

MEC-E8006 Fatigue of Structures

Lecture 6: Strain-life approach

Course contents

Week		Description					
43	Lecture 1-2	Fatigue phenomenon and fatigue design principles					
	Assignment 1	Fatigue Damage process, design principle and Rainflow counting – dl after week 43					
44	Lecture 3-4	Stress-based fatigue assessment					
	Assignment 2	Fatigue life estimation using stress-based approach – dl after week 44					
45	Lecture 5-6	Strain-based fatigue assessment					
	Assignment 3	Fatigue crack initiation life by strain-based approach – dl after week 46					
46	Lectures 7-8	Fracture mechanics -based assessment					
	Assignment 4	Fatigue crack propagation life by fracture mechanics – dl after week 46					
47	Lectures 9-10	Fatigue assessment of welded structures and residual stress effect					
	Assignment 5	Fatigue life estimation of welded joint – dl after week 48					
48	Lecture 11-12	Multiaxial fatigue and statistic of fatigue testing					
	Assignment 6	Fatigue life estimation for multiaxial loading and statistical analysis – dl after week 48					
49	Exam	Course exam					
	Project work	Delivery of final project (optional) – dl on week 50					

Learning outcomes

After the lecture, you

- <u>can</u> define strain-life curve and its fatigue properties
- <u>can</u> apply different mean stress correction models
- <u>understand</u> the correlation between cyclic stress-strain and strain-life fatigue properties

Contents

Definition of strain-life curve and fatigue properties

Modelling of mean stress correction

Correlation between cyclic stress-strain and fatigue properties

Is this softening or hardening?

The elastic material surrounding the plastic zone around a stress concentration forces the material to deform in strain control

Fatigue ductility coefficient ε'_F Fatigue strength coefficient σ'_F Fatigue ductility exponent cFatigue strength exponent b

$$\varepsilon_a = \frac{\sigma_f}{E} (2N_f)^b + \varepsilon_f (2N_f)^c$$

$$\varepsilon_{a} = \frac{\sigma_{a}}{E} + \left(\frac{\sigma_{a}}{H'}\right)^{1/n'}$$

E elastic modulus

 σ_{ϵ} fatigue strength coefficient

fatigue ductility coefficient

b fatigue strength exponent

c fatigue ductility exponent

H' cyclic strength coefficient

n' cyclic strain hardening exponent

strain life curve, ε-N

Coffin-Manson

cyclic stress strain curve, CSSC

7 material properties are needed!

However there are methods to derive approximated values.

$$\varepsilon_a = \frac{\sigma_f'}{E} (2N_f)^b + \varepsilon_f' (2N_f)^c$$

strain life curve, ε - N

$$\varepsilon_{a} = \frac{\sigma_{a}}{E} + \left(\frac{\sigma_{a}}{H'}\right)^{1/n'}$$

cyclic stress strain curve, CSSC

$$\varepsilon_a = \varepsilon_a^{\ \ e} + \varepsilon_a^{\ \ p}$$

Note that each equation consists of an elastic and a plastic part

$$\varepsilon_a^{\ \rho} = \left(\frac{\sigma_a}{H'}\right)^{1/n'} = \varepsilon_f' (2N_f)^c$$

$$\varepsilon_a^{\ e} = \frac{\sigma_f'}{E} (2N_f)^b = \frac{\sigma_a}{E}$$

$$\varepsilon_a^{\ e} = \frac{\sigma_f^{'}}{E} (2N_f)^b = \frac{\sigma_a}{E}$$

$$n' = \frac{b}{c}$$

$$H' = \frac{\sigma_f'}{(\varepsilon_f')^{n'}}$$

$$\varepsilon_a = \frac{\sigma_f}{E} (2N_f)^b + \varepsilon_f (2N_f)^c$$

$$\varepsilon_{a} = \frac{\sigma_{a}}{E} + \left(\frac{\sigma_{a}}{H'}\right)^{1/n'}$$

cyclic stress strain curve, CSSC

E elastic modulus

 σ_{f} fatigue strength coefficient

fatigue ductility coefficient

fatigue strength exponent

fatigue ductility exponent

H' cyclic strength coefficient

' cyclic strain hardening exponent

therefore only 5 <u>independent</u> material properties of which E is rather constant for a class of materials, this is still twice as many as for the S-N approach which has only 2 unknowns. $\Delta \sigma = A \cdot N_f^B$

$$\varepsilon_a = \frac{\sigma_f}{E} (2N_f)^b + \varepsilon_f' (2N_f)^c$$
 strain life curve, $\varepsilon - N$

at long lives,
$$\varepsilon_a^b >> \varepsilon_a^p$$

therefore $\varepsilon_a \approx \frac{\sigma_a}{E} = \frac{\sigma_f}{E} (2N_f)^b$ and $\sigma_a = \sigma_f' (2N_f)^b$

