Primer on Pauli Twirling

Zlatko Minev 2022-04-20, 07-11

Twirling 101: Overview

Twirl operationally

Simple example

General application

Summary

Theory of twirling

Why does twirling work?

Masking channels

Optional: Advanced

Why is the Pauli group special for twirling?

Other twirl groups

Designs

Why does twirling actually work?

Theory and my take on it

Noise basics 101

Qiskit Global Summer School 2022: Quantum Simulations

The Qiskit Global Summer School returns as a two-week intensive course focused on Quantum Simulations and more!

🛱 July 18 - 29, 2022

Learn more

Also: https://qiskit.org/textbook-beta/summer-school/quantum-computing-and-quantum-learning-2021

Example

Pauli twirling on a qubit

Twirl: average over instances

Twirl example on a bit flip channel

$$P_a$$
 Λ P_a^{\dagger}

Algebraic expression of channel sequence:

$$\mathcal{P}_a \Lambda \mathcal{P}_a^{\dagger} = P_a^{\dagger} \Lambda (P_a \cdot P_a^{\dagger}) P_a$$

Example: Bit-flip channel

$$\Lambda(\cdot) = (1 - p) I \cdot I + pX \cdot X$$
$$= (1 - p) \mathcal{I} + p\mathcal{X}$$

Notation

$$\mathcal{I}(\cdot) = I \cdot I$$
 $\mathcal{Y}(\cdot) = Y \cdot Y$ $\mathcal{X}(\cdot) = X \cdot X$ $\mathcal{Z}(\cdot) = Z \cdot Z$

Recall
$$X^2 = Y^2 = Z^2 = I$$

$$\mathcal{I}(X) = X \mid \mathcal{Y}(X) = YXY = -X \mid \mathcal{X}(X) = X \mid \mathcal{Z}(X) = ZXZ = -X \mid \mathcal{Z}(X) = X \mid$$

$$- \boxed{I} - \boxed{I} \Lambda \mathcal{I} = \Lambda$$

$$X \longrightarrow X \Lambda \mathcal{X} = X \Lambda (X \cdot X) X$$
$$= (1 - p) X I X \cdot X I X + p X X X \cdot X X X$$

$$= (1 - p) \mathcal{X}(I) \cdot \mathcal{X}(I) + p\mathcal{X}(X) \cdot \mathcal{X}(X)$$

$$=\Lambda$$

$$Y \longrightarrow \mathcal{Y} \wedge \mathcal{Y} = Y \wedge (Y \cdot Y) Y$$

Twirl example on a bit flip channel

Example: Bit-flip channel

$$\Lambda(\cdot) = (1 - p) I \cdot I + pX \cdot X$$
$$= (1 - p) \mathcal{I} + p\mathcal{X}$$

Notation

$$\mathcal{I}(\cdot) = I \cdot I$$
 $\mathcal{Y}(\cdot) = Y \cdot Y$ $\mathcal{X}(\cdot) = X \cdot X$ $\mathcal{Z}(\cdot) = Z \cdot Z$

Recall
$$X^2=Y^2=Z^2=I$$

$$\mathcal{I}(X)=X \ | \mathcal{Y}(X)=YXY=-X \ | \mathcal{X}(X)=X \ | \mathcal{Z}(X)=ZXZ=-X \ |$$

Twirl example on a bit flip channel

Example: Bit-flip channel

$$\Lambda(\cdot) = (1 - p) I \cdot I + pX \cdot X$$
$$= (1 - p) \mathcal{I} + p\mathcal{X}$$

Notation

$$\mathcal{I}(\cdot) = I \cdot I$$
 $\mathcal{Y}(\cdot) = Y \cdot Y$ $\mathcal{X}(\cdot) = X \cdot X$ $\mathcal{Z}(\cdot) = Z \cdot Z$

Recall
$$X^2=Y^2=Z^2=I$$

$$\mathcal{I}(X)=X \ | \ \mathcal{Y}(X)=YXY=-X \ | \ \mathcal{X}(X)=X \ | \ \mathcal{Z}(X)=ZXZ=-X |$$

Twirl gate

$$I - I - \Lambda$$

$$X = \Lambda$$

$$Y = \Lambda$$

$$\overline{Z} = \Lambda$$

Average

$$\Lambda \mapsto \frac{1}{4} \left(\mathcal{I}\Lambda \mathcal{I} + \mathcal{X}\Lambda \mathcal{X} + \mathcal{Y}\Lambda \mathcal{Y} + \mathcal{Z}\Lambda \mathcal{Z} \right) = \Lambda$$

Example coherent rotation channel

Example: Coherent rotation

$$U = \exp\left(-i\frac{\theta}{2}X\right) = \cos\left(\frac{\theta}{2}\right)I - i\sin\left(\frac{\theta}{2}\right)X$$

$$\Lambda(\cdot) = U \cdot U^{\dagger}$$

$$= \left[\cos\left(\frac{\theta}{2}\right)\right]^{2} I \cdot I + \left[\sin\left(\frac{\theta}{2}\right)\right]^{2} X \cdot X$$

$$+ \frac{i}{2} \left(\sin(\theta) I \cdot X - \sin(\theta) X \cdot I\right)$$

$$= |I\rangle\rangle\langle\langle I| + |X\rangle\rangle\langle\langle X| + \cos(\theta)(|Y\rangle\rangle\langle\langle Y| + |Z\rangle\rangle\langle\langle Z|) + \sin(\theta)(|Z\rangle\rangle\langle\langle Y| - |Y\rangle\rangle\langle\langle Z|)$$

