ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

4 Μαΐου 2015

ΜΙΓΑΔΙΚΟΙ

1. Μιγαδικός αριθμός : $z = a + \beta i$ όπου $a, \beta \in \mathbb{R}$ a = Re(z) , $\beta = Im(z)$.

2. Μιγαδικό σύνολο :
$$\mathbb{C} = \{z | z = a + \beta i\}$$
.

3. Φανταστικός αριθμός : $z = \beta i$.

4. Φανταστικό σύνολο : $\mathbb{I} = \{\beta i | \beta \in \mathbb{R}\}.$

5. Πράξεις μιγαδικών

i. Πρόσθεση:
$$z + w = a + \beta i + \gamma + \delta i = (a + \gamma) + (\beta + \delta)i$$
.

ii. Αφαίρεση:
$$z - w = a + \beta i - (\gamma + \delta i) = (a - \gamma) + (\beta - \delta)i$$
.

iii. Πολλαπλασιασμός :
$$z \cdot w = (a + \beta i)(\gamma + \delta i) = (a\gamma - \beta \delta) + (\beta \gamma + a \delta)i$$
.

iv. Διαίρεση:
$$\frac{z}{w} = \frac{a+\beta i}{\gamma+\delta i} = \frac{a\gamma+\beta\delta}{\gamma^2+\delta^2} + i\frac{\beta\gamma-a\delta}{\gamma^2+\delta^2}$$

6. Αντίστροφος :
$$\frac{1}{z} = \frac{1}{a + \beta i} = \frac{a - \beta i}{a^2 + \beta^2}$$

7. Ισότητα μιγαδικών : $z = w \Leftrightarrow Re(z) = Re(w)$, Im(z) = Im(w).

8. Δυνάμεις μιγαδικών

i.
$$z^2 = (a + \beta i)^2 = a^2 + 2a\beta i - \beta^2 = (a^2 - \beta^2) + 2a\beta i$$
.
ii. $z^3 = (a + \beta i)^3 = a^3 + 3a^2\beta i - 3a\beta^2 - \beta^3 i = (a^3 - 3a\beta^2) + i(-\beta^3 - 3a^2\beta)$

9. Δυνάμεις του i.

i.
$$i^0 = 1$$
 ii. $i^1 = i$ iii. $i^2 = -1$ iv. $i^3 = -i$

Γενικά
$$i^{\nu} =$$

$$\begin{cases} 1 & \nu = 4\kappa \\ i & \nu = 4\kappa + 1 \\ -1 & \nu = 4\kappa + 2 \\ -i & \nu = 4\kappa + 3 \end{cases}$$

10. Ιδιότητες συζυγών

i.
$$z + \overline{z} = 2Re(z)$$
 iv. $\overline{(\overline{z})} = z$ vii. $\overline{(\frac{z}{w})} = \frac{\overline{z}}{\overline{w}}$ viii. $\overline{(\frac{z}{w})} = \frac{\overline{z}}{\overline{w}}$ iii. $z \cdot \overline{z} = Re^2(z) + Im^2(z)$ vi. $\overline{z \cdot w} = \overline{z} \cdot \overline{w}$ viii. $\overline{(z^v)} = \overline{z}^v$

11. Λύσεις εξίσωσης 2ου βαθμού $az^2 + \beta z + \gamma = 0$, $a \neq 0$, $a, \beta, \gamma \in \mathbb{R}$

i. Av
$$\Delta>0\Rightarrow z_{1,2}=\frac{-\beta\pm\sqrt{\Delta}}{2a}$$
 ii. Av $\Delta=0\Rightarrow z_{1,2}=-\frac{\beta}{2a}$ iii. Av $\Delta<0\Rightarrow z_{1,2}=\frac{-\beta\pm i\,\sqrt{|\Delta|}}{2a}$

12. Μιγαδικό επίπεδο

- x'x άξονας των πραγματικών.
- y'y άξονας των φανταστικών.
- M(z) εικόνα του μιγαδικού z.
- \overrightarrow{OM} διανυσματική ακτίνα του μιγαδικού z.
- $M(\overline{z})$ η εικόνα του συζυγή του μιγαδικού z συμμετρική ως προς τον άξονα x'x.
- M(-z) η εικόνα του αντίθετου του μιγαδικού z
 συμμετρική ως προς την αρχή των αξόνων.

- $M(-\overline{z})$ η εικόνα του αντίθετου του συζυγή του z συμμετρική ως προς τον άξονα y'y.
- **13.** Μέτρο μιγαδικού : $|z| = \sqrt{Re(z)^2 + Im(z)^2}$.
- 14. Ιδιότητες μέτρου

i.
$$|z| = |-z| = |\overline{z}| = |-\overline{z}|$$

ii.
$$|z|^2 = z \cdot \overline{z}$$

iii.
$$|z \cdot w| = |z| \cdot |w|$$

iv.
$$\left| \frac{z}{w} \right| = \frac{|z|}{|w|}$$

$$|z^{\nu}| = |z|^{\nu}$$

15. Συνθήκες για πραγματικό και φανταστικό αριθμό.

Αν $z=a+\beta i$ ένας μιγαδικός αριθμός τότε $z\in\mathbb{R}$ αν και μόνο αν

i.
$$\beta = 0$$

ii.
$$\overline{z} = z$$

iii.
$$|z|^2 = z^2$$

Αν $z = a + \beta i$ ένας μιγαδικός αριθμός τότε $z \in \mathbb{I}$ αν και μόνο αν

i.
$$a = 0$$

ii.
$$\overline{z} = -z$$

iii.
$$|z|^2 = -z^2$$

- **16.** Απόσταση εικόνων δύο μιγαδικών : d(z, w) = |z w|.
- **17.** Κριτήριο παραλληλογράμου: $|z + w|^2 + |z w|^2 = 2|z|^2 + 2|w|^2$.
- 18. Γεωμετρικοί τόποι εικόνων μιγαδικού:

Θέτουμε z=x+yi και χρησιμοποιώντας τα δεδομένα προσπαθούμε να καταλλήξουμε σε μια εξίσωση που να περιέχει τους άγνωστους x,y ώστε να προκύψει το ζητούμενο σχήμα (γεωμετρικος τόπος).

- 19. Βασικοί γεωμετρικοί τόποι :
 - i. Κύκλος $|z-z_0|=\rho~$, $M(z_0)$ κέντρο του κύκλου και ρ η ακτίνα του.
 - ii. Κύκλικός δίσκος $|z-z_0| \leq \rho$, $M(z_0)$ κέντρο του κύκλου και ρ η ακτίνα του.
 - iii. Έλλειψη $|z-z_1|+|z-z_2|=2a$ όταν $2a>|z_1-z_2|$ όπου $M_1(z_1),M_2(z_2)$ οι εστίες της.
 - iv. Ευθύγραμμο τμήμα $|z-z_1|+|z-z_2|=2a$ όταν $2a=|z_1-z_2|$ όπου $M_1(z_1),M_2(z_2)$ τα άκρα του.
 - ν. Υπερβολή $||z-z_1|-|z-z_2||=2a$ όταν $2a<|z_1-z_2|$ όπου $M_1(z_1),M_2(z_2)$ οι εστίες της.
 - vi. Κλάδος υπερβολής $|z-z_1|-|z-z_2|=2a$ όταν $2a<|z_1-z_2|$ όπου $M_1(z_1),M_2(z_2)$ οι εστίες της.
 - vii. Δύο ημιευθείες $||z z_1| |z z_2|| = 2a$ όταν $2a = |z_1 z_2|$.
 - viii. Ημιευθεία $|z-z_1|-|z-z_2|=2a$ όταν $2a=|z_1-z_2|$.

