

Al (Artificial Intelligence)

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

A

- □ AI ย่อมาจาก Artificial Intelligence โดยสามารถแปลเป็น ภาษาได้ว่า ปัญญาประดิษฐ์ เทคโนโลยีที่สามารถบริหารจัดการ ข้อมูลมหาศาล ทำการประเมินผล วิเคราะห์ข้อมูลต่างๆ จน กลายเป็นเครื่องมือสำหรับการใช้งานที่มีประสิทธิภาพมากที่สุด ที่ พร้อมพัฒนาตนเองอยู่เสมอ
- □ เริ่มใช้งานระบบปัญญาประดิษฐ์ ได้มีการสร้างขึ้นครั้งแรกเมื่อช่วงปี
 ค.ศ. 1956 โดยนักวิทยาศาสตร์คอมพิวเตอร์จากสหรัฐอเมริกา มีชื่อ
 ว่า John McCarthy ที่ได้พัฒนาจนสามารถสร้างเครื่องจักรที่มี
 ความชาญฉลาดและแนวคิดแบบมนุษย์ได้เป็นเครื่องแรกนั่นเอง

Machine Learning

- □ Machine Learning คือ การทำให้ระบบคอมพิวเตอร์สามารถ ประมวลผล คาดการณ์ ตัดสินปัญหาต่างๆ ด้วยตนเองผ่านการ เรียนรู้ชุดข้อมูลที่ป้อนเข้าไป
- □ ตัวอย่างเกี่ยวกับอัลกิริทึมของ Machine Learning ที่พบเห็นได้ ในชีวิตประจำวัน ก็คือแพลตฟอร์มสตรีมเพลงต่างๆ ที่มักจะแนะนำ เพลงใหม่ๆ หรือศิลปินให้กับผู้ใช้ โดยอัลกอรึทึมของ Machine Learning จะทำการวิเคราะห์จากข้อมูลเพลงหรือศิลปินที่ผู้ใช้ชื่น ชอบ เทียบกับผู้ฟังอื่นที่มีแนวโน้มการฟังเพลงแบบเดียวกัน หลาย ธุรกิจที่มีระบบแนะนำมักจะใช้เทคนิคนี้เช่นเดียวกัน

Machine Learning

- Machine Learning มักมาควบคู่กับระบบและการ Coding ที่สลับซับซ้อน
- "Machine Learning" ความหมายของมันก็คือบางอย่างที่ แสดงผลการทำงานเดียวกับข้อมูลที่ถูกป้อน และให้ผลลัพธ์ที่ดีขึ้น เรื่อย ๆ เมื่อเวลาผ่านไป เหมือนกับคุณมีไฟฉายที่มักเปิดเอง อัตโนมัติเมื่อคุณพูดประมาณว่า "ที่นี่มืดจังเลยนะ" ต่อให้คุณไม่ได้ พูดประโยคเดียวกันนี้ ไฟฉายนั้นก็จะยังคงเปิดเอง

Deep learning

- □ Deep Learning คือ การจำลองระบบการประมวลผลของเซลล์ ประสาทและสมองของมนุษย์ กล่าวได้ว่าเป็นการเลียนแบบการ ทำงานของระบบสมองมนุษย์
- □ การทำงานของ Deep Learning จะใช้โครงสร้างที่เหมือนกับ เซลล์ประสาทในสมองของมนุษย์มาประเมินผลเพื่อให้ผลลัพธ์ที่ ต้องการ สามารถที่จะประมวลผลได้อย่างแม่นยำ รวดเร็วและทรง พลังเป็นอย่างมาก

ChatGPT

ChatGPT is a natural language processing tool driven by Al technology that allows you to have human-like conversations and much more with the chatbot. The language model can answer questions and assist you with tasks, such as composing emails, essays, and code.

ChatGPT

ChatGPT

Free Research Preview. ChatGPT may produce inaccurate information about people, places, or facts. ChatGPT August 3 Version

https://chat.openai.com/

Machine Learning

- □Machine Learning แบ่งออกได้ 3 ประเภท
 - Supervised Learning
 - Unsupervised Learning
 - Reinforcement Learning

Supervised Learning

- Supervised Learning คือ การสร้างโมเดลเพื่อแปลงข้อมูล input
 เป็น target บางอย่าง ตัวอย่างง่ายที่สุดคือ classification กับ
 regression
- Classification คือมี target เป็นชนิดของข้อมูล เช่น เรียนรู้ว่า email เป็น spam หรือไม่เป็น spam
- Regression คือมี target เป็นตัวเลข เช่น เรียนรู้การประมาณราคา ที่ดินจากปัจจัยแวดล้อม
- □ การจะสร้างโมเดลประเภทนี้ขึ้นมา ต้องมีชุดข้อมูลที่มีทั้ง input และ target ซึ่งจัดหามาโดยมนุษย์ เช่น การสร้าง spam filter ต้องรวม รวบข้อมูล email จำนวนมากและให้คนมาดูว่าอันไหนเป็น spam บ้าง แล้วนำมาสร้างโมเดล spam filter จากข้อมูลเหล่านี้

Supervised Learning

Supervised Learning

Simple Linear Regression:

$$y = b_0 + b_1^*x$$

Salary $= b_0 + b_1^* Experience$

Unsupervised Learning

- Unsupervised Learning คือ การสร้างโมเดลโดยใช้ข้อมูล
 input เพียงอย่างเดียว ไม่มี target
- □ Clustering การจัดกลุ่มข้อมูลตามคุณลักษณะ เช่น การจัดกลุ่ม ลูกค้าตามพฤติกรรมการซื้อของ
- การสร้างโมเดลประเภทนี้ขึ้นมา ใช้เพียงข้อมูล input อย่างเดียว ไม่
 ต้องจัดหา target เช่น โมเดลการจัดกลุ่มลูกค้า เราไม่ต้องรู้มา
 ก่อนว่าจะมีกลุ่มอะไรบ้าง

Unsupervised Learning

Unsupervised Learning

□ Reinforcement Learning คือ การเรียนรู้แบบเสริมกำลัง ที่มี การเรียนรู้สิ่งต่าง ๆ จาก Agent (ผู้กระทำ Action) ภายใต้การ เลือกกระทำสิ่งต่าง ๆ ให้ได้ผลลัพธ์ที่มากที่สุด ผ่านการลองผิดลองถูก ภายใต้สถานการณ์หรือระบบจำลอง ที่พัฒนาระบบการตัดสินใจให้ดี ขึ้นเรื่อย ๆ เช่น การเล่นเกมโกะให้ชนะผู้เล่นระดับโลก ไปจนถึงการ พิจารณาเลือกซื้อสินทรัพย์ และการลงทุนในรูปแบบต่าง ๆ เป็นต้น

