

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8

CERTIFICATION TEST REPORT

FOR

Bluetooth module

MODEL NUMBER: BT301FS

FCC ID: 2ABP5-XBFS880 IC: 4844A-XBFS880

REPORT NUMBER: 10185979S

ISSUE DATE: January 31, 2014

Prepared for

Toshiba Medical Systems Corporation 1385, Shimoishigami, Otawara-shi, Tochigi, 324-8550, Japan

Prepared by

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken 259-1220 JAPAN

Telephone number: +81 463 50 6400 Facsimile number: +81 463 50 6401 JAB Accreditation No. : RTL02610

The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan.

There is no testing item of "Non-accreditation".

DATE: January 31, 2014 REPORT NO: 10185979S-A IC Number: 4844A-XBFS880 FCC ID: 2ABP5-XBFS880

Revision History

Rev.	Issue Date	Revisions	Revised By
	01/31/14	Initial Issue	Tatsuya Arai

TABLE OF CONTENTS

DATE: January 31, 2014 IC Number: 4844A-XBFS880

1. A	TTESTATION OF TEST RESULTS	5
2. TE	EST METHODOLOGY	6
3. FA	ACILITIES AND ACCREDITATION	6
4. C	ALIBRATION AND UNCERTAINTY	6
4.1.	MEASURING INSTRUMENT CALIBRATION	6
4.2.	SAMPLE CALCULATION	6
4.3.	MEASUREMENT UNCERTAINTY	6
5. EC	QUIPMENT UNDER TEST	7
5.1.	DESCRIPTION OF EUT	7
5.2.	MAXIMUM OUTPUT POWER	7
5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	7
<i>5.4.</i>	SOFTWARE AND FIRMWARE	7
5.5.	WORST-CASE CONFIGURATION AND MODE	8
5.6.	DESCRIPTION OF TEST SETUP	9
6. TE	EST AND MEASUREMENT EQUIPMENT	
	NTENNA PORT TEST RESULTS	
7.1.		
	1.1. 20 dB AND 99% BANDWIDTH	
	1.2. HOPPING FREQUENCY SEPARATION	
	1.3. NUMBER OF HOPPING CHANNELS	
	1.4. AVERAGE TIME OF OCCUPANCY	
	1.6. AVERAGE POWER	
7.	1.7. CONDUCTED SPURIOUS EMISSIONS	35
7.2.	ENHANCED DATA RATE 8PSK MODULATION	47
	2.1. 20 dB AND 99% BANDWIDTH	47
	2.2. HOPPING FREQUENCY SEPARATION	
	2.3. NUMBER OF HOPPING CHANNELS	
	2.5. OUTPUT POWER	
	2.6. AVERAGE POWER	
7.2	2.7. CONDUCTED SPURIOUS EMISSIONS	
8. R	ADIATED TEST RESULTS	82
8.1.	LIMITS AND PROCEDURE	82
	Page 3 of 120	

UL Japan, Inc. Shonan EMC Lab.

8.2.

8.2.1. 8.2.2.

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: To shiba Medical Systems Corporation

1385, Shimoishigami, Otawara-shi, Tochiqi, 324-8550, Japan

EUT DESCRIPTION: Bluetooth module

MODEL: BT301FS

SERIAL NUMBER: 0001 90 D36766 (Antenna port tests),

0001 90 D36601 (other tests),

DATE TESTED: JANUARY 22 to 24, 2014

APPLICABLE STANDARDS

STANDARD

STANDARD

TEST RESULTS

CFR 47 Part 15 Subpart C

Pass

INDUSTRY CANADA RSS-210 Issue 8 Annex 8

INDUSTRY CANADA RSS-GEN Issue 3

Pass

UL Japan Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Japan, Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Japan, Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Japan, Inc. will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by any government agency.

Approved & Released For UL Japan, Inc. By: Tested By:

Toyokazu Imamura Leader of EMC Service, UL Verification Service Tatsuya Arai Engineer of WiSE Japan, UL Verification Service

Page 5 of 120

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2009, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 3, and RSS-210 Issue 8.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN.

UL Japan is accredited by JAB, Laboratory Code RTL02610. The full scope of accreditation can be viewed at

http://www.jab.or.jp/system/service/testinglaboratories/accreditation/detail/335/

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY	
Power Line Conducted Emission	150kHz-30MHz	+/- 3.5 dB
	30MHz-300MHz(3m)	+/- 4.8 dB
	300MHz-1000MHz(3m)	+/- 4.8 dB
Radiated Emission	1000MHz-15GHz(3m)	+/- 4.9 dB
	15GHz-18GHz(1m)	+/- 5.6 dB
	18GHz-26.5GHz(1m)	+/- 4.3 dB

Uncertainty figures are valid to a confidence level of 95% using a coverage factor k=2.

Page 6 of 120

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a Bluetooth Module (Power Class 2).

The radio module is manufactured by SMK Corporation.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2402 - 2480	Basic GFSK	2.81	1.91
2402 - 2480	Enhanced 8PSK	2.20	1.66

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes Chip Antenna, with a maximum gain of +2.0 dBi.

5.4. SOFTWARE AND FIRMWARE

The test utility software used during testing was RF Test Tool for Bluetooth Device Ver1.2.2

5.5. WORST-CASE CONFIGURATION AND MODE

The worst-case data rate for each mode is determined to be as follows, based on preliminary tests of the chipset utilized in this radio.

All final tests in the GFSK mode were made at 1 Mb/s. All final tests in the 8PSK mode were made at 3 Mb/s.

For radiated emissions below 1 GHz the worst-case configuration is determined to be the mode and channel with the highest output power.

The fundamental and spurious was measured in three different orientations X, Y and Z to find worst-case orientation, and final testing for radiated emissions was performed with EUT in following orientation.

