## Morphometrie – Methoden zur Erstellung von Digitalen Geländemodellen

Betreuer: Herr Dr. Manuel Seeger

Referent: Nikolaos Kolaxidis

Universität Trier

29.11.2018

## Gliederung

- 1. Einführung in die Thematik
- 2. Morphometrie
  - 2.1. Definition
  - 2.2. Historie
  - 2.3. Bedeutung heute
- 3. Erstellung von Digitalen Geländemodellen
  - 3.1. Theoretischer Aspekt & Systematischer Ablauf
    - 3.1.1. Grundlegende Schritte
    - 3.1.2. Interpolation
  - 3.2. Fallbeispiel Dresden in ArcGIS
- 4. Fazit: Take-Home Message

## 1. Einführung



Was haben diese Abbildungen gemeinsam?



## 1. Einführung

- Es wurden flächenhafte Darstellungen erzeugt
- Es wurde etwas gemessen
- Es wurde etwas beschrieben & in Verhältnis gesetzt
- Es wurden Sachverhalte vereinfacht

## 2. Morphometrie

- Es wurden flächenhafte Darstellungen erzeugt
- Es wurde etwas gemessen
- Es wurde etwas beschrieben & in Verhältnis gesetzt
- Es wurden Sachverhalte vereinfacht

- Beschreiben von Formen (Morphe) & quantitativen Größen (Metrik)
- Extrahieren von Elementen und Vereinfachung
  - Erinnerung: Vorträge zu Modellen

## 2.1. Morphometrie - Definition

- Ausmessung der äußeren Form (z.B. Körper/Organe)
- Teilgebiet der Geomorphologie mit der Aufgabe, die Formen der Erdoberfläche durch genaue Messungen zu erhalten
- In der Biologie und Medizin gebräuchlicher
- Beispiele:
  - Voxel-basierte Morphometrie (MRT/CT)
  - Allometrie (Messung und in Verhältnissetzung von biologischen Größen)

## 2.1. Morphometrie - Definition

Ausmessung der äußeren Form (z.B. Kö

 Teilgebiet der Geomorphologie mit der Erdoberfläche durch genaue Messunge



In der Biologie und Medizin gebräuchlic

- Beispiele:
  - Voxel-basierte Morphometrie (MRT/CT)
  - Allometrie (Messung und in Verhältnissetzung von biologischen Größen)

## 2.1. Morphometrie - Definition

Ausmessung der äußeren Form (z.B. Kö

 Teilgebiet der Geomorphologie mit der Erdoberfläche durch genaue Messunge



- In der Biologie und Medizin gebräuchlic
- Beispiele:
  - Voxel-basierte Morphometrie (MRT/CT)
  - Allometrie (Messung und in Verhältnissetzung von biologischen Größen)

- Für uns interessant: Geomorphometrie
- Erste Versuche: Höhlenmalereien (6200 v. Chr. in Zentralanatolien)
  - Einfache Darstellungen von Objekten und der Landschaft von der Seite
  - Ähnelt Landschaftsmalerei (gemeinsame Wurzeln)



- Für uns interessant: Geomorphometrie
- Erste Versuche: Höhlenmalereien (6200 v. Chr. in Zentralanatolien)
  - Einfache Darstellungen von Objekten und der Landschaft von der Seite
  - Ähnelt Landschaftsmalerei (gemeinsame Wurzeln)

Bis 19. Jahrhundert: simples Ausmessen von Entfernungen und Größen



- Für uns interessant: Geomorphometrie
- Erste Versuche: Höhlenmalereien (6200 v. Chr. in Zentralanatolien)
  - Einfache Darstellungen von Objekten und der Landschaft von der Seite
  - Ähnelt Landschaftsmalerei (gemeinsame Wurzeln)
- Bis 19. Jahrhundert: simples Ausmessen von Entfernungen und Größen
- Ende des 19. Jahrhunderts: Orthographie
  - Maßstabsgetreu (genau bemessen)
  - Einsatz von Schraffuren und Höhenlinien



- 1958: erstes Digitales Höhenmodell
  - Photogrammetrie (satellitengestützt)
    - Einsatz von damals neuester Messtechnik
    - Möglichkeit metergenaue Positions- und Höhenmessungen zu erfassen
  - → Entwicklung Geomorphometrie und praktische Ausübung am PC
- Ceomorphometrie ist metrische/numerische Kartographie, sprich Berechnung und Erstellung von Karten mit mathematischen/statistischen Messdaten

## 2.3. Morphometrie – Bedeutung heute

- Warum wurde Geomorphometrie weiterentwickelt und vertieft?
- Was sind die positiven Eigenschaften der Geomorphometrie?

## 2.3. Morphometrie – Bedeutung heute

- Warum wurde Geomorphometrie weiterentwickelt und vertieft?
- Was sind die positiven Eigenschaften der Geomorphometrie?

- > Ermöglicht großflächige Analysen
- Ermöglicht <u>komplexe</u> Analysen
- Ermöglicht <u>genaue</u> Analysen

## 2.3. Morphometrie – Bedeutung heute

- Warum wurde Geomorphometrie weiterentwickelt und vertieft?
- Was sind die positiven Eigenschaften der Geomorphometrie?

- > Ermöglicht großflächige Analysen
- Ermöglicht <u>komplexe</u> Analysen
- > Ermöglicht genaue Analysen
- Ermöglicht die Erstellung von Digitalen Geländemodellen

## 3. Digitale Geländemodelle - Definition

- "Ein Digitales Geländemodell (DGM) […] ist eine digitale, numerische Speicherung der Höheninformationen der natürlichen Erdoberfläche" (GisWiki 2007)
- Synonym: Digitales Höhenmodell (DHM)
- Beinhaltet keine Objekte wie Vegetation oder anthropogen Geschaffenes
- "Nackte" Erdoberfläche
- Hilfreich in Geologie, Hydrologie, Landnutzungsplanung etc.

## 3. Digitale Geländemodelle - Definition



Großraum Trier

1. Einführung | 2. Morphometrie | 3. DGM-Erstellung | 4. Fazit

## 3. Digitale Geländemodelle - Definition



Großraum Trier

1. Einführung | 2. Morphometrie | 3. DGM-Erstellung | 4. Fazit

## 3.1. Erstellung DGM – Theorie & System

- 1. Punkthafte Messungen
- 2. Übertragen der Punkte in ein Kartesisches Koordinatensystem
- 3. Interpolation der Daten
- 4. Graduierung der Daten (Symbology)

## 3.1.1. Erstellung DGM – Grundlegendes

#### 1. Punkthafte Messungen der Höhe

- Messbar mithilfe:
  - Satelliten (z.B. SAR-Interferometrie oder Laserscanning)
  - Fahrzeuggestützt (z.B. Real-Time-Kinematic GPS)
  - Händisch (z.B. Differential GPS)
- Jeder Punkt hat eigene x, y, z Werte

## 3.1.1. Erstellung DGM – Grundlegendes

#### 1. Punkthafte Messungen der Höhe

- Messbar mithilfe:
  - Satelliten (z.B. SAR-Interferometrie oder Laserscanning)
  - Fahrzeuggestützt (z.B. Real-Time-Kinematic GPS)
  - Händisch (z.B. Differential GPS)
- Jeder Punkt hat eigene x, y, z Werte

#### 2. Übertragen der Punkte in ein Kartesisches Koordinatensystem

- Standard: ETRS 1989 UTM Zone 32N oder WGS 1984 UTM Zone 32N
- Daten vorbereiten für GIS  $\rightarrow$  3D-Datensatzerstellung mit jeweils 3 Werten pro Punkt
- Erstellen eines Shapefiles

#### 3. Interpolation - was ist das?

- Schätzwerte für fehlende Daten ergänzen bestehende Daten
- Dabei werden ähnliche Wertebereiche gewählt
- Informationen werden ergänzt, sodass eine lückenlose Fläche entsteht (DGM)
- Welche Formen gibt es?
  - Inverse Distance Weighted
  - Kriging
  - Natural Neighbor
  - Spline

- Spline with barriers
- Topo to Raster
- Topo to Raster by file
- Trend
- etc.

| Kriging                                                                                                                                                                                                                   | Inverse Distance Weighted                                                                                                                                                                                                                       | Natural Neighbor                                                                                                                                             | Spline                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Statistischer Zusammenhang<br>der nächsten Punkte anhand<br>eines Variogramms<br>Je nach Auswahl des<br>Variogramms verschiedene<br>Werte<br>Je näher, desto größer die<br>Gewichtung des Wertes der<br>nächsten Nachbarn | <ul> <li>Durchschnitt der nächsten Nachbarn (1, 8, 24, 48, 80)</li> <li>Je näher, desto größer die Gewichtung des Wertes der nächsten Nachbarn</li> <li>Verschiedene Ergebnisse durch Änderung von Gewichtung und Stärke der Neigung</li> </ul> | <ul> <li>Thiessen-Polygone</li> <li>Gewichtung anhand prozentualer<br/>Überlappung eines extra<br/>Polygons rund um den zu<br/>bestimmenden Punkt</li> </ul> | <ul> <li>Polynome zwischen nächsten<br/>Daten</li> <li>Verbindung der Polynome zu<br/>kubischen Verläufen</li> <li>Viele Teilpolynome verhindern<br/>große Schwankungen</li> </ul> |
| Geostatistisch                                                                                                                                                                                                            | Deterministisch                                                                                                                                                                                                                                 | Deterministisch                                                                                                                                              | Geostatistisch/Deterministisch                                                                                                                                                     |





Distance

| Kriging                                                                                                                                                                                                                                                         | Inverse Distance Weighted                                                                                                                                                                                                                       | Natural Neighbor                                                                                                                                             | Spline                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Statistischer Zusammenhang<br/>der nächsten Punkte anhand<br/>eines Variogramms</li> <li>Je nach Auswahl des<br/>Variogramms verschiedene<br/>Werte</li> <li>Je näher, desto größer die<br/>Gewichtung des Wertes der<br/>nächsten Nachbarn</li> </ul> | <ul> <li>Durchschnitt der nächsten Nachbarn (1, 8, 24, 48, 80)</li> <li>Je näher, desto größer die Gewichtung des Wertes der nächsten Nachbarn</li> <li>Verschiedene Ergebnisse durch Änderung von Gewichtung und Stärke der Neigung</li> </ul> | <ul> <li>Thiessen-Polygone</li> <li>Gewichtung anhand prozentualer<br/>Überlappung eines extra<br/>Polygons rund um den zu<br/>bestimmenden Punkt</li> </ul> | <ul> <li>Polynome zwischen nächsten<br/>Daten</li> <li>Verbindung der Polynome zu<br/>kubischen Verläufen</li> <li>Viele Teilpolynome verhindern<br/>große Schwankungen</li> </ul> |
| Geostatistisch                                                                                                                                                                                                                                                  | Deterministisch                                                                                                                                                                                                                                 | Deterministisch                                                                                                                                              | Geostatistisch/Deterministisch                                                                                                                                                     |







| Kriging                                                                                                                                                                                                                                                         | Inverse Distance Weighted                                                                                                                                                                                                                       | Natural Neighbor                                                                                                                                             | Spline                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Statistischer Zusammenhang<br/>der nächsten Punkte anhand<br/>eines Variogramms</li> <li>Je nach Auswahl des<br/>Variogramms verschiedene<br/>Werte</li> <li>Je näher, desto größer die<br/>Gewichtung des Wertes der<br/>nächsten Nachbarn</li> </ul> | <ul> <li>Durchschnitt der nächsten Nachbarn (1, 8, 24, 48, 80)</li> <li>Je näher, desto größer die Gewichtung des Wertes der nächsten Nachbarn</li> <li>Verschiedene Ergebnisse durch Änderung von Gewichtung und Stärke der Neigung</li> </ul> | <ul> <li>Thiessen-Polygone</li> <li>Gewichtung anhand prozentualer<br/>Überlappung eines extra<br/>Polygons rund um den zu<br/>bestimmenden Punkt</li> </ul> | <ul> <li>Polynome zwischen nächsten<br/>Daten</li> <li>Verbindung der Polynome zu<br/>kubischen Verläufen</li> <li>Viele Teilpolynome verhindern<br/>große Schwankungen</li> </ul> |
| Geostatistisch                                                                                                                                                                                                                                                  | Deterministisch                                                                                                                                                                                                                                 | Deterministisch                                                                                                                                              | Geostatistisch/Deterministisch                                                                                                                                                     |
| <ul> <li>Vielseitig &amp; anpassbar</li> <li>Kann super &amp; super schlechte</li> <li>Ergebnisse liefern</li> </ul>                                                                                                                                            | <ul> <li>Vereinfachung der Daten</li> <li>Schnelle Methode, geringe Rechenleistung</li> </ul>                                                                                                                                                   | <ul><li>Genauer als IDW</li><li>Dauert daher ein wenig länger</li></ul>                                                                                      | <ul><li>Erkennung kleiner</li><li>Unterschiede</li><li>"grobkörnig"</li></ul>                                                                                                      |

## 3.2. Erstellung DGM – Fallbeispiel Dresden

- 1. Punktdaten gegeben "GIS-Daten.shp"
- 2. Übertragen in Koordinatensystem ETRS 1989 UTM Zone 32N
- 3. Interpolation verschiedene Verfahren (Suche "Interpolation")
- 4. Graduierung –?

## 4. Fazit – Take-home-messages

- 1. Morphometrie = numerische Messung der Form
- 2. DGM/DHM = Modell der objektlosen Erdoberfläche
- 3. Schritte zur Erstellung eines DGM:
  - 1. Höhendaten messen
  - 2. Datensatz erstellen
  - Georeferenzierung
  - 4. Interpolation
  - Graduierung

# Vielen Dank für Eure Aufmerksamkeit!

Referent: Nikolaos Kolaxidis
Universität Trier
29.11.2018

#### Literaturverzeichnis

- http://desktop.arcgis.com/de/arcmap/10.3/tools/3d-analyst-toolbox/an-overview-of-the-interpolation-tools.htm
- https://gis.stackexchange.com/questions/83470/choosing-idw-vs-kriging-interpolation-for-dem-creation
- https://en.wikipedia.org/wiki/Morphometrics
- https://en.wikipedia.org/wiki/Geomorphometry
- https://gisgeography.com/dem-dsm-dtm-differences/
- https://www.duden.de/rechtschreibung/Morphometrie
- http://www.fs-privat.de/dissertation\_schmidt.pdf
- http://www.ifp.uni-stuttgart.de/publications/dissertationen/fritsch\_habil.pdf
- https://lvermgeo.rlp.de/de/geodaten/opendata/
- GisWiki (2007): Digitales Geländemodell. URL: http://giswiki.org/wiki/Digitales\_Geländemodell [28.11.2018].
- http://www.geoportal.rlp.de/portal/karten.html?LAYER[zoom]=1&LAYER[id]=49358
- LdG [Lexikon der Geographie] (2001): Interpolation. URL: https://www.spektrum.de/lexikon/geographie/interpolation/3843
- Mach, R./Petschek, P. (2006): Visualisierung digitaler Gelände- und Landschaftsdaten. Springer Verlag. Berlin, Heidelberg.