NATLINEAR LITTUUT

Low Cost Mono 1W Audio Power Amplifier

Product Overview

The LN4898 is a differential input audio power amplifier circuit for cell phones and other portable audio devices with built-in speakers, providing 1W of stable output power to an 8Ω load. The LN4898 provides a stable output of 1W of power to an 8Ω load, and the bridge load structure of the LN4898 greatly reduces the number of external components while providing high-quality audio power amplification, eliminating the need for external output coupling capacitors and bootstrap capacitors.

The LN4898 has a built-in standby circuit that operates in standby mode when the SD pin is connected low, and the standby current does not exceed 2uA. The LN4898 has a built-in noise cancellation circuit that eliminates clicks or crackles during the startup and shutdown of the chip. The gain can also be adjusted by an external resistor.

seal inside

SOP8

■ Product Features

- Wide operating voltage range: 3.2 -12V
- No output coupling capacitors, buffer networks or bootstrap capacitors required
- Thermal Protection Function
- Fixed internal gain, adjustable external gain
- Ultra-compact package
- 1uA low power shutdown mode
- BTL outputs can drive capacitive loads
- No click or crackle on power up/down

use

- mobile telephone
- PDA
- Portable electronic equipment

■ Typical Application Circuit

LN4898

Input

Ordering Information

LN489812345-6

Digital projects	notation	descriptive	
12	АВ	Class AB Audio Power Amplifiers	
(iii)	1	Output Power 1W	
4	S	SOP-8L package	
(5)	R	Tape winding direction: Positive	
	L	Tape winding direction: reverse	
(vi)	G	green material	

■ Pinout

pin number	pinout	Functional Description
1	SD	Chip Enable, Low Level
		Shutdown
2	BYPASS	Bypass Capacitor Input
3	+IN	Positive input (differential
		+)
4	-IN	Negative input (differential-)
5	VO1	Negative output (differential-
)
6	VDD	Power Input
7	GND	grounding terminal
8	VO2	Positive output (differential
		+)

■ Printing Information

• Package form

Print Symbol	Product Description		
XXXX	Chip Wafer Information		
YYYY	Chip Production Information		

no.: nl-qr-830-19 ver: 19c01 3 <u>www.natlinear.com</u>

■ functional block diagram

■ Absolute maximum rating

sports event	notation	Absolute maximum rating	unit (of
			measure)
operating voltage	VDD	-0.3-15	
Enable Voltage	SD	-0.3-15	V
Input Voltage	VIN	-0.3-VDD+0.3	
ESD Parameters	-	2000	V
operating temperature	Topr	-40 to +125	°C
preservation temperature	Tstg	-60 to +150	C

■ Electrical Characteristics

Test Conditions VDD=8.4V specified)

(Ta=25 °C unless otherwise

sports event	notation	conditional		minimu m value	typical value	maximu m values	meası
		_{VIN} = 0V, Io = 0A, No Load		_	4	6	re) mA
quiescent	IDD	VIN = 0V, Io = 0A		_	5	8	mA
current		VIN - 0V, 10 - 0A	N, 012 LOau	_	3		111/4
Shutdown	ISD	-		-	1	-	μΑ
current							
Shutdown	VSDIH	_		1.2	-	-	V
Voltage High							
Input High Level							
Shutdown	VSDIL	-		-	-	0.4	V
Voltage Low							
Input Low Level Output Offset	VOS			_	±10	±30	mV
Voltage		_			110	130	1110
Voltage	VUV			_	3.2	_	V
		-		_	3.2	_	V
undervoltage							
protection	VUVR				3.5		V
VDD		-		-	3.5	-	V
Undervoltage							
Recovery	VOV				10		V
VDD		-		-	10	-	V
overvoltage							
protection	VOVR				0.5		
VDD	VOVIC	-		-	9.5	-	V
Overvoltage							
Recovery		TUD: N. 400/	\/DD 0.0\/		0.5		
		THD+N = 10%	VDD=3.6V		0.5	-	14/
		f = 1 kHz	VDD=5.0V		1.0		W
output	PO	RL=8Ω	VDD=7.5V		1.9		
power		THD+N = 10%	VDD=3.6V		0.35		
		f = 1 kHz	VDD=6.0V		1.0		W
		RL=16Ω	VDD=8.4V		2.0		
Dec C 1	D25-	$f = 217Hz, R_L = 8\Omega, V_{IN} = 0V$		55	62	-	
Power Supply	PSRR	$f = 1kHz, R_L = 8\Omega, V_{IN} = 0V$		-	66	-	dB
Rejection							
Ratio							

LN4898

NATLINEAR						
activation	TWU	-	-	100	-	ms
time						
OFF TIME	TSDT	8Ω Load	-	25.0	-	ms
Thermal	TSD	-	-	160	-	°C
shutdown						
temperature						
Thermal	TSDH	-	-	20	-	°C
shutdown						
temperature						
hysteresis						

Application Information

- LN4898 for 8Ω speaker to provide 1W output power; supply voltage greater than 7.5V, if the output power is too large may trigger the chip internal temperature protection.
- The VDD power supply capacitance is recommended to be not less than 1uF, and the BYPASS external capacitance is generally taken as 1uF;
- The LN4898 has a gain of 2*R4/R1, so selecting a lower gain will give you the best electrical output;
- For LN4898 differential signal input, it is recommended to add capacitor C5 in parallel with R4;
- The SD console is normally turned on by adding a 20KΩ resistor pull-up to VDD;
- R1 and C1 form the high pass filter structure of the audio input, set the corresponding high pass filter -3dB point according to the desired frequency range, C1 capacitance is not recommended to be larger than 0.47uF;
- Avoid shorting output VO1/VO2 to power supply VDD;
- All electronic components on the PCB board should be on the same surface as the IC, and resistors and capacitors should be as close as possible to the IC;
- In order to prevent antenna interference to the signal, the double-layer PCB board should be wired in a straight and symmetrical layout as far as possible;
- Keep the GND loop short in the PCB.

no.: nl-qr-830-19 ver: 19c01 6 www.natlinear.com

■ Package Information

• SOP8

Cumbal	Dimensions	In Millimeters	Dimensions In Inches		
Symbol	Min	Max.	Min	Max.	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.007	0.010	
D	4.700	5.100	0.185	0.200	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.270 (BSC)		0.050 (BSC)		
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	