HIT — Cryptography — Homework 6

September 4, 2014

Problem 1. Prove formally that the hardness of the CDH problem relative to \mathcal{G} implies the hardness of the discrete logarithm problem relative to \mathcal{G} .

Problem 2. Consider the following key-exchange protocol:

- 1. Alice chooses $k, r \leftarrow \{0, 1\}^n$ at random, and sends $s := k \oplus r$ to Bob.
- 2. Bob chooses $t \leftarrow \{0,1\}^n$ at random and sends $u := s \oplus t$ to Alice.
- 3. Alice computes $w := u \oplus r$ and sends w to Bob.
- 4. Alice outputs k and Bob computes $w \oplus t$.

Show that Alice and Bob output the same key. Analyze the security of the scheme (i.e. either prove its security or show a concrete attack by an eavesdropper).

Problem 3. Assume a public-key encryption scheme for single-bit messages. Show that, given pk and a ciphertext c computed via $c \leftarrow \mathsf{Enc}_{pk}(m)$, it is possible for an unbounded adversary to determine m with probability 1. This shows that perfectly-secret public-key encryption is impossible.

Problem 4. Say a deterministic public-key encryption scheme is used to encrypt a message m that is known to lie in a small set of \mathcal{L} possible values. Show how it is possible to determine m in time linear in \mathcal{L} (assume that encryption of an element takes a single unit of time).

Problem 5. The natural way of applying hybrid encryption to the El Gamal encryption scheme is as follows. The public key is $pk = \langle \mathbb{G}, q, g, h \rangle$ as in the El Gamal scheme, and to encrypt a message m the sender chooses random $k \leftarrow \{0,1\}^n$ and sends

$$\langle g^r, h^r \cdot k, \operatorname{Enc}_k(m) \rangle$$
,

where $r \leftarrow \mathbb{Z}_q$ is chosen at random and Enc represents a private-key encryption scheme. Suggest an improvement that results in a shorter ciphertext containing only a *single* group element followed by a private-key encryption of m.

Problem 6. For each of the following variants of the definition of security for signatures, state whether textbook RSA is secure and prove your answer:

• (a) In this first variant, the experiment is as follows: the adversary is given the public key pk and a random message m. The adversary is then allowed to query the signing oracle once on a single message that does not equal m. Following this, the adversary outputs a signature σ and succeeds if $\mathsf{Vrfy}_{pk}(m,\sigma)=1$. As usual, security is said to hold if the adversary can succeed in this experiment with at most negligible probability.

• (b) The second variant is as above, except that the adversary is not allowed to query the signing oracle at all.

Problem 7. Consider the Lamport one-time signature scheme. Describe an adversary who obtains signatures on two messages of its choice and can then forge signatures on any message it likes.