Đại học Quốc gia TP.HCM Trường Đại học Khoa học Tự nhiên Khoa Công nghệ Thông tin

TÀI LIỆU ĐỒ ÁN

Bảng Đánh Giá Tiến Độ

Thành viên

Họ Tên	ID	Email		
Cao Uyển Nhi	22127310	cunhi22@clc.fitus.edu.vn		
Lưu Thanh Thuý	22127410	ltthuy 22@clc. fit us. edu. vn		
Võ Lê Việt Tú	22127435	vlvtu22@clc.fitus.edu.vn		
Trần Thị Cát Tường	22127444	ttctuong 22@clc. fit us. edu. vn		

Giáo viên hướng dẫn

Họ Tên

Giáo viên: Võ Hoài Việt

Giáo viên: Đỗ Thị Thanh Hà

25 tháng 7, 2025

Mục lục

1	Thông tin chung	3
2	Tóm tắt trạng thái	4
3	Mốc (Milestones)	5
4	Tiến độ nhiệm vụ chính	6
5	Thành phần kỹ thuật 5.1 Liên kết Mục tiêu 5.2 Đánh giá mô hình	7 7
6	Rủi ro & Kế Hoạch Giảm thiểu	8
7	Kết luân	9

Thông tin chung

- Tên dự án: VisPart Smart Parking System
- Mục tiêu: Xây dựng prototype hệ thống bãi đỗ xe thông minh (nhận diện biển số & khuôn mặt, quản lý slot, đồng bộ cloud, dashboard giám sát) tự động hóa vào/ra.
- Phạm vi: Thiết bị & cảm biến, Firmware, Edge AI (MTMN, FaceNet, ALPR API), Cloud/Backend (FastAPI + Firestore + Cloudinary), Dashboard (React/TS).
- Thời gian: Bắt đầu 17/05/2025 Kết thúc 02/08/2025.

Tóm tắt trạng thái

- Trạng thái tổng thể: HOÀN THÀNH đúng tiến độ (seminar 02/08/2025).
- % Hoàn thành: $\approx 100\%$ phạm vi đặt ra.
- Thành tựu: Pipeline end-to-end ổn định ($\approx 12 \text{s/phiên} < \text{mục tiêu 15s}$); Chính xác AI đạt/ vượt mục tiêu; Dashboard realtime vận hành.
- Vấn đề chính đã xử lý: Latency cao (tối ưu index + batch); timeout thiếu cặp URL (thêm timer reset); false negative face (tối ưu threshold).

Chương 3

Mốc (Milestones)

Mốc	Mô tả	Ngày kế hoạch	Ngày thực tế	Sai lệch (ngày)	Trạng thái	Ghi chú
M0	Kickoff & chốt yêu cầu	17/05/2025	17/05/2025	0	Done	Khởi động & phân công
M1	Hoàn tất kiến trúc hệ thống	24/05/2025	24/05/2025	0	Done	Architecture freeze
M2	Thu thập & gán nhãn dữ liệu	07/06/2025	06/06/2025	-1	Done	Sớm 1 ngày (đủ dữ liệu core)
M3	Đánh giá mô hình & chọn threshold	07/06/2025	07/06/2025	0	Done	Face/ALPR eval hoàn tất
M4	Tích hợp mô-đun AI Edge	23/06/2025	23/06/2025	0	Done	Threshold áp dụng 0.576
M5	Tích hợp firmware & thiết bị	05/07/2025	05/07/2025	0	Done	Wiring & servo ổn định
M6	Cloud backend & dashboard core	20/07/2025	19/07/2025	-1	Done	Sớm 1 ngày
M7	Test end-to-end & tối ưu	27/07/2025	29/07/2025	+2	Done	Debug CAM upload
M8	Seminar demo & bàn giao	02/08/2025	02/08/2025	0	Done	Đạt mục tiêu

