

Mutual Wasserstein Discrepancy Minimization for Sequential Recommendation

Ziwei Fan*, Zhiwei Liu†, Hao Peng§, Philip S. Yu*

*Department of Computer Science, University of Illinois Chicago, Chicago, USA

†Salesforce AI Research, Palo Alto, USA

§School of Cyber Science and Technology, Beihang University, Beijing, China

https://github.com/zfan20/MStein

Background

- Sequential Recommendation (SR) models the dynamic user behaviors.
- Self-supervised Sequential Recommendation.

Motivation 1

- Data Augmentations are stochastic
 - Sampling from augmentation distributions with uncertainty.

(a) Random

Sequence Augmentation

Motivation 2

- Existing methods mainly adopt the InfoNCE as contrastive learning loss
 - Based on KL-divergence to measure information gain.
- Several limitations of KL-divergence
 - Asymmetrical estimation.
 - Exponential need of samples.
 - Training instability.

InfoNCE is based on KL-divergence

- Augmented samples. $(x_a^{u_i}, x_b^{u_i})$
- When the batch size N grows larger, we can better approximate the mutual information.

$$\mathcal{L}_{cl} \geq \mathbb{E}_{\mathcal{S}^{u_i} \in \mathcal{B}} - D_{\text{KL}} \left(p(x_a^{u_i}), p(x_b^{u_i}) \right) + \log(2N - 1)$$

$$\mathbb{E}_{\mathcal{S}^{u_i} \in \mathcal{B}} - I \left(x_a^{u_i}, x_b^{u_i} \right) + \log(2N - 1),$$

$$I\left(x_a^{u_i}, x_b^{u_i}\right) \ge \log(2N-1) - \mathcal{L}_{cl}$$

Limitations of KL-divergence

- Asymetrical Estimation $D_{\text{KL}}\left(p(x_a^{u_i}), p(x_b^{u_i})\right)$ and $D_{\text{KL}}\left(p(x_b^{u_i}), p(x_a^{u_i})\right)$
 - To measure similarity for one pair, we need two distances.
- Exponential Need of Sample Size [1,2]
- Training Instability
 - Infinite KL-divergence When $p(x_b^{u_i}) \approx 0$,
 - The randomness of augmentations is large.
 - User sequences are easily broken.

Propose an alternative loss

Uncertainty consideration.

More robust.

More efficient in the need of number of samples.

Wasserstein Discrepancy Measurement

Negative 2-Wasserstein Distance as the alternative

$$I_{W_2}\left(x_a^{u_i}, x_b^{u_i}\right) \stackrel{\text{def}}{=} -W_2(x_a^{u_i}, x_b^{u_i}) \propto \frac{p(x_a^{u_i} | x_b^{u_i})}{p(x_b^{u_i})},$$

$$\mathbb{E}_{\mathcal{S}^{u_i} \in \mathcal{B}} \log \frac{\exp \left(-W_2(\mathbf{h}_a^{u_i}, \mathbf{h}_b^{u_i})\right)}{\exp \left(-W_2(\mathbf{h}_a^{u_i}, \mathbf{h}_b^{u_i})\right) + \sum_{j \in S_{\mathcal{B}}^-} \exp \left(-W_2(\mathbf{h}_a^{u_i}, \mathbf{h}^j)\right)},$$

$$-W_2(\mathbf{h}_a^{u_i},\mathbf{h}_b^{u_i}) \ = \ -\left(||\mu_{x_a^{u_i}}-\mu_{x_b^{u_i}}||_2^2 + ||\Sigma_{x_a^{u_i}}^{1/2}-\Sigma_{x_b^{u_i}}^{1/2}||_F^2\right),$$

Exact Optimization of Alignment and Uniformity

Distribution Alignment

$$||\mu_{x_a^{u_i}} - \mu_{x_b^{u_i}}||_2^2 + ||\Sigma_{x_a^{u_i}}^{1/2} - \Sigma_{x_b^{u_i}}^{1/2}||_F^2,$$

Distribution Uniformity

$$\log \sum \exp \left(||\mu_{x_a^{u_i}} - \mu_{x_b^{u_j}}||_2^2 \right) + \log \sum \exp \left(||\Sigma_{x_a^{u_i}}^{1/2} - \Sigma_{x_b^{u_j}}^{1/2}||_F^2 \right)$$

Experiments

- Dataset
 - Amazon Reviews
- Last item as testing, second last item as validation
- User as a sequence (sorted by time)
- All items ranking

Table 2: Datasets Statistics.

