Modern intro to Online Learning – Exercise Solutions

Ludovic Schwartz

Contents

1	What is online learning?	2
	Exercise 1	2
2	Online Subgradient Descent	4
	Exercise 1	4
	Exercise 2	4
	Exercise 3	5
	Exercise 4	6
	Exercise 5	7
4	Beyond \sqrt{T} Regret	8
	Exercise 1	8
	Exercise 4	8
6	Online Mirror Descent	10
	Evereise A	10

What is online learning?

Exercise 1.1

Extend the previous algorithm and analysis to the case when the adversary selects a vector $y_t \in \mathbb{R}^d$ such that $\|y\|_2 \leq 1$, the algorithm guesses a vector $x_t \in \mathbb{R}^d$, and the loss function is $\|x_t - y_t\|_2^2$. Show an upper bound to the regret logarithmic in T and that does not depend on d. Among the other things, you will probably need the Cauchy-Schwarz inequality : $\langle x, y \rangle \leq \|x\|_2 \|y\|_2$.

Solution: The natural extension of the previous algorithm is to pick the x_t which minimizes the cumulated loss up to time t-1. We also define x_t^* the optimal comparator at times t:

$$x_t = x_{t-1}^* = \underset{x \in \mathbb{R}}{\operatorname{arg \, min}} \sum_{s=1}^{t-1} ||x - y_t||^2$$

We can once again explicitely compute the value of x_t . Indeed, if we define $F_t(x) := \sum_{s=1}^t \|x - y_t\|^2$, F_t is a strictly convex function and reaches its minimum where its gradient vanishes. A simple computation then gives $\nabla F_t(x) = 0 \leftrightarrow \sum_{s=1}^t 2(x - y_s) = 0 \leftrightarrow x = \frac{1}{t} \sum_{s=1}^t y_s$ In particular, we have again $x_t = \frac{1}{t-1} \sum_{s=1}^{t-1} y_s$ and we can notice that $\|x_t\| \le 1$ at all time.

Now, by lemma 1.2 with the loss $\ell_t(x) = ||x - y_t||^2$, we have :

$$\forall T, \sum_{t=1}^{T} \|x_T^* - y_t\|^2 \ge \sum_{s=1}^{T} \|x_t^* - y_t\|^2$$

We can now complete the proof:

$$R_{T} = \sum_{t=1}^{T} \|x_{t} - y_{t}\|^{2} - \min_{x \in \mathbb{R}} \sum_{t=1}^{T} \|x - y_{t}\|^{2}$$

$$= \sum_{t=1}^{T} \|x_{t-1}^{*} - y_{t}\|^{2} - \sum_{t=1}^{T} \|x_{T} - y_{t}\|^{2}$$

$$\leq \sum_{t=1}^{T} \|x_{t-1}^{*} - y_{t}\|^{2} - \sum_{t=1}^{T} \|x_{t}^{*} - y_{t}\|^{2}$$

$$= \sum_{t=1}^{T} \langle x_{t-1}^{*} + x_{t}^{*} - 2y_{t}, x_{t-1}^{*} - x_{t}^{*} \rangle$$

$$\stackrel{\text{(C.S)}}{\leq} \sum_{t=1}^{T} \|x_{t-1}^{*} + x_{t}^{*} - 2y_{t}\| \cdot \|x_{t-1}^{*} - x_{t}^{*}\|$$

$$\leq \sum_{t=1}^{T} 4 \|x_{t-1}^{*} - x_{t}^{*}\|$$

Where the first inequality uses lemma 1.2, the second one uses Cauchy-Schwarz and the third uses that $\forall t, \|x_t^*\| \leq 1$ and $\|y_t\| \leq 1$. Now we notice that

$$||x_{t-1}^* - x_t|| = \left\| \frac{1}{t-1} \sum_{s=1}^{t-1} y_s - \frac{1}{t} \sum_{s=1}^t y_s \right\|$$

$$= \left\| \frac{1}{t(t-1)} \sum_{s=1}^{t-1} y_s + \frac{1}{t} y_t \right\|$$

$$\leq \frac{1}{t(t-1)} \sum_{s=1}^{t-1} ||y_s|| + \frac{1}{t} ||y_t||$$

$$\leq \frac{2}{t}$$

Now we plug everything together:

$$R_T \le 4 \cdot \sum_{t=1}^{T} ||x_{t-1}^* - x_t^*|| \le 8 \cdot \sum_{t=1}^{T} \frac{1}{t} \le 8 + 8 \log T$$

