Does the interpretation of null pronouns in Mandarin follow a Bayesian approach?

Suet Ying Lam & Heeju Hwang

Department of Linguistics The University of Hong Kong

34th CUNY Human Sentence Processing Conference March 5, 2021

Expectancy Hypothesis

(e.g., Arnold, 2001)

Mirror Model

(e.g., Ariel, 1990; Givón, 1983; Gundel et al., 1993)

Bayesian Approach

(e.g., Kehler et al., 2008)

1. Expectancy Hypothesis

小玲吓到了嘉怡, 因为…

Xiaoling frightened Jiayi, because...

Continuations about Xiaoling (N1): 26 Continuations about Jiayi (N2): 1

Expectancy Hypothesis

(e.g., Arnold, 2001)

Mirror Model

(e.g., Ariel, 1990; Givón, 1983; Gundel et al., 1993)

Bayesian Approach

(e.g., Kehler et al., 2008)

2. Mirror Model

小玲吓到了嘉怡, 因为…

Xiaoling frightened Jiayi, because...

Continuations about Xiaoling (N1): 26 Using Overt pronoun: 16

Continuations about Jiayi (N2): 1 Using Overt pronoun: 0

$$P(\text{overt} \mid \text{N1}) = \frac{16}{26} = 0.615$$

$$P(\text{overt} | \text{N2}) = \frac{0}{1} = 0$$

Expectancy Hypothesis

(e.g., Arnold, 2001)

Mirror Model

(e.g., Ariel, 1990; Givón, 1983; Gundel et al., 1993)

Bayesian Approach

(e.g., Kehler et al., 2008)

3. Bayesian approach

小玲吓到了嘉怡, 因为…

Xiaoling frightened Jiayi, because...
$$P(N1) = \frac{26}{27} = 0.963$$
 $P(N2) = \frac{1}{27} = 0.037$ $P(\text{overt} | \text{N1}) = \frac{16}{26} = 0.615$ $P(\text{overt} | \text{N2}) = \frac{0}{1} = 0$

Bayesian Model

Asymmetry between interpretation and production/next-mention bias

[Grammatical/ Info [Semantic/ structure factors] pragmatic factors]

Choice of forms
Production bias

Choice of referent
Next-mention bias

Pronoun Interpretation

Performed the best in:

- ✓ English overt pronouns (Rhode & Kehler, 2014; Kehler & Rhode, 2019)
- ✓ Chinese overt pronouns (Zhan et al., 2020)
- ✓ German personal pronouns (Patterson et al., 2020)

Research question:

Which model best explains the interpretation of null pronoun?

Overt and null pronouns are different:

- Null pronoun interpretation is more strongly subjectbiased (e.g., Japanese: Ueno & Kehler, 2016; Mandarin: Zhang, 2018)
- Null pronoun interpretation is not sensitive to pragmatic factors like aspect in Japanese (Ueno & Kehler, 2016)

• Two passage-continuation experiments on overt pronouns (exp.1) and null pronouns (exp.2) **Implicit causality (IC) verbs: Verb Bias x Prompt Type, with connective "because"**

Subject (N1)-biased verb

Object (N2) -biased verb

→ Next-mention bias

小玲吓到了嘉怡, 因为…

Xiaoling frightened Jiayi, because

嘉怡害怕小玲,因为…

Jiayi scares Xiaoling, because

Transfer-of-possession (TOP) verbs: Verb Bias x Prompt Type, with connective "so"

Subject (N1)-biased verb

立强从小刚那里收到了一个包裹, 所以...

Liqiang received a package from Xiaogang, so

Object (N2)-biased verb

小刚向立强寄了一个包裹, 所以…

Xiaogang sent a package to Liqiang, so

• Two passage-continuation experiments on overt pronouns (exp.1) and null pronouns (exp.2) Implicit causality (IC) verbs: Verb Bias x Prompt Type, with connective "because"

Subject (N1)-biased verb

Object (N2) -biased verb

→ Next-mention bias

小玲吓到了嘉怡, 因为…

嘉怡害怕小玲,因为…

Xiaoling frightened Jiayi, because

Jiayi scares Xiaoling, because

Free prompt

Pronoun prompt

production bias

因为 (free)...

因为她 (overt)... 因为想 (null)...

Pronoun: Interpretation bias

Free: Next-mention and

because...

because she...

because wants to/think...

Transfer-of-possession (TOP) verbs: Verb Bias x Prompt Type, with connective "so"

Subject (N1)-biased verb

Object (N2)-biased verb

立强从小刚那里收到了一个包裹, 所以...

小刚向立强寄了一个包裹, 所以…

Liqiang received a package from Xiaogang, so

Xiaogang sent a package to Liqiang, so

Free prompt

Pronoun prompt

所以她 (overt)...

所以 (free)...

SO...

so she...

所以想 (null)...

so wants to/think...

