

Latent Dirichlet Allocation (LDA)

Dept. Computer Science & Engineering Shanghai Jiao Tong University

Latent Dirichlet Allocation (LDA)

- A generative probabilistic model for collections of discrete data such text corpora.
- A three-level hierarchical Bayesian model
 - Each document of a collection is modeled as finite mixture over an underlying set of topics.
 - Each topic is characterized by a distribution over words.
- The topic probabilities provide an explicit representation of a document
 - It has natural advantages over unigram model and probabilistic LSI model.

History (1) – Text processing

- IR text to real number vector(Baeza-Yates and Ribeiro-Neto, 1999), tfidf (Salton and McGill, 1983)
 - tfidf shortcoming: (1) <u>Lengthy</u> and (2) Cannot model <u>inter- and intra- document</u> statistical structure
- LSI dimension reduction (Deerwester et al., 1990)
 - Advantages: achieve significant compression in large collections and capture synonymy and polysemy.
- Generative probabilistic model to study the ability of LSI (Papadimitriou et al., 1998)
 - Why LSI, we can model the data directly using maximum likelihood or Bayesian methods.

History (2) – Text processing

- Probabilistic LSI also aspect model. Milestone (Hofmann, 1999).
 - $-P(w_i|\theta_j)$, $d=\{w_1, ..., w_N\}$, and $\theta=\{\theta_1, ..., \theta_k\}$. each word is generated from a single model θ_j . Document d is considered to be a mixing proportions for these mixture components θ , that is a list of numbers (the mixing proportions for topics).
 - Disadvantage: no probabilistic model at document level.
 - The number of parameters grows linearly with the size of corpora.
 - It is not clear to assign probability to document outside of the collection. (does not make any assumptions about how the mixture weights θ are generated, making it difficult to test the generalizability of the model to new documents.)

Notation

- $D=\{d_1, ..., d_M\}, d=\{w_1, ..., w_N\},$ and $\theta=\{\theta_1, ..., \theta_k\},$ equivalently $D=\{\mathbf{w}_1, ..., \mathbf{w}_M\}$. (Bold variable denotes vector.)
- Suppose we have *V* distinct words in the whole data set.

LDA

- The basic idea: Documents are represented as random mixtures over latent topics, where each topic is characterized by a distribution over words.
- For each document d, we generate as follows:
 - 1. Choose $N p Poisson(\xi)$
 - 2. Choose θ p Dir(α)
 - 3. For each of the N words w_n :
 - (a) Choose a topic z_n p Multinomial(θ)
 - (b) Choose a word w_n from $p(w_n | z_n, \beta)$,

a multinomial probability conditioned on the topic z_n

k topics z

β is a k × V matrix with $β_{ij} = p(w_i = 1 | z_j = 1)$

Dirichlet Random Variables θ

- A k-dimensional Dirichlet random variables et can take values in the (k-1)-simplex
 - (a k-vector $\boldsymbol{\theta}$ lies in the (k-1)-simplex if $\boldsymbol{\theta}_i \ge 0$, $\sum_{i=1}^k \boldsymbol{\theta}_i = 1$, and thus the probability density can be:

$$p(\boldsymbol{\theta} \mid \boldsymbol{\alpha}) = \frac{\Gamma(\sum_{i=1}^{k} \boldsymbol{\alpha}_{i})}{\prod_{i=1}^{k} \Gamma(\boldsymbol{\alpha}_{i})} \boldsymbol{\theta}_{1}^{\boldsymbol{\alpha}_{i}-1} L \boldsymbol{\theta}_{k}^{\boldsymbol{\alpha}_{k}-1}$$

where α is a k-vector parameter with $\alpha_i > 0$, and $\Gamma(x)$ is a gamma function

Graphical Interpretation

- The probability density of the Dirichlet distribution when K=3 for various parameter vectors α .
- Clockwise from top left: α =(6, 2, 2), (3, 7, 5), (6, 2, 6), (2, 3, 4).

$$p(\boldsymbol{\theta} \mid \boldsymbol{\alpha}) = \frac{\Gamma(\sum_{i=1}^{k} \boldsymbol{\alpha}_{i})}{\prod_{i=1}^{k} \Gamma(\boldsymbol{\alpha}_{i})} \boldsymbol{\theta}_{1}^{\alpha_{i}-1} L \quad \boldsymbol{\theta}_{k}^{\alpha_{k}-1}$$

$$\boldsymbol{\theta}_{i} \geq 0, \quad \sum_{i=1}^{k} \boldsymbol{\theta}_{i} = 1$$
Topic 2
Topic 3

Figure 3. Illustrating the symmetric Dirichlet distribution for three topics on a two-dimensional simplex. Darker colors indicate higher probability. Left: $\alpha = 4$. Right: $\alpha = 2$.

