Université Paris 6 Pierre et Marie Curie Master 2 de Mathématiques fondamentales

Rapport de Stage Encadré par Antoine Ducros

Connexité de certains espaces de Berkovich

15 Septembre 2009

Table des matières

1	Introduction	1
2	Connexité des fibres	2
3	Les espaces V_{ϵ} vus comme des fibres	8
4	Traiter la fibre au dessus de 0	11
5	Le cas général	14
6	La variation des composantes connexes géometriques	15

1 Introduction

Nous allons présenter ici deux résultats de [?]. Etant donné X un espace analytique au sens de Berkovich, et f un fonction analytique de X on s'intéresse à la connexité, et même à l'irréductiblité des domaines afinoïdes de $X:V_{\epsilon}=\{x\in X\mid |f(x)|\geq \epsilon\}$. On aimerait pouvoir dire que quand X est irréductible

, pour ϵ assez petit, il en sera de même pour V_{ϵ} . La philosophie des espaces analytiques au sens de Berkovich étant de fournir des outils similaires à ceux de la géometrie analytique complexe, il est déjà naturel de regarder ce qu'il en est dans ce dernier cadre. Or il est facile de voir que tel quel, le résultat est faux, pour des raisons de non compacité (dans l'introduction de [?], l'auteur donne un contre-exemple). Cependant en géometrie analytique au sens de Berkovich, les briques que l'on recollent, les espaces affinoïdes, sont compactes, et donc on peut éspèrer demontrer le résultat pour un espace X k-affinoïde irréductible. On va tenter d'expliquer la démonstration de ce résultat, un peu plus général :

Théorème 1.1 [?] Si X est un espace k-affinoïde irréductible, et $f_1, \ldots f_n$ n fonctions analytiques sur X, alors il existe un voisinage V de $0 = (0, \ldots 0) \in \mathbb{R}^n_+$ tel que pour tou $\epsilon = (\epsilon_1, \ldots, \epsilon_n) \in V$ le domaine analytique

$$V_{\epsilon} = \bigcup_{j \in \{1..n\}} \{ x \in X \mid |f_j(x)| \ge \epsilon_j \}$$

est irréductible.

Ce résultat amène deux autres quastions naturelles :

La première est de se demander si un résultat similaire s'étend aux groupes de cohomologies étales tels que définis dans [?]. La seconde est de comprendre comment les composantes connexes varient avec ϵ , i.e. d'élargir le résultat du théorème précédent qui ne traite que du comportement au voisinage de 0.

Pour la seconde partie, le théorème 2 de [?] apporte la réponse suivante. au lieu de considérer le composantes connexes (qui dans le cas d'un esapce intègre correspondent aux composantes irréductibles), il considère les composantes connexes géométriques, et plus précisément le foncteur composantes connexes géometriques

$$\pi_0^g: espaces \ k-analytique \rightarrow Ens_{Aut(\overline{k}/k)}$$

la deuxième catégorie étant celle des ensembles munis d'une action de $Gal(\overline{k}/k)$. De même il considère le foncteur composantes irréductibles géometriques

$$ci^g: espaces \ k-analytique \rightarrow Ens_{Aut(\overline{k}/k)}.$$

De plus on note R_X le \mathbb{Q} espace vectoriel de \mathbb{R}_+^* engendré par les valeurs non nulles de la norme spectrale sur l'algèbre affinoïde de X. Le théorème est alors le suivant :

Théorème 1.2 Soit X un espace k-affinoïde, f une fonction de X, alors il existe une partition \mathcal{P} de \mathbb{R}_+ ,

$$\mathcal{P} = \{ [0, a_0], |a_0, a_1|, \dots, |a_{r-1}, a_r|, |a_r, \infty[\}$$

avec $a_i \in R_X$, et où pour tout $I \in \mathcal{P}$ et pour tout $\epsilon \leq \epsilon'$ tous deux dans I le morphisme d'inclusion $V_{\epsilon'} \hookrightarrow V_{\epsilon}$ induit une bijection

$$\pi_0^g(V_{\epsilon'}) \simeq \pi_0^g(V_{\epsilon})$$
.

On a le même résultat pour le foncteur ci^g .

2 Connexité des fibres

Définition 2.1 un R-schéma formel est dit admissible s'il est localement topologiquement de type fini, i.e. de la forme $R\{X_1,...,X_n\}/\mathfrak{a}$ avec \mathfrak{a} un idéal de type fini, et plat sur R.

Lemme 2.1 Si $\phi: Y \to X$ est un morphisme plat entre R schémas formels admissibles, il le reste après changement de base du type $\psi: Z \to X$ où Z est un R schéma formel admissible. De même, ϕ reste plat après extension des scalaires de R à S, où S est l'anneau de valuation d'une extension ultrametrique de k.

Démo : D'après [?] un morphisme $\phi:A\to B$ de R algèbre tpf est plat ssi les morphismes associés $A\otimes_R R_n\to B\otimes_R R_n$ sont plats pour tous $n\in\mathbb{N}$ où $R_n=R/\mathcal{I}^{n+1}$, \mathcal{I} étant un idéal de définition de R. Comme $(B\hat{\otimes}_A C)\otimes_R R_n=(B\otimes_A C)\otimes_R R_n$, on peut se ramener à un changement de base "classique" pour lequel on sait que la platitude est conservée. \square

Lemme 2.2 Sur un schéma formel admissible, l'application de réduction est surjective

Démo : Rappelons ce dont il s'agit. Si X = Spf(A) où A est une algèbre admissible, on a la fibre générique de X, $X_{\eta} = \mathcal{M}(A \otimes_R k)$, et la fibre spécial de X, $X_s = Sp(A \otimes_R \tilde{k}) = Sp(A/\mathcal{I})$. L'application de réduction $\pi: X_{\eta} \to X_s$ est alors définie ainsi. A $\chi \in X_{\eta}$, on peut associer $\tilde{\chi}: \tilde{A} \to \mathcal{H}(\chi)$. $\pi(\chi)$ est alors $Ker(\tilde{A})$.

