

Skript zur Vorlesung

Datenbanksysteme I

Wintersemester 2017/2018

Kapitel 2: Das Relationale Modell

Vorlesung: Prof. Dr. Christian Böhm Übungen: Dominik Mautz Skript © 2017 Christian Böhm

http://dmm.dbs.ifi.lmu.de/dbs

Charakteristika

- Einführungskapitel:
 Viele Informationen darstellbar als Tabelle
- Die Tabelle (Relation) ist das ausschließliche Strukturierungsmittel des relationalen Datenmodells
- Edgar F. Codd, 1970.

 A relational model of data for large shared data banks. Comm. of the ACM 13.06.1970
- Grundlage vieler kommerzieller und freier DBS:

Domain

- Ein Wertebereich (oder Typ)
- Logisch zusammengehörige Menge von Werten
- Beispiele:
 - $D_1 = Integer$
 - $-D_2 = String$
 - $-D_3 = Date$
 - $-D_4 = \{\text{rot, gelb, grün, blau}\}$
 - $-D_5 = \{1, 2, 3\}$
- Kann endliche oder unendliche Kardinalität |...| haben:
 - $|D_4| = 4; |D_5| = 3;$
 - $-|D_1| = unendlich$; ebenso $|D_2|$ und $|D_3|$.

Kartesisches Produkt

- Bedeutung kartesisches Produkt (Kreuzprodukt)
 von k Mengen?
 Menge von allen möglichen Kombinationen der Elemente
 der Mengen
- Beispiel (k = 2): $D_1 = \{1, 2, 3\}, D_2 = \{a,b\}$ $D_1 \times D_2 = \{(1,a), (1,b), (2,a), (2,b), (3,a), (3,b)\}$

• Beispiel (k = 3): $D_1 = D_2 = D_3 = \mathcal{N}$ $D_1 \times D_2 \times D_3 = \{(1,1,1),(1,1,2),(1,1,3),...,(1,2,1),...\}$

Relation in der Mathematik

• Mathematische Definition: Relation R ist Teilmenge des kartesischen Produktes von kDomains $D_1, D_2, ..., D_k$

$$R \subseteq D_1 \times D_2 \times ... \times D_k$$

• Beispiel (k = 2): $D_1 = \{1, 2, 3\}, D_2 = \{a,b\}$

```
R_1 = \{\} (leere Menge)

R_2 = \{(1,a), (2,b)\}

R_3 = \{(1,a), (2,a), (3,a)\}

R_4 = D_1 \times D_2 = \{(1,a), (1,b), (2,a), (2,b), (3,a), (3,b)\}
```


Relation in der Mathematik

• Weiteres Beispiel:

$$D_1 = D_2 = \mathcal{N}$$
Relation $R_1 = \{(1,1),(1,2),(1,3),...,(2,2),(2,3),...,(3,3),(3,4),...(4,4),(4,5),(4,6),...\}$

Wie heißt diese mathematische Relation?

$$R_1 = \{ (x, y) \in \mathcal{N} \times \mathcal{N} | x \le y \}$$

- Es gibt endliche und unendliche Relationen (wenn mindestens eine Domain unendlich ist).
- In Datenbanksystemen: Nur endliche Relationen Unendlich: Nicht darstellbar.
- Die Anzahl der Tupel einer Relation heißt *Kardinalität* |...|

Relation in der Mathematik

- Die einzelnen Domains lassen sich als Spalten einer Tabelle verstehen und werden als Attribute bezeichnet
- Für $R \subseteq D_1 \times ... \times D_k$ ist k der Grad (Stelligkeit)
- Die Elemente der Relation heißen Tupel: (1,a), (2,a), (3,a) sind drei Tupel vom Grad k=2
- Relation ist Menge von Tupeln
 d.h. die Reihenfolge der Tupel spielt keine Rolle:
 {(0,a), (1,b)} = {(1,b), (0,a)}
- Reihenfolge der Attribute ist von Bedeutung: $\{(a,0), (b,1)\} \neq \{(0,a), (1,b)\}$

Relationen-Schema

Alternative Definition in DBS:

Relation ist Ausprägung eines Relationen-Schemas.

