Subject: Professional Development Skills Lecture - 5 Date: 27.12.2024 / Friday No. of Programs: 04

Consider the currency system in which there are notes of six denominations namely Re 1, Rs 2, Rs 5, Rs 10, Rs 50, Rs 100. If a sum of Rs N is entered as input. Write a c, java, python program to compute the smallest number of notes that will combine to give Rs N.

С	JAVA	PYTHON
#include <stdio.h></stdio.h>	import java.util.Scanner;	def min_notes(n):
		d100 = n // 100
<pre>void min_notes(int n) {</pre>	public class MinNotes {	n %= 100
int $d100 = n / 100$;	<pre>public static void main(String[] args) {</pre>	
n %= 100;	Scanner sc = new Scanner(System.in);	d50 = n // 50
	System.out.print("Enter the amount in Rs: ");	n %= 50
int $d50 = n / 50$;	int n = sc.nextInt();	
n %= 50;		d10 = n // 10
	int $d100 = n / 100$;	n %= 10
int $d10 = n / 10$;	n %= 100;	
n %= 10;		d5 = n // 5
	int $d50 = n / 50$;	n %= 5
int $d5 = n / 5$;	n %= 50;	
n %= 5;		d2 = n // 2
	int $d10 = n / 10$;	n %= 2
int $d2 = n / 2$;	n %= 10;	
n %= 2;		d1 = n // 1
	int $d5 = n / 5$;	
int d1 = n;	n %= 5;	return $d100 + d50 + d10 + d5 + d2 + d1$
printf("Minimum number of notes required: %d\n", d100 +	int $d2 = n / 2$;	# Input and Output
d50 + d10 + d5 + d2 + d1);	n %= 2;	n = int(input("Enter the amount in Rs: "))
}	,	print("Minimum number of notes required:", min_notes(n))
,	int $d1 = n$;	
int main() {		
int n;	System.out.println("Minimum number of notes required: "	
printf("Enter the amount in Rs: ");	+ (d100 + d50 + d10 + d5 + d2 + d1));	
scanf("%d", &n);	}	
min_notes(n);	}	
return 0;		
}		

Time Complexity:

Each denomination is handled in a constant number of steps using arithmetic operations. Time Complexity: O(1).

Space Complexity:

Only a fixed number of variables are used to store the counts and remainders.

Space Complexity: O(1).

If a five digit number is input , write a c , java, python program to print a new number by adding one to each of its digits 12345

11111

23456

```
JAVA
                                                                                                                                                               PYTHON
#include <stdio.h>
                                                                  import java.util.Scanner;
                                                                                                                                     def add_one_to_digits(num):
                                                                                                                                       # Convert the number to a string to access digits
                                                                                                                                       result = ""
void add_one_to_digits(int num) {
                                                                  public class AddOneToDigits {
                                                                    public static void main(String[] args) {
 int result = 0, multiplier = 1;
                                                                                                                                       for digit in str(num):
                                                                       Scanner sc = new Scanner(System.in);
                                                                                                                                         new_digit = (int(digit) + 1) \% 10
  while (num > 0) {
                                                                       System.out.print("Enter a five-digit number: ");
                                                                                                                                     # Add 1 and handle digit wrapping
    int digit = num \% 10;
                                                                       int num = sc.nextInt();
                                                                                                                                         result += str(new_digit)
    int new_digit = (digit + 1) % 10; // Add 1 and wrap
                                                                                                                                       return int(result)
    result = result + (new digit * multiplier);
                                                                       String result = "";
                                                                       while (num > 0) {
    multiplier *= 10;
                                                                                                                                     # Input and Output
    num = 10:
                                                                         int digit = num \% 10;
                                                                                                                                     num = int(input("Enter a five-digit number: "))
                                                                         int newDigit = (digit + 1) % 10; // Add 1 and wrap
                                                                                                                                     print("New number:", add_one_to_digits(num))
                                                                         result = newDigit + result;
  printf("New number: %d\n", result);
                                                                  // Build the new number as a string
                                                                         num = 10;
int main() {
 int num;
                                                                       System.out.println("New number: " + result);
  printf("Enter a five-digit number: ");
  scanf("%d", &num);
  add one to digits(num);
  return 0;
```

Time Complexity:

Each solution processes all 5 digits of the input number sequentially.

Time Complexity: O(d), where ddd is the number of digits (5 in this case).

For a fixed 5-digit input, this simplifies to O(1).

Space Complexity:

Python: The space used depends on the length of the string representation of the number, which is constant for 5 digits.

Space Complexity: O(1).

Java and C: Use only integer variables and a few constants for processing.

Space Complexity: O(1).

If cost price and selling price of an item is input, write a program to determine whether the seller has made profit or incurred loss. Also determine how much profit he made or loss he incurred.

С	JAVA	PYTHON
#include <stdio.h></stdio.h>	import java.util.Scanner;	def calculate_profit_or_loss(cost_price, selling_price):
		if selling_price > cost_price:
int main() {	public class ProfitOrLoss {	<pre>print(f"Profit: {selling_price - cost_price:.2f}")</pre>
float costPrice, sellingPrice, result;	<pre>public static void main(String[] args) {</pre>	elif selling_price < cost_price:
	Scanner sc = new Scanner(System.in);	<pre>print(f"Loss: {cost_price - selling_price:.2f}")</pre>
<pre>printf("Enter Cost Price: ");</pre>		else:
scanf("%f", &costPrice);	System.out.print("Enter Cost Price: ");	print("No Profit No Loss.")
<pre>printf("Enter Selling Price: ");</pre>	float costPrice = sc.nextFloat();	
scanf("%f", &sellingPrice);	System.out.print("Enter Selling Price: ");	# Input
	float sellingPrice = sc.nextFloat();	cost_price = float(input("Enter Cost Price: "))
if (sellingPrice > costPrice) {		selling_price = float(input("Enter Selling Price: "))

```
result = sellingPrice - costPrice;
                                                                         if (sellingPrice > costPrice) {
                                                                                                                                            calculate_profit_or_loss(cost_price, selling_price)
  printf("Profit: %.2f\n", result);
                                                                            System.out.printf("Profit: %.2f\n", sellingPrice -
} else if (sellingPrice < costPrice) {
                                                                    costPrice);
  result = costPrice - sellingPrice;
                                                                          } else if (sellingPrice < costPrice) {
                                                                            System.out.printf("Loss: %.2f\n", costPrice -
  printf("Loss: %.2f\n", result);
                                                                    sellingPrice);
  printf("No Profit No Loss.\n");
                                                                          } else {
                                                                            System.out.println("No Profit No Loss.");
return 0;
                                                                         sc.close();
```

Time Complexity

- Input Analysis: Determining profit/loss requires comparing sellingPrice and costPrice.
- Operations: At most one subtraction and comparison.
- Conclusion: O(1) for all three programs.

Space Complexity

- Variables Used:
 - costPrice and sellingPrice (2 variables).
 - O Additional Memory: None (no data structures or dynamic memory allocation).
- Conclusion: O(1) for all three programs

Any integer is input, write a c, java and python program to find out whether it is even or odd number.

C	JAVA	PYTHON
#include <stdio.h></stdio.h>	import java.util.Scanner;	def check_even_or_odd(number):
		if number % $2 == 0$:
int main() {	public class EvenOrOdd {	<pre>print(f"{number} is an even number.")</pre>
int number;	<pre>public static void main(String[] args) {</pre>	else:
	Scanner sc = new Scanner(System.in);	<pre>print(f"{number} is an odd number.")</pre>
<pre>printf("Enter an integer: ");</pre>	·	
scanf("%d", &number);	System.out.print("Enter an integer: ");	# Input
	int number = sc.nextInt();	number = int(input("Enter an integer: "))
if (number % $2 == 0$) {		check_even_or_odd(number)
<pre>printf("%d is an even number.\n", number);</pre>	if (number $\% 2 == 0$) {	
} else {	System.out.println(number + " is an even number.");	
<pre>printf("%d is an odd number.\n", number);</pre>	} else {	
}	System.out.println(number + " is an odd number.");	
	}	
return 0;	sc.close(); } }	
₁ }		

Time Complexity

Operation: The % (modulus) operator is used to check if the number is divisible by 2.

Conclusion: **O**(**1**) for all three programs.

Space Complexity

Variables Used: Only one variable number is used to store the input integer, Additional Memory: None (no data structures or dynamic memory allocation). Conclusion: O(1) for all three programs.