Programtervező informatikus I. évfolyam

Analízis 1

2012-2013. tanév, 2. félév

(az alábbi anyag csupán az előadásokon készített jegyzetek mellékletéül szolgál)

1.3.1. Tétel (Archimedes). Tetszőleges $x, y \in \mathbf{R}, x > 0$ valós számokhoz létezik olyan $n \in \mathbf{N}$ természetes szám, hogy nx > y.

Bizonyítás. Indirekt módon tegyük fel, hogy valamilyen, a tételben említett x és y esetén bármely $n \in \mathbb{N}$ mellett $nx \leq y$. Ez más szóval azt jelenti, hogy az

$$A := \{ nx \in \mathbf{R} : n \in \mathbf{N} \}$$

halmaz felülről korlátos. Legyen $\alpha := \sup A$. A $\sup A$ definíciója szerint van olyan $a \in A$, hogy $a > \alpha - x$. Az A halmaz értelmezése alapján viszont alkalmas $n \in \mathbb{N}$ természetes számmal a = nx, ezért

$$nx > \alpha - x \iff nx + x = (n+1)x > \alpha.$$

Ugyanakkor $n+1 \in \mathbb{N}$, így $(n+1)x \in A$. Lenne tehát az A halmaznak olyan eleme, ami sup A-nál nagyobb. Ez azonban (ismét csak) a sup A definíciója szerint nem lehet.

Megjegyzések.

i) Alkalmazzuk az Archimedes-tételt az x=1 választással, amikor is a következőt kapjuk: bármely $y \in \mathbf{R}$ és $n \in \mathbf{N}$ esetén

$$n1 = n > y$$
.

Más szóval ez azt jelenti, hogy a természetes számok halmaza felülről nem korlátos. Analóg módon kapjuk ugyanezt \mathbf{Z} -re is, ill. azt, hogy \mathbf{Z} alulról sem korlátos. Tekintettel arra, hogy $\mathbf{Z} \subset \mathbf{Q} \subset \mathbf{R}$, így mindez \mathbf{Q} -ra és \mathbf{R} -re is igaz.

ii) Bizonyítsuk be, hogy bármely nyílt (a, b) intervallum tartalmaz racionális számot:

$$(a,b) \cap \mathbf{Q} \neq \emptyset.$$

Valóban, ha $a \geq 0$, akkor az Archimedes-tétel miatt alkalmas $\mathbf{N} \ni n$ -nel n(b-a) > 1, amiből $n \neq 0$ és 1/n < b-a következik. Ezért újra az Archimedes-tételt alkalmazva kapunk olyan $m \in \mathbf{N}$ természetes számot, amellyel m/n > a. Mivel $a \geq 0$, ezért m > 0. Legyen p az előbbi tulajdonságú m számok között a legkisebb. (Az axiómákól levezethetően a természetes számok bármely $\emptyset \neq \mathcal{N} \subset \mathbf{N}$ részhalmazának van minimuma.) Tehát $(p-1)/n \leq a$, azaz

$$\frac{p-1}{n} + \frac{1}{n} \le a + \frac{1}{n} < a + (b-a) = b,$$

így a < p/n < b.

Ha a < 0 < b, akkor $0 \in \mathbf{Q}$ miatt az állításunk nyilvánvaló.

Legyen végül $b \le 0$. Ekkor $0 \le -b < -a$, azaz az első eset alapján valamilyen $r \in \mathbf{Q}$ racionális számmal -b < r < -a, amiből viszont a < -r < b következik. Mivel $-r \in \mathbf{Q}$, ezért mindez a bizonyításunk végét jelenti.

iii) Az előző megjegyzést "iterálva" könnyen adódik már, hogy bármely $a, b \in \mathbf{R}, a < b$ végpontokkal az (a, b) nyílt intervallum végtelen sok racionális számot tartalmaz.

1.3.2. Tétel (Dedekind). Tegyük fel, hogy az $\emptyset \neq A, B \subset \mathbf{R}$ halmazokra az alábbiak teljesülnek: minden $a \in A$ és minden $b \in B$ elemre $a \leq b$. Ekkor valamilyen $\gamma \in \mathbf{R}$ valós számmal $a \leq \gamma \leq b$ ($a \in A, b \in B$).

Bizonyítás. Legyen ui.

$$\mathcal{K} := \{ K \in \mathbf{R} : a \le K \},\$$

ekkor a feltételeink szerint $B \subset \mathcal{K}$, azaz A felülről korlátos. Ha tehát $\gamma := \sup A$, akkor $a \leq \gamma$ $(a \in A)$ és $\gamma \leq K$ $(K \in \mathcal{K})$. Speciálisan bármely $b \in B$ elemre is $\gamma \leq b$.

Megjegyzés. Beláttuk tehát, hogy a felülről korlátos halmazok felső határának a létezését feltételező **D**) axióma maga után vonja a Dedekind-tételt. Lássuk be, hogy ez fordítva is igaz:

Dedekind-tétel \implies szuprémum létezése.

Ha ui. az $\emptyset \neq A \subset \mathbf{R}$ halmaz felülről korlátos, akkor legyen

$$B := \{ K \in \mathbf{R} : a \le K \ (a \in A) \}.$$

Ekkor minden $a \in A$, $b \in B$ esetén $a \le b$. Ezért (feltételezve a Dedekind-tétel állítását) van olyan $\alpha \in \mathbf{R}$, hogy

$$a \le \alpha \le b$$
 $(a \in A, b \in B)$.

Ez éppen azt jelenti, hogy α felső korlátja A-nak és ugyanakkor az A bármely felső korlátjánál kisebb vagy egyenlő. Más szóval $\alpha = \min B = \sup A$.

1.3.3. Tétel (Cantor). Minden $n \in \mathbb{N}$ természetes szám esetén legyenek adottak az $a_n, b_n \in \mathbb{R}$, $a_n \leq b_n$ végpontok és tegyük fel, hogy

$$[a_{n+1}, b_{n+1}] \subset [a_n, b_n] \ (n \in \mathbf{N}).$$

Ekkor

$$\bigcap_{n=0}^{\infty} [a_n, b_n] \neq \emptyset.$$

Bizonyítás. Először is belátjuk, hogy

$$(*) a_n \le a_{n+s} (n, s \in \mathbf{N}).$$

Ezt ui. s=0 esetén nyilvánvalý, s=1-re pedig a feltételeinkben szereplő $[a_{n+1},b_{n+1}]\subset [a_n,b_n]$ tartalmazás triviális következménye. Ha $n\in \mathbf{N}$ és (*) valamilyen $s\in \mathbf{N}$ mellett teljesül, akkor (az előbb mondottakat is szem előtt tartva)

$$a_{n+s} \le a_{(n+s)+1} = a_{n+(s+1)}$$

miatt $a_n \leq a_{n+(s+1)}$ is igaz. Ezzel (teljes indukcióval) (*)-ot beláttuk.

Ugyanígy kapjuk, hogy

$$b_n \ge b_{n+s} \qquad (n, s \in \mathbf{N}).$$

Más szóval tehát minden $n, k \in \mathbb{N}, n \leq k$ mellett

$$(**)$$
 $a_n \leq a_k$, ill. $b_k \leq b_n$.

Lássuk be mindezek alapján, hogy

$$a_j \leq b_l \qquad (j, l \in \mathbf{N}).$$

Valóban, ha itt $j \leq l$, akkor ((**), ill. a feltételeink szerint)

$$a_j \leq a_l \leq b_l$$
.

Ha viszont l < j, akkor (ismét csak (**), ill. a feltételeink szerint)

$$b_l \geq b_j \geq a_j$$
.

Legyen most már

$$A := \{a_n \in \mathbf{R} : n \in \mathbf{N}\}\ , \ B := \{b_n \in \mathbf{R} : n \in \mathbf{N}\}.$$

Ekkor a fentiek szerint A felülről korlátos és a B halmaz minden eleme felső korlátja A-nak. Ha tehát

$$\alpha := \sup A$$
,

akkor egyrészt $a_n \leq \alpha$ $(n \in \mathbb{N})$, másrészt $\alpha \leq b_n$ $(n \in \mathbb{N})$. Következésképpen $\alpha \in [a_n, b_n]$ $(n \in \mathbb{N})$, azaz

$$\alpha \in \bigcap_{n=0}^{\infty} [a_n, b_n].$$

1.3.4. Tétel (Bernoulli). Tetszőleges $h \in \mathbf{R}$, h > -1 valós szám és $n \in \mathbf{N}$ természetes szám esetén fennáll az alábbi egyenlőtlenség:

$$(1+h)^n \ge 1 + nh.$$

Igaz továbbá, hogy az előbbi Bernoulli-egyenlőtlenségben akkor és csak akkor áll fenn az $(1+h)^n = 1 + nh$ egyenlőség, ha h = 0, vagy n = 0, vagy n = 1.

Bizonyítás. Lássuk be először, hogy igaz a szóban forgó egyenlőtlenég. Ezt teljes indukcióval tesszük: n=0 esetén mind a két oldalon 1 áll, azaz az egyenlőtlenség egyenlőség formájában teljesül. Ha valamilyen $n \in \mathbb{N}$ mellett igaz az $(1+h)^n \ge 1 + nh$ becslés, akkor (kihasználva, hogy a feltételeink szerint 1+h>0)

$$(1+h)^{n+1} = (1+h)(1+h)^n \ge (1+h)(1+nh) =$$

$$1 + nh + h + nh^2 = 1 + (n+1)h + nh^2 > 1 + (n+1)h$$
.

Ez azt jelenti, hogy a bebizonyítandó egyenlőtlenség (n+1)-re is fennáll, ami a teljes indukció értelmében a Bernoulli-egyenlőtlenség teljesülését jelenti.

Ha h = 0, akkor $(1 + h)^n = 1 = 1 + nh$ $(n \in \mathbb{N})$. Ha n = 0, akkor $(1 + h)^n = 1 = 1 + nh$. Ha pedig n = 1, akkor $(1 + h)^n = 1 + h = 1 + nh$. Más szóval az egyenlőségre vonatkozó kritériumaink elegendőek.

Fordítva, tegyük fel, hogy $h \neq 0$ és $n \in \mathbb{N}$, n > 1, azaz alkalmas $k \in \mathbb{N}$ természetes számmal n = 2 + k. Mutassuk meg, hogy

$$(1+h)^n = (1+h)^{2+k} > 1 + (2+k)h = 1+nh$$
 $(k \in \mathbb{N}).$

Ha itt k = 0, azaz n = 2, akkor

$$(1+h)^n = (1+h)^{2+k} = (1+h)^2 = 1+2h+h^2 > 1+2h = 1+nh.$$

Ha viszont valamilyen $k \in \mathbb{N}$ esetén $(1+h)^{2+k} > 1 + (2+k)h$, akkor

$$(1+h)^{2+k+1} = (1+h)(1+h)^{2+k} > (1+h)(1+(2+k)h) =$$

$$1 + (2 + k + 1)h + (2 + k)h^2 > 1 + (2 + k + 1)h.$$

A teljes indukcióra hivatkozva ezzel a bizonyítást befejeztük.

1.3.5. Tétel (számtani-mértani közép). Legyen $n \in \mathbb{N}$ és az $a_0, ..., a_n \in \mathbb{R}$ számokról tegyük fel, hogy valamennyien nem-negatívok: $a_k \geq 0$ (k = 0, ..., n). Ekkor

(*)
$$\left(\frac{\sum_{k=0}^{n} a_k}{n+1}\right)^{n+1} \ge \prod_{k=0}^{n} a_k.$$

Az itt szereplő egyenlőtlenségben akkor és csak akkor írható egyenlőség, ha az a_k (k = 0, ..., n) számok mindannyian egyenlők: $a_0 = a_1 = \cdots = a_n$.

Bizonyítás. A tételünkben említett számtani-mértani közép közti egyenlőtlenséget is teljes indukcióval fogjuk belátni. Az n=0 esetben mindez a triviális $a_0=a_0$ egyenlőségre redukálódik. Tegyük fel ezért, hogy valamilyen $n \in \mathbf{N}$ esetén bármely $0 \le a_k \in \mathbf{R}$ (k=0,...,n) választással fennáll az (*) előbbi egyenlőtlenség és legyen $a_{n+1} \ge 0$ tetszőleges. Nyilván feltehető, hogy

$$a_0 \le a_1 \le \dots \le a_n \le a_{n+1},$$

hiszen ha a szóban forgó számokra ez nem teljesül, akkor így sorba rakva ("átrendezve") őket a (*) egyenlőtlenség mindkét oldala változatlan marad. Legyen

$$S_k := \frac{\sum_{j=0}^k a_j}{k+1}$$
, $P_k := \prod_{j=0}^k a_j$ $(k = 0, ..., n+1)$.

Vegyük észre, hogy

$$S_k = \frac{\sum_{j=0}^k a_j}{k+1} \le \frac{\sum_{j=0}^k a_k}{k+1} = a_k \le a_{n+1} \qquad (k = 0, ..., n+1).$$

Továbbá az indukciós feltevésünk úgy szól, hogy

$$S_n^{n+1} \ge P_n$$
.

Ennek alapján azt kell megmutatnunk, hogy

$$S_{n+1}^{n+2} \ge P_{n+1}$$
.

Világos, hogy

$$P_{n+1} = a_{n+1}P_n \le a_{n+1}S_n^{n+1} = S_n^{n+2} + (a_{n+1} - S_n)S_n^{n+1} = S_n^{n+2} + (n+2)\frac{a_{n+1} - S_n}{n+2}S_n^{n+1},$$

ahol a fentiek szerint $a_{n+1} - S_n \ge 0$. Az egyszerűség kedvéért vezessük be az alábbi jelöléseket:

$$a := S_n$$
, $b := \frac{a_{n+1} - S_n}{n+2}$.

Ekkor tehát $a, b \ge 0$ és

$$P_{n+1} = a^{n+2} + (n+2)a^{n+1}b.$$

Emlékeztetünk a binomiális tétel szerint fennálló egyenlőségre:

$$(a+b)^{n+2} = \sum_{j=0}^{n+2} \binom{n+2}{j} a^{n+2-j} b^j,$$

azaz $a, b \ge 0$ miatt

$$(a+b)^{n+2} = \sum_{j=0}^{n+2} \binom{n+2}{j} a^{n+2-j} b^j \ge \binom{n+2}{0} a^{n+2} + \binom{n+2}{1} a^{n+1} b =$$

$$a^{n+2} + (n+2)a^{n+1}b$$
.

Ezért

$$P_{n+1} \le (a+b)^{n+2} = \left(S_n + \frac{a_{n+1} - S_n}{n+2}\right)^{n+2} = S_{n+1}^{n+2}.$$

Ezzel a számtani-mértani közép közti egyenlőtlenséget beláttuk.

Ha valamilyen $\alpha \in \mathbf{R}$ számmal $a_0 = \cdots = a_n = \alpha$, akkor nyilván

$$P_n = \alpha^{n+1} = S_n^{n+1},$$

más szóval az "egyenlőséggel" kapcsolatban megfogalmazott feltételünk triviális módon elégséges. Lássuk be, hogy szükséges is. Ez azt jelenti, hogy ha a tételben szereplő $a_0, ..., a_n$ számok nem mind egyenlők, akkor

$$S_n^{n+1} > P_n$$
.

Nyilván ekkor csak $n \ge 1$ lehet, azaz valamilyen $k \in \mathbb{N}$ segítségével n = k + 1. Azt kell tehát belátnunk, hogy ha az $a_0, ..., a_{k+1}$ nem-negatív számok nem mind egyenlők, akkor

$$S_{k+1}^{k+2} > P_{k+1} \qquad (k \in \mathbf{N}).$$

Most is teljes indukcióval dolgozunk. Ha itt k=0, azaz $(0 \le) a_0, a_1 \in \mathbf{R}$ és $a_0 \ne a_1$, akkor azt kell ellenőrizni, hogy

$$S_1^2 = \left(\frac{a_0 + a_1}{2}\right)^2 = \frac{a_0^2 + 2a_0a_1 + a_1^2}{4} > a_0a_1 = P_1.$$

Ez (átrendezés után) azzal ekvivalens, hogy

$$a_0^2 - 2a_0a_1 + a_1^2 = (a_0 - a_1)^2 > 0,$$

ami az $a_0 \neq a_1$ feltételezés (tehát $a_0 - a_1 \neq 0$) miatt igaz. Ha valamilyen $k \in \mathbb{N}$ mellett az

$$S_{k+1}^{k+2} > P_{k+1}$$

egyenlőtlenség fennáll minden olyan $(0 \le) a_0, ..., a_{k+1} \in \mathbf{R}$ választás mellett, amikor az $a_0, ..., a_{k+1}$ számok nem mind egyenlők, akkor ugyanezt kell bebizonyítanunk k helyett (k+1)-re: ha az $a_0, ..., a_{k+2}$ számok nem mind egyenlők, akkor

$$S_{k+2}^{k+3} > P_{k+2}.$$

Ehhez ismét feltehetjük, hogy $(0 \le) a_0 \le a_1 \le \cdots \le a_{k+2}$. Mivel az itt szereplő számok nem mind egyenlők, ezért $a_{k+2} > 0$. Legyen most (ld. fent)

$$a := S_{k+1}$$
, $b := \frac{a_{k+2} - S_{k+1}}{k+3}$.

Ekkor (ld. a binomiális tételre alapulóan fent már követett módszert)

$$P_{k+2} = a_{k+2}P_{k+1} < a_{k+2}S_{k+1}^{k+2} = S_{k+1}^{k+3} + (a_{k+2} - S_{k+1})S_{k+1}^{k+2} =$$

$$S_{k+1}^{k+3} + (k+3)\frac{a_{k+2} - S_{k+1}}{k+3}S_{k+1}^{k+2} \le (a+b)^{k+3} = S_{k+2}^{k+3},$$

következésképpen $S_{k+2}^{k+3} > P_{k+2}$.

3.3.1. Tétel. Bármely $x = (x_n) : \mathbf{N} \to \mathbf{R}$ számsorozatnak van monoton részsorozata, azaz létezik olyan ν indexsorozat, amellyel $x \circ \nu$ monoton növő (vagy monoton fogyó).

Bizonyítás. Az állításunk igazolásához vezessük be a szóban forgó x sorozat csúcsának a fogalmát. Nevezetesen, valamely $n \in \mathbb{N}$ mellett x_n az x sorozat csúcsa, ha

$$x_n \ge x_k \qquad (k \in \mathbf{N}, k \ge n).$$

Két eset lehetséges. Először tételezzük fel, hogy végtelen sok $n \in \mathbb{N}$ esetén x_n csúcs. Ez azt jelenti, hogy egy alkalmas ν indexsorozattal x_{ν_n} $(n \in \mathbb{N})$ csúcs, azaz

$$x_{\nu_n} \ge x_k \qquad (k \in \mathbf{N}, k \ge \nu_n).$$

Speciálisan $\nu_n < \nu_{n+1}$ miatt

$$x_{\nu_n} \ge x_{\nu_{n+1}} \qquad (n \in \mathbf{N}),$$

más szóval az (x_{ν_n}) részsorozat monoton fogyó.

Induljunk ki most abból, hogy legfeljebb véges sok $n \in \mathbf{N}$ indexre igaz az, hogy x_n csúcs. Ekkor van olyan $N \in \mathbf{N}$, hogy bármely $n \in \mathbf{N}, n \geq N$ esetén x_n nem csúcs. Legyen $\nu_0 := N$. Mivel x_{ν_0} nem csúcs, ezért van olyan $m \in \mathbf{N}, m > \nu_0$, amelyre $x_{\nu_0} < x_m$. Ha $\nu_1 := m$, akkor a keresett ν indexsorozat első két tagja már ismert. Tegyük fel, hogy $k \in \mathbf{N}$ és a $\nu_0 < \nu_1 < \dots < \nu_k$ tagokat már definiáltuk úgy, hogy

$$x_{\nu_0} < x_{\nu_1} < \dots < x_{\nu_k}$$
.

Ekkor - lévén $x_{\nu_k} > x_{\nu_0} = x_N$ miatt x_{ν_k} nem csúcs - valamely $j \in \mathbf{N}, j > \nu_k$ mellett $x_{\nu_k} < x_j$. Legyen $\nu_{k+1} := j$, amikor is $x_{\nu_k} < x_{\nu_{k+1}}$. Ezzel definiáltuk a szigorúan monoton növő $(\nu_n) : \mathbf{N} \to \mathbf{N}$ sorozatot (azaz egy indexsorozatot), amellyel az (x_{ν_n}) részsorozat szigorúan monoton növő.

3.5.1. Tétel. Ha az $x = (x_n) : \mathbf{N} \to \mathbf{K}$ sorozat konvergens, akkor a konvergencia definíciójában szereplő α egyértelműen létezik.

Bizonyítás. Tegyük fel ui., hogy valamely $x = (x_n) : \mathbf{N} \to \mathbf{K}$ sorozat és $\alpha, \beta \in \mathbf{K}$ esetén egyaránt teljesül a konvergencia definíciója, és (indirekt módon gondolkodva) $\alpha \neq \beta$. Tetszőleges $\varepsilon > 0$ számhoz megadhatók tehát olyan $N, M \in \mathbf{N}$ küszöbindexek, hogy

$$|x_n - \alpha| < \varepsilon \quad (n \in \mathbb{N}, n > N) , |x_n - \beta| < \varepsilon \quad (n \in \mathbb{N}, n > M).$$

Válasszuk itt speciálisan az

$$\varepsilon := \frac{|\alpha - \beta|}{2}$$

(pozitív) számot, ill. az ennek megfelelő N, M-et figyelembe véve legyen

$$S := \max\{N, M\}.$$

Ha $n \in \mathbb{N}$ és n > S, akkor nyilván n > N és n > M is fennáll, következésképpen

$$|\alpha - \beta| = |x_n - \alpha - (x_n - \beta)| \le |x_n - \alpha| + |x_n - \beta| < \varepsilon + \varepsilon = |\alpha - \beta|,$$

amiből (a nyilván nem igaz) $|\alpha - \beta| < |\alpha - \beta|$ egyenlőtlenség következne. Ezért csak $\alpha = \beta$ lehet.

3.5.2. Tétel. Ha az $x=(x_n): \mathbf{N} \to \mathbf{K}$ sorozat konvergens, akkor tetszőleges ν indexsorozat esetén az $x \circ \nu$ résszorozat is konvergens és $\lim(x \circ \nu) = \lim x$.

Bizonyítás. Legyen $\alpha := \lim x$, ekkor bármely $\varepsilon > 0$ számhoz van olyan $N \in \mathbb{N}$, hogy

$$|x_n - \alpha| < \varepsilon$$
 $(n \in \mathbb{N}, n > N).$

Mivel $\nu_n \geq n \ (n \in \mathbb{N})$, ezért $n \in \mathbb{N}$, n > N esetén $\nu_n > N$ is igaz. Következésképpen

$$|x_{\nu_n} - \alpha| < \varepsilon$$
 $(n \in \mathbb{N}, n > N).$

Ez éppen azt jelenti, amit állítottunk.

3.5.3. Tétel. Bármely monoton és korlátos $x: \mathbf{N} \to \mathbf{R}$ sorozat konvergens. Ha x monoton növő, akkor

$$\lim x = \sup \mathcal{R}_x$$

ha pedig monoton fogyó, akkor

$$\lim x = \inf \mathcal{R}_x.$$

Bizonyítás. Tegyük fel, hogy az $x=(x_n): \mathbf{N} \to \mathbf{R}$ sorozat pl. monoton növő és felülről korlátos. Legyen

$$\alpha := \sup \mathcal{R}_x$$
.

Ekkor (figyelembe véve a szuprémumról mondottakat) tetszőleges $\varepsilon > 0$ számhoz van olyan eleme az \mathcal{R}_x halmaznak, amely nagyobb, mint $\alpha - \varepsilon$. Más szóval van olyan $N \in \mathbb{N}$, hogy

$$x_N > \alpha - \varepsilon$$
.

Mivel a feltételezésünk szerint az (x_n) sorozat monoton növő, ezért egyúttal az

$$x_n > \alpha - \varepsilon$$
 $(n \in \mathbb{N}, n > N)$

becslés is igaz. Figyelembe véve még azt, hogy α felső korlátja az \mathcal{R}_x halmaznak azt kapjuk, hogy

$$\alpha - \varepsilon < x_n \le \alpha \quad (n \in \mathbb{N}, n > N).$$

Tehát egyúttal $|x_n - \alpha| < \varepsilon \ (n \in \mathbb{N}, n > N)$.

Értelemszerű módosítással kapjuk ugyanezt monoton fogyó alulról korlátos sorozatokra, ha $\alpha := \inf \mathcal{R}_x$.

3.5.4. Tétel. Ha az (x_n) sorozat konvergens, akkor korlátos is.

Bizonyítás. Legyen ui. (pl.) $\varepsilon := 1$, ekkor egy alkalmas $N \in \mathbb{N}$ mellett

$$|x_n - \alpha| < 1 \qquad (n \in \mathbf{N}, \, n > N).$$

Más szóval

$$|x_n| = |x_n - \alpha + \alpha| \le |x_n - \alpha| + |\alpha| < 1 + |\alpha| \qquad (n \in \mathbb{N}, n > N).$$

Ha tehát

$$K := \max\{1 + |\alpha|, |x_0|, ..., |x_N|\},\$$

akkor nyilván $|x_n| \leq K \ (n \in \mathbb{N})$, azaz az (x_n) sorozat korlátos.

3.5.5. Tétel. Bármely $z=(z_n): \mathbf{N} \to \mathbf{C}$ komplex sorozatra fennáll a következő ekvivalencia: a z sorozat akkor és csak akkor konvergens, ha a Re z, Im z sorozatok konvergensek. Igaz továbbá, hogy ha a z sorozat konvergens és $\alpha := \lim z$, akkor

$$\operatorname{Re} \alpha = \lim(\operatorname{Re} z)$$
, $\operatorname{Im} \alpha = \lim(\operatorname{Im} z)$.

Bizonyítás. Legyen

$$x_n := \operatorname{Re} z_n , y_n := \operatorname{Im} z_n \quad (n \in \mathbf{N}),$$

azaz Re $z = (x_n)$, Im $z = (y_n)$ és $\alpha = u + iv$, ahol

$$u := \operatorname{Re} \alpha$$
 , $v := \operatorname{Im} \alpha$.

Tegyük fel először, hogy a z sorozat konvergens és $\alpha = \lim z$. Következésképpen bármely $\varepsilon > 0$ számhoz létezik olyan $N \in \mathbb{N}$ küszöbindex, hogy

$$|z_n - \alpha| < \varepsilon$$
 $(n \in \mathbb{N}, n > N).$

Mivel

$$|z_n - \alpha| = \sqrt{(x_n - u)^2 + (y_n - v)^2} \ge \begin{cases} |x_n - u| \\ |y_n - v| \end{cases}$$
 $(n \in \mathbf{N}),$

ezért egyúttal

$$|x_n - u|, |y_n - v| < \varepsilon$$
 $(n \in \mathbb{N}, n > N).$

Ez azt jelenti, hogy az $(x_n), (y_n)$ sorozatok konvergensek és $\lim(x_n) = u, \lim(y_n) = v$.

Fordítva, most induljunk ki abból, hogy az $(x_n) := \operatorname{Re} z$, $(y_n) := \operatorname{Im} z$ sorozatok konvergensek és $u := \lim(x_n)$, $v := \lim(y_n)$. Ez azt jelenti, hogy bármely $\varepsilon > 0$ számot is adunk meg, léteznek olyan $M, S \in \mathbf{N}$ küszöbindexek, amelyekkel

$$|x_n - u| < \frac{\varepsilon}{\sqrt{2}} \quad (n \in \mathbf{N}, n > M) , |y_n - v| < \frac{\varepsilon}{\sqrt{2}} \quad (n \in \mathbf{N}, n > S).$$

Ha $\alpha := u + iv$ és $R := \max\{N, S\}$, akkor

$$|x_n - u| < \frac{\varepsilon}{\sqrt{2}}$$
, $|y_n - v| < \frac{\varepsilon}{\sqrt{2}}$ $(n \in \mathbb{N}, n > R)$.

Ugyanakkor

$$|z_n - \alpha| = \sqrt{(x_n - u)^2 + (y_n - v)^2}$$
 $(n \in \mathbf{N})$

miatt

$$|z_n - \alpha| < \sqrt{\left(\frac{\varepsilon}{\sqrt{2}}\right)^2 + \left(\frac{\varepsilon}{\sqrt{2}}\right)^2} = \varepsilon \qquad (n \in \mathbf{N}, n > R)$$

következik, azaz $|z_n - \alpha| < \varepsilon \ (n \in \mathbb{N}, n > R)$. Más szóval a z sorozat konvergens és $\lim z = \alpha$.

3.5.6. Tétel (Bolzano-Weierstrass). Bármely korlátos $z = (z_n) : \mathbf{N} \to \mathbf{K}$ sorozatnak van konvergens részsorozata.

Bizonyítás. Tegyük fel először, hogy $\mathbf{K} = \mathbf{R}$, azaz a szóban forgó sorozat valós értékű. Tudjuk (ld. 3.3.1. Tétel), hogy alkalmas ν indexsorozattal a $z \circ \nu$ részsorozat monoton. Világos, hogy egy korlátos sorozatnak minden részsorozata is korlátos, így a $z \circ \nu$ monoton sorozat is korlátos. Alkalmazható ezért a 3.5.3. Tétel, miszerint a z-nek a most vizsgált $z \circ \nu$ részsorozata konvergens.

Most tegyük fel, hogy $\mathbf{K} = \mathbf{C}$, tehát a tételbeli sorozat komplex számokból áll és legyen $(x_n) := \operatorname{Re} z$, $(y_n) := \operatorname{Im} z$. Emlékeztetünk a korlátos sorozat definícójára (ld. 3.3.): van olyan $K \in \mathbf{R}$, hogy $|z_n| \leq K$ $(n \in \mathbf{N})$. Mivel

$$|z_n| = \sqrt{x_n^2 + y_n^2} \ge \begin{cases} |x_n| \\ |y_n| \end{cases} \quad (n \in \mathbf{N}),$$

ezért $|x_n|$, $|y_n| \le K$ $(n \in \mathbb{N})$. Következésképpen az (x_n) , (y_n) (valós) sorozatok is korlátosak. A bizonyításunk első fele alapján tehát van olyan ν indexsorozat, hogy az (x_{ν_n}) résszorozat konvergens. Világos, hogy az (y_{ν_n}) résszorozat is korlátos, ezért egy alkalmas μ indexsorozattal az $(y_{\nu_{\mu_n}})$ résszorozat konvergens. Legyen

$$\gamma_n := \nu_{\mu_n} \qquad (n \in \mathbf{N}),$$

ekkor a (γ_n) sorozat indexsorozat. Továbbá (ld. 3.5.2. Tétel) az (x_{γ_n}) résszorozat is konvergens. A (γ_n) indexsorozattal tehát azt kaptuk, hogy az (x_{γ_n}) , (y_{γ_n}) sorozatok konvergensek. Ezért (ld. 3.5.5. Tétel) a z sorozat

$$(z_{\gamma_n}) = (x_{\gamma_n} + iy_{\gamma_n})$$

résszorozata konvergens.

3.7.1. Tétel (majoráns kritérium). Tegyük fel, hogy az $(x_n), (y_n) : \mathbf{N} \to \mathbf{K}$ sorozatokra teljesülnek az alábbiak: $(y_n) \in \mathcal{S}_0$ és $|x_n| \leq |y_n|$ (m.m. $n \in \mathbf{N}$). Ekkor $(x_n) \in \mathcal{S}_0$.

Bizonyítás. Valóban, bármely $\varepsilon > 0$ szám mellett egy alkalmas $N \in \mathbf{N}$ küszöbindexszel

$$|y_n| < \varepsilon$$
 $(n \in \mathbb{N}, n > N).$

Ugyanakkor az $|x_n| \leq |y_n|$ (m.m. $n \in \mathbb{N}$) "majoráns feltétel" miatt van olyan $M \in \mathbb{N}$, amellyel

$$|x_n| \le |y_n| \qquad (n \in \mathbf{N}, n > M).$$

Ha tehát $R := \max\{N, M\}$, akkor

$$|x_n| \le |y_n| < \varepsilon$$
 $(n \in \mathbf{N}, n > R),$

azaz $|x_n| < \varepsilon \ (n \in \mathbb{N}, n > R)$. Ez pontosan azt jelenti, hogy $(x_n) \in \mathcal{S}_0$.

3.7.2. Tétel. Bármely $(x_n): \mathbf{N} \to \mathbf{K}$ sorozat esetén igaz a következő ekvivalencia: az (x_n) sorozat akkor és csak akkor konvergens, ha valamilyen $\alpha \in \mathbf{K}$ számmal $(x_n - \alpha) \in \mathcal{S}_0$. Az utóbbi esetben $\alpha = \lim(x_n)$.

Bizonyítás. Tegyük fel el először, hogy az (x_n) sorozat konvergens és legyen

$$\alpha := \lim(x_n)$$
, $y_n := x_n - \alpha$ $(n \in \mathbf{N})$.

Ekkor bármely $\varepsilon > 0$ szám mellett $|y_n| = |x_n - \alpha| < \varepsilon$ (m.m. $n \in \mathbb{N}$). A fentiek szerint ez éppen azt jelenti, hogy $(y_n) = (x_n - \alpha) \in \mathcal{S}_0$.

Fordítva, tegyük fel, hogy $\alpha \in \mathbf{K}$ olyan szám, amellyel $(x_n - \alpha) \in \mathcal{S}_0$. Következésképpen (ld. fent) tetszőleges $\varepsilon > 0$ számra

$$|x_n - \alpha| < \varepsilon$$
 (m. m. $n \in \mathbf{N}$).

Ez nem mást jelent, mint azt, hogy az (x_n) sorozat konvergens és $\lim(x_n) = \alpha$.

3.7.3. Tétel. Bármely $(x_n) \in \mathcal{S}_0$ nullasorozat esetén tetszőleges (y_n) korlátos sorozatra $(x_ny_n) \in \mathcal{S}_0$.

Bizonyítás. A feltételek szerint van olyan $K \in \mathbb{R}$, amellyel

$$|y_n| \le K \qquad (n \in \mathbf{N}).$$

Ha itt K=0, akkor $y_n=0$ $(n\in \mathbf{N})$ és így $x_ny_n=0$ $(n\in \mathbf{N})$. Következésképpen (mint konstanssorozat) $\lim (x_ny_n)=0$, azaz $(x_ny_n)\in \mathcal{S}_0$.

Ha viszont $K \neq 0$, akkor nyilván K > 0. A feltételeink szerint $(x_n) \in \mathcal{S}_0$, ezért tetszőleges $\varepsilon > 0$ számra

$$|x_n| < \frac{\varepsilon}{K}$$
 (m. m. $n \in \mathbf{N}$).

Ezért

$$|x_n y_n| = |x_n| \cdot |y_n| \le K|x_n| < K \frac{\varepsilon}{K} = \varepsilon$$
 (m. m. $n \in \mathbb{N}$),

azaz $(x_n y_n) \in \mathcal{S}_0$.

3.7.4. Tétel. Tetszőleges (x_n) , $(y_n) \in \mathcal{S}_0$ nullasorozatok és bármely $c \in \mathbf{K}$ esetén $(x_n + cy_n) \in \mathcal{S}_0$.

Bizonyítás. A feltételek miatt bármilyen $\varepsilon > 0$ szám esetén alkalmas $N, M \in \mathbf{N}$ küszöbindexekkel

$$|x_n| < \frac{\varepsilon}{2(1+|c|)}$$
 $(n \in \mathbb{N}, n > N)$, $|y_n| < \frac{\varepsilon}{2(1+|c|)}$ $(n \in \mathbb{N}, n > M)$.

Legyen $S := \max\{N, M\}$, ekkor (a háromszög-egyenlőtlenséget is felhasználva)

$$|x_n + cy_n| \le |x_n| + |c| \cdot |y_n| \le$$

$$(1+|c|)(|x_n|+|y_n|) < 2(1+|c|)\frac{\varepsilon}{2(1+|c|)} = \varepsilon \quad (n \in \mathbb{N}, n > S).$$

Tehát az $(x_n + cy_n)$ sorozat valóban nullasorozat: $(x_n + cy_n) \in \mathcal{S}_o$

3.7.5. Tétel. Tetszőleges $(x_n), (y_n) \in \mathcal{S}$ és $c \in \mathbf{K}$ esetén

- i) $(x_n + cy_n) \in \mathcal{S}$ és $\lim(x_n + cy_n) = \lim(x_n) + c \lim(y_n)$,
- ii) $(x_n y_n) \in \mathcal{S}$ és $\lim (x_n y_n) = \lim (x_n) \cdot \lim (y_n)$,
- iii) ha $y_n \neq 0 \ (n \in \mathbb{N})$ és $\lim(y_n) \neq 0$, akkor $\left(\frac{x_n}{y_n}\right) \in \mathcal{S}$ és

$$\lim \left(\frac{x_n}{y_n}\right) = \frac{\lim(x_n)}{\lim(y_n)}.$$

Bizonyítás. Legyen

$$\alpha := \lim(x_n) , \beta := \lim(y_n)$$

és lássuk be először az i) állítást. A 3.7.2. Tételt figyelembe véve azt kell ehhez megmutatnunk, hogy

$$(x_n + cy_n - (\alpha + c\beta)) \in \mathcal{S}_0.$$

Legyen $n \in \mathbb{N}$, ekkor

$$|x_n + cy_n - (\alpha + c\beta)| = |x_n - \alpha + c(y_n - \beta)| \le |x_n - \alpha| + |c| \cdot |y_n - \beta| =: z_n.$$

A 3.7.2. Tétel szerint $(|x_n - \alpha|)$, $(|y_n - \beta|) \in \mathcal{S}_0$, ezért a 3.7.4. Tétel miatt $(z_n) \in \mathcal{S}_0$. Alkalmazható tehát a 3.7.1. Tétel, hogy ti. $(x_n + cy_n - (\alpha + c\beta)) \in \mathcal{S}_0$.

Hasonlóan járhatunk el a ii) állítás bizonyítása során is. Legyen $n \in \mathbb{N}$, ekkor

$$|x_n y_n - \alpha \beta| = |(x_n - \alpha)y_n + \alpha(y_n - \beta)| \le |x_n - \alpha| \cdot |y_n| + |\alpha| \cdot |y_n - \beta| =: s_n.$$

A 3.7.2. Tétel és a 3.7.3. Tétel miatt $(|x_n - \alpha| \cdot |y_n|) \in \mathcal{S}_0$, ill. a 3.7.3. Tétel szerint $(|y_n - \beta|) \in \mathcal{S}_0$. A 3.7.4. Tételből ezért azt kapjuk, hogy $(s_n) \in \mathcal{S}_0$, amiből meg a 3.7.1. Tétel alapján $(x_n y_n - \alpha \beta) \in \mathcal{S}_0$, azaz (ld. 3.7.2. Tétel) ii) következik.

Végül lássuk be a iii) állítást. Ehhez mutassuk meg először is azt, hogy az $y_n \neq 0$ $(n \in \mathbf{N})$, $\beta = \lim(y_n) \neq 0$ feltételek miatt az $(1/y_n)$ (reciprok) sorozat korlátos. Legyen ehhez $\varepsilon := |\beta|/2$, ekkor egy alkalmas $N \in \mathbf{N}$ küszöbindex mellett

$$|y_n - \beta| < \varepsilon = \frac{|\beta|}{2}$$
 $(n \in \mathbb{N}, n > N).$

Így

$$|y_n| = |\beta + y_n - \beta| \ge |\beta| - |y_n - \beta| > |\beta| - |\beta|/2 = \frac{|\beta|}{2}$$
 $(n \in \mathbb{N}, n > N).$

Tehát

$$\left|\frac{1}{y_n}\right| < \frac{|\beta|}{2} \qquad (n \in \mathbf{N}, n > N),$$

következésképpen a

$$q := \max \left\{ \left| \frac{1}{y_0} \right|, ..., \left| \frac{1}{y_N} \right| \right\}$$

jelöléssel

$$\left|\frac{1}{y_n}\right| \le \max\{q, |\beta|/2\} \qquad (n \in \mathbf{N}).$$

Most lássuk be, hogy $(1/y_n) \in \mathcal{S}$ és $\lim(1/y_n) = 1/\beta$. Ui.

$$\frac{1}{y_n} - \frac{1}{\beta} = \frac{\beta - y_n}{\beta \cdot y_n} = (\beta - y_n) \cdot \frac{1}{\beta \cdot y_n} \qquad (n \in \mathbf{N}).$$

A 3.7.2. Tétel alapján $(\beta - y_n) \in \mathcal{S}_0$, ill. az előbbiek szerint $(1/y_n)$ és így nyilván $(1/(\beta y_n))$ is korlátos sorozat. A 3.7.3. Tétel miatt ezért $((\beta - y_n)/(\beta y_n)) \in \mathcal{S}_0$, ami (ld. 3.7.2. Tétel) éppen azt jelenti, amit állítottunk.

Azt kell már csupán figyelembe venni, hogy

$$\frac{x_n}{y_n} = x_n \cdot \frac{1}{y_n} \qquad (n \in \mathbf{N}),$$

más szóval az (x_n/y_n) "hányados-sorozat" két konvergens sorozat szorzata. Így a ii) állítás (és a reciprok sorozatról az előbb mondottak) miatt $(x_n/y_n) \in \mathcal{S}$ és $\lim (x_n/y_n) = \alpha/\beta$.

3.7.6. Tétel. Tegyük fel, hogy az $(x_n), (y_n) : \mathbb{N} \to \mathbb{R}$ sorozatok konvergensek. Ekkor:

- i) ha $x_n \leq y_n$ (m.m. $n \in \mathbf{N}$), akkor $\lim(x_n) \leq \lim(y_n)$;
- ii) $ha \lim(x_n) < \lim(y_n), akkor x_n < y_n \pmod{n}$.