-	Horizontal	Vertical
Carrier	X	Z
Spurious (below 1GHz)	X	X
Spurious (above 1GHz)	X	Z
Spurious (Harmonics)	X	Z

REPORT NO: 10185979S-A DATE: January 31, 2014 IC Number: 4844A-XBFS880 FCC ID: 2ABP5-XBFS880

DESCRIPTION OF TEST SETUP 5.6.

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST				
Description Manufacturer Model Serial Number				
Jig	SMK	PC0078	-	

I/O CABLES

	I/O CABLE LIST					
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length	Remarks
1	DC	1	DC	Un-Shielded	1.0m	N/A

SETUP DIAGRAM FOR RADIATED TESTS

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test and Measurement Equipment

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
SAEC-03 (NSA)	Semi-Anechoic Chamber	TDK	SAEC-03(NSA)	3	RE	2013/07/09 * 12
SAF-06	Pre Amplifier	TOYO Corporation	TPA0118-36	1440491	RE	2013/07/22 * 12
SCC-G03	Coaxial Cable	Suhner	SUCOFLEX 104A	46499/4A	RE	2013/04/11 * 12
SCC-G23	Coaxial Cable	Suhner	SUCOFLEX 104		RE	2013/05/22 * 12
SHA-03	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-739	RE	2013/08/19 * 12
SOS-05	Humidity Indicator	A&D	AD-5681	4062518	RE	2013/02/27 * 12
KSA-08	Spectrum Analyzer	Agilent	E4446A	MY4618052 5	RE	2013/03/04 * 12
SJM-11	Measure	PROMART	SEN1935	-	RE, CE	-
COTS-SEMI-	EMI Software	TSJ	TEPTO-DV (RE,CE,RFI,MF)	-	RE, CE	-
SAT10-06	Attenuator	Agilent	8493C-010	74865	RE	2013/11/22 * 12
SFL-18	Highpass Filter	MICRO-TRONICS	HPM50111	119	RE	2013/11/22 * 12
SHA-05	Horn Antenna	ETS LINDGREN	3160-09	LM4210	RE	2013/03/14 * 12
SCC-G18	Coaxial Cable	Suhner	SUCOFLEX 104A	46292/4A	RE	2013/03/16 * 12
SAF-09	Pre Amplifier	TOYO Corporation	HAP18-26W	00000018	RE	2013/03/19 * 12
SAF-03	Pre Amplifier	SONOMA	310N	290213	RE	2013/02/12 * 12
SAT6-06	Attenuator	JFW	50HF-006N	-	RE	2013/02/12 * 12
SBA-03	Biconical Antenna		BBA9106	91032666	RE	2013/10/26 * 12
SCC- C1/C2/C3/C 4/C5/C10/SR SE-03	Coaxial Cable&RF Selector	r/Suhner/TOYO	141PE/141PE/1 41PE/141PE/NS 4906	,	RE	2013/04/03 * 12
SLA-03	Logperiodic Antenna	Schwarzbeck	UHALP9108A	UHALP 9108-A 0901	RE	2013/10/26 * 12
STR-06	Test Receiver	Rohde & Schwarz	ESCI	101259	RE, CE	2013/02/27 * 12
SCC- C9/C10/SRS E-03	Coaxial Cable&RF Selector	Suhner/Suhner/TO YO	RG223U/141PE/ NS4906	-/0901- 271(RF Selector)	CE	2013/04/03 * 12
SLS-02	LISN	Rohde & Schwarz	ENV216	100512	CE	2013/02/21 * 12
SAT3-06	Attenuator	JFW	50HF-003N	-	CE	2013/02/12 * 12
SOS-06	Humidity Indicator	A&D	AD-5681	4062118	CE	2013/03/07 * 12
KPM-08	Power meter	Anritsu	ML2495A	6K00003356	AT	2013/09/04 * 12
KPSS-04	Power sensor	Anritsu	MA2411B	012088	AT	2013/09/04 * 12
SSA-03	Spectrum Analyzer	Agilent	E4448A	MY4825015 2	AT	2013/01/08 * 12
SAT10-09	Attenuator	Weinschel Corp.	54A-10	W5692	AT	2013/11/27 * 12
SCC-G13	Coaxial Cable	Suhner	SUCOFLEX 102		AT	2013/03/16 * 12
SOS-09	Humidity Indicator	A&D	AD-5681	4061484	AT	2013/03/07 * 12

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test Item:

CE: Conducted emission, RE: Radiated emission, AT: Antenna terminal conducted tests

Page 11 of 120

UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

TEL: +81 463 50 6400 FAX: +81 463 50 6401

This report shall not be reproduced except in full, without the written approval of UL Japan, Inc.

7. ANTENNA PORT TEST RESULTS

7.1. **BASIC DATA RATE GFSK MODULATION**

7.1.1. 20 dB AND 99% BANDWIDTH

LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to ≥ 1% of the 20 dB bandwidth. The VBW is set to ≥ RBW. The sweep time is coupled.

RESULTS

Channel	Frequency	20 dB Bandwidth	99% Bandwidth
	(MHz)	(kHz)	(kHz)
Low	2402	886.337	897.447
Middle	2441	919.889	901.267
High	2480	921.321	900.910

20 dB BANDWIDTH

DATE: January 31, 2014

DATE: January 31, 2014

DATE: January 31, 2014

99% BANDWIDTH

DATE: January 31, 2014

DATE: January 31, 2014

DATE: January 31, 2014

7.1.2. HOPPING FREQUENCY SEPARATION

LIMIT

FCC §15.247 (a) (1)

IC RSS-210 A8.1 (b)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 300 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

RESULTS

The channel separation was 1MHz and the test result was greater than the requirement that was 2/3 of 20 dB channel bandwidth.

RESULTS

HOPPING FREQUENCY SEPARATION

7.1.3. NUMBER OF HOPPING CHANNELS

<u>LIMIT</u>

FCC §15.247 (a) (1) (iii)

IC RSS-210 A8.1 (d)

Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 non-overlapping channels.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to a maximum of 1 % of the span. The analyzer is set to Max Hold.

