KDS 47 50 40 : 2019

열차무선설비

2019년 4월 8일 개정 http://www.kcsc.re.kr

건설기준 제정 또는 개정에 따른 경과 조치

이 기준은 발간 시점부터 사용하며, 이미 시행 중에 있는 설계용역이나 건설 공사는 발주기관의 장이 필요하다고 인정하는 경우 종전에 적용하고 있는 기준을 그대로 사용할 수 있습니다.

건설기준 연혁

- 이 기준은 건설기준 코드체계 전환에 따라 기존 건설기준(설계기준, 표준시방서) 간 중복 · 상충을 비교 검토하여 코드로 통합 정비하였다.
- 이 기준은 기존의 철도에 해당되는 부분을 통합 정비하여 기준으로 제정한 것으로 제• 개정 연혁은 다음과 같다.

건설기준	주요내용	제정 또는 개정 (년.월)
철도설계기준(시스템편)	 일반철도와 고속철도에 모두 적용할 수 있도록 서술 철도관련 상위법령, 기준 및 시방서 등의 개정된 내용을 반영 노반, 궤도, 건축 등 타 분야와의 인터페이스를 고려하였으며 향후 철도관련 기술발전 등의 변화 에 대응할 수 있도록 제정 	제정 (2011.5)
철도설계기준(시스템편)	 지중케이블과 공동관로케이블 보호방법 명확하 통신케이블은 선로 양쪽 가장자리에위치한 공동 관로 또는 지중관로에 의해 보호되므로 케이블 포설위치 탐색을 위한 표시기 설치 불필요 지상구간은 스마트폰 확산등 철도정보통신 환경 변화로 설치 필요성이 감소 	개정 (2013.12)
철도설계기준(시스템편)	• 향후 국내외 철도건설기술 발전 등 기술적 환경 변화에 대응할 수 있도록 하였으며 안전기준 강 화 및 그 동안 변경된 철도관련 상위법령, 규정, 기준 등의 개정된 내용을 반영	개정 (2015.12)
KDS 47 50 40 : 2016	• 건설기준 코드체계 전환에 따라 코드화로 통합 정비함	제정 (2016.6)
KDS 47 50 40 : 2019	• 철도 건설기준 적합성평가에 의해 코드를 정비함	개정 (2019.04)

제 정: 2016년 6월 30일 개 정: 2019년 04월 08일

심 의 : 중앙건설기술심의위원회 자문검토 : 국가건설기준센터 건설기준위원회

소관부서 : 국토교통부 철도건설과

관련단체 : 한국철도시설공단 작성기관 : 한국철도기술연구원

목 차

1.	일반사항	1
	1.1 목적	1
	1.2 적용 범위	1
	1.3 참고 기준	1
	1.4 용어의 정의	1
	1.5 기호의 정의	1
	1.6 시설물의 구성	1
2.	조사 및 계획	1
3.	재료	1
4.	설계	2
	4.1 열차무선설비 계획	2
	4.2 열차무선설비의 설계	2
	4.3 재난방송수신설비의 설계	6

열차무선설비 KDS 47 50 40 : 2019

1. 일반사항

1.1 목적

(1) 열차운전 및 시설유지보수 업무를 수행하기 위한 시스템으로, 열차와 지상간, 열차와 열차 간 또는 지상 상호간에 정보를 무선으로 교환하는 설비이다.

1.2 적용 기준

내용 없음

1.3 참고 기준

내용 없음

1.4 용어의 정의

내용 없음

1.5 기호의 정의

내용 없음

1.6 시설물의 구성

1.6.1 열차무선 설비 방식 분류

(1) 열차무선설비의 방식은 주파수공용방식(TRS: Trunked Radio System) VHF 대역의 단신통화방식, 철도통합무선망(LTE-R)방식으로 분류한다.

