Objective: \$41,532,156,531; without intervention: \$636,504,609,326 (Desired optimality gap: 10%; actual: 9%. Time to solve: 2s) $C' = \$10,000, C^D = \$10,000,000$ One Period=10 days (costs scaled by 1,000,000 during optimization)

	1 -1	2 -2	3 -3	4 -4	5 -11
<pre>0. "Movement" A: \$[500 ,1000]·10² C: \$[10 ,14]·10² P: [.93 ,.9]</pre>	2		2	1	
1. "Education (University level)" A: \$[0 ,0]·10 ² C: \$[10 ,14]·10 ² P: [.99 ,.93]	2		2	2	
2. "Social Gatherings (in a house)" A: \$[0 ,0 ,0 ,0]·10 ² C: \$[8 ,10 ,12 ,14]·10 ² P: [.99 ,.97 ,.95 ,.9]	4		4	4	
3. "Non-Food Service (bank,retail, etc)" A: \$[250 ,500 ,1000]·10 ² C: \$[8 ,10 ,14]·10 ² P: [.99 ,.93 ,.9]	3		3	2	
4. "Restaurants" A: \$[500 ,1000]·10 ² C: \$[10 ,14]·10 ² P: [.93 ,.9]	2		2	2	
5. "Masking" A: \$[0 ,0 ,0]·10 ² C: \$[8 ,10 ,14]·10 ² P: [.99 ,.93 ,.9]	3		3	3	
6. "Mega Events" A: \$[250 ,500 ,1000]·10 ² C: \$[8 ,10 ,14]·10 ² P: [.99 ,.93 ,.9]	2		3	2	
7. "Border Control" A: \$[500 ,1000]·10 ² C: \$[10 ,14]·10 ² P: [.93 ,.9]	1		2		
8. "Physical Distancing" A: \$[0]·10 ² C: \$[10]·10 ² P: [.9]	1		1	1	
Cost Per Period: TOTAL Cost Per Period: POLICY Cost Per Period: DISEASE Probability Factor	\$3.6e+09 \$3.4e+09 \$1.5e+08 0.421	\$3.6e+09 \$3.4e+09 \$2e+08 0.421	\$3.9e+09 \$3.7e+09 \$2.6e+08 0.398	\$3.2e+09 \$2.9e+09 \$3.3e+08 0.480	\$3.9e+09 \$2.6e+09 \$1.3e+09 0.398