Bizonyítás. Legyen $\alpha:=\lim(x_n),\ \beta:=\lim(y_n)$ és lássuk be először az i) állítást. Vegyük észre, hogy ez következik ii)-ből. Valóban, ha az i)-beli $x_n \leq y_n \pmod{n}$ (m.m. $n \in \mathbf{N}$) feltétel mellett indirekt módon azt tesszük fel, hogy $\beta < \alpha$, akkor ii)-ből (az $x_n \leftrightarrow y_n \pmod{n}$ szerepcserével) azt kapjuk, hogy $y_n < x_n \pmod{n}$. Ez nyilván ellentmond az $x_n \leq y_n \pmod{n}$ (m.m. $n \in \mathbf{N}$) feltételezésnek.

Ezzel az i) állítást beláttuk. Megjegyezzük, hogy egyébként i) következik ii)-ből. Ui. indirekt módon feltéve i)-ben, hogy $\beta < \alpha$, a ii) állításból $y_n < x_n \pmod{n.m.n \in \mathbf{N}}$ adódik, ami nyilván ellentmond az i)-beli feltételnek.

A ii) bizonyításához legyen

$$\varepsilon := \frac{\beta - \alpha}{2},$$

az $M, R \in \mathbf{N}$ küszöbindexeket pedig válasszuk úgy, hogy

$$\alpha - \varepsilon < x_n < \alpha + \varepsilon = \frac{\alpha + \beta}{2}$$
 $(n \in \mathbb{N}, n > M),$

ill.

$$\beta - \varepsilon = \frac{\alpha + \beta}{2} < y_n < \beta + \varepsilon$$
 $(n \in \mathbb{N}, n > R).$

Tehát az $S := \max\{M, R\}$ küszöbindexszel

$$x_n < \frac{\alpha + \beta}{2} < y_n \qquad (n \in \mathbf{N}, n > S).$$

Más szóval $x_n < y_n \ (n \in \mathbb{N}, n > S)$, amint azt ii)-ben állítottuk. \blacksquare

3.7.7. Tétel (közrefogási elv). $Az(x_n), (y_n), (z_n) : \mathbb{N} \to \mathbb{R}$ sorozatokról tegyük fel, hogy

$$x_n \le y_n \le z_n$$
 (m.m. $n \in \mathbf{N}$),

 $az(x_n),(z_n)$ sorozatok konvergensek és $\lim(x_n) = \lim(z_n)$. Ekkor $az(y_n)$ sorozat is konvergens és $\lim(y_n) = \lim(x_n)$.

Bizonyítás. Az $x_n \leq y_n \leq z_n \pmod{n}$, közrefogási" feltétel miatt egy alkalmas $N \in \mathbf{N}$ indexszel

$$x_n \le y_n \le z_n \qquad (n \in \mathbf{N}, N > N).$$

На

$$\alpha := \lim(x_n) = \lim(z_n)$$

és $\varepsilon>0$ tetszőleges, akkor egy-egy $M,R\in\mathbf{N}$ küszöbindex mellett

$$\alpha - \varepsilon < x_n < \alpha + \varepsilon$$
 $(n \in \mathbf{N}, n > M),$

ill.

$$\alpha - \varepsilon < z_n < \alpha + \varepsilon$$
 $(n \in \mathbb{N}, n > R).$

Legyen $S := \max\{N, M, R\}$, ekkor

$$\alpha - \varepsilon < x_n \le y_n \le z_n < \alpha + \varepsilon$$
 $(n \in \mathbb{N}, n > S).$

Ez azt jelenti, hogy

$$|y_n - \alpha| < \varepsilon$$
 $(n \in \mathbb{N}, n > S),$

azaz az (y_n) sorozat valóban konvergens és $\lim(y_n) = \alpha$.

3.7.8. Tétel. $Az(y_n): \mathbb{N} \to \mathbb{K}$ sorozat akkor és csak akkor konvergens, ha Cauchy-sorozat.

Bizonyítás. Az eddig mondottak miatt csupán az elégségességet kell már igazolnunk. Tegyük fel tehát, hogy az $(y_n) : \mathbf{N} \to \mathbf{K}$ sorozat Cauchy-sorozat, azaz teljesül a (3.7.1) feltétel. Lássuk be először is, hogy

ekkor (y_n) korlátos. Valóban, ha (pl.) a (3.7.1) kritériumot az $\varepsilon := 1$ választással alkalmazzuk, akkor (egy alkalmas $N \in \mathbb{N}$ indexszel)

$$|y_n - y_m| < 1$$
 $(n, m \in \mathbb{N}, n, m > N).$

Innen

$$|y_n| = |(y_n - y_{N+1}) + y_{N+1}| \le$$

$$|y_n - y_{N+1}| + |y_{N+1}| < 1 + |y_{N+1}|$$
 $(n \in \mathbb{N}, n > N)$

következik. Ha

$$q := \max\{|y_0|, ..., |y_N|\},\$$

akkor

$$|y_n| \le \max\{q, 1 + |y_{N+1}|\} \quad (n \in \mathbf{N}),$$

azaz a szóban forgó sorozat valóban korlátos. Alkalmazható tehát a Bolzano-Weierstrass-féle kiválasztási tétel (ld. 3.5.6. Tétel), miszerint egy alkalmas (ν_n) indexsorozattal az (y_{ν_n}) résszorozat konvergens.

Legyen

$$\alpha := \lim(y_{\nu_n})$$

és $\varepsilon > 0$ tetszőleges. Ekkor van olyan $M \in \mathbf{N}$ küszöbindex, hogy

$$|y_{\nu_n} - \alpha| < \frac{\varepsilon}{2}$$
 $(n \in \mathbf{N}, n > M).$

A (3.7.1) Cauchy-kritériumot most ε helyett $\varepsilon/2$ -re alkalmazva azt mondhatjuk, hogy egy alkalmas $N \in \mathbf{N}$ mellett

$$|y_n - y_m| < \frac{\varepsilon}{2}$$
 $(n, m \in \mathbf{N}, n, m > N).$

Legyen $R := \max\{N, M\}$. Emlékeztetünk arra, hogy $\nu_n \ge n \ (n \in \mathbb{N})$, azaz $n \in \mathbb{N}$, $n > R (\ge M)$ esetén egyúttal $\nu_n > R (\ge N)$ is teljesül. Ezért

$$|y_n - \alpha| = |(y_n - y_{\nu_n}) + (y_{\nu_n} - \alpha)| \le |y_n - y_{\nu_n}| + |y_{\nu_n} - \alpha|| < |y_n - \alpha||$$

$$\frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$
 $(n \in \mathbb{N}, n > R).$

Tehát az (y_n) sorozat konvergens (és $\lim(y_n) = \alpha$).

3.7.9. Tétel. Bármely monoton $x = (x_n) : \mathbf{N} \to \mathbf{R}$ sorozatnak van határértéke. Ha (x_n) monoton növő, akkor $\lim(x_n) = \sup \mathcal{R}_x$, ha monoton fogyó, akkor $\lim(x_n) = \inf \mathcal{R}_x$.

Bizonyítás. Ha pl. az $x=(x_n): \mathbf{N} \to \mathbf{R}$ sorozat monoton növő és felülről nem korlátos (azaz sup $\mathcal{R}_x=+\infty$), akkor tetszőleges $p\in \mathbf{R}$ esetén egy alkalmas $N\in \mathbf{N}$ indexszel $x_N>p$. A monotonitás miatt ezért egyúttal az is igaz, hogy

$$x_n > p$$
 $(n \in \mathbb{N}, n > N).$

A definíció értelmében tehát $\lim(x_n) = +\infty$.

Analóg módon kapjuk monoton fogyó és alulról nem korlátos $y=(y_n)$ sorozatra (amikor is tehát inf $\mathcal{R}_y=-\infty$), hogy $\lim(y_n)=-\infty$.

3.7.10. Tétel. Tegyük fel, hogy az $(x_n), (y_n) : \mathbf{N} \to \mathbf{R}$ sorozatok mindegyikének van határértéke, legyen $\alpha := \lim(x_n), \beta := \lim(y_n)$. Ekkor

- i) ha az $\alpha + \beta \in \overline{\mathbf{R}}$ összeg értelmezve van, akkor az $(x_n + y_n)$ összeg-sorozatnak is van határértéke és $\lim(x_n + y_n) = \alpha + \beta$;
- ii) ha az $\alpha\beta \in \overline{\mathbf{R}}$ szorzat értelmezve van, akkor az (x_ny_n) szorzat-sorozatnak is van határértéke és $\lim(x_ny_n) = \alpha\beta$;
- iii) ha $y_n \neq 0$ $(n \in \mathbb{N})$ és az $\alpha/\beta \in \overline{\mathbb{R}}$ hányados értelmezve van, akkor az (x_n/y_n) hányadossorozatnak is van határértéke és $\lim (x_n/y_n) = \alpha/\beta$.

Bizonyítás. Nyilván feltehető már (ld. 3.7.5. Tétel), hogy α, β közül legalább az egyik nem valós szám. Lássuk be először i)-t. Legyen első esetként pl.

$$\alpha \in \mathbf{R}$$
, $\beta = +\infty$.

Ekkor i) szerint azt kell megmutatnunk, hogy $\lim(x_n + y_n) = \alpha + \beta = +\infty$. Legyen ehhez $p \in \mathbf{R}$ tetszőleges, ekkor van olyan $N \in \mathbf{N}$, hogy

$$y_n > p - \alpha + 1$$
 $(n \in \mathbb{N}, n > N).$

Mivel $\alpha \in \mathbf{R}$, azaz (x_n) konvergens, ezért egy alkalmas $M \in \mathbf{N}$ küszöbindexszel

$$\alpha - 1 < x_n < \alpha + 1$$
 $(n \in \mathbb{N}, n > M).$

Következésképpen

$$x_n + y_n > \alpha - 1 + p - \alpha + 1 = p$$
 $(n \in \mathbb{N}, n > \max\{N, M\}),$

azaz $\lim(x_n + y_n) = +\infty$.

Analóg módon adódik az i) állítás akkor is, ha $\alpha \in \mathbf{R}$, $\beta = -\infty$. Ha viszont

$$\alpha = \beta = +\infty$$
,

akkor az előbbi bizonyítást annyiban kell csupán módosítani, hogy az ott szereplő $p \in \mathbf{R}$ mellett egy-egy alkalmas $N, M \in \mathbf{N}$ küszöbindexszel

$$y_n > \frac{p}{2} \quad (n \in \mathbf{N}, n > N) \ , \ x_n > \frac{p}{2} \quad (n \in \mathbf{N}, n > M).$$

Ezért

$$x_n+y_n>\frac{p}{2}+\frac{p}{2}=p \qquad (n\in \mathbf{N}, n>\max\{N,M\}),$$

azaz $\lim(x_n + y_n) = \alpha + \beta = +\infty.$

Világos, hogy a most mondottak egyszerű módosítával kapjuk i)-t akkor is, ha $\alpha = \beta = -\infty$.

Bizonyítsuk be most ii)-t akkor, ha $0 < \alpha \in \mathbf{R}$ és $\beta = +\infty$. Ekkor alkalmas $N \in \mathbf{N}$ küszöbbel

$$\alpha - \frac{\alpha}{2} = \frac{\alpha}{2} < x_n < \alpha + \frac{\alpha}{2} \qquad (n \in \mathbb{N}, n > N),$$

ill. tetszőleges $0 számhoz van olyan <math>M \in \mathbf{N}$, hogy

$$y_n > \frac{2p}{\alpha}$$
 $(n \in \mathbf{N}, n > M).$

Innen azt kapjuk, hogy

$$x_n y_n > \frac{\alpha}{2} \cdot \frac{2p}{\alpha} = p$$
 $(n \in \mathbb{N}, n > \max\{N, M\}).$

Ez pontosan azt jelenti, hogy $\lim(x_ny_n) = \alpha\beta = +\infty$.

A fentiek értelemszerű módosításával "kezelhetjük" a ii) állítás bizonyításakor az

$$0 \neq \alpha \in \mathbf{R}, \ \beta = \pm \infty$$

esetekből a még "hiányzókat".

Most belátjuk ii)-t akkor, ha $\alpha = \beta = +\infty$. Itt annyi a különbség a fent részletezett $0 < \alpha \in \mathbf{R}$, $\beta = +\infty$ esethez képest, hogy az N, M küszöbindexekről az alábbiakat tételezhetjük fel:

$$x_n > \sqrt{p} \quad (n \in \mathbf{N}, n > N) \quad , \quad y_n > \sqrt{|p|} \quad (n \in \mathbf{N}, n > M).$$

Következésképpen

$$x_n y_n > \sqrt{p} \cdot \sqrt{p} = p$$
 $(n \in \mathbf{N}, n > \max\{N, M\}),$

azaz $\lim(x_n y_n) = \alpha \beta = +\infty$.

Analóg módon kapjuk a ii)-ből még "hiányzó" eseteket.

A iii) állításhoz tegyük fel, hogy $0 < \beta \in \mathbf{R}$ és $\alpha := \pm \infty$. Ekkor (ld. 3.7.5. Tétel)

$$\lim \left(\frac{1}{y_n}\right) = \frac{1}{\beta}$$

és a iii) állítás következik a ii)-ből. Analóg módon kapjuk iii)-t a $0 > \beta \in \mathbf{R}$, $\alpha = \pm \infty$ esetekben is. Ha viszont $\beta = \pm \infty$ és $\alpha \in \mathbf{R}$, akkor először lássuk be, hogy

$$\lim \left(\frac{1}{y_n}\right) = 0.$$

Legyen ui. $\beta = +\infty$ és $\varepsilon > 0$, ekkor egy alkalmas $N \in \mathbb{N}$ mellett

$$y_n > \frac{1}{\varepsilon}$$
 $(n \in \mathbf{N}, n > N).$

Tehát $0 < 1/y_n < \varepsilon$ $(n \in \mathbb{N}, n > N)$, azaz $\lim(1/y_n) = 0$.

Ha $\beta = -\infty$, akkor annyi a különbség a most mondottakhoz képest, hogy

$$y_n < -\frac{1}{\varepsilon}$$
 $(n \in \mathbf{N}, n > N),$

azaz $-\varepsilon < 1/y_n < 0 \ (n \in \mathbf{N}, n > N).$ Így $\lim(1/y_n) = 0.$

Alkalmazható ezért a 3.7.5. Tétel:

$$\lim \left(\frac{x_n}{y_n}\right) = \lim \left(x_n \cdot \frac{1}{y_n}\right) = \alpha \cdot 0 = 0 = \frac{\alpha}{\pm \infty} = \frac{\alpha}{\beta}.$$

3.9.1. Tétel. A pozitív természetes számok reciprokaiból álló (1/n) sorozat nullasorozat, azaz konvergens és

$$\lim \left(\frac{1}{n}\right) = 0.$$

Bizonyítás. Tetszőleges $\varepsilon>0$ számhoz legyen (ld. 1.3.1. Tétel) $N\in {\bf N}$ olyan, hogy $N\varepsilon>1,$ azaz $1/N<\varepsilon.$ Ekkor

$$0 < \frac{1}{n} < \frac{1}{N} < \varepsilon$$
 $(n \in \mathbf{N}, n > N),$

3.9.2. Tétel. Legyen $q \in \mathbf{K}$. Ekkor

 $1^{\circ} |q| < 1$ esetén a (q^n) sorozat nullasorozat, azaz konvergens és

$$\lim (q^n) = 0;$$

- 2^o ha |q| > 1, akkor a (q^n) sorozat divergens és $\lim(|q^n|) = +\infty$, ill. $q \in \mathbf{R}$, q > 1 esetén $\lim(q^n) = +\infty$, míg $q \in \mathbf{R}$, q < -1 esetén nincs határértéke a (q^n) sorozatnak;
- 3^{o} a |q| = 1 esetben a (q^{n}) sorozat akkor és csak akkor konvergens, ha q = 1 (és ekkor $\lim(q^{n}) = \lim(1) = 1$).

Bizonyítás. Mivel q = 0 esetén $q^n = 0$ $(0 < n \in \mathbf{N})$, ezért ebben az esetben az (q^n) $(k \in \mathbf{N})$ sorozat triviálisan nullasorozat.

Ezért feltehetjük, hogy 0 < |q| < 1, azaz 1/|q| > 1. Van tehát olyan h > 0 szám, amellyel

$$\frac{1}{|q|} = 1 + h.$$

A Bernoulli-egyenlőtlenség (ld. 1.3.4. Tétel) szerint

$$\frac{1}{|q|^n} = (1+h)^n \ge 1 + nh > nh \qquad (n \in \mathbf{N}),$$

azaz

$$|q|^n < \frac{1}{nh} \qquad (0 < n \in \mathbf{N}).$$

A 3.9.1. Tétel, ill. a 3.7.4. Tétel miatt az (1/(nh) sorozat nullasorozat, következésképpen a majoránskritérium (ld. 3.7.1. Tétel) $\lim_{n \to \infty} q^n = 0$.

Most tegyük fel, hogy |q| > 1, azaz valamilyen h > 0 számmal |q| = 1 + h. Ekkor a Bernoulliegyenlőtlenség (ld. 1.3.4. Tétel) szerint

$$|q^n| = |q|^n = (1+h)^n \ge 1 + nh > nh$$
 $(n \in \mathbb{N}).$

Következéséppen a (q^n) sorozat (nyilván) nem korlátos, így (ld. 3.5.4. Tétel) divergens. Ha $p \in \mathbf{R}$ tetszőleges, akkor legyen $N \in \mathbf{N}$ olyan, hogy N > p/h. Világos, hogy ekkor

$$|q^n| > nh > Nh > p$$
 $(n \in \mathbf{N}, n > N),$

azaz

$$\lim (|q^n|) = +\infty.$$

Ha itt $1 < q \in \mathbf{R}$, akkor

$$\lim (|q^n|) = \lim (q^n) = +\infty.$$

Ha viszont $q \in \mathbf{R}$ és q < -1, akkor az előzőek (és $q^2 > 1$ miatt)

$$\lim (q^{2n}) = \lim ((q^2)^n) = +\infty,$$

de

$$\lim \left(q^{2n+1}\right) = q \lim \left(\left(q^2\right)^n\right) = q \cdot (+\infty) = -\infty.$$

Ezért nem létezik a (q^n) sorozatnak határértéke.

Legyen végül |q| = 1 és $x_n := q^n \ (n \in \mathbb{N})$. Világos, hogy

$$x_{n+1} = q^{n+1} = qq^n = qx_n \qquad (n \in \mathbf{N}).$$

Ha az (x_n) sorozat konvergens és $\alpha := \lim(x_n)$, akkor $\alpha = \lim(x_{n+1})$, azaz az előbbi rekurzív összefüggés alapján

$$\alpha = \lim(x_{n+1}) = q \lim(x_n) = q\alpha.$$

Azt kaptuk tehát, hogy $(1-q)\alpha=0$. Innen q=1 vagy $\alpha=0$ következik. Az utóbbi nem lehet, ui.

$$|\alpha| = \lim(|x_n|) = \lim(1) = 1.$$

3.9.3. Tétel. Legyen

$$x_n := \left(1 + \frac{1}{n}\right)^n \qquad (0 < n \in \mathbf{N}).$$

Ekkor az (x_n) sorozat szigorúan monoton növő és felülről korlátos.

Bizonyítás. Alkalmazzuk a számtani-mértani középpel kapcsolatos tételünket (ld. 1.3.5. Tétel) az alábbi "szereposztással" (az idézett tételbeli jelöléseket használva):

$$a_0 := 1$$
 , $a_k := 1 + \frac{1}{n}$ $(k = 1, ..., n)$ $(0 < n \in \mathbf{N})$.

Mivel a most definiált a_k -k nem mind egyenlők egymással, ezért

$$x_n = \prod_{k=0}^n a_k < \left(\frac{\sum_{k=0}^n a_k}{n+1}\right)^{n+1} = \left(\frac{1+n+1}{n+1}\right)^{n+1} = x_{n+1} \qquad (0 < n \in \mathbf{N}).$$

Tehát az (x_n) sorozat szigorúan monoton növő.

A korlátosság bizonyításához módosítsuk az előbbi a_k -kat úgy, hogy

$$a_0 := a_1 := \frac{1}{2}$$
, $a_k := 1 + \frac{1}{n}$ $(k = 2, ..., n + 1)$ $(0 < n \in \mathbb{N})$.

Alkalmazva az 1.3.5. Tételt azt mondhatjuk, hogy

$$\frac{x_n}{4} = \prod_{k=0}^{n+1} a_k < \left(\frac{\sum_{k=0}^{n+1} a_k}{n+2}\right)^{n+2} = \left(\frac{1/2 + 1/2 + n + 1}{n+2}\right)^{n+2} = 1 \qquad (0 < n \in \mathbf{N}),$$

következésképpen $x_n < 4 \ (n \in \mathbf{N})$.

3.9.4. Tétel. Legyen $2 \le m \in \mathbb{N}$, a > 0 és tekintsük azt az (x_n) számsorozatot, amelyre

$$x_0 := a , x_n := \frac{1}{m} \left((m-1)x_{n-1} + \frac{a}{x_{n-1}^{m-1}} \right) \quad (0 < n \in \mathbf{N}).$$

Ekkor az (x_n) sorozat konvergens, $\gamma := \lim(x_n) > 0$ és $\gamma^m = a$.