Summary [edit]

Game	Date	Black	White	Result	Moves
1	9 March 2016	Lee Sedol	AlphaGo	Lee Sedol resigned	186 Game 1 ₺
2	10 March 2016	AlphaGo	Lee Sedol	Lee Sedol resigned	211 Game 2 ௴
3	12 March 2016	Lee Sedol	AlphaGo	Lee Sedol resigned	176 Game 3 ₺
4	13 March 2016	AlphaGo	Lee Sedol	AlphaGo resigned	180 Game 4 ₺
5	15 March 2016	Lee Sedol ^[note 1]	AlphaGo	Lee Sedol resigned	280 Game 5 ₺

Result:

AlphaGo 4 - 1 Lee Sedol

- □ Linear Regression จัดอยู่ในกลุ่ม Supervised Learning
- □ ใช้ในการทำนายผลแบบ Regression ซึ่งเป็นการทำนายตัวเลขที่ มีค่าไม่แน่นอน

- □ Linear regression คือ อัลกอริทึมหนึ่งในการวิเคราะห์สถิติ
 และเครื่องมือทางคณิตศาสตร์ที่ใช้ในการประมาณค่าของตัวแปรตาม
 (dependent variable) จากตัวแปรอิสระ
 (independent variable) ที่เป็นเส้นตรง
- □ ใช้รูปแบบสมการเชิงเส้น (linear equation) เพื่อพยากรณ์หรือ สร้างรูปแบบทางคณิตศาสตร์เพื่อใช้ในการคาดการณ์ผลลัพธ์ใน อนาคตของข้อมูล
- □ ในกรณีของ linear regression แบบเดียว (simple linear regression) จะมีตัวแปรอิสระเพียงตัวเดียว

- □ เป้าหมายของ linear regression คือ การหาความสัมพันธ์ ระหว่างตัวแปรอิสระกับตัวแปรตามแบบเชิงเส้น
- □ สร้างสมการเชิงเส้นที่ใช้ในการประมาณค่าตัวแปรตามโดยป้อนค่า ของตัวแปรอิสระ

สมการของ Linear regression สำหรับกรณีของ simple linear regression (ตัวแปรอิสระเพียงตัวเดียว) สามารถแสดง ได้ดังนี้

$$y = \beta_0 + \beta_1 x$$

$$y = \beta_0 + \beta_1 x$$

- □ y คือตัวแปรตาม (dependent variable) ที่เราต้องการ ประมาณค่าหรือพยากรณ์
- □ x คือตัวแปรอิสระ (independent variable) ที่เราใช้ในการ ประมาณค่าหรือพยากรณ์
- β₀ และ β₁ เป็นค่าคงที่ (coefficients) ที่ใช้ปรับสมการให้เข้า กับข้อมูลที่มีอยู่

□ กำหนดให้ x = [1 2 3 4 6] และ y = [5 7 9 11 15] เมื่อนำพิกัด x,y มาพล็อตกราฟ โดยใช้ ภาษา python ดังนี้

```
import numpy as np #numpy เป็นชื่อของ library ที่ใช้ในการคำนวนทางคณิตศาสตร์
import matplotlib.pyplot as plt #matplotlib เป็นชื่อของ library ที่นิยมใช้มากที่สุดในการพลอตกราฟสองมิติจาก array

x = np.array([1, 2, 3, 4, 6])
y = np.array([5, 7, 9, 11, 15])

coefficients = np.polyfit(x, y, 1)
m = coefficients[0] # ความขัน (slope)
b = coefficients[1] # จุดตัดแกน y (intercept)
regression_line = m * x + b

plt.scatter(x, y, color='blue', label='Data')
plt.plot(x, regression_line, color='red', label='Linear regression')
plt.xlabel('X')
plt.ylabel('Y')
plt.title('Linear regression')
plt.legend()
plt.show()
```

□ กำหนดให้ x = [1 2 3 4 6] และ y = [5 7 9 11 15] เมื่อนำพิกัด x,y มาพล็อตกราฟ โดยใช้ ภาษา python ดังนี้

$$y = \beta_0 + \beta_1 x$$

คำนวณหาค่าความชั้นของสมการเส้นตรงได้ดังนี้

$$\beta_1 = \frac{y_2 - y_1}{x_2 - x_1} = \frac{9 - 7}{3 - 2} = 2$$

$$y = \beta_0 + \beta_1 x$$

จากนั้น นำค่า x และ y จากคู่อันดับไปคำนวณค่าจุดตันแกน y (eta_1) อย่างเช่น พิจารณาที่คู่อันดับ (2,7) จะได้

$$7 = \beta_0 + 2 \cdot 2$$
$$\beta_0 = 3$$

$$y = 3 + 2x$$

$$y = 2x + 3$$

เมื่ออยากรู้ค่า y ที่ค่า x อื่น ๆ สามารถคำนวณได้ดังตัวอย่างนี้ ในกรณีที่ อยากรู้ค่า y ที่ค่า x เท่ากับ 7 นำค่า x เท่ากับ 7 แทนในสมการเส้นตรงจะได้ ค่า y ดังนี้

$$y = 2 \cdot 7 + 3 = 17$$

- Linear Regression จัดอยู่ในกลุ่ม Supervised Learning
 โดยข้อมูลตัวอย่างที่นำมา Train Model ชนิดนี้ จะต้องมีคอลัมน์ที่ เป็นผลลัพธ์
- □ การพิจารณาว่าควรเลือกใช้โมเดล Linear Regression ในการ ทำนายผลหรือไม่
- □ ต้องดูจากข้อมูลตัวอย่างที่มีอยู่ ซึ่งหากข้อมูลนั้นให้ผลลัพธ์ออกมาเป็น ตัวเลข แต่อาจเปลี่ยนแปลงในทิศทางเดียวกัน (เมื่อตัวหนึ่งเพิ่มอีกตัว หนึ่งก็เพิ่มตามกัน) หรือเปลี่ยนแปลงในทิศทางตรงกันข้ามก็ได้ (เมื่อ ตัวหนึ่งเพิ่ม อีกตัวหนึ่งลดลง) ก็คาดการณ์ในเบื้องตันได้ว่า น่าจะใช้ Linear Regression ได้

□ กรณีที่ข้อมูลมีการเปลี่ยนแปลงไปในทางเดียวกัน (เมื่อตัวหนึ่งเพิ่ม อีกตัวหนึ่งก็เพิ่มด้วย) หรือเราเรียกว่ามีความสัมพันธ์ต่อกันในเชิง บวก (Positive Correlation)

Positive

□ กรณีที่ข้อมูลมีการเปลี่ยนแปลงไปในทางตรงกันข้าม (เมื่อตัวหนึ่ง เพิ่มอีกตัวหนึ่งลด) หรือเราเรียกว่ามีความสัมพันธ์ต่อกันในเชิงลบ (Negative Correlation)

□ กรณีที่ข้อมูลไม่มีการเปลี่ยนแปลงตามกันอย่างชัดเจน (เมื่อตัวหนึ่ง เพิ่มหรือลด อีกตัวหนึ่งอาจเปลี่ยนแปลงน้อยมาก หรือมีแนวโน้มที่ไม่ แน่นอน) ซึ่งอาจเรียกว่า ไม่มีความสัมพันธ์ต่อกัน ไม่ควรทำนายด้วย Linear Regression

No correlation

```
import matplotlib.pyplot as plt
import numpy as np
data = [[4, 10.5],[6,8],[7, 7],[8, 5],[10, 3.5]]
arr = np.array(data)
x = arr[:, 0]
y = arr[:, 1]
plt.figure(figsize=(4, 3))
plt.scatter(x, y, s = 50)
plt.show( )

import pandas as pd #pandas เป็นชื่อของ library ที่ถูกสร้างขึ้นมาเพื่อการจัดการและวิเคราะห์ข้อมูลตาราง
data = [[4, 10.5],[6,8],[7, 7],[8, 5],[10, 3.5]]
df = pd.DataFrame(data, columns=['x' , 'y'])
display(df.corr().round(3))
```


	x	У
х	1.000	-0.991
γ	-0.991	1.000

```
import numpy as np #numpy เป็นชื่อของ library ที่ใช้ในการคำนวนทางคณิตศาสตร์
import matplotlib.pyplot as plt #matplotlib เป็นชื่อของ library ที่นิยมใช้มากที่สุดในการพลอตกราฟสองมิติจาก array

x = np.array([2, 4, 6, 8, 10, 12])
y = np.array([7, 10, 11, 15, 22, 25])

coefficients = np.polyfit(x, y, 1)
m = coefficients[0] # ความขัน (slope)
b = coefficients[1] # จุดดัดแกน y (intercept)
regression_line = m * x + b

plt.scatter(x, y, color='blue', label='Data')
plt.plot(x, regression_line, color='red', label='Linear regression')
plt.xlabel('X')
plt.ylabel('Y')
plt.title('Linear regression')
plt.legend()
plt.show()
```


Simple Linear Regression

- □ Simple Linear Regression ใช้ในการทำนายผลสำหรับกรณี ข้อมูลตัวอย่างประกอบด้วยคอลัมน์ที่เป็น Feature หรือตัวแปร อิสระ (x: Independence Variable) เพียงอันเดียว และ คอลัมน์ที่เป็น Target หรือผลลัพธ์หรือตัวแปรตาม (y: Dependence Variable) มีค่าเป็นตัวเลข
- □ ทั้งตัวแปรอิสระและตัวแปรตาม มีความสัมพันธ์กับแบบ Positive หรือ Negative อย่างใดอย่างหนึ่ง

Simple Linear Regression

□ จะเห็นว่าจุดต่าง ๆ ไม่ได้อยู่บนเส้นตรง Regression Line ซึ่ง เส้นตรงดังกล่าวเป็นเพียงเส้นที่ใช้ในการประมาณค่า

Simple Linear Regression

□ เราไม่สามารถนำข้อมูลตัวอย่างที่มีอยู่มาใช้ในการคำนวณหา eta_0 และ eta_1 ด้วยวิธีการเดียวกับสมการเส้นดรง eta=mx+c ได้ แต่ ต้องใช้สูตรการคำนาณที่แตกต่างออกไป

$$y = \beta_0 + \beta_1 x$$

$$\beta_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$

$$\beta_{0} = \bar{y} - \beta_{1}\bar{x}$$

- □ x_i = คือรายการข้อมูลแต่ละคำในคอลัมน์ที่เป็น Feature หรือตัวแปร อิสระ
- □ x = คือค่าเฉลี่ยของข้อมูลในคอลัมน์ที่เป็นเป็น Feature
- □ y_i = คือรายการข้อมูลแต่ละคำในคอลัมน์ที่เป็น Target หรือตัวแปร ตาม หรือผลลัพธ์นั่นเอง
- □ y = คือค่าเฉลี่ยของข้อมูลในคอลัมน์ที่เป็น Target

$$\beta_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$

$$\beta_{0} = \bar{y} - \beta_{1}\bar{x}$$

X	2	4	6	8	10	12
У	7	10	11	15	22	25

	A	В	С	D	E	
ลำดับ	x _i	y _i	$x_i - \overline{x}$	$(x_i - \overline{x}_{-})^2$	y _i - y	C * E
- 1	2	7	2 – 7 = -5	25	7 – 15 = -8	40
2	4	10	-3	9	-5	15
3	6	11	-1	1	-4	4
4	8	15	1	1	0	0
5	10	22	3	9	7	21
6	12	25	5	25	10	50
ผลรวง	42	90		70		130
ค่าเฉลี่	x = 7	y = 15				

$$\beta_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$

$$\beta_{0} = \bar{y} - \beta_{1} \bar{x}$$

$$\beta_{1} = 130/70 = 1.85$$

$$\beta_{0} = 15 - (1.85 * 7) = 2.05$$

- □ สมการที่ใช้สำหรับการทำนายผลของข้อมูลชุดนี้คือ y = 2.05 + 1.85x
- □ หากเราต้องการทำนายผล เมื่อกำหนด x เป็นค่าอื่น ๆ ก็นำมาแทนลง ในสมการ y = 2.05 + 1.85x

