

DTIC FILE COPY

Defense Nuclear Agency Alexandria, VA 22310-3398

Burnout Thresholds and Cross Section of Power MOS Transistors with Heavy Ions

A. E. Waskiewicz J. W. Groninger Rockwell International Corporation P.O. Box 3105 Anaheim, CA 92803-3105

February 1990

Technical Report

CONTRACT No. DNA-MIPR-88-507

Approved for public release; distribution is unlimited.

CUT HERE AND RETURN

00

DISTRIBUTION LIST UPDATE

This mailer is provided to enable DNA to maintain appreciate your providing the requested information	
☐ Add the individual listed to your distribution list	
☐ Delete the cited organization/individual.	
☐ Change of address.	
NAME:	
ORGANIZATION.	
OLD ADDRESS	CURRENT ADDRESS
TELEPHONE NUMBER ()	
SUBJECT AREA(s) OF INTEREST:	
DNA OR OTHER GOVERNMENT CONTRACT NUMBER	ER:
CERTIFICATION OF NEED TO KNOW BY GOVERNM	ENT SPONSOR (if other than DNA).
SPONSORING ORGANIZATION	
CONTRACTING OFFICER OR REPRESENTATIVE	
SIGNATURE [,]	

Direc Defense Nuc 201 y ATTN: TITL Washington, DC 20305-1000

> Director Defense Nuclear Agency ATTN: TITL Washington, DC 20305-1000

SECURITY CLASSIFICATION OF THIS PAGE									
REPORT DOCUMENTATION PAGE									
	1a REPORT SECURITY CLASSIFICATION UNCLASSIFIED				16 RESTRICTIVE MARKINGS				
	CLASSIFICATIO		ORITY		3 DISTRIBUTION	AVAILABILITY OF	REPO	RT	
N/A since Unclassified 2b. DECLASSIFICATION/DOWNGRADING SCHEDULE					Approved fo	r public rel	ease	; distr	ibution is
			ING SCHEDU	LE	unlimited.				
N/A since				0/0	5 44044700446	224			
4. PERFORMIN	IG ORGANIZAT	ION REP	ORT NUMBE	R(S)	5 MONITORING	ORGANIZATION REP	ORT	MOMBER(2)	
					Unnumbered				
	PERFORMING		ZATION	6b OFFICE SYMBOL (If applicable)	7a NAME OF MO	DNITORING ORGANI	IZATIC	NC	
	Internatio	onar		(ii oppiicable)	Defense Nue	lany leanau			
Corporati				<u> </u>		lear Agency			
	(City, State, an	d ZIP Co	de)		76 ADDRESS (Cit	y, State, and ZIP Co	ode)		
P.O. Box		2105			6801 Telegr	aph Road			
Ananeim,	CA 92803-	3105			Alexandria,	VA 22310-33	98		
0- 414445 05	CUMPING .C.	A1600		lou ossies sures	0.0000000000000000000000000000000000000				4050
ORGANIZA	FUNDING/SPO	MYOKIN	G	8b OFFICE SYMBOL (If applicable)	9 PROCUREMENT	INSTRUMENT IDE	VIIFIC	ATION NUN	VRFK
0.1.0.1.1.1.2.				RAEE/Cohn	DNA MIPR-88	-507			
9c ADDRESS (City, State, and	1 710 Can	(4)	KABB/COIII	to counce of c	LINIDING AUUMADEDE			p
ac, ADDRESS (City, State, and	ZIPCOO	le)		PROGRAM	UNDING NUMBERS			WORK UNIT
					ELEMENT NO	PROJECT NO	TASK NO		ACCESSION NO
						1			
11 TITLE (lock	ude Security C	lasuficat	(00)		L				
i iiice (iiici	ude seconty C	1033111601	1011)						
		and (Cross Sec	tions of Power	MOS Transist	ors with Hea	vy I	ons.	
17 PERSONAL	.AUTHOR(S) 2, A. E. a			7 63					
									.
13a. TYPE-OF Technical			13b TIME CO	0501 TO 880430		RT (Year, Month, D 1201	ay)	15 PAGE C 106	
			PROW BU	10 000430	900	201			
16. SUPPLEME	NTARY NOTAT	ION							•
17.	COSATI	CODES		18 SURJECT TERMS (C	Ontinue on revers	e if necessary and	denti	fy by block	oumber)
FIELD	GROUP		-GROUP	Power MOSFET	(Continue on reverse if necessary and identify by block number) Heavy Ion Burnout Characterization				
9	1	-	0	SEU	Power MOSFET Test Results				
13	12			MOSFET	SEU Test Results				
19 ABSTRACT	(Continue on	reverse	if necessary	and identify by block nu	ımber)	· · · · · · · · · · · · · · · · · · ·			
Power MOSFET heavy ion-induced Single Event Burnout tests were performed jointly by representatives of the Aerospace Corporation, NASA Goddard, NWSC Crane and Rockweil International. For the most part, presented are the results of the burnout threshold and cross section characterizations performed on n-channel power MOSFETs, however a small amount of p-channel data is also included. In addition, data on the effect of temperature, gate bias, total dose and inductive loading on MOSFET Single Event Burnout sensitivity is proferred. At the time of the test effort, Tradiation hardened devices were being developed by International Rectifier and RCA/GE. The heavy-ion-induced burnout test results on available samples of these devices are also incorporated for comparison to the commercial and JEDEC versions tested.									
l	SIFIED/UNLIMIT		SAME AS R	PT DTIC USERS	UNCLASSI				
	F RESPONSIBLE					Include Area Code)	22c	OFFICE SYN	ABOL
Bennie F.					(703) 32				

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE	-	

CONVERSION TABLE

Conversion factors for U.S. Customary to metric (SI) units of measurement.

MULTIPLY	BY		TO GET
TO GET +	BY		DIVIDE

angstrom	1.000 000 X E -10	meters (m)
atmosphere (normal)	1.013 25 X E +2	kilo pascal (kPa)
bar	1.000 000 X E +2	kilo pascal (kPa)
barn	1.000 000 X E -28	meter ² (m ²)
British thermal unit	1.054 350 X E +3	joule (J)
(thermochemical)		
calorie (thermochemical)	4.184 000	joule (J)
cal (thermochemical)/cm ²	4.184 000 X E ~2	mega joule/m ² (MJ/m ²)
curie	3.700 000 X E +1	giga becquerel (GBq)*
degree (angle)	1.745 329 X E -2	radian (rad)
degree Fahrenheit	$\tau = (t^{f}+459.67)/1.8$	degree kelvin (K)
electron volt	1.602 19 X E -19	joule (J)
erg	1.000 000 X E -7	joule (J)
erg/second	1.000 000 X E -7	watt (W)
foot	3.048 000 X E -1	meter (m)
foot-pound-force	1.355 818	joule (J)
gallon (U.S. liquid)	3.785 412 X E -3	meter ³ (m ³)
inch	2.540 000 X E -2	meter (m)
	1.000 000 X E +9	
jerk		joule (J)
joule/kilogram (J/kg)	1.000 000	Gray (Gy)**
(radiation dose absorbed)	1	
kilotons	4.183	terajoules
kip (1000 1bf)	4.448 222 X E +3	newton (N)
kip/inch² (ksi)	6.894 757 X E +3	kilo pascal (kPa)
ktap	1.000 000 X E +2	newton-second/m2
	1	(N-s/m²)
micron	1.000 000 X E -6	meter (m)
mil	2.540 000 X E -5	meter (m)
mile (international)	1.609 344 X E +3	meter (m)
ounce	2.834 952 X E -2	kilogram (kg)
<pre>pound-force (lbf avoirdupois)</pre>	4.448 222	newton (N)
pound-force inch	1.129 848 X E -1	newton-meter (N·m)
pound-force/inch	1.751 268 X E +2	newton/meter (N/m)
pound-force/foot2	4.788 026 X E -2	kilo pascal (kPa)
pound-force/inch ² (psi)	6.894 757	kilo pascal (kPa)
pound-mass (lbm avoirdupois)	4.535 924 X E -1	kilogram (kg)
pound-mass-foot2	4.214 011 X E -2	kilogram-meter ²
(moment of inertia)	7.214 ULL A E -2	(kg·m²)
· · · · · · · · · · · · · · · · · · ·	1.601 846 X E +1	kilogram/meter ³
pound-mass/foot3	1.001 040 X & TI	
	1 000 000 7 7 0	(kg/m³)
rad (radiation dose absorbed)	1.000 000 X E -2	Gray (Gy)**
roentgen	2.579 760 X E -4	coulomb/kilogram
		(C/kg)
shake	1.000 000 X E -8	second (s)
slug	1.459 390 X E +1	kilogram (kg)
torr (mm Hg, 0°C)	1.333 22 X E -1	kilo pascal (kPa)

^{*} The becquerel (Bq) is the SI unit of radioactivity; l Bq \times l event/s. **The Gray (Gy) is the SI unit of absorbed radiation.

TABLE OF CONTENTS

Section	n	Page
	Conversion Table	iii
	List of Illustrations	v
	List of Tables	vii
1	Introduction	1
2	Heavy Ion Destructive Single Event Burnout Verification	3
3	Single Event Burnout Thresholds and Cross Sections	11
	3.1 Background	11
	3.2 Test Method	13
4	SEB Threshold and Cross Section Test Results	16
	4.1 Nondestructive and Destructive Data Correlation	16
	4.2 SEB Threshold Voltages and Cross Sections	19
	4.3 Single Event Burnout Test Result Trends	51
5	Hardened Device Test Results	63
6	Elevated Temperature Test Results	67
7	Total Dose and Gate Bias Effect on SEB	71
8	Inductive Current Limiting Test Results	74
9	Proton Test Results	77
10	Characterization of Angles of Incidence	80
11	Possible Failure Mechanisms	85
12	List of References	92

LIST OF ILLUSTRATIONS

Figure										Pa	ge
1	Destruc	ctive	e Power	MOSFET	SEB	Test	Circuit	• • • • •	• • •	• • • • • • •	5
2	V _{DSTH}	as a	Functi	ion of L	er .		• • • • • • • • •	• • • • •	• • •	• • • • • • •	10
3	Power 1	MOSFI	ET Stru	ıcture Cı	coss	Sect	ion			• • • • • • •	15
4	SEB No	ndest	ructiv	ve Test (Circ	uit .		• • • • •		• • • • • • •	1.5
5	2N6660	SEB	Cross	Section	vs.	v_{DS}	(reference	Table	5)	• • • • • • •	23
6	2N6660	SEB	Cross	Section	vs.	v_{DS}	(reference	Table	5)		24
7	2N6782	SEB	Cross	Section	vs.	v_{DS}	(reference	Table	5)	• • • • • • •	25
8	2N6788	SEB	Cross	Section	vs.	v_{DS}	(reference	Table	5)	• • • • • • •	26
9	IRF120	SEB	Cross	Section	vs.	v_{DS}	(reference	Table	5)	• • • • • • •	27
10	2N6796	SEB	Cross	Section	vs.	v_{DS}	(reference	Table	5)	•••••	28
11	2N6796	SEB	Cross	Section	vs.	$v_{\rm DS}$	(reference	Table	5)		29
12	2N6796	SEB	Cross	Section	vs.	v_{DS}	(reference	Table	5)	• • • • • • • • •	30
13	2N6796	SEB	Cross	Section	vs.	$v_{\rm DS}$	(reference	Table	5)		31
14	IRF150	SEB	Cross	Section	vs.	v_{DS}	(reference	Table	5)	• • • •-• • •-•	32
15	2N6764	SEB	Cross	Section	vs.	v_{DS}	(reference	Table	5)	• • • • • • • •	33
16	2N6764	SEB	Cross	Section	vs.	v_{DS}	(reference	Table	5)		34
17	2N6764	SEB	Cross	Section	vs.	v_{DS}	(reference	Table	5)	• • • • • • •	35
18	2N6764	SEB	Cross	Section	vs.	v_{DS}	(reference	Table	5)	• • • • • • • •	36
19	IRF150	SEB	Cross	Section	vs.	$v_{\rm DS}$	(reference	Table	5)	• • • • • • •	37
20	2N6784	SEB	Cross	Section	vs.	$v_{\rm DS}$	(reference	Table	5)		38
21	2N6758	SEB	Cross	Section	vs.	v_{DS}	(reference	Table	5)	• • • • • • •	39_
22	2N6798	SEB	Cross	section	vs.	$v_{\rm DS}$	(reference	Table	5)	• • •-• • •	4 Ō
23	2N6798	SEB	Cross	Section	vs.	v_{DS}	(reference	Table	5)	• • • • • • •	41_
24	2N6766	SEB	Cross	Section	vs.	V _{DS}	(reference	Table	5)	• • • • • • •	42_
25	2N6766	SEB	Cross	Section	vs.	v_{DS}	(reference	Table	5)	• • • • • • • •	43 ~
											-