A bizonyítás előtt emlékeztetünk a rekurzió tételre, miszerint a tételben szereplő sorozat létezik.

Bizonyítás. Mutassuk meg először, hogy $x_n > 0 \ (n \in \mathbb{N})$ és

$$(*) x_n \ge x_{n+1} (0 < n \in \mathbf{N}).$$

Valóban, a pozitivitáshoz alkalmazzunk teljes indukciót: $x_0 = a > 0$, ha pedig valamilyen $0 < n \in \mathbb{N}$ esetén $x_{n-1} > 0$, akkor az (x_n) sorozatot meghatározó rekurzív összefüggés alapján $x_n > 0$ is triviálisan igaz.

A monotonitást jelentő (*) összefüggés azzal ekvivalens, hogy

$$x_n \ge \frac{1}{m} \left((m-1)x_n + \frac{a}{x_n^{m-1}} \right) \qquad (0 < n \in \mathbf{N}),$$

azaz átrendezés után azzal, hogy

$$(**) x_n^m \ge a (0 < n \in \mathbf{N}).$$

A (**) becslés igazolásához alkalmazzuk a számtani-mértani közép-tételt (ld. 1.3.5. Tétel, az ottani jelölésekkel n helyett (m-1)-gyel) az

$$a_0 := \dots =: a_{m-2} := x_{n-1} , \ a_{m-1} := \frac{a}{x_{n-1}^{m-1}}$$

"változatban":

$$\prod_{k=0}^{m-1} a_k = x_{n-1}^{m-1} \frac{a}{x_{n-1}^{m-1}} = a \le \left(\frac{\sum_{k=0}^{m-1} a_k}{m}\right)^m = \left(\frac{(m-1)x_{n-1} + a/x_{n-1}^{m-1}}{m}\right)^m = x_n^m.$$

Az (x_n) sorozat tehát (ld. 3.5.3. Tétel) konvergens, legyen $\gamma := \lim(x_n)$. A 3.7.5., 3.7.6. Tételek miatt $\gamma \ge 0$, ill. az (x_n^m) sorozat is konvergens és

$$\lim(x_n^m) = \gamma^m \ge a \ (>0).$$

Következésképpen $\gamma > 0$. Tudjuk, hogy az (x_{n-1}) sorozat is konvergens és $\lim(x_{n-1}) = \gamma$. Ezért az (x_n) sorozatot megadó rekurzív összefüggés és a 3.7.5. Tétel alapján

$$\gamma = \lim(x_n) = \lim\left(\frac{1}{m}\left((m-1)x_{n-1} + \frac{a}{x_{n-1}^{m-1}}\right)\right) =$$

$$\frac{1}{m} \left((m-1) \lim_{n \to \infty} (x_{n-1}) + \frac{a}{\lim_{n \to \infty} (x_{n-1}^{m-1})} \right) = \frac{1}{m} \left((m-1)\gamma + \frac{a}{\gamma^{m-1}} \right).$$

Innen már egyszerű átrendezéssel kapjuk, hogy $\gamma^m = a$.

3.9.5. Tétel. Tetszőleges $0 < a \in \mathbf{R}$ esetén

$$\lim \left(\sqrt[n]{a}\right) = 1.$$

Bizonyítás. Tegyük fel először, hogy a > 1. Ekkor bármely $2 \le n \in \mathbb{N}$ "kitevővel" $\sqrt[n]{a} > 1$, azaz valamilyen $0 < h_n \in \mathbb{R}$ számmal $\sqrt[n]{a} = 1 + h_n$. Következésképpen a Bernoulli-egyenlőtlenség (ld. 1.3.4. Tétel) alapján

$$a = (\sqrt[n]{a})^n = (1 + h_n)^n \ge 1 + nh_n \qquad (2 \le n \in \mathbf{N}).$$

Innen azt kapjuk, hogy

$$0 < h_n \le \frac{a-1}{n} \qquad (2 \le n \in \mathbf{N}).$$

A 3.9.1., 3.7.4. Tételek miatt $\lim((a-1)/n) = 0$, azaz a majoráns kritériumot (ld. 3.7.1. Tétel) alkalmazva $\lim(h_n) = 0$. A 3.7.2. Tétel miatt tehát $\lim(1 + h_n) = 1$, ill. a 3.7.5. Tételt figyelembe véve a $\lim \left(\sqrt[n]{a}\right)$ sorozat is konvergens és $\lim \left(\sqrt[n]{a}\right) = 1$.

Az a=1 esetben az állításunk triviális, hiszen ekkor $(\sqrt[n]{a})=(1)$ miatt az $(\sqrt[n]{a})$ sorozat konstanssorozat és $\lim (\sqrt[n]{a})=1$.

Ha 0 < a < 1, akkor 1/a > 1 és az első eset alapján

$$\lim \left(\sqrt[n]{1/a}\right) = 1.$$

Ugyanakkor (könnyen ellenőrizhetően)

$$\sqrt[n]{a} = \frac{1}{\sqrt[n]{1/a}} \qquad (2 \le n \in \mathbf{N}),$$

azaz a műveleti "szabályok" (ld. 3.7.5. Tétel) miatt az $(\sqrt[n]{a})$ sorozat is konvergens és

$$\lim \left(\sqrt[n]{a}\right) = \frac{1}{\lim \left(\sqrt[n]{1/a}\right)} = 1.$$

3.9.6. Tétel. Az $(\sqrt[n]{n})$ sorozat konvergens és

$$\lim \left(\sqrt[n]{n}\right) = 1.$$

Bizonyítás. Legyen $2 \le n \in \mathbb{N}$, ekkor $\sqrt[n]{n} > 1$, azaz $\sqrt[n]{n} = 1 + h_n$ valamilyen $0 < h_n$ számmal. Így a binomiális tételt alkalmazva

$$n = (\sqrt[n]{n})^n = (1 + h_n)^n = \sum_{k=0}^n \binom{n}{k} h_n^k \ge \binom{n}{0} h_n^0 + \binom{n}{1} h_n + \binom{n}{2} h_n^2 = 1 + nh_n + \frac{n(n-1)}{2} h_n^2 \ge 1 + \frac{n^2}{4} h_n^2.$$

Ezért

$$0 < h_n^2 \le \frac{4(n-1)}{n^2} < \frac{4}{n}.$$

Az előző tétel bizonyításában is idézett tételeink alapján innen az következik, hogy $\lim(h_n^2) = 0$. Ez azt jelenti, hogy bármely $\varepsilon > 0$ számra $0 < h_n^2 < \varepsilon^2 \pmod{n}$. Más szóval $0 < h_n < \varepsilon \pmod{n}$, azaz $\lim(h_n) = 0$. Követezésképpen (ld. az előző tétel bizonyításában követett analóg gondolatmenet)

$$\lim \left(\sqrt[n]{n}\right) = \lim(1 + h_n) = 1.$$

3.9.7. Tétel. Legyen valamely $0 < N, M \in \mathbf{N}$ esetén adott az N-ed fokú P polinom és az M-ed fokú Q polinom, ill. tekintsük az $x_n := \frac{P(n)}{Q(n)}$ $(n \in \mathbf{N} \setminus \mathbf{N}_Q)$ sorozatot, ahol \mathbf{N}_Q jelöli a Q polinom gyökeinek a halmazát. Ha $P(x) = \sum_{k=0}^{N} a_k x^k$, $Q(x) = \sum_{j=0}^{M} b_j x^j$ $(x \in \mathbf{K})$, akkor

 $1^{\circ} N = M$ esetén az (x_n) sorozat konvergens és $\lim(x_n) = \frac{a_N}{b_N}$;

 $2^{\circ} N < M$ esetén az (x_n) sorozat konvergens és $\lim(x_n) = 0$.

Bizonyítás. Tegyük fel, hogy N = M, ekkor

$$x_n = \frac{\sum_{k=0}^{N} a_k n^k}{\sum_{i=0}^{N} b_i n^j} = \frac{a_N + \sum_{k=0}^{N-1} a_k n^{k-N}}{b_N + \sum_{i=0}^{N-1} b_i n^{j-N}} \qquad (0 < n \in \mathbf{N} \setminus \mathbf{N}_Q).$$

Mivel az összes itt szereplő n, ill. k = 0, ..., N-1 és j = 0, ..., N-1 indexre

$$n^{k-N} \le \frac{1}{n} \ , \ n^{j-N} \le \frac{1}{n},$$

ezért $\lim(n^{k-N}) = \lim(n^{j-N}) = 0$. A "műveleti szabályok" (ld. 3.7.5. Tétel) alapján ezért

$$\lim \left(a_N + \sum_{k=0}^{N-1} a_k n^{k-N} \right) = a_N , \lim \left(b_N + \sum_{k=0}^{N-1} b_k n^{k-N} \right) = b_N,$$

ill. $b_N \neq 0$ miatt

$$\lim(x_n) = \frac{\lim \left(a_N + \sum_{k=0}^{N-1} a_k n^{k-N}\right)}{\lim \left(b_N + \sum_{k=0}^{N-1} b_k n^{k-N}\right)} = \frac{a_N}{b_N}.$$

Ha N < M, akkor

$$x_n = \frac{\sum_{k=0}^{N} a_k n^k}{\sum_{j=0}^{M} b_j n^j} = \frac{1}{n^{M-N}} \cdot \frac{a_N + \sum_{k=0}^{N-1} a_k n^{k-N}}{b_M + \sum_{j=0}^{M-1} b_j n^{j-M}} \qquad (0 < n \in \mathbf{N} \setminus \mathbf{N}_Q).$$

Most is elmondhatjuk, hogy

$$\lim \left(a_N + \sum_{k=0}^{N-1} a_k n^{k-N} \right) = a_N \ , \ \lim \left(b_M + \sum_{j=0}^{M-1} b_j n^{j-M} \right) = b_M,$$

azaz

$$\lim \left(\frac{a_N + \sum_{k=0}^{N-1} a_k n^{k-N}}{b_M + \sum_{j=0}^{M-1} b_j n^{j-M}} \right) = \frac{\lim \left(a_N + \sum_{k=0}^{N-1} a_k n^{k-N} \right)}{\lim \left(b_M + \sum_{j=0}^{M-1} b_j n^{j-M} \right)} = \frac{a_N}{b_M}.$$

Továbbá N < M miatt $M - N \ge 1$, azaz

$$1/n^{M-N} \le 1/n \qquad (0 < n \in \mathbf{N}),$$

így $\lim \left(1/n^{M-N}\right) = 0$ és

$$\lim(x_n) = \lim\left(\frac{1}{n^{M-N}}\right) \cdot \lim\left(\frac{a_N + \sum_{k=0}^{N-1} a_k n^{k-N}}{b_M + \sum_{j=0}^{M-1} b_j n^{j-M}}\right) = 0 \cdot \frac{a_N}{b_M} = 0.$$

4.1.1. Tétel. Tegyük fel, hogy a $\sum (x_n)$ végtelen sor konvergens. Ekkor (x_n) nullasorozat, azaz konvergens és $\lim (x_n) = 0$.

Bizonyítás. Jelöljük S_n -nel $(n \in \mathbb{N})$ a szóban forgó végtelen sor n-edik részletösszegét:

$$S_n := \sum_{k=0}^n x_k \qquad (n \in \mathbf{N}).$$

A feltételünk szerint tehát az (S_n) sorozat konvergens, következésképpen Cauchy-sorozat (ld. 3.7.8. Tétel). Ezért tetszőleges $\varepsilon > 0$ számhoz van olyan $N \in \mathbf{N}$, amellyel

$$|S_n - S_m| < \varepsilon$$
 $(n, m \in \mathbf{N}, n, m > N).$

Speciálisan az $n \in \mathbb{N}, n > N+1, m := n-1$ választással

$$|S_n - S_{n-1}| = |x_n| < \varepsilon,$$

ami pontosan azt jelenti, amit állítottunk.

4.1.2. Tétel. $A \sum (x_n)$ végtelen sor akkor és csak akkor konvergens, ha tetszőleges $\varepsilon > 0$ esetén létezik olyan $N \in \mathbb{N}$, hogy

$$\left| \sum_{k=n+1}^{m} x_k \right| < \varepsilon \qquad (n, m \in \mathbf{N}, m > n > N).$$

Bizonyítás. Legyen $S_n := \sum_{k=0}^n x_k \quad (k \in \mathbf{N})$. Ekkor a $\sum (x_n) = (S_n)$ sor(ozat) pontosan akkor Cauchy-sorozat (azaz konvergens), ha a tételben megfogalmazott feltétel teljesül.

4.1.3. Tétel. A $\sum (1/n)$ harmonikus sor divergens, a $\sum (1/n^2)$ szuperharmonikus sor konvergens.

Bizonyítás. Mutassuk meg először, hogy a harmonikus sorra nem teljesül a 4.1.2. Tételbeli Cauchyfeltétel. Ha ui. $2 \le n \in \mathbb{N}$, akkor az m := 2n választással

$$\sum_{k=n+1}^{m} \frac{1}{k} = \sum_{k=n+1}^{2n} \frac{1}{k} > \sum_{k=n+1}^{2n} n \cdot \frac{1}{2n} = \frac{1}{2}.$$

Ezért $0 < \varepsilon < 1/2$ esetén bármely $N \in \mathbf{N}$ mellett az $n \in \mathbf{N}, n > N$ indexekre

$$\sum_{k=n+1}^{2n} \frac{1}{k} > \varepsilon.$$

Tehát (ld. 4.1.2. Tétel) a harmonikus sor divergens.

A szuperharmonikus sorra ugyanakkor bármely $1 \leq N \in \mathbf{N}$ esetén

$$\sum_{k=n+1}^{m} \frac{1}{k^2} < \sum_{k=n+1}^{m} \frac{1}{(k-1)k} =$$

$$\sum_{k=n+1}^{m} \left(\frac{1}{k-1} - \frac{1}{k} \right) = \frac{1}{n} - \frac{1}{m} < \frac{1}{n} < \frac{1}{N} \qquad (n, m \in \mathbf{N}, m > n > N).$$

Következésképpen, ha $\varepsilon > 0$ tetszőleges és az $N \in \mathbf{N}$ küszöbindexre $N > 1/\varepsilon$, azaz $1/N < \varepsilon$, akkor a szuperharmonikus sorra teljesül a Cauchy-kritérium:

$$\sum_{k=n+1}^m \frac{1}{k^2} < \varepsilon \qquad (n, m \in \mathbf{N}, m > n > N).$$

Ezért a 4.1.2. Tétel szerint a $\sum (1/n^2)$ sor konvergens.

Lássuk be, hogy ha a $\sum (x_n)$ végtelen sor abszolút konvergens, akkor konvergens is. Valóban, tetszőleges $n, m \in \mathbb{N}, m > n$ indexekre

$$\left| \sum_{k=n}^{m} x_k \right| \le \sum_{k=n}^{m} |x_k|,$$

ahol bármely $\varepsilon > 0$ számra egy alkalmas $N \in \mathbf{N}$ küszöbindexszel

$$\sum_{k=n}^{m} |x_k| < \varepsilon \qquad (n, m \in \mathbf{N}, m > n > N).$$

Így

$$\left| \sum_{k=n}^{m} x_k \right| < \varepsilon \qquad (n, m \in \mathbf{N}, m > n > N),$$

más szóval a $\sum (x_n)$ végtelen sor Cauchy-sor(ozat), azaz (ld. 3.7.8. Tétel) konvergens.

4.1.4. Tétel (összehasonlító kritérium). Tegyük fel, hogy az $(x_n): \mathbf{N} \to \mathbf{K}, \ (y_n): \mathbf{N} \to \mathbf{K}$ sorozatokra az alábbiak teljesülnek:

$$|x_n| < |y_n|$$
 (m.m. $n \in \mathbf{N}$).

Ekkor:

- i) ha a $\sum (y_n)$ végtelen sor abszolút konvergens, akkor a $\sum (x_n)$ sor is abszolút konvergens;
- ii) ha a $\sum (x_n)$ végtelen sor nem abszolút konvergens, akkor a $\sum (y_n)$ sor sem abszolút konvergens.

Bizonyítás. A feltétel szerint egy alkalmas $N \in \mathbb{N}$ mellett

$$|x_n| \le |y_n| \qquad (n \in \mathbf{N}, n > N).$$

Ha a $\sum (y_n)$ sor abszolút konvergens, akkor

$$K := \sup \left\{ \sum_{k=0}^{n} |y_k| : n \in \mathbf{N} \right\} < +\infty.$$

Ezért a

$$q := \max\{|x_0|, ..., |x_N|\}$$

jelöléssel

$$\sum_{k=0}^{n} |x_k| \le \begin{cases} \sum_{k=0}^{n} q \le (N+1)q & (n \le N) \\ \sum_{k=0}^{N} |x_k| + \sum_{k=N+1}^{n} |y_k| \le (N+1)q + K & (n > N) \end{cases}$$
 $(n \in \mathbf{N}),$

tehát

$$\sup \left\{ \sum_{k=0}^{n} |x_k| : n \in \mathbf{N} \right\} < +\infty.$$

Ha a $\sum(x_n)$ végtelen sor nem abszolút konvergens, akkor a $\sum(y_n)$ végtelen sor sem lehet abszolút konvergens. Ui. ha az lenne, akkor i) szerint $\sum(x_n)$ abszolút konvergens lenne.

4.1.5. Tétel. Mutassuk meg, hogy

i) a
$$\sum (1/n!)$$
 sor konvergens és $\sum_{n=0}^{\infty} \frac{1}{n!} = e;$

- ii) bármely $0 < n \in \mathbb{N}$ esetén van olyan $\theta_n \in (0,1)$ szám, amellyel $e \sum_{k=0}^n \frac{1}{k!} = \frac{\theta_n}{n \cdot n!}$;
- iii) az e szám irracionális, azaz $e \notin \mathbf{Q}$

Bizonyítás. Elöljáróban emlékeztetünk az e szám definíciójára:

$$e = \lim \left(1 + \frac{1}{n}\right)^n.$$

Legyen $n \in \mathbb{N}, n > 2$, ekkor a binomiális tétel alapján

$$\left(1 + \frac{1}{n}\right)^n = \sum_{k=0}^n \binom{n}{k} \frac{1}{n^k} = \sum_{k=0}^n \frac{n(n-1) \cdot \dots \cdot (n-k+1)}{k!} \cdot \frac{1}{n^k} = 2 + \sum_{k=2}^n \prod_{j=1}^{k-1} \left(1 - \frac{j}{n}\right) \frac{1}{k!} < \sum_{k=0}^n \frac{1}{k!}.$$

Ha tehát $2 \le m < n$, akkor nyilván

$$\sum_{k=0}^{n} \frac{1}{k!} > \left(1 + \frac{1}{n}\right)^n = 2 + \sum_{k=2}^{n} \prod_{j=1}^{k-1} \left(1 - \frac{j}{n}\right) \frac{1}{k!} > 2 + \sum_{k=2}^{m} \prod_{j=1}^{k-1} \left(1 - \frac{j}{n}\right) \frac{1}{k!},$$

ahol (ld. 3.7.5., 3.9.1. Tételek) minden k = 2, ..., m esetén

$$\lim \left(\prod_{j=1}^{k-1} \left(1 - \frac{j}{n} \right) \right) = 1,$$

ill.

$$\lim \left(2 + \sum_{k=2}^{m} \prod_{j=1}^{k-1} \left(1 - \frac{j}{n}\right) \frac{1}{k!}\right) = \sum_{k=0}^{m} \frac{1}{k!}$$

A fentiek szerint azt kaptuk tehát, hogy (ld. 3.7.6. Tétel)

$$\lim \left(\sum_{k=0}^n \frac{1}{k!}\right) = \sum_{k=0}^\infty \frac{1}{k!} \ge \lim \left(1 + \frac{1}{n}\right)^n = e \ge \sum_{k=0}^m \frac{1}{k!} \qquad (m \in \mathbf{N}, m \ge 2).$$

Ezért

$$\sum_{k=0}^{\infty} \frac{1}{k!} = \lim_{m \to \infty} \sum_{k=0}^{m} \frac{1}{k!} = \sup \left\{ \sum_{k=0}^{m} \frac{1}{k!} : m \in \mathbf{N} \right\} \leq e$$

is igaz, más szóval

$$\sum_{k=0}^{\infty} \frac{1}{k!} = e$$

következik.

