2. 데이터베이스 활용과 클라우드 서버 환경 준비

Section 1 . 데이터베이스 시스템 / 데이터 모델 / SQL 기초 실습

SQL 고급

목차

01 내장 함수

02 뷰

03 인덱스

목표

- 내장 함수의 의미를 알아본다.
- 자주 사용되는 내장 함수 몇 가지를 직접 실습해본다.
- 뷰의 의미를 알아보고, 뷰를 직접 생성, 수정, 삭제해본다.
- 데이터베이스의 저장 구조와 인덱스의 관계를 알아본다.
- 인덱스를 직접 생성, 수정, 삭제해본다.

01. 내장 함수

- 1. SQL 내장 함수
- 2. NULL 값 처리
- 3. 행 번호 출력

- SQL에서는 함수의 개념을 사용
- 수학의 함수와 마찬가지로 특정 값이나 열의 값을 입력 받아 그 값을 계산하여결과 값을 돌려줌

■ SQL의 함수는 DBMS가 제공하는 내장 함수(built-in function), 사용자가 필요에 따라 직접 만드는 사용자 정의 함수(user-defined function)로 나뉨

- SQL 내장 함수는 상수나 속성 이름을 입력 값으로 받아 단일 값을 결과로 반환함
- 모든 내장 함수는 최초에 선언될 때 유효한 입력 값을 받아야 함

MySQL에서 제공하는 주요 내장 함수

	구분	함수
	숫자 함수	ABS, CEIL, COS, EXP, FLOOR, LN, LOG, MOD, POWER, RAND, ROUND, SIGN, TRUNCATE
	문자 함수(문자 반환)	CHAR, CONCAT, LEFT, RIGHT, LOWER, UPPER, LPAD, RPAD, LTRIM, RTRIM, REPLACE, REVERSE, RIGHT, SUBSTR, TRIM
단일행 함수	문자 함수(숫자 반환)	ASCII, INSTR, LENGTH
	날짜·시간 함수	ADDDATE, CURRENT_DATE, DATE, DATEDIFF, DAYNAME, LAST_DAY, SYSDATE, TIME
	변환 함수	CAST, CONVERT, DATE_FORMAT, STR_TO_DATE
	정보 함수	DATABASE, SCHEMA, ROW_COUNR, USER, VERSION
	NULL 관련 함수	COALESCE, ISNULL, IFNULL, NULLIF
집계 함수		AVG, COUNT, MAX, MIN, STD, STDDEV, SUM
윈도우 함수(혹은 분석 함수)		CUME_DIST, DENSE_RANK, FIRST_VALUE, LAST_VALUE, LEAD, NTILE, RANK, ROW_NUMBER

❖ 숫자 함수

숫자 함수의 종류

함수	설명
ABS(숫자)	숫자의 절댓값을 계산 ABS(-4.5) => 4.5
CEIL(숫자)	숫자보다 크거나 같은 최소의 정수 CEIL(4.1) => 5
FLOOR(숫자)	숫자보다 작거나 같은 최소의 정수 FLOOR(4.1) => 4
ROUND(숫자, m)	숫자의 반올림, m은 반올림 기준 자릿수 ROUND(5.36, 1) => 5.40
LOG(n, 숫자)	숫자의 자연로그 값을 반환 LOG(10) => 2.30259
POWER(숫자, n)	숫자의 n제곱 값을 계산 POWER(2, 3) => 8
SQRT(숫자)	숫자의 제곱근 값을 계산(숫자는 양수) SQRT(9.0) => 3.0
SIGN(숫자)	숫자가 음수면 -1, 0이면 0, 양수면 1 SIGN(3.45) => 1

❖ 수학 함수

- ABS 함수 : 절댓값을 구하는 함수
 - 1 -78과 +78의 절댓값을 구하시오.

- ROUND 함수 : 반올림한 값을 구하는 함수
 - 2 4.875를 소수 첫째 자리까지 반올림한 값을 구하시오.

- 숫자 함수의 연산
 - 3 고객별 평균 주문 금액을 백 원 단위로 반올림한 값을 구하시오.

