Cryostats & Dilution Refrigerators Across the Market

Onri Jay Benally

This is an overview of the commercial cryostat and dilution-refrigerator (DR) landscape, organized first by geography, then by physical footprint and more. It also includes some key comparisons for comprehension as well as some non-dilution cryogenic vessels.

All headline releases are included—the sub-0.8 m² **Bluefors Ultra-Compact LD** laboratory system, the 1.6 m² **Bluefors KIDE** "cryo-house" platform, Oxford Instruments' modular **Proteox** S/MX/LX/QX family capped by the new QX tier, FormFactor-HPD's wafer-prober-ready JDry/LF lines and the 508 mm-plate **XLF-600**, plus China's mass-produced **EZ-Q** refrigerators for domestic quantum-fab roll-outs.

Europe continues to ship the broadest catalog of Stock-Keeping Units (SKUs), an internal, seller-defined alphanumeric label, spanning both DRs and high-vacuum Dewars. North America leads in probe-station and production-test variants. East-Asia is scaling indigenous volume for >2,000-qubit stacks. Footprint classes now span < 0.5 m² table-top inserts (e.g., attoDRY-800) through compact 0.6–1 m² floor units to > 1.5 m² data-centre platforms such as KIDE. The following tables pair each DR line with its logical Dewar or bulk-cryogen counterpart, giving a lab-ready bill-of-materials perspective.

- **Dewar**: an *eponym*—named for Scottish chemist Sir James Dewar, who also liquefied hydrogen.
- Cryostat: a portmanteau of Greek κρύος (kryos, "frost") + -stat ("to make stand, hold"), literally "cold-keeper."
- **Thermos™**: commercial trademark (1904) for consumer Dewars (vacuum insulated flask); illustrates the generalization of the scientific invention.
- **Dilution** (as in "dilution refrigerator"): from Latin **diluere** "to wash away/thin out," via the French term "dilution". In a dilution refrigerator the *thinning* of a ³**He**-rich phase into a ⁴**He**-rich phase at ≈ 0.87 K absorbs heat (enthalpy of mixing), allowing continuous cooling to **<10 mK**. The idea was proposed by Heinz London (1951) and first realized experimentally by the Cambridge–Oxford collaboration in the early 1960s; the term "dilution refrigerator" cemented itself as the technology matured through the 1970s.

Note: A cryostat is any vacuum-insulated vessel or assembly that maintains cryogenic temperatures by *any* cooling method—stored liquid nitrogen or helium, a mechanical Gifford-McMahon or pulse-tube cryocooler, a charcoal-pumped 3 He pot, an adiabatic demagnetization refrigerator (ADR) "salt-pill" stage, or a continuous 3 He/ 4 He dilution loop. This inclusive definition embraces a standalone liquid-helium Dewar as the simplest cryostat, while every dilution refrigerator is a cryostat that incorporates the 3 He/ 4 He mixing loop required for continuous operation below ≈ 100 mK. Intermediate temperature regimes (≈ 300 mK - 1 K) are spanned by plug-in 3 He sorption coolers, ADRs, pumped- 4 He variable-temperature inserts (VTIs), and low-vibration 1 K stages, each selected to balance vibration, duty-cycle, and capital or operating cost for a given quantum-hardware or precision-metrology experiment.

CRYOGENIC VESSELS

Legend

- [L] Requires stored liquid cryogen
- [D] Cryogen-free mechanical (GM or PT) cooler
- [L/D] Available in both wet-dipstick and dry bolt-on versions
- [D‡] > 90 % of new DRs ship cryogen-free; a few legacy wet dip-stick units still exist

Europe-Based Leaders

Company (HQ)	Flagship DR lines & plate Ø*	Distinctive attributes	Base-T
Bluefors (FI)	Ultra-Compact LD (≤ 300 mm), LD, XLD/XLDsl/XL (500 mm), KIDE (1.6 m²)	> 1,000 units shipped; KIDE has ≥ 4,000 RF lines	< 10 mK
Oxford Instruments - Proteox (UK)	Proteox S/MX (250-400 mm), Proteox LX/QX (≤ 450 mm)	Modular vector magnet, hot-swap inserts	< 7 mK
Leiden Cryogenics (NL)	CF-1100 · CF-CS-XXL (1 m) · MCK inserts	Four-PT option on 1 m plate	≈ 5 mK
ICE Oxford (UK)	DRY-ICE Eden (200 coax, 500 mm)	High 1 K power, low-vib HX	< 10 mK
Cryoconcept (FR)	HEXA-DRY (std) · HEXA-DRY XXL (Ø 800 mm)	Six-stage HX, remote diagnostics	< 8 mK
Cryogenic Ltd (UK)	STM DR inserts (UHV tubes)	Top-loading for high-field STM	< 20 mK
attocube (DE)	attoDRY-800 / -1100 inserts	Table-top nano-positioning	< 15 mK