- ix. Μεσοκάθετος ευθύγραμμου τμήματος $|z-z_1|=|z-z_2|$ όπου $M_1(z_1),M_2(z_2)$ τα άκρα του.
- x. Ημιεπίπεδο $|z z_1| \le |z z_2| \dot{\eta} |z z_1| \ge |z z_2|$.
- 20. Μέγιστη και ελάχιστη τιμή μέτρου μιγαδικού, μέτρου διαφοράς μιγαδικών.

Αν M είναι η εικόνα ενός μιγαδικού z τότε για την ελάχιστη και μέγιστη τιμή του |z| ισχύει :

- i. Αν η εικόνα του z κινείται σε ευθεία ε τότε : min $|z| = d(M, \varepsilon)$.
- ii. Αν η εικόνα του z κινείται πάνω σε κύκλο $|z-z_0|=\rho$ με κέντρο $M_0(z_0)$ τότε :

$$\min |z| = OM_0 - \rho \quad \text{Kal} \quad \max |z| = OM_0 + \rho$$

όπου Ο η αρχή των αξόνων.

iii. Αν η εικόνα του z κινείται πάνω στην έλλειψη $\frac{x^2}{a^2}+\frac{y^2}{\beta^2}=1$ τότε :

$$\min |z| = \beta \quad \text{kal} \quad \max |z| = a$$

όπου 2a, 2β τα μήκη του μεγάλου και του μικρού άξονα της έλλειψης αντίστοιχα.

iv. Αν η εικόνα του z κινείται πάνω στην υπερβολή $\frac{x^2}{a^2} - \frac{y^2}{\beta^2} = 1$ τότε :

$$\min |z| = a$$

Αν M_1, M_2 είναι οι εικόνες μιγαδικών z_1, z_2 τότε για την ελάχιστη και μέγιστη τιμή του μέτρου της διαφοράς τους $|z_1-z_2|$ ισχύει :

- i. Αν η εικόνες των z_1, z_2 κινούνται σε παράλληλες ευθείες $\varepsilon_1, \varepsilon_2$ τότε: $\min |z_1 z_2| = d(\varepsilon_1, \varepsilon_2)$.
- ii. Αν η εικόνες των z_1, z_2 κινούνται σε κύκλο (M_0, ρ) τότε : $\max |z_1 z_2| = 2\rho$.
- iii. Αν η εικόνα του z_1 κινείται σε ευθεία ε και η εικόνα του z_2 σε κύκλο (M_0, ρ) τότε :

$$\min |z_1 - z_2| = d(M_0, \varepsilon) - \rho \quad \text{kal} \quad \max |z_1 - z_2| = d(M_0, \varepsilon) + \rho$$

- iv. Αν οι εικόνες των z_1, z_2 κινούνται σε κύκλους $C_1: (K_1, \rho_1)$ και $C_2: (K_2, \rho_2)$ αντίστοιχα τότε :
 - α΄. Αν οι κύκλοι δεν έχουν κοινά σημεία και βρίσκεται εξωτερικά ο ένας του άλλου δηλαδή $K_1K_2>\rho_1+\rho_2$ τότε :

$$\min |z_1 - z_2| = K_1 K_2 - \rho_1 - \rho_2$$
 $\kappa \alpha \iota$ $\max |z_1 - z_2| = K_1 K_2 + \rho_1 + \rho_2$

- β΄. Αν οι κύκλοι εφάπτονται εξωτερικά δηλαδή $K_1K_2=\rho_1+\rho_2$ τότε : $\max|z_1-z_2|=2\rho_1+2\rho_2$
- γ΄. Αν οι κύκλοι εφάπτονται εσωτερικά δηλαδή $K_1K_2=\rho_1-\rho_2$ τότε : $\max|z_1-z_2|=2\rho_1$ όπου ρ_1 η ακτίνα του μεγαλύτερου κύκλου.
- ν. Αν οι εικόνες των μιγαδικών z_1,z_2 κινούνται στην έλλειψη $\frac{x^2}{a^2}+\frac{y^2}{\beta^2}=1$ τότε :

3

 $\max |z_1-z_2|=2a$ και $\min |z_1-z_2|=2\beta$ αν οι εικόνες των z_1,z_2 είναι αντιδιαμετρικές

ΟΡΙΑ - ΣΥΝΕΧΕΙΑ

- **1.** Πραγματική συνάρτηση : $f:A\to\mathbb{R}$ ονομάζεται η διαδικασία με την οποία κάθε τιμή μιας πραγματικής μεταβλητής $x\in A$ αντιστοιχεί μόνο μια τιμή $y\in f(A)$.
 - i. $A = D_f$: πεδίο ορισμού.
 - ii. $f(D_f)$: σύνολο τιμών: $f(D_f) = \{ y \in \mathbb{R} | y = f(x), x \in D_f \}$
 - iii. y = f(x): τιμή της f στο x.
 - iv. Οι ρίζες της εξίσωσης f(x) = 0 ονομάζονται και ρίζες της συνάρτησης f.
 - v. Αν $\kappa \in f(D_f)$ τότε υπάρχει $x_0 \in D_f$ ώστε $f(x_0) = \kappa$.
- 2. Είδη συναρτήσεων
 - i. Πολυωνυμική: $f(x) = a_{\nu}x^{\nu} + a_{\nu-1}x^{\nu-1} + \ldots + a_1x + a_0$.
 - ii. Ρητή: $f(x) = \frac{g(x)}{h(x)}$ με $h(x) \neq 0$.
 - iii. Άρρητη: $f(x) = \sqrt{g(x)}$ με $g(x) \ge 0$.
 - iv. Λογαριθμική: $f(x) = \ln g(x)$ με g(x) > 0.
 - v. Εκθετική: $f(x) = g(x)^{h(x)}$ με g(x) > 0.
 - vi. Τριγωνομετρική: $f(x) = \eta \mu g(x)$ ή συνg(x) ή εφg(x) ή σφg(x).
 - vii. Σταθερή: f(x) = c με $c \in \mathbb{R}$.
 - viii. Μηδενική: f(x) = 0.
 - ix. Ταυτοτική: f(x) = x για κάθε $x \in \mathbb{R}$.
- **3.** Γραφική παράσταση συνάρτησης : Σύνολο σημείων $M\left(x,f(x)\right)$, $C_{f}=\{M\left(x,y\right)/y=f(x)\}$. Ισχύει

$$M(x_0, y_0) \in C_f \Leftrightarrow y_0 = f(x_0)$$

4. Άρτια - Περιττή συνάρτηση:

An
$$\forall x \in D_f \Rightarrow -x \in D_f$$
 kai

- i. f(-x) = f(x) η f είναι άρτια. Είναι συμμετρική ως προς y'y.
- ii. f(-x) = -f(x) η f είναι περιττή. Είναι συμμετρική ως προς το O.
- **5.** Ίσες συναρτήσεις. *f*, *g* ίσες όταν
 - i. $D_f = D_g$ και
 - ii. $\forall x \in D_f \Rightarrow f(x) = g(x)$.
- **6.** Πράξεις με συναρτήσεις : Αν $f:D_f\to\mathbb{R}$ και $g:D_g\to\mathbb{R}$ τότε :
 - i. (f+g)(x) = f(x) + g(x), $D_{f+g} = D_f \cap D_g$.
 - ii. (f g)(x) = f(x) g(x), $D_{f-g} = D_f \cap D_g$.
 - iii. $(f \cdot g)(x) = f(x) \cdot g(x)$, $D_{f+g} = D_f \cap D_g$.
 - iv. $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$, $D_{f/g} = \{x \in D_f \cap D_g/g(x) \neq 0\}.$
- 7. Σύνθεση συναρτήσεων : Αν $f:D_f\to\mathbb{R}$ και $g:D_g\to\mathbb{R}$ τότε :

H σύνθεση $f \circ g$ είναι :

i.
$$D_{f \circ g} = \{x \in D_g/g(x) \in D_f\}$$

ii.
$$(f \circ g)(x) = f(g(x))$$

H σύνθεση $g \circ f$ είναι :

i.
$$D_{g \circ f} = \{x \in D_f / f(x) \in D_g\}$$

ii. $(g \circ f)(x) = g(f(x))$

ii.
$$(g \circ f)(x) = g(f(x))$$

Ισχύει επίσης $(f \circ g) \circ h = f \circ (g \circ h)$.

- 8. Μονοτονία συνάρτησης
 - i. $f: \Delta \to \mathbb{R}$ (Δ διάστημα) αύξουσα αν $\forall x_1, x_2 \in \Delta$ ισχύει $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$.
 - ii. $f: \Delta \to \mathbb{R}$ (Δ διάστημα) φθίνουσα αν $\forall x_1, x_2 \in \Delta$ ισχύει $x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$.
- 9. Μονοτονία Λύση εξισώσεων, ανισώσεων.

Aν $f: \Delta \to \mathbb{R}$ μια γνησίως μονότονη συνάρτηση τότε:

i. Aν
$$f \uparrow \Delta$$
 τότε $f(x) < f(x_0) \Leftrightarrow x < x_0$.

- ii. Aν $f \downarrow \Delta$ τότε $f(x) < f(x_0) \Leftrightarrow x > x_0$.
- iii. Η εξίσωση f(x) = 0 έχει μια το πολύ λύση στο διάστημα Δ.
- iv. Av $0 \in f(\Delta)$ τότε η εξίσωση f(x) = 0 έχει μια ακριβώς ρίζα στο Δ .
- ν. Αν $\eta \in f(\Delta)$ τότε η εξίσωση $f(x) = \eta$ έχει μια ακριβώς ρίζα στο Δ .
- 10. Ακρότατα συνάρτησης Μέγιστο, ελάχιστο.

Για μια συνάρτηση $f: \Delta \to \mathbb{R}$ έχουμε :

- i. $f(x_0)$ μέγιστο όταν $f(x) \leq f(x_0)$, $\forall x \in \Delta$.
- ii. $f(x_0)$ ελάχιστο όταν $f(x) \ge f(x_0)$, $\forall x \in \Delta$.

Aν $m \le f(x) \le M$ και $m, M \in f(\Delta)$ τότε m ελάχιστο και M μέγιστο.

- i. Av $f \uparrow \Delta = [a, \beta] \Rightarrow \min f = f(a) \kappa \alpha \max f = f(\beta)$.
- ii. Av $f \downarrow \Delta = [a, \beta] \Rightarrow \min f = f(\beta)$ kai $\max f = f(a)$.
- iii. Αν f μονότονη στο $\Delta = (a, \beta)$ δεν έχει ακρότατα.
- **11.** Συνάρτηση 1 1.
 - i. $f: D_f \to \mathbb{R}$ 1 1 όταν $\forall x_1, x_2 \in D_f$ ισχύει $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$.
 - ii. $f: D_f \to \mathbb{R}$ 1 1 όταν $\forall x_1, x_2 \in D_f$ ισχύει $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$.

An f monoton tote είναι και 1-1.

- **12.** Αντίστροφη συνάρτηση : Αν $f:D_f\to\mathbb{R}$ μια συνάρτηση 1-1 τότε $f^{-1}:f(D_f)\to\mathbb{R}$ είναι η αντίστροφή της.
 - i. Η f^{-1} έχει πεδίο ορισμού το σύνολο τιμών της f και σύνολο τιμών, το πεδίο ορισμού της f.
 - ii. $(f^{-1} \circ f)(x) = x$, $\forall x \in D_f$.
 - iii. $(f \circ f^{-1})(y) = y$, $\forall y \in f(D_f)$.
- 13. Όριο συνάρτησης σε σημείο $x_0:\lim_{x\to x_0}f(x)=$ $\begin{cases}\ell\in\mathbb{R}\\\pm\infty\\$ δεν υπάρχει

Πλευρικά όρια :
$$\lim_{x\to x_0^-} f(x)$$
 , $\lim_{x\to x_0^+} f(x)$

Το όριο της f υπάρχει στο x_0 αν και μόνο αν $\lim_{x\to x_0^-} f(x) = \lim_{x\to x_0^+} f(x)$

14. Ιδιότητες ορίων

i. Aν
$$\lim_{x\to x_0} f(x) > 0$$
 τότε $f(x_0) > 0$ κοντά στο x_0 .

ii. Αν
$$\lim_{x\to x_0} f(x) < 0$$
 τότε $f(x_0) < 0$ κοντά στο x_0 .

iii. Αν
$$f(x) > 0$$
 κοντά στο x_0 τότε $\lim_{x \to x_0} f(x) \ge 0$.

iv. Αν
$$f(x) < 0$$
 κοντά στο x_0 τότε $\lim_{x \to x_0} f(x) \le 0$.

v. Av
$$\lim_{x\to x_0} f(x) > \lim_{x\to x_0} g(x)$$
 τότε $f(x) > g(x)$ κοντά στο x_0 .

vi. Av
$$\lim_{x \to x_0} f(x) < \lim_{x \to x_0} g(x)$$
 τότε $f(x) < g(x)$ κοντά στο x_0 .

vii. Av
$$f(x) > g(x)$$
 κοντά στο x_0 τότε $\lim_{x \to x_0} f(x) \ge \lim_{x \to x_0} g(x)$.

viii. Αν
$$f(x) < g(x)$$
 κοντά στο x_0 τότε $\lim_{x \to x_0} f(x) \le \lim_{x \to x_0} g(x)$.

15. Πράξεις με όρια

Αν υπάρχουν στο \mathbb{R} τα όρια των f, g στο x_0 τότε:

i.
$$\lim_{x \to x_0} (f(x) \pm g(x)) = \lim_{x \to x_0} f(x) \pm \lim_{x \to x_0} g(x)$$
.

ii.
$$\lim_{x \to x_0} (k \cdot f(x)) = k \cdot \lim_{x \to x_0} f(x) , \quad \forall k \in \mathbb{R}.$$

iii.
$$\lim_{x \to x_0} (f(x) \cdot g(x)) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x).$$

iv.
$$\lim_{x \to x_0} \left(\frac{f(x)}{g(x)} \right) = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)}.$$

v.
$$\lim_{x \to x_0} |f(x)| = \left| \lim_{x \to x_0} f(x) \right|$$
.

vi.
$$\lim_{x \to x_0} \sqrt[\kappa]{f(x)} = \sqrt[\kappa]{\lim_{x \to x_0} f(x)}$$
, $f(x) \ge 0$ κοντά στο x_0 .

vii.
$$\lim_{x \to x_0} f^{\nu}(x) = \left(\lim_{x \to x_0} f(x)\right)^{\nu}.$$

ΔΕΝ ισχύουν : $\lim_{x\to x_0}f^2(x)=\ell\Rightarrow\lim_{x\to x_0}f(x)=\sqrt{l}$ και $\lim_{x\to x_0}|f(x)|=\ell\Rightarrow\lim_{x\to x_0}f(x)=\pm\ell$ διότι δεν γνωρίζουμε αν υπάρχει πάντα το $\lim_{x\to x_0}f(x)$

16. Κριτήριο παρεμβολής : Έστω συναρτήσεις f, g, h. Αν

i.
$$h(x) \le f(x) \le g(x)$$
 κοντά στο x_0 και

ii.
$$\lim_{x \to x_0} h(x) = \lim_{x \to x_0} g(x) = \ell \in \mathbb{R}$$

τότε
$$\lim_{x \to x_0} f(x) = \ell$$
.

17. Βασική τριγωνομετρική ανισότητα : $|\eta \mu x| \leq x$, $\forall x \in \mathbb{R}$. Βασικά τριγωνομετρικά όρια

i.
$$\lim_{x\to 0} \frac{\eta \mu x}{x} = 1$$

ii.
$$\lim_{x \to 0} \frac{\sigma v v x - 1}{x} = 0$$
 iii.
$$\lim_{x \to 0} x \eta \mu \frac{1}{x} = 0$$

6

iii.
$$\lim_{x \to 0} x \eta \mu \frac{1}{x} = 0$$

18. Όριο σύνθετης συνάρτησης :
$$\lim_{x\to 0} f(g(x)) = \lim_{u\to u_0} f(u)$$
 όπου $u = g(x)$ και $u_0 = \lim_{x\to x_0} g(x)$.

19. Μη πεπερασμένο όριο στο
$$x_0 \in \mathbb{R} : \lim_{x \to x_0} f(x) = \pm \infty$$
.

20. Ιδιότητες

i.
$$\lim_{x\to x_0} f(x) = \pm \infty \Rightarrow f(x) > 0 (< 0)$$
 αντίστοιχα κοντά στο x_0 .

ii.
$$\lim_{x \to x_0} f(x) = \pm \infty \Rightarrow \lim_{x \to x_0} (-f(x)) = \mp \infty.$$

iii.
$$\lim_{x \to x_0} f(x) = \pm \infty \Rightarrow \lim_{x \to x_0} \frac{1}{f(x)} = 0.$$

iv.
$$\begin{cases} \lim_{x \to x_0} f(x) = 0 \\ f(x) > 0 (< 0) \text{ κοντά στο } x_0 \end{cases} \Rightarrow \lim_{x \to x_0} \frac{1}{f(x)} = +\infty(-\infty).$$

v.
$$\lim_{x \to x_0} f(x) \pm \infty \Rightarrow \lim_{x \to x_0} |f(x)| = +\infty.$$

vi.
$$\lim_{x \to x_0} f(x) = +\infty \Rightarrow \lim_{x \to x_0} \sqrt[\kappa]{f(x)} = +\infty.$$

vii.
$$\lim_{x \to x_0} \frac{1}{(x - x_0)^{2\nu}} = +\infty.$$

ix.
$$\lim_{x \to x_0^-} \frac{1}{(x - x_0)^{2\nu + 1}} = -\infty.$$

viii.
$$\lim_{x \to x_0} \frac{1}{|x - x_0|} = +\infty$$
.

$$x. \lim_{x \to x_0^+} \frac{1}{(x - x_0)^{2\nu + 1}} = +\infty.$$

xi.
$$\nexists \lim_{x \to x_0} \frac{1}{(x - x_0)^{2\nu + 1}}$$
.

21. Πρόταση: Αν $f(x) \le g(x)$ κοντά στο x_0 τότε

i.
$$\lim_{x \to x_0} f(x) = +\infty \Rightarrow \lim_{x \to x_0} g(x) = +\infty$$
.

ii.
$$\lim_{x \to x_0} g(x) = -\infty \Rightarrow \lim_{x \to x_0} f(x) = -\infty$$
.

(Τις παραπάνω τις αποδεικνύουμε)

22. Όριο αθροίσματος

Όριο συνάρτησης				Τιμή ορίου		
$\lim_{x \to x_0} f(x)$	$a \in \mathbb{R}$	$a \in \mathbb{R}$	$+\infty$	$+\infty$	$-\infty$	$-\infty$
$\lim_{x \to x_0} g(x)$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$+\infty$	$-\infty$
$\lim_{x \to x_0} (f+g)(x)$	$+\infty$	$-\infty$	$+\infty$	Απροσδιόριστη	Απροσδιόριστη	$-\infty$

23. Όριο γινομένου

Όριο συνάρτησης	Τιμή ορίου									
$\lim_{x \to x_0} f(x)$	a > 0	<i>a</i> > 0	<i>a</i> < 0	<i>a</i> < 0	$+\infty$	$+\infty$	$-\infty$	$-\infty$	0	0
$\lim_{x \to x_0} g(x)$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$+\infty$	$-\infty$	$+\infty$	$-\infty$
$\lim_{x \to x_0} (f \cdot g)(x)$	$+\infty$	$-\infty$	$-\infty$	$+\infty$	$+\infty$	$-\infty$	$-\infty$	$+\infty$	Απρ.	Απρ.

24. Όριο στο άπειρο : $\lim_{x \to \pm \infty} f(x) = \begin{cases} \ell \in \mathbb{R} \\ \pm \infty \end{cases}$

25. Βασικά όρια

i.
$$\lim_{x \to \pm \infty} x^{\nu} = \begin{cases} +\infty & \text{an } \nu \text{ άρτιος} \\ +\infty & \text{an } \nu \text{ περιττός} \end{cases}$$

ii. Av
$$P(x) = a_{\nu}x^{\nu} + a_{\nu-1}x^{\nu-1} + \dots + a_1x + a_0$$
 τότε $\lim_{x \to \pm \infty} P(x) = \lim_{x \to \pm \infty} a_{\nu}x^{\nu}$

 $i. \lim_{x \to \pm \infty} x^{\nu} = \begin{cases} +\infty & \text{an } \nu \text{ άρτιος} \\ +\infty & \text{an } \nu \text{ περιττός} \end{cases}$ $ii. \text{ An } P(x) = a_{\nu}x^{\nu} + a_{\nu-1}x^{\nu-1} + \ldots + a_{1}x + a_{0} \text{ tote } \lim_{x \to \pm \infty} P(x) = \lim_{x \to \pm \infty} a_{\nu}x^{\nu}$ $iii. \text{ An } P(x) = a_{\nu}x^{\nu} + a_{\nu-1}x^{\nu-1} + \ldots + a_{1}x + a_{0} \text{ tote } Q(x) = \beta_{\kappa}x^{\kappa} + \beta_{\kappa-1}x^{\kappa-1} + \ldots + \beta_{1}x + \beta_{0}$ $\text{ tote } \lim_{x \to \pm \infty} \frac{P(x)}{Q(x)} = \lim_{x \to \pm \infty} \frac{a_{\nu}x^{\nu}}{\beta_{\kappa}x^{\kappa}}.$ iii. Point supervises formula for the part of x = 1.

iv. Όριο εκθετικής - λογαριθμικής για a > 1.

$$\alpha'$$
. $\lim_{x \to +\infty} a^x = +\infty$
 β' . $\lim_{x \to -\infty} a^x = 0$

$$\gamma'. \lim_{x \to 0} \log_a x = -\infty$$
 $\delta'. \lim_{x \to +\infty} \log_a x = +\infty$

ν. Όριο εκθετικής - λογαριθμικής για 0 < a < 1.

$$α'. \lim_{x \to +\infty} a^x = 0$$

$$β'. \lim_{x \to -\infty} a^x = +\infty$$

$$\gamma'$$
. $\lim_{x \to 0} \log_a x = +\infty$

$$\delta'. \lim_{x \to +\infty} \log_a x = -\infty$$

vi. Βασικά όρια

$$\alpha'. \lim_{x \to 0^{+}} e^{\frac{1}{x}} \xrightarrow{y = \frac{1}{x}} \lim_{y \to +\infty} e^{y} = +\infty$$

$$\beta'. \lim_{x \to 0^{-}} e^{\frac{1}{x}} \xrightarrow{y = \frac{1}{x}} \lim_{y \to -\infty} e^{y} = 0$$

$$\delta'. \lim_{x \to \pm \infty} \operatorname{ovv} \frac{1}{x} \xrightarrow{y = \frac{1}{x}} \lim_{y \to 0} \operatorname{ovv} y = 1$$

$$\epsilon'. \lim_{x \to \pm \infty} x \eta \mu \frac{1}{x} \xrightarrow{y = \frac{1}{x}} \lim_{y \to 0} \frac{\eta \mu y}{y} = 1$$

δ'.
$$\lim_{x \to \pm \infty} \operatorname{συν} \frac{1}{x} = \frac{y = \frac{1}{x}}{1} \lim_{y \to 0} \operatorname{συν} y = 1$$

$$\beta'$$
. $\lim_{x \to 0^{-}} e^{\frac{1}{x}} = \frac{y = \frac{1}{x}}{y \to -\infty} \lim_{y \to -\infty} e^{y} = 0$

$$\varepsilon'. \lim_{x \to \pm \infty} x \eta \mu \frac{1}{x} \xrightarrow{y = \frac{1}{x}} \lim_{y \to 0} \frac{\eta \mu y}{y} = 1$$

$$\gamma'. \lim_{x \to \pm \infty} \eta \mu \frac{1}{x} \xrightarrow{y = \frac{1}{x}} \lim_{y \to 0} \eta \mu y = 0$$

ς΄. $\lim_{\substack{x\to\pm\infty}}\frac{\eta\mu x}{x}=\lim_{\substack{x\to\pm\infty}}\frac{1}{x}\eta\mu x=0$ Μηδενική επί φραγμένη (αποδεικνείεται με κριτήριο παρεμβολής)

$$ζ'. \lim_{x \to \pm \infty} (x + \eta \mu x) = \lim_{x \to \pm \infty} x \left(1 + \frac{\eta \mu x}{x} \right) = \pm \infty$$

Τα παρακάτω όρια ΔΕΝ υπάρχουν

$$\eta'$$
. $\lim_{x \to \pm \infty} \eta \mu x$

$$\theta'$$
. $\lim_{x \to \pm \infty} \sigma v v x$

26. Συνέχεια συνάρτησης σε σημείο $x_0 \in D_f$

Μια συνάρτηση f είναι συνεχής σε ένα σημείο x_0 του πεδίου ορισμού της όταν

$$\lim_{x \to x_0} f(x) = f(x_0)$$

27. Συνέχεια συνάρτησης σε διάστημα

i. Μια συνάρτηση f είναι συνεχής σε ένα ανοιχτό διάστημα (a, β) αν είναι συνεχής σε κάθε σημείο του διαστήματος.

8

ii. Μια συνάρτηση f είναι συνεχής σε ένα ανοιχτό διάστημα $[a, \beta]$ αν είναι συνεχής σε κάθε σημείο του ανοιχτού διαστήματος (a, β) και ισχύει

$$\lim_{x \to a^+} f(x) = f(a) \text{ kal } \lim_{x \to \beta^+} f(x) = f(\beta)$$

Μια συνάρτηση που είναι συνεχής σε κάθε σημείο του πεδίου ορισμού της λέγεται απλά συνεχής.

- 28. Συνεχείς συναρτήσεις
 - i. Πολυωνυμικές $f(x) = a_{\nu}x^{\nu} + a_{\nu-1}x^{\nu-1} + \ldots + a_{1}x + a_{0}$ για κάθε $x \in \mathbb{R}$.
 - ii. Ρητές $f(x) = \frac{g(x)}{h(x)}$ για κάθε $x \in D_f = \{x \in \mathbb{R} | h(x) \neq 0\}.$
 - iii. Τριγωνομετρικές $f(x) = \eta \mu x$ και $g(x) = \sigma v v x$ για κάθε $x \in \mathbb{R}$.
 - iv. Εκθετικές και λογαριθμικές $f(x) = a^x$ και $g(x) = \log_a x$ με $0 < a \ne 1$.
- 29. Πράξεις με συνεχείς συναρτήσεις

Αν f, g δύο συνεχείς συναρτήσεις σε ένα κοινό σημείο x_0 των πεδίων ορισμού τους τότε οι συναρτήσεις

$$f \pm g$$
 , cf , $f \cdot g$, $\frac{f}{g}$, $|f|$, f^{ν} , $\sqrt[\kappa]{f}$

είναι συνεχείς στο x_0 εφόσον ορίζονται σε ένα διάστημα που περιέχει το σημείο αυτό.

30. Συνέχεια σύνθεσης

Έστω f, g δύο συναρτήσεις και $x_0 \in D_f$. Αν f συνεχής στο x_0 και g είναι συνεχής στο $f(x_0)$ τότε $g \circ f$ συνεχής στο x_0 .

31. Θεώρημα Bolzano

Αν για μια συνάρτηση f ορισμένη σε ένα κλειστό διάστημα $[a, \beta]$ ισχύει:

- i. f συνεχής στο διάστημα [a, β] και
- ii. $f(a) \cdot f(\beta) < 0$

τότε θα υπάρχει τουλάχιστον ένας αριθμός $x_0 \in (a, \beta)$ έτσι ώστε

$$f(x_0) = 0$$

- Αν ισχύει $f(a) \cdot f(\beta) \le 0$ τότε θα υπάρχει $x_0 \in [a, \beta]$ ώστε $f(x_0) = 0$.
- Το αντίστροφο του Bolzano δε ισχύει πάντα.
- 32. Γεωμετρική ερμηνεία Bolzano

Για μια συνεχή συνάρτηση f στο διάστημα $[a, \beta]$ η συνθήκη $f(a) \cdot f(\beta) < 0$ σημαίνει οτι οι τιμές αυτές θα είναι ετερόσημες οπότε τα σημεία A(a, f(a)) και $B(\beta, f(\beta))$ θα βρίσκονται εκατέρωθεν του άξονα x'x. Αυτό σημαίνει οτι ηγαφική παράσταση C_f θα τέμνει τον άξονα σε τουλάχιστον ένα σημείο με τετμημένη $x_0 \in (a, \beta)$.

33. Πρόσημο συνάρτησης

Αν για μια συνάρτηση f ορισμένη σε ένα διάστημα Δ ισχύει $f(x) \neq 0$, $\forall x \in \Delta$ τότε η f διατηρεί το πρόσημό της στο Δ δηλαδή :

$$f(x) > 0 \ \ \ \ \ f(x) < 0 \ , \ \ \forall x \in \Delta$$

- i. Αν υπάρχει $a \in \Delta$ ώστε f(a) > 0 τότε f(x) > 0. Αντίστοιχα αν υπάρχει $a \in \Delta$ ώστε f(a) < 0 τότε f(x) < 0.
- ii. Αν ρ_1 , ρ_2 είναι δύο διαδοχικές ρίζες της f τότε η συνάρτηση διατηρεί το πρόσημό της στο διάστημα (ρ_1, ρ_2) μεταξύ των ριζών.
- 34. Θεώρημα ενδιάμεσων τιμών

Αν μια συνάρτηση f ορισμένη σε ένα κλειστό διάστημα $[a, \beta]$ είναι

- i. συνεχής στο [a, β] και ισχύει
- ii. $f(a) \neq f(\beta)$

τότε για κάθε τιμή η μεταξύ των f(a) και $f(\beta)$ υπάρχει ένας τουλάχιστον αριθμός $x_0 \in (a, \beta)$ ώστε $f(x_0) = \eta$.

- i. Η εικόνα $f(\Delta)$ ενός διαστήματος Δ μέσω μιας συνεχούς και μη σταθερής συνάρτησης f είναι διάστημα.
- ii. Αν μια 1-1 συνάρτηση f είναι συνεχής σε ένα διάστημα Δ τότε είναι γνησίως μονότονη.
- 35. Θεώρημα μέγιστης και ελάχιστης τιμής.

Αν μια συνάρτηση f είναι συνεχής σε ένα διάστημα $[a, \beta]$ τότε παίνει στο διάστημα αυτό μια μέγιστη τιμή M και μια ελάχιστη τιμή m.

- i. Αν m = M τότε η συνάρτηση είναι σταθερή.
- ii. Αν $m \leq f(\eta) \leq M$ τότε $\eta \in f(\Delta)$ και υπάρχει $x_0 \in [a, \beta]$ ώστε $f(x_0) = \eta$.
- iii. Αν $m \leq f(\eta) \leq M$ και η f είναι γνησίως μονότονη στο $[a, \beta]$ τότε η εξίσωση $f(x) = \eta$ έχει ακριβώς μια λύση.
- 36. Σύνολο τιμών Εικόνα κλειστού ανοιχτού διαστήματος.
 - i. Αν $\Delta = [a, \beta]$ τότε
 - Aν $f \uparrow \Delta$ τότε $f(\Delta) = [f(a), f(\beta)].$
 - Αν $f \downarrow \Delta$ τότε $f(\Delta) = [f(\beta), f(a)].$
 - ii. Αν $\Delta = (a, \beta)$ τότε
 - An $f \uparrow \Delta$ tote $f(\Delta) = \left(\lim_{x \to a^+} f(x), \lim_{x \to \beta^-} f(x)\right)$.
 - An $f \downarrow \Delta$ tote $f(\Delta) = \left(\lim_{x \to \beta^-} f(x), \lim_{x \to a^+} f(x)\right)$.

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

1. Παράγωγος σε σημείο

$$f'(x_0) = \lim_{x \to x_0} \frac{f'(x) - f(x_0)}{x - x_0}.$$

 $f'(x_0) = \lim_{x \to x_0} \frac{f'(x) - f(x_0)}{x - x_0}.$ Η f είναι παραγωγίσιμη στο x_0 αν το όριο της παραγώγου υπάρχει και είναι πραγματικός αριθμός.

- Το κλάσμα $\frac{f(x) f(x_0)}{x x_0}$ ονομάζεται **λόγος μεταβολής** της f.
- Αν $h = x x_0$ η παράγωγος της f στο σημείο x_0 μετασχηματίζεται ως εξής

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

- **2.** Αν μια συνάρτηση f είναι παραγωγίσιμη σε ένα σημείο x_0 τότε είναι και συνεχής στο σημείο αυτό. Το αντίστροφο δεν ισχύει.
- 3. Παράγωγίσιμη συνάρτηση σε σύνολο
 - i. f παραγωγίσιμη σε ένα σύνολο A αν είναι παραγωγίσιμη σε κάθε σημείο του διαστήματος.
 - ii. f παραγωγίσιμη σε ένα ανοιχτό διάστημα (a, β) αν είναι παραγωγίσιμη $\forall x \in (a, \beta)$.
 - iii. f παραγωγίσιμη σε ένα κλειστό διάστημα (a, β) αν είναι παραγωγίσιμη $\forall x \in (a, \beta)$ και επιπλέον

$$\lim_{x \to a^+} \frac{f(x) - f(a)}{x - a} \in \mathbb{R} \text{ kat } \lim_{x \to \beta^-} \frac{f(x) - f(\beta)}{x - \beta} \in \mathbb{R}$$

- **4.** Παραγωγος συνάρτηση: $f': A \to \mathbb{R}$ παράγωγος της $f: f'(x) = \lim_{h\to 0} \frac{f(x+h) f(x)}{h}$.
- 5. Κανόνες παραγώγισης

i.
$$(f \pm g)'(x) = f'(x) + g'(x)$$
.
ii. $(c \cdot f)'(x) = c \cdot f'(x)$.
iii. $(f \cdot g)'(x) = f'(x)g(x) + f(x)g'(x)$.
iv. $\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$.
v. $\left(\frac{1}{f}\right)'(x) = -\frac{f'(x)}{f^2(x)}$
vi. $(f \circ g)'(x) = f'(g(x)) \cdot g'(x)$.

6. Παράγωγοι συναρτήσεων

Συνάρτηση f	Παράγωγος f'	Συνάρτηση f	Παράγωγος f'
С	0		
X	1		
x^{ν}	$\nu x^{\nu-1}$	$[f(x)]^{\nu}$	$\nu \left[f(x) \right]^{\nu - 1} \cdot f'(x)$
$\frac{1}{x}$	$-\frac{1}{x^2}$	$\frac{1}{f(x)}$	$-\frac{f'(x)}{f^2(x)}$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$	$\sqrt{f(x)}$	$\frac{f'(x)}{2\sqrt{f(x)}}$

ημχ	συνχ	$\eta \mu f(x)$	$\operatorname{oun} f(x) \cdot f'(x)$
συνχ	$-\eta\mu x$	$\operatorname{\sigmauv} f(x)$	$-\eta\mu f(x)\cdot f'(x)$
εφχ	$\frac{1}{\sigma v v^2 x}$	$\varepsilon \varphi f(x)$	$\frac{f'(x)}{\operatorname{ouv}^2 f(x)}$
σφχ	$-\frac{1}{\eta\mu^2x}$	$\sigma \varphi f(x)$	$-\frac{f'(x)}{\eta\mu^2f(x)}$
a^x	$a^x \ln a$	$a^{f(x)}$	$a^{f(x)} \ln a \cdot f'(x)$
e^x	e^x	$e^{f(x)}$	$e^{f(x)} \cdot f'(x)$
$\ln x $	$\frac{1}{x}$	$\ln f(x) $	$\frac{f'(x)}{f(x)}$

- **7.** Συντελεστής διεύθυνσης εφαπτόμενης ευθείας σε σημείο $x_0: \lambda = f'(x_0) = \lim_{x \to x_0} \frac{f(x) f(x_0)}{x x_0}$.
- **8.** Εξίσωση εφαπτόμενης ευθείας στο $x_0: y f(x_0) = f'(x_0)(x x_0)$.
- **9.** Ρυθμός μεταβολής. Αν y = f(x) τότε ο ρυθμός μεταβολής του ποσού y ως προς το ποσό x σε ένα σημείο x_0 είναι : $f'(x_0)$.
 - i. Αν $f'(x_0) > 0$ ο ρυθμός είναι θετικός άρα το ποσό αυξάνεται.
 - ii. Αν $f'(x_0) < 0$ ο ρυθμός είναι αρνητικός άρα το ποσό μειώνεται.
- 10. Θεώρημα Rolle

Αν μια συνάρτηση $f:[a,\beta] \to \mathbb{R}$ είναι

- i. συνεχής στο [a, β].
- ii. παραγωγίσιμη στο (a, β) και
- iii. $f(a) = f(\beta)$

τότε υπάρχει τουλάχιστον ένα $\xi \in (a, \beta)$ ώστε $f'(\xi) = 0$.

11. Γεωμετρική ερμηνεία του Θ.Rolle.

Αν εφαρμόζεται το θεώρημα Rolle στο $[a, \beta]$ τότε υπάρχει τουλάχιστον ένας αριθμός $\xi \in (a, \beta)$ ώστε η εφαπτόμενη ευθεία στο $A(\xi, f(\xi))$ να είναι παράλληλη με τον άξονα x'x.

- 12. Συνέπειες του θεωρήματος Rolle.
 - i. An $f'(x) \neq 0$, $\forall x \in \mathbb{R}$ τότε f: 1-1.
 - ii. Αν ρ_1 , ρ_2 είναι δύο διαδοχικές ρίζες της f τότε θα υπάρχει τουλάχιστον ένα $\xi \in (\rho_1, \rho_2)$ ώστε $f'(\xi) = 0$.
- 13. Θεώρημα Μέσης Τιμής

Αν μια συνάρτηση $f:[a,\beta] \to \mathbb{R}$ είναι

- i. συνεχής στο [a, β]
- ii. παραγωγίσιμη στο (a, β)

τότε υπάρχει ένα τουλάχιστον $\xi \in (a,\beta)$ ώστε $f'(\xi) = \frac{f(\beta) - f(a)}{\beta - a}$

- i. Το θεώρημα Rolle είναι μια ειδική περίπτωση του Θ.Μ.Τ.
- ii. $f(\beta) f(a) = f'(\xi)(\beta a)$.

14. Συνέπειες του Θ.Μ.Τ.

- 1. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ . Αν
 - i. η f είναι συνεχής στο Δ και
 - ii. f'(x) = 0 σε κάθε εσωτερικό σημείο του Δ

τότε η f είναι σταθερή στο Δ .

- 2. Έστω δύο συναρτησεις f, g ορισμένες σε ένα διάστημα Δ . Αν
 - i. οι f, g είναι συνεχείς στο Δ και
 - ii. f'(x) = g'(x) σε κάθε εσωτερικό σημείο του Δ

τότε υπάρχει σταθερά c τέτοια ώστε για κάθε $x \in \Delta$ να ισχύει f(x) = g(x) + c.

15. Μονοτονία

Έστω f συνεχής σε διάστημα Δ .

- i. Aν f'(x) > 0, $\forall x$ εσωτερικό του Δ τότε $f \uparrow \Delta$.
- ii. Αν f'(x) < 0 , $\forall x$ εσωτερικό του Δ τότε $f \downarrow \Delta$.

Το αντίστροφο δεν ισχύει. Ισχύει όμως το εξής:

- i. Αν $f \uparrow \Delta$ τότε $f'(x) \ge 0$, $\forall x$ εσωτερικό του Δ .
- ii. Αν $f \downarrow \Delta$ τότε $f'(x) \leq 0$, $\forall x$ εσωτερικό του Δ .

Αν μια συνάρτηση είναι συνεχής σε ένα διάστημα (a, β) και παραγωγίσιμη στο $(a, x_0) \cup (x_0, \beta)$, με $x_0 \in (a, \beta)$ τότε είναι γνησίως μονότονη στο (a, β) .

Γενικά αν η παράγωγος μιας συνάρτησης f μηδενίζεται ή δεν ορίζεται σε μεμονομένα σημεία του Δ τότε η f είναι γνησίως μονότονη στο Δ .

16. Τοπικά ακρότατα

i. Η f παρουσιάζει τοπικό μέγιστο στο x₀ αν

$$\exists \delta > 0 \text{ where } f(x_0) > f(x), \forall x \in (x_0 - \delta, x_0 + \delta) \cap D_f$$

ii. Η f παρουσιάζει τοπικό ελάχιστο στο x_0 αν

$$\exists \delta > 0 \text{ whet } f(x_0) \leq f(x) , \ \forall x \in (x_0 - \delta, x_0 + \delta) \cap D_f$$

Το x_0 είναι η θέση του τοπικού ακρότατου. Το $f(x_0)$ είναι το τοπικό ακρότατο.

17. Θεώρημα Fermat

Έστω $f: \Delta \to \mathbb{R}$ και $x_0 \in \Delta$

- i. Αν x_0 εσωτερικό του διαστήματος Δ
- ii. f παραγωγίσιμη στο x_0 και
- iii. f παρουσιάζει ακρότατο στο x₀

τότε
$$f'(x_0) = 0$$

18. Πιθανές θέσεις ακρότατων

- i. Τα εσωτερικά σημεία του διαστήματος Δ όπου $f'(x_0) = 0$. ιί. Τα εσωτερικά σημεία του διαστήματος Δ όπου δεν ορίζεται η f'. Κρίσιμα σημεία
- iii. Τα άκρα του Δ.

19. Κριτήριο τοπικών ακρότατων

Έστω $f:(a,\beta)\to\mathbb{R}$ και παραγωγίσιμη στο (a,β) με εξαίρεση ίσως ένα σημείο x_0 συνεχής όμως ς αυτό.

- i. Aν f'(x) > 0 στο (a, x_0) και f'(x) > 0 στο (x_0, β) τότε $f(x_0)$ τοπικό μέγιστο.
- ii. Αν f'(x) < 0 στο (a, x_0) και f'(x) > 0 στο (x_0, β) τότε $f(x_0)$ τοπικό ελάχιστο.
- iii. Αν f'(x) διατηρεί πρόσημο στο $(a, x_0) \cup (x_0, \beta)$ και f'(x) > 0 τότε $f(x_0)$ δεν είναι τοπικό ακρότατο.

20. Βασική ανισότητα : $\ln x \le x - 1$, x > 0.

Οι ανισότητες

i.
$$\ln x < x$$

ii.
$$e^x \ge x + 1$$

iii.
$$e^x > x$$

ii.
$$e^x \ge x + 1$$
 iii. $e^x > x$ iv. $e^x > \eta \mu x$

θα αποδεικνύονται με τη βοήθεια της πρώτης.

21. Κυρτή - Κοίλη

Έστω f συνεχής στο διάστημα Δ και παραγωγίσιμη στο εσωτερικό του Δ .

- i. Η f είναι κυρτή (στρέφει τα κοίλα προς τα **πάνω**) αν $f' \uparrow$ στο εσωτερικό του Δ .
- ii. Η f είναι κοίλη (στρέφει τα κοίλα προς τα **κάτω**) αν $f' \downarrow$ στο εσωτερικό του Δ .

22. Κυρτότητα

Έστω f συνεχής στο διάστημα Δ και παραγωγίσιμη δύο φορές στο εσωτερικό του Δ .

- i. An f''(x) > 0, $\forall x$ στο εσωτερικό του Δ τότε $f \circlearrowleft \Delta$.
- ii. Αν f''(x) < 0, $\forall x$ στο εσωτερικό του Δ τότε $f \curvearrowright \Delta$.

23. Κριτήριο σημείων καμπής

Έστω
$$f:(a,\beta)\to\mathbb{R}$$
 και $x_0\in(a,\beta)$. Αν

- i. η f αλλάζει πρόσημο εκατέρωθεν του x_0 και
- ii. ορίζεται η εφαπτόμενη ευθεία στο $A(x_0, f(x_0))$

τοτε το σημείο $A(x_0, f(x_0))$ είναι σημείο καμπής. (Εκεί αλλάζει η κυρτότητα)

24. Ασύμπτωτες

i. Aν
$$\begin{vmatrix} \lim_{x\to x_0^+} f(x) \ \acute{\eta} \\ \lim_{x\to x_0^-} f(x) \end{vmatrix} = \pm \infty \Rightarrow x = x_0 \text{ κατακόρυφη ασύμπτωτη}.$$

ii. Αν
$$\lim_{x \to +\infty} f(x) = \ell \Rightarrow y = \ell$$
 οριζόντια ασύμπτωτη στο $+\infty$.

iii. Αν
$$\lim_{x \to -\infty} f(x) = \ell \Rightarrow y = \ell$$
 οριζόντια ασύμπτωτη στο $-\infty$.

iv. Aν
$$\lim_{x \to +\infty} [f(x) - (\lambda x + \beta)] = 0 \Rightarrow y = \lambda x + \beta$$
 πλάγια ασύμπτωτη στο $+\infty$.

v. Aν
$$\lim_{x\to-\infty} [f(x)-(\lambda x+\beta)]=0 \Rightarrow y=\lambda x+\beta$$
 πλάγια ασύμπτωτη στο $-\infty$.

25. Η $y = \lambda x + \beta$ είναι ασύμπτωτη της C_f στο $\pm \infty \Leftrightarrow$

$$\lim_{x \to \pm \infty} \frac{f(x)}{x} = \lambda \quad \text{kal} \quad \lim_{x \to \pm \infty} [f(x) - \lambda x] = \beta$$

- i. Η C_f με μια πλάγια ασύμπτωτη μπορεί να έχουν κοινά σημεία.
- ii. Αν η C_f έχει οριζόντια ασύμπτωτη τότε δεν έχει πλάγια.
- **26.** Κανόνες De L' Hospital

Av
$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$$
 $\dot{\eta} \pm \infty$ tote $= \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$ me $x_0 \in \mathbb{R} \cup \{-\infty, +\infty\}$.

