Examen de contrôle continu du mercredi 11 mars 2020

Durée: 2 heures.

Tous les documents sont interdits, ainsi que les calculatrices et les téléphones portables. Les exercices sont indépendants entre eux. Tous les résultats devront être soigneusement justifiés.

Exercice 1 (3 pts). Résoudre dans \mathbb{Z} l'équation 1124x + 1004y = 12.

Exercice 2 (2+2 pts).

- 1. Montrer que pour tout $n \in \mathbb{N}$ impair, $7^n + 1$ est divisible par 8
- 2. Montrer que pour tout $a, b \in \mathbb{Z}$, 4 ne divise jamais $a^2 + b^2 3$.

Exercice 3 (1.5+1.5 pts).

- 1. Trouver le reste de la division par 47 du nombre $2020^{123456789}$.
- 2. Quel est le chiffre des unités dans l'écriture en base 2 de 45675413247^{61} ?

Exercice 4 (4 pts). Résoudre dans Z le système suivant :

$$S: \left\{ \begin{array}{ccc} x & \equiv & 1 & \mod{10} \\ 4x & \equiv & 9 & \mod{15} \end{array} \right.$$

Exercice 5 (1+2 pts). Déterminer l'ensemble des x dans \mathbb{Z} qui sont solutions de l'équation (E) dans chacun des cas suivants :

- 1. (E): $2x \equiv 4 \mod 17$.
- $2. (E): 6x \equiv 2 \mod 8.$

Exercice 6 (1+2 pts).

- 1. Enoncer le théorème de Bézout.
- 2. Soient a, b, c trois entiers non nuls, et soit $d = \operatorname{pgcd}(a, b)$. Montrer que si c est un diviseur commun de a et de b, alors c divise d.

Exercice 7 (Bonus, 2pts). Soient a et b deux entiers positifs distincts et premiers entre eux. Calculer pgcd(a + b, a - b), en discutant selon les parités de a et de b.