Direction fields,

y'=f(t,y). f(x,y) is the slope of the tangent to the solution curve y=y(t) at a generic point (t,y)

Choose a lattice/grid in the (t,y) plane and draw short segments of the line with the slope f(t,y) at each node.

Interval of existence

Theo: Let J be an open interval of a form a < t < b and to be a point in J. Consider IVP: y' + p(t)y = q(t). $y(t_0) = y_0$. where y_0 is given initial value. If p and q ave continuous on J, then the IVP has a unique solution on J for any y_0 .

the largest open interval I is called maximal interval of existence.

Theo: Consider IVP: y'=f(t,y), $y(t\circ)=y\circ$ where f, f_y are continuous in an open rectangle R functions, $R=\{(t,y): akt < b, c < y < d\}$ If $(to,y\circ) \in R$ then the IVP has a unique solution in some open interval J of the form $t\circ-h< t< t\circ+h$ contained in the internal a< t< b. PPT P62 ??

Autonomous Equation

#1360 y'=f(y)

→种模型: y'- u(y) y=0 y(o)=y(0)
 Population with logistic growth
 要求、u(y) ≈ r for small y

· u(y) + whom y ?

• u(y) < 0 for large y. \Rightarrow simplest function $u(y) = r - \alpha y$

: y'= r(1- \frac{4}{12})y. B= r/a

critical points: u=0, u=B.

solution;
$$\frac{y}{g-y} = Ce^{rt}$$

if $y(0) = y_0 > 0$. $\Rightarrow y(t) = \frac{y_0 B}{y_0 + (B-y_0)e^{-rt}}$

Stable: if any other solution starting close to yo remains close to yo for all time.

osymptotically stable: if it is stable and any solution

starting close to yo become a arbitrarily close to yo

定义

as t increases.

eg:
$$y' = 28(1 - \frac{y}{1})y - 40 = 4(y-2)(y-5)$$

general solution: $\frac{y-2}{y-5} = Ce^{12t}$

$$\Rightarrow y(t) = \frac{5(y_0-2) - 2(y_0-5)e^{-12t}}{y_0-2 - (y_0-5)e^{-12t}}$$

$$\frac{dy}{dt} = 4(y-2)(y-5).$$

$$\frac{1}{4(y-2)(y-5)} dy = dt.$$

$$\frac{1}{4} \cdot \frac{1}{3} \underbrace{\left(\frac{1}{1-3} \cdot 0 - \frac{1}{2-2} \right)}_{-2} dy^2 dt$$

$$\frac{7}{12} \ln \frac{y-2}{y-2} = t$$

solution:
$$y(t) = \frac{y_0 B}{y_0 + (B - y_0) e^{rt}}$$
 for $y(0) = y_0$

B is critical threshold

Gronwall - Bellman

Let $U(t) \geqslant 0$, $f(t) \geqslant 0$ for all $t \geqslant t_0$. U(t), $f(t) \in C[t_0, t_\infty)$, and $\forall t \geqslant t_0$, $U(t) \leqslant C + \int_{t_0}^t f(t_1) \, u(t) \, dt_1$, where C is positive constant.

Then $\forall t > to$, $u(t) < C exp(\int_{to} f(t_1) dt_1)$

Bihari - LaSalle

Let $u(t) \ge 0$, $f(t) \ge 0$ for all $t \ge to$. u(t), $f(t) \in C[to, +\infty)$ and $u(t) \le C + \int_t^t f(t,)\phi(u(t,)) dt$. where C is a positive constant, $\phi(u)$ is a positive non-decreasing continuous function for all $0 < u < \bar{u}$ $c = \infty$. Define $\psi(u) = \int_c^u \frac{du}{\phi(u)}$, $0 < u < \bar{u}$.

If $\int_{t_0}^{t} f(t_0) dt_1 < \psi(\tilde{u}-o)$, $t_0 < t < \infty$, then $U(t) \leq \psi^{-1} \left[\int_{t_0}^{t} f(t_1) dt_1 \right] \quad \forall t_0 \leq t < \infty.$

Implicit first-order ODEs

F(t,y,y')=0, F is a known smooth function.

$$\frac{1}{p} = \frac{\partial \varphi}{\partial y} + \frac{\partial \varphi}{\partial p} \cdot \frac{\partial p}{\partial y} \implies \frac{dp}{dy} = \frac{p \frac{\partial \varphi}{\partial p}}{1 - p \frac{\partial \varphi}{\partial y}}$$
if general solution: $y = \Theta(p, c)$, where Θ is known and C is a constant

then,
$$\{t=\varphi(\varphi(p,c),p\}$$
 is general solution of equation $t=\psi(y,y')$ in parametric form.

②
$$y = \psi(t, y') = \psi(t, p)$$

$$p = \frac{\partial \psi}{\partial t} + \frac{\partial \psi}{\partial p} \cdot \frac{\partial p}{\partial t} \implies \frac{dt}{dp} = \frac{\frac{\partial \psi}{\partial p}}{p - \frac{\partial \psi}{\partial t}}$$

if general solution $t = \Theta(p,c)$ exists, then

 $y = \psi(\Theta(p,c), p)$ is the general solution $y = \psi(t,y')$ in parametric form.

P35 ???

Lagrange Equation

$$y = t\varphi(y') + \psi(y')$$

$$(\varphi(p) - p) \frac{dt}{dp} + \varphi'(p) t + \psi'(p) = 0.$$

$$sol: t = \phi(p,c)$$

general sol:
$$\int t = \phi(p,c)$$

 $y = \phi(p,c) \varphi(p) + \psi(p)$

if
$$\varphi(y') = y'$$
, call Clairant equation

$$y=ty'+\psi(y')$$

Letting y'=p, obtain p=C. $t=-\psi'(p)$

general sol: $y = Ct + \psi(C)$

eliminate p and get $\{ t = -\psi(p) \ (the singular equation) \}$ $y = pt + \psi(p)$

Solve y=y'+(y')2 ey'

$$y'=p$$
. $y=p+p^2e^p$. Therefore, $P = \frac{d(p+p^2e^p)}{dp}$, $\frac{dp}{dt}$

$$c/t = \frac{1+(p^2+2p)e^p}{4p}$$

general sol
$$y = p + p^2 e^p$$
 complement with $y = 0$.

$$F(t,y,y') = 0. \qquad \frac{\partial F(t,y,y')}{\partial y'} = 0$$

$$\psi_p(t,y) = 0$$
 p-discriminant