

网易严选大数据架构演进

网易严选左琴

左琴

2013年毕业于浙江大学,先后任职阿里/华云数据/ 网易等公司,主要从事大数据存储/计算引擎开发 和优化工作

目前就职于网易严选数据及风控部,同时担任网易集团数据委员会委员,是网易严选数据和算法工程团队的负责人,负责严选数据技术体系的建设(大数据平台/中台/数据产品和算法工程)

社区的积极分享者,先后在SACC, QConf研习社等做过多次主题分享,举办过Alluxio、Pulsar杭州的Meetup.

数据分析->数据决策

数据中台

DataLake
AutoWarehouse

数据平台

智能任务调度 Cloud Native

数据业务的发展和变化

阶段1 2017~2020: 重点打造分析体系

数据业务的发展和变化

阶段22020~: 打造数据驱动工程体系

数据工程技术目标

D网易严选

业务目标

翻译

工程目标

分析 | 结合

工程现状

数据驱动技术体系数据驱动工程体系建设思路

任务

业务角度切入,技术视角划分

看技术本质 通用能力下沉

AI PipeLine:数据集成->特征/模型开发->模型推理

表

屏蔽底层细节 提供积木搭建

数据平台

数据计算+数据存储

数据驱动技术体系全景图

运营中心 伏羲-营销 榜单 推荐 广告 刑天-渠道 商品中心 **VIPAPP** 搜索 商品-大麦 谛听-服务 选品系统 客服中心 供应链中心 风控 CRM ··· 指标服务 统计引擎 Binlog 数据仓库 数据 ODS/DW/DM 策略引擎 ₩ 标签服务 集成 Ψ • 数据湖 (xx) □ AISI等 □ 召回/排序/赛马 % 特征 &模型服务 ⋯⋯ Log

中台

平台

科学实验平台

流量控制

效果分析

数据治理

指标治理

标签治理

表治理

任务治理

基础服务

统一元数据

数据血缘

监控服务

数据驱动技术体系全景图

流量控制

效果分析

指标治理

标签治理

表治理

任务治理

统一元数据

数据血缘

监控服务

平台

数据驱动技术体系全景图

中台

运营中心 榜单 推荐 广告 伏羲-营销 刑天-渠道 商品中心 **VIPAPP** 商品-大麦 选品系统 搜索 谛听-服务 客服中心 供应链中心 风控 CRM ··· 统计引擎 指标服务 Binlog 数据仓库 数据 ODS/DW/DM 策略引擎 标签服务 集成 数据湖 (xx) □ AISI等 □ 召回/排序/赛马 % 特征 &模型服务 ⋯⋯ Log

平台

科学实验平台

流量控制

效果分析

数据治理

指标治理

标签治理

表治理

任务治理

基础服务

统一元数据

数据血缘

监控服务

数据分析->数据决策

数据中台

DataLake
AutoWarehouse

数据平台

智能任务调度 Cloud Native

数据架构的迭代 - 问题和价值

数据运转效率低

依赖数仓单独团队开发模型

数据schema频繁变更

问题

数据服务化

搜广推/营销/供应链/榜单/DMP 等业务域需要更高效率的数据供应

数据准实时

需要ACID的准实时数据

需求

高生产效率

自动化数据清洗,0人工成本,即可获取干净的数据

释放数据生产力

业务研发团队能自行利用原始数据能力构建产品和服务

高可用性保障

ACID能力保障数据随时可用

数仓的演进-存在的问题

实时和离线数仓:

两条数据流存在着许 重复但又不完全一致的工作

数据和算法中台

数仓的演进-存在的问题

数仓有很多规范和口径 规范与SQL实现并没有一致

eg. 规范

ODS要完成的数据清洗,在DW和DM都存在

ODS不能有join

DWS 指标的定义和实现不一致

指标的二义性-大量重复计算代码

数仓的演进 AutoDW

ODS层- 批流融合

如何解决乱序问题

Flink-AutoETL任务

自动化清洗逻辑 保证数据顺序写入Iceberg

Spark-Compaction任务

eqDeleteFile -> posDeleteFile的转换 posDeleteFile的合并 dataFile的合并优化,重排后写入

Spark-周期快照任务

从iceberg镜像表中合并制作T+1快照

数仓的演进 AutoDW

数仓的演进 AutoDW

DM-指标自动化构建

指标定义即开发标准化->自动化

DataLake的建设与实践

近实时数据方案

短周期快照10/30/60分钟级别的快照数据

- 1. 实时性无法满足,实时计算门槛高,按需开发成本高
- 2. 以空间换时间, 浪费大量的存储资源
- 3. 没有ACID,更新期间并发访问不可用,可用率60%

