1 Navigate to the data folder

```
cd /opt/data/datasets
ls
ls -lh
```

2 FASTQC

2.1 demo_miseq_lpa5104:

- 1. cd demo miseq lpa5104
- 2. mkdir fastqc report
- 3. /opt/tools/FastQC/fastqc *.fastq -outdir=./fastqc_report/
- 4. ls fastqc-report (use autocomplete)
- 5. Download the html file locally and look into both reads of 5296 and of 5118
- 6. merge all R1 and R2 reads separately:

```
cat 5*R1*.fastq > merged_R1.fastq
cat 5*R2*.fastq > merged_R2.fastq
```

7. /opt/tools/FastQC/fastqc merged R1.fastq --

outdir=./fastqc_report/
8. /opt/tools/FastQC/fastqc merged_R2.fastq -outdir=./fastqc report/

- 9. download the reports locally and look at it in firefox
- 10. run multigc in top folder of the project (no need to enter in fastqc_report):

```
multiqc.
```

11. download the multiqc report html file and look at it in firefox

2.2 demo_qc

- ⇒ cd /opt/data/datasets/demo qc (use Tab autocomplete)
- ⇒ mkdir fastqc report
- ⇒ merge R1 and R2 reads separately directly from .gz file:

```
zcat *R1*.fastq > demo_qc_merged_R1.fastq
zcat_*R2*.fastq > demo_qc_merged_R2.fastq
```

2.3 demo_np_incseq

1. cd /opt/data/datasets/demo np incseq

- 2. ls ./fastq
- 3. too many files
- 4. show first 10 files to learn the file name structure

```
ls ./fastq -lh | head
```

5. Several thousand file cannot be concatenated with cat; use:

```
cd /opt/data/datasets/demo np incseq small/
```

6. finds all files and concatenates them

```
find ./fastq -maxdepth 1 -type f -exec cat {} + > incseq.fastq
```

finds only files with the name structure $\ensuremath{\mathsf{SP}^{\star}}$.fastq and concatenates them

```
find ./fastq -maxdepth 1 -name SP*.fastq -exec cat {} + >
fastq/incseq.fastq
```

- 7. mkdir fastqc report
- 8. /opt/tools/FastQC/fastqc fastq/incseq.fastq -outdir=./fastqc report

2.4 demo_np_lpa5104

```
    cd /opt/data/datasets/demo_np_lpa5104

    mkdir fastqc_report

    /opt/tools/FastQC/fastqc *.fastq --
    outdir=./fastqc_report/
```

3 Annotation

- 1) cd /opt/data/vcf
- 2) ls -lh
- 3) Use the file /opt/data/vcf/chr6_lpa_enhancer_plg.vcf
- 4) count number of lines with wc-l

```
chr6_lpa_enhancer_plg.vcf | wc -l
```

5) look at the file

```
head chr6_lpa_enhancer_plg.vcf -n 40
```

6) count the number of variant-Lines with grep | wc

```
grep "PASS" chr6_lpa_enhancer_plg.vcf | wc -l
```

7) run vep on chr6_lpa_enhancer_plg.vcf with

```
/opt/tools/ensembl-vep/vep --everything --database -i
/opt/data/vcf/chr6_lpa_enhancer_plg.vcf -o ~/vep_report.txt
```

8) Look into file and show that here is no annotation to LPA, do

```
grep "SYMBOL=LPA" | wc -l
```

- 9) => this is a 1000G file; is on hg19
- 10) Switch to hg19 annotation by

```
/opt/tools/ensembl-vep/vep --everything --database --assembly GRCh37 --port 3337 -i /opt/data/vcf/chr6_lpa_enhancer_plg.vcf -o ~/test_vep.txt/opt/tools/ensembl-vep/vep --everything --database -i /opt/data/vcf/chr6_lpa_enhancer_plg.vcf -o ~/vep_report_hg19.txt
```

11) Count the number of lines.

```
wc -l vep_report_hg19.txt
Take note
```

- 12) What is the number of SNPs? The number of SNPs in the vcf (from the grep | wc –l command on "PASS" done previously) returned a lower number of SNPs than the number of hits. Additionally mind that the VCF file is supposed to contain a much larger region of the genome. What is happening?
- 13) Look into the file

```
head vep_report_hg19.txt -n 20
```

=> not enough lines displayed, we are still in the header. Show hundred lines:

```
head vep report hg19.txt -n 100
```

- 14) Check the reported transcript IDs => multiple transcripts!
- 15) Filter only form the canonical LPA transcript ENST00000316300 by doing a grep for "ENST00000316300":

```
grep "ENST00000316300" vep_report_hg19.txt >
vep_report_hg19_filtered.txt
```

16) count lines again:

```
wc-I vep report hg19 filtered.txt
```

Number of lines is now much lower. We have filtered only for the relevant transcript.

