装	
订	
线	
内	
答	
题	
无	
效	

通	科	LII

**

装

**

订 **

44

44

**

**

** 线

新疆大学 2011-2012 学年度第二学期 《高等数学》试卷(汉本理工科16周下册)

姓名:			_学号:			- 专业:			divines.
	学院:				班级:		*		7
						12年	6月	18日	
	题号	-		=	四	五	总分		
	得分								

得分	评卷人

一、洗择题(本大题共5小题,每题3分,共15分)

1、已知直线 $\frac{x-a}{2} = \frac{y}{-2} = \frac{z-1}{a}$ 在平面

3x + 4y - az = 3a - 1内,则a = (

- B. 2; C. $\frac{1}{2}$;

2、. 曲线 $\begin{cases} z^2 = 5x \\ y = 0 \end{cases}$ 绕 x 轴旋转所形成的旋转面方程是 (

- A. $z^2 = \pm 5\sqrt{x^2 + y^2}$
- B. $z^2 = 5x^2 + y^2$

C. $v^2 + z^2 = 5x$

D. $z^2 = 5x^2$

3、设 $f_x(x,y)$ 、 $f_y(x,y)$ 在点 (x_0,y_0) 连续,则f(x,y)在点 (x_0,y_0) (

- A. 连续但不可微 B. 不连续 C. 可微 D. 不一定可微
- 4、设函数 $z = 2x^2 3v^2$,则(
- A. 函数z在点(0.0)处取得极大值
- B. 函数 z 在点(0.0) 处取得极小值
- C. 点(0,0) 非函数 z 的极值点
- D. 点(0,0) 是函数 z 的最大值点或最小值点, 但不是极值点
- 5、设 $0 \le a_n < \frac{1}{n} (n = 1, 2, \dots)$,则下列级数中可断定收敛的是(
- A. $\sum_{n=1}^{\infty} a_n$; B. $\sum_{n=1}^{\infty} (-1)^n a_n$; C. $\sum_{n=1}^{\infty} \sqrt{a_n}$; D. $\sum_{n=1}^{\infty} (-1)^n a_n^2$

2012年6月《高等数学》下册试题(A)(汉本) 第1页(共6页)

得分	评卷人

二、填空题(本大题共5小题,每题4分,共20分)

1、过点 A(2,-1,3)和点 B(2,0,5)的直线方程是-

2、设
$$z = arctg \frac{y}{x}$$
 , $x = e^{2t} + 1$, $y = e^{2t} - 1$, 则 $\frac{dz}{dt} =$

- 3、抛物面 $z = x^2 + y^2$ 在点 M(1, 2, 5) 处的切平面方程为_____
- 4、交换 $I = \int dy \int e^{x^2} dx$ 的积分次序后,I =______
- 5、函数 $f(x) = \frac{1}{1+2x}$, f(x) 关于 x+1 的幂级数展开式为______

得分	评卷人

三、计算题(本大题共8小题, 每题6分, 共48分)

1、已知向量 $\vec{a} = 2\vec{i} + \vec{j} + \vec{k}$ 与 $\vec{b} = \vec{i} + 2\vec{j} - \vec{k}$,(1)求一个同时垂直于 \vec{a} 、 \vec{b}

向量的单位向量,(2) 计算出以 \bar{a} 、 \bar{b} 向量为邻边的平行四边形的面积

2、曲线x=t, $y=t^2$, $z=t^3$ 在t=-1处的法平面方程

	**
	**
	**
	**
	**
	**
	**
	**
装	**
订	**
线	**
内	装
答	**
题	**
	**
无效	**
	**
	**
	**
	**

** ** 订 **

**

** ** ** ** ** ** ** ** ** **

** ** **

3,
$$z = u^2 \ln v$$
, $u = \frac{y}{x}$, $v = x^2 + y^2$, $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$

4、设 L 是从 A (1, 0) 到 B (-1, 2) 的线段, 计算曲线积分
$$\int_L (x+y)ds$$

5、计算
$$\iint_D x dx dy$$
, 其 D 由 $xy = 1$ 、 $y = x$ 、 $x = 2$ 所围成平面区域

2012年6月《高等数学》下册试题 (A) (汉本) 第 3 页 (共 6 页)

5、利用极坐标计算二重积分 $\iint_D \sin \sqrt{x^2 + y^2} dx dy$, 其中 $D: \pi^2 \le x^2 + y^2 \le 4\pi^2$

6、计算曲线积分 $\int_{1}^{2} 2xydx + x^{2}dy$, 其中 L 为沿曲线 y = 1 - x 从点 A(1,0) 到 B(0.1)的一段弧

装订线内答题效

**

**

**
**
**
**

**

** ** 装

**

**

**

**

**

**

订 ** **

** ** ** ** ** ** ** ** 线 ** ** ** ** ** ** ** ** 7、計算 $\iint_{\Sigma} (2x+2y+z)ds$,其中 Σ 是平面 2x+2y+z-2=0 被三个坐标平 面所截下在第一卦限的部分

8、计算曲面积分 $I = \iint_{\Sigma} 2x^3 dy dz + 2y^3 dz dx + 3(z^2 - 1) dx dy$ 其中 Σ 为曲面 $z = 1 - x^2 - y^2 (z \ge 0)$ 的上侧

2012年6月《高等数学》下册试题(A)(汉本) 第5页(共6页)

得分	评卷人

四、其它题 (本大题共 2 小题,每题 8+9=17 分, 共 17 分) 1、求级数 $\sum_{n=1}^{\infty} \frac{1}{1+3^n} x^n$ 的收敛半径和收敛域

2、设 f(x) 是周期为 2π 的周期函数,它在 $[-\pi,\pi)$ 上的表达式为 $f(x) = \begin{cases} x, & -\pi \le x < 0, \\ 0, & 0 \le x < \pi. \end{cases}$ 试将函数 f(x) 展开成傅立叶级数