ATIVIDADE FITORREMEDIADORA DA ESPÉCIE Melissa officinalis EM SOLO CONTAMINADO POR CHUMBO

Caroline Machado da COSTA⁽¹⁾; Edson Valente CHAVES⁽²⁾

- (1) Instituto Federal de Educação, Ciência e Tecnologia do Amazonas (IFAM), Av. Sete de Setembro, 1975, Centro, Manaus, Amazonas, email: gatinha_ machado@hotmail.com
- (2) Instituto Federal de Educação, Ciência e Tecnologia do Amazonas (IFAM), Av. Sete de Setembro, 1975, Centro, Manaus, Amazonas, email: edson_valente@yahoo.com.br

RESUMO

O objetivo deste trabalho foi de avaliar limites de contaminação por chumbo pela espécie *Melissa officinalis* que normalmente é utilizada na medicina popular. O experimento foi realizado na casa de vegetação da Universidade Federal do Amazonas (UFAM), utilizando mudas da espécie e solo natural. No solo, antes do plantio, foi determinado o pH, a granulometria, matéria orgânica e alumínio trocável. 3kg do solo amostrado foi acondicionado e vasos de polietileno de 5 kg e posterior plantio da espécie. Após dois meses de aclimatização da espécie foram adicionados doses de chumbo (Pb) de o (controle), 3, 6, 9, 12 e 15 mg L⁻¹ Durante dois meses foi acompanhado o desenvolvimento da planta. Depois de dois meses de plantio as mudas foram coletadas, separadas em raiz e parte aérea. Foram secadas e digeridas com mistura de ácidos concentrados HNO₃ e HClO₄ (4:1) e as concentrações de Pb medidas por FAAS. A espécie *Melissa officinalis* apresentou tolerância até a dosagem de 6 mg L-1 de contaminação por Pb, acima dessa concentração a planta apresenta níveis de toxidez apresentando clorose e necrose. A *Melissa officinalis* foi classificada como fitoextratora para Pb e quando utilizada nesta situação na medicina popular constitui um risco para a saúde pública

Palavras-chave: Melissa officinalis, Fitorremediação, Chumbo.

1. INTRODUÇÃO

A recuperação de áreas contaminadas, pelas atividades humanas, pode ser feita através de vários métodos, tais como escavação, incineração, extração com solvente, oxidoredução e outros que são bastante dispendiosos. Alguns processos deslocam a matéria contaminada para local distante, causando riscos de contaminação secundária e aumentando ainda mais os custos com tratamento. Por isso, em anos recentes passou-se a dar preferência por métodos in situ que perturbem menos o ambiente e sejam mais econômicos. Dentro deste contexto, a biotecnologia oferece a fitorremediação como alternativa capaz de empregar sistemas vegetais fotossintetizantes e sua microbiota com o fim de desintoxicar ambientes degradados ou poluídos (CUNNINGHAM et al., 1996).

A fitorremediação consiste na utilização de plantas que sejam capazes de remover, transferir ou destruir elementos nocivos de solos e águas contaminadas. As plantas que possuem essa capacidade de retirar os metais pesados do solo absorvem esses elementos e os acumulam em galhos e folhas. Elas secretam em suas raízes uma substância que as tornam os metais pesados solúveis em água e assim elas os absorvem pelas raízes e depois os acumulam em suas partes aéreas (CHAVES e SANTANA, 2008).

As substâncias alvos da fitorremediação incluem metais (Pb, Zn, Cu, Ni, Hg, Se), compostos inorgânicos (NO₃⁻ NH₄⁺, PO₄³⁻), elementos químicos radioativos (U, Cs, Sr), hidrocarbonetos derivados de petróleo (BTEX), pesticidas e herbicidas (atrazine, bentazona, compostos clorados e nitroaromáticos), explosivos (TNT, DNT), solventes clorados (TCE, PCE) e resíduos orgânicos industriais (PCPs, PAHs), entre outros. A concentração do poluente e a presença de toxinas devem estar dentro dos limites de tolerância da planta usada para não comprometer o tratamento. Riscos como a possibilidade dos vegetais entrarem na cadeia alimentar, devem ser considerados quando empregar esta tecnologia (CUNNINGHAM et al., 1996).

