Mathematik II für Informatik 2. Übungsblatt (mit Lösungshinweisen)

SoSe 2018

Fachbereich Mathematik Prof. Dr. Thomas Streicher

Übung: Übung: 19./20. April 2018

Alexander Dietz, Anton Freund Lucas Schöbel-Kröhn

Abgabe: 26./27. April 2018

Gruppenübung

Aufgabe G1 (Landausymbole)

Zeigen Sie:

- (a) Für $a_n := 2 \cdot n^2 + 42 \cdot n$ hat man $a_n \in O(n^2)$.
- (b) Man hat $\sqrt{n} \in o(n)$.
- (c) Aus $a_n \in o(b_n)$ folgt $a_n \in O(b_n)$.

Lösungshinweise:

(a) Für n > 0 ist

$$\left| \frac{2 \cdot n^2 + 42 \cdot n}{n^2} \right| = 2 + \frac{42}{n} \le 2 + 42 = 44.$$

Somit ist die Folge $(a_n/n^2)_{n\in\mathbb{N}_{>0}}$ beschränkt.

(b) Man hat

$$\lim_{n\to\infty}\frac{\sqrt{n}}{n}=\lim_{n\to\infty}\frac{1}{\sqrt{n}}=0.$$

(c) Aus $a_n \in o(b_n)$ folgt $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$. Damit ist $\left(\frac{a_n}{b_n}\right)_{n\in\mathbb{N}}$ eine konvergente und somit insbesondere eine beschränkte Folge. Daraus folgt $a_n \in O(b_n)$.

Aufgabe G2 (Allgemeines Verständnis von Reihen)

Entscheiden Sie, ob die folgenden Aussagen richtig oder falsch sind. Überlegen Sie sich eine kurze Begründung für Ihre Entscheidungen.

- (a) Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge und sei $(s_n)_{n\in\mathbb{N}}$ die Folge der Partialsummen der Reihe $\sum_{n=0}^{\infty} a_n$.
 - \square Wenn (a_n) eine Nullfolge ist, so konvergiert (s_n) .
 - \square Wenn (s_n) konvergiert, so ist (a_n) eine Nullfolge.

 - □ Wenn (a_n) eine Nullfolge ist, so ist (s_n) eine Nullfolge. □ $\sum_{n=0}^{\infty} a_n$ konvergiert genau dann, wenn $\sum_{n=j}^{\infty} a_n$ für beliebiges $j \in \mathbb{N}$ konvergiert.
- (b) Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge positiver reeller Zahlen. \square Wenn die Reihe $\sum_{n=0}^{\infty} a_n$ konvergiert, dann konvergiert auch die Reihe $\sum_{n=0}^{\infty} a_n^2$. \square Wenn die Reihe $\sum_{n=0}^{\infty} a_n$ konvergiert, dann konvergiert auch die Reihe $\sum_{n=0}^{\infty} \frac{1}{a_n}$. \square Wenn die Reihe $\sum_{n=0}^{\infty} a_n^2$ konvergiert, dann konvergiert auch die Reihe $\sum_{n=0}^{\infty} a_n$.

- (c) Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge.
 - \square Existiert der Grenzwert $\lim_{n\to\infty} n \cdot \sqrt[n]{|a_n|}$, so konvergiert die Reihe $\sum_{n=0}^{\infty} a_n$ absolut.

 - □ Wenn die Folge $(\sqrt[n]{|a_n|})_{n \in \mathbb{N}}$ konvergiert, so konvergiert auch die Reihe $\sum_{n=0}^{\infty} a_n$. □ Gilt für alle $n \ge 1$ die Ungleichung $\left|\frac{a_{n+1}}{a_n}\right| < 1$, so konvergiert die Reihe $\sum_{n=0}^{\infty} a_n$ absolut.

Lösungshinweise:

(a) **Falsch:** Ein Gegenbeispiel ist die harmonische Reihe mit $a_n = \frac{1}{n}$.

