Access Control

Access Control

- Two parts to access control
- Authentication: Are you who you say you are?
 - Determine whether access is allowed
 - Authenticate human to machine
 - o Or authenticate machine to machine
- Authorization: Are you allowed to do that?
 - o Once you have access, what can you do?
 - Enforces limits on actions
- Note: "access control" often used as synonym for authorization

Are You Who You Say You Are?

- How to authenticate human a machine?
- Can be based on...
 - o Something you know
 - For example, a password
 - o Something you have
 - For example, a smartcard
 - o Something you are
 - For example, your fingerprint

Something You Know

- Passwords
- Lots of things act as passwords!
 - o PIN
 - Social security number
 - o Mother's maiden name
 - o Date of birth
 - Name of your pet, etc.

Why Passwords?

- Why is "something you know" more popular than "something you have" and "something you are"?
- Cost: passwords are free
- Convenience: easier for admin to reset pwd than to issue a new thumb

Keys vs Passwords

- □ Crypto keys
- Spse key is 64 bits
- □ Then 2⁶⁴ keys
- Choose key at random...
- ...then attacker must
 try about 2⁶³ keys

□ Passwords

- Spse passwords are 8 characters, and 256 different characters
- □ Then 2568 = 264pwds
- Users do not select passwords at random
- Attacker has far less than 263pwds to try (dictionary attack)

Good and Bad Passwords

- Bad passwords
 - o frank
 - o Fido
 - o password
 - o 4444
 - o Pikachu
 - o 102560
 - AustinStamp

- □ Good Passwords?
 - o jfIej,43j-EmmL+y
 - o 09864376537263
 - o POkemON
 - FSa7Yago
 - o OnceuPOnAt1m8
 - o PokeGCTall150

Password Experiment

- Three groups of users each group advised to select passwords as follows
 - o Group A: At least 6 chars, 1 non-letter
- winner Group B: Password based on passphrase
 - o Group C: 8 random characters
 - Results
 - o Group A: About 30% of pwds easy to crack
 - o Group B: About 10% cracked
 - Passwords easy to remember
 - Group C: About 10% cracked
 - Passwords hard to remember

Password Experiment

- User compliance hard to achieve
- □ In each case, 1/3rd did not comply
 - o And about 1/3rd of those easy to crack!
- Assigned passwords sometimes best
- □ If passwords not assigned, best advice is...
 - o Choose passwords based on passphrase
 - Use pwd cracking tool to test for weak pwds
- Require periodic password changes?

Attacks on Passwords

- Attacker could...
 - Target one particular account
 - o Target any account on system
 - o Target any account on any system
 - Attempt denial of service (DoS) attack
- □ Common attack path Upgrading level of privilege
 - Outsider → normal user → administrator
 - o May only require one weak password!

Password Retry

- Suppose system locks after 3 bad passwords. How long should it lock? What are +'s and -'s of each?
 - o 5 seconds
 - ..circle all accounts...
 - o 5 minutes
 - ...DoS...
 - Until Admin restores service

Password File?

- □ Bad idea to store passwords in a file
- But we need to verify passwords
- Cryptographic solution: hash the pwd
 - Store y = h(password)
 - o Can verify entered password by hashing
 - If Trudy obtains "password file," she does not obtain passwords
- But Trudy can try a forward search
 - Guess x and check whether y = h(x)

Dictionary Attack

- Trudy pre-computes h(x) for all x in a dictionary of common passwords
- Suppose Trudy gets access to password file containing hashed passwords
 - She only needs to compare hashes to her precomputed dictionary
 - o After one-time work, actual attack is trivial
- Can we prevent this attack? Or at least make attacker's job more difficult?

Salt

- Hash password with salt
- Choose random salt s and compute
- y = h(password, s)
 - and store (s,y) in the password file
- Note: The salt s is not secret
- Easy to verify salted password
- But Trudy must re-compute dictionary hashes for each user
 - o Lots more work for Trudy!

Other Password Issues

- Too many passwords to remember
 - Results in password reuse
 - o Discovered one discovered all (even slightly modified)
- Who suffers from bad password?
 - Login password vs ATM PIN (all the system falls for one weak password)
- Failure to change default passwords
- Social engineering (34% just for asking)
- Error logs may contain "almost" passwords
- Bugs, keystroke logging, spyware, etc.

Passwords

- □ The bottom line...
- Password cracking is too easy
 - o One weak password may break security
 - Users choose bad passwords
 - Social engineering attacks, etc.
- Trudy has (almost) all of the advantages
- All of the math favors bad guys
- Passwords are a BIG security problem
 - o And will continue to be a big problem

Password Cracking Tools

- Popular password cracking tools
 - o <u>Password Crackers</u>
 - o <u>Password Portal</u>
 - o <u>LOphtCrack and LC4</u> (Windows)
 - o John the Ripper (Unix)
- Admins should use these tools to test for weak passwords since attackers will

Password Manager

- Password Manager?
 - Yes, please

https://keepass.info/download.html

Biometrics

Something You Are

- Biometric
 - o "You are your key"—Schneier
- Examples
 - Fingerprint
 - Handwritten signature
 - Facial recognition
 - Speech recognition
 - o Gait (walking) recognition
 - "Digital doggie" (odor recognition)
 - Many more!

Why Biometrics?

- More secure replacement for passwords
- Cheap and reliable biometrics needed
 - o Today, an active area of research
- Biometrics are used in security today
 - Thumbprint mouse
 - o Palm print for secure entry
 - Fingerprint to unlock car door, etc.
- But biometrics not too popular
 - Has not lived up to its promise (yet?)

Ideal Biometric

- Universal— applies to (almost) everyone
 - o In reality, no biometric applies to everyone
- Distinguishing distinguish with certainty
 - o In reality, cannot hope for 100% certainty
- Permanent physical characteristic being measured never changes
 - o In reality, OK if it to remains valid for long time
- Collectable— easy to collect required data
 - o Depends on whether subjects are cooperative
- Also, safe, user-friendly, etc., etc.

Biometric Modes

- Identification— Who goes there?
 - o Compare one-to-many
 - Example: The FBI fingerprint database
- Authentication— Are you who you say you are?
 - o Compare one-to-one
 - Example: Thumbprint mouse
- Identification problem is more difficult
 - More "random" matches since more comparisons
- We are interested in authentication

Enrollment vs Recognition

- Enrollment phase
 - o Subject's biometric info put into database
 - Must carefully measure the required info
 - o OK if slow and repeated measurement needed
 - Must be very precise
 - o May be weak point of many biometric
- Recognition phase
 - o Biometric detection, when used in practice
 - Must be quick and simple
 - But must be reasonably accurate

Cooperative Subjects?

- Authentication cooperative subjects
- Identification uncooperative subjects
- For example, facial recognition
 - Used in Las Vegas casinos to detect known cheaters (terrorists in airports, etc.)
 - o Often do not have ideal enrollment conditions
 - o Subject will try to confuse recognition phase
- Cooperative subject makes it much easier
 - o We are focused on authentication
 - o So, subjects are generally cooperative

Biometric Errors

- Fraud rate versus insult rate
 - Fraud —Trudy mis-authenticated as Alice
 - o Insult —Alice not authenticated as Alice
- For any biometric, can decrease fraud or insult, but other one will increase
- For example
 - o 99% voiceprint match ⇒low fraud, high insult
 - o 30% voiceprint match ⇒ high fraud, low insult
- Equal error rate: rate where fraud == insult
 - o A way to compare different biometrics

Fingerprint Comparison

- Examples of loops, whorls, and arches
- Minutia extracted from these features

Loop (double)

Whorl

Arch

Fingerprint: Enrollment

- Capture image of fingerprint
- Enhance image
- Identify points

Fingerprint: Recognition

- Extracted points are compared with information stored in a database
- Is it a statistical match? (with some pre-determined level of confidence)
- □ Aside: <u>Do identical twins' fingerprints differ?</u>

Hand Geometry

- A popular biometric
- Measures shape of hand
 - Width of hand, fingers
 - o Length of fingers, etc.
- Human hands not unique
- Hand geometry sufficient for many situations
- OK for authentication
- Not useful for ID problem

Hand Geometry

- Advantages
 - Quick—1 minute for enrollment, 5 seconds for recognition
 - o Hands are symmetric so what?
- Disadvantages
 - Cannot use on very young or very old
 - Relatively high equal error rate

Iris Patterns

- Iris pattern development is "chaotic"
- Little or no genetic influence
- Different even for identical twins
- Pattern is stable through lifetime

Attack on Iris Scan

- Good photo of eye can be scanned
 - o Attacker could use photo of eye
- Afghan woman was authenticated by iris scan of old photo
 - o Story is <u>here</u>
- To prevent attack, scanner could use light to be sure it is

