Sieci versus drzewa

Jakub Fołtyn, Kacper Grzymkowski, Konrad Komisarczyk

Artykuły

Brak kodu

- Brak kodu dołączonego do artykułu
- Dokładny opis architektury

```
def make article laver(neurons
 return Dense(neurons, acti
                                          kernel initial
                                                                     mal", kernel regularizer="l2", **kwargs)
def make article model(ld
 # The DNN model used five
                                                                       respectively.
  model = Sequential()
 model.add(make article layer(6,
  model.add(make article layer(8))
 model.add(make article layer(16)
 model.add(make article layer
 model.add(make article la
                                                                         "he normal" normalization scheme were applied.
 # [...] the sigmoid act
 model.add(Dense(1, activ
                                           kernel ini
                                                                       l", kernel regularizer="l2"))
 model.compile(optimizer="
                                         oss, metrics=['
 return model
```

Brak kodu

- Brak kodu dołączonego do artykułu
- Dokładny opis architektury


```
def make article laver(neurons
 return Dense(neurons, acti
                                          kernel initial
                                                                     mal", kernel regularizer="l2", **kwargs)
def make article model(ld
 # The DNN model used five
                                                                       respectively.
 model = Sequential()
 model.add(make article layer(6,
 model.add(make article layer(8))
 model.add(make article layer(16)
 model.add(make article layer
 model.add(make article la
                                                                         "he normal" normalization scheme were applied.
 # [...] the sigmoid act
 model.add(Dense(1, activ
                                                                       l", kernel regularizer="l2"))
 model.compile(optimizer="
                                         oss, metrics=['
 return model
```

Odtworzenie sieci

- Wyniki podobne do tych przedstawionych w artykule
- Gorsze, ale na akceptowalnym poziomie

Oryginalne AUC = 0.78 Odtworzone AUC = ~ 0.72

Problem ze stabilnością

Problem:

Nie działa, przynajmniej nie zawsze

Training model #1

ROC AUC: 0.7125220458553793

Training model #2

ROC AUC: 0.3734567901234568

Training model #3

ROC AUC: 0.7416225749559083

Training model #4

ROC AUC: 0.2702821869488536

Training model #5

ROC AUC: 0.347222222222227

Problem ze stabilnością

Problem:

Nie działa, przynajmniej nie zawsze

Training model #1

ROC AUC: 0.7125220458553793

Training model #2

ROC AUC: 0.3734567901234568

Training model #3

ROC AUC: 0.7416225749559083

Training model #4

ROC AUC: 0.2702821869488536

Training model #5

ROC AUC: 0.347222222222227

Modyfikacje

Funkcja straty: Błąd średniokwadratowy - nietypowy wybór dla klasyfikacji

Modyfikacje

- Funkcja straty: Błąd średniokwadratowy nietypowy wybór dla klasyfikacji
- Basic 2 ukryte warstwy po 32 neurony

Modyfikacje

- Funkcja straty: Błąd średniokwadratowy nietypowy wybór dla klasyfikacji
- Basic 2 ukryte warstwy po 32 neurony
- Modified artykułowa architektura z funkcją straty 'binary cross entropy'

Poprawienie stabilności

Te modyfikacje znacznie poprawiły stabilność

Predykcja zgonu

Podobny eksperyment przeprowadziliśmy dla zadania predykcji zgonu.

XGBoost

- Stworzyliśmy również modele XGBoost
- Znany i dobry algorytm.

Porównanie efektywności

Porównanie efektywności

Wyjaśnienia (ICU)

Wyjaśnienia (przewidywanie zgonu)

Dane

- Jedna cecha?
- Czy zadziała w innym szpitalu?
- Realia danych medycznych

Podsumowanie

Sieci, a modele drzewiaste:

- Oba algorytmy dobrze działają
- Baseline modele są ważne

Podsumowanie

Sieci, a modele drzewiaste:

- Oba algorytmy dobrze działają
- Baseline modele są ważne

Kryzys replikacji:

Kod jest potrzebny w artykułach o tematyce ML