Note similarity to S-N equation $\Delta \sigma = A \cdot N_f^B$

From D. Socie "Fatigue made easy"

$$\varepsilon_a = \frac{\sigma_f'}{E} (2N_f)^b + \varepsilon_f' (2N_f)^c$$

at 2N_t, the elastic and plastic strain are equal

$$\frac{\sigma_f^{'}}{E} (2N_t)^b = \varepsilon_f^{'} (2N_t)^c$$

$$\frac{1}{2} \left(\frac{\sigma_f'}{\varepsilon_f E} \right)^{\frac{1}{c-b}} = N_t$$

 N_{t} is the transition fatigue life

Estimation for strain-life fatigue properties

$$\frac{\Delta\varepsilon}{2} = \frac{425\text{HB} + 225}{E} (2N_{\text{f}})^{-0.09} + \frac{0.32(\text{HB})^2 - 487(\text{HB}) + 191000}{E} (2N_{\text{f}})^{-0.56}$$

Based on material tensile test

$$\Delta \varepsilon = 1.17 \left(\frac{\sigma_{\rm B}}{E}\right)^{0.832} N_{\rm f}^{-0.09} + 0.0266 \varepsilon_{\rm f}^{0.155} \left(\frac{\sigma_{\rm B}}{E}\right)^{-0.53} N_{\rm f}^{-0.56}$$

 $\frac{\text{https://ac.els-cdn.com/S0142112305002112/1-s2.0-S0142112305002112-main.pdf?}{\text{boloon}} \underline{\text{tid=5daac306-c9d0-11e7-84c6-00000aacb362\&acdnat=1510728422}}$

During strain controlled testing, mean stresses tend to relax if there is sufficient reversed plastic strain

This relaxation is due to the presence of plastic deformation, and therefore, the rate or amount of relaxation depends on the magnitude of the plastic strain amplitude.

Influence of maximum stress

Note mean stress

The manner of accounting for mean stress effects is fundamentally different than applying relationships such as Goodman equations directly to nominal stress S. In particular, the mean stress used is the one that occurs locally, and its value is obtained by specifically analyzing the local plastic deformation.

There is more mean stress relaxation at larger strain amplitude due to larger plastic strains. Mean stress effect on fatigue life is smaller in the low cycle fatigue region and larger in the high cycle fatigue region.

Surface finish correction factor

$$b' = b + 0.159 \log m_s$$

Since fatigue cracks often nucleate early in the low-cycle region due to large plastic strains, there is usually little influence of surface finish at short lives. Conversely, there is more influence in the high cycle regime where elastic strain is dominant. Thus, only the elastic portion of the strain-life curve is modified to account for the surface finish effect. This is done by reducing the slop of the elastic strain-life curve, b.

$$\varepsilon_a = \frac{\sigma_f'}{E} (2N_f)^b + \varepsilon_f' (2N_f)^c$$

Morrow equation:

$$\sigma_{ar} = \frac{\sigma_a}{1 - \frac{\sigma_m}{\sigma_f'}}$$

$$\sigma_{ar} = \sigma_f'(2N_f)^b$$

$$\sigma_{ar} = \sigma_f'(2N_f)^b$$

$$\sigma_a = (\sigma'_f - \sigma_m)(2N_f)^b \longrightarrow \sigma_a = \sigma'_f \left[(1 - \frac{\sigma_m}{\sigma'_f})^{1/b}(2N_f) \right]^b$$

$$\varepsilon_a = \frac{\sigma_f'}{E} \left(1 - \frac{\sigma_m}{\sigma_f'} \right) (2N_f)^b + \varepsilon_f' \left(1 - \frac{\sigma_m}{\sigma_f'} \right)^{c/b} (2N_f)^c$$

