

The Travelling Salesman Problem

LOMMEL Mathias, PERRIN Aglaé, THOMAS Julie, EL FAKIR Maryam, DEMOLLIERE Bastien

INTRODUCTION

Trouver le plus court chemin, en visitant toutes les villes une et une seule fois

Minimisation sous contraintes

Pour n villes : n! chemins possibles

Pour le résoudre, différentes stratégies :

1

PROGRAMMATION DYNAMIQUE

Algorithme de Held-Karp

2

PROGRAMMATION LINÉAIRE EN NOMBRE ENTIER

Méthodes de MTZ et DFJ

3 SOLUTION APPROCHÉE

Lin-Kernighan Heuristic Nearest Neighbor Ant colony

Données du problème

- Soit G=(S,A): graphe complet, non orienté
- |S| = n nombre de villes à visiter
- $ullet C\in \mathbb{M}_n(\mathbb{R})$ la matrice d'adjacence du graphe, avec c_{ij} le coût d'aller de la ville i vers la ville j

$$c_{ij}
eq 0, orall i \in \{1,\ldots,n\}, i
eq j$$

 $c_{ij}=c_{ji}$ car le graphe est symétrique

Objectif:

Trouver le cycle Hamiltonien de coût minimum

Algorithme de Held-Karp

Soit $ilde{S}$ un sous ensemble de villes, de taille k, $ilde{S} \subseteq \{2,\dots,n\}$

$$g(ilde{S},e) = \min_{1 \leq i \leq k} g(ilde{S} \setminus s_i,s_i) + d(s_i,e)$$

Meilleure distance entre la ville 1 et la ville e en passant par toutes les villes de \tilde{S}

A chaque étape, on utilise le résultat précédent

Distance entre la ville s_i et la ville e

Tous les "sous-chemins" sont nécessairement optimaux :

1 - PROGRAMMATION DYNAMIQUE

Algorithme de Held-Karp

Nombre de sous-ensembles $ilde{S}$ de taille k ($| ilde{S}|$ =k) possibles : C_{n-1}^k

Il reste $\,n-1-k\,$ valeurs qui ne sont pas dans $ilde{S}$

 $\longrightarrow n-1-k$ possibilités de sommets d'arrivée

Complexité en espace : $\Theta(2^n n)$

Calcul de $g(ilde{S},e)$ (à e et $ilde{S}$ fixés) : k calculs intermédiaires à faire avant de trouver le minimum

On fait la somme sur toutes les tailles k

Complexité en temps : $\Theta(2^n n^2)$

n = 17

Instance : grl7.tsp

Method : hk

Solve time : 0:00:01.934659

Tour cost : 2085.0

2 secondes

n = 21

Instance : gr21.tsp

Method : hk

Solve time : 0:00:56.941296

Tour cost : 2707.0

57 secondes

n = 24

Instance : gr24.tsp

Method : hk

Solve time : 0:14:16.748164

Tour cost : 1272.0

14minutes

Formulation du problème

Soient les variables $\,x_{ij}=1\,$ si on quitte la ville i pour aller dans la ville j $= 0 \sin \alpha$

La fonction à minimiser est alors : $\sum \sum c_{ij} x_{ij}$, sous les contraintes :

$$\sum_{i=1}^{n}\sum_{j=1}^{n}c_{ij}x_{ij}$$

$$egin{aligned} \sum_{i \in S} x_{ij} &= 1 & \sum_{j \in S} x_{ij} &= 1 \ orall_{j \in S} & orall_{j \in S} \end{aligned}$$

Soient {1,2,3,4,5} un ensemble de villes à visiter :

On quitte i une seule fois

On visite j une seule fois

Ce chemin respecte les contraintes mais ne répond pas au problème

L'algorithme de MTZ

On introduit de nouvelles variables : $u_i, i \in \{1, \dots n\}$ $u_i \geq 0$

permettent de classer les villes en fonction de leur ordre de visite

 \implies si $x_{ij} = 1, u_j \ge u_i + 1$ si $x_{ij} = 0$, pas de contraintes sur u_i et u_j

Contrainte supplémentaire : $u_i - u_j + n * x_{ij} \leq n-1 \quad orall i, j \in \{2, \dots n\}$

--- élimine les cycles

L'algorithme de DFJ

Pour chaque sous ensemble de sommet, on limite le nombre d'arcs possibles :

$$\sum_{i \in ilde{S}} \sum_{j \in ilde{S}, j
eq i} x_{ij} \leq | ilde{S}| - 1$$

 $orall ilde{S} \subsetneq \{1,\ldots,n\}$ (pour tous les sous ensembles stricts)

Cette condition garantit qu'aucun sous-ensemble ne peut former un sous-tour : solution connexe garantie.

