CS5560 Knowledge Discovery and Management

Problem Set 3 June 19 (T), 2017

Name:

Rashmi Tripathi

Class ID:

Information Retrieval (Text Mining) with TF-IDF

Consider the following three short documents

Doc #1:

The researchers will focus on computational phenotyping and will produce disease prediction models from machine learning and statistical tools.

Doc #2:

The researchers will develop tools that use Bayesian statistical information to generate causal models from large and complex phenotyping datasets.

The researchers will build a computational information engine that uses machine learning to combine gene function and gene interaction information from disparate genomic data sources.

First remove stop words and punctuation; detect manually multi-word terms (using N-Gram or POS Tagging/Chunking); parse manually the documents and select the terms from the given 3 documents and created the dictionary (list of terms),

b) Create the document vectors by computing TF-IDF weights. Show how to compute the TF-IDF No el time weights for terms. For each form of weighting list the document vectors in the following formal

1 110 00 000 1-	Term1	Term2	Term3	Term4	Term5	Term6	Term7	Term8
mit DOC	0	3	1	0	0	2	1	0
ternt DOC2 m it DOC3	5	0	0	0	3	0	0	2
wir DOC3	3	0	4	3	4	0	0	5

After stop words and functuation removal :-Doc 1 ? Researchers focus computational phenotyping preduce disease prediction models [machine learning] (Startical foods) - Using N Grams

Doc 2: Researchers develop tools Bayesian stastical information generale council models large complex phenotyping datasets.

Doc 3: Researchers build computational information ongline [machine learning] combine function gene interaction information disparate genomic gene interaction information disparate genomic

S'NO Word DOCI DOCZ DOCZ TE 1 TE	-IDF	
Terms > Resembles Doct Day Doct Day Doct Day Sian 1	0.09 1	Dox 3
Term 2 huild =0.09 0	0.04	
Tem3 Caruel 1	0	= 0.03
Temy combine	000	10
5 complex 1 0.07 0	0	003
6 computational 1 1 = 1/10 = 50 000	0.00	10
7 = 0.01 @ 000 0.02	0	0.03
2 0 0	0	0.03
dalasets 1 0.09 0	0.0	40
9 disease 1 =1(10 0.09 6.07 0.05		
ergine 1	10	
11 gene 2 - Marie 0	0	0.03
42 genomic	0	0.62
13 - information 1 2 0.09 0.13 0	0	0.03
wan 14 interaction 1 007 0	80	
large 1 009 0	0	0.63
> 16 Machine Learning 1 1 001 @ 007 0.69	0.0	
17 models 1 1 0.1 0.08		0.03
18 phenotypis 1 1 0:1 0:05 002	002	- 0
13 prediction 1	0	0
20 produce 1 0.1 005		0
21 Researces 1 1 1 0.1 0.03 0.07 0	0	0.03
22 Sources 1 Or O	0	0.63
23 - 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		
24 tools 1 1 01 0.03 0.02	002	
25 disparale 1 0 0 8.67 0	00	03
SVM= 10 SUM=15 15	0 1	0.63