Physics 370 Homework #10

5 problems

Due by Wednesday, November 9

> 1.

A paramagnet, in its simplest formulation, is a collection of magnetic dipoles, each with magnetic dipole moment $\vec{\mu}$. When placed in a magnetic field $\vec{B} = B\hat{z}$, each dipole has energy $U = -\vec{\mu} \cdot \vec{B} = -\mu_z B$. Suppose the z-component of the dipole moment is quantized, so that it can only take one of two values: $\mu_z = +\mu_0$ (call this "up") and $\mu_z = -\mu_0$ ("down"). If there are N_{\uparrow} dipoles that point up, and N_{\downarrow} that point down, then the total energy is

$$E = -N_{\uparrow}\mu_0 B + N_{\downarrow}\mu_0 B = (N_{\downarrow} - N_{\uparrow})\mu_0 B$$

- (a) Rewrite the energy formula in terms of the total number of dipoles N and the number N_{\downarrow} that point down, and then solve that equation for N_{\downarrow} . (Note that, if N is constant, N_{\downarrow} parametrizes the energy.)
- (b) Find the multiplicity Ω of the macrostate where there are N_{\downarrow} dipoles pointing down. (This is also an energy macrostate.)
- (c) Write an expression for the entropy as a function of N_{\downarrow} , and use Stirling's approximation $\ln x! \approx x \ln x x \ (x \gg 1)$ to eliminate the factorials from the expression assuming that the number of dipoles is large.
- (d) Show that

$$kT = 2\mu_0 B \left(\ln \frac{N_\uparrow}{N_\downarrow} \right)^{-1}$$

(e) Find the temperature of the paramagnet when N_{\downarrow} is $\frac{1}{4}N$ and $\frac{1}{2}N$.

⊳ 2.

The entropy of an ideal gas (point particles that do not interact with one another) has the form

$$S = kN \left[\ln \left(\frac{V}{N} \right) + \frac{3}{2} \ln \left(\frac{E}{N} \right) + C \right]$$

where C is a constant. Find an expression of the ideal gas's energy as a function of temperature E(T).

> 3.

In a large number of distinguishable harmonic oscillators, how high does the temperature have to be for the probability of occupying the ground state to be less than $\frac{1}{2}$?

▶ 4.

In class we showed that a system in contact with a thermal reservoir T has an average energy

$$\langle E \rangle = -\frac{1}{Z}\frac{\partial Z}{\partial \beta} = \frac{1}{kT^2}\frac{1}{Z}\frac{\partial Z}{\partial T}$$

where $\beta = \frac{1}{kT}$ and Z is the partition function of a system, defined as

$$Z = \sum_{s} e^{-E_s/kT}$$

summed over all possible microstates of the system.

- (a) The possible microstates of a harmonic oscillator have energy $E_j = (j + \frac{1}{2}) \hbar \omega_0$, where $j = 0, 1, 2, \ldots$ Find the partition function of a harmonic oscillator, and do out the sum so you have a closed expression. (Hint: the sum is a power series.)
- (b) Find the average energy of the harmonic oscillator.
- (c) What is the energy approximately in the low-temperature limit $kT \ll \hbar\omega_0$ and the high-temperature limit $kT \gg \hbar\omega_0$?

> 5.

Find the *most probable* speed of an ideal gas, according to the Maxwell Speed Distribution; that is, find the mode of the distribution.