Chapter 4 Convex optimization problems

Last update on 2024-04-15 23:14

Table of contents

Optimization problems

Convex optimization

Linear optimization

Quadratic optimization

Geometric programming

Generalized inequality constraints

Vector optimization

Outline

Convex optimization problems

- relevant concepts (for general optimization problems & for convex problems)
- properties of convex problems (local implies global & optimality condition)
- operations preserving convexity (construct new from old)
- many examples of convex problems (LP, QP, QCQP, SOCP, etc.)
- extensions (quasiconvex optimization & geometric programming)
- combination with generalized inequalities (in constraints & in objective functions)

Optimization problems

Convex optimization

Linear optimization

Quadratic optimization

Geometric programming

Generalized inequality constraints

Vector optimization

Optimization problem in standard form

minimize
$$f_0(x)$$
 subject to
$$f_i(x) \leq 0, \qquad i=1,\cdots,m$$

$$h_i(x)=0, \qquad i=1,\cdots,p$$

$$x \in \mathbb{R}^n$$
 optimization variable $f_0 \colon \mathbb{R}^n \to \mathbb{R}$ objective function (cost function) $f_i \colon \mathbb{R}^n \to \mathbb{R}$ inequality constraint functions $h_i \colon \mathbb{R}^n \to \mathbb{R}$ equality constraint functions

Constraints

▶ implicit constraints

$$x \in \mathcal{D} = \left(\bigcap_{i=0}^{m} \operatorname{dom} f_{i}\right) \cap \left(\bigcap_{i=1}^{p} \operatorname{dom} h_{i}\right)$$

- $ightharpoonup \mathcal{D}$ is called the **domain** of the problem
- explicit constraints

$$f_i(x) \le 0$$
 for $1 \le i \le m$ and $h_i(x) = 0$ for $1 \le i \le p$

Problem is **unconstrained** if it has no explicit constraints (m = p = 0)

Example

$$\text{minimize} \qquad f_0(x) = -\sum_{i=1}^k \log(b_i - a_i^T x)$$

is an unconstrained problem with implicit constraints

$$a_i^T x < b_i$$

for each $1 \le i \le k$.

Feasibility

- ightharpoonup x is **feasible** if $x \in \mathcal{D}$ and x satisfies all constraints
- ▶ the set of all feasible points is called the **feasible set** of the problem
- the problem is infeasible if the feasible set is empty
- ▶ the **feasibility problem** is to determine whether the feasible set is nonempty

find
$$x$$
 subject to $f_i(x) \leq 0, \qquad i=1,\cdots,m$ $h_i(x)=0, \qquad i=1,\cdots,p$

it can be rephrased as an optimization problem

minimize
$$0$$
 subject to
$$f_i(x) \leq 0, \qquad i=1,\cdots,m$$

$$h_i(x)=0, \qquad i=1,\cdots,p$$

Optimality

► The optimal value is

$$p^* = \inf \left\{ f_0(x) \mid \begin{array}{l} f_i(x) \leq 0 \text{ for } 1 \leq i \leq m \\ h_i(x) = 0 \text{ for } 1 \leq i \leq p \end{array} \right\} \in \mathbb{R} \cup \{\pm \infty\}$$

Extreme situations

$$\begin{array}{ll} p^* = \infty & \text{if problem is infeasible} \\ p^* = -\infty & \text{if problem is unbounded below} \end{array}$$

Optimal value may not be achieved.

- \blacktriangleright x is **optimal** if it is feasible and $f_0(x) = p^*$
 - x is **locally optimal** if there exists R > 0 such that x is optimal for

 - minimize $f_0(z)$

 $||z - x||_2 \le R$

- subject to $f_i(z) \leq 0, \quad i = 1, \dots, m$

 - $h_i(z) = 0, \qquad i = 1, \cdots, p$

Examples (when n = 1, m = p = 0)

(when
$$n=1$$
, $m=p=0$)

