Fuzzy Logic in the Real World

Simon Coupland

Centre for Computational Intelligence
De Montfort University
The Gateway
Leicester
United Kingdom

Email: simonc@dmu.ac.uk

October 22nd 2009

Overview

- Motivation
- What is Fuzzy Logic?
- Fuzzy Logic Systems
- Example Applications
- Uncertainty and Fuzziness
- The Future of Fuzzy Systems

Crisp Sets and Logic

- A well defined, unordered collection of items which are identifiable and distinct
- Six nations rugby teams = {England, Scotland, France, Italy, Ireland, Wales}

Crisp Sets and Logic

Definition

A crisp set *A* over the universe for discourse *X* is subset of the domain *X* based on some condition(s):

$$A = \{x | x \text{ meets some condition(s)} \}$$

A membership function μ_A is used to map elements of X to their respective membership in A of zero or one:

$$\mu_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$

Crisp Sets and Logic

So a crisp set is a relation from some domain to binary values:

$$A: X \times \{0,1\}$$

The Trouble with Crisp Sets

The Sorites Paradox

- Premise 1: Consider 100,000 grains of sand to be a heap
- Premise 2: A heap of sand minus one grain is still a heap of sand
- But at some point it must stop being a heap

ion Motivation What is Fuzzy Logic? Fuzzy Logic Systems Example Applications Uncertainty and Fuzziness The Future

The Trouble with Crisp Sets

The Sorites Paradox - Bertrand Russell's view

- Person x is tall if their height is 170cm or more
- Tall = {person | height(person) ≥ 170}

Charles' height is 169cm

Alan's height 170cm

Jon's height is 185cm

The Trouble with Crisp Sets

Perhaps we need:

- A softer model
- Degrees of set membership
- Some conceptual vagueness

oduction Motivation What is Fuzzy Logic? Fuzzy Logic Systems Example Applications Uncertainty and Fuzziness The Future

Fuzzy Sets

Fuzzy sets - proposed by Lotfi Zadeh in 1965

- · Set membership is graduated
- Degrees of belonging measured as real numbers between zero and one
- Boundaries of the set are soft, not crisp

Fuzzy Sets

Definition

A fuzzy set *A* over the universe for discourse *X* is a set of ordered pairs mapping domain elements their respective degrees of belonging measured as a real number between zero and one:

$$A = \{(x_1, 0.4), (x_2, 0.3), (x_3, 1), (x_4, 0.6)\}$$

Or using Zadeh's notation:

$$A = \{0.4/x_1 + 0.3/x_2 + 1/x_3 + 0.6/x_4\}$$

A fuzzy set A is usually expressed in terms of its membership function μ_A which maps domain elements (x) their respective degrees of of belonging in the interval [0,1]:

$$A = \{(x, \mu_A(x)) | x \in X\}$$

Fuzzy Sets

A Graphical Comparison with Crisp Sets

So a fuzzy set is a relation from some domain to real numbers:

$$A: X \times \{0,1\}$$

n Motivation What is Fuzzy Logic? Fuzzy Logic Systems Example Applications Uncertainty and Fuzziness The Future

Fuzzy Sets

A Graphical Comparison with Crisp Sets

n Motivation What is Fuzzy Logic? Fuzzy Logic Systems Example Applications Uncertainty and Fuzziness The Future

Fuzzy Sets

Implementation Reality

- Computers don't like continuous functions
- Instead use discrete approximations
- A number of ordered pairs mapping x values to the μ

oduction Motivation What is Fuzzy Logic? Fuzzy Logic Systems Example Applications Uncertainty and Fuzziness The Future

Fuzzy Sets and Probability

A Cautionary Tale

- Quite different meanings
- Example bottles of liquid:

Fuzzy Bottle

0.7 Drinkable

Probabilistic Bottle

0.7 Drinkable

roduction Motivation What is Fuzzy Logic? Fuzzy Logic Systems Example Applications Uncertainty and Fuzziness The Futur

Fuzzy Logic Operators

- Logical operations of fuzzy sets are well defined
- Together these form fuzzy logic:
 - AND
 - OR
 - NOT
 - IMPLIES
- Crucial for rule based fuzzy logic systems

oduction Motivation What is Fuzzy Logic? **Fuzzy Logic Systems** Example Applications Uncertainty and Fuzziness The Futur

Fuzzy Logic Operators

Logical AND

- Defined for each point in the membership function
- Extends Boolean AND
- Any t-norm but usually minimum:

$$\mu_{A \ AND \ B}(x) = \mu_{A}(x) \wedge \mu_{B}(x)$$

iduction Motivation What is Fuzzy Logic? **Fuzzy Logic Systems** Example Applications Uncertainty and Fuzziness The Future

Fuzzy Logic Operators

Logical OR

- Defined for each point in the membership function
- Extends Boolean OR
- Any t-norm but usually maximum:

$$\mu_{A \ AND \ B}(x) = \mu_{A}(x) \lor \mu_{B}(x)$$

Fuzzy Logic Operators

Logical NOT

- Defined for each point in the membership function
- Extends Boolean NOT:

$$\neg \mu_A(x) = 1 - \mu_A(x)$$

n Motivation What is Fuzzy Logic? **Fuzzy Logic Systems** Example Applications Uncertainty and Fuzziness The Futur

Fuzzy Logic Operators

Logical IMPLIES

- Defined for each point in the membership function
- A variety of operators
- Most commonly used is generalised modus ponens:
 - Modus ponens: If X THEN Y. X, therefore Y
 - Generalised modus ponens: If X THEN Y. X to degree 0.6, therefore Y to degree 0.6
- Any t-norm but usually minimum:

$$\mu_{\alpha \Longrightarrow A}(x) = \alpha \lor \mu_{A}(x)$$

Fuzzy Logic Operators

Fuzzification

• The process of finding the membership grade of an input:

$$\mu_{Tall}(170) = 0.5$$

◆ロト ◆母 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q (*)

Fuzzy Logic Operators

Defuzzification

- The process of reducing a fuzzy set to a single crisp value
- Centre of area is most commonly used:

$$C_A = \frac{\sum \mu_A(x)x}{\sum \mu_A(x)}$$

$$C_{\textit{Tall}} = \frac{0.13 \times 166.25 + \ldots + 1 \times 185}{0.13 + \ldots + 1} = 177.78$$

oduction Motivation What is Fuzzy Logic? **Fuzzy Logic Systems** Example Applications Uncertainty and Fuzziness The Futur

Fuzzy Logic Systems

Fitting it all Together

- Typically rule-based:
 IF age is Young AND wealth is Rich THEN disposition is Very Happy
- Combine fuzzy sets with logical operators
- Crisp inputs, often crisp outputs:

Fuzzy Logic System

n Motivation What is Fuzzy Logic? **Fuzzy Logic Systems** Example Applications Uncertainty and Fuzziness The Future

Fuzzy Logic Systems

on Motivation What is Fuzzy Logic? **Fuzzy Logic Systems** Example Applications Uncertainty and Fuzziness The Future

Fuzzy Logic Systems

Fuzzy Logic Systems

What I haven't told you

Many other approaches:

- Logical operator choices
- Neuro-fuzzy systems
- Defuzzification operator choices
- Adaptive systems

Application Areas

Applied to a wide range of problems including:

- Industrial control
- Human decision making
- Image processing

duction Motivation What is Fuzzy Logic? Fuzzy Logic Systems **Example Applications** Uncertainty and Fuzziness The Futur

Industrial Control

Control of marine diesel engines

- MAN 9000kW Cathedral Engines
- Low overshoot tolerance
- Highly dynamic and uncertain environments
- Require robust and accurate control

on Motivation What is Fuzzy Logic? Fuzzy Logic Systems **Example Applications** Uncertainty and Fuzziness The Futur

Industrial Control

Control of marine diesel engines

- Typically three engines
- Two drive props and generators
- One solely for power generation

From Lynch, C. et al, Using Uncertainty Bounds in the Design of an Embedded Real-Time Type-2 Neuro-Fuzzy Speed Controller for Marine Diesel Engines, FUZZ-IEEE 2006.

duction Motivation What is Fuzzy Logic? Fuzzy Logic Systems **Example Applications** Uncertainty and Fuzziness The Future

Industrial Control

Control of marine diesel engines

- VK25 is the current control system
- T2NFC and RT2NFC are both fuzzy
- Type-2 fuzzy sets
- Different defuzzification techniques

From Lynch, C. et al, Using Uncertainty Bounds in the Design of an Embedded Real-Time Type-2 Neuro-Fuzzy Speed Controller for Marine Diesel Engines, FUZZ-IEEE 2006.

uction Motivation What is Fuzzy Logic? Fuzzy Logic Systems **Example Applications** Uncertainty and Fuzziness The Future

Human Decision Making

Volkswagen Direct-Shift Gearbox

- Automatic gear selection behaviour
- Gear choice can be inferred from sensor readings
- Need to account for human factor

Human Decision Making

Volkswagen Direct-Shift Gearbox

- Two fuzzy systems are used:
 - · Infer driving style
 - Select gear
- Gear selection based on:
 - Sensor data
 - Fuzzy judgement of current driving style

luction Motivation What is Fuzzy Logic? Fuzzy Logic Systems **Example Applications** Uncertainty and Fuzziness The Future

Human Decision Making

Volkswagen Direct-Shift Gearbox

- Adaptive fuzzy systems
- Gradually adjusts the fuzzy sets
- Tailored to suit your personal driving style

duction Motivation What is Fuzzy Logic? Fuzzy Logic Systems Example Applications Uncertainty and Fuzziness The Future

Image Processing

Segmentation of Histopathology Images

- Identify regions of the image as:
 - Nuclei
 - Lumen
 - Cytoplasm
- Classify tissue

uction Motivation What is Fuzzy Logic? Fuzzy Logic Systems **Example Applications** Uncertainty and Fuzziness The Future

Image Processing

Segmentation of Histopathology Images

- 1 Set the number of classes n (3)
- 2 Initialise a fuzzy description of each
- 3 Find the set of fuzzy descriptions of *n* with the lowest overlap

tion Motivation What is Fuzzy Logic? Fuzzy Logic Systems **Example Applications** Uncertainty and Fuzziness The Futur

Image Processing

Segmentation of Histopathology Images

Nuclei in red and black, lumen in green and cytoplasm in yellow

From Adel Hafiane et al, Lecture Notes in Computer Science. 5259: 903914 (2008)

uction Motivation What is Fuzzy Logic? Fuzzy Logic Systems **Example Applications** Uncertainty and Fuzziness The Futur

Image Processing

Segmentation of Histopathology Images

Nuclei in red and black, lumen in green and cytoplasm in yellow

From Adel Hafiane et al, Lecture Notes in Computer Science. 5259: 903914 (2008)

Application of Fuzzy Methods

- Useful wherever vagueness of uncertainty exists
- Relatively simple paradigm
- Not a panacea good science is still the key
- Areas not mentioned:
 - White goods fridges, freezers, washing machines
 - Camera anti-shake Minolta and Canon
 - Scheduling Seattle traffic light control system

ion Motivation What is Fuzzy Logic? Fuzzy Logic Systems Example Applications Uncertainty and Fuzziness The Future

Uncertainty and Vagueness

The Trouble with (Type-1) Fuzzy Sets

Fuzzy sets and systems:

- Vagueness
- Partial truth
- Degrees of set membership

But what about uncertainty?

- Alan is 0.5 Tall
- 0.5 is crisp!
- Alan is about 0.5 Tall

oduction Motivation What is Fuzzy Logic? Fuzzy Logic Systems Example Applications Uncertainty and Fuzziness The Futur

Uncertainty and Vagueness

The Trouble with (Type-1) Fuzzy Sets

Type-2 Fuzzy Sets:

- Set membership measured as a fuzzy number
- Alan is about 0.5 Tall
- Where about 0.5 is a fuzzy set (number)
- DMU lead the world in this field
- Example type-2 fuzzy set run program

duction Motivation What is Fuzzy Logic? Fuzzy Logic Systems Example Applications Uncertainty and Fuzziness The Future

The Future of Fuzzy Systems

A Personal View

- Uncertainly management is key
- Type-2 fuzzy systems have a big role to play
- Other extensions will also be important
- Computing with Words has potential
- Worth measured by applications

oduction Motivation What is Fuzzy Logic? Fuzzy Logic Systems Example Applications Uncertainty and Fuzziness **The Future**

Summary

- Fuzzy sets are sets with soft boundaries
- Fuzzy logic performs inference on fuzzy sets
- Applied in a variety of areas
- Future developments are likely to be concerned with uncertainty models

uction Motivation What is Fuzzy Logic? Fuzzy Logic Systems Example Applications Uncert<u>ainty and Fuzziness **The Future**</u>

