Univerzita Karlova v Praze Matematicko-fyzikální fakulta

MATEMATIKA

Martin Brajer

Matematická analýza

bakalářské přednášky

Přednášející: doc. Mgr. Petr Kaplický, Ph.D.

Studijní program: Fyzika

Studijní obor: FOF

Obsah

Ù,	vod		1
	0.1	Diferenciální počet	1
	0.2	Integrální počet	1
1	Kap	pitola 1: Úvod, základní pojmy	2

$\mathbf{\acute{U}vod}$

Přednášející:

- Petr Kaplický, KMA
- kaplicky@karlin.mff.cuni.cz
- www.karlin.mff.cuni.cz

Literatura:

- J. Kopáček: Matematická analýza (nejen) pro fyziky I (II) + příklady
- J. Souček: www.karlin.mff.cuni.cz/soucek
- V. Jarník: Diferenciální počet I
- V. Jarník: Integrální počet I
- W. Rudin: Principles of MA
- I. Černý, M. Rokyta: Differential and integral calculus of one real variable

0.1 Diferenciální počet

Mějme funkci f(t) vyjadřující pozici bodu v čase. Základní úloha:

průměrná rychlost:
$$\frac{f(t) - f(t_0)}{t - t_0}$$
 (1)

okamžitá rychlost:
$$\lim_{t \to t_0} \frac{f(t) - f(t_0)}{t - t_0} = f'(t_0)$$
 (2)

0.2 Integrální počet

Plocha pod grafem. Interval [a,b] rozdělme na n částí délky Δ_n v bodech a_n .

přibližně:
$$f(a_0)\Delta_1 + f(a_1)\Delta_2 + ... + f(a_{n-1})\Delta_n =$$

= $S(\Delta) = \sum_{j=1}^n f(a_{j-1})\Delta_j$ (3)

přesně:
$$\lim_{\Delta \to 0} S(\Delta) = \int_a^b f(x) dx$$
 (4)

1. Kapitola 1: Úvod, základní pojmy

Výrok - má pravdivostní hodnotu 0 nebo 1. Mějme A, B výroky:

		$A \wedge B$			$(A \Rightarrow B) \land (A \Leftarrow B)$	
A	B	A&B	$A \vee B$	$A \Rightarrow B$	$A \Leftrightarrow B$	$\neg A$
0	0	0	0	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	0	0
1	1	1	1	1	1	0

Obr. 1.1: Tabulka pravdivostních hodnot

Důkaz implikace $A \Rightarrow B$:

- 1. přímý: ukážeme, že když A=1, pak B=1
- 2. nepřímý: plyne z $\neg B \Rightarrow \neg A$
- 3. sporem: předpokládáme, že $A=1 \wedge B=0$ a odvodíme spor (např.: 1=2)

Lemma 1. $(tvrzeni) \forall n \in \mathbb{N} : n^2 \ liché \Rightarrow n \ liché$

 $D\mathring{u}kaz$ 1. Fixuj $n\in\mathbb{N}.$ Prvočíselný rozklad:

$$n = p_1^{\alpha_1} \cdot \dots \cdot p_k^{\alpha_k} \tag{1.1}$$

$$n^2 = p_1^{2\alpha_1} \cdot \ldots \cdot p_k^{2\alpha_k} \tag{1.2}$$

QED