Grandient Descent

- Title: Feeling the Slope: Gradient Descent with the Night-Hiker Analogy
- Course / Session:
- Instructor:

 Prof. Ramesh Babu
- Date: □ Sep5 (Week4 day3)
- Links/QR: □ Colab □ GitHub □ Slides □ Dataset

Learning Objectives (by the end of class students can...)

- 1. Explain gradient descent using the night-hiker analogy (local info ↔ gradient; stride ↔ learning rate).
- 2. Write and interpret the core GD update rule and stopping criteria.
- 3. Choose appropriate loss functions for regression vs. classification (MSE, BCE-with-logits, softmax cross-entropy).
- 4. Describe backprop at a high level (chain rule; autograd).
- 5. Diagnose common training failures (bad LR, logits/probabilities mix-ups, missing zero_grad) and apply fixes.
- 6. Implement a minimal PyTorch/Keras training loop and apply early stopping / LR scheduling.

2) Time-boxed Agenda (60–90 min)

```
00:00-05:00 Icebreaker + Analogy setup (night hike in fog).
```

05:00-15:00 Core concepts: loss, gradient, learning rate, update rule.

15:00-25:00 Loss functions tour (MSE, BCE-with-logits, softmax CE; logits vs prob).

25:00-40:00 Backprop intuition (chain rule) + autograd demo.

40:00–55:00 Live coding: minimal training loop (+ early stopping).

55:00-65:00 Learning rate: symptoms, schedules, LR range test.

65:00-75:00 Pitfalls & debugging lab (pairs).

75:00-90:00 Wrap-up, quiz, Q&A, next session preview (batch vs SGD vs mini-batch).

RECAP

WEEK 1

Approach	How it Works	Example
Rule-Based	Human writes explicit rules	"If temperature > 30°C, recommend shorts"
Traditional ML	Human defines features, algorithm finds patterns	"Extract 20 weather features, train decision tree"
Deep Learning	Algorithm learns features AND patterns	"Give raw weather data, predict clothing"

WEEK 2

GRAPH

WEEK 3

WHAT IS ACTIVATION

🔑 Activations (the "gatekeepers" in a neural net)

- 1. ReLU (Rectified Linear Unit)
 - Rule: pass positive values, block negatives (set them to 0).
 - Think: a light switch off below 0, on above 0.

2. Leaky ReLU

- Rule: same as ReLU, but negatives are not killed they leak a little.
- Think: a safety valve lets a trickle of negative flow.

3. Swish

- Rule: multiply input by a smooth sigmoid → negatives shrink but don't vanish.
- Think: an auto-dimmer dims weak signals smoothly.

4. GELU (Gaussian Error Linear Unit)

- Rule: input gets passed depending on probability (via Gaussian curve).
- Think: a confidence gate only strong signals get fully through.

WHAT IS DERIVATIVES

- Derivatives (how much the function "pushes" during learning)
- 1. ReLU derivative
 - 0 for x < 0 → dead neurons possible.
 - 1 for x > 0 → strong, stable gradient.
- 2. Leaky ReLU derivative
 - Small slope (e.g. 0.1) when x < 0 → prevents dead neurons.
 - Slope = 1 when x > 0.
- 3. Swish derivative
 - Never flat zero → always some gradient.
 - Smoother changes help gradients flow better in deep nets.
- 4. GELU derivative
 - Curved like a Gaussian → soft, probabilistic slope.
 - · Keeps gradients alive while tapering extremes.

WEK-4 MODULE -2 OPTIMIZATION

 Optimization in deep neural network architecture is the systematic process of iteratively tuning network parameters using loss functions and gradient-based algorithms so that the model learns to map inputs to outputs with minimal error

Optimization (Definition)

Optimization is the process of adjusting the parameters (weights and biases) of a neural network to minimize the difference between the network's predictions and the actual target outputs.

Formally, optimization means finding the set of parameters $\theta = \{W, b\}$ that minimize a chosen loss (or cost) function:

$$heta^* = rg \min_{ heta} J(heta; X, y)$$

where:

- θ → parameters of the network (weights, biases)
- J(heta;X,y) o loss function measuring error between prediction f(X; heta) and ground truth y
- $X \rightarrow$ input data, $y \rightarrow$ true labels

Core Concepts in Optimization for DNNs

1. Loss Function (Objective Function)

- Guides the optimization process. Examples: Mean Squared Error (MSE), Cross-Entropy Loss.
- Defines what "error" means in the problem.

2. Optimization Algorithm (Optimizer)

- The method used to update weights.
- Examples: Gradient Descent, Stochastic Gradient Descent (SGD), Adam, RMSProp.

3. Gradient Computation (Backpropagation)

- Gradients of the loss w.r.t. parameters are computed using backpropagation.
- · Provides the "direction" in which weights should be adjusted.

4. Learning Rate

- A critical hyperparameter that controls the step size in parameter updates.
- Too high → divergence, too low → slow convergence.

5. Convergence

 Optimization aims to reach (or approximate) a global minimum of the loss, though in deep networks often a good local minimum or saddle point escape is sufficient.

6. Regularization & Constraints

 Techniques like L1/L2 regularization, dropout, weight decay help optimization avoid overfitting and improve generalization.

1. Loss Function (Objective Function)

$$J(heta) = rac{1}{N} \sum_{i=1}^N \mathcal{L}(f(x_i; heta), y_i)$$

Analogy:

Think of loss like the distance between your current location and your destination on a map.

- If you're hiking, the loss is how far you are from your camp.
- Your goal is to minimize that distance (loss) to eventually reach camp (best model).

2. Optimization Algorithm (Gradient Descent)

$$heta^{(t+1)} = heta^{(t)} - \eta
abla_{ heta} J(heta^{(t)})$$

Analogy:

Imagine hiking downhill in a foggy mountain:

- You cannot see the whole path, but you feel the slope of the ground under your feet (the gradient).
- Step in the direction of steepest descent (negative gradient).
- With each step, you get closer to the valley (minimum loss).

3. Gradient Computation (Backpropagation)

$$rac{\partial J}{\partial W} = rac{\partial J}{\partial a} \cdot rac{\partial a}{\partial z} \cdot rac{\partial z}{\partial W}$$

Analogy:

Imagine you're cooking and the dish tastes too salty.

- You trace back: Taste (loss) → Too much salt (weight issue) → Recipe step (activation).
- Backpropagation is like figuring out which ingredient at which step caused the bad taste.
- Then you adjust only that ingredient (weight update).

4. Learning Rate

$$heta^{(t+1)} = heta^{(t)} - \eta
abla_{ heta} J(heta)$$

- Analogy:
- Learning rate = size of your steps while hiking downhill.
 - If steps are too big → you may overshoot the valley and keep stumbling.
 - If steps are too small → you'll crawl very slowly.
 - A balanced step size helps you reach the valley efficiently.

5. Convergence

$$heta^* = rg \min_{ heta} J(heta)$$

Analogy:

Reaching the valley floor while hiking.

- Once the slope feels nearly flat (small gradient), you've converged.
- You don't need to reach the absolute lowest point (global minimum), just a good flat spot where you
 can safely set up camp (local minimum).

. Convergence Checks

$$\|
abla J(heta)\| < \epsilon \quad ext{or} \quad |J_{t+1} - J_t| < \delta$$

6. Regularization

. L2 (Weight Decay):

$$J_{ ext{reg}}(heta) = J(heta) + \lambda \sum_j \|w_j\|^2$$

• L1 (Sparsity):

$$J_{ ext{reg}}(heta) = J(heta) + \lambda \sum_j |w_j|$$

Analogy:

Imagine packing for a trip:

- If you carry too much stuff (too many parameters), your journey becomes harder.
- Regularization is like an extra fee for every extra item in your backpack.
 - L2 = discourages carrying heavy things (large weights).
 - L1 = encourages you to pack fewer items (sparse weights).
- The result: You travel lighter and generalize be(\downarrow

Anchor Analogy (Night-Hiker → Neural Net)

- Valley (goal): minimum of loss function.
- Local feel of ground: gradient (points uphill; we step against it).
- Stride length: learning rate α .
- Flat ground: $|\nabla J(\theta)| \approx 0$ or $|\Delta J|$ small \rightarrow convergence.
- Treacherous terrain: plateaus, saddles, cliffs → need momentum/adaptive LRs.

Pocket mantra: Sense \rightarrow Step \rightarrow Move \rightarrow Stop.

Story Hook: Hiking Donwhill Sense: feel slop

Sense: feel slope underfoot \rightarrow gradient $g = \nabla J(\theta)$

Step: choose stride length → learning rate α From Hiking to Gradient Descent

Hiker's Rule (Algorithm)

