Amedments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (currently amended) A compound of the formula I:

$$X_{1}O$$
 X_{2}
 X_{3}
 Z
 X_{3}
 Z

wherein

Z is H or lower alkyl;

A has the structure:

in which

B is cyanoalkyl, a carbocycle or a heterocycle optionally substituted with one or more R_1 substituents;

q is 0-3;

R₁, R₂, R₃, R₄, R₅ and R₆ independently are hydrogen, alkyl, amino, alkylamino, dialkylamino, nitro, urea, cyano, thio, alkylthio, hydroxy, alkoxy, alkoxyalkyl, alkoxycarbonyl, alkoxycarbonylamino, aryloxycarbonylamino, alkylsulfinyl, sulfonyl, alkylsulfonyl, aralkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, alkanoyl, alkanoylamino, cycloalkanoylamino, aryl, arylalkyl, halogen, or alkylphosphonyl, and R₁, R₂, R₃, R₄ and R₅ are substituted with 0-3 substituents selected from the group

consisting of hydroxy, carboxyl, lower alkoxycarbonyl, lower alkyl, nitro, oxo, cyano, carbocyclyl, heterocyclyl, heterocyclyl, heterocyclyl, lower alkylthio, lower alkoxy, lower alkylamino, lower alkanoylamino, lower alkylsulfinyl, lower sulfonyl, lower alkylsulfonyl, lower alkanoyl, aryl, aroyl, heterocyclylcarbonyl, halogen and lower alkylphosphonyl; or two of R_1 to R_5 together form a carbocycle or heterocyclic ring;

Y is H, OH, alkoxy, alkoxyalkoxy, aryloxy, alkylaminoalkoxy, dialkylaminoalkoxy, alkylamino, arylamino, heterocyclyl or heteroarylalkyl, where each of the forgoing may be substituted or unsubstituted;

X₁ is H,—C(O)OR, C(O)NRaRb, C(O)R, or C(O)SR, wherein R, Ra and Rb, individually, is hydrogen or alkyl, alkoxy, aryl, heterocyclyl, heteroaryl, substituted with 0-4 substituents selected from the group consisting of halogen, hydroxy, amino, carboxyl, nitro, cyano, heterocylyl, heteroaryl, aryl, aroyl, aryloxy, aralkyl, aralkyloxy, aryloxycarbonyl, aralkyloxycarbonyl, alkylenedioxy, lower alkoxycarbonyl, lower alkyl, lower alkenyl, lower alkynyl, lower alkylthio, lower alkoxy, lower alkylamino, lower alkylsulfinyl, lower sulfonyl, lower alkylsulfonyl, lower alkylsulfonyl, aminosulfonyl lower alkyl, hydroxy lower alkyl, alkylsulfinyl lower alkyl, alkylsulfonyl lower alkyl, heteroarylthio lower alkyl, heteroaryloxy lower alkyl, heteroarylamino lower alkyl, halo lower alkyl, and alkoxy lower alkyl; wherein said heterocyclyl, heteroaryl, aryl, aroyl, aryloxy, aralkyl, aralkyloxy, aryloxycarbonyl and aralkyloxycarbonyl substituent is optionally substituted with halogen, hydroxyl, amino, carboxyl, nitro, cyano, alkyl and alkoxy; and wherein Ra and Rb together with the nitrogen to which they are attached form a heterocyclyl or heteroaryl group substituted with 0-5 substituents R or Rd; wherein Rd has the structure

$$X_2$$
 X_2
 X_3
 X_2
 X_3
 X_2
 X_3

wherein X' is a divalent linker selected from the group consisting of C(O)NRa, C(O) or a bond;

 X_2 and X_3 are each independently hydrogen, halogen, hydroxy, amino, carboxyl, nitro, cyano, or substituted or unsubstituted alkyl, aryl, heterocylyl, heteroaryl, aryl, aroyl, aryloxy, alkylenedioxy, lower alkyl carbonylamino, lower alkenyl carbonylamino, arylamino, arylamino, arylamino, lower alkoxy carbonylamino, lower alkylamino carbonylamino, arylamino carbonylamino, lower alkoxy, lower alkoxy, lower alkylamino, lower alkylamino,

alkylphosphonyl, aminosulfonyl lower alkyl, hydroxy lower alkyl, alkylsulfinyl lower alkyl, alkylsulfonyl lower alkyl, heteroarylthio lower alkyl, heteroaryloxy lower alkyl, heteroarylamino lower alkyl, halo lower alkyl, alkoxy lower alkyl; and wherein X_1 and X_2 or X_3 may be bonded together to form a heterocylic or heteroaryl ring(s); or X_3 and Z together form a heterobicyclic ring;

or a pharmaceutically acceptable salt thereof.

