MIT 6.875

Foundations of Cryptography Lecture 16

Interaction is Necessary for ZK

Theorem: If a language L has a non-interactive (one-message) ZK proof system, then L can be decided in probabilistic polynomial time.

Two Roads to Non-Interactive ZK (NIZK)

1. Random Oracle Model & Fiat-Shamir Transform.

2. Common Random String Model.

The Common Random String Model

The Common Random String Model

- **1. Completeness:** For every $G \in 3COL$, V accepts P's proof.
- **2. Soundness:** For every $G \notin 3$ COL and any "proof" π^* , $V(CRS, \pi^*)$ accepts with probability $\leq \text{neg}(n)$

3. Zero Knowledge: There is a PPT simulator S such that for every $G \in 3COL$, S *simulates the view* of the verifier V.

3. Zero Knowledge: There is a PPT simulator S such that for every $G \in 3COL$, S *simulates the view* of the verifier V.

$$S(G) \approx (CRS \leftarrow D, \pi \leftarrow P(G, colors))$$

3. Zero Knowledge: There is a PPT simulator S such that for every $x \in L$ and witness w, S **simulates the view** of the verifier V.

$$S(x) \approx (CRS \leftarrow D, \pi \leftarrow P(x, w))$$

- 1. Blum-Feldman-Micali'88 (quadratic residuosity)
- 2. Feige-Lapidot-Shamir'90 (factoring)
- 3. Groth-Ostrovsky-Sahai'06 (bilinear maps)
- 4. Canetti-Chen-Holmgren-Lombardi-Rothblum²-Wichs'19 and Peikert-Shiehian'19 (learning with errors)

- 1. Blum-Feldman-Micali'88 (quadratic residuosity)
- 2. Feige-Lapidot-Shamir'90 (factoring)
- 3. Groth-Ostrovsky-Sahai'06 (bilinear maps)
- 4. Canetti-Chen-Holmgren-Lombardi-Rothblum²-Wichs'19 and Peikert-Shiehian'19 (learning with errors)

Step 1. **Review** our number theory hammers & polish them.

Step 2. **Construct** NIZK for a special NP language, namely quadratic *non*-residuosity.

Step 3. **Bootstrap** to NIZK for 3SAT, an NP-complete language.

Step 1. **Review** our number theory hammers & polish them.

Step 2. **Construct** NIZK for a special NP language, namely quadratic *non*-residuosity.

Step 3. **Bootstrap** to NIZK for 3SAT, an NP-complete language.

Let N = pq be a product of two large primes.

$$Z_{N}^{*}$$

$$Jac_{-1}$$

$$\{x: \begin{pmatrix} x \\ N \end{pmatrix} = -1\} \quad \{x: \begin{pmatrix} x \\ N \end{pmatrix} = +1\}$$

Fact: For any odd N, Jac divides Z_N^* evenly unless N is a perfect square. (If N is a perfect square, all of Z_N^* has Jacobi symbol +1.)

$$Z_{N}^{*}$$

$$Jac_{-1}$$

$$\{x: \begin{pmatrix} x \\ N \end{pmatrix} = -1\} \quad \{x: \begin{pmatrix} x \\ N \end{pmatrix} = +1\}$$

Surprising fact: For any N, Jacobi symbol $\binom{x}{N}$ is computable in poly time without knowing the prime factorization of N.

$$Z_{N}^{*}$$

$$Jac_{-1}$$

$$\{x: \begin{pmatrix} x \\ N \end{pmatrix} = -1\} \quad \{x: \begin{pmatrix} x \\ N \end{pmatrix} = +1\}$$

Let N = pq be a product of two large primes.

So:
$$QR_N = \{x: {x \choose p} = {x \choose q} = +1\}$$

$$QR_N$$

$$QNR_N = \{x: {x \choose p} = {x \choose q} = -1\}$$

$$QNR_N$$

 QR_N is the set of squares mod N and QNR_N is the set of non-squares mod N with Jacobi symbol +1.

Call an odd integer N good if exactly half the elements of \mathbb{Z}_N^* have Jacobi symbol +1, and exactly half of them are squares.

 QR_N is the set of squares mod N and QNR_N is the set of non-squares mod N with Jacobi symbol +1.

Fact: N is good iff

 $N = p^i q^j$ is odd, and $i, j \ge 1$, not both even.

IMPORTANT PROPERTY: If y_1 and y_2 are both in QNR, then their product y_1y_2 is in QR.

The fraction of residues smaller if N has three or more prime factors!

The fraction of residues smaller if N has three or more prime factors!

IMPORTANT PROPERTY: If y_1 and y_2 are both in QNR, then their product y_1y_2 is in QR.

Let N = pq be a product of two large primes.

Quadratic Residuosity Assumption (QRA)

No PPT algorithm can distinguish between a random element of QR_N from a random element of QNR_N given only N.

Step 1. **Review** our number theory hammers & polish them.

