R:sd(x)1 BeschreibendeStatistik $s = \sqrt{s}$ Streuungsmaß mit gleicher Einheit 1.1 Begriffe wie beobachteten Daten $x_i.\bar{x}$ minimiert 1.1.1 Beschreibende/Deskriptive die "quadratische Verlustfunktionöder Statistik die Varianz gibt das Minimum der Fehlerquadrate an. Beobachtete Daten werden durch geeignete statistische Kennzahlen charakteri-1.5 p-Quantile

Hilfszettel zur Klausur von JD., Seite 1 von 4

schaulich gemacht.

theorie bewertet.

1.2 Lagemaße

1.2.2 Mittelwert

1.4 Streuungsmaße

1.4.1 Spannweite

Verschiebungssatz:

 $\max x_i$ - $\min x_i$

malen)

R:mean(x)

Schwerpunkt

 $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$

1.3 Median

R:median(x)

1.1.3 Grundgesamtheit

1.2.1 Modalwerte x_{mod}

siert und durch geeignete Grafiken an-

Aus beobachtete Daten werden Schlüsse

gezogen und diese im Rahmen vorgege-

bener Modelle der Wahrscheinlichkeits-

 Ω : Grundgesamtheit ω :Element oder Ob-

jekt der Grundgesamtheit diskret(<30

Ausprägungen), stetig(≥30 Ausprägun-

Am häufigsten auftretende Ausprägun-

gen (insbesondere bei qualitativen Merk-

ten.**Empfindlich**gegemüber Ausreißern.

Liegt in der Mitt der sortierten Daten x_i .

Unempfindlich gegenüber Ausreißern.

 $x_{0.5} = \begin{cases} x_{\frac{n+1}{2}}, \text{ falls n ungerade} \\ \frac{1}{2}(x_{\frac{n}{2}} + x_{\frac{n}{2}+1}), \text{ falls n gerade} \end{cases}$

1.4.2 Stichprbenvarianz s²

 $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x}^2) = \frac{1}{n-1} (\sum_{i=1}^{n} x_i^2 - x_i^2)$

schen Abweichung vom Mittelwert

gen), univariat(p=1), mulivariat(p>1)

ten x_i ca. im Verhältnis p: (1-p) d.h. $\hat{F}(x_p) \approx p$; 1. Quartil = 0.25-Quantil; Me-1.1.2 Schließende/Induktive Stadian = 0.5-Quantil; 3. Quartil = 0.75-

1.4.3 Stichproben-

Quartil; 1.6 Interquartilsabstand I $I = x_{0.75} - x_{0.25}$. Ist ein weiterer Streuungsparameter.

R:quantile(x, p). Teilt die **sortierten** Da-

1.7 Chebyshev $\frac{N(S_k)}{n} > 1 - \frac{1}{k^2}$, für alle $k \ge 1 \overline{x}$ der

Durchschnitt, s > 0 die Stichproben-Standardabweichung von Beobachtungs- $|x_i - \overline{x}| < k \cdot s$; Für eine beliebige Zahl $k \ge 1$ liegen mehr als $100 \cdot (1 - \frac{1}{L^2})$ Pro-

zent der Daten im Intervall von $\bar{x} - ks$ bis $\overline{x} + ks$. **Speziell:**Für k = 2 liegen mehr als 75% der Daten im 2s-Bereich um \bar{x} . Für k=3 liegen mehr als 89% der Daten im 3s-Bereich um \bar{x} . Komplement Formulie-

rung: $\overline{S}_k = \{i | |x_i - \overline{x}| \ge k \cdot s\}; \frac{N(S_k)}{n} \le \frac{1}{k^2};$ Die Ungleichheit lifert nur eine sehr grobe Abschätzung, ist aber unabhängig von der Verteilung der Daten. Empirische Regeln 68% der Daten im Bereich um $\overline{x} \pm s$. 95% um $\overline{x} \pm 2s$. 99.7% um $\overline{x} \pm 3s$.

Grafische Zusammenhang zwischen multivariaten Daten y und y durch ein Streudiagramm. Kennzahlen zur Untersuchung des Zusammenhangs:

1.8.1 Empirische Kovarians R:cov(x, y); $s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) =$

1.8 Korrelation

 $\frac{1}{n-1} \left(\sum_{i=1}^{n} (x_i y_i - n \overline{x} \overline{y}) \right)$

rer Zusammenhang.

R:cor(x, x); $r = \frac{s_{xy}}{s_x x_y}$; Näherungsweise lin.

Zusammenhang zw. x und y, falls $|\mathbf{r}| \approx 1$.

1.8.3 Regressionsgerade y $y = mx + t \text{ mit } m = r \cdot \frac{s_y}{s} \text{ und } t = \overline{y} - m \cdot \overline{x};$ $n\bar{x}^2$) Gemittelte Summe der quadrati- Für den Bereich $|\pm 0,7|$ $\hat{b}is$ bis $\pm 1 \Rightarrow$ linea-

standardabweichung 2.1 Begriffe **Ergebnisraum** Ω : Menge aller möglichen Ergebnisse eines Experiments **Elementarereignis** $\omega \in \Omega$: einzelnes Ele-

Ø heißt unmögliches Ereignis

 $0 \le P(E) \le 1$; $P(\Omega) = 1$;

 $P(\overline{E}) = 1 - P(E)$

ment von Ω

2 Wahrscheinlichkeitsrechnung

Ereignis $E \subseteq \Omega$: beliebige Teilmenge des

Ereignis E_i tritt ein. **Schnitt** $E \cap F$: Ereignis E und Ereignis F treten ein. $\bigcap_{i=1}^n E_i$ alle Ereignisse E_i treten ein. **Gegenereignis** $\overline{E} = \Omega / E$: Ereignis E tritt nicht ein (Komplement von E) **Disjunkte Ereignisse**E und F: $E \cap F = \emptyset$

2.2 De Morgan'schen Regeln $E_1 \cup E_2 = E_1 \cap E_2$ $\overline{E_1 \cap E_2} = \overline{E}_1 \cup \overline{E}_2$ 2.3 Wahrscheinlichkeit

2.3.1 Satz 2.1

2.4 Laplace-Experiment Zufallsexperimente mit n gleich wahr-Elementarereignissen. scheinlichen

 $P(E \cup F) = P(E) + P(F) - P(E \cap F)$

(Übungsaufgabe!!! Ergänzen)

Dann berechnet sich die Wahrscheinlichkeit P(E) für $E \subseteq \Omega$ aus: $P(E) = \frac{\text{Anzahl der für E günstigen Ereignisse}}{\text{Anzahl der möglichen Ereignisse}}$

2.5 Kombinatorik 2.5.1 Allgmeines Zählprinzip

 $\frac{\text{M\"achtigkeit von E}}{\text{M\"achtigkeit von }\Omega} = \frac{|E|}{\Omega} \mathbf{text}$

2.5.2 Permutationen

Anzahl der Möglihckeiten für ein k-

stufiges Zufallsexperiment mit n_i Varianten im i-ten Schritt: $n_1 \cdot n_2 \cdot ... \cdot n_k$

Anzahl einer n-elementigen Menge nmaliges Ziehen ohne Zurücklgen mit Beachtung der Reihenfolge: n unterscheid-

Ergebnisraums Ω heißt sicheres Ereignis, mit Beachtung der Reihenfolge, ohne Zurücklegen: $\frac{n!}{(n-k)!}$ **Vereinigung** $E \cup F$: Ereignis E oder Ereigohne Beachtung der Reihenfolge, ohne nis F treten ein. $\bigcup_{i=1}^{n} E_i$: mindestens ein **Zurücklegen**: $\binom{n}{k} = \frac{n!}{(n-k)!k!}$ mit Beachtung der Reihenfolge, mit Zu-

rücklegen: nk ohne Beachtung der Reihenfolge, mit Zurücklegen $\binom{n+k-1}{k}$ 2.6 Bedingte Wahrscheinlichkeit $P(E|F) = P_F(E) = \frac{|E \cap F|}{|F|} = \frac{P(E \cap F)}{P(F)}$

2.6.1 Satz 2.2 $P(E \cap F) = P(E|F) \cdot P(F)$

lichkeit

ohne Zurücklegen = $k \le n$.

mit Zurücklegen = k > n möglich.

Sei $\Omega = \bigcup_{i=1}^n E_i$ mit $E_i \cap E_j = \emptyset$ für $i \neq j$

2.6.2 Satz der totalen Wahrschein-

2.5.3 Anzahl k-elementigen Teil- $= P(F) - P(F \cap \overline{E}) = P(E) - P(\overline{F} \cap E); P(\overline{F}|E) =$

2.6.4 Formel von Bayes

 $P(F|E_k) \cdot P(E_k)$

 $P(F|E_i) \cdot P(E_i)$

len Wahrscheinlichkeit.

nicht ändert, d.h. falls

gig sind, dann sind auch:

 E, \overline{F}

Hilfreich, wenn man man $P(F|E_i)$ kennt,

aber nicht $P(E_k|F)$ Satz 2.4 $P(E_k|F) =$

Nur Nenner!P(F) aus dem Satz der tota-

2.6.5 Stochastische Unabhängig-

Uebung Die Ereignisse E und F heißen

(stochastisch) unabhängig, wenn die

Information über das Eintreten des einen

Ereignisses die Wahrscheinlichkeit für

das Eintreten des anderen Ereignisses

 $P(E|F) = P(E)oderP(E \cap F) = P(E) \cdot P(F)$

Es gilt Falls die Ereignisse E, F unabhän-

 \overline{E} , \overline{F} unabhängig **Bemerkung**

ne kausale Abhängigkeit

· Stochastische Unabhängigkeit be-

· Veranschaulichung mit Venn Dia-

deutet nicht notwendigerweise ei-

mengen einer n-elementigen 1 - P(F|E)

Menge k-maliges Ziehen aus

einer n-elementigen Menge

d.h. die Ereignisse bilde eine disjunkte Zerlegung bzw. eine Partition von Ω . So- $P(F) = \sum_{i=1}^{n} P(F \cap E_i) = \sum_{i=1}^{n} P(F|E_i)$.

