Logic and Language. Quiz Week 1

1 Encoding MCFG in ILL_→

1.1 Recap

Multiple Context-Free Grammars (MCFG) form a natural generalization of CFG: whereas in a CFG, non-terminals range over strings, in a MCFG, they range over tuples of strings. In the rules of a k-MCFG, the maximum number of elements of the tuples is k. An ordinary CFG, from this perspective, is simply a 1-MCFG.

As an example, consider the following 2-MCFG for $\{a^nb^nc^nd^n \mid n \geq 0\}$. We write the rules in a clausal form reminiscent of logic programming. Non-terminals are predicate symbols; their arity is the dimension of the tuple they range over. For this grammar we have S/1 and A/2.

$$S(xy) \leftarrow A(x,y).$$

$$A(\mathsf{a}\,x\,\mathsf{b},\mathsf{c}\,y\,\mathsf{d}) \leftarrow A(x,y).$$

$$A(\epsilon,\epsilon).$$

We have seen how to encode such a grammar by means of a compositional translation from an Abstract Syntax source to the string language generated. The atomic types of the source signature Σ_0 are the non-terminals: $A_0 = \{S, A\}$. For each rule of the grammar, there is a source constant, with a linear implicative type read off from the rewriting rule:

$$\begin{array}{ccc} c_0 & :: & A \multimap S \\ c_1 & :: & A \multimap A \\ c_2 & :: & A \end{array}$$

The target signature Σ_1 has a single atomic type $\mathcal{A}_1 = \{*\}$. Strings are modelled as functions of type $* \multimap *$, which we abbreviate as σ . The constants of the target signature are the terminal symbols $\mathsf{a}, \mathsf{b}, \mathsf{c}, \mathsf{d}$ of type σ .

To model an *n*-tuple with elements of type A_1, \ldots, A_n in ILL $_{\multimap}$, we can use a higher-order function of type $(A_1 \multimap \cdots \multimap A_n \multimap B) \multimap B$. Concretely, for the string tuples of our grammar, this means $(\sigma \multimap \sigma \multimap \sigma) \multimap \sigma$, which we abbreviate as $\sigma^{(2)}$.

We are ready now to specify the interpretation. The function η translates the atomic types of Σ_0 : $\eta(S) = \sigma$, $\eta(A) = \sigma^{(2)}$. The function θ translates the source constants. We write (infix) + as an abbreviation for function composition (=string concatenation) and ε for $\lambda i.i$ (identity function, encoding the empty string).

$$\begin{array}{lll} \theta(c_0) &=& \lambda q. (q \ \lambda x \lambda y. (x+y)) & :: & \sigma^{(2)} \multimap \sigma \\ \theta(c_1) &=& \lambda q \lambda f. (q \ \lambda x \lambda y. (f \ (\mathsf{a} + x + \mathsf{b}) \ (\mathsf{c} + y + \mathsf{d}))) & :: & \sigma^{(2)} \multimap \sigma^{(2)} \\ \theta(c_2) &=& \lambda f. (f \ \varepsilon \ \varepsilon) & :: & \sigma^{(2)} \end{array}$$

Below is a sample derivation for the abstract syntax term $(c_0 \ (c_1 \ (c_1 \ c_2)))$, and for its translation, which produces the (lambda term encoding the) string aabbccdd after β -reduction. Computation = proof reduction!

$$\frac{c_0}{A - \circ S} \frac{\frac{c_1}{A - \circ A} \frac{c_1}{A} \frac{c_2}{A}}{c_1 \ (c_1 \ c_2) : A} [- \circ E]}{\frac{c_0}{c_0 \ (c_1 \ (c_1 \ c_2)) : S} [- \circ]}$$

$$\widehat{\theta}(c_0\ (c_1\ (c_1\ c_2))) = \lambda i.(\mathsf{a}\ (\mathsf{b}\ (\mathsf{b}\ (\mathsf{c}\ (\mathsf{d}\ (\mathsf{d}\ i)))))))$$

The complexity fingerprint of this encoding is (2,4): the maximal order of the source types is 2 (no nested implications); the maximal order of the translation of atomic source types is 4 (A is mapped to $(\sigma \multimap \sigma \multimap \sigma) \multimap \sigma$, where σ itself is of order 2 (σ abbreviates * \multimap *).

1.2

Consider the languages below (with n, m > 0, so these languages do not contain the empty string):

 L_1 : $\{w^2 \mid w \in \{\mathsf{a},\mathsf{b}\}^+\}$, i.e. the copy language for non-empty words over alphabet $\{\mathsf{a},\mathsf{b}\}$ L_2 : $\{\mathsf{a}^n\mathsf{b}^n\mathsf{c}^n \mid n>0\}$ L_3 : $\{\mathsf{a}^n\mathsf{b}^m\mathsf{c}^n\mathsf{d}^m \mid n,m>0\}$

Assignment Work out the construction of §1.1 for these grammars:

- 1. write a 2-MCFG for L_1 – L_3
- 2. specify the corresponding ILL $_{-}$ source and target signatures, and the translations η (source atoms to target types) and θ (source constants to target terms)
- 3. derive a sample string for each of the languages, i.e. give a term of the abstract source language, and show how it produces the target string under the θ translation (and β -reduction):
 - L_1 : baabaa - L_2 : aabbcc - L_3 : abbcdd

Solutions For L_3 , we have $\eta(B) = \sigma^{(2)}$; for the other non-terminals, see §1.1.

(For L_3 you can also do with just A, 'growing' a,c at the front, and b,d at the back.)

Abstract syntax terms for the sample strings:

- (L_1) baabaa: c_0 $(c_2$ $(c_1$ $c_3))$
- (L_2) aabbcc: c_0 $(c_1$ $c_2)$
- (L_3) abbcdd: c_0 c_3 $(c_2$ $c_4)$

Remark The languages of this exercise are actually within the reach of a *subclass* of 2-MCFG: the *well-nested* 2-MCFG. The complexity type for that subclass is (2,3), which means you could give a simpler construction where the maximal order of the translation of atomic source types is 3 rather than 4. Concretely, the construction involves non-terminals interpreted as $\sigma \multimap \sigma$, functions from strings to strings. See (de Groote 2002, §6) on modelling Tree Adjoining Grammars.

1.3 Challenge

[This is not a hand-in exercise. If you can solve it by Dec 5, there will be a present for you!]

Let D^n be the language over an *n*-symbol alphabet, lexicographically ordered $a_1 < \cdots < a_n$, where words satisfy the following conditions:

- 1. each word contains an equal number of the n alphabet symbols
- 2. for every prefix p of a word, the number of a_i in $p \ge$ the number of a_{i+1} $(1 \le i \le n-1)$

 D^n generalizes the familiar language of balanced brackets, in which case you have an alphabet of size 2, say $\{a,b\}$, with 'opening bracket' a preceding 'closing bracket' b in the lexicographic ordering.

The conjecture (Makoto Kanazawa, p.c.) is that for $n \geq 2$, D^n is the language of a non-wellnested (n-1)-MCFG.

Give a 2-MCFG for D^3 , i.e. words over a 3-letter alphabet $\{a, b, c\}$ (with the usual lexicographic order) satisfying conditions (1) and (2) above. Give the ACG encoding of your MCFG for D^3 .

Reference M. Moortgat (2014), A note on multidimensional Dyck languages.