

Студент

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Робототехники и комплексной автоматизации

КАФЕДРА Системы автоматизированного проектирования (РК-6)

ОТЧЕТ О ВЫПОЛНЕНИИ ЛАБОРАТОРНОЙ РАБОТЫ

по дисциплине: «Вычислительная математика»

Караф Сармат Майк

Группа	РК6-52Б					
Тип задания	лабораторная работа Интерполяция в условиях измерений с неопределенностью					
Тема лабораторной работы						
Constraint		Kanah C.M				
Студент	подпись, дата	 Караф С.М. фамилия, и.о.				
Преподаватель		Першин А.Ю				
	подпись, дата	фамилия, и.о.				

Москва, 2021 г.

Оглавление

	Зада	ание на лабораторную работу	3
	Цел	ь выполнения лабораторной работы	5
	Выг	полненные задачи	7
	1.	Интерполяция кубическими сплайнами (Базовая часть)	7
۲	1.1	Функция коэффициентов кубического сплайна	7
	1.2	Расчёт кубического сплайна и производная кубического сплайна	8
l	1.3	Построение аппроксимирующую зависимость уровня поверхности	9
v	0 2.	Влияние погрешностей на интерполяцию (Продвинутая часть)	11
ſ	2.1	Функция возвращение значение i –го базисного полинома Лагранжа	11
١	2.2	Функция интерполяционного полинома Лагранжа	11
	2.3	Анализ выявление влияния погрешности на интерполяцию	12
•	a.	Генерация 1000 векторов со случайными величинами	12
	b.	Интерполяция Лагранжа со случайной величиной	12
	c.	Построение добротной полосы	13
	d.	Усреднённый интерполлянт	14
	e. '	Чувствительные участки к погрешностям	15
5	2.4	Погрешность значений ординат $\mathbf{h_i}$	15
ľ	2.5	Влияние погрешности на интерполяцию кубическим сплайном	17
-	Закл	почение	21
	Спи	сок использованных исочников	22

Задание на лабораторную работу

Задача 5 (интерполяция кубическими сплайнами)

Требуется (базовая часть):

- 1. Разработать функцию qubic_spline_coeff(x_nodes, y_nodes), которая посредством решения матричного уравнения вычисляет коэффициенты естественного кубического сплайна.
- 2. Написать функции qubic_spline(x, qs_coeff) и d_qubic_spline(x, qs_coeff), которые вычисляют соответственно значение кубического сплайна и его производной в точке х
- 3. Используя данные в таблице 1, требуется построить аппроксимацию зависимости уровня поверхности жидкости h(x) от координаты x (см.рисунок 1) с помощью кубического сплайна и продемонстрировать ее на графике вместе с исходными узлами.

Таблица 1: Значения уровня поверхности вязкой жидкости (рис.1)

i	1	2	3	4	5	6	7	8	9	10	11
x_i	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1
h_i	3.37	3.95	3.73	3.59	3.15	3.15	3.05	3.86	3.60	3.70	3.02

Требуется (продвинутая часть):

- 1. Разработать функцию $l_i(i, x, x_nodes)$, которая возвращает значение i —го базисного полинома Лагранжа, заданного на узлах с абсциссами x_nodes , в точке x.
- 2. Написать функцию $L(x, x_nodes, y_nodes)$, которая возвращает значение интерполяционного полинома Лагранжа, заданного на узлах с абсциссами x_nodes и ординатами у nodes, в точке x.
- 3. Известно, что при измерении координаты x_i всегда возникает погрешность, которая моделируется случайной величиной с нормальным распределением с нулевым математическим ожиданием и стандартным

отклонением 10^{-2} .Требуется провести следующий анализ, позволяющий выявить влияние этой погрешности на интерполяцию:

- а. Сгенерировать 1000 векторов значений $[\tilde{x}_1, ..., \tilde{x}_{11}]^T$, предполагая, что $\tilde{x}_i = x_i + Z$, где x_i соответствует значению в таблице 1 и Z является случайной величиной с нормальным распределением с нулевым математическим ожиданием и стандартным отклонением 10^{-2} .
- b. Для каждого из полученных векторов построить интерполянт Лагранжа, предполагая, что в качестве абсцисс узлов используются значения \tilde{x}_i , а ординат h_i из таблицы 1. В результате вы должны иметь 1000 различных интерполянтов
- с. Предполагая, что все интерполянты представляют собой равновероятные события, построить такие функции $\tilde{h}_l(x)$ и $\tilde{h}_u(x)$, где $\tilde{h}_l(x) < \tilde{h}_u(x)$ для любого $x \in [0; 1]$, что вероятность того, что значение интерполянта в точке x будет лежать в интервале [$\tilde{h}_l(x)$; $\tilde{h}_u(x)$] равна 0.9.
- d. Отобразить на едином графике функции $\tilde{h}_l(x)$, $\tilde{h}_u(x)$, усредненный интерполянт и узлы из таблицы 1.
- е. Какие участки интерполянта и почему являются наиболее чувствительными к погрешностям?
- 4. Повторить анализ, описанный в предыдущем пункте, в предположении, что координаты x_i вам известны точно, в то время как измерения уровня поверхности h_i имеют ту же погрешность, что и в предыдущем пункте. Изменились ли выводы вашего анализа?
- 5. Повторить два предыдущие пункта для случая интерполяции кубическим сплайном. Какие выводы вы можете сделать, сравнив результаты анализа для интерполяции Лагранжа и интерполяции кубическим сплайном?

Цель выполнения лабораторной работы

Цель выполнения лабораторной работы — **Изучение** методаминериоляции кубическим сплайном (базовая часть) и Лагранжа (продвинутая часть). Проанализировать работу этих методов при варьировании исходных параметров, разработав программное обеспечение на языке Python.

Выполненные задачи

- 1. Разработана функция qubic_spline_coeff(x_nodes, y_nodes), которая посредством решения матричного уравнения вычисляет коэффициенты естественного кубического сплайна.
- 2. Разработана функция $L(x, x_nodes, y_nodes)$, которая возвращает значение интерполяционного полинома Лагранжа, заданного на узлах с абсциссами x_nodes и ординатами y_nodes , в точке x.
- 3. Используя данные из таблицы 1, была построена аппроксимирующая зависимость уровня поверхности жидкости h(x) от координаты x с помощью кубического сплайна и продемонстрирована на графике вместе с исходными узлами.
- 4. Разработана функция $l_i(i, x, x_nodes)$, которая возвращает значение i —го базисного полинома Лагранжа, заданного на узлах с абсциссами x_nodes , в точке x.
- 5. Разработана функция $L(x, x_nodes, y_nodes)$, которая возвращает значение интерполяционного полинома Лагранжа, заданного на узлах с абсциссами x_nodes и ординатами у nodes, в точке x.
- 6. Формированы 1000 векторов значений $[\tilde{x}_1, ..., \tilde{x}_{11}]^T$, предполагая, что $\tilde{x}_i = x_i + Z$, где x_i соответствует значению в таблице 1 и Z является случайной величиной с нормальным распределением с нулевым математическим ожиданием и стандартным отклонением 10^{-2} .
- 7. Были построены для каждого из полученных векторов интерполянт Лагранжа.

- 8. Показали на едином графике функции $\tilde{h}_l(x)$, $\tilde{h}_u(x)$, усредненный интерполянт и узлы из таблицы 1.
- 9. Повторили анализы, описанный в 3 пункте, в предположении, что координаты x_i вам известны точно, в то время как измерения уровня поверхности h_i имеют ту же погрешность, что и в предыдущем 3 пункте.
 - 10. Повторили 3 и 4 пункты для случая интерполяции кубическим сплайном.

1. Интерполяция кубическими сплайнами (Базовая часть)

1.1. Функция коэффициентов кубического сплайна

Рассмотрим формулу кубического сплайна:

$$S_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3,$$
 (1.1)

Нам нужно найти коэффициенты b, c, d, для этого разработаем функцию qubic_spline_coeff(x_nodes, y_nodes), которая по средству решении матричного уравнения вычислит коэффициенты кубического сплайна.