LIST OF ILLUSTRATIONS

Figure	·	Pa	ge	
1	Destructive Power MOSFET SEB Test Circuit	• • • •	5	
2	V _{DSTH} as a Function of LET	• • • •	10	
3	Power MOSFET Structure Cross Section			
4	SEB Nondestructive Test Circuit	• • • •	1.5	
5	2N6660 SEB Cross Section vs. V_{DS} (reference Table 5)	• • • •	23	
6	2N6660 SEB Cross Section vs. V_{DS} (reference Table 5)	• • • •	24	
7	2N6782 SEB Cross Section vs. V_{DS} (reference Table 5)	• • • •	25	
8	2N6788 SEB Cross Section vs. V _{DS} (reference Table 5)	• • • •	26	
9	IRF120 SEB Cross Section vs. V_{DS} (reference Table 5)	• • • •	27	
10	2N6796 SEB Cross Section vs. V _{DS} (reference Table 5)	• • • •	28	
11	2N6796 SEB Cross Section vs. V_{DS} (reference Table 5)	• • • •	29	
12	2N6796 SEB Cross Section vs. V_{DS} (reference Table 5)	• • • •	30	
13	2N6796 SEB Cross Section vs. V_{DS} (reference Table 5)	• • • •	31	
14	IRF150 SEB Cross Section vs. V_{DS} (reference Table 5)		32	
15	2N6764 SEB Cross Section vs. V_{DS} (reference Table 5)	• • • •	33	
16	2N6764 SEB Cross Section vs. V_{DS} (reference Table 5)	• • • •	34	
17	2N6764 SEB Cross Section vs. V_{DS} (reference Table 5)	• • • •	35	
18	2N6764 SEB Cross Section vs. V_{DS} (reference Table 5)	• • • •	36	
19	IRF150 SEB Cross Section vs. V_{DS} (reference Table 5)	• • • •	37	
20	2N6784 SEB Cross Section vs. V_{DS} (reference Table 5)	• • • •	38	
21	2N6758 SEB Cross Section vs. V_{DS} (reference Table 5)	• • • •	39	_
22	2N6798 SEB Cross Section vs. V _{DS} (reference Table 5)	• • • •	40	
23	2N6798 SEB Cross Section vs. V_{DS} (reference Table 5) 2N6798 SEB Cross Section vs. V_{DS} (reference Table 5)	• • • •	41	<u></u>
24	2N6766 SEB Cross Section vs. V_{DS} (reference Table 5)	• • • •	42	
25	2N6766 SEB Cross Section vs. V_{DS} (reference Table 5)	• • • •	43	

LIST OF ILLUSTRATIONS (Continued)

Figu	re Page
26	2N6766 SEB Cross Section vs. $V_{ m DS}$ (reference Table 5) 44
27	2N6766 SEB Cross Section vs. V_{DS} (reference Table 5) 45
28	25N20 SEB Cross Section vs. $V_{ m DS}$ (reference Table 5) 46
29	2N6792 SEB Cross Section vs. $V_{ m DS}$ (reference Table 5) 47
30	2N6792 SEB Cross Section vs. V_{DS} (reference Table 5) 48
31	2N6768 SEB Cross Section vs. $V_{ m DS}$ (reference Table 5) 49
32	2N6762 SEB Cross Section vs. V_{DS} (reference Table 5) 50
33	Non-Jedec (a) versus Jedec (b) Equivalence 55
34	(a) 1982-1986 IR 2N6764 SEB Characteristics (b) 1986 RCA 2N6766 SEB Characteristics 56
35	2N6660 SEB Cross Section versus Date Code 57
36	HEXFET and VMOS Structure Cross Sections 58
37	Correlation of V _{DSTH} with BV _{DSSM} 59
38	Saturated Cross Section versus BV _{DSS} 60
39	Saturated Cross Section versus BV _{DSS}
40	SEB Cross Section versus Temperature 69
41	SEB Cross Section versus Temperature 70
42	Post Total Dose SEB Characteristics (a) 5 krad (Si) (b) 20 krad (Si)
43	SEB Characteristics versus Gate Bias
44	(a) 25N20 (b) 2N6660 Proton SEB Characteristics 79
45	HEXFET and VMOS SEB Cross Section versus Angle of Incidence . 83
46	IRF150 and 25N20 SEB Cross Section versus Angle of Incidence 84
47	HEXFET Structure Cross Section 91
48	Bipolar Transistor Breakdown Characteristics 91

LIST OF TABLES

Table		Page
1	Selected LBL 88" Cyclotron Heavy Ions	. 5
2	N-Channel Destructive Test Results	. 6
3	P-Channel Destructive Test Results	. 9
4	Nondestructive V _{DS} Threshold Correlation	. 17
5	SEB Cross Section Index	. 20
6	N-Channel Devices Electrical Characteristics	. 22
7	SEB Saturated Cross Sections versus Chip Size	. 62
8	IR IRH150 and IRH254 Test Results	. 65
9	RCA Hardened Developmental Devices Test Results	. 66
10	Power MOSFET Inductor Tests	. 76
11	Power MOSFET Proton Test Results	. 78
12	LET of 0° and 60° Incident Cu vs. Vertical Distance (Si)	. 82

SECTION 1

INTRODUCTION

Power MOS devices have demonstrated lower on-resistance per unit area for a given breakdown voltage, high input impedances, and high operating frequency capability. These attributes have made power MOSFETs attractive in the design of satellite and missile power conditioning circuits. Commercially available power MOSFETs had indicated a susceptibility to large threshold shifts with total-ionizing dose and burnout in high dose rate ionization environments. However, it was not anticipated that incident heavy ions representative of cosmic rays of interest in space could cause the catastrophic failure of the device -- regardless of manufacturer and device type. Tests performed with fission particles of Californium-252 indicated this to be indeed a possibility.

A modest effort principally supported by NASA/Goddard, The Aerospace Corporation, Naval Weapons Support Center/Crane, and Rockwell/Autonetics ICBM Systems Division was initiated to characterize available MOSFETs for susceptibility to heavy-ion-induced burnout. "Available" MOSFETs ranged initially from commercially available devices contributed by manufacturers on a quid pro quo (share the test results) basis, to devices aerospace system designers had an interest in evaluating, and finally, to developmental radiation-hardened devices. The test effort primarily included Berkeley Cyclotron heavy ion destructive Single

Event Burnout (SEB) verification and nondestructive SEB cross section characterization tests. To a lesser degree, the effect of temperature, gate bias, total dose, and inductive loading on SEB sensitivity was also examined. In addition, some testing with protons was performed. It is the intent of this report to document the results of the above test effort.

SECTION 2

HEAVY ION DESTRUCTIVE SINGLE EVENT BURNOUT VERIFICATION

Initial testing was performed to assess the degree to which power MOSFETs were vulnerable to heavy-ion-induced burnout. Several device types were tested, including n-channel and p-channel devices with various package date codes (PDC) from four manufacturers. The tests were performed destructively with no current limiting to avert device failure (see Figure 1). A drain-source voltage was applied to an off device -- $V_{\rm GS}$ a negative quantity for an n-channel device -- and the device exposed to a measured fluence of heavy ions. The drain-source voltage was increased in discrete steps and exposures repeated until failure was observed or an increase in the drain-source voltage was precluded by the rated breakdown voltage $V_{\rm DSS}$. Without current limiting, each data point represented the catastrophic failure of a MOSFET.

The devices were tested with monoenergetic ions of copper, argon, neon, and nitrogen from the Lawrence Berkeley 88-inch Cyclotron (see Table 1). The heavy ions ranged in energy between 3 and 4.5 MeV per nucleon with LET values between 3 and 30 MeV/mg/cm². The results of the destructive tests are indicated in Tables 2 and 3. During a test sequence, the increment of drain-source bias for the 100-volt devices was no greater than 10 volts and was 5 volts in 50% of the measurements. The V_{DSTH} bias resolution or the 200-volt devices was 10 volts in 85% of the meas:

s performed.

Results, as listed in the tables, included:

- 1) Heavy ions simulating cosmic rays of interest in space can cause the catastrophic failure of a power MOSFET -- confirming Cf-252 test observations and indicating the Cf-252 test results to be conservative estimates of the SNB susceptibility of the devices.
- 2) The minimum drain-source bias for burnout ($V_{\rm DSTH}$) is inversely related to the LET of the incident ion, as illustrated in Figure 2.
- 3) N-channel devices, when exposed to ions with an LET of 30 MeV/mg/cm², can fail with applied drain-source biases less than 50% of BV_{DSS} -- the average percent of BV_{DSS} applied at burnout was 59%, 72%, and 49%, respectively, for the IRF 150, IRF 130, and IRF 250 types of devices tested.
- 4) With no current limiting, the resultant failures were catastrophic -- manifested by drain-source and source-gate low-impedance current paths.
- 5) P-channel devices appeared to be relatively insensitive to heavy-ion-induced burnout -- no failures were observed for the 14 devices exposed to copper ions with a bias of BV_{DSS} (see Table 3).
- 6) V_{DSTH} varied with manufacturers of the same device type and varied within a device type by the same manufacturer.
- 7) Burnout susceptibility varied over the product line of a manufacturer, and there appeared to be no significant difference in burnout threshold with package date code (PDC). For some device types, PDCs ranged from 1981 to 1986 with no change in $V_{\rm DSTH}$.

Table 1. Selected LBL 88" cyclotron heavy ions.

ION	ENERGY (MeV)	LET (MeV/mg/cm2)	APPROXIMATE RANGE (um)	FACILITY
KRYPTON	350	38	50	
KRYPTON	306	38	45	
COPPER	247	30	40	BERKELEY
ARGON	175	15	40	CYCLOTRON
NEON	89	6	45	
NITROGEN	67	3	70	
	l			

Figure 1. Destructive power MOSFET SEB test circuit.

Table 2. N-channel destructive test results.

NO.	DEV.	110	н	10	77	73	н	100	11178	0.00
Vds	(Volts)	100	† ! !	106	95	80	! ! !	>100	7100	100
ARGON Vds FAILmin F	(Volts)	1 1 8	<75	09	70	70	100	100	1000	080
NO.	DEV.	644	2	12	т	ı	н	424	нннин	01
vER Vds FAILmax	(Volts)	75	75	09	80	1	!	1 8 1	1 1 1 8 1	09
COPPER Vds FALLMin F	(Volts)	000000000000000000000000000000000000000	50	65	70	!	8	70 80 80	75 70 70 70	09
PDC		8315 8325 8606	8612	8526 8620	8612	8509	8521	8126 8214 8320	8502 8523 8547 8529 8559	8518
MFR		IR	Si	RCA	GE	GE	IR	IR	IR	Si
BVdss	(Volts)	100	100	100	100	100	100	100	100	100
NON- JEDEC	P/N	IRF150	IRF150	IRF150	IRF150	1	IRFF110	IRF130	IRFF130	IRFF130
PART		2N6764	2N6764	2N6764	2N6764	IRF150	2N6782	2N6756	2N6796	2N6796

N-channel destructive test results (continued). Table 2.

