Álgebra Linear

MAT5730

2 semestre de 2019

Conteúdo

1	\mathbf{List}_{i}	~ 0	3			
	1.1	Exercício 1	. 3			
2	Lista 1					
	2.1	Exercício 1	. 4			
	2.2	Exercício 2	. 5			
	2.3	Exercício 3	. 5			
	2.4	Exercício 4	. 6			
	2.5	Exercício 5	. 6			
	2.6	Exercício 6	. 7			
	2.7	Exercício 7	. 9			
	2.8	Exercício 8	. 11			
	2.9	Exercício 9	. 12			
	2.10	Exercício 10	. 12			
	2.11	Exercício 11	. 13			
	2.12	Exercício 12	. 13			
	2.13	Exercício 13	. 15			
	2.14	Exercício 14	. 16			
	2.15	Exercício 15	. 17			
	2.16	Exercício 16	. 20			
	2.17	Exercício 17	. 21			
	2.18	Exercício 18				
		Exercício 19				
	2.20	Exercício 20	. 23			
	2.21	Exercício 21	. 23			
	2.22	Exercício 22	. 24			
	2.23	Exercício 23	. 25			
	2.24	Exercício 24	. 25			
	2.25	Exercício 25	. 25			
	2.26	Exercício 26	. 27			
	2.27	Exercício 27	. 27			
	2.28	Exercício 28	. 27			
	2.29	Exercício 29	. 28			
	2.30	Exercício 30	. 28			
		Exercício 31				
	2.32	Exercício 32	. 29			
	2.33	Exercício 33	. 29			

3	List	2 (Provável)	30
	3.1	Exercício 1	30
	3.2	Exercício 2	30
	3.3	Exercício 3	30
	3.4	Exercício 4	30
	3.5	Exercício 5	30
	3.6	Exercício 6	31
	3.7	Exercício 7	31
	3.8	Exercício 8	31
	3.9	Exercício 9	31
	3.10	Exercício 10	32
	3.11	Exercício 11	32
	3.12	Exercício 12	32
	3.13	Exercício 13	32
	3.14	Exercício 14	32
	3.15	Exercício 15	33
	3.16	Exercício 16	33
	3.17	Exercício 17	33
	3.18	Exercício 18	33
	3.19	Exercício 19	33
	3.20	Exercício 20	34
	3.21	Exercício 21	34
	3.22	Exercício 22	34
	3.23	Exercício 23	34
	3.24	Exercício 24	34
	3.25	Exercício 25	35
	3.26	Exercício 26	35
	3.27	Exercício 27	35
		Exercício 28	35
		Exercício 29	35
		Exercício 30	36
		Exercício 31	36

- 1 Lista 0
- 1.1 Exercício 1

(1)

2 Lista 1

2.1 Exercício 1

(1) Sejam V um K-espaço vetorial e W um subespaço de V. Seja $S = \{v_i\}_{i \in I} \subset V$ tal que $\overline{S} = \{v_i + W\}_{i \in I}$ é linearmente independente no espaço quociente V/W. Mostre que se A é um conjunto linearmente independente de V.

Solução: Se $\overline{S} = \{\overline{v_i} = v_i + W\}_{i \in I}$ é LI em V/W, isso significa que, para todo $M \subseteq I$ finito, temos que, para $\alpha_m \in K$, com $m \in M$, ocorre

$$\sum_{m \in M} \alpha_m \overline{v_m} = 0 \Rightarrow \alpha_m = 0 \ \forall \ m \in M$$

Seja $A = \{w_j\}_{j \in J}$. Por hipótese, sabemos também que A é um conjunto linearmente independente, ou seja, para todo $N \subseteq I$ finito, temos que, para $\alpha_n \in K$, com $n \in N$, ocorre

$$\sum_{n \in N} \alpha_n w_n = 0 \Rightarrow \alpha_n = 0, \ \forall \ n \in N$$

Para mostrar que $S \cup A = \{v_i\}_{i \in I} \cup \{w_j\}_{j \in J} = \{u_p\}_{p \in I \cup J}$ é um conjunto linearmente independente de V, precisamos mostrar que, para todo $L \subset I \cup J$ finito, temos que, para $\alpha_{\ell} \in L$, com $\ell \in L$, ocorre

$$\sum_{\ell \in L} \alpha_{\ell} u_{\ell} = 0 \Rightarrow \alpha_{\ell} = 0, \ \forall \ \ell \in L$$

Para fazer isso, precisamos antes verificar se existem vetores que são comuns aos dois subconjuntos, ou seja, calcular $S \cap A$. Observe que

$$s \in S \Rightarrow \overline{s} \in \overline{S}$$

Como \overline{S} é um conjunto linearmente independente em W, temos que $\overline{s} \neq \overline{0}$. Portanto, segue que $s - 0 \notin W \Rightarrow s \notin W$. Mas como $A \subseteq W$, então isso quer dizer que $s \notin A$. Portanto, concluímos que $S \cap A = \emptyset$. Isso quer dizer que todos os v_i 's são diferentes dos w_j 's, e mais ainda, que $I \cup J$ é uma união disjunta.

Logo, considerando novamente $S \cup A = \{v_i\}_{i \in I} \cup \{w_j\}_{j \in J}$, para todo $L \subseteq I \cup J$ finito, existem $I' \subseteq I$ e $J' \subseteq J$ tais que $I' \cup J' = L$. Desse modo, temos que

$$\sum_{\ell \in L} \alpha_{\ell} u_{\ell} = 0 \Rightarrow$$

$$\sum_{i \in I'} \alpha_{i} v_{i} + \sum_{j \in J'} \alpha_{j} w_{j} = 0 \quad \text{em } V \Rightarrow$$

$$\overline{\sum_{i \in I'} \alpha_{i} v_{i} + \sum_{j \in J'} \alpha_{j} w_{j}} = \overline{0} \quad \text{em } V/W \Rightarrow$$

$$\sum_{i \in I'} \alpha_{i} \overline{v_{i}} + \sum_{j \in J'} \alpha_{j} \overline{w_{j}} = \overline{0} \Rightarrow \sum_{i \in I'} \alpha_{i} \overline{v_{i}} = \overline{0} \Rightarrow \alpha_{i} = 0 \,\,\forall \,\, i \in I',$$

$$= 0 \quad \text{pois } w_{i} \in W$$

pois $\{v_i\}_{i\in I'}\subseteq \overline{S}$ é um conjunto linearmente independente.

Assim, usando agora o fato de que $\{w_j\}_{j\in J'}\subseteq A$ é um conjunto linearmente independente em W, temos que

$$\sum_{i \in I'} \alpha_i v_i + \sum_{j \in J'} \alpha_j w_j = 0 \Rightarrow 0 + \sum_{j \in J'} \alpha_j w_j = 0 \Rightarrow \sum_{j \in J'} \alpha_j w_j = 0 \Rightarrow \alpha_j = 0 \ \forall \ j \in J'$$

Concluímos portanto que

$$\sum_{\ell \in L} \alpha_\ell u_\ell = 0 \Rightarrow \alpha_\ell = 0 \ \forall \ \ell \in L$$

Daí, $S \cup A$ é um conjunto linearmente independente em V.

2.2 Exercício 2

(2) Sejam V um K-espaço vetorial e W um subespaço de V. Seja $S = \{v_i\}_{i \in I} \subset V$ tal que $S = \{v_i + W\}_{i \in I}$ gera o espaço quociente V/W. Mostre que se A é um conjunto gerador de W então $S \cup A$ é um conjunto gerador de V.

Solução: Se $\overline{S} = \{\overline{v_i} = v_i + W\}_{i \in I}$ gera em V/W, isso significa que, para todo $\overline{v} \in V/W$, existem $M \subseteq I$ finito e $\alpha_m \in K$, com $m \in M$, tais que

$$\overline{v} = \sum_{m \in M} \alpha_m \overline{v_m}$$

Seja $A = \{w_j\}_{j \in J}$. Por hipótese, sabemos também que A gera W, ou seja, para todo $w \in W$, existem $N \subseteq J$ finito e $\alpha_n \in K$, com $n \in N$, tais que

$$w = \sum_{n \in N} \alpha_n w_n$$

Precisamos mostrar que $S \cup A = \{v_i\}_{i \in I} \cup \{w_j\}_{j \in J} = \{u_p\}_{p \in I \cup J}$ é um conjunto gerador para V, ou seja, que para todo $v \in V$, existem $L \subset I \cup J$ finito e $\alpha_{\ell} \in K$, com $\ell \in L$, tais que

$$v = \sum_{\ell \in L} \alpha_{\ell} u_{\ell}$$

Note que, como \overline{S} é um conjunto gerador de V/W, temos como já foi explicitado acima que, para $\overline{v} \in V/W$,

$$\overline{v} = \sum_{m \in M} \alpha_m \overline{v_m} \Rightarrow \overline{v} - \sum_{m \in M} \alpha_m \overline{v_m} = \overline{0} \Rightarrow v - \sum_{m \in M} \alpha_m v_m \in W$$

Como $A = \{w_j\}_{j \in J}$ é conjunto gerador para W, temos que existem $N \subseteq J$ finito e $\alpha_n \in K$, com $n \in N$, tais que

$$v - \sum_{m \in M} \alpha_m v_m = \sum_{n \in N} \alpha_n w_n$$

Assim, tomando $L = N \cup M$:

$$v = \sum_{m \in M} \alpha_m v_m + \sum_{n \in N} \alpha_n w_n \Rightarrow v = \sum_{\ell \in L} \alpha_\ell u_\ell$$

Portanto, $S \cup A$ é um conjunto gerador para V.

2.3 Exercício 3

- (3) Seja V um K-espaço vetorial e sejam U e W subespaços de V. Prove:
 - (a) O Segundo Teorema do Isomorfismo:

$$\frac{U+W}{W} \cong \frac{U}{U \cap W}.$$

(b) O Terceiro Teorema do Isomorfismo: Se $U \subset W$,

$$\frac{V}{W}\cong \frac{V/U}{W/U}$$

Solução:

2.4 Exercício 4

(4) Seja V um K-espaço vetorial e sejam U e W subespaços de V tais que $\dim(V/U) = m$ e $\dim(V/W) = n$. Prove que $\dim(V/(U \cap W)) \le m + n$.

Solução: Das informações fornecidas no enunciado, sabemos que:

$$\dim(V/U) = m \Rightarrow \dim(V) - \dim(U) = m$$

$$\dim(V/W) = n \Rightarrow \dim(V) - \dim(W) = n$$

Somando essas duas equações obtemos:

$$2\dim(V) - (m+n) = \dim(U) + \dim(W).$$

Sabemos também que, se U e W são subespaços de V, então

$$\dim(U) + \dim(W) = \dim(U \cap W) + \dim(U + W)$$

Estamos interessados em encontrar $\dim(V/(U\cap W)) = \dim(V) - \dim(U\cap W)$. Observe que, como U e W são subespaços de V, então $\dim(V) \ge \dim(U+W)$. Desse modo,

$$\dim(U) + \dim(W) = \dim(U \cap W) + \dim(U + W) \le \dim(U \cap W) + \dim(V)$$

Então:

$$\dim(U) + \dim(W) \le \dim(U \cap W) + \dim(V) \Rightarrow 2\dim(V) - (m+n) \le \dim(U \cap W) + \dim(V) \Rightarrow$$
$$-(m+n) \le \dim(U \cap W) - \dim(V) \Rightarrow \dim(V) - \dim(U \cap W) \le m+n$$

Portanto, concluímos que

$$\dim(V/(U\cap W)) = \dim(V) - \dim(U\cap W) \le m+n \Rightarrow \left[\dim(V/(U\cap W)) \le m+n\right]$$

2.5 Exercício 5

(5) Mostre que

(a)
$$W \oplus U = W' \oplus U' \in W \cong W' \nrightarrow U \cong U'$$
.

