Vectors

Definition 1

An *inner product* on a vector space is such that

- 1. $\langle u, v \rangle = \langle v, u \rangle$
- 2. $\langle u + w, v \rangle = \langle u, v \rangle + \langle w, v \rangle$
- 3. $\langle \alpha u, v \rangle = \alpha \langle u, v \rangle$
- 4. $\langle u, u \rangle \ge 0$, and $= 0 \iff u = 0$

Definition 2

A norm is $||v|| = \sqrt{\langle v, v \rangle}$.

Definition 3

A line $l(t): \mathbb{R} \to \mathbb{R}^n$ is l(t) = P + td, where $P, d \in \mathbb{R}^n$. It may also be given by l(t) = (1-t)Q + tP, where $P, Q \in \mathbb{R}^n$, and $t \in [0, 1]$.

Definition 4

A plane $p(s, t) : \mathbb{R}^2 \to \mathbb{R}^3$ is $p(s, t) = P + sd_1 + td_2$, where $d_1, d_2 \in \mathbb{R}^3$.

It may also be given in point-normal form, $a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$, where $\langle a, b, c \rangle \in \mathbb{R}^3$ is normal to the plane, and $(x_0, y_0, z_0) \in \mathbb{R}^3$ lies on the plane.

Definition 5

A linear transformation $\lambda : \mathbb{R}^n \to \mathbb{R}^m$ is such that $\lambda(\vec{0}) = \vec{0}$, and $\lambda(\vec{a} + \vec{b}) = \lambda(\vec{a}) + \lambda(\vec{b})$.

Alternatively, write $\lambda(x_1,...,x_n) = x_1 \vec{d_1} + ... + x_n \vec{d_n}$, where $\vec{d_i} \in \mathbb{R}^m$.

Definition 6

An *affine* transformation $\lambda : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation plus a point $P \in \mathbb{R}^m$.

Definition 7

The *projection* of v onto u, denoted $\text{proj}_u(v)$, is given by $(u \cdot v) \frac{u}{\|u\|^2}$.

Definition 8

The *tangent line* of $r : \mathbb{R} \to \mathbb{R}^n$ at $a \in \mathbb{R}$ is an affine transformation λ satisfying

$$\lim_{t \to a} \frac{\|r(t) - \lambda(t)\|}{|t - a|} = 0$$

$$\lambda(t) = r(a) + (t - a)\vec{d} \quad \vec{d} \neq 0$$

Prop 1 (Inequalities)

 $||v + u|| \le ||v|| + ||u|| (\triangle)$ and $|\langle u, v \rangle| \le ||u|| ||v||$ (Cauchy-Schwartz).

Prop 2 (Cross/Dot Products)

$$(u \times v) \cdot u = 0$$

 $||u \times v||$ is the area of the parallelogram bounded by u, v.

$$||u \times v|| = ||u|| \, ||v|| \sin(\theta)$$

$$u \cdot v = ||u|| \, ||v|| \cos(\theta)$$

Prop 3 (Distances)

- (a) The distance between a point R and a plane may be given by $\|\operatorname{proj}_{\vec{n}}(P R)\|$, where P, \vec{n} are as in point-normal form.
- (b) The distance between skew lines may be given by projecting [a third line which contains points of both] onto [the normal vector of the skew lines].
- (c) The distance between R and PQ may be given by $||PR \text{proj}_{PQ}(R)||$.

Differentiation

Definition 1

(a) $r: \mathbb{R} \to \mathbb{R}^n$ is differentiable at \vec{a} if \exists a linear transformation $\lambda : \mathbb{R} \to \mathbb{R}^n$ such that

$$\lim_{h \to 0} \frac{||r(\vec{a}+h) - r(\vec{a}) - \lambda(\vec{h})||}{|h|} = 0$$

(b) Similarly, $F: \mathbb{R}^2 \to \mathbb{R}$ is differentiable at \vec{a} if \exists a linear transformation λ : $\mathbb{R}^2 \to \mathbb{R}$ such that

$$\lim_{(h,k)\to(0,0)} \frac{|F(a+h,b+k)-F(a,b)-\lambda(h,k)|}{\|\langle h,k\rangle\|}$$

