

Lagrange relaxation and KKT conditions

- 1. Lagrange relaxation
 - Global optimality conditions
 - KKT conditions for convex problems
 - Applications
- 2. KKT conditions for general nonlinear optimization problems.

Lagrange relaxation

We consider the optimization problem

minimize
$$f(\mathbf{x})$$

s.t. $g_i(\mathbf{x}) \leq 0, i = 1, \dots, m$ (1)

where $f(\mathbf{x})$ and $g_i(\mathbf{x})$ are real valued functions.

If
$$\mathbf{g}(\mathbf{x}) = \begin{bmatrix} g_1(\mathbf{x}) & \dots & g_m(\mathbf{x}) \end{bmatrix}^\mathsf{T}$$
 then (1) can be written

minimize
$$f(\mathbf{x})$$

s.t. $\mathbf{g}(\mathbf{x}) \leq \mathbf{0}$. (2)

The idéa behind Lagrange relaxation is to put non-negative prices $y_i \ge 0$, on the constraints and then add these to the objective function. This gives the (unconstrained) optimization problem:

minimize
$$f(\mathbf{x}) + \sum_{i=1}^{m} y_i g_i(\mathbf{x})$$
 (3)

which using
$$\mathbf{y} = \begin{bmatrix} y_1 & \dots & y_m \end{bmatrix}^\mathsf{T}$$
 can be written minimize $f(\mathbf{x}) + \mathbf{y}^\mathsf{T} \mathbf{g}(\mathbf{x})$

The "price" y_i is called a Lagrange multiplicator.

Definition 1. The function $L : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ defined by $L(\mathbf{x}, \mathbf{y}) = f(\mathbf{x}) + \mathbf{y}^\mathsf{T} \mathbf{g}(\mathbf{x})$ is called the Lagrange function to (2).

Weak duality

Theorem 1 (Weak duality). For an arbitrary $y \ge 0$ it holds that $\min_{\mathbf{x}} L(\mathbf{x}, \mathbf{y}) \le f(\hat{\mathbf{x}})$, where $\hat{\mathbf{x}}$ is an optimal solution to (2).

Proof: Since $\hat{\mathbf{x}}$ is a feasible solution to (2) it holds that $\mathbf{g}(\hat{\mathbf{x}}) \leq \mathbf{0}$. We get

$$\min_{\mathbf{x}} L(\mathbf{x}, \mathbf{y}) \le L(\hat{\mathbf{x}}, \mathbf{y}) = f(\hat{\mathbf{x}}) + \underbrace{\mathbf{y}^{\mathsf{T}}}_{\ge 0} \underbrace{\mathbf{g}(\hat{\mathbf{x}})}_{\le 0} \le f(\hat{\mathbf{x}}). \tag{4}$$

- minimizing the Lagrange function provides lower bounds to the optimization problem (2).
- By an appropriate choice of y a good approximation of the optimal solution to (2) is searched for. In practical algorithms one tries to solve $\max_{y\geq 0} \min_{x} L(x,y)$. The next theorem gives conditions for the Lagrange multiplicator providing equality in (4).

Global optimality conditions

Theorem 2. If $(\hat{\mathbf{x}}, \hat{\mathbf{y}}) \in \mathbf{R}^n \times \mathbf{R}^m$ satisfies the conditions

(1)
$$L(\hat{\mathbf{x}}, \hat{\mathbf{y}}) = \min_{x} L(\mathbf{x}, \hat{\mathbf{y}}),$$

- $(2) g(\hat{\mathbf{x}}) \leq 0,$
- $(3) \hat{\mathbf{y}} \geq 0,$
- $(4) \hat{\mathbf{y}}^{\mathsf{T}} \mathbf{g}(\hat{\mathbf{x}}) = 0.$

then $\hat{\mathbf{x}}$ is an optimal solution to (2).

Proof: If x is an arbitrary feasible solution to (2) it holds that $g(x) \le 0$, which shows that

$$f(\mathbf{x}) \ge f(\mathbf{x}) + \hat{\mathbf{y}}^\mathsf{T} \mathbf{g}(\mathbf{x}) = L(\mathbf{x}, \hat{\mathbf{y}}) \ge L(\hat{\mathbf{x}}, \hat{\mathbf{y}}) = f(\hat{\mathbf{x}})$$

where the first inequality follows from (3) and $g(\mathbf{x}) \leq \mathbf{0}$, the second inequality follows from (1), and the last one from (4).

