

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Primer Semestre de 2019

Tarea 2

Fundamentos de la Matemática - MAT 2405 Fecha de Entrega: 2019/04/24

> Integrantes del grupo: Nicholas Mc-Donnell, Maximiliano Norbu

Problemas

Problema 1 (8pts). Sea φ una \mathcal{L} -fórmula con una variable libre x. Sea \mathfrak{M} una \mathcal{L} -estructura. Muestre que $\mathfrak{M} \models \forall x \varphi$ si y sólo si para toda \mathfrak{M} -asignación $i : \{x\} \to M$ se cumple que $(\mathfrak{M}, i) \models \varphi$.

Solución problema 1:

Problema 2.

- (a) (4pts) Con el lenguaje $\mathcal{L} = \{\dot{+}, \dot{=}, E\}$, y la \mathcal{L} -estructura $\mathfrak{M} = (\mathbb{Z}/p\mathbb{Z}, +, =, f)$ donde el símbolo de función unaria E se interpreta como la función $f(x) = x^2$ y los otros símbolos se interpretan de la manera usual, muestre que el conjunto $A = \{\overline{1}\} \subseteq \mathbb{Z}/p\mathbb{Z}$ es definible.
- (b) (8pts) Con el lenguaje $\mathcal{L} = \{\dot{+}, \dot{=}\}$ y la \mathcal{L} -estructura $\mathfrak{M} = (\mathbb{N}_0, +, =)$ donde los símbolos del lenguaje se interpretan de la manera usual, mostrar que todo subconjunto finito de \mathbb{N}_0 es definible.

Solución problema 2:

Problema 3 (Bonus). Sea $A = \{p_1, p_2, ...\}$ el conjunto de todas las letras proposicionales. Muestre que hay a lo más un conjunto consistente maximal que contiene el conjunta A.

Solución problema 3: