V302

Elektrische Brückenschaltung

 $\begin{array}{ccc} \text{Amelie Hater} & \text{Ngoc Le} \\ \text{amelie.hater@tu-dortmund.de} & \text{ngoc.le@tu-dortmund.de} \end{array}$

Durchführung: 09.01.2024 Abgabe: 16.01.2024

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Ziel	setzung	3
2	The	eorie	3
	2.1	Funktionsprinzip einer Brückenschaltung	3
	2.2	Wheatstonesche Brücke	4
	2.3	Kapazitätsmessbrücke	4
	2.4	Induktivitätsmessbrücke	4
	2.5	Maxwell-Brücke	4
	2.6	Wien-Robinson-Brücke	5
	2.7	Kirrfaktor	5
3	Dur	chführung	5
	3.1	Wheatstonesche Brücke	5
	3.2	Kapazitätsmessbrücke	6
	3.3	Induktivitätsmessbrücke	6
	3.4	Maxwell-Brücke	7
	3.5	Wien-Robinson-Brücke	7
4	Aus	wertung	8
	4.1	Wheatstonesche Brücke	8
	4.2	Kapazitätsmessbrücke	9
	4.3	Induktivitätsmessbrücke	10
	4.4	Maxwell-Brücke	12
	4.5	Wien-Robinson-Brücke	13
5	Disk	kussion	14
Lit	terati	ur	16
Ar	nhang	<u>.</u>	16
	_	ginaldaten	16

1 Zielsetzung

Das Ziel des Versuches ist das Bestimmen verschiedener ohmscher Widerstände, Kapazitäten und Induktivitäten durch ausgewählte Brückenschaltungen. Außerdem werden durch den Versuch das Verständnis der Kirchhoffschen Gesetze vertieft und verschiedene Brückenschaltungen vorgestellt.

2 Theorie

2.1 Funktionsprinzip einer Brückenschaltung

Die Funktionsweise einer Brückenschaltung beruht auf zwei Kirchhoffschen Gesetzen. Die sogenannte Knotenregel besagt, dass an einem Knotenpunkt die Summe der zufließenden Ströme der Summe der abfließenden Ströme entsprechen muss. Zufließende Ströme haben ein positives Vorzeichen und abfließende Ströme haben ein negatives Vorzeichen. Dann gilt

$$\sum_{k} I_k = 0. (1)$$

 I_k sind dabei die einzelnen zufließende oder abfließende Ströme. Die sogenannte Maschenregel beschreibt, dass die Summe aller treibenden, elektrischen Spannungen der Summe der abfallenden Spannungen innerhalb einer beliebigen, geschlossenen Masche eines Stromkreises entspricht. Dabei haben die abfallenden Spannung ein negatives Vorzeichen und die treibenden Spannungen ein positives Vorzeichen. Dann gilt

$$\sum_{k} U_k = 0 \tag{2}$$

innerhalb einer Masche. U_k sind dabei die in der Masche treibenden oder abfallenden Spannungen. Diese beiden Regel können verwendet werden, um Schaltpläne zu erstellen, die es ermöglichen die Kenngrößen unbekannter Bauteile zu bestimmen. Eine solche prinzipielle Brückenschaltung ist in Abbildung (1) zu sehen. R bezeichnet ohmsche Widerstände.

Abbildung 1: Schaltplan einer prinzipiellen Brückenschaltung

Die unbekannte Kenngröße wird durch die sogenannte Nullmethode bestimmt. Bei dieser wird R_2 variiert bis zwischen Punkt A und Punkt B keine Spannung mehr zu messen ist.

2.2 Wheatstonesche Brücke

In der Whaeatstoneschen Brückenschaltung werden jeweils zwei in Reihe geschaltete ohmsche WIderstände parallel zueinander geschaltet, wie im Schaltplan in Abbildung (2) zu sehen. Die Wheatstonesche Brückenschaltung wird verwendet, um einen unbekannten ohmschen Widerstand R_x zu bestimmen. Dies erfolgt durch die Formel

$$R_x = R_2 \cdot \frac{R_3}{R_4} \,. \tag{3}$$

2.3 Kapazitätsmessbrücke

Die Kapazitätsmessbrücke wird zur Bestimmung der Kenngrößen eines Kondensators mit Kapazität C_x und ohmschen Widerstand R_x genutzt. In dieser Schaltung wird der Widerstand R_2 der Wheatstoneschen Brücke durch einen Kondensator mit Kapazität C_2 und ohmschen Widerstand R_2 ersetzt. Die unbekannte Kapazität wird durch

$$C_x = C_2 \cdot \frac{R_4}{R_3} \,. \tag{4}$$

berechnet. Der unbekannte ohmsche Widerstand wird mithilfe der Formel (3) berechnet.

