Last lime
LI Lemma: Suppose (v,,vm) is LD in V.
Then I jel,, m s.t
(a) V _j ε span (V ₁₁ , V _{j-1})
•
(b) if jth element is removed from v,,vm
then the span of the remaining = span (v,,, vm
Main Goal: If Y has two bases, (v,,,,vm), (w,,,wm) then
Want to figure this out.
Key Theorem: Suppose V is finite dimensional and
@ (U,,, Um) is LI (U:EV)
Θ (ν ₁ ,,ν _n) spans ν (ν; εν)
then win
Let $B=(V_1,,V_n)$ (spans Y)
Let B=(V,, Vn) (spans V) add in u, & B, remove one element of B
to get B=(u, v2,,vn) still spans V
elevents of B
add in uz & B, remove one element of B
to get B=(u, uz, v3", vn) still spans V
elevents of B
keep going
B = (u, uz,, um, Vm+1,, vn) still spans V

PROOF

Step 1: At beginning of step, B= (v,...vn) spans V.

(U,1V,1V21..., Vn) is LD > U,= a,V, + ... + anvn

-U, taivit... tanun =0

Thus, LI Lenna > IV; E(u, v, ,..., vn)

Such that vj & span (u,,..., vj-1) and removing it

So: span (u, all vi's except vi) = span B= V

Step i: At beginning B= (u, ..., u; , Vi', ..., vn')

Note: those some subset of

are LI (Vi,..., Vn)

Consider Ui: if ism, then we are done. 245h otherwiser Jui E (u, ..., um).

Consider (u,,...,ui,ui,v'i,...,vn') spans V and is LD.

At end

of step v $B = (u_1, ..., u_i, v_{i+1}, v_n)$ Spans v $v_n = v_n$ $v_n = v_n$

What happens if at the Geginning of step i: B= (u, __, u, _) spans V ism -This CANNUT happen since then ui Espan (uj ,..., ui-1) , since (U1,-1,Un) is LI. => m in

Example
To $ \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}, \begin{pmatrix} 6 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 42 \\ e^{\pi^2+3} \\ 17.1-e \end{pmatrix} $ LI $\mathcal{R}^{3?}$
No!
\mathbb{R}^3 is spanned by $\begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \therefore 4 \not \equiv 3 c!$
$C \rightarrow C \rightarrow$
Corollary: If V has two bases, (U, um), (V, vn) then m=n (u, um) is II; (v, vn) spans V => m = n
then m=n
(u,,, um) is II; (v,,, vn) spans V => m & n => m=n
(v,,, vn) is LI; (u,,, um) spans v=> n&m
3 a spanning set
Q: If V is finite dimensional, does V have a basis.
A: Yup.
Theorem: If (V1,, Vn) spans V, then some subset of (V1,, Vn)
is a basis of V.
Proof: Think about it