IV semester IT/CCE Operating Systems ICT_2258 - MISAC 1 Table 1

Proce	Arrival	Burst	Priority
sses	Time	Time	
P1	0	10	1
P2	1	5	4
P3	3	3	3
P4	2	4	2
P5	4	5	5

- 1A. The Table 1 shows a snapshot of processes in the system, with arrival time and execution time in milliseconds. Draw a Gantt chart showing the scheduling of the processes using FCFS scheduling algorithm. Find the average waiting time of all the processes in the system. [lower value depicts a higher priority]. [2 Marks]
- 1B. Draw a Gantt chart showing the scheduling of the processes using SJF scheduling algorithm. [1 Mark]
- 1C. Predict the burst time of P6 using exponential average. Assume initial predicted CPU burst (T_0 or T_0) to be 10 milliseconds and alpha(α) to be 0.5. [2 Marks]

IV semester IT/CCE Operating Systems ICT_2258 - MISAC 1 Table 2

10010 =		
Proce	Arrival	Burst
sses	Time	Time
P1	0	8
P2	4	5
P3	3	6
P4	2	4
P5	5	3

- 2A. The Table 2 shows a snapshot of processes in the system, with arrival time and execution time in milliseconds. Draw a Gantt chart showing the scheduling of the processes using FCFS scheduling algorithm. Find the average waiting time of all the processes in the system. [2 Marks]
- 2B. Draw a Gantt chart showing the scheduling of the processes using SJF scheduling algorithm. [1 Mark]
- 2C. Predict the burst time of P6 using exponential average. Assume initial predicted CPU burst (T_0 or \mathcal{T}_0) to be 10 milliseconds and alpha(α) to be 0.5. [2 Marks]

IV semester IT/CCE Operating Systems ICT_2258 - MISAC 1

3A. What would be the number of processes created in the following program? Also give the value/values of variable x. [2Marks]

int main(){

int x=110;

 $if(fork()==0) \{ x++; return 0; \}$

if(fork()==0) {x--;return 0;} x+=5;}

3B. The Table 3 shows a snapshot of processes in the system, with arrival time and execution time in milliseconds. Draw a Gantt chart showing the scheduling of the processes using SJF scheduling algorithm. Find the average turn arround time of all the processes in the system. [3 Marks]

Table 3

Proce	Arrival	Burst
sses	Time	Time
P1	0	8
P2	4	5
P3	3	6
P4	2	4
P5	4	3

IV semester IT/CCE Operating Systems ICT_2258 - MISAC 1

4A. Draw a Gantt chart showing the scheduling of the processes using SJF scheduling algorithm for the following processes. Tabulate the waiting time, turnaround time for each process and find the average waiting time and turn around time. [4M]

Process	Burst time
P1	6
P2	3
P3	2
P4	2
P5	1
P6	4
P7	5
P8	7

4B. What will be the output of following code snippet? Justify your answer.

```
[1M]
#include<stdio.h>
#include<unistd.h>
int main()
{ printf("hello \n");
  fork();
  printf("bye \n");
  return 0;
}
```

IV semester IT/CCE Operating Systems ICT_2258 - MISAC 1

5A. Draw a Gantt chart showing the scheduling of the processes using FCFS scheduling algorithm for the following processes assuming Arrival time is 0 for all. Tabulate the waiting time, turnaround time for each process and find the average waiting time and turn around time. [4M]

Process	Burst time
P1	6
P2	3
P3	2
P4	5
P5	1
P6	4
P7	5
P8	7

5B. What will be the output of following code snippet? Justify your answer.

```
[1M]
#include<stdio.h>
#include<unistd.h>
int main()
{ printf("hello \n");
  fork();
  printf("bye \n");
  fork();
  return 0;
}
```