

Knowledge Engineering und Lernen in Spielen Neural Networks

Seminar K nowledge Engineering und Lernen in Spielen

Stefan Heinje

Inhalt

- Neuronale Netze im Gehirn
- Umsetzung
- Lernen durch Backpropagation
- Temporal Difference
- A nwendung in Spielen
- Quellen

Neronale Netze im Gehirn

- Neuronen bekommen Impuls von Nachbarn über unidirektionale Verbindungen
- Bei Überschreitung eines bestimmten Wertes wird ein Impuls weitergegeben
- Neuron reagiert kurze Zeit nicht, um Loops zu verhindern
- Oft verwendete
 Verbindungen werden
 verstärkt

Umsetzung: Hopfield Netz

Umsetzung: Multilayer Perceptron

Umsetzung

Aktivator-Funktionen

$$f(x) = x$$

Aktivator-Funktionen

$$f(x) = \frac{(e^{x} - e^{-x})}{(e^{x} + e^{-x})}$$

Ein Beispiel

Ein Beispiel

Ein Beispiel

Lernen durch Backpropagation

minimiere
$$\epsilon = \frac{\sum_{i=1}^{m} (o_i^d - o_i^a)^2}{m}$$

 ϵ : Gesamtfehler

m: Anzahl der Ausgabeneuronen

 o_i^d : Gewünschter Ausgabewert

 o_i^a : Aktueller Ausgabewert

Lernen durch Backpropagation

Fehler Ausgabe-Neuron:
$$\delta_i^o = (o_i^d - o_i^a) f'(o_i^a) = (o_i^d - o_i^a) o_i^a (1 - o_i^a)$$

Fehler Hidden Neuron:
$$\delta_i^h = (\sum_{j=1}^m \omega_{ij} \delta_j^o) f'(h_i^a) = (\sum_{j=1}^m \omega_{ij} \delta_j^o) h_i^a (1 - h_i^a)$$

 δ_i^o : Fehler von Neuron i in der Ausgabeschicht

 δ_i^h : Fehler von Neuron i in der versteckten Schicht

 h_i^a : Wert des Neurons i in der versteckten Schicht

f'(x): Ableitung der Aktivierungsfunktion

 ω_{ii} : Gewicht

Lernen durch Backpropagation

Gewicht wird um $\Delta \omega_{ij} = \rho n_i \delta_j$ erhöht

 ρ : Lernrate (zwischen 0 und 1)

 n_i : Wert des Neurons i in der vorderen Schicht

 δ_j : Fehler von Neuron j in der hinteren Schicht

Temporal Difference

- oft kann man Entscheidungen erst sehr spät beurteilen (Spiel gewonnen oder verloren)
- daher kann kein Fehler berechnet werden
- Lösung: A bschätzung des Fehlers durch eigene Beurteilung
- Bei konkreter Beurteilung auch (schwächere)
 Veränderung der Gewichte aus vorherigen
 Entscheidungen

Anwendung in Spielen

Anwendung in Spielen: Strategiespiele

- Fields Of Battle (Bevelstone Production)
- erstes kommerzielles Spiel mit neuronalem Netzwerk

Anwendung in Spielen: Brettspiele

- TD-Gammon (Gerald Tesauro)
- Lernt durch Spiele gegen sich selbst
- Spielt mittlerweile auf dem Niveau der besten menschlichen Spieler
- Hat die g\u00e4ngigen
 Er\u00f6ffnungsstrategien revolutioniert

Anwendung in Spielen: Rennspiele

- Forza M otorsport (M icrosoft)
- Colin McRae Rally (Codemasters)

Anwendung in Spielen: Creatures

- Norns besitzen "richtige" Gehirne mit etwa 1000 Neuronen (Menschen: 100 Mrd.)
- 9 verschiedene Bereiche für unterschiedliche Aufgaben
- Norns lernen dadurch, daß Verbindungen zwischen Neuronen verstärkt werden, wenn das biochemische System eine Belohnung signalisiert.

Anwendung in Spielen: Kampfspiele

Microsoft Research in Tao Feng

Fazit

- Neuronale Netze können auch bei wenig Wissen seitens der Programmierer sehr gut lernen
- Neuronale Netze können auch Charaktereigenschaften entwickeln
- Lernerfolg der neuronalen Netze ist unberechenbar
 - Einsatz von lernenden Netzen in Spielen kann ungeahnte Folgen haben

Quellen

- David M. Bourg, Glenn Seemann: AI for Game Developers, O'Reilly, 2004
- http://www.onlamp.com/pub/a/onlamp/2004/09/30/AIforGameDev.html
- http://www.gameai.com/
- Gerald Tesauro: Temporal Difference Learning and TD-Gammon,
 Communications of the ACM, 1995
- http://de.wikipedia.org/
- http://research.microsoft.com/MLP/apg/
- http://creatures.wikia.com/wiki/

Bilder:

- http://www.ign.com/
- http://www.gamershell.com/
- http://www.xbox.com/
- http://www.ag.ru