TuX²: Distributed Graph Computation for Machine Learning

Wencong Xiao*[⋄], Jilong Xue^{⋄†}, Youshan Miao[⋄], Zhen Li*[⋄], Cheng Chen[⋄], Ming Wu[⋄], Wei Li*, Lidong Zhou[⋄]

*SKLSDE Lab, Beihang University; \$\times Microsoft Research; *Peking University

Machine Learning(ML) in real world

Recommendation

Click Prediction

Graph Structures in Machine Learning

Recommendation

Topic Model

Click Prediction

Advantages of Graph Engine

Simple programming model (e.g. GAS)

PageRank, Shortest path, etc.

Graph-aware optimization

- Data layout [Grace(ATC'12), Naiad(SOSP'13)]
- Partitioning [PowerLyra(EuroSys'15)]

Scalability to trillion-edge

- GraM (SoCC'15)
- Chaos (SOSP'15)
- One Trillion Edges (VLDB'15)

1. Heterogeneous vertices

PageRank for WebPage Ranking

Matrix Factorization(MF) for Recommendation

2. Mini-Batch

for WebPage Ranking

Matrix Factorization(MF) for Recommendation

3. Flexible consistency

3. Flexible consistency

We propose: TuX²

Bridge Graph and ML research in one system

Extend for distributed machine learning

- ⁻ Scheduling: Stale Synchronous Parallel (SSP) based scheduling
- DataModel: Heterogeneous data model
- Programming: MEGA (Mini-batch, Exchange, GlobalSync, and Apply) graph model

Outperform both Graph and ML systems on ML algorithms

- **10x** ✓ vs. PowerGraph/PowerLyra
 - Mainly due to MEGA model and heterogeneity optimization
- **48%** ✓ vs. Petuum/Parameter-Server(P-S)
 - Mainly due to graph-based optimization

System Architecture

Vertex-cut approach

- Effective for power-law graph
- Naturally fits P-S model
 - Master vertices as the global state
 - Mirror vertices as the local cache

Key designs

Scheduling: Stale Synchronous Parallel (SSP) based scheduling

DataModel: Heterogeneous data model

Programming: MEGA graph model

Slack of 1 clock as an example

All servers finish clock1

Slack of 1 clock as an example

- Slowest server (n) is in clock2
- Fastest server (0) finishes clock2

Slack of 1 clock as an example

- Slowest server (n) is in clock2
- Fastest server (0) finishes clock2
 - within the staleness bound
 - continue

Slack of 1 clock as an example

- Slowest server (n) is in clock2
- Fastest server (0) finishes clock3
 - reaching the max slack bound
 - blocked

Key designs

Scheduling: Stale Synchronous Parallel (SSP) based scheduling

DataModel: Heterogeneous data model

Programming: MEGA graph model

Heterogeneity in ML

Heterogeneous Vertices

- Different properties
 - E.g. Logistic Regression
 - Sample: Label; Feature: Weight, Gradient

Benefit

- Heterogeneity for compact data structure
- Heterogeneity for efficient execution
- Heterogeneity for less network traffic

Heterogeneity for compact data structure

E.g. Logistic Regression

- Sample: Label; Feature: Weight, Gradient

Homogeneous Vertex Data Structure

Heterogeneous Vertex Data Structure

Heterogeneity for efficient execution

E.g. Mini-Batch MF for recommendation

- Benefits of scanning items
 - Sequential access for locality when syncing
 - Less overhead tracing the updated vertices

Scan user vertices

Scan item vertices

Key designs

Scheduling: Stale Synchronous Parallel (SSP) based scheduling

DataModel: Heterogeneous data model

Programming: MEGA graph model

MEGA: e.g. Mini-batch MF for recommendation

Graph View

Exchange(v_user, v_item, edge, a_user, a_item, context)

pred=PredictRating(v_user, v_item);

loss=edge.rating-pred;

context.loss+=loss^2;

(a_user, a_item)+=Gradient(loss, v_user, v_item);

Apply(ver, accum, context)

ver.data +=accum;

Example: Mini-batch MF

Compose stage

Iteration Stage

Mini-batch Stage

StageSequenceBuilder(ExecStages)

mbStage = new MiniBatchStage();
mbStage.SetBatchSize(100, asEdge);
mbStage.Add(ExchangeStage);
mbStage.Add(ApplyStage);
ExecStages.Add(mbStage);
ExecStages.Add(GlobalSyncStage);

Experiment setup

Machine information

⁻ 16 CPU cores, 256GB memory, 54Gbps InfiniBand NIC

Typical ML algorithms

- MF, LDA, BlockPG

Large-scale dataset

Up to 64 billion edges graph

Dataset name	# of users/ docs/samples	# of items/ words/features	# of edges
NewsData(LDA)	7.3M	418.4K	1.4B
AdsData(BlockPG)	924.8M	209.3M	64.9B
Netflix(MF)	480.2K	17.8K	100.5M
Synthesized(MF)	30M	1M	6.3M

Evaluation

Compare to Parameter Server

- **48%** improvement on 32 servers!
- Algorithm: BlockPG
- Dataset: Microsoft private AdsData (64B edges)

Imbalance in Parameter Server

Balance in TuX2

Balance workload

Evaluation

Compare to PowerGraph, PowerLyra

- Algorithm: Matrix Factorization

Dataset: Netflix

Evaluation

Compare to PowerGraph, PowerLyra

- Algorithm: Matrix Factorization

Dataset: Netflix

Conclusion

TuX²: advocates the convergence of graph computation and distributed machine learning

- Introduce important machine learning concepts to graph computation
- Define a new, flexible graph model to express ML algorithms efficiently
- Demonstrate TuX² outperform existing Graph and ML systems in representative ML algorithms respectively

Conclusion

parameter server	graphML	
pull, push	GAS (or MEGA)	
hash-based partitioner (nearly load balance)	graph partitioner	
small preprocessing cost	not sure	
server-side computation	achieved by graph partitioner	
all ML models	LR, MF, LDA, etc.	

Thanks! Q&A