2.4 Induktivitätsmessbrücke

Mithilfe der Induktivitätsmessbrücke werden die Kenngrößen einer unbekannten Spule mit Induktivität L_x und R_x berechnet. Im Vergleich zum Schaltbild der Kapazitätsmessbrücke wird der Kondensator mit Kapazität C_2 und ohmschen Widerstand R_2 durch eine Spule mit Induktivität L_2 und R_2 ersetzt. Die Induktivität L_x wird mithilfe der Formel

$$L_x = L_2 \cdot \frac{R_3}{R_4} \,. \tag{5}$$

berechnet. Der ohmsche Widerstand ${\cal R}_x$ wird wie die vorherigen mithilfe der Formel (3) berechnet.

2.5 Maxwell-Brücke

Die Maxwell-Brücke wird wie die Induktivitätsmessbrücke zur Messung von Induktivität verwendet. Der Schaltplan ist in Abbildung (5) zu sehen. Die unbekannte Induktivität L_x wird durch

$$L_x = R_2 \cdot R_3 \cdot C_4 \tag{6}$$

berechnet. Für R_x gilt Formel (3).

2.6 Wien-Robinson-Brücke

Das Schaltbild der Wien-Robinson-Brücke ist in Abbildung (6) zu sehen. In dieser Schaltung gibt es kein Abgleichelement, stattdessen fungiert die Schaltung als elektrischer Filter. Die Schwingung mit der Frequenz

$$\omega_0 = \frac{1}{R \cdot C} \tag{7}$$

wird geschwächt. Mit der Brückenspannung $U_{\rm Br}$ und der Quellspannung $U_{\rm S}$ gilt

$$\left| \frac{U_{\rm Br}}{U_{\rm S}} \right| = \sqrt{\frac{1}{9} \cdot \frac{(\Omega^2 - 1)^2}{(1 - \Omega^2)^2 + 9\Omega^2}} \qquad \text{mit } \Omega = \frac{\omega}{\omega_0}.$$
 (8)

2.7 Kirrfaktor

Der Klirrfaktor k ist ein Qualitätsmaß für Sinusschwingungsgeneratoren, da dieser darstellt, wie fehlerbehafteten die vom Generator erzeugte Sinusspannung ist. Dieser Faktor wird mithilfe des Verhältnisses der Sinusschwingung mit der Überlagerungsschwingung bestimmt und berechnet sich durch

$$k = \frac{1}{U_1} \sqrt{\sum_{i=1}^{n} U_i^2} \,. \tag{9}$$

3 Durchführung

3.1 Wheatstonesche Brücke

Zuerst wird die Wheatstonesche Brückenschaltung nach Schaltplan in Abbildung (2) aufgebaut. R_3 ist dabei ein Potentiometer und R_4 ist durch $R_4 = 1000\,\Omega - R_3$ festgelegt. Dann wird die Nullmethode angewendet. Sobald die Spannung das Minimum erreicht, werden die Widerstände notiert. Diese Nullmethode wird insgesamt 3 Mal für einen unbekannten Widerstand angewendet, jeweils mit unterschiedlichen R_2 . Es werden zwei verschiedene unbekannte ohmsche Widerstände auf diese Weise bestimmt.

Abbildung 2: Schaltplan der Wheatstoneschen Brückenschaltung

3.2 Kapazitätsmessbrücke

Die Kapazitätsmessbrücke wird nach Schaltplan in Abbildung (3) aufgebaut und für R_3 bzw. R_4 wird dasselbe Potentiometer verwendet wie bei der Wheatstoneschen Brücke. In diesem Teil des Versuches werden ebenfalls zwei unterschiedliche unbekannte Kapazitäten und zugehörige ohmsche Widerstände bestimmt durch je drei Messwerte. Bei jedem dieser Messwerte wird der Kondensator mit Kapazität C_2 und R_2 variiert, dann die Nullmethode durchgeführt und alle Kenngrößen der bekannten Bauteile notiert.

