Tutorial 11

Exercise 7

- Determine whether the following are linear transformations. Write down the standard matrix for each of the linear transformations.
 - (a) $T_1: \mathbb{R}^2 \to \mathbb{R}^2$ such that $T_1\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \begin{pmatrix} x+y \\ y-x \end{pmatrix}$ for $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$.
 - (b) $T_2: \mathbb{R}^2 \to \mathbb{R}^2$ such that $T_2\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \begin{pmatrix} 2^x \\ 0 \end{pmatrix}$ for $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$.
 - (c) $T_3: \mathbb{R}^2 \to \mathbb{R}^3$ such that $T_3\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \begin{pmatrix} x+y \\ 0 \\ 0 \end{pmatrix}$ for $\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$.
 - (d) $T_4: \mathbb{R}^3 \to \mathbb{R}^3$ such that $T_4 \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ y x \\ y z \end{pmatrix}$ for $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$.
 - (e) $T_5: \mathbb{R}^n \to \mathbb{R}$ such that $T_5(x) = x \cdot y$ for $x \in \mathbb{R}^n$ where $y = (y_1, y_2, \dots, y_n)^T$ is a fixed vector in \mathbb{R}^n .
 - (f) $T_6: \mathbb{R}^n \to \mathbb{R}$ such that $T_6(x) = x \cdot x$ for $x \in \mathbb{R}^n$.

(In Parts (e) and (f), \mathbb{R} is regarded as \mathbb{R}^1 .)

- 2. For each of the following linear transformations, (i) determine whether there is enough information for us to find the formula of T; and (ii) find the formula and the standard matrix for T if possible.
 - (a) $T: \mathbb{R}^3 \to \mathbb{R}^4$ such that

$$T\left(\begin{pmatrix}1\\0\\0\end{pmatrix}\right) = \begin{pmatrix}1\\3\\0\\1\end{pmatrix}, \quad T\left(\begin{pmatrix}0\\1\\0\end{pmatrix}\right) = \begin{pmatrix}2\\2\\-1\\4\end{pmatrix} \quad \text{and} \quad T\left(\begin{pmatrix}0\\0\\1\end{pmatrix}\right) = \begin{pmatrix}0\\4\\1\\6\end{pmatrix}.$$

(c) $T: \mathbb{R}^2 \to \mathbb{R}^2$ such that

$$T\left(\begin{pmatrix}1\\-1\end{pmatrix}\right) = \begin{pmatrix}2\\0\end{pmatrix}, T\left(\begin{pmatrix}1\\1\end{pmatrix}\right) = \begin{pmatrix}0\\2\end{pmatrix}$$
 and $T\left(\begin{pmatrix}2\\0\end{pmatrix}\right) = \begin{pmatrix}2\\2\end{pmatrix}$.

(f) $T: \mathbb{R}^3 \to \mathbb{R}$ such that

$$T\left(\begin{pmatrix}1\\-1\\0\end{pmatrix}\right) = -1, \quad T\left(\begin{pmatrix}0\\1\\-1\end{pmatrix}\right) = 1 \quad \text{and} \quad T\left(\begin{pmatrix}-1\\0\\1\end{pmatrix}\right) = 0.$$

7. Let n be a unit vector in \mathbb{R}^n . Define $P: \mathbb{R}^n \to \mathbb{R}^n$ such that

$$P(x) = x - (n \cdot x)n$$
 for $x \in \mathbb{R}^n$.

- (a) Show that P is a linear transformation and find the standard matrix for P.
- (b) Prove that $P \circ P = P$.

Tutorial 11 (cont.)

- 10. A linear operator T on \mathbb{R}^n is called an isometry if ||T(u)|| = ||u|| for all $u \in \mathbb{R}^n$.
 - (a) If T is an isometry on \mathbb{R}^n , show that $T(u) \cdot T(v) = u \cdot v$ for all $u, v \in \mathbb{R}^n$. (Hint: Compute $T(u+v) \cdot T(u+v)$ in two different ways.)
 - (b) Let A be the standard matrix for a linear operator T. Show that T is an isometry if and only if A is an orthogonal matrix. (See also Question 5.32.)
 - (c) Find all isometries on \mathbb{R}^2 . (Hint: See Question 2.57.)
- 13. In each of the following parts, use the given information to find the nullity of the linearly transformation T.
 - (a) $T: \mathbb{R}^4 \to \mathbb{R}^6$ has rank 2.
 - (b) The range of $T: \mathbb{R}^6 \to \mathbb{R}^4$ is \mathbb{R}^4 .
 - (c) The reduced row-echelon form of the standard matrix for $T: \mathbb{R}^6 \to \mathbb{R}^6$ has 4 nonzero rows.