EU Dewars & Cryogenic Vessels

Company	Core lines (capacity)	Notes
Wessington	PV/ TPV LN₂ tanks ≤ 2,000 L · ISO bulk	Large fixed storage
Statebourne	Helistor He 30−990 L · Cryolab LN₂ · CryoCycl micro-bulk	R&D + biobank
KGW-Isotherm	Bespoke glass-in-steel Dewars < 30 L	Optics & metrology
Cryo Diffusion	LO/ CDB / BIO 47-2 250 L (LHe & LN ₂)	Pharma & space ISO
Thames Cryogenics	30–2,000 L LN₂ + vacuum flex hoses	Site plumbing

North-American Suppliers

Dilution Refrigerators

Company (HQ)	Key systems/ plate Ø	Extras	Base-T
Quantum Design (US)	PPMS DynaCool + DR insert (≈ 305 mm)		
FormFactor (HPD) (US)	JDry-400 · LF-400 · XLF-600 (508 mm)	Wafer-prober integration	≤ 5 mK
Zero Point Cryogenics (CA)	Model I · Model L (250–340 mm)	"Continuous Cold" 1 K stage	< 10 mK
Cryomech (US)	PT 4 K/ 1 K stacks (OEM)	Pre-cool for many DRs	n/a

Measurement Platforms (≥ 2 K)

Company	System	Range	Notes
Quantum Design (US)	PPMS VersaLab	50 K-400 K	3 T mini-magnet
	MPMS-3 SQUID	2 K-400 K	≤ 10 ⁻⁸ emu

Dewars & Cryogenic Vessels

Company (HQ)	Core Dewar product lines & capacity	Notes/ differentiators
Cryofab (US)	CMSH liquid-helium Dewars 20 – 500 L; custom transfer lines	Turn-key LHe storage for magnet labs
Chart MVE (US)	XC/ CryoShipper LN ₂ shuttles 3 – 60 L	Life-science cold-chain shippers & biobanks
Cryo Industries of America (US)	<i>D-Stat</i> direct-connect Dewars & closed-cycle hybrids	Drop-in dewar-plus-cryocooler kits for low-vib optics

East-Asian Entrants & Emerging

Company (HQ)	System	Market position	Status
QuantumCTek (CN)	EZ-Q Fridge	Mass-production for domestic qubit fabs	Shipping since 2023
Origin Quantum (CN)	SL400/ SL1000	up to 1 mW @100 mK, ≥1,000 μW @10 mK	Shipping since 2024
Chinese state consortium	"EZ-Q" line	Govt-backed scale to 100s units/ yr	Ramp-up 2024
ULVAC Cryogenics (JP)	Next-gen DR (IBM co-design)	Target >2,000-qubit stacks	In dev., 2026 launch
Other domestic start-ups (CN, IN)	Lab-scale DRs	OEM PT modules	Market-watch reports

Dewars & Cryogenic Vessels

Company (HQ)	Flagship Dewar offerings	Market focus
Taiyo Nippon Sanso (TNSC) (JP)	LN ₂ storage/ transport Dewars for 300 mm fabs	Semiconductor foundry bulk-gas logistics
Sumitomo — SHI Cryogenics (JP)	Stainless LHe/LN ₂ Dewars 10 – 300 L paired to G-M coolers	OEM packages for GM-cooled optical cryostats

Size & Capability Spectrum (2025)

Tier	Representative systems	Footprint	P@100 mK	Typical users
Table-Top/ Insert	attoDRY-800/1100; Cryogenic STM; Leiden MCK	≤ 0.5 m²	≤ 50 µW	Nano-STM, academia
Ultra- Compact Floor	Bluefors Ultra-Compact LD	0.6-0.8 m ²	~200 µW	Univ. qubit benches
Compact Floor (≈ 1 m²)	Bluefors LD / SD; Oxford Proteox S/MX; QD DynaCool + DR insert	0.8–1.1 m²	250– 400 μW	Start-ups, mid-size labs
Large-Frame/ Multi-Qubit	Bluefors XLD/XL; ICE Eden; Leiden CF-CS-XXL; FormFactor XLF-600; Oxford Proteox LX/QX; ZP Model L	≥ 1 m²	0.6–1 mW	Scale-up R&D
Data-Center/ XXL	Bluefors KIDE; Cryoconcept XXL	> 1.4 m²	2–3 mW	IBM, Google, fabs
Mass- Production	QuantumCTek EZ-Q	auto gas- handling	0.3 mW	CN fabs
Next-Gen (road-map)	ULVAC 2,000-qubit DR	t.b.d.	t.b.d.	2026+

Footnote on DR "wet" outliers

Dilution Refrigerator (D-only) refers to > 90 % of new DRs, which are PT- or GM-pre-cooled. Legacy dip-stick DRs for wet helium baths (e.g., Oxford Heliox VL) still exist but are rarely purchased for new builds.

Cryogenic Vendors

```
Cryogenic Vendors
 Europe Tier-1

    Dilution Refrigerators

     — Bluefors → Ultra-Compact LD, LD, XLD/XL, KIDE — 300 mm→1.6 m² plates (>4,000 RF) [D]
       - Oxford Instruments → Proteox S/MX, LX/OX
                                                        - modular Triton successor [D]
      — Leiden Cryogenics → CF-1100, MCK
                                                    - up to Ø 1 m, 4-PT option [D]
     L ICE Oxford → DRY-ICE Eden
                                                 -200-coax, <10 mK [D]
    - Dewars & Cryogenic Vessels
      — Wessington Cryogenics → PV/TPV LN₂ tanks (≤2,000 L), ISO bulk [L]
     — Statebourne → Helistor He (30–990 L), Cryolab LN₂, CryoCycl micro-bulk [L]

    KGW-Isotherm → lab/transport Dewars (borosilicate & SS) [L]

    Cryo Diffusion (Air Liquide) → LO/CDB/BIO LHe & LN₂ (47→2 250 L) [L]

    Thames Cryogenics → LN₂ vessels 30–2,000 L + vacuum hoses [L]

   · North America

    Dilution Refrigerators

      — Quantum Design → PPMS DynaCool + DR insert — 50 mK, pulse-tube, cryogen-free [D]
       — FormFactor (HPD) \rightarrow JDry, LF-400, XLF-600 — ≤5 mK, ≤270 coax [D]
       — Zero Point Cryogenics → Model I, Model L — "Continuous Cold" 1 K stage [D]

    Cryomech → PT 1 K/4 K stacks for DR OEMs

                                                        - OEM precoolers [D]
     - Non-Dilution Systems/ Measurement Platforms (cryogen-free, ≥2 K)
      — Quantum Design → PPMS DynaCool <u>without</u> DR insert — standard option (1.8K) [D]
      — Quantum Design → PPMS VersaLab (50 K–400 K, 3 T) [D]

    Quantum Design → MPMS-3 SQUID (2 K-400 K, ≤10<sup>-8</sup> emu) [D]

    - Dewars & Cryogenic Vessels
     — Cryofab → CMSH LHe dewars 20→500 L + transfer lines [L]
       Chart MVE → XC/CryoShipper LN₂ biobanks 3–60 L [L]
     Cryo Industries of America → "D-Stat" direct-connect dewars & hybrids [L]
  - East Asia & Emerging

Dilution Refrigerators

      — QuantumCTek (CN) → EZ-O Fridge [D]
     — CN State Consortium → EZ-Q scale-out platform [D]
     ULVAC (JP) → next-gen DR (IBM co-design, ≥2026) [D]
    - Dewars & Cryogenic Vessels

    Taiyo Nippon Sanso → LN₂ storage/transport tanks for fabs [L]

    \sqsubseteq Sumitomo (SHI) → GM-pre-cooled LHe vessels 10→300 L [L]
```

Legend

- **[D]** cryogen-free (PT or GM pre-cooled), GM heads are rare in modern DRs; most large DRs are PT-cooled
- [L] requires stored liquid N2/He

Key Trends (mid-2025)

- **KIDE ships & scales** first 1.6 m² "cryo-house" fridges delivered to IBM & AIST Q-centres. (bluefors.com, bluefors.com)
- **Proteox replaces Triton** Oxford's entire new-build catalog now lists Proteox S–LX; Triton lives on mainly in installed base. (nanoscience.oxinst.com)
- FormFactor enters >500 mm club XLF-600 targets quantum-data-centre racks with 600 µW @ 100 mK. (formfactor.com)
- **Ultra-compact trend** Bluefors shrinks LD footprint to <0.8 m² to fit power-lab closets. (bluefors.com)
- **China ramps EZ-Q** domestic lines running since 2023; hundreds of units/year goal. (thequantuminsider.com, globaltimes.cn)
- **IBM-ULVAC collaboration** next-gen DR co-designed for 2,000-qubit era, aimed at 2026 launch. (thequantuminsider.com)

All systems above are cryogen-free (pulse-tube-pre-cooled) unless explicitly labelled "wet" or "wet bath" (legacy Janis variants). Vendors continue to offer bespoke wiring looms, optical access, vector magnets and gas-handling automation, allowing the same base frames to serve superconducting-qubit stacks, SNSPD arrays, cavity optomechanics and nano-SQUID STM.

Mind-Map of DR/ Non-DR/ Dewar Sizes (Form-Factors)

