STATS 701 – Theory of Reinforcement Learning Thompson/Posterior Sampling in MDPs

Ambuj Tewari

Associate Professor, Department of Statistics, University of Michigan tewaria@umich.edu
https://ambujtewari.github.io/stats701-winter2021/

Winter 2021

Outline

Finite Horizon MDPs

2 Posterior Sampling for Reinforcement Learning

SRL Regret Analysis

Finite Horizon (or episodic) MDP

- A finite horizon MDP M consists of
 - ullet \mathcal{S} , state space and \mathcal{A} , action space
 - \bullet μ_0 , the initial state distribution
 - Horizon H: every episode terminates in exactly H steps
 - Transition dynamics $s_{t+1} \sim P_{s_t,a_t}$
 - Reward distributions $r_t \sim R_{s_t,a_t}$
- ullet Need to consider non-stationary policy π

$$\boldsymbol{\pi} = (\pi_1, \ldots, \pi_H)$$

Trajectory

$$s_1 \sim \mu_0, a_1 \sim \pi_1(s_1), r_1 \sim R_{s_1,a_1},$$

 $s_2 \sim P_{s_1,a_1}, a_2 \sim \pi_2(s_2), r_2 \sim R_{s_2,a_2},$
 \vdots
 $s_H \sim P_{s_{H-1},a_{H-1}}, a_H \sim \pi_H(s_{H-1}), r_H \sim R_{s_H,a_H}$

Optimal policy

Value functions are now also indexed by time step within episode:

$$V_M^{\pi,h}(s) = \mathbb{E}_M^{\pi} \left[\sum_{t=h}^H r_t \middle| s_h = s \right]$$

• Optimal policy π_M^* satisfies, for all $s \in \mathcal{S}, h \in \{1, \dots, H\}$:

$$V_M^{\pi_M^{\star},h}(s) = \max_{\pi} V_M^{\pi,h}(s)$$

Will omit MDP M if it is fixed and clear from context

DP equation for value functions of a policy

• DP equations for finite horizon case

$$V_M^{\pi,h} = T_M^{\pi_h} V_M^{\pi,h+1}, \quad h = \{1, 2, \dots, H\}$$

- Base case is $V^{\pi,H+1} = 0$
- Here the operator T_M^{π} for a single stationary π is defined as usual:

$$T_M^{\pi}V = R_M^{\pi} + P_M^{\pi}V$$

Regret

- Let's say the agent interacts with a fixed but unknown finite horizon MDP M for T steps
- There are K = T/H episodes each of length H
- Agent chooses policy $\pi^{(k)}$ at the start of episode k (based on available data at that moment)
- Regret in episode k

$$\Delta_k = \sum_{s \in \mathcal{S}} \mu_0(s) (V^{\pi^*,1}(s) - V^{\pi^{(k)},1}(s))$$

Overall regret

$$\operatorname{Regret}(T; \operatorname{agent}, M) = \sum_{k=1}^{K} \Delta_k$$

Posterior Sampling: Per Episode Version

- Also called Thompson Sampling because of [Tho33]
- Tends to perform better than optimism based algorithms
- Start with a prior distribution over MDPs
- In every episode:
 - Use collected statistics to create a posterior distribution over MDPs
 - Sample an MDP from this posterior
 - Compute optimal policy for the sampled MDP
 - For time steps within the episode:
 - Choose actions according to the optimal policy for sampled MDP

Posterior Sampling: Per Time Step Version

- Start with a prior distribution over MDPs
- In every episode:
 - For time steps within the episode:
 - Use collected statistics to create a posterior distribution over MDPs
 - Sample an MDP from this posterior
 - Compute optimal policy for the sampled MDP
 - Choose actions according to the optimal policy for sampled MDP

Per Episode vs Per Time Step

- Per time step version does worse, sometimes much worse, than per episode version
- Difference in performance increases as MDP size increases
- Per episode version is also computationally more efficient
- See [RVRK⁺18], Section 7.5 for details

Bayesian Regret

Note that worst-case (or frequentist) regret bounds are of the form

$$\sup_{M \in \mathcal{M}} \operatorname{Regret}(T; \operatorname{agent}, M)$$

for some class \mathcal{M} of MDPs

• It is easier to analyze Bayesian regret of posterior sampling

$$\mathbb{E}_{M \sim f} \left[\text{Regret}(T; \text{agent}, M) \right]$$

• Here *f* is the prior distribution over MDPs

Posterior Sampling for RL (PSRL)

- **Input:** Prior distribution *f*
- $t \leftarrow 1$
- For episodes $k = 1, 2, \dots$ do
 - sample $\tilde{M}_k \sim f(\cdot | \mathcal{H}_{< k})$
 - ullet compute $ilde{\pi}^{(k)}=\pi_{ ilde{M}_k}^{\star}$
 - For timesteps $h = 1, \dots, H$ do
 - choose action $a_t = \tilde{\pi}_h^{(k)}(s_t)$
 - observe r_t and s_{t+1}
 - $t \leftarrow t+1$

For more details see original paper [ORR13]

A Crucial Observation

- (Bayesian) regret analysis of PS rests on a simple but crucial observation
- Let $\mathcal{H}_{< k}$ be the history of all observations available at the start of episode k

$$\mathbb{E}\left[g(\tilde{M}_k)|\mathcal{H}_{< k}\right] = \mathbb{E}\left[g(M)|\mathcal{H}_{< k}\right]$$

for any $g(\cdot)$ measurable w.r.t. $\mathcal{H}_{\leq k}$

• The sampled MDP \tilde{M}_k (observed) has the same distribution as the true MDP M (unobserved)!

Regret Equivalence

Recall per-episode regret

$$\Delta_k = \sum_{s \in \mathcal{S}} \mu_0(s) (V_M^{\pi^*,1}(s) - V_M^{\pi^{(k)},1}(s))$$

Consider its proxy

$$ilde{\Delta}_k = \sum_{s \in S} \mu_0(s) (V_{\tilde{M}}^{\pi^{(k)},1}(s) - V_{M}^{\pi^{(k)},1}(s))$$

Note that by our crucial observation

$$\mathbb{E}\left[\Delta_{k} - \tilde{\Delta}_{k} \middle| \mathcal{H}_{< k}\right] = \mathbb{E}\left[\sum_{s \in \mathcal{S}} \mu_{0}(s) (V_{M}^{\boldsymbol{\pi}^{\star}, 1}(s) - V_{\tilde{M}}^{\boldsymbol{\pi}^{(k)}, 1}(s)) \middle| \mathcal{H}_{< k}\right]$$

$$= 0$$

Bounding the Proxy Regret

So we will focus on bounding

$$egin{aligned} \mathbb{E}[ilde{\Delta}_k] &= \mathbb{E}[\sum_{s \in \mathcal{S}} \mu_0(s) (V_{ ilde{M}}^{oldsymbol{\pi}^{(k)}, 1}(s) - V_{M}^{oldsymbol{\pi}^{(k)}, 1}(s))] \ &= \mathbb{E}[V_{ ilde{M}}^{oldsymbol{\pi}^{(k)}, 1}(s_{t_k+1}) - V_{M}^{oldsymbol{\pi}^{(k)}, 1}(s_{t_k+1})] \end{aligned}$$

• Recall DP equations for finite horizon case (with $V^{\pi,H+1}=0$ as base case)

$$V_M^{\pi,h} = T_M^{\pi_h} V_M^{\pi,h+1}, \quad h = \{1, 2, \dots, H\}$$

where the operator T_M^{π} for a single stationary π is defined as usual:

$$T_M^{\pi}V = R_M^{\pi} + P_M^{\pi}V$$

Towards the Key Recursion

refer to states within the episodes as s_1, s_2, \ldots instead of $s_{t_k+1}, s_{t_k+2}, \ldots$ denote the non-stationary policy $\pi^{(k)}$ in episode k as $\tilde{\pi}$

$$\begin{split} V_{\tilde{M}}^{\tilde{\pi},1} - V_{M}^{\tilde{\pi},1} &= T_{\tilde{M}}^{\tilde{\pi}_{1}} V_{\tilde{M}}^{\tilde{\pi},2} - T_{M}^{\tilde{\pi}_{1}} V_{M}^{\tilde{\pi},2} \\ &= T_{\tilde{M}}^{\tilde{\pi}_{1}} V_{\tilde{M}}^{\tilde{\pi},2} - T_{M}^{\tilde{\pi}_{1}} V_{\tilde{M}}^{\tilde{\pi},2} + T_{M}^{\tilde{\pi}_{1}} V_{\tilde{M}}^{\tilde{\pi},2} - T_{M}^{\tilde{\pi}_{1}} V_{M}^{\tilde{\pi},2} \\ &= (T_{\tilde{M}}^{\tilde{\pi}_{1}} - T_{M}^{\tilde{\pi}_{1}}) V_{\tilde{M}}^{\tilde{\pi},2} + T_{M}^{\tilde{\pi}_{1}} (V_{\tilde{M}}^{\tilde{\pi},2} - V_{M}^{\tilde{\pi},2}) \\ &= (T_{\tilde{M}}^{\tilde{\pi}_{1}} - T_{M}^{\tilde{\pi}_{1}}) V_{\tilde{M}}^{\tilde{\pi},2} + P_{M}^{\tilde{\pi}_{1}} (V_{\tilde{M}}^{\tilde{\pi},2} - V_{M}^{\tilde{\pi},2}) \end{split}$$

Therefore,

$$\mathbf{e}_{s_1}^\top (V_{\tilde{M}}^{\tilde{\pi},1} - V_{M}^{\tilde{\pi},1}) = \mathbf{e}_{s_1}^\top (T_{\tilde{M}}^{\tilde{\pi}_1} - T_{M}^{\tilde{\pi}_1}) V_{\tilde{M}}^{\tilde{\pi},2} + \mathbf{e}_{s_1}^\top P_{M}^{\tilde{\pi}_1} (V_{\tilde{M}}^{\tilde{\pi},2} - V_{M}^{\tilde{\pi},2})$$

Key Recursion

$$\begin{split} \mathbf{e}_{s_{1}}^{\top}(V_{\tilde{M}}^{\tilde{\pi},1}-V_{M}^{\tilde{\pi},1}) &= \mathbf{e}_{s_{1}}^{\top}(T_{\tilde{M}}^{\tilde{\pi}_{1}}-T_{M}^{\tilde{\pi}_{1}})V_{\tilde{M}}^{\tilde{\pi},2} + \mathbf{e}_{s_{1}}^{\top}P_{M}^{\tilde{\pi}_{1}}(V_{\tilde{M}}^{\tilde{\pi},2}-V_{M}^{\tilde{\pi},2}) \\ &= \mathbf{e}_{s_{1}}^{\top}(T_{\tilde{M}}^{\tilde{\pi}_{1}}-T_{M}^{\tilde{\pi}_{1}})V_{\tilde{M}}^{\tilde{\pi},2} + \mathbf{e}_{s_{2}}^{\top}(V_{\tilde{M}}^{\tilde{\pi},2}-V_{M}^{\tilde{\pi},2}) \\ &+ \underbrace{(\mathbf{e}_{s_{1}}^{\top}P_{M}^{\tilde{\pi}_{1}}-\mathbf{e}_{s_{2}}^{\top})(V_{\tilde{M}}^{\tilde{\pi},2}-V_{M}^{\tilde{\pi},2})}_{\text{mean zero given }M,\tilde{M}} \end{split}$$

We have therefore set up the key recursion

$$\begin{split} \mathbb{E}\left[\mathbf{e}_{s_{1}}^{\top}(V_{\tilde{M}}^{\tilde{\pi},1}-V_{M}^{\tilde{\pi},1})\middle|M,\tilde{M}\right] &= \mathbb{E}\left[\mathbf{e}_{s_{1}}^{\top}(T_{\tilde{M}}^{\tilde{\pi}_{1}}-T_{M}^{\tilde{\pi}_{1}})V_{\tilde{M}}^{\tilde{\pi},2}\middle|M,\tilde{M}\right] \\ &+ \mathbb{E}\left[\mathbf{e}_{s_{2}}^{\top}(V_{\tilde{M}}^{\tilde{\pi},2}-V_{M}^{\tilde{\pi},2})\middle|M,\tilde{M}\right] \end{split}$$

Unrolling the Recursion

Unrolling the key recursion gives

$$\mathbb{E}\left[\tilde{\Delta}_{k}\middle|M,\tilde{M}\right] = \mathbb{E}\left[\mathbf{e}_{s_{1}}^{\top}(V_{\tilde{M}}^{\tilde{\pi},1} - V_{M}^{\tilde{\pi},1})\middle|M,\tilde{M}\right]$$
$$= \mathbb{E}\left[\sum_{h=1}^{H}\mathbf{e}_{s_{h}}^{\top}(T_{\tilde{M}}^{\tilde{\pi}_{h}} - T_{M}^{\tilde{\pi}_{h}})V_{\tilde{M}}^{\tilde{\pi},h+1}\middle|M,\tilde{M}\right]$$

Enter Confidence Sets

Similar to UCRL2 analysis (but now confidence sets are only in the analysis, not in the algorithm!), define \mathcal{M}_k as the set of all MDPs M' such that $\forall s, a$,

$$||P_{M'}(\cdot|s,a) - P_{M}(\cdot|s,a)||_{1} \le \beta_{k}(s,a)$$

 $|R_{M'}(s,a) - R_{M}(s,a)| \le \beta_{k}(s,a)$

where

$$\beta_k(s, a) = O\left(\sqrt{\frac{S\log(SAK)}{1 \vee N_{t_k}(s, a)}}\right)$$

Confidence Set Failure Probability

Can easily show that

$$\mathbb{E}[\mathbf{1}_{(M\notin\mathcal{M}_k)}] \leq 1/K$$

Note that \mathcal{M}_k is $\mathcal{H}_{\leq k}$ -measurable which, using the crucial observation again, gives

$$\mathbb{E}[\mathbf{1}_{\left(\tilde{M}_{k}\notin\mathcal{M}_{k}\right)}]\leq1/K$$

Sum up Regret over Episodes

Now we sum up regrets over all episodes

$$\mathbb{E}\left[\sum_{k=1}^{K} \tilde{\Delta}_{k}\right] = \mathbb{E}\left[\sum_{k=1}^{K} \tilde{\Delta}_{k} \mathbf{1}_{\left(M, \tilde{M}_{k} \in \mathcal{M}_{k}\right)}\right] + \mathbb{E}\left[\sum_{k=1}^{K} \tilde{\Delta}_{k} \mathbf{1}_{\left(M \text{ or } \tilde{M}_{k} \notin \mathcal{M}_{k}\right)}\right]$$

$$\leq \mathbb{E}\left[\sum_{k=1}^{K} \tilde{\Delta}_{k} \mathbf{1}_{\left(M, \tilde{M}_{k} \in \mathcal{M}_{k}\right)}\right] + H \sum_{k=1}^{K} 2\mathbb{E}[\mathbf{1}_{\left(M \notin \mathcal{M}_{k}\right)}]$$

$$= \mathbb{E}\left[\sum_{k=1}^{K} \mathbb{E}\left[\tilde{\Delta}_{k} \middle| M, \tilde{M}\right] \mathbf{1}_{\left(M, \tilde{M}_{k} \in \mathcal{M}_{k}\right)}\right] + 2H$$