27. Βασική ανισότητα : Κοντά στο $+\infty$ ισχύει $e^x > x^\nu > \ln x$.

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ

- **1.** Αρχική συνάρτηση : F : αρχική της f στο Δ τότε F'(x) = f(x). Η αρχική μιας συνάρτησης ορίζεται σε διάστημα και όχι ένωση διαστημάτων.
- **2.** Αν F μια αρχική της $f: \Delta \to \mathbb{R}$ τότε
 - i. όλες οι συναρτήσεις της μορφής G(x) = F(x) + c είναι αρχικές της f.
 - ii. κάθε άλλη αρχική της f είναι της μορφής G(x) = F(x) + c.
- 3. Αρχικές συναρτήσεις

Συνάρτηση f	Αρχική F	Συνάρτηση f	Αρχική Γ
0	С		
1	x + c		
x^{ν}	$\frac{x^{\nu+1}}{\nu+1} + c$	$[f(x)]^{\nu} \cdot f'(x)$	$\frac{[f(x)]^{\nu+1}}{\nu+1}$
$-\frac{1}{x^2}$	$\frac{1}{x} + c$	$-\frac{f'(x)}{f^2(x)}$	$\frac{\frac{b}{\nu+1}}{\frac{1}{f(x)}+c}$
$\frac{1}{2\sqrt{x}}$	$\sqrt{x} + c$	$\frac{f'(x)}{2\sqrt{f(x)}}$	$\sqrt{f(x)} + c$
συνχ	$\eta \mu x + c$	$\int \operatorname{ouv} f(x) \cdot f'(x)$	$\eta \mu f(x) + c$
$-\eta\mu x$	$\sigma vvx + c$	$-\eta \mu f(x) \cdot f'(x)$	$\operatorname{ovv} f(x) + c$
$\frac{1}{\sigma v v^2 x}$	$\varepsilon \varphi x + c$	$\frac{f'(x)}{\operatorname{ovv}^2 f(x)}$	$\varepsilon \varphi f(x) + c$
$-\frac{1}{\eta\mu^2x}$	$\sigma \varphi x + c$	$-\frac{f'(x)}{\eta\mu^2f(x)}$	$\sigma \varphi f(x) + c$
a^x	$\frac{a^x}{\ln a} + c$	$a^{f(x)} \cdot f'(x)$	$\frac{a^{f(x)}}{\ln a} + c$
e^x	e^x	$e^{f(x)} \cdot f'(x)$	$e^{f(x)} + c$
$\frac{1}{x}$	$\ln x + c$	$\frac{f'(x)}{f(x)}$	$\ln f(x) + c$

4. Κανόνες αρχικών συναρτήσεων

Συνάρτηση f	Αρχική F
0	С
$f'(x) \pm g'(x)$	$f(x) \pm g(x) + c$

$$f'(x) \cdot g(x) + f(x) \cdot g'(x) \qquad f(x) \cdot g(x) + c$$

$$\frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g^2(x)} \qquad \frac{f(x)}{g(x)} + c$$

$$g'(f(x)) \cdot f'(x) \qquad g(f(x)) + c$$

5. Ορισμένο ολοκλήρωμα : $\int_a^\beta f(x) dx$ με f συνεχή στο $[a, \beta]$.

i.
$$\int_{a}^{a} f(x) dx = 0$$

ii.
$$\int_{a}^{\beta} f(x) dx = -\int_{\beta}^{a} f(x) dx$$

iii.
$$\int_{a}^{\beta} f(x) dx = \int_{a}^{\gamma} f(x) dx + \int_{\gamma}^{\beta} f(x) dx$$

- **6.** Εμβαδόν χωρίου : Αν για την $f:[a,\beta]\to\mathbb{R}$ ισχύει $f(x)\geq 0$ τότε $E(\Omega)=\int_a^\beta f(x)\mathrm{d}x.$
- **7.** Έστω f συνεχής στο $[a, \beta]$ με $f(x) \ge 0$ για κάθε $x \in [a, \beta]$. Αν η f δε μηδενίζεται παντού τότε

$$\int_{a}^{\beta} f(x) \mathrm{d}x > 0$$

8. Aν $f: \Delta \to \mathbb{R}$ συνεχής στο Δ και a ένα σημείο του Δ τότε η συνάρτηση

$$F(x) = \int_{a}^{x} f(t) dt$$

είναι μια αρχική της f στο Δ .

i.
$$\left(\int_{a}^{x} f(x) dx\right)' = f(x)$$

ii.
$$\left(\int_{a}^{g(x)} f(x) dx\right)' = f(g(x)) \cdot g'(x)$$

9. Θεμελιώδες θεώρημα ολοκληρωτικού λογισμού

Έστω $f:[a,\beta]\to\mathbb{R}$ μια συνεχής συνάρτηση στο $[a,\beta]$. Αν G είναι μια αρχική της f στο $[a,\beta]$ τότε

$$\int_{a}^{\beta} f(x) dx = G(\beta) - G(a)$$

Ισχύει στι
$$\int_a^x f'(x) dx = [f(x)]_a^x \Rightarrow f(x) = \int_a^x f'(x) dx + f(a).$$

10. Αν μια συνάρτηση $f:[a,\beta]\to\mathbb{R}$ είναι συνεχής στο $[a,\beta]$ τότε υπάρχει $\xi\in(a,\beta)$ ώστε

$$\int_{a}^{\beta} f(x) dx = (\beta - a) f(\xi)$$

- 11. Μέθοδοι ολοκλήρωσης
 - i. Παραγοντική ολοκλήρωση : $\int_a^\beta f'(x) \cdot g(x) \mathrm{d}x = [f(x) \cdot g(x)]_a^\beta \int_a^\beta f(x) \cdot g(x) \mathrm{d}x$
 - ii. Με αντικατάσταση : $\int_a^\beta f(g(x)) \cdot g'(x) \mathrm{d}x = \int_{u_1}^{u_2} f(u) \cdot \mathrm{d}u$ όπου u = g(x) , $\mathrm{d}u = g'(x) \mathrm{d}x$ και $u_1 = g(a)$, $u_2 = g(\beta)$.

12. Η συνάρτηση
$$F(x)=\int_a^x\!\!f(t)\mathrm{d}t$$
 Αν $f:\Delta\to\mathbb{R}$ συνεχής στο Δ και a ένα σημείο του Δ τότε η συνάρτηση

$$F(x) = \int_{a}^{x} f(t) dt$$

είναι μια αρχική της f στο Δ . Για να ορίζεται η F πρέπει $a, x \in \Delta$.

i.
$$\left(\int_{a}^{x} f(t)dt\right)' = f(x)$$

ii. Aν
$$G(x) = \int_{a}^{g(x)} f(t) dt$$
 τότε

$$\left(\int_{a}^{g(x)} f(t)dt\right)' = f(g(x)) \cdot g'(x)$$

$$\mu \varepsilon D_G = \{ x \in D_g \text{ kai } g(x) \in \Delta \}.$$

iii. Αν
$$H(x) = \int_{g_1(x)}^{g_2(x)} f(t) dt$$
 τότε

$$\left(\int_{g_1(x)}^{g_2(x)} f(t) dt\right)' = f(g_2(x)) \cdot g_2'(x) - f(g_1(x)) \cdot g_1'(x)$$

με
$$D_H = \{x \in D_{g_1} \cap D_{g_2} \text{ και } g_1(x), g_2(x) \in \Delta\}.$$

13. Εμβαδόν χωρίου

i. Εμβαδόν μεταξύ
$$C_f$$
 και $x'x$: $E(\Omega) = \int_a^\beta |f(x)| \mathrm{d}x$.

ii. Εμβαδόν μεταξύ
$$C_f$$
 και C_g : $E(\Omega) = \int_a^\beta \!\! |f(x) - g(x)| \mathrm{d}x.$