

# Spring 2019 BUAN 6337: Predictive Analytics using SAS A Report of

## **Group Project**

Submitted by Group 7
Vinay Singh 2021441554
Vaibhav Shrivastava 2021434681
Megan Malisani 2021440151
Pragati Mishra 2021434655
Ishan Jain 2021426222
Erhao Liang 2021435949

Under the Guidance of Prof. Shervin Shahrokhi Tehrani

#### **Table of Contents**

| 1. | Executive Summary                    | 3  |
|----|--------------------------------------|----|
| 2. | Project Background                   | 4  |
| 3. | Data Description                     | 5  |
| 4. | Exploratory Data Analysis            | 6  |
| 5. | Models and Analysis                  | 12 |
| 6. | Findings and Managerial Implications | 18 |
| 7. | Conclusion                           | 18 |
| 8. | SAS Code                             | 19 |
| 9. | References                           | 26 |

## **Executive Summary**

Kiva is a microfinance organization working to alleviate poverty through microfinance loans. These loans are funded by individuals from around the world who lend in \$25 increments. Occasionally, the loan amount requested by the borrower is not fully funded by the lenders before the expiration date. Our research investigates factors associated with expired loans. Kiva wants to develop promotion and marketing strategies that minimize the proportion of loans that expire before obtaining full funding.

We have used predictive analytics techniques like linear and logistic, and probit regression to investigate this research question. We have also used exploratory data analysis to get a glimpse of the data which will validate our findings in the model building phase.

Through our initial consideration of the problem, we identified many questions we wanted to investigate further. A few of those questions include:

- Who is more likely to get their loan sponsored : Men or Women?
- Which particular areas, countries or continents should we concentrate on for better results?
- What is average loan amount requested?
- How does the number of lenders on a loan relate to its likelihood of expiring before funding?

We have used the dataset from Kaggle comprising of more than 1 million records about borrowers and their loans such as borrower country, continent, loan amount, and so on ("Data Science for Good"). We have used SAS to build model and do our exploratory data analysis.



## **Project Background**

Our goal is to understand factors associated with Kiva loans that expire before receiving full funding. Before doing so, we must gain a deeper understanding of Kiva.

#### What is Kiva?

- Kiva facilitates peer-to-peer microloans through a website platform.
- Kiva works with field partners around the world who have in-person contact with borrowers.
- Field partners work with borrowers to create loan requests and post them to the site.
- Kiva's lenders then donate money to fund specific loans.
- The borrower then pays the loan back over a period of months (or years).
- Loans are typically made to borrowers in poorer areas; however, some loans are also made to Americans.

#### **Kiva Website Layout:**





#### What if a Kiva Loan does not get funded?

- After 30 days, if the Kiva loan is not fully funded, it is removed from the site.
- Kiva's partner assumes the risk on the loan, which makes them less likely to work with Kiva in the future.
- For this reason, Kiva is striving to achieve a higher rate of full funding.

## **Dataset Description**

This data set contains information on a random sample of 1,016,534 Kiva loans and their repayment structures ("Data Science for Good"). The dataset has 12 variables. Each variable is explained below:

| Variable Name                 | Туре        | Explanation                                                                                     |
|-------------------------------|-------------|-------------------------------------------------------------------------------------------------|
| Loan ID                       | Categorial  | Loan ID                                                                                         |
| Loan Amount                   | Numerical   | Loan amount requested by borrower                                                               |
| Expired                       | Categorical | Expired=1 if a loan expires before receiving full funding. Expired=0 if a loan is fully funded. |
| Activity Name                 | Categorial  | Activity for which loan is requested                                                            |
| Sector Name                   | Categorial  | Sector for which loan is requested                                                              |
| Country code                  | Categorial  | ISO country code of country in which loan was disbursed                                         |
| Continent                     | Categorial  | Continent in which the country belongs                                                          |
| Country Name                  | Categorial  | Name of the country for the loan                                                                |
| Partner ID                    | Categorial  | Field partner ID for local lending institutions                                                 |
| Month                         | Numerical   | Duration of repayment period in months                                                          |
| Number of Lenders in<br>Total | Numerical   | The total number of lenders that contributed to this loan                                       |
| Gender                        | Categorical | Gender of borrower(Male/Female)                                                                 |

