IDL Library for Atomic Data of Ionized Nebulae

API Documentation for AtomNeb-idl

Contents

I Overview		5
II API		9
Directory: ./ 11		
Overview		1
atomnebdefine.pro		[1
atomneb_get_aeff_collection_reference_citation.pro	_	58
atomneb_get_aeff_he_i_pfsd12_reference_citation.pro		59
atomneb_get_aeff_n_ii_fsl13_reference_citation.pro		0
atomneb_get_aeff_o_ii_ssb17_reference_citation.pro		51
atomneb_get_aeff_ppb91_reference_citation.pro		53
atomneb_get_aeff_sh95_reference_citation.pro		94
atomneb_get_aij_reference_citation.pro		55
atomneb_get_elj_reference_citation.pro		66
atomneb_get_omij_reference_citation.pro		9
atomneb_list_aeff_collection_references.pro		9
atomneb_list_aeff_he_i_pfsd12_references.pro		70
atomneb_list_aeff_n_ii_fsl13_references.pro		71
atomneb_list_aeff_o_ii_ssb17_references.pro		72
atomneb_list_aeff_ppb91_references.pro		73
atomneb_list_aeff_sh95_references.pro	7	74
atomneb_list_aij_references.pro	• • 7	75
atomneb_list_omij_references.pro	· · 7	77
atomneb_read_aeff_collection.pro	7	78
atomneb_read_aeff_collection_list.pro		79
atomneb_read_aeff_collection_references.pro		30
atomneb_read_aeff_he_i_pfsd12.pro		31
atomneb_read_aeff_he_i_pfsd12_list.pro		32
atomneb_read_aeff_he_i_pfsd12_references.pro		33
atomneb_read_aeff_n_ii_fsl13.pro	8	34

4 IDL LIBRARY FOR ATOMIC DATA OF IONIZED NEBULAE

atomneb_read_aeff_n_ii_fsl13_list.pro	85
atomneb_read_aeff_n_ii_fsl13_references.pro	86
atomneb_read_aeff_o_ii_ssb17.pro	87
atomneb_read_aeff_o_ii_ssb17_list.pro	88
atomneb_read_aeff_o_ii_ssb17_references.pro	89
atomneb_read_aeff_ppb91.pro	90
atomneb_read_aeff_ppb91_list.pro	91
atomneb_read_aeff_ppb91_references.pro	92
atomneb_read_aeff_sh95.pro	93
atomneb_read_aeff_sh95_list.pro	94
atomneb_read_aeff_sh95_references.pro	95
atomneb_read_aij.pro	96
atomneb_read_aij_list.pro	97
atomneb_read_aij_references.pro	98
atomneb_read_elj.pro	98
atomneb_read_elj_list.pro	100
atomneb_read_elj_references.pro	100
atomneb_read_omij.pro	101
atomneb_read_omij_list.pro	102
atomneb_read_omij_references.pro	103
atomneb_search_aeff_collection.pro	104
atomneb_search_aeff_he_i_pfsd12.pro	105
atomneb_search_aeff_n_ii_fsl13.pro	106
	108
atomneb_search_aeff_ppb91.pro	109
atomneb_search_aeff_sh95.pro	110
	111
atomneb search omij.pro	112

Part I Overview

Overview

AtomNeb-idl is an IDL library for reading atomic data from the AtomNeb database for *collisionally excited lines* and *recombination lines* commonly observed in ionized nebulae.

- * AtomNeb database for collisionally excited lines contains energy levels (Ej), collision strengths (Îl'ij), and transition probabilities (Aij) of the most ions commonly observed in ionized nebulae:
- Collection dataset was compiled according to the atomic data used in pyNeb v1.0 and includes some improved atomic data from Cloudy v13.04 and the National Institute of Standards and Technology (NIST) Atomic Spectra Database, the CHIANTI atomic database.
- Chianti52, Chianti60, and Chianti70 datasets were compiled according to the atomic data used in the FORTRAN program MOCASSIN.
- * AtomNeb database for recombination lines contains effective recombination coefficient (Îseff), and Branching ratios (Br) of the most ions commonly observed in ionized nebulae.
- RC Collection dataset was compiled according to the atomic data used in the FORTRAN program MOCASSIN, and includes C II (Davey et al. 2000), N II (Escalante and Victor 1990), O II (Storey 1994; Liu et al. 1995), and Ne II ions (Kisielius et al. 1998).
- SH95 Collection dataset was compiled using hydrogenic ions for Z=1 to 8, namely H I, He II, Li III, Be IV, B V, C VI, N VII, and O VIII ions from Storey and Hummer (1995).
- PPB91 Collection dataset was compiled using the atomic data for H, He, C, N, O, Ne ions from Pequignot, Petitjean and Boisson (1991).
- PFSD12 He I dataset was compiled using effective He I recombination coefficients from Porter et al (2012) and (2013).
- FSL13 N II dataset was compiled using effective N II recombination coefficients from Fang, Storey and Liu (2011) and (2013).
- SSB17 0 II dataset was compiled using effective O II recombination coefficients from Storey, Sochi and Bastin (2017).

Dependencies

- * This package requires the following packages:
- The IDL Astronomy User's Library
- * To get this package with all the dependent packages, you can simply use git command as follows:

git clone --recursive https://github.com/atomneb/AtomNeb-idl.git

GDL Installation

* The GNU Data Language (GDL) can be installed on

```
    - Linux (Fedora):
        sudo dnf install gdl
    - Linux (Ubuntu):
        sudo apt-get install gnudatalanguage
    - OS X:
        brew install gnudatalanguage
```

- Windows: using the GNU Data Language for Win32 (Unofficial Version) or compiling the GitHub source with Visual Studio 2015 as seen in appveyor.yml.
- * To setup AtomNeb-idl in GDL, add its path to .gdl_startup in the home directory:

```
!PATH=!PATH + ':/home/AtomNeb-idl/pro/'
!PATH=!PATH + ':/home/AtomNeb-idl/externals/astron/pro/'
Set ''GDL_STARTUP'' in ''.bashrc'' (bash):
export GDL_STARTUP=~/.gdl_startup
or in .tcshrc (cshrc):
setenv GDL_STARTUP ~/.gdl_startup
```

- * This package needs GDL version 0.9.8 or later.
 - **IDL** Installation
- * To install AtomNeb-idl in IDL, add its path to your IDL path. For more information about the path management in IDL, read the IDL path management by Harris Geospatial or the IDL library installation by David Fanning.
 - * This package needs IDL version 7.1 or later.

Project statistics

Directories: 1
.pro files: 53
.sav files: 0
Routines: 124
Lines: 1,417

Part II

API

Directory: ./

Overview

atomneb__define.pro

Class description for atomneb

Fields

```
ATOM_AIJ_FILE "
ATOM_ELJ_FILE "
ATOM_OMIJ_FILE "
ATOM_RC_COLLECTION_FILE "
ATOM_RC_N_III_FSL13_FILE "
ATOM_RC_O_III_SSB17_FILE "
ATOM_RC_PFSD12_FILE "
ATOM_RC_PPB91_FILE "
ATOM_RC_SH95_FILE "
BASE_DIR "
DATA_CEL_DIR "
DATA_CEL_DIR "
```

ATOMNEB::INIT

"Unit for AtomNeb IDL Library": This obejct library can be used to read atomic data from AtomNeb, which is a database containing atomic data stored in the Flexible Image Transport System (FITS) file format for collisionally excited lines and recombination lines typically observed in spectra of ionized gaseous nebulae.

```
result = atomneb::init()
```

Examples

For example:

```
IDL> atm=obj_new('atomneb')
IDL> atm->set_data_cel,'chianti70'
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
12/05/2020, A. Danehkar, Create object-oriented programming (OOP).
```

Version

0.2.0

ATOMNEB::FREE

```
result = atomneb::free()
```

ATOMNEB::READ_ELJ_LIST

This function returns the list of energy levels (Ej) from the 1st binary table extension of the FITS data file ('AtomElj.fits')

```
result = atomneb::read_elj_list()
```

Returns

```
type=an array of data. This function returns the elj_data_list:
{ Elj_Data:", Extention:o.o}
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

private

History

```
24/12/2015, IDL code by A. Danehkar
12/05/2020, A. Danehkar, Move to object-oriented programming (OOP).
```

Version

0.2.0

ATOMNEB::READ_OMIJ_LIST

private

This function returns the list of collision strengths (omega_ij) from the 1st binary table extension of the FITS data file ('Atom-Omij.fits').

```
result = atomneb::read_omij_list()
```

Returns

```
type=an array of data. This function returns the omij_data_list: { Omij_Data:", Extention:o.o}
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
24/12/2015, IDL code by A. Danehkar
12/05/2020, A. Danehkar, Move to object-oriented programming (OOP).
```

Version

0.2.0

ATOMNEB::READ_AIJ_LIST

private

This function returns the list of transition probabilities (Aij) from the 1st binary table extension of the FITS data file ('AtomAij.fits').

```
result = atomneb::read_aij_list()
```

Returns

```
type=an array of data. This function returns the aij_data_list: { Aij_Data:", Extention:o.o}
```

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
24/12/2015, IDL code by A. Danehkar
12/05/2020, A. Danehkar, Move to object-oriented programming (OOP).
```

Version

0.2.0

ATOMNEB::READ_ELJ_REFERENCES

private

This function returns the reference list of energy levels (Ej) from the 2nd binary table extension of the FITS data file ('AtomElj.fits').

```
result = atomneb::read_elj_references()
```

Returns

```
type=an array of data. This function returns the aij_data_reference: { Reference:", Citation:"}
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
24/12/2015, IDL code by A. Danehkar
12/05/2020, A. Danehkar, Move to object-oriented programming (OOP).
```

Version

ATOMNEB::READ_OMIJ_REFERENCES

private

This function returns the reference list of collision strengths (omega_ij) from the 2nd binary table extension of the FITS data file ('AtomOmij.fits').

```
result = atomneb::read_omij_references()
```

Returns

```
type=an array of data. This function returns the aij_data_reference: { Reference: ", Citation:"}
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
24/12/2015, IDL code by A. Danehkar
12/05/2020, A. Danehkar, Move to object-oriented programming (OOP).
```

Version

0.2.0

ATOMNEB::READ_AIJ_REFERENCES

private

This function returns the reference list of transition probabilities (Aij) from the 1nd binary table extension of the FITS data file ('AtomAij.fits').

```
result = atomneb::read_aij_references()
```

Returns

```
type=an array of data. This function returns the aij_data_reference: { Reference:", Citation:"}
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
24/12/2015, IDL code by A. Danehkar
12/05/2020, A. Danehkar, Move to object-oriented programming (OOP).
```

Version

0.2.0

ATOMNEB::READ_ELJ

This function returns the energy levels (Ej) from the table extensions of the FITS data file ('AtomElj.fits').

```
result = atomneb::read_elj(atom, ion, level_num=string)
```

Returns

```
type=an array of data. This function returns the elj_data: { Configuration:", Term:", J:", J_v:o.o, Ej:o.o, Reference:"}.
```

Parameters

```
atom IN REQUIRED TYPE=string
atom name e.g. 'o'

ion IN REQUIRED TYPE=string
ionic level e.g 'iii'
```

Keywords

```
level_num IN TYPE=string set for the maximum level number.
```

Examples

For example:

```
IDL> atm=obj_new('atomneb')
IDL> atm->set_data_cel,'collection'
 IDL> atom='o'
IDL> ion='iii'
IDL> oiii_elj_data=atm->read_elj(atom, ion, level_num=6)
IDL> print,oiii_elj_data.J_v
                                           2.00000
    0.00000
                1.00000
                              2.00000
                                                        0.00000
                                                                     2,00000
IDL> print,oiii_elj_data.Ej
    0.0000000
                   113.17800
                                   306.17400
                                                    20273.270
                                                                    43185.740
```

60324.790

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
24/12/2015, IDL code by A. Danehkar
12/05/2020, A. Danehkar, Move to object-oriented program-
ming (OOP).
```

Version

0.2.0

ATOMNEB::GET_ELJ_REFERENCE_CITATION

This function returns the reference citation for energy levels (Ej) from the 2nd binary table extension of the FITS data file ('Atom-Elj.fits').

```
result = atomneb::get_elj_reference_citation(reference)
```

Returns

type=string. This function returns the Citation.

Parameters

```
reference
              IN TYPE=string
     set for the reference e.g. 'L7288'
```

IDL> atm=obj_new('atomneb')

Examples

For example:

```
IDL> atm->set_data_cel,'collection'
IDL> reference='L7288'
IDL> citation=atm->get_elj_reference_citation(reference)
IDL> print, citation
   C. E. Moore, in CRC Series in Evaluated Data in Atomic Physics, 339 pp. (CRC Press, Boca Raton, FL,
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
24/12/2015, IDL code by A. Danehkar
12/05/2020, A. Danehkar, Move to object-oriented program-
ming (OOP).
```

Version

0.2.0

ATOMNEB::READ_OMIJ

This function returns the collision strengths (omega_ij) from the table extensions of the FITS data file ('AtomOmij.fits').

```
result = atomneb::read_omij(atom, ion, reference=string, level_num=string)
```

Returns

type=an array of data. This function returns the omij_data: { level1:0, level2:0, strength:dblarr(temp_steps)}.

Parameters

```
atom
         IN REQUIRED TYPE=string
     atom name e.g. 'o'
ion
        IN REQUIRED TYPE=string
     ionic level e.g 'iii'
```

Keywords

```
reference
             IN TYPE=string
     set for the reference e.g. 'SSB14'
level num
               IN TYPE=string
     set for the maximum level number.
```

Examples

```
IDL> atm=obj_new('atomneb')
IDL> atm->set_data_cel,'collection'
IDL> atom='o'
 IDL> ion='iii'
IDL> reference='SSB14'
```

<pre>IDL> oiii_omij_data=atm->read_omij(atom, ion, reference=reference)</pre>										
IDL> pr	int,oiii	$omij_dat$	a.levelî	1						
0	1	1	1	1	2	2	2	3	3	4
<pre>IDL> print,oiii_omij_data.level2</pre>										
0	2	3	4	5	3	4	5	4	5	5
<pre>IDL> print,oiii_omij_data[0].strength</pre>										
100.	90000	125.8	39254	158.4	18932	199.5	2623	251.1	L8864	

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
24/12/2015, IDL code by A. Danehkar
12/05/2020, A. Danehkar, Move to object-oriented programming (OOP).
```

Version

0.2.0

ATOMNEB::SEARCH_OMIJ

This function searches collision strengths (omega_ij) for given element and ionic levels in the FITS data file ('AtomOmij.fits'), and returns the data entry.

```
result = atomneb::search_omij(atom, ion)
```

Returns

type=array of data. This function returns the Omij_Data.