Dataset	#users	#items	#interactions	density	avg. interactions per user
Beauty	22,363	12,101	198,502	0.05%	8.3
Toys	19,412	11,924	167,597	0.07%	8.6
Tools	16,638	10,217	134,476	0.08%	8.1
Office	4,905	2,420	53,258	0.44%	10.8

Overall Comparisons

Dataset	Metric	BPRMF	Caser	SASRec	BERT4Rec	STOSA	CL4Rec	DuoRec	CoSeRec	CoSeRec(WDM)	MStein	Improv.
Beauty	Recall@1	0.0082	0.0112	0.0129	0.0119	0.0193	0.0156	0.0158	0.0188	0.0189	0.0220	+14.39%
	Recall@5	0.0300	0.0309	0.0416	0.0396	0.0504	0.0538	0.0505	0.0508	0.0524	0.0551	+2.24%
	NDCG@5	0.0189	0.0214	0.0274	0.0257	0.0351	0.0349	0.0310	0.0351	0.0359	0.0392	+11.69%
	Recall@10	0.0471	0.0407	0.0633	0.0595	0.0707	0.0726	0.0685	0.0738	0.0760	0.0774	+4.78%
	NDCG@10	0.0245	0.0246	0.0343	0.0321	0.0416	0.0412	0.0375	0.0425	0.0435	0.0463	+9.00%
	MRR	0.0216	0.0231	0.0291	0.0294	0.0360	0.0356	0.0325	0.0365	0.0368	0.0398	+9.11%
Tools	Recall@1	0.0062	0.0056	0.0103	0.0059	0.0120	0.0112	0.0108	0.0112	0.0114	0.0144	+20.10%
	Recall@5	0.0216	0.0129	0.0284	0.0189	0.0312	0.0314	0.0304	0.0318	0.0344	0.0334	+8.17%
	NDCG@5	0.0139	0.0091	0.0194	0.0123	0.0217	0.0208	0.0201	0.0216	0.0230	0.0242	+11.11%
	Recall@10	0.0334	0.0193	0.0427	0.0319	0.0468	0.0404	0.0401	0.0453	0.0487	0.0472	+4.06%
	NDCG@10	0.0177	0.0112	0.0240	0.0165	0.0267	0.0226	0.0234	0.0260	0.0276	0.0286	+6.90%
	MRR	0.0154	0.0106	0.0207	0.0160	0.0226	0.0212	0.0202	0.0223	0.0234	0.0248	+9.90%
	Recall@1	0.0084	0.0089	0.0193	0.0110	0.0240	0.0220	0.0215	0.0222	0.0228	0.0266	+10.73%
	Recall@5	0.0301	0.0240	0.0551	0.0300	0.0577	0.0617	0.0580	0.0584	0.0616	0.0637	+3.17%
Toys	NDCG@5	0.0194	0.0210	0.0377	0.0206	0.0412	0.0424	0.0401	0.0408	0.0426	0.0457	+7.78%
	Recall@10	0.0460	0.0262	0.0797	0.0466	0.0800	0.0764	0.0784	0.0791	0.0852	0.0845	+6.50%
	NDCG@10	0.0245	0.0231	0.0456	0.0260	0.0481	0.0454	0.0461	0.0474	0.0502	0.0524	+8.91%
	MRR	0.0216	0.0221	0.0385	0.0244	0.0415	0.0417	0.0400	0.0405	0.0425	0.0453	+8.67%
Office	Recall@1	0.0073	0.0069	0.0198	0.0137	0.0234	0.0230	0.0221	0.0245	0.0267	0.0277	+13.33%
	Recall@5	0.0214	0.0302	0.0656	0.0485	0.0677	0.0709	0.0665	0.0718	0.0703	0.0740	+3.13%
	NDCG@5	0.0144	0.0186	0.0428	0.0309	0.0461	0.0471	0.0456	0.0483	0.0485	0.0512	+5.93%
	Recall@10	0.0306	0.0550	0.0989	0.0848	0.1021	0.1091	0.1005	0.1024	0.1052	0.1155	+5.96%
	NDCG@10	0.0173	0.0266	0.0534	0.0426	0.0572	0.0594	0.0556	0.0598	0.0597	0.0627	+4.90%
	MRR	0.0162	0.0268	0.0457	0.0408	0.0502	0.0511	0.0482	0.0516	0.0519	0.0529	+2.53%

- CoSeRec(WDM) has the output embedding: $[mean_emb; ELU(cov_emb) + 1].$
- Better than CoSeRec with SASRec as backbone.

