Problem set 1 solutions

Math 521 Section 001, UW-Madison, Spring 2024

February 6, 2024

1.	Let $S = \{\{1, \{2\}\}, \{3\}\}.$	
	(a) List all the elements of S .	
	Answer. The elements of S are $\{1, \{2\}\}$ and $\{3\}$.	
	(b) List all the subsets of S .	
	Answer. The subsets are \emptyset , $\{\{1,\{2\}\}\},\{\{3\}\},$ and S .	
2.	True or false? No written justification required.	
	(a) $\{\{\varnothing\}\} \cup \varnothing = \{\varnothing, \{\varnothing\}\}\ (False)$	
	(b) $\{\{\varnothing\}\} \cup \{\varnothing\} = \{\varnothing, \{\varnothing\}\}\ (\mathit{True})$	
	(c) $\{\emptyset, \{\emptyset\}\} \cap \{\{\emptyset\}, \{\{\emptyset\}\}\} = \{\emptyset\} $ (False)	
3.	Let $S = \{*, \dagger, \#\}$ and $T = \{\&, @, \%\}$. Which of the following subsets of $S \times T$ is the graph of a function $f: S \to T$? Please say why or why not.	ıph
	(a) $\{(\dagger, @), (\#, \&)\}$	
	Answer. No. The element $* \in S$ is not assigned any value.	
	(b) {(#,@),(†,@),(*,%)}	
	Answer. Yes. Each element of S is assigned exactly one value.	
	(c) $\{(*,@),(\#,\&),(\#,\%)\}.$	
	Answer. No. The element $\# \in S$ is assigned two different values.	
4.	Write the negation of each of the following statements.	

(a) Either $x \in S$ or $x \notin T$.

Answer. $x \notin S$ and $x \in T$.

(b) Every even natural number greater than 2 is equal to a sum of two prime numbers.

Answer. There exists a natural number $n \ge 2$ such that for all primes p and q, $p+q\ne n$.

(c) For each $\varepsilon > 0$, there exists $\delta > 0$ such that $|f(x) - f(0)| < \varepsilon$ for all x with $|x| < \delta$.

Answer. There exists $\varepsilon > 0$ such that for each $\delta > 0$, there exists $-\delta < x < \delta$ such that $|f(x) - f(0)| \ge \varepsilon$.

- 5. Write the contrapositive of each of the following implications.
 - (a) $x \in S \Rightarrow x \in Q \text{ or } x \in T$.

Answer. If $x \notin Q$ and $x \notin T$ then $x \notin S$.

(b) $ab = 0 \Rightarrow \text{ either } a = 0 \text{ or } b = 0.$

Answer. If $a \neq 0$ and $b \neq 0$ then $ab \neq 0$.

(c) $\triangle BAC$ is a right triangle $\Rightarrow a^2 + b^2 = c^2$.

Answer. If $a^2 + b^2 \neq c^2$ then $\triangle BAC$ is not a right triangle.

6. Fix an integer $x \neq 1$. Use induction to prove the formula:

$$1 + x + x^2 + \dots + x^n = \frac{x^{n+1} - 1}{x - 1}.$$

Proof. Base case. For n = 1, the LHS of the formula is 1 + x. The RHS is

$$\frac{x^2-1}{x-1} = \frac{(x+1)(x-1)}{(x-1)} = 1+x.$$

But this is just the LHS, so the formula is true.

<u>Inductive step.</u> Assume for induction that the result is true for n. Then for n+1, the LHS of the formula is $1+x+x^2+\cdots+x^{n+1}$. Using the inductive hypothesis, we have

$$1 + x + x^{2} + \dots + x^{n} + x^{n+1} = \frac{x^{n+1} - 1}{x - 1} + x^{n+1}$$

$$= \frac{x^{n+1} - 1 + x^{n+1}(x - 1)}{x - 1}$$

$$= \frac{x^{n+1} - 1 + x^{n+2} - x^{n+1}}{x - 1}$$

$$= \frac{x^{n+2} - 1}{x - 1}.$$
(0.1)

But this is just the RHS of the formula for n + 1. This completes the inductive step.

By the principle of mathematical induction, we conclude that the formula is true for all $n \in \mathbb{N}$.

7. Prove that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof. (\subset) Let $x \in A \cap (B \cup C)$. Then $x \in A$ and x is either in B or C.

<u>Case 1.</u> If $x \in B$ then $x \in A$ and $x \in B$, so $x \in A \cap B$. Therefore $x \in (A \cap B) \cup (A \cap C)$.

Case 2. If $x \in C$ then $x \in A$ and $x \in C$, so $x \in A \cap C$. Therefore $x \in (A \cap B) \cup (A \cap C)$.