2. 조사 및 계획

내용 없음

3. 재료

내용 없음

4. 설계

4.1 열차무선설비 계획

- (1) 고속철도용 열차무선설비는 주파수 공용방식(TRS: Trunked Radio System)으로서 주 요 장치부는 장애 시 자동절체가 되도록 이중계로 설계하여야 한다.
 - ① 중앙제어장치는 철도교통관제센터에 설치한다.
 - ② 중앙제어장치는 중계기지국과 광전송망 회선을 이용하여 통화로를 구성하고 기지

KDS 47 50 40: 2019 열차무선설비

국 장비의 상태와 기지국, 이동국의 통화상태를 감시, 기록하여야 한다.

- ③ 터널내의 수신가능 레벨을 검토하여 터널 내 무선통화가 가능하도록, 통신기재갱이나 출입구에 열차무선 중계장치 등을 설치한다.
- ④ 열차무선설비의 통화가능구역 증설이나 신규 통화권 범위'의 구축은, 중앙제어장 치의 기능과 용량을 검토하여 선정한다.

(2) 일반철도 열차무선설비(VHF)

- ① 무선채널 방식은 VHF 대역의 단신통화방식으로 구성한다.
- ② 비상통화방식 및 관제통화를 위해, 수신기에 채널 자동 순차선택(SCAN)기능을 두 어 수용하거나 무선수신기를 설치한다.
- ③ 무선수신기는 관제센터의 운전지령 및 비상호출을 모두 항시 수신할 수 있어야 하며, 우선선택을 할 수 있는 형태로 운용되도록 한다.(기지국, 육상이동국에 한함)
- ④ 음성 또는 데이터통신은 고 신뢰성과 정확성을 가지며 간섭 없이 송수신이 가능하도록 한다.
- ⑤ 열차무선설비는 시스템을 자동화, 모듈화 및 패키지화로 구성되도록 하여야 한다.

(3) 철도통합무선망(LTE-R)

- ① 주파수 대역은 상향 718MHz~728MHz, 하향 773MHz ~ 783MHz를 사용한다.
- ② 중앙제어장치의 설치장소는 철도교통관제센터와 예비관제실로 이원화 한다.
- ③ 터널구간의 출입구, 기재갱, 사갱, 수직갱, 집수정, 피난구 대피로 등 전파음역지역에도 열차무선설비의 시설 및 서비스 목표치의 품질로 무선통화가 가능하도록 하여야 한다.
- ④ 음성, 영상, 데이터 서비스는 높은 신뢰성과 정확성을 가지도록 서비스 커버리지 중첩으로 구성하고 통합공공망간 간섭을 최소화 하여야 한다.
- (4) 무인기지국 및 터널무선중계장치 등 사람이 상주하지 않는 원격지 무선통신 설비는 장비의 이상 유무를 원격으로 진단하고 감시 할 수 있는 설비를 설계에 반영 하여야 한다.

4.2 열차무선설비의 설계

- (1) 열차무선설비는 음성 또는 데이터의 신뢰도 및 정확성을 만족하며 간섭 없이 송·수 신이 가능하도록 다음과 같이 설계한다.
 - ① 열차무선설비는 지상설비와 차상설비 사이나 지상설비 상호간에 필요한 음성통신이나 데이터통신에 지장이 없도록 성능, 기능과 용량을 충분히 검토하여 설계에 반영하여야 한다.
 - ② 열차무선설비는 관제사(역 운전취급자 포함)와 열차기관사, 유지보수자간 상호 복 신 또는 반복신 방식으로 무선통화가 가능하여야 한다.
 - ③ 터널 등 전파음영지역에서 철도이용승객에게 이동통신서비스(휴대폰, DMB(Digital Multimedia Broadcasting), Wibro(Wireless broadband) 등)를 고려하여 터널입구 통신실이나 기재갱 통신실에 설치 공간, 전원 및 접지단자와 통신용 관로 등 여유

- 용량을 반영한다.(이동통신 서비스제공 설비 : 통신사업자 시설 분)
- ④ 정전 시 중앙제어장치 및 현장설비는 무선통신 서비스가 중단 없이 동작될 수 있 도록 예비전원설비를 구비한다.
- ⑤ 터널 또는 연속되는 터널사이 사갱, 수직갱, 집수정 등 전파음영 지역에는 안테나, 증폭기, 중계기 등을 설치하여 한다.

(2) 고속철도 열차무선설비(TRS)

- ① 열차무선설비는 선로중심 좌우 50 m 이내 및 터널 구간에서는 98% 이상의 통화 신뢰성을 가져야 하며, 잡음과 왜곡이 적고 인접 채널 간에 간섭이 없어야 한다.
- ② 고속철도 열차가 중계기지국간(지상개방구간 및 터널구간)을 350 km/h 이상의 속 도로 이동시에도 음성통화 및 데이터 전송은 끊김이 없어야 한다.
- ③ 트래픽산출 및 사용주파수 계획
 - 가. 주파수 배치계획에 따라 제어채널(예비용), 데이터용 채널, 음성용 채널, WAP을 통한 데이터용 채널 등을 고려하여 소요채널(Time Slot) 및 RF채널(Carrier)을 산정한다.
 - 나. 중계기지국의 채널용량은, 중계기지국의 통화권범위(Coverage)내를 열차가 최소 운행간격으로 최대 편성수로 운행할 때, 통신에 지장을 주지 않도록 충분하여야 한다.
 - 다. 채널용량 산출에 필요한 트래픽은, 장소별 가입자 분포에 의한 트래픽 외에 재 난 및 사고 등의 트래픽을 고려하여 산출한다.
 - 라. 중계기지국에는 기본 사용채널과 장비 고장에 대비한 예비채널 및 트래픽 안 정성을 고려하여 필요한 RF채널을 산정한다.
- ④ 고속철도운행정보 전송을 위한 데이터 채널(Time slot)은 음성통화 채널과는 별도 로 고정할당 할 수 있도록 한다.
- ⑤ 열차무선설비의 기능 및 성능 요건
 - 가. 열차무선설비는 고도의 신뢰성과 가용성을 가진 설비 또는 장치로 구성하고, 예측 가능한 열차무선장비의 고장 유형 등에 대해서는 그에 적합한 유지보수 방안을 수립한다.
 - 나. 중앙제어장치는 주제어장치와 운영조작반(원격지령대 포함), 시스템관리장치, 녹음장치 등으로 구성하고, 운영조작반에서 개별호출, 일제호출, 그룹호출 등이 가능하도록 한다.
 - 다. 시스템관리장치, 원격유지관리장치 등 무선망 관리시스템은 주제어장치, 중계 기지국, 난청해소설비 등의 상태를 원격으로 감시 및 제어 할 수 있어야 한다.
 - 라. 기지국은, 무선송신기의 출력과 무선수신기의 수신감도, S/N 비, Fade Margin 등을 고려하여 계산한 전계강도 예측치와 소요 트래픽 및 외부환경조건에 따라, 열차무선설비의 시설 및 서비스목표치의 품질을 확보할 수 있도록 설계한다.

KDS 47 50 40 : 2019 열차무선설비

마. 무선기기실 내의 무선통신용 케이블은 타 회선, 케이블 등과 분리 또는 이격 하여 설치한다.

- 바. 열차무선설비는 전차선유도, 낙뢰, 충격, 진동 등 외부환경으로 부터 영향을 받지 않도록 설계하며, 전원선 및 공중선(RF 급전선)에는 써지보호기 등을 설치하여 외부 써지로 부터 열차무선설비를 보호한다.
- 사. 터널, 연속되는 터널사이, 사갱, 수직갱, 집수정 등 전파음영지역에는 안테나로 '열차무선설비의 시설 및 서비스목표치'의 품질이 가능하도록 설계한다.
- ④ 열차무선설비의 망관리시스템은 통신망운용센터에서 제어 및 상태감시가 가능하도 록 한다.