Summe der Äste des Wahrscheinlichkeitsbaums zu allen Schnitten $F \cap E_i$

2.6.3 Vierfeldertafel

Abbildung des abstrakte Ergebnisraums $P(F) = P(F \cap E) + P(F \cap \overline{E})$

 Ω auf \mathbb{R} . Eine Abbildung $X:\Omega\to\mathbb{R}$,

 $P(E) = \frac{1}{2} = P(E(F))$ gramm stock unabhanging P(E)= 1 < P(EIF)

 $\emptyset \neq P(A) \cdot P(B)$ da P(A) > 0 und => A, B stochastisch abhängig

3 Zufallsvariable

• $A, B \neq \emptyset$ und $A \cap B = \emptyset$

 $P(A \cap B) \stackrel{?}{=} P(A) \cdot P(B)$

 $\omega \mapsto X(\omega) = \text{heißt Zufallsvariable (ZV). x}$ € R. heißt Realisation der ZV X.

• Diskrete ZV: $X(\Omega) = x_1, ..., x_2 (n \in$ \mathbb{N}); z.B. X = "Augensumme beim"

P(FAE) P(FAE) P(F) P(FAE) P(FAE) P(F) **bare Elemente**: $n! = n \cdot (n-1) t extb f ... 2 \cdot 1$ P(E) P(E) 1 Satz 2.2 oben: $P(E \cap$ k Klassen mit je n_i nicht unterscheidba-• Stetige ZV: $X(\Omega) \subseteq \mathbb{R}$; "z.B. Körperren Elementen $n = sum_k^{i=1} n_i$: $\frac{n!}{n_1! \cdot n_2! \cdot n_1!}$ $F = P(E) \cdot P(F|E) = P(F) \cdot P(E|F)$ Tafel größe eines Menschen"

 $P(\overline{F}) = P(\overline{F} \cap E) + P(\overline{F} \cap E)$

E Ē

von JD., Seite 2 von 4 • Dichtefunktion fx $\int_{-\infty}^{\infty} f(x)dx = 1$ 3.1 Verteilungsfunktion-allg. • Verteilungsfunktion F(x) ist stetig Die Wahrscheinlichkeit P(B) für ein Ermit $F'(x) = f(x); P(X = x_i) = 0$

eignis B in **R** wird zurückgefürht auf die Wahrscheinlichkeit der entsprechenden

Hilfszettel zur Klausur

Ereignisse in Ω . Für jedes $X \in \mathbb{R}$ ist die Verteilungsfunktion F: $\mathbb{R} \to [0,1]$ einer ZV X definiert durch: $F(x) = P(X \le x)$ • $0 \le F(x) \le 1$ • $\lim_{x \to -\infty} F(X) = 0 \lim_{x \to \infty} F(x) = 1$

monoton wachsend • P(X > x) = 1 - F(x)

•
$$P(A < X \le b) = F(b) - F(a)$$

• **2.1 3.2 Diskrete ZVs**

Für eine diskrete ZV X mit
$$X(\Omega) = x_1,...,x_n$$
 (n endlich oder abzählbar unendlich) ist die Wahrscheinlichkeits-

funktion definiert durch: $p(x) = \begin{cases} P(X = x_i), \text{falls } x_i \in X(\Omega) \\ 0, sonst \end{cases}$ Es gilt:

Treppenfunktion mit Sprüngen bei der Realisation von x_i . 3.3 Stegite ZVs Stetige ZV X ist die Wahrscheinlichkeitsdichte f $f: \mathbb{R} \to [0, \infty]$ definiert durch

$P(a < X < b) = \int_{a}^{b} f(x)dx$

• $F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt$ und F'(x) = f(x)• F(x) ist stetig & $P(a < X \le b) =$ $P(a \le X \le b)$ wegen P(X = a) = 0

3.4 Verteilungsfunktion $\int_{\mathbf{Untergrenze}}^{x}$ Es wird normal mit - Inte-

3.5 Zusammenfassung 3.5.1 Diskrete ZV

$p(x) \sum_{i=1}^{n} p(x_i) = 1x_i$ ist Realisation der ZV. • Verteilungsfunktion F(x) ist rechtsseitig stetige Treppenfunktion. **Sprunghöhen:** $P(X = x_i) = F(x_i) -$

 $\lim_{x \to x_i -} \neq 0$

 $X \leq b$

Wahrscheinlichkeitsverteilung

• $P(a < X \le b) = F(b) - F(a) \ne P(a \le b)$

3.6 Erwartungswert Der Erwartungswert E[X] = einer ZV

• $P(a < X \le b) = F(b) - F(a) = P(a \le b)$

 $X \le b$) = $F(a \le X < b) = P(a < X < b)$

3.5.2 Stetige ZV

- X ist der Schwerpunkt ihrer Verteilung or der durchschnittliche zu erwartende Wert der ZV.
 - diskrete ZV: $E[X] = \sum_{i=1}^{n} x_i \cdot p(x_i)$ • stetige ZV: $E[X] = \int_{-\infty}^{\infty} x \cdot f(x) dx$
- ZV ist konstant. E[X] verhält sich linear. Eigenschaften von E[X]: • E[b] = b
 - E[aX + b] = aE[X] + b• $E[X_i + ... + X_n] = \sum_{i=1}^n E[X_i]$
- 3.6.1 Satz 3.1

Sei Y = g(X) eine Funktion der ZV X. Dann gilt: • für diskrete ZV:E[g(X)]

 $\sum_{i=1}^{n} g(x) \cdot p(x_i)$

• für stetige ZV: $E[g(X)] = \int_{-\infty}^{\infty} g(x) dx$ f(x)dx. Das vertauschen von E und g nur bei linearen Funktionen $m\ddot{o}glich. \Rightarrow g(E[X])$

Die Varianz einer ZV X mit μ ist ein qua- $\frac{1}{n}\sum_{i=1}^{n}E[x_{i}]=\frac{1}{n}\cdot n\cdot \mu=\mu$ dratisches Streungsmaß. $\sigma^2 = Var[X] =$

g(X)Die Standardabweichung $\sigma = \sqrt{Var[X]}$ hat im Gegensatz zur Varianz die gleiche

 $E[(X-)^2]$ falls x stetig $\int_{-\infty}^{\infty} (x-\mu)^2 \cdot f(x)$

- Var[b] = 0• $Var[aX + b] = a^2 Var[X]$
- 3.7.1 Satz 3.2

Dimension von die ZV X.

 $Var[X] = E[X^2] - (E[X])^2$ Beim Minuend wird beim Erwartungswert nur das einfach stehende x quadriert nicht f(x)!!! 3.8 Z-Transformation, Standardisie-

Sei X eine ZV mit μ und σ . Dann ist $Z = \frac{X - \mu}{\mu} = \frac{x}{\mu} - \frac{\mu(konstant)}{\mu(konstant)}$

Falls X, Y stochastisch unabhängig \Rightarrow Cov[X,Y]=03.10 Satz 3.3 $Cov[X, Y] = E[XY] - E[X] \cdot E[Y]$ np(1 - p); **R:** dbinom(k,n,p)=P(X=k) 3.10.1 Varianz einer Summe von

$\sum_{i=1}^{n} \sum_{i=1}^{i} Cov[X_i, X_i]; Var[X_1 +$ X_2] = $Var[X_1] + Var[X_2] + 2Cov[X_1, X_2]$

• $Var[X_i + ... + X_n]$

!!!: $Var[X_1 + ... + X_n] = \sum_{i=1}^n Var[X_i]$ 3.11 Overview $\mu \sigma$

• Falls X_i, X_i paarweise unabhängig

3.11.1 E[X]

3.9 Kovarianz

• Cov[X, Y] = Cov[Y, X]

• Cov[aX, Y] = aCov[X, Y]

Die Kovarianz zweier ZV (X, Y)

E[(X - E[X])(Y - E[Y]) Die Kovarianz

beschreibt die Abhängigkeit zweier ZV X

und Y. Je stärker diese Korrelieren, desto

(betragsmäßig) größer ist die Kovarianz.

definiert durch Cov[X,Y] =

• Cov[X,X] = Var[X]

Eigenschaften:

$E[aX + b] = AE[X] + b; EX_1 + ... + E_n =$ $\sum_{i=1}^{n} E[X_i];$ Falls X_1, X_2 unabhängig:

 $E[X_i] = \mu = E[\overline{X}] = E[\frac{1}{n}(X_1 + ... + X_n)] =$

3.11.2 Varianz

Falls X_i , X_j parweise unabhängig:

 $Var[X_1 + ... + X_n] = \sum_{i=1}^n Var[X_i]$

 $Var[aX + b] = a^2 Var[X]$

 $|x_n| = \frac{1}{n^2} \sum_{i=1}^n Var[X_i] = \frac{1}{n^2} \cdot n \cdot \sigma^2 = \frac{\sigma^2}{n}$ 3.12 Quantile Sei X eine ZV mit Verteilungsfunktion F(x) und 0 . Dann ist das p-Quantil definiert als der Wert $x_p \in \mathbb{R}$ für den gilt:

 $F(x_p) \ge p$. p-Quantil einer stetigen

ZV mit streng monoton wachsenden

 $F(x)x_p = F^{-1}(p)d$. h. umkehrbar.

 $Var[X_i] = \sigma^2 \Longrightarrow Var[\overline{X}] = Var[\frac{1}{n}(x_1 + ... +$

Alle Werte $\{x_1,...,x_n\}$ einer ZV X sind gleich wahrscheinlich; **Wahrscheinlich**-

keit $P(X = x_k) = \frac{1}{n}$; Verteilung

ppois $(k, \lambda) = F(k)$;

4.1.5 Gleichverteilung

Erfolg und 0 bei Misserfolg; Wahrschein**lichkeit:**P(X = 1) = p, P(X = 0) = 1 - p;**Verteilung:** $X \sim B_{1,p}$ p ist Erfolgswahr-

 $X \sim U_{\{x_1,...,x_n\}}; E[X] = \frac{1}{n} \sum_{k=1}^n x_k = \overline{x};$

 $Var[X] = \frac{1}{n} \sum_{k=1}^{n} x_k^2 - \overline{x}^2$; **R:** sample(1: (N,n) n Zufallszahlen zwischen 1 und

