WE CLAIM:

1. A compound of Formula I:

5

in which:

Y is selected from O, NR₄ and S; wherein R₄ is selected from hydrogen, C_{1-6} alkyl, C_{1-6} alkoxy, halo-substituted- C_{1-6} alkyl, halo-substituted- C_{1-6} alkoxy, C_{6-10} aryl- C_{0-4} alkyl, C_{3-8} heteroaryl- C_{0-4} alkyl, C_{3-8} heteroaryl- C_{0-4} alkyl, C_{3-12} cycloalkyl- C_{0-4} alkyl and C_{3-8} heteroaryl- C_{0-4} alkyl;

10

15

20

n is selected from 0, 1, 2, 3 and 4;

is selected from halo, hydroxy, nitro, cyano, C1-6alkyl, C1-6alkoxy, halo- R_1 substituted- C_{1-6} alkyl and halo-substituted- C_{1-6} alkoxy, -XC(O)R₄, -XOC(O)R₄, -XC(O)OR₄, - XOR_4 , $-XS(O)_2R_4$, $-XS(O)R_4$, $-XSR_4$, $-XNR_4R_8$, $-XC(O)NR_4R_8$, $-XNR_4C(O)R_4$ XNR₄C(O)OR₄, $-XNR_4C(O)NR_4R_8$, $-XNR_4C(NR_4R_4)NR_4R_8$ $-XP(O)(OR_4)OR_4$ $XOP(O)(OR_4)OR_4$ $-XS(O)_2NR_4R_8$, $-XS(O)NR_4R_8$ -XSNR₄R₈, $-XNR_4S(O)_2R_4$ XNR₄S(O)R₄, -XNR₄SR₄, -XNR₄C(O)NR₄R₈, - and -XC(O)SR₄; wherein X is a bond or C₁-6alkylene; and R4 and R8 are independently selected from hydrogen, C1-6alkyl, C1-6alkoxy, halo-substituted-C₁₋₆alkyl, halo-substituted-C₁₋₆alkoxy, C₆₋₁₀aryl-C₀₋₄alkyl, C₃₋₈heteroaryl-C₀₋ 4alkyl, C₃₋₁₂cycloalkyl-C₀₋₄alkyl and C₃₋₈heterocycloalkyl-C₀₋₄alkyl; or R₄ and R₈ together with the nitrogen atom to which R₄ and R₈ are attached form C₅₋₁₀heteroaryl or C₃₋ sheterocycloalkyl; wherein any aryl, heteroaryl, cycloalkyl or heterocycloalkyl of R4 or the combination of R₄ and R₈ is optionally substituted with 1 to 4 radicals independently selected from the group consisting of halo, hydroxy, cyano, nitro, C₁₋₆alkyl, C₁₋₆alkoxy, halo-substituted-C₁₋₆alkyl and halo-substituted-C₁₋₆alkoxy;

25

 R_2 is selected from C_{6-10} aryl- C_{0-4} alkyl, C_{3-8} heteroaryl- C_{0-4} alkyl, C_{3-12} cycloalkyl- C_{0-4} alkyl and C_{3-8} heterocycloalkyl- C_{0-4} alkyl; wherein any aryl-alkyl, heteroaryl-alkyl, cycloalkyl-alkyl or heterocycloalkyl-alkyl of R_2 is optionally substituted by 1 to 5 radicals independently selected from halo, cyano- C_{0-6} alkyl, C_{1-6} alkoxy, halo-substituted- C_{1-6} alkoxy, -OXC(O)NR₇XC(O)OR₈, -OXC(O)NR₇XC(O)OX

