Esercitazione di Fisica - 1

Riccardo Nicolaidis

20/03/2025

1 Problema 1

Un sasso viene lanciato da un punto A di un piano inclinato di un angolo α rispetto all'orizzontale. La velocità di lancio \vec{v}_0 forma un angolo θ on l'orizzontale. Si determini: La distanza tra il punto A e B di caduta del sasso sul piano inclinato in funzione dell'angolo di lancio θ

2 Problema 2

Tre blocchi di massa m_1 , m_2 e m_3 , collegati da funi inestensibili (una tra m_1 ed m_2 e una tra m_2 ed m_3), giacciono su un piano e sono trascinati da una forza costante F parallela al piano e applicata alla massa m_3 . Il piano d'appoggio e' un piano liscio (senza attrito). Trovare:

- L'accelerazione delle masse
- Il modulo della tensione T_{12} tra la massa m_1 ed m_2
- \bullet Il modulo della tensione T_{23} tra la massa m_2 ed m_3

3 Problema 3

Si consideri un piano inclinato di un angolo θ rispetto all'orizzontale sul quale e' posizionata una massa m. Tramite una fune inestensibile ed una carrucola ideale il precedente corpo e' collegato ad un secondo corpo di massa uguale (m) che si trova in caduta verso il suolo ad altezza h. Determinale il tempo che impiega la massa in caduta a toccare il suolo.

4 Problema 4

Noti m_1 , m_2 e θ_1 , determinare il valore dell'angolo θ_2 e della tensione della fune (ideale) affinché le masse siano in equilibrio. Determinare inoltre le reazioni vincolari.

Figure 1: Problema 4

5 Problema 5

Una pallina di massa m viene lanciata lungo uno scivolo di pendenza α con velocità iniziale v_0 parallela al piano inclinato. Il coefficiente di attrito dinamico pallina-scivolo è nullo. La pallina si stacca in B e ricade in C. I segmenti AB e BC hanno la stessa lunghezza pari a d. Determinare la velocità iniziale v.

Figure 2: Problema 5