11. Двумерные случайные величины

Необходимый теоретический материал из лекции 5.

Определение 11.1. n -мерным случайным вектором называется набор $\xi = (\xi_1, \xi_2 \dots, \xi_n)$ случайных величин, заданных на одном и том же вероятностном пространстве (Ω, A, P) .

 Φ актически случайный вектор ξ есть отображение $\xi:\Omega\to R^n$

Определение 11.2. Законом распределения дискретной двумерной случайной величины называют перечень возможных значений этой величины, т.е. пар чисел $(x_i;y_j),\ i=1,\ \ldots,n,\ j=1,\ \ldots,m,\ u$ их вероятностей $p_{ij}=P\{\xi=x_i;\zeta=y_j\}.$

Закон распределения задают в виде таблицы с двойным входом, в которой указывают все значения x_i , y_i и вероятности p_{ij} .

ξ^{ζ}	y_1		y_j		y_m
x_1	p_{11}		p_{1j}		p_{1m}
•	:	٠	•••	٠.	•
x_i	p_{i1}		p_{ij}		p_{im}
•	:	٠	:	•	:
x_n	p_{n1}		p_{nj}		p_{nm}

Таблица 11.1

Распределение двумерной дискретной случайной величины									
$\xi \setminus^{\zeta}$	y_1		y_j	• • •	y_m	$P\{\xi = x_i\}$			
x_1	p_{11}		p_{1j}		p_{1m}	p_{1*}			
:	:	· · .	:	٠.	:	:			
x_i	p_{i1}		p_{ij}		p_{im}	p_{i*}			
:	:	•••	•	• • •	:	:			
x_n	p_{n1}		p_{nj}		p_{nm}	p_{n*}			
$P\{\zeta=y_j\}$	p_{*1}		p_{*j}		p_{*m}	1			

Зная двумерный закон распределения, можно найти закон распределения каждой составляющей (но не наоборот).

$$P\{\xi = x_i\} = P\{\xi = x_i, \zeta = y_1\} + P\{\xi = x_i, \zeta = y_2\} + \dots$$

$$\dots + P\{\xi = x_i, \zeta = y_m\} = \sum_{j=1}^m p_{ij} = p_{i*}.$$
 (11.1)

Аналогично

$$P\{\zeta = y_i\} = \sum_{i=1}^{n} p_{ij} = p_{*j}.$$
 (11.2)

$$M(\xi) = \sum_{i=1}^{n} x_i p_{i*}, \qquad M(\zeta) = \sum_{j=1}^{m} y_j p_{*j}.$$
 (11.3)

Определение 11.3. Точка с координатами $(M(\xi); M(\zeta))$ называется центром распределения.

$$P\{\zeta = y_j/\xi = x_i\} = \frac{P\{\xi = x_i, \zeta = y_j\}}{P\{\xi = x_i\}} = \frac{p_{ij}}{p_{i*}}.$$
 (11.4)

$$P\{\xi = x_i/\zeta = y_j\} = \frac{p_{ij}}{p_{*j}}.$$
(11.5)

Вероятности $P\{\zeta = y_j/\xi = x_i\}$ для $j=1,\ldots,m$ образуют условное распределение случайной величины ζ при фиксированном значении ξ . В частности, можно найти условное математическое ожидание ζ при фиксированном значении ξ :

$$M(\zeta/\xi = x_i) = \sum_{j=1}^{m} y_j P\{\zeta = y_j/\xi = x_i\}$$
 для $i = 1, \dots, n$ (11.6)

и условное математическое ожидание ξ при фиксированном значении ζ :

$$M(\xi/\zeta = y_j) = \sum_{i=1}^{n} x_i P\{\xi = x_i/\zeta = y_j\}$$
 для $j = 1, \dots, m$. (11.7)

Для независимых дискретных случайных величин ξ и ζ

$$P\{\zeta = y_j/\xi = x_i\} = P\{\zeta = y_j\} \quad \text{if} \quad P\{\xi = x_i/\zeta = y_j\} = P\{\xi = x_i\}.$$

$$P\{\zeta = y_j/\xi = x_i\} = \frac{p_{ij}}{p_{i*}} = \frac{p_{i*} \cdot p_{*j}}{p_{i*}} = p_{*j} .$$

$$P\{\xi = x_i/\zeta = y_j\} = \frac{p_{ij}}{p_{*j}} = \frac{p_{i\cdot} \cdot p_{*j}}{p_{*j}} = p_{i*} .$$

Определение 11.4. Плотностью распределения двумерной непрерывной случайной величины $(\xi;\zeta)$ называется вторая смешанная частная производная функции распределения:

$$f(x;y) = \frac{\partial^2 F(x;y)}{\partial x \partial y}.$$
 (11.8)

Двумерная плотность распределения обладает следующими свойствами:

- (1) $f(x;y) \ge 0$;
- (2) $f(-\infty; y) = f(x; -\infty) = f(\pm \infty; \pm \infty) = 0;$
- (3) $F(x;y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(s;t)dsdt;$
- (4) Вероятность попадания двумерной случайной величины $(\xi;\zeta)$ в область G равна:

$$P\{(\xi;\zeta)\in G\} = \iint_G f(x;y)dxdy;$$
(5)
$$\iint_{-\infty}^{+\infty} f(x;y)dxdy = 1.$$

Плотности распределения составляющих двумерной непрерывной случайной величины получаются из её плотности f(x; y) по формулам (11.9):

$$f_{\xi}(x) = \int_{-\infty}^{+\infty} f(x; y) dy; \qquad f_{\zeta}(y) = \int_{-\infty}^{+\infty} f(x; y) dx. \tag{11.9}$$

Определение 11.5. Условной плотностью $f(y/\xi = x)$ распределения ζ при условии, что $\xi = x$, называется:

$$f(y/\xi = x) = \begin{bmatrix} 0, & f_{\xi}(x) = 0, \\ \frac{f(x;y)}{f_{\xi}(x)}, & f_{\xi}(x) \neq 0. \end{bmatrix}$$
(11.10)

Условной плотностью $f(x/\zeta = y)$ распределения ξ при условии, что $\zeta = y$, называется:

$$f(x/\zeta = y) = \begin{bmatrix} 0, & f_{\zeta}(y) = 0, \\ \frac{f(x;y)}{f_{\zeta}(y)}, & f_{\zeta}(y) \neq 0. \end{bmatrix}$$
(11.11)

Определение 11.6. Условным математическим ожиданием ζ npu условии, что $\xi=x$, называется:

$$M(\zeta/\xi = x) = \int_{-\infty}^{+\infty} y f(y/\xi = x) dy.$$
 (11.12)

Условным математическим ожиданием ξ при условии, что $\zeta = y$, называется:

$$M(\xi/\zeta = y) = \int_{-\infty}^{+\infty} x \cdot f(x/\zeta = y) dx.$$
 (11.13)

Определение 11.7. Функцию $f_{\zeta/\xi}(x)$ называют регрессией ζ на ξ . Другими словами, регрессией ζ на ξ называется условное математическое ожидание ζ при фиксированном $\xi=x$. Аналогично $\psi_{\xi/\zeta}(y)$ называется регрессией ξ на ζ .

Теорема 11.13. Для независимости непрерывных случайных величин ξ и ζ необходимо и достаточно, чтобы $f(x;y) = f_{\varepsilon}(x) \cdot f_{\varepsilon}(y)$.

Для независимых непрерывных случайных величин ξ и ζ

$$f(y/\xi = x) = f_{\zeta}(y)$$
 и $f(x/\zeta = y) = f_{\xi}(x)$ при $f_{\xi}(x) \neq 0$, $f_{\zeta}(y) \neq 0$.

T.е. закон распределения каждой из них не зависит от значений, принимаемых другой.

$$f(y/\xi = x) = \frac{f(x;y)}{f_{\xi}(x)} = \frac{f_{\xi}(x) \cdot f_{\zeta}(y)}{f_{\xi}(x)} = f_{\zeta}(y).$$

Определение 11.8. Корреляционным моментом $K_{\xi\zeta}$ случайных величин ξ и ζ называют:

$$K_{\xi\zeta} = M\left(\left(\xi - M(\xi)\right)\left(\zeta - M(\zeta)\right)\right).$$

$$K_{\varepsilon \zeta} = M(\xi \cdot \zeta) - M(\xi) \cdot M(\zeta). \tag{11.14}$$

Вычисление корреляционного момента по формуле (13.1) для дискретных случайных величин сводится к вычислению суммы:

$$K_{\xi\zeta} = \sum_{j=1}^{m} \sum_{i=1}^{n} p_{ij} x_i y_j - M(\xi) \cdot M(\zeta),$$

а для непрерывных — интеграла:

$$K_{\xi\zeta} = \int_{-\infty}^{+\infty} xy f(xy) dx dy - M(\xi) \cdot M(\zeta).$$

Теорема 11.14. Для независимых случайных величин корреляционный момент равен нулю.

ПРИМЕР 11.1. Задана дискретная двумерная случайная величина (ξ,ζ) :

$\xi \setminus \zeta$	4	7	8
3,4	0.05	0,11	0,15
5,1	0,32	0,13	0,24

Найти законы распределения составляющих ξ и ζ , безусловное и условное математическое ожидание ξ при условии $\zeta=7$, а также безусловное и условное математическое ожидание ζ при $\xi=5,1$.

ightharpoonupСложив вероятности по строкам, получим закон распределения составляющей ξ :

$$\begin{array}{|c|c|c|c|c|} \hline \xi & 3,4 & 5,1 \\ \hline p & 0,31 & 0,69 \\ \hline \end{array}$$

Если сложим вероятности по столбцам, то придем к закону распределения составляющей ζ :

$$\begin{array}{|c|c|c|c|c|c|c|c|}\hline \zeta & 4 & 7 & 8 \\\hline p & 0.37 & 0.24 & 0.39 \\\hline \end{array}$$

