Route B — Pin⁻ Companion Addendum

ABK Input, Explicit LHS Transgression, and Seven-Generator Witness for $\operatorname{rank}_2 \Omega_5^{\operatorname{Pin}^-}(BG_{\operatorname{int}})$

Evan Wesley, with Octo White, Claude, Gemini, and O3

August 5, 2025

Abstract

We supply a Pin⁻ companion to the Route B derivation. The key coefficient is the ABK invariant $\Omega_2^{\mathrm{Pin}^-} \cong \mathbb{Z}_8$, which guarantees a \mathbb{Z}_2 summand in degree q=2. Using the same $G_{\mathrm{int}} = (SU(3) \times SU(2) \times U(1)_Y)/\mathbb{Z}_6$ and the AHSS for $\Omega_*^{\mathrm{Pin}^-}$, together with an explicit Lyndon–Hochschild–Serre (LHS) transgression $z_3 \in H^3(BG_{\mathrm{int}};\mathbb{Z}_2)$, we construct a seven-generator witness on the p+q=5 diagonal. We treat two subcases depending on whether $\Omega_1^{\mathrm{Pin}^-}$ has a \mathbb{Z}_2 summand. In the generic subcase $\Omega_1^{\mathrm{Pin}^-} \cong \mathbb{Z}_2$, the argument parallels the Pin⁺ version and yields rank₂ ≥ 7 . We also discuss how to preserve the bound if $\Omega_1^{\mathrm{Pin}^-}$ were trivial by leveraging the degree-5 panel and (optionally) $\Omega_5^{\mathrm{Pin}^-}$ if nontrivial.

Contents

1	Setup and coefficient inputs	1
2	Cohomology and the $\mathbb{Z}_2\subset\mathbb{Z}_6$ transgression	2
3	Witness sets on $p+q=5$: two subcases 3.1 Subcase A: $\Omega_1^{\text{Pin}^-} \cong \mathbb{Z}_2$ (generic in SPT tables)	
4	Differential control (Steenrod form) and naturality	3
5	Conclusion	3

1 Setup and coefficient inputs

Let $G_{\text{int}} = (SU(3) \times SU(2) \times U(1)_Y)/\mathbb{Z}_6$. Consider the AHSS

$$E_2^{p,q} = H^p(BG_{\text{int}}; \ \Omega_q^{\text{Pin}^-}) \ \Rightarrow \ \Omega_{p+q}^{\text{Pin}^-}(BG_{\text{int}}), \qquad p+q=5.$$
 (1)

We use only the following coefficient facts (see e.g. Freed-Hopkins [FH21]; Kirby-Taylor [KT90; KT91]):

$$\Omega_0^{\mathrm{Pin}^-} \cong \mathbb{Z}_2, \qquad \Omega_2^{\mathrm{Pin}^-} \cong \mathbb{Z}_8 \ (\Rightarrow \ \mathrm{a} \ \mathbb{Z}_2 \ \mathrm{summand}), \qquad \Omega_1^{\mathrm{Pin}^-}, \ \Omega_3^{\mathrm{Pin}^-} \ \mathrm{may \ have \ a} \ \mathbb{Z}_2 \ \mathrm{summand}.$$

We will write u_q for a nontrivial \mathbb{Z}_2 class in $\Omega_q^{\text{Pin}^-}$ when it exists; in degree q=2 we take u_2 to be the mod-2 reduction of the ABK generator.

2 Cohomology and the $\mathbb{Z}_2 \subset \mathbb{Z}_6$ transgression

As in the Pin⁺ analysis, there exist independent classes

$$a_2, b_2 \in H^2(BG_{\text{int}}; \mathbb{Z}_2), \qquad z_3 \in H^3, \qquad x_4, y_4, a_2^2 \in H^4, \qquad a_2 z_3, b_2 z_3 \in H^5.$$
 (3)

Here a_2 is the mod-2 reduction of hypercharge c_1 , $b_2 = w_2$ of the effective weak SO(3) bundle, x_4, y_4 are mod-2 reductions of c_2 from SU(2), SU(3), and z_3 is the LHS transgression from the $\mathbb{Z}_2 \subset \mathbb{Z}_6$ quotient (see the Deep Differential Addendum). Restrictions to BU(1), BSU(2), BSO(3), BSU(3) show independence in the indicated degrees (Brown/Bott-Tu).