Parameters

```
atom IN REQUIRED TYPE=string
atom name e.g. 'o'

ion IN REQUIRED TYPE=string
ionic level e.g 'iii'
```

Examples

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
24/12/2015, IDL code by A. Danehkar
12/05/2020, A. Danehkar, Move to object-oriented programming (OOP).
```

Version

0.2.0

ATOMNEB::LIST_OMIJ_REFERENCES

This function returns a list for all references of collision strengths (Omega_ij) for given element and ionic level from the FITS data file ('AtomOmij.fits').

```
result = atomneb::list_omij_references(atom, ion)
```

Returns

type=an array of strings. This function returns the references.

Parameters

```
atom IN REQUIRED TYPE=string
atom name e.g. 'o'
ion IN REQUIRED TYPE=string
ionic level e.g 'iii'
```

Examples

```
IDL> atm=obj_new('atomneb')
IDL> atm->set_data_cel,'collection'
IDL> atom='o'
IDL> ion='iii'
IDL> list_oiii_omij_reference=atm->list_omij_references(atom, ion)
IDL> print,list_oiii_omij_reference
    AK99 LB94 Pal12-AK99 SSB14
```

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
15/01/2017, IDL code by A. Danehkar
12/05/2020, A. Danehkar, Move to object-oriented program-
ming (OOP).
```

Version

0.2.0

ATOMNEB::GET_OMIJ_REFERENCE_CITATION

This function returns the reference citation for collision strengths (Omega_ij) from the 2nd binary table extension of the FITS data file ('AtomOmij.fits').

```
result = atomneb::get_omij_reference_citation(atom, ion, reference)
```

Returns

type=string. This function returns the Citation.

Parameters

```
atom
         IN REQUIRED TYPE=string
     atom name e.g. 'o'
ion
        IN REQUIRED TYPE=string
     ionic level e.g 'iii'
reference
              IN TYPE=string
     set for the reference e.g. 'SSB14'
```

Examples

```
For example:
```

```
IDL> atm=obj_new('atomneb')
IDL> atm->set_data_cel,'collection'
IDL> atom='o'
IDL> ion='iii'
IDL> reference='SSB14'
IDL> citation=atm->get_omij_reference_citation(atom, ion, reference)
IDL> print,citation
    Storey, P. J., Sochi, T., and Badnell, N. R. 2014, Astron.Astrophys., 441, 3028
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
24/12/2015, IDL code by A. Danehkar
12/05/2020, A. Danehkar, Move to object-oriented programming (OOP).
```

Version

0.2.0

ATOMNEB::READ_AIJ

This function returns the transition probabilities (Aij) from the table extensions of the FITS data file ('AtomAij.fits').

```
result = atomneb::read_aij(atom, ion, reference=string, level_num=string)
```

Returns

```
type=an array of data. This function returns the aij_data: { Aij:dblarr(n_level,n_level) }.
```

Parameters

```
atom IN REQUIRED TYPE=string
atom name e.g. 'o'

ion IN REQUIRED TYPE=string
ionic level e.g 'iii'
```

Keywords

```
reference IN TYPE=string
set for the reference, not necessary
level_num IN TYPE=string
set for the maximum level number.
```

Examples

For example:

```
IDL> atm=obj_new('atomneb')
IDL> atm->set_data_cel,'collection'
IDL> atom='o'
IDL> ion='iii'
 IDL> reference='FFT04'
 IDL> oiii_aij_data=atm->read_aij(atom, ion, reference=reference)
 IDL> print,oiii_aij_data.Aij[*,*]
    0.0000000
               2.5960000e-05
                               3.0300000e-11
                                                                                   0.0021910000
                                                 2.3220000e-06
                                                                     0.0000000
    0.0000000
                    0.0000000
                                9.6320000e-05
                                                  0.0069510000
                                                                                      230.80000
                                                                    0.22550000
    0.0000000
                    0.0000000
                                    0.0000000
                                                   0.020290000
                                                                 0.00069980000
                                                                                      576.50000
    0.0000000
                    0.0000000
                                    0.0000000
                                                     0.0000000
                                                                     1.6850000
                                                                                   0.0057770000
    0.0000000
                    0.0000000
                                    0.0000000
                                                     0.0000000
                                                                     0.0000000
                                                                                  3.7600000e-11
    0.0000000
                    0.0000000
                                    0.0000000
                                                     0.0000000
                                                                     0.0000000
                                                                                      0.0000000
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
24/12/2015, IDL code by A. Danehkar
12/05/2020, A. Danehkar, Move to object-oriented programming (OOP).
```

Version

0.2.0

ATOMNEB::GET_AIJ_REFERENCE_CITATION

This function returns the reference citation for a transition probability (Aij) from the 2nd binary table extension of the FITS data file ('AtoAij.fits')

```
result = atomneb::get_aij_reference_citation(atom, ion, reference)
```

Returns

type=string. This function returns the Citation.

Parameters

```
atom IN REQUIRED TYPE=string
atom name e.g. 'o'

ion IN REQUIRED TYPE=string
ionic level e.g 'iii'

reference IN TYPE=string
set for the reference e.g. 'FFT04'
```

Examples

For example:

```
IDL> atm=obj_new('atomneb')
IDL> atm->set_data_cel,'collection'
IDL> atom='o'
IDL> ion='iii'
IDL> reference='FFT04'
IDL> citation=atm->get_aij_reference_citation(atom, ion, reference)
IDL> print,citation
    Froese Fischer et al 2004, ADNDT 87, 1
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
24/12/2015, IDL code by A. Danehkar
12/05/2020, A. Danehkar, Move to object-oriented programming (OOP).
```

Version

ATOMNEB::SEARCH_AIJ

This function searches transition probabilities (Aij) for given element and ionic levels in the FITS data file ('AtomAij.fits'), and returns the data entry.

```
result = atomneb::search_aij(atom, ion)
```

Returns

type=array of data. This function returns the Aij_Data.

Parameters

```
atom
          IN REQUIRED TYPE=string
     atom name e.g. 'o'
        IN REQUIRED TYPE=string
ion
     ionic level e.g 'iii'
```

Examples

For example:

```
IDL> atm=obj_new('atomneb')
IDL> atm->set_data_cel,'collection'
IDL> atom='o'
IDL> ion='iii'
IDL> list_oiii_aij_data=atm->search_aij(atom, ion)
IDL> print,list_oiii_aij_data
    o_iii_aij_FFT04-SZ00 o_iii_aij_FFT04 o_iii_aij_GMZ97-WFD96 o_iii_aij_SZ00-WFD96
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
24/12/2015, IDL code by A. Danehkar
12/05/2020, A. Danehkar, Move to object-oriented program-
ming (OOP).
```

Version

ATOMNEB::LIST_AIJ_REFERENCES

This function returns a list for all references of transition probabilities (Aij) for given element and ionic level from the FITS data file ('AtoAij.fits').

```
result = atomneb::list_aij_references(atom, ion)
```

Returns

type=an array of strings. This function returns the refer-

Parameters

```
atom
          IN REQUIRED TYPE=string
     atom name e.g. 'o'
ion
        IN REQUIRED TYPE=string
     ionic level e.g 'iii'
```

Examples

For example:

```
IDL> atm=obj_new('atomneb')
IDL> atm->set_data_cel,'collection'
IDL> atom='o'
IDL> ion='iii'
IDL> list_oiii_aij_reference=atm->list_aij_references(atom, ion)
 IDL> print,list_oiii_aij_reference
    FFT04-SZ00 FFT04 GMZ97-WFD96 SZ00-WFD96
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
15/01/2017, IDL code by A. Danehkar
12/05/2020, A. Danehkar, Move to object-oriented program-
ming (OOP).
```

Version

ATOMNEB::READ_AEFF_COLLECTION

This function returns the effective recombination coefficients (Aeff) from the table extensions of the FITS data file ('rc_collection.fits').

```
result = atomneb::read_aeff_collection(atom, ion, /br, reference=string)
```

Returns

```
type=an array of data. This function returns the effective
recombination coefficients. aeff_data (c_iii_aeff) { Wave-
length:o.o, a: o.o, b: o.o, c: o.o, d: o.o, f: o.o}
aeff_data (n_iii_aeff) { a: o.o, b: o.o, c: o.o}
aeff_data (n_iii_br) {Wavelength: o.o, BR: o.o, $ g1:o, g2:o,
Mult1:", LowerTerm:", UpperTerm:" }
aeff_data (o_iii_aeff) {Term: ", Case1: ", a2: 0.0, a4: 0.0, a5:
o.o, a6: o.o, b: o.o, c: o.o, d: o.o}
aeff_data (o_iii_br) {Wavelength:double(o.o), Br_A: o.o, Br_B:
o.o, Br_C: o.o, g1: o, g2: o, Mult1: ", LowerTerm: ", UpperT-
aeff_data (ne_iii_aeff) {Wavelength:o.o, a: o.o, b: o.o, c: o.o, d:
o.o, f: o.o, br: o.o}
```

Parameters

```
atom
          IN REQUIRED TYPE=string
     atom name e.g. 'c'
ion
        IN REQUIRED TYPE=string
     ionic level e.g 'iii'
```

Keywords

```
br
      IN TYPE=boolean
     set for the branching ratios (Br), may not necessary
              IN TYPE=string
     set for the reference, not necessary
```

Examples

```
IDL> atm=obj_new('atomneb')
IDL> atom='c'
 IDL> ion='iii'; C III
 IDL> cii_rc_data=atm->read_aeff_collection(atom, ion)
 IDL> temp=size(cii_rc_data.Wavelength,/DIMENSIONS)
```

```
IDL> n_line=temp[0]
IDL> for i=0,n_line-1 do print,cii_rc_data[i].Wavelength, cii_rc_data[i].a, $
                               cii_rc_data[i].b, cii_rc_data[i].c, $
IDL>
IDL>
                               cii_rc_data[i].d, cii_rc_data[i].f
  914.00000
                  0.69280000
                                 0.021400000 -0.016300000
                                                                  -0.24310000
                                                                                  -0.88000000
  962.00000
                   1.0998000
                               -0.0042000000
                                                -0.027900000
                                                                  -0.22940000
                                                                                  -0.96560000
   . . .
```

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
15/01/2017, IDL code by A. Danehkar
12/05/2020, A. Danehkar, Move to object-oriented program-
ming (OOP).
```

Version

0.2.0

ATOMNEB::SEARCH_AEFF_COLLECTION

This function searches effective recombination coefficients (Aeff) for given element and ionic levels in the FITS data file ('rc_collection.fits'), and returns the data entry.

```
result = atomneb::search_aeff_collection(atom, ion, /br)
```

Returns

type=array of data. This function returns the Aeff_Data.

Parameters

```
IN REQUIRED TYPE=string
atom
     atom name e.g. 'c'
ion
        IN REQUIRED TYPE=string
     ionic level e.g 'iii'
```

Keywords

```
br
      IN TYPE=boolean
     set for the branching ratios (Br), may not necessary
```

Examples

For example:

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
15/01/2017, IDL code by A. Danehkar
12/05/2020, A. Danehkar, Move to object-oriented programming (OOP).
```

Version

0.2.0

ATOMNEB::LIST_AEFF_COLLECTION_REFERENCES

This function returns a list for all references of recombination coefficients (Aeff) for given element and ionic level from the FITS data file ('rc_collection.fits').

```
result = atomneb::list_aeff_collection_references(atom, ion, /br)
```

Returns

type=an array of strings. This function returns the references.

Parameters

```
atom IN REQUIRED TYPE=string
atom name e.g. 'c'

ion IN REQUIRED TYPE=string
ionic level e.g 'iii'
```

```
br IN TYPE=boolean set for the branching ratios (Br), may not necessary
```

Examples

For example:

```
IDL> atm=obj_new('atomneb')
   IDL> atom='c'
   IDL> ion='iii' ; C III
   IDL> list_cii_aeff_reference=atm->list_aeff_collection_references(atom, ion)
   IDL> print,list_cii_aeff_reference
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
15/01/2017, IDL code by A. Danehkar
12/05/2020, A. Danehkar, Move to object-oriented programming (OOP).
```

Version

0.2.0

ATOMNEB::GET_AEFF_COLLECTION_REFERENCE_CITATION

This function returns the reference citation for a recombination coefficient (Aeff) from the 2nd binary table extension of the FITS data file ('rc_collection.fits').

```
result = atomneb::get_aeff_collection_reference_citation(atom, ion, /br, reference=string
)
```

Returns

type=string. This function returns the Citation.

Parameters

```
atom
          IN REQUIRED TYPE=string
     atom name e.g. 'c'
ion
        IN REQUIRED TYPE=string
     ionic level e.g 'iii'
```

Keywords

```
br
      IN TYPE=boolean
     set for the branching ratios (Br), may not necessary
reference
              IN TYPE=string
     set for the reference, not necessary
```

Examples

For example:

```
IDL> atm=obj_new('atomneb')
IDL> atom='c'
IDL> ion='iii' ; C III
IDL> citation=atm->get_aeff_collection_reference_citation(atom, ion)
IDL> print, citation
    Davey, A. R., Storey, P. J. and Kisielius, R., Astron. Astrophys. Suppl., 142, 85, 2000
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
15/01/2017, IDL code by A. Danehkar
12/05/2020, A. Danehkar, Move to object-oriented program-
ming (OOP).
```

Version

0.2.0

ATOMNEB::READ_AEFF_PPB91

This function returns the effective recombination coefficients (Aeff) from the table extensions of the FITS data file ('rc_PPB91.fits').

```
result = atomneb::read_aeff_ppb91(atom, ion, reference=string)
```

Returns

```
type=an array of data. This function returns the effective recombination coefficients: { Ion: ' ' Case1:" Wavelength:o.o, a: o.o, b: o.o, c: o.o, d: o.o, br: o.o, y: o.o}
```

Parameters

```
atom IN REQUIRED TYPE=string
atom name e.g. 'c'

ion IN REQUIRED TYPE=string
ionic level e.g 'iii'
```

Keywords

```
reference IN TYPE=string set for the reference, not necessary
```

Examples

For example:

```
IDL> atm=obj_new('atomneb')
IDL> atom='c'
 IDL> ion='iii' ; C II
 IDL> cii_rc_data=atm->read_aeff_ppb91(atom, ion)
 IDL> temp=size(cii_rc_data.Wavelength,/DIMENSIONS)
 IDL> n_line=temp[0]
 IDL> for i=0,n_line-1 do print,cii_rc_data[i].Ion,cii_rc_data[i].Case1, $
IDL>
                                cii_rc_data[i].Wavelength, cii_rc_data[i].a, $
 IDL>
                                cii_rc_data[i].b, cii_rc_data[i].c, $
IDL>
                                cii_rc_data[i].d, cii_rc_data[i].br, $
 IDL>
                                cii_rc_data[i].Q, cii_rc_data[i].y
                                             -0.78400000
    C2+A
             9903.4600
                              0.69700000
    C2+A
              4267.1500
                              1.0110000
                                             -0.75400000
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
15/01/2017, IDL code by A. Danehkar
12/05/2020, A. Danehkar, Move to object-oriented programming (OOP).
```

Version

0.2.0

ATOMNEB::SEARCH_AEFF_PPB91

This function searches effective recombination coefficients (Aeff) for given element and ionic levels in the FITS data file ('rec_PPB91.fits'), and returns the data entry.

```
result = atomneb::search_aeff_ppb91(atom, ion)
```

Returns

type=array of data. This function returns the Aeff_Data.

