Building Specialized Regression Models in scikit-learn

Overview

Regression models and measuring fit of a model

The bias-variance trade-off and overfitted models

Lasso and Ridge regression to mitigate overfitting

Support vector regression models

Setting Up The Regression Problem

Types of Machine Learning Problems

Classification

Regression

Clustering

Rule-extraction

Types of Machine Learning Problems

Classification

Regression

Clustering

Rule-extraction

X Causes Y

Cause Independent variable

EffectDependent variable

X Causes Y

Cause Explanatory variable

EffectDependent variable

Linear Regression involves finding the "best fit" line

Let's compare two lines, Line 1 and Line 2

Minimising Least Square Error Line 1: $y = A_1 + B_1x$ Line 2: $y = A_2 + B_2x$

Drop vertical lines from each point to the lines 1 and 2

Minimising Least Square Error Line 1: $y = A_1 + B_1x$ Line 2: $y = A_2 + B_2x$

Drop vertical lines from each point to the lines 1 and 2

The "best fit" line is the one where the sum of the squares of the lengths of these dotted lines is minimum

The "best fit" line is the one where the sum of the squares of the lengths of these dotted lines is minimum

The "best fit" line is the one where the sum of the squares of the lengths of these dotted lines is minimum

The "best fit" line is the one where the sum of the squares of the lengths of the errors is minimum

The "best fit" line is the one where the sum of the squares of the lengths of the errors is minimum

Minimising Least Square Error (x_i, y_i) (x_i, y_i) Regression Line: y = A + Bx

Residuals of a regression are the difference between actual and fitted values of the dependent variable

Regression Line: y = A + BxX

Ideally, residuals should

- have zero mean
- common variance
- be independent of each other
- be independent of x
- be normally distributed

Linear Regression as an Optimization Problem

$$y = A + Bx$$

Regression Line

The "best fit" line which minimizes the sum of the squares of the errors

Regression Line Line 1: $y = A_1 + B_1x$ Line 2: $y = A_2 + B_2x$

The "best fit" line is the one where the sum of the squares of the lengths of the errors is minimum

y' = A + Bx

Fitted Values of Dependent Variable

The fitted line y = A + Bx will yield a different set of values, called the fitted values

Each point (x_i,y_i) has a corresponding point (x_i,y_i) on the regression line

The corresponding values of y'i are called the fitted values

e = y - y'

Residuals

The residuals, or errors, are the differences between the actual and fitted values of the dependent variable

Residuals of a regression are the difference between actual and fitted values of the dependent variable

The regression line is that line which minimizes the variance of the residuals (MSE)

MSE Minimization Extends To Multiple Regression

Simple Regression

Data in 2 dimensions

Data in > 2 dimensions

Simple and Multiple Regression

Simple Regression

One independent variable

$$y = A + Bx$$

Multiple independent variables

$$y = A + B_1x_1 + B_2x_2 + B_3x_3$$

"Best Linear Unbiased Estimator" (BLUE)

"Best"

Coefficients have minimum variance, i.e. are estimated with relatively high certainty

"Unbiased"

Residuals have zero mean, are uncorrelated to each other and have equal variance

Solving the regression problem with the method of least squares gives a BLUE solution

$$R^2 = ESS / TSS$$

 \mathbb{R}^2

R² = Explained Sum of Squares / Total Sum of Squares

 \mathbb{R}^2

ESS - Variance of fitted values

TSS - Variance of actual values

R² = Explained Sum of Squares / Total Sum of Squares

 \mathbb{R}^2

The percentage of total variance explained by the regression. Usually, the higher the R², the better the quality of the regression (upper bound is 100%)

The original data points have some variance (TSS)

The fitted data points have their own variance (ESS)

$$R^2 = ESS / TSS$$

 \mathbb{R}^2

How much of the original variance is captured in the fitted values? Generally, higher this number the better the regression

The regression line found by minimizing variance of residuals (MSE) is the line with the **best R²**

