Ewaciones Riferentiales
Taxea 11

Tomai Ricardo Basile Álvarez

|                                       | e el análisis                                               | de estabilidad                              | lineal para                              | el pénaln f                                         | (isi co              |                       |
|---------------------------------------|-------------------------------------------------------------|---------------------------------------------|------------------------------------------|-----------------------------------------------------|----------------------|-----------------------|
| $\frac{\partial f_3}{\partial g} = -$ | Ksat                                                        | -> dt (4                                    | ) =   \r<br>- Ksen e                     | on.                                                 | L = GF               |                       |
| 11 Puntos                             | de equilibrio.                                              |                                             |                                          | 1.5                                                 |                      |                       |
| Ğlt., x.                              | )=0 =>                                                      | $\left(-Ksen\theta\right) =$                | (6) donde                                | $\bar{\chi} = \begin{pmatrix} u \\ v \end{pmatrix}$ | . √= 0<br>-> K sen 4 | = 0 -> 0 = 0,77,277,3 |
| ⇒ /os                                 | purpos fij                                                  | ios sm Z                                    | = ( 0 )                                  | AneZ                                                | 7 1 5                |                       |
|                                       | infinitos puntos<br>hora descubi                            |                                             |                                          |                                                     | ilo hayqe            | fijarnos en dos       |
| Z, Escr                               | ibir el sister                                              | ma linealizado                              | y 1.3 (res) L.                           |                                                     |                      |                       |
| Primero                               | (a) (u)a mos                                                | el Jacobiano                                | de G(0,v)                                | = (-Ksen o)                                         |                      |                       |
| I hay<br>Sin en                       | que evaluar<br>margo, vemo<br>y para los in<br>casos (osilo | esta matriz<br>s que para to<br>pares, - Ko | en (ada pur<br>300 105 n (<br>s(nr) = K, | nto fijo<br>pares, - Kin<br>Entonies                | $(\pi n)$ $n \in S$  | X uestos únicos       |
| 905                                   | casos posib                                                 | iles .                                      | 0                                        |                                                     |                      |                       |
| e) para                               | n par:                                                      | χ = (†" - Κ ως (π <sub>n</sub> ) = )        |                                          | sistema =                                           | 1101                 | = 10 1 10)            |
| 2 1                                   | ) 6   x, = (-                                               | Kuslmn) o                                   | (-K b)                                   | Lineal                                              | df   V               | - (K 0 [17] }         |



d) Bosquejo Para X = (nm) un n par, tenemos dos eigenvalores  $\lambda = \pm J\bar{k}$ ;

que son imaginarios puntos conjugados,
según la terminológia de la leitura 16b, es un centro Para X = (ntt) con n'impar, tenems eigenvalores reales \(\lambda = \pm \) K
de signo opuesto, un punto silla.



| ·1 Par ~ (0       | p.) |            |         |         |       | di         | s )      | -      |         | 0  | /   |     | 010 | 8              |     |     | /4  | -  | 1    |    |     |          |          | Ē     |
|-------------------|-----|------------|---------|---------|-------|------------|----------|--------|---------|----|-----|-----|-----|----------------|-----|-----|-----|----|------|----|-----|----------|----------|-------|
| Eigenvalors:      |     | -          | δ-X     |         | - 016 | 2 d        | ()       | F      | 0       |    | >   |     | (-; | r-:            | 7)  | ( f | 8-  | λ) | #    | 0  | 3   | λ,<br>人. | 2 2      | الدان |
| Eigenvertores: pa | q . | λ, =       | -8.     | :       |       |            |          |        |         |    |     |     |     |                |     |     |     |    | 1    |    |     |          | = 0      |       |
| Pera Xz = G       | 8   |            | 1       | 0)      | - 6   | 2          |          | a<br>b | 8       | )( | ×   | ) = | ( . | )              |     | )   | (-1 | +  | ( ما | X  | - 0 | 5 4      | =        | 0     |
|                   | y = | <u>b</u> a | - (-1 - | ماله    | ) x   |            | -7       | 7      | 11      | -  | b = | 4   | ×   | ,              | par | a × | = 9 |    | 7    | j. | ı = | (-       | a<br>-b- | c)    |
| :. La soluc       | 100 | 90e al     | es :    | (<br>(, | H)    | = (<br>y E | ex<br>(1 | , t    | ν,<br>+ | +  | Cr  | ex  | rt  | υ <sub>2</sub> | a-h | -6  | )   |    |      |    |     |          |          |       |

4. Bosquejo: Princio que nada, tomanos el caso en que 1/6 >0, de esta forma los puntos fijos están en el lor ruadionte que es lo que nos interesa. - (q10 1) 870 (70, En este (aro, el punto fijo (6) es figte pos sus eigenvalores son \(\lambda = \forall > 0\)

El punto \(\tilde{x}\_1 = \big( \frac{776}{6} \big) \) es silla, pues sus eigenvalores son \(\lambda = \forall < 0 \) \(\tilde{x}\_2 = \big( \forall > 0 \) (aso 3): > <0, <>0 (aso 2) 8 >0, c < 0. pues  $\lambda_1 = 0$   $\lambda_2 = 0$ · El punto (3) es fierte mes 1=0, 1=00 • [ | parto (8/6) es Sumidera · El punto (7/6) es fuente

pres 1.=->>0 1=-6>0 pues 2= 000 2= 0 x = 0 x 0 X/b (aso 4) x < 0, c < 0 El punto (6) es similaro pres 11=0 12= 2 < 0 El punto  $\binom{7/6}{0}$  es silla pues  $\lambda_1 = -\frac{7}{70}$   $\lambda_2 = \frac{1}{6}$  < 0