is space time? a spatio-temporal theory of transitional turbulence

Predrag Cvitanović Matt Gudorf, Nazmi Burak Budanur, Li Han, Rana Jafari, Adrien K. Saremi, and Boris Gutkin

Quantum-Classical Transition in Many-Body Systems: Indistinguishability, Interference and Interactions Max Planck Institute for the Physics of Complex Systems, Dresden

February 13, 2017

overview

- what this talk is about
- (2) "turbulence" in small domains
- "turbulence" in infinite spatial domains
- space is time
- bye bye, dynamics

this talk is about 1

how to solve

strongly nonlinear field theories

¹ references in this presentation are hyperlinked

do clouds solve PDEs?

do clouds integrate Navier-Stokes equations?

do clouds satisfy Navier-Stokes equations?

yes!

they satisfy them locally, everywhere and at all times

part 1

- "turbulence" in small domains
- "turbulence" in infinite spatial domains
- space is time
- bye bye, dynamics

goal: go from equations to turbulence

Navier-Stokes equations

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla)\mathbf{v} = \frac{1}{B} \nabla^2 \mathbf{v} - \nabla \rho + \mathbf{f}, \qquad \nabla \cdot \mathbf{v} = 0,$$

velocity field $\mathbf{v} \in \mathbb{R}^3$; pressure field p ; driving force \mathbf{f}

describe turbulence

starting from the equations (no statistical assumptions)

example: pipe flow²

amazing data! amazing numerics!

²science04.

dynamical description of turbulence

state space

a manifold $\mathcal{M} \in \mathbb{R}^d$: d numbers determine the state of the system

representative point

 $x(t) \in \mathcal{M}$ a state of physical system at instant in time

integrate forward in time

trajectory $x(t) = f^t(x_0)$ = representative point time t later

plane Couette : so far, **Small** computational cells³

velocity field visualization

John F Gibson (U New Hampshire) Jonathan Halcrow (Google)

P. C. (Georgia Tech)

³GHCW07.

can visualize 61,506 dimensional state space of turbulent flow

equilibria of turbulent plane Couette flow, their unstable manifolds, and myriad of turbulent videos mapped out as one happy family

plane Couette state space $10^5 \rightarrow 3D$

equilibria, periodic orbits, their (un)stable manifolds shape the turbulence

unable to compute invariant solutions for large spatial domains⁴

solutions on large domains are too unstable

4WFSBC15.

part 2

- "turbulence" in small domains
- "turbulence" in infinite spatial domains
- space is time
- bye bye, dynamics

next: large space-time domains

example: complex Ginzburg-Landau on a large domain

[horizontal] space x

[up] time evolution

challenge : describe $(x, t) \in (-\infty, \infty) \times (-\infty, \infty)$

continuous symmetries : space, time translations

spacetime discretization

1) chaos and a single kitten

example of a "small domain dynamics": kicked rotor

an electron circling an atom, subject to a discrete time sequence of angle-dependent kicks $F(x_t)$

Taylor, Chirikov and Greene standard map

$$X_{t+1} = X_t + p_{t+1} \mod 1,$$

 $p_{t+1} = p_t + F(x_t)$

→ chaos in Hamiltonian systems

standard map

example of chaos in a Hamiltonian system

the simplest example: a single kitten in time

force F(x) = Kx linear in the displacement x, $K \in \mathbb{Z}$

$$x_{t+1} = x_t + p_{t+1} \mod 1$$

 $p_{t+1} = p_t + Kx_t \mod 1$

Continuous Automorphism of the Torus, or (after same algebra, replacing $K \to s$, etc)

Hamiltonian cat map

a linear, area preserving map of a 2-torus onto itself

$$\begin{pmatrix} x_{t+1} \\ p_{t+1} \end{pmatrix} = A \begin{pmatrix} x_t \\ p_t \end{pmatrix} \mod 1, \qquad A = \begin{pmatrix} s-1 & 1 \\ s-2 & 1 \end{pmatrix}$$

for integer $s={\rm tr}\,A>2$ the map is hyperbolic \to a fully chaotic Hamiltonian dynamical system

cat map in Lagrangian form⁵

replace momentum by velocity

$$p_{t+1} = (x_{t+1} - x_t)/\Delta t$$

dynamics in (x_t, x_{t-1}) state space is particularly simple

2-step difference equation

$$x_{t+1} - s x_t + x_{t-1} = -m_t$$

unique integer m_t ensures that

 x_t lands in the unit interval at every time step t

nonlinearity: mod 1 operation, encoded in

 $m_t \in \mathcal{A}$, $\mathcal{A} = \text{finite alphabet of possible values for } m_t$

⁵PerViv.

example : s = 3 cat map symbolic dynamics

cat map stretches the unit square translations by $m_0 \in \mathcal{A} = \{\underline{1}, 0, 1, 2\} = \{\text{red, green, blue, yellow}\}$ return stray kittens back to the torus

cat map (x_0, x_1) state space partition

- (a) 4 regions labeled by m_0 ., obtained from (x_{-1}, x_0) state space by one iteration
- (b) 14 regions, 2-steps past $m_{-1}m_0$. (c) 44 regions, 3-steps past $m_{-2}m_{-1}m_0$.
- (d) 4 regions labeled by future $.m_1$
- (e) 14 regions, 2-steps future $.m_1 m_2$ (f) 44 regions, 3-steps future block $m_3 m_2 m_1$.

2) chaos and the spatiotemporally infinite cat

N-particle system

spatiotemporal cat map⁶

Consider a 1-dimensional spatial lattice, with field $x_{n,t}$ (the angle of a kicked rotor "particle" at instant t) at site n.

require

- (0) each site couples to its nearest neighbors $x_{n\pm 1,t}$
- (1) invariance under spatial translations
- (2) invariance under spatial reflections
- (3) invariance under the space-time exchange

obtain

2-dimensional coupled cat map lattice

$$X_{n,t+1} + X_{n,t-1} - s X_{n,t} + X_{n+1,t} + X_{n-1,t} = -m_{n,t}$$

herding cats: a Euclidean field theory⁷

convert the spatial-temporal differences to discrete derivatives

discrete d-dimensional Euclidean space-time Laplacian in d = 1 and d = 2 dimensions

$$\Box x_t = x_{t+1} - 2x_t + x_{t-1}$$

$$\Box x_{n,t} = x_{n,t+1} + x_{n,t-1} - 4 x_{n,t} + x_{n+1,t} + x_{n-1,t}$$

 \rightarrow the cat map equations generalized to

d-dimensional spatiotemporal cat

$$(\Box - s + 2d)x_z = m_z$$

where $x_z \in \mathbb{T}^1$, $m_z \in \mathcal{A}$ and $z \in \mathbb{Z}^d$ = lattice site label

⁷GHJSC16.

deep insight, derived from observing kittens

an insight that applies to all coupled-map lattices, and all PDEs with translational symmetries

a d-dimensional spatiotemporal pattern

$$\{x_z\} = \{x_z, z \in \mathbb{Z}^d\}$$

is labelled by a *d*-dimensional spatiotemporal block of symbols $\{m_z\} = \{m_z, z \in \mathbb{Z}^d\}$,

rather than a single temporal symbol sequence

(as is done when describing a small coupled few-"particle" system, or a small computational domain).

"periodic orbits" are now invariant *d*-tori

1 time, 0 space dimensions

a state space point is *periodic* if its orbit returns to it after a finite time T; in time direction such orbit tiles the time axis by infinitely many repeats

1 time, d-1 space dimensions

a state space point is *spatiotemporally periodic* if it belongs to an invariant d-torus \mathcal{R} , i.e., a block $M_{\mathcal{R}}$ that tiles the lattice state M periodically, with period ℓ_j in jth lattice direction

an example of invariant 2-tori : shadowing, symbolic dynamics space

2d symbolic representation of two invariant 2-tori shadowing each other within the shared block $M_{\mathcal{R}}=M_{\mathcal{R}_0}\cup M_{\mathcal{R}_1}$ (blue)

- border \mathcal{R}_1 (thick black), interior \mathcal{R}_0 (thin black)
- symbols outside R differ

shadowing, state space

(left) state space points $(x_{0,t},x_{0,t-1})$ of the two invariant 2-tori (right) zoom into the small rectangular area interior points $\in \mathcal{R}_0$ (large green), (small red) circles border points $\in \mathcal{R}_1$ (large violet), (small magenta) squares within the interior of the shared block,

the shadowing is exponentially good

conclusion

space, time merely parametrize a given invariant solution what matters is

the enumeration of distinct invariant solutions

part 3

- "turbulence" in small domains
- "turbulence" in infinite spatial domains
- space is time
- bye bye, dynamics

yes, lattice schmatiz, but

does it work for PDEs?

chronotope⁸

In literary theory and philosophy of language, the chronotope is how configurations of time and space are represented in language and discourse.

— Wikipedia : Chronotope

Mikhail Mikhailovich Bakhtin (1937)

⁸LePoTo96.

space-time complex Ginzburg-Landau on a large domain

a nearly recurrent chronotope

[horizontal] space $x \in [-L/2, L/2]$

[up] time evolution

must have⁹: 2D symbolic dynamics $\in (-\infty, \infty) \times (-\infty, \infty)$

(1+1) space-time dimensional "Navier-Stokes"

computationally not ready yet to explore the inertial manifold of (1+3)-dimensional turbulence - start instead with (1+1)-dimensional

Kuramoto-Sivashinsky time evolution equation

$$u_t + u \nabla u = -\nabla^2 u - \nabla^4 u, \qquad x \in [-L/2, L/2],$$

describes spatially extended systems such as

- flame fronts in combustion
- reaction-diffusion systems
- ...

a test bed: Kuramoto-Sivashinsky on a large domain

[horizontal] space $x \in [0, L]$

[up] time evolution

- turbulent behavior
- simpler physical, mathematical and computational setting than Navier-Stokes

compact space, infinite time cylinder

so far : Navier-Stokes on compact spatial domains, all times

compact space, infinite time Kuramoto-Sivashinsky

in terms of discrete spatial Fourier modes

N ordinary differential equations (ODEs) in time

$$\dot{\tilde{u}}_k(t) = (q_k^2 - q_k^4) \, \tilde{u}_k(t) - i \frac{q_k}{2} \sum_{k=0}^{N-1} \tilde{u}_{k'}(t) \tilde{u}_{k-k'}(t) \, .$$

evolution of Kuramoto-Sivashinsky on small L=22 cell

horizontal: $x \in [-11, 11]$

vertical: time

color: magnitude of u(x, t)

yes, but

is space time?

compact time, infinite space cylinder

space evolution, periodic time

compact time, infinite space Kuramoto-Sivashinsky¹⁰

$$u_t = -uu_x - u_{xx} - u_{xxxx},$$

 $u^{(0)} \equiv u, \quad u^{(1)} \equiv u_x, \quad u^{(2)} \equiv u_{xx}, \quad u^{(3)} \equiv u_{xxx}$

periodic boundary condition in time u(x, t) = u(x, t + T)

evolve u(t,x) in x, 4 equations, 1st order in spatial derivatives

$$u_x^{(0)} = u^{(1)}, \quad u_x^{(1)} = u^{(2)}, \quad u_x^{(2)} = u^{(3)}$$

 $u_x^{(3)} = -u_t^{(0)} - u^{(2)} - u^{(0)}u^{(1)}$

initial values $u(x_0, t)$, $u_x(x_0, t)$, $u_{xx}(x_0, t)$, $u_{xxx}(x_0, t)$, for all $t \in [0, T)$ at a space point x_0

¹⁰GuBuCv17.

a time-invariant equilibrium, spatial periodic orbit

evolution of EQ_1 : (a) in time, (b) in space initial condition for the spatial integration is the time strip $u(x_0, t)$, t = [0, T), where time period T = 0, spatial x period is L = 22.

chronotope:

a finite (1 + D)-dimensional symbolic dynamics rectangle

make it doubly periodic

compact space and time chronotope

periodic spacetime : 2-torus

a spacetime invariant 2-torus¹¹

(a) old : time evolution.(b) new : space evolution

x = [0, L] initial condition : time periodic line t = [0, T]

_____ Gudorf 2016

¹¹ GuBuCv17.

zeta function for a field theory? much like Ising model^{12,13}

"periodic orbits" are now spacetime tilings

$$Z(s) pprox \sum_{
ho} rac{e^{-A_{
ho}s}}{|\det{(1-J_{
ho})}|}$$

count all tori / spacetime tilings : each of area $\emph{A}_{\emph{p}} = \emph{L}_{\emph{p}}\emph{T}_{\emph{p}}$

symbolic dynamics : (1 + D)-dimensional essential to encoded shadowing

at this time: this zeta is still but a dream

¹² KacWar52

¹³ Ihara66.

conclusion

space, time coordinates merely parametrize a given invariant solution

what matters is

the enumeration of distinct invariant solutions

problem

unable to integrate the equations for times beyond Lyapunov time

unable to integrate the equations for large spatial domains spatial integration is ill-posed, wildly unstable¹⁴

14WGBGQ13.

part 4

- "turbulence" in small domains
- "turbulence" in infinite spatial domains
- space is time
- bye bye, dynamics

computing spacetime solutions

ARRIVAL

kiss your DNS codes

goodbye

for long time and/or space integrations

they never worked and could never work

life outside of time

the trouble:

forward time-integration codes too unstable

multishooting inspiration: replace a guess that a point is on the periodic orbit by a guess of the entire orbit.

an example is "Newton descent": a variational method to drive the initial guess toward the exact solution.

 \rightarrow

a variational method for finding spatio-temporally periodic solutions of classical field theories¹⁵

15 LCC06.

1*d* example : variational principle for any periodic orbit^{16,17}

N guess points $\rightarrow \infty$ points along a smooth loop (snapshots of the pattern at successive time instants)

¹⁶ lan Var 1.

¹⁷CvitLanCrete02.

a guess loop vs. the desired solution

loop defines tangent vector $\tilde{\mathbf{v}}$

periodic orbit defined by velocity field v(x)

extremal principle for a general flow

loop tangent $\tilde{v}(\tilde{x}) \neq v(\tilde{x})$

periodic orbit $\tilde{v}(\tilde{x})$, $v(\tilde{x})$ aligned

cost function

$$F^2[\tilde{x}] = \oint_I ds (\tilde{v} - v)^2; \quad \tilde{v} = \tilde{v}(\tilde{x}(s, \tau)), \quad v = v(\tilde{x}(s, \tau)),$$

penalizes misorientation of the loop tangent $\tilde{v}(\tilde{x})$ relative to the true dynamical flow $v(\tilde{x})$

Newton descent

cost minimization

drives

initial guess L(0)

cycle $p = L(\infty)$

as fictitious time $\tau \to \infty$

the answer is

scalability

in the spirit of this workshop

compute locally, adjust globally

Computing literature: parallelizing spatiotemporal computation is FLOPs intensive, but more robust than integration forward in time¹⁸

how do clouds solve field equations?

do clouds integrate Navier-Stokes equations?

at any spacetime point Navier-Stokes equations describe the local tangent space

they satisfy them locally, everywhere and at all times

summary

- small computational domains reduce "turbulence" to "single particle" chaos
- consider instead turbulence in infinite spatiatemporal domains
- theory : classify all spatiotemporal tilings
- numerics : parallelize spatiotemporal computations

there is no more time
there is only enumeration of spacetime solutions

bonus slide: each chronotope is a fixed point

discretize $u_{n,m} = u(x_n, t_m)$ over NM points of spatiotemporal periodic lattice $x_n = nT/N$, $t_m = mT/M$, Fourier transform :

$$\tilde{u}_{k,\ell} = \frac{1}{NM} \sum_{n=0}^{N-1} \sum_{m=0}^{M-1} u_{n,m} e^{-i(q_k x_n + \omega_\ell t_m)}, \quad q_k = \frac{2\pi k}{L}, \ \omega_\ell = \frac{2\pi \ell}{T}$$

Kuramoto-Sivashinsky is no more a PDE / ODE, but a fixed point problem of determining all invariant unstable 2-tori

$$\left[-i\omega_{\ell}-(q_{k}^{2}-q_{k}^{4})\right]\tilde{u}_{k,\ell}+i\frac{q_{k}}{2}\sum_{k'=0}^{N-1}\sum_{m'=0}^{M-1}\tilde{u}_{k',m'}\tilde{u}_{k-k',m-m'}=0$$

Newton method for a *NM*-dimensional fixed point : invert 1 - J, where J is the 2-torus Jacobian matrix, yet to be elucidated

bonus slide: dynamical zeta function for a field theory

trace formula for a field theory

∞ of spacetime tilings

$$Z(s) pprox \sum_{
ho} rac{e^{-A_{
ho}s}}{|\det{(1-J_{
ho})}|}$$

tori / plane tilings each of area $A_p = L_p T_p$

what is next for the students of Landau's Theoretical Minimum? take the course!

student raves:

...10⁶ times harder than any other online course...

References I