ECE 385 - Fall 2024

Instructor: Michael Abba TA: Bishal Lamichhane

HW #7

Due Date: Uploaded to D2L by 10 PM Friday December 6, 2024

Problem 1 (10 points)

A 3 ϕ , 10 kVA, 220 V, Y-connected synchronous generator has R_a = 0.25 Ω per phase and X_s = 5.0 Ω per phase. Determine the excitation voltage, E_f, when the generator is delivering full load at power factor of

- a) 0.85 lagging.
- b) unity.
- c) 0.8 leading.

Problem 2 (10 Points)

A 3ϕ , 14 kV, 10 MVA, 60 Hz, two-pole, 0.85 PF lagging, Y-connected, synchronous generator has X_s = 20 Ω per phase and R_s = 2 Ω per phase. The generator is connected to an infinite bus.

- a) Determine the excitation voltage at the rated condition. Draw the phasor diagram for this condition.
- b) Determine the power (torque) angle at the rated condition.
- c) If the field current is kept constant, determine the maximum power the generator can supply.

Problem 3 (30 points)

Research the Northeast blackout of 2003 discussed in class. Briefly explain the following:

- a) What caused the outage?
- b) What factors contributed to the duration and size of the outage?
- c) How did the use of the Infinite Bus (or grid) system studied in class contribute to the outage and/or limit the outage?
- d) What learnings came from the outage related to technical, operational, and ethical considerations for engineers?