Bayesian nonparametric models for bipartite graphs François Caron

Andrea Teruzzi

September 5, 2022

Table of Contents

- Bipartite Networks
- 2 Statistical model
- Update of hyperparameters
- 4 Power-law properties and real-world examples

Definition

A **bipartite graph** is a graph g = (V, E), where vertices V are divided in two sets A and B and edges E can occur only between elements of two different sets.

Definition

A **bipartite graph** is a graph g = (V, E), where vertices V are divided in two sets A and B and edges E can occur only between elements of two different sets.

Real world examples:

- Scientists authoring papers
- Internet users posting messages on forums
- Readers reading books

Definition

A **bipartite graph** is a graph g = (V, E), where vertices V are divided in two sets A and B and edges E can occur only between elements of two different sets.

Real world examples:

- Scientists authoring papers
- Internet users posting messages on forums
- Readers reading books

Definition

We say **degree of a vertex** the number of edges connected to that vertex.

Bayesian nonparametric (BNP) models for network growth:

• Parameter of interest is infinite-dimensional (i.e. infinite number of books)

- Parameter of interest is infinite-dimensional (i.e. infinite number of books)
- Bayesian nonparametric (BNP) models:

- Parameter of interest is infinite-dimensional (i.e. infinite number of books)
- Bayesian nonparametric (BNP) models:
 - ▶ Indian Buffet Process (IBP), but does not induce power-law behaviour

- Parameter of interest is infinite-dimensional (i.e. infinite number of books)
- Bayesian nonparametric (BNP) models:
 - ▶ Indian Buffet Process (IBP), but does not induce power-law behaviour
 - ► Stable IBP, but induces Poissonian distribution for the degree of readers

- Parameter of interest is infinite-dimensional (i.e. infinite number of books)
- Bayesian nonparametric (BNP) models:
 - ▶ Indian Buffet Process (IBP), but does not induce power-law behaviour
 - ▶ Stable IBP, but induces Poissonian distribution for the degree of readers
- Flexible BNP model able to capture power-law behaviour for both books and readers, while retaining computational tractability

Table of Contents

- Bipartite Networks
- Statistical model
- Update of hyperparameters
- 4 Power-law properties and real-world examples

Bipartite graph

Bipartite graph

• We represent a bipartite graph using a collection of atomic measure Z_i . For each reader $i=1,\ldots,n$ with books $j=1,\ldots,\infty$:

$$Z_i = \sum_{j=1}^{\infty} z_{ij} \delta_{\theta_j}$$

where $\{\theta\} \subset \Theta$ the set of books and z_{ij} equal 1 if reader i has read book j, 0 otherwise.

Bipartite graph

• We represent a bipartite graph using a collection of atomic measure Z_i . For each reader $i=1,\ldots,n$ with books $j=1,\ldots,\infty$:

$$Z_i = \sum_{j=1}^{\infty} z_{ij} \delta_{\theta_j}$$

where $\{\theta\} \subset \Theta$ the set of books and z_{ij} equal 1 if reader i has read book j, 0 otherwise.

• For each reader we consider the latent process V_i:

$$V_i = \sum_{j=1}^{\infty} \mathsf{v}_{ij} \delta_{ heta_j}$$

where v_{ij} (inversely) controls the **probability of the existence of the edge** between reader i and book j.

Latent process

Latent process

• Assuming:

$$v_{ij}|w_j \sim \textit{Exp}(w_j \gamma_i)$$

Latent process

• Assuming:

$$v_{ij}|w_j \sim \textit{Exp}(w_j \gamma_i)$$

► A positive **popularity parameter** w_j assigned to each book

Latent process

Assuming:

$$|v_{ij}||w_j \sim \textit{Exp}(w_j \gamma_i)$$

- ► A positive **popularity parameter** w_j assigned to each book
- ▶ A positive **interest-in-reading parameter** γ_i assigned to each reader

Latent process

• Assuming:

$$|v_{ij}||w_j \sim \textit{Exp}(w_j \gamma_i)$$

- ► A positive **popularity parameter** w_j assigned to each book
- ightharpoonup A positive **interest-in-reading parameter** γ_i assigned to each reader
- Then, the probability that reader i reads book j is:

$$p(z_{ij} = 1|w_j, \gamma_i) = 1 - exp(w_j \gamma_i)$$

Latent process

• Assuming:

$$|v_{ij}||w_j \sim \textit{Exp}(w_j \gamma_i)$$

- ► A positive **popularity parameter** w_j assigned to each book
- ▶ A positive **interest-in-reading parameter** γ_i assigned to each reader
- Then, the probability that reader i reads book j is:

$$p(z_{ij}=1|w_j,\gamma_i)=1-exp(w_j\gamma_i)$$

For tractability issues, we consider $u_{ij} = \min(v_{ij}, 1)$ and the process U_i . Z_i can be obtained deterministically from U_i .

