Project Management

Session Plan

> Project Management: Definition

➤ <u>Link</u>

Distinguishing features

- ➤ No expertise currently available
 - ✓ Areas of competency not yet demonstrated
- ➤ Product/Service Offered is Large Scale
 - ✓ Going from sub-system to total system (larger quantum of design, fabrication etc.)
 - ✓ Long-term period of operation (2 5 years)
- ➤ High Degree of Customization

Type of Manufacturing Process

Product – Process Matrix

Project: A series of related jobs, usually directed toward some major output and requiring a significant period of time to perform.

Example: Civil engineering contracts, aerospace programs & construction etc.

Project

Project: A series of related jobs, usually directed toward some major output and requiring a significant period of time to perform.

Example: Civil engineering contracts, aerospace programs & construction etc.

➤ Major Characteristics of a Project

- ✓ Has a established objective
- ✓ Has a defined life span with a beginning and an end.
- ✓ Requires across-the-organizational participation.
- ✓ Involves doing something never been done before.
- ✓ Has specific time, cost, and performance requirements.

Project Vs. Program

> Program

- ✓ A series of coordinated, related, multiple projects that continue over an extended time and are intended to achieve a goal.
- ✓ A higher level group of projects targeted at a common goal.

> Example

- ✓ **Project:** completion of a required course in project management.
- ✓ Program: completion of all courses required for a business major.

Comparison of routine work with projects

Routine, Repetitive Work	Projects
 Taking class notes Daily entering sales receipts into the accounting ledger Responding to a supply-chain request Practicing scales on the piano Routine manufacture of an Apple iPod 	 Writing a term paper Setting up a sales kiosk for a professional accounting meeting Developing a supply-chain information system Writing a new piano piece Designing an iPod that is approximately 2 X 4 inches, interfaces with PC, and stores 10,000 songs

- ➤ **Project Management:** Planning, directing, and controlling resources (people, equipment, material) to meet the technical, cost, and time constraints of the project.
- Although projects are often thought to be one-time occurrences, the fact is that many projects can be repeated or transferred to other settings or products. The result will be another project output.
- ➤ Project management, on the other hand, involves five process groups as identified
 - 1) Project Initiation
 - 2) Project planning
 - 3) Project Execution
 - 4) Project monitoring and control
 - 5) Project closure

Project Management

> Project Initiation:

- Selection of the best project given resource limits
- Recognizing the benefits of the project
- Preparation of the documents to sanction the project
- Assigning of the project manager

▶Project Planning:

- Definition of the work requirements
- Definition of the quality and quantity of work
- Definition of the resources needed
- Scheduling the activities
- Evaluation of the various risks

▶Project execution:

- Negotiating for the project team members
- Directing and managing the work
- Working with the team members to help them improve

Project Management

▶Project monitoring and control:

- Tracking progress
- Comparing actual outcome to predicted outcome
- Analyzing variances and impacts
- Making adjustments

>Project closure:

- Verifying that all of the work has been accomplished
- Contractual closure of the contract
- Financial closure of the charge numbers
- Administrative closure of the paperwork

Project Management: Successful

- > Successful project management can then be defined as having achieved the project objectives:
 - Within time
 - Within cost
 - At the desired performance/technology level
 - While utilizing the assigned resources effectively and efficiently
 - Accepted by the customer

- **▶** What are the Key Success Factors?
 - Top-down commitment
 - Having a capable project manager
 - Having time to plan
 - Careful tracking and control
 - Good communications

Project Management: Benefits

> The potential benefits from project management are:

- Identification of functional responsibilities to ensure that all activities are accounted for, regardless of personnel turnover.
- Minimizing the need for continuous reporting
- Identification of time limits for scheduling
- Identification of a methodology for trade-off analysis
- Measurement of accomplishment against plans
- Early identification of problems so that corrective action may follow
- Improved estimating capability for future planning
- Knowing when objectives cannot be met or will be exceeded

Project Management

- ➤ Why is it used?
 - ✓ Special needs
 - ✓ Pressures for new or improves products or services
- ➤ What are the Key Metrics?
 - ✓ Time
 - ✓ Cost
 - ✓ Performance objectives

Project Management

- ➤ What are the Major Administrative Issues?
 - ***** Executive responsibilities
 - ✓ Project selection
 - ✓ Project manager selection
 - ✓ Organizational structure
 - Organizational alternatives
 - ✓ Manage within functional unit
 - ✓ Assign a coordinator
 - ✓ Use a matrix organization with a project leader

