Data Mining 1 Learning Functional Dependencies

For individual project

Functional Dependencies (aka "Determinations" in AI)

Suppose we have a universal relation with attributes A, B, C, ..., each with a set of possible values (e.g., attribute A can have values a1, a2, a3, ...ai)

```
A B C D E F G H...

a1 b3 c2 d5 e7 f3 g1 h6...

a4 b2 c2 d4 e2 f1 g1 h5...

a2 b1 c1 d2 e5 f5 g3 h2...

a1 b3 c3 d5 e6 f4 g1 h8...

...
```

Suppose we are not told the FDs that are manifest (or intended to be manifest) in this universal relation

How can we induce the FDs through a process of "unsupervised" machine learning?

Schlimmer, J. (1993). Efficiently Inducing Determinations: A Complete and Systematic Search Algorithm that Uses Optimal Pruning (1993) http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.2038 Look at the first 6 rows in this universal relation (typically there would be thousands or millions).

```
D
            Е
               F G
                      Н...
   b3 c2 d5 e7 f3 g1 h6...
a.1
               f1 g1 h5...
   b2 c2 d5 e2
a4
      c1 d2 e5 f5 g3 h2...
a2
   b1
   b3 c3 d5 e6 f4 g1 h8...
a.1
   b2 c6 d4 e6 f2 g5 h8...
a4
   b2 c1 d4 e2 f4 g6 h1...
a4
```

What are FDs that are consistent with this very simple example?

```
A \Rightarrow B is consistent with the data (each value of A is associated with the same value of B) ((a1), (b3)), ((a4), (b2)), ((a2), (b1))

A \Rightarrow D no! ((a1), (d5)), ((a4), (d5, d4)), ((a2), (d2))

B \Rightarrow A ((b3), (a1)), ((b2), (a4)), ((b1), (a2))

D \Rightarrow A no! ((d5), (a1, a4)), ...

H \Rightarrow E ((h6), (e7)), ((h5), (e2)), ((h2), (e5)), ((h8), (e6)), ((h1), (e2))

...

D,B \Rightarrow A ((d5,b3), (a1)), ((d5,b2), (a4)), ((d2, b3), (a1)), ((d4, b2), (a4))
```

How do we search through possible FDs that are consistent with a given data set?

A breadth-first search through the possible FD domains: $X \rightarrow Y$

Domain Range (a set of attributes)

- {} Start with the empty domain (level 0)
- $\{\}$ \rightarrow A? Is there only one value of A found in the entire data set?
- $\{\} \rightarrow B$? only one value of B?
- $\{\}$ \rightarrow C? only one value of C?
- $\{\}$ \rightarrow D? only one value of D?
- $\{\}$ \rightarrow E? only one value of E?

.

How do we search through possible FDs that are consistent with a given data set?

A breadth-first search through the possible FD domains: $X \rightarrow Y$

Lots of redundant work (because effectively search permutations)

Pick an ordering, and only expand a node (e.g., B) by attributes that come higher in the ordering (e.g., C,D,E)

Again, what does deciding whether A,B,C \rightarrow D holds? Look through all rows of data and make sure that no (A,B,C) value triple (e.g., (a2,b4,c1) is associated with more than one D value (e.g., D6).

Pick an ordering, and only expand a node (e.g., B) by attributes that come higher in the ordering (e.g., C,D,E)

Pick an ordering, and only expand a node (e.g., B) by attributes that come higher in the ordering (e.g., C,D,E)

Search combinations only to maximum depth

Instead of learning only perfectly consistent FDs, beneficial to learn approximate FDs (almost perfectly consistent)

If parameter *support* = 0.95 then accept A,B,C \rightarrow D (0.98)