## DMA e Introducción a la IEC61508



## Agenda.

- DMA
- IEC 61508.
  - Equipo bajo control
  - □ Riesgo.
  - □ Ciclo de vida.
  - □ Análisis de riesgo
  - □ Riesgo tolerable.
  - □ Niveles de Integridad de seguridad



### DMA (acceso directo a memoria)

- En una arquitectura sin DMA (acceso directo a memoria), independientemente de que sea Harvard o von Neumann el bus de direcciones siempre lo maneja el procesador y es el medio por el cuál selecciona con que periférico interactuar.
- ¿Qué pasa cuando se quiere utilizar un periférico que transmite datos a una velocidad más alta que la del procesador?
- O un sistema con varios procesadores que comparten zonas de memoria.
- En este momento ya deja, o puede dejar, de ser válida la idea de que el bus de direcciones lo maneje solamente un microprocesador.
- En general, en un sistema con un único procesador, vamos a considerar que un sistema tiene DMA cuando cuenta con un periférico que puede *copiar zonas de memoria* a "espaldas" del microprocesador. Es decir, un periférico que puede ser leído y escrito por el procesador, pero que además también puede leer y escribir otros periféricos.



### DMA (acceso directo a memoria)



- El bus de direcciones puede ser escrito por el CPU y por el controlador de DMA.
- ¿Qué pasa con la CPU mientras está usando el bus de direcciones el controlador de DMA?



## Ejemplo DMA.

- Dado el código en VHDL de <u>https://gitlab.frba.utn.edu.ar/jalarcon/ejemplo\_dma\_vhdl.git</u> que tiene el código de un muy pequeño procesador RISC con posibilidad de trabajar con DMA.
- En el archivo nano\_tb.vhdl se genera un sistema donde se borra por DMA toda la memoria de datos que se inicializa en 0xFF.
- Se pide:
  - Se adjunta también el archivo fuente led\_dma.asm. ¿En qué punto del programa se borra la memoria? ¿Cuánto se tarda por DMA? ¿Cuánto se tardaría por código?
  - □ ¿Qué está haciendo el procesador mientras se borra la memoria? ¿Qué señales lo indican?
  - □ ¿Qué recursos adicionales se tienen que agregar para poder usar el DMA? ¿Cuántas señales de WR tiene el DMA? ¿Por qué?





- Considerando que el período de reloj es de 10ns y que cada instrucción se completa en 4 ciclos de reloj.
- ¿Cuántas posiciones de memoria se pondrían a cero en el tiempo que el DMA borró toda la memoria?



### Manejo de E/S por DMA

- Los sistemas de acceso directo a memoria (DMA) son sistemas que pueden controlar la memoria del sistema sin el uso de la CPU.
- Dado un evento determinado el módulo de DMA puede mover datos entre diferentes zonas de memoria.
- Si bien es menos flexible que la CPU, es mucho más rápido en la copia de datos que la CPU



## E/S por DMA

Algunos periféricos pueden generar grandes cantidades de datos (ADC, DAC, Ethernet, etc.).

Las transferencias por DMA son las más adecuadas para grandes volúmenes de datos o bien para altas tasas de datos.



#### DMA. Generalidades.

- Los sistemas de DMA pueden funcionar de diferentes formas:
  - □ Transferencia única. Un byte, word, doble-word se transfiere por operación de DMA. Se suele utilizar en dispositivos de flujo de caracteres. Cada transferencia deshabilita la CPU.
  - □ Transferencias por bloques. El módulo transfiere un bloque completo de memoria, mientras que la CPU no se encuentra activa.
  - □ Transferencia por ráfaga. El módulo de DMA transfiere un bloque de memoria, pero no desactiva la CPU, sino que alterna los accesos a la memoria con ésta

#### DMA en STM32F103C8





#### Manos a la obra

- Con el código <a href="https://gitlab.frba.utn.edu.ar/jalarcon/ejemplo\_dma.git">https://gitlab.frba.utn.edu.ar/jalarcon/ejemplo\_dma.git</a> este código copia un bloque de memoria a otro bloque de memoria de 5Kbytes ambos. Tiene dos modos de funcionamiento, con DMA y sin DMA. Ejecútelo en ambos modos y determine:
  - ☐ Estimaciones de BCET y WCET para ambos modos.
  - □ ¿Encuentra diferencias? Determine la carga de la CPU para ambos modos y determine la planificabilidad de ambos.



#### IEC61508



- La norma IEC 61508 se publica en 1998.
- La principal característica de de la norma es que introduce el concepto de que el equipo bajo control (equipment under control) implementa una función.
- El estándar hace énfasis en la reducción de riesgos en las funciones de seguridad.
- Las funciones de seguridad son implementadas en sistemas de protección



## Riesgo

- La norma utiliza el concepto de riesgo y la definición de:
  - Riesgo actual.
  - Riesgo tolerable (El que se considera adecuado para la aplicación)
  - □ Riesgo residual ya que conceptualmente *nunca se alcanza riesgo cero.*
- La reducción de riesgo se puede dar por la utilización de mecanismos distintos o diversos.





#### Ciclo de vida

- La norma define un conjunto de buenas prácticas y recomendaciones pero no asume la responsabilidad de la seguridad por el diseño.
- La IEC61508 no es una norma para el desarrollo, pero si es una norma para la gestión de la seguridad a lo largo de la vida de un proyecto.

La norma define el ciclo de vida como un conjunto de etapas que deben cumplirse para pasar a la etapa siguiente en el desarrollo del proyecto.

#### Ciclo de vida





## Análisis de riesgo

- Una parte importante de la norma, son los requerimientos de seguridad que se obtienen a partir del análisis de riesgo que posee el equipo bajo control y su sistema de control.
- El análisis de riesgo define tres etapas:
  - Identificación de peligros (hazard)
  - Análisis de peligros probables.
  - Asignación de riesgos

- Se define como peligro a una potencial fuente de daño.
- Un equipo bajo control posee muchos potenciales peligros con su correspondiente riesgo



## Análisis de riesgo (2)

Table 1: Defining categories of likelihood of occurrence

| Category   | Definition                         | Range<br>(failures per year)         |
|------------|------------------------------------|--------------------------------------|
| Frequent   | Many times in system lifetime      | > 10-3                               |
| Probable   | Several times in system lifetime   | 10 <sup>-3</sup> to 10 <sup>-4</sup> |
| Occasional | Once in system lifetime            | 10 <sup>-4</sup> to 10 <sup>-5</sup> |
| Remote     | Unlikely in system lifetime        | 10 <sup>-5</sup> to 10 <sup>-6</sup> |
| Improbable | Very unlikely to occur             | 10 <sup>-6</sup> to 10 <sup>-7</sup> |
| Incredible | Cannot believe that it could occur | < 10-7                               |

Table 2: Defining consequence categories

| Category     | Definition                            |
|--------------|---------------------------------------|
| Catastrophic | Multiple loss of life                 |
| Critical     | Loss of a single life                 |
| Marginal     | Major injuries to one or more persons |
| Negligible   | Minor injuries at worst               |



## Riesgo tolerable.

- Para cuestiones de software el análisis de riesgo suele ser cualitativo ya que el software suele fallar de manera sistemática.
- Por lo que la pregunta es ¿Cuál es el riesgo tolerable?
- Lo que es tolerable para una aplicación puedo no serlo para otra.
- Se define lo que se conoce como principio ALARP (as low as reasonably practicable – tan bajo como sea razonablemente posible).



## м

## Clases de riesgo.

#### **CONSEQUENCE**

| LIKELIHOOD | Catastrophic | Critical | Marginal | Negligible |
|------------|--------------|----------|----------|------------|
| Frequent   | I            | I        | I        | II         |
| Probable   | I            | I        | II       | III        |
| Occasional | I            | II       | III      | III        |
| Remote     | II           | III      | III      | IV         |
| Improbable | III          | III      | IV       | IV         |
| Incredible | IV           | IV       | IV       | IV         |

- Una forma de aplicar el análisis de riesgo es a través de las clases de riesgo.
  - □ Clase 1. Inaceptable bajo cualquier circunstancia.
  - Clase 2. Indeseable, solamente tolerable si la reducción de riesgo es impracticable o excesivamente costosa
  - □ Clase 3. Tolerable si el costo de reducción del riesgo excede a la mejora.
  - ☐ Clase 4. Tolerable, pero debe ser monitoreado.
- Estas consideraciones nos generan la matriz de riesgo de la derecha.



## Niveles de integridad de seguridad

- La norma define a la integridad de seguridad como la probabilidad de un sistema relacionado con la seguridad de realizar su función satisfactoriamente en cualquier condición en un período de tiempo dado.
- Los niveles de integridad de seguridad (SIL) no son una medida de riesgo, sino una medida de la confiabilidad del sistema.
- Se definen cuatro niveles de integridad de seguridad.



# Niveles de integridad de seguridad

Table 5: Safety integrity levels

| Safety    | Low Demand Mode of Operation   | Continuous/High-demand Mode         |  |
|-----------|--------------------------------|-------------------------------------|--|
| Integrity | (Pr. of failure to perform its | of Operation                        |  |
| Level     | safety functions on demand)    | (Pr. of dangerous failure per hour) |  |
| 4         | $>= 10^{-5}$ to $10^{-4}$      | $>= 10^{-9}$ to $10^{-8}$           |  |
| 3         | $>= 10^{-4}$ to $10^{-3}$      | $>= 10^{-8}$ to $10^{-7}$           |  |
| 2         | $>= 10^{-3}$ to $10^{-2}$      | $>= 10^{-7}$ to $10^{-6}$           |  |
| 1         | $>= 10^{-2}$ to $10^{-1}$      | $>= 10^{-6}$ to $10^{-5}$           |  |



#### IEC61508. Resumen

- La norma trata la gestión de la seguridad de un sistema programable a lo largo de toda su vida, desde su diseño hasta su desmantelamiento.
- Al igual que la mayoría de las normas no pone condiciones en el desarrollo en sí, sino principalmente en la gestión del sistema.
- Es clave para la norma el concepto de riesgo, pero también la definición de requerimientos en función de la aplicación.



## IEC61508 y otras normas

| Generic<br>(IEC 61508)       | (SIL 0) | SIL 1   | SIL 2              | SIL 3   | SIL 4   |
|------------------------------|---------|---------|--------------------|---------|---------|
| Civil Aerospace<br>(DO-178C) | Level E | Level D | Level C            | Level B | Level A |
| Medical<br>(IEC 62304)       | Class A | Class B |                    | Class C |         |
| Automotive<br>(ISO 26262)    | QM      | ASIL A  | ASIL B /<br>ASIL C | ASIL D  |         |
| Machinery<br>(ISO 13849)     | PL a    | PLb/PLc | PL d               | PL e    |         |
| Household<br>(IEC 60730)     | Class A | Class B |                    | Class C |         |



## Bibliografía.

- Sistemas Operativos. Diseño e Implementación. Andrew S. Tanenbaum.
- Sistemas de Tiempo Real y Lenguajes de Programación. Alan Burns, Andy Wellings. Tercera Edición. Addison Wesley.
- [IEC 1998] Draft Standard IEC 61508: Functional Safety of Electrical/Electronic/Programmable Electronic Safety-related Systems.
  International Electrotechnical Commission, Geneva, 1998