(b)
$$V \cong V', V = W \oplus U \in V' = W \oplus U' \Rightarrow U \cong U'$$
.

(a) Considere K um corpo, e seja

$$V = \bigoplus_{i=1}^{\infty} Ke_i$$

Considere

$$W = \bigoplus_{i=1}^{\infty} Ke_{2i}$$

Observe que $W \subseteq V$, e além disso, $W \cong V$. Temos também que

$$V = W \oplus \left(\bigoplus_{i=1}^{\infty} Ke_{2i+1}\right)$$

Portanto, tomando

$$W = \bigoplus_{i=1}^{\infty} Ke_{2i}, \ U = \bigoplus_{i=1}^{\infty} Ke_{2i+1}, \ W' = V, \ e \ U' = \{0\},$$

temos que

$$\left(\bigoplus_{i=1}^{\infty} Ke_{2i}\right) \oplus \left(\bigoplus_{i=1}^{\infty} Ke_{2i+1}\right) \cong V \cong V \oplus \{0\} \Rightarrow W \oplus U = W' \oplus U'$$

 \mathbf{e}

$$\bigoplus_{i=1}^{\infty} Ke_{2i} \cong \bigoplus_{i=1}^{\infty} Ke_i \Rightarrow W \cong W',$$

mas

$$\bigoplus_{i=1}^{\infty} Ke_{2i+1} \ncong \{0\} \Rightarrow U \ncong U'$$

(b)

Observação: Cabe salientar que ambos os itens dessa questão são válidos quando V é um espaço vetorial de dimensão finita.

2.6 Exercício 6

(6) Seja V um espaço vetorial e seja W um subespaço de V. Suponha que $V=V_1\oplus\ldots\oplus V_n$ e $S=S_1\oplus\ldots\oplus S_n,$ com $S_i\subseteq V_i$ subespaços de V para todo $i=1,\ldots,n.$ Mostre que

$$\frac{V}{S} \cong \frac{V_1}{S_1} \oplus \ldots \oplus \frac{V_n}{S_n}.$$

Solução: Sabemos que, se V é soma direta de $V_1 \oplus \ldots \oplus V_n$, então todo $v \in V$ pode ser escrito como soma de elementos de V_i de maneira única. Podemos escrever então

$$v = \sum_{i=1}^{n} v_i$$

O mesmo se aplica a S. Dito isso, considere a aplicação

$$T : V = \bigoplus_{i=1}^{n} V_i = V_1 \oplus \ldots \oplus V_n \longrightarrow \bigoplus_{i=1}^{n} \frac{V_i}{S_i} = \frac{V_1}{S_1} \oplus \ldots \oplus \frac{V_n}{S_n}$$
$$v = \sum_{i=1}^{n} v_i \longmapsto T(v) = \sum_{i=1}^{n} (v_i + S_i)$$

Verifiquemos que T é uma transformação linear:

• Para todo $u, v \in V$, podemos escrever de maneira única $u = \sum_{i=1}^{n} u_i$ e $v = \sum_{i=1}^{n} v_i$. Portanto, temos

$$T(u) + T(v) = T\left(\sum_{i=1}^{n} u_i\right) + T\left(\sum_{i=1}^{n} v_i\right) = \sum_{i=1}^{n} (u_i + S_i) + \sum_{i=1}^{n} (v_i + S_i) = \sum_{i=1}^{n} ((u_i + S_i) + (v_i + S_i)) = T(u + v) \Rightarrow T(u) + T(v) = T(u + v).$$

• Para todo $v \in V$, podemos escrever de maneira única $v = \sum_{i=1}^{n} v_i$; assim, para $\alpha \in K$:

$$T(\alpha v) = T\left(\alpha \sum_{i=1}^{n} v_i\right) = T\left(\sum_{i=1}^{n} \alpha v_i\right) = T\left(\sum_{i=1}^{n} \alpha v_i\right) = \sum_{i=1}^{n} (\alpha v_i + S_i) = \sum_{i=1}^{n} \alpha(v_i + S_i) = \alpha \sum_{i=1}^{n} (v_i + S_i) = \alpha T(v) \Rightarrow T(\alpha v) = \alpha T(v)$$

Logo, T é uma transformação linear. Vamos utilizar o Primeiro Teorema do Isomorfismo em T. Para isso, calculemos o núcleo e a imagem de T:

• $\operatorname{Im}(T)$: Dado $u \in \bigoplus_{i=1}^n \frac{V_i}{S_i}$, temos que esse elemento pode ser escrito de maneira única como

$$u = \sum_{i=1}^{n} (u_i + S_i),$$

onde $u_i \in V_i$. Então temos que

$$u = \sum_{i=1}^{n} (u_i + S_i) = T\left(\sum_{i=1}^{n} u_i\right).$$

Logo, T é sobrejetora, e

$$\operatorname{Im}(T) = \bigoplus_{i=1}^{n} \frac{V_i}{S_i} = \frac{V_1}{S_1} \oplus \ldots \oplus \frac{V_n}{S_n}$$

• Ker(T): Considere $v \in \text{Ker}(T)$. Então, tomando $v = \sum_{i=1}^{n} v_i$, temos que

$$v \in \text{Ker}(T) \Rightarrow T(v) = 0 \Rightarrow T\left(\sum_{i=1}^{n} v_i\right) = 0 \Rightarrow \sum_{i=1}^{n} (v_i + S_i) = 0 \Rightarrow$$

$$v_i + S_i = 0, \ \forall i \in \{1, \dots, n\} \Rightarrow v_i \in S_i, \ \forall i \in \{1, \dots, n\} \Rightarrow v \in S$$

Assim, $\operatorname{Ker}(T) \subseteq S$. Agora, tome $s \in S$. Então, como $S = \bigoplus_{i=1}^n S_i$, então podemos escrever s de maneira única como

$$s = \sum_{i=1}^{n} s_i,$$

onde $s_i \in S_i$, para i = 1, ..., n. Desse modo,

$$T(s) = T\left(\sum_{i=1}^{n} s_i\right) = \sum_{i=1}^{n} (s_i + S_i) = \underbrace{\sum_{i=1}^{n} (0 + S_i)}_{\text{pois } s_i \in S_i \ \forall i} = 0.$$

Assim, $S \subseteq \text{Ker}(T)$. Concluímos que Ker(T) = S.

Pelo Primeiro Teorema do Isomorfismo, temos que

$$\frac{V}{\mathrm{Ker}(T)} \cong \mathrm{Im}(T) \Rightarrow \frac{V}{S} \cong \bigoplus_{i=1}^{n} \frac{V_{i}}{S_{i}}$$

Então:

$$\frac{V}{S} \cong \frac{V_1}{S_1} \oplus \ldots \oplus \frac{V_n}{S_n},$$

como queríamos.

2.7 Exercício 7

(7) Seja V um K-espaço vetorial e seja W um subespaço de V. Seja $T \in \mathcal{L}(V)$ e defina $\overline{T} \colon V/W \to V/W$ por

$$\overline{T}(v+W) = T(v) + W$$
, para todo $v+W \in V/W$.

- (a) Determine uma condição necessária e suficiente sobre W para que \overline{T} esteja bem definida.
- (b) Se \overline{T} estiver bem definida, mostre que ela é linear e determine seu núcleo e sua imagem.

(a) Seja

$$\begin{array}{cccc} \pi & : & V & \longrightarrow & V/W \\ & v & \longmapsto & \pi(v) = v + W \end{array}$$

A projeção canônica de V em V/W. Então, podemos considerar o seguinte diagrama:

Note que $\pi \circ T = \overline{T} \circ \pi$. Daí, \overline{T} estará bem-definida se $\operatorname{Ker}(\pi) \subseteq \operatorname{Ker}(\pi \circ T)$. Claramente, temos que $\operatorname{Ker}(\pi) = W$. Vamos calcular $\operatorname{Ker}(\pi \circ T)$. Temos que

$$v \in \operatorname{Ker}(\pi \circ T) \Leftrightarrow \pi(T(v)) = \overline{0} \Leftrightarrow T(v) \in W \Leftrightarrow v \in T^{-1}$$

Logo, temos que

$$\operatorname{Ker}(\pi) \subseteq \operatorname{Ker}(\pi \circ T) \Rightarrow W \subseteq T^{-1}(W) \Rightarrow T[W] \subseteq W.$$

Portanto, uma condição necessária e suficiente para \overline{T} estar bem definida é que para todo $v \in W$, tenhamos $T(v) \in W$, ou seja, $T(W) \subseteq W$.

Em outras palavras, \overline{T} está bem definida se W for um subespaço T-invariante de V.

- (b) Verifiquemos que \overline{T} é uma transformação linear. Temos:
 - \bullet Para todos $u+W, v+W \in V/W$, lembrando que T é linear, temos que

Logo, $\overline{T}(\overline{u} + \overline{v}) = \overline{T}(\overline{u}) + \overline{T}(\overline{v}).$

 \clubsuit Para todo $v+W\in V/W$, e para todo $\alpha\in K$, temos que

$$\overline{T}(\alpha(v+W)) = \overline{T}((\alpha v) + W) = T(\alpha v) + W = \alpha T(v) + W =$$

$$\alpha(T(v) + W) = \alpha \overline{T}(v+W)$$

Portanto, $\overline{T}(\alpha \overline{v}) = \alpha \overline{T}(\overline{v})$.

Vamos encontrar o núcleo e a imagem de \overline{T} .

 \forall Sendo $\overline{v} = v + W \in V/W$, observe que

$$\overline{T}(\overline{v}) = 0 \Rightarrow \overline{T(v)} = 0 \Rightarrow T(v) \in W \Rightarrow v \in T^{-1}(W).$$

Portanto, temos que

$$\operatorname{Ker}(\overline{T}) = \{\overline{v} | v \in T^{-1}(W)\}.$$

 \spadesuit Vamos verificar que \overline{T} é sobrejetora. Sabemos que π é sobrejetora. Então, temos que

$$\begin{array}{rcl} \operatorname{Im}(\overline{T}) & = & \operatorname{Im}(\overline{T} \circ \pi) \\ & = & \operatorname{Im}(\pi \circ T) \\ & = & \{\pi(T(v)) : v \in V\} \\ & = & \{\overline{T(v)} : v \in V\} \end{array}$$

Portanto, temos que

$$\operatorname{Im}(\overline{T}) = V/W.$$

2.8 Exercício 8

(8) Seja $T \in \mathcal{L}(\mathbb{R}^3)$ o operador linear definido por T(x,y,z) = (x,x,x). Seja $T : \mathbb{R}^3/W \to \mathbb{R}^3/W$ tal que $\overline{T}((x,y,z)+W) = T(x,y,z)+W$, em que W = Ker T. Descreva \overline{T} .

Solução: Veja que \overline{T} está bem definida, pois $W=\mathrm{Ker}(T)$ é um subespaço T-invariante de V. Vamos encontrar o núcleo e a imagem de \overline{T} .

• Do exercício anterior, temos que

$$\operatorname{Ker}(\overline{T}) = \{ \overline{v} | v \in T^{-1}(W) \}.$$

Em particular,

$$\operatorname{Ker}(\overline{T}) = \{\overline{v}|v \in T^{-1}(\operatorname{Ker}T)\} = \{\overline{v}|v \in T^{-1}(\operatorname{Ker}T)\}$$

Então segue que

$$v \in T^{-1}(\mathrm{Ker}T) \Rightarrow T(v) \in \mathrm{Ker}(T) \Leftrightarrow T(T(v)) = 0.$$

Mas T(T(v)) = T(v). De fato, para $v = (x, y, z) \in \mathbb{R}^3$, temos

$$T(T(v)) = T(T(x, y, z)) = T(x, x, x) = (x, x, x) = T(x, y, z) = T(v)$$

Daí, como para $v \in T^{-1}(\text{Ker}T)$, temos T(T(v)) = 0,

$$T(T(v)) = 0 \Rightarrow T(v) = 0$$

Além disso, se $v \in \text{Ker}(T) = W$, temos $\overline{v} = 0$.

Portanto, concluímos que $Ker(\overline{T}) = \{0\}$, ou seja, \overline{T} é injetora.

• Do exercício anterior, temos

$$\operatorname{Im}(\overline{T}) = V/W.$$

Logo, $\operatorname{Im}(\overline{T}) = \mathbb{R}^3/\operatorname{Ker}T$. Podemos também descrever $\operatorname{Im}(\overline{T})$ da seguinte maneira:

$$\begin{array}{lll} \operatorname{Im}(\overline{T}) & = & \{\overline{T(v)} : v \in V\} \\ & = & \{T(v) + \operatorname{Ker}T | v = (x, y, z) \in \mathbb{R}^3\} \\ & = & \{(x, x, x) + \operatorname{Ker}T | x \in \mathbb{R}\} \\ & = & \{(x, x, x) + (0, y, z) | x, y, z \in \mathbb{R}\} \\ & = & \{(x, x + y, x + z) | x, y, z \in \mathbb{R}\} \end{array}$$

2.9 Exercício 9

(9) Sejam V e U K-espaços vetoriais. Seja W um subespaço de V e $\pi\colon V\to V/W$ a projeção canônica. Mostre que a função $\mathscr{L}(V/W,U)\to\mathscr{L}(V,U)$, dada por $T\to T\circ\pi$, é injetora.

Solução: Temos a função

$$\begin{array}{ccccc} \varphi & : & \mathscr{L}(V/W,U) & \longrightarrow & \mathscr{L}(V,U) \\ & T & \longmapsto & T \circ \pi \end{array}$$

Para mostrar que φ é injetora, precisamos verificar que, para $T \in \mathcal{L}(V/W,U)$, se $\varphi(T) = 0$, então $T \cong 0$. Note que

$$\varphi(T) = 0 \Rightarrow T \circ \pi = 0 \Rightarrow T(\pi(v)) = 0.$$

Vamos mostrar que $T(u) = 0 \ \forall u \in V/W$. Sabemos que π é sobrejetora. Assim, dado $u \in V/W$, existe $v \in V$ tal que $u = \pi(v)$. Logo,

$$T(u) = T(\pi(v)) = (T \circ \pi)(v) = 0.$$

Portanto, $T(u)=0 \ \forall u \in V/W$. Daí, $\mathrm{Ker}(\varphi)=\{0\}$. Concluímos que φ é injetora.

2.10 Exercício 10

(10) Seja V um K-espaço vetorial e seja W um subespaço de V. Mostre que $(V/W)^* \cong W^0$ e que $V^*/W^0 \cong W^*$.

Solução: Mostremos que $(V/W)^* \cong W^0$. Para isso, a ideia será utilizar a aplicação canônica de V em V/W e sua transposta, e depois aplicar o Primeiro Teorema do Isomorfismo para obter o resultado desejado. Comecemos considerando a aplicação canônica

$$\begin{array}{cccc} T & : & V & \longrightarrow & V/W \\ & v & \longmapsto & T(v) = v + W \end{array}$$

Veja que T é sobrejetora (isto é, Im T = V/W), e Ker T = W. Consideremos a aplicação transposta

$$\begin{array}{cccc} T^t & : & (V/W)^* & \longrightarrow & V^* \\ & f & \longmapsto & T^t(f) = f \circ T \end{array}$$

Das propriedades da transformação transposta, sabemos que

Ker
$$T^t = (\text{Im } T)^0 = (V/W)^0 = \{0\}$$

$$\operatorname{Im} T^t = (\operatorname{Ker} T)^0 = W^0$$

Pelo Primeiro Teorema do Isomorfismo, temos que

$$\frac{(V/W)^*}{\operatorname{Ker} T^t} \cong \operatorname{Im} T^t \Rightarrow \frac{(V/W)^*}{\{0\}} \cong W^0 \Rightarrow \boxed{(V/W)^* \cong W^0}$$

Mostremos agora que $V^*/W^0 \cong W^*$. Utilizaremos a mesma estratégia, mas considerando agora a inclusão. Tome a inclusão de W em V, isto é:

$$\iota : W \longrightarrow V
 w \longmapsto \iota(w) = w$$

Note que Ker $\iota = \{0\}$ e Im $\iota = W$. Seja

$$\begin{array}{cccc} \iota^t & : & V^* & \longrightarrow & W^* \\ & f & \longmapsto & \iota(f) = f \circ \iota \end{array}$$

a transposta de ι . Observe que

$$\operatorname{Ker}\,\iota^t=(\operatorname{Im}\,\iota)^0=W^0$$

Im
$$\iota^t = (\text{Ker } \iota)^0 = \{0\}^0 = W^*$$

Pelo Primeiro Teorema do Isomorfismo,

$$\frac{V^*}{\operatorname{Ker}\,\iota^t} \cong \operatorname{Im}\,\iota^t \Rightarrow \frac{V^*}{W^0} \cong W^* \Rightarrow \boxed{V^*/W^0 \cong W^*}$$

2.11 Exercício 11

(11) Sejam $A, B, C \in \mathcal{M}_n(K)$. Prove que

$$\det \begin{bmatrix} 0 & C \\ A & B \end{bmatrix} = (-1)^n \det(A) \det(C).$$

Solução:

2.12 Exercício 12

(12) Calcule o determinante da matriz de Vandermonde, isto é, prove que

$$\det \begin{bmatrix} 1 & 1 & \dots & 1 \\ c_1 & c_2 & \dots & c_n \\ \vdots & \vdots & \ddots & \vdots \\ c_1^{n-1} & c_2^{n-1} & \dots & c_n^{n-1} \end{bmatrix} = \prod_{1 \le i < j \le n} (c_j - c_i)$$

Solução: Vamos provar o resultado por indução sobre $n \ge 2$. Para n = 2, é fácil ver que

$$\det \begin{bmatrix} 1 & 1 \\ c_1 & c_2 \end{bmatrix} = c_2 - c_1 = \prod_{1 \le i < j \le 2} (c_j - c_i)$$

Assuma o resultado válido para n-1, ou seja,

$$\det \begin{bmatrix} 1 & 1 & \dots & 1 \\ c_1 & c_2 & \dots & c_n \\ \vdots & \vdots & \ddots & \vdots \\ c_1^{n-2} & c_2^{n-2} & \dots & c_n^{n-2} \end{bmatrix} = \prod_{1 \le i < j \le n-1} (c_j - c_i) = \prod_{1 \le i < j \le n-1} (c_j - c_i)$$

Provemos para a matriz $n \times n$. Utilizando a matriz transposta, vamos aplicar operações nas colunas da matriz de modo a obter zeros na primeira linha. Para isso, vamos multiplicar cada coluna C_i por $-c_1$ e somaremos com a coluna C_{i+1} , obtendo

$$\begin{bmatrix} 1 & c_{1} & c_{1}^{2} & \dots & c_{1}^{n-1} \\ 1 & c_{2} & c_{2}^{2} & \dots & c_{2}^{n-1} \\ 1 & c_{3} & c_{3}^{2} & \dots & c_{3}^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & c_{n} & c_{n}^{2} & \dots & c_{n}^{n-1} \end{bmatrix} \xrightarrow{C_{i+1} = C_{i+1} - c_{1}C_{i}} \begin{bmatrix} 1 & c_{1} - c_{1}1 & c_{1}^{2} - c_{1}c_{1} & \dots & c_{1}^{n-1} - c_{1}c_{1}^{n-2} \\ 1 & c_{2} - c_{1}1 & c_{2}^{2} - c_{1}c_{2} & \dots & c_{2}^{n-1} - c_{1}c_{2}^{n-2} \\ 1 & c_{3} - c_{1}1 & c_{3}^{2} - c_{1}c_{3} & \dots & c_{3}^{n-1} - c_{1}c_{3}^{n-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & c_{n} - c_{1}1 & c_{n}^{2} - c_{1}c_{n} & \dots & c_{n}^{n-1} - c_{1}c_{n}^{n-2} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 & c_{2} - c_{1} & c_{2}(c_{2} - c_{1}) & \dots & c_{2}^{n-2}(c_{2} - c_{1}) \\ 1 & c_{3} - c_{1} & c_{3}(c_{3} - c_{1}) & \dots & c_{3}^{n-2}(c_{3} - c_{1}) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & c_{n} - c_{1} & c_{n}(c_{n} - c_{1}) & \dots & c_{n}^{n-2}(c_{n} - c_{1}) \end{bmatrix}$$

Utilizando o Teorema de Laplace, temos que

$$\det\begin{bmatrix} \frac{1}{1} & 0 & 0 & \dots & 0\\ \frac{1}{1} & c_2 - c_1 & c_2(c_2 - c_1) & \dots & c_2^{n-2}(c_2 - c_1)\\ \frac{1}{1} & c_3 - c_1 & c_3(c_3 - c_1) & \dots & c_3^{n-2}(c_3 - c_1)\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ \frac{1}{1} & c_n - c_1 & c_n(c_n - c_1) & \dots & c_n^{n-2}(c_n - c_1) \end{bmatrix} = \det\begin{bmatrix} c_2 - c_1 & c_2(c_2 - c_1) & \dots & c_2^{n-2}(c_2 - c_1)\\ c_3 - c_1 & c_3(c_3 - c_1) & \dots & c_3^{n-2}(c_3 - c_1)\\ \vdots & \vdots & \ddots & \vdots \end{bmatrix}$$

Como cada linha está multiplicada por $c_i - c_1$, por propriedades do determinante, temos que

$$\det \begin{bmatrix} c_2 - c_1 & c_2(c_2 - c_1) & \dots & c_2^{n-2}(c_2 - c_1) \\ c_3 - c_1 & c_3(c_3 - c_1) & \dots & c_3^{n-2}(c_3 - c_1) \\ \vdots & \vdots & \ddots & \vdots \\ c_n - c_1 & c_n(c_n - c_1) & \dots & c_n^{n-2}(c_n - c_1) \end{bmatrix} =$$

$$(c_{2}-c_{1})(c_{3}-c_{1})\cdot\ldots\cdot (c_{n}-c_{1})\det \begin{vmatrix} 1 & c_{2} & c_{2}^{2} & \dots & c_{2}^{n-2} \\ 1 & c_{3} & c_{3}^{2} & \dots & c_{3}^{n-2} \\ 1 & c_{4} & c_{4}^{2} & \dots & c_{4}^{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & c_{n} & c_{n}^{2} & \dots & c_{n}^{n-2} \end{vmatrix} =$$

$$\prod_{j=2}^{n} (c_j - c_1) \det \begin{bmatrix}
1 & c_2 & c_2^2 & \dots & c_2^{n-2} \\
1 & c_3 & c_3^2 & \dots & c_3^{n-2} \\
1 & c_4 & c_4^2 & \dots & c_4^{n-2} \\
\vdots & \vdots & \ddots & \vdots \\
1 & c_n & c_n^2 & \dots & c_n^{n-2}
\end{bmatrix}$$

Como a matriz resultante tem tamanho $n-1\times n-1$, da hipótese de indução, vem

$$\det \begin{bmatrix} 1 & c_2 & c_2^2 & \dots & c_2^{n-2} \\ 1 & c_3 & c_3^2 & \dots & c_3^{n-2} \\ 1 & c_4 & c_4^2 & \dots & c_4^{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & c_n & c_n^2 & \dots & c_n^{n-2} \end{bmatrix} = \prod_{2 \le i < j \le n} (c_j - c_i).$$

Daí,

$$\left(\prod_{j=2}^{n} (c_j - c_1)\right) \det \begin{bmatrix} 1 & c_2 & c_2^2 & \dots & c_2^{n-2} \\ 1 & c_3 & c_3^2 & \dots & c_3^{n-2} \\ 1 & c_4 & c_4^2 & \dots & c_4^{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & c_n & c_n^2 & \dots & c_n^{n-2} \end{bmatrix} =$$

$$\left(\prod_{j=2}^{n} (c_j - c_1)\right) \left(\prod_{2 \le i < j \le n} (c_j - c_i)\right) = \prod_{1 \le i < j \le n} (c_j - c_i)$$

Assim, segue o resultado.

