

SEQUENCE LISTING

<110> Tania KASTELIC
Dominique CHENEVAL

<120> ASSAY FOR IDENTIFYING COMPOUNDS WHICH
AFFECT STABILITY OF mRNA

<130> 608352000100

<140> US 10/814,634
<141> 2004-04-01

<150> US 09/869,159
<151> 1999-12-23

<150> GB 9288709.7
<151> 1998-12-24

<160> 32

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 1105
<212> DNA
<213> Homo sapiens

<400> 1

gcggccgcca cagcagccctc tgaagttgga cagcaaaacc attgcttcac taccatcg 60
tgtccattta tagaataatg tggttggaaa caaacccgtt ttatgattta ctcattatcg 120
ccttttgaca gctgtgtgtt aacacaagta gatgcctgaa cttgaattaa tccacacatc 180
agtaatgtat tctatctctc ttacatttt ggtcttata ctacattttt aatgggtttt 240
gtgtactgtt aagaatttag ctgttatcaa ctatgtcatg aatagattct ctcctgatta 300
tttacatcat agcccccttag ccagttgtat attattcttgggggtgtt cccaaatthaag 360
tcctacttta catatgtttt aagaatcgat gggggatgct tcatgtgaac gtgggagttc 420
agctgcttctt cttgcctaag tatttccttcc ctgatcacta tgcattttaa agttaaacat 480
ttttaagtat ttcaagatgct ttagagagat tttttttcc atgactgcat ttactgtac 540
agattgctgc ttctgtata ttgtgtat aggaatthaag aggatacaca cgtttggttc 600
ttcgtgcctg ttttatgtgc acacattagg cattgagact tcaagctttt cttttttgtt 660
ccacgtatct ttgggtcttt gataaaagaaa agaatccctg ttcattgtaa gcactttac 720
ggggcgggtg gggaggggtg ctctgctgggt cttcaattac caagaattct ccaaaacaat 780
tttctgcagg atgattgtac agaatcattt cttatgacat gatcgcttac tacactgtat 840
tacataaataa aattaaataa aataaccccg ggcaagactt ttctttaaga gatgactaca 900
gacattaaat aatcgaagta attttgggtg gggagaagag gcagattcaa ttttctttaa 960
ccagtctgaa gtttcattta tgataaaaaa gaagatgaaa atggaagtgg caatataagg 1020
ggatgaggaa ggcattgcctg gacaaaccct tcttttaaga tgtgtcttca atttgtataa 1080
aatgggtttt tcatgttagcg gccgc 1105

<210> 2
<211> 904
<212> DNA
<213> Homo sapiens

<400> 2

gcggccgctg aagtcaacat gcctgcccc aacaatatg caaaagggtc actaaagcag 60
tagaaataat atgcattgtc agtgatgtac catgaaacaa agctgcaggg tggtaagaa 120
aaaataacac acatataaac atcacacaca cagacagaca cacacacaca caacaattaa 180
cagtcctcag gcaaaacgtc gaatcagcta ttactgcca aaggaaata tcatttattt 240
tttacattat taagaaaaaa agatttattt atttaagaca gtcccatcaa aactcctgtc 300
tttggaaatc cgaccactaa ttgccaagca ccgctcgtg tggctccacc tggatgttct 360
gtgcctgtaa acatagattc gcttccatg ttgtggccg gatcaccatc tgaagagcag 420
acggatggaa aaaggacctg atcattgggg aagctggctt tctggctgct ggaggctggg 480
gagaaggtgt tcattcactt gcatttctt gccctgggg ctgtatatt aacagaggga 540
gggttcctgt gggggaaagt ccatgcctcc ctggcctgaa gaagagactc tttgcataatg 600
actcacatga tgcatacctg gtgggaggaa aagagttggg aacttcagat ggacctagta 660
cccactgaga ttccacgccc gaaggacagc gatggaaaaa atgccttaa atcataggaa 720
agtatTTTT taagctacca attgtgccga gaaaagcatt ttagcaattt atacaatatac 780
atccagtacc ttaagccctg attgtgtata ttcatatatt ttggatacgc acccccccaac 840
tcccaataact ggctctgtct gagtaagaaa cagaatcctc tggaaacttga ggaagtgcgg 900
ccgc 904

<210> 3
<211> 710
<212> DNA
<213> Homo sapiens

<400> 3
gcggccgctg aagtcaacat gcctgcccc aacaatatg caaaagggtc actaaagcag 60
tagaaataat atgcattgtc agtgatgtac catgaaacaa agctgcaggg tggtaagaa 120
aaaataacac acatataaac atcacacaca cagacagaca cacacacaca caacaattaa 180
cagtcctcag gcaaaacgtc gaatcagcta ttactgcca aaggaaata tcatttattt 240
tttacattat taagaaaaaa agatttattt atttaagaca gtcccatcaa aactcctgtc 300
tttggaaatc cgaccactaa ttgccaagca ccgctcgtg tggctccacc tggatgttct 360
gtgcctgtaa acatagattc gcttccatg ttgtggccg gatcaccatc tgaagagcag 420
acggatggaa aaaggacctg atcattgggg aagctggctt tctggctgct ggaggctggg 480
gagaaggtgt tcattcactt gcatttctt gccctgggg ctgtatatt aacagaggga 540
gggttcctgt gggggaaagt ccatgcctcc ctggcctgaa gaagagactc tttgcataatg 600
actcacatga tgcatacctg gtgggaggaa aagagttggg aacttcagat ggacctagta 660
cccactgaga ttccacgccc gaaggacagc gatggaaaaa atgcggccgc 710

<210> 4
<211> 688
<212> DNA
<213> Homo sapiens

<400> 4
gcggccgctc ggagctttt tgccctgcgt gaccagatcc cggagttgga aaacaatgaa 60
aaggccccca aggtagttat cttaaaaaaaaa gcccacagcat acatcctgtc cgtccaagca 120
gaggagcaaa agtcatttc tgaagaggac ttgttgcgg aacgacgaga acagttgaaa 180
cacaacttgc aacagctacg gaactttgt gctgttggaa aagtaaggaa aacgattcct 240
tctgacagaa atgtcctgag caatcaccta tgaacttgtt tcaaatgcat gatcaaatgc 300
aacctcacaa cttggctga gtcttgagac tggaaatgtt agccataatg taaactgcct 360
caaattggac ttgggcata aaagaacttt ttatgtctt ccatctttt ttttcttta 420
acagatttgtt attaagaat tttttttaaa aaattttaag atttacacaa tttttctctg 480
taaatattgc cattaaatgt aaataacttt aataaaacgt ttatagcagt tacacagaat 540
ttcaatccta gtatatacgtt ccttagtattt tagtactat aaaccctaatttttttattt 600
taagtacatt ttgtttta aagttgattt ttttcttattt ttttttagaaa aaataaaata 660
actggcaaat atatcattga gccatatg 688

<210> 5
<211> 806

<212> DNA
 <213> Homo sapiens

<400> 5
 gcggccgctg aggaggacga acatccaacc ttcccaaacg cctccccgc cccaatccct 60
 ttattacccc ctccctcaga caccctcaac ctcttctggc taaaaaagag aattgggggc 120
 ttagggtcgg aacccaagct tagaacttta agcaacaaga ccaccacttc gaaacctggg 180
 attcaggaat gtgtggcctg cacagtgaag tgctggcaac cactaagaat tcaaactggg 240
 gcctccagaa ctcaactgggg cctacagctt tgatccctga catctggaat ctggagacca 300
 gggagcctt gttctggcc agaatgctgc aggactttag aagacacctac ctggaaaattg 360
 acacaagtgg accttaggcc ttccctctc cagatgttc cagacttcct tgagacacgg 420
 agcccagccc tccccatgga gccagctccc tctatttatg tttgcacttg tgattattta 480
 ttattttattt attattttat tatttacaga tgaatgtatt tatttgggag accggggat 540
 cctgggggac ccaatgttagg agctgcctt gctcagacat gtttccctgt aaaacggagc 600
 tgaacaatag gctgttccca ttagcccccc tggcctctgt gccttcttt gattatgttt 660
 tttaaaatat ttatctgatt aagttgtcta aacaatgctg atttgggtgac caactgtcac 720
 tcattgctga gcctctgctc cccaggggag ttgtgtctgt aatcgcccta ctattcagtg 780
 gcgagaaata aagtttgctt catatg 806

