ADVD ASSIGNMENT

MICROWIND

Name ID's

Harsh Agrawal 2019B2A30996P

Naman Mhota 2019B2A80981P

Kapil Nair 2019 BY A30654P

Scanned by TapScanner

Remarks:- Not a feasible design.

1.76

Scanned by TapScanner

The distinct four deservations is preparated at 500 MHz. but for abservation purposes, aperated at 500 MHz L=180 nm 17 ynamic power = 4.033 MW Wh: 0.60 Mm 5 MM Course = 2.3704 MW Wp: 0.78 MM Switching power = 1.6686 MW Problems i) Load capacitance of 10 pf is not possible (eather not distract) as asked in the question, for a small cligital circuit like an inverter: [consider page 5 for sample] ii) Microwind kept setting the length to 200 nm in contrast to 180 nm (distract input) iii) Energy, static and switching power could not be visualized in Microwind.			DATE PAGE
L= 180 nm Tynamic pauser = 4.039 MW Wh= 0.60 Mm Short cht Pauser = 2.3704 MW Problems i) Load capacitance of 10 pf is not possible (eather not dished) as asked in the question, for a small cligital circuit like an inverter. [consider page (5) for sample] ii) Ni crowind kept setting the length to 200 nm in contrast to 180 nm (duised input)	Results and Co	udusious:	
Wh: 0.60 Mm Shiftet power = 2.3704 MW Problems i) Lood capacitance of 10 pf is not passible (earther not desired) as asked in the question, for a small digital circuit like an inverter. [consider page 5) for sample] ii) Microuisnel kept setting the length to 200 nm in centrast to 180 nm (desired input)	The designed en	ebservation purpose	frequencles beyond, 500MHz.
i) Load capacitance of 10 pf is not possible (eather not desired) as asked in the question, for a small digital circuit like an inverter. [consider page 5) for sample] ii) Microuised kept setting the length to 200 nm in contrast to 180 nm (desired input)	Wn= 0.60 Um	States pouler	= 2.3704 WW
ircuit like an inverter. [consider page 5) for sample] 1i) Microuelned kept setting the length to 200 nm in contrast to 180 nm (desired input)	Problems		
	irruit de sample] ii) Microuen contrast	he an inverter. Lept setting the to 180 nm (desire	Etion, for a small digital [consider page (5) for re length to 200 nm in ed input)

