PHIL 379 Assignment 2

- 1. We can show this in two different but equally applicable ways:
- i) Any two place function f can be related with a language $L_f = \{ (x,y) \mid y = f(x,y) \}$. Then we can discuss the decidability of L_f to show non Turing computability of function f.

Consider the language $T_D = \{ \langle M \rangle \mid \langle M \rangle \notin L(M) \}$ as a counter example. Assume T_D is decidable and let M_D be its decider. Then consider the case where M_D accepts $\langle M_D \rangle$. But then we have $\langle M_D \rangle \in L(M_D)$ so $\langle M \rangle \notin T_D$ which contradicts with our defined language.

This shows that our counter example is undecidable and so the two place function f relating to T_D is non Turing computable.

ii) We can also give a more direct example in the form of a diagonal function *d* with an added second 'dummy' argument.

Let f_1 , f_2 , f_3 , ... f_n be a listing of all 2 argument Turing computable functions. Let d be a 2 place function (and assume it is Turing computable) such that d(n,y) = 1 if the n^{th} function in the list of Turing computable functions is defined and returns 1, otherwise d(n,y) = 0. This can be also said in the following way

$$d(n,y) = \begin{cases} 1 & \text{if } f_n(n,y) \text{ is defined and } = 1\\ 0 & \text{otherwise} \end{cases}$$

Assume d is the mth Turing computable function and somewhere on the listing. Then for each positive integer n, either d(n,y) and $f_m(n,y)$ are both defined and equal or neither of them is defined. But we have

$$f_m(m,y) = d(m,y) =$$

$$\begin{cases}
1 & \text{if } f_m(m,y) \text{ is defined and } = 1 \\
0 & \text{otherwise}
\end{cases}$$

which leads to the contradiction: either $f_m(m,y)$ is undefined in which case n=m tells us that it is defined and has a value of 1. Or $f_m(m,y)$ is defined and has a value of != 1 in which case n=m tells us it has value of 1. Since we have shown a contradiction from the assumption that d does appear somewhere in the listing, the supposition is false and so d is not a two place Turing computable function.

2. The following flowchart represents our Turing machine1;

The set of configurations it follows are:

11111	t = 0	1 1 0 ₅ 1 1 1 1	t = 7	11011107	t = 14
021 1 1 1	t = 1	1 1 0 1 ₆ 1 1 1	t = 8	1 1 0 1 1 180	t = 15
030 1 1 1 1	t = 2	1 1 0 1 1 ₆ 1 1	t = 9	1 1 0 1 1 ₉ 1	t = 16
130 1 1 1	t = 3	1 1 0 1 1 1 ₆ 1	t = 10	1 1 0 1 ₉ 1 1	t = 17
04101111	t = 4	1 1 0 1 1 1 1 ₆	t = 11	1 1 0 ₉ 1 1 1	t = 18
14101111	t = 5	110111106	t = 12	1 1 ₁₀ 0 1 1 1	t = 19
1 150 1 1 1 1	t = 6	1 1 0 1 1 1 17	t = 13	1 ₁₀ 1 0 1 1 1	t = 20
				0 ₁₀ 1 1 0 1 1 1	t = 21
				0 121 0 1 1 1	t = 22

So at time 22, we have configuration 0 121 0 1 1 1

¹ Boolos, G. S., Burgess, J. P., & Jeffrey, R. C. (2010). *Computability and logic*. pg 28. Cambridge: Cambridge Univ. Press.

3. The following flowchart represents our Turing machine2;

² Boolos, G. S., Burgess, J. P., & Jeffrey, R. C. (2010). Computability and logic. pg 30. Cambridge: Cambridge Univ. Press.

³ Boolos, G. S., Burgess, J. P., & Jeffrey, R. C. (2010). Computability and logic. pg 32. Cambridge: Cambridge Univ. Press.

4. The following flowchart represents our Turing machine⁴

which essentially has the task of counting the amount of 1s in a given block of unbroken 1s. To end the count, the machine must encounter either a 0 if the initial amount of 1s in the block is even, or encounter a 0 followed by a 1 if the initial amount of 1s is odd. I.e

Case 1: tape fed is 1111. The Turing machine stops at 01111 encountering a leftmost 0, given that the unbroken block of 1s contained an even amount (4) 1s.

Case 2: tape fed is 11111. The Turing machine stops at 1011111 encountering leftmost 0 followed by 1, given that the unbroken block of 1s contained an odd amount (5) 1s.

To show that there is a Turing machine that, if it computes a two-place function g(x,y), then there must also be a machine that computes the one-place function f, where f(x) = g(x,x), we can start by supposing that one such machine exists initially.

Suppose there exists a Turing machine T_1 that computes a two-place function g(x,y). It follows that for a given x = y, the two place function g(x,x) is computable, given our supposition. Then, the two place function g(x,y), at a given x = y, is effectively a function of one argument when it is g(x,x). We can let this function be represented by a one-place function f(x) = g(x,x). Since g(x,x) is computable, this in turn means the function f(x) is indeed computable as well by some Turing machine T_2 .

⁴ Boolos, G. S., Burgess, J. P., & Jeffrey, R. C. (2010). Computability and logic. pg 29. Cambridge: Cambridge Univ. Press.