□ หากเราต้องการทำนายผล เมื่อกำหนด x เป็นค่าอื่น ๆ ก็นำมาแทน ลงในสมการ

$$y = 2.05 + 1.85x$$

$$y_7 = 2.05 + (1.85 * 7) = 15$$

$$y_9 = 2.05 + (1.85 * 9) = 18.7$$

การทำนายผลด้วย Scikit-Learn

- □ การใช้งาน Scikit-Learn เพื่อทำนายผลของโมเดลแบบ Simple Linear Regression มีแนวทางดังนี้
- คลาสสำหรับโมเดลนี้คือ LinearRegression โดยต้องอิมพอร์
 ตจากโมดูล sklearn.linear_model แล้วสร้างอินสแตนซ์ของ มัน

from sklearn.linear_model import LinearRegression

•••

model = LingarRegression () #สร้างอินสแตนซ์ของคสาส LinearRegression

- □ ในเบื้องตัน เราอาจสมมติข้อมูลขึ้นมาเองในแบบลิสต์หรืออาร์เรย์ 2 มิติ โดยข้อกำหนดที่สำคัญคือ
 - ค่าในแต่ละแถวของคอลัมน์ที่เป็น Feature (x) ต้องอยู่ในรูปแบบอาร์เรย์ 2
 มิติ แม้แต่ละแถวจะมีค่าเดียวก็ตาม
 - ค่าในแต่ละแถวของคอลัมน์ที่เป็น Target (y) อาจอยู่ในรูปแบบอาร์เรย์มิติ
 เดียว หรือ 2 มิติก็ได้
 - ข้อมูลต้องมีความสัมพันธ์แบบ Positive หรือ Negative Correlation อย่างใดอย่างหนึ่ง

□ ตัวอย่าง การทำนายผลด้วย Scikit-Learn ของข้อมูลตัวอย่างชุด เดิมที่ใช้ประกอบการอธิบายไปก่อนนี้

```
from sklearn.linear_model import LinearRegression
import numpy as np
x = [2, 4, 6, 8, 10, 12]
x = np.array(x).reshape (-1, 1)
y = [7, 10, 11, 15, 22, 25]
model = LinearRegression()
model.fit(x, y)

y_7 = model.predict([[7]])
print('x = 7, y =', y_7[0])
y_9 = model.predict([[9]])
print('x = 9, y =', y_9[0])
print('intercept =', model.intercept_)
print('coefficient =', model.coef_[0])
```

X	2	4	6	8	10	12
У	7	10	11	15	22	25

$$y_7 = 2.05 + (1.85 * 7) = 15$$

$$y_9 = 2.05 + (1.85 * 9) = 18.7$$

□ ตัวอย่าง สมมติว่าเรามีข้อมูลเกี่ยวกับราคาที่ดิน ในหน่วยล้านบาท ซึ่งสัมพันธ์กับจำนวนปีที่ผ่านไปดังตาราง หากเราต้องการทำนายผล ราคาที่ดินในปีที่ 17 และ 20 สามารถทำได้ดังนี้

years	3	5	7	10	15
land price (million baht)	5	5.5	6.2	6.8	7.7

□ จากการพิจารณาข้อมูลในตารางด้วยสายตา เราพอจะคาดคะเนได้ว่า ข้อมูลทั้ง 2 มีความสัมพันธ์กันแบบ Positive แต่เพื่อให้แน่ใจ เราลอง plot กราฟดู ได้รูปกราฟดังนี้

years	3	5	7	10	15
land price (million baht)	5	5.5	6.2	6.8	7.7


```
import matplotlib.pyplot as plt
x = [3, 5, 7, 10, 15]
y = [5, 5.5, 6.2, 6.8, 7.7]
                                                         7.5
plt.scatter(x, y)
plt.show( )
                                                         7.0
x = np.array(x).reshape(-1, 1)
                                                         6.5
model = LinearRegression()
model.fit (x , y)
                                                         6.0
x_predict = [[17], [20]] #ทำนายราคาที่ดินปีที่ 17 และ 20
v predict = model.predict(x predict)
                                                         5.5
ic = '{:.2f}'.format(model.intercept )
ce = '{:.2f}'.format(model.coef [0])
                                                                               10
                                                                                     12
                                                                                          14
print(f'y = \{ic\} + \{ce\}x')
                                                         y = 4.44 + 0.23x
                                                         year 17, land price is 8.27 million baht
                                                         year 20, land price is 8.94 million baht
price 17 = '{:.2f}'.format(y predict[0])
price 20 = '{:.2f}'.format(y predict[1])
print (f'year 17, land price is {price 17} million baht')
print (f'year 20, land price is {price 20} million baht')
```


y = 4.44 + 0.23x year 17, land price is 8.27 million baht year 20, land price is 8.94 million baht

Question

□ หากเรามีข้อมูลเกี่ยวกับเงินเดือน ในหน่วยบาท ซึ่งสัมพันธ์กับจำนวนปี ที่ทำงาน ให้ทำนายเงินเดือนเมื่อทำงานครบ 10, 12 และ 15 ปี

years	1	3	7	8
Salary (baht)	25000	27000	34000	35000

- Logistic Regression จัดอยู่ในกลุ่ม Supervised
 Learning ที่ทำนายผลแบบ Classification (แม้ชื่อโมเดลจะมีคำว่า Regression ก็ตาม)
- □ นอกจากนี้ ก็ยังจะกล่าวถึงการประเมินโมเดลจาก Confusion

 Matrix ซึ่งสามารถนำไปใช้กับโมเดลชนิดอื่น ๆ ที่ทำนายผลแบบ

 Classification ได้ทั้งหมด

- □ $log_b(x) = y$ หมายถึง $b^y = x$
- □ log₂(8) = 3 เพราะ 2³ = 8
- □ log₂(32) = a มีความหมายว่า 2^a = 32 นั่นคือ a = 5 เพราะ 2⁵ = 32
- □ ในกรณีที่เป็น logarithm ฐาน 10 เราอาจไม่ระบุเลขฐานก็ได้
- □ log₁₀(100) อาจเขียนเป็น log(100)