Convex optimization problems

• If the functions f and g_1, \ldots, g_m are convex and continuously differentiable, then condition (1) in Theorem 2 is equivalent to the condition

$$\nabla f(\hat{\mathbf{x}}) + \sum_{i=1}^{m} \hat{y}_i \nabla g_i(\hat{\mathbf{x}}) = \mathbf{0}^{\mathsf{T}}$$
 (5)

This follows since $L(\mathbf{x}, \hat{\mathbf{y}})$ is convex when $\hat{\mathbf{y}} \geq 0$ and then it holds that $\hat{\mathbf{x}}$ is a minimum point for $L(\mathbf{x}, \hat{\mathbf{y}})$ if, and only if, $\nabla_{\mathbf{x}} L(\hat{\mathbf{x}}, \hat{\mathbf{y}}) = \mathbf{0}^{\mathsf{T}}$, *i.e.*, if and only if (5) is satisfied.

• The global optimality conditions in Theorem 2 are sufficient conditions for optimality, but in general not necessary. The next theorem shows that they are often also necessary conditions for convex optimization problems.

Definition 2. The optimization problem (1) is a regular convex optimization problem if the functions f and g_1, \ldots, g_m are convex and continuously differentiable and there exists a point $\mathbf{x}_0 \in \mathbf{R}^n$ such that $g_i(\mathbf{x}_0) < 0$, $i = 1, \ldots, m$.

Theorem 3 (KKT for convex problems). Assume that (1) is a regular convex problem. Then $\hat{\mathbf{x}}$ is a (global) optimal solution if, and only if, there exists a vector $\hat{\mathbf{y}} \in \mathbf{R}^m$ such that

(1)
$$\nabla f(\hat{\mathbf{x}}) + \sum_{i=1}^m \hat{y}_i \nabla g_i(\hat{\mathbf{x}}) = \mathbf{0}^\mathsf{T}$$

- $(2) g(\hat{\mathbf{x}}) \leq 0,$
- $(3) \hat{\mathbf{y}} \geq \mathbf{0},$
- $(4) \hat{\mathbf{y}}^{\mathsf{T}} \mathbf{g}(\hat{\mathbf{x}}) = 0.$

Proof: Sufficiency was shown previously. Necessity is shown in the book.

The conditions (2) - (4) can be made more explicit. We have that

$$\hat{\mathbf{y}}^\mathsf{T}\mathbf{g}(\hat{\mathbf{x}}) = \sum_{i=1}^m \hat{y}_i g_i(\hat{\mathbf{x}}) = 0$$

Since $g_i(\hat{\mathbf{x}}) \leq 0$ and $\hat{y}_i \geq 0$ it follows that $\hat{y}_i g_i(\hat{\mathbf{x}}) = 0$, i = 1, ..., m. We then get the equivalent conditions

(2')
$$g_i(\hat{\mathbf{x}}) \leq 0, i = 1, \dots, m,$$

(3')
$$\hat{y}_i \geq 0$$
, $i = 1, \ldots, m$,

(4')
$$\hat{y}_i \cdot g_i(\hat{\mathbf{x}}) = 0, i = 1, \dots, m.$$

Geometric interpretation

The complementarity condition (4') implies that if $g_i(\hat{\mathbf{x}}) < 0$ then $y_i = 0$. Therefore, condition (1) can be written

$$\nabla f(\hat{\mathbf{x}}) = -\sum_{i:g_i(\hat{\mathbf{x}})=0} \hat{y}_i \nabla g_i(\hat{\mathbf{x}})$$

this means that the gradient is a negative linear combination of the gradients of the binding (active) constraints.

Quadratic optimization with inequality constraints

minimize
$$\frac{1}{2}\mathbf{x}^{\mathsf{T}}\mathbf{H}\mathbf{x} + \mathbf{c}^{\mathsf{T}}\mathbf{x} + c_{0}$$

s.t. $\mathbf{A}\mathbf{x} \ge \mathbf{b}$. (6)

If \mathbf{H} is positive semi-definite, then this is a convex optimization problem and we can apply Theorem 3.

Theorem 4. $\hat{\mathbf{x}}$ is a (global) optimal solution to (6) if, and only if, there exists a vector $\hat{\mathbf{y}} \in \mathbf{R}^m$ such that

- $\mathbf{(1)} \ \mathbf{H}\hat{\mathbf{x}} + \mathbf{c} = \mathbf{A}^\mathsf{T}\hat{\mathbf{y}}$
- (2) $\mathbf{A}\hat{\mathbf{x}} \geq \mathbf{b}$,
- (3) $\hat{y} \geq 0$,
- $(4) \hat{\mathbf{y}}^{\mathsf{T}}(\mathbf{A}\hat{\mathbf{x}} \mathbf{b}) = 0.$

Traffic control in communication systems

We consider a communication network consisting of two links. Three sources are sending data over the network to three different destinations.

- Source 1 uses both links.
- Source 2 uses link 1.
- Source 3 uses link 2.

