MALWARE ANALYSIS

Prof. Adel KHALDI

Ву,

Min-ji Choi(Exchange student)
Raymond ZALOUM M.E (SNS)
Bharani MOORTHY M.E (SNS)

INDEX

SYNTHESIS 3
IDENTIFICATION
FILE TYPE4
FILE HASH4
STRINGS 5
COMPILATION DATE6
DYNAMIC ANALYSIS6
PROCESS EXPLORER
PROCESS MONITOR
NETWORK TRAFFIC ANALYSIS BY WIRESHARK8
MEMORY FORENSICS ANALYSIS9
OS DETAILS 9
STRANGE PROCESS9
NETWORK COMMUNICATION
REMOTE IP DETAILS
REGISTRY DETAILS
HASH DETAILS
PE FILE DETAILS
DUMPIT DETAILS
MALWARE NAME
MUTEX DETAILS
HOOKED API DETAILS
PROPAGATION DETAILS
DISINFECTION

SYNTHESIS

We downloaded the malware file sample_7_exam.html and renamed into .exe and started both static and dynamic analysis part, we found that the malware deletes its source location and creates another file names netmon.exe and it makes remote communication to the computer residing in the local network via 445 port (Eternal Blue – used the same exploit!).We found most interesting things in memory analysis. Putting it All together, we used the tools such as procmon, procexp, wireshark, dumpit and volatility to detect the malware and its intention.

IDENTIFICATION

We used the Static Analysis and found the details of the malware sample as follows:

1. File type

We have found our downloaded malware file is.EXE format by examining the magic bytes in PE bear.

2. File Hash

The below file Hashed has found using the MD5 & SHA Checksum Utility.

3. Strings

We have exported the strings in downloaded software using strings tool and found some interesting strings as follows:

ExitProcess

TerminateProcess

*.dll files like: user32.dll, KERNEL32.dll , ADVAPI32.dll

4. Compilation date

We have found that the compilation date of the downloaded software is April 26th, 2009 at 17:02:06 according to PE bear and online timestamp calculator.

DYNAMIC ANALYSIS

1. Process Explorer

We couldn't find any other information by Process Explorer rather than the fact that the malware is executed.

Screenshot before executing the malware

Screenshot after executing the malware

2. Process Monitor

We have found that the malware is also executing the other program according to Process Monitor. The file path of the executed programs is \rightarrow C:\Windows\system\netmon.exe. In addition, the program cmd is also executed for deleting the malware itself.

Screenshot before executing the malware:

Screenshot after executing the malware:

3. Network traffic Analysis by Wireshark:

We have analysed the network traffic to find the malware is making any network communication to other networks/ local network.

Firstly, it seems that the malware is brute forcing within the network with port number 445 (SMB)

- → Now, we got the flashback of the great ransomware attack named *Wannacry*/EternalBlue used the same windows Port 445 vulnerability -Server Message Block where application can read, create and update files on the remote server. The malware is trying to scan all computers in the network.
- → Suppose that the malware finds a port 445 open in a computer, then the malware can CRUD operation (Create, read, update and delete).
- → https://www.altospam.com/actualite/2017/05/attaque-wannacry-via-smb-jaff-email/

MEMORY FORENSICS ANALYSIS

For the memory analysis, we used an indispensable tool name **volatility** (which we have taught to us in windows forensics class) to analysis the dumped file.

1- From which operating system's version this image was taken?

The file has been analyzed via PEbear and we found that the image was taken in Windows 95 Operating system.

Disasm: .text	General DOS Hdr	File Hdr Optional H	Hdr Section Hdrs Imports
Offset	Name	Value	Value
F0	Magic	10B	NT32
F2	Linker Ver. (Major)	6	
F3	Linker Ver. (Minor)	0	
F4	Size of Code	6200	
F8	Size of Initialized Data	4C00	
FC	Size of Uninitialized Data	0	
···· 100	Entry Point	3116	
104	Base of Code	1000	
108	Base of Data	8000	
10C	Image Base	10000000	
110	Section Alignment	1000	
114	File Alignment	200	
118	OS Ver. (Major)	4	Windows 95 / NT 4.0
11A	OS Ver. (Minor)	0	
11⊂	Image Ver. (Major)	0	
445	T 11 /84:\		

2- What are the strange processes? Are they malicious? Why?

