The max-min-hill-climbing algorithm

Michael Bauer

M.Sc. Comp. Science

May 6, 2014

Definition (Conditional Independence)

Two variables X and Y are conditionally independent given \mathbf{Z} w.r.t a probability distribution P, denoted as $Ind_p(X; Y|\mathbf{Z})$, if $\forall x, y, \mathbf{z}$, where $P(\mathbf{Z} = \mathbf{z}) > 0$,

$$P(X, Y|\mathbf{Z}) = P(X|\mathbf{Z}) * P(Y|\mathbf{Z}), \tag{1}$$

where $P(X, Y|\mathbf{Z}) = P(X \cap Y|\mathbf{Z})$.

It is equivalent

$$Ind(X; Y|\mathbf{Z}) \Longleftrightarrow (Assoc(X; Y|\mathbf{Z}) = 0), \tag{2}$$

where $Assoc(X; Y|\mathbf{Z})$ is the strength association (dependency) of X and Y given \mathbf{Z} .

Definition (Conditional Independence)

Two variables X and Y are conditionally independent given \mathbf{Z} w.r.t a probability distribution P, denoted as $Ind_p(X; Y|\mathbf{Z})$, if $\forall x, y, \mathbf{z}$, where $P(\mathbf{Z} = \mathbf{z}) > 0$,

$$P(X, Y|\mathbf{Z}) = P(X|\mathbf{Z}) * P(Y|\mathbf{Z}), \tag{1}$$

where $P(X, Y|\mathbf{Z}) = P(X \cap Y|\mathbf{Z})$.

It is equivalent

$$Ind(X; Y|\mathbf{Z}) \Longleftrightarrow (Assoc(X; Y|\mathbf{Z}) = 0), \tag{2}$$

where $Assoc(X; Y|\mathbf{Z})$ is the strength association (dependency) of X and Y given \mathbf{Z} .

Bayesian Networks

Blocked paths & d-seperation

Define three sets

Let A_1 , A_2 and A_3 denote sets with:

$$A_1 = \{W\}$$

 $A_2 = \{R, V\}$
 $A_3 = \{R, P\}$

Thanks for your attention!