Um vegetal é um ser vivo e está sujeito às influências do ambiente que podem afetar de diferentes formas seu metabolismo. É indiscutível a importância do solo transferindo água, sais minerais, nutrientes e, sob determinadas condições, elementos não benéficos como metais pesados. Estima-se que 80% da população

dos países em desenvolvimento, onde a pobreza é a principal responsável pela falta de condições mínimas de higiene e saúde (água potável, medicamentos e instalações sanitárias), é completamente dependente da medicina caseira (BRAZ-FILHO, 1994). Essas pessoas são as principais vítimas potenciais do uso incorreto de plantas medicinais. Este trabalho teve como objetivo avaliar limites de contaminação por chumbo pela espécie *Melissa officinalis* que normalmente é utilizada na medicina popular.

2. FUNDAMENTAÇÃO TEÓRICA

Em termos de poluição ambiental, os metais podem ser classificados de acordo com três critérios: a) não crítico; b) tóxico, mas muito solúvel ou raro e c) muito tóxico e relativamente acessível (Tabela 1).

Tabela 1 – Classificação de alguns elementos de acordo com a toxicidade na fauna e flora.

Toxidade	Elementos
Não crítico	Na, K, Mg, Ca, H, O, N, C, P, Fe, S, Cl, Br, F, Li, Rb, Sr, Si
Tóxico	Ti, Hf, Zr, W, Nb, Ta, Re, Ga, La, Os, Rh, Ir, Ru, Ba, Al
Muito tóxico	Be, Co, Ni, Zn, Cu, Sn, As, Se, Te, Pd, Ag, Cd, Pt, Au, Hg, Tl, Pb, Bi

Fontes: Forster e Wittmann (1983) e Oliver, (1997).

A toxicidade dos metais é uma questão de dose ou de tempo de exposição, da sua forma físico-quimica e da via de administração e/ou absorção. O seu caráter tóxico depende da interação com o organismo vegetal, normalmente ocorrendo em três etapas: i) estágio de entrada e absorção; ii) estágio no organismo, onde ocorrem transporte, a distribuição, acumulação, biotransformação e efeito ocorrem; e iii) estágio de saída do organismo. Em cada um desses estágios, encontram-se elementos em diferentes formas químicas e físicas, cujas características anatômicas e propriedades fisiológicas dos órgãos ou sistema são apropriadas para as diversas interações observadas nos organismos (DINARDI et al., 2003).

Segundo Warman e Copper (2000), particularmente no solo, os metais podem estar na forma solúvel, fixada pelos minerais, precipitada com outros componentes, na biomassa e complexada com alguns componentes da matéria orgânica. A atividade de um dado metal na solução do solo é determinada pelo seu equilíbrio com as partículas de argila, hidróxido de ferro, alumínio, manganês e quelantes solúveis.

Entre os metais que apresentam atividades na solução do solo encontra-se o chumbo (Pb). Kabata-Pendias e Pendias (2000), afirmaram que as características geoquímicas do Pb se assemelham ao metais alcalinos terrosos. Este fato explica a habilidade deste metal substituir isomorficamente K, Ba, Sr e Ca em minerais e deslocá-los em sítios de sorção. Por isso, o Pb é considerado um dos metais pesados com menor mobilidade, sendo acumulado naturalmente nos horizontes superficiais (FRANCHINI et al., 1999).

FITORREMEDIAÇÃO

A técnica da fitorremediação tem como objetivo a descontaminação de solo e água, utilizando as plantas como agente de descontaminação. Após extrair o contaminante do solo, a planta armazena-o em sua estrutura para tratamento subsequente, quando necessário, ou mesmo metaboliza-o, podendo, em alguns casos, transformá-lo em produtos menos tóxicos ou mesmo inócuos. Pode ser empregada em solos contaminados por substâncias inorgânicas e/ou orgânicas, com resultados promissores obtidos para metais pesados (PIRES et al., 2001).

