Protocol 4: PCR with HOT FIREPol® (Solis BioDyne) for amplification of rRNA and protein-coding genes (Archidona-Yuste *et al.*, 2018)

- Add 1-4 μ l of extracted DNA to a 0.2 ml Eppendorf tube containing 5 μ l of 5× HOT FIREpol® Blend Master Mix (with 10 mM MgCl₂), 0.15 μ l of each primer (1.0 μ g μ l⁻¹), and distilled water to a final volume of 25 μ l.
- Put the tube in the PCR machine with the following thermal profile: an initial denaturation at 95°C for 15 min, 35 cycles of 45 s at 94°C, 45 s at 55°C, and 45 s at 72°C, followed by a final step of 5 min at 72°C. For some specific A + T rich gene region as the *coxII*-16S used for identification of *Meloidogyne* species: an initial denaturation at 95°C for 15 min, 40 cycles of 1 min at 95°C, 1 min at 54°C, and 2 min 30 s at 66°C, followed by a final step of 7 min at 68°C.

Primer combination		Amplified	
and code (direction)*	Primer sequence (5'-3')	region	References
G18SU (f)	GCT TGC CTC AAA GAT TAA GCC	18S rRNA	Blaxter et al. (1998)
R18Tyl1 (r)	GGT CCA AGA ATT TCA CCT CTC		Chizhov et al. (2006)
F18Tyl2 (f)	CAG CCG CGG TAA TTC CAG C	18S rRNA	Chizhov et al. (2006)
R18Tyl2 (r)	CGG TGT GTA CAA AGG GCA GG		
988F (f)	CTC AAA GAT TAA GCC ATG C	18S rRNA	Holterman et al. (2006)
1912R (r)	TTF ACG GTC AGA ACT AGG G		
1096F (f)	GGT AAT TCT GGA GCT AAT AC	18S rRNA	Holterman et al. (2006)
1912R (r)	TTF ACG GTC AGA ACT AGG G		
1813F (f)	CTG CGT GAG AGG TGA AAT	18S rRNA	Holterman et al. (2006)
2646R (r)	GCT ACC ITG TTA CGA CTT TT		
SSUF_04	GCT TGT CTC AAA GAT TAA GCC	18S IRNA	Blaxier et al. (1998)
SSUR_ 69	AGC TGG AATTAC CGC GGC TG		
SSUF_22	TCC AAG GAA GGC AGC AGG C	18S rRNA	Blaxter et al. (1998)
SSUR_13,	GGG CAT CAC AGA CCT GTT A		
SSUF_23	ATT CCG ATA ACG AGC GAG A	18S rRNA	Blaxler et al. (1998)
SSUR_81	TGA TCC WKC YGC AGG TTC AC		
designated	CGC GAA TRG CTC ATT ACA	18S rRNA	Floyd et al. (2005)
Nem_18S_F	ACAGC		
Nem_18S_R	GGG CGG TAT CTG ATC GCC		
18S-CL-F3 28S-CL-R	CTT GTC TCA AAG ATT AAG CCA TGC AT CAG CTA CTA GAT GGT TCG ATT AGT C	18S rRNA + ITS1-5.8S- ITS2 rRNA +	Carta and Li (2018, 2019)
		28S rRNA	
18S (f)	TTG ATT ACG TCC CTG CCC TTT	ITS1-rRNA	Vrain et al. (1992)
rDNA 1.58S (r)	ACG AGC CGA GTG ATC CAC CG		Szalanski et al. (1997)
TW81 (f)	GTT TCC GTA GGT GAA CCT GC	ITS1-rRNA	Curran et al. (1994)
5.8SM5 (r)	GGC GCA ATG TGC ATT CGA		Zheng et al. (2000)
18S (f)	TTG ATT ACG TCC CTG CCC TTT	IFS1-5.8S	Vrain et al. (1992)
26S (r)	TTT CAC TCG CCG TTA CTA AGG	ITS2 rRNA	E
F194 (f)	CGT AAC AAG GTA GCT GTA G	ITS1-5.8S	Ferris et al. (1993)
F195 (r)	TCC TCC GCT AAA TGA TAT G	ITS2 rRNA	Common of 64 (4004)
TW81 (f)	GTT TCC GTA GGT GAA CCT GC	ITS158S	Curran et al. (1994)
AB21 (r)	AFA TGC TTA AGT TCA GCG GGT	ITS2 rRNA	None (1002)
D2A (f)	ACA AGT ACC GTG AGG GAA AGTTG	D2-D3 of 28S rRNA	Nunn (1992)
D3B (r)	TCG GAA GGA ACC AGC TAC TA		
D2Tyl (f)	GAG AGA GTT AAA NAG BAC GTG A	D2-D3 of 28S	Chizhev et al. (2012)
D3B (r)	TCG GAA GGA ACC AGC TAC TA	rRNA	Nunn (1992)
D2A (f)	ACA AGT ACC GTG AGG GAA AGTTG	D2 of 28S rRNA	Nunn (1992)
D2B (r)	GAC CCG TCT TGA AAC ACG GA		
4, forward; r, reverse,			

^{7. 1, 1848126}

Nematede species	Primer code and sequence (5'-3')	Gene fragment	An plitied size	References
			24 A bp	Dougs of of
Aphelenchoides besseyi	Abf5 – ATG TGT AAG TAG AGC GTT	18S IRNA	~ 34 0 bp	Devran et al. (2017)
Desseyi	Abrs – Att CGC CGT TTT TAA GGC G-			(2017)
Aphelenchoides Iragariae	AFragF1 — GCA AGT GCT ATG CGA TCT TCT	ITSTRNA	- 169 bp	McCuiston et al. (2007)
	AfragR1 – GCC ACA TCG GGT CAT TAF			
Aphelenchoides	BSF - TCG ATG AAG AAC GCA GTG	ITS rRNA	~ 208 bp	Cui et al. (2010)
ritzemabosi	AATT			33
	ArtR - CTC CAC ACG CCG ACC GA			
Bursaphelenchus cocophilus	BC1F - AAC TAC CGT CTT CCG CTG TCG	ITS rRNA	~ 52 8 bp	Silva et al. (2016)
	BC1R - TTG AGC ACC AAC ACG CCG TCA			
Bursaphelenchus	FF – GTG ATG GGT TTG CGG GCG	ITS rRNA	~ 617 bp	Filipiak et al.
fraudulentus	GCG			(2010)
	FR - CAA CCA ATG CAC ACC AAC CAA			
Bursaphelenchus mucionattis	MF - TCCGGCCATATCTCTACGAC MR - GTTCAACCAATTCCGAACC	ITS rRNA	~ 210 bp	Matsunaga and Tegashi (2004)
Bursaphelenchus	XF - ACGATGATGCGATTGGTGAC	ITS rRNA	~ 557 bp	Matsunaga and
xylophilus	XR - TATTGGTCGCGGAACAACC		12000	Tegashi (2004)
Bursaphelenchus	YOUR - AGT CCG TGC CTT TGC TCT	SCAR	~ 609 bp	Chen et al. (2011)
mucionattis	AGC YOUR - CCG AAG TGT CTC CAG CGA AAT			
Bursaphelenchus	BZ2 – TCA CGA TGA TGC GAT TGG TG	ITS rRNA	~ 58 0 bp	Jiang et al. (2005)
xylophilus	BF3 – AGA AGA TCT TGG TCG CGG AA		00000	olding of the (2000)
Ditylenchus destructor	D2 - TGG ATC ACT CGG CGG CTC	D2-D3 of	~ 346 bp	Liu et al. (2007)
	GTAGA	28S rRNA		
	D1 - ACT GCT CTG CGT 1TG GCT TCA			
Ditylenchus dipsaci	DINNF1 - TTA TGA CAA ATT CAT GGC GG	ITS rRNA	~ 263 bp	Subbotin et at. (2005)
	rDNA2 - TTT CAC TCG CCG TTA CTA AGG			
Ditylenchus dipsaci	U831 - AAY AAR ACM AAG CCN TYT	Hsp9●	~ 182 bp	Madani et al.
	GGA C			(2015)
	Dipsaci-hsp90R - GWG TTA WAT AAC TTG GTC RGC			
Ditylenchus dipsaci	H05 - TCA AGG TAA TCT TTT TCC CCA	SCAR	~ 242 bp	Esquibet et al.
