

Prof. Dr. Agnes Koschmider Dominik Janssen

Advanced Process Mining

Summer term 2020

Exercise sheet 3

DFG Limitations • DFG Soundness • DFG to PN

Exercise 1: Limitations of the Directly-Follows Graph

#	Trace
100	abcef
90	abecf
87	abdef
85	abedf
3	abef
1	abcdef

- a) Draw a Directly-Follows Graph for the event log above.
- b) Compare the Directly-Follows Graph from a) with the Petri net above. Does the DFG allow for behaviour that is not allowed according to the Petri net?
- c) Explain the thresholds τ_{var} , τ_{act} and τ_{df} .

Solution

a) The Directly-Follows Matrix looks as follows:

\rightarrow_L	a	b	С	d	e	f	Е
S	366						
a		366					
b			101	87	178		
C				1	100	90	
d					88	85	
e			90	85		191	
f							366

The corresponding Directly-Follows Graph will look like this:

b) The Directly-Follows Graph allows for a loop involving activities c, d and e. The Petri net from which the event log was created does not permit any loops involving activities c and d. According to the Petri net there is an exclusive choice between c and d.

- c) τ_{var} Defines the thresholds for the minimal number of traces for each variant included (based on $\#_L(\sigma)$).
 - τ_{act} Defines the minimal number of events for each activity included (based on $\#_L(a)$).
 - τ_{df} Defines the minimal number of direct successions for each relation included (based on $\#_L(a, b)$).

Exercise 2: Soundness in Directly-Follows Graphs

- a) Define soundness in DFG in a non-formal way.
- b) How can a sound DFG be turned into an unsound DFG?

Solution

- a) A DFG with N (the set of nodes) and E (the set of edges) is sound if every node $x \in N$ is on a path from start to end.
- b) To reduce the complexity of a DFG, edges might be filtered out, possibly resulting in deadlocks and an unsound Graph.

Exercise 3: Transformation from DFG to PN

Transform the DFG above into a Petri net. Model each transition as a combination of start and end event.

Solution

The transformed Petri net will look like this:

