Macroeconomics: The Open Economy

Sumit Mishra

IFMR, Sri City

11 November, 2019

Chapter 18

Nominal & Real Exchange Rates

- Nominal Exchange Rate: Price of domestic currency in terms of foreign currency. (E)
 - **Appreciation**: Increase in the value of the domestic currency.
 - **Depreciation**: Fall in the value of the domestic currency.
- **Real Exchange Rate**: Adjust the nominal exchange rate by the relative price levels.

$$\epsilon = rac{ extsf{EP}}{ extsf{P}^*}$$

- *P* is the price index in the local economy.
- P^* is the price index for the foreign country.

The Balance of Payments

Trade Flows + Financial Flows

The Balance of Payments

Trade Flows + Financial Flows

- Current Account:
 - Exports and imports.
 - Net transfers received.
- **Capital Account**: Difference between foreign holdings of domestic assets and domestic holdings of foreign assets.

The Choice between Domestic and Foreign Assets

- Let's say that you have the choice between Indian and Turkish bonds.
 - Suppose that you choose Indian bond.
 - Let i_t be the nominal one-year interest rate. You will get ₹ $(1+i_t)$ next year.

The Choice between Domestic and Foreign Assets

- Let's say that you have the choice between Indian and Turkish bonds.
 - Suppose that you choose Indian bond.
 - Let i_t be the nominal one-year interest rate. You will get $\mathfrak{T}(1+i_t)$ next year.
 - Suppose you choose the Turkish bond.
 - You must purchase Turkish lira. Let exchange rate be E_t .
 - Let i_t^* be the interest rate on the Turkish bond. You will get: $E_t \times (1 + i_t^*)$.
 - Convert this into ₹: $E_t \times (1 + i_t^*) \times (1/E_{t+1}^e)$

The Choice between Domestic and Foreign Assets

- Let's say that you have the choice between Indian and Turkish bonds.
 - Suppose that you choose Indian bond.
 - Let i_t be the nominal one-year interest rate. You will get ₹ $(1+i_t)$ next year.
 - Suppose you choose the Turkish bond.
 - You must purchase Turkish lira. Let exchange rate be Et.
 - Let i_t^* be the interest rate on the Turkish bond. You will get: $E_t \times (1 + i_t^*)$.
 - Convert this into ₹: $E_t \times (1 + i_t^*) \times (1/E_{t+1}^e)$
- The choice depends upon:
 - 1 Difference between interest rates.
 - 2 Expected nominal exchange rate in future.
 - 3 Nominal exchange rate today.

Uncovered Interest Parity

Recall our discussions on choosing between bonds. We assumed that people just care about the expected rate of returns. Therefore, the following relation must hold:

$$(1+i_t) = E_t \times (1+i_t^*) \times \left(\frac{1}{E_{t+1}^e}\right)$$

Uncovered Interest Parity

Recall our discussions on choosing between bonds. We assumed that people just care about the expected rate of returns. Therefore, the following relation must hold:

$$(1+i_t) = E_t \times (1+i_t^*) \times \left(\frac{1}{E_{t+1}^e}\right)$$

This ignores:

- Transaction costs involved.
- Cross-country differential in risk.

Interest Rates and Exchange Rates

We can rewrite

$$(1+i_t) = E_t \times (1+i_t^*) \times \left(\frac{1}{E_{t+1}^e}\right)$$

as

$$(1+i_t) = \frac{(1+i_t^*)}{[1+(E_{t+1}^e - E_t)/E_t]}$$

Interest Rates and Exchange Rates

We can rewrite

$$(1+i_t) = E_t \times (1+i_t^*) \times \left(\frac{1}{E_{t+1}^e}\right)$$

as

$$(1+i_t) = \frac{(1+i_t^*)}{[1+(E_{t+1}^e - E_t)/E_t]}$$

Some magic trick later..

$$i_t pprox i_t^* - rac{E_{t+1}^e - E_t}{E_t}$$

Interest Rates and Exchange Rates

We can rewrite

$$(1+i_t) = E_t \times (1+i_t^*) \times \left(\frac{1}{E_{t+1}^e}\right)$$

as

$$(1+i_t) = \frac{(1+i_t^*)}{[1+(E_{t+1}^e - E_t)/E_t]}$$

Some magic trick later..

$$i_t pprox i_t^* - rac{E_{t+1}^e - E_t}{E_t}$$

The domestic interest rate must be equal to the foreign interest rate minus the expected appreciation rate of the domestic currency.

Example

Buying Brazilian Bonds

- Monthly interest rate on Brazilian bond = 36%
- Monthly interest rate on U.S. bonds = 0.2%
- Shouldn't investor just run to purchase Brazilian bonds?

Example

Buying Brazilian Bonds

- Monthly interest rate on Brazilian bond = 36%
- Monthly interest rate on U.S. bonds = 0.2%
- Shouldn't investor just run to purchase Brazilian bonds?
- The rate of appreciation of Brazilian currency = 34.6%

Example

Buying Brazilian Bonds

- Monthly interest rate on Brazilian bond = 36%
- Monthly interest rate on U.S. bonds = 0.2%
- Shouldn't investor just run to purchase Brazilian bonds?
- The rate of appreciation of Brazilian currency = 34.6%
- The expected returns look much more modest now (1.6% per month).

Chapter 19

The IS Relation in the Open Economy

- The demand for domestic goods:

$$Z \equiv C + I + G - IM/\epsilon + X$$

- The determinants of C, I, G:
 - There shouldn't be any sizeable impact of ϵ on any of these variables.
 - There is no direct (or obvious) link between these variables (C and E or ϵ).

$$\mathsf{IM} = \mathsf{IM}(\mathsf{Y}, \epsilon)$$

- \uparrow Y \Rightarrow \uparrow IM
- $\uparrow \epsilon \Rightarrow \uparrow$ IM

The IS Relation in the Open Economy

- The demand for domestic goods:

$$Z \equiv C + I + G - IM/\epsilon + X$$

- The determinants of C, I, G:
 - There shouldn't be any sizeable impact of ϵ on any of these variables.
 - There is no direct (or obvious) link between these variables (C and E or ϵ).

Putting the Components Together

Equilibrium Output and the Trade Balance

 Domestic output must match the demand

$$Y \equiv Z$$

 Using the components of demand, we get

$$\mathbf{Y} = \mathbf{C} + \mathbf{I} + \mathbf{G} + \mathbf{X}(\mathbf{Y}^*, \epsilon) - \mathbf{IM}(\mathbf{Y}, \epsilon)$$

Equilibrium Output and the Trade Balance

 Domestic output must match the demand

$$Y \equiv Z$$

 Using the components of demand, we get

$$Y = C + I + G + X(Y^*, \epsilon) - IM(Y, \epsilon)$$

- Rise in domestic demand pushes imports up. [Remember: $IM = IM(Y, \epsilon)$]
- The effect of government spending on output is smaller than it would be in a closed economy. Why?

- Rise in domestic demand pushes imports up. [Remember: $IM = IM(Y, \epsilon)$]
- The effect of government spending on output is smaller than it would be in a closed economy. Why?
 - Because the demand relation is flatter than demand relation in the closed economy.
- No impact on exports.

- Rise in domestic demand pushes imports up. [Remember: $IM = IM(Y, \epsilon)$]
- The effect of government spending on output is smaller than it would be in a closed economy. Why?
 - Because the demand relation is flatter than demand relation in the closed economy.
- No impact on exports. Net impact: Trade deficit.

- Rise in domestic demand pushes imports up. [Remember: $IM = IM(Y, \epsilon)$]
- The effect of government spending on output is smaller than it would be in a closed economy. Why?
 - Because the demand relation is flatter than demand relation in the closed economy.
- No impact on exports. Net impact: Trade deficit.

