### **Exp 1 or Linear regression**

Apply least squares model for the regression of number of units sold on TV advertising budget for the Advertising data, for least squares coefficient estimates for simple linear regression

```
In [1]: 1 import pandas as pd
    from sklearn.linear_model import LinearRegression
        from sklearn.metrics import r2_score, mean_squared_error

        df = pd.read_csv('Advertising.csv')
        X = df['TV'].values.reshape(-1, 1)
        y = df['Sales']
        model = LinearRegression()
        model.fit(X, y)
        y_pred = model.predict(X)
        r_squared = r2_score(y, y_pred)
        r_squared
```

Out[1]: 0.8121757029987414

# **Multiple linear regression**

Out[2]: 0.9025912899684558

### **KNN**

Out[3]: 0.8991773755626823

# Navi Bayesian

```
In [4]:
          1 import pandas as pd
          2 from sklearn.neighbors import KNeighborsRegressor
          3 from sklearn.model_selection import train_test_split
            from sklearn.metrics import r2_score
          6 df = pd.read_csv('Advertising.csv')
          8 X = df[['TV', 'Radio', 'Newspaper']]
          9
           y = df['Sales']
         10
         11 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2
         12
         13 model = KNeighborsRegressor(n_neighbors=5)
         14 model.fit(X_train, y_train)
         15
         16 y_pred = model.predict(X_test)
         17
         18 r_squared = r2_score(y_test, y_pred)
         19
           print("R-squared score:", r_squared)
         20
```

R-squared score: 0.8991773755626823

### **Gradient Descent**

```
In [5]:
          1 import pandas as pd
          2 from sklearn.linear_model import SGDRegressor
          3 from sklearn.preprocessing import StandardScaler
          4 | from sklearn.model_selection import train_test_split
            df = pd.read_csv('Advertising.csv')
          7
          8 X = df[['TV', 'Radio', 'Newspaper']]
          9 y = df['Sales']
         10 | scaler = StandardScaler()
         11 X_train_scaled = scaler.fit_transform(X_train)
         12 X_test_scaled = scaler.transform(X_test)
         13 model = SGDRegressor(loss='squared_error')
         14 model.fit(X_train_scaled, y_train)
         15
         16 y_test_pred = model.predict(X_test_scaled)
         17 | test_r_squared = r2_score(y_test, y_test_pred)
         18
         19 print("Testing R-squared:", test_r_squared)
```

Testing R-squared: 0.9061334961284013

# **Matplotlib**

# Simple line graph

```
In [6]:
             import matplotlib.pyplot as plt
          2
          3
          4
             x = [1, 2, 3, 4, 5]
             y = [2, 3, 5, 7, 11]
          7
             plt.plot(x, y)
          8
          9
             plt.xlabel('X-axis')
         10
             plt.ylabel('Y-axis')
             plt.title('Simple Line Graph')
         11
         12
         13
             plt.show()
         14
         15
```

#### Simple Line Graph



# Multiple line graph

```
In [7]:
             import matplotlib.pyplot as plt
          2
          3
          4
            x = [1, 2, 3, 4, 5]
            y1 = [2, 3, 5, 7, 11]
          5
             y2 = [1, 4, 9, 16, 25]
          7
            plt.plot(x, y1, label='Line 1')
          8
             plt.plot(x, y2, label='Line 2')
          9
         10
             plt.xlabel('X-axis')
         11
             plt.ylabel('Y-axis')
         12
             plt.title('Simple Line Graph')
         13
         14
         15
            plt.legend()
         16
         17
             plt.show()
         18
```



# Bar graph

```
In [8]:
             import matplotlib.pyplot as plt
          2
          3
            x = [1, 2, 3, 4, 5]
          4
            y = [2, 3, 5, 7, 11]
          5
          7
             plt.bar(x, y)
          8
             plt.xlabel('X-axis')
          9
         10
             plt.ylabel('Y-axis')
             plt.title('Simple Line Graph')
         11
         12
         13
         14
            plt.show()
```

