WHAT IS CLAIMED IS:

1	1. An oligomeric para-phenylene compound naving the formula:							
2	R^1 -(Ar 1) _n - R^2							
3	wherein							
4	the subscript n is an integer of from 5 to 15;							
5	the superscript i is an integer of from 1 to n and denotes the position downstream from							
6	R^1 ;							
7	each Ar is a substituted or unsubstituted aryl group;							
8	R ¹ and R ² are each substituents that increase the solubility of the para-phenylene							
9	compound in nonpolar organic solvents relative to the solubility of the							
10	corresponding compound wherein R1 and R2 are hydrogen;							
11	with the proviso that the Ar ¹ groups are linked together in a 1,4-paraphenylene							
12	manner.							
1	2. A compound of claim 1, wherein n is an integer of from 5 to 9.							
1	3. A compound of claim 1, wherein said Ar ⁱ groups are independently							
2	selected from unsubstituted phenylene and phenylene having from 1 to 4 fluoro substituents.							
1	4. A compound of claim 1, wherein said Ar ¹ groups are independently							
2	selected from unsubstituted phenylene, phenylene having from 1 to 4 fluoro substituents; and							
3	substituted or unsubstituted fused polycyclic aryl with the proviso that any fused polycyclic							
4	aryl groups are linked in the compound in a manner that maintains a coplanar orientation							
5	relative to the adjacent Ar ¹ groups.							
1	5. A compound of claim 4, wherein said fused polycyclic aryl groups are							
2	selected from the group consisting of 2,6-naphthylene, 2,7-phenanthrylene, 2,6-anthrylene,							
3	and 2,6-carbazolylidene.							
1	6. A compound of claim 1, wherein the subscript n is 7 and Ar ³ and Ar ⁵							
2	are substituted or unsubstituted 2,6-naphthylene.							
1	7. A compound of claim 1, wherein the subscript n is 7 and Ar ⁴ bears two							
2	substituted or unsubstituted phenyl ring substituents other than the remaining Ar ¹ groups.							

1 8. A compound of claim 1, wherein R¹ and R² are each independently substituents having the formula:

$$R^3-(Ar^j)_{m}$$

4 wherein

the subscript m is an integer of from 1 to 5; each Ar^j is selected from the group consisting of

a) a 1,4-phenylene group having the formula:

8 9

18

19

20

21

22

5

6 7

wherein each R^4 is a member independently selected from the group consisting of H, substituted or unsubstituted (C_1 - C_{12})alkyl, substituted or unsubstituted (C_1 - C_{12})alkoxy, substituted or unsubstituted (C_1 - C_{12})alkylamino, substituted or unsubstituted di(C_1 - C_{12})alkylamino, substituted or unsubstituted arylamino, substituted or unsubstituted diarylamino and halogen, with the proviso that at least two of the four R^4 substituents are independently selected from substituted or unsubstituted (C_1 - C_{12})alkyl and substituted or unsubstituted (C_1 - C_{12})alkyl and substituted or unsubstituted (C_1 - C_{12})alkoxy, and

- b)
- b) an aryl biradical selected from the group consisting of 1,4-naphthylene, 1,4-anthrylene, 9,10-anthrylene, 5,6,7,8-tetrahydronaphth-1,4-ylene, 9,9',10,10'-tetra(C_1 - C_{12})alkyl-9,10-dihydroanthr-1,4-ylene, 9,9'10,10'-tetra(C_1 - C_{12})alkyl-9,10-dihydroanthr-2,6-ylene, 9,9'10,10'-tetraaryl-9,10-dihydroanthr-1,4-ylene; and

23 R³ is seld 24 C 25 u

 R^3 is selected from the group consisting of H, substituted or unsubstituted (C_1 - C_{12})alkyl, substituted or unsubstituted (C_1 - C_{12})alkoxy, substituted or unsubstituted (C_1 - C_{12})alkylamino, substituted or unsubstituted (C_1 - C_{12})alkylthio, substituted or unsubstituted di(C_1 - C_{12})alkylamino, substituted or unsubstituted diarylamino and halogen.

1

2627

9. A compound of claim 8, wherein m is an integer of from 1 to 3.

1

10. A polymer of the formula:

 R^{11} - $(Q^1)_p$ - R^{12} 2 3 wherein each R¹¹ and R¹² is independently selected from the group consisting of H, 4 substituted or unsubstituted (C₁-C₁₂)alkyl, substituted or unsubstituted (C₁-5 6 C₁₂)alkoxy, substituted or unsubstituted (C₁-C₁₂)alkylamino, substituted or 7 unsubstituted (C₁-C₁₂)alkylthio, substituted or unsubstituted di(C₁-8 C₁₂)alkylamino, substituted or unsubstituted arylamino, substituted or 9 unsubstituted diarylamino and halogen; 10 the subscript p is an integer of from 5 to 200; 11

