LEARNING CONTRACT-WIDE CODE REPRESENTATIONS
FOR VULNERABILITY DETECTION ON
ETHEREUM SMART CONTRACTS

REFERENCE

Ashizawa, Nami, et al. "Eth2Vec: Learning Contract-Wide Code Representations for Vulnerability Detection on Ethereum Smart Contracts." arXiv preprint arXiv:2101.02377 (2021).

- 이더리움 스마트 컨트랙트
 - 이더리움 블록체인 위에서 구동되는 프로그램
- 그간 많은 스마트 컨트랙트 취약점들이 밝혀짐
 - 많은 보안 분석 도구들이 개발되었음
 - ▶ 그러나 코드가 다시 쓰여지면(rewritten) 성능이 크게 떨어짐

- Eth2Vec
 - 취약점 발견을 위한
 - 머신 러닝 기반 정적 분석 도구
 - > 코드 재작성에 강인함

- 기존의 취약점 발견을 위한 머신러닝 기반 정적 분석 도구
 - ▶ 입력으로, 분석가가 수동으로 만든 특징(feature)들이 필요함
- Eth2Vec
 - ▶ EVM 바이트코드(bytecodes)를 통해 자동으로 특징들을 학습
 - ▶ 목표(target) EVM 바이트코드와 이미 학습된 EVM 바이트코드 간 유사도를 비교

- 실험 결과
 - ▶ Eth2Vec 성능이 기존 방법들 성능 대비 우위
 - 자사용된 코드 취약점도 잡아냄

INTRODUCTION

- 스마트 컨트랙트의 보안
 - 솔리디티 등 스마트 컨트랙트를 작성하는 프로그래밍 언어의 복잡성 때문에 어려움
- 불록체인에 배포된 스마트 컨트랙트는 수정이 불가능
 - 지난 몇 년간 많은 공격들이 보고되어 왔음
 - 다라서 배포 전 취약점 분석이 필요함
 - 다양한 분석 도구들이 개발되어 왔음

- 본 논문에서는
 - > 정적 분석 도구 개발에 초점을 맞춤
 - 스마트 컨트랙트 코드의 다양한 취약점을
 - 높은 처리량을 가지고 분석할 수 있는 도구
- 정적 분석에서는
 - 실행 없이, 오직 소스 코드만이 분석 타겟이 됨
 - 나라서 배포 전에 취약점을 찾고 방지할 수 있음

- ▶ 그러니 정적 분석은 일반적으로 두 문제를 가짐
 - 1. 취약점 발견의 정확도에 한계가 있음
 - 2. 분석 시간이 길 수 있음
- 에를 들어, 심볼릭 실행 (symbolic execution)
 - ▶ 제어 흐름 그래프(CFG)를 타겟 코드에서 추출할 수 있음
 - ▶ 그러나 모든 상태를 탐색하므로 시간이 많이 요구됨

- 이러한 문제를 해결하는 것은 머신러닝
 - 머신러닝 기반 정적 분석은
 - 고드의 학습 특징들로부터 취약 여부를 판별
- 그러나 이 역시도 한계를 가짐
 - 1. 코드 재작성으로 정확도를 낮출 수 있음
 - 2. 적절한 특징이 정의되어 있지 않음

- 1. 코드 재작성으로 정확도를 낮출 수 있음
 - 같은 문맥(semantic)의 함수라도
 - ▶ 구조가 다르면 다른 분석 결과를 야기할 수 있음
 - 코드의 구조가 분석에 영향을 크게 끼치기 때문

- > 2. 적절한 특징이 정의되어 있지 않음
 - 스마트 컨트랙트의 취약점을 나타내는 특징은 잘 알려진 바 없음
 - ▶ 서로 다른 코드를 망라하는 강인한 특징이 명확하지 않음

- Eth2Vec
- 자연어 처리 신경망에 기반함
 - 오직 목표 스마트 컨트랙트 코드만을 입력으로 함
- 스마트 컨트랙트 코드의
 - ▶ EVM 바이트코드
 - 어셈블리 코드
 - ▶ 추상 구문 트리(Abstract Syntax Tree, AST)로부터 학습

- 특히 코드 재작성에 강인하다는 점이 주요 기여
 - 전형적 머신러닝 알고리즘은
 - ▶ 재작성으로부터 잘못된 결과를 도출함
- 이는 코드 그 자체의 기저에 있는 특징을 학습하는 것이 아닌
 - > 오직 기술(description)에만 의존하기 때문
- 그렇다고 특징들을 찾는 것 역시 어려운 일
 - 잘 모르기 때문