Form-Factor Families — Dilution Refrigerators/ Non-Dilution Cryostats/ Paired Dewar Vessels — Table-Top/ Insert (< 0.5 m²)</p> - DR attocube attoDRY-800/ -1100 DR Cryogenic Ltd STM-insert DRs (UHV tubes) L Dewar KGW-Isotherm lab borosilicate/ stainless hybrids (< 30 L) Ultra-Compact Floor (≈ 0.6 – 0.8 m²) — DR Bluefors Ultra-Compact LD (≤ 300 mm plate) — Dewar Statebourne Cryolab & CryoCycl LN₂ micro-bulk (30 – 60 L) - Compact Floor-Standing (≈ 1 m²) ├─ DR Bluefors LD/SD - DR FormFactor-HPD JDry-400 · LF-400 DR Oxford Instruments Proteox S DR Quantum Design PPMS DynaCool + DR insert Non-DR Quantum Design PPMS DynaCool without DR insert (standard option) Non-DR Quantum Design PPMS VersaLab Non-DR Ouantum Design MPMS-3 SOUID - Dewar Cryofab CMSH liquid-helium Dewars (20 - 500 L) - Large-Frame (≥ 1 m²) — DR Bluefors XLD/ XL - DR FormFactor-HPD XLF-600 DR Oxford Instruments Proteox MX/LX - DR ICE Oxford DRY-ICE Eden DR Zero Point Cryogenics Model L DR Leiden Cryogenics CF-CS-XXL/ 1 m plate ☐ Dewar Wessington PV/TPV tanks · Cryo Diffusion LO/CDB series (> 1,000 L) - Data-Center/ XXL (> 1.4 m² · multi-PT stacks) → DR Bluefors KIDE (1.6 m² flange) — DR Cryoconcept HEXA-DRY XXL (Ø 800 mm) — DR QuantumCTek EZ-Q (mass-production line) DR ULVAC next-gen DR (IBM co-design, slated ≥ 2026) — Dewar Taiyo Nippon Sanso bulk LN₂ tanks · Sumitomo (SHI) GM-precooled LHe vessels

Mind-Map of Cryogenic Vessel Platforms

Cryogenic Platforms for Quantum/ Metrology **— 4−300 K Range** ├ Bath Dewar (He-4) Continuous-flow He-4 Closed-cycle Pulse-tube (1.5 K) - 1 K Class — Pumped-⁴He VTI ☐ Dedicated 1 K PT Stage - 0.3-1 K Sorption Family → ³He "pump-on" insert — He-7 (³He/⁴He) sorption fridge - 50–100 mK Magnetic Cooling → ADR (single-shot) └─ Continuous ADR (CADR) -<50 mK Dilution Line ── Standard DR (lab workhorse) Large-Frame DR (Proteox LX, XLF-600)

Mind-Map of Cryogenic Vessels with Usage Tags

Cryogenic Platforms for Quantum/ Metrology

— 4–300 K Range

— Bath Dewar (Academic-dominant)

L Data-Center/ XXL DR (Bluefors KIDE)

Continuous-flow He-4 (Academic-dominant)
Closed-cycle Pulse-tube (Mixed)

– 1 K Class

Pumped-⁴He VTI (Academic-dominant)

L 1 K Pulse-tube Stage (Mixed → Industrial-leaning)

– 0.3–1 K Sorption Family

- 3He "pump-on" insert (Academic-dominant)

☐ He-7 sorption fridge (Academic-dominant)

- 50–100 mK Magnetic Cooling

ADR (Academic-dominant)

Continuous ADR (CADR) (Government Space-science)

- <50 mK Dilution Line</p>

— Standard DR (Mixed/ Balanced)

Large-Frame DR (Industrial-leaning)

– Data-Center/ XXL DR (Industrial-only)

Academic vs Industrial Usage Table

Branch in the family tree	Typical users today	Representative evidence
Bath Dewar (He-4)	Academic-dominant — low-budget superconductivity, Hall-bar labs	University lab manuals & cryogenics texts list bath Dewars as "entry-level" cryostats. (research.physics.illinois.edu)
Continuous-flow He-4 cryostat	Academic-dominant — fast magnetotransport, microscopy	Oxford-type CF cryostats reported in research papers on magnetic microscopy. (pubs.aip.org)
Closed-cycle PT (1.5 K)	Mixed — academic spin qubit benches <i>and</i> industrial device screening	Pulse-tube coolers marketed for both lab R&D and industrial cryopumps. (thequantuminsider.com)
Pumped ⁴ He VTI (1 K pot)	Academic-dominant — custom magnet systems (MagLab, Neutron sources)	National MagLab lists 1 K VTI sample environments for users. (nationalmaglab.org)
Dedicated 1 K PT stage	Mixed → industrial-leaning — pre-cooling dense coax in qubit fabs	Bluefors XLD-He¹K systems pitched at spin-qubit foundries. (bluefors.com)
³He "pump-on" insert (0.3 K)	Academic-dominant — graphene transport, thermometry courses	Cryogenic Ltd 300 mK insert for CFMS research suites. (cryogenic.co.uk)
He-7 (³He/⁴He) sorption fridge	Academic-dominant — CMB cameras, balloon telescopes	He-7 fridges specified in STRIP/LSPE CMB instrument papers. (researchgate.net)
ADR (single-shot 35–80 mK)	Academic-dominant — millikelvin STM, μ-SQUID probes	UHV STM platform cooled by single-shot ADR. (pubs.aip.org)
Continuous ADR (CADR)	Government space-science — NASA far-IR missions (industrial contractors build, but science-driven)	NASA's multistage CADR cited for space telescopes. (nrao.edu)