С помощью последних таблиц легко найдем безусловные математические ожидания:

$$M(\xi) = 3.4 \cdot 0.31 + 5.1 \cdot 0.69 = 4.573,$$

 $M(\zeta) = 4 \cdot 0.37 + 7 \cdot 0.24 + 8 \cdot 0.39 = 6.280.$

Вероятность $P(\zeta=7)=0.11+0.13=0.24.$ Согласно (11.5), условные вероятности

$$P(\xi = 3, 4|\zeta = 7) = 0.11/0.24 = 11/24,$$

 $P(\xi = 5, 1|\zeta = 7) = 0.13/0.24 = 13/24.$

Условный закон распределения ξ примет вид:

$$\begin{array}{c|cccc}
\xi & 3.4 & 5.1 \\
P(\xi = x_i | \zeta = 7) & 11/24 & 13/24
\end{array}$$

Соответствующее условное математическое ожидание

$$M(\xi|\zeta=7) = 3.4 \cdot 11/24 + 5.1 \cdot 13/24 \approx 4.321.$$

Вероятность $P(\xi=5,1)=0.32+0.13+0.24=0.63$. Далее по формуле (11.4) вычисляем условные вероятности

$$P(\zeta = 4|\xi = 5.1) = 0.32/0.69 = 32/69,$$

 $P(\zeta = 7|\xi = 5.1) = 0.13/0.69 = 13/69,$
 $P(\zeta = 8|\xi = 5.1) = 0.24/0.69 = 24/69.$

По условному закону распределения ζ

ζ	4	7	8
$P(\zeta = y_i \xi = 5, 1)$	32/69	13/69	24/69

найдем математическое ожидание

$$M(\zeta|\xi=5.1)=4\cdot32/69+7\cdot13/69+8\cdot24/69\approx5.957.\blacktriangleleft$$

Ответ: 4,321; 5,957.

ПРИМЕР 11.2. Дано распределение двумерного случайного вектора $(\xi;\zeta)$ с дискретными компонентами.

$\xi \setminus \eta$	1	2	4
3	0,1	0,1	0,2
5	0.15	0.15	0,3

Требуется:

- 1) Найти одномерные распределения случайных величин ξ и η , их математические ожидания $M(\xi)$ и $M(\eta)$ и дисперсии $D(\xi)$ и $D(\eta)$.
- 2) Доказать независимость случайных величин ξ и η . Вычислить непосредственно их корреляционный момент $K(\xi\eta)$.

▶

$\xi \setminus \eta$	1	2	4	$P(\xi = x_i)$
3	0,1	0,1	0,2	0,4
5	0,15	0,15	0,3	0,6
$P(\eta = y_j)$	0,25	0,25	0,5	1

ightharpoonup Выпишем отдельно ряды распределения случайных величин $\xi,\,\eta$ и $\xi n.$

11	5'	<i> </i> •												
ξ		3	5	η	1	2	4	$\xi\eta$	3	5	6	10	12	20
I)	0,4	0,6	P	$0,\!25$	$0,\!25$	0,5	P	0,1	$0,\!15$	0,1	0,15	0,2	0,3

Найдём математические ожидания $M(\xi), M(\eta)$ и $M(\xi\eta).$

$$M(\xi) = 3 \cdot 0.4 + 5 \cdot 0.6 = 4.2.$$

$$M(\eta) = 1 \cdot 0.25 + 2 \cdot 0.25 + 4 \cdot 0.5 = 2.75.$$

$$M(\xi\eta) = 3 \cdot 0.1 + 5 \cdot 0.15 + 6 \cdot 0.1 + 10 \cdot 0.15 + 12 \cdot 0.2 + 20 \cdot 0.3 = 11.55.$$

Найдём дисперсии $D(\xi),\,D(\eta)$ и $D(\xi\eta).$

$$D(\xi) = 3^2 \cdot 0.4 + 5^2 \cdot 0.6 - 4.2^2 = 0.96.$$

$$D(\eta) = 1^2 \cdot 0.25 + 2^2 \cdot 0.25 + 4^2 \cdot 0.5 - 2.75^2(\eta) = 1.6875.$$

$$D(\xi\eta) = 3^2 \cdot 0.1 + 5^2 \cdot 0.15 + 6^2 \cdot 0.1 + 10^2 \cdot 0.15 + 12^2 \cdot 0.2 + 20^2 \cdot 0.3 - M^2(\xi\eta) = 38,6475.$$

2) Доказать независимость случайных величин ξ и η . Вычислить непосредственно их корреляционный момент $K(\xi\eta)$.