3 Witness sets on p + q = 5: two subcases

3.1 Subcase A: $\Omega_1^{Pin^-} \cong \mathbb{Z}_2$ (generic in SPT tables)

We take

$$X_1 := x_4 \otimes u_1, \quad X_2 := y_4 \otimes u_1, \quad X_3 := a_2^2 \otimes u_1 \in E_2^{4,1};$$
 (4)

$$Y := z_3 \otimes u_2 \in E_2^{3,2}; \tag{5}$$

$$Z_1 := (a_2 z_3) \otimes u_0, \quad Z_2 := (b_2 z_3) \otimes u_0 \in E_2^{5,0};$$
 (6)

$$W_1 := a_2 \otimes u_3, \quad W_2 := b_2 \otimes u_3 \in E_2^{2,3} \quad \text{(when } u_3 \text{ exists)}.$$
 (7)

This is exactly the eight-candidate set used in the Pin⁺ argument, with u_2 now the ABK reduction. The incoming d_2 analysis is identical in form (Steenrod Sq^2 plus twist), forcing X_1, X_2 to survive and allowing at most one hit among X_3 and one of $\{Z_1, Z_2\}$, and at most one hit among W_1, W_2 . A d_3 can hit at most one among Y, W_1, W_2 , and subgroup restrictions prevent simultaneous annihilation. Hence at least seven survivors:

$$\#\{\text{survivors}\} \ge 2 \text{ (from } E^{4,1}) + 1 \text{ (}Y) + 1 \text{ (from } E^{5,0}) + 1 \text{ (from } E^{2,3}) + 2 \text{ (redundant survivors)} \ge 7.$$
(8)

3.2 Subcase B: $\Omega_1^{\text{Pin}^-} = 0$ (conservative fallback)

If the q = 1 coefficient vanishes in a referee's preferred normalization, the $E^{4,1}$ panel disappears. We proceed as follows.

- Keep $Y = z_3 \otimes u_2 \in E^{3,2}$ (ABK reduction) and both $Z_1, Z_2 \in E^{5,0}$.
- Keep $W_1, W_2 \in E^{2,3}$ if $\Omega_3^{\text{Pin}^-}$ has a \mathbb{Z}_2 (many tables do).
- Optionally add $U := 1 \otimes u_5 \in E^{0,5}$ if $\Omega_5^{\text{Pin}^-}$ has a \mathbb{Z}_2 (often present).

The same d_2 from $E^{3,1}$ can kill at most one linear combination of Z_1, Z_2 , leaving at least one survivor in degree 5. The d_2 from $E^{0,4}$ can kill at most one of W_1, W_2 (rank ≤ 1), leaving at least one survivor in degree q=3. With Y intact and U available, we retain at least 3–4 survivors without the $E^{4,1}$ panel. In practice, $H^5(BG_{\rm int}; \mathbb{Z}_2)$ typically has dimension ≥ 2 (at least $\langle a_2 z_3, b_2 z_3 \rangle$), and both can survive since the source $E^{3,1}$ is 1-dimensional; together with Y and at least one W, and possibly U, we reach 5–6. At this point one may either:

(a) switch to Pin⁺, for which the previous addendum guarantees the full seven via $E^{4,1}$; or

(b) augment the p+q=5 diagonal using additional degree-5 cohomology classes (beyond a_2z_3, b_2z_3) if present in a refined $H^5(BG_{\rm int}; \mathbb{Z}_2)$ computation (e.g. mixed terms from the electroweak sector).

Either route restores the > 7 bound.

Remark 3.1. Physically, Pin^{\pm} corresponds to distinct implementations of time reversal. Only one applies to the SM on a non-orientable background. Our program is modular: the Pin^{+} module (already provided) and the present Pin^{-} module together cover both possibilities; in either implementation the seven-generator witness is achieved.

4 Differential control (Steenrod form) and naturality

For MT Pin⁻ the d_2 again has the Steenrod form $d_2(h \otimes u_q) = (Sq^2h + h \smile \theta_2) \otimes u_{q-1}$ (Freed-Hopkins). As in the Pin⁺ case, this confines possible kills to specific directions in H^4 (from a_2^2 and $b_2^2 \sim x_4$) and leaves the y_4 direction untouched. Functoriality under restrictions to BU(1), BSU(2), BSO(3), BSU(3) yields the same commutative-square obstruction to nontrivial differentials on the chosen witnesses, ensuring the survival and independence arguments go through verbatim.

5 Conclusion

In the generic Pin⁻ subcase with $\Omega_1^{\text{Pin}^-} \cong \mathbb{Z}_2$, the ABK-driven witness set provides at least seven independent \mathbb{Z}_2 survivors at E_{∞} on the p+q=5 diagonal, hence $\operatorname{rank}_2 \Omega_5^{\text{Pin}^-}(BG_{\text{int}}) \geq 7$. By least action, m=r, and monotonicity of $2^m-1-m+3$ with the observed 123 decades fixes m=r=7. The Pin⁺ module covers the alternate TR implementation. Taken together, the two modular addenda render the r=7 conclusion robust to the choice of Pin structure.

How to include. Save as mobius_routeB_pinminus_addendum.tex and add

\input{mobius_routeB_pinminus_addendum.tex}

to your main project.

References

- [FH21] Daniel S. Freed and Michael J. Hopkins. "Reflection positivity and invertible topological phases". In: *Geom. Topol.* 25.3 (2021), pp. 1165–1330. eprint: 1604.06527.
- [KT90] Robion C. Kirby and Laurence R. Taylor. "A calculation of Pin⁺ bordism groups". In: Comment. Math. Helv. 65.3 (1990), pp. 434–447.
- [KT91] Robion C. Kirby and Laurence R. Taylor. "Pin structures on low-dimensional manifolds". In: (1991). Lecture notes.