Név:	
Kurzus kód:	Mérések napja, időpontja:

Óbudai Egyetem

Kandó Kálmán Villamosmérnöki Kar

Műszertechnikai és Automatizálási Intézet

MÉRÉSTECHNIKA LABORATÓRIUM 2/B

Budapest, 2016

A mérések fejlesztésében és összeállításában részt vettek **Markella Zsolt Tényi V. Gusztáv**

A kiadvány szerzői jogi védelem alatt áll, arról való másolat készítése csak az ÓE-KVK-MAI méréstechnika laboratóriumi kurzusát felvevő hallgatók számára engedélyezett.

Minden egyéb esetben – a szerzők előzetes írásbeli engedélye nélkül – a kiadvány másolása és jogosulatlan felhasználása bűncselekmény.

Tartalomjegyzék

16. sz. laboratóriumi mérés	3.	oldal
Mérőátalakítók mérése I. (Tenzometrikus átalakító)		
17. sz. laboratóriumi mérés	7.	oldal
Digitális oszcilloszkópos méréstechnika II.		
18. sz. laboratóriumi mérés	13.	oldal
Mérőátalakítók mérése II. (Hőmérséklet érzékelők v	izsgál	lata)

A mérés elvégzésének dokumentálásakor különleges gondot kell fordítani a mérés reprodukálhatóságára!

16. sz. Laboratóriumi mérés

Mérőátalakítók mérése I. Tenzometrikus átalakító

1. A mérés célja:

Egyes nem-villamos fizikai jellemzők (erő, nyomaték, nyomás, mechanikai feszültség) mérésére alkalmas nyúlásmérő bélyeg fontosabb statikus méréstechnikai jellemzőinek megállapítása.

Egy adott feladatra való alkalmazás megismerése. A mérést "zavaró" jellemzők közül a hőmérsékletváltozás hatásának, mértékének megállapítása, vizsgálata.

2. A méréshez szükséges elmélet:

A nyúlásmérő bélyegek fém-, vagy félvezető alapanyagú, rendkívül vékony ellenálláshuzalok, melyek szigetelőanyagba beágyazva kerülnek forgalomba. A szigetelő fóliát speciális ragasztóanyaggal rögzítik arra a felületre, melynek a méretváltozását kívánják megállapítani. A mechanikai deformáció hatására a bélyeg ellenállása nő, vagy csökken aszerint, hogy a felület nyúlik-e, vagy zsugorodik. A bélyeg relatív ellenállás változása arányos a relatív hosszváltozással:

$$\frac{dR}{R} = g \frac{dl}{l}$$
 , ahol

l a mérőbélyeg aktív hossza, és

g (gauge faktor) a bélyeg átalakítási tényezője (relatív érzékenysége).

Fémalapú átalakítónál g pozitív, értéke 1,6-2,7 között van. A félvezetőalapú mérőbélyegek átalakítási tényezője 200-300, és ez a félvezető típusától függően lehet pozitív és negatív is. Nagy hőmérsékletfüggésük miatt felhasználhatóságuk korlátozott, illetve speciális hőmérsékletkompenzáló kapcsolást igényelnek, amelyek célszerűen integrált áramköri technológiával valósíthatók meg.

A mérőbélyegek kialakítását, felépítését, elhelyezését a laboratóriumban tablón szemléltetjük.

A mérőhidak kapcsolásai a következők lehetnek:

- negyedhíd,
- félhíd,
- kettős negyed, vagy átlós híd,
- teljes híd.

A mérés során vizsgálatunk a negyed- és félhídra szorítkozik.

A kiegyenlítetlen hidakat elterjedten alkalmazzák az alábbi előnyeik miatt:

- aktív villamos jelet szolgáltatnak
- kicsi a zavarérzékenységük
- linearizálnak
- adott esetben következtethetünk a bemeneti jel változásának irányára

A kapcsolások alapvető méréstechnikai jellemzőinek meghatározását kell elvégezni, úgymint

• a mérési tartomány,

- az érzékenység (É_t),
- a pontosság (linearitási hiba, hiszterézis hiba),
- a referenciatartomány ill. zavarérzékenység (hőmérséklet) megállapítását.

A fentiek többségének megállapításához a mérőátalakító statikus karakterisztikáját kell felvenni.

A tenzometrikus átalakítókkal végzett mérések pontosságát befolyásolja a mérőelem hőmérsékletének változása, ezért a vizsgálat kiterjed e területre is.

A hőmérsékletváltozás hatására megváltozik a rugólap mérete és a rugólapra ragasztott mérőbélyeg ellenállása is. Az együttes változás következtében az átalakító teljes relatív ellenállásváltozása:

$$dR/R = (g \cdot a_m + a_{\hbox{\bf R}}) \cdot (T_2 - T_1), \ ahol$$

a_m (1/0K), a mérőtest (rugólap) hőmérsékleti együtthatója,

a_R (1/0K) a bélyeg ellenállásának hőmérsékleti együtthatója és

 $T_2 - T_1$ a hőmérsékletkülönbség.

Acélanyagoknál $a_m = 11 \cdot 10^{-5} \ (1/^{O} K)$ és $a_R = 3 \cdot 10^{-5} \ (1/^{O} K)$ (konstantán mérőbélyegeknél).

Az érzékelő elemeket tartalmazó modell kivitele csak a mérési elv bemutatására alkalmas, azzal a nyúlásmérő bélyegek által biztosított mérési pontosság nem valósítható meg.

3. Mérési feladatok:

A mérésben egy befogott rugólap átellenes oldalára ragasztott mérőbélyegekkel állapíthatjuk meg a lapban keletkező mechanikai feszültség értékét. A rugólap hajlítását csavarorsóval hozzuk létre.

A hajlítás mértékét - az elmozdulást (Δf) 1/100 mm-es mérőórával mérjük.

A csavarorsó tengelyében ható F erő L (43 mm) hosszúságú karon végzi a hajlítást, a rugólap keresztmetszeti méretei: h (1,2 mm) * b (10 mm.).

A mérés feltételei, határadatai:

A rugólap maradandó deformációjának elkerülése és a hiszterézishiba csökkentése miatt a maximális elmozdulás 3 mm legyen. A mérés végén a rugólapot előfeszítettlen állapotba állítsa vissza!

3.1. Elmozdulás (hajlítás) - ellenállásváltozás karakterisztika felvétele és kiértékelése

A 6. sz. mérőpanelon a felső kivezetések a húzott, az alsók a nyomott bélyeghez csatlakoznak. Mérje meg mindkét bélyeg ellenállását a rugólap terheletlen és maximális kitérése között 0,5 mm-enként.

A mért adatokat foglalja táblázatba és ábrázolja eltolt koordináta rendszerben mm papíron! (Az eltolás mértéke a bélyegek előfeszítés nélküli alap ellenállása.)

Állapítsa meg a húzott és a nyomott bélyegek linearitási és hiszterézis hibáját!

A linearitási hiba megállapítása:

$$h_{lin}. = \frac{H_{\text{max}}}{X_{kMT}} * 100\%$$

Alapfeladatok a linearitási hiba megállapításánál:

• Adott mérési tartományban mekkora a linearitás hibája?

3.2. Nyúlásmérő bélyeges negyedhíd vizsgálata

A híd tápfeszültsége, a mérőbélyegre megadott adatok alapján, 6 V legyen. (Ezt a tápfeszültség rákapcsolása előtt mindig ellenőrizni szükséges!)

Mérje meg a híd kimeneti feszültségét a rugólap terheletlen és maximális kitérése között 0,5 mm-enként.

A hídban történő mérést is mindkét bélyeggel (húzott és nyomott) külön-külön végezze el!

Az egyik bélyegnél az elmozdulás csökkentésekor ("visszafelé") is vegye fel az adatokat! A hídban lévő R ellenállások értéke: $360 \Omega \pm 1\%$.

Foglalja a mért adatokat táblázatba és rajzolja meg a hídkapcsolás U_{ki} -(elhajlítás) karakterisztikáját! (Mivel a híd nincsen kinullázva az ábrázolást eltolt koordináta rendszerben végezze. Az eltolás mértéke a híd alapállapotban mért kimeneti feszültsége legyen.)

