Linear Regression Analysis Sahil Kumar

Data1:

Positive linear relationship: There is a positive linear relationship between the X and Y values. As the X-values increase, the Y-values also increase. This indicates that we can use linear regression to model this data effectively.

No outliers: There are no outliers or extreme values in your data that may affect the model performance or accuracy. All the data points are close to the best fit line, indicating a low error or variance.

Algo	MAE	MSE	RMSE	R^2
Simple linear regression	1.28055978429	2.07852540177	1.44170919459	0.95795719055
	146	73265	41547	866358
Gradient descent	1.28422937305	2.115036928629	1.45431665349	0.95721866354
	624	3262	37728	10976

In the above table error are shown using both the algorithms both the algorithms giving almost same error

coefficient of determination:0.9579... which is tending to one which is a signal that we have a good predictor.

Regression model: Linear as we can see from the following figure.

Best hyperplane: Y=5.67068712+2.38306007*X

Data2:

Non-Linear relationship: I scattered the data points and I found that there is a non-linear relationship between the x and the y variables. The data points are clustered near the origin and then sharply increase after an X-value of around 8.

Outliers: there are four distinct outliers where y value sharply increases and x values are around 9 or 10

algo	MAE	MSE	RMSE	R^2
Simple linear regression	99929.7832971	27577785853.1	166065.607074	0.34338909644
	416	64074	9271	390125
Using gradient descent	99929.7684788	27577785853.1	166065.607074	0.34338909644
	6939	68034	939	38069
Logarithmic	25883.6365244	8892037637.21	94297.6014393	0.78828580001

regression	30727	335	4388	5314
------------	-------	-----	------	------

For this data values of all the errors are large as we can see from the above plot that points are shown like they are following the linear trend rather they are something like exponential.

coefficient of determination:0.3433... which tends to 0 is indicating that linear regression model will not give the best fit.

In such types of data we will do the non-linear transformation, by taking a log of actual y value in the dataset. After that we will calculate the regression model to evaluate the weight. This model gives reasonable values of errors and also gives the good value of R^2 indicating the model is good.

Hyperplane $Y = \exp(2.01637719 + 0.15128513*X)$

DATA3:

Non-linear pattern: The scatter plot of our data shows a non-linear pattern. It suggests that a linear regression model might not be the best fit for this data as it does not follow a straight line trend. We might consider exploring polynomial regression to better fit and predict the data.

algo	MAE	MSE	RMSE	R^2
Linear regression	0.29467793301 310363	0.16173044143 088552	0.402157234711 6057	0.31369732267 28079
LR using Gradient descent	0.30765628353 25742	0.16562966235 089135	0.40697624298 09526	0.29715098956 93162

Polynomial regression	o.27284952969	0.14466752744	0.38035184690	0.38610375059
	17847	736108	93598	25682

We chose different polynomials with different degrees and tried to fit into the regression model but we are not able to generate the value of good R^2.

DATA4:

algo	MAE	MSE	RMSE	R^2
Linear regression	5.15550563037	34.6204971753	5.88391713310	0.98417449058
	7769	4355	47435	943147
LR using GD	5.16004993538	34.6298971753	5.88471713310	0.98417060166
	41425	5018	474	28395

In this data simple linear regression gives the best fit with R^2 value very close to 1.

Best fit Hyperplane y=6.13243*X1+2.39336*X2+7.7468102+13.239577