1 Variables

2 root

	var	symbol	documentation	type	units	eqs
8	$F_{N,A}$	F_N_A	fudamental incidence matrix	network		
5	t	t	time	frame	s	
6	t^o	to	starting time	frame	s	4
7	t^e	te	end time	frame	s	5
1	#	value	numerical value	constant		
2	1	one	numerical value one	constant		1
3	0	zero	numerical value zero	constant		2
4	0.5	onehalf	numerical value one half	constant		3

3 physical

	var	symbol	documentation	type	units	eqs
9	$P_{N,A}$	P_N_A	projection from node to arc for arc properties	projection		
32	$P_{NS,AS}$	P_NS_AS	projection node species to arc species	projection		
33	$P_{K,NK}$	P_K_NK	projection of conversion to node conversion	projection		
34	$P_{S,NS}$	P_S_NS	projection species to node species	projection		
35	$P_{N,NK}$	P_N_NK	projection node to node conversion	projection		
36	$P_{NS,KS}$	P_NS_KS	projection node species to conversion species	projection		
37	$P_{A,NS}$	P_A_NS	projection arc to node species for conductivity	projection		
65	$P_{NK,KS}$	P_NK_KS	projection node conversion to conversion species	projection		
10	r_{xN}	r_x	x-coordinate	frame	m	
11	r_{yN}	r_y	y-coordinate	frame	m	
12	r_{zN}	r_z	z coordinate	frame	m	
13	U_N	U	fundamental state – internal energy	state	$kg m^2 s^{-2}$	
14	S_N	S	fundamental state – entropy	state	$kg m^2 K^{-1} s^{-2}$	
15	V_N	V	fundamental state – volume	state	m^3	
16	n_{NS}	n	fundamental state – molar mass	state	mol	
20	H_N	Н	enthalpy	state	$kg m^2 s^{-2}$	9
21	A_N	A	Helmholtz energy	state	$kg m^2 s^{-2}$	10
22	G_N	G	Gibbs free energy	state	$kg m^2 s^{-2}$	11
23	C_N	charge	${\rm fundamental\ state-charge}$	state	A s	
24	A^v	Avogadro	Avogadro number	constant	mol^{-1}	
25	$k^B{}_N$	Boltzmann	Boltzmann constant	constant	$kg m^2 K^{-1} s^{-2}$	12
26	R_N	GasConstant	gas constant	constant	$kgm^2mol^{-1}K^{-1}$	$s^{-\frac{1}{2}}$ 13
17	p_N	p	thermodynamic pressure	effort	$kg m^{-1} s^{-2}$	6

Continued on next page

	var	symbol	documentation	type	units	eqs
18	T_N	T	temperature	effort	K	7
19	μ_{NS}	chemPot	chemical potential	effort	$kg m^2 mol^{-1} s^{-2}$	8
27	$U^{C}{}_{N}$	UC	electrical potential – voltage	effort	$kg m^2 A^{-1} s^{-3}$	14
28	v_{xN}	v_x	velocitiy in x-direction	${\bf secondary State}$	ms^{-1}	15
29	v_{yN}	v_y	velocity in y-direction	${\bf secondary State}$	ms^{-1}	16
30	v_{zN}	V_Z	velocity in z-direction	${\bf secondary State}$	ms^{-1}	17

4 control

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

5 reactions

	var	symbol	documentation	type	units	eqs
31	$N_{S,K}$	N	soichiometric matrix	constant		
38	$K^o{}_K$	Ко	Arrhenius frequency factor	constant	$m^{-3} mol s^{-1}$	
62	$E^a{}_{NK}$	Ea	Arrhenius activation energy	constant	$kg m^2 mol^{-1} s^{-2}$	41
63	K_{NK}	K_NK	Arrhenius reaction 'constant'	$\operatorname{constant}$	$m^{-3} mol s^{-1}$	42
64	$N_{NS,NK}$	N_NS_NK	soichiometric block matrix node species and node reaction $% \left(1\right) =\left(1\right) \left(1\right) \left($	$\operatorname{constant}$		43
60	T_{NK}	T_NK	temperature of the reactive system	effort	K	39

