Computational Linguistics

11. More on WordNet

Xiaojing Bai

Tsinghua University

https://bxjthu.github.io/CompLing

More on WordNet

- What is it?
- How does it look like?
- How to use it?

WordNet: What is it?

- WordNet 3.1
- Thesaurus: a structured list of words organized by meaning
- A lexical database of English
- Three databases: 1) nouns, 2) verbs, 3) adjectives and adverbs
- Defining a sense through its relationship with other senses
- The most commonly used resource for English sense relations

Noun relations in WordNet

Relation	Also Called	Definition	Example
Hypernym	Superordinate	From concepts to superordinates	$breakfast^1 ightarrow meal^1$
Hyponym	Subordinate	From concepts to subtypes	$meal^1 \rightarrow lunch^1$
Instance Hypernym	Instance	From instances to their concepts	$Austen^1 \rightarrow author^1$
Instance Hyponym	Has-Instance	From concepts to concept instances	$composer^1 \rightarrow Bach^1$
Member Meronym	Has-Member	From groups to their members	$faculty^2 \rightarrow professor^1$
Member Holonym	Member-Of	From members to their groups	$copilot^1 \rightarrow crew^1$
Part Meronym	Has-Part	From wholes to parts	$table^2 ightarrow leg^3$
Part Holonym	Part-Of	From parts to wholes	$course^7 \rightarrow meal^1$
Substance Meronym		From substances to their subparts	$water^1 \rightarrow oxygen^1$
Substance Holonym		From parts of substances to wholes	$gin^1 \rightarrow martini^1$
Antonym		Semantic opposition between lemmas	$leader^1 \iff follower^1$
Derivationally		Lemmas w/same morphological root	$destruction^1 \iff destroy$
Related Form			

Verb relations in WordNet

Relation	Definition	Example
Hypernym	From events to superordinate events	$fly^9 \rightarrow travel^5$
Troponym	From events to subordinate event (often via specific manner)	$walk^1 \rightarrow stroll^1$
Entails	From verbs (events) to the verbs (events) they entail	$snore^1 \rightarrow sleep^1$
Antonym	Semantic opposition between lemmas	$increase^1 \iff decrease^1$
Derivationally	Lemmas with same morphological root	$destroy^1 \iff destruction^1$
Related Form		

More details about WordNet

- WordNet online
- <u>Database statistics</u>
- A glossary of WordNet terms
- Five Papers on WordNet
- Frequently Asked Questions
- Wordnet with NLTK

WordNet: How does it look like?

• WordNet 3.1 database files

Samples: <u>index.noun</u>; <u>data.noun</u>

• WordNet concept hierarchy

WordNet: How to use it?

- Related projects
- Measuring word similarity with WordNet
 - A fundamental task for semantic models is to predict how similar two words' meanings are
 - Thesaurus methods
 - o Goal: To measure how close the two target words are within the hierarchy

Word similarity: path-length based algorithm

- Basic intuition
- Implicit assumption

pathlen (c_1, c_2) = 1 + the number of edges in the shortest path in the thesaurus graph between the sense nodes c_1 and c_2

$$ext{sim}_{ ext{path}}(c_1,c_2) = rac{1}{ ext{pathlen}(c_1,c_2)}$$

$$\operatorname{wordsim}(w_1,w_2) = \max_{\substack{c_1 \in \operatorname{senses}(w_1) \ c_2 \in \operatorname{senses}(w_2)}} \sin(c_1,c_2)$$

Word similarity: refined algorithms

- More fine-grained metrics, e.g., information-content word similarity
 - Structure of the thesaurus
 - Probabilistic information derived from a corpus

$$P(c) = rac{\sum_{w \in words(c)} count(w)}{N}$$

P(c): the probability of encountering an instance of concept c in the corpus;

words(c): the set of words subsumed by concept c;

N: the total number of words in the corpus that are also present in the thesaurus.

Word similarity: refined algorithms

- More fine-grained metrics, e.g., information-content word similarity
 - Structure of the thesaurus
 - Probabilistic information derived from a corpus

$$P(c) = rac{\sum_{w \in words(c)} count(w)}{N} egin{array}{c} ext{entity 0.395} \ ext{inanimate-object 0.167} \ ext{N} \ ext{IC}(c) = -\log P(c) \ ext{geological-formation 0.00176} \ ext{sim}_{ ext{Resnik}}(c_1, c_2) = -\log P(ext{LCS}(c_1, c_2)) egin{array}{c} ext{o.0000113 natural-elevation} & ext{shore 0.0000836} \ ext{O.0000118 hill} & ext{coast 0.0000216} \ ext{coast 0.0000216} \ ext{O.0000118} \ ext{pill} \ ext{O.0000118} \ ext{pill} \ ext{Coast 0.0000216} \ ext{Co$$

Logarithms

- Logarithms can be used to simplify calculations, as the addition and subtraction of logarithms is equivalent to multiplication and division, though the use of printed tables of logarithms for this has declined with the spread of electronic calculators... The base of a common logarithm is 10, and that of a natural logarithm is the number e (2.71828 ...) (Source: Oxford dictionary)
- The logarithm of x to base b is denoted as logb (x) (or, without parentheses, as logb x, or even without explicit base as log x, when no confusion is possible).

