

NATIONAL OPEN

UNIVERSITY OF

NIGERIA 14/16 AHMADU BELLO WAY, VICTORIA ISLAND, LAGOS SCHOOL OF SCIENCE AND TECHNOLOGY MARCH/APRIL 2014 EXAMINATION

COURSE CODE: PHY 409

COURSE TITLE: ELEMENTARY PARTICLE PHYSICS

TIME ALLOWED: 3HOURS

INSTRUCTION: ANSWER ANY FIVE QUESTIONS.

PHYSICAL CONSTANTS:

Speed of light $_{C}=2.9979ms^{-1}$; mass of electro $m_{e}=0.9110\times 10^{-31}kg$; Electronic charge $_{C}=1.6022\times 10^{-19}C$; Avogadro's number $N_{A}=6.0221\times 10^{26}kmol^{-1}$; Boltzmann constant $_{C}=1.3806\times 10^{-23}JK^{-1}$; Plank's constant $_{C}=1.66257\times 10^{-34}J_{S}$

1.(a)(i) Define the term elementary particle.

2 marks

- (ii) List five (5) each of *gaseous ionization* and *solid-state* particle detectors **5** marks
- (b) (i) What are *quarks*

2 marks

(ii) Draw a table showing the elementary particles (not anti-particles) according to their families with the following properties: name, symbol, charge, and spin.

5 marks

2.(a)(i) Briefly, discuss the four forces in nature.

4

marks

(ii) List the exact or absolute conservation laws which are obeyed by reaction or interactions involving elementary particles

2 marks

(b)(i) Consider a reaction where Π^- meson decays into a μ^- meson and an antineutrino $\bar{\gamma}$ i.e.

$$\Pi^- \rightarrow \overline{\mu} + \overline{\gamma}_{\mu}$$

Determine the energies of the particles μ^- and $\bar{\gamma}_\mu$ in terms of the masses of the pi-meson and muon m_{Π} and m_{μ} .

- (ii) A particle Σ^0 decays at rest to a Λ^0 particle. Determine the energy of the released photon. **4 marks**
- 3.(a) In the following pairs, determine which of the reactions is possible and for those that are impossible, state the conservation laws that are violated.

(i)
$$\pi^{-i+p \rightarrow \Sigma^0 + \eta^0 i}$$

$$\pi^{-\ell+p\to\Sigma^0+K^0\ell}$$
 (strong interaction) **4 marks**

(ii)
$$n \rightarrow p + e^{-i + v_e i}$$

$$n \to p + e^{-i + \overline{v_e}i}$$
 (weak decay) **4 marks**

(b)(i) A $\mu^{-i\,i}$ meson collides with a proton, and a neutron plus another particle are created. What is the other particle?

2 marks

- (ii) Find the maximum kinetic energy of the electron emitted in the beta decay of the free electron. The neutron-proton mass difference is 1.30 MeV. **4 marks**
- 4. (a) Name and mention the properties of the carriers of the following interactions:

2 marks

(i) gravitational interaction

(ii) electromagnetic interaction 2 marks

(b) (i) What do you understand by *resonances* in particle physics? **6 marks**

(ii) Why are the interaction carriers called bosons? 4 marks

5.(a) Briefly discuss the concepts of:	
(i) C parity and G parity	4 marks
(ii) Hypercharge	4 marks
(b) (i)What are hadrons?	3 marks
(ii) Why must the quarks in a hadron have different colours?	3 marks
6(a)(i) Give an example each of Λ decay, Σ decay Ξ decay and Ω^{-1}	decay 2 marks
(ii) Briefly discuss the concept of isospin	4 marks
(b)Write short notes on each the following:	
(i) weak nuclear interaction	4 marks
(ii) strange particles	4 marks
7 (a) (i) Briefly explain the parity transformation of the coordinatemarks	te of a particle. 4
(ii) What do you understand by the conservation of parity? marks	3
(b) Show that	
(i) magnetic force law is invariant under parity transformation marks	3
(ii) in the presence of a free magnetic monopole, the force law is reparity 4 marks	not invariant under transformation.