 $f_0(x) = x^3 - 3x$

$$f_0(x) = x \log x$$
 $\operatorname{dom} f_0 = \mathbb{R}_{++}$

$$f_0(x) = x \log x$$
 dom $f_0 = \mathbb{R}_+$

$$f_0(x) = x \log x$$
 $\operatorname{dom} f_0 = \mathbb{R}_{++}$ $p^* = -1/e$ $x = 1/e$ is optimal

$$\log x \qquad \quad \mathbf{dom} \, f_0 = \mathbb{R}_{++}$$

$$\log x \qquad \mathbf{dom} \, f_0 = \mathbb{R}_{++}$$

 $f_0(x) = 1/x$ $\mathbf{dom} \ f_0 = \mathbb{R}_{++} \qquad p^* = 0$

 $f_0(x) = -\log x$ dom $f_0 = \mathbb{R}_{++}$ $p^* = -\infty$ no optimal point

 $\mathbf{dom}\ f_0 = \mathbb{R} \qquad \qquad p^* = -\infty \qquad \qquad x = 1 \text{ is locally optimal}$

no optimal point

Optimization problems

Convex optimization

Linear optimization

Quadratic optimization

Geometric programming

Generalized inequality constraints

Vector optimization

Convex optimization problem in standard form

minimize
$$f_0(x)$$
 subject to
$$f_i(x) \leq 0, \qquad i=1,\cdots,m$$

$$a_i^T x = b_i, \qquad i=1,\cdots,p$$

- $ightharpoonup f_0, f_1, \cdots, f_m$ are convex
- equality constraints are affine, often written as Ax = b
- important property: feasible set of a convex problem is convex
- **Problem is quasiconvex** if f_0 is quasiconvex (and f_1, \dots, f_m convex)

Example

minimize
$$f_0(x) = x_1^2 + x_2^2$$
 subject to
$$f_1(x) = x_1/(1+x_2^2) \le 0$$

$$h_1(x) = (x_1+x_2)^2 = 0$$

- $ightharpoonup f_0$ is convex
- lacktriangle not a convex problem: f_1 is not convex, h_1 is not affine
- equivalent (but not identical) to the convex problem

minimize
$$x_1^2 + x_2^2$$
 subject to $x_1 \le 0$ $x_1 + x_2 = 0$

Local and global optima

Proposition

Any locally optimal point of a convex optimization problem is globally optimal.

Proof

- \triangleright suppose x is locally optimal, but there exists feasible y with $f_0(y) < f_0(x)$
- ▶ there exists R > 0 such that $f_0(z) \ge f_0(x)$ for all feasible z with $||z x||_2 < R$
- consider $z = \theta y + (1 \theta)x$ with $\theta = R/(2\|y x\|_2)$, then $\|z x\|_2 = R/2$
- $\|y-x\|_2 > R$ implies $0 < \theta < 1/2$, hence z is feasible by convexity of domain
- by convexity of objective $f_0(z) \leq \theta f_0(y) + (1-\theta)f_0(x) < f_0(x)$, contradiction

Optimality criterion for differentiable objective

Optimality criterion

Suppose the problem is convex and f_0 is differentiable, then

Geometric interpretation

Either $\nabla f_0(x) = 0$ or $\nabla f_0(x)$ defines a supporting hyperplane to the feasible set at x.

Proof

 (\longleftarrow) For any feasible y, since $y \in \operatorname{dom} f_0$, by the convexity of f_0

$$f_0(y) \ge f_0(x) + \nabla f_0(x)^T (y - x).$$

The assumption $\nabla f_0(x)^T(y-x) \geq 0$ implies $f_0(y) \geq f_0(x)$. Hence x is optimal.

 (\Longrightarrow) Assume on the contrary that $\nabla f_0(x)^T(y-x) < 0$ for some feasible y, then z(t) = ty + (1-t)x is feasible for $t \in [0,1]$ since the feasible set is convex. Then

$$\frac{\mathrm{d}}{\mathrm{d}t} f_0(z(t)) \bigg|_{t=0} = \nabla f_0(x)^T (y-x) < 0,$$

hence $f_0(z(t)) < f_0(x)$ for $0 < t \ll 1$, which contradicts the optimality of x.

unconstrained problem

minimize
$$f_0(x)$$

$$x ext{ is optimal} \iff x \in \operatorname{dom} f_0, \ \nabla f_0(x) = 0$$

equality constrained problem

$$x ext{ is optimal} \qquad \Longleftrightarrow \qquad \begin{aligned} x \in \operatorname{\mathbf{dom}} f_0, & Ax = b, \\ \nabla f_0(x) + A^T \nu = 0 & ext{for some vector } \nu \end{aligned}$$

minimization over nonnegative orthant

minimize
$$f_0(x)$$
 subject to $x \succeq 0$

 $x \text{ is optimal} \iff x \in \operatorname{dom} f_0, \quad x \succeq 0, \quad \begin{cases} \nabla f_0(x)_i \geq 0, & \text{if } x_i = 0 \\ \nabla f_0(x)_i = 0, & \text{if } x_i > 0 \end{cases}$