# 

# Pie chart

```
In [22]: 1 import matplotlib.pyplot as plt
2 x = [1, 2, 3, 4, 5]
3 plt.pie(x)
4 plt.title('Simple Line Graph')
5 plt.show()
```

#### Simple Line Graph



```
In [10]:
              import matplotlib.pyplot as plt
           2
           3
           4
              x = [1, 2, 3, 4, 5]
           5
              y = [2, 3, 5, 7, 11]
           7
              plt.hist(x, y)
           8
           9
              plt.xlabel('X-axis')
          10
              plt.ylabel('Y-axis')
              plt.title('Simple Line Graph')
          11
          12
          13
          14
             plt.show()
```



Compute t-statistic, Residual standard error, F-statistic and residual sum of squares (RSS) errors.

```
In []: 1 import numpy as np
    import statsmodels.api as sm
    X = np.array([1, 2, 3, 4, 5])
    y = np.array([2, 3, 4, 5, 6])
    X = sm.add_constant(X)
    model = sm.OLS(y, X).fit()
    t_statistic = model.tvalues
    residual_standard_error = np.sqrt(model.mse_resid)
    f_statistic = model.fvalue
    rss = model.ssr
    print("T-Statistic:", t_statistic)
    print("Residual Standard Error:", residual_standard_error)
    print("F-Statistic:", f_statistic)
    print("Residual Sum of Squares (RSS):", rss)
```

Do any of the predictors appear to be statistically significant? If so, which ones?

```
In [32]:
           1 import numpy as np
           2 import statsmodels.api as sm
           3
           4 # Sample data
           5 X = np.array([1, 2, 3, 4, 5])
           6 y = np.array([2, 3, 4, 5, 6])
           7
           8 # Add constant for intercept term
           9
             X = sm.add_constant(X)
          10
          11 # Fit linear regression model
          12 model = sm.OLS(y, X).fit()
          13
          14 # Get model summary
          15 print(model.summary())
          16
          17 # Extract p-values
          18 p_values = model.pvalues[1:] # Exclude intercept term
          19 print("P-Values:", p_values)
          20
          21 # Identify statistically significant predictors
          22 significant_predictors = np.where(p_values < 0.05)[0]</pre>
          23 print("Significant Predictor Indices:", significant_predictors)
          24
```

