The Belavin-Drinfeld Classification

September 29, 2023

The (unsolved) goal is to classify all solutions of the classical Yang-Baxter equation. Let $\mathfrak g$ be an arbitrary semisimple finite-dimensional Lie algebra over $\mathbb C$.

CYBE

A solution of the classical Yang-Baxter equation is a meromorphic function $r: U \to \mathfrak{g} \otimes \mathfrak{g}$ where $U \subseteq \mathbb{C}^2$ is an open nbhd of the origin satisfying $\mathbb{C}^{12}(x_1, x_2) = \mathbb{C}^{13}(x_1, x_2) + \mathbb{C}^{13}(x_1, x_2$

$$[r^{12}(u_1, u_2), r^{13}(u_1, u_3)] + [r^{12}(u_1, u_2), r^{23}(u_2, u_3)] + [r^{13}(u_1, u_3), r^{23}(u_2, u_3)] = 0$$

The (unsolved) goal is to classify all solutions of the classical Yang-Baxter equation. Let $\mathfrak g$ be an arbitrary semisimple finite-dimensional Lie algebra over $\mathbb C$.

CYBE

A solution of the classical Yang-Baxter equation is a meromorphic function $r:U\to \mathfrak{g}\otimes \mathfrak{g}$ where $U\subseteq \mathbb{C}^2$ is an open nbhd of the origin satisfying

$$[r^{12}(u_1, u_2), r^{13}(u_1, u_3)] + [r^{12}(u_1, u_2), r^{23}(u_2, u_3)] + [r^{13}(u_1, u_3), r^{23}(u_2, u_3)] = 0$$
When $r(u_1, u_2)$ only depends on u_1, u_2, u_3 we may rewrite the equation

When $r(u_i, \mathbf{U}_j)$ only depends on $u_i - u_j$, we may rewrite the equation

The (unsolved) goal is to classify all solutions of the classical Yang-Baxter equation. Let $\mathfrak g$ be an arbitrary semisimple finite-dimensional Lie algebra over $\mathbb C$.

CYBE

A solution of the classical Yang-Baxter equation is a meromorphic function $r:U o \mathfrak{g}\otimes \mathfrak{g}$ where $U\subseteq \mathbb{C}^2$ is an open nbhd of the origin satisfying

$$[r^{12}(u_1, u_2), r^{13}(u_1, u_3)] + [r^{12}(u_1, u_2), r^{23}(u_2, u_3)] + [r^{13}(u_1, u_3), r^{23}(u_2, u_3)] = 0$$
When $r(u_1, u_2)$ and depends on u_1, u_2, u_3 may rewrite the equation

When $r(u_i, \mathbf{U}_j)$ only depends on $u_i - u_j$, we may rewrite the equation

CYBE (with conditions)

We look for meromorphic functions $r:U\to \mathfrak{g}\otimes \mathfrak{g}$ where $U\subseteq \mathbb{C}$ is an open nbhd of the origin satisfying $u=U_1-U_2$ $v=U_2-U_3$

$$[r^{12}(u), r^{13}(u+v)] + [r^{12}(u), r^{23}(v)] + [r^{13}(u+v), r^{23}(v)] = 0$$

Let κ be the killing form on \mathfrak{g} , $\{I_{\mu}\}$ the orthogonal basis of \mathfrak{g} wrt κ , and $\Omega = \sum_{\mu} I_{\mu} \otimes I_{\mu}$ the Casimir element.

Let κ be the killing form on \mathfrak{g} , $\{I_{\mu}\}$ the orthogonal basis of \mathfrak{g} wrt κ , and $\Omega = \sum_{\mu} I_{\mu} \otimes I_{\mu}$ the Casimir element. Let $\varphi : \mathfrak{g} \otimes \mathfrak{g} \to \operatorname{End}(\mathfrak{g})$ be the bilinear map $\varphi(a \otimes b)(x) = \kappa(b,x)a$.

Definition

A tensor $t \in \mathfrak{g} \otimes \mathfrak{g}$ is **nondegenerate** if $\det(\varphi(t)) \neq 0$. A meromorphic function $r: U \to \mathfrak{g} \otimes \mathfrak{g}$ is **nondegenerate** if there is some $u_0 \in U$ such that $r(u_0)$ is nondegenerate.

Let κ be the killing form on \mathfrak{g} , $\{I_{\mu}\}$ the orthogonal basis of \mathfrak{g} wrt κ , and $\Omega = \sum_{\mu} I_{\mu} \otimes I_{\mu}$ the Casimir element. Let $\varphi : \mathfrak{g} \otimes \mathfrak{g} \to \operatorname{End}(\mathfrak{g})$ be the bilinear map $\varphi(a \otimes b)(x) = \kappa(b,x)a$.

Definition

A tensor $t \in \mathfrak{g} \otimes \mathfrak{g}$ is **nondegenerate** if $\det(\varphi(t)) \neq 0$. A meromorphic function $r: U \to \mathfrak{g} \otimes \mathfrak{g}$ is **nondegenerate** if there is some $u_0 \in U$ such that $r(u_0)$ is nondegenerate.

From now we restrict our attention to simple Lie algebras.

Let κ be the killing form on \mathfrak{g} , $\{I_{\mu}\}$ the orthogonal basis of \mathfrak{g} wrt κ , and $\Omega = \sum_{\mu} I_{\mu} \otimes I_{\mu}$ the Casimir element. Let $\varphi : \mathfrak{g} \otimes \mathfrak{g} \to \operatorname{End}(\mathfrak{g})$ be the bilinear map $\varphi(a \otimes b)(x) = \kappa(b,x)a$.

Definition

A tensor $t \in \mathfrak{g} \otimes \mathfrak{g}$ is **nondegenerate** if $\det(\varphi(t)) \neq 0$. A meromorphic function $r: U \to \mathfrak{g} \otimes \mathfrak{g}$ is **nondegenerate** if there is some $u_0 \in U$ such that $r(u_0)$ is nondegenerate.

From now we restrict our attention to simple Lie algebras.

Theorem (Equivalence of nondegeneracy)

The following statements are equivalent for a solution r of the CYBE:

- The solution r is nondegenerate,
- The function r has at least one pole in U and there are no proper Lie subalgebras $\mathfrak a$ of $\mathfrak g$ such that $r(u) \in \mathfrak a \otimes \mathfrak a$ for any u.
- lacktriangle The function has a pole of order 1 at 0 with residue $\lambda\Omega,\lambda\in\mathbb{C}^{\times}$.

Proof.

Step 1: If r is nondegenerate and holomorphic, then one could show that r(0) would be a constant nondegenerate solution (which does not exist).

Proof.

Step 1: If r is nondegenerate and holomorphic, then one could show that r(0) would be a constant nondegenerate solution (which does not exist). Step 2: If an $\mathfrak a$ of such exists then at all u where r is holomorphic, we have $\operatorname{im}(\varphi(r(u))) \subseteq \mathfrak a$, which means r(u) is nondegenerate if and only if $\mathfrak a$ is $\mathfrak g$. But r is nondegenerate so we are done (i \Longrightarrow ii).

Proof.

Step 1: If r is nondegenerate and holomorphic, then one could show that r(0) would be a constant nondegenerate solution (which does not exist). Step 2: If an $\mathfrak a$ of such exists then at all u where r is holomorphic, we have $\operatorname{im}(\varphi(r(u)))\subseteq \mathfrak a$, which means r(u) is nondegenerate if and only if $\mathfrak a$ is $\mathfrak g$. But r is nondegenerate so we are done (i \Longrightarrow ii).

Step 3: The idea is to establish some Lie bracket relations between r and the residue of an arbitrary pole using the CYBE (taking limits). Then show that the image of $\varphi(\text{residue})$ is an ideal and thus $\mathfrak g$ as $\mathfrak g$ is simple, which means θ is nondegenerate. The computation of the order of the pole is difficult and omitted. To compute the residue one can define a subalgebra using $\varphi(\theta)$ and show that, via Schur's lemma, $\varphi(\theta)$ must be $\lambda \operatorname{id}$ to get $\mathfrak g = \mathfrak g$. By the definition of φ we see that $\theta = \lambda \Omega$ (ii \Longrightarrow iii).

res r(u)

Proof.

Step 1: If r is nondegenerate and holomorphic, then one could show that r(0) would be a constant nondegenerate solution (which does not exist). Step 2: If an $\mathfrak a$ of such exists then at all u where r is holomorphic, we have $\operatorname{im}(\varphi(r(u)))\subseteq \mathfrak a$, which means r(u) is nondegenerate if and only if $\mathfrak a$ is $\mathfrak g$. But r is nondegenerate so we are done ($i\Longrightarrow ii$).

Step 3: The idea is to establish some Lie bracket relations between r and the residue of an arbitrary pole using the CYBE (taking limits). Then show that the image of $\varphi(\text{residue})$ is an ideal and thus $\mathfrak g$ as $\mathfrak g$ is simple, which means θ is nondegenerate. The computation of the order of the pole is difficult and omitted. To compute the residue one can define a subalgebra using $\varphi(\theta)$ and show that, via Schur's lemma, $\varphi(\theta)$ must be $\lambda \operatorname{id}$ to get $\mathfrak a = \mathfrak g$. By the definition of φ we see that $\theta = \lambda \Omega$ (ii \Longrightarrow iii). Step 4: Take the limit $\lim_{t \to 0} u \varphi(r(u))$ when $u \to 0$ and use the linearity of φ to get $\lambda \operatorname{id}$. Then $\lim_{t \to 0} \det(u \varphi(r(u)))$ is nonzero, meaning $\det(\varphi(r(u)))$ is not zero around 0.

Lemma

A nondegenerate solution is unitary $r(u) + r^{21}(-u) = 0$. $f^{21} = 6 \circ f$

Lemma

A nondegenerate solution is unitary $r(u) + r^{21}(-u) = 0$.

Proof.

Write $CYBE(u_1, u_2, u_3)$ as the sum

$$[r^{12}(u_{12}), r^{13}(u_{13})] + [r^{12}(u_{12}), r^{23}(u_{23})] + [r^{13}(u_{13}), r^{23}(u_{23})] \\$$

where $u_{ij} = u_i - u_j$.

Lemma

A nondegenerate solution is unitary $r(u) + r^{21}(-u) = 0$.

Proof.

Write $CYBE(u_1, u_2, u_3)$ as the sum

$$[r^{12}(u_{12}), r^{13}(u_{13})] + [r^{12}(u_{12}), r^{23}(u_{23})] + [r^{13}(u_{13}), r^{23}(u_{23})] \\$$

where $u_{ij}=u_i-u_j$. The CYBE says $CYBE(u_1,u_2,u_3)=0$. Now we may switch without changing the equality u_1,u_2 and the first two components of each r^{ij} . This gives us $CYBE(u_2,u_1,u_3)^{213}=0$. Summing the two equalities up we get

$$[r^{12}(u_{12}) + r^{21}(u_{21}), r^{13}(u_{13}) + r^{23}(u_{23})] = 0$$

Lemma

A nondegenerate solution is unitary $r(u) + r^{21}(-u) = 0$.

Proof.

