CUDA — Laboratorium 02

Sprawozdanie

Mateusz Łopaciński

23czerwca 2025

Spis treści

1	Redukcja (Zadanie 1)	2
2	Warp divergence (Zadanie 2)	2
3	Loop unrolling (Zadanie 3)	2
4	Operacje atomowe (Zadanie 4)	3
5	Histogram (Zadanie 5)	3

1 Redukcja (Zadanie 1)

Konfiguracja

- Dwa programy: reduction_global oraz reduction_shared.
- Wektor wejściowy $N=2^{24},\,30$ iteracji kernela.

Wyniki

Wariant	Czas [ms]	Przepustowość [GB/s]
Global memory	14.36	4.67
Shared memory	1.59	42.20

Tabela 1: Redukcja: pamięć globalna vs. współdzielona

Komentarz. Przeniesienie danych do *shared-memory* zmniejsza ruch w global-memory, co przyspiesza kernel ok. 9 razy.

2 Warp divergence (Zadanie 2)

Warianty

Sekwencyjne i przeplatane indeksowanie wątków w redukcji.

Wyniki

Kernel	Czas [ms]	
Sequential	2.48	
Interleaved	3.01	

Tabela 2: Wpływ kolejności wątków

Komentarz. Dla testowego rozmiaru dane w bankach pamięci są sąsiadujące; wariant sequential ma mniej konfliktów banków.

3 Loop unrolling (Zadanie 3)

Testowane konfiguracje

- Kerneli: CG (co-operative groups) i WP (warp primitives).
- Każdy z opcją kompilatora #pragma unroll ON/OFF.

Wyniki

Kernel	Unroll	Czas [ms]
CG	ON	0.814
CG	OFF	0.814
WP	ON	0.808
WP	OFF	0.802

Tabela 3: Loop unrolling — niewielki wpływ na czas

Komentarz. Przy redukcji ograniczanej przepustowością pamięci różnice sterowania pętlą są marginalne.

4 Operacje atomowe (Zadanie 4)

Strategie

- 1. **Simple** pełne atomiki w global-mem.
- 2. Block atomic jeden atomicAdd na blok.
- 3. Warp atomic redukcja warp \rightarrow atomik blokowy.

Wyniki

Wariant	Czas [ms]
Simple	35.23
Block atomic	0.806
Warp atomic	0.806

Tabela 4: Redukcja liczby globalnych atomików

Komentarz. Już jeden atomik na blok (100× mniej operacji) daje ponad 40-krotne przyspieszenie; dodatkowa redukcja warpowa nie zmienia wyniku w tej skali.

5 Histogram (Zadanie 5)

Parametry testu

Jedna seria danych (65 536 elementów) i dwa rozmiary histogramu B.

Wyniki kernela naive_histo

B	shared $[\mu s]$	atomic $[\mu s]$	Szybszy
16	11.17	10.85	atomic
1024	10.62	11.49	shared

Tabela 5: Czasy bez kopiowania HD

Komentarz. Dla małego B kontencja atomików jest minimalna — wariant atomowy wypada odrobinę lepiej. Przy B=1024 licznik w global–mem staje się gorącym punktem, więc wersja z pamięcią współdzieloną zyskuje 8%.

Podsumowanie

Największy wpływ na wydajność ma redukcja transakcji global—memory (shared-mem, eliminacja atomików). Optymalizacje sterujące (unrolling, układ wątków) dają zyski dopiero gdy wąskie gardło pamięciowe jest usunięte.