⑩日本国特許庁(JP)

⑪特許出願公開

[®] 公 開 特 許 公 報 (A) 平1-255863

⑤lnt. Cl. ¹

識別記号

庁内整理番号

⑬公開 平成1年(1989)10月12日

G 03 G 9/12

7265-2H

審査請求 未請求 請求項の数 1 (全4頁)

劉発明の名称 静電写真用液体現像剤の補給トナー

②特 願 昭63-84888

29出 願 昭63(1988) 4月5日

⑩発 明 者 倉 本 僧 一 東京都大田区中馬込1丁目3番6号 株式会社リコー内

⑩発 明 者 津 布 子 一 男 東京都大田区中馬込1丁目3番6号 株式会社リコー内

⑩発 明 者 梅 村 和 彦 東京都大田区中馬込1丁目3番6号 株式会社リコー内

⑪出 願 人 株式会社リコー 東京都大田区中馬込1丁目3番6号

四代 理 人 弁理士 佐田 守雄 外1名

明 細 書

1. 発明の名称

静電写真用液体現像剤の補給トナー

2. 特許請求の範囲

1. 少なくとも脂肪族炭化水素担体被と的記担 体被中に分散したトナー粒子とからなり、圧 力容器に充填された固形分濃度20重量 %以上 の静電写真用被体現像剤の補給トナーにおい で、前記圧力容器から出ると常温で気化する低沸 点の脂肪族炭化水素及び/又はハロゲン化脂 肪族炭化水素を含有することを特徴とする静 電写真用液体現像剤の補給トナー。

3. 発明の詳細な説明

〔技術分野〕

本発明は**砂**電写真用被体現像剤に使用される 加圧トナーカートリッジ入りの関形分濃度の高 い補給トナーに関するものである。

〔従来技術〕

従来、通常の固形分濃度の高いトナーを現像

剤に入れただけでは固形分は分離し、塊まりの まま存在し、現像剤中に充分に分散せず、良好 な画像が得られない欠点があった。また、濃度 を制御するセンサーも誤動作を起こす恐れがあ った。

これらの欠点を克服するために、機械的に強 機律を行えば、固形分を均一に分散させること は可能だが、トナー粒子に強いストレスがかか るためトナーを劣化させる恐れがあった。

〔目 的〕

本発明は、従来の欠点を克服した、湿式静電 写真用複写機に使用する被体現像剤の補給トナ ーで、現像剤中に速やかに、且つ均一に分散す る固形分濃度の高いペースト状補給トナーを提 供することを目的とする。

〔榜 成〕

本発明者等は前記目的を達成するために鋭意 研究した結果、少なくとも脂肪族炭化水素担体 液と前記担体液中に分散したトナー粒子とから なり、圧力容器に充填された固形分濃度20 意量

特開平1-255863(2)

%以上の静電写真用液体現像剤の補給トナーに おいて、前記圧力容器内では常温で液体であり、 前記圧力容器内では常温で液体であり、 前記圧力容器から出ると常温で気化する低沸点 の脂肪族炭化水素及び/又はハロゲン化脂肪族 炭化水素を含有することを特徴とする静電写真 用液体現像剤の補給トナーを提供することによって前記目的が達成できることを見出した。

252で)、アイソパーG(158~177で)、アイソパーH(174~190で)、出光石油化学社製のIPソルベント2028(210~265で)、IPソルベント2835(275~350で)、IPソルベント1620(166~205で)、日石化学社製のアイソゾール400(206~257で)、BPケミカル社製のイソドデカン(176~185で)などがあげられ、その他にもイソオクタン、リグロイン(いずれも沸点120~190で)なども使用できる。

本発明に使用される着色材としては、

デグサ社製 Printex G, Printex V, Printex U, Special Black 15, Special Black 4,

三菱化成 #44,#30,MR-11,MA-100

キャポット Black Pearls 1300,1100,900 Reagal 400,660

コロンピア Neo Spectra II. Roben 1035,1252

などの無機顔料、及び

フタロシアニンブルー、フタロシアニングリーン、スカイブルー、ローダミンレーキ、マラカイトグリーンレーキ、メチルパイオレットレーキ、ピーコックブルーレーキ、ナフト

このような本発明の目的に使用される低沸点 脂肪族炭化水素の例としては、ネオペンタン (沸点8.5℃)、イソブタン、n-ブタン(沸点-0. 5℃)などの炭化水素、塩化エチル(沸点12.3℃)、 フッ化プロピル(沸点-2.5℃)などのハロゲン化 炭化水素等がある。

ここで添加される低沸点炭化水素は高固形分トナー100部に対して、一般に0.1~2.0部、好ましくは0.3~0.8部の量で使用される。

本発明の補給用トナーは、通常の高固形分トナーを製造した後、恰却し、低沸点脂肪族炭化水素を添加混入し、提拌してから、圧力容器に充填することによって得られる。

ここで使用される液体現像剤は高絶縁性低線 電率の担体液に着色剤、結着樹脂から成るトナ 一粒子を分散して成るもので、場合によっては 極性制御剤を添加しても良い。

本発明において抵体被として用いられる脂肪 族炭化水素としては、ニクソン社製のアイソパ ーL (沸点183~210℃)、アイソパーM (205~

ールグリーンB、ナフトールグリーン Y、ナフトールイエロー S、ナフトールレッド、リソールファーストイエロー 2 G、パーマネントレッド 4 R、ブリリアントファストスカーレット、ハンザイエロー、ベンジシンイエロー、リソールレッド、レーキレッド C、レーキレッド D、ブリリアントカーミン 6 B、パーマネントレッド F 5 R、ピグメントスカーレット 3 B、インジゴ、チオインジゴ、オイルピンク、及びポルドー10 B

などの有機顔料が使用される。

本発明に使用される樹脂としては、

一般式、
$$R_1$$
 $CH_2 = C\zeta$ $(R_1 = -H, -CH_3, R_2 = C00CnH_{2,n+1}, n=6~20)$

で表わされるビニルモノマーAと

で表わされるビニルモノマー、及びビニルビリ

ジン、エチレングリコールジメタクリレート、スチレン、ジビニルベンゼン、及びビニルトルエンからなる群から選択されるモノマーBとの各一種づつ、もしくは数種の共重合体、グラフト共重合体が使用される。

その他

イーストマン・ケミカル社

N-10,N-11,N-12,N-14,N-34,N-45,C-10,C-13,C-15,C-16,E-10,E-11,E-12,E-14,E-15

三井石油化学社

110P,220P.220NP,320NP,410MP,210MP,310MP,405MP,200P,4202E,4053E

三洋化成社

131P,151P,161P,171P,E300,E250P

サソール針

H1.H2.A1.A2.A3.A14

BASF社

OA WAX.A WAX

ペトロライト社

BARECO 500,BARECO 2000,E-730,E-2018,E2020, E1040,PetronabaC,Petronaba C-36 Petronaba C-400,Petronaba C-7500

天然樹脂変成フェノール樹脂、天然樹脂変成ポリエステル樹脂、天然樹脂変成ペンタエリスリトール樹脂、エポキシ樹脂などの天然樹脂変成硬化樹脂を適宜使用できる。

また着色材に関しては、合成ポリエチレン、 天然樹脂、天然樹脂変成硬化樹脂などで処理し ても良い。これらの着色材、樹脂、溶剤をボー ルミル、キティーミル、ディスクミル、ピンミ ル、撮動ミルなどの分散機に投入して、分散、 混練を行う。

以下、本発明を下記の実施例によってさらに 具体的に説明するが本発明はこれらに限定されるのではない。

実 施 例

ヘキスト社

PES80, PE130, PED121, PED136, PED153, PED521 PED522, PED534

ユニオンカーバイド社

DYNI, DYNF, DYNH, DYNJ, DYNK

モンサント社

ORLIZON 805,705,50

デュポン社

ALATHON 3.10.12.14.16.20.22.23

アライドケミカル社

ACポリエチレン 6.6A.615

三井ポリケミカル社

エパフレックス 150,210,220,250,260,310, 360,410,420,450,460,550,560

などの合成ポリエチレン、ポリプロピレン及び その変成したもの。

カルナバワックス、モンタンワックス、キャンデリラワックス、シュガーケーンワックス、オーリキュリーワックス、密蝋、木蝋、ヌカ蝋などの天然ワックス、エステルガム、硬化ロジンなどの天然樹脂、天然樹脂変成マレイン酸樹脂、

本発明の補給トナーの製造

(ペーストナーの製造)

プリンテックスV(デグサ社製) 300部 N-11(イーストマンケミカル) 350部 E-12(イーストマンケミカル) 350部

をフラッシャーで混練粉砕したもの

1000部;

ラウリルメタクリレート/メチルメタクリレート/グリシジルメタクリレート/グリシジルメタクリレート/メタクリル酸(80/10/5/5)共重合体20%アンパーH-(エクソン化学)分散液

2000部;及び

アイソパーH

3000部

をポールミルで48時間視練し、取出した。(固 形分33%)

前述のように得られた高固形分トナー100部 に対し、-50℃の雰囲気下で、イソブタン0.5部 を混入させ、提伸した。

このように関製したトナーを53 ¢ × 185mm(被充填量280m2)のピストン缶に充填し、常法により加圧し、本発明の圧力容器入り補給トナーを 完成させた。

比較例

イソブタン添加しない以外は、前途の本発明

の補給トナーと全く同様にして比較補給トナー を製造した。

参考例

市版のPEのポトル入りCT-5085用トナー(固形分約12%)

[濃度センサーの出力電圧試験]

前述の本発明の実施例、比較例及び参考例のトナーをそれぞれ使用して、リコー社製CT5085にトナーをセットし、新聞を500枚連続コピーし、現像タンク内にある濃度センサーの出力電圧を測定した。

また、その後、時間をおいて現像タンク内を へらでよく提拌して、センサー出力電圧を した。なお、トナー補給は、参考例に関して 市販の低濃度のCT5085用トナーをその 用し、実施例及び比較例に関してはリレーさま してソレノイドを複りに関してはリレーさせか はな数置を制作して用いた。 濃度センサー出力 電圧の変化を第1回に示す。

ここでセンサー出力が高いと、トナーが薄く、

低いと漁い。実施例と参考例は正常動作電圧一段 辺で正常に動作しているが、比較例はコ最後に発 了後、序々にトナー値度が強くなり、最後な 提弁を行うことにより、さらに高漁度低漁 のことより比較例のように高漁 が成分を選入していない。 が成分を選入していないが非常にある。 ナーにおいては、分散が非常にないたかまたが、 神給しても、センサーが検知しないた多発の がよることが示されている。 かけることが示されている。 ナーを補給いては、高固形分にも サーにおいては、高固形分にも サーに、分散されるため、センサーが正常に やかに、分散される。

〔効 果〕

以上述べたように、本発明によれば、現像剤中に速やかに均一に分散し、濃度センサーに誤動作を生じない固形分濃度の高い補給トナーが 提供される。

4. 図面の簡単な説明

第1回は濃度センサーの出力電圧の変化を示

すグラフである.

特 許 出 顧 人 株 式 会 社 リコ ー 代理人 弁理士 佐 田 守 雄 外1名

第1図

(19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平10-255863

(43)公開日 平成10年(1998) 9月25日

識別記号

FΙ

HO1M 14/00 H01L 31/04 H 0 1 M 14/00

P F

H01L 31/04

Z

審査請求 未請求 請求項の数11 FD (全 5 頁)

(21)	出願番号
(01)	MXX P 7

(22)出願日

特願平9-72809

(71)出願人 000173809

平成9年(1997)3月11日

財団法人電力中央研究所 東京都千代田区大手町1丁目6番1号

(72) 発明者 字佐美 章

東京都狛江市岩戸北2-11-1 財団法人

電力中央研究所 狛江研究所内

(74)代理人 弁理士 大塚 学

(54) 【発明の名称】 色素増感太陽電池

(57)【要約】

【課題】入射光量に対する電池出力の比で表される変換 効率の向上を図った色素増感太陽電池に関するものであ る。

【解決手段】硝子基板1の裏面に電極6が設けられ、電 極6の下面に色素を吸着した半導体微粒子31を堆積さ せた光吸収粒子層3が形成され、光吸収粒子層3を含み 前記電極6の下面に電解液部4が設けられ、この電解液 部4の下面に対向電極5が設けられた色素増感太陽電池 において、前記電極6と光吸収粒子層3との間に高屈折 材料薄膜7が設けられると共に、前記光吸収粒子層3の 下面に粒径を制御した高屈折材料粒子81を堆積させた 光反射粒子層8が設けられたことを特徴とするものであ る。

【特許請求の範囲】

【請求項1】 硝子基板の裏面に電極が設けられ、該電極の下面に色素を吸着した半導体微粒子を堆積させた光吸収粒子層が形成され、該光吸収粒子層を含み前記電極の下面に電解液部が設けられ、該電解液部の下面に対向電極が設けられた色素増感太陽電池において、

前記電極と光吸収粒子層との間に高屈折材料薄膜が設けられると共に、前記光吸収粒子層の下面に粒径を制御した高屈折材料粒子を堆積させた光反射粒子層が設けられたことを特徴とする色素増感太陽電池。

【請求項2】 硝子基板の裏面に電極が設けられ、該電極の下面に色素を吸着した半導体微粒子を堆積させた光吸収粒子層が形成され、該光吸収粒子層を含み前記電極の下面に電解液部が設けられ、該電解液部の下面に対向電極が設けられた色素増感太陽電池において、

前記電極と光吸収粒子層との間に高屈折材料薄膜が設けられると共に、前記光吸収粒子層の下面に、粒径を制御すると共に色素を吸着させた高屈折材料粒子を堆積させた光反射粒子層が設けられたことを特徴とする色素増感太陽電池。

【請求項3】前記電極が格子状又は複数の帯状に形成されている請求項1又は2記載の色素増感太陽電池。

【請求項4】 硝子基板の裏面に電極が設けられ、該電極の下面に色素を吸着した半導体微粒子を堆積させた光吸収粒子層が形成され、該光吸収粒子層を含み前記電極の下面に電解液部が設けられ、該電解液部の下面に対向電極が設けられた色素増感太陽電池において、

前記硝子基板と前記電極との間に、該硝子基板側から高 屈折材料薄膜及び屈折率を調整する屈折調整層が設けら れると共に、前記光吸収粒子層の下面に粒径を制御した 高屈折材料粒子を堆積させた光反射粒子層が設けられた ことを特徴とする色素増感太陽電池。

【請求項5】 硝子基板の裏面に電極が設けられ、該電極の下面に色素を吸着した半導体微粒子を堆積させた光吸収粒子層が形成され、該光吸収粒子層を含み前記電極の下面に電解液部が設けられ、該電解液部の下面に対向電極が設けられた色素増感太陽電池において、

前記硝子基板と前記電極との間に、該硝子基板側から高 屈折材料薄膜及び屈折率を調整する屈折調整層が設けら れると共に、前記光吸収粒子層の下面に、粒径を制御す ると共に色素を吸着させた高屈折材料粒子を堆積させた 光反射粒子層が設けられたことを特徴とする色素増感太 陽電池。

【請求項6】 前記電極が透明な膜状に形成されている 請求項4又は5記載の色素増感太陽電池。

【請求項7】 前記屈折調整層が酸化タンタルにより構成された請求項4又は5記載の色素増感太陽電池。

【請求項8】 前記光吸収粒子層の半導体微粒子の粒径が80nm以下であると共に、前記光反射粒子層の高屈 析材料粒子の粒径が200~500nmである請求項 1,2,4又は5記載の色素増感太陽電池。

【請求項9】 前記高屈折材料薄膜、前記光吸収粒子層の半導体微粒子及び前記光反射粒子層の粒径を制御した高屈折材料粒子が酸化チタンにより構成された請求項1,2,4又は5記載の色素増感太陽電池。

【請求項10】 前記光吸収粒子層の半導体微粒子及び /又は前記光反射粒子層の高屈折材料粒子の表面に吸着 される色素がルテニウム錯体である請求項1,2,4又 は5記載の色素増感太陽電池。

【請求項11】 前記光反射粒子層の粒径を制御した高 屈折材料粒子が前記電解液部内に分散して設けられた請 求項1又は4記載の色素増感太陽電池。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、色素増感太陽電池 に関し、特に入射光量に対する電池出力の比で表される 変換効率の向上を図った色素増感太陽電池に関するもの である。

[0002]

【従来の技術】わが国においては太陽光発電システムは 導入・普及の段階に達しており、シリコンの p n 接合を 用いた太陽電池は一部市場に出回っているものの、配電 線から購入する電力料金と比較して大幅にコストが高 く、太陽光発電システムの普及のためには太陽電池の低 コスト化が必要とされている。図4は、従来の色素増感 太陽電池のセルの断面構造を示す模式図で、1は硝子基 板、2は硝子基板の下面に設けられた透明な材料による 電極で、例えばフッ素(F)をドープした酸化スズ(S nO。)が用いられる。3は光吸収粒子層で、表面に色 素を吸着した粒径がほぼ50nm以下の酸化チタンなど よりなる半導体微粒子31が電極2に堆積されているも のである。この光吸収粒子層3は10μm以下の薄い膜 状に形成されるが、ここでは光吸収粒子層として説明す る。4は電解液で、光吸収粒子層3を含み、或いは電解 液4が光吸収粒子層3に浸潤するように設けられている ものである。5は対向電極である。

【0003】色素増感太陽電池は、古くから非常に低コストで製作できることが知られていたが、変換効率が低いために実用化は困難とされていた。ところが、色素増感太陽電池は近年外国で研究が進められ、図4に示すように半導体膜を微粒子化しその表面に光を吸収する色素を吸着させることにより、シリコンを中心としたpn接合を用いた太陽電池に接近した変換効率が得られるような報告もされ、外国を中心に実用化も視野に入れた研究開発がされるようになった。

[0004]

【発明が解決しようとする課題】しかしながら、図4に 示す色素増感太陽電池の研究開発におけるほとんどの追 試においては、高日射時に変換効率が、非常に低下する ことが報告されている。また、低日射時においても変換

効率はシリコンを中心とした p n 接合を用いた太陽電池 より低いのが現状である。即ち、この高日射時及び低日 射時の変換効率の低いことが色素増感太陽電池の実用化 の大きな障害となっている。この変換効率の低さは、色 素自身の吸収が非常に小さいことによる長波長領域の光 の透過に原因があり、これを改善するためには、色素を 吸着させた半導体微粒子31による光吸収粒子層3を厚 くする手法もあるが、光吸収粒子層3は、その構造上の 理由から直列抵抗が高く、厚膜化することにより高日射 時の変換効率の低下をさらに大きくするという問題があ る。また逆に、直列抵抗を改善するために、光吸収粒子 層3を薄膜化した場合は、長波長領域の光の透過をさら に増加させることになり、いずれの場合も変換効率を高 めることが困難であった。本発明は、上記に指摘した二 律背反の変換効率の低さと、高日射時における効率の低 下を、同時に改善できる新たな色素増感太陽電池を提供 するものである。

[0005]

【課題を解決するための手段】本発明の色素増感太陽電池は、硝子基板の裏面に電極が設けられ、該電極の下面に色素を吸着した半導体微粒子を堆積させた光吸収粒子層が形成され、該光吸収粒子層を含み前記電極の下面に電解液部が設けられ、該電解液部の下面に対向電極が設けられた色素増感太陽電池において、前記電極と光吸収粒子層との間に高屈折材料薄膜が設けられると共に、前記光吸収粒子層の下面に粒径を制御した高屈折材料粒子を堆積させた光反射粒子層が設けられたことを特徴とするものである。

[0006]

【発明の実施の形態】図1は、本発明による色素増感太 陽電池のセルの断面構造を示す模式図で、1は硝子基 板、6は電極で、格子状或いは複数の帯状に形成された 金属からなる。7は高屈折材料薄膜で、例えば酸化チタ ン (ルチル)が用いられる。そして、その膜厚は約50 ~100nm程度が好ましい。3は光吸収粒子層で、色 素を吸着した粒径が約80 n m以下の例えば酸化チタン (アナターゼ)などの半導体微粒子31が、高屈折材料 薄膜7をつけた硝子基板1に堆積されているものであ る。この光吸収粒子層3の膜厚は、約10μm以下が好 ましい。8は光反射粒子層で、粒径が約200~500 nmの例えば酸化チタン (ルチル) からなる高屈折材料 粒子81により構成され、光吸収粒子層3に堆積されて いる。そして、この光反射粒子層8の厚さは、約5~1 Ομπ程度が好ましい。4は電解液で、光吸収粒子層3 及び光反射粒子層8を含み、或いは電解液4が光吸収粒 子層3及び光反射粒子層8に浸潤するように設けられて いるものである。5は対向電極である。

【0007】この図1に示した本発明による色素増感太陽電池の構造の特徴の一つは、高屈折材料粒子81を光吸収粒子層3に堆積させて光反射粒子層8を形成させる

と共に、この光反射粒子層8の高屈折材料粒子81の粒径を、光の散乱が最大になるように、約200~500 nmの範囲で制御するものである。このことにより、表面積の増大による光吸収粒子層3における光の吸収の増加をそのまま生かし、光吸収粒子層3を一旦透過した光を、その裏面の堆積させた高屈折材料粒子81からなる光反射粒子層8で反射させ、再度半導体微粒子31により形成されている光吸収粒子層3内に入射させることが可能になる。光反射粒子層8による散乱は、散乱による1次回折波の散乱角が、電解液4と高屈折材料粒子81の全反射に相当するような散乱をおこす角度の粒径に粒子を制御した場合に最大になる。

【0008】電解液4と硝子基板1の屈折率は、電解液 4をエチレンカーボナートとした場合それぞれ約1.4 2と1.44とで近いために、光反射粒子層8により反 射された光の散乱波が再度半導体微粒子31よりなる光 吸収粒子層3を透過しても、この透過した光の散乱波の 殆どは、この光反射粒子層8と同程度以上の屈折率をも つ高屈折材料薄膜7の表面(硝子基板1との接合面)で 全反射され、光吸収粒子層3内に再び入射される。ま た、この高屈折材料薄膜7は、硝子基板1側からの光の 入射に対しては反射防止膜と同等の作用を示すため、硝 子基板1側からの光の透過性を低下させることはない。 【0009】また、色素増感太陽電池は、光吸収粒子層 3による電子輸送系と、電解液4によるホール輸送系と は、その輸送系の物質は異なり、ホール輸送系には溶質 (例えばヨウ素)を多量に溶かしこんだ電解液4が用い られる。そのためキャリア輸送を妨げることなく、光吸 収粒子層3を形成する多層の半導体微粒子31の裏面へ の分散が可能となる。このように、一旦色素増感太陽電 池のセルに入射した光は、光吸収粒子層3の裏面での粒 径を制御した高屈折材料粒子81による散乱と、表面で の高屈折率薄膜7による全反射を繰り返すことにより、 光を吸収する色素が吸着した半導体微粒子31により形 成された光吸収粒子層3内に閉じ込められる。そのた め、光吸収粒子層3を薄膜化しても、入射される太陽光 は有効に吸収されることになり、変換効率を大幅に高め ることができる。また、光反射粒子層8の高屈折材料粒 子81においても、光吸収粒子層3の半導体微粒子31 と同様にその表面に色素を吸着させ、光反射粒子層8に おいても光を吸収させて変換効率を高めることも可能で ある。

【0010】なお、図1に示した実施例では、高屈折材料粒子81を光吸収粒子層3の下面に堆積させて光反射粒子層8を形成しているが、高屈折材料粒子81を電解液4内に分散させるようにして設けてもよい。また、前述した高屈折材料粒子81は、光の波数Kに対して1.3×π/Kの粒径をもつ酸化チタンの粒子を用いるもので、その粒径は約200~500nmの範囲に包含される。また、半導体微粒子31及び高屈折材料粒子81の

酸化チタンの粒子の粒径制御や、高屈折材料薄膜7として酸化チタンの薄膜の塗布は、従来からの塗料をはじめとする各種既存技術で可能である。

【0011】また、電解液4としては、アセトニトリルやエチレンカーボナートなどが用いられる。また、高屈折材料薄膜7、半導体微粒子31及び高屈折材料粒子81の材料は、酸化チタンのほか酸化ニオブなどを用いることができる。また、半導体微粒子31に吸着させる色素は、ルテニウム錯体が適しているが、ポルフィリン分子を用いることもできる。前述した本発明の実施例において、高屈折材料薄膜7、光吸収粒子層3、光反射粒子層8の膜厚や層厚の具体的寸法を例示したが、これらの寸法は各セルの太陽光入射部の面積やその他の条件により適宜選定することができる。

【0012】図2に、本発明の図1に示した実施例と図 4に示した従来例とについて、2次元の境界要素法とビ リヤードモデルによるルテニウム錯体を色素として用い た光多重散乱の計算例に基づく、光吸収粒子層の膜厚に 対する光吸収率の特性図を示す。図2において、横軸は 酸化チタン用いた半導体微粒子31の光吸収粒子層3の 膜厚を示し、縦軸は前記光吸収粒子層3の光の吸収率を 示すもので、太陽光の入射エネルギがすべて吸収される 場合を"1"として示してある。また、本発明における 光吸収粒子層3と光反射粒子層8との両者を足した厚さ は10μmで一定としてある。また、入射する光の波長 は530nm、色素はRuL₂ (SCN)₂ (L=2,2) -bipyridyl-4,4'dicarboxylate) を用い、吸収係数はエ タノール溶液中の適当な濃度の値を用いてある。この図 2から明らかなように、色素を吸着させた酸化チタンの 半導体微粒子31からなる光吸収粒子層3の光の吸収率 は、従来例のセルに比較し本発明のセルは、微粒子膜が 薄い場合(1μm程度)で約3倍に増加させることがで きる。また本発明の微粒子膜を従来例の約1/3に薄膜 化しても、従来例と同程度の変換効率を保つことができ る。

[0013]

【実施例】図2は、本発明による色素増感太陽電池の他の実施例のセルの断面構造を模式的に示したもので、図1に示した実施例と相違するところは、電極を図4に示した従来例と同様に透明な電極2としたもので、硝子基板1の下面に高屈折材料薄膜7を設け、その下面に光の屈折率を調整する例えば酸化タンタル(Ta2O5)の屈折率調整層9を設け、そしてその下面に透明な電極2

を設け、その次に実施例1と同様に光吸収粒子層3、光 反射粒子層8、電解液4、対向電極5を順次に設けたも のである。

【0014】この第2の実施例の場合も、図1に示した 実施例と同様に、光吸収粒子層3に入射される太陽光 は、光吸収粒子層3の下面に設けられた光反射粒子層8 の高屈折材料粒子81による散乱と、硝子基板1の下面 に設けられた高屈折材料薄膜7の表面による全反射との 繰り返しにより、光を吸収する色素が吸着された半導体 微粒子31による光吸収粒子層3内に封じ込められる。 この実施例の場合も、光反射粒子層8の高屈折材料粒子 81を電解液4内に分散させるようにして設けてもよ い。

[0015]

【発明の効果】以上詳細に説明したように、本発明により、従来の構造では半導体微粒子による光吸収粒子層を透過していた光のエネルギの多くを、この光吸収粒子層に吸収して閉じ込めることができるため、色素増感太陽電池のセルの出力電流を増やすことが可能になる。これにより色素増感太陽電池の変換効率の向上が図られ、低コストの太陽電光発電の実用化に寄与することができる。

【図面の簡単な説明】

【図1】本発明による色素増感太陽電池のセルの一実施 例の断面構造を示す模式図である。

【図2】本発明による色素増感太陽電池と従来例の色素 増感太陽電池との、光吸収粒子層の膜厚に対する光吸収 率の特性図である。

【図3】本発明による色素増感太陽電池のセルの他の実施例の断面構造を示す模式図である。

【図4】従来の色素増感太陽電池のセルの一例の断面構造を示す模式図である。

【符号の説明】

- 1 硝子基板
- 2,6 電極
- 3 光吸収粒子層
- 31 半導体微粒子
- 4 電解液
- 5 対向電極
- 7 高屈折材料薄膜
- 8 光反射粒子層
- 81 高屈折材料粒子
- 9 屈折率調整層

【図3】

【図2】

【図4】