		1	ા ત	1	ı	1	110	111	18
NO. OF DEV			, , ,	•	•	-			
OGEN Vds FAILmax (Volts)		ļ	! !	1	1 1	1 1		1 1 1	
NITROGEN Vds FAILmin FA (Volts)				!	!	!	>100		>100
NO. OF DEV.	1 4	7	77	8	8	ı	110	1 1 1	1 00
Vds Vds FAILmax (Volts)		100	1 1	!	!	!			
NEON Vds FAILmin (Volts)	>100	06	>100	>95	>100	!!!	>100		>100
PDC	8315 8325 8606	8612	8526 8620	8612	8509	8521	8126 8214 8320	8502 8523 8547	8529 8550
MFR	IR	Si	RCA	GE	<u>a</u> 5	IR	IR	IR	si
BVdss (Volts)	100	100	100	100	100	100	100	100	100
NON- JEDEC P/N	IRF150	IRF150	IRF150	IRF150	t 1 1	IRFF110	IRF130	IRFF130	IRFF130
PART	2N6764	2N6764	2N6764	2N6764	IRF150	2N6782	2N6756	2N6796	2N6796

N-channel destructive test results (continued). Table 2.

Н	12	21	73	н	н	NO. OF DEV.	ഗ	00	1 0	7	7	77
-		100	1	06	! !	GEN Vds FAILmax (Volts)	>60 (4)	>210	! ; ! ! ! !	200	>200	; ! !
45	150	09	130	80	200	NITRC Vds FAILMin (Volts)	09	200	180	190	190	>200
က	0, 0,	0,0		l	н	NO. OF DEV.	2	1 ~1	1 1	1	н	н
35	120	<75 75	110	1		Vds Vds FAILmax (Volts)	55	! ! ! ! ! !	! ! ! !	1	1	
35	120	70	06	1	130	Vds Vds FAILmin (Volts)	ເລ	>200	! ! ! !	!	180	>200
8307	8308 8614	8548 8606	8620	8608	8410	PDC	8307	8308 8614	8548 8606	8620	8608	8410
Si	IR	Si	RCA	GE	RCA	MFR	Si	IR	Si	RCA	GE	RCA
09	200	200	200	200	200	BVdss (Volts)	09	200	200	200	200	200
	IRF250	IRF250	IRF250	IRF250		NON- JEDEC P/N		IRF250	IRF250	IRF250	IRF250	
	2N6766	2N6766	2N6766	2N6766	25N20	PART	2N6660	2N6766	2N6766	2N6766	2N6766	25N20
	60 Si 8307 35 3 45	60 Si 8307 35 3 45 IRF250 200 IR 8308 120 2 150 8614 110 120 2 130 <160	IRF250 200 IR 8308 120 2 150 IRF250 200 Si 8548 70 <75	IRF250 200 IR 8548 70 <75 2 60 100 IRF250 200 IR 8548 70 <75	IRF250 200 IR 8308 120 2 150 IRF250 200 IR 8614 110 2 150 IRF250 200 Si 8548 70 <75	IRF250 200 IR 8308 8614 120 2 150 75 IRF250 200 IR 8548 70 70 <75	50 60 Si 8307 35 35 35 45 1	Solution Solution	Se IRF250 200 IR 8308 120 120 2 150 2 150 2 2 150 2 2 2 2 2 2 2 2 2	Second Sin S	Second Sin S	Non-

Table 3. P-channel destructive test results.

PART TYPE	NON- JEDEC P/N	MFR	BVdss (Volts)	PDC	COPPER Vds PASSmax	NO. OF DEV.
IRFF9122	~~~	IR	100	8511	>100	1
2N6849	IRFF9130	IR	100	8533 8547	>100 >100	1 1
IRF9130		IR	100	8406 8545	>100 >100	2 2
2N6798	IRF9130	RCA	100	8620	>100	2
12P10		RCA	100	8445	>100	2
IRFF9230		IR	200	8607	>200	3

Figure 2. $V_{\rm DSTH}$ as a function of LET.

SECTION 3

SINGLE EVENT BURNOUT THRESHOLDS AND CROSS SECTIONS

3.1 BACKGROUND.

The following two sections document the results of the nondestructive power MOSFET tests and present the major portion of the single event burnout characterization effort. Previous testing without current limiting, as reported in Section 2, resulted in each data point representing the catastrophic failure of a device. The number of devices necessary to obtain statistically meaningful data on the ion fluence required for burnout, as a function of applied drain-source bias and ion LET, would have made the effort economically impractical -- especially if the effort were to include several device types. Oberg and Wert developed a method which included counting resistively limited, ion-induced drain-current pulses as a function of ion fluence². This technique was reported to allow the nondestructive measurement of power MOSFET cross sections.

Figure 3 is a typical cross section of a vertical, planar, four-layer, double-diffused MOS (DMOS) transistor and is representative of the technology with which most present-day power MOSFETs are constructed. A power MOSFET device is constructed with thousands of the vertical DMOS transistors effectively connected in parallel. Inherent in the structure is an npn

bipolar parasitic transistor formed by the source and body diffusions and the drain region of the device. It has been theorized that, in the presence of a sufficiently large electric field, ion-induced turn-on of the parasitic transistor with avalanche multiplication of the charge traversing the drain depletion region would result in a regeneratively increasing drain current leading to second breakdown and failure of the device 1,3. Refer to Section 11 for a more detailed description of the power MOSFET structure and a discussion of possible failure mechanisms. The detection of a drain-source current pulse with amplitude greater than that associated with the photocurrent collected from the back-biased body-drain diode without transistor action would be a precursor of the avalanche condition leading to burnout. Determining the number of pulses as a function of bias and ion LET without degrading the device would allow statistically meaningful burnout characterization of the same device under various exposure conditions -- each data point often representing a large number of device "burnouts."

3.2 TEST METHOD.

The circuit of Figure 4 was implemented to perform the nondestructive power MOSFET SEB threshold and cross-section The circuit had the effect of limiting the measurements. amplitude of the heavy-ion-induced drain-source current pulse, decreasing the drain-source bias as a result of the induced voltage drop across the limiting resistor, and allowing the conditioned pulses to be counted at the end of 75 feet of coaxial cable. The discriminator threshold was set above the signal levels associated with the normal charge collection process of the reverse-biased body-drain junction, but well below the ion-induced pulse amplitude associated with avalanche of the parasitic transistor of the device. The current pulses were counted as a function of applied drain-source bias and the cross section calculated as the number of current pulses divided by the exposure fluence.

A wide range of device types were tested with monoenergetic ions of krypton, copper, argon, neon, and nitrogen from the Lawrence Berkeley 88-inch Cyclotron. The heavy ions ranged in energy between 3 and 4.5 MeV per nucleon with LET values between 3 and 40 MeV/mg/cm². Most of the tests were performed with 247-MeV copper ions (LET=30) which closely approximates the worst case particles of interest in space (iron group nucleuses). To a lesser degree, the effects of LET, angle of ion incidence, gate

bias, temperature, and inductive loading on power MOSFET burnout characteristics were investigated.

At the end of a series of nondestructive measurements, the correspondence between the drain-source voltage at the onset of current pulses and the voltage required for burnout was verified. Burnout verification was performed by removing the current limiting resistor and measuring the minimum drain-source bias to cause the device to burnout. The results of the nondestructive and destructive data correlation measurements and SEB cross section measurements are included in Sections 4.1 and 4.2, respectively.

POWER MOS STRUCTURE

POWER MOSFET TOPOLOGY

SILOX	0.5 microns	
SOURCE METAL	5.0 microns	
OXIDE	0.8 microns	
POLY	0.8 microns	
P+ BODY	5.0 microns	
N- DRAIN	5.0 - 35.0 microns	(BV _{DGG} DEPENDENT)

Figure 3. Power MOSFET structure cross section.

Figure 4. SEB nondestructive test circuit.

SECTION 4

SEE THRESHOLD AND CROSS SECTION TEST RESULTS

4.1 NONDESTRUCTIVE AND DESTRUCTIVE DATA CORRELATION.

Table 4 compares the measured voltage at the onset of drain-source current pulses with resistive current limiting and the failure voltage of the same device with the resistor removed. The table represents the tests of 13 device types with 37 package data codes The table includes two questionable 2N6764 data points measured with copper ions incident at 60 degrees to the chip normal. The two devices were part of a four-device set, all of the same type on the same exposure board. The first two devices on the board were exposed with copper ions at zero degrees. measured failure voltages correlated exactly with the nondestructive voltage measurements. The remaining devices, the two devices in question, were to be tested with 60-degree incident copper ions. The consecutively measured failure voltages appeared to resemble the 0-degree incident ion nondestructive data of these Including the two points in question, 97 percent of the devices. measured failure voltages were within 10 volts of the drain-source voltage at which resistively current-limited pulses were first detected -- in most cases, 10 volts was the incremental increase in the bias between sequential exposures. Excluding the two questionable data points, 100% of the failure voltages were within 10 volts of the nondestructive "burnout" voltage.

Nondestructive Vds threshold correlation. Table 4.

BVd~s (Volts	09	100	100	100	100	100
ANGLE (deg.)	60 0 0 45 0	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000	00	0	000
ION	Ne Cu Ne Ne	c c c c s s c s s	888	ස ස	no	888
LIMITING FAIL Vds) (Volts)	38 224 25 60 0	90 70 70 70 90	90	50	80	0
NO LI PASS Vds (Volts)	2003 2003 2003 2003	000 000 1000 1000 1000	70 80 100	45	70	80 100 100
LIMITING SSHOLD CR.SECT. (Cm2)	2.2E-06 3.3E-07 5.4E-05 3.6E-06 1.1E-06	PASSED 1.7E-07 1.1E-07 PASSED 3.8E-06 1.7E-05 5.0E-07	1.3E-06 2.6E-04 PASSED	1.7E-07 1.7E-06	5.1E-03	1.0E-03 PASSED PASSED
W/ RES. LIMIT THRESHOLD Vds CR. (Volts) (cm	39 23 33 60	100 85 60 100 90 70	70 90 100	50 45	80	90 100 100
PDC	8133	8606 8317 8226 8315	8704	8644	8618	8606
MFR	ů.	H H	IR	Si	IR	IR
NON- JEDEC P/N		IRF150	1 1 1	1 1	IRFF130	IRFF110
PART	2N6660	2N6764	IRF150	IRF150	2N6796	2N6782

Nondestructive Vds threshold correlation (continued). Table 4.

BVdss (Volts	100	200	200	200	200	250	300	300
ANGLE (deg.)	09	30	30	0000	09	0	0	0
NOI	888	ឌួន	ខ្លួ	5555	ភូ ភូ ភូ	CG	Cu	Cn
LIMITING FAIL Vds (Volts)	0866	130	135	150	165 160 80	1	1 1	1 1
NO LI PASS Vds (Volts)	70 80 80	125	130	180 140 125 130	155	200	210	210
RES. LIMITING THRESHOLD Vds CR.SECT.	5.4E-03 1.1E-03 7.7E-03	1.1E-06 6.9E-06	9.4E-07 8.2E-07	7.9E-05 9.1E-05 1.1E-06 1.4E-06	1.8E-04 3.6E-04 4.9E-02	PASSED	PASSED	PASSED
W/ RES. LIMIT THRESHOLD Vds CR. (Volts) (cm	80 90 90	130	135	190 140 130	160 150 80	200	210	210
PDC	8333	8334 8547	8415	8617	8648 8431	8704	8626	8601
MFR	IR I	IR	IR	IR	RCA	IR	IR	Uni
NON- JEDEC P/N	IRF250	IRFF230	IRFF210	IRF250			IRFF320	IRFF320
PART TYPE	2N6766	2N6798	2N6784	2N6766	25N20	IRH254	2N6792	2N6792

4.2 SEB THRESHOLD VOLTAGES AND CROSS SECTIONS.

This section presents the data taken with Lawrence Berkeley Cyclotron 88, 247-MeV copper ions, incident at zero degrees to the chip normal, and represents a significant part of the test effort data. The graphs, Figures 5 through 32, are ordered by device voltage rating (BVDSS) and are, for the most part, self-explanatory. Within each device type, the graphs list the manufacturer, the package date code (PDC), and the number of devices tested in parenthesis after the PDC.

Table 5 is an index to the graphs by part type and electrical characteristics. The table also offers a summary of the data, listing the minimum and maximum of the observed SEB threshold voltages and the average measured saturation cross section. The threshold voltage listed in the table was defined as the bias at which 10^5 particles/cm² would cause burnout -- a cross section of 10^{-5} cm².

Table 5. SEB cross section index.

I.	MFR	PDC	AVG. BVdssm (Volts)	Vds-th MIN (Volts)	th MAX (Volts)	AVG.SAT. CR.SECT. (cm2)	NO. OF DEV.	FIGURE	
2N6660	Si	8133 8307 8624	108 65	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	23 33 60	9.0E-03 8.2E-03 2.2E-03	m 01 m	5 (a) 5 (b) 6	
2N6762	IR	8606	116	86	>100	1.3E-02	ო	7	
2N6788	IR	8333 8440	128	62 81	85	3.5E-03 2.1E-02	러 2	8 (a) 8 (b)	
IRF120	IR	 	!	57	67	4.1E-02	7	Q	
2N6796	IR	332	24.	73	79	.9E-0	400	01.	
		8513 8549 8618	122	777	41 ~4	5.3E-02 6.5E-02 5.2E-02	1 1 2 4	10 (b) 12 (a) 12 (b)	
2N6796	Si	8518	116	57	61	6.6E-02	7	13	
IRF150	IR	8317 8704	131	64	67	1.3E-01 1.9E-01	20 20	14 (a) 14 (b)	
2N6764	IR	8226 8315 8317 8422 8501 8606	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	68 72 72 75 69	73 78 83 83 77	8.9E-02 1.6E-01 5.4E-02 1.8E-01 1.0E-01	немимен	15 (a) 16 (a) 16 (b) 15 (b) 17 (a) 17 (b)	
IRF150	Si	8644	119	52	09	2.18-01	4	19	
IRK150	IR	8704 8704-R	120	>100	1 1 1 1	1 1 1 1 1 1 1 1 1 1	다 4		

AMENTAL OF THE STREET OF THE PARTY OF THE PROPERTY OF THE PROP

Table 5. SEB cross section index (continued).

·													
FIGURE	20	21	22	23 (a) 23 (b)	24 (a) 24 (b) 25 (a) 25 (b)	26 (a) 26 (b)	27 (a) 27 (b)	28 (a) 28 (b)	! ! ! ! ! !	29	30	31	32
NO. OF DEV.	т	8	73	пΗ	ноик	4 W	21.02	0.0	0.4	23	2	73	ч
AVG.SAT. CR.SECT. (cm2)	1.3E-02	5.0E-02	3.6E-02	3.8E-02 3.9E-02	9.6E-02 1.6E-01 1.8E-01 2.2E-01	1.6E-01 1.8E-01	2.0E-01 1.5E-01	2.0E-01 1.7E-01		2.4E-02	2.4E-02	1.4E-01	4.0E-02
-th MAX (Volts)	162	118	108	153	144 142 148	120	72	86	1 [265	274	236	!
Vds-th MIN (Volts)	137	103	92	127	153 115 118 131	87 98	69 65	72 102	>250	210	266	130	316
AVG. BVdssm (Volts)	232	214	210	219	217	205	223	217	307	420	442	458	523
PDC	8415	8622	8619	8334 8547	8614 8617 8623 8704	8601 8648	8548 8606	8431 8648	8704 8729	8626	8601	8612	8715
MFR	IR	RCA	RCA	ai.	IR	RCA	Si	RCA	IR	IR	Uni	Si	IR
PART TYPE	2N6784	2N6758	2N6798	2N6798	2N6766	2N6766	2N6766	25N20	IRH254	2N6792	2N6792	2N6768	2N6762

Table 6. N-channel devices electrical characteristics.

PART TYPE	NON- JEDEC P/N	BVdss (Volts)	Imax (A)	Rds-on (Ohms)	Pd (Watts)
2N6660		60	1.1	3.0	6.25
2N6782	IRFF110	100	3.5	0.6	15
2N6788	IRFF120	100	6	0.3	20
IRF120		100	9.2	0.3	60
2N6796	IRFF130	100	8	0.18	25
2N6764	IRF150	100	38	0.055	150
IRF150		100	38	0.055	150
IRH150		100	38	0.055	150
2N6784	IRFF210	200	2.25	1.5	15
2N6758	IRF230	200	9	0.4	75
2N6798	IRFF230	200	5.5	0.4	25
2N6766	IRF250	200	30	0.085	150
25N20		200	25	0.15	150
IRH254		250	19	0.19	150
2N6792	IRFF320	400	2.5	1.8	20
2N6768	IRF350	400	14	0.3	150
2N6762	IRF430	500	4.5	1.5	75

NOLUS 1.0E-4

NOLUS 1.0E-5

NOLUS 1.0E-6

1.0E-7

20

30

40

50

DRAIN-SOURCE VOLTAGE (Volts)

Figure 5. 2N6660 SEB cross section versus VDS.

Figure 6. 2N6660 SEB cross section versus V_{DS} .

Figure 7. 2N6782 SEB cross section versus V_{DS}.

Figure 8. 2N6788 SEB cross section versus V_{DS} .

Figure 9. IRF120 SEB cross section versus \mathbf{v}_{DS} .

Figure 10. 2N6796 SEB cross section versus V_{DS} .

Figure 11. 2N6796 SEB cross section versus $V_{\rm DS}$.

Figure 12. 2N6796 SEB cross section versus V_{DS} .

Figure 13. 2N6796 SEB cross section versus \mathbf{V}_{DS} .

Figure 14. IRF150 SEB cross section versus V_{DS} .

Figure 15. 2N6764 SEB cross section versus $V_{\rm DS}$.

Figure 16. 2N6764 SEB cross section versus V_{DS} .

Figure 17. 2N6764 SEB cross section versus V_{DS} .

Figure 18. 2N6764 SEB cross section versus $V_{\rm DS}$.

Figure 19. IRF150 SEB cross section versus \mathbf{V}_{DS} .

Figure 20. 2N6784 SEB cross section versus $V_{\rm DS}$.

Figure 21. 2N6758 SEB cross section versus V_{DS} .

Figure 22. 2N6798 SEB cross section versus V_{DS} .

Figure 23. 2N6798 SEB cross section versus V_{DS} .

Figure 24. 2N6766 SEB cross section versus V_{DS} .

Figure 24. 2N6766 SEB cross section versus V_{DS} .

Figure 25. 2N6766 SEB cross section versus V_{DS} .

Figure 26. 2N6766 SEB cross section versus V_{DS} .

Figure 27. 2N6766 SEB cross section versus V_{DS} .

Figure 28. 25N20 SEB cross section versus $V_{\rm DS}$.

Figure 29. 2N6792 SEB cross section versus V_{DS} .

Figure 30. 2N6792 SEB cross section versus V_{DS} .

Figure 31. 2N6768 SEB cross section versus V_{DS} .

Figure 32. 2N6762 SEB cross section versus $V_{\rm DS}$.

4.3 SINGLE EVENT BURNOUT TEST RESULT TRENDS.

As with the destructive tests, data for all device types indicated increasing drain-source burnout thresholds ($V_{\rm DSTH}$) with decreasing ion LET.

As expected, there were no significant differences in the physical appearance of the chips and the burnout characteristics of a JEDEC and the equivalent non-JEDEC version of a device. Figure 33 illustrates the SEB characteristic of the 2N6764 and IRF150, the non-JEDEC equivalent of the 2N6764.

The n-channel devices tested exhibited a wide range of burnout susceptibility. Large variations in $V_{\rm DSTH}$ were observed within a package date code and between package date codes for some device types, while for other device types the opposite was observed --little variation in $V_{\rm DSTH}$ -- in some cases across seven years of package date codes. For example, SEB threshold voltages of the RCA 2N6766 (BV $_{\rm DSS}$ =200v), all packaged in 1986, ranged between 90 and 145 volts -- a variation of 28% of BV $_{\rm DSS}$ (Figure 34(b)). In contrast, threshold voltages of the IR 2N6764 (BV $_{\rm DSS}$ = 100v), packaged from 1982 to 1986, all ranged between 60 and 75 volts -- a variation of only 15% of BV $_{\rm DSS}$ (Figure 34(a)).

For one device type, a discernible difference in structure appeared to be responsible for the observed variation in SEB sensitivity. Figure 35 illustrates the measured SEB

characteristics of the Siliconix 2N6660 MOSFETs with 8133, 8307, and 8624 package date codes. Note the large variation in SEB threshold voltage with date code. The 2N6660 is listed as "VMOS N ENH", 60-volt, 1.1-amp device with a fairly large r_{DS} (on) of Typical VMOS (vertical or V-shaped MOSFET) and HEXFET (hexagonal MOSFET) structures are shown in Figure 36. absence of the p+ region in the center body region of the VMOS It is the design of the p+ body-drain diode which manufacturers claim to be largely responsible for the device's ability to absorb energy in avalanche breakdown and significantly contributes to the essential requirement that the internal parasitic npn bipolar transistor not be allowed to approach the conducting state. The p+ body-drain diode in effect provides a shunt path for the avalanche current by avalanching first and subverting avalanching in the channel region, decreasing the probability of forward-biasing the parasitic bipolar transistor with attendant second breakdown and burnout.

The 1981- and 1983- dated devices were physically different from the 1986 devices. The earlier devices had an interdigitated gatesource structure without any evidence of closed HEXFET transistors and probably were VMOS enhancement mode devices. In contrast, the 1986-coded devices exhibited typical HEXFET transistor structures with a single gate pad. The devices appeared to be a scaled-down version of present DMOS HEXFETs. There were also differences in the measured breakdown voltages (BVDSSM). The measured values averaged 64 volts, 108 volts, and 63 volts for the 8133-,

8307-, and 8624-dated devices, respectively. The differences in structure and breakdown voltages possibly explain the variation in observed SEB thresholds. The larger breakdown voltages, resulting in higher SEB thresholds for the 8307 versus the 8133 devices, and the improved structure, increasing the device avalanche capability, being responsible for the higher SEB thresholds of the 8624 devices as compared to the 8133- and 8307-dated MOSFETs.

The 2N6660 data presents the only example of a device fabricated with two different structures and indicates, for this device type, the marked increase of burnout susceptibility of VMOS as compared to a HEXFET structure. All the other devices tested during this effort appeared to be only fabricated with HEXFET structures.

An attempt was made to correlate measured breakdown voltages (BV $_{\rm DSSM}$) and burnout thresholds (V $_{\rm DSTH}$). The effort proved to be unsuccessful. Figure 37 illustrates a case where only two devices were tested and V $_{\rm DSTH}$ appeared to track with BV $_{\rm DSSM}$ and a case, typical of most of the data, where correlation could not be made — the device with the highest BV $_{\rm DSSM}$ had the lowest V $_{\rm DSTH}$.

