

Índice de contenidos

- Objetivo general del proyecto
- Contexto: Movielens
- Objetivos específicos
- Proceso
- Recursos

2

© Borja Monsalve Piquera

2

Objetivo general del proyecto

- Desarrollar un sistema de recomendación basado en contenido a partir del dataset de películas de Movielens.
- Palabras clave:
 - Python
 - Interfaz gráfica
 - Web scraping
 - Similitudes
 - Recomendaciones
 - Trabajo en equipo
 - Documentación

© Borja Monsalve Piquera

3

Proyecto: Recomendaciones basadas en el contenido

Contexto: Movielens

- Movielens es una comunidad online de usuarios que dan su opinión sobre las películas que han visto, valorándolas entre 1 y 5 estrellas: https://movielens.org
- **GroupLens Research** es un laboratorio de investigación de interacción hombremáquina en el Departamento de Ciencias de la Computación e Ingeniería de la Universidad de Minnesota.
- Disponen de varios dataset para investigación y experimentación relacionados con Movielens.
- Trabajaremos con la versión Small ("ml-latest-small"):
 - 100.000 valoraciones
 - 3.600 etiquetas
 - +9.000 películas
 - +600 usuarios
 - Última actualización: 9/2018

© Borja Monsalve Piqueras

Contexto: Movielens

Dataset de Movielens:

(https://files.grouplens.org/datasets/movielens/ml-latest-small-README.html)

- movies.csv
 - movield
 - title
 - genre
- ratings.csv
 - userId
 - · movield
 - rating
 - timestamp

- tags.csv
 - userId
 - tag
 - timestamp
- links.csv
 - movield
 - imdbld
 - tmdbld

- géneros
 - 1. Action 2. Adventure
 - 12. Musical 3. Animation
 - 4. Children's
 - 5. Comedy
 - 6. Crime
 - 7. Documentary
 - 8. Drama
 - 9. Fantasy
 - 10. Film-Noir

- - 11. Horror
 - 13. Mystery
 - 14. Romance
- 15. Sci-Fi
- 16. Thriller
- 17. War
- 18. Western
- 19. (no genres listed)

© Borja Monsalve Piqueras

5

Proyecto: Recomendaciones basadas en el contenido

Contexto: Movielens

Ejemplo

movies.csv

movield	title	genres	
1	Toy Story (1995)	Adventure Animation Children Comedy Fantasy	

ratings.csv

userld	movield	rating	timestamp
1	1	4.0	964982703
1	3	4.0	964981247

tags.csv

userld	movield	tag	timestamp
336	1	pixar	1139045764
474	1	pixar	1137206825
567	1	fun	1525286013

links.csv

movield	imdbld	tmdbld
1	114709	862

6

Objetivos específicos

- OE1. A partir de una película dada, devolver un ranking con las N películas más similares.
- OE2. A partir de un usuario dado y en función de sus valoraciones:
 - OE2.1. Devolver la predicción para una película P dada.
 - OE2.2. Devolver un ranking de N películas más recomendables.
- Tareas adicionales:
 - Web scraping
 - PLN básico
- Contenidos a utilizar:
 - Géneros
 - Tags
 - Sinopsis

© Borja Monsalve Piguera

7

Proyecto: Recomendaciones basadas en el contenido

Proceso

- Obtener las sinopsis de las películas
 - IMDB: https://www.imdb.com/
 - TMDB: https://www.themoviedb.org/
- PLN sobre las sinopsis
- Crear un vector (TF-IDF) para cada película a partir del contenido disponible:
 - Sinopsis
 - Géneros
 - Tags
 - Etc.

8

© Borja Monsalve Piquera

ue

Proceso

• TF-IDF:

TF-IDF = peso de un término T en un documento D.

TF = Número de veces que aparece el término T en el documento D (frecuencia).

IDF = Frecuencia inversa del término T en todos los documentos Di de la colección.

 $TF-IDF = TF \times IDF$

TF = Frecuencia (T, D)

 $IDF = log(N / n_i)$

N = Número total de documentos de la colección

ni = Número de documentos en los que aparece T

© Borja Monsalve Piquera

9

Proyecto: Recomendaciones basadas en el contenido

ue

Proceso

- Utilizar la similitud del coseno para crear una matriz de similitudes entre cada par de películas.
- Crear el perfil de usuario a partir de los contenidos considerados.
- Calcular la predicción de una película para un usuario a partir de sus valoraciones.
- Crear un ranking de N películas recomendadas para un usuario, a partir de las predicciones individuales de las películas que no ha visto.

10

© Borja Monsalve Piquera

ue

Recursos

- NLTK
- SciKit Learn
- Beautiful Soup
- Numpy
- Pandas
- PyQT
- Delphi (interfaz) --> Exportar a Python
- Etc.

11

© Borja Monsalve Piqueras

11