Screenshot taken in Autoruns

Offset(P) N	lame	PID	PPID	PDB	Time create	ed .		Time exite
0×000000000171d880 n	etmon.exe	1272	1740	0×0abc02e0	2020-01-25	11:38:57	UTC+0000	
0 0/212/1000000000000000000000	ilg.exe	שסס	048	м×мчпсмтом	ZMZM-MT-Z 2	11:2/:25	שששש+בוט	
0×00000000017a51d0 f	irefox.exe	664	1492	0×0abc0240	2020-01-25	11:38:05	UTC+0000	
0×00000000017dada0 j	qs.exe	1816	648	0×0abc0220	2020-01-25	11:27:24	UTC+0000	
0×000000000188b1a8 s	vchost.exe	1132	648	0×0abc0160	2020-01-25	11:27:20	UTC+0000	
0×0000000001892770 V	BoxService.exe	816	648	0×0abc00c0	2020-01-25	11:27:20	UTC+0000	
0×0000000001896b10 s	vchost.exe	1040	648	0×0abc0120	2020-01-25	11:27:20	UTC+0000	
0×0000000001897020 w	inlogon.exe	604	448	0×0abc0060	2020-01-25	11:27:20	UTC+0000	
0×000000000189d550 s	vchost.exe	948	648	0×0abc0100	2020-01-25	11:27:20	UTC+0000	
0×000000000189dda0 s	vchost.exe	860	648	0×0abc00e0	2020-01-25	11:27:20	UTC+0000	
0×00000000018b4c18 s	poolsv.exe	1580	648	0×0abc01e0	2020-01-25	11:27:21	UTC+0000	
0×00000000018be668 D	umpIt.exe	2292	1492	0×0abc0260	2020-01-25	11:39:17	UTC+0000	
0×0000000001930128 s	ervices.exe	648	604	0×0abc0080	2020-01-25	11:27:20	UTC+0000	
0×00000000019ae1c8 s	mss.exe	448	4	0×0abc0020	2020-01-25	11:27:20	UTC+0000	
0×00000000019e43b8 V	BoxTray.exe	516	1492	0×0abc0200	2020-01-25	11:27:25	UTC+0000	
0×00000000019f6da0 T	rueCrypt.exe	1484	1492	0×0abc0280	2020-01-25	11:29:03	UTC+0000	
0×0000000001a49da0 c		580	448	0×0abc0040	2020-01-25	11:27:20	UTC+0000	
0×0000000001a58020 s	vchost.exe	1100	648	0×0abc0140	2020-01-25	11:27:20	UTC+0000	
0×0000000001a618c0 e	xplorer.exe	1492	1424	0×0abc01c0	2020-01-25	11:27:21	UTC+0000	
0×0000000001aac2d0 l		660			2020-01-25			

Screenshot taken in Volatility of netmon.exe and its Pid 1272

- → Yes, there is a strange process that the original malware file named sample_07_nee.exe
- → Creates another file named netmon.exe file and the original file was deleted in order to hide the visibility of the source file identification.
- → Of course, it is **malicious!** we compared the strings of both sample07.exe and netmon.exe exactly the sale content.
- → Yes, it initiates the brute force attack via port 445 SMB port in order to propagates / share the malicious file to local machines.

3- Which process is making network connections?

. netmon is the process (Pid - 1247) which makes the network communication via port 445 SMB , we can see the similarity in its Pid.

4- Where are the remote IP addresses/domain name located?

As seen in the previous section, it makes communication via all the local addresses. (in our analyzed system as 10.0.*.*)

Also, by using the packet tracer, we found that 172.20.10.1 / ninjawarlord.com are making the communication remotely.

Also, we investigated the site Ninjaworld.com, where it downloads some remote files from this website.

5- Find where the malicious program is recorded in the registry startup list

By using the Autoruns file, we have found the Registry startup file location of the malicious program netmon.