Abbildung 3: Schaltplan der Kapazitätsmessbrücke

3.3 Induktivitätsmessbrücke

Zur Messung zweier unbekannter Induktivitäten L_x mit zugehörigem ohmschen Widerstand R_x wird die Induktivitätsmessbrücke nach Schaltplan in Abbildung (4) aufgebaut. Es werden die Kennzahlen zweier unterschiedlicher, unbekannter Spulen bestimmt, jeweils durch drei Messwerte bei denen L_2 und R_2 variiert wird. Zur Bestimmung von R_3 bzw. R_4 wird die Nullmethode angewandt und diese Widerstände notiert.

Abbildung 4: Schaltplan der Induktivitätsmessbrücke

3.4 Maxwell-Brücke

Im folgenden Versuchsteil werden (idealerweise dieselben) zwei Induktivitäten L_x mit zugehörigem ohmschen Widerstand R_x erneut bestimmt mithilfe der Maxwell-Brücke. Der Schaltplan dieser Brücke ist in Abbildung (5) zu sehen. In diesem Versuchsteil sind R_3 und R_4 voneinander unabhängige Potentiometer. Diese werden abwechselnd variiert bis das Spannungsminimum erreicht ist. Daraufhin werden alle Kennzahlen der Bauteile notiert.

Abbildung 5: Schaltplan der Maxwell-Brücke

3.5 Wien-Robinson-Brücke

Die Wien-Robinson-Brücke wird gemäß Schaltplan in Abbildung (6) aufgebaut und für R bzw. R' werden nur bekannte Widerstände verwendet. In diesem Teil des Versuchs wird die Frequenz der Quelle variiert und die resultierende Frequenz der Brückenspannung notiert. Im Bereich von 0 bis 500 Hz der Quellspannung werden die Messwerte in 50 Hz Schritten aufgenommen, von 500 bis 5000 Hz in 500 Hz Schritten.

Abbildung 6: Schaltplan der Wien-Robinson-Brücke

4 Auswertung

Im Folgenden werden die Mittelwerte mit

$$\bar{x} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i$$

bestimmt. n ist die Anzahl der Daten und x_i die einzelnen Daten. Mit der Gaußschen Fehlerfortpflanzung

$$\Delta f = \sqrt{\sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_i}\right)^2 \cdot (\Delta x_i)^2}$$

werden die Messunischerheiten ausgerechnet, wenn eine Größe von mehreren fehlerbehafteten Größen abhängt.

4.1 Wheatstonesche Brücke

Zunächst wird der unbekannte Widerstand R_{13} verwendet. Die verwendeten und gemessenen Widerstände sind in der Tabelle (1) aufgelistet. Der Widerstand wird mit der Gleichung (3) berechnet. Bei der Berechnung der Messunischerheiten wird der Fehler $\Delta \frac{R_3}{R_4} = 0,005 \cdot \frac{R_3}{R_4}$ verwendet.

Tabelle 1: Widerstände der Wheatstonschen Brücke bei dem unbekannten Widerstand R_{12} .

$R_{2}\left[\Omega\right]$	$R_3\left[\Omega\right]$	$R_4\left[\Omega\right]$	$R_{13}\left[\Omega\right]$
332	490	510	$(319, 0 \pm 1, 6)$
500	339	611	$(277, 4 \pm 1, 4)$
1000	242	758	$(319, 3 \pm 1, 6)$

Daraus folgt der gemittelte Widerstand

$$R_{13, {
m exp.}} = (305, 2 \pm 0, 9) \ \Omega$$
.

Der theoretische Wert lautet

$$R_{13,\text{theo.}} = 319, 5 \Omega.$$

In der Tabelle (2) sind die verwendeten und gemessenen Widerstände bei einer Durchführung mit dem unbekannten Widerstand R_{14} aufgeführt. Der Widerstand R_{14} berechnet sich erneut aus der Gleichung (3).

Tabelle 2: Widerstände der Wheatstonschen Brücke bei dem unbekannten Widerstand R_{14} .

