Clustering

Muhammad Furqon Fahlevi / 1301194214 Designer at Templatery

Clustering

Topics List

- 1. Problem Formulation
- 2. Data Exploration & Preparation
- 3. Modeling
- 4. Evaluation
- 5. Experiment
- 6. Conclusion

Problem Formulation

4	Α	В	С	D	E	F	G	Н	1	J	K	L
	id	Jenis_Kela	Umur	SIM	Kode_Dae	Sudah_As	Umur_Ker	Kendaraar	Premi	Kanal_Per	Lama_Ber	Tertarik
	1	Wanita	30	1	33	1	< 1 Tahun	Tidak	28029	152	97	
	2	Pria	48	1	39	0	> 2 Tahun	Pernah	25800	29	158	
	3		21	1	46	1	<1 Tahun	Tidak	32733	160	119	
	4	Wanita	58	1	48	0	1-2 Tahun	Tidak	2630	124	63	
	5	Pria	50	1	35	0	> 2 Tahun		34857	88	194	
	6	Pria	21	1	35	1	< 1 Tahun	Tidak	22735	152	171	
	7	Wanita	33	1	8	0		Pernah	32435	124	215	
1	8	Pria	23		28	1	<1 Tahun	Tidak	26869	152	222	
O	9	Wanita	20	1	8	1	<1 Tahun	Tidak	30786	160	31	
1	10		54	1	29	0	> 2 Tahun	Pernah	88883	124	28	
2	11	Pria	25	1	14	1	<1 Tahun	Tidak	34212	152	282	
3	12	Wanita		1	28	1	<1 Tahun	Tidak	40754	152	210	
4	13	Wanita	21	1	12	1	<1 Tahun		27907	160	232	
5	14	Wanita	21	1		1	<1 Tahun	Tidak	36598	152	140	
5	15	Pria	66	1	24	1	1-2 Tahun	Tidak	38616	145	281	
7	16	Pria	31	1	8	0	<1 Tahun	Pernah	2630	152	132	
8	17	Wanita	24	1	30	1	<1 Tahun	Tidak	27285	152	215	
9	18	Wanita	22	1	15	0	<1 Tahun	Pernah	38289	152	225	
0	19	Wanita	24	1	9	1	<1 Tahun	Tidak	23157	152	43	
1	20	Pria	52	1	28	0	> 2 Tahun	Pernah	2630	124	11	
2	21	Wanita	26	1	33	1	<1 Tahun	Tidak	27319	152	230	
3	22	Pria	46	1	28	1	1-2 Tahun	Tidak	27834	31	140	
4	23	Wanita	25	1		0	<1 Tahun	Pernah	24206		284	
5	24	Pria	41	1	28	0	1-2 Tahun	Pernah	42140		264	
5	25	Wanita	52	1	11	0	1-2 Tahun	Pernah	28974	124		
7	26	Wanita	24	1	12	1	< 1 Tahun	Pernah	28419	152	94	
3	27	Pria	45	1	28	0	1-2 Tahun		33412	26	298	
9	28	Wanita	29	1	10	1	< 1 Tahun	Tidak	32830	152	92	
O	29	Wanita	21	1	34	0	< 1 Tahun	Pernah	32976	152	38	
1	30	Pria	68		28	0	1-2 Tahun	Pernah	40186	124	30	
2	31	Wanita	73	1	16	1	1-2 Tahun	Tidak			286	
3	32	Pria	58	1	3	0	1-2 Tahun	Pernah	37385	26	50	
4	33	Wanita	21	1	16	0	< 1 Tahun	Pernah	28559	160	241	
5	34	Pria	27	1	14	0	< 1 Tahun	Pernah	26881	152	240	
4 5 6	35	Pria	34	1	36	0	1-2 Tahun	Pernah	2630	156	214	
7	36	Pria	46	1	28		1-2 Tahun	Pernah	27865	124	165	

Problem Formulation

Vehicle datasets with multiple variables or columns. There are 2 selected columns from datasets that will go through several stages (Pre-Processing, Clustering).

