- 1. Свободното падане е праволинейно равноускорително движение с ускорение \vec{g} , без начална скорост и без да се отчита съпротивлението на въздуха. Ако изберем отправна система с начало в точката на пускане и посока надолу, от закона за движение (3 въпрос) следва $h = \frac{1}{2}gt^2 \Rightarrow t = \sqrt{\frac{2h}{g}} = \sqrt{\frac{2.4,9}{9.8}} = 1 \text{ s}$.
- 2. Тангенциалното ускорение \vec{a}_t се определя от векторното произведението на ъгловото ускорение $\vec{\alpha}$ и вектора на радиуса на окръжността \vec{R} , насочен от центъра на окръжността към точката (10 въпрос) $\vec{a}_t = \vec{\alpha} \times \vec{R}$. (Може да се даде и само връзката между големините на векторите $a_t = \alpha R$.)
- 3. Даденото уравнение представлява закона за движение на материалната точка и това движение е (10 въпрос) равноускорително движение по окръжност. Големината на линейната скорост v е свързана с големината на ъгловата скорост ω и радиуса на окръжността $R v = \omega R$ (10 въпрос). Ъгловата скорост можем да определим (9 въпрос) от закона за движение $\omega = \frac{d\varphi}{dt} = t + 2 \Rightarrow v = (t+2)R$. В момента от време t=2 s скоростта v ще бъде v=4R=4.0,5=2 m/s.
- 4. с). От определението за импулс на система от тела (6 въпрос) $\vec{P} = \sum_i \vec{p_i}$ (векторна сума, а не разлика!!!).
- 5. Автомобилът се движи равномерно и праволинейно, следователно (4 въпрос) сумата от действащите сили е равна на нула, т.е. големината на силата \boldsymbol{F} , с която двигателят действа на автомобила е равна по големина на силата на триене $\boldsymbol{F_s}$. Мощноста на силата \boldsymbol{F} (7 въпрос) е $P = \frac{dA}{dt} = F\frac{dx}{dt} = Fv$, тъй като работата (7 въпрос) $dA = \overrightarrow{F}.\overrightarrow{dx} = F.dx$, защото силата и преместването са еднопосочни, $\cos\alpha = 1$ и скоростта $v = \frac{dx}{dt}$ (2 въпрос). $\mathbf{P} = \mathbf{5.10^3.20} = \mathbf{10^5}$ W=100 kW.
- 6. Формулировка на принципа с думи и формула $\vec{a} = \frac{\vec{F}}{m}$ или $\frac{\vec{dp}}{dt} = \vec{F}$ (4 въпрос).
- 7. Определението за идеално твърдо тяло (9 въпрос).
- 8. Работата на външните и неконсервативните сили (това в случая са силите на триене и съпротивление) е равна на промяната на енергията на системата (тялото) от закона за запазване на пълната механична енергия (8 въпрос). В случая се променя само кинетичната енергия на въртеливо движение на тялото от максималната си стойност $T_1 = \frac{1}{2}I\omega^2$ (11 въпрос) до нула, а големината на ъгловата скорост на диска е свързана с честотата на въртене $\omega = 2\pi f$ (10 въпрос). Така

$$A = \Delta T = T_2 - T_1 = 0 - \frac{1}{2}I\omega^2 = -\frac{1}{2}I(2\pi f)^2 = -\frac{1}{2}.0, 1.\left(\frac{2\pi \cdot \frac{30}{\pi}}{60}\right)^2 = -0,05 \text{ J}.$$

- 9. Концентрацията е броят частици (молекули) в единица обем $n = \frac{N}{V}$ и като използваме основното уравнение на молекулно-кинетичната теория за идеален газ (16 въпрос) във вида $PV = NkT \Rightarrow P = \frac{N}{V}kT = nkT$. Оттук получаваме $n = \frac{P}{kT} = \frac{10^5}{1,38.10^{-23}.3.10^2} = \frac{1}{1,38}.10^{26} \, \text{m}^{-3}$.
- 10. b). (16 въпрос).
- 11. $C_P = C_V + R$ (18 въпрос). C_P моларен топлинен капацитет при постоянно налягане, C_V моларен топлинен капацитет при постоянен обем, R универсална газова константа.
- 12. От първия принцип на термодинамиката $Q = \Delta U + A \left(dQ = dU + dA \right)$ (18 въпрос). При изотермен процес не се променя температурата, а следователно и вътрешната енергия $-dU = C_V dT = 0$ (18 въпрос) $\Rightarrow O = A = 10$ kJ.