Sample proof (for unconstrained problems)

By optimality condition

$$x$$
 is optimal \iff $x \in \operatorname{dom} f_0, \ \nabla f_0(x)^T(y-x) \ge 0 \text{ for each } y \in \operatorname{dom} f_0$

- $ightharpoonup
 abla f_0(x) = 0$ is clearly sufficient for the above statement.
- ▶ Since f_0 is differentiable, $\operatorname{\mathbf{dom}} f_0$ is open, hence

$$y = x - \varepsilon \nabla f_0(x) \in \mathbf{dom} \, f_0$$

for $0 < \varepsilon \ll 1$. For such y we have

$$\nabla f_0(x)^T (y - x) = -\varepsilon ||\nabla f_0(x)||_2^2 \le 0.$$

Combining above gives

$$\nabla f_0(x) = 0$$

which proves necessity.

Equivalent convex problems

Two problems are (informally) **equivalent** if the solution of one is readily obtained from the solution of the other, and vice-versa.

Some common transformations that preserve convexity

- eliminating equality constraints
- introducing equality constraints
- introducing slack variables for linear inequalities
- epigraph form
- minimizing over some variables

eliminating equality constraints

minimize
$$f_0(x)$$
 subject to $f_i(x) \leq 0, \qquad i=1,\cdots,m$ $Ax=b$

is equivalent to

$$\begin{array}{ll} \text{minimize} & f_0(Fz+x_0) & (\text{over } z) \\ \text{subject to} & f_i(Fz+x_0) \leq 0, & i=1,\cdots,m \end{array}$$

where F and x_0 are such that

$$Ax = b \iff x = Fz + x_0 \text{ for some } z$$

subject to $f_i(A_ix + b_i) \leq 0, \quad i = 1, \dots, m$

 $f_0(y_0)$ (over x, y_i)

 $y_i = A_i x + b_i, \qquad i = 0, 1, \cdots, m$

subject to $f_i(y_i) \leq 0,$ $i = 1, \dots, m$

minimize

is equivalent to

subject to
$$f_i(A_ix+b_i) \leq 0, \qquad i=1$$
 equivalent to

minimize $f_0(A_0x + b_0)$

introducing equality constraints

introducing slack variables for linear inequalities

minimize $f_0(x)$ subject to $a_i^T x \leq b_i, \qquad i=1,\cdots,m$

is equivalent to

minimize
$$f_0(x)$$
 (over x,s) subject to $a_i^Tx+s_i=b_i, \qquad i=1,\cdots,m$ $s_i\geq 0, \qquad \qquad i=1,\cdots,m$

epigraph form

minimize $f_0(x)$ subject to $f_i(x) \leq 0, \qquad i=1,\cdots,m$ Ax=b

is equivalent to

minimize
$$t$$
 (over x,t) subject to $f_0(x)-t\leq 0$
$$f_i(x)\leq 0, \qquad i=1,\cdots,m$$
 $Ax=b$

partial minimization

minimize $f_0(x_1,x_2)$ subject to $f_i(x_1) \leq 0, \qquad i=1,\cdots,m$

is equivalent to

$$\begin{array}{ll} \text{minimize} & \quad \tilde{f}_0(x_1) \\ \\ \text{subject to} & \quad f_i(x_1) \leq 0, \qquad i=1,\cdots,m \end{array}$$

subject to
$$f_i(x_1) \leq 0, \quad i = 1, \cdots, n$$

where

$$\tilde{f}_0(x_1) = \inf_{x_2} f_0(x_1, x_2)$$

Quasiconvex optimization

minimize
$$f_0(x)$$
 subject to
$$f_i(x) \leq 0, \qquad i=1,\cdots,m$$

$$Ax = b$$

with $f_0 \colon \mathbb{R}^n \to \mathbb{R}$ quasiconvex, f_1, \cdots, f_m convex.

Remark Locally optimal points may not be globally optimal

Convex representation of sublevel sets of f_0

For quasiconvex f_0 there exists a family of functions ϕ_t such that

- $ightharpoonup \phi_t(x)$ is convex in x for each fixed t
- t-sublevel set of f_0 is 0-sublevel set of ϕ_t , i.e. $f_0(x) \le t \iff \phi_t(x) \le 0$
- $ightharpoonup \phi_t(x)$ is nonincreasing in t for each fixed x, namely $\phi_s(x) \leq \phi_t(x)$ if $s \geq t$

In practice there are usually natural meaningful choices for ϕ_t .

