## Usage of MATLAB Report Generator

Eniz Museljic

8. Juli 2018

## Inhaltsverzeichnis

| 1        | Intr            | Introduction                                   |    |  |  |  |  |  |  |  |  |  |
|----------|-----------------|------------------------------------------------|----|--|--|--|--|--|--|--|--|--|
| <b>2</b> | $\mathbf{List}$ | Environment                                    | 4  |  |  |  |  |  |  |  |  |  |
|          | 2.1             | Itemize                                        | 4  |  |  |  |  |  |  |  |  |  |
|          | 2.2             | Enumerate                                      | 4  |  |  |  |  |  |  |  |  |  |
|          | 2.3             | Description                                    | 5  |  |  |  |  |  |  |  |  |  |
| 3        | Tab             | ular and Table                                 | 6  |  |  |  |  |  |  |  |  |  |
|          | 3.1             | A simple example                               | 6  |  |  |  |  |  |  |  |  |  |
|          | 3.2             | Another example with booktabs and Not a Number | 7  |  |  |  |  |  |  |  |  |  |
|          | 3.3             | MATLAB table as input                          | 7  |  |  |  |  |  |  |  |  |  |
|          | 3.4             | Using a table instead of tabular               | 7  |  |  |  |  |  |  |  |  |  |
| 4        | Ima             | ges and Figures                                | 8  |  |  |  |  |  |  |  |  |  |
|          | 4.1             | Code Listing and Evaluation                    | 8  |  |  |  |  |  |  |  |  |  |
|          | 4.2             | Image                                          | 8  |  |  |  |  |  |  |  |  |  |
|          | 4.3             | Figure                                         | 9  |  |  |  |  |  |  |  |  |  |
| 5        | Pret            | tty Output                                     | 11 |  |  |  |  |  |  |  |  |  |
|          | 5.1             | Listing or Latex                               | 11 |  |  |  |  |  |  |  |  |  |
|          | 5.2             | Graphics output for arrays                     | 12 |  |  |  |  |  |  |  |  |  |
|          |                 | 5.2.1 Two images in color with colorbar        | 12 |  |  |  |  |  |  |  |  |  |
|          |                 | 5.2.2 One image in bw without colorbar         | 12 |  |  |  |  |  |  |  |  |  |
|          |                 | 5.2.3 Another example                          | 12 |  |  |  |  |  |  |  |  |  |
| 6        | Fun             | ction description                              | 15 |  |  |  |  |  |  |  |  |  |
|          | 6.1             | A simple example                               | 15 |  |  |  |  |  |  |  |  |  |
|          | 6.2             | A complete example                             | 15 |  |  |  |  |  |  |  |  |  |

|   | 6.3 Same example with information from help text of function | 17 |
|---|--------------------------------------------------------------|----|
| 7 | Some data processing                                         | 20 |
|   | 7.1 My Results                                               | 20 |
| 8 | Final processing and viewing                                 | 21 |

### Introduction

#### INTRODUCTION

The following MATLAB code did the import of the text of the whole chapter:

```
report.addParagraph('INTRODUCTION')
```

To ensure that Latex can be found by MATLAB the following lines have been added to startup.m:

```
path1 = getenv('PATH');
path1 = [path1,':/Library/TeX/texbin'];
setenv('PATH', path1)
```

### List Environment

LIST

#### 2.1 Itemize

- $\bullet$  Text 1
- $\bullet$  Text 2
- Text 3 and some additional text.

#### Listings can be nested:

- Text 1
- Text 2
  - Text a
  - Text b
  - Text c
- Text 3
  - 1. Item a
  - 2. Item b
  - 3. Item c
- $\bullet$  Text 4

#### 2.2 Enumerate

1. Text 1

- 2. Text 2
- 3. Text 3

Further text.

### 2.3 Description

**Def 1:** Text 1

And some further description.

**Def 2:** Text 2

**Def 3:** Text 3

Further text.

Here the first entry for each item is used to specify the name which is described.

### Tabular and Table

#### 3.1 A simple example

A simple table from an array with standard settings:

| 1.00 | 2.00 | 3.00 |
|------|------|------|
| 4.00 | 5.00 | 6.00 |

A different format, alignment and labels for colums and rows.

Different settings can be specified using the set method:

```
report.set('dataFormat','%i')
```

If one would like to see the Latex output in the console one can use:

|      | col1 | col2 | col3 |
|------|------|------|------|
| row1 | 1    | 2    | 3    |
| row2 | 4    | 5    | 6    |

To reset all table settings please use:

To reset Latex output to its default value use:

#### 3.2 Another example with booktabs and Not a Number

| 1.1235  | nan    | 3.12  |
|---------|--------|-------|
| 4.1235  | 5.123  | 6.12  |
| 7.1235  | 8.123  | 9.12  |
| 10.1235 | 11.123 | 12.12 |

|      | col1  | col2  | col3  |
|------|-------|-------|-------|
| row1 | 1.12  | =     | 3.12  |
| row2 | 4.12  | 5.12  | 6.12  |
|      | 7.12  | 8.12  | 9.12  |
| row4 | 10.12 | 11.12 | 12.12 |