Chương 4 Tiến độ nhiệm vụ chính

ID	Hạng mục	Nhiệm vụ	Owner	Bắt đầu	Deadline	%	Trạng thái	Ghi chú
T1	Thiết bị	Lắp đặt ESP32-CAM (face & plate), ESP32 gateway, LCD, servo	Cát Tường	17/05	05/07	100	Done	Hoạt động ổn định, wiring gọn, đủ nguồn dự phòng
Т2	Firmware	Capture, upload Cloudinary, TCP gateway, servo control	Thanh Thuý	17/05	05/07	100	Done	Hoạt động ổn định, retry logic đã tối ưu
Т3	Edge AI	MTMN detect + FaceNet + ALPR API tích hợp	Cao Nhi, Thanh Thuý	23/06	23/06	100	Done	Threshold FaceNet tối ưu, ALPR đạt 100% test set
Т4	Cloud Back- end	Firestore schema + API FastAPI	Cát Tường, Việt Tú	05/07	20/07	100	Done	Index & batch write giảm latency $\approx 0.8s$
T5	Dashboard	d UI realtime, analytics, search/filter	Việt Tú	05/07	20/07	100	Done	Cập nhật realtime <1s, CRUD slot hoạt đông
Т6	Model Eval	Evaluate Face/ALPR, chọn threshold	Cao Nhi	01/06	07/06	100	Done	Recall Face Detection ≈ 94%, đề xuất thu thêm dữ liệu đêm
Т7	Testing & Demo	Kiểm thử tổng thể, debug, chuẩn bị seminar	All	25/07	02/08	100	Done	End-to-end latency \approx 12s, seminar diễn ra đúng kế hoạch

Thành phần kỹ thuật

5.1 Liên kết Mục tiêu

Objective	Mô tả (Spec)	Chỉ số then chốt	Kết quả đạt	Trạng thái
0-01	Phát hiện & nhận dạng biển số, khuôn mặt chính xác	Accuracy Face Matching \geq 95%, ALPR \geq 95%	FM 96.2%, ALPR 100%	Đạt
0-02	Thời gian xử lý một phiên (entry \rightarrow persist) < 15 s	End-to-end latency	$\approx 12s$ (ổn định)	Đạt
0-03	Dashboard realtime & quản lý slot	$ ext{D}$ ộ trễ cập nhật slot $<2s;$ CRUD slot hoạt động	≈ 1 s cập nhật; CRUD OK	Đạt

5.2 Đánh giá mô hình

Module	Dataset/Test	Precision	Recall	Accuracy	F1	Ghi chú
Face Detection (MTMN)	285 frames nội bộ	1.0000	0.9439	-	-	269 TP / 0 FP / 16 FN
Face Matching (FaceNet + RetinaFace)	500 cặp (LFW subset chuẩn hoá)	0.970	0.967	0.962	0.968	Threshold tối uu 0.576 (maximize F1)
ALPR (Plate Recognizer API)	101 VN plates	_	_	1.000	_	101/101 chính xác

Rủi ro & Kế Hoạch Giảm thiểu

ID	Růi ro	Xác suất	Ånh hưởng	Mức độ	Kế hoạch giảm thiểu	Trạng thái sau dự án
R1	Phụ thuộc ALPR API	Trung bình	Cao	Medium- High	Xây dựng phương án self-host ALPR, cache cục bộ khi API chậm/ngắt	Không xảy ra trong giai đoạn demo
R2	WiFi congestion	Trung bình	Trung bình	Medium	Giới hạn tần suất gửi dữ liệu, cơ chế retry	Đã xử lý, không ảnh hưởng demo
R3	Firestore latency	Thấp	Trung bình	Low- Med	Dùng index, batch write, cache	Đã giảm đáng kể, latency ổn định
R4	Giới hạn RAM ESP32-CAM	Thấp	Thấp	Low	Tinh chỉnh frame size, chất lượng ảnh	Kiểm soát được, không sự cố

Kết luận

Đồ án VisPart – Smart Parking System đã xây dựng thành công prototype hệ thống bãi đỗ xe thông minh ứng dụng AIoT, đáp ứng đầy đủ yêu cầu về nhận diện biển số và khuôn mặt, quản lý chỗ đỗ và đồng bộ dữ liệu thời gian thực. Hệ thống đạt hiệu năng tốt hơn mục tiêu đề ra (latency trung bình ≈ 12 giây so với mục tiêu <15 giây) và độ chính xác AI vượt chuẩn (Face Matching 96.2%, ALPR 100%). Các thành phần từ thiết bị, firmware, AI đến backend và dashboard được tích hợp ổn định, vận hành trơn tru trong giai đoạn thử nghiệm.

Kết quả đạt được chứng minh tính khả thi của giải pháp, tạo tiền đề để mở rộng hệ thống trong giai đoạn tiếp theo với các tính năng nâng cao như mở rộng dataset ban đêm, song song hóa xử lý AI, triển khai self-host ALPR, bổ sung bảo mật và monitoring, cũng như tích hợp chức năng thu phí tự động và quản lý đa bãi xe.