Example

$$f_0(x) = \frac{p(x)}{q(x)}$$

with p convex, q concave, and $p(x) \ge 0$, q(x) > 0 on $\operatorname{dom} f_0$.

We can choose

$$\phi_t(x) = p(x) - tq(x)$$

- $ightharpoonup \phi_t(x)$ convex in x for $t \ge 0$
- $f_0(x) \le t \iff \phi_t(x) \le 0$

Quasiconvex optimization via convex feasibility problems

$$\phi_t(x) \le 0, \quad f_i(x) \le 0, \quad i = 1, \dots, m, \quad Ax = b$$

- ightharpoonup convex feasibility problem in x for each fixed t
- \triangleright let p^* be the optimal value for the original quasiconvex problem, then

above problem feasible
$$\implies$$
 $p^* \le t$ above problem infeasible \implies $p^* \ge t$

Bisection method

 $\label{eq:continuous} \mbox{given} \qquad l \leq p^* \mbox{, } u \geq p^* \mbox{, tolerance } \epsilon > 0$ \mbox{repeat}

- 1. t := (l + u)/2
- 2. solve the above convex feasibility problem
- 3. if feasible, u := t; else l := t

 $\quad \text{until} \qquad u-l \leq \epsilon$

requires exactly $\lceil \log_2((u-l)/\epsilon) \rceil$ iterations

Optimization problems

Convex optimization

Linear optimization

Quadratic optimization

Geometric programming

Generalized inequality constraints

Vector optimization

Linear program (LP)

minimize
$$c^T x + d$$

subject to $Gx \leq h$
 $Ax = b$

- convex problem with affine objective and constraint functions
- feasible set is a polyhedron

Examples

Diet problem choose quantities x_1, \dots, x_n of n kinds of food

- lacktriangle one unit of food j costs c_j , contains amount a_{ij} of nutrient i
- lacktriangle healthy diet requires nutrient i in quantity at least b_i

to find cheapest healthy diet

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \succeq b \\ & x \succeq 0 \end{array}$$

Piecewise-linear minimization

minimize $\max \{a_i^T x + b_i \mid i = 1, \cdots, m\}$

equivalent to the LP

minimize
$$t$$
 subject to $a_i^T x + b_i \leq t, \qquad i = 1, \cdots, m$

Chebyshev center of a polyhedron

Chebyshev center of

$$\mathcal{P} = \{x \mid a_i^T x \le b_i, \ i = 1, \cdots, m\}$$

is center of largest inscribed ball

$$\mathcal{B} = \{ x_c + u \mid ||u||_2 \le r \}$$

 $a_i^T x \leq b_i$ for all $x \in \mathcal{B}$ if and only if

$$\sup\{a_i^T(x_c+u) \mid ||u||_2 \le r\} = a_i^T x_c + r||a_i||_2 \le b_i$$

hence x_c and r can be determined by solving the LP

maximize
$$r$$

subject to $a_i^T x_c + r \|a_i\|_2 \leq b_i, \quad i = 1, \dots, m$

Linear-fractional program

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & Gx \preceq h \\ & Ax = b \end{array}$$

where

$$f_0(x) = \frac{c^T x + d}{e^T x + f},$$
 $\mathbf{dom} \, f_0(x) = \{x \mid e^T x + f > 0\}$

is a quasiconvex optimization problem; can be solved by bisection method.

If the feasible set is nonempty, then the linear-fractional problem is equivalent to the LP

minimize
$$c^Ty + dz$$
 subject to $Gy \leq hz$
$$Ay = bz$$

$$e^Ty + fz = 1$$
 $z \geq 0$

Generalized linear-fractional program

minimize
$$f_0(x)$$

subject to $Gx \leq h$
 $Ax = b$

where

$$f_0(x) = \max \left\{ \frac{c_i^T x + d_i}{e_i^T x + f_i} \middle| i = 1, \dots, r \right\}$$
$$\mathbf{dom} f_0(x) = \left\{ x \middle| e_i^T x + f_i > 0, \ i = 1, \dots, r \right\}$$

is a quasiconvex optimization problem; can be solved by bisection method.

