Lemma 4.2.2. If U is above Λ , then $U \uplus \Lambda$ is Legendrian isotopic to Λ and $\Lambda \uplus U$ is a stabilization of Λ . If U is below Λ , then $U \uplus \Lambda$ is a stabilization of Λ and $L \uplus U$ is Legendrian isotopic to Λ .

Proof. The assertions of the lemma are most easily verified using the front projection picture of the Legendrian sum (cf. Figure 4.1.1). If U is above Λ , then, by Figure 4.1.1(b), $U \uplus \Lambda$ is obtained from Λ by performing a generalized Reidemeister I move and is therefore Legendrian isotopic to Λ ; by Figure 4.1.1(c), $\Lambda \uplus U$ is a stabilization of Λ . The case of U below Λ is analogous.

We draw the construction of $\Lambda_1 \cup \Lambda_2$ in dim 3. Let Λ_1 , Λ_2 be Legendrian unknots touching z-transversely in a point. (Everything lies in $(\mathbb{R}^3, dz-ydx)$

Looking at projection on xy plane
it looks like y

(X)

(We know this due to $y = \frac{z'}{x'}$).

At pit is contactomorphic to noted of O in (R3, dz-ydx) s.t. In chart will be on x axis, 12 n chart will be on y axis

The construction changes this to

(legendrian isotopic to 1) / Stabilized If A above then things charge since in (*) we assumed who is above, but it works out.

In Ut 1 we get right side turned upside Lown, in 140 we get left side turned upside down. One can now think, if this is a sensible proof for higher dimensions if we replace $x,y \in \mathbb{R}$ by $\mathbf{x} = (x_1, x_n), \mathbf{y} = (y_1, y_n)$