Examen n^5 : Mathématiques

(Temps: 4 heures)

La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies. Les étudiants sont invités à encadrer dans la mesure du possible les résultats de leurs calculs. Les réponses doivent toutes être soigneusement justifiées. Les calculatrices sont interdites.

Barème indicatif :	
• Exercice 1	3 points
• Exercice 2	5 points
• Exercice 3	12 points

Exercice 1. (Sinus itéré)

On défini la suite récurrente $(u_n)_{n\geq 0}$ associée à la fonction sinus par la relation :

$$\begin{cases} u_{n+1} = \sin(u_n), & \forall n \in \mathbb{N} \\ u_0 \in]0, \frac{\pi}{2}] \end{cases}$$

- 1. Montrer brièvement que la suite u est strictement positive et converge vers 0.
- 2. Soient n un entier naturel et α un réel. Justifier l'existence et donner les développements limités à l'ordre n au voisinage de 0 de la fonction $(x \mapsto \sin(x))$ et de la fonction $(x \mapsto (1+x)^{\alpha})$
- 3. (a) Déterminer un réel α tel que la suite $u_{n+1}^{\alpha} u_n^{\alpha}$ ait une limite finie non nulle.
 - (b) En utilisant le lemme de Cesaro, déterminer un équivalent simple de u_n .

Exercice 2. (Étude d'une suite de polynômes)

On considère la suite de polynômes $(P_n)_{n\in\mathbb{N}}$ définie par $P_0=1$ et, pour $n\in\mathbb{N}^*$:

$$P_n(X) = \frac{1}{n!}X(X+n)^{n-1}.$$

- 1. (a) Expliciter les polynômes P_1 et P_2 .
 - (b) Donner la valeur de $P_n(0)$ pour tout $n \in \mathbb{N}$.
- 2. Montrer que

$$\forall n \in \mathbb{N}^*, \forall x \in \mathbb{R}, \quad P'_n(x) = P_{n-1}(x+1).$$

3. En déduire que

$$\forall n \in \mathbb{N}, \quad \forall (x, y) \in \mathbb{R}^2, \quad P_n(x + y) = \sum_{k=0}^n P_k(x) P_{n-k}(y)$$

- 4. (a) Montrer que pour $x \in \mathbb{R}$, $(x+n)^{n-1} \underset{n \to +\infty}{\sim} e^x n^{n-1}$.
 - (b) Rappeler la formule de Stirling puis montrer que, pour $a \in \mathbb{R}$ et $x \in \mathbb{R}^*$ fixés, la suite $(P_n(x)a^n)_{n\geq 0}$ converge si et seulement si $|a|\leq \frac{1}{e}$.

Problème : Inégalité polynomiale de Bernstein et applications

- Si $n \in \mathbb{N}$, on note $\mathbb{C}_n[X]$ le \mathbb{C} -espace vectoriel des polynômes à coefficients complexes de degré inférieur ou égal à n;
- Si $n \in \mathbb{N}^*$, on note S_n le \mathbb{C} -espace vectoriel des fonctions $f : \mathbb{R} \to \mathbb{C}$ vérifiant

$$\exists (a_0,\ldots,a_n) \in \mathbb{C}^{n+1}, \quad \exists (b_1,\ldots,b_n) \in \mathbb{C}^n, \quad \forall t \in \mathbb{R}, \quad f(t) = a_0 + \sum_{k=1}^n (a_k \cos(kt) + b_k \sin(kt)).$$

On remarque que les éléments de S_n sont des fonctions bornées;

• si I est un intervalle non vide de $\mathbb R$ et si f est une fonction bornée de I dans $\mathbb C$, on note

$$||f||_{L^{\infty(I)}} = \sup_{x \in I} |f(x)|.$$

L'application $f \mapsto \|f\|_{L^{\infty}(I)}$ définit une norme sur le \mathbb{C} -espace vectoriel des fonctions bornées de I dans \mathbb{C} noté $\mathcal{B}(I,\mathbb{C})$. C'est à dire que l'on a : $\forall f,g \in \mathcal{B}(I,\mathbb{C}), \ \forall \lambda \in \mathbb{C}$:

- \square À valeurs positives finies : $0 \le ||f||_{L^{\infty}(I)} < +\infty$
- \square Séparabilité : $||f||_{L^{\infty}(I)} = 0$ si et seulement si $f = 0_{\mathcal{B}(I,\mathbb{C})}$
- \square Homogénéité : $\|\lambda f\|_{L^{\infty}(I)} = |\lambda| \|f\|_{L^{\infty}(I)}$
- \square Inégalité triangulaire : $||f + g||_{L^{\infty}(I)} \le ||f||_{L^{\infty}(I)} + ||g||_{L^{\infty}(I)}$

I Polynômes de Tchebychev

On définit la suite de polynômes $(T_n)_{n\in\mathbb{N}}$ par $T_0=1, T_1=X$ et $\forall n\in\mathbb{N}, T_{n+2}=2XT_{n+1}-T_n$.

- 1. Pour tout n dans \mathbb{N} , déterminer le degré de T_n et le coefficient dominant associé.
- 2. Montrer que, pour tout $n \in \mathbb{N}$ et $\theta \in \mathbb{R}$, $T_n(\cos \theta) = \cos(n\theta)$.
- 3. Justifier que pour tout $n \in \mathbb{N}$, la fonction de \mathbb{R} dans $\mathbb{C}, \theta \mapsto T_n(\cos \theta)$ est dans S_n .
- 4. Pour $n \in \mathbb{N}$, calculer $||T_n||_{L^{\infty}([-1,1])}$.
- 5. Montrer que pour tout $n \in \mathbb{N}$, $||T'_n||_{L^{\infty}([-1,1])} = n^2$. On pourra commencer par établir que, pour tout $n \in \mathbb{N}$ et $\theta \in \mathbb{R}$, $|\sin(n\theta)| \leq n|\sin\theta|$.