<210> 6
 <211> 613
 <212> DNA
 <213> Homo sapiens

<400> 6
 gcggccgcta aagagagctg tacccagaga gtcctgtgct gaatgtggac tcaatcccta 60
 gggctggcag aaaggaaaca gaaagggttt tgagtacggc tatagcctgg actttcctgt 120
 tgctcacacc aatgccaac tgcctgcctt aggtagtgc taagaggatc tcctgtccat 180
 cagccaggac agtcagctct ctccctttag gccaatccc cagcccttt gttgagccag 240
 gcctctctca cctctcctac tcacttaaaag cccgcctgac agaaaccacg gccacattt 300
 gttctaagaa accctctgtc attcgctccc acattctgtat gagcaaccgc ttccctattt 360
 atttatttat ttgtttgttt gtttattca ttggtctaatttattcaaaag gggcaagaa 420
 gtagcagtgt ctgtaaaaga gcctagttt taatagctat ggaatcaattt caatttggac 480
 tggtgtgctc tctttaatc aagtccttta attaagactg aaaatataa agctcagatt 540
 atttaaatgg gaatatttat aatgagcaa atatcataact gttcaatgtt tctgaaataa 600
 acttcaccat atg 613

<210> 7
 <211> 1101
 <212> DNA
 <213> Homo sapiens

<400> 7
 gcggccgcat tgctgtgctt tggggattcc ctccacatgc tgcacgcgca tctcgcccc 60
 aggggcactg cctggaaagat tcaggagccct gggcgccct cgcttactct cacctgcgttc 120
 ttagttgccc aggagggccac tggcagatgt cccggcgaag agaagagaca cattgttgg 180
 agaagcagcc catgacagct ccccttcctg ggactcgccc tcattccctt cctgtcccc 240
 ttccctgggt gcagcctaaa agacctatg tcctcacacc attgaaacca ctgttctgt 300
 ccccccagga gacctggtt tgggtgtgt agtgggtgac cttccctccat cccctgggtcc 360
 ttcccttccc ttcccggggc acagagagac agggcaggat ccacgtgccc attgtggagg 420
 cagagaaaag agaaagtgtt ttagatcgg tacttattta atatccctt ttaattagaa 480
 attaaaacag ttaatttaat taaagagtag ggtttttttt cagtattctt ggttaatatt 540
 taatttcaac tatttatgag atgtatctt tgctctctc tgctctctta tttgtaccgg 600
 ttttgtata taaaattcat gttccaatc tctctctccc tgatcggtga cagtcactag 660
 ctatcttga acagatattt aattttgtcta acactcagct ctgcctccccc cgatcccc 720
 gctccccagc acacattcct ttagaaataag gttcaatatac acatctacat actatataa 780
 tatatttggc aacttggatt tgggtgtata tatatatata tatgtttatg tatatatgt 840

attctgataa aatagacatt gctattctgt ttttatatg taaaaacaaa acaagaaaaa 900
 atagagaatt ctacatacta aatctctc ctttttaat ttaatattt gttatcattt 960
 atttattggc gctactgttt atccgtaata attgtggga aaagatatta acatcacgtc 1020
 tttgtctcta gtgcaggttt tcgagatatt ccgttagtaca tatttattt taaacaacga 1080
 caaagaaata cagaacatata g 1101

<210> 8
 <211> 168
 <212> DNA
 <213> Homo sapiens

<400> 8
 gcggccgcat tcctgttagac acacccaccc acatacatac atttatatat atatatatta 60
 tatatatata aaaataaata tctctatttt atatatataa aatatatata ttctttttt 120
 aaattaacag tgctaattgtt attgggtct tcactggatg aacatatg 168

<210> 9
 <211> 33
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Oligonucleotide primer

<400> 9
 ttgcggccgc tacataaaaa caccattta tac 33

<210> 10
 <211> 30
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Oligonucleotide primer

<400> 10
 tgcggccgccc acagcagcct ctgaagttgg 30

<210> 11
 <211> 29
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Oligonucleotide primer

<400> 11
 agcgccccca cttcctcaag ttccagagg 29

<210> 12
 <211> 28
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Oligonucleotide primer

<400> 12		
agcggccgct gaagtcaaca tgcctgcc		28
<210> 13		
<211> 28		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Oligonucleotide primer		
<400> 13		
agcggccgca ttttccccat cgctgtcc		28
<210> 14		
<211> 28		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Oligonucleotide primer		
<400> 14		
ccatatggct caatgatata ttggccag		28
<210> 15		
<211> 32		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Oligonucleotide primer		
<400> 15		
agcggccgct cggagctttt ttgccctgcg tg		32
<210> 16		
<211> 28		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Oligonucleotide primer		
<400> 16		
ccatatgaag caaaactttat ttctcgcc		28
<210> 17		
<211> 31		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Oligonucleotide primer		
<400> 17		
agcggccgct gaggaggacg aacatccaac c		31

<210> 18		
<211> 27		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Oligonucleotide primer		
<400> 18		
ccatatggtg aagtttattt cagaacc		27
<210> 19		
<211> 30		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Oligonucleotide primer		
<400> 19		
agcggccgct aaagagagct gtacccagag		30
<210> 20		
<211> 32		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Oligonucleotide primer		
<400> 20		
aacatatgtt ctgtatattct ttgtcggttgt tt		32
<210> 21		
<211> 32		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Oligonucleotide primer		
<400> 21		
tgcggccgca ttgctgtgct ttggggattc cc		32
<210> 22		
<211> 33		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Oligonucleotide primer		
<400> 22		
aacatatgtt catccagtga agacaccaat aac		33
<210> 23		

<211> 31	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Oligonucleotide primer	
<400> 23	
tgcggccgca ttccctgtaga cacacccacc c	31
<210> 24	
<211> 16	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Oligonucleotide primer	
<400> 24	
cttgcgcacg attccc	16
<210> 25	
<211> 16	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Oligonucleotide primer	
<400> 25	
aatcgatcgac aagttc	16
<210> 26	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Oligonucleotide primer	
<400> 26	
agctgcttagc tcgagatctg	20
<210> 27	
<211> 20	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Oligonucleotide primer	
<400> 27	
agctcagatc tcgagctagc	20
<210> 28	
<211> 601	
<212> DNA	

<213> Homo sapiens
 <400> 28
 agagagctgt acccagagag tcctgtgctg aatgtggact caatccctag ggctggcaga 60
 aagggaacag aaagggtttt gagtacggct atagcctgga ctttcctgtt gtctacacca 120
 atgcccact gcctgcctta gggtagtgct aagaggatct cctgtccatc agccaggaca 180
 gtcagctctc tcctttcagg gccaatcccc agccctttg ttgagccagg cctctctcac 240
 ctctcctact cacttaaagc ccgcctgaca gaaaccacgg ccacatttgg ttctaagaaa 300
 ccctctgtca ttcgctccca cattctgatg agcaaccgct tccctattta tttatttattt 360
 tgtttggttt ttttattcat tggtctaatt tattcaaagg gggcaagaag tagcagtgtc 420
 tgtaaaagag cctagtttt aatagctatg gaatcaattc aatttggact ggtgtgctct 480
 cttaaatca agtcctttaa ttaagactga aaatatataa gctcagatta tttaatggg 540
 aatatttata aatgagcaaa tatcatactg ttcaatggtt ctgaaataaaa cttctctgaa 600
 g
 <210> 29
 <211> 40
 <212> DNA
 <213> Homo sapiens
 <400> 29
 atggcttccc tatttattta ttatattgtt tgtccaacct 40
 <210> 30
 <211> 40
 <212> DNA
 <213> Homo sapiens
 <400> 30
 ggataccgaa gggataaata aataaataaaa caaacaggtt 40
 <210> 31
 <211> 22
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Oligonucleotide primer
 <400> 31
 tgccggccgca acatatgttc ct 22
 <210> 32
 <211> 22
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Oligonucleotide primer
 <400> 32
 aacatatgtt gcggccgcaa gg 22