Morrow equation:

$$\varepsilon_a = \frac{\sigma_f'}{E} \left(1 - \frac{\sigma_m}{\sigma_f'} \right) (2N_f)^b + \varepsilon_f' \left(1 - \frac{\sigma_m}{\sigma_f'} \right)^{c/b} (2N_f)^c$$

Modified version of Morrow equation:

$$\varepsilon_a = \frac{\sigma_f'}{E} \left(1 - \frac{\sigma_m}{\sigma_f'} \right) (2N_f)^b + \varepsilon_f'(2N_f)^c$$

Smith, Watson and Topper (SWT) equation:

$$\sigma_{max}\varepsilon_a = \frac{(\sigma_f')^2}{E} (2N_f)^{2b} + \sigma_f' \varepsilon_f' (2N_f)^{c+b}$$

Strain-life curve

Morrow mean stress correction

$$\varepsilon_a = \frac{\sigma_f}{E} (2N_f)^b + \varepsilon_f (2N_f)^c$$

$$\varepsilon_a = \frac{\left(\sigma_f' - \sigma_m\right)}{E} (2N_f)^b + \varepsilon_f' (2N_f)^c$$

Morrow mean stress correction

$$\varepsilon_a = \frac{\left(\sigma_f' - \sigma_m\right)}{E} (2N_f)^b + \varepsilon_f' (2N_f)^c$$

Smith-Watson-Topper (SWT) mean stress correction

$$\varepsilon_a = \frac{\sigma_f'}{E} (2N_f)^b + \varepsilon_f' (2N_f)^c$$

For general loading

$$\sigma_{\text{max}} = \sigma_m + \sigma_a$$

Note that for completely reversed loading

$$\sigma_{\text{max}} = \sigma_a = \sigma_f (2N_f)^b$$

SWT hypothesized that the product of strain amplitude and maximum stress is constant for a given fatigue life

$$\sigma_{\text{max}} \varepsilon_a = \frac{\left(\sigma_f^{'}\right)^2}{E} (2N_f)^{2b} + \sigma_f^{'} \varepsilon_f^{'} (2N_f)^{b+c}$$

The SWT parameter appears to give good results for a wide range of materials and is a good choice for general use. However, it may give non-conservative estimates for compressive mean stresses. The un-modified Marrow approach seems to work reasonably well for steels and in at least some cases give better results than the SWT parameter.

Smith-Watson-Topper (SWT) mean stress correction

$$\sigma_{\text{max}} \varepsilon_a = \frac{\left(\sigma_f^{'}\right)^2}{E} (2N_f)^{2b} + \sigma_f^{'} \varepsilon_f^{'} (2N_f)^{b+c}$$

Example

A shaft made of hot-rolled and normalized SAE 1045 steel is loaded in bending and has diameter change as shown in the below figure. The stress concentration factor for the fillet radius is K_t =3, and the member is repeatedly subjected to the history of net section nominal stress. How many times can this loading history be applied before fatigue cracking is expected?

