Laboratory 5: Treble Boost Effects Box

By: Nil Patel & Phillip Wang

Transfer Function & Component Values

Transfer Function:

$$\frac{11(2w)}{(1+j)} = \frac{12(3R_5 - (jw)(1+jw_{1/41b,7(2)})}{(1+jw_{1/41b,7(2)})}$$

$$\frac{1+jw_{1/41b,7(2)}}{(1+jw_{1/41b,7(2)})} \frac{1}{2w_{1/41b,7(2)}}$$

$$\frac{1+jw_{1/41b,7(2)}}{(1+jw_{1/41b,7(2)})} \frac{1}{2w_{1/41b,7(2)}} \frac{1}$$

Component Values:

- C2 = 2.3nF
- R3 = 10k ohms
- C3 = 53nF

Design Choice (didn't have exact capacitance values):

- Used 2nF instead
- Used 47nFinstead

LTSpice Analysis - Transient Response

Vin = Blue V(out) = Green Frequency = 300 Hz

LTSpice Analysis - Frequency Response

Photo of Breadboard

Measured time domain plots - Oscilloscope

299 Hz

1khz

Measured Frequency Domain Plots

Designed VS. Achieved

Component Selection:

- Used 2nF instead of 2.3nF
- Used 47nF instead of 53nF
- (Didn't have exact values that we needed)

	Symbolic Expression	Simulation (low, high)	Measurement
Cutoff Frequencies	$(1/2\pi^*R_5^*C_3) = 300 \text{ Hz}$ $(1/2\pi^*916.7C_2) = 15.1 \text{ kHz}$	300 Hz, 15 kHz	200 Hz, 13 KHz
Gain (inside boosted range)	21.5dB	21dB	18.5dB

