EAIiIB	Ewa Stachów		Rok	Grupa	Zespół					
Informatyka	Weronika Olch	a	II	3	6					
Pracownia	Temat:				Nr ćwiczenia:					
FIZYCZNA		Mostek Wheastone'a								
WFiIS AGH	Wiosiek wheas	ione a			32					
Data wykonania:	Data oddania:	Zwrot do poprawki:	Data oddania:	Data zaliczenia:	OCENA:					
21.10.2016	26.10.2016									

Ćwiczenie nr 32: Mostek Wheastone'a

1 Cel ćwiczenia

Celem ćwiczenia było zapoznanie z zasadą działania mostka Wheatstone'a w oparciu o prądowe i napięciowe prawo Kirchoffa służące do opisu złożonych obwodów elektrycznych oraz metody pomiaru nieznanych oporów oraz ich połączeń szeregowych i równoległych zgodnie z prawem Ohma.

2 Wstęp teoretyczny

Mostek Wheatstone'a jest jednym z klasycznych sposobów dokładnego pomiaru nieznanego oporu elektrycznego. Załóżmy, że mamy nieznany opór R_x , znane opory R_a , R_b oraz regulowaną opornicę dekadową o oporze R_2 . Zestawiamy następujący obwód: do szeregowego połączenia oporów R_x , R_2 przyłączamy równolegle połączenie szeregowe R_a , R_b . Węzły pomiędzy wspomnianymi parami oporów łączymy galwanometrem. Po przyłożeniu do układu różnicy potencjałów możemy regulować R_2 tak, aby galwanometr wskazywał 0, czyli brak różnicy potencjałów, a co za tym idzie i brak przepływu prądu między odpowiednimi węzłami. Wtedy z praw Ohma i Kirchhoffa możemy wyprowadzić następujące wzory:

$$I_a \cdot R_a = I_x \cdot R_x$$

$$I_b \cdot R_b = I_d \cdot R_2$$

Z powyższych równań wynika równość spadków napięć na odpowiednich oporach oraz równość odpowiednich natężeń prądów, czyli:

$$I_a = I_b$$

$$I_x = I_d$$

Stąd można wyprowadzić wyrażenie na R_x :

$$R_x = R_a \frac{I_a}{I_x} = R_a \frac{I_b}{I_d} = R_2 \frac{R_a}{R_b}$$

Ponieważ R_a i R_b są oporami odcinków tego samego jednorodnego drutu, ich wielkości są proporcjonalne do długości:

$$\frac{R_a}{R_b} = \frac{a}{b} = \frac{a}{l-a}$$

Ostatecznie otrzymujemy, że:

$$R_x = R_2 \frac{a}{l-a}$$

Dokładność pomiaru mostkiem Wheatstone'a z drutem oporowym zależy przede wszystkim od błędu wyznaczenia odległości a. Aby pomiar był najdokładniejszy należy tak dobrać opór R2, aby stan równowagi mostka można było uzyskać w przybliżeniu w połowie długości drutu oporowego.

3 Układ pomiarowy

Układ mostka Wheatstone'a pokazany został na rysunku w punkcie nr 2 *Wstęp teoretyczny*. W skład obwodu wchodzą:

- Listwa z drutem oporowym, zaopatrzona w podziałkę milimetrową i kontakt ślizgowy umożliwiający zmiany długości odcinków a i b.
- Opornica dekadowa
- Zestaw oporników oznaczony symbolem R_x , umieszczony na płytce z pleksiglasu.
- ullet Mikroamperomierz G jako wskaźnik zerowania mostka. Jego czułość można regulować.
- Zasilacz.

4 Przebieg doświadczenia

Przy przeprowadzaniu eksperymentu skorzystałyśmy z układu pomiarowego, którego schemat przedstawia poniższy rysunek. Pomiędzy punktami A i C znajduje się listwa z drutem oporowym o znanej długości. R_2 jest opornikiem wzorcowym o regulowanej wartości oporu, a R_x nieznanym oporem, którego wartość chcemy wyznaczyć. Zrównoważenie mostka polega na takim ustawieniu punktu D, aby dla zadanej wartości R_2 przez galwanometr nie płynął prąd.

5 Wyniki pomiarów

Opornik	R_1

$R_1[\Omega]$	25	20	30	15	13	10	8	5	18	23
a[mm]	354	427	331	472	512	599	612	682	427	378
R_{x_1}	13,70	14,90	14,84	13,41	13,64	14,94	12,62	10,72	13,41	13,98

Wartość średnia oporu: $\overline{R}_{x_1}=13,62~\Omega$ Niepewność: $u(R_{x_1})\approx$

Opornik R_2

$R_2[\Omega]$	20	30	10	35	25	15	18	12	22	28
a[mm]	504	407	675	358	438	556	515	619	477	411
R_{x_2}	20,32	20,59	20,77	19,52	19,48	18,78	19,11	19,50	20,07	19,54

Wartość średnia oporu: $\overline{R}_{x_2}=19,77~\Omega$ Niepewność: $u(R_{x_2})\approx$

Połączenie szeregowe ($R_1 \mathbf{z} R_2$)

$R_{12}[\Omega]$	20	30	35	40	50	45	25	28	32	38
a[mm]	640	531	500	461	414	436	575	545	526	479
R_{x_s}	35,56	33,97	35,00	34,21	35,32	34,79	33,82	33,54	35,51	34,94
Wente sá á mednie anomy \overline{D} 24.67 O Nienavyne sá $\omega(D)$ 24.										

Wartość średnia oporu: $R_{x_s} = 34,67 \Omega$ Niepewność: $u(R_{x_s}) \approx$

Opór obliczony: $R_{obl} = 33,38 \Omega$ Niepewność: $u(R_{obl}) \approx$

Połączenie równoległe (R_1 z R_2)

$R_{12}[\Omega]$	3	4	5	6	7	8	9	10	11	13
a[mm]	662	592	560	526	496	467	434	461	427	371
R_{x_r}	10,87	9,03	10,45	10,66	9,80	9,47	9,32	10,37	10,29	10,59

Wartość średnia oporu: $\overline{R}_{x_r}=6,99~\Omega$ Niepewność: $u(R_{x_r})\approx$

Opór obliczony: $R_{obl}=8,06~\Omega$ Niepewność: $u(R_{obl})\approx$

6 Opracowanie wyników pomiarów

Aby obliczyć opór R_x korzystamy z poniższego wzoru:

$$R_x = R_2 \frac{a}{l-a},$$

gdzie R_2 to znana opór wzorcowy, a to zmierzona długość, a l=1000mm to długość listwy z drutem oporowym.

Niepewność typu A wartości R_x wyznaczamy z następującego wzoru:

$$u(R_x) = \sqrt{\frac{\sum (R_i - \overline{R}_x)^2}{n(n-1)}}$$