- Link 1 has capacity 2 (normalized entity [data/s])
- Link 2 has capacity 1
- The three sources sends data with speeds x_r , r = 1, 2, 3.
- The three sources has each a utility function $U_r(x)$, r = 1, 2, 3. A common choice of the utility function is $U_r(x_r) = w_r \log(x_r)$.

For efficient and fair use of the available capacity, the data speeds are chosen using the following optimization criterion:

maximize
$$U_1(x_1) + U_2(x_2) + U_3(x_3)$$

s.t. $x_1 + x_2 \le 2$
 $x_1 + x_3 \le 1$
 $x_1 \ge 0, \ x_2 \ge 0, \ x_3 \ge 0$

Assume $U_k(x) = \log(x_k)$, k = 1, 2, 3. The optimization problem can be written

-minimize
$$-\log(x_1) - \log(x_2) - \log(x_3)$$

s.t. $x_1 + x_2 \le 2$
 $x_1 + x_3 \le 1$

We relaxed the constraints $x_k \ge 0$, k = 1, ..., 3 since they will be automatically satisfied, $(-\log(x) \to \infty \text{ as } x \to 0)$.

The optimization problem is convex since the constraints are linear inequalities and the objective function is a sum of convex functions, and hence convex.

The optimality conditions in Theorem 3 are

$$-\frac{1}{x_1} + y_1 + y_2 = 0$$

$$-\frac{1}{x_2} + y_1 = 0$$

$$-\frac{1}{x_3} + y_2 = 0$$

(2)
$$x_1 + x_2 - 2 \le 0$$
$$x_1 + x_3 - 1 \le 0$$

$$(3) y_1 \ge 0$$
$$y_2 \ge 0$$

(4)
$$y_1(x_1 + x_2 - 2) = 0$$
$$y_2(x_1 + x_3 - 1) = 0$$

from (1) we get

$$x_1 = \frac{1}{y_1 + y_2}$$
 $x_2 = \frac{1}{y_1}$ $x_3 = \frac{1}{y_2}$

This leads to $y_1 > 0$ and $y_2 > 0$, hence the complementarity constraint (4) shows that (2) is satisfied with equality. We get

$$\frac{\frac{1}{y_1 + y_2} + \frac{1}{y_1} = 2}{\frac{1}{y_1 + y_2} + \frac{1}{y_2} = 1} \Rightarrow y_1 = \frac{\sqrt{3}}{\sqrt{3} + 1}$$

$$y_2 = \sqrt{3}$$

which in turn gives the optimal data speeds

$$\hat{x}_1 = \frac{\sqrt{3} + 1}{3 + 2\sqrt{3}}$$
 $\hat{x}_2 = \frac{\sqrt{3}}{\sqrt{3} + 1}$, $\hat{x}_3 = \frac{1}{\sqrt{3}}$

General nonlinear problems under equality constraints

minimize
$$f(\mathbf{x})$$

s.t. $h_i(\mathbf{x}) = 0, i = 1, \dots, m$ (7)

The feasible region $\mathcal{F} = \{\mathbf{x} \in \mathbf{R}^n : h_i(\mathbf{x}) = 0, i = 1, ..., m\}$ is not convex unless the functions h_i are affine, *i.e.*, $h_i(\mathbf{x}) = \mathbf{a}_i^\mathsf{T} \mathbf{x} + b_i$. We assume that n > m.

We need the following technical assumption:

Definition 3. A feasible solution $\mathbf{x} \in \mathcal{F}$ is a regular point to (7) if $\nabla h_i(\mathbf{x})$, i = 1, ..., m are linearly independent.

Theorem 5 (KKT for problems with equality constraints).

Assume that $\hat{\mathbf{x}} \in \mathcal{F}$ is a regular point and a local optimal solution to (7). Then there exists $\hat{\mathbf{u}} \in \mathbf{R}^m$ such that

(1)
$$\nabla f(\hat{\mathbf{x}}) + \sum_{i=1}^{m} \hat{u}_i \nabla h_i(\hat{\mathbf{x}}) = \mathbf{0}^\mathsf{T}$$
,

(2)
$$h_i(\hat{\mathbf{x}}) = 0, i = 1, \dots, m.$$

Proof idea: Let $\mathbf{x}(t)$ be an arbitrary parameterized curve in the feasible set $\mathcal{F} = \{\mathbf{x} \in \mathbf{R}^n : g_i(\mathbf{x}) \leq 0, i = 1, ..., m\}$ such that $\mathbf{x}(0) = \hat{\mathbf{x}}$. The figure on the next page illustrates how this curve is mapped on a curve $f(\mathbf{x}(t))$ on the range space of the objective function. The feasible set \mathcal{F} is in general of higher dimension than one, which is illustrated in the right figure.

