L'algorithme d'Eratosthène trouve les nombres premiers inférieurs ou égaux à n par élimination. Il s'agit de marquer tous les multiples $2k, 3k, \ldots$ pour tous les valeurs entières $k = 2, 3, \ldots$ dans l'ordre croissant.

- CRIBLE D'ERATOSTHÈNE
- créer liste pour les entiers 2,3,...,n pour pouvoir les marquer; au début, tous les entiers sont non-marqués
- 2. boucler sur $k = 2, 3, 4, \dots, n$ si k est non-marqué, alors annoncer q'il est un nombre premier marquer $2k, 3k, 4k, \dots, \lfloor n/k \rfloor \cdot k$
- i. Algorithme (10 points) ► Donnez le pseudo-code pour un algorithme sieve(n) qui performe les calculs esquissés ci-dessus. Utilisez un tableau booléen pour stocker les marques pour les entiers.
- ii. Temps de calcul (10 points) \blacktriangleright Démontrez que le temps de calcul de sjeve(n) est $\Theta(n \log n)$. (Les opérations arithmétiques s'exécutent en O(1).)
- iii. Coût amorti (5 points) Le Théorème de nombres premiers (TNP) caractérise la croissance du nombre $\pi(n)$ de nombres premiers inférieurs ou égaux à n:

$$\pi(n) \sim \frac{n}{\ln n} \qquad \{n \to \infty\}$$
 (F2)

- ► Caractérisez la croissance asymptotique du temps amorti (par nombre premier) de sieve(n).
- iv. Améliorations (5 points boni) ightharpoonup Démontrez qu'il suffit de marquer les multiples de k en Ligne 2 tandis que $k^2 \le n$. Analysez comment l'accélération impliée (que l'on exécute la boucle intérieure pour $k=2,3,\ldots, \lfloor \sqrt{n} \rfloor$)

Fig. 4: Eratosthène de Cyrène (276–194 av. L.-C.)

	2	3	4	5	6	7
8	9	10	11	12	13	14
45	46	17	48	19	20	21
22	23	24	25	26	27	28
29	30	31	32	33	34	35
36	37	38	39	40	41	42
43	44	45	46	47	48	49

TAB. 2: Entiers marqués par sleve (49) après la boucle sur les multiples de k = 7. L'algorithme a déjà trouvé les nombres premiers encadrés.

FIG. 5: Jacques Hadamard (1865–1963) Charles Jean de la Vallée-Poussin (1866 1962) ont démontré le TNP sous la for de (F2) en 1896.