Equal Error Rate Comparison

- Equal error rate (EER): fraud == insult rate
- □ Fingerprint biometric has EER of about 5%
- ☐ Hand geometry has EER of about 10-3
- □ In theory, iris scan has EER of about 10-6
 - o But in practice, may be hard to achieve
 - o Enrollment phase must be extremely accurate
- Most biometrics much worse than fingerprint!
- Biometrics useful for authentication...
 - o ...but identification biometrics almost useless today

Biometrics: The Bottom Line

- Biometrics are hard to forge
- But attacker could
 - Steal Alice's thumb
 - o Photocopy Bob's fingerprint, eye, etc.
 - o Subvert software, database, "trusted path" ...
- And how to revoke a "broken" biometric?
- □ Biometrics are not foolproof
- Biometric use is limited today
- That should change in the (near?) future

Something You Have

- Something in your possession
- Examples include following...
 - Car key
 - Laptop computer (or MAC address)
 - Password generator
 - o ATM card, smartcard, etc.

2-factor Authentication

- Requires any 2 out of 3 of
 - Something you know
 - Something you have
 - Something you are
- Examples
 - o ATM: Card and PIN
 - Credit card: Card and signature
 - Password generator: Device and PIN
 - Smartcard with password/PIN

Authentication vs Authorization

- Authentication Are you who you say you are?
 - o Restrictions on who (or what) can access system
- Authorization— Are you allowed to do that?
 - Restrictions on actions of authenticated users
- Authorization is a form of access control
- Classic authorization enforced by
 - Access Control Lists (ACLs)
 - Capabilities (C-lists)

Lampson's Access Control Matrix

- Subjects (users) index the rows
- Objects (resources) index the columns

	05	Accounting program	Accounting data	g Insurance data	Payroll data
Bob	rx	rx	r		
Alice	rx	rx	r	rw	rw
Sam	rwx	rwx	r	rw	rw
Accounting program	rx	rx	rw	rw	rw

Are You Allowed to Do That?

- Access control matrix has all relevant info
- Could be 1000's of users, 1000's of resources
- □ Then matrix with 1,000,000's of entries
- How to manage such a large matrix?
- Need to check this matrix before access to any resource is allowed
- How to make this efficient?

Access Control Lists (ACLs)

- ACL: store access control matrix by column
- Example: ACL for insurance data is in blue

	OS	Accounting program	Accounting data	g Insurance data	Payroll data
Bob	rx	rx	r		
Alice	rx	rx	r	rw	rw
Sam	rwx	rwx	r	rw	rw
Accounting program	rx	rx	rw	rw	rw

Capabilities (or C-Lists)

- Store access control matrix by row
- Example: Capability for Alice is in red

	05	Accounting program	Accounting data	g Insurance data	Payroll data
Bob	rx	rx	r		
Alice	rx	rx	r	rw	rw
Sam	rwx	rwx	r	rw	rw
Accounting program	rx	rx	rw	rw	rw

ACLs vsCapabilities

- Note that arrows point in opposite directions...
- With ACLs, still need to associate users to files

Confused Deputy

- Two resources
 - Compiler and BILL file (billing info)
- Compiler can write file BILL
- Alice can invoke compiler with a debug filename
- Alice not allowed to write to BILL

Access control matrix

	Compiler BILL		
Alice	×	r	
Compiler	rx	rw	

ACL's and Confused Deputy

- Compiler is deputy acting on behalf of Alice
- Compiler is confused
 - Alice is not allowed to write/overwrite BILL
- Compiler has confused its rights with Alice's

Confused Deputy

- Compiler acting for Alice is confused
- There has been a separation of authority from the purpose for which it is used
- With ACLs, difficult to avoid this problem
- With Capabilities, easier to prevent problem
 - Must maintain association between authority and intended purpose
 - o Capabilities make it easy to delegate authority

ACLs vs Capabilities

- ACLs
 - o Good when users manage their own files
 - Protection is data-oriented
 - Easy to change rights to a resource
- Capabilities
 - o Easy to delegate---avoid the confused deputy
 - Easy to add/delete users
 - More difficult to implement
- Capabilities loved by academics (they are more secure!)
 - o Capability Myths Demolished

Multilevel Security (MLS) Models

Classifications and Clearances

- Classifications apply to objects
- Clearances apply to subjects
- US Department of Defense (DoD) uses 4 levels:

TOP SECRET

SECRET

CONFIDENTIAL

UNCLASSIFIED

Clearances and Classification

- Practical classification problems
 - o Proper classification not always clear Users might have different views
 - o Level of granularity to apply classifications

It's possible to construct a document where each paragraph, taken individually, is UNCLASSIFIED, but the overall document is TOP SECRET

o Aggregation — flipside of granularity

Discover TOP SECRET info from a careful analysis of UNCLASSIFIED documents

Subjects and Objects

- □ Let O be an object, S a subject
 - O has a classification
 - S has a clearance
 - Security level denoted L(O) and L(S)
- For DoD levels, we have the equation:

TOP SECRET>SECRET>CONFIDENTIAL>UNCLASSIFIED

MLS Applications

- Classified government/military systems
- Business example: info restricted to
 - Senior management only, all management, everyone in company, or general public
- Network firewall (keep intruder at low level to limit the damage)
- Confidential medical info, databases, etc.

MLS Security Models

- MLS models explain what needs to be done
- Models do not tell you how to implement
- Models are descriptive, not prescriptive
 - o That is, high level description, not an algorithm
- □ There are many MLS models
- We'll discuss simplest MLS model
 - o Other models are more realistic
 - o Other models also more complex, more difficult to enforce, harder to verify, etc.

Bell-LaPadula

- BLP security model designed to express essential requirements for MLS
- BLP deals with confidentiality
 - o To prevent unauthorized reading
- Recall that O is an object, S a subject
 - Object O has a classification
 - Subject S has a clearance
 - Security level denoted L(O) and L(S)

Bell-LaPadula

□ BLP consists of

Simple Security Condition: S can read O if and only if $L(O) \le L(S)$

*-Property (Star Property): S can write O if and only if $L(S) \le L(O)$

TOP SECRET info cannot be written in SECRET document

□ No read up, no write down

McLean's Criticisms of BLP

- McLean: BLP is "so trivial that it is hard to imagine a realistic security model for which it does not hold"
- McLean's "system Z" allowed administrator to reclassify object, then "write down"
- □ Is this fair?
- Violates spirit of BLP, but not expressly forbidden in statement of BLP
- Raises fundamental questions about the nature of (and limits of) modeling

B and LP's Response

- BLP enhanced with tranquility property
 - o Strong tranquility: security labels never change
 - o Weak tranquility: security label can only change if it does not violate "established security policy"
- Strong tranquility impractical in real world
 - o Often want to enforce "least privilege"
 - o Give users lowest privilege for current work
 - o Then upgrade as needed (and allowed by policy)
 - o This is known as the high water mark principle
- Weak tranquility allows for least privilege (high water mark), but the property is vague

Biba's Model

- BLP for confidentiality, Biba for integrity
 - o Biba is to prevent unauthorized writing
- Biba is (in a sense) the dual of BLP
- Integrity model
 - Spse you trust the integrity of O but not O
 - o If object \mathbf{O} includes \mathbf{O} and \mathbf{O} then you cannot trust the integrity of \mathbf{O}
- Integrity level of O is minimum of the integrity of any object in O
- Low water mark principle for integrity

Biba

- Let I(O) denote the integrity of object O and I(S) denote the integrity of subject S
- Biba can be stated as

```
Write Access Rule: S can write O if and only if I(O) \le I(S)
```

(if S writes O, the integrity of $O \le$ that of S)

Biba's Model: S can read O if and only if $I(S) \le I(O)$

(if S reads O, the integrity of $S \le$ that of O)

Often, replace Biba's Model with

Low Water Mark Policy: If S reads O, then I(S) = min(I(S), I(O))

BLP vs Biba

Compartments

Compartments

- Multilevel Security (MLS) enforces access control up and down
- Simple hierarchy of security labels is generally notflexible enough
- Compartments enforces restrictions across
- Suppose TOP SECRET divided into TOP SECRET {CAT} and TOP SECRET {DOG}
- Both are TOP SECRET but information flow restricted across the TOP SECRET level
- You need a specific Clearance to access them

Compartments Why compartments?

