EECS C106A/206A

Discussion #5: Jacobians and Wrenches

Agenda

- Logistics
- Lecture Review
 - Velocities
 - Manipulator Jacobians
 - Wrenches

Logistics

- Upcoming:
 - Midterm 1 regrades due on 10/13
 - Midterm 2 on 11/8
 - Homework 4 due **10/11**
- Office Hours
 - Still happening
 - Tuesdays & Thursdays @ 11:30 12:30, Locations on Piazza
 - By appointment: brentyi@berkeley.edu

Velocities Review

- 1. How do we visualize body and spatial velocities?
- 2. How can we determine each by inspection?

Body Velocities

• How is the tool frame moving wrt its own axes?

Spatial Velocities

- Imagine point at spatial origin, attached to the tool frame
- Express velocity wrt the spatial frame's axes:

Slides adapted from material by Robert Peter Matthew and *Mathematical Introduction to Robot Manipulation* (Murray, Li, Sastry)

Manipulator Jacobians

Recall: Jacobians (Calculus)

- Matrix of partial derivatives
 - \circ How does each element of f change wrt each element of x ?

$$x = egin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}^T \ f(x) = egin{bmatrix} f_1 & f_2 & \dots & f_m \end{bmatrix}^T \end{pmatrix} egin{bmatrix} \mathbf{J} = egin{bmatrix} rac{\partial f_1}{\partial x_1} & \dots & rac{\partial f_1}{\partial x_n} \ dots & \ddots & dots \ rac{\partial f_m}{\partial x_1} & \dots & rac{\partial f_m}{\partial x_n} \end{bmatrix}$$

Recall: Manipulator Jacobians

- Manipulator Jacobians describe relationship between components of:
 - Joint velocity vector
 - End effector velocity
- End effector velocity can be expressed in either spatial or body frame

Recall: Spatial Jacobians

- Map joint velocities to an end effector spatial velocity
- For a robot with n joints:

$$J^s(heta) = egin{bmatrix} \xi_1 & \xi_2' & \cdots & \xi_n' \end{bmatrix}$$

• Twist are expressed in the current configuration:

$$oldsymbol{\xi}_i' = Ad_{e^{\hat{\xi}_1 heta_1}\dots e^{\hat{\xi}_{i-1} heta_{i-1}}} oldsymbol{\xi}_i$$

Recall: Spatial Jacobians

Map joint velocities to an end effector spatial velocity

$$egin{align} J^s(heta) &= egin{bmatrix} \xi_1 & \xi_2' & \cdots & \xi_n' \end{bmatrix} \ V^S_{WT}(heta) &= J^s_{WT}(heta) \dot{ heta} \ \dot{ heta}_n \end{bmatrix} \ &= J^s_{WT}(heta) \dot{ heta} \ \end{split}$$

Exercise

• Find the spatial Jacobian for the manipulator in this configuration:

Visualizing Twists & Velocities

Spatial twist: circle around joint, intersecting spatial frame origin

Recall: Body Jacobians

- Map joint velocities to an end effector body velocity
- For a robot with n joints:

$$J^b(heta) = egin{bmatrix} \xi_1^\dagger & \xi_2^\dagger & \cdots & \xi_n^\dagger \end{bmatrix}$$

• Twists are re-expressed in the body frame, in the current configuration:

$$oldsymbol{\xi}_i^\dagger = Ad_{(e^{\hat{\xi}_i heta_i}\dots e^{\hat{\xi}_n heta_n}g_{WT}(0))^{-1}} oldsymbol{\xi}_i$$

Visualizing Twists & Velocities

• Body twist: circle around joint, intersecting body frame origin

Jacobian Rank

- The rank (# of linearly independent columns) of the Jacobian describes its degrees of freedom
- Some configurations of robot can cause the Jacobian to drop rank: these are called singularities

Question

• Is this robot in a singular configuration?

Wrenches

Recall generalized velocities with linear & angular components:

$$V = egin{bmatrix} v \ \omega \end{bmatrix} \in \mathbb{R}^{6 imes 1}$$

• Paralleled by **wrenches**, which generalize linear & angular forces:

$$F = egin{bmatrix} f \ au \end{bmatrix} \in \mathbb{R}^{6 imes 1}$$

Many properties of velocities & twists apply to wrenches as well!

Wrenches

• When they're expressed in the same frame, we can dot product wrenches and velocities to compute work:

$$W = \int_0^t \partial W dt$$
 $\partial W = V^s \cdot F^s = V^b \cdot F^b$

• Two wrenches are equivalent if they produce the same work with every possible rigid body motion

Exercise

- Derive a mapping between spatial wrenches and body wrenches.
 - Hint:

$$\partial W = V^s \cdot F^s = V^b \cdot F^b$$

Wrenches

• Just as we use the Adjoint to express velocities in different frames:

$$V^s = \operatorname{Ad}_g V^b$$

 We can also use it to translate between different wrench representations:

$$F^b = \operatorname{Ad}_g^T F^s$$
$$F_a = \operatorname{Ad}_{g_{ba}}^T F_b$$

Joint Torques

• Let
$$au = egin{bmatrix} au_1 \\ au_2 \\ au_2 \\ au_1 \end{bmatrix} \in \mathbb{R}^{n imes 1}$$
 where au_i is the torque of joint au_i

Joint Torques -> End Effector Wrench

Recall the mapping from joint velocities to end effector velocities:

$$V^S(\theta) = J^s(\theta)\dot{\theta}$$

• Is there an analogous relationship between joint torques and end effector wrenches?

$$F_B, \ \tau$$

Exercise

- Derive a mapping between spatial wrenches and joint torques
 - Hint:

$$P = V^b \cdot F^b = \dot{\theta} \cdot \tau$$

Joint Torques -> End Effector Wrench

$$P = V^b \cdot F^b = \dot{ heta} \cdot au$$
 $V^b = J_b \dot{ heta} \implies (J_b \dot{ heta})^T F^b = \dot{ heta}^T au$ $\dot{ heta}^T J_b^T F^b = \dot{ heta}^T au$ $J_b^T F^b = au$