#### OLS Regression Results

| ==========                                                                                                                                                       | ======= |               | •     | ====== | :========      | ======= |        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------|-------|--------|----------------|---------|--------|
| ====                                                                                                                                                             |         |               |       |        |                |         |        |
| Dep. Variable:<br>1.000                                                                                                                                          |         |               | у     | R-squ  | uared:         |         |        |
| Model:                                                                                                                                                           |         |               | OLS   | Adj.   | R-squared:     |         |        |
| 1.000                                                                                                                                                            |         |               |       | _      | ·              |         |        |
| Method:                                                                                                                                                          |         | Least Squares |       |        | ntistic:       |         | 6.085  |
| e+32                                                                                                                                                             | Γ,      | oi O2 May     | 2024  | Dnoh   | (F statistis). |         | 1 47   |
| Date:<br>e-49                                                                                                                                                    | Fſ      | 1, 03 May     | 2024  | PI.OD  | (F-statistic): |         | 1.47   |
| Time:                                                                                                                                                            |         | 14:5          | 6:10  | Log-l  | ikelihood:     |         | 17     |
| 7.15                                                                                                                                                             |         |               |       |        |                |         |        |
| No. Observation                                                                                                                                                  | ns:     |               | 5     | AIC:   |                |         | -3     |
| 50.3<br>Df Residuals:                                                                                                                                            |         |               | 3     | BIC:   |                |         | -3     |
| 51.1                                                                                                                                                             |         |               | ,     | Dic.   |                |         | ,      |
| Df Model:                                                                                                                                                        |         |               | 1     |        |                |         |        |
| Covariance Type                                                                                                                                                  | e:      | nonro         | bust  |        |                |         |        |
| =======================================                                                                                                                          |         |               | ===== | ====== |                | ======  |        |
| ====                                                                                                                                                             |         |               |       |        | 5 1.1          | F0 00F  | •      |
| 0751                                                                                                                                                             | coet    | std err       |       | t      | P> t           | [0.025  | 0.     |
| 975]                                                                                                                                                             |         |               |       |        |                |         |        |
|                                                                                                                                                                  |         |               |       |        |                |         |        |
| const                                                                                                                                                            | 1.0000  | 1.34e-16      | 7.4   | 4e+15  | 0.000          | 1.000   |        |
| 1.000                                                                                                                                                            |         |               |       |        |                |         |        |
| x1                                                                                                                                                               | 1.0000  | 4.05e-17      | 2.4   | 7e+16  | 0.000          | 1.000   |        |
| 1.000                                                                                                                                                            |         |               |       |        |                |         |        |
|                                                                                                                                                                  | ======  |               | ===== | ====== | =========      | ======  | ====== |
| ====<br>Omnibus:                                                                                                                                                 |         |               | กาก   | Dunhi  | n-Watson:      |         |        |
| 1.000                                                                                                                                                            |         |               | nan   | נטיוטט | III-Watson.    |         |        |
| Prob(Omnibus):                                                                                                                                                   |         |               | nan   | Jarqu  | ue-Bera (JB):  |         |        |
| 1.888                                                                                                                                                            |         |               |       | ·      | ` ,            |         |        |
| Skew:                                                                                                                                                            |         | 1             | .500  | Prob(  | [JB):          |         |        |
| 0.389                                                                                                                                                            |         |               | 250   |        |                |         |        |
| Kurtosis:                                                                                                                                                        |         | 3             | .250  | Cond.  | No.            |         |        |
| 8.37                                                                                                                                                             |         |               |       |        |                |         |        |
| ====                                                                                                                                                             |         |               |       |        |                |         |        |
| Notes: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. P-Values: [1.46929683e-49] Significant Predictor Indices: [0] |         |               |       |        |                |         |        |
| <pre>C:\Users\hites\anaconda3\Lih\site-nackages\statsmodels\stats\stattools.nv:</pre>                                                                            |         |               |       |        |                |         |        |

C:\Users\hites\anaconda3\Lib\site-packages\statsmodels\stats\stattools.py:
74: ValueWarning: omni\_normtest is not valid with less than 8 observation
s; 5 samples were given.

warn("omni\_normtest is not valid with less than 8 observations; %i "

# Exp4

Compute the confusion matrix and overall fraction of correct predictions. Explain what the confusion matrix is telling you about the types of mistakes made by KNN

```
In [17]:
             from sklearn.metrics import confusion_matrix, accuracy_score
           2
           3
             y_true = [0, 1, 0, 1, 0, 1, 1, 0, 1, 0]
           5
             y_pred = [0, 1, 1, 1, 0, 0, 1, 0, 1, 1]
           7 # Compute confusion matrix
           8 cm = confusion_matrix(y_true, y_pred)
           9
             print("Confusion Matrix:")
          10 print(cm)
          11
          12 # Compute overall fraction of correct predictions
          13 | accuracy = accuracy_score(y_true, y_pred)
          14 print("Overall Accuracy:", accuracy)
          15
          16
```

```
Confusion Matrix:
[[3 2]
  [1 4]]
Overall Accuracy: 0.7
```

Compute Mallow's Cp, Akaike information criterion (AIC), adjusted R Squared and Bayesian information criterion (BIC)

```
In [18]:
           1 import numpy as np
              import statsmodels.api as sm
           2
           3
           5 \mid X = \text{np.array}([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6]]).T
             y = np.array([2, 3, 4, 5, 6])
           7
           8
             model = sm.OLS(y, sm.add_constant(X)).fit()
           9
          10 residuals = model.resid
          11 p = len(model.params)
          12 n = len(y)
          13 rss = np.sum(residuals ** 2)
          14
          15 Cp = (1/n) * (rss + 2 * p * (rss/n))
          16 AIC = (2 * p) + (n * np.log(rss/n))
          17 adj_r_squared = 1 - ((rss/(n - p - 1)) / (np.var(y)))
          18 BIC = n * np.log(rss/n) + p * np.log(n)
          19
          20
          21 print("Mallow's Cp:", Cp)
          22 print("AIC:", AIC)
          23 print("Adjusted R-squared:", adj_r_squared)
          24
             print("BIC:", BIC)
          25
```

