Example: helicid to caternial isometry

$$S = \text{helicid} \ \tau(\rho, t) = (\rho \cos t, \rho \sin t, t)$$
 $S = \text{catenoid} \ \mathcal{N}(2, \theta) = (\cosh z \cosh z \sinh z)$
 $\det \mathcal{N} = \ker \sin h \rho \qquad (\rho = \sinh z)$
 $\det \mathcal{N} = \det \mathcal{$

Apren

Recall from calculus for a sentace patch $\sigma(u', u^2)$ area is computed by integrating $dA := d\sigma_1 \times \sigma_2 d du' du^2$

In terms of the 1st found, from?

We write this as

dH= Jolet g dn'du2

examples

(1) cylinder $\sigma(z, \theta) = l\cos\theta$, $\sin\theta$, \pm) $de^2 = dz^2 \cdot d\theta^2$, $det g = l \Rightarrow dA = dz d\theta$

2) splene în cylindrical coordinates { r2+z2=1} $\Gamma(2, \theta) = \left(\sqrt{1-2^2} \cos \theta, \sqrt{1-2^2} \sinh \theta, 2\right)$ Checks det g = 1 dt = dz dt (same as for cylinder!)

(Archinedic argued that the map

preserves area) Carvature of Surfaces We start by measuring deviation from the tayent plane. In a coord patch, the tayout place represente a liver approximation $\nabla(u+\Delta u) \longrightarrow \nabla(u) + \nabla(\Delta u^{i}) \in \mathbb{R}^{3}$ $\text{let } d = \text{distance from } \nabla(u+\Delta u)$ to tangent planelet N= unit normal to TpS p= o(u) $\int_{M} d = \left[\sigma(u + \Delta u) - \sigma(u) \right] \cdot N$ Since of IN, In leading term is quadratic in Ay By Taylor exponsion, d= (Tis. N) Du Du' + O(Du's) define: the second for domental form is the family of quadratic forms represented in local courd's II := (vij. N) dai dui