Rules and Commitment in Communication

Guillaume Fréchette Alessandro Lizzeri Jacopo Perego
NYU

Harvard October 2017

Introduction

We revisit a classic question in economics from a new perspective:

- How "much" information can be shared under direct communication among interested parties?
- How does this depend on rules and protocols governing communication?

This is important for thinking about:

Lobbying, Austen-Smith (1993), Battaglini (2002); Relation between committees and legislature, Gilligan-Krehbiel (1987-1989); Production of evidence to a jury, Kamenica-Gentzkow (2011), Alonso-Camara (2016), ...

Introduction

What we do:

- A framework nesting existing models under the same umbrella.
- With this framework, we test comparative statics across these models.

We produce comparative statics along two principal dimensions:

1. **Rules**: What can the sender say?

2. Commitment: Can sender establish communication protocols?

Introduction

Focus on a minimal set-up:

- Binary state: Red and Blue.
- Two parties (sender, receiver) with conflicting interests.
- Sender has information, Receiver has ability to act.
- Three messages: red, blue and no message.

RULES

Rules: What can the sender say?

We explore two extremes:

- Unverifiable messages.
 - ► There are no rules governing which messages the sender can send.
- Verifiable messages.
 - ▶ When state **Red**: Sender can send **red** or **no message**.
 - ▶ When state **Blue**: Sender can send **blue** or **no message**.

COMMITMENT

Stage 1: Commitment.

- Sender selects her commitment strategy.
- This strategy will be revealed to the receiver.

Stage 3: Guess.

Stage 2: Revision.

- Sender *learns* color of the ball.
- She can *revise* her previous choice.
- Revision is *not revealed* to the receiver.

With probability $1 - \rho$

- Receiver makes decisions as a function of message.
- The message comes from Commitment Stage with probability ρ .

SPECIAL CASES

► Cheap Talk.

Crawford and Sobel (1982)

- ► Unverifiable and no commitment.
- ▶ **Disclosure**. Grossman (1981), Milgrom (1981), Okuno-Fujiwara et al (1990)
 - ▶ Verifiable and no commitment.
- ► Bayesian Persuasion.

Kamenica and Gentzkow (2011)

► Unverifiable and full commitment.

Variations around a common basic structure, different predictions.

THIS PAPER

Exploit this framework to:

- Provide novel comparative statics: beyond preference alignment.
- Interaction of *Rules* and *Commitment* on strategic information transmission.
- Offer a broader perspective on these communication models.
- Test Bayesian persuasion.

THIS PAPER

Exploit this framework to:

- Provide novel comparative statics: beyond preference alignment.
- Interaction of *Rules* and *Commitment* on strategic information transmission.
- Offer a broader perspective on these communication models.
- Test Bayesian persuasion.

Our questions:

- 1. Are senders able to exploit **commitment**?
- 2. Do receivers understand information generated by commitment?
- 3. Do rules generate more responsiveness?

FINDINGS

- ► Subjects understand power of **commitment**: senders figure out how to exploit it and receivers how to react to it.
- ► Subjects understand the effect of **rules**: senders more informative and receivers more receptive with verifiable information.
- ► Commitment consistent with Bayesian persuasion. If receiver is more demanding, sender delivers more information.
- ► Overall informativeness decreases (increases) with commitment under (un)verifiable information.
- Quantitative departures from theory, too much information conveyed in verifiable treatments, too little under unverifiable treatments.

INTRODUCTION THEORY DESIGN RESULTS CONCLUSIONS

RELATED LITERATURE

- ► Cheap talk experiments: Dickhaut, McCabe, and Mukherji (1995); Blume, De Jong, Kim, and Sprinkle (1998); Cai and Wang (2006); Sanchez-Pages and Vorsatz (2007); Wang, Spezio, Camerer (2010)
- ➤ Disclosure experiments: Forsythe, Isaac, and Palfrey (1989); King and Wallin (1991); Dickhaut, Ledyard, Mukherji, and Sapra (2003); Forsythe, Lundholm, and Rietz (1999); Benndorf, Kübler, and Normann (2015); Hagenbach and Perez-Richet (2015); Jin, Luca, and Martin (2016)
- ➤ **Disclosure field:** Mathios (2000); Jin and Leslie (2003); Dranove and Jin (2010)

GAME

- Binary state $\Theta = \{\theta_L, \theta_H\}$. Common prior μ_0 on θ_H .
- Receiver actions $A = \{a_L, a_H\}$.
- Set of messages $M = \{\theta_L, \theta_H, n\}$.
- − Set $M^{\theta} \subseteq M$: messages that Sender can use in state θ .
 - ▶ Information is *unverifiable* if $M^{\theta} = M$ for all θ .
 - ▶ Information is *verifiable* if $M^{\theta} = \{\theta, n\}$ for all θ .