Difficility ofbadi	CT	SUAN	~ 242 DP	(2003)
	HO6 - CAACTG CTA ATG CGT GCT CT			(2000)
Ditylenchus dipsaci	DdpS1 - TGG CTG CGT TGA AGA GAA	ITS rRNA	~ 517 bp	Kerkoud et at. (2007)
	rDNA2 - TTT CAC TCG CCG TTA CTA AGG			(2007)
Ditylenchus dipsaci	DITURIF – CTG TAG GTG AAC	ITS rRNA	~ 148 bp	Jeszke et al. (2015)
	DITCOPR - GAC ATC ACC AGT GAG CAT			1201
	1.67			
Ditylenchus gigas	D09 - CAA AGT GTT TGA TCG ACT GGA	SCAR	~ 198 bp	Esquibet

Nematode		Gene	Amplified	
species	Primer code and sequence (5'-3')	fragment	size	References
Ditylenchus gigas	DITUNIF - CTG TAG GTG AAC CTG C DITGIGR - GAC CAC CTG TCG ATT C	ITS rRNA	~ 270 bp	Jeszke et al. (2015)
Globodera	PITSI3 - AGC GCA GAC ATG CCG CAA	ITS IRNA	- 434 bp	Bulman and
rostechiensi s	ITS5 – GGA AGT AAA AGT CGT AAC AAGG			Marshall (1997)
Globodera roslochiensis	GGT GAC TCG ACG ATT GCT GT GCA GTT GGC TAG CGA TCT TC	ITS IRNA	~ 391 bp	Multipliand et al. (1996)
Gl•bodera paili∙da	PITSp4 – ACA ACA GCA ATC GTC GAG ITS5 – GGA AGT AAA AGT CGT AAC AAGG	ITS IRNA	~ 265 bp	Bulman and Marshall (1997)
Globodera pallida	GGT GAC TCG ACG ATT GCT GT GCA GTT GGC TAG CGA TCT TC	ITS IRNA	~ 238 bp	Multipliand et al. (1996)
Heter∙dera ave næ	AVEN-COIF - GGGTTTTCG GTTATT TGG AVEN-COIR - CGC CTATCT AAATCT	COI	~ 16 9 bp	Toumi et al. (2013a)
523	ATA CCA		1.27	100m-10
Heter∙dera filipjevi	FILI-COIF - GTA GGA ATA GAT TTA GAT AGT C	COI	~ 245 bp	Touml et al.
	FILI-COIR - TGA GCA ACA ACA TAA TAAG			(2013a)
Heterodera fi Irpjevi	HIF1 - CAG GAC GAA ACT CAT TCA	SCAR	- 646 bp	Peng el al. (2013)
	ACCAA HfR1 – AGG GCG AACAGG AGA AGA TTAGA			
Heterodera latipons	Hlat-actF - ATG CCA TCA TTA TTC CTT Hlat-actR - ACA GAG AGT CAA ATT GTG	actin	~ 204 bp	Toumi et al. (2013b)
Heterodera glyci nes	JBG1 - TGG TT FAGT TAG ATT AAC TAT C	COI	~ 339 bp	Ko et al. (2017)
	JB3R – TCC AAA CTW GCG TTA CTY AG			
Heterodera glycines	SCNFI – GGA CCC TGA CCA AAA AGT TT CCGC	SCAR	~ 477 bp	Os et al. (2008)
	SCNRI – GGA CCC TGA CGA GTT ATG GGCCCG			
Heter•dera glyci nes	GlyF1 – TTA CGG ACC GTA ACT CAA 26S – TTT CAC TCG CCGTTA CTA	IFS IRNA	~ 181 bp	Subbetin el al. (2001)
Heter∙dera schachtiï	AGG JBS1 – GGA TAA TTT ATG CTA TTATC	COI	~ 339 bp	Ko et al. (2017)
	JB3R –TCC AAA CTW GCG TTA			
Heterodera schachtii	SHF6 – GTT CTT ACG TTA CTT CCA AB28 - ATA TGC TTA AGT TCA GCG GGT	ITS IRNA	~ 200 bp	Anúiri et al. (2002)
Hoplotaimus colum bus	Hoc-1f - AAC CTG CTG CTG GAT CAT TA	ITS1 IRNA	~ 580 bp	Bae et al. (2009)
	HC-1r – TCA GCA CACAAT GG TACC			
Hopfolaimus galeatus	Hoc-1f - AAC CTG CTG CTG GAT CAT TA	ITS1 IRNA	- 120 bp	Bae et al. (2009)
	HG-2r – TCC TCG TTC ACA CAT TGACA			

Nematede	Discount and anomaly IS 00	Gene	Amplified	Deference
species	Primer code and sequence (5'-3')	fragment	size	References
Hoplelaimus magnistylus	Hoc-1f – AAC CTG CTG CTG GAT CAT TA HM-3r – AGA CTG GAC GGC CAA AGTT	ITS1 rRNA	~ 34 0 bp	Bae et al. (2009)
Longidorus attenuatus	GenF - TTG ATT ACG TCC CTG CCC TTT GT Latien3 - TTC CCT TTT CCC TGA TTA TAA TTT TCT ATC	ITS1 rRNA	~ 419 bp	Hübschen et al. (2004)
Longidorus elongalus	GenF - TTG ATT ACG TCC CTG CCC TTT GT Leleng1 - TTA TCG TAC GTATTC CCA GTT CT	ITS1 rRNA	~ 847 bp	Hübschen et al. (2004)
Longidorus macrosoma	GenF - TTG ATT ACG TCC CTG CCC TTT GT Lmacro2 - GTT CCC GAC GAT TAT TTT TGT	ITS1 rRNA	~ 705 bp	Hübschen et al. (2004)
Longidorus helveticus	GenF - TTG ATT ACG TCC CTG CCC TTT GT 1hel1 - CCG CAT CTC TTT ATTTCC GAC CAT CAA CC	ITS1 rRNA	~ 369 bp	Hübschen et al. (2004)
Longidorus profundorum	GenF - TTG ATT ACG TCC CTG CCC TTT GT Lprof2 - TTA 1TA T1T TTC AGG CTC TACCTTTCGC	ITS1 rRNA	~ 1071bp	Hübschen et al. (2004)
Longidorus sturtani	GenF - TTG ATT ACG TCC CTG CCC TTT GT Lstur - TTT TCC CCA CTA ATA CTC CCT CGTT	ITS1 rRNA	~ 667 bp	Hübschen et al. (2004)
Meloidogyne arenaria	Far – TCG GCG ATA GAG GTA AAT GAC Rar – TCG GCG ATA GAC ACT ACA AACT	SCAR	~ 42 0 bp	Zijistra et al. (2€00)
Meloidogyne chitwoodi	Fc - TGG AGA GCA GCA GGA GAA AGA Rc - GGT CTG AGT GAG GAC AAG AGTA	SCAR	~ 800 bp	Zijistra (200€)
Meloidogyne enteralobii	Me-F - AACTITTGTGAAAGTGCCGCTG Me-R - TCAGTTCAGGCAGGATCAACC	IGS rRNA	~ 200 bp	Long et al. (2006)
Meloidogyne exigua	Ex-D15-F — CAT CCG TGC TGT AGC TGCGAG Ex-D15-R — CTC CGT GGG AAG AAA GACTG	SCAR	562 bp	Randig et al. (2002)
Meloidogyne fallax	Ff - CCA AAC TAT CGT AAT GCA TTA TT Rf -GGA CAC AGT AAT TCA TGA GCTAG	SCAR	~ 515 bp	Zijistra et al. (2000)
Meloidogyne ha p la	Fh – TGA CGG CGG TGA GTG CGA Rh – TGA CGG CGG TAC CTC ATAG	SCAR	610 bp	Zijistra (200€)
Meloidogyne incognita	Fine – CTC TGC CCA ATG AGC TGTCC RIUC – CTC TGC CCT CAC ATT AGG	SCAR	~ 1200 bp	Zijistra et al. (2000)

Nemaiode	Discourse (F. Or)	Gene	Amplified	Defenses
species	Primer code and sequence (5'-3')	fragment	size	References
Meleidegyne incegnita	MLF – GTG AGG ATT CAG CTC CCC AG MLR – ACG AGG AAC ATA CTT CTC CGTCC	SCAR	~ 955 bp	Meng et al. (2004)
Meleidegyne incegnita	F-TAG GCA GTA GGTT GT CGG G R-CAG ATA TCT CTG CAT TGG TGC	SCAR	~ 1350 bp	Dong et al. (2001)
Meloidegyne incegnita	Inc-K14-F – GGGATG TGT AAA TGCTCCTG Inc-K14-R – CCC GCT ACA CCC TCA ACTTC	SCAR	~ 399 bp	Randig et al. (2002)
Meleidegyne javanica	Fjav – GGT GCG CGA TTG AAC TGAGC Rjav – CAG GCC CTT CAG TGG AAC TAT AC	SCAR	~ 62 0 bp	Zijlstra et al. (200€)