(c) Generally, $F: \mathbb{R}^n \to \mathbb{R}^m$ is differen*tiable* at \vec{a} if \exists a linear transformation $\lambda: \mathbb{R}^n \to \mathbb{R}^m$ such that

$$\lim_{\overrightarrow{h} \to \overrightarrow{0}} \frac{\|F(\overrightarrow{a} + \overrightarrow{h}) - F(\overrightarrow{a}) - \lambda(\overrightarrow{h})\|}{\|\overrightarrow{h}\|}$$

We denote the derivative $\lambda(\vec{a})$ as $DF_{\vec{a}}$

Definition 2

The arc length of a curve $r(t): \mathbb{R}^n \to \mathbb{R}$ is given by

$$s = \int_{-b}^{b} ||r'(t)|| dt$$

The arc length parameterization is some $t = \alpha(s)$ such that $||r'(\alpha(s))|| = 1$.

Definition 3

The *Jacobian* matrix of $F: \mathbb{R}^n \to \mathbb{R}^m$ is given

$$F' = \begin{bmatrix} \frac{\partial F}{\partial x_1} & \frac{\partial F}{\partial x_2} & \cdots & \frac{\partial F}{\partial x_n} \end{bmatrix}$$

Note that, where m > 1, each element is a column vector.

Definition 4

A level surface is $F: \mathbb{R}^n \to 0$.

Definition 5

The gradient of $F: \mathbb{R}^n \to \mathbb{R}$ is $\left\langle \frac{\partial F}{\partial x_1}, ..., \frac{\partial F}{\partial x_n} \right\rangle$ (i.e. its Jacobian) and denoted by ∇F .

Definition 6

 $\lambda: \mathbb{R}^n \to \mathbb{R}^m$ is continuous at \vec{a} if, $\forall \varepsilon > 0$, $\exists \delta > 0 \text{ such that } ||\vec{x} - \vec{a}|| < \delta \implies ||\lambda(\vec{x}) - \bar{\alpha}|| < \delta$ $\lambda(\vec{a}) \| < \varepsilon$.

Definition 7

 $F: \mathbb{R}^n \to \mathbb{R}$ is called C^k -continuous (or ktimes continuously differentiable) at \vec{a} if all $\lim_{(h,k)\to(0,0)} \frac{|F(a+h,b+k)-F(a,b)-\lambda(h,k)|^{k^{th}}\text{-order partial derivatives exist near }\vec{a}\text{ and }\vec{a}\text{ are continuous at }\vec{a}.$

Definition 8

(a) The k^{th} partial derivative of $F: \mathbb{R}^n \to \mathbb{R}$ at \vec{a} , denoted by $\frac{\partial F}{\partial x_k}(\vec{a})$ is given by

$$\lim_{t\to 0} \frac{F(\vec{a}+te_k)-F(\vec{a})}{t}$$

where e_k is the standard basis vector, e.g. \vec{i} for k = 1.

(b) The directional derivative of $F: \mathbb{R}^n \to$ \mathbb{R} along \vec{h} , denoted by $\partial_{\vec{h}}F(\vec{a})$, is given by

$$\lim_{t\to 0} \frac{F(\vec{a}+t\vec{h}) - F(\vec{a})}{t}$$

(c) The *j*th iterated directional derivative of $F: \mathbb{R}^n \to \mathbb{R}$ at \vec{a} along \vec{h} , denoted by $\partial_{\vec{b}}^{j}F(\vec{a})$, is given by $g^{(j)}(0)$, where g(t)= $F(\vec{a} + t\vec{h})$. Note that $g'(0) = \partial_{\vec{h}}F(\vec{a})$.

Prop 1 (Differentiability and Partials)

(a) If $F: \mathbb{R}^n \to \mathbb{R}$ is differentiable at \vec{a} , then all partial derivatives of F exist at \vec{a} .

- (b) If all partial derivatives of $F : \mathbb{R}^n \to \mathbb{R}$ exist near \vec{a} and are continuous at \vec{a} , then F is differentiable.
- (c) If $F : \mathbb{R}^n \to \mathbb{R}$ is k-times continuously differentiable, then all $(k-1)^{th}$ -order partial derivative are continuously differentiable.

Prop 2 (Chain Rule)

Let $f: \mathbb{R}^n \to \mathbb{R}^m$ and $g: \mathbb{R}^m \to \mathbb{R}^l$ be differentiable at $\vec{a} \in \mathbb{R}^n$ and $f(\vec{a}) \in \mathbb{R}^m$, respectively. Then

$$h = g \circ f : \mathbb{R}^n \to \mathbb{R}^l$$

is differentiable. Furthermore, $Dh_{\vec{a}} = Dg_{f(\vec{a})} \circ Df_{\vec{a}}$, and $h'(\vec{a}) = g'(f(\vec{a}))f'(\vec{a})$.