Multinomial Distribution

- Each trial can end in exactly one of k categories
 n independent trials
- Probability a trial results in category i is p_i

$$p_1 + ... + p_k = 1$$

• Y_i is the number of trials resulting in category i

$$Y_1 + \ldots + Y_k = n$$

Multinomial Distribution

where
$$\sum_{i=1}^{k} y_i = n, \sum_{i=1}^{k} p_i = 1, y_i \ge 0, p_i \ge 0.$$

When k = 2,

$$p_i(y_i \mid p) = \frac{n!}{y_i!(n-y_i)!} p_i^{y_i} (1-p_i)^{n-y_i} \quad y_i = 0,1,..,n$$

 (Y_i) has a marginal binomial distribution)

$$\Rightarrow E(Y_i) = np_i$$
 $V(Y_i) = np_i(1-p_i)$

Notations

- N: The word number in document D
- *M*: The number of documnets
- *K*: The number of topics
- V: The word number in the vocabulary
- θ : distribution of tiopics in document d sampled from $Dir(\alpha)$
- z_n : The topic variable of word w_n in document d sampled from Multinomial(θ)
- w_n : word variable sampled from $p(w_n | z_n, \beta)$, a multinomial probability conditioned on the topic z_n

- 1. Choose Np Poisson(ξ)
- 2. Choose $\theta p \text{ Dir}(\alpha)$
- 3. For each of the N words w_n :
 - (a) Choose a topic z_n p Multinomial(θ)
 - (b) Choose a word w_n from $p(w_n | z_n, \beta)$, a multinomial pdf conditioned on the topic z_n

Joint Distribution

• Given the parameters α and β , the joint distribution of a topic mixture θ , a set of N topics \mathbf{z} , and a set of N words \mathbf{w} is given by:

$$p(\mathbf{\theta}, \mathbf{z}, \mathbf{w} \mid \mathbf{\alpha}, \mathbf{\beta}) = p(\mathbf{\theta} \mid \mathbf{\alpha}) \prod_{n=1}^{N} p(z_n \mid \mathbf{\theta}) p(w_n \mid z_n, \mathbf{\beta})$$
(1)

where $p(z_n|\theta)$ is simply θ_i for the unique i such that $z_n^{i=1}$.

Joint Distribution

• Given the parameters α and β , the joint distribution of a topic mixture θ , a set of N topics \mathbf{z} , and a set of N words \mathbf{w} is given by:

$$p(\mathbf{\theta}, \mathbf{z}, \mathbf{w} \mid \mathbf{\alpha}, \mathbf{\beta}) = p(\mathbf{\theta} \mid \mathbf{\alpha}) \prod_{n=1}^{N} p(z_n \mid \mathbf{\theta}) p(w_n \mid z_n, \mathbf{\beta})$$

where $p(z_n|\theta)$ is simply θ_i for the unique i such that $z_n^i=1$.

Integrating marginal over θ and summing over z we obtain the distribution of a document

$$p(\mathbf{w} \mid \boldsymbol{\alpha}, \boldsymbol{\beta}) = \int p(\boldsymbol{\theta} \mid \boldsymbol{\alpha}) \left(\prod_{n=1}^{N} \sum_{z_n} p(z_n \mid \boldsymbol{\theta}) p(w_n \mid z_n, \boldsymbol{\beta}) \right) d\boldsymbol{\theta}$$
 (2)

Joint Distribution (cont.)

• Finally, taking the product of the marginal probabilities of single documents, we can obtain the probability of a corpus:

$$p(D \mid \boldsymbol{\alpha}, \boldsymbol{\beta}) = \prod_{d=1}^{M} \int p(\boldsymbol{\theta}_d \mid \boldsymbol{\alpha}) \left(\prod_{n=1}^{N_d} \sum_{z_{nd}} p(z_{dn} \mid \boldsymbol{\theta}_d) p(w_{dn} \mid z_{dn}, \boldsymbol{\beta}) \right) d\boldsymbol{\theta}_d$$

$$p(\mathbf{w} \mid \boldsymbol{\alpha}, \boldsymbol{\beta}) = \int p(\boldsymbol{\theta} \mid \boldsymbol{\alpha}) \left(\prod_{n=1}^{N} \sum_{z_n} p(z_n \mid \boldsymbol{\theta}) p(w_n \mid z_n, \boldsymbol{\beta}) \right) d\boldsymbol{\theta}$$

Graphical Interpretation (cont.)

• The Dirichlet prior on the topic-word distributions can be interpreted as forces on the topic locations with higher β moving the topic locations away from the corners of the simplex.

Figure 5. A geometric interpretation of the topic model.