$$\begin{bmatrix} 1 & 0 & \cdots & \cdots & \cdots & 0 \\ h_1 & 2(h_2 + h_1) & h_2 & 0 & \cdots & 0 \\ 0 & h_2 & 2(h_3 + h_2) & 2 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & h_{n-2} & 2(h_{n-2} + h_{n-1}) & h_{n-1} \\ 0 & \cdots & \cdots & \cdots & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ \vdots \\ c_{n-1} \\ c_{n-2} \end{bmatrix} =$$

$$\begin{bmatrix} \frac{3}{h_2}(a_3-a_2)-\frac{3}{h_1}(a_2-a_1)\\ \frac{3}{h_3}(a_4-a_3)-\frac{3}{h_2}(a_3-a_2)\\ \vdots\\ \frac{3}{h_{n-1}}(a_n-a_{n-1})-\frac{3}{h_{n-2}}(a_{n-1}-a_{n-2})\\ 0\\ \text{кого иссать 6 муз месать 6 муз муз муз (Таблица 1)} \end{bmatrix}$$

Из матрицы (1.2) можно найти коэффициенты с (см. листинг 1.1)

Листинг 1.1 (Код решения матричного уравнения, нахождение коэффициентов с)

```
for i in range(0, len(x I) - 2): # подсчёт главной диагонали
    k_{ser.append(2 * (h_i[i + 1] + h_i[i]))}
k ser.append(1)
k ser = np.diag(k ser, k=0) # правая диагональ
k_{max} = np.diag(h_i, k=1) # главная диагональ k_{min} = np.diag(h_i, k=-1) # левая диагональ
x_{matr} = k_{ser} + k_{max} + k_{min} + объединение диагоналей в матрицу
for i in range(1, 10):
    x matr[0][i] = 0
    x matr[10][i] = 0
for i in range(0, len(x_I) - 2): # матрица a= F(x)
    a matr.append(((3 / h i[i + 1]) * (h I[i + 2] - h I[i + 1])) - ((3 / h i[i])
 (h I[i + 1] - h I[i])))
a matr.append(0)
x matr = np.linalg.inv(x matr) # инвертирование матрицы а
c_{koef} = np.dot(x_{matr}, a_{matr} # Перемножение матрицы, получение коэффициентов с
c koef = c koef.tolist()
```

В реализации кода используем $c_{koef} = c_{koef.tolist()}$, чтобы перезаписать c_{koef} из матрицы в список.

После нахождения коэффициентов с, высчитаем остальные коэффициенты по формулам (1.3), (1.4). (см. листинг 1.2)

$$d_i = \frac{c_{i+1} - c_i}{3h_i},\tag{1.3}$$

$$b_i = \frac{1}{h_i}(a_{i+1} - a_i) - \frac{h_i}{3}(c_{i+1} - 2c_i), \tag{1.4}$$

Листинг 1.2 (Код расчёта коэффициентов b, d)

```
for i in range(0, len(x_I) - 1): # расчёт коэффициентов b, d
    d_koef.append(((c_koef[i + 1] - c_koef[i]) / (3 * h_i[i])))
    b_koef.append(((h_I[i + 1] - h_I[i]) / h_i[i]) - ((h_i[i] * (c_koef[i + 1] +
2 * c_koef[i])) / 3))
```

Результатом функции qubic_spline_coeff(x_nodes, y_nodes) должен быть объединение всех коэффициентов в одну матрицу, в итоге функция возвращает $(N-1)\times 3$ матрицу, где N количество узлов интерполяции. (см. листинг 1.3)

```
Листинг 1.3 (Peзультат функции qubic_spline_coeff(x_nodes, y_nodes))

coef = np.r_["0,2", b_koef, c_koef, d_koef] # объединение всех коэффициентов в
одну матрицу
return coef # результат функции
```

1.2. Расчёт кубического сплайна и производная кубического сплайна

Для расчёта кубического сплайна воспользуемся формулой (1.1) и так же найдем производную кубического сплайна, получим:

$$S'(x) = b_i x + 2c_i (x - x_i) + 3d_i (x - x_i)^2$$
 (1.5)

Разработаем функции вычисления кубического сплайна qubic_spline(x, qs_coeff) и производную кубического сплайна d_qubic_spline(x, qs_coeff). (см. листинг 1.5 и 1.6) добавив проверку на индексацию, чтобы принятый x в функции находились в промежутке $[x_0, ..., x_i]$, где значение $[x_0, ..., x_i]$ значение с таблицы 1. (см. листинг 1.4)

