zac. ∠aniel Alvarado 26 de diciembre de 2024 10° Escuela Oaxaqueña de Matemáticas aniel Alvarado ESEM

Cristo Daniel Alvarado Es

Capítulo 1

Ejercicios y Problemas Teoría de Grupos

§1.1 Preliminares Teoría de Grupos

Ejercicio 1.1.1

Supongamos que G es un grupo que tiene un subgrupo de índice finito H. Demuestra que G tiene un subgrupo normal de índice finito.

Demostración:

Se tienen dos casos:

- \blacksquare G es finito, en cuyo caso G es un subgrupo normal de G de índice finito.
- \blacksquare G es infinito.

Ejercicio 1.1.2

¿Cuál es el grupo de automorfismos del grupo aditivo \mathbb{Z} ?

Solución:

Considere al grupo de automorfismos del grupo aditivo \mathbb{Z} , digamos:

$$A = \operatorname{Aut}(\mathbb{Z}) = \left\{ f : \mathbb{Z} \to \mathbb{Z} \middle| f \text{ es isomorfismo} \right\}$$

Afirmamos que Aut $(\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}$ donde $\mathbb{Z}/2\mathbb{Z}$ es el grupo aditivo de los enteros módulo 2. En efecto, afirmamos que:

$$\mathrm{Aut}\left(\mathbb{Z}\right)=\left\{\mathbb{1}_{\mathbb{Z}},-\mathbb{1}_{\mathbb{Z}}\right\}$$

donde $\mathbb{1}_{\mathbb{Z}}: \mathbb{Z} \to \mathbb{Z}$ es la identidad de \mathbb{Z} y $-\mathbb{1}_{\mathbb{Z}}: \mathbb{Z} \to \mathbb{Z}$ es tal que $-\mathbb{1}_{\mathbb{Z}}(m) = -m$ para todo $m \in \mathbb{Z}$. En efecto, es claro que $\{\mathbb{1}_{\mathbb{Z}}, -\mathbb{1}_{\mathbb{Z}}\} \subseteq \operatorname{Aut}(\mathbb{Z})$.

Sea ahora $f \in Aut(\mathbb{Z})$, se tiene que:

$$f(m) = f(\underbrace{1 + \dots + 1}_{m\text{-veces}}) = \underbrace{f(1) + \dots + f(1)}_{m\text{-veces}} = mf(1)$$

para todo $m \in \mathbb{N}$. De forma análoga se demuestra que:

$$f(-m) = -mf(1), \quad \forall m \in \mathbb{N}$$

Así que:

$$f(m) = mf(1), \quad \forall m \in \mathbb{Z}$$

por lo que f está únicamente determinada por su valor en 1. Como \mathbb{Z} tiene únicamente dos generadores (por ser un grupo cíclico infinito), al ser f automorfismo debe suceder que $\mathbb{Z} = \langle f(1) \rangle$, así que f(1) = 1 ó f(1) = -1, es decir que:

$$f(m) = mf(1)$$

$$= \begin{cases} m & \text{si } f(1) = 1 \\ -m & \text{si } f(1) = -1 \end{cases}$$

$$= \begin{cases} \mathbb{1}_{\mathbb{Z}}(m) & \text{si } f(1) = 1 \\ -\mathbb{1}_{\mathbb{Z}}(m) & \text{si } f(1) = 1 \end{cases}$$

es decir, que $f = \mathbb{1}_{\mathbb{Z}}$ o $f = -\mathbb{1}_{\mathbb{Z}}$. Por tanto, Aut $(\mathbb{Z}) = \{\mathbb{1}_{\mathbb{Z}}, -\mathbb{1}_{\mathbb{Z}}\}$. Para la otra parte, es inmediato que el grupo $\{\mathbb{1}_{\mathbb{Z}}, -\mathbb{1}_{\mathbb{Z}}\}$ con la composición de funciones es isomorfo al grupo aditivo $\mathbb{Z}/2\mathbb{Z}$.

