

Matematiske metoder Numerikk Høst 2021

Løsningsforslag - Øving 4

Fra Sauer 2E, avsnitt 6.1

Skal vise at $y(t) = t \sin t$ er løsning av $y'' = 2\cos t - y$. Vi deriverer to ganger. $y'(t) = \sin t + t \cos t$. $y''(t) = 2\cos t - t \sin t$.

V.S.
$$y''(t) = 2\cos t - t \sin t$$
.

H.S.
$$2\cos t - y(t) = 2\cos t - t \sin t$$
.

3a Skal løse initialverdiproblemet y' = t, y(0) = 1.

Vi integrerer på begge sider

$$\int y' dt = \int t dt$$
$$y(t) = \frac{1}{2}t^2 + C$$

Vi bestemmer C fra initialverdien. $1 = y(0) = \frac{1}{2}0^2 + C = C$. Dvs at løsningen er $y(t) = 1 + \frac{1}{2}t^2$.

Skal løse initialverdiproblemet y' = t, y(0) = 1 ved hjelp av Eulers metode på intervallet [0,1] med steglengde h = 1/4. Vi har y' = f(t,y) med f(t,y) = t.

$$w_0 = y(0) = 1$$

$$w_1 = w_0 + h f(t_0, w_0) = 1 + 0.25 \cdot 0 = 1$$

$$w_2 = w_1 + h f(t_1, w_1) = 1 + 0.25 \cdot 0.25 = 1.0625$$

$$w_3 = w_2 + h f(t_2, w_2) = 1.0625 + 0.25 \cdot 0.5 = 1.1875$$

$$w_4 = w_3 + h f(t_3, w_3) = 1.1875 + 0.25 \cdot 0.75 = 1.375$$

Vi bruker eksakt løsning $y(t) = 1 + \frac{1}{2}t^2$ og finner feilen. $g_4 = |y(t_4) - w_4| = 0.125...$

CP1a Skal løse initialverdiproblemet y' = t, y(0) = 1 ved hjelp av Eulers metode på intervallet [0, 1] med steglengde h = 0.1.

Vi skriver følgende skript eller direkte i Jupyter

```
import numpy as np
f_a = lambda t,y: t
y_a_exact = lambda t: 1+t**2/2

def Euler(f,y_init,N):
    Euler_Step = lambda f,t,w,h: w+h*f(t,w)
    h=0.1
    t=h*np.arange(0,N+1)
```

```
w=0*t
w[0]=y_init

for i in range(0,N):
    w[i+1]=Euler_Step(f,t[i],w[i],h)

return w,t

w,t = Euler(f_a,1,10)
y=y_a_exact(t)

e=abs(y-w)
table = np.concatenate((t.reshape(11,1),w.reshape(11,1),y.reshape(11,1),e.reshape(11,1)),axis=1)
print(table)
```

Med output

t_i	w_i	y_i	g_i
0.000	1.000	1.000	0.000
0.100	1.000	1.005	0.005
0.200	1.010	1.020	0.010
0.300	1.030	1.045	0.015
0.400	1.060	1.080	0.020
0.500	1.100	1.125	0.025
0.600	1.150	1.180	0.030
0.700	1.210	1.245	0.035
0.800	1.280	1.320	0.040
0.900	1.360	1.405	0.045
1.000	1.450	1.500	0.050

CP1b Skal løse initialverdiproblemet y' = t, y(0) = 1 ved hjelp av Eulers metode på intervallet [0, 1] med steglengde h = 0.1.

Vi skriver følgende skript

```
import numpy as np
f_b = lambda t,y: t**2*y
y_b_exact = lambda t: np.exp(t**3/3)

def Euler(f,y_init,N):
    Euler_Step = lambda f,t,w,h: w+h*f(t,w)
    h=0.1
    t=h*np.arange(0,N+1)
    w=0*t
    w[0]=y_init

for i in range(0,N):
    w[i+1]=Euler_Step(f,t[i],w[i],h)

return w,t
```

```
w,t = Euler(f_b,1,10)
y=y_b_exact(t)

e=abs(y-w)
table = np.concatenate((t.reshape(11,1),w.reshape(11,1),y.
    reshape(11,1),e.reshape(11,1)),axis=1)
print(table)
```

