

Intro to Logic Gates

School of Information Technology and Electrical Engineering
The University of Queensland

Today...

- Introduction to Logic Gates
- Logic Diagrams
- Boolean Algebra and Logic Expressions
- There will be several polling questions
 - URL: responsewaresg.net
 - Session ID: csse2010s2

Learning Lab Sessions

- Slides used will be made available
 - After the last session that week
- Only attend the session you are signed-up to
 - Contact <u>eait.mytimetable@uq.edu.au</u> if you have signon issues
- If specific preparation is required, you'll get told, by default you should review previous lectures
- Make sure you attend and complete the learning labs for each week

Digital Logic

Digital circuits

- Only two logical levels present (i.e. binary)
 - Logic '0' usually small voltage (e.g. around 0 volts)
 - Logic `1' usually larger voltage (e.g. 0.8 to 5 volts, depending on the "logic family", i.e. type/size of transistors)

Logic gates

- are the building blocks of computers;
- Each gate has
 - one or more inputs
 - exactly one output
- perform logic operations (or functions)
 - 7 basic types: NOT, AND, OR, NAND, NOR, XOR, XNOR
 - Inputs & outputs can have only two states, 1 & 0 can be called "true" & "false"
 - Logic symbol, Truth table, Boolean expression, Timing diagram

Recall – Levels of Abstraction

Basic Logic Gates

NOT gate

Truth	-
table	4

Logic Symbol

Α	X
0	1
1	0

Inverts the input

Also called "inverter"

AND gate

Α	В	X
0	0	0
0	1	0
1	0	0
1	1	1

Output is HIGH when all the inputs are HIGH

OR gate

Α	В	X
0	0	0
0	1	1
1	0	1
1	1	1

Output is HIGH when at least one input is HIGH

Basic Logic Gates (cont...)

NAND gate

Truth table

Logic Symbol

Α	В	X
0	0	1
0	1	1
1	0	1
1	1	0

Output is HIGH when at least one input is LOW

NOR gate

Α	В	X
0	0	1
0	1	0
1	0	0
1	1	0

Output is HIGH when all the inputs are LOW

XOR gate

Α	В	X
0	0	0
0	1	1
1	0	1
1	1	0

Output is HIGH when exactly one input is HIGH

Basic Logic Gates (cont...)

Logic Symbol

Truth table

XNOR gate

A	В	X
0	0	1
0	1	0
1	0	0
1	1	1

Output is HIGH when the inputs are the same

NOT

AND

OR

NAND

NOR

XOR

XNOR

Useful to remember:

XOR is the odd function and XNOR is the even function

What's the truth table for a 3-input NAND gate

What's the truth table for a 3-input XOR gate

Boolean Logic Functions

- Logic functions can be expressed as expressions involving:
 - variables (literals), e.g. A B X
 - functions, e.g. + . ⊕
- Rules about how this works called
 Boolean algebra
- Variables and functions can only take on values 0 or 1

Boolean Algebra conventions

- Conventions we'll use:
 - **Inversion**: (overline)
 - e.g. NOT(A) = Ā (pronounced as A bar)
 - **AND**: dot(.) or implied (by adjacency)
 - e.g. **AND(A,B) = AB = A.B**
 - OR: plus sign
 - e.g. **OR(A,B,C) = A+B+C**
- Other examples:
 - $XOR(A,B) = A \oplus B = \overline{A}B + A\overline{B}$
 - NAND(A,B,C) = \overline{ABC}
 - NOR(A,B) = $\overline{A} + \overline{B}$

Summary of Logic Function Representations

- There are four representations of logic functions (assume function of n inputs)
 - Truth table
 - Lists output for all 2ⁿ combinations of inputs
 - Best to list inputs in a systematic way
 - Boolean function (or equation)
 - Describes the conditions under which the function output is 1
 - Logic Diagram
 - Combination of logic symbols joined by wires
 - Timing Diagram

Logic Diagram Conventions

Gates on Integrated Circuits (ICs)

Pin spacing is 0.1" x 0.3"; chip is about 15mm long

- 74HCT00 has four 2-input NAND gates
- Vcc = Power (e.g. 5V), GND = Ground (0V)

Short Break

Stand up and stretch

Logic Function Implementation

- Any logic function can be implemented as the OR of AND combinations of the inputs
 - Called sum of products
- Example:
 - Consider truth table
 - For each '1' in the output column, write down the AND combination of inputs that give that 1
 - OR these together

IIIputs			
Α	В	С	M
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Logic Function Implementation

Α	В	С	M
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Example (cont.) Equivalent Logic Diagram

Equivalent Functions

- Sum of products does not necessarily produce circuit with minimum number of gates
- Can manipulate Boolean function to give an equivalent function
 - Use rules of Boolean algebra (next slide)
- Example: Z = AB + AC = A(B+C)

Boolean Identities

Name	AND form	OR form
Identity law	1A = A	0 + A = A
Null law	0A = 0	1 + A = 1
Idempotent law	AA = A	A + A = A
Inverse law	$A\overline{A} = 0$	$A + \overline{A} = 1$
Commutative law	AB = BA	A + B = B + A
Associative law	(AB)C = A(BC)	(A + B) + C = A + (B + C)
Distributative law	A + BC = (A + B)(A + C)	A(B+C) = AB + AC
Absorption law	A(A + B) = A	A + AB = A
De Morgan's law	$\overline{AB} = \overline{A} + \overline{B}$	$\overline{A + B} = \overline{A}\overline{B}$

Example

• Express $Z = \overline{A(B+C(\overline{A} + \overline{B}))}$ as a sum of products

De Morgan Law/Equivalents

AND/OR can be interchanged if you invert the inputs and outputs

• Homework: Use truth tables to convince yourself that these are valid

Equivalent Circuits

- All circuits can be constructed from NAND or NOR gates
 - These are called complete gates
- Examples:

Reason: Easier to build NAND and NOR gates from transistors

Reminders

- Quiz 1 due next week Friday
- Attend Learning Lab sessions for the second half of this week
 - Only attend the session you're signed up to
 - Internal (IN) mode students should collect a kit in their face-to-face prac sessions.
 - External (EX) mode students, you do not need your hardware until week 6. But start acquiring your hardware items now.