Лабораторная работа №2 Продвинутые методы

https://github.com/GooddiLK/AllEDa

Пластинин Алексей М3237 t.me/plstnn Малков Александр М3237 $t.me/AlexM_37$ Кинзябулатов Эдуард М3237 t.me/Eduard7000Кулебакин Дмитрий М3237 $t.me/SinDat_tg$

Цель работы:

Сравнить эффективность работы различных методов поиска минимума в зависимости от вида функций.

Используемые методы:

- Градиентный спуск с постоянным шагом, экспоненциальным затуханием, условиями Армихо и Вольфе.
- Метод Ньютона с постоянным шагом и поиском шага по условию Вольфе. • Newton-CG & BFGS из scipy.optimize.
- Собственная реализация BFGS.

Исследование:

Рассматриваемые функции: • $x^2 + y^2$

- $3x^2 4xy + 10y^2$
- $(x^2+y-11)^2+(x+y^2-7)^2$ Функция Химмельблау $20+(x^2-10\cos(2\pi x))+(y^2-10\cos(2\pi y))$ Функция Растригина
- Начальная точка (100, -200).

Лучшие значения гиперпараметров, подобранные с помощью optuna:

область не сжимается.

Константный шаг, Экспоненциальный, критерии Армихо и Вольфе

- $\begin{vmatrix} 1 & r \end{vmatrix} - \begin{vmatrix} h_0 \end{vmatrix} \lambda \begin{vmatrix} - \end{vmatrix} \alpha_0 \begin{vmatrix} g \end{vmatrix} \varepsilon \begin{vmatrix} c_1 \end{vmatrix} - \begin{vmatrix} \alpha_0 \end{vmatrix} \varepsilon$

		1—1		,,,	, ·		\sim 0	4	O	\sim_1		\sim_0)	\sim_2	\sim_1
	F_1	0,41	ı	0.49	1.6e-7	-	0.49	0.05	8.4e-7	0.07	ı	1,00	5.8e-3	5.7e-4	2.1e-8
	F_2	0.08	ı	0.18	0.05	-	0.18	0.82	2.4e-6	6.2e-4	ı	0.77	1.4e-10	5.7e-6	2.5e-6
	F_3	Nan	ı	Nan	Nan	-	0.05	0.57	2.9e-9	1.7e-3	ı	1.93	1.5e-9	1.4e-4	4.5e-6
	F_4	0.03	ı	0.21	1.4e-3	-	0.51	0.09	1.2e-3	5.7e-4	ı	4	2.7e-7	3.2e-4	1.8e-8
BFGS, Newton с критерием Вольфе															

-	α_0	arepsilon	c_1	q	-	$lpha_0$	arepsilon	c_2	c_1	Δ	$\Delta_{ m max}$	$\Delta_{ m min}$	η	γ
F_1	1.02	0.01	0.04	0.27	ı	0.06	3e-10	0.31	1.1e-6	5.7	0.57	0.07	0.01	2.1
F_2	0.98	1.6e-4	0.01	1.9e-5	ı	0.04	3.6e-5	0.02	1.2e-6	9.2	0.5	0.03	2.1e-3	1.1
F_3	0.35	1.4e-6	3.2e-5	4.5e-3	ı	2.1	8.6e-6	0.04	1.1e-3	0.20	0.95	0.07	0.02	1.16
F_4	4.66	2.1e-4	6.8e-4	0.47	ı	3.80	4.7e-8	0.15	7.6e-5	0.05	0.53	0.02	2.3e-3	4.59
Δ_{\min} - trust_lower_bound - минимальный радиус, ниже которого доверительная														

 Δ_{\max} - trust_upper_bound - граница между несколькими линиями доверия. η - trust_no_trust_bound - пороговое значение для принятия/отклонения шага.

 γ - trust_changing_multiply_value - множитель для изменения радиуса доверительной области после каждой итерации

Point Итерации (8.2e-8, -1.6e-7)13

			J	J
Постоянный	(8.2e-8, -1.6e-7)	13	0	12
Экспоненциальный	(5.5e-9, -1.1e-8)	7	0	6
Армихо	(2.2e-10, -4.4e-10)	7	7	6
Вольфе	(-8.4e-10, 1.7e-9)	6	6	6
BFGS	(7.2e-9, -1.4e-8)	8	9	7
scipy BFGS	(-2.1e-14, 2.8e-14)	2	6	6
scipy Newton-CG	(0, 0)	2	2	2
Newton Вольфе	(0, 0)	2	2	2
Newton Эксп	(0, 0)	3	3	3
Newton Конст	(0, 0)	3	3	3
-	-	-	-	-
Постоянный	(-3.3e-8, 3.3e-7)	44	0	43
Экспоненциальный	(-3.0e-8, 1.4e-7)	32	0	31
Армихо	(9.8e-8, -3.7e-7)	69	341	68
Вольфе	(1.2e-7, 1.7e-8)	17	51	51
BFGS	(-4.0e-9, -1.4e-9)	10	12	9
scipy BFGS	(2.2e-16, -2.2e-16)	5	10	10
scipy Newton-CG	(0, 0)	7	7	7
Newton Вольфе	(0, 0)	2	2	2
Newton Эксп	(0, 0)	3	3	3
Newton Конст	(0, 0)	3	3	3
-	-	-	-	_
Постоянный	Nan	-	-	_
Экспоненциальный	Nan	-	-	_
Армихо	(-3.78, -3.28)	21	129	20
Вольфе	(3.58, -1.84)	35	278	278
BFGS	(60.4, 32.8)	4	10	3
scipy BFGS	(-2.80, 3.13)	34	44	44
scipy Newton-CG	(3.58, -1.84)	17	18	18
Newton Вольфе	(2.98, 2.04)	5000	6671	5000
Newton Эксп	(2.94, 2.04)	2886	4319	2886
Newton Kohct	(-3.65, 5.04)	668	1013	668
-	-	_	_	_
Постоянный	(-4.17, -1.34)	5001	0	5000
Экспоненциальный	(2.5e-7, 2.5e-7)	2738	0	2737
Армихо	(-1.98, 3.98)	31	89	30
Вольфе	(-1.98, 5.97)	30	250	250
BFGS	(-2.98, 1.00)	12	51	11
scipy BFGS	(-21.9, 19.0)	12	22	22
scipy Newton-CG	(-5.96, -1.99)	12	30	30
Newton Вольфе	(3.98, 3.98)	3	$\frac{30}{4}$	3
Newton Эксп	(9.95, 7.96)	$\frac{3}{7}$	8	7
Newton Kohct	(9.95, 7.96)	4	5	4
	,			
В Ньютоновских методах колич производной.	сотво вызовов Гесси	апа равно в	хол-ву	Юбиа

Выводы:

На простых функциях методы Ньютона работают лучше всего, достигая минимума за 1-2 итерации.

Градиентные методы тоже работают, но требуют больше итераций.

Для функции Химмельблау:

Градиентные методы с постоянным/экспоненциальным шагом не сошлись.

Методы с условиями Армихо и Вольфе нашли минимум с разной эффективностью.

Newton-CG и BFGS из scipy показали хорошие результаты. Собственная реализация BFGS не справилась.

Для функции Ратригина:

Градиентные методы часто застревают в локальных минимумах.

Методы Ньютона сходятся быстро, но не к глобальному минимуму. Никто не справился с задачей. (Кроме экспоненциального шага, как так).