Online Subgradient Descent

Exercise 2.1

Prove that $\sum_{t=1}^{T} \frac{1}{\sqrt{t}} \leq 2\sqrt{T} - 1$

Solution: We have:

$$\sum_{t=1}^{T} \frac{1}{\sqrt{t}} = 1 + \sum_{t=2}^{T} \frac{1}{\sqrt{t}}$$

$$= 1 + \sum_{t=2}^{T} \int_{t-1}^{t} \frac{1}{\sqrt{t}} du$$

$$\leq 1 + \sum_{t=2}^{T} \int_{t-1}^{t} \frac{1}{\sqrt{u}} du$$

$$\leq 1 + \int_{1}^{T} \frac{1}{\sqrt{u}} du$$

$$= 1 + 2\sqrt{T} - 2 = 2\sqrt{T} - 1$$

Ŋ

Exercise 2.2

Using the inequality in the previous exercise, prove that a learning rate $\propto \frac{1}{\sqrt{t}}$ gives rise to a regret only a constant multiplicative factor worse than the one in $(2.1)(R_T \leq DL\sqrt{T})$.

Solution: We start at the result of theorem 2.13:

$$R_T \le \frac{D^2}{2\eta_T} + \sum_{t=1}^T \frac{\eta_t}{2} \|g_t\|^2$$

Then we bound for any t, $||g_t||^2 \le L^2$ and set $\eta_t = \alpha \frac{1}{\sqrt{t}}$ with $\alpha > 0$ to be determined later. We have

$$R_T \le \frac{D^2 \sqrt{T}}{2\alpha} + \sum_{t=1}^T \frac{\alpha}{2\sqrt{t}} L^2$$

$$= \frac{D^2 \sqrt{T}}{2\alpha} + \frac{\alpha L^2}{2} \sum_{t=1}^T \frac{1}{\sqrt{t}}$$

$$\le \frac{D^2 \sqrt{T}}{2\alpha} + \alpha L^2 \sqrt{T}$$

$$= \sqrt{T} \left(\frac{D^2}{2\alpha} + \alpha L^2\right)$$

$$= DL\sqrt{2T}$$

Where the third line uses the result of the previous exercise and the last lines uses the choice $\alpha = \sqrt{\frac{D^2}{2L^2}}$. We remark that we are only a factor $\sqrt{2}$ worse than the bound obtained with a fixed η .

Ŋ

Exercise 2.3

Calculate the subdifferential set of the ϵ -insensitive loss : $f(x) = \max(|x-y| - \epsilon, 0)$

Solution: We start by a drawing of the function:

Then the subdifferential is:

$$\partial f(x) = \begin{cases} \{0\} & \text{if } x \in]y - \epsilon, y + \epsilon[\\ \{-1\} & \text{if } x \in] - \infty, y - \epsilon[\\ \{1\} & \text{if } x \in]y + \epsilon, \infty[\\ [0, 1] & \text{if } x = y + \epsilon\\ [-1, 1] & \text{if } x = y - \epsilon \end{cases}$$

Ŋ

Exercise 2.4

Using the definition of subgradient, find the subdifferential set of $f(x) = ||x||_2 = \sqrt{\sum_{i=1}^d x_i^2}, \ x \in \mathbb{R}^d$

Solution: We start by treating the case $x \neq 0$. Then f is actually differentiable in x and we have:

$$\frac{\partial f}{\partial x_i}(x) = \frac{x_i}{\sqrt{\sum_{i=1}^d x_i^2}} = \frac{x_i}{\|x\|_2}$$

In that case, we simply have:

$$\partial f(x) = \{\nabla f(x)\} = \left\{\frac{x}{\|x\|_2}\right\}$$

For the case x=0 we use the definition of a subgradient, g is a subgradient of f at the point x=0 if and only if

$$\forall y \in \mathbb{R}^d, \, \|y\|_2 \ge \|0\|_2 + \langle g, y \rangle = \langle g, y \rangle$$

By Cauchy Schwarz Inequality, we have:

$$\forall g, y \in \mathbb{R}^d, \ \langle g, y \rangle \le \|g\|_2 \cdot \|y\|_2$$

So any g of norm smaller than 1 will be a subgradient of f at x=0. Conversely, if $\|g\|_2 > 1$, then we have for y=g, $\langle g,y \rangle = \langle y,y \rangle = \|y\|_2^2 > \|y\|_2$ and g will not be a subgradient of f at x=0. To conclude, we have that :

$$\partial f(x) = \begin{cases} \{\frac{x}{\|x\|_2}\} & \text{if } x \neq 0\\ \{g, \|g\|_2 \le 1\} & \text{if } x = 0 \end{cases}$$

Exercise 2.5

Consider Projected Online Subgradient Descent for the example 2.10 on the failure of Follow-the-Leader: Can we use it on that problem? Would it guarantee sublinear regret? How would the behaviour of the algorithm differ from FTL?