❖ 문자 함수

문자 함수의 종류

반환 구분	함수	설명
	CONCAT(s1,s2)	두 문자열을 연결, CONCAT(' 알라딘', ' 서점') => '알라딘 서점'
	LOWER(s)	대상 문자열을 모두 소문자로 변환, LOWER('MR. SCOTT') => 'mr. scott'
	LPAD(s,n,c)	대상 문자열의 왼쪽부터 지정한 자리수까지 지정한 문자로 채움 LPAD('Page 1', 10, '*') => '****Page 1'
문자값 반환 함수	REPLACE(s1,s2,s3)	대상 문자열의 지정한 문자를 원하는 문자로 변경 REPLACE('JACK & JUE', 'J', 'BL') => 'BLACK & BLUE'
s : 문자열 c : 문자 n : 정수 k : 정수	RPAD(s,n,c)	대상 문자열의 오른쪽부터 지정한 자리수까지 지정한 문자로 채움 RPAD('AbC', 5, '*') => 'AbC**'
	SUBSTR(s,n,k)	대상 문자열의 지정된 자리에서부터 지정된 길이만큼 잘라서 반환 SUBSTR('ABCDEFG', 3, 4) => 'CDEF'
	TRIM(c FROM s)	대상 문자열의 양쪽에서 지정된 문자를 삭제(문자열만 넣으면 기본값으로 공백 제거) TRIM('=' FROM '==BROWNING==') => 'BROWNING'
	UPPER(s)	대상 문자열을 모두 대문자로 변환 UPPER('mr. scott') => 'MR. SCOTT'
숫자값 반환 함수	ASCII(c)	대상 알파벳 문자의 아스키 코드 값을 반환, ASCII('D') => 68
	LENGTH(s)	대상 문자열의 Byte 반환, 알파벳 1byte, 한글 3byte (UTF8) LENGTH('CANDIDE') => 7
	CHAR_LENGTH(s)	문자열의 문자 수를 반환, CHAR_LENGTH('데이터') => 3

- ❖ 문자 함수
 - REPLACE : 문자열을 치환하는 함수
 - 4 도서제목에 야구가 포함된 도서를 농구로 변경한 후 도서 목록을 보이시오.

❖ 문자 함수

- LENGTH : 글자의 수를 세어주는 함수 (단위가 바이트(byte)가 아닌 문자 단위)
 - 5 **굿스포츠에서 출판한 도서의 제목과 제목의 글자 수를 확인하시오.** (한글은 2바이트 혹은 UNICODE 경우는 3바이트를 차지함)

- SUBSTR : 지정한 길이만큼의 문자열을 반환하는 함수
 - 6 서점의 고객 중에서 같은 성(姓)을 가진 사람이 몇 명이나 되는지 성별 인원수를 구하시오.

❖ 날짜·시간 함수

날짜·시간 함수의 종류

함수	반환형	설명
	DATE	문자열(STRING) 데이터를 날자형(DATE)으로 반환
STR_TO_DATE(string, format))	DATE	STR_TO_DATE('2019-02-14', '%Y-%m-%d') => 2019-02-14
DATE_FORMAT(date, format)	STRING	날짜형(DATE) 데이터를 문자열(VARCHAR)로 반환 DATE_FORMAT('2019-02-14', '%Y-%m-%d') => '2019-02-14'
ADDDATE(date, interval)	DATE	DATE 형의 날짜에서 INTERVAL 지정한 시간만큼 더함 ADDDATE('2019-02-14', INTERVAL 10 DAY) => 2019-02-24
DATE(date)	DATE	DATE 형의 날짜 부분을 반환 SELECT DATE('2003-12-31 01:02:03'); => 2003-12-31
DATEDIFF(date1, date2)	INTEGER	DATE 형의 date1 - date2 날짜 차이를 반환 SELECT DATEDIFF('2019-02-14', '2019-02-04') => 10
SYSDATE	DATE	DBMS 시스템상의 오늘 날짜를 반환하는 함수 SYSDATE() => 2018-06-30 21:47:01

❖ 날짜 함수

format의 주요 지정자

인자	설명
%w	요일 순서(0~6, Sunday=0)
%W	요일(Sunday~Saturday)
%a	요일의 약자(Sun~Sat)
% d	1달 중 날짜(00~31)
% j	1년 중 날짜(001~366)
%h	12시간(01~12)
%Н	24시간(00~23)
%i	분(0~59)
%m	월 순서(01~12, January=01)
%b	월 이름 약어(Jan~Dec)
%M	월 이름(January~December)
%s	초(0~59)
% Y	4자리 연도
%y	4자리 연도의 마지막 2 자리

❖ 날짜 함수

7 서점은 주문일로부터 10일 후 매출을 확정한다. 각 주문의 확정일자를 구하시오.

❖ 날짜 함수

- STR_TO_DATE : 문자형으로 저장된 날짜를 날짜형으로 변환하는 함수
- DATE_FORMAT : 날짜형을 문자형으로 변환하는 함수

8 서점이 2014년 7월 7일에 주문 받은 도서의 주문번호, 주문일, 고객번호, 도서번호를 모두 보이시오. 단, 주문일은 '%Y-%m-%d' 형태로 표시한다.

❖ 날짜 함수

- SYSDATE: MySQL의 현재 날짜와 시간을 반환하는 함수
 - 9 DBMS 서버에 설정된 현재 날짜와 시간, 요일을 확인 하시오.

NULL 값이란?

- 아직 지정되지 않은 값
- NULL 값은 '0', " (빈 문자), ' ' (공백) 등과 다른 특별한 값
- NULL 값은 비교 연산자로 비교가 불가능함
- NULL 값의 연산을 수행하면 결과 역시 NULL 값으로 반환됨

■ 집계 함수를 사용할 때 주의할 점

- 'NULL+숫자' 연산의 결과는 NULL
- 집계 함수 계산 시 NULL이 포함된 행은 집계에서 빠짐
- 해당되는 행이 하나도 없을 경우 SUM, AVG 함수의 결과는 NULL이 되며, COUNT 함수의 결과는 0.

■ NULL 값에 대한 연산과 집계 함수

Mybook

bookid	price
1	10000
2	20000
3	NULL

- NULL 값을 확인하는 방법 IS NULL, IS NOT NULL
 - NULL 값을 찾을 때는 '=' 연산자가 아닌 'IS NULL'을 사용,
 - NULL이 아닌 값을 찾을 때는 ' < > ' 연산자가 아닌 'IS NOT NULL'을 사용함

Mybook

bookid	price
1	10000
2	20000
3	NULL

■ IFNULL: NULL 값을 다른 값으로 대치하여 연산하거나 다른 값으로 출력 IFNULL(속성, 값) /* 속성 값이 NULL이면 '값'으로 대치한다 */

10 이름, 전화번호가 포함된 고객목록을 보이시오. 단, 전화번호가 없는 고객은 '연락처없음'으로 표시한다.

3. 행번호 출력

- 내장 함수는 아니지만 자주 사용되는 문법
- MySQL에서 변수는 이름 앞에 @ 기호를 붙이며 치환문에는 SET과 := 기호를 사용함
- 자료를 일부분만 확인하여 처리할 때 유용함.
 - 11 고객 목록에서 고객번호, 이름, 전화번호를 앞의 두 명만 보이시오.

02. 뷰

- 1. 뷰의 생성
- 2. 뷰의 수정
- 3. 뷰의 삭제

뷰

■ 뷰(view) : 하나 이상의 테이블을 합하여 만든 가상의 테이블

■ 뷰의 장점

- **편리성 및 재사용성** : 자주 사용되는 복잡한 질의를 뷰로 미리 정의해 놓을 수 있음
 - → 복잡한 질의를 간단히 작성
- 보안성: 사용자별로 필요한 데이터만 선별하여 보여줄 수 있고, 중요한 질의의 경우 질의 내용을 암호화할 수 있음
 - → 개인정보(주민번호)나 급여, 건강 같은 민감한 정보를 제외한 테이블을 만들어 사용
- 독립성 : 미리 정의된 뷰를 일반 테이블처럼 사용할 수 있기 때문에 편리하고, 사용자가 필요한 정보만 요구에 맞게 가공하여 뷰로 만들어 쓸 수 있음
 - → 원본 테이블의 구조가 변해도 응용에 영향을 주지 않도록 하는 논리적 독립성 제공

■ 뷰의 특징

- 원본 데이터 값에 따라 같이 변함
- 독립적인 인덱스 생성이 어려움
- 삽입, 삭제, 갱신 연산에 많은 제약이 따름

1. 뷰의 생성

■ 기본 문법

CREATE VIEW 뷰이름 [(열이름 [,...n])] AS SELECT 문

■ Book 테이블에서 '축구'라는 문구가 포함된 자료만 보여주는 뷰

■ 위 SELECT 문을 이용해 작성한 뷰 정의문

1. 뷰의 생성

20 주소에 '대한민국'을 포함하는 고객들로 구성된 뷰를 만들고 조회하시오. 뷰의 이름은 vw_Customer로 설정하시오.

