Operating Systems

Chapter 3: Processes

Dr. Ahmed Hagag

Scientific Computing Department,
Faculty of Computers and Artificial Intelligence
Benha University

2019

Chapter 3: Processes

- Process Concept
- Process Scheduling
- Operations on Processes
- Interprocess Communication

Program vs. Process

- A program is a passive entity such as the file that contains the list of instructions stored on a disk always referred to as an executable file.
- A program becomes a **process** when an executable file is loaded into the memory and then becomes an **active** entity.

Process Concept (2/3)

- The fundamental task of any operating system is the **process management**.
- Processes include not only a text but also include a set of resources such as open files and pending signals. Processes also contain internal kernel data, processor state, an address space, and a data section.

• OS must allocate resources to processes, enable sharing of information, protect resources, and enable the synchronization among processes.

Process Elements (1/2)

- Segments of a process represents the following components:
 - ➤ Text Section: the program code. This is typically read-only, and might be shared by a number of processes.
 - > Data Section: containing global variables.
 - ➤ Heap: containing memory dynamically allocated during run time.
 - > Stack: containing temporary data.
 - Function parameters, return addresses, local variables.

Process Elements (2/2)

• Process in Memory

Process Control Block (PCB) (1/2)

- For better control of processes, operating systems need to consider their dynamic behaviors.
- Each process is represented in the OS by a Process Control Block (PCB).

process state process number program counter registers memory limits list of open files

Process Control Block (PCB) (2/2)

- Process Control Block (PCB) (1/3)
 - Process identification information
 - Process identifier: numeric identifiers represent the unique process identifier
 - User identifier: the user who is responsible for the job).
 - Identifier of the parent process that created this process.

Process Control Block (PCB) (2/2)

10

- Process Control Block (PCB) (2/3)
 - Processor state Information
 - Process state running, waiting, etc
 - > Program counter
 - location of instruction to next execute
 - > CPU registers
 - contents of all process-centric registers

Process Control Block (PCB) (2/2)

- Process Control Block (PCB) (3/3)
 - > CPU scheduling information
 - priorities, scheduling queue pointers
 - > Memory-management information
 - memory allocated to the process
 - > Accounting information
 - CPU used, clock time elapsed since start, time limits
 - > I/O status information
 - I/O devices allocated to process, list of open files

- As a process executes, it changes state
 - **new**: The process is being created
 - > running: Instructions are being executed
 - **waiting**: The process is waiting for some event to occur
 - **ready**: The process is waiting to be assigned to a processor
 - > terminated: The process has finished execution

• Diagram of Process State

16

CPU Switch From Process to Process

©Ahmed Hagag Operating Systems 20

Process Scheduling (1/2)

- Job queue set of all processes in the system
- Ready queue set of all processes residing in main memory, ready and waiting to execute
- Device queues set of processes waiting for an I/O device
- Processes migrate among the various queues

Process Scheduling (2/2)

Schedulers (1/2)

- Short-term scheduler (or CPU scheduler)
 - > Selects which process should be executed next and allocates CPU.
 - \triangleright Invoked frequently (milliseconds) \rightarrow (must be fast).
- Long-term scheduler (or job scheduler)
 - > Selects which processes should be brought into the ready queue.
 - \triangleright Invoked infrequently (seconds, minutes) \rightarrow (may be slow).
 - Controls the degree of multiprogramming.

Medium-term scheduler

- Can be added if degree of multiple programming needs to decrease
- ➤ Remove process from memory, store on disk, bring back in from disk to continue execution: **swapping**

Interprocess Communication (1/2)

- Processes within a system may be independent or cooperating
- Cooperating process can affect or be affected by other processes, including sharing data.
- Cooperating processes need interprocess communication (IPC)
- Two models of IPC:
 - > Shared memory
 - Message passing

Interprocess Communication (2/2)

Thank You

Dr. Ahmed Hagag ahagag@fci.bu.edu.eg

https://www.youtube.com/channel/UCzYgAyyZTLfnLFjQexOKxbQ

https://www.facebook.com/ahmed.hagag.71/