Dual Unsupervised Learning

Ki Hyun Kim

nlp.with.deep.learning@gmail.com

Equations

• Given datasets:

$$\mathcal{B} = \{x^n, y^n\}_{n=1}^N \ \mathcal{M} = \{y^s\}_{s=1}^S$$

Marginal Distribution:

$$egin{aligned} P(y) &= \mathbb{E}_{x \sim P(\mathrm{x})}[P(y|x)] \ &= \sum_{x \in \mathcal{X}} P(y|x)P(x) \end{aligned}$$

New Objective

$$egin{aligned} \hat{ heta}_{x o y} &= rgmin_{ heta_{x o y} \in \Theta} \sum_{i=1}^N \ellig(f(x^i; heta_{x o y}), y^i)ig) \ ext{s.t.} \ P(y^i) &= \sum_{x \in \mathcal{X}} P(y^i|x^i)P(x^i). \end{aligned}$$

$$egin{aligned} \mathcal{L}(heta_{x o y}) &= -\sum_{n=1}^N \log P(y^n|x^n; heta_{x o y}) + \lambda \sum_{s=1}^S \left\|\log \hat{P}(y^s) - \lograc{1}{K}\sum_{k=1}^K P(y^s|x_k; heta_{y o x})
ight\|_2^2, \ & ext{where } x_k \sim P(ext{x}). \end{aligned}$$

Thus, we need

• Importance Sampling:

$$egin{aligned} \mathbb{E}_{x\sim p(\mathrm{x})}ig[f(x)ig] &= \int f(x)p(x)dx \ &= \int rac{f(x)p(x)}{q(x)}q(x)dx \ &= \mathbb{E}_{x\sim q(\mathrm{x})}ig[f(x)rac{p(x)}{q(x)}ig] \end{aligned}$$

Re-write Objective

By importance sampling,

$$egin{aligned} P(y) &= \mathbb{E}_{x \sim P(\mathbf{x})}[P(y|x)] \ &= \sum_{x \in \mathcal{X}} P(y|x)P(x) \ &= \sum_{x \in \mathcal{X}} rac{P(y|x)P(x)}{P(x|y)} P(x|y) \ &= \mathbb{E}_{x \sim P(\mathbf{x}|y)} \Big[rac{P(y|x)P(x)}{P(x|y)} \Big] \ &pprox rac{1}{K} \sum_{k=1}^K rac{P(y|x_k)P(x_k)}{P(x_k|y)}, ext{ where } x_k \sim P(\mathbf{x}|y) \end{aligned}$$

Re-write Objective

• Our new objective:

$$egin{aligned} \mathcal{L}(heta_{x o y}) &= -\sum_{n=1}^N \log P(y^n|x^n; heta_{x o y}) + \lambda \mathcal{L}_{ ext{dul}}(heta_{x o y}) \ \mathcal{L}_{ ext{dul}}(heta_{x o y}) &= \sum_{s=1}^S \left\| \log \hat{P}(y^s) - \log rac{1}{K} \sum_{k=1}^K rac{P(y^s|x_k^s; heta_{x o y}) \hat{P}(x_k^s)}{P(x_k^s|y^s; heta_{y o x})}
ight\|_2^2 \ heta_{x o y} &= heta_{x o y} - \eta
abla_{ heta_{x o y}} \mathcal{L}(heta_{x o y}) \end{aligned}$$

Evaluation

Table 1: BLEU scores on En \rightarrow Fr and De \rightarrow En translation tasks. \triangle means the improvement over the basic NMT model, which only used bilingual data for training. The basic model for En \rightarrow Fr is the RNNSearch model (Bahdanau, Cho, and Bengio 2015), and for De \rightarrow En is a two-layer LSTM model. Note that all the methods for the same task share the same model structure.

System	En→Fr	Δ	De→En	Δ
Basic model	29.92		30.99	
Representative semi-supervised NMT systems				
Shallow fusion-NMT (Gulcehre et al. 2015)	30.03	+0.11	31.08	+0.09
Pseudo-NMT (Sennrich, Haddow, and Birch 2016)	30.40	+0.48	31.76	+0.77
Dual-NMT (He et al. 2016a)	32.06	+2.14	32.05	+1.06
Our dual transfer learning system				
This work	32.85	+2.93	32.35	+1.36

Summary

- Back Translation, Dual Learning for Machine Translation 과 달리, <u>수학적으로 매우 잘 정의</u>된 깔끔한 objective function이 매력
 - Back Translation은 학습이 끝난 반대쪽 모델을 주로 활용하는 형태 (offline 학습)
 - Dual Learning for MT는 RL이 활용되므로, 비효율적인 학습이 될 수 있음
 - 하지만 언어 모델이 필요한 것이 단점