DM 12. Enoncé

Il s'agit d'un sujet supplémentaire pour votre travail personnel. Il n'est pas à rendre, mais sa recherche est fortement conseillée. En particulier ce DM démontre deux résultats admis en cours. Un corrigé sera fourni en fin de semaine prochaine.

1 Actions de groupes

Soit (G, .) un groupe, dont l'élément neutre est noté 1, ou bien 1_G et soit E un ensemble quelconque.

On dit qu'une application quelconque, de $G \times E$ dans E, notée $G \times E \longrightarrow E$ est une action (ou opération) du groupe G sur l'ensemble E si et seulement si

- 1. $\forall x \in E$, $1_G \times x = x$:
- 2. $\forall g, h \in G, \ \forall x \in E, \ g \times (h \times x) = (g.h) \times x.$

Le fait de noter " \times " cette application de $G \times E$ dans E rend la seconde propriété très naturelle. Dans cette optique, on pourra même noter, pour tout $g \in G$ et $x \in X$, g.x voire gx au lieu de $g \times x$. Il conviendra cependant de ne pas confondre le produit interne de deux éléments de G, gh où $g,h \in G$, avec l'action d'un élément g de G sur un élément g de g ou g ou

1.1 Exemples

- 1°) Soit H un sous-groupe de G.
- a) Montrer que $\begin{matrix} H \times G & \longrightarrow & G \\ (h,g) & \longmapsto & hg \end{matrix}$ est une action du groupe H sur l'ensemble G. On dit alors que l'on fait opérer H sur G par translation à gauche.
- **b)** Montrer que $H \times G \longrightarrow G$ est une action du groupe H sur l'ensemble G. On dit alors que l'on fait opérer H sur G par conjugaison.
- **2°)** Si l'on dispose d'une action du groupe G sur un ensemble E, proposer une action de G sur $\mathcal{P}(E)$.

3°) Si E est un ensemble, on note $\mathcal{S}(E)$ le groupe symétrique de E, c'est-à-dire l'ensemble des bijections de E dans E.

Pour tout $\sigma \in \mathcal{S}(E)$ et $x \in E$, on pose $\sigma \times x = \sigma(x)$.

Montrer que l'on définit ainsi une action du groupe S(E) sur E.

1.2 Théorème de Cayley

- **4°)** Montrer que pour tout $g \in G$, $\gamma_g \in \mathcal{S}(E)$.
- 5°) Montrer que

l'application
$$\gamma: G \longrightarrow \mathcal{S}(E)$$
 est un morphisme de groupes. $g \longmapsto \gamma_g$

6°) En déduire le théorème de Cayley : tout groupe fini de cardinal $n \in \mathbb{N}^*$ est isomorphe à un sous-groupe de \mathcal{S}_n .

1.3 Théorème de Lagrange

On suppose toujours que $G \times E \longrightarrow E \atop (g,x) \longmapsto g \times x$ est une action du groupe G sur un ensemble E. On définit sur E la relation binaire R en convenant que :

$$\forall x, y \in E, \ x \ R \ y \iff [\exists g \in G, \ y = g \times x].$$

- 7°) Montrer que R est une relation d'équivalence et, si $a \in E$, préciser la classe d'équivalence de a, que l'on notera \overline{a} . \overline{a} s'appelle l'orbite de a sous l'action du groupe G.
- 8°) Lorsque G est d'ordre fini, en déduire le théorème de Lagrange : pour tout sous-groupe H de G, le cardinal de H divise celui de G.

2 Le groupe symétrique de degré n

2.1 Décomposition en produit de cycles

On fixe $n \in \mathbb{N}^*$ et $\sigma \in \mathcal{S}_n$.

9°) Pour tout $a \in \{1, ..., n\}$, on note $\mathcal{O}(a) = \{\sigma^k(a)/k \in \mathbb{Z}\}$, que l'on appelle l'orbite de a pour la permutation σ .

Montrer que l'ensemble $\{\mathcal{O}(a)/a \in \{1,\ldots,n\}\}$ est une partition de $\{1,\ldots,n\}$.

