Preuve non constructive du Théorème de Kolmogorov

Félix Piédallu & Nicolas Lebbe

ÉNONCÉ DU THÉORÈME DE KOLMOGOROV:

Toute fonction continue réelle définie sur $I^n = [0,1]^n$ peut s'écrire sous la forme :

$$f(x_1, \dots, x_2) = \sum_{q=1}^{2n+1} g_q \left(\sum_{p=1}^n \varphi_{p,q}(x_p) \right)$$

où les g_p et les $\varphi_{p,q}$ sont réelles continues; $\varphi_{p,q}$ croissantes sur I et indépendantes de f.

Cet énoncé sera adapté à :

Pour quasi tout $(\varphi_1, \ldots, \varphi_{2n+1}) \in \Phi^{2n+1}$, toute fonction f continue sur I^n est représentable sous la forme :

$$f(x_1, \dots, x_n) = \sum_{q=1}^{2n+1} g\left(\sum_{p=1}^n \lambda_p \varphi_q(x_p)\right)$$
 (1)

où g est continue sur I, et les $\lambda_1, \ldots, \lambda_n$ sont strictement positifs, de somme 1.

NOTATIONS UTILISÉES:

- On dit qu'une propriété est vraie *pour quasi tout a* si elle est vraie pour une intersection d'ouverts denses.
- Φ est l'ensemble des fonctions φ croissantes, continues sur I, telles que $\varphi(0) = 0, \varphi(1) = 1$.
- L'oscillation de f sur I sera $\max_{I}(f) \min_{I}(f)$.

DÉMONSTRATION:

Soit $\epsilon > 0$. Pour $f \in C(I^n)$, définissons $\Omega(f) = \{(\varphi_1, \dots, \varphi_{2n+1}) \in \Phi^{2n+1} | \exists h \in C(I^n) \}$ avec :

(i)
$$||h|| \le ||f||$$

(ii) $||f(x_1, \dots, x_n) - \sum_{q=1}^{2n+1} h\left(\sum_{p=1}^n \lambda_p \varphi_q(x_p)\right)|| < (1 - \epsilon)||f||$ (2)

 $\Omega(f)$ est bien un ouvert de Φ^{2n+1} ; Nous montrerons plus tard qu'il y est dense.

Soit F un ensemble dénombrable dense dans $C(I^n)\setminus\{0\}$. Par le grand théorème de Baire, $\bigcap_{f\in F}\Omega(f)$ est dense dans Φ^{2n+1} ; On y prend $(\varphi_1,\ldots,\varphi_{2n+1})$. Pour $f\in C(I^n)$ non nulle, il existe $f_0\in F$, telle que $\|f_0\|\leq \|f\|$ et $\|f-f_0\|<\frac{\epsilon}{2}\|f\|$; ainsi que h vérifiant l'équation (2) avec f_0 . Notons-la $h=\gamma(f)$, avec $\gamma(0)=0$. Par récurrence, nous définissons $h_j=\gamma(f_j)$, et

$$f_{j+1}(x_1, \dots, x_n) = f_j(x_1, \dots, x_n) - \sum_{q=1}^{2n+1} h_j \left(\sum_{p=1}^n \lambda_p \varphi_q(x_p) \right)$$

Comme (2) a lieu, la série $\sum_{j=0}^{\infty} h_j$ converge dans C(I) vers g qui vérifie alors (1).

CQFD

Densité de $\Omega(f)$:

Soit G un ouvert de Φ^{2n+1} ; $\delta > 0$ dépendant de G, ϵ, f . Soit , pour $j \in \mathbb{Z}$

$$I_q(j) = [q\delta + (2n+1)j\delta, \sim +2n\delta], q \in \{1, 2, \dots, 2n+1\}$$

- À q fixé, les $I_q(j)$ sont disjoints et séparés de δ
- Pour tout x de [0, 1], il existe au plus un q, tel que $x \notin \bigcup_{j \in \mathbb{Z}} I_q(j)$.

Pour passer en dimension n, définissons $P_q(j_1,\ldots,j_n)=I_q(j_1)\times\ldots\times I_q(j_n)$; et de même, pour tout x de I^n , il existe au plus $\mathbf n$ valeurs de q, tel que $x\notin\bigcup_{(j_1,\ldots,j_n)\in\mathbb Z^n}P_q(j_1,\ldots,j_n)$.

Soit $\Delta = \{\varphi_1, \dots, \varphi_{2n+1}\} \in \Phi^{2n+1}$ telle que pour tout $q = 1, \dots, 2n+1$, φ_q est constante sur I_q et linéaire sur les intervalles consécutifs.

On pose alors δ telle que :

- L'oscillation de f sur chaque P_q ne dépasse pas $\epsilon \|f\|$
- $\bullet \ \ G\cap\Delta\neq\varnothing$

On prend alors $(\varphi_1, \ldots, \varphi_{2n+1}) \in G \cap \Delta$. On peut modifier très légèrement la valeur des φ_q , tout en restant dans $G \cap \Delta$, afin de pouvoir supposer que

$$\chi_q(x_1, \dots, x_{2n+1}) = \sum_{p=1}^n \lambda_p \varphi_q(x_p),$$

soit constante sur chaque P_q , y prenne des valeurs différentes, et que les $\chi_q(P_q)$ sont toutes différentes, pour des valeurs de q différentes. Formellement,

$$q, j_1, \ldots, j_n \mapsto \chi_q(P_q(j_1, \ldots, j_n))$$

est injective.

Soit $\mathcal{M}(P_q)$ la valeur moyenne de f sur P_q . Définissons, sur tout pavé $P_q(j_1,\ldots,j_n)$,

$$h(\chi_a(P_a)) = 2\epsilon \mathcal{M}(P_a)$$

et on prolonge h "arbitrairement" de sorte que l'on ait $||h|| \leq 2\epsilon ||f||$. Soit $x = (x_1, \ldots, x_n) \in I^n$. Si $x \in P_q$, on a

$$h(\chi_q(x)) = 2\epsilon ||f(x)|| + \rho, \qquad |\rho| \leqslant 2\epsilon^2 ||f||.$$

Comme x est contenu dans au moins n+1 cubes P_q , alors pour $\epsilon < \frac{n+1}{2}$,

$$|f(x) - \sum_{q=1}^{2n+1} | \leq (1 - 2(n+1)\epsilon)|f(x)| + 2(n+1)\epsilon^2 ||f|| + 2n\epsilon ||f||$$

$$\leq (1 - 2\epsilon + 2(n+1)\epsilon^2)||f||$$

$$\leq (1 - \epsilon)||f|| \equiv (2)$$

Ceci achève la démonstration.