Setul 10

de probleme și exerciții de matematică (relative la derivabilitatea și diferențiabilitatea funcțiilor reale)

S10.1 Pentru următoarele funcții, să se studieze derivabilitatea (ordinară, direcțională, Gâteaux sau parțială, după caz) în punctele sau pe mulțimile și, acolo unde se sugerează, pe direcțiile indicate:

a)
$$f: \mathbb{R} \to \mathbb{R}, \ f(x) = \begin{cases} \arctan \frac{1+x}{1-x}, & x \neq 1 \\ 0, & x = 1 \end{cases}$$
, în $x_0 = 1$;

- b) $f: \mathbb{R} \to \mathbb{R}, \ f(x) = \max\{|x|, |2 x^2|\}, \text{ pe } \mathbb{R} \setminus \{-\sqrt{2}, 0, \sqrt{2}\};$
- c) $f: \mathbb{R} \to \mathbb{R}, f(x) = [x] \sin^2(\pi x)$, pe \mathbb{R} ;

d)
$$f: \mathbb{R} \to \mathbb{R}, f(x) = \begin{cases} \ln(x^2 + 3x + 3), & x \in \mathbb{Q} \\ (x+2)(e^{x+1} - 1), & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$
, în $x_0 \in \{-2, -1\}$;

e) $f: \mathbb{R}^3 \to \mathbb{R}, f(x, y, z) = 4xy^3 - z^2$, în (-1, 1, 13) după direcția (4, -3, 12);

f)
$$f: \mathbb{R} \to \mathbb{R}^2, f(x) = \left(\sqrt{1 + \sqrt[3]{x^2}}, (1 + x^2)^{\sqrt[3]{x}}\right), \text{ în } x_0 = 0;$$

- g) $f: \mathbb{R}^3 \to \mathbb{R}, f(x, y, z) = \sin(x \sin(y \sin z))$, într-un punct din $\{(x, y, \pi) \in \mathbb{R}^3 \mid xy = 0\}$, pe direcția v a intersecției planelor 2x + y + 2z 1 = 0 și 3x + y + 3z + 1 = 0;
- h) $f: \mathbb{R}^2 \to \mathbb{R}^3$, $f(x,y) = \left(e^{xy}, \cos(x-y) 1, \ln\left(x^2 + \sqrt{1+y^2}\right)\right)$, în punctul $0_{\mathbb{R}^2}$, pe direcția v a dreptei ce trece prin punctele (1,-2) și (-3,1);

i)
$$f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) = \begin{cases} (x-y)\sin\frac{xy}{x^2+y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$
, în $(x_0, y_0) = (0,0)$;

j) $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x,y) = (f_1(x,y), f_2(x,y))$, în $(x_0, y_0) = (0,0)$, unde

$$f_1(x,y) = \begin{cases} \frac{x^2 y^2}{x^3 + y^4}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases} \quad \text{si } f_2(x,y) = \begin{cases} -\frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}.$$

S10.2 Să se analizeze diferențiabilitatea Fréchet, în origine, pentru fiecare dintre următoarele funcții:

a)
$$f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) = \sqrt[3]{x^3 + y^3};$$

b) $f: \mathbb{R} \to \mathbb{R}^2$, $f(x) = (f_1(x), f_2(x))$, în $(x_0, y_0) = (0, 0)$, unde

$$f_1(x) = \begin{cases} -x, & x \le 0 \\ x^2 \cos \frac{1}{x}, & x > 0 \end{cases} \quad \text{si } f_2(x) = \begin{cases} \sin x, & x < 0 \\ \arctan x, & x \ge 0 \end{cases};$$

c)
$$f: \mathbb{R}^3 \to \mathbb{R}$$
, $f(x, y, z) = \begin{cases} \frac{xyz}{\sqrt{x^2 + y^2 + z^2}}, & (x, y, z) \neq (0, 0, 0) \\ 0, & (x, y, z) = (0, 0, 0) \end{cases}$;

d)
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
, $f(x,y) = (f_1(x,y), f_2(x,y))$, cu

$$f_1(x,y) = \begin{cases} \frac{1 - \cos(x^3 + y^3)}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases} \quad \text{si } f_2(x,y) = \begin{cases} \frac{x^2 y}{x^6 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

S10.3 Să se determine diferențialele de ordinul întâi, doi și trei ale următoarelor funcții, într-un punct interior oarecare al mulțimii lor de definiție:

a)
$$f: \mathbb{R}^2 \to \mathbb{R}^3$$
, $f(x,y) = (x^2y, xy - y^2, x^3 - 2xy)$;

b)
$$f: \mathbb{R}_+^* \to \mathbb{R}^2$$
, $f(x) = (\ln x, \operatorname{arctg} x)$;

c)
$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
, $f(x, y, z) = \left(e^z \ln\left(x + \sqrt{x^2 + y^2 + 1}\right), \sin(x - y + z)\right)$.

S10.4 Fie $f: (\mathbb{R}_+^*)^3 \to \mathbb{R}^2$, $f(x, y, z) = (f_1(x, y, z), f_2(x, y, z))$, unde $f_1(x, y, z) = x^y + y^z - 2z^x$ şi $f_2(x, y, z) = \frac{1}{xy} - \frac{1}{y^2z} + \frac{1}{z^3(x+y)}, \forall x, y, z > 0$. Să se calculeze:

a)
$$\frac{\partial f_1}{\partial x}(3,2,1) + \frac{\partial f_1}{\partial y}(1,3,2) + \frac{\partial f_1}{\partial z}(2,3,1)$$
 și $(\nabla f_1)(1,1,1)$;

b)
$$x \frac{\partial f_2}{\partial x}(x, y, z) - y \frac{\partial f_2}{\partial y}(x, y, z) + 2z \frac{\partial f_2}{\partial z}(x, y, z)$$
 în punctul $(3, 3, 1)$;

c)
$$((df_1)(1, e, e)) \left(\frac{2}{e}, 1, -1\right)$$
 şi $\left((df_2) \left(\frac{1}{2}, \frac{1}{2}, 1\right)\right) (1, 1, -2);$

d) $(df)(x_0, y_0, z_0)$ (într-un punct current, (x_0, y_0, z_0) , din $\mathbb{R}_+^* \times \mathbb{R}_+^* \times \mathbb{R}_+^*$).

S10.5 Să se arate că funcțiile de mai jos, derivabile pe mulțimea lor de definiție, satisfac relațiile indicate:

a)
$$f(x,y) = xy\sqrt{1 + (x^2 - y^2)^2}$$
,

$$xy < (y, x), (\nabla f)(x, y) >_{e} = ||(x, y)||_{e}^{2} \cdot f(x, y);$$

b)
$$f(x, y, z) = \ln(\operatorname{tg} x + \operatorname{tg} y + \operatorname{tg} z), \operatorname{tg} x + \operatorname{tg} y + \operatorname{tg} z > 0,$$

$$\sin 2x \cdot \frac{\partial f}{\partial x}(x, y, z) + \sin 2y \cdot \frac{\partial f}{\partial y}(x, y, z) + \sin 2z \cdot \frac{\partial f}{\partial z}(x, y, z) = 2;$$

c)
$$f(x,y) = \sin x + g(\sin y - \sin x),$$

$$\cos y \cdot \frac{\partial f}{\partial x}(x,y) + \cos x \cdot \frac{\partial f}{\partial y}(x,y) = \cos x \cos y, \forall g \in \mathcal{C}^1([-2,2];\mathbb{R});$$

d)
$$f(x_1, x_2, x_3, x_4) = \varphi(x_1 - x_2, (x_3 - x_4)e^{-x_1}, x_3 - x_4(x_1 - x_2 + 1)),$$

$$(x_1 - x_2) \left(\frac{\partial f}{\partial x_1} (x_1, x_2, x_3, x_4) + \frac{\partial f}{\partial x_2} (x_1, x_2, x_3, x_4) \right) +$$

$$+(x_3-x_4)\left[(x_1-x_2+1)\frac{\partial f}{\partial x_3}(x_1,x_2,x_3,x_4)+\frac{\partial f}{\partial x_4}(x_1,x_2,x_3,x_4)\right]=0, \forall \varphi \in \mathcal{C}^1\left(\mathbb{R}^3;\mathbb{R}\right).$$

S10.6 Fie $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = \begin{cases} y^2 \ln\left(1 + \frac{x^2}{y^2}\right), & y \neq 0 \\ 0, & y = 0 \end{cases}$. Să se arate că există derivatele

parțiale de ordinul al doilea, mixte, ale lui f, în orice punct $(x, y) \in \mathbb{R}^2$, dar acestea nu sunt continue în (0,0). Sunt ele egale în (0,0)?

S10.7 Fie C o mulţime nevidă şi deschisă din \mathbb{R}^n , astfel încât, pentru orice $x \in C$ şi orice $t \in \mathbb{R}^*$, avem $tx \in C$. O funcţie $f: C \to \mathbb{R}$ este, prin definiţie, omogenă în sens Euler, de grad ω ($\omega \in \mathbb{R}$) (sau, altfel spus, f este ω -omogenă în sens Euler), pe C, dacă şi numai dacă $f(tx) = t^{\omega}f(x)$, $\forall x \in C$, $\forall t \in \mathbb{R}^*$.

Să se arate că, în ipoteza că f este Fréchet diferențiabilă pe C şi $\omega \in \mathbb{R}$, atunci f este ω -omogenă în sens Euler dacă și numai dacă satisface identitatea lui Euler:

$$<\nabla f(x), x> = \omega f(x), \forall x \in C \setminus \{0_{\mathbb{R}^n}\}.$$

S10.8 Fie $A \subseteq \mathbb{R}^n$ o mulţime convexă (adică, pentru orice $x, y \in A$ şi $\lambda \in [0, 1]$, avem $\lambda x + (1 - \lambda)y \in A$), cu interiorul A nevid şi $f: A \to \mathbb{R}$ o funcţie continuă pe A şi deferenţiabilă pe A. Să se arate atunci că f este convexă pe A (adică, $\forall x, y \in A$ şi $\lambda \in [0, 1]$, satiface relaţia $f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$), dacă şi numai dacă verifică relaţia

$$<(\nabla f)(y)-(\nabla f)(x), y-x>\geq 0, \forall x,y\in A$$

sau, echivalent, inegalitatea:

$$f(y) \ge f(x) + \langle (\nabla f)(x), y - x \rangle, \forall x, y \in A.$$

S10.9 Fie $D \subseteq \mathbb{R}^n$ o mulţime nevidă, deschisă şi convexă, iar $f: D \to \mathbb{R}$ o funcție diferențiabilă Fréchet pe D. Atunci, oricare ar fi punctele $x, y \in D$, există $z \in \{ty + (1-t)x \mid t \in (0,1)\}$, astfel încât

$$f(y) - f(x) = (df)(z)(y - x).$$

S10.10 Fie $D \subseteq \mathbb{R}^p$, $D \neq \emptyset$ și $f: D \to \mathbb{R}^q$ $(q \geq 2)$. Să se arate că dacă D este deschisă și convexă, iar f este diferențiabilă Fréchet pe D, atunci, pentru oricare două puncte $x, y \in D$, există $\xi \in \{ty + (1-t)x \mid t \in (0,1)\}$, astfel încât:

$$||f(y) - f(x)||_{\mathbb{R}^q} \le ||(df)(\xi)||_{\mathcal{L}(\mathbb{R}^p;\mathbb{R}^q)} \cdot ||y - x||_{\mathbb{R}^p}.$$

S10.11

a) Să se dezvolte funcția $f: \mathbb{R}^3 \to \mathbb{R}$, definită prin

$$f(x,y,z) = x^2 + y^2 + z^2 + 2xy - yz - 4x - 3y - z + 4,$$

cu ajutorul formulei lui Taylor, în vecinătatea punctului (1, 1, 1);

- b) Să se dezvolte Taylor polinomul $P(x,y) = 2x^3 3x^2y + 2y^2 + 9x^3 3y + 6x + 3$ după puterile lui x + 1 și y 1;
- c) Să se scrie dezvoltarea Taylor, după puterile lui x și y, a funcției $f(x,y) = \left(e^{\sin(x-y)}, \cos(x+y)\right)$, până la termenii de gradul al doilea inclusiv.

S10.12 Fie
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
, $f(x, y, z) = \left(x^3 + y^3 + z^3 - 3xyz, \sqrt{x^2 + y^2 + z^2}, xy + yz + zx\right)$

a) Să se studieze derivabilitatea Gâteaux și diferențiabilitatea Fréchet a lui f pe Kerf;

- b) Să se arate că Jacobiana funcției f există și este singulară în orice punct din $\mathbb{R}^3 \setminus \{0_{\mathbb{R}^3}\}$.
- **S10.13** Să se arate că $f: \mathbb{R}^3 \to \mathbb{R}$, definită prin $f(x, y, z) = (z^2 x^2 y^2) \cdot \text{sh}(x y + z)$, satisface relația

$$(z-y)\frac{\partial f}{\partial x}(x,y,z) + (x+z)\frac{\partial f}{\partial y}(x,y,z) + (x+y)\frac{\partial f}{\partial z}(x,y,z) = 0.$$

S10.14 Fie
$$f: \mathbb{R}_+^* \times \mathbb{R}_+^* \times \mathbb{R}_+^* \to \mathbb{R}_+^*$$
, dată prin $f(x_1, x_2, x_3) = \frac{x_1^3 + x_2^3 + x_3^3}{x_1 x_2 x_3}$.

- a) Să se calculeze (df)(1,1,1).
- b) Să se arate că f este convexă.

S10.15 Fie D o mulțime nevidă și deschisă din \mathbb{R}^3 . De asemenea, fie $f:D\to\mathbb{R}^*$ o funcție de clasă \mathcal{C}^2 pe D. Să se arate că are loc formula:

$$\left(\left(d^{2}\left(\frac{1}{f}\right)\right)(x)\right)(u,v) = -\frac{1}{f^{2}(x)}\left(\left(d^{2}f\right)(x)\right)(u,v) + \frac{2}{f^{3}(x)}\left(\left(df\right)(x)\right)(u) \cdot \left(\left(df\right)(x)\right)(v),$$

$$\forall \ x \in D, \forall \ u,v \in \mathbb{R}^{3}.$$

S10.16 Să se scrie formula lui Taylor de ordinul 3 pentru funcția $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(x_1, x_2) = 3x_2^2 - x_1^2 + 2x_1x_2 - 6x_1 - 2x_2 + 4,$$

într-o vecinătate a punctului (-2,1).

Bibliografie indicată

- 1. C. Drăgușin Calcul diferențial (Culegere de exerciții și probleme), Editura "Fair Partners", București, 2008.
- 2. Irinel Radomir, Andreea Fulga Analiză matematică. Culegere de probleme. (Cap. 5), Ed. Albastră, Cluj-Napoca, 2005.
- **3.** M. Postolache Analiză matematică (teorie și aplicații), Editura "Fair Partners", București, 2011.