CS 6150: HW0 – \LaTeX Intro and Background

Submission date: Tuesday, Aug 30 2016

This assignment has 5 questions, for a total of 50 points. Unless otherwise specified, complete and reasoned arguments will be expected for all answers.

Question	Points	Score
Basic Background: Big Oh	10	
Removing Duplicates	10	
Proof Practice: Square vs. Multiply	10	
Background: Probability	10	
Array Sums	10	
Total:	50	

Question 1: Basic Background: Big Oh
(a) $[2]$ $f(n) = n^2 + 5n + 20$.
(b) $[2] f(n) = 2 \log n + 4.$
(c) [2] $f(n) = \frac{1}{n^2} + \frac{2}{n}$.
(d) [2] $f(n) = \frac{1}{n^2} + 1$.
(e) $[2]$ $f(n) = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$.
Question 2: Removing Duplicates
Let $A[1n]$ be an array of integers. Describe an algorithm that runs in time $O(n \log n)$ and returns an array B whose entries are all the <i>distinct</i> elements of A (i.e., with no duplicates).
Question 3: Proof Practice: Square vs. Multiply
Question 4: Background: Probability
(a) [4] Suppose we toss a fair coin k times. What is the probability that we see heads precisely once?
(b) [6] Suppose we have k different boxes, and suppose that every box is colored uniformly at random with one of k colors (independently of the other boxes). What is the probability that all the boxes get distinct colors?
Question 5: Array Sums