

MODELOS AUTORREGRESSIVOS, INTERGRADOS E DE MÉDIAS MÓVEIS -ARIMA

Quando uma série temporal não é estacionária, devemos deixa-la estacionária para realizarmos nossas estimações.

De uma maneira geral, podemos dividir nossa série temporal em três partes:

Y_t = tendência + componente estacionário + ruído

Para detectar componentes não estacionários e tendência em um série podemos utilizar:

Análise gráfica: padrões como a inclinação nos dados e se sua variação constante no tempo ou não.

Função de Autocorrelação - FAC

Num processo não estacionário a correlação, expressa na FAC, demora a cair.

Aplicando os testes estatísticos de raiz unitária, lembrando que o teste de raiz unitária, como o de Dickey-Fuller, Philips-Perron, KPSS, ERS, NG e Perron, dentre outros

Método das Diferenças – Ordem de Integração (d)

O modelo ARIMA (p, d, q) é adequado para a previsão de séries temporais cujo processo estocástico não é estacionário.

Uma forma de deixar as séries estacionárias é diferenciando-as, efetuando suas diferenças.

O número necessário de diferenças para tornar uma série estacionária é denominado ordem de integração (d).

$$\Delta y_t = y_t - y_{t-1} : ordem \ d = 1$$

 $\Delta y_t = (y_t - y_{t-1}) - (y_{t-1} - y_{t-2}) : ordem \ d = 2$

Tendência Estacionária e Estocástica

Considere o modelo abaixo:

$$y_t = y_0 + \delta_t + \varphi(L)_t \varepsilon_t$$

Esse modelo é chamado de tendência estacionária.

Flutua em torno de uma tendência determinística, sem jamais se distanciar de tal tendência.

Tendência Estocástica Pura ou Passeio Aleatório

Um passeio aleatório ou tendência estocástica pura é um processo puramente não estacionário com raiz unitária.

$$y_t = 1y_{t-1} + \varepsilon_t$$

Removendo a Tendência

Podemos tornar uma série estacionária subtraindo sua tendência determinística.

No modelo com tendência estocástica basta diferenciar a série para estacionarizá-la, inclusive quando houver tendência determinística.

Se a série for intergrada de ordem d, toma-se a d-ésima diferença para estacionarizar a série.

No caso da tendência determinística, o procedimento é estimar y_t em função do tempo e armazenar os resíduos.

Esses resíduos serão a nova série de dados que deverá ser modelada, expurgada a tendência.

sāojudas

```
library("urca")
library(readx1)
library(pwt8)
data("pwt8.0")
View(pwt8.0)
br <- subset(pwt8.0, country=="Brazil",</pre>
             select = c("rgdpna","emp","xr"))
colnames(br) <- c("PIB", "Emprego", "Câmbio")
```


PIB <- br\$PIB[45:62] EMPREGO <- br\$Emprego[45:62] CAMBIO <- br\$Câmbio[45:62] Anos <- seq(from=1994, to=2011, by=1)


```
plot(EMPREGO, type = "l")
emprego <- ts(EMPREGO, start = 1994, frequency = 1)
plot(emprego, main="Pessoa Empregadas no Brasil",
    ylab="Qte de Pessoas Empregadas-milhões",
    xlab="Ano")</pre>
```

Series emprego

acf(emprego)
pacf(emprego)

Series emprego


```
reglinEMP <- lm(EMPREGO ~ Anos)
reglinEMP
plot(emprego)
abline(reglinEMP, col="Blue")
summary(reglinEMP)</pre>
```

Estimate Std. Error t value Pr(>|t|)

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

1.908e+00 9.778e-02 19.51 1.40e-12 ***

(Intercept) -3.737e+03 1.958e+02 -19.08 1.97e-12 ***

call:

Anos

Residuals: Min

Coefficients:

lm(formula = EMPREGO ~ Anos)