## **Exploratory Data Analysis**

#### Summary statistics of loan amount and loan duration (months):

#### The MEANS Procedure

#### Expired=0

| Variable          | N      | Mean   | Std Dev | Minimum | 25th Pctl | Median | 75th Pctl | Maximum   |
|-------------------|--------|--------|---------|---------|-----------|--------|-----------|-----------|
| loan_amount       | 969993 | 800.23 | 1048.42 | 25.00   | 275.00    | 500.00 | 950.00    | 100000.00 |
| Month             | 969993 | 12.74  | 7.39    | 1.00    | 8.00      | 12.00  | 14.00     | 156.00    |
| num_lenders_total | 969993 | 22.45  | 28.17   | 1.00    | 8.00      | 15.00  | 27.00     | 2986.00   |

#### Expired=1

| Variable          | N     | Mean  | Std Dev | Minimum | 25th Pctl | Median  | 75th Pctl | Maximum  |
|-------------------|-------|-------|---------|---------|-----------|---------|-----------|----------|
| loan_amount       | 46541 |       | 1441.18 | 25.00   | 700.00    | 1050.00 | 1650.00   | 50000.00 |
| Month             | 46541 | 18.37 | 8.11    | 3.00    | 14.00     | 15.00   | 21.00     | 145.00   |
| num_lenders_total | 46541 | 17.40 | 18.16   | 0.00    | 7.00      | 12.00   | 22.00     | 905.00   |



Observation: Median of loan amount is \$500 and mean is \$800. Median of lending months is 12.



## Summary statistics of gender and continent of borrower:

|           | The FREQ Procedure |         |                         |                       |  |  |  |  |  |  |  |
|-----------|--------------------|---------|-------------------------|-----------------------|--|--|--|--|--|--|--|
|           |                    |         | Cumulative              | Cumulative            |  |  |  |  |  |  |  |
| Expired   | Frequency          | Percent | Frequency               | Percent               |  |  |  |  |  |  |  |
| 0         | 969993             | 95.42   | 969993                  | 95.42                 |  |  |  |  |  |  |  |
| 1         | 46541              | 4.58    | 1016534                 | 100.00                |  |  |  |  |  |  |  |
|           |                    |         |                         |                       |  |  |  |  |  |  |  |
| Gender    | Frequency          | Percent | Cumulative<br>Frequency | Cumulative<br>Percent |  |  |  |  |  |  |  |
| Group     | 148732             | 14.63   | 148732                  | 14.63                 |  |  |  |  |  |  |  |
| female    | 646770             | 63.63   | 795502                  | 78.26                 |  |  |  |  |  |  |  |
| male      | 221032             | 21.74   | 1016534                 | 100.00                |  |  |  |  |  |  |  |
|           |                    |         |                         |                       |  |  |  |  |  |  |  |
| Continent | Frequency          | Percent | Cumulative<br>Frequency | oumandario            |  |  |  |  |  |  |  |
| Africa    | 269424             | 26.50   | 269424                  | 26.50                 |  |  |  |  |  |  |  |
| Americas  | 273137             | 26.87   | 542561                  | 53.37                 |  |  |  |  |  |  |  |
| Asia      | 452733             | 44.54   | 995294                  | 97.91                 |  |  |  |  |  |  |  |
| Europe    | 8554               | 0.84    | 1003848                 | 98.75                 |  |  |  |  |  |  |  |
| Oceania   | 12686              | 1.25    | 1016534                 | 100.00                |  |  |  |  |  |  |  |

Observation: Number of loans from Africa and Asia is highest. In the dataset, it is shown that females apply for more loans than males.

## Bar chart of most popular country by sum of loan amounts:



Observation: Most popular country by loan sum amount is the Philippines.



#### Bar chart of average loan amount by gender or combined:



Observation: We can observe that groups request the highest average loan amount and individual females request the lowest average loan amount.

## Distribution of expired loan frequency



Observation: Males have the highest frequency of expired loans and female have the lowest frequency of expired loans.