Parameters

```
atom IN REQUIRED TYPE=string
atom name e.g. 'c'

ion IN REQUIRED TYPE=string
ionic level e.g 'iii'
```

Examples

For example:

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
15/01/2017, IDL code by A. Danehkar
12/05/2020, A. Danehkar, Move to object-oriented programming (OOP).
```

Version

This function returns a list for all references of recombination coefficients (Aeff) for given element and ionic level from the FITS data file ('rc_PPB91.fits').

```
result = atomneb::list_aeff_ppb91_references(atom, ion)
```

Returns

type=an array of strings. This function returns the references.

Parameters

```
atom IN REQUIRED TYPE=string
atom name e.g. 'c'

ion IN REQUIRED TYPE=string
ionic level e.g 'iii'
```

Examples

For example:

```
IDL> atm=obj_new('atomneb')
IDL> atom='c'
IDL> ion='iii'
IDL> list_cii_aeff_reference=atm->list_aeff_ppb91_references(atom, ion)
IDL> print,list_cii_aeff_reference
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
15/01/2017, IDL code by A. Danehkar
12/05/2020, A. Danehkar, Move to object-oriented programming (OOP).
```

Version

ATOMNEB::GET_AEFF_PPB91_REFERENCE_CITATION

This function returns the reference citation for a recombination coefficient (Aeff) from the 2nd binary table extension of the FITS data file ('rc_PPB91.fits').

```
result = atomneb::get_aeff_ppb91_reference_citation(atom, ion, reference=string)
```

Returns

type=string. This function returns the Citation.

Parameters

```
atom IN REQUIRED TYPE=string
atom name e.g. 'c'

ion IN REQUIRED TYPE=string
ionic level e.g 'iii'
```

Keywords

```
reference IN TYPE=string set for the reference, not necessary
```

Examples

For example:

```
IDL> atm=obj_new('atomneb')
IDL> atom='c'
IDL> ion='iii'
IDL> citation=atm->get_aeff_ppb91_reference_citation(atom, ion)
IDL> print, citation
    Pequignot, D., Petitjean, P. and Boisson, C. Astron.Astrophys., 251, 680, 1991
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
15/01/2017, IDL code by A. Danehkar
12/05/2020, A. Danehkar, Move to object-oriented programming (OOP).
```

Version

```
ATOMNEB::READ_AEFF_SH95
```

This function returns the effective recombination coefficients (Aeff) from the table extensions of the FITS data file ('rc_SH95.fits').

```
result = atomneb::read_aeff_sh95(atom, ion, reference=string, casel=string)
```

Returns

type=an array of data. This function returns the effective recombination coefficients.

Parameters

```
atom IN REQUIRED TYPE=string atom name e.g. 'h'

ion IN REQUIRED TYPE=string ionic level e.g 'ii'
```

Keywords

```
reference IN TYPE=string
set for the reference, not necessary

case1 IN TYPE=string
set for the case 'a' or 'b', defualt 'b'
```

Examples

For example:

```
IDL> atm=obj_new('atomneb')
IDL> atom='h'
IDL> ion='ii' ; H I
IDL> hi_rc_data=atm->read_aeff_sh95(atom, ion)
IDL> print,hi_rc_data[0].Aeff
    100.00000    500.00000    0.0000000    4.2140000e-27    1.7560000e-27    ...
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
15/01/2017, IDL code by A. Danehkar
12/05/2020, A. Danehkar, Move to object-oriented programming (OOP).
```

Version

0.2.0

ATOMNEB::SEARCH_AEFF_SH95

This function searches effective recombination coefficients (Aeff) for given element and ionic levels in the FITS data file ('rec_SH95.fits'), and returns the data entry.

```
result = atomneb::search_aeff_sh95(atom, ion)
```

Returns

type=array of data. This function returns the Aeff_Data.

Parameters

```
atom IN REQUIRED TYPE=string
atom name e.g. 'h'

ion IN REQUIRED TYPE=string
ionic level e.g 'ii'
```

Examples

For example:

```
IDL> atm=obj_new('atomneb')
IDL> atom='h'
IDL> ion='ii' ; H I
IDL> list_hi_aeff_data=atm->search_aeff_sh95(atom, ion)
IDL> print,list_hi_aeff_data
    h_ii_aeff_a h_ii_aeff_b
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
15/01/2017, IDL code by A. Danehkar
12/05/2020, A. Danehkar, Move to object-oriented programming (OOP).
```

Version

0.2.0

```
ATOMNEB::LIST_AEFF_SH95_REFERENCES
```

This function returns a list for all references of recombination coefficients (Aeff) for given element and ionic level from the FITS data file ('rc_SH95.fits').

```
result = atomneb::list_aeff_sh95_references(atom, ion)
```

Returns

type=an array of strings. This function returns the refer-

Parameters

```
atom
          IN REQUIRED TYPE=string
     atom name e.g. 'h'
ion
        IN REQUIRED TYPE=string
     ionic level e.g 'ii'
```

Examples

For example:

```
IDL> atm=obj_new('atomneb')
IDL> atom='h'
IDL> ion='ii' ; H I
IDL> list_hi_aeff_reference=atm->list_aeff_sh95_references(atom, ion)
IDL> print,list_hi_aeff_reference
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
15/01/2017, IDL code by A. Danehkar
12/05/2020, A. Danehkar, Move to object-oriented program-
ming (OOP).
```

Version

0.2.0

ATOMNEB::GET_AEFF_SH95_REFERENCE_CITATION

This function returns the reference citation for a recombination coefficient (Aeff) from the 2nd binary table extension of the FITS data file ('rc_SH95.fits').

```
result = atomneb::get_aeff_sh95_reference_citation(atom, ion, reference=string, case1=
    string)
```

Returns

type=string. This function returns the Citation.

Parameters

```
atom IN REQUIRED TYPE=string
atom name e.g. 'h'

ion IN REQUIRED TYPE=string
ionic level e.g 'ii'
```

Keywords

```
reference IN TYPE=string
set for the reference, not necessary

case1 IN TYPE=string
set for the case 'a' or 'b', defualt 'b'
```

Examples

For example:

```
IDL> atm=obj_new('atomneb')
IDL> atom='h'
IDL> ion='ii' ; H I
IDL> citation=atm->get_aeff_sh95_reference_citation(atom, ion)
IDL> print, citation
    Storey, P. J. and Hummer, D. G., MNRAS, 272, 41S, 1995
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
15/01/2017, IDL code by A. Danehkar
12/05/2020, A. Danehkar, Move to object-oriented programming (OOP).
```

Version

0.2.0

```
ATOMNEB::READ_AEFF_HE_I_PFSD12
```

This function returns the effective recombination coefficients (Aeff) from the table extensions of the FITS data file ('rc_he_ii_PFSD12.fits').

```
result = atomneb::read_aeff_he_i_pfsd12(atom, ion, /wavelength, reference=string)
```

Returns

type=an array of data. This function returns the effective recombination coefficients.

Parameters

```
atom IN REQUIRED TYPE=string
atom name e.g. 'he'
ion IN REQUIRED TYPE=string
ionic level e.g 'ii'
```

Keywords

```
wavelength IN TYPE=boolean
set for returning the wavelengths
reference IN TYPE=string
set for the reference, not necessary
```

Examples

```
IDL> atm=obj_new('atomneb')
IDL> atom='he'
IDL> ion='ii'; He I
IDL> hei_rc_data=atm->read_aeff_he_i_pfsd12(atom, ion)
 IDL> hei_rc_data_wave=atm->read_aeff_he_i_pfsd12(atom, ion, /wavelength)
 IDL> print,hei_rc_data[0].Aeff
    5000.0000
                    10.000000
                                    -25.379540
                                                     -25.058970
                                                                      -25.948440
IDL> temp=size(hei_rc_data_wave.Wavelength,/DIMENSIONS)
 IDL> n_line=temp[0]
 IDL> for i=0,n_line-1 do print,hei_rc_data_wave[i].Wavelength, hei_rc_data_wave[i].LowerTerm, hei_rc_data_wave[i].
    2945.00005p^{3}P2s^{3}S
    3188.00004p^{3}P2s^{3}S
    3614.00005p^{1}P2s^{1}S
    . . .
```

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
15/01/2017, IDL code by A. Danehkar
12/05/2020, A. Danehkar, Move to object-oriented program-
ming (OOP).
```

Version

0.2.0

ATOMNEB::SEARCH_AEFF_HE_I_PFSD12

This function searches effective recombination coefficients (Aeff) for given element and ionic levels in the FITS data file ('rec_he_ii_PFSD12.fits'), and returns the data entry.

```
result = atomneb::search_aeff_he_i_pfsd12(atom, ion)
```

Returns

type=array of data. This function returns the Aeff_Data.

Parameters

```
atom
          IN REQUIRED TYPE=string
     atom name e.g. 'he'
ion
        IN REQUIRED TYPE=string
     ionic level e.g 'ii'
```

Examples

For example:

```
IDL> atm=obj_new('atomneb')
IDL> atom='he'
IDL> ion='ii' ; He I
IDL> list_hei_aeff_data=atm->search_aeff_he_i_pfsd12(atom, ion)
IDL> print,list_hei_aeff_data
    he_ii_aeff_PFSD12 he_ii_aeff_PFSD13
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
15/01/2017, IDL code by A. Danehkar
12/05/2020, A. Danehkar, Move to object-oriented programming (OOP).
```

Version

0.2.0

ATOMNEB::LIST_AEFF_HE_I_PFSD12_REFERENCES

This function returns a list for all references of recombination coefficients (Aeff) for given element and ionic level from the FITS data file ('rc_he_ii_PFSD12.fits').

```
result = atomneb::list_aeff_he_i_pfsd12_references(atom, ion)
```

Returns

type=an array of strings. This function returns the references.

Parameters

```
atom IN REQUIRED TYPE=string
atom name e.g. 'he'

ion IN REQUIRED TYPE=string
ionic level e.g 'ii'
```

Examples

For example:

```
IDL> atm=obj_new('atomneb')
IDL> atom='he'
IDL> ion='ii' ; He I
IDL> list_hei_aeff_reference=atm->list_aeff_he_i_pfsd12_references(atom, ion)
IDL> print,list_hei_aeff_reference
    PFSD12 PFSD13
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
15/01/2017, IDL code by A. Danehkar
12/05/2020, A. Danehkar, Move to object-oriented program-
ming (OOP).
```

Version

0.2.0

ATOMNEB::GET_AEFF_HE_I_PFSD12_REFERENCE_CITATION

This function returns the reference citation for a recombination coefficient (Aeff) from the 2nd binary table extension of the FITS data file ('rc_he_ii_PFSD12.fits').

```
result = atomneb::get_aeff_he_i_pfsd12_reference_citation(atom, ion, reference=string)
```

Returns

type=string. This function returns the Citation.

Parameters

```
atom
         IN REQUIRED TYPE=string
     atom name e.g. 'he'
ion
        IN REQUIRED TYPE=string
     ionic level e.g 'ii'
```

Keywords

```
reference
             IN TYPE=string
     set for the reference e.g. 'PFSD13', may not necessary
```

Examples

```
IDL> atm=obj_new('atomneb')
IDL> atom='he'
IDL> ion='ii' ; He I
IDL> reference='PFSD13'
IDL> citation=atm->get_aeff_he_i_pfsd12_reference_citation(atom, ion, reference=reference)
 IDL> print, citation
    Porter, R. L., Ferland, G. J., Storey, P. J. and Detisch, M. J., MNRAS, 433L, 89, 2013
```

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
15/01/2017, IDL code by A. Danehkar
12/05/2020, A. Danehkar, Move to object-oriented programming (OOP).
```

Version

0.2.0

ATOMNEB::READ_AEFF_N_II_FSL13

This function returns the effective recombination coefficients (Aeff) from the table extensions of the FITS data file ('rc_n_iii_FSL13.fits').

Returns

type=an array of data. This function returns the effective recombination coefficients.

Parameters

```
atom IN REQUIRED TYPE=string
atom name e.g. 'n'
ion IN REQUIRED TYPE=string
ionic level e.g 'iii'
wavelength_range IN REQUIRED TYPE=array
wavelength range e.g. [4400.0, 7100.0]
```

Keywords

```
wavelength IN TYPE=boolean
set for returning the wavelengths
reference IN TYPE=string
set for the reference, not necessary
```

Examples

```
IDL> atm=obj_new('atomneb')
IDL> atom='n'
IDL> ion='iii' ; N II
 IDL> wavelength_range=[4400.0, 7100.0]
 IDL> nii_rc_data=atm->read_aeff_n_ii_fsl13(atom, ion, wavelength_range)
 IDL> nii_rc_data_wave=atm->read_aeff_n_ii_fsl13(atom, ion, wavelength_range, /wavelength)
IDL> print,nii_rc_data[0].Aeff
    255.000
                 79.5000
                              47.3000
                                           12.5000
 IDL> temp=size(nii_rc_data_wave.Wavelength,/DIMENSIONS)
 IDL> n_line=temp[0]
 IDL> for i=0,n_line-1 do print,nii_rc_data_wave[i].Wavelength, nii_rc_data_wave[i].Tr, nii_rc_data_wave
    6413.236g - 4f2p6g G[9/2]o4 - 2p4f F[7/2]e3
    6556.326g - 4f2p6g G[9/2]o5 - 2p4f G[7/2]e4
    6456.976g - 4f2p6g G[9/2]o5 - 2p4f F[7/2]e4
```

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
03/07/2017, IDL code by A. Danehkar
12/05/2020, A. Danehkar, Move to object-oriented program-
ming (OOP).
```

Version

0.2.0

ATOMNEB::SEARCH_AEFF_N_II_FSL13

This function searches effective recombination coefficients (Aeff) for given element and ionic levels in the FITS data file ('rc_n_iii_FSL13.fits'), and returns the data entry.

```
result = atomneb::search_aeff_n_ii_fsl13(atom, ion, wavelength)
```

Returns

type=array of data. This function returns the Aeff_Data.

Parameters

```
atom
         IN REQUIRED TYPE=string
     atom name e.g. 'n'
```

```
ion IN REQUIRED TYPE=String
  ionic level e.g 'iii'
wavelength
```

Examples

For example:

```
IDL> atm=obj_new('atomneb')
IDL> atom='n'
IDL> ion='iii' ; N II
IDL> wavelength=5679.56
IDL> list_nii_aeff_data=atm->search_aeff_n_ii_fsl13(atom, ion, wavelength)
IDL> print,list_nii_aeff_data.Wavelength
    5679.56
IDL> print,list_nii_aeff_data.Aeff
    7810.00
                 1780.00
                              850.000
                                           151.000
                                                         74.4000
                                                                      53.1000
                                                                                    47.4000
    7370.00
                 1700.00
                              886.000
                                            206.000
                                                         110.000
                                                                      80.1000
                                                                                    70.8000
    7730.00
                 1680.00
                              900.000
                                           239.000
                                                         138.000
                                                                                    92.9000
                                                                      103.000
    8520.00
                 1710.00
                              905.000
                                            244.000
                                                         142.000
                                                                      107.000
                                                                                    97.0000
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
03/07/2017, IDL code by A. Danehkar
12/05/2020, A. Danehkar, Move to object-oriented program-
ming (OOP).
```

Version

0.2.0

ATOMNEB::LIST_AEFF_N_II_FSL13_REFERENCES

This function returns a list for all references of recombination coefficients (Aeff) for given element and ionic level from the FITS data file ('rc_n_iii_FSL13.fits').

```
result = atomneb::list_aeff_n_ii_fsl13_references(atom, ion)
```

Returns

type=an array of strings. This function returns the references.

Parameters

```
atom
         IN REQUIRED TYPE=string
     atom name e.g. 'n'
ion
        IN REQUIRED TYPE=string
     ionic level e.g 'iii'
```

Examples

For example:

```
IDL> atm=obj_new('atomneb')
IDL> atom='n'
IDL> ion='iii' ; N II
IDL> list_nii_aeff_reference=atm->list_aeff_n_ii_fsl13_references(atom, ion)
IDL> print,list_nii_aeff_reference
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
03/07/2017, IDL code by A. Danehkar
12/05/2020, A. Danehkar, Move to object-oriented program-
ming (OOP).
```

Version

0.2.0

ATOMNEB::GET_AEFF_N_II_FSL13_REFERENCE_CITATION

This function returns the reference citation for a recombination coefficient (Aeff) from the 2nd binary table extension of the FITS data file ('rc_n_iii_FSL13.fits').

```
result = atomneb::get_aeff_n_ii_fsl13_reference_citation(atom, ion, reference=string)
```

Returns

type=string. This function returns the Citation.

Parameters

```
atom IN REQUIRED TYPE=string
atom name e.g. 'n'
ion IN REQUIRED TYPE=string
ionic level e.g 'iii'
```

Keywords

```
reference IN TYPE=string set for the reference e.g. 'FSL13', may not necessary
```

Examples

For example:

```
IDL> atm=obj_new('atomneb')
IDL> atom='n'
IDL> ion='iii'; N II
IDL> reference='FSL13'
IDL> citation=atm->get_aeff_n_ii_fsl13_reference_citation(atom, ion)
IDL> print, citation
Fang X., Storey P.J., and Liu X.-W., R. 2011, Astron.Astrophys. 530, A18; 2013, Astron.Astrophys. 55
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
03/07/2017, IDL code by A. Danehkar
12/05/2020, A. Danehkar, Move to object-oriented programming (OOP).
```

Version

0.2.0

ATOMNEB::READ_AEFF_O_II_SSB17

This function returns the effective recombination coefficients (Aeff) from the table extensions of the FITS data file ('rc_o_iii_SSB17.fits').

```
result = atomneb::read_aeff_o_ii_ssb17(atom, ion, case1, wavelength_range, /wavelength,
    reference=string)
```

Returns

type=an array of data. This function returns the effective recombination coefficients.

Parameters

```
atom IN REQUIRED TYPE=string
atom name e.g. 'o'

ion IN REQUIRED TYPE=string
ionic level e.g 'iii'

case1 IN TYPE=string
set for the case 'a' or 'b', defualt 'b'

wavelength_range IN REQUIRED TYPE=array
wavelength range e.g. [5320.0, 5330.0]
```

Keywords

```
wavelength IN TYPE=boolean
set for returning the wavelengths
reference IN TYPE=string
set for the reference, not necessary
```

Examples

```
5327.172s22p2(1S)3p 2Po
5325.422s22p2(1S)3p 2Po
5327.182s22p2(1D)3d 2Ge
```

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
03/07/2017, IDL code by A. Danehkar
12/05/2020, A. Danehkar, Move to object-oriented program-
ming (OOP).
```

Version

0.2.0

ATOMNEB::SEARCH_AEFF_O_II_SSB17

This function searches effective recombination coefficients (Aeff) for given element and ionic levels in the FITS data file ('rc_o_iii_SSB17.fits'), and returns the data entry.

```
result = atomneb::search_aeff_o_ii_ssb17(atom, ion, case1, wavelength)
```

Returns

type=array of data. This function returns the Aeff_Data.

Parameters

```
atom
          IN REQUIRED TYPE=string
     atom name e.g. 'o'
ion
        IN REQUIRED TYPE=string
     ionic level e.g 'iii'
          IN TYPE=string
case1
     set for the case 'a' or 'b', defualt 'b'
wavelength
                 IN TYPE=float
     set the wavelengths
```

Examples

```
IDL> atm=obj_new('atomneb')
IDL> atom='o'
IDL> ion='iii' ; 0 II
IDL> case1='B'
IDL> wavelength=5325.42
IDL> list_oii_aeff_data=atm->search_aeff_o_ii_ssb17(atom, ion, case1, wavelength)
IDL> print,list_oii_aeff_data.Wavelength
   5325.42
IDL> print,list_oii_aeff_data.Aeff
   3.41800e-32 3.33300e-32 3.25700e-32 3.20900e-32 3.16800e-32 ...
```

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
03/07/2017, IDL code by A. Danehkar
12/05/2020, A. Danehkar, Move to object-oriented program-
ming (OOP).
```

Version

0.2.0

ATOMNEB::LIST_AEFF_O_II_SSB17_REFERENCES

This function returns a list for all references of recombination coefficients (Aeff) for given element and ionic level from the FITS data file ('rc_o_iii_SSB17.fits').

```
result = atomneb::list_aeff_o_ii_ssb17_references(atom, ion)
```

Returns

type=an array of strings. This function returns the references.

Parameters

```
atom
          IN REQUIRED TYPE=string
     atom name e.g. 'o'
ion
        IN REQUIRED TYPE=string
     ionic level e.g 'iii'
```

Examples

For example:

```
IDL> atm=obj_new('atomneb')
   IDL> atom='o'
   IDL> ion='iii' ; 0 II
   IDL> list_oii_aeff_reference=atm->list_aeff_o_ii_ssb17_references(atom, ion)
   IDL> print,list_oii_aeff_reference
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
03/07/2017, IDL code by A. Danehkar
12/05/2020, A. Danehkar, Move to object-oriented programming (OOP).
```

Version

0.2.0

ATOMNEB::GET_AEFF_O_II_SSB17_REFERENCE_CITATION

This function returns the reference citation for a recombination coefficient (Aeff) from the 2nd binary table extension of the FITS data file ('rc_o_iii_SSB17.fits').

```
result = atomneb::get_aeff_o_ii_ssb17_reference_citation(atom, ion, reference=string)
```

Returns

type=string. This function returns the Citation.

Parameters

```
atom IN REQUIRED TYPE=string
atom name e.g. 'o'

ion IN REQUIRED TYPE=string
ionic level e.g 'iii'
```

Keywords

```
reference
              IN TYPE=string
     set for the reference e.g. 'SSB17', may not necessary
```

Examples

For example:

```
IDL> atm=obj_new('atomneb')
IDL> atom='o'
IDL> ion='iii' ; 0 II
IDL> reference='SSB17'
IDL> citation=atm->get_aeff_o_ii_ssb17_reference_citation(atom, ion)
IDL> print, citation
    Storey, P.J., Sochi, T. and Bastin, R. 2017, MNRAS, 470, 379; VizieR On-line Data Catalog: VI/150
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
03/07/2017, IDL code by A. Danehkar
12/05/2020, A. Danehkar, Move to object-oriented program-
ming (OOP).
```

Version

0.2.0

ATOMNEB::SET_DATA_DIR

```
atomneb::set_data_dir, data_dir
```

Parameters

data_dir

ATOMNEB::GET_DATA_DIR

```
result = atomneb::get_data_dir()
```

atomneb::set_base_dir, base_dir

Parameters

base_dir

ATOMNEB::GET_BASE_DIR

result = atomneb::get_base_dir()

ATOMNEB::SET_DATA_CEL_DIR

atomneb::set_data_cel_dir, data_cel_dir

Parameters

data_cel_dir

ATOMNEB::GET_DATA_CEL_DIR

result = atomneb::get_data_cel_dir()

ATOMNEB::SET_DATA_CEL

atomneb::set_data_cel, data_cel

Parameters

data_cel

ATOMNEB::GET_DATA_CEL

result = atomneb::get_data_cel()

ATOMNEB::SET_DATA_RC_DIR

atomneb::set_data_rc_dir, data_rc_dir

Parameters

data_rc_dir

```
ATOMNEB::GET_DATA_RC_DIR
```

result = atomneb::get_data_rc_dir()

ATOMNEB::SET_ATOM_ELJ_FILE

atomneb::set_Atom_Elj_file, Atom_Elj_file

Parameters

Atom_Elj_file

ATOMNEB::GET_ATOM_ELJ_FILE

result = atomneb::get_Atom_Elj_file()

ATOMNEB::SET_ATOM_OMIJ_FILE

atomneb::set_Atom_Omij_file, Atom_Omij_file

Parameters

Atom_Omij_file

ATOMNEB::GET_ATOM_OMIJ_FILE

result = atomneb::get_Atom_Omij_file()

ATOMNEB::SET_ATOM_AIJ_FILE

atomneb::set_Atom_Aij_file, Atom_Aij_file

Parameters

Atom_Aij_file

ATOMNEB::GET_ATOM_AIJ_FILE

result = atomneb::get_Atom_Aij_file()

ATOMNEB::SET_ATOM_RC_COLLECTION_FILE

atomneb::set_Atom_RC_Collection_file, Atom_RC_Collection_file

Parameters

Atom_RC_Collection_file

ATOMNEB::GET_ATOM_RC_COLLECTION_FILE

result = atomneb::get_Atom_RC_Collection_file()

ATOMNEB::SET_ATOM_RC_PPB91_FILE

atomneb::set_Atom_RC_PPB91_file, Atom_RC_PPB91_file

Parameters

Atom_RC_PPB91_file

ATOMNEB::GET_ATOM_RC_PPB91_FILE

result = atomneb::get_Atom_RC_PPB91_file()

ATOMNEB::SET_ATOM_RC_SH95_FILE

atomneb::set_Atom_RC_SH95_file, Atom_RC_SH95_file

Parameters

Atom_RC_SH95_file

ATOMNEB::GET_ATOM_RC_SH95_FILE

result = atomneb::get_Atom_RC_SH95_file()

ATOMNEB::SET_ATOM_RC_PFSD12_FILE

atomneb::set_Atom_RC_PFSD12_file, Atom_RC_PFSD12_file

Parameters

Atom_RC_PFSD12_file

```
ATOMNEB::GET_ATOM_RC_PFSD12_FILE
  result = atomneb::get_Atom_RC_PFSD12_file()
ATOMNEB::SET_ATOM_RC_N_III_FSL13_FILE
 atomneb::set_Atom_RC_N_III_FSL13_file, Atom_RC_N_III_FSL13_file
Parameters
    Atom_RC_N_III_FSL13_file
ATOMNEB::GET_ATOM_RC_N_III_FSL13_FILE
  result = atomneb::get_Atom_RC_N_III_FSL13_file()
ATOMNEB::SET_ATOM_RC_O_III_SSB17_FILE
 atomneb::set_Atom_RC_0_III_SSB17_file, Atom_RC_0_III_SSB17_file, full_data=full_data
Parameters
    Atom_RC_O_III_SSB17_file
Keywords
    full_data
ATOMNEB::SET_ATOM_RC_O_III_SSB17
 atomneb::set_Atom_RC_0_III_SSB17, full_data=full_data
Keywords
    full_data
ATOMNEB::GET_ATOM_RC_O_III_SSB17_FILE
  result = atomneb::get_Atom_RC_0_III_SSB17_file()
```

ATOMNEB DEFINE

atomneb__define

atomneb_get_aeff_collection_reference_citation.pro

```
ATOMNEB_GET_AEFF_COLLECTION_REFERENCE_CITATION
```

This function returns the reference citation for a recombination coefficient (Aeff) from the 2nd binary table extension of the FITS data file ('rc_collection.fits').

```
result = atomneb_get_aeff_collection_reference_citation(Atom_RC_file, atom, ion, /br,
  reference=string)
```

Returns

type=string. This function returns the Citation.