Med output

t_i	w_i	y_i	g_i
0.000	1.000	1.000	0.000
0.100	1.000	1.005	0.005
0.200	1.010	1.020	0.010
0.300	1.030	1.045	0.015
0.400	1.060	1.080	0.020
0.500	1.100	1.125	0.025
0.600	1.150	1.180	0.030
0.700	1.210	1.245	0.035
0.800	1.280	1.320	0.040
0.900	1.360	1.405	0.045
1.000	1.450	1.500	0.050

Fra Sauer 2E, avsnitt 6.2

1a Skal løse initialverdiproblemet y' = t, y(0) = 1 ved hjelp av Trapesmetoden på intervallet [0,1] med steglengde h = 1/4. Vi har y' = f(t,y) med f(t,y) = t.

```
w_{0} = y(0) = 1
w_{1} = w_{0} + \frac{h}{2} (f(t_{0}, w_{0}) + f(t_{0} + h, w_{0} + hf(t_{0}, w_{0}))) = 1 + 0.125(0 + 0.25) = 1.03125
w_{2} = w_{1} + h (f(t_{1}, w_{1}) + f(t_{1} + h, w_{1} + hf(t_{1}, w_{1}))) = 1.03125 + 0.125(0.25 + 0.5) = 1.125
w_{3} = w_{2} + h (f(t_{2}, w_{2}) + f(t_{2} + h, w_{2} + hf(t_{2}, w_{2}))) = 1.125 + 0.125(0.5 + 0.75) = 1.28125
w_{4} = w_{3} + h (f(t_{3}, w_{3}) + f(t_{3} + h, w_{3} + hf(t_{3}, w_{3}))) = 1.28125 + 0.125(0.75 + 1) = 1.5
```

Vi bruker eksakt løsning $y(t) = 1 + \frac{1}{2}t^2$ og finner feilen. $g_4 = |y(t_4) - w_4| = 0$.

CP1a Skal løse initialverdiproblemet y' = t, y(0) = 1 ved hjelp av Trapesmetoden på intervallet [0, 1] med steglengde h = 0.1.

Vi skriver følgende MATLAB-kode

```
import numpy as np
def Sauer6_2_1a():
    N=10
    T=1.0
    h=T/10
    t=np.arange(0,N+1)*h
    f = lambda t,y: t
    y_exact = lambda t: t**2/2+1;
    w = np.zeros(N+1)
    w[0]=1
```

```
for i in range(0,N):
    s1 = f( t[i] , w[i] )
    s2 = f( t[i]+h , w[i]+h*s1 )
    w[i+1] = w[i] + h/2*( s1 + s2 )
y=y_exact(t)
return w,t,y,abs(w-y)
```

 $w,t,y,e=Sauer6_2_1a()$

Med output

W	у	Var3
1	1	0
1.005	1.005	0
1.02	1.02	2.2204e-16
1.045	1.045	2.2204e-16
1.08	1.08	4.4409e-16
1.125	1.125	4.4409e-16
1.18	1.18	6.6613e-16
1.245	1.245	6.6613e-16
1.32	1.32	6.6613e-16
1.405	1.405	6.6613e-16
1.5	1.5	6.6613e-16

Vi ser at feilen er svært liten. Likningen y'=t er litt spesiell fordi den løses eksakt av Trapesmetoden. Feilen er i størrelsesorden ε_{mach} og kommer av avrunding og ikke av metoden.

NB! De fleste likninger vil ikke kunne løses eksakt ved hjelp av Trapesmetoden.

Fra Sauer 2E, avsnitt 6.3

- 1a Skal løse initialverdiproblemet
 - $y_1' = y_1 + y_2$
 - $y_2' = -y_1 + y_2$
 - $y_1(0) = 1$
 - $y_2(0) = 0$

ved hjelp av Eulers metode på intervallet [0,1] med steglengde h=1/4.

$$w_{0,1} = y_1(0) = 1$$

$$w_{0,2} = y_1(0) = 0$$

$$w_{1,1} = w_{0,1} + h(w_{0,1} + w_{0,2}) = 1 + 0.25(1 + 0) = 1.25$$

$$w_{1,2} = w_{0,2} + h(-w_{0,1} + w_{0,2}) = 0 + 0.25(-1 + 0) = -0.25$$

$$w_{2,1} = w_{1,1} + h(w_{1,1} + w_{1,2}) = 1.25 + 0.25(1.25 - 0.25) = 1.5$$

$$w_{2,2} = w_{1,2} + h(-w_{1,1} + w_{1,2}) = -0.25 + 0.25(-1.25 - 0.25) = -0.625$$

$$w_{3,1} = w_{2,1} + h(w_{2,1} + w_{2,2}) = 1.5 + 0.25(1.5 - 0.625) = 1.71875$$

$$w_{3,2} = w_{2,2} + h(-w_{2,1} + w_{2,2}) = -0.625 + 0.25(-1.5 - 0.625) = -1.15625$$

$$w_{4,1} = w_{3,1} + h(w_{3,1} + w_{3,2}) = 1.71875 + 0.25(1.71875 - 1.15625) = 1.859375$$

$$w_{4,2} = w_{3,2} + h(-w_{3,1} + w_{3,2}) = -1.15625 + 0.25(-1.71875 - 1.15625) = -1.875$$

