Разработка и анализ методов восстановления карты проходимости на основе показаний датчиков измерения расстояния

Денис Шепелев

студент группы 073а ФУПМ МФТИ

Карта проходимости

- Карта проходимости сетка, состоящая из квадратных клеток одинакового размера.
- Клетка карты некоторая область пространства, содержащая информацию о наличии препятствия в соответствующей этой клетке территории.
- Такие карты используются в мобильной робототехнике для навигационных задач.

Датчики измерения расстояния

- Сонары
- Лидары
- Стереокамеры

Сонары выбраны в качестве основного датчика, так как они значительно дешевле и доступнее лидаров, и могут использоваться при любом освещении, в отличии от стереопары.

Постановка задачи восстановления карты проходимости

Дано:

- ▶ Картируемое окружение статично.
- Даны наблюдения датчиков:

$$Z = \{z_1, ..., z_T\}$$
$$z_t = (x_t, y_t, \varphi_t, r_t)$$

Цель:

▶ Восстановить карту проходимости m на основе наблюдений датчиков Z.

Существующие методы картирования

На данный момент можно выделить два семейства методов восстановления карты проходимости

• основанные на обратной модели сенсора:

$$p(m|Z) \tag{1}$$

• основанные на прямой модели сенсора:

$$p(Z|m) \tag{2}$$

Картирование на основе обратной модели сенсора

Допущения метода:

• Клетки карты m_i - независимые случайные величины. Каждая ячейка карты m хранит вероятность занятости m_i , с учётом наблюдений Z:

$$p(m|Z) = \prod_{i} p(m_i|Z) \tag{3}$$

ightharpoonup

$$p(z_t|m, z_{1,t-1}) = p(z_t|m)$$
 (4)

Значения в клетках обновляются по формуле:

$$\frac{p(m_i|z_{1:t}, x_{1:t})}{1 - p(m_i|z_{1:t}, x_{1:t})} = \frac{p(m_i|z_t, x_t)}{1 - p(m_i|z_t, x_t)}$$

$$\frac{p(m_i|z_{1:t}, x_{1:t})}{1 - p(m_i|z_{1:t-1}, x_{1:t-1})}$$

$$\frac{1 - p(m_i)}{p(m_i)}$$
(5)

Картирование на основе обратной модели сенсора

- ▶ Работает в режиме реального времени.
- Подходит для работы с датчиками, неопределенность в показаниях которых меньше размера ячейки карты.

Когда допущения описанного метода неверны, карта проходимости, построенная с его помощью, может содержать грубые ошибки.

Картирование на основе прямой модели сенсора

Основная идея методов, основанных на прямой модели:

- Каждая клетка может принимать только два значения занятости: 0 - свободная от препятствий ячейка, 1 - занята каким либо препятствием.
- ▶ Прямая модель p(Z|m) показывает, на сколько хорошо некоторая карта m объясняет показания сонаров Z.
- ▶ Таким образом, задача картирования сводится к поиску такой карты m^* , которая максимизирует значение p(Z|m):

$$m^*(Z) = \operatorname*{argmax} p(Z|m) \tag{6}$$

Картирование на основе прямой модели сенсора

Рис. 1: Результаты картирования двери, используя наблюдения сонаров. (a) - результаты алгоритма на основе обратной модели, (б) - на основе EM-алгоритма с прямой моделью, предложенной в работе Себастьяна Труна.

Картирование на основе прямой модели сенсора

Проблема большинства алгоритмов, основанных на прямой модели, заключается в невозможности их имплементации для работы в режиме реального времени, а также необходимости больших вычислительных ресурсов для поиска оптимальной конфигурации карты. Требование работы в режиме реального времени к эффективному алгоритму построения карты проходимости является достаточно важным, так как часто такие модули являются неотъемлемой частью систем навигации робота.

Цель работы

Разработка методов восстановления карты проходимости, используя наблюдения сонаров, которые могут быть имплементированы для работы в режиме реального времени, и картирующие лучше традиционного метода, основанного на обратной модели.

Предложенные в работе методы картирования

В данной работе предложены два новых метода построения карты проходимости:

- Первый основан на прямой модели, предложенной в работе
 Себастьяна Труна. В этом методе карта проходимости находится
 с помощью метода стохастического градиента.
- Во втором методе предложена новая прямая модель сонара, с помощью которой задачу картирования можно свести к задаче минимизации непрерывной невязки.