Feb 23, 20 Stata WLS, FGLS with WAGE data

February 23, 2020

- Name: Jikhan Jeong
- This is for understanding GLS, FGLS in breif
- This code is done in jupterlab with stata kernel in HPC environment to show the results of code so it may some magic command which is not in stata
- Entire data and code is from following website; however, I changed and modified it a little bit for better understanding.
- Ref: http://www3.grips.ac.jp/~yamanota/yamanoCourses.htm (lecture, code, data source), Thank you for Prof. Yamanota
- Related Wooldridge's book (254-260 page) :https://www.amazon.com/Introductory-Econometrics-Modern-Approach-Standalone/dp/130527010X/ref=sr_1_3?keywords=Wooldridge&qid=158

0.1 Data: WAGE1.DTA

0.2 # Part 0. Data Preparing

[1]: use "WAGE1.DTA", clear

[2]: %head 1

[3]: sum

Variable | Obs Mean Std. Dev. Min Max 526 5.896103 3.693086 .53 24.98 wage | 526 12.56274 2.769022 educ 0 18

exper	526	17.01711	13.57216	1	51
tenure	526	5.104563	7.224462	0	44
nonwhite	526	.1026616	.3038053	0	1
	+				
female	526	.4790875	.500038	0	1
married	526	.608365	.4885804	0	1
numdep	J 526	1.043726	1.261891	0	6
smsa	J 526	.7224335	.4482246	0	1
northcen	526	.2509506	.4339728	0	1
	+				
south	526	.3555133	.4791242	0	1
west	526	.1692015	.3752867	0	1
construc	J 526	.0456274	.2088743	0	1
ndurman	J 526	.1140684	.318197	0	1
trcommpu	526	.0437262	.20468	0	1
	+				
trade	526	.2870722	.4528262	0	1
services	526	.1007605	.3012978	0	1
profserv	J 526	.2585551	.4382574	0	1
profocc	J 526	.3669202	.4824233	0	1
clerocc	J 526	.1673004	.3735991	0	1
	+				
servocc	526	.1406844	.3480267	0	1
lwage	526	1.623268	.5315382	6348783	3.218076
expersq	526	473.4354	616.0448	1	2601
tenursq	526	78.15019	199.4347	0	1936
-					

• Dependent: lwage

•

0.3 Independent: educ female exper expersq

[7]: reg lwage educ female exper expersq

Source	SS	df	MS	Number of obs F(4, 521)	=	526 86.69
Model Residual	59.2711314 89.05862	4 521	14.8177829 .17093785	Prob > F R-squared	=	0.0000
Total	148.329751	525	. 28253286	Adj R-squared Root MSE	=	0.3950 .41345
lwage	Coef.	Std. Err.			nf .	Interval]
educ female exper	.0841361 3371868 .03891	.0069568 .0363214 .0048235	-9.28 0	.000 .070469 .000408541 .000 .02943	1	.0978029 2658324 .0483859

expersq	000686	.0001074	-6.39	0.000	000897	0004751
_cons	.390483	.1022096	3.82	0.000	.1896894	.5912767

0.3.1 Step1: Generate weigted variable

• Create weight = assumes we know weight matrix = 1/educ^0.5 is a weight matrix (strong assumption)

•

0.4 Multiply weight with Y and X

[16]: sum w weighted_lwage weighted_female weighted_educ weighted_exper ⊔
→weighted_expersq

Variable	0bs	Mean	Std. Dev.		Max
w	524	.2878218	.0419019	.2357023	.7071068
weighted_l~e	524	.4600634	.1391728	1832736	.9346225
weighted_f~e	524	.1372049	.145159	0	.4472136
weighted_e~c	524	3.528959	.3967792	1.414214	4.24264
weighted_e~r	524	5.058787	4.558981	.2357023	29.44486
weighted_e~q	524	144.6707	208.5306	. 2357023	1501.688

[18]: reg weighted_lwage weighted_educ weighted_female weighted_exper

→weighted_expersq w, noc

```
Number of obs
                                                       524
    Source |
               SS
                      df
                               MS
                                     F(5, 519)
                                                    1660.16
                                                 =
                        5 22.7832901
                                     Prob > F
                                                 = 0.0000
    Model | 113.916451
  Residual | 7.12253755 519 .013723579
                                     R-squared
                                                     0.9412
                                                 =
-----
                                     Adj R-squared
                                                 =
                                                     0.9406
    Total | 121.038988
                       524 .230990435
                                     Root MSE
                                                     .11715
```

weighted_lwage | Coef. Std. Err. t P>|t| [95% Conf.