Book popularity parameter

Book popularity parameter

Definition

Let Θ be a measurable space. A **completely random measure** (**CRM**) is a random measure G such that for any collection of disjoint measurable subsets A_1, \ldots, A_n of Θ , the random masses of the subsets $G(A_1), \ldots, G(A_n)$ are independent.

Book popularity parameter

Definition

Let Θ be a measurable space. A **completely random measure** (**CRM**) is a random measure G such that for any collection of disjoint measurable subsets A_1, \ldots, A_n of Θ , the random masses of the subsets $G(A_1), \ldots, G(A_n)$ are independent.

 $G \sim CRM(\lambda, h)$ with Levy measure:

$$\Lambda(\mathsf{d} w, \mathsf{d} \theta) = \lambda(w) h(\theta) \mathsf{d} w \mathsf{d} \theta$$

Book popularity parameter

Definition

Let Θ be a measurable space. A **completely random measure** (**CRM**) is a random measure G such that for any collection of disjoint measurable subsets A_1, \ldots, A_n of Θ , the random masses of the subsets $G(A_1), \ldots, G(A_n)$ are independent.

 $G \sim CRM(\lambda, h)$ with Levy measure:

$$\Lambda(\mathsf{d} w, \mathsf{d} \theta) = \lambda(w) h(\theta) \mathsf{d} w \mathsf{d} \theta$$

Realizations of G take the form of Poisson processes over $\{(w_j,\theta_j),\,j=1,\ldots,\infty\}\subset\mathbb{R}_+ imes\Theta$:

$$G = \sum_{j=1}^{\infty} w_j \delta_{\theta_j}$$

Book popularity parameter

Book popularity parameter

An example of CRM is the **generalized gamma process** (GGP), which includes the gamma process (GP), the inverse Gaussian process (IGP) and stable process as special cases:

$$\lambda(w; \alpha, \sigma, \tau) = \frac{\alpha}{\Gamma(1-\sigma)} w^{-\sigma-1} e^{-w\tau}$$

Book popularity parameter

An example of CRM is the **generalized gamma process** (GGP), which includes the gamma process (GP), the inverse Gaussian process (IGP) and stable process as special cases:

$$\lambda(w; \alpha, \sigma, \tau) = \frac{\alpha}{\Gamma(1-\sigma)} w^{-\sigma-1} e^{-w\tau}$$

G is an homogeneous CRM:

Book popularity parameter

An example of CRM is the **generalized gamma process** (GGP), which includes the gamma process (GP), the inverse Gaussian process (IGP) and stable process as special cases:

$$\lambda(w; \alpha, \sigma, \tau) = \frac{\alpha}{\Gamma(1-\sigma)} w^{-\sigma-1} e^{-w\tau}$$

G is an homogeneous CRM:

ullet Atoms i.i.d from h (base density), independently from masses

Book popularity parameter

An example of CRM is the **generalized gamma process** (GGP), which includes the gamma process (GP), the inverse Gaussian process (IGP) and stable process as special cases:

$$\lambda(w; \alpha, \sigma, \tau) = \frac{\alpha}{\Gamma(1-\sigma)} w^{-\sigma-1} e^{-w\tau}$$

G is an homogeneous CRM:

- Atoms i.i.d from h (base density), independently from masses
- ullet Masses distributed according to Poisson process over \mathbb{R}^+ with intensity λ (Levy intensity)

Book popularity parameter

An example of CRM is the **generalized gamma process** (GGP), which includes the gamma process (GP), the inverse Gaussian process (IGP) and stable process as special cases:

$$\lambda(w; \alpha, \sigma, \tau) = \frac{\alpha}{\Gamma(1-\sigma)} w^{-\sigma-1} e^{-w\tau}$$

G is an homogeneous CRM:

- Atoms i.i.d from h (base density), independently from masses
- ullet Masses distributed according to Poisson process over \mathbb{R}^+ with intensity λ (Levy intensity)

