Relative tRNA concentrations data

Dmytro Strunin

3/24/2020

Input data

Data exported to .csv format for further analysis.

```
codon_tab <- read_csv('./dat/ftb/codons_rel_freq.csv')</pre>
## Parsed with column specification:
##
     probe = col_character(),
##
     anticodon = col_character(),
     codon = col_character(),
##
     freq = col_double(),
##
##
     sd = col_double()
## )
head(codon_tab) %>%
  kable(digits = 2, caption = 'Raw data (only first 6 rows are shown)') %>%
  kable_styling()
```

Data cleaning

- remove digits from anticodon/codon strings (those are still in the probe variable);
- split anticodon by to separate it into amino acid (aa) and codon/anticodon variables;
- remove amino acid identifier from codon variable;
- work with codon variable, to make all alternative codons from records like CGC/T/C/G:
 - Extract first two letters from each codon string;
 - Extract the part from third letter up to the end;
 - * Split it by / into three letters;
- Combine first two letters and all the parts obtained in previous step one by one;
- unnest codon variable (it is a list right now);

probe	anticodon	codon	freq	sd
PaeARGACG	Arg-ACG	Arg-CGT/C/G	1.24	0.22
PaeARGACG2	Arg-ACG-2	Arg-CGT/C/G	2.08	0.01
PaeARGCCG	Arg-CCG	Arg-CGC/T	1.28	0.24
PaeARGCCG214	Arg-CCG-214	Arg-CGC/T	1.26	0.17
PaeARGCCT	Arg-CCU	Arg-AGG	1.10	0.13
PaeARGTCT	Arg-UCU	Arg-AGA	1.61	0.11

Table 2: Initial cleaning (only first 6 rows are shown)

probe	aa	anticodon	codon	freq	sd
PaeARGACG	Arg	ACG	CGT	1.24	0.22
PaeARGACG	Arg	ACG	CGC	1.24	0.22
PaeARGACG	Arg	ACG	CGG	1.24	0.22
PaeARGACG2	Arg	ACG	CGT	2.08	0.01
PaeARGACG2	Arg	ACG	CGC	2.08	0.01
PaeARGACG2	Arg	ACG	CGG	2.08	0.01

```
codon_tab <- codon_tab %>%
  mutate_at(vars(anticodon, codon), ~ gsub('-\\d+$', '', .)) %>%
 tidyr::separate(
   col = anticodon,
   into = c('aa', 'anticodon'),
   sep = '-'
  ) %>%
  dplyr::mutate(codon = gsub('^\\w+-(.+)$', '\\1', codon)) %>%
  dplyr::mutate(
          = purrr::map(
   codon
     codon,
      ~ paste0(
       substr(., 1, 2),
        unlist(strsplit(substr(., 3, nchar(.)), split = '/'))
   )
 ) %>%
 tidyr::unnest(codon)
```

Warning: Expected 2 pieces. Additional pieces discarded in 1 rows [33].

```
head(codon_tab) %>%
  kable(digits = 2, caption = 'Initial cleaning (only first 6 rows are shown)') %>%
  kable_styling()
```

Amino acids count

First we can check how many aminoacids are there:

```
codon_tab %>%
  arrange(aa) %>%
  pull(aa) %>%
table
## .
   Ala Arg
             Asn
                  Asp
                       Cys fMet Gln Glu Gly His
                                                     Ile Leu Lys Met
                                                                         Phe
                                                                              Pro
##
      5
                2
                     2
                                    3
                                                        3
                                                             9
          12
                          1
                               1
                                         1
                                              4
                                                                  2
                                                                       1
##
    Sec
         Ser
              Thr
                            Val
                   Trp
                        Tyr
           8
                          2
```

It seems fine, at least from the first glance, since there are 22amino acids out of usual 21, and it seems that all of them are there:

```
missing_aa <- AMINO_ACID_CODE[!(AMINO_ACID_CODE %in% codon_tab$aa)]</pre>
```

Except abbreviation for special cases: Pyl, Asx, Xle, Glx, Xaa, and with addition of N-Formylmethionine.

Codons count

##

1

8

4

2

1

The problem seems to be in codons list. In the table below we can see the count of codons per each amino

```
acid, for standard genetic code:
aa_cdns <- data.frame(aa = AMINO_ACID_CODE[GENETIC_CODE], codon = names(GENETIC_CODE))</pre>
aa_cdns %>%
  na.omit() %>%
                           # remove stop codons
 pull(aa) %>%
 table()
## .
## Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr Val
   4 6
                2
                                4
                                     2
                                         3
                                             6
                                                 2
And comparing it to our data:
codon_tab %>%
  arrange(aa) %>%
  pull(aa) %>%
table()
## .
                        Cys fMet Gln Glu Gly His Ile Leu Lys Met
                                                                               Pro
   Ala Arg Asn Asp
                                                                          Phe
##
      5
         12
                2
                     2
                          1
                               1
                                    3
                                         1
                                              4
                                                   2
                                                        3
                                                             9
                                                                  2
                                                                       1
##
       Ser
                             Val
    Sec
             Thr Trp
                        Tyr
```