

Lecture 10: Bridging optimisation & learning: plug & play approaches

Luca Calatroni CR CNRS, Laboratoire I3S CNRS, UCA, Inria SAM, France

MSc DSAI - UCA Inverse problems in image processing March 24 2023 Image denoisers

Image denoising

Goal: find a noise-free version $x \in \mathbb{R}^n$ of a noisy image $y \in \mathbb{R}^n$ s.t.:

$$y = x + b,$$
 $b \sim \mathcal{N}(0, \sigma^2 Id)$

where b is additive, white, Gaussian noise component.

Composite problem:

$$x^* \in \underset{x \in \mathbb{R}^n}{\operatorname{arg\,min}} \quad \underbrace{\frac{1}{2} \|x - y\|^2}_{f(x)} + \lambda g(x)$$

- Quadratic data term models Gaussian noise. It can be derived by MAP/maximum-likelihood estimation (see first lecture)
- g(x) is the regularisation term enforcing prior information (sparsity, smoothness, gradient smoothness...)
- $\lambda > 0$ controls fidelity VS. regularisation

Image denoising

Goal: find a noise-free version $x \in \mathbb{R}^n$ of a noisy image $y \in \mathbb{R}^n$ s.t.:

$$y = x + b,$$
 $b \sim \mathcal{N}(0, \sigma^2 Id)$

where b is additive, white, Gaussian noise component.

Composite problem:

$$x^* \in \underset{x \in \mathbb{R}^n}{\operatorname{arg\,min}} \quad \underbrace{\frac{1}{2} \|x - y\|^2}_{f(x)} + \lambda g(x)$$

- Quadratic data term models Gaussian noise. It can be derived by MAP/maximum-likelihood estimation (see first lecture)
- g(x) is the regularisation term enforcing prior information (sparsity, smoothness, gradient smoothness...)
- $\lambda > 0$ controls fidelity VS. regularisation

Observe that:

$$x^* \in \operatorname*{arg\,min}_{x \in \mathbb{R}^n} \ \frac{1}{2} \|x - y\|^2 + \lambda \mathbf{g}(\mathbf{x}) = \operatorname*{arg\,min}_{x \in \mathbb{R}^n} \ \frac{1}{2\lambda} \|x - y\|^2 + \mathbf{g}(\mathbf{x}) = \operatorname{prox}_{\lambda \mathbf{g}}(\mathbf{y})$$

1

Proximal operators as image denoisers

Goal: given $A \in \mathbb{R}^{m \times n}$, find $x \in \mathbb{R}^n$ from $y \in \mathbb{R}^m$ s.t.:

$$y = Ax + b, \qquad n \sim \mathcal{N}(0, \sigma^2 Id)$$

where b is additive, white, Gaussian noise component.

Consider now:

$$x^* \in \underset{x \in \mathbb{R}^n}{\operatorname{arg\,min}} \ \frac{1}{2} \|Ax - y\|^2 + \lambda \underline{g(x)}$$

Forward-backward scheme

$$\begin{aligned} x^0, \ \tau &\leq 1/L, \text{ iterate for } k \geq 0; \\ x^{k+1} &= \underset{x}{\text{prox}}_{\tau \lambda g}(x^k - \tau A^T(Ax^k - y)) \\ &= \underset{x}{\text{arg min }} g(x) + \frac{1}{2\tau \lambda} \|x - \left(x^k - \tau A^T(Ax^k - y)\right)\|^2 = \mathcal{D}(x^k - \tau A^T(Ax^k - y)) \end{aligned}$$

- ullet Interpret proximal steps as a **denoisers** $\mathcal D$ (i.e. operators) of gradient iterations
- By definition of the proximal operator (i.e. appearance of $\|\cdot \cdot\|^2$), assume noise is Gaussian

The regularisation function g(x) is called *only* through its prox...

P&P idea

Plug & play methods: idea

Idea: replace $\operatorname{prox}_{\tau \lambda g}$ by some off-the-shelf (black-box) denoiser $\mathcal{D}: \mathbb{R}^n \to \mathbb{R}^n$

Denoiser \mathcal{D} : anything doing this job (BM3D, your favourite PhotoShop function...)

Plug & play forward-backward, a.k.a. PnP-ISTA

 x^0 , $\tau \leq 1/L$, iterate for $k \geq 0$:

$$x^{k+1} = \mathcal{D}(x^k - \tau A^T (Ax^k - y))$$

- No need to define g(x)/tune λ ! Any denoiser $\mathcal D$ (of additive, white Gaussian noise) would work
- g(x) is implicitly defined by the action of the denoiser

Combining with DL

Idea: given training set $\{(\tilde{\mathbf{x}}_i, y_i)\}_{i=1}^N$ of noise-free/noisy images, train a CNN denoiser $\mathcal{D}: \mathbb{R}^n \to \mathbb{R}^n$ to perform

$$\mathcal{D}(y_i) = \tilde{x}_i, \quad \forall i = 1, \dots, N$$

Integrating physical modelling in DL

Recall that A relates to the physical acquisition model (optical blur, downsampling).

$$x^{k+1} = \mathcal{D}(x^k - \tau \mathbf{A}^T (\mathbf{A} x^k - \mathbf{y}))$$

PnP-ISTA incorporates naturally **consistency** with the physics/acquired data.

Learning/using a CNN denoiser \mathcal{D}_{θ} on super-resolution problems, $A = SH \in \mathbb{R}^{m \times n}$.

Combining with DL

Idea: given training set $\{(\tilde{x}_i, y_i)\}_{i=1}^N$ of noise-free/noisy images, train a CNN denoiser $\mathcal{D}: \mathbb{R}^n \to \mathbb{R}^n$ to perform

$$\mathcal{D}(y_i) = \tilde{x}_i, \quad \forall i = 1, \dots, N$$

Integrating physical modelling in DL

Recall that A relates to the physical acquisition model (optical blur, downsampling).

$$x^{k+1} = \mathcal{D}(x^k - \tau A^T (Ax^k - y))$$

PnP-ISTA incorporates naturally consistency with the physics/acquired data.

Learning/using a CNN denoiser \mathcal{D}_{θ} on super-resolution problems, $A = SH \in \mathbb{R}^{m \times n}$.

We thus have an interpretation:

composite optimisation/proximal algorithms \Rightarrow denoisers \mathcal{D}

But the question is rather:

given a denoiser \mathcal{D} , is there a composite optimisation problem related to \mathcal{D} ?

$$\exists \operatorname{arg\,min}_{x} F(x) := f(x) + g_{\mathcal{D}}(x) ???$$

- Existence of g_D ? Convergence of F(x)?
- Given \mathcal{D} , is it the gradient/prox of some function?
- No convexity expected in general

PnP approaches with guarantees

Regularisation by denoising (RED)

Smooth case: given $x_0 \in \mathbb{R}^n$ and $\tau \leq 1/L$, iterate

$$x^{k+1} = x^k - \tau H(x^k), \qquad H(x^k) := \nabla f(x^k) + \frac{\lambda(x^k - \mathcal{D}(x^k))}{\lambda(x^k - \mathcal{D}(x^k))}$$
 where $\nabla f(x^k) = \nabla \left(\frac{1}{2}\|Ax - y\|^2\right) = A^T(Ax^k - y)$

Under restrictive conditions on \mathcal{D} (symmetric Jacobian) $\lambda(x^k - \mathcal{D}(x^k))$ corresponds to the gradient of a function ∇g defined by

$$g(x) = \frac{\lambda}{2} x^{T} (x - \mathcal{D}(x))$$

6

Proximal denoisers for convergent plug-and-play

Non-smooth case: for convergence guarantees, the denoiser should have the **gradient-step** structure:

$$\mathcal{D}_{\sigma}(x) = \nabla \left(\frac{1}{2}||x||^2 - f_{\sigma}(x)\right) = x - \nabla f_{\sigma}(x) = (\mathbf{Id} - \nabla f_{\sigma})(x)$$

where $f_{\sigma}: \mathbb{R}^n \to \mathbb{R}$ is a scalar function parametrised by a NN and \mathcal{D}_{σ} is trained to denoise images with Gaussian noise of level σ .

Theorem (proximal structure)

• If $\frac{1}{2}||x||^2 - f_{\sigma}(x)$ is convex, then there exists $g_{\sigma} : \mathbb{R}^n \to \mathbb{R} \cup + \{\infty\}$ s.t.:

$$\forall x \in \mathbb{R}^n$$
, $\mathcal{D}_{\sigma}(x) \in \text{prox}_{\mathbf{g}_{\sigma}}(x)$ (multi-valued)

• If ∇f_{σ} is L-Lipschitz with L < 1, then \mathcal{D}_{σ} is injective and $\mathcal{D}_{\sigma}(x) = \operatorname{prox}_{\mathbf{g}_{\sigma}}(x)$, i.e. $\operatorname{prox}_{\mathbf{g}_{\sigma}}$ is single-valued.

Note: g_{σ} is not necessarily convex, but its proximal operator is single-valued.

Convergence of PnP forward-backward

It is thus possible to define a non-convex g_{σ} such that $\operatorname{prox}_{g_{\sigma}} = \mathcal{D}_{\sigma}$. For $\alpha > 0$ regularisation parameter, we now target the function:

$$F(x) := \alpha f(x) + \mathbf{g}_{\sigma}(x)$$

PnP forward-backward

 $x^0 \in \mathbb{R}^n$, $\tau = 1$, minimise F by iterating for $k \ge 0$

$$egin{aligned} & z_{k+1} = x_k - lpha
abla f(x_k) \ & & & & & & & & \\ & x_{k+1} = \mathcal{D}_\sigma(z_{k+1}) & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$$

Theorem (convergence of PnP forward-backward)

If g_{σ} is C^2 with L-Lipschitz gradient with L < 1 and f is smooth with L_f Lipschitz gradient. Then, for $\alpha L_f < 1$, there holds:

- $F(x_k)$ is non-increasing and convergent
- All cluster points of (x_k) are stationary points of F
- Under suitable further assumptions on f and g_σ, the sequence (x_k) converges to a stationary point of F.

Bibliography

...very active research area! Contact me if interested!

S.V. Venkatakrishnan, C.A. Bouman, and B. Wohlberg, *Plug-and-Play Priors for Model Based Reconstruction*. GlobalSIP. 2013.

Romano, Y., Elad, M., and Milanfar, P., *The little engine that could: Regularization by denoising (RED)*, SIAM Journal on Imaging Sciences, 10(4):1804-1844, 2017.

Reehorst, E. T. and Schniter, P., Regularization by denoising: Clarifications and new interpretations, IEEE transactions on Computational Imaging, 5(1):52-67, 2018.

Kamilov, U. S., Bouman, C. A., Buzzart, G. T. and Wohlberg, B., *Plug-and-Play Methods for Integrating Physical and Learned Models in Computational Imaging*, IEEE Signal Processing Magazine, 40(1), 2023. Project page

Hurault, S., Leclaire, A. and Papadakis, N., *Proximal Denoiser for Convergent Plug-and-Play Optimization with Nonconvex Regularization*, International Conference on Machine Learning, 2022.

calatroni@i3s.unice.fr

Questions?