Université de Lille

M31 Algèbre Linéaire 2020-2021

Recueil d'exercices, année 2008-2009

 $S.\ Delaunay$

I. Espaces vectoriels

Exercice I.1. Déterminer lesquels des ensembles E_1 , E_2 , E_3 et E_4 sont des sous-espaces vectoriels de \mathbb{R}^3 . Calculer leurs dimensions.

$$E_1 = \{(x, y, z) \in \mathbb{R}^3 ; x + y - z = x + y + z = 0\}.$$

$$E_2 = \{(x, y, z) \in \mathbb{R}^3 ; x^2 - z^2 = 0\}.$$

$$E_3 = \{(x, y, z) \in \mathbb{R}^3 ; e^x e^y = 0\}.$$

$$E_4 = \{(x, y, z) \in \mathbb{R}^3 ; z(x^2 + y^2) = 0\}.$$

Exercice I.2. Déterminer une base et la dimension des espaces vectoriels suivants :

$$E_1 = \{(x, y, z) \in \mathbb{R}^3, \ x + 2y + z = 0\}.$$

$$E_2 = \{(x_1, \dots, x_n) \in \mathbb{R}^n, x_1 = \dots = x_n\}.$$

$$E_3 = \{(x, y, z, t) \in \mathbb{R}^4, \ 2x - y = x + z - t = 0\}.$$

Exercice I.3. Dans les deux cas suivants, déterminer la somme F+G, dire si cette somme est directe et si les sous-espaces F et G sont supplémentaires.

1)
$$F = \{(x, y, z) \in \mathbb{R}^3, \ x - y + z = 0\}$$
 et $G = \{(x, y, z) \in \mathbb{R}^3, \ x - 2y = x + 3z = 0\}.$

2)
$$F = \{(x, y, z, t) \in \mathbb{R}^4, \ x + y - 2z = x - t = 0\}$$
 et $G = \{(x, y, z, t) \in \mathbb{R}^4, \ 2x + z - t = y - 3z = 0\}.$

Exercice I.4. Soit E un \mathbb{C} -espace vectoriel. Soient F et G deux sous-espaces de E. Montrer que

- 1) $F \cup G$ est un sous-espace vectoriel de $E \iff F \subset G$ ou $G \subset F$.
- 2) Soit H un troisième sous-espace vectoriel de E. Prouver que

$$G \subset F \Longrightarrow F \cap (G + H) = G + (F \cap H).$$

Exercice I.5. Montrer que $\{(x,y,z) \in \mathbb{R}^3/x + y + z = 0 \text{ et } 2x - y + 3z = 0\}$ est un sous-espace vectoriel de \mathbb{R}^3 , en donner une base.

Exercice I.6. Soient dans \mathbb{R}^3 les vecteurs $\vec{v_1}(1,1,0)$, $\vec{v_2}(4,1,4)$ et $\vec{v_3}(2,-1,4)$.

- 1) Montrer que $\vec{v_1}$ et $\vec{v_2}$ ne sont pas colinéaires. Faire de même avec $\vec{v_1}$ et $\vec{v_3}$, puis avec $\vec{v_2}$ et $\vec{v_3}$.
- 2) La famille $(\vec{v_1}, \vec{v_2}, \vec{v_3})$ est-elle libre ?

Exercice I.7. Les familles suivantes sont-elles libres?

- 1) $\vec{v_1}(1,0,1)$, $\vec{v_2}(0,2,2)$ et $\vec{v_3}(3,7,1)$ dans \mathbb{R}^3 .
- 2) $\vec{v_1}(1,0,0)$, $\vec{v_2}(0,1,1)$ et $\vec{v_3}(1,1,1)$ dans \mathbb{R}^3 .
- 3) $\vec{v_1}(1,2,1,2,1)$, $\vec{v_2}(2,1,2,1,2)$, $\vec{v_3}(1,0,1,1,0)$ et $\vec{v_4}(0,1,0,0,1)$ dans \mathbb{R}^5 .
- 4) $\vec{v_1}(2,4,3,-1,-2,1)$, $\vec{v_2}(1,1,2,1,3,1)$ et $\vec{v_3}(0,-1,0,3,6,2)$ dans \mathbb{R}^6 .
- 5) $\vec{v_1}(2,1,3,-1,4,-1)$, $\vec{v_2}(-1,1,-2,2,-3,3)$ et $\vec{v_3}(1,5,0,4,-1,7)$ dans \mathbb{R}^6 .

Exercice I.8. On considère dans \mathbb{R}^n une famille $(\vec{e_1}, \vec{e_2}, \vec{e_3}, \vec{e_4})$ de 4 vecteurs linéairement indépendants. Les familles suivantes sont-elles libres ?

- 1) $(\vec{e_1}, 2\vec{e_2}, \vec{e_3})$.
- 2) $(\vec{e_1}, \vec{e_3})$.
- 3) $(\vec{e_1}, 2\vec{e_1} + \vec{e_4}, \vec{e_4})$.
- 4) $(3\vec{e_1} + \vec{e_3}, \vec{e_3}, \vec{e_2} + \vec{e_3}).$
- 5) $(2\vec{e_1} + \vec{e_2}, \vec{e_1} 3\vec{e_2}, \vec{e_4}, \vec{e_2} \vec{e_1})$.

Exercice I.9. Soient dans \mathbb{R}^4 les vecteurs $\vec{e_1}(1,2,3,4)$ et $\vec{e_2}(1,-2,3,-4)$. Peut-on déterminer x et y pour que $(x,1,y,1) \in Vect\{\vec{e_1},\vec{e_2}\}$? Et pour que $(x,1,1,y) \in Vect\{\vec{e_1},\vec{e_2}\}$?

Exercice I.10. Dans \mathbb{R}^4 on considère l'ensemble E des vecteurs (x_1, x_2, x_3, x_4) vérifiant $x_1 + x_2 + x_3 + x_4 = 0$. L'ensemble E est-il un sous espace vectoriel de \mathbb{R}^4 ? Si oui, en donner une base.

Exercice I.11. On suppose que $v_1, v_2, v_3, \ldots, v_n$ sont des vecteurs indépendants de \mathbb{R}^n .

- 1) Les vecteurs $v_1 v_2, v_2 v_3, v_3 v_4, \dots, v_n v_1$ sont-ils linéairement indépendants ?
- 2) Les vecteurs $v_1 + v_2, v_2 + v_3, v_3 + v_4, \dots, v_n + v_1$ sont-ils linéairement indépendants?
- 3) Les vecteurs $v_1, v_1 + v_2, v_1 + v_2 + v_3, v_1 + v_2 + v_3 + v_4, \dots, v_1 + v_2 + \dots + v_n$ sont-ils linéairement indépendants ?

II. Applications linéaires

Exercice II.1. Soient : E, F et G trois sous espaces vectoriels de \mathbb{R}^n , f une application linéaire de E dans F et g une application linéaire de F dans G. On rappelle que $g \circ f$ est l'application de E dans G définie par $g \circ f(v) = g(f(v))$, pour tout vecteur v de E.

- 1) Montrer que $g \circ f$ est une application linéaire.
- 2) Montrer que $f(\ker(g \circ f)) = \ker g \cap \operatorname{Im} f$.

Exercice II.2. Soit E un espace vectoriel de dimension finie, f une application linéaire de E dans E. Montrer que les propriétés suivantes sont équivalentes :

- 1) $E = \operatorname{Im} f \oplus \ker f$,
- 2) Im $f = \text{Im } f^2$,
- 3) $\ker f = \ker f^2$.

Exercice II.3. Soit E un espace vectoriel, et u une application linéaire de E dans E. Dire si les propriétés suivantes sont vraies ou fausses :

- 1) Si e_1, e_2, \ldots, e_p est libre, il en est de même de $u(e_1), u(e_2), \ldots, u(e_p)$.
- 2) Si $u(e_1), u(e_2), \ldots, u(e_p)$ est libre, il en est de même de e_1, e_2, \ldots, e_p .
- 3) Si e_1, e_2, \ldots, e_p est génératrice de E, il en est de même de $u(e_1), u(e_2), \ldots, u(e_p)$.
- 4) Si $u(e_1), u(e_2), \ldots, u(e_p)$ est génératrice de E, il en est de même de e_1, e_2, \ldots, e_p .
- 5) Si $u(e_1), u(e_2), \ldots, u(e_p)$ est une base de $\operatorname{Im} u$, alors e_1, e_2, \ldots, e_p est une base d'un sous-espace vectoriel supplémentaire de $\ker u$.

Exercice II.4. Soient E un espace vectoriel et φ une application linéaire de E dans E. On suppose que $\ker(\varphi) \cap \operatorname{Im}(\varphi) = \{0\}$. Montrer que, si $x \notin \ker(\varphi)$ alors, pour tout $n \in \mathbb{N} : \varphi^n(x) \neq 0$

Exercice II.5. Soient $f: E \to F$ et $g: F \to G$ deux applications linéaires. Montrer que $\ker(f) \subset \ker(g \circ f)$ et $\operatorname{Im}(g \circ f) \subset \operatorname{Im}(g)$.

Exercice II.6. Soit $(\vec{e_1}, \vec{e_2}, \vec{e_3})$ une base de \mathbb{R}^3 , et λ un nombre réel. Démontrer que la donnée de

$$\begin{cases} \phi(\vec{e_1}) = \vec{e_1} + \vec{e_2} \\ \phi(\vec{e_2}) = \vec{e_1} - \vec{e_2} \\ \phi(\vec{e_3}) = \vec{e_1} + \lambda \vec{e_3} \end{cases}$$

définit une application linéaire de \mathbb{R}^3 dans \mathbb{R}^3 . Ecrire l'image du vecteur $\vec{v} = a_1\vec{e_1} + a_2\vec{e_2} + a_3\vec{e_3}$. Comment choisir λ pour que ϕ soit injective ? surjective ?

Exercice II.7. Soit $f \in \mathcal{L}(E)$ où E est un K-espace vectoriel. On suppose :

$$\forall x \in E, \exists \lambda \in K, f(x) = \lambda x.$$

Montrer:

$$\exists \mu \in K, f = \mu.id.$$

Exercice II.8. Soit $f \in \mathcal{L}(E)$ telle que $f^3 = f^2 + f + id$. Montrer que f est un automorphisme de E.

Exercice II.9. Soient E et F deux espaces vectoriels de même dimension finie et φ une application linéaire de E dans F. Montrer que φ est un isomorphisme si et seulement si l'image par φ de toute base de E est une base de F.

Exercice II.10.

- 1) Soient E et F deux espaces vectoriels et φ une application linéaire bijective de E dans F. Montrer que la bijection réciproque φ^{-1} est linéaire. Une telle application est dite un isomorphisme d'espaces vectoriels.
- 2) Soient E et F deux espaces vectoriels de dimension finie. Montrer qu'il existe un isomorphisme d'espaces vectoriels de E à valeurs dans F si et seulement si $\dim(E) = \dim(F)$.

III. Matrices

Exercice III.1. On considère les deux matrices suivantes :

$$A = \begin{pmatrix} 2 & 3 & -4 & 1 \\ 5 & 2 & 1 & 0 \\ 3 & 1 & -6 & 7 \\ 2 & 4 & 0 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 3 & -1 & -3 & 7 \\ 4 & 0 & 2 & 1 \\ 2 & 3 & 0 & -5 \\ 1 & 6 & 6 & 1 \end{pmatrix}$$

Calculer AB. Calculer BA. Que remarque-t-on?

Exercice III.2. Trouver les matrices qui commutent avec

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 3 & 1 & 2 \end{pmatrix}.$$

De même avec

$$A = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}.$$

Exercice III.3. Soit

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$$

Calculer A^2 et vérifier que $A^2 = A + 2I_3$, où I_3 est la matrice identité 3×3 . En déduire que A est inversible et calculer son inverse.

Exercice III.4. On considère la matrice

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 3 & 1 & 1 \end{pmatrix}.$$

1) Soient

$$B = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \quad \text{et} \quad C = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & -1 & -1 \end{pmatrix}$$

Montrer que AB = AC, a-t-on B = C? A peut-elle être inversible?

2) Déterminer toutes les matrices F telles que $A \times F = O$ (O étant la matrice dont tous les coefficients sont nuls).

Exercice III.5. Déterminer la matrice de la projection de \mathbb{R}^2 sur $\mathbb{R}\vec{i}$ parallèlement à $\mathbb{R}(\vec{i}+\vec{j})$ dans la base $(\vec{i}+\vec{j},\vec{j})$ puis (\vec{i},\vec{j}) .

5

Exercice III.6. Soit (e_1, e_2, e_3) une base de l'espace E à trois dimensions sur un corps K. On note I_E l'application identique de E. On considère l'application linéaire f de E dans E telle que :

$$f(e_1) = 2e_2 + 3e_3$$
, $f(e_2) = 2e_1 - 5e_2 - 8e_3$, $f(e_3) = -e_1 + 4e_2 + 6e_3$.

- 1) Etudier le sous-espace $\ker(f I_E)$: dimension, base.
- 2) Etudier le sous-espace $\ker(f^2 + I_E)$: dimension, base.
- 3) Montrer que la réunion des bases précédentes constitue une base de E. Quelle est la matrice de f dans cette nouvelle base ? et celle de f^2 ?

Exercice III.7. Soit A la matrice suivante

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}.$$

- 1) Calculer A^n pour $n \in \mathbb{N}$.
- 2) On considère les suites récurrentes suivantes

$$\begin{cases} u_n = u_{n-1} + 2v_{n-1} + 3w_{n-1} \\ v_n = v_{n-1} + 2w_{n-1} \\ w_n = w_{n-1} \end{cases}$$

Calculer les termes u_n, v_n et w_n en fonction de u_0, v_0 et w_0 .

Exercice III.8. Ecrire les matrices des applications suivantes dans les bases canoniques de \mathbb{R} , \mathbb{R}^2 , \mathbb{R}^3 et \mathbb{R}^4 :

1)
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$

$$(x, y) \longmapsto (2x - y, x + y, x)$$

2)
$$f: \mathbb{R}^4 \longrightarrow \mathbb{R}^2$$

$$(x, y, z, t) \longmapsto (x + y, z + t)$$

3)
$$f: \mathbb{R} \longrightarrow \mathbb{R}^3$$

$$x \longmapsto (x, x, x)$$

IV. Projections et symétries vectorielles

Exercice IV.1. Soient E_1 et E_2 deux sous-espaces supplémentaires d'un espace vectoriel E. Tout vecteur u de E s'écrit de manière unique $u = u_1 + u_2$ avec $u_1 \in E_1$ et $u_2 \in E_2$, on appelle projection vectorielle (ou projecteur) de E sur E_1 parallèlement à E_2 l'application

$$p: E \longrightarrow E$$
$$u \longmapsto u_1.$$

Démontrer que cette application p est linéaire et qu'elle vérifie les propriétés suivantes :

- 1) $p \circ p = p$.
- 2) Im $p = E_1$ et ker $p = E_2$.
- 3) E_1 est l'ensemble des vecteurs invariants par p.

Exercice IV.2. Soient E_1 et E_2 deux sous-espaces supplémentaires d'un espace vectoriel E. Tout vecteur u de E s'écrit de manière unique $u = u_1 + u_2$ avec $u_1 \in E_1$ et $u_2 \in E_2$, on appelle symétrie vectorielle de E par rapport à E_1 parallèlement à E_2 l'application

$$s: E \longrightarrow E$$

 $u \longmapsto u_1 - u_2.$

Démontrer que cette application est linéaire et qu'elle vérifie les propriétés suivantes :

- 1) $s \circ s = \mathrm{id}_E$.
- 2) $\text{Im } s = E \text{ et ker } s = \{0\}.$
- 3) E_1 est l'ensemble des vecteurs invariants par s.
- 4) E_2 est l'ensemble des vecteurs tels que s(u) = -u.

Exercice IV.3. Soit E un espace vectoriel de dimension 3, on considère les applications suivantes définies par f(x, y, z) = (x', y', z'):

$$f_1: \begin{cases} x' = -2y + z \\ y' = x + 3y - z \\ z' = 2x + 4y - z \end{cases}, \quad f_2: \begin{cases} x' = -5x + 3y - 3z \\ y' = -6x + 4y - 3z \\ z' = 4x - 2y + 3z \end{cases}, \quad f_3: \begin{cases} x' = x + z/2 \\ y' = y + z/2 \\ z' = 0 \end{cases}$$

Démontrer que f_1, f_2 et f_3 sont des projections vectorielles et donner leurs éléments caractéristiques.

Exercice IV.4. Soit (\vec{u}, \vec{v}) une base d'un espace vectoriel de dimension 2, pour $m \in \mathbb{R}$, on définit l'application f_m par

$$f_m(\vec{u}) = (1+m)\vec{u} - v$$
 et $f_m(\vec{v}) = 3\vec{u} + (1-m)\vec{v}$.

1) Déterminer les valeurs de m pour les quelles l'application f_m n'est pas bijective.

- 2) Déterminer pour chacune de ces valeurs le noyau et l'image de f_m .
- 3) Lorsque f_m n'est pas bijective, démontrer qu'elle est la composée d'une homothétie et d'une projection dont on déterminera les éléments caractéristiques.

Exercice IV.5. Soit E un espace vectoriel de dimension 3 muni de la base $\mathcal{B} = (e_1, e_2, e_3)$. Donner l'expression analytique dans la base \mathcal{B} de la projection vectorielle de E sur F_1 parallèlement à F_2 dans les cas suivants :

- 1) F_1 engendré par e_2 et F_2 engendré par (e_1, e_3) .
- 2) F_1 engendré par (e_2, e_3) et F_2 engendré par e_1 .
- 3) F_1 ayant pour base $(e_1 e_2, e_2 e_3)$ et F_2 ayant pour base $e_1 + e_2 + e_3$.
- 4) F_1 de base $e_1 + e_2 e_3$ et F_2 d'équation 2x + z = 0.
- 5) F_1 d'équation x y + 2z = 0 et F_2 de base $2e_1 + e_2 + e_3$.
- 6) F_1 d'équation x + y + z = 0 et F_2 d'équations x = y = z.
- 7) F_1 d'équations z = 3x et y = 0, F_2 d'équation x 2y + z = 0.

Exercice IV.6. Soit E un espace vectoriel de dimension 3 muni de la base $\mathcal{B} = (e_1, e_2, e_3)$. Donner l'expression analytique dans la base \mathcal{B} de la *symétrie* vectorielle de E par rapport à F_1 parallèlement à F_2 dans les cas suivants :

- 1) F_1 engendré par e_3 et F_2 engendré par (e_1, e_2) .
- 2) F_1 engendré par (e_1, e_3) et F_2 engendré par e_2 .
- 3) F_1 ayant pour base $(e_1 e_3, e_1 e_2)$ et F_2 ayant pour base $e_1 + e_2 + e_3$.
- 4) F_1 de base $e_1 e_2 + e_3$ et F_2 d'équation y + 2z = 0.
- 5) F_1 d'équation 2x y + z = 0 et F_2 de base $e_1 + 2e_2 + e_3$.
- 6) F_1 d'équation x + y + z = 0 et F_2 d'équations x/3 = y/2 = z.
- 7) F_1 d'équations x = 2y et z = 0, F_2 d'équation 3x + 2y + z = 0.

Exercice IV.7. Soit E un espace vectoriel de dimension 3 muni d'une base $\mathcal{B} = (\vec{i}, \vec{j}, \vec{k})$. Déterminer la nature et les éléments caractéristiques des applications dont les matrices dans la base \mathcal{B} sont les suivantes :

$$A = \begin{pmatrix} 1 & 1/2 & -1/2 \\ 0 & 1/2 & 1/2 \\ 0 & 1/2 & -1/2 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 & 0 \\ 5 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 0 & 0 \\ 2 & -1 & 0 \\ 2 & 0 & -1 \end{pmatrix}.$$

V. Permutations

Exercice V.1. On considère le groupe symétrique S_n .

- 1) Déterminer $\operatorname{card}(S_n)$.
- 2) Calculer (34)(45)(23)(12)(56)(23)(45)(34)(23).
- 3) Rappel: la permutation $\sigma\begin{pmatrix} a_1 & a_2 & \dots & a_k \\ a_2 & a_3 & \dots & a_1 \end{pmatrix}$ est un cycle de longueur k, que l'on note $(a_1 \ a_2 \dots a_k)$.

Si $\tau \in S_n$, montrer que $\tau \sigma \tau^{-1} = (\tau(a_1) \ \tau(a_2) \dots \tau(a_k))$.

4) Rappel: toute permutation se décompose en produit de cycles à supports disjoints, et cette décomposition est unique à l'ordre près.

Décomposer les permutations suivantes en produits de cycles à supports disjoints:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 6 & 1 & 2 & 3 & 4 & 5 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 6 & 2 & 5 & 7 & 8 & 1 & 3 & 4 \end{pmatrix}$$

5) Rappel: il existe un unique morphisme de S_n dans $(\{-1,1\},\times)$ non trivial, appelé signature, et noté ϵ . Une manière de calculer $\epsilon(\tau)$ (où $\tau \in S_n$) consiste à décomposer τ en produit de p transpositions (ie. cycles de longueur 2): alors $\epsilon(\tau) = (-1)^p$. Montrer que la signature d'un cycle de longueur k vaut $(-1)^{k-1}$. En déduire comment se calcule la signature d'une permutation à partir de sa décomposition en produit de cycles disjoints.

