- * Doping: n type and p-type semiconductors
 Modified carrier density
- * Moment of charge (Carrier transport)

 Drift

 Diffusion

Doping

If we add N donor atoms, then density of free electrons = Nd lcm^3

n: density of free electrons
p: density of holes

For pure silicon: $n = p = n_i^2 \implies n \cdot p = n_i^2$ For doped silicon: $n \cdot p = n_i^2$

For n-type Si: n & Nd

P = ni2

Nd

Example:

Add
$$10^{15}$$
 phosphrous atoms

 $\Rightarrow n \approx 10^{15} = Nd \quad lcm^3$
 $p = n_i^2 \approx \frac{n_i^2}{Nd} = \frac{10^{20}}{10^{15}} = 10^5 \quad lcm^3$

Majority carrier

minority carrier

Can holes become majorety carriers?

$$=S_{i}^{\circ}=B=S_{i}^{\circ}$$

$$=S_{i}^{\circ}=B=S_{i}^{\circ}$$

$$=S_{i}^{\circ}=S_{i}^{\circ}$$

$$=S_{i}^{\circ}=S_{i}^{\circ}=S_{i}^{\circ}$$

$$=S_{i}^{\circ}=S_{i}^{\circ}=S_{i}^{\circ}$$

$$=S_{i}^{\circ}=S_{i}^{\circ}=S_{i}^{\circ}$$

$$=S_{i}^{\circ}=S_{i}^{\circ}=S_{i}^{\circ}=S_{i}^{\circ}$$

$$=S_{i}^{\circ}=S_$$

If we add
$$N_a$$
 boron atoms per cm³
 \Rightarrow N_a holes

 $p \stackrel{\sim}{=} N_a$
 $np = n_e^2$
 n_a

Quiz: What happens to nand p in n-type si as temperature increases

$$b = \frac{Nq}{U_{5}}$$

$$U = N^{3}$$

Summary:	~ 10°5-1017 N-type Nd	p-type Na
majority minority	n = Nd p = Nd Nd	p⇒ Na ∩ ≈ <u>ni²</u> Na

* Carrier Transport: Drif & Diffusion

counterforce of c-hitting atoms.
So terminal velocity

Velocity of & in Semi-cond & VXE

$$V = M_n E$$

clectron = 1350 cm²(cv.s)

mobility

Observation:

$$E = \frac{V_B}{L}$$
 Voltage = $-\int \vec{E} dL$

current = charge passing through cross-section in 1 sec.

corrier density

So
$$R = \frac{L}{u_n \cdot w \cdot h \cdot n \cdot q} = \frac{1}{u_n n \cdot q} \frac{L}{A}$$

Current density =
$$I/cm^3$$

 $J_n = U_n Eng Alcm^3$

Total current density =
$$J = (M_n \cdot n.9 + M_p p.9)E$$

(Drift) $\approx 400 \text{ cm}^2 (\text{CV-S})$