MATH 321: In-Class 1

- 1. Suppose $X_i \stackrel{iid}{\sim} \text{Poisson} (\lambda = 5)$, for $i = 1, \dots, 30$.
 - (a) Find the joint pmf $f(x_1, \ldots, x_{30})$.

(b) Let
$$\bar{X} = \frac{1}{30} \sum_{i=1}^{30} X_i$$
. Find $E(\bar{X})$ and $V(\bar{X})$.

- (c) Find the distribution of \bar{X} .
- 2. Let Z_1, \ldots, Z_9 be independent. Also assume $Z_i \sim \text{Normal}(0,1)$ for $i = 1, \ldots, 9$.

(a) If
$$Y_1 = Z_1^2 + \ldots + Z_9^2$$
 find $P(Y_1 < 15)$.

(b) If
$$Y_2 = Z_3^2 + \ldots + Z_9^2$$
 find $P(2 < Y_2 < 13)$.

(c) If
$$Y_3 = Z_3^2 + \ldots + Z_5^2$$
 find $P(Y_3 > 12)$.

3. (a) Suppose $X \sim \text{Normal}(\mu = 100, \sigma = 25)$. Find the 90^{th} percentile of X (i.e. find $x_{0.9}$ such that $P(X < x_{0.9}) = 0.90$).

HINT: Use Z-table "backwards" or invNorm() on graphing calculator.

- (b) Now use qnorm() in R to find the 90^{th} percentile of X. Answer should match part (a).
- (c) Suppose $Y \sim \chi^2$ (15). Find the 30^{th} percentile of Y.
- (d) Suppose $T \sim \mathrm{t}\,(10).$ Find the $upper~25^{th}$ percentile of T.
- 4. Let X_1, \ldots, X_{20} be a random sample from $Normal(\mu = 30, \sigma^2 = 100)$ and let \bar{X} be the sample mean and S be the sample standard deviation.

(a) Find
$$P(-2 < \frac{\bar{X} - 30}{S/\sqrt{20}} < 2)$$
.

(b) Find
$$P(-2 < \frac{\bar{X} - 30}{10/\sqrt{20}} < 2)$$
.