Configuration Description

Genetic Algorithm

• Population size: The GA used a population size of 50

• Selection: Tournament Selection was used with a selection size of 3

• Crossover: Single-point crossover

• Mutation Rate: 0.05

• Termination Criteria: Maximum of 100 generations

Genetic Algorithm with ILS

Population size: The GA used a population size of 50

• Selection: Tournament Selection was used with a selection size of 3

• Crossover: Single-point crossover

• Mutation Rate: 0.05

• ILS: Offspring were subjected to 100 iterations

• **Perturbation:** Random bit-flipping up to half of the given chromosome

• HillClimb: Neighbourhood based on single-item flips

• Termination Criteria: Maximum of 100 generations

Local Search and Justification

Iterated Local Search was introduced with a hill climb algorithm as the local search. The neighborhood was defined by the set of solutions reachable based on flipping a single item. The hill climb algorithm iteratively moved over neighbors and moved to any solution with a higher fitness. The algorithm then terminated when no further improvement could be found.

Hill climb was selected for its simple implementation and the knapsack neighborhood structure made it a suitable choice for the local search. However, there was a problem with the hill climb that produced an infinite loop. A penalty factor in the calculateFitness was introduced to prevent the local search to choose any better fitness of a solution.

Experimental Setup

GA

- **Initial Solution Generation:** Random generation of chromosomes (binary vectors, 0 = item excluded, 1 = item included).
- **Selection Method:** Tournament selection (n = 3).
- Crossover Operator: Single-point crossover.
- Mutation Operator: Bit flipping with a 0.05 mutation probability.
- Termination Criteria: Maximum number of 100 generations.

GA + ILS

- **Initial Solution Generation:** Random generation of chromosomes (binary vectors, 0 = item excluded, 1 = item included).
- **Selection Method:** Tournament selection (n = 3).
- Crossover Operator: Single-point crossover.
- Mutation Operator: Bit flipping with a 0.05 mutation probability.
- Local Search Algorithm: Hill climb with neighborhood based on flipping single items.
- **Perturbation:** Randomly flipping up to 50% of the bits in a chromosome.
- ILS Iterations per Offspring: 100
- Termination Criteria: Maximum of 100 generations.

Results Table

Problem Instance	Algorithm	Seed	Best Solution	Known Optimum	Runtime (seconds)
f1_l-d_kp_10_269	GA	46130034	295	295	0.001705
	GA + ILS	46130034	295	295	2.9779
f2_l-d_kp_20_878	GA	46130034	922	1024	0.00162
	GA + ILS	46130034	978	1024	3.71943
f3_l-d_kp_4_20	GA	46130034	35	35	0.000951
	GA + ILS	46130034	35	35	2.63213
f4_l-d_kp_4_11	GA	46130034	23	23	0.000942
	GA + ILS	46130034	23	23	2.62764
f5_l-d_kp_15_375	GA	46130034	557	4810694	0.001361
	GA + ILS	46130034	557	4810694	3.11308
f6_l-d_kp_10_60	GA	46130034	52	52	0.001172
	GA + ILS	46130034	52	52	2.91718
f7_l-d_kp_7_50	GA	46130034	107	107	0.001018
	GA + ILS	46130034	107	107	2.73772
f8_l-d_kp_23_10000	GA	46130034	9757	9767	0.00165
	GA + ILS	46130034	9754	9767	3.70868
f9_l-d_kp_5_80	GA	46130034	130	130	0.001016
	GA + ILS	46130034	130	130	2.67236
f10_l-d_kp_20_879	GA	46130034	942	1025	0.001559
	GA + ILS	46130034	920	1025	3.64463
knapPI_1_100_1000_1	GA	46130034	0	9147	0.004455
	GA + ILS	46130034	0	9147	10.568

Test Analysis

Null Hypothesis: The average best solution found by GA is equal to the average best solution found by GA+ILS.

Alternative Hypothesis: The average best solution found by GA is less than the average best solution found by GA+ILS.

Algorithm	Sample Best Mean (Runtime)	Sample Standard Deviation (Runtime)	Sample Size
GA	0.00145	0.00043	11
GA + ILS	3.293	0.540	11

$$\begin{split} s_{p^2} &= \; ((11 \; - \; 1) \; * \; 0.00043^2 \; + \; (11 \; - \; 1) \; * \; 0.540^2) \, / \, (11 \; + \; 11 \; - \; 2) \; = \; 0.147739 \\ s_p &= \; \sqrt{0.147739} \; = \; 0.384 \\ z &= \; (0.00145 \; - \; 3.293) \, / \, (0.384 \; * \; \sqrt{(1/11 \; + \; 1/11)}) \; = \; - \; 18.99 \\ \alpha &= \; 0.05 \\ z_{critical} &= \; 1.645 \end{split}$$

Since the z-score (-18.99) is less than the critical value (1.645), we reject the null hypothesis.

Conclusion

The conclusion of this test is that the mean runtime performance between the GA and GA + ILS is significantly different. GA + ILS has a much higher runtime than the standard GA, therefore the null hypothesis is rejected.

Critical Analysis

In some cases, the GA provided better solutions than the GA + ILS for certain instances. The inverse of this is also true. The results supporting this can be found in the Results Table above. Therefore, the substantial increase in runtime for GA + ILS coupled with the fact that it offers none to marginally better improvement on solution, raises the question if GA + ILS is practically meaningful. In the case of runtime and performance being prioritized, the GA would be a more suitable choice. If performance prioritization is not an issue, GA + ILS will be a suitable fit. This can ensure the solution space and population is properly searched, which can lead to better results.