2.13 Exercício 13

(13) Mostre que

$$\det \begin{bmatrix} a & -b & -c & -d \\ b & a & -d & c \\ c & d & a & -b \\ d & -c & b & a \end{bmatrix} = (a^2 + b^2 + c^2 + d^2)^2$$

Solução: Primeiramente, vamos mostrar que, para $A, B \in \mathcal{M}_n(\mathbb{C})$, temos que

$$\det \begin{bmatrix} A & -B \\ B & A \end{bmatrix} = \left| \det(A + Bi) \right|^2$$

De fato:

$$\det\begin{pmatrix} A & -B \\ B & A \end{pmatrix} = \det\begin{pmatrix} A - iB & -B \\ B + iA & A \end{pmatrix} = \det\begin{pmatrix} A - iB & -B \\ i(A - iB) & A \end{pmatrix} = \det\begin{pmatrix} A - iB & -B \\ i(A - iB) & A \end{pmatrix} = \det\begin{pmatrix} A - iB & -B \\ i(A - iB) - i(A - iB) & A + iB \end{pmatrix} = \det\begin{pmatrix} A - iB & -B \\ 0 & A + iB \end{pmatrix} = \left|\det(A + Bi)\right|^{2}$$

Portanto, escrevendo

$$A = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \quad \mathbf{e} \quad B = \begin{bmatrix} c & d \\ d & -c \end{bmatrix},$$

segue que

$$\det \begin{bmatrix} a & -b & -c & -d \\ b & a & -d & c \\ c & d & a & -b \\ d & -c & b & a \end{bmatrix} = \det \begin{bmatrix} A & -B \\ B & A \end{bmatrix} = \left| \det(A + Bi) \right|^2.$$

Como

$$A + Bi = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} + \begin{bmatrix} c & d \\ d & -c \end{bmatrix} i = \begin{bmatrix} a + ci & -b + di \\ b + di & a - ci \end{bmatrix},$$

temos que

$$\left| \det(A+Bi) \right|^2 = \left| \det \begin{bmatrix} a+ci & -b+di \\ b+di & a-ci \end{bmatrix} \right|^2 = \left| (a+ci)(a-ci) - (di-b)(di+b) \right|^2 =$$

$$\left| a^2+c^2 - (-b^2-d^2) \right|^2 = \left| a^2+c^2+b^2+d^2 \right|^2 = (a^2+b^2+c^2+d^2)^2$$

2.14 Exercício 14

(14) Sejam $A, B \in \mathcal{M}_n(K)$. Mostre que se A é inversível então existem no máximo n escalares c tais que cA + B não é inversível.

Solução: Se cA + B é inversível, isso quer dizer que

$$(cA + B)A^{-1} = cI + BA^{-1}$$

é inversível.¹

Considere portanto a função

$$p: K \longrightarrow K$$
 $c \longmapsto p(c) = \det(cI + BA^{-1})$

Veja que essa função na verdade é um polinômio de grau n na variável c. De fato, chamando

$$A^{-1} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{pmatrix} \quad e \quad B = \begin{pmatrix} b_{11} & b_{12} & b_{13} & \dots & b_{1n} \\ b_{21} & b_{22} & b_{23} & \dots & b_{2n} \\ b_{31} & b_{32} & b_{33} & \dots & b_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & b_{n3} & \dots & b_{nn} \end{pmatrix},$$

temos que

$$cI + BA^{-1} = \begin{pmatrix} c & 0 & 0 & \dots & 0 \\ 0 & c & 0 & \dots & 0 \\ 0 & 0 & c & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & c \end{pmatrix} + \begin{pmatrix} \sum\limits_{k=1}^{n} b_{1k} a_{k1} & \sum\limits_{k=1}^{n} b_{1k} a_{k2} & \sum\limits_{k=1}^{n} b_{1k} a_{k3} & \dots & \sum\limits_{k=1}^{n} b_{1k} a_{kn} \\ \sum\limits_{k=1}^{n} b_{2k} a_{k1} & \sum\limits_{k=1}^{n} b_{2k} a_{k2} & \sum\limits_{k=1}^{n} b_{2k} a_{k3} & \dots & \sum\limits_{k=1}^{n} b_{2k} a_{kn} \\ \sum\limits_{k=1}^{n} b_{3k} a_{k1} & \sum\limits_{k=1}^{n} b_{3k} a_{k2} & \sum\limits_{k=1}^{n} b_{3k} a_{k3} & \dots & \sum\limits_{k=1}^{n} b_{3k} a_{kn} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \sum\limits_{k=1}^{n} b_{nk} a_{k1} & \sum\limits_{k=1}^{n} b_{nk} a_{k2} & \sum\limits_{k=1}^{n} b_{nk} a_{k3} & \dots & \sum\limits_{k=1}^{n} b_{nk} a_{kn} \end{pmatrix} =$$

¹De fato, cA + B é inversível se e somente se $cI + BA^{-1}$ é inversível.

$$\begin{pmatrix} c + \sum_{k=1}^{n} b_{1k} a_{k1} & \sum_{k=1}^{n} b_{1k} a_{k2} & \sum_{k=1}^{n} b_{1k} a_{k3} & \dots & \sum_{k=1}^{n} b_{1k} a_{kn} \\ \sum_{k=1}^{n} b_{2k} a_{k1} & c + \sum_{k=1}^{n} b_{2k} a_{k2} & \sum_{k=1}^{n} b_{2k} a_{k3} & \dots & \sum_{k=1}^{n} b_{2k} a_{kn} \\ \sum_{k=1}^{n} b_{3k} a_{k1} & \sum_{k=1}^{n} b_{3k} a_{k2} & c + \sum_{k=1}^{n} b_{3k} a_{k3} & \dots & \sum_{k=1}^{n} b_{3k} a_{kn} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \sum_{k=1}^{n} b_{nk} a_{k1} & \sum_{k=1}^{n} b_{nk} a_{k2} & \sum_{k=1}^{n} b_{nk} a_{k3} & \dots & c + \sum_{k=1}^{n} b_{nk} a_{kn} \end{pmatrix}$$

Assim, temos que

$$\det(cI + BA^{-1}) = \det\begin{pmatrix} c + \sum_{k=1}^{n} b_{1k} a_{k1} & \sum_{k=1}^{n} b_{1k} a_{k2} & \sum_{k=1}^{n} b_{1k} a_{k3} & \dots & \sum_{k=1}^{n} b_{1k} a_{kn} \\ \sum_{k=1}^{n} b_{2k} a_{k1} & c + \sum_{k=1}^{n} b_{2k} a_{k2} & \sum_{k=1}^{n} b_{2k} a_{k3} & \dots & \sum_{k=1}^{n} b_{2k} a_{kn} \\ \sum_{k=1}^{n} b_{3k} a_{k1} & \sum_{k=1}^{n} b_{3k} a_{k2} & c + \sum_{k=1}^{n} b_{3k} a_{k3} & \dots & \sum_{k=1}^{n} b_{3k} a_{kn} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \sum_{k=1}^{n} b_{nk} a_{k1} & \sum_{k=1}^{n} b_{nk} a_{k2} & \sum_{k=1}^{n} b_{nk} a_{k3} & \dots & c + \sum_{k=1}^{n} b_{nk} a_{kn} \end{pmatrix}$$

$$\sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \alpha_{1\sigma(1)} \alpha_{2\sigma(2)} \dots \alpha_{n\sigma(n)} = \alpha_{11} \alpha_{22} \dots \alpha_{nn} + \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \alpha_{1\sigma(1)} \alpha_{2\sigma(2)} \dots \alpha_{n\sigma(n)} = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \alpha_{1\sigma(1)} \alpha_{2\sigma(2)} \dots \alpha_{n\sigma(n)} = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \alpha_{1\sigma(1)} \alpha_{2\sigma(2)} \dots \alpha_{n\sigma(n)} = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \alpha_{1\sigma(1)} \alpha_{2\sigma(2)} \dots \alpha_{n\sigma(n)} = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \alpha_{1\sigma(1)} \alpha_{2\sigma(2)} \dots \alpha_{n\sigma(n)} = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \alpha_{1\sigma(1)} \alpha_{2\sigma(2)} \dots \alpha_{n\sigma(n)} = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \alpha_{1\sigma(1)} \alpha_{2\sigma(2)} \dots \alpha_{n\sigma(n)} = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \alpha_{1\sigma(1)} \alpha_{2\sigma(2)} \dots \alpha_{n\sigma(n)} = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \alpha_{1\sigma(1)} \alpha_{2\sigma(2)} \dots \alpha_{n\sigma(n)} = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \alpha_{1\sigma(1)} \alpha_{2\sigma(2)} \dots \alpha_{n\sigma(n)} = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \alpha_{1\sigma(1)} \alpha_{2\sigma(2)} \dots \alpha_{n\sigma(n)} = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \alpha_{1\sigma(1)} \alpha_{2\sigma(2)} \dots \alpha_{n\sigma(n)} = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \alpha_{1\sigma(1)} \alpha_{2\sigma(2)} \dots \alpha_{n\sigma(n)} = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \alpha_{1\sigma(1)} \alpha_{2\sigma(2)} \dots \alpha_{n\sigma(n)} = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \alpha_{1\sigma(1)} \alpha_{2\sigma(2)} \dots \alpha_{n\sigma(n)} = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \alpha_{1\sigma(1)} \alpha_{2\sigma(2)} \dots \alpha_{n\sigma(n)} = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \alpha_{1\sigma(1)} \alpha_{2\sigma(2)} \dots \alpha_{n\sigma(n)} = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \alpha_{1\sigma(1)} \alpha_{2\sigma(2)} \dots \alpha_{n\sigma(n)} = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \alpha_{1\sigma(1)} \alpha_{2\sigma(2)} \dots \alpha_{n\sigma(n)} = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \alpha_{1\sigma(1)} \alpha_{2\sigma(2)} \dots \alpha_{n\sigma(n)} = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \alpha_{1\sigma(1)} \alpha_{2\sigma(2)} \dots \alpha_{n\sigma(n)} = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \alpha_{1\sigma(1)} \alpha_{2\sigma(2)} \dots \alpha_{n\sigma(n)} = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \alpha_{1\sigma(1)} \alpha_{2\sigma(2)} \dots \alpha_{n\sigma(n)} = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \alpha_{1\sigma(1)} \alpha_{1\sigma(1)}$$

Logo, p é um polinômio de grau n com coeficientes no corpo K.

Observe que cA + B não será inversível quando $\det(cI + BA^{-1}) = 0$, ou seja, quando c for uma raiz de p. Como o grau de p é n, segue que este possui no máximo n raízes em K, e daí temos que existem no máximo c escalares tais que cA + B não é inversível.

2.15 Exercício 15

(15) Sejam $A, B, C, D \in \mathcal{M}_n(K)$ com D inversível.

(a) Mostre que

$$\det \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \det(AD - BD^{-1}CD)$$

(b) Se CD = DC, mostre que

$$\det \left[\begin{array}{cc} A & B \\ C & D \end{array} \right] = \det(AD - BC).$$

O que acontece quando D não é inversível?

(c) Se
$$DB = BD$$
, calcule $\det \begin{bmatrix} A & B \\ C & D \end{bmatrix}$.

