Review

- Search and sort are essential functions to process data
- Linear search

Binary search

Selection sort

Insertion sort

Computing Bootcamp

Recursion

Lecture 11-1

Hyung-Sin Kim

Recursion

- Function that calls itself during execution -

3

Recursion

- Let's implement factorial function (n! = 1x2x3x...x(n-1)xn)
 - >>> def facto(n: int) -> int:
 - ... ans = 1
 - ... for i in range(1,n+1):
 - ... ans = ans * i
 - ... return ans
- How about this?
 - >>> def facto(n: int) -> int:
 - ... if n == 0:
 - ... return 1
 - ... else:
 - ... return n*facto(n-1)

Recursion

- Recursion can happen when solving a problem includes solving subproblems having the same structure
 - Easier to implement (if you can think of this way ever)
 - Results of subproblems can be reused (called dynamic programming, out of scope)
- Structure
 - >>> def facto(n: int) -> int:
 - ... if n == 0:
 - · ... return 1
 - ... else:
 - ... return n*facto(n-1)

- #Conditional statements check for base cases
 - #Base case (evaluated without recursive calls)
- #Recursive case (evaluated with recursive calls)

Example – Fibonacci Sequence

- Implement **Fibonacci sequence**, starting from n=1
 - 1,2,3,5,8,13,21,34,55,89 ...

- What are
 - (1) the conditional statement,
 - (2) the base case, and
 - (3) the recursive case?

Example – Fibonacci Sequence

- Another example: Fibonacci(n) = Fibonacci(n-1) + Fibonacci(n-2)
 - 1, 2, 3, 5, 8, 13, 21, 34 ...
 - >>> def fibonacci(n: int) -> int:

```
if n == 1 or n == 2:
```

- return n
- else:
- return fibonacci(n-1) + fibonacci(n-2) #Recursive case

#Conditional statements

#Base case

Example – Fibonacci Sequence

- Another example: Fibonacci(n) = Fibonacci(n-1) + Fibonacci(n-2)
 - 1, 2, 3, 5, 8, 13, 21, 34 ...
 - >>> def fibonacci(n: int) -> int:

```
if n == 1 or n == 2:
```

- return n
- ... else:
- return fibonacci(n-1) + fibonacci(n-2) #Recursive case

- Is Fibonacci implemented correctly?
 - Verify the base case
 - Assuming that fibonacci(n-1) and fibonacci(n-2) are correct, verify if fibonacci(n) is correct

#Conditional statements

#Base case

Computing Bootcamp

Merge Sort

Lecture 11-2

Hyung-Sin Kim

Motivation

- Insertion sort and selection sort work but too slow proportional to n^2
 - Does not matter when handling small data, but we want to handle big data!
- Recall linear search vs. binary search Divide the whole task into **two parts**
 - Is there a way something similar?

Merge sort!

index	0	1	2	3	4	5	6	7
values	5	-2	0	100	-6	7	4	9

• Step 1: **Divide** the whole list into two sub-lists

12

- Step 1: **Divide** the whole list into two sub-lists
- Step 2: **Sort** the left sublist and the right sublist separately
 - Smells like **binary** something...

- Step 1: **Divide** the whole list into two sub-lists
- Step 2: **Sort** the left sublist and the right sublist separately
 - Smells like **binary** something...
- Step 3: **Merge** the two sorted sublist in a sorted way

Merge sublist1 and sublist2!

index	0	1	2	3	4	5	6	7
values	-6	-2	0	4	5	7	9	100

How to sort sublists?

- Step 1: **Divide** the whole list into two sub-lists
- Step 2: **Sort** the left sublist and the right sublist separately, by using merge sort
 - Smells like **binary** something...
- Step 3: **Merge** the two sorted sublist in a sorted way

	Sublist1 – mergesort!				Sublist2 – mergesort!			
index	0	1	2	3	4	5	6	7
values	5	-2	0	100	-6	7	4	9

0	1	2	3	4	5	6	7
5	-2	0	100	-6	7	4	9

Mergesort(L)

21

Time to go upwards!

24

26

Again, compare the **leftmost items** of the two sublists, given that the two lists are **already sorted**!

0	1	2	3	4	5	6	7
-6	-2	0	4	5	7	9	100

Summary

• Mergesort – a sorting algorithm using recursion

Merge Sort Implementation

Lecture 11-3

Hyung-Sin Kim

Merge Sort – Recursive Call

- def mergeSort(L: list) -> None:
- mergeSortHelp(L, 0, len(L) 1)

Merge Sort – Recursive Call

```
    def mergeSortHelp(L: list, first: int, last: int) -> None:
    if first == last:

            return
            # Base case
```

• else:

```
    mid = first + (last – first) // 2
    mergeSortHelp(L, first, mid) # Recursive call for sublist1
    mergeSortHelp(L, mid+1, last) # Recursive call for sublist2
```

• merge(L, first, mid, last) # Merge the two (sorted) sublists

Parameters to indicate where are two sublists and the whole list

- Merge(L, first, mid, last)
 - Memory complexity: O(len(L)) for subL1=L[first:mid+1] and subL2=L[mid+1:last+1]

- Merge(L, first, mid, last)
 - Memory complexity: O(len(L)) for subL1=L[first:mid+1] and subL2=L[mid+1:last+1]

- Merge(L, first, mid, last)
 - Memory complexity: O(len(L)) for subL1=L[first:mid+1] and subL2=L[mid+1:last+1]

- Merge(L, first, mid, last)
 - Memory complexity: O(len(L)) for subL1=L[first:mid+1] and subL2=L[mid+1:last+1]

- Merge(L, first, mid, last)
 - Memory complexity: O(len(L)) for subL1=L[first:mid+1] and subL2=L[mid+1:last+1]

37

- Merge(L, first, mid, last)
 - Memory complexity: O(len(L)) for subL1=L[first:mid+1] and subL2=L[mid+1:last+1]

- Merge(L, first, mid, last)
 - Memory complexity: O(len(L)) for subL1=L[first:mid+1] and subL2=L[mid+1:last+1]

- Merge(L, first, mid, last)
 - Memory complexity: O(len(L)) for subL1=L[first:mid+1] and subL2=L[mid+1:last+1]

- Merge(L, first, mid, last)
 - Memory complexity: O(len(L)) for subL1=L[first:mid+1] and subL2=L[mid+1:last+1]
 - Time complexity of O(len(L)), instead of $O(len(L)^2)$

first +1 +2 +3 +4 +5 +6 first+7

-6 -2 0 4 5 7 9 100

 subL1
 0
 1
 2
 3

 -2
 0
 5
 100

 subL2
 0
 1
 2
 3

 -6
 4
 7
 9

Merge Sort – Merge Code

```
>>> def merge(L: list, first: int, mid: int, last: int) -> None:
           k = first
           sub1 = L[first:mid+1]
           sub2 = L[mid+1:last+1]
           i = j = 0
           while i < len(sub1) and j < len(sub2):
                 if sub1[i] \le sub2[j]:
                       L[k] = sub1[i]
                       i = i+1
                 else:
                       L[k] = sub2[j]
                       j = j+1
                 k = k+1
```

```
# Checking if any element is left

if i < len(sub1):

L[k:last+1] = sub1[i:]

elif j < len(sub2):

L[k:last+1] = sub2[j:]
```

Merge Sort – Time Complexity

Merge Sort – Memory Complexity

Performance Comparison

- Despite messy implementation and somewhat complex logic, Merge Sort is much faster than selection/insertion sort ($N log_2 N vs. N^2$)
- Built-in sorting function is still faster, but its complexity **grows similar** to Merge Sort

List Length	Selection sort	Merge Sort	list.sort
1000	148	7	0.3
2000	583	15	0.6
3000	1317	23	0.9
4000	2337	32	1.3
5000	3699	41	1.6
10000	14574	88	3.5

So... What Sort Algorithm is Used for Python?

- **Tim Sort** in 2002 a hybrid sorting algorithm (merge sort + insertion sort)
 - Divide and conquer like merge sort
 - When a sublist becomes smaller than a threshold, sort the sublist by using insertion sort
 - Insertion sort is faster than merge sort for a small list

- Visualization
 - https://www.youtube.com/watch?v=NVIjHj-lrT4

Summary

- Mergesort
 - Divide and recursive calls
 - Merge sorted sublists

- Time complexity O(NlogN)
 - O(logN) levels for recursion
 - O(N) for merging at each level
- Memory complexity O(N)
 - For copying sublists

Thanks!