

Fiche Révision Algo

Algorithmique Avancée - Préparation Partiels mi-semestre 3e année Cybersécurité - École Supérieure d'Informatique et du Numérique (ESIN) Collège d'Ingénierie & d'Architecture (CIA)

Étudiant : HATHOUTI Mohammed taha

Filière: Cybersécurité

Année: 2025/2026

Enseignants: M.BAKHOUYA

Date: October 26, 2025

Contents

1	Le l	Paradigme Diviser pour Régner
	1.1	Principe général
	1.2	Formule générale de récurrence
	1.3	Exemple classique: Tri Fusion
		1.3.1 Principe du Tri Fusion
		1.3.2 Analyse de complexité
2	Les	Notations Asymptotiques
	2.1	Introduction
	2.2	Notation O (Big-O) - Borne Supérieure
		2.2.1 Exemples
	2.3	Notation Ω (Omega) - Borne Inférieure
		2.3.1 Exemples
	2.4	Notation Θ (Theta) - Borne Exacte
		2.4.1 Exemple de preuve
	2.5	Comparaison visuelle
3	Éch	elle de Complexité
	3.1	Hiérarchie des complexités
	3.2	Détails de chaque complexité
	3.3	Comparaison pour différentes valeurs de n
	3.4	Règles importantes
		3.4.1 Exemple de comparaison
4		Master Theorem - FORMULE CLÉ
	4.1	Introduction
	4.2	Étape préliminaire
	4.3	Les 3 cas du Master Theorem
	4.4	Méthode d'application - ÉTAPES
	4.5	Exemples détaillés
		4.5.1 Exemple 1: $T(n) = 2T(n/2) + \Theta(n)$ (Tri Fusion)
	1.0	4.5.2 Exemple $2: T(n) = 9T(n/3) + n$
	4.6	Tableau récapitulatif
5	Cal	cul de Complexité d'Algorithmes 11
	5.1	Algorithmes Itératifs (avec boucles)
		5.1.1 Règles de base
		5.1.2 Exemple 1 : Boucle simple
		5.1.3 Exemple 2 : Deux boucles imbriquées
		5.1.4 Exemple 3 : Boucles dépendantes
		5.1.5 Exemple 4: Boucle logarithmique
	. .	5.1.6 Exemple 5: Boucles successives
	5.2	Algorithmes Récursifs
		5.2.1 Exemple: Recherche Dichotomique

6	\mathbf{Alg}	orithmes Classiques à Connaître	14
	6.1	Recherche Dichotomique	14
		6.1.1 Version Itérative	14
	6.2	Tri par Insertion	15
	6.3	Tableau comparatif	15
7	Exe	ercices Types pour le CC1	16
	7.1	Type 1: Master Theorem	16
	7.2	Type 2: Prouver une notation Big-O	16
	7.3	Type 3 : Complexité de boucles	16
	7.4	Type 4 : Analyse d'algorithme récursif	17
	7.5	Type 5 : Synthèse	
8	Piè	ges et Erreurs Courantes	18
	8.1	Erreur 1 : Oublier d'enlever les constantes	18
	8.2	Erreur 2 : Additionner au lieu de multiplier	18
	8.3	Erreur 3 : Confondre les cas du Master Theorem	19
	8.4	Erreur 4 : Oublier la condition de régularité (Cas 3)	19
	8.5	Erreur 5 : Ne pas reconnaître les algorithmes classiques	
9	Che	ecklist Avant le CC1	20
	9.1	Formules à savoir PAR CŒUR	20
	9.2	Méthodologie pour le Master Theorem	
	9.3	Conseils pour le jour J	
	9.4	Ce qui sera probablement dans le CC1	

1 Le Paradigme Diviser pour Régner

1.1 Principe général

Le paradigme "Diviser pour Régner" est une méthode de conception d'algorithmes qui procède en trois étapes :

1.2 Formule générale de récurrence

Pour un algorithme Diviser pour Régner, le temps d'exécution T(n) suit généralement cette récurrence :

Récurrence générale

$$T(n) = \begin{cases} \Theta(1) & \text{si } n \le c \\ a \cdot T\left(\frac{n}{b}\right) + D(n) + C(n) & \text{sinon} \end{cases}$$

Où:

- a = nombre de sous-problèmes
- b = facteur de division
- D(n) = coût de la division
- C(n) = coût de la combinaison

1.3 Exemple classique : Tri Fusion

1.3.1 Principe du Tri Fusion

```
TRI-FUSION(A, debut, fin):
    si debut < fin alors
    milieu = (debut + fin) / 2

# 1. DIVISER
TRI-FUSION(A, debut, milieu) # Trier gauche</pre>
```

```
TRI-FUSION(A, milieu+1, fin) # Trier droite

# 2. COMBINER

FUSIONNER(A, debut, milieu, fin) # Fusionner les deux

parties
```

Listing 1: Algorithme du Tri Fusion

1.3.2 Analyse de complexité

• Diviser : Calculer le milieu $\Rightarrow D(n) = O(1)$

• **Régner :** Deux appels récursifs sur $n/2 \Rightarrow 2T(n/2)$

• Combiner : Fusionner deux listes triées $\Rightarrow C(n) = \Theta(n)$

Récurrence du Tri Fusion

$$T(n) = \begin{cases} \Theta(1) & \text{si } n = 1\\ 2T(n/2) + \Theta(n) & \text{si } n > 1 \end{cases}$$

Résolution avec Master Theorem : $T(n) = \Theta(n \log n)$

Pourquoi Tri Fusion est efficace?

- Complexité $O(n \log n)$ dans tous les cas (meilleur, moyen, pire)
- Beaucoup plus rapide que Tri par Insertion $(O(n^2))$ pour grands n
- Stable (préserve l'ordre des éléments égaux)

2 Les Notations Asymptotiques

2.1 Introduction

Les notations asymptotiques permettent de décrire le comportement d'une fonction quand n tend vers l'infini, en ignorant les constantes et les termes de faible ordre.

Pourquoi "asymptotique"?

Le mot "asymptotique" signifie qu'on s'intéresse au comportement pour les **grandes** valeurs de n. Les petites valeurs et les constantes deviennent négligeables.

2.2 Notation O (Big-O) - Borne Supérieure

Définition mathématique

$$f(n) = O(g(n)) \Leftrightarrow \exists c > 0, \exists n_0 \text{ tels que} :$$

 $0 \le f(n) \le c \cdot g(n) \quad \forall n \ge n_0$

Signification : g(n) est une borne supérieure asymptotique de f(n). On dit que "f croît au plus aussi vite que g".

2.2.1 Exemples

- $3n^2 + 5n + 2 = O(n^2)$ \checkmark
- 2n + 100 = O(n) \checkmark
- $n \log n = O(n^2)$ \checkmark
- $n^2 = O(n)$ **X** (faux car n^2 croît plus vite que n)

Règle pratique

Pour un polynôme, la complexité Big-O est déterminée par le **terme de plus haut degré**, en enlevant son coefficient :

$$5n^3 + 2n^2 - 100n + 50 = O(n^3)$$

2.3 Notation Ω (Omega) - Borne Inférieure

Définition mathématique

$$f(n) = \Omega(g(n)) \Leftrightarrow \exists c > 0, \exists n_0 \text{ tels que} :$$

 $0 \le c \cdot g(n) \le f(n) \quad \forall n \ge n_0$

Signification : g(n) est une borne inférieure asymptotique de f(n). On dit que "f croît au moins aussi vite que g".

5

2.3.1 Exemples

- $\bullet \ n^2 = \Omega(n) \quad \checkmark$
- $n \log n = \Omega(n)$ \checkmark
- $n = \Omega(n^2)$ **X** (faux)

2.4 Notation Θ (Theta) - Borne Exacte

Définition mathématique

$$f(n) = \Theta(g(n)) \Leftrightarrow \exists c_1, c_2 > 0, \exists n_0 \text{ tels que} :$$

 $0 \le c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n) \quad \forall n \ge n_0$

Signification : f et g ont le même ordre de grandeur. On dit que "f croît exactement comme g".

Relation entre les notations

$$f(n) = \Theta(g(n)) \Leftrightarrow f(n) = O(g(n)) \text{ ET } f(n) = \Omega(g(n))$$

2.4.1 Exemple de preuve

Montrons que : $\frac{1}{2}n^2 - 3n = \Theta(n^2)$

Preuve:

1. Il faut trouver $c_1, c_2 > 0$ et n_0 tels que :

$$c_1 n^2 \le \frac{1}{2} n^2 - 3n \le c_2 n^2$$

2. Pour $n \ge 7$, on a $-3n \ge -\frac{3}{7}n^2$, donc :

$$\frac{1}{2}n^2 - 3n \ge \frac{1}{2}n^2 - \frac{3}{7}n^2 = \frac{1}{14}n^2$$

3. De plus, pour $n \ge 1$:

$$\frac{1}{2}n^2 - 3n \le \frac{1}{2}n^2$$

4. On peut donc prendre $c_1 = \frac{1}{14}, c_2 = \frac{1}{2}, n_0 = 7.$

Donc
$$\frac{1}{2}n^2 - 3n = \Theta(n^2)$$

2.5 Comparaison visuelle

3 Échelle de Complexité

3.1 Hiérarchie des complexités

Voici les complexités les plus courantes, classées de la plus rapide (haut) à la plus lente (bas) :

Échelle de complexité (à connaître PAR CŒUR)

$$O(1) < O(\log n) < O(\sqrt{n}) < O(n) < O(n \log n) < O(n^2) < O(n^3) < O(2^n) < O(n!)$$

3.2 Détails de chaque complexité

Complexité	Nom	Exemple		
O(1)	Constante	Accès à un élément de tableau		
		A[i]		
$O(\log n)$	Logarithmique	Recherche dichotomique, arbres		
		équilibrés		
O(n)	Linéaire	Parcours d'un tableau, recherche		
		linéaire		
$O(n \log n)$	Quasi-linéaire	Tri fusion, tri rapide (moyen), tri		
		par tas		
$O(n^2)$	Quadratique	Tri par insertion (pire cas), 2		
		boucles imbriquées		
$O(n^3)$	Cubique	3 boucles imbriquées, multiplica-		
		tion matricielle naïve		
$O(2^n)$	Exponentielle	Sous-ensembles, problèmes com-		
		binatoires		
O(n!)	Factorielle	Permutations, voyageur de com-		
		merce (brute force)		

Table 1: Complexités courantes et leurs caractéristiques

3.3 Comparaison pour différentes valeurs de n

n	$\log_2 n$	n	$n \log n$	n^2	2^n
10	3	10	33	100	1024
100	7	100	664	10000	$\approx 10^{30}$
1000	10	1000	9966	1000000	$\approx 10^{301}$
10000	13	10000	132877	10^{8}	gigantesque

Table 2: Comparaison du nombre d'opérations selon la complexité

Attention!

Pour n = 10000:

• Un algorithme en $O(n \log n)$: ≈ 133000 opérations

• Un algorithme en $O(n^2)$: ≈ 100 millions d'opérations

• Un algorithme en $O(2^n)$: **IMPOSSIBLE** à exécuter !

