

Olimpiada de Fizică Etapa pe judeţ

15 februarie 2014

Barem de evaluare și de notare Se punctează oricare altă modalitate de rezolvare corectă a problemei

Problema I Geamandura

Nr. item	Sarcina de lucru nr. 1	Punctaj
1.a.	Pentru:	3,50p
	1,00p condiția de echilibru a cilindrului: $(p_0 + \rho \cdot g \cdot y) \cdot S + M \cdot g - p \cdot S = 0$	
	legea transformării izoterme aplicată pentru aerul din cilindru $p_0 \cdot S \cdot h = p \cdot S \cdot x$ 1,00p	
	condiţia de echilibru a pistonului: $p \cdot S + mg + T - (p_0 + (x + y) \cdot \rho \cdot g) \cdot S = 0$ 1,00p	
	expresia înălţimii coloanei de aer din cilindrul geamandurii $x = \frac{mg + M \cdot g + T}{\rho \cdot g \cdot S}$ 0,50p	
1.b.	Pentru:	0,50p
	expresia presiunii aerului din cilindru $p = p_0 \cdot \frac{\rho \cdot g \cdot S \cdot h}{mg + M \cdot g + T}$ 0,50p	

Problema I Barem de evaluare și de notare - Clasa a X –a Pagina 1 din 8

^{1.} Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.

^{2.} Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

1.c.	Pentru:		0,50p
	expresia distanţei dintre partea superioară a cilindrului şi suprafaţa apei $y = -\frac{p_0}{\rho \cdot g} - \frac{M}{S \cdot \rho} + \frac{h \cdot p_0 \cdot S}{m \cdot g + M \cdot g + T}$	0,50p	
Nr. item	Sarcina de lucru nr. 2		Punctaj
2.a.	Pentru:		3,00p
	$y \ge 0$	0,50p	
	$T \leq \frac{\rho \cdot g \cdot S \cdot h}{1 + \frac{M \cdot g}{\rho_0 \cdot S}} - g \cdot (M + m)$	1,00p	
	expresia tensiunii limită în cablu $T_{\text{lim}} = \frac{\rho \cdot g \cdot S \cdot h}{1 + \frac{M \cdot g}{p_0 \cdot S}} - g \cdot (M + m)$ $T_{\text{lim}} = 4455 N$	0,50p	
	domeniul de valori pentru tensiunea din cablu: $T \in [0 N, 4455 N]$	1,00p	
	Observaţie: În cursul unui proces izoterm efectuat de aerul din cilindru, presiunea minimă s-ar realiza atunci când pistonul ar ajunge la capătul de jos al cilindrului, adică atunci când volumul aerului din cilindru ar deveni maxim $x = h$ $h = \frac{mg + M \cdot g + T_{\text{lim}}'}{\rho \cdot g \cdot S}$ $T_{\text{lim}}' = 4500 \text{ N}$		
	Pentru orice tensiune mai mare decât T_{lim} , presiunea din vas ar rămâne p_0 ,		
	pentru că pistonul rămâne la capătul cilindrului		
2.b.	Pentru:		1,50p
	$\frac{m+M}{\rho \cdot S} \le x \le \frac{h}{1+\frac{M \cdot g}{p_0 \cdot S}}$	1,00p	
	$0,100 m \le x \le 0,991 m$	0,50p	
Ofici	iu		1,00p
TOI	AL Problema I		10p

© Barem de evaluare şi de notare propus de:

Dr. Delia DAVIDESCU – Facultatea de Fizică – Universitatea București Dr. Adrian DAFINEI – Facultatea de Fizică – Universitatea București

Olimpiada de Fizică Etapa pe judeţ

15 februarie 2014

Barem de evaluare și de notare Se punctează oricare altă modalitate de rezolvare corectă a problemei

Problema a II-a Oglinda din laborator

Nr. item	Sarcina de lucru nr. 1	Punctaj
1.a.	Pentru:	1,00p
item		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Problema a II-a Barem de evaluare și de notare - Clasa a X –a Pagina 3 din 8

- 1. Orice rezolvare corectă ce ajunge la rezultatul corect va primi punctajul maxim pe itemul respectiv.
- 2. Orice rezolvare corectă, dar care nu ajunge la rezultatul final, va fi punctată corespunzător, proporțional cu conținutul de idei prezent în partea cuprinsă în lucrare din totalul celor ce ar fi trebuit aplicate pentru a ajunge la rezultat, prin metoda aleasă de elev.

$\left| HA_{15} \right| = x + 2a$ |Q"H|=6c+y|ED| = 2a + x0,50p $|FB_4| = 5a + x$ |Q"F|=3c+yasemănarea triunghiurilor $\Delta Q''EC$ și $\Delta Q''HA_{15}$ 0,50p asemănarea triunghiurilor $\Delta Q'' ED$ și $\Delta Q'' FB_4$ 0,50p $\int 3c \cdot x - a \cdot y = 0$ 0,20p $c \cdot x - a \cdot y = -2a \cdot c$ x = ay = 3coglindă 0,50p <u>B</u>₁ B_2 B_3 B_6 $|A_2 C| = \sqrt{a^2 + 9 \cdot c^2}$ 0,30p

Nr. item	Sarcina de lucru nr. 2		Punctaj
2.a.	Pentru:		2,50p
	$\begin{cases} x_1 = -\infty \\ x_2 = -5 \cdot c \end{cases}$	0,20p	
	expresia primei formule fundamentale a lentilelor subţiri		
	$\frac{1}{x_2} - \frac{1}{x_1} = \frac{1}{f}$	0,20p	
	$f = -5 \cdot c$	0,20p	
	$\begin{cases} x'_1 = -d \\ x'_2 = -2 \cdot c \\ f = -5 \cdot c \end{cases}$	0,20p	
	$d = \frac{10 \cdot c}{3}$	0,20p	
	realizarea unei schiţe corecte care să evidenţieze mersul razelor de lumină prin sistemul analizat în cadrul acestei sarcini de lucru de exemplu:	0,80p	
	caz particular $c = a$ $ P' A_3 = c \cdot \sqrt{17}$ $ P' B_4 = 4c \cdot \sqrt{2}$	0,20p	

$c\cdot\sqrt{17}>\frac{10}{3}\cdot c$ $4\cdot c\cdot\sqrt{2}>\frac{10}{3}\cdot c$ distanţele de vedere pentru bancurile optice din rândul întâi sunt mai mari decât distanţa d , deci sunt cuprinse în câmpul de vedere $[d,\infty)$ al lui Mihai, care poartă ochelari	0,20p	
precizarea referitoare la faptul că Mihai vede clar imaginile tuturor bancurilor optice din primul rând, atunci când poartă ochelarii de distanţă	0,30p	
Oficiu		1,00p
TOTAL Problema a II-a		10p

© Barem de evaluare şi de notare propus de:

Dr. Delia DAVIDESCU – Facultatea de Fizică – Universitatea București Dr. Adrian DAFINEI – Facultatea de Fizică — Universitatea București

REZOLVARE ȘI BAREM PENTRU EVALUARE Problema 3 – Termodinamică

Problema 3	Parțial	Punctaj
Barem		10
A. a)		4 p
1)	3 p	
În transformările $1 \rightarrow 2$ și respectiv $3 \rightarrow 4$ gazul nu schimbă lucru mecanic cu exteriorul. Ca urmare transformările $1 \rightarrow 2$ și respectiv $3 \rightarrow 4$ sunt transformări izocore $(V_1 = V_2; V_3 = V_4)$. Transformarea $1 \rightarrow 2$ este o încălzire izocoră, $Q_{12} = 4 \text{kJ} > 0$ (căldură primită de gaz), evoluția crescătoare a temperaturii gazului fiind $T_1 \rightarrow T_2$, iar evoluția crescătoare a presiunii gazului fiind $p_1 \rightarrow p_2$. Transformarea $p_2 \rightarrow q_3 \rightarrow q_4$ este o răcire izocoră, $p_3 \rightarrow q_4 \rightarrow q_4 \rightarrow q_4$ (căldură cedată de gaz), evoluția descrescătoare a temperaturii gazului fiind $p_3 \rightarrow p_4$. Deoarece $p_1 = -p_3 \rightarrow q_4$ kJ, rezultă: $p_2 \rightarrow q_3 \rightarrow q_4 \rightarrow q_4 \rightarrow q_5$ peoarece $p_1 = -p_3 \rightarrow q_4 \rightarrow q_5$ presiunii gazului fiind $p_3 \rightarrow p_4$. $p_4 \rightarrow q_5 \rightarrow q_5$ peoarece $p_1 = -p_5 \rightarrow q_5$ peoarece $p_2 = -p_5 \rightarrow q_5$ peoarece $p_3 \rightarrow q_5$ peoarece $p_4 \rightarrow q_5$ peoarece $p_5 \rightarrow q_5$ peoarece $p_6 \rightarrow $	0,50	
Utilizând informațiile din figura alăturată, în acord cu principiul I al termodinamicii, rezultă:		
$\begin{pmatrix} Q(kJ) \\ 4 \\ 2 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$	0,50	
$1(p_1, V_1, T_1) \rightarrow 2(p_2, V_2, T_2);$ $L_{12} = 0; V = \text{constant}; V_2 = V_1;$		

