

Field oriented control of Induction Motors

- 1. Introduction the basic idea
- 2. Indirect rotor flux oriented controller
- 3. Direct rotor flux oriented controller a brief discussion

Introduction – borrow some ideas from PMSM control 3

Machine equations

$$u_{q} = Ri_{q} + p\lambda_{q} + \omega_{r}\lambda_{d} \qquad \lambda_{q} = L_{q}i_{q}$$

$$u_{d} = Ri_{d} + p\lambda_{d} - \omega_{r}\lambda_{q} \qquad \lambda_{d} = L_{d}i_{d} + \lambda_{mpm}$$

$$T_e = \frac{3}{2} p \left[\lambda_{mpm} i_q + \left(L_d - L_q \right) i_d i_q \right]$$

Introduction – borrow some ideas from PMSM control

- Park Andrews A
- Controller is realized based on the torque equation targeting at current control.
- The torque is generated from the interaction of the q-axis current and d-axis flux.
- Due to the constant d-axis flux from the permanent magnets, the d-axis current bias should be zero.
- In the controller design, the voltage equation is not needed (besides using the back-EMF decoupling network)
- PI controllers are used to generate the motor terminal voltage command from the current references.

For the induction machine

Machine equations

$$u_{qs} = r_s i_{qs} + p \lambda_{qs} + \omega_e \lambda_{ds}$$

$$\lambda_{qs} = L_{ls} i_{qs} + L_m (i_{qs} + i_{qr})$$

$$u_{ds} = r_s i_{ds} + p \lambda_{ds} - \omega_e \lambda_{qs}$$

$$\lambda_{ds} = L_{ls} i_{ds} + L_m (i_{ds} + i_{dr})$$

- Voltage equations are similar to that for PMSM (different reference frame!)
- Be aware of the difference in the flux linkage equation.

$$u_{qr} = r_r i_{qr} + p \lambda_{qr} + (\omega_e - \omega_r) \lambda_{dr} \qquad \lambda_{qr} = L_{lr} i_{qr} + L_m (i_{qs} + i_{qr})$$

$$u_{dr} = r_r i_{dr} + p \lambda_{dr} - (\omega_e - \omega_r) \lambda_{qr} \qquad \lambda_{dr} = L_{lr} i_{dr} + L_m (i_{ds} + i_{dr})$$

For the induction machine

The torque equations could have many different forms

$$\tau = \frac{3}{2} p L_m \left(i_{qs} i_{dr} - i_{ds} i_{qr} \right)$$

$$\vec{i}_{dqs} = i_{ds} + ji_{qs} \qquad \vec{i}_{dqr} = i_{dr} + ji_{qr}$$

$$i_{dqr} = i_{dr} + ji_{qr}$$

$$\operatorname{Im}\left(\overline{i}_{dqs}\cdot\overline{i}_{dqr}\right) = \operatorname{Im}\left[\left(i_{ds} + ji_{qs}\right)\cdot\left(i_{dr} - ji_{qr}\right)\right] = i_{qs}i_{dr} - i_{ds}i_{qr}$$

$$\tau = \frac{3}{2} p L_m \operatorname{Im} \left(\bar{i}_{dqs} \cdot \bar{i}_{dqr}^* \right)$$

$$\tau = \frac{3}{2} p \operatorname{Im} \left(\overline{i}_{dqs} \cdot \overline{\lambda}^*_{dqs} \right)$$

$$\tau = \frac{3}{2} p \frac{L_m}{L_r} \operatorname{Im} \left(\overline{i}_{qds} \cdot \overline{\lambda}^*_{qdr} \right)$$

One great simplification may be obtained

It is ARBITRARY reference frame for IM!

$$\tau = \frac{3}{2} p \frac{L_m}{L_m} \operatorname{Im} \left(\overline{i}_{dqs} \cdot \overline{\lambda}^*_{dqr} \right)$$

$$\tau = \frac{3}{2} p \frac{L_m}{L_m} (i_{qs} \lambda_r)$$

Therefore, based on the new torque equation

$$T_e = \frac{3}{2} p \left(\lambda_{mpm} i_q \right)$$

$$\tau = \frac{3}{2} p \frac{L_m}{L_r} (i_{qs} \lambda_r)$$
 PMSM

• Possible to control the IM as controlling the PMSM – by holding the rotor flux constant, the torque is proportional to the stator q-axis current.