 (Source: Wiki)
- 在自信息量(self-information) $I(x) = \log(\frac{1}{p(x)}) = -\log p(x)$ 的定义中,log 对数操作既可以以2为底,也可以以e为底,但它们没有本质区别,只差一个固定的倍数。当讨论信息编码的时候,采用以2为底比较方便,这时候I(x)的单位是bit;而讨论机器学习的时候,以e为底比较方便。(source: http://zhangtielei.com/posts/blog-deep-learning-foundation.html)

Word similarity: five thesaurus/dictionary-based similarity measures

$$sim_{path}(c_{1},c_{2}) = \frac{1}{pathlen(c_{1},c_{2})}
sim_{Resnik}(c_{1},c_{2}) = -\log P(LCS(c_{1},c_{2}))
sim_{Lin}(c_{1},c_{2}) = \frac{2 \times \log P(LCS(c_{1},c_{2}))}{\log P(c_{1}) + \log P(c_{2})}
sim_{JC}(c_{1},c_{2}) = \frac{1}{2 \times \log P(LCS(c_{1},c_{2})) - (\log P(c_{1}) + \log P(c_{2}))}
sim_{eLesk}(c_{1},c_{2}) = \sum_{r,q \in RELS} \operatorname{overlap}(\operatorname{gloss}(r(c_{1})),\operatorname{gloss}(q(c_{2})))$$

- WordNet::Similarity
- Computing semantic similarity with NLTK

Evaluating thesaurus-based similarity

NLP evaluation

"As the engineering branch of computational linguistics, natural language processing is concerned with the creation of artifacts that accomplish tasks. The operative question in evaluating an NLP algorithm or system is therefore the extent to which it produces the results for which it was designed."

(Resnik & Lin, 2010)

- Evaluation metrics
 - Correlation coefficient:
 (1)human-labeled datasets; (2)TOEFL datasets; (3)contextual datasets
 - End-application embedment

Related projects

- Wordnets in the World
- <u>Semantic networks in languages other than English</u>
- NLTK-HOWTO: WordNet Interface
- Chinese Object-Oriented Lexicon (introduced by Zheng Hua)

Recap: Algorithms to measure word similarity

- Thesaurus-based algorithms
- Distributional algorithms

Cosine for measuring word similarity

- Word similarity as vector similarity
- Vector similarity as the cosine of the angle between the vectors

Recap: Word similarity vs. word relatedness

Mug, cup, coffee, croissant

- Word similarity a subcase of word relatedness
- Not distinguished in the following measuring algorithm

Recap: Measure of the association between words

Positive Pointwise Mutual Information (PPMI)

How much more are the two words co-occurring in our corpus than we would expect if they were independent?

$$PMI(w,c) = \log_2 rac{P(w,c)}{P(w)P(c)}$$

$$PPMI(w,c) = max(\log_2 rac{P(w,c)}{P(w)P(c)},0)$$

Recap: Word sense disambiguation (WSD)

- Lexical ambiguity and an avalanche of competing interpretations
- WSD: the task of selecting the correct sense for a word
 - Input: a word in context along with a fixed inventory of potential senses
 - Output: the correct word sense for that use

Reports said the plant was likely to close in December, leaving many jobless.

plant 1: leafy green organism plant 2: equipment and fixtures for manufacturing

Applications

Voluntary research tasks: WSD algorithms

• <u>Supervised</u>

We know the answers for many examples and can use them to learn from their (automatically determinable) characteristics. We then apply the learned model to a comparable set of examples (not the same ones).

Weakly supervised (knowledge-based)

We start with no known answers, but we use secondary texts (dictionary glosses) to infer underlying relationships through the Lesk algorithm.

• Semi-supervised

We know the answers for a small number of examples, and can gain more examples from the data by finding similar cases and inferring the answers they should have through bootstrapping.

• <u>Unsupervised</u>

We start with no known answers, and no predefined senses. The set of "senses" is created automatically from the instances of each word in the training set.

Homework

• Read/Review (Quiz 9 on Dec. 12, 2018)

```
J+M 6 (6.1-6.7)
J+M C (C.1-C.4)
```

- Practice
 - http://www.nltk.org/book/ch02.html#wordnet

Next session

Semantic Role Labeling