JAYPEEINSTITUTEOFINFORMATIONTECHNOLOGY

Electronics and Communication Engineering Digital Systems (18B11EC213)

Tutorial Sheet:7

- a) sinc(100t)
- b) $sinc^2(100t)$
- c) $2\cos(200\pi t) + \sin(400\pi t)$
- d) $\sin(100\pi t) \sin(200\pi t)$
- **Q2.** [CO5] A Low pass signal has a Bandwidth= 3.4kHzis sampled at frequency f_s = 8kHz. Determine the Bandwidth of the guard Band.
- Q3. [CO5] The band limited signals $x_1(t)$ and $x_2(t)$ has bandwidth 10 Hz and 20 Hz respectively. Find the Nyquist rate of the following signals.
- a) $x_1(t) + x_2(t)$
- b) $x_1(2t)$
- c) $x_2(t+3)$
- d) $x_1(t).x_2(t)$
- e) $x_1(t) * x_2(t)$
- **Q4.** [CO5] For an DSBFC wave with a peak unmodulated carrier voltage 8V peak a load resistance of R_L = 8Ω modulation index m = 1, Determine
- a) Powerofthecarrier&thesidebands
- b) Totalsidebandpower
- c) Totalpower of themodulated wave.
- d) Efficiency percentage
- **Q5.** [CO5] A carrier with an un modulated power 80 W is modulated simultaneously by four modulating signals with coefficients of modulation m_{a1} =0.3, m_{a2} =0.4, m_{a3} =0.5, m_{a4} =0.6.

Find

- a) Total coefficients of modulation
- b) Sideband powers
- c) Total transmitted power
- d) Efficiency of transmission
- **Q6. [CO5]** A message signal m(t)= $2\cos(200\pi t) + \cos(600\pi t)$ DSBFC modulates the carrier signal c(t)= $100\cos(2000\pi t)$. The average power carried by the 1300 Hz sideband of the modulated signal will be ____ W.

Q7. [CO5] An audio signal described as 30 sin $(2\pi*2500t)$ amplitude modulates a carrier which is described as 65 sin $(2\pi*250,000t)$

- a) Sketch the audio signal.
- b) Sketch the carrier.
- c) Construct the AM (with carrier) modulated wave.
- d) What is the modulation factor and percent modulation?
- e) What is the frequency of the audio signal and of the carrier?
- f) What frequencies would show up in a spectrum analysis of the modulated wave?

Q8. [CO5] An angle modulated signal has form $u(t) = 100 \cos[2\pi f_c t + 4 \sin 2000\pi t]$, where fc = 10 MHz

- a) Determine the peak- phase deviation.
- b) Determine the peak- frequency deviation.
- c) Is this an FM or a PM signal? Explain.