Since $\mathbf{x}(0) = \hat{\mathbf{x}}$ is a local optimal solution it holds that

$$\frac{d}{dt}f(\mathbf{x}(t))|_{t=0} = \nabla f(\hat{\mathbf{x}}) \cdot \mathbf{x}'(0) = 0$$

Furthermore, $\mathbf{x}(t) \in \mathcal{F}$, which leads to

$$h_i(\mathbf{x}(t)) = 0, \quad i = 1, \dots, m, \quad \forall t \in (-\epsilon, \epsilon)$$

for some $\epsilon > 0$.

This means that

$$\frac{d}{dt}h_i(\mathbf{x}(t))|_{t=0} = \nabla h_i(\hat{\mathbf{x}}) \cdot \mathbf{x}'(0) = 0, \quad i = 1, \dots, m$$

which in turn leads to $\mathbf{x}'(0) \in \mathcal{N}(\mathbf{A})$, where

$$\mathbf{A} = egin{bmatrix}
abla h_1(\hat{\mathbf{x}}) \\
\vdots \\
abla h_m(\hat{\mathbf{x}}) \end{bmatrix}$$

Conversely, the implicit function theorem can be used to show that if $\mathbf{p} \in \mathcal{N}(\mathbf{A})$, then there exists a parameterized curve $\mathbf{x}(t) \in \mathcal{F}$ with $\mathbf{x}(0) = \hat{\mathbf{x}}$ and $\mathbf{x}'(0) = \mathbf{p}$.

Alltogether, the above argument shows that

$$egin{aligned} &
abla f(\hat{\mathbf{x}})\mathbf{p} = 0, &
abla \mathbf{p} \in \mathcal{N}(\mathbf{A}) \ \Leftrightarrow &
abla f(\hat{\mathbf{x}})^\mathsf{T} \in \mathcal{N}(\mathbf{A})^\perp = \mathcal{R}(\mathbf{A}^\mathsf{T}) \ \Leftrightarrow &
abla f(\hat{\mathbf{x}})^\mathsf{T} = \mathbf{A}^\mathsf{T}\hat{\mathbf{v}}, \end{aligned}$$

for some $\hat{\mathbf{v}} \in \mathbf{R}^m$. If we let $\hat{\mathbf{u}} = -\hat{\mathbf{v}} \in \mathbf{R}^m$ the last expression can be written

$$\nabla f(\hat{\mathbf{x}}) + \sum_{i=1}^{m} \hat{u}_i \nabla h_i(\hat{\mathbf{x}}) = \mathbf{0}^\mathsf{T}$$

which was to be proven.

General nonlinear optimization problems with inequality constraints

minimize
$$f(\mathbf{x})$$

s.t. $g_i(\mathbf{x}) \leq 0, i = 1, \dots, m$ (8)

where $f(\mathbf{x})$ and $g_i(\mathbf{x})$ are real valued functions. If the problem is not convex (i.e., if $\mathcal{F} = \{\mathbf{x} \in \mathbf{R}^n : g_i(\mathbf{x}) \leq 0, \ i = 1, \dots, m\}$ is not convex and/or f is not convex on \mathcal{F}) it is in general only possible to derive necessary optimality conditions. The regularity condition in Definition 2 has to be replaced with a stronger condition.

Definition 4. For $\mathbf{x} \in \mathcal{F}$ we let $\mathcal{I}_a(\mathbf{x})$ denote the index set for active constraints in the point \mathbf{x} , i.e., $\mathcal{I}_a(\mathbf{x}) = \{i \in \{1, \dots, m\} : g_i(\mathbf{x}) = 0\}$.

Definition 5. A feasible solution $\mathbf{x} \in \mathcal{F}$ is a regular point to (8) if $\nabla g_i(\mathbf{x})$ for $i \in \mathcal{I}_a(\mathbf{x})$ are linearly independent.

Theorem 6 (KKT for general problems with inequality constraints).

Assume that $\hat{\mathbf{x}}$ is a regular point to (8) and a local optimal solution. Then there exists a vector $\hat{\mathbf{y}} \in \mathbf{R}^m$ such that

(1)
$$\nabla f(\hat{\mathbf{x}}) + \sum_{i=1}^{m} \hat{y}_i \nabla g_i(\hat{\mathbf{x}}) = \mathbf{0}^\mathsf{T}$$

(2)
$$g_i(\hat{\mathbf{x}}) \leq 0, i = 1, \dots, m,$$

(3)
$$\hat{\mathbf{y}}_i \geq 0$$
, $i = 1, \ldots, m$,

(4)
$$\hat{\mathbf{y}}_i \cdot g_i(\hat{\mathbf{x}}) = 0, i = 1, \dots, m.$$

Proof: The proof is similar to the proof of Theorem 3.