Parameters

```
Atom_RC_file
                   IN REQUIRED TYPE=string
     the FITS data file name ('rc_collection.fits')
atom
         IN REQUIRED TYPE=string
     atom name e.g. 'c'
ion
       IN REQUIRED TYPE=string
     ionic level e.g 'iii'
```

Keywords

```
br
      IN TYPE=boolean
     set for the branching ratios (Br), may not necessary
reference
              IN TYPE=string
     set for the reference, not necessary
```

Examples

For example:

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_rc_dir = ['atomic-data-rc']
IDL> Atom_RC_file= filepath('rc_collection.fits', root_dir=base_dir, subdir=data_rc_dir )
 IDL> atom='c'
 IDL> ion='iii'; C III
 IDL> citation=atomneb_get_aeff_collection_reference_citation(Atom_RC_file, atom, ion)
 IDL> print, citation
    Davey, A. R., Storey, P. J. and Kisielius, R., Astron. Astrophys. Suppl., 142, 85, 2000
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
15/01/2017, IDL code by A. Danehkar
```

Version

0.0.1

atomneb_get_aeff_he_i_pfsd12_reference_citation.pro

```
ATOMNEB_GET_AEFF_HE_I_PFSD12_REFERENCE_CITATION
```

This function returns the reference citation for a recombination coefficient (Aeff) from the 2nd binary table extension of the FITS data file ('rc_he_ii_PFSD12.fits').

Returns

type=string. This function returns the Citation.

Parameters

```
Atom_RC_file IN REQUIRED TYPE=string
the FITS data file name ('rc_he_ii_PFSD12.fits')

atom IN REQUIRED TYPE=string
atom name e.g. 'he'

ion IN REQUIRED TYPE=string
ionic level e.g 'ii'
```

Keywords

```
reference IN TYPE=string set for the reference e.g. 'PFSD13', may not necessary
```

Examples

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_dir = ['atomic-data-rc']
IDL> Atom_RC_file= filepath('rc_he_ii_PFSD12.fits', root_dir=base_dir, subdir=data_dir )
IDL> atom='he'
IDL> ion='ii'; He I
IDL> reference='PFSD13'
IDL> citation=atomneb_get_aeff_he_i_pfsd12_reference_citation(Atom_RC_file, atom, ion, reference=reference)
 IDL> print, citation
    Porter, R. L., Ferland, G. J., Storey, P. J. and Detisch, M. J., MNRAS, 433L, 89, 2013
```

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

15/01/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_get_aeff_n_ii_fsl13_reference_citation.pro

ATOMNEB_GET_AEFF_N_II_FSL13_REFERENCE_CITATION

This function returns the reference citation for a recombination coefficient (Aeff) from the 2nd binary table extension of the FITS data file ('rc_n_iii_FSL13.fits').

result = atomneb_get_aeff_n_ii_fsl13_reference_citation(Atom_RC_file, atom, ion, reference =string)

Returns

type=string. This function returns the Citation.

Parameters

```
Atom_RC_file
                   IN REQUIRED TYPE=string
     the FITS data file name ('rc n iii FSL13.fits')
atom
         IN REQUIRED TYPE=string
     atom name e.g. 'n'
```

```
ion
        IN REQUIRED TYPE=string
     ionic level e.g 'iii'
```

Keywords

```
reference
              IN TYPE=string
     set for the reference e.g. 'FSL13', may not necessary
```

Examples

For example:

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_dir = ['atomic-data-rc']
IDL> Atom_RC_file= filepath('rc_n_iii_FSL13.fits', root_dir=base_dir, subdir=data_dir )
IDL> atom='n'
IDL> ion='iii' ; N II
 IDL> reference='FSL13'
 IDL> citation=atomneb_get_aeff_n_ii_fsl13_reference_citation(Atom_RC_file, atom, ion)
 IDL> print, citation
    Fang X., Storey P.J., and Liu X.-W., R. 2011, Astron.Astrophys. 530, A18; 2013, Astron.Astrophys. 55
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

03/07/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_get_aeff_o_ii_ssb17_reference_citation.pro

```
ATOMNEB_GET_AEFF_O_II_SSB17_REFERENCE_CITATION
```

This function returns the reference citation for a recombination coefficient (Aeff) from the 2nd binary table extension of the FITS data file ('rc_o_iii_SSB17.fits').

Returns

type=string. This function returns the Citation.

Parameters

```
Atom_RC_file IN REQUIRED TYPE=string
the FITS data file name ('rc_o_iii_SSB17.fits')

atom IN REQUIRED TYPE=string
atom name e.g. 'o'

ion IN REQUIRED TYPE=string
ionic level e.g 'iii'
```

Keywords

```
reference IN TYPE=string set for the reference e.g. 'SSB17', may not necessary
```

Examples

For example:

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
03/07/2017, IDL code by A. Danehkar
```

Version

0.0.1

atomneb_get_aeff_ppb91_reference_citation.pro

```
ATOMNEB_GET_AEFF_PPB91_REFERENCE_CITATION
```

This function returns the reference citation for a recombination coefficient (Aeff) from the 2nd binary table extension of the FITS data file ('rc_PPB91.fits').

```
result = atomneb_get_aeff_ppb91_reference_citation(Atom_RC_file, atom, ion, reference=
    string)
```

Returns

type=string. This function returns the Citation.

Parameters

```
Atom_RC_file IN REQUIRED TYPE=string the FITS data file name ('rc_PPB91.fits')

atom IN REQUIRED TYPE=string atom name e.g. 'c'

ion IN REQUIRED TYPE=string ionic level e.g 'iii'
```

Keywords

```
reference IN TYPE=string set for the reference, not necessary
```

Examples

For example:

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_dir = ['atomic-data-rc']
IDL> Atom_RC_file= filepath('rc_PPB91.fits', root_dir=base_dir, subdir=data_dir )
IDL> atom='c'
IDL> ion='iii'
IDL> citation=atomneb_get_aeff_ppb91_reference_citation(Atom_RC_file, atom, ion)
IDL> print, citation
    Pequignot, D., Petitjean, P. and Boisson, C. Astron.Astrophys., 251, 680, 1991
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

15/01/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_get_aeff_sh95_reference_citation.pro

ATOMNEB_GET_AEFF_SH95_REFERENCE_CITATION

This function returns the reference citation for a recombination coefficient (Aeff) from the 2nd binary table extension of the FITS data file ('rc_SH95.fits').

result = atomneb_get_aeff_sh95_reference_citation(Atom_RC_file, atom, ion, reference= string, case1=string)

Returns

type=string. This function returns the Citation.

Parameters

```
Atom_RC_file IN REQUIRED TYPE=string
the FITS data file name ('rc_SH95.fits')

atom IN REQUIRED TYPE=string
atom name e.g. 'h'

ion IN REQUIRED TYPE=string
ionic level e.g 'ii'
```

Keywords

```
reference IN TYPE=string
set for the reference, not necessary

case1 IN TYPE=string
set for the case 'a' or 'b', defualt 'b'
```

Examples

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_dir = ['atomic-data-rc']
IDL> Atom_RC_file= filepath('rc_SH95.fits', root_dir=base_dir, subdir=data_dir )
IDL> atom='h'
IDL> ion='ii'; H I
IDL> citation=atomneb_get_aeff_sh95_reference_citation(Atom_RC_file, atom, ion)
IDL> print, citation
Storey, P. J. and Hummer, D. G., MNRAS, 272, 415, 1995
```

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

15/01/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_get_aij_reference_citation.pro

```
ATOMNEB_GET_AIJ_REFERENCE_CITATION
```

This function returns the reference citation for a transition probability (Aij) from the 2nd binary table extension of the FITS data file ('AtoAij.fits')

```
result = atomneb_get_aij_reference_citation(Atom_Aij_file, atom, ion, reference)
```

Returns

type=string. This function returns the Citation.

Parameters

```
Atom_Aij_file IN REQUIRED TYPE=string the FITS data file name ('AtoAij.fits')

atom IN REQUIRED TYPE=string atom name e.g. 'o'
```

```
ion
        IN REQUIRED TYPE=string
     ionic level e.g 'iii'
reference
               IN TYPE=string
     set for the reference e.g. 'FFT04'
```

Examples

For example:

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_dir = ['atomic-data', 'collection']
IDL> Atom_Aij_file = filepath('AtomAij.fits', root_dir=base_dir, subdir=data_dir )
IDL> atom='o'
IDL> ion='iii'
IDL> reference='FFT04'
 IDL> citation=atomneb_get_aij_reference_citation(Atom_Aij_file, atom, ion, reference)
IDL> print,citation
    Froese Fischer et al 2004, ADNDT 87, 1
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

24/12/2015, IDL code by A. Danehkar

Version

0.0.1

atomneb_get_elj_reference_citation.pro

```
ATOMNEB_GET_ELJ_REFERENCE_CITATION
```

This function returns the reference citation for energy levels (Ej) from the 2nd binary table extension of the FITS data file ('Atom-Elj.fits').

```
result = atomneb_get_elj_reference_citation(Atom_Elj_file, reference)
```

Returns

type=string. This function returns the Citation.

Parameters

```
Atom Eli file
                   IN REQUIRED TYPE=string
     the FITS data file name ('AtomElj.fits')
reference
              IN TYPE=string
     set for the reference e.g. 'L7288'
```

Examples

For example:

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_dir = ['atomic-data', 'collection']
IDL> Atom_Elj_file = filepath('AtomElj.fits', root_dir=base_dir, subdir=data_dir )
IDL> reference='L7288'
IDL> citation=atomneb_get_elj_reference_citation(Atom_Elj_file, reference)
IDL> print, citation
    C. E. Moore, in CRC Series in Evaluated Data in Atomic Physics, 339 pp. (CRC Press, Boca Raton, FL,
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

24/12/2015, IDL code by A. Danehkar

Version

0.0.1

atomneb_get_omij_reference_citation.pro

```
ATOMNEB_GET_OMIJ_REFERENCE_CITATION
```

This function returns the reference citation for collision strengths (Omega_ij) from the 2nd binary table extension of the FITS data file ('AtomOmij.fits').

```
result = atomneb_get_omij_reference_citation(Atom_Omij_file, atom, ion, reference)
```

Returns

type=string. This function returns the Citation.

Parameters

```
Atom Omij file
                    IN REQUIRED TYPE=string
     the FITS data file name ('AtomOmij.fits')
atom
         IN REQUIRED TYPE=string
     atom name e.g. 'o'
ion
       IN REQUIRED TYPE=string
     ionic level e.g 'iii'
reference
              IN TYPE=string
     set for the reference e.g. 'SSB14'
```

Examples

For example:

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_dir = ['atomic-data', 'collection']
IDL> Atom_Omij_file = filepath('AtomOmij.fits', root_dir=base_dir, subdir=data_dir )
IDL> atom='o'
IDL> ion='iii'
IDL> reference='SSB14'
IDL> citation=atomneb_get_omij_reference_citation(Atom_Omij_file, atom, ion, reference)
IDL> print, citation
    Storey, P. J., Sochi, T., and Badnell, N. R. 2014, Astron. Astrophys., 441, 3028
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
24/12/2015, IDL code by A. Danehkar
```

Version

0.0.1

atomneb_list_aeff_collection_references.pro

```
ATOMNEB_LIST_AEFF_COLLECTION_REFERENCES
```

This function returns a list for all references of recombination coefficients (Aeff) for given element and ionic level from the FITS data file ('rc_collection.fits').

```
result = atomneb_list_aeff_collection_references(Atom_RC_file, atom, ion, /br)
```

Returns

type=an array of strings. This function returns the references.

Parameters

```
Atom_RC_file IN REQUIRED TYPE=string
the FITS data file name ('rc_collection.fits')

atom IN REQUIRED TYPE=string
atom name e.g. 'c'

ion IN REQUIRED TYPE=string
ionic level e.g 'iii'
```

Keywords

```
br IN TYPE=boolean set for the branching ratios (Br), may not necessary
```

Examples

For example:

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_rc_dir = ['atomic-data-rc']
IDL> Atom_RC_file= filepath('rc_collection.fits', root_dir=base_dir, subdir=data_rc_dir )
IDL> atom='c'
IDL> ion='iii'; C III
IDL> list_cii_aeff_reference=atomneb_list_aeff_collection_references(Atom_RC_file, atom, ion)
IDL> print,list_cii_aeff_reference
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
15/01/2017, IDL code by A. Danehkar
```

Version

0.0.1

atomneb_list_aeff_he_i_pfsd12_references.pro

```
ATOMNEB LIST AEFF HE I PFSD12 REFERENCES
```

This function returns a list for all references of recombination coefficients (Aeff) for given element and ionic level from the FITS data file ('rc_he_ii_PFSD12.fits').

```
result = atomneb_list_aeff_he_i_pfsd12_references(Atom_RC_file, atom, ion)
```

Returns

type=an array of strings. This function returns the references.

Parameters

```
Atom_RC_file IN REQUIRED TYPE=string
the FITS data file name ('rc_he_ii_PFSD12.fits')

atom IN REQUIRED TYPE=string
atom name e.g. 'he'

ion IN REQUIRED TYPE=string
ionic level e.g 'ii'
```

Examples

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
15/01/2017, IDL code by A. Danehkar
```

Version

0.0.1

atomneb_list_aeff_n_ii_fsl13_references.pro

```
ATOMNEB_LIST_AEFF_N_II_FSL13_REFERENCES
```

This function returns a list for all references of recombination coefficients (Aeff) for given element and ionic level from the FITS data file ('rc_n_iii_FSL13.fits').

```
result = atomneb_list_aeff_n_ii_fsl13_references(Atom_RC_file, atom, ion)
```

Returns

type=an array of strings. This function returns the refer-

Parameters

```
Atom_RC_file
                   IN REQUIRED TYPE=string
     the FITS data file name ('rc_n_iii_FSL13.fits')
atom
          IN REQUIRED TYPE=string
     atom name e.g. 'n'
ion
        IN REQUIRED TYPE=string
     ionic level e.g 'iii'
```

Examples

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_dir = ['atomic-data-rc']
IDL> Atom_RC_file= filepath('rc_n_iii_FSL13.fits', root_dir=base_dir, subdir=data_dir )
IDL> atom='n'
```

```
IDL> ion='iii' ; N II
IDL> list_nii_aeff_reference=atomneb_list_aeff_n_ii_fsl13_references(Atom_RC_file, atom, ion)
IDL> print,list_nii_aeff_reference
```

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

03/07/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_list_aeff_o_ii_ssb17_references.pro

ATOMNEB_LIST_AEFF_O_II_SSB17_REFERENCES

This function returns a list for all references of recombination coefficients (Aeff) for given element and ionic level from the FITS data file ('rc_o_iii_SSB17.fits').

```
result = atomneb_list_aeff_o_ii_ssb17_references(Atom_RC_file, atom, ion)
```

Returns

type=an array of strings. This function returns the references.