Overall Comparisons

	Metric	BPRMF	Caser	SASRec	BERT4Rec	STOSA	CL4Rec	DuoRec	CoSeRec	CoSeRec(WD	1) MStein	Improv.
	Recall@1	0.0082	0.0112	0.0129	0.0119	0.0193	0.0156	0.0158	0.0188	0.0189	0.0220	-14.39%
	Recall@5	0.0300	0.0309	0.0416	0.0396	0.0504	0.0538	0.0505	0.0508	0.0524	0.0551	+2.24%
Doouter	NDCG@5	0.0189	0.0214	0.0274	0.0257	0.0351	0.0349	0.0310	0.0351	0.0359	0.0392	+11.69%
Beauty	Recall@10	0.0471	0.0407	0.0633	0.0595	0.0707	0.0726	0.0685	0.0738	0.0760	0.0774	+4.78%
	NDCG@10	0.0245	0.0246	0.0343	0.0321	0.0416	0.0412	0.0375	0.0425	0.0435	0.0463	+9.00%
	MRR	0.0216	0.0231	0.0291	0.0294	0.0360	0.0356	0.0325	0.0365	0.0368	0.0398	+9.11%
	Recall@1	0.0062	0.0056	0.0103	0.0059	0.0120	0.0112	0.0108	0.0112	0.0114	0.0144	-20.10%
	Recall@5	0.0216	0.0129	0.0284	0.0189	0.0312	0.0314	0.0304	0.0318	0.0344	0.0334	+8.17%
Tools	NDCG@5	0.0139	0.0091	0.0194	0.0123	0.0217	0.0208	0.0201	0.0216	0.0230	0.0242	+11.11%
10018	Recall@10	0.0334	0.0193	0.0427	0.0319	0.0468	0.0404	0.0401	0.0453	0.0487	0.0472	+4.06%
	NDCG@10	0.0177	0.0112	0.0240	0.0165	0.0267	0.0226	0.0234	0.0260	0.0276	0.0286	+6.90%
	MRR	0.0154	0.0106	0.0207	0.0160	0.0226	0.0212	0.0202	0.0223	0.0234	0.0248	+9.90%
	Recall@1	0.0084	0.0089	0.0193	0.0110	0.0240	0.0220	0.0215	0.0222	0.0228	0.0266	-10.73%
	Recall@5	0.0301	0.0240	0.0551	0.0300	0.0577	0.0617	0.0580	0.0584	0.0616	0.0637	+3.17%
Toys	NDCG@5	0.0194	0.0210	0.0377	0.0206	0.0412	0.0424	0.0401	0.0408	0.0426	0.0457	+7.78%
Toys	Recall@10	0.0460	0.0262	0.0797	0.0466	0.0800	0.0764	0.0784	0.0791	0.0852	0.0845	+6.50%
	NDCG@10	0.0245	0.0231	0.0456	0.0260	0.0481	0.0454	0.0461	0.0474	0.0502	0.0524	+8.91%
	MRR	0.0216	0.0221	0.0385	0.0244	0.0415	0.0417	0.0400	0.0405	0.0425	0.0453	+8.67%
	Recall@1	0.0073	0.0069	0.0198	0.0137	0.0234	0.0230	0.0221	0.0245	0.0267	0.0277	·13.33%
	Recall@5	0.0214	0.0302	0.0656	0.0485	0.0677	0.0709	0.0665	0.0718	0.0703	0.0740	+3.13%
Office	NDCG@5	0.0144	0.0186	0.0428	0.0309	0.0461	0.0471	0.0456	0.0483	0.0485	0.0512	+5.93%
Office	Recall@10	0.0306	0.0550	0.0989	0.0848	0.1021	0.1091	0.1005	0.1024	0.1052	0.1155	+5.96%
	NDCG@10	0.0173	0.0266	0.0534	0.0426	0.0572	0.0594	0.0556	0.0598	0.0597	0.0627	+4.90%
	MRR	0.0162	0.0268	0.0457	0.0408	0.0502	0.0511	0.0482	0.0516	0.0519	0.0529	+2.53%

- MStein uses STOSA as backbone, is the best.
- It shows that Wasserstein Discrepancy Measurement is effective.

Robustness against Noise Interactions

• In the Beauty dataset, CoSeRec (0.3 noise ratio)has similar MRR with MStein (0.4 noise ratio) -> MStein is more robust.

Batch Size Efficiency

• To achieve similar performances, MStein needs smaller batch sizes.

Improvements Analysis (User)

Benefits long users

Improvements Analysis (Item)

Benefits popular items

Takeaways

- We propose an alternative mutual information measurement based on the Wasserstein distance, with several advantages.
- MStein is more robust and sample efficient.
- MStein improves long users and popular items.

Thanks

Github: https://github.com/zfan20/MStein

