Codificación de canal

Códigos lineales de bloques

Codificación de canal

Códigos rectangulares

Cada set de M x N bits son mapeados en un set de (M +1) x (N+1) bits

Ejemplo: $b_f = 111 010 110$

$$b_c = 1111 \ 0101 \ 1100 \ 0110$$

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

$$b_c^* = 1111 0001 1100 0110$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 & \to 0 \\ 0 & 0 & 0 & 1 & \to 1 \\ 1 & 1 & 0 & 0 & \to 0 \\ 0 & 1 & 1 & 0 & \to 0 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ 0 & 1 & 0 & 0 & \end{bmatrix} \text{;Error!}$$

Matriz 3 x 3 Matriz 4 x 4

¡Error!

Codificador de canal

Codificador de canal

(Transmisor)

Códigos de bloques

 $2^3 = 8$ posibles códigos

 $2^6 = 64$ posibles códigos

¿Cómo elegir los posibles códigos?

0	0	0	0	0	0	0
1	0	0	0	0	0	1
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	0	0	1	0	0
5	0	0	0	1	0	1
6	0	0	0	1	1	0
7	0	0	Ü	1	1	1
			_	_	_	_
8	0	0	1	0	0	0
8 9	0	0	1	0	0	0 1
_			1 1 1		_	
9	0	0	1 1 1	0	0	1
9 10	0	0	1 1 1 1	0	0	1
9 10 11	0	0	1	0	0 1 1	1 0 1
9 10 11 12	0 0 0	0 0	1	0 0 0	0 1 1	1 0 1

16	0	1	0	0	0	0
17	0	1	0	0	0	1
18	0	1	0	0	1	0
19	0	1	0	0	1	1
20	0	1	0	1	0	0
21	0	1	0	1	0	1
22	0	1	0	1	1	0
23	0	1	0	1	1	1
24	0	1	1	0	0	0
25	0	1	1	0	0	1
26	0	1	1	0	1	0
27	0	1	1	0	1	1
28	0	1	1	1	0	0
29	0	1	1	1	0	1
30	0	1	1	1	1	0
31	0	1	1	1	1	1

32	1	0	0	0	0	0
33	1	0	0	0	0	1
34	1	0	0	0	1	0
35	1	0	0	0	1	1
36	1	0	0	1	0	0
37	1	0	0	1	0	1
38	1	0	0	1	1	0
39	1	0	0	1	1	1
40	1	0	1	0	0	0
41	1	0	1	0	0	1
42	1	0	1	0	1	0
43	1	0	1	0	1	1
44	1	0	1	1	0	0
45	1	0	1	1	0	1
46	1	0	1	1	1	0
47	1	0	1	1	1	1

48	1	1	0	0	0	0
49	1	1	0	0	0	1
50	1	1	0	0	1	0
51	1	1	0	0	1	1
52	1	1	0	1	0	0
53	1	1	0	1	0	1
54	1	1	0	1	1	0
55	1	1	0	1	1	1
56	1	1	1	0	0	0
56 57	1	1	1	0	0	1
56 57 58	1 1	1 1	1 1	0	0	1 0
	1 1 1	1 1 1	1 1 1		-	-
58	_	_	_	0	1	0
58 59	_	1	1	0	1	0
58 59 60	1	1	1	0	1 1 0	0 1 0
58 59 60 61	1 1	1 1	1 1	0 0 1	1 0 0	0 1 0

¿Cómo elegir los posibles códigos?

0	0	0	0	0	0	0
1	0	0	0	0	0	1
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	0	0	1	0	0
5	0	0	0	1	0	1
6	0	0	0	1	1	0
7	0	0	0	1	1	1
8	0	0	1	0	0	0
9	0	0	1	0	0	1
10	0	0	1	0	1	0
11	0	0	1	0	1	1
12	0	0	1	1	0	0
13	0	0	1	1	0	1
14	0	0	1	1	1	0
15	0	0	1	1	1	1

16	0	1	0	0	0	0
17	0	1	0	0	0	1
18	0	1	0	0	1	0
19	0	1	0	0	1	1
20	0	1	0	1	0	0
21	0	1	0	1	0	1
22	0	1	0	1	1	0
23	0	1	0	1	1	1
24	0	1	1	0	0	0
25	0	1	1	0	0	1
26	0	1	1	0	1	0
27	0	1	1	0	1	1
28	0	1	1	1	0	0
29	0	1	1	1	0	1
30	0	1	1	1	1	0
31	0	1	1	1	1	1

32	1	0	0	0	0	0
33	1	0	0	0	0	1
34	1	0	0	0	1	0
35	1	0	0	0	1	1
36	1	0	0	1	0	0
37	1	0	0	1	0	1
38	1	0	0	1	1	0
39	1	0	0	1	1	1
40	1	0	1	0	0	0
41	1	0	1	0	0	1
42	1	0	1	0	1	0
43	1	0	1	0	1	1
44	1	0	1	1	0	0
45	1	0	1	1	0	1
46	1	0	1	1	1	0
47	1	0	1	1	1	1

48	1	1	0	0	0	0
49	1	1	0	0	0	1
50	1	1	0	0	1	0
51	1	1	0	0	1	1
52	1	1	0	1	0	0
53	1	1	0	1	0	1
54	1	1	0	1	1	0
55	1	1	0	1	1	1
56	1	1	1	0	0	0
57	1	1	1	0	0	1
58	1	1	1	0	1	0
59	1	1	1	0	1	1
60	1	1	1	1	0	0
61	1	1	1	1	0	1
62	1	1	1	1	1	0
63	1	1	1	1	1	1

¿Cómo elegir los posibles códigos?