$R_{2}\left[\Omega\right]$	$R_3 \left[\Omega\right]$	$R_4\left[\Omega\right]$	$R_{14}\left[\Omega\right]$
332	732	268	$(906, 8 \pm 4, 5)$
500	644	356	$(904, 5 \pm 4, 5)$
1000	474	526	$(901, 1 \pm 4, 5)$

Aus dieser Tabelle lässt sich der gemittelte Widerstand

$$R_{14,\text{exp.}} = (904, 1 \pm 2, 6) \Omega$$

bestimmen. Der theoretische Widerstand beträgt

$$R_{14,\mathrm{theo.}} = 900\,\Omega$$
.

4.2 Kapazitätsmessbrücke

Bei dieser Durchführung wird wieder der relative Fehler wie im Abschnitt (4.1) benutzt. In der Tabelle (3) sind die verwendeten und gemessenen Kapazitäten und Widerstände der Kapazitätsmessbrücke bei den unbekannten C_{15} und R_{15} aufgelistet. Die unbekannten Werte werden mit den Gleichungen (3) und (4) bestimmt.

Tabelle 3: Kapazität und Widerstände der Kapazitätsmessbrücke bei den unbekannnten Werten C_{15} und R_{15} .

$C_2 [\mathrm{nF}]$	$R_{2}\left[\Omega\right]$	$R_{3}\left[\Omega\right]$	$R_4\left[\Omega\right]$	$C_{15} [\mathrm{nF}]$	$R_{15}\left[\Omega\right]$
399	500	455	545	$(477, 9 \pm 2, 4)$	$(417, 4 \pm 2, 1)$
750	332	576	424	$(552, 1 \pm 2, 8)$	$(451, 0 \pm 2, 3)$
994	664	436	564	$(1285, 8 \pm 6, 4)$	$(513,3\pm2,6)$

Die gemittelte ermittelte Kapazität lautet

$$C_{15,\text{exp.}} = (771, 9 \pm 2, 5) \text{ nF}.$$

Der entsprechende theoretische Wert beträgt

$$C_{15,\text{theo.}} = 652 \,\text{nF}$$
.

Aus der Tabelle (3) lässt sich der gemittelte Widerstand

$$R_{15, {\rm exp.}} = (460, 6 \pm 1, 3)~\Omega$$

berechnen. Der theoretische Widerstand ist

$$R_{15,\text{theo.}} = 473 \,\Omega$$
.

Die Werte bei einer Durchführung mit den unbekannten Werten C_8 und R_8 sind in der Tabelle (4) aufgeführt. C_8 und R_8 werden ebenfalls mit den Gleichungen (3) und (4) ermittelt.

Tabelle 4: Kapazität und Widerstände der Kapazitätsmessbrücke bei den unbekannnten Werten C_8 und R_8 .

$C_2 [\mathrm{nF}]$	$R_2\left[\Omega\right]$	$R_3\left[\Omega\right]$		$C_8 [\mathrm{nF}]$	$R_8 \left[\Omega\right]$
399	500	551	449	$(325, 1 \pm 1, 6)$ $(374, 4 \pm 1, 9)$ $(899, 3 \pm 4, 5)$	$(613, 6 \pm 3, 1)$
750	332	667	333	$(374, 4 \pm 1, 9)$	$(665, 0 \pm 3, 3)$
994	664	525	475	$(899, 3 \pm 4, 5)$	$(733,9\pm3,7)$

Daraus folgt die gemittelte Kapazität

$$C_{8, {
m exp.}} = (533, 0 \pm 1, 7) \ {
m nF} \, .$$

Die theoretische Kapazität lautet

$$C_{8, {
m theo.}} = 294, 1\,{
m nF}$$
 .

Außerderm ergibt sich für den Widerstand

$$R_{8,\mathrm{exp.}} = (670, 8 \pm 1, 9)~\Omega$$

und der theoretische Widerstand beträgt

$$R_{8,\mathrm{theo.}} = 564\,\Omega$$
.

4.3 Induktivitätsmessbrücke

Der relative Fehler aus Abschnitt (4.1) gilt auch für diese Durchführung. Die verwendete Induktivität sowie die verwendeten und gemessenen Widerstände der Induktivitätsmessbrücke bei unbekannten L_{19} und R_{19} sind in der Tabelle (5) aufgelistet. Hier werden L_{19} und R_{19} mit den Gleichungen (3) und (5) bestimmt.

Tabelle 5: Induktivität und Widerstände der Induktivitätsmessbrücke bei den unbekannnten Werten L_{19} und R_{19} .

