### How to apply R in a hospital environment on standard available hospital-wide data

**Mieke Deschepper** 





# Data science / statistical analysis in hospitals mostly performed on pathology specific deseases / research context

- ▶ Example of usage:
  - Research
  - University hospitals
  - ▶ Pathology specific

- ▶ No / less usage in
  - ▶ Non-research hospitals
  - ▶ Hospital-wide topics

### Current approach whithin (Belgian) hospitals non-research

Management reporting performed in a Business Intelligence (BI) cel using Excel or BI tools (e.g. Cognos, Qlik)



- Support available
- Platform to distribute results
- Quick start with standard reports available
- No IT skills required



- Not flexible enough: data and reporting
- No statistical analysis possible
- Very cost full (license and support)
- Documentation / problem solving not free available (no stack overflow questions).
- Advanced reporting still require IT insights
- Statistical analysis on hospital level are rarely performed
  - ▶ No research budget
  - Publications are to costly in non-academic field

- ▶ R as a reporting tool
- ▶ R as a statisical tool
- R as a data scientist tool

### R as a reporting tool

- Problem:
  - Not al data available within the BI datawarehouse
  - Setup new ETL is too costly
  - ▶ Boxplots or other user specific graphs not available
  - Excel is no valid alternative!
- Reporting with R
  - using R and markdown as a tool for management reporting
  - using R for data handling (ETL)
  - Shiny applications as alternative for dashboarding
  - Disadvantage: no distribution platform without IT support

### Example R as a reporting tool Incidence of decubitus

- Problem: the calculation of the incidence of decubitus is too complex to perform in the BI tools (e.g. performance)
- Solution: set up a markdown document to generate the analysis



▶ Not solved: we have no access to distribute this on a hospital-wide platform

- R as a reporting tool
- ▶ R as a statisical tool
- R as a data scientist tool

#### R as a statistical tool

- Problems:
  - ▶ BI tools only have limited statistical tools (e.g. trend line)
- Wide range of statistical analysis:
  - ▶ Most common: Regression analysis → correlations
    - E.g. Effect of chlorhexidine gluconate oral care on in-hospital mortality
  - Data quality (e.g. heatmaps)

- Reporting / Visualising important
- Example statiscal analysis AND reporting
  - Covid19-pandemic



### Example R as statistical tool Effect of chlorhexidine gluconate oral care on in-hospital mortality

- Why:
  - Suspect correlation between chlorhexidine gluconate oral care and in-hospital mortality
- Method:
  - Logistic Regression (with stepwise)
- Data:
  - 3 years of billling data
- Conclusions:
  - Number needed to harm = 1 out of 47
  - higher risk for low risk mortality groups



### Example R as a statistical tool (and reporting) Planning tool bedcapacity during Covid19-pandemic

- ▶ Goal: planning tool for task force UZ Gent
- Development time: as narrow as possible < 2 weeks</p>
- Frequency: weekly reporting
- Statistical analysis: Multistate analysis and Poisson modelling
- Output:
  - Small group experts: full analysis
    - .html output (Rmarkdown)
  - Large Task force: 3 slides with results (table and graph)
    - .ppt output (Rmarkdown) with use of corporate idenity template



- R as a reporting tool
- ▶ R as a statisical tool
- ▶ R as a data scientist tool

#### R as a data science tool

- PhD 2019: "Using standard available hospital-wide data in the interpretation and prediction of outcome indicators"
  - ▶ Part 2: prediction of outcome indicators
  - ▶ Goal:
    - Predict unplanned readmissions at discharge
    - Predict in-hospital mortality at admission
- Data wrangling in R: high dimensional data
- Using Machine Learning classification algorithms:
  - ▶ Random Forests (h2o)
  - ▶ Gradient Boosting (xgboost)

...



## Example R as a data science tool Using structured pathology data to predict hospital-wide mortality at admission

#### Goal:

- use individual diagnosis codes instead of aggregated measures to predict in-hospital mortlity at admission
- ▶ Effect of Do Not Ressusicate & pallative care codes
- Methods: Random Forests (h2o)
- Results:

| AUCROC | # predictors | All    | Without DNR & palliative care |
|--------|--------------|--------|-------------------------------|
| CCI    | 1            | 0.7435 | 0.7015                        |
| RoM    | 4            | 0.8797 | 0.8601                        |
| ICD    | 4743         | 0.9477 | 0.8791                        |

- Conclusions:
  - ICD codes (= individual diagnosis codes) outperform CCI and RoM
  - DNR & pallative care code have hight impact on model



- R as a reporting tool
  - ▶ E.g. using Rmarkdown for adhoc analysis or recurrent analysis
  - ▶ E.g. Incidence of decubitus
- R as a statistical tool
  - ▶ E.g. performing logistic regressions
    - E.g. Effect of chlorhexidine gluconate oral care on in-hospital mortality
  - ▶ E.g. set up planning tool to predict capacity during Covid-19
- R as a data scientist tool
  - ▶ E.g. Machine learning tools as Random Forest
  - ▶ E.g. predict unplanned readmissions on basis of structured pathology data

### R is an alround alternative Reporting – Statistics - Data science - ...

- Some advantages
  - Low licence cost
  - Super flexible
  - Custom graphs (e.g. combine barchart and boxplot)
  - ▶ Easy combing multiple sources
- Current problems:
  - No clear Rol for the management
  - ▶ No profiles who can use this / set up
  - ▶ Hard to set up distributed without IT resources (access)
- Next steps
  - Start a data science team
  - ▶ Set up shiny applications as alternative for (non existing) dashboards

#### MIEKE DESCHEPPER mieke.deschepper@uzgent.be Strategic Policy Cel

Universitair Ziekenhuis Gent

C. Heymanslaan 10 | B 9000 Gent

T +32 (0)9 332 21 11

E info@uzgent.be

www.uzgent.be

Volg ons op