## Distribution of expired loan frequency as per continent:



Observation: Africa and Asia have lowest expired loan frequency

#### **Conclusion of Exploratory Data Analysis:**

| Title                               | Conclusion      |
|-------------------------------------|-----------------|
| Most loans by Continent             | Africa and Asia |
| Most loan by Gender                 | Female          |
| Lowest Average Amount by Gender     | Female          |
| Lowest Expiration Rate by Gender    | Female          |
| Lowest Expiration Rate by Continent | Africa and Asia |



#### 5. Models and Analysis:

#### 5.1 Linear Regression:

- Requests for higher loan amounts are more likely to expire without full funding.
- Compared to males, females and groups have a lower possibility of loan expiration i.e. a higher chance of loan being funded from Kiva.
- Loans with longer repayment durations are more likely to expire.
- Loans from the continent of Asia have a higher chance of being fully funded, as compared with the Americas.
- Africa was not shown to be significant at the 5% level and has a coefficient estimate near 0. This indicates that loans from Africa aren't significantly more or less likely to be fully funded when compared to the Americas.
- Loans from Europe and Oceania are more likely to expire without full funding when compared to the Americas.

| Parameter          | Estimate     |   | Standard<br>Error | t Value | Pr >  t |
|--------------------|--------------|---|-------------------|---------|---------|
| Intercept          | 0.0399372331 | В | 0.00078487        | 50.88   | <.0001  |
| loan_amount        | 0.0001088676 |   | 0.00000041        | 265.76  | <.0001  |
| Gender Group       | 0612741697   | В | 0.00083861        | -73.07  | <.0001  |
| Gender female      | 0556619249   | В | 0.00058897        | -94.51  | <.0001  |
| Gender male        | 0.0000000000 | В |                   |         |         |
| num_lenders_total  | 0041043263   |   | 0.00001545        | -265.69 | <.0001  |
| Month              | 0.0040920735 |   | 0.00003256        | 125.69  | <.0001  |
| Continent Africa   | 0.0003863586 | В | 0.00064120        | 0.60    | 0.5468  |
| Continent Asia     | 0063660416   | В | 0.00057857        | -11.00  | <.0001  |
| Continent Europe   | 0.0101980707 | В | 0.00257308        | 3.96    | <.0001  |
| Continent Oceania  | 0.0106539864 | В | 0.00212652        | 5.01    | <.0001  |
| Continent Americas | 0.0000000000 | В |                   |         |         |



#### **ROC Curve of the Linear Regression Model: AUC= 0.9082**



#### **5.2 Logistic Regression**

Inferences from the logistic regression model are largely the same. The notable exception is that loans from Africa are now shown to be significantly more likely to receive funding when compared to the Americas at the 5% level.

- Requests for higher loan amounts are more likely to expire without full funding.
- Compared to males, females and groups have a lower possibility of loan expiration i.e. a higher chance of loan being funded from Kiva.
- Loans with longer repayment durations are more likely to expire.
- Loans from the continents of Africa and Asia have a higher chance of being fully funded, as compared with the Americas.
- Loans from Europe and Oceania are more likely to expire without full funding when compared to the Americas.

| Analysis of Maximum Likelihood Estimates |         |    |          |                   |                    |            |  |  |  |
|------------------------------------------|---------|----|----------|-------------------|--------------------|------------|--|--|--|
| Parameter                                |         | DF | Estimate | Standard<br>Error | Wald<br>Chi-Square | Pr > ChiSq |  |  |  |
| Intercept                                |         | 1  | -3.7315  | 0.0216            | 29845.6515         | <.0001     |  |  |  |
| loan_amount                              |         | 1  | 0.00128  | 8.88E-6           | 20709.9108         | <.0001     |  |  |  |
| Gender                                   | Group   | 1  | -0.8194  | 0.0187            | 1924.2727          | <.0001     |  |  |  |
| Gender                                   | female  | 1  | -0.2067  | 0.0118            | 305.0749           | <.0001     |  |  |  |
| num_lenders_total                        |         | 1  | -0.0759  | 0.000559          | 18395.1891         | <.0001     |  |  |  |
| Month                                    |         | 1  | 0.0675   | 0.000604          | 12490.0599         | <.0001     |  |  |  |
| Continent                                | Africa  | 1  | -0.2133  | 0.0195            | 120.0226           | <.0001     |  |  |  |
| Continent                                | Asia    | 1  | -0.3001  | 0.0184            | 266.3412           | <.0001     |  |  |  |
| Continent                                | Europe  | 1  | 0.2693   | 0.0499            | 29.1210            | <.0001     |  |  |  |
| Continent                                | Oceania | 1  | 0.3790   | 0.0444            | 72.8239            | <.0001     |  |  |  |



