space over \mathbb{R} (i.e. the set of real numbers is a vector space over itself)
- A vector space over $\mathbb R$ is called a "real" vector space
- A vector space over $\mathbb C$ is called a "complex" vector space
- \mathbb{R}^1 and \mathbb{C}^1 are too simple examples to say anything interesting
- $\mathbb{C}[x] = P$, the set of polynomials in variable x with complex coefficients is an infinite-dimensional vector space
- In general, F^n is an n-dimensional vector space over the field F
- \mathbb{C}^n is not just a complex vector space, but also a *real* vector space