CS 245 Notes / Definition

Thomas Liu

August 10, 2023

Contents

1	Lec	ture 1	5
	1.1	Propositional Logic	5
	1.2	Logical Arguments	5
	1.3		5
	1.4	Logical Connectives	5
2	Lec	ture 2	6
	2.1	Symbols and Expressions	6
		2.1.1 Symbols	6
		2.1.2 Expressions	6
	2.2	Well-Formed Formulas (wff)	6
	2.3	Parse Tree	7
	2.4	Precedence Rules	7
	2.5	English Translation in $Form(L^p)$	7
3	Lec	$ ext{ture } 3$	7
	3.1	Meaning (Semantics) of Formulas	7
	3.2		8
	3.3		8
4	Lec	${ m ture} \; 4$	8
	4.1	Satisfiability of Sets of Formulas	8
	4.2		9
		0 1	9
		4.2.2 Notation	9
			9
5	Lec	ture $oldsymbol{5}$.0
	5.1		10
			10
	5.2		1

5.3 Duality			

	5.3	Duanty	11
	5.4	Esstial Laws of L^p (Propositional Calculus)	11
	5.5	Normal Forms	12
		5.5.1 Definition	12
	5.6	Conjunctive / Disjunctive Normal Form	13
			13
6	Lec	ture 6	13
	6.1	Theorem	13
	6.2	Connectives	13
	6.3	Adequate Set of Connectives	13
		6.3.1 Definition	13
		6.3.2 Lemma	13
			14
7	Lec	ture 7	14
	7.1		$\frac{1}{4}$
			$^{-4}$
	7.2		14
	7.3		15
8	Lec	ture 8	15
O	8.1		15
	0.1		15
	8.2		16
	8.3		16
	8.4		16
_	_		
9			19
	9.1		19
	9.2	·	19
	9.3		19
			19
	9.4	· · · · · · · · · · · · · · · · · · ·	20
			20
	9.5		20
	9.6	Lemma 2	20
	9.7	Theorem 3	20
	9.8	Completeness	20
		9.8.1 Theorem	20
	9.9	Replaceability	20
		9.9.1 Theorem	20

10 Lecture 10	21
10.1 Notes on ⊢	21
10.2 Automated Theorem Proving: Resolution	21
10.3 Resolution Algorithm Psuedocode	
10.4 Davis Putnam Procedure (DPP)	
1011 Burns 1 double 11000dd10 (B11)	
11 Lecture 11	22
11.1 Davis Putnam Procedure (DPP)	22
11.2 First Order Logic (FOL)	
11.3 Elements of FOL	
12 Lecture 12	24
12.1 Syntax of FOL	24
12.2 Free vs. Bound Variables	
12.2 1100 (6) 20 414 (4144010)	
13 Lecture 13	26
13.1 FoL Parse Tree	26
13.2 FoL Semantics	
13.3 Values of $Term(L)$	
13.4 Values of Form(L)	
13.5 Satisfiability in FoL	
13.6 Definition	
10.0 Definition	21
14 Lecture 14	28
14.1 Logical Consequence in FoL (\models)	
14.2 Soundness & Completeness	
11.2 Soundhous & Completeness	20
15 Lecture 15	28
15.1 Finding FoL Proofs $(\Sigma \vdash A)$	28
(<u>-</u>)	
16 Lecture 16	29
16.1 Equality Theorems	29
16.2 Additional Theorems in FoL	
16.3 Consistency	30
16.4 Resolution in FoL	
10.1 100001dtion in 102 · · · · · · · · · · · · · · · · · · ·	
16.5 PNF algorithm	
16.5 PNF algorithm	
	30
17 Lecture 17	30 30
	30 30
17 Lecture 17	30 30
17 Lecture 17 17.1 Steps	30 30 30 31
17 Lecture 17 17.1 Steps	30 30 30 31 31
17 Lecture 17 17.1 Steps 18 Lecture 18 18.1 Algorithm & Models of computation 18.2 Halting Problem	30 30 30 31 31 31
17 Lecture 17 17.1 Steps	30 30 30 31 31 31 31

CS 245	Spring 2023
Notes	

	10 C.D M. I	00
	18.5 Running a Turing Machine TM	32
19	Lecture 19	33
	19.1 TMs that Compute function	33
	19.2 Turing-Church Thesis	
	19.3 Decidable Problems & Computable Functions	33
20	Lecture 20	33
	20.1 Decidability	33
	20.2 Computability	
	20.3 Peano Arithmetic	
	20.4 Peano Arithmetic Axioms	
21	Lecture 21	34
	21.1 Design Implication	34
	21.2 Hoare Triples	
22	Lecture 22 & 23	35
	22.1 Decidability of Total / Partial Correctness	35
23	Refrence Sheet	35

1.1 Propositional Logic

- Proposition
 - A declarative sentence that is either true or false
 - Can never both/either be true or false
- Many english sentence are <u>not</u> propositions
 - commands
 - questions
 - paradoxes
 - non sensical sentence
 - sentence fragments
- A sentence must have sufficient information to determine truth to be a proposition
 - A sentence can be a proposition even the truth is unknown

1.2 Logical Arguments

An argument is a set of propositions containing

- ≥ 0 premises
- 1 conclusion
- often connected by therefore

Correctness of argument depends on form (syntax), not content The conclusion follows premises, then the argument is valid

1.3 Atomic vs. Compound Propositions

An atomic proposition cannot be broken down into smaller propositions A compound proposition is composed of atomics grouped by connectives

1.4 Logical Connectives

- negation \neg
- \bullet conjunction \wedge
- disjunction ∨
- implication / conditional \rightarrow
- equivalence / bi-conditional \iff

2.1 Symbols and Expressions

Propositions are represented by formulas

• Formula = a string of symbols

2.1.1 Symbols

- Propositional variables (atomics)
 - p, g, r, p_1, p_2
- Connectives
 - $\neg, \wedge, \vee, \rightarrow, \iff$
- Punctuations
 - ()

Let L^p denote the language of propositional logic

2.1.2 Expressions

An expression in L^p = finite string of symbols

2.2 Well-Formed Formulas (wff)

- Define $Form(L^p) = \text{set of all wff in } L^p$
- Define wff in $Form(L^p)$ is inductively (recursion) as follows: Base case:
 - A propositional variable p is well-formed

Inductive step:

- If α is well-formed, then $(\neg \alpha)$ is well-formed
- If α and β are well-formed, then $(\alpha \wedge \beta)$, $(\alpha \vee \beta)$, $(\alpha \rightarrow \beta)$, $(\alpha \iff \beta)$ are well-formed

Restriction:

- Nothing else is well-formed

2.3 Parse Tree

Visualize the structure of a wff Rules:

- leaves are propositional variables
- all non-leaves are logical connectives
- negation only has 1 child
- binary connectives have 2 children
- start at the inner-most bracket, resolving the bracket then moving forwards

2.4 Precedence Rules

$$\neg > \land > \lor > \rightarrow > \Longleftrightarrow$$

2.5 English Translation in $Form(L^p)$

Possible for english sentence to have multiple translations in $Form(L^p)$

3 Lecture 3

3.1 Meaning (Semantics) of Formulas

- To interpret formulas, we give meaning to its propositional variables
 - true/false, 1/0 for atomics
- Definition
 - Let $Atom(L^p)$ be the set of all propositional variables in L^p
 - A truth valuation is a mapping for all $Atom(L^p)$ to truth values $\{0,1\}$
- Semantics of a formula $A \in Form(L^p)$ is the truth value of A under all possible truth valuations
 - Let $t(A) \in \{0,1\}$ be the truth valuation of A (denoted A^t)
 - Show semantics of A with truth tables

3.2 Evaluating Formulas under Truth Valuations

- \bullet Let t denote a truth valuation
- Every $A, B \in Form(L^p)$ has a value under t (denoted A^t, B^t) recursively as follows:
 - 1. If A is p, for $p \in Atom(L^p)$, $A^t = p^t$

2.

$$(\neg A)^t = \begin{cases} 1 \text{ if } A^t = 0\\ 0 \text{ if } A^t = 1 \end{cases}$$

3.

$$(A \wedge B)^t = \begin{cases} 1 \text{ if } A^t = B^t = 1\\ 0 \text{ otherwise} \end{cases}$$

4.

$$(A \lor B)^t = \begin{cases} 1 \text{ otherwise} \\ 0 \text{ if } A^t = B^t = 0 \end{cases}$$

5.

$$(A \to B)^t = \begin{cases} 1 \text{ otherwise} \\ 0 \text{ if } A^t = 1 \text{ and } B^t = 0 \end{cases}$$

6.

$$(A \iff B)^t = \begin{cases} 1 \text{ if } A^t = B^t \\ 0 \text{ otherwise} \end{cases}$$

3.3 Satisfiability

- For a formula $A \in Form(L^p)$, A is satisfiable under t iff $\exists t$ such that $A^t = 1$
- A is a contradiction under t iff $\forall t, A^t = 0$
- A is tautology under t iff $\forall t, A^t = 1$

4 Lecture 4

4.1 Satisfiability of Sets of Formulas

- Extend satisfiability to sets of formulas
- \bullet Let \sum denote a set of well-formed formulas (wff) and t as truth valuation

•

$$\sum^{t} \begin{cases} 1 \text{ if for each } A \in \sum, A^{t} = 1 \\ 0 \text{ otherwise} \end{cases}$$

$$-\sum^{t} = 1 \text{ iff } \forall A \in \sum, A^{t} = 1$$

- \bullet For a specific t
 - $-\sum$ is satisfiable under t if $\sum^t = 1$
 - \sum is unsatisfiable under t if $\sum^t = 0$
- \bullet For genoric t
 - $-\sum$ is satisfiable if $\exists t$ where $\sum^t = 1$
 - $-\sum$ is unsatisfiable if $\forall t, \sum^t = 0$

4.2 Tautological Consequence

4.2.1 Definition

- Let $\sum \subseteq Form(L^p)$, $A \in Form(L^p)$ (A doesn't need to exist in \sum)
- Say:
 - A is logical consequence of \sum OR
 - \sum entails (semantically) A OR
 - $-\sum \models A$

If and only if:

$$- \forall t$$
, if $\sum_{t=1}^{t} 1$ then also $A^{t} = 1$

4.2.2 Notation

- $\sum \vDash A \Rightarrow \sum$ entails A
- $\sum \nvDash A \Rightarrow \sum$ does not entail A
 - $-\exists t \text{ such that } \sum^t = 1 \text{ but } A^t = 0$

4.2.3 Remarks

- $\sum \vDash A$ says nothing about A when $\sum^t = 0$
- Claims:
 - If \sum is unsatisfiable, then $\sum \vDash A, \, \forall A$
 - $\emptyset \vDash A$ iff A is a tautology, $\emptyset^t = 1$ by default
 - If A is a tautology, then $\sum \vDash A, \, \forall \sum$

Cheat Char	<u> </u>	
Z	A	Z =A
unsatisfiable	Contradiction	
	Satisfiable (Cat not bento)	YES!
	tautology	
Satisfiable	Contradiction	No
	Satisfiable (but not touto)	Maybe
	tautology	Yes

5.1 Tautological Equivalence

- Let $A, B \in Form(L^p)$
- Write

 $A \vDash B$

when $\{A\} \vDash B$ and $\{B\} \vDash A$

- -A is a tautological equivalent to B
- Let A^t and B^t are identical $\forall t$

5.1.1 Lemma

For $A, A', B, B' \in Form(L^p)$ If $A \vDash A'$ and $B \vDash B'$, then

- $\neg A \vDash \neg A'$
- $A \wedge B \vDash A' \wedge B'$
- $A \lor B \vDash A' \lor B'$
- $A \to B \bowtie A' \to B'$
- $\bullet \ A \iff B \bowtie A' \iff B'$

5.2 Replaceability

- Let $A, B, A', C \in Form(L^p)$
- Let A contains ≥ 1 instances of B
- Suppose $B \vDash C$
- Let A' be A with some occurrence of B replaced by C (not necessarily all)
- Then $A \vDash A'$

5.3 Duality

- Suppose $A \in Form(L^p_{\neg, \lor, \land})$
 - A is constructed with only $\neg, \lor, \land, Atom(L^p)$
- Let $\triangle(A)$ be A with
 - all \wedge replaced by lor
 - all \vee replaced by land
 - all p replaced by $\neg p, p \in Atom(L^p)$
- Then $\neg A \vDash \triangle(A)$

5.4 Esstial Laws of L^p (Propositional Calculus)

- Let 1 stand for any tautology $\in Form(L^p)$
- Let 0 stand for any contradiction $\in Form(L^p)$

Commune Livity
AIB H BIA AVB H BVA ASB H BSA
AVB H BVA
A COB H B COA
Associativity
A 1 (B1C) H (A1B)1C
AV(BVC) H(AVB)VC
A N (B V C) H (A N B) N (A N C) A V (B N C) H (A V B) N (A V C)
AA(BVC) H(AAB)V(AAC)
$A \lor (B \land C) \boxminus (A \lor B) \land (A \lor C)$
De Morgans 7(A1B) H 7AV7B
7 (A / B) FI 7A V7B
7(A VB) = 7A A 7B
Double Negation Contrapositive
7 (7A) Ħ A A→B Ħ 7B→7A
Contractiction Implication
Contraction Implication $A \land (7A) \boxminus O \qquad A \rightarrow B \boxminus 7AVB$
Contradiction Implication A 1 (7A) \ O A > B \ 7AVB
Excluded Middle Equivalence A V (7A) \boxminus T A \rightleftharpoons B \boxminus (A \rightleftharpoons B) \land (B \rightleftharpoons A)
Excluded Middle Equivalence A V (7A) HT A GR H (A>B) 1 (B>A)
Excluded Middle Equivalence A V (7A) HT A H (A>B) A (B>A) Idempotence Identity Domination
Excluded Middle Equivalence A V (7A) \boxminus 1 A \rightleftharpoons 8 \boxminus (A \Rightarrow B) \land (B \Rightarrow A) Idempotence Identity Domination A \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Excluded Middle Equivalence A V (7A) HT A H (A>B) A (B>A) Idempotence Identity Domination
Excluded Middle Equivalence A V (7A) \boxminus 1 A \rightleftharpoons 8 \boxminus (A \Rightarrow B) \land (R \Rightarrow A) Idempotence Identity Domination A \land A \boxminus A \land
Excluded Middle Equivalence A V (7A) \boxminus 1 A \rightleftharpoons 8 \boxminus (A \Rightarrow B) \land (R \Rightarrow A) Idempotence Identity Domination A \land A \boxminus A \land
Excluded Middle Equivalence A V (7A) \boxminus 1 A \rightleftharpoons 8 \boxminus (A \Rightarrow B) \land (R \Rightarrow A) Idempotence Identity Domination A \land A \boxminus A \land
Excluded Middle Equivalence A V (7A) H 1 A SB H (A>B)A(B>A) Idempotence Identity Domination A A A B A A A A B A B A A B B A B
Excluded Middle Equivalence A V (7A) HT A A B H (A>B)A(B>A) Idempotence Identity Domination A A A HA A A A B HA A A O HO A V A HA A V O HA A V 1 H1 Absorption I A A (A VB) HA B Distributivity A V (A A B) HA
Excluded Middle Equivalence A V (7A) H 1 A A B) A(B>A) Idempotence Identity Domination A A A H A A A A B H A A A B H B A V A H A A V O H A A V 1 H 1 Absorption I A A (A VB) H A B Distributivity A V (A A B) H A B Absorption I I
Excluded Middle Equivalence A V (7A) HT A A B H (A>B)A(B>A) Idempotence Identity Domination A A A HA A A A B HA A A O HO A V A HA A V O HA A V 1 H1 Absorption I A A (A VB) HA B Distributivity A V (A A B) HA

