

b1

--36 (New). A method of manufacturing a display device comprising the steps of:

forming a thin film transistor over a substrate;

forming a pixel electrode electrically connected to the thin film transistor;

forming a body with a textured surface on the pixel electrode; and

forming a light reflection film on the body with the textured surface.

b1

2 — 37 (New). A method according to claim 36, wherein the pixel electrode comprises at least one of Al and Ag.

b1

3 — 38 (New). A method according to claim 36, wherein the body with the textured surface comprises at least one material selected from the group consisting of SiO₂, MgF₂, Na₃AlF₆, an acrylic resin, and polyimide.

b1

4 — 39 (New). A method according to claim 36, wherein the body with the textured surface has an uneven portion of 1 μm or less in height on the surface.

b1

5 — 40 (New). A method according to claim 36, wherein the light reflection film comprises at least one material selected from the group consisting of TiO₂, ZrO₂, Ta₂O₅, ZnS, ZnSe, ZnTe, Si, Ge, Y₂O₃, Al₂O₃, and Indium Tin Oxide.

b1

6 — 41 (New). A method according to claim 36, wherein the display device is a reflection type liquid crystal display device.

42 (New). A method according to claim 36, wherein the display device is incorporated in at least one selected from the group consisting of a portable telephone, a video camera, a mobile computer, a head mount display, projector, a personal computer, a goggle type display, a player apparatus, and a digital camera.

43 (New). A method of manufacturing a display device comprising the steps of:

forming a thin film transistor over a substrate;

forming a pixel electrode electrically connected to the thin film transistor;

forming a body with a textured surface on the pixel electrode;

forming a light reflection film on the body with the textured surface; and

flattening a surface of the light reflection film by a CMP process.

10 44 (New). A method according to claim 43, wherein the pixel electrode comprises at least one of Al and Ag.

11 45 (New). A method according to claim 43, wherein the body with the textured surface comprises at least one material selected from the group consisting of SiO_2 , MgF_2 , Na_3AlF_6 , an acrylic resin, and polyimide.

12 46 (New). A method according to claim 43, wherein the body with the textured surface has an uneven portion of 1 μm or less in height on the surface.

47 (New). A method according to claim 43, wherein the light reflection film comprises at least one material selected from the group consisting of TiO₂, ZrO₂, Ta₂O₅, ZnS, ZnSe, ZnTe, Si, Ge, Y₂O₃, Al₂O₃, and Indium Tin Oxide.

48 (New). A method according to claim 43, wherein the display device is a reflection type liquid crystal display device.

49 (New). A method according to claim 43, wherein the display device is incorporated in at least one selected from the group consisting of a portable telephone, a video camera, a mobile computer, a head mount display, projector, a personal computer, a goggle type display, a player apparatus, and a digital camera.

50 (New). A method of manufacturing a display device comprising the steps of:
forming a thin film transistor over a substrate;
forming a pixel electrode electrically connected to the thin film transistor;
forming a body with a textured surface on the pixel electrode; and
forming a light reflection film on the body with the textured surface,
wherein the light reflection film has a higher refractive index than the body with the textured surface.

51 (New). A method according to claim 50, wherein the pixel electrode comprises at least one of Al and Ag.

19 — 52 (New). A method according to claim 50, wherein the body with the textured surface comprises at least one material selected from the group consisting of SiO_2 , MgF_2 , Na_3AlF_6 , an acrylic resin, and polyimide.

20 — 53 (New). A method according to claim 50, wherein the body with the textured surface has an uneven portion of $1 \mu\text{m}$ or less in height on the surface.

21 — 54 (New). A method according to claim 50, wherein the light reflection film comprises at least one material selected from the group consisting of TiO_2 , ZrO_2 , Ta_2O_5 , ZnS , ZnSe , ZnTe , Si , Ge , Y_2O_3 , Al_2O_3 , and Indium Tin Oxide.

22 — 55 (New). A method according to claim 50, wherein the display device is a reflection type liquid crystal display device.

23 — 56 (New). A method according to claim 50, wherein the display device is incorporated in at least one selected from the group consisting of a portable telephone, a video camera, a mobile computer, a head mount display, projector, a personal computer, a goggle type display, a player apparatus, and a digital camera.

