Multidisciplinary Design Optimization

Joaquim R. R. A. Martins

Andrew Ning, Jason Hicken, and Juan Alonso

Compiled on Wednesday 22nd April, 2015 at 16:12

Contents

1	Intr	oduction	5
	1.1	What is "MDO"?	5
	1.2	Terminology and Problem Statement	6
		1.2.1 Objective Function	6
		1.2.2 Design Variables	7
		1.2.3 Constraints	8
		1.2.4 Optimization Problem Statement	8
		1.2.5 Classification of Optimization Problems	6
	1.3	Timeline of Historical Developments in Optimization	10
	1.4	Practical Applications	13
		1.4.1 Airfoil Design	13
		1.4.2 Structural Topology Optimization	14
		1.4.3 Aircraft Design with Minimum Environmental Impact	16
		1.4.4 Aerodynamic Design of a Natural Laminar Flow Supersonic Business Jet	17
		1.4.5 Aerostructural Design of a Supersonic Business Jet	21
		1.4.6 Aerostructural Shape Optimization of Wind Turbine Blades Considering Site-	
		Specific Winds	24
		1.4.7 MDO of an Airplane for the SAE Micro-Class Aero Design Competition	26
		1.4.8 MDO of Supersonic Low-boom Designs	31
2		•	34
	2.1	Introduction	
	2.2	Optimality Conditions	
	2.3	Numerical Precision	
	2.4		36
	2.5		37
	2.6	9	37
	2.7		41
	2.8		41
	2.9	Polynomial Interpolation	
		Brent's Method	
	2.11	•	43
			44
		2.11.2 Sufficient Decrease and Backtracking	
		2.11.3 Line Search Algorithm Satisfying the Strong Wolfe Conditions	46
3	Cra	lient-Based Optimization	52
J	3.1		$\frac{52}{52}$
	3.2		$\frac{52}{53}$
	3.3		54
	3.4	-	56
	$\frac{3.4}{3.5}$	•	58
	3.6		62
	$\frac{3.0}{3.7}$		63
	3.1		
		3.7.1 Davidon–Fletcher–Powell (DFP) Method	64

		3.7.2 Broyden–Fletcher–Goldfarb–Shanno (BFGS) Method	67
		3.7.3 Symmetric Rank-1 Update Method (SR1)	74
	3.8	Trust Region Methods	74
		3.8.1 Trust Region Sizing	76
		3.8.2 Solution of the Trust-Region Subproblem	77
		Cauchy Point	77
		Dogleg Method	77
		Two-dimensional Subspace Minimization	78
		Iterative Solution to Subproblem	79
		3.8.3 Comparison with Line Search Methods	79
4	Cor	nputing Derivatives 8	31
-	4.1		81
	1.1		82
	4.2	1 0	83
	4.3	v	83
	4.4		85
	1.1		85
			86
		v	90
		•	90
			91
			91
	4.5		97
	1.0		97
			98
	4.6	Monolithic Differentiation	
	4.7	Algorithmic Differentiation	
	2	4.7.1 Forward Mode Matrix Equations	
		4.7.2 Reverse Mode Matrix Equations	
		4.7.3 Implementation and Tools	
	4.8	Analytic Methods	
		4.8.1 Traditional Derivation	
		4.8.2 Derivation of the Direct and Adjoint Methods from the Unifying Chain Rule 1.	
		4.8.3 Direct Method	
		4.8.4 Adjoint Method	
		4.8.5 Direct vs. Adjoint	
5	Cor	nstrained Optimization 13) E
9	5.1	Introduction	
	5.2	Optimality Conditions for Constrained Problems	
	0.2	5.2.1 Nonlinear Equality Constraints	
		5.2.2 Alternative Derivation of Lagrangian	
		5.2.3 Nonlinear Inequality Constraints	
		5.2.4 Constraint Qualification	
	5.3	Penalty Function Methods	
	5.5	5.3.1 Exterior Penalty Functions	
		The Quadratic Penalty Method	

		The Augmented Lagrangian Method
		5.3.2 Interior Penalty Methods
		The Logarithmic Barrier Method
		The Inverse Barrier Function
	5.4	Sequential Quadratic Programming (SQP)
		5.4.1 Quasi-Newton Approximations
		5.4.2 Inequality Constraints
6	Gra	adient-Free Optimization 158
	6.1	Introduction
	6.2	Nelder–Mead Simplex
	6.3	DIvided RECTangles (DIRECT) Method
	6.4	Genetic Algorithms
		6.4.1 Binary-coded Genetic Algorithms
		6.4.2 Real-Coded Genetic Algorithms
		6.4.3 Constraint Handling
		6.4.4 Why do genetic algorithms work?
	6.5	Particle Swarm Optimization
7	Mu	ltidisciplinary Design Optimization 188
•	7.1	Introduction
	7.2	Nomenclature and Mathematical Notation
	7.3	Multidisciplinary Analysis
	7.4	Architecture Diagrams — The Extended Design Structure Matrix
	7.5	Monolithic Architectures
		7.5.1 The All-at-Once (AAO) Problem Statement
		7.5.2 Simultaneous Analysis and Design (SAND)
		7.5.3 Individual Discipline Feasible (IDF)
		7.5.4 Multidisciplinary Feasible (MDF)
	7.6	Distributed Architectures
		7.6.1 Motivation
		7.6.2 Classification
		7.6.3 Concurrent Subspace Optimization (CSSO)
		7.6.4 Collaborative Optimization (CO)
		7.6.5 Bilevel Integrated System Synthesis (BLISS)
		7.6.6 Analytical Target Cascading (ATC)
		7.6.7 Exact and Inexact Penalty Decomposition (EPD and IPD)
		7.6.8 MDO of Independent Subspaces (MDOIS)
		7.6.9 Quasiseparable Decomposition (QSD)
		7.6.10 Asymmetric Subspace Optimization (ASO)
	7.7	Benchmarking of MDO Architectures
	7.8	Analytic Methods for Computing Coupled Derivatives
	7.9	Concluding Remarks
		-