Chi matrix

	I	Х	Υ	Z
I	$\cos\left[\frac{\theta}{2}\right]^2$	$\frac{1}{2}$ i Sin[θ]	0	0
Х	$-\frac{1}{2}$ i $Sin[\Theta]$	$Sin\left[\frac{\theta}{2}\right]^2$	0	0
Υ	0	Θ	0	0
Z	0	0	0	0

Pauli transfer matrix

	Ι	Χ	Υ	Z
I	1	0	0	0
X		1		
Υ			Cos[θ]	-Sin[⊖]
z			$Sin[\theta]$	Cos[θ]

Example coherent rotation channel

Example: Coherent rotation

$$\Lambda\left(\cdot\right) = U \cdot U^{\dagger}$$

Chi matrix

	I	Х	Υ	Z
I	$Cos\!\left[\frac{\theta}{2}\right]^2$	$\frac{1}{2}$ i Sin[θ]	0	0
Х	$-\frac{1}{2}$ i $Sin[\Theta]$	$Sin\left[\frac{\theta}{2}\right]^2$	0	0
Υ	0	0	0	0
Z	Θ	0	0	0

Pauli transfer matrix

	Ι	Χ	Υ	Z
I	1	0	0	0
Х		1		0
Υ			Cos[θ]	-Sin[⊖]
Z	0	0	Sin[⊕]	Cos[θ]

Example coherent rotation channel

Example PTM for coherent noise

$$PTM [R_X (\theta)] = \begin{cases} I & X & Y & Z \\ I & 0 & 0 & 0 \\ X & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \cos \theta & -\sin \theta \\ Z & 0 & 0 & \sin \theta & \cos \theta \end{cases}$$

Note, for other gates, permute indices Same story

$$R_Z(\theta)$$

$$PTM\left[R_Z\left(\theta\right)\right] = \frac{I}{X} \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & \cos\theta & -\sin\theta & 0\\ 0 & \sin\theta & \cos\theta & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Example: Coherent over rotation

Suppose we meant to do an identity gate, but instead had a small X over rotation of angle theta

$$\left(\begin{array}{c|c} -P_{ai} & R_X(\theta) & P_{ai}^c \end{array}\right)^n$$

30

Example: Coherent over rotation

Suppose we meant to do an identity gate, but instead had a small X over rotation of angle theta

$$\left(\begin{array}{c|c} R_X(\theta) \end{array}\right)^m$$

$$(\hat{R}^m) = \begin{array}{c} I & X & Y & Z \\ I & 1 & & \\ X & 1 & & \\ X & 1 & & \\ & & \cos(m\theta) & -\sin(m\theta) \\ & & \sin(m\theta) & \cos(m\theta) \end{array}$$

$$-P_a$$
 $-R_X(\theta)$ $-P_a^c$ $-$

$$(\mathcal{T}\hat{R}) = X \begin{pmatrix} I & X & Y & Z \\ 1 & & & \\ X & 1 & & \\ & & \cos(\theta) & \\ Z & & & \cos(\theta) \end{pmatrix}$$

$$\left(\begin{array}{c|c} -P_{ai} & R_X(\theta) & P_{ai}^c \end{array}\right)^m$$

$$(\mathcal{T}\hat{R}) = X \begin{pmatrix} I & X & Y & Z \\ I & 1 & & & \\ X & 1 & & & \\ X & & \cos(\theta) & & \\ Z & & & \cos(\theta) \end{pmatrix} \qquad ([\mathcal{T}\hat{R}]^m) = X \begin{pmatrix} I & X & Y & Z \\ I & 1 & & & \\ Y & & & [\cos(\theta)]^m \\ Z & & & & [\cos(\theta)]^m \end{pmatrix}$$

$$\langle Z \rangle_{\text{noisy}} - \langle Z \rangle_{\text{ideal}} =$$

Coherent error - quadratic-

$$\cos(n\theta) - 1 \approx \left(-\frac{n^2\theta^2}{2}\right) + \mathcal{O}\left(\theta^4\right)$$

Twirl error - linear
$$\left[\cos\left(\theta\right)\right]^{m} - 1 \approx \frac{n\theta^{2}}{2} + \mathcal{O}\left(\theta^{4}\right)$$

Zlatko Minev, IBM Quantum (36)

Twirl general single qubit channel

	I	Х	Υ	Z
Ι	f_{II}	f _{IX}	f_{IY}	f _{IZ}
Х	f_{XI}	f_{XX}	f_{XY}	f _{XZ}
Υ	f_{YI}	f_{YX}	f_{YY}	f_{YZ}
Z	f _{ZI}	f _{ZX}	f_{ZY}	f _{ZZ}

Twirl general single qubit channel

Twirl general single qubit channel

Average

Refresher

More general

Pauli gates & mixed states