One common trend, which was observed, was that the burnout cross section at threshold was several orders of magnitude less than the asymptotic value of the cross section $(\sigma_{\rm sat})$, and the initial slope of the SEB characteristics often varied between device types. An example of the variation is shown in Figure 34. In addition, the value of $\sigma_{\rm sat}$ was observed to be directly related to

the size of the chip die, regardless of the voltage rating of the device, as illustrated by Figures 38 and 39. The IRFF120 and the IRFF320 had measured $\sigma_{\rm sat}$ values of 0.05 and 0.04 cm². The two device types are processed on the same size die⁴ and have breakdown voltage ratings of 100 and 400 volts, respectively. Figure 39 illustrates SEB characteristics of three device types from one manufacturer (Siliconix). Measured saturated cross-section values of the IRF150, IRF250, and IRF350, 100V, 200V, and 400V BVDSS devices were 0.24, 0.23, and 0.23 cm², respectively -- all are processed on the same size die. Additional examples and the ratio of measured $\sigma_{\rm sat}$ to chip size are presented in Table 7.

The chip active area (AA) in the table was estimated as 80% of the die size, and the ratio of $\sigma_{\rm sat}/{\rm AA}$ was calculated using the average measured value of $\sigma_{\rm sat}$ for all manufacturers combined. The table suggests a method for estimating the saturation burnout cross section from a chip's physical size and an example is presented for the 2N6660, for which there were no listed dimensions. Possibly more important, the table indicates, with sufficiently large bias, \approx 50% of the active area of the chip contributes to the burnout susceptibility of the device. Considering that the active area included the source contact and gate structure, $\sigma_{\rm sat}$ appears to reflect the total transistor area of the MOSFET. The results implied, that with applied $\rm V_{DS} >> \rm V_{DSTH}$, all the device transistors were equally sensitive to heavy-ion-induced burnout.

Figure 34. (a) 1982-1986 IR 2N6764 SEB characteristics (b) 1986 RCA 2N6766 SEB characteristics.

Figure 35. 2N6660 SEB cross section versus date code.

POWER MOS STRUCTURE

POWER MOSFET TOPOLOGY

SILOX	0.5 microns	
SOURCE METAL	5.0 microns	
OXIDE	0.8 microns	
POLY	0.8 microns	
P+ BODY	5.0 microns	
N- DRAIN	5.0 - 35.0 microns	(BV _{DSS} DEPENDENT)

Figure 36. HEXFET and VMOS structure cross sections.

Figure 37. Correlation of V_{DSTH} with BV_{DSSM}.

Figure 38. Saturated cross section versus BV_{DSS} .

Figure 39. Saturated cross section versus BVDSS.

Table 7. SEB saturated cross sections versus chip size.

HEXFET DIE	CHIP LENGTH (cm)	CHIP WIDTH (Cm)	CHIP AREA (A) (Cm2)	ESTIMATED ACTIVE AREA (.8A) (Cm2)	DEVICE TYPE	MEASURED CROSS SECTION (Cm2)	RATIO CROSS SECTION - 0.8A
HEX 1	.241	.175	4.2E-02	3.36E-02	IRFF110 IRFF210	NO SAT. 1.3E-02	0.39
HEX 2	.348	.221	7.7E-02	6.15E-02	IRFF120 IRFF320	3.1E-02 2.4E-02	0.50 0.39
нех з	.445	.292	1.3E-01	1.04E-01	IRFF130 IRF230 IRF430	5.7E-02 4.1E-02 NO SAT.	0.54 0.39
HEX 5	.653	.653	4.3E-01	3.40E-01	IRF150 IRF250 IRF350	1.4E-01 1.7E-01 1.4E-01	0.41 0.50 0.41
2N6660	.076*	.076*	5.8E-03	4.60E-03	2N6660	2.0E-03	0.43

^{*} measured values

HARDENED DEVICE TEST RESULTS

Fourteen International Rectifier (IR) "hardened" devices were tested with 247-MeV copper ions (11 devices) and 306-MeV krypton ions (3 devices). Two of the devices were also tested with 175-MeV argon ions. The 14 devices included 7 IRH150s (BVDSS = 100V) and 7 IRH 254s (BVDSS = 250V). In addition, eight RCA "hardened" developmental devices were tested with copper ions. The RCA devices included two 150-volt, 500-angstrom; four 300-volt, 500-angstrom and two 300-volt, 700-angstrom thick oxide devices. Tables 8 and 9 list the test results.

For all test biases, including $V_{\rm DS} = BV_{\rm DSS}$, there were no burnout failures of the seven IR IRH150s tested with copper or krypton ions. However, with $V_{\rm DS} = BV_{\rm DSS}$, gate damage was observed for both the devices exposed to krypton ions. The gate damage was manifested by an increase in gate leakage after a fluence of $\approx 1 \times 10^6$ particles/cm².

There were also no failures of the five IRH254s exposed to copper ions for all test biases, including $V_{\rm DS}=BV_{\rm DSS}$. However, there was a burnout pulse detected with krypton ions and applied $V_{\rm DS}=BV_{\rm DSS}$ (250v). "Over-limit" tests (drain-source biases > $BV_{\rm DSS}$ rated, but < $BV_{\rm DSS}$ measured) were performed on the two IRH254s with 8704-date codes. The devices were exposed to copper and argon ions incident at 0° and 60°. Burnout threshold voltages

measured 280, 300, and 265 volts for the 60° and 0° argon ion and 60° copper ion exposures, respectively. Gate leakage was observed during the 295-volt bias, 0° copper ion exposure -- refer to Table 8 for additional details.

Eight RCA hardened developmental devices with date code 8718 were tested with zero degree incident copper ions. All devices had thinner gate insulating oxides than standard MOSFETS — the RCA Power MOSFET Data Book lists 1000 angstroms as the industry standard thickness of this oxide. The oxide had been thinned in an attempt to improve total dose hardness. Tested were 150-volt and 300-volt rated devices with 500- and 700-angstrom gate insulating oxide thicknesses. For all test bias conditions (including $V_{\rm DS} = BV_{\rm DSS}$ and, in one case, with $V_{\rm DS} > BV_{\rm DSS}$) no indications of burnout were observed. Gate structure degradation, manifested by an increase in gate leakage current, was detected for all devices. The minimum test bias at which gate leakage was detected was 150 volts for the 500-angstrom and 280 volts for the 700-angstrom devices. In some cases, leakage current annealing was observed.

Table 8. IR IRH150 and IRH254 test results.

PART TYPE	PDC	BVdss measured (Volts)	Vds (Volts)	ION	ANGLE (deg.)	BURNOUT CR.SECT. (cm2)
IRH150 (BVdss =100V)	8732-R	122 123 123 124	100 100 100 100	Cu Cu Cu Cu	0 0 0	0 0 0 0
	8704	120	100 100 100	Cu Cu Cu	0 45 60	0 0 0
	8723-R	125	100	Kr	0	0 (1)
	8723-R	124	90 100	Kr Kr	0	0 0 (2)
IRH254 (BVdss =250V)	8729 - R	293 295 297 293	250 250 250 250	Cu Cu Cu Cu	0 0 0 0	0 0 0 0
	8704	309	250 300 280	Cu Ar Ar	0 0 60	0 1.4E-5 4.4E-5
	8704	305	250 295 265 300 280	Cu Cu Cu Ar Ar	0 0 60 0 60	0 0 (3) 5.0E-4 4.4E-5 1.4E-3
	8729-R	294	225 250	Kr Kr	0	0 7.8E-7 (4)

⁽¹⁾ Gate leakage
(2) Gate leakage after 7E5 p/cm2
(3) Gate leakage after 1E5 p/cm2
(4) Gate leakage after 1.2E6 p/cm2

Table 9. RCA hardened developmental devices test results.

DEVICE	BVdss measured (Volts)	Vds (Volts)	ION	ANGLE	BURNOUT CR.SECT. (cm2)
150 Volt 500 Angstrom	242	150 100 200	Cu Cu Cu	0 0	0 0 (1) 0
300 Volt 500 Angstrom	345 375 343 355	300 250 300 175 300 200 300	Cu Cu Cu Cu Cu	0 0 0 0 0	0 0 (2) 0 0 (3) 0 0 (4) 0
300 Volt 700 Angstrom	305 303	280* 280*	Cu Cu	0	0 (5) 0 (6)

^{*} Test stopped when gate leakage was detected

- (1) Gate leakage after 1E4 p/cm2
- (2) Gate leakage after 6E4 p/cm2(3) Gate leakage after 6E4 p/cm2

- (4) Gate leakage after 2E4 p/cm2(5) Gate leakage after 1E5 p/cm2
- (6) Gate leakage after 2.2E5 p/cm2

ELEVATED TEMPERATURE TEST RESULTS

A limited amount of data was obtained on the sensitivity of power MOSFET SEB susceptibility with increased temperature. Burnout cross sections of four devices, representing three device types, were measured at temperatures of 25°C, 50°C, and 100°C. results are illustrated in Figures 40 and 41. At the highest temperature, an increase of approximately 10% in the 25°C burnout threshold was observed. Sze⁵ indicates that at higher temperatures, the breakdown voltage of a Si junction increases and offers the explanation that the increase is the result of the hot carriers passing through the depletion layer losing part of their energy to optical phonons. The value of the electron-phonon mean free path decreases with increasing temperature; therefore, the carriers lose more energy to the crystal lattice along a given distance traveled at constant field. Hence, the carriers must pass through a greater potential difference before they can generate an electron-hole pair, effectively decreasing the electron-hole pair impact generation rate. The reference shows predicted values for the change in breakdown voltage as a function of temperature, parametric with impurity concentration. increase of 100°C and an impurity concentration of 10¹⁵ cm⁻³, an increase of ≈ 10% in breakdown voltage is predicted. Conversely, the common-emitter current gain should increase and the emitterbase bias to support avalanche decrease, making it easier to turn

on the parasitic bipolar transistor when the device is hot. The results indicate that the decrease in impact ionization generation rate appears to dominate the increased transistor gain and reduced avalanche emitter-base voltage, resulting in a decrease in SEB susceptibility with increased temperature.

Figure 40. SEB cross section versus temperature.

Figure 41. SEB cross section versus temperature.

TOTAL DOSE AND GATE BIAS EFFECT ON SEB

A modest effort was expended to determine any gross effects of ionizing radiation on the SEB characteristics of power MOSFETs. The burnout cross sections of four 2N6764 (BV_{DSS} = 100v) devices, two with 5 Krad(Si) and two with 20 Krad(Si) total ionizing dose, were compared to cross sections of similar devices with no ionizing radiation exposure. The results are illustrated in Figure 42. No obvious differences were observed in the post-irradiation SEB characteristics of the devices exposed to ionizing radiation.

In addition, a number of devices were tested to determine the effect of gate-source ($V_{\rm GS}$) bias on SEB. Almost all the SEB characteristics of Section 3 were measured with $V_{\rm GS}$ = -10 volts -- the n-channel MOSFET "hard" off. Figure 43 illustrates typical results for two devices - each device characterized with gate-source biases of -10, 0 and +2 volts. As illustrated by the figure, no discernable difference in SEB cross sections as a function of gate bias was observed.

Figure 42. Post total dose SEB characteristics (a) 5 krad (Si) (b) 20 krad (Si).

Figure 43. SEB characteristics versus gate bias.

INDUCTIVE CURRENT LIMITING TEST RESULTS

In many applications, inductive loads are present between the source of power and the drain of a switched MOSFET. The test effort included a limited qualitative inquiry into the effect of a series inductor on SEB susceptibility — anticipating an effect somewhat analogous to that of the current-limiting resistor of the nondestructive test circuit.

