Московский государственный университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра интеллектуальных информационных технологий

Отчет о выполнении задания по курсу «Суперкомпьютерное моделирование и технологии»

Выполнил:

Багамаев Мурад Аммаевич студент 622 группы вариант №7

Содержание

1	Постановка задачи	3
2	Описание численной схемы	3
3	Создание гибридной реализации MPI/OpenMP	4
4	Результаты расчетов	5

1 Постановка задачи

В задании требуется реализовать решение трехмерного гиперболического уравнения:

$$\frac{\partial^2 u}{\partial t^2} = \Delta u \tag{1}$$

в трехмерной замкнутой области

$$\Omega = [0 \le x \le L_x] \times [0 \le y \le L_y] \times [0 \le z \le L_z] \tag{2}$$

с начальными и граничными условиями:

$$\begin{aligned} u|_{t=0} &= \varphi(x,y,z), \\ \frac{\partial u}{\partial t}\Big|_{t=0} &= 0, \\ u(0,y,z,t) &= u(L_x,y,z,t), \quad u_x(0,y,z,t) = u_x(L_x,y,z,t), \\ u(x,0,z,t) &= u(x,L_y,z,t), \quad u_y(x,0,z,t) = u_y(x,L_y,z,t), \\ u(x,y,0,t) &= 0, \quad u(x,y,L_z,t) = 0. \end{aligned}$$

2 Описание численной схемы

Для численного решения используется двухшаговая явная разностная схема:

$$u_{ijk}^{n+1} = \tau^2 \Delta_h u^n + 2u_{ijk}^n - u_{ijk}^{n-1}, \tag{3}$$

где $\Delta_h u^n$ — семиточечный оператор Лапласа:

$$\Delta_h u^n = \frac{u^n_{i-1,j,k} - 2u^n_{i,j,k} + u^n_{i+1,j,k}}{h^2} + \frac{u^n_{i,j-1,k} - 2u^n_{i,j,k} + u^n_{i,j+1,k}}{h^2} + \frac{u^n_{i,j,k-1} - 2u^n_{i,j,k} + u^n_{i,j,k+1}}{h^2}.$$

Начальные условия задаются как:

$$u_{ijk}^{0} = \varphi(x_i, y_j, z_k),$$

$$u_{ijk}^{1} = u_{ijk}^{0} + \frac{\tau^2}{2} \Delta_h \varphi(x_i, y_j, z_k).$$

Аналитическое решение имеет вид:

$$u_{\text{analytical}} = \sin\left(\frac{2\pi}{L_x}x + 3\pi\right)\sin\left(\frac{2\pi}{L_y}y + 2\pi\right)\sin\left(\frac{\pi}{L_z}z\right)\cos(a_t \cdot t + \pi),\tag{4}$$

где
$$a_t = \pi \sqrt{\frac{4}{L_x^2} + \frac{4}{L_y^2} + \frac{1}{L_z^2}}$$
.

3 Создание гибридной реализации MPI/OpenMP

Для данной работы была разработана гибридная реализация алгоритма решения трехмерного гиперболического уравнения с использованием MPI и OpenMP. Основной подход заключался в разбиении пространственной сетки между MPI процессами и использовании директив OpenMP для ускорения расчётов внутри каждого процесса. Проведённый анализ показал, что:

- МРІ обеспечивает масштабирование за счёт распределения сетки между узлами;
- OpenMP снижает время выполнения благодаря параллелизации операций в рамках одного процесса с помощью директивы omp parallel for;
- Использовались неблокирующие команды MPI_Isend и MPI_Irecv для передачи данных между процессами, что позволило сократить накладные расходы на обмен сообщениями;
- Эффективность комбинации MPI и OpenMP зависит от размера задачи и количества вычислительных ресурсов.

4 Результаты расчетов

Число МРІ	Число точек	Время реше-	Ускорение <i>S</i>	Погрешность
процессов N_p	$ m cerки~N^3$	ния Т		δ
1	128^{3}	2619.7	1	7.40813e-07
4	128^{3}	664.204	3.94	7.40813e-07
8	128^{3}	452.345	5.79	7.40813e-07
16	128^{3}	304.195	8.6	7.40813e-07
32	128^{3}	380.909	6.88	7.40813e-07
1	256^{3}	21055.2	1	1.78227e-07
4	$ 256^3 $	5706.1	3.69	1.78227e-07
8	256^{3}	3087.52	6.82	1.78227e-07
16	256^{3}	1959.56	10.74	1.78227e-07
32	$ 256^3 $	1364.12	15.44	1.78227e-07
1	512^{3}	178412	1	3.88221e-08
4	$ 512^3 $	47166.7	3.78	3.88221e-08
8	$ 512^3 $	32953.5	5.4	3.88221e-08
16	$ 512^3 $	18526.7	9.63	3.88221e-08
32	$ 512^3 $	12198.4	14.63	3.88221e-08

Таблица 1: MPI код $(L_x=L_y=L_z=1)$

Число МРІ	Число точек	Время реше-	Ускорение <i>S</i>	Погрешность
процессов N_p	$ m ceтки~N^3$	ния Т		δ
1	128^{3}	2618.91	1	7.58252e-08
4	128^{3}	778.221	3.37	7.58252e-08
8	128^{3}	469.684	5.58	7.58252e-08
16	128^{3}	340.561	7.69	7.58252e-08
32	128^{3}	268.42	9.76	7.58252e-08
1	256^{3}	21078.4	1	1.8755e-08
4	256^{3}	5783.56	3.64	1.8755e-08
8	256^{3}	3112.9	6.77	1.8755e-08
16	256^{3}	1914.73	11	1.8755e-08
32	256^{3}	1430.48	14.74	1.8755e-08
1	512^{3}	168836	1	4.61352e-09
4	512^{3}	44440.2	3.8	4.61352e-09
8	512^{3}	23491.9	7.2	4.61352e-09
16	512^{3}	11807.7	14.3	4.61352e-09
32	512^{3}	7927	21.3	4.61352e-09

Таблица 2: MPI код $(L_x = L_y = L_z = \pi)$

Число МРІ	Число	Число то-	Время ре-	Ускорение	Погреш-
процессов	OpenMP	чек сетки	шения Т	S	ность δ
N_p	нитей в	N^3			
	процессе				
1	4	128^{3}	2814.81	1	7.40813e-07
2	4	128^{3}	2707.63	1.04	7.40813e-07
4	4	128^{3}	2450.71	1.15	7.40813e-07
8	4	128^{3}	2362.41	1.19	7.40813e-07
1	4	256^{3}	15012.6	1	1.78227e-07
2	4	256^{3}	8810.61	1.7	1.78227e-07
4	4	256^{3}	5763.87	2.6	1.78227e-07
8	4	256^{3}	4111.97	3.65	1.78227e-07
1	4	512^{3}	244478	1	3.88221e-08
2	4	512^{3}	173071	1.41	3.88221e-08
4	4	512^{3}	126849	1.93	3.88221e-08
8	4	512^3	104798	2.33	3.88221e-08

Таблица 3: MPI + OpenMP код $(L_x = L_y = L_z = 1)$

Число МРІ	Число	Число то-	Время ре-	Ускорение	Погреш-
процессов	OpenMP	чек сетки	шения Т	S	ность δ
N_p	нитей в	N^3			
	процессе				
1	4	128^{3}	2826.05	1	7.58252e-08
2	4	128^{3}	2743.27	1.03	7.58252e-08
4	4	128^{3}	2603.44	1.09	7.58252e-08
8	4	128^{3}	2382.8	1.19	7.58252e-08
1	4	256^{3}	14918.1	1	1.8755e-08
2	4	256^{3}	9036.27	1.65	1.8755e-08
4	4	256^{3}	6324.23	2.36	1.8755e-08
8	4	256^{3}	4459.97	3.34	1.8755e-08
1	4	512^{3}	135200	1	4.61352e-09
2	4	512^{3}	71576.8	1.89	4.61352e-09
4	4	512^{3}	36125.9	3.74	4.61352e-09
8	4	512^{3}	19661.6	6.88	4.61352e-09

Таблица 4: MPI + OpenMP код $(L_x = L_y = L_z = \pi)$