 (\supset) Let $x \in (A \cap B) \cup (A \cap C)$. Then either $x \in A \cap B$ or $x \in A \cap C$.

<u>Case 1.</u> If $x \in A \cap B$ then $x \in A$ and $x \in B$, so $x \in B \cup C$. Therefore $x \in A \cap (B \cup C)$.

<u>Case 2.</u> If $x \in A \cap C$ then $x \in A$ and $x \in C$, so $x \in C \cup B = B \cup C$. Therefore $x \in A \cap (B \cup C)$.

8. Give a counterexample to one of the following four formulas for images and inverse images of sets (the other three are true):

$$f(A \cup B) = f(A) \cup f(B),$$
 $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$
 $f(A \cap B) = f(A) \cap f(B),$ $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B).$

Answer. If we try to prove all of them, we will succeed except in one case. Let's go ahead and do that.

 $\underline{f(A \cup B)} = \underline{f(A)} \cup \underline{f(B)}$. (c) Given $y \in f(A \cup B)$, there exists $x \in A \cup B$ such that $\underline{f(x)} = y$. Then either $x \in A$ or $x \in B$, so $\underline{f(x)} \in f(A)$ or $\underline{f(x)} \in f(B)$, i.e. $y = \underline{f(x)} \in f(A) \cup \underline{f(B)}$.

(\supset) Given $y \in f(A) \cup f(B)$, there either exists $x \in A$ or $x \in B$ such that f(x) = y. But in either case, $x \in A \cup B$, so $f(x) = y \in f(A \cup B)$.

 $\underline{f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)}. \ (c) \ \text{Given} \ x \in f^{-1}(A \cup B), \ \text{we know that} \ f(x) \in A \cup B,$ i.e. $f(x) \in A \ \text{or} \ f(x) \in B$. But this just says that $x \in f^{-1}(A) \cup f^{-1}(B)$.

(\supset) Given $x \in f^{-1}(A) \cup f^{-1}(B)$, we have $f(x) \in A$ or $f(x) \in B$, i.e. $f(x) \in A \cup B$. Therefore $x \in f^{-1}(A \cup B)$.

 $\underline{f^{-1}(A \cap B)} = f^{-1}(A) \cap f^{-1}(B). \quad (c) \text{ If } x \in f^{-1}(A \cap B) \text{ then } f(x) \in A \cap B, \text{ i.e. } f(x) \in A \text{ and } f(x) \in B. \text{ Therefore } x \in f^{-1}(A) \cap f^{-1}(B).$

(\supset) If $x \in f^{-1}(A) \cap f^{-1}(B)$, then $f(x) \in A$ and $f(x) \in B$. But then $f(x) \in A \cap B$, so $x \in f^{-1}(A \cap B)$.

 $\underline{f(A \cap B)} = \underline{f(A)} \cap \underline{f(B)}$. (c) Let $y \in f(A \cap B)$. Then there exists $x \in A \cap B$ such that $\underline{f(x)} = y$. But then $\underline{f(x)} \in f(A)$ and $\underline{f(x)} \in f(B)$, so $y = f(x) \in f(A) \cap f(B)$.

(\supset) Given $y \in f(A) \cap f(B)$, there exist $a \in A$ and $b \in B$ such that f(a) = y = f(b). But we need to find $x \in A \cap B$ such that f(x) = y. And such an x need not exist!

For instance, if $A \cap B = \emptyset$, then such an x can't exist. So for our counterexample, let's take

$$A = \{*\}, \quad B = \{\#\}, \quad C = \{\dagger\}.$$

Define the function

$$f: A \cup B \to C$$

$$\star \mapsto \dagger$$

$$\# \mapsto \dagger.$$

$$(0.2)$$

Then $f(A) = f(B) = \{\dagger\} = C$, so $f(A) \cap f(B) = C$. But $A \cap B = \emptyset$, so $f(A \cap B) = \emptyset$. Therefore $f(A \cap B) \not\supset f(A) \cap f(B)$.

9. (Extra credit +1) Give an example of an injective function $\tilde{S}: \mathbb{N} \to \mathbb{N}$ such that $\tilde{S}(\mathbb{N}) = \mathbb{N} \setminus \{1\}$ but for which the 3rd Peano axiom fails; i.e., there exists a subset $A \subset \mathbb{N}$ such that $1 \in A$ and $x \in A \Rightarrow \tilde{S}(x) \in A$, but $A \neq \mathbb{N}$.

Answer. We can take

$$\tilde{S}(n) = \begin{cases} 3 & n=1\\ 2 & n=2\\ n+1 & n \ge 3. \end{cases}$$

The statement fails for $A = \mathbb{N} \setminus \{2\}$.