TRIEDY ZLOŽITOSTI

VÝPOČTOVÁ ZLOŽITOSŤ PROBLÉMU

- o Časová výpočtová zložitosť $T_P(n)$ problému P rozsahu n je minimum z výpočtových zložitostí $T_A(n)$ všetkých algoritmov A, ktoré riešia problém P.
 - Napríklad: P je problém triedenia, jeho časová výpočtová zložitosť je minimum zo zložitostí všetkých triediacich algoritmov, napr. bubblesort $O(n^2)$, insertsort $O(n^2)$, selectsort $O(n^2)$, mergesort $O(n.\log n)$, quicksort $O(n.\log n)$, heapsort $O(n.\log n)$.
 - Výpočtová zložitosť problému triedenia je $O(n \log n)$ existuje triediaci algoritmus so zložitosťou $O(n \log n)$
 - Výpočtová zložitosť problému triedenia je $\Omega(n \log n) n \log n$ je minimálny počet porovnaní, ktoré treba urobiť pri triedení porovnávacím algoritmom
- o analogicky pamäťová výpočtová zložitosť problému

Funkcie zložitosti pre n = 10, 100, 1000

	10	100	1000
O(1)	1	1	1
$O(\log n)$	3,32	6,64	9,97
$\mathrm{O}(n)$	10	100	1000
$O(n \log n)$	$33,\!22$	664,39	9965,78
$\mathrm{O}(n^2)$	100	10000	1000000
$\mathrm{O}(n^3)$	1000	1000000	1000000000
$\mathrm{O}(2^n)$	1024	1,26765E+30	1,0715E+301
$\mathrm{O}(n!)$	3628800	9,3326E+157	veľa
$\mathrm{O}(n^n)$	10000000000	1E+200	veľa

Triedy zložitosti

- o Trieda PTIME (P) je množina problémov, ktoré sa dajú riešiť deterministickým algoritmom v polynomiálnom čase $O(n^{\text{konšt}})$.
- o Trieda NPTIME (NP) je množina problémov, ktoré sa dajú riešiť nedeterministickým algoritmom v polynomiálnom čase $O(n^{\text{konšt}})$.

Polynomiálna funkcia:

$$p(n) = a_0 + a_1 n + a_2 n^2 + ... + a_c n^c = O(n^c)$$

ČO JE NP ÚLOHA?

- o je taká úloha (problém), ktorá sa dá riešiť nedeterministicky v polynomiálnom čase
 - hĺbka výpočtového stromu závisí od vstupu polynomiálne
 - každá vetva stromu nedeterministický výpočet má polynomiálnu dĺžku
 - ak existuje riešenie problému, vieme overiť jeho správnosť deterministicky v polynomiálnom čase
 - na overenie neexistencie riešenia treba prehľadať celý výpočtový strom – v exponenciálnom čase

Príklady

- Vynásobte dve *n*-ciferné čísla.
- Vyfarbite vrcholy grafu tromi farbami tak, aby vrcholy spojené hranou mali rôznu farbu.
- Prejdite šachovnicu koňom tak, aby na každé pole stúpil práve raz.
- Problém Hanojských veží. Preložte n kotúčov usporiadaných od najväčšieho dolu po najmenší hore z jednej tyče na druhú pomocou tretej tak, aby v žiadnom kroku výpočtu nebol väčší kotúč na menšom.

Príklady

- Vynásobte dve *n*-ciferné čísla. (P)
- Vyfarbite vrcholy grafu tromi farbami tak, aby vrcholy spojené hranou mali rôznu farbu. (NP)
- Prejdite šachovnicu koňom tak, aby na každé pole stúpil práve raz. (NP)
- Problém Hanojských veží. Preložte n kotúčov usporiadaných od najväčšieho dolu po najmenší hore z jednej tyče na druhú pomocou tretej tak, aby v žiadnom kroku výpočtu nebol väčší kotúč na menšom. (EXP)

TRIEDY ZLOŽITOSTI

- Trieda NPC (NP-complete) je množina Problémov (tzv. NP-úplných), pre ktoré platí:
 - Problém ∈NP
 - Pre všetky problémy *Problém* '∈NP platí, že *Problém*' je redukovateľný v polynomiálnom čase na *Problém*

PRÍKLADY NPC PROBLÉMOV

 Zistiť, či je daná boolovská formula v konjunktívnej normálovej forme splniteľná.

$$(a \lor b \lor c) \land (a \lor b' \lor d) \land (c \lor d') \land b'$$

- Zistiť, či sa daný graf dá zafarbiť tromi farbami tak, aby žiadne dva vrcholy spojené hranou neboli zafarbené rovnakou farbou.
- Zistiť, či v danom grafe existuje k-prvková množina nezávislých vrcholov (navzájom nespojených žiadnou hranou).

