Министерство образования Республики Беларусь

Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

Кафедра электронных вычислительных машин

Лабораторная работа №1 «Принятие решений в неструктурированных задачах на основе методов экспертного анализа» Вариант № 3

Выполнила Проверил: студент группы 950501: Туровец Н.О. Деркач А.В.

1. Исходные данные для выполнения

Требуется обеспечить связь с некоторой отдаленной территорией. Предлагаются следующие варианты: 1) запустить спутник связи (A1); 2) приобрести право на использование каналов связи, обеспечиваемых уже имеющимся спутником (A2); 3) построить сеть наземных ретрансляторов (A3); 4) проложить проводную линию связи (A4).

Выбор одного из вариантов производится с участием трех экспертов. Мнения экспертов следующие:

- первый эксперт: лучший вариант приобретение каналов связи, значительно хуже запуск спутника, еще немного хуже строительство сети ретрансляторов, еще хуже прокладка проводной линии;
- второй эксперт: лучший вариант запуск спутника, немного хуже строительство сети ретрансляторов, еще немного хуже приобретение каналов связи, самый худший вариант прокладка проводной линии;
- третий эксперт: лучший вариант приобретение каналов связи, немного хуже строительство сети ретрансляторов, еще немного хуже запуск спутника, значительно хуже прокладка проводной линии.

2. Алгоритм Саати

Метод Саати основан на сравнении альтернатив, выполняемом одним экспертом. Для каждой пары альтернатив эксперт указывает, в какой степени одна из них предпочтительнее другой.

1 На основе оценок первого эксперта заполняется матрица парных сравнений (см. таблицу 2.1) размером NxN, где N – количество альтернатив.

	A1	A2	А3	A4
A1	1	1/5	3	5
A2	5	1	7	9
А3	1/3	1/7	1	3
A4	1/5	1/9	1/3	1

Таблица 2.1 — Матрица парных сравнений

2 Затем находятся цены альтернатив - средние геометрические строк матрицы:

$$C_i = \sqrt[N]{\prod_{j=1}^N X_{ij}},$$
 $i = 1,...,N.$

Это означает, что элементы строки перемножаются, и из их произведения извлекается корень N-й степени.

Для данного примера:

$$C_1 = \sqrt[4]{1 \cdot (1/5) \cdot 3 \cdot 5} = 1.32, C_2 = \sqrt[4]{5 \cdot 1 \cdot 7 \cdot 9} = 4.21, C_3 = 0.61, C_4 = 0.29$$

3 Находим сумму цен альтернатив:

$$C = \sum_{i=1}^{N} C_i$$

В данном примере C = 1.32 + 4.21 + 0.61 + 0.29 = 6.44

4 После этого находятся веса альтернатив:

$$V_i = C_i/C, i = 1,...,N.$$

$$V_1 = 1.32/6.44 = 0.204$$
; $V_2 = 4.21/6.44 = 0.654$; $V_3 = 0.61/6.44 = 0.096$; $V_4 = 0.29/6.44 = 0.046$

Наиболее предпочтительной, по мнению эксперта, является альтернатива, имеющая максимальный вес.

Таким образом, по мнению эксперта, наиболее эффективной является приобрести право на использование каналов связи; следующая за ней — запустить спутник связи, менее эффективна построить сеть наземных ретрансляторов, наименее эффективна проложить проводную линию связи.

Следующим шагом выполняется **проверка экспертных оценок на непротиворечивость**, которая позволяет выявить ошибки, которые мог допустить эксперт при заполнении матрицы парных сравнений.

1 Для этого сначала находятся суммы столбцов матрицы парных сравнений:

$$R_{j} = \sum_{i=1}^{N} X_{ij},$$
 $j = 1,...,N.$

$$R_1 = (1+5+1/3+1/5) = 6.533; R_2 = 1.454; R_3 = 11.333; R_4 = 18.000$$

2 Затем рассчитывается вспомогательная величина λ путем суммирования произведений сумм столбцов матрицы на веса альтернатив:

$$\lambda = \sum_{j=1}^{N} R_j \cdot V_j$$

$$\lambda = 6.533 \cdot 0.204 + 1.454 \cdot 0.654 + 11.333 \cdot 0.096 + 18 \cdot 0.046 = 4.19$$

3 Находим величину, называемаю индексом согласованности (ИС):

$$MC = (\lambda - N)/(N - 1).$$

Для данного примера UC = (4.19 - 4) / (4 - 1) = 0.063

- **4** В зависимости от размерности матрицы парных сравнений находится величина случайной согласованности (CnC). В данном примере (для N=4) CnC=0.90
 - 5 Последним шагом находим отношение согласованности:

$$OC = UC / C_{\pi}C$$

Если отношение согласованности превышает 0.2, то требуется уточнение матрицы парных сравнений.

В данном примере OC = 0.063/0.9 = 0.07. Таким образом, уточнение экспертных оценок в данном случае не требуется.

3. Метод предпочтений

Метод основан на ранжировании альтернатив, выполняемом группой экспертов. Каждый из экспертов (независимо от других) выполняет ранжирование альтернатив, т.е. указывает, какая из альтернатив, по его мнению, является лучшей, какая - следующей за ней, и т.д.

1 Каждому эксперту предлагается выполнить ранжирование альтернатив по предпочтению. В данном примере каждый эксперт присваивает номер 1 фактору, который (по его мнению) оказывает наибольшее влияние на рост производительности труда; 2 - следующему по важности фактору, и т.д. Оценки, указанные экспертами, сводятся в таблицу (матрицу) размером MxN, где M - количество экспертов, N- количество альтернатив (в данном примере количество факторов роста производительности труда). Обозначим эти оценки как X_{ij} , i=1,...,M, j=1,...,N.

Ранжирование альтернатив по предпочтению представлено в таблице 3.1.

Таблица 3.1 — Матрица экспертных оценок для метода предпочтений

Эксперты	Альтернативы (факторы)				
	A1	A2	А3	A4	
1	2	1	3	4	
2	1	3	2	4	
3	3	1	2	4	

2 Затем производится преобразование матрицы оценок по формуле:

$$B_{ij} = N - X_{ij},$$
 $i=1,...,N, j=1,...,N.$

Это означает, что каждая экспертная оценка вычитается из количества альтернатив.

Для данного примера получена матрица, приведенная в таблице 3.2.

Таблица 3.2 — Преобразованная матрица экспертных оценок для метода предпочтений

Эксперты	Альтернативы (факторы)				
	A1	A2	А3	A4	
1	2	3	1	0	
2	3	1	2	0	
3	1	3	2	0	

3 После этого находятся суммы преобразованных оценок по каждой из альтернатив:

$$C_j = \sum_{i=1}^{M} B_{ij},$$
 $j=1,...,N.$

В данном примере $C_1 = 2 + 3 + 1 = 6$; $C_2 = 3 + 1 + 3 = 7$; $C_3 = 5$; $C_4 = 0$.

4 Находится сумма всех оценок:

$$C = \sum_{j=1}^{N} C_j.$$

В данном примере C = 6 + 7 + 5 + 0 = 18

5 Затем находятся веса альтернатив:

$$V_j = C_j/C, j=1,...,N.$$

В данном примере $V_1 = 6/18 = 0.333$; $V_2 = 3/18 = 0.389$; $V_3 = 5/18 = 0.278$; $V_4 = 0/28 = 0$.

Чем больше вес, тем более предпочтительной является альтернатива (по мнению экспертов).

В данном примере самой предпочтительной альтернативой является приобретение права на использование каналов связи; следующая по важности альтернатива — запуск спутника связи; еще менее важная - построить сеть наземных ретрансляторов; наименее важная альтернатива — прокладка проводной линии связи.

Для проверки согласованности мнений экспертов вычисляется величина, называемая коэффициентом конкордации (W). Ее расчет выполняется в следующем порядке.

1 Находятся суммы оценок, указанных экспертами для каждой из альтернатив:

$$S_j = \sum_{i=1}^{M} X_{ij},$$
 $j=1,...,N.$

В рассматриваемом примере $S_1 = 2 + 1 + 3 = 6$; $S_2 = 1 + 3 + 1 = 5$; $S_3 = 7$; $S_4 = 12$.

2 Находится вспомогательная величина А:

$$A = M (N + 1)/2.$$

Для данного примера A = 3 (4 + 1)/2 = 7.5

3 Находится вспомогательная величина S:

$$S = \sum_{j=1}^{N} (S_j - A)^2.$$

Для рассматриваемого примера:

$$S = (6 - 7.5)^2 + (5 - 7.5)^2 + (7 - 7.5)^2 + (12 - 7.5)^2 = 29$$

4 Последним шагом находится коэффициент конкордации:

$$W = \frac{12 \cdot S}{M^2 \cdot N \cdot (N^2 - 1)}.$$

При $W \ge 0.5$ степень согласованности экспертных оценок может считаться достаточной. При W < 0.5 требуется уточнение и согласование экспертных оценок.

В данном примере $W=12\cdot 29$ / $(9\cdot 4\cdot 15)=0.6444$. Таким образом, уточнение экспертных оценок не требуется. Мнения экспертов в отношении влияния рассматриваемых факторов на производительность труда достаточно близки друг к другу.

3. Метод ранга

Метод основан на балльных оценках альтернатив, указываемых несколькими экспертами. Каждый из экспертов (независимо от других) оценивает альтернативы по некоторой шкале (обычно - 10-балльной). Чем более предпочтительной (по мнению эксперта) является альтернатива, тем более высокий балл для нее указывается.

1 Каждый эксперт указывает оценки альтернатив по 10-балльной шкале. Оценки, указанные экспертами, сводятся в матрицу размером MXN, где M -

число экспертов, N - число альтернатив. Обозначим эти оценки как Xij, i=1,...,M, j=1,...,N.