$L_2 [\mathrm{mH}]$	$R_2\left[\Omega\right]$	$R_3\left[\Omega\right]$	$R_4\left[\Omega\right]$	$L_{19} [\mathrm{mH}]$	$R_{19}\left[\Omega\right]$
20,1	1000	126	874	$(139, 42 \pm 0, 70)$	$(144, 16\pm 0, 72)$
14,6	664	201	799	$(58,04\pm0,29)$	$(167,04\pm 0,84)$
14,6	1000	291	709	$(35, 57 \pm 0, 18)$	$(410,44 \pm 2,1)$

Aus dieser Tabelle wird die gemittelte Induktivität

$$L_{19,\text{exp.}} = (77,68 \pm 0,26) \text{ mH}$$

bestimmt. Zudem beträgt der theoretische Wert der Induktivität

$$L_{19,\text{theo.}} = 26,96\,\text{mH}$$
.

Der gemittelte Widerstand lautet

$$R_{19,\text{exp.}} = (240, 50 \pm 0, 80) \ \Omega$$
.

Außerdem ist der theoretische Widerstand

$$R_{19,\mathrm{theo.}} = 108,7\,\Omega$$

gegeben. Die zugehörigen Werte bei der Durchführung mit der unbekannten Induktivität L_{16} und dem unbekannten Widerstand R_{16} sind in der Tabelle (6) aufgelistet. Die unbekannten Werte werden nochmals mit den Gleichungen (3) und (5) berechnet.

Tabelle 6: Induktivität und Widerstände der Induktivitätsmessbrücke bei den unbekannnten Werten L_{16} und R_{16} .

$L_{2}[\mathrm{mH}]$	$R_{2}\left[\Omega\right]$	$R_3\left[\Omega\right]$	$R_4\left[\Omega\right]$	$L_{16}[\mathrm{mH}]$	$R_{16}\left[\Omega\right]$
20.1	1000	888	112	$(159, 36 \pm 0, 80)$	$(126, 13 \pm 0, 63)$
14.6	664	915	85	$(157, 16 \pm 0, 79)$	$(61, 68 \pm 0, 31)$
14.6	1000	917	83	$(161, 30 \pm 0, 81)$	$(90, 51 \pm 0, 45)$

Hieraus ergibt sich für die gemittelte Induktivität

$$L_{16, \mathrm{exp.}} = (159, 30 \pm 0, 50) \mathrm{mH}$$

und die theoretische Induktivität beträgt

$$L_{16, {\rm theo.}} = 132, 71\,{\rm mH}\,.$$

Die aus der Tabelle (6) gemittelte Widerstand lautet

$$R_{16,\text{exp.}} = (92,77 \pm 0,28) \ \Omega$$
.

Der dazugehörige theoretische Widerstand ist

$$R_{16, \mathrm{theo.}} = 411, 2\,\Omega$$
 .

4.4 Maxwell-Brücke

In diesem Abschnitt wird wieder der gleiche relative Fehler aus Abschnitt (4.1) verwendet. Die erste Durchführung ist erneut mit der unbekannten Induktivität L_{19} und dem unbekannten R_{19} . Diese Werte werden mithilfe der Gleichungen (6) und (3) bestimmt. In der Tabelle (7) sind die verwendetene sowie gemessenen Widerstände, die genutzte Kapazität und die berechneten L_{19} und R_{19} aufgelistet.

Tabelle 7: Induktivität und Widerstände der Maxwell-Brücke bei den unbekannnten Werten L_{19} und R_{19} .

$R_{2}\left[\Omega\right]$	$R_3 \left[\Omega\right]$	$R_4\left[\Omega\right]$	$C_4\mathrm{nF}$	$L_{19}[\mathrm{mH}]$	$R_{19}\left[\Omega\right]$
332	85	256	994	28,06	$(110,23\pm 0,55)$
664	44	261	994	29,04	$(111,94\pm 0,56)$
1000	30	257	994	29,82	$(116, 36 \pm 0, 58)$

Aus dieser Tabelle ergibt sich folgender Wert für die gemittelte Induktivität

$$L_{19,\text{exp.}} = 28,97 \,\text{mH}$$
.

Die theoretische Induktivität ist erneut gegeben durch

$$L_{19,\text{theo.}} = 26,96 \,\text{mH}$$
.

