

Adaptive Discounting of Implicit Language Models in RNN-Transducers Vinit Unni 1†, Shreya Khare 2†, Ashish Mittal², Preethi Jyothi 1, Sunita Sarawagi1, Samarth Bharadwaj2

¹Indian Institute of Technology Bombay(India), ²IBM Research (India), † Equal contribution.

Paper 8878

Motivation

- Fixing hallucinated predictions from RNN-Transducer models
- Hallucinated outputs are acoustically inconsistent with the underlying speech
- Causes of errors:
- a. Domain mismatch between train and test

Ex: REF: Welcome to Canara Bank

HYP: Welcome to *Amazon*

b. Memorisation of frequent training phrases

Ex: REF: Good morning ma'am HYP: Good evening ma'am

Indicative of LM bias

We propose AdaptLMD: A lightweight adaptive LM-discounting algorithm for RNN-T models

RNN-Transducers^[1]

- Two encoder arms
 - Transcription Network (TN): Generate acoustic representations $h_t = TN(x,t)$

 Prediction Network (PN): Generate textual representations like an autoregressive LM

$$g_u = PN(y_{< u})$$

Joint Network (JN) combines both representations

$$J(h_t \bigoplus g_u)$$

 Trained to maximize likelihood of the output text sequences by marginalizing over all possible alignments

Implicit Language/Acoustic Models

Calculate implicit AM/LM [2] predictions

$$P_{ILM}(y_u|y_{< u}) = softmax(J(0 \bigoplus g_u))$$

$$P_{IAM}(y_t|x_t) = softmax(J(h_t \bigoplus 0))$$

Training loss is RNN-T loss + implicit LM/AM loss

Adapt LMD

- Random LM Masking
 - Mask PN outputs during training to make the JN more robust to spurious implicit LM embeddings
- Token Rarity
 - Apply discounting on rare substrings

$$P_{roll}(\mathbf{y} + y_u) = \rho P_{roll}(\mathbf{y}) + P_{ILM}(y_u)$$

- Discrepancy between AM and LM
 - Apply discounting where AM and LM disagree

$$D(IAM||ILM) = KLD(P_{ILM}||P_{IAM})$$

- Final Scoring
 - RNNT score is discounted by implicit LM score

$$\begin{split} \tilde{S}_{\text{disc}}(y_{t,u}|\mathbf{y}, x_t) &= \log P_{\text{rnnt}}(y_{t,u}|\mathbf{y}, x_t) \\ &- \lambda \max(0, D_{\text{adapt}}(y_{t,u}, \mathbf{y})) \log P_{\text{ILM}}(y_u|\mathbf{y}) \\ D_{\text{adapt}}(y, \mathbf{y}) &= \begin{cases} (1 - P_{\text{roll}}(\mathbf{y})) \mathbf{D}(P_{\text{ILM}}(y)||P_{\text{IAM}}(y)) & \text{if } y \neq \epsilon \\ 0 & \text{else.} \end{cases} \end{split}$$

Examples

Ground truth	Baseline	AdaptLMD	
Ki aap apanaa business account	Ki aap apanaa discount account	Ki aap apanaa business account	
Ab aapki call transfer	Ab aapki block transfer	Ab aapki call transfer	
Naam hai vicky rajak	Naam hai reeti raghav	Naam hai vikkee raaj	
Ye online activate karavaa	mujhe online <mark>network</mark> karavaa	Ya online activate karavaa	

Experiments and Results

- Numbers reported on a proprietary dataset
- Code-mixed speech (Hi-En) of 628 hours
- Banking (184.87 hrs), Insurance (165.08hrs), Retail (135.87 hrs) and Telco (142.33 hrs).

Test set	System	CER/WER	Rare CER/PER
Banking	Baseline	20.0/22.4	75.9/70.8
	AdaptLMD	18.7/21.5	71.8/67.4
Insurance	Baseline	17.7/18.4	76.7/70.2
	AdaptLMD	16.4/17.7	67.2/60.7
Retail	Baseline	22.4/24.7	81.3/76.7
	AdaptLMD	21.2/23.7	78.3/72.2
Telco	Baseline	18.6/19.4	72.6/68.3
	AdaptLMD	17.5/18.6	68.6/64.3

Out-of-domain results

Test Set	System	CER/WER	Rare CER/PER
All	Baseline	13.5/14.5	71.2/57.7
	AdaptLMD	13.1/14.1	63.9/52.2
Banking	Baseline	13.6/14.5	68.2/66.9
	AdaptLMD	13.1/14.2	59.6/63.2
Insurance	Baseline	14.4/15.0	68.2/66.9
	AdaptLMD	14.0/15.1	59.6/63.5
Retail	Baseline	13.2/14.2	72.7/65.3
	AdaptLMD	12.9/13.8	63.8/63.1
Telecom	Baseline	14.0/15.2	76.6/68.0
	AdaptLMD	13.6/14.9	63.3/60.2

In-domain results

Conclusions

- AdaptLMD can be used with any RNN-T and is dynamically invoked
- AdaptLMD leads to improvements on rare-word predictions and also consistently benefits overall WERs

References

[1] A. Graves: Sequence Transduction with Recurrent Neural Networks [2] M. Zhong, K. Naoyuki, G. Yashesh, P. Sarangarajan, S. Eric, L. Liang, C. Xie, L. Jinyu, Gong, Yifan: Internal Language Model Training for Domain-Adaptive End-to-End Speech Recognition