Problème : nombre exponentiel de contraintes possibles

Solution : algorithme itératif, ajoutant des contraintes à chaque solution trouvée

L'algorithme de DFJ

Première solution:

On ajoute les contraintes présentées précédemment

Seconde solution:

On itère de cette manière jusqu'à obtenir une solution "en un morceau"

Comparaison des 2 méthodes

MTZ

- $u_1=0 o 1$ contrainte
- $2 \le u_i \le n \to 2(n-1)$ contraintes
- $\begin{array}{c} \bullet \quad u_i u_j + n * x_{ij} \leq n 1 \\ \longrightarrow \quad (n 1)(n 2) \text{ contraintes} \end{array}$
- 1+2(n-1)+(n-1)(n-2) contraintes
 - + création de n variables supplémentaire

DFJ

- 2ⁿ sous ensembles possibles au total (dans le pire des cas)
- Or, il y a n sous ensembles avec 1 seul sommet
- - $2^n\!-\!n-2$ contraintes (au pire)

Comparaison des 2 méthodes

16 s | 0.32 s

MTZ

Instance : grl7.tsp

Method : mtz

Solve time : 0:00:16.443599

Tour cost : (1, 'Optimal', 2085.0)

Instance : gr21.tsp

Method : mtz

Solve time : 0:00:00.575147

Tour cost : (1, 'Optimal', 2707.0)

Instance : gr24.tsp

Method : mtz

Solve time : 0:00:00.814952

Tour cost : (1, 'Optimal', 1272.0)

DFJ

Instance : grl7.tsp

Method : dfj

Solve time : 0:00:00.320380

Tour cost : (1, 'Optimal', 2085.0)

Instance : gr21.tsp

Method : dfj

Solve time : 0:00:00.109643

Tour cost : (1, 'Optimal', 2707.0)

Instance : gr24.tsp
Method : dfi

Solve time : 0:00:00.459913

Tour cost : (1, 'Optimal', 1272.0)

Lin-Kernighan Heuristic

Initialisation d'une première route ordonnée aléatoirement

Algorithme en 2-opt:

Principe : échanger 2 arcs dans le circuit et voir si le coût total est diminué

- on fixe i ∈ {1,...,n-2} = sommet
 d'arrivée du premier arc
- on fixe $j \in \{i+1,...,n-1\}$ = sommet de départ du deuxième arc
- on crée la nouvelle route : $0 \rightarrow ... \rightarrow p(i) \rightarrow j \rightarrow ... \rightarrow i \rightarrow s(j) \rightarrow ... \rightarrow 0$
- on calcule son coût qu'on compare au coût à battre

Lin-Kernighan Heuristic

Complexité en temps : PLS-complete (Polynomial Local Search)

Résultats variables, parfois exacts, toujours proches de la solution

```
Enstance : gr17.tsp
Method : lk
Solve time : 0:00:00.010100
Tour cost : 2005.0
```

```
Instance : gr21.tsp
Hethod : lk
Solve time : 0:00:00.020157
Tour cost : 2707.0
```

```
Instance : gr24.tsp
Method : lk
Solve time : 0:00:00.029971
Tour cost : 1272.0
```

Ant colony algorithm

Principe de l'algorithme :

• Envoi de groupes de fourmis

• Les fourmis auront tendance à se déplacer à travers les chemins les plus phéromonés

Ant colony algorithm

p(x,y): poids associé à l'arc (x,y) dans le choix des fourmis

+ la longueur de l'arc augmente, + p(x,y) diminue

$$p(x,y)=(au_{xy}^lpha).\,(\eta_{xy}^eta)+\gamma$$

+ il y a de phéromones,+ p(x,y) augmente

les quantités de phéromones evoluent dans le temps :

évaporation : coefficient p

$$au_{xy}(t+1) = au_{xy}(t).\,(1-
ho) + Q$$
Et Q dépendant de $COST_{path}$

augmentation: coefficient Q

Méthodes limitant l'obtention d'un minimum local :

Avec $P_{MIN} \leq \tau_{xy}(t) \leq P_{MAX}$

- fixer des quantités maximales et minimales de phéromones par arc
- considérer la qualité du chemin global dans l'ajout de phéromones
- valorisation de la recherche de nouveaux chemins

3 - SOLUTION APPROCHÉE

Ant colony algorithm

Principal inconvénient de cette méthode :

- Nombre trop important de variables : difficulté d'ajustement
- Grande variabilité des résultats observés
- Risque assez important d'obtenir un minimum local

Complexité de l'algorithme :

- Critère d'arrêt : stagnation du meilleur coût OU nombre d'itérations < 10.n
- Recherche d'un chemin pour chaque fourmi : n itérations
- Mise à jour de la matrice des poids : n² itérations

Enstance : gr17.tsp Method : ac Solve time : 0:00:00.205272 Tour cost : 2149.0

Instance : gr17.tsp Method : ac Solve time : 0:00:00.208442 Tour cost : 2268.0

Nearest Neighbor algorithm

Principe de l'algorithme :

- ---- On choisit une ville de départ
 - On cherche le plus proche voisin de cette ville, qu'on note "visité" et on stocke la distance correspondante ;
 - On cherche ensuite le plus proche voisin "non-visité" de la dernière ville visitée;
 - On répète cette opération n-1 fois;
 - On rajoute la distance reliant la dernière ville visitée à la ville de départ.
- On refait la même chose en démarrant dans chaque ville
- On retient la trajectoire la moins couteuse

Nearest Neighbor algorithm

Complexité en temps : $\Theta(n^3)$ ou $\Theta(n^2)$

Résultats variables, relativement proches de la solution

Instance : grl7.tsp

Method : nn

Solve time : 0:00:00.004987

Tour cost : 2178.0

Instance : gr21.tsp

Method : nn

Solve time : 0:00:00.006116

Tour cost : 2891.0

Instance : gr24.tsp

Method : nn

Solve time : 0:00:00.008976

Tour cost : 1526.0

4 - SYNTHÈSE DES MÉTHODES

Méthodes exactes

Raison majeure: utilisation d'un solveur utilisant du langage C ou C++

4 - SYNTHÈSE DES MÉTHODES

Méthodes heuristiques:

Compromis à trouver entre rapidité et qualité de l'approximation

