Name:_	File	
Teache	r:	

SYDNEY TECHNICAL HIGH SCHOOL

MATHEMATICS

Extension 1

Year 11

Preliminary HSC Assessment Task 2

July 2008

General Instructions

- Working time allowed 70 minutes
- Write using black or blue pen
- · Approved calculators may be used
- All necessary working should be shown
- Start each question on a new page
- Attempt all questions
- Marks may not be awarded for careless or badly arranged work

Question 1	Question 2	Question 3	Question 4	Question 5	TOTAL
/10	/10	/10	/10	/10	/50

Question 1 (10 marks)

a) Express
$$\frac{1}{1-\frac{m}{n}} \div \frac{1}{1-\frac{n}{m}}$$
 as a single fraction 2

b) Solve
$$\frac{1}{x-1} > \frac{1}{6}$$

c) i) Sketch
$$y = cosx^\circ$$
 for $-180 \le x \le 180$

ii) Sketch
$$y = \frac{1}{2}$$
 on the same axes as above 1

iii) Hence, solve
$$cosx^{\circ} > \frac{1}{2}$$
 for $-180^{\circ} \le x \le 180^{\circ}$

d) Given A(-4, -6) and B (6, -1) find the coordinates of P (x,y) such that P divides the interval AB externally in the ratio 3:2

Question 2 (10 marks) (Start a new page)

- a) i) Write an expansion for sin(A + B)
 - ii) By using part i) find the exact value of $sin75^{\circ}$ 2
- b) Differentiate $f(x) = 1 2x^2$ by the method of first principles 2

(Question 2 continues over)

Two yachts A and B subtend an angle 60° at the base C of a cliff. From yacht A the angle of elevation of the point P, 100 metres vertically above C, is 20°. Yacht B is 600 metres from C.

i) Calculate the length AC in exact form.

ii) Calculate the distance between the two yachts. (to nearest metre).

d) The line y = mx makes an angle of 45° with the line y = 2x - 3. Find the two possible values for m.

Question 3 (10 marks) (Start a new page)

a) Differentiate the following

i)
$$y = \frac{2x}{\sqrt{x}}$$

ii)
$$y = (3 - 2x^2)^4$$

$$y = \frac{x^2}{x+1}$$

b) Show that
$$\frac{d}{dx}(x\sqrt{x+1}) = \frac{3x+2}{2\sqrt{x+1}}$$

c) Simplify $\frac{1+\sin x - \cos x}{1+\sin x + \cos x}$ as far as possible in terms of t, where $t = \tan \frac{x}{2}$

Question 4 (10 marks) (Start a new page)

a) Prove
$$\frac{1-\cos 2A}{1+\cos 2A} = \tan^2 A$$

- b) Solve
 - i) $sin2\theta = cos\theta$ for $0^{\circ} \le \theta \le 360^{\circ}$ 2
 - ii) $cos^2\theta sin^2\theta = 0.1$ for $0^\circ \le \theta \le 180^\circ$ $(\theta \text{ correct to the nearest minute})$
- c) i) Write $2\cos x + 3\sin x$ in the form $R\sin(x+\infty)$ where ∞ is acute and to the nearest minute, R > 0.
 - ii) Hence, solve $2\cos x + 3\sin x = 1$ for $0^{\circ} \le x \le 360^{\circ}$

Question 5 (10 marks) (Start a new page)

a) Given $f(n) = 2^n$ and $g(n) = 3^n$, prove that

$$\frac{3f(n+1)+2g(n+1)}{6} = f(n) + g(n)$$

- b) i) Find the equation of the tangent to the semicircle $y = \sqrt{25 x^2}$ at the point P(3, 4)
 - ii) Another tangent to the semicircle above at Q(0,5), meets the tangent at P, in the point R. Find the coordinates of R.

3

(Question 5 continues over)

A ramp, ABC rises at an angle of θ degrees. AB is d metres and, at C there is a building of height h metres. The angles of elevation of D from A and B are $(\theta + \infty)$ and $(\theta + \beta)$ respectively.

ı

ii) Hence prove that
$$h = \frac{d\sin \alpha . \sin \beta}{\sin(\beta - \alpha) \cos \theta}$$

iii) Deduce that, if
$$\theta = 15^{\circ}$$
, $\propto = 45^{\circ}$ and $\beta = 60^{\circ}$ then $h = d\sqrt{6}$