- - Why not create a new classification level?
 - For example, the info could be not comparable
- May not want either of
 - **•** TOP SECRET {CAT}≥TOP SECRET {DOG}
 - **•** TOP SECRET {DOG}≥TOP SECRET {CAT}
 - These equations may not hold
- Compartments designed to enforce the need to know principle
 - Regardless of clearance, you only have access to info that you need to know to do your job, not all of them (example, all the TOP SECRET info)

Compartments

Arrows indicate "≥" relationship

□ Not all classifications are comparable, e.g., TOP SECRET {CAT}vsSECRET {CAT, DOG}

MLS vs Compartments

- MLS can be used without compartments
 - o And vice-versa
- But, MLS almost always uses compartments
- Example
 - MLS mandated for protecting medical records of British Medical Association (BMA)
 - o AIDS was TOP SECRET; prescriptions SECRET
 - But, everyone with SECRET clearance can deduce the AIDS patients by the prescriptions!!
 - Everything tends toward TOP SECRET
 - o Defeats the purpose of the system!
- Compartments-only approach used instead

- MLS designed to restrict legitimate channels of communication
- May be other ways for information to flow
- For example, resources shared at different levels could be used to "signal" information
- Covert channel: a communication path not intended as such by system's designers

Covert Channel Example

- Alice has TOP SECRET clearance, Bob has CONFIDENTIAL clearance
- Suppose the file space shared by all users
- Alice creates file FileXYZW to signal "1" to Bob, and removes file to signal "0"
- Once per minute Bob lists the files
 - o If file FileXYzW does not exist, Alice sent 0
 - If file FileXYzW exists, Alice sent 1
- Alice can leak TOP SECRET info to Bob!

Covert Channel Example

- Other possible covert channels?
 - Print queue
 - ACK messages
 - Network traffic, etc.
- When does covert channel exist?
 - 1. Sender and receiver have a shared resource
 - 2. Sender able to vary some property of resource that receiver can observe
 - 3. "Communication" between sender and receiver can be synchronized

- So, covert channels are everywhere
- "Easy" to eliminate covert channels:
 - o Eliminate all shared resources...
 - ...and all communication
- Virtually impossible to eliminate covert channels in any useful system
 - o DoD guidelines: reduce covert channel capacity to no more than 1 bit/second
 - Implication? DoD has given up on eliminating covert channels!

- Consider 100MB TOP SECRET file
 - o Plaintext stored in TOP SECRET location
 - Ciphertext (encrypted with AES using 256-bit key) stored in UNCLASSIFIED location
- Suppose we reduce covert channel capacity to 1 bit per second
- □ It would take more than 25 years to leak entire document thru a covert channel
- But it would take less than 5 minutes to leak 256-bit AES key thru covert channel!

Inference Control

Inference Control Example

- Suppose we query a database
 - Question: What is average salary of Italian CS professors at SJSU?
 - o Answer: \$1,000,000
 - Question: How many Italian CS professors at SJSU?
 - o Answer: 1
- Specific information has leaked from responses to general questions!

Inference Control and Research

- For example, medical records are private but valuable for research
- How to make info available for research and protect privacy?
- How to allow access to such data without leaking specific information?

Naive Inference Control

- Remove names from medical records?
- Still may be easy to get specific info from such "anonymous" data
- Removing names is not enough
 - As seen in previous example
- What more can be done?

Less-naïve Inference Control

- Query set size control
 - Don't return an answer if set size is too small
 - ...but research on rare medical conditions?
- N-respondent, k% dominance rule
 - Do not release statistic if k% or more contributed by N or fewer
 - o Example: Avg salary in Bill Gates' neighborhood
 - This approach used by US Census Bureau

Less-naïve Inference Control

- Randomization
 - Add small amount of random noise to data
 - o ... but problems with rare medical conditions
- Many other methods none satisfactory... for now.

Inference Control

- Robust inference control may be impossible
- Is weak inference control better than nothing?
 - o Yes: Reduces amount of information that leaks
- Is weak covert channel protection better than nothing?
 - Yes: Reduces amount of information that leaks
- Is weak crypto better than no crypto?
 - o Probably not
 - Encryption indicates important data. May be easier to filter encrypted data

CAPTCHA

Turing Test

- Proposed by Alan Turing in 1950
- Human asks questions to another human and a computer, without seeing either
- If questioner cannot distinguish human from computer, computer passes the test
- The gold standard in artificial intelligence
- No computer can pass this today
 - o But some claim to be close to passing

CAPTCHA

- □ CAPTCHA
 - Completely Automated Public Turing test to tell
 Computers and Humans Apart
- Automated test is generated and scored by a computer program
- Public program and data are public
- Turing test to tell... humans can pass the test, but machines cannot pass
 - o Also known as HIP == Human Interactive Proof
- Like an inverse Turing test (well, sort of...)