		Tensile Properties			Cyclic σ-ε Curve			Strain-Life Curve				
Material	Source	σ_{θ}	σ_{tt}	$\hat{\sigma}_{fB}$	%~RA	E	H'	n'	σ_f'	b	6'	c
(a) Steels SAE 1015 (normalized)	(8)	228 (33.0)	415 (60.2)	726 (105)	68	207,000 (30,000)	1349 (196)	0.282	1020 (148)	-0,138	0.439	-0.513
Man-Ten ² (hot rolled)	(7)	322 (46.7)	557 (80.8)	990 (144)	67	203,000 (29,500)	1096 (159)	0.187	1089 (158)	-0.115	0.912	-0.606
RQC-100 (roller Q & T)	(2)	683 (99.0)	758 (110)	1186 (172)	64	200,000 (29,000)	903 (131)	0.0905	938 (136)	-0.0648	1.38	-0.704
SAE 1045 (HR & norm.)	(6)	382 (55.4)	621 (90,1)	985 (143)	51	202,000 (29,400)	1258 (182)	0.208	948 (137)	-0.092	0.260	-0.445
SAE 4142 (As Q, 670 HB)	(1)	1619 (235)	2450 (355)	2580 (375)	6	200,000 (29,000)	2810 (407)	0.040	2550 (370)	-0.0778	0.0032	-0.436
SAE 4142 (Q & T, 560 HB)	(1)	1688 (245)	2240 (325)	2650 (385)	27	207,000 (30,000)	4140 (600)	0.126	3410 (494)	-0.121	0.0732	-0.805
SAE 4142 (Q & T, 450 HB)	(1)	1584 (230)	1757 (255)	1998 (290)	42	207,000 (30,000)	2080 (302)	0.093	1937 (281)	-0.0762	0.706	-0.869
SAE 4142 (Q & T, 380 HB)	(1)	1378 (200)	1413 (205)	1826 (265)		207,000 (30,000)	2210 (321)	0.133	2140 (311)	-0.0944	0.637	-0.761
AISI 4340 ² (Aircraft Qual.)	(3)	1103 (160)	1172 (170)	1634 (237)	56	207,000 (30,000)	1655 (240)	0.131	1758 (255)	-0.0977	2.12	-0.774
AISI 4340 (409 HB)	(1)	1371 (199)	1468 (213)	1557 (226)	38	200,000 (29,000)	1910 (277)	0.123	1879 (273)	-0.0859	0.640	-0.636
Ausformed H-11 (660 HB)	(1)	2030 (295)	2580 (375)	3170 (460)	33	207,000 (30,000)	3475 (504)	0.059	3810 (553)	-0.0928	0.0743	-0.714
(b) Other Metals 2024-T351 Al	(1)	379 (55.0)	469 (68.0)	558 (81.0)	25	73,100 (10,600)	100000000000000000000000000000000000000	0.070	927 (134)	-0,113	0.409	-0.713
2024-T4 Al ³ (Prestrained)	(4)	303 (44.0)	476 (69.0)	631 (91.5)	35	73,100 (10,600)	738 (107)	0.080	1294 (188)	-0.142	0.327	-0.645
7075-T6 Al	(5)	469 (68.0)	578 (84)	744 (108)	33	71,000 (10,300)	977 (142)	0.106	1466 (213)	-0.143	0.262	-0.619
Ti-6Al-4V (soln. tr. & age)	(1)	1185 (172)	1233 (179)	1717 (249)	41	117,000 (17,000)	1772 (257)	0.106	2030 (295)	-0.104	0.841	-0.688
Inconel X (Ni base, annl.)	(1)	703 (102)	1213 (176)	1309 (190)	20	214,000 (31,000)	1855 (269)	0.120	2255 (327)	-0.117	1.16	-0.749

E = 202000 MPa H' = 1258 MPa n' = 0.208 $\sigma'_f = 948 MPa$ b = -0.092 $\varepsilon'_f = 0.0032$ c = -0.445

$$\sigma_{A}\varepsilon_{A} = \frac{(K_{t}S_{A})^{2}}{E} = \frac{(3\times350)^{2}}{202000} = 5.45$$

$$\varepsilon_{A} = \frac{\sigma_{A}}{E} + (\frac{\sigma_{A}}{H'})^{1/n'} = \frac{\sigma_{A}}{202000} + (\frac{\sigma_{A}}{1258})^{\frac{1}{0.208}}$$

$$\sigma_{A} = 474MPa$$

$$\varepsilon_{A} = 0.011513$$

$$\Delta \sigma_{XY} \Delta \varepsilon_{XY} = \frac{(K_t \Delta S_{XY})^2}{E}$$

$$\Delta \varepsilon_{XY} = \frac{\Delta \sigma_{XY}}{E} + 2(\frac{\Delta \sigma_{XY}}{2H'})^{1/n'} \rightarrow \Delta S_{XY} = \frac{1}{K_t} \sqrt{\Delta \sigma_{XY}^2 + 2E\Delta \sigma_{XY}(\frac{\Delta \sigma_{XY}}{2H'})^{1/n'}}$$

$$\Delta \sigma_{AB} \Delta \varepsilon_{AB} = \frac{(K_t \Delta S_{AB})^2}{E}$$

$$\Delta \sigma_{AB} = 701.5 MPa$$

$$\Delta \varepsilon_{AB} = 0.00778$$

$$\Delta \varepsilon_{AB} = \frac{\Delta \sigma_{AB}}{E} + 2(\frac{\Delta \sigma_{AB}}{2H'})^{1/n'} \rightarrow \Delta S_{AB} = \frac{1}{K_t} \sqrt{\Delta \sigma_{AB}^2 + 2E\Delta \sigma_{AB}(\frac{\Delta \sigma_{AB}}{2H'})^{1/n'}}$$

$$\sigma_B = \sigma_A$$
- $\Delta \sigma_{AB}$ $\sigma_B = -227.4$ $\varepsilon_B = \varepsilon_A$ - $\Delta \varepsilon_{AB}$ $\varepsilon_B = 0.003733$

$$\sigma_{m,AB} = rac{\sigma_B + \sigma_A}{2}$$
 $arepsilon_{a,AB} = rac{arepsilon_B + \sigma_A}{2}$