- **10°)** On suppose dans cette question que σ est un cycle, que l'on notera $(a_1 \ a_2, \ldots a_p)$, où $p \in \mathbb{N}$ avec $p \geq 2$ et où a_1, \ldots, a_p sont p éléments deux à deux distincts de $\{1, \ldots, n\}$. Quelles sont les orbites de σ ?
- 11°) Soit \mathcal{O} une orbite pour σ . Soit $a \in \mathcal{O}$.
- a) Montrer qu'on peut définir $\ell = \min(\{k \in \mathbb{N}^* / \sigma^k(a) = a\}).$
- b) Montrer que les éléments de \mathcal{O} sont exactement $a, \sigma(a), \ldots, \sigma^{\ell-1}(a)$ et que ces éléments sont deux à deux distincts.
- c) Posons $p = \text{Card}(\mathcal{O})$. Montrer que $\sigma^p(a) = a$.
- **d)** On suppose que $p \geq 2$. Pour tout $a \in \mathcal{O}$, on note c_a le cycle $(a \ \sigma(a) \dots \sigma^{p-1}(a))$. Montrer que c_a ne dépend pas de a. Ainsi, il ne dépend que de \mathcal{O} . On le notera $c_{\mathcal{O}}$ pour la suite.
- 12°) a) On suppose que $\sigma = \prod_{i=1}^r c_i$ où c_1, \ldots, c_r sont des cycles dont les supports, notés S_1, \ldots, S_r , sont deux à deux disjoints.

Montrer que $\{c_1, \ldots, c_r\}$ est exactement l'ensemble des $c_{\mathcal{O}}$, où \mathcal{O} décrit l'ensemble des orbites pour σ qui possèdent au moins 2 éléments.

Notons $\mathcal{O}_1, \ldots, \mathcal{O}_q$ l'ensemble des orbites pour σ contenant au moins 2 éléments.

Pour tout $i \in \{1, ..., q\}$, on note $p_i = \text{Card}(\mathcal{O}_i)$.

b) Démontrer le théorème suivant : toute permutation de S_n se décompose de manière unique sous la forme d'un produit (commutatif) de cycles dont les supports sont deux à deux disjoints.

2.2 Signature d'une permutation

On fixe un entier $n \geq 2$. Si f est une application de \mathbb{Q}^n dans \mathbb{Q} et si $\sigma \in \mathcal{S}_n$, on pose $\sigma \times f: \mathbb{Q}^n \longrightarrow \mathbb{Q}$ $(x_1, \dots, x_n) \longmapsto f(x_{\sigma(1)}, \dots, x_{\sigma(n)})$.

13°) Montrer que l'on vient ainsi de définir une action du groupe S_n sur l'ensemble des fonctions de \mathbb{Q}^n dans \mathbb{Q} .

On considère l'application $\Delta: \mathbb{Q}^n \longrightarrow \mathbb{Q}$ $(x_1, \dots, x_n) \longmapsto \prod_{1 \leq i < j \leq n} (x_j - x_i).$

- **14°)** a) Soit $k \in \mathbb{N}$ tel que $1 \le k < n$. Démontrer que si τ est la transposition $(k \ n)$, alors $\tau \times \Delta = -\Delta$.
- b) En déduire que pour toute transposition τ de S_n , $\tau \times \Delta = -\Delta$.
- **15**°) Soit $\sigma \in \mathcal{S}_n$ et $k \in \mathbb{N}$. On suppose qu'il existe k transpositions τ_1, \ldots, τ_k telles que $\sigma = \tau_1 \tau_2 \cdots \tau_k$. Montrer que

$$(-1)^k = \frac{\prod_{1 \le i < j \le n} (\sigma(j) - \sigma(i))}{\prod_{1 \le i < j \le n} (j - i)}.$$

Ceci démontre que la parité de k ne dépend que de σ (alors même qu'il existe plusieurs façons d'écrire σ comme un produit de transpositions).

On peut donc poser
$$\varepsilon(\sigma) = \frac{\displaystyle\prod_{1 \leq i < j \leq n} (\sigma(j) - \sigma(i))}{\displaystyle\prod_{1 \leq i < j \leq n} (j-i)}$$
. C'est une définition de la signature de σ .

16°) a) Si c est un cycle de longueur ℓ (où $2 \le \ell \le n$), quelle est la signature de c? b) Montrer que, pour toute permutation $\sigma \in \mathcal{S}_n$, $\varepsilon(\sigma) = (-1)^{n-m}$, où m est le nombre d'orbites pour σ (en comptant également les orbites réduites à un singleton).