Solution to Math 481 – Quiz 5

Q1.

(a) In canonical form, σ can be written as

$$\sigma = \{\{1,7\},\{2,4,5\},\{3,8\},\{6\}\}$$

(b) In standard block form, δ can be written as

$$\delta = \{\{1,3,8\}, \{2,5,6,7\}, \{4\}, \{9\}, \{10\}\}\$$

Q2.

From the textbook, we know that for all positive integers n and k, the number of compositions of n into k parts is $\binom{n-1}{k-1}$.

Then the number of compositions of n into an even number of parts can be calculated with addition.

If n is odd, the maximum even number of parts is n-1, then the number of compositions of n is $\sum_{k=1}^{n-1} \binom{n-1}{2k-1}$.

If n is even, the maximum even number of parts is n, then the number of compositions of n is $\sum_{k=1}^{\frac{n}{2}} \binom{n-1}{2k-1}$.

Q3.

(a) Assuming that the number of all partitions of [n] is denoted by Bell number B_n , then the number of partitions of [9] exclude blocks with the single element 9 is equal to $B_9 - B_8$.

To calculate B_8 and B_9 , we use the Bell triangle

```
1
 1
       2
       3
 2
              5
 5
       7
             10
                   15
15
       20
             27
                    37
                          52
52
       67
             87
                   114
                         151
                                203
203
      255
             322
                   409
                         523
                                674
                                       877
877
      1080
            1335
                  1657
                         2066
                                2589
                                       3263
                                              4140
4140
      5017
            6097
                   7432
                         9089
                               11155 13744 17007 21147
```

From the triangle, we obtain that $B_8 = 4140$ and $B_9 = 21147$, thus the number of partitions of [9] exclude blocks with the single element 9 is 21147 - 4140 = 17007.

(b) If the number of set partitions of [n] exclude blocks with the single element n is denoted by X_n , then

$$X_n = B_n - B_{n-1}$$

where B_n and B_{n-1} are Bell numbers.

The proof is quite simple, the number of set partitions of [n] is B_n , if we put singleton element n in a block and put other elements in other blocks, we only need to consider the number of partitions of [n-1] which is B_{n-1} , hence we have $X_n = B_n - B_{n-1}$ where Bell numbers satisfy that $B_{n+1} = \sum_{i=0}^{n} \binom{n}{i} B_i$ and $B_0 = B_1 = 1$.