TRACK - 1 Supervised Contrastive Learning

Why Supervised Contrastive Learning?

Supervised Contrastive

Problems Without Contrastive Training

No clear demarcation between classes

 Difficult to be classified by linear classifiers

Representation space after contrastive pre-training

Representation space (after contrastive learning)

- After contrastive separation, the data gets fragmented into clusters in the respresentation space.
- This being clustered and separated makes it easier for linear classifiers.
- Thus, it gives better accuracy.
- It also requires less number of epochs for training.

How does it do that?

- We pick an anchor and push all positive samples towards it.
- We simultaneously "push" all the negative samples away from our anchor in the representation space.
- This clusters similar data together.

Contrastive Loss Function:

For each anchor, the loss tries to:

- Pull its embedding z_i closer to all of its positive samples Z_p (same class).
- Push z_i away from all other samples Z_a in the batch, regardless of class.

This is done via a log-softmax term, promoting high similarity for positive pairs and low similarity for others.

$$\mathcal{L}_{in}^{sup} = \sum_{i \in I} \mathcal{L}_{in,i}^{sup} = \sum_{i \in I} -\log \left\{ \frac{1}{|P(i)|} \sum_{p \in P(i)} \frac{\exp\left(\mathbf{z}_i \cdot \mathbf{z}_p / \tau\right)}{\sum\limits_{a \in A(i)} \exp\left(\mathbf{z}_i \cdot \mathbf{z}_a / \tau\right)} \right\}$$

I: Set of indices for the anchor samples in the batch.

z_i: Normalized embedding of the anchor sample i.

P(i): Set of indices of positives for anchor i (same class).

 $A(i) = I \setminus \{i\}$: Set of all other samples except i (used for the denominator).

 τ : Temperature parameter (scales similarity) — usually $\tau \in (0, 1]$.

PIPELINE

Architecture Overview

- Two-stage Framework: i) SupCon Pre-training Stage ii) Linear Evaluation Stage.
- Base Encoder: DenseNet201 Architecture

 Used in both stages (trainable during SupCon stage, frozen during evaluation stage).
- SupCon Pre-training stage:

The DenseNet201 encoder extracts features from the input images.

Features passed through MLP Projection Head.

Encoder trained using Supervised Contrastive Loss.

• Linear Evaluation Stage:

Pre-trained encoder is frozen, its outputs are used as features Classifier (softmax activation) is trained using Cross Entropy Loss for final classification

• Back-propagation Strategy:

In pre-training: full back-propagation through encoder + projection head.

In evaluation stage: back-propagation only through linear classifier.

DenseNet201 Model Statistics:

• F1-Score: 0.9948

Accuracy: 0.9936

Precision: 0.9944

Recall: 0.9952

t-SNE Plots

Encoder and Classifier Performance

Other Models Used:

- 1) ResNet50
- 2) InceptionV3
- 3) InceptionResNetV2
- 4) DenseNet169

Ablation Table (CCE)								
Sl. No	Architecture	Performance Metrics						
		F1	Accuracy	Precision	Recall			
1	ResNet50	0.966	0.9617	0.9637	0.9711			
2	DenseNet201	0.9819	0.9836	0.9811	0.983			
3	InceptionV3	0.954	0.97	0.9614	0.9479			
4	InceptionResNetV2	0.9763	0.9807	0.9789	0.9738			
5	DenseNet169	0.9858	0.9864	0.9877	0.9841			

Ablation Table (SupCon)								
Sl. No	Architecture	Performance Metrics						
		F1	Accuracy	Precision	Recall			
1	ResNet50	0.9856	0.9617	0.9637	0.9711			
2	DenseNet201	0.9948	0.9936	0.9944	0.9952			
3	InceptionV3	0.9732	0.9857	0.974	0.9724			
4	InceptionResNetV2	0.9824	0.9833	0.9889	0.9838			
5	DenseNet169	0.9902	0.9891	0.9931	0.9917			

L1 Unstructured Weighted Pruning

Comparison of Final Results

Comparison of Final Results

Final Validation Accuracy Comparison

Final Validation Accuracy Comparison

Why 50% Pruning?

Pruning Rate	Model Size	Compression Ratio	Accuracy
0% (baseline)	11.2MB	1.0x	54%
20%	9.1MB	1.23x	53.80%
40%	3.4MB	3.29x	53.42%
50%	0.358MB	31.3x	53.21%

Scope Of Improvement

Layer Sensitive Pruning

- Preserves Critical Features: Sensitive layers retain important weights, preventing accuracy drop.
- Balances Sparsity and Utility: Adapts pruning aggressiveness per layer, avoiding over- or under-pruning.
- Improves Generalization: Pruning less in high-impact layers reduces overfitting risk.
- Boosts Compression Efficiency: Achieves higher overall sparsity with minimal performance loss.

Scope Of Improvement

FishLeg Pruning

- FLS builds on the FishLeg optimizer to directly learn the inverse Fisher Information Matrix (FIM) using a metalearned parametric form Q(λ).
- FLS uses second-order information (curvature of the loss surface) to assess true impact of removing each weight leading to much more informed pruning.
- OBS-like second-order methods are accurate but slow they require recomputing the Fisher matrix or Hessian repeatedly.

Scope Of Improvement

FishLeg Pruning

- FLS avoids this by learning a compact, structured representation of the inverse Fisher — so it saves time and memory.
- Supports unstructured and semi-structured (2:4)
 pruning.
- Utilizes tensor factorization (Kronecker/block-diagonal) for memory efficiency.
- Uses smart initialization ($\alpha \approx \gamma^{-1}$) and preconditioning for faster convergence.