Project Management Issue

- ➤ What are the Major Administrative Issues?
 - ***** Executive responsibilities
 - ✓ Project selection
 - ✓ Project manager selection
 - ✓ Organizational structure
 - Organizational alternatives
 - ✓ Manage within functional unit
 - ✓ Assign a coordinator
 - ✓ Use a matrix organization with a project leader

Project Management Issue

Project Management vs. System Engineering

- ➤ The project manager is responsible for all aspects of the project to include source and use of funds, contract, people, schedule, and ultimate delivery.
- ➤ The system engineer should work under the project manager as the senior technical person responsible for all technical aspects of the system.
- ➤ There may be a overlap of responsibility which may create confusion and tension between the rolls of project manager and the systems engineer.
- > The three situations exist as shown in the following diagrams:
 - 1. On some projects, there is no overlap in responsibility (fig.-a).
 - 2. On other projects, there may be shared responsibilities for planning and managing activities (fig-b).
 - 3. In some cases, particularly for smaller projects, the project manager may also be the lead technical member of the team performing both roles of project manager and systems engineer (fig.-c).

Project Life Cycle

- ➤ Usually Project life cycle consists the following five phases:
 - ✓ **Defining:** At which point the organization recognizes the need for a project or responds to a request for a proposal from a potential customer or client.
 - ✓ **Planning:** Which spells out the details of the work and provides estimates of necessary human resources, time & cost.
 - ✓ **Execution:** During this phase the project itself is done. This phase often accounts for the majority of time and resources consumed by a project.
 - ✓ **Termination/closing:** During which closure is achieved. Termination can involve the reassigning the personnel and dealing with any leftover materials & equipment and any other resources associated with the project.

Project Life Cycle

Defining

- 1. Goals
- 2. Specifications
- 3. Tasks
- 4. Responsibilities

Planning

- 1. Schedules
- 2. Budgets
- 3. Resources
- 4. Risks
- 5. Staffing

Executing

- 1. Status reports
- 2. Changes
- 3. Quality
- 4. Forecasts

Closing

- 1. Train customer
- 2. Transfer documents
- 3. Release resources
- 4. Evaluation
- 5. Lessons learned

Current Drivers of Project Management

> Factors leading to the increased use of project management:

- ✓ Compression of the product life cycle
- ✓ Knowledge explosion
- ✓ Triple bottom line (planet, people, profit)
- ✓ Corporate downsizing
- ✓ Increased customer focus
- ✓ Small projects represent big problems

Project Governance: An Integrative Approach

- ➤ Integration (or centralization) of project management provides senior management with:
 - ✓ An overview of all project management activities
 - ✓ A big picture of how organizational resources are used
 - ✓ A risk assessment of their portfolio of projects
 - ✓ A rough metric of the firm's improvement in managing projects relative to others in the industry
 - ✓ Linkages of senior management with actual project execution management

Project Structure

> Pure Project:

A Self contained team works full time on the project.

> Functional Project:

- Responsibility for the project lies within one functional area of the firm
- Employees from that area work on the project, usually only parttime

> Matrix Project:

 A blend of pure and functional project structures – people from different functional areas work on the project, possibly only parttime

Pure Project Structure

> Advantages:

- The project manager has full authority
- Team members report to one boss
- Shortened communication lines
- Team pride, motivation, and commitment are high

> Disadvantages:

- Duplication of resources
- Organizational goals and policies are ignored
- Lack of technology transfer
- Team members have no functional area "home"

Functional Project Structure

> Advantages:

- A team member can work on several projects
- Technical expertise maintained in functional area
- Functional area is "home" after project completed
- Critical mass of specialized knowledge

> Disadvantages:

- Aspects of the project that are not directly related to the functional area get short-changed
- Motivation of team members is often weak
- Needs of the client are secondary and are responded to slowly

Matrix Project Structure

> Advantages:

- Better communications between functional areas
- Project manager held responsible for success
- Duplication of resources is minimized
- Functional "home" for team members
- Policies of the parent organization are followed

> Disadvantages:

- Too many bosses
- Depends on project manager's negotiating skills
- Potential for sub-optimization

Project Management Framework

Work breakdown structure

- ➤ It's a hierarchical listing of what must be done during the project
- ➤ This methodology establishes a logical framework for identifying the required activities for the project.

