图形点阵液晶显示模块使用手册

19264-6

台湾(重庆市)汇福电子有限公司

网 站: http://www.huifu.sm160.net

http://www.twhf.sm160.net

邮件: cqs. hf@163. com

cqshf@126.com

电话: 023-6380 0611 6353 7239

传 真: 023-6353 7239

手 机: 139 8307 7064 / 131 0898 5453

联系人: 王强 (先生) / 李培英 (小姐)

地址: 重庆市渝中区中山三路 86 号重百电子城二楼 18-2 号

地址: 重庆市渝中区新华路 220 号 B2 楼实田电子城 18 区 19-20 号

台湾(重庆市)汇福电子有限公司

网站: http://www.huifu.sm160.net

http://www.twhf.sm160.net

邮 件: cqs.hf@163.com

cqshf@126.com

电 话: 023-6380 0611 6353 7239

传 真: 023-6353 7239

手 机: 139 8307 7064 / 131 0898 5453

联系人: 王强 (先生) / 李培英 (小姐)

地址: 重庆市渝中区中山三路 86 号重百电子城二楼 18-2 号

地址: 重庆市渝中区新华路 220 号 B2 楼实田电子城 18 区 19-20 号

司 录

()	概述 ••••••	(1)
()	外形尺寸图	(1)
(三)	模块主要硬件构成说明	(2)
(四)	模块的外部接口 ••••••	(3)
(五)	指令说明	(3)
(六)	读写操作时序	(5)
(七)	应用举例	(7)

一. 概述

19264-6 是一种图形点阵液晶显示器,它主要由行驱动器/列驱动器及格 192 × 64 全点阵液晶显示器组成。可完成图形显示,也可以显示 12×4 个(16×16 点阵)汉字。

主要技术参数和性能:

- 1. 电源: VDD: +5V: 或+3V
- 2. 显示内容: 192(列)×64(行)点
- 3. 全屏幕点阵
- 4. 七种指令
- 5. 与 CPU 接口采用 8 位数据总线并行输入输出和 8 条控制线
- 6. 占空比 1/64
- 7. 工作温度: -10℃∽+55℃, 存储温度: -20℃∽+70℃

二. 外形尺寸图

1. 外形尺寸图

2. 外形尺寸

表 1

ITEM	NOMINAL DIMEN	UNIT
模块体积	100×60×12	mm
视域	84×31	mm
行列点阵数	192×64	dots
点距离	0. 41×0. 41	mm
点大小	0. 36×0. 36	mm

三. 模块主要硬件构成说明

(结构框图)

IC4 为行驱动器。IC1, IC2, IC3 为列驱动器。IC1, IC2, IC3, IC4 含有以下主要功能器件。了解如下器件有利于对 LCD 模块之编程。

1. 指令寄存器(IR)

IR 是用于寄存指令码,与数据寄存器数据相对应。当 D/I=0 时,在 E 信号下降沿的作用下,指令码写入 IR。

2. 数据寄存器(DR)

DR 是用于寄存数据的,与指令寄存器寄存指令相对应。当 D/I=1 时,在下降沿作用下,图形显示数据写入 DR,或在 E 信号高电平作用下由 DR 读到 DB7∽DB0数据总线。DR 和 DDRAM 之间的数据传输是模块内部自动执行的。

3. 忙标志: BF

BF 标志提供内部工作情况。BF=1 表示模块在内部操作,此时模块不接受外部指令和数据。BF=0 时,模块为准备状态,随时可接受外部指令和数据。

利用 STATUS READ 指令,可以将 BF 读到 DB7 总线,从检验模块之工作状态。

4. 显示控制触发器 DFF

此触发器是用于模块屏幕显示开和关的控制。DFF=1 为开显示(DISPLAY OFF), DDRAM 的内容就显示在屏幕上, DFF=0 为关显示(DISPLAY OFF)。

DDF 的状态是指令 DISPLAY ON/OFF 和 RST 信号控制的。

5. XY 地址计数器

XY 地址计数器是一个 9 位计数器。高 3 位是 X 地址计数器,低 6 位为 Y 地址计数器,XY 地址计数器实际上是作为 DDRAM 的地址指针,X 地址计数器为 DDRAM 的页指针,Y 地址计数器为 DDRAM 的 Y 地址指针。

