Multivariate Statistics

Lecture 05

Fudan University

1 Properties of the Maximum Likelihood Estimators

2 Sufficiency

1 Properties of the Maximum Likelihood Estimators

2 Sufficiency

The Maximum Likelihood Estimators

Theorem 1

If $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$ constitute a sample from $\mathcal{N}(\mu, \mathbf{\Sigma})$ with p < N, the maximum likelihood estimators of μ and $\mathbf{\Sigma}$ are

$$\hat{\boldsymbol{\mu}} = \bar{\mathbf{x}} = \frac{1}{N} \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \quad \text{and} \quad \hat{\boldsymbol{\Sigma}} = \frac{1}{N} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top}$$

respectively.

Lemma 1

If $\mathbf{D} \in \mathbb{R}^{p \times p}$ is positive definite, the maximum of

$$f(\mathbf{G}) = -N \ln \det(\mathbf{G}) - \operatorname{tr}(\mathbf{G}^{-1}\mathbf{D})$$

with respect to positive definite matrices **G** exists, occurs at $\mathbf{G} = \frac{1}{N}\mathbf{D}$.

The Maximum Likelihood Estimators

Theorem 1

If $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$ constitute a sample from $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ with p < N, the maximum likelihood estimators of $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$ are

$$\hat{\boldsymbol{\mu}} = \bar{\mathbf{x}} = \frac{1}{N} \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \quad \text{and} \quad \hat{\boldsymbol{\Sigma}} = \frac{1}{N} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top}$$

respectively.

Can we guarantee $\hat{\mathbf{\Sigma}} = \frac{1}{N} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top}$ is positive definite?

In the univariate case, the mean of a sample is distributed normally and independently of the sample variance.

In the multivariate case, the sample mean $\hat{\mu}$ is also distributed normally and independently of $\hat{\Sigma}$.

Lemma 1

Suppose $\mathbf{x}_1, \dots, \mathbf{x}_N$ are independent, where $\mathbf{x}_\alpha \sim \mathcal{N}_p(\boldsymbol{\mu}_\alpha, \boldsymbol{\Sigma})$. Let $\mathbf{C} \in \mathbb{R}^{N \times N}$ be an orthogonal matrix, then

$$\mathbf{y}_{lpha} = \sum_{eta=1}^{N} c_{lphaeta} \mathbf{x}_{eta} \sim \mathcal{N}_{m{
ho}}(m{
u}_{lpha}, m{\Sigma}),$$

where $\nu = \sum_{\beta=1}^{N} c_{\alpha\beta} \mu_{\beta}$ for $\alpha = 1, ..., N$ and $y_1, ..., y_N$ are independent.

Lemma 2

If
$$\mathbf{C} = \begin{bmatrix} c_{11} & c_{12} & \dots & c_{1p} \\ c_{21} & c_{22} & \dots & c_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ c_{p1} & c_{p2} & \dots & c_{pp} \end{bmatrix} = \begin{bmatrix} c_1^\top \\ c_2^\top \\ \vdots \\ c_p^\top \end{bmatrix} \in \mathbb{R}^{p \times p}$$
 is orthogonal, then
$$\sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \mathbf{x}_{\alpha}^\top = \sum_{\beta=1}^{N} \mathbf{y}_{\alpha} \mathbf{y}_{\alpha}^\top \text{ where } \mathbf{y}_{\alpha} = \sum_{\beta=1}^{N} c_{\alpha\beta} \mathbf{x}_{\beta} \text{ for } \alpha = 1, \dots, N.$$

$$\text{Let } \mathbf{X} = \begin{bmatrix} \mathbf{x}_1^\top \\ \mathbf{x}_2^\top \\ \vdots \\ \mathbf{x}_p^\top \end{bmatrix} \text{ and } \mathbf{Y} = \begin{bmatrix} \mathbf{y}_1^\top \\ \mathbf{y}_2^\top \\ \vdots \\ \mathbf{y}_p^\top \end{bmatrix}, \text{ then } \mathbf{y}_\alpha = \mathbf{X}^\top \mathbf{c}_\alpha \text{ and } \mathbf{Y} = \mathbf{C}\mathbf{X}.$$

Theorem 2

Let $\mathbf{x}_1, \dots, \mathbf{x}_N$ be independent, each distributed according to $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$. Then the mean of the sample

$$\hat{\boldsymbol{\mu}} = \bar{\mathbf{x}} = \frac{1}{N} \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha}$$

is distributed according to $\mathcal{N}(oldsymbol{\mu}, \frac{1}{N}oldsymbol{\Sigma})$ and independent of

$$\hat{oldsymbol{\Sigma}} = rac{1}{N} \sum_{lpha=1}^N (\mathbf{x}_lpha - ar{\mathbf{x}}) (\mathbf{x}_lpha - ar{\mathbf{x}})^ op.$$

Additionally, we have $N\hat{\mathbf{\Sigma}} = \sum_{\alpha=1}^{N-1} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}$, where $\mathbf{z}_{\alpha} \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$ for $\alpha = 1, \dots, N-1$, and $\mathbf{z}_1, \dots, \mathbf{z}_{N-1}$ are independent.

Theorem 1

If $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_N$ constitute a sample from $\mathcal{N}(\mu, \mathbf{\Sigma})$ with p < N, the maximum likelihood estimators of μ and $\mathbf{\Sigma}$ are

$$\hat{\mu} = \bar{\mathbf{x}} = \frac{1}{N} \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \quad \text{and} \quad \hat{\mathbf{\Sigma}} = \frac{1}{N} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top}$$

respectively.

Theorem 3

Using the notation of Theorem 1, if N>p, the probability is 1 of drawing a sample so that

$$\hat{\boldsymbol{\Sigma}} = \frac{1}{N} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top}$$

is positive definite.

An estimator ${f t}$ of a parameter vector ${m heta}$ is unbiased if and only if

$$\mathbb{E}[\mathbf{t}] = \boldsymbol{\theta}.$$

For the estimators obtain from MLE for normal distribution, the vector $\hat{\mu}$ is an unbiased estimator of μ and $\hat{\Sigma}$ is a biased estimator of Σ .

Consider the result of MLE for normal distribution:

We have

$$\mathbb{E}[\hat{oldsymbol{\mu}}] = \mathbb{E}[ar{f x}] = \mathbb{E}\left[\sum_{lpha=1}^{N}{f x}_lpha
ight] = oldsymbol{\mu}$$

and (not limited to normal distribution)

$$\mathbb{E}[\hat{\boldsymbol{\Sigma}}] = \mathbb{E}\left[\frac{1}{N}\sum_{\alpha=1}^{N-1} \mathbf{z}_{\alpha}\mathbf{z}_{\alpha}^{\top}\right] = \frac{N-1}{N}\boldsymbol{\Sigma}.$$

The sample covariance

$$\mathbf{S} = rac{1}{\mathit{N}-1} \sum_{lpha=1}^{\mathit{N}} (\mathbf{x}_lpha - ar{\mathbf{x}}) (\mathbf{x}_lpha - ar{\mathbf{x}})^ op$$

is an unbiased estimator of Σ .

1 Properties of the Maximum Likelihood Estimator

2 Sufficiency

Properties of Statistics

Let

$$\bar{\mathbf{x}} = \frac{1}{N} \sum_{\alpha=1}^{N} \mathbf{x}_{\alpha} \quad \text{and} \quad \mathbf{S} = \frac{1}{N-1} \sum_{\alpha=1}^{N} (\mathbf{x}_{\alpha} - \bar{\mathbf{x}}) (\mathbf{x}_{\alpha} - \bar{\mathbf{x}})^{\top}.$$

We shall show that $\bar{\mathbf{x}}$ and \mathbf{S} are sufficient statistics and are complete.

Sufficiency

A statistic $\mathbf{t}(\mathbf{y})$ is sufficient for a family of distributions of random variable \mathbf{y} with parameter $\boldsymbol{\theta}$, if the conditional distribution of \mathbf{y} given $\mathbf{t}(\mathbf{y}) = \mathbf{t}_0$ does not depend on $\boldsymbol{\theta}$.

The statistic ${f t}$ gives as much information about ${m heta}$ as the entire sample ${f y}$.

Theorem 4

A statistic $\mathbf{t}(\mathbf{y})$ is sufficient for θ if and only if the density $f(\mathbf{y} \mid \theta)$ can be factored as

$$f(\mathbf{y} \mid \boldsymbol{\theta}) = g(\mathbf{t}(\mathbf{y}), \boldsymbol{\theta})h(\mathbf{y})$$

where $g(\mathbf{t}(\mathbf{y}), \theta)$ and $h(\mathbf{y})$ are nonnegative and $h(\mathbf{y})$ does not depend on θ .

For the MLE of normal distribution, we apply this theorem with

$$\theta = \{\mu, \Sigma\}, \quad \mathbf{y} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\} \quad \text{and} \quad \mathbf{t}(\mathbf{y}) = \{\bar{\mathbf{x}}, \mathbf{S}\}.$$

Sufficiency

Theorem 5

If $\mathbf{x}_1, \dots, \mathbf{x}_N$ are observations from $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then $\bar{\mathbf{x}}$ and \boldsymbol{S} are sufficient for $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$.

If Σ is given, $\bar{\mathbf{x}}$ is sufficient for μ . However, if μ is given, \mathbf{S} is not sufficient for Σ ;

1 Properties of the Maximum Likelihood Estimators

2 Sufficiency

Completeness

A family of distributions of \mathbf{y} indexed by $\boldsymbol{\theta}$ is complete if for every real-valued function $g(\mathbf{y})$, we have

$$\mathbb{E}[g(\mathbf{y})] = 0$$

identically in θ implies $g(\mathbf{y}) = 0$ except for a set of \mathbf{y} of probability 0 for every θ .

If the family of distributions of a sufficient set of statistics is complete, the set is called a complete sufficient set.

Completeness

Theorem 6

The sufficient set of statistics $\bar{\mathbf{x}}$, \mathbf{S} is complete for $\boldsymbol{\mu}, \boldsymbol{\Sigma}$ when the sample is drawn from $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.

Sketch of the proof:

① We have $N\hat{m{\Sigma}} = \sum_{lpha=1}^{N-1} \mathbf{z}_{lpha} \mathbf{z}_{lpha}^{ op}$, where $\mathbf{z}_{lpha} = \sum_{eta=1}^{N} b_{lphaeta} \mathbf{x}_{eta}$ and

$$\mathbf{B} = \begin{bmatrix} \times & \dots & \times \\ \vdots & \ddots & \vdots \\ \frac{1}{\sqrt{N}} & \dots & \frac{1}{\sqrt{N}} \end{bmatrix}$$

② The condition $\mathbb{E}[g(\bar{\mathbf{x}}, n\mathbf{S})] \equiv 0$ implies the Laplace transform of $g(\bar{\mathbf{x}}, \mathbf{B} - N\bar{\mathbf{x}}\bar{\mathbf{x}}^{\top}) h(\bar{\mathbf{x}}, \mathbf{B})$ is zero, where $\mathbf{B} = \sum_{\alpha=1}^{N-1} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top} + N\bar{\mathbf{x}}\bar{\mathbf{x}}^{\top}$ and $h(\bar{\mathbf{x}}, \mathbf{B})$ is the joint density of $\bar{\mathbf{x}}$ and $\bar{\mathbf{B}}$.