Teoria węzłów

nasze nazwiska

31 grudnia 2015

Spis treści

1	Wst	ęp, czyli trochę zakłamanej historii i intuicji	1	
2	Moja	a część	2	
	2.1	Sformuowanie definicji węzła	2	
	2.2	Równoważność węzłów		
	2.3	Diagramy i rzuty węzła na płaszczyznę	2	
	2.4	Orientacja węzła	3	
	2.5	Ruchy Reidemeister'a	4	
3	Kolorowania węzłów			
	3.1	Kolorowanie diagramów	4	
	3.2	Równania kolorowań	6	
	3.3	Macierze kolorowań	7	
	3.4	Własności wyznacznika diagramu	9	
	3.5	Wyznacznik sumy spójnej	13	
	3.6	Grupy kolorowań	14	
	3.7	Przykład zastosowań - rodzina węzłów	15	
4	Wielomian Jonesa			
	4.1	Nawias Kauffmana	16	
	4.2	Spin	17	
	4.3	Wielomian Jonesa	17	
	4.4	Relacja kłębiasta	18	
	4.5	Odwrotności, lustra i sumy	18	
	4.6	Rozpietość i wielomian Jonesa	19	

1 Wstęp, czyli trochę zakłamanej historii i intuicji

Pojęcie węzła wywodzi się z teorii atomu Lorda Kelvina, która głosi, że atomy powstają z wirów energii (cokolwiek miałoby to znaczyć). Takie "wiry" Kelvin wyobrażał sobie jako okręgi w przestrzeni trójwymiarowej, lub, bardziej ogólnie, jako krzywe zamknięte w \mathbb{R}^3 bez samoprzecięc. Po tym, jak owa teoria się przyjęła (co prawda nie na długo), zaczęto szukać języka, w którym możnaby w miarę precyzyjnie (jak na tamte matematycznie prehistoryczne czasy) ją wyrazić. Jak mniemam (autor świadomie używa nieco wycofanej formy "jak mniemam", zamiast np. "z pewnością", co pozwala mu nie wdawać się w dyskusję na temat historii matematyki, o której nie ma zielonego pojęcia) te rozważania dały początek teorii węzłów.

Praca Petera Taita, problemy, które naptokał, okazało się, że wiele z nich jest równoważnych temu, czy węzeł nie jest równoważny niewęzłowi, próba sklasyfikowania wszystkich węzłów o niewielkiej liczbie przecięć.

Trochę historii (najpierw Alexander, potem Reidemeister, potem jeszcze ktoś... dobra, to miał być szkielet)

Intuicja, kilka wstępnych przykładów... (muszę się nauczyć tej magicznej techologii służącej do rysowania tych... węzłów)

2 Moja część...

Jest dość dużo (więcej niż trzy) definicji węzła. Każda z nich w pewnym sensie oddaję intuicję, która kryje się za potocznym rozumieniem nazwy tego pojęcia. W tym rozdziale podamy jedną z nich. Powiemy też, co to znaczy, że dwa węzły są równoważne, tj. zastanowimy się, kiedy mając dane dwa węzły jesteśmy wstanie zdeformować jeden z nich (powiemy też, co to znaczy zdeformować), aby otrzymać drugi. Na koniec sformułujemy i udowodnimy twierdzenie Reidemeister'a, które dostarczy nam potężnych narzędzi do rozstrzygania, kiedy dane dwa węzły są równoważne.

2.1 Sformuowanie definicji węzła

Tutaj powiem, czemu jakieśtam podejście jest złe...

Trararam! Teraz podaję lepsze, od tego złego i mówię czemu jest lepsze...

Definicja 2.1. Węzeł to łamana w \mathbb{R}^3 bez samoprzecięć.

Definicja 2.2. Wierzchołek węzła...

Definicja 2.3. Splot - rozłączna suma węzłów...

2.2 Równoważność węzłów

Trochę gadki wstępnej dotyczącej potrzeby wprowadzenia relacji równoważności, tzn. kiedy węzły, które wyglądają trochę inaczej w istocie są tym samym węzłem.

Definicja 2.4. Elementarnym przekształceniem węzła nazywamy...

Definicja 2.5. Mówimy, że węzły J i K są równoważne, gdy...

Sprawdzenie, że podana relacja jest w istocie relacją równoważności pozostawiamy czytelnikowi jako ćwiczenie (dobrze?...)

Gadka-szmatka: utożsamiamy z sobą węzły równoważne, mówimy, że dwa węzły, to ten sam węzeł, gdy te dwa węzły są równoważne.

Diagramy i rzuty węzła na płaszczyznę

Od początku tej pracy, artykułu (? trzeba uzgodnić terminologię) z konieczności rysowaliśmy węzły (obiekty żyjące w przestrzeni trójwymiarowej) na płaszczyźnie. Niestety, masowa technologia nie pozwala jeszcze na pisanie prac w formie hologramów, nad czym wszyscy czterej autorzy mniej lub bardziej ubolewają. Głównym celem tego podrozdziału jest pokazanie, że jeśli dwa różne węzły są reprezentowane przez ten sam dwuwymiarowy rysunek, to są równoważne.

Definicja 2.6. Rzutem na płaszczyznę nazywamy...

Rzuty na płaszczyznę różnych (nierównoważnych) węzłów mogą być równe. Chcemy jednak mówić o takich "ładnych" rzutach...

Definicja 2.7. Rzutem regularnym nazywamy takie rzutowanie węzła, że...

Diagram to rzut + info o góra-dół.

Definicja 2.8. Diagramem węzła nazywamy...

Trzeba wyraźnie powiedzieć, że różne węzły mogą mieć ten sam diagram (np. w diagramie nie ma info o tym, jak wysoko jeden łuczek przechodzi pod drugim). Okazuje się jednak, że jeśli dwa różne węzły mają ten sam diagram, to są one równoważne. Aby to udowodnić potrzebujemy zdefiniować kilka pojęć pomocniczych...

Definicja 2.9. Mówimy, że dwa węzły (p_i) , (q_j) są od siebie odległe o mniej, niż t, gdy mają tyle samo wierzchołków i gdy dla każdej pary wierzchołków zachodzi $d(p_k, q_k) < t$.

Twierdzenie 2.10. Niech K będzie węzłem o uporządkowanym zbiorze wierzchołków $(p_1, p_2, ..., p_n)$. Dla każdego $\epsilon > 0$ istnieje węzeł K' o zbiorze wierzchołków $(q_1, q_2, ..., q_n)$, który jest odległy od węzła K o nie więcej, niż ϵ , oraz jego rzut na płaszczyznę OXY jest regularny.

Twierdzenie 2.11. Jeśli węzeł K ma regularny rzut na płaszczyznę OXY, to istnieje taka $\delta > 0$, że dla każdego węzła K' odległego od K o mniej, niż δ węzły K, K' są równoważne, oraz K' również ma rzut regularny.

Twierdzenie 2.12. Jeśli dwa węzły K oraz J mają ten sam diagram, to są równoważne.

Terminologia: łuki, skrzyżowania, overpass, underpass - chciałbym to sensownie przetłumaczyć, bo wygodnie by było mieć jednosłowne nazwy na te pojęcia.

ćwiczenie: liczba skrzyżowań = liczba łuków.

2.4 Orientacja węzła

ble, ble, ble... Węzeł to taki uporządkowany zbiór skończony. Jak go cyklicznie spermutujemy, albo odwrócimy kolejność jego elementów, to otrzymamy ten sam węzeł. O ile rąbnięcie naszego porządku cyklem wydaje się nie zaburzać porządku krawędzi naszego węzła, o tyle odwrócenie kolejności elementów, już tak...

Definicja 2.13. Węzłem zorientowanym nazywamy...

Na zbiorze węzłów zorientowanych można położyć relację równoważności podobną do tej, którą zdefiniowaliśmy wcześniej. Musimy jeszcze żądać, żeby ciąg elementarnych operacji nie zmieniał oriantacji naszego wyjściowego węzła...

Definicja 2.14. Zorientowane węzły nazywamy równoważnymi, gdy...

Gdyby równoważność w szerszym sensie implikowała równoważność węzłów zorientowanych, powyższa definicja byłaby nudna. Tak na szczęście nie jest, istnieje przykład dwóch węzłów równoważnych, ale nie równoważnych w sensie orientacji.

Definicja 2.15. Węzłem odwrotnie zorientowanym nazywamy węzeł zorientowany $(p_n, p_{n-1}, \dots, p_1)$ powstały z węzła... i oznaczamy K^r .