Állapítsa meg a kapcsolás érzékenységét!

3.3. Nyúlásmérő bélyeges félhíd vizsgálata

<u>A mérés célja:</u> A félhídba kapcsolt mérőbélyeg érzékenységének, pontosságának megállapítása adott mérési tartományban.

A mérés kapcsolási rajza:

Mérje meg a híd kimeneti feszültségét a rugólap terheletlen és maximális kitérése között 0,5 mm-enként.

Foglalja a mért adatokat táblázatba és rajzolja meg a hídkapcsolás U_{ki}-(elhajlítás) karakterisztikáját! (A karakterisztikát az előző ábrába rajzolja bele!) Értékelje a kapcsolás érzékenységét a negyedhídhoz képest!

3.4 A hőmérsékleti hatás vizsgálata

A mérés célja: Állapítsa meg, hogy a hőmérsékletváltozás hatására milyen mértékű a kimeneti jel változása.

A rugólap terhelését állítsa be a maximális 3 mm-re. Mérje meg a húzott és a nyomott mérőbélyeg ellenállását.

A mérőpanelba épített hőfokszabályzós fűtőtest segítségével a mérőbélyegek tere (és így a mérőbélyegek hőmérséklete) kb. 44° C-ra beállítható, így a hőmérsékleti hatások vizsgálhatók.

Kapcsoljon 12 V feszültséget a FŰTÉS feliratú pontra!

Mintegy 15 perc múlva beáll a termikus egyensúly. Ilyenkor a tér hőmérséklete kb. 44° C.

A hőmérsékletváltozás hatására megváltozik a mérőbélyeg ellenállása.

A tér hőmérsékletének elérését a fűtő áram értékének lecsökkenése jelzi.

A tér felfűtött állapotában ismét mérje meg a húzott és a nyomott mérőbélyeg ellenállását! Az ellenállás mérést kétféle "polaritással" végezze el!

Értékelje a kapott értékeket!

17. sz. Laboratóriumi mérés

Digitális oszcilloszkópos méréstechnika II.

1. A mérés célja:

A digitális oszcilloszkóp kezelésének többlet funkcióinak elsajátítása, a kapott mérési eredmények kiértékeléséhez szükséges szemlélet kialakítása.

2. A méréshez szükséges elmélet:

Az előadáson elhangzottak és a Méréstechnika (szerk. Dr. Horváth Elek) c. jegyzet oszcilloszkópokról szóló része, különös tekintettel a digitális oszcilloszkópok témájára.

Ajánlott irodalom:

- A TDS1002 oszcilloszkóp gépkönyve (elérhető a laboratóriumban, vagy letölthető a http://www.tek.com oldalról)
- XYZs of Oscilloscopes (elméleti összefoglaló az oszcilloszkópok használatáról, a velük kapcsolatos fogalmakról, elérhető a laboratóriumban, vagy letölthető a http://www.tek.com oldalról)

Bevezetés

Az előző mérési ciklusban elkezdte a TDS 1002 digitális oszcilloszkóp funkcióinak áttanulmányozását. Ez a mérés annak a folytatása.

3.1. Az oszcilloszkóp lehetőséget ad **kurzoros mérések** elvégzésére. A kurzorok segítségével nem beépített jeljellemző mérések is elvégezhetőek. A kurzoros mérés menübe a {CURSOR} gomb (23) segítségével juthatunk. Itt kiválasztható a kurzor típusa: amplitúdó (Voltage, FFT-nél Magnitude) illetve idő vagy frekvencia (Time, Frequency) (utóbbi az FFT méréshez). Kiválasztható a forrás (Source): CH1, CH2, matematikai művelet eredménye (MATH), eltárolt referenciák (Ref A, Ref B). A kurzorokat a két függőleges pozíció állítóval kezelhetjük.

A mérési eredmények: különbség (Delta), kurzorok pozíciója (Cursor 1, Cursor 2), az alsó három változó funkciójú billentyű mellett láthatóak.

- a) Végezzen kurzoros méréseket szinuszos jel frekvenciájának és amplitúdójának, illetve négyszögjel felfutási idejének megállapításához, hasonlítsa össze mérési eredményeit az azonos jelalakon elvégzett automatikus mérések eredményeivel. (Javasolt jelalakok: 1kHz-es, 1V amplitúdójú szinuszjel, 1V DC ofszettel, 10kHz-es 1V amplitúdójú négyszögjel, 100mV DC ofszettel.) Mindenképpen térjen ki a jelek effektív értékének automatikus mérésére, a kapott eredményeket hasonlítsa össze a kurzoros mérések alapján számított értékekkel!
- 3.2. Digitális oszcilloszkópoknál a felhasználó és a mérés igényei szerint többféle adatgyűjtési mód választható ki. Az egyszerű mintavételes üzemmódban az oszcilloszkóp minden mintavételi szakaszban egy mintát tárol el, ebből a grafikus megjelenítés során a képernyő vízszintes felbontásának megfelelő számút jelenít meg (természetesen a digitális jelfeldolgozás után). Csúcsdetektáló üzemmódban egy-egy mintavételi szakaszból két mintát tárol el, ezek minden esetben a szakaszban a jel által felvett legkisebb és legnagyobb értékek. A megjelenítés ezek alapján történik. Az átlagoló üzemmódban az oszcilloszkóp az egyszerű mintavételes üzemmódhoz hasonlóan gyűjti a jelalakinformációt, de adott számú (pl. 16, 64) hullámformát átlagol. Ez az üzemmód bizonyos szempontból zajszűrésnek is tekinthető.

Az oszcilloszkópon az adatgyűjtési mód kiválasztása az adatgyűjtés menüben történhet, ahová az {ACQUIRE} gomb (22) megnyomásával juthatunk. Itt kiválasztható az egyszerű mintavételes (Sample), a csúcsdetektáló (Peak Detect), illetve az átlagoló (Average) üzemmód, valamint az átlagolandó hullámformák száma (Averages), beállítható értékek: 4, 16, 64, 128.

a) Vizsgálja a függvénygenerátoron a legnagyobb beállítható frekvenciájú négyszögjel egy periódusát, majd csak a felfutó élét a három adatgyűjtési üzemmódban! Rajzolja le a látott jelalakokat!

Mérési feladatok az oszcilloszkóp gyakorlati felhasználására.

3.3. - Bemeneti komparátor működési feltételeinek, működési idejének vizsgálata;

KOMP1 komparátor működési feltételeinek vizsgálata.

A komparátor kapcsolási rajza

A hiszterézises komparátor Uki-Ube karakterisztikája

A **LEVEL** potencióméterrel a komparálási szintet állítja a **SENSE** potencióméterrel pedig a hiszterézis nagyságát.

Adjon az 3. mérőpanelre +5V tápfeszültséget. Állítson be a függvénygenerátoron 2V csúcsértékű 1kHz frekvenciájú háromszögjelet 0V egyenfeszültségű összetevővel, a jelet csatlakoztassa a mérőpanel **CH1** bemenetére!

A komparátor működésének vizsgálatára alkalmas kapcsolás

Kétcsatornás oszcilloszkóp egyik bemenetére a **CH1** jelét, másik bemenetére a **KOMP1** komparátor kimeneti jelét csatlakoztatva mérje meg a következőket:

 Milyen határok közt tudja állítani a komparálási szintet a LEVEL potenciométerrel? A SENSE potencióméter a jobb oldali végállásában legyen!

Mérés menete: a bemeneti jel 0 szintjét állítsa be a képernyőn függőlegesen középre. A kimeneti jel szintváltási pontjait az YPOS kezelőszervvel állítsa rá a bemenő jelre. Az így kapott feszültség szint a komparálási szint.

Pontosabb méréshez lehetőség van kurzoros mérésre is. (CURSOR/Amlitude/Cursor1 megnyomása után az általános célú forgatógombbal állítsa rá az 1-es kurzort a felfutó él komparálási szintjére, a 2-es kurzorral a Cursor2 megnyomása után pedig a lefutó élre álljon. Így leolvasható a két komparálási szint és a hiszterézis nagysága is.)