Step 2. **Construct** NIZK for a special NP language, namely quadratic *non*-residuosity.

Step 3. **Bootstrap** to NIZK for 3SAT, an NP-complete language.

Define the NP language GOOD with instances (N, y) where

- N is good; and
- $y \in QNR_N$ (that is, y has Jacobi symbol +1 but is not a square mod N)

Define the NP language GOOD with instances (N, y) where

- N is good; and
- $y \in QNR_N$ (that is, y has Jacobi symbol +1 but is not a square mod N)

$$CRS = (r_1, r_2, ..., r_m) \leftarrow (Jac_N^{+1})^m$$

(N,y) (N,y)

P ----- V

$$CRS = (r_1, r_2, ..., r_m) \leftarrow (Jac_N^{+1})^m$$

(N, y)

(N, y)

P

Check:

- N is odd
- N is not a prime power,
- N is not a perfect square;

$$CRS = (r_1, r_2, ..., r_m) \leftarrow (Jac_N^{+1})^m$$

(N, y)

(N, y)

P

Fact: If all these pass, then at most half of Jac_N^{+1} are squares.

Check:

- N is odd
- N is not a prime power,
- *N* is not a perfect square;

$$CRS = (r_1, r_2, ..., r_m) \leftarrow (Jac_N^{+1})^m$$

(N,y) (N,y)

 $\mathbf{P}_{\widehat{\mathbf{A}}}$

$$CRS = (r_1, r_2, ..., r_m) \leftarrow (Jac_N^{+1})^m$$

(N, y)

(N, y)

 \mathbf{P}

If N is good and $y \in QNR_N$: either r_i is in QR_N or yr_i is in QR_N

$$CRS = (r_1, r_2, ..., r_m) \leftarrow (Jac_N^{+1})^m$$

(N, y)

(N, y)

P

If N is good and $y \in QNR_N$:

either r_i is in QR_N or yr_i is in QR_N so I can compute $\sqrt{r_i}$ or $\sqrt{yr_i}$.

$$CRS = (r_1, r_2, ..., r_m) \leftarrow (Jac_N^{+1})^m$$

(N, y)

(N, y)

If N is good and $y \in QNR_N$:

either r_i is in QR_N or yr_i is in QR_N so I can compute $\sqrt{r_i}$ or $\sqrt{yr_i}$.

If not ... I'll be stuck!

$$CRS = (r_1, r_2, ..., r_m) \leftarrow (Jac_N^{+1})^m$$

$$(N, y)$$
 $\forall i : \sqrt{r_i} \text{ OR } \sqrt{yr_i}$
 \bigvee

$$CRS = (r_1, r_2, ..., r_m) \leftarrow (Jac_N^{+1})^m$$

(N, y)

 ${f P}$

 $\forall i \colon \sqrt{r_i} \text{ OR } \sqrt{yr_i}$

17

Check:

- N is odd
- N is not a prime power,
- N is not a perfect square; and
 - I received either a mod-N square root of r_i or yr_i

Soundness (what if N has more than 2 prime factors)

No matter what y is, for half the r_i , both r_i and yr_i are **not** quadratic residues.

Soundness (what if N has more than 2 prime factors)

No matter what y is, **for half the** r_i , both r_i and yr_i are **not** quadratic residues.

Soundness (what if y is a residue)

Then, if r_i happens to be a non-residue, both r_i and yr_i are **not** quadratic residues.

$$CRS = (r_1, r_2, ..., r_m) \leftarrow (Jac_N^{+1})^m$$

$$P \xrightarrow{\forall i : \pi_i = \sqrt{r_i} \text{ OR } \sqrt{yr_i}} V$$

(Perfect) Zero Knowledge Simulator S:

First pick the proof π_i to be random in Z_N^* .

Then, reverse-engineer the CRS, letting $r_i = \pi_i^2$ or $r_i = \pi_i^2/y$ randomly.

$$CRS = (r_1, r_2, ..., r_m) \leftarrow (Jac_N^{+1})^m$$

$$P \xrightarrow{\forall i : \pi_i = \sqrt{r_i} \text{ OR } \sqrt{yr_i}} V$$

(Perfect) Zero Knowledge Simulator S:

First pick the proof π_i to be random in Z_N^* .

Then, reverse-engineer the CRS, letting $r_i = \pi_i^2$ or $r_i = \pi_i^2/y$ randomly.

$$CRS = (r_1, r_2, ..., r_m) \leftarrow (Jac_N^{+1})^m$$

$$(N,y) (N,y)$$

CRS depends on the instance N. Not good.

$$CRS = (r_1, r_2, ..., r_m) \leftarrow (Jac_N^{+1})^m$$

$$(N, y)$$
 (N, y)

CRS depends on the instance N. Not good.

Soln: Let CRS be random numbers.

Interpret them as elements of Z_N^* and both the prover and verifier filter out Jac_N^{-1} .

NEXT LECTURE

Step 1. **Review** our number theory hammers & polish them.

Step 2. **Construct** NIZK for a special NP language, namely quadratic *non*-residuosity.

Step 3. **Bootstrap** to NIZK for 3SAT, an NP-complete language.

Boolean Variables: \underline{x}_i can be either true (1) or false (0)

A <u>Literal</u> is either x_i or \bar{x}_i .

Boolean Variables: \underline{x}_i can be either true (1) or false (0)

A <u>Literal</u> is either x_i or \bar{x}_i .

A <u>Clause</u> is a *disjunction* of literals.

E.g.
$$x_1 \vee x_2 \vee \bar{x_5}$$

Boolean Variables: \underline{x}_i can be either true (1) or false (0)

A <u>Literal</u> is either x_i or \bar{x}_i .

A <u>Clause</u> is a *disjunction* of literals.

E.g.
$$x_1 \vee x_2 \vee \bar{x_5}$$

A <u>Clause</u> is true if any one of the literals is true.

Boolean Variables: \underline{x}_i can be either true (1) or false (0)

A <u>Literal</u> is either x_i or \bar{x}_i .

A <u>Clause</u> is a *disjunction* of literals.

E.g. $x_1 \vee x_2 \vee \bar{x_5}$ is true as long as:

$$(x_1, x_2, x_5) \neq (0,0,1)$$

Boolean Variables: \underline{x}_i can be either true (1) or false (0)

A <u>Literal</u> is either x_i or \bar{x}_i .

A <u>3-Clause</u> is a *disjunction* of 3-literals.

Boolean Variables: \underline{x}_i can be either true (1) or false (0)

A <u>Literal</u> is either x_i or \bar{x}_i .

A <u>3-Clause</u> is a *disjunction* of 3-literals.

A <u>3-SAT formula</u> is a *conjunction* of many 3-clauses.

E.g.
$$\Psi = (x_1 \lor x_2 \lor \bar{x_5}) \land (x_1 \lor x_3 \lor x_4) (\bar{x_2} \lor x_3 \lor \bar{x_5})$$

Boolean Variables: \underline{x}_i can be either true (1) or false (0)

A <u>Literal</u> is either x_i or \bar{x}_i .

A <u>3-Clause</u> is a *disjunction* of 3-literals.

A <u>3-SAT formula</u> is a *conjunction* of many 3-clauses.

E.g.
$$\Psi = (x_1 \lor x_2 \lor \bar{x_5}) \land (x_1 \lor x_3 \lor x_4) (\bar{x_2} \lor x_3 \lor \bar{x_5})$$

A <u>3-SAT formula</u> Ψ is **satisfiable** if there is an assignment of values to the variables x_i that makes all its clauses true.

Cook-Levin Theorem: It is NP-complete to decide whether a 3-SAT formula Ψ is satisfiable.

A <u>3-SAT formula</u> is a *conjunction* of many 3-clauses.

E.g.
$$\Psi = (x_1 \lor x_2 \lor \bar{x_5}) \land (x_1 \lor x_3 \lor x_4) (\bar{x_2} \lor x_3 \lor \bar{x_5})$$

A <u>3-SAT formula</u> Ψ is **satisfiable** if there is an assignment of values to the variables x_i that makes all its clauses true.

NIZK for 3SAT: Recall...

We saw a way to show that a pair (N, y) is GOOD. That is:

- the following is the picture of Z_N^st and
- for every $r \in Jac_{+1}$, either r or ry is a quadratic residue.

$$\Psi$$
Satisfying assignment $(w_1, w_2, ..., w_n)$

Input:
$$\Psi = (x_1 \lor x_2 \lor \bar{x_5}) \land (x_1 \lor x_3 \lor x_4) (\bar{x_2} \lor x_3 \lor \bar{x_5})$$

n variables, m clauses.

1. Prover picks an (N, y) and proves that it is GOOD.

Input: $\Psi = (x_1 \lor x_2 \lor \bar{x_5}) \land (x_1 \lor x_3 \lor x_4) (\bar{x_2} \lor x_3 \lor \bar{x_5})$ *n variables, m clauses.*

$$CRS = (r_1, r_2, ..., r_{large\ number}) \leftarrow (Jac_N^{+1})^{large\ number}$$

1. Prover picks an (N, y) and proves that it is GOOD.

Input: $\Psi = (x_1 \lor x_2 \lor \bar{x_5}) \land (x_1 \lor x_3 \lor x_4) (\bar{x_2} \lor x_3 \lor \bar{x_5})$ *n variables, m clauses.*

$$CRS = (r_1, r_2, ..., r_{large\ number}) \leftarrow (Jac_N^{+1})^{large\ number}$$

2. Prover encodes the satisfying assignment

$$y_i \leftarrow QR_N$$
 if x_i is false $y_i \leftarrow QNR_N$ if x_i is true

$$CRS = (r_1, r_2, ..., r_{large\ number}) \leftarrow (Jac_N^{+1})^{large\ number}$$

