EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

04254835

PUBLICATION DATE

10-09-92

APPLICATION DATE

07-02-91

APPLICATION NUMBER

: 03016198

the state of the s

APPLICANT:

MATSUSHITA ELECTRIC IND CO LTD:

INVENTOR:

MIZUUCHI KIMINORI:

INT.CL.

G02F 1/37 G02B 6/12 H01S 3/18

TITLE

LIGHT WAVELENGTH CONVERSION ELEMENT AND LASER BEAM SOURCE

UTILIZING THE ELEMENT

ABSTRACT:

PURPOSE: To improve wavelength tolerances of a wavelength conversion element for the stable operation.

CONSTITUTION: A light wave-guide and a periodic polarized inversion layer 3 are manufactured on the LiNbO $_3$ substrate 1 of a +Z plate, and the light wave-guide is formed with light wave-guide A, B, C, D having different widths. A fundamental wave P $_1$ is introduced into an incidence part 10, convert it to a higher harmonic wave 12 at respective A, B, C, D areas, and emitted from an ejection part 12. Propagation constants of the light wave-guides alter by changing the widths of the light wave-guides, and, as a result, optimum wavelength shifts at respective parts occur. Although wavelength tolerances in respective areas are small, their half-value widths spread out four times since the higher harmonic wave P $_2$ is added up at these parts (four A, B, C, D parts).

COPYRIGHT: (C)1992,JPO&Japio

Rest Available Con

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平4-254835

(43)公開日 平成 4年(1992) 9月10日

(51) Int.Cl. ⁵		識別記号	庁内整理番号	FI	技術表示箇所
G 0 2 F	1/37		7246-2K		
G 0 2 B	6/12	н	7036-2K		
H01S	3/18		9170-4M		

審査請求 未請求 請求項の数6(全 6 頁)

(21)出願番号	特顧平3-16198	(71)出願人 000005821	
	(松下電器産業株式会社	
(22) 出願日	平成3年(1991)2月7日	大阪府門真市大字門真1006番地	
		(72)発明者 山本 博昭	
		大阪府門真市大字門真1006番地 松下電	33
		産業株式会社内	
		(72)発明者 山本 和久	
		大阪府門真市大字門真1006番地 松下電	:盟
		産業株式会社内	
		(72) 発明者 水内 公典	
		大阪府門真市大字門真1006番地 松下電	哭
		産業株式会社内	
		(74)代理人 介理士 小鍜治 明 (外2名)	

(54) 【発明の名称】 光波長変換素子およびそれを用いたレーザ光源

(57)【要約】

【目的】波長変換素子の波長許容度を向上させ安定な動作を行う。

【構成】+2板のLiNb0:基板1に光導波路2と周期的分極反転層3を作製する。光導波路2は機幅が異なる光導波路A,B,C,Dから形成されている。入射部10に基本波P1を入射させ、A,B,C,Dそれぞれの領域で高調波P2に変換し、出射部12より放射される。

【効果】光導波路の幅を変化させることにより光導波路の伝搬定数が変化し結果としてそれぞれの部分での最適波長のずれが生じる。各領域の波長許容度は小さいが高調波 P 2 はこれらの部分(A、B、C、Dの1つの部分)でたしあわせられるのでその半値幅は4倍に広がることとなる。

2, A~D …光導 液路 3 …分 卷 反 転層

Best Available Copy

【特許請求の範囲】

【請求項1】 非線形光学結晶表面に、光導波路と、前 記光導波路の伝搬方向に対し周期的な分極反転層を有 し、前記光導波路が複数の伝搬定数をもつ光導波路で形 成されていることを特徴とする光波長変換案子。

【請求項2】 光の伝搬方向に対して光導波路の伝搬定 数が連続的に変化することを特徴とする請求項2記載の 光波長変換素子。

【請求項3】 請求項1または2記載の光波長変換素子 と半導体レーザを有し、前記半導体レーザからの出力を 10 前記光波長変換素子に入射させ、前記光波長変換素子か ら高調波を出力させることを特徴とするレーザ光源。