X 地址计数器是没有记数功能的,只能用指令设置。

Y 地址计数器具有循环记数功能,各显示数据写入后,Y 地址自动加 1,Y 地址指针从 0 到 63。

6. 显示数据 RAM (DDRAM)

DDRAM 是存储图形显示数据的。数据为 1 表示显示选择,数据为 0 表示显示非选择。DDRAM 与地址和显示位置的关系见 DDRAM 地址表(见第 6 页)。

7. Z 地址计数器

Z 地址计数器是一个 6 位计数器,此计数器具备循环记数功能,它是用于显示行扫描同步。当一行扫描完成,此地址计数器自动加 1,指向下一行扫描数据,RST 复位后 Z 地址计数器为 0。

Z 地址计数器可以用指令 DISPLAY START LINE 预置。因此,显示屏幕的起始 行就由此指令控制,即 DDRAM 的数据从哪一行开始显示在屏幕的第一行。此模块的 DDRAM 共 64 行,屏幕可以循环滚动显示 64 行。

四. 模块的外部接口

外部接口信号如下表 2 所示:

表 2

管脚号	管脚名称	LEVER		管脚巧	力能描述					
1	DB7	H/L	数据线							
2	DB6	H/L	数据线							
3	DB5	H/L	数据线							
4	DB4	H/L	数据线							
5	DB3	H/L	数据线							
6	DB2	H/L	数据线							
7	DB1	H/L	数据线							
8	DB0	H/L	数据线							
9	Е	H/L	R/W= "L",	E 信号下降	沿锁存 DB7~	⊃DB0				
	E	11, 12	R/W= "H",	E= "H" DDI	RAM 数据读到	JDB7∽DB0				
10	R/W	H/L			据被读到 DB7					
	22,				数据被写到					
11	D/I	H/L			DBO 为显示数					
			-		DBO 为显示指	旨令数据				
12	VO	-6V	LCD 驱动							
13	VDD	5. OV	电源电压							
14	VSS	0	电源地							
15	CSB	CSA	0	1	0	1				
16	CSA	CSB	0	0	1	1				
		选择 IC	IC1(左)	IC2(中)	IC3(右)					
17	VEE	-10V	液晶显示	液晶显示器驱动电压						
18	RESET	L	复位控制信号,RST=0 有效							
19	BLA	+5. 0V	背光电源							
20	BLK	OV	背光地							

五. 指令说明

指令表

表 3

指			指	j	\$	>	郁	4			功能
\$	R/W	D/I	D7	D6	D5	D4	D3	D2	D1	D0	
显示	0	0	0	0	1	1	1	1	1	1/0	控制显示器的开关,
ON/OFF											不影响 DDRAM 中数据
											和内部状态
显示起	0	0	1	1			显示	起始往	亍		指定显示屏从 DDRAM
始行							(0 ••	•• 63)		中哪一行开始显示数
											据
设置X地	0	0	1	0	1	1	1	Х:	0 ••	• 7	设置 DDRAM 中的页
址											地址(X 地址)
设置Y地	0	0	0	1		Y地	址 ((0 •••	63)		设置地址(Y 地址)
址											
读	1	0	В	0			0	0	0	0	读取状态
状			U			R					RST 1: 复位 0: 正常
态			S		ON/	S					ON/OFF 1:显示开 0:显示
			Y		OFF	T					关
											BUSY 0:READY 1:IN
											OPERATION
写显示	0	1		_	显示数据					将数据线上的数据	
数据											DB7∽DB0 写入 DDRAM
读显示	1	1				显示	数据			•	将数据线上的数据
数据											DB7∽DB0 写入 DDRAM

1. 显示开关控制(DISPLAY ON/OFF)

 代码
 R/W
 D/I
 DB7
 DB6
 DB5
 DB4
 DB3
 DB2
 DB1
 DB0

 形式
 0
 0
 0
 0
 1
 1
 1
 1
 1
 D

D=1:开显示(DISPLAY ON)意即显示器可以进行各种显示操作 D=0:关显示(DISPLAY OFF)意即不能对显示器可以进行各种显示操作

2. 设置显示起始行

代码 R/W D/IDB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 形式 0 A5 A4 А3 A2 A 1 A0

