Parallel Numerical Algorithms

Solution of Boundary Value Problems

1

epcc

Overview of Lecture

- General solution methods
- Relaxation methods
 - Jacobi algorithm
 - testing for convergence
 - Gauss Seidel
 - over-relaxation
- Notes
 - parallelisation
 - non-linear equations
- Pollution problem
 - solution using relaxation methods
 - 2D equations including wind

Many methods for solving *Au*=*b*

- Direct methods
 - give the solution after a fixed number of operations
 - · Gaussian elimination
 - · LU factorisation

▶ Relaxation methods (this lecture)

- gradually improve solution, starting from an initial guess
- stop when the answer is sufficiently accurate
- simple to implement but may be slow to converge on solution
 - · or may fail completely!

Krylov subspace methods (following lectures)

- iterative (like relaxation methods) but more sophisticated
- harder to implement but more efficient and reliable

3

epcc

Why not use Direct Methods?

- Direct methods explicitly operate on the matrix A
 - eg decompose it into L and U factors
- For PDEs, A is very sparse indeed
 - may contain 99% zeros so clearly we use compressed storage
 - we want to take advantage of this when we solve equations
- Difficult to exploit sparsity for direct methods
 - eg L and U may be dense even though A is sparse
 - for large systems of equations, we may run out of memory!
- Relaxation and Krylov methods exploit sparsity
 - relaxation methods operate on the equations not the matrix
 - Krylov methods comprise mostly matrix-vector multiplications
 - can write efficient routines to do y = Ax when A is sparse

Relaxation vs Matrix Methods

Operate directly on the difference equations

- can forget (almost!) all about the matrix representation Au = b for this lecture
- it turns out that relaxation methods can usefully be understood in terms of matrix-vector operations (not immediately obvious)
 - · See lecture on "Matrix Splitting Techniques"

For illustrative purposes, look at 1D problem

- for simplicity with no wind
- exercise will involve extending this to the 2D problem
 - · quite straightforward in practice

5

epcc

Relaxation Methods

▶ 1D diffusion equations are

$$-u_{i-1}+2u_i-u_{i+1}=0, i=1, 2, ... N$$

- Equivalently: $u_i = \frac{1}{2} (u_{i-1} + u_{i+1})$
 - why not make an initial guess at the solution
 - then loop over each lattice point *i* and set $u_i = \frac{1}{2} (u_{i+1} + u_{i+1})$
 - ie we solve the equation exactly at each point in turn

Updating u_i spoils solution we just did for u_{i-1}

- so simply iterate the whole process again and again ...
- ... and hope we eventually get the right answer!

This is called the Jacobi Algorithm

- the simplest possible relaxation method

Jacobi Algorithm

- Use superscript *n* to indicate iteration number
 - n counts the number of times we update the whole solution
 - equivalent to computer time
- Jacobi algorithm for diffusion equation is:

$$u_i^{(n+1)} = \frac{1}{2} \left(u_{i-1}^{(n)} + u_{i+1}^{(n)} \right)$$

- Each iteration, calculate $u^{(n+1)}$ in terms of $u^{(n)}$
 - don't need to keep copies of all the previous solutions
 - only need to remember two solutions at any time: u and u_{new}
 - corresponding to iterations *n* and *n*+1

7

epcc

Jacobi Pseudo-Code

Implementation Notes

Array declarations

- Fortran: real, dimension(0:M+1) :: u
 Java: float[] u = new float[M+2];
 C: float u[M+2];
- Arrays explicitly contain boundaries u_0 and u_{M+1}
 - we set them according to boundary conditions
 - but we NEVER update them!
 - eg when we copy u_{new} back to u, only copy internal values
 - in pseudo-code, boundary values for u_{new} are never set
 - complete solution is therefore only ever present in *u*
 - might be more elegant to set boundaries in $u_{\textit{new}}$ as well

• What to choose for initial guess $u_i^{(0)}$?

- for a simple implementation just set interior values to zero

|epcc|

When to Stop the Iterative Loop

- The solution appears to be getting better
 - must quantify this!
- For dense systems we used the residual
 - we tried to solve Ax=b, so r=b-Ax should be a zero vector
 - in practice, there is a numerical error in solution of each equation
 - error in equation i is the value of r_i
 - residual is computed from the sum of the squares of r_i
- Can do the same thing for relaxation methods
 - compute the sum of the squares of the error in each equation
 - do this at the end of each iterative loop over *n*
 - · stop if this is small enough

11

Pseudocode for Residual Calculation

Notes on Residual

For a perfect solution, residue will be zero

- in practice we will get a finite value
- usually stop when it is "small", eg a tolerance of res < 10⁻⁶
- there will be a limit to how small the residual can get
 - · can easily hit the limits of single precision
 - use double precision everywhere (or at least perform residual calculation using doubles)

Normalisation

- need to divide by the norm of the b vector
- we saw before that *b* corresponds to the boundary values
- in 1D: bnorm = sqrt(u(0)*u(0) + u(M+1)*u(M+1))
 - in 2D, need to sum values of squares of u_{i,i} over all edges

13

epcc

Residual Against Iteration

Decreases exponentially

- with a zero initial guess for *u*, should equal 1.0 at iteration zero

Parallelisation

- Very simple for Jacobi
- Decompose the problem domain regularly across processes/threads
 - for MPI we need halo regions due to *i*+1, *i*-1 references
 - halos are 1 cell wide for 5-point stencil
 - could be wider for larger stencils
 - swap halos between neighbouring processes every iteration
- ▶ Require global sums for, eg, residue calculation

15

epcc

Relaxation Methods

- About to cover some variations on Jacobi
 - which we hope will be faster!
- How can we tell if a method will work at all?
- Necessary (but not sufficient) condition
 - if the method arrives at the correct solution it must stay there
- ▶ Is this true for Jacobi? $u_i^{(n+1)} = \frac{1}{2} (u_{i-1}^{(n)} + u_{i+1}^{(n)})$
 - for a solution: $-u_{i+1}^{(n)}+2u_i^{(n)}-u_{i+1}^{(n)}=0$, ie $\frac{1}{2}(u_{i+1}^{(n)}+u_{i+1}^{(n)})=u_i^{(n)}$
 - so, $u_i^{(n+1)} = u_i^{(n)}$ and we stay at the solution
 - · worth checking this for other methods

Gauss Seidel

• Why do we need both u_{new} and u?

