

construction
engineering
research
laboratory

Technical Report M-319 July 1982

FLEXIBLE, WATER-RESISTANT URETHANE COATINGS FOR FERROUS SURFACES ON U.S. ARMY CORPS OF ENGINEERS' DAMS

by
Nils Truisson
Al Beitelman

82 09 16 034

Approved for public release; distribution unlimited.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official indorsement or approval of the use of such commercial products. The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED
DO NOT RETURN IT TO THE ORIGINATOR

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM					
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER				
CERL-TR-M-319	ADA119 3/	2				
4. TITLE (and Substite) FLEXIBLE, WATER-RESISTANT URETHANE (FERROUS SURFACES ON U.S. ARMY CORPS	COATINGS FOR OF ENGINEERS'	s. Type of Report & Period Covered FINAL				
DAMS		6. PERFORMING ORG, REPORT NUMBER				
7. AUTHOR(e)		S. CONTRACT OR GRANT NUMBER(+)				
Nils Trulsson Al Beitelman		·				
9. PERFORMING ORGANIZATION NAME AND ADDRESS U.S. ARMY		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS				
CONSTRUCTION ENGINEERING RESEARCH LA P.O. BOX 4005, CHAMPAIGN, IL 61820	ABORATORY	CWIS 31205				
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE July 1982				
		19. NUMBER OF PAGES				
14. MONITORING AGENCY NAME & ADDRESS(II differen	t from Controlling Office)	15. SECURITY CLASS. (of this report)				
		Unclassified				
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE				
16. DISTRIBUTION STATEMENT (of this Report)						
Approved for public release; dis	tribution unlimi	ted .				
17. DISTRIBUTION STATEMENT (of the abetract entered	in Block 20, if different fro	m Report)				
18. SUPPLEMENTARY NOTES						
19. KEY WORDS (Continue on reverse elde il necessary as Protective coatings Dams Urethanes Test & evaluation	nd Identify by block number,					
	d identify by block number)					
The overall purpose of this study is to evaluate formulations for an extremely tough, water-resistant, urethane base coating which will withstand the punishment and erosion of turbulent waters carrying sand, ice, and other debris. The objective of the short-term phase of the study documented in this report was to assess ambient-air-curing elastomeric coatings to identify those with high tensile strength and elongation properties and excellent water resistance.						

DD 1 JAN 79 1473 EDITION OF 1 NOV 65 IS OSSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

BLOCK 20. (Continued).

More than 200 coatings were prepared, based on the most promising prepolymers, polyols, and diisocyanates. Films of the coatings showing the highest tensile strength were subjected to a hydrolytic stability test, the result of which indicated losses in tensile strength of up to 50 percent. Series of coatings were formulated and prepared based on polyester polyols and polyether polyols, and the resulting coatings were subjected to the hydrolytic test after curing for 2 weeks at ambient temperature. The result indicated that the test cycle was too short for conclusive determination of hydrolytic stability.

The data in this study was obtained from ambient-temperature-curing urethane elastomeric coatings containing solvents. Coatings based on polyester polyols have a maximum tensile strength of up to 2800 psi; for those based on polyethers, the maximum tensile strength was 1800 psi. The associated elongation was 700 to 800 percent. From the tacky condition of the hydrolytic stability tested films, one may conclude that polyester-based polyols may develop reversion problems. The hydrolytic stability tests indicate that the Y series films—combinations of polyesters for strength and hardness and polyethers for hydrolytic stability—are not better than the X series.

The highest possible tensile strength and elongation, as shown by the Y6 formula (Table 18), was obtained by using the high-molecular-weight Niax PCP 0240 polyester polyol in the prepolymer. It must be further determined whether high molecular weight polyols produce water-sensitive urethanes.

FOREWORD

This research was done for the Directorate of Civil Works, Office of the Chief of Engineers (OCE), under project CWIS 31205, "Development of High Performance Coatings." Mr. J. Robertson was the OCE Technical Monitor.

The work was conducted for the Engineering and Materials Division (EM) of the U.S. Army Construction Engineering Research Laboratory (CERL) by Plas-Chem Coatings Laboratory, St. Louis, MO. Dr. R. Quattrone is Chief of EM.

COL Louis J. Circeo is Commander and Director of CERL, and Dr. L. R. Shaffer is Technical Director.

CONTENTS

		Pa	ge
	DD FORM 1473 FOREWORD LIST OF TABLES		1 3 5
}	INTRODUCTION		7
2	MATERIALS	••	7
3	TEST SPECIMEN PREPARATION		8
	RESULTS AND ANALYSIS	••	9
5	CONCLUSIONS AND RECOMMENDATIONS	. 1	10
	APPENDIX: Trade Names	2	29
	LIST OF ABBREVIATIONS	3	N
	METRIC CONVERSIONS	3	30
	DISTRIBUTION		

TABLES

Num	ber	Page
i	Test Requirements	8
2	Prepolymers, Commercial	11
3	Prepolymers, Prepared, TDI/Polyether	12
4	Prepolymers, Prepared, MDI/Polyether	12
5	Prepolymers, Prepared, TDI/Polyester	12
6	Prepolymers, Prepared, MDI/Polyester	12
7	Prepolymers, Prepared, HMDI/Polyester	12
8	Prepolymers, Prepared, MDI/TID/Polyester/Ethers	13
9	Prepolymers, Prepared, HMDI/Polyester/Ethers	13
10	Polyol Bases, Pigmented, Polyester	14
11	Hydroxyl-Terminated Prepolymers	14
12	Hydroxyl-Terminated Prepolymers, Polyester Based	16
13	Hydroxyl-Terminated Prepolymers, Miscellaneous	17
14	Hydroxyl-Terminated Prepolymers, Miscellaneous, Pigmented Bases	18
15	Coatings	19
16	Hydrolytic Stability Test	27
17	Urethane Coatings, Ether Bases	27
18	Urethane Coatings, Ester Based	28

FLEXIBLE, WATER-RESISTANT URETHANE COATINGS FOR FERROUS SURFACES ON U.S. ARMY CORPS OF ENGINEERS' DAMS

1 INTRODUCTION

Background

Vinyl solution coatings have been used to protect U.S. Army Corps of Engineers hydraulic structures from corrosion. The life expectancy of these coatings has been between 15 and 30 years, depending on the severity of exposure. In some regions, coatings on newly designed dams have life spans of less than 4 years because of the effects of water laden with turbulent silt, sand, ice, and other debris. The U.S. Army Construction Engineering Research Laboratory's (CERL) past field work has shown that hard coatings, both urethanes and epoxies, cannot withstand such abrasion. Therefore, the Office of the Chief of Engineers asked CERL to develop an extremely tough, water-resistant coating that would withstand the environment and protect steel structures from corrosion.

Objective

The overall objective of this study is to evaluate urethane coatings for use on Corps dams. The purpose of the short-term phase of the study reported here was to assess formulations of ambient-air-curing elastomeric urethane coatings to identify those with high tensile strength and elongation properties and excellent water resistance.

Approach

To accomplish this objective, the following steps were taken:

- 1. Suppliers of prepolymers were invited to submit commercially available samples for testing; in addition, a number of special formulations were developed.
- 2. Samples of coatings were prepared and tested for tensile strength and elongation, hydrolytic stability, and 90-degree peel strength.

Mode of Technology Transfer

Information about more durable coating systems will be incorporated into Guide Specification CW-09940 and, where appropriate, described in EM-1110-2-3400, Painting: New Construction and Maintenance.

2 MATERIALS

Requirements

To be usable by the Corps, the coating formulation being developed had to meet several requirements. It had to be manufactured from readily available raw materials and had to be producible by any paint company able to manufacture urethane paints. The coating also had to be applicable at various ambient temperatures by a conventional or single-component airless spray handled by applicators with average professional skills. In addition, test requirements shown in Table 1 had to be met. Urethane coatings with these characteristics are made from four basic components: prepolymer, chain extender, catalyst, and pigments and flow additives.

Commercial Products

Initially, all known U.S. suppliers of prepolymers were invited to recommend prepolymer/chain extender systems which would produce a coating with the specified characteristics. Five suppliers responded. One submitted a pigmented commercial product which did not fit the specification, two submitted samples of "best bet" prepolymers without recommending a chain extender, one submitted a sample chain extender, and one asked about the potential usage but did not have any recommendations.

Most prepolymer manufacturers specify tensile strength; elongation values are obtained if prepolymers are processed into elastomers using MOCA (4.4'-methylene-bis 2-chloroanaline) as the chain extender. Elastomers of lower hardness can be obtained with other polyols. Manufacturers sometimes say that elastomers cured at ambient temperatures with proper catalysts will yield similar properties in 1 to 3 weeks.¹

Materials Selection

A few commercially available prepolymer samples were ordered. In addition, a number of prepolymers were prepared from the most promising polyols and diisocyanates to determine how strong an ambient-temperature-curing elastomeric coating could be made. It was assumed that the formulated prepolymers, if more successful than commercial products,

¹ Anderson Development Company data sheet covering prepolymer: Andur 80-5AP; Conap data sheet covering DP 2816 A & B; Uniroyal Chemical data sheet covering Vibrathane B604.

Table 1 Test Requirements

Total % solids by wt, minimum (ASTM D-1353)*	40%
Potlife @ 75° F	1 hr
Potlife @ 100° F	45 min
Mixing ratio	1:1
Low temperature cure	50°F
Film build in two double spray coats	20 mils
Tear strength (ASTM D 1004)	1.00 lb/mil
Elongation (ASTM D 2370)	400%
Tensile strength (ASTM D 2370)	4000 psi
Peel strength (applied over V766e, 90 degree peel)	25 lb/in. (minimum)
Color (gray) reflectance (ASTM E 97)	20 to 24
Water resistance (immersion for 1 week in 120°F distilled water)	No blistering or noticeable film degradation; meets peel strength
Storage stability	1 year in factory-sealed container

^{*}Test for Nonvolatile Matter in Volatile Solvents for Use in Paint, Varnish, Lacquer, and Related Products, American Society for Testing and Materials (ASTM) D 1353 (1978); Test for Initial Tear Resistance of Plastic Film and Sheeting, ASTM D 1004-66 (1976); Test for Elongation and Tensile Strength of Free Films of Paint, Varnish, Lacquer, and Related Products with a Tensile Testing Apparatus, ASTM D 2370-68 (1973); Test for 45-deg, 0-deg Directional Reflectance Factor of Opaque Specimens by Broad-Band Filter Reflectometry, ASTM E 97 (1977).

could be produced on a specialty basis by interested manufacturers.

