## Homework Assignment 4

## Matthew Tiger

## September 23, 2015

**Problem 2.3.** Find the ACVF of the time series  $X_t = Z_t + aZ_{t-1} + bZ_{t-2}$  where  $Z_t \sim WN(0, \sigma^2)$  when:

a. 
$$a = 0.3$$
,  $b = -0.4$ , and  $\sigma^2 = 1$ .

b. 
$$a = -1.2$$
,  $b = -1.6$ , and  $\sigma^2 = 0.25$ .

Solution. The ACVF of the time series  $\{X_t\}$ ,  $\gamma_X(h)$ , is by definition:

$$\gamma_X(h) = \operatorname{Cov}(X_{t+h}, X_t) 
= \operatorname{Cov}(Z_{t+h} + aZ_{t+h-1} + bZ_{t+h-2}, Z_t + aZ_{t-1} + bZ_{t-2}) 
= \operatorname{Cov}(Z_{t+h}, Z_t) + a\operatorname{Cov}(Z_{t+h}, Z_{t-1}) + b\operatorname{Cov}(Z_{t+h}, Z_{t-2}) 
+ a\operatorname{Cov}(Z_{t+h-1}, Z_t) + a^2\operatorname{Cov}(Z_{t+h-1}, Z_{t-1}) + ab\operatorname{Cov}(Z_{t+h-1}, Z_{t-2}) 
+ b\operatorname{Cov}(Z_{t+h-2}, Z_t) + ab\operatorname{Cov}(Z_{t+h-2}, Z_{t-1}) + b^2\operatorname{Cov}(Z_{t+h-2}, Z_{t-2}).$$
(1)

Using (1), we can see that since  $Z_t \sim WN(0, \sigma^2)$ 

$$\gamma_X(h) = \begin{cases} (1+a^2+b^2)\sigma^2 & \text{if } h = 0\\ a(1+b)\sigma^2 & \text{if } h = \pm 1\\ b\sigma^2 & \text{if } h = \pm 2\\ 0 & \text{otherwise} \end{cases}.$$

Therefore, when

a. a = 0.3, b = -0.4, and  $\sigma^2 = 1$ , the ACVF of  $\{X_t\}$  is:

$$\begin{cases} 1.25 & \text{if } h = 0 \\ 0.18 & \text{if } h = \pm 1 \\ -0.4 & \text{if } h = \pm 2 \\ 0 & \text{otherwise} \end{cases}$$

b. a = -1.2, b = -1.6, and  $\sigma^2 = 0.25$ , the ACVF of  $\{X_t\}$  is:

$$\begin{cases} 1.25 & \text{if } h = 0 \\ 0.18 & \text{if } h = \pm 1 \\ -0.4 & \text{if } h = \pm 2 \\ 0 & \text{otherwise} \end{cases}$$

**Problem 2.5.** Suppose that  $\{X_t, t = 0, \pm 1, \dots\}$  is stationary and that  $|\theta| < 1$ . Show that for each fixed n the sequence

$$S_m = \sum_{j=1}^m \theta^j X_{n-j}$$

is convergent absolutely and in mean square as  $m \to \infty$ .

Solution. Let  $a_j = \theta^j X_{n-j}$ . Since each  $X_i$  is a random variable, each  $X_i$  maps to a real, non-infinite value so let  $X = \max\{|X_i|\}$ . Then to see that  $S_m$  is convergent absolutely as  $m \to \infty$ , notice that

$$\sum_{j=1}^{m} |a_{j}| = \sum_{j=1}^{m} |\theta^{j} X_{n-j}|$$

$$= \sum_{j=1}^{m} |\theta|^{j} |X_{n-j}|$$

$$\leq \sum_{j=1}^{m} X |\theta|^{j} = \sum_{j=1}^{m} b_{j} = T_{m}$$

Since  $|\theta| < 1$ , we know that as  $m \to \infty$ , the partial sum  $\sum_{j=1}^m X |\theta|^j \to 0$  and it must hold that  $T_m \to 0$ . Thus, we know that as  $m \to \infty$ ,  $\sum_{j=1}^m |a_j|$  converges to some L since  $|a_j| \le b_j$  and  $T_m$  is convergent. Therefore,  $S_m$  is convergent absolutely.