2.5 Ruchy Reidemeister'a

W tym podrozdziałe przedstawimy pierwsze poważne narzędzie, które w wielu przypadkach pozwoli nam rozstrzygnąć, czy dwa węzły są równoważne, czy też nie. Metody komblinatoryczne, ble, ble...

Wcześniej pokazaliśmy, że problem równoważności węzłów można próbować rozstrzygać posługując się diagramami tych węzłów. Sformułujemy i udowodnimy twierdzenie wiążące...

Definicja 2.16. Dwa diagramy uważa się za równoważne, gdy wykonując skończoną liczbę przekształceń zwanych ruchami Reidemeister'a, można z jednego diagramu otrzymać drugi

Definicja 2.17. Ruchy Reidemeister'a - rysunki.

Trzy ruchy wraz z ich odwrotnościami.

Twierdzenie 2.18. (Reidemeister'a) Dwa węzły są równoważne, wtedy i tylko wtedy, gdy ich diagramy są równoważne.

Trochę pozachwycam się tym twierdzeniem i prostotą dowodu, uzasadnię, czemu przyjąłem taką definicję i wystarczy...

3 Kolorowania węzłów

W niniejszej części zostanie przedstawione zagadnienie kolorowania węzłów. Podana zostanie definicja kolorowania, oraz warunki które muszą zostać spełnione aby węzeł mógł zostać w określony sposób pokolorowany. Następnie zdefiniowane zostaną równania kolorowań oraz macierze kolorowań. Ostatnim etapem będzie wprowadzenie macierzy kolorowań jako niezmiennika węzłów.

3.1 Kolorowanie diagramów

Niech K będzie węzłem zorientowanym, L jego diagramem, B zbiorem łuków, $C = \{c_1, \dots, c_k\}$ zbiorem skrzyżowań.

Definicja 3.1. Diagram L jest kolorowalny modulo $n \in \mathbb{N}$, gdy każdemu łukowi diagramu L można przyporządkować liczbę $a_i \in \{0, \dots, n-1\}$ taką że:

1. Dla każdego skrzyżowania c_j spełnione jest równanie kolorowania $a_{m2}+a_{m3}-2a_{m1}\equiv 0$ mod n

2. Kolorowanie nie jest stale, tzn istnieją łuki a_{m1} , a_{mj} którym przyporządkowano różne liczby.

Przyporządkowanie spełniające powyższe własności nazywa się kolorowaniem diagramu mod n.

Twierdzenie 3.2. Kolorowalność modulo n jest niezmiennikiem węzła.

Dowód. Dwa diagramy L₁, L₂ są równoważne jeżeli istnieje ciąg ruchów Reidemeistera przekształcający L₁ w L₂. Wystarczy zatem sprawdzić że kolorowalność modulo n nie zmienia się po wpływem ruchów Reidemeistera.

1. Pierwszy ruch Reidemeistera:

Dla skrzyżowania c_j spełnione jest równanie $a_{m1}+a_{m2}-2a_{m2}\equiv 0$ mod n. Zatem $a_{m1}\equiv a_{m2}$.

2. Drugi ruch Reidemeistera:

Dla skrzyżowania c_{j1} mamy $a_{m1}+a_{m4}-2a_{m2}\equiv 0$ mod n. Dla skrzyżowania c_{j2} , $a_{m3}+a_{m4}-2a_{m2}\equiv 0$ mod n. Stąd $a_{m1}\equiv a_{m3}$ mod n.

3. Trzeci ruch Reidemeistera:

Dla skrzyżowania c_{j2} mamy $a_{m5}+a_{m2}-2a_{m3}\equiv 0$ mod n. Analogicznie dla skrzyżowania c_{j5} , $a_{m8}+a_{m2}-2a_{m3}\equiv 0$ mod n. Stąd $a_{m8}\equiv a_{m5}$ mod n. W drugim przypadku mamy:

$$\begin{split} &a_{m4} \equiv 2a_{m2} - a_{m1}. \\ &a_{m6} \equiv 2a_{m3} - a_{m4} \equiv \\ &\equiv 2a_{m3} - 2a_{m2} + a_{m1}. \\ &a_{m8} \equiv 2a_{m3} - a_{m2}. \\ &a_{m7} \equiv 2a_{m3} - a_{m1}. \\ &a_{m9} \equiv 2a_{m8} - a_{m7} \equiv \\ &\equiv 2a_{m3} - 2a_{m2} + a_{m1} \equiv a_{m6}. \end{split}$$

Lemat 3.3. Jeżeli dla diagramu L istnieje kolorowanie $\{a_1, \ldots, a_k\}$, to dla każdego $l \in \mathbb{N}$ $\{a_1 + l, \ldots, a_k + l\}$ też jest kolorowaniem.

Dowód. Dla każdego ci spełnione jest:

$$\begin{array}{l} a_{m11}+a_{m2}-2a_{m3}\equiv 0\ mod\ n.\ Wobec\ czego\\ a_{m1}+l+a_{m2}+l-2a_{m3}-2l\equiv 0. \end{array}$$
 \Box

Wniosek: Jeśli diagram jest kolorowalny to istnieje kolorowanie takie że $a_1 = 0$.

Kolorowanie modulo 2 Jeżeli węzeł jest kolorowalny modulo 2 to dla każdego skrzyżowania zachodzi jedna z czterech możliwości:

W każdym przypadku kolory łuków leżących po przeciwnych stronach skrzyżowania są jednakowe. Startując w dowolnym punkcie węzłą i przechodząc go w wybranym kierunku otrzymamy że każdy łuk należący do tej samej komponenty spójności co punkt startowy ma przyporządkowany jednakowy kolor. Zatem węzeł może być kolorowany mod 2 \Leftrightarrow węzeł ma więcej niż jedną komponentę spójności.

Definicja 3.4. Węzeł K jest podzielny jeśli ma conajmniej 2 komponenty spójności, oraz $\exists U, V$ otwarte, $U \cap V = \emptyset$, takie że $K \subseteq U \cup V$, $K \cap U \neq \emptyset$, $K \cap V \neq \emptyset$.

Lemat 3.5. Jeżeli węzeł K jest podzielny to, $\forall n > 1$ diagram L jest kolorowalny mod n.

Dowód. Niech każdy łuk zawarty w U będzie pokolorowany na kolor 0, łuk zawarty w V na kolor 1. Takie przyporządkowanie jest kolorowaniem. Równania skrzyżowań zachodzą dla każdego n. □

3.2 Równania kolorowań

Definicja 3.6. Krótki łuk, to część łuku który przechodzi dokładnie przez 2 skrzyżowania.

Definicja 3.7. Region to komponenta spójności $\mathbb{R}^2 \setminus L$.

Definicja 3.8. Szachownica diagramu to przyporządkowanie każdemu regionowi jednego z 2 kolorów tak aby każdy krótki łuk oddzielał regiony o różnych kolorach.

Przykład: Węzeł 7₃ posiada 7 łuków, 14 krótkich łuków, 9 regionów.

Dla każdego skrzyżowania c_i równanie można przedstawić na 2 sposoby.

Lemat 3.9. Dla każdego węzła K istnieje szachownica jego diagramu.

Dowód. Niech K będzie zawarty w pewnym zbiorze otwartym U. Załóżmy nie wprost, że istnieje diagram dla którego nie istnieje szachownica spełniająca wymagane warunki. Zatem istnieje krzywa M o następujących własnościach:

- Początek i koniec M znajduje się na brzegu U,
- Krzywa przechodzi przez parzystą ilość regionów,
- Krzywa nie przechodzi przez skrzyżowania.

Stąd wynika że krzywą M, przecina nieparzysta liczba łuków, co jest sprzeczne z definicją węzła jako krzywej zamkniętej.

Definicja 3.10. Wybór znaku równania nazywa się dobrym, gdy zachodzi następujący warunek.

$$\alpha_{m2}+\alpha_{m3}-2\alpha_{m1}\equiv 0\ mod\ n,\ dla \qquad \qquad 2\alpha_{m1}-\alpha_{m2}-\alpha_{m3}\equiv 0\ mod\ n,\ dla$$

6

Lemat 3.11. Suma równań po wszystkich skrzyżowaniach równa się 0, o ile znaki równań zostały wybrane dobrze.

Dowód. Ustalmy dowolny krótki łuk a_j . a_j pojawia się dokładnie w 2 równaniach skrzyżowań. Łuk łączy 2 skrzyżowania c_{j1} oraz c_{j2} . Istnieje region X_1 , taki że oba skrzyżowania graniczą z X_1 . Bez straty ogólności X_1 jest białe.

Ponieważ znaki równań zostały wybrane dobrze, znak a_j w równaniu skrzyżowania c_{j1} , jest przeciwny do znaku a_i w równaniu skrzyżowania c_{j1} . Wobec czego równania sumują się do 0.

Wniosek: Niech łuk j, ma początek w skrzyżowaniu c_m . Zaczynając w c_m a następnie idąc wzdłuż łuku i sumując współczynniki przy j-tym łuku w mijanych równaniach skrzyżowań, suma zawsze wynosi ± 1 .

3.3 Macierze kolorowań

Definicja 3.12. Łuk zamknięty w diagramie to komponenta spójności zawierająca dokładnie jeden łuk.

Lemat 3.13. Jeżeli węzeł K nie zawiera łuków zamkniętych, to liczba skrzyżowań i łuków w diagramie L jest równa .

Dowód. Niech L będzie diagramem zorientowanym. Ponieważ węzeł nie zawiera łuków zamkniętych to dla każdego łuku istnieją dokładnie 2 skrzyżowania które odpowiadają początkowi i końcowi łuku. Dodatkowo każde skrzyżowanie jest początkiem i końcem dokładnie 2 łuków. Zatem funkcja przyporządkowywująca łukowi skrzyżowanie będące jego początkiem jest bijekcją.

Niech L będzie diagramem bez łuków zamkniętych, B zbiorem łuków, $\{a_1, \ldots, a_k\}$ jego kolorowaniem modulo n, C zbiorem skrzyżowań.

Definicja 3.14. Macierz kolorowania A_+ to macierz powstała ze współczynników występujących w równaniach kolorowań diagramu L. $A_+ = (\alpha_{ij})$, gdzie α_{ij} odpowiada współczynnikowi przy kolorze i-tego łuku w równaniu c_i -tego skrzyżowania.

Proces tworzenia macierzy A_+ , dla węzła 7_3 został przedstawiony poniżej.

$$A_{+} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ c_{1} & 0 & -2 & 0 & 0 & 1 & 0 \\ -2 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & -2 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 0 & -2 \\ c_{5} & c_{6} & 0 & 0 & 0 & 1 & -2 & 1 \\ c_{7} & 0 & 0 & 0 & 1 & -2 & 1 & 0 \\ 0 & 0 & 0 & 1 & -2 & 1 & 0 & 0 \end{bmatrix}$$

Obserwacja: Równania kolorowań diagramu L są liniowo zależne, wobec czego wyznacznik macierzy kolorowania $|\det(A_+)| = 0$.

Definicja 3.15. Macierz kolorowań A wymiaru $(k-1) \times (k-1)$, to minor macierzy A_+ powstały poprzez usunięcie jednego wiersza i jednej kolumny.

Definicja 3.16. Wyznacznik diagramu det(L) to wyznacznik |det(A)|.

Twierdzenie 3.17. Wyznacznik diagramu jest dobrze określony, nie zależy od wyboru minora macierzy A_+

Dowód. Niech $A_{i,j}$ oznacza minor powstały poprzez usunięcie i-tego wiersza, oraz j-tej kolumny.W macierzy A_+ suma elementów w wierszu, oraz suma elementów w kolumnie równa się 0. Niech X będzie

macierzą
$$k \times k$$
, oraz $X = \begin{pmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{pmatrix}$. Rozważmy

$$det\big(A+X\big)=det\begin{pmatrix} 1+\alpha_{1,1} & \cdots & 1+\alpha_{1,k} \\ \vdots & \ddots & \vdots \\ 1+1+\alpha_{k,1} & \cdots & 1+\alpha_{k,k} \end{pmatrix}$$

Suma elementów w każdej kolumnie, oraz w każdym wierszu równa się k. Wyznacznik zostanie obliczony w następujących krokach:

1. Po dodaniu do i-tego wiersza, sumy pozostałych wierszy każdy element i-tego wiersza będzie mieć wartość k. Wartości w pozostałych komórkach pozostaną niezmienione.

$$\det\begin{pmatrix} 1+a_{1,1} & \cdots & 1+a_{1,k} \\ \vdots & \ddots & \vdots \\ k & \cdots & k \\ \vdots & \ddots & \vdots \\ 1+1+a_{k,1} & \cdots & 1+a_{k,k} \end{pmatrix}$$

2. Po dodaniu do j-tej kolumny, sumy pozostałych kolumn, element $a_{i,j}$ będzie mieć wartość k^2 . Pozostałe elementy w i-tym wierszu, oraz j-tej kolumnie będą mieć wartość k. Pozostałe elementy pozostaną niezmienione.

$$\det\begin{pmatrix} 1+a_{1,1} & \cdots & k & \cdots & 1+a_{1,k} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ k & \cdots & k^2 & \cdots & k \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 1+a_{k,1} & \cdots & k & \cdots & 1+a_{k,k} \end{pmatrix}$$

3. Po wyciągnięciu k przed wyznacznik, wyrażenie będzie miało postać.

$$k \times det \begin{pmatrix} 1 + a_{1,1} & \cdots & k & \cdots & 1 + a_{1,k} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 1 & \cdots & k & \cdots & 1 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 1 + a_{k,1} & \cdots & k & \cdots & 1 + a_{k,k} \end{pmatrix}$$

4. Odejmując i-ty wiersz od pozostałych wierszy otrzymamy.

$$k \times det \begin{pmatrix} \alpha_{1,1} & \cdots & 0 & \cdots & \alpha_{1,k} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 1 & \cdots & k & \cdots & 1 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \alpha_{k,1} & \cdots & 0 & \cdots & \alpha_{k,k} \end{pmatrix}$$

Korzystając z rozwinięcia Lalpace'a względem j-tej kolumny $\det(A+X)=k^2\times\det(A_{i,j})$, dla każdego i, j. Zatem $\det(A_{i,j})$ nie zależy do wyboru i, j.

3.4 Własności wyznacznika diagramu

Wyznacznik diagramu jest powiązany z możliwymi kolorowaniami diagramu.

Lemat 3.18. Niech A będzie macierzą o wyrazach całkowitych. Istnieją macierze X, Y o wyrazach całkowitych, takie $\dot{z}e\ det(X)=det(Y)=1$, oraz macierz diagonalna $D=(d_{i,i})$, jedyna z dokładnością do permutacji wyrazów na głównej przekątnej, takie $\dot{z}e\ D=XAY$.

Dowód. Niech A będzie macierzą wymiaru $k \times k$, oraz α liczbą całkowitą. Ustalmy macierze:

- $Z_{i,j}^1$ Macierz odpowiadająca transpozycji współrzędnych wektora (i,j),
- $Z_{i,\alpha j}^2$ Macierz odpowiadająca dodaniu do i-tej współrzędnej, a-tą krotność j-tej współrzędnej.

Każda z powyższych macierzy ma wyznacznik 1.

Krok 1: Mnożąc macierz A z lewej lub prawej przez Z^1 da się ją przekształcić do postaci $A^{(1)}$, takiej że najmniejszy co do modułu, niezerowy wyraz znajduje się w lewym górnym rogu macierzy. Następnie mnożąc z lewej lub prawej przez $Z^2_{i,\alpha 1}$, można przekształcić macierz do postaci $A^{(2)}$ takiej że, wartość bezwzględna każdego elementu leżącego w pierwszym wierszu lub pierwszej kolumnie jest mniejsza od wartości bezwzględnej elementu $\alpha_{1,1}$.

Krok 2: Powtarzając Krok 1, można sprowadzić macierz do postaci

$$A^{(n_1)} = \begin{pmatrix} a_{1,1} & 0 & \cdots & 0 \\ 0 & a_{2,2} & \cdots & a_{2,k} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & a_{k,2} & \cdots & a_{k,k} \end{pmatrix}$$

Krok 3: Powtarzając krok 1 i 2 dla macierzy wymiaru $(k-1) \times (k-1)$ otrzyma się macierz

$$A^{(n_2)} = \begin{pmatrix} a_{1,1} & 0 & 0 & \cdots & 0 \\ 0 & a_{2,2} & 0 & \cdots & 0 \\ 0 & 0 & a_{3,3} & \cdots & a_{3,k} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & a_{k,3} & \cdots & a_{k,k} \end{pmatrix}$$

Krok 4: Indukcyjnie, macierz A może zostać sprowadzona do postaci diagonalnej D. Operacje wykonywane na kolumnach odpowiadają mnożeniu macierz A przez Zⁱ z prawej strony, na wierszach przez mnożenie z lewej strony. Zatem macierze X, Y są postaci:

$$X = \prod_{\mathfrak{m}} Z^{\mathfrak{m}}. \hspace{1cm} Y = \prod_{\mathfrak{n}} Z^{\mathfrak{n}}.$$

 $Z^m, Z^n \in \{Z^1_{\mathfrak{i}(\mathfrak{m}), \mathfrak{j}(\mathfrak{m})}, Z^2_{\mathfrak{i}(\mathfrak{m}), \mathfrak{a}\mathfrak{j}(\mathfrak{m})}\}, odpowiadają kolejno wykonywanym operacjom wierszowym i kolumnowym. Ponieważ <math>|\det(Z^i)| = 1 \Rightarrow |\det(D)| = |\prod_{i=1}^k d_k| = |\det(XAY)| = |\det(A)|,$

Twierdzenie 3.19. Wyznacznik diagramu L, oraz wartości w odpowiadającej mu macierzy diagonalnej są niezmiennikiem węzła.