An Illustration from a construction Project

☐ Three-story Office Building (76,000 square feet)	344 days
☐ General Conditions	17 days
Receive notice to proceed and sign contract	3 days
Submit bond and insurance documents	2 days
Prepare and submit project schedule	2 days
Prepare and submit schedule of values	2 days
Obtain building permits	4 days
Submit preliminary shop drawings	2 wks
Submit monthly requests for payment	1 day
☐ Long Lead Procurement	70 days
Submit shop drawings and order long lead items	2 wks
Submit shop drawings and order long lead items	2 wks
Submit shop drawings and order long lead items	2 wks
Submit shop drawings and order long lead items	2 wks
Submit shop drawings and order long lead items	2 wks
Submit shop drawings and order long lead items	2 wks
Detail, fabricate and deliver steel	12 wks
☐ Mobilize on Site	10 days
Install temporary power	2 days
Install temporary water service	2 days
Set up site office	3 days
Set line and grade benchmarks	3 days
Prepare site - lay down yard and temporary fend	2 days
☐ Site Grading and Utilities	35 days

Project Framework

- ➤ **OBS:** An organization Breakdown Structure identifies an appropriate organizational structure to execute the tasks listed under each work package.
- ➤ **CBS:** Cost Breakdown Structure is a methodology to link the individual elements in a WBS to a dimension of cost.

Project Management Tools

- ➤ What are the tools?
 - ✓ Network diagram
 - ✓ Gantt charts
 - ✓ Risk management

Gantt Chart: Planning & Scheduling

- ➤ Gantt Chart is a popular tool for planning & scheduling a simple projects
- ➤ It is showing both the amount of time involved and the sequence in which activities can be performed.
- ➤ It enables a manager to initial schedule the project activities and then to monitor progress over time by comparing the planned progress to actual progress. (Trello)

Gantt Chart: Planning & Scheduling

Network Design: PERT & CPM

- ➤ PERT & CPM methods are two of the most widely used techniques for planning & coordinating the large scale projects. By using these, the managers are able to obtain the following:
 - ✓ Graphically displays project activities
 - ✓ Estimates how long the project will take
 - ✓ Indicates most critical activities
 - ✓ Show where delays will not affect project

Identify Activities & Construct Network

ACTIVITY	CPM ACTIVITY DESIGNATIONS AND TIME ESTIMATES			
	Designation	Immediate Predecessors	Time (weeks)	
Design	Α	_	21	
Build prototype	В	Α	5	
Evaluate equipment	C	Α	7	
Test prototype	D	В	2	
Write equipment report	E	C, D	5	
Write methods report	F	C, D	8	
Write final report	G	E, F	2	

Early Start:

- ✓ An early start schedule is one that lists all of the activities by their early start times.
- ✓ For activities not on the critical path, there is slack time between the completion of each activity and start of the next activity.
- ✓ The early start schedule completes the project and all its activities as soon as possible.

CPM with Activity Time Estimates

SLACK CALCULATIONS AND CRITICAL PATH DETERMINATIONS

LS-ES	Slack	On Critical Path
0–0	0	1
21-21	0	1
21-21	0	1
26-26	0	1
31–28	3	
28-28	0	/
36-36	0	1
	0-0 21-21 21-21 26-26 31-28 28-28	0-0 0 21-21 0 21-21 0 26-26 0 31-28 3 28-28 0

- ➤ When activity times vary, a single time estimate may not be reliable Instead, estimate three values
 - ✓ Minimum
 - ✓ Maximum
 - ✓ Most likely
- > This allows calculation of a probability estimate of completion time
- ➤ This is the distinguishing characteristic of the PERT method

PERT Method Calculations

- \checkmark a = Optimistic time
- \checkmark m = Most likely time
- ✓ b = Pessimistic time
- ✓ ET = Expected time $ET = \frac{a+4m+b}{6}$
 - ✓ The 4 and 6 are constants, $\sigma^2 = \text{Variance } \sigma^2 = \left(\frac{b-a}{6}\right)^2$,

Activity	Activity Designation	Time	e Estin	nates b	Expected Times (ET) $\frac{a + 4m + b}{6}$	Activity Variance (σ^2) $\left(\frac{b-a}{6}\right)^2$
Design	А	10	22	28	21	9
Build prototype	В	4	4	10	5	1
Evaluate equipment	С	4	6	14	7	2.7778
Test prototype	D	1	2	3	2	0.1111
Write report	Е	1	5	9	5	1.7778
Write methods report	F	7	8	9	8	0.1111
Write final report	G	2	2	2	2	0

PERT Method Calculations

Example- Three Time Estimates

Probability of finishing in 35 weeks (or less)

$$z = \frac{D - T_E}{\sqrt{\sum \sigma_{cp}^2}} = \frac{35 - 38}{\sqrt{11.8889}} = -0.87$$

> Yields probability of 19 percent of being completed in 35 weeks

Thank You