Machine Learning Homework 1

A. Derive the forward and backward schemes for the Regression Problem

forward propagation: this question is a 3-layer MLP then z=Wx and y=Wz where z is the hidden layer, x is the input,W is the weight matrix,y is the output. activation use Relu(if x<0,then x=0)

backward propagation:Gradient of Relu is if x>0, x=1; x<0, x=0,and the other function is same as teacher said

cost function: $\sum_{i} \|\hat{y}^{i} - y^{i}\|$

B. Prepare the house data set, and then do the preprocessing to the data

 X_train using the housing data except column['RAD'] and column['MEDV'],and use StandardScaler() to normalize X_train

 y_train using the column['MEDV'],the processing of y is divide by 10,then the values of y will not by to large

C. Implement the 3-layer MLP)

Fig. 1. cost of the 3-layer MLP

Fig. 2. similarity of y_test and y_pred

D. Implement the Xavier initialization

the original model's initial weight is a zero matrix.if adding the Xavier initialization, it will give the weight values such that the cost decrease faster

Fig. 3. Xavier initialization funcion

Fig. 4. cost of the 3-layer MLP with Xavier initialization

Fig. 5. similarity with Xavier initialization

E. Implement the Dropout

```
def _dropout(self, X):
a = np.random.randint(2, size=X.shape)
while np.array_equal(a,np.zeros(shape=X.shape)):
    a = np.random.randint(2, size=X.shape)
return X*a
```

Fig. 6. Dropout function

Fig. 7. cost of the 3-layer MLP with Dropout

F. Comparison

the original model is almost like the model with Xavier initialization,but the cost of the model with dropout is not continuously decrease. I think the reason is the dropout function i wrote. because it is randomly drop nodes, so if it drop too many nodes the cost will increase

Fig. 8. similarity with Dropout