INTRODUCTION TO DATA ANALYSIS

MODELS

LEARNING GOALS

- become acquainted with statistical models
- understand what parameters are and what priors can do
- meet pivotal exemplars:
 - Binomial Model, T-Test Model, Simple Linear Regression
- understand notation to communicate models
 - formulas & graphs

Statistical models

STATISTICAL MODELS

A statistical model is a condensed formal representation, following common conventional practices of formalization, of the assumptions we make about what the data is and how it might have been generated.

PRAGMATISM IN MODELING

All models are wrong, but some are useful. — Box (1979)

DEFINITION

- lacktriangleright a statistical model M of random process R generating data D consists of:
 - \blacktriangleright a partition into D_{IV} and D_{DV} of a subset of D
 - a likelihood function: $P_M(D \mid \theta)$
 - lacktriangle [if Bayesian] a prior: $P_M(\theta)$

First examples

SINGLE DRAW FROM AN URN

- urn contains N = 10 balls
- unknown number $k \in \{0,1,...,10\}$ of black balls (rest white)
- likelihood function is uncontroversial

$$P_M(D = \text{black} \mid k) = \frac{k}{N}$$

possible prior:

$$P_M(k=i) = \frac{1}{11}$$
, for all $i \in \{0,1,\dots,10\}$

Example models

BINOMIAL MODEL

 $\theta \sim \text{Beta}(...)$

 $k \sim \text{Binomial}(\theta, N)$

FLIP-AND-DRAW

FLIP-AND-DRAW-HYPERGEOMETRIC

 $\theta \sim \text{Beta}(...)$

 $f \sim \text{Bernoulli}(\theta)$

 $k \sim \text{Hypergeometric}(n, N, K_f)$

T-TEST MODEL [TWO UNCOUPLED MEANS]

T-TEST MODEL [WITH DIFFERENCE BETWEEN MEANS]

SIMPLE LINEAR REGRESSION MODEL


```
\sigma \sim \text{Trunc-Norm}(...)
```

$$\beta_0 \sim \text{Student-t}(...)$$

$$\beta_1 \sim \text{Student-t}(...)$$

$$y_i \sim \text{Normal}(\beta_0 + \beta_1 x_i, \sigma)$$

LINEAR REGRESSION WITH TWO GROUPS

