# Experiment-5 BJT Amplifier

Name: Arya Marda

Roll No: 2021102021

# Reference circuit:



Given - Ic = 1.5mA

callablating Re, we get Reziko x1000

> calculating ec.

$$(5 \times 10^{-3}) \times \frac{R_c \cdot 1}{R_c + 1} = 5 \Rightarrow Rc = \frac{1000}{11} = \frac{90.90 - 1}{11}$$

Rc = 90.90 R RE = 727.72 R

# 2. Transient response and total harmonic distortion (THD)

Plots of input signal and output signal with output signals Fourier transformation.

1) Vin: 13.3 mV

# a. Vout:50mV



# b. Amplitude of Fourier transformation at 3kHz.



# c. Amplitude of Fourier transformation at 5kHz.



2)Vin: 50mV



a. Amplitude of Fourier transformation at 4kHz.



b. Amplitude of Fourier transformation at 3kHz.



c. Amplitude of Fourier transformation at 3kHz.



3)Vin: 100mV



a. Amplitude of Fourier transformation at 2kHz.



b. Amplitude of Fourier transformation at 3kHz.



c. Amplitude of Fourier transformation at 5kHz.



4) Vin: 200mV



d. Amplitude of Fourier transformation at 2kHz.



1) Amplitude of Fourier transformation at 2kHz.



Amplitude of Fourier transformation at 3kHz.



Vin: 20mV



# Amplitude of Fourier transformation at 5kHz.



### Amplitude of Fourier transformation at 2kHz.



# Amplitude of Fourier transformation at 3kHz.



# Amplitude of Fourier transformation at 4kHz.



# Vm:500mV

Amplitude of Fourier transformation at 2kHz.



Amplitude of Fourier transformation at 3kHz.



# Amplitude of Fourier transformation at 5kHz.



### Vm:1V



Amplitude of Fourier transformation at 2kHz.



Amplitude of Fourier transformation at 3kHz



# Amplitude of Fourier transformation at 5kHz



Table of the values needed to calculate THD and Gain:

| Vm   | Vo   | 1kHz   | 2kHz   | 3kHz   | 4kHz   | 5kHz   | TDH     |
|------|------|--------|--------|--------|--------|--------|---------|
| (mV) | (mV) | (dB)   | (dB)   | (dB)   | (dB)   | (dB)   | (dB)    |
| 2    | 15   | -53.21 | -62.60 | -78.25 | -81.38 | -81.38 | 2.86791 |
| 10   | 50   | -40.69 | -75.12 | -90.77 | -81.16 | -81.39 | 4.04524 |
| 20   | 80   | -28.17 | -59.47 | -78.25 | -81.38 | -81.28 | 5.37063 |
| 50   | 141  | -25    | -37.5  | -53.25 | -68.87 | -71.99 | 4.76108 |
| 100  | 257  | -21.91 | -34.43 | -46.95 | -62.60 | -75.12 | 5.19419 |
| 200  | 422  | -15.65 | -25.04 | -34.3  | -43.80 | -53.12 | 5.1688  |
| 500  | 740  | -15.65 | -18.78 | -25    | -31    | -34.3  | 3.56636 |
| 1000 | 1170 | -12.5  | -12.52 | -18.7  | -25.04 | -25.04 | 3.5661  |

Av (Average over all the 8 values noted above) = 8.89

# 3. Frequency response

For RL =  $1 \text{ K}\Omega$  and Vm = 10 mV,

We will vary the frequency of input signal fin  $= \{10 \text{ Hz}, 50 \text{ Hz},$ 

100 Hz, 500 Hz, 1 kHz, 10 kHz, 100 kHz,1 MHz, 10 MHz, 20 MHz} and report input Vpp, output Vpp and voltage gain.

Note: On giving input voltage as 10mV, my OSC is showing amplitude of Vin as 40-50mV. This can be seen in my OSC pictures.

Plots:

Frequency: 10Hz



Frequency: 50Hz



# Frequency: 100Hz



# Frequency: 500Hz



# Frequency: 1000Hz



# Frequency: 10KHz



### Frequency:100KHz



# Frequency:1MHz



# Frequency:10MHz



# Frequency:20MHz



#### Table:

| Frequency | Vm(mV) | Vout(mV) | Av  | Av(dB) |
|-----------|--------|----------|-----|--------|
| 10Hz      | 40     | 80       | 2   | 6.02   |
| 50Hz      | 40     | 80       | 2   | 6.02   |
| 100 Hz    | 40     | 80       | 2   | 6.02   |
| 500 Hz    | 50     | 100      | 2   | 6.02   |
| 1K Hz     | 50     | 120      | 2.4 | 7.604  |
| 10K Hz    | 50     | 120      | 2.4 | 7.604  |
| 100K Hz   | 50     | 120      | 2.4 | 7.604  |
| 1M Hz     | 50     | 120      | 2.4 | 7.604  |
| 10M Hz    | 50     | 120      | 2.4 | 7.604  |
| 20 Hz     | 50     | 140      | 2.8 | 8.942  |

The frequency  $F_H$  is nearly equal to 1KHz, we cannot predict the value of  $F_L$  because it is too high in this case and that high frequency cannot be obtained from wave generator. As the load now is a resistance there will be higher loss across resistance and hence Vout<<Vs, therefore higher frequency is required to avoid loss across the capacitor and compensate loss across resistance,

(b) Using analysis option in DSO we will plot the frequency response and verify the results (Av, fL and fH) with the previous part.

Plots of Gain and phase vs frequencies at different frequencies for Vin=10mV.

### Plot1 (100Hz):



#### 1KHz:



#### 10KHz:



### 100KHz:



### 1MHz:



(C) Values of  $\boldsymbol{F}_{\!\scriptscriptstyle L}$  and  $\boldsymbol{F}_{\!\scriptscriptstyle H}$  from above plots:

 $F_{\scriptscriptstyle L} \!\! : \,$  Nearly equal to 1200Hz.

 $\rm F_{\rm H}\!:$  Couldn't get any higher frequency than 20MHz, so unable to predict  $\rm F_{\rm H}$ 

D. Using a capacitor load  $CL = 440 \ pF$  in place of RL and repeat the previous experiment.

### Plot:

Frequency: 100Hz



Frequency:500Hz



# Frequency:1KHz



# Frerquency:10KHz



### Frequency: 100KHz



# Frequency:1MHz



### Frequency:10MHz



# Frequency:20MHz



Table:

| Frequency | Vm(mV) | Vout | Av   | Av(dB) |
|-----------|--------|------|------|--------|
| 10        | 16     | 24   | 1.5  | 3.52   |
| 50        | 12     | 16   | 1.33 | 2.477  |
| 100       | 12     | 20   | 1.66 | 4.402  |
| 500       | 16     | 24   | 1.5  | 3.52   |
| 1K        | 20     | 24   | 1.2  | 1.583  |
| 10K       | 20     | 52   | 2.6  | 8.29   |
| 100K      | 24     | 56   | 2.33 | 7.347  |
| 1M        | 20     | 52   | 2.6  | 8.299  |
| 10M       | 16     | 24   | 1.5  | 3.52   |
| 20M       | 16     | 16   | 1    | 0      |

Plots of Gain and phase vs frequencies at different frequencies for Vin=10mV.

# Plot1 (100Hz):



# 1K:



### 10K:



#### 100K:



#### 1MHz



From the plots:

 $F_{\scriptscriptstyle L} \colon 1.15 KHz$ 

 $F_H: 4MHz$ 

Yes we can clearly observe  $F_H$  now, this is because we replaced the resistance with a capacitor, this time there is only capacitor and so no loss across resistors and at low frequencies all loss will be across capacitor and Vout will be nearly equal to Vs.