Application No.:

10/633,329

Filing Date.

August 1, 2003

REMARKS

Claims 1-10, 12, 17-31, 36-48, 50, 55-57, 59, 61, 62, 73-82, 93-136, and 145-170 were pending in the present application. By virtue of this response, Claims 1, 20, 39, 59, 61, 62, and 155 have been amended, and new Claims 171-176 have been added. Accordingly, Claims 1-10, 12, 17-31, 36-48, 50, 55-57, 59, 61, 62, 73-82, 93-136, and 145-176 are currently under consideration. Amendment and cancellation of certain claims are not to be construed as a dedication to the public of any of the subject matter of the claims as previously presented.

Claim Rejections under 35 U.S.C. § 112

Claim 155

Claim 155 stands rejected under 35 U.S.C. 112, second paragraph, as allegedly indefinite for purportedly failing to particularly point out and distinctly claim the subject matter which Applicants regard as the invention. More specifically, the Examiner alleged that the conversion step in Claim 1, from which Claim 155 indirectly depends, cannot use the modified calibration set, because the modified calibration set is obtained after the conversion has occurred.

In response, Applicants amend Claim 155 to recite an additional "step of converting sensor data into calibrated data using the modified set." Accordingly, Applicants respectfully request that the rejection be withdrawn.

Claim Rejections under 35 U.S.C. § 103(a)

Claims 1-10, 12, 17-31, 36-48, 50, 55-57, 59, 61-62, 73-82, 93-113, 116-121, 124-130, 133-147, and 150-170

Claims 1-10, 12, 17-31, 36-48, 50, 55-57, 59, 61-62, 73-82, 93-113, 116-121, 124-130, 133-147, and 150-170 stand rejected under 35 U.S.C. § 103(a) as allegedly unpatentable over U.S. Patent Application Publication No. 2007/0161288 (hereinafter referred to as "Shin") in view of a published article titled "The MiniMed Continuous Glucose Monitoring System" (hereinafter referred to as "Mastrototaro"), U.S. Patent No. 5,706,807 (hereinafter referred to as "Millar"), and U.S. Patent Application Publication No. 2007/0213610 (hereinafter referred to as "Say"). Applicants respectfully traverse the obviousness rejection. The limitations of the rejected claims are set forth in the listing of claims provided above.

It is well settled that the Examiner "bears the initial burden of presenting a prima facie case of unpatentability..." In re Sullivan, 498 F.3d 1345 (Fed. Cir. 2007). Until the Examiner has established a prima facie case of obviousness, Applicants need not present arguments or evidence of non-obviousness. To establish a prima facie case of obviousness, the Examiner must establish at least three elements. First, the prior art reference (or references when combined) must teach or suggest all of the claim limitations: "All words in a claim must be considered in judging the patentability of that claim against the prior art." In re Wilson, 424 F.2d 1382, 165 U.S.P.Q. 494, 496 (CCPA 1970); see also M.P.E.P. § 2143.03. Second, there must be a reasonable expectation of success. In re Merck & Co., Inc., 800 F.2d 1091 (Fed. Cir. 1986); see also M.P.E.P. § 2143.02. And finally, the Examiner must articulate some reason to modify or combine the cited references that renders the claim obvious. Merely establishing that the claimed elements can be found in the prior art is not sufficient to establish a prima facie case of obviousness:

As is clear from cases such as <u>Adams</u>, a patent composed of several elements is <u>not</u> proved obvious merely by demonstrating that each of its elements was, independently, known in the prior art. KSR Int'l Co. v. Teleflex Inc., 127 S. Ct. 1727, 1741 (2007) (emphasis added).

Instead, the Court has made clear that the Examiner must establish a reason one of skill in the art would have combined the elements of the prior art, and that such reason must be more than a conclusory statement that it would have been obvious.

Often, it will be necessary for a court to look to interrelated teachings of multiple patents; the effects of demands known to the design community or present in the marketplace; and the background knowledge possessed by a person having ordinary skill in the art, all in order to determine whether there was an apparent reason to combine the known elements in the fashion claimed by the patent at issue. To facilitate review, this analysis should be made explicit. See In re Kahn, 441 F.3d 977, 988 (C.A.Fed.2006) ("[R]ejections on obviousness grounds cannot be sustained by mere conclusory statements; instead, there must be some articulated reasoning with some rational underpinning to support the legal conclusion of obviousness"). [Underlining added for emphasis.] KSR Int'l Co. v. Teleflex Inc., 127 S. Ct. 1727, 1740-1741 (2007).

In the last Office Action, the Examiner acknowledged that Shin "does not evaluate the quality of [a] calibration set" and that Mastrototaro only "teaches retrospective calibration, i.e., it calibrates the data after it has been collected." *See* Office Action dated December 18, 2008, page

3. The Examiner, however, contended that "Millar teaches using the R-value is a real time or prospective calibration" and that it purportedly "would have been obvious to modify the Shin/Mastrototaro combination to evaluate the calibration in real time, as it is merely [the] substitution of one equivalent technique for another." *Id.*

Applicants respectfully disagree. Contrary to the Examiner's assertion, the calibration mechanism used by Mastrototaro cannot be arbitrarily modified by replacing Mastrototaro's retrospective calibration method with Millar's real-time (*i.e.*, prospective) calibration method, especially when there is no explicit teaching or suggestion to do so. To clarify, Mastrototaro teaches a continuous glucose monitoring system that uses a calibration mechanism, which specifically requires the obtaining of at least three meter-sensor data pairs for each new day and the discarding of meter-sensor data pairs obtained from previous days. By contrast, Millar teaches an apparatus, for determining the amount of components in a pulping liquor, that uses a calibration mechanism, which specifically requires the continuous accumulation of new meter-sensor data pairs that improve the R-value (*i.e.*, correlation) of Millar's calibration algorithm. In other words, whereas Mastrototaro's calibration mechanism employs a moving time window, in which meter-sensor data pairs obtained earlier than a 24-hour time period are discarded, Millar's calibration mechanism does not employ such a window, and as such, meter-sensor data pairs are selectively obtained and retained indefinitely.