Листинг 1.4 (Проверка индексации для указанных х)

```
for i in range(0, len(\times I) - 1): # x в промежутке от x 0 до x i
    if x_I[i] \le x < x_I[i + 1]:
        ind = i
       break
if x \ge x_I[len(x_I) - 1]: # x больше x_i
    ind = len(x_I) - 2
if x <= x_I[0]:  # х меньше х 0
    ind = 0
Листинг 1.5 (Код функции qubic_spline(x, qs_coeff))
def qubic spline(x, qs coeff, x_I, h_I):
                                       # х в промежутке от х 0 до х і
    for i in range (0, len(x I) - 1):
        if x I[i] \le x < x_{I}[i + 1]:
            ind = i
            break
    if x \ge x I[len(x I) - 1]: # x больше x i
        ind = len(x_I) - 2
    if x <= x I[0]: # x меньше x 0
        ind = 0
        # расчёт кубического сплайна
    return h I[ind] + gs coeff[0][ind] * (x - x I[ind]) + (gs coeff[1][ind] * (x
- \times I[ind]) \xrightarrow{**} 2) + (gs coeff[2][ind] * (x - x <math>\overline{I}[ind]) ** 3)
Листинг 1.6 (Код функции qubic_spline(x, qs_coeff))
def d qubic spline(x, gs coeff, x I):
    for i in range (0, len(x I) - 1):
                                         # х в промежутке от х 0 до х і
        if x I[i] \le x < x I[i + 1]:
             index = i
    if x \ge x I[len(x I) - 1]: # x больше x i
        index = len(x I) - 2
    if x \le x I[0]:
                      # х меньше х 0
        # расчёт производной кубического сплайна
    return qs coeff[0][index] + 2 * qs <math>coeff[1][index] * (x - x I[i]) + 3 *
gs coeff[2][index] * (x - x I[index]) ** 2
```

Результаты функций qubic_spline(x, qs_coeff) и d_qubic_spline(x, qs_coeff) являются значение кубического сплайна в переданной точке х

1.3. Построение аппроксимирующую зависимость уровня поверхности

Для четкого построение аппроксимирующей функции нужно взять больше точек. Поэтому воспользуемся операцией $o = \text{np.arange}(x_I[0], x_I[-1] + x_I[-1] / 100, x_I[-1] / 100)$, что создает нам массив из 101 элементов, которые находятся в промежутке [0;1] и с шагом 0.01, затем мы этот массив передаем в функцию qubic_spline(x, qs_coeff). (см. листинг1.7)

При помощи полученных результатов кубического сплайна в точках можно построить аппроксимирующую функцию используя библиотеку matplotlib. (см. листинг1.8)

Листинг 1.7 (Расчёты кубического сплайна)

```
o = np.arange(x_I[0], x_I[-1] + x_I[-1] / 100, x_I[-1] / 100) # массив от 0 до 1 for i in range(101): # получение расчётов кубического сплайна s.append(qubic_spline(o[i], gs_coeff, x_I, h_I))
```

Листинг 1.8 (Отображение аппроксимирующей функции с узлами из таблицы)

```
plt.scatter(x_I, h_I) # построение узлов со знач. из таблицы plt.plot(o, s) # построение аппроксимирующей функции plt.grid() plt.show() # отображение аппроксимирующей функции с узлами из таблицы
```

На рисунке 1 изображён результат работы метода кубического сплайна, проходящего через узлы из таблицы 1.

Рис. 1: кубический сплайн, проходящий через узлы из таблицы 1.

2. Влияние погрешностей на интерполяцию (Продвинутая часть)

2.1. Функция возвращение значение і -го базисного полинома Лагранжа

Для разработки функции $l_i(i, x, x_nodes)$, которая возвращает значение i-го базисного полинома Лагранжа, на заданных узлах с абсциссами x_nodes , в точке x, воспользуемся формулой (2.1). (см. листинг2.1)

$$l_i(x) = \prod_{j=0, i \neq j}^{n} \frac{x - x_j}{x_i - x_j}$$
 (2.1)

Листинг 2.1 (Код функции l_i(i, x, x_nodes))

```
 \begin{array}{l} \text{def } l\_i(\textbf{i},\textbf{x},\textbf{x}\_\textbf{I}): \\ p=1 \\ \text{for } j \text{ in range}(0,\text{len}(\textbf{x}\_\textbf{I})): \\ \text{if } i != j: \\ p *= (\textbf{x} - \textbf{x}\_\textbf{I}[j]) \, / \, (\textbf{x}\_\textbf{I}[i] - \textbf{x}\_\textbf{I}[j]) \, \# \text{расчёт } i\text{-го } \text{базисного } \text{полинома } \text{Лагранжа } \text{return } \text{p} \end{array}
```

Результатом функции является вычисленный і-ый базис полинома Лагранжа.

