Basic Undergraduate Risc Processor – BURP

Introduction & Design

Instruction Set

Mnemonic	RTL	Update Carry?
JC <address></address>	address + PC $ ightarrow$ PC	no
JMP <imm> RA</imm>	(imm << 4) + RA -> PC	no
MOV R1, R2	R1 → R2	no
MVI RA, <imm></imm>	imm → RA	no
INC R	$R + 1 \rightarrow R$	yes
ADD R1, R2	R1 + R2 + CY → R1	yes
SUB R1, R2	R1 - R2 + CY → R1	yes
AND R1, R2	R1 & R2 → R1	no
OR R1, R2	R1 R2 → R1	no
sc	1 → CY	yes
CC	0 → CY	yes
PUSH R	R → Stack	no
POP R	Stack $ ightarrow$ R	no
IN R	$IN \rightarrow R$	no
OUT R	${ t R} o { t OUT}$	no
NOP		no

Block Diagram (rough)

Features

- Data Path
 - 4-bit data, 1-bus or 2-bus design
 - ALU for logical & arithmetic operation
- Registers & Stack (SRAM)
 - 4 data registers
 - 8 stack locations
- Program Storage (EEPROM)
 - 8-bit address (256 memory locations)
 - 8-bit instruction words
- I/O Ports
 - Input: DIP switches
 - Output: register & 4 LEDs

Control Unit

- Registers
 - Instruction Register (IR)
 - Program Counter (PC)
 - Carry Register (CY)
 - Stack Pointer (SP)
- Control Logic
 - Signals to other chips (ALU, SRAM, I/O etc.)

Program Storage (EEPROM)

- 8-bit address from PC
- 8-bit instruction words
 - 4-bit opcode: 1 of 16 instructions
 - 4-bit data / operands:
 - Immediate value (4 bits)
 - Register fields: R1, R2 (2 x 2 bits)
 - Source & destination registers

Program Counter (PC)

- Address range: 2x4 = 8 bits
 - two 4-bit registers: $PC = \{PC_{high}, PC_{low}\}$
 - o PC_{high}, PC_{low} individually accessible
- Implementation
 - You can implement it in FPGA!
 - 0

Stack & Stack Pointer

- Stack
 - ≥ 8 stack locations
 - Status detection: full / empty
- Stack Pointer (SP): ≥ 3 bits
 - Up-/down-counter (e.g. '193)
 - Register (use ALU to inc./dec.)
 - FPGA (address output to MUX/SRAM)

SRAM (Register File & Stack)

- Registers & stack are SEPARATE, unique memory locations
- Two Ports
 - 1-bus design: read-port, write-port
 - 2-bus design: read/write, write
- Address Inputs: MUX
 - Register fields R1, R2 of instruction
 - Stack Pointer SP
 - Register RA (hard-wired, JMP)

Design Approval – By Week 6 in Your Lab

- Concrete RTN for all 16 instructions
- Functional Block Diagram
 - Components (chip number & function)
- Datapath along with control signals

Block Diagram (Example)

ModelSim Simulation for BURP – By Week 7

- Verilog/VHDL for entire BURP (as close to your implementation as possible)
- Testbench for the test program
- Correct simulation results for desired behaviors/responses

Implementation and Debugging

Demo to TA by Week 9!