### 3.3 MATLAB table as input

Here the MATLAB table is constructed with the following code from myCodeBlocks.m:

```
LastName = {'Smith';'Johnson';'Williams';'Jones';'Brown'};
Age = [38;43;38;40;49];
Height = [71;69;64;67;64];
Weight = [176;163;131;133;119];
T = table(Age, Height, Weight, 'RowNames', LastName);
```

|          | Age | Height | Weight |
|----------|-----|--------|--------|
| Smith    | 38  | 71     | 176    |
| Johnson  | 43  | 69     | 163    |
| Williams | 38  | 64     | 131    |
| Jones    | 40  | 67     | 133    |
| Brown    | 49  | 64     | 119    |

#### 3.4 Using a table instead of tabular

|        | Smith | Johnson | Williams | Jones | Brown |
|--------|-------|---------|----------|-------|-------|
| Age    | 38    | 43      | 38       | 40    | 49    |
| Height | 71    | 69      | 64       | 67    | 64    |
| Weight | 176   | 163     | 131      | 133   | 119   |

Tabelle 3.1: My Caption

## Images and Figures

#### 4.1 Code Listing and Evaluation

```
x=5; y=3;
z=x+y;
d=5;
v1 = 1:10;
fh(1)=figure;
plot(v1,v1.^2)
v2 = 1:20;
fh(2)=figure;
plot(v2,v2.^2,'r')
v3 = 1:20;
fh(3)=figure;
plot(v3,v3.^2,'ro')
```

#### 4.2 Image

One of the above images directly here:









### 4.3 Figure

Two images side by side as a figure with caption:





Abbildung 4.1: Two images side by side

All three images, one per line and modified width:



Abbildung 4.2: One image per line

## Pretty Output

#### 5.1 Listing or Latex

```
M1 = logical(eye(5));
M2 = logical(flipud(eye(5)));
```

And so does it look like as listing

| M 1 | = |   |   |   | M2 | 2 | = |   |   |   |
|-----|---|---|---|---|----|---|---|---|---|---|
| 1   | 0 | 0 | 0 | 0 | (  | ) | 0 | 0 | 0 | 1 |
| 0   | 1 | 0 | 0 | 0 | (  | ) | 0 | 0 | 1 | 0 |
| 0   | 0 | 1 | 0 | 0 | (  | ) | 0 | 1 | 0 | 0 |
| 0   | 0 | 0 | 1 | 0 | (  | ) | 1 | 0 | 0 | 0 |
| 0   | 0 | 0 | 0 | 1 | 1  | 1 | 0 | 0 | 0 | 0 |

or in Latex mode

$$\mathtt{M1} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \qquad \mathtt{M2} = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$



Abbildung 5.1: My arrays separate



Abbildung 5.2: My arrays together

#### 5.2 Graphics output for arrays

- 5.2.1 Two images in color with colorbar
- 5.2.2 One image in bw without colorbar

#### 5.2.3 Another example

$$R1 = rand(100);$$

And this is the output in form of a listing

```
R1 =
```

```
0.6934
0.1371 0.1273 0.7990
                      0.3933
0.2922 0.0157
              0.4417
                      0.1813
                                  0.3792
                              >
0.0073 0.7531
                      0.2094
                                  0.7139
              0.4925
0.9327 0.5050
              0.0295
                      0.5937
                                  0.1277
0.6093 0.7221
              0.5726
                      0.5945
                                  0.0776
0.8918 0.7611
              0.5725
                      0.1725
                                  0.5682
0.4208
       0.2689
              0.7417
                      0.9330
                                  0.8953
0.4002 0.1936
              0.0766
                      0.0562
                                  0.6109
0.5539 0.0641
              0.7872 0.2017
                                  0.8061
                              >
0.1799 0.2964 0.3201 0.6773
                                  0.2174
```

or again with latex syntax

```
\begin{bmatrix} 0.1371 & 0.1273 & 0.7990 & 0.3933 & \cdots \end{bmatrix}
                                                       0.6934
        0.2922
                  0.0157
                            0.4417
                                       0.1813
                                                       0.3792
        0.0073 \quad 0.7531 \quad 0.4925
                                       0.2094
                                                       0.7139
        0.9327 \quad 0.5050 \quad 0.0295
                                       0.5937
                                                       0.1277
        0.6093 \quad 0.7221 \quad 0.5726
                                       0.5945
                                                       0.0776
        0.8918 \quad 0.7611 \quad 0.5725
                                       0.1725
                                                       0.5682
R1 =
        0.4208 \quad 0.2689 \quad 0.7417
                                       0.9330
                                                       0.8953
        0.4002 \quad 0.1936 \quad 0.0766
                                       0.0562
                                                       0.6109
        0.5539
                  0.0641
                             0.7872
                                       0.2017
                                                       0.8061
        0.1799 \quad 0.2964 \quad 0.3201 \quad 0.6773
```

One can also display it as an image.



