Debiasing Polynomial and Fourier Regression

Chris Camaño Raphael A. Meyer Kevin Shu

Polynomial Regression

We want to approximate a real-valued function f using a degree d polynomial \hat{p} . We can evaluate f(t) for any $t \in \mathbb{R}$, and want near-minimal residual:

$$||f - \hat{\rho}||_{\mu}^{2} \leq (1 + \varepsilon) \min_{\deg(\rho) \leq d} ||f - \rho||_{\mu}^{2}$$

where $||f||_{\mu}^{2} = \int |f(t)|^{2} \mu(t) dt$.

Prior Work

If you sample $n=\mathcal{\tilde{O}}(d/\varepsilon)$ samples iid from the μ -leverage score distribution τ_{μ} , then we can recover a near-optimal polynomial.

- (+) Near-optimal sample complexity!
- (-) Resulting polynomial is *BIASED*:

$$\mathbb{E}[\hat{p}] \neq p^* := \underset{\deg(p) \leq d}{\operatorname{argmin}} \|f - p\|_{\mu}$$

Our Contribution

For many measures μ , we can easily debias leverage score sampling.

- (+) Near-optimal sample complexity!
- (+) Unbiased!
- (+) Much lower error for small sample sizes!

Algorithm

The μ -Unitary Ensemble (μ -UE) is the distribution over complex Hermitian matrices $\mathbf{X} \in \mathbb{C}^{d+1 \times d+1}$ with pdf

$$q(\mathbf{X}) \propto \prod_{i=1}^{d+1} \mu(\lambda_i(\mathbf{X})).$$

Debiased Regression

- 1. **Sample** Hermitian $\mathbf{X} \in \mathbb{C}^{d+1 \times d+1}$ from μ -UE
- 2. **Compute** eigenvalues t_1, \ldots, t_{d+1} of **X**
- 3. **Sample** t_{d+1}, \ldots, t_n iid from distribution τ_{μ}
- 4. **Return** interpolating polynomial with

$$\hat{p} = \underset{\deg(p) \leq d}{\operatorname{argmin}} \sum_{i=1}^{n} \frac{1}{\tau_{\mu}(t_i)} |f(t_i) - p(t_i)|^2$$

Results

Debiased regression is fast, data-efficient, and works for many $\boldsymbol{\mu}$ distributions!

Figure 1: For each method, dashed lines shows empirical mean of $\hat{p}(t)$ across $100,\!000$ trials, with shaded intervals showing 1 standard deviation. Leveraged sampling is visibly biased while our method is not.

Fast & Easy Sampling

Sampling $\mathbf{X} \in \mathbb{C}^{d+1 \times d+1}$ from the μ -UE distribution seems hard. But sometimes it's easy:

Random Matrix Models [Dumitriu Edelman' 03]

Let $extbf{ extit{T}} \in \mathbb{R}^{d+1 imes d+1}$ be symmetric tridiagonal with

- Diagonal entries $\alpha_i \sim \mathcal{N}(0,1)$
- Off-diagonal entries $eta_i \sim \chi_{2i}$

Then the eigenvalues of **T** are distributed as the eigenvalues of **X** if $\mu = \mathcal{N}(0,1)$.

- (+) Computing eigenvalues of T takes $O(d \log d)$ time!
- (+) Similar results hold for uniform distribution, beta distribution, chi-squared distribution, and more!

Why does it work?

To subsample-then-solve any least-squares problems without bias, [Derezinksi et al.] show that sampling from the *P-DPP* and leverage scores of the rows of **A** suffices. We observe that the P-DPP for polynomial regression is exactly distributed as eigenvalues of a μ -UE.

Fourier Regression

Consider a periodic function $f:\{e^{i\theta}:\theta\in[0,2\pi)\}\to\mathbb{C}$ we want to approximate with a Fourier series \hat{p} of degree d. We use similar ideas to also debias this problem.