We assume:

$$\begin{cases} \int_0^\infty \lambda(w) \mathrm{d} w = \infty \\ \int_0^\infty (1 - e^{-w}) \lambda(w) \mathrm{d} w < \infty \end{cases}$$

9/21

Book popularity parameter

An example of CRM is the **generalized gamma process** (GGP), which includes the gamma process (GP), the inverse Gaussian process (IGP) and stable process as special cases:

$$\lambda(w; \alpha, \sigma, \tau) = \frac{\alpha}{\Gamma(1-\sigma)} w^{-\sigma-1} e^{-w\tau}$$

G is an homogeneous CRM:

- Atoms i.i.d from h (base density), independently from masses
- ullet Masses distributed according to Poisson process over \mathbb{R}^+ with intensity λ (Levy intensity)

We assume:

$$\begin{cases} \int_0^\infty \lambda(w) \mathrm{d} w = \infty \\ \int_0^\infty (1 - e^{-w}) \lambda(w) \mathrm{d} w < \infty \end{cases} \Rightarrow \mathbf{G}(\Theta) = \sum_{j=1}^\infty w_j \text{ finite and positive}$$

Hierarchical model

Z_i is a Poisson process, obtained from transformations of Poisson processes.

Hierarchical model

Z_i is a Poisson process, obtained from transformations of Poisson processes.

Proposition

 Z_i is marginally characterized by a Poisson process. Furthermore, **the total mass** $Z_i(\Theta) = \sum_{j=1}^{\infty} z_{ij}$, which corresponds to the total number of books read by reader i, **is finite** with probability one and admits a Poisson $(\psi_{\lambda}(\gamma_i))$ distribution, with:

$$\psi_{\lambda}(\gamma_i) = \int_0^{\infty} (1 - e^{-\gamma_i w}) \lambda(w) dw$$

Hierarchical model

Z_i is a Poisson process, obtained from transformations of Poisson processes.

Proposition

 Z_i is marginally characterized by a Poisson process. Furthermore, **the total mass** $Z_i(\Theta) = \sum_{j=1}^{\infty} z_{ij}$, which corresponds to the total number of books read by reader i, **is finite** with probability one and admits a Poisson $(\psi_{\lambda}(\gamma_i))$ distribution, with:

$$\psi_{\lambda}(\gamma_i) = \int_0^{\infty} (1 - e^{-\gamma_i w}) \lambda(w) dw$$

We can sum up the model in the following hierarchical form:

$$v_{ij}|G \sim \mathsf{Exp}(w_j \gamma_i)$$

 $G \sim \mathsf{CRM}(\lambda, h)$

Posterior Characterization

We observe a set of edges $\{z_{ij}\}$ of a bipartite network Z_1, \ldots, Z_n of n reader:

Posterior Characterization

We observe a set of edges $\{z_{ij}\}$ of a bipartite network Z_1, \ldots, Z_n of n reader:

• K books $\{\theta_1, \dots, \theta_K\}$

Posterior Characterization

We observe a set of edges $\{z_{ii}\}$ of a bipartite network Z_1, \ldots, Z_n of n reader:

- K books $\{\theta_1, \ldots, \theta_K\}$
- $K_i = Z_i(\Theta) = \sum_{j=1}^{\infty} z_{ij}$ the degree of reader i

Posterior Characterization

We observe a set of edges $\{z_{ij}\}$ of a bipartite network Z_1, \ldots, Z_n of n reader:

- K books $\{\theta_1, \ldots, \theta_K\}$
- $K_i = Z_i(\Theta) = \sum_{i=1}^{\infty} z_{ij}$ the degree of reader i
- $m_j = \sum_{i=1}^n Z(\{\theta_j\}) = \sum_{i=1}^n z_{ij}$ the degree of book j

Posterior Characterization

We observe a set of edges $\{z_{ij}\}$ of a bipartite network Z_1, \ldots, Z_n of n reader:

- K books $\{\theta_1, \ldots, \theta_K\}$
- $K_i = Z_i(\Theta) = \sum_{i=1}^{\infty} z_{ij}$ the degree of reader i
- $m_j = \sum_{i=1}^n Z(\{\theta_j\}) = \sum_{i=1}^n z_{ij}$ the degree of book j

Posterior distribution of the CRM given the latent process U coincides with the distribution of another CRM having a rescaled intensity and fixed observed points of discontinuity:

$$\mathbf{G} = \mathbf{G}^* + \sum_{j=1}^K w_j \delta_{\theta_j}$$

Posterior Characterization

• G^* and $\{w_j\}$ are mutually independent with:

$$\mathsf{G}^* \sim \mathsf{CRM}(\lambda^*,h)$$
 and $\lambda^*(w) = \lambda(w) \exp(-w \sum_{i=1}^n \gamma_i)$

and the masses:

$$p(w_j | \text{rest}) \propto \lambda(w_j) w_j^{m_j} \exp(-w_j \sum_{i=1}^n \gamma_i U_{ij})$$

Posterior Characterization

• G^* and $\{w_i\}$ are mutually independent with:

$$\mathsf{G}^* \sim \mathsf{CRM}(\lambda^*,h)$$
 and $\lambda^*(w) = \lambda(w) \exp(-w \sum_{i=1}^n \gamma_i)$

and the masses:

$$p(w_j | \text{rest}) \propto \lambda(w_j) w_j^{m_j} \exp(-w_j \sum_{i=1}^n \gamma_i U_{ij})$$

• For the GGP, G^* is still a GGP with parameters $\alpha^* = \alpha$, $\sigma^* = \sigma$ and $\tau^* = \tau + \sum_{i=1}^{n} \gamma_i$ and:

$$|w_j| \operatorname{rest} \sim \operatorname{\mathsf{Gamma}}(m_j - \sigma, \tau + \sum_{i=1}^n \gamma_i u_{ij})$$

Distribution of $Z_n|U_1,\ldots,U_{n-1}$, with $x_{ij}=-\log(u_{ij})$ positive latent score

Distribution of $Z_n|U_1,\ldots,U_{n-1}$, with $x_{ij}=-\log(u_{ij})$ positive latent score

Books

 K_1

Distribution of $Z_n|U_1,\ldots,U_{n-1}$, with $x_{ij}=-\log(u_{ij})$ positive latent score

Books

$$K_1 = 3$$
 \cdots

Distribution of $Z_n|U_1,\ldots,U_{n-1}$, with $x_{ij}=-\log(u_{ij})$ positive latent score

Books

$$K_1 = 3$$
 18 4 14 \cdots

Distribution of $Z_n|U_1,\ldots,U_{n-1}$, with $x_{ij}=-\log(u_{ij})$ positive latent score

Distribution of $Z_n|U_1,\ldots,U_{n-1}$, with $x_{ij}=-\log(u_{ij})$ positive latent score

Books $K_1=3$ 18 4 14 \cdots

Distribution of $Z_n|U_1,\ldots,U_{n-1}$, with $x_{ij}=-\log(u_{ij})$ positive latent score

Books

$K_1 = 3$	18	4	14			
$K_2^+ = 2$						

Distribution of $Z_n|U_1,\ldots,U_{n-1}$, with $x_{ij}=-\log(u_{ij})$ positive latent score

Books

$$K_1 = 3$$

$$K_2 = 4$$

18	4	14				
12	0	8	13	4		

Distribution of $Z_n|U_1,\ldots,U_{n-1}$, with $x_{ij}=-\log(u_{ij})$ positive latent score

Books

$K_1 = 3$	18	4	14				
$K_2 = 4$	12	0	8	13	4		

 K_3

Distribution of $Z_n|U_1,\ldots,U_{n-1}$, with $x_{ij}=-\log(u_{ij})$ positive latent score

		Bo	Ok

$K_1=3$	18	4	14				
$K_2 = 4$	12	0	8	13	4		
K_3							

Distribution of $Z_n|U_1,\ldots,U_{n-1}$, with $x_{ij}=-\log(u_{ij})$ positive latent score

Books

$K_1 = 3$	18	4	14				
$K_2 = 4$	12	0	8	13	4		
$K_3^+ = 2$							

Distribution of $Z_n|U_1,\ldots,U_{n-1}$, with $x_{ij}=-\log(u_{ij})$ positive latent score

Books

$K_1 = 3$	18	4	14					
$K_2 = 4$	12	0	8	13	4			
$K_3 = 5$	16	10	0	0	14	9	6	

We use Gibbs sampler to derive the posterior distribution of $U, G \mid Z$.

We use Gibbs sampler to derive the posterior distribution of $U, G \mid Z$.

For the GGP:

We use Gibbs sampler to derive the posterior distribution of $U, G \mid Z$.

For the GGP:

• For $i=1,\ldots,n$ and $j=1,\ldots,K$ set $u_{ij}=1$ if $z_{ij}=0$, otherwise:

$$u_{ij}|z_{ij}, w_j, \gamma_i \sim \mathsf{rExp}(\gamma_i w_j, 1)$$

We use Gibbs sampler to derive the posterior distribution of $U, G \mid Z$.