II Inégalité de Bernstein

Soit n un entier naturel non nul.

6. Soit $A \in \mathbb{C}_{2n}[X]$, scindé à racines simples, et $(\alpha_1, \ldots, \alpha_{2n})$ ses racines. Montrer que

$$\forall B \in \mathbb{C}_{2n-1}[X], \quad B(X) = \sum_{k=1}^{2n} B(\alpha_k) \frac{A(X)}{(X - \alpha_k) A'(\alpha_k)}. \tag{I.1}$$

Soit P dans $\mathbb{C}_{2n}[X]$, et, pour tout $\lambda \in \mathbb{C}$, $P_{\lambda}(X) = P(\lambda X) - P(\lambda)$.

7. Si $\lambda \in \mathbb{C}$, vérifier que X - 1 divise P_{λ} .

Pour tout λ dans \mathbb{C} , on note Q_{λ} le quotient de P_{λ} par X-1:

$$Q_{\lambda}(X) = \frac{P(\lambda X) - P(\lambda)}{X - 1} \in \mathbb{C}_{2n-1}[X].$$

- 8. Montrer que, pour tout λ dans \mathbb{C} , $Q_{\lambda}(1) = \lambda P'(\lambda)$. On considère le polynôme $R(X) = X^{2n} + 1$. Pour k dans [1, 2n], on note $\varphi_k = \frac{\pi}{2n} + \frac{k\pi}{n}$ et $\omega_k = e^{i\varphi_k}$.
- 9. Montrer que

$$R(X) = \prod_{k=1}^{2n} (X - \omega_k).$$

10. À l'aide de la formule (I.1), montrer que

$$\forall \lambda \in \mathbb{C}, \quad Q_{\lambda}(X) = -\frac{1}{2n} \sum_{k=1}^{2n} \frac{P(\lambda \omega_k) - P(\lambda)}{\omega_k - 1} \frac{X^{2n} + 1}{X - \omega_k} \omega_k$$

puis en déduire que

$$\forall \lambda \in \mathbb{C}, \quad \lambda P'(\lambda) = \frac{1}{2n} \sum_{k=1}^{2n} P(\lambda \omega_k) \frac{2\omega_k}{(1-\omega_k)^2} - \frac{P(\lambda)}{2n} \sum_{k=1}^{2n} \frac{2\omega_k}{(1-\omega_k)^2}. \tag{I.2}$$

11. Montrer que

$$\forall \lambda \in \mathbb{C}, \quad \lambda P'(\lambda) = \frac{1}{2n} \sum_{k=1}^{2n} P(\lambda \omega_k) \frac{2\omega_k}{(1-\omega_k)^2} + nP(\lambda).$$

On pourra appliquer l'égalité (I.2) au polynôme X^{2n} .

Soit maintenant f dans S_n .

12. Montrer qu'il existe $U \in \mathbb{C}_{2n}[X]$ tel que, pour tout $\theta \in \mathbb{R}$, $f(\theta) = e^{-in\theta}U(e^{i\theta})$.

13. Vérifier que, pour tout $k \in [1, 2n], \frac{2\omega_k}{(1-\omega_k)^2} = \frac{-1}{2\sin(\varphi_k/2)^2}$ et déduire des questions 11 et 12 que

$$\forall \theta \in \mathbb{R}, \quad f'(\theta) = \frac{1}{2n} \sum_{k=1}^{2n} f(\theta + \varphi_k) \frac{(-1)^k}{2\sin(\varphi_k/2)^2}.$$
 (I.3)

14. En déduire que

$$\forall \theta \in \mathbb{R}, \quad |f'(\theta)| \leqslant n \|f\|_{L^{\infty}(\mathbb{R})}. \tag{I.4}$$

III Quelques conséquences de l'inégalité (I.4)

Soit n un entier naturel non nul.

15. On admet que pour tout $n \in \mathbb{N}$ et $P \in \mathbb{C}_n[X]$, la fonction de \mathbb{R} dans \mathbb{C} , $(\theta \mapsto P(\cos \theta))$ est dans \mathcal{S}_n . Déduire de ce qui précède et de la question 14 que

$$\forall P \in \mathbb{C}_n[X], \quad \forall x \in [-1, 1], \quad \left| P'(x) \sqrt{1 - x^2} \right| \leqslant n \|P\|_{L^{\infty}([-1, 1])}.$$

16. Montrer que

$$\forall Q \in \mathbb{C}_{n-1}[X], \quad |Q(1)| \leqslant n \sup_{-1 \leqslant x \leqslant 1} \left| Q(x) \sqrt{1-x^2} \right|.$$

On pourra considérer $f: \theta \mapsto Q(\cos \theta) \sin \theta$ et vérifier que $f \in \mathcal{S}_n$.

17. Soit $R \in \mathbb{C}_{n-1}[X]$ et $t \in [-1,1]$. Montrer que

$$|R(t)| \leqslant n \sup_{-1 \leqslant x \leqslant 1} \left| R(x) \sqrt{1 - x^2} \right|.$$

On pourra considérer le polynôme $S_t(X) = R(tX)$.

18. En déduire que, pour tout P dans $\mathbb{C}_n[X]$

$$||P'||_{L^{\infty}([-1,1])} \le n^2 ||P||_{L^{\infty}([-1,1])}.$$

19. Peut-il y avoir égalité dans l'inégalité précédente?