

Low drop voltage regulator

Datasheet - production data

Features

Max DC supply voltage	V _S	40V
Max output voltage tolerance	ΔV_0	+/-2%
Max dropout voltage	V_{dp}	400 mV
Output current	I ₀	150 mA
Quiescent current	I _{qn}	79 μA ⁽¹⁾

- 1. Typical value with watchdog disabled.
- Operating DC supply voltage range 5.6V to 31V
- Reset circuit sensing the output voltage down to 1V
- Programmable reset pulse delay with external capacitor
- Watchdog
- Programmable watchdog timer with external capacitor
- Enable input for enabling/disabling the watchdog functionality
- Thermal shutdown and short circuit protection
- Wide temperature range (T_i = -40°C to 150°C)

Description

The L4993 is a monolithic integrated 5V Voltage regulator with a low drop voltage at currents up to 150 mA. The output voltage regulating element consists in a p-channel MOS and the regulation is performed regardless of input voltage transients up to 40V. The high precision of the output voltage is obtained with a pre-trimmed reference voltage. The L4993 is protected against short circuit and an over-temperature protection switches off the device in case of extremely high power dissipation. The L4993 watchdog is active when the Enable is high. State of the art features like reset and watchdog make this device particularly suitable to supply microprocessor systems in automotive applications.

Table 1. Device summary

Package	Order	codes
rackaye	Tube	Tape & reel
SO-8	L4993D	L4993DTR
SO-20 (16+2+2)	L4993MD	L4993MDTR

Contents L4993

Contents

1	Bloo	ck diagram and pins description
2	Elec	trical specifications 7
	2.1	Absolute maximum ratings
	2.2	Thermal data 7
	2.3	Electrical characteristics
	2.4	Electrical characteristics curves
	2.5	Test circuit and waveforms plot
		2.5.1 Load regulation
3	Арр	lication information
	3.1	Voltage regulator 16
	3.2	Reset
	3.3	Watchdog 18
4	Pacl	kage and PCB thermal data19
	4.1	SO-8 thermal data 19
	4.2	SO-20 thermal data
5	Pacl	kage and packing information
	5.1	ECOPACK [®] · · · · · · · · · · · · · · · · · · ·
	5.2	SO-20 package information
	5.3	SO-8 packing information
	5.4	SO-20 packing information
6	Revi	ision history

L4993 List of tables

List of tables

Table 1.	Device summary	
Table 2.	Pins description	. 6
Table 3.	Absolute maximum ratings	. 7
Table 4.	Thermal data	
Table 5.	General	
Table 6.	Reset	. 9
Table 7.	Watchdog	. 9
Table 8.	Watchdog Enable	10
Table 9.	SO-8 thermal parameter	21
Table 10.	SO-20 thermal parameter	24
Table 11.	SO-8 mechanical data	25
Table 12.	SO-20 mechanical data	27
Table 13.	Document revision history	31