Meloidegyne naasi	N-ITS - CTC TTT ATG GAG AAT AAT CGTR195 - CCT CCG CTT A CTGAT ATG	ITS IRNA	433 bp	Zijistra et al. (2004)
Nacebbus spp	NacF - GAT CAT TAC ACG TAC CGT GAT GGTC NacR - CTG CTC AAC CAC GCA TAG ACG	ITS IRNA	141-173 bp	Atkins et al. (2005)
Paralongidorus maximus	GenF - 1TG ATT ACG TCC CTG CCC TT TGT Pmax1 - TGC ATT TCA CCA CTT CTC ACTC	ITS1 rRNA	- 6 49 bp	Hübschen et al. (2004)
Paratrichoderus allius	BL18 – CCC GTC GMT ACT ACC GATT PAR2 - CCG TYC AAA CGC GTA TAT GAT C	ITS IRNA	~ 432 bp	Riga et al. (2007)
Paratrichoderus teres	BL18 – CCC GTC GMT ACT ACC GAT T PTR4 – CCT GAC AAG CTT GCA CTAG C	ITS IRNA	~ 677 bp	Riga et al. (2007)
Pratylenchus brachyurus	18S - TTG ATT ACG TCC CTG CCC TTT ACM7R - GCW CCA TCC AAA CAA YGA G	ITS1 rRNA	~ 267 bp	Machade et al. (2007)
Pratylenchus b∙tivianus	TW81 - GTTTCC GTA GGT GAA CCT GC P-bolivR1 -ATA GCG CAC TGG CGC AGCATA	ITS IRNA	~ 295 bp	Troccoli et al. (2016)
Pratylenchus crenatus	PCR22 (f) – AAA GCC TGA ATG CCC TGA G PCR22 (r) – AAA TTG AAA GAG GTC GGT CGT	ITS IRNA	~ 610 bp	Mekete et al. (2011)
Pratylenchus jaehni	Pj1F – TGG TCA ATG AAT GTT ACG 5818 – ACG ARC CGA GTG ATC CAC	ITS1 rANA	~ 476 bp	Censoli et al. (2012)
Pratylenchus neglectus	PNEG –ATG AAA GTG AAC ATG TCC TC D3B, TCG GAA GGA ACC AGC TAC TA	D3 of 28S rBNA	~ 290 bp	Al-Banna et al. (2004)
Pratylenchus neglectus	D3B -TCG GAA GGA ACC AGC TAC TA PNEG-F1 – CGC AAT GAA AGT GAA CAATGTC	D3 of 28S rRNA	~ 144 bp	Yan et al. (2008)

Nematede species	Primer code and sequence (5'-3')	Gene fragment	Amplified size	References
Pratylenchus oleae	Poleae-fw1 – GAC AGA TTA GAA TGG AAT CTGTTCG Poleae-iv1 – ATC GCT TTT GGA TTC AATAAT ATA	ITSTRNA	~ 547 bp	Palemares-Rius et al. (2014)
Pratylenchus parazeae	PpzF – CTG CTG CTG GAT CAF TAC ATT PpzR – TCA AAT AGA CAT GCC CCA AT	ITS rRNA	~ 570 bp	Wang et al. (2015)
Pratylenchus penetrans	PPEN – TAA AGA ATC CGC AAG GAT AC D3B -TCG GAA GGA ACC AGC TAC TA	D3 of 28S rRNA	~ 278 bp	Al-Banna et al. (2004)
Pratylenchus penetrans	PP5 (f) -ACA TGG TCG ACA CGG TGA TA PP5 (f) - TGT TGC GCA AAT CCT GTT TA	beta-1,4 endoglu- canase	~ 520 bp	Mekete et al. (2011)
Pratylenchus penetrans	PpenA – TGA CTA TAT GAC ACA TTT RAACTTG AB28 -ATA TGC TTA AGT TCA GCG GGT	ITSTRNA	~ 660 bp	Waeyenberge etal (2009)
Pratylenchus penetrans	PP1 – ATG ATG GAA GTG TCC GCC T PP2 – CCC AAC GAC GGT CAA AAG G	ITSTRNA	~ 462 bp	Uehara et al. (1998)
Pratylenchus scribneri	PSCR - AAA GTG AAC GTT TCC ATT TC	D3 of 28S rRNA	~ 286 bp	Al-Banna et al. (2004)
