What is the maximum value of P(a)?

Ivan Setiawan, Harry Wangidjaja February 13, 2020

1 Problem

2 Solution

Let $Prob\{e\}$ be the probability of an event **e** occurs. Thus P(a) is:

$$P(a) = \text{Prob}\{\sin^2(\pi x) + \sin^2(\pi y) > 1\},\tag{1}$$

where x and y be chosen independently at uniformly random from the interval [0, a] and [0, 1], respectively.

Because

$$\sin^{2}(\pi x) + \sin^{2}(\pi y) > 1 \Rightarrow \frac{1 - \cos(2\pi x)}{2} + \frac{1 - \cos(2\pi y)}{2} > 1 \qquad \text{(pakai rumus } \cos(2\alpha)\text{)}$$

$$\Rightarrow 2 - [\cos(2\pi x) + \cos(2\pi y)] > 2$$

$$\Rightarrow -[\cos(2\pi x) + \cos(2\pi y)] > 0$$

$$\Rightarrow \cos(2\pi x) + \cos(2\pi y) < 0$$

$$\Rightarrow \cos(\pi x) + \cos(\pi x) + \cos(\pi x) = 0 \qquad \text{(pakai rumus } \cos \alpha + \cos \beta\text{)}$$

$$\Rightarrow \cos(\pi x) + \cos(\pi x) + \cos(\pi x) = 0 \qquad \text{(pakai rumus } \cos \alpha + \cos \beta\text{)}$$

$$\Rightarrow \cos(\pi x) + \cos(\pi x) + \cos(\pi x) = 0 \qquad \text{(pakai rumus } \cos \alpha + \cos \beta\text{)}$$

$$\Rightarrow \cos(\pi x) + \cos(\pi x) + \cos(\pi x) = 0 \qquad \text{(pakai rumus } \cos \alpha + \cos \beta\text{)}$$

then, the above event probabilty P(a) in equation (1) is identical to:

$$P(a) = \operatorname{Prob}\{\cos(\pi(x+y)) \times \cos(\pi(x-y)) < 0\}. \tag{2}$$

As the first step, we need to find the location of points (x, y) inside the given area, that satisfy $\cos(\pi(x+y)) \times \cos(\pi(x-y)) < 0$, that is:

$$\{(x,y) \mid (\cos(\pi(x+y)) \times \cos(\pi(x-y)) < 0) \cap (0 \le x \le a) \cap (0 \le y \le 1)\}. \tag{3}$$

There are 2 cases that satisfy $\cos(\pi(x+y)) \times \cos(\pi(x-y)) < 0$, that is, $\cos(\pi(x+y)) > 0$ AND $\cos(\pi(x-y)) < 0$ as the first case, OR $\cos(\pi(x+y)) < 0$ AND $\cos(\pi(x-y)) > 0$ as the second case. So, equation (3) can be found as the union of the above 2 cases, that is (all inside $((0 \le x \le a) \cap (0 \le y \le 1)))$:

$$\{(x,y) \mid (\cos(\pi(x+y)) \times \cos(\pi(x-y)) < 0)\} =$$
(4)

$$\{(x,y) \mid (\cos(\pi(x+y)) > 0) \cap (\cos(\pi(x-y)) < 0)\}$$
 (case 1)

$$\cup \{(x,y) \mid (\cos(\pi(x+y)) < 0) \cap (\cos(\pi(x-y)) > 0)\}$$
 (case 2).

Keeping in mind that $x \in [0, a]$ (with $0 \le a \le 1$) and $y \in [0, 1]$, below we find the regions of (x, y) that satisfy case 1 and case 2.

2.1 Case 1: $\{(x,y) \mid (\cos(\pi(x+y)) > 0) \cap (\cos(\pi(x-y)) < 0)\}$

In case 1, the former term of equation (5), that is, $\cos(\pi(x+y))$, will satisfy $(\cos(\pi(x+y)) > 0)$ at the above-left red-solid-line cosine plot. So, the region of (x,y) is:

$$(0 \le (x+y) \le 0.5) \cup (1.5 \le (x+y) \le 2.0), \tag{7}$$

which is shown in the above-right figure.

Similarly in case 1, the later term of equation (5), that is, $\cos(\pi(x-y))$, will satisfy $(\cos(\pi(x-y)) < 0$ at the above-left red-solid-line cosine plot. So, the region of (x,y) is:

$$(-1 \le (x - y) \le -0.5) \cup (0.5 \le (x - y) \le 1), \tag{8}$$

which is shown in the above-right figure.

We see from the figures that the region

$$(0 \le (x+y) \le 0.5) \cup (1.5 \le (x+y) \le 2.0),$$

and the region

$$(-1 \le (x-y) \le -0.5) \cup (0.5 \le (x-y) \le 1),$$

do NOT overlap, so the region that satisfy case 1 does NOT exist.

2.2 Case 2: $\{(x,y) \mid (\cos(\pi(x+y)) < 0) \cap (\cos(\pi(x-y)) > 0)\}$

$$c = \sqrt{a^2 + b^2} \tag{9}$$

$$\nabla \times \vec{\mathbf{B}} - \frac{1}{c} \frac{\partial \vec{\mathbf{E}}}{\partial t} = \frac{4\pi}{c} \vec{\mathbf{j}}$$

$$\nabla \cdot \vec{\mathbf{E}} = 4\pi \rho$$
(10)

$$\nabla \cdot \vec{\mathbf{E}} = 4\pi \rho \tag{11}$$

$$\nabla \times \vec{\mathbf{E}} + \frac{1}{c} \frac{\partial \vec{\mathbf{B}}}{\partial t} = \vec{\mathbf{0}}$$

$$\nabla \cdot \vec{\mathbf{B}} = 0$$
(12)

$$\nabla \cdot \vec{\mathbf{B}} = 0 \tag{13}$$