前面在 Z 地址计数器一节已经描述了显示起始行是由 Z 地址计数器控制的。 $A5 \sim A0$ 的 6 位地址自动送入 Z 地址计数器,起始行的地址可以是 $0 \sim 63$ 的任意一行。

例如:

选择 A5∽A0 是 62,则起始行与 DDRAM 行的对应关系如下:

DDRAM 行: 62 63 0 1 2 3 · · · · · · · · · · · · · · · 28 29

屏幕显示行: 1 2 3 4 5 6......31 32

3. 设置页地址

代码	R/W	D/I	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
形式	0	0	1	0	1	1	1	A2	A1	AO	

4. 设置Y地址(SET Y ADDRESS)

代码	R/W	D/I	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
形式	0	0	0	1	A5	A4	А3	A2	A1	AO

此指令的作用是将 $A5 \sim A0$ 送入 Y 地址计数器, 作为 DDRAM 的 Y 地址指针。在对 DDRAM 进行读写操作后,Y 地址指针自动加 1,指向下一个 DDRAM 单元。

DDRAM 地址表:

表 4

		CS1	=1			CS2=1					CS3=1					
Υ=	0	1	••	62	63	0	1	••	62	63	0	1	••	62	63	行号
	DB0	DB0	DB0	DBO	DBO	DBO	DBO	DBO	DBO	DBO	DB0	DB0	DB0	DB0	DB0	0
	↓	↓	↓	↓	\downarrow	↓	↓	↓	↓	↓	↓	↓	↓	↓	↓	↓
X=0	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	7
	DB0	DB0	DB0	DB0	DB0	DB0	DB0	DB0	DB0	DB0	DB0	DB0	DB0	DB0	DB0	8
↓ ↓	↓	↓	↓	↓	\downarrow	↓	↓	↓	↓	↓	↓	↓	↓	↓	↓	↓
	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	55
X=7	DB0	DBO	DBO	DBO	DBO	DBO	DBO	DBO	DBO	DBO	DB0	DB0	DB0	DB0	DB0	56
	↓	↓	↓	↓	↓	↓	↓	↓	↓	↓	↓	. ↓	↓	↓	↓	↓
	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	DB7	63

5. 读状态(STATUS READ)

代码	R/W	D/I	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
形式	0	1	BUSY	0	ON/	RET	0	0	0	0	
					OFF						

当 R/W=1 D/I=0 时,在 E 信号为"H"的作用下,状态分别输出到数据总线(DB7∽DB0)的相应位。

BF: 前面已叙述过(见 BF 标志位一节)。

ON/OFF:表示 DFF 触发器的状态(见 DFF 触发器一节)。

RST: RST=1表示内部正在初始化,此时组件不接受任何指令和数据。

6. 写显示数据(WRITE DISPLAY DATE)

代码	R/W	D/I	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
形式	0	1	D7	D6	D5	D4	D3	D2	D1	DO

 $D7 \sim D0$ 为显示数据, 此指令把 $D7 \sim D0$ 写入相应的 DDRAM 单元, Y 地指针自动加 1。

7. 读显示数据 (READ DISPLAY DATE)

代码	R/W	D/I	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
形式	1	1	D7	D6	D5	D4	D3	D2	D1	DO

此指令把 DDRAM 的内容 D7 \backsim D0 读到数据总线 DB7 \backsim DB0,Y 地址指针自动加 1。

六. 读写操作时序

1. 写操作时序

图 3

2. 读操作时序

冬

3. 读写时序参数表

表 5

名 称	符号	最小值	典型值	最大值	单位
E周期时间	Tcyc	1000			ns
E高电平宽度	Pweh	450			ns
E低电平宽度	Pwe1	450			ns
E上升时间	Tr			25	ns
E下降时间	Tf			25	ns
地址建立时间	Tas	140			ns
地址保持时间	Tah	10			ns
数据建立时间	Tdsw	200			ns
数据延迟时间	Tddr			320	ns
写数据保持时间	Tdhw	10			ns
读数据保持时间	Tdhw	20			ns

七. 应用举例

19264-6 与单片机 8031 的一种接口如图 5. 所示:

