DeepLearning.Al



# Classification

Motivation

### Classification

Question Answer "y" Is this email spam? no yes Is the transaction fraudulent? yes Is the tumor malignant? no yes

can only be one of two values

"binary classification"

class = category

"negative class" + "bad" absence

false

true

useful for classification

"positive class" # "good"

presence



DeepLearning.Al



## Classification

Logistic Regression

#### Want outputs between 0 and 1





outputs between 0 and 1

logistic function

$$g(z) = \frac{1}{1+e^{-z}}$$
  $0 < g(z) < 1$ 

Want outputs between 0 and 1



logistic function

outputs between 0 and 1

$$g(z) = \frac{1}{1+e^{-z}}$$
  $0 < g(z) < 1$ 



$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = g(\overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b) = \frac{1}{1 + e^{-(\overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b)}}$$

"logistic regression"

### Interpretation of logistic regression output

$$f_{\overrightarrow{\mathbf{w}},\mathbf{b}}(\overrightarrow{\mathbf{x}}) = \frac{1}{1 + e^{-(\overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + \mathbf{b})}}$$

"probability" that class is 1

#### Example:

x is "tumor size"
y is 0 (not malignant)
or 1 (malignant)

$$f_{\overrightarrow{\mathbf{w}}, \mathbf{b}}(\overrightarrow{\mathbf{x}}) = 0.7$$
  
70% chance that  $\mathbf{y}$  is 1

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = P(\mathbf{y} = 1 | \overrightarrow{\mathbf{x}}; \overrightarrow{\mathbf{w}},b)$$

Probability that y is 1, given input  $\vec{x}$ , parameters  $\vec{w}$ ,

$$P(y = 0) + P(y = 1) = 1$$

DeepLearning.Al



## Classification

Decision Boundary



$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}})$$

$$z = \overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b$$

$$\downarrow \mathbf{z}$$

$$\downarrow$$

$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = g(\overrightarrow{w} \cdot \overrightarrow{x} + b) = \frac{1}{1 + e^{-(\overrightarrow{w} \cdot \overrightarrow{x} + b)}}$$

$$= P(y = 1 | x; \overrightarrow{w}, b) \quad 0.7 \quad 0.3$$

$$0 \text{ or } 1? \quad \text{threshold}$$

$$\text{Is } f_{\overrightarrow{w},b}(\overrightarrow{x}) \ge 0.5?$$

$$\text{Yes: } \widehat{y} = 1 \qquad \text{No: } \widehat{y} = 0$$

$$\text{When is } f_{\overrightarrow{w},b}(\overrightarrow{x}) \ge 0.5?$$

$$g(z) \ge 0.5$$

$$z \ge 0$$

$$\overrightarrow{w} \cdot \overrightarrow{x} + b \ge 0 \qquad \overrightarrow{w} \cdot \overrightarrow{x} + b < 0$$

$$\widehat{y} = 1 \qquad \widehat{y} = 0$$

### Decision boundary

$$f_{\vec{w},b}(\vec{x}) = g(z) = g(w_1x_1 + w_2x_2 + b)$$



### Non-linear decision boundaries



### Non-linear decision boundaries



$$f_{\vec{w},b}(\vec{x}) = g(z) = g(w_1x_1 + w_2x_2 + w_3x_1^2 + w_4x_1x_2 + w_5x_2^2 + w_6x_1^3 + \dots + b)$$



DeepLearning.Al



### Cost Function

Cost Function for Logistic Regression

### Training set

|     | tumor size<br>(cm) | <br>patient's age | malignant? | i = 1,, m training examples                                                                                   |
|-----|--------------------|-------------------|------------|---------------------------------------------------------------------------------------------------------------|
|     | X <sub>1</sub>     | Xn                | У          | j=1,,n features                                                                                               |
| i=1 | 10                 | 52                | 1          | target y is 0 or 1                                                                                            |
|     | 2                  | 73                | 0          | target y is 0 or 1                                                                                            |
|     | 5                  | 55                | 0          | $f \rightarrow f = \frac{1}{f}$                                                                               |
|     | 12                 | 49                | 1          | $f_{\vec{\mathbf{w}},b}(\vec{\mathbf{x}}) = \frac{1}{1 + e^{-(\vec{\mathbf{w}} \cdot \vec{\mathbf{x}} + b)}}$ |
| i=m |                    |                   |            |                                                                                                               |

How to choose  $\vec{w} = [w_1 \ w_2 \ \cdots \ w_n]$  and b?

