Corrigé partiel 2018

Question de cours. Soient $a, b \in \mathbb{R}$, soit $n \in \mathbb{N}$,

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

Exercice 1.

P	Q	$P \Rightarrow Q$	$\neg(P \Rightarrow Q)$	$\neg Q$	$P \wedge (\neg Q)$
V	V	V	F	F	F
V	F	F	V	V	V
F	V	V	F	F	F
F	F	V	F	V	F

Les colonnes correspondant à $\neg(P \Rightarrow Q)$ et $P \land (\neg Q)$ coïncident. Donc l'équivalence

$$(\neg(P \Rightarrow Q)) \iff (P \land (\neg Q))$$

est une tautologie.

Exercice 2. 1. L'application f est injective.

- 2. L'application f est surjective.
- 3. L'application f est majorée.
- 4. L'application f est continue.

Exercice 3. On démontre la formule par récurrence sur n: Initialisation : Pour n=0, on a $\sum_{k=0}^0 k(k-1)=0 \times (-1)=0=\frac{(0+1)0(0-1)}{3}$. La formule est donc vraie dans ce cas.

 $H\acute{e}r\acute{e}dit\acute{e}$: On suppose la formule vérifiée pour n, on a alors

$$\sum_{k=0}^{n+1} k(k-1) = \left(\sum_{k=0}^{n} k(k-1)\right) + (n+1)(n+1-1) = \frac{(n+1)n(n-1)}{3} + (n+1)n$$
$$= \frac{(n+1)n(n-1+3)}{3} = \frac{((n+1)+1)(n+1)((n+1)-1)}{3}.$$

La formule est donc vraie pour n+1.

Par récurrence, on obtient

$$\forall n \in \mathbb{N}, \quad \sum_{k=0}^{n} k(k-1) = \frac{(n+1)n(n-1)}{3}.$$

Problème 4.

- 1. Soit $x \in \mathbf{R}$. Comme $x^2 + 1 \ge 0$, il existe un unique nombre réel y tel que $y^2 = x^2 + 1$ et $y \ge 0$, à savoir $\sqrt{x^2 + 1}$. Donc Γ est le graphe d'une fonction définie sur $\mathcal{D}_f = \mathbf{R}$.
- 2. (a) Soit $(x,y) \in \Gamma$. Alors $y^2 = x^2 + 1$ et $y \geqslant 0$. De $x^2 \geqslant 0$ on déduit les relations $y^2 = x^2 + 1 \geqslant 1$. Or $y \geqslant 0$ et la fonction de \mathbf{R}^+ dans \mathbf{R} définie par $t \mapsto t^2$ est strictement croissante. Donc la relation y < 1 impliquerait $y^2 < 1$, ce qui contredit l'inégalité $y^2 \geqslant 1$. Donc $y \geqslant 1$.
 - (b) Comme $(0,1) \in \Gamma$, on a f(0) = 1. Par la question (a),

$$\forall x \in \mathbf{R}, \quad f(x) \geqslant 1.$$

Donc 1 est le minimum des valeurs de la fonction f.

- 3. (a) Par la question 2.(a), on a les inégalités $y_1 \ge 1$ et $y_2 \ge 1$ donc $y_1 + y_2 \ge 2$ et $y_1 + y_2 \ne 0$.
 - (b) On a les égalités :

$$y_1^2 = x_1^2 + 1$$
 et $y_2^2 = x_2^2 + 1$

Donc

$$y_2^2 - y_1^2 = x_2^2 - x_1^2.$$

Comme $y_1 + y_2 \neq 0$, il en résulte que

$$y_2 - y_1 = (x_2 - x_1) \frac{x_1 + x_2}{y_1 + y_2}.$$

4. Soient $x, x' \in [-M, M]$. Alors $|x| \leq M$ et $|x'| \leq M$. Par la question 2.(b), $f(x) \geq 1$ et $f(x') \geq 1$. Par la question 3.(b), comme, par définition de f, $(x, f(x)) \in \Gamma$ et $(x', f(x')) \in \Gamma$, on a la relation

$$f(x) - f(x') = (x - x') \frac{x + x'}{f(x) + f(x')}.$$

Il en résulte que $|f(x) + f(x')| = f(x) + f(x') \ge 2$ et

$$|f(x) - f(x')| \le \frac{|x| + |x'|}{2}|x - x'| \le \frac{2M}{2}|x - x'| = M|x - x'|.$$

5. Comme $3 < \pi < 3.9$ et $|x - \pi| < 10^{-6}$, on a que $x, \pi \in [-4, 4]$ et par la question 4,

$$|f(x) - f(\pi)| < 4 \times 10^{-6} < 10^{-5}.$$

6. Soit $a \in \mathbf{R}$. Soit $x \in \mathbf{R}$ tel que |x-a| < 1. Alors $|x| \le |a| + |x-a| = |a| + 1$ donc $x \in [-|a|-1,|a|+1]$. Soit $\varepsilon \in \mathbf{R}_+^*$. Posons

$$\eta = \min\left(1, \frac{1}{|a|+1}\varepsilon\right).$$

Soit $x \in \mathbf{R}$ tel que $|x-a| < \eta$. Comme |x-a| < 1, par ce qui précède, $x \in [-|a|-1,|a|+1]$. Or $a \in [-|a|-1,|a|+1]$. En appliquant la question 4 avec M=|a|+1 on obtient

$$|f(x) - f(a)| \le (|a| + 1)|x - a|.$$

Comme $|x-a| < \frac{1}{|a|+1}\varepsilon$, on obtient que $|f(x)-f(a)| < \varepsilon$.

La fonction f admet donc la limite f(a) en tout $a \in \mathbf{R}$, c'est donc une fonction continue.

- 7. L'application f est donnée par $x \mapsto \sqrt{x^2 + 1}$. C'est donc la composée de deux fonctions continues. Elle est donc continue.
- 8. Soit $a \in \mathbf{R}$. Soit $x \in \mathbf{R} \{a\}$. Par la question 4, le taux d'accroissement de f est donné par

$$\frac{f(x) - f(a)}{x - a} = \frac{x + a}{f(x) + f(a)}.$$

Comme f est continue et $f(a) \neq 0$ la propriété sur la limite de quotients donne que $\frac{f(x)-f(a)}{x-a}$ converge vers $\frac{2a}{2f(a)} = \frac{a}{f(a)}$ lorsque x tend vers a. Donc f est dérivable en a de dérivé $f'(a) = \frac{a}{f(a)}$.