NATIONAL UNIVERSITY OF SINGAPORE

Department of Mathematics

Semester 1 (2003/2004) MA4253 Mathematical Programming Tutorial 3

Q1. Solve the following problem by the simplex method with bounded variables technique:

min
$$-4x_1 - x_2 - 6x_3$$

s.t. $3x_1 + 2x_2 + 4x_3 = 34$
 $2 \le x_1 \le 4$
 $2 \le x_2 \le 4$
 $2 \le x_3 \le 4$.

Q2. Find the dual form of the following problem

$$\begin{aligned} & \text{min} & c^T x \\ & \text{s.t.} & & Ax \le b \\ & & & l \le x \le u, \end{aligned}$$

where $x \in \Re^n$ is unknown, $c, l, u \in \Re^n$, $l \le u$, and $A \in \Re^{m \times n}$.

Q3. Consider the following problem

$$\max 4x_1 + 2x_2 + 6x_3
s.t. 4x_1 + x_2 \leq 9
x_1 - x_2 + 2x_3 \leq 8
1 \leq x_1 \leq 3
0 \leq x_2 \leq 5
0 \leq x_3 \leq 2.$$
(1)

- (i) Give the dual problem of (1).
- (ii) Find an optimal solution to the dual problem obtained in (i).
- Q4. Consider the linear program

min
$$-x_1 - x_2$$

s.t. $x_1 - x_2 + x_3 = 2$
 $4x_1 + 9x_2 \le 18$
 $-2x_1 + 4x_2 \le 4$
 $x_1, x_2, x_3 > 0$.

Treat the first constraint as the constraint set Ax = b and the second and the third constraints as the set $Cx \ge d$. Find a Dantzig-Wolfe restricted master program and solve it.