Primer Design Strategy

Design Methods

The two plasmids being used for developing this specific cyanobacterium are pAM4788 as the backbone vector and pCS-PET_VB190412 for the superPETase gene. For convenience's sake, they shall be referred to in this document as pAM and PET, respectively. In order to design these primers, two steps must be taken. The first step is to identify the regions of each plasmid necessary for PCR and Gibson cloning. The second step is to isolate the specific fragments of each plasmid that will be used in the PCR and cloning protocols.

Region Identification

In the PET plasmid, the region to be isolated is that of the designed superPETase gene (shown in yellow in Figure 1).

Figure 1. Graphic map of the pCS-PET_VB190412 plasmid identifying featured regions.

In the pAM plasmid, the region to be removed is the GFP gene (shown in green in Figure 2), leaving the rest of the plasmid as the backbone vector. The superPETase gene (yellow) is inserted where the GFP gene (green) was removed.

Figure 2. Graphic map of the pAM4788 plasmid identifying featured regions.

Fragment Isolation

From the entire plasmid sequence, the fragments of interest are those at the beginning and end of the identified regions. The entire sequences of both the PET plasmid and the pAM plasmid are available in the appendix. The first sequence is that of the PET plasmid with the superPETase gene text in maroon and highlighted in yellow. The second sequence is that of the pAM plasmid with the GFP gene text in green and highlighted in yellow.

PCR primer isolation

The basic requirements for a PCR primer sequence is that $n \ge 18$ and that $T_m \ge 55$ °C, where n is the number of base pairs and T_m is the melting temperature. A forward and reverse primer must be made for each fragment that is desired to be replicated. For the superPETase gene, the primers would be composed of the sequences of base pairs at the beginning and ending of the gene. For the pAM plasmid backbone, the primers would be composed of the sequences of base pairs just before and just after the GFP gene.

superPETase primers

Forward primer

PET_f: ATG GCA AAC AAC GAC CTA TTC C

Reverse primer

PET_r: TTA CAG ATC CTC TTC TGA GAT GAG TT

pAM backbone primers

```
Original forward primer
```

However, after consulting with NM, the primer-dimer potential became apparent as shown below:

```
5' AAGGGTGGGCGCCGACCCA
|||| :: ::::
3' ACCCAGCCGCGGGTGGGAA
```

To resolve this issue, an additional 4 base pairs were added at the 3' end of the original primer pAM_f: AAG GGT GGG CGC GCC GAC CCA G

• -

pAM_f2

ok so we are finding some mispriming sites with pAM_f. all reactions with this primer give two bands, second product ~ 500 bp smaller.

We could possibly fix this by tweaking annealing temperature and other program features. But it is probably easiest/quickest to just fix primer.

One issue is that AM_f is in the MCS, so it is challenging to avoid primer dimer due to the large number of palindromes. Extending AM_f by 1 or 2 bp causes severe primer dime issue (1 bp: GC bad; 2 bp AGCT terrible!). So let's extend by 3 or 4... pick 4. This is pAM_f2

```
AAGGGTGGGCGCCGACCCAGCTTT
                        AM f2
AAGGGTGGGCGCCGACCCAG AM f
    gggggggggggggggtgttttttgtacaaactgggccttaggagaaggccatcetgacggatggcctttttgaagctttctagaatcgggggcccccgg < 2600
            2510
                     2520
                             2530
                                      2540
                                               2550
                                                        2560
                                                                2570
                                                                         2580
     gggga \\ \textbf{ttctagaccgagctggcactgac} agcctcagtgagcgctctcggaagcgctctggagcacttggccacatgtgcttgggtgctgcgatggccagcg \ < \ 2700 \\
            2610
                     2620
                              2630
                                      2640
                                               2650
                                                        2660
                                                                2670
     ttccactatcgaagctgtaggcgcggcagcggttagccgcaaaccatcgcaagccttcgttctcgatcgcggcgatcgcagttgtccaaagctgatcgag < 2800
            2710
                     2720
                             2730
                                      2740
                                               2750
                                                       2760
                                                                2770
                                                                         2780
     2830
                                                       2860
            2810
                     2820
                                      2840
                                               2850
                                                                2870
                                                                         2880
    AAGGGTGGGCGCCGACCCAGCTTT AM f2
  AAGGG---TGGGCCGCCGACCCAG AM f mispriming site??
                                                     AAGGGTGGGCGCCGACCCAG
     ggatttcgtgacagctccccagtccctgactagatcgggcgttttcaagccaatgagcttcgatcgcctcaagcggcagttcagcaatcgcctcattcgg < 3000
                                      2940
                     2920
                             2930
                                                       2960
                                                                         2980
```

pAM_f2: AAGGGTGGGCGCCGACCCAGCTTT

```
Original reverse primer
```

pAM r: GGT GAA GGG CTC CTT CTT AAA G

The primer-dimer potential for this sequence was very high, as shown below:

5'-GGTGAAGGGCTCCTTCTTAAAG-3'
*** ***
3'-GAAATTCTTCCTCGGGAAGTGG-R'

This was resolved by adding an A at the 3' end of the original primer before converting into the complement pAM_r: GGT GAA GGG CTC CTT CTT AAA GT

pAM Internal Primers

Running PCR amplification for the pAM backbone consist of >7k base pairs. This is too large to be efficient. To compensate for this, we divided the pAM backbone into 2 separate fragments and created primers. The primers are as follows:

Note- naming convention: 35K refers to 3.5 kbp past pAM_f

Forward primer (pAM35k_f)

pAM35k_f: CGA ATT GAT CGG CAA GCC AG

Reverse primer (pAM35k r)

{CGAATTGATCGGCAAGCCAG}

Complement: CTG GCT TGC CGA TCA ATT CG

pAM35k r: CTG GCT TGC CGA TCA ATT CG

In addition to splitting the pAM backbone in half, it was also split into three parts, with the primers designed as shown below.

Forward primer (pAM27k_f)

 $GCAGGTACATGGGCCAGCAT \\ pam27k_f n = 20 Tm = 60.5 °C \\ gccacccagctctcgtagtcgtcgtcgtagctggcaggtacatgggccagcattggtgcgggcgatcgcgacctcatcatcagaagctggagcactgacgatcg \\ g \\ 5160 5170 5180 5190 5200 5210 5220 5230 5240 5250 \\$

pAM27k_f: GCA GGT ACA TGG GCC AGC AT

Reverse primer (pAM27k r)

 $\label{eq:caggrave} \{ \text{GCAGGTACATGGGCCAGCAT} \} \qquad \text{pAM27k_r n = 20 T}_{\text{m}} = 60.5\,^{\circ}\text{C} \\ \text{gccacccagctctcgtagtcgtcgtcgcgtagctggcaggtacatgggccagcatggcggacctcatcatcatcagaagctggagcactgacgatcg} \\ \text{g} \\ 5160 \qquad 5170 \qquad 5180 \qquad 5190 \qquad 5200 \qquad 5210 \qquad 5220 \qquad 5230 \qquad 5240 \qquad 5250 \\ \end{array}$

pAM27k r: ATG CTG GCC CAT GTA CCT GC

48k_r

	Sequence (5'->3')	Template strand	Length	Start	Stop	Tm	GC%	Self complementarity	Self 3' complementarity
Forward primer	GCTGATATTCCCGCTGCTCT	Plus	20	2450	2469	59.97	55.00	4.00	0.00
Reverse primer	AGCTCTTGATCCGGCAAACA	Minus	20	4781	4762	59.96	50.00	4.00	0.00

pAM-23K_f GCTGATATTCCCGCTGCTCT

COMPLEMENT 5'- AGA GCA GCG GGA ATA TCA GC -3'

pAM-23k_r AGAGCAGCGGGAATATCAGC

pAM-48k_r AGCTCTTGATCCGGCAAACA
COMPLEMENT 5'- TGT TTG CCG GAT CAA GAG CT -3'
pAM-48k_f TGTTTGCCGGATCAAGAGCT

```
TGTTTGCCGGATCAAGAGCT
tctgcgcgtaatctgcttgcaaacaaaaaaaccaccgctaccagcggtggtttgtt < 7260
7210 7220 7230 7240 7250

gccggatcaagagctaccaactctttttccgaaggtaactggcttcagcagagcgcagat < 7320
7270 7280 7290 7300 7310

TGTTTGCCGGATCAAGAGCT pAM-48K_f
gctaccagcggtggtttgtttgccggatcaagagctaccaactctttttccgaa
7240 7250 7270 7280 7290
```

```
Forward primer (pAM54k f)
```

pAM54k_f: GAG TGA GCT GAT ACC GCT CGC C

Reverse primer (pAM54k r)

pAM54k_r: GGC GAG CGG TAT CAG CTC ACT C

Gibson primer design

For Gibson primers, fragments of the two different plasmids being joined must be combined into one primer that will overlap regions of the backbone and product vectors. The basic requirements here are that $n \ge 20$ and $T_m \ge 50$ °C. For identification purposes, these primers will be labeled in an A-B_d fashion, where A is the whole fragment from one plasmid, B is the plasmid to which incomplete fragments of A are attached to the other whole fragment, and d is the direction (Figure 3).

Figure 3. Schematic description of Gibson primer structure and naming convention.