4.2.1 Stetige Gleichverteilung Zufallszahlen aus einem Intervall [a, b];

4.2 Gleichverteilung

 $Var[X] = \lambda \mathbf{R} : \frac{d}{pois}(k, \lambda) = P(X = k);$

 $Var[X] = \frac{(b-a)^2}{12} \mathbf{R} : \frac{d}{dunif}(x, a, b) = f(x);$

4.2.3 Standardnormalverteilung

Dichte: $\varphi(x) = \frac{1}{\sqrt{2}}e^{(-\frac{1}{2}x^2)}$; Verteilung

 $\phi(x) = \int_{-\infty}^{x} \varphi(t)dt$; Quantile: $\phi(-x) = 1$

 $\phi(x) \Rightarrow -x_p = x_{1-p} \text{ z.B. } -x_{0.25} = x_{0.75};$

Dichte:

Dichte: $f(x) = \frac{1}{h-a}$ für $x \in [a,b]$; **Verteilung:** $X \sim U_{[a,b]}$; $E[X] = \frac{a+b}{2}$;

puni f(x, a, b) = F(x); runi f(n) = n Zufallszahlen zwischen 0 und 1; runi f(n, a, b) =n Zufallszahlen zwischen a und b;

4.2.2 Normalverteilung Beschreibt viele reale Situationen,

ist insbesondere Grenzverteilung unabhängiger Summen;

 $f(x) = \frac{1}{\sigma\sqrt{2\pi}} \left(-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right);$ Verteilung:

 $X \sim N_{u.\sigma^2}$; $E[X] = \mu$; $Var[X] = \sigma^2$; **R**: $dnorm(x, \mu, \sigma) = f(x); pnorm(x, \mu, \sigma) =$

Ziehen ohne Zurücklegen aus einer Menge mit M Elementen, die Erfolg bedeuten, und N Elementen, die Misserfolg

bedeuten. Gesamtumfang = M + N; F(x); qnorm (q, μ, σ) : q - Quantil; Maxi-Wahrscheinlichkeit P(X = k) =malstelle von f(x) bei $x = \mu$; Wende- $\frac{\binom{M}{k}\cdot\binom{N}{n-k}}{\binom{M+N}{k}}, k \in \{0,1,...,min\{n,M\}\};$ **Verstelle** von f(x) bei $x = \mu \pm \sigma$; E[aX + b] =

aE[X] + b; $Var[aX + b] = a^2Var[X]$; $X \sim N_{\mu,\sigma^2} \Rightarrow aX + b \sim N_{a\mu+b,a^2\sigma^2}$ und teilung $X \sim H_{M,N,n}$; $E[X] = n \frac{M}{M+N}$; $\frac{X-\mu}{\sigma}$ ~ $N_{0,1}$; X_1 ~ N_{μ_1,σ_1^2} und X_2 ~ $\frac{M}{M+N}$ $\hat{=}$ Tref ferwahrscheinlichkeit;

 $Var[X] = n \frac{M}{M+N} (1 - \frac{M}{M+N}) \frac{M+N-n}{M+N-1};$ $\rightarrow 1$ falls n klein im Verhältnis zu $N_{\mu_2,\sigma_2^2} \Rightarrow X_1 + X_2 \sim N_{\mu_1 + \mu_2,\sigma_1^2 + \sigma_2^2};$ X_1, X_2 stochastisch unabhängig

4.1.4 Poisson-Verteilung Verteilung der seltenen Ereignisse Häu-

phyper(k, M, N, n) = F(k);

4 Spezielle Verteilung

 $p - p^2 = p(1 - p);$

4.1 Diskrete Verteilung

4.1.1 Bernouilliverteilung

4.1.2 Binominal verteilung

≜Wahrscheinlichkeits-

≜Verteilungsfunktion;

lung

fallszahlen;

qbinom(q,n,p)=q-Quantil;

Indikatorvariable mit den Werten 1 bei

scheinlichkeit; $E[X] = p = \sum x_i \cdot p(x_i) = 1$.

 $p(1); Var[X] = p(1-p) = E[X^2] - (E[X])^2 =$

Anzahl der Erfolge beim n-maligen

Ziehenmit Zurücklegen; Wahr-

scheinlichkeit $P(x = k) = \binom{n}{k} \cdot p^k$

 $(1 - p)^{n-k}, k \in [0, 1, ..., n]$; Verteilung

 $X \sim B_{n,p}$; E[X] = np; Var[X] =

/Dichtefunktion; pbinom(k,n,p)=F(k)

rbinom(k,n,p)≘kbinomialverteilte Zu-

4.1.3 Hypergeometrische Vertei-

Anzahl der Erfolge beim n-maligen

nem Kontinuum. Die durchschnittlich zu erwartende Anzahl der Erfolge λ pro Maßeinheit (i. a. Zeiteinheit) sei bekannt. $k \in \mathbb{N}_0 \rightarrow diskret$ Wahrscheinlich- $\mathbf{keit}P(X=k) = \frac{\lambda^k}{k!}e^{-\lambda} \text{ mit } \sum_{k=0}^{\infty} P(X=k)$ k) = 1, $da \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} = e^{\lambda}$; Verteilung $X \sim P_{\lambda}$; $E[X] = \lambda, da \sum_{k=0}^{\infty} k \frac{\lambda^{k}}{k!} e^{-\lambda} =$ $e^{-\lambda} \sum_{k=1}^{\infty} \lambda \frac{\lambda^{k-1}}{(k-1)!} = \lambda e^{-\lambda} \sum_{i=0}^{\infty} \frac{\lambda^{i}}{i!} = \lambda;$ werte: $Z = \frac{x-\mu}{\sigma} \sim N_{0,1}$

