Calculus on Normed Vector Spaces

Joydeep Medhi 2013MT60599

Supervisor: Amit Priyadarshi

Dept. of Mathematics Indian Institute of Technology

Mid-Term Presentation

September 22, 2017

Overview

- Introduction
 - Introduction
 - Definations
- Differentiation
 - Directional Derivatives
 - The Differential
 - Differentiation of Composition
 - Differentiability of the Norm

Aim

- To study the notion of derivatives on general normed vector spaces and do Calculus on them.
- To generalise the basic calculus of function of several variables to Normed Vector Spaces.'
- To explore the applications of these concepts.

Norm : A mapping $\|.\|: E \to \mathbb{R}$, is said to be a *norm* if, for all $x,y \in E$ and $\lambda \in \mathbb{R}$ if the given properties are true. The pair $(E,\|.\|)$ is called a *normed vector space* and we say that $\|x\|$ is the norm of x.

Norm: A mapping $\|.\|: E \to \mathbb{R}$, is said to be a *norm* if, for all $x,y \in E$ and $\lambda \in \mathbb{R}$ if the given properties are true. The pair $(E,\|.\|)$ is called a *normed vector space* and we say that $\|x\|$ is the norm of x.

Properties

- **1** $||x|| \ge 0$
- $||x|| = 0 \Leftrightarrow x = 0$

Continuity

Suppose now that we have two normed vector spaces, $(E, ||.||_E)$ and $(F, ||.||_E)$.

Let A be a subset of E, f a mapping of A into F and $a \in A$. We say that f is *continuous* at a if the following condition is satisfied:

Continuity

Suppose now that we have two normed vector spaces, $(E, ||.||_E)$ and $(F, ||.||_E)$.

Let A be a subset of E, f a mapping of A into F and $a \in A$. We say that f is *continuous* at a if the following condition is satisfied:

for all $\epsilon>0$, there exists $\delta>0$ such that, if $x\in A$ and $\|x-a\|_{E}<\delta$, then $\|f(x)-f(a)\|_{E}<\epsilon$

If f is *continuous* at every point $a \in A$, then we say that f is *continuous* on A.

The norm on a normed vector space is a continuous function

We have

$$||x|| = ||x - y + y|| \le ||x - y|| + ||x|| \Rightarrow ||x|| - ||y|| \le ||x - y||$$

The norm on a normed vector space is a continuous function

We have

$$||x|| = ||x - y + y|| \le ||x - y|| + ||x|| \Rightarrow ||x|| - ||y|| \le ||x - y||$$

In the same way, $||y|| - ||x|| \le ||y - x||$.

As ||y - x|| = ||x - y||, We have

$$| \|x\| - \|y\| | \le \|x - y\|$$

And hence the contunity.

Let E and F be normed vector spaces, $A\subseteq E$, $a\in A$, f and g are mappings from E into F and $\lambda\in\mathbb{R}$:

- If f and g are continuous at a, then so is f + g.
- If f is continuous at a, then so is λf .
- If α is a real-valued function defined on E and both f and α are continuous at a, then so is αf .

Let E and F be normed vector spaces, $A \subseteq E$, $a \in A$, f and g are mappings from E into F and $\lambda \in \mathbb{R}$:

- If f and g are continuous at a, then so is f + g.
- If f is continuous at a, then so is λf .
- If α is a real-valued function defined on E and both f and α are continuous at a, then so is αf .

Let $(E, \|.\|_E)$ be a normed vector space

- The mapping $f: E \times E \longrightarrow E, (x,y) \mapsto x+y$ is continuous.
- The mapping $f: \mathbb{R} \times E \longrightarrow E, (\lambda, x) \mapsto \lambda x$ is continuous.

Directional Derivatives 1

Let O be an open subset of a normed vector space E, f a real-valued function defined on O, $a \in O$ and u a nonzero element of E. The function $f_u: t \to f(a+tu)$ is defined on an open interval containing 0. If the derivative $\frac{df_u}{dt}(0)$ is defined, i.e., if the limit

$$\lim_{t\to 0}\frac{f(a+tu)-f(a)}{t}$$

exists, then it is called the **directional derivative** of f at a in the direction of u, i.e. $\partial_u f(a)$.

