Trees

CMSC 420: Lecture 5

Definition - Rooted Tree

- A is a tree
- If T_1 , T_2 , ..., T_k are trees with roots r_1 , r_2 , ..., r_k and r is a node \notin any T_i , then the structure that consists of the T_i , node r, and edges (r, r_i) is also a tree.

Hierarchies

Many ways to represent tree-like information:

(((E):D), F):B, (G):C):A

nested, labeled parenthesis

nested sets

Terminology

- r is the parent of its <u>children</u> r_1 , r_2 , ..., r_k .
- r₁, r₂, ..., r_k are <u>siblings</u>.
- <u>root</u> = distinguished node, usually drawn at top. Has no parent.
- If all children of a node are Λ , the node is a <u>leaf</u>. Otherwise, the node is a <u>internal</u> node.
- A *path* in the tree is a sequence of nodes $u_1, u_2, ..., u_m$ such that each of the edges (u, u_{i+1}) exists.
- A node u is an <u>ancestor</u> of v if there is a path from u to v.
- A node *u* is a *descendant* of *v* if there is a path from *v* to *u*.

Height & Depth

- The <u>height</u> of node u is the length of the longest path from u to a leaf.
- The <u>depth</u> of node u is the length of the path from the root to u.
- Height of the tree = maximum depth of its nodes.
- A <u>level</u> is the set of all nodes at the same depth.

Alternative Definition - Rooted Tree

- A *tree* is a finite set *T* such that:
- one element $r \in T$ is designated the *root*.
- the remaining nodes are partitioned into k ≥ 0 disjoint sets T₁, T₂, ..., T_k each of which is a tree.

This definition emphasizes the partitioning aspect of trees:

As we move down the we're dividing the set of elements into more and more parts.

Each part has a distinguished element (that can represent it).

Subtrees, forests, and graphs

- A <u>subtree</u> rooted at u is the tree formed from u and all its descendants.
- A <u>forest</u> is a (possibly empty) set of trees.
 The set of subtrees rooted at the children of r form a forest.
- As we've defined them, trees are not a special case of graphs:
- Our trees are <u>oriented</u> (there is a root which implicitly defines directions on the edges).
- A *free tree* is a connected graph with no cycles.

Basic Properties

- Every node except the root has exactly one parent.
- A tree with *n* nodes has *n*-1 edges (every node except the root has an edge to its parent).
- There is exactly one path from the root to each node. (Suppose there were 2 paths, then some node along the 2 paths would have 2 parents.)

Binary Trees - Definition

An ordered tree is a tree for which the order of the children of each node is considered important.

- A binary tree is an ordered tree such that each node has < 2 children.
- Call these two children the *left* and *right* children.

Extended Binary Trees

Binary tree

Every internal node has exactly 2 children.

Every leaf (external node) has exactly 0 children.

Each external node corresponds to one Λ in the original tree – let's us distinguish different instances of Λ .

Example Binary Trees

The edge cases:

of External Nodes in Extended Binary Trees

Thm. An extended binary tree with n internal nodes has n+1 external nodes.

Proof. By induction on *n*.

X(n) := number of external nodes in binary tree withn internal nodes.

Base case: X(0) = 1 = n + 1.

Induction step: Suppose theorem is true for all i < n. Because $n \ge 1$, we have:

Extended binary tree

Related to Thm 5.2 in your book.

Thm. An extended binary tree with n internal nodes has n+1 external nodes.

Proof. Every node has 2 children pointers, for a total of 2*n* pointers.

Every node except the root has a parent, for a total of n - 1 nodes with parents.

These n - 1 parented nodes are all children, and each takes up 1 child pointer.

(pointers) - (used child pointers) = (unused child pointers)
$$2n \cdot (n-1) = n+1$$

Thus, there are n + 1 null pointers.

Every null pointer corresponds to one external node by construction.