Для доказательства независимость случайных величин ξ и η проверим выполнения условий

$$P(\xi = x_i, \eta = y_j) = P(\xi = x_i) \cdot P(\eta = y_j), i = 1, 2; j = 1, 2, 3.$$

$$P(\xi = x_1) \cdot P(\eta = y_1) = 0,25 \cdot 0,4 = 0,1.$$

$$P(\xi = x_1) \cdot P(\eta = y_2) = 0,25 \cdot 0,6 = 0,15.$$

$$P(\xi = x_2) \cdot P(\eta = y_1) = 0,25 \cdot 0,4 = 0,1.$$

$$P(\xi = x_2) \cdot P(\eta = y_2) = 0,25 \cdot 0,6 = 0,15.$$

$$P(\xi = x_3) \cdot P(\eta = y_1) = 0,5 \cdot 0,4 = 0,2.$$

$$P(\xi = x_3) \cdot P(\eta = y_2) = 0,5 \cdot 0,6 = 0,3.$$

Все условия выполняются, следовательно случайных величин ξ и η независимы.

Найдём корреляционный момент

$$K(\xi \eta) = M(\xi \eta) - M(\xi)M(\eta) = 11.55 - 4.2 \cdot 2.75 = 0.$$

ПРИМЕР 11.3. Задана дискретная случайная величина $\Theta=10\xi-3\eta$, где ξ и η — дискретные случайные величины из примера 11.2. Вычислить математическое ожидание $M(\Theta)$ и дисперсию $D(\Theta)$ случайной величины Θ двумя способами: на основании свойств математического ожидания и дисперсии и используя ряд распределения этой случайной величины.

▶ Используем два свойства математическое ожидания $M(C\xi) = CM(\xi)$ и $M(\xi + \zeta) = M(\xi) + M(\zeta)$.

$$M(\Theta) = 10 \cdot M(\xi) - 3 \cdot M(\eta) = 10 \cdot 4, 2 - 3 \cdot 2, 75 = 33, 75.$$

Запишем ряды распределения случайных величин $10 \cdot M(\xi)$ и $-3 \cdot$

Получаем ряд распределения случайной величины Θ :

	-J	1	¬ r	P		,		-	
Θ	27			24	18		47	44	38
P	$ 0,4 \cdot $	$0,\!25$	0,4	$\cdot 0,25$	$0.4 \cdot$	0,5	$0,6 \cdot 0,25$	$0,6 \cdot 0,25$	$0,6 \cdot 0,5$
Θ	27	24	18	47	44	38			
P	0,1	0,1	0,2	0,15	0,15	0,3			

 $\overline{\text{Находим }M(\Theta)}$

 $M(\Theta) = 27 \cdot 0.1 + 24 \cdot 0.1 + 18 \cdot 0.2 + 47 \cdot 0.15 + 44 \cdot 0.15 + 38 \cdot 0.3 = 33,75$ и $D(\Theta)$

$$D(\Theta) = 27^2 \cdot 0.1 + 24^2 \cdot 0.1 + 18^2 \cdot 0.2 + 47^2 \cdot 0.15 + 44^2 \cdot 0.15 + 38^2 \cdot 0.3 - 33.75^2 = 111.1875.$$

Найдём теперь первым способом дисперсию $D(\Theta)$. Используем два свойства дисперсии ожидания $D(C\xi) = C^2D(\xi)$ и для независимых случайных величин $D(\xi + \zeta) = D(\xi) + D(\zeta)$.

$$D(\Theta) = 10^2 \cdot D(\xi) + (-3)^2 \cdot D(\eta) = 100 \cdot 0.96 + 9 \cdot 1.6875 = 111.1875.$$

Оба способа дали один и то же результат. ◀

ПРИМЕР 11.4. Задана функция распределения двумерной случайной величины

$$F(x,y) = \begin{cases} \cos x \cdot \cos y & npu \ 0 \leqslant x \leqslant \pi/2, \ 0 \leqslant y \leqslant \pi/2, \\ 0 & e & npomuehom \ chyvae. \end{cases}$$

Найти вероятность попадания случайной точки (ξ, ζ) в прямоугольник, ограниченный прямыми $x = \pi/4$, $x = \pi/2$, y = 0, $y = \pi/4$.

▶ Используем формулу (11.8):
$$P(x_1 < \xi < x_2, \ y_1 < \zeta < y_2) = (F(x_2, y_2) - F(x_2, y_1)) - (F(x_1, y_2) - F(x_1, y_1)).$$

$$Положив \ x_1 = \pi/4, \ x_2 = \pi/2, \ y_1 = 0, \ y_2 = \pi/4, \ \text{получим}$$

$$P = (\cos \frac{\pi}{2} \cdot \cos \frac{\pi}{4} - \cos \frac{\pi}{2} \cdot \cos 0) - (\cos \frac{\pi}{4} \cdot \cos \frac{\pi}{4} - \cos \frac{\pi}{4} \cdot \cos 0) =$$

$$= \frac{\sqrt{2} - 1}{2} \approx 0.207. \blacktriangleleft$$
Other: ≈ 0.207.

ПРИМЕР 11.5. Задана функция распределения двумерной случайной величины

$$F(x,y) = \left\{ \begin{array}{l} (1 - e^{-ax})(1 - e^{-by}) \; , npu \; x > 0, \; y > 0, \\ 0 \; , s \; npomushom \; chyvae. \end{array} \right.$$

Найти двумерную плотность вероятности (ξ,ζ) .

