北京邮电大学 2018--2019 学年第 1 学期

《概率论与数理统计》期末考试试题(A)

考试注意事项:学生必须将答题内容做在试题答题纸上,做在试题纸上一律无效.

一. 填空题(每空4分,共40分)

- 1.设A, B为两事件,且 $P(A) = \frac{1}{4}$, $P(B \mid A) = \frac{1}{3}$, $P(A \mid B) = \frac{1}{2}$,则 $P(A \cup B) = ____$.
- 2.设随机变量 X 的概率密度为

$$f(x) = \begin{cases} ax, 0 < x < 2, \\ 0, \quad 其它 \end{cases}$$

则 $P\{X > 1\}$ = . (先确定常数 a, 再计算 $P\{X > 1\}$)

- 3.设随机变量 X 和 Y 相互独立,且 $X \sim N(0,3)$, $Y \sim N(0,4)$,则 2X Y 与 2X + Y 的相关系数为 .
- 4. 设随机变量 X 和 Y 相互独立,且 $X \sim U(0,2)$, Y 的分布律为 $P\{Y=k\} = \frac{1}{2}, \ k=1,2, \ 则 \ P\{X+Y\leq 2\} = ____.$
 - 5.某种型号器件的寿命 X (单位:小时) 具有概率密度

$$f(x) = \begin{cases} \frac{1000}{x^2}, x > 1000, \\ 0, 其他 \end{cases}$$

现有一大批此种器件, 从中任取10件, Y表示 10 件器件中寿命大于 2000 小时的件数, 则 $D(Y) = _____$.

6.设 X_1, X_2, \dots, X_{48} 独立同分布,且 $X_1 \sim U(-1,1)$,利用中心极限定理可得

$$P\{|\sum_{i=1}^{48} X_i| < 2\} \approx$$
_____.

7.设 X 服从参数为 2 的泊松分布,则 $E(e^{X}) = ____.$

- 8.从正态总体 $N(\mu, \sigma^2)$ 中抽取容量为16的样本,算得样本均值为 $\bar{x} = 14.68$,样本标准差为 s = 2.4,则 μ 的置信水平为95%的置信区间为 _____.
- 9.设 X_1, X_2, \dots, X_n 为来自总体b(1, p)的样本, $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$,则 $D(\overline{X}) = \underline{\hspace{1cm}}$.
- 10. 设 X_1, X_2, X_3, X_4, X_5 为 来 自 总 体 $N(0, \sigma^2)$ 的 样 本 , 若 统 计 量

$$\frac{cX_1}{(X_2^2 + X_3^2 + X_4^2 + X_5^2)^{1/2}} 服从 t 分布,则 c = ____.$$

- 二. (10分) 一袋中有 5 个球,其中 2 个红球、3 个白球. 从中不放回地任取 3 个球,以 *X* 表示取出的 3 球中的红球数,求
 - (1) X 的分布律; (2) E(X); (3) X 的分布函数.
- 三. (10 分) 设随机变量 X 和 Y 相互独立,且均服从参数为 1 的指数分布, 求
 - (1) $P\{X > 2Y\}$; (2) $Z = \min(X, Y)$ 的分布函数; (3) U = X + Y 的概率密度.
- 四. (10 分) 设随机向量(X,Y)的概率密度为

$$f(x,y) = \begin{cases} \frac{21}{4}x^2y, x^2 < y < 1, \\ 0,
其它$$

- 求(1) Cov(X,Y); (2) Y = y(0 < y < 1) 的条件下, X 的条件概率密度.
- 五. (10 分) 设总体 X 的概率密度为

$$f(x;\theta) = \begin{cases} \frac{1}{\theta} x^{\frac{1}{\theta}-1}, 0 < x < 1, \\ 0, 其他 \end{cases}$$

 $\theta \in (0,+\infty)$ 为未知参数, X_1, X_2, \dots, X_n 为来自该总体的样本.

(1)求 θ 的最大似然估计量 $\hat{\theta}$; (2) 证明 θ 的最大似然估计量 $\hat{\theta}$ 是 θ 的无偏估计.

六. (10 分) 有甲、乙两台机器生产同种类型的金属部件. 分别在两台机器所生产的部件中各抽取一个容量均为8的样本, 测量部件的重量(单位:kg), 经计算得样本均值和样本方差如下:

甲机器:
$$\bar{x} = 12.68$$
, $s_1^2 = 5.06$,

乙机器:
$$\bar{y} = 10.45$$
, $s_2^2 = 2.94$,

设甲、乙两台机器生产的金属部件的重量分别服从正态分布 $N(\mu_1, \sigma_1^2)$ 和 $N(\mu_2, \sigma_2^2)$,

- (1) 试检验假设: $H_0: \sigma_1 = \sigma_2$ $H_1: \sigma_1 \neq \sigma_2$ (显著性水平 $\alpha = 0.1$);
- (2) 在显著性水平 $\alpha = 0.05$ 下,能否认为甲机器生产的部件的重量比乙机器生产的部件的重量大?

七. (10分) 在钢线碳含量对于电阻的效应的研究中,得到以下数据:

并计算得
$$\sum_{i=1}^{7} x_i = 2.8$$
, $\sum_{i=1}^{7} x_i^2 = 1.4$, $\sum_{i=1}^{7} y_i = 147$, $\sum_{i=1}^{7} y_i^2 = 3181$, $\sum_{i=1}^{7} x_i y_i = 63.9$,

- (1)求线性回归方程 $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$;
- (2)在显著水平 $\alpha = 0.01$ 下,检验回归方程的显著性,即检验假设 $H_0: \beta_1 = 0, H_1: \beta_1 \neq 0$

時:
$$\Phi(0.5) = 0.6915$$
 , $t_{0.025}(15) = 2.13$, $t_{0.05}(14) = 1.76$, $F_{0.05}(7,7) = 3.79$, $F_{0.01}(1,5) = 16.3$.