Example: von Neumann model of a growing economy

maximize
$$\min\left\{x_i^+/x_i\ \middle|\ i=1,\cdots,n\right\} \qquad (\text{over } x,x^+)$$
 subject to
$$x^+\succeq 0$$

$$Bx^+\prec Ax$$

with domain $\{(x, x^+) \mid x \succ 0\}$

- $> x, x^+ \in \mathbb{R}^n$: activity levels of n sectors, in current and next period
- \blacktriangleright $(Ax)_i$, $(Bx^+)_i$: produced resp. consumed amounts of good i
- $ightharpoonup x_i^+/x_i$: growth rate of sector i

allocate activity to maximize growth rate of slowest growing sector

Optimization problems

Convex optimization

Linear optimization

Quadratic optimization

Geometric programming

Generalized inequality constraints

Vector optimization

Quadratic program (QP)

minimize
$$(1/2)x^TPx + q^Tx + r$$
 subject to
$$Gx \leq h$$

$$Ax = b$$

- ▶ $P \in \mathbb{S}^n_+$ thus objective is convex quadratic
- minimize a convex quadratic function over a polyhedron

Example

Least-squares

minimize
$$||Ax - b||_2^2$$

- ▶ analytical solution $x^* = A^{\dagger}b$ (where A^{\dagger} is pseudo-inverse)
- ightharpoonup can add linear constraints such as $l \leq x \leq u$

Linear program with random cost

Consider the linear program

minimize
$$c^T x$$

subject to $Gx \leq h$
 $Ax = b$

- Assume c is random vector with mean \bar{c} and covariance Σ
- ▶ Then $c^T x$ is random variable with mean $\bar{c}^T x$ and variance $x^T \Sigma x$

$$\mathbf{E}\left(c^{T}x\right) = \mathbf{E}\left(c\right)^{T}x = \bar{c}^{T}x$$

$$\mathbf{var}\left(c^{T}x\right) = \mathbf{E}\left(c^{T}x - \bar{c}^{T}x\right)^{2} = x^{T}\mathbf{E}\left((c - \bar{c})(c - \bar{c})^{T}\right)x = x^{T}\Sigma x$$

We modify the above LP to the following QP

minimize
$$\overline{c}^T x + \gamma x^T \Sigma x$$

subject to $Gx \leq h$
 $Ax = b$

- ► To keep both the expected cost and the cost variance (risk) under control, choose a linear combination of both as the new objective, called risk-sensitive cost.
- $ightharpoonup \gamma > 0$ is the **risk-aversion parameter**, which controls the trade-off between expected cost and variance.
- Coefficient vector $(1, \gamma)$ lies in the interior of the dual cone of the nonnegative quadrant.

Quadratically constrained quadratic program (QCQP)

minimize
$$(1/2)x^TP_0x+q_0^Tx+r_0$$
 subject to
$$(1/2)x^TP_ix+q_i^Tx+r_i\leq 0, \qquad i=1,\cdots,m$$

$$Ax=b$$

- ▶ $P_i \in \mathbb{S}^n_+$ thus objective and constraints are convex quadratic
- feasible region is intersection of m ellipsoids and an affine set if $P_1, \dots, P_m \in \mathbb{S}^n_{++}$

Second-order cone program (SOCP)

minimize
$$f^Tx$$
 subject to
$$\|A_ix+b_i\|_2 \leq c_i^Tx+d_i, \qquad i=1,\cdots,m$$

$$Fx=G$$

with $A_i \in \mathbb{R}^{n_i \times n}$ and $F \in \mathbb{R}^{p \times n}$

inequalities are called second-order cone constraints since

$$(A_i x + b_i, c_i^T x + d_i) \in \text{ second-order cone in } \mathbb{R}^{n_i + 1}$$

- ▶ if $n_i = 0$, reduces to LP
- ▶ if $c_i = 0$, reduces to QCQP (with linear objective)

Robust linear program

Parameters in optimization problems are often uncertain. Consider the LP

$$\begin{aligned} & \text{minimize} & & c^T x \\ & \text{subject to} & & a_i^T x \leq b_i, & & i = 1, \cdots, m \end{aligned}$$

- ▶ There can be uncertainty in c, a_i, b_i (in a_i for example)
- ▶ There are two common approaches to handle uncertainty
 - deterministic model
 - stochastic model

lacktriangle deterministic model: constraints must hold for all $a_i \in \mathcal{E}_i$

minimize $c^T x$

minimize
$$c^T x$$
 subject to $a_i^T x \leq b_i$ for all $a_i \in \mathcal{E}_i, \qquad i = 1, \cdots, m$

lacktriangleright stochastic model: a_i is random variable; constraints must hold with probability η

subject to
$$\mathbf{prob}(a_i^T x \leq b_i) \geq \eta, \quad i = 1, \cdots, m$$

deterministic approach via SOCP

ightharpoonup choose ellipsoid as \mathcal{E}_i with $\bar{a}_i \in \mathbb{R}^n$ and $P_i \in \mathbb{R}^{n \times n}$

$$\mathcal{E}_i = \{ \bar{a}_i + P_i u \mid ||u||_2 \le 1 \}$$

▶ robust LP

minimize
$$c^T x$$
 subject to $a_i^T x \leq b_i$ for all $a_i \in \mathcal{E}_i, \qquad i = 1, \cdots, m$

equivalent SOCP

minimize
$$c^Tx$$
 subject to
$$\bar{a}_i^Tx + \|P_i^Tx\|_2 \leq b_i, \qquad i=1,\cdots,m$$

which follows from

$$\sup_{\|u\|_2 \le 1} (\bar{a}_i + P_i u)^T x = \bar{a}_i^T x + \|P_i^T x\|_2$$

stochastic approach via SOCP

▶ assume $a_i \sim \mathcal{N}(\bar{a}_i, \Sigma_i)$ is Gaussian, then $a_i^T x \sim \mathcal{N}(\bar{a}_i^T x, x^T \Sigma_i x)$ is also Gaussian

$$\mathbf{prob}(a_i^T x \le b_i) = \Phi\left(\frac{b_i - \bar{a}_i^T x}{\|\Sigma_i^{1/2} x\|_2}\right)$$

with $\Phi(x) = (1/\sqrt{2\pi}) \int_{-\infty}^{x} e^{-t^2/2} dt$ cumulative distribution function of $\mathcal{N}(0,1)$

robust LP

minimize
$$c^T x$$
 subject to $\mathbf{prob}(a_i^T x \leq b_i) \geq \eta, \qquad i = 1, \cdots, m$

• equivalent SOCP when $\eta > 1/2$

minimize
$$c^Tx$$
 subject to
$$\bar{a}_i^Tx+\Phi^{-1}(\eta)\|\Sigma_i^{1/2}x\|_2\leq b_i, \qquad i=1,\cdots,m$$

Optimization problems

Convex optimization

Linear optimization

Quadratic optimization

Geometric programming

Generalized inequality constraints

Vector optimization

Monomials and posynomials

monomial function

$$f(x) = cx_1^{a_1} \cdots x_n^{a_n}, \quad \mathbf{dom} \, f = \mathbb{R}_{++}^n$$

with c > 0 and $a_i \in \mathbb{R}$

posynomial function

$$f(x) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} \cdots x_n^{a_{nk}}, \quad \text{dom } f = \mathbb{R}_{++}^n$$

sum of monomials

change variables to $y_i = \log x_i$ and take logarithm

ightharpoonup monomial $f(x) = cx_1^{a_1} \cdots x_n^{a_n}$ transforms to

$$\log f(e^{y_1}, \dots, e^{y_n}) = a^T y + b, \qquad (b = \log c)$$

p posynomial $f(x) = \sum_{k=1}^{K} c_k x_1^{a_{1k}} \cdots x_n^{a_{nk}}$ transforms to

$$\log f(e^{y_1}, \cdots, e^{y_n}) = \log \left(\sum_{k=1}^K e^{a_k^T y + b_k} \right), \qquad (b_k = \log c_k)$$

Geometric program (GP)

geometric program in standard form

```
minimize f_0(x) subject to f_i(x) \leq 1, \qquad i=1,\cdots,m h_i(x)=1, \qquad i=1,\cdots,p
```

with f_i posynomial, h_i monomial

geometric program in convex form

change variables to $y_i = \log x_i$ and take logarithm of objective and constraints

minimize
$$\log\left(\sum_{k=1}^K e^{a_{0k}^Ty+b_{0k}}\right)$$
 subject to
$$\log\left(\sum_{k=1}^K e^{a_{ik}^Ty+b_{ik}}\right) \leq 0, \qquad i=1,\cdots,m$$

$$Gy+d=0$$

Example

Frobenius norm diagonal scaling

- Assume $M \in \mathbb{R}^{n \times n}$ defines a linear transformation. After scaling the coordinates by $D = \mathbf{diag}(d_1, \dots, d_n) \in \mathbb{R}^{n \times n}$, the resulting matrix becomes DMD^{-1} .
- ▶ How to choose D such that DMD^{-1} is small under the Frobenius norm?

$$||DMD^{-1}||_F^2 = \sum_{i,j=1}^n (DMD^{-1})_{ij}^2 = \sum_{i,j=1}^n M_{ij}^2 d_i^2 / d_j^2.$$

It is an unconstrained geometric program

minimize
$$\sum_{i,j=1}^n M_{ij}^2 d_i^2/d_j^2$$

with variable $d = (d_1, \ldots, d_n)$.