In general, the polyols selected contained all primary hydroxyl groups that cure best—i.e., the polytetramethylene ether glycols (PTMEG) and the Niax (PCP) Caprolcatone ester diols and triols; these produce the most hydrolytically stable urethanes.

The isocyanates used in this study were the toluene diisocyanate 80/20 (TD 80), diphenylmethane diisocyanate (MDI) and methylene bis (4 cyclohexyl isocyanate) (HMDI), also known as hydrogenated MDI.

MOCA, which adds toughness to urethanes, was another polyol considered, but it was not used because it is a suspected carcinogen and produces a surface that is difficult to overcoat. Hydroxyl-terminated polybutadiene was considered because of its inherent hydrolytic stability. However, it was not used because it contains unsaturated sites susceptible to attack by oxygen and ozone, which causes the cracking and crazing common with this type of urethane.

Since no triol PTMEG polyether polyols are commercially available, and only two of the PCP triols are fluid at application temperature, the formulation of a coating mixable in a 1:1 ratio was severely limited. But because the crystalline nature of other polyols could be reduced by preparing them as hydroxyl-terminated prepolymers, greater flexibility could be achieved.

3 TEST SPECIMEN PREPARATION

Eight steps were taken to prepare over 200 coating specimens which were being tested:

- 1. Preparing an OH-terminated polyol or prepolymer, or selecting a commercial one. Polyols were selected on the basis of being fluid at 50°F or above and having a suitable primary hydroxyl content. Only the Niax PCP 0300 polyol could be used as is. A number of OH-terminated prepolymers were prepared as follows. The polyol and 50 percent of a solvent were charged in a 1-L glass reactor equipped with a stirring mechanism, dry nitrogen inlet, heating mantle, additional funnel, and thermometer. Isocyanate and the remaining solvent were stirred in slowly, and the temperature was kept below 176°F. Then the prepolymer was reacted for 3 hours, cooled down, and canned. The ratio of OH to NCO was usually 2:1.
- 2. Using a high-speed disperser to add suitable amounts of pigment, extender pigment, solvent, thixotrope, and curing catalyst to the polyol or polymer. The mixture was dispersed until the temperature reached 131°F and a grind check was satisfactory.
- 3. Preparing an NCO-terminated prepolymer or selecting a commercial one. The NCO-terminated prepolymers were prepared by charging into the high-speed disperser the appropriate amount of isocyanate

and half the solvent and adding melted polyols at approximately 140°F. Then the temperature was raised to 176°F for 3 hours. The prepolymers were prepared in an NCO-to-OH ratio of 2:1. The final free NCO content was then determined by the standard butylamine method. In the few cases when a catalyst was present during the reaction, a maximum temperature of 140°F was used.

- 4. Determining the mixing weight ratio of the OHterminated polyol or prepolymer and NCO-terminated prepolymer by establishing their individual equivalent weights. The equivalent weight factor was calculated on the basis of the total weight, and the amount and equivalent weight of the polyol or polymer.
- 5. Combining the OH-terminated polyol or prepolymer and NCO-terminated polymer, generally with a 10 percent excess of the NCO component.
- 6. Using a film applicator to prepare a film about 15 mils thick on silicon-treated release paper.
- 7. Letting the film cure at ambient temperature for 2 days.
- 8. Peeling the film off the paper and hanging it up for conditioning for 2 days to permit further curing and release of most retained solvents.

The test specimens were produced from the cured films by cutting the required shapes for tensile strength and elongation testing using Die A and C in accordance with ASTM D 412, and the die specified in ASTM D 1004 for tear strength determination.² The testing machine was the Dillon model M 1 Tensile Strength Tester with a speed of separation of 50 mm/min.

4 RESULTS AND ANALYSIS

Tables 2 through 18 show the coating formulas and the test results. Most T2-18 data, particularly for tensile strength (TS) and elongation (EL), are stated below the formulas listed on the tables. If a coating showed TS and EL values approximating those specified in the test requirements (Table 1), hydrolytic stability and peel strength were tested.

Tensile Strength and Elongation

As the tables indicate, only a few coatings developed TS values above 2000 psi. All TS values were taken after 72 hours of curing, unless otherwise noted. It was difficult to mix the pigmented base and prepolymer together without getting air into the mixture. Films from spray application were no better than those produced by a film applicator and the standard draw down method—with and without a subsequent exposure to a vacuum treatment while wet. Although air bubbles prevented the calculation of absolute TS and EL values, the error was minor and almost equal for all the coatings. (Combining the components under vacuum might produce an airless mixture, but application would still introduce air into the films.)

Most urethane literature by suppliers of the basic raw materials offers examples of urethane compositions and shows 5500 psi for TS and 400 to 500 percent for EL.³ These data are obtained by casting the urethane composition in hot molds under vacuum. The molds are usually cured for 16 hours at 230°F. A postcure for 5 to 7 days at room temperature is necessary for the urethane elastomer to achieve optimum physical properties.

Air-curing the same composition at room temperature does not produce elastomers with near-identical properties⁴ because any retained solvent will tend to act as a plasticizer. In addition, during curing the film will be exposed to water vapors, which will interfere with the formation of urethane groups in two ways: the water will react with the free NCO groups and form ureas and biurets, and unreacted polyol will be left in the film.

Hydrolytic Testing

The eight coatings with high tensile strengths were subjected to a hydrolytic test, as described in Table 16. The retained tensile strength according to this test was about 21 to 47 percent, indicating major problems.

The highest tensile strengths after hydrolytic testing were obtained by mixtures of polyester and polyether polyols, generally considered the polyols producing urethane with the highest hydrolytic stability. Another test was started with one series of coatings based on all polyesters and another based on all polyethers. The

²Tests for Rubber Properties in Tension, ASTM D 412 (1980).

³The Quaker Oats Company, Polyurethane Elastomers Based on MDI-Polymeg Prepolymers Extended with 1, 4 Butane Diol., Technical Bulletin No. 169.

⁴E. N. Doyle, The Development and Use of Polyurethane Products (McGraw-Hill, 1971), p 48.

films were cured for 14 days before hydrolytic testing. Tables 17 and 18 show the compositional and physical data obtained.

When the films in the Y series—all polyester based—were removed from the hot water, they were soft and tacky (Table 18). A permanent bond was formed if they touched each other. However, when they dried, their physical properties had not changed as much as expected.

The films in the X series, all polyether based, were far less affected by the hot water, were not tacky, and when dry, tended to show increases in tensile strength. This seems to indicate that the slower curing polyether had not reached final cure at the time of immersion, and that further curing took place during immersion.

The films in the X and Y series were tested after curing for 2 weeks at ambient temperature. The results described above indicate that the test cycle was too short to conclusively determine hydrolytic stability—longer curing times and periods of water immersion would be appropriate. (Of course, field-applied coatings are exposed to the elements almost immediately.)

A recent National Aeronautics and Space Administration (NASA) study deals with the long-term hydrolytic stability of urethane elastomers used with electronic equipment.⁵ The results of this research, which emphasizes the performance of alkane-based urethanes, deserve further study. Although the relationship of any hydrolytic stability test with actual field performance is unknown. Morris is probably right when he says, "If the urethanes absorb water, the urethane bond will be more susceptible to cleavage. If the polymer bond is broken, the resin would become soft and tacky. (Thus hardness change can be used as an indication of hydrolytic attack.)"6 Plas-Chem Coatings Laboratory's experience with all-polyester-based urethane coatings exposed for years to almost continuous water immersion on roofs in the Miami area indicates that the coatings normally lose some elasticity with time, and thus become harder. However, this applies only to low molecular polyesters necessary for high solids coatings. The NASA study may be correct in

Some two-component urethane coatings have not been explored fully. The 100 percent solids, fast-curing urethanes, which can be applied by plural component airless spray, are now becoming increasingly popular with paint applicators. With these coatings, the length of time the NCO is available for combining with moisture is cut drastically, and unwanted urea and biurets groups are formed far less. A more hydrolytically stable product might result.

Peel Strength

Urethanes should adhere to the Corps of Engineers' standard V-766 coating formula. To test this characteristic, panels coated with V-766 were taped with strip of 3/4-in.-wide masking tape, and 50-mil urethanicoatings were applied. The panels were scribed along the edges and beyond the length of the tape, an pulled using a spring scale. An untreated panel and or immersed for 1 week in water at 140°F passed the 25-lb pull test. A solvent combination of cellosolve acetate and xylol, a marginal solvent blend for vinyl coating, helped adhesion.

5 CONCLUSIONS AND RECOMMENDATIONS

The data obtained in this study indicate that ambient-temperature-curing urethane elastomeric coatings based on polyester polyols containing solvents have a tensile strength of up to 2800 psi; for those based on polyethers, the maximum tensile strength is 1800 psi. The associated elongation for both the polyesters and polyethers is 700 to 800 percent. From the tacky condition of the films tested for hydrolytic stability, it can be concluded that polyester-based polyols may develop reversion problems. The hydrolytic stability tests indicate that the Y series films—combinations of polyesters for strength and hardness and polyethers for hydrolytic stability—are not better than the polyether-based X series.

The highest possible tensile strength and elongation, as shown by the Y6 formula (Table 18), was obtained by using the high-molecular-weight Niax PCP 0240 polyester polyol in the prepolymer. However, because the hydrolytic stability test was done too quickly, it must still be determined whether high-molecular-weight polyols produce water-sensitive urethanes.

associating the poorest hydrolytic stability with the higher molecular weight polyols.

⁵Donald E. Morris, Development of Urethane Coatings and Potting Material With Improved Hydrolytic and Oxidative Stability, TM 82408, N-81-22192/1 (National Aeronautics and Space Administration, 1981), p 20.

⁶Donald E. Morris, p. 20.

Since this was a short-term study, further research on the X and Y series, the most advanced formulations, is needed to evaluate the durability of these coatings over time. Two polyether-based coatings from Table 17 should undergo more lengthy laboratory testing before being field tested: coating X9 is a low molecular polyol version, and X10 is a medium molecular polyol version with better tensile strength and elongation properties. If the conclusions of the NASA study are true, X9 should perform better than X10; a coating like X11, containing high-molecular-weight polyol, should deteriorate even sooner. From Table 18, the Y1

coating, a relatively low-molecular-weight species, and Y4, a high-molecular-weight candidate, should be evaluated further.

It is also recommended that hybrid coatings be examined. For example, a hybrid such as a vinyl or butadiene modified urethane might eliminate the need to shield the urethane groups from exposure to water. Use of high-solids, fast-curing urethanes requiring plural component spray equipment might be another way to prevent moisture contamination and hydrolytic stability problems.