To see that  $S_m$  is convergent in the mean square, it suffices to show that  $\mathrm{E}(S_m-S_l)^2\to 0$  as  $m,l\to\infty$ .

Without loss of generality, assume that m > l > 0. Notice that  $S_m - S_l = \sum_{j=1}^m a_j - \sum_{j=1}^n a_j = \sum_{j=l+1}^m a_j$ . Thus,

$$E(S_m - S_l) = E(\sum_{j=l+1}^m a_j) = \sum_{j=l+1}^m E(a_j).$$

It is clear that  $E(a_j) = E(\theta^j X_{n-j}) = \theta^j E(X_{n-j})$ . Since  $\{X_t\}$  is a stationary time series, its expectation does not depend on t, so say  $E(X_{n-j}) = \mu_X$ . Then

$$E(S_m - S_l) = \sum_{j=l+1}^m \theta^j E(X_{n-j})$$
$$= \mu_X \sum_{j=l+1}^m \theta^j$$
$$= \frac{\mu_X \theta^{l+1} (1 - \theta^{m-l-1})}{1 - \theta}$$

Since  $|\theta| < 1$ , it is clear then that  $\mathrm{E}(S_m - S_l)^2 \to 0$  as  $m, l \to \infty$  showing that  $S_m$  is convergent in mean square for any n.

**Problem 2.11.** Suppose that in a sample of size 100 from an AR(1) process with mean  $\mu$ ,  $\phi = 0.6$ , and  $\sigma^2 = 2$  we obtain  $x_{100}^- = 0.271$ . Construct an approximate 95% confidence interval for  $\mu$ . Are the data compatible with the hypothesis that  $\mu = 0$ .

Solution. Note that since AR(1) is a linear model,  $\bar{X}_n$  is approximately normal with mean  $\mu$  for large n and an approximate 95% confidence interval for  $\mu$  is

$$\left(\bar{X}_n - \frac{1.96\nu^{1/2}}{\sqrt{n}}, \bar{X}_n + \frac{1.96\nu^{1/2}}{\sqrt{n}}\right)$$

where  $\nu = \sum_{|h| < \infty} \gamma_X(h)$ .

Since  $\{X_t\}$  is an AR(1) process, we know  $\gamma_X(h) = \gamma_X(0)\phi^{|h|}$  where  $\gamma_X(0) = \sigma^2/(1-\phi^2)$ . Thus

$$\nu = \sum_{|h| < \infty} \gamma_X(h) = \sum_{|h| < \infty} \frac{\sigma^2 \phi^{|h|}}{1 - \phi^2}$$

$$= \frac{\sigma^2}{1 - \phi^2} \left( 1 + 2 \sum_{h=1}^{\infty} \phi^h \right)$$

$$= \frac{\sigma^2}{1 - \phi^2} \left( 1 + \frac{2\phi}{1 - \phi} \right)$$

$$= \frac{\sigma^2(1 + \phi)}{(1 - \phi)(1 - \phi^2)} = \frac{\sigma^2}{(1 - \phi)^2}$$

If  $\phi = 0.6$  and  $\sigma^2 = 2$ , then  $\nu = 2/(1 - 0.6)^2 = 12.5$ . Since n = 100,  $\bar{x_n} = \bar{x_{100}} = 0.271$ , and an approximate 95% confidence interval for  $\mu$  is

$$\left(0.271 - \frac{1.96(12.5)^{1/2}}{\sqrt{100}}, 0.271 + \frac{1.96(12.5)^{1/2}}{\sqrt{100}}\right)$$

or (-0.42197, 0.96397). Given this confidence interval, it is plausible that  $\mu = 0$ .