Experiment #4 – Integrated System

Borna Tavassoli, 810198374

Keywords— frequency multiplier, state diagram, shifter, counter, handshaking, integrated, wrapper, accelerator

I. Introduction

In this lab, we try to build an integrated system. So, first we need to build a frequency multiplier and then we will build the main accelerator and connect the two modules using handshaking.

II. FREQUENCY MULTIPLIER

First we design the controller (state machine) the we write the Verilog code and test it's accuracy with the following samples.

A. Modelsim Implementation

State Diagram

Sample 1: $n = 1 \& F_ref/F_in = 100$, so k = 50.

Sample 2: $n = 2 \& F_ref/F_in = 100$, so k = 25.

Sample3: $n = 3 \& F_ref/F_in = 100$, so k = 12.

III. EXPONENTIAL ACCELERATOR

In this part, we design the frequency divider of lab1 to build a Frequency Selector and add it to the rest of the circuit.

A. Exponential Engine

Below is the outputs to measure the accuracy.

 $x = 0.25 \implies e^x \approx 1.284025 \approx (01.0100100010110000)_2$

As it is shown below, the Max Frequency for this module is roughly 135 MHz.

B. Exponential Accelerator Wrapper

First we draw the controller.

Then we synthesis the top level module and add a FIFO memory. After that we write a test bench to test our circuit. These are the following results.

TEST CASE NO#1

	UI	VI	N = 1
EXPECTED	10	000010	2.063486815
REALITY	10	000010	001000010000001110000
	UI	VI	N = 2
EXPECTED	10	000010	2.12898891784
REALITY	10	000010	001000100000111111000
	UI	VI	N = 3
EXPECTED	10	000010	2.26629690613
REALITY	10	000010	001001000100001000000
	UI	VI	N = 4
EXPECTED	10	000010	2.56805083338
REALITY	10	000010	0010100011111111110000

A. Design and Synthesis

This is the top level module, synthesised.

IV. INTEGRATED CIRCUIT

TEST CASE NO#2

	UI	VI	N = 1
EXPECTED	10	0000010	2.03149541717
REALITY	10	0000010	001000001000000010000
	UI	VI	N=2
EXPECTED	10	0000010	2.063486815
REALITY	10	0000010	001000010000001110000
	UI	VI	N = 3
EXPECTED	10	VI 0000010	N = 3 2.12898891784
EXPECTED REALITY	0.1	7.1	
	10	0000010	2.12898891784
	10 10	0000010	2.12898891784 001000100000111111000

We test the module to see if frequency multiplier and wrapper are working together correctly.

As it is shown, inFreq is working properly and the stack is getting full too.

Now to calculate the maximum n:

 $F = 2MHz \rightarrow 2 * 2^n < 162 \rightarrow n <= 6$

This is the synthesised module.

Now if we set n = 7, we get:

As one can see, outFreq is not changing!

So, the maximum value for our stack is 6 words.

And this is the Max Frequency:

For example this is the output for n = 5:

V. CONCLUSIONS

In this Lab, we learned to work with frequency multipliers. Got the chance to work with wrappers and learned about handshaking and finally implemented an integrated circuit.