Série 4 : Propagation d'une onde lumineuse

Exercice 1:

Données: La vitesse de propagation d'une onde lumineuse dans l'air est approximativement égale à sa vitesse de propagation dans le vide $c = 3.00 \cdot 10^8 \text{ m} \cdot \text{s}^{-1}$.

1 1 8		
Couleur de la radiation	rouge(R)	violet (V)
La longueur d'onde dans l'air en (μm)	0,768	0,434
L'indice de réfraction du verre	1,51	1,52

1.Dispersion de la lumière

Un faisceau parallèle de lumière blanche arrive au point *I* de la surface d'un demi-disque en verre; on observe sur l'écran (fig1) les sept couleurs du spectre allant du rouge (R) au viole (V).

- 1.1- Exprimer la longueur d'onde λ_R de la radiation rouge dans le verre en fonction de l'indice de réfraction n_R du verre et de λ_{0R} (longueur d'onde dans l'air de ce rayonnement).
- 1.2 L'indice de réfraction n d'un milieu transparent pour une radiation monochromatique de longueur d'onde λ_0 dans l'air est modélisé par la relation : $n = A + \frac{B}{\lambda_n^2}$ dont A et B sont des constantes qui dépendent du milieu.

Calculer la valeur de A et celle de B pour le verre utilisé.

2. Diffraction de la lumière

On réalise l'expérience de la diffraction d'une lumière monochromatique de longueur D'onde λ dans l'air émise par un dispositif laser, en utilisant une fente de largeur a comme l'indique la figure 2. On mesure la largeur **d** de la tache centrale pour differentes valeurs de la largeur **a** de la fente et on represente graphiquement

- 2.1- Trouver l'expression de **d** en fonction de λ , a et D.
- 2.2-déterminer la valeur de λ .
- 2.3- en remplace la source laser par la lumière blanche, décrire ce qu'on observe sur l'écran en justifiant.

Exercice 2:

On réalise une expérience de diffraction en utilisant une lumière monochromatique de longueur d'onde λ_0 dans l'air. On place à quelques centimètres de la source lumineuse une plaque opaque dans laquelle se trouve une fente horizontale de largeur a =0,6 mm. On observe sur un écran vertical placé à une distance *D* de la fente des taches lumineuses. La largeur de la tache centrale est L.

- 1. Choisir la bonne réponse : La figure de diffraction observée sur l'écran est :
 - a. suivant l'axe x'x
- b. suivant l'axe y'y

- 2. Trouver l'expression de λ_0 en fonction de L, D, et α .
- 3. Déterminer, à partir de la courbe de la figure, la longueur d'onde λ_0 .
- 4. Un rayon de lumière blanche arrive orthogonalement sur une face du prisme en verre. Tous les rayons lumineux arrivent sur la deuxième face du prisme avec le même angle d'incidence 30° . On donne : $n_r = 1$, 62 et

- 4.1. Déterminer l'angle de réfraction i'_R du rayon rouge sur la deuxième face du prisme. (0,75 pt)
- 4.2. On place à la distance x = I'B = 10 cm un écran perpendiculaire au rayon bleu émergé du prisme. Déterminer l'angle de réfraction i'_B du rayon bleu sur la deuxième face du prisme, sachant que la distance entre les deux taches bleue et rouge sur l'écran est y = 0,26 cm. (1,25 pt)
- 4.3. En déduire l'indice de réfraction n_B du prisme pour le rayon bleu. (0,5 pt)
- 4.4. Déterminer la longueur d'onde λ_B du rayon bleu dans le prisme. (0,75 pt)