Dowód. Niech K będzie węzłem, L jego diagramem, B zbiorem łuków, C zbiorem skrzyżowań, $\{a_1, \ldots, a_k\}$ jego kolorowaniem modulo n, A_+ macierzą kolorowania, A minorem A_+ , powstałym po usunięciu ktego wiersza i k-tej kolumny. Wystarczy sprawdzić że wyznacznik diagramu oraz struktura macierzy diagonalnej nie zmienia się pod wpływem ruchów Reidemeistera.

1. Pierwszy ruch Reidemeistera. Bez straty ogólności można założyć że ruch Reidemeistera jest przeprowadzany na k-tym łuku, pomiędzy i, oraz i+1 skrzyżowaniem. Dodatkowo można przyjąć że indeksy skrzyżowań do których dochodzi łuk k są mniejsze od i+1, oraz indeksy skrzyżowań do których dochodzi k+1, są większe od i. W rezultacie, macierz A_+' po transformacji, ma wymiar k+1. Elementy o obu indeksach mniejszych od k pozostają niezmienione.

Równania skrzyżowań o indeksach od 1 do i nie zmieniają się. W równaniach skrzyżowań o indeksach większych od i, k-ty kolor zostaje zastąpiony k+1-szym. Ostatni wiersz macierzy wynika z równania c_{k+1} skrzyżowania. Na mocy lematu znaki równań mogą być tak dobrane aby sumowały się one do 0. Co więcej taki dobór znaków jest również właściwy dla macierzy A_+ . Niech A^\prime będzie minorem A_+^\prime powstałym poprzez usunięcie ostatniej kolumny i ostatniego wiersza.

Dodając do k-tego wiersza sumę pozostałych wierszy otrzymamy macierz:

Stąd korzystając z rozwinięcia Laplace'a względem ostatniego wiersza, $|\det(A')| = |1 \times \det(A)|$. Przenosząc element $a_{k,k} = 1$ w lewy górny róg macierzy i powtarzając rozumowanie z twierdzenia o postaci macierzy diagonalnej, otrzymujemy, że jeśli macierz diagonalna odpowiadająca A ma wartości na głównej przekątnej $\{d_1, \cdots, d_{k-1}\}$, to macierz diagonalna odpowiadająca A', ma wartości $\{1, d_1, \cdots, d_{k-1}\}$

2. Drugi ruch Reidemeistera. Bez straty ogólności można założyć że ruch Reidemeistera dotyczy i-tego, oraz k-tego łuku, gdzie i-ty łuk jest łukiem górnym, oraz ruch jest pomiędzy skrzyżowaniami c_i , c_{i+1} .

Niech indeksy skrzyżowań do których dochodzi łuk k są mniejsze od i+1, oraz indeksy skrzyżowań do których dochodzi k+1, są większe od i. Równania skrzyżowań do których nie dochodzi łuk k+1 nie zmieniają się. Macierze kolorowania mają zatem postacie:

$$A' = \begin{pmatrix} & & & & & & & & & & & \\ & A & & & & \vdots & & \vdots & & \\ & A & & & a_{i,k} & 0 & \\ & & & & 0 & a_{i+1,k} & \\ & & & \vdots & & \vdots & & \\ & & & & 0 & a_{k-1,k} & \\ a_{k,1} & \cdots & a_{k,i} & \cdots & a_{k,k-1} & 0 & a_{k,k} \\ 0 & \cdots & 0 & -2 & 0 & \cdots & 0 & 1 & 0 \end{pmatrix}$$

Po wykonaniu na macierzy A' następujących operacji: Dodanie do ostatniej(k+1) kolumny sumy pozostałych kolumn, oraz dodania do przedostatniego wiersza (k) sumy wierszy od 1 do k-1, oraz zastosowaniu rozwinięcia Laplace'a otrzymamy: $|\det(A')| = |\det(A)|$. Macierz diagonalna ma postać $\{1,1,d_1,\cdots,d_k\}$. Argumentacja jest analogiczna jak w pierwszym ruchu Reidemeistera.

3. Trzeci ruch Reidemeistera. Trzeci ruch nie zmienia liczby skrzyżowań. Macierze A_+ , oraz A'_+ mają wymiar $k \times k$. Bez straty ogólności można przyjąć

Twierdzenie 3.20. Diagram L może być kolorowalny mod $n \Leftrightarrow |\det(L)|$ oraz n nie są względnie pierwsze.

Dowód. Istnienie kolorowania mod n oznacza istnienie kolorów $\{\alpha_1,\cdots,\alpha_k\}$, takich że równania kolorowań są spełnione dla każdego skrzyżowania. Równoważnie, jest spełnione równanie macierzowe: $A_+x\equiv 0$ mod n, $x\in\mathbb{Z}_n^k$. Z lematu wynika, że można przyjąć $\alpha_1=0$. Ponieważ równania kolorowań są liniowo zależne i $\alpha_1=0$, zatem powyższa równość zachodzi $\Leftrightarrow Ax'\equiv 0$ mod n, $x'\in\mathbb{Z}_n^{k-1}$. Korzystając z twierdzenia o postaci diagonalnej otrzymujemy $A=X^{-1}DY^{-1}$.

 X^{-1},Y^{-1} są macierzami całkowitoliczbowymi. Niech $\overline{X^{-1}}=X^{-1}$ mod n, $\overline{Y^{-1}}=Y^{-1}$ mod n, oznacza przypisanie każdemu elementowi macierzy, reszty z dzielenia mod n. Stąd $Ax'\equiv 0\Leftrightarrow \overline{A}x'\equiv 0\Leftrightarrow \overline{X^{-1}DY^{-1}}x'\equiv 0\Leftrightarrow \overline{X^{-1}}\times \overline{D}\times \overline{Y^{-1}}x'\equiv 0\Leftrightarrow \overline{D}y'\equiv 0, y'\equiv Y^{-1}x', y'\in \mathbb{Z}_n^{k-1}.$ Ponieważ kolorowanie x' nie jest trywialne, to $y'\neq 0$ mod n. Zatem $\exists i\in\{1,\cdots,k\}\ d_i\times y_i'\neq 0$ mod n. Ponieważ $\forall i\in\{1,\cdots,k\}\ y_i'\in\mathbb{Z}_n$, to d_i , oraz n, nie są względnie pierwsze. Ponadto $|\det(L)|=|\det(D)|=\prod_{i=1}^k|d_i|.$ Stąd $\det(L)$, oraz n nie są względnie pierwsze.

Wniosek:

- Jeżeli |det(L)| = 0, to dla każdego n, diagram jest kolorowalny modulo n,
- Jeżeli $|\det(L)| = 1$, to dla żadnego n, diagram nie jest. kolorowalny modulo n

3.5 Wyznacznik sumy spójnej

Niech K, \tilde{K} będą węzłami, L, \tilde{L} ich diagramami, A_+ , $\tilde{A_+}$ macierzami kolorowania, C, \tilde{C} zbiorami skrzyżowań. Rozważmy sumę spójną węzłów K# \tilde{K} . Bez straty ogólności można przyjąć dwa upraszczające założenia:

- Diagramy zostały połączone względem k-tego łuku w diagramie L, oraz względem pierwszego łuku w diagramie L.
- Skrzyżowania w diagramie L zostały tak ponumerowane że skrzyżowania do których dochodzi
 łuk k, oraz znajdują się przed miejscem połączenia diagramów mają numer mniejszy od i+1, zaś
 skrzyżowania znajdujące się za miejscem połączenia mają numer większy od i. Analogicznie dla
 diagramu L̃.

Twierdzenie 3.21. Wyznacznik sumy spójnej diagramów $|\det(K\#\tilde{K})| = |\det(K)| \times |\det(\tilde{K})|$. Ponadto jeżeli wartości w odpowiadających macierzach diagonalnych wynoszą $\{d_1, \cdots, d_k\}$, oraz $\{\tilde{d}_1, \cdots, \tilde{d}_k\}$, to wartości w macierzy diagonalnej dla diagramu sumy spójnej wynoszą $\{1, d_1, \cdots, d_k, \tilde{d}_1, \cdots, \tilde{d}_k\}$.

Dowód. Operacja sumy spójnej przerywa dwa wybrane łuki i łączy końce.

W diagramie L, równania skrzyżowań o indeksach większych od i zostaną zmienione. Współczynnik odpowiadający łukowi k, będzie odpowiadał łukowi pierwszemu z diagramu L̃. W diagramie L̃, współczynnik odpowiadający łukowi pierwszemu będzie odpowiadał łukowi k z diagramu L. Macierz kolorowania ma postać:

$$(A_{L\#\tilde{L}})_{+} = \begin{pmatrix} a_{1,1} & \cdots & a_{1,k-1} & a_{1,k} & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{i,1} & \cdots & a_{i,k-1} & a_{i,k} & 0 & & \\ a_{i+1,1} & \cdots & a_{i+1,k-1} & 0 & a_{i+1,k} \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ a_{k,1} & \cdots & a_{k,k-1} & 0 & a_{k,k} \\ & & \tilde{a}_{1,1} & 0 & \tilde{a}_{1,2} & \cdots & \tilde{a}_{1,k} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ & & 0 & \tilde{a}_{\tilde{t}+1,1} & \tilde{a}_{\tilde{t}+1,2} & \cdots & \tilde{a}_{\tilde{t}+1,k} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ & & 0 & \tilde{a}_{k,1} & \tilde{a}_{k,2} & \cdots & \tilde{a}_{k,k} \end{pmatrix}$$

Po usunięciu z macierzy k+1-szego wiersza oraz k+1-szej kolumny otrzymamy

$$A_{L\#\tilde{L}} = \begin{pmatrix} a_{1,1} & \cdots & a_{1,k-1} & a_{1,k} \\ \vdots & \ddots & \vdots & \vdots \\ a_{i,1} & \cdots & a_{i,k-1} & a_{i,k} & & \mathbf{O} \\ \vdots & \ddots & \vdots & \vdots & & & \\ a_{k+1,1} & \cdots & a_{i+1,k-1} & 0 & & & \\ \vdots & \ddots & \vdots & \vdots & & & & \\ a_{k,1} & \cdots & a_{k,k-1} & 0 & & & \\ & & \tilde{a}_{2,1} & \tilde{a}_{2,2} & \cdots & \tilde{a}_{2,k} \\ \vdots & \vdots & \ddots & \vdots & & & \\ & & \tilde{a}_{\tilde{i},1} & \tilde{a}_{\tilde{i},2} & \cdots & \tilde{a}_{\tilde{i},k} \\ & 0 & \tilde{a}_{\tilde{i}+1,2} & \cdots & \tilde{a}_{\tilde{i}+1,k} \\ \vdots & \vdots & \ddots & \vdots & & \\ & 0 & \tilde{a}_{k,2} & \cdots & \tilde{a}_{k,k} \end{pmatrix}$$

Następnie dodając do k-tego wiersza sumę wierszy od 1 do k-1, oraz zamieniając k-ty wiersz z k+ k-szym wierszem i k-tą kolumnę z k+ k kolumną mamy:

Na podstawie wniosku o szachownicy diagramu $\sum_{m=1}^{i} \alpha_{m,k} = \mp 1$. Zatem $|\det(A_{L\#\tilde{L}})| = 1 \times |\det(A_L)| \times |\det(A_{\tilde{L}})|$. Ponadto przesuwając I w lewy górny róg macierzy i stosując proces diagonalizacji otrzymamy, że elementami macierzy diagonalnej są $\{1,d_1,\cdots,d_k,\tilde{d_1},\cdots,\tilde{d_k}\}$.

3.6 Grupy kolorowań

Definicja 3.22. Grupa kolorowań diagramu Col(L), to grupa abelowa, w której generatorami są łuki diagramu, zaś relacjami są równania kolorowań, oraz ustalony koloru wybranego łuku, $\alpha_1 = 0$.

relacjami są równania kolorowań, oraz ustalony koloru wybranego łuku,
$$\alpha_1=0$$
. Formalnie: $Col(L)=\langle \alpha_1,\cdots,\alpha_k|\begin{pmatrix} \alpha_{j_1}+\alpha_{j_2}-2\times\alpha_{j_3}\equiv 0\\ \vdots\\ \alpha_{j_k-2}+\alpha_{j_{k-1}}-2\times\alpha_{j_k}\equiv 0 \end{pmatrix}, \alpha_1=0\rangle.$ $Col(L)=\langle x\big|Ax\equiv 0\rangle, x\in\mathbb{Z}^{k-1}$

Grupa kolorowań nie jest dobrze zdefiniowanym pojęciem. Zależy ona bowiem od sposobu indeksowania łuków, skrzyżowań oraz wyboru koloru dla pierwszego elementu.

Twierdzenie 3.23. Skończenie generowana grupa przemienna jest izomorficzna z produktem grup cyklicznych.

Grupa kolorowań ma zatem postać:
$$Col(L)\cong\prod_{i=1}^m\mathbb{Z}_{n_i}$$
. Z definicji grupy wynika że $Col(L)\cong\mathbb{Z}^m/\big(A\mathbb{Z}^m\big)$. Niech $A=X^{-1}DY^{-1}$ $\mathbb{Z}^m/\big(A\mathbb{Z}^m\big)\cong\mathbb{Z}^m/\big(X^{-1}DY^{-1}\mathbb{Z}^m\big)\cong\mathbb{Z}^m/\big(D\mathbb{Z}^m\big)\cong\mathbb{Z}^m/\big(\prod_{i=1}^md_i\mathbb{Z}\big)\cong\prod_{i=1}^m\mathbb{Z}_{d_i}$

Klasa izomorfizmów grupy jest dobrze zdefiniowana. Wyznacznik, oraz wartości w macierzy diagonalnej nie zależą od wyboru diagramu, sposobu indeksowania łuków ani skrzyżowań. Produkt grup cyklicznych izomorficzny z grupą kolorowania jest niezmiennikiem węzła.

Wniosek: Grupa kolorowań jest nieskończona \Leftrightarrow det((L) = 0.

3.7 Przykład zastosowań - rodzina węzłów

Rozważmy następującą rodzinę węzłów A_k , $k \ge 3$. Korzystając z własności kolorowań wykażemy że dla różnych k, diagramy przedstawiają różne węzły.

Macierz kolorowania ma postać:

$$A_{+} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & \cdots & k-2 & k-1 & k \\ c_{1} & 2 & -1 & 0 & 0 & 0 & \cdots & 0 & 0 & -1 \\ -1 & 2 & -1 & 0 & 0 & \cdots & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & -1 & 2 & -1 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ c_{k-2} & 0 & 0 & 0 & 0 & 0 & \cdots & 2 & -1 & 0 \\ c_{k-1} & c_{k} & 0 & -1 & 0 & 0 & 0 & \cdots & 0 & -1 & 2 \end{pmatrix}$$

4 Wielomian Jonesa

Przed wprowadzeniem kolejnego wielomianowego niezmiennika przyjrzymy się ich historii. Znamy już wielomian J. Alexandera, który został odkryty około roku 1928. W 1969 J. Conway znalazł sposób na wyznaczenie wielomianu Alexandera dla dowolnego splotu przy użyciu tak zwanej relacji kłębiastej¹. Jest to równanie wiążące wielomian splotu z wielomianami splotów o zmienionym jednym skrzyżowaniu w diagramie splotu wyjściowego. Relacja kłębiasta okazała się kluczem do sukcesu.

Vaughan Jones, matematyk nowozelandzki, odkrył w 1984 nowy wielomian dla splotów jako produkt uboczny podczas pracy nad algebrami operatorowymi. Odkrycie Jonesa było przełomowe, a już cztery miesiące później ogłoszono znalezienie nowego niezmiennika: wielomianu HOMFLY, którego nazwa

¹skein relation

pochodzi od pierwszych liter nazwisk odkrywców, to jest: Hoste, Ocneanu, Millett, Freyd, Lickorish, Yetter.

Aby lepiej zrozumieć wielomian Jonesa przyjrzymy się najpierw prostszej konstrukcji, nawiasowi Kauffmana. Później zajmiemy się węzłami alternującymi.

4.1 Nawias Kauffmana

Zaczniemy od zdefiniowania nawiasu Kauffmana. Przypomnijmy, wielomian Laurenta zmiennej X to formalny symbol $f = a_r X^r + ... + a_s X^s$, gdzie $r, s, a_r, ..., a_s$ są całkowite i $r \le s$.