- □ ส่วน Natural Logarithm คือกรณีที่เลขฐานของมันมีค่าเป็น
 2.718281828459 หรือเรียกว่า Euler's number ซึ่ง
 โดยทั่วไป เรามักใช้เพียงทศนิยม 2 3 ตำแหน่ง
- □ log_{2.718}(10) = a หมายถึง 2.718^a = 10นั่นคือ a = 2.302 เพราะ 2.718^{2.302} ≈ 10
- □ โดยส่วนใหญ่เราจะแทนเลขฐานด้วยตัว e เช่น log_e(100) = 4.605 หรือเขียนแทน log_e ด้วยสัญลักษณ์ ln ในลักษณะดังนี้

- □ สูตรที่น่าสนใจอื่น ๆ ของ Logarithm

- □ Odds Ratio และ Logit Function เป็นพื้นฐานที่จะนำไปสู่ Logistic Function
- □ โอกาสหรือความน่าจะเป็น (Probability) ที่จะได้ผลลัพธ์ที่เรา ต้องการ คือ (ให้ P แทนความน่าจะเป็นที่สิ่งนั้นจะเกิดขึ้น)

- \square ความน่าจะเป็นต้องมีค่าอยู่ระหว่าง $\mathbf{0}$ $\mathbf{1}$ ($\mathbf{0} \leq \mathbf{P} \leq \mathbf{1}$)
- □ ถ้าเราโยนเหรียญ 1 ครั้ง ความน่าจะเป็นที่จะได้ หัว หรือ ก้อย เท่ากับ 1/2
- การทอยลูกเต๋าแต่ละครั้ง ความน่าจะเป็นที่จะได้แต้มที่ต้องการ เท่ากับ 1/6
- □ ถ้าความน่าจะเป็นที่เกิดเหตุการณ์นั้น = P แสดงว่า ความน่าจะเป็นที่จะ **ไม่** เกิดเหตุการณ์นั้น = **1 − P**
- โอกาสที่สลากกินแบ่งแต่ละใบจะถูกรางวัลเลขท้าย 2 ตัว (00 99)
 เท่ากับ 1 / 100 = 0.01
- โอกาสที่จะ ไม่ ถูกรางวัลเลขท้าย 2 ตัว จึงเท่ากับ 1 0.01 = 0.99

□ Odds Ratio เป็นอัตราส่วนระหว่าง ความน่าจะเป็นที่จะเกิดสิ่ง ใดสิ่งหนึ่ง กับ ความน่าจะเป็นที่จะไม่เกิดสิ่งนั้น

Logit Function ก็คือ Natural Logarithm ของ Odds
 Ratio

$$logit = ln\left(\frac{P}{1 - P}\right)$$

- □ เนื่องจาก P มีค่าระหว่าง O 1 ดังนั้น ถ้าเรานำไปแทนค่าเพื่อดู ขอบเขตของ logit จะได้ดังนี้
- □ $logit(0) = ln(0/(1-0)) = ln(0) = -\infty$

□ logit จะมีค่าระหว่าง (-∞, ∞) ซึ่งหากเรามาวาดกราฟด้วย
Matplotlib ก็จะเป็นดังภาพถัดไป หรือเรียกว่า Logit Curve

import numpy as np

import matplotlib.pyplot as plt

x = np.linspace(0, 0.999, num=100)

$$y = np.log(x/(1-x))$$

plt.plot(x, y)

plt.grid()

plt.show()

Sigmoid Function คือฟังก์ชันที่ใช้ในการแปลงช่วงตัวเลขจาก (-∞,∞) ไปเป็นช่วงตัวเลขระหว่าง (0, 1) ซึ่งจากกราฟ Logit Curve ที่มีค่าระหว่าง (-∞,∞) ดังที่กล่าวมา หากนำไปแปลงเป็น ช่วงระหว่าง (0, 1) ก็จะได้ Sigmoid Curve ในลักษณะดัง ภาพถัดไป

$$L = In \left[\frac{P}{1 - P} \right]$$

$$e^{L} = \frac{P}{1 - P}$$

$$\frac{1 - P}{P} = \frac{1}{e^{L}}$$

$$e^{L} - Pe^{L} = P$$

$$e^{L} = P + Pe^{L} = P(1 + e^{L})$$

$$P = \frac{e^{L}}{1 + e^{L}} = \frac{1}{\frac{1}{e^{L}} + 1} = \frac{1}{e^{-L} + 1}$$

$$sigmoid = \frac{1}{1 + e^{-L}}$$

□ Sigmoid Function ก็เหมือนกับการหาความน่าจะเป็นที่จะเกิด เหตุการณ์อย่างใดอย่างหนึ่ง ซึ่งมีค่าระหว่าง 0 − 1

import numpy as np
import matplotlib.pyplot as plt

```
x = np.linspace (-6, 6, 121)

y = 1/(1 + np.exp(-x))

plt.plot(x, y)

plt.grid()

plt.show()
```


- Sigmoid Function จะถูกนำไปใช้สำหรับการทำนายผลแบบ Logistic Regression ด้วยเหตุนี้ เราอาจ เรียก Sigmoid Function อีกอย่างว่าเป็น Logistic Function
- Logistic Regression เป็นโมเดลที่จัดอยู่ในประเภท
 Supervised Learning สำหรับการทำนายผลแบบ
 Classification แม้ชื่อโมเดลจะลงท้ายด้วยคำว่า Regression ก็ตาม

- □ ข้อมูลตัวอย่างแต่ละรายการจะมี คอลัมน์ที่เป็น Target (หรือผลลัพธ์ หรือตัวแปรตาม: y) ที่สามารถจำแนกประเภทหรือแบ่งได้เป็น 2 กลุ่ม เช่น Yes/No, True/False, Success/Fail, High/Low, Male/Female, R/X, 1/0
- □ ส่วนคอลัมน์ที่เป็น Feature หรือตัวแปรอิสระ (x) อาจมีตั้งแต่ 1 คอลัมน์ขึ้นไป เช่นเดียวกับ Linear Regression