17) head vep report hg19 filtered.txt

The column names are missing. How to extract them? Do a grep on a word, which is specific for the column name row, write this into a file and then concatenate the files

⇒ Search for a word, which denotes the column header line

```
head test_vep_hg19.txt -n 100
```

 \Rightarrow The Word "Location" is typical for the header. Extract the respective line

```
grep "Location" test_vep_hg19.txt > header.txt
```

 \Rightarrow look into the file:

```
cat header.txt
```

⇒ Concatenate the two files and write a new file with header

```
cat header.txt vep_report_hg19_filtered.txt >
vep_report_hg19_filtered_header.txt
```

18) Do a grep for a list of items

We build quickly a list by writing two SNP names into a file (">>" means append to an existing file)

```
echo "rs10455872" > snplist.txt
echo "rs3798220" >> snplist.txt
```

Now we grep for the contents of the file (option -f)

```
grep -w -f snplist.txt vep_report_hg19_filtered.txt >
listgrep.txt
```

- -w search only for whole words
- -f use the given file as input

4 Nanopore data

4.1 demo_np_lpa5104

1. PORETOOLS STATS & HIST on fast5 files

```
poretools stats fast5/
poretools hist fast5/
```

the hist command cannot be executed on the remote terminal

```
poretools hist --min-length 1000 fast5/
```

use the min-length parameter to specify a lower bound of the read lengths to be displayed in the histogram (to get rid of all very short fragments)

2. PAUVRE on fastq

```
pauvre marginplot -n --fastq <fastq_file>
```

write pauvre report in a file

```
pauvre marginplot -n --fastq <fastq file> > pauvre report.txt
```

look at report with (several options)

```
cat pauvre_report.txt
less pauvre_report.txt (hit "q" to exit)
vi pauvre_report.txt (write ":q" to exit)
```

4.2 demo_np_incseq_small

Several thousand file cannot be concatenated with cat; use:

```
cd /opt/data/datasets/demo np incseq small/
```

```
finds all files and concatenates them
```

```
find ./fastq -maxdepth 1 -type f -exec cat {} + > incseq.fastq
```

finds only files with the name structure SP*.fastq and concatenates them

```
find ./fastq -maxdepth 1 -name SP*.fastq -exec cat {} + >
fastq/incseq.fastq
```

```
poretools stats fast5/
poretools hist fast5/
pauvre marginplot -n --fastq <fastq_file>
```

4.3 Examples of commands for the last day

This commands are not copy/paste ready but need to be adapted according to your data. Use manual and help page

Basecalling

```
read fast5 basecaller.py -h
```

go to run folder, which contains subfolder with raw FAST5 data

```
cd /opt/data/datasets/demo_np_incseq_small/
mkdir fast5_alba
```

1. Do basecalling of called FAST5 with ALBACORE

```
read_fast5_basecaller.py \
-f FLO-MIN106 \
-k SQK-RBK001 \
--barcoding -r -t 8 \
-i /media/qf0297/Volume/data_np/meth_validation2/fast5_all/ \
-s /media/qf0297/Volume/data_np/meth_validation2/fast5_alba/ \
-n 0 -o fastq,fast5 -q 320000
```

-q: use a number which is greater than the number of FAST5 files

2. Centrifuge (metagenomics analysis)

XXXX

3. Methylation analysis (in-vitro methylated PCR product)

The steps are

- create FASTA files with poretools (MUST be poretools)
- check the number of reads in the fasta. Does it match the number of fast5 reads?
- IMPORTANT: once fasta has bee ncreated do not change the relative position of the files with respect to the fast5 files!
- Align to reference with bwa
- create a sorted BAM with samtools
- do methylation calling with nanopolish
- use the nanopolish script calculate_methylation_frequency.py to generate a tabular methylation level summary per position

```
poretools fasta fast5/ > fasta/reads.fasta
grep ">" reads.fasta | wc -l

bwa index meth_ref.fasta
bwa mem -x ont2d meth_ref.fasta fasta/reads.fasta > meth_01.sam
samtools view -bS meth_01.sam > meth_01.bam
samtools sort meth_01.bam sorted_meth_01
samtools index sorted_meth_01.bam

/opt/tools/nanopolish/nanopolish call-methylation --progress -t 8 -r
reads.fasta -g meth_ref.fasta -b sorted_meth_01.bam >
methylation_01.tsv

python
/opt/tools/nanopolish/nanopolish/scripts/calculate_methylation_frequency.py -c 2.5 -i methylation_01.tsv > methylation_01_freq.tsv
```

Use the values from the .tsv file to generate e.g. boxplots of the methylation level using R or online tools like http://shiny.chemgrid.org/boxplotr/