2. Prover encodes the satisfying assignment & ∴ the literals

$$Enc(x_i) = y_i$$
, then $Enc(\bar{x}_i) = yy_i$

$$CRS = (r_1, r_2, ..., r_{large\ number}) \leftarrow (Jac_N^{+1})^{large\ number}$$

2. Prover encodes the satisfying assignment & ∴ the literals

$$Enc(x_i) = y_i$$
, then $Enc(\bar{x}_i) = yy_i$

 \therefore exactly one of $Enc(x_i)$ or $Enc(\bar{x}_i)$ is a non-residue.

$$CRS = (r_1, r_2, ..., r_{large\ number}) \leftarrow (Jac_N^{+1})^{large\ number}$$

2. Prover encodes the satisfying assignment & ∴ the literals

$$Enc(x_i) = y_i$$
, then $Enc(\bar{x}_i) = yy_i$

 \therefore exactly one of $Enc(x_i)$ or $Enc(\bar{x}_i)$ is a non-residue.

$$CRS = (r_1, r_2, ..., r_{large\ number}) \leftarrow (Jac_N^{+1})^{large\ number}$$

$$\Psi \qquad \qquad (N,y,\pi) \qquad \Psi$$
 Satisfying assignment $(w_1,w_2,...,w_n)$ Encode vars: $(y_1,...,y_n)$

3. Prove that (encoded) assignment satisfies each clause.

For each clause, say $x_1 \lor x_2 \lor \bar{x_5}$, let (a_1, b_1, c_1) denote the encoded variables.

$$CRS = (r_1, r_2, ..., r_{large\ number}) \leftarrow (Jac_N^{+1})^{large\ number}$$

$$\Psi \qquad \qquad (N,y,\pi) \qquad \Psi$$
 Satisfying assignment $(w_1,w_2,...,w_n)$ Encode vars: $(y_1,...,y_n)$

3. Prove that (encoded) assignment satisfies each clause.

For each clause, say $x_1 \lor x_2 \lor \bar{x_5}$,

let (a_1, b_1, c_1) denote the encoded variables.

So, each of them is either y_i (if the literal is a var) or yy_i (if the literal is a negated var).

$$CRS = (r_1, r_2, ..., r_{large\ number}) \leftarrow (Jac_N^{+1})^{large\ number}$$

$$\Psi \qquad \qquad (N,y,\pi) \qquad \Psi$$
 Satisfying assignment $(w_1,w_2,...,w_n)$ Encode vars: $(y_1,...,y_n)$

(if the literal is a negated var).

3. Prove that (encoded) assignment satisfies each clause.

For each clause, say $x_1 \vee x_2 \vee \bar{x_5}$, let $(a_1=y_1,b_1=y_2,c_1=yy_5)$ denote the encoded variables So, each of them is either y_i (if the literal is a var) or yy_i

$$CRS = (r_1, r_2, ..., r_{large\ number}) \leftarrow (Jac_N^{+1})^{large\ number}$$

$$\Psi \qquad \qquad (N,y,\pi) \qquad \Psi$$
 Satisfying assignment
$$(w_1,w_2,...,w_n) \qquad \text{Encode vars:} (y_1,...,y_n) \qquad \qquad \boxed{}$$

3. Prove that (encoded) assignment satisfies each clause.

For each clause, say $x_1 \lor x_2 \lor \bar{x_5}$, let (a_1, b_1, c_1) denote the encoded variables.

WANT to SHOW: $x_1 OR x_2 OR \bar{x_5}$ is true.

$$CRS = (r_1, r_2, ..., r_{large\ number}) \leftarrow (Jac_N^{+1})^{large\ number}$$

3. Prove that (encoded) assignment satisfies each clause.

For each clause, say $x_1 \lor x_2 \lor \bar{x_5}$, let (a_1, b_1, c_1) denote the encoded variables.

WANT to SHOW: $a_1 OR b_1 OR c_1$ is a non-residue.

$$CRS = (r_1, r_2, ..., r_{large\ number}) \leftarrow (Jac_N^{+1})^{large\ number}$$

3. Prove that (encoded) assignment satisfies each ⁻

For each clause, say $x_1 \lor x_2 \lor \bar{x_5}$, let (a_1, b_1, c_1) denote the encoded variables.

WANT to SHOW: $a_1 OR b_1 OR c_1$ is a non-residue.

Prove that (encoded) assignment satisfies each clause.

WANT to SHOW: $a_1 OR b_1 OR c_1$ is a non-residue.

Prove that (encoded) assignment satisfies each clause.

WANT to SHOW: $a_1 OR b_1 OR c_1$ is a non-residue.

Equiv: The "pattern" of (a_1, b_1, c_1) is **NOT** (QR, QR, QR).

Prove that (encoded) assignment satisfies each clause.

WANT to SHOW: $a_1 OR b_1 OR c_1$ is a non-residue.

Equiv: The "pattern" of (a_1, b_1, c_1) is **NOT** (QR, QR, QR).

Prove that (encoded) assignment satisfies each clause.

WANT to SHOW: $a_1 OR b_1 OR c_1$ is a non-residue.

Equiv: The "pattern" of (a_1, b_1, c_1) is **NOT** (QR, QR, QR).

$$(a_1, b_1, c_1)$$

 (a_2, b_2, c_2)
 (a_3, b_3, c_3)
 (a_4, b_4, c_4)
 (a_5, b_5, c_5)
 (a_6, b_6, c_6)
 (a_7, b_7, c_7)
 (a_8, b_8, c_8)

Prove that (encoded) assignment satisfies each clause.

WANT to SHOW: $a_1 OR b_1 OR c_1$ is a non-residue.

Equiv: The "pattern" of (a_1, b_1, c_1) is **NOT** (QR, QR, QR).

Prove that (encoded) assignment satisfies each clause.

WANT to SHOW: $a_1 OR b_1 OR c_1$ is a non-residue.

Equiv: The "pattern" of (a_1, b_1, c_1) is **NOT** (QR, QR, QR).

Prove that (encoded) assignment satisfies each clause.

WANT to SHOW: $a_1 OR b_1 OR c_1$ is a non-residue.

Equiv: The "pattern" of (a_1, b_1, c_1) is **NOT** (QR, QR, QR).

CLEVER IDEA: Generate seven additional triples

"Proof of Coverage": show that the 8 triples span all possible QR patterns

CLEVER IDEA: Generate seven *additional* triples

Proof of Coverage: For each of poly many triples (r, s, t) from CRS, show one of the 8 triples has the same signature.

That is, there is a triple (a_i, b_i, c_i) s.t. (ra_i, sb_i, tc_i) is (QR, QR, QR).

$$CRS = (r_1, r_2, ..., r_{large\ number}) \leftarrow (Jac_N^{+1})^{large\ number}$$

3. Prove that (encoded) assignment satisfies each clause.

For each clause, construct the proof ρ = (7 additional triples, square root of the second triples, proof of coverage).

$$CRS = (r_1, r_2, ..., r_{large\ number}) \leftarrow (Jac_N^{+1})^{large\ number}$$

Completeness & Soundness: Exercise.

$$CRS = (r_1, r_2, ..., r_{large\ number}) \leftarrow (Jac_N^{+1})^{large\ number}$$

$$\Psi \qquad \qquad (N,y,\pi) \qquad \Psi$$
 Satisfying assignment $(w_1,w_2,...,w_n)$ Encode vars: $(y_1,...,y_n)$ For each clause ψ : ρ_{ψ}

Completeness & Soundness: Exercise.

Zero Knowledge: Simulator picks (N, y) where y is a quadratic residue.

$$CRS = (r_1, r_2, ..., r_{large\ number}) \leftarrow (Jac_N^{+1})^{large\ number}$$

$$\Psi \qquad \qquad (N,y,\pi) \qquad \Psi$$
 Satisfying assignment $(w_1,w_2,...,w_n)$ Encode vars: $(y_1,...,y_n)$ For each clause ψ : ρ_{w}

Completeness & Soundness: Exercise.

Zero Knowledge: Simulator picks (N, y) where y is a quadratic residue.

Now, encodings of ALL the literals can be set to TRUE!!

$$CRS = (r_1, r_2, ..., r_{large\ number}) \leftarrow (Jac_N^{+1})^{large\ number}$$

Completeness & Soundness: Exercise.

Zero Knowledge: Simulator picks (N, y) where y is a quadratic residue.

Now, encodings of ALL the literals can be set to TRUE!!

An Application of NIZK:

Non-malleable and Chosen Ciphertext Secure Encryption Schemes

Non-Malleability

Public-key directory

Bob	pk

Active Attacks 1: Malleability

ATTACK: Adversary could modify ("maul") an encryption of m into an encryption of a related message m'.

Active Attacks 2: Chosen-Ciphertext Attack

ATTACK: Adversary may have access to a decryption "oracle" and can use it to break security of a "target" ciphertext c* or even extract the secret key!

Active Attacks 2: Chosen-Ciphertext Attack

In fact, <u>Bleichenbacher</u> showed how to extract the entire secret key given only a "ciphertext verification" oracle.

$$(pk, sk) \leftarrow Gen(1^n)$$

$$Gen(1^n)$$
 \longrightarrow

$$-Enc(pk, m_b^*) \qquad \underbrace{ \begin{array}{c} m_0^*, m_1^* & s.t. \\ \hline c^* \\ \hline \end{array} } \left| m_0^* \right| = |m_1^*|$$

Eve wins if
$$b' = b$$
.
IND-CCA secure if no PPT Eve can win with prob. $> \frac{1}{2} + \text{negl}(n)$.

$$(pk, sk) \leftarrow Gen(1^n) \longrightarrow$$

$$b \leftarrow \{0,1\}; c^* \leftarrow Enc(pk, m_b^*)$$

$$c^* \leftarrow \frac{m_0^*, m_1^* \ s.t.}{c^*} \mid m_0^* \mid = |m_1^*|$$

$$c_i \leftarrow \frac{Dec(sk, c_i)}{c_i}$$

b'

Eve wins if
$$b' = b$$
.
IND-CCA secure if no
PPT Eve can win with
prob. $> \frac{1}{2} + \text{negl}(n)$.

$$(pk, sk) \leftarrow Gen(1^n) \longrightarrow$$

$$b \leftarrow \{0,1\}; c^* \leftarrow Enc(pk, m_b^*)$$

$$c^* \leftarrow C_i \neq c^*$$

$$b' \qquad Eve wind in December 2.$$

Eve wins if b' = b. IND-CCA secure if no PPT Eve can win with prob. $> \frac{1}{2} + \text{negl}(n)$.

$$(pk, sk) \leftarrow Gen(1^n) \longrightarrow$$

$$b \leftarrow \{0,1\}; c^* \leftarrow Enc(pk, m_b^*) \qquad \begin{array}{c} m_0^*, m_1^* & s.t. \\ \hline c^* \\ \hline c_i \neq c^* \end{array} \qquad \begin{array}{c} |m_0^*| = |m_1^*| \\ \hline \end{array}$$

b'

$$b \leftarrow \{0,1\}; c^* \leftarrow Enc(pk, m_b^*)$$

$$c^*$$

$$c_i \neq c^*$$

$$Dec(sk, c_i)$$

$$b'$$

Eve wins if b' = b. IND-CCA secure if no PPT Eve can win with prob. > $\frac{1}{2}$ + negl(n).

NIZK Proofs of Knowledge should help!

NIZK Proofs of Knowledge should help!

Idea: The encrypting party attaches an NIZK proof of knowledge of the underlying message to the ciphertext.

C: (c = CPAEnc(m; r), proof π that "I know m and r")

NIZK Proofs of Knowledge should help!

Idea: The encrypting party attaches an NIZK proof of knowledge of the underlying message to the ciphertext.

C: (c = CPAEnc(m; r), proof π that "I know m and r")

This idea will turn out to be useful, but NIZK proofs themselves can be malleable!

OUR GOAL: Hard to modify an encryption of m into an encryption of a related message, say m+1.

OUR GOAL: Hard to modify an encryption of m into an encryption of a related message, say m+1.

Digital Signatures should help!

OUR GOAL: Hard to modify an encryption of m into an encryption of a related message, say m+1.

Let's start with Digital Signatures.

= CPAEnc
$$(pk, m; r)$$
, $Sign(c)$

Let's start with Digital Signatures.

$$(c = CPAEnc(pk, m; r), Sign_{sgk}(c), vk)$$
 where the encryptor produces a signing / verification key pair

by running $(sgk, vk) \leftarrow Sign. Gen(1^n)$

Let's start with Digital Signatures.

$$(c = \text{CPAEnc}(pk, m; r), Sign_{sgk}(c), vk)$$

where the encryptor produces a signing / verification key pair
by running $(sgk, vk) \leftarrow Sign. Gen(1^n)$

Is this CCA-secure/non-malleable?

Let's start with Digital Signatures.

$$(c = CPAEnc(pk, m; r), Sign_{sgk}(c), vk)$$
 where the encryptor produces a signing / verification key pair

by running $(sgk, vk) \leftarrow Sign \cdot Gen(1^n)$

Is this CCA-secure/non-malleable?

Let's start with Digital Signatures.

$$(c = CPAEnc(pk, m; r), Sign_{sgk}(c), vk)$$

where the encryptor produces a signing / verification key pair by running $(sgk, vk) \leftarrow Sign.Gen(1^n)$

Is this CCA-secure/non-malleable?

If the adversary changes vk, all bets are off!

Let's start with Digital Signatures.

$$(c = CPAEnc(pk, m; r), Sign_{sgk}(c), vk)$$

where the encryptor produces a signing / verification key pair by running $(sgk, vk) \leftarrow Sign \cdot Gen(1^n)$

Is this CCA-secure/non-malleable?

If the adversary changes vk, all bets are off!

Lesson: NEED to "tie" the ciphertext c to vk in a "meaningful" way.

IND-CPA ==> "Different-Key Non-malleability"

Different-Key NM: Given pk, pk', CPAEnc(pk, m; r), can an adversary produce CPAEnc(pk', m + 1; r)?

NO! Suppose she could. Then, I can come up with a reduction that breaks the IND-CPA security of CPAEnc(pk, m; r).

IND-CPA ==> "Different-Key Non-malleability"

Different-Key NM: Given pk, pk', CPAEnc(pk, m; r), can an adversary produce CPAEnc(pk', m + 1; r)?

Diff-Key NM adversarv

IND-CPA ⇒ "Different-Key Non-malleability"

Different-Key NM: Given pk, pk', CPAEnc(pk, m; r), can an adversary produce CPAEnc(pk', m + 1; r)?

