

Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Ingeniería en Física Aplicada

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA		
Física del Estado Sólido		

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Noveno	172092	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Que el estudiante adquiera los conocimientos básicos para comprender la física del estado sólido y la importancia que tiene esta disciplina dentro de la Ingeniería Física y su relación con las propiedades de los materiales.

TEMAS Y SUBTEMAS

1. Estructura Cristalina.

- 1.1. Sólidos cristalinos y amorfos.
- 1.2. Celdas unitarias (convencional y primitiva).
- 1.3. Elementos de simetría.
- 1.4. Sistemas cristalinos y redes de Bravais.
- 1.5. Planos cristalinos (direcciones e índices de Miller.
- 1.6. Estructuras cristalinas simples.

2. Red Recíproca.

- 2.1. Difracción de rayos-x.
- 2.2. Intensidad de rayos-x dispersados.
- 2.3. Teorema general de difracción.
- 2.4. Ecuaciones de Laue.
- 2.5. La red recíproca.
- 2.6. Zona de Brillouin de estructuras cubicas.
- 2.7. Factor de estructura.

3. Enlaces Cristalinos.

- 3.1. Interacción Van der Waals-London.
- 3.2. Cristales iónicos.
- 3.3. Cristales covalentes.
- 3.4. Metales.

4. Fonones.

- 4.1. Vibraciones (cadena monoatómica y biatómica).
- 4.2. Vibraciones cuantizadas (fonones).
- 4.3. Momentum cristalino.
- 4.4. Densidad de estados.
- 4.5. Capacidad calorífica (Modelos de Dulong-Petite, Debye y Einstein).
- 4.6. Conductividad térmica.

5. Gas de Fermi y Bandas de Energía.

- 5.1. Niveles de energía unidimensional.
- 5.2. Gas de electrones libres (3D).
- 5.3. Capacidad calorífica del gas de electrones.
- 5.4. Conductividad eléctrica y ley de Ohm.
- 5.5. Movimiento en campos magnéticos.

Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Ingeniería en Física Aplicada

PROGRAMA DE ESTUDIOS

- 5.6. Modelo del electrón casi libre.
- 5.7. Origen de la brecha de energía.
- 5.8. Funciones de Bloch y Modelo de Kronig-Penney.
- 5.9. Ecuación de onda en potencial periódico.

6. Cristales Semiconductores.

- 6.1. Brechas de energía en semiconductores.
- 6.2. Procesos de absorción directa e indirecta.
- 6.3. Ecuaciones de movimiento y masa efectiva.
- 6.4. Concentración de portadores intrínsecos.
- 6.5. Movilidad intrínseca.
- 6.6. Conductividad de impurezas.

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como son la computadora, proyectores, software especializado.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender, al menos tres evaluaciones parciales que tendrán una equivalencia del 50% y un examen final que tendrá 50%. Las evaluaciones serán escritas, orales y prácticas; éstas últimas, se asocian a la ejecución exitosa y a la documentación de la solución de programas asociados a problemas sobre temas del curso; la suma de estos dos porcentajes dará la calificación

Además, se considerará el trabajo extraclase, la participación durante las sesiones del curso y la asistencia a las asesorías.

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO)

- 1.- Introduction to Solid State Physics, Kittel C., John Wiley, 8a Ed., 2005,
- 2.- Solid State and Semiconductor Physics, Mckelvey J. P., Limusa, 1982.
- 3.- Solid State Physics: An Introduction, Hofmann Philip, Wiley-VCH, 2a Ed., 2015.
- 4.- Solid State Physics, Ashcroft N. W., Mermin N D., CENGAGE Learning 1976.

Consulta:

1.- Elements X-ray diffraction, Cullity D. B., Addison Wesley, 1956.

- 2.-Electrical, Electronic and Magnetic Properties of Solids, Sirdeshmukh D.B., Sirdeshmukh L., Subhadra K.G., Sunandana C.S., Springer International Publishing, 2014.
- 3.- Electronic Properties of Materials, Hummel Rolf E., Springer, 4ª Ed. 2011.
- 4.- Crystallography: An Introduction, Borchardt-Ott Walter, Springer, 3a Ed., 2011.

PERFIL PROFESIONAL DEL DOCENTE

Maestría y/o Doctorado en Física o Ciencia de Materiales

JEFATURA DE CARRERA INGENIERIA EN FÍSICA APLICADA

DR. SALOMÓN GONZÁLEZ MARTÍNEZ

JEFE DE CARRERA

VICE-RECTOR ACADÉMICO