Poszukujemy niezmiennika dla splotów o kilku prostych własnościach. Przede wszystkim żądamy, by niewęzłowi przypisany był wielomian 1: $\langle O \rangle = 1$. Po drugie chcemy móc wyznaczać nawiasy znając je dla prostszych splotów, co zapiszemy symbolicznie $\langle \not X \rangle = A \langle X \rangle \langle X \rangle + B \langle \not X \rangle$. Zależy nam wreszcie na tym, by móc dodać do splotu trywialną składową: $\langle L \cup O \rangle = C \langle L \rangle$.

Prosty rachunek pokazuje wpływ drugiego ruchu Reidemeistera na nawias:

$$\langle \widecheck{ \bigcirc } \rangle = (A^2 + ABC + B^2) \langle \widecheck{ \bigcirc } \rangle + BA \langle \mathop{ \rangle } \langle \mathop{ \rangle } \stackrel{?}{=} \langle \mathop{ \rangle } \langle \mathop{ \rangle } .$$

Aby zachodziła ostatnia równość wystarczy (chociaż wcale nie trzeba) przyjąć $B=A^{-1}$, co wymusza na nas $C=-A^2-A^{-2}$. W ten sposób odkryliśmy następującą definicję.

Definicja 4.1. Nawias Kauffmana $\langle D \rangle$ dla diagramu splotu D to wielomian Laurenta zmiennej A, który jest niezmienniczy ze względu na gładkie deformacje diagramu, a przy tym spełnia trzy aksjomaty:

- I. $\langle O \rangle = 1$
- 2. $\langle D \sqcup O \rangle = (-A^{-2} A^2) \langle D \rangle$
- 3. $\langle \times \rangle = A \langle \rangle \langle \rangle + A^{-1} \langle \times \rangle$

Tutaj \bigcirc oznacza standardowy diagram dla niewęzła, $D \sqcup \bigcirc$ jest diagramem, który powstaje z D przez dodanie nieprzecinającej go krzywej zamkniętej, zaś trzy symbole \swarrow ,) (oraz \cong odnoszą się do diagramów, które są identyczne wszędzie poza małym obszarem. Diagramy) (oraz \cong nazywa się odpowiednio dodatnim (prawym) i ujemnym (lewym) wygładzeniem \cong

Lemat 4.2. Nawias Kauffmana dowolnego diagramu można wyznaczyć w skończonie wielu krokach.

Dowód. Jeżeli diagram D ma n skrzyżowań, to nieustanne stosowanie aksjomatu trzeciego pozwala na zapisanie $\langle D \rangle$ jako sumy 2^n składników, z których każdy jest po prostu zamkniętą krzywą i ma trywialny nawias ($\langle O \rangle = 1$). Nawias sumy wyznacza się korzystając z drugiego aksjomatu.

Przedstawimy teraz wpływ ruchów Reidemeistera na nawias Kauffmana.

Lemat 4.3. Pierwszy ruch Reidemeistera zmienia nawias Kauffmana zgodnie z poniższą regułą. Pozosałe ruchy Reidemeistera nie zmieniają nawiasu.

$$\left\langle \left| \right\rangle \right\rangle = -A^{-3} \left\langle \left| \right\rangle \bullet \left\langle \right\rangle \right\rangle = \left\langle \left| \right\rangle \right\rangle \left\langle \left| \right\rangle \right\rangle \bullet \left\langle \left| \right\rangle \right\rangle = \left\langle \left| \right\rangle \right\rangle \right\rangle.$$

Dowód. Pierwszy ruch Reidemeistera:

$$\left\langle \left\langle O\right\rangle \right\rangle \overset{\text{K.3}}{=}A\left\langle \left\langle O\right\rangle +A^{-1}\left\langle \left\langle O\right\rangle \right\rangle \overset{\text{K.2}}{=}A\left\langle \left|\right\rangle +A^{-1}(-A^{-2}-A^{2})\left\langle \left|\right\rangle =-A^{-3}\left\langle \left|\right\rangle \right\rangle$$

Pierwsza równość wynika z K3, druga z K2, trzecia jest oczywista. Dla drugiego ruchu:

$$\left\langle \bigodot \right\rangle \stackrel{\text{K3}}{=} A \left\langle \bigodot \right\rangle + A^{-1} \left\langle \oiint \right\rangle \stackrel{\text{K1}}{=} -A^{-2} \left\langle \bigodot \right\rangle + A^{-1} \left\langle \oiint \right\rangle$$

$$\stackrel{\text{K3}}{=} -A^{-2} \left\langle \bigodot \right\rangle + A^{-1} A \left\langle \oiint \right\rangle \left(\nearrow + A^{-1} A^{-1} \left\langle \bigodot \right\rangle \right) = \left\langle \oiint \right\rangle$$

Dla trzeciego ruchu:

$$\left\langle \begin{array}{c} X^{2} \\ \end{array} \right\rangle \stackrel{K3}{=} A \left\langle \begin{array}{c} X^{2} \\ \end{array} \right\rangle + A^{-1} \left\langle \begin{array}{c} X^{2} \\ \end{array} \right\rangle \stackrel{R2}{=} A \left\langle \begin{array}{c} X^{2} \\ \end{array} \right\rangle + A^{-1} \left\langle \begin{array}{c} X^{2} \\ \end{array} \right\rangle$$

$$\stackrel{R2}{=} A \left\langle \begin{array}{c} X^{2} \\ \end{array} \right\rangle + A^{-1} \left\langle \begin{array}{c} X^{2} \\ \end{array} \right\rangle \stackrel{K3}{=} \left\langle \begin{array}{c} X^{2} \\ \end{array} \right\rangle$$

korzystaliśmy tu z własności drugiego ruchu.

Okazało się, że użycie najprostszego, I ruchu Reidemeistera, "psuje" nawias! W akcie desperacji moglibyśmy zmienić definicję, zaniechamy tego i przejdziemy do kolejnego składnika w przepisie na wielomian Jonesa.

 \Box

4.2 Spin

Przypomnijmy, że znak skrzyżowania na diagramie to liczba 1 lub -1: sign $\Sigma = +1$, sign $\Sigma = -1$.

Definicja 4.4. Niech D będzie diagramem zorientowanego splotu lub węzła. **Spinem** D jest $w(D) = \sum_c \operatorname{sign} c$, gdzie sumowanie przebiega po wszystkich skrzyżowaniach.

Przyklad 4.5. *Spinem trójlistnika w takiej wersji jest* +3:

Lemat 4.6. Tylko I ruch Reidemeistera zmienia spin: $w(\wp) = w(|) - 1$, pozostałe nie mają wpływu. Spin nie zależy od orientacji.

Dowód. Proste ćwiczenie. □

4.3 Wielomian Jonesa

Definicja 4.7. Wielomian Jonesa zorientowanego splotu to wielomian Laurenta $V(L) \in \mathbb{Z}[t^{1/2}, t^{-1/2}]$ określony przez

$$V(L) = \left[(-A)^{-3w(D)} \langle D \rangle \right]_{\mathfrak{t}^{1/2} = A^{-2}},$$

gdzie D to dowolny diagram dla L.

Twierdzenie 4.8. Wielomian Jonesa jest niezmiennikiem zorientowanych splotów.

Dowód. Wystarczy pokazać niezmienniczość $(-A)^{-3w(D)}\langle D\rangle$ na ruchy Reidemeistera. Ale

$$(-A)^{-3w} \binom{\flat}{\flat} \left\langle \flat \right\rangle = (-A)^{-3w} \binom{|}{} + 3 (-A)^{-3} \left\langle | \right\rangle = (-A)^{-3w} \binom{|}{\flat} \left\langle | \right\rangle.$$

Wielomian Jonesa jest naprawdę potężnym narzędziem. Pozwala bowiem odróżnić dowolne dwa węzły pierwsze o co najwyżej dziewięciu skrzyżowaniach.

Hipoteza 4.9. Nie istnieje nietrywialny węzeł, którego wielomian Jonesa nie odróżnia od niewęzła.

Twierdzenie 4.10. Wielomianem węzła (m, n)-torusowego jest

$$\frac{t^{(m-1)(n-1):2}}{1-t^2} \cdot (1-t^{m+1}-t^{n+1}+t^{m+n}).$$

4.4 Relacja kłębiasta

Dotychczas wyznaczyliśmy wielomian Jonesa jedynie dla trywialnych splotów. Spowodowane jest to tym, że chociaż nawias Kauffmana jest przydatny przy dowodzeniu różnych własności, to zupełnie nie nadaje się do obliczeń. Dużo lepszym narzędziem jest następujące twierdzenie.

