GUANXIONG CHEN

B.A.Sc. STUDENT · COMPUTER ENGINEERING

University of British Columbia

➡ chenguanxiong@alumni.ubc.ca | ★ www.guanxiongchen.com | ☑ https://github.com/ericchen321

Skills_

Techs Python, C, C++, Java, ROS, Machine Learning, Simulation, Embedded Software

Other Skills Working in Teams, Communication (Oral & Written)

Work Experience _____

Undergraduate Research Volunteer - Simulation & Robotics

Vancouver, BC

DEPARTMENT OF COMPUTER SCIENCE, UBC

May 2020 - Present

- Completed literature review on paper "Habitat: A Platform for Embodied AI Research"
- Updated an interface between ROS and AI Habitat to work with Bullet Physics
- Developed scripts in Python to compare RL agents' performance with discrete vs. continuous action spaces

Undergraduate Teaching Assistant - Operating Systems

Vancouver, BC

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING, UBC

Sept. 2020 - Dec. 2020

- · Marked 6 programming assignments covering OS-related concepts, e.g. processes, file I/O, virtual memory
- Supervised 3-hour-long labs per week, and held TA office hours
- Answered students' questions on assignments during labs and on Piazza

NSERC USRA Research Intern - Mobile Security

Vancouver, BC

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING, UBC

May 2019 - Aug. 2019

- Analyzed malware samples from the Google Play store using static analysis techniques
- Ran DroidNative (an open-source malware detection tool) on over 1,000 Android app samples
- Wrote up Python scripts to automate experiment deployments inside VMs hosted on remote servers
- Preprocessed and extracted features from apps for training in DroidNative
- Optimized DroidNative (written in C++) to speed up feature extraction by 2X+

Undergraduate Teaching Assistant - Digital Systems Design

Vancouver, BC

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING, UBC

Sept. 2018 - Dec. 2018

- Made over 200 contributions on Piazza to address students' questions related to course material and logistics
- Helped students design, simulate and implement FPGAs in 3-hour lab sessions each week
- Marked exams and lab assignments, set up marking rubrics with the course instructor and other TAs
- Assisted constructing auto-grading test suites
- Received overwhelmingly positive reviews from both students and the instructor

Coursework and Personal Projects _

Deep Learning-based Road Damage Detection System

Sept. 2020 - Present

COURSEWORK FOR CPEN 491: COMPUTER ENGINEERING CAPSTONE DESIGN

- Reviewed over 20 existing road damage detection technologies from academia and industry
- Established system specs based on limitations of existing techs and stakeholder needs
- Prepared proposal and design document, recognized by the instructor as "the best documents" ever for the course
- Selected RGB+LiDAR sensors for data collection and designed collection method
- Training a model implemented in TensorFlow using labelled data to detect road damages

Simple Ray-traced Rendering Engine

Nov. 2020 - Dec. 2020

⊗ Source

COURSEWORK FOR CPSC 314: COMPUTER GRAPHICS

- · Modified the C++-implemented rendering engine by Peter Shirley in Ray Tracing in One Weekend
- Implemented geometries including triangles, cubes and torus
- Implemented ray-traced shadows and Blinn-Phong shading model

Jack in a Box (A Blackjack Game Machine)

Jan. 2020 - Mar. 2020

COURSEWORK FOR CPEN 391: COMPUTER ENGINEERING DESIGN STUDIO II

- Implemented a KNN-based image recognition pipeline in Python to recognize poker cards' face values, and achieved 99% accuracy in evaluation
- · Collected and preprocessed data to build a dataset over 18,000 images for training and evaluation
- Implemented with a teammate the game's mechanics in a bare-metal C program targeted for an ARM processor on a Raspberry

Simple Image Processing SoC

Mar. 2018 **⊗** *Source*

COURSEWORK FOR CPEN 311: DIGITAL SYSTEMS DESIGN

- Implemented independently an accelerator used for accelerating affine rotations of 2D images on a FPGA chip
- Built the system with EDA tools from basic blocks a soft-core CPU, memories, and the accelerator
- Wrote code in C to evaluate the accelerator's speed-up

Education _____

University of British Columbia

Vancouver, BC, Canada September 2015 - Present

BACHELOR OF APPLIED SCIENCE IN COMPUTER ENGINEERING

• GPA: 89%

Awards, Fellowships, & Grants _

Jim and Helen Hill Memorial Service Award

DEPT. OF ELECTRICAL AND COMPUTER ENGINEERING, UBC

2019

The award is given to students who demonstrated leadership through volunteerism.

NSERC Undergraduate Student Research Award

NATURAL SCIENCES AND ENGINEERING RESEARCH COUNCIL

2019

• The award intends to develop Canadian students with outstanding academic backgrounds as potential researchers.

Trek Excellence Scholarship

University of British Columbia

2017

• The Scholarships are offered every year to students in the top 5% of their undergraduate year, faculty, and school.

Chancellor's Scholar Award

University of British Columbia

2015

· Award for students who enter the UBC Vancouver campus with outstanding academic backgrounds.

Outreach & Professional Development _____

SERVICE AND OUTREACH

- 2019 UBC SPIN (Sensory Perception & Interaction) Group, Undergraduate Research Volunteer
- 2016 UBC Opening and Move-in Day, Move-in Volunteer
- 2016 UBC AMS Bike Kitchen Daily Maintainance, Bike Repair Volunteer

PROFESSIONAL MEMBERSHIPS

Engineers and Geoscientists BC