PET-pAM primers

Forward primer

```
catctcagaagaggatctgtaa n = 22 T_m = 51.1°C
cggccaattgcagtgaacaaaaactcatctcagaagaggatctgtaa
        1240 1250 1260 1270
                                                1290
                                                         1300
                                        1280
           aagggtgggcgccgaccc n = 20 T_m = 70.7^{\circ}C
aattgtacaaataa</mark>aagggtgggcgcgccgacccagctttottgtacaaactcggccctcaggagaaggccatcctgacg < 2560
        2490
                 2500
                         2510
                                 2520
                                         2530
                                                  2540
                                                          2550
            <mark>..oggccaattgcagtgaacaaaaactcatctcagaagaggatctgtaa</mark>aagggtgggcggccgacccagctttcttgtacaaactcggccctcaggagaag...
```

PET-pAM_f: CAT CTC AGA AGA GGA TCT GTA AAA GGG TGG GCG CGC CGA CCC

Reverse primer

PET-pAM_r: AAT AGG TCG TTG TTT GCC ATG GTG AAG GGC TCC TTC TTA A

This was not quite done right, as all that was necessary was to take the complement of the PET-pAM_f primer to get the PET-pAM_r primer. In addition, an extra four base pairs were added to the 5' end of the original sequence to prevent primer-dimer potential, and then the complement was taken.

PET-pAM_r: GGG TCG GCG CGC CCA CCC TTT TAC AGA TCC TCT TCT GAG ATG AGT T

pAM-PET primers

Forward primer

```
 \begin{array}{c} \textbf{atggcaaacaacgacctatt} & n = 20 \ T_m = 52.4 \ ^\circ \text{C} \\ \textbf{catgaatcacaaagtgatggcaaacaacgacctattccaagccagtcgccgccgttttctggcacagctggggggctca} &< 320 \\ 250 & 260 & 270 & 280 & 290 & 300 & 310 \\ \hline & \textbf{ttaagaaggagcccttcacc} & n = 20 \ T_m = 54.3 \ ^\circ \text{C} \\ \textbf{ccttgtttaactttaagaaggagcccttcacc} & \textbf{atgtctaaaggtgaagaattattcactggtgttgtcccaattttggttgaattagatggtgat} &< 1840 \\ 1750 & 1760 & 1770 & 1780 & 1790 & 1800 & 1810 & 1820 & 1830 \\ \hline & \textbf{ttaagaaggagcccttcaccatggcaaacaacgacctatt} \\ \textbf{...ccttgtttaactttaagaaggagcccttcaccatggcaaacaacgacctattccaagccagtcgccgcttttctggcacagctgggggggctca} ... \\ \hline \end{array}
```

pam-pet_f: TTA AGA AGG AGC CCT TCA CCA TGG CAA ACA ACG ACC TAT T

```
Original reverse primer
```

Again, the complement of the pAM-PET_f primer should have been taken for the pAM-PET_r primer. However, to ensure minimal primer-dimer potential an extra three base pairs were added to the 5' end of the original sequence before taking the complement

pAM-PET_r: AAT AGG TCG TTG TTT GCC ATG GTG AAG GGC TCC TTC TTA AAG

Internal PETase primers

Strategy

We do initial screening with the sequencing primers that flack the gene insertion site in the vector backbone. Every plasmid backbone has a _f and_r sequencing primer which is used to sequencing interred genes, and can also be used to PCR the interest up. When screening by PCR we look for a specific size (size of insert plus flanking sequence). However this does not provide specific amplification due to the gene, and might be misleading if there is an insert of similar size.

To confirm OUR gene is inserted, we want a specific primer, which will ONLY amplify our gene of interest. This will be a lot more diagnostic. We can do this by making primers specific to the gene, and using one of these as the _f or _r primers in conjunction with the sequencing _r and _f primers.

PETec-N_r1									
Sequence	(5'->3') Template strand	Length	Start	Stop	Tm	GC%	Self co	mplementar	ity
Self 3'	complementarity								
Forward primer	CATCGGTGATGTCGGCGATATAGG	Plus	24	286	309	63.01	54.17	7.00	2.00
Reverse primer	CGGACCCCACCACTTAATGC	Minus	20	777	758	61.03	60.00	4.00	2.00
Product length	492								

