

Tutoriel **ET**EX

Author: CatMono

Date: July, 2025

Version: 0.1

Contents

Chapter 1 Document Structure	1
Chapter 2 Typesetting and Formatting	2
2.1 Text Formatting	2
Chapter 3 Mathematical Formulas and Environments	3
3.1 Multi-line and complex math environments	3
Chapter 4 Figures and Tables	4
Chapter 5 Citations and Indexing	5
Chapter 6 Packages and Customization	6
Chapter 7 Templates	7
Chapter 8 Appendices	8

Chapter 1 Document Structure

Chapter 2 Typesetting and Formatting

2.1 Text Formatting

¶ Font Size

 $_{\text{tiny} < \text{scriptsize} < \text{footnotesize} < \text{small} < \text{normalsize} < \text{large} < \text{LARGE} < \text{huge} < \text{Huge}$

Note

- 1. Use these commands directly in the **main text**, **tables**, **or formulas** to change the font size.
- 2. Each command affects the text that follows it, until another font size command is encountered or the environment ends.
- 3. \normalsize is the default font size and can be used to restore the normal size.

Chapter 3 Mathematical Formulas and Environments

3.1 Multi-line and complex math environments

Math mode in $\text{ET}_{E}X$ is divided into inline math mode (such as \dots ,\(\...\), suitable for inserting short formulas within the text) and display math mode (such as $\$,\[\...\], displaymath or environments like equation, used for independently centered and longer or more important formulas). It is recommended to use \(\...\) and \[\...\], and not to use $\$...\\$.

A few common environments for multi-line and complex formulas are listed below.

	Environment	Alignment	Usage	Remark
Standalone	align	✓	Multiline equation alignment	Each line numbered independently
	gather		Centered arrangement of multiline equations	
	multline		Long equations, line breaks	First line left-aligned, last line right-aligned
	equation		Multi-line alignment for a single formula	Overall numbering
qnS	aligned	✓	Local alignment (inside another math env)	Used in equation, align, gather
	cases	✓	Piecewise functions	One & each case
	split	✓	Split a long equation	Used within equation

- 1. equation*, a lign*, gather*, multline* are used for unnumbered equations.
- 2. Since equation, split, and aligned are used for multi-line alignment of a single equation, and cases is for an entire piecewise function, none of them support page breaks.
- 3. All of these environments come from the amsmath package; environments such as eqnarray and array are not recommended for use.
- 4. Sub-environments must be used within the standalone environments.

Chapter 4 Figures and Tables

Chapter 5 Citations and Indexing

Chapter 6 Packages and Customization

Chapter 7 Templates

Chapter 8 Appendices

Bibliography

- [1] 作者, Title1, Journal1, Year1. This is an example of a reference.
- $\cite{Continuous partial points} \cite{Continuous partial points} Author 2, Title 2, Journal 2, Year 2. \cite{Continuous partial points} \cite{Continuous partial p$