Gradient Descent in One Line

CAN ANYONE EXPLAIN THIS DIAGRAM


```
print("\n\ Training the network...")
classifier.fit(X_train, y_train, epochs=50, learning_rate=0.01, batch_size=32, verbose=True)

# Test the trained network
test_predictions = classifier.predict(X_test)
test_accuracy = classifier.compute_accuracy(y_test, test_predictions)

print(f"\n\ Final Results:")
print(f"Test Accuracy: {test_accuracy:.4f} ({test_accuracy*100:.1f}%)")

# Plot training history
classifier.plot_training_history()

print("\n\ Training demonstration complete!")
print("This shows that your implementation can actually learn from data!")
```

```
→ of Training a Neural Network on Synthetic Data
    Training set: 800 samples
    Test set: 200 samples
    Features: 20
    Classes: 3

▼ Dense layer created: 20 -> 32, activation: relu

       Weights shape: (20, 32)
       Bias shape: (1, 32)

▼ Dense layer created: 32 -> 16, activation: relu

       Weights shape: (32, 16)
       Bias shape: (1, 16)

▼ Dense layer created: 16 -> 3, activation: softmax
       Weights shape: (16, 3)
       Bias shape: (1, 3)
    T Neural Network Architecture:
       Layer 1: 20 -> 32 (relu)
       Layer 2: 32 -> 16 (relu)
       Layer 3: 16 -> 3 (softmax)
       Total parameters: 1,251
    Training the network...
    Epoch 10/50 - Loss: 1.6710 - Accuracy: 0.3488
    Epoch 20/50 - Loss: 1.4473 - Accuracy: 0.3688
    Epoch 30/50 - Loss: 1.2814 - Accuracy: 0.4025
    Epoch 40/50 - Loss: 1.1546 - Accuracy: 0.4425
    Epoch 50/50 - Loss: 1.0515 - Accuracy: 0.4788
```

TENSORFLOW / KERAS: OPTIMIZATION CORE CONCEPTS

1. Loss Function (Objective Function)

- Module: tf.keras.losses
- · Provides standard loss functions.
- Examples:

```
tf.keras.losses.MeanSquaredError()
tf.keras.losses.CategoricalCrossentropy(from_logits=True)
tf.keras.losses.BinaryCrossentropy()
```

2. Optimization Algorithm (Optimizer)

- Module: tf.keras.optimizers
 - Implements algorithms for updating weights.
 - Examples:

```
tf.keras.optimizers.SGD(learning_rate=0.01, momentum=0.9)

tf.keras.optimizers.Adam(learning_rate=1e-3)

tf.keras.optimizers.RMSprop(learning_rate=0.001)
```

3. Gradient Computation (Backpropagation)

Module:

- Built-in when you call .fit() in tf.keras.Model.
- For manual control:
 - tf.GradientTape() is used to record operations and compute gradients.

```
with tf.GradientTape() as tape:
    y_pred = model(x)
    loss = loss_fn(y_true, y_pred)
grads = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trainable_variables))
```

4. Learning Rate

- **Module**: tf.keras.optimizers.schedules
- Fixed or dynamic learning rates.
- Examples:

```
python

# Constant learning rate
optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3)

# Schedule (decays over time)
lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
    initial_learning_rate=0.1,
    decay_steps=100000,
    decay_rate=0.96,
    staircase=True
)
optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)
```

5. Convergence (Callbacks & Monitoring)

- Module: tf.keras.callbacks
 - Control training stop conditions.
 - Examples:

```
tf.keras.callbacks.EarlyStopping(monitor="val_loss", patience=5, restore_best_weights:
tf.keras.callbacks.ReduceLROnPlateau(monitor="val_loss", factor=0.5, patience=3)
```

6. Regularization & Constraints

Modules:

- tf.keras.regularizers → adds penalties on weights.
- tf.keras.constraints → restricts values of weights.
- tf.keras.layers.Dropout → randomly drops units during training.
- Examples:

```
python
# L2 regularization
tf.keras.layers.Dense(64, activation="relu",
                     kernel_regularizer=tf.keras.regularizers.l2(0.01))
# L1 regularization
tf.keras.layers.Dense(64, activation="relu",
                     kernel_regularizer=tf.keras.regularizers.l1(0.01))
# Dropout
tf.keras.layers.Dropout(0.5)
# Constraints (e.g., max norm on weights)
tf.keras.layers.Dense(64, activation="relu",
                     kernel_constraint=tf.keras.constraints.MaxNorm(2))
```

Summary: Packages vs. Concepts TensorFlow / Keras Module Concept **Key Classes / Functions Loss Function** tf.keras.losses MeanSquaredError, CategoricalCrossentropy, **BinaryCrossentropy Optimizers** tf.keras.optimizers SGD , Adam , RMSprop Gradients / Backprop tf.GradientTape .gradient(), .apply_gradients() Learning Rate tf.keras.optimizers.schedules ExponentialDecay, PiecewiseConstantDecay Convergence tf.keras.callbacks EarlyStopping, ReduceLROnPlateau Regularization tf.keras.regularizers, l1, l2, Dropout, MaxNorm tf.keras.constraints, tf.keras.layers.Dropout

QUESTIONS