X	y
4	No
7.2	Yes
5.1	Yes
3.2	No
8	Yes

x 1	x2	У
7	5	0
3	4	1
2	8	0
6	7	1
8	7	1

□ กรณีที่มีตัวแปรอิสระเพียงตัวเดียว

$$y = \beta_0 + \beta_1 x$$

 $y = 3.2 + 1.5x$

□ กรณีที่มีตัวแปรอิสระหลายตัว

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_k x_k$$

$$y = \beta_0 + \sum \beta_i x_i$$

$$y = 5.2 + 3.5x_1 + 4x_2 + 7x_3$$

□ ถ้าความน่าจะเป็นขึ้นกับตัวแปรอิสระ x₁, x₂, x₃, ... แสดงว่า Logit Function ก็มีรูปแบบเหมือนกับ สมการของ Linear Regression

$$\begin{aligned} &\text{logit} &= \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_k x_k \\ &= \beta_0 + \Sigma \beta_i x_i \\ &P &= \frac{1}{1 + e^{-\log it}} \\ &P(x) &= \frac{1}{1 + e^{-(\beta_0 + \Sigma \beta_i x_i)}} \end{aligned}$$

- □ Logistic Regression ก็คือการหาความน่าจะเป็นด้วย
 Sigmoid Function ทั้งนี้หากเราทราบค่า intercept และ
 coefficient ก็สามารถนำตัวแปรอิสระ x₁, x₂, ... มาแทนค่าใน
 ฟังก์ชัน ก็จะได้ค่าความน่าจะเป็นออกมา
- □ อย่างไรก็ตาม ความน่าจะเป็นต้องมีค่าระหว่าง 0 1 ในขณะที่
 ผลลัพธ์ของ Logistic Regression จะต้องอยู่ในรูปแบบ
 Classification ที่จำแนกได้ 2 กลุ่ม เช่น Yes ⁄ No ซึ่งไม่
 สอดคล้องกัน จึงต้องนำค่าความน่าจะเป็นที่ได้ไปทำการเปรียบเทียบ
 ต่อ ดังนี้

- □ หากความน่าจะเป็นมีค่าระหว่าง 0 0.5 จะทำนายผลเป็น คลาสกลุ่มที่ 1
- □ หากความน่าจะเป็นมีค่าระหว่าง 0.5 1 จะทำนายผลเป็น คลาสกลุ่มที่ 2

 \square จากสมการของ $\mathsf{P}(\mathsf{x})$ ต่อไปนี้เป็นขั้นตอนการคำนวณค่า β_{o} และ β_{i}

$$P(x) = \frac{1}{1 + e^{-(\beta_0 + \sum \beta_i x_i)}} = \frac{1}{1 + e^{-(\sum x_i)^2}}$$

$$y = \beta_0 + \sum \beta_i x_i$$

$$C = \sum x_i y_i - \frac{(\sum x_i)^2}{1 + e^{-(\sum x_i)^2}}$$

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

\mathbf{x}_1	x ₂	y
7	5	0
3	4	1
2	8	0
	_	-

$$A = \sum x_1^2 - \frac{(\sum x_1)^2}{N}$$

$$C = \sum_{x_1 y} x_1 y - \frac{\left(\sum_{x_1} x_1\right) \left(\sum_{y} y\right)}{\sum_{x_2} x_2} \qquad D = \sum_{x_2 y} x_2 y - \frac{\left(\sum_{x_2} x_2\right) \left(\sum_{y} y\right)}{\sum_{x_2} x_2}$$

$$C = \sum x_1 y - \frac{\left(\sum x_1\right)\left(\sum y\right)}{N}$$

 $B = \sum_{i=1}^{n} x_2^2 - \frac{(\sum_{i=1}^{n} x_2)^2}{\sum_{i=1}^{n} x_2}$

$$E = \sum x_1 x_2 - \frac{(\sum x_1)(\sum x_2)}{x_2}$$

$$\beta_1 = \frac{(B)(C) - (E)(D)}{(A)(B) - (E)^2}$$

$$\beta_2 = \frac{(A)(D)-(E)(C)}{(A)(B)-(E)^2}$$

$$\beta_0 = \bar{y} - \beta_1 \bar{x}_1 - \beta_2 \bar{x}_2$$

- \square จากสมการของ P(x) การคำนวณค่า eta_0 และ eta_i ค่อนข้างใช้เวลา ในการคำนวณ
- □ เราสามารถนำ Scikit-Learn มาช่วยในการคำนวณ

□ ตัวอย่างที่ 1 จากการสำรวจนักเรียนกลุ่มหนึ่งพบว่า การสอบผ่าน Pass หรือสอบตก Fail ขึ้นกับชั่วโมงการเรียน (hours_study) ดังตาราง ถ้าเรานำมา Train Model แบบ Logistic Regression แล้วทำนายผล ในกรณีที่ศึกษา 3.2, 3.75 และ 7 ชั่วโมง จะแสดงขั้นตอนได้ดังนี้

hours_study	pass
0	Fail
1	Fail
2	Fail
3	Fail
4	Pass
5	Pass
6	Pass

```
import numpy as np
from sklearn.linear model import LogisticRegression
x = [[0], [1], [2], [3], [4], [5], [6]] #[[x1]. ...]
v = ['Fail', 'Fail', 'Fail', 'Pass', 'Pass', 'Pass']
model = LogisticRegression()
model.fit(x, y)
x \text{ predict} = [3.2, 3.75, 7]
x predict = np.array(x predict).reshape(-1, 1)
v predict = model.predict(x predict)
print('Prediction:')
for (i, xp) in enumerate (x predict):
    print(f'study: {xp[0]} hours =>', y_predict[i])
print()
print('Logistic Function:')
ic = '{:.2f}'.format(model. intercept [0])
ce = '{:.2f}'.format(model.coef [0,0])
print (f'P(x) = 1 / (1 + exp({ic} + ({ce})x))')
```

```
import numpy as np
from sklearn.linear model import LogisticRegression
x = [[0], [1], [2], [3], [4], [5], [6]] #[[x1], ...]
v = ['Fail', 'Fail', 'Fail', 'Pass', 'Pass', 'Pass']
model = LogisticRegression()
model.fit(x, y)
                                                    Prediction:
                                                    study: 3.2 hours => Fail
x \text{ predict} = [3.2, 3.75, 7]
                                                    study: 3.75 hours => Pass
x predict = np.array(x predict).reshape(-1, 1)
                                                    study: 7.0 hours => Pass
y predict = model.predict(x predict)
                                                    Logistic Function:
print('Prediction:')
                                                    P(x) = 1 / (1 + exp(-4.03 + (1.15)x))
for (i, xp) in enumerate (x predict):
    print(f'study: {xp[0]} hours =>', y_predict[i])
print()
print('Logistic Function:')
ic = '{:.2f}'.format(model. intercept [0])
ce = '{:.2f}'.format(model.coef [0,0])
print (f'P(x) = 1 / (1 + exp({ic} + ({ce})x))')
```