Write $CYBE(u_1, u_2, u_3)$ as the sum

$$[r^{12}(u_{12}), r^{13}(u_{13})] + [r^{12}(u_{12}), r^{23}(u_{23})] + [r^{13}(u_{13}), r^{23}(u_{23})]$$

where $u_{ij}=u_i-u_j$. The CYBE says $CYBE(u_1,u_2,u_3)=0$. Now we may switch without changing the equality u_1,u_2 and the first two components of each r^{ij} . This gives us $CYBE(u_2,u_1,u_3)^{213}=0$. Summing the two equalities up we get

Summing the two equalities up we get $[r^{12}(u_{12})+r^{21}(u_{21}),r^{13}(u_{13})+r^{23}(u_{23})]=0 \text{ Multiply the expression by } u_{23}. \text{ Let } u_3\to u_2 \text{ and use the residue of } r\text{, we get } [r^{12}(u_{12})+r^{213}(u_{21}),\Omega^{23}]=0. \text{ But } \Omega \text{ is nondegenerate so we must have } r^{12}(u_{12})+r^{213}(u_{21})=0 \text{ meaning it's unitary.}$

Constant CYBE

Let ${\mathfrak g}$ be a simple Lie algebra. A **constant solution** of the CYBE is some $r\in {\mathfrak g}\otimes {\mathfrak g}$ such that

$$[r^{12}, r^{13}] + [r^{12}, r^{23}] + [r^{13}, r^{23}] = 0$$

Constant CYBE

Let ${\mathfrak g}$ be a simple Lie algebra. A **constant solution** of the CYBE is some $r\in{\mathfrak g}\otimes{\mathfrak g}$ such that

$$[r^{12}, r^{13}] + [r^{12}, r^{23}] + [r^{13}, r^{23}] = 0$$

Fix a Cartan subalgebra $\mathfrak h$ and a Borel subalgebra $\mathfrak b$ of $\mathfrak g$ so that we may decompose $\mathfrak g$ into $\mathfrak n^- \oplus \mathfrak h \oplus \mathfrak n^+$. Let Γ be the set of simple roots of $\mathfrak g$ and $e_{\alpha}, f_{\alpha}, h_{\alpha}$ be the Chevalley generators.

Constant CYBE

Let $\mathfrak g$ be a simple Lie algebra. A **constant solution** of the CYBE is some $r\in\mathfrak g\otimes\mathfrak g$ such that

$$[r^{12}, r^{13}] + [r^{12}, r^{23}] + [r^{13}, r^{23}] = 0$$

Fix a Cartan subalgebra $\mathfrak h$ and a Borel subalgebra $\mathfrak b$ of $\mathfrak g$ so that we may decompose $\mathfrak g$ into $\mathfrak n^- \oplus \mathfrak h \oplus \mathfrak n^+$. Let Γ be the set of simple roots of $\mathfrak g$ and $e_{\alpha}, f_{\alpha}, h_{\alpha}$ be the Chevalley generators.

Definition

A **Belavin-Drinfeld triple** is a triple (Γ_1, Γ_2, T) where Γ_1, Γ_2 are subsets of Γ and T a bijection preserving the bilinear form on roots such that for all $\alpha \in \Gamma_1$, there exists some k>0 such that $T^k(\alpha) \in \Gamma_1 \setminus \Gamma_1$. We say $\alpha \prec \beta$ if there exists k>0 such that $T^k(\alpha)=\beta$.

For any $x \in \mathfrak{g} \otimes \mathfrak{g}$, write x_0 for its components in $\mathfrak{h} \otimes \mathfrak{h}$.

Theorem (Belavin-Drinfeld classification of constant r-matrices)

Let
$$r_0 \in \mathfrak{h} \otimes \mathfrak{h}$$
 satisfy

satisfy
$$r_0+r_0^{21}=\Omega_0 \quad \boxed{\left(\lceil , \rceil , \rceil , \rceil}: \text{discrete}$$
 : Continuous

Then

$$r = r_0 + \sum_{\alpha>0} e_{-\alpha} \otimes e_\alpha + \sum_{0<\alpha\prec\beta} e_{-\alpha} \wedge e_\beta$$
 where $x \wedge y = x \otimes y - y \otimes x$ is a solution to the CYBE. Furthermore, any constant solution \tilde{r} is equivalent to an r -matrix of this form in the sense

that there exists a $\psi \in \operatorname{Aut} \mathfrak{g}$ such that $\tilde{r} = (\psi \otimes \psi)(r)$.

Proof.

Recall the map φ and define $f=\varphi(r)$, i.e., $r=(f\otimes \mathrm{id})(\Omega).$

Proof.

Recall the map φ and define $f = \varphi(r)$, i.e., $r = (f \otimes id)(\Omega)$.

Step 1: We first prove that the CYBE and the Ω_0 condition are equivalent

to, respectively,

$$[f(x), f(y)] = f([x, f(y)] - [f^*(x), y]), f + f^* = 1$$

where f^* is the adjoint of f wrt to the Killing form.

Proof.

Recall the map φ and define $f = \varphi(r)$, i.e., $r = (f \otimes id)(\Omega)$.

Step 1: We first prove that the CYBE and the Ω_0 condition are equivalent to, respectively,

$$[f(x), f(y)] = f([x, f(y)] - [f^*(x), y]), f + f^* = 1$$

where f^* is the adjoint of f wrt to the Killing form.

Step 2: We define the Cayley transform of f as the map $\theta: \operatorname{im}(f-1)/\ker f \to \operatorname{im} f/\ker(f-1)$ given by

$$\theta: \operatorname{im}(f-1)/\ker f \to \operatorname{im} f/\ker(f-1)$$
 given by $\theta: \frac{C_2}{\zeta_2}$

$$\theta: \frac{9}{f-1} \qquad (f-1)(w) + \ker f \mapsto f(w) + \ker(f-1)$$

Then show that $\ker f = \operatorname{im}(f-1)^{\perp}$, $\ker(f-1) = \operatorname{im} f^{\perp}$ and the map θ is orthogonal. Furthermore, f satisfies the two equalities iff im f, im(f-1)are Lie and θ is an iso. Write $C_1 = \operatorname{im} f$ and $C_2 = \operatorname{im} (f - 1)$.

Proof.

Step 3: Let L be a subset of simple roots, we define

$$\mathfrak{h}_L = igoplus_{lpha \in L} \mathfrak{h}_lpha, \mathfrak{g}_L = igoplus_{lpha \in \mathbb{Z}L} \mathfrak{g}_lpha \oplus \mathfrak{h}_L, \mathfrak{n}_L^\pm = igoplus_{lpha > 0
otin \mathbb{Z}L} \mathfrak{g}_{\pm lpha}$$

Write $\mathfrak{p}_L^\pm=\mathfrak{g}_L\oplus\mathfrak{n}_L^\pm$. It can be shown that $(\mathfrak{p}_L^\pm\oplus V)^\perp\subseteq\mathfrak{p}_L^\pm\oplus V$. Now we define $C_1=\mathfrak{p}_{\Gamma_1}^++V_1$ and $C_2=\mathfrak{p}_{\Gamma_2}^-+V_2$ for any $\Gamma_i\subseteq\Gamma$ and some $V_1,V_2\subseteq\mathfrak{h}$. The simplest iso $\theta:C_1/C_1^\perp\to C_2/C_2^\perp$ can be induced by a Killing form preserving bijection $T:\Gamma_1\to\Gamma_2$:

$$\theta(X_{\alpha}) = X_{T(\alpha)}, X = e, f, h$$

Proof.

Step 3: Let L be a subset of simple roots, we define

$$\mathfrak{h}_L = \bigoplus_{lpha \in L} \mathfrak{h}_lpha, \mathfrak{g}_L = \bigoplus_{lpha \in \mathbb{Z}L} \mathfrak{g}_lpha \oplus \mathfrak{h}_L, \mathfrak{n}_L^\pm = \bigoplus_{lpha > 0
otin \mathbb{Z}L} \mathfrak{g}_{\pmlpha}$$

Write $\mathfrak{p}_L^\pm=\mathfrak{g}_L\oplus\mathfrak{n}_L^\pm$. It can be shown that $(\mathfrak{p}_L^\pm\oplus V)^\perp\subseteq\mathfrak{p}_L^\pm\oplus V$. Now we define $C_1=\mathfrak{p}_{\Gamma_1}^++V_1$ and $C_2=\mathfrak{p}_{\Gamma_2}^-+V_2$ for any $\Gamma_i\subseteq\Gamma$ and some $V_1,V_2\subseteq\mathfrak{h}$. The simplest iso $\theta:C_1/C_1^\perp\to C_2/C_2^\perp$ can be induced by a Killing form preserving bijection $T:\Gamma_1\to\Gamma_2$:

$$\theta(X_{\alpha}) = X_{T(\alpha)}, X = e, f, h$$

Step 4.1: The final step is complicated. We need to construct a map $f: \mathfrak{g} \to \mathfrak{g}$ whose Cayley transform is θ . This f is defined by parts $f_0: \mathfrak{h} \to \mathfrak{h}$ and $f_{\pm}: \mathfrak{n}_{\pm} \to \mathfrak{n}_{\pm}$.

Proof.

Step 4.2: In order for f to have the Cayley transform θ , we must have $f_{\bullet}+f_{\bullet}^*=1,\ f_{\pm}-1$ both invertible and $f_{\pm}/(f_{\pm}-1)=\psi^{\pm}$ where $\psi^{\pm}=\theta$ on \mathfrak{g}_{α} for $\alpha\in\mathbb{Z}^{\pm}\Gamma_{1}$ and zero otherwise. However, ψ^{+} is invertible if and only if for any $\alpha\in\Gamma_{1}$ there exists k>0 such that $T^{k}(\alpha)\in\Gamma_{2}\backslash\Gamma_{1}$ (Easy! Try this!).

Proof.

Step 4.2: In order for f to have the Cayley transform θ , we must have $f_{\bullet}+f_{\bullet}^*=1$, $f_{\pm}-1$ both invertible and $f_{\pm}/(f_{\pm}-1)=\psi^{\pm}$ where $\psi^{\pm}=\theta$ on \mathfrak{g}_{α} for $\alpha\in\mathbb{Z}^{\pm}\Gamma_{1}$ and zero otherwise. However, $\psi^{\pm}|_{\bullet}$ is invertible if and only if for any $\alpha\in\Gamma_{1}$ there exists k>0 such that $T^{k}(\alpha)\in\Gamma_{2}\backslash\Gamma_{1}$ (Easy! Try this!). Step 5: Let $(\Gamma_{1},\Gamma_{2},T)$ be a BD-triple, and choose some $r_{0}\in\mathfrak{h}\otimes\mathfrak{h}$ in the

Theorem (Belavin-Drinfeld classification)

Theorem (Belavin-Drinfeld classification)

Let $r:U\to\mathbb{C}\otimes\mathbb{C}$ be a nondegenerate meromorphic solution to the CYBE, then

r extends to the whole plane,

Theorem (Belavin-Drinfeld classification)

- r extends to the whole plane,
- lacktriangle The poles of r form a lattice Γ ,

Theorem (Belavin-Drinfeld classification)

- r extends to the whole plane,
- The poles of r form a lattice Γ ,
- $r(u) = \frac{\lambda\Omega}{u} + O(1)$ around 0,

Theorem (Belavin-Drinfeld classification)

- lacktriangledown r extends to the whole plane, $ilde{ imes}$
- The poles of r form a lattice Γ , $\boldsymbol{\times}$
- $r(u) + r^{21}(-u) = 0.$

Theorem (Belavin-Drinfeld classification)

- r extends to the whole plane,
- The poles of r form a lattice Γ ,
- $r(u) = \frac{\lambda \Omega}{u} + O(1)$ around 0,
- $r(u) + r^{21}(-u) = 0.$

Furthermore, if $\Gamma=0$, r is equivalent to a rational function f in u; if $\Gamma\cong\mathbb{Z}$ (rank 1), r is equivalent to a trigonometric function $f(e^u)$; if $\Gamma\cong\mathbb{Z}^2$ then r is equivalent to an elliptic function. The equivalence is given by a meromorphic function $\varphi:U\to\operatorname{Aut}\mathfrak{g}$ such that $(\varphi(u)\otimes\varphi(v))r(u-v)$ is the desired form in u-v.

Lemma

For $u, v \in U$, r(u + v) is a rational function of r(u) and r(v).

Theorem (Weierstrass)

Let r be a meromorphic function such that there exists some rational function f with

$$r(u+v) = f(r(u), r(v))$$

Then r is rational, trigonometric or elliptic.

Lemma

For $u, v \in U$, r(u + v) is a rational function of r(u) and r(v).

Theorem (Weierstrass)

Let r be a meromorphic function such that there exists some rational function f with

$$r(u+v) = f(r(u), r(v))$$

Then r is rational, trigonometric or elliptic.

To understand the poles of r we need the following lemma

Lemma

For any pole z of r, there exists some $A_z \in \operatorname{Aut} \mathfrak{g}$ such that

$$r(u+z) = (A_z \otimes 1)r(u)$$

Remark

But then we have $\lim_{u\to 0} ur(u+z_1+z_2) = (A_{z_1}A_{z_2}\otimes 1)\lim_{u\to 0} ur(u)$, which means r has a pole at z_1+z_2 as well: Γ is a discrete subgroup of $\mathbb C$.

Remark

But then we have $\lim_{u\to 0}ur(u+z_1+z_2)=(A_{z_1}A_{z_2}\otimes 1)\lim_{u\to 0}ur(u)$, which means r has a pole at z_1+z_2 as well: Γ is a discrete subgroup of $\mathbb C$.

Now the image of \boldsymbol{r} is multi-dimensional, so we need the following generalization:

Theorem (Myberg)

Let $r:\mathbb{C}\to\mathbb{C}^n$ be a meromorphic function satisfying r(u+v)=f(r(u),r(v)) for some rational function f. Then there exists n>0, a qausiabelian function \tilde{r} and a vector $x\in\mathbb{C}^n$ such that $r(u)=\tilde{r}(u\cdot x)$, and $\tilde{r}(x+y)=f(\tilde{r}(x),\tilde{r}(y))$.

Remark

But then we have $\lim_{u\to 0} ur(u+z_1+z_2)=(A_{z_1}A_{z_2}\otimes 1)\lim_{u\to 0} ur(u)$, which means r has a pole at z_1+z_2 as well: Γ is a discrete subgroup of $\mathbb C$.

Now the image of r is multi-dimensional, so we need the following generalization: $f(u + x_i) = f(u)$

Theorem (Myberg)

Let $r:\mathbb{C} \to \mathbb{C}^n$ be a meromorphic function satisfying r(u+v)=f(r(u),r(v)) for some rational function f. Then there exists n>0, a qausiabelian function \tilde{r} and a vector $x\in\mathbb{C}^n$ such that $r(u)=\tilde{r}(u\cdot x)$, and $\tilde{r}(x+y)=f(\tilde{r}(x),\tilde{r}(y))$.

By qausiabelian we mean there is a coordinate system (z_1,\ldots,z_n) , integers p+q+r=n and vectors x_1,\ldots,x_{2r} such that if z_{p+q+1},\ldots,z_n are fixed, the function is rational in terms of $z_1,\ldots,z_p,e^{z_{p+1}},\ldots,e^{z_{p+q}}$ and the vectors are linearly independent periods of the function.

