Instrucciones del proyecto

Este proyecto tiene como objetivo aplicar los conceptos de álgebra lineal al proceso de cifrado y descifrado de mensajes mediante matrices. Cada alumno recibe una matriz llave K y una cadena de números cifrados. Su tarea consiste en:

- 1. Calcular la matriz inversa K^{-1} utilizando el **método de Gauss-Jordan**.
- 2. Multiplicar la matriz inversa K^{-1} por los vectores de la cadena cifrada (en bloques de 3 en 3 números).
- 3. Obtener la secuencia numérica original y convertirla a texto según la tabla de equivalencias proporcionada.

El mensaje resultante corresponderá a una frase corta que deberá descifrarse correctamente. Presente todos los cálculos y procedimientos paso a paso en el espacio indicado.

Ejemplo de descifrado

Suponga que se le da la siguiente matriz y cadena cifrada:

$$K = \begin{pmatrix} 2 & 5 & 7 \\ 1 & 6 & 3 \\ 4 & 0 & 8 \end{pmatrix}$$
, Cadena cifrada: [7, 18, 3, 4, 9, 2, 15, 21, 5]

1. Calcular la matriz inversa K^{-1} utilizando el método de Gauss-Jordan. Para ello, se forma la matriz aumentada:

$$[K \mid I] = \begin{pmatrix} 2 & 5 & 7 & 1 & 0 & 0 \\ 1 & 6 & 3 & 0 & 1 & 0 \\ 4 & 0 & 8 & 0 & 0 & 1 \end{pmatrix}$$

Luego, aplicando operaciones elementales de fila (intercambio, multiplicación y suma), se transforma la parte izquierda en la identidad. El resultado final es:

$$[I \mid K^{-1}] = \begin{pmatrix} 1 & 0 & 0 & 0.50 & -0.39 & -0.22 \\ 0 & 1 & 0 & -0.10 & 0.26 & -0.09 \\ 0 & 0 & 1 & -0.25 & 0.24 & 0.18 \end{pmatrix} \quad \Rightarrow \quad K^{-1} = \begin{pmatrix} 0.50 & -0.39 & -0.22 \\ -0.10 & 0.26 & -0.09 \\ -0.25 & 0.24 & 0.18 \end{pmatrix}$$

2. Agrupar la cadena cifrada en vectores de tamaño 3:

3. Multiplicar K^{-1} por cada vector para recuperar los números originales del mensaje. Por ejemplo, para el primer bloque:

$$\begin{pmatrix} 0.50 & -0.39 & -0.22 \\ -0.10 & 0.26 & -0.09 \\ -0.25 & 0.24 & 0.18 \end{pmatrix} \begin{pmatrix} 7 \\ 18 \\ 3 \end{pmatrix} = \begin{pmatrix} 0.50(7) - 0.39(18) - 0.22(3) \\ -0.10(7) + 0.26(18) - 0.09(3) \\ -0.25(7) + 0.24(18) + 0.18(3) \end{pmatrix} = \begin{pmatrix} 0.83 \\ 3.03 \\ 1.45 \end{pmatrix} \approx \begin{pmatrix} 1 \\ 3 \\ 1 \end{pmatrix}$$

Repitiendo este proceso para los demás bloques, se obtienen los números descifrados.

4. Convertir los números a letras utilizando la siguiente tabla de equivalencias:

5. Interpretar el mensaje obtenido.

Supongamos que el resultado final es:

$$[3, 15, 4, 9, 7, 15, 27, 19, 5, 3, 18, 5, 20, 15]$$

Usando la tabla anterior:

Por lo tanto, el mensaje descifrado es:

CODIGO SECRETO

Nota: el propósito de este ejemplo es ilustrar el procedimiento paso a paso del método de Gauss-Jordan. Cada alumno deberá aplicar el mismo proceso con su propia matriz y cadena cifrada.

Proyecto 094

Nombre del alumno:

Matrícula: _____ Grupo: ____ Fecha de entrega: _____

Matriz llave:

$$K = \begin{pmatrix} 8.0 & 5.0 & 2.0 \\ 7.0 & 4.0 & 2.0 \\ 3.0 & 1.0 & 7.0 \end{pmatrix} \pmod{29}$$

Cadena cifrada:

251.0	223.0	255.0	185.0	158.0	100.0	187.0	168.0	188.0	239.0	214.0	254.0
95.0	86.0	150.0	81.0	69.0	60.0	185.0	166.0	181.0	279.0	247.0	219.0
239.0	214.0	254.0	157.0	139.0	142.0	177.0	157.0	128.0	185.0	153.0	77.0
319.0	273.0	196.0	244.0	211.0	182.0	247.0	221.0	257.0	241.0	212.0	246.0
211.0	186.0	156.0	189.0	165.0	223.0	167.0	139.0	114.0	269.0	235.0	253.0
209.0	186.0	199.0	269.0	235.0	253.0	337.0	285.0	109.0	147.0	133.0	173.0
253.0	225.0	194.0	197.0	174.0	157.0	93.0	84.0	143.0	253.0	225.0	194.0
197.0	174.0	157.0	111.0	102.0	206.0	82.0	69.0	64.0	228.0	195.0	126.0
279.0	246.0	262.0	255.0	227.0	269.0						

Espacio para cálculos y observaciones: