

<u>Unit 2: Boundary v</u>	<u>alue p</u>	<u>oroblem</u>
---------------------------	---------------	----------------

Course > and PDEs

> Part A Homework 2 > 1. Lecture 4

1. Lecture 4

The following can be done after Lecture 4.

Please enter solutions in terms of π rather than numerical approximations to guarantee a correct grading. Simply type **pi** into the answer box and treat as any other variable, using * to denote multiplication, / to denote division, and \wedge to denote exponents.

4-1

15.0/15.0 points (graded)

For a fixed real number c, how many solutions to $\ddot{y}=cy$ satisfy the conditions $y\left(0\right)=0$ and $y\left(1\right)=1$?

◯ Zero.	
Exactly one.	

☐ Infinitely many.

igorup Either zero or one, depending on the value of c.

igcup Either zero or infinitely many, depending on the value of c.

 \bigcirc Either one or infinitely many, depending on the value of $\emph{c}.$

None of the above.

~

Solution:

Either zero or one, depending on the value of c.

Case 1: c>0. The general solution to $\ddot{y}=cy$ is $y=ae^{\sqrt{c}t}+be^{-\sqrt{c}t}$ The conditions amount to the linear system

$$a+b = 0$$
$$ae^{\sqrt{c}} + be^{-\sqrt{c}} = 1.$$

Since $\det \left(egin{array}{cc} 1 & 1 \ e^{\sqrt{c}} & e^{-\sqrt{c}} \end{array}
ight)
eq 0$, there is a unique solution.

Case 2: c=0. Then the general solution is a+bt, and the boundary conditions say

$$egin{array}{ll} a &= 0 \ a+b &= 1. \end{array}$$

which has a unique solution (a,b) = (0,1); so the unique y(t) is t.

Case 3: c<0. If we write $c=-\omega^2$ for some $\omega>0$, then the roots of the characteristic polynomial are $\pm i\omega$, and the general solution is $a\cos\omega t+b\sin\omega t$. The first boundary condition says a=0, so $v=b\sin\omega t$. The second boundary condition then says $b\sin\omega=1$. If $\sin\omega=0$ (i.e., if $\omega=n\pi$ for some positive integer n), there is no solution; if $\sin\omega\neq0$, there is a unique solution.

Conclusion: If $c=-(n\pi)^2$ for some positive integer n, there is no solution; otherwise there is exactly one solution.

Submit You have used 2 of 3 attempts

4-2

15.0/15.0 points (graded)

For a fixed real number c, how many solutions to $\ddot{y}=cy$ satisfy the conditions $y\left(0\right)=0$ and $y'\left(1\right)=0$?

O Zero.

Exactly one.

nfinitely many.

 \bigcirc Either zero or one, depending on the value of c.

 \bigcirc Either zero or infinitely many, depending on the value of c.

lacksquare Either one or infinitely many, depending on the value of c.

None of the above.

Solution:

Either one or infinitely many, depending on the value of c.

Case 1: c>0. The general solution to $\ddot{y}=cy$ is $y=ae^{\sqrt{c}t}+be^{-\sqrt{c}t}$ The conditions amount to the linear system

$$a+b = 0$$

$$a\sqrt{c}e^{\sqrt{c}}-b\sqrt{c}e^{-\sqrt{c}}~=~0.$$

The first equation says b=-a, so the second equation becomes

$$a\sqrt{c}e^{\sqrt{c}}+a\sqrt{c}e^{-\sqrt{c}}=0$$
 $e^{\sqrt{c}}+e^{-\sqrt{c}}=0$ or $a=0$

Note that this only holds in the case that a=0. Therefore there is one solution.

Case 2: c=0. Then the general solution is a+bt, and the boundary conditions say

$$a = 0$$

$$b=0,$$

which has a unique solution (a,b)=(0,0); so the unique y(t) is 0.

Case 3: c<0. If we write $c=-\omega^2$ for some $\omega>0$, then the roots of the characteristic polynomial are $\pm i\omega$, and the general solution is $a\cos\omega t + b\sin\omega t$. The first boundary condition says a=0, so $v=b\sin\omega t$. The second boundary condition then says $b\omega\cos\omega=0$. If $\cos\omega\neq0$ (i.e., if $\omega\neq(2n+1)\pi/2$ for some positive integer n), there is one solution, the zero solution when b=0; if $\cos\omega=0$, (i.e., if $\omega\neq(2n+1)\pi/2$ for some positive integer n), is are infinitely many solutions $v=b\sin\omega t$ for b any constant.

Conclusion: If $c = -((2n+1)\pi/2)^2$ for some positive integer n, there are infinitely many solutions; otherwise there is one solution (the zero solution).

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

4-3

5/5 points (graded)

Consider a horizontal beam of length L with elasticity E and moment of inertia I that carries a load transverse to the beam axis (x). It is pinned (on a hinge) at the left (x=0) end with an applied torque (applied bending moment) Q in the positive direction. It is pinned (on a hinge) at the right end (x=L).

Let n(x) denote the vertical deflection of the heam

Which of the boundary conditions are zero? (Choose all that apply. Both columns are graded separately.)

$$\frac{d^2v}{dx^2}(0)$$

$$\frac{d^2v}{dx^2}(L)$$

$$\frac{d^3v}{dx^3}(0)$$

$$igcup rac{d^3v}{dx^3}(L)$$

$$igcap rac{d^4v}{dx^4}(0)$$

$$\frac{1}{2} \frac{d^4v}{dx^4} (L)$$

Solution:

The left end point at x=0 is pinned on a hinge, so v(0)=0. There is an applied torque so we know that $\frac{d^2v}{dx^2}(0)$ is not zero, but instead is determined by the applied torque.

The right end point at x=L is pinned on a hinge with no applied moment. Therefore we know that v(L)=0 and $\dfrac{d^2v}{dx^2}(L)=0$.

Submit

You have used 1 of 1 attempt

1 Answers are displayed within the problem

© All Rights Reserved