A fitorremediação pode ser utilizada sozinha ou associada a outras técnicas, e é ideal para níveis baixos e médios de contaminação. Possui elevada relação custo-benefício quando comparada com outras técnicas, como exemplo aeração do solo ou escavação, pode ser aplicada em grandes áreas e tem boa aceitação pública. Estudos realizados na Suécia relatam que a espécie *Salix vitaminalis*, cultivada em áreas, a 500 m de uma fábrica de bateria, reduziu a concentração de Pb no solo em mais de 60%, após três anos de plantio (MAGNUS, 1994).

Investimentos em pesquisa e desenvolvimento de tecnologia estenderam o potencial da comunidade vegetal para uma gama de poluentes, introduzidos que variam desde nutrientes até metais pesados e compostos químicos orgânicos de origem antropogênica. Estes estudos demonstraram que, além de potencializar a

biodegradação no solo, espécies de plantas aquáticas, herbáceas, arbustivas e arbóreas são capazes de remover, biocumular e também destoxificar as mais diferentes classes de compostos químicos (SCHNOOR et al, 1995; MORENO, 2001). O processo de absorção de metais pesados por plantas depende de vários fatores, como: concentração do metal no solo (solos com maiores concentrações de metal favorecem a acumulação destes nas plantas), solubilidade em água (compostos mais solúveis em água são mais facilmente remediados) e da espécie cultivada (algumas espécies são seletivas a determinados metais).

A concentração e o acúmulo de metais nos tecidos das plantas dependem da sua disponibilidade na solução do solo. As espécies tolerantes, geralmente acumulam maiores concentrações de metais pesados nas raízes em relação à parte aérea. Desta forma, procuram-se espécies que apresentem esta característica; ou seja, que possam reter quantidades elevadas de metais pesados em suas raízes e que evitem a translocação o metal para a parte aérea. Evitando assim, que o metal interfira em seus processos metabólicos (BAKER, 1987 e GUSSARSSON et al., 1991).

Há espécies que apresentam diversos mecanismos que reduzem a disponibilidade na rizosfera, a retenção dos metais na parede celular ou na superfície da raiz e a imobilização do metal no citoplasma, diminuindo a atividade tóxica do metal na planta (MAGNUS, 1994).

No Brasil constatou-se a presença altos níveis de chumbo em algas marinhas coletadas no litoral do Rio de Janeiro e sugeriu-se tratar de uma bioacumulação que interfere nos mecanismos de defesa das algas contra os herbívoros, já que os metais pesados são quelados pelos taninos e estes deixam então de conferir sabor amargo às algas, facilitando a herbívora (SANTOS et al, 1994). Grill et al, (1987) citado por Harbone (1992) observou que de uma maneira genérica plantas tolerantes a metais pesados possuem constantemente peptídeos ligados a estes metais e sugeriu que os mesmo poderiam ser induzidos pela adição destes metais ao meio de cultivo. O autor os chamou de fitoquelatinas.

3. METODOLOGIA

O experimento foi realizado em casa de vegetação da UFAM, utilizando mudas de Melissa officinalis e amostras de solos não contaminados, ambos coletados na fazenda da UFAM. Na amostra de solo foi realizada a determinação de pH, areia, silte, argila, matéria orgânica (M.O) e alumínio trocável (H⁺ e Al³⁺) seguindo o método sugerido pela EMBRAPA (1999). O solo utilizado foi acondicionado em vasos de polietileno de 5 kg, contendo, aproximadamente, 3 kg de solo, onde foram feito o plantio da espécie Melissa officinalis por um período de dois meses para sua aclimatização. Após dois meses de plantio da espécie, foram adicionados doses de solução de Pb [Pb(NO₃)] com as seguintes concentrações: 0 (controle); 3; 5; 9; 12 e 15 mg L⁻¹. Durante esse tempo foi feita uma avaliação periódica do desenvolvimento das plantas (altura, sobrevivência e sintomas de toxidez). Depois de dois meses as mudas foram coletadas e separadas em raiz e parte aérea (caule e folhas), lavada com água deionizada, armazenadas e identificadas em sacos de papel de 1 kg. As amostras foram secas ao ar, em estufa com circulação e renovação de ar a uma temperatura de 65 °C por 48 horas e moídas em moinho Tipo Willye. Cerca de 0,50 g das partes da plantas foram digeridas com a mistura de ácidos concentrados HNO3 e HClO4 (4:1) em microdigestor a 200 °C por duas horas ou até completo clareamento do extrato, e a concentração de Pb foram medida por FAAS em espectrômetro de absorção atômica (GBC, modelo AAS 932 PLUS) pelo método direto e chama de ar/acetileno (MALAVOLTA, 1997). Todas as análises foram feitas em triplicatas.

