1 Le modèle

Nous notons $(X_t)_{t\geqslant 0}$ le processus de percolation dynamique sur le réseau $(\mathbb{Z}^d, \mathbb{E}^d)$ et nous considérons la restriction de X dans une boîte finie Λ . Nous définissons la suite $(\tau_i)_{i\geqslant 0}$ des instants de changement dans une boîte finie $\Lambda(\ell, h)$, en posant $\tau_0 = 0$ et pour tout $i \geqslant 0$,

$$\tau_{i+1} = \inf \left\{ t > \tau_i : X_t \mid_{\Lambda(\ell,h)} \neq X_{\tau_i} \mid_{\Lambda(\ell,h)} \right\}.$$

Pour tout $i \geq 1$, il existe une unique arête e_i incluse dans $\Lambda(\ell, h)$ telle que $X_{\tau_i}(e_i) \neq X_{\tau_{i-1}}(e_i)$. Nous appelons la suite $(e_i)_{i\geqslant 1}$ la suite des arêtes modifiées. Nous notons $\{T\longleftrightarrow B\}$ l'événement il existe un chemin ouvert entre le haut et le bas de la boîte Λ et nous allons coupler $(Y_t)_{t\geqslant 0}$ à valeurs dans $\{0,1\}^{\mathbb{E}^d}$. D'abord nous posons $Y_0 = X_0$ et X_0 une configuration qui vérifie $\{T\longleftrightarrow B\}$. Ensuite, soit $i\geqslant 0$, pour tout $s\in [\tau_i,\tau_{i+1}[$, nous posons $Y_s=Y_{\tau_i}$, et $Y_{\tau_{i+1}}(e)=Y_{\tau_i}(e)$ si $e\neq e_{i+1}$, et nous déterminons $Y_{\tau_{i+1}}(e_{i+1})$ en fonction de $X_{\tau_{i+1}}$ via la formule suivante :

$$Y_{\tau_{i+1}}(e_{i+1}) = \begin{cases} 0 & \text{si } X_{\tau_{i+1}}(e_{i+1}) = 0\\ 1 & \text{si } X_{\tau_{i+1}}(e_{i+1}) = 1, T \longleftrightarrow B \text{ dans } (Y_{\tau_i})^{e_{i+1}}\\ 0 & \text{si } X_{\tau_{i+1}}(e_{i+1}) = 1, T \longleftrightarrow B \text{ dans } (Y_{\tau_i})^{e_{i+1}} \end{cases}.$$

Le processus Y est le processus de percolation dynamique conditionné à rester dans l'ensemble $\{T \longleftrightarrow B\}$. Nous pouvons définir l'interface à l'aide de ce couplage.

Définition 1. Soit $(X_t, Y_t)_{t\geqslant 0}$ un couplage défini précédemment, nous définissons l'interface dans $\Lambda(\ell, h)$ au temps t, que nous notons $\mathcal{I}_t(\ell, h)$, comme l'ensemble aléatoire des arêtes qui sont ouvertes dans X_t et fermées dans Y_t :

$$\mathcal{I}_t(\ell, h) = \{ e \in \mathbb{E}^2 : X_t(e) = 1, Y_t(e) = 0 \}.$$

Nous notons \mathcal{P}_t l'ensemble des arêtes pivot pour l'événement $\{T \longleftrightarrow B\}$ dans Y.