Proof.

Elliptic case: It is relatively easier when Γ has rank 2. Let z_1, z_2 be two LI generators of the lattice. It suffices to show that r has periods nz_1, mz_2 for some n, m > 0, i.e., $A_{z_1}^n = A_{z_2}^m = \Lambda$

Proof.

Elliptic case: It is relatively easier when Γ has rank 2. Let z_1,z_2 be two LI generators of the lattice. It suffices to show that r has periods nz_1,mz_2 for some n,m>0, i.e., $A^n_{z_1}=A^m_{z_2}$. But the group generated by A_{z_1},A_{z_2} cannot be infinite in $\operatorname{Aut}\mathfrak{g}$, otherwise there is some $a\in\mathfrak{g}$ such that ha=a for all $h\in\langle A_{z_1},A_{z_2}\rangle$ (fact in algebraic groups). Then the function $(a^\vee\otimes 1)r$ is Γ -periodic with all poles simple in Γ , which is impossible by the residue theorem.

Proof.

Elliptic case: It is relatively easier when Γ has rank 2. Let z_1, z_2 be two LI generators of the lattice. It suffices to show that r has periods nz_1, mz_2 for some n, m>0, i.e., $A^n_{z_1}=A^m_{z_2}$. But the group generated by A_{z_1}, A_{z_2} cannot be infinite in $\operatorname{Aut}\mathfrak{g}$, otherwise there is some $a\in\mathfrak{g}$ such that ha=a for all $h\in\langle A_{z_1},A_{z_2}\rangle$ (fact in algebraic groups). Then the function $(a^\vee\otimes 1)r$ is Γ -periodic with all poles simple in Γ , which is impossible by the residue theorem.

An interesting result in Lie algebra is that if φ_1, φ_2 are two automorphisms of $\mathfrak g$ of finite order, then $\mathfrak g \cong \mathfrak{sl}_2$.

Proof.

Elliptic case: It is relatively easier when Γ has rank 2. Let z_1,z_2 be two LI generators of the lattice. It suffices to show that r has periods nz_1,mz_2 for some n,m>0, i.e., $A^n_{z_1}=A^m_{z_2}$. But the group generated by A_{z_1},A_{z_2} cannot be infinite in $\operatorname{Aut}\mathfrak{g}$, otherwise there is some $a\in\mathfrak{g}$ such that ha=a for all $h\in\langle A_{z_1},A_{z_2}\rangle$ (fact in algebraic groups). Then the function $(a^\vee\otimes 1)r$ is Γ -periodic with all poles simple in Γ , which is impossible by the residue theorem.

An interesting result in Lie algebra is that if φ_1, φ_2 are two automorphisms of $\mathfrak g$ of finite order, then $\mathfrak g \cong \mathfrak{sl}_{\pmb{\beta}}$ Thus elliptic solutions only exist when $\mathfrak g \cong \mathfrak{sl}_{\pmb{\beta}}$

Proof.

Other cases: The trigonometric and rational cases require the Myberg theorem. The proof is not complicated, but quite technical.

Some examples

Example

The functions $r(u)=\Omega/u$ (Yang's r-matrix) and $r(u)=\Omega/u+r_0$ for some skew-symmetric constant r-matrix r_0 are clearly rational solutions.

Some examples

Example

The functions $r(u) = \Omega/u$ (Yang's r-matrix) and $r(u) = \Omega/u + r_0$ for some skew-symmetric constant r-matrix r_0 are clearly rational solutions.

Example

Let r_0 be a constant solution of the CYBE such that $r_0+r_0^{21}=\Omega$. Then the Baxterization of r_0 , defined by

$$rac{r_0 + e^u r_0^{21}}{e^u - 1}$$

is a trigonometric solution to the CYBE.

Explicit formulas of trigonometric solutions

Explicit formulas of trigonometric solutions

Explicit formulas of trigonometric solutions