Challenge here!

- The rotor flux is already constant for PMSM how to hold the rotor flux constant for an IM?
- The rotor flux position is not directly linked to the rotor physical position!

Indirect vs. direction rotor flux orientation

Indirect method

- The rotor field rotates at the synchronous rotating speed
- If the rotor speed is measurable, then, knowing the slip, the synchronous speed may then be calculated.
- The rotor flux position is obtained by integrating the speed.

Direct method

 The rotor flux position is estimated directly from e.g. terminal voltage, line current and motor parameters.

Indirect rotor flux orientation

Key point – to calculate the slip

Be ware of that in this situation, we have

$$\lambda_{qr=0}$$

Play with machine equations to obtain the controller topology!

as

Principle – get rid of the rotor currents! Need to rely on the rotor side voltage and flux linkage equations

Therefore:

$$u_{qr} = r_r i_{qr} + p \lambda_{qr} + (\omega_e - \omega_r) \lambda_{dr} \qquad \lambda_{qr} = L_{lr} i_{qr} + L_m (i_{qs} + i_{qr})$$

$$u_{dr} = r_r i_{dr} + p \lambda_{dr} - (\omega_e - \omega_r) \lambda_{qr} \qquad \lambda_{dr} = L_{lr} i_{dr} + L_m (i_{ds} + i_{dr})$$

$$0 = r_r i_{qr} + (\omega_e - \omega_r) \lambda_{dr}$$
$$0 = r_r i_{dr} + p \lambda_{dr}$$

$$0 = L_r i_{qr} + L_m i_{qs}$$

$$0 = r_r i_{dr} + p \lambda_{dr}$$

$$\lambda_{dr} = L_r i_{dr} + L_m i_{ds}$$

$$\lambda_{dr} = \lambda_r$$

Estimate the slip

From q-axis equation

$$i_{qr} = -\frac{L_m}{L_r} i_{qs}$$

$$0 = r_r i_{qr} + (\omega_e - \omega_r) \lambda_r$$

$$s\omega_e = r_r \frac{L_m}{L_r} \frac{i_{qs}}{\lambda_r}$$

$$0 = L_r i_{qr} + L_m i_{qs}$$

The rotor flux may be hold constant (but not always)

knowing the stator q-axis current and the rotor flux, the slip may then be found.

Estimate the rotor flux

From d-axis equations

$$0 = r_r i_{dr} + p\lambda_r$$

$$\lambda_r = L_r i_{dr} + L_m i_{ds}$$

$$\lambda_r = L_r i_{dr} + L_m i_{ds} \qquad \Longrightarrow \qquad (1 + \frac{L_r}{r_r} p) \lambda_r = L_m i_{ds}$$

In S.S.
$$\lambda_r = const.$$

$$i_{dr} = 0$$

$$\lambda_r = L_m i_{ds}$$

$$=\frac{L_r}{r_r}$$

$$s\omega_e = r_r \frac{L_m}{L_r} \frac{i_{qs}}{\lambda_r}$$
 $s\omega_e = \frac{1}{\tau_r} \frac{i_{qs}}{i_{ds}}$ In S.S.

The controller block diagram may be

- "" means reference value
- 'e' means rotating reference frame

ENERGY TECHNOLOGY

Department of

Control topology - 1

$$(1+\tau_r p)\lambda_r = L_m i_{ds}$$

$$s\omega_e = \frac{1}{\tau_r} \frac{i_{qs}}{\frac{i_{ds}}{(1 + \tau_r p)}}$$

Figure 6.6 Indirect field orientation controller using input current commands (uncompensated flux response)

- The rotor position needs to be measured.
- Knowing the rotor time constant is important.
- What if the estimated rotor time constant is not correct?