GAME

- Sender's utility: $v(a) := \mathbf{1}(a = a_H)$.
 - ▶ Wins if Receivers chooses a_H .

GAME

- Sender's utility: $v(a) := \mathbf{1}(a = a_H)$.
 - ▶ Wins if Receivers chooses a_H .
- Receiver's preferences:
 - $u(a_L, \theta_L) = u(a_H, \theta_H) = 0.$
 - $u(a_L, \theta_H) = -(1-q), u(a_H, \theta_L) = -q.$
 - ► Choose action a_H if $\mu(\theta_H) \ge q$. We call q the persuasion threshold.

Stage 1:

▶ Sender chooses a **commitment** strategy: $\pi_C : \Theta \to \Delta(M^{\theta})$.

Stage 2: With probability $1 - \rho$, she enters an **revision stage**:

- ▶ Learns the realization of θ .
- ► Chooses a **revision** strategy: $\pi_R(\theta) \in \Delta(M^{\theta})$ conditional on θ .

Stage 3:

▶ Receiver guesses. $a: M \times \Pi_c \to A$

Parameter ρ captures the extent of commitment.

THEORY RESULTS/PREDICTIONS

Proposition.

- ► There is a $\widehat{\rho}$ such that, if $\rho > \widehat{\rho}$:
 - 1. some information is communicated in U,
 - 2. less than full information is communicated in V.
- ► Consider ρ such that $\hat{\rho} < \rho < 1$. Commitment has opposite effects on the amount of information transmission in V versus U:
 - 1. under *U*, less information is transmitted in revision stage than in commitment stage;
 - 2. under *V*, more information is transmitted in revision stage than in commitment stage.

THEORY RESULTS/PREDICTIONS

Proposition.

- When messages are *verifiable*, commitment decreases informativeness.
- When messages are *unverifiable*, commitment **increases** informativeness.
- For $\rho = 1$, equilibrium outcome is "rule-independent."

THEORY RESULTS/PREDICTIONS

Proposition.

For any $\rho > 0$, for both cases of verifiable and unverifiable messages, as the persuasion threshold q increases, the strategy of the Sender becomes more informative.

SPECIAL CASES

How "much" information can be transferred in equilibrium?

- 1. Cheap Talk.
 - ► No information transmitted: *Babbling*.
- 2. Disclosure.
 - ► All information transmitted: *Unraveling*.
- 3. Bayesian Persuasion.
 - ► Some information is transmitted: *Lie, but maintain incentives*.

EXPERIMENT

Setup:

- Urn has three balls: two blue and one red.
- Receiver wins \$2 if guesses correctly.
- Sender wins \$2 if Receiver says Red.
- Up to three messages: red, blue, no message.
- Rules:
 - Verifiable: truth or no message.
 - ► Unverifiable: no constraints.

Communication Stage

Here you choose your COMMUNICATION PLAN.

After you click Confirm, we will communicate the plan you chose to the Receiver.

Update Stage

Here you can Update your COMMUNICATION PLAN.
The Receiver cannot see how you UPDATE your COMMUNICATION PLAN.

CONFIRM

PREDICTION (REVISITED)

TREATMENTS

Treatments (2x3):

Rules: Verifiable *vs* Unverifiable.

Commitment: $\rho = \{20, 80, 100\}.$

Labeling	g: Co	ommitn	nent
Dulas	V20	V80	V100
Rules	U20	U80	U100

TREATMENTS

EQUILIBRIUM

Sender's equilibrium behavior in two extreme cases:

U100				V100						
messages						messages				
		r	b	n				r	b	n
Ball	R	100%	0	0		Ball	R	0	0	100%
Dan	В	50%	50%	0		Dan	Ball B 0 50% 50%			

Intuition and main tensions:

- U100. Lie as much as you can, but preserve incentives.
- V100. Never release good news: "No news, good news."

Receiver

EQUILIBRIUM BEHAVIOR

		Sender							Receiver	
		Commitment			Revision				Guessing	
Treat. Ball	Message			Ball		Message			Guess	
		red	blue	no		red	blue	no		
V20	R B	1	x	0 $1-x$	R B	1	x	$\frac{0}{1-x}$	red blue no	red blue blue
V80	R B	0	$\frac{3}{4}$	$\frac{1}{\frac{1}{4}}$	R B	1	0	0	red blue no	red blue red
V100	R B	0	$\frac{1}{2}$	$\frac{1}{\frac{1}{2}}$					red blue no	red blue red
U20	R B	x x	y y	$ \begin{array}{c} 1 - x - y \\ 1 - x - y \end{array} $	R B	1 1	0	0	red blue no	blue blue blue
U80	R B	1 3 8	$\frac{0}{\frac{5}{8}}$	0	R B	1 1	0	0	red blue no	red blue blue
U100	R B	$\frac{1}{\frac{1}{2}}$	0 1/2	0					red blue no	red blue blue

INTRODUCTION THEORY DESIGN RESULTS CONCLUSIONS

EXPERIMENTAL DETAILS

Implementation:

- Two unpaid practice rounds.
- 25 periods played for money in fixed roles.
- Random rematching between periods.

General Information:

- Six treatments, four sessions per treatment.
- -384 subjects (≈ 16 per session; between 12 and 24).
- Average earnings: \$24 (including \$10 show up fee).
- Average duration: 100 minutes.

RESULTS

INFORMATIVENESS: CORRELATION

How to measure equilibrium informativeness?

▶ Pearson correlation index ϕ between Ball and Guess. (Definition \triangleright)

Intuition:

- ▶ If no information, $\phi = 0$. Receiver always says blue.
- ▶ If full information, $\phi = 1$. Receiver perfectly matches the state.

We focus attention on data from last 15 rounds.

TO FOCUS ON SENDERS

Assume Bayesian receiver:

- 1. Receives **message** *m*.
- 2. Computes **posterior** belief $\mu(R|m) \in [0,1]$.
- 3. Guesses Red if and only if $\mu(R|m) \ge \frac{1}{2}$.

Sender: Commitment vs. Revision, $\rho=0.8$

RECEIVER'S RESPONSE TO PERSUASIVE MESSAGES

$$\rho = 0.2 \text{ vs. } \rho = 1$$

DO SUBJECTS REACT TO RULES?

The Case of ho=0.2

- ► Senders send more information in V20 than U20:
 - $\phi^B = 0.89 \text{ vs } 0.00.$
- ► Receivers' probability of guessing red is higher in V20 than U20:
 - ► 97% vs 37%.

TREATMENT U100H

New payoffs:

- Receiver wins if correctly guesses the color of the ball:
 - ► 2 if ball is Blue.
 - $ightharpoonup \frac{2}{3}$ if ball is Red.
- Sender wins 3 if Receiver guesses Red.

Bayesian Receiver guesses Red iff $\mu(R) \ge 0.75$.

Solution is to provide more information:

π_1^{\star}	:	Message				
		r	b	n		
Ball	R	1	0	0		
Dan	В	1/6	5/6	0		

INTRODUCTION THEORY DESIGN RESULTS CONCLUSIONS

CDF of ϕ^B for treatments U100 and U100H

CORRELATIONS BY TREATMENT

Theory:

	Commitment (ρ)							
	20%	80%	100%	100% H.				
Verifiable	1	0.57	0.50					
Unverifiable	0	0.50	0.50	0.79				

Data:

	Commitment (ρ)								
	20%		80%		100%		100% H.		
Verifiable	0.80	~	0.78	>	0.67				
	V		V		V				
Unverifiable	0.09	<	0.21	\approx	0.21	\approx	0.20		

Data + Bayesian Rec:

	Commitment (ρ)								
	20%		80%		100%		100% H.		
Verifiable	0.89	~	0.85	>	0.78				
	V		V		V				
Unverifiable	0.00	<	0.33	\approx	0.34	\approx	0.45		

Introduction Theory Design Results Conclusions

CDF of ϕ^B : $\rho = 0.2$ vs $\rho = 1$

Introduction Theory Design Results Conclusions

CDF of ϕ^B : ρ 0.2, 0.8, and 1.

INTRODUCTION THEORY DESIGN RESULTS CONCLUSIONS

INFORMATIVENESS: CORRELATION

Verifiable:

► Commitment decreases correlation, although much less than it should.

Unverifiable:

► Commitment increases correlation, although much less than it should.

INTRODUCTION THEORY DESIGN RESULTS CONCLUSIONS

INFORMATIVENESS: CORRELATION

Verifiable:

► Commitment decreases correlation, although much less than it should.

Unverifiable:

► Commitment increases correlation, although much less than it should.

This measure takes into account at the same time:

- 1. Senders' behavior.
- 2. Receivers' behavior.

Cumulates mistakes from all sides.

► Who is getting it wrong and why?

CORRELATION WITH BAYESIAN RECEIVERS

Point predictions on informativeness increase in all treatments.

Observation 1.

Informativeness reacts to commitment in a manner consistent with the theory. When receivers are Bayesian, predictions close to theory for unverifiable case, mixed for unverifiable case.

Most interesting deviation:

- Even with rational receivers: $U100 \ll V100$

Informativeness: Random Posteriors

What posteriors do senders attempt to induce?

Chain of events:
$$\theta \Rightarrow m \Rightarrow \mu(R|r)$$

Goal:

► Extracting informativeness from induced posteriors.

We use:

► Variation in conditional **posterior** beliefs.

A richer measure than correlation.

Introduction Theory Design Results Conclusions

Informativeness: Random Posteriors

Commitment (a)

INFORMATIVENESS: RANDOM POSTERIORS

		`	Comm	ittiiieiit	(p)	ν)					
	2	0%	8	0%	10	00%					
Verifiable	0.86	(1.00)	0.78	(0.40)	0.69	(0.25)					
	В	R	В	R	В	R					
	0.05	0.91	0.07	0.85	0.10	0.80					
Unverifiable	0.11	(0.00)	0.23	(0.25)	0.30	(0.25)					
	В	R	В	R	В	R					
	0.30	0.40	0.26	0.49	0.23	0.53					
,											

INFORMATIVENESS: RANDOM POSTERIORS

This confirms that senders react to commitment and, to some extent, know how to exploit it.

Also, this shows under a different light that:

Observation 2.

Point prediction of V100 is further off than U100.

Introduction Theory Design Results Conclusions

SENDERS' HETEROGENEITY

FULL COMMITMENT (THEORY)

Let's review equilibrium behavior in U100 and V100.

		U100)				V10	0	
		1	messages					messages	S
		r	b	n			r	b	n
States	R	100%	0	0	States	R	0	0	100%
States	В	50%	50%	0	States	В	0	50%	50%

FULL COMMITMENT (DATA)

What is going on in V100?

► Full commitment, no lies.

Let's see the aggregate data in U100 and V100.

			U100)					V100)		
				messages					1	nessages		
			r	b	n				r	b	n	
Sta	ates	R B	74% 44%	12% 39%	14% 17%	S	States	R B	51% 0	0 58%	49% 42%	

FULL COMMITMENT (DATA)

Unpacking Senders's heterogeneity in V100:

We compute the *most representative* strategies for Senders in V100.

			n	nessages	
40 <i>0</i> / £ 1			r	b	n
49% of data points	Ct. t	R	16%	0	84%
	States	В	0	72%	28%
			1	nessages	
33% of data points			r	b	n
33% of data points	C4-4	R	95%	0	5%
	States	В	0	20%	80%
			n	nessages	
100/ 01/			r	b	n
18% of data points	States	R	96%	0	4%
	States	В	0	95%	5%

(link)

QUANTAL RESPONSE EQUILIBRIUM

To understand who is mostly responsible for these documented deviations, we estimate a QRE model with heterogeneous λ 's.

We use the empirical method in Bajari and Hortacsu (2005).

Challenges: dynamic game with a continuum of actions.

Denoting $EU_i(a_i)$ the expected utility of action a_i for player i:

$$\mathbb{P}(a_i) = \frac{e^{\lambda_i E U_i(a_i)}}{\sum_{a_i' \in A_i} e^{\lambda_i E U_i(a_i')}}$$

- When $\lambda_i = \infty$, the player is perfectly rational.
- When $\lambda_i = 0$, the player is perfectly naive.

QUANTAL RESPONSE EQUILIBRIUM

Our results: (Preliminary)

Treatment V100: $\lambda_S = 0.17$ and $\lambda_R = 1.73$.

Treatment U100: $\lambda_S = 0.99$ and $\lambda_R = 1.28$

The comparison among treatments is legitimate because:

- (a) Binary actions.
- (b) Same "transformed" strategy spaces.

FOCUS ON RECEIVERS

How to establish **rationality** of a receiver?

A weak requirement of rationality:

- The likelihood of guessing red is **increasing** $\mu(R|m)$.
- Conditional on posterior, message should not matter.

Introduction Theory Design Results Conclusions

FOCUS ON RECEIVERS

Bars indicate the number of messages inducing this posteriors on the ball being RED (left axis). The red line indicates the probability that such a message yields a red guess (right axis).

PRECISION OF RECEIVERS' RESPONSE TO POSTERIORS

- ► The choices of a majority of subjects in each treatment is consistent with a threshold strategy at least 90% of the time.
- ► A large fraction of subjects in every treatment have a precision of at least 80%:

	$\textbf{Commitment}\;(\rho)$						
	$\frac{20\%}{}$ $\frac{80\%}{}$						
Verifiable	0.80	0.96	0.96				
Unverifiable	0.92	0.85	0.75				

RECEIVERS' THRESHOLDS

Values are jittered slightly to make multiple overlapping thresholds distinguishable.

Introduction Theory Design Results Conclusions

RECEIVERS' THRESHOLDS

Baysian Responder Threshold are the thresholds that would be estimated if the responders were Baysian given the posteriors in the data. Black for subjects harder to convince than a Bayesian, gray for subjects easier to convince than a Bayesian. Values are jittered slightly to make multiple overlapping thresholds distinguishable.

REACTION TO IRRELEVANT INFORMATION

Unverifiable Treatments

	C	Commitment ($\rho)$
	20%	80%	100%
Posterior	0.49**	0.45***	0.55***
Blue Message	-0.11**	-0.18***	-0.15**
No Message	-0.03	-0.16***	-0.05
Marginal effects	on receiver's	s guess of red.	

INTRODUCTION THEORY DESIGN RESULTS CONCLUSIONS

FOCUS ON RECEIVERS (SUMMARY)

Overall, receivers respond to communication protocol.

Observation 4.

- ► Most Receivers use threshold strategy most of the time
- Posterior beliefs not sufficient statistic, actions not sensitive enough to posteriors.
- Significant fraction indistinguishable from Bayesian
- ► Significant fraction too skeptical in high commitment treatments.
- ► Skepticism reduced by rules

(Pareto improvement)

CONCLUSIONS

CONCLUSIONS

We study the role of *rules* and *commitment* on informativeness.

- Present a simple framework nesting known models as special cases.
- We perform comparative statics across models.
- Look at communication models from a different perspective.

INTRODUCTION THEORY DESIGN RESULTS CONCLUSIONS

CONCLUSIONS

RESULTS

- Many ways in which behavior responds to rules and commitment in line with (complex) theory.
- In aggregate data: in V receivers are close to optimal, not so in U.
- Senders' behavior heterogeneous.
- Some senders more likely to play close to equilibrium in V, but some senders also more likely to be "noisy" in V. Partly explains why, as ρ increases, informativeness decreases in V.

APPENDIX

QUANTAL RESPONSE EQUILIBRIUM

As in Bajari and Hortacsu (2005), we estimate H-QRE using a two-step procedure:

- 1. For every binned Sender's strategy $\tilde{\pi}_C \in \Pi$, we estimate the expected utility $EU_S(\pi_C)$ —an equilibrium object—with $\hat{EU}_S(\pi_C)$, its empirical mean.
- 2. Then we use $\widehat{EU}_S(\pi_C)$ to compute the Likelihood function as a function of the parameters λ_S and λ_R .

This procedure eliminates the need to compute the equilibrium, as in McKelvey and Palfrey (1995).

This greatly reduces the computational complexity of estimating the model. (back)

Informativeness: Correlation

Pearson Correlation index btw Ball and Guess.

$$\phi := \frac{n_{Rr}n_{Bb} - n_{Rb}n_{Br}}{\sqrt{n_Rn_Bn_rn_b}}$$

	a=r	a = b	$\theta = R$
$\theta = R$ $\theta = B$	n_{Rr} n_{Br}	n_{Rb} n_{Bb}	n_R n_B
	n_r	n_b	

where

$$n_{\theta,a} = \sum_{m \in M} \hat{\pi}(m|\theta)\sigma(a|m)$$

and

$$\hat{\pi}(m|\theta) := \rho \pi_C(m|\theta) + (1-\rho)\pi_U(m|\theta)$$

BEHAVIOR UNDER VERIFIABLE MESSAGES

BEHAVIOR UNDER VERIFIABLE MESSAGES

BEHAVIOR UNDER UNVERIFIABLE MESSAGES

BEHAVIOR UNDER UNERIFIABLE MESSAGES

RECEIVERS' THRESHOLDS

Values are jittered slightly to make multiple overlapping thresholds distinguishable.

SENDERS' PAYOFFS

Data + Bayesian Receivers

				Commit	$\mathbf{ment} (\rho)$)				
	2	20%	8	80%	10	00%	100	% High		
Verifiable	able 0.29		().28	().35				
	Theory 0.33	Simulated 0.33	Theory 0.60	Simulated 0.30	Theory 0.67	Simulated 0.30				
Unverifiable	Unverifiable 0.00		().25	0.17		0.29		0.29	
	Theory 0.00	Simulated 0.27	Theory 0.67	Simulated 0.32	Theory 0.67	Simulated 0.26	Theory 0.44	Simulated 0.19		

Table: Expected Payoffs (Normalized for maximal win)

SENDERS' HETEROGENEITY IN PAYOFFS

Data + Bayesian Receivers

Size of circle proportional to number of observations.