Se puede probar que $p(\theta|\mathbf{y}) = N(\theta|\mu_n, \tau_n^2)$ donde

$$\frac{1}{\tau_n^2} = \frac{n}{\sigma^2} + \frac{1}{\tau_0^2} \qquad \mu_n = \frac{\frac{\bar{y}n}{\sigma^2} + \frac{\mu_0}{\tau_0^2}}{\frac{n}{\sigma^2} + \frac{1}{\tau_0^2}}$$

También se puede probar que $\tilde{y}|y\sim {\sf Normal}(\mu_n, au_n^2+\sigma^2)$

Ejemplo

Se toma una muestra aleatoria de n estudiantes y se les mide su peso, dando como resultado un peso promedio de 150 libras. Suponga que los pesos en la población están normalmente distribuidos con media θ desconocida y desviación estándar 20 libras. Suponga que la distribución a priori de θ es normal con media 180 y desviación estándar 40.

a) Escriba la distribución posterior de θ (en función de n).

$$y = 150$$
, $y = 20$, $y = 180$,

 $z = 40$
 z

Si $Y \sim$ Normal (θ, σ^2) siendo θ conocida la a priori conjugada para σ^2 es la Gamma-inversa $\left(\frac{\nu_0}{2}, \frac{\nu_0 \sigma_0^2}{2}\right)$, por lo tanto $\sigma^2 | \mathbf{y} \sim$ Gamma-inversa $\left(\frac{\nu_0 + n}{2}, \frac{n\nu + \nu_0 \sigma_0^2}{2}\right)$ donde $\nu = \frac{1}{n} \sum_{i=1}^n (y_i - \theta)^2$.

Ejemplo

Se supone que los precios de las acciones de una empresa (Y) se distribuyen normal con media θ y varianza σ^2 desconocida. Se desea hacer inferencia sobre σ y con ese fin se toma una muestra aleatoria de tamaño 12. Se registran los siguientes precios: 212, 249, 250, 240, 210, 234, 195, 199, 222, 213, 233 y 251. Si $\theta = 220$ y la distribución a priori para σ^2 es Gamma-inversa(1100, 250000). Encuentre la distribución posterior de σ^2 .

$$10 - 1100$$
 $10 - 2200$
 $10 - 1100$ $10 - 2200$
 $10 - 250000$ $10 - 250000$ $10 - 250000$ $10 - 250000$ $10 - 250000$ $10 - 250000$ $10 - 250000$ $10 - 25000$ $10 - 25000$ $10 - 25000$ $10 - 25000$ $10 - 25000$ $10 - 25000$ $10 - 25000$ $10 - 25000$ $10 - 25000$