• Согласно (11.8), плотность вероятности есть вторая смешанная частная производная функции распределения. Производная по y отличной от нуля части равна:

$$\frac{\partial F(x,y)}{\partial y} = b(1 - e^{-ax})e^{-by}.$$

Дифференцируя это выражение по x, получим

$$f(x,y) = abe^{-ax-by}$$

при $x>0,\ y>0$ и, кроме того, f(x,y)=0 при x<0 или y<0. \blacktriangleleft Ответ: $f(x,y)=\left\{ egin{array}{l} abe^{-ax-by} & \text{при } x>0,\ y>0, \\ 0 & \text{в противном случае.} \end{array} \right.$

ПРИМЕР 11.6. Задана двумерная плотность вероятности системы двух случайных величин: $f(x,y)=(1/2)\cos(x+y)$ в квадрате $-\pi/4\leqslant x\leqslant \pi/4,\ -\pi/4\leqslant y\leqslant \pi/4;$ вне этого квадрата f(x,y)=0. Найти функцию распределения системы (ξ,ζ) .

▶ Для решения задачи воспользуемся формулой:

$$F(x,y) = \int_{-\pi/4}^{x} \int_{-\pi/4}^{y} f(x,y)dxdy.$$

Тогда: а) при $-\frac{\pi}{4} \leqslant x \leqslant \frac{\pi}{4}, -\frac{\pi}{4} \leqslant y \leqslant \frac{\pi}{4}$

$$F(x,y) = \frac{1}{2} \int_{-\pi/4}^{x} dx \int_{-\pi/4}^{y} \cos(x+y)dy = \frac{1}{2}(\cos(x-\pi/4) + \cos(y-\pi/4) - \cos(y-\pi/4))$$

 $-\cos(x+y)$).

б) при
$$x<-\frac{\pi}{4}$$
 или $y<-\frac{\pi}{4}$

$$F(x,y) = \int_{-\infty}^{x} dx \int_{-\infty}^{y} 0 dy = 0.$$

в) при
$$x > \frac{\pi}{4}, -\frac{\pi}{4} \leqslant y \leqslant \frac{\pi}{4}$$

$$F(x,y) = \frac{1}{2} \int_{-\pi/4}^{\pi/4} dx \int_{-\pi/4}^{y} \cos(x+y) dy = \frac{1}{2} (1 + \cos(y - \pi/4) - \cos(y + \pi/4)).$$

г) при
$$-\frac{\pi}{4}\leqslant x\leqslant \frac{\pi}{4},\,y>\frac{\pi}{4}$$

$$F(x,y) = \frac{1}{2}(1 + \cos(x - \pi/4) - \cos(x + \pi/4)).$$

д) при
$$x>\frac{\pi}{4}$$
 и $y>\frac{\pi}{4}$

$$F(x,y) = 1.$$

ПРИМЕР 11.7. Задана двумерная плотность вероятности $f(x,y)=a/(x^2+y^2+2)^4$ системы двух случайных величин (ξ,η) . Найти постоянную a.

▶Воспользуемся свойством 5 плотности вероятности:

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = 1.$$

Для вычисления интегралов удобнее перейти к полярным координатам. Тогда

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{a}{(x^2 + y^2 + 2)^4} dx dy = a \int_{0}^{2\pi} d\varphi \int_{0}^{\infty} \frac{1}{(r^2 + 2)^4} r dr = 1.$$

После вычисления независимых интегралов по φ и r получим: $\pi a/24=1 \Rightarrow a=24/\pi \approx 7{,}639. \blacktriangleleft$

Ответ: $a = 24/\pi \approx 7,639$.

ПРИМЕР 11.8. Система случайных величин (ξ, η) имеет плотность вероятности $f(x,y) = a/((1+x^2)(4+y^2))$. Определить коэффициент a; найти функцию распределения F(x,y); вычислить вероятность попадания случайной точки (ξ, η) в прямоугольник G: $x \in [0,1], y \in [0,2]$; установить, являются ли величины ξ и η зависимыми.

 \blacktriangleright Коэффициент a найдем также с помощью свойства 5 плотности:

$$a\int_{-\infty}^{+\infty} \frac{dx}{1+x^2} \int_{-\infty}^{+\infty} \frac{dy}{4+y^2} = 1, \quad a \cdot \left(\operatorname{arctg} x \right) \Big|_{-\infty}^{+\infty} \cdot \left(\frac{1}{2} \operatorname{arctg} \frac{y}{2} \right) \Big|_{-\infty}^{+\infty} = 1,$$

$$a \cdot \left(\frac{\pi}{2} + \frac{\pi}{2}\right) \cdot \left(\frac{\pi}{4} + \frac{\pi}{4}\right) = 1, \quad a \cdot \frac{\pi^2}{2} = 1, \quad a = \frac{2}{\pi^2}.$$

