Paper / Subject Code: 32623 / Dynamics of Mechinery							0.023
E	Semv	(R2019)	C. Scheme	· · · · · · · · · · · · ·	hanical"	Nov 2	
e:	3 hrs	,		•	Total Mar	ks; 80	
e:							
	Question No. 1 Attempt any th Assume suitabl	roo from the re	aming five buce	itions. proper justifi	cation.		
At	tempt any four of	the following.	All sub-question	carries equal m	iarks		
Di	ifferentiate betwee erive the relation t	Dankar and U	artnell governor				5
D F	viscuss different ty xplain dynamicall lot variation betw	pes of damping	ctem with correct	tion counte			5 5 5
2	2A. Find the natural	al frequency of from the equilib	a half solid cylin orium position an	der of mass mad released.	and radius r whe	n it is	10
	2B A Porter gover kg. Upper links an upper links and lo Find equilibrium radius.	re 250 mm long	and lower links	ale 330 mm f	rom the governo	or axis.	10
	V V						
ř	3A. The turbine rpm clockwise v 1.Determine the curve of 100 m 2.Calculate the the bow falling	gyroscopic couradius at a spee	iple and its effect d of 16.1 knots.	t, if the ship is Assume 1 knot when the ship	steering to the r = 1855 m/hr. is pitching in SF	ight in a IM, with	10
(e)	angular displace acceleration du 3B. An underce kg, such that du	ring the pitchin lamped shock a uring a road bur	11 110 1110 1110	designed for a	a motorcycle of tion is limited to e cycle.	mass 200	10

Paper / Subject Code: 32624 / Finite Element Analysis

b) Find nodal displacement, reaction forces and stresses in each element for a truss given below. Take $E = 2x10^5 \text{ N/mm}^2$ and $A = 200 \text{ mm}^2$.

10

80

12

10

10

- Q. 5 a) Calculate linear interpolation functions for linear triangular element whose vertices are A(2, 5), B(1, -1) and C(3, 4).
 - Consider the steady laminar flow of a viscous fluid through a long circular cylindrical tube. The governing equation is

$$-\frac{1}{r}\frac{d}{dr}\left(r\mu\frac{dw}{dr}\right) = \frac{P_0 - P_L}{L} \equiv f_0$$

Where, w is axial (z-axis) component of velocity, μ is the viscosity, and f_0 is the gradient of pressure (includes static pressure and gravitational force). The boundary conditions are:

$$\left(r\frac{dw}{dr}\right)\Big|_{r=0} = 0, \quad w(R_0) = 0$$

Using symmetry and two linear elements or one quadratic element, determine the velocity field and compare with exact solution at nodes:

$$w_{\epsilon}(r) = \frac{f_0 R_0^2}{4\mu} \left[1 - \left(\frac{r}{R_0}\right)^2 \right]$$

Q. 6 a) Determine the two natural frequencies of transverse vibration of a beam fixed at both ends as shown in figure. Use both Lumped and Consistent mass matrices and comment on the results. Divide the whole domain into two elements of equal lengths. [Take EI = 10^6 units, $\rho A = 10^6$ units]

b) Derive the element matrix equation for a simple bar fixed at one end and loaded axially at the other end, as shown in figure. The cross-section area of the bar is A, and the modulus of elasticity is E. The governing differential equation is given by:

$$\frac{d}{dx} \left[EA \frac{du}{dx} \right] = 0; \qquad \text{for } 0 < x < l$$

Page 2 of 2