Sum of Even and Odd Fibonacci Numbers

Show that the sums over the first n even or odd Fibonacci numbers are given by

$$\sum_{i=1}^{n} F_{2i} = F_{2n+1} - 1,$$

$$\sum_{i=1}^{n} F_{2i-1} = F_{2n}$$

Solution

The relation $F_{n+1} = F_{n+2} - F_n$ is used to form a list:

$$F_{2n} = F_{2n} - F_{2n-2}$$

$$F_{2n} = F_{2n-2} - F_{2n-4}$$

$$F_{2n} = F_{2n-4} - F_{2n-6}$$

.

. .

 $F_2 = F_4 - F_2$

 $F_1 = F_2 - F_0$

By adding the right side we obtain $\sum_{i=1}^{n} F_{2i-1} = F_{2n} - F_0$. Substituting $F_0 = 0$ gives F_{2n} .

Next we list the identities

$$F_{2n} = F_{2n+1} - F_{2n-1}$$

$$F_{2n} = F_{2n-1} - F_{2n-3}$$

$$F_{2n} = F_{2n-3} - F_{2n-5}$$

. .

. .

•

$$F_4 = F_5 - F_3$$

$$F_2 = F_3 - F_1$$

By adding the right side we obtain $\sum_{i=1}^{n} F_{2i} = F_{2n+1} - F_1$. Substituting $F_1 = 1$ gives $F_{2n+1} - 1$.