Data Exploration & Preparation

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from scipy import stats
```

Import Library

Several libraries used for clustering.

Import dataset into new dataframe named data_train
data_train = pd.read_csv("kendaraan_train.csv")
data train.head()

						37						
	id	Denis_Kelamin	Unite	SEM.	Kode Deerah	Sudah_Asuransi	Umur Kendaraan	Kendaraan_Busak	Presti	Kanal Penjualan	Lama_Serlanggaran	Tertar
٥	1	Winita	30.0	1.0	33.0	1.0	< 1 Tahuri	Tetak	28029.0	152.0	97.0	
3	33	Pria	48.0	1.0	39.0	0.0	>2 Tahun	Pertiah	25800.0	29.0	158.0	
23	27	NaN	21.0	1.0	46.0	1.0	< 1 Tahun	Time	32733.0	160.0	119.0	
3	•	Wanita	58.0	1.0	48.0	0.0	1-2 Tahun	Tichak	2630.0	124.0	63.0	
34	5	Pria	50.0	1.0	35.0	0.0	>2 Tahun	Nate	34857.0	88,0	194.0	

Import Datasets

Using pandas as pd to import csv file into colab with name of variable "data_train".


```
# Check NaN data
data_train.isna()
285831 rows × 12 columns
```

```
# Drop NaN data
data_train = data_train.dropna()
data_train

171068 rows × 12 columns
```

Check NaN data

Cleansing data or drop the data column or variable that has a NaN value. This serves to avoid empty data while doing the processing.

There are 114.763 NaN data.

```
print("Duplicated data:",data_train.duplicated().sum())

Duplicated data: 0
```

Check duplicated data

To check is there any duplicated data or no.

Catogorical into Numeric data

Algorithm cannot operate on label data directly. They require all input and output variables to be numeric.

Drop unnecessary data

Since 'Id' and 'Tertarik' is not related with clustering, therefore the column will be dropped.

Check outliers

Check the outliers for these columns because this is the candidate who may be continued to the clustering stage. The outliers will be dropped using z-score

Heatmap

This the correlation between columns

Modeling

```
# Select 2 datas / columns for clustering
data_selected = data_new.loc[:, ['Premi', 'Umur']]
data_selected.head()
```


Select datas for clustering

'Premi' and 'Umur' is the selected data and the correlation between them is 0.06.

Data before clustering

```
Define K-Means
ief kMeans(ds_val, k):
cluster = np.zeros(ds_val.shape[0])
centroids = data_selected.sample(n=k).values
 while diff:
  for i, row in enumerate(ds val):
    distance = float('inf')
    for idx, centroid in enumerate(centroids):
      eu_distance = np.sqrt((centroid[0]-row[0])**2 + (centroid[1]-row[1])**2)
      if distance > eu distance:
        distance = eu_distance
        cluster[i] = idx
  new_centroids = pd.DataFrame(ds_val).groupby(by=cluster).mean().values
  if np.count_nonzero(centroids-new_centroids) == 0:
    diff = 0
  else:
      centroids = new centroids
  return centroids, cluster
```

Define K-Means

Using K-Means algorithm for clustering with Euclidian Distance.

Data after clustering

Data visualization with K = 2

WCSS =
$$\sum_{C_k}^{C_n} (\sum_{d_i \text{in } C_i}^{d_m} distance(d_i, C_k)^2)$$

Where,

C is the cluster centroids and d is the data point in each Cluster.

```
# Calculate WCSS

def calculate_cost(X, centroids, cluster):
    sum = 0
    for i, val in enumerate(X):
        sum += np.sqrt((centroids[int(cluster[i]), 0]-val[0])**2 +(centroids[int(cluster[i]), 1]-val[1])**2
    return sum
```


Calculate Walls of the Calculate Cal

WCSS is the sum of squared distance between each point and the centroid in a cluster. Calculate the WCSS based on the formula, and we implement into the code.

```
# Find K value
cost_list = []
for k in range(1,10):
    centroids, cluster = kMeans(ds_val, k)
    cost = calculate_cost(ds_val, centroids, cluster)
    cost_list.append(cost)
```


Elbow Line & Plot

Varying the number of clusters (k) with range 1-10. For each value of k, we are calculating WCSS. After that, we make plot with similar range.

Evaluation

Silhouette value

The evaluation is done by finding Silhouette value. This is the score with K = 2.

Experiment

Model with 3 Clusters 80 70 60 40 30 20 10000 20000 30000 40000 50000 60000 70000 80000 Premi

Model with 3 clusters

Model with 5 Clusters 80 70 60 40 20 10000 20000 30000 40000 50000 60000 70000 80000 Premi

Model with 5 clusters

Model with 7 Clusters 80 70 60 40 20 10000 20000 30000 40000 50000 60000 70000 80000 Premi

Model with 7 clusters

Conclusion

Conclusion

After doing the experiment, we got the Silhouette values from the selected clusters.

Based on Silhouette method that a value close to 1 is the most optimal. We can conclude that 3 clusters have the most optimal value with K = 3.

Thank you!

Muhammad Furqon Fahlevi | 1301194214 | IF-43-INT