Технологія створення програмних продуктів

Вимоги до програмних продуктів.

Вимоги до програмних продуктів

- Вимоги це властивості, які повинен мати продукт, щоб надавати якусь цінність для користувача.
- Вимоги повинні містити опис:
 - умов або можливостей, необхідних користувачу для вирішення поставлених проблем або досягнення цілей;
 - або можливостей, які або повинна **VMOB** мати система щоб або системні компоненти, контракт виконати специфікаціям або задовольнити стандартам, 1НШИМ формальним документам;
 - документоване подання умов або можливостей.

Основні напрями розробки вимог

Класифікація вимог

Вимоги до ПЗ складаються з трьох рівнів — *бізнес-вимоги*, *вимоги* користувачів і функціональні вимоги. Кожна система має свої нефункціональні вимоги.

Вимоги користувачів (user requirements) описують цілі та задачі, які користувачам дозволить розв'язати система. До способів подання цього виду вимог належать варіанти використання, сценарії й таблиці «подія-відгук».

Системні вимоги (system requirements) позначають високорівневі вимоги до продукту, які містять більшість підсистем або всю систему.

функціональні вимоги — це перелік функцій або сервісів, які повинна виконувати система, а також обмежень на дані й поведінку системи. Специфікація функціональних вимог (software requirements specification) містить у собі опис функцій, які не повинні бути суперечливими й взаємовиключними.

Класифікація вимог

Нефункціональні вимоги визначають умови й середовище виконання функцій. Для більшості сучасних багатокористувацьких ПС нефункціональні вимоги містять умови й обмеження типу:

- о конфіденційність, безпека й захист даних;
- о відмовостійкість;
- о одночасність доступу до системи користувачів;
- о уас очікування відповіді при звертанні до системи (продуктивність),
- о стандартні положення до формулювання вимог.

До вихідного продукту пред'являють наступні нефункціональні вимоги:

- о до застосування;
- о до продуктивності;
- о до надійності виконання;
- о до інтерфейсних зовнішніх атрибутів, з якими взаємодіє система.

Аналіз та збір вимог

Висунення вимог проводиться шляхом:

- о обговорення проекту;
- о аналізу предметної області;
- о визначення підходів до проектування проміжних продуктів на етапах ЖЦ.

Обговорення проекту системи проводиться з метою вироблення перших вражень і висновків щодо доцільності виконання проекту й прогнозування реальності його виконання в заданий термін і бюджет, які визначає замовник.

Аналіз вимог — це процес вивчення потреб і цілей користувачів, класифікація та перетворення на вимоги до ПЗ, встановлення та розв'язання конфліктів між вимогами, визначення пріоритетів, границь системи й принципів взаємодії із середовищем функціонування.

Збір вимог

Джерелами відомостей про вимоги можуть бути:

- цілі та задачі системи, які формулює замовник;
- діюча система або колектив, що виконує її функції.

Вимоги до системи формулюються виходячи з:

- знань замовника щодо проблемної області, який формулює свої проблеми в термінах понять цієї області;
- внутрішніх стандартів замовника й вимог до середовища функціонування майбутньої системи.

До методів збору вимог відносяться:

- •/ інтерв'ювання й анкетування;
 - наради, присвячені аналізу й синтезу вимог;
- мозковий штурм і відбір ідей;
- виявлення або створення тимчасових прототипів на основі первинних вимог;
- спостереження за роботою діючої системи.

Розроблені вимоги подаються в спеціальному документі, який є основою для підписання контракту на розробку системи між замовником і розробником.

Майндмепи та вимоги

Роджер Сперрі (Нобелівський лауреат в області фізіології) виявив, що кора головного мозку підрозділяється на дві півкулі, між якими асиметрично розподілені функції інтелекту.

Його дослідження показують, що права сторона домінує в сприйнятті ритму, кольорів і розмірів, просторовому орієнтуванні, цілісному сприйнятті, уяві й мріях; у той час як ліва сторона сильна в догіці й аналізі, операціях над сповами, числами й послідовностями/списками.

Майндмепи та вимоги

Майндмепи (mindmaps, вони ж «інтелектуальні карти», «карти пам'яті», «ментальні карти») — це графічна техніка ведення заміток і візуалізації ідей при витяганні вимог до програмного забезпечення, що використовує так звану променисто-гіллясту структуру.

Майндмепи є ефективними завдяки таким властивостям:

- о орієнтованість на ключові слова;
- о вільні синтаксис і семантика;
- о зручність;
- о високорівневий огляд;
- о «згадати все»;
- о часткова структурованість.