Applicants submit that if the Mastrototaro calibration mechanism was modified to replace Mastrototaro's retrospective calibration method with Millar's real-time calibration method, as suggested by the Examiner, the proposed modification would render the Mastrototaro calibration mechanism unsatisfactory for its intended purpose. See In re re Grasselli, 713 F.2d 731, 743 (Fed. Cir. 1983) (holding that it is improper to combine references where the references teach away from their combination); see also In re Gordon, 733 F.2d 900, 902 (Fed. Cir. 1984) (finding no suggestion to modify the prior art device where the modification would render the device inoperable for its intended purpose). For instance, a design problem would arise as to whether the hypothetically modified calibration mechanism would still retain the moving time window employed by the Mastrototaro calibration mechanism. If the moving time window was retained in the hypothetically modified Mastrototaro calibration mechanism, then the modified calibration mechanism would seemingly be incapable of providing reliably accurate prospective

calibration, because the Mastrototaro calibration mechanism uses only those meter-sensor data pairs received for any given day to evaluate calibration, which would appear to include either 0, 1, 2, or 3 meter-sensor data pairs depending on the time of the day (and the number of meter readings received) and thus, during at least some portion of each day, there would not be sufficient meter-sensor data pairs to obtain a meaningful correlation coefficient. (Mastrototaro specifically describes this problem in stating that a warning message would appear if fewer than three meter-sensor data pairs exist for a given day, "because the correlation coefficient in such a case cannot be meaningfully calculated"). By contrast, if the time window was not employed in the modified calibration mechanism, and new meter-sensor data pairs were continuously accumulated without discarding aged meter-sensor data pairs, as taught by Millar, Applicants submit that R-value evaluation would also not provide accurate calibration, because an approach involving adding new meter-sensor data pairs, without a mechanism for discarding at least some meter-sensor data pairs, would expose the calibration mechanism to drift and other potential errors. This is particularly true with biological sensor systems, such as Mastrototaro's system, where inevitable physiological changes (e.g., changes in metabolism, interfering blood constituencies, lifestyle changes) will affect sensor calibration, in contrast to a wood pulping process, as taught in Millar, where process conditions may be controlled and held substantially constant.

Applicants submit that there are no teachings in Mastrototaro nor in Millar that would reasonably lead one of skill in the art to modify Mastrototaro's calibration mechanism to incorporate Millar's real-time calibration method. Furthermore, the Office Action has provided no guidance as to how the teachings of Mastrototaro and Millar can be reasonably combined to successfully construct a calibration mechanism corresponding to the claimed invention, particularly where the calibration mechanisms described in Mastrototaro and Millar appear to be diametrically opposed to each other (*i.e.*, retrospective calibration in Mastrototaro vs. prospective calibration in Millar). For at least these reasons, the obviousness rejection of Claims 1-10, 12, 17-31, 36-48, 50, 55-57, 59, 61-62, 73-82, 93-113, 116-121, 124-130, 133-147, and 150-170 cannot stand. Applicants therefore respectfully request that the rejection be wtihdrawn.

Claims 114-115, 122-123, 131-132, and 148-149 stand rejected under 35 U.S.C. § 103(a) as allegedly unpatentable over Shin in view of Mastrototaro, Millar, and Say, and further in view of an article titled Clinical Performance of CGMS in Type 1 Diabetic Patients Treated by Continuous Subcutaneous Insulin Infusion Using Insulin Analogs (hereinafter referred to as "Guerci"). The limitations of the rejected claims are set forth in the listing of claims provided above, along with the criteria for establishing a *prima facie* case of obviousness and the teachings of Shin, Mastrototaro, Millar, and Say. As discussed above, Shin, Mastrototaro, Millar, and Say in combination do not fairly teach or suggest the invention as recited in Applicants' pending claims. Guerci includes no teaching overcoming the deficiencies of Shin, Mastrototaro, Millar, and Say; Guerci merely teaches that both R wave and Clarke error grid are known ways to evaluate a glucose sensor. Accordingly, Claims 114-115, 122-123, 131-132, and 148-149, which directly depend from independent Claims 1, 20, 39, or 62, are patentable for at least the same reasons that Claims 1, 20, 39, and 62 are patentable. Applicants therefore respectfully request that the rejection be wtihdrawn.

New Claims

New Claims 171-176 recite evaluating the quality of the calibration set using a statistical or clinical association of at least one matched data pair with one or more clinically-based or physiologically based-criteria. None of the references cited in the Office Action, alone or in combination, teach or fairly suggest this feature. Accordingly, Applicants submit that new Claims 171-176 are allowable for at least this reason, and for at least the same reasons described above with respect to Claims 1, 20, 39, 59, 61, and 62.

Co-Pending Applications of Assignee

Applicants wish to draw the Examiner's attention to the following applications of the present application's assignee.

