Introduction to Enumerative Geometry

Jan. 11 - Jan. 22, 2021

Course plan:

- Lecture 1: Chow ring and first examples
- Lecture 2: Grassmannians: Examples on G(2,4)
- Lecture 3: Grassmannians in general
- Lecture 4: Chern classes
- Lecture 5: Determinantal varieties
- Lecture 6: Porteous's formula

Course plan:

- Lecture 1: Chow ring and first examples
- Lecture 2: Grassmannians: Examples on G(2,4)
- Lecture 3: Grassmannians in general
- Lecture 4: Chern classes
- Lecture 5: Determinantal varieties
- Lecture 6: Porteous's formula

Varieties are quasi-projective varieties over complex numbers.

Schemes are quasi-projective schemes.

Lecture 1: Chow ring and first examples

- Cycles
- Rational equivalence
- Chow group
- Chow ring
- Examples

Group of cycles

Let X be a variety or a scheme.

The group of k-cycles of X, denoted $Z_k(X)$, is the group of formal integer linear combinations of k-dimensional irreducible subvarieties of X.

If
$$X^{inred}$$
.

 $2_{s}(X) = \{w_{i}P_{i}+...+w_{s}P_{s}: P_{i},...,P_{s}\in X\}$
 $2_{s}(X) = Z\cdot X$ free group on one generator.

 $2_{k}(X) = 0$ if $k \ge 2$.

If X has down:
$$Z_{\mathbf{K}}(X) = \bigoplus_{\substack{Y : \text{dur} Y = \mathbf{K} \\ Y \text{ wind}}} Z \cdot Y$$
.

Group of cycles – cont'd

The group of all cycles is $Z(X) = \bigoplus_{k \geq 0} Z_k(X)$.

Group of cycles - cont'd

The group of all cycles is $Z(X) = \bigoplus_{k>0} Z_k(X)$.

If $Y \subseteq X$ is a reducible subvariety, with components Y_1, \ldots, Y_s , then we define the *effective cycle associated to* Y to be

$$Y = Y_1 + \cdots + Y_s$$
.

Group of cycles - cont'd

The group of all cycles is $Z(X) = \bigoplus_{k>0} Z_k(X)$.

If $Y \subseteq X$ is a reducible subvariety, with components Y_1, \dots, Y_s , then we define the *effective cycle associated to* Y to be

$$Y = Y_1 + \cdots + Y_s$$
.

If $Y \subseteq X$ is a scheme with components Y_1, \ldots, Y_s and multiplicities p_1, \ldots, p_s , then we define the effective associated cycle to be

$$Y = p_1 Y_1 + \cdots + p_s Y_s.$$

Rational equivalence

Let X be a variety and let W be an irreducible subvariety of $X \times \mathbb{P}^1$. Let $\pi: X \times \mathbb{P}^1 \to \mathbb{P}^1$ be the projection.

Then either

- there is $t \in \mathbb{P}^1$ such that $W \subseteq X \times \{t\}$.
- $\pi(W)$ is dense in \mathbb{P}^1 . (2)

$$T(W)$$
 is irreducible in \mathbb{P}^1
Either it is a point or it is dense
· 2f a point case (1)
· otherwise case (2)

We say that two subvarieties Y_0 , Y_1 of X are rationally equivalent if there exists a $W \subseteq X \times \mathbb{P}^1$ irreducible such that

$$W \cap (X \times \{0\}) = Y_0 \times \langle \neg \rangle$$

$$W \cap (X \times \{1\}) = Y_1 \times \langle \neg \rangle$$

$$\pi: \times \times \mathbb{P}^1 \longrightarrow \mathbb{P}^1$$

$$\pi^{-1}(0) = Y_0 \qquad \pi^{-1}(2) = Y_1$$

We say that two subvarieties Y_0 , Y_1 of X are rationally equivalent if there exists a $W\subseteq X\times \mathbb{P}^1$ irreducible such that

$$W \cap (X \times \{0\}) = Y_0$$

$$W \cap (X \times \{1\}) = Y_1$$

Exercise:

Rational equivalence is an equivalence relation on Z(X).

We say that two subvarieties Y_0 , Y_1 of X are rationally equivalent if there exists a $W \subseteq X \times \mathbb{P}^1$ irreducible such that

$$W \cap (X \times \{0\}) = Y_0$$

$$W \cap (X \times \{1\}) = Y_1$$

Exercise:

Rational equivalence is an equivalence relation on Z(X).

Let

$$Rat(X) = \langle Y_0 - Y_1 : Y_0, Y_1 \text{ are rationally equivalent} \rangle \subseteq Z(X)$$

Example: Two hypersurfaces of the same degree are olways retionally

Define: $W = 2 g_0 + 3 + 4 = 2$ - at (0,1): $W_1 = 2$ - at (1,0): $W_0 = 2$

(to, t) words
on P.

Ex. 2f Yo is med.

Then W ivred.

any Y, is equivalent
to Yo if Yo smeducible.

Lemma If $Y_0, Y_1 \subseteq X$ are rationally equivalent and non-empty, then

$$\dim Y_0 = \dim Y_1.$$
 $\mathbb{P}_1 \subset \mathbb{P}_1$

$$W_0 = W \cap (X \times \{0\})$$
: The equation $\{t=0\}$ costs W_0 in $W_0 = 1$

Sever holds for W, so equality holds.

Chow group

The Chow group of X is

$$CH(X) = Z(X)/Rat(X)$$

Chow group

The Chow group of X is

$$CH(X) = Z(X)/Rat(X)$$

If $A \in Z(X)$ is a cycle, write [A] for its class in CH(X).

Chow group

The Chow group of X is

$$CH(X) = Z(X)/Rat(X)$$

If $A \in Z(X)$ is a cycle, write [A] for its class in CH(X).

$$2(x)$$
 $D_{2}(x)$

By the Lemma

$$CH(X) = \bigoplus_{k>0} CH_k(X)$$

where $CH_k(X) = Z_k(X)/Rat_k(X)$. Write $CH^c(X) = CH_{\dim X - c}(X)$.

Transversality

Let $Y_1, Y_2 \subseteq X$ be two subvarieties. Let $p \in Y_1 \cap Y_2$. We say that they intersect transversely at p if

 \bullet • X, Y_1, Y_2 are smooth at p

$$T_{p}Y_{1} + T_{p}Y_{2} = T_{p}X$$

$$= cody (Y_{1} \cap Y_{2}) = cody ($$

We say that Y_1, Y_2 are generically transverse if they are transverse at a generic point of every irreducible component of $Y_1 \cap Y_2$.

We say that two cycles are generically transverse if every component of one is transverse to every component of the other.

Moving Lemma

Theorem Let X be a smooth variety. Then

- For every $\alpha, \beta \in CH(X)$ there exist generically transverse cycles A, B such that $\alpha = [A]$ and $\beta = [B]$.
- If A and B are generically transverse subvarieties, then the class $[A \cap B]$ is independent of the choice of representative for [A] and [B].

Chow ring

Theorem

Let X be a smooth variety. Then there is a unique product structure on CH(X) such that whenenver A, B are generically transverse subvarieties of X, then $[A][B] = [A \cap B]$.

Chow ring

Theorem

Let X be a smooth variety. Then there is a unique product structure on CH(X) such that whenenver A, B are generically transverse subvarieties of X, then $[A][B] = [A \cap B]$.

This product makes CH(X) into a graded ring, where the grading is given by codimension.

Chow ring

Theorem

Let X be a smooth variety. Then there is a unique product structure on CH(X) such that whenenver A, B are generically transverse subvarieties of X, then $[A][B] = [A \cap B]$.

This product makes CH(X) into a graded ring, where the grading is given by codimension.

The class $[X] \in CH^0(X)$ is the identity element of the ring and is called the fundamental class of X. ($\mathcal{A} \times \mathcal{A}$

Example: The affine space

Let \mathbb{A}^n be the affine space of dimension n. Its Chow ring is the free abelian group generated by the fundamental class:

$$CH(\mathbb{A}^n) = \mathbb{Z}[\mathbb{A}^n] = \lim_{N \to \infty} \mathbb{A}^N : \omega \in \mathbb{Z}^n.$$

$$CH^{\circ}(\mathbb{A}^n).$$

$$CH^$$

Cohomological properties of the Chow ring

Theorem (Mayer-Vietoris sequence and Excision)

• Let X_1, X_2 be closed subschemes of X. Then there exists an exact sequence $(\alpha, \beta) \longrightarrow \alpha - \beta$

• Let $Y \subseteq X$ be a closed subscheme and let $U = X \setminus Y$. Then there is an exact sequence

$$CH(Y) \to CH(X) \to CH(U) \to 0.$$
 $A \longrightarrow A$
 $A \longrightarrow A$

Cohomological properties of the Chow ring – pushforward and pullback

Let $f: Y \to X$ be a morphism of schemes. The *pushforward* map of f is

$$f_*: CH(Y) \to CH(X)$$

defined by

- $f_*([A]) = 0$ if $f|_A$ has infinite fiber;
- $f_*([A]) = d[f(A)]$ if the generic fiber of $f|_A$ has cardinality d. This map is not graded be early don A = = du f(A)

 so column unjoint be different.

