explicação

🗐 Relatório Final - Engenharia do Conhecimento 2024/2025

📚 Passo 1: Análise Exploratória de Dados (EDA)

1.0 Importação de Bibliotecas

• Bibliotecas de manipulação de dados, visualização e machine learning foram importadas antecipadamente para uso posterior.

1.1 Carregamento de Dados

- Dados carregados do arquivo custom_covid19.csv.
- Visualização das 5 primeiras linhas para uma inspeção inicial.

1.2 Identificação dos Tipos de Variáveis

- Variáveis categóricas, numéricas e especiais (como DATE_DIED) foram identificadas.
- Nova coluna DIED criada (0 = vivo, 1 = falecido).

1.3 Análise de Valores Ausentes

- Valores 97, 98 e 99 tratados como ausentes.
- Gráfico de barras gerado para visualizar a distribuição de valores ausentes.

1.4 Detecção de Outliers

- Método IQR aplicado para detectar outliers em variáveis numéricas (principalmente AGE).
- Gráficos Boxplot gerados.

1.5 Distribuição das Variáveis

• Gráficos de distribuição e contagem gerados para variáveis importantes como AGE, SEX, ICU, etc.

1.6 Análise de Correlação

- Matriz de correlação gerada entre variáveis numéricas.
- Heatmap de correlação visualizado.

1.7 Reconhecimento de Variáveis Importantes

- Com base na análise estatística e conhecimento médico, foram selecionadas variáveis relevantes para:
 - O1 (Previsão de morte)
 - O2 (Previsão de idade)
 - O3 (Previsão da idade entre falecidos)

1.8 Comparação de Médias por Grupos

• Comparação dos valores médios de variáveis importantes entre vivos e falecidos.

1.9 Baseline - Árvore de Decisão

• Treinamento de uma árvore de decisão simples como baseline para a tarefa O1.

1.10 Tratamento de Valores Ausentes

- Preenchimento de valores ausentes:
 - Categóricos com moda.
 - Numéricos com mediana.

1.11 Salvamento do Dataset Limpo

- Correção de tipos de dados.
- Salvamento do dataset limpo em custom_covid19_cleaned.csv.

Passo 2: Tarefa O1 - Previsão de Morte (Classificação)

2.1 Preparação dos Dados

- Seleção das variáveis importantes para O1.
- Separação em conjunto de treino e validação.

2.2 Treinamento de Modelos

Treinamento de:

- Árvore de Decisão (baseline)
- Regressão Logística (com normalização dos dados)

2.3 Avaliação dos Modelos

- Avaliação usando métricas como F1-score, MCC e matrizes de confusão.
- Regressão Logística apresentou melhor desempenho que Árvore de Decisão.

2.4 Comparação e Seleção do Melhor Modelo

• Regressão Logística escolhida como base para otimização.

2.5 Otimização da Regressão Logística

- Aplicação de GridSearchCV para otimizar o hiperparâmetro c.
- Melhor modelo salvo como logistic_regression_best.pkl .

2.6 Ajuste da Árvore de Decisão (Opcional)

 Teste de diferentes hiperparâmetros via GridSearch, mas sem superação da Regressão Logística.

3.1 Preparação dos Dados

- Seleção das variáveis relevantes para previsão de idade.
- Padronização dos dados.

3.2 Treinamento de Modelos

- Treinamento de:
 - Random Forest Regressor
 - o Regressão Ridge
 - o Regressão Linear
- SVR descartado devido ao tempo de treinamento excessivo.

3.3 Avaliação dos Modelos

• Avaliação usando MAE, RMSE, R² e correlação de Pearson.

Random Forest apresentou melhor desempenho geral.

3.4 Visualização

• Gráfico de dispersão Real vs Predito para Random Forest.

3.5 Salvamento do Melhor Modelo

• Random Forest salvo como random_forest_age_predictor.pkl .

© Passo 4: Tarefa O3 - Previsão da Idade entre Pacientes Falecidos

4.1 Preparação dos Dados

- Seleção apenas dos pacientes falecidos.
- Seleção das variáveis relevantes (important_features_O3).
- Padronização dos dados.

4.2 Treinamento do Modelo

• Random Forest treinado para prever idade entre falecidos.

4.3 Avaliação

- Avaliação dos erros e coeficientes.
- Resultado demonstrou que prever idade apenas com essas variáveis é extremamente difícil.

4.4 Salvamento do Modelo

Modelo salvo como random_forest_deceased_age_predictor.pkl.

Passo 5: Resumo dos Atributos e Conclusões

5.1 Resumo das Principais Variáveis

- **O1** (**Previsão de morte**): idade, ICU, intubação, pneumonia, diabetes, etc.
- O2 (Previsão da idade): diabetes, tabagismo, doenças crônicas.
- **O3** (**Previsão** da idade entre falecidos): características de gravidade e comorbidades.

5.2 Tabela de Importância dos Atributos

Tarefa	Principais Variáveis	Observações
O1 (Previsão de morte)	idade, ICU, intubação, pneumonia, diabetes, etc.	Idade e gravidade da condição têm grande impacto na mortalidade.
O2 (Previsão da idade)	doenças crônicas, tabagismo	Associação moderada com a idade.
O3 (Previsão da idade entre falecidos)	condições graves	Difícil prever idade com base apenas em comorbidades.

5.3 Observações Finais

- A tarefa O1 foi relativamente mais fácil e os modelos tiveram bom desempenho.
- A tarefa O2 teve desempenho razoável; a relação entre doenças e idade é fraca.
- A tarefa O3 mostrou ser extremamente difícil de resolver com os dados disponíveis.

Fim do Relatório