2.3.
$$(1, \sqrt[3]{9}) \cup (\sqrt[3]{9}, \infty).$$

2.4.
$$4 - 2\sqrt{2} .$$

- **2.5.** Dla m < 0 brak rozwiązań, dla m = 0 lub m > 1 są dwa rozwiązania, dla m = 1 są trzy rozwiązania, dla 0 < m < 1 są cztery rozwiązania.
- **2.6.** Układ ma trzy rozwiązania:

$$\begin{cases} x_1 = -7 \\ y_1 = -1, \end{cases} \begin{cases} x_2 = 1 \\ y_2 = 7, \end{cases} \begin{cases} x_3 = 5 \\ y_3 = -5. \end{cases}$$

2.7.
$$S = \frac{1225}{12}$$
.

2.8.
$$\frac{\pi}{8}, \frac{7\pi}{8}, \frac{9\pi}{8}, \frac{15\pi}{8}$$
.

- **3.1.** Dziedziną jest przedział [0, 4], a zbiorem wartości przedział $\left[0, \frac{3}{2}\right]$.
- **3.2.** Prosta AB ma równanie y=3, a prosta AD równanie 4x-3y=15.

3.4.
$$\frac{8}{3}\sqrt{3}$$
 cm³.

- **3.5.** Trójkat równoboczny o boku $R\sqrt{3}$ i polu $\frac{3\sqrt{3}}{4}R^2$.
- **3.6.** $D = \left(-\infty, \frac{5}{2}\right]$; miejsca zerowe $0, \frac{5}{2}$; minimum lokalne 0 dla x = 0; maksimum lokalne 2 dla x = 2; funkcja rosnąca w (0, 2); malejąca w $(-\infty, 0)$ oraz w $\left(2, \frac{5}{2}\right)$; wypukła w $\left(-\infty, 2 \frac{\sqrt{6}}{3}\right)$; wklęsła w $\left(2 \frac{\sqrt{6}}{3}, \frac{5}{2}\right)$; punkt przegięcia $P\left(2 \frac{\sqrt{6}}{3}, \sqrt{\frac{62\sqrt{6} 117}{27}}\right)$; prosta $x = \frac{5}{2}$ jest styczna do wykresu funkcji w punkcie $\left(\frac{5}{2}, 0\right)$. Wykres funkcji przedstawiono na rysunku 2.