- Geordnetes Relationenschema:
 - k-Tupel aus Domains (Attribute)
 - Attribute werden anhand ihrer Position im Tupel referenziert
 - Attribute können zusätzlich einen Attributnamen haben

$$R = (A_1: D_1, ... A_k: D_k)$$

- Domänen-Abbildung (ungeordnetes Rel.-Sch.):
 - Relationenschema *R* ist Menge von Attributnamen:
 - Jedem Attributnamen A_i ist Domäne D_i zugeordnet:
 - Attribute werden anhand ihres Namens referenziert

$$R = \{A_1, ..., A_k\} \text{ mit dom}(A_i) = D_i, 1 \le i \le k$$

Relationen-Schema

• Beispiel: Städte-Relation

Städte

Name	Einwohner	Land
München	1.211.617	Bayern
Bremen	535.058	Bremen
Passau	49.800	Bayern

• Als geordnetes Relationenschema:

Schema: R = (Name: String, Einwohner: Integer, Land: String)

Ausprägung: $r = \{ (M \ddot{u}nchen, 1.211.617, Bayern), (Bremen, 535.058, Ausprägung) \}$

Bremen), (Passau, 49.800, Bayern)}

• Als Relationenschema mit Domänenabbildung:

Schema: $R = \{\text{Name, Einwohner, Land}\}$

mit dom(Name) = String, dom(Einwohner) = Integer, ...

Ausprägung: $r = \{t_1, t_2, t_3\}$

mit $t_1(Name) = M$ ünchen, $t_1(Einwohner) = 1.211.617,...$

Diskussion

- Vorteil von geordnetem Relationenschema:
 - Prägnanter aufzuschreiben.
 Wichtig z.B. beim Einfügen neuer Tupel:
 t₃ = (Passau, 49.800, Bayern)
 vergleiche: t₃ (Name) = Passau; t₃ (Einwohner) = ...
- Nachteil von geordnetem Relationenschema:
 - Einschränkungen bei logischer Datenunabhängigkeit:
 Applikationen sensibel bzgl. Einfügung neuer Attribute (nur am Ende!)
- Definitionen prinzipiell gleichwertig
- Wir verwenden beide Ansätze

Begriffe

- Relation: Ausprägung eines Relationenschemas
- Datenbankschema: Menge von Relationenschemata
- Datenbank: Menge von Relationen (Ausprägungen)

Duplikate

- Relationen sind Mengen von Tupeln. Konsequenzen:
 - Reihenfolge der Tupel irrelevant (wie bei math. Def)
 - Es gibt keine Duplikate (gleiche Tupel) in Relationen: $\{(0,a), (0,a), (0,a), (1,b)\} = \{(0,a), (1,b)\}$
- Frage: Gilt dies auch für die Spalten beim ungeordneten Relationenschema $R = \{A_1,...,A_k\}$?
 - Reihenfolge der Spalten ist irrelevant
 (das ist gerade das besondere am ungeordneten RS)
 - Duplikate treten nicht auf, weil alle Attribut-Namen verschieden sein müssen

Schlüssel

- Tupel müssen eindeutig identifiziert werden
- Warum? Z.B. für Verweise:

Mitarbeiter Abteilungen Abteilung Abteilungsname PNr Name ANr Vorname | Huber Erwin 00101 Buchhaltung Mayer 02 **Produktion** 002 Hugo Müller Marketing 003 Anton 03

- Objektidentifikation in Java:
 Mit Referenz (Adresse im Speicher)
- Im relationalen Modell werden Tupel anhand von Attributwerten identifiziert
- Ein/mehrere Attribute als Schlüssel kennzeichnen
- Konvention: Schlüsselattribut(e) unterstreichen!

Schlüssel

Beispiel: **PNr** und **ANr** werden Primärschlüssel:

Mitarbeiter

<u>PNr</u>	Name	Vorname	Abteilung
001	Huber	Erwin	
	•	Hugo	
003	Müller	Anton	

Abteilungen

Abteilungen

<u>ANr</u>	Abteilungsname
01	Buchhaltung
02	Produktion
03	Marketing

- Damit müssen diese Attributswerte eindeutig sein!
- Verweis durch Wert dieses Schlüsselattributs:

ANr Abteilungsname

On Buchhaltung

Produktion

On Marketing

Datenbanksysteme I Kapitel 2: Das Relationale Modell

Zusammengesetzter Schlüssel

- Oft ist ein einzelnes Attribut nicht ausreichend, um die Tupel eindeutig zu identifizieren
- Beispiel:

Lehrveranstaltung

<u>VNr</u>	Titel	<u>Semester</u>
012	Einführung in die Informatik	WS 2001/02
012	Einführung in die Informatik	WS 2002/03
013	Medizinische Informationssyst.	WS 2001/02

- Schlüssel: (VNr, Semester)
- Anmerkung: Warum ist dies ein schlechtes DB-Design? Nicht redundanzfrei:

Der Titel ist mehrfach in der Datenbank gespeichert.