The file is under → HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

Also using the volatility, we found the hive list an using the key found the below process

```
latility-master# volatility -f TESTED-08375-20200125-113917.raw hivelist
Volatility Foundation Volatility Framework 2.6
Virtual
            Physical Name
0×e1b8d008 0×0f25b008 \Device\HarddiskVolume1\Documents and Settings\Administrateur\Local Settings\Applicatio
n Data\Microsoft\Windows\UsrClass.dat
0×e1b299f0 0×0f30d9f0 \Device\HarddiskVolume1\Documents and Settings\Administrateur\NTUSER.DAT
0×e182a4b8 0×0d6834b8 \Device\HarddiskVolume1\Documents and Settings\LocalService\Local Settings\Application
Data\Microsoft\Windows\UsrClass.dat
0×e1826ae0 0×0d5ffae0 \Device\HarddiskVolume1\Documents and Settings\LocalService\NTUSER.DAT
0×e1807008 0×0d18d008 \Device\HarddiskVolume1\Documents and Settings\NetworkService\Local Settings\Applicatio
n Data\Microsoft\Windows\UsrClass.dat
0xe1800008 0x0d202008 \Device\HarddiskVolume1\Documents and Settings\NetworkService\NTUSER.DAT
0×e141cb60 0×0a979b60 \Device\HarddiskVolume1\WINDOWS\system32\config\software
w*ei4cfof0 0*03fd3of0 \Device\Harddiskvolumei\winDows\system32\config\default
0*e14d1b60 0*03fd5b60 \Device\HarddiskVolume1\WINDOWS\system32\config\SAM
0×e141c008 0×0a979008 \Device\HarddiskVolume1\WINDOWS\system32\config\SECURITY
0×e12d0a98 0×0252ba98 [no name]
0×e10182f8 0×0226f2f8 \Device\HarddiskVolume1\WINDOWS\system32\config\system
0×e1008b60 0×02233b60 [no name]
                                          Screenshot to showing the Hive list
                            eVM/volatility-master# volatility -f TESTED-08375-20200125-113917.raw -o 0×e141cb60 p
rintkey -K "Microsoft\Windows\CurrentVersion\Run"
Volatility Foundation Volatility Framework 2.6
Legend: (S) = Stable (V) = Volatile
Registry: \Device\HarddiskVolume1\WINDOWS\system32\config\software
Key name: Run (S)
Last updated: 2020-01-25 11:38:57 UTC+0000
```

Screenshot to showing the sub process keys

SunJavaUndateSched: (S) "C:\Program Files\Fichiers communs\Java\Java Update\jusched.exe"

: (S) C:\WINDOWS\system32\VBoxTray.exe

: (S) C:\WINDOWS\system\netmon.exe

Subkeys: Values: REG_SZ REG_SZ

REG_SZ

VBoxTray

netmon

We just analyzed using the volatility hive list and it displayed us a registry list and acquired the offset of \WINDOWS\system32\config\software and key as Microsft\Windows\CurrentVersion\Run.

→ netmon is exist in HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

6- What's the SHA256 of this malware?

7- What are the sections of this PE file?

During our memory Forensics analysis, we found that

→. text,. rdata, and .data are the sections under the PE file.

8. How does this malware executes its code on the system? dump it.

Analyzing the .dll files using the .dll utility of volatility - the corresponding .dll to netmon offset and others seems to be legitimate.

```
/volatility-master# volatility -f TESTED-08375-20200125-113917.raw dllli
st -o 0×000000000171d880
Volatility Foundation Volatility Framework 2.6
netmon.exe pid: 1272
Command line : C:\WINDOWS\system\netmon.exe
Service Pack 3
Base
                Size LoadCount LoadTime
                                                              Path
0×29a00000
             0×1e000
                         0×fffff
                                                              C:\WINDOWS\system\netmon.exe
0×7c910000
             0×b6000
                         0×ffff
                                                              C:\WINDOWS\system32\ntdll.dll
0×7c800000
            0×106000
                         0×ffff
                                                              C:\WINDOWS\system32\kernel32.dll
0×7e390000
             0×91000
                         0×ffff
                                                              C:\WINDOWS\system32\USER32.dll
0×77ef0000
             0×49000
                         0×ffff
                                                              C:\WINDOWS\system32\GDI32.dll
0×77da0000
             0×ac000
                         0×ffff
                                                              C:\WINDOWS\system32\ADVAPI32.dll
0×77e50000
             0×92000
                                                              C:\WINDOWS\system32\RPCRT4.dll
                         0×ffff
                                                              C:\WINDOWS\system32\Secur32.dll
0×77fc0000
             0×11000
                         0×ffff
0×7c9d0000
            0×825000
                         0×ffff
                                                              C:\WINDOWS\system32\SHELL32.dll
0×77be0000
             0×58000
                         0×ffff
                                                              C:\WINDOWS\system32\msvcrt.dll
0×77f40000
                                                              C:\WINDOWS\system32\SHLWAPI.dll
             0×76000
                         0×ffff
0×71a10000
              0×a000
                         0×ffff
                                                              C:\WINDOWS\system32\WSOCK32.dll
             0×17000
                                                              C:\WINDOWS\system32\WS2_32.dll
0×719f0000
                         0×ffff
                         0×ffff
                                                              C:\WINDOWS\system32\WS2HELP.dll
0×719e0000
              0×8000
0×71a60000
             0×12000
                         0×ffff
                                                              C:\WINDOWS\system32\MPR.dll
0×58b50000
             0×9a000
                         0×ffff
                                                              C:\WINDOWS\system32\COMCTL32.dll
                                                              C:\WINDOWS\system32\LPK.DLL
0×62dc0000
              0×9000
                            0×1
             0×6b000
0×753c0000
                            0×1
                                                              C:\WINDOWS\system32\USP10.dll
0×77390000
            0×103000
                            0×1
                                                              C:\WINDOWS\WinSxS\x86_Microsoft.Wi
ndows.Common-Controls_6595b64144ccf1df_6.0.2600.5512_x-ww_35d4ce83\comctl32.dll
0×71990000
                                                              C:\WINDOWS\System32\mswsock.dll
             0×40000
                            0×5
                            0×2
0×76ed0000
             0×27000
                                                              C:\WINDOWS\system32\DNSAPI.dll
                                                              C:\WINDOWS\System32\winrnr.dll
0×76f60000
              0×8000
                            0×1
             0×2d000
0×76f10000
                                                              C:\WINDOWS\system32\WLDAP32.dll
                            0×1
0×76f70000
                                                              C:\WINDOWS\system32\rasadhlp.dll
              0×6000
                            0×1
0×62e40000
             0×59000
                            0×1
                                                              C:\WINDOWS\system32\hnetcfg.dll
              0×8000
                                                              C:\WINDOWS\System32\wshtcpip.dll
0×719d0000
                            0×1
```

