Week 1: Descriptive Analytics

- An Operational Decision Problem
- Forecasting with Past Historical Data
- Moving Averages
- Exponential Smoothing
- Thinking about Trends and Seasonality
- Forecasting for new Products
- Fitting distributions

Week 1: Descriptive Analytics

- An Operational Decision Problem
- Forecasting with Past Historical Data
- Moving Averages
- Exponential Smoothing

Session 2

- Thinking about Trends and Seasonality
- Forecasting for new Products
- Fitting distributions

Recall our past demand data

- ◆ Let D_t denote demand observed in period t
- From the past data, we have $D_1, D_2, \dots D_{100}$

Descriptive Statistics: Mean and Standard Deviation

Sample Mean or Sample Average:

- Arithmetic average of all the data points $\mu = (D_1 + D_2 + ... + D_n)/n$
- Tells us (roughly) what you expect the next observation to be
- Can be calculated using excel average() function.
- Whatever your average is, the demand in future will deviate from the average.

Sample Standard Deviation

 A measure of how much noise or variation (from the average) there is in your data.

– Standard deviation
$$s = \sqrt{\frac{\sum (D_t - \mu)^2}{(n-1)}}$$
, $t = 1, ..., n$

Can be calculated using excel stdev() function.

Descriptive Statistics for our Data

- ◆ Let past data be D₁, D₂, . . . D₉₉, D₁₀₀
- ◆ Sample Average: 52.81
- ◆ Sample Standard deviation: 13.73
- ◆ In the excel file *DemandData.xlsx*, I show how to calculate these two for our data on an excel sheet.
- These are two descriptive statistics of our data.
- Note 1: If our data were normally distributed, these two statistics would be sufficient to describe the demand.
- Predictive Statistics: We need to adjust our sample standard deviation for forecasting purposes. More on this later.

Notation: Look Ahead Forecasts

- ◆ Recall that D₁, D₂, ... D_t are the past values (demands observed).
 - When we are making a forecast in period t, we have demands up to period t.
- We call $F_{t, t+\tau}$ = forecast made in period t for demand in future period $t + \tau$ where $\tau = 1, 2, 3, ...$
 - E.g. F_{t, t+3} is the forecast made in period t for 3 periods ahead.
 - E.g. F_{100,100+3} is the forecast made in period 100, for the period 103. This is called a 3-step forecast. Why?
 - Because, we are looking and forecasting for three periods ahead.

One-Step Forecast

- ◆ Typically, we are interested in the next outcome, or simply one-step ahead forecasts.
 - F_{t, t+1} is the forecast made at t for period t+1
 - F_{t-1, t} is the forecast made at t-1 for the next period t
- ♦ We will use the shorthand notation F_{t+1} for one-step forecast made at t for period t+1.
 - Simply, F_{t+1} stands for F_{t, t+1}

Forecasting for Stationary Series

- Stationary data shows no trend behavior.
 - Roughly speaking the future resembles the past.
 - Example: Our Newsvendor Demand data (DemandData.xls) which shows no perceptible trend.
- A stationary time series has the form:
 - $D_t = \mu + \epsilon_t$ where μ is a constant and ϵ_t is a random variable with mean 0 and some standard deviation σ .
- We use past data for forecasting.
- Two common methods for forecasting stationary series are moving averages and exponential smoothing (advanced material slides).

Moving Averages

- ◆ A moving averages forecast is the arithmetic average of the n most recent observations.
- We will denote the Moving Averages method that uses n data points as
 - MA (n)
- For a one-step-ahead forecast for period t:

$$- F_t = (D_{t-1} + D_{t-2} + ... + D_{t-n})/n$$

 For moving averages, a multi-step forecast is the same as the onestep forecast.

Moving Averages

One-step-ahead forecast for period t:

$$- F_t = (D_{t-1} + D_{t-2} + ... + D_{t-(n-1)} + D_{t-n}) /n$$

- It is called "moving" average because the chosen data points "move" and are always the most recent n data points.
- Forecasting for period t+1,

$$- F_{t+1} = (D_t + D_{t-1} + ... + D_{t-(n-1)}) /n$$

We have moved the data used by 1 period (D_t is added and D_{t-n} is discarded).

Moving Averages Example 1:

- ◆ Let's calculate the Moving Average for past 10 periods
- ◆ I simply call this MA(10).
- First we look at Descriptive Statistics.
- ◆ Then, I'll show you Predictive Statistics which you can use for Forecasting. (You will see more of the predictive analysis in Week 4).

Last 10 Data points.

Last 10 data points are marked in red.

Example 1: Descriptive Statistics

◆ Sample Mean: Average of data from last 10 points.

$$\mu = 49.60$$

Sample Standard Deviation:

$$s = 10.28$$

- Again, I'll show you how to calculate the descriptive statistics using the template Week1MATemplate.xlsx
- ◆ If our data were normally distributed (like a bell curve) the above statistics - mean and standard deviation – would be sufficient to describe the demand distribution.

Predictive Statistics

- We can use the statistics calculated for prediction or forecasting.
- ◆ Mean for Prediction = Descriptive Sample mean
 - In other words, descriptive sample mean is an unbiased estimator for mean of the true demand distribution, and hence can be used for prediction.
- However, the standard deviation for prediction needs to be adjusted because of insufficient data.
- When the data is normally distributed, Standard Deviation for Prediction = $s + s/\sqrt{n}$

Recall that *s* is the descriptive standard deviation that we calculated and *n* is the total number of data points used for calculation.

Predictive Statistics (Example 1 continued..)

