SolutionLong Quiz #4.2 (30-Apr): CSC-2259: Discrete Structures, Sp 2020

Your answers must be to the point. Total = 50; marks for each question is shown in [].

LastName: FirstName

1. Fill the table below when X = #(H in 3 tosses of a coin) and p = Prob(H) in a toss. [8]

$\overline{\text{Value } i \text{ of } X}$	Associated sample points	Prob(X = i)
0	TTT	q^3
1	HTT, THT, TTH	$3pq^2$
2	HHT, HTH, THH	$3p^2q$
3	ННН	p^3

Verify that the sum of probabilities above equals 1; show details. [2]

$$q^3 + 3pq^2 + 3p^2q + q^3 = (p+q)^3 = 1$$

For what values of p, Prob(X = 2) will be the larger than the probability of other values? [2] 2/4

2. Give all details of the computation of E(X) when X has a Binomial probability distribution (for general $n \ge 1$). [5]

$$\begin{split} E(X) &= \sum_{0 \leq i \leq n} i.\, C(n,\, i) p^i q^{n-i} &= \sum_{1 \leq i \leq n} i.\, C(n,\, i) p^i q^{n-i} \\ &= np.\, \sum_{1 \leq i \leq n} C(n-1,\, i-1) p^{i-1} q^{n-i} &= np.\, \sum_{0 \leq j \leq n-1} C(n-1,\, j) p^j q^{(n-1)-j} \\ &= np.\, (p+q)^{n-1} = np. \end{split}$$

3. Consider 3 tosses of a coin with Prob(H) = 2/3. If every H gives a gain of 2 and every T gives a loss of 1, i.e., gain of -1, what would be the expected net gain? Show your computations by filling the table below. [9]

$\overline{\#(H)}$	Probability	Total net gain	Contribution to Expected net gain	Expected net gain
0	1/27	-3	-3/27	
1	6/27	0	0	2
2	12/27	3	36/27	3
3	8/27	6	48/27	

4. Complete the sentence below and give an example of "the things" to justify the statement. [2+2]

Probability Theory finds the things that are certain even in presence of uncertainties. The sum-rule or complement-rule.

- 5. Assume R to be the $n \times n$ relation-matix of a partial order. Give an efficient way to determine whether R gives a linear order or not. Also, an efficient way to determine from R all maximal items in the partial order. [4+4]
 - (a) Determine #(1) in R and if that equals n(n+1)/2 then R is a linear order; otherwise, it is not a linear order. *** Another possible answer: if for any i, j we have R[i][j] + R[j][i] = 0 then it is not a linear order.
 - **(b)** Determine for each row #(1); if it equals 1 then the corresponding item is a maximal item.
- 6. Give the structure of Hasse-diagrams of all parital orders on 3 items that are NOT linear orders. Also, give #(parital orders) for each structure. [4+4]

#(partial orders) = 3

7. When do we say a relation is anti-symmetric? [2]

For each $x \neq y$, at most one of (x, y) and (y, x) can be in R, i.e., if $(x, y) \in R$ then $(y, x) \notin R$.

8. In what way an equivalence relation differs from a partial order? [2]

An equivalence relation is symmetric and a partial order is anti-symmetric.