2022 데이터 크리에이터 캠프

Data Creator Camp

대학부실습영상 - 정원기

강의목차

- 대회소개
- 대학부문제소개
- CNN에대한전반적인설명
- CNN을이용한Cat&DogClassification실습

http://creator.kbig.kr/

대회소개

교육기회

- 데이터 크리에이터 캠프는 문제 해결을 위한 학습 영상 제공을
 통해 교육의 기회를 제공합니다.
- 온라인 사전 학습 영상을 통해 문제 해결에 활용할 수 있는
 지식을 습득하고 역량을 강화할 수 있습니다.

성장경험

- 매주 1회 데이터 전문가의 1:1(팀) 멘토링을 통해 성장의 기회를 제공합니다.
- 한 달간의 예선 기간 동안 문제 해결을 위해 다양한 접근을 경험하여
 이론을 실제 활용할 수 있는 기회를 가질 수 있습니다.

대회소개

대회 소개

대회 소개

(최종) (최종) (최종) (최종) (조리) 전쟁 (

장

소

♥ 한국지능정보사회진흥원(NIA) 스마트스퀘어: 서울특별시 중구 청계천로 14

* 정부, 지자체 행사 운영지침에 의거 철저한 방역수칙 준수를 통한 대회 운영하며 상황에 따라 변동 가능

제공데이터셋

https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=617

https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=617

■ 본대회에서는이중일부데이터를서브샘플링하여대회제공

https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=617

■ 라벨데이터예시

*******	BERRION	(10000000) 10(4)	963
±444)		("demail_image" ("regulat 10, "delugat 10, "delugat 10, "delugat 10, "delugat 100, "delugat 10, "delugat	्यात अञ्चलकाम्ब्रम् स्वराध्ये अन्य अन्य
si-ri-≥zakod	2	Industry property (Industry 2011) Security 201 Security 201 May proper 200, May bear 170 to to too too; May bear 170 to too too; May bear 170 to to too too; May bear 170 to too too; May bear 187, May 181, Security 181	ाटान अस्त्रावदात्रसं स्वत्रोत्त
4年3前	The state of the s	("doman, map" ("vog.no" 10. "dos,no" 30) "dos,no" 30) "dos,no" 30) "dos,no" 300 'dos,nopp" (30) "dos,no" 170 'dos,nopp" (30) "dos,no" 170 'dos,nopp" (30) "dos,no" 170 'to,nopp" (30) "dos,no" 170 'to,nopp" (30) "dos,no" 170 'to,nopp" (30) "dos,no" 170 'to,nopp" (31) "dos,no" (31)	उद्दर्शन संस्थात संस्थात १ तम्ब संस्थात संस्थात

https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=617

JSON 파일로 구성

https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=617

데이터소개
 픽토그램(아이콘), 일러스트레이션, 스케치
 (라인드로잉)세종류의데이터로구성

■ 학습데이터및평가데이터개수

학습데이터: 10,000 여장

평가데이터:1,000여장

레이블정보: 20개 dass

■ [이슈]데이터분류상의문제(Real Image 포함)

Pictogram

Real Image

■ [이슈]데이터분류상의문제

■ [이슈]클래스뷸균형(Class imbalance)

- 1. Oversampling or undersampling
- 2. Data Augmentation
- 3. Dropout
- 4. Regularization

https://deepestdocs.readthedocs.io/en/latest/004_deep_learning_part_2/0040/

MLP(Multi-Layer Perceptron)

CNN (AlexNet)

https://i.pinimg.com/474x/5c/50/97/5c50979ab722d68a0b8fec2a98ba1f5c--deep-learning.jpg

Human vision system

simple cells \rightarrow complex cells \rightarrow hyper-complex cells

CNN forward path

https://blog.naver.com/PostView.nhn?isHttpsRedirect=true&blogId=dnjswns2280&logNo=22204522 4532&parentCategoryNo=&categoryNo=10&viewDate=&isShowPopularPosts=false&from=postView

Computer Vision

https://bskyvision.com/entry/ILSVRC-%EB%8C%80%ED%9A%8C-%EC%9D%B4%EB%AF%B8%EC%A7%80%EB%84%B7-%EC%9D%B4%EB%AF%B8%EC%A7%80-%EC%9D%B8%EC%8B%9D-%EB%8C%80%ED%9A%8C-%EC%97%AD%EB%8C%80-%EC%9A%B0%EC%8A%B9-%EC%95%8C%EA%B3%A0%EB%A6%AC%EC%A6%98%EB%93%A4

ILSVRC(ImageNet Large Scale Visual Recognition Challenge)

https://bskyvision.com/entry/ILSVRC-%EB%8C%80%ED%9A%8C-%EC%9D%B4%EB%AF%B8%EC%A7%80%EB%84%B7-%EC%9D%B4%EB%AF%B8%EC%A7%80-%EC%9D%B8%EC%8B%9D-%EB%8C%80%ED%9A%8C-%EC%97%AD%EB%8C%80-%EC%9A%B0%EC%8A%B9-%EC%95%8C%EA%B3%A0%EB%A6%AC%EC%A6%98%EB%93%A4

ILSVRC(ImageNet Large Scale Visual Recognition Challenge)

우승 알고리즘의 분류 에러율(%)

Deep 할수록 무조건 좋을까?

Vanishing Gradient

$$\theta \leftarrow \theta - \varepsilon \frac{\partial J}{\partial \theta}$$

J: cost function(loss function)

e : step size(learning rate)

https://towardsdatascience.com/residual-blocks-building-blocks-of-resnet-fd90ca15d6ec

Skip connection

https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215

공학적 의미의 convolution :
$$(f*g)(t) \stackrel{\text{def}}{=} \int_{-\infty}^{\infty} f(\tau) g(t-\tau) d\tau$$
 $[f*g](i,j) = \sum_{p,q} f(p,q)g(i-p,j-q)$ 1D-continuous 2D-discrete

CNN에서의 convolution : $[f*g](i,j) = \sum_{p,q} f(p,q)g(i+p,j+q)$ (엄밀히 말하면 Cross-correlation)

2D-discrete

- f:input
- g : kernel (or filter)
- output : feature map (or activation map)

- In Engineering : Convolution with kernel flipping
- CNN: Convolution without kernel flipping

1	0	1	0	1	0
0	1	1	0	1	1
1	0	1	0	1	0
1	0	1	1	1	0
0	1	1	0	1	1
1	0	1	0	1	0

1	0	1	0	1	0
0	1	1	0	1	1
1	0	1	0	1	0
1	0	1	1	1	0
0	1	1	0	1	1
1	0	1	0	1	0

1	0	1	0	1	0
0	1	1	0	1	1
1	0	1	0	1	0
1	0	1	1	1	0
0	1	1	0	1	1
1	0	1	0	1	0

1	0	1	0	1	0
0	1	1	0	1	1
1	0	1	0	1	0
1	0	1	1	1	0
0	1	1	0	1	1
1	0	1	0	1	0

1	0	1	0	1	0
0	1	1	0	1	1
1	0	1	0	1	0
1	0	1	1	1	0
0	1	1	0	1	1
1	0	1	0	1	0

1	0	1	0	1	0
0	1	1	0	1	1
1	0	1	0	1	0
1	0	1	1	1	0
0	1	1	0	1	1
1	0	1	0	1	0

$$O = \frac{I - K + 2P}{S} + 1$$

■ Kernel의 역할 → feature detector

10	10	10	10	0	0	0	0
10	10	10	10	0	0	0	0
10	10	10	10	0	0	0	0
10	10	10	10	0	0	0	0
10	10	10	10	0	0	0	0
10	10	10	10	0	0	0	0
10	10	10	10	0	0	0	0
10	10	10	10	0	0	0	0

A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet Classification with Deep Convolutional Neural Networks", NIPS, 2012

AlexNet

96 filters (size : 11 x 11)

학습해서 찾아낸 필터들

input image

6 x 6 x 3

3D

*

kernel

3 x 3 x 3

3D

5		4	1
3	3	4	3
3	2	5	2
5	2	4	2

feature map

4 x 4

2D


```
K(kernel)
 O(output)
                              (input)
[i,j,k]
                            [i,j,k]
                                                      [i,j,k,l]
                                                       i : output channel
i : channel
                              i : channel
j : row(output)
                             j:row (input)
                                                       j : input channel
k : column(output)
                              k : column(input)
                                                       k : row(kernel)
                                                       I : column(kernel)
```


http://uc-r.github.io/feedforward DNN

- 뉴런이 이전 layer의 모든 뉴런과 연결(fully connected)
- 뉴런이 모두 독립적으로 작용
- Overfitting이 일어나기 쉽다
- 각 뉴런의 Weight, bias를 학습한다

- 뉴런이 이전 layer의 일부 뉴런과만 연결(locally connected)
- Parameter가 서로 sharing 된다(같은 필터 사용)
- Computation 측면에서 Fully connected에 비해 훨씬 효율적
- Fully connected에 비해 overfitting도 덜 된다
- Kernel을 학습한다

- Convolutional layer
- ReLU layer
- Pooling layer
- Fully connected layer

Convolutional Layer

■ Parameter : 有, Hyperparameter : 有

Parameter : Kernel이 parameter의 집합이다(weight, bias)

Hyper parameter : kernel 수, kernel size 등

■ CNN의 가장 중요한 layer kernel의 dimension으로 output의 dimension이 정해진다

```
Ex ) [3, 128, 128] * [9, 3, 5, 5] → [9, 124, 124]

[3, 360, 480] * [1, 3, 3, 3] → [1, 358, 478]

input kernel output
```

하나의 filter = 하나의 feature map

Convolutional Layer

- 장점
 - Parameter Sharing
 - ✓ 같은 kernel을 사용하여 feature map이 나온다
 - Flexibility
 - ✓ 어떤 사이즈의 input이 들어오더라도 채널만 맞춰주면 학습이 가능하다
 - Efficiency
 - ✓ MLP에 비해 computation이 훨씬 적기 때문에 효율적이다

Convolutional Layer

Zero Padding

효과:

- 1. Output의 크기가 너무 빨리 줄어드는 것을 방지
- 2. 이미지의 가장자리보다 안쪽 부분에 더 집중하도록 함

ReLU Layer

- Parameter : 無, Hyperparameter : 無
- Non-linearity를 증가시키기 위해 사용
- CNN에서 activation function은 거의 ReLU만 사용
- MLP에서도 hidden layer에서는 sigmoid 등의 다른 activation function을 쓰지 않고, ReLU만 사용 (ex. output layer에서는 sigmoid 사용)

ReLU Layer

■ 장점

- Sigmoid와 달리 vanishing gradient의 문제가 없다
- 계산이 효율적이다
- 수렴속도가 sigmoid보다 6배정도 빠르다

- 중심값이 0이 아니다
- 입력값이 0보다 작을 때 gradient가 0이 된다

Pooling Layer

■ Parameter : 無, Hyperparameter : 有
Hyperparameter : Pooling kernel의 개수, kernel의 사이즈

■ Max pooling, Average pooling ... 등등

현재는 CNN에서는 거의 max pooling만 사용

Pooling Layer

- Row, column이 모두 절반씩으로 줄어든다(Maxpool2D)
 - 75%의 activation이 사라진다
- Depth에는 영향을 주지 않는다
- 데이터의 차원 감소
 - Neural network의 계산효율성 증가
- 강한 feature 만을 다음 layer로 넘긴다
- 최근에는 Max pooling 보다 convolutional layer에서 stride를 늘리는 방식을 채택하기도 한다

https://hobinjeong.medium.com/cnn%EC%97%90%EC%84%9C-pooling%EC%9D%B4%EB%9E%80-c4e01aa83c83

Fully-Connected Layer

- Parameter : 有,Hyperparameter : 有 (MLP 생각)
- Dropout이 사용되기도 한다(overfitting 방지)
- Vector 로 바꾸는 transformation
 - 다른 layer는 Volume → Volume
- 마지막에 softmax function 사용되기도 한다
 - Multi-class classification
- CNN 모델 전체에서 대부분의 parameter는 FC layer에 존재한다
- 최근에는 FC layer의 사용을 최소화하는 추세이다

CNN architecture

Y. LeCun et al., "Gradient-based learning applied to document recognition.", Proceedings of the IEEE, 1998

LeNet

AlexNet

CNN architecture

https://vitalflux.com/what-softmax-function-why-needed-machine-learning/

Softmax

$$f_i(x) = rac{\exp(x_i)}{\sum_j \exp(x_j)}$$

- Softmax output의 합 = 1
- 큰건더크게,작은건더작게
- 확률

Original image

$$\min_{x} \|y - Hx\|^2 + \lambda R(x)$$
Likelihood term Data fidelity term Prior term Regularization term

- L0 regularization
- L1 regularization
- L2 regularization

Overfitting을 방지하기 위해 regularization이 필요

Norm

$$\left\|\mathbf{x}
ight\|_p := igg(\sum_{i=1}^n \left|x_i
ight|^pigg)^{1/p}$$

■ L1-norm

$$d_1(\mathbf{p},\mathbf{q}) = \|\mathbf{p} - \mathbf{q}\|_1 = \sum_i |p_i - q_i|, ext{ where } (\mathbf{p},\mathbf{q}) ext{ are vectors } \mathbf{p} = (p_1,p_2,\ldots,p_n) ext{ and } \mathbf{q} = (q_1,q_2,\ldots,q_n)$$

■ L2-norm

$$\left\|oldsymbol{x}
ight\|_{2}:=\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}$$

L1-Norm : 여러 경로 존재 L2-Norm : 유일한 경로 존재

L1 regularization

$$Cost = \frac{1}{n} \sum_{i=1}^{n} \{L(y_i, \widehat{y}_i) + \frac{\lambda}{2} |w|\}$$

 $L(y_i, \hat{y_i})$: 기존의 Cost function

LASSO Regression

(Least Absolute Shrinkage and Selection Operator)

L2 regularization

$$Cost = \frac{1}{n} \sum_{i=1}^{n} \{ L(y_i, \hat{y_i}) + \frac{\lambda}{2} |w|^2 \}$$

Ridge Regression

- L1 Regularization vs L2 Regularization
 - L1 regularization : Feature selection이 가능
 - → Sparse coding에 적합
 - → Convex optimization에 유용하게 쓰임
 - L1 regularization의 경우 미분 불가능한 점이 있기 때문에 gradient-based learning에는 주의해서 사용해야 한다

이 문서의 외부 유출 및 공유를 금합니다.

본 콘텐츠는 한국지능정보사회진흥원(NIA)의 동의 없이 무단사용할 수 없으며, 상업적 목적으로 이용을 금합니다.

감사합니다

2022 DATA CREATOR CAMP