Twierdzenie 4.11 (relacja kłębiasta). Wielomian Jonesa spełnia równość $V(\bigcirc) = 1$ oraz relację

$$t^{-1}V(L_{+}) - tV(L_{-}) + (t^{-1/2} - t^{1/2})V(L_{0}) = 0,$$

gdzie L₊, L₋, L₀ to zorientowane sploty, kóre różnią się jedynie na małym obszarze: 🄀 🔀 🤾 🐧

Dowód. Wyraźmy wielomian Jonesa przez nawias Kauffmana i spin. Chcemy pokazać, że

$$A^{4}(-A)^{-3w(L_{+})}\langle X\rangle - A^{-4}(-A)^{-3w(L_{-})}\langle X\rangle + (A^{2} - A^{-2})(-A)^{-3w(L_{0})}\langle X\rangle = 0.$$

Ale $w(L_{\pm})=w(L_0)\pm 1$, zatem to jest równoważne z $-A\langle X\rangle +A^{-1}\langle X\rangle +(A^2-A^{-2})\langle \rangle$ ($\rangle=0$. Z definicji nawiasu Kauffmana wnioskujemy, że $\langle X\rangle =A\langle \rangle$ ($\rangle+A^{-1}\langle X\rangle$ i $\langle X\rangle =A\langle X\rangle +A^{-1}\langle \rangle$ (\rangle . Pierwsze równanie przemnóżmy przez A, drugie przez A^{-1} , a następnie dodajmy je do siebie. Wtedy otrzymamy $A\langle X\rangle -A^{-1}\langle X\rangle =A^2\langle Y\rangle$ ($\rangle-A^{-2}\langle Y\rangle$).

Przyklad 4.12. $V(\bigcirc) = -t^{5/2} - t^{1/2}$ (splot Hopfa), $V(\bigcirc) = -t^4 + t^3 + t$ (trójlistnik).

4.5 Odwrotności, lustra i sumy

Twierdzenie 4.13. Niech L będzie zorientowanym splotem. V(rL) = V(L), $V(mL)(t) = V(L)(t^{-1})$.

Wniosek 4.14. Wielomian Jonesa nie zależy od orientacji węzła (ale nie splotu!).

Dowód. Każdy węzeł ma tylko dwie orientacje, splot może mieć ich 2ⁿ, gdzie n to liczba składowych. □

Wniosek 4.15. Trójlistnik nie jest równoważny ze swoim lustrem.

Dowód. W zależności od orientacji wielomianem trójlistnika jest ... lub

Twierdzenie 4.16. Niech L, M będą zorientowanymi splotami, zaś J, K: zorientowanymi węzłami.

I.
$$V(L \sqcup M) = (-t^{1/2} - t^{-1/2})V(L)V(M)$$
,

2.
$$V(J#K) = V(J)V(K)$$
.

Dowód. Wybierzmy diagramy D, E dla (odpowiednio) L, M. Po podstawieniu $t^{1/2} = A^{-2}$ widzimy, że chcemy pokazać $(-A)^{-3w(D\sqcup E)}\langle D\sqcup E\rangle = (-A^2-A^{-2})(-A)^{-3(w(D)+w(E))}\langle D\rangle\langle E\rangle$.

Oczywiście $w(D \sqcup E) = w(D) + w(E)$, więc wystarczy udowodnić, że

$$\langle D \sqcup E \rangle = (-A^2 - A^{-2}) \langle D \rangle \langle E \rangle.$$

Oznaczmy przez $f_1(D)$, $f_2(D)$ lewą i prawą stronę ostatniego równania. Są to wielomiany Laurenta, które zależą tylko od D. Aksjomaty Kauffmana pozwalają na pokazanie, że obie funkcje mają następujące własności: $f_i(O) = (-A^2 - A^{-2})\langle E \rangle$, $f_i(D \sqcup O) = (-A^2 - A^{-2})f_i(D)$, $f_i(X) = Af_i(X) + A^{-1}f_i(X)$. To pozwala na wyznaczenie ich wartości dla dowolnego D, zatem $f_1 \equiv f_2$, co kończy dowód.

Dowód. Narysujmy J, K jako J K. Rozpatrzmy sploty K, J K. Relacja kłębiasta może zostać użyta do pokazania, że

$$t^{-1}V(J\#K) - tV(J\#K) + (t^{-1/2} - t^{1/2})V(J \sqcup K) = 0.$$

Ale
$$V(J \sqcup K) = (-t^{1/2} - t^{-1/2})V(J)V(K)$$
, co upraszcza się do $V(J \# K) = V(J)V(K)$ i kończy dowód. \square

4.6 Rozpiętość i wielomian Jonesa

Twierdzenie 4.17. Niech L posiada zredukowany, spójny, alternujący diagram o n skrzyżowaniach. Wtedy każdy diagram ma co najmniej n skrzyżowaniach.

To bardzo ważny rezultat, którego prawdziwość przypuszczał już P. G. Tait w XIX wieku. Nikt nie był w stanie podać dowodu przed pojawieniem się wielomianu Jonesa w latach osiemdziesiątych. Wyjaśnimy teraz użyte tu przymiotniki.

Definicja 4.18. Diagram jest alternujący, gdy podczas poruszania się wzdłuż splotu mijamy skrzyżowania na zmianę z góry oraz z dołu. Diagram jest zredukowany, gdy nie zawiera usuwalnych skrzyżowań. Diagram jest spójny, gdy nie można go podzielić na dwie niepuste części, które nie spotykają się na żadnym skrzyżowaniu.

Przykładowo diagram O nie jest spójny, ale O już tak.

W dowodzie przywołanego wyżej twierdzenia użyjemy rozpiętości wielomianu Jonesa.

Definicja 4.19. Niech f będzie wielomianem Laurenta zmiennej X. Wtedy M(f) [m(f)] to najwyższa [najniższa] potęga pojawiająca się w f. Rozpiętość to span f = M(f) - m(f).

Zajmiemy się teraz nawiasem Kauffmana. Znajdziemy wzór, który pozwala na wyznaczenie nawiasu dowolnego splotu o n skrzyżowaniach (na diagramie) przez dodanie 2ⁿ wyrazów. Wzór ten okaże się użyteczny przy dowodzeniu późniejszych twierdzeń.

Definicja 4.20. Niech D będzie diagramem splotu.

- 1. Stan D to funkcja s ze zbioru skrzyżowań D w $\{-1, +1\}$.
- 2. Dla ustalonego stanu s dla D przez sD rozumiemy diagram powstały przez wygładzenie wszystkich skrzyżowań zgodnie z ich nowym znakiem (± 1), wtedy |s| to suma wartości s.
- 3. Diagram dla sD jest sumą zamkniętych krzywych, ich liczbę oznaczamy przez |sD|.

Twierdzenie 4.21 (o sumowaniu stanów). Niech D będzie diagramem splotu. Wtedy

$$\langle D \rangle = \sum_{s} (-A^2 - A^{-2})^{|sD|-1} A^{|s|},$$

gdzie sumujemy po wszystkich stanach s dla D.

Dowód. Oznaczmy prawą stronę dowodzonej równości przez [D]. Pokażemy, że spełnia ona [O] = 1, $[D \sqcup O] = (-A^{-2} - A^2)[D]$ oraz $[X] = A[X] + A^{-1}[X]$. Stąd wynika już, że $[D] = \langle D \rangle$.

Niewęzeł \bigcirc ma tylko jeden stan s z |s| = 0 i $|s\bigcirc| = 1$.

Zauważmy, że D \sqcup O i D mają te same skrzyżowania, więc możemy utożsamiać stany s dla D ze stanami u dla D \sqcup O. Wtedy |u| = |s| oraz $|u(D \sqcup O)| = |sD| + 1$. Zatem

$$[D \sqcup O] = \sum_{\mathfrak{u}} (-A^2 - A^{-2})^{|\mathfrak{u}(D \sqcup O)| - 1} A^{|\mathfrak{u}|} = \sum_{\mathfrak{s}} (-A^2 - A^{-2})^{|\mathfrak{s}D|} A^{|\mathfrak{s}|} = (-A^2 - A^{-2})[D].$$

Pozostała trzecia własność. Z definicji A[) (] = $\sum_{\mathfrak{u}} (-A^2 - A^{-2})^{|\mathfrak{u}| \mathsf{V}|-1} A^{|\mathfrak{u}|+1}$, gdzie \mathfrak{u} przebiega wszystkie stany) (. Ale) (to \times ze skrzyżowaniem (powiedzmy, c) wygładzonym dodatnio, co daje bijekcję między stanami \mathfrak{u} dla) (i s dla \times , dla których $\mathfrak{s}(\mathfrak{c})=+1$. Wtedy $|\mathfrak{s}_{\times}|=|\mathfrak{u}|$ (| i $|\mathfrak{s}|=|\mathfrak{u}|+1$ oraz

$$A[)() = \sum_{\mathfrak{u}} (-A^2 - A^{-2})^{|\mathfrak{u}| X| - 1} A^{|\mathfrak{u}| + 1} = \sum_{\mathfrak{s}(\mathfrak{c}) = 1} (-A^2 - A^{-2})^{|\mathfrak{s}| X| - 1} A^{|\mathfrak{s}|},$$

podobne rozumowanie pokazuje, że $A^{-1}[X] = \sum_{s(c)=-1} (-A^2 - A^{-2})^{|s|X|-1} A^{|s|}$. Teraz wystarczy dodać do siebie dwa ostatnie równania.