Tests were performed by measuring the device SEB threshold voltage with resistive current limiting, substituting an inductor for the resistor and exposing the device with V_{DS} incremented between exposures until failure was observed. Two tests were performed with a 20 mH toroid in series with the drain and all other tests with inductors ranging in value between 15 and 120 μ H. The results are listed in Table 10. In all cases, with one exception, the failure voltage with an inductor was greater than the resistively measured V_{DSTH} for burnout. The results suggest the possibility that burnout could be prevented if the inductive load is large enough -- \approx 60 μ H for the 100-volt and \approx 120 μ H for the 200-volt BVDSS devices tested. The effect of the inductor was to limit the avalanche current and reduce the drain-source voltage, by L di/dt, to a voltage below the value needed to sustain avalanche and second breakdown.

The intent of the test was to determine if an inductive load had any effect on SEB. The limited amount of test results clearly showed SEB improvement, depending on inductance value. In cases where MOSFET SEB data indicates a questionable amount of margin between design bias values and burnout threshold voltages without inductive current limiting, further testing should be performed to quantify burnout susceptibility improvement, reflecting specific application inductance values.

Table 10. Power MOSFET inductor tests (LET=30 MeV/mg/cm2).

1						
			W/O IND.	WITH	INDUCTOR	: 1
DEVICE			Vds-th	VALUE	Vds	
TYPE	MFR	PDC	(Volts)	(uH)	PASŁ	b
2N6660	Si	8209	27.5	30	60	
2N6660	si	8209	27.5	15	60	
2N6660	si	8133	22.5	30	50	60
2N6660	Si	8209	32.5	60	60	
2N6660	Si	8209	32.5	15	50	60
2N6660	Si	8133	22.5	60	50	60
IRFF130	IR	8334	85	15	100	
IRFF130	IR	8334	75	30	100	
IRFF130	IR	8549	80	15	100	
IRFF130	IR	8549	80	30		100
IRFF130	IR	8253	85	35	100	
IRF130	Si	8502	75	47	100	
IRF130	Si	8518	55	20000	100	
2N6764	IR	8317	65	30	100	110
2N6764	IR	831.7	70	15	80	100
2N6764	IR	8638	70	30	90	100
2N6764	IR	8606	70	15	9.0	100
2N6766	IR	8617	140	20000	160 -	
2N6766	IR	8623	160	60	170	180
2N6766	IR	8623	175	15		175
2N6766	IR	8623	145	120	200	
2N6766	IR	8623	157	30		170
2N6766	IR	8617	130	60	135	150
2N6766	IR	8617	125	60	140	150
2N6766	IR	8617	120	၁၀	125	140
2N6766	IR	8614	140	30	150	160
2N6766	RCA	8601	90	20	175	200
2N6766	RCA	8648	100	20	150	175
2N6766	RCA	8601	100	120	200	
2N6766	RCA	8601	90	60	150	160
2N6766	RCA	8601	125	30	135	150
					[]
	l	l			ļ	

PROTON TEST RESULTS

Twenty-six devices representing eight device types were tested with 50-MeV and 150-MeV protons from the Harvard Cyclotron.

Table 11 lists the devices tested and summarizes the results.

Figure 44 illustrates the proton cross section data for the 2N6660 and 19100 MOSFETs.

Indicated in the table, exposure to protons induced failure in some of the n-channel devices tested. Failures were observed in three of the eight device types tested. However, the failure cross sections were small (< $10^{-8}~{\rm cm}^2$, and, perhaps more significantly, most of the ${\rm V}_{\rm DS}$ burnout biases were at or near the rated device breakdown voltage. Almost all of the tests were performed with 150-MeV protons, but data taken with 50-MeV and 150-MeV protons indicated no differences. Despite the small amount of test data on these devices with heavy ions other than copper, there appeared to be a correlation between the proton and heavy ion test results. In all cases, with one exception, devices which failed with protons also failed exposure to 67-MeV nitrogen ions (LET \approx 3). The small burnout cross section and nitrogen ion data correlation support a proton-nucleus reaction in silicon as the cause of the proton-induced ionization leading to failure.

Power MOSFET proton test results. Table 11.

TYPE	NON- JEDEC	BVdss	MFR	PDC	NO. OF	NO.OF DEV.	% OF RATED BVdss AT	AVERAGE FAILURE	
	F/N	(saton)			DEV.	FALLED	FALLONE	7707.4	ą
2N6660	 	09	Si	(1)8133 (1)8307 (2)8624	ппн	m N O	67, <83,<91 <100, 100 *	4.8E+08 4.5E+10	-08
2N6756	IRF130	100	IR	8126	н	0	! !	i	-
2N6796	IRFF130	100	Si	8549 8518	H 72	00	* *	!!!	
2N6764	IRF15G	100	IR	8315	H-73	00	* *	1 1	
IRH150		100	IR	8644	н	0	! !	1 1 1	
2N6766 2N6756	IRF250	200	GE IR RCA Si	8608 8610 8550 8548 8606	24222	ппппп	90, 95 100 90, 100 90, 90 88, 90	1,3E+10 5,3E+10 7,0E+09 1,8E+09 1,2E+10	01-09-09-09-09-09-09-09-09-09-09-09-09-09-
25N20	=======================================	200	RCA	8431	8	8	88, <100	9.0E+09	60-
IRH254		250	IR	8644	ਜ	0	* *	t 1	

* Tested at maximum bias (Vds=BVdss)
** Tested at maximum bias of 200V
(1) VMOS structure
(2) HEXFET structure

Figure 44. (a) 25N2O (b) 2N666O proton SEB characteristics.

SEB CHARACTERIZATION WITH ION ANGLE OF INCIDENCE

Some burnout cross-section measurements were performed as a function of ion angle of incidence. Examples of the observed opposing trends in MOSFET response as a function of ion angle of incidence and device breakdown voltage are indicated in Figures 45 and 46. Burnout threshold voltages (VDSTH) slightly decreased with increasing exposure angle for the lowest (60V) and highest (500V -- not shown) rated devices, whereas VDSTH increased with increasing exposure angle for the 100-, 200-, and 400-volt devices. The apparent contradiction in trends can possibly be explained by particle range limitations with angles of incidence.

Table 12 lists the LET values of 247-MeV copper ions incident at 0° and 60° as a function of penetrated depth in silicon⁸. The distances were chosen to coincide with the body-drain junction depletion depths of the various voltage rated devices. The depletion depth was calculated using 3ze's avalanche voltage versus impurity concentration for one-sided abrupt junctions in Si and the relationship for the depletion width (W_D) given by:

$$W_{D} = \begin{bmatrix} \frac{2 & \epsilon & \epsilon_{O} & V}{q & N_{D}} \end{bmatrix}^{1/2}$$

The results of the calculations indicated that after 0°-incident ions penetrate to the depletion depth of a 300-volt device and

60°-incident ions penetrate to the depletion depth of a 60-volt device, the LET of the ions begin to degrade. In addition, the 60°-incident ions are stopped within the depletion layer of devices with breakdown voltages greater than 200 volts. calculations suggest that possibly the 0° data for the 400-, and 500-volt devices, and the 60° data for the 100-, 200-, 300-, 400-, and 500-volt devices was affected by ion range limitations. calculations further suggest that the trend in the data with angle of incidence for the 60-volt devices, devices with the shallowest active depth, was not affected by particle range limitations. unaffected 60-volt HEXFET data in Fig. 46 indicates a slight decrease (less than 1%) in V_{DSTH} with 60°- versus 0°-incident This slight decrease could possibly be caused by the slightly higher value of LET of the 60°-incident ions within the 60-volt device depletion region (refer to Table 12). Considering the magnitude of the change in V_{DSTH} and increase in LET, it is believed the 60-volt device data supports the inference that, in the absence of ion range limitations, there is little or no change in V_{DSTH} with ion angle of incidence.

LET of 0- and 60-degree incident Cu vs. vertical distance (Si). Table 12.

FOWER MOSFET FEATURE		o DEGREE	247 AFTE	MeV COPPER IR DEPTH (D)	60 DEGREE	247 AFTEF	MeV COPPER DEPTH (D)
	VERTICAL DIST.(D) (um)	PATH LENGTH (um)	ENERGY (MeV)	LET (MeV/mg /cm2)	PATH LENJTH (um)	ENERGY (MeV)	LET (MeV/mg /cm2)
MOSFET Surface	0	0	247	30.1	0	247	30.1
Metal/Oxide-Si Interface	7	7	197	31.6	14	144	33.3
Body-Drain Metallurgical Junc.	10	10	175	32.3	20	97	33.7
BVdss=60V Depletion Depth	13	13	152	33.1	56	51	31.3
BVdss=100V Depletion Depth	16	16	129	33.6	32	14	20.7
BVdss=200V Depletion Depth	20	20	97	33.7	40 (1)	l I	i i
BVdss=300V Depletion Depth	28	28	37	28.8	40 (2)	ł	!
BVdss=400V Depletion Depth	33	33	10	17.9	40 (2)	!	-

(1) Stopped at depletion width(2) Stopped within depletion region

Figure 45. (a) HEXFET and (b) VMOS SEB cross section versus angle of incidence.

40

DRAIN-SOURCE VOLTAGE (Volts)

1.0E - 7

20

30

LET=30

60

50

Figure 46. (a) IRF150 and (b) 25N20 SEB cross section versus angle of incidence.

POSSIBLE FAILURE MECHANISMS

At least two types of failures have been observed during the power MOSFET testing effort, failures associated with the silicon junctions of the field effect transistor and failures of the gate oxide-polysilicon structure. Silicon junction failures were catastrophic, manifest in drain-source short circuits. structure failures resulted in an increase in gate leakage or catastrophic rupture of the gate oxide. Both types of failures have been observed in other power MOSFET tests⁶. During this test effort, only n-channel MOSFET failures were observed, and only a small percentage of the n-channel failures were gate failures. P-channel devices tested were found to be insensitive to heavy ion Because of the relative immunity of the induced burnout. p-channel devices, only a few types were tested, decreasing the probability of observing any p-channel gate failures.

Gate structure failures were mainly observed in the hardened devices. Some of the hardened developmental devices had thinned insulating gate oxides to improve total dose hardness and appeared to be more vulnerable to ion-induced gate structure damage. With the exception of the devices with thinned gate oxides, the results do not necessarily indicate that hardened devices are more susceptible to induced gate failure, but reflect the fact that these devices were tested with higher applied drain-source biases without silicon burnout. A possible failure mechanism is that the

electrically neutral high-concentration core region of the heavy ion particle track effectively caused the localized collapse of the drain depletion region, for an instant, resulting in a large potential difference across the ion track in the gate oxide. If the resultant electric field in the oxide is large enough, the gate oxide will breakdown and possibly rupture. The observed failures appeared to require both large bias and high LET particle and, in the case of the thinned-oxide devices, appeared to be gate bias dependent.

Figure 47 illustrates a typical DMOS transistor cross section and includes the body-drain diode and parasitic bipolar transistor, formed by the source and body diffusions and the drain region. The body-drain diode and parasitic transistor are effectively in parallel with the field effect transistor or the device and together determine the MOSFET rated breakdown voltage, BVDSS. The resistance $R_{\mbox{\footnotesize B}}$ is internal to the structure and has a value determined by the resistivity and dimensions of the p-body beneath The power MOSFET's ability to sustain blocking the source. voltages requires that the internal parasitic bipolar transistor never approach the conducting state. The effect of forward biasing the parasitic is shown in Figure 48. The figure illustrates bipolar transistor breakdown characteristics for various base-emitter bias conditions. The resistor R in the figure is effectively $R_{\rm p}$ for a power MOSFET. Avalanching and "dv/dt turn-on" are two principal mechanisms which can cause

lateral current flow in the p-body region with the resultant voltage drop across $R_{\rm B}$ tending to forward bias the base-emitter junction of the parasitic bipolar transistor. The purpose of the p+ body-drain diode, designed with a lower breakdown voltage, is to initiate avalanche and reduce the voltage across the channel body-drain junction, thereby circumventing avalanching and lateral current flow in the p-body region. In addition, the diode provides a vertical low-impedance shunt path for the avalanche current through the p+ portion of the body to the source metallization (ground).

A third mechanism which can cause lateral current flow in the p-body region is exposure to energetic heavy ions. Lateral current through $R_{\rm B}$ can result from the charge collected from the ionization track of a particle traversing the high-field drain depletion region of the FET. If the ion-induced lateral current through $R_{\rm B}$ is sufficient to forward bias the base-emitter junction of the parasitic bipolar transistor, the transistor will begin to conduct, and the breakdown characteristics of the structure will be determined by the collector-emitter breakdown voltage under forward bias conditions — the $BV_{\rm CER}$ characteristic of Figure 48. If the applied drain-source voltage is greater than $BV_{\rm CEO}$, the avalanche current can become regenerative and the excessive local power dissipation caused by current-induced avalanche (CIA) 7 leads to device burnout.

The mechanism described requires the following conditions for second breakdown and burnout:

- 1) The charge collected from the particle ionization track must generate sufficient voltage to forward bias the base-emitter junction of the parasitic transistor. The condition implies that the ion track location cause lateral current to flow across the FET body. An ionization track through the p+ portion of the body would not satisfy this condition. But an ionization track through the FET channel region, depositing sufficient charge in the drain depletion layer, could initiate the condition leading to parasitic transistor turn-on and second breakdown.
- 2) The applied drain-source voltage must be greater than the collector-emitter breakdown voltage of the forward-biased parasitic transistor (BV $_{\rm CFO}$).

Hohl and Galloway³ have presented an analytic model of a power MOSFET -- quantitatively explaining the mechanisms leading to burnout in power MOSFETs exposed to heavy ions. The model appears to agree with the suggested burnout mechanism of this section.

Section 2 presents data indicating p-channel MOSFETs to be insensitive to induced burnout with applied $V_{\rm DS} = BV_{\rm DSS}$. The results support the suggested burnout failure mechanism of this section. The electron-hole pair generation rate G from impact ionization

is given by Sze⁵ as

$$G = \alpha_n n v_n + \alpha_p p v_p$$

where α_n and α_p are the respective electron and hole generation rates, defined as the number of electron-hole pairs generated by an electron or hole per unit distance traveled. Sze indicates, in the presence of a high electric field, α_n to be an order of magnitude greater than α_p . This would mean that, for a p-type drain, less charge would be collected by the body region -- the base of the parasitic -- than for an analogous n-type device. In addition, due to differences in resistivity for equal body impurity concentrations, the resistance of the n-body of the

The combination of lower impact ionization rate and lower resistance yould make it more difficult to turn on the parasitic transistor, resulting in the p-channel MOSFET being less sensitive to heavy-ion-induced burnout.

annel device would be less than for a corresponding n-channel

The suggested failure mechanism does not require the ion to completely penetrate the device depletion region, but only deposit sufficient charge to cause the activation of the parasitic transistor -- a condition supported by Californium-252 test results. Fission particles of Cf-252 have a maximum range between 12 and 15 μ m in silicon and decrease in LET with penetration depth. According to the calculations in ' >le 12, the ions of

Cf-252 would be stopped within the drain depletion regions of devices with BV_{DSS} > 100 volts. The saturated cross section for a 2N6766, BV_{DSS} = 200v, measured at V_{DS} = 200v with Cf-252 -- ions stopped in the depletion region -- was 0.20 cm². The saturated cross section of the same device type measured at V_{DS} = 200v with 247 MeV copper ions (range \approx 40 μ m) -- ions penetrating through the depletion region -- was 0.21 cm².

An observed trend in the data was for the burnout cross section at threshold, $V_{DS} = V_{DSTH}$, to be several orders of magnitude less than the cross-section asymptotic value with ${
m v}_{
m DS}$ >> ${
m v}_{
m DSTH}$. In addition, the initial slope of the SEB characteristics varied for different device types. The cross-section data for the HEXFET 2N6660 (BV_{DSS} = 60v) indicated saturation with an applied bias of $V_{\rm DSTH}$ + 5v. Some of the 2N6766s (BV_{DSS} = 200v) required $V_{\rm DS}$ = $V_{
m DSTH}$ + 25v for saturation. The 2N6660, the device with the smallest chip die and the least number of transistors, had the simplest gate structure. The 2N6766 had a more complex structure with a gate pad and several gate stripes and transistors adjacent to gate stripes terminating the gate shield. The greater slope of the SEB characteristics of the more complex devices suggests regions of different burnout sensitivity with $V_{DS} \approx V_{DSTH}$, perhaps influenced by the variation in the field across the complex structure. However, as illustrated in Section 4.3, with $V_{DS} >>$ ${f v}_{{
m DSTH}}$ variations in the field across the device topography become less critical, and all transistors contribute to the heavy-ioninduced burnout of the device.

Figure 47. HEXFET structure cross section.

Figure 48. Bipolar transistor breakdown characteristics.

LIST OF REFERENCES

- 1) A. E. Waskiewicz, J. W. Groninger, V. H. Strahan, and D. M. Long, "Burnout of Power MOS Transistors with Heavy Ions of Californium-252," IEEE Trans. Nuc. Sci., NS-33, pp. 1710-1713, 1986.
- 2) D. L. Oberg and J. L. Wert, "First Nondestructive Measurements of Power Mosfet Single Event Burnout Cross Sections," IEEE Trans. Nuc. Sci., NS-34, p. 1736, 1987.
- 3) J. H. Hohl and K. F. Galloway, "Analytical Model for Single Event Burnout of Power Mosfets," IEEE Trans. Nuc. Sci., NS-34, pp. 1275-1280, 1987.
- 4) International Rectifier "HEXFET Power MOSFET Designer's Manual,"
 4th Edition, 1987.
- 5) S. M. Sze, "Physics of Semiconductor Devices," 2nd. ed., John Wiley & Sons, New York, 1981.
- 6) T. A. Fischer, "Heavy-Ion-Induced, Gate-Rupture Burnout in Power MOSFETs," IEEE Trans. Nuc. Sci., NS-34, pp. 1786-1791, 1987.
- 7) T. F. Wrobel, F. N. Coppage and A. J. Smith, "Current Induced Avalanche in Fritaxial Structures," IEEE Trans. Nuc. Sci., NS-32, pp. 3991-3995, 1985.
- 8) J. F. Ziegler, J. P. Biersack, and U. Littmark, "The Stopping and Range of Ions in Solids," Vol. 1, Pergamon Press, New York, 1985.

DISTRIBUTION LIST

DNA-TR-UNNUMBERED

DEPARTMENT OF DEFENSE

ASSISTANT TO THE SECRETARY OF DEFENSE

ATOMIC ENERGY

ATTN: EXECUTIVE ASSISTANT

DEFENSE ELECTRONIC SUPPLY CENTER

ATTN: DEFC-EAA

DEFENSE INTELLIGENCE AGENCY

ATTN: DT-1B ATTN: RTS-2B

DEFENSE LOGISTICS AGENCY

ATTN: DLA-QEL W T HUDDLESON

DEFENSE NUCLEAR AGENCY

ATTN: RAEE (TREE)

4 CYS ATTN: TITL

DEFENSE NUCLEAR AGENCY

ATTN: TDTT W SUMMA

DEFENSE TECHNICAL INFORMATION CENTER

2 CYS ATTN: DTIC/FDAB

DNA PACOM LIAISON OFFICE

ATTN: DNALO

FIELD COMMAND DEFENSE NUCLEAR AGENCY

ATTN: FCPF R ROBINSON

JOINT DATA SYSTEM SUPPORT CTR

ATTN: C-312 R MASON

ATTN: C-330

JOINT STRAT TGT PLANNING STAFF

ATTN: JK (ATTN: DNA REP)

ATTN: JKCS, STUKMILLER

ATTN: JPEM

NATIONAL COMMUNICATIONS SYSTEM

ATTN: NCS-TS

STRATEGIC AND THEATER NUCLEAR FORCES

ATTN: DR E SEVIN

DEPARTMENT OF THE ARMY

HARRY DIAMOND LABORATORIES

ATTN: SLCHD-NW-RP

NUCLEAR EFFECTS DIVISION

ATTN: R WILLIAMS

U S ARMY BALLISTIC RESEARCH LAB

ATTN: SLCBR-VL D RIGOTTI

U.S. ARMY ELECTRONIC TECH DEV LAB

ATTN: SLCET-SI R. ZETO

US ARMY GARRISON

ATTN: LIBRARY BLDG 80112

U S ARMY MISSILE COMMAND

ATTN: AMCPM-HA-SE-MS

U S ARMY MISSILE COMMAND/AMSMI-RD-CS-R

ATTN: AMSMI-RD-CS-R

US ARMY NUCLEAR & CHEMICAL AGENCY

ATTN: MONA-NU

U S ARMY RESEARCH OFFICE

ATTN: R GRIFFITH

U S ARMY STRATEGIC DEFENSE CMD

ATTN: CSSD-H-SAV

ATTN: CSSD-H-YA RK DUDNEY

U.S. ARMY TEST AND EVALUATION COMD

ATTN: AMSTE-TA-C R K SPARKS

DEPARTMENT OF THE NAVY

NAVAL AIR SYSTEMS COMMAND

ATTN: AIR 931A

NAVAL ELECTRONICS ENGRG ACTVY, PACIFIC

ATTN: CODE 250 D OBRYHIM

NAVAL POSTGRADUATE SCHOOL

ATTN: CODE 1424 LIBRARY

NAVAL RESEARCH LABORATORY

ATTN: CODE 5813 W JENKINS

ATTN: CODE 6816 H HUGHES

NAVAL SURFACE WARFARE CENTER

ATTN: CODE H21 F WARNOCK

ATTN: CODE H23 R SMITH

NAVAL SURFACE WARFARE CENTER

ATTN: CODE H-21

NAVAL TECHNICAL INTELLIGENCE CTR

ATTN: NISC LIBRARY

NAVAL UNDERWATER SYS CENTER

A"TN: 8092

NAVAL WEAPONS CENTER

ATTN: CODE 343

NAVAL WEAPONS EVALUATION FACILITY

ATTN: CLASSIFIED LIBRARY

NAVAL WEAPONS SUPPORT CENTER

ATTN: CODE 6054 D PLATTETER

OFC OF THE DEP ASST SEC OF THE NAVY

ATTN: L J ABELLA

OFC OF THE DEPUTY CHIEF OF NAVAL OPS

ATTN: NOP 985F

SPACE & NAVAL WARFARE SYSTEMS CMD

ATTN: CODE 50451

ATTN: NAVELEX 51024 C WATKINS

ATTN: PME 117-21

DEPARTMENT OF THE AIR FORCE

AERONAUTICAL SYSTEMS DIVISION

ATTN: ASD/ENSS

AIR FORCE CTR FOR STUDIES & ANALYSIS

2 CYS ATTN: AFCSA/SAMI R GRIFFIN

AIR UNIVERSITY LIBRARY ATTN: AUL-LSE

OGDEN AIR LOGISTICS COMMAND

ATTN: OO-ALC/MMEDD ATTN: OO-ALC/MMGR

ROME AIR DEVELOPMENT CENTER, AFSC

ATTN: RBR J BRAUER

ROME AIR DEVELOPMENT CENTER, AFSC

ATTN: ESR

SPACE DIVISION/YA

ATTN: YAS

SPACE DIVISION/YAR

ATTN: YAR CAPT STAPANIAN'