OXC(O)NR7XOR8, $-OXC(O)NR_7XNR_7R_8$, $-OXC(O)NR_7XS(O)_{0-2}R_8$ $OXC(O)NR_7XNR_7C(O)R_8$, -OXC(O)NR₇XC(O)XC(O)OR₈, $-OXC(O)NR_7R_9$ $OXC(O)OR_7$, -OXOR₇, -OXR₉, $-XR_9$ $-OXC(O)R_9$ $-OXS(O)_{0-2}R_9$ $OXC(O)NR_7CR_7[C(O)R_8]_2$; wherein X is a selected from a bond and $C_{1\text{-}6}$ alkylene wherein any methylene of X can optionally be replaced with a divalent radical selected from C(O), NR₇, S(O)₂ and O; R₇ and R₈ are independently selected from hydrogen, C₁₋₆alkyl, C₁₋ $_{6} alkoxy, \quad halo-substituted-C_{1-6} alkyl, \quad halo-substituted-C_{1-6} alkoxy, \quad C_{6-10} aryl-C_{0-4} alkyl, \quad C_{3-10} aryl-C_{1-6} alkyl, \quad C_{3-10$ ${}_{8}heteroaryl-C_{0-4}alkyl,\ C_{3-12}cycloalkyl-C_{0-4}alkyl\ and\ C_{3-8}heterocycloalkyl-C_{0-4}alkyl;\ R_{9}\ is$ selected from C_{6-10} aryl- C_{0-4} alkyl, C_{5-10} heteroaryl- C_{0-4} alkyl, C_{3-12} cycloalkyl- C_{0-4} alkyl and C_{3-10} 8heterocycloalkyl-C₀₋₄alkyl; wherein any alkyl of R₉ can have a hydrogen replaced with -C(O)OR₁₀; and any aryl, heteroaryl, cycloalkyl or heterocycloalkyl of R₇, R₈ or R₉ is optionally substituted with 1 to 4 radicals independently selected from halo, cyano, hydroxy, $C_{1\text{-}6}$ alkyl, $C_{3\text{-}12}$ cycloalkyl, halo-substituted- $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkoxy, halo-substituted- $C_{1\text{-}6}$ $_{6}$ alkoxy, -XC(O)OR₁₀, -XOR₁₀, -XR₁₁, -XOR₁₁, -XC(O)R₁₁, -XNR₁₀C(O)OR₁₀, - $XNR_{10}C(O)R_{10}$ $-XNR_{10}S(O)_{0-2}R_{10}$ $-XS(O)_{0-2}R_{11}$, $-XC(O)R_{10}$ $-XC(O)NR_{10}R_{11}$, $XC(O)NR_{10}OR_{10}, \ -XC(O)NR_{10}R_{10}, \ -XS(O)_{0\text{-}2}NR_{10}R_{10} \ \ and \ \ -XS(O)_{0\text{-}2}R_{10}; \ \ wherein \ \ R_{10} \ \ is$ independently selected from hydrogen, $C_{1\text{-}6}$ alkyl and halo-substituted- $C_{1\text{-}6}$ alkyl; and R_{11} is independently selected from C_{6-10} aryl, C_{3-8} heteroaryl, C₃₋₁₂cycloalkyl and C₃-8heterocycloalkyl;

 R_3 is selected from C_{1-10} alkyl, C_{1-10} alkoxy, halo-substituted- C_{1-10} alkyl, halo-substituted- C_{1-10} alkoxy and C_{3-12} cycloalkyl optionally substituted with 1 to 3 C_{1-6} alkyl radicals; and the pharmaceutically acceptable salts, hydrates, solvates, isomers and prodrugs thereof.

25

30

5

10

15

20

- 2. The compound of claim 1 in which n is selected from 0, 1, 2 and 3; Y is O;
- R₁ is selected from halo, C₁₋₆alkyl and halo-substituted-C₁₋₆alkyl;

 R_2 is selected from C_{6-10} aryl- C_{0-4} alkyl, C_{3-8} heteroaryl- C_{0-4} alkyl and C_{3-12} cycloalkyl- C_{0-4} alkyl; wherein any aryl-alkyl, heteroaryl-alkyl or cycloalkyl-alkyl of R_2 is optionally substituted by 1 to 3 radicals independently selected from halo, hydroxyl, C_{1-6} alkoxy, halo-substituted- C_{1-6} alkyl, halo-substituted- C_{1-6} alkoxy, -OXR₇, -OXC(O)NR₇R₈, -OXC(O)NR₇XOR₈, -OXC(O)NR₇XS(O)₀.

 $-OXC(O)NR_7XNR_7C(O)R_8$, $-OXC(O)NR_7XC(O)XC(O)OR_8$, $-OXC(O)NR_7R_9$, $_{2}R_{8}$, OXC(O)OR7, -OXOR7, -OXR9, -XR9, -OXC(O)R9 and -OXC(O)NR7CR7[C(O)R8]2; wherein X is a selected from a bond and C₁₋₆alkylene; R₇ and R₈ are independently selected from hydrogen, cyano, C₁₋₆alkyl, halo-substituted-C₁₋₆alkyl, C₂₋₆alkenyl and C₃₋₁₂cycloalkyl-C₀₋ 4alkyl; R9 is selected from C₆₋₁₀aryl-C₀₋₄alkyl, C₅₋₁₀heteroaryl-C₀₋₄alkyl, C₃₋₁₂cycloalkyl-C₀₋₁₀ 4alkyl and C₃₋₈heterocycloalkyl-C₀₋₄alkyl; wherein any alkyl of R₉ can have a hydrogen replaced with -C(O)OR₁₀, and any aryl, heteroaryl, cycloalkyl or heterocycloalkyl of R₀ is optionally substituted with 1 to 4 radicals independently selected from halo, C₁₋₆alkyl, C₃₋ 12cycloalkyl, halo-substituted-C₁₋₆alkyl, C_{1-6} alkoxy, halo-substituted-C₁₋₆alkoxy, $XC(O)OR_{10}$, $-XC(O)R_{10}$, $-XC(O)NR_{10}R_{10}$, $-XS(O)_{0.2}NR_{10}R_{10}$ and $-XS(O)_{0.2}R_{10}$; wherein R_{10} is independently selected from hydrogen and C₁₋₆alkyl; and R₃ is selected from C₁₋₁₀alkyl and C₃₋₁₂cycloalkyl optionally substituted with 1 to 3 C₁₋₆alkyl radicals.

