Caffe 安装教程

深圳安法影像技术有限公司 周攀

一、 提前准备:

1、软件准备:

Linux 系统: Ubuntu (16.04.3LTS)

CUDA: cuda_8.0.44_linux.run、cudnn5.1、Nvidia 驱动版本 375.66

OpenCV: opencv3.1

其他软件: UltraISO (制作 Linux 系统启动盘)

注:必须严格安装给出的系统和驱动版本号安装,否则会出现很多错误,上述版本已经 完成了安装。

2、硬件准备:

空 U 盘 (16G)

二、 安装步骤:

1、将 U 盘制作为 Ubuntu 系统的启动盘:

文件->打开->选择下载好的 Ubuntu 系统

加载完后,出现如下界面:

启动一>写入硬盘镜像一>写入

2、安装 window 和 Linux 双系统:

A、只有一块硬盘的电脑:

重新启动电脑,进入BIOS界面,设置U盘为第一启动项,进入Ubuntu安装界面。具体分区为(分区全部安装在同一硬盘上面):

根分区 (/): 100G

Boot 分区 (/boot): 500M

交换分区: 与电脑的内存条的大小相当

B、有两块硬盘的电脑:

重新启动电脑,进入BIOS界面,设置U盘为第一启动项,进入Ubuntu安装界面。具体分区为(分区全部安装在同一硬盘上面):

根分区 (/): 100G 安装于机械硬盘上面

Boot 分区 (/boot): 500M 安装于主启动硬盘上面,一般为固态硬盘

交换分区: 与电脑的内存条的大小相当 安装于机械硬盘上面

3、安装依赖包。打开终端,输入:

sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler

sudo apt-get install --no-install-recommends libboost-all-dev

sudo apt-get install libopenblas-dev liblapack-dev libatlas-base-dev

sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev

sudo apt-get install git cmake build-essential

注:以上依赖包最好一个一个安装,务必保证所有安装包都安装上了。

有一定几率安装失败而导致后续步骤出现问题,所以要确保以上依赖包都已安装成功,验证方法就是重新运行安装命令,如验证 git cmake build-essential 是否安装成功共则再次运行以下命令:

sudo apt-get install git cmake build-essential 界面提示如下则说明已成功安装依赖包,否则继续安装直到安装成功。

yhao@yhao-X550VB:~\$ sudo apt-get install git cmake build-essential

正在读取软件包列表... 完成

正在分析软件包的依赖关系树

正在读取状态信息... 完成

build-essential 已经是最新版 (12.1ubuntu2)。

cmake 已经是最新版 (3.5.1-1ubuntu3)。

git 已经是最新版 (1:2.7.4-Oubuntul.1)。

下列软件包是自动安装的并且现在不需要了:

lib32gcc1 libc6-i386

使用'sudo apt autoremove'来卸载它(它们)。

升级了 0 个软件包,新安装了 0 个软件包,要卸载 0 个软件包,有 94 个软件包未被升级。

4、安装 Nvidia 驱动:

首先去官网 http://www.nvidia.com/Download/index.aspx?lang=en-us 查看适合自己显卡的驱动并下载:

驱动文件后缀名应当是以.run 结尾的。我们要把这个文件移动到/home/username/目录下,原因是下面我们要切换到文字界面下,如果放到~/下载下面,我们没有办法进入下载这个目录(没有中文输入法,且中文全部是乱码)。

注: 最好安装给定版本的驱动,否者很有可能版本过新,导致错误。

在终端下输入: sudo gedit /etc/modprobe.d/blacklist.conf

输入密码后在最后一行加上 blacklist nouveau。这里是将 Ubuntu 自带的显卡驱动加入黑名单。在终端输入:

sudo update-initramfs -u

重启电脑。这里要尤其注意,安装显卡驱动要先切换到文字界面(按 Ctrl+Alt+F1[~]F6)。所以,启动电脑后,先进入文字界面。然后,输入命令:

sudo service lightdm stop

现在可以安装驱动了,先进入家目录 cd $^{\sim}$,然后: sudo sh NVIDIA-Linux-x86_64-375. 20. run(具体改为实际下载的版本),按照提示一步步来,完成后,再次重启电脑。

安装完成之后输入以下指令进行验证: sudo nvidia-smi, 若列出了 GPU 的信息列表则表示驱动安装成功。如下所示:

5、安装 CUDA:

进入 https://developer.nvidia.com/cuda-downloads ,依次选择 CUDA 类型然后下载即可。

liels on the arrest butter	is that describe your target platform. Only supported platforms will be shown.
lick on the green button	is that describe your target platform. Only supported platforms will be shown.
Operating System	Windows Linux Mac OSX
Architecture 6	x86_64 ppc64le
Distribution	Fedora OpenSUSE RHEL CentOS SLES Ubuntu
Version	16.04 14.04
Installer Type ᠪ	runfile (local) deb (local) deb (network) cluster (local)
ownload Installer for	r Linux Ubuntu 16.04 x86_64
	lable for download below.
he base installer is avail	Download (1 4 GB
he base installer is avail	Download (1 4 GB
he base installer is avail Base Installer Installation Instructions	Download (1.4 GB) 5: _8.0.61_375.26_linux.run`

打开终端,输入:

sudo sh cuda_8.0.61_375.26_linux.run

注: 执行后会有一系列提示让你确认,但是注意,有个让你选择是否安装 nvidia 驱动时,一定要选择否。

6、环境配置:

打开终端,输入:

sudo gedit $^{\sim}/.$ bashrc

打开后在文件最后加入以下四行内容:

export LD_LIBRARY_PATH=/usr/lib/x86_64-linux-gnu:\$LD_LIBRARY_PATH

export LD LIBRARY PATH=/lib/x86 64-linux-gnu:\$LD LIBRARY PATH

export PATH=/usr/local/cuda-8.0/bin:\$PATH

export LD_LIBRARY_PATH=/usr/local/cuda/lib64:\$LD_LIBRARY_PATH

使该配置生效:

source ~/.bashrc

7、验证 CUDA 8.0 是否安装成功:

分别执行以下命令:

cd /usr/local/cuda-8.0/samples/1_Utilities/deviceQuery sudo make

./deviceQuery

若看到类似以下信息则说明 cuda 已安装成功:

./deviceQuery Starting...

CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 1 CUDA Capable device(s)

Device 0: "GeForce GT 740M"

CUDA Driver Version / Runtime Version 8.0 / 8.0

CUDA Capability Major/Minor version number: 3.5

Total amount of global memory: 2004 MBytes (2100953088 bytes)

(2) Multiprocessors, (192) CUDA Cores/MP: 384 CUDA Cores

GPU Max Clock rate: 1032 MHz (1.03 GHz)

Memory Clock rate: 800 Mhz

Memory Bus Width: 64-bit

L2 Cache Size: 524288 bytes

Maximum Texture Dimension Size (x, y, z) 1D=(65536), 2D=(65536, 65536),

3D=(4096, 4096, 4096)

Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers

Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers

Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes

Total number of registers available per block: 65536 Warp size: 32
Maximum number of threads per multiprocessor: 2048

Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024

Max dimension size of a thread block (x, y, z): (1024, 1024, 64)

Max dimension size of a grid size (x, y, z): (2147483647, 65535, 65535)

Maximum memory pitch: 2147483647 bytes

Texture alignment: 512 bytes

Concurrent copy and kernel execution: Yes with 1 copy engine(s)

Run time limit on kernels:

Integrated GPU sharing Host Memory:

Support host page-locked memory mapping:

Alignment requirement for Surfaces:

Device has ECC support:

No

Yes

Disabled

Device supports Unified Addressing (UVA): Yes

Device PCI Domain ID / Bus ID / location ID: 0 / 1 / 0

Compute Mode:

< Default (multiple host threads can use ::cudaSetDevice() with device
simultaneously) >

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 8.0, CUDA Runtime Version = 8.0, NumDevs = 1, DeviceO = GeForce GT 740M

Result = PASS

8、安装 cudnn:

登录官网: https://developer.nvidia.com/rdp/cudnn-download,下载对应 cuda 版本且 linux 系统的 cudnn 压缩包(文件夹里面已经包含)。

下载完成后解压,得到一个 cudn 文件夹,该文件夹下 include 和 lib64 两个文件夹,命令行进入 cudn/include 路径下,然后进行以下操作:

sudo cp cudnn.h /usr/local/cuda/include/ #复制头文件

然后命令行进入 cudn/lib64 路径下,运行以下命令:

sudo cp lib* /usr/local/cuda/lib64/ #复制动态链接库 cd /usr/local/cuda/lib64/

sudo rm -rf libcudnn.so libcudnn.so.5 #删除原有动态文件

sudo ln -s libcudnn. so. 5. 1. 10 libcudnn. so. 5 #生成软衔接

sudo ln -s libcudnn.so.5 libcudnn.so #生成软链接

安装完成后可用 nvcc -V 命令验证是否安装成功,若出现以下信息则表示安装成功:

yhao@yhao-X550VB:~\$ nvcc -V

nvcc: NVIDIA (R) Cuda compiler driver

Copyright (c) 2005-2016 NVIDIA Corporation

Built on Tue Jan 10 13:22:03 CST 2017

Cuda compilation tools, release 8.0, V8.0.61

9、安装 opencv3.1:

进入官网: http://opencv.org/releases.html,选择 3.1.0 版本的 source,下载 opencv-3.1.0.zip。

解压到你要安装的位置,命令行进入已解压的文件夹 opencv-3.1.0 目录下,修改/opencv-3.1.0/modules/cudalegacy/src/graphcuts.cpp 文件内容,如图:

```
///
//m*/
#include "precomp.hpp"

//#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
#lf !defined (HAVE_CUDA) || defined (CUDA_DISABLER) || (CUDART_VERSION>=8000)

void cv::cuda::graphcut(GpuMat&, GpuMat&, Const cv::Scalar&, Stream&) { throw_no_cuda(); }
void cv::cuda::labelComponents(const GpuMat&, GpuMat&, int, Stream&) { throw_no_cuda(); }
void cv::cuda::labelComponents(const GpuMat&, GpuMat&, int, Stream&) { throw_no_cuda(); }
```

打开终端,进入到 oepncv3.1 文件夹下,输入:

mkdir build # 创建编译的文件目录

cd build

cmake -D CMAKE BUILD TYPE=Release -D CMAKE INSTALL PREFIX=/usr/local ..

make -j8 #编译

编译成功后安装:

sudo make install #安装

安装完成后通过查看 opencv 版本验证是否安装成功:

pkg-config --modversion opency

10、安装 caffe:

首先在你要安装的路径下 clone, 打开终端, 输入:

git clone https://github.com/BVLC/caffe.git

进入 caffe ,将 Makefile.config.example 文件复制一份并更名为 Makefile.config ,也可以在 caffe 目录下直接调用以下命令完成复制操作:

sudo cp Makefile.config.example Makefile.config

复制一份的原因是编译 caffe 时需要的是 Makefile.config 文件,而 Makefile.config.example 只是 caffe 给出的配置文件例子,不能用来编译 caffe。 然后修改 Makefile.config 文件,在 caffe 目录下打开该文件:

sudo gedit Makefile.config

修改 Makefile.config 文件内容:

1. 应用 cudnn

将#USE CUDNN := 1 修改成: USE CUDNN := 1

2. 应用 opencv 版本

将#OPENCV VERSION := 3 修改为: OPENCV VERSION := 3

3. 使用 python 接口

将#WITH PYTHON LAYER := 1 修改为 WITH PYTHON LAYER := 1

4. 修改 python 路径

INCLUDE_DIRS := \$(PYTHON_INCLUDE) /usr/local/include
LIBRARY_DIRS := \$(PYTHON_LIB) /usr/local/lib /usr/lib

修改为:

INCLUDE_DIRS := \$(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial
LIBRARY_DIRS := \$(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu/usr/lib/x86_64-linux-gnu/hdf5/serial

然后修改 caffe 目录下的 Makefile 文件:

将:

NVCCFLAGS +=-ccbin=\$(CXX) -Xcompiler-fPIC \$(COMMON_FLAGS)

替换为:

NVCCFLAGS += -D_FORCE_INLINES -ccbin=\$(CXX) -Xcompiler -fPIC \$(COMMON_FLAGS)

将:

LIBRARIES += glog gflags protobuf boost_system boost_filesystem m hdf5_hl hdf5 改为:

LIBRARIES += glog gflags protobuf boost_system boost_filesystem m hdf5_serial_hl hdf5 serial

然后修改 /usr/local/cuda/include/host config.h 文件:

将

#error— unsupported GNU version! gcc versions later than 4.9 are not supported! 改为

//#error-- unsupported GNU version! gcc versions later than 4.9 are not supported! 开始编译了,在 caffe 目录下执行:

make all -j8

这是如果之前的配置或安装出错,那么编译就会出现各种各样的问题,所以前面的步骤一定要细心。编译成功后可运行测试:

sudo make runtest -j8 如出现错误,输入:

```
1 sudo cp /usr/local/cuda-8.0/lib64/libcudart.so.8.0 /usr/local/lib/libcudart.so.8.0 && sudo ldconfig
2 sudo cp /usr/local/cuda-8.0/lib64/libcublas.so.8.0 /usr/local/lib/libcublas.so.8.0 && sudo ldconfig
3 sudo cp /usr/local/cuda-8.0/lib64/libcurand.so.8.0 /usr/local/lib/libcurand.so.8.0 && sudo ldconfig
4 sudo cp /usr/local/cuda-8.0/lib64/libcudnn.so.5 /usr/local/lib/libcudnn.so.5 && sudo ldconfig
```

如果出现下面,说明前面安装正确。

```
A merind payer feet/file feet below ( g ms)

A merind payer feet/file feet below ( g ms)

A merind payer feet/file feet below ( g ms)

A merind payer feet/file feet below ( g ms)

A merind payer feet/file feet below ( g ms)

A merind payer feet/file feet below ( g ms)

A merind payer feet/file feet below ( g ms)

A merind payer feet/file feet below ( g ms)

A merind payer feet/file feet below ( g ms)

A merind payer feet/file feet below ( g ms)

A merind payer feet/file feet below ( g ms)

A merind payer feet/file feet below ( g ms)

A merind payer feet/file feet below ( g ms)

A merind payer feet/file feet below ( g ms)

A merind payer feet/file feet below ( g ms)

A merind payer feet/file feet below ( g ms)

A merind payer feet/file feet below ( g ms)

A merind payer feet/file feet below ( g ms)

A merind payer feet/file feet below ( g ms)

A merind payer feet/file feet below ( g ms)

A merind payer feet/file feet below ( g ms)

A merind payer feet/file feet below ( g ms)

A merind payer feet/file feet below ( g ms)

A merind payer feet/file feet below ( g ms)

A merind payer feet/file feet below ( g ms)

A merind payer feet/file feet below ( g ms)

A merind payer feet/file feet below ( g ms)

A merind payer feet/file feet below ( g ms)

A merind payer feet/file feet below ( g ms)

A merind payer feet/file feet below ( g ms)

A merind payer feet/file feet below ( g ms)

A merind payer feet/file feet below ( g ms)

A merind payer feet/file feet below ( g ms)

A merind payer feet/file feet below ( g ms)

A merind payer feet/file feet below ( g ms)

A merind payer feet/file feet below ( g ms)

A merind payer feet/file feet below ( g ms)

A merind payer feet/file feet below ( g ms)

A merind payer feet/file feet below ( g ms)

A merind payer feet/file feet below ( g ms)

A merind payer feet/file feet below ( g ms)

A merind payer feet/file feet below ( g ms)

A merind payer feet/file feet below ( g ms)

A merind payer feet/file feet below ( g ms)

A merind payer feet/file feet below ( g ms)

A merind payer feet/f
```

11、MNIST 数据集测试

配置 caffe 完成后,我们可以利用 MNIST 数据集对 caffe 进行测试,过程如下:

1. 将终端定位到 Caffe 根目录

cd ~/caffe

- 2. 下载 MNIST 数据库并解压缩
 - ./data/mnist/get_mnist.sh
- 3. 将其转换成 Lmdb 数据库格式
 - ./examples/mnist/create mnist.sh
- 4. 训练网络
 - ./examples/mnist/train_lenet.sh

训练的时候可以看到损失与精度数值,如下图:

可以看到最终训练精度是 0.9914。

12、可参考网站:

 $http://kangqingfei.\,cn/2016/08/25/Linux-\%E5\%AE\%89\%E8\%A3\%85Caffe/$

 $\verb|http://blog.csdn.net/yhaolpz/article/details/71375762?locationNum=14\&fps=1|$

http://www.linuxidc.com/Linux/2016-12/138870.htm

 $\verb|http://blog.csdn.net/u014696921/article/details/60140264|$