

Tarana G1 Advanced Training

Table of Contents

The G1 Platform Summary

Base Node (BN)

Remote Node (RN)

Tarana Cloud Suite (TCS)

End-to-End System Architecture

■ The G1 Hardware

Antenna Array

BN Architecture

RN Architecture

Principles of Operations

Technical Challenges in Wireless Access Networks

Beamforming (Tx Signal Pattern)

Auto-convergent Retro-directive Beamforming

Asynchronous Burst Interference Cancelation

Table of Contents

- System Design Physical Layer
 Frame Structure
 Control Channels and Network Access Protocols
 Network Entry of RN
 Adaptive Coding and Modulation
- System Design MAC Layer
 Scheduler
 Packet ARQ
- System Design Network Layer
 Network Interfaces
 Ethernet Features
 Life of a Packet

Table of Contents

RF Planning

Antenna Parameters
Link Budget Impairments (Handling Multipath)
MAPL Table
Co-Location Guidelines

Tarana Cloud Suite (TCS)
 Management Plane Connectivity
 Cloud Architecture

G1 Platform Summary - Base Node (BN)

Integrated Base Node

Baseband
Massive MIMO antenna array
Multi-TFLOPs computation
Carrier ethernet switch
GPS receiver

- Dual Carrier 2x40 MHz
- Distributed Massive MIMO with antenna arrays on both ends
- 6 spatial planes (MU-MIMO)
- Up to 256 users per sector
- Full Tx/Rx digital beamforming with interference cancellation
- 4D Scheduler
- Range: NLoS up to 3 km, LoS 15 km

G1 Platform Summary - Remote Node (RN)

Dual Carrier 2x40 MHz

2x2 MIMO

Max DL:UL 640/140 Mbps (2x2 MIMO) (DL/UL 4.5:1)

Full Tx/Rx digital beamforming with custom silicon IC

Auto antenna alignment (5000/sec)

PoE powered

G1 Platform Summary - Tarana Cloud Suite (TCS)

TCS Overview

Subscriber Service Activation

Zero-Touch Deployment

Management and Maintenance Features

KPI monitoring and management Fault logging, correction and reporting Firmware and configuration management

Network Analytics

Northbound Interface for the Carrier's System Integration

Dashboard

Integrated Google Map

Alarms

KPI Charts

Inventory / Live Stats

Serial	DW	Histourne	Mgrt1P	LOS Range (m)	RF Range (m)	Path Less (ett)	Freq/9W	Di. Toronage (GB)(3	DL Pesis (Mbps)(24)	DL TBER	UL TRER	Temp (%)	QOS Profile	
1003010	n 500 000 01	### 224	10.061.36	122	90	119	2210000/46	10.3	10.7	16.5	Mon	614	grad	
D100000	11,508,000.01	ENFOM:	10.10.1.15	364	3594	140	3320000/WE	1.8	152.9	1E40	363	513	898	
18637105	0.505.000.01	MESSE	10.19.1.25	131	174	130	33/3000/40	0	111.1	95-0	0010	26.8	894	
16007028	0.504.000.01	RIFFEEL	10.18.1.33	iii	274	133	100000/46	6.6	210	Heb.	(IE+6	30.5	mid	
DESCRIPTION.	0.000.000.01	metta	30.16.1.8	3497	160	140	33/0000/4E	9	70.4	30:5	36.0	61.1	yeld:	
DELEVARE.	12.908.000.00	MILITA	10.181.00	1400	1469	LLT	332000046	100.0	129.8	1610	0510	26.8	1966	
11137940	15,5100,000,00	1911063	10.101.6	10	117		3320000/46	0	101	0.38	.00+0	14.0	p44	
LINAMES	5.509.000.00	150101	15151.17	20.	203	107	312000046	360	10.1	10-7	0010	26	gent	

G1 Platform Summary – E2E System Architecture

8 TARANA WIRELESS, INC. PROPRIETARY AND CONFIDENTI

G1 Hardware – Antenna Array

5 GHz RN Antenna

4 x 6 patch array

5 GHz BN Antenna

8 x 8 patch array

G1 Hardware - BN Architecture

The BN is a highly integrated unit consisting of a radome, antenna array, RF processing assembly, digital processing assembly and enclosure.