Test was not performed at AFH mode whose number of hopping channel is 20 channels because this Bluetooth radio is in compliance of Bluetooth Specification 2.0.

RESULTS

79 Channels observed.

NUMBER OF HOPPING CHANNELS

DATE: January 31, 2014

DATE: January 31, 2014

DATE: January 31, 2014

#Res BW 300 kHz

#VBW 300 kHz

Sweep 1.067 ms (8001 pts)

DATE: January 31, 2014

7.1.4. AVERAGE TIME OF OCCUPANCY

LIMIT

FCC §15.247 (a) (1) (iii)

IC RSS-210 A8.1 (d)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

The average time of occupancy in the specified 31.6 second period (79 channels * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.

This device complies with the Bluetooth protocol for FHSS operation, employing a pseudo random channel selection and hopping rate to ensure that the occupancy time in N x 0.4s, where N is the number of channels being used in the hopping sequence ($20 \ge N \le 79$), is always less than 0.4s regardless of packet size (DH1, DH3 or DH5). This is confirmed in the test report for N=79.

RESULTS

Time of Occupancy = 10 * xx pulses * yy msec = zz msec

GFSK Mode

0. 0.1000					
DH Packet	Pulse	Number of	Average	Limit	Margin
	Width	Pulses in	Time of		
	(msec)	3.16	(sec)	(sec)	(sec)
		seconds			
DH1	0.5195	32	0.1662	0.4	0.2338
DH3	1.7740	16	0.2838	0.4	0.1162
DH5	3.0280	11	0.3331	0.4	0.0669

DH1 PULSE WIDTH

DATE: January 31, 2014

DH1 NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD

DATE: January 31, 2014

DH3 PULSE WIDTH

DATE: January 31, 2014

NUMBER OF PULSES R L 🗯 Agilent Ref 0 dBm #Atten 10 dB #Peak Log 10 dB/ LgAv S1 S2 W3 FS **£**(f): FTun Center 2.441 000 GHz Span 0 Hz Res BW 1 MHz #VBW 1 MHz _ Sweep 3.16 s (8001 pts)_

DATE: January 31, 2014

DH5 PULSE WIDTH

DATE: January 31, 2014

DH5 NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD

DATE: January 31, 2014

7.1.5. OUTPUT POWER

LIMIT

§15.247 (b) (1)

RSS-210 Issue 7 Clause A8.4

The maximum antenna gain is less than 6 dBi, therefore the limit is 20.96 dBm.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

Channel	Frequency	Output Power	factor (cable	Output Power	Limit	Margin
	(MHz)	Reading (dBm)	,ATT) (dB)	Result (dBm)	(dBm)	(dB)
Low	2402	-10.45	11.43	0.98	20.96	19.98
Middle	2441	-9.35	11.45	2.10	20.96	18.86
High	2480	-8.65	11.46	2.81	20.96	18.15

Sample calculation: Output Power Reading [dBm] + factor [dB]

Test was not performed at AFH mode because this Bluetooth radio is in compliance of Bluetooth Specification 2.0 and the output power at non-AFH mode is less than 20.96dBm.

7.1.6. AVERAGE POWER

LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11.43 – 11.46 dB (including 9.65 - 9.66 dB pad and 1.78 -1.80 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	-0.30
Middle	2441	0.87
High	2480	1.61

7.1.7. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

IC RSS-210 A8.5

Limit = -20 dBc

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

In the frequency range below 30MHz, RBW was narrowed to separate the noise contents. Then, wide-band noise near the limit was checked separately, however the noise was not detected as shown in the chart. (9kHz-150kHz:RBW=200Hz, 150kHz-30MHz:RBW=10kHz)

The spectrum from 9 kHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

The bandedges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

RESULTS

SPURIOUS EMISSIONS, LOW CHANNEL

SPURIOUS EMISSIONS, MID CHANNEL

DATE: January 31, 2014

SPURIOUS EMISSIONS, HIGH CHANNEL

DATE: January 31, 2014

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

DATE: January 31, 2014

REPORT NO: 10185979S-A DATE: January 31, 2014 FCC ID: 2ABP5-XBFS880 IC Number: 4844A-XBFS880

7.2. **ENHANCED DATA RATE 8PSK MODULATION**

7.2.1. 20 dB AND 99% BANDWIDTH

LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to ≥ 1% of the 20 dB bandwidth. The VBW is set to ≥ RBW. The sweep time is coupled.

RESULTS

Channel	Frequency	20 dB Bandwidth	99% Bandwidth
	(MHz)	(kHz)	(kHz)
Low	2402	1245.0	1176.8
Middle	2441	1235.0	1169.5
High	2480	1235.0	1166.9

20 dB BANDWIDTH

DATE: January 31, 2014

99% BANDWIDTH

DATE: January 31, 2014

REPORT NO: 10185979S-A DATE: January 31, 2014 FCC ID: 2ABP5-XBFS880 IC Number: 4844A-XBFS880

7.2.2. HOPPING FREQUENCY SEPARATION

LIMIT

FCC §15.247 (a) (1)

IC RSS-210 A8.1 (b)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 100 kHz. The sweep time is coupled.

RESULTS

The channel separation was 1MHz and the test result was greater than the requirement that was 2/3 of 20 dB channel bandwidth.

RESULTS

HOPPING FREQUENCY SEPARATION

REPORT NO: 10185979S-A DATE: January 31, 2014 FCC ID: 2ABP5-XBFS880 IC Number: 4844A-XBFS880

7.2.3. NUMBER OF HOPPING CHANNELS

<u>LIMIT</u>

FCC §15.247 (a) (1) (iii)

IC RSS-210 A8.1 (d)

Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 non-overlapping channels.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to a maximum of 1 % of the span. The analyzer is set to Max Hold.

Test was not performed at AFH mode whose number of hopping channel is 20 channels because this Bluetooth radio is in compliance of Bluetooth Specification 2.0.