- Eth2Vec
- 자연어 처리를 위한 신경망을 이용해
 - ▶ 특징 추출 페이즈(phase)를 거쳐
 - 학습 특징들을 자동으로 학습함
- > 정리하자면, "신경망을 독립적으로 사용해 특징 추출을 수행함"
 - ▶ EVM 바이트코드를 입력으로 받는 신경망

- 실험
 - ▶ Etherscan으로부터 5,000개의 스마트 컨트랙트 파일을 받아 사용
 - 컨트랙트 당 1.2초만에 취약점을 발견함
 - 정확도 77.0%
- ▶ 재진입(reentrancy) 문제가 가장 많이 발견됨
 - 정확도 86.6%

- 기존 서포트 벡터 머신(SVM) 기반 연구 대비
 - 성능이 우수했으며
 - > SVM-기반 방법이 찾지 못한 재작성 코드 및 그들의 취약점까지도 발견

FORMULATION

- 스마트 컨트랙트 분석을 위한 접근법을 공식화
- > 각 스마트 컨트랙트 $c_i \in C$ 는 취약점들 $V_i = \{v_1^i, \dots, v_l^i\} = \mathcal{V}^l$ 을 포함
 - 기 : 독립적인 취약점들
 - ▶ *l* : 임의의 숫자

- ightharpoonup모델M의 입력
 - 주어진 정수 $n \in N$ 에 대하여
 - > 컨트랙트와 취약점의 조합 $CV = \{(c_1, V_1), \ldots, (c_n, V_n)\}$ 와
 - ▶ 테스트 컨트랙트 $c_t \in C$

- 모델 M의 출력
 - $\{\epsilon_i^{c_t}\}_{i\in[1,d]}\subseteq\mathbb{R}^d$
 - $d = |\mathcal{V}|$ 개의 원소를 가짐
 - $\epsilon_i^{c_t}$: %의 취약점에 대한 가능성

- 정리하자면
- $M(CV,c_t)
 ightarrow \{\epsilon_i^{c_t}\}$ 를 최적화하는 도구를 개발하는 것이 목표
 - 컨트랙트와 취약점 집합을 입력으로 받아
 - ▶ 각 컨트랙트의 각 취약점에 대한 가능성 정도를 출력

- ▶ Eth2Vec은
 - 시지어 취약점의 본질적 특징이 명확하지 않은 코드에 대해서도
 - 취약점 분석이 가능
 - ▶ 신경망은 블랙박스의 관점에서 (block-box manner) 특징을 다루기 때문

- 코드 유사도를 계산
 - 각 단어와 단락 등을 벡터화하는 Word2Vec과 유사
- 코드의 보안성이 분석되면
 - 취약한 코드를 모델이 학습하고
 - > 이를 통해 유사한 코드의 취약점을 식별할 수 있음

- 자연어 처리를 위해
 - ▶ EVM 바이트코드를 다루기 위해
 - ▶ PV-DM 모델을 사용

- ▶ PV-DM 모델은 문서의 토큰을 기반으로 문서의 표현을 학습
- 그러나 문서와 프로그램 코드는 차이가 있으므로
 - 프로그램 코드는 그래프로 나타낼 수 있음
 - 특정 구문을 가짐
- ▶ EVM 추출기(Extractor)라 불리는 모듈을 개발
 - ▶ 코드의 AST를 나타냄

- ▶ 결국 Eth2Vec은 두 개의 모듈로 구성됨
 - ▶ 단락을 다루는 신경망인 PV-DM 모델
 - ▶ 솔리디티 소스 코드로부터 PV-DM 모델의 입력을 만드는 EVM 추출기

오버뷰

PV-DM 모델은 바이트코드로부터 생성된 JSON 파일을 입력으로 함

각 컨트랙트의 코드 유사도를 계산

▶ EVM 추출기는 PV-DM 모델의 입력을 생성; PV-DM이 바이트코드를 직접 다룰 수 없으므로

▶ EVM 바이트코드를 구문상으로 파악하고

> 명령어 수준, 블록 수준, 함수 수준, 컨트랙트 수준으로 JSON 파일을 생성함

▶ 결론적으로 Eth2Vec은 EVM 바이트코드를 가지고 코드 클론과 취약점 리스트를 반환

기존 도구들로부터 사전에 선별된 취약점을 가지고 학습

▶ 테스트 데이터를 가지고 (학습된) 취약한 컨트랙트와의 유사도를 평가

EXPERIMENTS

EXPERIMENTS

- 실험의 목적
- 클론 검출과 취약점 검출의 두 단계로 구성
 - 본석한 코드와 학습된 코드 간 유사도를 잘 나타내는가
 - ▶ 문맥상 클론(clone)의 코드 재작성도 잡아내는가
- 특징 추출을 수동으로 하는 기존의 연구와 비교
 - P. Momeni, Y. Wang, and R. Samavi.
 "Machine learning model for smart contracts security analysis."
 In Proc. of PST 2019, pages 1-6. IEEE, 2019.

- 데이터셋
 - Etherscan에서 5,000 개의 컨트랙트 파일을 수집
 - ▶ 솔리디티 버전 0.4.11으로 컴파일되는 컨트랙트만 사용
 - 총 95,152 개의 컨트랙트와 1,193,868개의 블록이 존재

- 기준점
 - Eth2Vec과 SVM 기반 Momeni의 방법과 비교
- Momeni의 방법은
 - ▶ 이더리움 스마트 컨트랙트의 AST로부터 16개의 특징을 추출
 - 본 연구에서는 이들 중 16진법 주소를 배제하고 활용함
 - ▶ 주소는 배포 없이 소스 코드로부터 얻을 수 없기 때문
 - 본 실험에 사용된 특징 목록은 다음과 같음

- Momeni의 방법에서 차용한 목록
 - 코드 라인 수
 - 컨트랙트 정의
 - 한수 정의
 - 바이너리 연산
 - 함수 호출
 - 블록

- 수식(expression) 구문
- 이벤트 정의
- 바이트
- 기본 타입
- > 모디파이어(modifier) 정의
- 플레이스홀더(placeholder) 구문

- 모디파이어 호출
- Approve 함수 정의
- 상수 값
- 16진법 주소

- ▶ 클론 검출
 - ▶ Eth2Vec이 테스트 컨트랙트들과 학습 컨트랙트 간 유사도를 검출할 수 있는가
- ▶ 10-Fold 교차 검증 (Cross Validation)
 - > 500개의 테스트 컨트랙트가 랜덤으로 선출 -> 성능 평가에 사용
 - 나머지 4,500개의 컨트랙트가 학습 컨트랙트로 사용됨
 - 본 과정을 10번 반복

- 취약점 검출
 - 에 네스트 컨트랙트가 진짜 취약점을 찾았는지 여부를 확인
 - Oyente와 SmartCheck를 이용해 ground truth를 설정

- 클론 검출의 결과
 - ▶ 10번의 10-fold 교차검증의 결과에 대한
 - 평균과 표준편차
- 'SVM w/o few clones'는 ground-truth에 따라 일부 클론을 제거한 후의 결과

	Eth2Vec	SVM [29]	SVM w/o few clones
Average	74.9%	34.6%	42.7%
Standard Deviation	0.9	34.6	43.6

- ▶ Eth2Vec이 SVM-기반 모델 대비 더 많은 특징을 내재적으로 추출
- 표준편차가 현저히 작음
 - ▶ 즉, Eth2Vec의 특징 추출이 더 안정적이고
 - 다양한 코드의 특징 표현이 가능하다는 뜻

	Eth2Vec	SVM [29]	SVM w/o few clones
Average	74.9%	34.6%	42.7%
Standard Deviation	0.9	34.6	43.6

- > SVM-기반 방법의 정확도가 낮은 이유
 - ▶ 테스트 데이터셋이 적은 (함수) 클론을 가지기 때문
 - 이러한 상황에서 음수로 추론하게 됨
- ▶ 그러므로 F1-점수가 0이 되어 낮은 정확도와 큰 표준편차를 야기

	Eth2Vec	SVM [29]	SVM w/o few clones
Average	74.9%	34.6%	42.7%
Standard Deviation	0.9	34.6	43.6

- 문맥 클론의 상황
- Concrete example
 - 원본 Transfer 함수

```
function _transfer(address _from, address _to, uint
       _value) internal {
       require (_to != 0x0);
       require(balanceOf[_from] >= _value);
       require(balanceOf[_to] + _value > balanceOf[_to
           ]);
       uint previousBalances = balanceOf[_from] +
           balanceOf[_to];
6
       balanceOf[_from] -= _value;
       balanceOf[_to] += _value;
       Transfer(_from, _to, _value);
       assert(balanceOf[_from] + balanceOf[_to] ==
           previousBalances);
10
```

- 문맥 클론의 상황
- Concrete example
 - Eth2Vec이 찾은 클론
- 이전 코드에서
 - Line 5와 9만 뺀 것

EXPERIMENTS: RESULTS ON VULNERABILITY DETECTION

- 취약점 검출의 결과
 - ▶ Eth2Vec의 표준편차가 SVM-기반의 방법보다 낮음
 - 보다 안정적으로 취약점을 검출한다는 뜻

		Eth2Vec			SVM [29]		
Vulnerability	Severity	Precision [%]	Recall [%]	F1-Score [%]	Precision [%]	Recall [%]	F1-Score [%]
Reentrancy	3	86.6	54.8	61.5	30.0	7.8	12.3
Time Dependency	2	75.2	17.0	27.3	55.0	2.8	5.3
ERC-20 Transfer	1	95.6	58.4	72.4	89.0	95.3	92.0
Gas Consumption	1	48.0	29.0	32.4	10.0	3.1	4.7
Implicit Visibility	1	68.9	82.0	74.8	71.5	77.5	73.8
Integer Overflow	1	89.9	57.6	70.1	84.9	73.1	78.3
Integer Underflow	1	74.6	56.0	63.7	75.1	39.2	50.0
Average		77.0	50.7	57.5	59.3	42.7	45.2
Standard Devia	ation	14.7	19.7	18.0	27.3	36.4	34.7

EXPERIMENTS: RESULTS ON VULNERABILITY DETECTION

- ▶ 데이터의 분포와 무관하게 강인함
 - ▶ 재진입(reentrancy)이나 시간 의존성(time dependency) 취약점을 가진 컨트랙트가 적음
 - 즉, 학습을 위한 이러한 레이블이 많지 않다는 뜻

		Eth2Vec			SVM [29]		
Vulnerability	Severity	Precision [%]	Recall [%]	F1-Score [%]	Precision [%]	Recall [%]	F1-Score [%]
Reentrancy	3	86.6	54.8	61.5	30.0	7.8	12.3
Time Dependency	2	75.2	17.0	27.3	55.0	2.8	5.3
ERC-20 Transfer	1	95.6	58.4	72.4	89.0	95.3	92.0
Gas Consumption	1	48.0	29.0	32.4	10.0	3.1	4.7
Implicit Visibility	1	68.9	82.0	74.8	71.5	77.5	73.8
Integer Overflow	1	89.9	57.6	70.1	84.9	73.1	78.3
Integer Underflow	1	74.6	56.0	63.7	75.1	39.2	50.0
Average		77.0	50.7	57.5	59.3	42.7	45.2
Standard Devia	ation	14.7	19.7	18.0	27.3	36.4	34.7

EXPERIMENTS: RESULTS ON VULNERABILITY DETECTION

- 취약점의 상황
- Concrete example
 - > 정수 오버플로우가 가능

```
function _transfer(address _from, address _to, uint
       _value) internal {
       require (_to != 0x0);
       require(balanceOf[_from] >= _value);
       require(balanceOf[_to] + _value >= balanceOf[_to
           1);
       uint previousBalances = balanceOf[_from] +
           balanceOf[_to];
       balanceOf[_from] -= _value;
       balanceOf[_to] += _value;
       emit Transfer(_from, _to, _value);
       assert(balanceOf[_from] + balanceOf[_to] ==
           previousBalances);
10
```

EXPERIMENTS

- ▶ 비록 (1, 2)가 (1, 3)보다 유사해 보이지만
 - > 정수 오버플로우가 존재함으로 3은 1의 클론이 아님
- ▶ Eth2Vec은 코드 유사도를
 - (1, 3)보다 (1, 2)을 더 유사한 것으로 판단함
- 이는 강인한 취약점 검출의 요소가 됨

CONCLUSION

CONCLUSION

- Eth2Vec
 - 이더리움 스마트 컨트랙트의
 - 취약점을 검출하는
 - 머신러닝 기반 정적 분석 도구
- 각 스마트 컨트랙트의 특징을 자동으로 추출함이 특징

CONCLUSION

- 코드가 재작성되더라도
 - 77%의 정확도로 취약점 검출이 가능함
- 가장 중요한 취약점인 재진입(reentrancy) 역시도
 - > 86.6%의 정확도로 검출됨
- Eth2Vec이 SVM-기반 방법의 성능을 압도함
 - > 정확도, Recall, F1-score 측면에서

LEARNING CONTRACT-WIDE CODE REPRESENTATIONS
FOR VULNERABILITY DETECTION ON
ETHEREUM SMART CONTRACTS