For the GGP:

• For i = 1, ..., n and j = 1, ..., K set $u_{ij} = 1$ if $z_{ij} = 0$, otherwise:

$$u_{ij}|z_{ij}, w_j, \gamma_i \sim \mathsf{rExp}(\gamma_i w_j, 1)$$

② For j = 1, ..., K:

$$w_j | U, \gamma_i \sim \mathsf{Gamma}(m_j - \sigma, \tau + \sum_i^n \gamma_i u_{ij})$$

and

 $G^*(\Theta) \sim \mathsf{Exponentially\ tilted\ stable}^1$

¹For general cases $G^*(\Theta)$ follows $g^*(w) \propto g(w) \exp^{-w \sum_{i=1}^{n} \gamma_i}$ with g(w) the distribution of $G(\Theta)$

Table of Contents

- Bipartite Networks
- 2 Statistical model
- Update of hyperparameters
- 4 Power-law properties and real-world examples

1 Parametric: γ_i to be unknown and estimate them from the graph by assigning a prior $\gamma_i \sim \text{Gamma}(a_\gamma, b_\gamma)$ and update:

$$\gamma_i | G, U \sim \mathsf{Gamma}\Big(a_\gamma + \sum_j^K z_{ij}, \ b_\gamma + \sum_j^K w_j u_{ij} + G^*(\Theta)\Big)$$

9 Parametric: γ_i to be unknown and estimate them from the graph by assigning a prior $\gamma_i \sim \text{Gamma}(a_\gamma, b_\gamma)$ and update:

$$\gamma_i | G, U \sim \mathsf{Gamma} \Big(a_\gamma + \sum_j^K z_{ij}, \ b_\gamma + \sum_j^K w_j u_{ij} + G^*(\Theta) \Big)$$

But $Z_i(\Theta)$ still have a (but more flexible) Poisson distribution!

• Parametric: γ_i to be unknown and estimate them from the graph by assigning a prior $\gamma_i \sim \text{Gamma}(a_\gamma, b_\gamma)$ and update:

$$\gamma_i | G, U \sim \mathsf{Gamma}\Big(a_\gamma + \sum_j^K z_{ij}, \ b_\gamma + \sum_j^K w_j u_{ij} + G^*(\Theta)\Big)$$

But $Z_i(\Theta)$ still have a (but more flexible) Poisson distribution!

Nonparametric: Let $\Gamma \sim \mathsf{CRM}(\lambda_{\gamma}, \mathsf{h}_{\gamma})$ and a measurable space of readers $\tilde{\Theta}$, which we can represent in the form $\Gamma = \sum_{i=1}^{\infty} \gamma_i \delta_{\theta_i}$. Conditionally on $(U, w, G^*(\Theta))$, we update:

$$\Gamma = \Gamma^* + \sum_{i=1}^n \gamma_i \delta_{\tilde{\theta}_i}$$

• Parametric: γ_i to be unknown and estimate them from the graph by assigning a prior $\gamma_i \sim \text{Gamma}(a_\gamma, b_\gamma)$ and update:

$$\gamma_i | \textit{G}, \textit{U} \sim \mathsf{Gamma}\Big(\textit{a}_\gamma + \sum_{j}^{\mathcal{K}} \textit{z}_{ij}, \, \textit{b}_\gamma + \sum_{j}^{\mathcal{K}} \textit{w}_j \textit{u}_{ij} + \textit{G}^*(\Theta)\Big)$$

But $Z_i(\Theta)$ still have a (but more flexible) Poisson distribution!

One Nonparametric: Let $\Gamma \sim \mathsf{CRM}(\lambda_{\gamma}, \mathsf{h}_{\gamma})$ and a measurable space of readers $\tilde{\Theta}$, which we can represent in the form $\Gamma = \sum_{i=1}^{\infty} \gamma_i \delta_{\theta_i}$. Conditionally on $(U, w, G^*(\Theta))$, we update:

$$\Gamma = \Gamma^* + \sum_{i=1}^n \gamma_i \delta_{\tilde{\theta}_i}$$

We have more of flexibility in the modelling of the distribution of the degree of readers(power-law behavior)!

