

Paper CODE	EXAMINER	DEPARTMENT	TEL
CPT205		Computing	

1st SEMESTER 2023/24 RESIT EXAMINATION

Undergraduate - Year 3

COMPUTER GRAPHICS

TIME ALLOWED: 2 Hours

INSTRUCTIONS TO CANDIDATES

- 1. This is a closed-book examination, which is to be written without books or notes.
- 2. Total marks available are 100.
- 3. Answer ALL questions in this examination. It is not necessary to copy the questions into the answer booklet.
- 4. Answers should be written in the answer booklet(s) provided. There is NO penalty for providing a wrong answer.
- 5. Only solutions in English are accepted.
- 6. All materials must be returned to the exam invigilator upon completion of the exam. Failure to do so will be deemed academic misconduct and will be dealt with accordingly.

Question 1. Fundamentals

[Total 20 marks]

- 1.1. List at least 4 main topics for computer graphics. [2 marks]
- 1.2. List at least 2 input devices used with computer graphics applications. [2 marks]
- 1.3. What is a pixel in computer graphics? [2 marks]
- 1.4. A straight line is represented as x 2y + 10 = 0. Work out its y-intercept. [2 marks]
- 1.5. For the vectors $V_1 = 3i 5j$ and $V_2 = 5i + 3j$, work out their dot product. [2 marks]
- 1.6. Given two matrices, $\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $\mathbf{B} = \begin{bmatrix} -8 \\ 5 \\ 1 \end{bmatrix}$, determine if they can be multiplied as $\mathbf{A}^*\mathbf{B}$ and why?
- 1.7. What would the following fragment of code do?

[2 marks]

```
Int x=x0, y = y0;
while (x <= x1)
do {
          DrawPoint(x,y);
          x = x + 1;
}</pre>
```

- 1.8. How could a 2D rectangle be scaled by a factor of 3 while its top-right corner remains unchanged? [2 marks]
- 1.9. An object in a 2D space is transformed by two rotations around the same point. Will the result be the same if the order of the two rotations is changed? [2 marks]
- 1.10. There are different matrix modes in OpenGL. Which one of **GL_MODELVIEW** and **GL_PROJECTION** should be used in conjunction with a **glOrtho()** function call and why?

 [2 marks]

Question 2. Transformations and viewing

[Total 20 marks]

2.1. For the 2D object shown in the figures below, work out the 2D homogeneous transformation matrix M which transforms the 2D object in Figure (a) into the 2D object in Figure (b). You can write the transformation matrix as a product of several simpler matrices (i.e., you do not have to multiply the matrices). A diagram can be used to aid your answer. [8 marks]

2.2. Briefly explain line by line what the following fragment of code does.

[8 marks]

```
void init(void) {
    glClearColor(0.0, 1.0, 0.0, 1.0);

glMatrixMode(GL_MODELVIEW);
    glLoadIdentity();
    gluLookAt(100, 50, 50, 50, 50, 0, 0, 1, 0);

glMatrixMode(GL_PROJECTION);
    glLoadIdentity();
    glFrustum(-40, 40, -60, 60, -40, 60);
}
```

2.3. Explain the orthogonal projection and its implementation with OpenGL **glOrtho()**. A diagram can be used to aid your answer. [4 marks]

Question 3. Geometric creation and modelling

[Total 20 marks]

3.1. Briefly explain line by line what the following fragment of code does.

[8 marks]

```
void display()
{
    glClearColor(1, 1, 1, 1);
    glClear(GL_COLOR_BUFFER_BIT);

    glShadeModel(GL_SMOOTH);
    glBegin(GL_TRIANGLES);
    glColor3f(1, 0, 0);
    glVertex2f(-50, 50);
    glColor3f(0, 1, 0);
    glVertex2f(-50, 0);
    glColor3f(0, 0, 1);
    glVertex2f(0, 0);
    glFlush();
}
```

- 3.2. Given the B-Rep (Boundary Representation) model for the pyramid with 4 vertices ([v0] to [v4]) shown below, its base is a square of side length 10 units; the tip of the pyramid is 10 units above the base. [12 marks]
 - a) Draw the diagram in your answer book and label the edges and faces (e.g. with e0, e1, ... and f0, f1, ...).
 - b) Annotate your diagram with the (x,y,z) values of the vertices.
 - c) Produce a table or graph to show the B-Rep of the model.

Question 4. Lighting and texture mapping

[Total 20 marks]

- 4.1. Describe what specular reflectance is and how it is affected with material properties. A diagram can be used to aid your answer. [8 marks]
- 4.2. Given the following two scenarios, work out their combined effect.

[6 marks]

- a) two light sources L1 (0.5, 0.6, 0.7) and L2 (0.2, 0.3, 0.4).
- b) a light source L (1.0, 0.8, 0.6) and a material M (0.0, 0.2, 0.4).
- 4.3. Explain what filtering is and how it works in texture mapping.

[6 marks]

Question 5. Texture mapping and clipping

[Total 20 marks]

5.1. Describe and compare clipping and hidden-surface removal.

[6 marks]

5.2. The following figure shows three lines and a rectangular clipping window.

[8 marks]

- a) Divide the 2D space with outcodes shown for the Cohen-Sutherland clipping algorithm.
- b) Explain the operations that the Cohen-Sutherland clipping algorithm would perform, and the minimum number of clips for each of these lines.

5.3. Briefly explain the z-buffer method for hidden surface removal.

[6 marks]

THIS IS THE END OF THE EXAM.