Prop 3 (Iterated Partials)

(a) If $F: \mathbb{R}^n \to \mathbb{R}$ is differentiable at \vec{a} , then

$$\partial_{\vec{h}}(\vec{a}) = \vec{h} \cdot \nabla F = \sum_{i=1}^{n} h_i \frac{\partial F}{\partial x_i}(\vec{a})$$

(b) If $F : \mathbb{R}^n \to \mathbb{R}$ if k-times continuously differentiable, then

$$\partial_{\vec{h}}^{j}(\vec{a}) = (\vec{h} \cdot \nabla)^{j} F(\vec{a})$$

Prop 4 (Mixed Partials)

If $F: \mathbb{R}^2 \to \mathbb{R}$ is C^2 -continuous, then $\partial_x \partial_y F = \partial_y \partial_x F$.

Prop 5 (Taylor)

If $F: \mathbb{R}^n \to \mathbb{R}$ is C^k continuous, let

$$\alpha_j(\vec{h}) = \frac{1}{j!} \partial_{\vec{h}}^j(\vec{a}) = \frac{1}{j!} (\vec{h} \cdot \nabla)^j F(\vec{a})$$

Then $F(\vec{a}) + \sum_{i=1}^{k} \alpha_i(\vec{x} - \vec{a})$ is the best degree k approximation of F near \vec{a} .

Integration

Definition 1

Let $\mathcal{B} = [a_1, b_1] \times ... \times [a_n, b_n]$. Then $F : \mathbb{R}^n \to \mathbb{R}$ is *integrable* over \mathcal{B} if

$$\lim_{m\to\infty}\sum_{i=1}^m F(c_j^m) \frac{\operatorname{vol}(\mathcal{B})}{m^n} \text{ exists}$$

and is equivalent up to choices of c_j^m , where $c_j^m \in [a_j^k, b_j^k], k \in [1, m]$ (slice of size $\frac{1}{m}$).

Definition 2

A set $S \subseteq \mathbb{R}^n$ has zero measure if $\forall \varepsilon > 0$ we can choose a countable set of open balls such that $S \subseteq \bigcup B(x_i, \varepsilon_i)$, where $\sum \operatorname{vol} B(x_i, \varepsilon_i) < \varepsilon$.

Definition 3

 $S \subseteq \mathbb{R}^n$ is *path connected* if there exists a mapping contained in S between any two points $a, b \in S$. Then $\mathcal{D} \subseteq \mathbb{R}^n$ is then *elementary* if it is closed, bounded, path connected, and its boundary is path connected.

Prop 1 (Integrability)

- (a) If $F : \mathbb{R}^n \to \mathbb{R}$ is continuous on \mathcal{B} , then F is integrable on \mathcal{B} .
- (b) The set of discontinuities of F in \mathcal{B} has zero measure if and only if F is integrable.
- (c) If f is continuous on a closed and bounded set \mathcal{D} whose boundary has zero measure, then f is integrable over \mathcal{D} .

Prop 2 (Fubini)

Let $\mathcal{B} = [a_1, b_1] \times \cdots \times [a_n, b_n]$. If $F : \mathbb{R}^n \to \mathbb{R}$ is continuous on \mathcal{B} , then

$$\int_{\mathcal{B}} F = \int_{x_n=a_n}^{x_n=b_n} \cdots \left(\int_{x_1=a_1}^{x_1=b_1} F(x_1, ..., x_n) dx_1 \right) \cdots dx_n$$

The order of integration doesn't matter.

Prop 3 (MVT)

(a)
$$\int_{a}^{b} g(x) = g(c)(b-a) \text{ for some } c \in [a, b]$$

(b) Let F be integrable over an elementary region $\mathcal{D} \subseteq \mathbb{R}^n$. Let $\overline{F} = \frac{1}{\operatorname{vol}(\mathcal{D})} \int_{\mathcal{D}} F dV^n$. Then

$$\exists c \in \mathcal{D} : F(c) = \overline{F}$$

Prop 3 (Change of Variables)