Matrix Interpretation

• In the topic model, the word-document co-occurrence matrix is split into two parts:

a topic matrix Φ

a document matrix Θ

• Note that the diagonal matrix D in LSA can be absorbed in the matrix U or V, making the similarity between the two representations even clearer.

TOPIC

MODEL

Inference and Parameter Estimation

Dirichlet random variables

$$p(\boldsymbol{\theta} \mid \boldsymbol{\alpha}) = \frac{\Gamma(\sum_{i=1}^{k} \boldsymbol{\alpha}_{i})}{\prod_{i=1}^{k} \Gamma(\boldsymbol{\alpha}_{i})} \boldsymbol{\theta}_{1}^{\boldsymbol{\alpha}_{i}-1} L \boldsymbol{\theta}_{k}^{\boldsymbol{\alpha}_{k}-1}$$

 β is a k×V matrix with $\beta_{ij} = p(w_j = 1 \mid z_i = 1)$

Polynomial distribution

$$p(z_1,...,z_k | \theta) = \frac{1}{z_1!...z_k!} \theta_1^{z_1}...\theta_k^{z_k}$$

$$p(\mathbf{w} \mid \boldsymbol{\alpha}, \boldsymbol{\beta}) = \frac{\Gamma(\sum_{i} \boldsymbol{\alpha}_{i})}{\prod_{i} \Gamma(\boldsymbol{\alpha}_{i})} \int \left(\prod_{i=1}^{k} \boldsymbol{\theta}_{i}^{\boldsymbol{\alpha}_{i}-1}\right) \left(\prod_{n=1}^{N} \sum_{i=1}^{k} \prod_{j=1}^{V} (\boldsymbol{\theta}_{i} \boldsymbol{\beta}_{ij})^{w_{n}^{j}}\right) d\boldsymbol{\theta}$$
(3)

Inference and Parameter Estimation

• The key inferential problem: To compute the posterior distribution of the hidden variables given a document:

$$p(\mathbf{\theta}, \mathbf{z} \mid \mathbf{w}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \frac{p(\mathbf{\theta}, \mathbf{z}, \mathbf{w} \mid \boldsymbol{\alpha}, \boldsymbol{\beta})}{p(\mathbf{w} \mid \boldsymbol{\alpha}, \boldsymbol{\beta})}$$
(4)

- Such distribution is intractable to compute in general.
 - For normalization in the above distribution, we have to marginalize over the hidden variables and write the Equation (a) in terms of the model parameters:

$$p(\mathbf{w} \mid \boldsymbol{\alpha}, \boldsymbol{\beta}) = \frac{\Gamma(\sum_{i} \boldsymbol{\alpha}_{i})}{\prod_{i} \Gamma(\boldsymbol{\alpha}_{i})} \int \left(\prod_{i=1}^{k} \boldsymbol{\theta}_{i}^{\boldsymbol{\alpha}_{i}-1}\right) \left(\prod_{n=1}^{N} \sum_{i=1}^{k} \prod_{j=1}^{V} (\boldsymbol{\theta}_{i} \boldsymbol{\beta}_{ij})^{w_{n}^{j}}\right) d\boldsymbol{\theta}$$

$$p(\mathbf{\theta}, \mathbf{z}, \mathbf{w} | \mathbf{\alpha}, \mathbf{\beta}) = p(\mathbf{\theta} | \mathbf{\alpha}) \prod_{n=1}^{N} p(z_n | \mathbf{\theta}) p(w_n | z_n, \mathbf{\beta})$$

Inference and Parameter Estimation

$$p(\mathbf{w} \mid \boldsymbol{\alpha}, \boldsymbol{\beta}) = \frac{\Gamma(\sum_{i} \boldsymbol{\alpha}_{i})}{\prod_{i} \Gamma(\boldsymbol{\alpha}_{i})} \int \left(\prod_{i=1}^{k} \boldsymbol{\theta}_{i}^{\boldsymbol{\alpha}_{i}-1}\right) \left(\prod_{n=1}^{N} \sum_{i=1}^{k} \prod_{j=1}^{V} (\boldsymbol{\theta}_{i} \boldsymbol{\beta}_{ij})^{w_{n}^{j}}\right) d\boldsymbol{\theta}$$

- This function is intractable due to the coupling between θ and β in the summation over latent topics (Dickey, 1983).
- How to deal with the intractable exact inference:
 - Approximate inference algorithms, e.g., Laplace approximation, variational approximation, and Markov chain Monte Carlo (Jordan, 1999).

Variational Inference

- A simple convexity-based variational algorithm for inference in LDA.
- The basic idea: to obtain an adjustable lower bound on the log likelihood (Jordan, 1999).

$$\log p(\mathbf{w} \mid \boldsymbol{\alpha}, \boldsymbol{\beta}) = \log \int \sum_{z} \frac{p(\theta, z, w \mid \alpha, \beta) q(\theta, z)}{q(\theta, z)} d\theta$$

$$\geq \int \sum_{z} q(\theta, z) \log p(\theta, z, w \mid \alpha, \beta) d\theta - \int \sum_{z} q(\theta, z) \log q(\theta, z) d\theta$$
(5)

• A simple way to obtain a tractable family of lower bounds is to consider simple modifications of the original graphical model in which some of the edges and nodes are removed.

• By dropping edges between θ , z, and w, and w nodes, and also endow the resulting simplified graphical model with free variational parameters, we obtain a family of distributions on the latent variables:

$$q(\mathbf{\theta}, \mathbf{z} \mid \mathbf{\gamma}, \mathbf{\phi}) = q(\mathbf{\theta} \mid \mathbf{\gamma}) \prod_{n=1}^{N} q(z_n \mid \mathbf{\phi}_n)$$
 (6)

• where the Dirichlet parameter γ and the multinomial parameters $(\Phi_1, ..., \Phi_N)$ are the free variational parameters.

How to determine the parameters

- Set up an optimization problem to determine the values of the variational parameters γ and Φ .
- We can define the optimization function as minimizing the Kullback-Leibler (KL) divergence between the variational distribution and the true posterior $p(\theta, \mathbf{z}|\mathbf{w}, \alpha, \beta)$:

$$(\boldsymbol{\gamma}^*, \boldsymbol{\phi}^*) = \underset{(\boldsymbol{\gamma}, \boldsymbol{\phi})}{\operatorname{arg\,min}} D(q(\boldsymbol{\theta}, \mathbf{z} \mid \boldsymbol{\gamma}, \boldsymbol{\phi}) || p(\boldsymbol{\theta}, \mathbf{z} \mid \mathbf{w}, \boldsymbol{\alpha}, \boldsymbol{\beta})$$
(7)

• This minimization can be achieved by an iterative fixed-point method.

Variational Inference

- How to set the parameter γ and Φ via an optimization procedure.
- A lower bound of the log likelihood of a document using Jensen's inequality:

$$\log q(\mathbf{w} \mid \boldsymbol{\alpha}, \boldsymbol{\beta}) = \log \int \sum_{\mathbf{z}} p(\boldsymbol{\theta}, \mathbf{z}, \mathbf{w} \mid \boldsymbol{\alpha}, \boldsymbol{\beta}) d\theta$$

$$= \log \int \sum_{\mathbf{z}} \frac{p(\boldsymbol{\theta}, \mathbf{z}, \mathbf{w} \mid \boldsymbol{\alpha}, \boldsymbol{\beta}) q(\boldsymbol{\theta}, \mathbf{z})}{q(\boldsymbol{\theta}, \mathbf{z})} d\theta$$

$$> \int \sum_{\mathbf{z}} q(\boldsymbol{\theta}, \mathbf{z}) \log p(\boldsymbol{\theta}, \mathbf{z}, \mathbf{w} \mid \boldsymbol{\alpha}, \boldsymbol{\beta}) d\theta - \int \sum_{\mathbf{z}} q(\boldsymbol{\theta}, \mathbf{z}) \log q(\boldsymbol{\theta}, \mathbf{z}) d\theta$$

$$= \operatorname{E}_{q} [\log p(\boldsymbol{\theta}, \mathbf{z}, \mathbf{w} \mid \boldsymbol{\alpha}, \boldsymbol{\beta})] - \operatorname{E}_{q} [\log q(\boldsymbol{\theta}, \mathbf{z})]$$

- The Jensen's inequality provides us with a lower bound on the log likelihood for an arbitrary variational distribution $q(\theta, \mathbf{z}|\gamma, \Phi)$.
- The difference between the left-hand side and the right-hand side of the above equation is the KL divergence between the variational posterior probability and the true posterior probability.

$$\log p(\mathbf{w} \mid \boldsymbol{\alpha}, \boldsymbol{\beta}) = L(\boldsymbol{\gamma}, \boldsymbol{\phi}; \boldsymbol{\alpha}, \boldsymbol{\beta}) + D(q(\boldsymbol{\theta}, \mathbf{z} \mid \boldsymbol{\gamma}, \boldsymbol{\phi}) \parallel p(\boldsymbol{\theta}, \mathbf{z} \mid \mathbf{w}, \boldsymbol{\alpha}, \boldsymbol{\beta}))$$
(8)

$$L(\gamma, \phi; \alpha, \beta) = \int \sum_{z} q(\theta, z) \log p(\theta, z, w \mid \alpha, \beta) d\theta$$
$$-\int \sum_{z} q(\theta, z) \log q(\theta, z) d\theta$$