(3) 일반철도 열차무선설비(VHF)

- ① 일반철도에서 사용하는 VHF 대역의 전용 무선채널 방식은 단신통화방식으로 하며, 비상통화방식 및 관제통화를 본체에 채널 자동 순차선택(SCAN)기능을 두어수용하거나 별도의 수신기(이하 '무선수신기')를 설치하여 한다.
- ② 무선수신기는 관제센터의 운전지령 및 비상호출을 모두 항시 수신할 수 있어야 하며, 우선선택을 할 수 있는 형태로 운용되도록 한다.
- ③ 일반철도의 중앙제어장치는 철도교통관제센터의 운용조작반과 무선기지국을 연계 시켜 중앙에서 원격제어 및 감시하고 관제사와 기관사가 상호 통화할 수 있는 장 치 등 필요한 장치를 포함한다.
- ④ 기지국은, 무선송신기의 출력과 무선수신기의 수신감도, S/N 비, Fade Margin 등을 고려하여 계산한 전계강도 예측치와 외부환경조건에 따라, '열차무선설비의 시설 및 서비스목표치'의 품질을 확보할 수 있도록 설계한다.
- ⑤ 난청해소용 무선설비 설치 등
 - 가. 터널 또는 연속되는 터널사이 등의 전파음영 지역에는 안테나, 증폭기, 중계기 등을 설치하여야 한다.
 - 나. '가'의 안테나는 특별한 사유가 없는 한 열차무선, 재난방송수신설비, 열차무선 방호장치 등을 통합 수용하여야 한다.
- ⑥ 일반철도 차상무선설비는 동력차의 전방 또는 후방에서 기관사가 사용할 수 있도록 다음 각 호의 기능을 충족하여야 한다.
 - 가. 통화가능지역에서는 관제사, 열차상호간 및 연선의 유지보수요원과 통화가 가능하여야 한다.
 - 나. 열차진동, 습기, 온도 등의 주위환경에 기기성능이 영향을 받아서는 안 된다.
 - 다. 안테나는 기관차 지붕위에 설치하며 풍압하중과 외부충격에 견딜 수 있는 형태로 한다.
 - 라. 감청수신기는 관제통화, 비상통화를 자동으로 선택할 수 있도록 구성한다.
- ⑦ 열차무선 송·수신장비가 설치되는 장소는 장비운용에 필요한 냉난방 설비가 설치 되어야 한다.

열차무선설비 KDS 47 50 40 : 2019

⑧ 철도선로에 인접한 사고 등 위급상황을 신속히 알려 연쇄사고를 예방할 수 있는 열 차무선방호장치 및 음영지역 해소를 위한 열차무선방호중계장치를 설치하여야 한다.

⑨ 열차무선방호장치의 안정적인 유지보수관리 등을 위하여 필요할 경우 지역별로 열 차방호점검시스템을 설치하여야 한다.

(3) 철도통합무선망(LTE-R)