**ROC Curve for Logistic Regression Model: AUC= 0.8667** 



#### **Probability Table:**

The following table summarizes how the probability of receiving full funding changes given a 1 unit change in each factor. Estimated Probability is based on odds ratio of loan expiration and calculated probability of loan getting funded.

| Factor            | Estimates | Probability of expire loan | Probability of getting loan |
|-------------------|-----------|----------------------------|-----------------------------|
| Loan Amount       | 0.00128   | 1.001                      | -0.001                      |
| Group             | -0.8194   | 0.441                      | 0.56                        |
| Female            | -0.2067   | 0.813                      | 0.19                        |
| Number of Lenders | -0.0759   | 0.927                      | 0.07                        |
| Month             | 0.0675    | 1.070                      | -0.07                       |
| Africa            | -0.2133   | 0.808                      | 0.19                        |
| Asia              | -0.3001   | 0.741                      | 0.26                        |
| Europe            | 0.2693    | 1.309                      | -0.31                       |
| Oceania           | 0.379     | 1.461                      | -0.46                       |



#### 5.3 Probit Model:

The probit model had the <u>same</u> inferences as logistic regression:

- Requests for higher loan amounts are more likely to expire without full funding.
- Compared to males, females and groups have a lower possibility of loan expiration i.e. a higher chance of loan being funded from Kiva.
- Loans with longer repayment durations are more likely to expire.
- Loans from the continents of Africa and Asia have a higher chance of being fully funded, as compared with the Americas.
- Loans from Europe and Oceania are more likely to expire without full funding when compared to the Americas.

| Analysis of Maximum Likelihood Estimates |         |    |          |                   |                    |            |  |  |  |
|------------------------------------------|---------|----|----------|-------------------|--------------------|------------|--|--|--|
| Parameter                                |         | DF | Estimate | Standard<br>Error | Wald<br>Chi-Square | Pr > ChiSq |  |  |  |
| Intercept                                |         | 1  | -3.7315  | 0.0216            | 29845.6515         | <.0001     |  |  |  |
| loan_amount                              |         | 1  | 0.00128  | 8.88E-6           | 20709.9108         | <.0001     |  |  |  |
| Gender                                   | Group   | 1  | -0.8194  | 0.0187            | 1924.2727          | <.0001     |  |  |  |
| Gender                                   | female  | 1  | -0.2067  | 0.0118            | 305.0749           | <.0001     |  |  |  |
| num_lenders_total                        |         | 1  | -0.0759  | 0.000559          | 18395.1891         | <.0001     |  |  |  |
| Month                                    |         | 1  | 0.0675   | 0.000604          | 12490.0599         | <.0001     |  |  |  |
| Continent                                | Africa  | 1  | -0.2133  | 0.0195            | 120.0226           | <.0001     |  |  |  |
| Continent                                | Asia    | 1  | -0.3001  | 0.0184            | 266.3412           | <.0001     |  |  |  |
| Continent                                | Europe  | 1  | 0.2693   | 0.0499            | 29.1210            | <.0001     |  |  |  |
| Continent                                | Oceania | 1  | 0.3790   | 0.0444            | 72.8239            | <.0001     |  |  |  |



#### 6. Findings and Implications:

- Females borrowing from Kiva have a higher chance that their loan gets funded.
- If a person is from developing countries in continents like Asia and Africa, their chance of loan getting funded is higher.
- If the loan amount and the number of months taken by a person to repay the amount increases, the chances of a loan being funded decreases.
- If the number of lenders increases, the chances of loan being funded also increases.

#### 7. Conclusion and recommendation

- Kiva should focus its marketing strategy towards a women-centric campaign for effective utilization of resources.
- Kiva should understand that higher loan acceptance can likely be achieved by concentrating on Asian and African countries.
- Kiva should encourage borrowers to take shorter loans for smaller amounts. Imagine a borrower is working on a long-term farm expansion project. Rather than taking one large loan, they are more likely to be successful if they take an initial loan for fertilizer and seed, followed by a second loan for chickens once the first is repaid.