Az eddigiek alapján azt mondhatjuk, hogy bármely $n \in \mathbf{N}$ esetén

$$e - \sum_{k=0}^{n} \frac{1}{k!} = \sum_{k=n+1}^{\infty} \frac{1}{k!} = \frac{1}{(n+1)!} \sum_{k=n+1}^{\infty} \frac{(n+1)!}{k!} = \frac{1}{(n+1)!} \left(1 + \sum_{k=n+2}^{\infty} \prod_{j=n+2}^{k} \frac{1}{j} \right) \le \frac{1}{(n+1)!} \left(1 + \sum_{k=n+2}^{\infty} \prod_{j=n+2}^{k} \frac{1}{n+2} \right) = \frac{1}{(n+1)!} \sum_{k=n+1}^{\infty} \left(\frac{1}{n+2} \right)^{k-(n+1)} = \frac{1}{(n+1)!} \sum_{k=n+2}^{\infty} \left(\frac{1}{n+2} \right)^{k-(n+2)} = \frac{1}{(n+1)!} \sum_{k=n+2}^{\infty} \left(\frac{1}{n+2} \right)^{k-(n+2)} = \frac{1}{(n+2)!} \sum_{k=n+2}^{\infty} \left(\frac{1}{n+2} \right)^{k-(n+2)} = \frac{1}{(n+2)$$

$$\frac{1}{(n+1)!} \sum_{k=0}^{\infty} \left(\frac{1}{n+2}\right)^k = \frac{n+2}{(n+1)\cdot (n+1)!}.$$

Így

$$0 < \theta_n := n \cdot n! \left(e - \sum_{k=0}^n \frac{1}{k!} \right) \le \frac{n \cdot (n+2) \cdot n!}{(n+1) \cdot (n+1)!} = \frac{n \cdot (n+2)}{(n+1)^2} = \frac{n^2 + 2n}{n^2 + 2n + 1} < 1.$$

Ezzel a tétel ii) állítását beláttuk. A iii) bizonyításához tegyük fel indirekt módon, hogy $e \in \mathbf{Q}$. Megadhatók ekkor olyan $0 < m, n \in \mathbf{N}$ számok, amelyekkel $e = \frac{m}{n}$. Ezért ii) szerint egy alkalmas $0 < \theta_n < 1$ számmal

$$\frac{m}{n} - \sum_{k=0}^{n} \frac{1}{k!} = \frac{\theta_n}{n \cdot n!}.$$

Innen

$$\theta_n = \frac{m \cdot n \cdot n!}{n} - \sum_{k=0}^n \frac{n \cdot n!}{k!} = m \cdot n! - n \cdot \sum_{k=0}^n \prod_{i=k+1}^n j \in \mathbf{Z},$$

azaz $\theta_n \in \mathbf{Z}$ következik. Ez viszont nem lehetséges, hiszen i
i) alapján $0 < \theta_n < 1$. \blacksquare

4.3.1. Tétel (Cauchy-féle gyök-kritérium). *Tegyük fel, hogy az* $(x_n) : \mathbf{N} \to \mathbf{K}$ *sorozatra létezik az alábbi határérték*:

$$\delta := \lim \left(\sqrt[n]{|x_n|} \right).$$

Ekkor

 1° ha $\delta < 1$, akkor a $\sum (x_n)$ végtelen sor abszolút konvergens;

 2° ha $\delta > 1$, akkor a $\sum (x_n)$ végtelen sor divergens.

Bizonyítás. Tegyük fel először, hogy $\delta < 1$ és legyen $\delta < q < 1$. Ekkor egy alkalmas $N \in \mathbf{N}$ indexszel

$$2\delta - q < \sqrt[n]{|x_n|} < q \qquad (n \in \mathbf{N}, n > N),$$

azaz

$$|x_n| < q^n \qquad (n \in \mathbf{N}, n > N).$$

Következésképpen bármely $n \in \mathbb{N}, n > N$ esetén

$$\sum_{k=0}^{n} |x_k| = \sum_{k=0}^{N} |x_k| + \sum_{k=N+1}^{n} q^k < \sum_{k=0}^{N} |x_k| + \sum_{k=0}^{\infty} q^k = \sum_{k=0}^{N} |x_k| + \frac{1}{1-q},$$

azaz a $(\sum_{k=0}^{n} |x_k|)$ sorozat korlátos, így (a tagjai nem-negatívok lévén) konvergens. Tehát a $\sum (x_n)$ sor abszolút konvergens.

Ha $\delta > 1$, akkor legyen $1 < q < \delta$. Van tehát olyan $M \in \mathbb{N}$, amellyel

$$2\delta - q > |x_n| > q > 1 \qquad (n \in \mathbf{N}, n > M).$$

Világos innen, hogy az (x_n) sorozat nem nullasorozat. Ezért (ld. 4.1.1. Tétel) a $\sum (x_n)$ sor divergens.

4.3.2. Tétel (D'Alembert-féle hányados-kritérium). Tegyük fel, hogy az $(x_n): \mathbf{N} \to \mathbf{K} \setminus \{0\}$ sorozatra létezik az alábbi határérték:

$$\gamma := \lim \left(\frac{|x_{n+1}|}{|x_n|} \right).$$

Ekkor

 1° ha $\gamma < 1$, akkor a $\sum (x_n)$ végtelen sor abszolút konvergens;

 2° ha $\gamma > 1$, akkor a $\sum (x_n)$ végtelen sor divergens.

Bizonyítás. Vizsgáljuk először a $\gamma < 1$ esetet. Legyen $\gamma < q < 1$, ekkor van olyan $N \in \mathbb{N}$, amellyel

$$2\gamma - q < \frac{|x_{n+1}|}{|x_n|} < q \qquad (n \in \mathbf{N}, n > N),$$

azaz

$$|x_{n+1}| \le q|x_n| \qquad (n \in \mathbf{N}, n > N).$$

Innen (pl. teljes indukcióval) könnyen ellenőrizhető, hogy

$$|x_n| \le |x_{N+1}| q^{n-N-1}$$
 $(n \in \mathbb{N}, n > N).$

Ezért tetszőleges $n \in \mathbb{N}, n > N$ esetén

$$\sum_{k=0}^{n} |x_k| = \sum_{k=0}^{N} |x_k| + |x_{N+1}| \sum_{k=N+1}^{n} q^{k-N-1} \le$$

$$\sum_{k=0}^{N} |x_k| + |x_{N+1}| \sum_{k=0}^{\infty} q^k = \sum_{k=0}^{N} |x_k| + \frac{|x_{N+1}|}{1-q},$$

azaz a $(\sum_{k=0}^{n} |x_k|)$ sorozat korlátos. Így (az előző tételbeli bizonyítással analóg módon) konvergens. Tehát a $\sum (x_n)$ sor abszolút konvergens.

Ha $\gamma > 1$, akkor legyen $1 < q < \delta$. Egy alkalmas $M \in \mathbb{N}$ mellett tehát

$$2\delta - q > \frac{|x_{n+1}|}{|x_n|} > q > 1$$
 $(n \in \mathbb{N}, n > M).$

Más szóval

$$|x_{n+1}| > |x_n| \qquad (n \in \mathbf{N}, n > M).$$

Innen nyilvánvaló már, hogy az (x_n) sorozat nem nullasorozat. Ezért (ld. 4.1.1. Tétel) a $\sum (x_n)$ sor divergens.

4.3.3. Tétel. Tegyük fel, hogy

$$0 \le x_{n+1} \le x_n \qquad (n \in \mathbf{N}).$$

Ekkor a $\sum ((-1)^n x_n)$ Leibniz-sor konvergenciájának a szükséges és elégséges feltétele az, hogy az (x_n) sorozat nullasorozat legyen.

Bizonyítás. A $\lim(x_n) = 0$ feltétel szükségessége szinte nyilvánvaló. Ui., ha a szóban forgó Leibniz-sor konvergens, akkor (ld. 4.1.1. Tétel)

$$\lim \left((-1)^n x_n \right) = 0,$$

azaz $\lim (|(-1)^n x_n|) = \lim (x_n) = 0.$

Tegyük most fel, hogy $\lim(x_n) = 0$ és legyen

$$S_n := \sum_{k=0}^n (-1)^k x_k \qquad (n \in \mathbf{N}).$$

Mutassuk meg, hogy az (S_{2n}) részsorozat monoton fogyó, az (S_{2n+1}) részsorozat pedig monoton növő. Valóban,

$$S_{2n+2} = \sum_{k=0}^{2n+2} (-1)^k x_k = S_{2n} - x_{2n+1} + x_{2n+2} = S_{2n} + (x_{2n+2} - x_{2n+1}) \qquad (n \in \mathbf{N}).$$

Mivel itt $x_{2n+2} - x_{2n+1} \le 0 \ (n \in \mathbf{N})$, ezért $S_{2n+2} \le S_{2n} \ (n \in \mathbf{N})$.

Ugyanígy kapjuk az $S_{2n+3} \geq S_{2n+1} \quad (n \in \mathbb{N})$ becslést is.

Lássuk be, hogy az (S_{2n}) , (S_{2n+1}) részsorozatok korlátosak. Legyen ui. $n \in \mathbb{N}$, ekkor

$$S_{2n} = \sum_{k=0}^{2n} (-1)^k x_k = (x_0 - x_1) + \dots + (x_{2n-2} - x_{2n-1}) + x_{2n} =$$

$$\sum_{k=0}^{n-1} (x_{2k} - x_{2k+1}) + x_{2n} \ge 0,$$

hiszen

$$x_{2k} - x_{2k+1} \ge 0$$
 $(k \in \mathbf{N}).$

Hasonlóan, ha $n \in \mathbb{N}$, akkor

$$S_{2n+1} = \sum_{k=0}^{2n+1} (-1)^k x_k = x_0 - (x_1 - x_2) - \dots - (x_{2n-1} - x_{2n}) - x_{2n+1} = x_1 - x_2 - \dots - x_{2n-1} - x_{2n-1} - x_{2n-1} - \dots - x_$$

$$x_0 - \sum_{k=0}^{n-1} (x_{2k+1} - x_{2k+2}) - x_{2n+1} \le x_0 - \sum_{k=0}^{n-2} (x_{2k+1} - x_{2k+2}) \le x_0,$$

ui.

$$x_{2k+1} - x_{2k+2} \ge 0$$
 $(k \in \mathbf{N}).$

Léteznek tehát (ld. 3.5.3. Tétel) az

$$\alpha := \lim(S_{2n})$$
, $\beta := \lim(S_{2n+1})$

(véges) határértékek. Mivel

$$|\alpha - \beta| = \lim(|S_{2n} - S_{2n+1}|) = \lim(x_{2n+1}) = 0,$$

ezért $\alpha = \beta$. Mutassuk meg, hogy az (S_n) sorozat konvergens és $\lim(S_n) = \alpha \ (= \beta)$. Valóban, az $(S_{2n}), (S_{2n+1})$ sorozatok monotonitása miatt

$$S_{2n+1} \le \alpha \le S_{2n} \qquad (n \in \mathbf{N}),$$

azaz

$$|S_{2n+1} - \alpha|, |S_{2n} - \alpha| \le |S_{2n+1} - S_{2n}| = x_{2n+1} \le x_{2n}$$
 $(n \in \mathbb{N}).$

$$|S_n - \alpha| \le x_n \qquad (n \in \mathbf{N}),$$

azaz $\lim(x_n) = 0$ miatt az (S_n) sorozat konvergál α -hoz.

Tekintsük az $(x_n): \mathbf{N} \to \mathbf{K}$ sorozatot, ill. az általa generált $\sum (x_n)$ végtelen sort. Legyen adott az $m = (m_n)$ indexsorozat és tegyük fel, hogy $m_0 = 0$. Ekkor a

$$\sigma_n := \sum_{k=m_n}^{m_{n+1}-1} x_k \qquad (n \in \mathbf{N})$$

összegekkel definiált $\sum(\sigma_n)$ végtelen sort a $\sum(x_n)$ sor (m által meghatározott) zárójelezésének nevezzük. Formálisan szólva tehát (bár továbbra is óvunk attól, hogy a végtelen sort mintegy azonosítsuk az összeadással)

$$x_0 + x_1 + ... + x_n + ... =$$

$$(x_0 + \dots + x_{m_1-1}) + (x_{m_1} + \dots + x_{m_2-1}) + \dots + (x_{m_n} + \dots + x_{m_{n+1}-1}) + \dots$$

Világos, hogy ha

$$S_n := \sum_{k=0}^n x_k \qquad (n \in \mathbf{N}),$$

akkor

$$\Theta_n := \sum_{k=0}^n \sigma_k = \sum_{k=0}^{m_{n+1}-1} x_k = S_{m_{n+1}-1} \qquad (n \in \mathbf{N}),$$

azaz a $\sum(\sigma_n)$ zárójelezett sor (Θ_n) részletösszeg-sorozata a kiindulási $\sum(x_n)$ sor (S_n) részletösszeg-sorozatának egy részsorozata. Ha tehát a $\sum(x_n)$ sor, azaz az (S_n) sorozat konvergens, akkor a (Θ_n) sorozat, azaz a $\sum(\sigma_n)$ zárójelezett sor is konvergens és ugyanaz a határértéke (ld. 3.5.2. Tétel). Így igaz a

4.3.4. Tétel. Ha a $\sum (x_n)$ végtelen sor konvergens, akkor bármely $\sum (\sigma_n)$ zárójelezett sora is konvergens és

$$\sum_{k=0}^{\infty} x_k = \sum_{n=0}^{\infty} \sigma_n = \sum_{n=0}^{\infty} \sum_{k=m_n}^{m_{n+1}-1} x_k.$$

4.3.5. Tétel. Tegyük fel, hogy a $\sum (x_n)$ végtelen sorra és az (m_n) indexsorozatra teljesülnek a következő feltételek:

 $1^{o} \lim(x_{n}) = 0;$

 $2^{\circ} \ m_0 = 0 \ \text{\'es sup}\{m_{n+1} - m_n \in \mathbf{R} : n \in \mathbf{N}\} < +\infty;$

 $3^o~a~\sum(\sigma_n) = \sum \left(\sum_{k=m_n}^{m_{n+1}-1} x_k\right)$ zárójelezett sor konvergens.

Ekkor a $\sum (x_n)$ végtelen sor is konvergens.

Bizonyítás. Legyen

$$S_n := \sum_{k=0}^n x_k$$
, $\Theta_n := \sum_{k=0}^n \sigma_k = \sum_{k=0}^n \sum_{j=m_k}^{m_{k+1}-1} x_j$ $(n \in \mathbf{N})$

és

$$\alpha := \lim(\Theta_n) = \sum_{n=0}^{\infty} \sigma_n.$$

Bármely $n \in \mathbb{N}$ természetes számhoz egyértelműen van olyan $\nu_n \in \mathbb{N}$, hogy

$$m_{\nu_n} \le n < m_{\nu_n+1}$$
.

Ekkor

$$|S_n - \Theta_{\nu_n}| = |S_n - S_{m_{\nu_n+1}-1}| = \left| \sum_{k=n+1}^{m_{\nu_n+1}-1} x_k \right| \le \sum_{k=n+1}^{m_{\nu_n+1}-1} |x_k| \le (m_{\nu_n+1} - 1 - n) \cdot \max\{|x_k| : k = n+1, ..., m_{\nu_n+1} - 1\} \le (m_{\nu_n+1} - m_{\nu_n}) \cdot \max\{|x_k| : k = n+1, ..., m_{\nu_n+1} - 1\}.$$

Ha tehát

$$q := \sup\{m_{k+1} - m_k : k \in \mathbf{N}\}\ , \ y_n := \sup\{|x_k| : k \in \mathbf{N}, k \ge n\}$$
 $(n \in \mathbf{N}),$

akkor

$$|S_n - \Theta_{\nu_n}| \le q y_{n+1} \qquad (n \in \mathbf{N}).$$

A feltételeink szerint $\lim(x_n) = 0$, azaz bármely $\delta > 0$ számhoz van olyan $N \in \mathbf{N}$ küszöbindex, amellyel $|x_n| < \delta$ $(n \in \mathbf{N}, n > N)$. Ezért $y_n \leq \delta$ $(n \in \mathbf{N}, n > N)$. Mivel $\alpha = \lim(\Theta_n)$, ezért az előbbi $\delta > 0$ számhoz van olyan $M \in \mathbf{N}$, hogy

$$|\Theta_k - \alpha| < \delta$$
 $(k \in \mathbb{N}, k > M).$

Innen a fentiek alapján azt kapjuk, hogy

$$|S_n - \alpha| = |(S_n - \Theta_{\nu_n}) + (\Theta_{\nu_n} - \alpha)| \le |S_n - \Theta_{\nu_n}| + |\Theta_{\nu_n} - \alpha| \le$$

(*)
$$qy_{n+1} + |\Theta_{\nu_n} - \alpha| \le q\delta + \delta \qquad (n \in \mathbf{N}, n > N, \nu_n > M).$$

Jegyezzük meg, hogy a (ν_n) sorozat monoton növő és $\lim(\nu_n) = +\infty$. Ha ui. $n \in \mathbb{N}$ és

$$m_{\nu_n} \le n < n + 1 < m_{\nu_n + 1},$$

akkor $\nu_{n+1} = \nu_n$. Ha viszont $n+1 \ge m_{\nu_n+1}$, akkor $\nu_{n+1} \ge \nu_n + 1$. Így $\lim(\nu_n) < +\infty$ esetén valamilyen $K \in \mathbf{N}$ természetes számmal $\nu_n < K$ $(n \in \mathbf{N})$ teljesülne. Ezért az (m_n) sorozat szigorúan monoton növekedése alapján

$$n < m_{\nu_n + 1} \le m_K \qquad (n \in \mathbf{N}).$$

Ez viszont azt jelentené, hogy a természetes számok halmaza felülről korlátos, ami nem igaz.

Van tehát olyan $R \in \mathbb{N}$, hogy $\nu_n > M$ $(n \in \mathbb{N}, n > R)$, azaz (ld. (*))

$$|S_n - \alpha| \le q\delta + \delta$$
 $(n \in \mathbb{N}, n > \max\{N, R\}).$

Ugyanakkor tetszőleges $\varepsilon > 0$ számhoz meg tudjuk választani a $\delta > 0$ számot úgy, hogy $q\delta + \delta < \varepsilon$. Ekkor

$$|S_n - \alpha| < \varepsilon$$
 $(n \in \mathbb{N}, n > \max\{N, R\}),$

amiből az (S_n) sorozat konvergenciája (és $\lim(S_n) = \alpha$) már következik (ld. 3.7.2. Tétel).

4.3.6. Tétel. Tegyük fel, hogy $(x_n): \mathbf{N} \to \mathbf{K}$ és a $\sum (x_n)$ végtelen sor abszolút konvergens. Ekkor bármely $\sum (x_{p(n)})$ átrendezése is abszolút konvergens és

$$\sum_{n=0}^{\infty} x_{p(n)} = \sum_{n=0}^{\infty} x_n.$$

Bizonyítás. Legyen

$$S_n := \sum_{k=0}^n x_k$$
, $\Delta_n := \sum_{k=0}^n x_{p(k)}$ $(n \in \mathbf{N})$

Ha most

$$\nu_n := \max\{p(k) : k = 0, ..., n\} \qquad (n \in \mathbf{N}).$$

akkor nyilván

$$\{x_{p(0)},...,x_{p(n)}\}\subset\{x_0,...,x_{\nu_n}\}\qquad(n\in\mathbf{N}),$$

ezért

$$\sum_{k=0}^{n} |x_{p(k)}| \le \sum_{k=0}^{\nu_n} |x_k| \qquad (n \in \mathbf{N}).$$

A $\sum (x_n)$ sor feltételezett abszolút konvergenciája miatt a $\sum_{k=0}^m |x_k| \ (m \in \mathbf{N})$ részletösszegek sorozata korlátos, azaz

$$q := \sup \left\{ \sum_{k=0}^{m} |x_k| : m \in \mathbf{N} \right\} < +\infty.$$

Figyelembe véve a fentieket azt mondhatjuk, hogy

$$\sum_{k=0}^{n} |x_{p(k)}| \le q \qquad (n \in \mathbf{N}),$$

amiből az átrendezett sor abszolút konvergenciája már következik (ld. 3.5.3. Tétel).

Az átrendezett sor tehát konvergens is (ld. 4.1.), jelöljük α -val a limeszét:

$$\alpha := \lim(\Delta_n) = \sum_{n=0}^{\infty} x_{p(n)}.$$

Mivel $p: \mathbf{N} \to \mathbf{N}$ bijekció, ezért tetszőleges $n \in \mathbf{N}$ indexhez van olyan $\mu_n \in \mathbf{N}$, hogy

$$\{0,...,n\}\subset\{p(k):k=0,...,\mu_n\},\$$

ti. legyen

$$\mu_n := \max \{ p^{-1}(k) : k = 0, ..., n \}.$$

Ezért (az $\mathcal{N}_n := \{p(k) : k = 0, ..., \mu_n\} \setminus \{0, ..., n\}$ jelöléssel)

$$|S_n - \alpha| = |(S_n - \Delta_{\mu_n}) + (\Delta_{\mu_n} - \alpha)| \le |S_n - \Delta_{\mu_n}| + |\Delta_{\mu_n} - \alpha| =$$

$$\left| \sum_{k \in \mathcal{N}} x_k \right| + |\Delta_{\mu_n} - \alpha| \le \sum_{k=n+1}^{\infty} |x_k| + |\Delta_{\mu_n} - \alpha| \qquad (n \in \mathbf{N}).$$

A $\sum (x_n)$ sor abszolút konvergenciáját figyelembe véve azt mondhatjuk, hogy

$$\sum_{k=n+1}^{\infty} |x_k| \to 0 \qquad (n \to \infty),$$

azaz bármely $\varepsilon > 0$ esetén egy alkalmas $N \in \mathbf{N}$ indexszel

$$\sum_{k=n+1}^{\infty} |x_k| < \frac{\varepsilon}{2} \qquad (n \in \mathbf{N}, n > N).$$

A $\lim(\Delta_n) = \alpha$ egyenlőség alapján pedig valamilyen $M \in \mathbf{N}$ mellett

$$|\Delta_m - \alpha| < \frac{\varepsilon}{2}$$
 $(m \in \mathbf{N}, m > M).$

Gondoljuk meg továbbá, hogy található olyan $R \in \mathbf{N}$ index is, hogy

$$\mu_n > M \qquad (n \in \mathbf{N}, n > R).$$

Ellenkező esetben u
i. a $\mu_n \leq M$ becslés végtelen sok $n \in \mathbb{N}$ esetén fennáll
na, azaz a

$$\{0,...,n\}\subset \{p(k): k=0,...,\mu_n\}\subset \{p(j): j=0,...,M\}$$

tartalmazások is. Így az

$$n \le \max\{p(j) : j = 0, ..., M\}$$

becslés is végtelen sok $\mathbb{N} \ni n$ -re teljesülne, ami nem lehetséges.

Mindezt összefoglalva tehát

$$|S_n - \alpha| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$
 $(n \in \mathbb{N}, n > \max\{N, R\}).$

Ez pontosan azt jelenti (ld. 3.7.2. Tétel), hogy az (S_n) sorozat (azaz a $\sum (x_n)$ sor) konvergens és

$$\lim(S_n) = \sum_{n=0}^{\infty} x_n = \alpha.$$

4.3.10. Tétel (Mertens). Tegyük fel, hogy a $\sum (x_n)$, $\sum (y_n)$ sorok konvergensek és legalább az egyikük abszolút konvergens. Ekkor a $\sum (c_n)$ Cauchy-szorzatuk is konvergens és

$$\sum_{n=0}^{\infty} c_n = \sum_{n=0}^{\infty} x_n \cdot \sum_{n=0}^{\infty} y_n.$$

Ha $\sum (x_n)$ is és $\sum (y_n)$ is abszolút konvergens, akkor $\sum (c_n)$ is abszolút konvergens.

Bizonyítás. Tegyük fel, hogy a $\sum (x_n)$ sor abszolút konvergens (is) és legyen

$$A := \sum_{k=0}^{\infty} x_k$$
, $B := \sum_{k=0}^{\infty} y_k$.

Tekintsük valamely $2 \le n \in \mathbb{N}$ esetén a $C_n := \sum_{k=0}^n c_k = \sum_{j=0}^n \sum_{j=0}^k x_j y_{k-j}$ $(n \in \mathbb{N})$ Cauchyrészletösszeg alábbi előállítását:

$$C_n = \sum_{k=0}^{n} x_k \sum_{j=0}^{n-k} y_j = \sum_{k=0}^{m_n} x_k \sum_{j=0}^{n-k} y_j + \sum_{k=m_n+1}^{n} x_k \sum_{j=0}^{n-k} y_j,$$

ahol $m_n := [n/2]$ (az n szám egészrésze, azaz $m_n \in \mathbb{N}$ és $n/2 - 1 < m_n \le n/2$). Következésképpen

$$C_n - AB = \sum_{k=0}^{m_n} x_k \sum_{j=0}^{n-k} y_j - AB + \sum_{k=m_n+1}^{n} x_k \sum_{j=0}^{n-k} y_j =$$

$$\sum_{k=0}^{m_n} x_k \left(\sum_{j=0}^{n-k} y_j - B \right) + B \left(\sum_{k=0}^{m_n} x_k - A \right) + \sum_{k=m_n+1}^{n} x_k \sum_{j=0}^{n-k} y_j$$

és így

$$|C_n - AB| \le \sum_{k=0}^{m_n} |x_k| \cdot \left| \sum_{j=0}^{n-k} y_j - B \right| + |B| \cdot \left| \sum_{k=0}^{m_n} x_k - A \right| + \sum_{k=m_n+1}^n |x_k| \cdot \left| \sum_{j=0}^{n-k} y_j \right|.$$

Mivel a $\sum (x_n)$ sor abszolút konvergens, a $\sum (y_n)$ sor pedig konvergens, ezért

$$Q := \sup \left\{ \sum_{l=0}^{s} |x_l| : s \in \mathbf{N} \right\} < +\infty , \quad q := \sup \left\{ \left| \sum_{l=0}^{s} y_l \right| : s \in \mathbf{N} \right\} < +\infty,$$

ill. tetszőleges $\varepsilon > 0$ számhoz van olyan $N \in \mathbf{N}$ (mindkét sor esetén "jó") küszöbindex, amellyel

$$\left| \sum_{l=0}^{s} x_l - A \right| < \varepsilon \quad , \quad \left| \sum_{l=0}^{s} y_l - B \right| < \varepsilon \quad (s \in \mathbf{N}, s > N).$$

A $\sum (x_n)$ sor abszolút konvergenciája és a Cauchy-kritérium (ld. 4.1.2. Tétel) miatt az előbbi N-ről az is feltehető, hogy

$$\sum_{k=r}^{p} |x_k| < \varepsilon \qquad (r, p \in \mathbf{N}, r > p > N).$$

Legyen $n \in \mathbb{N}$ és n > 2(N+1), ekkor

$$n > \frac{n}{2} \ge m_n > \frac{n}{2} - 1 > N,$$

továbbá bármely $k=0,...,m_n$ esetén $n-k\geq n-m_n\geq n/2>N$. Ezért

$$|C_n - AB| \le Q\varepsilon + |B|\varepsilon + \varepsilon q = (Q + |B| + q)\varepsilon$$

Ez pontosan azt jelenti, hogy a (C_n) sorozat (azaz a $\sum (c_n)$ Cauchy-szorzat) konvergens és

$$\sum_{n=0}^{\infty} c_n = \lim(C_n) = AB = \sum_{n=0}^{\infty} x_n \cdot \sum_{n=0}^{\infty} y_n.$$

Ha mind a két sor, $\sum(x_n)$, $\sum(y_n)$ abszolút konvergens, akkor alkalmazzuk az eddig bebizonyítottakat a $\sum(|x_n|)$, $\sum(|y_n|)$ sorokra. Legyen tehát

$$d_n := \sum_{j,k \in \mathbf{N}, j+k=n} |x_k| \cdot |y_j| \qquad (n \in \mathbf{N}).$$

Ekkor a $\sum (d_n)$ sor az eddigiek alapján konvergens, azaz

$$\sup \left\{ \sum_{k=0}^{n} d_k : n \in \mathbf{N} \right\} < +\infty.$$

Mivel

$$|c_n| = \left| \sum_{j,k \in \mathbf{N}, j+k=n} x_k y_j \right| \le \sum_{j,k \in \mathbf{N}, j+k=n} |x_k| \cdot |y_j| = d_n \qquad (n \in \mathbf{N}),$$

ezért $\sum_{k=0}^{n} |c_k| \le \sum_{k=0}^{n} d_k \ (n \in \mathbf{N})$, azaz

$$\sup \left\{ \sum_{k=0}^{n} |c_k| : n \in \mathbf{N} \right\} \le \sup \left\{ \sum_{k=0}^{n} d_k : n \in \mathbf{N} \right\} < +\infty.$$

Ez azt jelenti, hogy a $\sum(|c_n|)$ sor konvergens, más szóval a $\sum(c_n)$ Cauchy-szorzat abszolút konvergens.

4.3.11. Tétel. Tetszőleges $\alpha \in [0,1]$ számhoz megadható olyan

$$(x_n): \mathbf{N} \to \{0, ..., p-1\}$$

sorozat, amellyel

$$\alpha := \sum_{n=0}^{\infty} \frac{x_n}{p^{n+1}}.$$

Bizonyítás. Ha $\alpha=1$, akkor az $x_n:=p-1 \ (n\in \mathbb{N})$ választás megfelelő:

$$\sum_{n=0}^{\infty} \frac{p-1}{p^{n+1}} = (p-1) \sum_{n=1}^{\infty} \frac{1}{p^n} = \frac{p-1}{p} \cdot \frac{1}{1 - 1/p} = 1.$$

A továbbiakban feltehetjük tehát, hogy $\alpha < 1$. Tekintsük a

$$\left[\frac{k}{p}, \frac{k+1}{p}\right) \qquad (k=0, ..., p-1)$$

intervallumokat. Ekkor

$$I_0 := [0,1) = \bigcup_{k=0}^{p-1} \left[\frac{k}{p}, \frac{k+1}{p} \right]$$

egy páronként diszjunkt halmazokból álló felbontása a [0,1) intervallumnak. Egyértelműen létezik ezért olyan $x_0 \in \{0,...,p-1\}$, hogy

$$\alpha \in I_1 := \left[\frac{x_0}{p}, \frac{x_0 + 1}{p}\right).$$

Más szóval

$$\frac{x_0}{p} \le \alpha < \frac{x_0 + 1}{p},$$

amiből rögtön következik az is, hogy

$$0 \le \alpha - \frac{x_0}{p} < \frac{1}{p}.$$

Ha most az

$$I_1 = \bigcup_{p=0}^{p-1} \left[\frac{x_0}{p} + \frac{k}{p^2}, \frac{x_0}{p} + \frac{k+1}{p^2} \right]$$

szintén páronként diszjunkt halmazokból álló felbontását tekintjük az I_1 intervallumnak, akkor egyértelműen van olyan $x_1 \in \{0,...,p-1\}$, hogy

$$\alpha \in I_2 := \left[\frac{x_0}{p} + \frac{x_1}{p^2}, \frac{x_0}{p} + \frac{x_1 + 1}{p^2} \right).$$

Ez azt jelenti, hogy

 $\frac{x_0}{p} + \frac{x_1}{p^2} \le \alpha < \frac{x_0}{p} + \frac{x_1 + 1}{p^2},$

azaz

$$0 \le \alpha - \left(\frac{x_0}{p} + \frac{x_1}{p^2}\right) < \frac{1}{p^2}.$$

Tegyük fel, hogy valamilyen $n \in \mathbb{N}$ mellett már definiáltuk az $I_0, ..., I_n$ intervallumokat, ill. $(n \ge 1 \text{ eset\'en})$ az $x_0, ..., x_{n-1} \in \{0, ..., p-1\}$ számokat és

$$\alpha \in I_n = \bigcup_{k=0}^{p-1} \left[\sum_{j=0}^{n-1} \frac{x_j}{p^{j+1}} + \frac{k}{p^{n+1}}, \sum_{j=0}^{n-1} \frac{x_j}{p^{j+1}} + \frac{k+1}{p^{n+1}} \right].$$

Ekkor egyértelműn adható meg az az $x_n \in \{0,...,p-1\}$ szám, amellyel

$$\alpha \in I_{n+1} := \left[\sum_{j=0}^{n-1} \frac{x_j}{p^{j+1}} + \frac{x_n}{p^{n+1}}, \sum_{j=0}^{n-1} \frac{x_j}{p^{j+1}} + \frac{x_n+1}{p^{n+1}} \right].$$

Tehát azt mondhatjuk, hogy

(*)
$$0 \le \alpha - \sum_{j=0}^{n} \frac{x_j}{p^{j+1}} < \frac{1}{p^{n+1}}.$$

Tudjuk (ld. 3.9.2. Tétel), hogy $\lim(1/p^{n+1}) = 0$. Tehát az (x_n) sorozattal (*) alapján

$$\lim \left(\alpha - \sum_{j=0}^{n} \frac{x_j}{p^{j+1}}\right) = 0,$$

azaz

$$\alpha = \sum_{j=0}^{\infty} \frac{x_j}{p^{j+1}}.$$

4.5.1. Tétel. Bármely $a, a_n \in \mathbf{K} \ (n \in \mathbf{N})$ esetén megadható olyan $0 \le r \in \overline{\mathbf{R}}$, hogy

- 1º ha r > 0, akkor minden $x \in \mathbf{K}$, |x a| < r helyen a $\sum (a_n(t a)^n)$ hatványsor az x helyen abszolút konvergens;
- 2^o ha $r < +\infty$, akkor tetszőleges $x \in \mathbf{K}$, |x-a| > r mellett a $\sum (a_n(t-a)^n)$ hatványsor az x helyen divergens.

Bizonyítás. Lássuk be először, hogy ha a szóban forgó hatványsor valamely $z \in \mathbf{K}, |z-a| > 0$ helyen konvergens, akkor minden $y \in \mathbf{K}, |y-a| < |z-a|$ esetén y-ban abszolút konvergens. Valóban, a

$$q := \frac{|y - a|}{|z - a|}$$

jelöléssel $0 \le q < 1$ és

$$|a_k(y-a)^k| = |a_k(z-a)^k| \cdot q^k \qquad (k \in \mathbf{N}).$$

Mivel a hatványsorunk z-ben konvergens, ezért (ld. 4.1.1. Tétel) $\lim (a_n(z-a)^n) = 0$, így (ld. 3.5.4. Tétel) van olyan $K \ge 0$, hogy

$$|a_n(z-a)^n| \le K \qquad (n \in \mathbf{N}).$$

Következésképpen

$$|a_k(y-a)^k| = Kq^k \qquad (k \in \mathbf{N}),$$

azaz

$$\sum_{k=0}^{\infty} \left| a_k (y-a)^k \right| \le K \sum_{k=0}^{\infty} q^k < +\infty.$$

Legyen ezek után

$$r := \sup \{|z - a| : z \in \mathbf{K}, \sum (a_n(t - a)^n) \text{ konvergens } z\text{-ben}\}.$$

Tegyük fel először, hogy r > 0. Ha $x \in \mathbf{K}$ és |x - a| < r, akkor (a szuprémum definíciója miatt) van olyan $z \in \mathbf{K}$, amelyre |x - a| < |z - a| < r és $\sum (a_n(t - a)^n)$ abszolút konvergens z-ben. Tehát

$$\sum_{k=0}^{\infty} |a_k| \cdot |x-a|^k \le \sum_{k=0}^{\infty} |a_k| \cdot |z-a|^k < +\infty,.$$

azaz a $\sum (a_n(t-a)^n)$ hatványsor az x helyen abszolút konvergens.

Ha $r < +\infty$ és lenne olyan $x \in \mathbf{K}$, |x-a| > r, hogy $\sum (a_n(t-a)^n)$ konvergens x-ben, akkor az előbbiek miatt bármely $z \in \mathbf{K}$, r < |z-a| < |x-a| esetén a hatványsor abszolút konvergens lenne z-ben. Az r definíciója alapján tehát $|z-a| \le r$, szemben r < |z-a|-val.

4.5.2. Tétel (Cauchy-Hadamard). Tegyük fel, hogy az $(a_n): \mathbb{N} \to \mathbb{K}$ sorozat esetén létezik a

$$\lim \left(\sqrt[n]{|a_n|}\right)$$

határérték és legyen

$$r := \begin{cases} +\infty & \left(\lim \left(\sqrt[n]{|a_n|}\right) = 0\right) \\ \frac{1}{\lim \left(\sqrt[n]{|a_n|}\right)} & \left(\lim \left(\sqrt[n]{|a_n|}\right) > 0\right). \end{cases}$$

Ekkor bármely $a \in \mathbf{K}$ mellett a $\sum (a_n(t-a)^n)$ hatványsorról a következőket mondhatjuk:

- 1° ha r > 0, akkor minden $x \in \mathbf{K}$, |x a| < r helyen a $\sum (a_n(t a)^n)$ hatványsor az x helyen abszolút konvergens;
- 2° ha $r < +\infty$, akkor tetszőleges $x \in \mathbf{K}$, |x-a| > r mellett a $\sum (a_n(t-a)^n)$ hatványsor az x helyen divergens.

Bizonyítás. Legyen $a \neq x \in \mathbf{K}$, ekkor

$$\sqrt[n]{|a_n(x-a)^n|} = \sqrt[n]{|a_n|} \cdot |x-a| \qquad (n \in \mathbf{N}, n \ge 2),$$

így

$$\lim \left(\sqrt[n]{|a_n(x-a)^n|}\right) = \lim \left(\sqrt[n]{|a_n|}\right) \cdot |x-a|.$$

Ha tehát $\lim \left(\sqrt[n]{|a_n|} \right) = 0$, akkor $\lim \left(\sqrt[n]{|a_n(x-a)^n|} \right) = 0 < 1$, ha pedig

$$0 < \lim \left(\sqrt[n]{|a_n|} \right) < +\infty$$

(azaz $0 < r < +\infty$), akkor

$$\lim \left(\sqrt[n]{|a_n(x-a)^n|}\right) = \frac{|x-a|}{r}.$$

Ezért 0 < |x - a| < r esetén $\lim \left(\sqrt[n]{|a_n(x - a)^n|} \right) < 1$. A Cauchy-féle gyök-kritérium (ld. 4.3.1. Tétel) szerint így a $\sum \left(a_n(t - a)^n \right)$ hatványsor az x-ben abszolút konvergens (a 0-ban pedig triviális módon az).

Ezzel 1^o -et beláttuk, a 2^o állítás analóg módon adódik. \blacksquare

5.1.1. Tétel. Bármely $\emptyset \neq A \subset \mathbf{K}$ halmaz és $\alpha \in \overline{\mathbf{K}}$ esetén fennáll a következő ekvivalencia: $\alpha \in A'$ akkor és csak akkor igaz, ha az α bármely $K(\alpha)$ környezetére az $A \cap K(\alpha)$ metszet végtelen halmaz.

Bizonyítás. Az állítás egyik "iránya" nyilvánvaló: ha az $A \cap K(\alpha)$ metszet minden $K(\alpha)$ környezetre végtelen halmaz, azaz $K(\alpha)$ -ban végtelen sok A-beli elem van, akkor ezek között olyan is van, amelyik különbözik α -tól. Következésképpen $(K(\alpha) \setminus \{\alpha\}) \cap A \neq \emptyset$, így $\alpha \in A'$.

Most tegyük fel azt, hogy $\alpha \in A'$ és indirekt módon induljunk ki abból, hogy valamely $K(\alpha)$ esetén $A \cap K(\alpha)$ véges halmaz. Mivel $\alpha \in A'$, ezért $(K(\alpha) \setminus \{\alpha\}) \cap A \neq \emptyset$ (és ez a halmaz is véges). Vizsgáljuk először azt az esetet, amikor $\alpha \in \mathbf{K}$. Legyen

$$0 < r < \min\{|x - \alpha| : \alpha \neq x \in A \cap K(\alpha)\}.$$

Világos, hogy $(K_r(\alpha) \setminus \{\alpha\}) \cap A = \emptyset$, szemben az $\alpha \in A'$ feltételezésünkkel.

Ha az előbbiekben $\mathbf{K} = \mathbf{R}$ és $\alpha = +\infty$, ill. valamilyen $\mathbf{R} \ni p$ -vel $K(\alpha) = (p, +\infty)$, akkor az indirekt feltétel szerint

$$A \cap K(\alpha) = \{a_0, ..., a_s\}$$

alkalmas $s \in \mathbb{N}$ és A-beli $p < a_0 < \dots < a_s$ elemekkel. Tehát bármely $r \in \mathbb{R}, r > a_s$ mellett a

$$\widetilde{K}(\alpha) := (r, +\infty)$$

választással $A \cap \widetilde{K}(\alpha) = \emptyset$, ismét csak ellentétben (most) a $+\infty \in A'$ feltételezésünkkel.

Ugyanígy "intézhetjük el" az $\alpha = -\infty$ esetet is.

Legyen végül $\mathbf{K} = \mathbf{C}$ és $\alpha = \infty$. Ha

$$r := \max\{|z| : z \in A \cap K(\alpha)\},\$$

akkor bármely $s \in \mathbf{R}, s > r$ esetén a

$$\widetilde{K}(\alpha) := \{ z \in \mathbf{C} : |z| > s \}$$

környezetre $A \cap \widetilde{K}(\alpha) = \emptyset$. Mindez ellentmond annak, hogy $\alpha = \infty \in A'$.

5.1.2. Tétel. Legyen $\emptyset \neq A \subset \mathbf{K}$ és $\alpha \in \overline{\mathbf{K}}$. Az α akkor és csak akkor torlódási pontja A-nak, ha van olyan $(x_n) : \mathbf{N} \to A \setminus \{\alpha\}$ sorozat, amelynek létezik határértéke és $\lim(x_n) = \alpha$.

Bizonyítás. Tegyük fel először, hogy $\alpha \in A'$ és α egy szám, azaz $\alpha \in \mathbf{K}$. Ekkor bármely $0 < n \in \mathbf{N}$ esetén van olyan $x_n \in A$, hogy $x_n \in K_{1/n}(\alpha) \setminus \{\alpha\}$. Következésképpen $(x_n) : \mathbf{N} \to A \setminus \{\alpha\}$ és

$$|x_n - \alpha| < \frac{1}{n}$$
 $(0 < n \in \mathbf{N}).$

Mindez azt jelenti (ld. 3.7.1., 3.7.2., 3.9.1. Tételek), hogy $\lim(x_n) = \alpha$.