Solution: The setting of Example 2.10 is the following: Let V = [-1, 1] and consider the sequence of losses $\ell_t(x) = z_t x + i_v(x)$, where

$$z_t = \begin{cases} -0.5 & \text{if } t = 1\\ (-1)^t & \text{if } t > 1 \end{cases}$$

We can apply Projected Online Subgradient Descent in that problem. In particular, since we only do prediction inside of V, we can consider the loss function $\ell_t(x) = z_t x$. We have :

$$\nabla \ell_t(x) = z_t$$

Now we can verify that:

$$\forall x \in V, \|\nabla \ell_t(x)\| \le 1 := L$$

and that:

$$D:=\sup_{x,y\in V}\|x-y\|=2<\infty$$

Theorem 2.13 applies and we get a bound of order $DL\sqrt{T}=2\sqrt{T}$, that is to say, sublinear regret. The main difference with Follow the Leader is that Projected Online Subgradient Decent will pick points in the interior of V and do small updates on them while Follow the leader picks extremal points and moves a lot between each prediction.

Beyond \sqrt{T} Regret

Exercise 4.1

Prove that OSD in Example 4.11 with $x_1 = 0$ is exactly the Follow-the-Leader strategy for that particular problem.

Solution: In example 4.11, we have $\ell_t(x) = (x - y_t)^2$, $\eta_t = \frac{1}{2t}$. We can explicitly compute the predictions of OSD:

$$x_1 = 0$$

and

$$x_{t+1} = x_t - \eta_t \nabla \ell_t(x_t)$$

$$= x_t - \frac{1}{t}(x_t - y_t)$$

$$= \frac{t-1}{t}x_t + \frac{1}{t}$$

An elementary induction then gives $x_{t+1} = \frac{1}{t} \sum_{s=1}^{t} y_s$ which is exactly the strategy of Follow-the-Leader on that problem.

Exercise 4.4

Prove that the dual norm of $\|\cdot\|_p$ is $\|\cdot\|_q$, where $\frac{1}{p} + \frac{1}{q} = 1$ and $p, q \ge 1$

Solution : Let $p,q \ge 1$. By absolute homogeneity of the norms, it suffices to prove that $\forall y \in \mathbb{R}^d$, $\|y\|_q = 1 \implies \|y\|_p^* = 1$.

Let $y \in \mathbb{R}^d$ such that $\|y\|_q = 1$, we have

$$||y||_{p}^{*} = \max_{||x||_{p}=1} \langle x, y \rangle \le ||x||_{p} ||y||_{q} = 1$$

by Hölder's inequality with equality for some value of x. For completeness, we reprove the equality case of Hölder's inequality here. If $1 , we define <math>x_i = sgn(y_i) \cdot |y_i|^{\frac{q}{p}}$ (With the convention sgn(0) = 0) We have:

$$||x||_p = \left(\sum_{i=1}^d |x_i|^p\right)^{\frac{1}{p}} = \left(\sum_{i=1}^d |y_i|^{p \cdot \frac{q}{p}}\right)^{\frac{1}{p}} = ||y||_q^{\frac{q}{p}} = 1$$

And

$$\langle x, y \rangle = \sum_{i=1}^{d} x_i \cdot y_i = \sum_{i=1}^{d} |y_i|^{1+\frac{q}{p}} = \sum_{i=1}^{d} |y_i|^q = ||y||_q^q = 1$$

If p=1, let $i^*\in \arg\max_i |y_i|$ and $x_i=sgn(y_{i^*})\mathbb{I}_{i=i^*}$. We have $\|x\|_1=1$, and $\langle x,y\rangle=|y_{i^*}|=\|y\|_{\infty}=1$

If $p = \infty$, let $x_i = sgn(y_i)$ (with the convention sgn(0) = 0). We have $||x||_{\infty} = 1$ and $\langle x, y \rangle = \sum_{i=1}^d x_i y_i = \sum_{i=1}^d |y_i| = ||y||_1 = 1$

Online Mirror Descent

Exercise 6.4

Let $A \in \mathbb{R}^{d \times d}$ a positive definite matrix. Define $\|x\|_A^2 = x^T A x$. Prove that $\frac{1}{2} \|x - y\|_A^2$ is the Bregman divergence $B_{\varphi}(x; y)$ associated with $\varphi(x) = \frac{1}{2} \|x\|_A^2$.

Solution : We have $\varphi(x) = \frac{1}{2}x^T Ax$ and $\nabla \varphi(x) = Ax$. Hence :

$$\begin{split} B_{\varphi(x;y)} &= \varphi(x) - \varphi(y) - \langle \nabla \varphi(x), y - x \rangle \\ &= \frac{1}{2} x^T A x - \frac{1}{2} y^T A y - y^T A (x - y) \\ &= \frac{1}{2} \left(x^T A x + y^T A y - 2 y^T A x \right) \\ &= \frac{1}{2} \left((x - y)^T A (x - y) \right) \\ &= \frac{1}{2} \left\| x - y \right\|_A^2 \end{split}$$

