Transfer Learning in NLP

Self-supervised learning tasks and model capacity in NLP

Snorre Ralund, Ph.D Fellow, University of Copenhagen, SoDaS

KØBENHAVNS UNIVERSITET

Transfer Learning in NLP

Self-supervised learning tasks and model capacity in NLP

Snorre Ralund, Ph.D Fellow, University of Copenhagen, SoDaS

KØBENHAVNS UNIVERSITET

Extract and use the metadata and relevant context as supervisory signal.

- Extract and use the metadata and relevant context as supervisory signal.
- Self-referential prediction tasks.

E.g. Leverage large scale user generated tags

- Hashtags for expressing topic and summarization.
 - #sarcasm #irony
 - #topic
- Emojies to explicate emotional intention DeepMoji

- Extract and use the metadata and relevant context as supervisory signal.
- Self-referential prediction tasks.

E.g. Leverage large scale user generated tags

- Hashtags for expressing topic and summarization.
 - #sarcasm #irony
 - #topic
- Emojies to explicate emotional intention DeepMoji

Other User generated tags

- Subreddits including reactions
- Keywords in Scientific Articles
- Tags in stackoverflow

Language models: Supervisory signal from raw text

- Predict next word / Char given previous word
- Predict word given context. (Cooperation and interactions)
 - Word2Vec Context window.
 - BERT Removing random words from larger (32) Context Window
- Predict word given previous context + Reverse (ELMO)
- Predict next / previous sentence
 - E.g. SkipThoughts, BERT.
- Denoising better than Language models (Raffel et. al 2019)

External Reference

- View the Director of One of the Major Transfer Learning Hubs, introduction to transfer learning.
 - https://www.youtube.com/watch?v=0T_Qr4qBrqc

Reusing models

- Large Expensive Models can be re-used.
- Sharing via Hubs:
 - Transformers package
 - TFHUB
 - PYTORCH HUB
- Framework agnostic.

Model Capabilities: Input - Encode - Decode - Output

Model Capabilities

- Encode information from input into a Vector (or network of vectors)
 - Syntax, semantics, topical information, facts etc.
 - E.g.

Dimensions: [Noun, Active, Animal]

- Mouse -> [0.2,-0.3,1]
- Cat -> [0.2, 0.3, 1]
- Catch -> [-0.2,0.3,-0.5]

```
glove_200.most_similar(positive=['police','black'],negative=['white'])[0:5]

[('cops', 0.7516576051712036),
    ('officers', 0.6661906838417053),
    ('arrested', 0.6204742193222046),
    ('suspect', 0.6187559366226196),
    ('cop', 0.6156525015830994)]

glove_200.most_similar(positive=['police','white'],negative=['black'])[0:5]

[('cops', 0.7516659498214722),
    ('officers', 0.7105646133422852),
    ('authorities', 0.6782428026199341),
    ('arrest', 0.6773560047149658),
    ('officials', 0.662535548210144)]
```

- Decode information
 - Process the encoded information to produce output.

- Word2Vec, FastText only simple attenuation.
- 3 layers, and embeddings are averaged.
 - Learns linear information (similar to a BOW)

Figure 1: Model architecture of fastText for a sentence with N ngram features x_1, \ldots, x_N . The features are embedded and averaged to form the hidden variable.

Simple Linear Transformation – Attenuation

Dimensions to be encoded

Sport	Politics	Sadness	Happyness	Subjectivity	''I''
		"hidden 0	<i>''</i>	0.5	
					"am"
		"hidden 1	<i>''</i>		0.5
					<i>"happy"</i>
		"hidden 2)		1.0

ELMo - Embeddings from Language Models. "Deep Contextualized word representations"

- Forward reading updating hidden states.
- Sequence of hidden states.