• Letting $L(\phi, \gamma; \alpha, \beta)$ denote the right-hand side of the above equation we have:

$$\log p(\mathbf{w} \mid \boldsymbol{\alpha}, \boldsymbol{\beta}) = L(\boldsymbol{\gamma}, \boldsymbol{\phi}; \boldsymbol{\alpha}, \boldsymbol{\beta}) + D(q(\boldsymbol{\theta}, \mathbf{z} \mid \boldsymbol{\gamma}, \boldsymbol{\phi}) || p(\boldsymbol{\theta}, \mathbf{z} \mid \mathbf{w}, \boldsymbol{\alpha}, \boldsymbol{\beta}))$$

• This means that maximizing the lower bound $L(\phi, \gamma; \alpha, \beta)$ w.r.t. γ and Φ is equivalent to minimizing the KL divergence between the variational posterior probability and the true posterior probability, the optimization problem in equation (5).

(9)

We can expand the above equation

$$L(\phi, \gamma; \alpha, \beta) = E_q[\log p(\theta \mid \alpha)] + E_q[\log p(\mathbf{z} \mid \theta)] + E_q[\log p(\mathbf{w} \mid \mathbf{z}, \beta)]$$
$$- E_q[\log q(\theta)] - E_q[\log q(\mathbf{z})]$$

By extending it again, we can have

$$L(\phi, \gamma; \boldsymbol{\alpha}, \boldsymbol{\beta}) = \log \Gamma(\sum_{j=1}^{k} \boldsymbol{\alpha}_{j}) - \sum_{i=1}^{k} \log \Gamma(\boldsymbol{\alpha}_{i}) + \sum_{i=1}^{k} (\boldsymbol{\alpha}_{i} - 1)(\Psi(\gamma_{i}) - \Psi(\sum_{j=1}^{k} \gamma_{j}))$$

$$+ \sum_{n=1}^{N} \sum_{i=1}^{k} \phi_{ni}(\Psi(\gamma_{i}) - \Psi(\sum_{j=1}^{k} \gamma_{j})) + \sum_{n=1}^{N} \sum_{i=1}^{k} \sum_{j=1}^{V} \phi_{ni} w_{n}^{j} \log \beta_{ij}$$

$$- \log \Gamma(\sum_{j=1}^{k} \gamma_{j}) + \sum_{i=1}^{k} \log \Gamma(\gamma_{i}) - \sum_{i=1}^{k} (\gamma_{i} - 1)(\Psi(\gamma_{i}) - \Psi(\sum_{j=1}^{k} \gamma_{j}))$$

$$- \sum_{i=1}^{N} \sum_{j=1}^{k} \phi_{ni} \log \phi_{ni}$$

Variaitonal Multinomial

- We first maximize Eq. (15) w.r.t. Φ_{ni} , the probability that the *n*-th word is generated by latent topic *i*.
- We form the Lagrangian by isolating the terms which contain Φ_{ni} and adding the appropriate Lagrange multipliers. Let β_{iv} be $p(w^v_n=1|z^i=1)$ for the appropriate v. (recall that each w_n is a vector of size V with exactly one component equal to one; we can select the unique v such that $w^v_n=1$):

$$L_{\left[\phi_{ni}\right]} = \phi_{ni}(\Psi(\gamma_i) - \Psi(\sum_{j=1}^k \gamma_j)) + \phi_{ni}\log\beta_{iv} - \phi_{ni}\log\phi_{ni} + \lambda_n(\sum_{j=1}^k \phi_{ni} - 1)$$

Variaitonal Multinomial (cont.)

• Taking derivatives w.r.t. Φ_{ni} , we obtain:

$$\frac{\partial L}{\partial \phi_{ni}} = \Psi(\gamma_i) - \Psi(\sum_{j=1}^k \gamma_j) + \log \beta_{iv} - \log \phi_{ni} - 1 + \lambda$$

• Setting this to zero yields the maximizing value of the variational parameter Φ_{ni} :

$$\phi_{ni} \propto \beta_{iv} \exp(\Psi(\gamma_i) - \Psi(\sum_{j=1}^k \gamma_j))$$

Variational Dirichlet

• Next we maximize equation (15) w.r.t. γ_i , the *i*-th component of the posterior Dirichlet parameters, the terms containing γ_i are:

$$L_{[\gamma]} = \sum_{i=1}^{k} (\alpha_i - 1)(\Psi(\gamma_i) - \Psi(\sum_{j=1}^{k} \gamma_j)) + \sum_{n=1}^{N} \phi_{ni}(\Psi(\gamma_i) - \Psi(\sum_{j=1}^{k} \gamma_j))$$
$$-\log \Gamma(\sum_{j=1}^{k} \gamma_j) + \log \Gamma(\gamma_i) - \sum_{i=1}^{k} (\gamma_i - 1)(\Psi(\gamma_i) - \Psi(\sum_{j=1}^{k} \gamma_j))$$