5.5 Normal Forms

5.5.1 Definition

• A formula is

CS 245 Spring 2023

- Notes
- literal if it is p or $\neg p$ $(p \in Atom(T^p))$
- – Conjunctive clause if is a conjunction \wedge of literals $(p \wedge \neg p \wedge q \wedge \neg q)$
- Disjunctive clause if is a disjunction \vee of literals $(p \vee \neg p \wedge q \vee \neg q)$

5.6 Conjunctive / Disjunctive Normal Form

5.6.1 Definition

- A formula is
 - Conjunctive Normal Form (CNF) if it is n conjunction of disjunctive clauses
 - Disjunctive Normal Form (DNF) if it is a disjunction of conjunctive clauses

6 Lecture 6

6.1 Theorem

Any formula in $Form(L^p)$ is equivalent to some CNF & DNFNormal formal forms are not always unique

6.2 Connectives

- Use letterss f, g, f_1, f_2, \cdots to denote any connective, connecting formulas $A_1, \cdots, A_n \in Form(L^p)$
 - unary: f(A)
 - binary: f(A, B)
 - ternary: f(A, B, C)
- Connectives are defined by their truth tables
- two n-ary connectives are equivalent iff they have the same truth tables
- How many distinct n-ary: 2^{2^n}

6.3 Adequate Set of Connectives

6.3.1 Definition

- A set of connectives is adequate iff it can express any n-ary truth table
- \bullet Equivalently, adequate iff every wff is vDashv to a wff using only connectives from the set

6.3.2 Lemma

 $\{\wedge, \vee, \neg\}$ is an adequate set of connectives

6.3.3 Lemma

 $\{\neg, \vee\}, \, \{\neg, \wedge\} \ \& \ \{\neg, \rightarrow\}$ are all adequate sets

7 Lecture 7

7.1 Boolean Algebra

7.1.1 Definition

• A boolean algebra is a set B containing 0's & 1's, together with $+, \cdot \& -$

$$- + \exists \lor, \cdot \exists \land, - \exists \lnot$$

- Anything that is boolean algebra has the following properties
 - Identity law: x + 0 = x, $x \cdot 1 = x$
 - Compliment: $x + \overline{x} = 1$, $x \cdot \overline{x} = 0$
 - Communetivity: x + y = y + x, $x \cdot y = y \cdot x$
 - Associativity: $(x + y) + z = x + (y + z), (x \cdot y) \cdot z = x \cdot (y \cdot z)$
 - Distributivity: $x + (y \cdot z) = (x + y) \cdot (x + z), x \cdot (y + z) = (x \cdot y) + (x \cdot z)$

7.2 Digital Circuits

- An extension from boolean algebra
- boolean algebra models logic circuits
 - these circuits model a boolean function
- logic circuits are mde up of logic gates
 - mimic our connectives in L^p

7.3 Code Analysis

We can use formulas in L^p to analyze and determine what code blocks will be run and what code blocks are dead code

8 Lecture 8

8.1 Formal Deduction (aka: Natural Deduction)

8.1.1 Definition

- Start with a set of premises (\sum)
- Transform these premises based on a set of rules (proof system)
- Reaches a conclusion (A)

We can write

$$\sum \vdash A$$

If we can find such a proof in our proof system such that we can show \sum can result in A then ' Σ proves A'

- Pure syntax
- Starting from our basic rules, building up an argument

8.2 Conventions

- $\Sigma \vdash A$ means
 - Σ proves A
 - A is derivable from Σ
- We write sets as sequences
 - If $\Sigma = \{A_1, A_2, \dots, A_n\}$, we can write Σ in a comma separated format: A_1, A_2, \dots, A_n
 - Order of premises does not matter
 - $-\Sigma \cup \{A'\}$, where $A' \in Form(L^p)$, $\Sigma, A' \vdash$
 - $-\Sigma \cup \Sigma'$, where $\Sigma' \subseteq Form(L^p), \Sigma, \Sigma' \vdash$

8.3 Rules of Formal Deduction

- Define $\Sigma \vdash A$ inductively, where $\Sigma, \Sigma' \subseteq Form(L^p) \& A, B \in Form(L^p)$
- 8.4 Proof Strategies $(\Sigma \vdash A)$
 - Trial & Error, good strategy: start from your conclusion

Formal deduction (\vdash) for \mathcal{L}^p : Proof rules

```
(Ref)
                                                                               A \vdash A.
   (+)
                                                           If \Sigma \vdash A, then \Sigma, \Sigma' \vdash A.
 (\neg -)
                   If \Sigma, \neg A \vdash B and \Sigma, \neg A \vdash \neg B, then \Sigma \vdash A.
(\rightarrow -)
                             If \Sigma \vdash A \rightarrow B and \Sigma \vdash A, then \Sigma \vdash B.
(\rightarrow +)
                                                       If \Sigma, A \vdash B, then \Sigma \vdash A \rightarrow B.
 (\land -)
                                                    If \Sigma \vdash A \land B, then \Sigma \vdash A and \Sigma \vdash B.
 (\wedge+)
                                      If \Sigma \vdash A and \Sigma \vdash B, then \Sigma \vdash A \land B.
 (\vee -)
                             If \Sigma, A \vdash C and \Sigma, B \vdash C, then \Sigma, A \lor B \vdash C.
                                                           If \Sigma \vdash A, then \Sigma \vdash A \lor B and \Sigma \vdash B \lor A.
 (\lor+)
                             If \Sigma \vdash A \leftrightarrow B and \Sigma \vdash A, then \Sigma \vdash B.
                             If \Sigma \vdash A \leftrightarrow B and \Sigma \vdash B, then \Sigma \vdash A.
(\leftrightarrow +)
                             If \Sigma, A \vdash B and \Sigma, B \vdash A, then \Sigma \vdash A \leftrightarrow B.
```

Formal deduction (\vdash) for \mathcal{L}^p : Proven results

 (\in) If $A \in \Sigma$ then $\Sigma \vdash A$.