Iceberg存储方案

DataLake的建设与实践-基础设施建设

基础设施的建设

- 1 计算引擎层: Flink/Spark/Presto社区版本支持
- 2 统一元数据及血缘:Iceberg元数据的管理和查询 血缘的接入-提供灰度自动切换的保障
- 3 开发平台层: 计算平台/机器学习平台/数据服务平台
- 4 Iceberg的优化 Compaction的优化,性能提升10倍
- 5 DataCheckTool保证数据100%—致

数据仓库与数据湖平台架构上并无本质区别,并不引入额外的成本

DataLake的建设与实践-iceberg性能优化

问题及原因

Iceberg表读性能差,文件多影响MOR性能

主要优化点

- 1 rewrite EqDeleteFile ->PosDeleteFile
- 2 compact PosDeleteFile
- 3 order by index & overwrite

数据中台

DataLake的建设与实践-应用场景

特征和样本近实时存储 - 支持模型实时训练

标签服务 - 支撑近实时的用户圈选运营活动场景

DataLake的建设与实践-应用场景

数据中台

DataLake的建设与实践 - 应用场景

基础服务

数据治理

指标治理

标签治理

表治理

任务治理

统一元数据

数据血缘

监控服务

平台

数据湖开放

如何使用湖和仓? 平台提供数据集成-数据访问能力

近实时数据查询 - 支撑供应链/商品中心/财务等业务实时数据查询

数据分析->数据决策

数据及算法中台

DataLake

AutoDW

数据及算法平台

智能任务调度

Cloud Native

数据和算法平台

数据和算法平台

数据计算 - 智能任务调度 - 问题和价值

离线计算

几万+任务调度手工管理

实时计算 万+任务手工管理

模型训练

上千+训练任务依赖管理

在线特征 上千+特征计算任务依赖管理 数据生产沙盘 调度影响重大

生产效率

几万+任务调度手工管理

服务器成本

砍掉50%+服务器预算

数据质量

年均2起+人工调度失误导致故障

场景复杂度

任务类型:流批混合

任务种类:人工开发+自动生成

多调度引擎:Airflow + Azkaban

多资源调度: Yarn + K8S

自动化/智能的调度管理系统 YAWS

现状

推演

价值

批流任务智能调度 - YAWS架构设计

Cloud Native 架构

批/流/AI跨多平台任务提交与管理 支持Yarn/K8S调度,屏蔽基础设施细节 统一的API服务,支撑上层应用计算任务 eg. 日志平台/标签服务/指标服务等

调度策略

全链路数据血缘调度,不依赖人工配置,准确率99.9%事件触发作业,解决流批混合调度,数据准确率100%沙盘仿真模块,量化策略效果,准确率99%智能调度策略,血缘+任务优先级+任务资源的策略模型

调度执行

调度引擎-Airflow 和 Azkaban K8S- 批处理/流计算/算法训练任务资源混合调度 Data & Al 混合调度,Al-Pipeline 端到端的流调度管理

数据和算法平台 批流任务智能调度 - 调度策略

数据和算法平台 批流任务智能调度 - 调度策略

lask Schedule List		
TaskName	StartTime (T+1)	StartTime (Today)
t1	12:50	12:30

Model Simulator

Task Schedule Release

Task Online Monitor

Auto Task Schedule

Lineage-Based Model for Schedule

批流任务智能调度-调度策略

数据和算法平台

批流任务智能调度-资源调度

资源混合调度

- 实时和离线计算使用不同的Yarn集群
- Yarn运维复杂,缺乏好用的运维工具
- Yarn资源隔离不彻底,任务之间容易相互影响
- 峰值流量场景,集群资源无法快速伸缩

任务资源调度- Cloud Native

- 批处理/流计算/算法训练任务混合部署
- 提供资源统一管理和分配
- 大促期间,计算资源快速扩缩容,抵抗峰值压力

批流任务智能调度 - CloudNative

总结和展望

数据仓库与数据湖发展

不同的场景 | 不同的数据使用理念

数据湖不会替代数仓,而是长期共存

总结和展望

更可靠的数据生产和访问