Ha $\mathbf{K} = \mathbf{R}$, $\alpha = +\infty \in A'$, akkor tetszőleges $n \in \mathbf{N}$ számhoz létezik olyan $x_n \in A$, amelyre $x_n > n$. Ha $p \in \mathbf{R}$ tetszőleges és az $N \in \mathbf{N}$ indexre N > p, akkor minden $n \in \mathbf{N}, n > N$ mellett $x_n > n > N > p$, azaz $x_n > p$. Ezért $\lim(x_n) = +\infty$.

Analóg módon következik a $\mathbf{K} = \mathbf{R}$, $\alpha = -\infty \in A'$ esetben olyan $(x_n) : \mathbf{N} \to A$ sorozat létezése, amelyre $\lim(x_n) = -\infty$.

Legyen most $\mathbf{K} = \mathbf{C}$, $\alpha = \infty \in A'$. Ekkor tetszőleges $n \in \mathbf{N}$ esetén van olyan $x_n \in A$, hogy $|x_n| > n$. Innen (ld. az előbbi okfejtést) azt kapjuk, hogy $\lim (|x_n|) = +\infty$. Más szóval $\lim (x_n) = \infty$.

Induljunk ki most abból, hogy valamely $(x_n): \mathbf{N} \to A \setminus \{\alpha\}$ sorozatra $\lim(x_n) = \alpha$. Ekkor bármely $K(\alpha)$ környezetet is véve létezik olyan $k \in \mathbf{N}$ (sőt, egy küszöbindextől kezdve minden $k \in \mathbf{N}$ ilyen), amelyre $x_k \in K(\alpha)$. Mivel $\mathcal{R}_{(x_n)} \subset A \setminus \{\alpha\}$, így $x_k \neq \alpha$, ezért egyúttal

$$x_k \in (K(\alpha) \setminus \{\alpha\}) \cap A$$

is igaz. Ez azt jelenti, hogy $\alpha \in A'$.

5.3.1. Tétel. Tegyük fel, hogy az $f \in \mathbf{K}_1 \to \mathbf{K}_2$ függvénynek az $a \in \mathcal{D}'_f$ helyen van határértéke. Ekkor egyértelműen létezik olyan $A \in \overline{\mathbf{K}_2}$, amely eleget tesz a fenti definíciónak, azaz bármely $K(A) \subset \mathbf{K}_2$ környezethez van olyan $k(a) \subset \mathbf{K}_1$ környezet, hogy $f(x) \in K(A)$ $(a \neq x \in k(a) \cap \mathcal{D}_f)$.

Bizonyítás. Tegyük fel, hogy valamilyen $B \in \overline{\mathbf{K}_2}$ is eleget tesz a tételben idézett definíciónak: tetszőleges $K(B) \subset \mathbf{K}_2$ környezethez megválasztható a $k^*(a) \subset \mathbf{K}_1$ környezet úgy, hogy $f(x) \in K(B)$ $(a \neq x \in k^*(a) \cap \mathcal{D}_f)$. Ezért

$$f(x) \in K(A) \cap K(B) \qquad (a \neq x \in (k(a) \cap k^*(a)) \cap \mathcal{D}_f)$$

(ahol egyébként a $k(a) \cap k^*(a)$ halmaz is nyilván egy környezete a-nak). Ha itt (indirekt feltételezéssel élve) $B \neq A$ állna fenn, akkor (a tételbeli) K(A) és a most mondott K(B) környezet nyilván megválasztható úgy, hogy $K(A) \cap K(B) = \emptyset$. Világos, hogy mindez ellentmond (*)-nak.

5.3.2. Tétel (átviteli elv). Bármely $f \in \mathbf{K}_1 \to \mathbf{K}_2$ függvény és $a \in \mathcal{D}'_f$ esetén az f-nek az a helyen akkor és csak akkor létezik határértéke, ha tetszőleges

$$(x_n): \mathbf{N} \to \mathcal{D}_f \setminus \{a\}$$
, $\lim(x_n) = a$

sorozatra az $(f(x_n))$ sorozatnak van határértéke. Ha létezik az $A := \lim_a f$ határérték, akkor az előbbiekben említett minden (x_n) sorozatra

$$\lim (f(x_n)) = A.$$

Bizonyítás. Tegyük fel, hogy létezik az $A:=\lim_a f$ határérték. Ekkor bármely $K(A)\subset \mathbf{K}_2$ környezethez van olyan $k(a)\subset \mathbf{K}_1$ környezet, hogy

$$f(x) \in K(A)$$
 $(a \neq x \in \mathcal{D}_f \cap k(a)).$

Ha (x_n) egy, a tételben szereplő sorozat, akkor az előbbi k(a) környezethez megadható olyan $N \in \mathbf{N}$ küszöbindex, amellyel

$$a \neq x_n \in k(a)$$
 $(n \in \mathbf{N}, n > N).$

Következésképpen

$$f(x_n) \in K(A)$$
 $(n \in \mathbb{N}, n > N).$

Mindez éppen azt jelenti, hogy az $(f(x_n))$ sorozatnak van határértéke és $\lim (f(x_n)) = A$.

Most tegyük fel azt, hogy bármely $(x_n): \mathbf{N} \to \mathcal{D}_f \setminus \{a\}$, $\lim(x_n) = a$ esetén az $(f(x_n))$ sorozatnak van határértéke. Mutassuk meg először azt, hogy ekkor minden, a most említett (x_n) sorozatra $\lim (f(x_n))$ ugyanaz a $\overline{\mathbf{K}_2}$ -beli elem. Valóban, ha (\tilde{x}_n) is egy ilyen sorozat, akkor legyen

$$x_n^* := \begin{cases} x_{n/2} & (n=2k) \\ \tilde{x}_{(n-1)/2} & (n=2k+1) \end{cases}$$
 $(n, k \in \mathbf{N}).$

Ekkor $(x_n^*): \mathbf{N} \to \mathcal{D}_f \setminus \{a\}$ és (könnyen láthatóan) létezik a $\lim(x_n^*) = a$ határérték. Következésképpen az $(f(x_n^*))$ sorozatnak is van határértéke. Viszont (ld. 3.5.2. Tétel)

$$\lim (f(x_n^*)) = \lim (f(x_{2n}^*)) = \lim (f(x_n)) = \lim (f(x_{2n+1}^*)) = \lim (f(\tilde{x}_n)),$$

így $\lim (f(\tilde{x}_n)) = \lim (f(x_n))$. Legyen tehát $A := \lim (f(x_n))$, ahol (x_n) valamely, a tételben szereplő sorozat. Lássuk be, hogy f-nek az a helyen van határértéke és

$$\lim_{a} f = A.$$

Indirekt úton ui. tegyük fel, hogy ez nem igaz. Ekkor egy alkalmas $K(A) \subset \mathbf{K}_2$ környezettel bármilyen $\mathbf{K}_1 \supset k(a)$ -t is választunk, valamilyen $a \neq x \in k(a) \cap \mathcal{D}_f$ elemmel $f(x) \notin K(A)$. Ha itt $a \in \mathbf{K}_1$ ("véges hely"), akkor tetszőleges $0 < n \in \mathbf{N}$ mellett a

$$k(a) := k_{1/n}(a)$$

választással kapunk egy olyan $a \neq x_n \in k_{1/n}(a) \cap \mathcal{D}_f$ elemet, amelyre $f(x_n) \notin K(a)$. Mivel

$$0 < |x_n - a| < 1/n$$
 $(0 < n \in \mathbf{N}),$

ezért $\lim(x_n) = a$. Így a feltételek miatt $\lim (f(x_n)) = A$. Ez azt jelenti, hogy az előbbi K(A) környezethez lennie kell olyan $M \in \mathbf{N}$ küszöbindexnek, amellyel $f(x_n) \in K(A)$ $(n \in \mathbf{N}, n > M)$. Ez nyilván ellentmond annak, hogy $f(x_n) \notin K(A)$ $(0 < n \in \mathbf{N})$.

Ha az előbbiekben $\mathbf{K}_1 = \mathbf{R}$ és (pl.) $a = +\infty$, akkor a most mondottakat annyiban kell csak módosítani, hogy az ott szereplő x_n -ekre (a $k(a) := K_n(+\infty)$ választás után) $x_n > n$ teljesül. Ezért $\lim(x_n) = +\infty$ és innentől kezdve u. az a bizonyítás, mint az $a \in \mathbf{K}$ esetben. Analóg az okoskodás az $a = -\infty$, ill. a $\mathbf{K}_1 = \mathbf{C}$, $a = \infty$ esetekben is.

5.3.3. Tétel. Tegyük fel, hogy $f, g \in \mathbf{K}_1 \to \mathbf{K}_2$ és az $a \in \mathcal{D}'_f \cap \mathcal{D}'_g$ pontban léteznek az $A := \lim_a f$, $B := \lim_a g$ határértékek. Tegyük fel továbbá, hogy

i) $a \in (\mathcal{D}_f \cap \mathcal{D}_g)'$ és létezik az $A + B \in \overline{\mathbf{K}_2}$ összeg, ekkor az f + g összegfüggvénynek az a helyen van határértéke és

$$\lim_{a} (f+g) = A+B;$$

ii) $a \in (\mathcal{D}_f \cap \mathcal{D}_g)'$ és létezik az $AB \in \overline{\mathbf{K}_2}$ szorzat, ekkor az fg szorzatfüggvénynek az a helyen van határértéke és

$$\lim_{a} (fg) = AB;$$

iii) $a \in (\mathcal{D}_f \cap \{x \in \mathcal{D}_g : g(x) \neq 0\})'$ és létezik az $A/B \in \overline{\mathbf{K}_2}$ hányados, ekkor az f/g hányados-függvénynek az a helyen van határértéke és

$$\lim_{a} \frac{f}{g} = \frac{A}{B}.$$

Bizonyítás.

Legyen $(x_n): \mathbf{N} \to (\mathcal{D}_f \cap \mathcal{D}_g) \setminus \{a\}$, $\lim(x_n) = a$ (a iv) esetben azt is feltételezve, hogy $g(x_n) \neq 0$ $(n \in \mathbf{N})$. Ekkor egyúttal $(x_n): \mathbf{N} \to \mathcal{D}_f \setminus \{a\}$, $(x_n): \mathbf{N} \to \mathcal{D}_g \setminus \{a\}$ is igaz, ezért (ld. 5.3.2. Tétel)

$$\lim (f(x_n)) = A$$
, $\lim (g(x_n)) = B$.

Alkalmazható tehát a 3.7.10. Tétel, miszerint

- i) $\lim ((f+g)(x_n)) = \lim (f(x_n) + g(x_n)) = A + B;$
- ii) $\lim ((fg)(x_n)) = \lim (f(x_n)g(x_n)) = AB;$
- iii) $\lim ((f/g)(x_n)) = \lim (f(x_n)/g(x_n)) = A/B.$

Következésképpen az 5.2.2. Tétel alapján rendre azt kapjuk, hogy létezik a

- i) $\lim_{a} (f+g) = A + B = \lim_{a} f + \lim_{a} g;$
- ii) $\lim_a (fg) = AB = (\lim_a f) \cdot (\lim_a g);$
- iii) $\lim_a (f/g) = A/B = (\lim_a f)/(\lim_a g)$

határérték.

5.3.6. Tétel. Tegyük fel, hogy a $\sum (a_n(t-a)^n)$ hatványsor r konvergencia-sugara nem nulla és legyen

$$f(x) := \sum_{n=0}^{\infty} a_n (x - a)^n \qquad (x \in K_r(a)).$$

Ekkor bármely $b \in K_r(a)$ esetén létezik a $\lim_b f$ határérték és

$$\lim_{b} f = f(b) = \sum_{n=0}^{\infty} a_n (b - a)^n.$$

Bizonyítás (vázlat). Tegyük fel először, hogy b = a. Ekkor $x \in K_r(a)$ esetén

$$|f(x) - f(a)| = |f(x) - a_0| = \left| \sum_{n=1}^{\infty} a_n (x - a)^n \right| =$$

$$|x-a| \cdot \left| \sum_{n=1}^{\infty} a_n (x-a)^{n-1} \right| \le |x-a| \cdot \sum_{n=1}^{\infty} |a_n| \cdot |x-a|^{n-1}.$$

Legyen $a \neq x_0 \in K_r(a)$ és $x \in K_r(a)$, $|x - a| < |x_0 - a|$. A fentiek szerint azt mondhatjuk, hogy

$$|f(x) - f(a)| \le |x - a| \cdot \sum_{n=1}^{\infty} |a_n| \cdot |x_0 - a|^{n-1} =$$

$$|x - a| \cdot \frac{1}{|x_0 - a|} \cdot \sum_{n=0}^{\infty} |a_n| \cdot |x_0 - a|^n := M \cdot |x - a|.$$

Ha tehát $\varepsilon>0$ tetszőleges és $0<\delta<|x_0-a|$ olyan, hogy $M\delta<\varepsilon$, akkor

$$|f(x) - f(a)| \le M\delta < \varepsilon$$
 $(x \in \mathbf{K}, 0 < |x - a| < \delta).$

Ez azt jelenti, hogy létezik a $\lim_a f = f(a)$ határérték.

Legyen most $b \in K_r(a)$ tetszőleges, $\rho := r - |b - a|$ (> 0). Gondoljuk meg először, hogy bármely $x \in K_\rho(b)$ esetén $x \in K_r(a)$. Valóban,

$$|x-a| = |(x-b) + (b-a)| \le |x-b| + |b-a| < \rho + |b-a| = r.$$

Az előbbi $x \in K_{\rho}(b)$ helyeken ezért kiszámolhatjuk f(x)-et: a binomiális tételt felhasználva azt kapjuk, hogy

$$f(x) = \sum_{n=0}^{\infty} a_n (x-a)^n = \sum_{n=0}^{\infty} a_n ((x-b) + (b-a))^n =$$

$$\sum_{n=0}^{\infty} a_n \sum_{k=0}^{n} \binom{n}{k} (b-a)^{n-k} (x-b)^k.$$

Belátható (ennek a bizonyításától itt eltekintünk), hogy minden $k \in \mathbb{N}$ mellett léteznek a véges

$$c_k := \sum_{n=k}^{\infty} \binom{n}{k} a_n (b-a)^{n-k}$$

sorösszegek és

$$\sum_{n=0}^{\infty} a_n \sum_{k=0}^{n} \binom{n}{k} (b-a)^{n-k} (x-b)^k = \sum_{k=0}^{\infty} c_k (x-b)^k.$$

A bizonyítás elején mondottak szerint a

$$g(x) := \sum_{k=0}^{\infty} c_k (x - b)^k \qquad (x \in K_{\rho}(b))$$

jelöléssel létezik a $\lim_b g$ határérték és

$$\lim_{b} g = g(b) = c_0 = \sum_{n=0}^{\infty} a_n (b-a)^n = f(b).$$

Figyelembe véve az f(x) = g(x) $(x \in K_{\rho}(b))$ egyenlőséget és a határérték definícióját világos, hogy egyúttal a $\lim_b f$ határérték is létezik, és $f(b) = \lim_b g = \lim_b f$.

5.5.2. Tétel (átviteli elv folytonosságra). Legyen $f \in \mathbf{K}_1 \to \mathbf{K}_2$, $a \in \mathcal{D}_f$. Ekkor $f \in \mathcal{C}\{a\}$ azzal ekvivalens, hogy bármely $(x_n) : \mathbf{N} \to \mathcal{D}_f$, $\lim(x_n) = a$ sorozatra

$$\lim (f(x_n)) = f(a).$$

Bizonyítás. Tegyük fel először, hogy $f \in \mathcal{C}\{a\}$, és legyen (x_n) egy, a tételben említett sorozat. Ha $a \in \mathcal{D}_f'$ is igaz, akkor $\lim_a f = f(a)$. A határértékre vonatkozó átviteli elv miatt ezért $x_n \neq a \quad (n \in \mathbf{N})$ esetén $\lim_a f = f(a) = \lim_a (f(x_n))$. Mivel $a \in \mathcal{D}_f' \cap \mathcal{D}_f$ és $\lim_a f = f(a)$, ezért nyilván ugyanez mondható akkor is, ha a szóban forgó (x_n) sorozat tagjai között az a is szerepel. Ha viszont $a \in \mathcal{D}_f \setminus \mathcal{D}_f'$, akkor egy alkalmas K(a) környezettel $K(a) \cap \mathcal{D}_f = \{a\}$. A $\lim(x_n) = a$ egyenlőség miatt viszont egy $N \in \mathbf{N}$ indexszel $x_n \in K(a) \quad (n \in \mathbf{N}, n > N)$, más szóval $x_n = a \quad (n \in \mathbf{N}, n > N)$. Így $f(x_n) = f(a) \quad (n \in \mathbf{N}, n > N)$, amiből $\lim (f(x_n)) = f(a)$ nyilvánvaló.

Fordítva, ha bármely $(x_n): \mathbf{N} \to \mathcal{D}_f$, $\lim(x_n) = a$ sorozatra $\lim_a (f(x_n)) = f(a)$, akkor tegyük fel indirekt módon, hogy $f \notin \mathcal{C}(a)$. Ez azt jelenti, hogy egy alkalmas $\varepsilon > 0$ mellett bármely $\delta > 0$ számhoz van olyan $x \in \mathcal{D}_f$, amellyel $|x - a| < \delta$, de

$$|f(x) - f(a)| \ge \varepsilon.$$

Speciálisan minden $0 < n \in \mathbb{N}$ számhoz létezik olyan $x_n \in \mathcal{D}_f$, hogy $|x_n - a| < 1/n$ és $|f(x_n) - f(a)| \ge \varepsilon$. Világos, hogy $(x_n) : \mathbb{N} \to \mathcal{D}_f$ és $\lim(x_n) = a$. A feltétel miatt ezért a $\lim(f(x_n)) = f(a)$ egyenlőségnek kellene teljesülnie, ami $|f(x_n) - f(a)| \ge \varepsilon$ $(n \in \mathbb{N})$ miatt nem lehetséges.

5.5.3. Tétel. Tegyük fel, hogy $f, g \in \mathbf{K}_1 \to \mathbf{K}_2$, $g \in \mathcal{C}\{a\}$ és $f \in \mathcal{C}\{g(a)\}$. Ekkor $f \circ g \in \mathcal{C}\{a\}$.

Bizonyítás. Mivel a feltételezés szerint $g(a) \in \mathcal{D}_f$, ezért $\mathcal{R}_g \cap \mathcal{D}_f \neq \emptyset$, így valóban beszélhetünk az $f \circ g$ összetett függvényről és $a \in \mathcal{D}_{f \circ g}$. Ha

$$(x_n): \mathbf{N} \to \mathcal{D}_{f \circ g}$$

és $\lim(x_n) = a$, akkor $\mathcal{D}_{f \circ g} \subset \mathcal{D}_g$ miatt egyúttal

$$(x_n): \mathbf{N} \to \mathcal{D}_g.$$

Ezért az 5.5.2. Tételt a g-re alkalmazva azt kapjuk, hogy

$$\lim (g(x_n)) = g(a).$$

Ugyanakkor $(g(x_n))$: $\mathbf{N} \to \mathcal{D}_f$, ezért újra csak az 5.5.2. Tételt (most az f-re) alkalmazva azt mondhatjuk, hogy

$$\lim (f(g(x_n)) = f(g(a)) = (f \circ g)(a).$$

Mivel ez utóbbi bármely $(x_n): \mathbf{N} \to \mathcal{D}_{f \circ g}$, $\lim(x_n) = a$ esetén igaz, ezért az 5.5.2. Tételből már következik, hogy $f \circ g \in \mathcal{C}\{a\}$.

5.5.4. Tétel (Bolzano). Tegyük fel, hogy valamely $-\infty < a < b < +\infty$ esetén az $f:[a,b] \to \mathbf{R}$ függvény folytonos és $f(a) \cdot f(b) < 0$. Ekkor van olyan $\xi \in (a,b)$, amely "gyöke" az f függvénynek, azaz $f(\xi) = 0$.

Bizonyítás. Legyen pl. f(a) < 0 < f(b) és

$$a_0 := a$$
, $b_0 := b$, $c_0 := \frac{a+b}{2}$.

Három eset lehetséges;

- i) $f(c_0) = 0$, ekkor $\xi := c_0$ gyöke az f-nek.
- ii) $f(c_0) > 0$, ekkor legyen $a_1 := a$, $b_1 := c_0$.
- iii) $f(c_0) < 0$, ekkor legyen $a_1 := c_0, b_1 := b$.