List of figures L4993

List of figures

Figure 1.	Block diagram
Figure 2.	Pins configuration
Figure 3.	Output voltage vs. Tj
Figure 4.	Output voltage vs. Vs
Figure 5.	Drop Voltage vs. Output Current
Figure 6.	Current consumption vs. Output Current
Figure 7.	Current consumption vs. Input Voltage11
Figure 8.	Current limitation vs. Tj
Figure 9.	Current limitation vs. Input Voltage12
Figure 10.	Short Circuit Current vs. Tj
Figure 11.	Short Circuit Current vs. Input Voltage
Figure 12.	V _{WEn_high} vs. Tj
Figure 13.	V _{WEN_LOW} vs. Tj
Figure 14.	Vrhth vs. Tj
Figure 15.	Vrlth vs. Tj
Figure 16.	Vwhth vs. Tj
Figure 17.	Vwlth vs. Tj
Figure 18.	lcr & lcwc vs. Tj
Figure 19.	ldr & lcwd vs. Tj
Figure 20.	Twop vs. Tj
Figure 21.	PSRR14
Figure 22.	Load regulation test circuit
Figure 23.	Maximum load variation response
Figure 24.	L4993 application schematic
Figure 25.	Behavior of output current versus regulated voltage Vo17
Figure 26.	Reset timing diagram
Figure 27.	Watchdog timing diagram
Figure 28.	SO-8 PC board
Figure 29.	Rthj-amb Vs. PCB copper area in open box free air condition
Figure 30.	SO-8 thermal impedance junction ambient single pulse
Figure 31.	Thermal fitting model of Vreg in SO-8
Figure 32.	SO-20 PC board
Figure 33.	Rthj-amb Vs. PCB copper area in open box free air condition
Figure 34.	SO-20 thermal impedance junction ambient single pulse
Figure 35.	Thermal fitting model of Vreg in SO-20
Figure 36.	SO-8 package dimensions
Figure 37.	SO-20 package dimensions
Figure 38.	SO-8 tube shipment (no suffix)
Figure 39.	SO-8 tape and reel shipment (suffix "TR")
Figure 40.	SO-20 tube shipment (no suffix)
Figure 41.	SO-20 tape and reel shipment (suffix "TR")

1 Block diagram and pins description

Figure 1. Block diagram

Table 2. Pins description

Table 2.	e 2. Filis description			
Pin name	SO-8 (D)	SO-20 (MD)	Function	
WEn	1	1	Watchdog Enable input If high watchdog functionality is active	
Gnd	2	4	Ground reference	
Gnd		5, 6, 15, 16	Ground Connected these pins to a heat spreader ground	
Res	3	7	Reset output. It is pulled down when output voltage goes below Vo_th or frequency at Wi is too low. Leave floating if not used.	
Vcr	4	10	Reset timing adjust. A capacitor between Vcr pin and gnd, sets the reset delay time (trd)	
Vcw	5	11	Watchdog timer adjust A capacitor between Vcw pin and gnd, sets the time response of the watchdog monitor.	
Wi	6	14	Watchdog input. If the frequency at this input pin is too low, the Reset output is activated. Connect to ground if not used	
Vos	7	17	Voltage regulator output Block to ground with a capacitor >100nF (needed for regulator stability)	
Vs	8	20	Supply voltage Block to ground directly at IC pin with a capacitor	
N.C.		2, 3, 8, 9, 12, 13, 18, 19	Not connected	

Figure 2. Pins configuration

6/32 Doc ID 13517 Rev 7

2 Electrical specifications

2.1 Absolute maximum ratings

Stressing the device above the rating listed in *Table 3* may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents.

Table 3. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{Vsdc}	DC supply voltage	-0.3 to 40	V
I _{Vsdc}	Input current	Internally limited	
V _{Vo}	DC output voltage	-0.3 to 6 ⁽¹⁾	V
I _{Vo}	DC output current	Internally limited	
V _{Wi}	Watchdog input voltage	-0.3 to V _{Vo} + 0.3	V
V _{od}	Open drain output voltage	-0.3 to V _{Vo} + 0.3	V
l _{od}	Open drain output current	Internally limited	
V _{cr}	Reset delay voltage	-0.3 to V _{Vo} + 0.3	V
V _{cw}	Watchdog delay voltage	-0.3 to V _{Vo} + 0.3	V
V _{WEn}	Watchdog Enable input voltage	-0.3 to V _{Vo} +0.3	V
T _j	Junction temperature	-40 to 150	°C
V _{ESD}	ESD voltage level (HBM-MIL STD 883C)	±2	kV
V _{ESD}	ESD voltage level (CDM AEC-Q100-011)	750	V

Using the typical application schematic with Cout= 10 μF and lout=0 A, when the regulator is switched-on, an overshoot exceeding 6 V could occur. This behavior does not impact the reliability of the regulator.

2.2 Thermal data

For details, please refer to Section 4.1: SO-8 thermal data and Section 4.2: SO-20 thermal data.