Майндмепи та вимоги

Трьома основними бізнес-застосуваннями майндмепів є:

- о списки завдань;
- о підготовка презентацій;
- о ведення заміток.

Використання майндмепів є досить доцільним й ефективним в наступних ситуаціях:

- о планерки та інші короткі збори;
- о презентації;
- о класифікація елементів;
- о замітки про книгу або семінар;
- о ретроспективи;
- о замітки по переговорах.

Замітки по переговорах

Шаблон майндмепу для вимог користувача

Засоби для створення майндмепів

Інженерія вимог до програмного забезпечення

Інженерія вимог до ПЗ полягає в перетворенні запропонованих замовником вимог до системи в опис вимог до ПЗ, їх специфікації та верифікації. Вона базується на моделі процесу визначення вимог, процесах акторів — діючих осіб, керуванні та формуванні вимог, а також на процесах верифікації та підвищення їх якості.

Модель процесу в інженерії вимог — це схема процесів ЖЦ, які виконуються від початку проекту й доти, поки не будуть визначені й погоджені вимоги.

Управління вимогами до ПЗ полягає в плануванні й контролі виконання вимог і проектних ресурсів у процесі розробки компонентів системи на етапах ЖЦ.

Якість і процес покращення вимог – це процес перевірки характеристик атрибутів якості, а також методи їх досягнення на етапах ЖЦ.

Управління вимогами до системи — це керівництво процесами формування вимог на всіх етапах ЖЦ, яке містить управління змінами й атрибутами вимог, що відображають програмний продукт, а також проведення моніторингу.

Зв'язок між розробкою вимог і задачами ТСПП

Фіксація вимог (Requirement Capturing) у технічному завданні визначається бажаннями замовника отримати при реалізації задані ним властивості системи (специфікація, верифікація та валідація вимог на правильність, відповідність та повноту).

Специфікація вимог до ПЗ — це формалізований опис функціональних, нефункціональних і системних вимог, вимог до характеристик якості, а також вимог до структури ПЗ, принципів взаємодії з іншими компонентами, алгоритмів і структури даних системи.

Валідація вимог — це перевірка вимог, для того, щоб переконатися, що вони визначають дану систему. Одним з методів атестації є прототипування, тобто швидка обробка окремих вимог на конкретному інструменті та дослідження масштабів зміни вимог, вимірювання об'єму функціональності і вартості системи.

Верифікація вимог – це процес перевірки правильності специфікації вимог на їх відповідність, несуперечність, повноту і виконуваність, а також на відповідність стандартам.

Специфікація вимог до системи або технічне завдання

- опис узагальнених результатів обстеження і вивчення існуючої системи і зовнішнього середовища;
- опис цілей і потреб замовника і потенційних користувачів;
- перелік базових стандартів передбачуваного проекту програмного продукту;
- > загальні вимоги до характеристик комплексу завдань ПС:
 - о цілі створення програмного продукту і призначення комплексу функціональних завдань;
 - перелік об'єктів середовища застосування ПС, при управлінні якими повинен вирішуватися комплекс завдань ПС;
 - о періодичність і тривалість вирішення комплексу завдань;
 - о зв'язки та взаємодія комплексу завдань з зовнішнім середовищем та іншими компонентами системи;
 - о розподіл функцій між персоналом, програмними і технічними засобами при різних ситуаціях вирішення необхідного комплексу функціональних завдань;

Специфікація вимог до системи або технічне завдання

- вимоги до вхідної інформації:
 - о джерела інформації;
 - о перелік та опис вхідних повідомлень (форми подання, терміни та частота надходження);
- Вимоги до вихідної інформації:
 - о споживачі та призначення вихідної інформації;
 - о перелік та опис вихідних повідомлень;
 - регламент та періодичність їх видачі;
 - о допустимий час затримки вирішення певних задач;
 - вимоги до архітектури системи, що містить ідентифікацію і функції компонентів системи, їх призначення, статус розробки, апаратні і програмні ресурси;
- вимоги сумісного цілісного функціонування компонентів ПС, опис та характеристики їх динамічних зв'язків;

Специфікація вимог до системи або технічне завдання

- вимоги до системи в цілому:
 - о до режимів роботи;
 - о до продуктивності системи;
 - о до зовнішнього і призначеного для користувача інтерфейсу системи (взаємодія з користувачами та зовнішнім апаратним і програмним забезпеченням);
 - о до внутрішнього інтерфейсу компонентів та до внутрішніх даних системи (взаємодія структурних елементів ПС між собою);

 - о по забезпеченню безпеки системи та зовнішнього середовища;
 - о по забезпеченню захисту, безпеки і секретності даних;
 - загальні вимоги до складу і змісту документації проекту ПС;
 - оцінка необхідних витрат ресурсів на розробку, введення в дію та забезпечення функціонування ПС;
 - набір вимог, що гарантують якість застосування ПС, а також вимоги до умов випробувань та приймання ПС.