Exercice V.2. Comment passer de 1234 à 2314 en échangeant seulement deux chiffres à chaque étape? Y a-t-il plusieurs façons d'y parvenir? Même question pour 1234 et 4312. Peut-on obtenir n'importe quelle permutation des chiffres 1234 par ce procédé?

Exercice V.3. Soient a, b, c trois éléments distincts de $\{1, ..., n\}$. Calculer le produit (ab)(bc)(ab).

En déduire que S_n est engendré par les permutations $\{(1,i)\}_{2\leq i\leq n}$, c'est-à-dire que toute permutation s'écrit comme produit de transpositions de cette forme.

Exercice V.4. Dans \mathbb{R}^n , on désigne par $(e_1, ..., e_n)$ la base canonique. A une permutation $\sigma \in \mathcal{S}_n$, on associe l'endomorphisme u_{σ} de \mathbb{R}^n suivant :

$$u_{\sigma} : \mathbb{R}^n \longrightarrow \mathbb{R}^n$$

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \longmapsto \begin{pmatrix} x_{\sigma(1)} \\ \vdots \\ x_{\sigma(n)} \end{pmatrix}$$

1) Soit $\tau = (ij)$ une transposition. Ecrire la matrice de u_{τ} dans la base canonique. Montrer que $\det(u_{\tau}) = -1$.

9

- 2) Montrer que $\forall \sigma, \sigma' \in \mathcal{S}_n, \ u_{\sigma} \circ u_{\sigma'} = u_{\sigma \circ \sigma'}.$
- 3) En déduire que $\forall \sigma \in \mathcal{S}_n$, det $u_{\sigma} = \varepsilon(\sigma)$ où ε désigne la signature.

Exercice V.5. Trouver la décomposition en produit de cycles à supports disjoints, la signature, l'ordre et une décomposition en produit de transpositions des permutations suivantes de S_{10} :

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 7 & 1 & 4 & 2 & 6 & 9 & 8 & 5 & 10 \end{pmatrix},$$

$$\varphi = (10, 3, 4, 1) (8, 7) (4, 7) (5, 6) (2, 6) (2, 9).$$

Calculer σ^{1998} et φ^{1998} .

Exercice V.6. Soit σ et σ' deux permutations de S_n . Montrer que

$$\epsilon(\sigma\sigma') = \epsilon(\sigma)\epsilon(\sigma')$$

où $\epsilon(\sigma)$ désigne la signature de σ .

Exercice V.7. Soit (a_1, a_2, \ldots, a_p) un p-cycle de S_n . Montrer qu'il se décompose en produit de p-1 transpositions.

VI. Déterminants, rangs

Exercice VI.1. Montrer que l'espace des formes bi-linéaires sur \mathbb{R}^2 est un espace vectoriel. En donner une base.

Exercice VI.2. Donner toutes les formes tri-linéaires alternées sur \mathbb{R}^2 . Plus généralement, que dire des formes m-linéaires alternées sur un espace de dimension n lorsque m > n?

Exercice VI.3. Calculer, pour tout $t \in \mathbb{R}$ le rang des matrices

$$M_t = \begin{pmatrix} 1 & t & 1 \\ t & 1 & 1 \\ 1 & t & 1 \end{pmatrix} \quad \text{et} \quad N_t = \begin{pmatrix} 1 & 1 & t \\ 1 & t & 1 \\ t & 1 & 1 \end{pmatrix}.$$

Exercice VI.4. Calculer le déterminant

$$\begin{pmatrix}
1 & 1 & 1 \\
x & y & z \\
x^2 & y^2 & z^2
\end{pmatrix}$$

et déterminer la condition d'inversibilité de la matrice.

Exercice VI.5. La famille (2,1,0), (1,3,1), (5,2,1) est-elle libre?

Exercice VI.6. Calculer le déterminant

$$\begin{vmatrix} a & b & c \\ c & a & b \\ b & c & a \end{vmatrix}.$$

Exercice VI.7. Calculer le déterminant

$$\begin{vmatrix} 1 & \sin x & \cos x \\ 1 & \sin y & \cos y \\ 1 & \sin z & \cos z \end{vmatrix}$$

Exercice VI.8. On note a_1, \dots, a_n des réels. Calculer les déterminants $n \times n$ suivants.

$$D_{1} = \begin{vmatrix} 1 & 1 & \cdots & 1 \\ a_{1} & a_{2} & \cdots & a_{n} \\ a_{1}^{2} & a_{2}^{2} & \cdots & a_{n}^{2} \\ \vdots & & & \vdots \\ a_{1}^{n-1} & a_{2}^{n-1} & \cdots & a_{n}^{n-1} \end{vmatrix}, D_{2} = \begin{vmatrix} a_{1} & a_{2} & a_{3} & \cdots & a_{n} \\ a_{2} & a_{2} & a_{3} & \cdots & a_{n} \\ a_{3} & a_{3} & a_{3} & a_{3} & \cdots & a_{n} \\ \vdots & & & \vdots \\ a_{n} & a_{n} & a_{n} & \cdots & a_{n} \end{vmatrix}$$

Exercice VI.9. Calculer le déterminant de la matrice suivante :

$$\begin{pmatrix} m & 0 & 1 & 2m \\ 1 & m & 0 & 0 \\ 0 & 2m+2 & m & 1 \\ m & 0 & 0 & m \end{pmatrix}.$$

Déterminer suivant la valeur du paramètre m, le rang de cette matrice.

Exercice VI.10. Soit $(a,b) \in \mathbb{R}^2$ avec $a \neq b$. Pour $n \in \mathbb{N}$, $n \geq 2$, on note B_n le déterminant suivant :

$$B_n = \begin{vmatrix} a+b & a & 0 \\ b & \ddots & \ddots \\ & \ddots & \ddots & a \\ 0 & b & a+b \end{vmatrix}$$

Montrer que $\forall n \in \mathbb{N}, n \geq 4, \ B_n = (a+b)B_{n-1} - abB_{n-2}$. Montrer que

$$\forall n \in \mathbb{N}, n \ge 2, \ B_n = \frac{a^{n+1} - b^{n+1}}{a - b}.$$

Exercice VI.11. Calculer les déterminants suivants :

$$\begin{vmatrix} 2 & 3 \\ -1 & 4 \end{vmatrix}, \begin{vmatrix} 1 & 0 & 2 \\ 3 & 4 & 5 \\ 5 & 6 & 7 \end{vmatrix}, \begin{vmatrix} 1 & 0 & 6 \\ 3 & 4 & 15 \\ 5 & 6 & 21 \end{vmatrix}, \begin{vmatrix} 1 & 0 & 0 \\ 2 & 3 & 5 \\ 4 & 1 & 3 \end{vmatrix}.$$

Exercice VI.12. Inverser les matrices

$$\begin{pmatrix} 1 & -1 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 1 \end{pmatrix} \quad \text{et} \quad \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{pmatrix}$$

11

ainsi que leurs produits.

Exercice VI.13. Pour quelles valeurs de a la matrice

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & a \end{pmatrix}$$

est-elle inversible? Calculer dans ce cas son inverse.