#### 8. SAS Code:

```
LIBNAME Proj 'H:\My SAS Files\Project';
/* This imports the csv dataset into SAS. */
/* You can do it by using the "Import Data" option in File on the main menu */
PROC IMPORT OUT= Proj.Kiva Loan
            DATAFILE= "H:\My SAS Files\Project\KIVA Loans Funding.csv"
            DBMS=CSV REPLACE;
      GETNAMES=YES;
      DATAROW=2;
RUN;
/* generating the working dataset in Work library */
data Kiva Loan;
set Proj.Kiva Loan;
run;
data Kiva Loan Hist;
set Proj.Kiva Loan;
where loan amount <5000;
run;
/*Summary Statistics for Expired Loan Numbers */
proc sort data = Kiva Loan;
by Expired;
run;
/*Getting the summary statistics for loan amount, month, number of lenders in
total*/
proc means data= Kiva Loan n mean stddev min p25 median p75 max maxdec= 2;
var Loan Amount month num lenders total;
title 'Summary Statistics by gender';
by Expired;
run;
/*Categorical Variables : Summary Statistics*/
proc freq data= Kiva Loan;
table Expired gender continent;
title 'Summary Statistics of categorical variables';
/*Qualitative Variables : Summary Statistics*/
proc means data= Kiva Loan n mean stddev min p25 median p75 max maxdec= 2;
var Loan Amount month num lenders total;
title 'Summary Statistics';
run;
/*Creating sql for Most Popular country */
```

```
proc sql;
Create table popular country as
SELECT SUM(Loan Amount) as Sum Loan, AVG(Loan Amount) as Avg Loan, Country name
from
Kiva Loan
group by Country name
order by Sum Loan DESC;
run;
proc sql;
Create table popular country TOP as
SELECT * FROM POPULAR COUNTRY WHERE Sum Loan > 18234200;
run:
/*Creating the bar chart for most popular country witrh sum loan*/
title 'Most popular country with sum loan';
proc sgplot data=Popular country top;
vbar country name / response=sum loan
categoryorder=respdesc nostatlabel;
xaxis grid display=(nolabel);
yaxis grid discreteorder=data display=(nolabel);
/* Loan Size Distribution */
/*Creating histogram for loan size distribution*/
proc sgplot data= Kiva Loan Hist;
histogram loan amount / binstart = 100 binwidth = 50;
density loan amount / type = kernel;
title 'Loan Amount Report';
run;
/* Proportion of Gender by mean amount */
Proc SQL;
CREATE TABLE AVG GENDER AS
SELECT AVG(LOAN AMOUNT) AS Average, GENDER FROM
Kiva Loan Hist
group by Gender;
RUN:
title 'Distribution by Gender';
axis1 label=('Gender');
axis2 label=('Avg Frequecy');
format height width 50;
/* Create space at the bottom of the graph */
/*Creating bar chart for gender distribution by mean amount*/
footnote h=.01 in ' ';
proc gchart data=AVG GENDER;
vbar gender / sumvar=average maxis=axis1 raxis=axis2;
run;
```



```
quit;
/* Proportion of Expired Loan by Gender */
Proc SQL;
CREATE TABLE EXPIRED LOAN AS
SELECT COUNT (LOAN ID) AS Count Expired, Gender FROM
Kiva Loan Hist
where expired=1
group by Gender;
RUN;
CREATE TABLE EXPIRED LOAN Tot AS
SELECT Count (Loan ID) AS TOTAL, Gender from
Kiva Loan Hist
group by Gender;
run;
create table proportion as
select A.Count Expired/B.TOTAL AS Proportion, A.GENDER from
EXPIRED LOAN AS A
INNER JOIN
EXPIRED LOAN Tot AS B
ON A.Gender = B.gender;
title 'Distribution by Expired Loan';
axis1 label=('Gender');
axis2 label=('Expired Loan Frequency');
format height width 50;
/* Create space at the bottom of the graph */
/*Creating bar chart for gender distribution */
footnote h=.01 in ' ';
proc gchart data=Proportion;
vbar gender / sumvar=proportion maxis=axis1 raxis=axis2;
run;
quit;
/* Proportion of Expired Loan by Continent */
Proc SQL;
CREATE TABLE EXPIRED LOAN Cont AS
SELECT COUNT(LOAN ID) AS Count Expired, Continent FROM
Kiva Loan Hist
where expired=1
group by Continent;
RUN;
CREATE TABLE EXPIRED LOAN_Tot_cont AS
SELECT Count (Loan ID) AS TOTAL, Continent from
Kiva Loan Hist
```



```
group by Continent;
run;
create table proportion cont as
select A.Count Expired/B.TOTAL AS Proportion, A.Continent from
EXPIRED LOAN cont AS A
INNER JOIN
EXPIRED LOAN Tot cont AS B
ON A.Continent = B.Continent;
RUN;
title 'Distribution by Expired Loan';
axis1 label=('Continent');
axis2 label=('Expired Loan Frequency ');
format height width 50;
/* Create space at the bottom of the graph */
footnote h=.01 in ' ';
proc gchart data=Proportion cont;
vbar continent / sumvar=proportion maxis=axis1 raxis=axis2;
run:
quit;
/* Model Building */
/* choosing the 70% of sample. Seed = 2 will help you have same randome samples
if you repeat the analysis */
/* Create training and test datasets. 70% of sample in training */
proc surveyselect data=Kiva Loan out=Kiva sampled outall samprate=0.7 seed=2;
run;
data Kiva training Kiva test;
set Kiva sampled;
if selected then output kiva training; /* Tell SAS that only keep the 70%
selected one in sample. The rest will be in test data */
else output kiva test;
run;
/* Linear probability model using linear regression */
proc glm data=kiva sampled ;
class Continent(ref='Americas') Gender(ref='male');
model Expired = loan amount gender num lenders total month continent /solution;
weight selected;
output out=kiva lin predict p=linear predictions;/*only training sample is used
for estimation, since selected=0 for test sample */
run;
quit;
/* To plot ROC curve based on predictions from linear model */
proc logistic data=kiva lin predict plots=roc(id=prob);
```



```
class Continent(ref='Americas') Gender(ref='male');
logit:model Expired (event='1')= loan amount gender num lenders total month
continent/nofit;
roc pred=linear predictions;
roc pred=linear predictions;
where selected=0;
run;
/* Logistic Regression */
proc logistic data=kiva sampled ;
class Continent(ref='Americas') Gender(ref='male');
logit: model Expired (event='1') = loan amount gender num lenders total month
continent;
weight selected; /*only training sample is used for estimation, since selected =
0 for test sample */
run;
quit;
/* Logistic regression */
/* Make predictions on test data */
proc logistic data=kiva training ;
class Continent(ref='Americas') Gender(ref='male');
logit: model Expired (event='1') = loan amount gender num lenders total month
score data=kiva test out=kiva logit predict; /* predictions are made only for
the dataset specified*/
run;
ods graphics on;
/*ROC curve on test data */
proc logistic data=kiva logit predict plots=roc(id=prob);
class Continent(ref='Americas') Gender(ref='male');
model Expired (event='1')= loan amount gender num lenders total month
continent/nofit;
roc pred=P 1;
roc pred=P 1;
run;
/* Probit Regression */
proc logistic data=kiva sampled outmodel=Probitmodel;
class Continent(ref='Americas') Gender(ref='male');
probit: model Expired (event='1')= loan amount gender num lenders total month
continent;
weight selected; /*only training sample is used for estimation, since selected =
0 for test sample */
run;
quit;
```

#### **REFERENCES**

"Data Science for Good: Kiva Crowdfunding." Kaggle, www.kaggle.com/kiva/data-science-for-good-kiva-crowdfunding.

Holmes, Christian. "Will My Kiva Loan Get Funded?" NYC Data Science Academy Blog, 17 Aug. 2016, nycdatascience.com/blog/student-works/kiva-loans/.

"Kiva (Organization)." Wikipedia, Wikimedia Foundation, 25 Feb. 2019, en.wikipedia.org/wiki/Kiva\_(organization).

"What Factors Affect Loan Funding Times?" Kiva, www.kiva.org/blog/what-factors-affect-loan-funding-times.

"What Makes Us Unique." Kiva, www.kiva.org/borrow.

