Predicting Prediabetes and Diabetes with Machine Learning

National Health and Nutrition Examination Survey 2007 - 2016

Tracy Cardwell

The Problem

- 10.5% of American population had diabetes as of 2018.
- One quarter of them didn't know it!
- 34.5% of American adults had prediabetes.
- Just over one in ten knows!

The Problem

Diabetes:

- 7th leading killer of Americans
- Leading cause of end-stage kidney failure, blindness in working-age adults, amputation
- 2 to 4 fold risk of heart attack, stroke
- \$327 Billion cost

Prediabetes:

- Increased risk of heart attack, stroke, kidney disease
- Increased risk of type 2 diabetes

Can Machine Learning Help?

- Increasing use in health care to aid in diagnosis, create tailored treatment
- Leverage health care resources where spread thin
- Gain new insights from health data
- More people who know = earlier treatment and lower cost

Predict Prediabetes and Diabetes with Machine Learning

- National Health and Nutrition Examination Survey 2007-2016
- Python machine learning
- Predict prediabetes using American Diabetes Association diagnostic criteria with blood test results
- Predict diabetes using prescription medication records
- Look for risk factors for prediabetes and diabetes
- Help identify who should get tested

NHANES

- Two year survey cycles
- Changes in survey content between cycles
- Demographics, socioeconomics, dietary intake, physical examination, laboratory testing, prescription medications, questionnaires on many health-related topics
- 5,000 participants per year
- Oversampling of certain groups to ensure subsample sizes adequate for analysis

- Indicator based on laboratory results using American Diabetes Association diagnostic criteria
- Distribution similar to National Diabetes
 Statistics Report

- Many features with right skews, long right tails
- Very high outliers
- Data verified, outliers are valid measurements
- Mean glycohemoglobin (long term blood sugar) at prediabetes diagnosis threshold!

- Clear upward trend in glycohemoglobin with increasing age
- Proportion in diabetic range (>=
 6.5%) higher over 30 years old
- Many teens in diabetic range

 Many features have a clear trend upward from healthy blood sugar through prediabetes to diabetes.

- Data analysis found relationship between diabetes and gender.
- Also high blood pressure, activity level, triglycerides, body mass index, serum iron, marital status, and asparate aminotransferase (AST)

Machine Learning Approach

- Two groups of models
- Group 1: multiclass
 classification with target
 determined by laboratory
 results and American
 Diabetes Association
 classifications.

Machine Learning Approach

- Group 2: binary classification with target defined by participant medication use for diabetes
- Logistic Regression and tree based models due to very high dimensionality

https://www.diabetes.org/diabetes/medication-management

Preprocessing

- Hundreds of features
- Duplicate features, different units
- Highly (nearly perfectly) correlated features
- Some features not collected entire ten years
- Some features moved during ten years
- Self-reported continuous features with code values above data range: "don't know", "refused to answer"
- IterativeImputer to fill nulls
- Dummy variables for categoricals
- StandardScaler for Logistic Regression continuous features

Group 1 Results

- XGBoost performed best.
- No model was a strong predictor of prediabetes.
- They all had better precision with diabetes.

Summary of pre-tuning results:

Model	Accuracy (test)	Accuracy (5-fold cv train)	Precision	Recall/Sensitivity	Specificity	F1- Score	ROC
Logistic Regression	.715	71.7 (.274)	.58	.63	.77	.60	.74
Decision Tree	.597	60.1 (.381)	.45	.46	.72	.46	.60
Random Forest	.674	67.3 (.540)	.55	.47	.80	.50	.74
Adaboost	.705	70.5 (.317)	.59	.53	.81	.56	.73
Gradient Boosting	.717	72.0 (.262)	.60	.56	.81	.58	.76
XGBoost	.712	71.7 (.457)	.60	.55	.81	.57	.77

Post-tuning:

Model	Accuracy (test)	Accuracy (5-fold cv train)	Precision	Recall/Sensitivity	Specificity	F1-Score	ROC AUC
Random Forest	.702	70.7 (.584)	.57	.60	.78	.59	.76
XGBoost	.728	72.8 (.529)	.61	.59	.81	.60	.77

Note: Accuracy is for overall model. All other measures are for Prediabetes class.

As this is medical data, reported Sensitivity & Specificity in addition to Precision & Recall.

XGBoost Model

Group 2 Results

- XGBoost again outperformed other models.
- Better
 precision than
 Group 1
 diabetes
 results

Summary of results pre-tuning:

Model	Accuracy (test)	Accuracy (5-fold cv train)	Precision	Recall/Sensitivity	Specificity	F1- Score	ROC
Logistic Regression	.935	93.8 (.723)	.75	.88	.95	.81	.97
Decision Tree	.928	92.0 (.576)	.77	.78	.96	.77	.87
Random Forest	.917	91.7 (.703)	.85	.57	.98	.69	.97
Adaboost	.942	94.1 (.575)	.82	.81	.97	.81	.97
Gradient Boosting	.953	95.4 (.324)	.81	.92	.96	.86	.98
XGBoost	.952	95.5 (.537)	.82	.89	.96	.85	.98

Post-tuning:

Model	Accuracy (test)	Accuracy (5-fold cv train)	Precision	Recall/Sensitivity	Specificity	F1-Score	ROC AUC
Random Forest	.948	95.4 (.448)	.78	.93	.95	.85	.98
XGBoost	.951	95.7 (.596)	.81	.89	.96	.85	.98

Note: Accuracy is for overall model. All other measures are for positive class: Diabetes.

As this is medical data, reported Sensitivity & Specificity in addition to Precision & Recall.

XGBoost Model

Most Important Features Overall

Conclusion

- XGBoost performed best on data
- 60% precision predicting prediabetes in group 1
 - o 33.7% of sample
- 80% precision predicting diabetes in group 2
 - o 15.8% of sample
- Class imbalance
- More feature overlap between healthy and prediabetes than healthy and diabetes
- Group 2 included diagnostic labs as features
- Noise in features
- Novel important feature: Osmolality for prediabetes

Future Work

- More feature engineering
 - Noisy features
 - Imputation for categoricals
 - Dummy definition for tree models
 - Class imbalance
 - Additional correlated features
 - Outliers
- Stacked models