$Q_{12} = vC_v(T_2 - T_1) = 4 \text{ kJ} = Q > 0$; căldură primită de gaz;		
$T_{2} = T_{1} + \frac{Q}{vC_{v}}; \frac{p_{1}}{T_{1}} = \frac{p_{2}}{T_{2}}; p_{2} = p_{1}\frac{T_{2}}{T_{1}}; p_{2} = p_{1}\left(1 + \frac{Q}{vC_{v}T_{1}}\right);$ $2(p_{2}, V_{2}, T_{2}) \rightarrow 3(p_{3}, V_{3}, T_{3});$		
$2(p_2, V_2, T_2) \rightarrow 3(p_3, V_3, T_3);$		
$Q_{23} = aL_{23} + b;$		
$Q_{23} = L_{23} = 4 \text{ kJ} > 0; a = 1; b = 0;$		
$Q_{23} = L_{23} = 4 \text{ kJ} > 0;$		
$Q_{23} > 0$; căldură primită de gaz;		
$L_{23} > 0$; lucru mecanic cedat (efectuat) de gaz;		
$T = \text{constant}; T_3 = T_2; p_2 V_2 = p_3 V_3;$		
$Q_{23} = vRT_2 \ln \frac{V_3}{V_2} = Q; V_2 = V_1;$	0,50	
$\ln \frac{V_3}{V_1} = \frac{Q}{vRT_2} = \frac{Q}{vR\left(T_1 + \frac{Q}{vC_v}\right)};$		
$p_3 = \frac{p_2 V_2}{V_3} = p_1 \frac{T_2}{T_1} \frac{V_1}{V_3} = \frac{p_1 V_1}{V_3} \left(1 + \frac{Q}{v C_v T_1} \right);$		
$p_3 = \frac{vRT_1}{V_3} \left(1 + \frac{Q}{vC_vT_1} \right);$		
$3(p_3, V_3, T_3) \rightarrow 4(p_4, V_4, T_4);$		
$L_{24} = 0$; $V = \text{constant}$; $V_4 = V_2$;		
$Q_{34} = vC_v(T_4 - T_3) = -4 \text{ kJ} = -Q < 0$; căldură cedată de gaz;		
$Q_{34} = -vC_v(T_3 - T_4) = -4 \text{ kJ} = -Q < 0;$		
$T_3 - T_4 = \frac{Q}{vC_v}; \ T_3 = T_2; T_2 - T_4 = \frac{Q}{vC_v}; T_4 = T_2 - \frac{Q}{vC_v};$	0,50	
$T_2 = T_1 + \frac{Q}{vC_v}; T_4 = T_1;$		
$\frac{p_3}{T_3} = \frac{p_4}{T_4}; \ p_4 = p_3 \frac{T_4}{T_3}; \ p_4 = p_3 \frac{T_1}{T_2}; \ p_4 = \frac{p_3}{1 + \frac{Q}{vC_vT_1}};$		
$p_{4} = \frac{\frac{vRT_{1}}{V_{3}} \left(1 + \frac{Q}{vC_{v}T_{1}} \right)}{1 + \frac{Q}{vC_{v}T_{1}}} = \frac{vRT_{1}}{V_{3}};$		
$ \begin{array}{c c} vC_{v}T_{1} \\ 4(p_{4}, V_{4}, T_{4}) \rightarrow 1(p_{1}, V_{1}, T_{1}); \end{array} $		
$4(p_4, V_4, T_4) \to 1(p_1, V_1, T_1);$		

