2.1 OSI Model

- A network is a combination of hardware and software that sends data from one location to another.
- A model is just a guide, not something physical
- In 1990, there were different networks, computers and operating systems
- There was no standard way of communication among those networks/computers/operating systems.
- People wanted to share data.
- OSI Model was created to solve that interoperability problem.

ISO OSI Model:

- ISO: International Standards Organization
 - A multinational body dedicated to worldwide agreement on international standards
- OSI: Open Systems Interconnection
 - An ISO standard that allows communication between all types of computer systems
 - OSI Model is a layered architecture

We use a layered architecture in daily tasks

Example: Sending a letter

Via Post Office

CSC2142-CHAPTER 2 Slide 3/17

OSI Model consists of 7 Layers:

- As the message travels from A to B, it may pass through many intermediate nodes.
- These intermediate nodes usually involve only the first three layers of the OSI model

CSC2142-CHAPTER 2 Slide 5/17

- Within a single machine, each layer calls upon the services of the layer just below it.
- Layer 3, for example, uses the services provided by layer 2 and provides services for layer 4.
- Each interface defines the information and services a layer must provide for the layer above it.
- Between machines, layer x on one machine communicates with layer x on another machine. This communication is governed by an agreed-upon series of rules and conventions called protocols.
- The processes on each machine that communicate at a given layer are called peer-to-peer processes.

Data
exchange
using the
OSI
Model

CSC2142-CHAPTER 2 Slide 7/17

Data exchange using the OSI Model

- D7 means the data unit at layer 7, D6 means the data unit at layer 6,
 and so on
- At each layer, a header, or possibly a trailer, can be added to the data unit.
- When the data unit passes through the physical layer (layer 1), it is changed into an electromagnetic signal and transported along a physical link
- Upon reaching its destination, the signal passes into layer 1 and is transformed back into digital form
- When the data reaches layer 7, the message is again in a form appropriate to the application and is made available to the recipient

- Layer 7: Application Layer (Top Layer)
 - **Task**: Responsible for providing services to the user
 - Consists of network aware applications:
 - Email
 - Web browsers
 - Facebook,....
 - They need Internet in order to work
- Layer 6: Presentation Layer
 - **Task**: responsible for Encryption, Compression and Translation
- Layer 5: Session Layer
 - Task: Responsible for dialog control and synchronization (login rights/permissions)

Layer 4: Transport Layer

 Task: Responsible is responsible for the delivery of a message from one process to another

Layer 3: Network Layer

 Task: responsible for the delivery of individual packets from the source host to the destination host (finds the shortest path to the destination network)

Layer 2: Data Link Layer

• Task: responsible for moving frames from one hop (node) to the next

Layer 1: physical Layer

• **Task:** responsible for movements of individual bits from one hop (node) to the next

CSC2142-CHAPTER 2 Slide 11/17

2.2 TCP/IP Model

- TCP/IP Is a suite of protocols used by Internet today
- It consists of 4 layers
 - Layer 4: Application Layer
 - Layer 3: Transport Layer
 - Layer 2: Internet Layer
 - Layer 1: Network Access Layer

- Application Layer (OSI: Application, presentation and session layers)
 - Some protocols
 - HTTP
 - HTTPS
 - FTP
 - POP3
 - SMTP
 - Protocol data units (PDU): Data
 - A PDU is a generic term used to describe the information of each layer

- Transport Layer:
 - Protocols:
 - TCP: Transmission Control Protocol
 - Guarantees end-to-end delivery of data
 - UDP: User datagram protocol
 - Send n Pray: Hope the data arrives
 - PDU:
 - Segment for TCP
 - Datagram for UDP

- Internet Layer (OSI: Network Layer)
 - Protocols:
 - IP: Internet Protocol
 - ICMP: Internet Control Message Protocol
 - Sends a message when the destination node is unavailable
 - ARP: Address Resolution Protocol
 - Maps IP addresses to physical addresses
 - Halfway between Internet Layer and Network Access Layer
 - PDU: Packet

- Network Access Layer (OSI: Data Link and Physical Layers)
 - Protocols:
 - Ethernet
 - EIA 568 A/B
 - Token Ring
 - CSMA/CD
 - ISDN
 - PDU:
 - Frames (Data Link)
 - Bits (Physical Layer)

2.2 Protocols of the TCP/IP Model

- Each layer has the addressing technique: a way of identifying the source address or the destination address
 - Application Layer has no addressing as it just deals with data
 - Transport Layer addressing: Ports

when it gets data, the data is broken into segments which use ports to identify the destination:

HTTP: port 80

• HTTPS: port 443

FTP: Port 20 and 21

• DNS: port 53

Port number: 16-bit address represented by one decimal number

2.2 Protocols of the TCP/IP Model

- Internet Layer addressing:
 - The packets use IP Address to identify destinations
 - An IP Address is a 32-bits address: 4 dotted decimal numbers where each number represents 8 bits
 - Example: 192.168.109.122

Network Access Layer addressing:

- The frames use the **Physical Address** (MAC Address) to identify the destination
- MAC address: a 48-bits Hexadecimal number (00-12-F4-AB-OC-82)
- Consists of 12 digits and every 2 digits represent 8 bits

2.3 Mapping Network Devices to the TCP/IP and OSI Model

- Physical Layer Devices (OSI)
 - Consists of devices that extend the physical network
 - Works on bits
 - Deals with the physical characteristics such as voltage, cable type and transfer rate
 - Repeaters: Extend LAN
 - Ethernet Cable length is 100m (max), if you want to go further,
 you use a repeaters/transreceivers
 - Transreceivers onvert signal from copper to fiber (many KMs) at one end and from fiber to copper (100 m) at another end
 - Multiport Repeaters: Hub

2.3 Mapping Network Devices to the TCP/IP and OSI Model

- Data Link Layer Devices (OSI)
 - PDU=Frame; Addressing=MAC address
 - Devices
 - Bridges
 - Multiport Bridge: Switch

These devices examine frames and make decisions to forward the frames or not to forward based on the MAC address

2.3 Mapping Network Devices to the TCP/IP and OSI Model

- Internet/Network Layer Devices
 - PDU=Packets; Addressing=IP address
 - Devices
 - Router
 - Layer 3 Switches (Brouter): do the work of both the switch and router

These devices examine packets and make decisions to forward the packets or not to forward based on the IP address

2.3 Mapping Network Devices to the TCP/IP and OSI Model

- Transport Layer Devices
 - PDU=Segments; Addressing=Ports
 - Devices
 - Firewalls

Make decisions based on the port number

- Application Layer Devices
 - PDU=Data; Addressing=None
 - Devices
 - Application Layer Gateway (ALG)

Examine the contents of the data and make decisions to forward the data or not