6 material

	var	symbol	documentation	type	units	eqs
40	λ_S	Mm	species molecular mass	constant	$kg mol^{-1}$	
42	C_{pN}	Ср	total heat capacity at constant pressure	property	$kg m^2 K^{-1} s^{-2}$	21
43	C_{VN}	Cv	total heat capacity at constant volume	property	$kg m^2 K^{-1} s^{-2}$	22
44	k_{xN}^q	kq_x	thermal conductivity in x-direction	property	$kg K^{-1} s^{-3}$	23
45	k_{yN}^q	kq_y	thermal conductivity in y-direction	property	$kg K^{-1} s^{-3}$	24
46	k_{zN}^q	kq_z	thermal conductivity in z-direction'	property	$kg K^{-1} s^{-3}$	25
47	kq_N	kq	thermal conductivity	property	$kg K^{-1} s^{-3}$	26
48	k_{xN}^c	kc_x	convecitve mass conductivity in x-direction	property	$m^{-1} s$	27
49	k_{yN}^c	kc_y	convecitve mass conductivity in y-direction	property	$m^{-1} s$	28
50	k_{zN}^c	kc_z	convecitve mass conductivity in z-direction	property	$m^{-1} s$	29
51	$k^c{}_N$	kc	convective mass conductivity	property	$m^{-1} s$	30
52	k_{xNS}^d	kd_x	diffusional mass conductivity in x-direction	property	$kg^{-1} m^{-4} mol^2 s$	31
53	k_{yNS}^d	kd_y	diffusional mass conductivity in y-direction	property	$kg^{-1} m^{-4} mol^2 s$	32
54	k_{zNS}^d	kd_z	diffusional mass conductivity in z-direction	property	$kg^{-1} m^{-4} mol^2 s$	33
55	k^d_{NS}	kd	diffusional mass condctivity	property	$kg^{-1} m^{-4} mol^2 s$	34
56	h_{NS}	h	partial molar enthalpies	property	$kg m^2 mol^{-1} s^{-2}$	35
59	$density_N$	density	density	property	$kg m^{-3}$	38

7 macroscopic

	var	symbol	documentation	type	units	eqs
57	m_N	m	total mass	secondaryState	kg	36
66	c_{NS}	С	molar composition	secondaryState	$m^{-3} mol$	44

8 solid

var symbol documentation	type	units	eqs
--------------------------	------	-------	-----

9 fluid

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

10 liquid

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

11 gas

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

12 control-control

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

13 gas-liquid

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

14 gas-gas

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

15 liquid-liquid

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

16 gas-solid

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

17 solid-solid

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

18 liquid-solid

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

19 material-material

	var	symbol	documentation	type	units	eqs	
--	-----	--------	---------------	------	-------	-----	--

20 reactions—reactions

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

21 control–reactions

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

22 reactions-control

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

23 control-material

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

24 material-control

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

${\bf 25} \quad {\bf control-macroscopic}$

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

26 macroscopic-control

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

27 reactions-material

	var	symbol	documentation	type	units	eqs	
--	-----	--------	---------------	------	-------	-----	--

28 material-reactions

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

29 reactions-macroscopic

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

$30 \quad {\rm macroscopic-reactions}$

	var	symbol	documentation	type	units	eqs
--	-----	--------	---------------	------	-------	-----

material-macroscopic

	var	symbol	documentation	type	units	eqs
41	Mm_S	Mm	link variable Mm to interface material »> macroscopic	get	$kgmol^{-1}$	20

32 macroscopic-material

	var	symbol	documentation	type	units	eqs
58	m_N	m	link variable m to interface macroscopic $\gg >$ material	get	kg	37

33 Equations

34 Generic

no	equation	documentation	layer
1	1 := Instantiate(#, #)	numerical value 1	root
2	0 := Instantiate(#, #)	numerical value zero	root
3	0.5 := Instantiate(#, #)	numerical value one half	root
4	$t^o := \text{Instantiate}(t, \#)$	starting time	root
5	$t^e := \text{Instantiate}(t, \#)$	end time	root
6	$p_N := \left(- \frac{\partial U_N}{\partial V_N} \right)$	thermodynamic pressure	physical
7	$T_N := \frac{\partial U_N}{\partial S_N}$	temperature	physical
8	$\mu_{NS} := rac{\partial U_N}{\partial n_{NS}}$	chemical potential	physical
9	$H_N := U_N - p_N \cdot V_N$	enthalpy	physical
10	$A_N := U_N - T_N \cdot S_N$	Helmholtz energy	physical
11	$G_N := U_N + p_N \cdot V_N - T_N \cdot S_N$	Gibbs free energy	physical
12	$k^B{}_N := \operatorname{Instantiate}(S_N, \#)$	Boltzmann constant	physical
13	$R_N := A^v \cdot k^B{}_N$	gas constant	physical
14	$U^C{}_N := (C_N)^{-1} \cdot U_N$	electrical potential – voltage	physical
15	$v_{xN} := \frac{\partial r_{xN}}{\partial t}$	velocitiy in x-direction	physical
16	$v_{yN} := \frac{\partial r_{yN}}{\partial t}$	velocity in y direction	physical

