MA E χ 02

isagila

Собрано 13.06.2023 в 09:41

Содержание

1.	Инт	егрирование функции одной переменной	
	1.1.	Признаки сходимости несобственных интегралов: первый признак сравнения (в неравенствах)	
	1.2.	Признаки сходимости несобственных интегралов: второй признак сравнения (предельный)	
	1.3.	Признаки сходимости несобственных интегралов: теорема об абсолютной сходимости. Понятие условной	
		сходимости	
	1.4.	Сходимость интегралов 1-го и 2-го рода от степенных функций	
2.	Инт	Интегрирование функции нескольких переменных	
	2.1.	Двойной интеграл. Определение и свойства	
	2.2.	Вычисление двойного интеграла. Кратный интеграл	
	2.3.	Определение и вычисление тройного интеграла	
	2.4.	Криволинейные координаты.	
	2.5.	Замена переменных в двойном и тройном интегралах. Якобиан.	
	2.6.	Криволинейный интеграл 1-го рода: определение, свойства, вычисление, геометрический и физический	
		СМЫСЛ	
	2.7.	Криволинейный интеграл 2-го рода как работа силы вдоль пути. Определение, вычисление и свойства	
	2.8.	Криволинейные интегралы 1-го и 2-го рода: формула связи	
	2.9.	Теорема (формула) Грина.	
	2.10.	Интегралы, не зависящие от пути интегрирования. Теорема о независимости интеграла от пути, равно	
		сильность I,II,III утверждений	
	2.11.	Интегралы, не зависящие от пути интегрирования. Теорема о независимости интеграла от пути, равно	
		сильность III, IV утверждений	
		Следствие теоремы о независимости от пути (формула Ньютона-Лейбница)	
	2.13.	Поверхностный интеграл 1-го рода: определение, свойства, вычисление, геометрический и физический	
		смысл	
		Поверхностный интеграл 2-го рода как поток жидкости через поверхность	
		Связь между поверхностными интегралами 1-го и 2-го рода.	
		Поверхностный интеграл 2-го рода: математическое определение, вычисление, свойства	
		Теорема Гаусса-Остроградского.	
		Теорема Стокса.	
	2.19.	Скалярное и векторное поля: определения, геометрические характеристики. Дифференциальные и	
	0.00	интегральные характеристики полей (определения)	
		Виды векторных полей и их свойства (теоремы о поле градиента и поле вихря)	
		Механический смысл потока и дивергенции.	
		Механический смысл вихря и циркуляции	
	フラス	Векторная запись теорем теории поля и их механический смысл	

1. Интегрирование функции одной переменной

1.1. Признаки сходимости несобственных интегралов: первый признак сравнения (в неравенствах).

Теорема 1.1.1. Пусть $f(x), g(x) \colon [a, +\infty] \to \mathbb{R}$ и на этом отрезке выполняется неравенство $f(x) \geqslant g(x) \geqslant 0$. Тогда:

$$\int_{a}^{+\infty} f(x) dx \succ \Longrightarrow \int_{a}^{+\infty} g(x) dx \succ$$
 (a)

$$\int_{a}^{+\infty} g(x) dx \prec \Longrightarrow \int_{a}^{+\infty} f(x) dx \prec \tag{b}$$

Доказательство. (a) Сначала докажем первое утверждение. Т.к. $f(x) \geqslant 0$, то $I = \int_a^b f(x) \mathrm{d}x \geqslant 0 \in \mathbb{R}$, при этом т.к. этот интеграл сходится, то $I \in \mathbb{R}$. Далее рассмотрим второй интеграл, по определению имеем:

$$\int_{a}^{+\infty} g(x) dx = \lim_{\beta \to +\infty} \int_{\underline{a}}^{\beta} g(x) dx$$

Заметим, т.к. $g(x)\geqslant 0$, то функция $h(\beta)$ монотонно возрастает при $\beta\to +\infty$. При этом значение этой функции ограничено сверху числом $I\in\mathbb{R}$. Значит по свойствам пределов данный предел конечен, из чего следует, что интеграл $\int_a^{+\infty}g(x)\mathrm{d}x$ сходится.

(b) Доказательство второго утверждения вытекает из первого. От противного: пусть $\int_a^{+\infty} f(x)$ сходится. Тогда по пункту а интеграл $\int_a^{+\infty} g(x)$ тоже должен сходится. Противоречие.

1.2. Признаки сходимости несобственных интегралов: второй признак сравнения (предельный).

Теорема 1.2.1. Пусть $f(x), g(x) \colon [a; +\infty] \to \mathbb{R}$ и f(x) > 0, g(x) > 0. Тогда если предел

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = r \in \mathbb{R} \setminus \{0\}$$

существует, конечен и не равен нулю, то функции оба интеграла $\int_a^{+\infty} f(x) dx$, $\int_a^{+\infty} g(x) dx$ ведут себя одинаково в плане сходимости (т.е. либо оба сходятся, либо оба расходятся).

Доказательство. По определению предела получаем:

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = r \iff \forall \varepsilon > 0 \exists \delta > 0 \mid \forall x \in [a; +\infty], x > \delta \colon \left| \frac{f(x)}{g(x)} - r \right| < \varepsilon$$
$$r - \varepsilon < \frac{f(x)}{g(x)} < r + \varepsilon \mid \cdot g(x) > 0$$
$$(r - \varepsilon)g(x) < f(x) < (r + \varepsilon)g(x)$$

Далее используем признак сравнения в неравенствах (1.1.1). Рассмотрим два случая:

Т.к. $r \in \mathbb{R}$, а $\varepsilon > 0$ произвольное положительное число, то интеграл $\int_a^{+\infty} g(x) \mathrm{d}x$ также будет сходится. Второй случай рассматривается аналогично:

- 1.3. Признаки сходимости несобственных интегралов: теорема об абсолютной сходимости. Понятие условной сходимости.
- 1.4. Сходимость интегралов 1-го и 2-го рода от степенных функций.

2. Интегрирование функции нескольких переменных

- 2.1. Двойной интеграл. Определение и свойства.
- 2.2. Вычисление двойного интеграла. Кратный интеграл.
- 2.3. Определение и вычисление тройного интеграла.
- 2.4. Криволинейные координаты.
- 2.5. Замена переменных в двойном и тройном интегралах. Якобиан.
- **2.6.** Криволинейный интеграл 1-го рода: определение, свойства, вычисление, геометрический и физический смысл.
- 2.7. Криволинейный интеграл 2-го рода как работа силы вдоль пути. Определение, вычисление и свойства.
- 2.8. Криволинейные интегралы 1-го и 2-го рода: формула связи.
- 2.9. Теорема (формула) Грина.
- **2.10.** Интегралы, не зависящие от пути интегрирования. Теорема о независимости интеграла от пути, равносильность I,II,III утверждений.
- 2.11. Интегралы, не зависящие от пути интегрирования. Теорема о независимости интеграла от пути, равносильность III, IV утверждений.
- 2.12. Следствие теоремы о независимости от пути (формула Ньютона-Лейбница).
- 2.13. Поверхностный интеграл 1-го рода: определение, свойства, вычисление, геометрический и физический смысл.
- 2.14. Поверхностный интеграл 2-го рода как поток жидкости через поверхность.
- 2.15. Связь между поверхностными интегралами 1-го и 2-го рода.
- 2.16. Поверхностный интеграл 2-го рода: математическое определение, вычисление, свойства.
- 2.17. Теорема Гаусса-Остроградского.
- 2.18. Теорема Стокса.
- 2.19. Скалярное и векторное поля: определения, геометрические характеристики. Дифференциальные и интегральные характеристики полей (определения).
- 2.20. Виды векторных полей и их свойства (теоремы о поле градиента и поле вихря).
- 2.21. Механический смысл потока и дивергенции.
- 2.22. Механический смысл вихря и циркуляции.
- 2.23. Векторная запись теорем теории поля и их механический смысл.