Standard dilution refrigerator (lab workhorse, ≤20 mK)	Balanced — every superconducting-qubit university and most start-ups own one	Bluefors & ICEoxford market DRs simultaneously to universities and start-ups.(bluefors.com)
Large-Frame DR (Oxford Proteox LX/QX, FormFactor XLF-600)	Industrial-leaning — multi-hundred-qubit prototypes at Rigetti, IQM, etc.	Oxford Proteox LX in Rigetti partner program; (oxinst.com) FormFactor XLF-600 positioned for "quantum data centers." (formfactor.com, formfactor.com)
Data-Center/ XXL DR (Bluefors KIDE, Cryoconcept XXL)	Industrial-only — IBM Quantum System Two, Google, national QC centers	First KIDE delivered to IBM; IBM blog confirms use for System Two.(bluefors.com, ibm.com)

Legend – "Academic-dominant" = >70 % of installed base in universities/public labs; "Industrial-leaning" = roughly even but trending commercial; "Industrial-only" = found almost exclusively in corporate fabs or government megaprojects.

Choosing the Right Variant

- ≥1 K work pumped-⁴He or cryogen-free pulse-tube cryostats are cheapest and least complex.
- **0.3–1 K niche** ³He inserts or He-7 sorption coolers shine when you need vibration-free sub-kelvin temperatures for hours, not weeks.
- **50–100 mK stable "science-grade" base** ADRs give motion-free cooling for space instruments; continuous ADRs are now hitting 50 mK nonstop.
- **Sub-50 mK, high wiring density (HDW), continuous uptime** dilution refrigerators (and their KIDE-class big-siblings) are the *de facto* standard for quantum processors, SNSPD arrays, and precision Johnson-noise thermometry.

Comparison Between Familiar Compact vs. Large-Frame PT-Cooled Dilution Refrigerators

The **Quantum Design PPMS DynaCool** becomes a *compact* dilution refrigerator ($\approx 1 \text{ m}^2$ footprint) when its 50 mK insert (aka DR insert) is installed. A single two-stage PT furnishes the 4 K stage, and a sealed ${}^3\text{He}/{}^4\text{He}$ loop cools from 300 K to ≈ 45 mK with no external dewars.

The **Bluefors XLDsl** is a *large-frame* PT-cooled refrigerator with the dilution circuit factory-integrated. Its 500 mm mixing-chamber flange, dual-PT stack and ≥ 1,000 µW cooling power at 100 mK support up to 1,008 coax/twisted-pair/FPC/optical lines delivered by hot-swappable High-Density Wiring "chandeliers."

Thus both systems are cryogen-free dilution refrigerators, but they differ sharply in flange size, cooling power, wiring density and upgrade path rather than in the basic refrigeration principle.

Metric	PPMS DynaCool + DR Insert	Bluefors XLDsl
Footprint	≈ 1 m² floor unit	≥ 1 m² large frame
PT stages	1 two-stage PT	2 two-stage PTs
Mixing-chamber flange	305 mm	500 mm
Cooling power @ 100 mK	≈ 400 µW	≥ 1,000 µW
Base temperature	45–50 mK	< 10 mK
Wiring capacity	≤ 360 RF/DC lines	1,008 HD lines

What the Bluefors XLD "Chandelier" Really Is

Term	OEM language	Function
XLDsl Dilution Refrigerator Measurement System	Marketed as a <i>cryogen-free DR</i> measurement system with large experimental space.	The entire fridge—including still, heat-exchangers, mixing chamber—is already inside the vacuum can.
High-Density Wiring (side-load or top-load)	Bluefors calls the modular wiring loom "High-Density Wiring," compatible with XLD.	Provides hundreds of coax/twisted-pair lines; resembles a metallic "chandelier."
Colloquial "chandelier"	Community photos and forum threads show the gold-plated wiring tree hanging from the mixing chamber.	Visual nickname, not a refrigeration stage.

Key idea: the chandelier is **part of the wiring infrastructure**, not the refrigeration insert. You can call it a **high-density wiring chassis**, a modular loom that brings hundreds of coax, twisted-pair, optical fiber, or ribbon lines down to the mixing-chamber plate. In Bluefors systems the dilution unit is permanently integrated; users add or swap chandeliers (wiring modules, attenuators, filters) to suit qubit count, signal bandwidth, or device technology.

How to Tell an Insert from a Wiring Tree/ Chassis

Indicator	Dilution Refrigerator Insert	Wiring "Chandelier"
Contains still, heat-exchangers, mixing chamber	Yes	No
Circulates ³He/⁴He mixture	Yes	No
Must connect to gas-handling system	Yes	No
Bolts to 50 mK plate; routes cables & attenuators	Optional plate on bottom	Primary purpose
Delivered as stand-alone module for a pre-existing 4 K cryostat	DynaCool DR insert (dry)	N/A—comes with chassis

