PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-178198

(43) Date of publication of application: 24.06.1994

(51)Int.Cl.

H04N 5/243 H01L 27/14 H04N 1/028 H04N 5/335

(21)Application number : **04-325124**

(71)Applicant : NEC CORP

(22)Date of filing:

04.12.1992

(72)Inventor: MURAKAMI SHINICHI

(54) SOLID STATE IMAGE PICKUP DEVICE

(57) Abstract:

PURPOSE: To correct the change of the sensitivity of a solid state image pickup element due to the stop value of a camera lens.

CONSTITUTION: Data to correct the change of the sensitivities of the solid state image pickup elements 3a, 3b, 3c to the stop value of the camera lens is recorded previously in a storage device 6, and gain control amplifiers 5a, 5b, 5c are adjusted by sensitivity correction data 9a, 9b, 9c corresponding to the data 11 of the stop value to be outputted as being linked with the stop value of the camera lens 1. Then, by correcting the sensitivities of the solid state image pickup elements 3a, 3b, 3c, a picture free from a picture defect such as color irregularity and shading, etc., can be obtained.

LEGAL STATUS

[Date of request for examination]

25.12.1996

[Date of sending the examiner's decision of

07.03.2000

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平6-178198

(43)公開日 平成6年(1994)6月24日

(51)Int.Cl. ⁵ H 0 4 N 5/24		庁内整理番号	FΙ	技術表示箇所
H01L 27/14 H04N 1/02		8721 -5 C		• •
# H O 4 N 5/33	5 V			<u>:</u>
		7210—4M	H01L	27/ 14 D 審査請求 未請求 請求項の数 3(全 6 頁)
(21)出願番号	特顧平4-325124		(71)出願人	000004237 日本電気株式会社
(22)出願日	平成 4年(1992)12	月4日		東京都港区芝五丁目7番1号
			(72)発明者	村上 真一
				東京都港区芝五丁目7番1号日本電気株式 会社内
			(74)代理人	弁理士 京本 直樹 (外2名)
				:
			1	·

(54)【発明の名称】 固体撮像装置

(57)【要約】

【目的】カメラレンズの絞り値による固体撮像素子の感 度の変化を補正する。

【構成】記憶装置6に固体撮像素子3a,3b,3cの 感度のカメラレンズの絞り値に対する変化を補正するデ ータを記録しておき、カメラレンズ1の絞り値に連動し て出力される絞り値のデータ11に対応する感度補正デ ータ9a, 9b, 9cによって、ゲインコントロールア ンプ5a, 5b, 5cを調節して、固体撮像素子3a, 3b, 3cの感度を補正することにより色むら、シェー ディング等の画像欠点のない画像を得ることができる。

08/26/2004, EAST Version: 1.4.1

10

【特許請求の範囲】

· . . .

【請求項1】 複数の固体撮像素子を用いて1画像を構 成する固体撮像装置において、前記複数の固体撮像素子 の他、ゲインコントロールアンプ、記憶装置および絞り 値データを出力可能なカメラレンズを有し、前記記憶装 置に記録した前記カメラレンズの絞り値データに対応し た前記複数の固体撮像素子のそれぞれの感度の変化率に よって、前記カメラレンズの絞り値に連動して前記ゲイ ンコントロールアンプを調節し、前記固体撮像素子の感 度を補正することを特徴とする固体撮像装置。

【請求項2】 前記固体撮像素子の画素毎に前記カメラ レンズの絞り値に連動した感度補正を行うことを特徴と する請求項1記載の固体撮像装置。

【請求項3】 前記固体撮像素子の画面をm×n(m, nは1より大きい自然数)に分割し、各分割領域毎に前 記カメラレンズの絞り値に連動した感度補正を行うこと を特徴とする請求項1記載の固体撮像装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は固体撮像装置に関し、特 20 にオンチップマイクロレンズを積層した固体撮像素子を 用いた3板式カラー固体撮像装置に関する。

[0002]

【従来の技術】一般的な3板式カラー固体撮像装置、た とえば赤色用、緑色用、青色用の3つの固体撮像素子を 備えたカメラのブロック図を図5に示す。カメラレンズ 1を通過した光は色分解用プリズム2によって赤色光。 緑色光, 青色光に分解され、固体撮像素子3 a, 3 b, 3cに入射する。この固体撮像素子3a,3b,3cは 駆動回路(図示せず)によって駆動され、その出力信号 30 はアンプ4a,4b,4cによって増幅された後、プロ セス回路およびエンコーダ回路7によって合成され、映 像信号として出力される。

【0003】このとき、画像欠陥を補正する場合、図9 に示したように、あらかじめ各デバイスの欠陥補正デー タを記憶装置6に記録しておき、アンプ4a,4b,4 cの出力をゲインコントロールアンプラa, 5b, 5c で補正する方法がある。ここで、ゲインコントロールア ンプ5a、5b、5cの出力ゲインはカメラレンズの絞 り値によらず一定となっている。

[0004]

【発明が解決しようとする課題】最近の固体撮像素子 は、その感度向上のためチップ上の感光画素上にマイク ロレンズを備えている。図6 (a)~(d)に示すよう に、固体撮像素子に入射した光はマイクロレンズにより 屈折する。この屈折光はマイクロレンズへの入射光の入 射角が大きいほどフォトダイオード中心から離れた部分 に集光する((c),(d))。このため、カメラレン ズの絞り値を小さくする。すなわち絞りを広げてゆく

きくなる。したがって、固体撮像素子に入射する光量が カメラレンズの絞りに対して一定になるようにした場 合、カメラレンズの絞りを広げてゆくと感度が減少して しまう。

【0005】前述した固体撮像装置のように、各固体撮 像素子のアンプの増幅率が一定になっていると、図7の ように各固体撮像素子のカメラレンズの絞り値に対する 感度の変化率が異なる場合、カメラレンズの絞り値を変 えると各固体撮像素子の出力信号のレベルのバランスが くずれ、絞りに応じてホワイトバランスが変化し、画像 の色再現性が劣化するという問題がある。 図7におい て、縦軸はカメラレンズ絞りの基準をF8とした時の相 対感度であり、横軸はカメラレンズ絞り(焦点距離/絞 り開口直径)を示している。また、オンチップマイクロ レンズがフォトダイオード開口に対して位置ずれを生 じ、これが素子内でずれ具合が異なるとシェーディング となる。また、これが複数の固体撮像素子毎に異なるた め、絞り値に応じて色ムラが変化し、非常に見苦しい画 像になるといった欠点もある。

[0006]

【課題を解決するための手段】本発明の固体撮像装置 は、複数の固体撮像素子の他、ゲインコントロールアン プ、記憶装置および絞り値データを出力可能なカメラレ ンズを備えており、記憶装置に記録したカメラレンズの 絞り値データに対応した複数の固体撮像素子のそれぞれ の感度の変化率によって、カメラレンズの絞り値に連動 してゲインコントロールアンプを調節し固体撮像素子の 感度を補正することを特徴としている。

[0007]

【実施例】次に本発明について図面を参照して説明す る。図1は本発明の第1の実施例の固体撮像装置のブロ ック図である。カメラレンズ1を通過した光は、色分解 用プリズム2で赤色光、緑色光、青色光に分解された 後、固体撮像素子3a,3b,3cに入射する。固体撮 像素子3a,3b,3cは駆動回路(図示せず)によっ て駆動され、その出力はバッファアンプ4a,4b,4 cを通してゲインコントロールアンプ5a, 5b, 5c に入力される。