Eksakt løsning er $y_1(t) = e^t \cos t$ og $y_2(t) = -e^t \sin t$. Feilen blir.

$$g_{4,1} = |y_1(1) - w_{4,1}| = 0.3907$$

 $g_{4,2} = |y_2(1) - w_{4,2}| = 0.4124.$

2a Skal løse initialverdiproblemet

- $y_1' = y_1 + y_2$
- $y_2' = -y_1 + y_2$
- $y_1(0) = 1$
- $y_2(0) = 0$

med trapesmetoden på intervallet [0,1] med steglengde h=1/4. Systemet er autonomt og derfor på formen $\mathbf{y}' = \mathbf{F}(\mathbf{y})$ der

$$\mathbf{F}(\mathbf{y}) = (y_1 + y_2, -y_1 + y_2)$$

$$\begin{array}{lll} \mathbf{w}_0 &=& (1,0) \\ \mathbf{s}_1 &=& \mathbf{F}(\mathbf{w}_0) = F(1,0) = (1,-1) \\ \mathbf{s}_2 &=& \mathbf{F}(\mathbf{w}_0 + hs_1) = \mathbf{F}(5/4,-1/4) = (1,-1.5) \\ \mathbf{w}_1 &=& \mathbf{w}_0 + \frac{h}{2}(\mathbf{s}_1 + \mathbf{s}_2) = (1.25,-0.3125) \\ \mathbf{s}_1 &=& \mathbf{F}(\mathbf{w}_1) = (0.9375,-1.5625) \\ \mathbf{s}_2 &=& \mathbf{F}(\mathbf{w}_1 + hs_1) = (0.78125,-2.1875) \\ \mathbf{w}_2 &=& \mathbf{w}_1 + \frac{h}{2}(\mathbf{s}_1 + \mathbf{s}_2) = (1.46484375,-0.78125) \\ \mathbf{s}_1 &=& \mathbf{F}(\mathbf{w}_2) = (0.68359375,-2.24609375) \\ \mathbf{s}_2 &=& \mathbf{F}(\mathbf{w}_2 + hs_1) = (0.29296875,-2.978515625) \\ \mathbf{w}_3 &=& \mathbf{w}_2 + \frac{h}{2}(\mathbf{s}_1 + \mathbf{s}_2) = (1.5869140625,-1.434326171875) \\ \mathbf{s}_1 &=& \mathbf{F}(\mathbf{w}_3) = (0.152587890625,-3.021240234375) \\ \mathbf{s}_2 &=& \mathbf{F}(\mathbf{w}_3 + hs_1) = (-0.5645751953125,-3.814697265625) \\ \mathbf{w}_4 &=& \mathbf{w}_3 + \frac{h}{2}(\mathbf{s}_1 + \mathbf{s}_2) = (1.535415649414062,-2.288818359375) \end{array}$$

Eksakt løsning er $y_1(t) = e^t \cos t$ og $y_2(t) = -e^t \sin t$. Feilen blir.

$$g_{4,1} = |y_1(1) - w_{4,1}| = -0.0667$$

$$g_{4,2} = |y_2(1) - w_{4,2}| = 0.00146.$$

$$\boxed{\mathbf{5}}$$
 a) Skal vise at $y(t) = (e^t + e^{-t} - t^2)/2 - 1$ er en løsning av initialverdiproblemet

$$y''' - y' = t$$

Vi regner ut

$$y'''(t) = (e^t - e^t)/2$$

-y'(t) = -(e^t - e^t - 2t)/2

summerer vi får vi

$$y'''(t) - y(t) = t$$

som stemmer med likningen. Vi sjekker initialbetingelsene: $y(0) = (e^0 + e^0 - 0^2)/2 - 1 = 2/2 - 1 = 0$, $y'(0) = (e^0 - e^0 - 2 \cdot 0)/2 = (1 - 1 - 0)/2 = 0$, $y''(0) = (e^0 + e^0 - 2)/2 = (1 + 1 - 2)/2 = 0$.

