Don't forget that one mole of gas contains 6.02×10^{23} molecules, and that the mass of this number of molecules is called the 'molar mass'. Take the gases to be ideal.

- G2.1 What is the volume of a mole of gas at atmospheric pressure $(1.01 \times 10^5 \,\text{Pa})$ and at 20 °C?
- G2.2 Calculate the density of nitrogen gas at atmospheric pressure and at $20~^{\circ}\text{C}$ if the molar mass of nitrogen is 0.028 kg.
- G2.3 How many molecules of gas do you need in a 100 cm³ cylinder to exert a pressure of 1.0×10^8 Pa at a temperature of 800 °C?

G2.4 In the table fill out the missing initial $('_1)'$ or final $('_2)'$ values:

P ₁ /Pa	V_1 /cm ³	T_1/K	P ₂ /Pa	V_2 /cm ³	T ₂ /K
1.01×10^{5}	30	300	(a)	20	300
1.01×10^{5}	30	300	(b)	30	373
1.01×10^{7}	2	600	1.01×10^{5}	(c)	300
1.01×10^{5}	500	(d)	1.01×10^{7}	10	4

- G2.5 A tyre contains 800 cm^3 of air at a pressure of about $5.0 \times 10^5 \text{ Pa}$ at $9.0 \,^{\circ}\text{C}$. After a cycle ride, the volume is $810 \,^{\circ}\text{cm}^3$ and the temperature is now 25 $^{\circ}\text{C}$. Assuming that none of the gas has leaked, what is the new pressure?
- G2.6 A tyre contains 800 cm^3 of air at a pressure of about 5.0×10^5 Pa at $9.0 \,^{\circ}$ C. After a cycle ride, the volume is $760 \,^{\circ}$ cm³, the temperature is now $25 \,^{\circ}$ C, and the pressure is 4.0×10^5 Pa. What percentage of the gas molecules have leaked out?
 - G2.7 A water fire extinguisher contains 4.0 litres of air at 10⁷ Pa and 20 °C. When the extinguisher is used, this gas forces the water out. Calculate the pressure when the volume has increased to 10 litres and the temperature has dropped to 3.0 °C.