Solução: Pelo Teorema de Binet, sabemos que o determinante de um produto de duas matrizes quadradas é o produto de seus determinantes, ou seja, se $X,Y \in \mathcal{M}_n(K)$, então

$$\det(X)\det(Y) = \det(XY)$$

Além disso, lembramos que, para $U, V, X, Y \in \mathcal{M}_n(K)$, temos

$$\det \begin{bmatrix} U & 0 \\ X & Y \end{bmatrix} = \det U \det Y$$

e

$$\det \begin{bmatrix} U & V \\ 0 & Y \end{bmatrix} = \det U \det Y$$

Feitas essas observações, estamos aptos a resolver a questão.

(a) Para obter o resultado desejado, a ideia será multiplicar a matriz em questão por uma matriz conveniente cujo determinante é 1. Dessa forma, utilizando as observações acima, sendo I_n a notação para a matriz identidade $n \times n$, e lembrando que D é invertível, temos que

$$\left(\begin{array}{cc} A & B \\ C & D \end{array}\right) \left(\begin{array}{cc} I_n & 0 \\ -D^{-1}C & I_n \end{array}\right) = \left(\begin{array}{cc} A - BD^{-1}C & B \\ 0 & D \end{array}\right)$$

Calculando os determinantes, vem

$$\det\left(\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} I_n & 0 \\ -D^{-1}C & I_n \end{bmatrix}\right) = \det\left(\begin{array}{c} A - BD^{-1}C & B \\ 0 & D \end{array}\right) \Rightarrow$$

$$\det\left(\begin{bmatrix} A & B \\ C & D \end{bmatrix}\right) \cdot \det\left(\begin{bmatrix} I_n & 0 \\ -D^{-1}C & I_n \end{bmatrix}\right) = \det\left(\begin{array}{c} A - BD^{-1}C & B \\ 0 & D \end{array}\right) \Rightarrow$$

$$\det\left(\begin{bmatrix} A & B \\ C & D \end{bmatrix}\right) \cdot \det I_n \cdot \det I_n = \det\left(A - BD^{-1}C\right) \det(D) \Rightarrow$$

$$\det\left(\begin{bmatrix} A & B \\ C & D \end{bmatrix}\right) \cdot \det(I_nI_n) = \det\left((A - BD^{-1}C)D\right) \Rightarrow$$

$$\det\left(\begin{bmatrix} A & B \\ C & D \end{bmatrix}\right) \cdot \det(I_nI_n) = \det(AD - BD^{-1}CD) \Rightarrow$$

$$\det\left(\begin{bmatrix} A & B \\ C & D \end{bmatrix}\right) \cdot \det(I_n) = \det(AD - BD^{-1}CD) \Rightarrow$$

(b) Utilizando as observações acima, sendo I_n a notação para a matriz identidade $n \times n$, e usando o fato de que CD = DC, temos que

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} D & 0 \\ -C & I_n \end{pmatrix} = \begin{pmatrix} AD - BC & B \\ CD - DC & D \end{pmatrix} = \begin{pmatrix} AD - BC & B \\ 0 & D \end{pmatrix}$$

Como D é invertível, temos det $D \neq 0$. Portanto, segue que

$$\det\left(\begin{bmatrix} A & B \\ C & D \end{bmatrix}\begin{bmatrix} D & 0 \\ -C & I_n \end{bmatrix}\right) = \det\left(\begin{array}{c} AD - BC & B \\ 0 & D \end{array}\right) \Rightarrow$$

$$\det\left(\begin{bmatrix} A & B \\ C & D \end{bmatrix}\right) \cdot \det\left(\begin{bmatrix} D & 0 \\ -C & I_n \end{bmatrix}\right) = \det\left(\begin{array}{c} AD - BC & B \\ 0 & D \end{array}\right) \Rightarrow$$

$$\det\left(\begin{bmatrix} A & B \\ C & D \end{bmatrix}\right) \cdot \det(D) \det(I_n) = \det(AD - BC) \det(D) \Rightarrow$$

$$\det\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \det(AD - BC) \det(D) \cdot \frac{1}{\det(D)} \Rightarrow$$

$$\det\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \det(AD - BC)$$

- (c) Para resolver este item, vamos utilizar as propriedades das matrizes transpostas. Lembrando que, se $X,Y\in \mathcal{M}_n(K)$, então
 - $(X^t)^t = X$;
 - $(X+Y)^t = X^t + Y^t$;
 - $(XY)^t = Y^t X^t$;
 - $\det(X^t) = \det(X)$.

de posse dessas propriedades, observe que

$$\left[\begin{array}{cc} A & B \\ C & D \end{array}\right]^t = \left[\begin{array}{cc} A^t & C^t \\ B^t & D^t \end{array}\right]$$

Daí, utilizando a notação I_n para a matriz identidade $n \times n$, e usando o fato de que DB = BD,

$$\begin{pmatrix} A^t & C^t \\ B^t & D^t \end{pmatrix} \begin{pmatrix} D^t & 0 \\ -B^t & I_n \end{pmatrix} = \begin{pmatrix} A^tD^t - B^tC^t & C^t \\ B^tD^t - D^tB^t & D^t \end{pmatrix} = \begin{pmatrix} (DA)^t - (CB)^t & C^t \\ (DB)^t - (BD)^t & D^t \end{pmatrix} = \begin{pmatrix} (DA - CB)^t & C^t \\ (DB - BD)^t & D^t \end{pmatrix} = \begin{pmatrix} (DA - CB)^t & C^t \\ 0 & D^t \end{pmatrix}$$

Novamente, sendo D invertível, então D^t também é invertível. Logo, temos

$$\det\left(\begin{bmatrix} A^t & C^t \\ B^t & D^t \end{bmatrix} \begin{bmatrix} D^t & 0 \\ -B^t & I_n \end{bmatrix}\right) = \det\left(\begin{array}{c} (DA - CB)^t & C^t \\ 0 & D^t \end{array}\right) \Rightarrow$$

$$\det\left(\begin{bmatrix} A^t & C^t \\ B^t & D^t \end{bmatrix}\right) \det\left(\begin{bmatrix} D^t & 0 \\ -B^t & I_n \end{bmatrix}\right) = \det\left(\begin{array}{c} (DA - CB)^t & C^t \\ 0 & D^t \end{array}\right) \Rightarrow$$

$$\det\left(\begin{bmatrix} A^t & C^t \\ B^t & D^t \end{bmatrix}\right) \det(D^t) \det(I_n) = \det\left((DA - CB)^t\right) \det\left(D^t\right) \Rightarrow$$

$$\det\left(\begin{bmatrix} A^t & C^t \\ B^t & D^t \end{bmatrix}\right) = \det\left((DA - CB)^t\right) \det\left(D^t\right) \cdot \frac{1}{\det(D^t)} \Rightarrow$$

$$\det\left(\begin{bmatrix} A^t & C^t \\ B^t & D^t \end{bmatrix}\right) = \det\left((DA - CB)^t\right) \Rightarrow \det\left(\begin{bmatrix} A^t & C^t \\ B^t & D^t \end{bmatrix}\right) = \det\left((DA - CB)^t\right) \Rightarrow$$

2.16 Exercício 16

(16) Seja $A \in \mathcal{M}_{m \times n}(K)$. Prove que

$$\det(I_m + AA^t) = \det(I_n + A^t A)$$

Observação: Tal identidade é conhecida como identidade de Weinstein-Aronszajn.

Solução: Se A é uma matriz:

$$\begin{pmatrix} I_m & 0 \\ A^T & I_n \end{pmatrix} \begin{pmatrix} I_m + AA^T & A \\ 0 & I_n \end{pmatrix} \begin{pmatrix} I_m & 0 \\ -A^T & I_n \end{pmatrix} = \begin{pmatrix} I_m & A \\ 0 & I_n + A^TA \end{pmatrix}.$$

Desse modo,

$$\det \left(\begin{pmatrix} I_{m} & 0 \\ A^{T} & I_{n} \end{pmatrix} \begin{pmatrix} I_{m} + AA^{T} & A \\ 0 & I_{n} \end{pmatrix} \begin{pmatrix} I_{m} & 0 \\ -A^{T} & I_{n} \end{pmatrix} \right) = \det \begin{pmatrix} I_{m} & A \\ 0 & I_{n} + A^{T}A \end{pmatrix} \Rightarrow$$

$$\det \begin{pmatrix} I_{m} & 0 \\ A^{T} & I_{n} \end{pmatrix} \det \begin{pmatrix} I_{m} + AA^{T} & A \\ 0 & I_{n} \end{pmatrix} \det \begin{pmatrix} I_{m} & 0 \\ -A^{T} & I_{n} \end{pmatrix} = \det \begin{pmatrix} I_{m} & A \\ 0 & I_{n} + A^{T}A \end{pmatrix} \Rightarrow$$

$$\det (I_{m}) \det (I_{n}) \det \left(I_{m} + AA^{T} \right) \det (I_{n}) \det (I_{m}) \det (I_{n}) = \det (I_{m}) \det (I_{n} + A^{T}A) \Rightarrow$$

$$\det \left(I_{m} + AA^{T} \right) = \det (I_{n} + A^{T}A)$$

2.17 Exercício 17

(17) Seja $\sigma \in S_n$ e defina

$$T_{\sigma}: K^{n} \longrightarrow K^{n}$$
 $e_{i} \longmapsto T_{\sigma}(e_{i}) = e_{\sigma(i)}$

para $i = \{1, 2, \dots, n\}$ e $\{e_1, e_2, \dots, e_n\}$ é a base canônica de K^n . Calcule $\det(T_\sigma)$.

Solução: Observe que T_{σ} está permutando as colunas da matriz cujas colunas são os elementos da base canônica. Assim, para cada coluna i, vamos associar o vetor $e_{\sigma(i)}$. Então, Portanto, $\det(T_{\sigma}) = \operatorname{sgn}(\sigma)$.

2.18 Exercício 18

(18) Seja $C \in \mathcal{M}_n(K)$ a matriz

$$\begin{vmatrix} x & 0 & 0 & \dots & 0 & c_0 \\ -1 & x & 0 & \dots & 0 & c_1 \\ 0 & -1 & x & \dots & 0 & c_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & x & c_{n-2} \\ 0 & 0 & 0 & \dots & -1 & x + c_{n-1} \end{vmatrix}$$

Prove que det $C = x^n + c_{n-1}x^{n-1} + \ldots + c_1x + c_0$.

Solução: Vamos provar o resultado por indução sobre $n \ge 2$.

Para n=2, temos que

$$C = \left[\begin{array}{cc} x & c_0 \\ -1 & x + c_1 \end{array} \right].$$

Portanto,

$$\det C = x(x+c_1) + c_0 = x^2 + c_1 x + c_0.$$

Seja agora n > 2 e admita que o resultado é verdadeiro para matrizes $n - 1 \times n - 1$ desse tipo. Usando o desenvolvimento de det C por Laplace, pela primeira linha, temos que

$$\det \begin{bmatrix} x & 0 & 0 & \dots & 0 & c_0 \\ -1 & x & 0 & \dots & 0 & c_1 \\ 0 & -1 & x & \dots & 0 & c_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & x & c_{n-2} \\ 0 & 0 & 0 & \dots & -1 & x + c_{n-1} \end{bmatrix} =$$

$$\mathbf{x} \cdot \det \begin{bmatrix} x & 0 & \dots & 0 & c_1 \\ -1 & x & \dots & 0 & c_2 \\ 0 & -1 & \dots & 0 & c_3 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & x & c_{n-2} \\ 0 & 0 & \dots & -1 & x + c_{n-1} \end{bmatrix} + (-1)^{n+1} c_0 \det \begin{bmatrix} -1 & x & 0 & \dots & 0 & 0 \\ 0 & -1 & x & \dots & 0 & 0 \\ 0 & 0 & -1 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & -1 & x \\ 0 & 0 & 0 & \dots & 0 & -1 \end{bmatrix}$$

Pela hipótese de indução, segue que

$$\det C = x(x^{n-1} + c_{n-1}x^{n-2} + \ldots + c_2x + c_1) + (-1)^{n+1}c_0(-1)^{n-1} = x^n + c_{n-1}x^{n-1} + \ldots + c_1x + c_0,$$
como queríamos.

2.19 Exercício 19

(19) Seja K um corpo e A_1, \ldots, A_n matrizes quadradas sobre K. Seja B a matriz triangular por blocos

$$\begin{bmatrix} A_1 & * & \dots & * \\ 0 & A_2 & \ddots & * \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & A_n \end{bmatrix}$$

Mostre que $\det B = \det(A_1) \det(A_2) \dots \det(A_n)$.

Solução: A demonstração de tal resultado se dará por indução em n. Para n=2, temos a matriz

$$\left[\begin{array}{cc} A_1 & * \\ 0 & A_2 \end{array}\right],$$

na qual sabemos que seu determinante é $\det(A_1) \det(A_2)$. Suponha que o resultado é verdadeiro para certo n = k. Dessa forma, temos que

$$\det \begin{bmatrix} A_1 & * & * & \dots & * \\ 0 & A_2 & * & \dots & * \\ 0 & 0 & A_3 & \dots & * \\ \vdots & \vdots & \vdots & \ddots & * \\ 0 & 0 & 0 & \dots & A_k \end{bmatrix} = \det(A_1) \det(A_2) \dots \det(A_k) = \prod_{i=1}^k \det(A_i)$$

Calculemos o determinante de B para n=k+1. Dividindo a matriz em blocos, e utilizando que, para $U \in \mathcal{M}_{\ell}(K), V \in \mathcal{M}_{\ell \times m}(K), Y \in \mathcal{M}_{m}(K)$, temos que

$$\det \begin{pmatrix} U & V \\ 0 & Y \end{pmatrix} = \det(U)\det(Y),$$

Em particular, tomando $\ell = k$ e m = 1, podemos considerar

$$\det \begin{bmatrix} A_1 & * & * & \dots & * & * \\ 0 & A_2 & * & \dots & * & * \\ 0 & 0 & A_3 & \dots & * & * \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & A_k & * \\ \hline 0 & 0 & 0 & \dots & 0 & A_{k+1} \end{bmatrix} = \det \begin{pmatrix} U & V \\ 0 & Y \end{pmatrix} = \det(U) \det(Y) =$$

$$\det\begin{bmatrix} A_1 & * & * & \dots & * \\ 0 & A_2 & * & \dots & * \\ 0 & 0 & A_3 & \dots & * \\ \vdots & \vdots & \vdots & \ddots & * \\ 0 & 0 & 0 & \dots & A_k \end{bmatrix} \det(A_{k+1}) = \left(\prod_{i=1}^k \det(A_i)\right) \cdot \det(A_{k+1}) = \prod_{i=1}^{k+1} \det(A_i) = \det(A_1) \det(A_2) \dots \det(A_k) \det(A_{k+1})$$

Segue então o resultado desejado.

2.20 Exercício 20

(20) Seja K um corpo e $a, b, c, d, e, f, g \in K$. Mostre que

$$\det \begin{bmatrix} a & b & b \\ c & d & e \\ f & g & g \end{bmatrix} + \det \begin{bmatrix} a & b & b \\ e & c & d \\ f & g & g \end{bmatrix} + \det \begin{bmatrix} a & b & b \\ d & e & c \\ f & g & g \end{bmatrix} = 0$$

Solução: Temos que o determinante é uma forma 3-linear das linhas da matriz, então:

$$\det \begin{bmatrix} a & b & b \\ c & d & e \\ f & g & g \end{bmatrix} + \det \begin{bmatrix} a & b & b \\ e & c & d \\ f & g & g \end{bmatrix} + \det \begin{bmatrix} a & b & b \\ d & e & c \\ f & g & g \end{bmatrix} = \det \begin{bmatrix} a & b & b \\ c + d + e & d + c + e & e + d + c \\ f & g & g \end{bmatrix}$$

Note que a segunda e a terceira coluna são iguais. Como o determinante é 3-linear e alternado nas colunas da matriz, segue que

$$\det \left| \begin{array}{ccc} a & b & b \\ c+d+e & d+c+e & e+d+c \\ f & g & g \end{array} \right| = 0.$$

2.21 Exercício 21

(21) Sabendo que os números inteiros 23028, 31882, 86469, 6327 e 61902 são todos múltiplos de 19, mostre que o número inteiro

$$\det \begin{bmatrix}
2 & 3 & 0 & 2 & 8 \\
3 & 1 & 8 & 8 & 2 \\
8 & 6 & 4 & 6 & 9 \\
0 & 6 & 3 & 2 & 7 \\
6 & 1 & 9 & 0 & 2
\end{bmatrix}$$

é múltiplo de 19.

Solução: Utilizaremos as propriedades dos determinantes. Multiplicando a primeira coluna por 10^4 , a segunda por 10^3 , a terceira por 10^2 , e a quarta por 10, chamando

$$A = \left[\begin{array}{ccccc} 2 & 3 & 0 & 2 & 8 \\ 3 & 1 & 8 & 8 & 2 \\ 8 & 6 & 4 & 6 & 9 \\ 0 & 6 & 3 & 2 & 7 \\ 6 & 1 & 9 & 0 & 2 \end{array} \right],$$

temos que

$$\det \begin{bmatrix} 20000 & 3000 & 0 & 20 & 8 \\ 30000 & 1000 & 800 & 80 & 2 \\ 80000 & 6000 & 400 & 60 & 9 \\ 0 & 6000 & 300 & 20 & 7 \\ 60000 & 1000 & 900 & 0 & 2 \end{bmatrix} = \det \begin{bmatrix} 2 \cdot 10^4 & 3 \cdot 10^3 & 0 \cdot 10^2 & 2 \cdot 10 & 8 \\ 3 \cdot 10^4 & 1 \cdot 10^3 & 8 \cdot 10^2 & 8 \cdot 10 & 2 \\ 8 \cdot 10^4 & 6 \cdot 10^3 & 4 \cdot 10^2 & 6 \cdot 10 & 9 \\ 0 \cdot 10^4 & 6 \cdot 10^3 & 3 \cdot 10^2 & 2 \cdot 10 & 7 \\ 6 \cdot 10^4 & 1 \cdot 10^3 & 9 \cdot 10^2 & 0 \cdot 10 & 2 \end{bmatrix} =$$

$$10^4 \cdot 10^3 \cdot 10^2 \cdot 10 \det A = 10^{10} \det A$$

Agora, somando as quatro primeiras colunas à quinta coluna, isso não altera o valor do determinante, e como todos os elementos são múltiplos de 19, temos

$$\det \begin{bmatrix} 20000 & 3000 & 0 & 20 & 23028 \\ 30000 & 1000 & 800 & 80 & 31882 \\ 80000 & 6000 & 400 & 60 & 86469 \\ 0 & 6000 & 300 & 20 & 6327 \\ 60000 & 1000 & 900 & 0 & 61902 \end{bmatrix} = 10^{10} \det A \Rightarrow$$

$$\det \begin{bmatrix} 20000 & 3000 & 0 & 20 & 23028 \\ 30000 & 1000 & 800 & 80 & 31882 \\ 80000 & 6000 & 400 & 60 & 86469 \\ 0 & 6000 & 300 & 20 & 6327 \\ 60000 & 1000 & 900 & 0 & 61902 \end{bmatrix} = 10^{10} \det A \Rightarrow$$

$$\det \begin{bmatrix} 20000 & 3000 & 0 & 20 & 19 \cdot 1212 \\ 30000 & 1000 & 800 & 80 & 19 \cdot 1678 \\ 80000 & 6000 & 400 & 60 & 19 \cdot 4551 \\ 0 & 6000 & 300 & 20 & 19 \cdot 333 \\ 60000 & 1000 & 900 & 0 & 19 \cdot 3258 \end{bmatrix} = 10^{10} \det A \Rightarrow$$

$$19 \det \begin{bmatrix} 20000 & 3000 & 0 & 20 & 1212 \\ 30000 & 1000 & 800 & 80 & 1678 \\ 80000 & 6000 & 400 & 60 & 4551 \\ 0 & 6000 & 300 & 20 & 333 \\ 60000 & 1000 & 900 & 0 & 3258 \end{bmatrix} = 10^{10} \det A$$

Desse modo, temos que $19 \mid 10^{10} \det A$, mas como $\mathrm{mdc}(10^{10}, 19) = 1$, ou seja, $19 \in 10^{10}$ são primos entre si, temos que $19 \mid \det A$. Portanto, o determinante de A é um múltiplo de 19.

2.22 Exercício 22

(22) Seja
$$K$$
 corpo e $a, b, c \in K$. Usando a matriz $\begin{bmatrix} b & c & 0 \\ a & 0 & c \\ 0 & a & b \end{bmatrix}$, calcule
$$\det \begin{bmatrix} b^2 + c^2 & ab & ac \\ ab & a^2 + c^2 & bc \\ ac & bc & a^2 + b^2 \end{bmatrix}$$

Solução: Chamando

$$A = \begin{bmatrix} b & c & 0 \\ a & 0 & c \\ 0 & a & b \end{bmatrix} \quad \text{e} \quad B = \begin{bmatrix} b^2 + c^2 & ab & ac \\ ab & a^2 + c^2 & bc \\ ac & bc & a^2 + b^2 \end{bmatrix},$$

observe que

$$AA^{t} = \begin{bmatrix} b & c & 0 \\ a & 0 & c \\ 0 & a & b \end{bmatrix} \cdot \begin{bmatrix} b & a & 0 \\ c & 0 & a \\ 0 & c & b \end{bmatrix} = \begin{bmatrix} b^{2} + c^{2} & ab & ac \\ ab & a^{2} + c^{2} & bc \\ ac & bc & a^{2} + b^{2} \end{bmatrix} = B.$$

Logo, temos que

$$\det(B) = \det(AA^t) \Rightarrow \det(B) = \det(A)\det(A^t) \Rightarrow$$
$$\det(B) = \det(A)\det(A) \Rightarrow \boxed{\det(B) = (\det(A))^2}$$

2.23 Exercício 23

(23) Seja K um corpo e n um inteiro positivo. Dadas matrizes $A, B \in \mathcal{M}_n(K)$ mostre que

$$\det \begin{bmatrix} A & B \\ B & A \end{bmatrix} = \det(A+B)\det(A-B)$$

Solução: Como somar elementos das colunas e somar elementos das linhas não altera o determinante da matriz, temos que

$$\det \begin{pmatrix} A & B \\ B & A \end{pmatrix} = \det \begin{pmatrix} A+B & B \\ B+A & A \end{pmatrix} = \det \begin{pmatrix} A+B & B \\ B+A-(A+B) & A-B \end{pmatrix} = \det \begin{pmatrix} A+B & B \\ 0 & A-B \end{pmatrix}$$

Utilizando o fato de que, para $U, V, X, Y \in \mathcal{M}_n(K)$, temos

$$\det \begin{bmatrix} U & V \\ 0 & Y \end{bmatrix} = \det U \det Y$$

Ficamos com

$$\det \begin{pmatrix} A+B & B \\ 0 & A-B \end{pmatrix} = \det(A+B)\det(A-B) \Rightarrow \det \begin{bmatrix} A & B \\ B & A \end{bmatrix} = \det(A+B)\det(A-B)$$

2.24 Exercício 24

(24) Seja K um corpo e V um espaço vetorial de dimensão finita n. Sejam $B=(e_1,\ldots,e_n)$ e $C=(d_1,\ldots,d_n)$ duas bases de V. Sejam φ a única forma n-linear tal que $\varphi(e_1,\ldots,e_n)=1$ e ψ a única forma n-linear tal que $\psi(d_1,\ldots,d_n)=1$. Qual o valor de $\psi(e_1,\ldots,e_n)$ e de $\varphi(d_1,\ldots,d_n)$? Use isso para dar uma relação entre ψ e φ .

