Introduction to R

Exam Summer Term 2018

Student Name, Student ID, StudentName@uni-muenster.de

Contents

1	Linear Equation	2
2	Functions	3
3	Passenger numbers	4
4	Porsche	5
5	Law of large numbers	6
6	Limits of maxima	7
7	Student teacher ratio	8
8	Asymptotic normality	9
9	Stochastic frontier analysis	10
10	Variance estimation in GARCH	11

- Answer 7 out of 10 of the following exercises in either German or English.
- Hand in your solutions before Friday, 13 April 2018 at 10 am.
- It is advised to regularly check the learnweb and your emails in case of urgent updates.
- Please sent your solutions files to Willi Mutschler. We will confirm the receipt of your work also by email.
- The solution files should contain your executable and commented script file or preferably a R Notebook.
- You may use any available R package you find fit to solve the exercise.
- Please label your axes and title in your plots.
- · All students must work on their own.

1 Linear Equation

Solve the linear equation $A \cdot x = b$ with

$$A = \begin{pmatrix} 1 & 1 & 1 & 3 \\ 2 & 5 & 8 & 6 \\ 4 & 3 & 7 & 9 \\ 3 & 6 & 5 & 1 \end{pmatrix} \text{ and } b = \begin{pmatrix} 1 \\ 4 \\ 3 \\ 5 \end{pmatrix}$$

Solution:

and compute the inverse as well as Eigenvalues of A.

2 Functions

1. Write a function psum(n,a) that computes

$$s_{n,a} := \sum_{k=0}^{n} \frac{k^a}{k^a + 1}$$

for any natural number $n \in \{1, 2, ...\}$ and any a > 0.

Solution:

2. Write a function $\mathtt{mymatrix}(\mathtt{n})$ that returns a $n \times n$ matrix such that: the first and last row as well as the first and last column contain only ones, whereas the remaining values are zero, e.g.

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

3 Passenger numbers

The file apass.csv contains monthly data on passenger numbers of US airlines from January 1949 to December 1959.

1. Read the data into a data frame.

Solution:

2. Create a vector that contains the corresponding dates. Add this vector to your data frame.

Solution:

 $3. \ \, {\rm Plot}$ the passenger numbers against the date vector.

Solution:

4. Calculate the mean passenger numbers for each month. Plot the means as a bar chart.

4 Porsche

The file **Porsche911.csv** contains data on Porsche 911 cars, name is an id for the owner, loc is the location, age is the age of the car, TKM is the mileage in thousands kilometers and price the current price listed on an internet plattform for used cars in thousand Euros.

1. Read in the data into a data frame and compute key descriptive statistics (mean, standard deviation, smallest and largest values, quartiles, covariance and correlation) for the variables age, TKM and price.

Solution:

2. Plot boxplots for age, TKM and price.

Solution:

3. Generate the empirical cumulative distribution function as well as histograms for each of the variables age, TKM and price.

5 Law of large numbers

Let $X_1, X_2, ...$ be a sequence $X_1, X_2, ...$ from an AR(1) process:

$$(X_i - \mu) = \rho (X_{i-1} - \mu) + \varepsilon_i$$

where ε_i is uniformly distributed on the interval [-1,1] and $|\rho| < 1$. Define the sequence of random variables

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i.$$

The weak law of large numbers states that the sample average \bar{X}_n converges in probability towards the expected value μ when n tends to infinity.

Show by simulation that the law of large numbers holds despite the intertemporal dependence in X. In particular, show the convergence by means of an appropriate plot. Hint: You may set the parameters to e.g. $\rho = 0.5$ and $\mu = 2$ (or any other value you find fit.)

6 Limits of maxima

Let $X_1, X_2, ...$ be an i.i.d. sequence of random variables uniformly distributed on the interval [0,1]. Define the random variables

$$M_n = \max_{i=1,\dots,n} X_i$$

and its normalized version $\overline{M}_n = (M_n - 1) \cdot n$. One can show that the limit distribution of \overline{M}_n is the Weibull distribution with density $\exp{(x)}$. Write an R program to illustrate that \overline{M}_n converges in distribution. To this end, set n = 100 and R = 1000 and consider the $R \times n$ matrix with uniformly distributed random variables X_i . Show the convergence by means of an appropriate plot.

Note: Try to avoid using loops (use e.g. apply instead). You will not get full points if you use a loop.

7 Student teacher ratio

Load the dataset **caschool.csv** into the object **caschool**. This dataset is discussed in great detail in the textbook of Stock and Watson.