Table 2
Prepolymers, Commercial

1.1:*	Recommended by Manufacturer	2**	3
	Vibrathane #635 [†]	605	
	Vibrathane #625		698
	Xyloi	120	80
	Toluol	120	80
	Total	845	858
	Equivalent Weight (Eq. Wt.)	845	858
	Appearance	Clear	Clear
1.2:	Selected by CERL	1	2
	Andur 80-5 AP	540	
	Andur 850-AP		540
	Cellosolve Acetate	180	180
	Xylol	180	180
	Total	900	900
	Free NCO, % ^{††}	2.07	2.58
	Eq. Wt.	2029	1628
	Appearance	Clear	Clear

^{*}Decimal notations are reference numbers assigned to coating formulas in Tables 2 through 18.

†† A list of abbreviations is provided on p 30.

^{**}Formulation numbers assigned by CERL; units for formulations are ingredients in parts, by weight.

See the appendix for a list of trade names and manufacturers.

Table 3
Prepolymers, Prepared, TDI/Polyether

1.3	1	2	3	4	5	6	7	8
TD 80	272	161	185.3	218.9	90	318.8	142.2	335.5
Teracol 650	478							573
Poly Meg 1000		439	405.5	359.4		220.2		
Teracol 2000					510		444	
TMP			9.2	21.7			14.2	
1.4 Butane Diol						62		
Cellosolve Acetate			200	200	200	200	200	
Xylol	250	400	200	200	200	200	200	91.5
Total	1000	1000	1000	1000	1000	1001	1001.4	1000
Solids, %	75	60	60	60	60	60	60	90.8
Free NCO	6.84	4.06	4.66	5.50	2.26	7.97	3.56	8.85
Eq. Wt.	614	1034	901	764	1858	527	1171	473.5
Appearance	Clear	Clcar						

Table 4
Prepolymers, Prepared, MDI/Polyether

Table 6
Prepolymers, Prepared, MDI/Polyester

1.4	1	2	3	1.6	1
Mondur M	318	253	170	TD 80	59
(Mobay Chemical)				Mondur M	43
Teracol 650	282			Niax PCP 0260	498
Polymeg 1000		347		Cellosolve Acetate	200
Teracol 2000			430	Xylol	200
Cellosolve Acetate	200	200	200	Table	1000
Xylol	200	200	200	Total	1000
Total	1000	1000	1000	Solids, %	60
				Free NCO	2.85
Solids, %	60	60	60	Eq. Wt.	1473
Free NCO	7.08	5.64	3.31	Appearance	Clear
Eq. Wt.	593	740	1250		
Appearance	Clear	Clear	Clear		

Table 5
Prepolymers, Prepared, TDI/Polyester

Table 7
Prepolymers, Prepared, HMDI/Polyester

• •	•		•		1.7	1	2
1.5	1	2	3	4	Desmodur W	68	84
TD 80	114.5	162	91	310	TD 80	46	57
Formrez E65-73	485.5				Niax PCP 0240	486	432
Formrez L4-55		438			Niax PCP 0230		20
Niax PCP 0240			509		TMP		7
Niax PCP 0210				662	DBTDL, 10%	5	
Cellosolve Acetate	200	200	200		Cellosoive Acetate	200	200
Xyloi	200	200	200	28	Xylol	195	200
Total	1000	1000	1000	1000	Total	1000	1000
Solids, %	60	60	60	97.2	Solids, %	60	60
Free NCO	2.88	4.06	2.20	8.16	Free NCO	2.31	2.79
Eq. Wt.	1458	1034	1898	514.5	Eq. Wt.	1821	1504
Appearance	Clear	Clear	Clear	Clear	Appearance	Clear	Clear

Table 8
Prepolymers, Prepared, MDI/TDI/Polyester/Ethers

1.8	1	2	3	4
TD 80	44	49	48	43
Mondur M	124	70	69	124
Teracol 2000	432	481	238	213
Niax PCP 0240			245	220
Cellosolve Acetate	200	200	200	200
Xylol	200	200	200	200
Total	1000	1000	1000	1000
Solids, %	60	60	60	60
Free NCO	4.35	2.60	2.52	4.33
Eq. Wt.	958	1618	1666	963
Appearance	Seedy	Clear	Clear	Clear

Table 9
Prepolymers, Prepared, HMDI/Polyester/Ethers

1.9	1	2		3	4	5
Desmodur W	276	217		135	136	191
Teracol 650	324					
Polymeg 1000		387				
Teracoi 2000				465		
Niax PCP 0240					464	
Niax PCP 0230						409
Cellosolve Acetate	200	200		200	200	200
Xylol	200	200		200	190	190
DBTDL, 10%					10	10
Totals	1000	1004		1000	1000	1000
Solids, %	60	60		60	60	60
Free NCO	4.60	3.63		2.27	2.37	3.33
Eq. Wt.	913	1157		1852	1773	1261
Appearance	Clear	Clear		Clear	Clear	Clear
1.9	6	7	8	9	10	11
Desmodur W	227	183	198	223	100	229
Teracol 650	131	106	57.2	85		
Niax PCP 0240		311	337	255		571
Niax PCP 0230	242					
TMP			7.8			
Olin TP440				37		
Niax PCP 0260					500	
DBTDL, 10%	10	10	10	10	5	
Cellosoive Acetate	200	200	200	200	200	100
Xylol	190	190	190	190	195	100
Totals	1000	1000	1000	1000	1000	1000
Solids, %	60	60	60	60		80
Free NCO	3.96	3.19	3.45	3.87	1.73	4.88
Eq. Wt.	1060	1317	1218	1085	2433	860
Appearance	Seedy	Clear	Clear	Clear	Clear	Clear

Table 10
Polyol Bases, Pigmented, Polyester

2.3	1A	1B	1C	2A	2B	3B	3A
Niax PCP 0300	359			90		54	831
Niax PCP 0301		364					
Niax PCP 0310			363				
Polymeg 1000				258		361	
Doyle #2B PP					583.5		
Cellosolve Acetate				100			110
Xylol	145	145	145	100		150	
Thixatrol ST	15	15	15	15	15	15	15
Titanium Dioxide	400	400	400	300	300	300	300
Talc 30-36	200	200	200				200
Novacite 1250	250	250	250	250	250	250	
DBTDL, 10%	2	2	2		1		
U/L 28				1			1
SC100		58	58	58			
Total	1429	1434	1433	1114	1149.5	1130	957
Yield, Gal	102	102	102				70
Lb/Gal	14.0	14.06	14.05				13.75
Eq. Wt.	721.7	395	1184	1114	1149	1130	525

Table 11 Hydroxyl-Terminated Prepolymers

	Polyether									
2.5	0	1	2	4	5	6	7	10		
TD 80	68	48	24	115	164	114	83	48		
Polymeg 650	532			423	304	281				
Polymeg 1000		552					472			
Teracol 2000			576					526		
1.4 Butane Diol				62	132	205	45	26		
Cellosoive Acetate	200	200	200	200	200	200	200	200		
Xylol	200	200	200	200	200	200	200	200		
Total	1000	1000	1000	1000	1000	1000	1000	1000		
Solids, %	60	60	60	60	60	60	60	60		
Ratio, TD1:										
PTMEG-Modifier	1:2	1:2	1:2	1:1:1	2:1:3	3:2:10	1:1:1	1:1:1		
Lb/Gal	8.02	8.09	8.13	8.45	8.55	8.43	8.20	8.18		
Eq. Wt,	1277	1811	3584	757	530	232	1032	1792		
Viscosity,										
centipoise (CPS)	240	200	47	280	260	96	170	152		
Freeze/Thaw	OK	OK	OK	OK	OK	OK	OK	OK		
Appearance	Clear	Clear	Clear	Clear	Clear	Clear	Clear	Hazy gel		

Table 11 (Cont'd)

2.5	Pigmented Bases									
	0A	1A	2A	4A	5A	6A	7A	10A		
PP 2.5-0	552									
2.5-1		552								
2.5-2			552							
2.5-4				552						
2.5-5					552					
2.5-6						552				
2.5-7							552			
2.5-10								552		
Thixatrol ST	15	15	15	15	15	15	15	15		
Titanium Dioxide	400	400	400	400	400	400	400	400		
Talc 30-36	200	200	200	200	200	200	200	200		
Novacite 1250	250	250	250	250	250	250	250	250		
DBTDL	1	1	2	2	1	2	1	2		
Total	1418	1418	1418	1418	1418	1418	1418	1419		
Lb/Gal	13.85	13.91	13.76	13.61	13.78	14.00	13.90	13.85		
Viscosity	52,000	4200	50,500	54,000	53,000	Paste	Paste	Paste		
Eq. Wt.	3280	4645	9206	1944	1361	611	2652	4607		

	Polyether						
2.5	13	14	15				
TD 80	112.3	83					
Mondur M			149				
Teracol 650	429.2		397				
Polymeg	1000	473					
TMP	58.5	44	44				
Cellosolve Acetate	200	200	200				
Xylol	200	200	200				
Total	1000	1000	1000				
Solids, %	60	60	60				
Ratio, TDT-MDI:							
PTMEG:Modifier	1:1:1	1:1:1	1:1:1				
Lb/Gai	8.40	8.35	8.40				
Eq. Wt.	775	1022	839				
Viscosity, CPS	262	270	270				
Freeze/Thaw	OK	OK	OK				
Appearance	Clear	Clear	Clear				

	Pigmented Bases								
2.5A	13A	13B	14A	15A					
PP 2.5-13	552	552							
2.5-14			552						
2.5-15				552					
Thixatrol ST	15	15	15	15					
Titanium Dioxide	300	300	300	300					
Talc 30-36	100	200	100	100					
Novacite 1250	250		250	250					
DBTDL-UL28	1	1	1	1					
Total	1218	1068	1218	1218					
Lb/Gal	12.15	12.23	12.13	12.16					
Viscosity	Pasty	Pasty	Pasty	Pasty					
Eq. Wt.	1710	1500	2256	1851					

Table 12
Hydroxyl-Terminated Prepolymers, Polyester Based

	Polyester				
2.6	1	2			
TD 80	39	95			
Niax PCP 0230	561				
Niax PCP 0210		455			
TMP		50			
Cellosolve Acetate	200	200			
Xylol	200	200			
Total	1000	1000			
Solids, %	60	60			
Ratio, TDI:ESTER:Modifier	1:2:5	1:1:1			
Lb/Gal	8.52	8.62			
Viscosity, CPS	310	350			
Freeze/Thaw	OK	OK			
Appearance	Clear	Clear			

	Pigmented Bases			
2.6A	1A	2A		
PP 2.6-1	552			
2.6-2		552		
Thixatrol ST	15	15		
Titanium Dioxide	400	300		
Talc 30-36	200	20 0		
Novacite 1250	250			
DBTDL	1			
UL28		1		
Total	1418	1068		
Lb/Gai	1410	1283		
Viscosity	Pasty	Pasty		
Eq. Wt.	5936	1742		

Table 13
Hydroxyl-Terminated Prepolymers, Miscellaneous

2.7	11	2	3	4	5	9
TD 80					69	94
PP 1.4-3	530		665			
1.9-3		625				
1.3-5				605		
Teracol 650	285	225	177	237		238
Polymeg 1000					388	
Niax PCP 0230						220
Niax PCP 0300					143	
TMP			24			• 48
Cellosoive Acctate	94	75	67	79	200	200
Xylol	94	75	67	79	200	200
Total	1003	1000	1000	1000	1000	1000
Solids, %	60	60	60	60	60	60
Lb/Gal	8.20	8.22	8.12	8.14	8.20	8.21
Eq. Wt.	2358	2950	1890	2785	1273	945
Viscosity, CPS	277	310	250	320	260	230
Freeze/Thaw	OK	OK	OK	OK	OK	OK
Appearance	Clear	Clear	Clear	Clear	Clear	Clear
2.7	10	11	14			
TD 80			68			
Desmodur W	94	96				
Teracol 650	120	122	170			
Niax PCP 0230						
Niax PCP 0240	353	359	253			
TMP	33					
Glycerol		23				
TP 400			109			
Cellosolve Acetate	200	200	200			
Xylol	195	195	190			
DBTDL, 10%		5	10			
Total	1000	1000	1000			
Solids, %	60	60	60			
Lb/Gal	8.18	8.23	8.32			
Eq. Wt.	1366	1328	1309			
Viscosity, CPS	320	450	410			
Freeze/Thaw	OK	OK	OK			
Appearance	Clear	Clear	Clear			

Table 14
Hydroxyl-Terminated Prepolymers, Miscellaneous, Pigmented Bases

PP 2.7-1 552 552 797 2.7-2 97 2.7-3 450 450 70	2.7A	1A	1AA	2A	3A	4A	4B	4C	5A
PP 2.7-3 PP 2.7-4 Quadrol PP 2.7-4A Quadrol PP 2.7-4A PP 2.7-5 Thixatrol ST Titanium Dioxide 300 300 300 300 300 300 300 300 300 Talc 30-36 100 100 100 100 100 100 100 100 100 10		552	552						
PP 2.7-4 Quadrol Quadrol PP 2.7-4A Quadrol PP 2.7-4A PP 2.7-4A PP 2.7-5 Thixatrol ST 15 15 15 15 15 15 15 15 15 15 15 15 15				552					
Quadrol PP 2.7-4A Society Pasty Past					450				
PP 2.7-4A PP 2.7-5 Thixatrol ST T 15 Titanium Dioxide 300 300 300 300 300 300 300 300 300 30	PP 2.7-4					450			
PP 2.7-5 Thixatrol ST 15 15 15 15 15 15 Titanium Dioxide 300 300 300 300 300 Talc 30-36 100 100 100 100 100 100 Novacite 1250 250 250 250 250 250 DBTDL 1 3 1 1 1 UL 28 Cellosolve Acetate 33 33 22 75 50 Total 1284 1286 1262 1265 1215 202 206 1218 Lb/Gal 12.15 12.16 12.18 12.10 12.18 12.18 12.18 12.17 Viscosity Pasty	Quadrol						2	6	
Thixatrol ST	PP 2.7-4A						200	200	
Titanium Dioxide 300 300 300 300 300 300 300 300 300 30	PP 2.7-5								552
Talc 30-36	Thixatrol ST	15	15			15			15
Novacite 1250 250	Titanium Dioxide	300	300	300	300	300			300
DBTDL 1	Talc 30-36	100	100	100	100	100			100
Cellosolve Acetate 33 33 32 25 75 50	Novacite 1250	250	250	250	250				250
Cellosolve Acetate 33 33 22 75 50	DBTDL	1	3	1	1	1			
Total 1284 1286 1262 1265 1215 202 206 1218 12.6 1218 12.19 12.18 12.19 12.18 12.19 12.18 12.19 12.18 12.19	UL 28								1
Total 1284 1286 1262 1265 1215 202 206 1218 Lb/Gal 12.15 12.16 12.18 12.10 12.18 12.18 12.18 12.17 Viscosity Pasty Pas	Cellosolve Acetate	33	33	22	75	50			
Lb/Gal 12.15 12.16 12.18 12.10 12.18 12.18 12.18 12.17 Viscosity Pasty	Xylol	33	33	22	75	50			
Viscosity Pasty 5482 Pasty 5482 Pasty 6743 Pasty 7500 Pasty 3733 Pasty 2808 2.7A 7A 8A 9A 10A 11A 14A Vroh. Vinyl 150 150 Polacure 740M 30 PP 2.7-9 600 PP 2.7-10 600 PP 2.7-11 600 PP 2.7-14 600 FP 2.7-14 600 FP 2.7-14 600 FP 2.7-14 15	Total	1284	1286	1262	1265	1215	202	206	1218
Eq. Wt. 5482 5482 6743 5313 7500 3733 1892 2808 2.7A 7A 8A 9A 10A 11A 14A Vroh. Vinyl 150 150 Polacure 740M 30 PP 2.7-9 600 PP 2.7-10 600 PP 2.7-11 600 Thixatrol ST 15 15 15 15 15 15 Titanium Dioxide 300 300 300 300 300 Talc 30-36 100 100 Novacite 1250 250 250 250 250 250 UL 28 1 1 1 1 1 1 1 1 Cellosolve Acetate 300 300 300 Xylol 30 45 45 45 45 45 Total 1176 1146 1211 1211 1211 1211 Lb/Gal 13.1 13.0 11.85 11.90 11.87 11.92 Viscosity Pasty Pasty Pasty Pasty Pasty Pasty		12.15	12.16	12.18	12.10	12.18	12.18	12.18	12.17
2.7A 7A 8A 9A 10A 11A 14A Vroh. Vinyl 150 150 PP	Viscosity	Pasty	Pasty	Pasty	Pasty	Pasty	Pasty	Pasty	Pasty
Vroh. Vinyl 150 150 Polacure 740M 30 600 PP 2.7-9 600 600 PP 2.7-10 600 600 PP 2.7-11 600 600 Thixatrol ST 15 15 15 15 Titanium Dioxide 300 300 300 300 300 Talc 30-36 100<	Eq. Wt.	5482	5482	6743	5313	7500	3733	1892	2808
Polacure 740M 30 PP 2.7-9 600 PP 2.7-10 600 PP 2.7-11 600 Thixatrol ST 15 15 15 15 15 15 Titanium Dioxide 300 300 300 300 300 Talc 30-36 100 100 Novacite 1250 250 250 250 250 250 UL 28 1 1 1 1 1 1 1 1 Cellosolve Acetate 300 300 Xylol 30 45 45 45 45 Total 1176 1146 1211 1211 1211 Lb/Gal 13.1 13.0 11.85 11.90 11.87 11.92 Viscosity Pasty Pasty Pasty Pasty Pasty Pasty	2.7A	7A	8A	9 A	10A	11A	14A		
PP 2.7-9 PP 2.7-10 PP 2.7-11 PP 2.7-14 Thixatrol ST Titanium Dioxide 100 100 Novacite 1250 15 15 15 15 15 15 15 15 15 15 15 15 15	Vroh. Vinyl	150	150					•	
PP 2.7-10 600 PP 2.7-14 600 Thixatrol ST 15 250	Polacure 740M	30							
PP 2.7-11 PP 2.7-14 Thixatrol ST 15 15 15 15 15 15 Titanium Dioxide 300 300 300 500 300 300 Talc 30-36 100 100 Novacite 1250 250 250 250 250 250 UL 28 1 1 1 1 1 1 1 1 Cellosolve Acetate 300 300 Xylol 30 45 45 45 45 45 Total 1176 1146 1211 1211 1211 1211 Lb/Gal 13.1 13.0 11.85 11.90 11.87 11.92 Viscosity Pasty Pasty Pasty Pasty Pasty	PP 2.7-9		600						
PP 2.7-14 Thixatrol ST 15 15 15 15 15 15 Titanium Dioxide 300 300 300 300 300 Talc 30-36 100 100 Novacite 1250 250 250 250 250 250 UL 28 1 1 1 1 1 1 1 1 Cellosolve Acetate 300 300 Xylol 30 45 45 45 45 45 Total 1176 1146 1211 1211 1211 1211 Lb/Gal 13.1 13.0 11.85 11.90 11.87 11.92 Viscosity Pasty Pasty Pasty Pasty Pasty Pasty	PP 2.7-10				600				
Thixatrol ST 15 15 15 15 15 15 15 15 Titanium Dioxide 300 300 300 300 300 300 300 Talc 30-36 100 100 Novacite 1250 250 250 250 250 250 250 UL 28 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PP 2.7-11					600			
Titanium Dioxide 300 300 300 300 300 300 300 Talc 30-36 100	PP 2.7-14						600		
Talc 30-36 100 100 Novacite 1250 250 250 250 250 250 250 UL 28 1 1 1 1 1 1 1 1 Cellosolve Acetate 300 300 Xylol 30 45 45 45 45 45 Total 1176 1146 1211 1211 1211 1211 Lb/Gal 13.1 13.0 11.85 11.90 11.87 11.92 Viscosity Pasty Pasty Pasty Pasty Pasty Pasty	Thixatrol ST	15	15	15	15	15	15		
Novacite 1250 250 250 250 250 250 250 UL 28 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Titanium Dioxide	300	300	300	300	300	300		
UL 28 1 2 2 45 <	Talc 30-36	100	100						
Cellosolve Acetate 300 300 45 45 45 45 45 Total 1176 1146 1211 1211 1211 1211 Lb/Gal 13.1 13.0 11.85 11.90 11.87 11.92 Viscosity Pasty Pasty Pasty Pasty Pasty Pasty Pasty	Novacite 1250	250	250	250	250	250	250		
Xylol 30 45 45 45 45 Total 1176 1146 1211 1211 1211 1211 Lb/Gal 13.1 13.0 11.85 11.90 11.87 11.92 Viscosity Pasty Pasty Pasty Pasty Pasty Pasty	UL 28	1	1	1	1	ł	1		
Total 1176 1146 1211 1211 1211 1211 1211 Lb/Gal 13.1 13.0 11.85 11.90 11.87 11.92 Viscosity Pasty Pasty Pasty Pasty Pasty Pasty	Cellosoive Acetate	300	300						
Lb/Gal 13.1 13.0 11.85 11.90 11.87 11.92 Viscosity Pasty Pasty Pasty Pasty Pasty Pasty	Xyloi	30	45	45	45	45	45		
Viscosity Pasty Pasty Pasty Pasty Pasty	Total	1176	1146	1211	1211	1211	1211		
	Lb/Gal	13.1	13.0	11.85	11.90	11.87	11.92	•	
Eq. Wt. 3200 6492 1994 2759 2679 2643	Viscosity	Pasty	Pasty	Pasty	Pasty	Pasty	Pasty		
	Eq. Wt.	3200	6492	1994	2759	2679	2643		

Table 15 Coatings

3.0	. 1	2	3	4	5	6	7	8
Polyol Base 2.3-1A	39.0			46.0				
(PB) 2.3-1B		26.0			32.0			
2.3-1C			51.0			58.5		
2.3-4A							48.8	
2.3-5A								54.5
Prepolymer 1.3-2	61.0	74.0	49.0				51.2	45.5
(PP) 1.3-4				54.0	68.0	41.5		
1.3-5								
Total	100	100	100	100	100	100	100	100
Film Appearance	E, G, S	I	E, G	E, G, S	1	E, G, S	IC	IC
Tensile Strength			843					
Elongation (EL)			200					
3.0	9	10	11	12	13	14	15	16
PB 2.5-5A		41.0			54.5			
2.5-6A	47.5	18.4	25.6	26.9		21.1	6.0	51.3
2.5-2A			42.9			35.3		
2.5-1A				36.0			48.4	
PP 1.3-2					45.5	43.6		
1.3-5							45.6	
1.3-1	52.5	40.6	31.5	37.1				
1.3-6								48.7
DBTDL, 90% Xylol					0.1			
Total	100	100	100	100	100.1	100	100	100
Film Appearance	E	E	ES	ES	IC	IC	IC	E
TS	1082	878	1368	1700		421		780
EL	640	700	680	540		260		300
3.0	17	18	19	20	21	22	23	24
PB 2.5-4A					45.9		30.2	
2.5-5 A	70.0			61.8			21.1	
2.5-6A		27.0	37.7		14.4	24.6	9.5	10.0
2.5-2A		45.0						
2.5-1A			22.5			33.1		
2.5-7A								43.1
PP 1.3-4				38.2	39.7	42.3	39.2	13.7
1.3-6	30.0	28.0	39.8					
1.3-5								33.2
Total	100	100	100	100	100	100	100	100
Film Appearance	ES	IC, F	ES	E	E	E	E	ES, T
TS 266		687	867	657	933	833		
EL 720		440	640	480	560	520		

Table 15 (Cont'd)

3.0	25	26	27	28	29	29a	30	30a
PB 2.5-1A			48.4					
2.5-4A		31.4			44.5	44.5		
2.5-5A		22.0			13.4	13.4		
2.5-6A			9.0	12.4			10.5	10.5
2.5-7A	64.8			53.6			45.5	45.5
PP 1.3-4	10.2	13.6	12.4	34.0				
1.3-5	25.0	33.0	30.2					
1.3.7					42.1	42.1	44.1	44.1
Zirconium oct. 1.2%						0.2		0.2
Total	100	100	100	100	100	100.2	100	100.2
Film Appearance	ES, T	ES, T	ES, T	E, S	ĬС, Т	IC, sT	IC, sT	IC, sT
3.0	31	31a	32	32a	33	34	37	38
PB 2.5-1A	50.7	50.7				·	51.0	
2.5-2A			29.4	29.4		13.4		
2.5-5A			21.7	21.7	57.5			20.7
2.5-6A	9.5	9.5	7.8	7.8			9.5	
2.5-4A						42.6		
2.5-7A								40.5
PP 1.3-7	39.8	39.8	41.1	41.1				
1.9-1					42.5	44		
1.9-2		_					3.95	38.8
Ar-Octoate 1.2%		0.2		0.2				
Total	100	100.2	100	100.2	100	100	100	100
Film Appearance	ES, sT	ES, sī	ES, sT	ES, sT	IC	IC	IC	IC
3.0	41	42	44	45	46	47	48	49
PB 2.5-1A	61.7							
2.5-2A		33.9						
2.5-4A		28.6					58.5	53.4
2.5-5A						27.5		
2.5-6A			32.6	5.0	34.5	28.8		
2.5-10A			27.4	56.8	29.0			
PP 1.9-3	38.3	37.5						
1.3-1			40.0					
1.3-5				38.2				27.8
1.3-6					36.5			
1.4-1 1.4-3						43.7	41.5	100
							41.5	18.8
Total	100	100	100	100	100	100	100	100
Film Appearance Potlife, min.	IC, sT	IC, sT	IC, sT	NC	IC, S	E 5	IC 15	Ю, Т

Table 15 (Cont'd)

3.0	50	51	52	53	54	55		
PB 2.5-1A						36.9		
2.5-2A					36.8			
2.5-4A		46.5						
2.5-5A	62.6				5.4			
2,5-6A		14.6	22.0	16.4		16.9		
2.5-7A				47.3	22.0			
2.5-10A			41.4					
PP 1.4-2	37.4	38.9	36.6	36.3	16.2	16.1		
1.9-1					25.0	24.7		
Total	100	100	100	100	100	100		
Film Appearance	IC, F	IC, F	E, F	E, F	E, F	E, F		
Potlife, min.	10	10	5-10	5~10	5-10	5-10		
TS			333	358	606	214		
EL			100	200	400	100		
Tear Strength	Poor	Poor	Poor	Poor		Poor		
3.0	56	57	58	59	60	61	62	63
PB 2.7-1AA	80.0	87.0	90.2	84.4	10.0	20.0	4.0	4.0
2.7-1A					70.0	60.0	76.0	76.0
PP 1.4-1			9.8					
1.4-2		13.0						
1.4-3	20.0				20.0	20.0	20.0	10.0
1.9-1				15.6				
1.9-3								27.0
Total	100	100	100	100	100	100	100	117
Film Appearance	E, F	E, F	E, F	IC, SG	E, F	E, F	E, sT	E, sT
Potlife, min.	5	5	5		15	10	30	30
TS	1200	357	200			760		
EL	720	720	100			680		
3.0	64	65	66	67	68	69	70	71
PB 2.7-1AA	9.2	7.0	9.2	8.0				
2.7-1A	72.0	66.0	72.0	76.4	82.8	84.2	85.4	32.4
2.5-2A								54.2
PP 1.9-1				15.6				
1.9-2			18.8					
1.9-3	18.8	27.0						
1.3-4					5.8	8.2	10.6	4.6
1.4-3					11.4	7.6	4.0	8.8
Total	100	100	100	100	100	100	100	100
Film Appearance	IC	ES	ES	ES	E, SG	E, SG	E, SG	ES, SG
TS	500	143	214	500	345	533	156	
EL	80	80	60	800+	520	700	400	

Table 15 (Cont'd)

3.0	72	73	74	75	76	77	78	79
PB 2.5-1A				81.6				
2.5-2A	83.0	85.6	84.6					
2.7-1A							40.4	41.4
2.7-2A						45.6		
2.7-3A					79.4	35.8	39.2	40.0
PP 1.3-4		4.8	2.8	3.4				3.4
1.4-3	17.0	9.6	12.6	15.0	20.6	18.6	20.4	15.2
Total	100	100	100	100	100	100	100	100
Film Appearance	IC	IC	IC	E, SG	E, F	E, F	E, F	E, F
TS				413	1133	366	786	889
EL				+008	+008	800+	800+	800+
3.0	80	81	82	83	84	85	86	87
PB 2.7-1A								32.8
2.7-2A		75.2		78.2				
2.7-3A	70.4		74.0				32.0	
2.7-4Λ					84.4	80.0	45.4	44.8
PP 1.2-1	29.6	24.8						
1.3-5			26.0	8.12		20.0	22.6	22.4
1.4-3					15.6	·	·	
Total	100	100	100	100	100	100	100	100
Film Appearance	E, F	IC, F	E, F	IC, F	IC	IC	IC	IC
TS	385		492					
EL	800+		780					
3.0	88	89	90	91	92	93	93a	93b
PB 2.7-1A			27.0					
2.7-2A		31.2						
2.7-3A	75.0	52.4	55.6	74.4				
2.7-4B					67.8	84.6	83.6	82.4
PP 1.3-1						15.4	16.4	17.6
1.8-2	25.0	16.4	17.4	25.6	32.2			
Total	100	100	100	100	100	100	100	100
Film Appearance	E, F	JC, F	IC, F	E, F	E, SG	ES, F	ES, F	ES
Potlife, min.	30	30	30	30	30			
TS	889			857	900	143	233	600
EL	800+			800+	800+	100	200	620
3.0	93c	94	95	96	97	98	99	100
PB 2.7-4B	81.2			50.0	29.2	25.4	_	
2.7-4C		49.4	12.6					
2.5-2A			61.4					
2.7-1A					43.0	37.2	58.6	
PCP 0300				2.4		1.2	2.0	
2.7-5A								57.4
PP 1.8-2	18.8	50.6	26.0	47.6	27.8	36.2	39.4	
1.5-3						·		42.6
Total	100	100	100	100	100	100	100	100
Film Appearance	ES	E	IC	E, S	E, S	E, S	E, S	IC
TS	548	893						
EL	700	520						

Table 15 (Cont'd)

3.0	101	102	103	104	105	106	107	104
PB 2.7-5A	19.4	26.2	61.2					
2.7-4A	51.8	34.8						
2.5-13A				27.0	4.0	9.4	16.6	27.0
2.5-0A					52.0	39.8	23.6	
PP 1.5-3	28.8	39.0		73.0	44.0	50.8	59.8	73.0
1.8-2			38.8					
Total	100	100	100	100	100	100	100	100
Film Appearance	IC	IC	E, G	E, F	IC	IC	E, F	E, F
TS 72 hrs			506	1800			733	882
EL 72 hrs			406	800+			60	300
T\$ 17 days				2280				
EL 17 days				800+				
3.0	104A	104B	104C	104Aa	104Ba	104Ca	104Da	104Ea
PB 2.5-13A	37.2	32.6	27.0	37.2	32.6	54.0		
PP 1.5-3	62.8	67.4	73.0	62.8	67.4	146.0		
DBTDL, 10% xylol			8 dps	8 dps	8 dps	6 dps	+6 dps	+12 dps
(1 gm = 50 dps)			•	-	•	•	•	-
Total	100	100	100	100	100	200+	200++	200+++
Film Appearance	E, F	E, F	E, F	E, F	E, F	E, F	E, F	E, F
TS	387	562	880	600	562	882	729	824
EL	40	60	200	160	60	300	128	260
3.0	104Fa							
104Ea	200							
DBTDL, 10%	+24 DPS							
TS	909							
EL	360							
		100						
3.0	108	109	110	111	112	113	116	117
PB 2.5-0A		49.4	35.8	19.6		48.0		
2.5-13A	45.0	8.6	18.6	30.6			34.4	
2.5-14A		40.0			52.0	11.0		41.2
PP 1.5-3	55.0	42.0	45.6	49.8	48.0	41.0	35.4	21.4
1.8-2 1.8-3							30.2	37.4
Total	100	100	100	100	100	100	100	100
l'ilm Appearance	IC, F	lC	IC	IC	IC	IC	E, F	E, F
TS						1700	1013	
EL						600	580	
3.0	118	119	120	121	122	119z	120e	121a
PB 2.5-13A		35.6	33.6			35.6	33.6	
2.5-14A	38.6			55.4	53.0	-		55.4
PP 1.5-3	22.4							
1.8-2 1.8-3	39.0	64.4	66.4	44.6	47.0	64.4	44 4	44.6
DBTDL, 10%	37.0	04.4	90.4	74.0	4 /.U	04.4 3 dps	66.4 3 dps	44.6 3 dps
		400						<u>_</u>
Total	100	100	100	100	100	100	100	100
Film Appearance	E, F	E, F	E, F	IC	IC	E, F	E, F	IC
TS	1283	740	869			750	840	
EL	700	700	700			700	700	

Table 15 (Cont'd)

3.0	122a	121A	121B	121C	121D	121E		
PB 2.5-14A	53.0	54.4	54.4	54.4	54.4	54.4		
1.8-3	47.0	44.6	44.6	44.6	44.6	44.6		
DBTDL, 10%	3 dps							
DAPCO, 10% dps		10	+10	+20	+40	+40		
Total	100	100	100+	100+	100+	100+		
Film Appearance	IC	IC	IC	IC	IC	IC		
3.0	123	124	125	123a	124a	125a		
PB 2.5-13A	34.0			34.0				
2.5-14A		53.6			53.6			
2.7-5 A			59.0			59.0		
PP 1.9-4	66.0	46.4	41.0	66.0	46.4	41.0		
DAPCO, 10%				10 dps	10 dps	10 dps		
Total	100	100	100	100	100	100		
Film Appearance	E, G	E, SG	E, SG	E, SG	E, SG	E, SG		
TS 4 days	2460	1393	920	2338	993	805		
EL 4 days	500	700	340	520	620	320		
TS 7 days	2153	1013	777	2057	1014	759		
EL 7 days	500	480	100	500	600	100		
3.0	123A	123B	123C	123D	126	127	128	129
PB 2.5-13A	30.0	32.0	36.0	38.0	42.0		40.0	
2.5-14A						62.0		60.0
PP 1.9-4	70.0	68.0	64.0	62.0				
1.9-5					58.0	38.0	60.0	40.0
Total	100	100	100	100	100	100	100	100
Object.		Off-Rati	o Mixing		Theo	. NCO	Anal.	NCO
Film Appearance	ES, SG	ES, SG	ES, SG	ES, SG	ES, G	ES, G	ES, G	ES, G
TS 6 days	2371	2269	2000	1954	1851	709	1654	945
EL 6 days	560	540	620	664	652	800+	580	800+
3.0	130	131	132	133	134	135	136	137
PB 2.5-13A							14.0	
2.5-14A								26.6
2.7-7A								
PP 1.9-4	60.4	62.2	68.0	75.2	68.0	67.0	44.4	37.8
	60.4	62.2 37.8		75.2	68.0 20.8	67.0	44.4 27.0	37.8 23.0
1.9-5			68.0 32.0	75.2				
1.5-3	60.4 39.6				20.8	21.8	27.0	23.0
				75.2				
1.5-3					20.8	21.8	27.0	23.0
1.5-3 1.8-4	39.6	37.8	32.0	24.8	11.2	21.8 11.2	27.0	12.6
1.5-3 1.8-4 Total	39.6	100	32.0	24.8	11.2	21.8 11.2	27.0 14.6	23.0 12.6 100
1.5-3 1.8-4 Total Film Appearance	39.6 100 E, SG	37.8 100 E, SG	32.0 100 E, SG	24.8 100 E, SG	20.8 11.2 100 E, SG	21.8 11.2 100 E, SG	27.0 14.6 100 E, SG	23.0 12.6 100 E, SG

Table 15 (Cont'd)

3.0	138	139	140	141	142	143	144	145
PB 2.7-7A				10.4				
2.7-8A	76.8		53.0	64.0				
2.7-9A					57.9	67.1	58.0	
2.7-10A								65.6
2.5-15A		48.8	15.2					
PP 1.9-4	23.2	51.2	31.8	25.6				
1.9-7					42.1	32.9	42.0	34.4
Total	100	100	100	100	100	100	100	100
Film Appearance	IC, SC	IC, SG	ES, SG	ES, SG	E	ES, S	E	E
TS	1083	1185	916	1000	1100		1153	800
EL	90	720	230	80	800		800	360
3.0	146	147	148	149	150	151	152	153
PB 2.7-9A		59.8			62.6			
2.7-10A			67.4			70.8		
2.7-11A	64.8			66.6			69.2	
2.3-2B								44.2
PP 1.9-7	35.2							55.8
1.9-8		40.2	32.6	33.4		•••	•••	
1.1-2					37.4	30.2	30.8	
Total	100	100	100	100	100	100	100	100
Film Appearance	E	E	E	E	E	E	E	IC
TS	1114	1357	1286	1048	1214	971	1086	
EL	380	280	330	220	420	120	320	
3.0	154	155	156	157	158	159	160	161
PB 2.3-2B	46.2	49.0				64.4	64.4	
2.3-2A			45.4	48.2	48.2			
2.3-3B								56.8
PP 1.9-8	53.8		54.6					
1.9-9	53.8	51.0	54.6	51.8	51.8			
1.9-9 1.1-2	53.8	51.0	54.6	51.8	51.8	35.6	35,6	
1.9-9 1.1-2 1.1-3	53.8	51.0	54.6	51.8	51.8	35.6		43.2
1.9-9 1.1-2 1.1-3 DBTDL, 10%	53.8	51.0	54.6	51.8		35.6	35,6 5 dps	43.2
1.9-9 1.1-2 1.1-3	53.8	51.0	54.6	51.8	51.8			
1.9-9 1.1-2 1.1-3 DBTDL, 10%	100	51.0	100	51.8		35.6		43.2
1.9-9 1.1-2 1.1-3 DBTDL, 10% Polypropylene Fibers Total Film Appearance					1.0		5 dps 100 E	
1.9-9 1.1-2 1.1-3 DBTDL, 10% Polypropylene Fibers Total Film Appearance Potlife, min.	100 E	100 E	100	100 E	1.0 101.0 E	100 ES	5 dps 100 E 10	100 ES
1.9-9 1.1-2 1.1-3 DBTDL, 10% Polypropylene Fibers Total Film Appearance Potlife, min. TS	100 E 1000	100 E 1066	100 E 889	100 E 375	1.0 101.0 E	100 ES 333	5 dps 100 E 10 579	100 ES 222
1.9-9 1.1-2 1.1-3 DBTDL, 10% Polypropylene Fibers Total Film Appearance Potlife, min.	100 E	100 E	100 E	100 E	1.0 101.0 E	100 ES	5 dps 100 E 10	100 ES
1.9-9 1.1-2 1.1-3 DBTDL, 10% Polypropylene Fibers Total Film Appearance Potlife, min. TS	100 E 1000	100 E 1066	100 E 889	100 E 375	1.0 101.0 E	100 ES 333	5 dps 100 E 10 579	100 ES 222
1.9-9 1.1-2 1.1-3 DBTDL, 10% Polypropylene Fibers Total Film Appearance Potlife, min. TS EL	100 E 1000 320	100 E 1066 260	100 E 889 480	100 E 375 212	1.0 101.0 E 706 460	100 ES 333 420	5 dps 100 E 10 579 800+	100 ES 222 60
1.9-9 1.1-2 1.1-3 DBTDL, 10% Polypropylene Fibers Total Film Appearance Potlife, min. TS EL 3.0 PB 2.3-3B 2.5-13A	100 E 1000 320 162	100 E 1066 260	100 E 889 480	100 E 375 212	1.0 101.0 E 706 460	100 ES 333 420 167	5 dps 100 E 10 579 800+ 168	100 ES 222 60 169
1.9-9 1.1-2 1.1-3 DBTDL, 10% Polypropylene Fibers Total Film Appearance Potlife, min. TS EL 3.0 PB 2.3-3B 2.5-13A 2.5-15A	100 E 1000 320 162 56.8	100 E 1066 260 163	100 E 889 480 164	100 E 375 212 165	1.0 101.0 E 706 460 166	100 ES 333 420	5 dps 100 E 10 579 800+	100 ES 222 60
1.9-9 1.1-2 1.1-3 DBTDL, 10% Polypropylene Fibers Total Film Appearance Potlife, min. TS EL 3.0 PB 2.3-3B 2.5-13A 2.5-15A PP 1.1-3	100 E 1000 320 162	100 E 1066 260 163	100 E 889 480 164 40.0	100 E 375 212 165 44.0	1.0 101.0 E 706 460 166	100 ES 333 420 167	5 dps 100 E 10 579 800+ 168	100 ES 222 60 169
1.9-9 1.1-2 1.1-3 DBTDL, 10% Polypropylene Fibers Total Film Appearance Potlife, min. TS EL 3.0 PB 2.3-3B 2.5-13A 2.5-15A	100 E 1000 320 162 56.8	100 E 1066 260 163	100 E 889 480 164	100 E 375 212 165	1.0 101.0 E 706 460 166	100 ES 333 420 167	5 dps 100 E 10 579 800+ 168	100 ES 222 60 169
1.9-9 1.1-2 1.1-3 DBTDL, 10% Polypropylene Fibers Total Film Appearance Potlife, min. TS EL 3.0 PB 2.3-3B 2.5-13A 2.5-15A PP 1.1-3	100 E 1000 320 162 56.8	100 E 1066 260 163	100 E 889 480 164 40.0	100 E 375 212 165 44.0	1.0 101.0 E 706 460 166	100 ES 333 420 167	5 dps 100 E 10 579 800+ 168	100 ES 222 60 169
1.9-9 1.1-2 1.1-3 DBTDL, 10% Polypropylene Fibers Total Film Appearance Potlife, min. TS EL 3.0 PB 2.3-3B 2.5-13A 2.5-15A PP 1.1-3 1.9-5 Total Film Appearance	100 E 1000 320 162 56.8 43.2	100 E 1066 260 163 42.0 58.0 100	100 E 889 480 164 40.0 60.0 100 ES	100 E 375 212 165 44.0 56.0 100 ES	1.0 101.0 E 706 460 166 46.0 54.0 100 ES	100 ES 333 420 167 57.2 42.8 100 ES, IC	5 dps 100 E 10 579 800+ 168 59.2 40.8 100 ES, IC	100 ES 222 60 169 55.2 44.8 100 ES, IC
1.9-9 1.1-2 1.1-3 DBTDL, 10% Polypropylene Fibers Total Film Appearance Potlife, min. TS EL 3.0 PB 2.3-3B 2.5-13A 2.5-15A PP 1.1-3 1.9-5 Total Film Appearance TS	100 E 1000 320 162 56.8 43.2	100 E 1066 260 163 42.0 58.0 100 ES 1538	100 E 889 480 164 40.0 60.0 100 ES 1923	100 E 375 212 165 44.0 56.0 100 ES 1714	1.0 101.0 E 706 460 166 46.0 54.0 100 ES 1826	100 ES 333 420 167 57.2 42.8 100 ES, IC 850	5 dps 100 E 10 579 800+ 168 59.2 40.8 100 ES, IC 724	100 ES 222 60 169 55.2 44.8 100 ES, IC 690
1.9-9 1.1-2 1.1-3 DBTDL, 10% Polypropylene Fibers Total Film Appearance Potlife, min. TS EL 3.0 PB 2.3-3B 2.5-13A 2.5-15A PP 1.1-3 1.9-5 Total Film Appearance	100 E 1000 320 162 56.8 43.2	100 E 1066 260 163 42.0 58.0 100	100 E 889 480 164 40.0 60.0 100 ES	100 E 375 212 165 44.0 56.0 100 ES	1.0 101.0 E 706 460 166 46.0 54.0 100 ES	100 ES 333 420 167 57.2 42.8 100 ES, IC	5 dps 100 E 10 579 800+ 168 59.2 40.8 100 ES, IC	100 ES 222 60 169 55.2 44.8 100 ES, IC

Table 15 (Cont'd)

3.0	170	171	172	173	174	175	178	179
PB 2.7-9A	59.0					42.6	49.8	
2.7-10A		66.6					•	58.0
2.7-11A			65.8	32.8				
2.5-13A				21.0				
2.3-1A		•••			21.2			
PP 1.9-5	41.0	33.4	34.2	46.2	5 0.0			
1.9-10					78.8	57.4		
1.9-8/10							60.3	42.0
(1+)	 						50.2	42.0
Total	100	100	100	100	100	100	100	100
Film Appearance	ES	ES, F	ES, SG	ES, SG	Crack	Crack	ES	ES
TS	720	720	1320	1520			1034	1290
EL	+008	340	560	600			320	60
3.0	180	181	182	183	184	185	186	187
Similar to:	#123	#126	#104	#116				
PB 2.5-13A	34.0	42.0	27.0	34.4		51.4	38.4	45.0
2.7-9A					55.2			
Polypropylene Fibers	0.5	0.5	0.5	0.5				
PP 1.9-4	66.0							
1.9-5		58.0						
1.5-3			73.0	35.4				
1.8-2				30.2				
1.6-1					44.8	48.6	61.6	55.0
Total	100	100	100	100	100	100	100	100
Film Appearance	E, SG	E, SG	E, SG	E, F	E, SG	E, SG	E, SG	E, SG
TS	1285	1407	882	1161	515	494	848	705
EL	280	700	240	800+	60	80	180	120
3.0	188	189	190	191	192	193	194	195
PB 2.5-13A	46.6	53.2	54.8	51.6	47.6	34.0	38.2	43.0
PP 1.9-4	53.4					66.0	58.6	50.0
1.9-5		46.8						
1.6-1			26.0	27.8				
1.9-9			19.2	20.6				
1.7-2					52.4			
Mobay CB60							3.0	7.0
Total	100	100	100	100	100	100	100	100
Film Appearance	IC', S	ES, S	IC, S	E, S	E	E, SG	E, S G	E, SG
TS	740	433	666	937	1290	1716	1333	1067
EL	60	800+	200	300	420	640	380	160
3.0	196	197	199	200	201	202	203	204
PB 2.5-13A	49.6					46.0	43.0	50.8
12.7-14A		57.6	61.6	63.8	68.8			20.0
PP 1.9-4	38.4	42.4						
Mobay CB60	12.0							
1.9-5			38.4	36.2				
1.9-9					31.2			
1.7-1						54.0	57.0	_
1.7-2								49.2
Total	100	100	100	100	100	100	100	100
Film Appearance	E. SG	IC, S	ES, SG	IC, SG	ES, SG	IC, SG	ES, SG	ES, SG
TS	1219	620	400	367	667	667	993	1010
EL	120	40	400	120	520	80	240	310

Table 16 Hydrolytic Stability Test

Method: 1. Cast duplicate films at approximately 15- to 20-mil thickness on release paper; cure for 7 days at 72° F, 50% relative humidity.

2. Place one film immersed in deionized water for 7 days at 140° F.

3. Remove the films and dry overnight.

4. Test for hardness, tensile strength, and elongation-untreated and treated films.

5. Express any changes as a percent deviation from the untreated film.

Test Film #: Film Thickness, mils:	165 12	123 13	164 12½	126 13¾	181 13½	193 12½	123B 13	166 11½
Untreated								
Hardness, Shore A:	78	90	78	75	85	70	90	87
Elongation, %:	800	620	720	652	700	640	540	800
Tensile Strength, Lb:	1714	2370	1923	1851	1407	1716	2269	1826
Treated								
Hardness, Shore A:	59	58	65	62	70	50	66	55
% Retained:	76	64	83	83	82	71	73	63
Elongation:	800+	800+	800+	800+	800+	800+	800+	800+
Tensile Strength:	541	500	760	763	667	520	615	435
% Retained:*	32	21	40	41	47	30	27	24

^{*}Since the capacity of the test equipment was exceeded, these values are not accurate; nevertheless, they are indicative of some serious problems.

Table 17 Urethane Coatings, Ether Bases

	Х9	X10	X11	X12	X13	X14	X15	X16	X17	X18
Pigmented Base: 2.5-13B, PTM EG650, TMP	60.0	54.0	42.4	54.0	66.3	62.6	54.0	64.8	61.2	53.0
Prepolymers: 1.9-1 PTM EG650, HMDI 1.9-2 PTM EG1000, HMDI 1.9-3 PTM EG2000, HMDI 1.3-8 PTM EG650, TDI	40.0	46.0	57.6	36.6 5.6	22.2	26.6 10.8	36.6 9.4	21.8	26.0 12.8	36.0 11.0
Physical Characteristics: Tensile Strength, Original Water imm. 140° F/168 hrs % Retained/Increased	1050 1135 108	1085 1572 145	1379 1600 116	933 1222 131	1005 1044 104	921 941 102	1176 1150 98	967 1168 121	914 1143 125	1223 1600 131
Elongation, Original % Water imm. 140°F/168 hrs % Increase	413 420 102	733 800 120	753 1000 132	333 473 142	433 480 111	446 666 149	766 1000 131	420 480 114	466 600 129	667 766 115
Shore A Hardness, Original Water imm. 140°F/168 hrs % Retained	69 65 94	69 63 91	75 75 100	69 69 100	76 76 100	65 65 100	79 79 100	78 78 100	72 71 99	73 73 100
Tear Strength, lb/mil	0.15	0.185	0.253	0.270	0.218	0.235	0.188	0.221	0.217	0.223

Table 18 Urethane Coatings, Ester Based

	Y1	Y2	Y3	Y4	Y5	Y6	¥7
Pigmented Bases: 2.6-2A, PCP 0210, TMP, TDI 2.3-3A, PCP 0300	48.2	27.4	35.0	47.2	58.0	28.4 8.4	36.4 11.0
Prepolymer: 1.5-4, PCP 0210, TDI 1.9-5 PCP 0230, HMDI 1.9-4, PCP 0240, HMDI	51.8	72.6	18.8 46.2	52.8	9.4 32.6	63.2	11.8 40.8
Physical Characteristics: Tensile Strength, Original Water imm. 140° F/168 hrs % Retained	1447 1100 76	1866 1549 83	1400 1375 98	2085 2000 96	2133 1925 90	2896 2800 97	2067 1862 90
Elongation, Original % Water imm. 140° F/168 hrs % Increase	200 213 107	966 1200 124	433 500 115	780 933 120	453 680 150	760 1113 146	426 646 152
Shore A, Hardness, Original Water imm. 140° F/168 hrs % Retained	70 60 86	60 60 100	68 68 100	86 72 84	85 72 85	86 80 93	86 70 81
Tear Strength, lb/mil	0.225	0.138	0.211	0.514	0.437	0.480	0.291

APPENDIX: TRADE NAMES

Trade Name Andur	Component Prepolymers	Company Address Anderson Development Corp. 1415 E. Michigan Street Adrian, Michigan 49221
Conap	Prepolymers	Conap 1405 Buffalo Street Olean, New York 14760
Desmodur	Prepolymers Isocyanates	Mobay Chemical Company Penn Lincoln Pkwy. West Pittsburgh, PA 15205
Formrez	Polyester Polyols Curing Agents	Witco Chemical 277 Park Avenue New York, NY 10017
Mondur	MDI, TDI	Mobay Chemical Company
Niax PCP	Caprolactone Polyesters	Union Carbide 270 Park Avenue New York, NY 10017
Novacite	Silica, flaky	Malvern Minerals Company P.O. Box 1246 Hot Springs, AR 71901
Pluracol TP440	TMP adduct, polyol	BASF, Wyandotte Corp. Wyandotte, MI 48192
Polacure 740M	Diamine curative	Polaroid Corporation 730 Main Street-1A Cambridge, MA 02139
Poly Meg	PTMEG	The Quaker Oats Co. P.O. Box 3514 Chicago, 1L 60654
Quadrol	Cross linking Polyol	BASF, Wyandotte Corp.
SC-100	Aromatic Hydrocarbon Solvent	Available from most solvent suppliers
Teracol	PTMEG	E.I. DuPont deNemours & Co. Niagara Falls, NY 48192
Thixatrol ST	Thickener	N.L. Industries P.O. Box 700 Hightstown, NJ 08520
TP 440	TMP adduct (polyol)	BASF, Wyandotte Corp.

Trade Name

Component

Company Address

Vibrathane

Prepolymers

Uniroyal

United States Rubber Corp. Naugatuck, CN 06770

VROH

Vinyl Resin

Union Carbide Corp.

LIST OF ABBREVIATIONS

app: Anal: appearance analytical

CB 60: Dapco: Mondur CB 60 triethylene diamine

dps: E:

DBTDL: dibutyl tindilaurate drops excellent

EL: EQ: elongation equivalent

ES:

slow cure (48 to 72 hours)

F: G: flat glossy

HMDI:

hydrogenated MDI (Desmodur W)

1: IC: incompatible inadequate cure

imm:

immersion

min:

minutes

MDI:

4.4' diphenyl methane diisocyanate

N.C.:

no cure original

orig: PB:

pigmented polyol base

PP:

prepolymer

psi:

pounds per square inch

PTMEG: polytetramethylene ether glycol

S:

too soft film

s:

slightly semigloss

SG:

tacky

T: theo:

theoretical

TDI:

toluene diisocyanate trimethylol propane

TMP:

tensile strength (psi)

TS: UL 28:

dibutyl tin dilaurate, fast

visc:

viscosity

Wt: Zr:

weight zirconium

METRIC CONVERSIONS

≈ 25.4 mm I in.

I psi $\approx 6.9 \text{ kPa}$ 1 lb $\approx 0.37 \text{ kg}$

= °C

CERE DESTRIBUTION

a sur particular to the second

Chief of Engineers		
ATTN: Tech Monitor ATTN: DAEN-ASI-L (2)	Sth UNA, Koree ATTM: EAFE-M 96271 ATTM: EAFE-P 96259	ATTH: HTMC-NA ZUFF5
ATTN: WAEN-CCP	ATTH: RAFK-P 96259 ATTW: RAFK-T 96212	ATTN: Facilities Engineer Oakland Army Base 94626
ATTN: DAEN-CW ATTN: DAEN-CW		Bayonse MOT 07002
ATTN: DAEN-COM-R	ROK/US Combined Forces Command 96301 ATTN: EUSA-MMC-CFC/Engr	Sunny Paint MOT 28461
ATTH: DAEN-CWO	-	HARADCOM, ATTH: DROMA-F 071160
ATTH: DAEN-CUP ATTH: DAEN-HP	USA Japan (USARJ) Ch, PE Div, AJEH-PR 96343	TARCON, Fac. Div. 48090
ATTN: DAEN-HPC ATTN: DAEN-HPE	Fac Engr (Honehu) 96343	TECOM, ATTM: DESTE-LG-F 21005
ATTN: DAEN-HOO	Fac Engr (Okinawa) 96331	ISCUM, RITH. DESIL DO V
ATTH: DAEN-MPR-A ATTH: DAEN-RD	Rocky Mt. Arsensi, SARRM-15 80022	TRABOC NQ, TRABOC, ATTN: ATEN-FE
ATTN: DAEN-ROC	Area Engineer, AEDC-Area Office	ATTN: Facilities Engineer
ATTN: DAEN-RIM ATTN: DAEN-RH	Arnold Air Force Station, TN 37389	Fort Belvoir 22060
ATTN: DAEN-ZC	Western Area Office, CE	Fort Braning 31905 Fort Sitss 79916
ATTN: DAEN-ZCE ATTN: DAEN-ZCI	Vandenberg AFB, CA 93437	Carlisle Barracks 17013
ATTN: DAEN-ZCH	416th Engineer Command 60623	Fort Chaffee 72902 Fort Dix 08640
FESA, ATTN: Library 22060	ATTN: Facilities Engineer	Fort Eustis 23604
·	US Military Academy 10996	Fort Gordon 30905 Fort Hamilton 11252
FRSA, ATTN: DET III 79906	ATTEN	Fort Benjamin Harrison 46216
US Army Engineer Districts	ATTN: Dept of Geography & Computer Science ATTN: DSCPER/MARN-A	Fort Jackson 29207 Fort Knox 40121
ATTN: Library	ATTN: DSCPER/MAEN-A	Fort Leavenworth 66027
Alaska 99501 Al Batin 09616	Engr. Studies Center 20315	Fort Lee 23801 Fort McClellan 36205
Alhuquerque 87103	ATTN: Library	Fort Monroe 23651
Maltimore 21203 Buffaio 14207	AMERIC APPR - PRINCE AND AREA OF A 12 A 1	Fort Rucker 36362
Charleston 29402	AMHRC, ATTH: DEXMR-WE 02172	Fort Sill 73503 Port Leonard Wood 65473
Chicago 60604 Detroit 48231	USA ARROOM 61299	
Far Enst 96301	ATTN: DRCIS-RI-I ATTN: DRSAR-IS	TSARCOM, ATTN: STSA8-F 63120
Fort Marth 76102 Galvesion 77550		USACC
Hungington 25721	DARCOM - Dir., Inst., & Svcs. ATTN: Facilities Engineer	ATTN: Facilitien Engineer Fort Huschuch 85613
Jacksonville 32232 Japan 96343	ARRADOUM U7801	Fort Bitchie 21719
Kansas City 64106	Aberdmen Proving Ground 21005 Army Matis, and Mechanics Res. Ctr	. WESTCOM
Little Rock 72203 Los Angeles 90053	Corpus Christi Army Depot 78419	ATTN: Pacilities Engineer
Louisville 40201	Narry Diamond Laboratories 20783 Dugway Proving Ground 84022	Fort Shafter 96858
Heaphin 38193	Jefferson Proving Ground 47250	SHAPE 09055
Mobile 36628 Nashville 37202	Fort Monmouth 07703 Letterkenny Army Depot 17201	ATTN: Survivability Section, CCB-OPS Infrastructure Branch, LANDA
New Orleans 70160	Matick R&D Ctr. 01760	
New York 10007 Norfolk 23510	New Cumberland Army Depot 17070 Pueblo Army Depot 81001	HQ USEUCOM 09128 ATTN: ECJ 4/7-LOE
Omahs 68102	Red Biver Army Denot 75501	
Philadelphia 19106 Pittsburgh 15222	Redstone Aremai 33809 Rock Island Aremai 61299 Sevenne Army Depot 61074	Fort Belvoir, VA 22060 ATTN: ATZA-DTE-EM
Portland 97208	Savanne Army Depot 51074	ATTN: ATZA-DTE-SW
Riyadh 09038		ATTN: ATZA-PE
Rock Island 61201 Sacramento 95814	Tobyhanna Army Depot 18466	ATTN: Engr. Library ATTN: Canadiam Liaison Office (2) ATTN: IWR Library
San Francisco 94105 Savannah 31402	Tooele Army Depot 84074	ATTN: IWR Library
Seattle 98124	Waterviist Armenal 12189 Yuma Proving Ground 85364	Cold Regions Research Engineering Lab 03755
St. Louis 63101 St. Paul 55101	White Sands Missile Range 88002	ATTN: Library
Tulas 74102	DLA ATTN: DLA-WL 22314	ETL, ATTN: Library 22060
Vicksburg 39180		30100
Walia Walia 99362 Wilmington 28401	FORSCOM Engineer, ATTN: APEN-PE	Waterways Experiment Station 39180 ATTN: Libtary
•	ATTN: Facilities Engineer	·
US Army Engineer Civisions ATTN: Library	Fort Buchanan 00934 Fort Bragg 28307	HQ, XVIII Airborne Corps and 28307 Pt. Bragg
Europe 119757	Fort Campbell 42223	ATTN: AFZA-PE-EE
Huntaville 35807 wower Minaissippi Valley 39180	Fort Carson 80913 Fort Devens 01433	Chanute AFS, IL 61868
Middle East 09038	Fort Drum 13601	3345 CES/DE, Stop 27
Middle East (Rear) 22601 Missouri River 68101	Fort Hood 76544 Fort Indiantown Gap 17003	Norton AFB 92409
New England 02154	Fort Irvin 92311	ATTN: AFRCE-MX/DEE
North Atlantic 10007 North Central 60605	Fort Sam Houston 78234	Tyndali AFB, FL 32403
North Pacific 97208	Port McCoy 54650	AFESC/Engineering & Service Lab
Ohio River 45201 Pacific Ocean 96858	Fort McPherson 30330 Fort George G. Meade 20755	NAFEC
South Atlantic 30303	Fort Ord 93941	ATTN: RDTAE Liminon Office
Nouth Atlantir 30303 South Pacific 94111 Southwestern 75202	Fort Polk 71459	Atlantic Division 23511 Chesapeake Division 20374
Sauthmentera /1202	Port Richardson 99505 Fort Riley 66442	Caushera Division 29411
US Army Europe	Presidio of San Francisco 94129	Pacific Division 96860
3H2, 7th Army Training Command 09114 ATTN: AETTG-DEH (5)	Fort Sheridan 60037 Fort Stewart 31313	western pivision 64066
HQ, /th Army ODCS/Engr. 09403	Port Wainwright 99703	ATTH: Sr. Tech. FAC-03T 22332
ATTN: ARAZN-EH (4) V. Corms 09079	Vancouver Bks. 98660	ATTN: Aset. CDR R&D, FAC-03 22332
ATTN: AETVOEN (5)	RSC	NCRL 93041
VII. Gorps 09154 ATTN: ARTSDEH (5)	ATTN: HSLO-F 78234	ATTM: Library (Code LOBA)
ATTN: ACTODER (5) 21st Support Command 09325	ATTN: Facilities Engineer Pitssimons AMC 80240	Defense Technical Info. Center 22314
ATTH: AEREN (5)	Walter Reed AMC 20012	ATTW: DBA (12)
Berlin 09742 AZTN: AEBA-EN (2)	INSCOM - Ch, Inecl. Div.	Engineering Societies Library 10017
Southern European Tack Force 09168	ATTM: Yacilities Engineer	New York, NY
ATTN: AESE-ENG (3) Installation Support Activity 09403	Arlington Hall Station (2) 22212 Viez Hill Parms Station 22186	National Guard Bureau 20310
ATTN: ARURS-RP	AISC MITT LULMS SESEFOU TTIES	Installation Division
	WOM	
		HE Companies Printer Office 33304
Sth USA, Koree ATTN: EAFE (8) 96301	ATTW: Pacilities Engineer Cameron Station 22314	US Government Printing Office 22304 Receiving Section/Depository Depice (2)
		US Government Printing Office 22304 Receiving Section/Depository Dopies (2)

Trulsson, Nils
Flexible water-resistant urethane coatings for U.S. Army Corps of Engineers
dams/by Nils Trulsson, Al Beitelman. -- Champaign, IL: Construction Engineering
Research Laboratory; available from NTIS, 1982.
30 p. (Technical report/Construction Engineering Research Laboratory; M-319).

1. Protective coatings - testing. 2. Rams 1. Beitelman, Alfred D. II. Title. III. Series: Technical report (Construction Engineering Research Laboratory (U.S.)); M=319.

DATE FILME O-8