2.2. Функция интерполяционного полинома Лагранжа

Для разработки функции $L(x, x_nodes, y_nodes)$, которая возвращает значение интерполяционного полинома Лагранжа n-1 степени, заданного на узлах с абсциссами x_nodes и ординатами y_nodes , в точке, воспользуемся формулой (2.2). (см. листинг2.2)

$$L(x) = \sum_{i=0}^{n} y_i l_i(x), \qquad (2.2)$$

Листинг 2.2 (Код функции L(x, x_nodes, y_nodes))

```
 \begin{array}{l} \text{def } L(x,\,x\_I,\,h\_I): \\ L=0 \\ \text{for i in range}(0,\,\text{len}(x\_I)): \\ L+=\,h\_I[i]*\,l\_i(i,\,x,\,x\_I) \\ \text{ теturn } L \end{array}
```

Результатом функции является вычисленный значение интерполяционного полинома Лагранжа n-1 степени

2.3. Анализ выявление влияния погрешности на интерполяцию

а. Генерация 1000 векторов со случайными величинами

Исходя из условия было сформирована 1000 векторов значений $[\tilde{x}_1,\dots,\tilde{x}_{11}]^T$ так что $\tilde{x}_i=x_i+Z$, где x_i значению из таблице 1 и Z случайная величина с нормальным распределением и нулевым мат ожиданием и отклонением 10^{-2} . Для создание погрешности воспользовались операцией z=[random.normalvariate(mu=0, sigma=0.01)], задавая характеристики указанных в условии, что величина с нормальным распределением и нулевым мат ожиданием и отклонением 10^{-2} . Затем заполняем нашу матрицу векторов $\tilde{x}_i=x_i+Z$ (см.листинг2.3). Для удобства пользование округлим наше случайное число.

Листинг 2.3 (Код формирование 1000 векторов со случённым величиной)

```
for i in range(1000): # формирование 1000 векторов x_pog = [] #создание случайной величины z = [random.normalvariate(mu=0, sigma=0.01) for j in range(len(x_I))] for k in range(len(x_I)): z[k] = round(z[k], 5) x_pog.append(x_I[k] + z[k]) # формирование 1000 векторов со случённым величиной vec.insert(i, x pog)
```

В результате будет матрица 1000×11 с исходными $x_i + Z$

b. Интерполяция Лагранжа со случайной величиной

В предыдущем пункте (а) формировали 1000 векторов со случайными величинами, передадим эту матрицу векторов в функцию интерполяционного полинома Лагранжа L(x, x_nodes, y_nodes), с дополнительными иксами суммированных погрешностью, получим матрицу co значениями интерполяционного полинома Лагранжа n-1 степени ДЛЯ каждого x_i (см. листинг2.4)

Листинг 2.4 (Код интерполяции Лагранжа со случайной величиной)

```
for i in range(1000):
    temp = []
    for j in range(101):
        temp.append(L(1 / 101 * j, vec[i], h_I)) # передача x в функция
интерполяции Лагранжа
    L I.insert(i, temp) # Запись значений интерполяции в матрицу
```

Выведем полиномы Лагранжа для 1000 векторов (Рис 2), что абсцисс узлов используются значения x_i , а ординат h_i из таблицы 1

Рис. 2: 1000 интерполлянтов Лагранжа со случайной величиной,

с. Построение добротной полосы

Исходя из условий задания понимаем что функции $\tilde{h}_l(x)$ и $\tilde{h}_u(x)$ границы доверительного интервала, чтобы значение интерполлянта в точке x лежать на интервале $[\tilde{h}_l(x);\tilde{h}_u(x)]$, с вероятность 0.9,надо откинуть первые и последние 50 интерполлянтов. Для этого надо отсортировать массив 1000 интерполлянтов так, для любого $x \in [0;1]$ выполнялось условие $\tilde{h}_l(x) < \tilde{h}_u(x)$. После сортировки $\tilde{h}_l(x)$ соответствует 49 элементу массива, а $\tilde{h}_u(x)$ соответствует 949 лементу массива (см. листинг2.5), затем выведем интерполиянта на (Рис 3)