Оценки экспертов представлены в таблице 4.1

Таблица 4.1 — Матрица экспертных оценок для метода ранга

Эксперты	Альтернативы (факторы)			
	A1	A2	А3	Α4
1	6	10	5	2
2	10	8	9	3
3	8	10	9	4

2 Далее находятся суммарные оценки альтернатив всеми экспертами:

$$C_j = \sum_{i=1}^{M} X_{ij},$$
 $j=1,...,N.$

В данном примере $C_1 = 6 + 10 + 8 = 24$; $C_2 = 10 + 8 + 10 = 28$; $C_3 = 23$; $C_5 = 9$.

3 Находится сумма всех оценок:

$$C = \sum_{j=1}^{N} C_j.$$

B примере C = 24 + 28 + 23 + 9 = 84

4 После находятся веса альтернатив:

$$V_j = C_j/C,$$
 $j=1,...,N.$

Наиболее предпочтительной, по мнению экспертов, является альтернатива, имеющая максимальный вес.

В данном примере $V_1 = 24/84 = 0.286$; $V_2 = 28/84 = 0.333$; $V_3 = 23/84 = 0.274$; $V_4 = 9/84 = 0.107$.

Таким образом, в данном примере самой предпочтительной альтернативой является приобретение права на использование каналов связи; следующая по важности альтернатива — запуск спутника связи; еще менее важная - построить сеть наземных ретрансляторов; наименее важная альтернатива — прокладка проводной линии связи.

Далее проводится **проверка согласованности экспертных оценок**. Как и для метода предпочтений, проверка согласованности экспертных оценок требуется для выявления существенных различий в мнениях экспертов и определения причин таких различий. Для этого рассчитываются дисперсии

(оценки разброса) оценок для каждого эксперта и для каждой альтернативы. Расчет выполняется в следующем порядке.

1 Сначала находятся средние оценки каждой альтернативы:

$$\overline{X}_{j} = \frac{1}{M} \sum_{i=1}^{M} X_{ij},$$
 $j=1,...,N.$

В данном примере $\overline{X}_1=24/3=8;\ \overline{X}_2=28/3=9.33;\ \overline{X}_3=23/3=7.67;\ \overline{X}_4=9/3=3.$

2 Находятся дисперсии оценок каждого эксперта:

$$D_{\ni i} = \frac{1}{N-1} \sum_{j=1}^{N} (X_{ij} - \overline{X}_{j})^{2}, \qquad i=1,...,M.$$

Эта величина показывает отклонение оценок, указанных i-м экспертом для альтернатив, от средних оценок этих альтернатив. Чем больше эта величина, тем больше *отмичие мнения* i-го эксперта от остальных экспертов.

В данном примере:

$$D_{91} = \frac{1}{3} ((6 - 8)^2 + (10 - 9.33)^2 + (5 - 7.67)^2 + (2 - 3)^2) = 4.19$$

$$D_{92} = \frac{1}{3} ((10 - 8)^2 + (8 - 9.33)^2 + (9 - 7.67)^2 + (3 - 3)^2) = 2.52$$

$$D_{93} = \frac{1}{3} ((8 - 8)^2 + (10 - 9.33)^2 + (9 - 7.67)^2 + (4 - 3)^2) = 1.07$$

3 Находятся дисперсии оценок каждой альтернативы:

$$D_{aj} = \frac{1}{M-1} \sum_{i=1}^{M} (X_{ij} - \overline{X}_{j})^{2}, \qquad j=1,...,N.$$

Эта величина показывает различие оценок, указанных экспертами для j-й альтернативы. Чем больше эта величина, тем больше расхождение мнений экспертов в отношении данной альтернативы.

В данном примере:

$$D_{a1} = \frac{1}{2} ((6 - 8)^2 + (10 - 8)^2 + (8 - 8)^2) = 4$$

$$D_{a2} = \frac{1}{2} ((10 - 9.33)^2 + (8 - 9.33)^2 + (10 - 9.33)^2) = 1.33$$

$$D_{a3} = \frac{1}{2} ((5 - 7.67)^2 + (9 - 7.67)^2 + (9 - 7.67)^2) = 5.33$$

$$D_{a4} = \frac{1}{2} \left((2-3)^2 + (3-3)^2 + (4-3)^2 \right) = 1$$

Если величина D_{3i} оказывается большой (оценки i-го эксперта сильно отличаются от оценок, указанных другими экспертами), то i-му эксперту предлагается обосновать свои оценки. Если большой оказывается величина D_{aj} (оценки j-й альтернативы у экспертов сильно отличаются), то следует проанализировать причины таких расхождений.

В данном примере, возможно, следует предложить обосновать свои оценки первому эксперту. Кроме того, следует обратить внимание на разброс оценок третьей альтернативы.