- ♦ When we use n=10 data points:
- When the data is Normally distributed,
- Mean for Prediction $= \mu = 49.60$
- Standard Deviation for Prediction,

$$\sigma = s + \frac{s}{\sqrt{n}} = 10.28 + \frac{10.28}{\sqrt{10}} = 13.53$$

Example 1 (continued): Descriptive Statistics

- ◆ Suppose we use n = 20 data points. MA (20)
- ◆ Sample Mean: Average of data from last 20 points.

$$\mu = 51.95$$

Sample Standard Deviation:

$$s = 9.62$$

◆ We have sufficient descriptive statistics for normally distributed data.

Predictive Statistics (Example 1 continued..)

- ♦ We have n = 20 data points.
- When the data is Normally distributed,
- Mean for Prediction $= \mu = 51.95$
 - We expect that the demand in the period would be 51.95 on average.
- Standard Deviation for Prediction,

$$\sigma = s + \frac{s}{\sqrt{n}} = 9.62 + \frac{9.62}{\sqrt{20}} = 11.77$$

 For forecasting, we can assume that the actual demand will deviate from the average with the above standard deviation.

Using More Data

- As we have more data for forecasting
 - Descriptive statistics approach predictive statistics.
 - As we have more data, we gain more confidence for prediction.
 - Note as the number of data points increases, the descriptive standard deviation approaches standard deviation for prediction.

$$- \sigma = s + \frac{s}{\sqrt{n}}$$

Statistics for our entire data

- ♦ Using all data available, i.e. n = 100
- Descriptive statistics:

$$\mu = 52.81$$

s = 13.73

Predictive Statistics (for a normal distribution)

$$\mu = 52.81$$

$$\sigma = s + \frac{s}{\sqrt{n}} = 13.73 + \frac{13.73}{\sqrt{100}} = 15.10$$

- We will use the above mean as 52.81 and standard deviation of 15.10 for prediction in the coming weeks.
- All Solutions documented in the excel file Week1MASolution.xlsx

Data Visualization

- We can generate a Normal Distribution graph to visualize how our demand data is distributed...
- ◆ Using mean as 52.81 and standard deviation of 15.10 for prediction

Moving Averages: A Discussion

- Advantages of Moving Average Method
 - Easy to understand.
 - Easy to compute.
 - Provides stable forecasts.
- Disadvantages of Moving Average Method
 - Lags behind a trend (as we will see in Session 3).
 - It is not a causal model, i.e., it won't explain why realizations in the future behave in a certain way.
- Note that Moving Average method "drops" all data older than the n data points you use.
 - How do you think about how to choose n?

Moving Averages: What data to use?

- If you choose to use moving average method of last 10 data points,
 - all the older data is ignored
 - » (e.g. data from 12 periods back is not used at all).
 - all the recent 10 data points are weighed the same.
 - » (e.g. yesterday's data has the same weight as the data from a week before).
- You may want to give more weight to more recent data and less weight to older data.
- Exponential smoothing is based on this precise idea.
 - Advanced slides.

Evaluation of Forecasts

- The forecast error in period t is denoted by e_t,
 - The difference between the forecast for demand in period t and the actual value of demand realized in t.
 - For one step ahead forecast: $e_t = F_t D_t$.
- Three ways to measure errors:
 - Mean Absolute Deviation MAD = $(1/n) \Sigma | e_t|$
 - Mean Squared Error MSE = $(1/n) \Sigma e_t^2$
 - Mean Absolute Percentage Error MAPE = $(1/n) \Sigma | e_t/D_t| \times 100$.
- Lower the errors, better the forecasting process is.
- Biases in Forecasts:
 - A bias occurs when the average value of a forecast error tends to be positive or negative.

Measuring Errors: An Example

- Using our dataset again, we will go through different methods of calculating errors in our forecasts.
- Assume we have data up to 80 periods.
- We use Moving Averages of 10 periods to calculate our forecasts.
- ◆ Once we have forecast for period 81, demand for 81 occurs.
- We then forecast for 82, and demand for period 82 occurs and so on.

Errors Example

- ◆ This allows us to calculate the errors from using MA(10)
 - By comparing demands and forecasts over periods 81 through 100.
- Using, Week1ErrorsTemplate.xlsx, I'll walk through an example exercise.
- ◆ For MA(10) moving averages of n=10, we get:

_	Mean Absolute Deviation	$MAD = (1/n) \Sigma e_i $	= 8.9
_	Mean Squared Error	MSE = $(1/n) \Sigma e_i^2$	=113.15
_	Mean Absolute Percentage Error	MAPE = $(1/n) \Sigma e_i/D_i \times 100$.	=19.72%

◆ For MA(20) moving averages of n=20, we get:

-	Mean Absolute Deviation	$MAD = (1/n) \Sigma e_i $	= 7.66
_	Mean Squared Error	MSE = $(1/n) \Sigma e_i^2$	=92.61
_	Mean Absolute Percentage Error	MAPE = $(1/n) \Sigma e_i/D_i x 100$.	=17.29%

Errors Example: Continued...

- ♦ The solution is available in Week1ErrorsSolution.xlsx
- ◆ It may be preferable to use MA(20) over MA(10) in this case
 - By comparing corresponding error terms in the data
- Measuring errors allows us to understand better the choice of which method to use.
- Finally, in the data there is no evidence of any bias.

Wrapping up

- We saw how to forecast using the Moving Averages method
- We saw how to measure errors and biases in Forecasting.
- We learned about Descriptive Statistics...
- ... and how to adapt the Descriptive Statistics for Prediction.

See you in the next Session.

Next...

- An Operational Decision Problem
- Forecasting with Past Historical Data
- Moving Averages
- Exponential Smoothing

Session 3

- Thinking about Trends and Seasonality
- Forecasting for new products
- Fitting distributions