Exercice VI.14. Soient a et b deux rels, et A la matrice

$$A = \begin{pmatrix} a & 2 & -1 & b \\ 3 & 0 & 1 & -4 \\ 5 & 4 & -1 & 2 \end{pmatrix}$$

Montrer que $rg(A) \geq 2$. Pour quelles valeurs de a et b a-t-on rg(A) = 2?

Exercice VI.15. Soient

$$v_1 = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
 et $v_2 = \begin{pmatrix} a' \\ b' \\ c' \end{pmatrix}$

deux vecteurs indépendants de \mathbb{R}^3 . Donner, sous forme d'équation, une condition nécessaire et suffisante pour qu'un vecteur $w = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ appartienne à l'espace vectoriel engendré par v_1 et v_2 .

Même question pour un plan engendré par deux vecteurs de \mathbb{R}^4 .

Exercice VI.16. Soit u un endomorphisme de E, et \mathcal{B} une base de E. Discuter dans chacun des cas ci-dessous la dimension du noyau de u.

$$M_{\mathcal{B}}(u) = \begin{pmatrix} 2 & 1 & a & 1 \\ -1 & 1 & 1 & b \\ 0 & 0 & a & 1 \\ 0 & 0 & 1 & b \end{pmatrix} \qquad M_{\mathcal{B}}(u) = \begin{pmatrix} -1 - \lambda & 2 & 1 \\ 4 & 1 - \lambda & -2 \\ 0 & 0 & 3 - \lambda \end{pmatrix}$$

et

$$M_{\mathcal{B}}(u) = \begin{pmatrix} 12 - \lambda & -6 & 3\\ -9 & -5 - \lambda & 3\\ -12 & -8 & 9 - \lambda \end{pmatrix}$$

Exercice VI.17. Discuter le rang de la matrice suivante en fonction des paramètres réels x et y:

$$A = \begin{pmatrix} 1 & 2 & y \\ 0 & x & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 1 \end{pmatrix}$$

VII. Valeurs propres, vecteurs propres, diagonalisation

Exercice VII.1. Soient E un K-espace vectoriel de dimension finie et $f, g \in \mathcal{L}(E)$. Montrer que si λ est valeur propre de $g \circ f$ alors λ est valeur propre de $f \circ g$ (on distinguera les cas $\lambda = 0$ et $\lambda \neq 0$).

Exercice VII.2. Soit J la matrice

$$J = \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & & \vdots \\ 1 & \cdots & 1 \end{pmatrix}.$$

Trouver les valeurs propres et les sous-espaces propres associés.

Exercice VII.3. Soient A et B deux matrices de $\mathcal{M}_n(\mathbb{R})$ telles que

$$AB - BA = A$$

Le but de cet exercice est de montrer que A est nilpotente, c'est à dire

$$\exists k \in \mathbb{N}, A^k = 0.$$

On note E l'espace vectoriel $\mathcal{M}_n(\mathbb{R})$ et on considère l'application :

$$\psi: E \longrightarrow E$$
$$M \mapsto MB - BM$$

- 1. Montrer que ψ est linéaire de E dans E.
- 2. Montrer par récurrence que : $\forall k \in \mathbb{N} \quad \psi(A^k) = kA^k$.
- 3. On suppose que $\forall k \in \mathbb{N}, A^k \neq 0$. Montrer que ψ a une infinité de valeurs propres.
- 4. Conclure.

Exercice VII.4. Soit

$$A = \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix}.$$

Trouver les valeurs propres de A et les sous-espaces propres correspondant. En déduire une matrice inversible P telle que $P^{-1}AP$ soit diagonale.

Exercice VII.5. On considère les matrices suivantes

$$A = \begin{pmatrix} 3 & 1 & 1 \\ 2 & 4 & 2 \\ 1 & 1 & 3 \end{pmatrix} B = \begin{pmatrix} 1 & 2 & 2 \\ 1 & 2 & -1 \\ -1 & 1 & 4 \end{pmatrix} C = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Ces matrices sont-elles diagonalisables? Si oui, les réduire.

Exercice VII.6. Les questions sont indépendantes. K désigne \mathbb{R} ou \mathbb{C} , E est un K-espace vectoriel de dimension finie n, $\mathcal{B} = (e_1, ..., e_n)$ est une base fixée de E et f un endomorphisme de E.

- 1. Quels sont les valeurs propres de l'endomorphisme nul de E?
- 2. On suppose que la matrice de f dans \mathcal{B} est

$$M = \begin{pmatrix} 3 & 2 & 4 \\ -1 & 3 & -1 \\ -2 & -1 & -3 \end{pmatrix}.$$

- (a) 2 est-il valeur propre de f?
- (b) Le vecteur $2e_1 + e_2 + e_3$ est-il un vecteur propre de f?
- 3. Pour quoi un vecteur de E ne peut-il être vecteur propre relativement à deux valeurs propres distinctes ?
- 4. (a) Est-il vrai que si λ est une valeur propre de f et si P est un polynôme annulateur de f alors λ est racine de P?
- (b) Est-il vrai que si λ est une racine d'un polynôme annulateur de f alors λ est une valeur propre de f ?
- 5. Montrer que si $f^2 2f + \mathrm{Id}_E = 0$ alors 1 est valeur propre de f.
- 6. Montrer qu'il existe toujours au moins un scalaire α tel que $f \alpha \operatorname{Id}_E$ est bijectif.
- 7. Donner un exemple d'endomorphisme f de E avec n=2 tel que la somme de deux vecteurs propres de f n'est pas un vecteur propre de f.
- 8. On suppose que $E = E_1 \oplus E_2$ et que si $x \in E$ s'écrit $x_1 + x_2$ avec $x_1 \in E_1$ et $x_2 \in E_2$ alors $f(x) = 2x_1 3x_2$.
- (a) Quel résultat assure l'existence d'un tel endomorphisme ?
- (b) Montrer que f est diagonalisable.
- 9. La matrice $M = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ est-elle diagonalisable?
- 10. Si l'endomorphisme f admet 0 pour valeur propre et est diagonalisable, que peut-on dire de la dimension du noyau de f?

Exercice VII.7. Soit n un entier strictement supérieur à 1. Soit A une matrice $n \times n$ telle que $A^n = 0$ et $A^{n-1} \neq 0$. Soit x_0 un vecteur de \mathbb{R}^n tel que $A^{n-1}x_0 \neq 0$. Montrer que $(x_0, Ax_0, A^2x_0, \dots, A^{n-1}x_0)$ est une base de \mathbb{R}^n . Comment s'écrit la matrice A dans cette base ?

Application: on pose

$$A = \begin{pmatrix} 2 & 1 & 2 \\ -1 & -1 & -1 \\ -1 & 0 & -1 \end{pmatrix}.$$

Calculer A^3 et donner une base de \mathbb{R}^3 dans laquelle A a une forme simple.

