Deep Learning Work Shop

SmartConnected.World 2018

실습 관련 참고사항

JunWoo Kwon

Data path

Source path

- 1. Planet: Understanding the Amazon from Space Competition이란?
- 아마존 지역의 위성 사진에서 불법 채굴의 흔적을 탐색
 - 구름, 안개, 열대우림, 거주지, 농업, 불법 채굴 현장 등을 분류

- ▲ Input image(chip) spec
- Region of Amazon
- ▼ Sample of labels

- 1. Planet: Understanding the Amazon from Space Competition이란?
- 예시

- 1. Planet: Understanding the Amazon from Space Competition이란?
- 예시

거주지, Habitation

농경지, Agriculture

합법 채굴, Conventional Mining

불법 채굴, Artisinal Mining

- 1. Planet: Understanding the Amazon from Space Competition이란?
- Target Labels

index	labels	index	labels	index	labels	Index	labels
1	agriculture	6	clear	11	haze	16	slash_burn
2	artisinal_mine	7	cloudy	12 partly_cloud		17	water
3	bare_ground	8	conventional _mine	13	primary		
4	blooming	9	cultivation	14 road			
5	blow_down	10	habitation	15 selective _logging			

- 1. Planet: Understanding the Amazon from Space Competition이란?
- Output 예시

Data path

- 단어의 언어적 의미를 벡터공간에 표시하는 2 layer NeuralNet
- CBOW 또는 Skip Grams으로 구성 가능

CBOW

- 주어진 여러 단어 (예. 문장)에서 빈 하나의 단어를 추정하는 데 적합한 모델
- 1. one-hot encoding된 단어들 N개와 weights(D차원)의 projection을 수행 (D는 사용할 벡터의 차원)
- 2. projection layer에서 얻은 벡터들의 평균을 output layer에 전달
- 3. 2의 결과에 weights(V차원)을 곱해서 softmax를 통해 유사 확률을 계산 (V는 사전의 크기)
- 4. 진짜 단어의 one-hot encoding과 비교해 error 산출

Skip gram

- 주어진 한 단어에서 주변 단어들을 추정하는데 적합한 모델
- 1. one-hot encoding된 단어 1개와 weights(D차원)의 projection을 수행 (D는 사용할 벡터의 차원)
- 2. projection layer에서 얻은 벡터들의 평균을 output layer에 전달
- 3. 2의 결과에 weights(V차원)을 곱해서 softmax를 통해 유사 확률을 계산 (V는 사전의 크기) 또는 Negative sampling사 용
- 4. 진짜 단어의 one-hot encoding과 비교해 error 산출

• CBOW가 Skip Grams보다 빠르지만 드문 단어들은 skip gram이 더 잘 처리

• 기존 Neural Net 기반 언어 모델보다 complexity를 감소

Model	Complexity		
Feedforward NNLM	$N \times D + N \times D \times H + H \times V$		
RNNLM	$H \times H + H \times V$		
CBOW	$N \times D + D \times \log_2 V$		
Skip-gram	$C \times (D + D \times \log_2 V)$		

Symbol	Meaning	Symbol	Meaning		
N	단어 수	V	사전의 크기		
D	Projection layer 차원	С	최대 단어 사이 거리		
Н	Hidden layer 크기				

• 기존 Neural Net 기반 언어 모델보다 complexity를 감소

Model	Complexity			
Feedforward NNLM	$N \times D + N \times D \times H + H \times V = 250 \times 10^{12}$			
RNNLM	$H \times H + H \times V = 500 \times 10^9$			
CBOW	$N \times D + D \times \log_2 V = 14210$			
Skip-gram	$C \times (D + D \times \log_2 V) = 97103$			

Symbol	Meaning	Symbol	Meaning
N	10	V	100,000,000
D	500	С	10
Н	500		

- 기존 Neural Net 기반 언어 모델보다 complexity를 감소
 - Hierarchical Softmax

- softmax의 출력을 root에서 leaves 방향으로 가면서 확률을 곱해가는 방식으로 계산
- binary tree의 root leaf까지 평균 거리는 log₂ V
- Huffman Tree를 사용해 복잡도 감소

- 기존 Neural Net 기반 언어 모델보다 complexity를 감소
 - Negative Sampling

softmax에서 계산할 때 모든 단어가 아니라 일부만 sampling하여 계산 후 normalization을 수행

positive sample: 반드시 계산되야하는 target으로 사용하는 단어 negative sample: positive sample을 제외한 나머지 단어들에 대한 sample

negative sampling은 data에 따라 실험적으로 결정

- 기존 Neural Net 기반 언어 모델보다 정확도 향상
 - 모델 별 정확도 비교

Model Architecture	Semantic Accuracy	Syntactic Accuracy	MSR Word Relatedness Test set
RNNLM	9	36	35
NNLM	23	53	47
CBOW	24	64	61
Skip-gram	55	59	56

- 기존 Neural Net 기반 언어 모델보다 정확도 향상
 - 모델 별 연산력 비교

Model	Vector Dimensionality	Training words	Accuracy %			Training Time
Model			Semantic	Syntactic	Total	days × CPU cores
NNLM	100	6B	34.2	64.5	50.8	14 × 180
CBOW	1000	6B	57.3	68.9	63.7	2 × 140
Skip-gram	1000	6B	66.1	65.1	65.6	2.5 × 125