Glossary of Acronyms

Acronym	Full term / meaning	One-line context / why it matters
ADR	Adiabatic Demagnetization Refrigerator	Single-shot magnetic-salt cooler that reaches 50–100 mK without circulation gas
CADR	Continuous ADR (multiple ADR stages run out-of-phase)	Provides 40–70 mK indefinitely for space telescopes and sub-mm detectors
CCR	Closed-Cycle Refrigerator (industry shorthand for a PT-based cryostat)	Two-stage PT inside a vacuum can; "1.7-4 K CCR" in your platform table
DR	Dilution Refrigerator	Continuous ³He/⁴He mixing loop for <10 mK physics; all large quantum stacks use one
FPC	Flex-Printed-Circuit cabling option in Bluefors High-Density Wiring	Brings hundreds of signal lines on ribbon-like copper traces
GM	Gifford–McMahon cryocooler head	Alternative to PT for 4 K precool; more moving parts
HDW	High-Density Wiring (Bluefors "chandelier")	Hot-swappable loom that carries up to 1,008 coax/twisted-pair/FPC/optical lines
He-7	³He/⁴He <i>triple-stage</i> sorption refrigerator	Reaches 200 mK with no mechanical pump; useful for balloon CMB cameras
KID	Kinetic Inductance Detector	Ultra-low-noise sub-K photon sensor for CMB astronomy; often mounted in sorption or DR stages
LN ₂ / LHe	Liquid-Nitrogen / Liquid-Helium baths	Classic 77 K and 4.2 K cryogens for "wet" platforms
PDR	Paramagnetic (or Praseodymium) Demagnetization Refrigerator – a rare-earth variant of ADR	Shown as "ADR / PDR 50–100 mK" in the tree; same physics, different salt choice
PT	Pulse-Tube cryocooler	Vibration-isolated 50 K / 4 K stages that make modern DRs "dry"
RF/ SMA	Radio-Frequency signals and the SMA coax connector standard	Large DR flanges quote "128 SMA" or ">4,000 RF lines" for qubit wiring

SNSPD	Superconducting Nanowire Single-Photon Detector	Cryogenic optical detector packed by the thousand in big DRs
SQUID	Superconducting Quantum-Interference Device	μ-SQUID microscopes often cooled by ADRs
STM	Scanning-Tunnelling Microscope	Millikelvin STMs ride in single-shot ADRs or DRs for ultra-low-vibration measurements
TES	Transition-Edge Sensor	Cryogenic calorimeter used with KID arrays in He-7 or DR stages
UHV	Ultra-High Vacuum	Vacuum environment (<10 ⁻⁹ mbar) required by some millikelvin STMs and DR sample inserts
VTI	Variable-Temperature Insert (pumped-⁴He "1 K pot")	0.8–1.2 K intercept for dense coax bundles before the mixing chamber

Glossary of Special-Purpose Cryogenic Platforms

Platform	What it is/ How it works	Operating window & duty-cycle	Where you meet it in practice
³He "pump-on" insert (single-shot He-3 pot)	A sealed reservoir of ³He gas is condensed onto a tiny pot by a charcoal sorption pump; once the pump is cooled and evacuated, evaporative cooling drives the pot to ≈ 300 mK. No moving parts after start-up.	1.5 K → 300 mK for 12–48 h, then needs warm-up & recycle.	Graphene/mesoscopic transport, Johnson-noise thermometry, low-vibration optics.
He-7 sorption refrigerator (³ He/ ⁴ He triple-stage)	Cascaded charcoal pumps: first ⁴ He precools to ~1 K, then two ³ He stages reach 300 mK and 200 mK. Entire unit is bolt-on and vibration-free.	1 K → 200 mK, single-shot 24–72 h.	KID/ TES detector cameras, balloon-borne CMB telescopes, portable sub-K test stands.

Adiabatic Demagnetization Refrigerator (ADR)	Magnetize a paramagnetic salt pill at 4 K, then demagnetize it adiabatically; magnetic entropy turns into cooling reaching 50–100 mK (≈ 35 mK with modern salts). No circulation gas.	Single-shot 8–24 h below 100 mK.	Ultra-low-vibration STM, µ-SQUID scanners, small space payload prototypes.
Continuous ADR (CADR)	Several ADR stages run out-of-phase; while one stage warms, another cools, so the cold tip stays at ≈ 50 mK indefinitely (≈ 10 µW cooling power).	Continuous 40–70 mK operation, weeks to months.	Far-IR bolometers & X-ray micro-calorimeters on NASA space telescopes.
Pumped-⁴He "1 K stage"	A mechanical pump lowers vapor-pressure of a small ⁴ He bath or JT loop, giving a 1 K plate that intercepts heat from hundreds of coax lines before they enter a dilution unit.	4 K → 0.8– 1.2 K, runs as long as the pump does.	Pre-cool wiring in big dilution fridges; basic magnetotransport below 2 K.
Pulse-tube cryostat (CCR 1.7–4 K)	Two-stage pulse-tube cooler inside a vacuum can; cryogen-free. Some models (QD OptiCool, DynaCool+DR) accept DR or sorption inserts down to 50 mK.	300 K → 1.7 K (OptiCool) or → 50 mK with DR insert, fully continuous.	Cryo-CMOS & spin-qubit test rigs, optical spectroscopy with vector magnets.
Large-scale dilution refrigerator (≥ 1 m² plate)	Pulse-tube precooling plus continuous ³He/⁴He mixing. Examples: Bluefors KIDE (1.6 m², >4,000 RF) and Oxford Proteox LX (≤ 450 mm plate, 128 SMA).	4 K → ≤ 5 mK, continuous; 0.5–3 mW at 100 mK depending on model.	100–1,000 qubit quantum-computer racks, large SNSPD arrays, cryo-data-centres.