Pour montrer le résultat, on se ramène à la situation affine, et on se donne donc une R algèbre admissible A, et on considère un point \tilde{y} de X_s , et $\tilde{k}(\tilde{y})$ son corps résiduel. Si on considère $(T_1,..,T_n)$ une base de transcendence de ce corps, et qu'on note L, le complété de la cloture algebrique du complété de $k(U_1,..,U_n)$ pour la norme de Gauss, alors L est R admissible , et L° est une cloture algebrique de $\tilde{k}(U_1,..,U_n)$, donc contient $\tilde{k}(\tilde{y})$. De cela on déduit qu'en notant $Z = Spf(A) \times_{Spf(R)} Spf(L^\circ)$, Z_s contient un point fermé au dessus de X_s . D'après [?] 1.1.5 ou [?] 2.7.8 , les points fermés de la fibre spéciale sont atteint par l'application de réduction, et cela permet de conclure. \square

Lemme 2.3 Soit $\phi: \mathcal{Y} \to \mathcal{X}$ un morphisme de R schémas formels plat. Alors en considérant les applications du diagramme suivant

$$\begin{array}{ccc} \mathcal{Y}_{\eta} & \xrightarrow{\pi} & \mathcal{Y}_{s} \\ \phi_{\eta} & & \phi_{s} \\ \downarrow & & \downarrow \\ \mathcal{X}_{\eta} & \xrightarrow{\pi} & \mathcal{X}_{s} \end{array}$$

on a pour tout $z \in \mathcal{X}_{\eta}$, $\pi(\phi_{\eta}^{-1}(z)) \simeq \phi_{s}^{-1}(\pi(z))$.

Démo . Le fait que $\pi(\phi_{\eta}^{-1}(z)) \subset \phi_s^{-1}(\pi(z))$ est purement ensembliste : si $x = \pi(y)$ avec $\phi_{\eta}(y) = z$, alors par commutativité du diagramme ci-dessus, $\pi(\phi_{eta}(y)) = \pi(z) = \phi_s(\pi(y)) = \phi_s(x)$. Ainsi $x \in \phi_s^{-1}(\pi(z))$.

Réciproquement, si $z \in \mathcal{X}_{\eta}$, qu'on suppose affine d'algèbre \mathcal{C} , on lui associe un morphisme $\chi: \mathcal{C} \to \mathcal{H}(z)^{\circ}$. On en déduit un schéma formel $\mathcal{Y}_{\mathcal{X}}Spf(\mathcal{H}(z)^{\circ})$ dont la fibre générique est $\phi_{\eta}^{-1}(z)$, et la fibre sepéciale à $\phi_{s}^{-1}(\pi(z))$ puis en utilisant le lemme précéedent et le fait que le mrophisme d'extension des scalaires est surjectif, on peut conclure. \square

Définition 2.2 On se donne une application continue d'espaces topologiques $p:A\to B$. Etant donné $r\in\mathbb{N}$ et des espaces topologiques $(Q_i)_{1\leq i\leq r}$ et deux familles d'applications continues :

$$Q_i \xrightarrow{t_i} A$$

$$s_i \downarrow \\ B$$

on dira que ces données repèrent les composantes connexes de p si

- 1. pour tout i, $im(s_i) \supset P$
- 2. pour tout $b \in P$ la fibre $p^{-1}(b)$ contient r composantes connexes
- 3. pour tout $b \in P$, et C une des r composantes connexes de $p^{-1}(b)$, \exists ! $i \in \{1..r\}$ tel que $t_i(s_i^{-1}(\{b\})) \subset C$.

Définition 2.3 $Si \phi : Y \to Z$ est un morphisme de schéma et P est une partie de l'espace sous-jacent à Z, on dira que ϕ admet un découpage au dessus de P s'il existe pour i=1..r des digrammes

$$Z_{i} \times_{Z} Y \xrightarrow{s'_{i}} Y$$

$$\downarrow t_{i} \downarrow \downarrow \phi$$

$$Z_{i} \xrightarrow{s_{i}} Z$$

où t_i est une section, s_i est éale et les familles s_i et $s_i' \circ t_i$ repèrent les composantes connexes de ϕ au dessus de P:

$$Z_{i} \xrightarrow{t_{i}} Z_{i} \times_{Z} Y \xrightarrow{s'_{i}} Y$$

$$\downarrow s_{i} \downarrow X$$

$$Z$$

On adopte la même définition pour les espaces k-analytiques, en remplaçant les morphismes étales par des morphismes quasi-étales dont la source est compacte.

Définition 2.4 Un schéma, ou espace k-analytique est déployé si ses composantes connexes sont géometriquement connexes.

Proposition 2.1 Si $\phi: Y \to Z$ est un morphisme plat de schémas de type fini sur un corps k, surjectif, à fibres géometriquement réduites et déployées, alors il existe une partition $\mathcal P$ de Z dont les parties P de $\mathcal P$ sont constructibles et telle que ϕ admet un découpage au dessus de P pour tout $P \in \mathcal P$.

Démo : On prend X un fermé irréductible de Z, et on considère le carré cartésien :

On note ζ le point générique de X, et $C_1,...,C_r$ les composantes connexes de $\psi^{-1}(\zeta)$. Choisissons des ouverts $U_1,...,U_r$ de W tels que $U_i \cap \psi^{-1}(\zeta) = C_i$ pour tout i. On considère l'ensemble des points de X qui appartiennent à au moins deux des U_i . C'est un ouvert (à savoir $\bigcup_{i \neq j} U_i \cap U_j$) donc en particulier une partie constructible, donc d'après le théorème de Chevalley, son image par ψ est aussi une partie constructible que l'on note V. Vu la définition des U_i on a que $\zeta \notin V$. Comme V est constructible, on en déduit qu'il existe un ouvert W de Z tel $V \cap W = \emptyset$. Autrement dit, deux points z, z' de $\bigcup_i U_i$ tels que $\psi(z) = \psi(z') \in W$ doivent appartenir au même ouvert U_i .

En réutilisant le théorème de Chevalley, on peut montrer qu'il existe une partie constructible W' incluse dans W tel que pour tout $z \in W'$, $\psi^{-1}(z) \subset \cup_i U_i$. En effet $\psi^{-1}(W) \cap (\cup_i U_i)^c$ est un partie constructible, disons D et $\psi(D)$ est exactement l'ensemble des éléments de W tel que leur fibre ne soit pas recouverte par les U_i . Anisi, $W' = W \setminus D$ est une partie qui convient, et elle contient ζ . On peut la supposer ouverte.

D'après un résultat de géometrie algebrique [?] 9.7.8 , il existe un voisinage ouvert W'' de ζ dans X au dessus duquel le nombre de composantes connexes géometriques des fibres de ψ est constant, donc égal à r en vertu du fait que c'est le cas au dessus de ζ et en utilisant que ψ , et don ϕ est déployé.

