Machine Learning Assignment # 2 Universität Bern

Due date: 09/10/2019

Late submissions will incur a penalty. Submit your answers in ILIAS (as a pdf or as a picture of your written notes if the handwriting is <u>very</u> clear). Submission instructions will be provided via email. You are not allowed to work with others.

Calculus review [Total 100 points]

Recall that the Jacobian of a function $f: \mathbb{R}^n \to \mathbb{R}^m$ is an $m \times n$ matrix of partial derivatives

$$Df(x) = \begin{bmatrix} \frac{\partial f_1(x)}{\partial x_1} & \frac{\partial f_1(x)}{\partial x_2} & \dots & \frac{\partial f_1(x)}{\partial x_n} \\ \frac{\partial f_2(x)}{\partial x_1} & \frac{\partial f_2(x)}{\partial x_2} & \dots & \frac{\partial f_2(x)}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m(x)}{\partial x_1} & \frac{\partial f_m(x)}{\partial x_2} & \dots & \frac{\partial f_m(x)}{\partial x_n} \end{bmatrix}$$

where $x = [x_1 \ x_2 \ \dots \ x_n]^\top$, $f(x) = [f_1(x) \ f_2(x) \ \dots \ f_m(x)]^\top$ and $\frac{\partial f_i(x)}{\partial x_j}$ is the partial derivative of the *i*-th output with respect to the *j*-th input. When f is a scalar-valued function (*i.e.*, when $f: \mathbb{R}^n \to \mathbb{R}$), the Jacobian Df(x) is a $1 \times n$ matrix, *i.e.*, it is a row vector. Its transpose is called the *gradient* of the function

$$\nabla f(x) = Df(x)^{\top} = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} \\ \frac{\partial f(x)}{\partial x_2} \\ \vdots \\ \frac{\partial f(x)}{\partial x_n} \end{bmatrix}$$
(1)

Also, recall that the **chain rule** is a tool to calculate gradients of function compositions. Suppose $f: \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at x and $g: \mathbb{R}^m \to \mathbb{R}^p$ is differentiable at f(x). Define the composition $h: \mathbb{R}^n \to \mathbb{R}^p$ by h(z) = g(f(z)). Then h is differentiable at x, with Jacobian

$$Dh(x) = Dg(z)\Big|_{z=f(x)} Df(x).$$
(2)

1. Consider the function $g: \mathbb{R}^n \to \mathbb{R}$ with $g(x) = x^\top x$. We can readily calculate the gradient $\nabla g(x) = 2x$ by noticing that

$$\forall j = 1, \dots, n$$

$$\frac{\partial x^{\top} x}{\partial x_j} = \frac{\partial x_j^2}{\partial x_j} = 2x_j \to \nabla g(x) = 2x.$$
 (3)

Consider also the function $a: \mathbb{R}^n \to \mathbb{R}^m$ with a(x) = Ax, and $A \in \mathbb{R}^{m \times n}$. The Jacobian of a(x) is Da(x) = A. Given this, answer the following questions by using the above definitions (show all the steps of your working)

- (a) Consider the function $h: \mathbb{R}^n \to \mathbb{R}$ and $h(x) = x^\top Qx$, where $Q \in \mathbb{R}^{n \times n}$ is a symmetric matrix. [15 points] Calculate $\nabla h(x)$ by using the product rule, the gradient of g in eq. (3), and the Jacobian of the linear function a(x).
- (b) Consider the function $f: \mathbb{R}^n \to \mathbb{R}$, where $f(x) = ||Ax b||^2$, $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^m$. [15 points] Calculate $\nabla h(x)$ by using the chain rule in eq. (2), the gradient of g in eq. (3), and the Jacobian of the linear function a(x).
- (c) Consider a function $f: \mathbb{R}^n \to \mathbb{R}$. Suppose we have a matrix $A \in \mathbb{R}^{n \times m}$ and a vector $x \in \mathbb{R}^m$. Calculate $\nabla_x f(Ax)$ as a function of $\nabla_x f(x)$. [10 points]

(d) Show that

[10 points]

$$\frac{\partial}{\partial X} \sum_{i=1}^{n} \lambda_i = I$$

where $X \in \mathbb{R}^{n \times n}$ and has eigenvalues $\lambda_1 \dots \lambda_n$.

(e) Show that [10 points]

$$\frac{\partial}{\partial X} \prod_{i=1}^{n} \lambda_i = \det(X) X^{-T}$$

where $X \in \mathbb{R}^{n \times n}$ and has eigenvalues $\lambda_1 \dots \lambda_n$.

2. Assume $A \in \mathbb{R}^{m \times n}$, $X \in \mathbb{R}^{m \times n}$, and $B \in \mathbb{R}^{m \times m}$. Show that $\nabla_X tr(AX^TB) = BA$.

[10 points]

3. Solve the following equality constrained optimization problem:

[30 points]

$$\max_{x \in R^n} x^\top A x \qquad \text{subject to } b^\top x = 1$$

for a symmetric matrix $A \in \mathbb{S}^n$. Assume that A is invertible and $b \neq 0$.