Introduction to Deep Learning

Neural Network

Simple Neural Network Model

Logistic regression model:

$$\hat{y} = \sigma(w_0 + w_1 * x_1 + w_2 * x_2)$$

- Two steps:
 - (1) Linear sum:

$$z = 1 * w_0 + x_1 * w_1 + x_2 * w_2$$

(2) Apply sigmoid function:

$$\hat{y} = \sigma(z)$$

Simple Neural Network Model

Flow chat of logistic regression model

Simple Neural Network Model

Flow chat of logistic regression model

- W₀ is called bias coefficient, or free coefficient
- Sigmoid function is called activation function

- Input layer and output layer are required
- Hidden layers are optional
- Total layers = # layers 1
- Each circle is called one node

Each node in hidden layer and output layer:

- Is connected with all nodes with previous layer with the coefficents w
- Has a bias coefficient w0
- Follows two steps of linear sum and appliance of activation function (sigmoid)

The neural network has: 3 layers, 2 nodes in input layer, 3 nodes in hidden layer 1, 3 nodes in hidden layer 2, 1 node in output layer

Note: node 1 is not considered as a node since it is used to calculate bias of the node in the next layer

Node i in layer I with bias b_i(I) has 2 steps:

(1) Linear sum:
$$z_i^{(l)} = \sum_{j=1}^{l^{(l-1)}} a_j^{(l-1)} * w_{ji}^{(l)} + b_i^{(l)}$$

(2) Apply activation function:
$$a_i^{(l)} = oldsymbol{\sigma}(z_i^{(l)})$$

At node 2 of layer 1, we have:

$$z_2^{(1)} = x_1 * w_{12}^{(1)} + x_2 * w_{22}^{(1)} + b_2^{(1)}$$

$$a_2^{(1)} = \sigma(z_2^{(1)})$$

At node 3 of layer 2, we have:

$$z_3^{(2)} = a_1^{(1)} * w_{13}^{(2)} + a_2^{(1)} * w_{23}^{(2)} + a_3^{(1)} * w_{33}^{(2)}$$
$$a_3^{(2)} = \boldsymbol{\sigma}(z_3^{(2)})$$

Feedforward

• Let call input layer $x = a^{(0)}$, with size 2*1, we have:

$$\begin{split} z^{(1)} &= \begin{bmatrix} z_1^{(1)} \\ z_2^{(1)} \\ z_3^{(1)} \end{bmatrix} = \begin{bmatrix} a_1^{(0)} * w_{11}^{(1)} + a_2^{(0)} * w_{21}^{(1)} + a_3^{(0)} * w_{31}^{(1)} + b_1^{(1)} \\ a_1^{(0)} * w_{12}^{(1)} + a_2^{(0)} * w_{22}^{(1)} + a_3^{(0)} * w_{32}^{(1)} + b_2^{(1)} \\ a_1^{(0)} * w_{13}^{(1)} + a_2^{(0)} * w_{23}^{(1)} + a_3^{(0)} * w_{33}^{(1)} + b_3^{(1)} \end{bmatrix} \\ &= (W^{(1)})^T * a^{(0)} + b^{(1)} \\ a^{(1)} &= \sigma(z^{(1)}) \end{split}$$

Feedforward

• Similarly, we have:

$$z^{(2)} = (W^{(2)})^T * a^{(1)} + b^{(2)}$$

$$a^{(2)} = \sigma(z^{(2)})$$

$$z^{(3)} = (W^{(3)})^T * a^{(2)} + b^{(3)}$$

$$\hat{y} = a^{(3)} = \sigma(z^{(3)})$$

Feedforward

feedforward neural network

Loss function

- Gradient descent algorithm
- Step of derivative calculation of coefficients of loss function is done with the backpropagation algorithm
- → Will be taught in the next lecture

Problem: AND

x_1	x_2	y
0	0	0
0	1	0
1	0	0
1	1	1

x₁ AND x₂

Flow chart for the problem x_1 AND x_2

Flow chart for the problem NOT $(x_1 \text{ AND } x_2)$

Separation line y = 1.5 - 1 * x_1 - 1 * w_2

Problem: OR

Α	В	A OR B
0	0	0
0	1	1
1	0	1
1	1	1

$$x_1 OR x_2$$

Flow chart for the problem x_1 OR x_2

Separation line for OR problem

Problem: XOR

Α	В	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

Cannot draw a separation line for XOR problem

→ Cannot solve the XOR problem using logistic regression

→ Neural network ???

Rewrite XOR problem:

A	В	A XOR B	A AND B	NOT (A AND B)	A OR B	(NOT(A AND B) AND (A OR B))
0	0	0	0	1	0	0
0	1	1	0	1	1	1
1	0	1	0	1	1	1
1	1	0	1	0	1	0

Solve XOR problem with several logistic regression models