- Mekkora a maximálisan beállítható hiszterézis a SENSE potencióméterrel?
- Az oszcilloszkóp XY üzemmódjának segítségével rajzolja le a hiszterézises komparátor U_{ki}-U_{be} karakterisztikáját! A SENSE potencióméter a bal míg a LEVEL potencióméter a jobboldali végállásban legyen.

3.4. Komparátor késleltetési idejének vizsgálata.

Az előbbi kapcsolást felhasználva adjon a **CH1** bemenetre 100 kHz-es négyszögjelet. A négyszög-jel negatív csúcsértéke 0 V, pozitív csúcsértéke 3 V legyen.

Mérje meg a komparátor késleltetési idejét a négyszögjel fel- és lefutó éléhez képest!

A késleltetési időt a bemeneti és a kimeneti jel 50 %-os szintje között mérje.

Az analóg oszcilloszkópot mindig a bemeneti jelre kell indítania ellenkező esetben nem fogja látni a bemeneti jel élét ami időben korábban vált mint a kimeneti jel.

3.5. Az oszcilloszkóp adatgyűjtése elindítható illetve megállítható a {RUN/STOP} gomb (17) megnyomásával. Stop állapotban a felvett jel korlátlan ideig megjeleníthető, rajta automatikus és kurzoros mérések végezhetőek.

A {SINGLE SEQ} gomb (16) megnyomásával **egyszeri jelfelvételt** indíthatunk el, ha nincs triggeresemény, akkor az előzőekben megjelenített jelalak marad a képernyőn elhalványodva, jelezve, hogy a megjelenítés nem érvényes. Ha a jelfelvétel megtörtént, a jelalak a képernyőre kerül, újabb jelfelvételig a képernyőn marad.

- a) Vegye fel a függvény generátor kimeneti feszültségének változását bekapcsoláskor és kikapcsoláskor, egyszeri jelfelvétel üzemmódban. Úgy állítsa be a triggerszintet, hogy a jelfelvétel akkor kezdődjön, amikor a kimeneti jel először eléri az állandósult amplitúdó 50%-át! Az időalapot 100 msra állítsa a jelfelvétel után bele tud nagyítani!
- **3.6.** Vizsgálja meg az oszcilloszkóp **X-Y üzemmódját**. Ehhez nyomja meg a {DISPLAY} gombot (21), ezen belül a középső változó funkciójú billentyűvel a megjelenítési formátumot (Format) váltsa időbeli megjelenítésről (YT) X-Y üzemmódra (XY). Ekkor CH1 az X, CH2 pedig az Y irányú eltérítést adja. Időbeli megjelenítésbe való visszakapcsoláshoz nyomja meg ismételten a megjelenítési formátum beállító gombot. X-Y üzemmódban nem lehet sem automatikus, sem kurzoros méréseket végezni.

Vizsgálja meg az 2. sz. mérőpanelen R1 (10kΩ) és C2 (10nF) elemekből felépített elsőfokú passzív aluláteresztő szűrő

fázistolását a frekvencia függvényében! A mérést Lissajous módszerrel végezze! A mérés elvégzése után néhány célszerűen kiválasztott frekvencián ellenőrizze le a mérési eredményeket az időfüggvényeken végzett kurzoros mérésekkel!

3.7. Az oszcilloszkóp rendelkezik beépített automatikus beállítás üzemmóddal (autoset). Ezt a funkciót az {AUTOSET} gomb (18) megnyomásával aktiválhatjuk. A készülék képes felismerni a jel jellegét, ennek megfelelően választási lehetőségeket ad a gyors, beállításra. Az oszcilloszkóp képes optimális felismerni szinuszos jellegű és a négyszögjel jellegű jeleket. Ebben az esetben az oszcilloszkóp lehetőséget ad arra, hogy a változó funkciójú billentyűkkel kiválasszuk, hogy egy vagy több periódust szeretnénk-e látni a jelből, illetve szinuszos ie1 megvizsgálhatjuk a jel FFT spektrumát, vagy négyszögjel esetén annak felfutó vagy lefutó élét is.

