课后练习1-3章

人工智能学院 181220076 周韧哲

1.1

- Agent: 用传感器来感受环境并用执行器来与环境交互作用的事物
- Agent函数: 一种数学描述,将Agent的感知序列映射为动作
- Agent程序: Agent函数在代码上的具体实现
- 理性:每一步动作都选择让目标期望收益最大化的
- 自主:有学习能力,能够通过学习改正或完善自身知识
- 反射Agent: 仅仅根据当前的感知来选择行动
- 基于模型的Agent:内部有模型会根据感知历史来维持内部状态,模型是关于世界如何运作的世界模型
- 基于目标的Agent: 能用目标信息来描述想要达到的状态
- 基于效用的Agent: 能使用更为细致通用的性能度量来对状态进行赋值,即效用函数
- 学习Agent: 由学习元件、评判元件、性能元件和问题产生器组成的Agent

1.2

```
#-----基于目标的Agent-----#
def goal_based_agent():
   state=UPDATE_STATE(state,action,percept,model)
   actions=GET_AVALIABLE_ACTION(state) #获得当前状态下所有合法的行动
   next_states=UPDATE_STATE_IN_MODEL(state,actions,action_history) #在model中采
取行动得到下一个状态列表
   action=CHOOSE_ACTION_BASED_GOAL(actions, next_states, goal) #根据目标选择最优动作
   return action
#------ 基于效用的Agent-----#
def utility_based_agent():
   state=UPDATE_STATE(state,action,percept,model)
   actions=GET_AVALIABLE_ACTION(state) #获得当前状态下所有合法的行动集合
   next_states=UPDATE_STATE_IN_MODEL(state,actions,action_history) #在model中采
取行动得到下一个状态集合
   action=CHOOSE_ACTIONS_BASED_GOAL(actions,next_states,goal) #根据目标选择最优动
作集合
   best_action=CHOOSE_ACTION_BASED_UTILITY(action, state) #根据效用函数选择最优动作
   return best_action
```

2.1

令X, Y表示随机变量生命和水, 由题意知:

x	Υ	P(X,Y)
0	0	0.25
0	1	0
1	0	0.25
1	1	0.5

则有:
$$P(X=1|Y=1) = \frac{P(X=1,Y=1)}{P(Y=1)} = \frac{0.5}{0.5} = 1$$

故在给定有水的前提下, 火星上有生命的概率为1

2.2

• 我们有:

$$egin{aligned} P(S_t|O_{0:t}) &= P(S_t|O_{0:t-1},O_t) \ &= rac{P(O_t|S_t,O_{0:t-1})P(S_t|O_{0:t-1})}{P(O_t|O_{0:t})} \end{aligned}$$

而:

$$egin{split} P(O_t|O_{0:t-1}) &= rac{P(O_{0:t})}{P(O_{0:t-1})} \ &= rac{\sum_i^N lpha_t(i)}{\sum_i^N lpha_{t-1}(i)} \end{split}$$

由前向概率算法,此式可算出,从而得到

$$P(S_t|O_{0:t}) \propto P(O_t|S_t, O_{0:t-1})P(S_t|O_{0:t-1})$$

• 由观测独立性假设: $P(O_t|S_t,O_{0:t-1}) = P(O_t|S_t)$, 再由全概率公式:

$$egin{split} P(S_t|O_{0:t-1}) &= \sum_{s_{t-1}} P(S_t|S_{t-1},O_{0:t-1}) P(S_{t-1}|O_{0:t-1}) \ &= \sum_{s_{t-1}} P(S_t|S_{t-1}) P(S_{t-1}|O_{0:t-1}) \end{split}$$

故
$$P(O_t|S_t,O_{0:t-1})P(S_t|O_{0:t-1}) = P(O_t|S_t)\sum_{s_{t-1}}P(S_t|S_{t-1})P(S_{t-1}|O_{0:t-1}).$$

2.3

- 分类任务是从给定的一组观察或特征中推理所属类别。
- 朴素贝叶斯模型的假设是给定所属类别,证据变量之间条件独立,即对于所有 $i \neq j$,有 $(o_i \perp o_j | C)$.

2.4

• 令随机变量S, F, E分别表示睡眠充足,上课睡觉和红眼,其值域都为 $\{0,1\}$,从而可以得出四个表:

S	P
1	0.7
0	0.3

Sty	St	P(54 S4-1)
l	ı	0,8
l	0	a 2
0	l	0.3
0	0	0.7

Sŧ	E _t	P(E+ 5+)
1	1	0.2
l	O	0,8
ט	П	0.7
0	0	0.3

Sę	Fŧ	P(Ft St)
1	1	0,1
1	0	0,9
0	1	0.3
O	0	a7

对应的贝叶斯网络结构为:

表已给出了先验概率分布P(S),状态转移分布 $P(S_t|S_{t-1})$,观察分布 $P(E_t|S_t)$, $P(F_t|S_t)$,从而可以进行滤波和预测。

• 令O为观察变量,取值为 O_1,O_2,O_3,O_4 ,分别表示上课睡觉且有红眼、上课睡觉且无红眼、上课不睡觉且有红眼、上课不睡觉且无红眼。由条件独立性可由E,F得出观察分布,从而可得出以下几个表:

S	P
ī	0.7
O	0.3

Sig	St	P(5+ S1-1)
l	l	6,8
l	0	a 2
0	l	0.3
0	0	0.7

Si	Oi	P(0=15+)
1	0,	0,02
1	02	0.08
1	O_3	0-18
1	04	0.72
0	01	0,21
0	0,	0.09
0	0,	0.49
0	Оц	0.21

此为隐含状态S、观察状态O的隐马尔可夫模型。

2.5

• $o_0 = O_4, o_1 = O_3, o_2 = O_1, \diamondsuit S$ 表示EnoughSleep,由前向算法,可得(向量的第一项表示S=1,第二项表示S=0,以下运算均保留两位小数):

$$egin{aligned} P(s_0) &= (0.7, 0.3) \ P(s) &= \sum_{s_0} P(s|s_0) P(s_0) = (0.65, 0.35) \ b_0(s) &= P(o_0|s) P(s) = (0.8643, 0.1357)
ightarrow (0.86, 0.14) \ b_1(s) &= (0.51, 0.49) \ b_2(s) &= (0.10, 0.90) \end{aligned}$$

故

$$P(s_0|o_0) = (0.86, 0.14)$$

 $P(s_1|o_{0:1}) = (0.51, 0.49)$
 $P(s_2|o_{0:2}) = (0.10, 0.90)$

• 由前向-后向算法:

$$P(s_{o}|o_{0:2}) = P(s_{0}|o_{0})P(o_{1:2}|s_{0}) = P(s_{0}|o_{0})\sum_{s_{1}}P(o_{1}|s_{1})P(s_{1}|s_{0})\sum_{s_{2}}P(o_{2}|s_{2})P(s_{2}|s_{1}) = (0.73, 0.27)$$

$$P(s_{1}|o_{0:2}) = P(s_{1}|o_{0:1})P(o_{2}|s_{1}) = (0.28, 0.72)$$

$$P(s_{2}|o_{0:2}) = (0.10, 0.90)$$

- t=0时的滤波概率为(0.86,0.14),平滑概率为(0.73,0.27),滤波下s=1的概率比平滑下的大,即 o_1,o_2 信息的加入降低了s=1的概率,而由于其都表现了有红眼故这是容易理解的:未来的观察对 当前状态有影响。
 - t=1时的滤波概率为(0.51,0.49),平滑概率为(0.28,0.72),滤波下s=0的概率比平滑下的小,即 o_2 信息的加入增加了s=0的概率,而由于其有红眼故这也是容易理解的。即平滑整合了未来的信息,比滤波更具有预测性。

2.6

• 图的拓扑排序是一个结点的有序列表,使得如果图中有边 $A \to B$,则A出现在B之前。

- 拓扑排序使得贝叶斯网络中的采样可以从条件概率分布中采样,因为由于链式法则,在采样一个随机变量之前需要先采样其父节点。
- 拓扑排序总是存在,但不唯一。
- 拓扑排序: A,B,D,C,F,E。

2.7

- 吉布斯采样法的缺点是,样本之间存在相关性,不容易进入到稳态分布。为了减少样本之间的相关性,可以每隔固定次数采样一次。为了采样进入到一个稳态分布的样本序列,舍弃从初始样本出发不久采样到的样本。
- 极大似然估计的一个重大缺陷是当数据集足够小时,使得某些事件不能被观测到,则会认为其发生的概率为0。
- 贝叶斯学习的优点有:用所有假说做预测,而不是使用单个"最好"的假说,可归约为概率推理,缺点是需要大规模求和或积分。

2.8

对数似然为:

$$egin{aligned} l(m,b,\sigma^2) &= ln\mathcal{N}(x_{1:n}|m,b,\sigma^2) \ &= \sum_{j=1}^n ln(rac{1}{\sqrt{2\pi}\sigma}exp(-rac{(x_j-my_j-b)^2}{2\sigma^2})) \ &= n(-ln\sqrt{2\pi}-ln\sigma) - \sum_{j=1}^n rac{(x_j-my_j-b)^2}{2\sigma^2} \end{aligned}$$

对 m, b, σ 分别求偏导令其为0:

$$\frac{\partial l}{\partial m} = -\sum_{j=1}^{n} \frac{1}{\sigma^2} (my_j + b - x_j) y_j = 0$$

$$\frac{\partial l}{\partial b} = -\sum_{j=1}^{n} \frac{1}{\sigma^2} (my_j + b - x_j) = 0$$

$$\frac{\partial l}{\partial \sigma} = -\frac{n}{\sigma} + \sum_{j=1}^{n} \frac{1}{\sigma^3} (my_j + b - x_j)^2 = 0$$

解得:

$$egin{aligned} m^* &= rac{n \sum_{j=1}^n x_j y_j - \sum_{j=1}^n x_j \sum_{j=1}^n y_j}{n \sum_{j=1}^n y_j^2 - (\sum_{j=1}^n y_j)^2} \ b^* &= rac{\sum_{j=1}^n x_j}{n} - rac{\sum_{j=1}^n y_j (n \sum_{j=1}^n x_j y_j - \sum_{j=1}^n x_j \sum_{j=1}^n y_j)}{n (n \sum_{j=1}^n y_j^2 - (\sum_{j=1}^n y_j)^2)} \ \sigma^{*\,2} &= rac{1}{n} \sum_{i=1}^n (x_j - m^* y_j - b^*)^2 \end{aligned}$$

3.1

Pat更可能买到更好的车,因为在其他条件相同的情况下,Pat获得的信息更多。如果以面值作为车的效用,则Pat更可能感到失望。

• 决策网络为:

• 首先用全概率公式计算 $P(p|B) = (P(p|b), P(p|\neg b))$:

$$P(p|B) = \sum_{m} P(p|B,m)P(m|B)$$

= $(0.9 \times 0.9 + 0.5 \times 0.1, 0.8 \times 0.7 + 0.3 \times 0.3)$
= $(0.86, 0.65)$

从而计算B的期望效用 $EU(B) = (EU(b), EU(\neg b))$:

$$egin{aligned} EU(B) &= \sum_p P(p|B)U(p,B) \ &= (0.86 imes (2000-100) + 0.14 imes (0-100), 0.65 imes 2000 + 0.35 imes 0) \ &= (1620, 1300) \end{aligned}$$

所以购买教材的期望效用为1620,不够买教材的期望效用为1300。

• 由最大化期望效用原则, Sam应该买教材。

3.3

- 信息价值是获取信息之后和之前的最优行动的期望价值之间的差。当一个观测不改变最优行动时, 它的信息价值是0
- 假设Agent在观察o下的最优动作为a,则在变量O'下,由行动的期望效用定义,有:

$$EU^*(a^{o'}|\mathbf{o},o') \geq EU(a|\mathbf{o},o')$$
, $a^{o'}$ 表示在观察 (\mathbf{o},o') 下的最优动作

不等式左右两边都对o'做概率累加,得到:

$$\sum_{o'} P(o'|\mathbf{o})EU^*(a^{o'}|\mathbf{o},o') \geq \sum_{o'} P(o'|\mathbf{o})EU^*(a|\mathbf{o},o')$$

右边即为 $EU^*(\mathbf{o})$ 。左边即为 $\sum_{o'} P(o'|\mathbf{o})EU^*(\mathbf{o},o')$ 。

所以有:

$$VOI(O'|\mathbf{o}) = (\sum_{o'} P(o'|\mathbf{o})EU^*(\mathbf{o},o')) - EU^*(\mathbf{o}) \geq 0$$

3.4

• 决策网络为:

→: 条件边 →: 砧能边 →: 信息分

• 不测试购买的期望净获利为

$$P(q^+(c_1))U(q^+,b,
eg t) + P(q^-(c_1))U(q^-,b,
eg t) = 0.7 imes (2000 - 1500) + 0.3 imes (2000 - 1500 - 700) = 290$$

• 易得车通过测试的概率为

 $P(Pass) = P(Pass|q^+)P(q^+) + P(Pass|q^-)P(q^-) = 0.8 \times 0.7 + 0.35 \times 0.3 = 0.665$ 所以车不通过测试的概率为0.335。由贝叶斯定理,得到

$$egin{aligned} P(q^+|Pass) &= rac{P(Pass|q^+)P(q^+)}{P(Pass)} = 0.8421 \ P(q^+|
egraph Pass) &= rac{P(
egraph Pass|q^+)P(q^+)}{P(
egraph Pass)} = 0.4179 \ P(q^-|Pass) &= 1 - 0.8421 = 0.1579 \ P(q^-|
egraph Pass) &= 1 - 0.4179 = 0.5821 \end{aligned}$$

• 当通过测试时, 买车与不买车的期望效用为:

$$\sum_{q} P(q|Pass)U(q,b,t) = 0.8421 imes (2000 - 1500 - 50) + 0.1579 imes (2000 - 1500 - 700 - 50) = 339.47$$

$$\sum_{q} P(q|Pass)U(q, \neg b, t) = 0.8421 imes (-50) + 0.1579 imes (-50) = -50$$

当没通过测试时, 买车与不买车的期望效用为:

$$\sum_{q} P(q|\neg Pass)U(q,b,t) = 0.4179 \times (2000 - 1500 - 50) + 0.5821 \times (2000 - 1500 - 700 - 50)$$

$$= 42.055$$

$$\sum_{q} P(q|\neg Pass)U(q,\neg b,t) = 0.4179 \times (-50) + 0.5821 \times (-50)$$

$$= -50$$

不管是否通过测试,买车的期望效用都大于不买车的,所以最优决策是买车。

• 不进行测试时, 买车的期望效用为290大于不买车的期望效用0。所以测试之后最优决策并未改变, 测试的信息价值为0。最优条件规划就是不进行测试直接买车。

效用矩阵:

	揭发	沉默
揭发	-5 : -5	0:-4
沉默	-4:0	-1:-1

- 当B揭发时,A的最优反应为沉默;当B沉默时,A的最优反应为揭发。所以不存在占优策略均衡。
- 有两个纳什均衡: (揭发,沉默)、(沉默,揭发)。