Robótica Móvil un enfoque probabilístico

Filtro de Bayes - Filtro de Partículas y localización de Monte Carlo

Ignacio Mas

Contexto

- Ya vimos: Filtro Discreto
 - Discretiza el espacio de estados continuo
 - Alto requerimiento de memoria
 - Resolución fija (no se adapta a la estimación)
- Los filtros de partículas representan
 eficientemente distribuciones no-Gaussianas
- Principio básico
 - Conjunto de estados hipótesis ("partículas")
 - Supervivencia del más apto

Localización basada en muestras (sonar)

Descripción Matemática

Conjunto de muestras pesadas

$$S = \left\{ \left\langle s^{[i]}, w^{[i]} \right\rangle \mid i = 1, \dots, N \right\}$$
 Estados hipótesis Peso de importancia

Las muestras representan la distribución posterior

$$p(x) = \sum_{i=1}^{N} w_i \cdot \delta_{s[i]}(x)$$

Aproximación de funciones

 Conjuntos de partículas pueden usarse para aproximar funciones

- Cuanto más partículas hay en un intervalo, mayor es la probabilidad de ese intervalo
- Cómo tomar muestras de una función/distribución?

Muestreo con rechazo

- Asumiendo que f(x) < 1 para todo x
- Muestrear x de una distribución uniforme
- Muestrear c de [0,1]
- Si f(x) > c sino

guardar la muestra rechazar la muestra

Principio de Muestreo por Importancia

- Se puede usar una distribución g para generar muestras de f
- Usando un peso de importancia w, se consideran las "diferencias entre g y f"
- w = f/g
- f es el objetivo (target)
- g es la propuesta (proposal)
- Precondición:

$$f(x) > 0 \rightarrow g(x) > 0$$

Muestreo con Importancia con Remuestreo: Ejemplo de detección de Landmarks

Distribuciones

Distribuciones

Se busca: muestras distribuidas según $p(x | z_1, z_2, z_3)$

Es simple!

Tomamos muestras de $p(x|z_l)$ agregándole ruido a los parámetros de detección.

Muestreo por Importancia

Distribución objetivo (target) f:
$$p(x | z_1, z_2, ..., z_n) = \frac{\prod_k p(z_k | x) p(x)}{p(z_1, z_2, ..., z_n)}$$

Distribución de muestreo
$$g: p(x | z_l) = \frac{p(z_l | x) p(x)}{p(z_l)}$$

Pesos de Importancia
$$w : \frac{f}{g} = \frac{p(x | z_1, z_2, ..., z_n)}{p(x | z_l)} = \frac{p(z_l) \prod_{k \neq l} p(z_k | x)}{p(z_1, z_2, ..., z_n)}$$

Muestreo con Importancia con Remuestreo

Muestras pesadas

Después del remuestreo

Filtro de Partículas

Información de sensores: Muestreo con Importancia

$$Bel(x) \leftarrow \alpha \ p(z \mid x) \ Bel^{-}(x)$$

$$w \leftarrow \frac{\alpha \ p(z \mid x) \ Bel^{-}(x)}{Bel^{-}(x)} = \alpha \ p(z \mid x)$$

Movimiento del robot

$$Bel^{-}(x) \quad \neg \quad \grave{0} \ p(x \mid u, x') \ Bel(x') \ dx'$$

Información de sensores: Muestreo con Importancia

$$Bel(x)$$
 \neg $a p(z|x) Bel^{-}(x)$
 w \neg $a p(z|x) Bel^{-}(x) = a p(z|x)$
 $Bel^{-}(x)$

Movimiento del robot

$$Bel^{-}(x) \neg \grave{0} p(x | u, x') Bel(x') dx'$$

Algoritmo del Filtro de Partículas

- Muestrear la próxima generación de partículas usando la distribución propuesta
- Calcular los pesos de importancia :
 peso w = distribución objetivo / distribución propuesta
- Remuestreo: "Reemplazar muestras poco probables por otras más probables"

Algoritmo del Filtro de Partículas

- 1. Algoritmo **particle_filter**(S_{t-1} , u_t , z_t):
- $2. \quad S_t = \emptyset, \quad \eta = 0$
- 3. For i = 1, ..., n

Generar nuevas muestras

- 4. Muestrear índice j(i) de distribución discreta dada por w_{t-1}
- 5. Muestrear x_t^i de $p(x_t | x_{t-1}, u_t)$ usando $x_{t-1}^{j(i)}$ y u_t
- $6. w_t^i = p(z_t \mid x_t^i)$
- 7. $h = h + w_t^i$
- 8. $S_t = S_t \succeq \{\langle x_t^i, w_t^i \rangle \}$
- 9. **For** i = 1, ..., n
- 10. $w_t^i = w_t^i / h$