CAPTCHA Paradox?

- "...CAPTCHA is a program that can generate and grade tests that it itself cannot pass..."
 o "...much like some professors..."
- Paradox computer creates and scores test that it cannot pass!
- CAPTCHA used so that only humans can get access (i.e., no bots/computers)
- CAPTCHA is for access control

CAPTCHA Uses?

- Original motivation: automated bots stuffed ballot box in vote for best CS grad school
 SJSU vs Stanford?
- Free email services spammers like to use bots to sign up for 1000's of email accounts
 CAPTCHA employed so only humans get accounts
- Sites that do not want to be automatically indexed by search engines
 - CAPTCHA would force human intervention

CAPTCHA: Rules of the Game

- Easy for most humans to pass
- Difficult or impossible for machines to pass
 - o Even with access to CAPTCHA software
- From Trudy's perspective, the only unknown is a random number
 - Analogous to Kerckhoffs' Principle (Encryption Algorithm is know, only Key unknown)
- Desirable to have different CAPTCHAs in case some person cannot pass one type
 - o Blind person could not pass visual test, etc.

Do CAPTCHAs Exist?

Test: Find 2 words in the following

- Easy for most humans
- □ A (difficult?) OCR problem for computer
 - OCR == Optical Character Recognition

CAPTCHAS

- Current types of CAPTCHAS
 - Visual —like previous example
 - Audio distorted words or music
- No text-based CAPTCHAs
 - No Captcha reCAPTCHA from Google

CAPTCHA's and AI

- OCR is a challenging AI problem
 - Hard part is the <u>segmentation problem</u> (the ability to separate one letter from another)
 - o Humans good at solving this problem
- Distorted sound makes good CAPTCHA
 - o Humans also good at solving this
- Hackers who break CAPTCHA have solved a hard AI problem
 - So, putting hacker's effort to good use!
- Other ways to defeat CAPTCHAs???

Firewalls

Firewalls

- Firewall decides what to let in to internal network and/or what to let out
- Access control for the network

Firewall as Secretary

- A firewall is like a sécretary
- To meet with an executive
 - First contact the secretary
 - o Secretary decides if meeting is important
 - So, secretary filters out many requests
- You want to meet chair of CS department?
 - Secretary does some filtering
- You want to meet the President of the US?
 - Secretary does lots of filtering

Firewall Terminology

- No standard firewall terminology
- Types of firewalls
 - o Packet filter—works at network layer
 - o Stateful packet filter—transport layer
 - o Application proxy—application layer
- Other terms often used
 - E.g., "deep packet inspection"

Packet Filter

- Operates at network layer
- Can filters based on...
 - Source IP address
 - Destination IP address
 - Source Port
 - o Destination Port
 - o Flag bits (SYN, ACK, etc.)
 - Egress or ingress (different filtering rules for incoming and outgoing packet

Packet Filter

- Advantages?
 - Efficiency
 - packets only need to be processed up to the network layer
 - only header information is examined
- Disadvantages?
 - No concept of state (each packet is independent)
 - o Cannot see TCP connections
 - Blind to application data (where many malware reside!!)

Packet Filter

- Configured via Access Control Lists (ACLs)
 - o Different meaning than the one previously seen

Action	Source IP	Dest IP	Source Port	Dest Port	Protocol	Flag Bits
Allow	Inside	Outside	Any	80	HTTP	Any
Allow	Outside	Inside	80	> 1023	HTTP	ACK
Deny	All	All	All	All	All	All

- Q: Intention?
- A: Restrict traffic to Web browsing
- Outbound Web traffic (port 80) allowed
- Restrict incoming packets to Web responses

Port Scanning

- An attacker has to:
- 1. Check which ports are listening
- 2. Recognize the service using that port
- 3. Use a specific exploit to attack that service

TCP ACK Scan

- Attacker scans for open ports thru firewall
 - o Port scanning is first step in many attacks
- Attacker sends packet with ACK bit set, without prior
 3-way handshake
 - Violates TCP/IP protocol (the initial packet must have the SYN bit set)
 - ACK packet pass thru packet filter firewall
 - Appears to be part of an ongoing connection (no concept of state)
 - The recipient recognizes that the packet is not part of an established connection and respond with a RST packet to terminate the connection

TCP ACK Scan

- Attacker knows port 1209 open thru firewall
- A stateful packet filter can prevent this
 - Since scans not part of established connections

Stateful Packet Filter

- Adds state to packet filter
- Operates at transport layer
- Remembers TCP connections, flag bits, etc.
- Can even remember UDP packets (e.g., DNS requests)

Stateful Packet Filter

- Advantages?
 - Can do everything a packet filter can do plus...
 - Keep track of ongoing connections (so prevents TCP ACK scan)
- Disadvantages?
 - Cannot see application data
 - Slower than packet filtering

Application Proxy

- A proxy is something that acts on your behalf
- Application proxy looks at incoming application data
- Verifies that data is safe before letting it in

Application Proxy

- Advantages?
 - Complete view of connections and applications data
 - Filter bad data at application layer (viruses)
- Disadvantages?
 - Speed

Application Proxy

- Creates a new packet before sending it thru to internal network
- Attacker must talk to proxy and convince it to forward message
- Proxy has complete view of connection
- Prevents some scans stateful packet filter cannot (destroying and recreating packets)

Firewalls and Defense in Depth

Typical network security architecture

Intrusion Detection Systems

Intrusion Detection

- In spite of intrusion prevention, bad guys will sometime get in
- Intrusion detection systems (IDS)
 - Detect attacks in progress (or soon after)
 - Look for unusual or suspicious activity
- IDS evolved from log file analysis
- □ IDS is currently a hot research topic
- How to respond when intrusion detected?
 - We don't deal with this topic here...

Intrusion Detection Systems

- Who is likely intruder?
 - May be outsider who got thru firewall
 - May be evil insider
- What do intruders do?
 - Launch well-known attacks
 - Launch variations on well-known attacks
 - Launch new/little-known attacks
 - o "Borrow" system resources
 - o Use compromised system to attack others. etc.

IDS

- Intrusion detection approaches
 - Signature-based IDS
 - Anomaly-based IDS
- Intrusion detection architectures
 - Host-based IDS
 - Buffer overflow, escalation of privilege, ...
 - Network-based IDS
 - DoS, Network Probes, ...
- Any IDS can be classified as above
 - o In spite of marketing claims to the contrary!

Signature Detection Example

- Failed login attempts may indicate password cracking attack
- □ IDS could use the rule "N failed login attempts in M seconds" as signature
- If N or more failed login attempts in M seconds, IDS warns of attack
- Note that such a warning is specific
 - Admin knows what attack is suspected
 - Easy to verify attack (or false alarm)

Signature Detection

- Suppose IDS warns whenever N or more failed logins in M seconds
 - Set N and M so false alarms not common
 - o Can do this based on "normal" behavior
- But, if Trudy knows the signature, she can try N-1 logins every M seconds...
- Then signature detection slows down Trudy,
 but might not stop her

Signature Detection

- Many techniques used to make signature detection more robust
- Goal is to detect "almost" signatures
- For example, if "about" N login attempts in "about" M seconds
 - Warn of possible password cracking attempt
 - What are reasonable values for "about"?
 - o Can use statistical analysis, heuristics, etc.
 - Must not increase false alarm rate too much

Signature Detection

- Advantages of signature detection
 - o Simple
 - Detect known attacks
 - Know which attack at time of detection
 - Efficient (if reasonable number of signatures)
- Disadvantages of signature detection
 - o Signature files must be kept up to date
 - Number of signatures may become large
 - Can only detect known attacks
 - Variation on known attack may not be detected

Anomaly Detection

- Anomaly detection systems look for unusual or abnormal behavior
- There are (at least) two challenges
 - What is normal for this system?
 - o How "far" from normal is abnormal?
- No avoiding statistics here!
 - o mean defines normal
 - o variance gives distance from normal to abnormal

How to Measure Normal?

- How to measure normal?
 - Must measure during "representative" behavior
 - Must not measure during an attack...
 - o ...or else attack will seem normal!
 - o Normal is statistical mean
 - Must also compute variance to have any reasonable idea of abnormal

How to Measure Abnormal?