Abbildung 5.3: Some random numbers

## Function description

#### 6.1 A simple example

Some text before. Write the following function with specified in- and output.

function 
$$[r1,r2] = func(i1,i2,i3)$$

| InOut  | Name | Type   | Description |
|--------|------|--------|-------------|
| Input  | i1   | double | 2-D array   |
| Input  | i2   | double | Scalar      |
| Input  | i3   | double | Scalar      |
| Output | r1   | double | Result 1    |
| Output | r2   | double | Result 2    |

Some text after.

#### 6.2 A complete example

Schreiben sie die folgende Funktion mit dem in der Tabelle spezifizierten In- und Output.

| InOut  | Name | Type    | Description                                   |
|--------|------|---------|-----------------------------------------------|
| Input  | M    | double  | 2-dimensionale Matrix; quadratisch; alle      |
|        |      |         | Werte ungleich Null                           |
| Output | L    | logical | Stern in der gleichen Größe wie M (siehe Bei- |
|        |      |         | spiel)                                        |
| Output | R    | double  | gleich wie Maber mit Nullen wo L false ist    |
|        |      |         | (siehe Beispiel)                              |
| Output | r    | double  | Skalar; Summe aller Werte in M wo L true ist  |

Die folgenden Beispiele erläutern die Aufgabe.

#### Beispiel 1 - $6 \times 6$ -Array

```
M1 = reshape(1:36,6,6)+5;
[L1,R1,r1] = myTestFunc(M1);
M 1 =
                            L1 =
  6 12 18 24 30 36
                              1 0 0 0 0 1
  7 13 19 25 31 37
                              0 1
                                  0 0
                                      1 0
                              0 0 1 1 0
  8 14 20 26 32 38
  9 15 21 27 33 39
                              0 0 1 1 0 0
                              0 1 0 0 1 0
 10 16 22 28 34 40
 11 17 23 29 35 41
                              1 0 0 0 0 1
R1 =
                            r1 =
  6
     0
        0
            0
               0 36
                              282
  0 13
        0
            0 31
                  0
  0
     0 20 26
               0
                  0
  0
     0 21 27
               0
                  0
        0
            0 34
                  0
  0 16
     0
               0 41
 11
        0
            0
```

#### Beispiel 2 - $5 \times 5$ -Array

```
M2 = reshape(1:25,5,5)+5;
[L2,R2,r2] = myTestFunc(M2);
M2 =
                         L2 =
  6 11 16 21 26
                          1 0 0 0 1
  7 12 17 22 27
                          0 1 0 1 0
  8 13 18 23 28
                          0 0 1 0 0
  9 14 19 24 29
                          0 1 0 1 0
 10 15 20 25 30
                          1 0 0 0 1
R2 =
                         r2 =
  6
     0
        0
            0 26
                          162
  0 12
        0 22
               0
  0
     0 18
            0
               0
  0
   14
        0 24
               0
     0
            0 30
 10
        0
```







Abbildung 6.1: M1 (Links), L1 (Mitte), R1 (Rechts)

# 6.3 Same example with information from help text of function

Schreiben sie die folgende Funktion mit dem in der Tabelle spezifizierten In- und Output.

| InOut  | Name | Type    | Description                                   |
|--------|------|---------|-----------------------------------------------|
| Input  | M    | double  | 2-dimensionale Matrix; quadratisch; alle      |
|        |      |         | Werte ungleich Null                           |
| Output | L    | logical | Stern in der gleichen Größe wie M (siehe Bei- |
|        |      |         | spiel)                                        |
| Output | R    | double  | gleich wie Maber mit Nullen wo L false ist    |
|        |      |         | (siehe Beispiel)                              |
| Output | r    | double  | Skalar; Summe aller Werte in M wo L true ist  |

Die folgenden Beispiele erläutern die Aufgabe.







Abbildung 6.2: M2 (Links), L2 (Mitte), R2 (Rechts)

#### Beispiel 1 - $6 \times 6$ -Array

```
M1 = reshape(1:36,6,6)+5;
[L1,R1,r1] = myTestFunc(M1);
M1 =
                            L1 =
  6 12 18 24 30 36
                             1 0
                                 0
  7 13 19 25 31 37
                             0 1 0
                                     1 0
  8 14 20 26 32 38
                             0 0
                                 1
  9
    15
       21 27
             33 39
                             0 0
                                1
                                   1
                                     0 0
       22 28 34 40
                             0 1 0 0
                                     1 0
 10 16
 11 17 23 29 35 41
                             1 0 0 0 0 1
```

```
R1 =
                        r1 =
 6 0 0 0 0 36
                         282
 0 13 0 0 31
 0
    0 20 26
            0
                0
 0
   0 21 27
            0
               0
 0 16
      0
          0 34
               0
   0
            0 41
 11
       0
          0
```

#### Beispiel 2 - $5 \times 5$ -Array

## Some data processing

### 7.1 My Results

## Final processing and viewing

Some commands to export, generate and view the results: