

### Subjective Video Quality Test via Crowdsourcing

### Semester Project

Yinan Shi, Fengze Han, Zhong Chen, Hao Xu Supervisor: Dr.-Ing. Christian Keimel, Dipl.-Ing. Thomas Volk, Philipp Paukner

Institute for Data Processing, Technical University of Munich

July 24, 2018

### Table of contents



- Crowdsourcing Results
- Feature Extraction
- Model Selection
- Performance
- Discussion and Conclusion



### Demographics and Streaming Habits

Question 1: mostly Male

Question 3: mostly America

Question 8: almost 100% in evening





### Demographics and Streaming Habits

Question 1: mostly Male

Question 3: mostly America

Question 8: almost 100% in evening

Question 2: 90% age 18-44 50% age 25-34

Question 6: ¾ extremely often and very often

Question 7: 60% no difference 23% on weekends





### Demographics and Streaming Habits

Question 5: 36.4% free 63.6% paid

Question 9: half 1-2 h 85% > 1h

Question 11: 60% relaxing 30% surfing

Question 12: ½ TV 35% Laptop





### Quality Ratings

X: MOS of Reference(20 Mbit/s) Y: different videos in different experiments





### Quality Ratings

RP0 Reference: 20 Mbit/s RP1: 500 kbit/s RP2: 1 Mbit/s RP3: 2 Mbit/s RP4: 3 Mbit/s





Interactions between Streaming Habits/Quality Ratings

Worker 5, 10, 16, 21, 27, 37, 46, 50, 55 Worker 8, 34, 38, 48, 56, 66 relative small DMOS relative large DMOS





### Interactions between Streaming Habits/Quality Ratings

Worker 5, 10, 16, 21, 27, 37, 46, 50, 55 Worker 8, 34, 38, 48, 56, 66 relative small DMOS relative large DMOS

right Figure left Figure



Que1: Mostly male

Que4: Business /Industrial and manufacturing/ Law Enforcement and Armed Forces



QUEU. IIIUIE UILEII

Que7: also during the week

Que9: spend more time(more hours)

Que10: talk shows/comedy

## Part B: Video Quality Metric



- > Features collection using VMAF metric
- Model selection
- > Feature preprocessing
- > Performance
- Discussion and Conclusion



- Selected scores:
  - VIF scores: scale 0 ~ 3
  - Adm scores: DLM and AIM
  - Motion scores
  - SSIM and MS-SSIM
  - PSNR
  - Other scores: Bagging score



- Selected scores:
  - VIF scores: scale 0 ~ 3
    - a image quality metric: measurement of information fidelity loss. Combine the loss of fidelity in each one of 4 scales.
  - Adm2 scores: DLM and AIM
    - Detail loss Metric and Additive impairment measure; image quality metric
  - Motion
    - measure of temporal difference between adjacent frames: average absolute pixel difference for luminance component



- Selected scores:
  - SSIM and MS-SSIM
    - Luminance Comparison
    - Contrast Comparison
    - Structure Comparison  $SSIM = I(S, \hat{S})c(S, \hat{S})s(S, \hat{S})$
    - *MS*: multiscale subsample



- Selected scores:
  - $\circ$  PSNR: peak signal to noise ratio  $20log_{10}(MAX_1) 10log_{10}(MSE)$
  - Other scores: Bagging scores
    - Bootstrapping aggregation for feature extraction:
       std, mean, vmaf, etc.

### **Model Selection**



- Principal Component Regression
  - Extract latent component from features

- Partial Least Squares Regression
  - Extract latent component both from the features and also from the groundtruth

# Feature Preprocessing



### Standardizing

- This method attribute data assumes a Gaussian distribution of input features and "standardizes" to a mean of 0 and a standard deviation of 1
  - + : Ensures insensitivity of the model to the original scale of variance for the data

$$z = \frac{x - \mu}{\sigma}$$

# Feature Preprocessing



### Centered and Normalized Data



# Feature Preprocessing



Visualising (1st - 7th feature for example)

#### The relation between each feature and DMOS



Table 1: Top 3 features with high influence

| Feature name                           | Covariance value (with DMOS) |
|----------------------------------------|------------------------------|
| MS_SSIM_feature_ms_ssim_l_scale4_score | 0.03218822469883268          |
| MS_SSIM_feature_ms_ssim_s_scale0_score | 0.026682828773759194         |
| SSIM_feature_ssim_l_score              | 0.02605933998903838          |

# Score value analysis









#### PCR model, when component is 1

RMSE: 0.5025335355530438,PCC: 0.7475567449237704,SRCC: 0.8705882352941177





#### PCR model, when component is 2

RMSE: 0.5328752852065942,PCC: 0.7334489482884243,SRCC: 0.8705882352941177





#### PCR model, when component is 10

RMSE: 0.829499228027667,PCC: 0.42904623690039045,SRCC: 0.4823529411764706





### PLS model, when component is 1

RMSE: 0.5082589147175451,PCC: 0.7457022404283518,SRCC: 0.8705882352941177





#### PLS model, when component is 2





#### PLS model, when component is 10

RMSE: 0.9180899318995996,PCC: 0.31496832057341945,SRCC: 0.4558823529411765





### model comparison, when best component number is 1





#### Cross-validation: PLSR and PCR model test with different number of components





### Model comparison between PLSR and PCR

|             | RMSE    | PCC      | SRCC     |
|-------------|---------|----------|----------|
| PLSR(pc=1)  | 0.50825 | 0.745702 | 0.870588 |
| PLSR(pc=2)  | 0.55773 | 0.71646  | 0.850583 |
| PLSR(pc=10) | 0.91808 | 0.31496  | 0.45588  |
| PCR(pc=1)   | 0.50253 | 0.74755  | 0.870588 |
| PCR(pc=2)   | 0.53287 | 0.73344  | 0.870589 |
| PCR(pc=10)  | 0.82949 | 0.42904  | 0.48235  |

### **Discussion and Conclusion**



### **Model differences**

|      | Size of the database                                                                     | Quality of the database                                                                                                                         | Feature space                                                                                                                                            |
|------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| PCR  | <ul> <li>Performances well with small dataset</li> <li>Much quicker</li> </ul>           | Performances well when<br>latent variables mainly<br>correlated to feature<br>dataset(X)                                                        | <ul> <li>More features reduce the influence of outlier</li> <li>Smaller feature space may need more time to find the optimal component number</li> </ul> |
| PLSR | <ul><li>Performances good at bigger<br/>dataset</li><li>Need more computations</li></ul> | <ul> <li>Performances well when<br/>latent variables correlated not<br/>only to feature dataset(X) but<br/>also to predicted data(Y)</li> </ul> | <ul> <li>Feature space scale has less<br/>influence when compared to<br/>PCR.</li> </ul>                                                                 |

# Thank you for attention!