Docket No.	Serial No.	Title	Filed
DEXCOM.9CPDVC	07/122395	BIOLOGICAL FLUID MEASURING	11/19/1987
		DEVICE	

10/633,329 August 1, 2003

Docket No.	Serial No.	Title	Filed
DEXCOM.9CPDCP	07/216683	BIOLOGICAL FLUID MEASURING	7/7/1988
		DEVICE	
DEXCOM.008A	08/811473	DEVICE AND METHOD FOR	3/4/1997
		DETERMINING ANALYTE LEVELS	
DEXCOM.008DV1	09/447227	DEVICE AND METHOD FOR	11/22/1999
		DETERMINING ANALYTE LEVELS	
DEXCOM.8DVC1	09/489588	DEVICE AND METHOD FOR	1/21/2000
·		DETERMINING ANALYTE LEVELS	
DEXCOM.8DVCP1	09/636369	SYSTEMS AND METHODS FOR	8/11/2000
		REMOTE MONITORING AND	
		MODULATION OF MEDICAL	
		DEVICES	
DEXCOM.006A	09/916386	MEMBRANE FOR USE WITH	7/27/2001
		IMPLANTABLE DEVICES	
DEXCOM.007A	09/916711	SENSOR HEAD FOR USE WITH	7/27/2001
		IMPLANTABLE DEVICE	
DEXCOM.8DVCP2	09/916858	DEVICE AND METHOD FOR	7/27/2001
		DETERMINING ANALYTE LEVELS	
DEXCOM.010A	10/153356	TECHNIQUES TO IMPROVE	5/22/2002
		POLYURETHANE MEMBRANES FOR	
		IMPLANTABLE GLUCOSE SENSORS	
DEXCOM.024A	10/632537	SYSTEM AND METHODS FOR	8/1/2003
		PROCESSING ANALYTE SENSOR	
		DATA	
DEXCOM.026A	10/633329	SYSTEM AND METHODS FOR	8/1/2003
		PROCESSING ANALYTE SENSOR	
		DATA	
DEXCOM.016A	10/633367	SYSTEM AND METHODS FOR	8/1/2003
		PROCESSING ANALYTE SENSOR	
		DATA	
DEXCOM.025A	10/633404	SYSTEM AND METHODS FOR	8/1/2003
		PROCESSING ANALYTE SENSOR	
		DATA	
DEXCOM.011A	10/646333	OPTIMIZED SENSOR GEOMETRY FOR	8/22/2003
		AN IMPLANTABLE GLUCOSE	
		SENSOR	
DEXCOM.012A	10/647065	POROUS MEMBRANES FOR USE	8/22/2003
		WITH IMPLANTABLE DEVICES	
DEXCOM.027A	10/648849	SYSTEMS AND METHODS FOR	8/22/2003
		REPLACING SIGNAL ARTIFACTS IN A	
		GLUCOSE SENSOR DATA STREAM	
DEXCOM.8DVC1C1	10/657843	DEVICE AND METHOD FOR	9/9/2003
		DETERMINING ANALYTE LEVELS	

Docket No.	Serial No.	Title	Filed
DEXCOM.028A	10/695636	SILICONE COMPOSITION FOR	10/28/2003
		BIOCOMPATIBLE MEMBRANE	
DEXCOM.006C1	10/768889	MEMBRANE FOR USE WITH	1/29/2004
		IMPLANTABLE DEVICES	
DEXCOM.037A	10/789359	INTEGRATED DELIVERY DEVICE	2/26/2004
		FOR CONTINUOUS GLUCOSE	•
		SENSOR	
DEXCOM.045A	10/838658	IMPLANTABLE ANALYTE SENSOR	5/3/2004
DEXCOM.044A	10/838909	IMPLANTABLE ANALYTE SENSOR	5/3/2004
DEXCOM.043A	10/838912	IMPLANTABLE ANALYTE SENSOR	5/3/2004
DEXCOM.012CP1	10/842716	BIOINTERFACE MEMBRANES	5/10/2004
		INCORPORATING BIOACTIVE	
		AGENTS	
DEXCOM.8DV1CP	10/846150	ANALYTE MEASURING DEVICE	5/14/2004
DEXCOM.048A	10/885476	SYSTEMS AND METHODS FOR	7/6/2004
		MANUFACTURE OF AN ANALYTE-	
		MEASURING DEVICE INCLUDING A	
		MEMBRANE SYSTEM	
DEXCOM.019A	10/896637	ROLLED ELECTRODE ARRAY AND	7/21/2004
		ITS METHOD FOR MANUFACTURE	
DEXCOM.021A	10/896639	OXYGEN ENHANCING MEMBRANE	7/21/2004
		SYSTEMS FOR IMPLANTABLE	
DELLCONTORON	10/00/5==0	DEVICES	
DEXCOM.020A	10/896772	INCREASING BIAS FOR OXYGEN	7/21/2004
		PRODUCTION IN AN ELECTRODE	
DEVOOM	10/007212	SYSTEM FLECTRODE GYGTENG FOR	7/21/2004
DEXCOM.023A	10/897312	ELECTRODE SYSTEMS FOR	7/21/2004
DEXCOM.022A	10/897377	ELECTROCHEMICAL SENSORS	7/21/2004
DEACOM.022A	10/89/3//	ELECTROCHEMICAL SENSORS INCLUDING ELECTRODE SYSTEMS	7/21/2004
		WITH INCREASED OXYGEN	
		GENERATION	
DEXCOM.030A	10/991353	AFFINITY DOMAIN FOR ANALYTE	11/16/2004
	10,771333	SENSOR	11/10/2004
DEXCOM.032A	10/991966	INTEGRATED RECEIVER FOR	11/17/2004
,		CONTINUOUS ANALYTE SENSOR	
DEXCOM.038A	11/004561	CALIBRATION TECHNIQUES FOR A	12/3/2004
		CONTINUOUS ANALYTE SENSOR	
DEXCOM.031A	11/007635	SYSTEMS AND METHODS FOR	12/7/2004
		IMPROVING ELECTROCHEMICAL	
		ANALYTE SENSORS	

Docket No.	Serial No.	Title	Filed
DEXCOM.029A	11/007920	SIGNAL PROCESSING FOR	12/8/2004
		CONTINUOUS ANALYTE SENSOR	
DEXCOM.008DV1C	11/021046	DEVICE AND METHOD FOR	12/22/2004
		DETERMINING ANALYTE LEVELS	
DEXCOM.007C1	11/021162	SENSOR HEAD FOR USE WITH	12/22/2004
		IMPLANTABLE DEVICES	
DEXCOM.040A	11/034343	COMPOSITE MATERIAL FOR	1/11/2005
		IMPLANTABLE DEVICE	
DEXCOM.039A	11/034344	IMPLANTABLE DEVICE WITH	1/11/2005
		IMPROVED RADIO FREQUENCY	
		CAPABILITIES	
DEXCOM.024C1	11/038340	SYSTEM AND METHODS FOR	1/18/2005
		PROCESSING ANALYTE SENSOR	
		DATA	
DEXCOM.8DVCP2C	11/039269	DEVICE AND METHOD FOR	1/19/2005
		DETERMINING ANALYTE LEVELS	
DEXCOM.034A	11/055779	BIOINTERFACE MEMBRANE WITH	2/9/2005
		MACRO- AND MICRO-	
		ARCHITECTURE	
DEXCOM.051A8	11/077643	TRANSCUTANEOUS ANALYTE	3/10/2005
		SENSOR	
DEXCOM.051A5	11/077693	TRANSCUTANEOUS ANALYTE	3/10/2005
		SENSOR	
DEXCOM.051A4	11/077713	TRANSCUTANEOUS ANALYTE	3/10/2005
		SENSOR	
DEXCOM.051A6	11/077714	TRANSCUTANEOUS ANALYTE	3/10/2005
		SENSOR	
DEXCOM.051A	11/077715	TRANSCUTANEOUS ANALYTE	3/10/2005
		SENSOR	
DEXCOM.051A10	11/077739	TRANSCUTANEOUS ANALYTE	3/10/2005
		SENSOR	
DEXCOM.051A11	11/077740	TRANSCUTANEOUS ANALYTE	3/10/2005
		SENSOR	
DEXCOM.050A	11/077759	TRANSCUTANEOUS MEDICAL	3/10/2005
		DEVICE WITH VARIABLE STIFFNESS	
DEXCOM.051A7	11/077763	METHOD AND SYSTEMS FOR	3/10/2005
		INSERTING A TRANSCUTANEOUS	
		ANALYTE SENSOR	
DEXCOM.051A12	11/077765	TRANSCUTANEOUS ANALYTE	3/10/2005
		SENSOR	
DEXCOM.051A1	11/077883	TRANSCUTANEOUS ANALYTE	3/10/2005
		SENSOR	

Docket No.	Serial No.	Title	Filed
DEXCOM.051A9	11/078072	TRANSCUTANEOUS ANALYTE SENSOR	3/10/2005
DEXCOM.051A2	11/078230	TRANSCUTANEOUS ANALYTE SENSOR	3/10/2005
DEXCOM.051A3	11/078232	TRANSCUTANEOUS ANALYTE SENSOR	3/10/2005
DEXCOM.061A1	11/157365	TRANSCUTANEOUS ANALYTE SENSOR	6/21/2005
DEXCOM.061A	11/157746	TRANSCUTANEOUS ANALYTE SENSOR	6/21/2005
DEXCOM.061A2	11/158227	TRANSCUTANEOUS ANALYTE SENSOR	6/21/2005
DEXCOM.016C1	11/201445	SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA	8/10/2005
DEXCOM.010DV2	11/280102	TECHNIQUES TO IMPROVE POLYURETHANE MEMBRANES FOR IMPLANTABLE GLUCOSE SENSORS	11/16/2005
DEXCOM.010DV1	11/280672	TECHNIQUES TO IMPROVE POLYURETHANE MEMBRANES FOR IMPLANTABLE GLUCOSE SENSORS	11/16/2005
DEXCOM.063A	11/333837	LOW OXYGEN IN VIVO ANALYTE SENSOR	1/17/2006
DEXCOM.061CP1	11/334107	TRANSCUTANEOUS ANALYTE SENSOR	1/17/2006
DEXCOM.061CP2	11/334876	TRANSCUTANEOUS ANALYTE SENSOR	1/18/2006
DEXCOM.058A	11/335879	CELLULOSIC-BASED INTERFERENCE DOMAIN FOR AN ANALYTE SENSOR	1/18/2006
DEXCOM.077A	11/360250	ANALYTE SENSOR	2/22/2006
DEXCOM.061CP3	11/360252	ANALYTE SENSOR	2/22/2006
DEXCOM.051CP1	11/360262	ANALYTE SENSOR	2/22/2006
DEXCOM.051CP2	11/360299	ANALYTE SENSOR	2/22/2006
DEXCOM.061CP4	11/360819	ANALYTE SENSOR	2/22/2006
DEXCOM.053A	11/373628	SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA FOR SENSOR CALIBRATION	3/9/2006
DEXCOM.075A	11/404417	SILICONE BASED MEMBRANES FOR USE IN IMPLANTABLE GLUCOSE SENSORS	4/14/2006