Mallow's Cp: 1.8591479383796198e-29

AIC: -328.71653386035314 Adjusted R-squared: 1.0 BIC: -329.8882201230508

# Exp6

Produce some histograms with differing numbers of bins for a few of the quantitative variables

```
In [23]:
           1
              import numpy as np
              import matplotlib.pyplot as plt
           2
           3
              # Generate some example data
           4
           5
              np.random.seed(0)
              data = np.random.normal(loc=0, scale=1, size=1000) # Example data with
           6
           7
              # Create histograms with different numbers of bins
           8
           9
              bins_list = [10, 20, 30] # Different numbers of bins
              titles = ['Histogram with 10 Bins', 'Histogram with 20 Bins', 'Histogram
          10
          11
              plt.figure(figsize=(12, 4))
          12
              for i, bins in enumerate(bins_list, start=1):
          13
                  plt.subplot(1, len(bins_list), i)
          14
          15
                  plt.hist(data, bins=bins, edgecolor='black')
                  plt.title(titles[i-1])
          16
          17
                  plt.xlabel('Value')
          18
                  plt.ylabel('Frequency')
          19
              plt.tight_layout()
          20
              plt.show()
          21
          22
```



Continue exploring the data, and provide a brief summary of what you discover.

Descriptive Statistics: Calculate summary statistics such as mean, median, standard deviation, minimum, maximum, and quartiles for quantitative variables. For categorical variables, count the frequency of each category. Data Visualization: Create visualizations such as histograms, box plots, scatter plots, and bar plots to understand the distribution, relationships, and patterns in the data. Correlation Analysis: Compute correlations between pairs of quantitative variables to identify any linear relationships. Visualize the correlation matrix using a heatmap. Outlier Detection: Identify any outliers in the data using statistical methods or visualization techniques. Missing Values: Check for missing values in the dataset and decide on appropriate strategies for handling them, such as imputation or removal. Feature Engineering: Create new features or transform existing features to better represent the underlying patterns in the data. Dimensionality Reduction: Apply techniques such as principal component analysis (PCA) or t-distributed stochastic neighbor embedding (t-SNE) to reduce the dimensionality of the data and visualize high-dimensional data in lower dimensions. Cluster Analysis: Explore whether there are natural groupings or clusters in the data using clustering algorithms such as K-means or hierarchical clustering. Based on

the results of these analyses, we can provide a summary of the key findings, insights, and patterns observed in the data. This summary can help stakeholders better understand the

a company of the contract of t

### Exp 8

Carry out the pearson product moment correlation, spearman rho correlation and kendall's tau

```
In [24]:
           1 import numpy as np
             from scipy.stats import pearsonr, spearmanr, kendalltau
           4 \times = \text{np.array}([1, 2, 3, 4, 5])
           5 y = np.array([2, 3, 4, 5, 6])
           6
           7 pearson_corr, pearson_p_value = pearsonr(x, y)
             print("Pearson correlation coefficient:", pearson_corr)
             print("Pearson p-value:", pearson_p_value)
          10
          11
              spearman_corr, spearman_p_value = spearmanr(x, y)
          12
              print("Spearman's rank correlation coefficient (Spearman rho):", spearm
          13 print("Spearman p-value:", spearman_p_value)
          14
          15 kendall_corr, kendall_p_value = kendalltau(x, y)
          16 print("Kendall's tau correlation coefficient:", kendall_corr)
          17 print("Kendall p-value:", kendall_p_value)
          18
```