RESULTS

79 Channels observed.

NUMBER OF HOPPING CHANNELS

DATE: January 31, 2014

7.2.4. AVERAGE TIME OF OCCUPANCY

LIMIT

FCC §15.247 (a) (1) (iii)

IC RSS-210 A8.1 (d)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

The average time of occupancy in the specified 31.6 second period (79 channels * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.

This device complies with the Bluetooth protocol for FHSS operation, employing a pseudo random channel selection and hopping rate to ensure that the occupancy time in N x 0.4s, where N is the number of channels being used in the hopping sequence ($20 \ge N \le 79$), is always less than 0.4s regardless of packet size (DH1, DH3 or DH5). This is confirmed in the test report for N=79.

RESULTS

Time of Occupancy = 10 * xx pulses * yy msec = zz msec

8PSK Mode

DH Packet	Pulse	Number of	Average	Limit	Margin
	Width	Pulses in	Time of		
	(msec)	3.16	(sec)	(sec)	(sec)
		seconds			
3-DH1	0.5326	32	0.1704	0.4	0.2296
3-DH3	1.7840	16	0.2854	0.4	0.1146
3-DH5	3.0340	11	0.3337	0.4	0.0663

3-DH1 PULSE WIDTH

DATE: January 31, 2014

3-DH1 NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD

DATE: January 31, 2014

3-DH3 PULSE WIDTH

DATE: January 31, 2014

3-DH3 NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD

3-DH5 PULSE WIDTH

DATE: January 31, 2014

3-DH5 NUMBER OF PULSES IN 3.16 SECOND OBSERVATION PERIOD

REPORT NO: 10185979S-A DATE: January 31, 2014 FCC ID: 2ABP5-XBFS880 IC Number: 4844A-XBFS880

7.2.5. OUTPUT POWER

<u>LIMIT</u>

§15.247 (b) (1)

RSS-210 Issue 7 Clause A8.4

The maximum antenna gain is less than 6 dBi, therefore the limit is 20.96 dBm.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

8PSK (3-DH5)

Channel	Frequency (MHz)	Output Power Reading (dBm)	factor (cable ,ATT) (dB)	Output Power Result (dBm)	Limit (dBm)	Margin (dB)
Low	2402	-10.55	11.43	0.88	20.96	20.08
Middle	2441	-9.61	11.45	1.84	20.96	19.12
High	2480	-9.26	11.46	2.20	20.96	18.76

pi/4DQPSK (2-DH5)

Channel	Frequency	Output Power	factor (cable	Output Power	Limit	Margin
	(MHz)	Reading (dBm)	,ATT) (dB)	Result (dBm)	(dBm)	(dB)
Low	2402	-10.61	11.43	0.82	20.96	20.14
Middle	2441	-9.70	11.45	1.75	20.96	19.21
High	2480	-9.38	11.46	2.08	20.96	18.88

Sample calculation: Output Power Reading [dBm] + factor [dB]

Test was not performed at AFH mode because this Bluetooth radio is in compliance of Bluetooth Specification 2.0 and the output power at non-AFH mode is less than 20.96dBm.

7.2.6. AVERAGE POWER

LIMIT

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11.43 - 11.46 dB (including 9.65 - 9.66 dB pad and 1.78 - 1.80 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

8PSK (3-DH5)

Channel	Frequency	Average Power	
	(MHz)	(dBm)	
Low	2402	-2.91	
Middle	2441	-1.96	
High	2480	-1.59	

pi/4DQPSK (2-DH5)

Channel	Frequency	Average Power
	(MHz)	(dBm)
Low	2402	-2.84
Middle	2441	-1.89
High	2480	-1.78

REPORT NO: 10185979S-A DATE: January 31, 2014 FCC ID: 2ABP5-XBFS880 IC Number: 4844A-XBFS880

7.2.7. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

IC RSS-210 A8.5

Limit = -20 dBc

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

In the frequency range below 30MHz, RBW was narrowed to separate the noise contents. Then, wide-band noise near the limit was checked separately, however the noise was not detected as shown in the chart. (9kHz-150kHz:RBW=200Hz, 150kHz-30MHz:RBW=10kHz)

The spectrum from 9 kHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

The bandedges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

RESULTS

SPURIOUS EMISSIONS, LOW CHANNEL

SPURIOUS EMISSIONS, MID CHANNEL

DATE: January 31, 2014

SPURIOUS EMISSIONS, HIGH CHANNEL

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

DATE: January 31, 2014

8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

IC RSS-210 Clause 2.5 (Transmitter)

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

8.2. TRANSMITTER ABOVE 1 GHz

8.2.1. BASIC DATA RATE GFSK MODULATION

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

DATE: January 31, 2014

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

Dwell time factor Calculation chart

DATE: January 31, 2014

IC Number: 4844A-XBFS880

On time of some channel during 100ms: Twice This is the worst case in hopping sequence of Bluetooth.

HARMONICS AND SPURIOUS EMISSIONS

DH5, 2402MHz (LOW)

Radiated Emission

Test place No.3 Semi Anechoic Chamber

Date January 23, 2014
Temperature / Humidity 26 deg.C, 34 % RH
Engineer Tatsuya Arai
Mode Tx, 2402 MHz

