Hardware

- 4. Paměti
- 3. ročník

Paměti - úvod

- Slouží k uchování a opětovnému vyvolání informace
 - · Binární forma
- Polovodičové obvody/moduly
 - · Různé vlastnosti dle typu konstrukce paměť ových buněk
- Složeny z paměť ových buněk
 - 1bit = 1 paměť ová buňka
 - Jak reprezentováno skutečně?
- Maticové uspořádání
 - Paměť ová mřížka/matice
 - Poloha umístění buňky?

Paměti – úvod

Adresa

- Souřadnice řádku a sloupce
- Zadávána binárně na adresní sběrnici (A₀ A_n)
 - V textu většinou uváděna v hexa soustavě (např. 0x1B)

Data

- Datová sběrnice (D₀ D_n)
 - Jednosměrná nebo obousměrná

Paměť ové místo

- Nejmenší adresovatelná jednotka
- Dána adresou a počtem paměť ových buněk, které jsou zde uloženy

Kapacita paměti

- Celkový objem dat/informací, které mohou být v paměti uloženy
- Počet paměť ových buněk, jež paměť obsahuje
- Součin hloubky paměti a délky datového slova
- Jednotka bit, respektive bajt a jeho násobky

Hloubka paměti

- Počet různých adres s nimiž je možno pracovat
 - Počet všech adres paměti
 - · Počet slov paměti
 - Jednotka "slovo"
- Možno rozšířit
 - Paralelní zapojení paměť ových čipů

Délka datového slova

- Šířka datové sběrnice
- Počet bitů, které mohou být na určité adrese paralelně uloženy
- Obecně se řídí délkou slova CPU
 - 64bit CPU -> 64bit datová
- Možno rozšířit
 - Sériové zapojení paměť ových čipů

Organizace paměti

 Zápis kapacity paměti, její hloubky a délky datového slova

16k (2k x 8)

Organizace paměti – počty

- Informace je uspořádána do N paměť ových míst, které se obvykle označují jako slova s n bity
 - Kapacita paměti = N * n
- Jedno z N slov je vybráno pomocí p-bitové adresy
 - $N = 2^p$
- Počet adresových vodičů (p-bit adresa)

•
$$p = \frac{logN}{log2}$$

Organizace paměti – počty

- Př. 1:
 - · Máme 14 adresových vodičů, jaká je hloubka paměti?
- Př. 2:
 - Víme, že hloubka paměti je 128k slov, kolik potřebuje adresních vodičů?
- Ověřte vypočtené hodnoty
 - Aplikujte opačný postup
- Pro výpočet příkladu 2 nepoužívejte vzoreček

Paměť ová mapa

Paměti – rozdělení

RWM

- Po odpojení napájení je informace ztracena
 - Volatilní
- 1. RAM
 - a) SRAM
 - b) DRAM
- 2. No-RAM
 - a) LIFO
 - b) FIFO

ROM

- Data zůstanou uchována i po odpojení napájení
 - Nevolatilní
- 1. ROM
- 2. PROM
- 3. EPROM
- 4. EEPROM
- 5. FLASH

Read Write Memory - No-RAM

Paměti bez nahodilého přístupu

- 1. LIFO
 - Last In First Out
- 1. FIFO
 - First In First Out
- České pojmenování pro tyto paměti?

RWM - RAM

Random Access Memory

Paměti s nahodilým přístupem

SRAM

- Static RAM
- Rychlejší, dražší, mnohem menší, menší spotřeba

DRAM

- Dynamic RAM
- Nutný refresh z důvodu parazitní kapacity tranzistoru
- Pomalejší, levnější, méně náročná na výrobu
- Adresa přidělována ve dvou krocích (RAS, CAS)
 - Počet adr. vodičů bývá poloviční

SRAM

SRAM – přístup

DRAM

Read Only Memory

- Obsah dán již při výrobě
 - Programována maskou
 - MROM (Mask ROM)
- Velkovýroba
 - Náročné, drahé
 - Při chybě nutno vyměnit

- Životnost
 - 50 60 let
- Použití
 - BIOS, firmware (mechanik, grafických

Hodnota "0"

Hodnota "1"

ROM

Hodnota "0"

Hodnota "1"

Programmable ROM (1956)

- Také OTP
 - Elektricky jednou programovatelná
 - Možno i po částech
 - Není nutno zadávat "know-how" výrobci
- Samé '1'
 - Tavná pojistka/drátek
 - Proražení = '0'
 - Dioda kvůli zpětné vazbě
- Samé '0'
 - Dvě diody proti sobě
 - Proražení jedné = '1'; druhá kvůli zpětné vazbě
- Použití obdobné jako ROM, stejně i životnost

PROM

Erasable PROM (1971)

- První mazatelná ROM
 - UV-EPROM
 - Mazatelná UV světlem, cca 25min
 - Pozor při zapomenutí na stole
- Speciální programátor
 - Kompletní přepis
- Použití, jako předchůdci
- Životnost 10 20 let

EEPROM, FLASH

- Electrically EPROM (1983)
 - Elektricky mazatelná a přepisovatelná PROM (E²PROM)
 - Před zápisem nutno celou smazat
 - Speciální programátor
 - Rozdílné napětí pro mazání, zápis a čtení
 - Životnost cca 10 let
 - Pomalejší než FLASH
- FLASH (počátek 90. let)
 - Možno mazat po částech
 - Nevyžaduje speciální programátor
 - Omezený počet zápisů
 - Jeden z typů EEPROM -> EEPROM FLASH

Typy pamětí, organizace, vodiče...

Zjistěte o jaké paměti se jedná, jaká je jejich organizace a celková kapacita, rozsah adresních a datových vodičů a značení řídících signálů ____

- 1. 27C220
- 2. 51256S/L
- 21256
- 4. 93C46

Čtení/zápis - zjednodušeně

Cyklus pro čtení

- · Vystavení požadované adr. na adr. sběrnici
- Aktivace čtecího signálu (R/\overline{W})
- Přečtení dat z datové sběrnice
- Ukončení čtecího signálu

Cyklus pro zápis

- Vystavení požadované adr. na adr. sběrnici
- Vystavení požadovaných dat na dat. Sběrnici
- Aktivace signálu pro zápis (R/\overline{W})
- · Ukončení signálu pro zápis

Čtení z paměti

Zápis do paměti

KONEC

Zdroje

- https://en.wikipedia.org/wiki/Semiconductor_memory#/m edia/File:RAM_n.png [2. 4. 2020]
- https://cz.rs-online.com/web/p/pamet-flash/1709137/ [2. 4. 2020]
- https://www.eeeguide.com/rom-read-only-memory/ [2.4. 2020]
- https://electricalfundablog.com/read-only-memory-rom/ [2. 4. 2020]
- https://www.tme.eu/html/CZ/pameti-eprom-electrically-programmable-read-only-memory-eprom-uv/ramka_642_CZ_pelny.html [2. 4. 2020]