Be aware of the instantaneous torque in relation to the stator currents:

- Stator q-axis current acts on the torque with NO delay.
- Stator d-axis current acts on the torque with a first-order delay determined by the rotor time constant.

Control topology - 2

$$(1+\tau_r p)\lambda_r = L_m i_{ds}$$

$$s\omega_e = \frac{1}{\tau_r} \frac{i_{qs}}{\frac{i_{ds}}{(1 + \tau_r p)}}$$

Figure 6.7 Indirect field orientation controller using flux and torque current commands (compensated flux response)

- A flux change alerts the slip immediately. It also gives a compensation term to compensate to keep the torque constant.
- Differentiation of the flux command is involved. Its output should be limited.

Control topology - 3

$$(1+\tau_r p)\lambda_r = L_m i_{ds}$$

$$s\omega_e = \frac{1}{\tau_r} \frac{i_{qs}}{\frac{i_{ds}}{(1 + \tau_r p)}}$$

Figure 6.8 Indirect field orientation controller using flux and torque current commands with flux command current limiter

What about rotor currents in dynamics?

$$0 = L_r i_{qr} + L_m i_{qs} \qquad \qquad i_{qr} = -\frac{L_m}{L_r} i_{qs}$$

$$0 = r_r i_{dr} + p\lambda_r \qquad \qquad \lambda_r = L_r i_{dr} + L_m i_{ds}$$

$$i_{dr} = -\frac{L_m p}{(r_r + L_r p)} i_{ds}$$

Therefore we have

Change in

Torque Command

Flux Command

Figure 6.4 Illustration of response to step changes in torque command and flux command

 $i_{dr} = 0$ In steady state

Direct field oriented controller

Overall strategy

- Knowledge of both the rotor flux and the developed torque are required
- The torque may be estimated directly in rotor-flux coordinates:

$$T_e = \frac{3P^L_m}{22L_r} (\lambda_{dr}^e i_{qs}^e)$$

or in stationary coordinates:

$$T_e = \frac{3}{2} \frac{P}{2} \operatorname{Im} \{ \underline{\lambda}_{qds}^* \underline{i}_{qds} \}$$

Figure 5.31 Direct implementation of induction machine field orientation using a CRPWM (torque and flux regulators optional)

3 Phase

Measurement of air gap flux

Flux sensing coils or Hall elements detect

$$\underline{\lambda}_{qdm} \, = \, L_m \, (\underline{i}^s_{qds} + \underline{i}^s_{qdr})$$

· The rotor flux is

$$\underline{\lambda}_{qdr}^s = L_m \underline{i}_{qds}^s + L_r \underline{i}_{qdr}^s$$

· Eliminating the rotor current gives

$$\underline{\lambda}_{qdr}^{s} = \frac{L_{r}}{L_{m}} \underline{\lambda}_{qdm}^{s} - (L_{r} - L_{m}) \underline{i}_{qds}^{s}$$

$$= \frac{L_{r}}{L_{m}} \underline{\lambda}_{qdm}^{s} - L_{lr} \underline{i}_{qds}^{s}$$

Properties:

- 1. Independent of the rotor position
- 2. Good accuracy except in the low-speed region
- 3. Fragile sensors are needed in the air gap
- Depends on two motor parameters

Figure 6.15 Field angle determination using flux sensors

Flux Computer & Field Orienter

Figure 6.14 Rotor flux computer and field orientation

Methods to estimation of rotor flux

- In practice the rotor flux is estimated from measurements of two or more of the following signals:
 - The stator current
 - 2. The stator voltage (difficult to measure may be estimated from the PWM and the VSI.)
 - 3. The rotor speed
 - 4. The rotor position
- A large number of methods (estimators/observers) exist (see next transparency)

Note:

- All analyses are made in the continuous time domain despite that the implementation is often made in a sampled-data system
- Other practical problems such as measurement offset, initial values for integrators, etc. are disregarded also

Exercise:

Finish the provided Simulink model to realize a in-direct rotor field oriented controller for induction machine. To have a simple implementation, the relationship between stator d-axis current and rotor flux, slip estimation, may only be considered in steady state.

