Développement d'un modèle de scoring crédit pour Prêt à dépenser

Antoine Fusilier

Prêt à dépenser

August 12, 2024

Introduction

- Importance du scoring crédit : Le scoring crédit est essentiel pour les institutions financières, permettant de minimiser les risques liés aux défauts de paiement tout en optimisant les opportunités de prêt.
- Défis associés : Interprétabilité, gestion du déséquilibre des classes, et minimisation des coûts d'erreurs.
- ▶ Impact sur l'entreprise : Un modèle efficace réduit les pertes financières, améliore la satisfaction client, et renforce la compétitivité de "Prêt à dépenser".

Description des données

- **Source des données** : Historique des prêts, informations financières des clients, et leur comportement de paiement.
- Exploration des données :
 - ▶ Analyse des distributions : Identifier les variables avec des distributions asymétriques ou des outliers.
 - Matrice de corrélation : Détecter les relations linéaires pour éviter la multicolinéarité.
 - ► Formule de corrélation :

$$\mathsf{Corr\'elation} = \frac{\mathsf{Cov}(X,Y)}{\sigma_X \sigma_Y}$$

▶ Insights clés : Les variables liées au revenu et à l'endettement montrent une forte corrélation avec les défauts de paiement.

Nettoyage des données

- Gestion des valeurs manquantes :
 - ▶ **Méthode d'imputation** : Imputation par la médiane pour les variables continues, par la mode pour les catégorielles.
 - ► Méthodes avancées : Imputation avec KNN pour conserver les relations entre variables.
 - ▶ Impact sur le modèle : L'imputation correcte des données manquantes améliore la robustesse du modèle.

► Traitement des outliers :

- Identification : Utilisation de l'Isolation Forest pour détecter les anomalies dans les données.
- ▶ **Méthode** : Transformation logarithmique pour les variables à distribution asymétrique.
- Formule d'Isolation Forest :

$$\mathsf{Score} = 2^{-\frac{\mathsf{distance}}{\mathsf{average path \ length}}}$$

- ► Conséquences : Les outliers peuvent biaiser le modèle; leur traitement est donc essentiel pour des prédictions précises.
- ► Normalisation des données :
 - Utilisation du Z-score pour standardiser les variables :

Feature Engineering

- Création de nouvelles variables :
 - Exemples : Ratio dette/revenu, score d'endettement basé sur l'historique.
 - Justification : Les nouvelles variables capturent des informations critiques qui ne sont pas directement présentes dans les données brutes.
 - Impact attendu : Amélioration significative de la capacité prédictive du modèle.
- Encodage des variables catégorielles :
 - Techniques utilisées : One-Hot Encoding pour les variables sans ordre, Target Encoding pour les variables avec influence sur la cible.
 - ▶ Risques : Sur-ajustement possible avec Target Encoding, nécessitant une validation croisée rigoureuse.
- Sélection des variables :
 - Méthodes : PCA pour la réduction de dimensionnalité, analyse de variance pour identifier les variables pertinentes.

Modélisation

- ► Algorithmes testés :
 - Régression Logistique :

$$\hat{y} = \frac{1}{1 + e^{-(\beta_0 + \beta_1 X_1 + \dots + \beta_n X_n)}}$$

► Random Forest :

Prediction =
$$\frac{1}{N} \sum_{i=1}^{N} f_i(x)$$

XGBoost :

$$\mathsf{Obj}(\theta) = \sum_{i=1}^n I(y_i, \hat{y}_i) + \sum_{j=1}^k \Omega(f_j)$$

LightGBM :

Split Gain =
$$\left[\frac{G_L^2}{H_L + \lambda} + \frac{G_R^2}{H_R + \lambda} - \frac{(G_L + G_R)^2}{H_L + H_R + \lambda} \right] - \gamma$$

- Validation croisée :
 - ► Cross-Validation avec GridSearchCV pour l'optimisation des hyperparamètres.

Comparaison des modèles

Table: Comparaison des modèles testés

Modèle	AUC	Accuracy	F1-Score	Score métier
Régression Logistique	0.75	0.70	0.65	0.68
Random Forest	0.80	0.75	0.72	0.74
XGBoost	0.82	0.77	0.74	0.78
LightGBM	0.83	0.78	0.75	0.80
SVM	0.77	0.72	0.68	0.70

Résultats des Modèles

- ► Meilleur modèle retenu : LightGBM
- ► Performance :

► AUC: 0.83

Accuracy: 0.78
F1-Score: 0.75
Score métier: 0.80

Optimisation du seuil : Ajustement du seuil de décision pour minimiser les coûts liés aux erreurs FN et FP.

Score Métier = minimiser le coût = $FN \times 10 + FP$

 Implication : Ce modèle offre un bon compromis entre précision et minimisation des coûts

•

Interprétabilité du Modèle

▶ **SHAP values** : Permet d'expliquer l'importance des variables et les décisions individuelles du modèle.

$$\mathsf{SHAP}(x_i) = \phi_i = \sum_{S \subseteq N \setminus \{i\}} \frac{|S|! \cdot (|N| - |S| - 1)!}{|N|!} \cdot [f(S \cup \{i\}) - f(S)]$$

- ► Exemple d'interprétation : Pour un client spécifique, la variable "revenu annuel" a eu un impact significatif sur la décision de refus du prêt.
- ► Importance des variables globales : Les variables financières (revenu, dette) ont le plus grand impact sur les prédictions.
- Utilisation pratique : Les chargés de relation client peuvent utiliser ces insights pour expliquer les décisions aux clients de manière claire et compréhensible.

Conclusion et Plan d'action

► Modèle final retenu : LightGBM, avec une AUC de 0.83 et un Score métier de 0.80.

Plan d'action pour le déploiement :

- Étape 1 : Déploiement du modèle en production avec un suivi rigoureux des performances.
- **Étape 2** : Mise en place d'un système de mise à jour continue des données pour éviter le concept drift.
- Étape 3 : Formation des chargés de relation client pour interpréter et expliquer les résultats du modèle.

Étapes futures :

- Amélioration continue du modèle en intégrant des données supplémentaires.
- Test de nouvelles techniques de modélisation pour potentiellement améliorer la performance.