Directional Derivatives 2

Example (1)

If f is the function defined on \mathbb{R}^2 by $f(x,y)=xe^{xy}$, then the partial derivatives with respect to x and y are defined at all points $(x,y)\in\mathbb{R}^2$ and

$$\frac{\partial f}{\partial x}(x,y) = (1+xy)e^{xy}$$
 and $\frac{\partial f}{\partial y}(x,y) = x^2 e^{xy}$

As both are continuous, f is of class C^1 .

Directional Derivative 3

If $E = \mathbb{R}_n$ and e_i is its standard basis, then the directional derivative $\partial e_i f(a)$ is called the i th partial derivative of f at a, or the derivative of f with respect to x_i at a.

Directional Derivative 3

If $E = \mathbb{R}_n$ and e_i is its standard basis, then the directional derivative $\partial e_i f(a)$ is called the i th partial derivative of f at a, or the derivative of f with respect to x_i at a.

$$\frac{\partial f}{\partial x_i} = \lim_{t \to 0} \frac{f(a_1, ..., a_i + t, ..., a_n) - f(a_1, ..., a_n)}{t}$$

Directional Derivative 3

If $E = \mathbb{R}_n$ and e_i is its standard basis, then the directional derivative $\partial e_i f(a)$ is called the i th partial derivative of f at a, or the derivative of f with respect to x_i at a.

$$\frac{\partial f}{\partial x_i} = \lim_{t \to 0} \frac{f(a_1, ..., a_i + t, ..., a_n) - f(a_1,, a_n)}{t}$$

If for every point $x \in O$, the partial derivative $\frac{\partial f}{\partial x_i}(x)$ is defined, then we obtain the function i th partial derivative defined on O. If these functions are defined and continuous for all i , then we say that the function f is of class C^1 .

Directional Derivatives 4

Example (2)

Consider the function f defined on \mathbb{R}^2 by

$$f(x,y) = \frac{x^6}{x^8 + (y - x^2)^2}$$
 if $(x,y) \neq (0,0)$

0 otherwise

Directional Derivatives 5

Example (2)

We have (for x and y)

$$\lim_{t o 0} rac{t^6}{t^8 + t^4}/t = 0$$
 and $\lim_{t o 0} rac{0}{t^2}/t = 0$

and so,

$$\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0$$

However, $\lim_{t\to 0} f(x, x^2) = \infty$, which indicates f is not continuous at 0.

Jacobian

Suppose now that O is an open subset of \mathbb{R}^n and f a mapping defined on O with image in \mathbb{R}^m . f has m coordinate mappings $f_1,, f_m$. If $a \in O$ and the partial derivatives $\frac{\partial f_i}{\partial x_j}$ of a, for $1 \leq i \leq m$ and $1 \leq j \leq n$, are all defined, then the $m \times n$ matrix

$$J_f(a) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

is called the Jacobian Matrix of f at a.

Small "o" notation

Let E and F be normed vector spaces, O an open subset of E containing 0, and g a mapping from O into F such that g(0)=0. If there exists a mapping ϵ , defined on a neighbourhood of $0 \in E$ and with image in F, such that $\lim_{h\to 0} \epsilon(h)=0$ and

$$g(h) = \|h\|_{E} \epsilon(h),$$

then we write g(h) = o(h) and say that g is "small o of h". The condition g(h) = o(h) is independent of the norms we choose for two spaces E and F.

Differentiability

• If $a \in O$ and there is a continuous linear mapping $\phi : E \to F$ such that

$$f(a + h) = f(a) + \phi(h) + o(h)$$

when h is close to 0, then we say that f is differentiable at a.

Differentiability

• If $a \in O$ and there is a continuous linear mapping $\phi : E \to F$ such that

$$f(a+h)=f(a)+\phi(h)+o(h)$$
 when h is close to 0, then we say that f is differentiable at a .

• If all the partial derivatives exist, then we know that the only possibility for f'(a) is the linear function $\phi = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(a) dx_i$. We consider the expression,

$$\frac{f(a+h)-f(a)-\phi(h)}{\|h\|}=\epsilon(h)$$

If $\lim_{h\to 0} \epsilon(h) = 0$, then f is differentiable at a, otherwise it is not.