References

- 1. **Bluefors Oy** 2024, *Ultra-Compact LD dilution-refrigerator measurement system*. Available at: https://bluefors.com/products/dilution-refrigerator-measurement-systems/ultra-compact-ld (Accessed 22 June 2025).
- 2. **Bluefors Oy** 2023, *KIDE cryogenic platform*. Available at: https://bluefors.com/products/kide-cryogenic-platform (Accessed 22 June 2025).
- 3. **Oxford Instruments NanoScience** 2024, *Proteox family overview*. Available at: https://nanoscience.oxinst.com/ProteoxFamily (Accessed 22 June 2025).
- 4. **Oxford Instruments NanoScience** 2025, *Proteox LX dilution refrigerator*. Available at: https://nanoscience.oxinst.com/products/proteoxlx (Accessed 22 June 2025).
- 5. **ICE Oxford** 2024, *DRY-ICE EDEN 10 mK dilution cryostat brochure* (PDF). Available at: https://www.iceoxford.com/files/image/files/DRYICE%20EDEN%20Brochure%202.pdf (Accessed 22 June 2025).
- 6. **Leiden Cryogenics** 2025, *CF-CS110 dilution refrigerator series*. Available at: https://www.leidencryogenics.nl/cf-cs110 (Accessed 22 June 2025).
- 7. **Cryoconcept SAS** 2024, *HEXA-DRY dilution refrigerator product brochure* (PDF). Available at:
 - https://cryoconcept.com/wp-content/uploads/2024/07/CryoConcept-brochure-EN-07.24-SD_pdf (Accessed 22 June 2025).
- 8. **Cryoconcept SAS** 2025, *HEXA-DRY product overview*. Available at: https://cryoconcept.com/products-type/hexa-dry (Accessed 22 June 2025).
- attocube systems AG 2025, Closed-cycle cryostats attoDRY series. Available at: http://attocube.com/en/products/cryostats/closed-cycle-cryostats
 (Accessed 22 June 2025).
- 10. **FormFactor Inc.** 2022, FormFactor adds dilution refrigeration (DR) systems critical for quantum-computer deployment [press release]. Available at: https://www.formfactor.com/press-release/formfactor-adds-dilution-refrigeration-dr-system-s-critical-for-quantum-computer-deployment (Accessed 22 June 2025).
- 11. **GlobeNewswire** 2022, FormFactor adds dilution refrigeration DR systems critical for quantum-computer deployment (news wire). Available at:

 https://www.globenewswire.com/news-release/2022/06/09/2460109/0/en/FormFactor-Adds-Dilution-Refrigeration-DR-Systems-Critical-for-Quantum-Computer-Deployment.html (Accessed 22 June 2025).
- 12.**FormFactor Inc.** 2022, *Boosting quantum-computer deployment with dilution-refrigeration systems* [company blog]. Available at: https://www.formfactor.com/blog/2022/boosting-quantum-computer-deployment-dilution-refrigeration-dr-systems (Accessed 22 June 2025).
- 13.**Zero Point Cryogenics Inc.** 2024, *Model L dilution refrigerator product page*. Available at: https://www.zpcryo.com/products/model-l (Accessed 22 June 2025).
- 14.**Zero Point Cryogenics Inc.** 2024, *Model L dilution refrigerator data sheet* (PDF). Available at: https://www.zpcryo.com/wp-content/uploads/2024/12/Model_L_Dilution_V2_2024-11-29-1.pdf (Accessed 22 June 2025).
- 15. **Cryomech Inc.** 2025, *Cryocoolers product family*. Available at: https://www.cryomech.com/cryocoolers (Accessed 22 June 2025).
- 16. **Cryomech Inc.** 2025, *Pulse-tube cryocoolers*. Available at: https://www.cryomech.com/cryocoolers/pulse-tube-cryocoolers (Accessed 22 June 2025).

