Lecture 5: K-nearest neighbors

Sophie Rober

Principles

Example

Hyperparameters

Advantages and limits

Lecture 5: K-nearest neighbors Introduction to Machine Learning

Sophie Robert

L3 MIASHS — Semestre 2

2022-2023

Example

Hyperparameters

Advantages

1 Principles

- 2 Example
- 3 Hyperparameters
- 4 Advantages and limits

Reminders on previous session

Lecture 5: K-nearest neighbors

Sophie Robe

Principle

Example

Hyperparameters

Advantages

Question

Can anyone remind me of the definition of supervised learning? Can anyone give me some kind of problems that can be solved with supervised learning?

Main idea

Lecture 5: K-nearest neighbors

Sophie Robe

Principles

Example

Hyperparameters

Advantages

K-nearest neighbors algorithm

The k-nearest neighbors algorithm is a **non-parametric supervised learning** method, which assigns to an incoming record the label issued from the plurality of votes of its k nearest neighbors.

With an incoming data record:

- Find the $k \in \mathbb{N}$ nearest neighbors
- Assign the classification label of the most frequent labels among neighbors

Example

Lecture 5: K-nearest neighbors

Principles

Example

Hyperparameters

Advantages

Can you identify a problem with certain values of k?

Example: Dog breed prediction

Lecture 5: K-nearest neighbors

Example

Hyperparameters

Advantages

Training dataset:

Training datasets		
Height	Weight	Label
45	30	Labradoodle
30	25	Labradoodle
40	35	Labradoodle
20	15	English cocker
22	18	English cocker
25	20	English cocker

Individual to classify using 1 NN and 3 NN (euclidean distance)

	,	
Height	Weight	Label
25	31	?

Example: solution

Lecture 5: K-nearest neighbors

Sophie Ro

Principles

Example

Hyperparameters

Advantages

Compute distance between dataset and individual to classify:

Distance .	Label	
20.02	Labradoodle	
7.81	Labradoodle	
15.52	Labradoodle	
16.76	English cocker	
13.34	English cocker	
11.0	English cocker	

Using 1NN: Labradoodle

Using 3NN: English cocker

Hyperparameters |

Lecture 5: K-nearest neighbors

Sophie Robe

B . . .

Example

Hyperparameter

. . .

Hyperparameters

What **hyperparameters*** does the k-nearest neighbor algorithm require ?

Hyperparameter selection

Lecture 5: K-nearest neighbors

Sophie Rober

Principle

Hyperparameter

r iy perparamet

Advantages and limits To select the optimum hyperparameters (distance to use, best number of neighbors), use **k-fold validation** and select the combination with the highest score (in its simplest version using a factorial design).

Advantages and limits

Lecture 5: K-nearest neighbors

Principles

Advantages

Hyperparameters

Advantages:

- Very easy to extend to multi-class classification
- Very easy to understand
- Non-parametric algorithm (no assumption regarding data distribution)
- No previous training

Limits:

- Very sensitive to its hyperparametrization
- Very sensitive to noise (features with little to no impact on the dataset)
- Expensive to compute

Questions

Lecture 5: K-nearest neighbors

Sophie Rober

Principles

Example

Hyperparameters

Advantages and limits

Questions ?