- ① 철도통합무선망(LTE-R)의 음성, 데이터 및 영상전송은 끊김이 없어야 한다.
- ② 데이터 전송 지연시간은 300 ms 이내 이어야 한다.
- ③ 서비스 커버리지는 시간적·공간적으로 연속적이어야 하며, 안정성을 보장하기 위해 98%이상의 통화신뢰성을 가져야 한다.
- ④ 중단 없는 음성, 영상 및 데이터 서비스를 제공하기 위하여 서비스 커버리지 중첩으로 구성하여야 한다.
- ⑤ 필요에 따라 통합공공망간 음성, 영상 및 데이터 등의 정보 공유를 위한 망간 연동이 가능하여야 한다.
- ⑥ 셀 플랜
 - 가. 셀 플랜에 의한 기지국 위치선정은 전파환경 및 경로를 분석하여 최적의 위치에 기지국을 배치하여야 한다.
 - 나. 트래픽 용량 적정성 분석 및 기지국 위치선정, 기지국별 및 지역별 서비스 영역을 확인할 수 있는 서비스 커버리지 예측도(Coverage Map)를 확보하여 설계하여야 한다.
- ⑦ 설비의 구성 및 기능, 성능 요건
 - 가. 철도통합무선망(LTE-R)은 높은 신뢰성과 가용성을 가진 설비로 구성하여야 한다.
 - 나. 철도통합무선망(LTE-R)은 중앙제어장치, 관제조작반, 기지국설비, 단말장치, 네트워크 설비, 전원설비, 기타설비로 구성한다.
 - 다. 관제조작반은 개별호출, 그룹호출 및 일제호출이 가능하여야 한다.
 - 라. 기지국 설비는 전차선유도, 낙뢰, 충격, 진동 등 외부환경으로부터 영향을 받지 않도록 설계하여야 하며, 전원선 및 안테나부에는 서지보호기를 설치하여 외부 서지로부터 설비를 보호하여야 한다.
- ⑧ 철도통합무선망(LTE-R)은 철도교통관제센터 및 예비관제실에서 원격제어 및 상태 감시가 가능하도록 하여야 한다.

4.3 재난방송수신설비의 설계

- (1) 철도의 터널(200 m 이상 사갱, 수직갱 포함) 및 지하공간 등 방송수신 장애지역에는 재난방송 등을 원활하게 수신할 수 있도록 재난방송 수신설비를 설치하여야 한다.
- (2) 재난방송수신설비는 수신 안테나로부터 들어오는 방송신호를 주파수의 변환없이 그대로 전송하여야 한다.
- (3) 터널 내 전구간에서 DMB 전계강도는 45dB μ V/m 를 초과하도록 설계하여야 한다.

KDS 47 50 40 : 2019 열차무선설비

집필위원

성 명	소 속	성 명	소 속
황선근	한국철도기술연구원	신지훈	한국철도기술연구원

자문위원

성 명	소 속	성 명	소 속

국가건설기준센터 및 건설기준위원회

성 명	소 속	성 명	소 속
이용수	한국건설기술연구원	정혁상	동양대학교
구재동	한국건설기술연구원	구자안	한국철도공사
김기현	한국건설기술연구원	김석수	㈜수성엔지니어링
김태송	한국건설기술연구원	김재복	㈜태조엔지니어링
김희석	한국건설기술연구원	소민섭	회명정보통신㈜
류상훈	한국건설기술연구원	여인호	한국철도기술연구원
원훈일	한국건설기술연구원	이성혁	한국철도기술연구원
주영경	한국건설기술연구원	이승찬	㈜평화엔지니어링
최봉혁	한국건설기술연구원	이진욱	한국철도기술연구원
허원호	한국건설기술연구원	이찬우	한국철도기술연구원
		최상철	㈜한국건설관리공사
		최찬용	한국철도기술연구원

중앙건설기술심의위원회

성 명	소 속	성 명	소 속
김현기	한국철도기술연구원	최상현	한국교통대학교
이광명	성균관대학교	정광섭	포스코건설
신수봉	인하대학교	손성연	씨앤씨종합건설(주)
이용재	삼부토건(주)		

국토교통부

성 명	소 속	성 명	소 속
임종일	철도건설과	홍석표	철도건설과
문재웅	철도건설과		

KDS 47 50 40 : 2019 열차무선설비

2019년 04월 08일 개정

소관부서 국토교통부 철도건설과

관련단체 한국철도시설공단

34618 대전광역시 동구 중앙로 242 한국철도시설공단

Tel: 1588-7270 http://www.kr.or.kr

작성기관 한국철도기술연구원

16105 경기도 의왕시 철도박물관로 176 한국철도기술연구원

Tel: 031-460-5000 http://www.krri.re.kr

국가건설기준센터

10223 경기도 고양시 일산서구 고양대로 283(대화동)

Tel: 031-910-0444 E-mail: kcsc@kict.re.kr

http://www.kcsc.re.kr