Recall that we proved that

$$\mathbb{E}\left[\tilde{\Delta}_{k}\middle|M,\tilde{M}\right] = \mathbb{E}\left[\sum_{h=1}^{H}\mathbf{e}_{s_{t_{k}+h}}^{\top}(T_{\tilde{M}_{k}}^{\tilde{\pi}_{h}^{(k)}} - T_{M}^{\tilde{\pi}_{h}^{(k)}})V_{\tilde{M}_{k}}^{\tilde{\pi}^{(k)},h+1}\middle|M,\tilde{M}_{k}\right]$$

DP Operators Concentrate

On the event $M, \tilde{M}_k \in \mathcal{M}_k$, the two MDPs are close Therefore $\mathcal{T}_{\tilde{M}_k}^{\tilde{\pi}_h^{(k)}}$ and $\mathcal{T}_M^{\tilde{\pi}_h^{(k)}}$ are also close Also, value function cannot exceed H (rewards are bounded)

$$\mathbb{E}\left[\sum_{k}\tilde{\Delta}_{k}\right] \leq \mathbb{E}\left[\sum_{k}\sum_{h=1}^{H}|\mathbf{e}_{\mathbf{s}_{t_{k}+h}}^{\top}(T_{\tilde{M}_{k}}^{\tilde{\pi}_{h}^{(k)}}-T_{M}^{\tilde{\pi}_{h}^{(k)}})V_{\tilde{M}_{k}}^{\tilde{\pi}^{(k)},h+1}|\mathbf{1}_{\left(M,\tilde{M}_{k}\in\mathcal{M}_{k}\right)}\right] \\ + 2H \\ \leq H \underbrace{\sum_{k}\sum_{h=1}^{H}\beta_{k}(s_{t_{k}+h},a_{t_{k}+h})}_{\text{contributes }\tilde{O}(\sqrt{S}\cdot\sqrt{SAT})} + 2H$$

Bayesian Regret Bound for Posterior Sampling

Theorem (from [ORR13])

The Bayesian regret of PSRL in an H horizon problem with bounded rewards is at most $\tilde{O}(HS\sqrt{AT})$.

Regret Analysis of Posterior Sampling: Non-episodic case

- There is a subtlety in the extension of this analysis to the non-episodic case (where we compete against the average reward optimal policy)
- At the start of the episode

$$\mathbb{E}\left[\tilde{\rho}_{k}|\mathcal{H}_{< k}\right] = \mathbb{E}\left[\rho^{\star}|\mathcal{H}_{< k}\right]$$

- However, the length of episode k may not be measurable w.r.t. $\mathcal{H}_{< k}$ (see [OVR16] for explanation of this subtlety)
- Redefining the stopping criterion in posterior sampling allows us to prove Bayesian regret bounds [OGNJ17]
- Frequentist aka worst-case regret analysis more difficult and still not fully resolved in the non-episodic setting

Summary

- Posterior sampling replaces optimism with sampling (from the posterior)
- Bayesian regret analysis relies on the equality of the distributions of the true and the sampled MDPs
- Confidence intervals still needed but only in the analysis
- Worst-case/frequentist analysis is technically more challenging
- Works better than optimism in practice (see [OVR17] for more discussion)

References I

- Ian Osband, Benjamin Van Roy, and Daniel Russo, (More) efficient reinforcement learning via posterior sampling, Proceedings of the 26th International Conference on Neural Information Processing Systems, 2013, pp. 3003–3011.
- lan Osband and Benjamin Van Roy, *Posterior sampling for reinforcement learning without episodes*, 2016.
 - Ian Osband and Benjamin Van Roy, Why is posterior sampling better than optimism for reinforcement learning?, Proceedings of the 34th International Conference on Machine Learning, 2017, pp. 2701–2710.

References II

William R Thompson, On the likelihood that one unknown probability exceeds another in view of the evidence of two samples, Biometrika 25 (1933), no. 3/4, 285–294.