### Squared error cost

$$J(\overrightarrow{w},b) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} (f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)})^{2}$$

$$\log L(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}), y^{(i)})$$

#### linear regression

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = \overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b$$



### logistic regression

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = \frac{1}{1 + e^{-(\overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b)}}$$



### Logistic loss function

$$L(f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)}), \mathbf{y}^{(i)}) = \begin{cases} -\log(f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)})) & \text{if } \mathbf{y}^{(i)} = 1\\ -\log(1 - f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)})) & \text{if } \mathbf{y}^{(i)} = 0 \end{cases}$$

$$L(f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)}), \mathbf{y}^{(i)}) \qquad \log(f)$$

$$\text{Loss is lowest when } f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)}) \rightarrow 1 \text{ then } \log s \rightarrow 0 \qquad f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)}) \qquad \text{for } f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)}) \qquad \text{$$

### Logistic loss function

### Cost

$$J(\vec{w},b) = \frac{1}{m} \sum_{i=1}^{m} L(\underbrace{f_{\vec{w},b}(\vec{x}^{(i)}), y^{(i)}}_{loss})$$

$$= \begin{cases} -\log(f_{\vec{w},b}(\vec{x}^{(i)})) & \text{if } y^{(i)} = 1 \\ -\log(1 - f_{\vec{w},b}(\vec{x}^{(i)})) & \text{if } y^{(i)} = 0 \end{cases}$$

$$= \begin{cases} \log(1 - f_{\vec{w},b}(\vec{x}^{(i)})) & \text{if } y^{(i)} = 0 \end{cases}$$

find w, b that minimize cost J

DeepLearning.Al



## Cost Function

# Simplified Cost Function

### Simplified loss function

$$L(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}), y^{(i)}) = \begin{cases} -\log(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)})) & \text{if } y^{(i)} = 1\\ -\log(1 - f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)})) & \text{if } y^{(i)} = 0 \end{cases}$$

$$L(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}), y^{(i)}) = -y^{(i)}\log(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)})) - (1 - y^{(i)})\log(1 - f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}))$$

$$\text{if } y^{(i)} = 1: \qquad (1 - 0)$$

$$L(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}), y^{(i)}) = -1\log(f(\overrightarrow{x}))$$

$$\text{if } y^{(i)} = 0:$$

$$L(f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}), y^{(i)}) = -1\log(f(\overrightarrow{x}))$$

### Simplified cost function

$$L(f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)}), \mathbf{y}^{(i)}) = \frac{1}{m} \sum_{i=1}^{m} \left[ L(f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)}), \mathbf{y}^{(i)}) \right]$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left[ L(f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)}), \mathbf{y}^{(i)}) \right]$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left[ \mathbf{y}^{(i)} \log \left( f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)}) \right) + (1 - \mathbf{y}^{(i)}) \log \left( 1 - f_{\overrightarrow{w},b}(\overrightarrow{\mathbf{x}}^{(i)}) \right) \right]$$

maximum likelihood (don't worry about it!)

DeepLearning.Al



### Gradient Descent

Gradient Descent Implementation

### Training logistic regression

Find  $\vec{w}$ , b

Given new 
$$\vec{x}$$
, output  $f_{\vec{w},b}(\vec{x}) = \frac{1}{1+e^{-(\vec{w}\cdot\vec{x}+b)}}$ 

$$P(y = 1|\vec{x}; \vec{w}, b)$$

### Gradient descent

$$J(\overrightarrow{w},b) = -\frac{1}{m} \sum_{i=1}^{m} \left[ y^{(i)} \log \left( f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) + \left( 1 - y^{(i)} \right) \log \left( 1 - f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) \right) \right]$$
repeat {
$$\frac{\partial}{\partial w_j} J(\overrightarrow{w},b) = \frac{1}{m} \sum_{i=1}^{m} \left( f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)} \right) x_j^{(i)}$$

$$b = b - \alpha \frac{\partial}{\partial b} J(\overrightarrow{w},b)$$

$$\frac{\partial}{\partial b} J(\overrightarrow{w},b) = \frac{1}{m} \sum_{i=1}^{m} \left( f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)} \right) x_j^{(i)}$$
} simultaneous updates

### Gradient descent for logistic regression

repeat {
$$w_{j} = w_{j} - \alpha \left[ \frac{1}{m} \sum_{i=1}^{m} (f_{\vec{w},b}(\vec{x}^{(i)}) - y^{(i)}) x_{j}^{(i)} \right]$$

$$b = b - \alpha \left[ \frac{1}{m} \sum_{i=1}^{m} (f_{\vec{w},b}(\vec{x}^{(i)}) - y^{(i)}) \right]$$
 Same concepts:
Monitor gradient descent
(learning curve)

} simultaneous updates

Linear regression

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = \overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b$$

Logistic regression

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = \frac{1}{1 + e^{-(\overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b)}}$$

- (learning curve)
- Vectorized implementation
- Feature scaling



DeepLearning.Al



# Regularization to Reduce Overfitting

The Problem of Overfitting

### Regression example



 Does not fit the training set well

high bias

 Fits training set pretty well

generalization

 Fits the training set extremely well

high variance

### Classification







$$z = w(x_1) + w_2(x_2) + b$$
$$f_{\vec{w},b}(\vec{x}) = g(z)$$

 $z = w_1 x_1 + w_2 x_2$  $+ w_3 x_1^2 + w_4 x_2^2$  $+ w_5 x_1 x_2 + b$ 

g is the sigmoid function underfit high bias

just right





DeepLearning.Al



# Regularization to Reduce Overfitting

Addressing Overfitting

### Collect more training examples





### Select features to include/exclude



all features



insufficient data



selected features

course 2

disadvantage



useful features could be lost

### Regularization

Reduce the size of parameters  $w_i$ 





$$f(x) = 13x - 0.23x^{2} + 0.000014x^{3} - 0.00011x^{4} + 10$$
Small values for Wi

### Addressing overfitting

### Options

- Collect more data
- Select features
  - Feature selection in course 2
- 3. Reduce size of parameters
  - "Regularization" next videos

DeepLearning.Al



# Regularization to Reduce Overfitting

Cost Function with Regularization

### Intuition





$$w_1x + w_2x^2 + b$$
  $w_1x + w_2x^2 + w_3x^3 + w_4x^4 + b$ 

make  $w_3$ ,  $w_4$  really small ( $\approx 0$ )

$$\min_{\overrightarrow{w},b} \frac{1}{2m} \sum_{i=1}^{m} (f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)})^{2} + 1000 \underbrace{0.001}_{0.002} + 1000 \underbrace{0.002}_{0.002}$$