Richtig: Eine Reihe konvergiert nach Definition 5.5.1, wenn die Folge der Partialsummen s_n konvergiert. Für die Konvergenz der Reihe ist nun aber notwendig (Satz 5.5.5), dass a_n eine Nullfolge

Falsch: Ein Gegenbeispiel ist wieder die harmonische Reihe. Ein weiteres Gegenbeispiel ist die geometrische Reihe für |q| < 1, mit $a_n = q^n$ und $\lim_{n \to \infty} s_n = \frac{1}{1-a}$.

Richtig: Für $N \ge j$ definieren wir

$$s_N^* := \sum_{k=j}^N a_k.$$

Dann gilt

$$s_N^* = \sum_{k=j}^N a_k = \sum_{k=0}^N a_k - \sum_{k=0}^{j-1} a_k = s_N - \sum_{k=0}^{j-1} a_k = s_N - c.$$

Dabei hängt c nicht von N ab. Wenn nun s_N für $N \to \infty$ konvergiert, dann konvergiert auch $s_N^* = s_N - c$, da c konstant ist und die Summe zweier konvergenter Folgen konvergiert. Andererseits gilt natürlich auch

$$s_N = s_N^* + c,$$

so dass aus der Konvergenz von s_N^* auch die Konvergenz von s_N folgt.

(b) **Richtig:** Da $\sum_{n=0}^{\infty} a_n$ konvergiert, ist $(a_n)_{n\in\mathbb{N}}$ eine Nullfolge. Somit gibt es ein $N\in\mathbb{N}$ mit $a_n<1$ für $n\geq N$. Dann gilt $0< a_n^2< a_n$ für solche n. Nach dem Majorantenkriterium folgt, dass die Reihe $\sum_{n=0}^{\infty} a_n^2$ absolut konvergiert.

Falsch: Da $(a_n)_{n\in\mathbb{N}}$ eine Nullfolge ist, geht $(1/a_n)_{n\in\mathbb{N}}$ gegen unendlich. Insbesondere ist es keine Nullfolge und $\sum_{n=0}^{\infty} \frac{1}{a_n}$ divergiert.

Falsch: Ein Gegenbeispiel ist $a_n = \frac{1}{n}$ (siehe Beispiel 5.5.2(c) und Beispiel 5.5.14(b)).

(c) **Richtig:** Damit der Grenzwert existiert, muss $(\sqrt[n]{|a_n|})_{n\in\mathbb{N}}$ eine Nullfolge sein. Somit konvergiert die Reihe nach dem Wurzelkriterium absolut.

Falsch: Ein Gegenbeispiel ist $a_n = 1$ für alle $n \in \mathbb{N}$.

Falsch: Ein Gegenbeispiel ist die harmonische Reihe mit $a_n = \frac{1}{n}$. Für n > 0 hat man $\left| \frac{a_{n+1}}{a_n} \right| = \frac{n}{n+1} < 1$, aber die harmonische Reihe divergiert.

Aufgabe G3 (Konvergenz von Reihen — Teil 1)

Entscheiden Sie, ob die folgenden Reihen konvergieren, absolut konvergieren oder divergieren. Begründen Sie Ihre Entscheidung.

(a)
$$\sum_{n=0}^{\infty} \frac{2^n}{1+2^n}$$
 (b) $\sum_{n=0}^{\infty} i^n$ (mit $i^2 = -1$) (c) $\sum_{n=1}^{\infty} \frac{(-1)^n}{4n + (-1)^n}$ (d) $\sum_{n=0}^{\infty} \frac{1}{(3n)!}$

Lösungshinweise:

- (a) Die Reihe divergiert nach dem Minorantenkriterium, da $\frac{2^n}{1+2^n} \ge \frac{2^n}{2^n+2^n} = \frac{1}{2}$ und $\sum_{n=0}^{\infty} \frac{1}{2}$ divergiert.
- (b) Wegen $i^{4n} = (i^2)^{2n} = (-1)^{2n} = 1^n = 1$ bilden die Summanden keine Nullfolge. Also divergiert die
- (c) Um das Leibniz-Kriterium anzuwenden zeigen wir, dass $a_n = \frac{1}{4n + (-1)^n}$ eine monoton fallende Null-

$$a_{n+1} - a_n = \frac{1}{4(n+1) + (-1)^{n+1}} - \frac{1}{4n + (-1)^n} \le \frac{1}{4(n+1) - 1} - \frac{1}{4n+1} = \frac{(4n+1) - (4n+3)}{(4n+3)(4n+1)}$$
$$= -\frac{2}{(4n+3)(4n+1)} \le 0.$$