M+N; **R**: dhyper(k, M, N, n) = P(X = k);

figkeit punktförmiger Ereignisse in ei-

Hilfszettel zur Klausur von **JD**., Seite 3 von 4 4.2.4 Exponentialverteilung Modellierung von Lebensdauern, Wartezeiten Sei $Y_t \sim P_{\lambda t}$ im Intervall [0,t]

$\mu\sigma^2$ bekannt aber nicht die Verteilung

5.1 ZGWS Seien X_i (i = 1,...,n) unabhängige identi-

$\frac{1}{1} \Rightarrow$ Berechnung mit partieller Integration; $Var[X] = \frac{1}{12}$; **R**: $dexp(x, \lambda) = f(x)$;

 $\frac{\sum X_i - n\mu}{\sqrt{n} \cdot \sigma} \sim N_{0,1}$ $\sum X_i$ bezieht sich auf Y; $\sum X_i - n\mu$ bezieht

von t Zeiteinheiten, dann beschreibt

die Exponentialverteilung die Wartezeit

X bis zum Eintreten eines Ereignis-

ses; Dichte- und Verteilungsfunktion:

 $f(x) = \lambda e^{-\lambda x} (x \ge 0)$ und F(x) = 1 -

 $e^{-\lambda x}$; Verteilung: $X \sim Exp_{\lambda}$; E[X] =

 $pexp(x, \lambda) = F(x)$; **Eigenschaft:** Eine ex-

ponentialverteile ZV X ist gedächtnis-

los, d.h. P(X > s + t)|X > t = P(X > s);

4.2.5 Chiquadrat-Verteilung $Z_1,...,Z_n$ seien unabhängige, standardnormalverteilte ZV \Rightarrow X = $Z_1^2 + Z_n^2$ hat Chiquadratverteilung mit n Freiheitsgraden; Anwendungsmodell: Summen unabhängiger, standardnormalverteilter ZV; **Verteilung:** $X \sim \chi_n^2$; E[X] =n; Var[X] = 2n; **R**: $\frac{d}{d}chisq(x,n) = f(x)$; ppchisq(x,n) = F(x); Eigenschaft: $X_1 \sim$ $\chi_{n_1}^2$ und $X_2 \sim \chi_2^2 \Rightarrow X_1 + X_2 \sim \chi_{n_1 + n_2}$

4.2.6 t-Verteilung $Z \sim N_{0.1}$ und $X \sim \chi_n^2 \Rightarrow Y = \frac{Z}{X}$ ist t-

verteilt mit n Freiheitsgraden; Anwendungsmodell: Schätz- und Testverfahren bei unbekannter Varianz; Verteilung: $Y \sim t_n$; E[Y] = 0 für n > 1; $Var[Y] = \frac{n}{n-2}$ für n > 2; **R**: $\frac{d}{dt}(y, n) = f(x)$; $\frac{d}{dt}(y, n) = F(x)$; $qt(y,n) = F^{-1}(x)$; Eigenschaften: Für $n \to \infty$

der Dichtefunktion $\Rightarrow -y_p = x_{1-p}$

 ∞ : $t_n \rightarrow N_{0,1}$; Achsensymmetrie -qnorm(p) = $qnorm(1 - p) \Leftrightarrow$ $-\phi^{-1}(p) = \phi^{-1}(1-p)$ Zusammenhang

Abbildung Dichtefunktion

5 Zentraler Grenzwertsatz

sche verteilte (i.i.d) ZV mit Erwartungswert μ und Varianz σ^2 . Dann gilt für hinreichend große n (>30) und $\overline{X} = \frac{1}{n} \sum_{i=1}^{n}$ näherungsweise: $\sum_{i=1}^{n} X_i \sim N_{n\mu,n\sigma^2} \&$

sich auf
$$X_i$$
; $\overline{X} \sim N_{\mu,\frac{\sigma^2}{n}}$ & $\overline{X}_{-\mu} \sim N_{0,1}$; Die Stichprobenfunktion $X=\frac{\sigma^2}{n}$ ber Satz gilt sogar allgemeiner, wenn die X_i abhängig und nicht identisch verteilt sind, vorausgesetzt kein X_i ist deutlich dominanter?! als die anderen. Für die Voraussetzung des ZGW ist, dass

die Voraussetzung des ZGW ist, dass die X_i nicht normalverteilt sein müssen., Die Stichprobenfunktion S^2 damit $\sum_{i=1}^{n} X_i$ oder \overline{X} bei **hinreichend großem n** normalverteilt sind. Faustregel: **Je** schiefer die Verteilung der X_i desto größer muss n sein: n>30: falls die unbekannte Verteilung ohne markanten Ausreißer, aber schief ist (Exponentialverteilung); n>15: falls die unbekannte Verteilung annähernd symmetrisch ist(Binomialverteilung); $n \le 15$: falls die unbekannte Verteilung annähernd normalverteilt ist;

5.2 ϕ $\phi(-a) = 1 - \phi(a); \phi(a) =$ $1 - \phi(-a)$; $P(-a < Z < a) = \phi(a) - \phi(-a) =$ $\phi(a) - (1 - \phi(a)) = 2\phi(a) - 1$ or $1 - \phi(-a) - \phi(-a)$