 Zistiť, či je daná boolovská formula v konjunktívnej normálovej forme splniteľná.

$$(a \lor b \lor c) \land (a \lor b' \lor d) \land (c \lor d') \land b'$$

а	b	С	d	$a \lor b \lor c$	$a \lor b' \lor d$	$c \vee d'$	b'	
0	0	0	0	0	1	1	1	0
0	0	0	1	0	1	0	1	0
0	0	1	0	1	1	1	1	1
0	0	1	1	1	1	1	1	1
0	1	0	0	1	0	1	0	0
0	1	0	1	1	1	0	0	0
0	1	1	0	1	0	1	0	0
0	1	1	1	1	1	1	0	0
1	0	0	0	1	1	1	1	1
1	0	0	1	1	1	0	1	0
1	0	1	0	1	1	1	1	1
1	0	1	1	1	1	1	1	1
1	1	0	0	1	1	1	0	0
1	1	0	1	1	1	0	0	0
1	1	1	0	1	1	1	0	0
1	1	1	1	1	1	1	0	0

 Zistiť, či sa daný graf dá zafarbiť tromi farbami tak, aby žiadne dva vrcholy spojené hranou neboli zafarbené rovnakou farbou.

 Zistiť, či v danom grafe existuje k-prvková množina nezávislých vrcholov (navzájom nespojených žiadnou hranou).

ľudia = vrcholy grafu
vzťah nepoznajú sa =
hrana
skupina k ľudí, ktorí sa
všetci navzájom poznajú =
k-prvková množina
nezávislých vrcholov

• Existuje 4-prvková množina nezávislých vrcholov (navzájom nespojených žiadnou hranou)?

35 možností:

2	3	4
2	3	5
2	3	6
2	3	7
2	4	5
2	4	6
2	4	7
2	5	6
2	5	7
2	6	7
	2 2 2 2 2 2 2 2	2 3 2 3 2 3 2 4 2 4 2 4 2 4 2 5 2 5

1	3	4	5
1	3	4	6
1	3	4	7
1	3	5	6
1	3	5	7
1	3	6	7
1	4	5	6
1	4	5	7
1	4	6	7
1	5	6	7

2	3	4	5
2	3	4	6
2	3	4	7
2	3	5	6
2	3	5	7
2	3	6	7
2	4	5	6
2	4	5	7
2	4	6	7
2	5	6	7
3	4	5	6
3	4	5	7
3	4	6	7
3	5	6	7
4	5	6	7

PRÍKLAD POLYNOMIÁLNEJ REDUKCIE:

Problém 3-zafarbiteľnosti grafu *polynomiálne* redukujeme na problém splniteľnosti boolovskej formuly v CNF:

- o Ku grafu G=(V,E) vytvoríme boolovskú formulu b v CNF takú, že b je splniteľná práve vtedy, keď G je 3-zafarbiteľný.
- Premenné:
 - B_i = true, keď i-ty vrchol v G má bielu farbu (pre každé $i \in V$)
 - M_i = true, keď i-ty vrchol v G má modrú farbu (pre každé $i \in V$)
 - $C_i = \text{true}$, keď i-ty vrchol v G má červenú farbu (pre každé $i \in V$)

 Časť formuly vyjadrujúca, že každý vrchol má aspoň jednu farbu:

$$\prod_{i \in V} (B_i \vee M_i \vee C_i)$$
 dĺžka = $O(n)$

 Časť formuly vyjadrujúca, že každý vrchol má najviac jednu farbu:

$$\prod_{i \in V} (\exists B_i \vee \exists M_i) \wedge (\exists B_i \vee \exists C_i) \wedge (\exists C_i \vee \exists M_i)$$

$$O(n)$$

 Časť formuly vyjadrujúca, že dva susedné vrcholy nemajú rovnakú farbu:

$$\prod_{(i,j)\in E} (\exists B_i \vee \exists B_j) \wedge (\exists C_i \vee \exists C_j) \wedge (\exists M_i \vee \exists M_j)$$

$$O(n^2)$$

- b dostaneme ako logický súčin všetkých troch častí formuly
- ullet b je splniteľná práve vtedy, keď G je zafarbiteľný tromi farbami
- o Zložitosť redukcie je $O(n^2)$
- Problém 3-zafarbiteľnosti je polynomiálne redukovateľný na problém splniteľnosti boolovskej formuly v CNF.
- O Podobne sa dajú redukovať aj všetky ostatné NP problémy na problém splniteľnosti boolovskej formuly v CNF (dá sa formálne dokázať).

VZŤAH P A NP

- \circ P \subset NP
- o Otvorený problém:
 - Je P=NP?
 - Dá sa nejaký problém z NPC vyriešiť v polynomiálnom čase aj determinsticky?
 - Predpokladá sa, že nie.

TRIEDY ZLOŽITOSTI

ALGORITMICKY NERIEŠITEĽNÉ PROBLÉMY

- algoritmus je návod, ktorý pre každý vstup generuje konečný výpočet
- ak návod generuje pre nejaký vstup nekonečný výpočet, tak to nie je algoritmus
- o algoritmicky neriešiteľné sú také problémy, na riešenie ktorých neexistuje algoritmus, t.j. nedajú sa vyriešiť v konečnom čase pre každý vstup
- o príklad: Problém zastavenia Turingovho stroja
 - Je daný Turingov stroj a vstupné slovo. Úloha je zistiť, či sa výpočet Turingovho stroja na danom vstupe zastaví, alebo nie.

