MOTOWOTOFOSO HAVO-CAVO definitions of linear Algebra 1) Vectors in R" :-The set of all n-tuples of real numbers denoted by R" is called n-space. A particular n-tuple in R^n , say $u = (a_1, a_2, \dots a_n)$ is called a point or vector The number ai is called co-ordinates When discussing the space Rⁿ we use term scalar for elements of R. 2) Dot (inner) PRODUCT 1. vectors 'ii' and 'v' in R"; say, u = (a, a, ... an) and v= (b, b, -.. bn) The dot product or inner product scalar product of 'u' and 'v' is denoted and defined by U.V = asb, + asb, + ... + anbn 3) Harmitian Matrices: A complex matrix A is said to be Harmitian or skew symmetric according as $A^{H} = A \quad \text{or} \quad A^{H} = -A$ 4) Symmetric Matrix: is symmetric if $A^T = A$

21	Diagonal and Trace: Let A = [aii] be an
1	Let $A = [aii]$ be an
	n-cause matrix. The diagonal or main
	dinappal of A consists of the
	n-square matrix. The diagonal or main diagonal of A consists of the elements with the same subscripts
	that is
	a11, a22, a33, ann
	The trace of A, written tr (A)
	1s the sum of diagonal elements.
	$tr(A) = a_{11} + a_{22} + a_{33} + \cdots + a_{nn}$
9)	Transpose of Matrices:
	the transpose of
- 19	Matrix is the interchange of raws
11	Matrix is the interchange of raws into columns and columns as
	YOWS.
	It is denoted by AT.
	$\begin{bmatrix} e \cdot g \\ 1 \\ 2 \end{bmatrix}, A^{T} = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$
	[3 4]
0)	Square Matrices :-
-	A Matrix which
	consists of same number of rows
	and columns
- 11	

	10.4	
- W	Matrix Multiplication: The product of Matrix A and B is written as AB.	
	The product of	ı
	Matrix A and B is written as	ı
	AB.	
	Product AB of a row matrix	
	A = [ai] and a column Matrix	
	B = [bi] with the the same	
	no. of elements is defined to be	
	a scalar matrix (1 x 1), multiplying	
	coresponding entries and adding	
	$AB = [a_1, a_2, \dots, a_n]$ $b_1 = a_1b_1 + a_2b_2 + \dots + a_nb_n = \frac{2}{2} a_nb_n$	
	10 = [41, 42, an] = 4101 + 4202 + 400 n = 2 dept	
	(bn)	
121	Matrices 1-	
16)	A Matrix A over a field	
	K or, simply a matrix A is a	i
	rectangular array of scalars usually presented in	
	presented in . [a11 a12 an]	
	$A = a_{21} \ a_{22} \ \cdots \ a_{2n}$	-
	(asym am am)	
	The your of web a motion	
	The rows of such a matrix A are	
	the m horizontal lists of scalars.	
	$(a_{11}, a_{12}, \dots, a_{1n})$, $(a_{21}, a_{22}, \dots, a_{2n})$, $(a_{m_2}, a_{m_2}, \dots, a_{m_n})$	l
		H
21	Complex Number	
2)	Complex Numbers :-	ı
-	It is an ordered	
-	pair (a,b) of real numbers where	
-	equality addition and multiplication	
-	is defined.	I
	Ghazi Paper	İ

18)	Norm (length of a vector):
	Norm (length of a vector):- Length of a vector in R° denoted by "u", defined to be the non negative sq. root.
,	$ u = \sqrt{u \cdot u} = \sqrt{a_1^2 + a_2^2 + \dots \cdot a_n^2}$ sq. root. of the sum of the $sq.of the vectors.$
19)	Orthogonal Matrix:
	matrix whose columns and rows are orthogonal / orthonormal vectors. The determinant of
	orthogonal matrix is either 1 or-1
20)	Rank of a Matrix:- The number of non-
	zero rows is called of a matrix.
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Rz is the Rank of Matrix.
-	Ghazi Paper

25)	Vector Space :-
	A vector space is any
	set of objects with a notion of
	addition and scalar multiplication
	that behaves like vectors in Rn.
26)	Linear Combination:
	If one vector is equal
	to the sum of scalar multiples
	of other vectors, it is said to
	be linear combination.
	e.g;
	a = 2b + 3c.
27)	Echelon form :-
	. All non zero rows are above any rows
	of all zeros.
	= Each leading entry of a row is in
	a column to the right of the leading
	a column to the right
	entry of row above it.
	e All entries of a column below a
	leading entry are zeros.
28)	Gauss - Jordan Elimination :-
/	It is also known as
	row reduction, is an algorithm
	for solving custems of linear
	for solving systems of linear equations. It consists of a sequence
	equations. It consists
	of operations.
-	

29)	Cauchy-Schwarz Inequality: The theorem that the square of the integral of the product of two function is less the product of
	The theorem that the
	square of the integral of the
	product of two function is (ess)
	Than or early to the
	the integrals of the say
	each function.
30)	Eigen value and vector :
	Eigen vectors are the
	directions along with a particular
	linear transformation acts by
	(onesessing
	: Eigen value can be referred
	as the strength of the transfor-
	e Eigen value can be referred as the strength of the transformation in the direction of eigen
	vector.
	there december
31)	Linear dependent: The property of one set
	the property of one set
	naving at least the linear
	combination of its elements equal
	to zero when the coefficients
	are taken from another given set. and at least one of its coefficients
	and acteuse one of its coefficients
	is not equal to zero.
32)	Linear Independent:
	The property of a
	set having no linear combination
	J
	Ghazi Paper

of all its elements equal to zero when coefficients are taken from a given set unless the coefficient of each element 15 zero.

Row Operation :-33)

Row operation are the simple operations that allow us to transform a system of linear equation into equivalent system, interchanging two equations, add, multiply...

A linear space is a space consisting of a collection of points and a set of lines subject to the.

Any line of has atleast two points.

Any two distint points of beyond belong to exactly one line.

35) Co - factor :-

The signed minor of a matrix, Minor an alternative name for the determinant of a smaller matrix.