the superscript i is an integer of from 1 to p and indicates the position downstream from R^1 of each Q;

each Qi is a benzoquinone or hydroquinone subunit selected from the formulae:

wherein

1213

Hospital and may may

L 19

20

21

1

2

1

2

3

- each X is independently selected from the group consisting of H, substituted or unsubstituted (C_1 - C_{12})alkyl, substituted or unsubstituted (C_1 - C_{12})alkoxy, substituted or unsubstituted (C_1 - C_{12})alkylamino, substituted or unsubstituted di(C_1 - C_{12})alkylamino, substituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted diarylamino and halogen.
- 11. A polymer of claim 10, wherein said hydroquinone and benzoquinone subunits are present in about a 50:50 ratio.
- 12. A polymer of claim 10, wherein said hydroquinone and benzoquinone subunits alternate in said polymer so that no two hydroquinone subunits are adjacent and no two benzoquinone subunits are adjacent.
- 1 13. A polymer of claim 10, wherein two adjacent hydroquinone subunits 2 alternate with one benzoquinone subunit.

1	14. A polymer of claim 10, wherein two adjacent benzoquinone subunits						
2	alternate with one hydroquinone subunit.						
1	15. A block copolymer having the formula:						
2	R^{21} - $(Q^{j})_{k}$ - R^{22}						
3	wherein						
4	each R ²¹ and R ²² is independently selected from the group consisting of H,						
5	substituted or unsubstituted (C1-C12)alkyl, substituted or unsubstituted (C1-						
6	C ₁₂)alkoxy, substituted or unsubstituted (C ₁ -C ₁₂)alkylamino, substituted or						
7	unsubstituted (C_1 - C_{12})alkylthio, substituted or unsubstituted di(C_1 -						
8	C_{12}) alkylamino, substituted or unsubstituted arylamino, substituted or						
9	unsubstituted diarylamino and halogen;						
10	the subscript k is an integer of from 2 to 20;						
11	the superscript j is an integer of from 1 to k and indicates the position downstream						
12	from R ²¹ of each Q;						
13	each Q1 is a para-phenylene block subunit or a solubility-enhancing subunit, said						
14	subunits selected from the formulae:						
15	$-(Ar^{I})_{n}$ and $-(Ar^{J})_{m}$						
16	wherein						
17	the subscript n is an integer of from 5 to 15;						
18	the subscript m is an integer of from 1 to 5:						
19	each Ar ⁱ is a substituted or unsubstituted aryl group linked in a manner that						
20	maintains a coplanar orientation relative to adjacent Ar groups;						
21	each Ar ^J is selected from the group consisting of						
22	a) a 1,4-phenylene group having the formula:						
	$R^{23} R^{23}$						
23	R^{23} R^{23}						
24	wherein each R ²³ is a member independently selected from the group consisting of						
25	H, substituted or unsubstituted (C_1 - C_{12})alkyl, substituted or unsubstituted (C_1 -						
26	C_{12})alkoxy, substituted or unsubstituted (C_1 - C_{12})alkylamino, substituted or						
27	unsubstituted (C_1 - C_{12})alkylthio, substituted or unsubstituted di(C_1 -						

 C_{12})alkylamino, substituted or unsubstituted arylamino, substituted or

401	
	,
44	
1.	
Ŧij.	
ant Lef	
E c.i.	
æ	
gene. General	
na jera de es	
ļ.	
£.	
Ç.	
g.b	

manner.

29 unsubstituted diarylamino and halogen, with the proviso that at least two of the four R²³ substituents are independently selected from substituted or 30 31 unsubstituted (C_1-C_{12}) alkyl and substituted or unsubstituted (C_1-C_{12}) alkoxy, 32 and 33 b) an aryl biradical selected from the group consisting of 1,4-naphthylene, 1,4-34 anthrylene, 9,10-anthrylene, 5,6,7,8-tetrahydronaphth-1,4-ylene, 35 9,9',10,10'-tetra(C₁-C₁₂)alkyl-9,10-dihydroanthr-1,4-ylene, 9,9'10,10'tetraaryl-9,10-dihydroanthr-1,4-ylene, 9,9'10,10'-tetra(C₁-C₁₂)alkyl-9,10-36 dihydroanthr-2,6-ylene, 9,9'10,10'-tetraaryl-9,10-dihydroanthr-1,4-ylene. 37 A block copolymer of claim 15, wherein Q¹, Q³ and Q⁵ are block para-16. 1 phenylene subunits and Q², Q⁴ and Q⁶ are solubility enhancing subunits. 2 A block copolymer of claim 15, wherein Q^1 , Q^3 , Q^5 and Q^7 are 1 **17**. solubility enhancing subunits and Q², Q⁴ and Q⁶ are block para-phenylene subunits. 2 **18**. A block copolymer of claim 15, wherein each Ar' is selected from the 1 2 group consisting of unsubstituted 1,4-phenylene and fluoro-substituted 1,4-phenylene. 1 19. A branched polymeric aromatic compound having the formula: $R-(Ar^{i})_{n}$ $R-(Ar^{i})_{n}-R$ $(Ar^{i})_{n}-R$ 2 3 wherein 4 each R is a member selected from the group consisting of substituted or unsubstituted (C_1-C_{12}) alkyl, substituted or unsubstituted (C_1-C_{12}) alkoxy, phenyl and 5 6 halogen; 7 the subscript n is an integer of from 3 to 8; 8 Ar is a substituted or unsubstituted aryl group and i is an integer denoting its position away from the central tetrasubstituted phenyl ring, and each Ari can be the 9 same or different from Ar¹ at any other position; 10 with the provisos that the Arⁱ groups are linked together in a 1,4-paraphenylene 11

- 20. A branched polymeric aromatic compound of claim 19, wherein the subscript n is 3; each Ar¹ and each Ar³ is 1,4-phenylene; and each Ar² is a substituted or unsubstituted 1,4-phenylene.
 - 21. A method of preparing a polymeric OLED material on a solid support, said method comprising:
 - (a) contacting a solid support-bound aryl diazonium salt with 3,6-dichloroquinone under conditions sufficient to form a solid support-bound aryl quinone derivative; and
 - (b) contacting said solid support-bound aryl quinone derivative with a diazonium compound having the formula:

$$CI^{-1}N_2 = \begin{bmatrix} X^1 & O \\ & X^1 \end{bmatrix} D = N_2^+ CI^-$$

wherein each X^1 is a blocking group and the subscript n is an integer of from 0 to 4; under conditions sufficient to form an intermediate poly OLED material;

- (c) repeating steps (a) and (b) from 2 to 70 times; and
- (d) terminating the polymeric OLED material by contacting the product of step (c) with a terminating diazonium compound having the formula:

$$\begin{array}{c|c}
X^2 & O \\
\hline
O & X^2 \\
\hline
M & M_2^+ C \\
\end{array}$$

wherein

1

2

3

4

5

6

7

14

16 17

18

19

2021

22

each X^2 is a blocking group,

R is a member selected from the group consisting of H, substituted or unsubstituted $(C_1\text{-}C_{12}) \text{alkyl}, \text{ substituted or unsubstituted } (C_1\text{-}C_{12}) \text{alkoxy}, \text{ substituted or unsubstituted } (C_1\text{-}C_{12}) \text{alkylamino}, \text{ substituted or unsubstituted } (C_1\text{-}C_{12}) \text{alkylamino}, \text{ substituted or unsubstituted } \text{di}(C_1\text{-}C_{12}) \text{alkylamino}, \text{ substituted or unsubstituted } \text{diarylamino}; \text{ and } \text{m} \text{ is an integer of from } 0 \text{ to } 3.$

H had I make had that with

2

2

- 1 22. A method in accordance with claim 21, wherein an intermediate poly
- 2 OLED material is produced having the formula:

4 wherein

3

7 8

9

- 5 L is a linking group;
- 6 the shaded sphere is a solid support; and
 - X1 is a member selected from the group consisting of halogen, substituted or unsubstituted alkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted alkylamino, substituted or unsubstituted alkylthio, and substituted or unsubstituted dialkylamino.
 - 23. A method in accordance with claim 21, wherein said solid support is selected from the group consisting of glass, tin oxide, indium oxide, and mixtures thereof.
 - 24. A solid support-bound poly OLED material formed by the method of claim 21.
 - 25. A polyfurano ladder oligomer having the formula:

$$R^{32}$$
 R^{33}
 R^{34}
 R^{36}
 R^{36}

- 3 wherein
- 4 the subscript z is an integer of from 2 to 7;
- each of R³¹, R³², R³³, R³⁴, R³⁵, R³⁶ is independently selected from the group consisting 5 6 of H, substituted or unsubstituted (C₁-C₁₂)alkyl, substituted or unsubstituted
- 7 (C_1-C_{12}) alkoxy and halogen.
- A polyfurano ladder oligomer of claim 25, wherein R³² and R³⁵ are 1 **26**.
- 2 each H.

1	27 .	A polyfurano ladde	r oligomer of cl	laim 25 ,	wherein z i	s an integer	of
2	from 2 to 4; and R ³² a	and R ³⁵ are each H.					

- 28. A method of forming a light emitting polymer, said method comprising exposing an oligomeric para-phenylene compound of claim 1 having attached acrylate ester groups to sufficient ultraviolet light to form a light emitting polymer comprising a plurality of said oligomeric para-phenylene compound covalently attached to each other via ester and ether linkages.
- 29. A method of forming a light emitting polymer, said method comprising exposing a polyfurano ladder oligomer of claim 25 having attached acrylate ester groups to sufficient ultraviolet light to form a light emitting polymer comprising a plurality of said polyfurano ladder oligomers covalently attached to each other via ester and ether linkages