Staramillo NOV & 1, 2021 Midterm & for Calculus - based Physics Chapter 4: Bynamics, force and Newton's Laws of Motion 1 A 5 x 105 kg rocket is accelerating straightup. The thrusters produce an upward force of 1.25 ×10°N, and the force of air resistance 15 4.5 XID N downwards. (a) Praw a free - body diagram Including the weight of the rocket, the thrust, and air resistance, (b) What is the nockets acceleration? b) rockets acceleration a) Fret = mai; Fret = T - ar - mg; N = kam m g ar = 1.25 × 10"N - 4.5 × 10"N - (5×105) 19:8 weight force = -mgj a = FN = 311 ×10 × N = = [6.2 M/s] kgm. 1 (2) a football player with mass Toky pushes a player with mass 90 kg (a) According to NeWton's 3rd Law, if the 1st player exerts a force of 700 N on the second player, What is the force the second player extents on the first player? 6 1000 1000 090kg Newton's 3rd law: FAB = -FAB 70K9701 -> < 90K9-700N =-6.3 ×104 N/cg @ arocket sted is de celerated at a rate 200 M/s2, and it has a mass of 2000 kg. There is a constant air resistance torce of 1000N. What additional force is required to give the rocket the de celeration? 1 9 - 1000N Fret=ma FN=p-ma = 2000 kg . - 200 m/k2

= -4 ×105 N+ - 1000 H

= -4 × 10 N

- A 760-kg person is being pulled away from a burning as shown in Fig. 1 (a) Draw a free -body Diagram including the the tension exectors and the woman's weight (b) write dawn on expression for Fret, x. (c) Write down an expression for Friety (d) Assuming Fact = 0, calculate the tension in the two ropes a) tree body diagram b) Fret, x 76 cos (10) = 74.84 76kg.9.8 744.8N Fret, x = [(765in(10))2+(7600(10))2 = 75,998 c) Fret, y Frietry = [(765in(15))2+ 176cos(15))2 76 (03/3) = 27.82
 - d) $F_{net,x} + F_{met,y} = 0$ $F_{x} = 106.6$, $F_{y} = 80.93$

Bhapter 5: Friction, Drag, and Elasticity

(1) Suppose you have a 120 kg wooden crate resting on a wood Floor. The coefficients of static and kinetic friction are 0.5 and 0.3 respectively.

(a) What maximum force can you exert horizontally on the create who moving it? fs = MOX N + mon

b) If you continue to exert this tirce once the crede starts to slip, what will the magnitude of its accoleration then be?

ts accoleration then be?

$$q = F - fk$$

$$Q = \frac{1}{588N} - \frac{352.8N}{352.8N} = \frac{352.8N}{120 kg} = \frac{1.96 \text{ H}}{52}$$

12) Suppose a skier (Fig2) is sliding down a slope with an incline of 25 degrees. If the coefficient of kinetic friction is O.I what is the skier's aceleration?

3 Prag Force: Suppose the skier reaches a top speed of 40 m/s. If his area is 0.75m², the density of air is 1.225 kg/m³ and C = 0.75, what is the magnitude of the dragforce in Mentans?

To = \frac{1}{2}CpAv²

$$F_{p} = \left(\frac{1}{2}\right)(0.75)\left(1.225 \frac{kg}{m^{3}}\right)(0.75m^{2})\left(40 \frac{M}{5}\right)^{2} \frac{(kg \cdot M^{2} \cdot M^{2})^{2}}{M^{3} S^{2}}$$

$$= \frac{13.78 \text{ N}}{M^{3} S^{2}}$$

To the 15 the least state beam decreased in 3 - 1 tie the 4 - 5 - matrix

(A) Chapley 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1 Chapterle: Uniform Circular Motion and a pitcher in baseball pitches a ball at 144 km phr, and the ball rotates of	wound
his arm at avadius of 0.5m. What is the angular velocity of the ball as he the in Fadians per sond.	
V= Y W (144 that \ 1800 M \ 1800 S) (1000 M) (10	
N= 40 m/s	
= V = 40 m/s = [80 v/s]	
2) What is the ideal banking angle for a gentle turn of 0.9 km radius on a his with a 120 km phy speed limit, assuming everyone travels at the limit? 0.9 km.	ghway
V = 0.9 km = 900 m fano = 12	1000m
V = 120 Kmph = 33.3m/s Fg	P.C.
$\theta = \frac{1}{2}$ $\theta = \tan^{2}\left(\frac{33.3 \text{m/s}}{900 \text{m} \cdot 9.8 \text{m/s}^{2}}\right) \qquad \frac{m^{2}}{8^{2}}$	52
[0 = 7.16]	

(3) Two race cars driviers routinely navigate a turn as shown in Fig 3 (200)
(a) Which path may be taken at a higher speed, if both paths correspond to the Same force of friction and centripetal force?

(b) suppose path I has a radius of curvature of 400 m, and path 2 has a radius of curvature of 400 m, and path 2 has a radius of curvature of force of friction balances the centripetal force, what are the tangential velocities of each race car?

a) path 2

b) path 1

your

path 2

ROOM

ME = 1.0 TV = V.W

w = angular velociter

path1 = V = r.W

> V = 400 M. W

path 2

V = 800m. W