1. 뷰의 생성

21 Orders 테이블에 고객이름과 도서이름을 바로 확인할 수 있는 뷰를 생성한 후, '김연아' 고객이 구입한 도서의 주문번호, 도서이름, 주문액을 보이시오.

2. 뷰의 수정

❖ 기본 문법

CREATE OR REPLACE VIEW 뷰이름 [(열이름 [,...n])] AS SELECT 문

22 [20]에서 생성한 뷰 vw_Customer는 주소가 대한민국인 고객을 보여준다. 이 뷰를 영국을 주소로 가진 고객으로 변경하시오. phone 속성은 필요 없으므로 포함시키지 마시오.

3. 뷰의 삭제

❖ 기본 문법

DROP VIEW 뷰이름 [,...n];

23 앞서 생성한 뷰 vw_Customer를 삭제하시오.

연습문제

- 다음에 해당하는 뷰를 작성하시오.
 데이터베이스는 서점 데이터베이스를 이용한다.
- (1) 판매가격이 20,000원 이상인 도서의 도서번호, 도서이름, 고객이름, 출판사, 판매가 격을 보여주는 highorders 뷰를 생성하시오.
- (2) 생성한 뷰를 이용하여 판매된 도서의 이름과 고객의 이름을 출력하는 SQL 문을 작성하시오.
- (3) highorders 뷰를 변경하고자 한다. 판매가격 속성을 삭제하는 명령을 수행하시오. 삭제 후 (2)번 SQL 문을 다시 수행하시오.

03. 인덱스

- 1. 데이터베이스의 물리적 저장
- 2. 인덱스와 B-tree
- 3. MySQL 인덱스
- 4. 인덱스의 생성
- 5. 인덱스의 재구성과 삭제

■ 실제 데이터가 저장되는 곳은 보조기억장치

• 하드디스크, SSD, USB 메모리 등

■ 가장 많이 사용되는 장치는 하드디스크

- 하드디스크는 원형의 플레이트(plate)로 구성되어 있고, 이 플레이트는 논리적으로 트랙으로 나뉘며 트랙은 다시 몇 개의 섹터로 나뉨
- 원형의 플레이트는 초당 빠른 속도로 회전하고, 회전하는 플레이트를 하드디스크의 액세스 암 (arm)과 헤더(header)가 접근하여 원하는 섹터에서 데이터를 가져옴
- 하드디스크에 저장된 데이터를 읽어 오는 데 걸리는 시간은 모터(motor)에 의해서 분당 회전 하는 속도(RPM, Revolutions Per Minute), 데이터를 읽을 때 액세스 암이 이동하는 시간 (latency time), 주기억장치로 읽어오는 시간(transfer time)에 영향을 받음

하드디스크의 구조

❖ 액세스 시간(access time)

액세스 시간 = 탐색시간(seek time, 액세스 헤드를 트랙에 이동시키는 시간)

- + 회전지연시간(rotational latency time, 섹터가 액세스 헤드에 접근하는 시간)
- + 데이터 전송시간(data transfer time, 데이터를 주기억장치로 읽어오는 시간)

MySQL의 DBMS 구조

MySQL InnoDB 엔진 데이터베이스의 파일

파일	설명
데이터 파일 (ibdata)	 사용자 데이터와 개체를 저장 테이블과 인덱스로 구성 확장자는 *.ibd
폼파일 (frm File)	 테이블에 대한 각종 정보와 테이블을 구성하는 필드, 데이터 타입에 대한 정보 저장 데이터베이스 구조 등의 변경사항이 있을 때 자동으로 업데이트됨

