Machine Learning 2 - HW3

Submission: by 26/01/23 23:55.

1. Generative Models

You are given the MNIST dataset for training. Let's consider a case in which it turns out there are very few 'bold' 1's in the training set. Your task is to build a model that given a regular image of a 1, generates several 'bold' versions of it.

- a. Describe your model and its architecture.
- b. Describe training details (loss and training scheme)
- c. Describe the generation method to fulfill the task.
- d. What are your assumptions?
- e. What are the limitations of your model, if any?

Note: you do not need to code your answer, nor submit any experiment supporting it.

2. Rademacher Complexity

Let $F \circ S$ be the set of all possible evaluations a function $f \in F$ can achieve on a sample S.

Then, the Rademacher Complexity of F w.r.t. S is

$$R(F \circ S) = \frac{1}{m} E_{\sigma \sim \{\pm 1\}^m} [sup_{f \in F} \sum_{i=1}^m \sigma_i f(z_i)],$$

where the expectation is taken over m i.i.d Rademacher random variables that follow the Rademarcher distribution, i.e., $P(\sigma_i = 1) = P(\sigma_i = -1) = 1/2$.

a. Prove that for $\hat{F} = c \cdot f$, for $f \in F$ and a scaler $c \in R$ it holds that $R(\hat{F} \circ S) = |c| R(F \circ S).$

Hint: consider $c \ge 0$ and c < 0 and try to generalize the expression.

b. Prove that for $\hat{F}=c\cdot f+b$, for $f\in F$ and, a scaler $c\in R$ and a vector $b\in R^m$ it holds that

$$R(\stackrel{\circ}{F}\circ S) = |c|R(F\circ S).$$