3.4 Règles importantes

Règles à retenir

1. Les constantes disparaissent :

$$O(5n^2) = O(n^2)$$
 et $O(100n) = O(n)$

2. Seul le terme dominant compte :

$$O(n^2 + n + 100) = O(n^2)$$

$$O(3n^3 + 2n^2 + n) = O(n^3)$$

3. Comparaison de fonctions :

$$f(n) < g(n) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

3.4.1 Exemple de comparaison

Question : Comparer n et n^2

$$\lim_{n \to \infty} \frac{n}{n^2} = \lim_{n \to \infty} \frac{1}{n} = 0$$

Donc $n = O(n^2)$ mais $n^2 \neq O(n)$

4 Le Master Theorem - FORMULE CLÉ

4.1 Introduction

Le **Master Theorem** (Théorème Général ou Théorème Maître) est une méthode pour résoudre rapidement les récurrences de la forme :

Forme applicable

$$T(n) = a \cdot T\left(\frac{n}{h}\right) + f(n)$$

où $a \ge 1, b > 1$ et f(n) est asymptotiquement positive.

4.2 Étape préliminaire

Avant d'appliquer les 3 cas, il faut toujours calculer :

Valeur critique

 $n^{\log_b a}$

Cette valeur est la clé pour déterminer quel cas appliquer!

Rappel: $\log_b a = \frac{\log a}{\log b}$

4.3 Les 3 cas du Master Theorem

CAS 1: Les feuilles dominent

Condition: $f(n) = O(n^{\log_b a - \varepsilon})$ pour un $\varepsilon > 0$

Autrement dit : f(n) croît plus lentement que $n^{\log_b a}$

Résultat :

 $T(n) = \Theta(n^{\log_b a})$

CAS 2 : Équilibre

Condition : $f(n) = \Theta(n^{\log_b a})$

Autrement dit : f(n) croît à la même vitesse que $n^{\log_b a}$

Résultat :

 $T(n) = \Theta(n^{\log_b a} \log n)$

On multiplie par un facteur logarithmique!

CAS 3: La racine domine

Condition 1 : $f(n) = \Omega(n^{\log_b a + \varepsilon})$ pour un $\varepsilon > 0$

Autrement dit : f(n) croît plus vite que $n^{\log_b a}$

Condition 2 (régularité) : $a \cdot f(n/b) \le c \cdot f(n)$ pour un c < 1 et n assez grand

Résultat:

 $T(n) = \Theta(f(n))$

4.4 Méthode d'application - ÉTAPES

Procédure à suivre

- 1. Identifier a, b, et f(n) dans T(n) = aT(n/b) + f(n)
- 2. Calculer $n^{\log_b a}$
- 3. Comparer f(n) avec $n^{\log_b a}$:
 - Si f(n) plus petit \to CAS 1
 - Si f(n) égal \to CAS 2

- $\bullet\,$ Si f(n) plus grand \to CAS 3 (vérifier régularité)
- 4. Écrire le résultat selon le cas

4.5 Exemples détaillés

4.5.1 Exemple 1: $T(n) = 2T(n/2) + \Theta(n)$ (Tri Fusion)

Étape 1 : Identifier

- a = 2
- b = 2
- $f(n) = \Theta(n)$

Étape 2 : Calculer $n^{\log_b a}$

$$n^{\log_2 2} = n^1 = n$$

Étape 3 : Comparer

$$f(n) = n = \Theta(n) = \Theta(n^{\log_2 2})$$

C'est le CAS 2!

Étape 4 : Résultat

$$T(n) = \Theta(n \log n)$$

4.5.2 Exemple 2: T(n) = 9T(n/3) + n

Étape 1 : Identifier

- a = 9
- b = 3
- f(n) = n

Étape 2 : Calculer $n^{\log_b a}$

$$n^{\log_3 9} = n^2$$

Étape 3 : Comparer

$$f(n) = n = O(n^{2-1}) = O(n^2)$$

f(n) croît plus lentement \rightarrow CAS 1!