2. 인덱스와 B-tree

■ 인덱스(index, 색인) : 도서의 색인이나 사전과 같이 데이터를 쉽고 빠르게 찾을 수 있도록 만든 데이터 구조

B-tree의 구조

2. 인덱스와 B-tree

그림 4-11 B-tree에서 검색 예

■ 인덱스의 특징

- 인덱스는 테이블에서 한 개 이상의 속성을 이용하여 생성함
- 빠른 검색과 함께 효율적인 레코드 접근이 가능함
- 순서대로 정렬된 속성과 데이터의 위치만 보유하므로 테이블보다 작은 공간을 차지함
- 저장된 값들은 테이블의 부분집합이 됨
- 일반적으로 B-tree 형태의 구조를 가짐
- 데이터의 수정, 삭제 등의 변경이 발생하면 인덱스의 재구성이 필요함

❖ 클러스터 인덱스

클러스터 인덱스 예

❖ MySQL 인덱스 B-tree

B-tree 인덱스의 예

❖ MySQL 인덱스의 종류

MySQL 인덱스의 종류

인덱스 명칭	설명 / 생성 예
	• 기본적인 인덱스로 테이블 생성 시 기본키를 지정하면 기본키에 대하여
	클러스터 인덱스를 생성한다.
클러스터 인덱스	• 기본키를 지정하지 않으면 먼저 나오는 UNIQUE 속성에 대하여 클러스터
크니으의 한쪽으	인덱스를 생성한다.
	• 기본키나 UNIQUE 속성이 없는 테이블은 MySQL 이 자체 생성한 행번호
	(Row ID)를 이용하여 클러스터 인덱스를 생성한다.
	• 클러스터 인덱스가 아닌 모든 인덱스는 보조 인덱스이며 보조 인덱스의 각
비즈 이데스	레코드는 보조 인덱스 속성과 기본키 속성 값을 갖고 있다.
보조 인덱스	• 보조 인덱스를 검색하여 기본키 속성 값을 찾은 다음 클러스터 인덱스로 가
	서 해당 레코드를 찾는다.

[클러스터 인덱스와 보조 인덱스를 동시에 사용하는 검색]

4. 인덱스의 생성

❖ 인덱스 생성 시 고려사항

- 인덱스는 WHERE 절에 자주 사용되는 속성이어야 함
- 인덱스는 조인에 자주 사용되는 속성이어야 함
- 단일 테이블에 인덱스가 많으면 속도가 느려질 수 있음(테이블당 4~5개 정도 권장)
- 속성이 가공되는 경우 사용하지 않음
- 속성의 선택도가 낮을 때 유리함(속성의 모든 값이 다른 경우)

❖ 인덱스의 생성 문법

CREATE [UNIQUE] INDEX [인덱스이름]
ON 테이블이름 (컬럼 [ASC | DESC] [{, 컬럼 [ASC | DESC]} ...])[;]

4. 인덱스의 생성

24 Book 테이블의 bookname 열을 대상으로 비 클러스터 인덱스 ix_Book을 생성하라.

25 Book 테이블의 publisher, price 열을 대상으로 인덱스 ix_Book2를 생성하시오.

5. 인덱스의 재구성과 삭제

- 인덱스의 재구성은 ANALYZE TABLE 명령을 사용함.
- 생성 문법

ANALYZE TABLE 테이블이름;

26 Book 테이블의 인덱스를 최적화하시오.

■ 삭제 문법

DROP INDEX 인덱스이름

27 인덱스 ix_Book을 삭제하시오.

연습문제

[서점 데이터베이스 인덱스] 서점 데이터베이스에서 다음 SQL 문을 수행하고 데이터베이스가 인덱스를 사용하는 과정을 확인하세요.

(1) 다음 SQL 문을 수행해본다.

SELECT name, address FROM Customer WHERE name LIKE '박세리';

- (2) 실행 계획을 살펴본다. 실행 계획은 Workbench에서 [Query] → [Explain Current State ment]를 선택하면 표시된다.
- (3) Customer 테이블에 name으로 인덱스를 생성하시오. 생성 후 (1)번의 SQL 문을 다시 수행하고 실행 계획을 살펴보시오.
- (4) 같은 질의에 대한 두 가지 실행 계획을 비교해보시오.
- (5) (3) 번에서 생성한 인덱스를 삭제하시오.