Cohomological properties of the Chow ring – pushforward and pullback

Let $f: Y \to X$ be a morphism of schemes. The *pushforward* map of f is

$$f_*: CH(Y) \rightarrow CH(X)$$

defined by

- $f_*([A]) = 0$ if $f|_A$ has infinite fiber;
- $f_*([A]) = d[f(A)]$ if the generic fiber of $f|_A$ has cardinality d.

The pullback of f is

$$f^*: CH(X) \rightarrow CH(Y)$$

defined by

- $f^*([A]) = [f^{-1}(A)]$ if $f^{-1}(A)$ is generically reduced and $\operatorname{codim}_X(A) = \operatorname{codim}_Y(f^{-1}(A))$ be unjy of degree \bigcirc .
- · Fact: This uniquely determines f*. (In the worng leave)

Cohomological properties of the Chow ring – pushforward and pullback

Let $f: Y \to X$ be a morphism of schemes. The *pushforward* map of f is

$$f_*: CH(Y) \to CH(X)$$

defined by

- $f_*([A]) = 0$ if $f|_A$ has infinite fiber;
- $f_*([A]) = d[f(A)]$ if the generic fiber of $f|_A$ has cardinality d.

The pullback of f is

$$f^*: CH(X) \rightarrow CH(Y)$$

defined by

- $f^*([A]) = [f^{-1}(A)]$ if $f^{-1}(A)$ is generically reduced and $\operatorname{codim}_X(A) = \operatorname{codim}_Y(f^{-1}(A))$
- Fact: This uniquely determines f^* .

Push-pull formula

etermines
$$f^*$$
.

 $\alpha \in CH(X)$
 $f_*(\underline{f^*(\alpha) \cdot \beta}) = \alpha \cdot f_*(\beta)$
 $\beta \in CH(Y)$

Stratifications

Let X be a scheme and let $\mathcal{U} = \{U_i : i \in I\}$ be a collection of locally closed subschemes of X. We say that \mathcal{U} is a *stratification* of X if

- X is disjoint union of the U_i's;
- for every i, $\overline{U}_i \setminus U_i$ is disjoint union of some of the U_j 's.

Stratifications

Let X be a scheme and let $\mathcal{U} = \{U_i : i \in I\}$ be a collection of locally closed subschemes of X. We say that \mathcal{U} is a *stratification* of X if

- X is disjoint union of the U_i's;
- for every i, $\overline{U}_i \setminus U_i$ is disjoint union of some of the U_j 's.

Write $Y_i = \overline{U}_i$. These are called *closed strata* of the stratification.

Stratifications

Let X be a scheme and let $\mathcal{U} = \{U_i : i \in I\}$ be a collection of locally closed subschemes of X. We say that \mathcal{U} is a *stratification* of X if

- X is disjoint union of the U_i's:
- for every i, $\overline{U}_i \setminus U_i$ is disjoint union of some of the U_i 's.

Write $Y_i = \overline{U}_i$. These are called *closed strata* of the stratification.

We say that the stratification is affine if the U_i 's are isomorphic to affine spaces.

Stratifications - cont'd

Theorem The Chow group of affinely stratifiable schemes is generated by the classes of the closed strata.

If Vie Excision.

Projective space

The Chow ring of the projective space \mathbb{P}^n is

$$CH(\mathbb{P}^n) = [\![\zeta]/(\zeta^{n+1})]$$

where $\zeta = [H]$ is the class of a hyperplane. If X is a variety of degree d and codimension k, then $[X] = d\zeta^k$.

Projective space - cont'd

Bezout's Theorem

Let $X_1, \ldots, X_k \subseteq \mathbb{P}^n$ be subvarieties of codimension c_1, \ldots, c_k , with $\sum c_i \leq n$ and suppose the X_i intersect generically transversely.