The BN uses a 16T16R architecture and has a PA, LNA, and RF bandpass filtering for each antenna feed.

The digital processing assembly is FPGA based.

G1 Hardware - RN Architecture

The RN is a highly integrated unit consisting of a radome, antenna array, RF and Digital processing assembly and enclosure.

The RN uses an 8T8R architecture supporting beam-forming toward the intended base station and null steering in the direction of other adjacent cell BN interference.

The RF and Digital processing assembly incorporates the Tarana G1 chipset.

Principals of Operations - Technical Challenges in Wireless Access Networks

2. Multipath

3. Co-Channel Interference

4. Wi-Fi
Interference

Changing Conditions

Principles of Operations—Beamforming (Tx Signal Pattern)

Two dipole radiators combine waves to form signal pattern

WAVES *COMPOUND* EACH OTHER ALONG GREEN LINES

WAVES CANCEL EACH
OTHER ALONG RED LINES

OVERALL EFFECT PRODUCES
PRIMARY LOBE, MULTIPLE SIDE LOBES

Principles of Operations—Beamforming (Tx Signal Pattern)

Timing delay element is used to beamform upwards

Principles of Operations—Beamforming (Tx Signal Pattern)

Entire signal pattern is tilted upward (both lodes and nulls)

Principles of Operations – Auto-Convergent Retro-Directive Beamforming

Principles of Operations – The Need For Asynchronous Burst Interference Cancelation

WiFi Transmissions are not predictable, and send randomly-timed interference.

Principles of Operations – The Need For Asynchronous Burst Interference Cancelation

Asynchronous Burst Interference Cancelation (ABIC) allows RN to form "receive nulls" in realtime in the direction of interferers.

Principles of Operations – The Need For Asynchronous Burst Interference Cancelation

ABIC significantly increases SINR, which allows for higher modulations, leading to higher throughput.

System Design – Physical Layer

- Frame Structure
- Control Channels and Network Access Protocols
- Network Entry of RN
- Adaptive Coding and Modulation

System Design – Physical Layer (Frame Structure)

DL Reference Symbols	DL Payload Symbols (36)	TTG	UL Reference Symbols	UL Payload Symbols (8)	RTG	
----------------------------	-------------------------	-----	----------------------------	------------------------	-----	--

5 milliseconds

5 ms radio frame

- -Beamformer periodicity
- -TDD frame with 4.5:1 DL:UL split

Reference symbols

- -Used for training the beamformer
- -Helps equalize time-varying channels

Payload symbols

-Carry user data

System Design – Physical Layer (Frame Structure)

Dual carrier radio architecture

- -Each 40 MHz carrier is independently tuneable
- -Supports both contiguous and non-contiguous operation

OFDMA modulation scheme

- -The subcarriers are grouped into 128 payload sub-bands.
- -4 additional sub-bands are used for access and control.
- -Pilot subcarriers interspersed between data subcarriers
- -Helps equalize frequency selective channels

System Design – Phy Layer (Control Channels and Network Access Protocols)

DL synchronization and broadcast channels

-PSS, SSS, PBCH

UL synchronization and random access

- -PRACH, PRACH response (PRACHR)
- -Physical UL/DL connection request (PUCRCH/PDCRCH)

Calibration signal (CAL)

-Sounding reference signal (SRS)

UL/DL control channel elements (CCE) (i.e. PUCCH and PDCCH)

- -UL/DL payload channels (i.e. PUSCH, PDSCH)
- -Reference symbols (RS)

Channel	Frequency	Link Direction		
PSS/SSS	All frames	Downlink		
РВСН	All frames	Downlink		
PRACH	Even frames	Uplink		
PRACH-R	Even frames	Downlink		
PUCRCH	Odd frames	Uplink		
PDCRCH	Odd frames	Downlink		
DL-CCE	All frames	Downlink		
UL-CCE	All frames	Uplink		
PDSCH	All frames	Downlink		
PUSCH	All frames	Uplink		

Network Entry of RN

The RN undergoes the following process when joining:

- 1) Search Supported Channels The RN will listen for BN broadcast on all of its supported channels
- 2) Identify BNs Multiple viable BNs may be discovered during this time.
- 3) Select Optimal BN Based on received signal strength, the RN will select the best serving BN.
- 4) Calibration RN undergoes calibration of its transmit and receive chains.
- 5) Initiate Random Access RN will commence connection with selected BN.
- 6) Connection Established RN is allocated a CCE and will be allocated RBs based on user demand.

Adaptive Coding and Modulation

- The baseband uses OFDMA in both the DL and UL.
- The subcarriers are grouped into 128 payload sub-bands of 52 SC each.
- Each subcarrier is modulated using QPSK, 16 QAM, 64 QAM or 256 QAM.
- Link adaption via 16 MCS levels is controlled by the dedicated fast control channel.
- This facilitates frame by frame hitless changes in the MCS.
- The code rate and modulation are adaptive based on SINR, pathloss and error rate.
- Fade margins are adaptive to minimize frequent ARQ re-transmission and to lower packet jitter.

System Design – MAC Layer

- Scheduler
- Packet ARQ

System Design – MAC Layer (Scheduler – Resource Grid)

- •128 subbands in 80 MHz, 6 Spatial Data Planes/Sector = 768 allocation units per frame.
- •1 or 2 spatial planes (streams) plus 1-128 subbands are allocated to an RN by scheduler.

System Design – MAC Layer (Scheduler – Details)

Packet scheduling: Classification and queue scheduling of Ethernet packets.

Sub-band scheduling: Allocation of sub-bands (SBs) and spatial streams, at the BN, for uplink and downlink transmissions to RNs

SPA: Semi-persistent allocation of one or more allocation units for a number of frames for a given RN

System Design – MAC Layer (Packet ARQ)

System Design – Network Layer

- Network Interfaces
- Ethernet Features
- Life of Packet

System Design – Network Layer (Network Interfaces)

BN

- -Two 10 Gbps SFP+ and one 1 Gbps data interfaces.
- -Additional 1 Gbps mgmt Ethernet interface.

RN

-1 Gbps Ethernet interface, with PoE support.

System Design – Network Layer (Ethernet Features)

Classification can be based on 802.1p/ DSCP/ TOS/ IP-Precedence and mapped to 8 HW queues in BN

Traffic

NETWORK CONTROL

INTERNETWORK CONTROL

VOICE (Non-ARQ)

VIDEO

CRITICAL APPS

EXCELLENT EFFORT

BACKGROUND

BEST EFFORT

From RG

RSSI Interference SINR TBER Packets Over the air towards BN

Self Test
Search
Calibration
Access Ch
(RACH)
CCE (Control Ch)
Authentication
Packet Xfer

DSCP	Traffic
56-63	NETWORK CONTROL
48-55	INTERNETWORK CONTROL
40-47	EXPRESS FORWARD (Non-ARQ)
32-39	CS4
24-31	CS3
16-23	CS2
8-15	CS1
0-7	CS0

Classification can be based on 802.1p/ DSCP and mapped to 4 HW queues in RN

System Design – Network Layer Life of a (Data) Packet

- 3. The RN modem receives the packet and sends it to the switch...
- 4. This **untagged packet** is sent to the customer router through RN's external port.

2. Uplink packet

- 1. The packet's journey starts from Customer Router sending the untagged packet to the RN's external port.
- 2. The packet is forwarded to the BN **untagged**.
- 3. The BN modem receives the **untagged** packet and sends it to the switch.
- 4. The packet is assigned to the appropriate virtual port for the specific user.
- 5. This packet is **tagged** and sent to the BN's external port.

Color	VLAN/Type					
White	UNTAGGED					
Red	Passthru					
Blue	Data					
Orange	Management					

RF Planning – Antenna Parameters

Transmit Parameters (Base Node)

Azimuth Pattern

Elevation Pattern

Carrier bandwidth: 40 MHz

• Tx Power: 15.35 dBm

• Tx Gain: 17.65 dB

Receive Parameters (RN)

Carrier bandwidth: 40 MHz

Antenna pattern: Isotropic

Rx antenna gain: 14.1 dBi

Rx miscellaneous gain: 7.8 dB

(beamforming & spatial processing gain)

Noise figure:5 dB

RF Planning – Antenna Parameters

 Recommended 4 Sectors/BNs per Site for 90-degree coverage

35 TARANA WIRELESS, INC. PROPRIETARY AND CONFIDENTI

RF Planning – Link Budget Impairments (Handling Multipath)

RF Planning – MAPL Table

		Re	ference Tab	le		6	
MCS Index	MCS	bits per symbol	Maximum Available Path Loss (dB)		UL Capacity per Carrier (Mbps)	DL Total Link Capacity (Mbps)	UL Total Link Capacity (Mbps)
16	256QAM-7.375/8	7.35	120.0	321	71	641	143
15	256QAM-7.25/8	7.25	121.4	315	70	630	140
14	256QAM-7/8	7	122.3	304	68	608	135
13	256QAM-6.5/8	6.5	123.6	282	63	564	125
12	256QAM-6/8	6	125.3	260	58	520	116
11	64QAM-5.5/6	5.5	127.1	238	53	476	106
10	64QAM-5/6	5	128.8	216	48	431	96
9	64QAM-4.5/6	4.5	130.3	194	43	387	86
8	64QAM-4/6	4	131.8	171	38	343	76
7	16QAM-3.5/4	3.5	133.2	149	33	299	66
6	16QAM-3/4	3	134.6	127	28	254	57
5	16QAM-2.5/4	2.5	137.1	105	23	210	47
4	16QAM-2/4	2	138.7	83	18	166	37
3	QPSK-1.75/2	1.75	139.8	72	16	144	32
2	QPSK-1.5/2	1.5	140.7	61	14	122	27
	QPSK-1/2	1	141.8	39	9	77	17

Spatial nulling is performed dynamically to cancel all active interferers

- -Covers the vast majority of interference sources
- -Without this approach link reliability is extremely poor

Extreme cases where interference can still result in performance degradation:

- -Some 5GHz base-stations co-located on the same tower
- -Co-linear interference along the path of a LoS/near-LoS link (this is accounted by interference margin in link budget)

BN

When Tarana BN receives, and local interferer transmits, interference can be much stronger than BN's desired receive signal.

-Tarana gear can cancel interference signals ~10 dB stronger

-With co-located, higher-power transmitter, interference can be significantly stronger

There can be one or more radios paired with interferer on the tower.

- -Radio could be pointed straight at BN, LoS and at close range.
- -BN can mitigate this interference, unless exactly co-linear with a connected RN

Co-located interference at tower can degrade UL

A distant RN will see its BN and interferer as co-located, and will not be able to spatially remove interference.

Co-located interference at tower can degrade **DL** (RN sees interferer)

Recommendations regarding co-located interference:

- -Avoid using towers with UNII-3 gear on them
- -If towers do have UNII-3 devices, avoid using same frequency, maintain 2-3 m separation from BN

Tarana Cloud Suite – Management Plane Connectivity

Tarana Cloud Suite – Cloud Architecture

END

NOC L1 Training