Leonel Garay

CS-225: Discrete Structures in CS

Homework 2, Part 1

Exercise Set 3.1: Problem #16

- b. ∀ real number x, x is positive, negative, or zero.
- d. \forall logician x, x is not lazy.
- f. ∀ real number x, x2 is not -1

Exercise Set 3.1: Problem #17

b. \exists real number x, such that x is rational.

Exercise Set 3.1: Problem #18

- a. $\exists s \in D$, such that M(s) \land E(s)
- b. $\forall s \in D$, $C(s) \rightarrow E(s)$
- c. $\forall s \in D$, $C(s) \rightarrow \neg E(s)$
- d. $\exists s \in D$, such that $C(s) \vee M(s)$
- e. $(\exists s \in D$, such that $C(s) \land E(s)) \land (\exists s \in D$, such that $C(s) \land \neg E(s))$

Exercise Set 3.1: Problem #22

b. \forall argument x, if x with true premise then x has true conclusion.

Exercise Set 3.1: Problem #26

- a. $\forall x$, if x integer then x is a rational number, but \exists rational number x, such that x is not an integer.
- b. $(\forall x \in D, Int(x) \rightarrow Ralt(x)) \land (\exists s \in D, Ralt(x) \land \neg Int(x))$

Exercise Set 3.2: Problem #2

All Dogs are loyal

 $\equiv \forall d \in D, d \text{ is loyal}$

 $\equiv \neg (\forall d \in D, d \text{ is loyal})$

 $\equiv \exists d \in D, d \text{ is disloyal}$

≡ Some Dogs are disloyal or There is a dog that is disloyal

Answer: c and f

Exercise Set 3.2: Problem #4

- b. Some graphs are disconnected
- d. All estimates are inaccurate

Leonel Garay

CS-225: Discrete Structures in CS

Homework 2, Part 1

Exercise Set 3.2: Problem #21

A(x) = divisible by 6

B(x) = divisible by 2

C(x) = divisible by 3

 $\neg(\forall x \in D, \text{ if } A(x) \text{ then } B(x) \land C(x))$

 $\equiv \exists x \in D$, such that A(x) then $\neg (B(x) \land C(x))$

 $\equiv \exists x \in D$, such that A(x) then $\neg B(x) \lor \neg C(x)$

Answer: ∃ integers n, if n is divisible by 6 and n is not divisible by 2 or n is not divisible by 3.

Exercise Set 3.2: Problem #29

 $\forall x \in Z$, if n is prime then n is odd or n = 2

P(x) = n is prime

Q(x) = n is odd

R(x) = n = 2

 $\forall x \in Z, P(x) \rightarrow (Q(x) \lor R(x))$

Converse

 $\equiv \forall x \in Z, (Q(x) \lor R(x)) \rightarrow P(x)$

 $\exists \forall x \in Z$, if n is odd or n = 2 then n is prime

False.

Counterexample: 49 is odd and divisible by 7.

<u>Inverse</u>

$$\equiv \forall x \in Z, \neg P(x) \rightarrow \neg (Q(x) \lor R(x))$$

$$\equiv \forall x \in Z, \neg P(x) \rightarrow \neg Q(x) \land \neg R(x)$$

 $\exists \forall x \in Z$, if n is not prime then n is not odd and $n \neq 2$

False.

Counterexample: 49 is not prime, and 49 is odd.

Contrapositive

$$\equiv \forall x \in Z, \neg(Q(x) \lor R(x)) \rightarrow \neg P(x)$$

$$\equiv \forall x \in Z, \neg Q(x) \land \neg R(x) \rightarrow \neg P(x)$$

 $\exists \forall x \in Z$, if n is even and $n \neq 2$, then n is not prime

True

Exercise Set 3.2: Problem #40

If a number is divisible by 8 then that number is divisible by 4

Exercise Set 3.2: Problem #44

If a polygon is square then it has four sides.