Why not do the update in place?

```
update: loop over internal points: i = 1, 2, ... M

u(i) = 0.5*(u(i-1) + u(i+1))

end loop over i
```

- this is called the Gauss-Seidel method

17

Convergence of Gauss-Seidel 1.0E+00 1.0E-01 1.0E-02 1.0E-03 1.0E-04 1.0E-05 1.0E-06 1.0E-07 1.0E-08 20 40 60 80 100 Converges twice as fast as Jacobi - for less work and less storage!

epcc Notes on Gauss Seidel Order of the update loop is now significant - we used normal (lexicographic) order: other orderings possible Red-black order divides grid into chequerboard - update all the red squares first then all the black ones - enables Gauss Seidel method to be parallelised Processor 1 Processor 2 19

epcc Recall how Jacobi solution progressed

- but we know the real solution is even higher
- why not increase by more than suggested
 - ie multiply the change by some factor w > 1

Over Relaxation

Over-Relaxed Gauss Seidel

- Gauss-Seidel method: $u_i = \frac{1}{2} (u_{i-1} + u_{i+1})$
 - ie: $u_i = u_i + [\frac{1}{2} (u_{i-1} 2u_i + u_{i+1})]$
- ▶ Multiply change (in square brackets) by w
 - over-relaxed update: $u_i = u_i + \frac{1}{2} w (u_{i-1} 2 u_i + u_{i+1})$ - or $u_i = (1-w) u_i + \frac{1}{2} w (u_{i-1} + u_{i+1})$
- Notes
 - original method corresponds to w = 1
 - if we get to a solution we stay there for any value of w

21

epcc

Non-Linear Equations

- Relaxation methods deal directly with equations
 - doesn't matter that we cannot express them as Au = b
 - equally valid for non-linear equations (eg fluid dynamics)
- Non-linear equations can be very unstable
 - may need to under-relax to get convergence, ie w < 1

Extending to 2 Dimensions

Initialise

- set boundary values (grey)
 - · zero on top, bottom and left
 - hump function on right
- zero interior (white)

Loop over interior

- i = 1, 2, ..., M
- j = 1, 2, ..., M
- update $u_{i,i}$ as appropriate
- Repeat until converged
- Write results
 - include boundaries so that the solution looks nice!

2D example with M = 8

23

epcc

Notes (1)

- How do we convert from (i,j) to (x,y) coordinates?
 - for a domain of size 1x1:
 - $x = i^* h$ and $y = j^* h$

What is the hump function?

- $u(1.0,y) = k * (y_2 y)^2 * (y y_1)^2$
- a peak, centred at $(y_2+y_1)/2$, dropping to zero for $y < y_1$ and $y > y_2$
- for this example, take y_1 = 0.4 and y_2 = 0.6

Notes (2)

- How do we convert from (x,y) to (i,j) coordinates?
 - eg what lattice point do we look at to find u(0.20,0.33)?
 - (0.20,0.33) is unlikely to fall exactly on a lattice point
 - the four nearest neighbours are:
 - i = int(x/h)
 - j = int(y/h)

- do weighted average of these four values (see exercise notes)

25

epcc

Convection-Diffusion Equations

▶ 1D Gauss-Seidel update

$$u_i = \left(\frac{1}{2+ah}\right)(u_{i-1} + (1+ah) \ u_{i+1})$$

▶ 1D Over-Relaxed update

$$u_i = (1 - w)u_i + w\left(\frac{1}{2 + ah}\right)(u_{i-1} + (1 + ah)\;u_{i+1})$$

▶ 2D Discrete Equations

$$-u_{i,j-1}-u_{i-1,j}+(4+(a_x+a_y)h)u_{i,j}-(1+a_xh)u_{i+1,j}-(1+a_yh)u_{i,j+1}=0$$

 (a_x, a_y) = wind strength from x (East) and y (North) respectively

Notes

- ▶ Have multiplied all the equations by *h*²
 - equations now explicitly depend on h for a non-zero wind a
 - straightforward to derive update equations for 2D case

A different convention for Krylov methods

- maintain the 1/h² factor in matrix A
 - · therefore need to multiply RHS by same factor
 - · happens to be more convenient

Finite wind

- matrix A is now non-symmetric
- in 1D, lower-diagonal elements are (1+ah), upper elements are 1
- gives some minor technical issues when normalising the residue
 - see notes
 - if correctly normalised, residue at zero iterations will *always* be 1.0 if the initial guess is a zero solution

Summary

- Relaxation methods
 - guess at an initial solution
 - update many times and stop when residue is small enough
- Update rule is very straightforward
 - solve exactly for each individual u_i
 - obtain formula by rearranging difference equations so u_i is on the LHS
- Interior points updated according to the PDE
 - boundary points set by the boundary conditions
- Jacobi is the simplest method
 - Gauss Seidel acts "in-place" and requires roughly half the iterations
 - appropriate over-relaxation can accelerate this even more
 - finding the best value of *w* requires some experimentation!