Comme W est un sous-schéma fermé de Y, on peut trouver des ouverts de Y, V_i' , tels que leur image inverse par le morphisme $X \times_Z Y = W \to Y$ soit les U_i . On note alors ϕ_i la restriction de ϕ à V_i . Par hypothèse $\phi_i^{-1}(\zeta) = C_i$ est donc non vide et géometriquement réduite (car par hypothèse $\phi^{-1}(\zeta)$ est réduite), et C_i en est un ouvert, donc est réduite aussi, et donc d'après [?] [4.2.21] contient un point régulier. On peut donc supposer ϕ_i lisse. Comme les morphismes lisses ont localement des sections pour la topologie étale, on a qu'il existe pour tout i un schéma quasi-compact S_i et un morphisme étale $s_i: S_i \to Z$ et une section t_i , qui rende le diagramme suivant commutatif:

$$S_{i} \times_{Z} V'_{i} \xrightarrow{s'_{i}} V'_{i}$$

$$t_{i} \bigvee V_{i} \xrightarrow{s_{i}} Z$$

Comme un morphisme étale est ouvert (???) on en déduit que les images des s_i contiennent un voisinage ouvert commun de ζ , que l'on note P. En faisant l'intersection de P avec W'', que l'on renote P, on garde donc une partie constructible. Par hypothèse, les images des s_i recouvrent P, les fibres $\phi^{-1}(z)$ au dessus de P continnent r composantes connexes, qui sont exactement repérées par les $v_i' = s_i' \circ t_i$, i.e. qui sont exactement les $\phi_i^{-1}(z)$. Ainsi, si $b \in P$, que C_i est

la composante connexe de $\phi^{-1}(b)$ associée à ϕ_i , on a bien $\forall b' \in s_i^{-1}(b)$ $s_i' \circ t_i \in C_i$, et on a bien montré que ϕ à un découpage au dessus de P.

Ainsi, on a retiré un ouvert $p_0 = P$ à $Z_0 = Z$ tel que ϕ admette un découpage au dessus de P. On peut ensuite munir $Z_1 = Z \setminus P$ d'une structure de sous schéma fermée de Z, et recommencer. On obtient ainsi une suite de fermés $Z = Z_0 \subset ... \subset Z_n$ et des parties $P_i = Z_i \setminus Z_{i+1}$ telles que P_i est un ouvert de Z_i (donc constructible dans Z) et telles que ϕ y admette un découpage. Par noethérianité, la suite des Z_i se stabilise, donc les P_i , sont en nombre fini et partitionnent Z, comme voulu. \square

Proposition 2.2 Si $\phi: Y \to Z$ est un morphisme plat de R-schémas formels admissibles et quasi-compact, surjectif, à fibres géometriquement réduites et déployées, alors il existe une partition \mathcal{P} de Z dont les parties P de \mathcal{P} sont constructibles et tel que ϕ_{η} admet un découpage au dessus du tube de P pour tout $P \in \mathcal{P}$.

Démo : On applique la proposition précedente au morphisme de spécialisation ϕ_s . Puis on peut relever ces constructions aux schémas formels admissibles. Précisément, on avait sur la spécialisation un diagramme :

Frecisement, on available
$$S_i \times_Z V_i' \xrightarrow{s_i'} V_i'$$

$$t_i \bigvee_{S_i \longrightarrow S_i} S_i \longrightarrow Z$$

On considère alors \mathcal{U} le sous-schéma formel ouvert de \mathcal{Y} d'ouvert V_i' et le morphisme associé $\phi:\mathcal{U}\to\mathcal{Z}$, puis on peut relever le morphisme étale s_i au niveau des schémas formels en utilisant le résultat de [?] [2.1] qui énonce une équivalence de categoire donnée par la spécialisation entre les schémas formels étales (cf def dans le même article) au dessus de Z et les schémas au dessus de Z_s . On a donc relevé le carré cartesien. On peut aussi relever la section t_i en une section formelle T en utilisant la propriété de relèvement infinitésimal des morphismes lisses entre schémas formel [?]. On obtient ainsi le diagramme suivent :

$$\begin{array}{ccc}
S \times_{\mathcal{Z}} \mathcal{U} \longrightarrow \mathcal{U} \\
\downarrow^{T} \downarrow & \downarrow \\
S \longrightarrow_{\mathcal{Z}}
\end{array}$$

Associé au morphisme entre les fibres spéciales on avait donc une partition \mathcal{P} de \mathcal{Z}_s . Pour $P \in \mathcal{P}$, on considère P_{η} le tube au dessus de P, et si $z \in P_{\eta}$, en notant \tilde{z} sa spécialisation, on a $\pi(\phi_{\eta}^{-1}(z)) = \phi_s^{-1}(\tilde{z})$ d'après le lemme 3. Par ailleurs, la réduction au sens des schémas formels coïncide avec celle au sens de la norme spectrale (cf [?]). Et pour celle ci les composantes connexes d'un espace affinoïde correspondent aux composantes connexes de sa réduction. Ainsi les composantes connexes de $\phi^{-1}(z)$ correspondent aux images inverses de celles de leur reduction, donc aux images inverses de $\phi_s^{-1}(\tilde{z})$; pour montrer cela, on utilise le fait que pour une algèbre k-affinoïde, l'application de réduction est

anti-continue, et que l'image inverse d'un ouvert non-vide de la réduction est un fermé non-vide. On en déduit qu'on a le découpage voulu, en utilisant le fait qu'un morphisme étale de schémas formels quasi-compact induit sur les fibres génériques un morphisme quasi-étale entre espaces quasi-compacts. \Box

Définition 2.5 Si Y est un espace k-affinoïde, une partie V de Y est simple si elle s'obtient par combinaison booléenne finie de domaines de la forme

$${z \in Y \mid |h(z)| = 1}$$

où h est une fonction analytique sur Y de norme spéctrale 1.

Théorème 2.1 Si $\phi: Y \to Z$ est un morphisme plat d'espaces strictement k-afinoïdes dont les fibres sont géometriquement réduites et déployées, il existe une partition \mathcal{P} de Z en parties simples de domaines affinoïdes de Z telle que ϕ admet un découpage au dessus de P pour tout $P \in \mathcal{P}$.

Démo : On utilise le théorème de la fibre réduite \cite{black} à un modèle formel de ϕ , ce qui nous donne

où ψ est notre modèle formel de ϕ , ${\mathcal Z'}_{\eta} \to {\mathcal Z}_{\eta}$ est quasi-etale et surjectif, χ est fini et induit un isomorphisme en fibre générqies, ψ' est plat à fibres géometriquent réduites.