$T_4 = T_1; \ p_4 V_4 = p_1 V_1; V_4 = V_3;$		
$Q_{41} = vRT_1 \ln \frac{V_1}{V_4} = vRT_1 \ln \frac{V_1}{V_3} < 0;$		
$Q_{41} = -vRT_1 \ln \frac{V_3}{V_1} < 0; \ln \frac{V_3}{V_1} = \frac{Q}{vR\left(T_1 + \frac{Q}{vC_v}\right)};$	0,50	
$Q_{41} = -vRT_1 \frac{Q}{vR\left(T_1 + \frac{Q}{vC_v}\right)}; Q_{41} = -T_1 \frac{Q}{\left(T_1 + \frac{Q}{vC_v}\right)};$		
$Q_{41} = -\frac{Q}{\left(1 + \frac{Q}{vC_{v}T_{1}}\right)}; Q_{41} = -\frac{Q}{2}; Q = vC_{v}T_{1}; T_{1} = \frac{Q}{vC_{v}};$		
$T_2 = T_1 + \frac{Q}{vC_v} = 2T_1 = \frac{2Q}{vC_v}; \ p_2 = 2p_1; \ V_2 = V_1;$		
$T_3 = T_2 = 2T_1 = \frac{2Q}{vC_v}; \ p_3 = \frac{2vRT_1}{V_3} = \frac{2p_1V_1}{V_3}; \ \ln\frac{V_3}{V_1} = \frac{C_v}{2R};$		
$T_4 = T_1$.		
Pe ultimul sector al ciclului evolutia izotermă a sistemului încene din		

Pe ultimul sector al ciclului, evoluția izotermă a sistemului începe din starea 4, sistemul eliberează căldura $Q_{40} = -2 \text{ kJ} = -\frac{Q}{2}$, primește lucrul mecanic

 $L_{40} = -2 \text{ kJ} = -\frac{Q}{2}$ și ajunge în starea "0", ai cărei parametri sunt:

$$4(p_{4}, V_{4}, T_{4}) \rightarrow 0(p_{0}, V_{0}, T_{1});$$

$$T_{4} = T_{1};$$

$$Q_{40} = vRT_{1} \ln \frac{V_{0}}{V_{4}} = -vRT_{1} \ln \frac{V_{4}}{V_{0}} = -vRT_{1} \ln \frac{V_{3}}{V_{0}} = -\frac{Q}{2};$$

$$\ln \frac{V_{3}}{V_{0}} = \frac{Q}{2vRT_{1}}; Q = vC_{v}T_{1}; \ln \frac{V_{3}}{V_{0}} = \frac{C_{v}}{2R};$$

$$\ln \frac{V_{3}}{V_{1}} = \frac{C_{v}}{2R}; V_{0} = V_{1};$$

$$p_{4}V_{4} = p_{0}V_{0} = p_{0}V_{1};$$

$$p_{0} = \frac{p_{4}V_{4}}{V_{1}} = \frac{vRT_{1}}{V_{3}} \frac{V_{4}}{V_{1}} = \frac{p_{1}V_{1}}{V_{3}} \frac{V_{3}}{V_{1}} = p_{1};$$

$$0(p_{0}, V_{0}, T_{1}) \equiv 1(p_{1}, V_{1}, T_{1}).$$

$$T_{2} = T_{\text{max}}; T_{1} = T_{\text{min}}; \frac{T_{\text{max}}}{T_{\text{min}}} = \frac{T_{2}}{T_{1}} = 2.$$

2)	1 p	
Graficul transformării ciclice, transpus în diagrama (p,V) este reprezentat în figura alăturată.	1,00	
T_{2} T_{2} T_{1} T_{2} T_{3} T_{4} T_{1} T_{2} T_{3} T_{4} T_{2} T_{3} T_{4} T_{5} T_{7} T_{1} T_{2} T_{3} T_{4} T_{5} T_{7} T_{8} T_{8		
B. b)		3 p
1) După înlăturarea foliei de la gura paharului și după realizarea stării de	1,50 p	
echilibru, evidențiată în desenul b din figura alăturată, evoluția aerului din pahar fiind izotermă, rezultă: $p_0V_0 = pV; p_0\frac{h}{2} = pd;$ $p + \rho g\frac{h}{2} = \rho_0 + \rho_0 g(\frac{h}{2} + d + H);$ $H = \frac{p_0}{\rho_0 g}(\frac{h}{2d} - 1) + \frac{h}{2}(\frac{\rho}{\rho_0} - 1) - d.$ $h/2 \qquad b \qquad c$	1,50	
2)	1,50 p	
Evoluția sistemului, până la evacuarea celor două straturi de lichid din	1,00 р	
pahar și așezarea lor așa cum indică desenul c din aceeași figură, însemnează extinderea aerului în tot paharul într-o transformare generală astfel încât avem:		

