Homework 5

Aiden Kenny STAT GR5205: Linear Regression Models Columbia University

November 25, 2020

Question 1

Collaborators: None

(a) Let Y be the number of nurses in the hospital and let X be the available faculty and services. The left and middle panels of Figure 1 show the histograms of Y and X, respectively. We see that Y is skewed right, while X appears to be normally-distributed. In addition, the scatterplot of Y vs. X, which is in the third panel of Figure 1, shows that there is a nonlinear relationship between Y and X. All of these indicate that Y is suitable for a data transformation. Specifically, we would like to perform a power transformation on Y.

Figure 1: Histograms of Y and X and a scatterplot of Y vs. X.

(b) The power transformation function, and its inverse, are defined as

$$g_{\lambda}(Y) = \begin{cases} (Y^{\lambda} - 1)/\lambda & \text{if } \lambda \neq 0 \\ \log Y & \text{if } \lambda = 0. \end{cases} \text{ and } g_{\lambda}^{-1}(Y) = \begin{cases} (1 + \lambda Y)^{1/\lambda} & \text{if } \lambda \neq 0 \\ \exp(Y) & \text{if } \lambda = 0. \end{cases}$$

Suppose we have our response vector \mathbf{y} and our observed data \mathbf{X} . We are interested in fitting the model $\mathbf{g}_{\lambda}(\mathbf{y}) = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$, where $\mathbf{g}_{\lambda}(\mathbf{y})$ is the transformed response vector (i.e. the *i*th element is given by $g_{\lambda}(y_i)$), $\mathbb{E}[\boldsymbol{\epsilon}] = \mathbf{0}$, and $\mathrm{Var}[\boldsymbol{\epsilon}] = \sigma^2 \mathbf{I}$. For notational ease, we will denote $\mathbf{g}_{\lambda}(\mathbf{y})$ as \mathbf{g}_{λ} . If we make the further assumption that $\boldsymbol{\epsilon}$ is normally distributed, i.e. $\boldsymbol{\epsilon} \sim \mathrm{N}(\mathbf{0}, \sigma^2 \mathbf{I})$, then our response vector is also normally distributed, where $\mathbf{g}_{\lambda} \sim \mathrm{N}(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I})$. It's density function (and thus it's likelihood function) is given by

$$\begin{split} f(\mathbf{g}_{\lambda} \,|\, \boldsymbol{\beta}, \sigma^2, \lambda) &= \frac{1}{\sqrt{\det(2\pi\sigma^2\mathbf{I})}} \cdot \exp\left(-\frac{(\mathbf{g}_{\lambda} - \mathbf{X}\boldsymbol{\beta})^T \left(\sigma^2\mathbf{I}\right)^{-1} (\mathbf{g}_{\lambda} - \mathbf{X}\boldsymbol{\beta})}{2}\right) \\ &= \frac{1}{(2\pi\sigma^2)^{n/2}} \cdot \exp\left(-\frac{(\mathbf{g}_{\lambda} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{g}_{\lambda} - \mathbf{X}\boldsymbol{\beta})}{2\sigma^2}\right). \end{split}$$

Figure 2: Relevant plots for the Box-Cox transformation of Y.

Since \mathbf{y} is a transformation of \mathbf{g}_{λ} (via g_{λ}^{-1}), we can derive the density for \mathbf{y} as well. Notationally, this result may be somewhat confusing; even though we are finding the density for \mathbf{y} , we will still express the density (partly) in terms of \mathbf{g}_{λ} . It is important to remember that \mathbf{g}_{λ} is a function of \mathbf{y} . Because the *i*th element of \mathbf{g}_{λ} only depends on the *i*th element of \mathbf{y} , the Jacobian will be a diagonal matrix, and so

$$\mathbf{J} = \frac{\partial \mathbf{g}_{\lambda}}{\partial \mathbf{y}} = \operatorname{diag}\left(\frac{\partial g_{\lambda}(y_1)}{\partial y_1}, \dots, \frac{\partial g_{\lambda}(y_n)}{\partial y_n}\right) = \operatorname{diag}(y_1^{\lambda - 1}, \dots, y_n^{\lambda - 1}),$$

and so the density (and thus the likelihood) of y is given by

$$g(\mathbf{y} \mid \boldsymbol{\beta}, \sigma^2, \lambda) = f(\mathbf{g}_{\lambda}(\mathbf{y})) \cdot |\det(\mathbf{J})| = \frac{1}{(2\pi\sigma^2)^{n/2}} \cdot \exp\left(-\frac{(\mathbf{g}_{\lambda} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{g}_{\lambda} - \mathbf{X}\boldsymbol{\beta})}{2\sigma^2}\right) \cdot \prod_{i=1}^n y_i^{\lambda - 1}.$$

The log-likelihood $\ell(\mathbf{y}) = \log g(\mathbf{y})$ is given by

$$\ell(\mathbf{y} \mid \boldsymbol{\beta}, \sigma^2, \lambda) = -\frac{n}{2} \log(2\pi) - \frac{n}{2} \log(\sigma^2) - \frac{(\mathbf{g}_{\lambda} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{g}_{\lambda} - \mathbf{X}\boldsymbol{\beta})}{2\sigma^2} + (\lambda - 1) \sum_{i=1}^{n} \log(y_i).$$

As is standard with maximum likelihood estimation, we now differentiate ℓ with respect to the unknown parameters, set the derivatives to zero, and solve to get the maximum value of ℓ . For now, we are going to leave λ fixed and differentiate with respect to $\boldsymbol{\beta}$ and σ^2 . Doing this for both gives us $\hat{\boldsymbol{\beta}}_{\text{MLE}} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{g}_{\lambda}$ and $\hat{\sigma}_{\text{MLE}}^2 = \mathbf{g}_{\lambda}^T(\mathbf{I} - \mathbf{H})\mathbf{g}_{\lambda}$, where $\mathbf{H} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$ is the hat matrix. It is worth noting that both $\hat{\boldsymbol{\beta}}_{\text{MLE}}$ and $\hat{\sigma}_{\text{MLE}}^2$ are functions of λ . Plugging these values back into ℓ will maximize it with respect to $\boldsymbol{\beta}$ and σ^2 , which means we will only have to maximize it with respect to λ . With some simplification, our new loss function is

$$m(\lambda) := \ell(\mathbf{y} \mid \hat{\boldsymbol{\beta}}_{\mathrm{MLE}}, \hat{\sigma}_{\mathrm{MLE}}^2, \lambda) = -\frac{n}{2} \log (2\pi e n) - \frac{n}{2} \log (\mathbf{g}_{\lambda}^T (\mathbf{I} - \mathbf{H}) \mathbf{g}_{\lambda}) + (\lambda - 1) \sum_{i=1}^n \log(y_i).$$

Ideally, we would differentiate m with respect to λ , set $\partial m/\partial \lambda = 0$, and solve for λ . I was unable to derive a closed form solution for the result, but it is still possible to use graphical techniques or numerical methods to find the optimal value of λ .

We recall that both $\hat{\beta}_{\text{MLE}}$ and $\hat{\sigma}_{\text{MLE}}^2$ are functions of λ , so we cannot know their value until $\hat{\lambda}_{\text{MLE}}$ has been determined. Because of this, as we just showed, the likelihood function can be expressed as a function $m(\lambda)$ that only depends on λ , which can be maximized to find $\hat{\lambda}_{\text{MLE}}$. Once we find $\hat{\lambda}_{\text{MLE}}$, we can use this value to determine $\hat{\beta}_{\text{MLE}}$ and $\hat{\sigma}_{\text{MLE}}^2$.

The left panel of Figure 2 shows a plot of $m(\lambda)$ against λ for values $\lambda \in [-1, 1]$. The log-likelihood is maximized when $\hat{\lambda}_{\text{MLE}} = 0.09$. The middle panel shows the histogram of $g_{0.09}(Y)$, the transformed version of Y, and we can see with this value of λ that \mathbf{g}_{λ} is normally distributed. We can now

(c)