BTS-VI(S.S)-11-22-1116	Reg. No.						
		1	1	i	ı	 	ı

A

B. Tech. Degree VI Semester Special Supplementary Examination November 2022

CS 19-202-0603 ANALYSIS AND DESIGN OF ALGORITHMS

(2019 Scheme)

Time: 3 Hours

Maximum Marks: 60

Course Outcome

On successful completion of the course, the students will be able to:

- CO1: Analyse a given algorithm and express its worst, best and average time and space complexities in asymptotic notations.
- CO2: Solve recurrence equations using Substitution Method, Changing Variables, Recursion Treeand Masters Theorem.
- CO3: Understand the dynamic programming paradigm and its algorithmic design solutions.
- CO4: Familiarise optimization problems using Greedy Method.
- CO5: Design efficient algorithms using Backtracking and Branch and Bound Techniques for solving problems.
- CO6: Familiarize some approximation algorithms and the benefit of using them.
- CO7: Classify computational problems into P, NP, NP-Hard and NP-Complete complexity classes.

Bloom's Taxonomy Levels (BL): L1 – Remember, L2 – Understand, L3 – Apply, L4 – Analyze, L5 – Evaluate, L6 – Create

PO - Programme Outcome

PART A (Answer ALL questions)

		(Miswei Mizz questions)				
		$(8 \times 3 = 24)$	Marks	BL	CO	PO
. I.	(a)	State Masters theorem.	3	Ĺ1	2	1,3
•	(b)	Estimate worst case, best case and average case complexity of linear search.	3	L2	1	1,3
	(c)	Give the time complexity analysis of bubble sort.	3	L1	2	1,3
	(d)	Differentiate between AVL tree and Red Black Tree.	3	L2	1	1,3
	(e)	Discuss the properties of RBT.	3	L1	1	1.3
	(f)	Discuss about different graph algorithms.	3	L1	4	3
	(g)	Write short notes on the P, NP, NP hard and NP complete complexity classes.	3	L1	7	1,3 3 4,5
	(h)	What are approximation algorithms? Give an example.	3	L1	6	3,10
		PART B				
		$(4 \times 12 = 48)$				
II.	(a)	Solve the following equation by Masters theorem: $T(n) = 4T(n/2) + n$. Solve the given equations using iterative	6	L3	2 .	1,3
		method: $T(n) = 3T(n/2) + n$.				
	(b)	Explain Masters Theorem for divide and conquer and decrease and conquer with example.	6	L4	2	1,3
		OR				
III.	(a)	Solve the given equations using recursive tree method	6	L3	3	1,3
		(i) $T(n) = 4T(n/2) + n^2$				· •
		(ii) $T(n) = T(n/2) + T(n/4) + T(n/8) + n$.				
	(b)	Differentiate between Binomial heap and Fibonacci heap.	6	L2	1	1,3
		SUPPLIE AND A	1682 022		(P.7	Г.О.)

BTS-VI(S.S)-11-22-1116

		Marks	BL	CO	PO
IV.	Explain the analysis of Merge sort algorithm with an example and analyze its best case and worst case complexity. OR	12	L4	3	3
V.	Explain the analysis of Heap sort algorithm with an example analyze its best case and worst case complexity.	12	L4	3	3
VI.	Explain N queens problem with its analysis. OR	12	L1	5	3
VII.	Given a chain of four matrices. The matrices have size 5×4 , 4×6 , 6×2 , 2×7 . Evaluate M [1,4] using dynamic programming approach of Matrix chain multiplication.	12	L3	3	3
VIII.	Discuss the approximation algorithm for TSP in detail with an example.	12	L1	6	3,10
IX.	OR Discuss DR AM models with switchle exemples	12	Ll	6	3,10
IA.	Discuss PRAM models with suitable examples.	12	ъı	U	2,10

Blooms's Taxonomy Levels L1 - 45%, L2 - 10%, L3 - 20%, L4 - 25%.
