Graphs

What is a Graph?

• A graph G = (V,E) is composed of:

V: set of vertices

E: set of edges connecting the vertices in V

- An edge e = (u,v) is a pair of vertices
- Example:

Applications

electronic circuits

CS16

HNL DFW FTL

Type of Graphs

- Two type of Graphs:
 - Undirected graphs
 - Directed graphs
- Undirected graphs: An undirected graph is one where in each edge E is an unordered pair of vertices.
- Directed Graphs: A directed graph is one, where each edge is represented by a specific direction or by directed pair <v1,v2>, where v1 is the tail and v2 is the head of the edge

A directed graph.

Terminology: Degree of a Vertex

- The degree of a vertex is the number of edges incident to that vertex
- For directed graph,
 - the in-degree of a vertex v is the number of edges that have v as the head
 - \mathbf{v} the out-degree of a vertex v is the number of edges that have v as the tail
 - if di is the degree of a vertex i in a graph G with n vertices and e edges, the number of edges is

$$e = (\sum_{i=1}^{n-1} d_i) / 2$$

Why? Since adjacent vertices each count the adjoining edge, it will be counted twice

Examples

No of edges- 6

out-degree

Terminology: Path

• path: sequence of vertices v₁,v₂,...v_k such that consecutive vertices v_i and v_{i+1} are adjacent.

More Terminology

simple path: no repeated yertices

 cycle: simple path, except that the last vertex is the same as the firs

Even More Terminology

•connected graph: any two vertices are connected by some path

subgraph: subset of vertices and edges forming a graph

Subgraph Examples

Connectivity

- A complete graph: one in which all pairs of vertices are adjacent
- Let $\mathbf{n} = \text{#vertices}$, and $\mathbf{m} = \text{#edges}$
- How many total edges in a complete graph?
 - Each of the n vertices is incident to n-1 edges, however, we would have counted each edge twice!
 Therefore, intuitively, m = n(n-1)/2.
- Therefore a graph is not complete, m < n(n)

$$n = 5$$

 $m = (5 * 4)/2 = 10$

More Connectivity

- n = #vertices
- m = #edges
- For a tree $\mathbf{m} = \mathbf{n} 1$

If **m** < **n** - 1, G is not connected

ADT for Graph

objects: a nonempty set of vertices and a set of undirected edges, where each edge is a pair of vertices

functions: for all $graph \in Graph$, v, v_1 and $v_2 \in Vertices$

Graph InsertEdge(graph, v_1, v_2)::= return a graph with new edge between v_1 and v_2

Graph DeleteVertex(graph, v)::= return a graph in which v and all edges incident to

it are removed

Graph DeleteEdge(graph, v., v.)..-return a graph

Graph DeleteEdge(graph, v1, v2)::=return a graph in which the edge (v1, v2) is removed

Boolean IsEmpty(graph)::= if (graph==empty graph) return TRUE else return FALSE

Graph Representations

- Adjacency Matrix
- Adjacency Lists

Adjacency Matrix

- Let G=(V,E) be a graph with n vertices.
- The adjacency matrix of G is a twodimensional n by n array, say adj_mat
- If the edge (vi, vj) is in E(G), adj_mat[i]
 [i]=1
- If there is no such edge in E(G), adj_mat[i] [j]=0
- The adjacency matrix for an undirected graph is symmetric; the adjacency matrix for a digraph

Examples for Adjacency Matrix

Merits of Adjacency Matrix

- From the adjacency matrix, to determine the connection of vertices is easy
- The degree of a vertex $\sum_{j=0}^{\infty} sadj_mat[i][j]$
- For a digraph (= directed graph), the row sum is the out_degree, while the column sum is the in degree

$$ind(vi) = \sum_{j=0}^{n-1} A[j,i]$$
 $outd(vi) = \sum_{j=0}^{n-1} A[i,j]$

Adjacency Lists (data structures)

Each row in adjacency matrix is represented as an adjacency list.

rected graph with n vertices and e edges ==> n head nodes and 2e list

Graph Traversal

Problem: Search for a certain node or traverse all nodes in the graph

Depth First Search

 Once a possible path is found, continue the search until the end of the path

Breadth First Search

 Start several paths at a time, and advance in each one step at a time Depth First Search (DFS)

- DFS follows the following rules:
 - Select an unvisited node s, visit it, and treat as the current node
 - Find an unvisited neighbor of the current node, visit it, and make it the new current node;
 - If the current node has no unvisited neighbors, backtrack to the its parent, and make that the new current node; Repeat the above two steps until no more nodes can be visited.
 - If there are still unvisited nodes, repeat from step 1.

Example

Policy: Visit adjacent nodes in increasing index order

5 1 0 3 2 7 6 4

5 1 0

5 1 0

5 1 0 3

5 1 0 3

5 1 0 3 2

5 1 0 3 2 7

5 1 0 3 2 7

5 1 0 3 2 7 6

5 1 0 3 2 7 6

5 1 0 3 2 7 6 4

Breadth First Search

- BFS follows the following rules:
 - Select an unvisited node s, visit it, have it be the root in a BFS tree being formed. Its level is called the current level.
 - From each node x in the current level, in the order in which the level nodes were visited, visit all the unvisited neighbors of x. The newly visited nodes from this level form a new level that becomes the next current level.
 - Repeat the previous step until no more nodes can be visited.
 - If there are still unvisited nodes, repeat from Step 1.

BFS: Start with Node 5

5 1 2 0 4 3 7 6

BFS: Start with Node 5

BFS: Node one-away

BFS: Visit 1 and 2

5 1 2

BFS: Nodes two-away

BFS: Visit 0 and 4

5 1 2 0 4

BFS: Nodes three-away

5 1 2 0 4

BFS: Visit nodes 3 and 7

5 1 2 0 4 3 7

BFS: Node four-away

BFS: Visit 6

5 1 2 0 4 3 7 6

Breadth-First Traversal Example

Consider the following graph:

Order of Traversal

1	2	3	4	5	6	7	8	9
Α	В	D	E	O	G	F	H	-

Depth-First Traversal Example

Consider the following graph:

Order of Traversal

1	2	3	4	5	6	7	8	9
Α	В	С	F	Е	G	D	Н	I

Depth-First Traversal Example

Consider the following graph: Startnod()

 The order of the depth-first traversal of this graph starting at node 1 would be: 1, 2, 3, 4, 7, 5, 6, 8, 9

Breadth-First Traversal Example

Consider the following graph: Start nodeis 1

 The order of the breadth-first traversal of this graph starting at node 1 would be: 1, 2, 8, 3, 7, 4, 5, 9, 6

