	 3 Alpha = 0.0 (WORST RESULTS) 4 Alpha = 1.0, fit_prior=False 5 Alpha = 0.5, fit_prior=False 6 Alpha = 1.0, fit_prior=True, class_prior=[2,5,93] (BEST RESULTS) 7 Alpha = 0.05, fit_prior=False, class_prior=[2,5,93] import numpy as np
T. (T)	<pre>import numpy as np import matplotlib.pyplot as plt from sklearn.naive_bayes import MultinomialNB from sklearn.metrics import confusion_matrix, classification_report, roc_curve from sklearn.multiclass import OneVsRestClassifier import pickle X_train_smt = pickle.load(open("saved_feats/X_train_smt", "rb")) X_test = pickle.load(open("saved_feats/X_test", "rb")) y_train_smt = pickle.load(open("saved_feats/y_train_smt", "rb")) y_test = pickle.load(open("saved_feats/y_test", "rb")) # FORMATO DE PLOTS plt.style.use('bmh')</pre>
In [2]:	<pre>Parámetros por defecto clf_mnb = OneVsRestClassifier(MultinomialNB(alpha=1.0, fit_prior=True, class_prior=None)) clf_mnb.fit(X_train_smt, y_train_smt) pred_mnb = clf_mnb.predict(X_test) pred_prob_mnb = clf_mnb.predict_proba(X_test)</pre>
In [3]:	<pre>print('Predicted classes:', clf_mnb.classes_) print('Average accuracy :', np.mean(pred_mnb == y_test)*100) print('Train accuracy :', (clf_mnb.score(X_train_smt, y_train_smt))*100) print('Test accuracy :', (clf_mnb.score(X_test, y_test))*100) print('\n CONFUSION MATRIX')</pre>
	<pre>print(confusion_matrix(y_test, pred_mnb)) print('\n CLASSIFICATION REPORT') print(classification_report(y_test, pred_mnb)) Predicted classes: ['Negative' 'Neutral' 'Positive'] Average accuracy: 83.52011758221569 Train accuracy: 91.25254716361006 Test accuracy: 83.52011758221569 CONFUSION MATRIX</pre>
In [4]:	<pre>[[62 26 23] [64 89 97] [193 494 4395]] CLASSIFICATION REPORT</pre>
Out[4]:	<pre>try = {} thresh = {} fpr[0], tpr[0], thresh[0] = roc_curve(y_test, pred_prob_mnb[:, 0], pos_label='Negative') fpr[1], tpr[1], thresh[1] = roc_curve(y_test, pred_prob_mnb[:, 1], pos_label='Neutral') fpr[2], tpr[2], thresh[2] = roc_curve(y_test, pred_prob_mnb[:, 2], pos_label='Positive') plt.plot(fpr[0], tpr[0], linestyle='',</pre>
	Multiclass ROC curve 10 0.8 0.6 0.4 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 False Positive Rate
In [5]:	<pre>clf_mnb_2 = OneVsRestClassifier(MultinomialNB(</pre>
	Predicted classes: ['Negative' 'Neutral' 'Positive'] Average accuracy: 83.72221201543266 Train accuracy: 91.663380003944 Test accuracy: 83.72221201543266 CONFUSION MATRIX [[59
In [7]:	<pre>weighted avg 0.92 0.84 0.87 5443 fpr = {} tpr = {} thresh = {} fpr[0], tpr[0], thresh[0] = roc_curve(y_test, pred_prob_mnb_2[:, 0], pos_label='Negative') fpr[1], tpr[1], thresh[1] = roc_curve(y_test, pred_prob_mnb_2[:, 1], pos_label='Neutral') fpr[2], tpr[2], thresh[2] = roc_curve(y_test, pred_prob_mnb_2[:, 2], pos_label='Positive') plt.plot(fpr[0], tpr[0], linestyle='',</pre>
