Basic Relationships Between Pixels

- Neighborhood
- Adjacency
- Connectivity
- Paths
- Regions and boundaries

Conventional indexing method

Neighbors of a Pixel

• Any pixel p(x, y) has two vertical and two horizontal neighbors, given by

$$(x+1, y), (x-1, y), (x, y+1), (x, y-1)$$

- This set of pixels are called the 4-neighbors of
- P, and is denoted by N4(P).
- Each of them are at a unit distance from P.

4-neighborhood relation considers only vertical and horizontal neighbors.

Note: $q \in N_4(p)$ implies $p \in N_4(q)$

	(x,y-1)		
(x-1,y)	p	(x+1,y)	
	(x,y+1)		

Neighbors of a Pixel (Contd..)

- The four diagonal neighbors of p(x,y) are given by, (x-1, y-1), (x+1, y+1), (x+1, y-1), (x-1, y+1), This set is denoted by $N_D(P)$.
- Each of them are at Euclidean distance of 1.414 from P.

	(x-1,y-1)		(x+1,y-1)	
).		p		
	(x-1,y+1)		(x+1,y+1)	

Adjacency

Let V be set of gray levels values used to define adjacency.

- 4-adjacency: Two pixels p and q with values from V are 4-adjacent if q is in the set N4(p).
- 8-adjacency: Two pixels p and q with values from V are 8-adjacent if q is in the set N8(p).
- m-adjacency: Two pixels p and q with values from V are m-adjacent if,
 - -q is in N4(P) or
 - q is in $N_D(p)$ and the set $[N_4(p) \cap N_4(q)]$ is empty (has no pixels whose values are from V).

Connectivity

• To determine whether the pixels are adjacent.

 $V = \{1, 2\}$

- Let V be the set of gray-level values used to define connectivity; then Two pixels p, q that have values from the set V are:
 - 4-connected, if $q \in N4(p)$
 - 8-connected, if $q \in N8(p)$
 - m-connected, iff
 - $q \in N4(p)$ or
 - $q \in N_D(p)$ and the set $[N_4(p) \cap N_4(q)]$ is empty

Adjacency/Connectivity

- Pixel p is adjacent to pixel q if they are connected.
- Two image subsets S1 and S2 are adjacent if some pixel in S1 is adjacent to some pixel in S2.

Paths & Path lengths

- A path from pixel p with coordinates (x, y) to pixel q with coordinates (s, t) is a sequence of distinct pixels with coordinates:
- $(x0, y0), (x1, y1), (x2, y2) \dots (xn, yn),$
- where $(x\theta, y\theta)=(x, y)$ and (xn, yn)=(s, t); (xi, yi) is adjacent to (xi-1, yi-1), $1 \le i \le n$
- Here *n* is the *length* of the path.
- We can define 4-, 8-, and m-paths based on type of adjacency used.

Distance Measure of Path

If distance depend on the path between two pixels such as m-adjacency then the D_m distance between two pixels is defined as the shortest m-path between the pixels.

Path Length

Find the shortest 4-, 8-, *m-path* between p and q for $V = \{0, 1\}$ and $V = \{1, 2\}$

3 1 2 1

2 2 0 2

1 2 1 1

1 0 1 2 (p)

Tasks done using neighbourhood processing

- Smoothing / averaging
- Noise removal / filtering
- Edge detection
- Contrast enhancement

Problem-1

- Consider the two image subsets, S_1 and S_2 , shown in the following figure. For $V=\{1\}$, determine whether these two subsets are
 - a) 4-adjacent
 - b) 8-adjacent
 - c) m-adjacent

Solution

- 1. S1 and S2 are not 4-connected because q is not in the set $N_4(p)$
- 2. S1 and S2 are 8-connected because q is in the set $N_8(p)$
- 3. S1 and S2 are *m*-connected because
 - a) q is in $N_4(p)$, (**O** \mathbf{r})
 - b) q is in $N_D(p)$ (and)
 - c) the set $N_4(p) \cap N_4(q)$ is empty.

• Given pixels p, q and z with coordinates

respectively, the distance function D has following properties:

a.
$$D(p, q) \ge \theta$$
; [D(p, q) = 0, iff p = q]

$$b. \ D(p, q) = D(q, p)$$

$$c. D(p, z) \leq D(p, q) + D(q, z)$$

• The following are the different Distance measures:

Euclidean Distance: $D_e(p, q) = SQRT[(x - s)^2 + (y - t)^2]$

• City Block Distance:

$$D_4(p, q) = |x-s| + |y-t|$$

• Chess Board Distance:

$$D_8(p, q) = \max(|x-s|, |y-t|)$$

2	2	2	2	2
2	-1			2
2		0	eral.	2
2	1	1	1	2
2	2	2	2	2