Interval]

weighted_educ .0927889	.080147	.006435	12.45	0.000	.0675051	
weighted_female 2807133	3503307	.0354369	-9.89	0.000	4199482	
weighted_exper .0457236	.0367367	.0045745	8.03	0.000	.0277498	
weighted_expersq 0004375	0006319	.000099	-6.39	0.000	0008264	
w .6350297	.4557085	.0912787	4.99	0.000	. 2763872	

--

- Condition: Cov(Y) = Cov(error) is not identity deistributed, and we don't know what is weight matrix in GLS
- We need to estimate the weight matrx by applying the following process
- 1. Run OLS
- 2. Get Resignal of OLS = e ols = e
- 3. Generate Log esitimated $q = \log(e'e)$
- 4. OLS: $\log(e'e) \sim \text{educ female exper expsq}$
- 5. Get a predicted value of log(e'e) = hat of log estimated q = hat_log_(e'e)
- 6. Get Omega by plut predicted log estimated q into exponential function -> Omega = exp(hat_log_(e'e)
- 7. Creating weight matrix by weight = $1/(Omega)^1/2$
- 8. Multiply weight to both side of original OLS equation -> Y = Xbeta -> wY \sim wXbeta
- 9. Run regression wY ~ wX*beta

.

0.5 Ref: Wooldridge page (260 page FGLS estimation processes)

1. Run OLS

[21]: reg lwage educ female exper expersq

Unknown #command

Source		SS	df	MS	Number of ob	s =	526
	+-		 		F(4, 521)	=	86.69
Model		59.2711314	4	14.8177829	Prob > F	=	0.0000
Residual	I	89.05862	521	.17093785	R-squared	=	0.3996

Total	148.329751	525	. 28253286	·	R-squared = t MSE =	0.0000
lwage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
educ female exper expersq cons	.08413613371868 .03891000686 .390483	.0069568 .0363214 .0048235 .0001074 .1022096	-9.28 8.07 -6.39	0.000 0.000 0.000 0.000	.07046924085411 .029434000897 .1896894	.09780292658324 .04838590004751 .5912767

0.5.1 2. Get Resigual of $OLS = e_ols = e$

[22]: predict e, residual

0.5.2 3. Generate Log esitimated q = log(e'e)

[23]: gen log_estimated_q = ln(e*e)