Composition

Let E, F and G be normed vector spaces, O an open subset of E, U an open subset of F and $f:O\to F$, $g:U\to G$ be such that $f(O)\subset U$. Then the mapping $g\circ f$ is defined on O.

If f is differentiable at a and g is differentiable at f(a), then $g \circ f$ is differentiable at a and

$$(g \circ f)'(a) = g'(f(a)) \circ f'(a).$$

This expression is referred to as Chain Rule.

Composition

Let E, F and G be normed vector spaces, O an open subset of E, U an open subset of F and $f:O\to F$, $g:U\to G$ be such that $f(O)\subset U$. Then the mapping $g\circ f$ is defined on O.

If f is differentiable at a and g is differentiable at f(a), then $g \circ f$ is differentiable at a and

$$(g \circ f)'(a) = g'(f(a)) \circ f'(a).$$

This expression is referred to as Chain Rule.

If in the above theorem the normed vector spaces are euclidian spaces, then

$$J_{g\circ f}(a)=J_g(f(a))\circ J_f(a).$$

Differentiability of the Norm

If E is a normed vector space with norm $\|.\|$, then $\|.\|$ is itself a mapping from E into \mathbb{R} and we can study its *differentiability*. We will write $Df(\|.\|)(x)$ for differentiability of the norm at x (if exists)

Differentiability of the Norm

If E is a normed vector space with norm $\|.\|$, then $\|.\|$ is itself a mapping from E into $\mathbb R$ and we can study its *differentiability*. We will write $Df(\|.\|)(x)$ for differentiability of the norm at x (if exists)

The equation becomes

$$||x + h|| = ||x|| + Df(||.||)(x)h + o(h)$$

Norm is not differentiable at the origin.

Suppose $Df(\|.\|)$ exists. Then for small non-zero values of h, we have

$$||h|| = Df(||.||)(0)h + o(h) \Rightarrow \lim_{h\to 0} \left(1 - Df(||.||)\frac{h}{||h||}\right) = 0$$

And

$$||h|| = ||-h|| = -Df(||.||)(0)h + o(h) \Rightarrow \lim_{h \to 0} \left(1 + Df(||.||)\frac{h}{||h||}\right) = 0$$

Summing the two limits we obtain 2 = 0, which is a contradiction. Hence $Df(\|.\|)(0)$ does not exist.

Differentiation of Norm

Let E be a normed vector space and $\|.\|$ its norm. If $\|.\|$ is differentiable at $a \neq 0$ and $\lambda > 0$, then $\|.\|$ is differentiable at λa and $Df(\|.\|)(\lambda a) = Df(\|.\|)(a)$.

If $\|.\|$ is differentiable at $a,\lambda>0$ and $h\in E\setminus\{0\}$, then we have

$$\|\lambda a + h\| = \lambda \|a + \frac{h}{\lambda}\| = \lambda (\|a\| + Df(\|.\|)(\frac{h}{\lambda}) + o(\frac{h}{\lambda}))$$
$$= \|\lambda a\| + Df(\|.\|)(a)h + o(h)$$

It follows that $Df(\|.\|)(\lambda a)$ exists and $Df(\|.\|)(\lambda a) = Df(\|.\|)(a)$.

Example (Basic Example)

$$f: \mathbb{R} \to \mathbb{R}$$

$$f(x) = \|x\|_1 = |x|$$

Then f is continuous at x = 0, But f is not differentiable at x = 0

Example (Basic Example)

$$f: \mathbb{R} \to \mathbb{R}$$

$$f(x) = \|x\|_1 = |x|$$

Then f is continuous at x = 0, But f is not differentiable at x = 0

Again,
$$f'(x) = \frac{x}{|x|}$$

$$\lambda > 0$$

$$f'(\lambda x) = f'(x)$$

References

Rodney Colman(2012)

Calculus on Normed Linear Spaces

Avez, A.(1986)

Differential Calculus. J. Wiley and Sons Ltd, New York (1986)

Thank You!