Other Types of Regression

Other forms of regression alter the objective function of the optimization

Demo

Implementing linear regression in scikit-learn

L1 distance
Snake distance
City block distance
Manhattan distance

$$5-1 = 4$$
 $4-0 = 4$
 $= 8$

L-1 Norm

$$L1-Norm(A,B_1,B_2...B_n) = |A| + |B_1| + |B_2| ... + |B_n|$$

L-1 Norm

$$1 - Norm(A, B_1, B_2... B_n) = |A| + |B_1| + |B_2| ... + |B_n|$$

L-2 Norm

$$\frac{2}{L2-Norm(A,B_1,B_2...B_n)} = \frac{2}{|A|} + \frac{2}{|B_1|} + \frac{2}{|B_2|} ... + \frac{2}{|B_n|}$$

L-2 Norm

$$L2-Norm(A,B_1,B_2...B_n) = |A| + |B_1| + |B_2| ... + |B_n|$$

L-2 Norm

$$L2-Norm(A,B_1,B_2...B_n) = A + B_1 + B_2 ... + B_n$$

Euclidean Distance As the crow flies

$$(5-1)^2 = 16$$

$$(5-1)^2 = 16$$

 $(4-0)^2 = 16$

$$(5-1)^2 = 16$$

 $(4-0)^2 = 16$
 $= 32$

$$(5-1)^2 = 16$$

 $(4-0)^2 = 16$
 $= 32$
 $sqrt(32) = 5.65$

L2 Distance(t1, t2) = $sqrt(sum((t1_i - t2_i)))$

L2 Distance(t1, t2) = $sqrt(sum((t1_i - t2_i)))$

L2 Distance(t1, t2) =
$$sqrt(sum((t1_i - t2_i)))$$


```
L2 Distance(t1, t2) = sqrt(sum((t1_i - t2_i)))
```



```
L2 Distance(t1, t2) = sqrt(sum((t1_i - t2_i)))
```


L2 Distance(t1, t2) = $sqrt(sum((t1_i - t2_i)))$

Bias-variance Trade-off

Challenge: Fit the "best" curve through these points

Good Fit?

A curve has a "good fit" if the distances of points from the curve are small

We could draw a pretty complex curve

We can even make it pass through every single point

But given a new set of points, this curve might perform quite poorly

The original points were "training data", the new points are "test data"

Overfitting

Great performance in training, poor performance in real usage

Connecting the Dots

A simple straight line performs worse in training, but better with test data

Overfitting

Low Training Error

Model does very well in training...

High Test Error

...but poorly with real data

Cause of Overfitting

Sub-optimal choice in the bias-variance trade-off

An overfitted model has:

- high variance error
- low bias error

Low bias

Few assumptions about the underlying data

High bias

More assumptions about the underlying data

Model too complex

Training data all-important, model parameter counts for little

Model too simple

Model parameter all-important, training data counts for little

Variance

High variance

The model changes significantly when training data changes

Low variance

The model doesn't change much when the training data changes

Variance

Model too complex

Model varies too much with changing training data

Model too simple

Model not very sensitive to training data

Bias-variance Trade-off

Model too complex

High variance error

Model too simple
High bias error

Bias-variance Trade-off

- High-bias algorithms: simple parameters
 - Regression
- High-variance algorithms: complex parameters
 - Decision trees
 - Dense neural networks

Overfitting, Dropout and Regularization

Preventing Overfitting

- Regularization
- Cross-validation
- Ensemble learning
 - Dropout

Preventing Overfitting

Regularization - Penalize complex models

Cross-validation - Distinct training and validation phases

Dropout (NNs only) - Intentionally turn off some neurons during training

EASY

Regularization

Penalize complex models

Add penalty to objective function

Penalty as function of regression coefficients

Forces optimizer to keep it simple

Cross-Validation

Distinct training and validation phases

Train different models (with training data only)

Select model that does best on validation data

"Hyperparameter tuning"

Multiple Regression

Regression Equation:

$$y = C_1 + C_2 X_1 + ... + C_{k+1} X_k$$

Linear regression involves finding k+1 coefficients, k for the explanatory variables, and 1 for the intercept

A big risk with regression is **multicollinearity**: X variables containing the same information

Success as a Salesperson

Causes

Number of cold calls, years of experience in sales jobs

Effect

Bonus as member of sales team

Kitchen Sink Regression

Proposed Regression Equation:

+ ...

Bad News: Multicollinearity Detected

6 of 10 explanatory variables are highly correlated with each other

Underlying Cause: Extroversion

Each of these explanatory variables is caused by an underlying personality trait

Underlying Cause: Extroversion

Simply measure extroversion and use it instead of the correlated explanatory variables

Kitchen Sink Regression

10 Causes

Cold calls, experience, social media followers, perceived honesty, billing punctuality...

1 Effect

Bonus in sales team

Factor Analysis

Many Observed Causes

Few Underlying Causes

One Effect

Overfitting in Regression

Multi-collinearity in regression leads to overfitting

Model performs well in training, poorly in prediction

Various techniques to improve regression algorithm

Preventing Overfitting

Regularized Regression Models

Lasso Regression

Penalizes large regression coefficients

Ridge Regression

Also penalizes large regression coefficients

Elastic Net Regression

Simply combines lasso and ridge

EASY

Regularization

Penalize complex models

Add penalty to objective function

Penalty as function of regression coefficients

Forces optimizer to keep it simple

Regularization

Regularization reduces variance error But increases bias

Ordinary MSE Regression

Minimize

To find

A, B

$$y = A + Bx$$

Lasso Regression

Minimize

To find

A, B

x is a hyperparameter

$$y = A + Bx$$

L-1 Norm

$$1 - Norm(A, B_1, B_2... B_n) = |A| + |B_1| + |B_2| ... + |B_n|$$

Lasso Regression

Minimize

To find

A, B

α is a hyperparameter

$$y = A + Bx$$

Lasso Regression

Minimize

 $+ \alpha (|A| + |B|)$

To find

A, B

L-1 Norm of regression coefficients

α is a hyperparameter

$$y = A + Bx$$

Ridge Regression

Minimize $(y^{actual} = y^{predicted})^2 + \alpha (|A| + |B|)$ To find A, BL-2 Norm of regression coefficients

α is a hyperparameter

$$y = A + Bx$$

L-2 Norm

$$\frac{2}{L2-Norm(A,B_1,B_2...B_n)} = \frac{2}{|A|} + \frac{2}{|B_1|} + \frac{2}{|B_2|} ... + \frac{2}{|B_n|}$$

Lasso Regression

Lasso Regression

 $\alpha = 0$ ~ Regular (MSE regression)

 $\alpha \rightarrow \infty$ ~ Force small coefficients to zero

Model selection by tuning α

Eliminates unimportant features

Lasso Regression

"Lasso" ~ <u>Least Absolute Shrinkage and</u> <u>Selection Operator</u>

Math is complex

No closed form, needs numeric solution

Ridge Regression

α is a hyperparameter

The value of A and B still define the "best fit" line

$$y = A + Bx$$

Ridge Regression

Ridge Regression

Unlike lasso, ridge regression has closedform solution

Unlike lasso, ridge regression will not force coefficients to 0

- Does not perform model selection

Demo

Implementing Lasso and Ridge regression in scikit-lean

Setting Up the SVM Regression Problem

SVMs are typically used for classification problems

SVRs use the same underlying principles with a different objective function

Data in One Dimension

Unidimensional data points can be represented using a line, such as a number line

Data in One Dimension

Unidimensional can also be separated, or classified, using a point

Data in Two Dimensions

Bidimensional data points can be represented using a plane, and classified using a line

Data in N Dimensions

N-dimensional data can be represented in a hypercube, and classified using a hyperplane

Support Vector Machines

SVM classifiers find the hyperplane that best separates points in a hypercube

Classification

Ideally, data is linearly separable - hard decision boundary

Classification

The nearest instances on either side of the boundary are called the support vectors

Classification

SVM finds the widest street between the nearest points on either side

SVM Classification

Find widest margin with most distance from nearest points (support vectors)

SVM Regression

Find line that "best fits" the points

SVM Classification

No points are inside the margin

SVM Regression

Seek to maximize the number of points inside the margin

SVM Classification

Points far from the margin are "good" (improve objective function value)

SVM Regression

Points far from the margin are "bad" (worsen objective function value)

SVM Classification

Outliers on "wrong" side of line are penalised

SVM Regression

Points far from the margin are penalized

SVM Classification

Width of margin found by optimizer (make as wide as possible)

SVM Regression

Width of margin specified in model (requires another hyperparameter ε)

Demo

Implementing Support Vector Regression in scikit-learn

Summary

Regression models and R² for measuring model fit

The bias-variance trade-off and overfitted models

Lasso and Ridge regression to mitigate overfitting

Support vector regression models