Reduction = CPA adversary

IND-CPA ⇒ "Different-Key Non-malleability"

Different-Key NM: Given pk, pk', CPAEnc(pk, m; r), can an adversary produce CPAEnc(pk', m + 1; r)?

Reduction = CPA adversary

IND-CPA ⇒ "Different-Key Non-malleability"

Different-Key NM: Given pk, pk', CPAEnc(pk, m; r), can an adversary produce CPAEnc(pk', m + 1; r)?

Reduction = CPA adversary

Diff-Key NM adversary

IND-CPA ⇒ "Different-Key Non-malleability"

Different-Key NM: Given pk, pk', CPAEnc(pk, m; r), can an adversary produce CPAEnc(pk', m + 1; r)?

Reduction = CPA adversary

Putting it together

CCA Public Key: 2n public keys of the CPA scheme

Putting it together

CCA Public Key: 2n public keys of the CPA scheme

CCA Encryption:

First, pick a sign/ver key pair (sgk, vk)

CCA Public Key: 2n public keys of the CPA scheme

CCA Encryption:

First, pick a sign/ver key pair (sgk, vk)

$$CT = \begin{bmatrix} ct_{1,vk_1} & ct_{2,vk_2} & \cdots & ct_{n,vk_n} \end{bmatrix}$$

where $ct_{i,j} \leftarrow CPAEnc(pk_{i,j}, m)$

CCA Public Key: 2n public keys of the CPA scheme

CCA Encryption:

First, pick a sign/ver key pair (sgk, vk)

$$CT = \begin{bmatrix} ct_{1,vk_1} & ct_{2,vk_2} & \cdots & ct_{n,vk_n} \end{bmatrix}$$

where $ct_{i,j} \leftarrow CPAEnc(pk_{i,j}, m)$

CCA Encryption:

First, pick a sign/ver key pair (sgk, vk)

$$CT = \begin{bmatrix} ct_{1,vk_1} & ct_{2,vk_2} & \cdots & ct_{n,vk_n} \end{bmatrix}$$

where $ct_{i,j} \leftarrow CPAEnc(pk_{i,j}, m)$

Non-malleability rationale: Either

- Adversary keeps vk the same (in which case she has to break the signature scheme); or
- She changes the vk in which case she breaks the diff-NM game, and therefore CPA security.

CCA Encryption:

First, pick a sign/ver key pair (sgk, vk)

$$CT = \begin{bmatrix} ct_{1,vk_1} & ct_{2,vk_2} & \cdots & ct_{n,vk_n} \end{bmatrix}$$

where $ct_{i,j} \leftarrow CPAEnc(pk_{i,j}, m)$

Call it a day?

CCA Encryption:

First, pick a sign/ver key pair (sgk, vk)

$$CT = \begin{bmatrix} ct_{1,vk_1} & ct_{2,vk_2} & \cdots & ct_{n,vk_n} \end{bmatrix}$$

where $ct_{i,j} \leftarrow CPAEnc(pk_{i,j}, m)$

Call it a day?

We are not done!! Adversary could create ill-formed ciphertexts (e.g. the different *ct*s encrypt different messages) and uses it for a Bleichenbacher-like attack.

CCA Encryption:

First, pick a sign/ver key pair (sgk, vk)

$$CT = \begin{bmatrix} ct_{1,vk_1} & ct_{2,vk_2} & \cdots & ct_{n,vk_n} \end{bmatrix}$$

where $ct_{i,j} \leftarrow CPAEnc(pk_{i,j}, m)$

CCA Public Key: 2n public keys of the CPA scheme

CCA Encryption:

First, pick a sign/ver key pair (sgk, vk)

$$CT = \begin{bmatrix} ct_{1,vk_1} & ct_{2,vk_2} & \cdots & ct_{n,vk_n} \end{bmatrix}$$

where $ct_{i,j} \leftarrow CPAEnc(pk_{i,j}, m; r_{i,j})$

CCA Public Key: 2n public keys of the CPA scheme

CCA Encryption:

First, pick a sign/ver key pair (sgk, vk)

$$CT = \begin{bmatrix} ct_{1,vk_1} & ct_{2,vk_2} & \cdots & ct_{n,vk_n} \end{bmatrix}$$

where $ct_{i,j} \leftarrow CPAEnc(pk_{i,j}, m; r_{i,j})$

 $\pi = NIZK$ proof that "CT is well-formed"

CCA Public Key: 2n public keys of the CPA scheme

CCA Encryption:

First, pick a sign/ver key pair (sgk, vk)

$$CT = \begin{bmatrix} ct_{1,vk_1} & ct_{2,vk_2} & \cdots & ct_{n,vk_n} \end{bmatrix}$$

where $ct_{i,j} \leftarrow CPAEnc(pk_{i,j}, m; r_{i,j})$

 $\pi = NIZK$ proof that "CT is well-formed"

Output
$$(CT, \pi, vk, \sigma = Sign(sgk, (CT, \pi)))$$
.

CCA Public Key: 2n public keys of the CPA scheme

$$\left[egin{array}{cccc} pk_{1,0} & pk_{2,0} & \dots & pk_{n,0} \\ pk_{1,1} & pk_{2,1} & pk_{n,1} \end{array}
ight]$$
 , CRS

NP statement: "there exist

 $m, r_{i,j}$ such that each

$$ct_{i,j} = CPAEnc(pk_{i,j}, m; r_{i,j})$$
"

 ct_{n,vk_n}

where $ct_{i,j} \leftarrow PAEnc(pk_{i,j}, m; r_{i,j})$

 $\pi = NIZK$ proof that "CT is well-formed"

Output
$$(CT, \pi, vk, \sigma = Sign(sgk, (CT, \pi)))$$
.

CCA Public Key: 2n public keys of the CPA scheme

CCA Encryption:

First, pick a sign/ver key pair (sgk, vk)

$$CT = \begin{bmatrix} ct_{1,vk_1} & ct_{2,vk_2} & \cdots & ct_{n,vk_n} \end{bmatrix}$$

where $ct_{i,j} \leftarrow CPAEnc(pk_{i,j}, m; r_{i,j})$

 $\pi = NIZK$ proof that "CT is well-formed"

Output
$$(CT, \pi, vk, \sigma = Sign(sgk, (CT, \pi)))$$
.

Are there other attacks?

Did we miss anything else?

Are there other attacks?

Did we miss anything else?

Turns out NO. We can prove that this is CCA-secure.

The Encryption Scheme

CCA Keys:

$$\mathbf{PK} = \begin{bmatrix} pk_{1,0} & pk_{2,0} & \dots & pk_{n,0} \\ pk_{1,1} & pk_{2,1} & & pk_{n,1} \end{bmatrix}, CRS \quad \mathbf{SK} = \begin{bmatrix} sk_{1,0} \\ sk_{1,1} \end{bmatrix}$$

CCA Encryption:

First, pick a sign/ver key pair (sgk, vk)

$$CT = \begin{bmatrix} ct_{1,vk_1} & ct_{2,vk_2} & \cdots & ct_{n,vk_n} \end{bmatrix}$$

where $ct_{i,j} \leftarrow CPAEnc(pk_{i,j}, m; r_{i,j})$

 $\pi = NIZK$ proof that "CT is well-formed"

Output $(CT, \pi, vk, \sigma = Sign(sgk, (CT, \pi)))$.

The Encryption Scheme

CCA Encryption:

First, pick a sign/ver key pair (sgk, vk)

$$CT = \begin{bmatrix} ct_{1,vk_1} & ct_{2,vk_2} & \cdots & ct_{n,vk_n} \end{bmatrix}$$

where $ct_{i,j} \leftarrow CPAEnc(pk_{i,j}, m; r_{i,j})$

 $\pi = NIZK$ proof that "CT is well-formed"

Output $(CT, \pi, vk, \sigma = Sign(sgk, (CT, \pi)))$.

CCA Decryption:

Check the signature.

Check the NIZK proof.

Decrypt with sk_{1,vk_1} .

Let's play the CCA game with the adversary.

We will use her to break either the NIZK soundness/ZK, the signature scheme or the CPA-secure scheme.

Let's play the CCA game with the adversary.

Hybrid 0: Play the CCA game as prescribed.

Let's play the CCA game with the adversary.

Hybrid 0: Play the CCA game as prescribed.

Hybrid 1: Observe that $vk_i \neq vk^*$.

(Otherwise break signature)

Let's play the CCA game with the adversary.

Hybrid 0: Play the CCA game as prescribed.

Hybrid 1: Observe that $vk_i \neq vk^*$.

(Otherwise break signature)

Observe that this means each query ciphertext-tuple involves a different public-key from the challenge ciphertext. Use the "different private-key" to decrypt.

(If the adv sees a difference, she broke NIZK soundness)

Let's play the CCA game with the adversary.

Hybrid 0: Play the CCA game as prescribed.

Hybrid 1: Observe that $vk_i \neq vk^*$.

(Otherwise break signature)

Observe that this means each query ciphertext-tuple involves a different public-key from the challenge ciphertext. Use the "different private-key" to decrypt.

(If the adv sees a difference, she broke NIZK soundness)

Hybrid 2: Now change the CRS/ π into simulated CRS/ π ! (OK by ZK)

Let's play the CCA game with the adversary.

Hybrid 0: Play the CCA game as prescribed.

Hybrid 1: Observe that $vk_i \neq vk^*$.

(Otherwise break signature)

Observe that this means each query ciphertext-tuple involves a different public-key from the challenge ciphertext. Use the "different private-key" to decrypt.

(If the adv sees a difference, she broke NIZK soundness)

Hybrid 2: Now change the CRS/ π into simulated CRS/ π ! (OK by ZK)

If the Adv wins in this hybrid, she breaks IND-CPA!