Ebenfalls aus der Tabelle (7) wird der gemittelte Widerstand

$$R_{19,\text{exp.}} = (112, 97 \pm 0, 33) \ \Omega$$

bestimmt und der theoretische Widerstand ist wieder

$$R_{19.{\rm theo.}} = 108, 7 \,\Omega$$
.

Bei der zweiten Durchführung wird bei der Maxwell-Brücke die unbekannten Werte L_{16} und R_{16} bestimmt. Diese werden ebenfalls mit den Gleichungen (6) und (3) berechnet. Die verwendeten Größen und die berechneten L_{16} und R_{16} sind in der Tabelle (8) aufgeführt.

Tabelle 8: Induktivität und Widerstände der Maxwell-Brücke bei den unbekannnten Werten L_{16} und R_{16} .

$R_{2}\left[\Omega\right]$	$R_3\left[\Omega\right]$	$R_4\left[\Omega\right]$	$C_4\mathrm{nF}$	$L_{16} [\mathrm{mH}]$	$R_{16}\left[\Omega\right]$
332	403	320	994	132,99	$(418, 1 \pm 2, 1)$
664	204	328	994	134,64	$(413, 0 \pm 2, 1)$
1000	136	330	994	135, 18	$(412, 1 \pm 2, 1)$

Hieraus berechnet sich der gemittelte Wert für die Induktivität

$$L_{16,\text{exp.}} = 134, 27 \,\text{mH}$$
.

Die theoretische Induktivität lautet wieder

$$L_{16 \text{ theo}} = 132,71 \text{ mH}$$
.

Außerdem ergibt sich für den gemittelten Widerstand

$$R_{16,\text{exp.}} = (414, 4 \pm 1, 2) \ \Omega$$

und der entsprechende theoretische Wert beträgt

$$R_{16,\text{theo.}} = 411, 2\Omega$$
.

4.5 Wien-Robinson-Brücke

Die gemessenen Brückenspannungen in Abhängigkeit der Frequenz der Wien-Robinson-Brücke sind in der Tabelle (9) aufgelistet. Außerdem beträgt die Speisespannung bei dieser Durchführung $U_{\rm S}=1\,{\rm V}.$

Tabelle 9: Gemessene Brückenspannungen bei verschiedenen Frequenzen der Wien-Robinson-Brücke.

f[Hz]	$U_{\mathrm{Br}}\left[\mathrm{mV}\right]$	f[Hz]	$U_{\mathrm{Br}}\left[\mathrm{mV}\right]$
50	340	1000	220
100	310	1500	300
150	220	2000	320
200	155	2500	330
250	105	3000	330
300	60	3500	330
350	20	4000	335
400	15	4500	340
450	44	5000	340
500	68		

Anhand dieser Tabelle lässt sich die Frequenz $f_0=400\,\mathrm{Hz}$ bestimmen, bei der die Brückenspannung am niedrigsten ist. Damit lassen sich die Messwerte in der Abbildung (7) halblogarithmisch darstellen. Hierfür wird auf der x-Achse die auf die minimale Brückenspannung normierte Frequenz $\Omega=\frac{f}{f_0}$ und auf der y-Achse $\left|\frac{U_\mathrm{Br}}{U_\mathrm{S}}\right|^2$ aufgetragen. Außerdem wird mithilfe der Gleichung (8) die Theoriekurve bestimmt, welche ebenfalls in der Abbildung (7) abgebildet ist.

Abbildung 7: Halblogarithmische Darstellung der Frequenz und Spannungen.

Der Klirrfaktor wird mit der Gleichung (9) bestimmt. Allerdings wird die Summe der Oberwellen mit der zweiten Oberwelle angenähert. Die zweite Oberwelle U_2 bestimmt sich aus der Gleichung (9) und durch

$$U_2 = \frac{U_{\rm Br}}{f(\varOmega=2)} \,,$$

wobei für $U_{\rm Br}$ die minimale Brückenspannung verwendet wird. Somit ergibt sich

$$U_2 = \frac{15 {\rm mV}}{\sqrt{\frac{1}{45}}} \approx 100, 62 \, {\rm mV} \, .$$

Daraus bestimmt sich der Klirrfaktor

$$k = \frac{U_2}{U_1} = \frac{U_2}{U_S} = \frac{100,62 \cdot 10^{-3} \,\mathrm{V}}{1 \,\mathrm{V}} = 0,10 \,.$$

5 Diskussion

Die relative Abweichung zwischen dem theoretischen und dem experimentellen Wert wird bestimmt durch

$$\text{rel. Abweichung} = \frac{|\text{exp. Wert} - \text{theo. Wert}|}{\text{theo. Wert}} \,.$$

In der Tabelle (10) sind die experimentellen und theoretischen Werte sowie deren relative Abweichungen der Wheatstonschen Brücke, Kapazitätsmessbrücke, Induktivitätsmessbrücke und der Maxwell-Brücke aufgelistet.