- 13. Промяната на ентропията е $\Delta S_{12} = \int_{1}^{2} dS = \int_{1}^{2} \frac{dQ}{T} = \frac{1}{T} \int_{1}^{2} dQ = \frac{Q}{T}$ (21 въпрос) $\Rightarrow \Delta S_{12} = 4.10^{3}/4.10^{2} = 10$ Ј/К (температурата T в случая е постоянна величина и можем да я изнесем пред интеграла).
- 14. Дефиниция на поток на интензитета с думи (скаларно произведение) и формула $d\Phi_E = \vec{E}.\vec{dS} = EdS\cos\alpha$ (23 въпрос). Мерна единица за поток. Формулировка на закона на Гаус за потока на интензитета през затворена повърхност с думи и формула $\Phi_E = \oint_S \vec{E}.\vec{dS} = \frac{\sum_i q_i}{\varepsilon_0 \varepsilon}$ (23 въпрос).
- 15. От връзката между интензитета и потенциала на електростатично поле $-\vec{E} = \frac{d\phi}{dr}$ (26 въпрос), за големината на интензитета по оста **X** ще получим $E_x = \frac{d\phi}{dr} = 3\frac{V}{m}$.
- 16. $A = -q\Delta \varphi = -q(\varphi_2 \varphi_1) = -10.10^{-9}.(2-3) = 10^{-8}$ J (25 въпрос).
- 17. Какъвто и резистор да включим успоредно на дадения, напрежението върху него не се променя, съпротивлението му не се променя и според закона на Ом за част от веригата $I = \frac{U}{R}$ (29 въпрос) токът през него също няма да се промени $\Rightarrow I_1 = I = 2$ А. (В случая ще се промени токът в общата част на веригата той ще се увеличи два пъти, защото еквивалентното съпротивление е намаляло два пъти).
- 18. Тъй като резисторите R_1 и R_2 са включени последователно, токът през тях ще е еднакъв и можем да го определим от закона на Ом за затворена верига $I=\frac{\varepsilon}{R+r}=\frac{\varepsilon}{R_1+R_2}=\frac{12}{3}=4$ А (29 въпрос) в случая пренебрегваме вътрешното съпротивление r на източника. Отделената топлина можем да определим от закона на Джаул Ленц за топлинното действие на тока, напр. $Q=I^2Rt$ (29 въпрос). Тогава $Q_1=I^2R_1t=16.1.300=4800$ Ј и $Q_2=I^2R_2t=16.2.300=9600$ Ј .
- 19. От дадения закон за движение можем да направим извода, че движението е праволинейно с постоянно ускорение (3 въпрос) и да определим скоростта $v = \frac{dx}{dt} = 1 + 4t$ и ускорението $a = \frac{dv}{dt} = 4 \frac{m}{s^2}$ (2 въпрос). Силата и преместването са еднопосочни, тъй като движението е равноускорително и за работата на силата ще получим $A = \int_{x_1}^{x_2} \vec{F} \cdot d\vec{x} = \int_{x_1}^{x_2} F dx = \int_{t_1}^{t_2} F v dt = m \int_{t_1}^{t_2} av dt$ (7, 2 и 4 въпроси), тъй като $\cos\alpha = 1$. Като заместим масата, скоростта и ускорението, получаваме $A = 0.1 \int_{t_1}^{2} 4(1+4t) dt = 0.4 \int_{t_1}^{2} (1+4t) dt = 0.4 \int_{t_1}^{2} (1+4t) dt = 0.4 \int_{t_1}^{2} t dt + 4 \int_{t_1}^{2} t dt = 0.4 \int_{t_1}^{2} (1+4t) dt = 0.4 \int_{t_1}^{2} (1+4t) dt = 0.4 \int_{t_1}^{2} t dt + 4 \int_{t_1}^{2} t dt = 0.4 \int_{t_1}^{2} (1+4t) dt = 0.4 \int_{t_1}^{2} (1+4t) dt = 0.4 \int_{t_1}^{2} t dt + 4 \int_{t_1}^{2} t dt = 0.4 \int_{t_1}^{2} (1+4t) dt = 0.4 \int_{t_1}^{2} (1+4t) dt = 0.4 \int_{t_1}^{2} t dt + 4 \int_{t_1}^{2} t dt = 0.4 \int_{t_1}^{2} (1+4t) dt = 0.4 \int_{t_1}^{2} (1+4t) dt = 0.4 \int_{t_1}^{2} t dt + 4 \int_{t_1}^{2} t dt = 0.4 \int_{t_1}^{2} (1+4t) dt = 0.4 \int_{t_1}^{2} (1+4t) dt = 0.4 \int_{t_1}^{2} t dt = 0.4 \int_{t_1}^{2} t dt = 0.4 \int_{t_1}^{2} t dt = 0.4 \int_{t_1}^{2} (1+4t) dt = 0.4 \int_{t_1}^{2} (1+4t) dt = 0.4 \int_{t_1}^{2} t dt = 0.4 \int_{t_$
- 20. Запис на закона на Ом в интегрална или диференциална форма с думи и формула $I = \frac{-\Delta \phi_{12}}{R} = \frac{U_{12}}{R}$ или $\vec{j} = \sigma \vec{E}$ и извод (29 или 30 въпроси).