Unnoteworthy Necessities in Neural Network

Activation Functions

Linear Perceptron

$$\mathbf{x}_{i+1} = \mathbf{W}_{i}\mathbf{x}_{i} + \mathbf{b}_{i}$$

$$= \mathbf{W}_{i}(\mathbf{W}_{i-1}\mathbf{x}_{i-1} + \mathbf{b}_{i-1}) + \mathbf{b}_{i}$$

$$= (\mathbf{W}_{i}\mathbf{W}_{i-1})\mathbf{x}_{i-1} + (\mathbf{W}_{i}\mathbf{b}_{i-1} + \mathbf{b}_{i})$$

$$= \mathbf{W}'\mathbf{x}_{i-1} + \mathbf{b}' \qquad \mathbf{x}_{2} \qquad \mathbf{b}' \qquad \mathbf{$$

 X_1

Multi-Layer Perceptron

$$\mathbf{x}_{i+1} = \varphi(\mathbf{W}_i \mathbf{x}_i + \mathbf{b}_i)$$

= $\varphi(\mathbf{W}_i \varphi(\mathbf{W}_{i-1} \mathbf{x}_{i-1} + \mathbf{b}_{i-1}) + \mathbf{b}_i)$

Universal Approximability (Hornik, 1991)

Let φ be a **continuous**, **bounded**, and **non-constant** function. Then,

$$F(\mathbf{x}) = \sum_{i=1}^{N} v_i \varphi\left(\mathbf{w}_i^T \mathbf{x} + b_i\right)$$

is an approximate realization of the function f where f is independent of ϕ such that

$$|F(\mathbf{x}) - f(\mathbf{x})| < \varepsilon$$

Universal Approximability (Sonoda, 2015)

Let ϕ belongs to Lizorkin distribution space. Then,

$$F(\mathbf{x}) = \sum_{i=1}^{N} v_i \varphi \left(\mathbf{w}_i^T \mathbf{x} + b_i \right)$$

$$\approx \int_{\mathbb{R}^m \times \mathbb{R}} T(\mathbf{w}, b) \varphi(\mathbf{w}^T \mathbf{x} + b) d\mu(\mathbf{w}, b)$$

$$= f(\mathbf{x})$$

Towards Deep Learning

Vanishing Gradient Problem

$$|\Delta \mathbf{W}_{i}| = \alpha \frac{\partial J}{\partial \varphi(\mathbf{net}_{L})} \prod_{k=i+1}^{L} (\varphi'(\mathbf{net}_{k}) \mathbf{W}_{k}) \varphi'(\mathbf{net}_{i}) \mathbf{x}_{i}$$
$$\varphi'(x) < C \Rightarrow \frac{|\Delta \mathbf{W}_{L}|}{|\Delta \mathbf{W}_{i}|} < C^{L-i}$$

$$\varphi'(x) < C \Rightarrow \frac{|\Delta \mathbf{W}_L|}{|\Delta \mathbf{W}_i|} < C^{L-i}$$

Family of Activation Functions

(Hypothesized) Factors on Training

- Representation of information
 - Disentangling
 - Effective variable size
 - Dying neurons
- Internal covariate shift
- Stochasticity
 - Escaping local minima
 - Reducing overfitting
- Computational complexity

Improving Activation Functions

- Randomization
- Self adjustability
- Approximation (rectification / smoothing)
- Violating all seen so far!

Q & A

Neural Network Structure

Backpropagation

$$J = f\left(\varphi\left(\mathbf{W}_{i}\mathbf{x}_{i} + \mathbf{b}_{i}\right)\right)$$

$$\frac{\partial J}{\partial \mathbf{W}_i} = \frac{\partial J}{\partial \varphi(\mathbf{net}_L)} \prod_{k=i+1}^{L} \left(\frac{\partial \varphi(\mathbf{net}_k)}{\partial \mathbf{net}_k} \frac{\partial \mathbf{net}_k}{\partial \varphi(\mathbf{net}_{k-1})} \right) \frac{\partial \varphi(\mathbf{net}_i)}{\partial \mathbf{net}_i} \frac{\partial \mathbf{net}_i}{\partial \mathbf{W}_i}$$

$$\Delta \mathbf{W}_i = -\alpha \frac{\partial J}{\partial \mathbf{W}_i} = -\alpha \frac{\partial J}{\partial \varphi(\mathbf{net}_L)} \prod_{k=i+1}^L \left(\varphi'(\mathbf{net}_k) \mathbf{W}_k \right) \varphi'(\mathbf{net}_i) \mathbf{x}_i$$

Universal Approximability (Cybenko, 1989)

Let φ be a **continuous**, and **sigmoidal** function, and $\varepsilon>0$. We may define

$$F(\mathbf{x}) = \sum_{i=1}^{N} v_i \varphi \left(\mathbf{w}_i^T \mathbf{x} + b_i \right)$$

as an approximate realization of the function f where f is independent of ϕ ; that is,

$$|F(\mathbf{x}) - f(\mathbf{x})| < \varepsilon$$

References

Universal approximability

- Hornik, Kurt. "Approximation capabilities of multilayer feedforward networks." Neural networks 4.2 (1991): 251-257.
- Sonoda, Sho, and Noboru Murata. "Neural network with unbounded activation functions is universal approximator." Applied and Computational Harmonic Analysis (2015).

Vanishing gradient problem

 Pascanu, Razvan, Tomas Mikolov, and Yoshua Bengio. "On the difficulty of training recurrent neural networks." *Proceedings of The* 30th International Conference on Machine Learning. 2013.

References

ReLUs / ELU

- Glorot, Xavier, Antoine Bordes, and Yoshua Bengio. "Deep Sparse Rectifier Neural Networks." *International Conference on Artificial Intelligence and Statistics*. 2011.
- Xu, Bing, et al. "Empirical evaluation of rectified activations in convolutional network." arXiv preprint arXiv:1505.00853 (2015).
- Clevert, Djork-Arné, Thomas Unterthiner, and Sepp Hochreiter.
 "Fast and accurate deep network learning by exponential linear units (elus)." arXiv preprint arXiv:1511.07289 (2015).

Maxout / Probout

- Goodfellow, Ian, et al. "Maxout Networks." *Proceedings of the 30th International Conference on Machine Learning (ICML-13)*. 2013.
- Springenberg, Jost Tobias, and Martin Riedmiller. "Improving deep neural networks with probabilistic maxout units." *arXiv preprint arXiv:1312.6116* (2013).

References

Network in network

 Lin, Min, Qiang Chen, and Shuicheng Yan. "Network in network."
 Proceedings of the 2nd International Conference on Learning Representations. (2014).

Noisy activation function

 Gulcehre, Caglar, et al. "Noisy Activation Functions." Proceedings of The 33rd International Conference on Machine Learning. 2016.