Docket No.	Serial No.	Title	Filed
DEXCOM.010CP1	11/404418	SILICONE BASED MEMBRANES FOR USE IN IMPLANTABLE GLUCOSE SENSORS	4/14/2006
DEXCOM.054A1	11/404421	ANALYTE SENSING BIOINTERFACE	4/14/2006
DEXCOM.054A	11/404929	ANALYTE SENSING BIOINTERFACE	4/14/2006
DEXCOM.054A2	11/404946	ANALYTE SENSING BIOINTERFACE	4/14/2006
DEXCOM.021C1	11/410392	OXYGEN ENHANCING MEMBRANE SYSTEMS FOR IMPLANTABLE DEVICES	4/25/2006
DEXCOM.021DV1	11/410555	OXYGEN ENHANCING MEMBRANE SYSTEMS FOR IMPLANTABLE DEVICES	4/25/2006
DEXCOM.051CP1C1	11/411656	ANALYTE SENSOR	4/26/2006
DEXCOM.060A	11/413238	CELLULOSIC-BASED RESISTANCE DOMAIN FOR AN ANALYTE SENSOR	4/28/2006
DEXCOM.060A2	11/413242	CELLULOSIC-BASED RESISTANCE DOMAIN FOR AN ANALYTE SENSOR	4/28/2006
DEXCOM.060A1	11/413356	CELLULOSIC-BASED RESISTANCE DOMAIN FOR AN ANALYTE SENSOR	4/28/2006
DEXCOM.051C1	11/415593	TRANSCUTANEOUS ANALYTE SENSOR	5/2/2006
DEXCOM.011DV3	11/415631	OPTIMIZED SENSOR GEOMETRY FOR AN IMPLANTABLE GLUCOSE SENSOR	5/2/2006
DEXCOM.051C3	11/415999	TRANSCUTANEOUS ANALYTE SENSOR	5/2/2006
DEXCOM.011DV1	11/416058	OPTIMIZED SENSOR GEOMETRY FOR AN IMPLANTABLE GLUCOSE SENSOR	5/2/2006
DEXCOM.011DV2	11/416346	OPTIMIZED SENSOR GEOMETRY FOR AN IMPLANTABLE GLUCOSE SENSOR	5/2/2006
DEXCOM.051C2	11/416375	TRANSCUTANEOUS ANALYTE SENSOR	5/2/2006
DEXCOM.012CP1C2	11/416734	BIOINTERFACE MEMBRANES INCORPORATING BIOACTIVE AGENTS	5/3/2006
DEXCOM.012CP1C1	11/416825	BIOINTERFACE MEMBRANES INCORPORATING BIOACTIVE AGENTS	5/3/2006
DEXCOM.051CP4	11/439559	ANALYTE SENSOR	5/23/2006
DEXCOM.051CP3	11/439630	ANALYTE SENSOR	5/23/2006

Docket No.	Serial No.	Title	Filed
DEXCOM.051CP5	11/439800	ANALYTE SENSOR	5/23/2006
DEXCOM.61CP3CP1	11/445792	ANALYTE SENSOR	6/1/2006
DEXCOM.027CP1	11/498410	SYSTEMS AND METHODS FOR REPLACING SIGNAL ARTIFACTS IN A	8/2/2006
DEVICON (#1 CD2 CD1	11/502265	GLUCOSE SENSOR DATA STREAM	0.11.0.10.0.0.0
DEXCOM.51CP3CP1	11/503367	ANALYTE SENSOR	8/10/2006
DEXCOM.27CP1CP2	11/515342	SYSTEMS AND METHODS FOR PROCESSING ANALYTE SENSOR DATA	9/1/2006
DEXCOM.27CP1CP1	11/515443	SYSTEMS AND METHODS FOR PROCESSING ANALYTE SENSOR DATA	9/1/2006
DEXCOM.088A	11/543396	ANALYTE SENSOR	10/4/2006
DEXCOM.088A3	11/543404	ANALYTE SENSOR	10/4/2006
DEXCOM.088A2	11/543490	ANALYTE SENSOR	10/4/2006
DEXCOM.038CP2	11/543539	DUAL ELECTRODE SYSTEM FOR A CONTINUOUS ANALYTE SENSOR	10/4/2006
DEXCOM.038CP3	11/543683	DUAL ELECTRODE SYSTEM FOR A CONTINUOUS ANALYTE SENSOR	10/4/2006
DEXCOM.038CP1	11/543707	DUAL ELECTRODE SYSTEM FOR A CONTINUOUS ANALYTE SENSOR	10/4/2006
DEXCOM.038CP4	11/543734	DUAL ELECTRODE SYSTEM FOR A CONTINUOUS ANALYTE SENSOR	10/4/2006
DEXCOM.8DCP2CC1	11/546157	DEVICE AND METHOD FOR DETERMINING ANALYTE LEVELS	10/10/2006
DEXCOM.012DV1	11/654135	POROUS MEMBRANES FOR USE WITH IMPLANTABLE DEVICES	1/17/2007
DEXCOM.058CP1	11/654140	MEMBRANES FOR AN ANALYTE SENSOR	1/17/2007
DEXCOM.058CP2	11/654327	MEMBRANES FOR AN ANALYTE SENSOR	1/17/2007
DEXCOM.021CP1	11/675063	ANALYTE SENSOR	2/14/2007
DEXCOM.51CP1CP1	11/681145	ANALYTE SENSOR	3/1/2007
DEXCOM.61CP2CP1	11/690752	TRANSCUTANEOUS ANALYTE SENSOR	3/23/2007
DEXCOM.088CP3	11/691424	ANALYTE SENSOR	3/26/2007
DEXCOM.088CP1	11/691426	ANALYTE SENSOR	3/26/2007
DEXCOM.088CP2	11/691432	ANALYTE SENSOR	3/26/2007
DEXCOM.088CP4	11/691466	ANALYTE SENSOR	3/26/2007

