DENSITY-BASED PERSISTENT HOMOLOGY

XIMENA FERNÁNDEZ*
joint work with E. Borghini, P. Groisman and G. Mindlin
2ND WORKSHOP ON TOPOLOGICAL METHODS IN DATA ANALYSIS
6th October 2021

*EPSRC Centre for Topological Data Analysis

The problem

 $\mathbb{X}_n = \{x_1, x_2, \dots, x_n\} \subseteq \mathbb{R}^D$ a finite sample.

$$\mathbb{X}_n = \{x_1, x_2, \dots, x_n\} \subseteq \mathbb{R}^D$$
 a finite sample.

 $X_n \subseteq \mathcal{M}$ a *d*-dimensional Riemannian manifold.

$$\mathbb{X}_n = \{x_1, x_2, \dots, x_n\} \subseteq \mathbb{R}^D$$
 a finite sample.

 $X_n \subseteq \mathcal{M}$ a d-dimensional Riemannian manifold.

Q: How to infer the homology of \mathcal{M} from the sample \mathbb{X}_n ?

 $\mathbb{X}_n = \{x_1, x_2, \dots, x_n\} \subseteq \mathbb{R}^D$ a finite sample.

A: Compute persistent homology of \mathbb{X}_n .

 $\mathbb{X}_n \subseteq \mathcal{M}$ a *d*-dimensional Riemannian manifold.

Q: How to infer the homology of \mathcal{M} from the sample \mathbb{X}_n ?

Ambient persistent homology

Ambient persistent homology

Intrinsic persistent homology

Intrinsic persistent homology

• $\operatorname{Rips}_{\epsilon}(\mathcal{M}, d_{\mathcal{M}}) \simeq \mathcal{M} \text{ for } \epsilon < \operatorname{conv}(\mathcal{M}, d_{\mathcal{M}})$

The problem of noise

The problem of noise

The problem of noise

Density-based manifold learning

Fermat distance

Let $\mathbb{X}_n \subseteq \mathbb{R}^D$ a sample of points.

For p > 1, the **Fermat distance** between $x, y \in \mathbb{R}^D$ is defined by

$$d_{X_n,p}(x,y) = \inf_{\gamma} \sum_{i=0}^r |x_{i+1} - x_i|^p$$

over all paths $\gamma=(x_0,\ldots,x_{r+1})$ of finite length with $x_0=x$, $x_{r+1}=y$ and $\{x_1,x_2,\ldots,x_r\}\subseteq\mathbb{X}_n$.

Fermat distance

Let $\mathbb{X}_n \subseteq \mathbb{R}^D$ a sample of points.

For p > 1, the **Fermat distance** between $x, y \in \mathbb{R}^D$ is defined by

$$d_{X_n,p}(x,y) = \inf_{\gamma} \sum_{i=0}^r |x_{i+1} - x_i|^p$$

over all paths $\gamma=(x_0,\ldots,x_{r+1})$ of finite length with $x_0=x$, $x_{r+1}=y$ and $\{x_1,x_2,\ldots,x_r\}\subseteq \mathbb{X}_n$.

 $\mathbb{X} \subseteq \mathbb{R}^D$ sample of points.

$$d_{\mathbb{X}_n,p}(x,y) = \inf_{\gamma: x \to y} \sum_{i=0}^r |x_{i+1} - x_i|^p$$

$$\mathbb{X}_n$$

 $\mathbb{X} \subseteq \mathbb{R}^D$ sample of points.

$$d_{\mathbb{X}_n,p}(x,y) = \inf_{\gamma: x \to y} \sum_{i=0}^r |x_{i+1} - x_i|^p$$

 $\mathcal{M} \subseteq \mathbb{R}^D$ a *d*-dimensional manifold. $f: \mathcal{M} \to \mathbb{R}$ a density function.

$$d_{\mathcal{M},f,p}(x,y) = \inf_{\Gamma:x\to y} \int_{\Gamma} \frac{1}{f^{(p-1)/d}}$$

 $\mathbb{X} \subseteq \mathbb{R}^D$ sample of points.

$$d_{\mathbb{X}_n,p}(x,y) = \inf_{\gamma: x \to y} \sum_{i=0}^r |x_{i+1} - x_i|^p$$

$$\mathbb{X}_n$$

 $\mathcal{M} \subseteq \mathbb{R}^D$ a *d*-dimensional manifold. $f: \mathcal{M} \to \mathbb{R}$ a density function.

$$d_{\mathcal{M},f,p}(x,y) = \inf_{\Gamma:x\to y} \int_{\Gamma} \frac{1}{f^{(p-1)/d}}$$

• Convergence of metric spaces:

$$\left(\mathbb{X}_{n}, C(n, p, d) d_{\mathbb{X}_{n}, p}\right) \xrightarrow[n \to \infty]{GH} \left(\mathcal{M}, d_{\mathcal{M}, f, p}\right)$$

 $\mathbb{X} \subseteq \mathbb{R}^D$ sample of points.

$$d_{\mathbb{X}_n,p}(x,y) = \inf_{\gamma: x \to y} \sum_{i=0}^r |x_{i+1} - x_i|^p$$

 $\mathcal{M} \subseteq \mathbb{R}^D$ a *d*-dimensional manifold. $f: \mathcal{M} \to \mathbb{R}$ a density function.

$$d_{\mathcal{M},f,p}(x,y) = \inf_{\Gamma:x\to y} \int_{\Gamma} \frac{1}{f^{(p-1)/d}}$$

• Convergence of persistence diagrams:

$$\boxed{\operatorname{dgm}\!\left(\operatorname{Rips}\!\left(\mathbb{X}_{n},\,\mathcal{C}(n,p,d)\,\boldsymbol{d}_{\mathbb{X}_{n},p}\right)\right)\xrightarrow[n\to\infty]{B}\operatorname{dgm}\!\left(\operatorname{Rips}\!\left(\mathcal{M},\,\boldsymbol{d}_{\mathcal{M},f,p}\right)\right)}$$

 \mathcal{M}

• Convergence of persistence diagrams:

$$\mathrm{dgm}\Big(\mathrm{Rips}\big(\mathbb{X}_n,\,\mathcal{C}(n,p,d)\,d_{\mathbb{X}_n,p}\big)\Big)\xrightarrow[n\to\infty]{B}\mathrm{dgm}\Big(\mathrm{Rips}\big(\mathcal{M},\,d_{\mathcal{M},f,p}\big)\Big)$$

• Less sensitiveness to the embedding:

$$\operatorname{Rips}_{\epsilon}(\mathcal{M}, d_{\mathcal{M}, f, p}) \simeq \mathcal{M} \quad \forall \epsilon < \operatorname{conv}(\mathcal{M}, d_{\mathcal{M}, f, p})$$

• Convergence of persistence diagrams:

$$\mathrm{dgm}\Big(\mathrm{Rips}\big(\mathbb{X}_n,\,\mathcal{C}(n,p,d)\,d_{\mathbb{X}_n,p}\big)\Big)\xrightarrow[n\to\infty]{B}\mathrm{dgm}\Big(\mathrm{Rips}\big(\mathcal{M},\,d_{\mathcal{M},f,p}\big)\Big)$$

• Less sensitiveness to the embedding:

$$\operatorname{Rips}_{\epsilon}(\mathcal{M}, d_{\mathcal{M}, f, p}) \simeq \mathcal{M} \quad \forall \epsilon < \operatorname{conv}(\mathcal{M}, d_{\mathcal{M}, f, p})$$

Robustness to outliers:

• Convergence of persistence diagrams:

$$\operatorname{dgm}\left(\operatorname{Rips}\left(\mathbb{X}_{n},\,\mathcal{C}\left(n,p,d\right)d_{\mathbb{X}_{n},p}\right)\right)\xrightarrow[n\to\infty]{B}\operatorname{dgm}\left(\operatorname{Rips}\left(\mathcal{M},\,d_{\mathcal{M},f,p}\right)\right)$$

Less sensitiveness to the embedding:

$$\operatorname{Rips}_{\epsilon}(\mathcal{M}, d_{\mathcal{M}, f, p}) \simeq \mathcal{M} \quad \forall \epsilon < \operatorname{conv}(\mathcal{M}, d_{\mathcal{M}, f, p})$$

• Robustness to outliers: $X_n \subseteq \mathcal{M}$ sample, $Y \subseteq \mathbb{R}^D \setminus \mathcal{M}$ outliers.

$$\mathrm{dgm}_k\Big(\mathrm{Rips}_{<\delta^p}\big(\mathbb{X}_n\cup Y,d_{\mathbb{X}_n\cup Y,p}\big)\Big)=\mathrm{dgm}_k\Big(\mathrm{Rips}_{<\delta^p}\big(\mathbb{X}_n,d_{\mathbb{X}_n,p}\big)\Big)$$

for some $\delta > 0^*$ and all degree k > 0.

^{*} Here, for p large enough $\delta^p > \operatorname{diam}(\mathbb{X}_n, d_{\mathbb{X}_n, p})$.

References

- Preprint: X. Fernandez, E. Borghini, G. Mindlin, P. Groisman. Intrinsic persistent homology via density-based metric learning. arXiv:2012.07621 (2020)
- Code: O https://github.com/ximenafernandez/intrinsicPH
- Python library: fermat.
- Tutorial: Intrinsic persistent homology.
 - https://www.youtube.com/watch?v=11P9ndiM60o.

🔀 ximena.l.fernandez@durham.ac.uk 🎔 @pi_ene

References

- Preprint: X. Fernandez, E. Borghini, G. Mindlin, P. Groisman. Intrinsic persistent homology via density-based metric learning. arXiv:2012.07621 (2020)
- Code: O https://github.com/ximenafernandez/intrinsicPH
- Python library: fermat.
- Tutorial: Intrinsic persistent homology.
 - https://www.youtube.com/watch?v=11P9ndiM60o.
- 🔀 ximena.l.fernandez@durham.ac.uk 🎔 @pi_ene

THANKS FOR YOUR ATTENTION!