Parameters

```
Atom_RC_file IN REQUIRED TYPE=string
the FITS data file name ('rc_o_iii_SSB17.fits')

atom IN REQUIRED TYPE=string
atom name e.g. 'o'

ion IN REQUIRED TYPE=string
ionic level e.g 'iii'
```

Examples

For example:

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_dir = ['atomic-data-rc']
IDL> Atom_RC_file= filepath('rc_o_iii_SSB17.fits', root_dir=base_dir, subdir=data_dir )
IDL> atom='o'
IDL> ion='iii' ; 0 II
IDL> list_oii_aeff_reference=atomneb_list_aeff_o_ii_ssb17_references(Atom_RC_file, atom, ion)
 IDL> print,list_oii_aeff_reference
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

03/07/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_list_aeff_ppb91_references.pro

```
ATOMNEB_LIST_AEFF_PPB91_REFERENCES
```

This function returns a list for all references of recombination coefficients (Aeff) for given element and ionic level from the FITS data file ('rc_PPB91.fits').

```
result = atomneb_list_aeff_ppb91_references(Atom_RC_file, atom, ion)
```

Returns

type=an array of strings. This function returns the references.

Parameters

```
Atom_RC_file
                  IN REQUIRED TYPE=string
     the FITS data file name ('rc PPB91.fits')
```

```
atom IN REQUIRED TYPE=string
atom name e.g. 'c'

ion IN REQUIRED TYPE=string
ionic level e.g 'iii'
```

Examples

For example:

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_dir = ['atomic-data-rc']
IDL> Atom_RC_file= filepath('rc_PPB91.fits', root_dir=base_dir, subdir=data_dir )
IDL> atom='c'
IDL> ion='iii'
IDL> list_cii_aeff_reference=atomneb_list_aeff_ppb91_references(Atom_RC_file, atom, ion)
IDL> print,list_cii_aeff_reference
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

15/01/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_list_aeff_sh95_references.pro

```
ATOMNEB_LIST_AEFF_SH95_REFERENCES
```

This function returns a list for all references of recombination coefficients (Aeff) for given element and ionic level from the FITS data file ('rc_SH95.fits').

```
result = atomneb_list_aeff_sh95_references(Atom_RC_file, atom, ion)
```

Returns

type=an array of strings. This function returns the references.

Parameters

```
Atom RC file
                   IN REQUIRED TYPE=string
     the FITS data file name ('rc_SH95.fits')
atom
         IN REQUIRED TYPE=string
     atom name e.g. 'h'
       IN REQUIRED TYPE=string
ion
     ionic level e.g 'ii'
```

Examples

For example:

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_dir = ['atomic-data-rc']
IDL> Atom_RC_file= filepath('rc_SH95.fits', root_dir=base_dir, subdir=data_dir )
IDL> atom='h'
IDL> ion='ii' ; H I
 IDL> list_hi_aeff_reference=atomneb_list_aeff_sh95_references(Atom_RC_file, atom, ion)
IDL> print,list_hi_aeff_reference
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
15/01/2017, IDL code by A. Danehkar
```

Version

0.0.1

atomneb_list_aij_references.pro

```
ATOMNEB_LIST_AIJ_REFERENCES
```

This function returns a list for all references of transition probabilities (Aij) for given element and ionic level from the FITS data file ('AtoAij.fits').

```
result = atomneb_list_aij_references(Atom_Aij_file, atom, ion)
```

Returns

type=an array of strings. This function returns the references.

Parameters

```
Atom_Aij_file

atom IN REQUIRED TYPE=string
 atom name e.g. 'o'

ion IN REQUIRED TYPE=string
 ionic level e.g 'iii'
```

Examples

For example:

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_dir = ['atomic-data', 'collection']
IDL> Atom_Aij_file = filepath('AtomAij.fits', root_dir=base_dir, subdir=data_dir )
IDL> atom='o'
IDL> ion='iii'
IDL> list_oiii_aij_reference=atomneb_list_aij_references(Atom_Aij_file, atom, ion)
IDL> print,list_oiii_aij_reference
FFT04-SZ00 FFT04 GMZ97-WFD96 SZ00-WFD96
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
15/01/2017, IDL code by A. Danehkar
```

Version

0.0.1

atomneb_list_omij_references.pro

```
ATOMNEB_LIST_OMIJ_REFERENCES
```

This function returns a list for all references of collision strengths (Omega_ij) for given element and ionic level from the FITS data file ('AtomOmij.fits').

```
result = atomneb_list_omij_references(Atom_Omij_file, atom, ion)
```

Returns

type=an array of strings. This function returns the refer-

Parameters

```
Atom_Omij_file
                     IN REQUIRED TYPE=string
     the FITS data file name ('AtomOmij.fits')
atom
         IN REQUIRED TYPE=string
     atom name e.g. 'o'
ion
       IN REQUIRED TYPE=string
     ionic level e.g 'iii'
```

Examples

For example:

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_dir = ['atomic-data', 'collection']
IDL> Atom_Omij_file = filepath('AtomOmij.fits', root_dir=base_dir, subdir=data_dir )
IDL> atom='o'
IDL> ion='iii'
 IDL> list_oiii_omij_reference=atomneb_list_omij_references(Atom_Omij_file, atom, ion)
 IDL> print,list_oiii_omij_reference
    AK99 LB94 Pal12-AK99 SSB14
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

15/01/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_read_aeff_collection.pro

```
ATOMNEB_READ_AEFF_COLLECTION
```

This function returns the effective recombination coefficients (Aeff) from the table extensions of the FITS data file ('rc_collection.fits').

```
result = atomneb_read_aeff_collection(Atom_RC_file, atom, ion, /br, reference=string)
```

Returns

```
type=an array of data. This function returns the effective recombination coefficients. aeff_data (c_iii_aeff) { Wavelength:o.o, a: o.o, b: o.o, c: o.o, d: o.o, f: o.o} aeff_data (n_iii_aeff) { a: o.o, b: o.o, c: o.o} aeff_data (n_iii_br) {Wavelength: o.o, BR: o.o, $ g1:o, g2:o, Mult1:", LowerTerm:", UpperTerm:" } aeff_data (o_iii_aeff) {Term: ", Case1: ", a2: o.o, a4: o.o, a5: o.o, a6: o.o, b: o.o, c: o.o, d: o.o} aeff_data (o_iii_br) {Wavelength:double(o.o), Br_A: o.o, Br_B: o.o, Br_C: o.o, g1: o, g2: o, Mult1: ", LowerTerm: ", UpperTerm: "} aeff_data (ne_iii_aeff) {Wavelength:o.o, a: o.o, b: o.o, c: o.o, d: o.o, f: o.o, br: o.o}
```

Parameters

```
Atom_RC_file IN REQUIRED TYPE=string
the FITS data file name ('rc_collection.fits')

atom IN REQUIRED TYPE=string
atom name e.g. 'c'

ion IN REQUIRED TYPE=string
ionic level e.g 'iii'
```

Keywords

```
br IN TYPE=boolean set for the branching ratios (Br), may not necessary
```

```
reference IN TYPE=string set for the reference, not necessary
```

Examples

For example:

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_rc_dir = ['atomic-data-rc']
IDL> Atom_RC_file= filepath('rc_collection.fits', root_dir=base_dir, subdir=data_rc_dir )
IDL> atom='c'
IDL> ion='iii' ; C III
 IDL> cii_rc_data=atomneb_read_aeff_collection(Atom_RC_file, atom, ion)
 IDL> temp=size(cii_rc_data.Wavelength,/DIMENSIONS)
 IDL> n_line=temp[0]
 IDL> for i=0,n_line-1 do print,cii_rc_data[i].Wavelength, cii_rc_data[i].a, $
 IDL>
                                cii_rc_data[i].b, cii_rc_data[i].c, $
                                cii_rc_data[i].d, cii_rc_data[i].f
 IDL>
    914.00000
                   0.69280000
                                  0.021400000
                                               -0.016300000
                                                                                   -0.88000000
                                                                  -0.24310000
                                                 -0.027900000
    962.00000
                   1.0998000
                                -0.0042000000
                                                                  -0.22940000
                                                                                   -0.96560000
    . . .
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

15/01/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_read_aeff_collection_list.pro

ATOMNEB_READ_AEFF_COLLECTION_LIST

This function returns the list of effective recombination coefficients (Aeff) from the 1st binary table extension of the FITS data file ('rc_collection.fits')

private

```
result = atomneb_read_aeff_collection_list(Atom_RC_file)
```

Returns

type=an array of data. This function returns the aeff_data_list: { Aeff_Data:", Extention:o.o}

Parameters

```
Atom_RC_file
                   IN REQUIRED TYPE=string
     the FITS data file name ('rc_collection.fits')
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

15/01/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_read_aeff_collection_references.pro

```
ATOMNEB_READ_AEFF_COLLECTION_REFERENCES
```

private

This function returns the reference list of recombination coefficients (Aeff) from the 2nd binary table extension of the FITS data file ('rc_collection.fits').

```
result = atomneb_read_aeff_collection_references(Atom_RC_file)
```

Returns

```
type=an array of data. This function returns the aeff_data_reference:
{ Reference:", Citation:"}
```

Parameters

```
Atom_RC_file
                   IN REQUIRED TYPE=string
     the FITS data file name ('rc_collection.fits')
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
15/01/2017, IDL code by A. Danehkar
```

Version

0.0.1

atomneb_read_aeff_he_i_pfsd12.pro

```
ATOMNEB_READ_AEFF_HE_I_PFSD12
```

This function returns the effective recombination coefficients (Aeff) from the table extensions of the FITS data file ('rc_he_ii_PFSD12.fits').

result = atomneb_read_aeff_he_i_pfsd12(Atom_RC_file, atom, ion, /wavelength, reference= string)

Returns

type=an array of data. This function returns the effective recombination coefficients.

Parameters

```
Atom_RC_file
                   IN REQUIRED TYPE=string
     the FITS data file name ('rc_he_ii_PFSD12.fits')
         IN REQUIRED TYPE=string
     atom name e.g. 'he'
       IN REQUIRED TYPE=string
ion
     ionic level e.g 'ii'
```

Keywords

```
wavelength
               IN TYPE=boolean
     set for returning the wavelengths
reference
             IN TYPE=string
     set for the reference, not necessary
```

Examples

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_rc_dir = ['atomic-data-rc']
IDL> Atom_RC_file= filepath('rc_he_ii_PFSD12.fits', root_dir=base_dir, subdir=data_dir )
 IDL> atom='he'
IDL> ion='ii'; He I
IDL> hei_rc_data=atomneb_read_aeff_he_i_pfsd12(Atom_RC_file, atom, ion)
 IDL> hei_rc_data_wave=atomneb_read_aeff_he_i_pfsd12(Atom_RC_file, atom, ion, /wavelength)
 IDL> print,hei_rc_data[0].Aeff
    5000.0000
                    10.000000
                                                                     -25.948440
                                    -25.379540
                                                    -25.058970
 IDL> temp=size(hei_rc_data_wave.Wavelength,/DIMENSIONS)
 IDL> n_line=temp[0]
 IDL> for i=0,n_line-1 do print,hei_rc_data_wave[i].Wavelength, hei_rc_data_wave[i].LowerTerm, hei_rc_data_wave[i].
    2945.00005p^{3}P2s^{3}S
    3188.00004p^{3}P2s^{3}S
    3614.00005p^{1}P2s^{1}S
```

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

15/01/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_read_aeff_he_i_pfsd12_list.pro

```
ATOMNEB_READ_AEFF_HE_I_PFSD12_LIST
```

This function returns the list of effective recombination coefficients (Aeff) from the 1st binary table extension of the FITS data file ('rc_he_ii_PFSD12.fits')

result = atomneb_read_aeff_he_i_pfsd12_list(Atom_RC_file)

Returns

type=an array of data. This function returns the aeff_data_list: { Aeff Data:", Extention:o.o}

private

Parameters

```
Atom RC file
                  IN REQUIRED TYPE=string
     the FITS data file name ('rc_he_ii_PFSD12.fits')
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

15/01/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_read_aeff_he_i_pfsd12_references.pro

```
ATOMNEB_READ_AEFF_HE_I_PFSD12_REFERENCES
```

private

This function returns the reference list of recombination coefficients (Aeff) from the 2nd binary table extension of the FITS data file ('rc_he_ii_PFSD12.fits').

```
result = atomneb_read_aeff_he_i_pfsd12_references(Atom_RC_file)
```

Returns

type=an array of data. This function returns the aeff_data_reference: { Reference:", Citation:"}

Parameters

```
Atom_RC_file
                  IN REQUIRED TYPE=string
     the FITS data file name ('rc_he_ii_PFSD12.fits')
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

15/01/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_read_aeff_n_ii_fsl13.pro

```
ATOMNEB_READ_AEFF_N_II_FSL13
```

This function returns the effective recombination coefficients (Aeff) from the table extensions of the FITS data file ('rc_n_iii_FSL13.fits').

result = atomneb_read_aeff_n_ii_fsl13(Atom_RC_file, atom, ion, wavelength_range, /wavelength
 , reference=string)

Returns

type=an array of data. This function returns the effective recombination coefficients.