4. RESULTADOS E DISCUSSÃO

Os resultados apresentados na Tabela X mostraram que o solo utilizado no experimento, possui característica argilosa e sendo levemente ácido. Características encontradas em Latossolos Amarelos estudados no Amazonas, que não passaram por influência antrópicas (VALLE, 1998; CHAVES, 2008). O solo controle, por possuir valor de pH de 4,9 e um valor de MO em torno de 9,4 mg L⁻¹, tem tendência de formar complexos orgânicos, o que torna o Pb mais biodisponível para as plantas (USEPA, 2005 e CHAVES e SANTANA, 2008).

Tabela 2 – Parâmetros físico-químicos e químicos do solo controle.

Parâmetros	Solo Controle
pH em água	$4,9_{(0,3)}$
Areia (%)	$12,0_{(0,9)}$
Silte (%)	11,0 _(0,7)
Argila (%)	77,0 _(3,0)
$MO(g kg^{-1})$	$9,4_{(0,7)}$
(H ⁺ e Al ³⁺) (C mol dm ⁻³)	17,1 _(0,8)

() desvio padrão em triplicata

A avaliação da espécie durante os dois meses de contaminação por Pb, mostrou que a planta se desenvolveu muito bem com as dosagem de 3 e 6 mg L⁻¹, não apresentando níveis (Figura 1a). Entretanto com as dosagens de 9 mg L⁻¹ em diante a planta apresentou folhas com clorose e necrose, sendo as esses níveis de contaminação prejudicial a espécie estudada (Figura 1b).

Segundo Utriainen et al. (1997), as plantas que crescem em aéreas contaminadas necessitam de mecanismos de tolerância em suas raízes para sobreviverem e crescerem. Em geral, existem dois tipos de tolerância: aquela que previne a absorção em excesso de íons de metal (exclusão) e a habilidade de conviver com altas concentrações dos metais nos tecidos (tolerância). Um dos fatores responsável pela toxidez das espécies em aéreas contaminadas é a contaminação por metais pesados, que dependendo de suas concentrações, afeta o crescimento das plantas (MAGNUS, 1994).

Figura 1 – Espécie *Melisa officinalis* após dois meses com dosagem de Pb. (a) aparência da planta com dosagem de até 6 mg L⁻¹ e (b) acima de 9 6 mg L⁻¹.

Os valores da concentração de Pb pela espécie *Melissa officinalis* no cultivo, após fitorremediação, permitiu observar o potencial de acumulação do metal pela planta (Tabela 3). A espécie foi capaz de absorver Pb na raiz e na parte aérea para todos os valores de concentração adicionados do experimento, sendo esses valores maiores na raiz. É possível observar que esses valores foram crescentes até a dose de 9 mg L⁻¹ de Pb adicionado (não na mesma proporção) e tornando-se constante a partir desse valor. Segundo estudos

realizados por Freire (2005), a espécie *Melissa officinalis* apresentou uma concentração entre 1,4 a 1,8 mg L⁻¹ de Pb encontrado em suas folhas.

Tabela 3– Concentração (mg/L) de Pb adicionado e presente, após fitorremediação pela espécie *Melissa officinalis*.

