Inverse methods and imaging

Jodi Mead Department of Mathematics

Thanks to: Diego Domenzain

John Bradford

Inverse Problems

Consider solving problems of the form:

$$Gm = d$$

- ullet $\mathbf{G} \in R^{m imes n}$ mathematical model
- ullet $\mathbf{d} \in R^m$ data collected by Scientists or Engineers
- $\mathbf{m} \in \mathbb{R}^n$ unknown model characteristics we need to find.

 \mathbf{G} is rectangular, ill-conditioned and the solution $\mathbf{m} = \mathbf{G}^{-1}\mathbf{d}$ is not possible. In other words the mathematical model \mathbf{Gm} cannot be determined by the data \mathbf{d} ,

Least squares

$$\mathbf{m}_{ls} = argmin_{\mathbf{m}} \|\mathbf{Gm} - \mathbf{d}\|_{2}^{2}$$

If ${\bf G}$ has linearly independent columns

$$\mathbf{m}_{ls} = (\mathbf{G}^T \mathbf{G})^{-1} \mathbf{G}^T \mathbf{d}$$

Typically we can't compute this but even if we could, do we want the mathematical model to match the data exactly?

Regularization

$$\mathbf{m}_{\mathbf{L}_p} = argmin_{\mathbf{m}} \left\{ \|\mathbf{G}\mathbf{m} - \mathbf{d}\|_2^2 + \lambda ||\mathbf{L}_p(\mathbf{m} - \mathbf{m}_0)||_2^2 \right\}$$

 \mathbf{m}_0 - initial estimate of \mathbf{m}

 \mathbf{L}_p - typically represents the first (p=1) or second derivative (p=2)

 λ - regularization parameter

Gives estimates

$$\mathbf{m}_{\mathbf{L}_p} = \mathbf{m}_0 + (\mathbf{G}^T \mathbf{G} + \lambda^2 \mathbf{L}_p^T \mathbf{L}_p)^{-1} \mathbf{G}^T \mathbf{d}$$

and the mathematical model with additional information in $\lambda \mathbf{L}_p$ can be resolved by the data.

Choice of λ

Methods:

L-curve, Generalized Cross Validation (GCV) and Morozov's Discrepancy Principle, UPRE, χ^2 method¹.

• λ large \rightarrow constraint: $\|\mathbf{L}_p(\mathbf{m} - \mathbf{m}_0)\|_2^2 \approx 0$

$$\mathbf{m}_{\mathbf{L}_p} = argmin_{\mathbf{m}} \left\{ \|\mathbf{G}\mathbf{m} - \mathbf{d}\|_2^2 + \lambda ||\mathbf{L}_p(\mathbf{m} - \mathbf{m}_0)||_2^2 \right\}$$

ullet λ small o problem may stay ill-conditioned

$$\mathbf{m}_{\mathbf{L}_p} = \mathbf{m}_0 + (\mathbf{G}^T \mathbf{G} + \lambda^2 \mathbf{L}_p^T \mathbf{L}_p)^{-1} \mathbf{G}^T \mathbf{d}$$

¹Mead et al, 2008, 2009, 2010, 2016, 2019

Choice of L_p^2

$$\mathbf{m}_{\mathbf{L}_p} = argmin_{\mathbf{m}} \left\{ \|\mathbf{G}\mathbf{m} - \mathbf{d}\|_2^2 + \lambda ||\mathbf{L}_p(\mathbf{m} - \mathbf{m}_0)||_2^2 \right\}$$

 ${f L}_0 = {f I}$ - requires good initial estimate ${f m}_0$, otherwise may not regularize the problem.

 ${f L}_1$ - requires ${f L}_1{f m}_0$, i.e. zero first derivative estimate, less information than ${f m}_0$.

 \mathbf{L}_2 - requires $\mathbf{L}_2\mathbf{m}_0$, leaves more degrees of freedom than first derivative, so that data has more opportunity to inform parameter estimates.