Min 1Q Median 3Q Max -3.3808 -1.3820 0.0899 1.0826 4.6436

sãojudas)

```
9
92
3
         1995
                              2000
                                                  2005
                                                                       2010
                                        Time
```

sāojudas

residuosEMP <- reglinEMP\$residuals
reglinEMPres <- lm(residuosEMP ~ Anos)
plot(residuosEMP,type="l")
abline(reglinEMPres, col="Blue")</pre>


```
pdemprego <- diff(EMPREGO)
diferenca1 <- (data.frame(EMPREGO[2:18],pdemprego))
DIFERENCA <- ts(diferenca1, start = 1994, frequency = 1)
plot(DIFERENCA, plot.type="single", col=c("Black","Green")</pre>
```



```
sāojudas
pdemprego1 <- diff(emprego)</pre>
TesteDF_Emprego1_trend <- ur.df(pdemprego1, "trend", lags = 1)</pre>
summary(TesteDF_Emprego1_trend)
pdemprego2 <- diff(diff(emprego))</pre>
TesteDF_Emprego2_trend <- ur.df(pdemprego2, "trend", lags = 1)</pre>
summary(TesteDF_Emprego2_trend)
-----
# Augmented Dickey-Fuller Test Unit Root Test #
                                                       # Augmented Dickey-Fuller Test Unit Root Test #
Test regression trend
                                                       Test regression trend
call:
                                                       call:
lm(formula = z.diff \sim z.lag.1 + 1 + tt + z.diff.lag)
                                                       lm(formula = z.diff \sim z.laq.1 + 1 + tt + z.diff.laq)
Residuals:
                                                       Residuals:
  Min
         1Q Median
                                                         Min
                                                               1Q Median
                                                                               Max
-1.5029 -0.8663 -0.0643 0.4765 2.5857
                                                       -1.963 -1.103 0.172 1.003 2.498
Coefficients:
                                                       Coefficients:
        Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.32512 0.79632 1.664 0.1243
                                                                Estimate Std. Error t value Pr(>|t|)
z.lag.1
        -0.82873 0.38961 -2.127 0.0569 .
                                                       (Intercept) 1.5612
                                                                        1.0479 1.490 0.16711
         0.04494 0.09784 0.459 0.6549
                                                       z.lag.1
                                                                 -2.2447
                                                                          0.5709 -3.932 0.00281 **
z.diff.lag -0.30943 0.24691 -1.253 0.2361
                                                                 -0.1320
                                                                          0.1090 -1.211 0.25391
                                                       tt
                                                       z.diff.lag 0.2699
                                                                          0.2993 0.902 0.38837
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.318 on 11 degrees of freedom
Multiple R-squared: 0.7223. Adjusted R-squared: 0.6466

F-statistic: 9.538 on 3 and 11 DF, p-value: 0.002147

Value of test-statistic is: -2.1271 2.1918 2.7568

Critical values for test statistics:

1pct 5pct 10pct

tau3 -4.38 -3.60 -3.24 phi2 8.21 5.68 4.67

phi3 10.61 7.24 5.91

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.559 on 10 degrees of freedom

Residual standard error: 1.559 on 10 degrees of freedom Multiple R-squared: 0.8941, Adjusted R-squared: 0.8624 F-statistic: 28.15 on 3 and 10 DF, p-value: 3.438e-05

Value of test-statistic is: -3.9318 5.1638 7.7303

Critical values for test statistics: 1pct 5pct 10pct tau3 -4.38 -3.60 -3.24 phi2 8.21 5.68 4.67 phi3 10.61 7.24 5.91

sãojudas

```
#Estimando a série temporal
arima123 <- arima(emprego, c(1,2,3))
#ARMA
arima120 \leftarrow arima(emprego, c(1,2,0))
arima121 <- arima(emprego, c(1,2,1))
arima122 <- arima(emprego, c(1,2,2))
arima220
arima221
arima222
arima223
#MA
arima021
arima022
arima023
#AR
arima0120
```