Дистинг 2.5 (Сортировка и построение $ilde{h}_l(x)$ и $ilde{h}_u(x)$)

Рис. 3: Интерполянты $\tilde{h}_l(x)$ и $\tilde{h}_u(x)$.

d. Усреднённый интерполлянт

Из предыдущего пункта мы отсортировали наш массив интерполиянтов Лагранжа по условию $\tilde{h}_l(x) < \tilde{h}_u(x)$, т.к. у нас отсортированный массив то усреднённый идитерполиянт соответствует 499 элементу массива (см.листинг2.6). Выведем интерполлянта на (Рис 4)

Листинг 2.5 (построение $\tilde{h}_l(x)$ и $\tilde{h}_{ser}(x)$ и $\tilde{h}_u(x)$)

Рис. 4: Интерполянты $\tilde{h}_l(x)$ и $\tilde{h}_{ser}(x)$ и $\tilde{h}_u(x)$

е. Чувствительные участки к погрешностям.

Проанализировав (Рис 2) можно понять что более чувствительным к погрешностям являются граничные отрезки, т.к. в начале и в конце интерполлянтов Лагранжа базовой полиномы накапливаются паразитные осцилляции. С увеличением точек этот эффект будет увеличиваться из-за накопление паразитных осцилляций. Данную проблему можно решить с помощью интерполяционного узла Чебышева

2.4. Погрешность значений ординат h_i

Как и в предыдущем пункте формируем матрицу из 1000 векторов поменяв значение $\left[\,\tilde{h}_1\,,\dots\,,\tilde{h}_{11}\,\right]^T$, так что $\tilde{h}_i=h_i+Z$, где h_i значению из таблице 1 и Z случайная величина с нормальным распределением и нулевым мат ожиданием и отклонением 10^{-2} (см.листинг 2.7).

Листинг 2.3 (Код формирование 1000 векторов со случённым величиной для h_i)

```
for i in range(1000):
    x_pog = []
#создание случайной величины
    z = [random.normalvariate(mu=0, sigma=0.01) for j in range(len(x_I))]
    for k in range(len(x_I)):
        z[k] = round(z[k], 5)
        x_pog.append(h_I[k] + z[k])
    vec.insert(i, x pog) # формирование 1000 векторов со случённым величиной
```

Сформированную матрицу 1000×11 передадим в функцию итерполяции Лагранжа, добавив дополнительные точки для более грамотного вывода интерполянтов (см. листинг2.8).

Листинг 2.8 (Код интерполяции Лагранжа со случайной величиной для h_i)

```
for i in range(1000):  
    temp = []  
    for j in range(101):  
        temp.append(L(1 / 101 * j, vec[i], x_I)) # передача h_i в функция интерполяции Лагранжа  
    L I.insert(i, temp) # Запись значений интерполяции в матрицу
```

Построим графики интерполянта Лагранжа (Рис 5)

Рис. 5: интерполянты Лагранжа со случайной величиной для случайной величины h_i

Отсортируем матрицу интерполянтов Лагранжа чтобы наша точка \mathbf{h}_i) попадала в промежуток $[\tilde{h}_l(x)\;;\tilde{h}_u(x)\;]$, с вероятностью 0.9 , после \tilde{h}_l соответствует 49 элементу массива, а \tilde{h}_u соответствует 949 элементу массива(см. листинг2.9), затем выведем интерполлянты на (Рис 6)

Листинг 2.9 (Сортировка и построение $\tilde{h}_l(x)$ и $\tilde{h}_u(x)$)

Рис. 6: Интерполянты $\tilde{h}_l(x)$ и $\tilde{h}_u(x)$ для случайной величины $\mathbf{h}_{\mathbf{i}}$.

Из предыдущего пункта мы отсортировали наш массив интерполлянтов Лагранжа по условию $\tilde{h}_l(x) < \tilde{h}_u(x)$, т.к. у нас отсортированный массив то усреднённый итнтерполлянт соответствует 499 элементу массива.Выведем интерполлянта на (Рис 7)

Рис. 7: Интерполянты $\tilde{h}_l(x)$ и $\tilde{h}_{ser}(x)$ и $\tilde{h}_u(x)$ для случайной величины $\mathbf{h}_{\mathbf{i}}$

Проанализировав (Рис 5) можно что как и на (Рис 2) более чувствительным к погрешностям являются граничные отрезки, т.к. в начале и в конце интерполлянтов Лагранжа базовой полиномы накапливаются паразитные осцилляции.

2.5.Влияние погрешности на интерполяцию кубическим сплайном

По аналогии с 3 пунктом построим графики интерполяции кубическим сплайном, предполагая что абсцисса узлов используются \tilde{x}_i где $\tilde{x}_i = x_i + Z$, Z- Случайная величина, а \tilde{h}_i взят из таблицы 1(Рис 8)

Рис. 8: график кубических сплайнов со случайной величиной x_i Снова построим график интерполяции но теперь предлагая что абсцисса \tilde{x}_i будет взята из таблицы 1, а ордината \tilde{h}_i , где $\tilde{h}_i = h_i + Z$, Z- Случайная величина(Рис 9)

Рис. 9: график кубических сплайнов со случайной величиной h_i

Построим графики интерполяции с функциями $\tilde{h}_l(x)$ и $\tilde{h}_u(x)$, с усредненным кубическим сплайном , предполагая что абсцисса узлов используются \tilde{x}_i где $\tilde{x}_i=x_i+Z$, Z- Случайная величина, а \tilde{h}_i взят из таблицы 1(Рис 10)

Рис. 10: Интерполянты $\tilde{h}_l(x)$ и $\tilde{h}_{ser}(x)$ и $\tilde{h}_u(x)$ для случайной величины x_i .

Построим графики интерполяции с функциями $\tilde{h}_l(x)$ и $\tilde{h}_u(x)$, с усредненным кубическим сплайном , предлагая что абсцисса \tilde{x}_i будет взята из таблицы 1, а ордината \tilde{h}_i , где $\tilde{h}_i=h_i+Z$, Z- Случайная величина(Рис119)

Рис. 11: Интерполянты $\tilde{h}_l(x)$ и $\tilde{h}_{ser}(x)$ и $\tilde{h}_u(x)$ для случайной величины \tilde{h}_i .

Проанализировав (Рис 8) и (Рис 9) заметим, что паразитные осцилляции не накапливается в кубическом сплайне, от сюда следует что для большого количества точек подходит интерполяция методом кубического сплайна.

Заключение

Заключение:

В данной работе мы рассмотрели два метода интерполяции кубическим сплайном и полином Лагранжа, рассмотрели их плюсы и минусы в определённых областях.

При работе с не точными измерениями интерполяция кубическим сплайнам лучше справляется чем интерполяция полинома Лагранжа, т.к можно получить разницу в результате, при незначительных изменений в измерениях

Анализируя интерполянты полинома Лагранжа и интерполяция кубическим сплайнам, заметим, что интерполянты полинома Лагранжа хоть и работает быстрее, но если нужна будет численная точность, то лучше использовать интерполяция кубическим сплайнам, а если нужно отсортировывать в реальном времени, то лучше использовать интерполянты полинома Лагранжа

Исходя из выполненной работы модно понять, что для каждого метода интерполяции есть своя наиболее подходящая область

Список использованных источников

- 1. **Першин А.Ю.** Лекции по курсу «Вычислительная математика». Москва, 2018- 2021. С. 140. ¹.
- 2. Соколов А. П., Першин А. Ю. Инструкция по выполнению лабораторных работ. Москва-2021
- 3. Документация Python [Электронный ресурс] /. Электрон. текстовые дан. 2020. Режим доступа: www.python.org/doc/ (Дата обращения: 25.05.2020);

 $^{^{1}}$ Оформляется согласно ГОСТ 7.1-2003 «Библиографическая запись. Библиографическое описание. Общие требования и правила составления», и ГОСТ 7.82-2001 «Библиографическая запись. Библиографическое описание электронных ресурсов. Общие требования и правила составления»