Analisi Complessità

Anno Accademico 2022/2023

Dott. Staccone Simone

Tecniche per derivare le classi di complessità

- Analisi dei livelli:
 - "srotoliamo" la ricorrenza in un albero i cui nodi rappresentano i costi ai vari livelli della ricorsione
- Analisi per tentativi o per sostituzione:
 - cerchiamo di "indovinare" una soluzione e dimostriamo induttivamente che questa soluzione è vera
- Ricorrenze comuni:
 - vi è una classe di ricorrenze che possono essere risolte facendo riferimento ad alcuni teoremi specifici

Master Theorem

Il master theorem permette di determinare la classe di complessità di alcune famiglie di relazioni di ricorrenza nella forma:

$$T(n) = \begin{cases} aT(n/b) + cn^{\beta} & n > 1\\ d & n \le 1 \end{cases}$$

Dove a \geq 1 e b \geq 2 sono costanti intere, c > 0 e β \geq 0 sono costanti reali. Posto: $\alpha = \log_b a$, abbiamo:

$$T(n) = \begin{cases} \Theta^{(n^{\alpha})} & \alpha > \beta \\ \Theta^{(n^{\alpha} \log n)} & \alpha = \beta \\ \Theta^{(n^{\beta})} & \alpha < \beta \end{cases}$$

Ricorrenze lineari di ordine costante

Data una relazione di ricorrenza nella forma:

$$T(n) = \begin{cases} \sum_{1 \le i \le h} a_i \ T(n-i) + cn^{\beta} & n > 1 \\ \Theta^{(1)} & n \le 1 \end{cases}$$

Dove a_1, a_2, \ldots, a_n sono costanti intere non negative, con h costante positiva, c > 0 e $\beta \ge 0$ sono costanti reali.

Posto $a = \sum_{1 \le i \le h} a_i$, abbiamo:

$$T(n) = \begin{cases} \Theta^{(n^{\beta+1})} & a = 1\\ \Theta^{(a^n n^{\beta})} & a \ge 2 \end{cases}$$

Ricorrenze

Trovare la soluzione delle seguenti relazioni di ricorrenza, utilizzando il master theorem quando possibile, oppure il metodo di sostituzione o il metodo iterativo. (Assumere il costo per il caso $n \le 1$ unitario)

```
(In classe)
T(n) = 4T(n/2) + n
T(n) = 4T(n/2) + n^2
T(n) = 4T(n/2) + n^3
T(n) = T(n - 1) + n
T(n) = T(n - 1) + \log n
T(n) = 2T(n - 1) + 1
T(n) = 2T(\sqrt{n}) + \log n
(Extra)
T(n) = T(n/4) + T(3n/4) + n
T(n) = T(n - d) + T(d) + n^2 d \ge 1 costante
T(n) = \int n T(\int n) + n \log \int n
T(n) = \int n T(\int n) + O(n)
```

$$T(n) = 4T(n/2) + n$$

Esercizio 1 - 2

Trovare la soluzione delle seguenti relazioni di ricorrenza, utilizzando il master theorem quando possibile, oppure il metodo di sostituzione o il metodo iterativo.

$$T(n) = 4T(n/2) + n$$

Applico il master theorem:

lp.

 $a \ge 1$ e $b \ge 2$ sono costanti intere, c > 0 e $\beta \ge 0$ sono costanti reali.

$$a = 4$$
; $b = 2$; $c = 1$; $\beta = 1$; (Ipotesi verificate)

 $\alpha = \log_2 4 = 2$; $\beta = 1$; Primo caso master theorem $\rightarrow \alpha > \beta \rightarrow \Theta(n^{\alpha}) = \Theta(n^2)$

$$T(n) = 4T(n/2) + n^2$$

Esercizio 2 - 2

Trovare la soluzione delle seguenti relazioni di ricorrenza, utilizzando il master theorem quando possibile, oppure il metodo di sostituzione o il metodo iterativo.

$$T(n) = 4T(n/2) + n^2$$

Applico il master theorem:

lp.

 $a \ge 1$ e $b \ge 2$ sono costanti intere, c > 0 e $\beta \ge 0$ sono costanti reali.

a = 4; b = 2; c = 1; $\beta = 2$; (Ipotesi verificate)

 $\alpha = \log_2 4 = 2$; $\beta = 2$; Secondo caso master theorem $\Rightarrow \alpha = \beta \Rightarrow \Theta(n^{\alpha}) = \Theta(n^2 \log n)$

$$T(n) = 4T(n/2) + n^3$$

Esercizio 3 - 2

Trovare la soluzione delle seguenti relazioni di ricorrenza, utilizzando il master theorem quando possibile, oppure il metodo di sostituzione o il metodo iterativo.

$$T(n) = 4T(n/2) + n^3$$

Applico il master theorem:

lp.