- Abnormal is relative to some "normal"
 - o Abnormal indicates possible attack
- Statistical discrimination techniques include
 - Bayesian statistics
 - Linear discriminant analysis (LDA)
 - Quadratic discriminant analysis (QDA)
 - o Neural nets, hidden Markov models (HMMs), etc.
- Fancy modeling techniques also used
 - Machine Learning
 - o Artificial immune system principles
 - o Many, many, many others

- □ Spse we monitor use of three commands: open, read, close
- ☐ Under normal use we observe Alice: open, read, close, open, open, read, close, ...
- Of the six possible ordered pairs, we see four pairs are normal for Alice,
 (open,read), (read,close), (close,open), (open,open)
- Can we use this to identify unusual activity?

- We monitor use of the three commands open, read, close
- □ If the ratio of abnormal to normal pairs is "too high", warn of possible attack
- Could improve this approach by
 - o Also use expected frequency of each pair
 - o Use more than two consecutive commands
 - o Include more commands/behavior in the model
 - More sophisticated statistical discrimination

Over time, Alice has accessed file F_n at rate H_n

H_0	H_1	H_2	H_3
.10	.40	.40	.10

 Recently, "Alice" has accessed F_n at rate A_n

A_0	A_1	A_2	A_3
.10	.40	.30	.20

- □ Is this normal use for Alice?
- We compute $S = (H_0 A_0)^2 + (H_1 A_1)^2 + ... + (H_3 A_3)^2 = .02$
 - We consider S < 0.1 to be normal, so this is normal
- How to account for use that varies over time?

- □ To allow "normal" to adapt to new use, we update averages: $H_n = 0.2A_n + 0.8H_n$
- □ In this example, H_n are updated... H_2 =.2*.3+.8*.4=.38 and H_3 =.2*.2+.8*.1=.12
- And we now have

H_0	H_1	H_2	H_3
.10	.40	.38	.12

The updated long term average is

H_0	H_1	H_2	H_3
.10	.40	.38	.12

Suppose new observed rates...

A_0	A_1	A_2	A_3
.10	.30	.30	.30

- ☐ Is this normal use?
- □ Compute $S = (H_0 A_0)^2 + ... + (H_3 A_3)^2 = .0488$
 - Since S = .0488 < 0.1 we consider this normal
- And we again update the long term averages:

$$H_n = 0.2A_n + 0.8H_n$$

The starting averages were:

H_0	H_1	H_2	H_3
.10	.40	.40	.10

After 2 iterations, averages are:

H_0	H_1	H_2	H_3
.10	.38	.364	.156

- Statistics slowly evolve to match behavior
- This reduces false alarms for SA
- But also opens an avenue for attack...
 - Suppose Trudy always wants to access F₃
 - o Can she convince IDS this is normal for Alice?

To make this approach more robust, must incorporate the variance

 \square Can also combine N stats S_i as, say,

$$T = (S_1 + S_2 + S_3 + ... + S_N) / N$$

to obtain a more complete view of "normal"

Anomaly Detection Issues

- Systems constantly evolve and so must IDS
 - o Static system would place huge burden on admin
 - But evolving IDS makes it possible for attacker to (slowly) convince IDS that an attack is normal
 - o Attacker may win simply by "going slow"
- What does "abnormal" really mean?
 - o Indicates there may be an attack
 - Might not be any specific info about "attack"
 - o How to respond to such vague information?
 - o In contrast, signature detection is very specific

Anomaly Detection

- Advantages?
 - o Chance of detecting unknown attacks
- Disadvantages?
 - o Cannot use anomaly detection alone...
 - ...must be used with signature detection
 - Reliability is unclear
 - May be subject to attack
 - Anomaly detection indicates "something unusual", but lacks specific info on possible attack

Anomaly Detection: The Bottom Line

- Anomaly-based IDS is active research topic
- Many security experts have high hopes for its ultimate success
- Often cited as key future security technology
- Hackers are not convinced!
 - Title of a talk at Defcon: "Why Anomaly-based IDS is an Attacker's Best Friend"
- Anomaly detection is difficult and tricky
- □ As hard as AI?

Access Control Summary

- Authentication and authorization
 - o Authentication who goes there?
 - Passwords something you know
 - Biometrics something you are (you are your key)
 - Something you have

Access Control Summary

- Authorization are you allowed to do that?
 - Access control matrix/ACLs/Capabilities
 - MLS/Multilateral security
 - o BLP/Biba
 - Covert channel
 - Inference control
 - o Firewalls
 - o IDS

Coming Attractions...

- Security protocols
 - o Generic authentication protocols
 - o SSH
 - o SSL
 - o IPSec
 - o Kerberos
 - 0 ...
- We'll see lots of crypto applications in the protocol part