Tx, Bluetooth, BDR, PRBS9

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loca	Gain	Result	Limit	Margin	Height	Angle	Remark
Polarity		Detector			Loss				_	neight		Reliaik
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	1602.000	PK	53.4	25.8	13.8	38.6	54.4	73.9	19.5	122	32	
Hori.	4804.000	PK	62.1	30.9	7.4	37.1	63.3	73.9	10.6	110	56	
Hori.	7206.000	PK	44.0	37.1	8.8	39.4	50.5	73.9	23.4	100	358	
Hori.	9608.000	PK	41.7	38.6	10.0	37.6	52.7	73.9	21.2	100	0	
Hori.	1602.000	AV	51.4	25.8	13.8	38.6	52.4	53.9	1.5	122	32	
Hori.	7206.000	AV	33.2	37.1	8.8	39.4	39.7	53.9	14.2	100	358	
Hori.	9608.000	AV	30.5	38.6	10.0	37.6	41.5	53.9	12.4	100	0	
Vert.	1602.000	PK	53.7	25.8	13.8	38.6	54.7	73.9	19.2	114	9	
Vert.	4804.000	PK	61.2	30.9	7.4	37.1	62.4	73.9	11.5	100	359	
Vert.	7206.000	PK	44.4	37.1	8.8	39.4	50.9	73.9	23.0	100	66	
Vert.	9608.000	PK	42.3	38.6	10.0	37.6	53.3	73.9	20.6	100	0	
Vert.	1602.000	AV	51.7	25.8	13.8	38.6	52.7	53.9	1.2	114	9	
Vert.	7206.000	ΑV	33.1	37.1	8.8	39.4	39.6	53.9	14.3	100	66	
Vert.	9608.000	AV	30.5	38.6	10.0	37.6	41.5	53.9	12.4	100	0	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18CHz)-Distance factor(above 15CHz)) - Gain(Amprifier)

Distance factor: 15GHz -40GHz: 20log(3.0m/1.0m)= 9.5dB

Dwell time factor relaxation

Dwell all	well thic factor relatation													
Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Dwell	Result	Limit	Margin	Remark			
							Factor							
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]				
Hori.	4804.000	AV	56.3	30.9	7.4	37.1	-24.4	33.1	53.9	20.8				
Vert.	4804.000	AV	56.3	30.9	7.4	37.1	-24.4	33.1	53.9	20.8				

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18GHz)-Distance factor(above 15GHz)) - Gain(Amprifier) + Dwell(time)factor Distance factor: 15GHz -40GHz: 20log(3.0m/1.0m)= 9.5dB

HARMONICS AND SPURIOUS EMISSIONS

DH5, 2441MHz (MID)

Radiated Emission

Test place No.3 Semi Anechoic Chamber

Date January 23, 2014

Temperature / Humidity 26 deg.C, 34 % RH

Engineer Tatsuya Arai

Mode Tx, 2441 MHz

Tx, Bluetooth, BDR, PRBS9

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
_	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	1628.000	PK	54.1	25.9	13.8	38.6	55.2	73.9	18.7	116	54	
Hori.	4882.000	PK	62.7	31.4	7.4	37.0	64.5	73.9	9.4	100	67	
Hori.	7323.000	PK	45.5	37.2	8.8	39.4	52.1	73.9	21.8	100	350	
Hori.	9764.000	PK	41.8	38.8	10.0	37.5	53.1	73.9	20.8	100	0	
Hori.	1628.000	AV	51.1	25.9	13.8	38.6	52.2	53.9	1.7	116	54	
Hori.	7323.000	AV	33.3	37.2	8.8	39.4	39.9	53.9	14.0	100	350	
Hori.	9764.000	AV	30.7	38.8	10.0	37.5	42.0	53.9	11.9	100	0	
Vert.	1628.000	PK	54.7	25.9	13.8	38.6	55.8	73.9	18.1	117	39	
Vert.	4882.000	PK	63.0	31.4	7.4	37.0	64.8	73.9	9.1	100	354	
Vert.	7323.000	PK	45.5	37.2	8.8	39.4	52.1	73.9	21.8	100	0	
Vert.	9764.000	PK	42.0	38.8	10.0	37.5	53.3	73.9	20.6	100	0	
Vert.	1628.000	AV	52.0	25.9	13.8	38.6	53.1	53.9	0.8	117	39	
Vert.	7323.000	AV	33.2	37.2	8.8	39.4	39.8	53.9	14.1	100	0	
Vert.	9764.000	AV	30.9	38.8	10.0	37.5	42.2	53.9	11.7	100	0	

Result = Reading + Ant. Fac. + Loss (Cable + (Attenuator or Filter) (below 18 CHz) - Distance factor (above 15 CHz)) - Cain (Amprifier) - Cain (

Distance factor: 15GHz-40GHz: 20log(3.0m/1.0m)= 9.5dB

Dwell time factor relaxation

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Dwell	Result	Limit	Margin	Remark
							Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	4882.000	AV	56.8	31.4	7.4	37.0	-24.4	34.2	53.9	19.7	
Vert.	4882.000	AV	56.9	31.4	7.4	37.0	-24.4	34.3	53.9	19.6	

 $Result = Reading + Ant. Fac. + Loss \ (Cable + (Attenuator \ or \ Filter) (below \ 18GHz) - Distance \ factor (above \ 15GHz)) - Gain (Amprifier) + Dwell (time) factor (above \ 15GHz)) - G$

Distance factor: 15GHz-40GHz: 20log(3.0m/1.0m)= 9.5dB

HARMONICS AND SPURIOUS EMISSIONS

DH5, 2480MHz

Radiated Emission

Test place No.3 Semi Anechoic Chamber

Date January 23, 2014
Temperature / Humidity 22 deg.C, 28 % RH
Engineer Tatsuya Arai
Mode Tx, 2480 MHz

Tx, Bluetooth, BDR, PRBS9

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	1654.000	PK	54.9	25.9	13.9	38.6	56.1	73.9	17.8	117	24	
Hori.	4960.000	PK	62.9	31.8	7.4	37.0	65.1	73.9	8.8	100	65	
Hori.	7440.000	PK	45.4	37.4	8.9	39.4	52.3	73.9	21.6	100	0	
Hori.	9920.000	PK	43.2	38.9	9.9	37.5	54.5	73.9	19.4	100	0	
Hori.	1654.000	AV	51.7	25.9	13.9	38.6	52.9	53.9	1.0	117	24	
Hori.	7440.000	AV	33.5	37.4	8.9	39.4	40.4	53.9	13.5	100	0	
Hori.	9920.000	AV	31.5	38.9	9.9	37.5	42.8	53.9	11.1	100	0	
Vert.	1654.000	PK	55.1	25.9	13.9	38.6	56.3	73.9	17.6	103	45	
Vert.	4960.000	PK	63.4	31.8	7.4	37.0	65.6	73.9	8.3	100	359	
Vert.	7440.000	PK	44.0	37.4	8.9	39.4	50.9	73.9	23.0	100	0	
Vert.	9920.000	PK	42.4	38.9	9.9	37.5	53.7	73.9	20.2	100	0	
Vert.	1654.000	AV	52.4	25.9	13.9	38.6	53.6	53.9	0.3	103	45	
Vert.	7440.000	AV	33.4	37.4	8.9	39.4	40.3	53.9	13.6	100	0	
Vert.	9920.000	AV	31.4	38.9	9.9	37.5	42.7	53.9	11.2	100	0	

