Integers

Problems about integers.

Problem 1 Describe the set of integers. Give some relevant and revealing examples/nonexamples.

Free Response: Hint: The integers are the counting numbers, 0, and the opposites of the counting numbers.

$$\{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$$

Problem 2 Use the definition of divides to decide whether the following statements are true or false. In each case, an explanation must be given justifying your claim.

(a) 5|30 (*True* √/ *False*)

Hint: $30 = 5 \cdot 6$.

(b) 7|41 (*True* / *False* ✓)

Hint: There is no integer solution to 41 = 7k. But $41 = 7 \cdot 5 + 6$.

(c) 0|3 (True/False \checkmark)

Hint: There is no integer solution to 3 = 0k.

(d) 3|0 (True √/ False)

Hint: The solution to 0 = 3k is k = 0.

(e) $6|(2^2 \cdot 3^4 \cdot 5 \cdot 7)$. (True \checkmark / False)

Hint: $6 = 2 \cdot 3$, and $2 \cdot 3$ appears in factorization of the second number.

(f) $1000|(2^7 \cdot 3^9 \cdot 5^{11} \cdot 17^8)$ (True \checkmark / False)

Hint: $1000 = 2^3 \cdot 5^3$, and these primes appear enough times in factorization of the second number.

(g) $6000|(2^{21} \cdot 3^{17} \cdot 5^{89} \cdot 29^{20})$. (True \checkmark / False)

Hint: $6000 = 2^4 \cdot 3 \cdot 5^3$, and these primes appear enough times in factorization of the second number.

JavaScript ______
function isPrime(num) {
 for(var i = 2; i < num; i++)
 if(num % i === 0) return false;
 return num > 1;
 }

function isPrimeFactorization(x,y) {
 var terms = x.split('*').map(function(t) { return parseInt(t) });
 return terms.every(isPrime) &&
 (terms.reduce(function(a,c) { return a*c; }, 1)) == parseInt(y);
}

Problem 3 Factor the following integers. Use * for multiplication and do not use exponents. Enter the number itself if it is prime.

- (a) 15 3*5
- (b) 12 2 * 2 * 3
- (c) $111 \ 3 * 37$
- (d) 1234 2 * 617
- (e) $2345 \overline{)5*7*67}$
- (f) 4567 4567
- (g) $1111111 \overline{3 * 7 * 11 * 13 * 37}$

Problem 4 Find the greatest common divisors below:

(a) $gcd(462, 1463) = \boxed{77}$

Hint: $462 = 2 \cdot 3 \cdot 7 \cdot 11$, and $1463 = 7 \cdot 11 \cdot 19$.

(b) $gcd(541, 4669) = \boxed{1}$.

Hint: 541 is prime. And $4669 = 7 \cdot 23 \cdot 29$.

(c)
$$\gcd(10000, 2^5 \cdot 3^{19} \cdot 5^7 \cdot 11^{13}) = \boxed{10000}$$

Hint: $10000 = 2^5 \cdot 5^5$.

(d)
$$gcd(11111, 2^{14} \cdot 7^{21} \cdot 41^5 \cdot 101) = \boxed{41}$$

Hint: $11111 = 41 \cdot 271$.

(e)
$$gcd(437^5, 8993^3) = 23^5$$

Hint: $437 = 19 \cdot 23$, and $8993 = 17 \cdot 23^2$.

Problem 5 Consider the following:

 $20 \div 8 = 2$ remainder 4,

 $28 \div 12 = 2$ remainder 4.

Is it correct to say that $20 \div 8 = 28 \div 12$? (Yes/No \checkmark)

Explain your reasoning.

Free Response: Hint: The answer "2 remainder 4" is not a single number but rather a pair of numbers (a quotient and a remainder) that have different meanings. In particular, the 2 is about different things: groups of 8 versus groups of 12. Calling this pair of numbers "equal" is questionable.

Problem 6 Give a formula for the nth even number: 2n

Problem 7 Give a formula for the nth odd number: 2n-1.

Problem 8 Give a formula for the nth multiple of 3: 3n

Problem 9 Give a formula for the nth multiple of -7. -7n

Problem 10 Give a formula for the nth number whose remainder when divided by 5 is 1.

If the first such number is 1, the formula is 5n-4.

If the first such number is 6, the formula is 5n+1.