Table 4. Thermal data⁽¹⁾

Symbol	Parameter	Value	Unit
	Thermal resistance Junction to Ambient:		
R _{th-jamb}	SO-8	130	°C/W
,	SO-20	51	°C/W

^{1.} The values quoted are for PCB FR4 area= $58mm \times 58mm$, PCB thickness = 2mm, Cu thickness = $35\mu m$, Copper areas: SO-8= $2 cm^2$, SO-20= $6 cm^2$.

2.3 Electrical characteristics

Values specified in this section are for V_s =5.6V to 31V, T_j = -40°C to +150°C unless otherwise stated.

Table 5. General

Pin	Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
Vo	V _{o_ref}	Output voltage	Vs = 6 to 31V lo = 1 to 150mA	4.9	5.0	5.1	V
Vo	I _{short}	Short circuit current	$Vs = 13.5V^{(1)}$	150	280	400	mA
Vo	I _{lim} ⁽²⁾	Output current limitation	$Vs = 13.5V^{(1)}$	150	320	500	mA
Vs, Vo	V _{line}	Line regulation voltage	Vs = 6 to 31V lo = 1 to 150mA			25	mV
Vo	V _{load}	Load regulation voltage	Io = 1 to 150mA			25	mV
Vs, Vo	V _{dp} ⁽³⁾	Drop voltage	Io = 150mA		200	400	mV
Vs, Vo	SVR	Ripple rejection	fr = 100 Hz ⁽⁴⁾	55			dB
Vs, Vo	I _{qn_150}	Quiescent current	Vs=13.5V, Io=150mA, WEn = high		1.25	2	mA
Vs, Vo	I _{qn_50}	Quiescent current	Vs=13.5V, Io= 50mA, WEn = high		470	1000	μΑ
Vs, Vo	I _{qn_1}	Quiescent current	Vs=13.5V, lo< 1mA, WEn = high		100	180	μΑ
Vs, Vo	I _{qs}	Quiescent current with watchdog regulator disabled	Vs=13.5V, lo< 1mA, WEn = low		79	125	μΑ
	Tw	Thermal protection temperature		150		190	°C
	Tw_hy	Thermal protection temperature hysteresis			10		°C

^{1.} See Figure 25.

^{2.} Measured output current when the output voltage has dropped 100mV from its nominal value obtained at Vs=13.5V and Io= 75mA.

Vs-Vo measured when the output voltage has dropped 100mV from its nominal value obtained at Vs=13.5V and Io= 75mA.

^{4.} Guaranteed by design.

Table 6. Reset

Pin	Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
Res	Vres_I	Reset output low voltage	$R_{ext} = 5k\Omega$ to Vo, Vo > 1V			0.4	V
Res	I _{Res_h}	Reset output high leakage current	V _{Res} = 5V			1	μΑ
Res	R_p_u	Pull up internal resistance	With respect to Vo	12	25	50	kΩ
Res	Vo_th	Vo out of regulation threshold	Vs = 6 to 31V, lo = 1 to 150mA	6%	8%	10%	Below V _{o_ref}
Vcr	Vrlth	Reset delay circuit low threshold	Vs = 13.5V	10%	13%	16%	V _{o_ref}
Vcr	Vrhth	Reset delay circuit high threshold	Vs =13.5V	44%	47%	50%	V _{o_ref}
Vcr	lcr	Charge current	Vs = 13.5V	8	17.6	30	μΑ
Vcr	ldr	Discharge current	Vs = 13.5V	8	17.6	30	μΑ
Res	Trr_2	Reset reaction time ⁽¹⁾	$Vo = V_{o_th} - 100 \text{mV}$	100	275	1000	μs
Res	Trd	Reset delay time	Vs = 13.5V, Ctr = 1nF	65		150	ms

^{1.} When Vo becomes lower than 4V, the reset reaction time decreases down to $2\mu s$ assuring a faster reset condition in this particular case.

