

INDEX

<u>S. No.</u>	<u>Contents</u>	Page No.
01.	Project Description	02
02.	Unit Test Report	02 - 06
	a Creation of Database	02
	b Creation of Schemas	03
	c Creation of Tables as per Dataset	03
	d Creation of Integration Object	04
	e Creation of External Stage for loading the data structure	04
	f. Creation of Stream on the given table	05
	g Creation of Snowpipe fro auto-ingestion of data from S3 bucket	05
	h SCD operations on the Consumer Table	06
03.	Data Analysis on given Dataset	07-10

Group Members:

> Kumar Naman

PROJECT DESCRIPTION

The project involves data ingestion and analysis from public datahub Kaggle Link.

- Steps involved in performing the data ingestion:
 - a. Loading data to external stage
 - b. Ingesting data into the landing schema
 - c. Ingesting data into the consumer table
 - d. Perform analysis on the given dataset

UNIT TEST REPORT

Created a database named SF_PROJECT;

Fig: 01

2. Created three schemas named ITR_RDS, ITR_RDS_LANDING and ITR_DIS

Fig: 02

3. Created a table named **LOAN** as per the data set.

Fig: 03

4. Created Integration object named **s3_int_object**.

Fig: 04

5. Created external stage named MY_EXT_STAGE for loading data structures

Fig: 05

6. Created stream LOAN_CHECK on table LOAN.

Fig: 06

7. Created a snowpipe named **SF_SNOWPIPE1** for autoingesting the data from S3 bucket – flatbucket5.

Fig: 07

8. Performed SCD operations on consumer table LOAN_TARGET as per changes that happen in the source table LOAN, Task creation and Merge.

Fig: 08-a

Fig: 08-b

For training purpose, we scheduled it at 1 min. schedule. But to schedule it everyday at 12AM we can use Cronjob.

DATA ANALYSIS ON THE GIVEN DATASET

01. Calculate the total loan amount for gender = 'female' and loan_limit='cf'.

select sum(loan_amount) from loan where gender='Female' and loan_limit='cf';

Fig: Sol-01

02. What is the difference in percentage for the number of loan between different valid genders?

select count(id), gender from loan where gender in ('Male', 'Female') group by gender; select count(*) from loan;

Fig: Sol-02

03. What is the difference in percentage of approve in advance between business and commercial loan?

Select count(loan_amount), business_or_commercial from loan where loan_amount is not null group by business_or_commercial;

Fig: Sol-03

04. Is there any lumpsum pay for business loan? select distinct lump_sum_payment from loan;

Fig: Sol-04

05. Average credit score for various age group. select avg(credit_score), age from loan group by age;

Fig: Sol-05