Somit konvergiert die Reihe. Sie konvergiert jedoch nicht absolut, da z.B. $\frac{1}{5n}$ eine divergente Minorante für $|a_n|$ ist (vgl. harmonische Reihe):

$$|a_n| = \left| \frac{1}{4n + (-1)^n} \right| = \frac{1}{|4n + (-1)^n|} \ge \frac{1}{|4n| + |(-1)^n|} = \frac{1}{4n + 1} \ge \frac{1}{4n + n} = \frac{1}{5n}.$$

(d) Die absolute Konvergenz lässt sich mit dem Quotientenkriterium zeigen:

$$\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to \infty} \frac{(3n)!}{(3(n+1))!} = \lim_{n \to \infty} \frac{(3n)!}{(3n+3)!} = \lim_{n \to \infty} \frac{(3n)!}{(3n)!(3n+1)(3n+2)(3n+3)} = \lim_{n \to \infty} \frac{1}{(3n+1)(3n+2)(3n+3)} = 0 < 1.$$

Hausübung

Aufgabe H1 (Konvergenz von Reihen — Teil 2)

(12 Punkte)

Entscheiden Sie, ob die folgenden Reihen konvergieren, absolut konvergieren oder divergieren. Beweisen Sie Ihre Entscheidung.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$

(b)
$$\sum_{n=0}^{\infty} \frac{2n-1}{\sqrt{2}^n}$$

(c)
$$\sum_{n=0}^{\infty} \frac{n^2 + 7}{5n^2 + 1}$$

(a)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$$
 (b) $\sum_{n=0}^{\infty} \frac{2n-1}{\sqrt{2}^n}$ (c) $\sum_{n=0}^{\infty} \frac{n^2+7}{5n^2+1}$ (d) $\sum_{n=1}^{\infty} (-1)^n \frac{2n+1}{n(n+1)}$

Aufgabe H2 (Konvergenz von Reihen — Teil 3)

Bestimmen Sie, für welche $x \in \mathbb{R}$ die folgenden Reihen konvergieren, absolut konvergieren oder divergieren.

(a)
$$\sum_{n=2}^{\infty} \frac{1}{\left(x - \frac{1}{n}\right)^n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{xn}{\sqrt{n} + x}$$

(a)
$$\sum_{n=2}^{\infty} \frac{1}{\left(x - \frac{1}{n}\right)^n}$$
 (b) $\sum_{n=1}^{\infty} \frac{xn}{\sqrt{n} + x}$ (c) $\sum_{n=1}^{\infty} \frac{x^n}{\sqrt[3]{n} \sqrt[3]{n+1}}$

Um Null als Nenner zu vermeiden kann man in (a) und (b) jeweils $x \notin (0, \frac{1}{2})$ bzw. $x \ge 0$ annehmen.

Aufgabe H3 (Exponentialfunktion und Werte von Reihen)

(12 Punkte)

- (a) Zeigen Sie $e^x \le \frac{1}{1-x}$ für alle $x \in [0,1)$. (Tipp: Verwenden Sie die geometrische Reihe.)
- (b) Zeigen Sie $1 + x \le e^x$ für alle $x \ge 0$.
- (c) Bestimmen Sie den Wert der folgenden Reihen.

$$i. \sum_{n=0}^{\infty} \frac{5 \cdot 3^n}{4^{n+2}}$$

ii.
$$\sum_{k=2}^{\infty} \frac{2}{k^2 - 1}$$

(Tipp zu ii: Finden Sie eine Folge (a_k) mit $a_{k-1} - a_{k+1} = \frac{2}{k^2 - 1}$.)