A-2. Filtry bierne

wersja 03'2022

1. Zakres ćwiczenia

Celem ćwiczenia jest zrozumienie propagacji sygnałów zmiennych w czasie przez układy filtracji oparte na elementach rezystancyjno-pojemnościowych. Wyznaczenie doświadczalne amplitudowych charakterystyk częstotliwościowych oraz obserwacja odpowiedzi układów RC na sygnał napięciowego skoku jednostkowego.

2. Wstęp

Filtry bierne RC

Filtry bierne RC to układy liniowe zbudowane w postaci czwórników wyłącznie z elementów biernych: rezystorów i kondensatorów. Pełny opis takich układów zawarty jest w funkcji transmitancji operatorowej K(s). Z niej wyprowadzamy dla wymuszenia sygnałem sinusoidalnym zespoloną transmitancje widmową $K(j\omega)$ a następnie amplitudową $K(j\omega)$ oraz fazową $L(K(j\omega))$ charakterystykę częstotliwościową. Posługując się transmitancją operatorową oraz znając postać transformaty Laplace'a funkcji skoku jednostkowego L(t)0 poziomie L(t)1 podawanej na wejście filtru, można wyznaczyć analitycznie kształt odpowiedzi układu w dziedzinie czasu.

Zależnie od sposobu połączenia elementów R i C w czwórniku, uzyskujemy układu filtrów dolnoprzepustowych albo układy filtrów górnoprzepustowych.

Kaskadowe połączenie filtrów tego samego typu zwiększa stromość ich charakterystyk amplitudowo-częstotliwościowych natomiast kaskadowe łączenie filtrów dolno- i górnoprzepustowych o odpowiednio dobranych częstotliwościach granicznych umożliwia realizację, filtrów pasmowoprzepustowych lub pasmowozaporowych.

Czwórniki RC są stosowane również w elektronice impulsowej jako układy formowania impulsów. Zależnie od konfiguracji elementów R i C aproksymowane mogą być operacje różniczkowania bądź całkowania, dość poprawnie w pewnych przedziałach stosunku czasu trwania impulsu wejściowego do stałej czasowej τ obwodu. Dlatego filtry górnoprzepustowe nazywane są także układami różniczkującymi, a dolnoprzepustowe układami całkującymi.

Filtr górnoprzepustowy I rzędu (układ różniczkujący jednobiegunowy)

1) Transmitancja operatorowa i odpowiedź układu na skok napięcia:

$$K(s) = \frac{U_{out}(s)}{U_{in}(s)}$$

$$K(s) = \frac{R}{R + \frac{1}{sC}} = \frac{s}{s + \frac{1}{\tau}}$$

$$U_{in}(t) = U_{M}\mathbf{1}(t)$$

$$U_{in}(s) = \mathcal{L}[U_{in}(t)] = \frac{U_{M}}{s}$$

$$U_{out}(s) = \frac{U_{M}}{s + \frac{1}{\tau}}$$

$$U_{out}(t) = \mathcal{L}^{-1}[U_{out}(s)] = U_{M}e^{-\frac{t}{\tau}}$$

2) Transmitancja widmowa — amplitudowa charakterystyka częstotliwościowa:

Filtr dolnoprzepustowy I rzędu (układ całkujący jednobiegunowy)

1) Transmitancja operatorowa i odpowiedź układu na skok napięcia:

2) Transmitancja widmowa — amplitudowa charakterystyka częstotliwościowa:

Filtr górnoprzepustowy rzędu II

1) Transmitancja operatorowa i odpowiedź układu na skok napięcia:

2) Transmitancja widmowa — amplitudowa charakterystyka częstotliwościowa:

3) Kompensacja przerzutu impulsu w układach rzędu II

Odpowiedź dwustopniowego układu różniczkującego na impuls napięcia jest dla pewnego zakresu czasu t ujemna, tę część odpowiedzi nazywamy przerzutem. Przerzut jest możliwy do zniwelowania. W tym celu modyfikujemy drugi stopień różniczkujący tak aby jego transmitancja operatorowa $K'_2(s)$ posiadała zero¹ funkcji o wartości równej wartości bieguna² funkcji układu pierwszego $K_1(s)$. Taką zamianę, uzyskujemy przez dołączenie oporu kompensującego R'_2 równolegle do pojemności w układzie różniczkującym drugiego stopnia. W ten sposób sprowadzamy transmitancję dwubiegunową całego układu o wartościach biegunów zależnych od τ 1 i τ 2 do postaci jednobiegunowej o wypadkowej stałej czasowej τ 4, dającą asymptotyczne rozwiązanie w dziedzinie czasu.

$$K_1(s) = rac{s}{s + rac{1}{ au_1}}$$
 $K_2'(s) = rac{s + rac{1}{ au_1}}{s + rac{1}{ au}}$
 $au_1 = R_1C_1 = R_2'C_2$
 $au = (R_2' \parallel R_2)C_2$
 $U_{out_2}'(s) = rac{U_M}{s + rac{1}{ au_1}} \cdot rac{s + rac{1}{ au_1}}{s + rac{1}{ au}} = rac{U_M}{s + rac{1}{ au}}$
 $U_{out_2}'(t) = U_M e^{-rac{t}{ au}}$

¹ Zero funkcji wymiernej, to pierwiastek licznika.

² Biegun funkcji wymiernej, to pierwiastek mianownika.

Filtr pasmowoprzepustowy

Filtr pasmowoprzepustowy otrzymujemy łącząc kaskadowo filtr górnoprzepustowy z filtrem dolnoprzepustowym. Częstotliwość graniczna filtru dolnoprzepustowego powinna być większa od częstotliwości granicznej filtru górnoprzepustowego. Szerokość pasma przenoszenia jest wtedy równa różnicy częstotliwości granicznych poszczególnych filtrów. Stromość zboczy charakterystyki amplitudowo-częstotliwościowej jest uwarunkowana rzędem filtrów składowych.

3. Program ćwiczenia

Program ćwiczenia i sposób opracowania sprawozdań zgodnie z wytycznymi prowadzącego.

4. Schemat zestawu do ćwiczenia

(płytka PCB: wersja FILTRY v2, 11'2021)

Schemat blokowy płytki bazowej z buforami separującymi do badania różnych konfiguracji filtrów (badany filtr podłączany jest w miejscu opisanym "FILTR 1" lub "FILTR 2"):

Sposób podłączenia napięcia zasilającego do buforów separujących:

UWAGA: MAKSYMALNA WARTOŚĆ NAPIĘCIA ZASILAJĄCEGO: ±V ≡ ±15V

Schematy poglądowe modułów ćwiczeniowych z różnymi konfiguracjami filtrów biernych:

Uwaga: wartość stałe czasowej badanego filtru definiowana jest poprzez zwarcie odpowiednich pinów złącza J1

Zestawienie elementów dla filtru dolnoprzepustowego:

Symbol	Wartość elementu	Stała czasowa τ @ C ₁ =2.2 nF	Częstotliwość graniczna (wartość przybliżona) @ C ₁ =2.2 nF
R_1	430Ω	0.94 μs	170 kHz
R_2	2kΩ	4.4 μs	36 kHz
R_3	20kΩ	44 μs	3.6 kHz
R_4	200kΩ	440 μs	360 Hz
R_5	430kΩ	940 μs	170 Hz

Zestawienie elementów dla filtru górnoprzepustowego:

Symbol	Wartość elementu	Stała czasowa τ @ R_1 =20 $k\Omega$	Częstotliwość graniczna (wartość przybliżona) @ R ₁ =20 kΩ
C_1	47pF	0.94 μs	170 kHz
C_2	220pF	4.4 μs	36 kHz
C_3	2.2nF	44 μs	3.6 kHz
C_4	22nF	440 μs	360 Hz
C ₅	47nF	940 μs	170 Hz

Poniżej schemat modułu filtru CR z konfiguracją kompensacji:

