Sétima lista de exercícios Funções trigonométricas de qualquer ângulo. Gráficos.

- 1. Indique o quadrante associado aos ângulos de 150° , 210° e 330° e forneça o sinal do seno de cada um deles.
- 2. Indique o quadrante associado aos ângulos de 120°, 240° e 300° e forneça o sinal do cosseno de cada um deles.
- 3. Sabendo que $sen(30^\circ) = 1/2$, calcule $sen(150^{\circ}), sen(210^{\circ}) e sen(330^{\circ}).$
- 4. Sabendo que $cos(60^{\circ}) = 1/2$, calcule $cos(240^{\circ})$ e $cos(300^{\circ})$.
- **5. Sabendo que** $sen(45^{\circ}) = cos(45^{\circ}) = \sqrt{2}/2$, calcule $tan(45^\circ)$, $tan(135^\circ)$ e $tan(225^\circ)$.
- **6. Sabendo que** $sen(30^{\circ}) = 1/2$ e $cos(30^{\circ}) =$ $\sqrt{3}/2$, determine $sec(150^\circ)$, $csc(150^\circ)$ e $cot(150^{\circ})$.
- 7. Sabendo que $cos(\theta) = -5/13$, determine, sem usar calculadora, os possíveis valores da cossecante de θ e os quadrantes aos quais θ pode pertencer.
- 8. Sem usar calculadora, mas apenas uma tabela com $sen(\theta)$, $cos(\theta)$ e $tan(\theta)$ para $\theta \in$ $\{30^{\circ}, 45^{\circ}, 60^{\circ}\}$, determine
 - (a) $sen(2\pi/3)$.
- (k) $sec(-\pi)$.
- (b) $tan(120^{\circ})$.
- (1) $sen(11\pi)$.
- (c) $cos(7\pi/6)$.
- (m) $cos(11\pi)$.
- (d) $sen(225^{\circ})$.
- (e) $cos(3\pi/4)$.
- (n) $sen(1350^{\circ})$.
- (f) $sec(-\pi/6)$.
- (o) $cot(1350^{\circ})$.
- (p) $sec(-120^{\circ})$
- (g) $csc(\pi/3)$.
- (q) $csc(\pi/6)$
- (h) $tan(-45^{\circ})$.
- (i) $cot(-\pi/3)$.
- (r) $tan(300^\circ)$
- (j) $csc(-90^{\circ})$.
- (s) $cot(135^\circ)$
- **9.** Dado o ponto $P(\theta) = (\sqrt{2/3}, \sqrt{3}/3)$ sobre a circunferência unitária, determine $sen(\theta)$, $cos(\theta)$, $tan(\theta)$, $cot(\theta)$, $sec(\theta)$ e $csc(\theta)$.

- **10.** Dado o ponto $P(\theta) = (-\sqrt{5}/5, 2\sqrt{5}/5)$ sobre a circunferência unitária, determine $sen(\theta)$, $cos(\theta)$, $tan(\theta)$, $cot(\theta)$, $sec(\theta)$ e $csc(\theta)$.
- 11. Sabendo que $cos(\theta) = 3/5$, determine os possíveis valores de $sen(\theta)$ e os quadrantes aos quais θ pode pertencer.
- 12. Sabendo que $sen(\theta) = -3/4$, determine os possíveis valores de $cos(\theta)$ e os quadrantes aos quais θ pode pertencer.
- 13. Sabendo que $cos(\theta) = 1/3$, determine os possíveis valores de $tan(\theta)$ e os quadrantes aos quais θ pode pertencer.
- 14. Sabendo que $tan(\theta) = -1/5$ e que $sen(\theta) <$ 0, determine os valores de $sen(\theta)$ e $cos(\theta)$.
- 15. Sabendo que $sec(\theta) = 5/3$ e que $sen(\theta) > 0$, determine o valor de $cot(\theta)$.
- 16. Relacione os gráficos abaixo às funções fornecidas.

