

Plan de la présentation

- La révolution du TAL
- Encoder le sens à l'aide de vecteurs
- Représenter les proximités entre auteurs
- Conclusion et pistes

2

D'Enigma à ChatGPT

- Le Traitement Automatique des Langues (TAL) est un défi dès les premiers travaux en IA. Il permet de :
 - décomposer un texte en ses constituants
 - identifier (découvrir) le sens des mots et des expressions
 - découvrir des motifs (patterns) pour classer les textes ou générer du texte
- Quelques applications :
 - chercher de l'information dans les BD et le Web (moteurs de recherche)
 - traduire automatiquement des textes, les comparer
 - classer des textes en fonction de leur thématique, des opinions véhiculées...
 - résumer un document, dialoguer pour répondre à des questions...

La révolution du TAL

Julien Velcin, laboratoire ERIC Colloque LIFRANUM, 24-25 octobre 2024

Des règles à l'apprentissage automatique

Succès des grands modèles de langue (LLMs)

Note : ce graphique est en constante évolution

_

Julien Velcin, laboratoire ERIC
Colloque LIFRANUM, 24-25 octobre 2024

Encoder le sens des textes

Encodeurs et représentations latentes

Plongement de textes et représentations

 La plupart des applications nécessitent de « plonger » (embed) les textes dans des espaces vectoriels. Ces vecteurs sont des représentations qui visent à capturer la sémantique des textes.

Représenter les proximités entre auteurs

Julien Velcin, laboratoire ERIC
Collogue LIFRANUM, 24-25 octobre 2024

10

Représenter les proximités entre auteurs

- Deux exemples illustratifs :
 - An ocean of books
 - <u>Hudson River School</u> artists (explorer le graphe sémantique)

- Ces méthodes emploient généralement la structure des données (par ex. les liens entre les pages Wikipedia)
- Comment faire en se basant sur le contenu textuel ?

Mesurer le style littéraire (Terreau et al., 2021)

• Suivant la littérature sur le sujet, nous nous basons sur **303 descripteurs stylistiques** :

Catégories	Exemples	Nombre de marqueurs
Lettres	Fréquences de lettre	26
Nombre	Fréquences de nombre	11
Structurel	Longueur moyenne des mots, Hapax Legomena,	9
Ponctuation	Fréquences des signes de ponctuation	36
Mots outils	Fréquences des mots outils (does, once, doing,)	153
Tag	Fréquences des POS-tag	43
Ner	Fréquences des entités nommées	18
Index	Index de lisibilité et de complexité	7

14

• On va évaluer à quel point les représentations apprises par les modèles *capturent* ces différentes mesures

13

Comparaison des modèles

VADES : modèle de représentation des auteurs

(Terreau et al., arXiv 2024)

16

Application à l'analyse du style littéraire

Ici, il s'agit d'un extrait de données sont tirées du Projet Guthenberg

17

Visualiser les trajectoires dans l'espace latent trajectoires proches # Author endpoin diversification A 7isserman dans le temps - C. Manning - E.P. Xing K. Cho période de M.I. Jordan P.S. Yu

Il s'agit ici de données issues de bases de données bibliographiques (Semantic Scholar).

publication courte

BARL : modèle pour apprendre des représentations temporelles (Terreau & Velcin, 2024)

Conclusion et perspectives

Julien Velcin, laboratoire ERIC Colloque LIFRANUM, 24-25 octobre 2024 18

P.S. Yu
S. Yan
T.S. Huang - Y. Bengio

Conclusion

- Difficulté de trouver des problématiques de recherche en informatique (ou mathématiques) directement liées aux besoins immédiats en LLSHS
- Problème très intéressant et difficile, dommage qu'on n'ait pas réussi à travailler sur les données du projet...
- Toujours un chainon manquant entre les développeurs de modèles et d'algorithmes et les chercheurs/utilisateurs en SHS
- Néanmoins, plusieurs contributions au domaine du TAL!
- Des échanges toujours enrichissants avec les partenaires LLSHS

Références

- Terreau E., A. Gourru, J. Velcin: Writing Style Author Embedding Evaluation. Workshop Evaluation and Comparison of NLP Systems, cositué avec EMNLP 2021
- Terreau E., A. Gourru, J. Velcin: Capturing Style in Author and Document Representation, https://arxiv.org/abs/2407.13358, 2024
- Terreau E. & Velcin J.: Building Brownian Bridges to Learn Dynamic Author Representations from Texts. Proceedings of International Symposium on Intelligent Data Analysis (IDA), Dublin, Avril 2024.

Des pistes?

- La question d'encoder le style n'est toujours pas résolue
- De nombreuses contributions pourraient être mises à disposition des chercheurs en LLSHS :
 - mesure / visualisation du style à l'aide des descripteurs stylistiques
 - calcul des proximités entre auteurs
 - système de requête et de visualisation basé sur ces nouveaux descripteurs
- Remise en cause du principe d'encodeur avec les mégas modèles de langue (LLMs) à base de décodeurs seuls (decoder only)

21 22