Chapitre 33

Variables aléatoires réelles finies

33	Variables aléatoires réelles finies
	33.3 Exemple
	33.4 Espérance des lois usuelles
	33.5 Propriétés de l'espérance
	33.6 Exemple
	33.7 Formule de transfert
	33.10Exemple
	33.11Espérance du produit de deux variables aléatoires réelles indépendantes
	33.13Propriétés de la variance
	33.15Propriétés de la covariance
	33.16 Variance des lois usuelles

33.3 Exemple

Exemple 33.3

Un dé à 6 faces numérotées de 1 à 6 a été truqué de telle sorte que les faces 1,2 et 3 tombent avec une probabilité $\frac{1}{6}$, les faces 4 et 5 avec une probabilité $\frac{1}{12}$ et 6 avec une probabilité de $\frac{1}{3}$. Quelle numéro obtient-on en moyenne?

$$E(X) = 1 \times \frac{1}{6} + 2 \times \frac{1}{6} + 3 \times \frac{1}{6} + 4 \times \frac{1}{12} + 5 \times \frac{1}{12} + 6 \times \frac{1}{3}$$
$$= \frac{45}{12}$$
$$= \frac{15}{4}$$

33.4 Espérance des lois usuelles

Théorème 33.4

Soit X une variable aléatoire réelle sur Ω .

- 1. Variable aléatoire constante : si X est constante de valeur m, alors $\mathrm{E}(X)=m$.
- 2. Loi uniforme : si $E = \{x_1, \dots, x_n\}$ est une partie de \mathbb{R} et si $X \hookrightarrow \mathcal{U}(E)$, alors E(X) est la moyenne naturelle des valeurs x_1, \dots, x_n de X:

$$E(X) = \frac{1}{n} \sum_{k=1}^{n} x_k$$

- 3. Loi de Bernoulli : soit $p \in [0;1]$. Si $X \hookrightarrow \mathcal{B}(p)$, alors E(X) = p.
- 4. Exemple fondamental : pour tout événement $A \in \mathcal{P}(\Omega)$, $E(\mathbb{F}_A) = P(A)$.
- 5. Loi binomiale : soit $n \in \mathbb{N}^*$ et $p \in [0, 1]$. Si $X \hookrightarrow \mathcal{B}(n, p)$, alors E(X) = np.
- 1. Si $X(\Omega) = \{m\}, P(X = m) = 1 \text{ et } E(X) = 1 \times m = m.$
- 2. Si $X \hookrightarrow \mathcal{U}(\{x_1, \dots, x_n\})$ alors :

$$\forall i \in [1, n], P(X = x_i) = \frac{1}{n}$$

Donc:

$$E(X) = \sum_{k=1}^{n} P(X = x_k) x_k$$
$$= \frac{1}{n} \sum_{k=1}^{n} x_k$$

3. Si $X \hookrightarrow \mathcal{B}(p)$ alors :

$$E(X) = 1 \times p + 0 \times (1 - p)$$
$$= p$$

4. Si $A \subset \Omega$, alors :

$$\mathbb{F}_A \hookrightarrow \mathcal{B}(P(A))$$
 (32.21)

Donc (3) $E(\mathbb{1}_A) = P(A)$.

5. Par définition :

$$E(X) = \sum_{k=0}^{n} P(X = k)k$$
$$= \sum_{k=0}^{n} k \binom{n}{k} p^{k} (1-p)^{n-k}$$

Première méthode:

Soit $Q = (1 - p + Y)^n \in \mathbb{R}[Y]$.

$$Q = \sum_{k=0}^{n} \binom{n}{k} (1-p)^{n-k} Y^k \text{donc } Q'$$

$$= \sum_{k=1}^{n} k \binom{n}{k} (1-p)^{n-k} Y^{k-1}$$

$$\text{donc } YQ' = \sum_{k=0}^{n} k \binom{n}{k} (1-p)^{n-k} Y^k$$

Par ailleurs $YQ' = n(1 - p + Y)^{n-1}$.

En évaluant les deux expressions en p, on obtient l'expression voulue :

$$E(X) = \sum_{k=0}^{n} k \binom{n}{k} p^{k} (1-p)^{n-k} = np$$

 $\underline{Deuxi\`{e}me\ m\'{e}thode:}$

On poursuit le calcul de E(X) en utilisant la formule du capitaine.

Troisième méthode:

En utilisant la linéarité de l'espérance.

33.5 Propriétés de l'espérance

Propostion 33.5

Soit X et Y deux variables aléatoires réelles sur Ω .

