15A 1521

calculus for computing

Jaidan "

IMITS

CONTINUITY

- CASE 1: Interior point

 (i) lim + c f(x) exists
- (ii) lim are f(x) = f(c)

CASE 2: Left end-point

- (i) $\lim_{x\to c^+} f(x)$ exists
- (i) lim act f(x): f(c)

CASE 3: Right end-point

- (i) lim xrc-f(x) exists
- (i) 127c-f(x)=f(e)

INFINITY AT.

Indeterminate forms

$$\frac{O}{O} \left(\lim_{x \to c} \frac{f(x)}{g(x)}, f(x) \to O \& g(x) \to O ac x \to c \right)$$

$$\frac{\partial S}{\partial s} \left(\begin{array}{ccc} \lim_{x \to c} \frac{f(x)}{g(x)} & f(x) \to \delta S & g(x) \to \delta S & x \to c \end{array} \right)$$

$$\lim_{x \to \pm \infty} \frac{P(x)}{P(x)} = \lim_{x \to \pm \infty} \frac{Ax^{\alpha}}{Bx^{\beta}} + \dots = \begin{cases} \frac{A}{B} & \text{if } \alpha = \beta \\ \text{sign of} \end{cases}$$
Sign of A and B

WAYS TO SOLVE LIMITS

REPLACEMENT RULE factorise to ensure denominator is non-zero.

sin & tan

lim

$$\frac{\sin (g(x))}{g(x)} = \frac{g(x)}{x + c} = \frac{g(x)}{\sin (g(x))} = 1$$

lim

 $\frac{\tan (g(x))}{\cos x + c} = \frac{\sin (g(x))}{\cos (g(x))} = 1$
 $\frac{\sin (g(x))}{\cos x + c} = \frac{\cos (g(x))}{\cos (g(x))} = 1$

SQUEEZE THEOREM

q(x) = f(x) = h(x)

\(\forall \times \times

DERIVATIVES

$$\frac{d}{dx}f(x)=f'(x)=\frac{dy}{dx}=\frac{df}{dx}\lim_{h \to 0}\frac{f(x+h)^{-}f(x)}{h}$$

f is differentiable @ x = xo > f is continuous @ x = >co

STANDARD DERIVATIVES

Function	Denvative
∞ *	nx ⁿ⁻¹
cos(x)	~ sin(x)
sin (x)	(o3(x)
tan(x)	Sec ² (x)
\$ec(x)	sec(x)tan(x)
csc(x)	-csc(x)co+(x)
cot ()c)	-csc²(x)
ex	e×
(n(x)	- <u>></u> -
sin-1(x)	
cos~ (x)	
tan-1 (x)	1476
cot-1 (x)	- (+ x2
sec-((x)	$\frac{1}{1\times 1} \frac{1}{1\times 2} = 1$
csc-'(x)	- 1×1 1x1 7 1

QUOTIENT RULE:
$$\frac{d}{dx} \left(\frac{u}{v} \right) = \frac{\frac{du}{dx}v - u}{v^2} \frac{\frac{dv}{dx}}{v^2}$$

DERIVATIVES OF INVERSE FUNCTIONS

$$b = f^{-1}(a) \quad a = f(b)$$

$$(f^{-1})'(a) = \frac{1}{f'(f^{-1}(a))} = \frac{1}{f'(b)}$$

$$\frac{dx}{dy} = \frac{1}{\frac{dy}{dx}}$$

PARAMETRIC EQUATIONS

$$\frac{dy}{dt} = \frac{dy}{dx} \left(\frac{dx}{dt} \right) = \frac{d^2y}{dx^2} = \frac{d}{dt} \left(\frac{dy}{dx} \right) = \frac{dx}{dt}$$

HYPERBOLAS
$$(x-x_0)^2$$
 $(y-y_0)^2$ $(y-y_0)^2$ $(x-x_0)^2$ $(x-x_0)^2$

MISCELLANOUS EXAMPLES

y: f(x) 9(x)

Step 1: Find derivative of Iny

2: Solve for dy/dx

 $\frac{1}{y} \frac{dy}{dx} = \frac{g(x) \ln f(x)}{f(x) \ln f(x)} + \frac{f(x)g(x)}{f(x)}$

Change base formula:

LOG LAW

10gax = Inx ina

APPLICATIONS DIFFERENTIATION

TANGENTS & NORMAL

Tangent:
$$y-f(x_0) = m(x-x_0)$$
 (m=f'(x_0))
Normal: $y-f(x_0) = -\frac{1}{m}(x-x_0)$

INCREASING & DECREASING

f is increasing if
$$\forall x_1, x_2 \in I(x_2) \times_1 \rightarrow f(x_2) \times f(x_1)$$

decreasing if $\forall x_1, x_2 \in I(x_2) \times_1 \rightarrow f(x_1) \times f(x_2)$

INCREASING on [a,b] if f'(x) >0 4x in (a,b) DECREASING on [a,b] if f'(x) <0 yx in (a,b) Increasing 1 Decreasing -> Injective

CONCAVE UPWARD & DOWNWARD

POINT OF INFLECTION:

EXTREMA

winimum of x=c if $f(x) \ge f(c)$ $A \times E$ dom(f) prolute maximum of x=c if $f(x) \ge f(c)$ $A \times E$ dom(f)

Deal maximum at x=c if $f(x) \in f(c) \ \forall x \in (a,b)$, $c \in (a,b)$ minimum at x=c if $f(x) \in f(c) \ \forall x \in (a,b)$, $c \in (a,b)$

EXTREME VALUE THEOREM

f is continuous on [a,b] -> f has a absolute maximum /
minimum at some point in [a,b]

f is differentiable on (a10)

& f has a local maximum | minimum 1 -> f'(c) = 0

CRITICAL POINT if

- i) not end-point

 ii) f(c) = 0 or f'(c) does not exist

Local maximum / minimum - critical point

DERIVATIVE TESTS FOR EXTREMA

FIRST DERIVATIVE TESTS FOR ABSOLUTE EXTREMA

fix) so Axec & fickles Axec MAXIMUM Absolute

> f'(x) <0 xxxc & f'(x)>0 xxxc MINIMUM

FIRST DERIVATIVE TESTS FOR LOCAL EXTREMA

MAXIMUM Local

f' changes from tre to tre MINIMUM

f' does not change sign NO LOCAL EXTREMA

SECOND DERIVATIVE TESTS FOR LOCAL EXTREMA

f'(c)=0 & f"(c) <0 MAXIMUM Local

> f'(c)=0 & f"(c)>0 MINIMUM

f"(c) = 0 NO CONCLUSION

L'HOP ITAL RULE

if
$$\lim_{x\to c} f(x) = 0 = \lim_{x\to c} g(x)$$
 or
$$\lim_{x\to c} f(x) = \infty = \lim_{x\to c} g(x),$$

$$\lim_{x\to c} \frac{f(x)}{g(x)} = \lim_{x\to c} \frac{f'(x)}{g'(x)}$$

INDETERMINATE FORMS

ROLLE'S THEOREM

MEAN UNILL THEOREM

$$\exists c \in (a,b) \left(f'(c) = \frac{b-a}{f(b)-f(a)}\right)$$

INTEGRATION

STANDARD INTEGRALS

1.
$$\int (axtb)^n dx = \frac{(axtb)^{n+1}}{(n+1)a} + C$$
 $(n \neq -1)$

2. $\int \frac{1}{axtb} dx = \frac{1}{a} \ln |axtb| + C$

3. $\int e^{axtb} dx = \frac{1}{a} e^{axtb} + C$

4. $\int \sin(axtb) dx = -\frac{1}{a} \cos(axtb) + C$

5. $\int \cos(axtb) dx = \frac{1}{a} \sin(axtb) + C$

6. $\int \tan(axtb) dx = \frac{1}{a} \ln|\sec(axtb)| + C$

7. $\int \sec(axtb) dx = \frac{1}{a} \ln|\sec(axtb)| + \tan(axtb)| + C$

8. $\int \csc(axtb) dx = -\frac{1}{a} \ln|\csc(axtb)| + \cot(axtb)| + C$

9. $\int \cot(axtb) dx = -\frac{1}{a} \ln|\csc(axtb)| + C$

10. $\int \sec^2(axtb) dx = \frac{1}{a} \ln|\tan(axtb)| + C$

11. $\int \csc^2(axtb) dx = \frac{1}{a} \cot(axtb) + C$

12. $\int \sec(axtb) \cot(axtb) dx = \frac{1}{a} \sec(axtb) + C$

13. $\int \csc(axtb) \cot(axtb) dx = -\frac{1}{a} \csc(axtb) + C$

14. $\int \frac{1}{a^2+(xtb)^2} dx = \sin^{-1}(\frac{xtb}{a}) + C$

15. $\int \frac{1}{a^2-(xtb)^2} dx = \sin^{-1}(\frac{xtb}{a}) + C$

16. $\int \frac{1}{a^2-(xtb)^2} dx = \cos^{-1}(\frac{xtb}{a}) + C$

17. $\int \frac{1}{a^2-(xtb)^2} dx = \frac{1}{2a} \ln|\frac{xtb-a}{xtb-a}| + C$

18. $\int \frac{1}{(xtb)^2-a^2} dx = \frac{1}{2a} \ln|\frac{xtb-a}{xtb+a}| + C$

19. $\int \frac{1}{(xtb)^2-a^2} dx = \frac{1}{2a} \ln|\frac{xtb-a}{xtb+a}| + C$

20.
$$\int \frac{1}{\int (x+b)^2 - a^2} dx = \ln |(x+b) + \int (x+b) - a^2| + C$$
21.
$$\int \int a^2 - x^2 dx = \frac{x}{2} \int a^2 - x^2 + \frac{a^2}{2} \sin^{-1} \frac{x}{a} + C$$
22.
$$\int \int x^2 - a^2 dx = \frac{x}{2} \int x^2 - a^2 \ln |x+| = 1$$

IMPORTANT TRIGONOMETRIC IDENTITIES

$$Sec^{2}x^{-1} = +an^{2}x$$

$$SinAcosA : \frac{1}{2}sin2A$$

$$Cos^{2}A = \frac{1}{2}(1+cos2A)$$

$$Sin^{2}A = \frac{1}{2}(1-cos2A)$$

$$SinAcosB = \frac{1}{2}(sin(A+B) + sin(A-B))$$

$$cosAsinB = \frac{1}{2}(sin(A+B) - sin(A-B))$$

$$cosAcosB = \frac{1}{2}(cos(A+B) + cos(A-B))$$

$$SinAsinB = -\frac{1}{2}(cos(A+B) - cos(A-B))$$

PARTIAL FRACTIONS

When $\int \frac{P(x)}{a(x)} dx$, where degree of P(x) > degree of Q(x)

Factors of Q(x)Rartial fractions $\begin{array}{ccc}
A \\
ax+b
\end{array}$ $(ax+b)^{2} & A \\
ax+b & (ax+b)^{2}
\end{array}$ $ax^{2}+bx+c & Ax+B \\
ax^{2}+bx+c & Ax+C$

INTEGRATION BY SUBSTITUTION

Let
$$u = g(x)$$
, $\therefore du = g'(x)dx$

$$\therefore \int f(g(x))g'(x)dx = \int f(u)du$$

INTEGRATION BY PARTS

$$\int f(x)dx = \int g(x)h(x)dx$$

= $g(x)h(x) - \int g'(x)h(x)dx$

GENERAL RULES ON FUNCTION TO INTEGRATE DIFFERENTIATE

differentiate

Logarithmic Inverse trigonometric differentiate

differentiate Algebraic (polynomials)

differentiate Trigonometric

integrate Combination of trigonometric

integrate Exponential

RIEMANN SUM

for sufficiently large n,
$$\int_{a}^{b} f(x)dx \approx \sum_{k=1}^{n} \left(\frac{b-a}{n}\right) + \left(a+k\left(\frac{b-a}{n}\right)\right)$$

FUNDAMENTAL THEOREM OF CALCULUS

if f is continuous on [a,b], & F is anti-derivative of f $\int_{a}^{b} f(x)dx = F(b) - F(a)$

Sh F'(x)dx = F(b)-F(a)

FTC 2

If f is continuous on [a,b], $q(x) = \int_{a}^{x} f(t) dt, \quad a \leq x \leq b$

1 continuous & differentiable on (a,b)

q'(x) = f(x) $\therefore \frac{dx}{d} \int_{-\infty}^{\infty} f(f) \, df = f(x)$

IMPROPER INTEGRALS

TYPE 1: Integrals with infinite limits of integration

f(x) continuous on [a, oo)

 $\int_{a}^{\infty} f(x)dx = \lim_{b \to \infty} \int_{a}^{b} f(x)dx$

f(x) continuous on $(-\infty, b]$ $\int_{-\infty}^{b} f(x)dx = \lim_{\alpha \to \infty} \int_{\alpha}^{b} f(x)dx$

f(x) continuous on (-00,00)

 $\int_{-\infty}^{\infty} f(x)dx : \int_{-\infty}^{c} f(x)dx + \int_{c}^{\infty} f(x)dx$

TYPE 11: Integrals of functions that become infinite at a point within the Interval of integration

If f(x) continuous on (a,b], discontinuous at a, $\int_a^b f(x)dx = \lim_{c \to a^+} \int_c^b f(x)dx$ f(x) continuous on [a,b], discontinuous at b, $\int_a^b f(x)dx = \lim_{c \to b^+} \int_a^c f(x)dx$ f(x) discontinuous at c with a < c < b, $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^c f(x)dx$

APPLICATIONS INTEGRATION

AREA BETWEEN CURVES

$$f(x) \ge g(x) \quad \forall x \text{ in } [a,b]$$

$$A = \int_{a}^{b} f(x) - g(x) dx$$

$$else :$$

$$A : \int_{a}^{b} |f(x) - g(x)| dx$$

$$f(y) \ge g(y) \quad \forall y \text{ in } [a,b]$$

$$A : \int_{a}^{b} |f(y) - g(y)| dy$$

$$else :$$

$$A = \int_{a}^{b} |f(y) - g(y)| dy$$

REVOLUTION VOLUME OF SOLID OF

DISK METHOD

$$f(x) > g(x)$$
 $\forall x \in [a,b]$
 $V = x (S_a^2 f(x)^2 - g(x)^2 dx)$

CYLINDRICAL METHOD

SEQUENCES "" SERIES

LIMITS OF SEQUENCES

If
$$\{\alpha_n\}$$
 such that $f(n) = \alpha_n$,
$$\lim_{x \to \infty} f(x) = L \longrightarrow \lim_{n \to \infty} \alpha_n = L$$

SQUEEZE THEOREM FOR SEQUENCE

SERIES LIMIT

$$\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} S_n$$

TEST FOR CONVERGENCE & DIVERGENCE

Ratio Test

L=
$$\lim_{n\to\infty} \left| \frac{a_{nn}}{a_n} \right|$$
 L<1 \Rightarrow $\sum_{n=1}^{\infty} |a_n|$ converges

or L>1 \Rightarrow $\sum_{n=1}^{\infty} |a_n|$ diverges

POWER SERIES

$$\sum_{n=0}^{\infty} C_n(x-a)^n$$

Radius of convergence R
$$\frac{1 \text{ im}}{n \to \infty} \left| \frac{C_{n+1}}{C_n} \right| = \frac{1}{R}$$
 $1 \times -0.1 < R$ converges

 $1 \times -0.1 > R$ diverges

Taylor series $f(x) = \sum_{n=0}^{\infty} \frac{f^n(n)}{n!} (x-n)^n$

TAYLOR SERIES

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^{n}, |x| < 1$$

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$

$$\sin x : \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!}$$

$$\cos x = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n}}{(2nn)!}$$

$$\tan^{-1} x = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{2n+1}$$

$$|n(1-x)| = \sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}, |x| < 1$$

VECTORS

DISTANCE

$$P_{1}(x_{1},y_{1},z_{1}) & P_{2}(x_{2},y_{2},z_{2})$$

$$|P_{1}P_{2}| = \int (x_{2}-x_{1})^{2} + (y_{2}-y_{1})^{2} + (z_{2}-z_{1})$$

SPHERE

Center
$$(X_1, Y_1, Z_1)$$
, Radius r

$$(X_1, Y_1, Z_1)^2 + (Y_1)^2 + (Z_1, Z_1)^2 = r^2$$

LENGTH

STANDARD VECTORS

11211

i= <1,0,0> ;= <0,1,0>, k = <0,0,1>

VECTOR FROM POINT -TO-POINT

Given points (X1, Y1, Z1) & (X2, Y2, Z2) a= <X2-X1, Y2-Y1, Z2-Z1)

DOT PRODUCT

$$Q \cdot D = Q \cdot D \cdot A_2 D_2 + Q_3 D_3$$
 $Q \cdot Q \cdot Q_2 \cdot Q_3 \cdot Q_$

< p1 | p5 | p2 >

EQUATION OF PLANE & LINE

LINE FROM PLANE

CROSS PRODUCT

$$a \times b = \begin{vmatrix} i & j & k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

$$a \times b \perp a \wedge a \times b \perp b$$

FUNCTIONS OF SEVERAL VARIABLES

VECTOR FUNCTION

ARC LENGTH

$$r(t) = \langle f(t), g(t), h(t) \rangle \quad a \leq t \leq b$$

$$S = \int_{a}^{b} \int_{a}^{b} f'(t)^{2} + g'(t)^{2} + h'(t)^{2} dt$$

$$= \int_{a}^{b} \int_{a}^{b} f'(t) \int_{a}^{b} f'(t) \int_{a}^{b} f'(t) dt$$

FUNCTION OF 2 VARIABLES

f(x,y)
$$\frac{\partial f}{\partial x} = f_x$$
 $\frac{\partial f}{\partial y} = f_y$

Clairant's Theorem $f_{xy} = f_{yx}$

Of $\langle f_x, f_y \rangle$

Uniform $\langle f_x, f_y \rangle$
 $\langle f_x, f_y \rangle$

Tangent Plane $z = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$

FUNCTIONS OF 3 VARIABLES

$$f(x, h, s) = \frac{\partial f}{\partial x} = f_x = \frac{\partial f}{\partial y} = f_y = \frac{\partial f}{\partial z} = f_z$$

Dûf
$$\langle f_x, f_y, f_z \rangle \cdot \hat{u}$$

CHAIN RULE

$$\frac{dz}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$$

$$\frac{\partial z}{\partial t} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t}$$

$$\frac{\partial z}{\partial s} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial s}$$

IMPLICIT DIFFERENTIATION

$$\frac{\partial z}{\partial x} = \frac{-F_x(x,y,z)}{F_z(x,y,z)}$$
 $\frac{\partial z}{\partial y} = \frac{-F_y(x,y,z)}{F_z(x,y,z)}$

INCREMENTS & DIFFERENTIALS

SECOND DERIVATIVE TEST

$$f_x(a,b) = f_y(a,b) = 0$$

$$D = f_{xx}(a,b) f_{yy}(a,b) - [f_{xy}(a,b)]^2$$

(0)

MAX

DOUBLE INTEGRALS

INTEGRAL AS A FUNCTION OF X . FUNCTION OF Y

GENERAL REGION

TYPE 1:
$$D = \{(x,y) : a \le x \le b, g,(x) \le y \le g_{2}(x)\}$$

$$SS_{D} f(x,y) dA = S_{a}^{b} S_{g,(x)}^{g_{2}(x)} f(x,y) dydx$$

$$TYPE 2: D = \{(x,y) : g,(y) \le x \le g_{2}(y), a \le x \le b\}$$

$$SS_{D} f(x,y) dA = S_{a}^{b} S_{g,(x)}^{g_{2}(x)} f(x,y) dxdy$$

POLAR COORDINATES

$$x^2 + y^2 = r^2$$

 $x = r\cos\theta$, $y = r\sin\theta$
 $R = \{(r, \theta) : 0 \le \alpha \le r \le \theta, \alpha \le \theta \le \beta\}$
 $S_R = \{(x, y) \le \alpha \le r \le \theta, \alpha \le \theta \le \beta\}$

SURFACE AREA

ORDINARY DIFFERENTIAL EQUATION

REDUCTION TO SEPARABLE FORM

FIRST ORDER ODE

$$\frac{dy}{dx} + P(x)y = Q(x)$$

$$y = \int \frac{\int I(x) \cdot Q(x) dx}{I(x)}$$

BERNOULLI EQUATION

$$\frac{dy}{dx} + P(x)y = Q(x)y^n$$
 $u = (1-n) q(x)$