Out[7]:	plt.ylabel('True Positive rate') plt.legend(loc='best') <pre> <pre></pre></pre>
In [8]:	O.0 0.2 0.4 0.6 0.8 10 Alpha = 0.0 (WORST RESULTS) clf_mnb_3 = OneVsRestClassifier(MultinomialNB(alpha=1.0e-10, fit_prior=True, class_prior=None)) clf_mnb_3.fit(X_train_smt, y_train_smt) pred_mnb_3 = clf_mnb_3.predict(X_test) pred_prob_mnb_3 = clf_mnb_3.predict_proba(X_test)
In [9]:	<pre>pred_prob_mnb_3 = clf_mnb_3.predict_proba(X_test) clf_mnb_3.get_params() {'estimatoralpha': 1e-10, 'estimatorclass_prior': None, 'estimatorfit_prior': True, 'estimator': MultinomialNB(alpha=1e-10), 'n_jobs': None,</pre>
In [10]:	<pre>'verbose': 0} print('Predicted classes:', clf_mnb_3.classes_) print('Average accuracy :', np.mean(pred_mnb_3 == y_test)*100) print('Train accuracy :', (clf_mnb_3.score(</pre>
In [11]:	Negative 0.12 0.22 0.16 111 Neutral 0.12 0.25 0.16 250 Positive 0.95 0.88 0.92 5082 accuracy 0.84 5443 macro avg 0.40 0.45 0.41 5443 weighted avg 0.90 0.84 0.87 5443
In [11]:	<pre>fpr = {} tpr = {} tpr = {} thresh = {} fpr[0], tpr[0], thresh[0] = roc_curve(y_test, pred_prob_mnb_3[:, 0], pos_label='Negative') fpr[1], tpr[1], thresh[1] = roc_curve(y_test, pred_prob_mnb_3[:, 1], pos_label='Neutral') fpr[2], tpr[2], thresh[2] = roc_curve(y_test, pred_prob_mnb_3[:, 2], pos_label='Positive') plt.plot(fpr[0], tpr[0], linestyle='',</pre>
Out[11]:	Multiclass ROC curve Negative vs Rest Neutral vs Rest Positive vs Rest 0.6 0.7 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
J In [12]:	<pre>Alpha = 1.0, fit_prior=False clf_mnb_4 = OneVsRestClassifier(MultinomialNB(alpha=1.0, fit_prior=False, class_prior=None)) clf_mnb_4.fit(X_train_smt, y_train_smt) pred_mnb_4 = clf_mnb_4.predict(X_test) pred_prob_mnb_4 = clf_mnb_4.predict_proba(X_test)</pre>
	<pre>print('Predicted classes:', clf_mnb_4.classes_) print('Average accuracy :', np.mean(pred_mnb_4 == y_test)*100) print('Train accuracy :', (clf_mnb_4.score(</pre>
	[64 89 97] [193 494 4395]] CLASSIFICATION REPORT
In [14]:	<pre>macro avg 0.44 0.59 0.47 5443 weighted avg 0.92 0.84 0.87 5443 fpr = {} tpr = {} tpr = {} thresh = {} fpr[0], tpr[0], thresh[0] = roc_curve(y_test, pred_prob_mnb_4[:, 0], pos_label='Negative') fpr[1], tpr[1], thresh[1] = roc_curve(y_test, pred_prob_mnb_4[:, 1], pos_label='Neutral') fpr[2], tpr[2], thresh[2] = roc_curve(y_test, pred_prob_mnb_4[:, 2], pos_label='Positive') plt.plot(fpr[0], tpr[0], linestyle='', color='orange', label='Negative vs Rest') plt.plot(fpr[1], tpr[1], linestyle='', color='green', label='Neutral vs Rest') plt.plot(fpr[2], tpr[2], linestyle='', color='blue', label='Positive vs Rest')</pre>
Out[14]:	plt.title('Multiclass ROC curve') plt.ylabel('True Positive rate') plt.legend(loc='best') <pre> </pre> <pre> <pre> <pre></pre></pre></pre>
/ In [15]:	O.0 O.2 O.4 O.6 O.8 1.0 False Positive Rate Alpha = 0.5, fit_prior=False clf_mnb_5 = OneVsRestClassifier(MultinomialNB(alpha=0.5, fit_prior=False, class_prior=None)) clf_mnb_5.fit(X_train_smt, y_train_smt)
In [16]:	<pre>pred_mnb_5 = clf_mnb_5.predict(X_test) pred_prob_mnb_5 = clf_mnb_5.predict_proba(X_test) print('Predicted classes:', clf_mnb_5.classes_) print('Average accuracy :', np.mean(pred_mnb_5 == y_test)*100) print('Train accuracy :', (clf_mnb_5.score(</pre>
In [17]:	CONFUSION MATRIX [[59 26 26] [61 86 103] [186 484 4412]] CLASSIFICATION REPORT
Out[17]:	<pre>fpr[0], tpr[0], thresh[0] = roc_curve(y_test, pred_prob_mnb_5[:, 0], pos_label='Negative') fpr[1], tpr[1], thresh[1] = roc_curve(y_test, pred_prob_mnb_5[:, 1], pos_label='Neutral') fpr[2], tpr[2], thresh[2] = roc_curve(y_test, pred_prob_mnb_5[:, 2], pos_label='Positive') plt.plot(fpr[0], tpr[0], linestyle='',</pre>
	Dipha = 1.0, fit_prior=True, class_prior=[2,5,93] (BEST RESULTS)
	<pre>clf_mnb_6 = (MultinomialNB(alpha=1.0, fit_prior=True,</pre>
	Train accuracy: 87.72431473082233 Test accuracy: 90.63016718721293 CONFUSION MATRIX [[34
Out[20]:	<pre>tpr = {} thresh = {} fpr[0], tpr[0], thresh[0] = roc_curve(y_test, pred_prob_mnb_6[:, 0], pos_label='Negative') fpr[1], tpr[1], thresh[1] = roc_curve(y_test, pred_prob_mnb_6[:, 1], pos_label='Neutral') fpr[2], tpr[2], thresh[2] = roc_curve(y_test, pred_prob_mnb_6[:, 2], pos_label='Positive') plt.plot(fpr[0], tpr[0], linestyle='', color='orange', label='Negative vs Rest') plt.plot(fpr[1], tpr[1], linestyle='', color='green', label='Neutral vs Rest') plt.plot(fpr[2], tpr[2], linestyle='', color='blue', label='Positive vs Rest') plt.title('Multiclass ROC curve') plt.xlabel('False Positive Rate') plt.ylabel('True Positive rate') plt.legend(loc='best') </pre> <pre></pre>
	0.6 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
In [21]:	Alpha = 0.5, fit_prior=True, class_prior=[2,5,93] clf_mnb_7 = (MultinomialNB(alpha=0.5, fit_prior=True, class_prior=[0.2, 0.5, 0.93])) clf_mnb_7.fit(X_train_smt, y_train_smt) pred_mnb_7 = clf_mnb_7.predict(X_test) pred_prob_mnb_7 = clf_mnb_7.predict_proba(X_test) print('Predicted classes:', clf_mnb_7.classes_) print('Average accuracy :', np.mean(pred_mnb_7 == y_test)*100) print('Tain accuracy :', (clf_mnb_7.score(
	<pre>print('\n CLASSIFICATION REPORT') print(classification_report(y_test, pred_mnb_7)) Predicted classes: ['Negative' 'Neutral' 'Positive'] Average accuracy : 90.35458386918978 Train accuracy : 88.64293696180899 Test accuracy : 83.52011758221569 CONFUSION MATRIX [[32</pre>
In [23]:	<pre>Positive 0.96 0.95 0.95 5082 accuracy</pre>
Out[23]:	color='blue', label='Positive vs Rest') plt.title('Multiclass ROC curve') plt.xlabel('False Positive Rate') plt.ylabel('True Positive rate') plt.legend(loc='best') <pre> </pre> <pre> <pre> <pre></pre></pre></pre>