- 1. Reformulation : $E(X) = \sum_{\omega \in \Omega} P(\{\omega\}) X(\omega)$.
- 2. Linéarité : pour tout $(\lambda, \mu) \in \mathbb{R}^2$, $E(\lambda X + \mu Y) = \lambda E(X) + \mu E(Y)$.
- 3. Positivité : si $X \ge 0$, alors $E(X) \ge 0$.
- 4. Croissance : si $X \leq Y$, alors $E(X) \leq E(Y)$.
- 5. Inégalité triangulaire : $|E(X)| \le E(|X|)$.
- 1. On rappelle qe $\{(X = x)\}_{x \in X(\Omega)}$ est un SCE. Ainsi :

$$E(X) = \sum_{x \in X(\Omega)} P(X = x)x$$

$$= \sum_{x \in X(\Omega)} \left[\sum_{\omega \in (X = x)} P(X = \omega) \right] x$$

$$= \sum_{x \in \Omega} P(\{\omega\}) X(\omega)$$

2.

$$\begin{split} E(\lambda X + \mu Y) &= \sum_{\omega \in \Omega} P(\{\omega\}) (\lambda X(\omega) + \mu Y(\omega)) \\ &= \lambda \sum_{\omega \in \Omega} P(\{\omega\}) X(\omega) + \mu \sum_{\omega \in \Omega} P(\{\omega\}) Y(\omega) \\ &= \lambda E(X) + \mu E(Y) \end{split}$$

3. Si $X \ge 0$, alors :

$$E(X) = \sum_{\omega \in \Omega} \underbrace{P(\{\omega\})}_{\geq 0} \underbrace{X(\omega)}_{\geq 0}$$

$$> 0$$

4. RAS (2 + 3)

5.

$$|E(X)| = \left| \sum_{\omega \in \Omega} P(\{\omega\}) X(\omega) \right|$$

$$\leq \sum_{\omega \in \Omega} P(\{\omega\}) |X(\omega)|$$

$$= E(|X|)$$

33.6 Exemple

Exemple 33.7

Qu'obtient-on en moyenne quand on lance deux fois un dé à 6 faces et qu'on additionne les résultats obtenus?

 $X_1, X_2 \hookrightarrow \mathcal{U}(P(\llbracket 1, 6 \rrbracket)).$

$$E(X_1 + X_2) = E(X_1) + E(X_2)$$

$$= 2 \times \frac{1}{6} \sum_{k=1}^{6} k$$

$$= 7$$

33.7 Formule de transfert

Théorème 33.8

Soit X une variable aléatoire sur Ω et $f:X(\Omega)\to\mathbb{R}$ une fonction. L'espérance de f(X) est entièrement déterminée par f et la loi de X:

$$E(f(X)) = \sum_{x \in X(\Omega)} P(X = x) f(x)$$

 $\{(X=x)\}_{x\in X(\Omega)}$ est un SCE.

$$\begin{split} E(f(X)) &= \sum_{x \in X(\Omega)} P(\{\omega\}) f(X(\omega)) \\ &= \sum_{x \in X(\Omega)} \left(\sum_{\omega \in (X=x)} P(\{w\}) f(X(\omega)) \right) \\ &= \sum_{x \in X(\Omega)} \left(\sum_{\omega \in (X=x)} P(\{w\}) \right) f(x) \\ &= \sum_{x \in X(\Omega)} P(X=x) f(x) \end{split}$$

33.10 Exemple

Exemple 33.10

Soit X une variable aléatoire suivant une loi unifore sur [1, n]. Donner un équivalent simple de E(X) et de $E(X^2)$.

$$X \hookrightarrow \mathcal{U}(\llbracket 1, n \rrbracket).$$

$$E(X) = \frac{1}{n} \sum_{k=1}^{n} k$$
$$= \frac{n+1}{2}$$
$$\underset{n \to +\infty}{\sim} \frac{n}{2}$$

$$\begin{split} E(X^2) &= \sum_{k=1}^n \frac{1}{n} k^2 \\ &= \frac{(n+1)(2n+1)}{6} \\ &\stackrel{\sim}{\underset{n \to +\infty}{\longrightarrow}} \frac{n^2}{3} \end{split}$$

33.11 Espérance du produit de deux variables aléatoires réelles indépendantes

Théorème 33.11

Soit X et Y deux variables aléatoires réelles sur Ω . Si X et Y sont indépendantes, alors

$$E(XY) = E(X)E(Y)$$

Ce résultat s'étend naturellement à un nombre fini quelconque de variables aléatoires réelles indépendantes.

$$E(x)E(Y) = \left(\sum_{x \in X(\Omega)} P(X = x)x\right) \left(\sum_{y \in Y(\Omega)} P(Y = y)y\right)$$

$$= \sum_{(x,y) \in X(\Omega) \times Y(\Omega)} P(X = x)P(Y = y)xy$$

$$= \sum_{(x,y) \in X(\Omega) \times Y(\Omega)} P(X = x \text{ et } Y = y)xy \text{ (indépendance)}$$

$$= E(XY)$$

33.13 Propriétés de la variance

Propostion 33.13

Soit X une variable aléatoire réelle.

- 1. $V(X) = E(X^2) E(X)^2$.
- 2. $V(X) = 0 \Leftrightarrow P(X = E(X)) = 1$. On dit dans ce cas que X est presque sûrement constante.
- 3. Pour tout $(a,b) \in \mathbb{R}^2$, on a

$$V(ax + b) = a^2 V(X)$$

En particulier, si $\sigma(X)>0,$ la variable $\frac{X-\mathrm{E}(X)}{\sigma(X)}$ est centrée réduite.

1.

$$V(X) = E((X - E(X))^{2})$$

$$= E(X^{2} - 2XE(X) + E(X)^{2})$$

$$= E(X^{2}) - 2E(X)E(X) + E(X)^{2}$$

$$= E(X^{2}) - E(X)^{2}$$

2.

$$V(X) = 0 \Leftrightarrow E((X - E(X))^2) = 0$$
 (fonction de transfert)
$$\Leftrightarrow \sum_{x \in X(\Omega)} P(X = x)(x - E(X))^2 = 0$$

$$\Leftrightarrow \forall x \in X(\Omega) \setminus \{E(X)\}, P(X = x) = 0$$

$$= P(X = E(X)) = 1$$

3.

$$V(aX + b) = E((aX + b - E(aX + b))^{2})$$

$$= E(a^{2}(X - E(X))) \text{ (linéarité)}$$

$$= a^{2}V(X) \text{ (linéarité)}$$

33.15 Propriétés de la covariance

Propostion 33.15

On a:

- 1. V(X) = cov(X, X) et cov(X, Y) = cov(Y, X).
- 2. cov(X, Y) = E(XY) E(X)E(Y)
- 3. $V(X + Y) = V(X) + 2 \cdot cov(X, Y) + V(Y)$.
- 4. Si X et Y sont indépendantes, alors cov(X,Y) = 0 et V(X+Y) = V(X) + V(Y).

Les assertions 3 et 4 se généralisent au cas de variables aléatoires réelles X_1, \ldots, X_n sur Ω . Dans ce cas :

$$V\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} V(X_{i}) + 2 \sum_{1 \leq i < j \leq n} \operatorname{cov}(X_{i}, X_{j})$$

Si X_1,\ldots,X_n sont (seulement) deux à deux indépendantes, alors

$$V\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} V(X_{i})$$

- 1. RAF
- 2.

$$cov(X,Y) = E((X - E(X))(Y - E(Y)))$$

= $E(XY - E(X)Y - E(Y)X + E(X)E(Y))$
= $E(XY) - E(X)E(Y)$

3.

$$V(X + Y) = E((X + Y - E(X + Y))^{2})$$

$$= E((X - E(X)) + (Y - E(Y)))^{2}$$

$$= V(X) + 2 cov(X, Y) + V(Y)$$

4. On suppose que X et Y sont indépendantes, donc :

$$E(XY) = E(X)E(Y)$$

Puis, par (2):

$$cov(X, Y) = 0$$

33.16 Variance des lois usuelles

Théorème 33.16

Soit X une variable aléatoire réelle et $p \in [0; 1]$.

- 1. Si $X \hookrightarrow \mathcal{B}(p)$ alors V(X) = p(1-p).
- 2. Si $X \hookrightarrow \mathcal{B}(n, p)$, alors V(X) = np(1 p).
- 1. Si $X \hookrightarrow \mathcal{B}(p)$, alors $X^2 \hookrightarrow B(p)$.

$$V(X) = E(X^2) - E(X)^2 = p - p^2 = p(1 - p)$$

2. Si $X_i \hookrightarrow \mathcal{B}(p)$ avec X_1, \dots, X_n indépendantes, alors :

$$V(X_1 + \dots + X_n) = \sum_{k=1}^n V(X_k)$$
 (indépendance)
= $\sum_{k=1}^n p(1-p)$ (1)
= $np(1-p)$