【請求項4】 非線形光学結晶がLiNb Tai- Os (0≦X≦1) 基板であることを特徴とする請求項1ま たは2記載の光波長変換素子。

【請求項5】 光導波路の横幅が伝搬方向に連続的また は離散的に変化することを特徴とする請求項1または2 記載の光波長変換案子。

【請求項6】 光導波路の厚さが伝搬方向に連続的また 記載の光波長変換素子。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、コヒーレント光を利用 する光情報処理分野、あるいは光応用計測制御分野に使 用する光波長変換素子に関するものである。

[0002]

【従来の技術】図8に従来の光波長変換素子の構成図を 示す。以下1.06μmの波長の基本波に対する高調波発生 (波長 0.53μ m) について図を用いて詳しく述べる。 (E.J.Lim, M.M.Fejer, R.L.Byer, "Second harmonic generationof blue and green light in periodicallypoled planar lithium niobate waveguides", IGW O, 1988年、参照). 図8に示されるようにLiNbO₃基板 1に光導波路2が形成され、さらに光導波路2には周期 的に分極の反転した層3 (分極反転層) が形成されてい る。基本波と発生する髙調波の伝搬定数の不整合を分極 反転層3の周期構造で補償することにより高効率に高調 波を出すことができる。光導波路2の入射面10に基本 波P1を入射すると、光導波路2から高調波P2が効率 40 良く発生され、光波長変換素子として動作する。

【0003】このような従来の光波長変換素子は分極反 転構造を基本構成要素としていた。この素子の製造方法 について図3を用いて説明する。同図(a)で非線形光 学結晶であるLINbO1基板1にSiO2のパターンをス パッタ蒸着とフォトリソグラフィーにより幅数μmの周 期で形成していた。次に同図(b)で1100℃程度の 温度で熱処理を行いLiNbOs 基板 1 と分極が反対向きに反 転した分極反転層3を形成した。次に同図(c)で安息 香酸(200℃)中で30分熱処理を行った後350℃ 50 路A,B,C,Dら形成されている。光導波路2に入っ

でアニールを行い光導波路2を形成する。上記安息香酸 処理により作製される光波長変換素子は波長1.06μmの 基本波P1に対して、光導波路の長さを1mm、基本波 P1のパワーを1mWにしたとき高調波P2のパワー 0. 5nWが得られていた。基本波が40mW入射した とすると800nWの高調波出力が可能である。この場 合1cmの素子での変換効率は0.2%である。

[0004]

【発明が解決しようとする課題】上記のような分極反転 層を基本とした光波長変換素子では素子長5mmのとき レーザの波長に対する許容度は図2のAであらわされる ように半値幅Δ入で0.8nmしかない。そのため光波 長変換素子と半導体レーザと組み合わせた場合、半導体 レーザが温度変化のため波長変動を生じ高調波がでなく なる、または大きく高調波の出力が変動するといった問 題があった。具体的に半導体レーザが1℃温度変化する と、波長は0.3nm変化するため、3℃の変化で出力 がでなくなっていた。

【0005】本発明は、光波長変換素子に新たな工夫を は離散的に変化することを特徴とする請求項1または2 20 加えることにより半導体レーザの発振波長の変化に対し ても高調波を安定に出力する光波長変換素子およびそれ を用いたレーザ光源を提供することを目的とする。

[0006]

【課題を解決するための手段】本発明は上記課題を解決 するために 非線形光学結晶表面に、光導波路と、前記 光導波路の伝搬方向に対し周期的な分極反転層を有し、 前記光導波路が複数の伝搬定数をもつ光導波路で形成さ れているか、または光の伝搬方向に対して光導波路の伝 搬定数が連続的に変化する光波長変換素子である。

【0007】また、その光波長変換素子と半導体レーザ を有するレーザ光源である。

[0008]

30

【作用】本発明の光波長変換素子は光導波路の伝搬定数 を複数の領域で変化させせているため各部での変換可能 な基本波波長が異なる。したがってレーザからの基本波 の波長が変化してもこの伝搬定数の異なるいずれかの領 域で高調波に変換される。つまり波長変換素子の波長に 対する許容度が向上し、安定な高調波発生が得られるこ ととなる。

[0009]

【実施例】実施例の一つとして本発明の光波長変換案子 の構成を図を用いて説明する。まず、本発明による光波 長変換素子の第1の実施例の構造図を図1に示す。この 実施例では分極反転型の光波長変換素子としてLiNbOs 基 板1中にプロトン交換を用いて作製した光導波路2を用 いたものである。図1で1は+2板(2軸と垂直に切り 出された基板の+側)のLiNbOs基板、2は形成された光 導波路、10は基本波P1の入射部、12は高調波P2 の出射部である。この光導波路2は横幅が異なる光導波 た基本放 P 1 は A, B, C, D それぞれの領域で高調被 P 2 に変換され、出射部 1 2 より放射される。

【0010】図2に高期液(SHG)-出力の波長依存性を示す。Aの部分のみの波長変換素子、つまり従来の波長変換素子では許容度は半値幅 Δ 入と小さい。従って入Aの波長の基本波は波長変換されるが波長入B、入C、入Dの基本波が入射した場合は波長変換されないこととなる。

【0011】一方、本実施例ではA,B,C,Dの領域で光導波路の幅が異なるため光の伝搬定数が異なり、結 10 果として各領域の波長変換可能な波長域は図2のA,B,C,Dに示す様にずれが生じる。

【0012】ここで被長変換素子に被長入Bの基本光が入射した場合、領域Aは領域Aの波長変換可能な波長域からずれているため被長変換が行われず基本波は通過する。この通過した基本波は領域Bでは波長変換可能な波長域を満足するため波長変換される。また領域C、Dでは領域Aと同様の理由で波長変換無しで高調波およびBで変換されなかった基本波はそのまま通過し素子外へ取り出される。

【0013】波長入A、入C、入Dの基本波についても同様に対応する領域(領域A、C、D)のみで波長変換され他の領域はそのまま通過する。

【0014】以上が本波長変換素子の動作であり液長 A、 AB、 AC、 ADのすべての基本波が変換可能であり、波長許容度が従来の4倍になる。

【0015】次にこの光波長変換素子の製造方法について図を使って説明する。図3(a)でまずLiNb0 $_3$ 基板1に通常のフォトプロセスとドライエッチングを用いてSi0 $_2$ 6を周期3 μ mでパターニングする。

【0016】次に同図(b)で $Si0_2$ が形成されたLiNb0a基板1に1080℃、90分間熱処理を行い SiO_2 6 直下に厚み1. 4μ mの分極反転層3を形成する。熱処理の上昇レートは10℃/分、冷却レートは50℃/分である。冷却レートが遅いと不均一反転が生じるので30℃/分以上が望ましい。 $Si0_2$ 6 直下は11が減少しておりキュリー温度が低下するため部分的に分極反転ができる。分極反転層3の長さ11、 5μ mである。

【0017】次に同図(c)でHF:HNF:の1:1混合液にて20分間エッチングしSiO26を除去する。

【0018】次に上記分極反転層3中にプロトン交換を用いて光導波路2を形成する。光導波路2を作製するためのマスクは Ta_zO_s のストライプ窓で、このパターニングにはフォトプロセスとドライエッチングを使用する。このときのストライプ幅はA, B, C, Dで異なりそれぞれ6 μ m, 7μ m, 8μ m, 9μ mであり、またそれぞれの長さはすべて5 mmである。

【0019】このマスクを作製後これをピロ隣酸中で230℃、2分間熱処理を行いプロトン交換する。

【0020】最後にマスクを除去した後350℃で1時 50

間アニールを行った。アニール処理により微細な導被路の不均一性が緩和されロスが減少し、さらにプロトン交換層に非線形性が戻る。プロトン交換された保護マスクのスリット直下の領域は屈折率が0.03程度上昇した高屈折率層2となる。光は高屈折率層2を伝搬し、これが光導波路2となる。

【0021】上記のような工程により光導波路が製造される。この光導波路2の厚みはは1.2μmであり分極 反転層3の厚み1.4μmに比べ小さく有効に波長変換される。また、この光導波路2の非分極反転層4と分極 反転層3の屈折率変化はなく、光が導波する場合の伝搬 損失は小さい。光導波路2に垂直な面を光学研磨し入射 部10および出射部12を形成した。このようにして図 1に示される光波長変換素子が製造できる。

【0022】この素子の長さは20mmである。図1で基本波P1として半導体レーザ光(波長0.84μm)を入射部10より導波させたところシングルモード伝搬し、波長0.42μmの高調波P2が出射部12より基板外部に取り出された。光導波路2の伝搬損失は1.5dB/cmと小さく高調波P2が有効に取り出された。基本波40mWの入力で0.8mWの高調波(波長0.42μm)を得た。この場合の変換効率は2%である。

【0023】被長に対する許容度は従来の0.8 nmに比べて3.2 nmと大幅に改善され実用性が増した。半導体レーザは10℃程度変化しても高調波出力は安定に得られた。なお基本波に対してマルチモード伝搬では高調波の出力が不安定で実用的ではない。0.65~1.6 μmの波長の基本波P1を用いて本光波長変換素子による高調波P2発生を確認した。

30 【0024】ここでは光導波路が幅の異なる4つの部分からなる場合について説明を行ったが4以上の部分からなる波長変換案子も実現可能でありこの場合伝搬定数の変化幅を拡大でき波長許容度をさらに向上できる。

【0025】また伝搬定数の変化量を一定にした場合はこの分割数を増加させることにより各部分の境界における結合ロスを低減できる。特にこの分割数を無限大つまり光導波路幅を連続的に変化させることによりこのロス低減効果が顕著になり変換効率の向上が可能となる。図4は第2の実施例の波長変換素子の構造図で、光導波路幅を連続的に変化させたものである。光導波路幅は長さ $20\,\mathrm{mm}$ の間を $6\,\mu\mathrm{m}$ から $9\,\mu\mathrm{m}$ まで連続的に変化している。またこのときの他のパラメータは分極反転周期 $3\,\mu\mathrm{m}$ 、反転深さ $1.4\,\mu\mathrm{m}$ 、導波路深さ $1.2\,\mu\mathrm{m}$ 、長さ $20\,\mathrm{mm}$ である。

【0026】本実施例の波長変換素子の作製方法は第1の実施例の作製方法においてプロトン交換のマスクのストライプ幅を連続的に変化させればよい。

【0027】以上の様にして作製された素子に基本被P 1として半導体レーザ光(波長0.81μm)を入射部 10より導波させたところシングルモード伝搬し、被長

—213—

Best Available Copy

0. 42μmの高調波P2が出射部12より基板外部に 取り出された。光導波路2の伝搬損失は1.0dB/cmと 小さく高調波 P 2 が有効に取り出された。基本波 4 0 m Wの入力で1. 0 mWの高調波(波長0. 4 2 μm)を 得た。この場合の変換効率は2.5%である。波長に対 する許容度は従来の0.8 nmに比べて3.2 nmと第 1の実施例と同等の結果が得られた。

[0028] 図5は第3の実施例の波長変換素子の構造 図である。光導波路の伝搬定数を変化させるために光導 変化させている。またこのときの他のパラメータは分極 反転周期3μm、反転深さ1、5μm、導波路幅6μ m、長さ20mmである。

