Pricing Products

for profit maximization

Objective

 Provide new business owners a starting point to price products based on the existing market

Data Cleaning Exploratory Data
Analysis (EDA)

Clustering

Multivariate Regression

- Dataset
- Process

Data Cleaning

Exploratory Data Analysis (EDA)

Clustering

Multivariate Regression

Framework

Data Cleaning

Exploratory Data Analysis (EDA)

Clustering

Multivariate Regression

- Feature Engineering
- Insights

Framework

- Scope: **Phones** product sub-category
- Unsupervised clustering algorithms (KMeans, DBSCAN, Agglomerative Clustering)
- Evaluation metric: Distortion score to determine elbow and silhouette score

Data Cleaning Exploratory Data
Analysis (EDA) Clustering Multivariate
Regression Recommendation

Framework

Data Cleaning

Exploratory Data Analysis (EDA)

Clustering

Multivariate Regression

- Multivariate regression to view a good unit price range for each cluster
- Supervised regression algorithms (LassoCV, ElasticNet CV, Random Forest Regressor, Support Vector Regressor, XG Boost Regressor)
- Evaluation metric: R2 score

- Conclusion
- Further development
- Limitations and challenges

Data Cleaning Exploratory Data
Analysis (EDA)

Clustering

Multivariate Regression

Data Cleaning

Dataset

- Global superstore data
- Compilation of transactions from retailers worldwide
- 2012 to 2015
- >50,000 rows of data
- 51 features
- Product categories : Technology, Furniture and Office Supplies

Cleaning process

- Removed features with substantial (>70%) missing values
- Removed those that do not provide added value eg.
 Product ID is unique to every product but would not help with clustering.
- Removed outliers

Exploratory Data Analysis (EDA)

Transaction count on a monthly, weekly and yearly basis

- Growing affluence over the years
- Seasonality in sales (more sales towards the end of the year -Christmas/ bonus payouts)

Exploratory Data Analysis (EDA)

- Unprofitable regions :
 Western Africa,
 Western Asia and
 Central Asia
- Generally have lower sales and shipping cost
- Shipping cost across regions follow the same trend as sales

Profit, sales and shipping cost of transactions by region and category

Exploratory Data Analysis (EDA)

Transactions discount by region and category

- Unprofitable regions: Western Africa, Western Asia and Central Asia
- Generally have much higher discounts than other regions

Feature Engineer

- Heavily discounted (>0.3%) regions
- Non-profitable regions

Clustering - KMeans

Distortion score :Sum of squared errors from each point to its assigned centre

- Phones subcategory
- Determine optimal number of clusters using the elbow method
- Range of 2 to 10 clusters
- Identify a point as number of clusters increase, where the distortion score start to flatten, forming an elbow.
- Optimal number of clusters: 3

Clustering - KMeans

Silhouette score:

Considers both the average intra-cluster distance and average inter-cluster distance. A score close to 1 means that clusters are well apart from each other and clearly distinguished.

- Positive silhouette coefficient values
- Each individual cluster having silhouette scores above the average
- 3 centers/clusters have the highest silhouette score of ~0.61

Clustering - DBSCAN

Well-suited for discovering data with arbitrary shapes

Silhouette Score on parameters and clusters					
Number Of Cluste	rs Par	ram - Minimum Sampl	les Si	ilhouette Score	
35	1	3	1	0.282	
13	1	10	1	0.271	
6	1	100	1	0.121	

- Silhouette score is significantly lower than KMeans
- Suggests that dataset comprise data points with varying density,
 resulting in very high number of clusters, with very low silhouette score.

Clustering - Agglomerative Clustering

- Works in a "bottom-up" manner whereby each object is initially considered as a single element cluster (leaf)
- At each step of the algorithm, two clusters that are most similar are combined into a bigger cluster (nodes)
- Process is repeated until all points are a member of a single big cluster

++ Silhouette Score on Clusters						
Number Of	Clusters	Silhouette Score				
1 3	2	0.5429				
1 3	3	0.61				
1 .	1	0.4698				
] :	5	0.4746				
1 (5	0.481				
	7	0.4279				
1 8	3	0.4399				
1 9	9	0.4418				
] :	10	0.4637				
+		+				

- 3 clusters are optimal with silhouette
 score of 0.61
- Results are similar to KMeans

Clustering - Conclusion

KMeans

- 3 clusters with 0.61 silhouette score
- Neighbouring clusters
 (2 clusters and 4
 clusters) have higher
 silhouette scores than
 Agglomerative

DBSCAN

35 clusters with 0.282
 silhouette score

<u>Agglomerative</u>

 3 clusters with 0.61 silhouette score

Selected Model : KMeans

Clustering - Characteristics

- Apply cluster labels from KMeans on dataset
- Identify characteristics

Clustering - Characteristics

Cluster 1

- Highest sales and most profitable
- Most quantity purchased (>3)
- Relatively low discounts (~0.1%)
- Excludes transactions from unprofitable regions