R/ Subespacios vectoriales

- 1. Debe contener 00...0
- 2. La suma (módulo 2) de cualesquiera 2 elementos debe crear otro elemento.

Matriz generadora

$$G = [P_{k \times n - k} : I_{k \times k}]$$

P: matriz de paridad

I: matriz identidad

$$[\]_{1\times k}[\quad \]_{k\times n}=[\]_{1\times n}$$

Matriz generadora

$$P = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

$$G = [P_{k \times n-k} : I_{k \times k}] = [P_{3 \times 3} : I_{3 \times 3}]$$

$$G = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Matriz generadora

$$\vec{u} = G\vec{m}$$

 \overrightarrow{m} : vector de k bits de entrada

G: matriz generadora de k x n

 \vec{u} : vector de n bits codificados

$$[\]_{1\times k}[\qquad]_{k\times n}=[\]_{1\times n}$$

Bits codificados

$$\vec{u} = \vec{m}G$$

$$\overrightarrow{m}_0 = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$$

$$\vec{u}_0 = \vec{m}_0 G = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 \vdots 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 & 1 \end{bmatrix}$$

Bits codificados

\overrightarrow{m}	\vec{u}
$0\ 0\ 0$	$0\ 0\ 0\ 0\ 0\ 0$
0 0 1	101001
010	$0\ 1\ 1\ 0\ 1\ 0$
0 1 1	$1\ 1\ 0\ 0\ 1\ 1$
$1 \ 0 \ 0$	110100
101	$0\ 1\ 1\ 1\ 0\ 1$
1 1 0	$1\ 0\ 1\ 1\ 1\ 0$
111	000111
Datos (k bits)	Redund. Datos (n-k bits) (k bits)

Vectores

Suma módulo 2
1 + 1 = 0
1 + 0 = 1
0 + 1 = 1
0 + 0 = 0

Decodificador de canal

Decodificador de canal (Receptor)

Matriz de verificación

$$H = \begin{bmatrix} I_{k \times k} \\ \cdots \\ P_{n-k \times k} \end{bmatrix}$$

I: matriz identidad

P: matriz de paridad

$$[\]_{1xn}[\quad \]_{nxk}=[\]_{1xk}$$

Matriz de verificación

$$P = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

$$H = \begin{bmatrix} I_{k \times k} \\ \cdots \\ P_{n-k \times k} \end{bmatrix} = \begin{bmatrix} I_{3 \times 3} \\ \cdots \\ P_{3 \times 3} \end{bmatrix}$$

$$H = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ & \cdots & \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

Matriz de verificación

$$\vec{v}H = (\vec{u} + \vec{e})H = \vec{u}H + \vec{e}H = \vec{m}GH + \vec{e}H = \vec{e}H = S$$

 \vec{v} : vector de n bits codificados en el receptor

H: matriz de verificación de n x k

$$\vec{v} = \vec{u} + \vec{e}$$
$$\vec{u} = \vec{m}G$$
$$G \cdot H = 0$$

$$[\]_{1\ge n} \big[\qquad \big]_{n\ge k} = [\]_{1\ge k}$$

Matriz de verificación

$$\vec{v}H = \vec{e}H = S$$

$$\vec{v}H = S$$
 $\vec{e}H = S$

$$\vec{e}H = S$$

$$\vec{v} = \vec{u} + \vec{e}$$

Bits decodificados

$$\vec{v}H = S$$

$$\vec{v}_0 = \begin{bmatrix} 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$

$$S = \vec{v}_0 H = \begin{bmatrix} 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ & \cdots & \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

Bits decodificados

$$\vec{e}H = S$$

$$\vec{e}H = S$$

$$S = \vec{e}_0 H = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

Síndromes

Hay más **e** que **S**

\vec{e}	S
$0\ 0\ 0\ 0\ 0\ 0$	0 0 0
$1\ 0\ 0\ 0\ 0\ 0$	100
$0\ 1\ 0\ 0\ 0\ 0$	0 1 0
$0\ 0\ 1\ 0\ 0\ 0$	0 0 1
$0\ 0\ 0\ 1\ 0\ 0$	1 1 0
$0\ 0\ 0\ 0\ 1\ 0$	0 1 1
$0\ 0\ 0\ 0\ 0\ 1$	1 0 1
000011	1 1 0
111111	1 1 1

Bits decodificados

$$\vec{v}_0 = \begin{bmatrix} 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$
 $\vec{e}_0 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
 $\vec{v}_0 = \vec{u}_0 + \vec{e}_0$
 $\vec{u}_0 = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$

Bits decodificados

$$\vec{u}_0 = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$
 $\vec{m}_0^* = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$

Codificación de canal

Códigos lineales de bloques