Implementation of a Home Automation Service

Benedikt Görgei, Lukas D'Angelo, Patrick Eder

Technische Universität Graz

benedikt.goergei@student.tugraz.at, lukas.dangelo@student.tugraz.at, patrick.eder@student.tugraz.at

June 9, 2022

Overview

- Introduction
 - Aim and Motivation
- 2 Concept
 - Components
 - Services
- Implementation
 - Software Implementation
- 4 User Story and Demo
 - User Story
 - Demo

Aim and Motivation

- Pre-existing network-enabled hardware I/O modules
- General purpose inputs and outputs
- Sensor BUS
- Building a smart service to control the hardware modules

Components

Physical Domian

Logical Domain

Components and Services

- Physical domain
 - Devices to control
 - Hardware I/O modules
- Logical domain
 - MQTT Broker
 - Hardware Engine
 - Service Engine
 - External Services
 - User Frontend

5/10

Software Implementation

- Communication Protocols
 - MQTT for communicating with hardware
 - HTTP REST
- Programming Language and Frameworks
 - Python 3
 - Flask
- Deployment Docker:
 - MQTT Broker
 - Hardware Engine
 - Service Engine and User Frontend

User Story

- We want to control the temperature of a room
- An electrical valve is used to control the warm water flow of the radiators
- A temperature sensor is used for temperature feedback
- The sensor and the valve are connected to the I/O module

User Story

The user sets the following in the user interface:

- A target temperature (e.g. 21°C)
- A time interval when heating should be done (e.g 08:00 20:00)
- ullet The weather conditions (e.g. not sunny, outdoor temperature $< 5^{\circ}\text{C}$)

Demo

- Service Engine API
- Graphical user interface
- Demo: Switching the light

Thank you!

 \exists Questions?