- 17. **The Quantum Insider** 2024, China mass-producing dilution refrigerators critical to superconducting quantum computing. Available at:

 https://thequantuminsider.com/2024/02/28/reports-china-mass-producing-dilution-refrigerator-critical-to-superconducting-quantum-computing (Accessed 22 June 2025).
- 18.**Global Times** 2024, *China makes breakthrough on dilution refrigerator for quantum technology*. Available at: https://www.globaltimes.cn/page/202402/1307818.shtml (Accessed 22 June 2025).
- 19. **The Quantum Insider** 2025, *ULVAC developing next-generation dilution refrigerator for quantum computing by 2026*. Available at: https://thequantuminsider.com/2025/03/22/ulvac-developing-next-generation-dilution-refrigerator-for-quantum-computing-by-2026 (Accessed 22 June 2025).
- 20.**Bluefors Oy** 2024, *Bluefors delivers 18 state-of-the-art quantum-cooling systems to power AIST's G-QuAT center* [news release]. Available at: https://bluefors.com/news/bluefors-delivers-18-state-of-the-art-quantum-cooling-systems-t-o-power-aists-g-quat-center (Accessed 22 June 2025).
- 21. **Bluefors Oy** 2023, *Introducing the ultra-compact dilution-refrigerator system* [news article]. Available at:

 https://bluefors.com/news/introducing-the-ultra-compact-dilution-refrigerator-system
 (Accessed 22 June 2025).
- 22. **Bluefors Oy** 2023, *KIDE cryogenic platform from design to delivery* [company story]. Available at: https://bluefors.com/stories/kide-cryogenic-platform-from-design-to-delivery (Accessed 22 June 2025).
- 23.**IBM Corp.** 2023, *Goldeneye: IBM's 1 m-wide cryogenic concept system* [blog post]. Available at: https://www.ibm.com/quantum/blog/goldeneye-cryogenic-concept-system (Accessed 22 June 2025).
- 24. **Bezryadin Group, University of Illinois** 2016, *Practical cryogenics laboratory manual* (PDF). Available at: https://research.physics.illinois.edu/bezryadin/links/practical%20cryogenics.pdf (Accessed 22 June 2025).
- 25.**Cox, D. et al.** 2021, 'Operation of a continuous-flow liquid-helium cryostat', *Review of Scientific Instruments*, vol. 92, no. 12, 123701. Available at: https://pubs.aip.org/aip/rsi/article/92/12/123701/283257/Operation-of-a-continuous-flow-liquid-helium (Accessed 22 June 2025).
- 26.**The Quantum Insider** 2023, *Cryogenics a short history & its implications on the QC industry*. Available at:

 https://thoguaptuminsider.com/2023/09/12/cryogenics-a-short-history-tho-implications-it-h
 - https://thequantuminsider.com/2023/09/12/cryogenics-a-short-history-the-implications-it-has-on-the-qc-industry (Accessed 22 June 2025).
- 27. National High Magnetic Field Laboratory 2025, Sample environments 1 K VTI. Available at: https://nationalmaglab.org/user-facilities/dc-field/magnets-instruments/sample-environments (Accessed 22 June 2025).
- 28.**Bluefors Oy** 2024, *Introducing the XLD-He high-power 1 K system* [press article]. Available at: https://bluefors.com/news/introducing-the-xldhe-high-power-system-ultimate-cooling-for-1 -k-experiments (Accessed 22 June 2025).
- 29. **Cryogenic Ltd** 2024, *300 mK insert for CFMS systems*. Available at: https://www.cryogenic.co.uk/node/239 (Accessed 22 June 2025).

- 30. **Maheshwari, R. et al.** 2013, 'Pulse-tube-cooled He-7 sorption refrigerator for mm-wave detectors', *Proceedings of SPIE*, vol. 8852. Available at:

 https://www.researchgate.net/publication/255608978_Pulse-tube-cooler-head_left_4-K-boxy-te-7 sorption fridge (Accessed 22 June 2025).
- 31. **Wong, J. et al.** 2021, 'A millikelvin scanning-tunnelling microscope in UHV', *Review of Scientific Instruments*, vol. 92, no. 6, 063701. Available at: https://pubs.aip.org/aip/rsi/article/92/6/063701/991153/A-millikelvin-scanning-tunneling-microscope-in (Accessed 22 June 2025).
- 32.**NASA Goddard Space Flight Center** 2009, 'Continuous ADR for sub-100 mK space instruments' (conference paper PDF). Available at: https://www.nrao.edu/meetings/isstt/papers/2009/2009097106.pdf (Accessed 22 June 2025).
- 33. **Bluefors Oy** 2025, *Applications: quantum technology*. Available at: https://bluefors.com/applications/quantum-technology (Accessed 22 June 2025).
- 34. Oxford Instruments NanoScience 2023, Oxford Instruments joins Rigetti's Novera QPU partner program [news release]. Available at: https://www.oxinst.com/news/oxford-instruments-nanoscience-joins-rigettis-novera-qpu-pa rtner-program (Accessed 22 June 2025).
- 35.**FormFactor Inc.** 2025, *XLF-600 dilution refrigerator product page*. Available at: https://www.formfactor.com/product/quantum-cryo/dilution-refrigerators/xlf-600 (Accessed 22 June 2025).
- 36.**FormFactor Inc.** 2022, FormFactor adds dilution refrigeration DR systems critical for quantum-computer deployment [press release]. Available at: https://www.formfactor.com/press-release/formfactor-adds-dilution-refrigeration-dr-system-s-critical-for-quantum-computer-deployment (Accessed 22 June 2025).