# Logistics and Assignments

**Stefano Markidis** 

#### Instructors

- Stefano Markidis
- Steven W.D. Chien
- Nikolaos Vassardanis

#### Examiner

• Erwin Laure (<a href="mailto:erwinl@kth.se">erwinl@kth.se</a>)

### Prerequisites

- Basic knowledge of C or C++, compiling codes and Linux commands (Lab workstations)
- Basic knowledge of computer architecture
  - We have one compulsory non-graded quiz to self-assess your knowledge of such topics (<a href="https://kth.instructure.com/courses/12406/">https://kth.instructure.com/courses/12406/</a> (<a href="quizzes/12740?module\_item\_id=158607">quizzes/12740?module\_item\_id=158607</a>).



### Course Description

This course provides a broad introduction to GPU programming with emphasis on application development.

The course is divided in four modules:

- 1. GPU architecture
- 2. CUDA
  - 1. Basic Concepts
  - 2. Advanced Concepts
- 3. Programming Computation with OpenACC
- 4. Project work

The course will possibly also discuss additional selected topics posting papers and links (CUDA libraries or new features or other frameworks for GPU programming)

#### Course Format

We are going to use the **flipped classroom** approach:

- 1. Study the lecture material at home: watch video lectures, read articles and additional material, self-assess your knowledge with practice quizzes, ...
- **2. Do the assignments in class**, in this case lab session, with other students and instructors.



"This isn't what I imagined when they said 'flipped classroom'!"



#### Interaction and Feedback

- Use Canvas discussion page for posting questions, doubts and problems
  - Instructors will try to reply ASAP
  - Other students can reply also
- It is OK to post part of code and snippet codes
- Avoid to post solutions of the problems in the discussion webpages

### Course Activities

| Activity       | Compulsory         | Graded / Non-Graded    |
|----------------|--------------------|------------------------|
| Video Lectures | Compulsory         | Non-Graded             |
| Quizzes        | Compulsory         | P/F (Need to have 80%) |
| Readings       | Recommended        | Non-Graded             |
| Lab attendance | Highly Recommended | Non-Graded             |
| 4 Assignments  | Compulsory         | Graded: P/F            |
| Project Work   | Compulsory         | Graded: A-F            |

## Agenda

| Date and time                        | Room        | Topic                                                    |
|--------------------------------------|-------------|----------------------------------------------------------|
| Tue 10/29 10 – 12                    | D33         | Presentation of the course - Lecture                     |
| Thu 31/10 13 – 16                    | 5V4 Magenta | Lab1 – Connect to Tegner – Work on Assign.1              |
| Tue 11/5 9 – 12                      | 5V4 Magenta | Work on Assign. 2 (Basic CUDA)                           |
| Thu 11/7 14 - 17                     | 4V6 Brun    | Work on Assign. 2 (Basic CUDA)                           |
| Tue 11/12 9-12                       | 5V4 Magenta | Work on Assign. 3 (Advanced CUDA)                        |
| Thu 11/14 13 – 16                    | 5V4 Magenta | Work on Assign. 3 (Advanced CUDA)                        |
| Thu 11/21 13 – 16                    | 5V4 Magenta | Work on Assign. 3 (Advanced CUDA)                        |
| Mon 11/28 13 – 16                    | 5V4 Magenta | Work on Assign. 4 (OpenACC)                              |
| Tue 12/3 10 – 12<br>Tue 12/6 13 – 15 | E53<br>E31  | Project Description + Discussion Q&A about final project |
| Thu 12/5 13 – 16<br>Tue 12/10 9 – 12 | 5V4 Magenta | Project Work                                             |

### Assignments

| Submission | Deadline     | Individual/Team | Grading | Topic                                                  |
|------------|--------------|-----------------|---------|--------------------------------------------------------|
| Sun 11/3   | 11.49 PM CET | Group of 2      | P/F     | GPU Architecture                                       |
| Sun 11/10  | 11.49 PM CET | Group of 2      | P/F     | Basic CUDA                                             |
| Sun 11/24  | 11.49 PM CET | Group of 2      | P/F     | Advanced CUDA Need to use Tegner for MultiGPU exercise |
| Sunu 12/1  | 11.49 PM CET | Group of 2      | P/F     | OpenACC – Need to use Tegner                           |
| Wed 12/8   | 11.49 PM CET | Group of 2      | P/F     | Project design document                                |
| Tue 1/14   | 11.49 PM CET | Group of 2      | A-F     | Final project report                                   |

- It is your choice if you want to use your laptop GPU, lab computer GPU or Tegner GPU
  - OpenACC assignment and multiGPU exercise only on Tegner
- Assignments must be uploaded to Canvas as .pdf files. Code has to be made available via a public GitHub repository (link in the report).
- Late submission: we will assign you a paper to read and ask you to write a 500 words summary

### Computer Labs

- Computer Lab workstations have Nvidia GPUs and CUDA installed
  - You can use your computer GPU if you have an NVIDIA GPU
- Attendance of labs sessions is highly recommended.
- Use the lab and discussion sessions to work with other students and instructors on the assignments



#### Course Material

• Slides, papers, video lectures and course material to complete the assignments will be progressively posted in Canvas

(https://kth.instructure.com/courses/12406).

#### Text books:

- *CUDA for Engineers* by Duane Storti and Mete Yurtoglu (<a href="https://learning.oreilly.com/library/view/cuda-for-engineers/9780134177540/?ar">https://learning.oreilly.com/library/view/cuda-for-engineers/9780134177540/?ar</a>)
- Programming Massively Parallel Processors by David Kirk and Wen-mei W. Hwu

(<a href="https://www.sciencedirect.com/book/9780124159921/programming-massively-parallel-processors">https://www.sciencedirect.com/book/9780124159921/programming-massively-parallel-processors</a>)





### Course Final Project

- Take a real-world code and port part of it to GPUs in two weeks work
  - iPIC3D (https://ipic3d.github.io/)
  - Detailed description of the project in the last module of the course.
  - Maximum 3-4 weeks of work.
- Project work in group of two members:
  - Design document (maximum one page) P/F
  - Report (maximum eight pages) A-F

### Grading

In order to pass the course:

- Submit four assignments (GPU architecture, CUDA and OpenACC) with P/F
- Complete an individual project course. The project work requires
  - 1. Project design document (One page)
  - 2. Final report (max 8 pages).

The grade will be determined by the overall quality of the project report and difficulty and originality of the implemented solution (grading criteria will be posted in Canvas).



#### Resources

- All CS computer labs have workstation with NVIDIA GPUs that you can use for completing your assignments
- You can use your own GPU for completing your assignments and project
  - Need to take care of CUDA installation on your machine (if not installed already)
- You also have access to the Tegner multi-GPU supercomputer
  - You need to learn how to run jobs on supercomputers
    - We will cover this topic in the first lab on Thursday

#### This week ... What are GPUs? module

- Watch the video lectures, read slides and the paper from the module
   What are GPUs?
- Try to do the bandwidth measurement (see second exercise in the first assignment) in the computer lab or on your NVIDIA GPU if you have one
  - On Thursday lab, we can try to solve problems
- Complete and submit to Canvas the group assignment

## Questions?