Let $T: \mathcal{D}^* \to \mathcal{D}$ be C^1 and injective on $\operatorname{Int}(\mathcal{D}^*)$. Let $F: \mathcal{D} \to \mathbb{R}$ be integrable over \mathcal{D} . Let [T] be the Jacobian induced by T. Let $F^*: \mathcal{D}^* \to \mathbb{R} = F \circ T$. Then F^* is integrable over \mathcal{D}^* and

$$\int_{\mathcal{D}} F dV = \int_{\mathcal{D}^*} F^* |\det(T)| dV$$

Vector Fields

Definition 1

 $\vec{r}: [a,b] \to \mathbb{R}^n$ is a regular path if it is C^1 and ||r'(t)|| > 0 on [a,b]. A regular path \vec{r} is simple if it is injective, except possibly at its endpoints. A regular path \vec{r} is closed if r(a) = r(b).

Definition 2

A curve $C \subseteq \mathbb{R}^n$ is *regular/simple/closed* if it is the image of a regular/simple/closed path.

Definition 3

Respective to an integrable density function $\delta: \mathcal{D} \to \mathbb{R}_+$, mass $(\mathcal{D}) = \int_{\mathcal{D}} \delta dV^n$. If $\mathcal{D} = \mathcal{C}$, a curve, then this is mass $(\mathcal{C}) = \int_a^b \delta \circ r(t) ||r'(t)|| dt$.

Definition 4 (Line Integrals)

$$\int_{C} F \cdot T ds = \int_{0}^{l} (F \circ \rho) \cdot \rho' dt = \int_{a}^{b} (F \circ r) \cdot r' dt$$

$$\int_{C} F \cdot n ds = \int_{a}^{b} (F \circ r) \cdot \langle r'_{2}, -r'_{1} \rangle dt$$

Definition 5 (Surface Integrals)

$$\iint_{S} F \cdot nd\sigma = \iint_{D} (F \circ \rho) \cdot (\partial_{1}\rho \times \partial_{2}\rho) dA$$

Proposition 1

The coordinates of the center of mass \mathcal{D} with respect to an integrable density function $\delta: \mathcal{D} \to \mathbb{R}_+$, is given by

$$x_i = \frac{1}{\text{mass}(\mathcal{D})} \int_{\mathcal{D}} x_i \delta dV$$

In the case where $\mathcal{D} = \mathcal{C}$, a curve, then

$$x_i = \frac{1}{\text{mass}(C)} \int_a^b [r_i(t) \circ \delta \circ r(t)] ||r'(t)|| dt$$

Proposition 2

Let $\varphi: \mathcal{U} \to \mathbb{R}^n$ be C^1 . Let $r: [a, b] \to \mathcal{U}$ parameterize a curve C. Then

$$\int_{C} \nabla \varphi \cdot T \, ds = \varphi(B) - \varphi(A)$$

Proposition 3 (Green)

Let $F: \mathcal{U} \to \mathbb{R}^n$ be a C^1 vector field and $\mathcal{D} \subseteq \mathcal{U}$ be elementary. Then

$$\int_{\partial \mathcal{D}} F \cdot T ds = \iint_{\mathcal{D}} \partial_1 F_2 - \partial_1 F_1 dA = \iint_{\mathcal{D}} \operatorname{curl}_2(F) dA$$

$$\int\limits_{\partial \mathcal{D}} F \boldsymbol{\cdot} n ds = \iint\limits_{\mathcal{D}} \partial_1 F_1 + \partial_2 F_2 dA = \iint\limits_{\mathcal{D}} \mathrm{div}_2(F) dA$$

Proposition 4 (Cons \iff ∇)

- (a) Let $\mathcal{U} \subseteq \mathbb{R}^n$ be open and convex. Let $F: \mathcal{U} \to \mathbb{R}^2$ be a C^1 vector field. Then F is conservative \iff it is gradient.
- (b) Let $\mathcal{U} \subseteq \mathbb{R}^n$ be open and convex. Let $F: \mathcal{U} \setminus X \to \mathbb{R}^3$ be a C^1 vector field, where $|X| < \infty$. Then $\operatorname{curl}_3(F) = 0 \iff F$ is gradient.

Proposition 5 (Integrating Scalars)

(a)
$$\int_{C} \varphi ds = \int_{a}^{b} (\varphi \circ r) ||r'(t)|| dt$$

(b)
$$\iint\limits_{\S} \varphi d\sigma = \iint\limits_{\mathcal{D}} (\varphi \circ \rho) ||\partial_1 \rho \times \partial_2 \rho|| dA$$