b) Vi setter $y_1 = t$, $y_2 = y$, $y_3 = y'$ og $y_4 = y''$. Det gir

$$y'_1 = 1$$

 $y'_2 = y_3$
 $y'_3 = y_4$
 $y'_4 = y_1 + y_3$

$$\mathbf{F}(\mathbf{y}) = (1, y_3, y_4, y_1 + y_3).$$

Initialbetingelsene er $(y_1(0), y_2(0), y_3(0), y_4(0)) = (0, 0, 0, 0).$

c) Vi utfører Eulers metode

$$\mathbf{w}_{0} = (0,0,0,0)$$

$$\mathbf{w}_{1} = \mathbf{w}_{0} + \frac{1}{4}\mathbf{F}(\mathbf{w}_{0}) = (1/4,0,0,0)$$

$$\mathbf{w}_{2} = \mathbf{w}_{1} + \frac{1}{4}\mathbf{F}(\mathbf{w}_{1}) = (1/2,0,0,1/16)$$

$$\mathbf{w}_{3} = \mathbf{w}_{2} + \frac{1}{4}\mathbf{F}(\mathbf{w}_{2}) = (3/4,0,1/64,3/16)$$

$$\mathbf{w}_{4} = \mathbf{w}_{3} + \frac{1}{4}\mathbf{F}(\mathbf{w}_{3}) = (1,1/256,1/16,97/256)$$

d) Global trunkeringsfeil er

$$g_4 = |w_{4,2} - y(1)| \approx |1/256 - 0.0430806| \approx 0.039174$$

CP1a Vi skal løse systemet

$$\bullet \ y_1' = y_1 + y_2$$

$$\bullet \ y_2' = -y_1 + y_2$$

•
$$y_1(0) = 1$$

• $y_2(0) = 0$

med Eulers metode på intervallet [0,1] med steglengde h=0.1 og h=0.01.

Vi skriver følgende funksjon

```
import numpy as np
import matplotlib.pyplot as plt
def Sauer6_3_1a():
    f = lambda t, y: np.array([y[0]+y[1], -y[0]+y[1]])
    EulerStep = lambda f,t,w,h: w+h*f(t,w)
    y1 = lambda t: np.exp(t)*np.cos(t)
    y2 = lambda t: -np.exp(t)*np.sin(t)
    for n in [4,10,100]:
        h = 1.0/n
        t = np.arange(0,n+1)*h
        w = np.zeros([2,n+1])
        w[:,0]=[1,0]
        for i in range(n):
            w[:,i+1] = EulerStep(f,t[i],w[:,i],h);
        print(t)
        plt.figure(n)
        plt.plot(t,w[0,:])
        plt.plot(t,w[1,:])
        plt.plot(t,y1(t))
        plt.plot(t,y2(t))
        plt.title("Figur for n= "+str(n))
        plt.legend(["y1 tiln~rmet","y2 tiln~rmet",
                   "y1 eksakt","y2 eksakt"])
        plt.xlabel("t-akse")
        plt.ylabel("y-akse")
```

Sauer6_3_1a()

Feilen for de forskjellige verdiene for h er

h	feil
0.1	0.1973
0.01	0.0226

Feilen synes å være konsistent med at Eulers metodes er av første orden orden. Feilen synes å være ca proposjonal med h.

Fra Sauer 2E, avsnitt 6.4

Skal løse initialverdiproblemet y' = t, y(0) = 1 ved hjelp av Midtpunktmetoden på intervallet [0, 1] med steglengde h = 1/4. Vi har y' = f(t, y) med f(t, y) = t.

Vi bruker eksakt løsning $y(t) = 1 + \frac{1}{2}t^2$ og finner feilen. $g_4 = |y(t_4) - w_4| = 0$.

Vi skal vise at Runge-Kuttas 4.ordens metode er lik Simpsons regel for likninger på formen y' = f(t). Vi skriver f(t, y) = f(t).

