Collaborators: None

Written Report for DS 210 Final Project(Spotify Dataset Recommendation System)- Alex Bischof

A. Project Overview

- Goal: What question are you answering?
 - Based on a song that the user likes, I am providing a way for the user to find other similar songs to the one they input into my project.
- Dataset: Source, size (link if too large for GitHub).
 - https://www.kaggle.com/datasets/amitanshjoshi/spotify-1million-tracks/discussion /425875

B. Data Processing

- How you loaded it into Rust.
 - CSV rows are read into using csv::readerbuilder, and has headers
 - Each row gets deserialized into the Song struct using serde::Deserialize
 - Eventually, Song instances are collected into a Vec<Song>
- Any cleaning or transformations applied.
 - Cleaning of the original dataset was done in python using the function (drop.na())

C. Code Structure

- 1. Modules
 - loading_data: data ingestion and numeric preprocessing.
 - o cli: contains knn logic, and the filters that are applied
 - main: everything that is implemented
 - o Test: all the tests are stored here

2. Key Functions & Types

Function/Type	What it does	Input	Outputs	Core Logic
---------------	--------------	-------	---------	------------

Song (struct)	Holds all CSV columns as typed and usable data	CSV row	Song instance	Deserialization
load_data	Read & parse CSV	path: &str	Vec <song></song>	Loop rdr.deserialize(), push each row
feature_matrix	Build feature matrix	&[Song]	Array2 <f32></f32>	Map each Song tp a Array1 <f32>; stack</f32>
calc_z_sc	z-score normalization by rows	&mut Array2 <f32></f32>		For each row: calculate mean, std, (x–μ)/σ
prompt_song	Selection of song	&[Song]	usize (row index)	Loop until track_id or track_name match
prompt_for_k	Ask user for number of k (1–20)	none	usize (k)	Parse and check to see if within range
prompt_for_popularity / prompt_for_genre	Extra filters	none	Option<>	Prompting user
build_candidates	Apply filters to generate index list	&[Song], filters, query_idx	Vec <usize></usize>	filter_map on songs
compute_distances	Brute-force Euclidean distance on query and said row	query_idx, &[usize], &Array2	Vec<(f32,usize)>	Map each candidate → (dist, idx)
recommend	$\begin{array}{c} prompt \to filter \to \\ sort \to print \end{array}$	&[Song], &Array2 <f32></f32>	none (prints to stdout)	Calls above functions in a sequence

3. Main Workflow

Load & normalize in main. Run the following: let songs = load_data("song_data.csv")?; let mut feats = feature_matrix(&songs); calc_z_sc(&mut feats);

After, using recommend \rightarrow prompt the song, the k, the filters. Using this, build the candidate indices, iterate over matrix and compute distances, sort and take the top k. Print result

D. Tests

cargo test output (paste logs or provide screenshots).

Build_candidates_basic: verifies our combined popularity and genre filtering logic correctly excludes and includes indices under each scenario

- With no filters, querying song index 0 returns candidates [1,2] (all other songs).
- With popularity=Popular, only songs with popularity \geq 50 remain ([1,2]).
- With genre=Different, only songs whose genre ≠ query's genre remain ([1] since song 1 is "pop" vs query's "rock").

Compute_distances_basic: Makes sure that euclidean distance is implemented correctly

- What it checks:
 - Given a tiny matrix, compute distances of row to row 1,2. They should be 5.0, 10.0
 - Given a tiny feature matrix [[0,0],[3,4],[6,8]], computing distances from row 0 to rows 1&2 yields exactly 5.0 and 10.0 respectively, paired with the correct indices.
- Why it matters:

Ensures our Euclidean-distance routine in compute_distances is implemented correctly, since accurate distance measures are core to KNN recommendations.

E. Results

All program outputs (screenshots or pasted).

Interpretation in project context (no need for "groundbreaking" results).

F. Usage Instructions

How My code works:

To run, cargo run -release

It expects song data.csv in the working directory

- User submits
 - Single song (track ID or name)
 - And answers:
 - o "Show same-genre or cross-genre, or both?"
 - o 1-20 recommendations?
 - "Does popularity matter?"
 - If no, do nothing, if yes → would user like over/under a threshold(popularity over a certain/under a certain amount)

System returns

Top-K similar songs

- K = however many recommendation the user said they wanted.
- It is filtered out by the same genre, different genre, or it doesn't matter("none)
- Popularity is 50 or above. If under 50, then will be labeled as underground/not as popular

Takes 15 seconds to import and build code at first run.

Around .05 seconds to run the code through 1 million + rows.