²Hetrick and M. 2018; Domenzain, Bradford and M. 2019

Total Variation minimization

$$\hat{\mathbf{m}} \in \underset{\mathbf{m}}{argmin} \ \frac{\lambda}{2} \|\mathbf{d} - \mathbf{G}\mathbf{m}\|_{2}^{2} + \|\nabla\mathbf{m}\|_{1}$$

Exact - \mathbf{m}

Blurred - \mathbf{d}

Choice of λ

$$\lambda = 500$$

 $\lambda = 50000$

 $\lambda = 500000$

 χ^2 test for λ

$$\frac{\lambda}{2} \|\mathbf{d} - \mathbf{G}\hat{\mathbf{m}}\|_2^2 + \|\nabla \hat{\mathbf{m}}\|_1 \sim \chi_m^2$$

Joint Inversion as Regularization

$$\mathbf{m}_{12} = argmin_{\mathbf{m}} \left\{ \|\mathbf{G}_{1}\mathbf{m} - \mathbf{d}_{1}\|_{2}^{2} + ||\mathbf{G}_{2}\mathbf{m} - \mathbf{d}_{2}||_{2}^{2} \right\}$$

Objective function can be written

$$\left\| \left[egin{array}{c} \mathbf{G}_1 \ \mathbf{G}_2 \end{array}
ight] \left[\mathbf{m}
ight] - \left[egin{array}{c} \mathbf{d}_1 \ \mathbf{d}_2 \end{array}
ight]
ight\|_2^2 \equiv \left\| \mathbf{G}_{12} \mathbf{m} - \mathbf{d}_{12}
ight\|_2^2$$

Goal: Improve condition number

$$\kappa(\mathbf{G}_{12}) < \kappa(\mathbf{G}_1), \kappa(\mathbf{G}_2)$$

where
$$\kappa(\mathbf{G}) = \frac{\sigma_{max}(\mathbf{G})}{\sigma_{min}(\mathbf{G})}$$

Singular Value Decomposition (SVD)

$$\mathbf{G}_{12} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T
ightarrow \mathbf{m}_{12} = \sum_{i=1}^n rac{\mathbf{U}_{\cdot,i}^T \mathbf{d}_{12}}{\sigma_i} \mathbf{V}_{\cdot,i}$$

Truncated SVD (with decomposition on appropriate matrix)

$$\mathbf{m}_1 = \sum_{i=1}^{k_1} \frac{\mathbf{U}_{\cdot,i}^T \mathbf{d}_1}{\sigma_i} \mathbf{V}_{\cdot,i}, \ \mathbf{m}_2 = \sum_{i=1}^{k_2} \frac{\mathbf{U}_{\cdot,i}^T \mathbf{d}_2}{\sigma_i} \mathbf{V}_{\cdot,i}, \ \mathbf{m}_{12} = \sum_{i=1}^{l} \frac{\mathbf{U}_{\cdot,i}^T \mathbf{d}_{12}}{\sigma_i} \mathbf{V}_{\cdot,i}$$

Goal: Keep as many singular values as possible

$$l > k_1, k_2$$

Near subsurface imaging

- Landfill Investigation
- Mapping and monitoring of groundwater pollution
- Determination of depth to bedrock
- Locating sinkholes, cave systems, faults and mine shafts
- Landslide assessments
- Buried foundation mapping

Boise Hydrogeophysical Research Site

Field laboratory near intersection of Warm Springs Ave and HWY 21

Near subsurface imaging with electromagnetic waves

Electrical Resistivity Tomography Ground Penetrating Radar

Ground Penetrating Radar (GPR)

Damped Wave:
$$\epsilon \frac{\partial^2 E}{\partial t^2} + \sigma \frac{\partial E}{\partial t} = \frac{1}{\mu} \nabla^2 E + f$$

- Radar signals f transmitted into the ground and energy that is reflected back to the surface is recorded.
- If there's a contrast in properties between adjacent material properties (permittivity ϵ , permeability μ and conductivity σ) a proportion of the electromagnetic pulse will be reflected back.
- Subsurface structures are imaged by measuring the amplitude and travel time of this reflected energy.

Electrical Resistivity Tomography (ERT)

Diffusion:
$$-\nabla \cdot \sigma \nabla \phi = \nabla \cdot J_s$$

- ullet Current is passed through the ground via outer electrodes J_s and potential difference ϕ is measured between an inner pair of electrodes.
- ullet Only responds to variability in electrical resistivity σ exhibited by earth materials.
- ERT data must be inverted to produce detailed electrical structures of the cross-sections below the survey lines.

Forward vs Inverse modeling

	Forward	Inverse
$\boxed{\epsilon \frac{\partial^2 E}{\partial t^2} + \sigma \frac{\partial E}{\partial t} = \frac{1}{\mu} \nabla^2 E + f}$	Given ϵ , μ , σ	$Given\ E$
·	Solve for ${\cal E}$	Solve for ϵ , μ , σ
$-\nabla \cdot \sigma \nabla \phi = \nabla \cdot J_s$	Given σ	Given ϕ
	solve for ϕ	solve for σ

Simulated subsurface

a) GPR b) GPR and ERT

a) GPR b) ERT c) GPR and ERT

a) GPR b) ERT c) GPR and ERT