Table 7. Watchdog

Pin	Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
Wi	Vih	Input high voltage	Vs = 13.5V	3.5			V
Wi	Vil	Input low voltage	Vs = 13.5V			1.5	V
Wi	Vih_hyst	Input hysteresis	Vs = 13.5V		500		mV
Wi	li	Pull down current	Vs = 13.5V		10	20	μΑ
Vcw	Vwhth	High threshold	Vs = 13.5V	44%	47%	50%	V _{o_ref}
Vcw	Vwlth	Low threshold	Vs = 13.5V	10%	13%	16%	V _{o_ref}
Vcw	lcwc	Charge current	Vs = 13.5V, Vcw = 0.1V	4	8	14	μΑ

Table 7. Watchdog (continued)

Pin	Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
Vcw	lcwd	Discharge current	Vs = 13.5V,	1.0	2.13	4.5	μA
		ge camen	Vcw = 2.5V				P
Vcw	Twop	Watchdog period	Vs = 13.5V,	25	50	90	ms
VCVV	TWOP	wateridog period	Ctw = 47nF	25	30	30	1113
Ros	twol	Watchdog output low time	Vs = 13.5V,	6	10.5	22	ms
Res tw	IWOI	twol Watchdog output low time	Ctw = 47nF	0	10.5	22	1115

Table 8. Watchdog Enable

Pin	Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
WEn	W _{En_low}	Enable input low voltage				1	V
WEn	W _{En_high}	Enable input high voltage		3			V
WEn	W _{En_hyst}	Enable input hysteresis		500	800	1100	mV
WEn	I _{leak}	Pull down current	WEn = 5V	2	8	20	μΑ

2.4 Electrical characteristics curves

Figure 3. Output voltage vs. Tj

Figure 4. Output voltage vs. Vs

Figure 5. Drop Voltage vs. Output Current

Figure 6. Current consumption vs. Output Current

Iqn (μA)

1500

Vs= 13.5 V

Tj= 25 °C

En= High

900

-50 0 50 100 150 200

lo (mA)

Figure 7. Current consumption vs. Input Voltage

Figure 8. Current limitation vs. Tj

577

Figure 9. Current limitation vs. Input Voltage Figure 10. Short Circuit Current vs. Tj

Figure 11. Short Circuit Current vs. Input Voltage

Figure 12. V_{WEn_high} vs. Tj

Figure 13. V_{WEN_LOW} vs. Tj

Figure 14. Vrhth vs. Tj

12/32 Doc ID 13517 Rev 7

Figure 15. Vrlth vs. Tj

Figure 16. Vwhth vs. Tj

Figure 17. Vwlth vs. Tj

Figure 18. Icr & Icwc vs. Tj

Figure 19. Idr & Icwd vs. Tj

Figure 20. Twop vs. Tj

Figure 21. PSRR

2.5 Test circuit and waveforms plot

2.5.1 Load regulation

Figure 22. Load regulation test circuit

Figure 23. Maximum load variation response

3 Application information

Thermal protection

Watchdog

Voltage reference

Reset

GAPGRI00074

Figure 24. L4993 application schematic

Note:

The input capacitor Cs > 200nF is necessary for the smoothing of line disturbances. The output capacitor C01 > 100nF is necessary for the stability of the regulation loop. In order to damp output voltage oscillations during high load current surges, it is recommended put an additional electrolytic capacitor $C02 > 10\mu F$ at the output pin.

3.1 Voltage regulator

Voltage regulator uses a p-channel transistor as a regulating element. With this structure, very low dropout voltage at current up to 500mA is obtained. The output voltage is regulated up to transient input supply voltage of 40V. No functional interruption due to over-voltage pulses is generated. A short circuit protection to GND is provided. The voltage regulator watchdog functionality can be disabled by putting WEn low.

Figure 25. Behavior of output current versus regulated voltage Vo

3.2 Reset

The reset circuit supervises the output voltage Vo. The Vo_th reset threshold is defined with the in-ternal reference voltage and a resistor output divider. If the output voltage becomes lower than Vo_th then Res goes low with a reaction time trr. The reset low signal is guaranteed for an output voltage Vo greater than 1V.