Dh adicionado (mg/L)	Pb presente na <i>Melissa officinalis</i> após fitorremediação (mg/L)		
Pb adicionado (mg/L)	Raiz	Parte Aérea	
0	ND	ND	
3	$0,70_{(0,10)}$	$0,60_{(0,12)}$	
6	$2,10_{(0,9)}$	1,01 _(0,10)	
9	2,55 _(0,20)	$1,39_{(0,08)}$	
12	2,53 _(0,31)	1,67 _(0,12)	
15	2,41 _(0,35)	1,65 _(0,14)	

⁽⁾ desvio padrão em triplicata

A taxa de absorção de Pb pela espécie *Melissa officinalis* utilizada no cultivo permitiu observar o potencial de acumulação do metal pela parte aérea e raiz da planta (Figura 2). No geral, a planta foi capaz de acumular o metal tanto na raiz como na parte aérea, sendo maior na raiz. Entretanto a taxa de absorção comprova que a planta não absorve na mesma proporção da dosagem de contaminação por Pb pela planta.

Figura 2. Taxa de absorção em % de Pb pelas espécie Melissa officinalis.

O processo de obtenção do Pb pelos vegetais envolvem captação do metal do solo pela raiz e o transporte até a folha. De acordo com Bettiol e Camargo (2000), a solubilização pelos exsudatos de raízes é o principal mecanismo de absorção deste metal pela planta. A entrada de Pb absorvido pela raiz, estocado nas paredes celulares com translocação limitada para a parte aérea (GARBISU e ALKORTA, 2001). Das espécies

arbóreas, por serem pouco estudadas, as que melhores responderam em solos contaminados com Pb, foram: camaldulensis, E. maculata, E. torelliana, A. mangium e P. caribaea Myrsine umbellata, Cedrella fissilis, Tabebuia impetiginosa e Copaifera langsdorffi, Senna multijuga, Schizolobium amazonicum e Caesalpinia echinata (MARQUES et al., 2000; ACCIOLY, 2001; CHAVES e SANTANA, 2008).

De acordo com Dinardi et al. (2003), plantas que envolve a absorção dos contaminantes pelas raízes, os quais são nelas armazenados ou são transportados e acumulados nas partes aéreas são classificadas como fitroextratora. Podemos assim classificar espécie *Melissa officinalis* como fitoextratora de Pb.

Por se tratar de uma espécie que é utilizada na medicina popular e por possuir predisposição em acumular Pb, a *Melissa officinalis*, constitui um fator de alto risco para a saúde de quem as utiliza. Nos países industrializados há uma preocupação maior em estudar o ambiente onde se desenvolvem e com a melhor maneira de cultivá-las (FREIRE, 2005).

CONCLUSÃO

A espécie *Melissa officinalis* apresentou tolerância até a dosagem de 6 mg L-1 de contaminação por Pb, acima dessa concentração a planta apresenta níveis de toxidez apresentando clorose e necrose. A *Melissa officinalis* foi classificada como fitoextratora para Pb e quando utilizada nesta situação na medicina popular constitui um risco para a saúde pública.

AGRADECIMENTOS

A FAPEAM pela concessão de auxílio financeiro.

REFERÊNCIAS

ACCIOLY, A.M.A.. Amenizantes e estratégias para o estabelecimento de vegetação em solos contaminados por metais pesados. Universidade Federal de Lavras, Minas Gerais. 2001. 185p.

BAKER, A.J.M. Metal tolerance. The New Phytologist, Londres, 106:93-111, 1987.

BETTIOL, W. CAMARGO O.A. (Eds.) 2000. Impacto ambiental uso agrícola do lodo de esgoto. Jaguariúna: **EMBRAPA**, p. 249-259.

BRAZ-FILHO, R. Química de Produtos Naturais, Interdisciplinaridade, Dificuldades e Perspectivas. A Peregrinação de um Pacatubano. **Química Nova,** v. 17, n. 5, p. 405-45, 1994.

CHAVES, E.V., SANTANA, G.P. Comportamento dos metais pesados Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb e Zn em solos contaminados do aterro sanitário e Pólo Industrial de Manaus. Submetido a Revista Acta Amazônica. 2008.

CUNNINGHAM, S.D., ANDERSON, T.A.; SCHWAB, A.P.; HSU, F.C.. Phytoremediation of soils contaminated with organic pollutants. **Advance in Agronomy**, New York 56:55-114, 1996

DINARDI, A.L., et al. **Fitorremediação**. 3º fórum de estudos contábeis. Faculdade integrada Claretiana, Rio Claro, São Paulo, 2003.