Simple Linear Transformation - Interaction

Dimensions to be encoded

Sport	Politics	Sadness	Happyness	Subjectivity	"I'm"
		"hidden 0	<i>II</i>	1	
					"not"
		"hidden 1	<i>''</i>		
			-1		"happy"
		"hidden 2	7		1.0

Non-linearities: Re-routing and Memory

Non-linearities: Re-routing and Memory

Non-linear transformation: Epistatic and Mutliple Interactions – Threshold

A by itself = NO Activation

B by itself = NO Activation

A+B = Activation

ELMo - Embeddings from Language Models. "Deep Contextualized word representations"

Bi-directional: Forward and Backward.

• But only Sequential information

Bi-Directional models – Transformer Models

- BERT, GPT2, Electra ...
 - Allows word embeddings to interact by transforming each other.
 - Multiple transformation of each embedding is allow to interact multiple times, to allow for even more complex interactions.
 - See for a more detailed discussion: https://www.youtube.com/watch?v=ycXWAtm22-w

- Memory Short and Long term.
 - Models struggle to incorporate long term knowledge in longer texts (Dailuk et al. 2017)
 - Open research question: Rae et. al 2019: "COMPRESSIVE TRANSFORMERS FOR LONG-RANGE SEQUENCE MODELLING"
 - BERT has a fixed context window.
 - XLNET, Transformer XL, Compressive Transformer are working in this direction.

External Reference 2

- View technical exposition of the history of language models
 - https://www.youtube.com/watch?v=ycXWAtm22-w

Match Tokenization Scheme.

```
#RE HEART = r'(?:<+/?3+)+' # including broken heart.
    # Construct emoticons
eyes = r"[8:=:
 mouth = r'[)dD]'
smiles = [eyes+noses+mouth,mouth right+noses+eyes]
    SMILE_RE = '|'.join(smiles)
  LOL RE = eyes+noses+'r
                                                 eyes+noses+mouth_right]
    SAD RE = '|'.join(frowns)
    neutral mouth = r^*[\/\|1^*]
    NEUTRAL RE = eyes+noses+neutral mouth
    # Make sure it is not a hashtag.
  HASHTAG ALLCAPS RE = x'(#)(2:\lambda b)^n((2:[A-20-9]^*)?[A-2](2;[A-20-9]^*)?)(2:\lambda b)^n(2:\lambda b)^n(3:\lambda b)^
    HASHTAG RE = r'(#)([a-zA-Z0-9]+)
    regex_replace = [(RE_URL, '<URL>'),
                                                                                                                  (RE_URL2, '<URL>'),
                                                                                                                    (RE_EMAIL, '<EMAIL>'),
                                                                                                                  (LOL_RE,'<LOLFACE>'),
(SAD_RE,'<SADFACE>'),
```

Match Tokenization Scheme.

- Streamlining of this is developed around the package tokenizers:
 - https://github.com/huggingface/tokenizers

Match Tokenization Scheme

Finetuning of Language Model for domain adaptation. (Howard and

Ruder 2017)

KØBENHAVNS UNIVERSITET

Transfer Learning: Adaptation

Finetuning for Classification

- Transfer techniques
 - Still an open research question, however.

Finetuning for Classification

Transfer techniques

- How to Decode?
 - Use word embeddings directly for word level predictions:
 - E.g. parsing.
 - Summarize Embeddings to form Sentence level representation.
 - Classifier heads: Simple linear Softmax, or LSTM.

Transfer Techniques

- How To Train?
 - Avoid overfitting: large model adopt to small data -- memorization
 - Discriminative learning rates (earlier layers have more fundamental information \rightarrow lower learning rate \rightarrow reduce updates.)
 - Gradual unfreezing of layers (Howard and Ruder 2017), Chain-thaw (Felbo et al. 2017)

Transfer Techniques

- How To Train?
 - Avoid overfitting: large model adopt to small data memorization
 - Discriminative learning rates (earlier layers have more fundamental information → lower learning rate → reduce updates.)
 - Gradual unfreezing of layers (Howard and Ruder 2017),
 Chain-thaw (Felbo et al. 2017)
 - Auxillary loss function (keeping the Language model objective) (Chronopoulou et. al.2019)