Tabelle 10: Relative Abweichung der verschiedenen Brückenschaltungen.

exp.	theo.	rel. Abweichung			
Wheatstonesche Brücke					
$R_{13,\text{exp.}} = (305, 2 \pm 0, 9) \ \Omega$	$R_{13, \text{theo.}} = 319, 5\Omega$	4,47%			
$R_{14,{\rm exp.}} = (904, 1 \pm 2, 6)~\Omega$	$R_{14, \rm theo.} = 900\Omega$	0,46%			
Kapaz	zitätsmessbrücke				
$C_{15, { m exp.}} = (771, 9 \pm 2, 5) { m nF}$	$C_{15,\mathrm{theo.}} = 652\mathrm{nF}$	18,4%			
$R_{15, { m exp.}} = (460, 6 \pm 1, 3) \ \Omega$	$R_{15,\mathrm{theo.}} = 473\Omega$	2,62%			
$C_{8,{\rm exp.}} = (533, 0 \pm 1, 7)~{\rm nF}$	$C_{8,\mathrm{theo.}} = 294, 1\mathrm{nF}$	81,2%			
$R_{8,\mathrm{exp.}} = (670, 8 \pm 1, 9)~\Omega$	$R_{8,\mathrm{theo.}} = 564\Omega$	18,94%			
Indukt	ivitätsmessbrücke				
$L_{19, {\rm exp.}} = (77, 68 \pm 0, 26)~{\rm mH}$	$L_{19, \text{theo.}} = 26,96 \text{mH}$	188, 1 %			
$R_{19, {\rm exp.}} = (240, 50 \pm 0, 80)~\Omega$	$R_{19,\mathrm{theo.}} = 108,7\Omega$	121,3%			
$L_{16, {\rm exp.}} = (159, 30 \pm 0, 50)~{\rm mH}$	$L_{16, {\rm theo.}} = 132, 71{\rm mH}$	20,02%			
$R_{16, {\rm exp.}} = (92, 77 \pm 0, 28)~\Omega$	$R_{16,\mathrm{theo.}} = 411, 2\Omega$	77,44%			
Maxwell-Brücke					
$L_{19,\mathrm{exp.}} = 28,97\mathrm{mH}$	$L_{19, {\rm theo.}} = 26, 96{\rm mH}$	7,46%			
$R_{19,{\rm exp.}} = (112, 97 \pm 0, 33)~\Omega$	$R_{19,\mathrm{theo.}} = 108,7\Omega$	3,93%			
$L_{16,{\rm exp.}}=134,27{\rm mH}$	$L_{16, {\rm theo.}} = 132, 71{\rm mH}$	1,18%			
$R_{16,\text{exp.}} = (414, 4 \pm 1, 2) \ \Omega$	$R_{16,\mathrm{theo.}} = 411, 2\Omega$	0,78 %			

Diese Abweichungen könnten an der ungenauen Bestimmung von R_3 und R_4 liegen. Hierfür muss die Brückenspannung minimiert werden, welche mithilfe vom Ablesen am Oszilloskop minimiert wurde. Allerdings entsteht bei der Minimierung ein Rauschen, was das Ablesen ungenau machen könnte. Zudem ist häufiger das Problem aufgetreten, dass beim Berühren der Kabel oder des Potentiometers sich die Abbildung auf dem Oszilloskop geändert hat, was ebenfalls die teilweise großen Abweichungen erklären könnte.

Bei der Wien-Robinson-Brücke fällt auf, dass die Messwerte mehr von der Theoriekurve abweichen, desto weiter sich die Frequenz von f_0 entfernt. Allerdings lässt sich mit dem geringen Klirrfaktor von k=0,10 die hohe Genauigkeit im Frequenzbereich um f_0 bestätigen.

Literatur

[1] Unknown. Elektrische Brückenschaltungen. TU Dortmund, Fakultät Physik. 2023.

Anhang

Originaldaten