Zbadamy teraz dwa najprostsze stany dowolnego diagrau.

Definicja 4.22. Stan, który przypisuje znak +1 [-1] każdemu skrzyżowaniu, nazywamy s_+ [s_-].

Niech D będzie alternującym, zredukowanym diagramem spójnym. Wszystkie skrzyżowania mają ten sam znak. Wybierzmy dla niego uszachowienie.

Zamieniając biały i czarny w razie potrzeby możemy założyć, że wszystkie skrzyżowania są dodatnie (+1). Takie uszachowienie nazywamy *standardowym*. Porównajmy wygładzenie s_+D z s_-D :

Zamknięte krzywe tworzące s_+D są brzegami białych obszarów uszachowienia, podczas gdy te tworzące s_-D stanowią brzeg czarnych obszarów. Zauważmy, że na każdym skrzyżowaniu są cztery różne czarne i białe obszary (nie mogą się spotkać w innych miejscach), gdyż diagram był zredukowany.

Lemat 4.23. Niech D będzie spójnym diagramem splotu o n skrzyżowaniach. Wtedy $|s_+D| + |s_-D| \le n+2$, z równością dla zredukowanego i alternującego D.

Dowód. Skorzystamy z indukcji względem n. Łatwo widać prawdziwość lematu dla n=0. Załóżmy, że jest on prawdziwy dla wszystkich diagramów o n-1 skrzyżowaniach, następnie ustalmy diagram D o n skrzyżowaniach.

Wybierzmy skrzyżowanie z D. Można je wygładzić na dwa sposoby, jeden z nich daje spójny diagram D'. Bez straty ogólności przyjmijmy, że jest to dodatnie wygładzenie. Wtedy zachodzi $|s_+D'|=|s_+D|$, ale $|s_-D'|=|s_-D|\pm 1$, ponieważ s_-D' powstaje z s_-D przez zastąpienie pewnej części $\$ $\$ $\$ To rozrywa jedną krzywą na dwa kawałki lub scala dwie krzywe w jedną. Teraz $|s_+D|+|s_-D|=|s_+D'|+|s_-D'|\pm 1 \le (n-1)+2\pm 1 \le n+2$ (pierwsza nierówność wynika z założenia indukcyjnego).

Załóżmy, że D jest spójny, alternujący i zredukowany. Musimy pokazać, że ostatnie dwie nierówności tak naprawdę są równościami. Pierwsza wynika z tego, że D' jest spójny, alternujący i zredukowany. Z drugiej strony $|\mathbf{s}_D'| = |\mathbf{s}_D| - 1$, ponieważ przejście od \mathbf{s}_D do \mathbf{s}_D' skleja dwa czarne obszary. To pokazuje drugą równość i kończy dowód.

Lemat 4.24. Niech D będzie diagramem splotu o n skrzyżowaniach. Wtedy

- 1. $M\langle D \rangle < n + 2|s_+D| 2$
- 2. $m\langle D \rangle \ge -n 2|s_D| + 2$

z równością, jeżeli D jest alternujący, zredukowany i spójny.

Dowód. Udowodnimy tylko pierwszą część, druga jest do niej podobna. Dla stanu s diagramu D niech $\langle D \mid s \rangle := (-A^{-2} - A^2)^{|sD|-1} A^{|s|}$. Wzór sumujący stany przybiera postać $\langle D \rangle = \sum_s \langle D \mid s \rangle$.

Zauważmy, że $M\langle D|s\rangle=2|sD|+|s|-2$, a więc w szczególności $M\langle D|s_+\rangle=2|s_+D|+n-2$. Gdyby udało się nam pokazać, że $M\langle D|s\rangle\leq M\langle D|s_+\rangle$ dla wszystkich innych stanów s, dowód nierówności byłby zakończony. Ale możemy znaleźć ciąg $s_+=s_0$, s_1 , ..., $s_r=s$, w którym s_{i+1} powstaje z s_i przez pojedynczą zmianę +1 na -1.

Teraz $|s_{i+1}| = |s_i| - 2$, podczas gdy $|s_{i+1}D| = |s_iD| \pm 1$, ponieważ $s_{i+1}D$ uzyskujemy z s_iD przez połączenie dwóch zamkniętych krzywych lub podział jednej zamkniętej krzywej na dwie części. Zatem

$$M\langle D \mid s_{i+1} \rangle = 2|s_{i+1}D| + |s_{i+1}| - 2 = (2|s_iD| + |s_i| - 2) + (\pm 2 - 2) \le M\langle D|s_i \rangle.$$

Teraz widać już, że $M\langle D\mid s\rangle=M\langle D\mid s_r\rangle\leq\ldots\leq M\langle D\mid s_0\rangle=M\langle D\mid s_+\rangle.$

Pokażemy teraz, że jeśli D jest zredukowany, alternujący i spójny, to nierówność zamienia się w równość. Będzie to wynikało z $M\langle D|s\rangle < M\langle D|s_+\rangle$ dla s $\neq s_+$, jeżeli tylko powołamy się na powyższy argument. Wystarczy ograniczyć się do tych s, które powstają z s_+ przez zmianę pojedynczego stanu +1 na -1. Ale to już jest oczywiste, gdyż sD otrzymujemy przez sklejenie dwóch białych obszarów s_+D .

Możemy wreszcie zająć się rozpiętością wielomianu Jonesa.

Twierdzenie 4.25. Niech L będzie zorientowanym spłotem o spójnym diagramie D z \mathfrak{n} skrzyżowaniami. Wtedy $\operatorname{span}(V(L)) \leq \mathfrak{n}$, z równością dla zredukowanego i alternującego D.

Dowód. Pokażemy prawdziwość innego, równoważnego stwierdzenia: span $\langle D \rangle \leq 4$ n z równością dla zredukowanego i alternującego D. Dwa poprzednie lematy mówią, że

$$\begin{split} span \langle D \rangle &= M \langle D \rangle - m \langle D \rangle \leq (2|s_+D| + n - 2) + (2|s_-D| + n - 2) \\ &= 2(|s_+D| + |s_-D|) + 2n - 4 \leq 2(n+2) + 2n - 4 = 4n. \end{split}$$

Jesteśmy już w stanie podać dowód twierdzenia 4.17 wspomnianego na początku sekcji.

Dowód. Założenia mówią nam, że span(V(L))=n. Gdyby istniał diagram o mniejszej liczbie skrzyżowań, mielibyśmy span(V(L))< n, co prowadzi do sprzeczności.

Wyznaczanie wielomianu Jonesa dla splotu jest uciążliwe, jednak czasami możemy oszacować jego rozpiętość korzystając z następujących nierówności:

Wniosek 4.26. Niech L będzie zorientowanym spłotem ze spójnym diagramem D o n skrzyżowaniach. Wtedy

$$\frac{3w(D) - 2|s_+D| + 2 - n}{4} \leq m(V(L) \text{ oraz } M(V(L)) \leq \frac{3w(D) + 2|s_-D| + n - 2}{4},$$

z równością dla zredukowanego i alternującego D.

Dowód. Proste ćwiczenie. □

Starsze materiały

Co potrafimy odróżnić od siebie?

1. splot Hopfa od splotu Whiteheada	linking number, suma znaków skrzyżowań
2. trójlistnik od odbicia	wielomian Jonesa

3. dowolne dwa węzły pierwsze o mniej niż dziesięciu skrzyżowaniach wielomian Jonesa

Adams: notacja Dowkera, Conwaya.

Węzły torusowe (5.1), węzły satelitarne i hiperboliczne.

Warkocze (5.4), wielomiany HOMFLY (6.3).

Bachelor's unknotting.

Arf.