Increase in Foreign Demand

Let there be a rise in foreign output ($\uparrow Y^*$).

- Rise in foreign demand pushes exports up. [Remember: $X = X(Y^*, \epsilon)$]
- The demand for domestic goods also moves up.
- Because domestic demand is up, imports may also increase (but not enough to offset rise in exports).

Increase in Foreign Demand

Let there be a rise in foreign output ($\uparrow Y^*$).

- Rise in foreign demand pushes exports up. [Remember: $X = X(Y^*, \epsilon)$]
- The demand for domestic goods also moves up.
- Because domestic demand is up, imports may also increase (but not enough to offset rise in exports).

Summary: Fiscal Policy

- Changes in domestic fiscal policy:
 - 1 \uparrow Domestic Demand $\Rightarrow \uparrow$ Domestic Output.
 - **2** \uparrow Domestic Demand $\Rightarrow \downarrow$ Trade Balance.

Summary: Fiscal Policy

- Changes in domestic fiscal policy:
 - 1 \uparrow Domestic Demand \Rightarrow \uparrow Domestic Output.
 - 2 ↑ Domestic Demand $\Rightarrow \downarrow$ Trade Balance.
- Shifts in foreign fiscal policy:
 - 1 \uparrow Foreign Demand $\Rightarrow \uparrow$ Domestic Output.
 - **2** \uparrow Foreign Demand \Rightarrow \uparrow Trade Balance.

The Marshall Lerner Condition

$$NX = X(Y^*, \epsilon) - IM(Y, \epsilon)$$

Real depreciation affects trade balance through:

- 1 Exports rise.
- 2 Imports fall.
- 3 The relative price of foreign good in terms of domestic good 1/ ϵ increases.

Fiscal Policy + Exchange Rate Policy

Suppose that economy is running trade deficit, and the government wants to reduce the trade deficit without tinkering with the output.

- Step 1- Achieve a depreciation such that the net exports increase.
- Step 2- Reduce government spending to offset the rise in demand due to rising exports.

Depreciation + Fiscal Contraction worked.

Savings, Investments, and the Current Account Balance

Let's try to see how savings-investment relationship can change when you open up the economy.

- Equilibrium condition: Y = C + I + G + NX

Savings, Investments, and the Current Account Balance

Let's try to see how savings-investment relationship can change when you open up the economy.

- Equilibrium condition: Y = C + I + G + NXwhere $NX = X - IM/\epsilon$.

Savings, Investments, and the Current Account Balance

Let's try to see how savings-investment relationship can change when you open up the economy.

- Equilibrium condition: Y = C + I + G + NXwhere $NX = X - IM/\epsilon$.

$$Y-T-C=I+(G-T)+NX$$

- Let's add two new terms for- net income from abroad (NI) and net transfers from abroad (NT).

$$(Y + NI + NT - T) - C = I + (G - T) + (NX + NI + NT)$$

Savings, Investments, and the Current Account Balance

Let's try to see how savings-investment relationship can change when you open up the economy.

- Equilibrium condition: Y = C + I + G + NXwhere $NX = X - IM/\epsilon$.

$$Y-T-C=I+(G-T)+NX$$

- Let's add two new terms for- net income from abroad (NI) and net transfers from abroad (NT).

$$(Y + NI + NT - T) - C = I + (G - T) + (NX + NI + NT)$$

$$\underbrace{(Y + NI + NT - T)}_{\text{Disposable Income}} - C = I + (G - T) + \underbrace{(NX + NI + NT)}_{\text{Current Account}}$$

Savings, Investments, and the Current Account Balance

Let's try to see how savings-investment relationship can change when you open up the economy.

- Equilibrium condition: Y = C + I + G + NXwhere $NX = X - IM/\epsilon$.

$$Y-T-C=I+(G-T)+NX$$

- Let's add two new terms for- net income from abroad (NI) and net transfers from abroad (NT).

$$(Y + NI + NT - T) - C = I + (G - T) + (NX + NI + NT)$$

$$\underbrace{(Y + NI + NT - T)}_{\text{Disposable Income}} - C = I + (G - T) + \underbrace{(NX + NI + NT)}_{\text{Current Account}}$$

-
$$CA = S + (T - G) - I$$
.

