Series 3

Recall the following Sobolev embedding theorem: Assume $G \subset \mathbb{R}$ is a bounded open interval and let $u \in W^{1,p}(G)$. Then, $\exists \tilde{u} \in C^0(\bar{G})$ such that

$$u = \tilde{u}$$
 a.e. on G

$$\forall x_1, x_2 \in \bar{G} \colon \tilde{u}(x_2) - \tilde{u}(x_1) = \int_{x_1}^{x_2} u'(\xi) \, d\xi \,.$$

1. Sobolev embedding and Poincaré inequality

a) Let $G=(a,b)\subset\mathbb{R}$. In the lecture we have seen that there exists a constant C=C(|G|)>0 such that

$$\forall u \in H_0^1(G) \colon \|u\|_{L^2(G)} \le C \|u'\|_{L^2(G)}.$$

Determine the best constant C_{opt} for this inequality, which indicates that for any $\widehat{C} > C_{opt}$, there exists $v \in H_0^1(G)$ such that $\widehat{C} \|v\|_{L^2(G)} > \|v'\|_{L^2(G)}$. Show that it is sufficient to consider a = 0, b = 1, G = (0, 1).

Hint: Consider the eigenvalue problem for the Laplacian with zero Dirichlet boundary condition:

$$\begin{cases} \Delta u + \lambda u = 0 & \text{in } (0, 1) \\ u(0) = u(1) = 0 \end{cases}$$

It can be shown that in this case all the eigenvalues λ are positive and the smallest eigenvalue λ_1 is given by Rayleigh's formula:

$$\lambda_1 = \min_{\substack{u \in H_0^1(0,1) \\ u \neq 0}} \frac{\|u'\|_{L^2(0,1)}^2}{\|u\|_{L^2(0,1)}^2}.$$

b) Consider the Sobolev embedding $H^1(G) \hookrightarrow L^{\infty}(G)$. Determine a constant C = C(|G|) > 0 such that

$$\forall u \in H^1(G): \quad \|u\|_{L^{\infty}(G)} \le C \|u\|_{H^1(G)}.$$

2. Interpolation error in $L^{\infty}(G)$

a) Let $p \in (1, \infty]$. For G = (0, 1), $u \in W^{1,p}(G)$ and a mesh

$$\mathcal{T} = \{a = x_0 < x_1 < x_2 \cdots x_{N+1} = b\},\$$

show that there exists $\alpha = \alpha(p)$ and a constant C > 0 such that

$$||u - \mathcal{I}_N u||_{L^{\infty}(G)} \le Ch^{\alpha} ||u||_{W^{1,p}(G)},$$

where $h := \max\{h_i : i = 1, ..., N + 1\}$ and where $\mathcal{I}_N u$ denotes the *nodal interpolant* of u, which is defined as

$$\mathcal{I}_N u(x) = \tilde{u}(x_i) + (x - x_i) \cdot \frac{\tilde{u}(x_{i+1}) - \tilde{u}(x_i)}{x_{i+1} - x_i}, \quad \text{if } x \in [x_i, x_{i+1}], \quad i = 0, 1, \dots, N.$$

Why is the interpolant $\mathcal{I}_N: W^{1,p}(G) \to S^1_{\mathcal{T}}$ well-defined?

3. Finite element discretization for the heat equation II

Let $J=(0,T),\ T>0,\ \beta\geq 1,\ G=(0,1)\subset\mathbb{R}$ and $f\in C(\overline{J};L^2(G))$. For any $N,M\in\mathbb{N}$, we set $k=\frac{1}{M}$ and consider the spatial mesh points $x_i=\left(\frac{i}{N+1}\right)^\beta, i=1,2,\ldots,N$. Let V_N be the vector space of continuous functions on G, vanishing at both ends of the interval, and which are linear on each (x_i,x_{i+1}) . For each $i\in\{1,\ldots,N\}$, there is a unique element $\phi_{N,i}$ of V_N satisfying

$$\phi_{N,i}(x_i) = \delta_{i,i}, \quad \forall j \in \{1, \dots, N\}$$

and $\{\phi_{N,i}\}_{1 \le i \le N}$ is a basis of V_N .

We wish to solve the heat equation with zero Dirichlet boundary conditions and with initial value $u_0 \in L^2(G)$,

$$\begin{cases}
\partial_t u(t,x) - \partial_{xx} u(t,x) &= f(t,x) & \text{in } J \times G, \\
u(t,x) &= 0 & \text{on } J \times \partial G, \\
u(0,x) &= u_0(x) & \text{in } G.
\end{cases} \tag{1}$$

As in the previous exercise sheet, we discretize using a ϑ scheme

$$\mathbf{B}_{\vartheta}\underline{u}_{N}^{m+1} = \mathbf{C}_{\vartheta}\underline{u}_{N}^{m} + \underline{\mathbf{F}}_{\vartheta}^{m},$$

with

$$\mathbf{B}_{\vartheta} = \mathbf{M} + k\vartheta\mathbf{A},$$

$$\mathbf{C}_{\vartheta} = \mathbf{M} - k(1 - \vartheta)\mathbf{A},$$

$$\mathbf{F}_{\vartheta}^{m} = k\vartheta\mathbf{F}(t_{m+1}) + k(1 - \vartheta)\mathbf{F}(t_{m}).$$

Here \mathbf{M} and \mathbf{A} are the matrices given by

$$\mathbf{M}_{i,j} = (\phi_{N,i}, \phi_{N,j})_{L^2(G)}, \quad \mathbf{A}_{i,j} = a(\phi_{N,i}, \phi_{N,j}), \quad 1 \le i, j \le N,$$

and F(t) is the column vector given by

$$F_i(t) = (f(t), \phi_{N,i})_{L^2(G)}, \quad 1 \le i \le N.$$

- a) Give the expression of the matrices **M**, **A** and the vector $\underline{F}(t)$ in terms of $h_i := x_i x_{i-1}, i = 1, ..., N+1$ and f.
- b) Modify your code from Series 2, Problem 3 and implement these changes. The template FEM_heat.py contains the solution of Series 2, Problem 3. You will need to modify the functions build_massMatrix, build_rigidityMatrix, build_F, and FEM_theta. The entries of $\underline{F}(t)$ shall be approximated via the following formula: for any $i \in 1, \ldots, N$,

$$F_i(t) = \frac{h_i f(t, \frac{x_{i-1} + x_i}{2})}{3} + (h_i + h_{i+1}) \frac{f(t, x_i)}{6} + \frac{h_{i+1} f(t, \frac{x_i + x_{i+1}}{2})}{3}.$$

- c) Test your code with $\theta = 1$, $\beta = 1, 1.05, 1.2$, $N = 2^l 1$ and $M = 4^l$ with $l = \{2, 3, 4, 5, 6\}$. Study if those numerical schemes converge and report the convergence rates if they converge.
- d) Test your code with $\theta = 0$, $\beta = 1, 1.05, 1.2$, $N = 2^l 1$ and $M = 4^l$ with $l = \{2, 3, 4, 5, 6\}$. Study if those numerical schemes converge and report the convergence rates if they converge. Comment on your result.
- e) Test your code with $\theta = 0$, $\beta = 1, 1.05, 1.2$, $N = 2^l 1$ and $M = 7 \times 4^l$ with $l = \{2, 3, 4, 5, 6\}$. Study if those numerical schemes converge and report the convergence rates if they converge. Comment on your result.

4. A general second-order parabolic problem

Let $a, b \in \mathbb{R}$, a < b, and let G = (a, b), J = (0, 1). Consider the Dirichlet problem with general coefficient functions $\alpha(x), \beta(x), \gamma(x)$

$$\partial_t u - \partial_x (\alpha(x)\partial_x u) + \beta(x)\partial_x u + \gamma(x)u = f(t,x) \qquad \text{in } J \times G$$

$$u = 0 \qquad \text{on } J \times \partial G$$

$$u|_{t=0} = u_0 \qquad \text{in } G,$$
(2)

where $u_0 \in L^2(G)$, $f(t,x) \in L^2(J,H^{-1}(G))$, $\alpha,\gamma \in C(\overline{G})$ and $\beta \in C^1(\overline{G})$ such that with some $\underline{\alpha} > 0$ the bound $\alpha(x) > \underline{\alpha}$ holds for all $x \in G$. The weak formulation is as follows: Find $u \in L^2(J;H_0^1(G)) \cap H^1(J;H^{-1}(G))$ such that $u(0) = u_0$ and $\forall v \in H_0^1(G)$,

$$\frac{d}{dt}(u,v)_{L^2(G)} + a(u,v) = (f,v)_{L^2(G)}.$$
(3)

Here $a(u,v) = \int_G \alpha(x) \partial_x u \partial_x v + \beta(x) (\partial_x u) v + \gamma(x) u v dx$ is a bilinear form. This more general formulation is necessary e.g. for local volatility models.

- a) Prove that there exists $C_1, C_2 > 0$ and $C_3 \ge 0$ such that $a(\cdot, \cdot)$ satisfies the following:
 - 1. $|a(u,v)| \le C_1 ||u||_{H^1(G)} \cdot ||v||_{H^1(G)}$ for any $u, v \in H_0^1(G)$ (Continuity)
 - 2. $a(u, u) \ge C_2 \|u\|_{H^1(G)}^2 C_3 \|u\|_{L^2(G)}^2$ for any $u \in H_0^1(G)$ (Gårding inequality)
- b) Prove that there exists a unique weak solution $u \in L^2(J; H_0^1(G)) \cap H^1(J; H^{-1}(G))$.
- c) Assume further that $\alpha(x) \in C^1(\overline{G})$, $\gamma(x) > 0$ for all $x \in \overline{G}$ and that $f(t, x) \equiv 0$. Prove that if the solution satisfies $u \in C^2(\overline{J \times G})$, then the following holds:

$$u(t,x) \leq \max(0, \max_{x \in \overline{G}} u_0(x)) \quad \text{for any } (t,x) \in \overline{J \times G} \,.$$

d) Under the same assumptions as in the previous subquestion, prove that for any $(t, x) \in \overline{J \times G}$, $|u(t, x)| \leq \max_{x \in \overline{G}} |u_0(x)|$.

Remark: In other words, the $L^{\infty}(\overline{J \times G})$ norm of the (unique) solution is controlled by the $L^{\infty}(\overline{G})$ norm of the initial value.

Due: Wednesday, March 20th, at 2pm.