Alifatické uhľovodíky

Pre pripomenutie: uhľovodíky sú organické zlúčeniny, zložené len z uhlíka a vodíka ©

-delenie uhľov.: 1. alifatické uhľovodíky:a)nasýtené (alkány+cykloalkány),b)nenasýtené (alkény, alkíny)

2. aromatické uhľovodíky = arény (benzén, naftalén, styrén...)

alifatické uhľovodíky	Koncovka	všeobecný vzorec	Príklad metán
Alkány -nasýtená uhľ -acyklické	- AN vyjadruje prítomnosť len jednoduchých väzieb medzi uhlíkmi v uhľov reťazci	C_nH_{2n+2} (kde n = 1, 2, 3,)	etán propán cyklopropán
Cykloalkány -nasýtené uhľ., cyklické	1. //	C_nH_{2n} (kde n = 3, 4)	cyklobután
Alkény - nenasýtené uhľ. -acyklické	vyjadruje pritomnosť 1 dvojitej väzby medzi uhlíkmi v uhľov reťazci	C_nH_{2n} (kde n = 2, 3,)	propén but-1-én but-2-én but-1-ín
Alkiny - nenasýtené uhľ -acyklické	vyjadruje prítomnosť jednej 3 väzby medzi uhlíkmi v uhľov reťazci	C _n H _{2n-2} (kde n = 2, 3,)	but-2-in 1 8-211

✓ od najjednoduchších alifatických uhřovodíkov sú odvodené skoro všetky organické zlůčeniny, ich názvoslovie tvorí základ názvov zložitejších derivátov uhľovodíkov (okrem C+H majú aj -NO, S -SIGHA

Alkány

- penkieké) uhľovodíky, ktoré vo > nenasytené knasýte: 3 HOUD BUICHE molekule obsahzid svojej kovalentné väzby (σ-väzby - čítaj sigma)
- starší názov parafiny (z latinského málo zlúčivý)
- > z hľadiska štruktúry môžu byť lineárne (s priamym uhlikovým reťazcom), alebo rozvetvené (majú aj terciárny alebo kvartérny uhlík)
- názvoslovie: tvoria homologický rad, v ktorom sa každý nasledujúcí člen líši od predchádzajúceho konštantnou relatívnou atómovou hmotnosťou a homologickým prírastkom. Ar(C)+2 Ar(H)=

Ar(C)+2.Ar(H)=		a homologickym prirastkom – CH ₂ -	
Názov alkánu	Sumárny molek.vz	Štruktúrny vzorec	Racionálny vzorec
metán	CH ₄	H—C—H H	CH ₄
ctán	C ₂ H ₆	H H H-C-C-H H H	CH ₃ -CH ₃
propán	C ₃ H ₈	H H H H-C-C-C-H H H H	CH ₃ -CH ₂ -CH ₃

1. Existujú aj alkány s vyšším počtom uhlikov ako 102 110 UNDEFAN 12C DUDREAT

Aká zlúčenina je na obrázku?

bután	C ₄ H ₁₀		CH (CH.) CH.
		H H H H H-C-C-C-C-H	CH ₃ -(CH ₂) ₂ -CH ₁
pentán	C ₅ H ₁₂	H H H H H H H H H H H H H H H H H H H	CH ₃ -(CH ₂) ₃ -CH ₃
hexán	C ₆ H ₁₄	<u> </u>	
	4	H—C—C—C—C—C—C—H—I—I—I—I—I—I—I—I—I—I—I—I—	CH ₃ -(CH ₂) ₄ -CH ₃
heptán	C7H16	H H H H H H H H H H H H H H H H H H H	CH ₃ -(CH ₂) ₅ -CH ₃
oktán	C ₈ H ₁₈	H-C-C-C-C-C-C-C-H	CH ₃ -(CH ₂) ₆ -CH ₃
nonán	C9H20	M H H H H H H H H H H H H H H H H H H H	CH ₃ -(CH ₂) ₇ -CH ₃
dekán	C ₁₀ H ₂₂	H H H H H H H H H H H H H H H H H H H	CH ₃ -(CH ₂) ₈ -CH ₃

okolo väzby C - C môže dochádzať k rotácii a tým k vzniku rôznych konformácii molekúl, napríklad u etánu:

E výhodnejšia je: 2051 KMEM

Alkány tvoria refazové izoméry napríklad:

$$H_3C-CH_2-CH_2-CH_2-CH_2-CH_3$$

CH3 - Methons

A-hexan (C,H,,)

3-metylpentán (C,H,,)