Étape 4 : Résultat

$$T(n) = \Theta(n^2)$$

4.6 Tableau récapitulatif

Récurrence	a, b, f(n)	Cas	Résultat
T(n) = 2T(n/2) + n	2, 2, n	2	$\Theta(n \log n)$
T(n) = 9T(n/3) + n	9, 3, n	1	$\Theta(n^2)$
T(n) = T(n/2) + 1	1, 2, 1	2	$\Theta(\log n)$
$T(n) = 3T(n/4) + n\log n$	$3, 4, n \log n$	3	$\Theta(n \log n)$
T(n) = 4T(n/2) + n	4, 2, n	1	$\Theta(n^2)$

Table 3: Exemples d'application du Master Theorem

Quand le Master Theorem ne s'applique PAS

Le Master Theorem ne fonctionne pas si :

- f(n) n'est pas polynomialement différent de $n^{\log_b a}$
- Exemple : $T(n) = 4T(n/2) + n^2 \log n$ (entre cas 2 et 3)
- Dans ce cas, utiliser l'arbre récursif ou la substitution

5 Calcul de Complexité d'Algorithmes

5.1 Algorithmes Itératifs (avec boucles)

5.1.1 Règles de base

Règles fondamentales

- 1. Instruction simple : O(1)
- 2. Séquence d'instructions : O(1) + O(1) = O(1)
- 3. Boucle simple : Nombre d'itérations × coût du corps
- 4. Boucles imbriquées : Multiplier les complexités
- 5. Boucles successives : Additionner puis garder le max

5.1.2 Exemple 1 : Boucle simple

```
pour i de 1 --> n faire
instruction # 0(1)
fin pour
```

Listing 2: Boucle simple

Analyse:

- \bullet Nombre d'itérations : n
- Coût par itération : O(1)

• Total : $n \times O(1) = O(n)$

5.1.3 Exemple 2 : Deux boucles imbriquées

```
pour i de 1 --> n faire
pour j de 1 --> n faire
instruction # 0(1)
fin pour
fin pour
```

Listing 3: Boucles imbriquées indépendantes

Analyse:

- \bullet Boucle externe : n itérations
- \bullet Pour chaque i, boucle interne : n itérations
- Total : $n \times n = n^2$ opérations $\rightarrow O(n^2)$

5.1.4 Exemple 3 : Boucles dépendantes

```
pour i de 1 --> n faire
pour j de 1 --> i faire
instruction # 0(1)
fin pour
fin pour
```

Listing 4: Boucle interne dépend de l'externe

Analyse détaillée :

$$Total = \sum_{i=1}^{n} i$$

$$= 1 + 2 + 3 + \dots + n$$

$$= \frac{n(n+1)}{2}$$

$$= \frac{n^2 + n}{2}$$

$$= O(n^2)$$

Formule importante

$$\sum_{i=1}^n i = \frac{n(n+1)}{2} = \Theta(n^2)$$

5.1.5 Exemple 4: Boucle logarithmique

```
i = 1
tant que i < n faire
instruction  # 0(1)
i = i * 2
fin tant que</pre>
```

Listing 5: Boucle avec doublement

Analyse:

- Valeurs de $i: 1, 2, 4, 8, 16, \dots, 2^k < n$
- On s'arrête quand $2^k \ge n$
- Donc $k = \lfloor \log_2 n \rfloor$
- Total : $O(\log n)$

5.1.6 Exemple 5: Boucles successives

Listing 6: Boucles l'une après l'autre

Analyse:

- Première boucle : O(n)
- Deuxième boucle : O(n)
- Total : O(n) + O(n) = O(2n) = O(n)

Règle importante

Quand des boucles sont **successives** (pas imbriquées), on additionne puis on garde le terme dominant :

$$O(n^2) + O(n) = O(n^2)$$
$$O(n) + O(n) = O(n)$$

5.2 Algorithmes Récursifs

Pour analyser un algorithme récursif :

1. Écrire l'équation de récurrence T(n)

