CSE 564 VISUALIZATION & VISUAL ANALYTICS

VISUALIZATION OF HIERARCHIES

KLAUS MUELLER

COMPUTER SCIENCE DEPARTMENT STONY BROOK UNIVERSITY

HIERARCHIES = TREES

Tree – A Natural Metaphor

Mapping publications to a tree

- major leaves are papers
- minor leaves are co-authors
- height is time
- fruit are comments
- size or color is number of paper's citations
- journal papers on right side
- conference papers left side

PRODUCTIVE VS. UNPRODUCTIVE RESEARCHERS

BOTANICAL-INSPIRED VISUALIZATIONS

Visualizing hard drives with tree cartoons

one file

many files

BOTANICAL-INSPIRED VISUALIZATIONS

Color maps to file type

blue are pdf files, red are image files

CONVENTIONAL

Standard Node-Edge layout for a hierarchical network

- 3 levels
- color maps to quantitative information (here population)

DENDROGRAM

Typically used to depict classification hierarchies

split-off points visualize proximity

BIRDS AND DINOSAURS

CIRCLES ARE MORE SPACE-EFFICIENT

RADIAL PLOTS AND EDGE BUNDLES

EDGE BUNDLING

Edges are represented by splines with tension β

Setting β

- low values mainly provide low-level, node-to-node connectivity information
- high values provide high-level information

WHAT'S A SPLINE

Smooth curve defined by some control points Moving the control points changes the curve

PRIMER: UNIFORM CUBIC B-SPLINE

A B-Spline curve is defined as follows: $X(t) = \sum_{k=0}^{\infty} P_k B_{k,d}(t)$

$$X(t) = \sum_{k=0}^{n} P_k B_{k,d}(t)$$

- *n* is the total number of control points
- d is the order of the curves, $2 \le d \le n+1$, d typically 3 or 4
- $B_{k,d}$ are the uniform B-spline blending functions of degree d-1
- P_{k} are the control points
- Each $B_{k,d}$ is only non-zero for a small range of t values, so the curve has local control

$$x(t) = \frac{1}{6} \begin{bmatrix} P_0 & P_1 & P_2 & P_3 \end{bmatrix} \begin{bmatrix} -1 & 3 & -3 & 1 & t^3 \\ 3 & -6 & 0 & 4 & t^2 \\ -3 & 3 & 3 & 1 & t \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Or in matrix form:

- t is the *parametric variable*
- defined on [0,1]

PRIMER: UNIFORM CUBIC B-SPLINE

Four basis functions B must be active to define the B-Spline curve

PRIMER: UNIFORM CUBIC B-SPLINE

The locations of the control points scale the basis functions

 in this simple example we see a continuous 1D function generated from 6 control points and basis functions

The curve can't start until there are 4 basis functions active

CUBIC B-SPLINE ANIMATED

APPLICATION TO PARALLEL COORDINATES

One straightforward way of reducing clutter is to replace polylines with polycurves:

Each line segment is replaced with an end-point interpolating, quadratic B-spline. A tension parameter can be controlled by the user.

McDonnell and Mueller, Computer Graphics Forum, 2008

EDGE BUNDLING (CONT.)

Let m be the mid-point in viewport coordinates of $v_{i,j}$ and $v_{i+1,j}$, end-points of a line segment

Let c_k be the cluster to which this segment belongs and $c_{k,\mu}$ be its mid-point in viewport coordinates

Let λ and β be tension parameters (usually $\lambda = 0.75$) and $0 \le$

 $\beta \leq 1$ is set by the user

The control points of the spline are given by:

- $(-1, v_{i,j})$
- $\bullet \quad (0, \beta m + (1 \beta)p)$
- $(1, v_{i+1,j})$

EDGE BUNDLING (CONT.)

The tension can be changed to control the amount of clutter reduction

In our implementation, the λ parameter is fixed, but the β parameter can be changed in the GUI

Examples of medium and low tension, respectively:

CLUSTER RENDERING

Recall that clusters are often rendered as heavy line segments on top of the dataset

In IPC we render the clusters as polygonal meshes
They help to show the ranges of each cluster along axes
The vertical "spread" can be controlled by the user

ALPHA (OPACITY) BLENDING

Draw curves at different opacities

- long curves: low opacities (high transparencies)
- short curves: high opacity (makes short curves visible)

alpha blending disabled

alpha blending enabled

ALPHA (OPACITY) BLENDING

Alpha blending also enables visualization of sub-bundles and differentiation of lines

alpha blending disabled alpha blending enabled

EDGE BUNDLING EXAMPLE

Software system call graph

green is caller, red is callee

balloon layout (isolated processes) radial layout (more integrated)

WITHOUT EDGE BUNDLING

balloon layout

radial layout

HIERARCHIES WITH SUN BURST DISPLAYS

SUNBURST WITH PARTITION OF UNITY

SAME DATA WITH TREEMAP

TREEMAP CONSTRUCTON

TREEMAP FOR STOCK PORTFOLIO

Size is mapped to market cap, yellow boxes are investor's holdings

CUSHION TREEMAP

Advantages

- due to perceived discontinuity in texture between nodes, lines are no longer necessary to separate nodes
- more of the space can be used for the actual node display
- much smaller nodes can be shown than in a flat treemap

Tree map for Disk Drives

Used in programs like

- WinDirStat (Windows)
- KDirStat (Linux)
- DiskInventory (Mac)

TREEMAP VARIATIONS

Squarified treemap is preferred

- it's difficult to visually compare long slivery tiles with tiles that have a more even aspect ratio
- a squarified treemap makes the map more globally comparable

Voronoi treemap

 based on Voronoi tesselation

