

SOLUTION OF EXERCISESHEET 6

Exercise 6-1

(a)

Figure 1: Decryption for CBC* mode

(b) As shown in the above figure, let us assume

$$d_i = \mathsf{Dec} (c_i)$$

So

$$m_1 = d_1 \oplus IV$$

$$m_2 = d_2 \oplus d_1 \dots$$

To show that this CBC* doesn't have indistinguishable encryptions, let us consider message in the format $m=m_1||m_2||m_3||...||m_n$. Also we know for CPA, adversary A is allowed of multiple encryptions.

Let us consider A choose two messages i.e., m1 and m2

$$m1 = m1_1 || m1_2 || m1_3 || ... || m1_n$$

 $m1 = m2_1 || m2_2 || m2_3 || ... || m2_n$

Introduction to Modern Cryptography

Theresa, Celine, Prisca, Saibaba November 27, 2022

SOLUTION OF EXERCISESHEET 6

And m1 is choosen in such a way that $m1_1 == m1_2 == m1_3 == \dots == m1_n$ and m2 is choosen in such a way that $m2_1 \neq m2_2 \neq m2_3 \neq \dots \neq m2_n$

With these kind of messages choosen, A can distingush m1 and m2 by checking

$$c_1 == c_3 == \dots == c_i$$

 $c_2 == c_4 == \dots == c_{i+1}$
where i is an odd number $\leq n$

If the above check is statisfied then the cipher c corresponds to m1. Else it corresponds to m2. With this construction A can distingush between the messages with a probability equal to 1.

Exercise 6-2

Task: Show that Π_{CBC} is not CCA-secure by demonstrating a successful adversary. Assume n=3

The adversary \mathcal{A} can choose the two messages $m_0=m_0^1||m_0^2=000\ 000$ and $m_1=m_1^1||m_1^2=111\ 111$ which he sends to the challenger. Then he gets the ciphertext $c_b=(c_b^0||c_b^1||c_b^2)=(IV||f_k(IV\oplus m_b^1)||f_k(f_k(IV\oplus m_b^1)\oplus m_b^2))$ back.

Then $\mathcal A$ flipps the last bit from c_b^2 , so $(c_b^2)'=c_b^2\oplus 001$ and asks the decryption oracle for the decryption of $c_b'=c_b^0||c_b^1||(c_b^2)'$. Because $c_b'\neq c_b$ the decryption oracle answers with $m'=f_k^{-1}(c_b^1)\oplus c_b^0||f_k^{-1}(c_b^2)\oplus c_b^1=f_k^{-1}(f_k(IV\oplus m_b^1))\oplus IV||f_k^{-1}((c_b^2)')\oplus f_k(IV\oplus m_b^1)=m_b^1||f_k^{-1}((c_b^2)')\oplus f_k(IV\oplus m_b^1)$ is now either m_0^1 or m_1^1 because the change in $(c_b^2)'$ doesn't impact m_b^1 . So the adversary can say for sure, if the recieved civertext c_b is the encoding for m_0 or m_1 .

 $\Rightarrow \Pi_{CBC}$ mode is not CCA-secure

Exercise 6-3