I pleage on my honor that I have neither given nor received unauthorized assistance in this exam. I have not done anything that would put me at an unfair advantageous position and equally I have not done anything that would put my classmates at an unfair disadvantageous position. I have refrained from any kind of cheating not only because of my respect for my classmates and for my instructor, but also for out of respect for myself.

Vigit Gunsur Elmacioglu 04.02.2021

() James Y

Question 1

my''(t) = mg - ky(t) - cy'(t)I will divide this equation into 2 first order DE. y'(t) = 2(t)

m = 4k9z'(t) = 9 - k y(t) - c z(t) where k = 2N/mc = 0,4 N3/m

 $y'(t) = \pm(t)$ $y'(t) = \pm(t)$ initial ronditions y(0) = 0 y'(0) = 7 y'(0) = 7=> y'(t) = 2(t)

at t=0 y=0, we want position at t=2s and h=1s.

For runge-kutta we need functions; for i=1:2 21 = 2'(y(i), 2(i)); ----) for is1 21=9,81; i=7 21=6,6835

y2 = y'(z(i)+h/2.21) - for i=1 y2=4,905; i=2 y2=11,9006 $=2^{1}(y(i)+\frac{1}{2}\cdot y)$, $=2(i)+\frac{1}{2}\cdot y$)=) for i=1 =2=9,3195; i=2 =2=4,2096

y3 = y'(z(i) + h/2.2?) for ist y3 = 4,6597, i=2 y3 = 10,663623 = 2'(y(i)+1/2,y2, 2(i)+1/2,22) for i=1 23=8,1178/1=223=3,4979

Question 1 continued

Question 1 continued

$$y4 = y'(z(i) + h.z3)$$
 $y4 = y'(z(i) + h.z3)$
 $y4 = y'(z(i) + h.z3)$

$$y(i+1) = y(i) + \frac{1}{6} (y1 + 2.y2 + 2.y3 + y4)$$

 $z(i+1) = z(i) + \frac{1}{6} (z1 + 2.z2 + 2.z3 + z4)$

to show better

to show		
1000	1=1	i = 2
91	0	8,5588
21	9,81	6,6835
	4,905	11,3006
32	9,3195	4,2096
	4,6597	10,6636
y 3 72 3	8,1178	3,4979
23	8,1178	12,0567
36	6,6683	1,0013
54		

$$y(2) = 15,4985$$

 $z(2) = 12,4089$

a)
$$2x''(t) - 5x'(t) - 3x(t) = 45.e^{2t}$$

$$(y(t) = x'(t))$$

$$x''(t) = 5x'(t) + 3x(t) + 45e^{2t}$$

$$x''(t) = 4y(t) + 3x(t) + 45e^{2t}$$

$$x'(t) = y(t)$$

$$x'(t) = y(t)$$

which conditions $x(0) = 2$, $x'(0) = 1$

Question 3

To find a curve fit, at first I have to make some variable change.

variable change.

$$y = \frac{x}{A + Bx}$$
 divide both sides by x and take reciprocal

$$\frac{y}{A+Bx}$$
 $\frac{X}{y} = A+Bx$

I will fit given data to this form