Nodes in a Perfect Tree of Height h

Thm. A perfect tree of height h has $2^{h+1} - 1$ nodes.

Proof. By induction on *h*.

Let N(h) be number of nodes in a perfect tree of height h.

<u>Base case:</u> when h = 0, tree is a single node. $N(0) = 1 = 2^{0+1} - 1$.

<u>Induction step:</u> Assume $N(i) = 2^{i+1} - 1$ for $0 \le i < h$.

A perfect binary tree of height h consists of 2 perfect binary trees of height h-1 plus the root:

 $N(h) = 2 \times N(h-1) + 1$

=
$$2 \times (2^{h-1+1} - 1) + 1$$

= $2 \times 2^{h} - 2 + 1$
= $2^{h+1} - 1$ \square
 2^{h} are leaves
 $2^{h} - 1$ are internal nodes

$= 2 \times 2^h - 2 + 1$ $= 2^{h+1} - 1$ 2^h are leaves

Full and Complete Binary Trees

- If every node has either 0 or 2 children, a binary tree is called full.
- If the lowest d-1 levels of a binary tree of height d are filled and level *d* is partially filled from left to right, the tree is called
- If all d levels of a height-d binary tree are filled, the tree is called

perfect

Full Binary Tree Theorem

Thm. In a non-empty, full binary tree, the number of internal nodes is always 1 less than the number of leaves.

Proof. By induction on *n*.

L(n) := number of leaves in a non-empty, full tree of n internal nodes.

Base case: L(0) = 1 = n + 1.

Induction step: Assume L(i) = i + 1 for i < n.

Given T with n internal nodes, remove two sibling leaves.

T' has n-1 internal nodes, and by induction hypothesis, L(n-1) = n leaves.

Replace removed leaves to return to tree T.

Turns a leaf into an internal node, adds two new leaves.

Thus: L(n) = n + 2 - 1 = n + 1.

Array Implementation for Complete Binary Trees

left(*i*): 2i if $2i \le n$ otherwise 0

right(i): (2i + 1) **if** $2i + 1 \le n$ **otherwise** 0

parent(i): $\lfloor i/2 \rfloor$ if $i \ge 2$ otherwise 0

Linked Binary Tree Implementation

```
_left_child |_right_child
                       class BinNode : public BinaryTree<ValType>
                                                                                                                                                                                                                                                                                                                                                                                                                        BinNode<ValType> * _left_child;
BinNode<ValType> * _right_child;
                                                                                                                                                                                        void set_value(const ValType&);
                                                                                                                                                                                                                                                                                                               void set right(BinNode *);
                                                                                                                                                                                                                                                     void set_left(BinNode *);
                                                                                                                                                                                                                                                                                        BinNode * right() const;
                                                                                                                                                                                                                              BinNode * left() const;
template <class ValType>
                                                                                         BinNode(ValType * v);
                                                                                                                                                               ValType & value();
                                                                                                                                                                                                                                                                                                                                                                                                          ValType * _data;
                                                                                                                                                                                                                                                                                                                                    bool is_leaf();
                                                                                                                ~BinNode();
                                                                                                                                                                                                                                                                                                                                                                                  private:
                                                                   public:
```

Binary Tree ADT

A tree can be represented as a linked collection of its nodes:

```
class ValType>
class BinaryTree {
  public:
    virtual ValType & value() = 0;
    virtual woid set_value(const ValType &) = 0;
    virtual BinaryTree * left() const = 0;
    virtual void set_left(BinNode *) = 0;
    virtual BinaryTree * right() const = 0;
    virtual void set_right(BinNode *) = 0;
    virtual bool is_leaf() = 0;
};
```

virtual ⇒ this function can be overridden by subclassing.

"= 0" \Rightarrow a pure function with no implementation. Must subclass to get implementation.

Binary Tree Representation

List Representation of General Trees

Representing General Trees with Binary Trees

How would you implement an ordered general tree using a binary tree?