【0029】本実施例の波長変換案子の作製は第1の実 施例の作製方法においてプロトン交換工程を以下に述べ るように変更することにより実現できる。この方法を図 6をもとに説明する。30は温度230℃のピロ燐酸、 1は基板である。まず基板1をピロ燐酸表面より下方向 に速度10mm/分で2分移動させ、この後1分間停止 し次に上方へ10mm/秒以上の速度で移動させプロト ン交換を中止する。

【0030】このことにより導波路深さを0.15 µm から $0.25\mu m$ 変化させることができる。このプロト ン交換層深さは後の工程のアニールにより深さ1.0μ mから1. 4μmに拡大される。

【0031】以上の様にして作製された素子に基本波P 1として半導体レーザ光(波長0.84 µm)を入射部 10より導波させたところシングルモード伝搬し、波長 0. 42μmの高調波P2が出射部12より基板外部に 取り出された。光導波路2の伝搬損失は1.0dB/cmと 30 小さく高調波P2が有効に取り出された。基本波40m Wの入力で1. 0 mWの高調波(波長0. 42 μm)を 得た。この場合の変換効率は2.5%である。波長に対 する許容度は従来の0.8nmに比べて3.2nmと第 1の実施例と同等の結果が得られた。

【0032】なお実施例1、実施例2および実施例3で は非線形光学結晶としてLiNbOsを用いたが、LiTaOs, Li NbO3とLiTaO5の混晶,KNbO3, KTP(KTiOPO4)等の強誘 電体、MNA等の有機材料にも適用可能である。

[0033] 次に本発明の第4の実施例を説明する。図 40 P2 高調波 7 は本発明の波長変換素子を用いたレーザ光源の構成図 である。レーザ光源は基本的には半導体レーザ21と光

被長変換素子22より構成される。A1枠20に固定さ れた半導体レーザ21から出射された基本波P1はコリ メータレンズ24で平行光にされた後、フォーカスレン ズ25で光波長変換素子22の光導波路2に導入され高 調波P2へと変換される。ここで光波長変換索子の構成 は実施例1と同様である。この実施例ではこの光波長変 換素子と半導体レーザを組み合わせてレーザ光源を作製 した。 このレーザ光源に電源23より半導体レーザを 駆動し、変調は半導体レーザ21に供給する電流を変化 波路の深さを伝搬方向に1.0 μ mから1.4 μ mまで 10 させる直接変調とした。半導体レーザ光のスペクトルは 変調前は0.1nm以下のシングルスペクトルであった が周波数1GHzで変調を行うとマルチスペクトルとな り4nmまで広がった。しかしながら本レーザ光源は波 長変換素子の波長許容度が4nmと広いため安定な変調 特性が得られた。

6

[0034]

【発明の効果】以上説明したように本発明の光波長変換 素子によれば波長に対する許容度が向上し、半導体レー ザからの波長が変化した場合でも安定した高調波の発生 20 が得られる。

【図面の簡単な説明】

【図1】光波長変換素子の第1の実施例の構造斜視図で

【図2】高調波出力の波長依存性をあらわす特性図であ る。

【図3】

- (a) 光波長変換素子の第1の製造工程断面図である。
- (b) 光波長変換素子の第2の製造工程断面図である。
- (c) 光波長変換素子の第3の製造工程断面図である。
- 【図4】第2の実施例の波長変換素子の構造図である。
- 【図5】第3の実施例の波長変換素子の構造図である。
 - 【図6】プロトン交換工程をあらわす図である。
 - 【図7】第4の実施例のレーザ光源の構成図である。
 - 【図8】従来の光波長変換案子の構造図である。

【符号の説明】

- LiNbO3 基板
- 光導波路
- 分極反転層
- P1 基本波

BEST AVAILABLE COPY

(5)

特開平4-254835

Best Available Copy

(6)

特開平4-254835

[図8]

1 ··· Li Nà G3 基礎 2 ··· 关 排 法 路 3 ··· 分 経 反 転 層