Parameters

```
Atom_RC_file IN REQUIRED TYPE=string
the FITS data file name ('rc_n_iii_FSL13.fits')

atom IN REQUIRED TYPE=string
atom name e.g. 'n'

ion IN REQUIRED TYPE=string
ionic level e.g 'iii'

wavelength_range IN REQUIRED TYPE=array
wavelength range e.g. [4400.0, 7100.0]
```

Keywords

```
wavelength IN TYPE=boolean
set for returning the wavelengths
reference IN TYPE=string
set for the reference, not necessary
```

Examples

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
  IDL> data_rc_dir = ['atomic-data-rc']
  IDL> Atom_RC_file= filepath('rc_n_iii_FSL13.fits', root_dir=base_dir, subdir=data_dir )
  IDL> atom='n'
  IDL> ion='iii' ; N II
  IDL> wavelength_range=[4400.0, 7100.0]
   IDL> nii_rc_data=atomneb_read_aeff_n_ii_fsl13(Atom_RC_file, atom, ion, wavelength_range)
   IDL> nii_rc_data_wave=atomneb_read_aeff_n_ii_fsl13(Atom_RC_file, atom, ion, wavelength_range, /wavelength_range, /wavelength_ra
   IDL> print,nii_rc_data[0].Aeff
             255.000
                                                       79.5000
                                                                                                   47.3000
                                                                                                                                              12.5000
   IDL> temp=size(nii_rc_data_wave.Wavelength,/DIMENSIONS)
   IDL> n_line=temp[0]
   IDL> for i=0,n_line-1 do print,nii_rc_data_wave[i].Wavelength, nii_rc_data_wave[i].Tr, nii_rc_data_wave
             6413.236g - 4f2p6g G[9/2]o4 - 2p4f F[7/2]e3
             6556.326g - 4f2p6g G[9/2]o5 - 2p4f G[7/2]e4
             6456.976g - 4f2p6g G[9/2]o5 - 2p4f F[7/2]e4
```

private

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

03/07/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_read_aeff_n_ii_fsl13_list.pro

```
ATOMNEB\_READ\_AEFF\_N\_II\_FSL13\_LIST
```

This function returns the list of effective recombination coefficients (Aeff) from the 1st binary table extension of the FITS data file ('rc_n_iii_FSL13.fits')

result = atomneb_read_aeff_n_ii_fsl13_list(Atom_RC_file)

Returns

```
type=an array of data. This function returns the aeff_data_list:
{Aeff_Data:", Extention:o, $ IND:long(o), Wavelength: float(o.o),
$ Tr:", Trans: ", T_X: "}
```

Parameters

```
Atom_RC_file
                   IN REQUIRED TYPE=string
     the FITS data file name ('rc_n_iii_FSL13.fits')
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

03/07/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_read_aeff_n_ii_fsl13_references.pro

```
ATOMNEB_READ_AEFF_N_II_FSL13_REFERENCES
```

private

This function returns the reference list of recombination coefficients (Aeff) from the 2nd binary table extension of the FITS data file ('rc_n_iii_FSL13.fits').

```
result = atomneb_read_aeff_n_ii_fsl13_references(Atom_RC_file)
```

Returns

```
type=an array of data. This function returns the aeff_data_reference:
{ Reference:", Citation:"}
```

Parameters

```
Atom_RC_file
                   IN REQUIRED TYPE=string
     the FITS data file name ('rc n iii FSL13.fits')
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
03/07/2017, IDL code by A. Danehkar
```

Version

0.0.1

atomneb_read_aeff_o_ii_ssb17.pro

```
ATOMNEB_READ_AEFF_O_II_SSB17
```

This function returns the effective recombination coefficients (Aeff) from the table extensions of the FITS data file ('rc_o_iii_SSB17.fits').

```
result = atomneb_read_aeff_o_ii_ssb17(Atom_RC_file, atom, ion, case1, wavelength_range, /
  wavelength, reference=string)
```

Returns

type=an array of data. This function returns the effective recombination coefficients.

Parameters

```
Atom_RC_file
                   IN REQUIRED TYPE=string
     the FITS data file name ('rc_o_iii_SSB17.fits')
atom
         IN REQUIRED TYPE=string
     atom name e.g. 'o'
       IN REQUIRED TYPE=string
ion
     ionic level e.g 'iii'
case1
         IN TYPE=string
     set for the case 'a' or 'b', defualt 'b'
wavelength range
                      IN REQUIRED TYPE=array
     wavelength range e.g. [5320.0, 5330.0]
```

Keywords

```
wavelength
               IN TYPE=boolean
    set for returning the wavelengths
```

```
reference
              IN TYPE=string
     set for the reference, not necessary
```

Examples

For example:

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_rc_dir = ['atomic-data-rc']
 IDL> Atom_RC_file= filepath('rc_o_iii_SSB17.fits', root_dir=base_dir, subdir=data_dir )
IDL> atom='o'
 IDL> ion='iii' ; 0 II
 IDL> case1='B'
 IDL> wavelength_range=[5320.0, 5330.0]
 IDL> oii_rc_data=atomneb_read_aeff_o_ii_ssb17(Atom_RC_file, atom, ion, case1, wavelength_range)
 IDL> oii_rc_data_wave=atomneb_read_aeff_o_ii_ssb17(Atom_RC_file, atom, ion, case1, wavelength_range, /w
IDL> print,oii_rc_data[0].Aeff
    1.64100e-30 1.60000e-30 1.56400e-30 1.54100e-30 ...
IDL> temp=size(oii_rc_data_wave.Wavelength,/DIMENSIONS)
 IDL> n_line=temp[0]
 IDL> for i=0,n_line-1 do print,oii_rc_data_wave[i].Wavelength, oii_rc_data_wave[i].lower_term, oii_rc_data_wave[i].
    5327.172s22p2(1S)3p 2Po
    5325.422s22p2(1S)3p 2Po
    5327.182s22p2(1D)3d 2Ge
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

03/07/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_read_aeff_o_ii_ssb17_list.pro

```
ATOMNEB_READ_AEFF_O_II_SSB17_LIST
```

This function returns the list of effective recombination coefficients (Aeff) from the 1st binary table extension of the FITS data file ('rc_o_iii_SSB17.fits')

private

private

```
result = atomneb_read_aeff_o_ii_ssb17_list(Atom_RC_file)
```

Returns

```
type=an array of data. This function returns the aeff_data_list:
{Aeff_Data:", Extention:o, $ IND:long(o), Wavelength: float(o.o),
$ Case1:", lower_term: ", upper_term: "}
```

Parameters

```
Atom_RC_file IN REQUIRED TYPE=string the FITS data file name ('rc_o_iii_SSB17.fits')
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

03/07/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_read_aeff_o_ii_ssb17_references.pro

```
ATOMNEB_READ_AEFF_O_II_SSB17_REFERENCES
```

This function returns the reference list of recombination coefficients (Aeff) from the 2nd binary table extension of the FITS data file ('rc_o_iii_SSB17.fits').

```
result = atomneb_read_aeff_o_ii_ssb17_references(Atom_RC_file)
```

Returns

```
type=an array of data. This function returns the aeff_data_reference: { Reference: ", Citation: "}
```

Parameters

```
Atom_RC_file IN REQUIRED TYPE=string the FITS data file name ('rc_o_iii_SSB17.fits')
```

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
03/07/2017, IDL code by A. Danehkar
```

Version

0.0.1

atomneb_read_aeff_ppb91.pro

```
ATOMNEB_READ_AEFF_PPB91
```

This function returns the effective recombination coefficients (Aeff) from the table extensions of the FITS data file ('rc_PPB91.fits').

```
result = atomneb_read_aeff_ppb91(Atom_RC_file, atom, ion, reference=string)
```

Returns

```
type=an array of data. This function returns the effective recombination coefficients: { Ion: ' ' Case1:" Wavelength:o.o, a: o.o, b: o.o, c: o.o, d: o.o, br: o.o, y: o.o}
```

Parameters

```
Atom_RC_file IN REQUIRED TYPE=string
the FITS data file name ('rc_PPB91.fits')

atom IN REQUIRED TYPE=string
atom name e.g. 'c'

ion IN REQUIRED TYPE=string
ionic level e.g 'iii'
```

Keywords

```
reference IN TYPE=string set for the reference, not necessary
```

Examples

private

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_rc_dir = ['atomic-data-rc']
IDL> Atom_RC_file= filepath('rc_PPB91.fits', root_dir=base_dir, subdir=data_dir )
IDL> atom='c'
IDL> ion='iii' ; C II
IDL> cii_rc_data=atomneb_read_aeff_ppb91(Atom_RC_file, atom, ion)
 IDL> temp=size(cii_rc_data.Wavelength,/DIMENSIONS)
 IDL> n_line=temp[0]
 IDL> for i=0,n_line-1 do print,cii_rc_data[i].Ion,cii_rc_data[i].Case1, $
 IDL>
                                cii_rc_data[i].Wavelength, cii_rc_data[i].a, $
 IDL>
                                cii_rc_data[i].b, cii_rc_data[i].c, $
 IDL>
                                cii_rc_data[i].d, cii_rc_data[i].br, $
 IDL>
                                cii_rc_data[i].Q, cii_rc_data[i].y
    C2+A
              9903.4600
                              0.69700000
                                             -0.78400000
    C2+A
              4267.1500
                               1.0110000
                                             -0.75400000
                                                               . . .
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

15/01/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_read_aeff_ppb91_list.pro

```
ATOMNEB_READ_AEFF_PPB91_LIST
```

This function returns the list of effective recombination coefficients (Aeff) from the 1st binary table extension of the FITS data file ('rc_PPB91.fits')

```
result = atomneb_read_aeff_ppb91_list(Atom_RC_file)
```

Returns

```
type=an array of data. This function returns the aeff_data_list: { Aeff_Data:", Extention:o.o}
```

```
Atom_RC_file IN REQUIRED TYPE=string the FITS data file name ('rc_PPB91.fits')
```

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

15/01/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_read_aeff_ppb91_references.pro

ATOMNEB_READ_AEFF_PPB91_REFERENCES

private

This function returns the reference list of recombination coefficients (Aeff) from the 2nd binary table extension of the FITS data file ('rc_PPB91.fits').

```
result = atomneb_read_aeff_ppb91_references(Atom_RC_file)
```

Returns

type=an array of data. This function returns the aeff_data_reference: { Reference: ", Citation:"}

Parameters

```
Atom_RC_file IN REQUIRED TYPE=string the FITS data file name ('rc_PPB91.fits')
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

15/01/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_read_aeff_sh95.pro

```
ATOMNEB_READ_AEFF_SH95
```

This function returns the effective recombination coefficients (Aeff) from the table extensions of the FITS data file ('rc_SH95.fits').

```
result = atomneb_read_aeff_sh95(Atom_RC_file, atom, ion, reference=string, case1=string)
```

Returns

type=an array of data. This function returns the effective recombination coefficients.

Parameters

```
Atom_RC_file IN REQUIRED TYPE=string the FITS data file name ('rc_SH95.fits')

atom IN REQUIRED TYPE=string atom name e.g. 'h'

ion IN REQUIRED TYPE=string ionic level e.g 'ii'
```

Keywords

```
reference IN TYPE=string
set for the reference, not necessary

case1 IN TYPE=string
set for the case 'a' or 'b', defualt 'b'
```

Examples

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_rc_dir = ['atomic-data-rc']
IDL> Atom_RC_file= filepath('rc_SH95.fits', root_dir=base_dir, subdir=data_dir )
IDL> atom='h'
IDL> ion='ii' ; H I
IDL> hi_rc_data=atomneb_read_aeff_sh95(Atom_RC_file, atom, ion)
IDL> print,hi_rc_data[0].Aeff
```

100.00000 500.00000 0.0000000 4.2140000e-27 1.7560000e-27 ...

private

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

15/01/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_read_aeff_sh95_list.pro

ATOMNEB_READ_AEFF_SH95_LIST

This function returns the list of effective recombination coefficients (Aeff) from the 1st binary table extension of the FITS data file ('rc_SH95.fits')

result = atomneb_read_aeff_sh95_list(Atom_RC_file)

Returns

type=an array of data. This function returns the aeff_data_list: { Aeff_Data:", Extention:o.o}

Parameters

```
Atom_RC_file IN REQUIRED TYPE=string the FITS data file name ('rc_SH95.fits')
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

15/01/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_read_aeff_sh95_references.pro

ATOMNEB_READ_AEFF_SH95_REFERENCES

private

This function returns the reference list of recombination coefficients (Aeff) from the 2nd binary table extension of the FITS data file ('rc_SH95.fits').

```
result = atomneb_read_aeff_sh95_references(Atom_RC_file)
```

Returns

type=an array of data. This function returns the aeff_data_reference: { Reference:", Citation:"}

Parameters

```
Atom_RC_file IN REQUIRED TYPE=string the FITS data file name ('rc_SH95.fits')
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

15/01/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_read_aij.pro

```
ATOMNEB_READ_AIJ
```

This function returns the transition probabilities (Aij) from the table extensions of the FITS data file ('AtomAij.fits').

```
result = atomneb_read_aij(Atom_Aij_file, atom, ion, reference=string, level_num=string)
```

Returns

```
type=an array of data. This function returns the aij_data: {
Aij:dblarr(n_level,n_level) }.
```

Parameters

```
Atom_Aij_file
```

```
IN REQUIRED TYPE=string
atom
     atom name e.g. 'o'
ion
        IN REQUIRED TYPE=string
     ionic level e.g 'iii'
```

Keywords

```
reference
              IN TYPE=string
     set for the reference, not necessary
level_num
               IN TYPE=string
     set for the maximum level number.
```

Examples

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
 IDL> data_dir = ['atomic-data', 'collection']
 IDL> Atom_Aij_file = filepath('AtomAij.fits', root_dir=base_dir, subdir=data_dir )
 IDL> atom='o'
 IDL> ion='iii'
 IDL> reference='FFT04'
 IDL> oiii_aij_data=atomneb_read_aij(Atom_Aij_file, atom, ion, reference=reference)
 IDL> print,oiii_aij_data.Aij[*,*]
                                                                                  0.0021910000
    0.0000000
                2.5960000e-05
                                3.0300000e-11
                                                 2.3220000e-06
                                                                     0.0000000
    0.0000000
                    0.0000000
                                9.6320000e-05
                                                  0.0069510000
                                                                    0.22550000
                                                                                     230,80000
                    0.0000000
                                    0.0000000
                                                   0.020290000
                                                                 0.00069980000
    0.0000000
                                                                                     576.50000
    0.0000000
                    0.0000000
                                    0.0000000
                                                     0.0000000
                                                                     1.6850000
                                                                                  0.0057770000
                                                                                 3.7600000e-11
    0.0000000
                    0.0000000
                                    0.0000000
                                                     0.0000000
                                                                     0.0000000
    0.0000000
                    0.0000000
                                    0.0000000
                                                     0.0000000
                                                                     0.0000000
                                                                                     0.0000000
```

private

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

24/12/2015, IDL code by A. Danehkar

Version

0.0.1

atomneb_read_aij_list.pro

```
ATOMNEB_READ_AIJ_LIST
```

This function returns the list of transition probabilities (Aij) from the 1st binary table extension of the FITS data file ('AtomAij.fits').