Result = Reading + Ant.Fac. + Loss (Cable + (Attenuator or Filter) (below 18GHz) - Distance factor (above 15GHz)) - Cain (Amprifier) - Cain (Amp

Distance factor : $15\text{GHz} - 40\text{GHz} : 20\log(3.0\text{m}/1.0\text{m}) = 9.5\text{dB}$

Dwell time factor relaxation

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Dwell	Result	Limit	Margin	Remark
							Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	4960.000	AV	54.9	31.8	7.4	37.0	-24.4	32.7	53.9	21.2	
Vert.	4960.000	AV	55.6	31.8	7.4	37.0	-24.4	33.4	53.9	20.5	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18GHz)-Distance factor(above 15GHz)) - Gain(Amprifier) + Dwell(time)factor

Distance factor: 15GHz-40GHz: 20log(3.0m/1.0m)= 9.5dB

8.2.2. ENHANCED DATA RATE 8PSK MODULATION

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

DATE: January 31, 2014

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

Dwell time factor Calculation chart

On time of some channel during 100ms: Twice This is the worst case in hopping sequence of Bluetooth.

HARMONICS AND SPURIOUS EMISSIONS

3-DH5, 2402MHz (LOW)

Radiated Emission

Test place No.3 Semi Anechoic Chamber

Date January 23, 2014
Temperature / Humidity 26 deg.C, 34 %RH
Engineer Tatsuya Arai
Mode Tx, 2402 MHz

Tx, Bluetooth, EDR, PRBS9

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
-	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	1602.000	PK	53.0	25.8	13.8	38.6	54.0	73.9	19.9	121	41	
Hori.	4804.000	PK	56.0	30.9	7.4	37.1	57.2	73.9	16.7	100	56	
Hori.	7206.000	PK	44.7	37.1	8.8	39.4	51.2	73.9	22.7	100	0	
Hori.	9608.000	PK	43.1	38.6	10.0	37.6	54.1	73.9	19.8	100	0	
Hori.	1602.000	AV	50.6	25.8	13.8	38.6	51.6	53.9	2.3	121	41	
Hori.	7206.000	AV	32.9	37.1	8.8	39.4	39.4	53.9	14.5	100	0	
Hori.	9608.000	AV	30.6	38.6	10.0	37.6	41.6	53.9	12.3	100	0	
Vert.	1602.000	PK	53.9	25.8	13.8	38.6	54.9	73.9	19.0	110	27	
Vert.	4804.000	PK	56.0	30.9	7.4	37.1	57.2	73.9	16.7	100	354	
Vert.	7206.000	PK	44.6	37.1	8.8	39.4	51.1	73.9	22.8	100	0	
Vert.	9608.000	PK	42.0	38.6	10.0	37.6	53.0	73.9	20.9	100	0	
Vert.	1602.000	AV	51.8	25.8	13.8	38.6	52.8	53.9	1.1	110	27	
Vert.	7206.000	AV	33.0	37.1	8.8	39.4	39.5	53.9	14.4	100	0	
Vert.	9608.000	AV	30.7	38.6	10.0	37.6	41.7	53.9	12.2	100	0	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18GHz)-Distance factor(above 15GHz)) - Cain(Amprifier)

Distance factor: 15GHz-40GHz: 20log(3.0m/1.0m)= 9.5dB

Dwell time factor relaxation

Dwell till	ic inclui i cium	111011									
Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Dwell	Result	Limit	Margin	Remark
							Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	4804.000	AV	38.3	30.9	7.4	37.1	-24.3	15.2	53.9	38.7	
Vert.	4804.000	AV	38.1	30.9	7.4	37.1	-24.3	15.0	53.9	38.9	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter) (below 18GHz) - Distance factor (above 15GHz)) - Gain(Amprifier) + Dwell(time) factor (above 15GHz) - Gain(Amprifier) + Gain(

Distance factor : $15\text{GHz} - 40\text{GHz} : 20\log(3.0\text{m}/1.0\text{m}) = 9.5\text{dB}$

HARMONICS AND SPURIOUS EMISSIONS

3-DH5, 2441MHz (MIDDLE)

Radiated Emission

Test place No.3 Semi Anechoic Chamber

Date January 23, 2014

Temperature / Humidity 26 deg.C, 34 % RH

Engineer Tatsuya Arai

Mode Tx, 2441 MHz

Tx, Bluetooth, EDR, PRBS9

(* PK: Peak, AV: Average, OP: Quasi-Peak)