### Regularization

small values  $w_1, w_2, \cdots, w_n, b$ 

simpler model  $W_3 \stackrel{>}{\sim} 0$  less likely to overfit  $W_4 \stackrel{>}{\sim} 0$ 

| size | bedrooms<br>X <sub>2</sub> | floors<br>X <sub>3</sub> | age<br>४ <sub>५</sub> | avg<br>income<br>X5 | <br>distance to coffee shop | price<br>Y |
|------|----------------------------|--------------------------|-----------------------|---------------------|-----------------------------|------------|
|      |                            |                          |                       |                     | <br>n = 100                 |            |

$$w_1, w_1, w_2, \cdots, w_{100}, b$$

regularization term

$$J(\vec{\mathbf{w}},b) = \frac{1}{2m} \left[ \sum_{i=1}^{m} (f_{\vec{\mathbf{w}},b}(\vec{\mathbf{x}}^{(i)}) - y^{(i)})^2 + \sum_{\substack{i \text{lambda} \\ \text{regularization parameter}}}^{n} \psi_j^2 + \sum_{\substack{i=1 \\ \text{regularization parameter}}}^{n} \psi_j^2 + \sum_{\substack{i=1 \\ \text{lambda}}}^{n} \psi_j^2 + \sum_{\substack{i=1 \\ \text{lambda}}}^{n} \psi_i^2 + \sum_{\substack{i=1 \\ \text{lambda}}}^{n}$$

### Regularization

regularization

$$\min_{\vec{w},b} J(\vec{w},b) = \min_{\vec{w},b} \left( \frac{1}{2m} \sum_{i=1}^{m} (f_{\vec{w},b}(\vec{x}^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{j=1}^{n} w_j^2 \right)$$



A balances both goals

choose 
$$\lambda = 10^{10}$$

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = \underbrace{\mathbf{w}_{1}\mathbf{x}}_{1} + \underbrace{\mathbf{w}_{2}\mathbf{x}^{2}}_{2} + \underbrace{\mathbf{w}_{3}\mathbf{x}^{3}}_{2} + \underbrace{\mathbf{w}_{4}\mathbf{x}^{4}}_{2} + \underbrace{\mathbf{b}}_{2}$$

$$f(x) = b$$

choose >

DeepLearning.Al



# Regularization to Reduce Overfitting

Regularized Linear Regression

### Regularized linear regression

$$\min_{\vec{w},b} J(\vec{w},b) = \min_{\vec{w},b} \left[ \frac{1}{2m} \sum_{i=1}^{m} (f_{\vec{w},b}(\vec{x}^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{j=1}^{n} w_j^2 \right]$$

#### Gradient descent

repeat {
$$w_{j} = w_{j} - \alpha \frac{\partial}{\partial w_{j}} J(\overrightarrow{w}, b) = \frac{1}{m} \sum_{i=1}^{m} (f_{\overrightarrow{w}, b}(\overrightarrow{x}^{(i)}) - y^{(i)}) x_{j}^{(i)} + \frac{\lambda}{m} w_{j}^{(i)}$$

$$b = b - \alpha \frac{\partial}{\partial b} J(\overrightarrow{w}, b) = \frac{1}{m} \sum_{i=1}^{m} (f_{\overrightarrow{w}, b}(\overrightarrow{x}^{(i)}) - y^{(i)})$$

$$= \frac{1}{m} \sum_{i=1}^{m} (f_{\overrightarrow{w}, b}(\overrightarrow{x}^{(i)}) - y^{(i)})$$

### Implementing gradient descent

repeat {
$$w_{j} = w_{j} - \alpha \left[ \frac{1}{m} \sum_{i=1}^{m} \left[ (f_{\vec{w},b}(\vec{x}^{(i)}) - y^{(i)}) x_{j}^{(i)} \right] + \frac{\lambda}{m} w_{j} \right]$$

$$b = b - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_{\vec{w},b}(\vec{x}^{(i)}) - y^{(i)})$$

