Isogenies & Pairings

supersingular elliptic curve

- has p + 1 points in $E(\mathbb{F}_p)$
- choose p so that $p+1=4\cdot\ell_1\cdot\ell_2\cdot\ldots\cdot\ell_n$
- this implies the rational points on \emph{E} have orders that divide p + 1

$$E: y^2 = x^3 + Ax^2 + x, \quad A \in \mathbb{F}_p$$

supersingular elliptic curve

- has p + 1 points in $E(\mathbb{F}_p)$
- choose p so that $p+1=4\cdot\ell_1\cdot\ell_2\cdot\ldots\cdot\ell_n$
- this implies the rational points on ${\it E}$ have orders that divide p+1

$$E: y^2 = x^3 + Ax^2 + x, \quad A \in \mathbb{F}_p$$

points on such curves

We have that

$$E(\mathbb{F}_p) \cong \mathbb{Z}_4 \times \mathbb{Z}_{\ell_1} \times \mathbb{Z}_{\ell_2} \times \ldots \times \mathbb{Z}_{\ell_n},$$

So think of a point $P \in E(\mathbb{F}_p)$ as a sum of points P_i of order \mathcal{E}_i

$$P = P_0 + P_1 + P_2 + \dots + P_n$$

which shows how scalars $[\lambda]$ with $\lambda \in \mathbb{N}$ affect the torsion

$$\begin{split} [\ell_2]P &= [\ell_2]P_0 + [\ell_2]P_1 + [\ell_2]P_2 + \dots + [\ell_2]P_n \\ &= [\ell_2]P_0 + [\ell_2]P_1 + \mathcal{O} + \dots + [\ell_2]P_n \end{split}$$