Docket No.	Serial No.	Title	Filed
DEXCOM.38CP1CP1	11/692154	DUAL ELECTRODE SYSTEM FOR A CONTINUOUS ANALYTE SENSOR	3/27/2007
DEXCOM.61CP2CP4	11/734178	TRANSCUTANEOUS ANALYTE SENSOR	4/11/2007
DEXCOM.61CP2CP2	11/734184	TRANSCUTANEOUS ANALYTE SENSOR	4/11/2007
DEXCOM.61CP2CP3	11/734203	TRANSCUTANEOUS ANALYTE SENSOR	4/11/2007
DEXCOM.093A	11/750907	ANALYTE SENSORS HAVING A SIGNAL-TO-NOISE RATIO SUBSTANTIALLY UNAFFECTED BY NON-CONSTANT NOISE	5/18/2007
DEXCOM.27CP1CP3	11/762638	SYSTEMS AND METHODS FOR REPLACING SIGNAL DATA ARTIFACTS IN A GLUCOSE SENSOR DATA STREAM	6/13/2007
DEXCOM.028DV1	11/763215	SILICONE COMPOSITION FOR BIOCOMPATIBLE MEMBRANE	6/14/2007
DEXCOM.051C4	11/797520	TRANSCUTANEOUS ANALYTE SENSOR	5/3/2007
DEXCOM.051C5	11/797521	TRANSCUTANEOUS ANALYTE SENSOR	5/3/2007
DEXCOM.061CP2C2	11/842139	TRANSCUTANEOUS ANALYTE SENSOR	8/21/2007
DEXCOM.061C1	11/842142	TRANSCUTANEOUS ANALYTE SENSOR	8/21/2007
DEXCOM.61CP2CPC	11/842143	TRANSCUTANEOUS ANALYTE SENSOR	8/20/2007
DEXCOM.061CP4C1	11/842146	ANALYTE SENSOR	8/20/2007
DEXCOM.061A1C1	11/842148	TRANSCUTANEOUS ANALYTE SENSOR	8/21/2007
DEXCOM.61CP3CPC	11/842149	TRANCUTANEOUS ANALYTE SENSOR	8/21/2007
DEXCOM.077C1	11/842151	ANALYTE SENSOR	8/21/2007
DEXCOM.061CP2C1	11/842154	TRANSCUTANEOUS ANALYTE SENSOR	8/21/2007
DEXCOM.093C1	11/842156	ANALYTE SENSORS HAVING A SIGNAL-TO-NOISE RATIO SUBSTANTILALLY UNAFFECTED BY NON-CONSTANT NOISE	8/21/2007
DEXCOM.51P3P1C1	11/842157	ANALYTE SENSOR	8/21/2007

Docket No.	Serial No.	Title	Filed
DEXCOM.096A	11/855101	TRANSCUTANEOUS ANALYTE SENSOR	9/13/2007
DEXCOM.38CP1CP2	11/865572	DUAL ELECTRODE SYSTEM FOR A CONTINUOUS ANALYTE SENSOR	10/1/2007
DEXCOM.025C1	11/865660	SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA	10/1/2007
DEXCOM.051A7C1	11/925603	TRANSCUTANEOUS ANALYTE SENSOR	10/26/2007
DEXCOM.8DV1CPD2	12/037812	ANALYTE MEASURING DEVICE	2/26/2008
DEXCOM.8DV1CPD1	12/037830	ANALYTE MEASURING DEVICE	2/26/2008
DEXCOM.107A	12/054953	ANALYTE SENSOR	3/25/2008
DEXCOM.88CP1CP2	12/055078	ANALYTE SENSOR	3/25/2008
DEXCOM.106A	12/055098	ANALYTE SENSOR	3/25/2008
DEXCOM.88CP1CP1	12/055114	ANALYTE SENSOR	3/25/2008
DEXCOM.88CP1CP3	12/055149	ANALYTE SENSOR	3/25/2008
DEXCOM.88CP1CP4	12/055203	ANALYTE SENSOR	3/25/2008
DEXCOM.88CP1CP5	12/055227	ANALYTE SENSOR	3/25/2008
DEXCOM.024C1D2	12/098353	SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA	4/4/2008
DEXCOM.024C1D1	12/098359	SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA	4/4/2008
DEXCOM.024C1D3	12/098627	SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA	4/7/2008
DEXCOM.051A6C3	12/101790	TRANSCUTANEOUS ANALYTE SENSOR	4/11/2008
DEXCOM.051A9C1	12/101806	TRANSCUTANEOUS ANALYTE SENSOR	4/11/2008
DEXCOM.051A6C2	12/101810	TRANSCUTANEOUS ANALYTE SENSOR	4/11/2008
DEXCOM.016DV1	12/102654	SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA	4/14/2008
DEXCOM.016DV2	12/102729	SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA	4/14/2008