Then

$$\deg(X_1 \cap \cdots \cap X_k) = \prod \deg(X_i).$$

$$\begin{aligned} \mathcal{H}(X_{j}) &= d_{j} \mathcal{Z}^{c_{j}} \\ &[X_{j} \cap \dots \cap X_{k}] = d_{$$

Veronese variety

Let $\nu_d=:\mathbb{P}V\to\mathbb{P}S^dV$ be the d-th Veronese embedding, where V is a vector space of dimension n+1. Then

$$\deg(\nu_d(\mathbb{P} V))=d^n.$$

$$V = \langle x_0, ..., x_n \rangle = \mathbb{C}[x_0, ..., x_n]_1$$

$$J_1: PV \longrightarrow PSV$$

$$U \longmapsto U$$

$$U \mapsto U$$

$$U \mapsto$$

Veronese variety – cont'd

$$= \# \left(\mathbb{P}^n \cap \mathcal{Y}_{1}^{-1}(\mathbb{H}_{1}) \cap \dots \cap \mathcal{Y}_{n}^{-1}(\mathbb{H}_{n}) \right) = G$$

Degree of dual varieties

Let $X \subseteq \mathbb{P}V$ be a smooth hypersurface and let $X^{\vee} \subseteq \mathbb{P}V^*$ be its dual variety, which is the image of X under the Gauss map:

$$\mathcal{G}_X: X \to \mathbb{P}V^*$$
 $(\mathbf{Z}_0, ..., \mathbf{Z}_n)$ coords $p \mapsto \ell_p$ on $\mathbb{P}V$.

where \mathcal{L}_p is the equation of the tangent space $T_pX\subseteq V_{ullet}$

If
$$X = \{f = 0\}$$
 hen $G_X(p) = 2f(p) \cdot x_1 + \dots + 2f(q) \cdot x_n$
entered G_X to $PV: PV \longrightarrow PV^*$
 $P \longrightarrow 2f(p) \times + \dots + 2f(q) \times x_n$
(plor neep).

Exercise: 2f X sunch da =2 Nen Z is well defined

Degree of dual varieties - cont'd

Fact: X smooth of Ag 22 Then Gx is bimotified (generically injective).

$$X' \ge a \text{ hyposmofoce:}$$

$$= dg([X'] \cdot Z^{n-1}) = = dg([X'] \cdot Z^{n-1}) = = d \cdot (d-1)^{n-1}$$

$$= \#(X' \cap H_1 \cap \dots \cap H_{n-1}) = = \#(X \cap P_X'(H_1) \cap \dots \cap P_X'(H_{n-1})) = d \cdot (d-1)^{n-1}$$

$$= \#(X \cap P_X'(H_1) \cap \dots \cap P_X'(H_{n-1})) = d \cdot (d-1)^{n-1}$$

$$= \#(X \cap P_X'(H_1) \cap \dots \cap P_X'(H_{n-1})) = d \cdot (d-1)^{n-1}$$

$$= \#(X \cap P_X'(H_1) \cap \dots \cap P_X'(H_{n-1})) = d \cdot (d-1)^{n-1}$$

$$= \#(X \cap P_X'(H_1) \cap \dots \cap P_X'(H_{n-1})) = d \cdot (d-1)^{n-1}$$

 $H = \{l = 0\} = 0$ $P(H) = \{P \in PV : l(2f(1), ..., 2f(1)) = 0\}$ is a lypers of deg d-1

Example:

Let $S \subseteq \mathbb{P}^3$ be a smooth surface of degree d and let $L \subseteq \mathbb{P}^3$ be a generic line. How many planes in \mathbb{P}^3 containing L are tangent to S?

The set of hyperglones in
$$\mathbb{P}^3$$
 containing L
is a line in \mathbb{P}^{3^*} : call it \mathbb{L} .
Among the alts of \mathbb{L} , how many are
tangent to \mathbb{S} .
This number is
$$deg\left(\underbrace{\mathbb{S}' \cap \mathbb{L}'}\right) = deg \, \mathbb{S}' = \underbrace{d\left(d-1\right)}_{cdnn}.$$

Two factors Segre

Let U, V be vector spaces of dimension r+1, s+1 respectively. Let $X = \mathbb{P}U \times \mathbb{P}V \subseteq \mathbb{P}(U \otimes V)$ be the image of the Segre embedding. Then $\deg(\mathbb{P}U \times \mathbb{P}V) = \binom{r+s}{s}$.

Two factors Segre-cont'd

Two factors Segre – cont'd

$$Seg^{2}(H) = x + \beta$$

$$So \# (X \cap H, \cap ... \cap H_{r+s}) =$$

$$= \# (Seg^{2}(H_{1}) \cap ... \cap Seg^{2}(H_{r+s})) =$$

$$= deg((x+\beta)^{r+s}) = deg(\sum_{j=0}^{r+s} r+s) \times \beta^{s} = (r+s)$$

$$= deg((r+s) \times \beta^{s}) = (r+s)$$