Lista 7

Questão 9

Seja $f: \mathbb{R} \to \mathbb{R}$ uma função arbitrária. Para cada $n \in \mathbb{N}$, consideremos o conjunto

 $C_n = \{a \in \mathbb{R} : \text{ existe } I \ni a \text{ aberto tal que se } x, y \in I, \text{ então } |f(x) - f(y)| < 1/n \}.$

Demonstre que:

- (a) Cada C_n é um conjunto aberto;
- (b) f é contínua em a se, e somente se, $a \in C_n$ para todo $n \in \mathbb{N}$.

Conclua que o conjunto dos pontos de continuidade de qualquer função $f: \mathbb{R} \to \mathbb{R}$ é uma intersecção enumerável de abertos.

Prova:

(a) Seja $a \in C_n$, então existe um intervalo aberto I_a que contrem a tal que $\forall x, y \in I_a \Longrightarrow |f(x) - f(y)| < 1/n$. Como I_a é um intervalo aberto, existe $\delta > 0$ tal que $(a - \delta, a + \delta) \subset I_a$. Basta mostar que $(a - \delta, a + \delta) \subset C_n$, para afirmar que C_n é aberto.

Dado $b \in (a - \delta, a + \delta)$, existe um $\delta_1 > 0$ tal que $(b - \delta_1, b + \delta_1) \subset (a - \delta, a + \delta)$. Logo, $(b - \delta_1, b + \delta_1) \subset I_a$ e para todo $x, y \in (b - \delta_1, b + \delta_1) \Longrightarrow |f(x) - f(y)| < 1/n$. Concluindo que $b \in C_n$ e $(a - \delta, a + \delta) \subset C_n$.

(b) \Rightarrow) Assumir que f é contínua em a, dado $n \in \mathbb{N}$ existe $\delta > 0$ tal que

para cada
$$z \in (a - \delta, a + \delta) \Longrightarrow |f(z) - f(a)| < \frac{1}{4n}.$$
 (1)

Tomamos $x, y \in (a - \delta, a + \delta)$ por (1)

$$|f(x) - f(a)| < \frac{1}{4n} e |f(y) - f(a)| < \frac{1}{4n}$$

$$|f(x) - f(y)| \le |f(x) - f(a)| + |f(a) - f(y)| < \frac{1}{4n} + \frac{1}{4n} = \frac{1}{2n} < \frac{1}{n},$$

provando que $a \in C_n$.

 \Leftarrow

Supor que $a \in C_n$ para todo $n \in \mathbb{N}$. Dado $\epsilon > 0$, existe $n \in \mathbb{N}$ tal que $\frac{1}{n} < \epsilon$. Por hipóteses existe um intervalo aberto I_a que contém a tal que

$$x, y \in I_a$$
, implica $|f(x) - f(y)| < 1/n < \epsilon$.

Existe $\delta > 0$ tal que $(a - \delta, a + \delta) \subset I_a$ e fazendo y = a obtemos

$$x \in (a - \delta, a + \delta)$$
, implica $|f(x) - f(a)| < \epsilon$.

Então f é contínua em a.

Seja $C=\{x\in\mathbb{R}\,:\,f$ é contínua em $x\},$ pela parte (b) afirmamos que

$$C = \{x \in \mathbb{R} : x \in C_n \text{ para todo } n \in \mathbb{N}\} = \bigcap_{n \in \mathbb{N}} \{x \in \mathbb{R} : x \in C_n\}.$$

Por conseguinte $C=\bigcap_{n\in\mathbb{N}}C_n$ e pela parte (a) temos que cada C_n é aberto. Portanto C é a interseção enumerável de abertos.