2. (currently amended) A compound according to claim 1, having the formula:

$$X_2$$
 X_1O
 X_3
 Z
 X_3

]

wherein

Z is H or lower alkyl;

A has the structure:

$$R_1$$
 R_5 R_4 R_4

in which R₁, R₂, R₃, R₄ and R₅, independently are hydrogen, alkyl, amino, alkylamino, dialkylamino, nitro, cyano, thio, alkylthio, hydroxy, alkoxy, alkoxyalkyl, alkoxycarbonyl, alkylsulfinyl, sulfonyl, alkylsulfonyl, aryl, arylalkyl, halogen, or alkylphosphonyl, and R₁, R₂, R₃, R₄ and R₅ are substituted with 0-3 substituents selected from the group consisting of hydroxy, carboxyl, lower alkoxycarbonyl, lower alkyl, nitro, cyano, heterocylyl, heteroaryl, lower alkylthio, lower alkoxy, lower alkylamino, lower alkylsulfinyl, lower sulfonyl, lower alkylsulfonyl, aryl, halogen and lower alkylphosphonyl;

Y is H, OH, alkoxy, alkoxyalkoxy, aryloxy, aminoalkylalkoxy, diaminoalkylalkoxy, alkylamino, arylamino, heterocyclyl or heteroarylalkyl, where each of the forgoing may be substituted or unsubstituted;

X₁ is H, C(O)OR, C(O)NRaRb, C(O)R, or C(O)SR, wherein R, Ra and Rb, individually, is hydrogen or alkyl, aryl, heterocyclyl, heteroaryl, substituted with 0-4 substituents selected from the group consisting of halogen, hydroxy, amino, carboxyl, nitro, cyano, heterocylyl, heteroaryl, aryl, aroyl, aryloxy, alkylenedioxy, lower alkoxycarbonyl, lower alkyl, lower alkenyl, lower alkynyl, lower alkylthio, lower alkoxy, lower alkylamino, lower alkylsulfinyl, lower sulfonyl, lower alkylsulfonyl, lower alkylnosphonyl, aminosulfonyl lower alkyl, hydroxy lower alkyl, alkylsulfinyl lower alkyl, alkylsulfonyl lower alkyl, alkylthio lower alkyl, heteroarylthio lower alkyl, heteroaryloxy lower alkyl, heteroarylamino lower alkyl, halo lower alkyl, alkoxy lower alkyl; and wherein Ra and Rb together with the nitrogen to which they are attached may form a heterocyclyl or heteroaryl group substituted with 0-4 substituents R;

X₂ and X₃ are each independently hydrogen, halogen, hydroxy, amino, carboxyl, nitro, cyano, or substituted or unsubstituted alkyl, aryl, heterocylyl, heteroaryl, aryl, aroyl, aryloxy, alkylenedioxy, lower alkyl carbonylamino, lower alkenyl carbonylamino, aryl carbonylamino, arylalkyl carbonylamino, lower alkoxy carbonylamino, lower alkylamino carbonylamino, arylamino carbonylamino, lower alkoxy, lower alkoxycarbonyl, lower alkyl, lower alkynyl, lower alkylthio, lower alkoxy, lower alkylamino, lower alkylsulfinyl, lower sulfonyl, lower alkylsulfonyl, lower alkyl, alkylsulfinyl lower alkyl, alkylsulfinyl lower alkyl, alkylsulfinyl lower alkyl, heteroarylamino lower alkyl, halo lower alkyl, heteroarylthio lower alkyl, heteroaryloxy lower alkyl, heteroarylamino lower alkyl, halo lower alkyl, alkoxy lower alkyl; and wherein X₁ and X₂ or X₃ may be bonded together to form a heterocylic or heteroaryl ring(s); or a pharmaceutically acceptable salt thereof.

