HUMAN DATA ANALYTICS: INTRODUCTION

Michele Rossi rossi@dei.unipd.it

Lab. classes

Matteo Gadaleta

gadaleta@dei.unipd.it

Lab. Assistant Simone Friso

HDA

- A course on sensing applications
 - Centered around human-generated signals
- Master Degrees
 - Data science
 - ICT for Internet and Multimedia
- Teachers
 - Prof. Michele Rossi (theory & applications)
 - Web: http://www.dei.unipd.it/~rossi/
 - Matteo Gadaleta (lab. classes)
- Lab. Assistant
 - Simone Friso

Human sensing

HDA in a nutshell

Tools

- Dimensionality reduction: PCA
- Clustering: K-means, SOM, GNG
- Neural networks:
 - Feed Forward (FFNN), Convolutional (CNN),
 - Recurrent Neural Networks (RNN), Autoencoders
- Times series analysis: HMM, RNN

Applications

- Modeling ECG signals
- Speech / face recognition
- Inertial signals:
 - Authentication
 - Activity recognition (heterogeneous data)

Modeling ECG signals

- Useful for many reasons
 - Efficient TX in resource limited systems
 - Automated detection of arrhythmia
 - User identification / authentication

Statistical modeling of time series

- How to detect keystroke dynamics (typing behavior)
 - User identification through keystroke biometrics
- How to reliably decode words and sentences (speech)
 - Hidden Markov Models (HMM)

Inertial signals

- Accelerometer and Gyroscope signals
 - From Inertial Measurement Units (IMU)
 - Chest-band, wrist-band, smart watches, smart phones, etc.

Applications

- User authentication
- Activity recognition

Face recognition

- How to detect faces
 - Dimensionality reduction (PCA / SOM)
 - PCA / SOM + convolutional neural networks
 - (Deep) neural networks only

Course structure

1) Tools: Dimensionality reduction, clustering

Apps: ECG

- 2) Tools: Hidden Markov Models (HMM)
 - Apps: keystroke dynamics, speech recognition
- 3) Tools: Neural Networks (FFNN, CNN, RNN)
 - ECG
 - Authentication (inertial signal)
 - Face recognition

A remark

Usually

- Focus of basic machine learning courses is on i.i.d. data samples
- Problems are typically: regression, classification

This course

- Is often concerned about modeling complex data sequences
- Some (spatio-temporal) correlation exists among data points

Our focus is on pattern analysis for

- Correlated data (space, time)
- To build applications

Course material

- Course material
 - http://www.dei.unipd.it/~rossi/courses/HumanData/HDA.html

User: HDA-student

Passwd: Hda_0q1o9w2i_MR;

- Mailing list
 - hda@dei.unipd.it

Exam

Project based

- Project assignment from instructors
- Use a machine learning algo on a public dataset

Outcome

- Written project report (max. 15 pages)
- Power Point presentation (running code is appreciated)

Groups

2 students per group

Guidelines about: public database, task to be performed and project report structure will be provided when we start our laboratory activity

Lab. Classes (1/2)

- Will feature:
 - An introductory lesson on:

- Guided coding sessions to build machine learning apps
 - Build everything from scratch (simple applications)
 - Use some popular libraries (more complex projects)

Lab. Classes (2/2)

- Topics and Applications
 - Logistic regression for classification
 - Shallow/Deep Neural Networks for image classification
 - Cat classifier

- Convolutional Neural Networks
 - Face recognition
 - Sign language translation

- Object detection and recognition
 - Car/signs/pedestrian detection for self driving cars

HUMAN DATA ANALYTICS: INTRODUCTION

Michele Rossi rossi@dei.unipd.it

Lab. classes

Matteo Gadaleta

gadaleta@dei.unipd.it

Lab. Assistant Simone Friso

