Algorithm Analysis - Introduction

Outline

Introduction

RAM Model

Running time

Analysis - examples

One Problem - Multiple solutions

- Sorting Problem Algorithms
 - Bubble Sort
 - Selection Sort
 - Insertion Sort
 - Merge, Quick, Heap ...
- Which one to choose?
- Basis for your choice?

Choosing a solution

Easy to understand and code

Resource usage - Processor time, Memory Space

Analyzing the algorithms

- Analyzing the algorithms means predicting the resources the algorithm uses
- What are the resources? Computational time and Memory for storage
- . Why do we analyze algorithms?
- Analyzing several algorithms for a particular problem results in the most efficient algorithm in terms of computational time/memory

Calculate Running Time

- Write program, Measure the actual execution time
 - Dependent on implementation language, machine, compiler,...
 - Nature of input test cases
- Calculate before coding (Apriori Analysis)
 - Implementation independent
 - Theoretical-based on a machine model

Analyzing the algorithms

- A bench mark / model of the implementation technology and the resources of that technology and their costs
- We assume a generic one processor Random Access Machine (RAM) model of computation
 - We use RAM as an implementation technology
 - Our algorithms will be implemented as computer programs
 - Instructions are executed one after another, with no concurrent operations

RAM model

As it will be tedious to define each and every operation of RAM and its costs, we assume a realistic RAM

- RAM contains instructions commonly found in real computers such as:
 - Arithmetic: eg: add, subtract, multiply, divide, remainder, floor, ceil
 - Data movement: eg: load, store, copy
 - Control: conditional & unconditional branch, subroutine call and return

Random-Access Machine (RAM) model

Single Processor Machine model

 Instructions for arithmetic, data movement, transfer of control - each taking a constant amount of time

Instructions executed one after the other, no concurrent operations

Running time of Instructions:

```
. . .
```

$$a = 0$$

.

$$b = a$$

. . . .

$$z = x + y$$

. . . .

return x

- Each statement is translated to a set of primitive operations or steps
- Running time depends on the number of primitive operations

Primitive Operations

Pseudocode statement: z = x + y

Translated code (for a hypothetical machine)

load r1, x // loads contents of memory location x to register r1 load r2, y // loads contents of memory location y to register r2 add r1, r2 // adds contents of r1 and r2, stores result in r1 store z, r1 // // moves data in r1 to memory location z

- z = x + y required 4 machine instructions
- Number of steps different for different types of statements

Running Time of an Algorithm

 Running time on a particular input is the number of primitive operations or steps executed

A constant amount of time for each line in the pseudocode

The ith line takes time c_i where c_i is a constant

Example

sample(a, b)		Cost	times
1.	c = a - b	- c1	1
2.	temp = a	c2	1
3.	a = b	с3	1
4.	b = temp	c4	1
5.	return c	c5	1

Running Time = c1 + c2 + c3 + c4 + c5

Example

Array-Sum(A)	Cost	times
1. sum = 0	c1	1
2. for i = 1 to A. length	c2	n + 1
3. sum = sum + A[i]	- c 3	n
4. return sum	_ c4	1

Running Time = ???

Example

Running Time =
$$c1 + c2(n + 1) + c3n + c4$$
 // A. length is n
= $(c2 + c3)n + (c1+c2+c4)$
= $an + b$, linear

Calculate Running Times of the following algorithms....

Linear-Search(A, key)

- 1. for i = 1 to A. length
- 2. if A[i] == key
- 3. return i
- 4. return −1

Calculate Running Times of the following algorithms....

Count-Occurrence(A, key)

- 1. count = 0
- 2. for i = 1 to A. length
- 3. if A[i] == key
- 4. count = count + 1
- 5. return count

Calculate Running Times of the following algorithms....

5 return count

Running time =
$$c_1 + c_2(n+1) + c_3n + c_4n + c_5$$

- Running time on an input of n items
- ightharpoonup T(n), running time as a function of input size, n
- ightharpoonup T(n) = an + b, a linear function of n

Search-Multiple(A, B)

- 1. count = 0
- 2. for i = 1 to B. length
- 3. key = B[i]
- 4. for j = 1 to A. length
- 5. if A[i] == key
- 6. count = count + 1
- 7. return count