Optimization problems

Convex optimization

Linear optimization

Quadratic optimization

Geometric programming

Generalized inequality constraints

Vector optimization

Convex problem with generalized inequality constraints

minimize
$$f_0(x)$$
 subject to
$$f_i(x) \preceq_{K_i} 0, \qquad i=1,\cdots,m$$

$$Ax = b$$

- ▶ $f_0: \mathbb{R}^n \to \mathbb{R}$ is convex
- $lackbox{}{} f_i\colon\mathbb{R}^n o\mathbb{R}^{k_i}$ is K_i -convex, where K_i is a proper cone
- same properties as standard convex problem (convex feasible set, local optimum is global, etc)

Conic form problem (cone program)

special case of above with affine objective and constraints

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Fx + g \preceq_K 0 \\ & Ax = b \end{array}$$

extends linear programming $(K=\mathbb{R}^m_+)$ to nonpolyhedral cones

Semidefinite program (SDP)

minimize
$$c^T x$$
 subject to $x_1 F_1 + \cdots + x_n F_n + G \leq 0$ $Ax = b$

with $F_i, G \in \mathbb{S}^k$

- inequality constraint is called linear matrix inequality (LMI)
- ▶ includes problems with multiple LMI constrains:

$$x_1F_1' + \dots + x_nF_n' + G' \leq 0$$
 and $x_1F_1'' + \dots + x_nF_n'' + G'' \leq 0$

is equivalent to single LMI

$$x_1 \begin{bmatrix} F_1' & 0 \\ 0 & F_1'' \end{bmatrix} + \dots + x_n \begin{bmatrix} F_n' & 0 \\ 0 & F_n'' \end{bmatrix} + \begin{bmatrix} G' & 0 \\ 0 & G'' \end{bmatrix} \leq 0$$

LP as equivalent SDP

LP

equivalent SDP

note different interpretation of generalized inequality

SOCP as equivalent SDP

SOCP

minimize
$$f^Tx$$
 subject to
$$\|A_ix+b_i\|_2 \leq c_i^Tx+d_i, \qquad i=1,\cdots m$$

equivalent SDP

minimize
$$f^Tx$$
 subject to
$$\begin{bmatrix} (c_i^Tx+d_i)I & A_ix+b_i\\ (A_ix+b_i)^T & c_i^Tx+d_i \end{bmatrix}\succeq 0, \qquad i=1,\cdots m$$

Eigenvalue minimization

minimize
$$\lambda_{max}(A(x))$$

where $A(x) = A_0 + x_1 A_1 + \cdots + x_n A_n$ with given $A_i \in \mathbb{S}^k$

equivalent SDP with variables $(x,t) \in \mathbb{R}^{n+1}$

minimize t

subject to $A(x) \leq tI$

follows from

$$\lambda_{\max}(A) \le t \iff A \le tI$$

Matrix norm minimization

$$\|A(x)\|_2 = \left(\lambda_{\max}\left(A(x)^TA(x)\right)\right)^{1/2}$$
 where $A(x) = A_0 + x_1A_1 + \dots + x_nA_n$ with given $A_i \in \mathbb{R}^{p \times q}$

equivalent SDP with variables $x \in \mathbb{R}^n$ and $t \in \mathbb{R}$

minimize
$$t$$
 subject to
$$\begin{bmatrix} tI & A(x) \\ A(x)^T & tI \end{bmatrix} \succeq 0$$

follows from

$$||A||_2 \le t \qquad \Longleftrightarrow \qquad A^T A \le t^2 I, \quad t \ge 0$$

$$\iff \qquad \begin{bmatrix} tI & A \\ A^T & tI \end{bmatrix} \succeq 0$$

Optimization problems

Convex optimization

Linear optimization

Quadratic optimization

Geometric programming

Generalized inequality constraints

Vector optimization

Vector optimization

general vector optimization problem

minimize (with respect to
$$K$$
) $f_0(x)$ subject to $f_i(x) \leq 0, \qquad i=1,\cdots,m$ $h_i(x)=0, \qquad i=1,\cdots,p$

vector objective $f_0\colon \mathbb{R}^n o \mathbb{R}^q$ minimized with respect to proper cone $K\subseteq \mathbb{R}^q$

convex vector optimization problem

minimize (with respect to
$$K$$
) $f_0(x)$ subject to
$$f_i(x) \leq 0, \qquad i=1,\cdots,m$$

$$Ax = b$$

where f_0 is K-convex and f_1, \dots, f_m are convex

Optimal and Pareto optimal points

set of achievable objective values

$$\mathcal{O} = \{ f_0(x) \mid x \text{ feasible} \}$$

- feasible x^* is optimal if $f_0(x^*)$ is the minimum value of \mathcal{O} (optimal value)
- feasible x^{po} is Pareto optimal if $f_0(x^{\mathrm{po}})$ is a minimal value of $\mathcal O$ (Pareto optimal value)

Multicriterion optimization

vector optimization problem with $K = \mathbb{R}^q_+$

$$f_0(x) = (F_1(x), \cdots, F_q(x))$$

- ightharpoonup q different objectives F_i , we want all of them to be small
- ightharpoonup feasible x^* is optimal if

$$y \text{ feasible} \implies f_0(x^*) \leq f_0(y)$$

if an optimal point exists, the objectives are noncompeting

ightharpoonup feasible x^{po} is Pareto optimal if

$$y$$
 feasible, $f_0(y) \leq f_0(x^{\mathrm{po}}) \implies f_0(x^{\mathrm{po}}) = f_0(y)$

if multiple Pareto optimal values exist, there is a trade-off between the objectives

Examples

Regularized least-squares

minimize (with respect to
$$\mathbb{R}^2_+$$
) $\left(\|Ax-b\|_2^2,\|x\|_2^2\right)$

the optimal trade-off curve, shown darker, is formed by Pareto optimal points

Risk-return trade-off in portfolio optimization

minimize (with respect to
$$\mathbb{R}^2_+$$
) $\left(-\bar{p}^Tx, x^T\Sigma x\right)$ subject to
$$\mathbf{1}^Tx = 1$$
 $x\succeq 0$

- $ightharpoonup x \in \mathbb{R}^n$ investment portfolio; x_i fraction invested in asset i
- $ightharpoonup p \in \mathbb{R}^n$ (relative) asset price, random variable with mean \bar{p} and covariance Σ
- $ightharpoonup r = p^T x$ (relative) return, random variable with mean $\bar{p}^T x$ and variance $x^T \Sigma x$

Scalarization

To find Pareto optimal points, choose $\lambda \succ_{K^*} 0$ and solve scalar problem

minimize
$$\lambda^T f_0(x)$$
 subject to $f_i(x) \leq 0, \qquad i=1,\cdots,m$ $h_i(x)=0, \qquad i=1,\cdots,p$

- lacktriangleright if x is optimal for scalar problem, then it is Pareto optimal for vector optimization problem
- ▶ for convex vector optimization problem, can find (almost) all Pareto optimal points by varying $\lambda \succ_{K^*} 0$

Scalarization for multicriterion problems

In this more concrete situation

$$K = K^* = \mathbb{R}^q_+.$$

To find Pareto optimal points, write

$$\lambda = \begin{bmatrix} a_1 \\ \vdots \\ a_q \end{bmatrix} \in \mathbb{R}_{++}^q \quad \text{and} \quad f_0(x) = \begin{bmatrix} F_1(x) \\ \vdots \\ F_q(x) \end{bmatrix},$$

then minimize the positive weighted sum

$$\lambda^T f_0(x) = a_1 F_1(x) + \dots + a_q F_q(x)$$

Geometric interpretation

- O is the set of achievable objective values
- Pareto optimal values $f_0(x_1)$ and $f_0(x_2)$ can both be obtained by scalarization: $f_0(x_1)$ minimizes $\lambda_1^T u$ and $f_0(x_2)$ minimizes $\lambda_2^T u$ over all $u \in \mathcal{O}$
- $ightharpoonup f_0(x_3)$ is Pareto optimal, but cannot be found by scalarization

Examples

Regularized least-square problem

Take
$$\lambda = (1, \gamma)$$
 with $\gamma > 0$

minimize $||Ax - b||_2^2 + \gamma ||x||_2^2$

least-square problem for fixed $\gamma > 0$

Risk-return trade-off problem

Take
$$\lambda = (1, \gamma)$$
 with $\gamma > 0$

$$\begin{array}{ll} \text{minimize} & -\bar{p}^Tx + \gamma x^T \Sigma x \\ \text{subject to} & \mathbf{1}^Tx = 1 \\ & x \succeq 0 \end{array}$$

quadratic program for each fixed $\gamma>0\,$