Exercice VII.8. Soit T l'application linéaire de \mathbb{R}^3 dans \mathbb{R}^3 définie par sa matrice A dans la base canonique (e_1, e_2, e_3) de \mathbb{R}^3 :

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 3 & -1 \\ 1 & -1 & 3 \end{pmatrix}.$$

- 1. Donner une base de Ker T et ImT.
- 2. (a) Calculer le polynôme caractéristique de T, puis ses valeurs propres.
- (b) Justifier, sans calcul, que T soit diagonalisable et écrire une matrice diagonale semblable à A .
- (c) Calculer une base de \mathbb{R}^3 formée de vecteurs propres de T.
- 3. Soient $f_1=-2e_1+e_2+e_3$, $f_2=e_1+e_2+e_3$ et $f_3=2e_1+3e_2-e_3$ trois vecteurs de \mathbb{R}^3 .
- (a) Justifier que (f_1, f_2, f_3) est une base de \mathbb{R}^3 et écrire la matrice P de passage de la base (e_1, e_2, e_3) à la base (f_1, f_2, f_3) .
- (b) Calculer P^{-1} .
- (c) Ecrire la matrice D de T dans la base (f_1, f_2, f_3) .
- 4. Quelle relation relie A^3 , D^3 , P et P^{-1} ? En déduire A^3 .

Exercice VII.9. Soit u l'application suivante :

$$u: \mathbb{R}_2[X] \longrightarrow \mathbb{R}_2[X]$$

 $P \mapsto (2X+1)P - (X^2-1)P'$

Montrer que u est bien définie et linéaire. Déterminer les valeurs propres de u, et, si c'est possible, diagonaliser u.

VIII. Réduction d'endomorphismes, applications

Exercice VIII.1. Soit l'endomorphisme f de \mathbb{R}^3 canoniquement associé à la matrice $M = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 2 & 1 \\ 1 & 0 & 1 \end{pmatrix}$. Le plan P d'équation y + z = 0 est-il stable par f? La droite vect(1,1,1) est-elle stable par f?

Exercice VIII.2. Mettre sous forme triangulaire les matrices suivantes :

$$\begin{pmatrix} 4 & 2 & -2 \\ 1 & 5 & -1 \\ 1 & 3 & 1 \end{pmatrix}; \quad \frac{1}{2} \begin{pmatrix} 0 & 2 & 2 \\ 1 & 3 & -1 \\ -1 & 3 & 3 \end{pmatrix}.$$

Exercice VIII.3. Soit f l'endomorphisme de l'espace vectoriel canonique \mathbb{R}^3 dont la matrice dans la base canonique \mathcal{B} est

$$A = \begin{pmatrix} 1 & 1 & -1 \\ -1 & 3 & -3 \\ -2 & 2 & -2 \end{pmatrix}.$$

- 1. Montrer que $\mathbb{R}^3 = \ker f^2 \oplus \ker(f 2\operatorname{Id})$.
- 2. Trouver une base \mathcal{B}' de \mathbb{R}^3 telle que

$$mat(f, \mathcal{B}') = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

3. Soit $g \in \mathcal{L}(\mathbb{R}^3)$ tel que $g^2 = f$. Montrer que ker f^2 est stable par g. En déduire qu'un tel endomorphisme g ne peut exister.

Exercice VIII.4. Soit

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1/2 & 3/2 & -1/2 \\ -1/2 & 1/2 & 3/2 \end{pmatrix} \in M_3(\mathbb{R})$$

et f l'endomorphisme linéaire de \mathbb{R}^3 ayant pour matrice A dans la base canonique ε de \mathbb{R}^3 .

- 1. Calculer le polynôme caractéristique de A.
- 2. Trouver une base $\varepsilon' = \{e_1, e_2, e_3\}$ de \mathbb{R}^3 telle que

$$Mat(f, \varepsilon') = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

3. Soit $g \in \mathcal{L}(\mathbb{R}^3)$ un endomorphisme tel que $f \circ g = g \circ f$. Montrer que $\mathrm{Ker}(f-2Id)$ et $\mathrm{Ker}(f-Id)^2$ sont laissés stables par g. En déduire que la matrice de g dans ε' est de la forme

$$Mat(g, \varepsilon') = \begin{pmatrix} \lambda & 0 & 0 \\ 0 & a & b \\ 0 & c & d \end{pmatrix}$$

 $\operatorname{avec}\, \left(\begin{matrix} a & b \\ c & d \end{matrix} \right) \left(\begin{matrix} 1 & 1 \\ 0 & 1 \end{matrix} \right) = \left(\begin{matrix} 1 & 1 \\ 0 & 1 \end{matrix} \right) \left(\begin{matrix} a & b \\ c & d \end{matrix} \right). \text{ Pr\'eciser les valeurs possibles de } a, b, c \text{ et } d.$

4. Soit $F = \{B \in M_3(\mathbb{R}); AB = BA\}$. Montrer que F est un sous-espace vectoriel de $M_3(\mathbb{R})$. Calculer sa dimension (on pourra utiliser la question 3.).

Exercice VIII.5. Soit $u \in \mathcal{L}(\mathbb{R}^4)$ de matrice dans la base canonique :

$$A = \begin{pmatrix} 1 & -1 & 2 & -2 \\ 0 & 0 & 1 & -1 \\ 1 & -1 & 1 & 0 \\ 1 & -1 & 1 & 0 \end{pmatrix}.$$

- 1. Déterminer le polynôme caractéristique P_u de u. Trouver les valeurs propres et les sous-espaces caractéristiques F_i .
- 2. Donner une base suivant laquelle la matrice de u se décompose en deux blocs diagonaux.
- 3. Donner les projections p_i de \mathbb{R}^4 sur F_i .

Exercice VIII.6. Soit $A \in M_3(\mathbb{R})$ telle que $A^3 = -A$ et $A \neq 0$. Montrer que A est semblable à

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}.$$

Exercice VIII.7. Déterminer toutes les suites (u_n) telles que :

$$u_0 = 1, u_1 = 2, u_2 = 0$$
 et $\forall n \in \mathbb{N}, u_{n+3} + u_{n+2} + u_{n+1} + u_n = 0$

Exercice VIII.8. Réduire la matrice

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & -3 & 4 \end{pmatrix}$$

(c'est-à-dire étudier la diagonalisabilité ou la triangularisabilité de A, et donner une matrice P telle que $P^{-1}AP$ soit aussi simple que possible)

Exercice VIII.9. Mettre sous forme triangulaire la matrice suivante

$$A = \begin{pmatrix} 4 & 2 & -2 \\ 1 & 5 & -1 \\ 1 & 3 & 1 \end{pmatrix}$$

Exercice VIII.10. Soit A la matrice

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -2 & 1 & 2 \end{pmatrix}$$

- 1) Déterminer les valeurs propres de A. Est-elle diagonalisable?
- 2) On considère une suite récurrente u_n définie par la donnée des termes u_0 , u_1 et u_2 et par la relation

$$u_{n+3} = 2u_{n+2} + u_{n+1} - 2u_n.$$

En utilisant le vecteur $X_n = \begin{pmatrix} u_n \\ u_{n+1} \\ u_{n+2} \end{pmatrix}$ donner, à l'aide de A, le terme général u_n en fonction de u_0, u_1, u_2 et n.

Exercice VIII.11. Soit A une matrice carrée d'ordre 2 à coefficients complexes.

- 1) Montrer que $A^2 = (\operatorname{tr} A)A (\det A)I_2$.
- 2) En déduire une expression de A^n en fonction de A et I_2 sous la forme

$$A^n = a_n A + b_n I_2$$
.

3) Calculer a_n et b_n en fonction des valeurs propres de A.