→ hierzu mehr in Kapitel 6+7

Schlüssel: Formale Definition

Definition:

• Eine Teilmenge S der Attribute eines Relationenschemas R ($S \subseteq R$) heißt Schlüssel, wenn gilt:

1) Eindeutigkeit

Keine Ausprägung von *R* kann zwei verschiedene Tupel enthalten, die sich in allen Attributen von *S* gleichen.

2) Minimalität

Es existiert keine echte Teilmenge $T \subsetneq S$, die bereits die Bedingung der Eindeutigkeit erfüllt.

Anm.: Der Teilmengenbegriff umfasst die Menge selbst, also jede Menge ist Teilmenge von sich selbst. Eine Teilmenge einer Menge S, die ungleich S ist, heißt *echte* Teilmenge. In Symbolen: $T \subsetneq S \Leftrightarrow T \subseteq S \land T \neq S$

Schlüssel: Formale Definition

Manche Lehrbücher definieren in noch formalerer Notation:

- 1) Eindeutigkeit: \forall möglichen Ausprägungen r und Tupel $t_1, t_2 \in r$ gilt: $t_1 \neq t_2 \Rightarrow t_1[S] \neq t_2[S]$.
- 2) Minimalität: \forall Attributmengen T, die (1) erfüllen, gilt: $T \subseteq S \Rightarrow T = S$.

Hierbei bezeichne t[S] ein Tupel t eingeschränkt auf die Attribute aus S (alle anderen Attribute gestrichen). Wir schreiben später auch $\pi_S(t)$ für t[S] (*Projektion*, s. Kap. 3)

Superschlüssel / Minimale Menge

- Eine Menge $S \subseteq R$ heißt Superschlüssel (oder Oberschlüssel, engl. Superkey), wenn sie die Eindeutigkeitseigenschaft erfüllt
- Der Begriff des Superschlüssels impliziert keine Aussage über die Minimalität
- In der Mathematik wird allgemein eine Menge *M* als minimale Menge bezüglich einer Eigenschaft *B* bezeichnet, wenn es keine echte Teilmenge von *M* gibt, die ebenfalls *B* erfüllt.
- Damit können wir auch definieren: Ein Schlüssel ist ein minimaler Superschlüssel (minimale Menge $S \subseteq R$ mit Eindeutigkeits-Eigenschaft)

Schlüssel: Beispiele

• Gegeben sei die folgende Relation:

Lehrverans
$(t_1 =)$
$(t_2=)$
$(t_3=)$

LNr	VNr	Titel	Semester
1	012	Einführung in die Informatik	WS 2001/02
2	012	Einführung in die Informatik	WS 2002/03
3	013	Medizinische Informationssyst.	WS 2001/02
•••	•••	•••	

- {VNr} ist kein Schlüssel Nicht eindeutig: $t_1 \neq t_2$ aber t_1 [VNr] = t_2 [VNr] = 012
- {Titel} ist kein Schlüssel (gleiche Begründung)
- {Semester} ist kein Schlüssel Nicht eindeutig: $t_1 \neq t_3$ aber t_1 [Semester] = t_3 [Semester]

Schlüssel: Beispiele

Lehrveranst

 $(t_1 =)$ $(t_2 =)$

 $(t_3=)$

LNr	VNr	Titel	Semester
1	012	Einführung in die Informatik	WS 2001/02
2	012	Einführung in die Informatik	WS 2002/03
3	013	Medizinische Informationssyst.	WS 2001/02
•••	•••	···	

• {LNr} ist Schlüssel!!!

Eindeutigkeit: Alle t_i [LNr] sind paarweise verschieden,

d.h. $t_1[LNr] \neq t_2[LNr]$, $t_1[LNr] \neq t_3[LNr]$, $t_2[LNr] \neq t_3[LNr]$

Minimalität: Trivial, weil 1 Attribut kürzeste Möglichkeit

• {LNr, VNr} ist kein Schlüssel (aber Superschlüssel) Eindeutigkeit: Alle t_i [LNr, VNr] paarweise verschieden. Nicht minimal, da echte Teilmenge {LNr} \subset {LNr, VNr} (\neq) die Eindeutigkeit bereits gewährleistet, s.o.

Schlüssel: Beispiele

Lehrveranst

 $(t_1 =)$ $(t_2 =)$ $(t_3 =)$

LNr	VNr	Titel	Semester			
1	012	Einführung in die Informatik	WS 2001/02			
2	012	Einführung in die Informatik	WS 2002/03			
3	013	Medizinische Informationssyst.	WS 2001/02			
•••	•••	•••	•••			

• {VNr, Semester} ist Schlüssel !!! **Eindeutigkeit**: Alle *t_i*[VNr, Semester] paarw. verschieden:

```
- t_1 [VNr, Semester] = (012, WS 2001/02) \neq - t_2 [VNr, Semester] = (012, WS 2002/03) \neq
```

 $- t_3$ [VNr, Semester] = (013, WS 2001/02)

Minimalität:

Weder {VNr} noch {Semester} gewährleisten Eindeutigkeit (siehe vorher). Dies sind alle echten Teilmengen.

Primärschlüssel

- Minimalität bedeutet **nicht**: Schlüssel mit den wenigsten Attributen
- Sondern Minimalität bedeutet:
 Keine überflüssigen Attribute sind enthalten
 (d.h. solche, die zur Eindeutigkeit nichts beitragen)
- Manchmal gibt es mehrere verschiedene Schlüssel
 - {LNr}
 {VNr, Semester} → Schlüsselkandidat (SQL: unique)
- Später ist wichtig, alle Schlüsselkandidaten zu ermitteln.
- Man wählt einen dieser Kandidaten aus als sogenannter
 Primärschlüssel (SQL: primary key)
- Attribut(e) das auf einen Schlüssel einer anderen Relation verweist, heißt **Fremdschlüssel** (SQL: **foreign key**)

Schlüssel: Semantische Eigenschaft

- Die Eindeutigkeit bezieht sich **nicht** auf die aktuelle Ausprägung einer Relation *r*
- Sondern immer auf die **Semantik** der realen Welt

Mitarbeiter

PNr	Name	Gehalt
001	Müller	1700 €
002	Mayer	2172€
003	Huber	3189€
004	Schulz	2171 €

- Bei der aktuellen Relation wären sowohl {PNr} als auch {Name}
 und {Gehalt} eindeutig.
- Aber es ist möglich, dass mehrere Mitarbeiter mit gleichem Namen und/oder Gehalt eingestellt werden
- {PNr} ist **für jede mögliche** Ausprägung eindeutig

Tabellendefinition in SQL

Datenbanksysteme I Kapitel 2: Das Relationale Modell • Definition eines Relationenschemas:

```
      CREATE TABLE n
      ← n Name der Relation

      a_1 d_1 c_1,
      ← Definition des ersten Attributs

      a_2 d_2 c_2,
      ← Definition des Attributs Nr. k
```

- hierbei bedeuten...
 - $-a_i$ der Name des Attributs Nr. i
 - $-d_i$ der Typ (die Domain) des Attributs
 - $-c_i$ ein optionaler Constraint für das Attribut
- Wirkung: Definition eines Relationenschemas mit einer leeren Relation als Ausprägung.

Basis-Typen in SQL

Der SQL-Standard kennt u.a. folgende Datentypen:

- integer oder auch integer4, int
- smallint oder integer2
- float (p) oder auch float
- **decimal** (p,q) und **numeric** (p,q) mit p Stellen, davon q Nachkommast.
- character (n), char (n) für Strings fester Länge n
- character varying (n), varchar (n): variable Strings
- date, time, timestamp für Datum und Zeit

Zusätze bei Attributdefinitionen

- Einfache Zusätze (Integritätsbedingungen) können unmittelbar hinter einer Attributdefinition stehen:
 - not null: Das Attribut darf nicht undefiniert sein in DBS: undefinierte Werte heissen null-Werte
 - primary key: Das Attribut ist Primärschlüssel (nicht bei zusammengesetzten Schlüsseln)
 - unique:
 Das Attribut ist Schlüsselkandidat
 - **references** $t_1(a_1)$: Ein Verweis auf Attribut a_1 von Tabelle t_1
 - **default** w_1 : Wert w_1 ist Default, wenn unbesetzt.
 - check *f*:
 Die Formel *f* wird bei jeder Einfügung überprüft, z.B.:
 check A <= 100

Integritätsbedingungen

- Zusätze, die keinem einzelnen Attribut zugeordnet sind, stehen mit Komma abgetrennt in extra Zeilen
 - **primary key** $(A_1, A_2, ...)$: Zusammengesetzter Primärschlüssel
 - unique $(A_1, A_2, ...)$: Zusammengesetzter Schlüsselkandidat
 - **foreign key** $(A_1, A_2, ...)$ **references** t_1 $(B_1, B_2, ...)$ Verweis auf zusammengesetzten Schlüssel in Rel. T_1 Anmerkung: Fehlt die Angabe $(B_1, B_2, ...)$ hinter t_1 so wird automatisch $(A_1, A_2, ...)$ eingesetzt.
 - check f
- Anmerkung: SQL ist case-insensitiv: Im Ggs. zu Java hat die Groß-/Kleinschreibung weder bei Schlüsselworten noch bei Bezeichnern Bedeutung

Schlüssel-Definitionen

- **primary key** (a_1,a_2) , definiert den Primärschlüssel.
- unique (a_3,a_4) , definiert einen weiteren Schlüsselkandidaten.
- foreign key (a_5,a_6) references B (b_1,b_2) definiert einen Fremdschlüssel.
 - Tupel in A ohne gültigen Partner in B nicht erlaubt
 - Ohne weiteren Zusatz nicht möglich, Tupel in B, auf die durch in Tupel in A verwiesen wird, zu löschen oder die Werte von b_1,b_2 zu verändern.

Schlüssel-Definitionen

A	a_1	a_2	a_3	a_4	a_5	a_6	 В	b_1	b_2	
	X	у	Z	u	1	2		1	2	
	y	Z	X	V	1	2	 _>	2	3	
	X	X	у	у	2	3		6	7	

(kann **nicht** gelöscht/verändert werden) (kann **nicht** gelöscht/verändert werden) (kann gelöscht und verändert werden)

Löschen eines Tupels in B mit Referenzen nicht möglich.

Es gibt aber verschiedene Zusätze:

- foreign key (a_5,a_6) references B (b_1,b_2) on delete cascade
 - Löschen eines Tupels in B führt auch zum Löschen der entsprechenden Tupel in A
- on update cascade

 Verändern eines Tupels in B führt zum Verändern in A
- on delete set null ,,hängende Verweise" werden ggf. auf null gesetzt.

Beispiel Tabellendefinition

• Zusammengesetzter Primärschlüssel {VNr, Semester}:

```
create table Lehrveranst

(
LNr integer not null,
VNr integer not null,
Titel varchar(50),
Semester varchar(20) not null,
primary key (VNr, Semester)
)
```

• Alternative mit einfachem Primärschlüssel {LNr}:

```
create table Lehrveranst2

(
LNr integer primary key,
VNr integer not null,
Titel varchar(50),
Semester varchar(20) not null
)
```


Beispiel Tabellendefinition

• Tabelle für Dozenten:

```
create table Dozenten
(
DNr integer primary key,
Name varchar(50),
Geburt date,
)
```

• Verwendung von Fremdschlüsseln:

Beispiel Tabellendefinition

- Das Schlüsselwort on delete cascade in *Haelt* führt dazu, dass bei Löschen eines *Dozenten* auch entsprechende Tupel in *Haelt* gelöscht werden
- Weitere Konstrukte der Data Definition Language:
 - **drop table** n_1 Relationen-Schema n_1 wird mit allen evtl. vorhandenen Tupeln gelöscht.
 - alter table n_1 add $(a_1 d_1 c_1, a_2 d_2 c_2, ...)$
 - Zusätzliche Attribute oder Integritätsbedingungen werden (rechts) an die Tabelle angehängt
 - Bei allen vorhandenen Tupeln Null-Werte
 - alter table n_1 drop $(a_1, a_2, ...)$
 - alter table n_1 modify $(a_1 d_1 c_1, a_2 d_2 c_2, ...)$