Example 5.5 (chp5ex5)

A three-phase, 60-Hz, 500-kV transmission line is 300 km long. The line inductance is 0.97 mH/km per phase and its capacitance is 0.0115 μ F/km per phase. Assume a lossless line.

- (a) Determine the line phase constant β , the surge impedance Z_C , velocity of propagation v and the line wavelength λ .
- (b) The receiving end rated load is 800 MW, 0.8 power factor lagging at 500 kV. Determine the sending end quantities and the voltage regulation.
- (a) For a lossless line, from (5.62) we have

$$\beta = \omega \sqrt{LC} = 2\pi \times 60\sqrt{0.97 \times 0.0115 \times 10^{-9}} = 0.001259 \text{ rad/km}$$

and from (5.63)

$$Z_c = \sqrt{\frac{L}{C}} = \sqrt{\frac{0.97 \times 10^{-3}}{0.0115 \times 10^{-6}}} = 290.43 \ \Omega$$

Velocity of propagation is

$$v = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{0.97 \times 0.0115 \times 10^{-9}}} = 2.994 \times 10^5 \text{ km/s}$$

and the line wavelength is

$$\lambda = \frac{v}{f} = \frac{1}{60}(2.994 \times 10^5) = 4990 \text{ km}$$

(b) $\beta\ell = 0.001259 \times 300 = 0.3777$ rad = 21.641°

The receiving end voltage per phase is

$$V_R = \frac{50020^{\circ}}{\sqrt{3}} = 288.67520^{\circ} \text{ kV}$$

The receiving end apparent power is

$$S_{R(3\phi)} = \frac{800}{0.8} 2^{2} \cos^{-1} 0.8 = 1000 \times 26.87^{\circ} = 800 + j600 \text{ MVA}$$

The receiving end current per phase is given by

$$I_R = \frac{S_{R(3\phi)}^*}{3V_R^*} = \frac{10002 - 36.87^\circ \times 10^3}{3 \times 288.67520^\circ} = 1154.72 - 36.87^\circ \text{ A}$$

From (5.71) the sending end voltage is

$$\begin{split} V_S &= \cos\beta\ell \, V_R + j Z_c \sin\beta\ell \, I_R \\ &= (0.9295)288.675 \angle 0^\circ + j (290.43) (0.3688) (1154.7 \angle -36.87^\circ) (10^{-3}) \\ &= 356.53 \angle 16.1^\circ \, \text{kV} \end{split}$$

The sending end line-to-line voltage magnitude is

$$|V_{S(L-L)}| = \sqrt{3} |V_S| = 617.53 \text{ kV}$$

From (5.72) the sending end current is

$$\begin{split} I_S &= j \frac{1}{Z_c} \sin \beta \ell \ V_R + \cos \beta \ell \ I_R \\ &= j \frac{1}{290.43} (0.3688) (288.675 \angle 0^\circ) (10^3) + (0.9295) (1154.7 \angle -36.87^\circ) \\ &= 902.3 \angle -17.9^\circ \ A \end{split}$$

The sending end power is

$$S_{S(3\phi)}=3V_SI_S^*=3\times356.53\angle16.1\times902.3\angle-17.9^\circ\times10^{-3}$$
 = 800 MW + j 539.672 Mvar = 965.1 $\angle34^\circ$ MVA

Voltage regulation is

Percent
$$VR = \frac{356.53/0.9295 - 288.675}{288.675} \times 100 = 32.87\%$$

kV, and $I_s = 903.12 - 17.7^{\circ}$ A. This shows that the lossless assumption yields sistance is obtained in Example 5.9 using the lineperf program. When a line is operating at the rated load, the exact solution results in $V_{S(L-L)}=623.5/15.57^\circ$ The line performance of the above transmission line including the line reacceptable results and is suitable for hand calculation.

5.7 COMPLEX POWER FLOW THROUGH TRANSMISSION LINES

of the sending end and receiving end voltage magnitudes and phase angles and the Specific expressions for the complex power flow on a line may be obtained in terms ABCD constants. Consider Figure 5.2 where the terminal relations are given by (5.5) and (5.6). Expressing the ABCD constants in polar form as $A = |A| \angle \theta_A$,