Docket No.	Serial No.	Title	Filed
DEXCOM.016DV3	12/102745	SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA	4/14/2008
DEXCOM.034DV1	12/103594	BIOINTERFACE WITH MACRO- AND MICRO-ARCHITECTURE	4/15/2008
DEXCOM.050C1	12/105227	TRANSCUTANEOUS MEDICAL DEVICE WITH VARIABLE STIFFNESS	4/17/2008
DEXCOM.038CP3C1	12/111062	DUAL ELECTRODE SYSTEM FOR A CONTINUOUS ANALYTE SENSOR	4/28/2008
DEXCOM.063C2	12/113508	LOW OXYGEN IN VIVO ANALYTE SENSOR	5/1/2008
DEXCOM.063C1	12/113724	LOW OXYGEN IN VIVO ANALYTE SENSOR	5/1/2008
DEXCOM.094A2	12/133738	INTEGRATED MEDICAMENT DELIVERY DEVICE FOR USE WITH CONTINUOUS ANALYTE SENSOR	6/5/2008
DEXCOM.094A3	12/133761	INTEGRATED MEDICAMENT DELIVERY DEVICE FOR USE WITH CONTINUOUS ANALYTE SENSOR	6/5/2008
DEXCOM.094A4	12/133786	INTEGRATED MEDICAMENT DELIVERY DEVICE FOR USE WITH CONTINUOUS ANALYTE SENSOR	6/5/2008
DEXCOM.037CP1	12/133820	INTEGRATED MEDICAMENT DELIVERY DEVICE FOR USE WITH CONTINUOUS ANALYTE SENSOR	6/5/2008
DEXCOM.061A2DV1	12/137396	TRANSCUTANEOUS ANALYTE SENSOR	6/11/2008
DEXCOM.023RE	12/139305	ELECTRODE SYSTEMS FOR ELECTROCHEMICAL SENSORS	6/13/2008
DEXCOM.051A8C1	12/175391	TRANSCUTANEOUS ANALYTE SENSOR	7/17/2008
DEXCOM.032DV2	12/182008	INTEGRATED RECEIVER FOR CONTINUOUS ANALYTE SENSOR	7/29/2008
DEXCOM.032DV1	12/182073	INTEGRATED RECEIVER FOR CONTINUOUS ANALYTE SENSOR	7/29/2008
DEXCOM.032DV3	12/182083	INTEGRATED RECEIVER FOR CONTINUOUS ANALYTE SENSOR	7/29/2008
DEXCOM.025C1C2	12/195191	SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA	8/20/2008
DEXCOM.025C1C1	12/195773	SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA	8/21/2008

Docket No.	Serial No.	Title	Filed
DEXCOM.045DV1	12/247137	IMPLANTABLE ANALYTE SENSOR	10/7/2008
DEXCOM.051CP3DV	12/250918	ANALYTE SENSOR	10/14/2008
DEXCOM.029DV2	12/252952	SIGNAL PROCESSING FOR	10/16/2008
		CONTINUOUS ANALYTE SENSOR	
DEXCOM.029DV5	12/252967	SIGNAL PROCESSING FOR	10/16/2008
		CONTINUOUS ANALYTE SENSOR	
DEXCOM.029DV1	12/252996	SIGNAL PROCESSING FOR	10/16/2008
		CONTINUOUS ANALYTE SENSOR	
DEXCOM.029DV6	12/253064	SIGNAL PROCESSING FOR	10/16/2008
		CONTINUOUS ANALYTE SENSOR	
DEXCOM.029DV3	12/253120	SIGNAL PROCESSING FOR	10/16/2008
		CONTINUOUS ANALYTE SENSOR	
DEXCOM.029DV4	12/253125	SIGNAL PROCESSING FOR	10/16/2008
		CONTINUOUS ANALYTE SENSOR	
DEXCOM.098A	12/258235	SYSTEMS AND METHODS FOR	10/24/2008
		PROCESSING SENSOR DATA	
DEXCOM.099A2	12/258318	SYSTEMS AND METHODS FOR	10/24/2008
		PROCESSING SENSOR DATA	
DEXCOM.016CP1	12/258320	SYSTEMS AND METHODS FOR	10/24/2008
		PROCESSING SENSOR DATA	
DEXCOM.099A1	12/258325	SYSTEMS AND METHODS FOR	10/24/2008
		PROCESSING SENSOR DATA	
DEXCOM.27CP1CP4	12/258335	SYSTEMS AND METHODS FOR	10/24/2008
		PROCESSING SENSOR DATA	
DEXCOM.099A	12/258345	SYSTEMS AND METHODS FOR	10/24/2008
		PROCESSING SENSOR DATA	
DEXCOM.007C1DV1	12/260017	SENSOR HEAD FOR USE WITH	10/28/2008
		IMPLANTABLE DEVICES	
DEXCOM.029C1	12/263993	SIGNAL PROCESSING FOR	11/3/2008
		CONTINUOUS ANALYTE SENSOR	
DEXCOM.38CPCPDV	12/264160	DUAL ELECTRODE SYSTEM FOR A	11/3/2008
		CONTINUOUS ANALYTE SENSOR	
DEXCOM.043DV1	12/264835	IMPLANTABLE ANALYTE SENSOR	11/4/2008
DEXCOM.88CPP5P6	12/267494	INTEGRATED DEVICE FOR	11/7/2008
		CONTINUOUS IN VIVO ANALYTE	
		DETECTION AND SIMULTANEOUS	
		CONTROL OF AN INFUSION DEVICE	
DEXCOM.038CP5	12/267518	ANALYTE SENSOR	11/7/2008
DEXCOM.88CP1P1P	12/267525	ANALYTE SENSOR	11/7/2008
DEXCOM.88P1P1P2	12/267531	ANALYTE SENSOR	11/7/2008
DEXCOM.016CP2	12/267542	ANALYTE SENSOR	11/7/2008

Application No.: 10/6
Filing Date. Aug

10/633,329 August 1, 2003

Docket No.	Serial No.	Title	Filed
DEXCOM.88CPP5P4	12/267544	ANALYTE SENSOR	11/7/2008
DEXCOM.88CPP5P5	12/267545	ANALYTE SENSOR	11/7/2008
DEXCOM.88CPP5P3	12/267546	ANALYTE SENSOR	11/7/2008
DEXCOM.88CPP5P2	12/267547	ANALYTE SENSOR	11/7/2008
DEXCOM.88CPP5P1	12/267548	ANALYTE SENSOR	11/7/2008
DEXCOM.051A12C1	12/273359	TRANSCUTANEOUS ANALYTE SENSOR	11/18/2008
DEXCOM.051C6	12/329496	TRANSCUTANEOUS ANALYTE SENSOR	12/5/2008
DEXCOM.038CP2C1	12/335403	DUAL ELECTRODE SYSTEM FOR A CONTINUOUS ANALYTE SENSOR	12/15/2008
DEXCOM.027DV1	12/353787	SYSTEMS AND METHODS FOR REPLACING SIGNAL ARTIFACTS IN A GLUCOSE SENSOR DATA STREAM	1/14/2009
DEXCOM.027DV2	12/353799	SYSTEMS AND METHODS FOR REPLACING SIGNAL ARTIFACTS IN A GLUCOSE SENSOR DATA STREAM	1/14/2009
DEXCOM.061C2	12/353870	TRANSCUTANEOUS ANALYTE SENSOR	1/14/2009
DEXCOM.051C7	12/359207	TRANSCUTANEOUS ANALYTE SENSOR	1/23/2009
DEXCOM.100A	12/362194	CONTINUOUS CARDIAC MARKER SENSOR SYSTEM	1/29/2009
DEXCOM.061CP2C3	12/364786	TRANSCUTANEOUS ANALYTE SENSOR	2/3/2009
DEXCOM.101A	12/365683	CONTINUOUS MEDICAMENT SENSOR SYSTEM FOR IN VIVO USE	2/4/2009
DEXCOM.102A2	12/390205	SYSTEMS AND METHODS FOR CUSTOMIZING DELIVERY OF SENSOR DATA	2/20/2009
DEXCOM.102A3	12/390290	SYSTEMS AND METHODS FOR BLOOD GLUCOSE MONITORING AND ALERT DELIVERY	2/20/2009
DEXCOM.102A1	12/390304	SYSTEMS AND METHODS FOR PROCESSING, TRANSMITTING AND DISPLAYING SENSOR DATA	2/20/2009
DEXCOM.061DV1	12/391148	TRANSCUTANEOUS ANALYTE SENSOR	2/23/2009
DEXCOM.051C10	12/393887	TRANSCUTANEOUS ANALYTE SENSOR	2/26/2009
DEXCOM.104A2	12/413166	POLYMER MEMBRANES FOR CONTINUOUS ANALYTE SENSORS	3/27/2009

Docket No.	Serial No.	Title	Filed
DEXCOM.104A1	12/413231	POLYMER MEMBRANES FOR	3/27/2009
		CONTINUOUS ANALYTE SENSORS	
DEXCOM.025RX	95/001038	SYSTEM AND METHODS FOR	4/17/2008
		PROCESSING ANALYTE SENSOR	
		DATA	
DEXCOM.024RX	95/001039	SYSTEM AND METHODS FOR	4/17/2008
		PROCESSING ANALYTE SENSOR	
		DATA	

Conclusion

In view of the above, each of the presently pending claims in this application is believed to be in immediate condition for allowance. Accordingly, the Examiner is respectfully requested to withdraw the outstanding rejections of the claims and pass this application to issue. If it is determined that a telephone conference would expedite the prosecution of the application, the Examiner is invited to telephone the undersigned at the number provided below.

Any remarks in support of patentability of one claim should not be imputed to any claim, even if similar terminology is used. Additionally, any remarks referring to only a portion of a claim should not be understood to base patentability on that portion; rather, patentability must rest on each claim taken as a whole. Applicants respectfully traverse each of the Examiner's rejections and each of the Examiner's assertion regarding what the prior art shows or teaches, even if not expressly discussed herein. Although amendments have been made, no acquiescence or estoppel is or should be implied thereby. Rather, the amendments are made only to expedite prosecution of the present application, and without prejudice to presentation or assertion, in the future, of claims on the subject matter affected thereby.

Although the present communication may include alterations to the application or claims, or characterizations of claim scope or referenced art, Applicants are not conceding in this application that previously pending claims are not patentable over the cited references. Rather, any alterations or characterizations are being made to facilitate expeditious prosecution of this application. Applicants reserve the right to pursue at a later date any previously pending or other broader or narrower claims that capture any subject matter supported by the present disclosure, including subject matter found to be specifically disclaimed herein or by any prior prosecution. Accordingly, reviewers of this or any parent, child, or related prosecution history shall not

Application No.: 10/633,329 Filing Date.

August 1, 2003

reasonably infer that Applicants have made any disclaimers or disavowals of any subject matter supported by the present application.

No fee is believed due with the filing of this document. However, in the event the U.S. Patent and Trademark Office determines that an extension and/or other relief is required, Applicants petition for any required relief including extensions of time and authorizes the Commissioner to charge the cost of such petitions and/or other fees due in connection with the filing of this documents to Deposit Account No. 11-1410, of which the undersigned is an authorized signatory.

Respectfully submitted,

KNOBBE, MARTENS, OLSON & BEAR, LLP

By:

Rose M. Thiessen Registration No. 40,202 Attorney of Record Customer No. 20995

(619) 235-8550

AMEND

6906034 033109