Load History			Calculated Values							
Point (Y)	S MPa	Origin (X)	Origin S MPa	Direction ψ	ΔS to Point	$\Delta\sigma$ MPa	$\Delta \varepsilon$	Stress σ , MPa	Strain ε	
\overline{A} B	350 0	_	350	+1 -1	 350	— 701.5	0.007780	474.0 -227.4	0.011513 0.003733	
C	240	A B	0	+1	240	573.5	0.007780	346.1	0.003733	
D E	-250 240	$A \\ D$	350 - 250	$-1 \\ +1$	600 490	890.9 818.1	0.018004 0.013075	-416.9 401.3	-0.006490 0.006585	
F	-160	E	240	-1	400	747.3	0.009539	-346.0	-0.002954	

$$\varepsilon_{a} = \frac{\sigma_{f}'}{E} \left(1 - \frac{\sigma_{m}}{\sigma_{f}'} \right) \left(2N_{f} \right)^{b} + \varepsilon_{f}' \left(1 - \frac{\sigma_{m}}{\sigma_{f}'} \right)^{c/b} \left(2N_{f} \right)^{c}$$

Cycle	N_{j}	ε_a	σ_m , MPa	N^*	Morrow N_{fj}	N_j/N_{fj}
B-C	50	0.002237	59.3	2.127×10^{5}	1.054×10^{5}	4.745×10^{-4}
E- F	1	0.004770	27.6	1.207×10^{4}	8.751×10^{3}	1.143×10^{-4}
A- D	1	0.009002	28.6	1.803×10^{3}	1.293×10^{3}	7.736×10^{-4}

 $\Sigma = 1.362 \times 10^{-3}$

The N_j and N_{fj} values are employed to calculate cycle ratios N_j/N_{fj} , and the sum of these is computed. Finally, the estimated number of repetitions to failure is obtained by substituting this sum into the Palmgren–Miner rule

$$B_f = 1 / \left[\sum \frac{N_j}{N_{fj}} \right]_{\text{one rep.}} = 1/1.362 \times 10^{-3} = 734 \text{ repetitions}$$

Another option is to use the SWT equation. In this case, the ε_a and σ_{max} values for each cycle give the product $\sigma_{max}\varepsilon_a$, which is then substituted into below equation to obtain the N_f value.

$$\sigma_{\text{max}} \varepsilon_a = \frac{\left(\sigma_f^{'}\right)^2}{E} \left(2N_f\right)^{2b} + \sigma_f^{'} \varepsilon_f^{'} \left(2N_f\right)^{b+c}$$

Cycle	N_{j}	ε_a	$\sigma_{ m max}$	$\sigma_{\max} \varepsilon_a$	SWT N_{fj}	N_j/N_{fj}
B-C	50	0.002237	346.1	0.7743	1.196×10^{5}	4.181×10^{-4}
E- F	1	0.004770	401.3	1.9140	1.017×10^{4}	9.829×10^{-5}
A- D	1	0.009002	474.0	4.2673	1.577×10^{3}	6.339×10^{-4}

$$\Sigma = 1.150 \times 10^{-3}$$

$$B_f = 1/\Sigma = 869 \text{ repetitions}$$

Readings – Course material

Course book

Mechanical Behavior of Materials Engineering Methods for Deformation, Fracture, and Fatigue, Norman E. Dowling

Section 14

Additional papers and reports given in MyCourses webpages

- Lee, K-S; Song, J-H. Estimation methods for strain-life fatigue properties from hardness, International Journal of Fatigue, 2006, 28:386-400
- Roessle, M.L.; Fatemi, A. Strain-controlled fatigue properties of steels and some simple approximations, International Journal of Fatigue, 2000, 22:495-511.