11. return S_t

Calcular pesos de importancia

Factor de normalización

Agregar a nuevo conj. de

partículas

Normalizar pesos

Algoritmo del Filtro de Partículas

$$Bel(x_t) = h p(z_t \mid x_t) \hat{0} p(x_t \mid x_{t-1}, u_t) Bel(x_{t-1}) dx_{t-1}$$

$$tomar muestra x^i_{t-1} de Bel(x_{t-1})$$

$$propagar muestra x^i_{t-1} con p(x_t \mid x^i_{t-1}, u_t)$$

$$Factor de importancia para x^i_{t}:$$

$$w^i_t = \frac{\text{distribución objetivo}}{\text{distribución propuesta}}$$

$$= \frac{\eta p(z_t \mid x_t) p(x_t \mid x_{t-1}, u_t) Bel(x_{t-1})}{p(x_t \mid x_{t-1}, u_t) Bel(x_{t-1})}$$

$$\propto p(z_t \mid x_t)$$

Remuestreo

- Dado: un conjunto S de muestras pesadas.
- Se desea : una muestra aleatoria, donde la probabilidad de tomar x_i está dada por w_i.
- Haciéndolo n veces con reemplazo para generar un nuevo conjunto de muestras S'.

Remuestreo

- Rueda de Ruleta
- Búsqueda binaria
- Complejidad: O(n log n)
- Muestreo Estocástico Universal (SUS)
- Remuestreo sistemático
- Complejidad: lineal O(n)
 - Fácil de implementar, baja varianza

Algoritmo de remuestreo

1. Algoritmo **systematic_resampling**(*S*,*n*):

2.
$$S' = \emptyset, c_1 = w^1$$

3. **For**
$$i = 2...n$$

4.
$$c_i = c_{i-1} + w^i$$

5.
$$u_1 \sim U[0, n^{-1}], i = 1$$

6. For
$$j = 1...n$$

7. While
$$(u_i > c_i)$$

8.
$$i = i + 1$$

8.
$$i = i + 1$$

9. $S' = S' \cup \{ \langle x^i, n^{-1} \rangle \}$ Insertar

10.
$$u_{j+1} = u_j + n^{-1}$$

Generar cdf

Inicializar umbral

Tomar muestras ...

Saltear hasta el próximo umbral

Incrementar umbral

11. **Return** S'

Localización de robots móviles

 Cada partícula es una pose potencial del robot

- La distribución propuesta (proposal) es el modelo de movimiento del robot (paso de predicción)
- El modelo de medición se usa para calcular los pesos de importancia (paso de corrección)

Pose inicial

Según el movimiento estimado

- Descomposición del movimiento en
 - Distancia recorrida
 - Rotación inicial
 - Rotación final

- Incerteza en el traslado del robot:
 Gaussiana sobre la distancia recorrida
- Incerteza en la rotación del robot:
 Gaussianas sobre la rotación inicial y final
- Para cada partícula, tomar una nueva pose muestreando de estas tres distribuciones normales individuales

Repaso de modelo de sensor de proximidad

Sensor Laser

Sensor Sonar

Localización de robots móviles con Filtros de Partículas (1)

 Cada partícula es una potencial pose del robot

 El conjunto de partículas pesadas aproxima la distribución a posteriori de la pose del robot (distribución objetivo)

Localización de robots móviles con Filtros de Partículas (2)

- Las partículas se toman del modelo de movimiento (distribución propuesta)
- Las partículas se pesan según el modelo de medición (modelo del sensor)
- Las partículas se remuestrean según el peso de las partículas

Localización de robots móviles con Filtros de Partículas (3)

Por qué es necesario el remuestreo?

- Sólo hay un número finito de partículas
- Sin remuestreo, el filtro puede perder las "buenas hipótesis"
- El remuestreo asegura que las partículas quedan en áreas apropiadas del espacio de estados

Localización basada en muestras (sonar)

Distribución inicial

Después de incorporar 10 mediciones de ultrasonido

Después de incorporar 65 mediciones de ultrasonido

Trayectoria estimada

Localización de robots AIBO (robocup)

Mapas del techo para Localización

Localización basada en visión

Debajo de una luz

Medición z:

P(z/x):

Próximo a una luz

Medición z:

P(z/x):

En lugares sin luz

Medición z:

P(z/x):

Localización global usando visión

Limitaciones

- El método propuesto puede
 - Seguir la pose de un robot móvil y
 - Localizar globalmente el robot
- Cómo podemos lidiar con errores de localización (por ejemplo, el problema del robot secuestrado)?

Enfoques

 Agregar aleatoriamente un número finito de muestras

- Esto asume que el robot puede ser teletransportado en cualquier momento
- Otra opción es insertar muestras aleatorias de manera proporcional al promedio del likelihood de las partículas

Resumen - Filtro de Partículas

- Los filtros de partículas son una implementación de filtrado recursivo Bayesiano
- Representan la densidad de probabilidad posterior a través de un conjunto de muestras pesadas
- Pueden modelar distribuciones no Gaussianas
- Se muestrea la distribución propuesta y los pesos consideran las diferencias con la distribución objetivo

Resumen - Localización de FP

- Las partículas se propagan según el modelo de movimiento.
- Se pesan según el likelihood de las observaciones.
- En el remuestreo, se toman nuevas partículas con una probabilidad proporcional al likelihood de las observaciones.