(Hypothetical Syllogism) $A \rightarrow B$, $B \rightarrow C \vdash A \rightarrow C$.

 $(\neg +)$ If $\Sigma, A \vdash B$ and $\Sigma, A \vdash \neg B$, then $\Sigma \vdash \neg A$.

(Double Negation) $\neg \neg A \vdash \!\!\! \vdash A$.

(Disjunctive Syllogism) $A \vee B$, $\neg B \vdash A$.

(Contrapositive) $A \rightarrow B \vdash \neg B \rightarrow \neg A$.

(Excluded Middle) $\emptyset \vdash A \lor \neg A$.

(Non-Contradiction) $\emptyset \vdash \neg (A \land \neg A)$.

(Inconsistency) $A, \neg A \vdash B$.

(De Morgan) $\neg (A \land B) \vdash (\neg A \lor \neg B)$ and $\neg (A \lor B) \vdash (\neg A \land \neg B)$.

(Implication) $A \rightarrow B \vdash \neg A \lor B$.

(Flip-Flop) If $A \vdash B$ then $\neg B \vdash \neg A$.

(Transitivity) If $\Sigma \vdash \Sigma'$ and $\Sigma' \vdash A$, then $\Sigma \vdash A$.

(Finiteness of Premise Set)

If $\Sigma \vdash A$, then there exists a finite set $\Sigma' \subseteq \Sigma$ such that $\Sigma' \vdash A$.

(Soundness)

If $\Sigma \vdash A$, then $\Sigma \vDash A$.

(Completeness)

If $\Sigma \vDash A$, then $\Sigma \vdash A$.

CS 245 Spring 2023

Notes

9 Lecture 9

9.1 structural Induction on Proof Derivations

- Theorem: Finiteness of premises
 - Let $\Sigma \subseteq Form(L^p)$ & $A \in Form(L^p)$ If $\Sigma \vdash A$, then there exists a finit $\Sigma' \subseteq \Sigma$ such that $\Sigma' \vdash A$
- Intuition:
 - A proof for $\Sigma \vdash A$ is finite (11 rules proof permutations)
 - So finetly many premises in Σ suffice to prove A
 - We are given the assumption $\Sigma \vdash A$, thus we know it is constructed inductively using the 11 rules of \vdash
 - * Base Case: Refl (rule 1)
 - * Inductive Step: rules 2-11

9.2 Taotological Consequence vs. Deducibility

- A proof in formal deduction: (syntax)
 - Start with most basic rules
 - * $A \vdash A$ (Refl)
 - * $\Sigma, A \vdash A \ (\in)$
 - Apply other rules & theorems to create $\Sigma \vdash A$
- A proof is purely syntaxtic
- $\Sigma \vDash A$ iff $\forall t$ satisfying $\Sigma^t = 1$ implies $A^t = 1$
- $\models \& \vdash$ are not the same, but both are needed to prove formal deduction is sound & complete

9.3 Soundness

9.3.1 Theorem: Soundness

If $\Sigma \vdash A$, then $\Sigma \vDash A$

- The conclusion of a proof is always a logical consequence of the premises
- Proof system should not be able to formally prove incorrect statements

9.4 Detour: Consistency

9.4.1 Definition

- Σ is consistent if there does not exist A such that $\Sigma \vdash A \& \Sigma \vdash \neg A$
 - Otherwise Σ is inconsistent
- Equivalent definition
 - Σ is consistent if $\exists A$ such that $\Sigma \nvdash A$
 - Σ is inconsistent if ∀A Σ \vdash A

9.5 Lemma 1

 $\Sigma \vdash A \text{ iff } \Sigma \cup \{\neg A\} \text{ is inconsistent }$

9.6 Lemma 2

 $\Sigma \vDash A \text{ iff } \Sigma \cup \{\neg A\} \text{ is unsatisfiable }$

9.7 Theorem 3

 Σ is consistent iff Σ is satisfiable

9.8 Completeness

9.8.1 Theorem

- If $\Sigma \vDash A$, then $\Sigma \vdash A$
 - Every consequence is provable
 - Proof system should be able to formally prove every correct statement

9.9 Replaceability

9.9.1 Theorem

- Suppose B H
- Let A' be A with some occurrences of B replaced by C
- Then A' H A

10.1 Notes on \vdash

- Prove $\Sigma \vDash A$, then we finds proof $\Sigma \vdash A$ (soundness)
- Manually find $\Sigma \vdash A$
 - 11 rules & theorems
 - many permutations

10.2 Automated Theorem Proving: Resolution

- Comprised of 2 ideas:
 - 1. Reduce argument validity to satisfiability
 - $-\Sigma \models A \text{ iff } \Sigma \cup \{\neg A\} \text{ is unsatisfiable }$
 - $-\Sigma \cup \{\neg A\}$ is unsatisfiable iff it can prove contradiction $(\Sigma, \neg A \vdash B \land \neg B)$
 - 2. If all in formulas in $\Sigma \cup \{\neg A\}$ are in CNF, then \exists an algorithm for manually arrive at contradiction
- resolution is called a refutation system
- inputs: a set of disjunctive clauses (convert your formula $Form(L^p)$) into disj clauses
- Definition: Resolution

$$C \lor p, D \lor \neg p \vdash_r C \lor D$$

- Where
 - $-C, D \in Form(L^p)$ that are disj. caluses
 - p is a literal $(p \text{ or } \neg p, p \in Atom(L^p))$
- 2 clauses can be resolved if they comain complimentary literals $(p, \neg p)$
- $C \vee D$ is the resolvent
- $p, \neg p \vdash_r \{\}$
 - {} is a contradiction
 - $\{\} \neq \emptyset$
- Unit Resolution:
 - $-A \lor p, \neg p \vdash_r A$
 - $-B \vee \neg p, p \vdash_r B$
- To prove $\{A_1, \dots, A_n\} \vDash C$ is valid, show $\{A_1, \dots, A_n, \neg C\} \vdash_r \{\}$

10.3 Resolution Algorithm Psuedocode

- Input: A set of disj. clauses $S = \{D_1, \dots, D_n\}$
- Repeat:
 - choose 2 parent clauses such that one has p & the other has $\neg p$
 - resolve parent clauses over p, call this resolvent D
 - if $D = \{\}$, then break, else add D to S
- Output: $\{\}$ or remainder of S
- Resolution proof systms are sound & complete

10.4 Davis Putnam Procedure (DPP)

- let our disj. clauses be a set of literals
- let C, D be non-empty sets of the sets of literals
- \bullet represent the resolvent on p as

$$((C \cup \{p\}) \cup (D \cup \{\neg p\})) \setminus \{p, \neg p\}$$

- DPP Algorithm:
 - 1. maintain a set of dis. clauses
 - 2. eliminate literals 1-by-1
 - 3. eventually get
 - empty clauses Ø
 - no clauses $\{\{\}\}$

11 Lecture 11

11.1 Davis Putnam Procedure (DPP)

- DPP idea:
 - maintain a set of disjunctive clauses
 - eliminate literals one-by-one with resolution
 - eventually, no literals left
- DPP operates over disjunctive clauses, write disjunctive clauses as sets of literals

DPP Algorithm

- Input: S = input set of disjunctive clauses
 - set of set of literals $(S = \{\{p,q\},\{p\}\})$
 - let $\{p_1, \dots, p_n\}$ denote all literals in S
- $S = S_1$ initial set
- for i in $\{1, \dots, n\}$: loop through all literals
 - $-S_i' = S_i \setminus \{A \in S_i | A \text{ contains both } p_i \& \neg p_i\}$
 - $-T_i = \{A \in S'_i | A \text{ contains } p_i \text{ or } \neg p_i\}, T_i \text{ is the set of parent clauses}$
 - $-U_i = \{D|D \text{ is the resolvent of } B\&C \text{ over } p_i, \text{ where } B, C \in T_i\&B \neq C\}, U_i \text{ is the set of all possible resolvents } \vdash_r \text{ in } T_i$
 - $-S_{i+1} = (S'_i \backslash T_i) \cup U_i$
- Output S_{n+1}
 - show the satisfiability of our input S

Soundness and Completeness of DPP

If S is a set of disjunctive clauses, then

- $DPP(S) = \emptyset$ iff S is satisfiable
- $DPP(S) = \{\{\}\}\$ iff S is unsatisfiable

11.2 First Order Logic (FOL)

- propositional logic is limited
- first order logic can express complex statements, generalization of propositional logic

11.3 Elements of FOL

- Domain(D)
 - non-empty set of objects, representing the world
 - $-\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{N}$, set of all people
 - same statement can have different truth values under different D
- Symbols
 - individuals / constants:
 - * concrete and fixed elements in D

- variables
 - * placeholders for objects in D
 - * range over D
- Relations and Functions
 - represents:
 - * a property of object
 - * a relationship among multiple objects
 - n-arity: n elemts a relation / function takes
 - relation:
 - * represented with capitals
 - * in general: $F^{(n)}:D^n \to \{0,1\}$
 - function:
 - * represent with lower-cases
 - $* f^{(n)}: D^n \to D$
- Quantifiers
 - Universal (\forall) : statement is true for all objects in D
 - Existential (\exists): statement is true for some (≥ 1) objects in D
 - bound to all variables that follow
- Connectives
 - represent meaning, fixed by syntax and semantics
 - $-\neg, \lor, \land, \rightarrow, \iff$ used with atomic formulas, vars, etc
- Punctuations
 - sets scope and procedure

12.1 Syntax of FOL

- want to define recursive formulas in L
- in L^p : Form (L^p) & Atom (L^p)
 - formulas in $Form(L^p)$
 - * built with: Atom(L^p), connectives & punctuation
 - * 6 formation rules $(\neg, \lor, \land, \iff, \rightarrow \&p \in Atom(L^p))$

Notes

Spring 2023

- atomic formulas in $Atom(L^p)$, propositional variables
- in L: Form(L), Atom(L), Term(L)
 - formulas in Form(L)
 - * built with: Atom(L), connectives, punctuation & quantifiers

12.2Free vs. Bound Variables

- 2 types of vars in Form(L):
 - -A(u): formula A with a free variable u:
 - * replaced by individuals / constant $\in D$
 - $\forall x A(x) \& \exists x A(x)$: formula A with a bound variable x
 - * $\forall x, \exists x \text{ are quantifiers}$
 - * A(x) is the scope of the binder
 - * value of x depends on the quantifier
- convention:
 - -x,y,z for bound variables
 - -u, w, v for free variables
- In *L*:
 - atomic formulas in Atom(L)
 - * smallest kinds of formulas \in Form(L), produce $\{0,1\}$
 - * built with: resolutions & terms
 - * 2 formation rules
 - · if F is an n-ary relation & $t_1, \dots, t_n \in \text{Term}(L)$, then $F(t_1, \dots, t_n) \in \text{Atom}(L)$
 - * if $t_1, t_2 \in \text{Term}(L)$, then $t_1 \approx t_2 \in \text{Atom}(L)$
 - terms in Term(L)
 - * placeholders for objects $\in D$
 - * built with: variables, individuals, functions
- closed terms / formulas: terms / formulas that contain no free variables
- open terms / formulas: terms / formulas that contain ≥ 1 free variables

Notes

13.1 FoL Parse Tree

- Precedence Rules: $\{\forall, \exists\} > \neg > \land > \lor > \rightarrow > \iff$
- Show how Form(L) was constructed
 - break apart by precedence
 - when remove $\forall x \exists x$, unbind the var to u, v
 - leaves = Atom(L)

13.2 FoL Semantics

- In L^p : truth valuation under $t \forall Atoms(L^p)$
- In L: A valuation v consists of
 - a non-empty set D
 - an interpretation for
 - * every individual symbol $a, a^v \in D$
 - * free variable $u, u^v \in D$
 - * function $f, f^v: D^v \to D$
 - * relation $R, R^v \subseteq D^n$

13.3 Values of Term(L)

- The value of a term $t \in Term(L)$ under valuation v is defined recursively
 - if t is an individual a, then $t^v = a^v \in D$
 - if t is a free variable $a, t^v = a^v \in D$
 - if t is a function $f(t_1, \dots, t_n)$, then $t^v = f^v(t_1^v, \dots, t_n^v)$, $f^v: D^n \to D$
- If $t \in Term(L)$ & t^v is defined, then $t^v \in D$

13.4 Values of Form(L)

let v be a valuation over D, the value of $A \in Form(L)$ under $v A^v$ is defined recursively

• if $A = R(t_1, \dots, t_n) \in Atom(L)$, then

$$A^{v} = R(t_{1}, \dots, t_{n})^{v} = \begin{cases} 1 \text{ if } (t_{1}^{v}, \dots, t_{n}^{v}) \in R^{v} \\ 0 \text{ otherwise} \end{cases}$$

• $A = (\neg B)$, then

$$(\neg B)^v = \begin{cases} 1 \text{ if } B^v = 0\\ 0 \text{ otherwise} \end{cases}$$

• $A = (B * C), *: \land, \lor, \rightarrow, \iff$, then

$$(B * C)^v = \begin{cases} 1 \text{ inherited from} \\ 0 \text{ Prop Logic} \end{cases}$$

• $A = \forall x B(x)$, then

$$(\forall x B(x))^v = \begin{cases} 1 \text{ if } B(a)^{v(u/d)} = 0 \forall d \in D \\ 0 \text{ otherwise} \end{cases}$$

v(u/d) = free var u interpretted as an object $d \in D$

• $A = \exists x B(x)$, then

$$(\exists x B(x))^v = \begin{cases} 1 \text{ if } B(a)^{v(u/d)} = 0 \exists d \in D \\ 0 \text{ otherwise} \end{cases}$$

• If $A \in Form(L)$ & A^v is defined, then $A^v \in \{0,1\}$

13.5 Satisfiability in FoL

- A is satisfiable if $\exists v$ such that $A^v = 1$
- A is unsatisfiable if $\forall v, A^v = 0$
- A is Universally valid if $\forall v, A^v = 1$

13.6 Definition

 $\Sigma \subseteq Form(L)$

•

$$\Sigma^{v} = \begin{cases} 1 \text{ if } \forall A \in \Sigma, A^{v} = 1\\ 0 \text{ otherwise} \end{cases}$$

- Σ is satisfiable if $\exists v, \Sigma^v = 1$
- Σ is unsatisfiable if $\forall v, \Sigma^v = 0$

14.1 Logical Consequence in FoL (⊨)

- let $\Sigma \subseteq Form(L) \& A \in Form(L)$
- $\Sigma \vDash A$ iff for all valuation v

$$\Big\{\Sigma^v=1 \text{ then } A^v=1\Sigma^v=0 \text{ then } A^v \in \{0,1\}$$

- Facts:
 - Øis valid, like a tautology
 - $\varnothing \vDash A \text{ iff } A \text{ is valid}$
 - If Σ is unsatisfiable, then $\Sigma \vDash A \ \forall A \in Form(L)$
 - $-A \vDash B \text{ iff } A \vDash B \text{ and } B \vDash A$
 - $\forall x(\neg A(x)) \exists \neg \exists x(A(x))$
 - $-\exists x(\neg A(x)) \exists \neg \forall x(A(x))$

14.2 Soundness & Completeness

Let $\Sigma \subseteq Form(L) \& A \in Form(L)$

- $\Sigma \vDash A \text{ iff } \Sigma \vdash A$
- soundness: $\Sigma \vdash A \to \Sigma \vDash A$
- completeness: $\Sigma \vDash A \rightarrow \Sigma \vdash A$

15 Lecture 15

15.1 Finding FoL Proofs $(\Sigma \vdash A)$

- Common trends
 - want $\forall x A(x)$? try $(\forall +)$
 - $-\exists x A(x)$? try $(\exists -)$
 - $-\Sigma \vdash \exists x A(x)$? try ($\exists +$)
 - have $\Sigma \vdash \forall x A(x)$, try $(\forall -)$
- for quantifiers:
 - try to remove all quantifiers
 - rearrange $\Sigma \vdash A$
 - re-introduce all quantifiers

- work in reverse
- try contradiction
- proof by contrapositive

16.1 Equality Theorems

- $\emptyset \vdash t \approx t$ (Refl of Equality)
- $t_1 \approx t_2 \vdash t_2 \approx t_1$ (Symmetry of Equality)
- $t_1 \approx t_2, t_2 \approx t_3 \vdash t_1 \approx t_3$ (Trans of Equality)

16.2 Additional Theorems in FoL

- Theorem: Duality
 - let $A \in Form(L_{\neg, \land, \lor, \forall, \exists})$
 - let $\triangle(A)$ be recursively defined as
 - 1. if $A = B \in Atom(L)$ then $\triangle(A) = \neg B$
 - 2. if $A = B \wedge C \in Atom(L)$ then $\triangle(A) = \triangle(B) \vee \triangle(C)$
 - 3. if $A = B \lor C \in Atom(L)$ then $\triangle(A) = \triangle(B) \land \triangle(C)$
 - 4. if $A = \forall x B(x)$ then $\triangle(A) = \exists x \triangle(B(x))$
 - 5. if $A = \exists x B(x)$ then $\triangle(A) = \forall x \triangle(B(x))$
 - $\triangle(A) \vdash \neg A$
- Replaceability
 - $\text{ let } A, B, C \in Form(L) \& B \sqcap C$
 - let A' be A with some occurrences of $B \in A$ replaced by C
 - then A' H A
- Theorem: Finiteness of premises
 - $\forall \Sigma \subseteq Form(L)$ & $A \in Form(L)$, if $\Sigma \vdash A$ then there exists a finite $\Sigma' \subseteq \Sigma$ such that $\Sigma' \vdash A$
 - allow to get rid of unnecessary premises
 - $-\Sigma$ can be finite

CS 245 Spring 2023

16.3 Consistency

- let $\Sigma \subseteq Form(L) \& A \in Form(L)$
- Σ is consistent if there does not exist an A such that $\Sigma \vdash A \& \Sigma \vdash \neg A$
- else inconsistent
- Σ is consistent iff Σ is satisfiable

16.4 Resolution in FoL

- Input: set of disjunctive clauses S, resolution tells if S is satisfiable
- Resolution (resolved over complementary literals)

Steps

- 1. Step 1: Convert Formulas to Prenex Normal Form
 - A FoL formula A is in PNF iff it has the form:

$$Q_1x_1Q_2x_2\cdots Q_nx_nB(x_1,x_2,\cdots,x_n)$$

where $Q_i \in \{ \forall, \exists \}, n \geq 0, B(\cdots)$ is quantifier free

16.5 PNF algorithm

Input $A \in Form(L)$, Output A in PNF

- 1. eliminate \rightarrow , \iff in A
- 2. Move \neg outside Q_i
- 3. standardize over variables (bound) apart
- 4. move quantifiers to the fron of A

17 Lecture 17

17.1 Steps

- 1. Step 1: convert formulas to prenex normal form
- 2. convert the PNF to ∃-free PNF
- 3. drop \forall -quantifiers
- 4. obtain CNF
- 5. resolution via unification
 - An institution is an assignment to a variable x_i to a quasi-term t_i $(x_i := t_i)$
 - two formulas in FoL unify if there are instantiation that make them identical

CS 245 Notes

18 Lecture 18

18.1 Algorithm & Models of computation

In L^p , we can prove $\forall Form(L^p)$ any statement

- 2^n truth valuation
- resolution \rightarrow DPP(S)
- \rightarrow Input: $A \in Form(L)$
- \rightarrow Output: "Yes" if A is satisfiable, "no" otherwise
- Definition: An algorithm is a finite sequence of well-defined, computer-interpretable instructions for solving a class of problems or performing computation
- Theorem: There exists an algo that can find a resolution rpoof for any unsatisfiable formula in FoL
 - there exists algos that can check if a resolution proof is correct
- There can exist problems where no algorithm exists to solve them

18.2 Halting Problem

- Algorithm:
 - Input: program P & input data I for P
 - Output: "Yes" if P halts (terminates) on I, "No" if P doesn't halt on I (loop forever)
- Theorem: the halting problem is unsolveable
- A program is a finite sequence of instructions, can be used as input to another program or itself

18.3 Turing Machine

- control unit resides on a 2-way tape of symbols, tape is divided into cells (states)
- control unit can read/write any cell & communicates with the state-transition table
 - tells the control unit what to write & where to go next
- turing machine continues to opprate until the problem is solved

Spring 2023

18.4 Formally: TM

A turing machine $T = \{S, I, f, S_0\}$ consist of

- 1. S: a finite set of states
- 2. I: an alphabet, finite set of symbols also including a "blank" symbol B
- 3. f: transition function $f: S \times I \to S \times I \times \{R, L\}$
- 4. $S_0 \in S$: an initial / starting state

18.5 Running a Turing Machine TM

- Initially
 - T is in state S_0
 - on all cells of the tape, there is a symbol $\in I$
 - only a finite number of blank cells (B)
 - * if there non-B cells: position the control unit to the left-most non-B cell
 - * else if the tape is all B's, start anywhere
- Repeat until T halts:

Assume T is in $s \in S$ & looking at cell symbol $x \in I$

- 1. if f(s,x) is undefined $\to T$ halts
- 2. otherwise f(s,x) = (s', x', d)
 - T overwrite corrent symbol x with x'
 - T move left / right depending on $d \in \{L, R\}$
 - T enter state s'
- definition: each line of cells is called a configuration denote as: x_1sx_2
 - s: corrent state
 - $-x_1$: part of the tape from left-most B to s
 - $-x_2$: part of the tape from rightmost B to s
- definition: TM computation = All configurations grouped together for the given tape

CS 245
Notes
Spring 2023

19

19.1

TMs that Compute function

Lecture 19

• definition: a TM computes a total function f iff all tape inputs x in f's domain cause T to halt with f(x) on the tape

T accepts a string $x \in \Sigma^*$ if when x is on the tape, T halts in a final state 2 ways for T to reject x

- T run forever
- T halt on x, but isn't in a final state

19.2 Turing-Church Thesis

Thesis: "any problem that can be solved by an algorithm, can be solved by a TM"

19.3 Decidable Problems & Computable Functions

definition: a decision problem is yes-or-on question on an infinite set of inputs each input is an instance of the problem

20 Lecture 20

20.1 Decidability

Definition: a decision problem is decidable / solvable if is a total TM accept those & only those inputs of problem instances that produce "yes"

20.2 Computability

Definition: a function is computable if there \exists a total TM that compute / represent that function

20.3 Peano Arithmetic

- Peano Arithmetic Properties
 - 1. $D = \mathbb{N}$
 - 2. non-logical symbols
 - 3. Axioms for functions $(s, +, \cdot)$ & induction

20.4 Peano Arithmetic Axioms

- an axiom (α) is a formula assumed as a premise in any proof $(\emptyset \vdash_{PA} \alpha)$
- an axiom scheme is a set of axioms, defined by a pattern / rule (can be ∞ axioms), denote $\Sigma \vdash_{PA} A$
- 7 axioms:
 - 1. PA1: $\forall x(s(x) \neq 0)$
 - 2. PA2: $\forall x \forall y (s(x) = s(y) \rightarrow x = y)$
 - 3. PA3: $\forall x(x+0=x)$
 - 4. PA4: $\forall x \forall y (x + s(y) = s(x + y))$
 - 5. PA5: $\forall x (x \cdot 0 = 0)$
 - 6. PA6: $\forall x \forall y (x \cdot s(y) = x \cdot y + x)$
 - 7. PA7: $A(0) \wedge \forall x (A(x) \to A(s(x))) \to \forall x A(x)$
- PA7 is an axiom scheme that generate ∞ axioms

21 Lecture 21

21.1 Design Implication

- PA is decidable
- PA is consistent
- PA is not complete, complete iff $\forall A \in Sent(L)$, have $\emptyset \vdash_{PA} A$ or $\emptyset \vdash_{PA} \neg A$

21.2 Hoare Triples

- $\{P\}C\{Q\}$ is satisfied under partial correctness iff
 - for every programming state s_1 satisfying P
 - if execution of C starting from s_1 terminates in a state s_2 (termination not guarantee)
 - then s_2 satisfies Q
- $\{P\}C\{Q\}$ is satisfied under total correctness iff
 - for every state s_1 satisfying P
 - execution of C from s_1 terminates in state s_2 (enforce termination)
 - $-s_2$ satisfies Q
- Total correctness = partial correctness + termination

CS 245 Spring 2023

Notes

22 Lecture 22 & 23

22.1 Decidability of Total / Partial Correctness

• Theorem: total correctness is undecidable

• Theorem: partial correctness is undecidable

23 Refrence Sheet

Essential laws of \mathcal{L}^p

Commutativity

 $A \wedge B \vDash B \wedge A$

 $A \lor B \bowtie B \lor A$

 $A \leftrightarrow B \bowtie B \leftrightarrow A$

Associativity

 $A \wedge (B \wedge C) \vDash (A \wedge B) \wedge C$

 $A \lor (B \lor C) \bowtie (A \lor B) \lor C$

Distributivity

 $A \lor (B \land C) \bowtie (A \lor B) \land (A \lor C)$

 $A \land (B \lor C) \vDash (A \land B) \lor (A \land C)$

De Morgan

 $\neg (A \land B) \vDash \neg A \lor \neg B$

 $\neg (A \lor B) \vDash \neg A \land \neg B$

Double Negation

 $\neg(\neg A) \vDash A$

Excluded Middle

 $A \lor \neg A \boxminus 1$

Contradiction

 $A \land \neg A \vDash 0$

Implication

 $A \to B \vDash \neg A \lor B$

Contrapositive

 $A \to B \bowtie \neg B \to \neg A$

Equivalence

 $A \leftrightarrow B \vDash (A \to B) \land (B \to A)$

Idempotence

 $A \lor A \bowtie A$

 $A \land A \vDash A$

Identity

 $A \land 1 \vDash A$

 $A \lor 0 \bowtie A$

Domination

 $A \land 0 \vDash 0$

 $A \lor 1 \boxminus 1$

Absorption I

 $A \lor (A \land B) \bowtie A$

 $A \wedge (A \vee B) \bowtie A$

Absorption II

 $(A \land B) \lor (\neg A \land B) \vDash B$

 $(A \lor B) \land (\neg A \lor B) \bowtie B$

Formal deduction (\vdash) for \mathcal{L}^p : Proof rules

```
(Ref)
                                                                               A \vdash A.
   (+)
                                                           If \Sigma \vdash A, then \Sigma, \Sigma' \vdash A.
 (\neg -)
                   If \Sigma, \neg A \vdash B and \Sigma, \neg A \vdash \neg B, then \Sigma \vdash A.
(\rightarrow -)
                             If \Sigma \vdash A \rightarrow B and \Sigma \vdash A, then \Sigma \vdash B.
(\rightarrow +)
                                                       If \Sigma, A \vdash B, then \Sigma \vdash A \rightarrow B.
 (\land -)
                                                    If \Sigma \vdash A \land B, then \Sigma \vdash A and \Sigma \vdash B.
 (\wedge+)
                                      If \Sigma \vdash A and \Sigma \vdash B, then \Sigma \vdash A \land B.
 (\vee -)
                             If \Sigma, A \vdash C and \Sigma, B \vdash C, then \Sigma, A \lor B \vdash C.
                                                           If \Sigma \vdash A, then \Sigma \vdash A \lor B and \Sigma \vdash B \lor A.
 (\lor+)
                             If \Sigma \vdash A \leftrightarrow B and \Sigma \vdash A, then \Sigma \vdash B.
                             If \Sigma \vdash A \leftrightarrow B and \Sigma \vdash B, then \Sigma \vdash A.
(\leftrightarrow +)
                             If \Sigma, A \vdash B and \Sigma, B \vdash A, then \Sigma \vdash A \leftrightarrow B.
```

Formal deduction (\vdash) for \mathcal{L}^p : Proven results

 (\in) If $A \in \Sigma$ then $\Sigma \vdash A$.

(Hypothetical Syllogism) $A \rightarrow B$, $B \rightarrow C \vdash A \rightarrow C$.

 $(\neg +)$ If $\Sigma, A \vdash B$ and $\Sigma, A \vdash \neg B$, then $\Sigma \vdash \neg A$.

(Double Negation) $\neg \neg A \vdash \!\!\! \vdash A$.

(Disjunctive Syllogism) $A \vee B$, $\neg B \vdash A$.

(Contrapositive) $A \rightarrow B \vdash \neg B \rightarrow \neg A$.

(Excluded Middle) $\emptyset \vdash A \lor \neg A$.

(Non-Contradiction) $\emptyset \vdash \neg (A \land \neg A)$.

(Inconsistency) $A, \neg A \vdash B$.

(De Morgan) $\neg (A \land B) \vdash (\neg A \lor \neg B)$ and $\neg (A \lor B) \vdash (\neg A \land \neg B)$.

(Implication) $A \rightarrow B \vdash \neg A \lor B$.

(Flip-Flop) If $A \vdash B$ then $\neg B \vdash \neg A$.

(Transitivity) If $\Sigma \vdash \Sigma'$ and $\Sigma' \vdash A$, then $\Sigma \vdash A$.

(Finiteness of Premise Set)

If $\Sigma \vdash A$, then there exists a finite set $\Sigma' \subseteq \Sigma$ such that $\Sigma' \vdash A$.

(Soundness)

If $\Sigma \vdash A$, then $\Sigma \vDash A$.

(Completeness)

If $\Sigma \vDash A$, then $\Sigma \vdash A$.

Formal deduction (\vdash) for \mathcal{L} : Proof rules

Peano arithmetic (\vdash_{PA}): Axioms and axiom schema

- $(\text{PA1}) \ \emptyset \vdash_{PA} \forall x (\neg (s(x) = 0))$
- $(\text{PA2}) \varnothing \vdash_{PA} \forall x \forall y (s(x) = s(y) \to x = y)$
- (PA3) $\varnothing \vdash_{PA} \forall x(x+0=x)$
- (PA4) $\varnothing \vdash_{PA} \forall x \forall y (x + s(y) = s(x + y))$
- (PA5) $\varnothing \vdash_{PA} \forall x (x \cdot 0 = 0)$
- (PA6) $\varnothing \vdash_{PA} \forall x \forall y (x \cdot s(y) = x \cdot y + x)$
- $(\text{PA7}) \varnothing \vdash_{PA} A(0) \land \forall x (A(x) \to A(s(x))) \to \forall x A(x)$

Formal deduction (\vdash) for \mathcal{L} : Proven results

```
(\in) If A \in \Sigma then \Sigma \vdash A.
(Hypothetical Syllogism) A \rightarrow B, B \rightarrow C \vdash A \rightarrow C.
(\neg +) If \Sigma, A \vdash B and \Sigma, A \vdash \neg B, then \Sigma \vdash \neg A.
(Double Negation) \neg \neg A \vdash A.
(Disjunctive Syllogism) A \vee B, \neg B \vdash A.
(Contrapositive) A \rightarrow B \vdash \neg B \rightarrow \neg A.
(Excluded Middle) \emptyset \vdash A \lor \neg A.
(Non-Contradiction) \emptyset \vdash \neg (A \land \neg A).
(Inconsistency) A, \neg A \vdash B.
(De Morgan) \neg (A \land B) \vdash (\neg A \lor \neg B) and \neg (A \lor B) \vdash (\neg A \land \neg B).
(Implication) A \to B \vdash \neg A \lor B.
(Flip-Flop) If A \vdash B then \neg B \vdash \neg A.
(Reflexivity of equality)
          \emptyset \vdash \forall x(x \approx x).
          \emptyset \vdash t \approx t.
(Symmetry of equality)
          \emptyset \vdash \forall x \forall y ((x \approx y) \rightarrow (y \approx x)).
          t_1 \approx t_2 \vdash t_2 \approx t_1.
          If \Sigma \vdash t_1 \approx t_2, then \Sigma \vdash t_2 \approx t_1.
(Transitivity of equality)
          \emptyset \vdash \forall x \forall y \forall z ((x \approx y) \land (y \approx z) \rightarrow (x \approx z)).
          t_1 \approx t_2, t_2 \approx t_3 \vdash t_1 \approx t_3.
         If \Sigma \vdash t_1 \approx t_2 and \Sigma \vdash t_2 \approx t_3, then \Sigma \vdash t_1 \approx t_3.
(\approx -') If \Sigma \vdash A(t_1) and \Sigma \vdash t_2 \approx t_1 then \Sigma \vdash A(t_2).
(Negation of \forall-quantification) \neg \forall x A(x) \vdash \exists x \neg A(x).
(Negation of \exists-quantification) \neg \exists x A(x) \vdash \forall x \neg A(x).
(EQSubs) If \Sigma \vdash t_1 \approx t_2, then \Sigma \vdash r(t_1) \approx r(t_2).
(EQTrans) If \Sigma \vdash t_i \approx t_{i+1} for all i \in \{1, ..., n\}, then \Sigma \vdash t_1 \approx t_{n+1}.
(Transitivity) If \Sigma \vdash \Sigma' and \Sigma' \vdash A, then \Sigma \vdash A.
(Finiteness of Premise Set)
          If \Sigma \vdash A, then there exists a finite set \Sigma' \subseteq \Sigma such that \Sigma' \vdash A.
(Soundness) If \Sigma \vdash A, then \Sigma \vDash A.
```

(Completeness) If $\Sigma \vDash A$, then $\Sigma \vdash A$.

Program verification: Inference rules and annotation templates

assignment

composition

if-then-else

$$\begin{array}{c} \text{ if } (E) \ \{ \\ & (P \land E) \quad \text{ if-then-else} \\ & C_1 \\ & (P \land E) \quad C_1 \ (Q) \\ & (P \land \neg E) \quad C_2 \ (Q) \\ \hline \\ (P) \quad \text{if } (E) \quad C_1 \quad (Q) \\ & (P \land \neg E) \quad C_2 \ (Q) \\ \hline \\ (P) \quad \text{if } (E) \quad C_1 \quad (Q) \\ & (Q) \quad \text{if-then-else} \\ & C_2 \\ & (Q) \quad \text{justify } (P \land \neg E) \quad C_2 \ (Q) \\ \\ \\ (Q) \quad \text{if-then-else} \\ \end{array}$$

(P)

if-then

$$\frac{(P)}{\text{if }(E) \in \{(P \land E) \land C \land Q) \land \emptyset \vdash P \land \neg E \to Q\}} \qquad \begin{array}{c} (P) \\ \text{if }(E) \in \{(P \land E) \land (P \land E) \land (P \land E) \land C \land Q\} \\ (P) \\ \text{if }(E) \land (P \land E) \land (P \land P \land P) \\ \text{if }(E) \in \{(P \land E) \land (P \land E) \land (P \land E) \land (P \land P) \land (P \land P)$$

while

$$\frac{(I \land E) C (I)}{(I \land E) C (I \land \neg E)} \qquad \begin{array}{c} (I \land E) & \text{while } (E) \\ (I \land E) & \text{while } \\ (C; \\ (I) & \text{justify } (I \land E) C (I) \\ (I \land \neg E) & \text{while } \end{array}$$

precondition strengthening

$$\frac{ \left(\begin{array}{c|c} P' \end{array} \right) C \left(\begin{array}{c} Q \end{array} \right) \qquad \varnothing \vdash P \to P' }{ \left(\begin{array}{c|c} P \end{array} \right) C \left(\begin{array}{c} Q \end{array} \right) } \qquad \begin{array}{c} \left(\begin{array}{c} P \end{array} \right) \\ \left(\begin{array}{c} P' \end{array} \right) \qquad \text{justify } \varnothing \vdash P \to P' \\ C \\ \left(\begin{array}{c} Q \end{array} \right) \qquad \text{justify } \left(\begin{array}{c} P' \end{array} \right) C \left(\begin{array}{c} Q \end{array} \right)$$

postcondition weakening