Diskretna	matematika	

PRVI TEST

Novi Sad, 16. 06. 2021

1. Dokazati da za sve $n \geq 0$ važi

$$\sum_{m=0}^{n}(m+1)\binom{n+1}{m+1}=(n+1)2^{n}$$

2. Dokazati da za svako $n \geq 2$ važi

$$\binom{n+1}{1,2,n-2}=3\binom{n+1}{3}$$

3. Koristeći generatorne funkcije, rešiti rekurentnu relaciju $h_n=2h_{n-1}+1,\,n\geq 1,$ ako je $h_0=0.$

5. Na	pisati jednu nehomogenu linearnu rekurentnu relaciju reda 3, tako da nema sve konstantne koeficijente.
6 ("n	ssmeni") Neka je data rekurentna relacija
0. (u	
	$a_n = c_1 a_{n-1} + c_2 a_{n-2} + c_3 a_{n-3}$
	ja ima tri međusobno različita karakteristična korena x_1, x_2 i x_3 . Pokazati da važe sledeća tvrđenja:
	 i) a(n) = α₁x₁ⁿ + α₂x₂ⁿ + α₃x₃ⁿ jeste rešenje rekurentne relacije za sve α₁, α₂, α₃ ∈ R. ii) rekurentna relacija ima jedinstveno rešenje za a(0) = a(1) = a(2) = 1.

 G_1

Ime i prezime:

Broj indeksa: .

1. Konstruisati neizomorfne proste grafove $G_1=(V_1,E_1)$ i $G_2=(V_2,E_2)$ tako da je $|V_1|=|V_2|=6$, a njihovi grafički nizovi su (3,3,2,2,1,1).

2. Ispitati da li je graf G_1 polu Hamiltonov. Ako jeste, napisati Hamiltonov put. Ako nije, obrazložiti odgovor.

3. Ispitati Da li je graf G_1 Hamiltonov. Ako jeste, napisati Hamiltonovu konturu. Ako nije, napisati dokaz.

4.	Ispitati da li je graf G_2 planaran. Ako jeste, nacrtati jednu njegovu planarnu reprezentaciju. Ako nije, obra	zložiti.
_		
5.	Primenom Kruskalovog algoritma, odrediti jedno minimalno pokrivajuće stablo grafa G_2 . (Napomena: G načiti elementima skupa $\{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9\}$, tako da indeksi označavaju redosled kojim su d stablu.)	
6.	("usmeni") Neka je $G=(V,E), V \geq 3,$ povezan planaran graf i neka je f broj oblasti na koje on (u preprezentaciji) deli ravan. Dokazati da je $ E \leq 3\cdot V -6.$	olanarno