A unified approach to hypergraph Stability. Josht with Dhruv Mubayi and Christian Reiher

- · Mondegenerate Turan Problem.
- · Types of Stability.
- · Known methods. & results.
- · Our method and resurts.
- · Example. (cancellative 3-graphs)

Jefin H is Jefree if it does not antah any member in F as a subgraph. (not necessarily induced)

· Turain number ex(n,F) = max { |H|: H is F-free. and |V(H)|=n 4.

Turán density $T(f) = \lim_{n \to \infty} \frac{ex(n, f)}{\binom{n}{h}}$

· F is non-degenerate if π(F) > 0

Note: every family considered here is non degenerate.

- H is a blowup of G. if = y: V(H) -> V(G) sit. EEH (=) P(E) E G.
 - · His G-colorable if His a subgraph of some blowup

 $\begin{cases}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} &$

Rmk: G is Ke-colorable iff G is l-partite.

Thm (Turan 1941)

ex(n. Ke+1) = |T(n.e)|

The Turán graph Tln:1 = Maximum Ke-colorable graph on n vertices

= the balance complete 1-partite graph.

Thm (Erdös-Stone. 1946)

 $ex(n, F) = |T(n, \chi(F)-1)| + o(n^2)$, where $\chi(F) = min \{ \chi(F) : F \in F \}$.

Stability:

Thm (Erdis - Simonovits, 1968)

 $K_{\ell+1} \pm G + |G| \approx ex(n. K_{\ell+1}) \implies G \approx T(n.\ell)$

onsn & t. St. Wash E ors E ors & Hualy

If G i's an n-vtx $K_{\ell+1}$ -free graph with $|G| \ge (1-\epsilon).|T(n,\ell)|$. then G i's K_{ℓ} -alorable after removing at most $\int n^2$ edges.

Thm (Andrasfai- Endis- Sós 1974).

Types of stability. (of F)

(6)

. It is a family of r-graphs.

. G is an infinite family of r-graphs.

e.g. G = Sall bipartite graphs 4.

eg. F = { K34

· H is an n-vertex r-graph.

(edge Stable): $|H| = (I-E) \cdot ex(n, F) =$ $H \in G$ after removing $\leq f \cdot n^n$ edges.

(vertex Stable): $|\mathcal{H}| > (1-\epsilon) \cdot ex(n, f) =$ $|\mathcal{H}| > (1-\epsilon) \cdot ex(n, f) =$ $|\mathcal{H}| > (1-\epsilon) \cdot ex(n, f) =$

(degree Stable): $S(H) > (1-\epsilon) \cdot \frac{V \cdot ex(n,F)}{N} \Rightarrow H \in G$

Obs: degree stable => vertex Stable => edge Stable.

For graphs:

7

 $\frac{\text{Def:} \cdot A \text{ graph } F \text{ i's edge-critical if } \exists \text{ e} \in F \text{ s.t. } \chi(F-e) < \chi(F)}{F \text{ is matching-critical if } \exists \text{ M} \in F \text{ s.t. } \chi(F-m) < \chi(F)}$

' A family F is edge-critical/matching-critical if $\exists F \in F$ sit. F is edge-critical/matching-critical and $\chi(F) = \chi(F)$.

Thm

follows from the AES thm and a theorem of Erobo's and Simono vits. 1973.

F is degree stable iff F is edge-critical.

F is vertex stable iff F is matching-critical

Probably already well known!

```
General methods for Stability:
     edeg - Stability. Novin - Ye premyan. 2017. (Local Stability)
     Vertex - Stability. Pikhurko. Zov.g. (Zykov Symmetrizatha)
 #3. degree-stability L-Mubayi-Reiher. (T-tnick).
Ruk! Every result that can be proved using #2. Can also be proved
        using #3. Most results that can be proved using #1.
        Can be proved vsiz #3. ( ] one exception Frankl-Füredi)
 #3 Can Strengthen Simplify results from
      Cancellethe hypergraphs { Keevish - Mubayi' Pikhurko.
                                                           Y= 3.
                                                   2008.
                                                           Y= 4
                            ) Mubayi Zoob.
      hypergraph expansions
                            Brandt-Irwh-Jiang 2017. North-Yeprenyan 2017.
Hefetz-Keevash. 2013.
Bene Watts-Novin-Yepremyan. 2019
```

$$\partial H = \left\{ A \in \begin{pmatrix} V(H) \\ Y-1 \end{pmatrix} : \exists B \in H \text{ s.t. } A \subseteq B \right\}.$$

·
$$i$$
-th shordon. $\partial_i H = \partial (\partial_{i-1} H)$

•
$$S \subseteq V(H)$$
 is. 2-covered if even pair $\{u,v\}\subseteq S$ is contained in an edge.

· It is 2-covered. if V(H) is 2-covered.

065: H is 2-wered () DrzH is complete.

. The link of v i's

$$L_{H(0)} = \left\{ A \in \begin{pmatrix} V(H) \\ r-1 \end{pmatrix} : A \cup \{v\} \in H\} \right\}$$

· Two non adjacent vertices u and V are equivalent.

2 and 4 are equivalent.

· Symmetrization.

If u, v are not equivalent and dxlu) > dxlu) then. remove all edges containing u and make u a clone of v,

Defi It is symmetrized if it closes not contain any nonadjacent nonequivalent pair {u.u4.

Rnk: " A graph is symmetrized iff it is a blowup of some complete graph. i.e. complete multipartite graphs.

· A hypergraph is Symmetrized iff it is a blowup of Some 2-covered hypergrouph.

f is a family of r -graphs, g is an infinite family of r -graphs. Def: $G = \{add b b b b b b b b b b$
Def: $G = \{K_3Y_1, G = \}$ all bipartite graphely
D blownp invariant: blownp Keeps the f-freeness.
2 Symmetrized Stable with resp. to G; Counter-example C5
every symmetrized F-free r-graph is contained in G.
ej. every symmetrized Kz-free graph is bipartite.
3 Vertes extendable with resp. to G:
every n -vertex f -free r -graph H with $S(H) \ge (1-\epsilon)$. $\frac{r \cdot ex(n.f)}{n}$
has the following property: $H-U \in G$ \Rightarrow $H \in G$. $\forall v \in V(H)$

Ruk? In many cases D& @ are easy to check.

(3) is the key and not very hard to check in many cases.

S(H) > (1-E). =

 H is α-free god
 S(H) > (I-ε). ½. H is bipartite.
 H-ν is bipartite.
 In both ν, and νz. in both U, and Uz.

i.e. blowup keep F-freeness

Suppose F is a nondegenerate family of r-graphs and G is an (infinite) family of F-free r-graphs. If

1) F is blownp invariant

3 F is Symmetrized Stable with resp. to G. i'e G untains all symmetrized F-free r-graph.

3) f is vertex extendable with resp to g, i.e. Here $g \Rightarrow H \in G$.

then, every n-vertex f-free r-graph H with $J(H) > (-\epsilon)$. $\frac{r \cdot ex(n.F)}{n.}$ satisfies $H \in G$.

e.g., let $F = \{ K_{\ell+1} | G = \{ G \} \}$ and $G = \{ G \} \}$ Apply the theorem above we get the Andrásfai-Frilis - Sós Thm. (Weaker voysion.)

Thn (LMR. full version)

Suppose that I is a undegenerate family of rigraph.

GifieI is a collection of F-free regraph families.

If (1) F is blowup invariant. Ite US; containes all symmetrized

(2) F is weakly sym, stable with rusp, to U.G. F-free regrouph with edge density

3) F is vertex extendable with resp. to Gi, HiGI. in H-VEG: =) HEGi

then every n-vertex F-free r-graph with J(H) >, (1-8) r. ex(n-F) sctisfies HEG; for some i EI.

· Useful for handling. families with >2 extremal configurations.

· [I] i's usually the number of "different" extremed unfigurations

A hypergraph example: (cancellative 3-graph.) forbidden family. $T_3 = \begin{cases} A & B \\ A & B \end{cases}$

blos: H is T3-free iff it does not contain three edges A. B.C. with A & B & C.

Thm (Keevash - Mubayi. 2004)

T3 13 edge Stable.

Rink: Usily B'khurko's method. To i's vertex stable.

Thm [L-Mubayi - Reihor 2021+). To i's degree stable. proof sketch: (1) Tz is blowup invariant. (easy to check) Let G be the family of 3-graphs that can be colored by a Steiner triple system. (iver every park {u, vy is contained in exactly one edge)

2) To is symmetrized stable with resp. to G.

York: just need to show that every 2-worked To-free 3-graph

is a Steiner triple system.

Fano Plane.

- · H-V ∈ G.

Fact: every M-vertex 3-graph in G with minimum degree ? (1-28) (m) is 3- partite.

Clarini. LHLU) i's a bipartite graph between. Vi and Vi for some i.j∈[3].

Pf: Step 1: $L_{H(\omega)} \cap \binom{Vi}{2} = \emptyset$. $\forall i' \in [3]$

Stepzi By the Pigenhole Principle. I î.j e [3]. St.

| LH(0)[V;, V]] > = | LH(0)].

Assume { i. j } = {2.3}. then.

Clarin: Lx(0)[v2, 4] = Lx(0)

By Thm. every 13-free H with SIX)3(1-E)(3)2 is 3-partite.

1

Ruk: Apply	our method to simpl	ify the pro	fs for
the Fa	ino plane and. Itz	,2, ?	
Fano plane			Semibipartite
	Complete bipartite 3-graph Firedi - Simonovits. 2005		urko-Simonovits

· Applications in other extremal problems?

Inducibility, digraphs. ...

Thank You!