$\phi(-a) = 1 - 2\phi(-a)$

E[X]: Stichprobenmittel: $X = \frac{1}{n} \sum_{i=1}^{n} X_i$; Varianz: Stichprobenvarianz: $s^2 =$ $\frac{1}{n-1}\sum_{i=1}^{n}(X_i-\overline{X})^2$; Schätzwert für wahren Parameter, aber keine Aussage über Unsicherheit der Schätzung, Geringe Sicherheit für wahren Parameter;

Aufgabentypen: Seien X_i i.i.d. ZV mit μ und σ^2 , aber unbekannter Verteilung. Dann sind $Z_1 = \frac{\sum X_i - n\mu}{\sqrt{n}\sigma}$ und $Z_2 = \frac{\overline{X} - \mu}{\sigma}$ näherungsweise standardnormalverteilt. · Es lassen sich Wahrscheinlichkeiten für $\sum X_i, \overline{X}, Z_1$ oder Z_2 berech-

ter Parameter

• Es lässt sich n bestimmen, so dass, zu vorgegebener Schranke k und Wahrscheinlichkeit p gilt: $P(Z_i >$ $k \ge p$ or $P(-k \le Z_i \le k) \ge p$ 5.4 Stichprobenverteilungen für nor-

malverteilte Grundgesamtheiten

Die Stichprobenfunktion $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ ist eine erwartungstreue Schätzfunktion

für Erwartungswert μ , d. h. $E[\overline{X}] = \mu$

5.4.1 Stichprobenmittel

 $\frac{1}{n-1}\sum_{i=1}^{n}(X_i - \overline{X})^2 = \frac{1}{n-1}(\sum_{i=1}^{n}X_i^2)$ $n\overline{X}^2$)ist eine erwartungstreue Schätzfunktion für die Varianz σ^2 , d. h. $E[S^2] = \sigma^2$; $E[\overline{X}] = E[\frac{1}{n}\sum X_i] =$ $\frac{1}{n}E[\sum X_i] = \frac{1}{n}\sum_{i=1}^n E[X_i] = \frac{1}{n}n\mu = \mu;$ $Var[\overline{X}] = Var[\frac{1}{n}\sum X_i] = \frac{1}{n^2}Var[\sum X_i] =$ $\frac{1}{n^2}n\sigma^2 = \frac{\sigma^2}{n}$; Seien $X_i(i = 1,...,n)$ unabhängige normalverteilte ZV mit Erwartungswert μ und Varianz σ^2 . Dann gilt: bei unbekannter Varianz: $\frac{X-\mu}{\sigma}\sqrt{n} \sim$

$N_{0,1}$; $\frac{(n-1)S^2 = \sum (x-\overline{x})^2}{\sigma^2 \Rightarrow \text{Standardisierung}} \sim \chi_{n-1}^2$; **Bei** unbekannter Varianz: $\frac{X-\mu}{S}\sqrt{n} \sim t_{n-1}$; 6 Konfidenzintervall 6.1 Begriffe Irrtumswahrscheinlichkeit = α ; Konfi-

denzniveau = $1 - \alpha$ = ; Konfidenzintervall 6.2 Punkschätzer

Ableitung der Inneren Funktion Intervall für wahren Parameter, vorgegebener Sicherheit; Vor-7.4 Integralregel, elementar gabe (95% or 99%); Dichtefunkti-

Faktorregel $\int_a^b C \cdot f(x) dx = C \cdot \int_a^b f(x) dx$;

Ableitung der Äußeren Funktion; u'(x):

 $\int_{a}^{a} f(x)dx = 0; \int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx +$

 $m, n \in \mathbb{N}^*$;

a > 0, b > 0:

Exponenten

beliebig reele

 $a, b \in \mathbb{R}$

 $a > 0 : a^b$

 $=e^{b\ln a}$

 $\int_{a}^{b} f(x)dx \text{ für } (a \le c \le b);$

7.5 Potenzen

 $a^0 = 1$, $a^{-n} = \frac{1}{a^n}$

 $a^n \cdot b^n = (a \cdot b)^n$

 $\frac{a^m}{a^n} = a^{m-n} text f ra \neq 0$

 $!(a^m)^n = (a^n)^m = a^{m \cdot n}$

 $\frac{a^n}{b^n} = (\frac{a}{b})^n$ für $b \neq 0$

 $x^{-n} = \frac{1}{n}$

Summerregel $\int_a^b [f_1(x) + ... + f_n(x)]dx =$ $\int_a^b f_1(x)dx + ... + \int_a^b f_n(x)dx$; Vertauschungsregel $\int_{a}^{a} f(x)dx = -\int_{a}^{b} f(x)dx$;

 $P(-a \le \overline{x} \le a) > 0.95$; σist unbekann- $P(x_{0.025} < \frac{x - \mu}{\sigma} \sqrt{n} < x_{0.975}) \ge 0.95$

 $\frac{1-\alpha}{90\%} = \frac{\frac{\alpha}{2}}{5\%} = \frac{\phi^{-1}(1-\frac{\alpha}{2})}{\phi^{-1}(0.95) \approx 1.645}$