Clustering - Characteristics

Cluster 1

- Highest sales and most profitable
- Most quantity purchased (>3)
- Relatively low discounts (~0.1%)
- Excludes transactions from unprofitable regions

Cluster 2

- Moderate sales and profit
- Lower quantities (<3) purchased
- Relatively low discounts (~0.1%)
- Excludes transactions from unprofitable regions

Cluster 3

- Unprofitable, lowest sales
- Lower quantity (<3)
- High discounts (>0.3%)
- Non-profitable regions : Western Africa, Western Asia and Central Asia

Multivariate Regression

- Perform multivariate regression on each cluster
- Nested cross-validated R2 score to select best algorithm

Cluster 1					
++					
Cross-validated R2 score					
Algorithms	R2 Score	Standard Deviation			
Elastic Net CV	88.3%	+/- 2.1%			
Random Forest Regresso		+/- 1.2%			
Support Vector Regress	sor 88.2%	+/- 2.4%			
XGBoost Regressor	99.0%	+/- 0.4%			
++					
Cluster 2					
+					
Cross-validated R2 score					
Algorithms	R2 Score	Standard Deviation			
Elastic Net CV	92.4%	+/- 2.7%			
Lasso Random Forest Regressor	92.5%	1 +/- 2.7%			
Support Vector Regressor	92.4%	1 +/- 2.4%			
XGBoost Regressor					
					
Cluster 3					
+					
Cross-validated R2 score					
Algorithms	R2 Score	Standard Deviation			
	71.6%	+/- 10.5%			
Random Forest Regressor	90.5%	+/- 11.1%			
Support Vector Regressor		1 +/- 2.5%			
	72.78 92.80000000000001%				
Noboobo Reglessol	22.0000000000000	1/ 1.55			

 Generally tree-based algorithms and support vector regressor work better

Multivariate Regression

- Perform multivariate regression on each cluster
- Nested cross-validated R2 score to select best algorithm

Cluster 1							
++							
Cross-validated R2 score							
+	+						
Algorithms	R2 Score	Standard Deviation					
Elastic Net CV	88.3%	+/- 2.1%					
Lasso	88.4%	+/- 2.1%					
Random Forest Regressor	96.0%	+/- 1.2%					
Support Vector Regresso	r 88.2%	+/- 2.4%					
XGBoost Regressor	99.0%	+/- 0.4%					
+	+	+					
Cluster 2							
Cross-validated R2 score							
++-		+					
Algorithms	R2 Score	Standard Deviation					
+							
Elastic Net CV	92.4%	+/- 2.7%					
	92.5%	+/- 2.7%					
Random Forest Regressor	94.8%	+/- 0.6%					
	92.4%	+/- 2.4%					
XGBoost Regressor	97.3999999999999	9% +/- 1.2%					
+							
Cluster 3							
+		+					
Cross-validated R2 score							
Algorithms	R2 Score	Standard Deviation					
Aigorithms	RZ SCOIE	Scandard Deviation					
Elastic Net CV 71.6% +/- 10.5%							
	70.8999999999999						
Random Forest Regressor	90.5%	+/- 2.5%					
Support Vector Regressor	72.7%	+/- 9.6%					
	92.800000000000000						
Mobood Reglessor	22.000000000000						

- Generally tree-based algorithms and support vector regressor work better
- For interpretive value, I select the better of regularised regression model for each of the clusters
 - Cluster 1: Lasso
 - Cluster 2 : Lasso
 - Cluster 3 : Elastic Net
- Obtain the coefficients and y-intercepts, to plot the regression line

Conclusion and Recommendation

How profit per unit changes with unit price

- Avoid selling phones at Western Africa,
 Western Asia, or Central Asia as all phone
 sales here are not profitable at any unit
 price
- Focus on selling phones in other regions

Conclusion and Recommendation

How profit per unit changes with unit price

- Between Cluster 1 and Cluster 2, Cluster 1 comprise transactions with more quantities purchased than Cluster 2. These are probably corporate consumers.
- Target corporate consumers and consider providing bulk discounts or include free phone accessories if more phones are purchased.

Further Development

Customer Segmentation

- With customer details (eg. propensity to spend, age, income), can consider grouping by customers to provide more insights into consumer purchase behaviour
- Targeted marketing to each customer cluster

Breadth and/or Depth

- Analyse deeper within the product subcategory (eg. into specific phone brands, or specific phone models)
- Analyse other categories outside of phones

Limitations and Challenges

Nature of setting prices

- Attempted to price a product based purely on historical transactional data but pricing is as much art as it is science
- Several other external factors that influence prices eg. branding, marketing and advertising.

Scaling and Monitoring

- Consumer purchase behaviour changes over time and so there has to be consistent monitoring
- Scaling may be an issue as more consumers are added to the database, much more processing power is needed to handle huge amounts of data.

Thank You Q&A