- 2. **Identifier** a, b, et f(n)
- 3. **Appliquer** le Master Theorem (si applicable)
- 4. Sinon, utiliser l'arbre récursif ou la substitution

5.2.1 Exemple: Recherche Dichotomique

```
RechercheB(A, v, debut, fin):
      si debut > fin alors
2
           retourner -1
                                   # 0(1)
      milieu = (debut + fin) / 2
      si A[milieu] = v alors
           retourner milieu
                                   # 0(1)
      sinon si A[milieu] > v alors
9
           retourner RechercheB(A, v, debut, milieu-1)
                                                          \# T(n/2)
10
      sinon
           retourner RechercheB(A, v, milieu+1, fin)
                                                          \# T(n/2)
12
```

Listing 7: Recherche Dichotomique Récursive

Récurrence:

$$T(n) = T(n/2) + O(1)$$

Application Master Theorem:

- a = 1, b = 2, f(n) = 1
- $n^{\log_2 1} = n^0 = 1$
- $f(n) = 1 = \Theta(1) \rightarrow \text{CAS } 2$
- Résultat : $T(n) = \Theta(\log n)$

6 Algorithmes Classiques à Connaître

6.1 Recherche Dichotomique

Principe

Dans un tableau **trié**, chercher un élément en divisant l'espace de recherche par 2 à chaque étape.

6.1.1 Version Itérative

```
RechercheB(A, v):
    debut = 1
    fin = longueur(A)

tant que debut <= fin faire</pre>
```

```
milieu = (debut + fin) / 2
6
           si A[milieu] = v alors
8
               retourner milieu
9
           sinon si A[milieu] > v alors
10
               fin = milieu - 1
11
           sinon
12
               debut = milieu + 1
13
14
      retourner -1 # Pas trouve
15
```

Listing 8: Recherche Dichotomique Itérative

Complexité : $O(\log n)$

6.2 Tri par Insertion

```
TriInsertion(A, n):
    pour j de 2 --> n faire
        cle = A[j]
        i = j - 1

tant que i > 0 et A[i] > cle faire
        A[i+1] = A[i]
        i = i - 1

A[i+1] = cle
```

Listing 9: Tri par Insertion

Complexité:

• Meilleur cas (tableau déjà trié) : O(n)

• Pire cas (tableau trié à l'envers) : $O(n^2)$

• Cas moyen : $O(n^2)$

6.3 Tableau comparatif

Algorithme	Meilleur	Moyen	Pire
Recherche linéaire	O(1)	O(n)	O(n)
Recherche dichotomique	O(1)	$O(\log n)$	$O(\log n)$
Tri par insertion	O(n)	$O(n^2)$	$O(n^2)$
Tri fusion	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$

Table 4: Complexités des algorithmes classiques

7 Exercices Types pour le CC1

7.1 Type 1 : Master Theorem

Exercice

Donner la complexité de T(n) = 4T(n/2) + n en utilisant le Master Theorem.

Solution:

- 1. Identifier: a = 4, b = 2, f(n) = n
- 2. Calculer: $n^{\log_2 4} = n^2$
- 3. Comparer: $f(n) = n = O(n^{2-1})$
- 4. f(n) plus petit \rightarrow CAS 1
- 5. **Réponse :** $T(n) = \Theta(n^2)$

7.2 Type 2: Prouver une notation Big-O

Exercice

Montrer que $n \log n = O(n^2)$

Solution:

Il faut montrer : $\exists c > 0, \exists n_0 \text{ tels que } n \log n \leq c \cdot n^2 \text{ pour tout } n \geq n_0$

Divisons par $n : \log n < c \cdot n$

Cette inégalité est vraie pour tout n assez grand car $\log n$ croît beaucoup plus lentement que n.

Prenons c = 1 et $n_0 = 2$:

- Pour $n = 2 : \log 2 = 1 \le 2$
- Pour $n = 10 : \log 10 \approx 3.3 \le 10 \checkmark$

Donc $n \log n = O(n^2)$

7.3 Type 3 : Complexité de boucles

Quelle est la complexité de ce programme ? pour i de 0 --> n faire pour j de 0 --> n faire print("hello") pour k de 0 --> n faire print("world")

Solution:

- Boucle externe (i): n itérations
- Pour chaque i:
 - Boucle j:n itérations
 - Boucle k:n itérations
 - Total : n + n = 2n
- Total général : $n \times 2n = 2n^2$
- Réponse : $O(n^2)$

7.4 Type 4 : Analyse d'algorithme récursif

```
Exercice

Que fait cet algorithme et quelle est sa complexité ?

Atrouver(A, debut, fin, elem):

si debut = fin alors

si A[debut] = elem alors

retourner 1

sinon

retourner 0

m = (debut + fin) / 2

gauche = Atrouver(A, debut, m, elem)

droite = Atrouver(A, m+1, fin, elem)

retourner gauche + droite
```

Solution:

Fonction: Compte le nombre d'occurrences de elem dans A[debut..fin] Récurrence: T(n) = 2T(n/2) + O(1)

- a = 2, b = 2, f(n) = 1
- $n^{\log_2 2} = n$
- $f(n) = 1 = O(n^{-1}) \to \text{CAS } 1$
- Complexité : O(n)

7.5 Type 5 : Synthèse

Exercice

Créer un algorithme pour trier un tableau 2D de dimensions $2 \times n$ tel que :

- Chaque ligne est triée (gauche \rightarrow droite)
- Chaque colonne est triée (haut \rightarrow bas)

Donner sa complexité.

Solution (approche fusion):

```
TrierTableau2D(T, n):
      # 1. Fusionner tout dans un tableau
      temp = creer_tableau(2*n)
3
      pour j de 1
                    n faire
          temp[j] = T[1][j]
          temp[n+j] = T[2][j]
      # 2. Trier le tableau
8
      insertion(temp, 2*n)
10
      # 3. Redistribuer
      pour j de 1
                    n faire
12
                             # n plus petits
          T[1][j] = temp[j]
13
          T[2][j] = temp[n+j]
                                 # n plus grands
14
```

Listing 10: Tri tableau 2D

Complexité:

• Fusion : O(n)

• Tri : $O((2n)^2) = O(4n^2) = O(n^2)$

• Distribution : O(n)

• Total : $O(n^2)$

8 Pièges et Erreurs Courantes

8.1 Erreur 1 : Oublier d'enlever les constantes

```
Erreur fréquente

Faux : T(n) = 5n^2 donc la complexité est O(5n^2)

Correct : T(n) = 5n^2 donc la complexité est O(n^2)
```

Règle: En notation Big-O, on enlève TOUJOURS les constantes multiplicatives.

8.2 Erreur 2 : Additionner au lieu de multiplier

```
Faux: O(n+n) = O(n) X
```

Correct : $O(n \times n) = O(n^2)$

Règle:

Boucles imbriquées \rightarrow MULTIPLIER. Boucles successives \rightarrow ADDITIONNER.

8.3 Erreur 3 : Confondre les cas du Master Theorem

Piège classique

Pour T(n) = 2T(n/2) + n:

Faux: f(n) = n et $n^{\log_2 2} = n$, donc f(n) est plus grand $\to CAS$ 3

Correct: $f(n) = n = \Theta(n^{\log_2 2}) \to \text{CAS } 2!$

Résultat : $T(n) = \Theta(n \log n)$

8.4 Erreur 4 : Oublier la condition de régularité (Cas 3)

Ne pas oublier

Pour appliquer le CAS 3, il faut DEUX conditions :

1. $f(n) = \Omega(n^{\log_b a + \varepsilon})$

2. $a \cdot f(n/b) \le c \cdot f(n)$ avec c < 1 (régularité)

Si la 2ème condition n'est pas vérifiée, le CAS 3 ne s'applique pas!

8.5 Erreur 5 : Ne pas reconnaître les algorithmes classiques

À retenir PAR CŒUR

- Recherche dichotomique \rightarrow TOUJOURS $O(\log n)$
- Tri fusion \to TOUJOURS $O(n \log n)$
- $\bullet\,$ 2 boucles for imbriquées de 1 à $n\to {\rm TOUJOURS}\ O(n^2)$

9 Checklist Avant le CC1

9.1 Formules à savoir PAR CŒUR

Formules essentielles

1. Master Theorem:

$$T(n) = aT(n/b) + f(n)$$

Calculer $n^{\log_b a}$ puis comparer avec f(n)

2. Sommes importantes:

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} = \Theta(n^2)$$

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} = \Theta(n^3)$$

3. Échelle de complexité :

$$O(1) < O(\log n) < O(n) < O(n \log n) < O(n^2) < O(2^n)$$

4. Complexités classiques :

 \bullet Recherche dichotomique : $O(\log n)$

• Tri fusion : $O(n \log n)$

• 2 boucles imbriquées : $O(n^2)$

9.2 Méthodologie pour le Master Theorem

Procédure systématique

1. Écrire la récurrence : T(n) = aT(n/b) + f(n)

2. Identifier: a = ?, b = ?, f(n) = ?

3. Calculer: $n^{\log_b a} = ?$

4. Comparer f(n) avec $n^{\log_b a}$:

• f(n) plus petit $\to \text{CAS } 1 \to T(n) = \Theta(n^{\log_b a})$

• f(n) égal \to CAS $2 \to T(n) = \Theta(n^{\log_b a} \log n)$

• f(n) plus grand + régularité \to CAS $3 \to T(n) = \Theta(f(n))$

5. Écrire la réponse finale

9.3 Conseils pour le jour J

Stratégie d'examen

1. Gérer son temps

- Lire tout le sujet d'abord
- Commencer par les questions faciles
- Ne pas rester bloqué sur une question

2. Pour les questions Master Theorem

- Toujours calculer $n^{\log_b a}$ en premier
- Écrire les étapes (montre que vous savez)
- Vérifier la régularité si CAS 3

3. Pour les preuves Big-O

- Écrire la définition mathématique
- Donner des valeurs explicites de c et n_0
- Vérifier avec un exemple

4. Pour la complexité de boucles

- Compter les itérations de chaque boucle
- Multiplier si imbriquées
- Additionner si successives
- Garder le terme dominant

9.4 Ce qui sera probablement dans le CC1

Prédictions basées sur l'annale 2-3 questions Master Theorem (différents cas) 1-2 preuves de notation Big-O 2-3 calculs de complexité (boucles) 1-2 analyses d'algorithmes récursifs 1 exercice de synthèse (type tri 2D) Durée estimée: 1h30 - 2h Points: Environ 20 points

BON COURAGE POUR VOTRE Partiel!

Références

Sources du cours

- Cours principal : Prof. Mohamed BAKHOUYA, Algorithmique et Structures de Données Avancées, Chapitre 1 : Rappel : méthodes de conception et calcul asymptotique, UIR, 2025-2026
- Ouvrage de référence : Thomas H. CORMEN, Charles E. LEISERSON, Ronald L. RIVEST, Clifford STEIN, *Introduction à l'algorithmique*, 2ème édition, DUNOD, 2002, 1146 pages
- Assistant IA: Claude (Sonnet 4.5), Anthropic, https://claude.ai
- Complément : Donald E. KNUTH, *The Art of Computer Programming*, Volume 1

Remerciements

Ce document de révision a été créé pour faciliter la préparation au CC1 d'Algorithmique Avancée. Il synthétise le Chapitre 1 du cours du Prof. BAKHOUYA et inclut des exemples, exercices corrigés et conseils pratiques.

Document créé le October 26, 2025 Documents autorisés - Imprimez et annotez !