On vérifie que le morphisme ψ' vérifie les hypothèses de la proposition précedente.

On a ainsi une partition \mathcal{P} de \mathcal{Z}'_s en ensembles constructibles au dessus des tubes desquels ψ'_η admet un découpage. Comme le morphisme $\lambda: Z' \to Z$ est surjectif et quasi-étale , on en déduit que les images par λ des tubes de \mathcal{P} nous done un recouvrement de Z au dessus duquel on a un découpage induit par celui de Z'. Quitte à prendre des combinaisons booléennes de ce recouvrement, on peut en faire une partition, et il nous reste seulement à montrer que ces parties (images par λ des tubes de parties constructibles) sont des parties simples d'affinoïdes.

Or $\lambda: Z' \to Z$ étant plat, d'après [?] 5.2, on peut trouver un digramme

$$\begin{array}{c|c}
\mathcal{Z}_0 & \stackrel{\mu}{\longleftarrow} \mathcal{Z'}_0 \\
\downarrow & & \psi_0 \\
\mathcal{Z} & \stackrel{\psi_0}{\longleftarrow} \mathcal{Z'}
\end{array}$$

où ψ_0 est un éclatement formel admissible et μ est plat et induit le même morphisme sur les fibres génériques. Avec le lemme 3, on en déduit que l'image par

 λ du tube de P est le tube de l'image, donc le tube d'une partie constructible de \mathcal{Z} avec le théorème de Chevalley. Pour finir, on remarque que le tube d'une partie constructible d'un schéma formel affine est simple. En effet si $f \in \mathcal{A}^{\circ}$, dans une algèbre k-affinoïde, et que π est l'application de réduction, $\pi : \mathcal{A} \to Spec(\tilde{\mathcal{A}}, \text{alors } \pi^{-1}(\mathcal{D}(\tilde{f})) = \{x \in \mathcal{M}(\mathcal{A}) \mid |f(x)| = 1$

Comme $\mathcal Z$ est quasi-compact, on a un recouvrement fini par des affinoïdes, ce qui nous permet de conclure. \Box

Théorème 2.2 Si $\phi: Y \to Z$ est un morphisme plat entre espaces strictement k-affinoïdes dont les fibres sont géometriquement réduites, il existe une partition de Z en parties simples de domaines affinoïdes au dessus desquelles le nombre de composantes connexes des fibres est constant.

Démo : on utilise de même le théorème de la fibre réduite sur un modèle formel de ϕ . Le morphisme entre les fibres spéciales ψ'_s étant de type entre des variétés sur \tilde{k} , d'après [?], \mathcal{Z}'_s se partitionne en constructibles au dessus desquels le nombre de composantes connexes des fibres est constant. Puis on fait le même raisonnement que dans la proposition précédente. \square

Comme les parties simples sont voisinages de leurs points rigides, on a en particulier que sous le hypothèses de cette proposition, le nombre de composantes connexes des fibres est localement constant au dessus des points rigides.

3 Les espaces V_{ϵ} vus comme des fibres

Ici, k est corps ultramétrique algébriquement clos, de valuation non triviale, A une algebre strictement k-affinoïde intègre, et $X = \mathcal{M}(A)$. On pose $\mathbf{D} = \mathcal{M}(k\{U\})$. On considère le morphisme τ d'esapce affinoïdes induit par le morphisme d'algebre affinoïde

$$\tau: k\{U\} \to \mathcal{A}\{T, U\}/(fT - U)$$

Au niveau des points rigides, le deuxième espace, est l'ensembles des triplets (x,t,u) avex $x\in X,t,u\in R$ tels que f(x)t=u, et le morphisme τ envoie un tel triplet sur u. En particulier la fibre $\tau^{-1}(v)$, pour $v\in \mathbf{D}$ différent du point 0 correspond aux triplets (x,t,v) tels que f(x)t=v, et si on projette sur la première variable (x), on obtient un isomorphisme avec les points rigides $x\in X$ tels que $|f(x)|\geq |v|$.

En revenant au cadre des espaces de Berkovich, on a :

Proposition 3.1 Pour $v \in \mathbf{D} \setminus 0$, la fibre, $\tau^{-1}(v)$ est isomorphe à $V_{\epsilon} \hat{\otimes}_k \mathcal{H}(x)$ où $\epsilon = |U(x)|$, et elle est géometriquement réduite.

Démo : Notons $\mathcal{B} = \mathcal{A} \hat{\otimes}_k \mathcal{H}(x)$. L'algèbre de la fibre de $\tau^{-1}(x)$ est alors

$$\mathcal{A}{T,U}/(fT-U)\hat{\otimes}_{k{U}}\mathcal{H}(x) \simeq \mathcal{B}{T}/(fT-U(x))$$

Comme $U(x) \neq 0$ car $x \neq 0$ cette dernière est elle même isomorphe à $\mathcal{B}\{\epsilon T\}/(fT-1)$ car f est de norme spéctrale 1. Et on reconnaît l'algèbre du domaine affinoïde

$$\{y \in \mathcal{M}(\mathcal{B}) \mid |f(y)| \ge \epsilon\}.$$

Lemme 3.1 Le morphisme τ est plat

Démo : L'anneau $k\{U\}$ est principal, cela découle du lemme préparatoire de Weierstrass, et donc il suffit de montrer que $\mathcal{A}\{T,U\}/(fT-U)$ ne possède pas d'éléments de $k\{U\}$ torsion. Comme de plus $\mathcal{A}\{T,U\}/(fT-U) \simeq \mathcal{A}\{T\}$ qui est intègre, il suffit de montrer que le morphisme est injectif. Or d'après la proposition précédente, on sait que la fibre au dessus de η , la norme de Gauss de \mathbf{D} est non vide. Ainsi, si on note χ un point de $\mathcal{M}(\mathcal{A}\{T,U\}/(fT-U)$ qui s'envoie par τ sur η , on a le diagramme commutatif suivant :

$$\mathcal{A}\{T,U\}/(fT-U) \stackrel{\tau}{\longleftarrow} k\{U\}$$

$$\downarrow \qquad \qquad \qquad \downarrow^{\rho}$$

$$\mathcal{H}(\chi) \longleftarrow Frac(k\{U\})$$

П

et comme ρ est injectif, ainsi que l'inclusion de corps $Frac(k\{U\} \to \mathcal{H}(\chi))$, on en déduit que τ est injectif, donc plat.

Ainsi, on est très proche de pouvoir appliquer le théorème 2.2. Il faudrait encore pouvoir montrer que la fibre de τ au dessus de 0 est réduite (comme on a supposé k algebriquement clos, cela équivaut à géometriquement réduite), et montrer qu'elle est connexe. Tout d'abord, il faut étudier l'algèbre de cette fibre. Elle vaut :

$$\mathcal{A}{T,U}/(fT-U)\hat{\otimes}_{k\{U\}}\mathcal{H}(0) \simeq \mathcal{A}{T}/(fT)$$

De manière informelle, la raison pour laquelle on a la connexité est que $\mathcal{M}(\mathcal{A}\{T\}/(fT))$ est la réunion de $X = \mathcal{M}(\mathcal{A})$ qui est connexe par hypothèse, et de droites (qui sont connexes) au dessus de l'hypersurface de X définie par f. Montrons d'abord trois lemmes :

Lemme 3.2 Si \mathcal{B} est un anneau de Banach, et $g, h \in \mathcal{B}$, on a deux injections naturelles:

$$\mathcal{M}(\mathcal{B}/g) \xrightarrow{\alpha} \mathcal{M}(\mathcal{B}/(g.h)) = Y$$

$$\beta \uparrow \\ \mathcal{M}(\mathcal{B}/h)$$

et on a $Y = im(\alpha) \cup im(\beta)$.

En effet si $\chi \in Y$, on a un morphisme borné et multiplicatif $\chi : \mathcal{B}/gh \to \mathcal{H}(\chi)$, donc comme $\chi(g).\chi(h)=0$, quitte à inverser g et h on peut supposer $\chi(g)=0$, ce qui nous permet de factoriser χ ainsi :

et on a alors $\chi \in im(\alpha)$. \square

Lemme 3.3 Si \mathcal{B} est une algèbre affinoïde, qu'on note ϕ le morphisme injectif $\mathcal{M}(\mathcal{B}) \hookrightarrow \mathcal{M}(\mathcal{B}\{T\})$ défini par $T \mapsto 0$, toutes les composantes connexes de $\mathcal{M}(\mathcal{B}\{T\})$ rencontrent l'image de ϕ .

On considère ψ la section naturelle de ϕ :

$$\psi: \mathcal{M}(\mathcal{B}\{T\}) \to \mathcal{M}(\mathcal{B})$$

Pour y un point de $\mathcal{M}(\{B\})$, l'algèbre de sa fibre par ψ est $\mathcal{H}(y)\hat{\otimes}_{\mathcal{B}}\mathcal{B}\{T\}\simeq\mathcal{H}(y)\{T\}$. Ainsi la fibre au dessus de y par ψ est une droite qui est connexe d'après [?]. Ainsi, étant donné un point x de $\mathcal{M}(\mathcal{B}\{T\})$, on a que x est dans la même composante connexe que $\phi\circ\psi(x)$. \square

Lemme 3.4 Si \mathcal{B} est une algèbre k-affinoïde intègre, et $f \in \mathcal{B}$, alors $\mathcal{B}\{T\}/f \simeq (\mathcal{B}/f)\{T\}$

On a une surjection $\mathcal{B}\{T\}/f \to \mathcal{B}/f\{T\}$. Pour montrer qu'elle est injective, soit $\sum_{i\in\mathbb{N}}a_iT^i$ un elément s'envoyant sur 0 i.e. tel que $a_i=b_i.f$ pour tout i. On sait d'après [?] que ||a|| est le sup des normes de a sur le bord de Shilov Γ de $\mathcal{M}(\mathcal{B})$, qui est fini. De plus, on sait d'après [?] 2.1 qu'une fonction f s'annulant sur un point du bord de Shilov d'une algèbre affinoïde est nilpotente, donc dans notre cas comme f est non nulle, il existe M>0 telle que $|f(x)|\geq M$ pour tout $x\in\Gamma$. Et donc on a que $||a_i||\geq M.||b_i||$, on en déduit que $\sum_{i\in\mathbb{N}}b_iT^i\in\mathcal{B}\{T\}$. \square

On peut maintenant montrer:

Proposition 3.2 $\tau^{-1}(0)$ est connexe.

D'après les lemmes ci dessus, on a que $\tau^{-1}(0) \simeq \mathcal{M}(\mathcal{A}\{T\}/(fT))$ qui est la réunion de $\mathcal{M}(\mathcal{A}\{T\}/f)$ est de $\mathcal{M}(\mathcal{A}\{T\}/T) \simeq \mathcal{M}(\mathcal{A})$. Le second est connexe par hypothèse, et on a que le premier est isomorphe à $\mathcal{M}((\mathcal{A}/f)\{T\})$. On sait que chacune des composantes connexes de cet espace rencontre l'image de $\gamma: \mathcal{M}(\mathcal{A}/f) \hookrightarrow \mathcal{M}((\mathcal{A}/f)\{T\})$ où on envoie T sur 0:

Or l'image de $\beta \circ \gamma$ est incluse dans celle de α , donc Y est la réunion d'un ensemble connexe C, et d'ensembles connexes rencontrant C, donc est connexe. \Box

Lemme 3.5 Si A est une algèbre affinoïde intègre, $f \in A$, telle que A/f soit réduite, alors $A\{T\}/fT$ est réduite.

Soit $g=\sum_{i\in\mathbb{N}}a_iT^i\in\mathcal{A}\{T\}$ telle que $\tilde{g}^m=0$ avec m>0. Montrons que $\tilde{g}=0$. Déjà on peut se ramener au cas où m=2. On a $g^2=a_0^2+T(a_0a_1+a_1a_0)+\dots+T^{2n}(a_0a_{2n}+\dots+a_n^2+\dots+a_{2n}a_0)+\dots=\sum_{i\in\mathbb{N}}fT^{i+1}b_i$ Ainsi $a_0^2=0$ donc $a_0=0$ et par récurrence pour n>0 $\tilde{a_n}^2=0$ donc $\tilde{a_n}=0$, i.e. $a_n=c_n.fT$. Enfin, en faisant la même remarque que dans le lemme 3.4 avec le bord de Shilov d'une algèbre intègre, on en déduit que $\sum_{i\in\mathbb{N}}c_iT^i\in\mathcal{A}\{T\}$. \square En mettant toutes ces remarques bout à bout, on a le résultat intermédiaire :

Théorème 3.1 Sous le hypothèses de cette section, et si l'hypersurface $Y = \mathcal{M}(\mathcal{A}/f)$ est réduite, pour ϵ assez petit, V_{ϵ} est connexe.

Démo : On peut appliquer le théorème 2.2 au morphisme τ , et donc, le nombre de composante connexe des ses fibres y est constant au voisinage du point rigide 0 de \mathbf{D} . Comme on vient de voir que la fibre au dessus de O est connexe, c'est aussi le cas pour ϵ assez petit au dessus de η_{ϵ} , et les fibres en question sont $V_{\epsilon} \hat{\otimes} \mathcal{H}(\eta_{\epsilon})$. Comme le nombre de composantes connexes ne change pas par extension des scalaires [?] 5.5, on en déduit le résultat. \square

4 Traiter la fibre au dessus de 0

Pour traîter le problème au dessus de 0, on repasse dans le monde des schémas. On va y utiliser le fait qu'un anneau A est réduit si et seulement si il est R_0 et S_1 . Comme un anneau normal A est R_1 et S_2 si $f \in A$, A/f est S_1 et pour vérifier qu'il est réduit, on n'a qu'à vérifier qu'il est régulier en codimension 0, i.e à vérifier qu'il est réduit en codimension 0.

Cet avantage des espaces normaux, on peut l'utiliser en remarquant que si on considère le morphisme de normalisation de notre espace k-affinoïde : $X' \to X$, alors, si on montre le résultat d'irréductibilité pour les espaces V_{ϵ} dans le normalisé, on l'obtient pour l'espace X de départ. Cela permet de se ramener à un espace normal, pour lequel l'irréductibilité équivaut à la connexité.

On considère donc le morphisme τ de but \mathbf{D} , et on voudrait que sa fibre en 0 soit réduite, ce qui en vertu de ce qui vient d'être dit équivaut à dire que l'anneau de la fibre soit génériquement réduit. Soit donc $\eta_1, ..., \eta_r$ les points générques de la fibre (remarquons que l'anneau de la fibre en 0 est le même au sens schématique et analytique). On veut donc montrer que les anneaux locaux $\mathcal{O}_{\tau^{-1}(0),\eta_i}$ sont réduits. Si on note $F = Spec(\mathcal{A}\{T,U\}/(fT-U)$, on a $\mathcal{O}_{\tau^{-1}(0),\eta_i} = \mathcal{O}_{F,\eta_i} \otimes_{\mathcal{O}_{D,0}} k(0)$. Et cet anneau sera réduit si et seulement si l'idéal maximal de $\mathcal{O}_{D,0}$ engendre celui de \mathcal{O}_{F,η_i} , donc si le morphisme induit est faibelement ramifié.

Lemme 4.1 lemme d'Abhyankar : si $K \to L$ est une inclusion de corps munis de valuation discrète, il existe une inclusion finie $K \to M$ telle qu'on ait

$$K \longrightarrow L$$

$$\downarrow$$

$$\downarrow$$

$$M \longrightarrow (L, M)$$

où (L,M) est un corps conteant L et M engendré par ceux-ci, et $M \to (L,M)$ est non ramifiée.

Dans le cas où l'extension est non modérée, il nous faut utiliser un résultat plus fort de [?] :

Théorème 4.1 Etant donné trois extensions

$$K \longrightarrow K'$$

$$A \longrightarrow A'$$

1 _____1

où A (resp A') est un anneau de valuation discrète dont le corps des fractions est K (resp. K'), et de corps résiduel k (resp. k'), de caracteristique p>0. On suppose que le plus grand sous-sorps parfait de l' noté $l'^{p^{\infty}}$ est algébrique et séparable sur l, alors il existe une extension fini K_1 de K telle que :

- 1. la fermeture integrale de A dans K_1 notée A_1 est un A-module fini, et un anneau de valuation discrète.
- 2. En notant K'_1 la composée de K et de K_1 , si A'_1 est un anneau de valuation discrète dont le corps des fractions est K'_1 et qui domine A' alors A'_1 est faiblement ramifié au dessus de A_1 .

On va donc essayer d'appliquer ce théorème au corps des fractions de l'anneau local en 0 de $Spec(k\{U\})$, $\mathcal{O}_{D,0}$, et de l'anneau local des points générques de la fibre en 0, \mathcal{O}_{F,η_i} qui sont de valuation discrète. Il nous faut vérifier les hypothèses, à savoir que le plus petit sous-corps parfait du corps résiduel de \mathcal{O}_{F,η_i} est le corps résiduel de $Spec(k\{U\})$, ces derniers étant précisément $Frac(\mathcal{A}/\eta_i)$ (qui est une algebre strictement k-affinoïde) et k.

Lemme 4.2 Si \mathcal{B} est une algèbre strictement k-affinoïde intègre, avec car(k) > 0 et k algebriquement clos, le plus grand sous-corps parfait inclus dans son corps des fractions est k.

En caracteristique p>0, un corps l est parfait si et seulement si le morphisme de Froebinius , $x\to x^p$ est surjectif. Montrons alors le résultat quand $\mathcal B$ est une algèbre de Tate, i.e. de la forme $k\{T_1,...,T_n\}$. Si le plus grand sous corps parfait de $Frac(\mathcal B)$ est l , on a déjà $k\subset l$ car k étant algebriquement clos est parfait. Réciproquement si $x\in l\backslash k$, comme $\mathcal B$, en tant qu' algèbre de Tate est factorielle, et que ses éléments inversibles sont précisément les constantes de k,

on a $x = \lambda . x_1^{a_1} ... x_n^{a_n}$ où $\lambda \in k$ les x_i sont des éléments irréductibles premiers entre eux, et les a_i des entiers non nuls. On peut même choisir x avec un élément $|a_i|$ minimum. Alors, on a que x ne peut être de la forme y^p avec $y \in l$.

Dans le cas général, on a d'après le lemme de normalisation de Noether un morphisme fini $k\{T_1,...,T_n\} \to \mathcal{B}$. D'après [?] le résultat reste valable après une extension finie. \square

Ainsi on obtient pour tout i une extension finie K_{η_i} de $Frac(\{U\})$ vérifiant les hypothèses du théorème . On considère alors l'extension composée K_1 de toutes ces extensions, c'est donc toujours une extension finie de K, et d'après un résultat de [?], pour tout i la normalisation de \mathcal{O}_{F,η_i} dans K_1 est faiblement non ramifiée au dessus de $\mathcal{O}_{D,0}$.

Considérons alors \mathcal{N} la fermeture integrale de $k\{U\}$ dans K_1 , et notons Δ son spectre, et le diagramme :

où ν est le morphisme de normalisation.

En notant \mathcal{G} l'anneau de G, comme les morphismes $G \to F \times_D \Delta \to F$ sont finis, on en déduit que \mathcal{G} est une algèbre strictement k-affinoïde. Ainsi, en peut revenir aux espaces de Berkovich où on a :

$$X \longleftarrow \mathcal{M}(\mathcal{A}\{T, U\}/(fT - u)) \longleftarrow \mathcal{M}(\mathcal{G})$$

$$\uparrow \qquad \qquad \qquad \sigma \qquad \qquad \downarrow$$

$$\mathbf{D} \longleftarrow \qquad \qquad N$$

Soit ω un point de N qui s'envoie dans \mathbf{D} sur 0. On peut alors prendre un voisinage affinoïde V de ω qui évite les autres antécédents de 0, et on a alors que dans V, hors de ω les fibres de σ sont de la forme $V_{\epsilon} \hat{\otimes}_k \mathcal{H}(x)$.

 σ est à fibres géometriquement réduites et déployées, et plat. D'après le théorème 2.2 il existe une partie simple P qui contient ω au dessus de laquelle σ admet un découpage. On a donc des morphismes quasi-étales $e_i:U_i\to N$ dont les images recouvrent P. Si ω_i' est un antécédent de ω par e_i , comme k est algebriquement clos, leur corps résiduels sont isomorphes, et d'après [?] il y existe un voisinage affinoïde V_i' sur lequel e_i induit un isomorphisme. Quitte donc à changer les V_i' en V_i on a :

$$\begin{array}{c|c}
\mathcal{G} \\
\sigma \\
N & \stackrel{\bullet}{\longleftarrow} V_i
\end{array}$$

où les e_i sont des isomorphismes sur leur image, et donc en assimilant les V_i à leur image, on a des sections

$$\sigma^{-1}(V_i)$$

$$t_i \left(\int_{\sigma} \sigma \right)$$

$$V_i$$

Quitte donc à prendre V égal à l'intersection des V_i on a un voisinage affinoïde de ω et r sections $e_1, ..., e_r$ du morphisme σ au dessus de V qui repèrent les composantes connexes de σ . Quitte à encore restreindre V, on peut le supposer connexe, et même connexe par arc d'après [?].

Comme le morphsime $\delta: N \to \mathbf{D}$ est fini et plat, il est ouvert au voisinage des points rigides de N, donc en particulier, pour un $\epsilon > 0$ assez petit, $\delta(V)$ contient $\{d \in \mathbf{D} \mid |U(d)| \le \epsilon\}$. Soit alors $v \in V$ tel que $|U(v)| = \epsilon$. Comme V est connexe par arc, pour tout $\epsilon' \in]0, \epsilon]$ il existe $v \in V$ et un chemin l reliant v à v' dans V. On peut si on veut que les points de l restent dans la couronne $|U(\delta(x))| \in [\epsilon', \epsilon]$. Pout out i, la section $e_i(l)$, que l'on notera l_i nous fournit un chemin dans $\mathcal{M}(\mathcal{G})$, et comme le découpage par les e_i repère les composantes connes de σ , on a que pour tout $x \in l$ pour chaque composante connexe C de $\sigma^{-1}(x)$ il existe un unique i tel que $e_i(x) \in C$. Ainsi pour tout i on a que le chemin $e_i(l)$ joint de manière continue les composantes connexes des fibres de σ au dessus de l. De plus on a $\sigma^{-1}(x) \simeq V_{|U(\epsilon)|} \hat{\otimes}_k \mathcal{H}(x)$, donc on a un morphisme naturel $\sigma^{-1}(x) \to V_{|U(\epsilon)|}$, qu'on obtient en composant

$$\mathcal{G} \to \mathcal{M}(\mathcal{A}\{T,U\}/(fT-U) \to X$$

Comme les composantes connexes sont invariantes par extension du corps de base, on en déduit qu'en les poussant vers X, les sections e_i de l induisent des chemins de X qui fournissent un et un seul représentant des composantes connexes de V_u où u décrit |U(l)|. En particulier, comme $\epsilon' \leq \epsilon$, on a $V_\epsilon \hookrightarrow V_{\epsilon'}$, et les composantes connexes de $V_{\epsilon'}$ sont les traces des composantes connexes de V_ϵ , et donc en utilisant ce raisonnement pour tout $\epsilon' < \epsilon$, ce sont aussi les traces de $\{x \in X \mid f(x) \neq 0\}$.

D'après [?] le complémentaire d'une hypersurface dans X connexe est connexe, ainsi V_{ϵ} est connexe. Soit :

Théorème 4.2 Si k est algebriquement clos et de valuation non triviale, X un espace strictement k-affinoïde intègre, f une fonction sur X de norme spectrale 1, alors pour ϵ assez petit, V_{ϵ} est irréductible.

5 Le cas général

On va maintenant obtenir le résultat général, avec n fonctions, sans les hypothèse k algebriquement clos, sans hypothèse sur les normes spectrales des f_i , et sans supposer X strictement k-affinoïde. On se donne donc une algèbre affinoïde \mathcal{A} intègre et X l'espace k-affinoïde associé, et f_1, \ldots, f_n n fonctions de X. On note $V_{i,\epsilon} = \{x \in X \mid |f_i(x)| \geq \epsilon\}$.

Par les mêmes arguments que plus haut on peut considérer le morphisme de normalisation et supposer $\mathcal A$ normal. Pour $j\in 1..n$ on pose $V_{j,\epsilon}=\{x\in X\mid |f_j(x)|\geq \epsilon\}$

Soit K une extension complète de k algebriquement close, telle que $X \hat{\otimes}_k K$ soit strictement k- affinoïde. Comme le morphisme $X \hat{\otimes}_k K \to X$ est surjectif, si on montre que les espaces V_{ϵ} sont connexes dans $X \hat{\otimes}_k K$ on pourra en déduire le résultat dans X. On peut donc travailler sur $X \hat{\otimes}_k K$, donc sur un espace strictement k-affinoïde, et sur un corps algebriquement clos.

De plus on peut supposer que tous les f_j sont non nuls, dans le cas contraire en effet on a $V_{\epsilon} = X$ et donc il n'y a rien a démontrer.