SPACE DIVISION/YD

ATTN: YD

SPACE DIVISION/YE

ATTN: YE

STRATEGIC AIR COMMAND/XRFS

ATTN: XRFS

WEAPONS LABORATORY

ATTN: NTC M SCHNEIDER

ATTN: NTCAS J FERRY

ATTN: NTCOX W KEMP

ATTN: NTCT MAJ HUNT

ATTN: NTCTD

ATTN: NTCTR R MAIER

ATTN: SUL

ATTN: TAS MAJ SOUILLER

WRIGHT RESEARCH & DEVELOPMENT CENTER

ATTN: AFWAL/ELE

ATTN: AFWAL/MLTE

3416TH TECHNICAL TRAINING SQUADRON (ATC)

ATTN: TTV

DEPARTMENT OF ENERGY

DEPARTMENT OF ENERGY

ATTN: ESHD

LAWRENCE LIVERMORE NATIONAL LAS

ATTN: L-13 D MEEKER

ATTN: L-156 J YEE

ATTN: L-156 R KALIBJIAN

ATTN: L-84 H KRUGER

ATTN: W ORVIS

LOS ALAMOS NATIONAL LABORATORY

ATTN: E LEONARD

SANDIA NATIONAL LABORATORIES

ATTN: ORG 2100

ATTN: ORG 2126 J E GOVER

ATTN: ORG 2146 T A DELLIN

ATTN: TF WROBEL 2126

OTHER GOVERNMENT

CENTRAL INTELLIGENCE AGENCY

ATTN: OSWR/NED

ATTN: OSWR/STD/MTB

DEPARTMENT OF TRANSPORTATION

ATTN: ARD-350

NASA

ATTN: CODE 313 V DANCHENKO

ATTN: CODE 600 E STASSINOPOULOS

ATTN: CODE 660 J TRAINOR

ATTN: CODE 724.1 M JHABVALA

NATIONAL BUREAU OF STANDARDS

ATTN: C WILSON

ATTN: CODE A327 H SCHAFFT

ATTN: CODE A347 J MAYO-WELLS

ATTN: CODE A353 S CHAPPELL

ATTN: CODE C216 J HUMPHREYS,

ATTN: PROITMAN

DEPARTMENT OF DEFENSE CONTRACTORS

AEROJET ELECTRO-SYSTEMS CO

ATTN: D TOOMB

AEROSPACE CORP

ATTN: A AMRAM

ATTN: M HOPKINS

ATTN: N SRAMEK

ATTN: W KOLASINSKI

ALLIED-SIGNAL, INC

ATTN: DOCUMENT CONTROL

AMPEX CORP

ATTN: BRICKARD

ATTN: K WRIGHT

ANALYTIC SERVICES, INC (ANSER)

ATTN: A HERNDON

ATTN: A SHOSTAK

BDM INTERNATIONAL INC

ATTN: C M STICKLEY

BDM INTERNATIONAL INC

ATTN: D WUNSCH

BOEING CO

ATTN: A JOHNSTON

ATTN: D EGELKROUT

ATTN: I ARIMURA

BOOZ-ALLEN & HAMILTON, INC

ATTN: R MCCOSKEY

CALIFORNIA INSTITUTE OF TECHNOLOGY

ATTN: C BARNES

CALSPAN CORP

ATTN: R THOMPSON

CHARLES STARK DRAPER LAB, INC

ATTN: J BOYLE ATTN: N TIBBETTS

ATTN: P GREIFF

ATTN: W D CALLENDER

CINCINNATI ELECTRONICS CORP

ATTN: LHAMMOND

CLEMSON UNIVERSITY

ATTN: PJMCNULTY

COMPUTER SCIENCES CORP

ATTN: A SCHIFF

DAVID SARNOFF RESEARCH CENTER, INC

ATTN: R SMELTZER

E-SYSTEMS, INC

ATTN: K REIS

E-SYSTEMS, INC

ATTN: DIVISION LIBRARY

EATON CORP

ATTN: R BRYANT

ELECTRONIC INDUSTRIES ASSOCIATION

ATTN: J KINN

FORD AEROSPACE CORPORATION

ATTN: TECHNICAL INFO SERVICES

GENERAL ELECTRIC CO

ATTN: DOCUMENTS LIBRARY

ATTN: TECHNICAL LIBRARY

GENERAL ELECTRIC CO

ATTN: B FLAHERTY

ATTN: G BENDER

ATTN: LHAUGE

GENERAL ELECTRIC CO

ATTN: G GATI

GENERAL ELECTRIC CO

ATTN: D NERAD

GENERAL ELECTRIC CO

ATTN: J MILLER

ATTN: PHEILAND

GENERAL ELECTRIC COMPANY

ATTN: D TOSCA

GENERAL RESEARCH CORP

ATTN: A HUNT

GEORGE WASHINGTON UNIVERSITY

ATTN: A FRIEDMAN

GRUMMAN AEROSPACE CORP

ATTN: J ROGERS

GTE GOVERNMENT SYSTEMS CORPORATION

ATTN: J A WALDRON

H. M. WEIL CONSULTANTS, INC ATTN: H WEIL

HARRIS CORP

ATTN: JCLEE

ATTN: J W SWONGER

HARRIS CORPORATION

ATTN: E YOST

ATTN: WABARE

HONEYWELL INC

ATTN: R JULKOWSKI

HONEYWELL, INC

ATTN: MS 725-5

ATTN: MS 830-4A

HONEYWELL, INC

ATTN: R BELT

HUGHES AIRCRAFT CO ATTN: W SCHENET

HUGHES AIRCRAFT CO

ATTN: J HALL

HUGHES AIRCRAFT COMPANY

ATTN: E KUBO

ATTN: L DARDA

IBM CORP

ATTN: H MATHERS

IBM CORP

ATTN: JZIEGLER

IBM CORP

ATTN: N HADDAD

IIT RESEARCH INSTITUTE

ATTN: I MINDEL

INSTITUTE FOR DEFENSE ANALYSES

ATTN: TECH INFO SERVICES

IRT CORP

ATTN: MDC

JAYCOR

ATTN: M TREADAWAY

ATTN: R STAHL

ATTN: T FLANAGAN

JAYCOR

ATTN: R SULLIVAN

JAYCOR

ATTN: CROGERS

JOHNS HOPKINS UNIVERSITY

ATTN: R MAURER

JOHNS HOPKINS UNIVERSITY

ATTN: G MASSON

KAMAN SCIENCES CORP

ATTN: K LEE

KAMAN SCIENCES CORP

ATTN: DIR SCIENCE & TECH DIV

ATTN: J ERSKINE ATTN: N BEAUCHAMP

KAMAN SCIENCES CORP

ATTN: E CONRAD

KAMAN SCIENCES CORPORATION

ATTN: D PIRIO

KAMAN SCIENCES CORPORATION

ATTN: DASIAC

ATTN: R RUTHERFORD

KAMAN SCIENCES CORPORATION

ATTN: DASIAC

KEARFOTT GUIDANCE AND NAVIGATION CORP

ATTN: J D BRINKMAN ATTN: R SPIENGEL

LITTON SYSTEMS INC

ATTN: F MOTTER ATTN: S MACKEY

LOCKHEED MISSILES & SPACE CO, INC

ATTN: FJUNGA

ATTN: REPORTS LIBRARY

LOCKHEED MISSILES & SPACE CO, INC

ATTN: B KIMURA

ATTN: E HESSEE

ATTN: JCLEE

ATTN: J CAYOT

ATTN: L ROSSI

ATTN: P BENE

ATTN: STAIMUTY

LTV AEROSPACE & DEFENSE COMPANY

2 CYS ATTN: LIBRARY

MAGNAVOX ADVANCED PRODUCTS & SYS CO

ATTN: W HAGEMEIER

MARTIN MARIETTA CORP

ATTN: TIC/MP-30

MARTIN MARIETTA CORP

ATTN: S BUCHNER

ATTN: T DAVIS

MARTIN MARIETTA DENVER AEROSPACE

ATTN: RESEARCH LIBRARY

MARYLAND, UNIVERSITY OF

ATTN: H (LIN

MCDONNELL DOUGLAS-CORP

ATTN: A P MUNIE

ATTN: D L DOHM

ATTN: R L KLOSTER

MCDONNELL DOUGLAS CORPORATION

ATTN: PALBRECHT

ATTN: TECHNICAL LIBRARY

MESSENGER, GEOAGE C

ATTN: G MESSENGER

MISSION RESEARCH CORP ATTN: R PEASE

MISSION RESEARCH CORP

ATTN: J LUBELL

ATTN: R CURRY

ATTN: W WARE

MISSION RESEARCH CORP, SAN DIEGO

ATTN: J RAYMOND

MITRE CORPORATION

ATTN: JR SPURRIER

ATTN: M FITZGERALD

MOTOROLA, INC

ATTN: A CHRISTENSEN

MOTOROLA, INC

ATTN: L CLARK

NATIONAL SEMICONDUCTOR CORP

ATTN: F C JONES

NORDEN SYSTEMS, INC

ATTN: TECHNICAL LIBRARY

NORTHROP CORP

ATTN: A BAHRAMAN

NORTHROP ELECTRONICS SYSTEMS DIVISION

ATTN: EKING

PACIFIC-SIERRA-RESEARCH CORP

ATTN: H-BRODE

R & D ASSOCIATES

ATTN: D CARLSON

RAND CORP

ATTN: C CRAIN

RAND CORP

ATTN: B BENNETT

RAYTHEON CO

ATTN: H FLESCHER

RCA CORPORATION

ATTN: G BRUCKER

RESEARCH TRIANGLE INSTITUTE

ATTN: M-SIMONS

ROCKWELL INTERNATIONAL CORP

ATTN: T YATES

ROCKWELL INTERNATIONAL CORP

ATTN: A BELL

2 CYS ATTN: A-E WASKIEWICZ

ATTN: D KONO

ATTN. J-BURSON

2 CYS ATTN: J-W GRONINGER

ATTN: V DE MARTINO

ATTN: V-STRAHAN

ATTN: 031-0A13, YIN-BUTE YU

S-CUBED

ATTN: J KNIGHTEN ATTN: J M WILKENFELD

ATTN: M ROSE

SCIENCE APPLICATION INTL CORP

ATTN: PZIELIE

SCIENCE APPLICATIONS INTL CORP

ATTN: D LONG ATTN: D MILLWARD

SCIENCE APPLICATIONS INTL CORP

ATTN: J RETZLER

SCIENCE APPLICATIONS INTL CORP

ATTN: J SPRATT

SCIENCE APPLICATIONS INTL CORP

ATTN: W CHADSEY

SUNDSTRAND CORP

ATTN: C WHITE

SYSTRON-DONNER CORP

ATTN: J RAY

TELEDYNE BROWN ENGINEERING

ATTN: GREZELL

TELEDYNE SYSTEMS CO

ATTN: R SUHRKE

TEXAS INSTRUMENTS, INC

ATTN: E JEFFREY

ATTN: F POBLENZ ATTN: T CHEEK

TRW INC

ATTN: TECH INFO CTR

TRW SPACE & DEFENSE SYSTEMS

ATTN: D M LAYTON

TRW SPACE & DEFENSE, DEFENSE SYSTEMS

ATTN: C BLASNEK

ATTN: J GORMAN

UNISYS CORPORATION-DEFENSE SYSTEMS

ATTN: P MARROFFINO

VISIDYNE, INC

ATTN: CH HUMPHREY

ATTN: W P REIDY

WESTINGHOUSE ELECTRIC CORP

ATTN: S WOOD

FOREIGN

FOA 2

ATTN: B SJOHOLM

FOA 3

ATTN: T KARLSSON