95% 2,5% \$\phi^{-1}(0,975) ≈ 1,96

$-1.96; N_{0.1}; 1.96;$ 6.4 μ , unbekannt, σ^2 , bekannt

 $I =]\overline{X} - \phi^{-1} (1 - \frac{\alpha}{2}) \frac{\sigma}{\sqrt{n}},$

6.3 Intervallschätzer

$$\overline{X} + \phi^{-1} (1 - \frac{\alpha}{2}) \frac{\sigma}{\sqrt{n}} [; 39\%] o_{,5\%} \phi^{-1} (0.995) \approx 2.576$$

6.5 $\mu \& \sigma^2$, unbekannt

6.6 Zusammenfassung

Standardabweichung $\hat{=}\sigma$

 $e^{x} = e^{x}$; $a^{x} = (\ln a) \cdot a^{x}$;

 $\ln x = \frac{1}{x}$; $\log_a x = \frac{1}{(\ln a) \cdot x}$;

7.3 Abl.Regeln

7 Allgemein

7.1 Symbole

7.2 Abl.

 $I = \overline{X} - t_{n-1}^{-1} (1 - \frac{\alpha}{2}) \frac{S}{\sqrt{n}} \sqrt{X} + t_{n-1}^{-1} (1 - \frac{\alpha}{2}) \frac{S}{\sqrt{n}} [1 - \frac{\alpha}{2}] \frac{S}{\sqrt{n}} \frac$

Wie verändert sich das $(1 - \alpha)$ -

Konfidenzintervall, n-größer ⇒ I

kürzer; $1-\alpha$ größer \Rightarrow I länger; Für

 $\frac{L}{2} = 2\phi^{-1}(1 - \frac{\alpha}{2})\frac{\sigma}{\sqrt{n}}\frac{1}{2} = 2\phi^{-1}(1 - \frac{\alpha}{2})\frac{\sigma}{\sqrt{4n}}$

sinx = cosx; cosx = -sinx; $tanx = \frac{1}{2} = 1 + \frac{1}{2}$

Faktorregel $y = C \cdot f(x) \Rightarrow y' = C \cdot f'(x)$;

Summerregel $y = f_1(x) + f_2(x) + ... +$

 $f_n(x) \Rightarrow y' = f_1'(x) + f_2'(x) + ... + f_n'(x)$; **Pro-**

duktregel $y = u \cdot v \Rightarrow y' = u' \cdot v + v' \cdot u$;

 tan^2x ; $cotx = -\frac{1}{sin^2x} = -1 - cot^2x$;

7.6 Wurzel

 $\sqrt{a^2} = |a|$; $b = a^n \Leftrightarrow a = \sqrt[n]{b}$; $\sqrt[n]{a} = a^{\frac{1}{n}}$;

 $\sqrt[n]{a \pm b} \neq \sqrt[n]{a \pm \sqrt[n]{b}}$

 $\sqrt[n]{a^m} = (a^m)^{\frac{1}{n}} = a^{\frac{m}{n}} = (a^{\frac{1}{n}})^m = (\sqrt[n]{a})^m$ $\sqrt[m]{\sqrt[n]{a}} = \sqrt[m]{a^{\frac{1}{n}}} = (a^{\frac{1}{n}})^{\frac{1}{m}} = a^{\frac{1}{m \cdot n}} = \sqrt[m]{a}$

 $\sqrt[n]{a} \cdot \sqrt[n]{b} = (a^{\frac{1}{n}}) \cdot (b^{\frac{1}{n}}) = (ab)^{\frac{1}{n}} = \sqrt[n]{ab}$ $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \frac{a^{\frac{1}{n}}}{b^{\frac{1}{n}}} = (\frac{a}{b})^{\frac{1}{n}} = \sqrt[n]{\frac{a}{b}} \text{ für } b > 0$ $\Rightarrow m, n \in \mathbb{N}^*; a \ge 0, b \ge 0$

7.7 Abc-Formel

 $x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$; $x_{1,2} = \frac{2a}{-b \mp \sqrt{b^2 - 4ac}}0$

7.8 Bin.Formel

 $(a+b)^2 = a^2 + 2ab + b^2$ 1. Binom: $(a+b)^3 =$

 $a^3 + 3a^2b + 3ab^2 + b^3$; $(a+b)^4 = a^4 + 4a^3b + a^3b^4$

 $6a^2h^2 + 4ah^3 + h^4$

 $6a^2b^2 - 4ab^3 + b^4$

 $(a+b)(a-b) = a^2 - b^2$ 3. Binom:

7.9 Einigungen

kommastelle.

Quotientenregel $y = \frac{u}{v} \Rightarrow y' = \frac{u' \cdot v - u \cdot v'}{v^2}$;

Kettenregel $f'(x) = F'(u)u'(x) = \hat{F}'(u)$:

 $(a-b)^2 = a^2 - 2ab + b^2$; 2. Binom; $(a-b)^3 =$ $a^3 - 3a^2b + 3ab^2 - b^3$: $(a - b)^4 = a^4 - 4a^3b + a^3b^2 + a^4b^2 +$

 $y = u \cdot v \cdot x \Rightarrow y' = u' \cdot v \cdot w + u \cdot v' \cdot w + u \cdot v \cdot x';$

· Beim Runden mind. eine Nach-