Таким образом,

$$f(x,y) = \frac{2}{\pi^2(1+x^2)(4+y^2)}.$$

Согласно свойству 3 двумерной плотности, функция распределения

$$F(x,y) = \frac{2}{\pi^2} \int_{-\infty}^{x} \frac{dx}{1+x^2} \int_{-\infty}^{y} \frac{dy}{4+y^2} = \frac{2}{\pi^2} \cdot \left(\arctan x + \frac{\pi}{2}\right) \cdot \left(\frac{1}{2}\arctan \frac{y}{2} + \frac{\pi}{4}\right).$$

Вероятность попадания в прямоугольник G определим с помощью найденной функции распределения:

$$P((\xi, \eta) \in G) = F(1, 2) - F(0, 2) - (F(1, 0) - F(0, 0)) =$$

$$= \frac{2}{\pi^2} \left(\left(\arctan 1 + \frac{\pi}{2} \right) \cdot \left(\frac{1}{2} \arctan 1 + \frac{\pi}{4} \right) - \frac{\pi}{2} \left(\frac{1}{2} \arctan 1 + \frac{\pi}{4} \right) - \left(\left(\arctan 1 + \frac{\pi}{2} \right) \frac{\pi}{4} - \frac{\pi}{2} \frac{\pi}{4} \right) \right) = \frac{1}{16}.$$

Заметим, что эту же вероятность можно непосредственно найти с помощью плотности распределения согласно её свойству 4.

Плотности распределения составляющих найдем по формулам (11.9):

$$f_{\xi}(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \frac{2}{\pi^2 (1 + x^2)} \int_{-\infty}^{+\infty} \frac{dy}{4 + y^2} = \frac{1}{\pi (1 + x^2)}.$$

Аналогично найдем, что

$$f_{\eta}(y) = \frac{2}{\pi(4+y^2)}.$$

Поскольку здесь $f(x,y) = f_{\xi}(x) \cdot f_{\eta}(y)$, то делаем вывод о том, что случайные величины ξ и ζ независимы. \blacktriangleleft

ПРИМЕР 11.9. Плотность распределения вероятностей двумерной случайной величины $f(x,y) = a(x^2 + xy)$ при $0 \le x \le 2$, $0 \le y \le 2$ и f(x,y) = 0 вне указанного квадрата. Вычислить значение постоянной а и математические ожидания составляющих или центр распределения.

ightharpoonupПостоянную a найдем из условия

$$\int_{0}^{2} \int_{0}^{2} f(x, y) dx dy = 1.$$

Тогда

$$a\int_{0}^{2} dx \int_{0}^{2} (x^{2} + xy)dy = 1$$

и после интегрирования по у получим:

$$a\int_{0}^{2} \left(2x + \frac{8}{3}\right) dx = 1.$$

Вычисляя определённый интеграл, придем к уравнению: $a \cdot 28/3 = 1$. Отсюда получим значение a = 3/28. Таким образом, отличное от нуля значение плотности распределения будет $f(x,y) = (3/28)(x^2 + xy)$. Математические ожидания случайных величин ξ и η определятся как

$$M(\xi) = \int_0^2 \int_0^2 x f(x, y) dx dy = \frac{3}{28} \int_0^2 x dx \int_0^2 (x^2 + xy) dy = \frac{10}{7},$$

$$M(\eta) = \int_{0}^{2} \int_{0}^{2} y f(x, y) dx dy = \frac{3}{28} \int_{0}^{2} dx \int_{0}^{2} y (x^{2} + xy) dy = \frac{8}{7}.$$

Таким образом, центром распределения является точка (10/7; 8/7).

ПРИМЕР 11.10. Плотность распределения непрерывной двумерной случайной величины (ξ, η)

$$f(x,y) = \frac{1}{\pi}e^{-(x^2+2xy+2y^2)}.$$

Найти плотности распределения составляющих и условные плотности распределения этих составляющих.

►Плотности распределения составляющих определяются формулами (11.9). Тогда

$$f_{\xi}(x) = \int_{-\infty}^{+\infty} f(x,y)dy = \frac{1}{\pi}e^{-x^2/2} \int_{-\infty}^{+\infty} e^{-2(y+x/2)^2} dy = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}.$$

Здесь интеграл по y был вычислен с помощью интеграла Пуассона

$$\int\limits_{-\infty}^{+\infty}e^{-t^2/2}dt=\sqrt{2\pi}$$
 и подстановки $t=2(y+x/2).$

Во втором случае

$$f_{\eta}(y) = \int_{-\infty}^{+\infty} f(x,y)dy = \frac{1}{\pi}e^{-y^2} \int_{-\infty}^{+\infty} e^{-(x+y)^2} dx = \frac{1}{\sqrt{\pi}}e^{-y^2}.$$

Условная плотность распределения η при условии, что $\xi=x$

$$f(y/\xi = x) = \frac{f(x,y)}{f_{\varepsilon}(x)} = \sqrt{\frac{2}{\pi}}e^{-(1/2)(x+2y)^2}.$$

Условная плотность распределения ξ при условии, что $\eta = y$

$$f(x/\eta = y) = \frac{f(x,y)}{f_{\eta}(y)} = \frac{1}{\sqrt{\pi}} e^{-(x+y)^2}.$$

ПРИМЕР 11.11. Случайный вектор (ξ, η) распределён равномерно внутри прямоугольного треугольника G с вершинами O(0,0), A(0,6), B(6,0).