Chapter 20

Equilibrium in the Good Market

$$Y = C(Y - T) + I(Y, r) + G - X(Y^*, \epsilon) + IM(Y, \epsilon)$$

We can rewrite the last term in the equation as $NX(Y, Y^*, \epsilon)$.

- ↑ $r \Rightarrow \downarrow I \Rightarrow \downarrow$ demand for domestic goods
- $\uparrow \epsilon \Rightarrow \uparrow$ demand for foreign goods $\Rightarrow \downarrow NX \Rightarrow \downarrow Y$.

Let's do away with the distinction between the real and the nominal exchange rate (for now).

Equilibrium in the Financial Market

- Money demand is not a function of exchange rate movements.
- So, our good old equation hold true here as well

$$\frac{M}{P} = YL(i)$$

Domestic versus Foreign Bond

- The arbitrage condition (the interest parity condition) must hold

$$(1+i_t)=(1+i_t^*)\left(\frac{E_t}{E_{t+1}^e}\right)$$

- Let's reorganize this equation in terms of exchange rate.

$$E_t = \left(\frac{1+i_t}{1+i_t^*}\right) E_{t+1}^e$$

- Implications:
 - $\uparrow i \Rightarrow \uparrow E_t$
 - $-\uparrow i^* \Rightarrow \downarrow E_t$
 - $-\uparrow E_{t+1}^{e}\Rightarrow\uparrow E_{t}$

$$E_t = \left(\frac{1+i_t}{1+i_t^*}\right) E_{t+1}^e$$

- When domestic interest rate = foreign interest rate, $E_t = E_{t+1}^e$.
- The higher the domestic interest rate, the higher the exchange rate.

$$E_t = \left(\frac{1+i_t}{1+i_t^*}\right) E_{t+1}^e$$

- When domestic interest rate = foreign interest rate, $E_t = E_{t+1}^e$.
- The higher the domestic interest rate, the higher the exchange rate.

IS − *LM*: Open Economy Version

- IS Relation:

$$Y = C(Y - T) + I(Y, i) + G + NX(Y, Y^*, E)$$

IS − *LM*: Open Economy Version

- IS Relation:

$$Y = C(Y - T) + I(Y, i) + G + NX(Y, Y^*, E)$$

- LM Relation:

$$\frac{M}{P} = YL(i)$$

IS − *LM*: Open Economy Version

- IS Relation:

$$Y = C(Y - T) + I(Y, i) + G + NX(Y, Y^*, E)$$

- LM Relation:

$$\frac{M}{P} = YL(i)$$

- Interest parity condition:

$$E = \left(\frac{1+i}{1+i^*}\right)E^e$$

Shifts in the IS Curve

When domestic interest rate rises:

- Direct Effect: $\downarrow I \Rightarrow \downarrow Z \Rightarrow \downarrow Y$.
- Indirect Effect $\uparrow E \Rightarrow \downarrow NX \Rightarrow Z \Rightarrow \downarrow Y$.

Fiscal Policy in Open Economy

- \uparrow govt spending \Rightarrow ...
 - ↑ Income (IS Curve shifts to the right).
 - ? Investment.
 - ↓ NX
 - $\uparrow Y \Rightarrow \uparrow IM$
 - $-\uparrow i \Rightarrow \downarrow X.$

Monetary Policy in Open Economy

Consider the case of increase in money supply. $\Delta M > o$.

```
-\downarrow i \Rightarrow
```

Monetary Policy in Open Economy

Consider the case of increase in money supply. $\Delta M > o$.

- \downarrow *i* \Rightarrow foreign bonds become attractive.
- $-\downarrow i \Rightarrow$

Monetary Policy in Open Economy

Consider the case of increase in money supply. $\Delta M > o$.