Solução:

2.25 Exercício 25

(25) Seja K um corpo, n um inteiro positivo e $K_n[t]$ o conjunto de polinômios de grau menor ou igual que n com coeficientes em K. Sejam $t_1, \ldots, t_{n+1} \in K$ dois a dois distintos. Considere para $i = 1, \ldots, n+1$ as funções de avaliação

$$\tau_i : K_n[t] \longrightarrow K$$

$$p(t) \longmapsto \tau_i(p(t)) = p(t_i)$$

- (a) Mostre que $\mathscr{B} = \{\tau_1, \dots, \tau_{n+1}\}$ é base de $K_n[t]^*$. (Sugestão: use o exercício 12.)
- (b) Mostre que os polinômios de Lagrange

$$L_i(t) = \prod_{j \neq i} \frac{t - t_j}{t_i - t_j}, i = 1, \dots, n + 1,$$

formam uma base dual de \mathcal{B} .

(c) Mostre que para quaisquer $a_1, \ldots, a_{n+1} \in K$ existe um único polinômio p(t) de grau menor o igual que n tal que $p(t_i) = a_i$, para $i = 1, \ldots, n+1$. (O resultado do item (c) é a conhecida Fórmula de Interpolação de Lagrange)

Solução:

(a) Como $K_n[t]$ é um K-espaço vetorial de dimensão finita, temos que dim $K_n[t]^* = \dim K_n[t] = n+1$. Logo, para provar que \mathscr{B} é base, basta mostrar que \mathscr{B} é LI.

Sejam $\alpha_1, \ldots, \alpha_{n+1} \in K$ tais que

$$\sum_{i=1}^{n+1} \alpha_i \tau_i = \alpha_1 \tau_1 + \ldots + \alpha_{n+1} \tau_{n+1} = 0$$

Vamos mostrar que $\alpha_i = 0 \ \forall i \in \{1, \dots, n+1\}$. Avaliemos $\sum_{i=1}^{n+1} \alpha_i \tau_i$ em $1, t, \dots, t^n$:

$$\begin{cases} \sum_{i=1}^{n+1} \alpha_{i} \tau_{i}(1) = \alpha_{1} \tau_{1}(1) + \dots + \alpha_{n+1} \tau_{n+1}(1) = 0 \\ \sum_{i=1}^{n+1} \alpha_{i} \tau_{i}(t) = \alpha_{1} \tau_{1}(t) + \dots + \alpha_{n+1} \tau_{n+1}(t) = 0 \\ \vdots \\ \sum_{i=1}^{n+1} \alpha_{i} \tau_{i}(t^{n}) = \alpha_{1} \tau_{1}(t^{n}) + \dots + \alpha_{n+1} \tau_{n+1}(t^{n}) = 0 \end{cases} \Rightarrow \begin{cases} \alpha_{1} \mathbf{1} + \dots + \alpha_{n+1} \mathbf{1} = 0 \\ \alpha_{1} t_{1} + \dots + \alpha_{n+1} t_{n+1} = 0 \\ \vdots \\ \alpha_{1} t_{1}^{n} + \dots + \alpha_{n+1} t_{n+1}^{n} = 0 \end{cases}$$

Logo, $(\alpha_1, \alpha_2, \dots, \alpha_{n+1})$ é solução do sistema homogêneo

$$\begin{pmatrix} 1 & 1 & \dots & 1 \\ t_1 & t_2 & \dots & t_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ t_1^n & t_2^n & \dots & t_{n+1}^n \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n+1} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Como $t_1, t_2, \ldots, t_{n+1}$ são diferentes, observe que a matriz obtida é uma matriz de Vandermonde. Assim, pela questão 12, temos que

$$\det \begin{pmatrix} 1 & 1 & \dots & 1 \\ t_1 & t_2 & \dots & t_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ t_1^n & t_2^n & \dots & t_{n+1}^n \end{pmatrix} = \prod_{1 \le i < j \le n+1} (t_j - t_i) \ne 0,$$

o que resulta que a única solução possível para este sistema é a trivial. Consequentemente, temos $t_1 = t_2 = \ldots = t_{n+1} = 0$. Daí, \mathscr{B} é LI, e portanto uma base para $K_n[t]^*$.

2.26 Exercício 26

(26) Seja n > 1 um inteiro e $I \subseteq \mathbb{R}$ um intervalo aberto. Seja $\mathscr{C}^{(n-1)}(I,\mathbb{R})$ o conjunto das funções de classe n-1, i.e. deriváveis n-1 vezes com derivada n-1 contínua. Dadas $f_1, \ldots, f_n \in \mathscr{C}^{(n-1)}(I,\mathbb{R})$, o Wronskiano de f_1, \ldots, f_n é a função

$$W(f_1,\ldots,f_n)$$
 : $I \longrightarrow \mathbb{R}$
 $t \longmapsto (W(f_1,\ldots,f_n))(t)$

definida como

$$(W(f_1,\ldots,f_n))(t) = \det \begin{bmatrix} f_1(t) & f_2(t) & \dots & f_n(t) \\ f'_1(t) & f'_2(t) & \dots & f'_n(t) \\ \vdots & \vdots & \ddots & \vdots \\ f_1^{(n-1)}(t) & f_2^{(n-1)}(t) & \dots & f_n^{(n-1)}(t) \end{bmatrix}$$

Mostre que se existir $t \in I$ tal que $(W(f_1, \ldots, f_n))(t) \neq 0$ então $\{ff_1, \ldots, f_n\} \subset \mathscr{C}^{(n-1)}(I, \mathbb{R})$ é \mathbb{R} -linearmente independente.

Observe que a recíproca não é verdadeira. Por exemplo, seja $I=(-1,1), f_1\colon t\to t^3, f_2\colon t\to |t^3|$. O conjunto $\{f_1,f_2\}$ é $\mathbb R$ -linearmente independente, mas $(W(f_1,f_2))(t)=0$ para todo $t\in (-1,1)$.

Solução:

2.27 Exercício 27

(27) Seja V um K-espaço vetorial de dimensão finita n e sejam $f_1, f_2, \ldots, f_r \in V^*$. Defina

$$f_1 \wedge f_2 \wedge \ldots \wedge f_r \colon V \times V \times \ldots \times V \to K$$

por $f_1 \wedge f_2 \wedge \ldots \wedge f_r(v_1, v_2, \ldots, v_r) = \det f_i(v_i).$

- (a) Verifique que $f_1 \wedge f_2 \wedge \ldots \wedge f_r$ é r-linear e alternada.
- (b) Mostre que $f_1 \wedge f_2 \wedge \ldots \wedge f_r \neq 0$ se, e somente se $\{f_1, f_2, \ldots, f_r\}$ é linearmente independente.
- (c) Prove que se $\{f_1, f_2, \dots, f_n\}$ é uma base de V^* então o conjunto

$$\{f_J = f_{j_1} \land f_{j_2} \land \ldots \land f_{j_r}\}, \text{ para todo } J = \{j_1 < j_2 < \ldots j_r\} \subset \{1, 2, \ldots, n\}\}$$

é uma base de $\mathscr{A}_r(V)$.

(d) Sejam B de uma base de V e $B^* = \{f_1, f_2, \dots, f_n\}$ sua base dual. Descreva a base de $\mathscr{A}_r(V)$ que obtemos usando o item anterior. (A forma linear $f_1 \wedge f_2 \wedge \dots \wedge f_r$ é chamada de produto exterior dos funcionais f_1, f_2, \dots, f_r .)

Solução:

Questões Suplementares

2.28 Exercício 28

(28) Considere a matriz

$$A = \begin{pmatrix} \frac{1}{x_1 + y_1} & \frac{1}{x_1 + y_2} & \frac{1}{x_1 + y_3} & \dots & \frac{1}{x_1 + y_n} \\ \frac{1}{x_2 + y_1} & \frac{1}{x_2 + y_2} & \frac{1}{x_2 + y_3} & \dots & \frac{1}{x_2 + y_n} \\ \frac{1}{x_3 + y_1} & \frac{1}{x_3 + y_2} & \frac{1}{x_3 + y_3} & \dots & \frac{1}{x_3 + y_n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \frac{1}{x_n + y_1} & \frac{1}{x_n + y_2} & \frac{1}{x_n + y_3} & \dots & \frac{1}{x_n + y_n} \end{pmatrix},$$

onde $x_i+y_j\neq 0$ para $1\leq i,j\leq n$. Mostre que o determinante dessa matriz, conhecido por determinante de Cauchy, é dado por

$$\det A = \frac{\prod_{i>j}^{n} (x_i - x_j)(y_i - y_j)}{\prod_{i,j=1}^{n} (x_i + y_j)}$$

Solução:

2.29 Exercício 29

(29) O determinante da matriz circulante $n \times n$ é dado por

$$\det \begin{bmatrix} a_1 & a_2 & a_3 & \dots & a_n \\ a_n & a_1 & a_2 & \dots & a_{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_3 & a_4 & a_5 & \dots & a_2 \\ a_2 & a_3 & a_4 & \dots & a_1 \end{bmatrix} = (-1)^{n-1} \prod_{j=0}^{n-1} \left(\sum_{k=1}^n \zeta^{jk} a_k \right),$$

onde $\zeta = e^{\frac{2\pi i}{n}}$. Encontre o determinante da matriz circulante $n \times n$ dada por

$$A = \begin{bmatrix} 1 & 4 & 9 & \dots & n^2 \\ n^2 & 1 & 4 & \dots & (n-1)^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 9 & 16 & 25 & \dots & 4 \\ 4 & 9 & 16 & \dots & 1 \end{bmatrix}.$$

Solução:

2.30 Exercício 30

(30) Sejam $A, B \in \mathcal{M}_n(K)$ duas matrizes invertíveis, tais que

$$A^{-1} + B^{-1} = (A+B)^{-1}$$

- (a) Se $K = \mathbb{R}$, mostre que det $A = \det B$.
- (b) Se $K = \mathbb{C}$, mostre que pode ocorrer $\det A \neq \det B$, mas é válido que $|\det A| = |\det B|$.

Solução:

2.31 Exercício 31

(31) Prove a identidade de Woodbury: para $A \in \mathcal{M}_n(K)$, $U \in \mathcal{M}_{n \times m}(K)$, $C \in \mathcal{M}_{m \times m}(K)$ e $V \in \mathcal{M}_{m \times n}(K)$, temos que

$$(A + UCV)^{-1} = A^{-1} - A^{-1}U \left(C^{-1} + VA^{-1}U\right)^{-1} VA^{-1}$$

2.32 Exercício 32

(32) [Teorema do Determinante de Gasper] Seja $M \in \mathcal{M}_n(\mathbb{R})$, s a soma das entradas da matriz e q a soma dos quadrados das entradas dessa matriz. Considere $\alpha = \frac{s}{n}$ e $\beta = \frac{q}{n}$. O Teorema do Determinante de Gasper afirma que $|\det A| \leq \beta^{\frac{n}{2}}$, e no caso em que $\alpha^2 \geq \beta$:

$$|\det A| \le |\alpha| \left(\frac{n\beta - \alpha^2}{n-1}\right)^{\frac{n-1}{2}}$$

Solução:

2.33 Exercício 33

- (33) Considere a matriz quadrada A_n cujas entradas são os n^2 primeiros números primos.
 - (a) Mostre que o maior valor possível para $det(A_2)$ é um número primo.
 - (b) Encontre todos os valores de n para os quais o maior determinante possível para $\det(A_n)$ é um número primo.