} simultaneous update

### Implementing gradient descent

repeat {
$$w_{j} = w_{j} - \alpha \left[ \frac{1}{m} \sum_{i=1}^{m} \left[ \left( f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)} \right) x_{j}^{(i)} \right] + \frac{\lambda}{m} w_{j} \right]$$

$$b = b - \alpha \frac{1}{m} \sum_{i=1}^{m} \left( f_{\overrightarrow{w},b}(\overrightarrow{x}^{(i)}) - y^{(i)} \right)$$

$$\begin{cases} \text{Simultaneous update } j = 1 \text{ and } \\ \text{w}_{j} = 1 \text{ w}_{j} - \alpha \frac{\lambda}{m} \text{ w}_{j} - \alpha \frac{1}{m} \sum_{i=1}^{m} \left( f_{w,b}(\overrightarrow{x}^{(i)}) - y^{(i)} \right) x_{j}^{(i)} \end{cases}$$

$$w_{j} \left( 1 - \alpha \frac{\lambda}{m} \right) \quad \text{usual update}$$

$$\text{SheinK } w_{j}$$

### How we get the derivative term (optional)

$$\frac{\partial}{\partial w_{j}}J(\vec{w},b) = \frac{\partial}{\partial w_{j}} \left(\frac{1}{2^{m}} \sum_{i=1}^{m} \left(\frac{1}{2^{(i)}} - y^{(i)}\right)^{2} + \frac{\lambda}{2^{m}} \sum_{j=1}^{n} w_{j}^{2}\right)$$

$$= \frac{1}{2^{m}} \sum_{i=1}^{m} \left(\vec{w} \cdot \vec{x}^{(i)} + b - y^{(i)}\right) 2 x_{j}^{(i)} + \frac{\lambda}{2^{m}} 2 w_{j}^{2}$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left(\vec{w} \cdot \vec{x}^{(i)} + b - y^{(i)}\right) x_{j}^{(i)} + \frac{\lambda}{m} w_{j}$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left[\left(f_{\vec{w},b}(\vec{x}^{(i)}) - y^{(i)}\right) x_{j}^{(i)}\right] + \frac{\lambda}{m} w_{j}$$

DeepLearning.Al



# Regularization to Reduce Overfitting

Regularized Logistic Regression

### Regularized logistic regression



$$z = w_1 x_1 + w_2 x_2 
+ w_3 x_1^2 x_2 + w_4 x_1^2 x_2^2 
+ w_5 x_1^2 x_2^3 + \dots + b$$

$$f_{\vec{w},b}(\vec{x}) = \frac{1}{1 + e^{-z}}$$

### Cost function

$$J(\overrightarrow{\mathbf{w}},b) = -\frac{1}{m} \sum_{i=1}^{m} \left[ \mathbf{y}^{(i)} \log \left( \mathbf{f}_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)}) \right) + \left( 1 - \mathbf{y}^{(i)} \right) \log \left( 1 - \mathbf{f}_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}^{(i)}) \right) \right] + \frac{\lambda}{2 m} \sum_{j=1}^{M} \omega_{j}^{2}$$

$$\underset{w}{m}$$
  $\int_{b}^{m} J(\overrightarrow{w}, b) \rightarrow w$ 

### Regularized logistic regression

$$J(\vec{w}, b) = -\frac{1}{m} \sum_{i=1}^{m} \left[ y^{(i)} \log \left( f_{\vec{w}, b}(\vec{x}^{(i)}) \right) + \left( 1 - y^{(i)} \right) \log \left( 1 - f_{\vec{w}, b}(\vec{x}^{(i)}) \right) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} w_j^2$$

### Gradient descent

repeat {
$$w_{j} = w_{j} - \alpha \frac{\partial}{\partial w_{j}} J(\vec{w}, b) = \frac{1}{m}$$

$$b = b - \alpha \frac{\partial}{\partial b} J(\vec{w}, b) = \frac{1}{m}$$
}

for linear regression.

$$\frac{1}{n} \sum_{i=1}^{m} \left( f_{\vec{w},b}(\vec{x}^{(i)}) - y^{(i)} \right) x_j^{(i)} + \frac{\lambda}{m} w_j$$
The logistic regression.

$$= \frac{1}{m} \sum_{i=1}^{m} (f_{\vec{w},b}(\vec{x}^{(i)}) - y^{(i)})$$

Looks same as

don't have to