By simplifying

$$L_{[\gamma]} = \sum_{i=1}^{k} (\boldsymbol{\alpha}_i + \sum_{n=1}^{N} \boldsymbol{\phi}_{ni} - \boldsymbol{\gamma}_i) (\boldsymbol{\Psi}(\boldsymbol{\gamma}_i) - \boldsymbol{\Psi}(\sum_{j=1}^{k} \boldsymbol{\gamma}_j)) - \log \Gamma(\sum_{j=1}^{k} \boldsymbol{\gamma}_j) + \log \Gamma(\boldsymbol{\gamma}_i)$$

Variational Dirichlet (cont.)

• Taking the derivative w.r.t. γ_i :

$$\frac{\partial L}{\partial \mathbf{\gamma}_{i}} = \Psi'(\mathbf{\gamma}_{i})(\mathbf{\alpha}_{i} + \sum_{n=1}^{N} \mathbf{\phi}_{ni} - \mathbf{\gamma}_{i}) - \Psi'(\sum_{j=1}^{k} \mathbf{\gamma}_{j}) \sum_{i=1}^{k} (\mathbf{\alpha}_{i} + \sum_{n=1}^{N} \mathbf{\phi}_{ni} - \mathbf{\gamma}_{i})$$

• Setting this equation to zero yields a maximum at:

$$\mathbf{\gamma}_i = \mathbf{\alpha}_i + \sum_{n=1}^N \mathbf{\phi}_{ni}$$

Solve the Optimization Problem

• Derivate the KL divergence and setting them equal to zero, we obtain the following update equations:

$$\mathbf{\phi}_{ni} \propto \mathbf{\beta}_{iw_n} \exp\{\mathbf{E}_q[\log(\mathbf{\theta}_i) \,|\, \mathbf{\gamma}]\} \tag{10}$$

$$\mathbf{\gamma}_i = \mathbf{\alpha}_i + \sum_{n=1}^N \mathbf{\phi}_{ni} \tag{11}$$

where the expectation in the multinomial update can be computed as follows:

$$E_q[\log(\boldsymbol{\theta}_i) \mid \boldsymbol{\gamma}] = \Psi(\boldsymbol{\gamma}_i) - \Psi(\sum_{j=1}^k \boldsymbol{\gamma}_j)$$
 (12)

where ψ is the first derivative of the log Γ function which is computable via Taylor approximations

Computing E[log $p(\theta_i|\alpha)$]

 Recall that a distribution is in the exponential family if it can be written in the form:

$$p(x \mid \eta) = h(x) \exp\{\eta^T T(x) - A(\eta)\}\$$

where η is the natural parameter, T(x) is the sufficient statistic, and $A(\eta)$ is the log of the normalization factor.

• Rewrite the Dirichlet in this form by exponentiating the log of Eq.: $p(\theta|\alpha)$

$$p(\mathbf{\theta} \mid \mathbf{\alpha}) = \exp\{(\sum_{i=1}^{k} (\mathbf{\alpha}_i - 1) \log \mathbf{\theta}_i) + \log \Gamma(\sum_{i=1}^{k} \mathbf{\alpha}_i) - \sum_{i=1}^{k} \log \Gamma(\mathbf{\alpha}_i)\}$$

Computing E[log($\theta_i | \alpha$)] (cont.)

• From this form we see that the natural parameter of the Dirichlet is $\eta_i = \alpha_i - 1$ and the sufficient statistic is $T(\theta_i) = \log \theta_i$. Moreover, based on the general fact that the derivative of the log normalization factor w.r.t. the natural parameter is equal to the expectation of the sufficient statistic, we obtain:

$$E[\log(\mathbf{\theta}_i) \mid \mathbf{\alpha}] = \Psi(\mathbf{\alpha}_i) - \Psi(\sum_{j=1}^k \mathbf{\alpha}_j)$$

where ψ is the digamma function, the first derivative of the log Gamma function.

Variational Inference Algorithm

- (1) initialize $\phi_{ni}^0 = \frac{1}{k}$ for all i and n
- (2) initialize $\gamma_i = \alpha_i + \frac{N}{k}$ for all i
- (3) repeat
- (4) for n=1 to N
- (5) for i=1 to k
- (6) $\mathbf{\phi}_{ni}^{t+1} = \mathbf{\beta}_{iw_n} \exp(\Psi(\mathbf{\gamma}_i^t))$
- (7) normalize ϕ_{ni}^{t+1} to sum to 1
- (8) $\boldsymbol{\gamma}_{i}^{t} = \boldsymbol{\alpha} + \sum_{n=1}^{N} \boldsymbol{\phi}_{ni}^{t+1}$
- (9) until convergence

Each iteration requires O((N+1)k) operations

For a single document the iteration number is on the order of the number of words in it

Thus, the total number of operations roughly on the order of N^2k

Parameter Estimation

• We can use a empirical Bayes method for parameter estimation. In particular, we wish to find parameters α and β that maximize the marginal log likelihood:

$$L(\boldsymbol{\alpha}, \boldsymbol{\beta}) = \sum_{d=1}^{M} \log p(\mathbf{w}_d \mid \boldsymbol{\alpha}, \boldsymbol{\beta})$$

- The quantity $p(\mathbf{w}|\mathbf{\alpha}, \mathbf{\beta})$ can be computed by the variational inference as described above.
- An alternating variational EM procedure that maximizes a lower bound w.r.t. the variational parameters γ and Φ , and then fixed values of the variational parameters, maximizes the lower bound w.r.t. the model parameter α and β .

Variational EM

- 1. (E-step) For each document, find the optimizing values of the variational parameters $\{\gamma_d^*, \phi_d^* : d \in D\}$. This is done as described in the previous section.
- 2. (M-step) Maximize the resulting lower bound on the log likelihood w.r.t. the model parameters α and β . This corresponds to finding maximum likelihood estimates with expected sufficient statistics for each document under the approximate posterior which is computed in the E-step. Actually, the update for the conditional multinomial parameter β can be written out analytically:

$$\boldsymbol{\beta}_{ij} \propto \sum_{d=1}^{M} \sum_{n=1}^{N_d} \boldsymbol{\phi}_{dni}^* w_{dn}^j \tag{13}$$

The update for α can be implemented using an efficient Newton-Raphson method. These two steps are repeated until converges.

Conditional Multinomials

• To maximize w.r.t. β , we isolate terms and add Lagrange multipliers:

$$L_{[\beta]} = \sum_{d=1}^{M} \sum_{n=1}^{N_d} \sum_{i=1}^{k} \sum_{j=1}^{V} \phi_{dni} w_{dn}^{j} \log \beta_{ij} + \sum_{i=1}^{k} \lambda_{i} (\sum_{j=1}^{V} \beta_{ij} - 1)$$

• Taking the derivative w.r.t. β_{ij} and set it to zero, we have

$$\boldsymbol{\beta}_{ij} = \sum_{d=1}^{M} \sum_{n=1}^{N_d} \boldsymbol{\phi}_{dni} w_{dn}^j$$

Dirichlet

First, we have

$$L_{[\boldsymbol{\alpha}]} = \sum_{d=1}^{M} \left(\log \Gamma(\sum_{j=1}^{k} \boldsymbol{\alpha}_{j}) - \sum_{i=1}^{k} \log \Gamma(\boldsymbol{\alpha}_{i}) + \sum_{i=1}^{k} (\boldsymbol{\alpha}_{i} - 1)(\Psi(\boldsymbol{\gamma}_{di}) - \Psi(\sum_{j=1}^{k} \boldsymbol{\gamma}_{dj})) \right)$$

• Taking derivative w.r.t. α_i , we obtain:

$$\frac{\partial L}{\partial \boldsymbol{\alpha}_{i}} = M(\Psi(\sum_{j=1}^{k} \boldsymbol{\alpha}_{j}) - \Psi(\boldsymbol{\alpha}_{i})) + \sum_{d=1}^{M} \left(\Psi(\boldsymbol{\gamma}_{di}) - \Psi(\sum_{j=1}^{k} \boldsymbol{\gamma}_{dj})\right)$$

• This derivative depends on α_i , and we therefore must use an iterative method to find the maximal α . In particular, the Hessian is in the form found in equation:

$$\frac{\partial^{2} L}{\partial \mathbf{\alpha}_{i} \partial \mathbf{\alpha}_{j}} = \delta(i, j) M \Psi'(\mathbf{\alpha}_{i}) - \Psi'(\sum_{j=1}^{k} \mathbf{\alpha}_{j})$$

Smoothing

- Simple Laplace smoothing is no longer justified as a maximum a posteriori method in LDA setting.
- We can then assume that each row in $\beta_{k\times V}$ is independently drawn from an exchangeable Dirichlet distribution. That is to treat β_i as random variables that are endowed with a posterior distribution, conditioned on the data.

Smoothing Model

Thus we obtain a variational approach to Bayesian inference:

$$q(\boldsymbol{\beta}_{1:k}, \boldsymbol{\theta}_{1:M}, \mathbf{z}_{1:M} \mid \boldsymbol{\eta}, \boldsymbol{\gamma}, \boldsymbol{\phi}) = \prod_{i=1}^{k} Dir(\boldsymbol{\beta}_{i} \mid \boldsymbol{\eta}_{i}) \prod_{n=1}^{N} q_{d}(\boldsymbol{\theta}_{d}, \mathbf{z}_{n} \mid \boldsymbol{\phi}_{n}, \boldsymbol{\gamma}_{d})$$

where $q_d(\theta_d, \mathbf{z}_n | \phi_n, \gamma_d)$ is the variational distribution defined for LDA as above and the update for the new variational parameter $\boldsymbol{\eta}$ is as follow:

$$\mathbf{\eta}_{ij} \propto \mathbf{\eta} + \sum_{d=1}^{M} \sum_{n=1}^{N_d} \mathbf{\phi}_{dni}^* w_{dn}^j$$

Applications

Document Modeling

- Perplexity is used to indicate the generalization performance of a method.
- Specifically, we estimate a document modeling and use this model to describe the new data set.

$$perplexity(D_{test}) = \exp\left(-\frac{\sum_{d=1}^{M} \log p(w_d)}{\sum_{d=1}^{M} N_d}\right)$$

 LDA outperforms the other models including pLSI, Smoothed Unigram, and Smoothed Mixt. Unigrams.

Document Classification

- We can use the LDA model results as the features for classifiers. In this way, say 50 topics, we can reduce the feature space by 99.6%.
- The experimental results show that such feature reduction may decrease the accuracy only a little.

Other Applications

Corr-LDA:

TREE, LIGHT, SUNSET, WATER, SKY

GM-Mixture:

CLOSE-UP, TREE, PEOPLE, MUSHROOMS, LICHEN

GM-LDA:

WATER, SKY, TREE, PEOPLE, GRASS

Corr-LDA:

TREE, WATER, GRASS, FLOWERS, BIRDS

GM-Mixture:

TREE, WATER, GRASS, SKY, FIELD

GM-LDA:

WATER, SKY, TREE, PEOPLE, GRASS

Corr-LDA:

- 1. PEOPLE, TREE
- 2. SKY, JET
- 3. SKY, CLOUDS
- 4. SKY, MOUNTAIN
- 5. PLANE, JET
- 6. PLANE, JET

GM-LDA:

- 1. HOTEL, WATER
- 2. PLANE, JET
- 3. TUNDRA, PENGUIN
- 4. PLANE, JET
- 5. WATER, SKY
- 6. BOATS, WATER

The Naïve Bayes model

in-house database contains 1776 images in seven classes¹: faces, buildings, trees, cars, phones, bikes and books. Fig. 2 shows some examples from this dataset.

Hierarchical Bayesian text models

Probabilistic Latent Semantic Analysis (pLSA)

Hierarchical Bayesian text models

Summary

- LDA is Based on the exchangeability assumption
 - Semantic Representation
 - Viewed as a dimensionality reduction technique
 - Exact inference is intractable, we can approximate it instead
 - Applications in other collection images and caption for example.

End of The Talk!

Conjugation

The Dirichlet distribution is conjugate to the multinomial distribution in the following sense: if

$$\beta \mid X = (\beta_1, \dots, \beta_K) \mid X \sim \text{Mult}(X),$$

where β_i is the number of occurrences of i in a sample of n points from the discrete distribution on $\{1, ..., K\}$ defined by X, then

$$X \mid \beta \sim \text{Dir}(\alpha + \beta)$$
.

This relationship is used in <u>Bayesian statistics</u> to estimate the hidden parameters, X, of a <u>categorical distribution</u> (discrete probability distribution) given a collection of n samples. Intuitively, if the <u>prior</u> is represented as $Dir(\alpha)$, then $Dir(\alpha+\beta)$ is the <u>posterior</u> following a sequence of observations with <u>histogram</u> β .

Entropy

If X is a Dir(α) random variable, then we can use the <u>exponential family differential identities</u> to get an analytic expression for the expectation of $\log X_i$:

$$E\left[\log X_{i}\right] = \psi(\alpha_{i}) - \psi(\alpha_{0}) \qquad \alpha_{0} = \sum_{i=1}^{K} \alpha_{i}$$

where ψ is the digamma function: The logarithmic derivative of the gamma function:

$$\Psi(x) = \frac{d}{dx} \log \Gamma(x) = \frac{\Gamma'(x)}{\Gamma(x)}.$$

This yields the following formula for the information entropy of X:

$$H(X) = \log \mathbf{B}(\alpha) + (\alpha_0 - K)\psi(\alpha_0) - \sum_{j=1}^{K} (\alpha_j - 1)\psi(\alpha_j)$$

$$B(\alpha) = \frac{\prod_{i=1}^{K} \Gamma(\alpha_i)}{\Gamma(\sum_{i=1}^{K} \alpha_i)}, \qquad \alpha = (\alpha_1, ..., \alpha_K).$$