Devdhi Kasana & Sadie Meunier

Primer pair 6

PETec-N r2

Sequence (5'->3') Self 3' complementa	Template strand	Length	Start	Stop	Tm	GC%	Self comp	olementari	ty
Forward primer CATCGGTGA	ATGTCGGCGATATAGG GGGGACGATTG Minus	Plus 19	24 743	286 725	309 60.15	63.01 63.16	54.17 8.00	7.00 2.00	2.00
PETse-int-C_f									
Primer pair 1 Sequence (5'->3') complementarity	Template stran Self 3' comple		Length	Start	Stop	Tm	GC%	Self	
Forward primer CAGTTCC Reverse primer CTTCAAA Product length 413		Plus Minus	20 20	761 1173	780 1154	59.89 57.36	55.00 50.00	3.00	0.00
PETse-int-N_r Primer pair 1									
Sequence (5'->3') complementarity	Template stran Self 3' comple		Length	Start	Stop	Tm	GC%	Self	
Forward primer TCATCGG Reverse primer CACAAT: Product length 440		Plus Minus	20 20	1 440	20 421	56.22 58.99	45.00 50.00	4.00 6.00	0.00

pETec_C-f3

agtttetggaaattaaeggeggt n=23 τ_m =57.2°C aacagtttetggaaattaaeggeggtagecaetettgtgecaactetgggaaeagcaaceaggcaetgategga 5880 5890 5900 5910

pETec_C-f4

 $ctt caacca act t cag cag tg \quad n = 22 \quad \ \ \mathtt{T_m} \ = 55.7\, ^{\circ}\mathtt{C}$ cg c cat gg ga ct ctt caacca act t cag cag tg t t a c c g t g c c g ac g c t g at t

GFP-N_r

tgtttttctagatacccagatcatatgaaacaaca

{tgtttttctagatacccagatcatatgaaacaaca} n=35 Tm=57.9 C

ttcaatgtttttctagatacccagatcatatgaaacaacatgactttttcaagtctgccatgcc 1910 1920 1930 1940 1950 1960 1970 1980 1990

complement: TGT TGT TTC ATA TGA TCT GGG TAT CTA GAA AAA CA

Primer (PCR, Gibson)	Sequence					
Fragmentation						
pCS-PET_f	ATG GCA AAC AAC GAC CTA TTC C					
pCS-PET_r	TTA CAG ATC CTC TTC TGA GAT GAG TT					
pAM_f	AAG GGT GGG CGC GAC					
pAM_f2	AAGGGTGGCCCGACCCAGCTTT					

pAM_r	GGT GAA GGG CTC CTT CTT AAA G
PET-pAM_f	CAT CTC AGA AGA GGA TCT GTA AAA GGG TGG GCG CGC CGA CCC
PET-pAM_r	AAT AGG TCG TTG TTT GCC ATG GTG AAG GGC TCC TTC TTA A
pAM-PET_f	TTA AGA AGG AGC CCT TCA CCA TGG CAA ACA ACG ACC TAT T
pAM-PET_r	GGG TCG GCG CGC CCA CCC TTT TAC AGA TCC TCT TCT GAG ATG
pAM35k_f	CGA ATT GAT CGG CAA GCC AG
pAM35k_r	CTG GCT TGC CGA TCA ATT CG
pAM27k_f	GCA GGT ACA TGG GCC AGC AT
pAM27k_r	ATG CTG GCC CAT GTA CCT GC
pAM23k_f	GCTGATATTCCCGCTGCTCT
pAM23k_r	AGAGCAGCGGAATATCAGC
pAM48k_f	TGTTTGCCGGATCAAGAGCT
pAM48k_r	AGCTCTTGATCCGGCAAACA
pAM54k_f	GAG TGA GCT GAT ACC GCT CGC C
pAM54k_r	GGC GAG CGG TAT CAG CTC ACT C
	Screening
PETec-N_r1	CGGACCCCACCTTAATGC
PETec-N_r2	GTGTACCCGGGGACGATTG
PETse-int-N_r	CACAATTGCGATAGCACCGA
PETse-int-C_f	CAGTTCCGTCACAGTTCCCA
pETec_C-f3	agtttctggaaattaacggcggt
pETec_C-f4	cttcaaccaacttcagcagtg
GFP-N_r	TGT TGT TTC ATA TGA TCT GGG TAT CTA GAA AAA CA

(above) Master table of primers used in experiments.

(below) Master table of fragment names with corresponding primers and size. Highlighted are the fragments used to put together pAM-PET.

Name	Template	Forward Primer	Reverse Primer	Size (bp)
PET	pCS_PET	pAM_PET_f	PET_pAM_r	1034
Frag A	<mark>pAM</mark>	pAM_F2	pAM_35k_r	3521
Frag B	<mark>pAM</mark>	pAM_35k_f	pAM_r	<mark>3554</mark>
Frag C	рАМ	pAM_F2	pAM_23k_r	2468
Frag D	рАМ	pAM_23k_f	pAM_48k_r	2330
Frag D'	рАМ	pAM35k_f	pAM48k_r	1278
Frag E	рАМ	pAM48k_f	pAM_r	2295

Devdhi Kasana & Sadie Meunier