Mục lục

1	Đồ thị	2
2	Ma trận biểu diễn và đẳng cấu	2
3	Đường đi và chu trình	2
4	Các phép toán trên đồ thị	2

- 1 Đồ thị
- 2 Ma trận biểu diễn và đẳng cấu
- 3 Đường đi và chu trình
- 4 Các phép toán trên đồ thị

Định nghĩa 4.1 (Phép hợp). Đồ thị G = (V, E) gọi là hợp của đồ thị G_1 và $G_2 \iff V(G) = V(G_1) \cup V(G_2)$ và $E(G) = E(G_1) \cup E(G_2)$. Ký hiệu $G = G_1 \cup G_2$. Nếu $V_1 \cap V_2 = \emptyset$ ta viết $G = G_1 + G_2$. Ta cũng định nghĩa mG là hợp m lần các bản sao của G.

Định nghĩa 4.2 (Phép hội). Đồ thị $G = G_1 \vee G_2 \iff V(G) = V(G_1 + G_2) \wedge E(G) = E(G_1 + G_2) \cup \{e = uv \mid u \in V_1, v \in V_2\} \ (Dồ thị G_1 + G_2 thêm vào những cạnh nối giữa các đỉnh của chúng).$

Hình 1: hợp/hội đồ thị p_2 và c_3

Định nghĩa 4.3 (tích descartes). Đồ thị $G = G_1 \times G_2$ là đồ thị mà $V(G) = \{(v_i, u_i)\}\ v_i \in V_1, u_i \in V_2.$ Có k cạnh nối (v_i, u_i) với $(v_j, u_j) \iff (v_i = v_j) \wedge (u_i \text{ nối với } u_j \text{ <math>k \text{ lần trong }} G_2) \text{ hoặc } (u_i = u_j) \wedge (v_i \text{ nối với } v_j \text{ <math>k \text{ lần trong }} G_1).$

Hình 2: Tích descartes $P_2 \times C_3$

Định nghĩa 4.4 (tích tensor). Tích tensor của G, kí hiệu $G_1 \cdot G_2$, là một đồ thị với $V(G) = V(G_1) \times V(G_2)$. Với $u_i \in V_1$, $v_i \in V_2$, có k cạnh nối

 $gi \tilde{u} a \ (u_i,v_i) \ v \grave{a} \ (u_j,v_j) \iff (c \acute{o} \ m \ c \acute{a} nh \ n \acute{o} i \ u_i \ v \acute{o} i \ u_j, \ n \ c \acute{a} nh \ n \acute{o} i \ v_i \ v \acute{o} i \ v_j) \wedge (k=m\cdot n).$

Hình 3: Tích tensor $P_2 \cdot C_3$

Định nghĩa 4.5 (tích strong). Tích strong của G, kí hiệu $G = G_1 \circledast G_2$, được định nghĩa $G_1 \circledast G_2 = (G_1 \times G_2) \cup (G_1 \cdot G_2)$.

Hình 4: Tích strong $P_2 \cdot C_3$