Трасування вимог

Інструментом встановлення залежності між сформульованими вимогами та їх змінами є *трасування* процес підтримки розвитку й оброблення вимог з дослідженням певних зв'язків, які повинні бути зафіксовані за двома напрямками: від джерела вимог до реалізації та навпаки.

Методи трасування базуються на формальних специфікаціях зв'язків між елементами вимог або обмежуються описами функцій, ситуацій, контексту та можливих рішень.

Трасування вимог

Основу трасування складають:

- о вимоги, які змінюються при їх формуванні;
- о деякі деталі виконання функцій в робочому ПЗ, які з'явилися у зв'язку з виниклою практичною ситуацією;
- о зв'язки між різними моделями процесу проектування системи на ЖЦ програмного продукту та прийняті рішення про необхідність зміни вимог у зв'язку з недоліками, що з'явилися;
- о інформація про узгоджені атрибути вимог на різних рівнях розглянутої схеми трасування, збереження матриці трасування;
- о спеціальні системні вимоги, що стосуються повторного використання готових компонентів або частин системи;
- о результати тестування, по яких можна визначити найбільш вірогідні частини коду, що вимагають перевірки на наявність в них дефектів.

Трасування вимог

Процедура трасування полягає в наступному:

- о вибирається елемент з матриці трасування вимог, за яким проводиться дослідження на етапах ЖЦ;
- о складається список питань, по яких на кожному етапі перевіряються зв'язки при реалізації вимог в продукті (може модифікуватися процедура розробки окремого елементу на
- о подальшому етапі ЖЦ);
- о проводиться моніторинг статусу кожної вимоги на відповідність виконання згідно прийнятого плану;
- о уточнення ресурсів виконання проекту при необхідності внесення змін у вимоги та в елементи проекту.

Урасування забезпечує:

- о введення більш складних відношень замість простих зв'язків або специфічних відношень;
- о використання різних шляхів трасування (між моделями або ієрархічними зв'язками);
- о ведення бази даних об'єктів трасування і відношень між ними.

Сумісність кольорів

Привертає увагу.

Приглушені відтінки зеленого -- натуральність.

Темні відтінки -- професіоналізм.

Користувач має право на помилку:

Швидкісні показники діяльності людини:

Час, який людина витрачає на різні дії, пов'язані з роботою на комп'ютері:

- о Натиснення на клавішу клавіатури: 0.2–1.25 с.
- о Натиснення на кнопку миші: 0.1 с.
- о Переміщення курсора миші: 1.0-1.5 с.
- о Розпізнавання візуального образу: 0.1 с.
- о Лереклад погляду і перемикання уваги з одного об'єкту на іншій: 0.25 с.
- о Перемикання уваги з миші на клавіатуру і назад: 0.36 с

Слід враховувати різні категорії користувачів

Розташування елементів управління:

Погляд користувача спочатку знаходиться у верхньому лівому куті монітора

Свобода дій користувача:

Користувач повинен мати контроль над системою і можливість змінити поточний стан програми

Контрольний список вимог до елементів управління

Вікна

При проектуванні треба враховати, при якій роздільній здатності, а так само розмірі монітору та набору шрифтів працюватимуть користувачі.

Заголовки

- о Заголовки короткі та адекватні вмісту вікна.
- о Заголовки відповідають назвам елементів, за допомогою яких вікна були
- о викликані.
- Якщо вікно викликається елементом, що не має явної назви, в заголовку вікна відображається назва екранної форми.

Дизайн вікна

- о Тип вікна (модальне, немодальне, можливість мінімізації/максимізації) був вибраний усвідомлено, відповідно до завдань користувачів.
- о Керуючі елементи, розташовані достатньо далеко один від одного (не менше 7 DLU).
- о Інформація у вікні адекватно згрупована (зв'язані елементи об'єднані в групи).
- о нопки знаходяться в секції, на яку вони надають безпосередню дію.
- о Перехід від елементу до елементу усередині вікна, здійснюється зверху вниз зліва направо.

Діалогові вікна

- о У діалогових вікнах відсутні меню або інструментальні панелі.
- о Діалогові вікна відкриваються не в центрі екрану, а в центрі поточної дії користувача.