Exercice VIII.12. : Soit f un endomorphisme de E et P son polynôme minimal. Montrer que f est bijective si et seulement si $P(0) \neq 0$.

Exercice VIII.13. Soit E un espace vectoriel de dimension 3 sur \mathbb{R} . Démontrer que f admet un plan stable par f. (On discutera en fonction du caractère trigonalisable de f.)

Exercice VIII.14. Soit E un espace vectoriel de dimension finie sur un corps K. Soit f un endomorphisme de E vérifiant

$$f^4 = f^2 + f.$$

- 1) Démontrer que $E = \ker(f^3 f \operatorname{Id}) \oplus \ker f$
- 2) Démontrer que $\operatorname{Im} f \subseteq \ker(f^3 f \operatorname{Id})$ puis que $\operatorname{Im} f = \ker(f^3 f \operatorname{Id})$

Exercice VIII.15. Soit A la matrice de $M_3(\mathbb{R})$ suivante :

$$A = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 2 & 1 \\ 1 & -1 & 1 \end{pmatrix}$$

- 1) Démontrer que les valeurs propres de A sont 1 et 2.
- 2) Déterminer les sous-espaces propres de A. La matrice A est-elle diagonalisable?
- 3) Déterminer les sous-espaces caractéristiques de A.
- 4) Déterminer une base de \mathbb{R}^3 dans laquelle la matrice de l'endomorphisme associé à A est

$$B = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

En déduire la décomposition de Dunford de B.

Exercice VIII.16. Soit $\alpha \in \mathbb{R}$ et $A_{\alpha} \in M_3(\mathbb{R})$ la matrice suivante

$$A_{\alpha} = \begin{pmatrix} -1 & 0 & \alpha + 1 \\ 1 & -2 & 0 \\ -1 & 1 & \alpha \end{pmatrix}$$

- 1) Factoriser le polynôme caractéristique $P_{A_{\alpha}}(X)$ en produit de facteurs du premier degré.
- 2) Déterminer selon la valeur du paramètre α les valeurs propres distinctes de A_{α} et leur multiplicité.
- 3) Déterminer les valeurs de α pour lesquelles la matrice A_{α} est diagonalisable.
- 4) Déterminer selon la valeur de α le polynôme minimal de A_{α} .

On suppose désormais que $\alpha = 0$, on note $A = A_0$ et f l'endomorphisme de \mathbb{R}^3 associé à la matrice A.

- 1) Déterminer les sous-espaces propres et caractéristiques de A.
- 2) Démontrer que f admet un plan stable (c'est-à-dire f-invariant).
- 3) Démontrer qu'il existe une base de \mathbb{R}^3 dans la quelle la matrice de f est

$$B = \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{pmatrix}$$

et trouver une matrice P inversible telle que $A = PBP^{-1}$.

4) Ecrire la décomposition de Dunford de B (justifier).

Exercice VIII.17. Soit $A \in M_3(\mathbb{R})$ la matrice $\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$. Calculer le polynôme minimal de A. En déduire A^{-1} , A^3 et A^5 .

Exercice VIII.18. Soit $P \in \mathbb{C}[X]$ tel que P(0) = 0 et $P'(0) \neq 0$. Soit E un \mathbb{C} -espace vectoriel de dimension finie et $f \in \mathcal{L}(E)$ telle que P(f) = 0.

Montrer que $Ker(f) = Ker(f^2)$; en déduire $E = Ker(f) \oplus Im(f)$.

Exercice VIII.19. Soit E un K-espace vectoriel de dimension finie n et $f \in \mathcal{L}(E)$ tel que $\operatorname{rg}(f-id)=1$. On note $H=\operatorname{Ker}(f-id)$.

- 1. Soit $\{e_1, \dots, e_{n-1}\}$ une base de H et $e_n \notin H$. Montrer que $\{e_1, \dots, e_n\}$ est une base de E et donner l'allure de la matrice de f dans cette base.
- 2. Montrer que le polynôme $(X-1)(X-\det(f))$ annule f. Donner une condition nécéssaire et suffisante pour que f soit diagonalisable.

Exercice VIII.20. Déterminer toutes les matrices A de $\mathcal{M}_{2,2}(\mathbb{R})$ telles que

$$A^2 - 3A + 2\operatorname{id} = 0$$

Même question pour

$$A^3 - 8A^2 + 21A - 18id = 0$$

Exercice VIII.21.

1. Réduire la matrice

$$A = \begin{pmatrix} 2 & 0 & 0 \\ 3 & -4 & 3 \\ 3 & -6 & 5 \end{pmatrix}$$

- 2. Donner un polynôme annulateur de A de degré 2.
- 3. En déduire qu'il existe des coefficients a_n et b_n tels que $A^n = a_n A + b_n$ et les calculer en fonction de n.

Exercice VIII.22. Que peut-on dire d'un endomorphisme d'un K-espace vectoriel de dimension finie annulé par les polynômes $P = 1 - X^3$ et $Q = X^2 - 2X + 1$?

Exercice VIII.23.

1. Montrer que $P=(X-1)^2(X-2)$ est un polynôme annulateur de la matrice

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

et en déduire le polynôme minimal de la matrice A.

2. Soit $B \in \mathcal{M}_2(\mathbb{C})$. Calculer explicitement $B^2 - \operatorname{tr}(B)B + \det(B)I_2$. En déduire le polynôme minimal de la matrice $B = \begin{pmatrix} 3 & 1 \\ -1 & 1 \end{pmatrix}$.

Exercice VIII.24. On considère la matrice

$$A = \begin{pmatrix} 3 & -2 & -1 \\ 2 & -1 & 1 \\ 6 & 3 & -2 \end{pmatrix}.$$

Calculer son polynôme caractéristique, calculer A^2 et déduire de ces calculs et du théorème de Cayley-Hamilton l'inverse de A.

IX. Systèmes linéaires

Exercice IX.1.: Calculer l'exponentielle des matrices suivantes

$$A = \begin{pmatrix} 2 & 2 & 0 \\ 1 & 2 & 1 \\ 0 & 2 & 2 \end{pmatrix}$$

 et

$$A = \begin{pmatrix} 8 & -4 & -1 \\ 7 & -3 & -1 \\ 21 & -12 & -2 \end{pmatrix}$$

Exercice IX.2.

On rappelle qu'une matrice $N \in M_n(\mathbb{C})$ est dite nilpotente d'ordre m si $N^m = 0$, et si pour tout k dans \mathbb{N} , k < m, on a $N^k \neq 0$. Soient $N \in M_n(\mathbb{C})$ une matrice nilpotente d'ordre m et $A \in M_n(\mathbb{C})$ une matrice telle que AN = NA.

- 1) Déterminer un polynôme annulateur de N. En déduire le polynôme minimal et le polynôme caractéristique de N.
- 2) Déterminer les valeurs propres de N.
- 3) Démontrer que $\det(I+N)=1$.
- 4) On suppose A inversible. Démontrer que les matrices AN et NA^{-1} sont nilpotentes. En déduire que

$$\det(A+N) = \det A.$$

5) On suppose A non inversible. En exprimant $(A+N)^k$ pour tout $k\in\mathbb{N}$, démontrer que

$$\det(A+N)=0.$$

Exercice IX.3. Soit A la matrice

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \\ -1 & 2 & -1 \end{pmatrix}$$

- et f l'endomorphisme de \mathbb{R}^3 associé.
- 1) Factoriser le polynôme caractéristique de A.
- 2) Déterminer les sous-espaces propres et caractéristiques de A.
- 3) Démontrer qu'il existe une base de \mathbb{R}^3 dans laquelle la matrice de f est

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 2 \\ 0 & 0 & -1 \end{pmatrix}$$

et trouver une matrice P inversible telle que AP = PB (ou $A = PBP^{-1}$).

- 4) Ecrire la décomposition de Dunford de B (justifier).
- 5) Pour $t \in \mathbb{R}$, calculer $\exp tB$.
- 6) Donner les solutions des systèmes différentiels y' = By et x' = Ax, où x et y désignent des fonctions réelles à valeurs dans \mathbb{R}^3 .

Exercice IX.4. : Soit N la matrice

$$N = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Calculer $A = \exp N$

Résoudre le système différentiel X' = AX avec $X(0) = X_0$

Exercice IX.5. La suite de Fibonacci 0, 1, 1, 2, 3, 5, 8, 13, ... est la suite $(F_n)_{n\geq 0}$ définie par la relation de récurrence $F_{n+1} = F_n + F_{n-1}$ pour $n \geq 1$, avec $F_0 = 0$ et $F_1 = 1$.

1) Déterminer une matrice $A \in M_2(\mathbb{R})$ telle que, pour tout $n \geq 1$,

$$\begin{pmatrix} F_{n+1} \\ F_n \end{pmatrix} = A^n \begin{pmatrix} F_1 \\ F_0 \end{pmatrix}.$$

- 2) Montrer que A admet deux valeurs propres réelles distinctes que l'on note λ_1 et λ_2 avec $\lambda_1 < \lambda_2$.
- 3) Trouver des vecteurs propres ε_1 et ε_2 associés aux valeurs propres λ_1 et λ_2 , sous la forme $\begin{pmatrix} \alpha \\ 1 \end{pmatrix}$, avec $\alpha \in \mathbb{R}$.
- 4) Déterminer les coordonnées du vecteur $\begin{pmatrix} F_1 \\ F_0 \end{pmatrix}$ dans la base $(\varepsilon_1, \varepsilon_2)$, on les note x_1 et x_2 .
- 5) Montrer que $\binom{F_{n+1}}{F_n} = \lambda_1^n x_1 \varepsilon_1 + \lambda_2^n x_2 \varepsilon_2$. En déduire que

$$F_n = \frac{\lambda_1^n}{\lambda_1 - \lambda_2} - \frac{\lambda_2^n}{\lambda_1 - \lambda_2} .$$

6) Donner un équivalent de F_n lorsque n tend vers $+\infty$.

Exercice IX.6. : Résoudre les systèmes différentiels

$$\begin{cases} x'(t) = -x(t) + y(t) + z(t), \ x(0) = a \\ y'(t) = x(t) - y(t) + z(t), \ y(0) = b \\ z'(t) = x(t) + y(t) + z(t), \ z(0) = c \end{cases}$$
 et
$$\begin{cases} x'(t) = -4x(t) + 2y(t) + z(t), \ x(0) = 1 \\ y'(t) = -11x(t) + 6y(t) + 2z(t), \ y(0) = 2 \\ z'(t) = 3x(t) - 3y(t) + z(t), \ z(0) = 2 \end{cases}$$

Exercice IX.7. : Résoudre les systèmes suivants

a.
$$\begin{cases} x' = y + e^t \\ y' = -2x + 3y \end{cases}$$
 b.
$$\begin{cases} x' = x - 2y + 2\cos t \\ y' = x - y + \sin t + \cos t \end{cases}$$
 c.
$$\begin{cases} x' = -x + 4y + 4e^{-t} \\ y' = -x + 3y + 2e^{-t} \end{cases}$$

Exercice IX.8. : Résoudre les systèmes suivants

a.
$$\begin{cases} x' = 4x - 3y + 9z + 1 \\ y' = -3x + 4y - 9z + t \\ z' = -3x + 3y - 8z + t \end{cases}$$
 b.
$$\begin{cases} x' = -z \\ y' = x - y - z \\ z' = y - 2z \end{cases}$$

Exercice IX.9. : Réduire la matrice

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & -3 & 4 \end{pmatrix}$$

Déterminer toutes les fonctions dérivables x, y, z de \mathbb{R} dans \mathbb{R} satisfaisant les conditions :

$$\begin{cases} x' = y + z \\ y' = x + y \\ z' = x - 3y + 4z \end{cases}$$

et

$$\begin{cases} x(0) = 1 \\ y(0) = 0 \\ z(0) = 0 \end{cases}$$

(on rappelle qu'il n'est pas utile de calculer P^{-1} ...)

Exercice IX.10. Soit A la matrice de $M_3(\mathbb{R})$ suivante :

$$A = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 2 & 1 \\ 1 & -1 & 1 \end{pmatrix}$$

- 1) Démontrer que les valeurs propres de A sont 1 et 2.
- 2) Déterminer les sous-espaces propres de A. La matrice A est-elle diagonalisable?
- 3) Déterminer les sous-espaces caractéristiques de A.
- 4) Déterminer une base de \mathbb{R}^3 dans laquelle la matrice de l'endomorphisme associé à A est

$$B = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

En déduire la décomposition de Dunford de B.

5) Résoudre le système différentiel

$$\begin{cases} x' = x + z \\ y' = -x + 2y + z \\ z' = x - y + z \end{cases}$$

Exercice IX.11. On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=0,\ u_1=1$ et par la relation de récurrence

$$u_{n+1} = \frac{1}{2}(u_n + u_{n-1}).$$

1) Déterminer une matrice $A \in M_2(\mathbb{R})$ telle que pour tout $n \geq 1$ on ait

$$\begin{pmatrix} u_{n+1} \\ u_n \end{pmatrix} = A^n \begin{pmatrix} u_1 \\ u_0 \end{pmatrix}.$$

Justifier.

- 2) Déterminer le polynôme caractéristique $P_A(X)$ de A et calculer ses racines λ_1 et λ_2 .
- 3) Soit $R_n(X) = a_n X + b_n$ le reste de la division euclidienne de X^n par $P_A(X)$. Calculer a_n et b_n (on pourra utiliser les racines λ_1 et λ_2).
- 4) Montrer que $A^n = a_n A + b_n I_2$, en déduire que la matrice A^n converge lorsque n tend vers $+\infty$ vers une limite A_∞ que l'on déterminera. Calculer $\lim_{n \to +\infty} u_n$.

Exercice IX.12. On suppose qu'une population x de lapins et une population y de loups sont gouvernées par le système suivant d'équations différentielles :

(S)
$$\begin{cases} x' = 4x - 2y \\ y' = x + y \end{cases}$$

1) Diagonaliser la matrice

$$A = \begin{pmatrix} 4 & -2 \\ 1 & 1 \end{pmatrix}.$$

- 2) Exprimer le système (S) et ses solutions dans une base de vecteurs propres de A.
- 3) Représenter graphiquement les trajectoires de (S) dans le repère (Oxy).
- 4) Discuter graphiquement l'évolution de la population des lapins en fonction des conditions initiales.