- \downarrow *i* \Rightarrow foreign bonds become attractive.
- \downarrow *i* ⇒ depreciation.
- Lower interest rate + depreciation $\Rightarrow \uparrow Y$.

Pegging the Exchange Rate

If the rate is pegged, the future exchange rate will also be expected remain at that value. ($E_t = E_{t+1}^e$) Therefore,

$$(1+i_t) = (1+i_t^*)$$
$$\Rightarrow i_t = i^*$$

Under a fixed exchange, the domestic interest rate must match the foreign interest rate.

Pegging the Exchange Rate

If the rate is pegged, the future exchange rate will also be expected remain at that value. ($E_t = E_{t+1}^e$) Therefore,

$$(1+i_t) = (1+i_t^*)$$
$$\Rightarrow i_t = i^*$$

Under a fixed exchange, the domestic interest rate must match the foreign interest rate. Implication: The *LM* relation changes.

$$LM: \frac{M}{P} = YL(i^*)$$

Impose tariff/quota such that \downarrow *IM*.

 $-\uparrow NX \Rightarrow$

Impose tariff/quota such that \downarrow *IM*.

 $-\uparrow NX \Rightarrow \uparrow Y$

- $-\uparrow NX \Rightarrow \uparrow Y$
- \uparrow Y \Rightarrow

- $-\uparrow NX \Rightarrow \uparrow Y$
- $-\uparrow Y \Rightarrow \uparrow i$

- $-\uparrow NX \Rightarrow \uparrow Y$
- $-\uparrow Y \Rightarrow \uparrow i$
- ↑ *i* ⇒

- $-\uparrow NX \Rightarrow \uparrow Y$
- $-\uparrow Y \Rightarrow \uparrow i$
- $-\uparrow i \Rightarrow \uparrow E$

Impose tariff/quota such that \downarrow *IM*.

- $-\uparrow NX \Rightarrow \uparrow Y$
- $\uparrow Y \Rightarrow \uparrow i$
- $-\uparrow i \Rightarrow \uparrow E$
- Appreciation $\Rightarrow \downarrow X$

Net effect of trade policy: $\Delta Y = o$.

Monetary Policy Under Fixed Exchange Rate

- Suppose because of increasing output, money demand goes up.
- The equilibrium interest rate increases.
- $-i > i^*$.
- The currency might appreciate.
- To pull the interest rate down,

Monetary Policy Under Fixed Exchange Rate

- Suppose because of increasing output, money demand goes up.
- The equilibrium interest rate increases.
- $i > i^*$.
- The currency might appreciate.
- To pull the interest rate down, the central bank must increase the money supply.

Bottomline: Under fixed exchange rate, the central bank gives up monetary policy as a policy instrument.

Fiscal Policy Under Fixed Exchange Rate

Reduce T.

- IS curve moves to the right.
- $-i > i^*$.
- The LM curve must move downwards. (Why?)
- Net effect: ↑ Y.

Impose tariff/quota such that \downarrow *IM*.

- \uparrow NX \Rightarrow

Impose tariff/quota such that \downarrow *IM*.

 $-\uparrow NX \Rightarrow \uparrow Y$

- $-\uparrow NX \Rightarrow \uparrow Y$
- $-\uparrow Y \Rightarrow$

- $-\uparrow NX \Rightarrow \uparrow Y$
- $-\uparrow Y \Rightarrow \uparrow i$

- $-\uparrow NX \Rightarrow \uparrow Y$
- $-\uparrow Y \Rightarrow \uparrow i$
- $-\uparrow i \Rightarrow$

Impose tariff/quota such that \downarrow *IM*.

- $-\uparrow NX \Rightarrow \uparrow Y$
- $-\uparrow Y \Rightarrow \uparrow i$
- $\uparrow i \Rightarrow$ LM Curve must shift to the right.

Net effect of trade policy: $\Delta Y > o$.

The Mundell-Fleming Model: Summary of Policy Effects

	Exchange Rate Regime						
	Floating				Fixed		
	Impact On						
Policy	Υ	Ε	NX	Υ	Ε	NX	
Fiscal Expansion	0	\uparrow	↓	\uparrow	0	0	
Monetary Expansion	\uparrow	\downarrow	\uparrow	0	0	0	
Import Restrictions	0	\uparrow	0	\uparrow	0	\uparrow	

This table shows the direction of impact of various economic policies on income Y, the exchange rate e, and the trade balance NX. A "\(^*\)" indicates that the variable increases; a "\(^*\)" indicates that it decreases; a "\(^*\)" indicates no effect. Remember that the exchange rate is defined as the amount of foreign currency per unit of domestic currency (for example, 100 EUR per INR).

Chapter 21

Agenda

- Open economy in the medium run.
- Fixed Exchange Rates and Crises.
- Flexible Exchange Rates and Problems.
- Material: Chapter 21, Blanchard.

The Nominal and The Real Exchange Rate

$$\epsilon = \mathsf{E} imes rac{\mathsf{P}}{\mathsf{P}^*}$$

Real exchange rate adjustment can happen via:

- The domestic price level change (P).
- The foreign price level change (P^*) .

The AS — AD Model Under Fixed Exchange Rate

$$AD: Y = Y(\epsilon, G, T)$$

Note that M/P is missing. (Why?)

The AS — AD Model Under Fixed Exchange Rate

$$AD: Y = Y(\epsilon, G, T)$$

Note that M/P is missing. (Why?)

$$AS: P = P^{e}(1+m)F\left(1-\frac{Y}{L},z\right)$$

Equilibrium with Fixed Exchange Rate

- $\uparrow P \Rightarrow \uparrow \epsilon$.
- $\uparrow \epsilon \Rightarrow \downarrow$ demand for domestic goods.

Let $Y < Y_n$. What happens in the medium run?

- The AS curve keeps moving downwards until $Y = Y_n$. (Old Channel)
- In this process, $\downarrow P$.
- $\downarrow P \Rightarrow \downarrow \epsilon$. (New Channel)
- The output keeps increasing until $Y = Y_n$.

Whither Devaluation?

- Instead of letting the prices dictate the process of adjustment, why not devalue?
 - Exports become attractive.
 - AD curve moves to the right.

Whither Devaluation?

- Instead of letting the prices dictate the process of adjustment, why not devalue?
 - Exports become attractive.
 - AD curve moves to the right.
 - The trouble: ↑ Inflation

Whither Devaluation?

- Instead of letting the prices dictate the process of adjustment, why not devalue?
 - Exports become attractive.
 - AD curve moves to the right.
 - The trouble: ↑ Inflation

Exchange Rate Crises under Fixed Exchange Rate

- The real exchange rate may be too high. (Diagnosis: depreciation)
- Since interest rates are fixed to foreign levels, the country may be forced to devalue the currency.

What choices does the govt have?

- Devalue.
- Be prepared for very high interest rates.

Flexible Exchange Rate System: Problems

Current exchange rate depends on two sets of factors:

- Current and expected future domestic and foreign interest rates.
- The expected future exchange rate.

Flexible Exchange Rate System: Problems

Current exchange rate depends on two sets of factors:

- Current and expected future domestic and foreign interest rates.
- The expected future exchange rate.

When the Bretton Woods era was over, everyone thought that the flexible exchange rate would be stable.

- It was only in the mid-1970s that economists understood what we just learnt.
- Because the current exchange rate depends so much upon the future,

Flexible Exchange Rate System: Problems

Current exchange rate depends on two sets of factors:

- Current and expected future domestic and foreign interest rates.
- The expected future exchange rate.

When the Bretton Woods era was over, everyone thought that the flexible exchange rate would be stable.

- It was only in the mid-1970s that economists understood what we just learnt.
- Because the current exchange rate depends so much upon the future, economies with flexible exchange rate system should be prepared for huge fluctuations in the exchange rate.