【0008】また、記憶装置6には固体撮像素子3a, 3b, 3cのそれぞれについて、カメラレンズの絞り値 に対応する感度値が記録されている。たとえば固体撮像 素子3aの感度がカメラレンズの絞り値に対して図8の ような変化をする場合、カメラレンズのある絞り値、た とえばF8のときの感度を基準とした相対感度を補正用 データとして記録しておき、カメラレンズ1から出力さ れる絞り値データ11を入力することにより、その絞り 値に対応した補正用データ信号9 aが出力される。この 補正用データ信号9aの逆数をバッファアンプ4aを経 て来た固体撮像素子3 aの出力信号に乗算するようにし と、フォトダイオード開口端で遮られる光量の比較が大 50 てゲインコントロールアンプラ a を調節する。これによ

. . •

り、感度はカメラレンズ1の絞り値に依存せず一定とな る。固体撮像素子3b,3cについても同様の補正を行 い、感度のカメラレンズの絞り値に対する依存性を除去 することにより、ゲインコントロールアンプラa,ラ b, 5cの出力信号のレベルのバランスが一定となり、 カメラレンズの絞りを変えても色の再現性が劣化するよ うな現像はなくなる。

【0009】図2は本発明の第2の実施例を示したプロ ック図である。記憶装置6には画面上の全画素について カメラレンズ1の絞り値に対応した感度補正用のデータ 10 が記録されている。同期信号発生器10から出力される 各画素に同期したデータ補正用の同期信号13に同期し て各画素に対応した感度の補正データが選択される。た とえば、水平転送レジスタ駆動信号および垂直転送レジ スタ駆動信号のパルスの数をカウントすることにより、 現在映像出力されている画素の位置を確認させ、その補 正データによってゲインコントロールアンプ5a,5 b, 5 cを調節し、固体撮像素子3 a, 3 b, 3 c の感 度を補正する。これにより、オンチップマイクロレンズ のフォトダイオード開口に対する位置ずれのばらつき等 20 によって生じる各画素毎の感度むらを補正し、その結果 3個の固体撮像素子の合成信号における色むらや色シェ ーディングといった現象も解消できる。

【0010】図3(a)は本発明の第3の実施例を示し たものであり、映像画面上に感度補正の代表点が配列さ れている。これは第2の実施例における記憶装置6の使 用記憶容量を縮小させるものであり、この固体撮像装置 の構成のブロック図は第2の実施例と同じく図2で示さ れる。ここで記憶装置6は複数の感度補正の代表点の画 素の算出するように演算機能を備えているものとする。 【0011】図3 (a)において、映像画面16上に感*

 $V_A = (V_{22} - V_{21} - V_{32} + V_{31}) \cdot A_x \cdot A_y / X \cdot Y$

となる。他の領域の場合についても同様に算出される。 感度補正の代表点の間隔が小さくなるほど、すなわち、 感度補正の代表点の数が多くなるほど感度補正の精度が 向上することになる。

[0013]

【発明の効果】以上説明したように本発明は、記憶装置 に記録したカメラレンズの絞り値に対応した固体撮像素 子の感度の変化率のデータによって、カメラレンズの絞 り値に連動してゲインコントロールアンプを調節し、固 体撮像素子の感度を補正することにより、複数の固体撮 像素子を使用したシステムにおいてもカメラレンズの絞 り値の変化によるホワイトバランスのずれ、色むら、シ ェーディング等の画像欠点のない画像を得ることができ る。

【図面の簡単な説明】

- 【図1】本発明の第1の実施例のブロック図である。
- 【図2】本発明の第2の実施例のブロック図である。
- 【図3】本発明の第3の実施例を示し、(a)は映像画※50 5a, 5b, 5c

*度補正の代表点3-11~3-79が水平方向に9点、 垂直方向に7点等間隔に並んでいる。この各点について カメラレンズの絞り値に対応した補正データが図2の記 憶装置6に記録されている。記憶装置6には同期信号発 生器10から同期信号13が入力される。この同期信号 13は図4に示したような補正データ用水平同期信号1 7と補正データ用垂直同期信号18とからなっている。 水平同期信号17は感度補正の代表点3-11~3-7 9の画素に同期してパルスを発生し、垂直同期信号18 は感度補正の代表点3-11~3-79のある水平映像 期間の先頭に同期してパルスを発生する。記憶装置6は

これらのパルスを水平同期信号17については1水平映 像期間毎、垂直同期信号18については1垂直映像期間 毎にカウントすることにより、現在の映像出力されてい る画素の位置を確認する。

【0012】たとえば、水平同期信号17のパルスのカ ウント数が1,垂直同期信号18のパルスのカウント数 が2であるとき、映像出力される画素は感度補正の代表 点3-21,3-22,3-31,3-32で囲まれた 領域内にあることになる。この領域内にある画素Aの感 度補正データ値Vaは、たとえば次のような方法で補正 する。感度補正の代表点3-21,3-22,3-3 1,3-32の感度補正データ値をそれぞれ V_{21} , V22, V31, V32とし、図3(b)のように感度補正の 代表点3-21と3-22の間隔画素数をX, 感度補正 の代表点3-31と3-32の間隔画素数をY, 画素A の感度補正の代表点3-21からの水平位置画素数をA x ,垂直位置画素数をAy とする。任意の2画素間の感 度が線形的に変化すると、画素Aの感度補正データVA

30 lt

※面上の感度補正代表点,(b)は(a)の一部の拡大図 である。

【図4】本発明の第3の実施例の同期信号等を示す図で ある。

【図5】従来例のブロック図である。

【図6】(a), (c)はカメラレンズの断面図,

(b), (d)はマイクロレンズの断面図である。

【図7】固体撮像素子の感度のカメラレンズの絞り値依 存性を示す図である。

【図8】固体撮像素子の感度のカメラレンズの絞り値依 存性を示す図である。

【図9】従来の他の例を示すブロック図である。 【符号の説明】

- 1 カメラレンズ
- プリズム

3a, 3ab, 3c 固体撮像索子

4a, 4b, 4c バッファアンプ

ゲインコントロールアンプ

5

- 6 記憶装置
- 7 プロセス回路およびエンコーダ回路

駆動回路 8

【図1】

10 同期信号発生器

【図3】

【図4】

6:記憶装置 9a,9b,9c:補正アータ信号

* NOTICES *

Japan Patent Office is not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Industrial Application] Especially this invention relates to 3 plate type color solid state camera using the solid state image sensor which carried out the laminating of the micro lens on chip about a solid state camera.

[0002]

[Description of the Prior Art] The block diagram of the camera equipped with three solid state image sensors common 3 plate type color solid state camera for red, for example, an object, the object for green, and for blue is shown in drawing 5. With the prism 2 for color separation, it is decomposed into red light, green light, and blue glow, and incidence of the light which passed the camera lens 1 is carried out to solid state image sensors 3a, 3b, and 3c. These solid state image sensors 3a, 3b, and 3c are driven by the drive circuit (not shown), and after being amplified with Amplifier 4a, 4b, and 4c, that output signal is compounded by a process circuit and the encoder circuit 7, and is outputted as a video signal. [0003] When amending an image defect at this time, as shown in drawing 9, the defective amendment data of each device are beforehand recorded on storage 6, and there is the approach of amending the output of Amplifier 4a, 4b, and 4c with the gain control amplifier 5a, 5b, and 5c. Here, the output gain of the gain control amplifier 5a, 5b, and 5c is not based on the drawing value of a camera lens, but is fixed.

[0004]

[Problem(s) to be Solved by the Invention] The latest solid state image sensor is equipped with the micro lens on the sensitization pixel on a chip for the improvement in sensibility. Drawing 6 (a) As shown in - (d), the light which carried out incidence to the solid state image sensor is refracted by the micro lens. This refracted light condenses into the part which is distant from a photodiode core, so that the incident angle of the incident light to a micro lens is large ((c), (d)). For this reason, the drawing value of a camera lens is made small. That is, if a diaphragm is extended, the comparison of the quantity of light interrupted at a photodiode opening edge will become large. Therefore, when it is made for the quantity of light which carries out incidence to a solid state image sensor to become fixed to drawing of a camera lens, if a diaphragm of a camera lens is extended, sensibility will decrease.

[0005] When the amplification factor of the amplifier of each solid state image sensor is fixed and the rate of change of the sensibility to the drawing value of the camera lens of each solid state image sensor differs like drawing 7 like the solid state camera mentioned above, if the drawing value of a camera lens is changed, the balance of the level of the output signal of each solid state image sensor will collapse, a white balance changes according to a diaphragm, and there is a problem that the color reproduction nature of an image deteriorates. In drawing 7, an axis of ordinate is the relative sensibility when setting the criteria of a camera lens diaphragm to F8, and the axis of abscissa shows the camera lens diaphragm (a focal distance / diaphragm opening diameter). Moreover, a micro lens on chip produces a location gap to photodiode opening, and it will become shading, if this shifts within a component and condition differs. Moreover, since these differs for two or more solid state image sensors of every, color

nonuniformity changes according to a diaphragm value, and there is also a fault of becoming a very unsightly image.

[0006]

[Means for Solving the Problem] The solid state camera of this invention is equipped with the camera lens in which an output of two or more others and gain control amplifier, stores, and diaphragm value data is possible, and is characterized by for the drawing value of a camera lens being interlocked with, adjusting gain control amplifier, and amending the sensibility of a solid state image sensor with the rate of change of each sensibility of two or more solid state image sensors corresponding to the drawing value data of the camera lens recorded on the store. [solid state image sensor] [0007]

[Example] Next, this invention is explained with reference to a drawing. <u>Drawing 1</u> is the block diagram of the solid state camera of the 1st example of this invention. After being decomposed into red light, green light, and blue glow by the prism 2 for color separation, incidence of the light which passed the camera lens 1 is carried out to solid state image sensors 3a, 3b, and 3c. Solid state image sensors 3a, 3b, and 3c are driven by the drive circuit (not shown), and the output is inputted into the gain control amplifier 5a, 5b, and 5c through the buffer amplifier 4a, 4b, and 4c.

[0008] Moreover, the sensibility value corresponding to the drawing value of a camera lens is recorded on storage 6 about each of solid state image sensors 3a, 3b, and 3c. For example, when the sensibility of solid state image sensor 3a carries out change like drawing 8 to the drawing value of a camera lens, data signal 9a for amendment corresponding to the drawing value is outputted by recording a drawing value with a camera lens, for example, the relative sensibility on the basis of the sensibility at the time of F8, as data for amendment, and inputting the diaphragm value data 11 outputted from the camera lens 1. As the multiplication of the inverse number of this data signal 9a for amendment is carried out to the output signal of solid state image sensor 3a which has passed through buffer amplifier 4a, gain control amplifier 5a is adjusted. Thereby, it is not dependent on the drawing value of the camera lens 1, and sensibility becomes fixed. By performing amendment with the same said of solid state image sensors 3b and 3c, and removing the dependency over the drawing value of the camera lens of sensibility, the balance of the level of the output signal of the gain control amplifier 5a, 5b, and 5c becomes fixed, and even if it changes a diaphragm of a camera lens, development in which the repeatability of a color deteriorates is lost.

[0009] <u>Drawing 2</u> is the block diagram having shown the 2nd example of this invention. The data for correction by sensitiveness corresponding to the drawing value of the camera lens 1 are recorded on storage 6 about all the pixels on a screen. Synchronizing with the synchronizing signal 13 for data correction which synchronized with each pixel outputted from a synchronizing signal generator 10, the amendment data of the sensibility corresponding to each pixel are chosen. For example, by counting the number of the pulses of a level transfer register driving signal and a perpendicular transfer register driving signal, the location of the pixel by which the current video output is carried out is made to check, with the amendment data, the gain control amplifier 5a, 5b, and 5c is adjusted, and the sensibility of solid state image sensors 3a, 3b, and 3c is amended. This amends the sensibility unevenness for every pixel produced by dispersion in the location gap to photodiode opening of a micro lens on chip etc., and, as a result, the phenomenon of the irregular color and color shading in a composite signal of three solid state image sensors can also be canceled.

[0010] <u>Drawing 3</u> (a) shows the 3rd example of this invention, and the representation point of correction by sensitiveness is arranged on the image screen. This makes the operating memory capacity of the store 6 in the 2nd example reduce, and the block diagram of the configuration of this solid state camera is shown by <u>drawing 2</u> as well as the 2nd example. Storage 6 shall be equipped with a calculation function here so that the pixel of the representation point of two or more correction by sensitiveness may compute.

[0011] In <u>drawing 3</u> (a), horizontally, the representation point 3-11 to 3-79 of correction by sensitiveness is located in a line with nine points on the image screen 16, and is perpendicularly located in a line at seven-point regular intervals. The amendment data corresponding to the drawing value of a camera lens

are recorded on the storage 6 of <u>drawing 2</u> about this each point. A synchronizing signal 13 is inputted into storage 6 from a synchronizing signal generator 10. amendment data as showed this synchronizing signal 13 to <u>drawing 4</u> -- service water -- it consists of a Taira synchronizing signal 17 and Vertical Synchronizing signal 18 for amendment data. Horizontal Synchronizing signal 17 generates a pulse synchronizing with the pixel of the representation point 3-11 to 3-79 of correction by sensitiveness, and Vertical Synchronizing signal 18 generates a pulse synchronizing with the head of a level image period with the representation point 3-11 to 3-79 of correction by sensitiveness. Storage 6 checks the location of the present pixel by which the video output is carried out by counting [Horizontal Synchronizing signal / 17] these pulses for every 1 perpendicular image period about every 1 level image period and Vertical Synchronizing signal 18.

[0012] For example, the pixel by which a video output is carried out will have the number of counts of the pulse of Horizontal Synchronizing signal 17 in the field where it was surrounded by the representation point 3-21 of correction by sensitiveness, 3-22, 3-31, and 3-32 when the number of counts of the pulse of 1 and Vertical Synchronizing signal 18 was 2. Correction-by-sensitiveness data value VA of the pixel A in this field For example, it amends by the following approaches. The representation point 3-21 of correction by sensitiveness, 3-22, 3-31, and the correction-by-sensitiveness data value of 3-32 are set to V21, V22, V31, and V32, respectively. It is [number / of 3-22 / of spacing pixels / the representation point 3-21 of correction by sensitiveness, and / number / of 3-32 / of spacing pixels / X, the representation point 3-31 of correction by sensitiveness, and] Ay about Ax and the number of vertical-position pixels like drawing 3 (b) in the number of horizontal position pixels from Y and the representation point 3-21 of the correction by sensitiveness of Pixel A. It carries out. If the sensibility for 2 pixels of arbitration changes in linearity, it is the correction-by-sensitiveness data VA of Pixel A. It becomes VA = (V22-V21-V32+V31), Ax, and Ay/X-Y. It is similarly computed about the case of other fields. The precision of correction by sensitiveness will improve, so that spacing of the representation point of correction by sensitiveness becomes small (i.e., so that the number of the representation points of correction by sensitiveness increases). [0013]

[Effect of the Invention] With the data of the rate of change of the sensibility of the solid state image sensor corresponding to the drawing value of the camera lens which this invention recorded on the store as having explained above By the drawing value of a camera lens being interlocked with, adjusting gain control amplifier, and amending the sensibility of a solid state image sensor The image which does not have image faults, such as a gap of the white balance by the drawing value change of a camera lens, an irregular color, and shading, in the system which used two or more solid state image sensors can be obtained.

[Translation done.]