 $a \ge 1$ e $b \ge 2$ sono costanti intere, c > 0 e $\beta \ge 0$ sono costanti reali.

a = 4; b = 2; c = 1; $\beta = 3$; (Ipotesi verificate)

 $\alpha = \log_2 4 = 2$; $\beta = 3$; Terzo caso master theorem $\Rightarrow \alpha < \beta \Rightarrow \Theta(n^\beta) = \Theta(n^3)$

$$T(n) = T(n - 1) + n$$

Esercizio 4 - 2

Trovare la soluzione delle seguenti relazioni di ricorrenza, utilizzando il master theorem quando possibile, oppure il metodo di sostituzione o il metodo iterativo.

$$T(n) = T(n - 1) + n$$

Applico il teorema sulle ricorrenze lineari:

lp.

 a_1, a_2, \ldots, a_n sono costanti intere non negative, con h costante positiva, c > 0 e $\beta \ge 0$ sono costanti reali.(Ipotesi verificate)

a = 1; Secondo caso $\rightarrow \Theta(n^{\beta+1}) = \Theta(n^2)$

$$T(n) = T(n - 1) + \log n$$

Esercizio 5 - 2

Trovare la soluzione delle seguenti relazioni di ricorrenza, utilizzando il master theorem quando possibile, oppure il metodo di sostituzione o il metodo iterativo.

$$T(n) = T(n - 1) + \log n$$

Non posso applicare nessuna ricorrenza nota, utilizzo il metodo per sostituzione: proviamo a dimostrare che $T(n) = O(n^2)$.

La nostra ipotesi induttiva è che $T(m) \le cm^2$ per tutti gli m < n, e vogliamo dimostrare che la proprietà è vera per n.

Caso base:
$$T(2) = T(1) + \log 2 = 1 + 1 = 2 \le c(2)^2 = 4c \rightarrow c \ge 2$$

$$T(n) = T(n-1) + \log n \le c(n-1)^2 + \log n \le cn^2 + n^2 = dn^2 con d = c+1$$

 $T(n) = O(n^2)$

Si può fare di meglio?

Esercizio 5 - 3

Trovare la soluzione delle seguenti relazioni di ricorrenza, utilizzando il master theorem quando possibile, oppure il metodo di sostituzione o il metodo iterativo.

$$T(n) = T(n - 1) + \log n$$

Non posso applicare nessuna ricorrenza nota, utilizzo il metodo per sostituzione: proviamo a dimostrare che $T(n) = O(n \log n)$.

La nostra ipotesi induttiva è che $T(m) \le cm \log m$ per tutti gli m < n, e vogliamo dimostrare che la proprietà è vera per n.

Caso base:
$$T(2) = T(1) + \log 2 = 1 + 1 = 2 \le c2 \log 2 = 2 \rightarrow c \ge 1$$

$$T(n) = T(n-1) + \log n \le c(n-1) \log(n-1) + \log n \le c(n-1) \log n + \log n = cn \log n - c \log n + \log n$$

$$cn \log n - c \log n + \log n$$

$$T(n) = O(n \log n)$$

Entrambe le sostituzioni sono corrette, ma quest'ultima è più raffinata dell'altra

Esercizio 5 - 4

Trovare la soluzione delle seguenti relazioni di ricorrenza, utilizzando il master theorem quando possibile, oppure il metodo di sostituzione o il metodo iterativo.

$$T(n) = T(n - 1) + \log n$$

 $T(n) = O(n \log n)$

Come faccio ad essere sicuro che questa sia la soluzione migliore? In questo caso provo a srotolare la ricorrenza:

```
T(n) = T(n-2) + \log(n-1) + \log n = T(n-3) + \log(n-2) + \log(n-1) + \log n = ... =
= T(1) + \log(n^*(n-1)^*..^*1) = (Proprietà dei logaritmi: log n + \log(n-1) = \log(n^*(n-1)))
= T(1) + \log(n!)
Applies l'appressions di Sterling: pl. p_1^n/p_1^n
```

Applico l'approssimazione di Sterling: n! ~ n^/e^

$$T(n) \sim \log(n^n) = n \log(n)$$

$$T(n) = O(n \log(n))$$

Esercizio 6 - Torre di Hanoi

$$T(n) = 2T(n - 1) + 1$$

Esercizio 6 - Torre di Hanoi - 2

Trovare la soluzione delle seguenti relazioni di ricorrenza, utilizzando il master theorem quando possibile, oppure il metodo di sostituzione o il metodo iterativo.

$$T(n) = 2T(n - 1) + 1$$

Potrei applicare il teorema delle ricorrenze costanti, ma applico il metodo dello 'srotolamento':

$$T(n) = 2T(n - 1) + 1 = 2(2T(n - 2) + 1) + 1 = 4T(n-2) + 2 + 1 =$$

$$= 4(2T(n-3) + 1) + 2 + 1 = 8T(n-3) + 4 + 2 + 1 =$$

$$= 16T(n-4) + 8 + 4 + 2 + 1 = \dots$$

$$\dots = 2^{n-1} + 2^{n-2} + 2^{n-3} + 2^{n-4} + \dots + 1$$

Da cui ci possiamo convincere che la complessità dell'algoritmo per risolvere il problema delle torre di hanoi è $O(2^n)$.

Per approfondire: http://crf.uniroma2.it/wp-content/uploads/2010/04/Problemi-sulle-torri-di-Hanoi.pdf

$$T(n) = 2T(\sqrt{n}) + \log n$$

Esercizio 7 - 2

Trovare la soluzione delle seguenti relazioni di ricorrenza, utilizzando il master theorem quando possibile, oppure il metodo di sostituzione o il metodo iterativo.

$$T(n) = 2T(\sqrt{n}) + \log n$$

Questo non è banale: dobbiamo utilizzare qualche trucco algebrico. Quindi, poniamo $n=2^m$. La ricorrenza viene riscritta nel modo seguente:

 $T(2^m) = 2T(2^{m/2}) + \log 2^m = 2T(2^{m/2}) + m$

Ora poniamo $S(m) = T(2^m)$, sostituiamo e semplifichiamo:

S(m) = 2S(m/2) + m

la cui soluzione sappiamo essere $S(m) = (m \log m)$. Sapendo che $m = \log n$, otteniamo $T(n) = \log n \log (\log n)$