### Exp 9

Perform Simple Hypothesis testing, student's t-test, paired t and u test, correlation and covariance, tests for association

```
In [26]:
           1 import numpy as np
           2 from scipy.stats import ttest_ind, ttest_rel, wilcoxon, chi2_contingend
           3
             import pandas as pd
           5 # Example data
             data = {
           6
           7
                  'X': [1, 2, 3, 4, 5],
                  'Y': [2, 3, 4, 5, 6],
           8
                  'Category': ['A', 'B', 'A', 'B', 'A']
           9
          10
          11 df = pd.DataFrame(data)
          12
          13 # Simple Hypothesis Testing
          14 mean_value = 3 # Known value for comparison
          15 | sample_mean = np.mean(df['X'])
          16 t_statistic, p_value = ttest_ind(df['X'], [mean_value])
          17 print("Simple Hypothesis Testing:")
          18 print("Sample mean:", sample_mean)
          19 print("t-statistic:", t_statistic)
          20 print("p-value:", p_value)
          21
          22 # Student's t-test
          23 t_statistic, p_value = ttest_ind(df[df['Category'] == 'A']['Y'], df[df[
          24 print("\nStudent's t-test:")
          25 print("t-statistic:", t_statistic)
          26 | print("p-value:", p_value)
          27
          28 | # Paired t-test
          29 | t statistic, p value = ttest rel(df['X'], df['Y'])
          30 print("\nPaired t-test:")
          31 print("t-statistic:", t_statistic)
          32 print("p-value:", p_value)
          33
          34 # Wilcoxon Signed-Rank Test (U Test)
          35 statistic, p_value = wilcoxon(df['X'], df['Y'])
          36 print("\nWilcoxon Signed-Rank Test (U Test):")
          37 print("Statistic:", statistic)
          38 print("p-value:", p_value)
          39
          40 # Correlation and Covariance
          41 | correlation = df['X'].corr(df['Y'])
          42 covariance = df['X'].cov(df['Y'])
          43 print("\nCorrelation and Covariance:")
          44 print("Correlation coefficient:", correlation)
          45 print("Covariance:", covariance)
          46
          47 # Tests for Association
          48 | contingency_table = pd.crosstab(df['X'], df['Category'])
          49
              chi2, p_value, _, _ = chi2_contingency(contingency_table)
          50 print("\nTests for Association:")
          51 print("Chi-square statistic:", chi2)
          52 print("p-value:", p_value)
          53
```

```
Simple Hypothesis Testing:
Sample mean: 3.0
t-statistic: 0.0
p-value: 1.0
Student's t-test:
t-statistic: 0.0
p-value: 1.0
Paired t-test:
t-statistic: -inf
p-value: 0.0
Wilcoxon Signed-Rank Test (U Test):
Statistic: 0.0
p-value: 0.0625
Correlation and Covariance:
Covariance: 2.5
Tests for Association:
Chi-square statistic: 5.0000000000000001
p-value: 0.2872974951836456
C:\Users\hites\anaconda3\Lib\site-packages\scipy\stats\_axis_nan_policy.p
y:523: RuntimeWarning: Precision loss occurred in moment calculation due t
o catastrophic cancellation. This occurs when the data are nearly identica
1. Results may be unreliable.
 res = hypotest_fun_out(*samples, **kwds)
```

Perform Programming for Eigen values and Eigen vectors

```
In [28]:
             import numpy as np
           2
           3 # Example matrix
             A = np.array([[1, 2],
           4
           5
                            [2, 1]])
           6
           7
             # Compute eigenvalues and eigenvectors
             eigenvalues, eigenvectors = np.linalg.eig(A)
           9
          10 # Print eigenvalues and eigenvectors
          11 print("Eigenvalues:")
          12 print(eigenvalues)
          13 print("\nEigenvectors:")
          14 print(eigenvectors)
          15
         Eigenvalues:
         [ 3. -1.]
         Eigenvectors:
         [[ 0.70710678 -0.70710678]
          [ 0.70710678  0.70710678]]
```