□ ตัวอย่างที่ 2 หากเรามีข้อมูลดังตารางในภาพ ถ้านำมา Train Model แบบ Logistic Regression ให้ทำนายผลเมื่อ $x_1=3$, $x_2=3$ และ $x_1=5$, $x_2=6$

x ₁	X ₂	у
7	6	yes
2	4	no
5	8	yes
4	7	no
8	10	yes

```
from sklearn.linear model import LogisticRegression
model = LogisticRegression()
x = [[7, 6], [2, 4], [5, 8], [4, 7], [8, 10]] #[[x1, x2]. ...]
y = ['yes', 'no', 'yes', 'no', 'yes']
model.fit(x, y)
#ทำนายผลเมื่อ x1=3, x2=3 และ x1=5, x2=6
x \text{ predict} = [[3, 3], [5, 6]]
y predict = model.predict(x predict)
print('X = [3, 3], y = ', y predict[0])
print('X = [5, 6], y =', y predict[1])
print()
print('probabiltiy')
prob = model.predict proba(x predict)
print(prob)
print(' 1-P
                        P')
```

```
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
x = [[7, 6], [2, 4], [5, 8], [4, 7], [8, 10]] #[[x1, x2]. ...]
y = ['yes', 'no', 'yes', 'no', 'yes']
model.fit(x, y)
#ทำนายผลเมื่อ x1=3, x2=3 และ x1=5, x2=6
x \text{ predict} = [[3, 3], [5, 6]]
y predict = model.predict(x predict)
print('X = [3, 3], y = ', y predict[0])
                                             X = [3, 3], y = no
                                              X = [5, 6], y = yes
print('X = [5, 6], y =', y predict[1])
print()
                                              probabiltiy ______
print('probabiltiy')
                                              [[0.93074277+0.06925723]
                                               [0.46291989 0.53708011]]
prob = model.predict_proba(x_predict)
                                                   1-P
print(prob)
print(' 1-P
```

Question

- □ บริษัทแห่งหนึ่งได้ทดสอบการทำงานของเครื่องจักรพบว่า อายุของเครื่องจักร (หน่วยเป็น เดือน) และจำนวนชั่วโมงการทำงานต่อวัน มีผลต่อสมรรถนะของ เครื่องจักร ดังตาราง ให้ทำนายผลในกรณีที่
 - 1) อายุของเครื่องจักรเท่ากับ 40 เดือน และทำงาน 3 ชั่วโมงต่อวัน
 - 2) อายุของเครื่องจักรเท่ากับ 70 เดือน และทำงาน 2 ชั่วโมงต่อวัน

และให้หา Logistic Function

machine_age (months)	operate_hours_per_day	performance
59	4	Not good
15	4	Good
78	8	Not good
22	6	Good
38	5	Good
71	7	Not good
35	4	Not good
44	5	Good

- □ ถ้าเราต้องการประเมินการทำนายผลของโมเดล หากเป็นกรณีของ
 Linear Regression ที่เราได้ศึกษามา ก็สามารถนำผลลัพธ์จริง
 (y_true) และผลการทำนาย (y_predict) มาคำนวณค่าต่าง
 ๆ ที่เกี่ยวข้องได้เลย เพราะมีค่าเป็นตัวเลข
- □ กรณีของ Logistic Regression ซึ่งผลการทำนายเป็นแบบ Classification เราจึงไม่สามารถทำเช่นนั้นได้ แต่ต้องใช้วิธีการ นับจำนวนรายการที่ทำนายถูก (y_true = y_predict) และ จำนวนรายการที่ทำนายผิด (y_true != y_predict) แล้วมา เปรียบเทียบกัน

	Predict: Negative (N)	Predict: Positive (P)
Actual: Negative	TN	FP
Actual: Positive	FN	TP

ผลลัพธ์จริง (Actual)	การทำนาย (Predict)	ผลการทำนาย	Confusion Matrix
Negative	Negative	True	True Negative (TN)
Negative	Positive	False	False Positive (FP)
Positive	Negative	False	False Negative (FN)
Positive	Positive	True	True Positive (TP)

X	y_true	y_predict	Confusion Matrix
•••	1	1	TP
•••	1	0	FN
•••	0	0	TN
•••	1	1	TP
•••	1	0	FN
•••	0	0	TN
•••	1	1	TP
•••	0	0	TN
•••	0	1	FP
•••	0	0	TN

	Predict (N)	Predict (P)	รวม
Actual (N)	TN = 20	FP = 10	30
Actual (P)	FN = 10	TP = 60	70
รวม	30	70	100

- □ Accuracy คือความแม่นยำในการทำนายผล โดยคิดจากจำนวน ที่ทำนายถูกทั้งหมดหารด้วยจำนวนรายการทั้งหมดใน Confusion Matrix
- □ Accuracy = (20 + 60) / 100 = 0.8 หรืออัตราการทำนาย ถูกเท่ากับ 80% TN + TP

Accuracy = $\frac{IN + II}{Total}$

	Predict (N)	Predict (P)	รวม
Actual (N)	TN = 20	FP = 10	30
Actual (P)	FN = 10	TP = 60	70
รวม	30	70	100

□ Precision คือ อัตราส่วนของการทำนายเชิงบวกแล้วถูกต้อง (TP) ต่อจำนวนการทำนายเชิงบวกทั้งหมด

Precision =
$$60 / 70 = 0.86$$

$$\frac{\text{TP}}{\text{Precision}} = \frac{\text{TP}}{\text{Predict}_\text{Positive}}$$

	Predict (N)	Predict (P)	รวม
Actual (N)	TN = 20	FP = 10	30
Actual (P)	FN = 10	TP = 60	70
รวม	30	70	100

□ Recall (หรือ Sensitivity หรือ True Positive Rate) คือ ตราส่วนของการทำนายเชิงบวกแล้วถูกต้อง (TP) ต่อผลลัพธ์จริงใน เชิงบวก (Actual Positive) ทั้งหมด

Recall =
$$60 / 70 = 0.86$$

Recall =
$$\frac{TP}{Actual Positive}$$

	Predict (N)	Predict (P)	รวม
Actual (N)	TN = 20	FP = 10	30
Actual (P)	FN = 10	TP = 60	70
รวม	30	70	100

□ F1 Score เป็นค่าที่แสดงถึงระดับความสอดคล้องกันระหว่าง
Precision และ Recall

$$F1 = 2 * (0.86 * 0.86) / (0.86 + 0.86) = 0.86$$

F1 =
$$\frac{2 * (precision * recall)}{precision + recall}$$

	Predict (N)	Predict (P)	รวม
Actual (N)	TN = 20	FP = 10	30
Actual (P)	FN = 10	TP = 60	70
รวม	30	70	100

- □ Error Rate (หรือ Misclassification Rate) คืออัตราความคลาดเคลื่อน ซึ่ง คำนวณจากจำนวนที่ทำนายผิดทั้งหมด หารด้วยจำนวนรายการทั้งหมด
- □ จากจำนวนสมาชิกของ Confusion Matrix ที่ผ่านมา แสดงว่าอัตราความ คลาดเคลื่อน คือ

err = (10 + 10) / 100 # 0.2 หรืออัตราทำนายผิดเท่ากับ 20%

Error_Rate =
$$\frac{FP + FN}{Total}$$

	Predict (N)	Predict (P)	รวม
Actual (N)	TN = 20	FP = 10	30
Actual (P)	FN = 10	TP = 60	70
รวม	30	70	100

 □ ค่าต่างๆ ดังที่กล่าวมา เราพิจารณาจากจำนวนที่ทำนายถูกต้องเป็น หลัก (ยกเว้น Error Rate) ดังนั้น ถ้าได้ตัวเลขที่มีค่ามากแสดงว่า จำนวนการทำนายผลถูกต้องก็มีมากเช่นกัน หรือกล่าวได้ว่า เป็นการ ทำนายผลมีความน่าเชื่อถือนั่นเอง

□ บริษัทแห่งหนึ่งได้ทดสอบการทำงานของเครื่องจักรพบว่า อายุของ เครื่องจักร (หน่วยเป็น เดือน) และจำนวนชั่วโมงการทำงานต่อวัน มี ผลต่อสมรรถนะของเครื่องจักร ดังตารางไฟล์

machine_performance.xlsx ให้ทำนายผลในกรณีที่

- 1) อายุของเครื่องจักรเท่ากับ 20 เดือน และทำงาน 3 ชั่วโมงต่อวัน
- 2) อายุของเครื่องจักรเท่ากับ 50 เดือน และทำงาน 7 ชั่วโมงต่อวัน
- 3) อายุของเครื่องจักรเท่ากับ 40 เดือน และทำงาน 2 ชั่วโมงต่อวัน
- 4) อายุของเครื่องจักรเท่ากับ 80 เดือน และทำงาน 5 ชั่วโมงต่อวัน และให้หา Logistic Function และ Confusion Matrix

	machine_age_months	work_hours_per_day	machine_performance
0	58	3	1
1	73	5	0
2	23	4	1
3	59	4	0
4	16	3	1
5	37	1	1
6	68	5	0
7	49	5	1
8	27	7	0
9	60	2	1
10	11	5	1
11	78	8	0
12	23	5	1
13	37	3	1
14	57	7	0
15	73	8	0
16	39	4	1
17	71	7	0
18	35	4	1
19	45	4	1

```
import pandas as pd
from sklearn.linear model import LogisticRegression
from sklearn.preprocessing import StandardScaler
from sklearn.model selection import train test split
from sklearn.metrics import confusion matrix
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
df = pd.read excel(r'machine performance.xlsx')
with pd.option context('display.max rows', 20): display(df)
x = df[['machine age months', 'work_hours_per_day']]
y = df['machine performance']
x train, x test, y train, y test = train test split(x, y, random state=0)
#scaling
scaler = StandardScaler()
x train = scaler.fit transform(x train)
x test = scaler.transform(x test)
model = LogisticRegression()
model.fit(x train, y train)
```

```
x_{pred} = [[20, 3], [50, 7], [40, 2], [80, 5]]
#ข้อมูลที่จะทำนายผล ก็ต้องปรับสเกลเช่นเดียวกัน
x pred sc = scaler.transform(x pred)
y_pred = model.predict(x pred sc)
print('Prediction:')
for (i, xp) in enumerate(x pred):
    #คอสัมน์ผลสัพธ์มีค่าเป็น 0/1 จึงเทียบเป็นสตริงที่เข้าใจได้
    machine_perf = 'No' if y_pred[i] == 0 else 'Yes'
    text = f'Machine Age: {xp[0]} Month(s), '
    text += f'Work: {xp[1]} Hour(s)/Day '
    text += f'=> Performance: {machine perf}'
    print(text)
print()
print('Logistic Function:')
ic = '{:.2f}'.format(model.intercept [0])
ce1 = '{:.2f}'.format(model.coef [0, 0])
ce2 = '{:.2f}'.format(model.coef_[0, 1])
print(f'P(x) = 1 / (1 + exp({ic} + ({ce1})age + ({ce2})hour))')
```

```
### Model Evaluation ####
y pred test = model.predict(x test)
print('Confusion Matrix:')
cfmx = confusion matrix(y test, y pred test)
print(cfmx)
print()
print('Accuracy:', '{:.2f}'.format(accuracy score(y test, y pred test)))
print('Precision:', '{:.2f}'.format(precision score(y test, y pred test)))
print('Recall:', '{:.2f}'.format(recall score(y test, y pred test)))
print('F1 Score:', '{:.2f}'.format(f1_score(y_test, y_pred_test)))
#error rate = (FP + FN) / Total
err = (cfmx[0, 1] + cfmx[1, 0]) / y test.count()
print('Error Rate', '{:.2f}'.format(err))
print()
```

```
Prediction:
Machine Age: 30 Month(s), Work: 6 Hour(s)/Day => Performance: Yes
Machine Age: 40 Month(s), Work: 8 Hour(s)/Day => Performance: No
Machine Age: 50 Month(s), Work: 5 Hour(s)/Day => Performance: No
Machine Age: 60 Month(s), Work: 3 Hour(s)/Day => Performance: Yes
Logistic Function:
P(x) = 1 / (1 + exp(0.60 + (-1.21)age + (-1.10)hour))
Confusion Matrix:
[[1 1]
[0 3]]
Accuracy: 0.80
Precision: 0.75
Recall: 1.00
F1 Score: 0.86
Error Rate 0.20
```