

Linear Algebra (MT-1004)

Lecture #39

Definition of a Quadratic Form

Expressions of the form

$$a_1x_1 + a_2x_2 + \cdots + a_nx_n$$

occurred in our study of linear equations and linear systems. If a_1, a_2, \ldots, a_n are treated as constants, then this expression is a real-valued function of the **variables** x_1, x_2, \ldots, x_n and is called a **linear form** on R^n . All variables in a linear form occur to the first power and there are no products of variables. Here we will be concerned with **quadratic forms** on R^n , which are functions of the form

$$a_1x_1^2 + a_2x_2^2 + \cdots + a_nx_n^2 + \text{(all possible terms } a_kx_ix_j \text{ in which } i \neq j\text{)}$$

The terms of the form $a_k x_i x_j$ in which i is $\neq j$ are called **cross product terms**. It is common to combine the cross product terms involving $x_i x_j$ with those involving $x_j x_i$ to avoid duplication. Thus, a general quadratic form on R^2 would typically be expressed as

$$a_1 x_1^2 + a_2 x_2^2 + 2a_3 x_1 x_2 \tag{1}$$

and a general quadratic form on R3 as

$$a_1 x_1^2 + a_2 x_2^2 + a_3 x_3^2 + 2a_4 x_1 x_2 + 2a_5 x_1 x_3 + 2a_6 x_2 x_3 \tag{2}$$

EXAMPLE 1 | Expressing Quadratic Forms in Matrix Notation

In each part, express the quadratic form in the matrix notation $\mathbf{x}^T A \mathbf{x}$, where A is symmetric.

(a)
$$2x^2 + 6xy - 5y^2$$
 (b) $x_1^2 + 7x_2^2 - 3x_3^2 + 4x_1x_2 - 2x_1x_3 + 8x_2x_2$

Solution The diagonal entries of A are the coefficients of the squared terms, and the off-diagonal entries are half the coefficients of the cross product terms, so

$$2x^{2} + 6xy - 5y^{2} = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 3 & -5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
$$x_{1}^{2} + 7x_{2}^{2} - 3x_{3}^{2} + 4x_{1}x_{2} - 2x_{1}x_{3} + 8x_{2}x_{3} = \begin{bmatrix} x_{1} & x_{2} & x_{3} \end{bmatrix} \begin{bmatrix} 1 & 2 & -1 \\ 2 & 7 & 4 \\ -1 & 4 & -3 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}$$

Theorem 7.3.1

The Principal Axes Theorem

If A is a symmetric $n \times n$ matrix, then there is an orthogonal change of variable that transforms the quadratic form $\mathbf{x}^T A \mathbf{x}$ into a quadratic form $\mathbf{y}^T D \mathbf{y}$ with no cross product terms. Specifically, if P orthogonally diagonalizes A, then making the change of variable $\mathbf{x} = P \mathbf{y}$ in the quadratic form $\mathbf{x}^T A \mathbf{x}$ yields the quadratic form

$$\mathbf{x}^T A \mathbf{x} = \mathbf{y}^T D \mathbf{y} = \lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2$$

in which $\lambda_1, \lambda_2, \dots, \lambda_n$ are the eigenvalues of A corresponding to the eigenvectors that form the successive columns of P.

Proof If we make the change of variable $\mathbf{x} = P\mathbf{y}$ in the quadratic form $\mathbf{x}^T A \mathbf{x}$, then we obtain

$$\mathbf{x}^{T} A \mathbf{x} = (P \mathbf{y})^{T} A (P \mathbf{y}) = \mathbf{y}^{T} P^{T} A P \mathbf{y} = \mathbf{y}^{T} (P^{T} A P) \mathbf{y}$$
 (6)

Find an orthogonal change of variable that eliminates the cross product terms in the quadratic form $Q = x_1^2 - x_3^2 - 4x_1x_2 + 4x_2x_3$, and express Q in terms of the new variables.

Solution The quadratic form can be expressed in matrix notation as

$$Q = \mathbf{x}^{T} A \mathbf{x} = \begin{bmatrix} x_{1} & x_{2} & x_{3} \end{bmatrix} \begin{bmatrix} 1 & -2 & 0 \\ -2 & 0 & 2 \\ 0 & 2 & -1 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}$$

The characteristic equation of the matrix A is

$$\begin{vmatrix} \lambda - 1 & 2 & 0 \\ 2 & \lambda & -2 \\ 0 & -2 & \lambda + 1 \end{vmatrix} = \lambda^3 - 9\lambda = \lambda(\lambda + 3)(\lambda - 3) = 0$$

so the eigenvalues are $\lambda = 0, -3, 3$. We leave it for you to show that orthonormal bases for the three eigenspaces are

$$\lambda = 0: \begin{bmatrix} \frac{2}{3} \\ \frac{1}{3} \\ \frac{2}{3} \end{bmatrix}, \quad \lambda = -3: \begin{bmatrix} -\frac{1}{3} \\ -\frac{2}{3} \\ \frac{2}{3} \end{bmatrix}, \quad \lambda = 3: \begin{bmatrix} -\frac{2}{3} \\ \frac{2}{3} \\ \frac{1}{3} \end{bmatrix}$$

Thus, a substitution $\mathbf{x} = P\mathbf{y}$ that eliminates the cross product terms is

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} \frac{2}{3} & -\frac{1}{3} & -\frac{2}{3} \\ \frac{1}{3} & -\frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$

This produces the new quadratic form

$$Q = \mathbf{y}^{T}(P^{T}AP)\mathbf{y} = \begin{bmatrix} y_{1} & y_{2} & y_{3} \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} y_{1} \\ y_{2} \\ y_{3} \end{bmatrix} = -3y_{2}^{2} + 3y_{3}^{2}$$

in which there are no cross product terms.