FÖRSTNER, U.; WITTMANN, G.T.W. **Metal Pollution in the Aquatic Environment**. Berlin, Springer-Verlag, 1983. 486p.

FRANCHINI, J C.; MYAZAWA, M.; PAVAN, M A.; MALAVOLTA, E. Dinâmica de íons em solo ácido lixiviado com extratos de resíduos de adubos verdes e soluções puras de ácidos orgânicos. **Pesquisa Agropecuária Brasileira**, Brasília, v. 34, n. 12, p 2267-2276, dezembro, 1999.

FREIRE. M. F. I. metais pesados e plantas medicinais. revista científica eletrônica de agronomia - 2005.

GARBISU, C., ALKORTA, I. Phytoextraction: a cost effective plant-based technology for the removal of metals from the environment. **Bioresource Technology** 77:229 – 236. 2001.

GRILL, E., WINNACKER, E. L., ZENK, M. H. Proc. Natn. Acad. Sci. U.S.A. v. 84, p. 439-43, 1987.

Gussarsson, M. Cadmium-induced alterations in nutrient composition and growth of *Betula pendula* seedlings: the significance of the fine roots as a primary target for cadmium toxicity. **Journal of Plant Nutrition, Madison**, 17(12):2151-2163. 1994.

HARBONE, J. B. & DEY, P. M. Plant Biochemistry. Academic Press, London, 1997.

KABATA-PENDIAS, A. e PENDIAS, H. **Trace elements in soil and plants**. 4a ed., Boca Raton, CRC Press, 2000. 331p

MAGNUS, F.B. Toxic substances in the environment. New York: John Wiley & Sons Inc. 1994.

MALAVOLTA, E. Fertilizantes e seu impacto ambiental: micronutrientes e metais pesados, mitos, mistificações e fatos. São Paulo: Produquímica, 1997. 153 p.

MARQUES, T.C.L.L.S.M., MOREIRA, A.M.S., SIQUEIRA, J.O.. Crescimento e teor de metais de mudas de espécies arbóreas cultivadas em solo contaminado com metais pesados. **Pesquisa Agropecuária Brasileira** 35:121-132. 2000

MORENO, F. N.; CORSEUIL, H. X. Fitorremediação de aquíferos contaminados por gasolina. **Eng. Sanitária Amb.**, 6:1-7, 2001.

OLIVER, M. A. Soils and human health: a review. European J. Soil Sci., v. 48, p. 573-592, 1997

PIRES, F. R. et al. **Uso da fitorremediação na descontaminação do solo**. In: ENCONTRO REGIONAL DE BOTÂNICOS, 23, 2001, Viçosa, MG. Resumos. Viçosa: Universidade Federal de Viçosa, 2001. 104p.

SANTOS, P. L., GOOUVEA, R., C. S., KELECOM, A. A bioacumulação de chumbo-210 em algas marinhas bentônicas independe da presença de florotaninos. XVI Reunião Anual Sobre Evolução, Sistemática e Ecologia Micromoleculares - II Jornada de Iniciação Científica em Biodiversidade - Anais, UFF, 1994.

SCHNOOR, J.L.; LICHT, L.A.; MCCUTCHEON, S.C.; WOLFE, L.N.; & D CARREIRA, L.H. Phytoremediation of organic and nutrient contaminants. Environ,. **Sci. and Technol.**, v. 29, n. 7, p. 318-323, 1995.

USEPA.. Why Do Wellhead Protection? Issues and Answers in Protecting Public Drinking Water Supply Systems. **Office of Water**, EPA 813-K-95-001. 2005

UTRIAINEN, M.A; KARENLAMPI, L.V.; KARENLAMPI, S.O.; SCHAT, H. Differential tolerante to copper and zinc of micropropagated birches tested in hydroponics. **The New Phitologist**, Oxford 137:543-549. 1997.

WARMAN, P.R.; COPPER J.M. Fertilization of a mixed forage crop with fresh and composted chicken manure and NPK fertilizer: effects on soil and tissue Ca, Mg, S, B, Cu, Fe Mn and Zn. **Can J.Soil Sci.**, v.80, p. 345-352, 2000.