TECHNISCHE UNIVERSITÄT BERGAKADEMIE FREIBERG INSTITUTE OF MECHANICS AND FLUID DYNAMICS CHAIR OF APPLIED MECHANICS - SOLID MECHANICS

Documentation

Implementing User Element for Phase field simulations of polarization switching-induced toughening in ferroelectric ceramics

06. October 2019

Vikas Diddige vikas.diddige@tu-freiberg.de

TU Bergakademie Freiberg Lampadiusstraße 4 D-09596 Freiberg Germany https://tu-freiberg.de/fakult4/imfd

Contents

1	Introduction	1
2	Strong and Weak Formulation	1
	2.1 Strong Form	1

1 Introduction

For intro

2 Strong and Weak Formulation

2.1 Strong Form

An enthalpy equation for ferroelectric system is a function of polarization P_i , strain ε_{ij} and electric field E_i as given below

$$h(P_i, \varepsilon_{ij}, E_i) = \alpha_i P_i^2 + \alpha_{ij} P_i^2 P_j^2 + \alpha_{ijk} P_i^2 P_j^2 P_k^2 + \frac{1}{2} c_{ijkl} \varepsilon_{ij} \varepsilon_{kl} - q_{ijkl} \varepsilon_{ij} P_k P_l + \frac{1}{2} g_{ijkl} (\frac{\partial P_i}{\partial x_j}) * (\frac{\partial P_k}{\partial x_l}) - \frac{1}{2} k_0 E_i E_i - E_i P_i$$
 (1)

(2)