Az **elmentés/visszatöltés** menüben ({SAVE/RECALL}, (26)) beállításokat (max. 10 db.) és referencia jelalakokat (max. 2 db.) tárolhat el, illetve hívhat elő.

A Utility menüben ({UTILITY}, (25)) a **készülék állapotáról**, esetleges hibáiról kaphat információt, a kijelzést invertálhatja (világos alapon sötét jelalak és feliratok), valamint megváltoztathatja a menük nyelvét, illetve automatikus önkalibrációt indíthat el.

A {PROBE CHECK} gomb (9) megnyomásával a **mérőfejek automatikus ellenőrzése** aktiválható. A készülék kalibráló négyszögjeléhez csatlakoztatva a mérőfejet, majd meghívva ezt a funkciót, az oszcilloszkóp leellenőrzi a mérőfej csillapításának beállítását, illetve azt, hogy a mérőfej megfelelően van-e kompenzálva.

18. sz. Laboratóriumi mérés

Mérőátalakítók mérése II. Hőmérséklet érzékelők vizsgálata

Hőmérséklet érzékelők vizsgálata.

1 A mérés célja:

Az ipari méréstechnikában a leggyakoribb mérendő jellemző a hőmérséklet.

Hőmérséklet mérésére széles hőmérséklet tartományban fémalapú mérőellenállásokat, kisebb hőmérsékleti tartomány, de nagy érzékenységi igény esetén a félvezető alapúakat (termisztorok) alkalmaznak. Egyre elterjedtebbek az analóg vagy digitális kimeneti jellel rendelkező hőmérséklet mérő chippek is. Nagyobb hőmérsékletek mérésekor (0 – 1600 °C) hőelemeket használnak.

Jelen mérésben az említett hőmérséklet érzékelők legfontosabb tulajdonságaival ismerkedünk meg.

2 A méréshez szükséges elméleti alapok:

A **fémalapú ellenálláshőmérők** (nikkel, platina) hőmérsékletellenállás karakterisztikáját n - d fokú parabolával szokás közelíteni. Kis hőmérséklettartományban, illetve korlátozott pontossági igény mellett elegendő, ha a közelítő parabola első fokú tagjával számolunk. Így jutunk az általánosan ismert:

 $R_t = R_0 [1 + a_t (t2 - t1)]$ (lineáris közelítés)

összefüggéshez, ahol

R_t a t2, R₀ a t1 hőmérséklethez tartozó ellenállás értéke a_t a hőmérsékleti együttható (Ez fémalapú ellenálláshőmérőknél pozitív szám, fizikai jelentése és dimenziója a fenti egyenletből megállapítható.)

Platina érzékelők használatánál sokszor a másod és harmadfokú tagokat is figyelembe veszik. Ez természetesen bonyolult

számításokat eredményez, ezért a platina érzékelők méréstartományát több hőmérsékleti szakaszra bontva az egyes rész-tartományokra adjak meg az átlagos hőmérsékleti együtthatót (at), ami lehetővé teszi a másod- és harmadfokú tagok elhagyását, ezzel egy **lineáris közelítés használatát**.

A termisztorok karakterisztikája lényegesen eltér a platina mérőellenállásokétól. Az eltérés egyrészt abban jelentkezik, hogy a hőmérsékleti együttható lehet negatív is, másrészt az ellenállás **karakterisztikája exponenciális jellegű**. A karakterisztikát közelítőleg az alábbi egyenlet fejezi ki:

$$R_t = R_0 e^{B/T}$$
, ahol

T az abszolút hőmérséklet,

B az u.n. energiaállandó,

R₀ a "végtelen" hőmérséklet esetén mérhető ellenállás,

R₀ és B értékét két különböző hőmérsékleten mért ellenállásértékeiből meghatározhatjuk.

Ennek igazolását az olvasóra bízzuk. A hőmérsékleti együttható (hőmérséklet egységére vonatkoztatott relatív ellenállásváltozás) negatív és függ a hőmérséklettől:

$$a_t = dR_t / R_t dT = -B/T^2$$

A termisztorok erősen nemlineáris karakterisztikája sorosan és párhuzamosan kapcsolt ellenállásokkal linearizálható. Ennek számításával jelen merésben nem foglalkozunk.

Az ellenállásos hőmérsékletérzékelők passzív elemek, ezért mérésükhöz (üzemeltetésükhöz) segédenergiára van szükség. A mérőáram melegíti az érzékelőket, ezért a mért ellenállás platina eseten nagyobb, termisztornál kisebb lesz, mint a környezeti hőmérséklethez tartozó elméleti érték.

A mérési hiba csökkentése céljából - tapasztalati adatok alapján - platina mérőellenállásra - nagy pontossági igényeknél - 1 mA áramot, termisztoroknál 10 µA áramot engednek meg legfeljebb.

Hőelemek:

Ha hőmérséklet emelkedés van egy elektromos vezetőben, akkor az energia (a hő) áramlás összekapcsolódik a vezetőben az elektronok áramlásával, és elektromotoros erő (emf) jön létre azon a területen. Az emf mérete és iránya is a hőmérséklet emelkedés

méretétől és irányától függ – és az anyagból alakít ki vezetőt. A vezető mentén lévő hőmérséklet különbség függvényében feszültség alakul ki. Ezt a hatást TJ Seebeck 1822 - ben fedezte fel.

A vezető két vége között megjelenő feszültség a vezető hosszában létrejövő emf - ek összege. Egy fémnek a kimeneti feszültsége nem mérhető, mivel teljes áramkör körüli belső emf - ek összege minden hőmérsékleti helyzetben nulla. Így a gyakorlati hőelem érzékelőkben az a trükk, hogy két anyagot illesztenek össze, amiknek különböző a termoelektromos emf/hőmérsékleti karakterisztikája. Így használható az elektron áramlás és mérhető kimeneti feszültséget szolgáltat a két anyag.

- 1-2 Hőelem vezetékei
- 3-4 Hosszabbítóvezeték vagy Kompenzálóvezeték

Az a két csatlakoztatott nem egyforma vezető, 1 és 2, ugyan annak a hőmérsékleti hatásnak van kitéve, ha $T_2 = T_3$. Alapvetően elektromos áram indul meg a csatlakozóponton keresztül a különböző termoelektromos emf és a két különböző fém okozta térerősség miatt.

A termoelektromos emf a hőmérséklet esés területén jön létre és nem az összekötő pontban. Ez egy fontos dolog ahhoz, hogy megértsük a hőelemes hőmérsékletmérés gyakorlati alkalmazását. Szükséges, hogy a hőelem fémek fizikailag és kémiailag homogének legyenek. Hasonlóképpen az összekötő pontoknak azonos hőmérsékletű térbe kell esnie. Ha ezen feltételek közül akár csak az egyik nem teljesül, további nem kívánt emf - et fog eredményezni.

Mellékesen bármennyi darab vezető adható a termoelektromos körhöz anélkül, hogy megváltoztatná a kimeneti feszültséget, mindaddig, amíg mindkét végpontjuk azonos hőmérsékleten van és a homogenitás is biztosított. Ez vezetett a hosszabbító és kompenzálókábelek elgondolásához – megengedve az érzékelőkábel hosszúságának növelését.

Hőmérséklet mérő chippek:

A félvezető érzékelők ellenállásként, diódaként, tranzisztorok p-n átmeneteként szerezhetők be. A záróirányban előfeszített diódák és tranzisztorok érzékenysége 2 mV/°C körül jelzett és könnyen gyárthatók és linearizálhatók -50 °C és +100 °C és ezeken is túl.

3. Mérési feladatok:

3.1. Önmelegedés vizsgálata:

Az önmelegedést csak a termisztor esetén vizsgáljuk, de természetesen minden ellenállás hőmérőre igaz az, hogy az érzékelőn átfolyó mérő áram melegíti az érzékelőt és ezzel mérési hibát okoz.

A vizsgálatot egy különálló érzékelőn végezzük el, hiszen a mérendő alumínium tömb elvezetné az érzékelő önmelegedésének hőjét.