```
result = atomneb_read_aij_list(Atom_Aij_file)
```

Returns

type=an array of data. This function returns the aij_data_list: { Aij_Data:", Extention:o.o}

Parameters

```
Atom_Aij_file
                   IN REQUIRED TYPE=string
     the FITS data file name ('AtomAij.fits')
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

24/12/2015, IDL code by A. Danehkar

Version

0.0.1

atomneb_read_aij_references.pro

```
ATOMNEB_READ_AIJ_REFERENCES
```

private

This function returns the reference list of transition probabilities (Aij) from the 1nd binary table extension of the FITS data file ('AtomAij.fits').

```
result = atomneb_read_aij_references(Atom_Aij_file)
```

Returns

type=an array of data. This function returns the aij_data_reference: { Reference:", Citation:"}

Parameters

```
Atom_Aij_file
                   IN REQUIRED TYPE=string
     the FITS data file name ('AtomAij.fits')
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
24/12/2015, IDL code by A. Danehkar
```

Version

0.0.1

atomneb_read_elj.pro

```
ATOMNEB_READ_ELJ
```

This function returns the energy levels (Ej) from the table extensions of the FITS data file ('AtomElj.fits').

```
result = atomneb_read_elj(Atom_Elj_file, atom, ion, level_num=string)
```

Returns

```
type=an array of data. This function returns the elj_data: {
Configuration:", Term:", J:", J_v:o.o, Ej:o.o, Reference:"}.
```

Parameters

```
Atom_Elj_file IN REQUIRED TYPE=string
the FITS data file name ('AtomElj.fits')

atom IN REQUIRED TYPE=string
atom name e.g. 'o'

ion IN REQUIRED TYPE=string
ionic level e.g 'iii'
```

Keywords

```
level_num IN TYPE=string set for the maximum level number.
```

Examples

For example:

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_dir = ['atomic-data', 'collection']
IDL> Atom_Elj_file = filepath('AtomElj.fits', root_dir=base_dir, subdir=data_dir )
IDL> atom='o'
 IDL> ion='iii'
IDL> oiii_elj_data=atomneb_read_elj(Atom_Elj_file, atom, ion, level_num=6)
 IDL> print,oiii_elj_data.J_v
                              2.00000
                                           2.00000
    0.00000
                1.00000
                                                        0.00000
                                                                     2.00000
IDL> print,oiii_elj_data.Ej
    0.0000000
                   113.17800
                                   306.17400
                                                    20273.270
                                                                    43185.740
                                                                                    60324.790
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
24/12/2015, IDL code by A. Danehkar
```

Version

0.0.1

atomneb_read_elj_list.pro

```
ATOMNEB_READ_ELJ_LIST
```

This function returns the list of energy levels (Ej) from the 1st binary table extension of the FITS data file ('AtomElj.fits')

```
result = atomneb_read_elj_list(Atom_Elj_file)
```

Returns

type=an array of data. This function returns the elj_data_list: { Elj_Data:", Extention:o.o}

Parameters

```
Atom_Elj_file IN REQUIRED TYPE=string the FITS data file name ('AtomElj.fits')
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

24/12/2015, IDL code by A. Danehkar

Version

0.0.1

atomneb_read_elj_references.pro

```
ATOMNEB_READ_ELJ_REFERENCES
```

This function returns the reference list of energy levels (Ej) from the 2nd binary table extension of the FITS data file ('AtomElj.fits').

```
result = atomneb_read_elj_references(Atom_Elj_file)
```

Returns

```
type=an array of data. This function returns the aij_data_reference: { Reference:", Citation:"}
```

Parameters

private

private

```
Atom_Elj_file IN REQUIRED TYPE=string the FITS data file name ('AtomElj.fits')
```

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

24/12/2015, IDL code by A. Danehkar

Version

0.0.1

atomneb_read_omij.pro

```
ATOMNEB_READ_OMIJ
```

This function returns the collision strengths (omega_ij) from the table extensions of the FITS data file ('AtomOmij.fits').

```
result = atomneb_read_omij(Atom_Omij_file, atom, ion, reference=string, level_num=string)
```

Returns

type=an array of data. This function returns the omij_data: { level1:0, level2:0, strength:dblarr(temp_steps)}.

Parameters

```
Atom_Omij_file IN REQUIRED TYPE=string
the FITS data file name ('AtomOmij.fits')

atom IN REQUIRED TYPE=string
atom name e.g. 'o'

ion IN REQUIRED TYPE=string
ionic level e.g 'iii'
```

Keywords

```
reference IN TYPE=string set for the reference e.g. 'SSB14'
```

level_num IN TYPE=string

set for the maximum level number.

Examples

For example:

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_dir = ['atomic-data', 'collection']
IDL> Atom_Omij_file = filepath('AtomOmij.fits', root_dir=base_dir, subdir=data_dir )
IDL> atom='o'
IDL> ion='iii'
 IDL> reference='SSB14'
 IDL> oiii_omij_data=atomneb_read_omij(Atom_Omij_file, atom, ion, reference=reference)
 IDL> print,oiii_omij_data.level1
            1
                    1
                                    1
                                            2
                                                            2
                                                                    3
 IDL> print,oiii_omij_data.level2
                                    5
                                            3
                                                             5
                                                                             5
                                                                                     5
            2
                    3
IDL> print,oiii_omij_data[0].strength
                                    158.48932
    100.00000
                    125.89254
                                                    199.52623
                                                                    251.18864
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

24/12/2015, IDL code by A. Danehkar

Version

0.0.1

atomneb_read_omij_list.pro

ATOMNEB_READ_OMIJ_LIST

This function returns the list of collision strengths (omega_ij) from the 1st binary table extension of the FITS data file ('Atom-

Omij.fits').

result = atomneb_read_omij_list(Atom_Omij_file)

private

Returns

```
type=an array of data. This function returns the omij_data_list: { Omij_Data:", Extention:o.o}
```

Parameters

```
Atom_Omij_file IN REQUIRED TYPE=string the FITS data file name ('AtomOmij.fits')
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
24/12/2015, IDL code by A. Danehkar
```

Version

0.0.1

atomneb_read_omij_references.pro

```
ATOMNEB_READ_OMIJ_REFERENCES
```

private

This function returns the reference list of collision strengths (omega_ij) from the 2nd binary table extension of the FITS data file ('AtomOmij.fits').

```
result = atomneb_read_omij_references(Atom_Omij_file)
```

Returns

```
type=an array of data. This function returns the aij_data_reference: { Reference:", Citation:"}
```

Parameters

```
Atom_Omij_file IN REQUIRED TYPE=string the FITS data file name ('AtomOmij.fits')
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
24/12/2015, IDL code by A. Danehkar
```

Version

0.0.1

atomneb_search_aeff_collection.pro

```
ATOMNEB_SEARCH_AEFF_COLLECTION
```

This function searches effective recombination coefficients (Aeff) for given element and ionic levels in the FITS data file ('rc_collection.fits'), and returns the data entry.

```
result = atomneb_search_aeff_collection(Atom_RC_file, atom, ion, /br)
```

Returns

type=array of data. This function returns the Aeff_Data.

Parameters

```
Atom_RC_file IN REQUIRED TYPE=string
the FITS data file name ('rc_collection.fits')

atom IN REQUIRED TYPE=string
atom name e.g. 'c'

ion IN REQUIRED TYPE=string
ionic level e.g 'iii'
```

Keywords

```
br IN TYPE=boolean set for the branching ratios (Br), may not necessary
```

Examples

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

15/01/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_search_aeff_he_i_pfsd12.pro

```
ATOMNEB_SEARCH_AEFF_HE_I_PFSD12
```

This function searches effective recombination coefficients (Aeff) for given element and ionic levels in the FITS data file ('rec_he_ii_PFSD12.fits'), and returns the data entry.

```
result = atomneb_search_aeff_he_i_pfsd12(Atom_RC_file, atom, ion)
```

Returns

type=array of data. This function returns the Aeff_Data.

Parameters

```
Atom_RC_file IN REQUIRED TYPE=string the FITS data file name ('rc_he_ii_PFSD12.fits')

atom IN REQUIRED TYPE=string atom name e.g. 'he'
```

```
ion in required type=string ionic level e.g 'ii'
```

Examples

For example:

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_rc_dir = ['atomic-data-rc']
IDL> Atom_RC_file= filepath('rc_he_ii_PFSD12.fits', root_dir=base_dir, subdir=data_rc_dir )
IDL> atom='he'
IDL> ion='ii'; He I
IDL> list_hei_aeff_data=atomneb_search_aeff_he_i_pfsd12(Atom_RC_file, atom, ion)
IDL> print,list_hei_aeff_data
    he_ii_aeff_PFSD12 he_ii_aeff_PFSD13
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

15/01/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_search_aeff_n_ii_fsl13.pro

```
ATOMNEB_SEARCH_AEFF_N_II_FSL13
```

This function searches effective recombination coefficients (Aeff) for given element and ionic levels in the FITS data file ('rc_n_iii_FSL13.fits'), and returns the data entry.

```
result = atomneb_search_aeff_n_ii_fsl13(Atom_RC_file, atom, ion, wavelength)
```

Returns

type=array of data. This function returns the Aeff_Data.

Parameters

```
Atom_RC_file IN REQUIRED TYPE=string
the FITS data file name ('rc_n_iii_FSL13.fits')

atom IN REQUIRED TYPE=string
atom name e.g. 'n'

ion IN REQUIRED TYPE=string
ionic level e.g 'iii'

wavelength
```

Examples

For example:

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_rc_dir = ['atomic-data-rc']
IDL> Atom_RC_file= filepath('rc_n_iii_FSL13.fits', root_dir=base_dir, subdir=data_rc_dir )
IDL> atom='n'
IDL> ion='iii' ; N II
 IDL> wavelength=5679.56
 IDL> list_nii_aeff_data=atomneb_search_aeff_n_ii_fsl13(Atom_RC_file, atom, ion, wavelength)
 IDL> print,list_nii_aeff_data.Wavelength
    5679.56
 IDL> print,list_nii_aeff_data.Aeff
    7810.00
                 1780.00
                              850.000
                                           151.000
                                                         74.4000
                                                                      53.1000
                                                                                   47.4000
                 1700.00
                              886.000
                                           206.000
    7370.00
                                                         110.000
                                                                      80.1000
                                                                                   70.8000
                 1680.00
                              900.000
                                           239.000
                                                         138.000
    7730.00
                                                                      103.000
                                                                                   92.9000
    8520.00
                 1710.00
                              905.000
                                           244.000
                                                         142.000
                                                                      107.000
                                                                                   97,0000
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

03/07/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_search_aeff_o_ii_ssb17.pro

```
ATOMNEB_SEARCH_AEFF_O_II_SSB17
```

This function searches effective recombination coefficients (Aeff) for given element and ionic levels in the FITS data file ('rc_o_iii_SSB17.fits'), and returns the data entry.

```
result = atomneb_search_aeff_o_ii_ssb17(Atom_RC_file, atom, ion, case1, wavelength)
```

Returns

type=array of data. This function returns the Aeff_Data.

Parameters

```
Atom_RC_file IN REQUIRED TYPE=string
the FITS data file name ('rc_o_iii_SSB17.fits')

atom IN REQUIRED TYPE=string
atom name e.g. 'o'

ion IN REQUIRED TYPE=string
ionic level e.g 'iii'

case1 IN TYPE=string
set for the case 'a' or 'b', defualt 'b'

wavelength IN TYPE=float
set the wavelengths
```

Examples

For example:

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
03/07/2017, IDL code by A. Danehkar
```

Version

0.0.1

atomneb_search_aeff_ppb91.pro

```
ATOMNEB_SEARCH_AEFF_PPB91
```

This function searches effective recombination coefficients (Aeff) for given element and ionic levels in the FITS data file ('rec_PPB91.fits'), and returns the data entry.

```
result = atomneb_search_aeff_ppb91(Atom_RC_file, atom, ion)
```

Returns

type=array of data. This function returns the Aeff_Data.

Parameters

```
Atom_RC_file IN REQUIRED TYPE=string the FITS data file name ('rc_PPB91.fits')

atom IN REQUIRED TYPE=string atom name e.g. 'c'

ion IN REQUIRED TYPE=string ionic level e.g 'iii'
```

Examples

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

```
15/01/2017, IDL code by A. Danehkar
```

Version

0.0.1

atomneb_search_aeff_sh95.pro

```
ATOMNEB_SEARCH_AEFF_SH95
```

This function searches effective recombination coefficients (Aeff) for given element and ionic levels in the FITS data file ('rec_SH95.fits'), and returns the data entry.

```
result = atomneb_search_aeff_sh95(Atom_RC_file, atom, ion)
```

Returns

type=array of data. This function returns the Aeff_Data.

Parameters

```
Atom_RC_file IN REQUIRED TYPE=string
the FITS data file name ('rc_SH95.fits')

atom IN REQUIRED TYPE=string
atom name e.g. 'h'

ion IN REQUIRED TYPE=string
ionic level e.g 'ii'
```

Examples

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
   IDL> data_rc_dir = ['atomic-data-rc']
   IDL> Atom_RC_file= filepath('rc_SH95.fits', root_dir=base_dir, subdir=data_rc_dir )
   IDL> atom='h'
   IDL> ion='ii'; H I
```

```
IDL> list_hi_aeff_data=atomneb_search_aeff_sh95(Atom_RC_file, atom, ion)
IDL> print,list_hi_aeff_data
   h_ii_aeff_a h_ii_aeff_b
```

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

15/01/2017, IDL code by A. Danehkar

Version

0.0.1

atomneb_search_aij.pro

```
ATOMNEB_SEARCH_AIJ
```

This function searches transition probabilities (Aij) for given element and ionic levels in the FITS data file ('AtomAij.fits'), and returns the data entry.

```
result = atomneb_search_aij(Atom_Aij_file, atom, ion)
```

Returns

type=array of data. This function returns the Aij_Data.

Parameters

```
Atom_Aij_file
                   IN REQUIRED TYPE=string
     the FITS data file name ('AtoAij.fits')
atom
         IN REQUIRED TYPE=string
     atom name e.g. 'o'
ion
       IN REQUIRED TYPE=string
     ionic level e.g 'iii'
```

Examples

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

24/12/2015, IDL code by A. Danehkar

Version

0.0.1

atomneb_search_omij.pro

ATOMNEB_SEARCH_OMIJ

This function searches collision strengths (omega_ij) for given element and ionic levels in the FITS data file ('AtomOmij.fits'), and returns the data entry.

```
result = atomneb_search_omij(Atom_Omij_file, atom, ion)
```

Returns

type=array of data. This function returns the Omij_Data.

Parameters

```
Atom_Omij_file IN REQUIRED TYPE=string the FITS data file name ('AtomOmij.fits')

atom IN REQUIRED TYPE=string atom name e.g. 'o'
```

```
ion
        IN REQUIRED TYPE=string
     ionic level e.g 'iii'
```

Examples

For example:

```
IDL> base_dir = file_dirname(file_dirname((routine_info('$MAIN$', /source)).path))
IDL> data_dir = ['atomic-data', 'collection']
IDL> Atom_Omij_file = filepath('AtomOmij.fits', root_dir=base_dir, subdir=data_dir )
IDL> atom='o'
IDL> ion='iii'
IDL> list_oiii_omij_data=atomneb_search_omij(Atom_Omij_file, atom, ion)
IDL> print,list_oiii_omij_data
    o_iii_omij_AK99 o_iii_omij_LB94 o_iii_omij_Pal12-AK99 o_iii_omij_SSB14
```

Author

Ashkbiz Danehkar

Copyright

This library is released under a GNU General Public License.

History

24/12/2015, IDL code by A. Danehkar

Version

0.0.1