PROBLEM STATEMENT:

TO CHECK HOW BEST FIT IS IT?

importing the libraries

DATA COLLECTION

6/13/23, 3:30 PM project - Jupyter Notebook

Out[82]:

_		age	sex	bmi	children	smoker	region	charges
	0	19	female	27.900	0	yes	southwest	16884.92400
	1	18	male	33.770	1	no	southeast	1725.55230
	2	28	male	33.000	3	no	southeast	4449.46200
	3	33	male	22.705	0	no	northwest	21984.47061
	4	32	male	28.880	0	no	northwest	3866.85520
	1333	50	male	30.970	3	no	northwest	10600.54830
	1334	18	female	31.920	0	no	northeast	2205.98080
	1335	18	female	36.850	0	no	southeast	1629.83350
	1336	21	female	25.800	0	no	southwest	2007.94500
	1337	61	female	29.070	0	yes	northwest	29141.36030

1338 rows × 7 columns

DATA CLEANING

In [83]: ► df.head()

Out[83]:

age	sex	bmi	children	smoker	region	charges
 0 19	female	27.900	0	yes	southwest	16884.92400
1 18	male	33.770	1	no	southeast	1725.55230
2 28	male	33.000	3	no	southeast	4449.46200
3 33	male	22.705	0	no	northwest	21984.47061
4 32	male	28.880	0	no	northwest	3866.85520

In [84]: ► df.tail()

Out[84]:

	age	sex	bmi	children	smoker	region	charges
1333	50	male	30.97	3	no	northwest	10600.5483
1334	18	female	31.92	0	no	northeast	2205.9808
1335	18	female	36.85	0	no	southeast	1629.8335
1336	21	female	25.80	0	no	southwest	2007.9450
1337	61	female	29 07	0	ves	northwest	29141 3603

```
In [85]: ► df.describe()
```

Out[85]:

	age	bmi	children	charges
count	1338.000000	1338.000000	1338.000000	1338.000000
mean	39.207025	30.663397	1.094918	13270.422265
std	14.049960	6.098187	1.205493	12110.011237
min	18.000000	15.960000	0.000000	1121.873900
25%	27.000000	26.296250	0.000000	4740.287150
50%	39.000000	30.400000	1.000000	9382.033000
75%	51.000000	34.693750	2.000000	16639.912515
max	64.000000	53.130000	5.000000	63770.428010

to check missing values

```
In [87]: ► df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1338 entries, 0 to 1337
Data columns (total 7 columns):
# Column Non-Null Count Divise
```

#	Column	Non-I	Null Count	Dtype
0	age	1338	non-null	int64
1	sex	1338	non-null	object
2	bmi	1338	non-null	float64
3	children	1338	non-null	int64
4	smoker	1338	non-null	object
5	region	1338	non-null	object
6	charges	1338	non-null	float64
dtyp	es: float6	4(2),	int64(2),	object(3)
memo	ry usage:	73.3+	KB	

```
In [88]: N sex={"sex":{"female":0,"male":1}}
df=df.replace(sex)
df
```

_			-
/ N		1 2 2	
v	ul	100	

_		age	sex	bmi	children	smoker	region	charges
	0	19	0	27.900	0	yes	southwest	16884.92400
	1	18	1	33.770	1	no	southeast	1725.55230
	2	28	1	33.000	3	no	southeast	4449.46200
	3	33	1	22.705	0	no	northwest	21984.47061
	4	32	1	28.880	0	no	northwest	3866.85520
	1333	50	1	30.970	3	no	northwest	10600.54830
	1334	18	0	31.920	0	no	northeast	2205.98080
	1335	18	0	36.850	0	no	southeast	1629.83350
	1336	21	0	25.800	0	no	southwest	2007.94500
	1337	61	0	29.070	0	yes	northwest	29141.36030

1338 rows × 7 columns

\cap	r#	ГΩ	a	٦.
U	a C	ု ဝ	כ	J

	age	sex	bmi	children	smoker	region	charges
0	19	0	27.900	0	1	southwest	16884.92400
1	18	1	33.770	1	0	southeast	1725.55230
2	28	1	33.000	3	0	southeast	4449.46200
3	33	1	22.705	0	0	northwest	21984.47061
4	32	1	28.880	0	0	northwest	3866.85520
1333	50	1	30.970	3	0	northwest	10600.54830
1334	18	0	31.920	0	0	northeast	2205.98080
1335	18	0	36.850	0	0	southeast	1629.83350
1336	21	0	25.800	0	0	southwest	2007.94500
1337	61	0	29.070	0	1	northwest	29141.36030

1338 rows × 7 columns

In [94]: ► df.drop("region",axis=1)

Out[94]:

		age	sex	bmi	children	smoker	charges
_	0	19	0	27.900	0	1	16884.92400
	1	18	1	33.770	1	0	1725.55230
	2	28	1	33.000	3	0	4449.46200
	3	33	1	22.705	0	0	21984.47061
	4	32	1	28.880	0	0	3866.85520
	1333	50	1	30.970	3	0	10600.54830
	1334	18	0	31.920	0	0	2205.98080
	1335	18	0	36.850	0	0	1629.83350
	1336	21	0	25.800	0	0	2007.94500
	1337	61	0	29.070	0	1	29141.36030

1338 rows × 6 columns

```
In [55]: #taking selected columns from dataset
df=df[['age','bmi']]
df
```

Out[55]:		age	bmi
	0	19	27.900
	1	18	33.770
	2	28	33.000
	3	33	22.705
	4	32	28.880
	1333	50	30.970
	1334	18	31.920
	1335	18	36.850
	1336	21	25.800
	1337	61	29.070

1338 rows × 2 columns

```
In [56]:

    df.head(10)

    Out[56]:
                         bmi
                  age
                   19 27.900
                   18 33.770
                   28 33.000
                   33 22.705
                   32 28.880
                   31 25.740
                   46 33.440
                   37 27.740
                   37 29.830
                   60 25.840

    df.tail(10)

In [57]:
    Out[57]:
                            bmi
                     age
                      23 24.225
               1328
               1329
                      52 38.600
               1330
                      57 25.740
                      23 33.400
               1331
                      52 44.700
               1332
               1333
                      50 30.970
               1334
                      18 31.920
                      18 36.850
               1335
                      21 25.800
               1336
```

1337

61 29.070

Out[58]:		age	bmi
	0	19	27.900
	1	18	33.770
	2	28	33.000
	3	33	22.705
	4	32	28.880
	1333	50	30.970
	1334	18	31.920
	1335	18	36.850
	1336	21	25.800
	1337	61	29.070

1338 rows × 2 columns

In [95]: In sns.lmplot(x="age",y="charges",order=2,data=df,ci=None)
plt.show()

In [102]: df.drop("region",axis=1)

Out[102]:

	age	sex	bmi	children	smoker	charges
0	19	0	27.900	0	1	16884.92400
1	18	1	33.770	1	0	1725.55230
2	28	1	33.000	3	0	4449.46200
3	33	1	22.705	0	0	21984.47061
4	32	1	28.880	0	0	3866.85520
1333	50	1	30.970	3	0	10600.54830
1334	18	0	31.920	0	0	2205.98080
1335	18	0	36.850	0	0	1629.83350
1336	21	0	25.800	0	0	2007.94500
1337	61	0	29.070	0	1	29141.36030

1338 rows × 6 columns

DATA VISUALIZATION

```
x_train,x_test,y_train,y_test=train_test_split(x,y,train_size=0.3)

In [109]:
In [110]:
              a=LinearRegression()
              a.fit(x train,y train)
   Out[110]: LinearRegression()
              In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
              On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
           print(a.score(x test,y test))
In [111]:
              0.7577296238137559
In [112]: | a=LinearRegression()
              a.fit(x train,y train)
              train score a=a.score(x train,y train)
              test score a=a.score(x test,y test)
              print("\nLinearModel:\nThe train score for lr model is {}".format(train score a))
              print("The train score for lr model is {}".format(test score a))
              LinearModel:
              The train score for lr model is 0.7182473271142464
              The train score for lr model is 0.7577296238137559
```

RIDGE regression

LinearRegression 0.7176943354666219 0.7547364699646179

LASSO regression

0.7558673596080301

```
In []: | ----->to check best fit
In [116]: | lasso=Lasso(alpha=100)
    lasso=lasso.fit(x_train,y_train)
    train_score_lasso=lasso.score(x_train,y_train)
    test_score_lasso=lasso.score(x_test,y_test)
    print(train_score_lasso)
    print(test_score_lasso)

0.717493707984145
```

6/13/23, 3:30 PM project - Jupyter Notebook

Comparison plot of Ridge, Lasso and Linear regression model

ELASTICNET

after doing the Linear Regression we got 0.75 means 75% accuracy. to check for better model to fit we did Ridge and Lasso Regresion.then,we got a very minimal variation.so,there is no difference in terms of accuracy. to check for better accuracy we are going to do Logistic regression.

LOGISTIC REGRESSION

PROBLEM STAETOMENT:

TO CHECK IS THIS BEST FIT OR NOT COMPARED TO LINEAR REGRESSION

importing required libraries

```
In [49]: N
    import numpy as np
    import pandas as pd
    import seaborn as sb
    import matplotlib.pyplot as plt
    from sklearn import metrics
    from sklearn.linear_model import LogisticRegression
    from sklearn.preprocessing import StandardScaler
    from sklearn.model_selection import train_test_split
```

6/13/23, 3:30 PM project - Jupyter Notebook

Out[50]:

		age	sex	bmi	children	smoker	region	charges
_	0	19	female	27.900	0	yes	southwest	16884.92400
	1	18	male	33.770	1	no	southeast	1725.55230
	2	28	male	33.000	3	no	southeast	4449.46200
	3	33	male	22.705	0	no	northwest	21984.47061
	4	32	male	28.880	0	no	northwest	3866.85520
	1333	50	male	30.970	3	no	northwest	10600.54830
	1334	18	female	31.920	0	no	northeast	2205.98080
	1335	18	female	36.850	0	no	southeast	1629.83350
	1336	21	female	25.800	0	no	southwest	2007.94500
	1337	61	female	29.070	0	yes	northwest	29141.36030

1338 rows × 7 columns

DATA CLEANING

```
In [51]:

▶ df.info()
             <class 'pandas.core.frame.DataFrame'>
            RangeIndex: 1338 entries, 0 to 1337
            Data columns (total 7 columns):
                 Column
                           Non-Null Count Dtype
                           _____
              0
                           1338 non-null
                                           int64
                  age
                                           object
              1
                  sex
                           1338 non-null
              2
                  bmi
                           1338 non-null
                                           float64
                 children 1338 non-null
                                           int64
                 smoker
                           1338 non-null
                                           object
                 region
                           1338 non-null
                                           object
                 charges 1338 non-null
                                           float64
            dtypes: float64(2), int64(2), object(3)
            memory usage: 73.3+ KB

▶ df.describe()
In [52]:
```

Out[52]:

	age	bmi	children	charges
coun	1338.000000	1338.000000	1338.000000	1338.000000
mean	39.207025	30.663397	1.094918	13270.422265
sto	14.049960	6.098187	1.205493	12110.011237
mir	18.000000	15.960000	0.000000	1121.873900
25%	27.000000	26.296250	0.000000	4740.287150
50%	39.000000	30.400000	1.000000	9382.033000
75%	51.000000	34.693750	2.000000	16639.912515
max	64.000000	53.130000	5.000000	63770.428010

In [53]:

Out[53]: (1338, 7)

```
In [54]: N sex={"sex":{"female":0,"male":1}}
df=df.replace(sex)
df
```

\sim		4-1		
U	u	u	1 24 1	

_		age	sex	bmi	children	smoker	region	charges
	0	19	0	27.900	0	yes	southwest	16884.92400
	1	18	1	33.770	1	no	southeast	1725.55230
	2	28	1	33.000	3	no	southeast	4449.46200
	3	33	1	22.705	0	no	northwest	21984.47061
	4	32	1	28.880	0	no	northwest	3866.85520
	1333	50	1	30.970	3	no	northwest	10600.54830
	1334	18	0	31.920	0	no	northeast	2205.98080
	1335	18	0	36.850	0	no	southeast	1629.83350
	1336	21	0	25.800	0	no	southwest	2007.94500
	1337	61	0	29.070	0	yes	northwest	29141.36030

1338 rows × 7 columns

```
In [55]:

    df.pop("charges")

    Out[55]: 0
                      16884.92400
             1
                      1725.55230
                      4449.46200
             2
                      21984.47061
              3
                      3866.85520
             4
                         . . .
             1333
                      10600.54830
             1334
                      2205.98080
             1335
                      1629.83350
             1336
                      2007.94500
                      29141.36030
             1337
             Name: charges, Length: 1338, dtype: float64

    df.pop("region")

In [56]:
    Out[56]: 0
                      southwest
                      southeast
             1
                      southeast
              2
                      northwest
                      northwest
             1333
                      northwest
             1334
                     northeast
                      southeast
             1335
             1336
                      southwest
             1337
                      northwest
             Name: region, Length: 1338, dtype: object
          ▶ print('This DataFrame has %d rows and %d columns'%(df.shape))
In [57]:
```

This DataFrame has 1338 rows and 5 columns

```
    features=df.iloc[:,0:4]

In [58]:
            target=df.iloc[:,-1]
            print('The features matrix has %d Rows and %d columns'%(features matrix.shape))
            print('The features matrix has %d Rows and %d columns'%(np.array(target vector).reshape(-1,1).shape))
            The features matrix has 1338 Rows and 4 columns
            The features matrix has 1338 Rows and 1 columns
          In [59]:
         ▶ algorithm=LogisticRegression(penalty=None,dual=False,tol=1e-4,C=1.0,fit intercept=True,intercept scaling=1,class
In [60]:
In [61]:
          ▶ Logistic Regression Model=algorithm.fit(features Standardized,target)
          M observation=[[1,1,0,1]]
In [62]:
In [63]:
         ▶ predictions=Logistic Regression Model.predict(observation)
            print('The model predicted the observtaion to belong to class %s'%(predictions))
            print('The algorithm was trained to predict one of the two calsses : %s'%(algorithm.classes ))
            The model predicted the observtaion to belong to class ['no']
            The algorithm was trained to predict one of the two calsses : ['no' 'yes']
```

6/13/23, 3:30 PM project - Jupyter Notebook

In [64]: Print("""The model says the prbability of the observation we passed belonging to calss ['0'] Is %s"""%(algorithm print() print("""The model says the prbability of the observation we passed belonging to calss ['1'] Is %s"""%(algorithm

The model says the prbability of the observation we passed belonging to calss ['0'] Is 0.7724108950235217

The model says the prbability of the observation we passed belonging to calss ['1'] Is 0.22758910497647833

DECISION TREE

 In [69]:

Out	[69]	Ŀ
ouc		٠.

	age	sex	bmi	children	smoker
0	19	0	27.900	0	yes
1	18	1	33.770	1	no
2	28	1	33.000	3	no
3	33	1	22.705	0	no
4	32	1	28.880	0	no
1333	50	1	30.970	3	no
1334	18	0	31.920	0	no
1335	18	0	36.850	0	no
1336	21	0	25.800	0	no
1337	61	0	29.070	0	yes

1338 rows × 5 columns

In [70]: df["sex"].value_counts()

Out[70]: sex

676

662

Name: count, dtype: int64

```
M | df["smoker"].value_counts()
In [71]:
   Out[71]: smoker
                    1064
             no
                     274
             yes
             Name: count, dtype: int64
In [72]: N x=["age", "sex", "children", "bmi"]
             y=["0","1"]
             all inputs=df[x]
             all classes=df["smoker"]
In [74]:

  | x_train,x_test,y_train,y_test=train_test_split(all_inputs,all_classes,test_size=0.5)
             x train.shape,x test.shape
   Out[74]: ((669, 4), (669, 4))
In [75]:  ▶ | s=DecisionTreeClassifier(random_state=20)
             s.fit(x train,y train)
             score=s.score(x test,y test)
             print(score)
             0.680119581464873
```

RANDOM FOREST CLASSIFICATION

```
▶ from sklearn.ensemble import RandomForestClassifier
In [77]:
            rf=RandomForestClassifier()
            rf.fit(x_train,y_train)
   Out[77]: RandomForestClassifier()
            In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
            On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

▶ params={"max depth":[1,23,4,56,85],"min samples leaf":[4,6,8,10,12],"n estimators":[8,9,10,65,42]}

In [78]:

    ★ from sklearn.model selection import GridSearchCV

In [79]:
In [80]:
          grid search.fit(x train,y train)
            print(grid search.score(x test,y test))
            0.7952167414050823
In [81]:
          ▶ p=grid_search.best_estimator_
            print(p)
            RandomForestClassifier(max depth=1, min samples leaf=4, n estimators=8)
```

bmi <= 20.14 gini = 0.311 samples = 423 value = [540, 129] class = 0

gini = 0.491 samples = 16 value = [13, 10] class = 0 gini = 0.301 samples = 407 value = [527, 119] class = 0

after doing logistic regression we got 77%.so we did Decision Tree and Random forest classifier for better accuracy. for Decision tree we got 68% of accuracy. for Random forest classifier we got 79% of accuracy.

CONLCUSION:

----->Based on all model accuracies we conclude that the Random forest classification is somewhat best fit campared to all other models with 79% of accuracy.

DASHBOARD

In []:)