When the output voltage becomes higher than Vo_th then Res goes high with a delay trd. This delay is obtained by an internal oscillator.

The oscillator period is given by:

 $Tosc = [(Vrhth-Vrlth) \times Ctr] / Icr + [(Vrhth-Vrlth) \times Ctr] / Idr$

where:

lcr: is an internally generated charge current ldr: is an internally generated discharge current

Vrhth, Vrlth: are two voltages defined with the output voltage and a resistor output

divider

Ctr: is an external capacitance.

trd is given by:

trd = 512 x Tosc

Reset is active when En is high.

Figure 26. Reset timing diagram

3.3 Watchdog

A connected microcontroller is monitored by the watchdog input Wi. If pulses are missing, the Reset output pin is set to low. The pulse sequence time can be set within a wide range with the external capacitor, Ctw. The watchdog circuit discharges the capacitor Ctw, with the constant current lcwd. If the lower threshold Vwlth is reached, a watchdog reset is generated. To prevent this the microcontroller must generate a positive edge during the discharge of the capacitor before the voltage has reached the threshold Vwlth. In order to calculate the minimum time t, during which the micro-controller must output the positive edge, the following equation can be used:

(Vwhth-Vwlth) x Ctw = Icwd x t

Every Wi positive edge switches the current source from discharging to charging. The same happens when the lower threshold is reached. When the voltage reaches the upper threshold, Vwhth, the current switches from charging to discharging. The result is a saw-tooth voltage at the watchdog timer capacitor Ctw.

Figure 27. Watchdog timing diagram

4 Package and PCB thermal data

4.1 SO-8 thermal data

Figure 28. SO-8 PC board

Note:

Layout condition of R_{th} and Z_{th} measurements (PCB FR4 area= 58mm x 58mm, PCB thickness = 2mm, Cu thickness = 35 μ m, Copper areas: from minimum pad lay-out to 2cm²).

Figure 29. R_{thi-amb} Vs. PCB copper area in open box free air condition

Figure 30. SO-8 thermal impedance junction ambient single pulse

Equation 1: pulse calculation formula

$$Z_{TH\delta} = R_{TH} \cdot \delta + Z_{THtp} (1 - \delta)$$

where $\delta = t_P/T$

Figure 31. Thermal fitting model of Vreg in SO-8

Table 9. SO-8 thermal parameter

Area/island (cm ²)	Footprint	2
R1 (°C/W)	4.21	
R2 (°C/W)	2.11	
R3 (°C/W)	2	
R4 (°C/W)	41	
R5 (°C/W)	40	
R6 (°C/W)	58	40
C1 (W.s/°C)	0.00029	
C2 (W.s/°C)	0.0024	
C3 (W.s/°C)	0.03	
C4 (W.s/°C)	0.04	
C5 (W.s/°C)	0.1	
C6 (W.s/°C)	1.05	2

4.2 SO-20 thermal data

Figure 32. SO-20 PC board

Note:

Layout condition of R_{th} and Z_{th} measurements (PCB FR4 area= 58mm x 58mm,PCB thickness = 2mm, Cu thickness=35 μ m, Copper areas: from minimum pad lay-out to 6cm²).

Figure 33. $R_{thj-amb}$ Vs. PCB copper area in open box free air condition

Figure 34. SO-20 thermal impedance junction ambient single pulse

Equation 2: pulse calculation formula

$$Z_{TH\delta} = R_{TH} \cdot \delta + Z_{THtp} (1 - \delta)$$

where $\delta = t_P/T$

Figure 35. Thermal fitting model of Vreg in SO-20

Table 10. SO-20 thermal parameter

Area/island (cm ²)	Footprint	2
R1 (°C/W)	4.21	
R2 (°C/W)	2.11	
R3 (°C/W)	2.2	
R4 (°C/W)	10	
R5 (°C/W)	15	
R6 (°C/W)	35	18
C1 (W.s/°C)	0.00029	
C2 (W.s/°C)	0.0024	
C3 (W.s/°C)	0.015	
C4 (W.s/°C)	0.15	
C5 (W.s/°C)	1.5	
C6 (W.s/°C)	4	7