Mérje meg a Therm 0 termisztor ellenállását a HM8012-es típusú digitális multiméterrel az alábbi táblázatban megadott méréshatárokban.

Mint az alábbi táblázatból is látja a DMM az ellenállásmérő üzemmód esetén a különböző méréshatárokban más és más áramot hajt át a mérendő ellenálláson.

A különböző méréshatárok beállítása után várja meg a termikus egyensúly beállását (nem változik tovább a mért ellenállás kb. 2 perc).

Méréshatár	Mérőáram	`	R (termikus egyensúly beállta után)	ΔR	h%
$500 \text{ k}\Omega \text{ (L4)}$	10 μΑ				
50 kΩ (L3)	100 μΑ				
5 kΩ (L2)	1 mA				

A 10 μA-es mérőáram esetén a mérés kezdetén mért értéket tekintse alap értéknek.

Számítsa ki, hogy a különböző mérőáramok a termikus egyensúly beállta után mekkora relatív hibát okoznak!

3.2. Hőmérséklet jelleggörbék felvétele:

A mérendő objektum egy 6x6x1cm-es alumínium tömb, melynek a hátlapjára (6x6cm) egy $47~\Omega$ -os 25~W-os fűtőellenállást helyeztünk el.

Az érzékelők a tömb felső szélén vannak elhelyezve. Ezzel az elrendezéssel próbáljuk meg biztosítani, hogy minden érzékelő közel azonos hőmérsékletet mérjen.

Az alumínium tömb tetején a 6x1 cm-es felületen van 4 féle érzékelő rögzítve, ezek kivezetéseit találják meg a mérőpanel előlapján.

A mérőpanel tápfeszültség ellátásának egy része fixen bekötött (~12V és ~42V), de az előlapra egy ±15 V-os tápfeszültséget kell csatlakoztatni.

A hőmérséklet változtatását a beépített kapcsoló változtatásával tudják elérni.

A maximális hőmérséklet biztonsági okokból kb 50 °C

A mérést a hőmérséklet beállító kapcsoló minden állásában végezze el. A hőmérséklet beállítását egy szabályzás végzi. A kapcsolóval az alapjelet állítják. A stabil hőmérséklet beállításához kb. 3 percre van szükség. A termikus egyensúly beállásának elérését a thermisztor ellenállásváltozását figyelve tudjuk legegyszerűbben nyomon követni. Amikor a thermisztor ellenállása már nem változik (esetleg csak nagyon lassan) beálltnak tekinthetjük a termikus egyensúlyt.

A méréshez használjon két darab HM8012-es, egy TENMA és két MX-25201-es típusú digitális multimétert.

Tervezze meg melyik műszerrel érdemes melyik érzékelő kimeneti jelét mérni!

A panel bal oldalán lévő piros banánhüvelyekre csatlakoztassa az egyik HM8012-es multimétert °C mérő üzemmódban, a műszer által mutatott feszültséget tekintsük a "hiteles" referenica hőmérsékletnek!

Referencia hőmérséklet [°C]	Therm $[k\Omega]$	ΡΤ100 [Ω]	IC [mV] (10mV = 1 °C) Hőmérséklet [°C]

Az elvégzett mérések alapján ábrázolja az elemek hőmérsékleti karakterisztikáját!

Értékelje az egyes érzékelőket a linearitás és érzékenység szempontjából.

3.3 A szilárd testek felületén mérhető hőmérséklet eloszlásának vizsgálata

A mérendő objektum felfűtés után a kézi tapintófejes hőmérsékletmérő műszer segítségével mérje meg az alumínium tömb közepén és alsó szélén a hőmérsékletét. Figyelem! A tapintófej hőmérsékletének át kell vennie az alumínium tömb hőmérsékletét, tehát hosszabb ideig kell egy helyen tartani! Adjon magyarázatot a mért hőmérséklet értékekre.

A rendelkezésére álló infravörös hőmérővel végezze el az alumínium tömb hőmérsékletét. A mérést ismételje meg úgy is, hogy egy papír lapot szorít az alumínium tömbre. Az oktató segítségével adjon magyarázatot a tapasztaltakra.