Data Mining:

Concepts and Techniques

(3rd ed.)

— Chapter 5 —

Slides Courtesy of Textbook

Chapter 5: Data Cube Technology

Data Cube Computation: Preliminary Concepts

- Data Cube Computation Methods
- Processing Advanced Queries by Exploring DataCube Technology
- Summary

Data Cube: A Lattice of Cuboids

time, item, location, supplierc

Data Cube: A Lattice of Cuboids

- Base vs. aggregate cells; ancestor vs. descendant cells; parent vs. child cells
 - 1. (9/15, milk, Urbana, Dairy_land)
 - 2. (9/15, milk, Urbana, *)
 - 3. (*, milk, Urbana, *)
 - 4. (*, milk, Urbana, *)
 - 5. (*, milk, Chicago, *)
 - 6. (*, milk, *, *)

Cube Materialization: Full Cube vs. Iceberg Cube

- Motivation: To ensure fast OLAP, we precompute the full cube or partial cube.
- Pre-compute Full Cube: Pre-compute every cell in the cube.
 - Data analysts have really fast access to data in each cuboid.
 - Huge cost in memory & time. (e.g. Explosive growth with the # of dimension.)
 - Pre-compute Partial Cube (Iceberg Cube): Pre-compute cells satisfying some conditions (e.g. count > min support,...)
 - Many cells are of no interest to data analysts.
 - Save cost in memory & time.

Iceberg Cube

- Computing only the cuboid cells whose measure satisfies the iceberg conditions
- Only a small portion of cells may be "above the water" in a sparse cube

Iceberg Cube

- Avoid explosive growth: A cube with 100 dimensions
 - 2 base cells with count = 1 (Others' count = 0).
 - $A = (a_1, a_2,, a_{100}), B = (b_1, b_2, ..., b_{100})$
 - How many aggregate cells if "having count >= 1"?
 - What about "having count >= 2"?
- Is iceberg cube good enough?
 - 2 non-zero base cells:
 - { $(a_1, a_2, a_3 ..., a_{100}):10, (a_1, a_2, b_3, ..., b_{100}):10$ }
 - How many cells will the iceberg cube have if having count(*)
 - >= 10? Hint: A huge but tricky number!

Closed Cube & Cube Shell

Close cube:

- Closed cell c: if there exists no cell d, s.t. d is a descendant of c, and d has the same measure value as c.
- Closed cube: a cube consisting of only closed cells
- Given 2 base cells: $\{(a_1, a_2, a_3 \dots, a_{100}): 10, (a_1, a_2, b_3, \dots, b_{100}): 10\}$, what is the closed cube of the base cuboid? Hint: only 3 cells

Cube Shell

- Pre-compute only the cuboids involving a small # of dimensions,
 e.g., 3
- More dimension combinations will need to be computed on the fly

For $(A_1, A_2, ... A_{10})$, how many combinations to compute?

Chapter 5: Data Cube Technology

- Data Cube Computation: Preliminary Concepts
- Data Cube Computation Methods

- Multi-Way Array Aggregation
- BUC
- Processing Advanced Queries by Exploring Data Cube Technology
- Summary

Multi-Way Array Aggregation

Introduction:

- Array-based "bottom-up" algorithm
- Using multi-dimensional chunks
- High Efficiency for Full Cube Computation:
 - Simultaneous aggregation on multiple dimensions
 - Intermediate aggregate values are re-used for computing ancestor cuboids
- No Iceberg Optimization:
 - Cannot do Apriori pruning

Multi-way Array Aggregation for Cube Computation

- Partition arrays into chunks (a small sub-cube which fits in memory).
- Compute aggregates in "multi-way" by visiting cube cells in the order which minimizes the # of times to visit each cell, and reduces memory access and storage cost.

Multi-way Array Aggregation for Cube Computation (3-D to 2-D)

Multi-way Array Aggregation for Cube Computation (2-D to 1-D)

Multi-Way Array Aggregation for Cube Computation (Method Summary)

- Method: The planes should be sorted and computed according to their size in ascending order
 - Idea: Keep the smallest plane in the main memory, fetch and compute only one chunk at a time for the largest plane
- Limitation of the method: Computing well only for a small number of dimensions
 - If there are a large number of dimensions, "top-down" computation and iceberg cube computation methods can be explored

Bottom-Up Computation (BUC)

Introduction:

- Top Down
- BUC (Beyer & Ramakrishnan, SIGMOD'99)
- Bottom-Up cube computation
 (Note: **Top-Down** in our view!)
- Partition and Optimization: Divides dimensions into partitions and facilitates iceberg pruning
 - If a partition does not satisfy min_sup, its descendants can be pruned
 - If min_sup = 1 ⇒ compute full CUBE!
- No simultaneous aggregation: Difference to Multi-Way Array Aggregation

BUC: Partitioning

- Usually, entire data set can't fit in main memory
- Sort distinct values
 - partition into blocks that fit
- Continue processing
- Optimizations
 - Partitioning
 - External Sorting, Hashing, Counting Sort
 - Ordering dimensions to encourage pruning
 - Cardinality, Skew, Correlation
 - Collapsing duplicates
 - Can't do holistic aggregates anymore!

BUC Algorithm


```
Procedure BottomUpCube(input, dim)
Inputs:
  input: The relation to aggregate.
  dim: The starting dimension for this iteration.
Globals:
  constant numDims: The total number of dimensions.
  constant cardinality [numDims]: The cardinality of
       each dimension.
  constant minsup: The minimum number of tuples in a
       partition for it to be output.
  output Rec: The current output record.
  dataCount[numDims]: Stores the size of each partition.
       dataCount[i] is a list of integers of size
       cardinality[i].
Outputs:
  One record that is the aggregation of input.
  Recursively, outputs CUBE(dim, ..., numDims) on
       input (with minimum support).
Method:
1: Aggregate(input); // Places result in outputRec
 2: if input.count() == 1 then // Optimization
       WriteAncestors(input[0], dim); return;
 3: write outputRec;
 4: for d = \dim; d < numDims; d++do
      let C = cardinality[d];
 5:
      Partition(input, d, C, dataCount[d]);
 6:
 7:
      let k = 0;
 8:
      for i = 0; i < C; i++ do // For each partition
         let c = dataCount[d][i]
 9:
        if c >= minsup then // The BUC stops here
10:
           \operatorname{outputRec.dim}[d] = \operatorname{input}[k].\operatorname{dim}[d];
11:
           BottomUpCube(input[k . . . k+c], d+1);
12:
         end if
13:
         k += c;
14:
15:
      end for
      outputRec.dim[d] = ALL;
16:
17: end for
```

BUC Running 1

output: (*, *, *, *) BUC(input[0..30], d=1)

Dimension Order: A, B, C, D

Return output: (*, *, *, *): 31

$d=1 \rightarrow Partition by dim A$

output: (a1, *, *, *)

BUC(input[0..10], d=2)

output: (a2, *, *, *)

BUC(input[10..14], d=2)

output: (a3, *, *, *)

BUC(input[14..21], d=2)

output: (a4, *, *, *)

BUC(input[21..30], d=2)

$d=2 \rightarrow Partition by dim B$

output: (*, b1, *, *)

BUC(input[0..7], d=3) // // Any more expansion from here?

output: (*, b2, *, *)

BUC(input[7..8], d=3)

output: (*, b3, *, *, *)

BUC(input[8..23], d=3)

output: (*, b4, *, *)

BUC(input[23..30], d=3)

$d=3 \rightarrow Partition by dim C$

output: (*, *, c1, *)

BUC(input[0..13], d=4)

output: (*, c2, *, *)

BUC(input[13..30], d=4)

$d=4 \rightarrow Partition by dim D$

output: (*, *, *, d1)

BUC(input[0..11], d=5) // Any more expansion from here?

output: (*, *, *, d2)

BUC(input[11..30], d=5)

BUC Running 2

output: (a1, *, *, *) BUC(input[0..10], d=2)

Return output: (a1, *, *, *): 10

```
d=2 → Partition by dim B
output: (a1, b1, *, *)
BUC(input[0..4], d=3)
output: (a1, b2, *, *)
BUC(input[4..5], d=3)
output: (a1, b3, *, *, *)
BUC(input[5..8], d=3)
output: (a1, b4, *, *)
BUC(input[8..10], d=3)
```

```
d=3 → Partition by dim C
output: (a1, *, c1, *)
BUC(input[0..4], d=4) // Any more expansion from here?
output: (a1, *, c2, *, *)
BUC(input[4..10], d=4)
```

```
d=4 → Partition by dim D
output: (a1, *, *, d1)
BUC(input[0..9], d=5) // Any more expansion from here?
output: (a1, *, *, d2)
BUC(input[0:10], d=5)
```

BUC: Trace Tree of Expansion

How if different dimension order?

Chapter 5: Data Cube Technology

- Data Cube Computation: Preliminary Concepts
- Data Cube Computation Methods

- Processing Advanced Queries by Exploring Data Cube Technology
 - Sampling Cube: X. Li, J. Han, Z. Yin, J.-G. Lee, Y.
 Sun, "Sampling Cube: A Framework for Statistical OLAP over Sampling Data", SIGMOD'08
- Summary

Statistical Surveys and OLAP

- Statistical Survey: A popular tool to collect information about a population based on a sample
 - Ex.: TV ratings, US Census, election polls
- A common tool in politics, health, market research, science, and many more
- An efficient way of collecting information (Data collection is expensive)
- Many statistical tools available, to determine validity
 - Confidence intervals
 - Hypothesis tests
- OLAP (multidimensional analysis) on survey data
 - highly desirable but can it be done well?

Surveys: Sample vs. Whole

Data is only a sample of population

Age\Education	High-school	College	Graduate
18			
19			
20			

Problems for Drilling in Sampling Cube

- OLAP on Survey (i.e., Sampling) Data
- Semantics of query is unchanged, but input data is changed

Age/Education	High-school	College	Graduate
18			
19			
20			

Data is only a **sample** of population but samples could be small when drilling to certain multidimensional space

Challenges for OLAP on Sampling Data

Q: What is the average income of 19-year-old high-school students?

A: Returns not only query result but also confidence interval

- Computing confidence intervals in OLAP context
- No data?
 - Not exactly. No data in subspaces in cube
 - Sparse data
 - Causes include sampling bias and query selection bias
- Curse of dimensionality
 - Survey data can be high dimensional
 - Over 600 dimensions in real world example
 - Impossible to fully materialize

Confidence Interval

- - x is a sample of data set; i. \bar{x} he mean of sample
 - t_c is the critical t-value, calculated by a look-up
 - $\hat{\sigma}_{ar{x}} = rac{s}{\sqrt{l}}$ the estimated standard error of the mean
- Example: $$50,000 \pm $3,000$ with 95% confidence
 - Treat points in cube cell as samples
 - Compute confidence interval as traditional sample set
- Return answer in the form of confidence interval
 - Indicates quality of query answer
 - User selects desired confidence interval

Efficient Computing Confidence Interval Measures

- Efficient computation in all cells in data cube
 - Both mean and confidence interval are algebraic
 - Why confidence interval measure is algebraic?

$$\bar{x} \pm t_c \hat{\sigma}_{\bar{x}}$$

 \bar{x} is algebraic

 $\hat{\sigma}_{ar{x}} = rac{s}{\sqrt{l}}$ where both s and l (count) are algebraic

 Thus one can calculate cells efficiently at more general cuboids without having to start at the base cuboid each time

Boosting Confidence by Query Expansion

- From the example: The queried cell "19-year-old college students" contains only 2 samples
- Confidence interval is large (i.e., low confidence). why?
 - Small sample size
 - High standard deviation with samples
- Small sample sizes can occur at relatively low dimensional selections
 - Collect more data?— expensive!
 - Use data in other cells? Maybe, but have to be careful

uery Expansion: Intra-Cuboid Expansion

Intra-Cuboid Expansion

- •Combine other cells' data into own to "boost" confidence
 - If share semantic and cube similarity
 - Use only if necessary
 - Bigger sample size will decrease confidence interval
- Age cuboid

 (b) Inter-Cuboid Expansion
 - Cell segment similarity
 - Some dimensions are clear: Age
 - Some are fuzzy: Occupation
 - May need domain knowledge
 - Cell value similarity
 - How to determine if two cells' samples come from the same population?
 - Two-sample t-test (confidence-based)

Intra-Cuboid Expansion

What is the average income of 19-year-old college students?

Age/Education	High-school	College	Graduate
18			
19			
20			
•••			

Expand query to include **18** and **20** year olds? Vs. expand query to include **high-school** and **graduate** students?

Query Expansion: Inter-Cuboid Expansion

- If a query dimension is
 - Not correlated with cube value
 - But is causing small sample size by drilling down too much

Remove dimension (i.e., generalize to *) and move to a more general cuboid

- Can use two-sample t-test to determine similarity between two cells across cuboids
- Can also use a different method to be shown later

Chapter 5: Data Cube Technology

- Data Cube Computation: Preliminary Concepts
- Data Cube Computation Methods
- Processing Advanced Queries by Exploring DataCube Technology
- Summary

Data Cube Technology: Summary

- Data Cube Computation: Preliminary Concepts
- Data Cube Computation Methods
 - Multi-Way Array Aggregation
 - BUC
- Processing Advanced Queries by Exploring Data Cube Technology
 - Sampling Cubes