21-484 Notes JD Nir jnir@andrew.cmu.edu March 21, 2012

 \to Recall: Dirac's Fan Lemma: A graph is k-connected iff it has at least k+1 vertices and for every vertex x and every set $U \subset V(G) \setminus x, |U| \ge k$, there is an x, U-fan of size k.

an x, U-fan is a collection of paths from x to vertices of U such that for every two paths the only common vertex is x.

Theorem (Chvátal-Erdős): Let G be a graph with at least 3 vertices such that $\alpha(G) \leq \kappa(G)$. Then G is Hamiltonian.

<u>Proof:</u> \rightarrow Let $k = \kappa(G)$ and let C be a longest cycle in G.

- \rightarrow Denote the vertices of C cyclically by $V(C) = \{v_0, \dots, v_{\ell-1}\}$ (think of the indices as the elements of \mathbb{Z}_{ℓ})
- \rightarrow AFSOC that C is not a Hamiltonian cycle.
- \rightarrow Let V be a vertex of G out of C.
- \rightarrow Let \mathcal{F} be a v, V(C) fan of maximumal size. Denote $\mathcal{F} = \{P_i | i \in I\}$ where P_i is a $v-v_i$ path.
- \rightarrow <u>observe</u>:
- \rightarrow By the Fan Lemma
 - (*) $|\mathcal{F}| = |I| \ge \min(|C|, k)$ using the fact that a k-connected graph is also k-1 connected
- \rightarrow for every $i \in I$, $v_{i+1}v \notin E(G)$. Otherwise

 $(C \cup P_i \cup P_{i+1}) - v_i v_{i+1}$ is a cycle longer than C

- \rightarrow for every $j \notin I$, $vv_i \notin E(G)$.
- \Rightarrow if $i \in I$ then $i + 1 \notin I$.
- $\Rightarrow |T| < |I|$
- $\Rightarrow |I| \ge k \text{ (from } (*))$

 \rightarrow If $i,j\in I$ then $v_{i+1}v_{j+1}\notin E.$ Otherwise the cycle

$$\underbrace{v_{j+1},\ldots,v_{i}}_{C}, P_{i+1}, P_{j}, \underbrace{v_{j-1},\ldots,v_{i+1}}_{C}, v_{j+1}$$

has length $|C|-2+|P_i|+|P_j|+1>C$

 \rightarrow the set $S=\{v_{i+1}|i\in I\}\cup\{v\}$ is an independent set.

$$\rightarrow |S| = |I| + 1 > k$$

$$\rightarrow \alpha(G) \ge |S| > k = \kappa(G)$$
 4

- \rightarrow The Petersen Graph shows that this is tight (having $\alpha(PG)=4$ and $\kappa(PG)=3$ and being non-Hamiltonian.)
- \rightarrow Consider $K_{s,s+1}$

$$K_{s,s+1}$$

$$\kappa(K_{s,s+1}) = s$$

$$\alpha(K_{s,s+1}) = s+1$$

not Hamiltonian, so the Theorem is tight.

Corollary: If a graph G has $\alpha(G) \leq \kappa(G) + 1$ then G contains a Hamiltonian path.

-<u>Proof:</u>

$$\alpha(G') = \alpha(G)$$

$$\kappa(G') = \kappa(G) + 1$$

 \rightarrow By the Chvátal-Erdős theorem, G' contains a Hamiltonian cycle. Thus G contains a Hamiltonian path.