Vi har

$$w_0 = y_0$$

$$s_1 = f(t_i, w_i) = f(t_i)$$

$$s_2 = f(t_i + \frac{h}{2}, w_i + \frac{h}{2}s_1) = f(t_i + h/2)$$

$$s_3 = f(t_i + \frac{h}{2}, w_i + \frac{h}{2}s_2) = f(t_i + h/2)$$

$$s_4 = f(t_i + h, w_i + 2 \cdot s_3) = f(t_i + h)$$

$$w_{i+1} = w_i + \frac{h}{6}(s_1 + 2s_2 + 2s_3 + s_4) = w_i + \frac{h}{6}(f(t_i) + 4f(t_i + h/2) + f(t_i + h))$$

Vi finner

$$w_{1} = w_{0} + \frac{h}{6}(f(t_{0}) + 4f(t_{0} + h/2) + f(t_{1}))$$

$$w_{2} = w_{1} + \frac{h}{6}(f(t_{1}) + 4f(t_{1} + h/2) + f(t_{2}))$$

$$w_{3} = w_{2} + \frac{h}{6}(f(t_{2}) + 4f(t_{2} + h/2) + f(t_{3}))$$

$$\vdots$$

$$w_{n} = w_{n-1} + \frac{h}{6}(f(t_{n-1}) + 4f(t_{n-1} + h/2) + f(t_{n}))$$

Vi summerer likningene og vi får

$$w_1 + \dots + w_{n-1} + w_n = w_0 + w_1 + \dots + w_{n-1} + \frac{h}{6} (f(t_0) + 4f(t_0 + h/2) + 2f(t_1) + 4f(t_1 + h/2) + 2f(t_2) + \dots + 2f(t_{n-1}) + 4f(t_{n-1} + h/2) + f(t_n))$$

Vi flytter over alle w-ene til venstre og vi får

$$w_n - w_0 = \frac{h}{6} (f(t_0) + 4f(t_0 + h/2) + 2f(t_1) + 4f(t_1 + h/2) + 2f(t_2) + \dots + 2f(t_{n-1}) + 4f(t_{n-1} + h/2) + f(t_n))$$

som vi gjenkjenner som Simpsons metode.

CP1b Skal løse initialverdiproblemet $y' = t^2y$, y(0) = 1 ved hjelp av Midpunktmetoden på intervallet [0, 1] med steglengde h = 0.1.

Vi skriver følgende MATLAB-kode

```
import numpy as np
def Sauer6_4_1b( ):
    N = 10
    T=1.0
    t= np.linspace(0,T,N+1)
    h = t[1] - t[0]
    f = lambda t, y: t**2*y;
    g = lambda t: np.exp(t**3./3);
    w = np.zeros(N+1)
    w[0]=1;
    for i in range(0,N):
        s1= f(t[i],w[i]);
        s2 = f(t[i]+h/2,w[i]+h*s1/2);
        w[i+1] = w[i] + h*s2;
    y=g(t);
    print(np.around(np.array([w,y,abs(w-y)]).T,decimals=5))
Sauer6_4_1b( )
```

Med output

W	у	Var3
1	1	0
1.0003	1.0003	8.3389e-05
1.0025	1.0027	0.00016854
1.0088	1.009	0.00026077
1.0212	1.0216	0.0003695
1.042	1.0425	0.0005093
1.074	1.0747	0.00070208
1.1201	1.1211	0.00098124
1.1847	1.1861	0.001399
1.273	1.2751	0.0020389
1.3926	1.3956	0.0030387

Vi ser at global feil øker som forventet.

CP3b Skal løse initialverdiproblemet $y' = t^2y$, y(0) = 1 ved hjelp av Midpunktmetoden på intervallet [0, 1] med steglengde h = 0.1.

Vi skriver følgende Python-kode

```
import numpy as np
```

```
def Sauer6_4_3b(N):
    T=1.0
    t= np.linspace(0,T,N+1)
    h = t[1] - t[0]
    f = lambda t, y: t**2*y;
    g = lambda t: np.exp(t**3./3);
    w = np.zeros(N+1)
    w[0]=1;
    for i in range(0,N):
        s1= f(t[i], w[i]);
        s2 = f(t[i]+h/2,w[i]+h*s1/2);
        s3 = f(t[i]+h/2, w[i]+h*s2/2);
        s4 = f(t[i]+h, w[i]+h*s3);
        w[i+1]=w[i]+(h/6)*(s1+2*s2+2*s3+s4);
    y=g(t);
    print([w[-1],y[-1],abs(w[-1]-y[-1])])
Sauer6_4_3b(10)
Sauer6_4_3b(20)
Sauer6_4_3b(40)
Med output
                 У
                              g
                         2.0611e-07
    1.3956
               1.3956
      W
                 У
                              g
    1.3956
               1.3956
                         9.9015e-09
      W
                 У
                              g
```

Vi ser at global feil avtar med minkende h.

1.3956

1.3956

5.1831e-10