3 Lista 2 (Provável)

3.1 Exercício 1

(1) Seja V um espaço vetorial sobre um corpo K e $T \in \mathcal{L}(V)$. Sejam $\lambda \in K$ um autovalor de T e $f(t) \in K[t]$. Mostre que $f(\lambda)$ é um autovalor de f(T).

Solução:

3.2 Exercício 2

(2) Seja V um K-espaço de dimensão finita n e seja $T: V \to V$ um operador linear. Mostre que se T tem n autovalores distintos então T é diagonalizável.

Solução:

3.3 Exercício 3

- (3) Sejam V um K-espaço de dimensão finita, $T \in \mathcal{L}(V)$ e $\lambda \in K$ um autovalor de T. Chamamos de multiplicidade algébrica de λ ao maior inteiro m tal que $(t-\lambda)^m$ divida o polinômio característico $p_T(t)$ de T. A dimensão do autoespaço $V_T(\lambda)$ é a multiplicidade geométrica de λ .
 - (a) Mostre que a multiplicidade geométrica de λ é sempre menor ou igual à multiplicidade algébrica de λ .
 - (b) Mostre que T é diagonalizável se, e somente se, $p_T(t)$ é produto de fatores lineares e, para cada autovalor λ de T, as multiplicidades algébrica e geométrica de λ coincidem.

Solução:

3.4 Exercício 4

(4) Seja

$$\begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$$

Calcule A^{2019} .

Solução:

3.5 Exercício 5

- (5) Seja V um espaço vetorial de dimensão finita e seja $T\colon V\to V$ um operador linear inversível. Prove que:
 - (a) Se λ é um valor próprio de T, então $\lambda \neq 0$.
 - (b) λ é um valor próprio de T se, e somente se, λ^{-1} é um valor próprio de T^{-1} (onde T^{-1} é o operador inverso de T).
 - (c) Se λ é um valor próprio de T, mostre que a multiplicidade algébrica de λ é igual à multiplicidade algébrica de $\frac{1}{\lambda}$.

Solução:

3.6 Exercício 6

(6) Seja V um espaço vetorial de dimensão n e seja $T \in \mathcal{L}(V)$ de posto 1. Prove que ou T é diagonalizável ou T é nilpotente.

Solução:

3.7 Exercício 7

(7) Seja $A = (a_{ij}) \in \mathcal{M}_n(K)$ a matriz em que $a_{ij} = a \neq 0$ para todo $1 \leq i, j \leq n$. A matriz A é diagonalizável? Qual é o seu polinômio minimal?

Solução:

3.8 Exercício 8

(8) Seja $A \in \mathcal{M}_{n \times 1}(K)$. A matriz AA^t é diagonalizável?

Solução:

3.9 Exercício 9

(9) Sejam $A, B \in \mathcal{M}_n(K)$. Prove que se I - AB é inversível, então I - BA é inversível e que $(I - BA)^{-1} = I + B(I - AB)^{-1}A.$

Solução: (\Rightarrow) Suponha que 1-ab é inversível. Vamos mostrar que $b(1-ab)^{-1}a+1$ é o inverso de 1-ba. De fato,

$$(1 - ba)(b(1 - ab)^{-1}a + 1) = b(1 - ab)^{-1}a + 1 - bab(1 - ab)^{-1}a - ba$$

$$= b((1 - ab)^{-1} - ab(1 - ab)^{-1})a + 1 - ba$$

$$= b((1 - ab)(1 - ab)^{-1})a + 1 - ba$$

$$= ba + 1 - ba$$

$$= 1$$

Analogamente, mostra-se que $(b(1-ab)^{-1}a+1)(1-ba)=1$. Logo, 1-ba é inversível. (\Leftarrow) Suponha que 1-ba é inversível. Vamos mostrar que $a(1-ba)^{-1}b+1$ é o inverso de 1-ab. De fato,

$$(1-ab)(a(1-ba)^{-1}b+1) = a(1-ba)^{-1}b+1-aba(1-ba)^{-1}b-ab$$

$$= a((1-ba)^{-1}-ba(1-ba)^{-1})b+1-ab$$

$$= a((1-ba)(1-ba)^{-1})b+1-ab$$

$$= ab+1-ab$$

$$= 1$$

Analogamente, mostra-se que $(a(1-ba)^{-1}b+1)(1-ab)=1$. Logo, 1-ab é inversível. Como visto, temos que $(1-ab)^{-1}=a(1-ba)^{-1}b+1$.

3.10 Exercício 10

(10) Sejam $A, B \in \mathcal{M}_n(K)$. Prove que AB e BA têm os mesmos autovalores em K. Elas têm o mesmo polinômio característico? E o minimal?

Solução:

3.11 Exercício 11

(11) Seja $A \in \mathcal{M}_n(K)$ uma matriz diagonalizável. Mostre que A^r é diagonalizável para todo inteiro $r \geq 1$. Exiba uma matriz $n\tilde{a}o$ diagonalizável tal que A^2 é diagonalizável.

Solução:

3.12 Exercício 12

(12) Seja $D \in \mathcal{M}_n(K)$ uma matriz diagonal com polinômio característico

$$p_D(t) = (t - c_1)^{d_1} \cdots (t - c_k)^{d_k},$$

em que c_1, \ldots, c_k são distintos. Seja

$$W = A \in \mathcal{M}_n(K) : DA = AD.$$

Prove que

$$\dim W = d_1^2 + \ldots + d_k^2.$$

Solução:

3.13 Exercício 13

(13) Seja $D \in \mathcal{L}(P_n(\mathbb{R}))$ o operador derivação. Encontre o polinômio minimal de D.

Solução:

3.14 Exercício 14

(14) Determine o polinômio minimal de cada uma das seguintes matrizes:

$$(a) \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix} \qquad (b) \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix} \qquad (c) \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \qquad (d) \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \qquad (e) \begin{pmatrix} a & b & c \\ 0 & a & b \\ 0 & 0 & a \end{pmatrix}$$

3.15 Exercício 15

(15) Seja $C \in \mathcal{M}_n(K)$ a matriz

$$\begin{bmatrix} 0 & 0 & 0 & \dots & 0 & -c_0 \\ 1 & 0 & 0 & \dots & 0 & -c_1 \\ 0 & 1 & 0 & \dots & 0 & -c_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & -c_{n-2} \\ 0 & 0 & 0 & \dots & 1 & -c_{n-1} \end{bmatrix}$$

Prove que o polinômio característico de ${\cal C}$ é

$$p_C(t) = t^n + c_{n-1}t^{n-1} + \ldots + c_1t + c_0.$$

Mostre que este é também o polinômio minimal de C. A matriz C é chamada de **matriz companheira** do polinômio $c_0 + c_1t + \ldots + c_{n1}t^{n1} + t^n$.

Solução:

3.16 Exercício 16

(16) Verdadeiro ou falso?² Se $A \in \mathcal{M}_n(K)$ é uma matriz triangular superior e A é diagonalizável, então A já é uma matriz diagonal.

Solução:

3.17 Exercício 17

(17) Sejam K um corpo, n um inteiro positivo e $A \in \mathcal{M}_n(K)$ uma matriz de posto $r \leq n$. Mostre que o polinômio minimal de A tem grau menor ou igual a r+1.

Solução:

3.18 Exercício 18

(18) Seja K um corpo de característica diferente de 2 e $T: \mathcal{M}_n(K) \to \mathcal{M}_n(K)$ o operador linear definido por $T(A) = A^t$. Mostre que T é diagonalizável, determine os autovalores de T, as dimensões dos autoespaços e uma base de $\mathcal{M}_n(K)$ formada por autovetores de T.

Solução:

3.19 Exercício 19

(19) Mostre que uma matriz $A \in \mathcal{M}_n(K)$ é inversível se, e somente se, o termo constante de seu polinômio minimal é diferente de zero.

²Só de perguntar isso tem uma grande chance de ser falso XD

3.20 Exercício 20

(20) Seja $A \in \mathcal{M}_n(K)$ uma matriz inversível.

- (a) Mostre que existe um polinômio $p(t) \in K[t]$ tal que $A^{-1} = p(A)$.
- (**b**) Seja

$$A = \begin{pmatrix} 2 & 1 & 4 \\ 3 & 0 & 1 \\ 2 & 0 & 1 \end{pmatrix}$$

Encontre p(t) tal que $p(A) = A^{-1}$.

Solução:

3.21 Exercício 21

(21) Determine todas as matrizes $A \in \mathcal{M}_2(\mathbb{R})$ nilpotentes e calcule $\det(A+I)$ e $\det(AI)$.

Solução:

3.22 Exercício 22

(22) Sejam V um espaço vetorial sobre \mathbb{R} e $\{e_1, e_2, e_3\}$ uma base de V. Seja $T: V \to V$ o operador linear definido por

$$T(e_1) = e_2e_1, T(e_2) = e_3e_1, T(e_3) = e_3e_2.$$

- (a) Mostre que T não é diagonalizável.
- (b) Calcule T^{212} (Dica: utilize o Teorema de Cayley-Hamilton)

Solução:

3.23 Exercício 23

(23) Seja $T \in \mathcal{L}(V)$ um operador diagonalizável e seja W um subespaço de V T-invariante. Prove que a restrição de T a W, $T \upharpoonright_W \in \mathcal{L}(W)$ é diagonalizável.

Solução:

3.24 Exercício 24

(24) Seja $T \in \mathcal{L}(V)$ um operador linear tal que todo subespaço de V é T-invariante. Mostre que T é um múltiplo do operador identidade.

3.25 Exercício 25

(25) Seja $T \in \mathcal{L}(V)$ um operador linear e seja W um subespaço de V. Prove que W é T-invariante se, e somente se, W^0 é T^t -invariante.

Solução:

3.26 Exercício 26

(26) Seja V um espaço vetorial de dimensão finita sobre um corpo algebricamente fechado e seja $T \in \mathcal{L}(V)$. Prove que T é diagonalizável se, e somente se, para todo subespaço T-invariante W de V existe um subespaço T-invariante U tal que

$$V = W \oplus U$$

Observação: Um operador linear T é dito semi-simples quando todo subespaço T-invariante de V tem um complemento que é também T-invariante.

Solução:

3.27 Exercício 27

(27) Seja V um espaço vetorial de dimensão finita sobre \mathbb{C} e seja $T \in \mathcal{L}(V)$. Prove que as seguintes afirmações são equivalentes:

- (a) T é diagonalizável e $T^{2n} = T^n$.
- (b) $T^{n+1} = T$.

Solução:

3.28 Exercício 28

(28) Seja $A \in \mathcal{M}_n(K)$ e o operador

$$T_A : \mathcal{M}_n(K) \longrightarrow \mathcal{M}_n(K)$$

 $M \longmapsto T_A(M) = AM - MA$

Prove que se A é diagonalizável então T_A é diagonalizável.

Solução:

3.29 Exercício 29

(29) Seja V um K-espaço de dimensão finita e sejam $E_1, E_2, \dots E_k \in \mathcal{L}(V)$ tais que $E_1 + E_2 + \dots + E_k = I$.

- (a) Prove que se $E_i E_j = 0$, para $i \neq j$, então $E_i^2 = E_i$ para todo $i = 1, 2, \dots, k$.
- (b) Prove que se $E_i^2 = E_i$ para todo i = 1, 2, ..., k e a característica de K é zero, então $E_i E_j = 0$, sempre que $i \neq j$.

3.30 Exercício 30

(30) Seja $A \in \mathcal{M}_n(K)$ e seja

$$p_A(t) = t^n + a_{n1}t^{n1} + \ldots + a_1t + a_0$$

o polinômio característico de A. Mostre que $a_{n1} = \operatorname{tr}(A)$, o traço de A, e $a_0 = (1)^n \det(A)$.

Solução:

Questões Suplementares

3.31 Exercício 31

(31)