2018年度 参学期末試験問題・解答

試験実施日 2018 年 7月 26 日 1 時限

出題者記入欄

試 験 科 目 名 <u>数学 I-J</u>		出題者名	佐藤 弘康
試 験 時 間 <u>60</u> 分	平常授業	日<u>木</u>曜日	1時限
持ち込みについて 可	√(\ □)	可、不可のいずれか 持ち込み可のものを	かに○印をつけ ·○で囲んでください
教科書 ・ 参考書 ・ ノート その他 ((手書きのみ	・コピーも可))	・電卓・辞書
本紙以外に必要とする用紙	解答用紙_		算用紙 0 枚
通信欄			

受験者記入欄

学 科	学 年		学	籍	番	号		氏	3	名
		1								

採点者記入欄

	31.7.11 H HZ, 11/13
採点欄	評価

- ベクトル $\mathbf{a} = (x, 2, -1), \mathbf{b} = (-2, -4, y)$ に対し、次の問 に答えなさい.
 - (1) a と b が直交するような x, y の組を 1 つ挙げな

(2) a,b が 1 次従属となるような x,y の組を 1 つ挙げ なさい.

(3) a,b が 1 次独立となるような x,y の組を 1 つ挙げ なさい.

- a = (1, -2, 0, 1) と b = (1, 1, 0, -1) に対し、
 - (1) 大きさ |a|, |b|
 - (2) 内積 (a,b)
 - (3) a と b のなす角 θ の余弦 $\cos \theta$

の値を求めなさい.

 $\left(egin{array}{c}1\0\-1\end{array}
ight),\;m{a}_2=\left(egin{array}{c}1\1\0\end{array}
ight),\;m{a}_3=\left(egin{array}{c}0\-1\1\end{array}
ight)$ グラムシュミットの方法によって, 正規直交系を作りな さい.

|4|部分空間に関する以下の文を読んで,空欄に当てはまる 最も適切な言葉、数または式を回答欄に書きなさい.

$$m{a}_1=\left(egin{array}{c} -1 \ 2 \ 4 \end{array}
ight), m{a}_2=\left(egin{array}{c} 2 \ -1 \ 1 \end{array}
ight), m{a}_3=\left(egin{array}{c} 1 \ 0 \ 2 \end{array}
ight)$$
 に対

し、 a_1 が生成する部分空間を W_1 , a_2 , a_3 が生成する部 分空間を W_2 とする. つまり, $W_1=\langle {m a}_1
angle, W_2=\langle {m a}_2, {m a}_3
angle$ である. W_1 と W_2 の和は (1) に等しい. なぜなら, (3) $|a_2 + |$ (4) a_3 となり, a_1, a_2, a_3 は 1 (2) ではないからである. このことから, W_1 と W_2 の積は に等しいこともわかる. (5)

(解答欄)

(1)

(2)	

(3)

(4)	
\ /	

(5)

- **5** 集合 $W = \{(a+b, a-b, 1) \in R^3 \mid a, b \in R\}$ が R^3 の部 分空間であるか否か判定しなさい.
- $egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} e$

 $oldsymbol{6}$ R^2 の線形変換 $f: R^2 \rightarrow R^2$ は

$$f(e_1 - e_2) = -4e_1 + 2e_2,$$

 $f(e_1 + e_2) = 2e_1 + 4e_2$

を満たすとする(ただし, e_1,e_2 は R^2 の基本ベクトル). また, 線形変換 g の表現行列を $B=\begin{pmatrix}2&3\\1&2\end{pmatrix}$ とする. このとき, 次の各間に答えなさい.

(1) f の表現行列 A を求めなさい.

图 直交行列 P を用いて $\begin{pmatrix} x \\ y \end{pmatrix} = P \begin{pmatrix} X \\ Y \end{pmatrix}$ と変換することにより、2 次形式 $x^2 + 4xy - 2y^2$ は $\alpha X^2 + \beta Y^2$ となる. α , β と P を求めなさい.

(2) $f \, \, \mathbf{e} \, \, g^{-1} \, \,$ の合成 $f \circ g^{-1} \, \,$ の表現行列を求めなさい.