Also, we have checked the PAGE_EXECUTE_READ permissions without creating the file on disk and we found the matching memory block .

```
:/media/sf_ShareVM/volatility-master# volatility -f TESTED-08375-20200125-
113917.raw vadinfo -o 0×000000000171d880 | grep -A 5 -B 5 "PAGE_EXECUTE_READ"
Volatility Foundation Volatility Framework 2.6
First prototype PTE: e1589ca0 Lást contiguous PTE: e1589ea0
Flags2: CopyOnWrite: 1
VAD node @ 0×81660440 Start 0×00330000 End 0×003f7fff Tag Vad
Flags: NoChange: 1, Protection: 3
Protection: PAGE_EXECUTE_READ
ControlArea @8168ac18 Segment e1678980
NumberOfSectionReferences:
                                       1 NumberOfPfnReferences:
NumberOfMappedViews:
                                      21 NumberOfUserReferences:
                                                                             22
Control Flags: HadUserReference: 1, Reserve: 1
First prototype PTE: e16789c0 Last contiguous PTE: e1678ff8
First prototype PTE: 00000000 Last contiguous PTE: 00000000
Flags2: LongVad: 1, OneSecured: 1
VAD node @ 0×8167a418 Start 0×00520000 End 0×0081ffff Tag Vad
Flags: NoChange: 1, Protection: 3
Protection: PAGE_EXECUTE_READ
ControlArea @816647d0 Segment e175b000
NumberOfSectionReferences:
                                      1 NumberOfPfnReferences:
NumberOfMappedViews:
                                      11 NumberOfUserReferences:
                                                                             12
Control Flags: HadUserReference: 1, Reserve: 1
First prototype PTE: e175b040 Last contiguous PTE: e175c838
```

By using the utility of the vaddump, we can see the memory page with start index **0x00330000** corresponding to netmon

9- What is this malware's name?

→The malware name is *netmon.exe*.

11- Give its mutexes.

We found the handes and mutants' utility of the Volatility tool and found the corresponding mutexes as **LxLXsithwarlordXLxL**

12- What are the hooked API? From which processes?

We suspect that the below CopyFileaA Exitprocess are the hooked API

Also, we tried in volatality to find the apihooks, but there is no other API which comes under .netmon offsets

13- Does this malware propagate/spread itself?

Yes, as already discussed the malware propagates via port 445.

Write a script/program to clean an infected system automatically. If you can't do it, show the manual steps.

Manual Steps:

- → We deleted the entry from the registry.
- → We have restarted my system after deleting the entry from key registry.
- → We were able to delete the malware.

We also confirmed by examining the Wireshark and there is no malware communication via netmon and 445 port.

Automation of disinfection:

Also, we tried a script to delete the infection file and auto restart to recover state.

```
import os
os.remove("C:₩WINDOWS\system\netmon.exe")
print("File Removed!")
print "REBOOTING"
os.system("shutdown -t 0 -r -f")
```