- 3. (canceled)
- 4. (canceled)
- 5. (previously presented) The compound of claim 2, wherein X_1 is C(O)NRaRb wherein Ra and Rb together with the nitrogen to which they are attached form a heterocyclyl or heteroaryl group substituted with 0-5 substituents selected from the group consisting of hydrogen, alkyl, alkoxy, aryl and R; wherein R is hydrogen or alkyl, alkoxy, aryl, heterocyclyl or heteroaryl, substituted with 0-4 substituents selected from the group consisting of halogen, hydroxy, amino, carboxyl, nitro, cyano, heterocylyl, heteroaryl, aryl, aroyl, aryloxy, aralkyl, aralkyloxy, aryloxycarbonyl, aralkyloxycarbonyl, alkylenedioxy, lower alkoxy, lower alkoxy, lower alkylamino, lower alkylsulfinyl, lower sulfonyl, lower alkylsulfonyl, lower alkanoyl, lower alkanoyl, lower alkylsulfonyl, lower alkanoyl, lower

alkylphosphonyl, aminosulfonyl lower alkyl, hydroxy lower alkyl, alkylsulfinyl lower alkyl, alkylsulfonyl lower alkyl, heteroarylthio lower alkyl, heteroaryloxy lower alkyl, heteroarylamino lower alkyl, halo lower alkyl, and alkoxy lower alkyl; wherein said heterocyclyl, heteroaryl, aryl, aroyl, aryloxy, aralkyl, aralkyloxy, aryloxycarbonyl and aralkyloxycarbonyl substituent is optionally substituted with halogen, hydroxyl, amino, carboxyl, nitro, cyano, alkyl and alkoxy; and X_2 , X_3 are each independently H, alkyl, alkenyl, alkynyl, aryl, arylalkyl, heterocylyl, or heteroaryl.

- 6. (withdrawn) The compound of claim 2, wherein X₁ is C(O)OR, C(O)R, or C(O)SR and R is heterocyclyl or heteroaryl, substituted with 0-4 substituents selected from the group consisting of halogen, hydroxy, amino, carboxyl, nitro, cyano, heterocylyl, heteroaryl, aryl, aroyl, aryloxy, aralkyl, aralkyloxy, aryloxycarbonyl, aralkyloxycarbonyl, alkylenedioxy, lower alkoxycarbonyl, lower alkyl, lower alkynyl, lower alkylthio, lower alkoxy, lower alkylamino, lower alkylsulfinyl, lower sulfonyl, lower alkylsulfonyl, lower alkyl, aminosulfonyl lower alkyl, hydroxy lower alkyl, alkylsulfinyl lower alkyl, alkylsulfonyl lower alkyl, alkylsulfonyl lower alkyl, heteroarylthio lower alkyl, heteroaryloxy lower alkyl, heteroarylamino lower alkyl, halo lower alkyl, and alkoxy lower alkyl; wherein said heterocyclyl, heteroaryl, aryl, aroyl, aryloxy, aralkyl, aralkyloxy, aryloxycarbonyl and aralkyloxycarbonyl substituent is optionally substituted with halogen, hydroxyl, amino, carboxyl, nitro, cyano, alkyl and alkoxy.
- 7. (canceled)
- 8. (canceled)
- 9. (previously presented) The compound of claim 5, wherein X_1 is C(O)NRaRb and Ra and Rb together form a heterocyclyl group selected from the group consisting of

$$\langle N^{-\frac{1}{3}}, HN \rangle \rangle \langle N^{-\frac{1}{3}}, HO \rangle \langle N^{$$

10. (previously presented) The compound of claim 9, wherein Ra and Rb together form the heterocyclyl group

- 11. (canceled)
- 12. (canceled)
- 13. (previously presented) The compound of claim 1, wherein R_1 , R_5 or both are not hydrogen.
- 14. (previously presented) The compound of claim 1, wherein X_2 , X_3 , and Z are hydrogen.
- 15. (original) The compound of claim 1, wherein A is selected from the group consisting of

16. (original) The compound of claim 1, wherein A is

17. (original) The compound of claim 1, wherein X_2 is a member selected from the group consisting of

18. (currently amended) The compound of claim 1, wherein the compound has S stereochemical configuration

$$X_2$$
 X_3
 Z
 X_3
 Z
 X_4

- 19. (original) A composition, comprising the compound of claim 1 and a carrier or excipient.
- 20. (canceled)
- 21. (canceled)
- 22. (canceled)

- 23. (canceled)
- 24. (canceled)
- 25. (previously presented) The compound of claim 2, wherein X_1 is C(O)NRaRb and Ra and Rb together form a heterocyclyl group selected from the group consisting of

and

A is selected from the group consisting of

26. (previously presented) The compound of claim 25, wherein Z, X_2 and X_3 are each H.

- 27. (previously presented) The compound of claim 26, wherein Y is OH, alkoxy, aryloxy or arylalkoxy.
- 28. (previously presented) The compound of claim 27, wherein Ra and Rb together form the heterocyclyl group

29. (previously presented) The compound of claim 28, wherein A is