Physics 406 Evan Carpenter

1 Derivative Crusher Algorithm

Derivative crusher algorithm taught by Ratindranath Akhoury

Variable	Easy to keep fixed?	Easy to measure change?
S	Yes, Adiabatic processes	No, change in S depends on change in Q, which is hard to measure
T	Yes, with a heat bath or feedback system	Yes, by using a thermometer
V	No, not easily, thermal expansion of the container is a byproduct of the container being thermally conduc- tive, the volume changes with heat	Yes
P	Yes, keeping equilibrium with atmosphere	Yes, barometer

Table 1: T, P are the easiest quantities to measure and control, making G(T, P) the easiest fundamental relationship to work with.

Looking at G(T, P) = E - TS - PV more closely:

$$\begin{split} \left(\frac{\partial G}{\partial T}\right)_P &= -S & \left(\frac{\partial G}{\partial P}\right)_T &= V \\ \left(\frac{\partial^2 G}{\partial T^2}\right)_P &= -\left(\frac{\partial S}{\partial T}\right)_P \equiv \frac{C_p}{T} & \left(\frac{\partial^2 G}{\partial P^2}\right)_T &= \left(\frac{\partial V}{\partial P}\right)_T \equiv \kappa V \\ & \left[\frac{\partial}{\partial T}\left(\frac{\partial G}{\partial P}\right)_T\right]_P &= \left[\frac{\partial}{\partial P}\left(\frac{\partial G}{\partial T}\right)_P\right]_T &= \alpha V \end{split}$$

 C_p is specific heat at constant pressure.

 κ is isothermal compressibility.

 α is volume coefficient of expansion.

1.1 Math Background

A partial derivative $\left(\frac{\partial x}{\partial y}\right)_z$ where $\{x,y,z\}$ can be any of $\{S,T,P,V,E,F,G,H\}$ can be expressed in terms of in terms of first and second derivatives of fundamental relations.