- 1. Make the following variables accessible:
- test score testscr
- student-teacher ratio str
- percentage of English language learners el_pct
- expenditures per student expn_stu

Solution:

2. Regress testscr on a constant and str. Assign the residuals of the regression into the variable r1. Now regress testscr on an intercept, str, el_pct and expn_stu. Put the residuals into the variable r2. Compute the sum of squared residuals for both regressions. Display r1 and r2 in one plot, where the points of r2 are marked red.

Solution:

3. Consider the regression of testscr on a constant, str, elp_ct and expn_stu. Predict the value of testscr for a school district with an average class size (str) of 25 students, a percentage of English learners (el_pct) of 60% and an average expenditures per student (expn_stu) of 4000\$.

Solution:

4. Reconsider the regression of testscr on a constant, str, el_pct and expn_stu. Compute the heteroscedastic robust standard errors.

Solution:

5. Test the null hypothesis that the coefficients on str and expn_stu both equal 0 and the coefficient on el_pct equals -0.7. Hint: Use the linearHypothesis function of the car package.

8 Asymptotic normality

Consider the multiple linear regression model $y = X\beta + u$. In R, generate the matrix X by executing the following commands:

```
library(MASS)
X <- cbind(1,mvrnorm(n=100,c(5,10),matrix(c(1,0.9,0.9,1),2,2)))
```

Assume that the true coefficient vector is

$$\beta = \left(\begin{array}{c} 3\\2\\-1 \end{array}\right)$$

and the error terms are i.i.d. uniformly distributed on the interval [-1,1]. Hence, the assumption of normally distributed error terms is violated.

1. Write an R program that generates R=10000 random samples of size n=100 each. Generate an empty vector Z <- rep(NA,R). For each sample $i=1,\ldots,R$, compute the OLS estimate $\hat{\beta}$ of β and store the second component of $\hat{\beta}$ in the i-th element of the vector Z.

Solution:

2. Plot the histogram of Z. Compute the mean m and standard deviation s of Z and add the density of N(m,s) to the plot.

9 Stochastic frontier analysis

Consider the Cobb-Douglas production function

$$y = Ax_1^{\alpha}x_2^{\beta}$$

By definition, the production function returns the maximal output for given inputs, and actual production cannot be larger than y. Due to inefficiencies, actual production could be modeled (in logs) as

$$\ln y = \ln A + \alpha \ln x_1 + \beta \ln x_2 - u$$

where u is a **non-negative** random variable. Since other disturbances (e.g. measurement errors) can enter the production function, it is more common to add another, **symmetrically distributed**, disturbance term v,

$$\ln y = \ln A + \alpha \ln x_1 + \beta \ln x_2 - u + v$$

Assume that u is exponentially $(u \sim Exp(\lambda))$ and v normally $(v \sim N(0, \sigma^2))$ distributed. One can show that if u and v are independent then the density function of $\varepsilon = v - u$ is given by

$$f_{\varepsilon}(\varepsilon) = \lambda \exp\left(\lambda \varepsilon + \frac{1}{2}\lambda^2 \sigma^2\right) \Phi\left(\frac{-\varepsilon}{\sigma} - \lambda \sigma\right)$$

where Φ is the distribution function (pnorm) of N(0,1) and exp the exponential function (exp).

1. Load the dataset sfa.csv. This dataset is an abbreviated version of table F7.2 of Greene, 2008. The original data appeared in Zellner and Revankar, *Generalized Production Functions*, Review of Economic Studies, 36 (1969), 241-250.

Solution:

2. Write an R program to estimate the parameters A, α , β , λ and σ by maximum likelihood on this dataset.

Solution:

3. Compute the asymptotic standard errors.

10 Variance estimation in GARCH

When one considers an iid sample X_1, \ldots, X_n from $X \sim N(\mu, \sigma^2)$ then one usually estimates the variance σ^2 using

$$\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

The distribution of the normalized estimator for the variance is given by:

$$\frac{(n-1)\,\hat{\sigma}^2}{\sigma^2} \sim \chi_{n-1}^2$$

where σ^2 is the true variance. Consider the case when the observations are not iid but are stochastically dependent over time. To this end, assume that X_1, \ldots, X_n is a time series generated by a GARCH(1,1) process

$$X_i \sim N(0, \sigma_i^2)$$

$$\sigma_i^2 = \omega + \alpha X_{i-1}^2 + \beta \sigma_{i-1}^2$$

with $\omega=0.1$, $\alpha=0.1$, $\beta=0.85$ and sample size equal to n=2500. Show by simulations that the distribution of the normalized estimator for the variance is not χ^2_{n-1} -distributed. Hint: The true unconditional variance of this GARCH process is $\sigma^2=2$.