57 — 57 (New). A method of manufacturing a display device comprising the steps of:
forming an insulated gate field effect transistor on a semiconductor substrate;
forming a pixel electrode electrically connected to the insulated gate filed effect transistor;

forming a body with a textured surface on the pixel electrode; and
forming a light reflection film on the body with the textured surface.

26 — 58 (New). A method according to claim 57, wherein the pixel electrode comprises at least one of Al and Ag.

27 — 59 (New). A method according to claim 57, wherein the body with the textured surface comprises at least one material selected from the group consisting of SiO₂, MgF₂, Na₃AlF₆, an acrylic resin, and polyimide.

28 — 60 (New). A method according to claim 57, wherein the body with the textured surface has an uneven portion of 1 μm or less in height on the surface.

29 — 61 (New). A method according to claim 57, wherein the light reflection film comprises at least one material selected from the group consisting of TiO₂, ZrO₂, Ta₂O₅, ZnS, ZnSe, ZnTe, Si, Ge, Y₂O₃, Al₂O₃, and Indium Tin Oxide.

30 — 62 (New). A method according to claim 57, wherein the display device is a reflection type liquid crystal display device.

31 — 63 (New). A method according to claim 57, wherein the display device is incorporated in at least one selected from the group consisting of a portable telephone, a video camera, a mobile

computer, a head mount display, projector, a personal computer, a goggle type display, a player apparatus, and a digital camera.

Sub 64 (New). A method of manufacturing a display device comprising the steps of:

B *Ds* forming an insulated gate field effect transistor on a semiconductor substrate;

forming a pixel electrode electrically connected to the insulated gate field effect transistor;

forming a body with a textured surface on the pixel electrode;

forming a light reflection film on the body with the textured surface; and

flattening a surface of the light reflection film by a CMP process.

34 65 (New). A method according to claim 64, wherein the pixel electrode comprises at least one of Al and Ag.

35 66 (New). A method according to claim 64, wherein the body with the textured surface comprises at least one material selected from the group consisting of SiO₂, MgF₂, Na₃AlF₆, an acrylic resin, and polyimide.

36 67 (New). A method according to claim 64, wherein the body with the textured surface has an uneven portion of 1 μm or less in height on the surface.

37 — 68 (New). A method according to claim 64, wherein the light reflection film comprises at least one material selected from the group consisting of TiO₂, ZrO₂, Ta₂O₅, ZnS, ZnSe, ZnTe, Si, Ge, Y₂O₃, Al₂O₃, and Indium Tin Oxide.

38 — 69 (New). A method according to claim 64, wherein the display device is a reflection type liquid crystal display device.
B1

39 — 70 (New). A method according to claim 64, wherein the display device is incorporated in at least one selected from the group consisting of a portable telephone, a video camera, a mobile computer, a head mount display, projector, a personal computer, a goggle type display, a player apparatus, and a digital camera.

44 — 71 (New). A method of manufacturing a display device comprising the steps of:
forming an insulated gate field effect transistor on a semiconductor substrate;
forming a pixel electrode electrically connected to the insulated gate field effect transistor;
forming a body with a textured surface on the pixel electrode; and
forming a light reflection film on the body with the textured surface,
wherein the light reflection film has a higher refractive index than the body with the textured surface.

42 — 72 (New). A method according to claim 71, wherein the pixel electrode comprises at least one of Al and Ag.

43 — 73 (New). A method according to claim 71, wherein the body with the textured surface comprises at least one material selected from the group consisting of SiO_2 , MgF_2 , Na_3AlF_6 , an acrylic resin, and polyimide.

44 — 74 (New). A method according to claim 71, wherein the body with the textured surface has an uneven portion of $1 \mu\text{m}$ or less in height on the surface.

45 — 75 (New). A method according to claim 71, wherein the light reflection film comprises at least one material selected from the group consisting of TiO_2 , ZrO_2 , Ta_2O_5 , ZnS , ZnSe , ZnTe , Si , Ge , Y_2O_3 , Al_2O_3 , and Indium Tin Oxide.

46 — 76 (New). A method according to claim 71, wherein the display device is a reflection type liquid crystal display device.

47 — 77 (New). A method according to claim 71, wherein the display device is incorporated in at least one selected from the group consisting of a portable telephone, a video camera, a mobile computer, a head mount display, projector, a personal computer, a goggle type display, a player apparatus, and a digital camera.--