(c)

(d)

(e)

(f)

- (a) f(x) = 3sec(x);
- (b) f(x) = -csc(x);
- (c) f(x) = tan(x/2);
- (d) f(x) = cot(2x);
- (e) f(x) = 2 + 2sec(x);
- (f) f(x) = tan(x).
- 17. Indique o período das funções abaixo.
 - (a) f(x) = sen(x/3);
 - (b) f(x) = cos(2x/7);
 - (c) f(x) = tan(x/2);
 - (d) f(x) = cot(2x);
 - (e) f(x) = sec(3x);
 - (f) $f(x) = csc(x + \pi/2)$.

- 18. Indique se cada uma das funções abaixo é par ou ímpar.
 - (a) f(x) = tan(x)
- (c) f(x) = sec(x)
- (b) f(x) = cot(x)
- (d) f(x) = csc(x)
- 19. Esboce o gráfico das funções (basta mostrar um período completo).
 - (a) f(x) = sen(x)/3;
 - **(b)** f(x) = -4cos(x);
 - (c) $f(x) = cos(2\pi x)$;
 - (d) f(x) = sen(x/4);
 - (e) $f(x) = cos(x + \pi/2)$;
 - (f) f(x) = 2sen(2x).
- 20. Determine a amplitude e o período da função 3sen(2x/5).
- 21. Esboce o gráfico das funções f(x) = cos(x) e $g(x) = 3sen(x + \pi/2)$ para $-2\pi \le x \le 2\pi$.
- 22. Esboce o gráfico das funções f(x) = cos(x) e $g(x) = \frac{3}{2}cos\left(\frac{x}{2}\right)$ para $-2\pi \le x \le 2\pi$. Indique o período e a amplitude da função g.
- 23. Esboce o gráfico das funções f(x)=sen(x) e $g(x)=\frac{cos(2x)}{2}$ para $0\leq x\leq 2\pi.$
- 24. Esboce o gráfico das funções f(x) = cos(x) e $g(x) = \frac{1}{2}sen(2x+\pi)$ para $0 \le x \le 2\pi$. Indique o período e a amplitude da função g.
- **25.** Esboce, em um mesmo plano coordenado, os gráficos das funções f(x) = sen(x) e g(x) = 2cos(x/2) 1, supondo que $-\pi \le x \le \pi$.
- 26. Esboce o gráfico das funções f(x) = sen(x) e $g(x) = 2cos(x/2 \pi/2)$ para $-2\pi \le x \le 2\pi$. Indique o período da função g.
- 27. Esboce o gráfico das funções $f(x) = sen(2x + \pi)$ e $g(x) = \frac{1}{2}[cos(x) 1]$ para $0 \le x \le 2\pi$. Indique o período da função f.
- 28. Esboce em um mesmo plano coordenado os gráficos de $f(x) = sen(x + \frac{\pi}{2})$ e $g(x) = 2sen(\frac{x}{2})$, supondo que $0 \le x \le 2\pi$. Indique o período de g.

- 29. Esboce o gráfico das funções f(x) = 2sen(x) e $g(x) = cos(2x + \pi) + 1$ para $0 \le x \le 2\pi$. Indique o período da função g.
- 30. A altura da cabine de uma roda gigante é descrita em função do tempo (em min) por

$$h(t) = 76 + 75sen(\frac{\pi}{15}t - \frac{\pi}{2}).$$

- (a) Determine a altura máxima e a altura mínima da cabine;
- (b) Determine quanto tempo a roda demora para dar uma volta completa (ou seja, qual é o período de h(t));
- (c) Usando um programa como o Wolfram Alpha (www.wolframalpha.com), trace o gráfico de h(t).
- 31. A pressão sanguínea de uma determinada pessoa pode ser aproximada pela função $P(t) = 100 + 20\cos(110\pi t)$, em que t é o instante de tempo e P é dada em milímetros de mercúrio.
 - (a) Determine a pressão máxima (sistólica) e a pressão mínima (diastólica) dessa pessoa.
 - (b) Determine o período da função P(t);
 - (c) Determine o número de batimentos cardíacos por minuto dessa pessoa.
- 32. (Stewart) Depois de saltar de uma ponte, uma praticante de bungee jump oscila para cima e para baixo de modo que, t segundos após o salto, sua altura, medida em metros acima do rio, é dada pela função $h(t) = 100 + 75e^{-t/20}cos(\frac{\pi}{4}t)$.

- (a) Encontre a altura da louca jovem nos instantes t = 0, 2, 6, 8, 20.
- (b) Usando um programa de computador, trace o gráfico de h(t) para t entre 0 e 60 segundos.
- 33. (Stewart) Um cano é transportado por um corredor com 3m de largura. Ao final do corredor, há uma curva que leva a outro corredor, com 2m de largura, como mostra a figura.

(a) Mostre que, para cada valor de θ entre 0 e $\pi/2$, o comprimento do maior cano que faz um ângulo θ com a parede do primeiro corredor é dado por

$$L(\theta) = 3csc(\theta) + 2sec(\theta).$$

- (b) Trace o gráfico da função L para $0 < \theta < \pi/2$.
- (c) A partir do gráfico, determine o valor mínimo de L, que corresponde ao maior cano que é capaz de fazer a curva.

Respostas

1.
$$2^{o}$$
 (+), 3^{o} (-) e 4^{o} (-)

2.
$$2^{o}$$
 (-), 3^{o} (-) e 4^{o} (+)

3.
$$1/2$$
, $-1/2$, $-1/2$.

$$4. -1/2, 1/2.$$

$$5. 1, -1, 1.$$

6.
$$-\frac{2\sqrt{3}}{3}$$
, 2, $-\sqrt{3}$.

7.
$$\frac{13}{12}$$
 e $-\frac{13}{12}$. 2^{o} e 3^{o} quadrantes.

8. a.
$$\sqrt{3}/2$$
; b. $-\sqrt{3}$; c. $-\sqrt{3}/2$;
d. $-\sqrt{2}/2$; e. $-\sqrt{2}/2$; f. $2\sqrt{3}/3$;
g. $2\sqrt{3}/3$; h. -1 ; i. $-\sqrt{3}/3$;
j. -1 ; k. -1 ; l. 0; m. -1 ;

$$n. -1;$$
 $n. -1;$ $n. -1;$ $n. -1;$ $n. -2;$ $n. -2;$ $n. -2;$ $n. -2;$

n.
$$-1$$
; o. 0; p. -2 ; q. 2

r.
$$-\sqrt{3}$$
; s. -1 .

9.
$$sen(\theta) = \sqrt{3}/3;$$
 $cos(\theta) = \sqrt{2}/3;$
 $tan(\theta) = \sqrt{2}/2;$ $cot(\theta) = \sqrt{2};$
 $sec(\theta) = \sqrt{3}/2;$ $csc(\theta) = \sqrt{3}.$

10.
$$sen(\theta) = 2\sqrt{5}/5; \quad cos(\theta) = -\sqrt{5}/5;$$

 $tan(\theta) = -2; \quad cot(\theta) = -1/2;$
 $sec(\theta) = -\sqrt{5}; \quad csc(\theta) = \sqrt{5}/2.$

- 11. $sen(\theta) = \pm 4/5$. θ pode estar no 1° ou no 4° quadrante.
- 12. $cos(\theta) = \pm \sqrt{7}/4$. θ pode estar no 3° ou no 4° quadrante.
- 13. $tan(\theta) = \pm 2\sqrt{2}$. θ pode estar no 1° ou no 4° quadrante.

14.
$$sen(\theta) = -\sqrt{26}/26$$
, $cos(\theta) = 5\sqrt{26}/26$.

15.
$$cot(\theta) = 3/4$$
.

17. (a)
$$6\pi$$
;

(d)
$$\pi/2$$
;

(b)
$$7\pi$$
;

(e)
$$2\pi/3$$
;

(c)
$$2\pi$$
;

(f)
$$2\pi$$
.

(d) ímpar

19. ...

20. Amplitude: 3. Período: 5π .

21.

22. Período: 4π ; Amplitude: 3/2.

23.

24. Período: π ; Amplitude: 1/2.

25.

26. Período: 4π .

27. Período: π .

28. Período: 4π .

29. Período: π .

 $30.\,$ a. máximo: 151m; mínimo: 1m;

b. 30 minutos;

c.

31. a. mínima: 80 mm Hg; máxima: 120 mm Hg.

b. 1/55 minutos

c. 55 batimentos por minuto.

32. a. 175 m; 100 m; 100 m; 150,27 m; 72,41 m.

33. a. ...

c. Cerca de 7 m.