0.5.3 4. OLS : $log(e'e) \sim educ$ female exper expsq

[27]: reg log_estimated_q educ female exper expersq

Source	SS	df 	MS	Number of obs F(4, 521)	=	526 5.73
Model	119.579085	4	29.8947712	Prob > F	=	0.0002
Residual	2720.03141	521	5.22078965	R-squared	=	0.0421
+				Adj R-squared	=	0.0348
Total	2839.61049	525	5.40878189	Root MSE	=	2.2849
log_estima~q	Coef.	 Std. Err.	t F		 onf.	Interval]
educ	.0718669	.0384467	1.87	0.06200366	27	.1473964
female	496624	.2007295	-2.47 C	0.01489096	27	1022852
exper	.0807454	.0266572	3.03	.02837	66	.1331143
expersq	0014259	.0005934	-2.40 C	0.01700259	17	0002601
_cons	-4.532606	.56486	-8.02 C	.000 -5.642	29	-3.422923

```
0.5.4 5. Get a predicted value of \log(e'e) = hat of \log estimated q = hat \log_{10}(e'e)
[28]: predict predicted_log_estimated_q
     (option xb assumed; fitted values)
[36]: sum predicted_log_estimated_q
         Variable |
                            Obs
                                       Mean
                                               Std. Dev.
                                                                Min
                                                                           Max
     predicted_~q |
                            526
                                  -3.168716
                                               .4772522 -4.231242 -2.096585
     0.5.5 6. Get Omega by plut predicted log estimated q into exponential function ->
            Omega = exp(hat log (e'e))
[29]:
      gen omega=exp(predicted_log_estimated_q)
[35]:
      sum omega
         Variable |
                            Obs
                                       Mean
                                               Std. Dev.
                                                                Min
                                                                           Max
            omega |
                            526
                                   .0469478
                                               .0219954
                                                           .0145343
                                                                      .1228753
     0.5.6 7. Creating weight matrix by weight matrix = 1/(Omega)^1/2
[37]: gen fgls_weight=1/(omega)^0.5
[38]: sum fgls_weight
         Variable |
                            Obs
                                               Std. Dev.
                                                                Min
                                       Mean
                                                                           Max
                                                                      8.294736
      fgls weight |
                            526
                                   5.017777
                                               1.220166
                                                          2.852776
     0.5.7 8. Multiply weight to both side of original OLS equation -> Y = Xbeta -> wY
            \sim wXbeta
 []: gen fgls_weighted_lwage
                                     lwage*fgls_weight
      gen fgls_weighted_female
                                     female*fgls_weight
      gen fgls_weighted_educ
                                     educ*fgls_weight
      gen fgls_weighted_exper
                                     exper*fgls_weight
      gen fgls_weighted_expersq =
                                     expersq*fgls_weight
[43]: sum fgls_weighted_lwage fgls_weighted_educ fgls_weighted_female _
       →fgls_weighted_exper fgls_weighted_expersq fgls_weight
```

Variable	Obs	Mean	Std. Dev.	Min	Max
	526	7.778322	2.115953	-4.546649	16.6817
fgls_weigh~c	526	61.77805	16.69801	0	106.9765
fgls_weig~le	526	2.761222	2.98256	0	8.294736
fgls_weigh~r	526	78.31162	67.04885	4.854187	366.1111
fgls_weigh~q	526	2190.806	3222.909	4.854187	18353.15
+					
fgls_weight	526	5.017777	1.220166	2.852776	8.294736

0.5.8 9. Estimate Feasible GLS (FGLS) model

• Run regression $wY \sim wX*beta_fgls$

Source	SS	df	MS		er of obs		526 1555.59
Model Residual		37 5 75 521	6405.86073 4.11797265	Prob R-sqı	F(5, 521) Prob > F R-squared Adj R-squared Root MSE		0.0000 0.9372
Total	34174.76	74 526	64.9710407	Ū			0.9366 2.0293
fgls_weighte		Coef.					% Conf.
fgls_weight	·		.0065543	11.47	0.000		22906
fgls_weighted	_female	2858389	.0354633	-8.06	0.000	35	55075
fgls_weighte	d_exper	.0389362	.0045178	8.62	0.000	.0	30061
fgls_weighted_ 0004958	expersq	000693	.0001004	-6.90	0.000	00	08903
fgls .6569765	_weight	.4755142	.0923694	5.15	0.000	. 29	40518

[•] GLS (=WLS, the first regression) : (= we assumes we know weight matrix, but it is not correct = wrong weight matrix)

[•] FGLS with estimated weight matrix

- Compared to standard error of beta coefficient = FGLS's educeation coefficient's standard error is the smallest among others
- Using eststo package to show the results: (command line) cap ssc install estout (command line) sysuse auto, clear (command line) eststo clear

```
[48]: eststo: qui reg lwage educ female exper expersq
eststo: qui reg weighted_lwage weighted_educ weighted_female weighted_experu

→weighted_expersq w, noc
eststo: qui reg fgls_weighted_lwage fgls_weighted_educ fgls_weighted_female u

→fgls_weighted_exper fgls_weighted_expersq fgls_weight,noc

(est1 stored)

(est2 stored)

(est3 stored)

[49]: %html
esttab, label title("OLS, WLS, FGLS Table") html
```

This front-end or document format cannot display HTML