Ejercicio 1.1.3

Supongamos que tenemos una sucesión exacta corta de grupos:

$$1 \to N \to G \to K \to 1$$

demuestra que si N y K son grupos finitamente generados, entonces G es finitamente generado.

Demostración:

Al tenerse la sucesión exacta corta de grupos, estamos diciendo que existen homomorfismos f_0 : $\langle 1 \rangle \to N$, $f_1: N \to G$, $f_2: G \to K$ y $f_3: K \to \langle 1 \rangle$ tales que:

$$\operatorname{Im}(f_{i-1}) = \ker(f_i), \quad \forall i = 1, 2, 3$$

En particular, notemos que f_1 es monomorfismo y que f_2 es epimorfismo, ya que:

$$\ker(f_1) = \operatorname{Im}(f_0) = \langle e_N \rangle$$

siendo e_N la identidad del grupo N y, además:

$$\operatorname{Im}(f_2) = \ker(f_3) = K$$

por lo que se tiene lo afirmado.

Supongamos ahora que N y K son finitamnete generados, entonces existen elementos $n_1, ..., n_m \in N$ y $k_1, ..., k_l \in K$ tales que:

$$N = \langle n_1, ..., n_m \rangle$$
 y $K = \langle k_1, ..., k_l \rangle$

Como f_3 es epimorfismo, entonces del Primer Teorema de Isomorfismo se sigue que:

$$K \cong G/\ker(f_3) = G/\operatorname{Im}(f_2) = G/N'$$

donde $N' = f_2(N)$.

Ejercicio 1.1.4

Demuestra que en el producto semidirecto $N \rtimes_{\varphi} H$, H es un subgrupo normal si y sólo si φ es el homomorfismo trivial.

Demostración:

Recordemos que el producto semidirecto $N \rtimes_{\varphi} H$ es el grupo $N \times H$ dotado de la operación:

$$(n,h)(n',h') = (n\varphi_h(n'),hh')$$

donde $\varphi: H \to \operatorname{Aut}(N)$ es un homomorfismo tal que $h \mapsto \varphi_h$. El elemento neutro de este grupo es (e_N, e_H) , donde cada elemento tiene como inverso:

$$(n,h)^{-1} = ((\varphi_{h^{-1}}(n))^{-1}, h^{-1})$$

 \Rightarrow): Suponga que H es un subgrupo normal de $N\rtimes_{\varphi}H$, esto es que el grupo H visto como subgrupo de $N\rtimes_{\varphi}H$:

$$H = \left\{ (e_N, h) \middle| h \in H \right\}$$

es subgrupo normal de $N \rtimes_{\varphi} H$. Como es normal, se sigue que:

$$(n_1, h_1)(e_N, h)(n_1, h_1)^{-1} \in H$$

para todo $(n_1, h_1) \in H$ y para todo $h \in H$.

Ejercicio 1.1.5

Demuestra que el producto libre en n generadores F_n es isomorfo al producto libre de n copias de \mathbb{Z} , $\mathbb{Z} * \mathbb{Z} * \cdots * \mathbb{Z}$.

Demostración:

Ejercicio 1.1.6

Demuestra que el producto libre G * H de grupos no triviales H y G tiene centro trivial.

Demostración:

Sean G y H grupos no triviales. Considere G*H su producto libre. El centro de G*H se define por:

$$Z(G * H) = \left\{ x \in G * H \middle| xy = yx, \forall y \in G * H \right\}$$

Ejercicio 1.1.7

Demuestra que $\mathbb{Z}_2 * \mathbb{Z}_2$ es isomorfo a $\mathbb{Z} \rtimes \mathbb{Z}_2$.

Demostración:

Ejercicio 1.1.8

Denotemos por F_n al grupo libre en n generadores. Demuestre que F_n es isomorfo a F_m si y sólo si n=m.

Demostración:

 \Rightarrow): Supongamos que F_n es isomorfo a F_m