Redes Complexas - CPS765

Pedro Maciel Xavier 116023847

6 de novembro de 2020

Questão 1

Podemos supor, neste caso, que as matrizes em questão vivem em um espaço vetorial construído sobre o semianel $(\mathcal{B}, \vee, \wedge)$ em vez de $(\mathbb{R}, +, \cdot)$, onde $\mathcal{B} = \{0, 1\}$. Assim, as entradas das matrizes serão sempre 0 ou 1 e as operações usuais de soma e multiplicação são substituídas pela disjunção e pela conjunção lógica, respectivamente.

a) A fim de obter uma expressão para a alcançabilidade em k passos do vértice i ao j, dado pela entrada $\mathbf{B}_{i,j}^{(k)}$ vamos empregar um raciocínio indutivo. É claro que a alcançabilidade em 0 passos é dada pela matriz identidade \mathbf{I} , uma vez que só é possível chegar ao vértice em que já encontramonos. O caso para um único passo é dado pela matriz de adjacências \mathbf{A} , trivialmente. Logo, $\mathbf{B}^{(0)} = \mathbf{I} \in \mathbf{B}^{(1)} = \mathbf{A}$. Vamos supor, por hipótese de indução, que a matriz $\mathbf{B}^{(k)} \in \mathcal{B}^{n \times n}$ representa a alcançabilidade em exatamente k passos, isto é, se existe um caminho de comprimento k ligando o vértice i ao vértice j, então $\mathbf{B}_{i,j}^{(k)} = 1$. Caso contrário, $\mathbf{B}_{i,j}^{(k)} = 0$. Para saber se existe um caminho de tamanho k + 1 entre os vértices i e j é preciso que exista um caminho de tamanho k entre i e algum vértice ξ assim como ξ deve ser incidente em j. Portanto,

$$\mathbf{B}_{i,j}^{(k+1)} = \bigvee_{\xi=1}^{n} \mathbf{B}_{i,\xi}^{(k)} \wedge \mathbf{A}_{\xi,j}$$

de onde concluimos quem, para todo $k \ge 1$, $\mathbf{B}^{(k+1)} = \mathbf{B}^{(k)} \mathbf{A}$. O resultado é dado pelo produto usual de matrizes induzido pelo semianel booleano. Logo, escrevemos $\mathbf{B}^{(k)} = \mathbf{A}^k$.

b) Seguindo raciocínio semelhante, dizemos que i alcança j em k ou menos passos se $B_{i,j}^{(\xi)}=1$ para algum $0 \le \xi \le k$. Isto é,

$$\mathbf{C}_{i,j}^{(k)} = \mathbf{B}_{i,j}^{(0)} \vee \mathbf{B}_{i,j}^{(1)} \vee \mathbf{B}_{i,j}^{(2)} \cdots \vee \mathbf{B}_{i,j}^{(k)} = \bigvee_{\epsilon=0}^{n} \mathbf{B}_{i,j}^{(\xi)}$$

resultado que, por conta do espaço onde as matrizes se encontram, é caracterizado pela soma usual. Ou seja, $\mathbf{C}^{(k)} = \sum_{\xi=0}^{k} \mathbf{B}^{(\xi)}$.

- c) Análise da complexidade:
 - $\mathbf{B}^{(k)}$ A multiplicação usual de matrizes tem custo $O(n^3)$. Como temos de calcular este produto k-1 vezes, temos uma complexidade assintótica total de ordem $O(n^3k)$.
 - $\mathbf{C}^{(k)}$ A soma de matrizes possui complexidade $O(n^2)$. Contando as k-1 somas temos um total de $O(n^2k)$ para esta etapa. Se recalculamos $\mathbf{B}^{(k)}$ a cada passo, a complexidade das multiplicações segue uma progressão aritmética em k, totalizando $O(n^3k^2)$. Se aproveitamos a matriz anterior a cada soma, podemos realizar este processo em tempo

 $O(n^3k)$. O termo quadrático em n é de ordem inferior e pode ser omitido em ambos os casos.

d) Seguindo o conselho de multiplicar diferentemente, apresento duas abordagens para reduzir a complexidade do cálculo de $\mathbf{B}^{(k)}$ e $\mathbf{C}^{(k)}$. A primeira, se aplica a um grafo qualquer e se baseia na seguinte relação:

$$\mathbf{A}^{k} = \begin{cases} \mathbf{I} & \text{para } k = 0 \\ \left(\mathbf{A}^{\frac{k}{2}}\right)^{2} & \text{para } k \text{ par} \\ \left(\mathbf{A}^{\frac{k-1}{2}}\right)^{2} * \mathbf{A} & \text{para } k \text{ impar} \end{cases}$$

para $k \geq 0$. Em geral, esta relação vale para qualquer operação * associativa e, portanto, utilizaremos para o cálculo das potências de matrizes. Isso nos traz complexidade $O(\log k)$ nesta tarefa. Com este aprimoramento, somos capazes de calcular $\mathbf{B}^{(k)}$ em tempo $O(n^3 \log k)$ enquanto $\mathbf{C}^{(k)}$ sai por $O(n^3 k \log k)$.

Questão 2

Oi