Рис. 36. Пример 11.11

- 1) Найти плотность распределения вероятностей компонент случайного вектора.
 - 2) Исследовать зависимость компонент случайного вектора.
- 3) Выяснить коррелированы ли компоненты случайного вектора (ξ, η) .
 - 4) Haŭmu $P\{(\xi, \eta) \in D\}$, ede $D = \{(x, y) | 0 \le x \le 3, 0 \le y \le 3\}$.
- ▶1) Распределение двумерной непрерывной случайной величины называют равномерным, если в области, которой принадлежат все возможные значения (x,y), плотность вероятности сохраняет постоянное значение, т.е. f(x,y)=c. Уравнение прямой AB есть y=6-x. Постоянную a найдем с помощью свойства 5 двумерной плотности. Тогда

$$\int_0^6 dx \int_0^{6-x} c dy = 1, \quad c \int_0^6 (6-x) dx = c \left(6x - \frac{x^2}{2} \right) \Big|_0^6 = c \cdot 18 = 1.$$

 \Rightarrow 18 $a=1,\ a=1/18,\ f(x,y)=1/18$ внутри треугольника; вне этой области плотность равна нулю. Площадь треугольника OAB можно было найти по формуле: $S=\frac{1}{2}\cdot OA\cdot OB=18.$

$$f(x,y) = \begin{bmatrix} 0, & (x,y) \notin G, \\ \frac{1}{18}, & (x,y) \in G. \end{bmatrix}$$

Согласно (11.10), плотности составляющих двумерной величины будут равны:

$$f_{\xi}(x) = \int_0^{6-x} \frac{1}{18} \, dy = \frac{6-x}{18} \, (0 < x < 6),$$

$$f_{\eta}(y) = \int_{0}^{6-y} \frac{1}{18} dx = \frac{6-y}{18} \ (0 < y < 6).$$

Вне указанных интервалов эти функции равны нулю.

2) Теперь займёмся исследованием зависимости компонент случайного вектора (ξ, η) .

Для этого найдём условные плотности компонент по формулам (11.10) и (11.11).

$$f(y/\xi = x) = \begin{bmatrix} 0, & f_{\xi}(x) = 0, \\ \frac{f(x;y)}{f_{\xi}(x)}, & f_{\xi}(x) \neq 0. \end{bmatrix} \Rightarrow f(y/\xi = x) = \begin{bmatrix} \frac{1}{6-x}, & x \in [0;6], \\ 0, & x \notin [0;6]. \end{bmatrix}$$

$$f(x/\eta = y) = \begin{bmatrix} 0, & f_{\eta}(y) = 0, \\ \frac{f(x;y)}{f_{\eta}(x)}, & f_{\eta}(y) \neq 0. \end{bmatrix} \Rightarrow f(x/\eta = x) = \begin{bmatrix} \frac{1}{6-y}, & y \in [0;6], \\ 0, & y \not\in [0;6]. \end{bmatrix}$$

В рассмотренном примере условные плотности распределения $f(x/\eta=y)$ и $f(y/\xi=x)$ не совпадают с безусловными плотностями $f_{\eta}(y)$ и $f_{\xi}(x)$. Это имеет место тогда и только тогда, когда случайные величины ξ и η зависимы.

3) Выяснить коррелированы ли компоненты случайного вектора (ξ, η) . По вычисленным плотностям распределения компонент случайного вектора найдём их математические ожидания.

$$M(\xi) = \int_{-\infty}^{+\infty} x f_{\xi}(x) dx = \int_{0}^{1} x \frac{6 - x}{18} dx = \frac{1}{18} \cdot \left(3x^{2} - \frac{x^{3}}{3}\right) \Big|_{0}^{6} = \frac{1}{18} \cdot \left(3 \cdot 6^{2} - \frac{6^{3}}{3}\right) = 2.$$

$$M(\eta) = \int_{-\infty}^{+\infty} y f_{\eta}(y) dy = \int_{0}^{6} y \frac{6-y}{18} dy = 2.$$

Следовательно, математическое ожидание случайного вектора (ξ, η) равно вектору (2; 2).

Корреляционный момент (ковариация) $K_{\xi\eta}$ вычисляется по формуле (13.1)

$$K_{\xi\eta} = M(\xi\eta) - M(\xi)M(\eta).$$

Вычислим $M(\xi\eta)$

$$M(\xi \eta) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} xy \, f(x, y) \, dy = \frac{1}{18} \int_{G}^{6} xy \, dx dy = \frac{1}{18} \int_{0}^{6} x \, dx \int_{0}^{-x+6} y \, dy =$$

$$= \frac{1}{18} \int_{0}^{6} x \cdot \frac{y^{2}}{2} \bigg|_{0}^{-x+6} dx = \frac{1}{36} \int_{0}^{6} (x^{3} - 12x^{2} + 36x) \, dx =$$

$$= \frac{1}{36} \left(\frac{x^{4}}{4} - 4x^{3} + 18x^{2} \right) \bigg|_{0}^{6} = \frac{1}{36} 6^{2} \left(\frac{36}{4} - 4 \cdot 6 + 18 \right) = 9 - 24 + 18 = 3.$$

Теперь найдем корреляционный момент

$$K_{\xi\eta} = M(\xi\eta) - M(\xi)M(\eta) = 3 - 4 = -1.$$

Следовательно случайные величины ξ и η находятся в корреляционной зависимости.

4) Найти
$$P\{(\xi,\eta)\in D\}$$
, где $D=\{(x,y)|0\leqslant x\leqslant 3; 0\leqslant y\leqslant 3\}.$

$$P\{(\xi,\eta)\in D\} = \frac{9}{18} = 0.5.$$

•

ПРИМЕР 11.12. Дана плотность двумерной случайной величины

$$f(x,y) = \begin{cases} \ln^2 4 \cdot 4^{-x-y} & npu \ x \ge 0, \ y \ge 0, \\ 0 & npu \ x < 0 \ unu \ y < 0. \end{cases}$$

Найти математические ожидания и дисперсии составляющих.

▶В данном случае

$$M(\xi) = \int_0^\infty \int_0^\infty x \cdot f(x, y) dx dy = \int_0^\infty \int_0^\infty x \cdot \ln^2 4 \cdot 4^{-x-y} dx dy = \ln 4 \int_0^\infty x \cdot 4^{-x} dx = \frac{1}{\ln 4}.$$

Здесь последний интеграл по x был вычислен по частям. Аналогично найдем

$$M(\eta) = \int_0^\infty \int_0^\infty y \cdot f(x, y) dx dy = \frac{1}{\ln 4}.$$

Дисперсия

$$D(\xi) = \int_0^\infty \int_0^\infty x^2 \cdot f(x, y) dx dy - M^2(\xi).$$

Подставляя сюда значение плотности вероятности и проводя два раза интегрирование по частям, получим:

$$D(\xi) = 1/\ln^2 4$$
. Очевидно, $D(\eta) = 1/\ln^2 4$.

Задания для самостоятельной работы

ПРИМЕР 11.13. Задана дискретная двумерная случайная величина (ξ,ζ) :

$\xi \setminus \zeta$	9	11	12	15
2	0,01	0,08	0,21	0,12
4	0,07	0,15	0,23	0,04

Найти математические ожидания $M(\xi)$, $M(\zeta)$.

ПРИМЕР 11.14. Задана функция распределения двумерной случайной величины

$$F(x,y) = \begin{cases} 1 + 5^{-x-y} & npu \ x \ge 0, \ y \ge 0, \\ 0 & npu \ x < 0 \ unu \ y < 0. \end{cases}$$

Найти вероятность попадания случайной точки (ξ,ζ) в прямоугольник, ограниченный прямыми $x_1=2,\ x_2=3,\ y_1=1,\ y_2=2.$

ПРИМЕР 11.15. Дана функция распределения системы двух случайных величин

$$F(x,y) = k(1 - e^{-x^2})(1 - e^{-y^2}), (x \ge 0, y \ge 0);$$

Вне первой четверти F(x,y) равняется нулю. Найти выражение для плотности вероятности и коэффициент k. Определить вероятность попадания случайной точки в область D, которая представляет собой четверть круга радиуса R ($x \ge 0, y \ge 0$).

ПРИМЕР 11.16. Двумерная случайная величина (ξ,ζ) имеет плотность

$$f(x,y) = \frac{a}{1 + x^2 + y^2 + x^2y^2}.$$

Найти коэффициент а и одномерные плотности случайных величин ξ и ζ .

ПРИМЕР 11.17. Плотность распределения вероятностей двумерной случайной величины имеет следующий вид:

$$f(x,y) = \begin{cases} a(x+y) & npu \ 0 \leqslant x \leqslant 1, \ 0 \leqslant y \leqslant x, \\ 0 & вне указанной области. \end{cases}$$

Определить константу а и вычислить центр распределения.

ПРИМЕР 11.18. Дана плотность вероятности двумерной случайной величины (ξ, ζ) :

$$f(x,y) = \begin{cases} \frac{1}{2}\sin(x+y), & x \in [0,\frac{\pi}{2}], \ y \in [0,\frac{\pi}{2}], \\ 0 \text{ вне этой области.} \end{cases}$$

Определить функцию распределения системы и математические ожидания величин ξ и ζ .

ПРИМЕР 11.19. Двумерная случайная величина распределена равномерно внутри квадрата со стороной а и диагоналями, совпадающими с осями координат. Найти выражение для плотности вероятности $f(\xi,\zeta)$.

Домашнее задание.

Выполнить задание 1.15, 1.16, 1.17 и 1.18 типового расчёта.