Equivalence of typeclass methods under laws Why flatMap is "equivalent" to flatten and map

Sergei Winitzki

Academy by the Bay

2021-05-08

Equivalent formulations of typeclasses I

Monads can be defined via pure, map, and flatten, or via pure and flatMap It is often said that these methods are "equivalent":

• P. Wadler, "Monads for functional programming" (1995)

Often, monads are defined not in terms of unit and \star , but rather in terms of unit, join, and map [10, 13]. The three monad laws are replaced by the first seven of the eight laws above. If one defines \star by the eight law, then the three monad laws follow. Hence the two definitions are equivalent.

Applicative functors may be defined via ap and pure or via map2 and pure

• P. Chuisano and R. Bjarnason, "Functional programming in Scala"

This must be right, but questions remain...

- What does it mean that x is "equivalent in expressiveness" to y?
- How can it be that map2[A, B, C] is "equivalent" to ap[A, B]?

Equivalent formulations of typeclasses II. More examples

We know that flatMap is equal to the composition of flatten and map Also, flatten can be expressed via flatMap

```
def flatten[A](ffa: F[F[A]]): F[A] = ffa.flatMap(identity) def flatMap[A, B](p: F[A])(f: A => F[B]): F[B] = p.map(f).flatten flatten = flatMap(id) , p \triangleright \text{flatMap}(f) = p \triangleright f^{\uparrow F} \triangleright \text{flatten}
```

The pure method can be expressed via wu and vice versa:

```
def wu: F[Unit] = pure(())
def pure[A](a: A): F[A] = wu.map(_ => a)
wu = pure(1) , pure(a) = wu \triangleright (_ \rightarrow a)^{\uparrow F}
```

The filter method can be expressed via deflate and vice versa:

```
def deflate[A](foa: F[Option[A]]): F[A] =
  foa.filter(_.nonEmpty).map(_.get)
def filter[A](fa: F[A])(p: A => Boolean): F[A] =
  deflate(fa.map { a => if (p(a)) Some(a) else None } )
```

Notation: $x \triangleright f$ means f(x) or in Scala 2.13, x.pipe(f) $f^{\uparrow F}$ means $_.map(f)$ for the functor F

Confusing issue 1: "equivalence" of values?

- Yes, we can express flatten through flatMap, but so what?
- Is 5 "equivalent" to 10 in expressive power?

```
def five: Int = ten / 2
def ten: Int = five * 2
```

Confusing issue 2: "equivalence" of functions with different sets of type parameters?

- How can pure[A]: A => F[A] and wu: F[Unit] be equivalent?
 - ▶ An extra type parameter means there are many more implementations
- Example of a pure that is not equivalent to wu:

```
def badPure[A](x: A): List[A] = x match {
  case i: Int => List(i + 123)
  case _ => List(x)
}
```

- The corresponding wu = List(())
- We cannot restore badPure from wu: the corresponding pure is List(_)

Equivalence under naturality laws I: example

The problem with badPure is that it does not work the same for all types

- The code of badPure is not fully parametric
- To enforce full parametricity, we require a naturality law:
 pure(f(x)) == pure(x).map(f)

$$x \triangleright f \triangleright \mathsf{pure} = x \triangleright \mathsf{pure} \triangleright f^{\uparrow F} \quad , \qquad f^{:A \to B} \, \mathring{\mathfrak{g}} \, \mathsf{pure}^B = \mathsf{pure}^A \, \mathring{\mathfrak{g}} \, f^{\uparrow F}$$

Equivalence under naturality laws II: general formulation

The precise meaning of the "equivalent expressive power" of pure[A] and wu:

- the set of all functions pure[A]: A => F[A] satisfying the naturality law is in a one-to-one correspondence with the set of all values wu: F[Unit] Proof:
 - Start with pure that satisfies the naturality law; define wu = pure(()); then define pure2(x) = wu.map(_ => x). Show that pure2 == pure:

for an arbitrary
$$x$$
: $\operatorname{pu}_2(x) = \underline{\operatorname{wu}} \triangleright (_ \to x)^{\uparrow F} = 1 \triangleright \underline{\operatorname{pu}} \triangleright (_ \to x)^{\uparrow F}$ use naturality law : $= 1 \triangleright (_ \to x) \triangleright \operatorname{pu} = x \triangleright \operatorname{pu} = \operatorname{pu}(x)$.

Start with wu: F[Unit]; define pure(x) = wu.map(_ => x); then define wu2 = pure(()). Show that wu2 == wu:

$$\mathsf{wu}_2 = \mathsf{pure}(1) = \mathsf{wu} \triangleright (\underline{} \to \underline{1})^{\uparrow F} = \mathsf{wu} \triangleright \underline{\mathsf{id}}^{\uparrow F} = \mathsf{wu} \triangleright \mathsf{id} = \mathsf{wu}$$

The function $pure(x) = wu.map(_ \Rightarrow x)$ satisfies the naturality law:

pure
$$(x) \triangleright f^{\uparrow F} = \text{wu} \triangleright (_ \to \underline{x})^{\uparrow F} \triangleright f^{\uparrow F} = \text{wu} \triangleright (_ \to x \triangleright f)^{\uparrow F}$$

= wu \nabla (_ \to f(x))^{\dagger F} = pure $(f(x))$

Equivalence under naturality laws III: general pattern

To prove the equivalence of p: P[A, B, C] and q: Q[A, B, C] under assumption of some naturality laws:

• Implement functions p2q and q2p:

```
def p2q[A, B, C]: P[A, B, C] \Rightarrow Q[A, B, C] = ...
def q2p[A, B, C]: Q[A, B, C] \Rightarrow P[A, B, C] = ...
```

- Show that q2p(p2q(p)) == p and p2q(q2p(q)) == q
- Show that p2q(p) satisfies q's laws, and q2p(q) satisfies p's laws

The "set of p: P[A, B, C] satisfying a law" is a refined type

- The Scala compiler cannot verify laws automatically
- Testing cannot verify laws since type parameters cannot be arbitrary
- Laws must be verified via symbolic reasoning about code

Equivalence under naturality laws IV: further examples

 Equivalence of flatten[A] and flatMap[A, B] requires a naturality law for flatMap[A, B] with respect to B

```
p.flatMap(f andThen g) == p.map(f).flatMap(g) 
flatMap(f \circ g) = f^{\uparrow F} \circ flatMap(g)
```

• Equivalence of ap and zip requires a naturality law for each of them

```
def ap[A, B]: F[A \Rightarrow B] \Rightarrow F[A] \Rightarrow F[B] = ...

ap(r)(p).map(f) == ap(r.map(x => x andThen f))(p)

def zip[A, B]: (F[A], F[B]) \Rightarrow F[(A, B)] = ...

zip(p.map(f), q) == zip(p, q).map { case (a, b) => (f(a), b) }
```

Conclusions

- Formulated the "equivalence of expressive power" rigorously
 - ▶ It is a one-to-one correspondence between *refined types*
- In most cases, the equivalence holds only after imposing naturality laws
- Naturality laws constrain code and may eliminate a type parameter
 - Naturality laws will hold automatically for fully parametric code
- Functions with simpler type signatures are simpler to reason about
 - ▶ Proofs of laws are often easier for flatten than for flatMap
- Full details in the upcoming book https://github.com/winitzki/sofp

The Science of Functional Programming: A tutorial, with examples in Scala The book will explain (with examples and exercises):

- techniques of symbolic reasoning about types
- techniques for symbolic calculations with code
- deriving and verifying laws symbolically (as equations for code)
- real-life motivations for (and applications of) these techniques

