- · task.
 - task1 probability file.
 - chapter1.
 - introdcution.
 - some basic concepts.
 - the relation of probability probability and statistics.
- population to sample: deductive(推断) reasoning (probability).
 - · some notation.
 - · display.
 - · stem-and-leaf displays.
 - dotplot.
 - · histogram.
 - types of variables.

task

- some ppt file. probability ,
- some ppt file elec,
- some ppt file goverment
- if you can . do some geeks
- running

time line

task1 probability file

■ 打开转至mobi 10分钟

chapter1

introdcution

probability mesaures uncertainty formally, quantitatively. it is the mathematical language of uncertainty **statistics** show some useful information from the uncertain data, and provide the basis for making decisions of choosing actions.

some basic concepts

population

an investigation will typically focus on a well-defined collection of objects (units) . a population is the set of all objects of interest in a particular study.

variables

any characteristic whose value(categorical or numerical) may change from one object to another in the

population

• keyword: change, value, population

sample

a subset of the population

tips: according to the number of the variables under investigation, we have

unvariate : 1 variable bivariate : 2 variables

mulvariate: more than variables

inferential statistics

use some information to draw some types of conclusion(make a inference of some sort) about the population

the relation of probability probability and statistics

population to sample: deductive(推断) reasoning (probability)

sample to population: inductive(归纳) reasoning (inferential statistics)

some notation

sample size : by n

tips : give a data set consisting of n observations on some variables x , the individual observations will be denoted by $x_1, x_2, x_3, \ldots, x_n$

display

stem-and-leaf displays

premises: suppose we have a numerical data set x_1, x_2, \ldots, x_n for which each $\mathsf{x_i}$ consists of at least two digits.

steps:

- 1. select one or more leading digits for the stem values , the training digits become the leaves
- 2. list possible stem values in a vertical column
- 3. record the leaf for every observations beside the corresponding stem value
- 4. indicate the units for stems and leaves someplace in the display

from R

```
x <- c(16 , 33 , 64 , 37 , 31)
stem(x)
```

repeated from R

```
stem(x , scale = 2)
```

L: denotes the range 0,1,2,3,4

H: denotes the range 5, 5, 7, 8, 9

dotplot

premises: the data set is reasonably small or there are relatively few distinct data values

- 1. each observation is represented by a dot above the corresponding loation on a horizontal measurement scale
- 2. when a value occurs more than once, there is a dot for each occurence, and these dots are stacked vertically.

histogram

types of variables

- 1. discrete variables: a variable is discrete if its set of possible values either is a finite or else can be listed in an infinite sequence.
- 2. continuous cariables: a variable is continuous if its possibale values consists of an entire interval on the number line.