Evaluation Metrics

Correlation: R-squared (R2)

 How well the observed values are replicated by the predicted value

Prediction error: Mean squared error (MSE)

 Reflects how far away the prediction is from the observation

Prediction error: Average Cross Entropy (ACE)

- Reflects how far away the prediction is from the observation in a logarithmic scale
- Gives more weight to extreme deviations

Overt pronoun (Experiment 1) results: Choice of referents and forms

Overt pronoun (Experiment 1) results: Choice of referents and forms

Overt pronoun (Experiment 1) results: Choice of referents and forms

Model Evaluation – Overt pronoun

	TOP ve	rbs - O	vert				
1.00 -	Under	estim	ated			* ***	
tation		A		•	•		
iterpre				A	<u> </u>		615
Human rate of N1 interpretation							• •
rate of		_	A , c	~ <u>^</u>	•	••	
E 0.25		,,,,,				N	Model
ĭ		. ^ ′					 Bayesian
			Overe	estim	nated		Expectancy
0.00							 Mirror
	0.00	0.25 Mode		0.5 ction of	o f N1 inte	0.75 rpretati	

TOP verbe - Overt

IC Overt	Bayesian	Expectancy	Mirror
\mathbb{R}^2	0.950***	0.952***	0.491***
MSE	0.009	0.016	0.085
ACE	0.804	0.888	0.521

TOP Overt	Bayesian	Expectancy	Mirror
\mathbb{R}^2	0.585***	0.772***	0.080
MSE	0.019	0.060	0.068
ACE	0.253	0.575	0.309

^{***:} *p* < .001; **: *p* < .01; *: *p* < .05;

Results: Experiment 2 (Null pronoun) - Choice of referents and forms

Choice of referent (Next-mention/Interpretation bias)

Results: Experiment 2 (Null pronoun)

- Choice of referents and forms

Results: Experiment 2 (Null pronoun)

- Choice of referents and forms

Model Evaluation – Null pronoun

IC Null	Bayesian	Expectancy	Mirror
\mathbb{R}^2	0.253*	0.004	0.045
MSE	0.114	0.297	0.262
ACE	0.445	0.858	0.820

TO	OP verbs - Null		
1.00	A A A	****	A SUPPLY
tation tation	Underestimate	d	
erpre			
<u> </u>			
of of the of			Overestimated
Human rate of N1 interpretation			Model Bayesian
0.00			▲ Expectancy ◆ Mirror
0.0	00 0.25 Model Pred	0.50 diction of N1 int	0.75 1.00
	WOOGETTEE	ACCION OF 141 IIII	ici protation

TOP Null	Bayesian	Expectancy	Mirror
\mathbb{R}^2	0.488***	0.383**	0.041
MSE	0.067	0.197	0.137
ACE	0.2 77	0.606	0.452

***: *p* < .001; **: *p* < .01; *: *p* < .05;

Conclusion: Take-home messages

Overt pronoun

Well-explained by the Bayesian approach

- Except that verb bias also affects the production of overt pronoun in TOP verbs
- Interpretation is subject to multiple processes instead of a single next-mention or production bias

Null pronoun

None of the model explains well

- Interpretation is always highly N1-biased
- Less sensitive to the verb bias, and none of the model can capture the sensitivity well

Thank you!

References

- Ariel, M. (1990). Accessing noun-phrase antecedents: Routledge.
- Arnold, J. E. (2001). The Effect of Thematic Roles on Pronoun Use and Frequency of Reference Continuation. *Discourse processes, 31*(2), 137-162. doi:10.1207/s15326950dp3102_02
- Baayen, R. (2008). *Analyzing Linguistic Data: A Practical Introduction to Statistics using R*. Cambridge: Cambridge University Press. doi:10.1017/CBO9780511801686
- Givón, T. (1983). Topic continuity in discourse: An introduction. *Topic continuity in discourse: A* quantitative cross-language study, 3, 1-42.
- Gundel, J. K., Hedberg, N., & Zacharski, R. (1993). Cognitive status and the form of referring expressions in discourse. *Language*, 274-307. doi:doi:10.2307/416535
- Kehler, A., Kertz, L., Rohde, H., & Elman, J. L. (2008). Coherence and Coreference Revisited. *Journal of semantics*, *25*(1), 1-44. doi:10.1093/jos/ffm018
- Kehler, A., & Rohde, H. (2019). Prominence and coherence in a Bayesian theory of pronoun interpretation. *Journal of Pragmatics*, 154, 63-78. doi:10.1016/j.pragma.2018.04.006
- Patterson, C., Hagen, J., Kehler, A., & Schumacher, P. B. (2020). *A Bayesian approach to modelling German personal and demonstrative pronouns*. Poster presented at the AMLaP 2020, University of Potsdam, Germany.
- Rohde, H., & Kehler, A. (2014). Grammatical and information-structural influences on pronoun production. *Language, Cognition and Neuroscience, 29*(8), 912-927. doi:10.1080/01690965.2013.854918

References

- Ueno, M., & Kehler, A. (2016). Grammatical and pragmatic factors in the interpretation of Japanese null and overt pronouns. *Linguistics*, *54*(6), 1165-1221.
- Zhan, M., Levy, R., & Kehler, A. (2020). Pronoun interpretation in Mandarin Chinese follows principles of Bayesian inference. *PLoS One, 15*(8), e0237012.
- Zhang, A. (2018). *Interpretation biases and processing of null and overt pronouns in Chinese*. Department of English Language and Literature. Unpublished Doctoral Dissertation. Konkuk University.

Additive smoothing

 Pseudo-count one occurrence for each referential form (Names, overt, null) under each possible referent

Next-mention bias without smoothing

Count(Subject) + Count(object)

Next-mention bias with smoothing

$$Count(referent) + 3$$

 $Count(Subject) + Count(object) + 2 \times 3$

Production bias without smoothing

Count(referent ^ pronoun)

Count(referent)

Production bias with smoothing

Count(referent ^ pronoun) + 1

Count(referent) + 3

Model Evaluation – Overt pronoun

Model Evaluation – Null pronoun

Without smoothing

