UNIVERSIT DE YAOUNDE I

ECOLE NAT ONALE SUPERIEURE POLYTECHNIQUE DEPARTEMENT DE MATHEMATIQUES ET SCIENCES PHYSIQUES

EPREUVE DE PROBABILITES-STATISTIQUE

Examen final Cycle Ingénieur II Session Normale 2017 Examinateur : Pr TEWA Jean Jules Durce: 031100- Janvier 2017

Exercice I (4pts) : Soit un couple de variables aléatoires discrètes dont la loi est définie dans la tableau

YJY	1	2	3	1
1	0,08	0.04	0.16	0,12
2	0.04	0.02	0,08	0,06
3	0.08	0,04	0,16	0,12

1) Déterminer les lois marginales de ce couple.

2) Etudier l'indépendance des variables aléatoires X et Y.

3) Calculer la covariance du couple (X, Y).

4) Déterminer les lois conditionnelles de X sachant que Y = 2, et de Y sachant que $X \in \{1,3\}$.

5) Déterminer la loi de la variable nléatoire Y/X (Ysachant X) et en déduire E(Y/X).

6) Calculer E(E(Y/X)) of comparer cette valeur à E(Y).

Exercice 2 (5pts): Une time contient a boules rouges et b boules blanches $(a \ge 1, b \ge 1)$. A chaque tirage on choisit une boule au hasard dans l'urne. La boule est ensuite remise dans l'urne et on ajoule une boule de la même couleur. On note R_n l'événement « tirer une boule rouge au n^{teme} tirage » et B_n l'événement « tirer une boule blanche au $n^{ième}$ tirage », avec $n \ge 1$. On considère les variables aléatoires X_n définies par $X_n = 1$ si R_n est réalisé et $X_n = 0$ si B_n est réalisé.

1) Quelle est la loi de X_1 ? Calculer son espérance mathématique.

2) Calculer $P_{R_1}(R_2)$, $P_{B_1}(R_2)$ et en déduire la loi de X_2 .

3) On pose $S_n = X_1 + X_2 + \cdots + X_n$ pour $n \ge 1$.

a) Definir l'ensemble S_n des valeurs que peut prendre S_n . Si $S_n=k$, quel est le contenu de l'ume juste après le n'eme tirage?

b) En déduire $P_{A_k}(R_{n+1})$ où A_k est l'événement $\{S_n = k\}$.

c) Determiner la relation entre $P(R_{n+1})$ et $P(X_{n+1} = 1)$, entre $P(A_k)$ et $P(S_n = k)$. En déduire l'expression de $P(X_{n+1} = 1)$ en fonction de a, b, n et $E(S_n)$.

4) On considère l'hypothèse de récurrence suivante :

 P_n : les variables aléatoires X_1, X_2, \dots, X_n ont la même loi que X_1

a) Si P_n est vrai calculer $E(S_n)$

b) Montrer que P_n est vrai pour tout $n \ge 1$.

Exercice 3 (11pts): Dans certains accidents de la route, les chocs peuvent être latéraux ou frontaux: ces deux états sont résumés par la variable aléatoire X à deux valeurs 0 et 1. Le choc latéral correspond à X = 0 et le choc frontal à X=1. La gravité de l'accident est décrite par la variable aléatoire Y à trois valeurs 1, 2 et 3. Une enquête réalisée sur un grand nombre d'accidents conduit au tableau ci-contre donnant la loi de probabilité conjointe du couple (X,Y):

			9		
[.	Ι	10	. . .		1.1
1	Y/X	1	1		2
1	1	0,10	0,15]	-
1	2	0,08	0,25] - [3)
	3	0,02	0,40		

- Calculer les probabilités suivantes : $P(X = 0, Y \ge 2), P_{Y \ge 2}(X = 0)$
- 2) Calculer les lois de probabilité marginales de X et Y, ainsi que leurs espérances mathématiques et leurs variances.
-) Étudier l'indépendance des variables aléatoires X et Y.
- 4) Calculer les probabilités suivantes : $P(X = 0, Y \ge 2), P_{Y \ge 2}(X = 0)$
- 5) Calculer les lois de probabilité marginales de X et Y, ainsi que leurs espérances et leurs variances.

6) Étudier l'indépendance des variables aléatoires X et Y.

- 7) Établir la loi de probabilité de la variable aléatoire Z = XY et calculer E(Z) et Var(Z).
- 8) Calculer la covariance Cov(X, Y) et le coefficient de corrélation linéaire ρ . Que peut-on conclure?

9) Calculer l'espérance mathématique et la variance de la variable aléatoire T = X + Y.

10) On définit une fonction de gravité G = aX + bY, où a = 0.2 et b = 0.8. Calculer E(G) et V or (E).