Világos, hogy a ii), iii) esetekben $f(a_1) < 0 < f(b_1)$. Tegyük fel, hogy valamilyen $n \in \mathbb{N}$ esetén már ismertek az $a \le a_i < b_i \le b$ pontok és

$$f(a_i) < 0 < f(b_i)$$
 $(i = 0, ..., n).$

Legyen ekkor

$$c_n := \frac{a_n + b_n}{2}.$$

Ismételjük meg az "első lépést":

- i) ha $f(c_n) = 0$, akkor $\xi := c_n$ gyöke az f-nek;
- ii) ha $f(c_n) > 0$, ekkor legyen $a_{n+1} := a_n, b_{n+1} := c_n$;
- iii) $f(c_n) < 0$, ekkor legyen $a_{n+1} := c_n, b_{n+1} := b_n$

és

$$c_{n+1} := \frac{a_{n+1} + b_{n+1}}{2}.$$

Nyilvánvaló, hogy minket csak a ii), iii) esetek "érdekelnek" már a továbbiakban, más szóval feltehetjük, hogy ezzel az eljárással kaptunk egy-egy $(a_n), (b_n) : \mathbf{N} \to [a, b]$ sorozatot, $a \le a_n < b_n \le b \pmod{n}$ és

$$f(a_n) < 0 < f(b_n) \qquad (n \in \mathbf{N}).$$

Teljes indukcióval rögtön adódik, hogy

$$b_n - a_n = \frac{b - a}{2^n} \qquad (n \in \mathbf{N}).$$

Valóban, ha n = 0, akkor $a_0 = a, b_0 = b$, $2^0 = 1$ miatt a dolog triviális. Ha valamilyen $n \in \mathbf{N}$ esetén fennáll a bizonyítandó egyenlőség, akkor

$$b_{n+1} - a_{n+1} = \begin{cases} c_n - a_n \\ \text{vagy} \\ b_n - c_n \end{cases},$$

így

$$b_{n+1} - a_{n+1} = \frac{b_n - a_n}{2} = \frac{1}{2} \cdot \frac{b - a}{2^n} = \frac{b - a}{2^{n+1}}.$$

Az (a_n) , (b_n) sorozatok konstrukciójából és a nyilvánvaló

$$a_n < c_n < b_n \qquad (n \in \mathbf{N})$$

becslésből rögtön következik, hogy $(a_n): \mathbf{N} \to [a,b]$ monoton növekedő, $(b_n): \mathbf{N} \to [a,b]$ monoton fogyó. Mivel az [a,b] intervallum korlátos, ezért (ld. 3.5.3. Tétel) az (a_n) , (b_n) sorozatok konvergensek és könnyen beláthatóan

$$\xi := \lim(a_n) \in [a, b] , \eta := \lim(b_n) \in [a, b].$$

(Ui.: (pl.) $\xi < a$ esetén $\xi := \lim(a_n)$ miatt egy alkalmas $N \in \mathbb{N}$ mellett $x_k < a$ $(k \in \mathbb{N}, k > N)$ teljesülne, ami $\mathcal{R}_{(x_n)} \subset [a,b]$ -ből következően nem lehetséges, stb.) A konvergens sorozatokkal kapcsolatos eredményeink alapján

$$|\xi - \eta| = \lim (|a_n - b_n|) \le \lim \left(\frac{b - a}{2^n}\right) = 0,$$

ezért $\xi = \eta$. Az átviteli elv (ld. 5.5.2 Tétel) és $f(a_n) < 0 < f(b_n)$ $(n \in \mathbb{N})$ alapján tehát

$$0 \ge \lim (f(b_n)) = f(\xi) = \lim (f(a_n)) \le 0,$$

következésképpen $f(\xi) = 0$. Világos, hogy f(a) < 0 < f(b) miatt $\xi \in (a, b)$.

Tegyük most fel, hogy az előbbi [a,b] zárt intervallum esetén a $g:[a,b]\to \mathbf{R}$ függvény folytonos és legyen $g(a)\neq g(b)$, pl. g(a)< g(b). Ha $y\in \mathbf{R}$ és

$$g(a) < y < g(b),$$

akkor az f := g - y függvényre triviális módon teljesülnek az előző Bolzano-tétel feltételei. Ezért van olyan $\xi \in (a, b)$, amellyel $f(\xi) = g(\xi) - y = 0$, azaz $g(\xi) = y$. Ezzel beláttuk az 5.5.4. Tétel alábbi kiterjesztését:

5.5.5. Tétel. Legyen $-\infty < a < b < +\infty$, az $f : [a,b] \to \mathbf{R}$ függvény folytonos és $f(a) \neq f(b)$. Ekkor f(a) < f(b) esetén tetszőleges

számhoz, ill. f(a) > f(b) esetén tetszőleges

számhoz van olyan $\xi \in (a,b)$, amellyel $f(\xi) = y$.

5.5.7. Tétel. Tegyük fel, hogy az $f \in \mathbf{R} \to \mathbf{R}$ folytonos függvény értelmezési tartománya intervallum. Ekkor az értékkészlete vagy egy-elemű vagy intervallum.

Bizonyítás. Legyen

$$m := \inf \mathcal{R}_f$$
, $M := \sup \mathcal{R}_f$.

Ha m = M, akkor nyilván $\mathcal{R}_f = \{m\}$. Különben legyen m < y < M. Ekkor a szuprémum, ill. az infimum tulajdonságai alapján alkalmas $a, b \in \mathcal{D}_f$ helyeken

$$f(a) < y < f(b)$$
.

Nyilván $a \neq b$. Az 5.5.6. Tétel szerint van olyan x az a,b által meghatározott intervallumban, amellyel y = f(x). Tehát $y \in \mathcal{R}_f$, azaz $(m,M) \subset \mathcal{R}_f$. Innen már következik az állításunk, mivel csak az alábbi esetek lehetségesek:

$$\mathcal{R}_f = \begin{cases} (m, M) \\ [m, M] \\ (m, M] \\ [m, M). \end{cases}$$

5.5.9. Tétel. Ha az $f \in \mathbf{K}_1 \to \mathbf{K}_2$ függvény folytonos és a \mathcal{D}_f értelmezési tartománya kompakt, akkor az \mathcal{R}_f értékészlete is kompakt.

Bizonyítás. Azt kell megmutatnunk, hogy véve tetszőleges $(y_n): \mathbf{N} \to \mathcal{R}_f$ sorozatot, ehhez létezik olyan (ν_n) indexsorozat, amellyel az (y_{ν_n}) részsorozat konvergens és $\lim (y_{\nu_n}) \in \mathcal{R}_f$. Az $y_n \in \mathcal{R}_f$ $(n \in \mathbf{N})$ feltételezés miatt alkalmas $x_n \in \mathcal{D}_f$ esetén

$$y_n = f(x_n) \qquad (n \in \mathbf{N}).$$

Mivel \mathcal{D}_f kompakt, ezért van olyan (ν_n) indexsorozat, hogy az (x_{ν_n}) részsorozat konvergens és $a := \lim(x_{\nu_n}) \in \mathcal{D}_f$. Ugyanakkor $f \in \mathcal{C}\{a\}$, így (ld. 5.5.2. Tétel) létezik a

$$\lim (y_{\nu_n}) = \lim (f(x_{\nu_n})) = f(a) \in \mathcal{R}_f$$

határérték.

5.5.10. Tétel (Weierstrass). Legyen az $f \in \mathbf{K} \to \mathbf{R}$ folytonos függvény értelmezési tartománya kompakt. Ekkor az értékkészletének létezik legkisebb és legnagyobb eleme.

Bizonyítás. Az 5.5.9. Tétel alapján az \mathcal{R}_f halmaz kompakt. Lássuk be, hogy \mathcal{R}_f korlátos. Különben lenne olyan $(y_n): \mathbf{N} \to \mathcal{R}_f$ sorozat, amelyre az $|y_n| > n \ (n \in \mathbf{N})$ becslés állna fenn. Világos, hogy ekkor tetszőleges (ν_n) indexsorozatra is

$$|y_{\nu_n}| > \nu_n \ge n \qquad (n \in \mathbf{N}),$$

tehát (y_{ν_n}) nem korlátos. Így nem is konvergens, ami ellentmond az \mathcal{R}_f kompaktságának.

Legyen

$$m := \inf \mathcal{R}_f$$
, $M := \inf \mathcal{R}_f$,

akkor \mathcal{R}_f korlátossága miatt $m, M \in \mathbf{R}$. Mutassuk meg, hogy $m, M \in \mathcal{R}_f$. Valóban, a szuprémum tulajdonságait felhasználva van olyan $(y_n) : \mathbf{N} \to \mathcal{R}_f$ sorozat, amelyre

$$M - \frac{1}{n} < y_n \le M \qquad (1 \le n \in \mathbf{N}).$$

Következésképpen $\lim(y_n) = M$. Mivel $y_n \in \mathcal{R}_f$, ezért egy-egy alkalmas $x_n \in \mathcal{D}_f$ helyen

$$y_n = f(x_n)$$
 $(1 \le n \in \mathbf{N}).$

A \mathcal{D}_f kompaktsága miatt viszont van olyan (ν_n) indexsorozat, hogy létezik az

$$a := \lim(x_{\nu_n}) \in \mathcal{D}_f$$

határérték. Továbbá $f \in \mathcal{C}\{a\}$, így az átviteli elv (ld. 5.5.2. Tétel) és a 3.5.2. Tétel szerint

$$M = \lim(y_n) = \lim(y_{\nu_n}) = \lim (f(x_{\nu_n})) = f(a) \in \mathcal{R}_f.$$

Az $m \in \mathcal{R}_f$ állítás u.így adódik.

5.5.11. Tétel (Heine). Tegyük fel, hogy az $f \in \mathbf{K}_1 \to \mathbf{K}_2$ függvény folytonos és a \mathcal{D}_f halmaz kompakt. Ekkor az f egyenletesen folytonos, azaz tetszőleges $\varepsilon > 0$ számhoz létezik olyan $\delta > 0$ szám, hogy $|f(x) - f(t)| < \varepsilon$ $(x, t \in \mathcal{D}_f, |x - t| < \delta)$.

Bizonyítás. Indirekt módon induljunk ki abból, hogy valamilyen $\varepsilon > 0$ mellett bármilyen $\delta > 0$ esetén vannak olyan $x, t \in \mathcal{D}_f$ elemek, amelyekre ugyan $|x - t| < \delta$ igaz, de

$$|f(x) - f(t)| \ge \varepsilon$$
.

Speciálisan tetszőleges $1 \le n \in \mathbb{N}$ indexhez megadhatók olyan $x_n, t_n \in \mathcal{D}_f$ elemek, hogy $|x_n - t_n| < 1/n$ és

$$|f(x_n) - f(t_n)| \ge \varepsilon.$$

Kaptunk tehát egy-egy

$$(x_n), (t_n): \mathbf{N} \to \mathcal{D}_f$$

sorozatot. A \mathcal{D}_f kompaktsága miatt van olyan (ν_n) indexsorozat, amellyel az (x_{ν_n}) részsorozat konvergens és

$$a := \lim (x_{\nu_n}) \in \mathcal{D}_f.$$

Hasonlóan, van olyan (μ_n) indexsorozat is, hogy a $(t_{\nu_{\mu_n}})$ részsorozat is konvergens és

$$b := \lim \left(t_{\nu_{\mu_n}} \right) \in \mathcal{D}_f.$$

Mivel

$$|x_{\nu_{\mu_n}} - t_{\nu_{\mu_n}}| < \frac{1}{\nu_{\mu_n}} \le \frac{1}{n} \quad (1 \le n \in \mathbf{N}),$$

ezért $\lim (x_{\nu_{\mu_n}}) = \lim (x_{\nu_n}) = a$ alapján

$$|a-b| = \left| \lim \left(x_{\nu_{\mu_n}} - t_{\nu_{\mu_n}} \right) \right| \le \lim \left(\frac{1}{n} \right) = 0.$$

Tehát a = b és így az átviteli elv (ld. 5.5.2. Tétel) szerint

$$f(a) = \lim \left(f(x_{\nu_{\mu_n}}) \right) = \lim \left(f(t_{\nu_{\mu_n}}) \right),$$

amiből

$$\lim (f(x_{\nu_{\mu_n}}) - (f(t_{\nu_{\mu_n}})) = 0$$

következik. Ez nyilván ellentmond az indirekt feltevésbeli $|f(x_n) - f(t_n)| \ge \varepsilon \ (n \in \mathbb{N})$ feltételezésnek.

5.5.12. Tétel. Legyen az $f \in \mathbf{K}_1 \to \mathbf{K}_2$ függvény folytonos, invertálható és az értelmezési tartománya kompakt. Ekkor az f^{-1} inverzfüggvény is folytonos.

Bizonyítás. Azt kell belátnunk, hogy tetszőleges $y \in \mathcal{D}_{f^{-1}} = \mathcal{R}_f$ esetén

$$f^{-1} \in \mathcal{C}\{y\}.$$

Tegyük fel indirekt módon, hogy ez nem igaz, azaz van olyan $y \in \mathcal{D}_{f^{-1}} = \mathcal{R}_f$, amelyre $f^{-1} \notin \mathcal{C}\{y\}$. Ekkor létezik olyan $\varepsilon > 0$, hogy bármilyen $\delta > 0$ esetén egy alkalmas $z \in \mathcal{D}_{f^{-1}}, |z - y| < \delta$ mellett

$$|f^{-1}(z) - f^{-1}(y)| \ge \varepsilon.$$

Speciálisan minden $1 \le n \in \mathbb{N}$ esetén valamilyen $z_n \in \mathcal{D}_{f^{-1}}, |z_n - y| < 1/n$ helyen

$$|f^{-1}(z_n) - f^{-1}(y)| \ge \varepsilon \qquad (1 \le n \in \mathbf{N}).$$

Jegyezzük meg, hogy $\lim(z_n) = y$. Legyen $x_n := f^{-1}(z_n) \in \mathcal{D}_f$ $(1 \le n \in \mathbf{N})$, ekkor a \mathcal{D}_f kompaktsága alapján egy (ν_n) indexsorozattal létezik a $\xi := \lim (x_{\nu_n}) \in \mathcal{D}_f$ határérték. Továbbá az 5.5.2. Tétel miatt

$$f(\xi) = \lim (f(x_{\nu_n})) = \lim (z_{\nu_n}) = \lim (z_n) = y,$$

amiből az f invertálhatóságát figyelembe véve $f^{-1}(y) = \xi$ következik. Mindezt összegezve azt kaptuk, hogy

$$\varepsilon \le |f^{-1}(z_{\nu_n}) - f^{-1}(y)| = |x_{\nu_n} - \xi| \to 0 \quad (n \to \infty),$$

ami nyilván nem lehetséges.

Speciális függvények

1. Legyen

$$\exp x := \exp(x) := e^x := \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 $(x \in \mathbf{K})$

az $\exp: \mathbf{K} \to \mathbf{K}$ exponenciálisfüggvény,

$$\sin x := \sin(x) := \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \qquad (x \in \mathbf{K})$$

a $\sin: \mathbf{K} \to \mathbf{K}$ szinuszfüggvény,

$$\cos x := \cos(x) := \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} \qquad (x \in \mathbf{K})$$

a $\cos: \mathbf{K} \to \mathbf{K}$ koszinuszfüggvény.

A 4.5.1., 4.3.9. Tételek alapján bármely $x, y \in \mathbf{K}$ esetén az

$$\exp x \cdot \exp y$$

szorzatot Cauchy-szorzással is kiszámíthatjuk a következőképpen:

$$\exp x \cdot \exp y = \left(\sum_{k=0}^{\infty} \frac{x^k}{k!}\right) \cdot \left(\sum_{k=0}^{\infty} \frac{y^k}{k!}\right) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{1}{k!(n-k)!} x^k y^{n-k} =$$

$$\sum_{n=0}^{\infty} \frac{1}{n!} \sum_{k=0}^{n} \binom{n}{k} x^k y^{n-k} = \sum_{n=0}^{\infty} \frac{(x+y)^n}{n!} = \exp(x+y)$$

(felhasználva a binomiális tételt is). Emeljük ki külön is az exponenciális függvényre most kapott multiplikatív tulajdonságot:

$$\exp(x+y) = (\exp x) \cdot (\exp y)$$
 $(x, y \in \mathbf{K}).$

2. Lássuk be az alábbi ún. Euler-összefüggést:

$$\exp(ix) = e^{ix} = \cos x + i \sin x \qquad (x \in \mathbf{K}).$$

Ehhez először gondoljuk meg, hogy ha a $\sum(z_n)$ (szám)sor abszolút konvergens, akkor a $\sum(z_{2n})$, $\sum(z_{2n+1})$ sorok is abszolút konvergensek és

$$\sum_{n=0}^{\infty} z_n = \sum_{n=0}^{\infty} z_{2n} + \sum_{n=0}^{\infty} z_{2n+1}.$$

Ui.

$$\sum_{k=0}^{n} |z_{2k}| \le \sum_{k=0}^{2n} |z_k| \le \sup \left\{ \sum_{k=0}^{m} |z_k| : m \in \mathbf{N} \right\} < +\infty \qquad (n \in \mathbf{N}),$$

azaz a $\left(\sum_{k=0}^{n}|z_{2k}|\right)$ sorozat korlátos. Így (ld. 3.5.3. Tétel) $\sum(z_{2n})$ abszolút konvergens. Ugyanígy adódik, hogy a $\sum(z_{2n+1})$ sor is abszolút konvergens. Legyen

$$\alpha := \sum_{n=0}^{\infty} z_n \ , \ \beta := \sum_{n=0}^{\infty} z_{2n} \ , \ \gamma := \sum_{n=0}^{\infty} z_{2n+1},$$

ekkor

$$S_n := \sum_{k=0}^{2n+1} z_k = \sum_{k=0}^n z_{2k} + \sum_{j=0}^n z_{2j+1} =: R_n + T_n \qquad (n \in \mathbf{N}).$$

Mivel (ld. 3.5.2. Tétel)

$$\lim(S_n) = \alpha$$
, $\lim(R_n) = \beta$, $\lim(T_n) = \gamma$,

ezért (ld. 3.7.5. Tétel)

$$\sum_{k=0}^{\infty} z_k = \alpha = \lim(S_n) = \lim(R_n + T_n) = \lim(R_n) + \lim(T_n) = \lim(S_n) =$$

$$\beta + \gamma = \sum_{k=0}^{\infty} z_{2k} + \sum_{k=0}^{\infty} z_{2k+1}.$$

Mindezt felhasználva

$$e^{ix} = \sum_{n=0}^{\infty} \frac{(ix)^n}{n!} = \sum_{n=0}^{\infty} \frac{(ix)^{2n}}{(2n)!} + \sum_{n=0}^{\infty} \frac{(ix)^{2n+1}}{(2n+1)!} =$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} + i \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = \cos x + i \sin x.$$

3. Mutassuk meg, hogy fennállnak a következő összegzési tételek:

$$\sin(x+y) = \sin x \cos y + \cos x \sin y$$
 $(x, y \in \mathbf{K}),$

$$\cos(x+y) = \cos x \cos y - \sin x \sin y \qquad (x, y \in \mathbf{K}).$$

Speciálisan

$$\sin(2x) = 2\sin x \cos x , \cos(2x) = \cos^2 x - \sin^2 x \qquad (x, y \in \mathbf{K}).$$

Valóban, az Euler-összefüggés alapján

$$e^{ix} + e^{-ix} = \cos x + i\sin x + \cos(-x) + i\sin(-x) =$$

$$\cos x + i \sin x + \cos x - i \sin x = 2 \cos x \qquad (x \in \mathbf{K},$$

ill.

$$e^{ix} - e^{-ix} = \cos x + i \sin x - \cos(-x) - i \sin(-x) =$$

$$\cos x + i \sin x - \cos x + i \sin x = 2i \sin x \qquad (x \in \mathbf{K}.$$

Következésképpen

$$\cos x = \frac{e^{ix} + e^{-ix}}{2}$$
, $\sin x = \frac{e^{ix} - e^{-ix}}{2i}$ $(x \in \mathbf{K})$.

Ezért az előbbiekre hivatkozva

$$\sin(x+y) = \frac{e^{\imath(x+y)} - e^{-\imath(x+y)}}{2\imath} = \frac{e^{\imath x}e^{\imath y} - e^{\imath(-x)}e^{\imath(-y)}}{2\imath} =$$

$$\frac{\left(\cos x + \imath\sin x\right)\left(\cos y + \imath\sin y\right) - \left(\cos(-x) + \imath\sin(-x)\right)\left(\cos(-y) + \imath\sin(-y)\right)}{2\imath} =$$

$$\frac{\left(\cos x + \imath\sin x\right)\left(\cos y + \imath\sin y\right) - \left(\cos x - \imath\sin x\right)\left(\cos y - \imath\sin y\right)}{2\imath} =$$

$$2\imath \cdot \frac{\sin x\cos y + \cos x\sin y}{2\imath} = \sin x\cos y + \cos x\sin y.$$

A másik összegzési egyenlőséget analóg módon kapjuk.

4. Pitagoraszi-összefüggés: bármely $x \in \mathbf{K}$ esetén

$$\cos^2 x + \sin^2 x = 1.$$

Ui. ismét az Euler-összefüggésre hivatkozva (ld. iv)), ill. iii) alapján

$$\cos^2 x = \left(\frac{e^{ix} + e^{-ix}}{2}\right)^2 = \frac{e^{2ix} + 2 + e^{-2ix}}{4}$$

és

$$\sin^2 x = \left(\frac{e^{\imath x} - e^{-\imath x}}{2\imath}\right)^2 = \frac{e^{2\imath x} - 2 + e^{-2\imath x}}{-4}.$$

Összeadva a most kapott két egyenlőséget kapjuk a Pitagoraszi-összefüggést.