Polarity	Frequency	Detector		Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
Tominy	[MHz]	Detector	[dBuV]	[dB/m]	[dB]	[dB]		[dBuV/m]	U	[cm]	[deg]	ROHERK
Hori.	1628.000	PK	54.5	25.9	13.8	38.6	55.6	73.9	18.3	100		
Hori.	4882.000	PK	56.2	31.4	7.4	37.0	58.0	73.9	15.9	100	61	
Hori.	7323.000	PK	44.5	37.2	8.8	39.4	51.1	73.9	22.8	100	0	
Hori.	9764.000	PK	42.3	38.8	10.0	37.5	53.6	73.9	20.3	100	0	
Hori.	1628.000	AV	51.4	25.9	13.8	38.6	52.5	53.9	1.4	100	354	
Hori.	7323.000	AV	33.3	37.2	8.8	39.4	39.9	53.9	14.0	100	0	
Hori.	9764.000	AV	30.9	38.8	10.0	37.5	42.2	53.9	11.7	100	0	
Vert.	1628.000	PK	54.9	25.9	13.8	38.6	56.0	73.9	17.9	116	26	
Vert.	4882.000	PK	56.3	31.4	7.4	37.0	58.1	73.9	15.8	100	353	
Vert.	7323.000	PK	44.2	37.2	8.8	39.4	50.8	73.9	23.1	100	0	
Vert.	9764.000	PK	42.5	38.8	10.0	37.5	53.8	73.9	20.1	100	0	
Vert.	1628.000	AV	52.3	25.9	13.8	38.6	53.4	53.9	0.5	116	26	
Vert.	7323.000	AV	33.3	37.2	8.8	39.4	39.9	53.9	14.0	100	0	
Vert.	9764.000	AV	30.9	38.8	10.0	37.5	42.2	53.9	11.7	100	0	

 $Result = Reading + Ant. Fac. + Loss \ (Cable + (Attenuator \ or \ Filter) (below \ 18CHz) - Distance \ factor (above \ 15CHz)) - Gain (Amprifier) - Cain (Amprifier$

Distance factor: 15GHz - 40GHz: $20\log(3.0\text{m}/1.0\text{m}) = 9.5\text{dB}$

Dwell time factor relaxation

Dwell til	HE TACIOT TETAN	шоп									
Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Dwell	Result	Limit	Margin	Remark
							Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	4882.000	AV	36.4	31.4	7.4	37.0	-24.3	13.9	53.9	40.0	
Vert	4882 000	ΑV	36.5	31 4	74	37.0	-24 3	14.0	53.9	30 0	

Result = Reading + Ant.Fac. + Loss (Cable+(Attenuator or Filter)(below 18GHz)-Distance factor(above 15GHz)) - Gain(Amprifier) + Dwell(time)factor

Distance factor: 15GHz - 40GHz: 20log(3.0m/1.0m) = 9.5dB

HARMONICS AND SPURIOUS EMISSIONS

3-DH5, 2480MHz (HIGH)

Radiated Emission

Test place No.3 Semi Anechoic Chamber

Date January 23, 2014
Temperature / Humidity 26 deg.C, 34 % RH
Engineer Tatsuya Arai
Mode Tx, 2480 MHz

Tx, Bluetooth, EDR, PRBS9

(* PK: Peak, AV: Average, QP: Quasi-Peak)

Polarity	Frequency	Detector		Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	1654.000	PK	55.1	25.9	13.9	38.6	56.3	73.9	17.6	114	23	
Hori.	4960.000	PK	55.0	31.8	7.4	37.0	57.2	73.9	16.7	100	58	
Hori.	7440.000	PK	44.9	37.4	8.9	39.4	51.8	73.9	22.1	100	0	
Hori.	9920.000	PK	43.0	38.9	9.9	37.5	54.3	73.9	19.6	100	0	
Hori.	1654.000	AV	51.9	25.9	13.9	38.6	53.1	53.9	0.8	114	23	
Hori.	7440.000	AV	33.5	37.4	8.9	39.4	40.4	53.9	13.5	100	0	
Hori.	9920.000	AV	31.6	38.9	9.9	37.5	42.9	53.9	11.0	100	0	
Vert.	1654.000	PK	55.3	25.9	13.9	38.6	56.5	73.9	17.4	100	28	
Vert.	4960.000	PK	57.0	31.8	7.4	37.0	59.2	73.9	14.7	100	358	
Vert.	7440.000	PK	45.1	37.4	8.9	39.4	52.0	73.9	21.9	100	0	
Vert.	9920.000	PK	42.4	38.9	9.9	37.5	53.7	73.9	20.2	100	0	
Vert.	1654.000	AV	52.5	25.9	13.9	38.6	53.7	53.9	0.2	100	28	
Vert.	7440.000	AV	33.5	37.4	8.9	39.4	40.4	53.9	13.5	100	0	
Vert.	9920.000	AV	31.5	38.9	9.9	37.5	42.8	53.9	11.1	100	0	

 $Result = Reading + Ant.Fac. + Loss \ (Cable + (Attenuator \ or \ Filter) (below \ 18GHz) - Distance \ factor (above \ 15GHz)) - Gain (Amprifier) - Cannell (Amprifier) - Canne$

Distance factor: 15GHz - 40GHz: $20\log(3.0\text{m}/1.0\text{m}) = 9.5\text{dB}$

Dwell time factor relaxation

١	Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Dwell	Result	Limit	Margin	Remark
ı								Factor				
L		[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
ſ	Hori.	4960.000	AV	31.8	31.8	7.4	37.0	-24.3	9.7	53.9	44.2	
ı	Vert.	4960.000	AV	32.4	31.8	7.4	37.0	-24.3	10.3	53.9	43.6	

Result = Reading + Ant. Fac. + Loss (Cable + (Attenuator or Filter) (below 18GHz) - Distance factor (above 15GHz)) - Gain (Amprifier) + Dwell (time) factor (above 15GHz)) - Gain (above 15GHz)) - Gai

Distance factor: 15GHz - 40GHz: $20\log(3.0\text{m}/1.0\text{m}) = 9.5\text{dB}$

8.3. **WORST-CASE BELOW 1 GHz**

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

HORIZONTAL AND VERTICAL DATA

Radiated Emission

No.3 Semi Anechoic Chamber Test place

Date January 23, 2014 $Temperature \ / \ Humidity \ 26 \ deg.C, 34 \ \%RH$ Engineer Tomochika Sato 2480 MHz Mode Tx, Tx, Bluetooth, BDR, PRBS9

		(* QP: Qu	asi-Peak)									
Polarity	Frequency	Detector	Reading	Ant.Fac.	Loss	Gain	Result	Limit	Margin	Height	Angle	Remark
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[deg]	
Hori.	159.993	QP	42.8	14.8	7.8	32.1	33.3	43.5	10.2	200	80	
Hori.	316.054	QP	38.1	14.2	8.6	31.9	29.0	46.0	17.0	100	90	
Hori.	331.640	QP	37.2	14.6	8.7	31.9	28.6	46.0	17.4	100	286	
Vert.	55.065	QP	42.3	9.4	6.7	32.2	26.2	40.0	13.8	100	279	
Vert.	63.294	QP	49.5	7.5	6.5	32.1	31.4	40.0	8.6	100	333	
Vert.	68.306	QP	53.2	6.6	6.6	32.1	34.3	40.0	5.7	100	262	
Vert.	160.113	QP	42.4	14.9	7.8	32.1	33.0	43.5	10.5	100	124	

Result = Reading + Ant.Fac. + Loss (Cable+Attenuator) - Gain(Amprifier)

9. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

Frequency of Emission (MHz)	Conducted Limit (dBuV)			
	Quasi-peak	Average		
0.15-0.5	66 to 56 *	56 to 46 *		
0.5-5	56	46		
5-30	60	50		

^{*} Decreases with the logarithm of the frequency.

TEST PROCEDURE

ANSI C63.4

RESULTS

DATA OF CONDUCTED EMISSION TEST UL Japan, Inc. Shonan EMC Lab. No.3 Shielded Room Date: 2014/01/23 Tx DH5 2441MHz 10185979S AC120V/60Hz (DC3V) 24deg.C./35%RH Mode Order No. Power Temp./Humi. Limit1 : FCC 15C (15.207) QP Limit2 : FCC 15C (15.207) AV Engineer : Tomochika Sato << QP/AV DATA >> C,Fac [dB] 0.17510 54.7 30.8 21.0 64.7 0.30829 18.2 12.9 50.0 28.9 0.35120 18.9 12.9 58.9 48.9 27.1 0.66010 14.2 12.9 27. 56.0 46.0 28.9 2.04150 12.5 13.0 56.0 46.0 30.5 2.21780 12.8 13.0 25.8 56.0 46.0 30.2 64.6 0.17560 22.0 12.9 34. 54.6 L1 29.7 0.30050 14.3 12.9 27.2 60.2 50.2 33.0 L1 0.35030 12.9 58.9 27.1 0.66200 16.4 12.9 29.3 56.0 46.0 26.7 2.04740 14.2 13.0 27.2 56.0 46.0 28.8 2.21390 9.4 13.0 22.4 56.0 46.0 33.6 L1 $\begin{tabular}{ll} Calculation: Result [dBuV] = Reading [dBuV] + C.Fac (LISN+Cable+ATT) & [dB] \\ LISN: SLS-02 & \end{tabular}$

Page 111 of 120

TEL: +81 463 50 6400 FAX: +81 463 50 6401

LINE 1 RESULTS

LINE 2 RESULTS

10. MAXIMUM PERMISSIBLE EXPOSURE

FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field Magnetic field strength strength (V/m) (A/m)		Power density (mW/cm²)	Averaging time (minutes)					
(A) Limits for Occupational/Controlled Exposures									
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842# 61.4	1.63 4.89/f 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6					
(B) Limits for General Population/Uncontrolled Exposure									
0.3–1.34 1.34–30	614 824/f	1.63 2.19/f	*(100) *(180/f²)	30 30					

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30

f = frequency in MHz

f = frequency in MHz

* = Plane-wave equivalent power density

NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their
employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure.

Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for
exposure or can not exercise control over their exposure.

IC RULES

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of Table 5, if the field strength exceeds the value given in Column 2 or 3 of Table 5, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of Table 5, when averaged spatially and over time.

Table 5
Exposure Limits for Persons Not Classed As RF and Microwave Exposed Workers (Including the General Public)

1 Frequency (MHz)	2 Electric Field Strength; rms (V/m)	3 Magnetic Field Strength; rms (A/m)	4 Power Density (W/m ²)	5 Averaging Time (min)
0.003–1	280	2.19		6
1–10	280/f	2.19/f		6
10–30	28	2.19/f		6
30–300	28	0.073	2*	6
300–1 500	1.585 $f^{0.5}$	0.0042f ^{0.5}	f/150	6
1 500–15 000	61.4	0.163	10	6
15 000–150 000	61.4	0.163	10	616 000 /f ^{1.2}
150 000–300 000	0.158 <i>f</i> ^{0.5}	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616 000 /f ^{1.2}

^{*} Power density limit is applicable at frequencies greater than 100 MHz.

Notes: 1. Frequency, f, is in MHz.

2. A power density of 10 W/m² is equivalent to 1 mW/cm².

 A magnetic field strength of 1 A/m corresponds to 1.257 microtesla (μT) or 12.57 milligauss (mG).

EQUATIONS

Power density is given by:

$$S = EIRP / (4 * Pi * D^2)$$

where

 $S = Power density in W/m^2$

EIRP = Equivalent Isotropic Radiated Power in W

D = Separation distance in m

Power density in units of W/m² is converted to units of mWc/m² by dividing by 10.

Distance is given by:

$$D = SQRT (EIRP / (4 * Pi * S))$$

where

D = Separation distance in m

EIRP = Equivalent Isotropic Radiated Power in W

 $S = Power density in W/m^2$

In the table(s) below, Power and Gain are entered in units of dBm and dBi respectively and conversions to linear forms are used for the calculations.

LIMITS

From FCC $\S1.1310$ Table 1 (B), the maximum value of S = 1.0 mW/cm²

From IC Safety Code 6, Section 2.2 Table 5 Column 4, S = 10 W/m^2

RESULTS

Band	Mode	Separation	Output	Antenna	IC Power	FCC Power
		Distance	Power	Gain	Density	Density
		(m)	(dBm)	(dBi)	(W/m^2)	(mW/cm^2)
2.4 GHz	Bluetooth	0.20	1.61	2.00	0.0046	0.0005