- výskyt: plynné v zemnom plyne, kvapalné+tuhé v rope, tuhé v uhlí
- fyzikálne vlastnosti:
 - a) skupenstvo: závisí od dĺžky uhlíkového reťazca (od počtu C)
 - plynné všetky alkány s počtom uhlíkov C₁ C₄
 - kvapalné všetky alkány s počtom uhlíkov C₅ C₁₈
 - tuhé všetky alkány s počtom uhlíkov vyšším ako C₁₅
 - vzhľad: sú bezfarebné látky, kvapalné alkány s nižšou teplotou varu páchnu po benzíne, všetky ostatné sú bez zápachu
 - c) nerozpustnosť <u>sú nepolárne látky</u> majú nepolárne väzby v molekule medzi C a C ale aj C a H sa rozpúšťajú veľmi dobre <u>v nepolárnych</u> <u>rozpúšťadlách</u> (benzén) a nerozpúšťajú sa v polárnych rozpúšťadlách (voda), kvapalné alkány sú samotné dobrými rozpúšťadlami nepol. látok

- Aké sumárne vzorce by mali:
 - a) alkány s 25 uhlikmi c 15H 5Z
 - b) alkény so 70 uhlíkmi C 20 H 140
 - c) cykloalkány so 70 uhlíkmi (7 o ^H140
- d) alkiny so 14 uhlikmi C 14 ^H2l

3. Zopakujme si
pojmy, akými
reakciami sú:
a) substitúcia
NAHR NOZNIZ VIO(FA AIRINO
(NY SKUZINY LZDAKO
(NO SKURI) t

b) eliminácia

DDŠTILEPENIE - ZNÁSODÍ

SA VÁZBO

VZNÍRÁ MOLÁ ANOVY

ZÍVCENÍNA

C) adicia

PHPOJENIE

ZNÍZOVANO NÁSODNOTÍ

VÁZIEB

X(C)=2,5X(H)=2,2

- d) teplota topenia a teplota varu: stúpa so zvyšujúcim sa počtom uhlíkov
 chemické vlastnosti:
 - všetky sú horľavé, s kyslíkom horia na CO₂ a H₂O

Uloha: Zapíšte horenie metánu chemickou reakciou a reakciu vyrovnajte:

CH4 + 20 2 202 + 242 0 + ENEVALA PISONKE

- inak sú pomerne málo reaktívne, reagujú až pri vyšších teplotách alebo vplyvom UV žiarenia
- v molekule obsahujú len nepolárne väzby -štiepia sa homolyticky, pričom vznikajú radikály s voľným elektrónom † PADIFJULE SUBSTITULU
 - typickými reakciami sú:
 - a) radikálové substitúcie dochádza k nahradeniu atómu vodíkov napr. halogenácia - chlorácia,
 - b) eliminácia dochádza k zvýšeniu násobnosti väzieb (napr. dehydrogenácia)
 - c) oxidácia = horenie, napr. metánu kúrenie zemným plynom,
 silne exotermická reakcia, pri kt. vzniká teplo Q

Radikálová substitúcia – prebieha v 3 krokoch:

- 1.INICIÁCIA=začatie reakcie, vznik radikálov z nepolárnych molekúl napr. Cl2 pre ich vznik je potrebné UV žiarenie
- 2.PROPAGÁCIA=šírenie, reakcia radikálov so substrátom a vznik nových radikálov
- 3.TERMINÁCIA=ukončenie, zánik radikálov ich vzájomnou reakciou

Vzniknutý radikál chlóru iniciuje reakciu s alkánom, pričom vznikne alkylový

radikál (napr.metylový CH₃·): CH₄ + ·Cl → CH₃· + HCl

$$H \longrightarrow C \longrightarrow H \longrightarrow C \longrightarrow H \longrightarrow C$$

Metylový radikál reaguje s ďalšou molekulou Cl2:

Pomenujte produkty reakcie: CHLORMOTAN a chlorovodík

METSL CHLORIO

4. Benzín sa používa na odstraňovanie niektorých mastných škvŕn alebo trávy na oblečení. Na základe akých vlastností je to možně?

> Čo je ekologickejšie? Kúrenie drevom, uhlím, zemným plynom?

Čo je radikál?

Čo je antioxidant?

metanolu, acetylénu, vodíka, sadzí(farbivo pneumatík), chlórovaných derivátov, acetaldehydu, kyseliny octovej.

globálnemu otepľovaniu.

- b) etán v malom množstve je v zemnom plyne, prevažne sa získava z ropy, vyrába sa z neho etén a z neho polyetylén (plast)
- c) propán a bután sú spolu s metánom v zemnom plyne, bezfarebné plyny bez zápachu, horľavé, používajú sa ako pohonné látky (LPG) propán-butánová zmes, čistým butánom sa plnia zapaľovače
- d) izooktán 2,2,4-trimetylpentán používa sa na určovanie kvality benzinu ako oktánové číslo (okt.číslo 100) čím je oktánové číslo vyššie, tým je benzín kvalitnejší a odolnejší proti samovznieteniu (klepaniu motora)

Natural 95 znamená, že benzín obsahuje 95% izooktánu a 5% nheptánu (má oktánové číslo 0).

Zapíšte: 2,2,4-trimetylpentán

Ktoré z alkánov

nájdeme v domácnosti? Pomôžte si obrázkami,

20N=03 (10 DUSHS

NO DIA PARA