5

10

15

20

25

30

- 3. The compound of claim 1 in which R_1 is selected from halo, methyl, ethyl and trifluoromethyl; and R_3 is selected from t-butyl, methyl-cyclopentyl, 1,1-dimethyl-propyl, 1-ethyl-1-methyl-propyl and methyl-cyclohexyl.
 - 4. The compound of claim 1 in which R₂ is selected from phenyl, benzo[1,3]dioxolyl, cyclopentyl, benzoxazolyl, benzthiazolyl, 2,3-dihydrobenzo[1,4]dioxinyl, 2,3-dihydro-benzofuran, 1H-indazolyl, 1H-indolyl, naphthyl and 2-oxo-2,3-dihydro-1H-indol-5-yl; wherein any aryl-alkyl, heteroaryl-alkyl or cycloalkyl-alkyl of R2 is optionally substituted by 1 to 3 radicals selected from halo, hydroxy, methoxy, trifluoromethoxy, difluoro-methoxy, ethenyl, methyl-sulfanyl, methyl-carbonyl-amino, formamidyl, trifluoro-methyl, methyl, phenyl, oxazolyl, pyrazolyl, pyrrolidinyl-carbonyl, phenoxy, phenyl-carbonyl, pyridinyl, 1H-indolyl, pyrimidinyl, amino-carbonyl, dimethyl-amino, thiophenyl, methyl-sulphanyl, methyl-formamidyl, methyl-carbonyl, ethenyl, phenoxy, methoxy-carbonyl, benzoxy, isopropyl, furanyl, isopropyloxy, [1,3]dioxolanyl and cyanomethyl; wherein any aryl, heteroaryl or heterocycloalkyl substituent of R2 is optionally substituted by 1 to 3 radicals selected from halo, methyl, cyano, carboxy, carboxy-methyl, cyano-methyl, methoxy, carbonyl-methyl, ethyl, trifluoro-methyl, hydroxy, isopropyl, methyl-sulfonyl-amino, dimethyl-amino-carbonyl, dimethyl-amino, amino-sulfonyl, chloro-

methyl-carbonyl-amino, diethyl-amino-carbonyl, 1-oxo-1,3-dihydro-isobenzofuran-5-yl, 4-oxo-piperidin-1-yl-carbonyl, benzyl-formamidyl, morpholino-carbonyl, cyclopropyl-formamidyl, isobutyl-formamidyl, ethyl-formamidyl, butoxy, ethoxy, benzyl, cyclopentyl-formamidyl, 2-methoxy-propionyl, methoxy-methyl-amino-carbonyl, methyl-carbonyl-amino, 2-oxo-piperidin-1-yl butyl, t-butyl, methyl-sulfonyl-amino, methoxy-methyl, benzo-amino-carbonyl, methoxy-carbonyl, methoxy-carbonyl-ethyl, ethoxy-carbonyl, ethoxy-carbonyl-methyl, phenoxy, hydroxy-methyl, t-butoxy-carbonyl, t-butoxy-carbonyl-amino, phenyl-sulfonyl, phenyl, acetyl-amino, methyl-sulfonyl, methoxy-carbonyl-amino, 1-carboxy-ethyl and trifluoro-methoxy.

10

20

25

30

5

- 5. A pharmaceutical composition comprising a therapeutically effective amount of a compound of Claim 1 in combination with a pharmaceutically acceptable excipient.
- 6. A method for treating a disease in an animal in which modulation of LXR activity can prevent, inhibit or ameliorate the pathology and/or symptomatology of the disease, which method comprises administering to the animal a therapeutically effective amount of a compound of Claim 1.
 - 7. The method of claim 6 wherein the diseases or disorder are selected from cardiovascular disease, diabetes, neurodegenerative diseases and inflammation.
 - 8. The use of a compound of claim 1 in the manufacture of a medicament for treating a disease or disorder in an animal in which LXR activity contributes to the pathology and/or symptomatology of the disease, said disease being selected from cardiovascular disease, diabetes, neurodegenerative diseases and inflammation.
 - 9. A method for treating a disease or disorder in an animal in which modulation of LXR activity can prevent, inhibit or ameliorate the pathology and/or symptomatology of the disease, which method comprises administering to the animal a therapeutically effective amount of a compound of Claim 1.

10. The method of claim 9 further comprising administering a therapeutically effective amount of a compound of Claim 1 in combination with another therapeutically relevant agent.

5