Continued on next page

no	equation	documentation	layer
17	$v_{zN} := \frac{\partial r_{zN}}{\partial t}$	velocity in z-direction	physical
21	$C_{pN} := rac{\partial H_N}{\partial T_N}$	total heat capacity at constant pressure	material
22	$C_{VN} := \frac{\partial U_N}{\partial T_N}$	total heat capacity at constant volume	material
23	$k_{xN}^q := (V_N)^{-1} \cdot \frac{\partial U_N}{\partial T_N} \cdot v_{xN}$	thermal conductivity in x-direction	material
24	$k_{yN}^q := (V_N)^{-1} \cdot \frac{\partial U_N}{\partial T_N} \cdot v_{yN}$	thermal conductivity in y-direction	material
25	$k_{zN}^q := (V_N)^{-1} \cdot \frac{\partial U_N}{\partial T_N} \cdot v_{zN}$	thermal conductivity in z-direction'	material
26	$kq_N := \operatorname{Stack}\left(k_x^q_N, k_y^q_N, k_z^q_N\right)$	thermal conductivity	material
27	$k_{xN}^c := \left(\lambda_S \overset{S \in NS}{\star} (\mu_{NS})^{-1}\right) \cdot (V_N)^{-1} \cdot \frac{\partial U_N}{\partial p_N} \cdot v_{xN}$	convecitve mass conductivity in x-direction	material
28	$k_{yN}^c := \left(\lambda_S \overset{S \in NS}{\star} (\mu_{NS})^{-1}\right) \cdot (V_N)^{-1} \cdot \frac{\partial U_N}{\partial p_N} \cdot v_{yN}$	convecitve mass conductivity in y-direction	material
29	$k_{zN}^c := \left(\lambda_S \overset{S \in NS}{\star} (\mu_{NS})^{-1}\right) \cdot (V_N)^{-1} \cdot \frac{\partial U_N}{\partial p_N} \cdot v_{zN}$	convecitve mass conductivity in z- direction	material
30	$k^c{}_N := \operatorname{Stack}\left(k^c_{xN}, k^c_{yN}, k^c_{zN}\right)$	convective mass conductivity	material
31	$k_{xNS}^d := (\mu_{NS})^{-1} \cdot \left(v_{xN} \odot \left((V_N)^{-1} \odot \frac{\partial U_N}{\partial \mu_{NS}} \right) \right)$	diffusional mass conductivity in x- direction	material
32	$k_{yNS}^d := (\mu_{NS})^{-1} \cdot \left(v_{yN} \odot \left((V_N)^{-1} \odot \frac{\partial U_N}{\partial \mu_{NS}} \right) \right)$	diffusional mass conductivity in y- direction	material
33	$k_{zNS}^d := (\mu_{NS})^{-1} \cdot \left(v_{zN} \odot \left((V_N)^{-1} \odot \frac{\partial U_N}{\partial \mu_{NS}} \right) \right)$	diffusional mass conductivity in z- direction	material
34	$k^d_{NS} := \operatorname{Stack}\left(k^d_{xNS}, k^d_{yNS}, k^d_{zNS}\right)$	diffusional mass condctivity	material

Continued on next page

no	equation	documentation	layer
35	$h_{NS} := H_N \odot \left(n_{NS} \right)^{-1}$	partial molar enthalpies	material
36	$m_N := M m_S \overset{S \in NS}{\star} n_{NS}$	total mass	macroscopic
38	$density_N := m_N \cdot (V_N)^{-1}$	density	material
39	$T_{NK} := P_{N,NK} \stackrel{N}{\star} T_N$	temperature of the reactive system	reactions
41	$E^{a}_{NK} := \text{Instantiate}(P_{N,NK} \overset{N}{\star} R_{N} . T_{NK}, \#)$	Arrhenius activation energy	reactions
42	$K_{NK} := K^o{}_K \odot exp((-E^a{}_{NK}) \cdot \left(R_N \stackrel{N}{\star} P_{N,NK} \cdot T_{NK}\right)^{-1})$	Arrhenius reaction 'constant'	reactions
43	$N_{NS,NK} := P_{S,NS} \stackrel{S}{\star} \left(P_{K,NK} \stackrel{K}{\star} N_{S,K} \right)$	soichiometric block matrix node species and node reaction	reactions
44	$c_{NS} := (V_N)^{-1} \odot n_{NS}$	molar composition	macroscopic

35 Interface Link Equation

no	equation	documentation	layer
20	$Mm_S:=Mm_S$	interface equation	material -> macro- scopic
37	$m_N := m_N$	interface equation	macroscopic -> material