ALGORITMICKY NERIEŠITEĽNÉ PROBLÉMY

- o príklad: **Problém zastavenia Turingovho stroja:**Je daný Turingov stroj a vstupné slovo. Úloha je zistiť (algoritmicky), či sa výpočet Turingovho stroja na danom vstupe zastaví, alebo nie.
- o riešenie: simulovanie výpočtu daného Turingovho stroja na danom slove
 - konečný výpočet v prípade kladnej odpovede
 - nekonečný výpočet v prípade zápornej odpovede

REKURZÍVNE VYČÍSLITEĽNÝ A NEVYČÍSLITEĽNÝ JAZYK

- Rekurzívny jazyk existuje Turingov stroj, ktorý ho rozpoznáva a zastaví sa pre každý vstup (teda príslušnosť slova do jazyka sa dá rozhodovať algoritmicky – v konečnom čase).
- Rekurzívne vyčísliteľný jazyk existuje Turingov stroj, ktorý ho rozpoznáva (nemusí sa zastaviť pre každý vstup).
- o Ak L je rekurzívny, tak aj Σ^* -L (doplnok L) je rekurzívny jazyk.

L je rekurzívny \Rightarrow existuje TS M, ktorý ho rozpoznáva a zastaví sa pre všetky vstupy.

Zostrojíme TS M, ktorého koncové stavy sú nie koncové stavy pôvodného TS M, a teda rozpoznáva doplnok k jazyku L a tiež sa zastaví pre všetky vstupy.

REKURZÍVNE NEVYČÍSLITEĽNÝ JAZYK

 Existuje jazyk, ktorý je rekurzívne vyčísliteľný, ale nie je rekurzívny.

 $L_1 = \{x_i, M_i \text{ akceptuje } x_i\}$ L_1 je rekurzívne vyčísliteľný, ale nie je rekurzívny.

Dôkaz sporom:

Nech TS M, ktorý rozpoznáva L_1 , simuluje činnosť Turingovho stroja M_i na slove x_i .

Predpokladajme, že L_1 je rekurzívny.

Potom jeho doplnok $L_2 = \sum^* L_1 = \{x_i, M_i \text{ neakceptuje } x_i\}$ musí byť tiež rekurzívny.

REKURZÍVNE NEVYČÍSLITEĽNÝ JAZYK

	x_1	x_2	x_3	x_4	•••	x_k	•••
M_1	A	A	N	A		N	
M_2	N	A	A	A		A	
M_3	A	N	N	N		N	
M_4	A	A	N	A		A	
•••							
M_k	N	N	A	N		?	
•••							

- o neexistuje Turingov stroj M_k , ktorý by rozpoznával jazyk $L_2 = \{x_i, M_i \text{ neakceptuje } x_i\}$
- o teda L_2 nie je rekurzívne vyčísliteľný, a tobôž nie rekurzívny jazyk \Longrightarrow jeho doplnok L_1 nemôže byť rekurzívny

Problém zastavenia Turingovho stroja

- Problém zastavenia Turingovho stroja je nerozhodnuteľný, t.j. neexistuje algoritmus, ktorý pre daný TS a dané vstupné slovo rozhodne v konečnom čase, či sa TS na danom slove zastaví alebo nie.
- Dokaz sporom:

Predpokladajme, že existuje TS, ktorý rozhoduje problém zastavenia \Rightarrow existuje algoritmus na rozhodovanie príslušnosti slova x jazyka $L_2 = \{x_i, T_i \text{ neakceptuje } x_i\}$:

- 1. pre vstupné slovo *x* určí jeho poradie v zozname všetkých slov a kód príslušného Turingovho stroja *M*
- 2. zistí, či sa M zastaví na x
- 3. ak sa zastaví, tak simuluje činnosť M na x, výsledok neguje
- 4. ak sa nezastaví, tak slovo x akceptuje Z existencie konečného algoritmu vyplýva, že L_2 je rekurzívne vyčísliteľný jazyk \Rightarrow spor

HIERARCHIA ALGORITMICKY NERIEŠITEĽNÝCH PROBLÉMOV

- Problém zastavenia Turingovho stroja: Zistiť, či sa výpočet daného Turingovho stroja na danom vstupnom slove zastaví alebo nie.
 - Problém zastavenia Turingovho stroja je nerozhodnuteľný (*čiastočne rozhodnuteľný*, výpočet je nekonečný v prípade zápornej odpovede).
- Zistiť, či sa výpočet daného Turingovho stroja zastaví pre každý vstup.
 - Problém je úplne nerozhodnuteľný (výpočet je nekonečný v prípade kladnej aj zápornej odpovede).

efektívne riešiteľné problémy