

Association Rules -> Market Basket Analysis

DSLA COURSE

ROHIT PADEBETTU

Market Basket Analysis

Market Basket Example

Applications

Market Basket Analysis
Understand customer shopping habits

Default Risk AnalysisUnderstand which customers are more likely to default

Customer Churn Analysis
Understand which customers are likely to
switch

Medical Diagnosis Helps doctors diagnose illness or even find a

Helps doctors diagnose illness or even find d treatment

Crime Investigation

Helps investigators understand patterns and associations in crimes

Hurricane Predictions
Helps forecasters identify and predict the intensity of storms and hurricanes

Transactions -> Associations

Support

Transaction 1	(4) (9) (9)
Transaction 2	Ö 🕦 😊
Transaction 3	
Transaction 4	Ö
Transaction 5	/ 🖻 🥯 💊
Transaction 6	Ø 📗 🥯
Transaction 7	/
Transaction 8	>

Measure of how popular an item is

Support
$$\{ \bigcirc \} = \frac{4}{8}$$

Confidence

Transaction 1	(4) (9) (9)
Transaction 2	(4) (9) (9)
Transaction 3	(b)
Transaction 4	Ö
Transaction 5	/ D 💮 🍆
Transaction 6	∅ 📦 ⊜
Transaction 7	/
Transaction 8	∅

Measures how likely the RHS item is purchased given LHS is purchased

Confidence
$$\{ \bigcirc \rightarrow \bigcirc \} = \frac{\text{Support } \{\bigcirc, \bigcirc \}}{\text{Support } \{\bigcirc \}}$$

This measure can tend to inflate and show spurious associations when both LHS and RHS are independently popular

Lift

Transaction 1	(4) (9) (4)
Transaction 2	(4) (9) (9)
Transaction 3	(b)
Transaction 4	Ö
Transaction 5	/ D 💮 %
Transaction 6	∅ 📦 ⊜
Transaction 7	/
Transaction 8	∅

Measures how likely the RHS item is purchased given LHS is purchased adjusting for independent popularity of RHS

Lift
$$\{ \bigcirc \rightarrow \bigcirc \} = \frac{\text{Support } \{ \bigcirc, \bigcirc \}}{\text{Support } \{ \bigcirc \} \times \text{Support } \{ \bigcirc \}}$$

Association Rules

$$Support = \frac{frq(X,Y)}{N}$$

$$Rule: X \Rightarrow Y \longrightarrow Confidence = \frac{frq(X,Y)}{frq(X)}$$

$$Lift = \frac{Support}{Supp(X) \times Supp(Y)}$$

Association Rules - Visualization

Interesting Rules

Association Rules are interesting when they satisfy both a minimum support and a minimum confidence

Useful Rules

Transaction 1	(4) (9) (9) (6)
Transaction 2	(b) (c)
Transaction 3	(b)
Transaction 4	(4)
Transaction 5	∅ 🕑 🍑
Transaction 6	∅ 🕑 ⊝
Transaction 7	∅
Transaction 8	∅

Transaction	Support		
Canned Beer	10%		
Soda	20%		
Berries	3%		
Male Cosmetics	0.5%		

Transaction	Support	Confidence	nce Lift	
Canned Beer → Soda	1%	20%	1.0	
Canned Beer → Berries	0.1%	1%	0.3	
Canned Beer → Male Cosmetics	0.1%	1%	2.6	

Association Rules- Caution

Correlation doesn't imply Causation!

The rules below only suggest a strong co-occurrence relationship between items

Causation requires knowledge about Cause and Effect attributes and typically needs information about how relationships evolve over time

Men who purchase diapers also tend to buy beer at the same time!

Transaction	Support Confidence		Lift
Canned Beer → Soda	1%	20%	1.0
Canned Beer → Berries	0.1%	1%	0.3
Canned Beer → Male Cosmetics	0.1%	1%	2.6

Association Rules - Computation

Brute Force Approach

- List each item in the basket
- List all possible rules from such items Count support and confidence of all such rules Prune the rules failing minimum thresholds

N ítem basket -> 2^{N} -1 Rules

10 item basket 1023 rules!

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

		Beer	Brea	Milk	Diap	Eggs	Coke
	T_1	0	1	1	0	0	0
	T_2	1	1	0	1	1	0
	T_3	1	0	1	1	0	1
	T_4	1	1	1	1	0	0
	T_5	0	1	1	1	0	1

Apriori Algorithm

Mathematical Formulation

```
Apriori(T, \epsilon)
L_1 \leftarrow \{\text{large 1 - itemsets}\}
k \leftarrow 2
\mathbf{while} \ L_{k-1} \neq \ emptyset
C_k \leftarrow \{a \cup \{b\} \mid a \in L_{k-1} \land b \in \bigcup L_{k-1} \land b \notin a\}
\mathbf{for} \ \text{transactions} \ t \in T
C_t \leftarrow \{c \mid c \in C_k \land c \subseteq t\}
\mathbf{for} \ \text{candidates} \ c \in C_t
count[c] \leftarrow count[c] + 1
L_k \leftarrow \{c \mid c \in C_k \land \ count[c] \geq \epsilon\}
k \leftarrow k + 1
\mathbf{return} \ \bigcup_k L_k
```


Apriori Algorithm

Pseudo Code & Flow Chart

```
1: procedure APRIORI_FREQUENTITEMSETS(min\_sup, S)
        L_1 \leftarrow itemsets
        for k = 2; L_{k-1} \neq \emptyset; k + + do
            C_k = aprioriGen(L_{k-1}) \triangleright Create the candidates
            for each c \in C_k do
 5:
                c.count \leftarrow 0
 7:
            end for
            for each I \in S do
                C_r \leftarrow subset(C_k, I) \triangleright Identify candidates that
    belong to I
                for each c \in C_r do
10:
                    c.count + + \triangleright Counting the support values
11:
                end for
12:
            end for
13:
            if c.count \ge min\_sup then
14:
                L_k = L_k \cup c
15:
            end if
16:
        end for
17:
        return L_k
19: end procedure
```


Apriori Algorithm - Principle

RULE1: If an "Itemset" is frequent, then all of its subsets must also be frequent

If {A,B} is frequent, then both {A} & {B} are frequent

RULE2: If an "Itemset" is infrequent, then all of its supersets must also be infrequent

If $\{A\}$ is infrequent, then $\{A,B\}$, $\{A,C\}$ & $\{A,B,C\}$ are infrequent

Antí-Monotonícíty

These principles are useful to prune candidates.

Apriori Algorithm - Principle

Step 0. Start with itemsets containing just a single item, such as {apple} and {pear}

Step 1. Determine the support for itemsets. Keep the itemsets that meet your minimum support threshold, and remove itemsets that do not

Step 2. Using the itemsets you have kept from Step 1, generate all the possible itemset configurations.

Step 3. Repeat Steps 1 & 2 until there are no more new itemsets

Apriori Algorithm - Example

Apriori Algorithm - Example

Association Rules

Demo

Association Rules

Have good rest of weekend!