5 Package and packing information

5.1 ECOPACK®

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.SO-8 package information

SEATING PLANE

O,25 mm

GAGE PLANE

Figure 36. SO-8 package dimensions

Table 11. SO-8 mechanical data

Comphal	Millimeters			
Symbol	Min.	Тур.	Max.	
A			1.75	
A1	0.10		0.25	
A2	1.25			
b	0.28		0.48	
С	0.17		0.23	

GAPGCFT00206

Table 11. SO-8 mechanical data

Ci mala a l	Millimeters			
Symbol	Min.	Тур.	Max.	
D ⁽¹⁾	4.80	4.90	5.00	
E	5.80	6.00	6.20	
E1 ⁽²⁾	3.80	3.90	4.00	
е		1.27		
h	0.25		0.50	
L	0.40		1.27	
L1		1.04		
k	0°		8°	
ccc			0.10	

^{1.} Dimensions D does not include mold flash, protrusions or gate burrs. Mold flash, potrusions or gate burrs shall not exceed 0.15mm in total (both side).

^{2.} Dimension "E1" does not include interlead flash or protrusions. Interlead flash or protrusions shall not exceed 0.25mm per side.

5.2 SO-20 package information

Figure 37. SO-20 package dimensions

Table 12. SO-20 mechanical data

Symbol	Millimeters			
Symbol	Min.	Тур.	Max.	
Α	2.35		2.65	
A1	0.10		0.30	
В	0.33		0.51	
С	0.23		0.32	
D ⁽¹⁾	12.60		13.00	
E	7.40		7.60	
е		1.27		
Н	10.0		10.65	
h	0.25		0.75	
L	0.40		1.27	

Table 12. SO-20 mechanical data (continued)

Symbol	Millimeters			
	Min.	Тур.	Max.	
k	0°		8°	
ddd			0.10	

 [&]quot;D" dimension does not include mold flash, protusions or gate burrs. Mold flash, protusions or gate burrs shall not exceed 0.15mm per side.

5.3 SO-8 packing information

Figure 38. SO-8 tube shipment (no suffix)

Base q.ty	100
Bulk q.ty	2000
Tube length (± 0.5)	532
Α	3.2
В	6
C (± 0.1)	0.6

All dimensions are in mm.

GAPGRI00077

Figure 39. SO-8 tape and reel shipment (suffix "TR")

5.4 SO-20 packing information

Figure 41. SO-20 tape and reel shipment (suffix "TR")

L4993 Revision history

6 Revision history

Table 13. Document revision history

Date	Revision	Changes
June-2004	1	Initial release.
18-Jan-2007	2	Updated Table 5., 6, 7 and 8.
01-Jun-2007	3	Document put in corporate technical literature template. Updated <i>Table 4</i> .
22-Aug-2007	4	Table 5: General: updated I _{short} , I _{lim} , I _q , T _{rr2} , V _{ih_hist} parameters.
29-Aug-2007	5	Added list of tables and figures. Added Section 4: Package and PCB thermal data.
08-Apr-2008	6	Document restructured. Changed Figure 1: Block diagram. Updated Table 5: General: - changed I _{short} max value from 4000 mA to 400 mA - changed I _{qn_150} typ. value from 1.45 mA to 1.25 mA - changed I _{qn_50} typ. value from 538 μA to 470 μA - changed I _{qn_1} typ. value from 120 μA to 100 μA. Updated Table 6: Reset: - corrected trd formula. Updated Table 7: Watchdog: - changed Vwlth values in V _{o_ref} percentages - changed Vwhth values in V _{o_ref} percentages. Added Figure 24: L4993 application schematic. Added Section 2.4: Electrical characteristics curves. Added Section 2.5: Test circuit and waveforms plot.
09-Mar-2012	7	Updated Table 3: Absolute maximum ratings.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

32/32 Doc ID 13517 Rev 7