Posterior characterization for GGP for w_i and γ_i

Let G and Γ GGP distributed with parameters (α, σ, τ) and $(\alpha_{\gamma}, \sigma_{\gamma}, \tau_{\gamma})$:

Posterior characterization for GGP for w_i and γ_i

Let G and Γ GGP distributed with parameters (α, σ, τ) and $(\alpha_{\gamma}, \sigma_{\gamma}, \tau_{\gamma})$:

• Reader update: $\Gamma = \Gamma^* + \sum_{i=1}^n \gamma_i \delta_{\tilde{\theta}_i}$ with:

$$\Gamma^* \sim \mathsf{CRM}(\lambda_\gamma^*, h_\gamma)$$
 $\gamma_i | \textit{U}, \textit{G} \sim \mathsf{Gamma}ig(\textit{K}_i - \sigma_\gamma, au_\gamma + \sum_{j=1}^{\mathcal{K}} \textit{w}_j \textit{u}_{ij} + \textit{G}^*(\Theta) ig)$

Posterior characterization for GGP for w_i and γ_i

Let G and Γ GGP distributed with parameters (α, σ, τ) and $(\alpha_{\gamma}, \sigma_{\gamma}, \tau_{\gamma})$:

• Reader update: $\Gamma = \Gamma^* + \sum_{i=1}^n \gamma_i \delta_{\tilde{\theta_i}}$ with:

$$\Gamma^* \sim \mathsf{CRM}(\lambda_\gamma^*, h_\gamma)$$
 $\gamma_i | \textit{U}, \textit{G} \sim \mathsf{Gamma}ig(\textit{K}_i - \sigma_\gamma, au_\gamma + \sum_{j=1}^K \textit{w}_j \textit{u}_{ij} + \textit{G}^*(\Theta)ig)$

• Book update: $G = G^* + \sum_{i=1}^K w_i \delta_{\theta_i}$ with:

$$G^* \sim \mathsf{CRM}(\lambda^*, h)$$
 $w_i | U, \Gamma \sim \mathsf{Gamma}ig(m_j - \sigma, au + \sum_{i=1}^n \gamma_i u_{ij} + \Gamma^*(ilde{\Theta})ig)$

Table of Contents

- Bipartite Networks
- 2 Statistical mode
- Update of hyperparameters
- Power-law properties and real-world examples

For the GGP with $\sigma > 0$, we can achieve **power-law behavior of the network growth**:

For the GGP with $\sigma > 0$, we can achieve **power-law behavior of the network growth**:

• The total number of books read by n readers is $O(n^{\sigma})$

For the GGP with $\sigma > 0$, we can achieve **power-law behavior of the network growth**:

• The total number of books read by n readers is $O(n^{\sigma})$ \rightarrow **Proof.** When $\gamma_i = \gamma$, the total number of books is $Poisson(\psi_{\lambda}(n\gamma))$ distributed. Considering the GGP:

$$\psi_{\lambda}(n\gamma) = \frac{\alpha}{\sigma}((n\gamma + \sigma)^{\sigma} - \tau^{\sigma})$$

which for large n, is of order n^{σ} .

For the GGP with $\sigma > 0$, we can achieve **power-law behavior of the network growth**:

• The total number of books read by n readers is $O(n^{\sigma})$ \rightarrow **Proof.** When $\gamma_i = \gamma$, the total number of books is $Poisson(\psi_{\lambda}(n\gamma))$ distributed. Considering the GGP:

$$\psi_{\lambda}(n\gamma) = \frac{\alpha}{\sigma}((n\gamma + \sigma)^{\sigma} - \tau^{\sigma})$$

which for large n, is of order n^{σ} .

Similar results are achievable results are achievable also with an S-IBP for the degree distribution of books, but not for readers for which it will always be Poisson!

Real world example – Book-crossing community network

Figure 1: Degree distribution for readers (a-d) and books (e-h) with 4 models: a stable Indian Buffet Process (S-IBP); our model with $\gamma_i = \gamma$ and flat prior assigned (GS); our model with $\gamma_i \sim$ Gamma (a_γ, a_γ) and flat prior assigned to the parameters (IG); our model with GGP prior for γ_i (GGP). Data are presented in red and samples from the models in blue.

Bibliography I

Bayesian nonparametric models for bipartite graphs.

In *NIPS*. 2012.

Probability and Stochastics.

Graduate Texts in Mathematics. Springer New York. 2011.

Posterior analysis for normalized random measures with independent increments.

Scandinavian Journal of Statistics, 36(1):76–97, 2009.

Poisson Processes.

Oxford Studies in Probability, Oxford University Press, 1993.