Ainsi, pour $j \in [1..n]$ on a $|f_j|_{sup} > 0$, et l'espace étant strictement K-affinoïde, $|f_j|_{sup} \in \sqrt{|K|} = |K|$ car K est algebriquement clos. Ainsi, on peut trouver $c_j \in K$ tel que $|c_j.f_j|_{sup} = 1$, et en utilisant le fait que $V_{\epsilon}^{f_j} = V_{|c_j|.\epsilon}^{c_j.f_j}$ on peut donc supposer que $|f_j|_{sup} = 1$.

On considère alors les composantes irréductibles de $X \hat{\otimes}_k K$, Z_1, \ldots, Z_n de $X \hat{\otimes}_k K$. On peut munir chacune de ces composantes irréductibles d'une structure d'espace affinoïde réduite, et donc intègre puisqu' irréductible. Ainsi sur chacun de ces espaces et pour tout $j \in [1..n]$ on peut appliquer le théorème 3.6, i.e. il existe un $\epsilon_j > 0$ tel que $\forall \epsilon \in [0, \epsilon]$ on a pour tout i

 $\{z \in Z_i \mid |f_j(z)| \ge \epsilon\}$ est connexe.

Quitte à renuméroter les indices, on peut supposer que $Z_1, \ldots Z_s$ ne sont pas incluses dans le fermé de Zariski $\{x \in X \mid f_j(x) = 0\}$, i.e. contiennent un point $V_+ = \{x \in X \mid f_j(x) \neq 0\}$, et que les autres composantes connexes $Z_{s+1}, \ldots Z_n$ soient incluses dans $\{x \in X \mid f_j(x) = 0\}$. Ces dernières ne contribuent pas à l'ensemble $V_{j,\epsilon}$, et on peut donc se restreindre aux $Z_1, \ldots Z_s$. Pour $i \in [1..s]$, prenons un point $P_i \in V_+ \cap Z_i$. D'après [?] V_+ est connexe, et même connexe par arc d'après [?], donc pour $i \in [2..s]$ on trouve un chemin c_i dans V_+ reliant P_1 à P_i . Par compacité, la fonction f_j atteint son minimum ϵ_i sur c_i , qui est donc non nul. On note ϵ'_j le minimum des ϵ_i sur les composantes $Z_1, \ldots Z_s$ et de ϵ_j . On a alors pour $\epsilon \leq \epsilon'_j$ $\bigcup_{i \in [1..s]} \{z \in Z_i \mid |f_i(z)| \geq \epsilon\}$

est une réunion d'ensembles connexes et en utilisant les chemins c_i on voit que la réunion est connexe. En utilisant la surjectivité de $X \hat{\otimes}_k K$, on en déduit que $V_{j,\epsilon}$ est connexe et donc irréductible. Comme on a supposé les f_j non nulles et X irréductible et réduit, il existe un point x de X en lequel les f_j sont toutes non nulles. Alors pour $\epsilon \in \prod_{j=1..n} [0, \min(\epsilon_j, |f_j(x)|]$ on a que $V_\epsilon = \cup_j V_{j,\epsilon}$ est une réunion d'espaces irréductibles dont l'intersection contient un voisinage commun de x. On en déduit finalement que V_ϵ est irréductible avec le lemme 4.1

Lemme 5.1 Si V et W sont des domaines analytiques irréductibles de X tels que l'interieur de $V \cap W$ soit non vide, $V \cup W$ est irréductible.

Démo : Supposons par l'absurde que $V \cup W = Y \cup Z$ où Y et Z sont deux fermés de Zariski strict. En utilisant l'irréductibilité de V on peut supposer que $V \subset Y$. Comme Y est strict, on a donc aussi $W \subset Z$, et donc $V \cap W \subset Z \cap Y$. Or $V \cap W$ est un domaine analytique de V d'interieur non vide, et inclus dans $Z \cup Y$ qui est un fermé de Zariski strict de V, ce qui est impossible d'après [?] 3.3.24. \square

On a donc montré le théorème 1.

6 La variation des composantes connexes géometriques

Montrons maintenant le théorème 2.

Théorème 6.1 Si k est algebriquement clos, et de valuation non triviale et X strictement k-affinoïde et intègre, f une fonction de X dont la norme spectrale est $1, m \in]0, m] \cap |k^*|$, il existe une partition \mathcal{P} de [m, 1] en intervalles à extremité dans $|k^*|$ telle que pour $I \in \mathcal{P}$ et $\epsilon \leq \epsilon' \in I$ l'inclusion $V_{\epsilon'} \hookrightarrow V_{\epsilon}$ induise une bijection sur les composantes connexes géometriques.

On note toujours R_X le $\mathbb Q$ espace vectoriel de $\mathbb R_+^*$ engendré par la norme spectrale des éléments de l'algèbre affinoïde de X, $\mathcal A$. On peut montrer qu'il existe une extension complète et algébriquement close, L de k telle que $X \hat{\otimes}_k L$ soit strictement L-affinoïde, et que $R_X = |L*|$. En réutilisant le fait qu'une extension des scalaires induit une bijection sur le foncteur π_0^g (cf [?]), on se ramène donc au cas d'un espace strictement affinoïde sur un corps algebriquement clos. On a donc les hypothèses du théorème précédent, sauf celle d'irréductibilité. Pour l'avoir, on peut considérer les composantes irréductibles Z_1, \ldots, Z_r de X, et cette fois-ci on peut les appliquer aux expaces Z_i . Pour remonter le résultat à X tout entier on démontre

Lemme 6.1 Si le résultat du théorème 2 est vrai sur les fermés de Zariski Y et Z qui recouvrent X, alors il est également vrai pour X.

Comme on s'est ramené au cas d'un espace strictement k-affinoïde, on peut, quitte à remplacer f par c.f avec $c \in k$, supposer $|f|_{sup} = 1$. Alors sur chacune des composantes irréductibles de X, on applique le théorème 1, qui nous donne un réel $m \in R_X$ tel que les espaces affinoïdes V_ϵ soint connexes, et irréductibles pour $\epsilon \in [0,m]$, puis on applique le théorème 6.1 sur l'intervalle [m,1], et le cas $]1,\infty[$ est réglé car la norme spectrale de f valant 1, pour ϵ dans cet intervalle, on a $V_{epsilon} = \emptyset$. Ainsi, on a le résultat sur les composantes irréductibles de X, et donc le résultat sur X avec le lemme. Cependant, on n'a pas la forme voulue sur les intervalles de la partition, à savoir $]a_i, a_{i+1}]$ ce que l'on peut obtenir en montrant que si l'intervalle [a,b[induit des bijections via π_0^g il en est de même pour [a,b].