WHAT IS CLAIMED IS:

1	1. A method comprising:
2	detecting an electrical characteristic identifying a defect in a memory unit; and
3	replacing the memory unit with an alternate memory unit, wherein the replacing is
4	performed during user operation of a device having the memory unit and
5	the alternate memory unit.
6	2. The method as recited in Claim 1, wherein the detecting the electrical
7	characteristic comprises:
8	monitoring a current during an erase attempt; and
9	identifying the defect when the current passes a predetermined current threshold.
10 11	3. The method as recited in Claim 1, wherein the detecting the electrical characteristic comprises:
12	monitoring a voltage during an erase attempt; and
13	identifying the defect when the voltage passes a predetermined voltage threshold.
14	4. The method as recited in Claim 1, wherein the detecting the electrical
15	characteristic comprises:
16	monitoring a resistance during an erase attempt; and
17	identifying the defect when the resistance passes a predetermined resistance
18	threshold.

19	5. The method as recited in Claim 1, wherein the monitoring is performed during
20	an erase operation.
21	6. The method as recited in Claim 1, wherein the replacing the memory unit with
22	the alternate memory unit comprises:
23	causing the memory unit to be un-accessible at a memory address; and
24	causing the alternate memory unit to be accessible at the memory address.
25	7. The method as recited in Claim 6, wherein the causing the alternate memory
26	unit to be accessible comprises:
27	programming address status bits of the alternate memory unit with the memory
28	address.
29	8. The method as recited in Claim 7, wherein the address status bits comprise
30	non-volatile memory.
31	9. The method as recited in Claim 7, wherein the address status bits comprise
32	programmable fuses.
33	10. The method as recited in Claim 6, wherein the causing the alternate memory
34	unit to be accessible comprises:
35	setting a used status bit of the alternate memory unit.
36	11. The method as recited in Claim 1, wherein the memory unit is a flash memory
37	block.

38	12. The method as recited in Claim 1, wherein the memory unit is a row of flash
39	memory.

- 40 13. The method as recited in Claim 1, wherein the memory unit is a row of polymer memory.
 - 14. An apparatus comprising:

42

52

53

54

55

56

- a plurality of accessible memory units;
- one or more redundant memory units;
- a failure detection unit coupled to the plurality of accessible memory units

 configured to monitor electrical characteristics in the plurality of

 accessible memory units and detect an electrical characteristic that

 identifies a defect in one of the plurality of accessible memory units; and

 a redundant block swap unit coupled to the plurality of accessible memory units

 and the one or more redundant memory units, the redundant block swap

 unit configured to replace the one of the plurality of accessible memory
 - 15. The apparatus as recited in Claim 14, the failure detection circuit comprising: a current detection unit to detect a current during an erase operation.

units with one of the one or more redundant memory units.

- 16. The apparatus as recited in Claim 14, the failure detection circuit comprising: a voltage detection unit to detect a voltage during an erase operation.
- 57 17. The apparatus as recited in Claim 14, the failure detection circuit comprising:

58	a resistance detection unit to detect a resistance during an erase operation.
59	18. The apparatus as recited in Claim 14, wherein each of the one or more
60	redundant memory units comprises:
61	a plurality of memory cells;
62	address status bits; and
63	a used status bit;
64	wherein the redundant block swap unit is configured to program the address status
65	bits and the used status bit to cause the plurality of memory cells to be
66	accessible.
67	19. The apparatus as recited in Claim 14, wherein each of the one or more
68	redundant memory units comprises a plurality of memory cells, the apparatus further
69	comprising:
70	address status bits; and
71	a used status bit;
72	wherein the redundant block swap unit is configured to program the address status
73	bits and the used status bit to cause the plurality of memory cells to be
74	accessible.
75	20. A system comprising:
76	a processor;
77	an antenna coupled to the processor; and
78	a memory device coupled to the processor, the memory device comprising:
79	a plurality of accessible memory units;

80	one or more redundant memory units;
81	a failure detection unit coupled to the plurality of accessible memory units
82	configured to monitor electrical characteristics in the plurality of
83	accessible memory units and to detect a electrical characteristic that
84	identifies a defect in one of the plurality of accessible memory units; and
85	a redundant block swap unit coupled to the accessible memory units and
86	the one or more redundant memory units, the redundant block swap unit
87	configured to replace the one of the plurality of accessible memory units
88	with one of the one or more redundant memory units.
89	21. The system as recited in Claim 20, the failure detection circuit comprising:
90	a current detection unit to detect a current in one of the plurality of accessible
91	memory units during an erase operation.
92	22. The system as recited in Claim 21, wherein each of the one or more redundant
93	memory units comprises:
94	a plurality of memory cells;
95	address status bits; and
96	a used status bit;
97	wherein the redundant block swap unit is configured to program the address status
98	bits and the used status bit to cause the plurality of memory cells to be
99	accessible.

100	23. The system as recited in Claim 20, wherein each of the one or more redundant
101	memory units comprises a plurality of memory cells, the memory device further
102	comprising:
103	address status bits; and
104	a used status bit;
105	wherein the redundant block swap unit is configured to program the address status
106	bits and the used status bit to cause the plurality of memory cells to be
107	accessible.
108	24. An apparatus comprising:
109	a computer readable medium; and
110	instructions stored on the computer readable medium to:
111	detect an electrical characteristic that identifies a defect in a memory unit;
112	and
113	replace the memory unit with an alternate memory unit, wherein replacing
114	is performed during user operation of a device having the memory unit
115	and the alternate memory unit.
116	25. The apparatus as recited in Claim 24, wherein the instructions to detect the
117	electrical characteristic comprises instructions to:
118	monitor a current; and
119	identify a defect when the current exceeds a predetermined current threshold.
120	26. The apparatus as recited in Claim 24, wherein the instructions to detect the
121	electrical characteristic comprises instructions to:

122	monitor a voltage during an erase attempt; and
123	identify a defect when the voltage exceeds a predetermined voltage threshold.
124	27. The apparatus as recited in Claim 24, wherein the electrical characteristic is
125	detected during an erase operation.
126	28. The apparatus as recited in Claim 24, wherein the instructions to replace the
127	memory unit with an alternate memory unit comprises instructions to:
128	cause the memory unit to be un-accessible at a memory address; and
129	cause the alternate memory unit to be accessible at the memory address.
130	29. The apparatus as recited in Claim 28, wherein the instructions to cause the
131	alternate memory unit to be accessible comprises instructions to:
132	program address status bits of the alternate memory unit with the memory
133	address.
134	30. The apparatus as recited in Claim 28, wherein the instructions to cause the
135	alternate memory unit to be accessible comprises instructions to:
136	set a used status bit of the alternate memory unit.
137	31. The apparatus as recited in Claim 24, wherein the memory unit is a flash
138	block.