

Problem Description: Supplying Sushi to New York

Sushi:

- Increasingly popular choice of food
- strong demand in New York

Customer challenge:

Ensuring constant supply of fresh sushi to New York restaurants.

Business problem:

Explore the potential business opportunity of supplying all sushi restaurants in New York with fresh fish on a daily basis.

Scope of this project:

Estimating the logistics requirements and costs within New York.

Methodology

A basic costing model will be developed, given a set of target restaurants

- Target sushi restaurants will be all of those within a 50km radius of Battery Park in New York, with an initial cap on 50 restaurants.
- A basic "nearest neighbour" algorithm will be used for estimating travel distances. This algorithm works by always visiting the nearest location, and progressively working through the list of unvisited location.

Assumptions:

- Average travel speed of 20km/h
- 30 min delivery time
- Vehicles fixed cost of \$50,000
- Driver cost of \$40,000 / annum
- Vehicle variable costs (fuel, tires, maintenance, etc.) of \$0.3 / km
- 8 hour working day

List of Locations to Visit: 50 within 5km of Battery Park

High concentration along Manhattan

2 outliers away from Manhattan may be more expensive to service

List of Locations to Visit: 50 within 5km of Battery Park

High concentration along Manhattan

2 outliers away from Manhattan may be more expensive to service

Requirements to service all restaurants every day by 1 vehicle

- Theoretically, 30 hours would be needed for 1 vehicle
 - 27 hours delivery time at restaurants
 - o 3 hours travel time
- If delivery time could be reduced to 15 min, 1 vehicle could visit all stores in 17 hours.
- Assuming store operating hours are not a problem, this could be accomplished by 2 driver shifts every day on 1 vehicle

Assuming an 8 hour day, 4 vehicles would be required

- The fourth vehicle would be only used for 3.4 hours.
- Therefore, if store visits could be slightly quicker, or working hours slightly longer, this could be reduced to 3 vehicles

Total cost requirements

- Up-front fixed costs:
 - Vehicles: \$50,000 x 4 = \$200,000 (\$150,000 if 3 vehicles possible)
 - Assume simple capitalization over 5 years, giving \$40,000 per annum
- Annual fixed costs
 - \circ Drivers: \$40,000 x 5 = \$200,000 (1 extra driver for leave, risk mitigation, etc.)
- Annual variable costs:
 - \$0.3 / km x 66km x 365 days = \$7,200
- Total cost / annum
 - o \$247,200
 - 80% of the cost driven by driver salaries

Conclusions and Next Steps

Conclusion

- Annual cost of \$247,200, which is predominantly as a result of driver salaries
- This would need to be compared to revenue and other business factors before making a final decision on whether to go ahead

Areas of Improvement

 More optimal routing solutions would reduce distance and travel time. However, time at delivery point is contributing to the bulk of the cost, so would not invest a large amount of time

Next Steps

- Investigate use of returnable storage boxes that can be dropped off in short time, with the old one picked up
- Perhaps in the future:
 - Drones
 - Driverless cars
- Customer analysis, e.g.
 - Volume analysis can then only service large enough customers