Pratylenchus scribneri	D3B -TCG GAA GGA ACCAGC TAC TA PsF7 - AGT G1T GCT ATA ATT CAT GTAAAG TTGC PsR7 -TGG CCA GAT GCG ATT CGA GAG GTGT	ITS rana	~ 136 bp	Huang and Yan (2017)
Pratylenchus speijeri	TW81 - GTT TCC GTA GGT GAA CCT GC speijeri-specific - GTG CAC TGA TGT TAT TAT GTA TGG	ITS rRNA	~ 102 bp	De Luca et al. (2012)
Pratylenchus thomei	PTHO – GAA AGT GAA GGT ATC CCT CG D3B -TCG GAA GGA ACCAGC TAC TA	D3 of 28S rRNA	~ 288 bp	Al-Banna et al. (2004)
Pratylenchus thomei	Pthr - TCC AAA ATG AAA TAA AAA PTAA AAAAAAAAAAAAAA	SCAR	~ 1078 bp	Carrasco- Ballesteros et al. (2007)
Pratylenchus vulnus	PVUL – GAA AGT GAA CGC ATC CGC AA D3B -TCG GAA GGA ACC AGC TAC TA	D3 of 28S rRNA	~ 287 bp	Al-Banna et al. (2004)
Pratylenchus zeae	1W81 - GTT TCC GTA GGT GAA CCT GC P-zeaeR1 - TAC GCA TAC RGT TCT GCT CAT	ITS rana	~ 560 bp	Troccoli et at. (2016)
Radopholus similis	PF – CTA CAA ATG TGA CGC GAA PR – CAA TCT GCA CAA TGA ACA TAC	ITS rRNA	~ 500 bp	Liu et al. (2011)
Radopholus similis	RsimF – GAT TCC GTC CTT TGG TGG GCA RsimR – GAA CCA GGC GTG CCA GAG G	ITS rRNA	~ 398 bp	Ravindran et al. (2011)

Nematode species	Primer code and sequence (5'-3')	Gene fragment	Amplified size	References
Rotylenchulus renifonnis	Ren240F – ACC GGC TTA ATT GCA ATGGT	ITS rRNA	~ 240 bp	Sayler et al. (2®12)
	Ren240R – ACA ACT GCT CAA CAA CGCAG			
Rotylenchulus reniformis	D2A - ACA AGT ACC GTG AGG GAA AGTTG	D2-D3 of 28 S rBNA	~ 142 bp	Van den Berg et al. (2016)
751.116771116	Rrenif-R1A - GAA AAG GCC TAC CCA	200 111111		0. 2. (20.0)
Rotylenchus robustus	TW81 - GTT TCC GTA GGT GAA CCT G CR-robustus - GACGTGGACATCAL'ACAGTC	ITS rRNA	~ 438 bp	Cantalapied ra- Navarrete et al. (2813)
Scutellonema bradys	TW81 - GTT TCC GTA GGT GAA CCT GC	ITSrRNA	~ 250 bp	Van den Berg et al. (2013)
	S-bradys – GTG ATG GCT AAA CCA CAT TC			
Scutellonema	TW81 - GTT TCC GTA GGT GAA CCT	ITS rRNA	~ 185 bp	Van den Berg
brachyurus	S-brachyur ustype A – GCT GAA GTG ACA GCC CAA CTT			et al. (2013)
Tylenchutus semipenetians	TW81 - GTT TCC GTA GGT GAA CCT GC Semipenetrans – GGA CTC TGC TCA	ITS rRNA	~ 113 bp	Tanha Maafi et al. (2012)
Xiphinema	ACCTGG TAGA TW81 - GTT TCC GTA GGT GAA CCT	ITS TRNA	~ 864 bp	Chizhev et al.
diversicaudatum	GC Xip-diver-ITS - GAA TAA ACA CCTTTC AAC GCTC			(2•14)
Xiphinema index	127 – GAG TCG TAA CGT TTC TCG TCT ATCAGG	ITS rRNA	~ 340 bp	Wang et al. (2€03)
	A-ITS1 – GAA TAG CCA CCT AGT GAG CCGAGCA			
Xiphinema vuittenezi	V18 – GTG GAA CGA AAA GACCTC	ITS rRNA	~ 591 bp	Wang et al. (2€03)
	A-ITS1 – GAA TAG CCA CCT AGT GAG CCGAGCA			,,
Xiphinema italiae	ITA26 – GAA ATA AGA ACC CTG AAA AAG ATA GG	ITS rRNA	~ 414 bp	Wang et al. (2●03)
	A-ITS1 – GAA TAG CCA CCT AGT GAG CCGAGCA			