$\frac{pV}{T} = \frac{p'V'}{T'}; \frac{T'}{T} = 2\frac{p'}{p_0}; p' = \rho_0 g (h + H + h_a) + \rho g h_u;$	1,50	
$T = T' , T = 2 \frac{p_0}{p_0}, p = p_{0g}(n + 11 + n_a) + p_g n_u,$		
$h_{\mathrm{u}}=rac{s}{S}rac{h}{2}; h_{\mathrm{a}}=rac{s}{S}igg(rac{h}{2}-digg); rac{T'}{T}=rac{2g}{p_{\mathrm{0}}}igl[ho_{\mathrm{0}}igl(h+H+h_{\mathrm{a}}igr)+ ho h_{\mathrm{u}}igr].$		
C. c)		2 p
Notații: ρ_1 – densitatea gazului în sfera mare; ρ_2 – densitatea gazului în		
sfera mică.		
La momentul inițial, înaintea exploziei sferei interioare, centrul de		
masă (CM) al aparatului, reprezentat în desenul din figura alăturată,		
se determină ca fiind centrul de masă al unui sistem format din două		
puncte materiale:		
$\frac{R}{R}$		
$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$		
P_1		
$m_1 \sim CM \qquad m_2$		
$ x_1 $		
nunctul meterial Desituat în centrul aforci mari evand meser		
- punctul material P ₁ , situat în centrul sferei mari, având masa:		
$m_1 = \rho_1 \cdot \frac{4\pi R^3}{3}$	0,25	
3		
ca și cum acest gaz ar umple în întregime sfera mare, unde ρ_1 este densitatea		
gazului din sfera mare;		
- punctul material P ₂ , situat în centrul sferei mici, având masa:		
$m_2 = (\rho_2 - \rho_1) \cdot \frac{4\pi R^3}{24},$	0.25	
21	0,25	
ca și cum un gaz cu densitatea $(\rho_2 - \rho_1)$, ar umple în întregime sfera mică.		
Pentru a stabili poziția CM al sistemului, înaintea exploziei, rezultă:		
$m_1 x_1 = m_2 x_2; \ x_1 + x_2 = \frac{R}{2};$		
<u> </u>		
$x_1 = \frac{m_2}{m_1 + m_2} \cdot \frac{R}{2}; \ x_2 = \frac{m_1}{m_1 + m_2} \cdot \frac{R}{2};$		
$m_1 + m_2 + 2 \qquad m_1 + m_2 + 2$		
	0,25	
	0,25	

$x_1 = \frac{\rho_2 - \rho_1}{7\rho_1 + \rho_2} \cdot \frac{R}{2}; \ x_2 = \frac{8\rho_1}{7\rho_1 + \rho_2} \cdot \frac{R}{2}.$ Explozia din aparat nu modifică poziția centrului de masă al sistemului. Deoarece după explozie întregul aparat se deplasează pe distanța d , însemnează că centrul de masă al aparatului se află la distanța d față de poziția inițială a centrului sferei mari.	0,25	
În aceste condiții, rezultă:		
$x_{1} = \frac{\rho_{2} - \rho_{1}}{7\rho_{1} + \rho_{2}} \cdot \frac{R}{2} = d;$ $\frac{\rho_{2}}{\rho_{1}} = \frac{R + 14d}{R - 2d}; \ \rho_{2} = \frac{R + 14d}{R - 2d} \cdot \rho_{1}.$	0,25	
După explozie, centrul de masă al aparatului este centrul de masă al sferei		
cu raza R , plină cu un gaz având densitatea: $\rho = \frac{\rho_1 \left(\frac{4\pi R^3}{3} - \frac{4\pi R^3}{24}\right) + \rho_2 \frac{4\pi R^3}{24}}{4\pi R^3} = \rho_1 + \frac{\rho_2 - \rho_1}{8} = \frac{7\rho_1 + \rho_2}{8};$	0,25	
$\frac{4\pi R^3}{3}$ 8 8	0,25	
$\rho = \frac{R}{R-2d} \cdot \rho_1.$ Rezultă: $\frac{p_{\text{final}}}{p_{\text{initial}}} = \frac{\rho_{\text{final}}}{\rho_{\text{initial}}} = \frac{\rho}{\rho_1} = \frac{R}{R-2d}.$	0,25	
Oficiu		1 p
Oliciu		тh

© Barem de evaluare şi de notare propus de:

Prof. dr. Mihail Sandu, Liceul Tehnologic de Turism, Călimănești