Data Structures & Algorithms

Adil M. Khan Professor of Computer Science Innopolis University

Six ways to make people like you – Dale Carnegie

- 1. Become genuinely interested in other people
 - 2. Smile
- 3. A person's name is to that person the sweetest and the most important sound in any language

Recap

- Tree ADT
- BST
- Degenerate Tree
- Randomly Built BST

Objectives

- Balanced Binary Search Trees
- AVL Trees
- Insertions and Deletions in AVL Trees
 - Trinode Restructuring (Rotations)
- Height of AVL Trees

Binary Search Tree

- For a binary search tree with n nodes
 - Search and insertion time is $O(\log n)$
- However, this is only true is the tree is "balanced"
- That is, the "height" of the tree is balanced

Binary Search Tree

- In the worst case, insertion and searching time becomes O(n)
- Because the height is O(n)

Binary Search Tree

- In a dynamic tree, nodes are inserted and deleted over time
- So we must find a way to keep the height of a binary search tree always O(log n)
- To achieve this, the tree must always be balanced

"for any node, its left subtree should not be much higher then its right subtree, and vice-versa"

- Adelson-Velskii and Landis in 1962 introduced a binary tree structure that is balanced with respect to the heights of its subtree
- Insertions and deletions are made such that the tree always remain height-balanced

- Definition
- An empty tree is height-balanced
- If T is non-empty binary tree with left and right subtrees T₁ and T₂

T is balanced if and only if

- T_1 and T_2 are balanced, and
- $|height(T_1) height(T_2)| \le 1$

Recall: Binary Tree Terminology

Height of a tree T

•
$$h(T) = \begin{cases} 0, & T \text{ is empty} \\ 1 + \max(height(T_1), height(T_2)), \text{ otherwise} \end{cases}$$

where T_1 and T_2 are the subtrees of the root node

Recall: Binary Tree Terminology

- Height Numbering
 - Number all external (leaf) nodes 0
 - Number each internal node to be one more than the maximum of the heights of its children
 - Then number of the root node is the height of T

A Balanced Tree for the Months of the Year

A Balanced Tree for the Months of the Year

Operations in an AVL Tree

- The height of an AVL tree is $O(\log n)$
- Thus the **search** operation takes $O(\log n)$
 - Performed just like in a binary search tree since AVL tree is a binary search tree
- What we need to show is how to insert and remove in AVL trees while maintaining
 - the height balanced property
 - the binary search tree order

Insertion in an AVL Tree

- Starts as in a binary search tree
- Always done by expanding an external node

Insertion in an AVL Tree

 After inserting a new node into an AVL tree, the heightbalanced property of the AVL tree is very likely lost

Insertion in an AVL Tree

 Thus, to make it an AVL tree again, we need to restore the balance by restructuring the tree

Pictorial Notation

Let w be the new node, just inserted into an AVL

tree

- The next step is to search for the unbalanced node(s)
- > Check each node in the tree to see if it is balanced.
- Do you think this approach is efficient?

- Tip: after insertion of w, heights could change (increase) only for the ancestors of w
- Thus only ancestors of w could be unbalanced
- Search up the tree from w checking and correcting any unbalanced node

 Follow the path from w to the root

- Suppose the first unbalanced node is at position z
- This means that height difference between the left and the right subtree of z is more than 1

- Suppose the first unbalanced node is at position z
- This means that height difference between the left and the right subtree of z is more than 1
- In fact, it is exactly

- Suppose the first unbalanced node is at position z
- This means that height difference between the left and the right subtree of z is more than 1

In fact, it is exactly 2

- tree was balanced before insertion
- each insertion can change height only by a factor of 1
- w is in the higher subtree

- Two cases:
 - Right subtree is higher
 - Or, left subtree is higher

Let S be the higher subtree, with height p+2

Let y be the root of S

Let S be the higher subtree, with height p+2

Let y be the root of S

Refresher

- w is the new node
- <u>z</u> (ancestor of w) is the first unbalanced node
- **S** is the higher subtree of **z**
- y is the root of S

- Just checking!!
- What was the height of S before insertion?

- Just checking!!
- What was the S before insertion?

- What about this one!!
- What was the height of both subtrees of S before insertion?

So, both subtrees of S had height exactly p before insertion

y is balanced after insertion

Complete Picture

More Complete Picture :)

- Let's consider case 1
- Let R be the right subtree of y
- Let x be the root of R

Even More Complete Picture :)

- Finally, let's restructure the tree
- Case 1:

- Finally, let's restructure the tree
- Case 1:

What's the height differences at nodes **x**, **y** and **z** after restructuring?

- All four cases can be coded with the same algorithm called: Trinode Restructuring
- Trinode because there are three nodes

Trinode Restructuring

- In all four cases, out of the three nodes x, y, and z, make:
 - node with the middle key the new parent
 - smallest key node its left child
 - largest key node its right child
 - for the new parent, the previous subtree (if present) must be put in appropriate positions
 - Left subtree (if present) goes with the new left child
 - Right subtree (if present) goes with the new right child

Insertion in an AVL Tree

So can you fix this now?

Trinode Restructuring

- Takes O(logn) + O(1)
- No loops, no recursive calls, constant number of comparisons, and changes in parent-child relationships
- Only 1 trinode restructuring is needed per insertion to restore the height balance property

Deletion

- Deletion from an AVL tress may violate the height-balance property, too
- In this case, procedure for restructuring the tree to restore the balance is the same as in the case of insertion, with some changes
 - how to choose x, y, and z
 - repeated restructuring might be needed, max $O(\log n)$
- For further details, please read section 11.3.1 of your textbooks

Analysis

- Ok, so we have learned how to keep a binary search tree always balanced (AVL tree) after insertions and deletions
- But why is this important?
- Recall that all we wanted was a way to make and keep the height of a tree with n nodes O(log n)
- Is the height of an AVL tree $O(\log n)$?

Proposition: The height of an AVL tree storing n entries is O(log n)

Let T be an AVL tree of height h. T can be visualized as

Let n(h) be the minimum number of internal nodes in an AVL tree of height h

we know,
$$n(1) = 1$$
 and $n(2) = 2$

For
$$h >= 3$$

 $n(h) = 1 + n(h-1) + n(h-2)$

$$n(h) = 1 + n(h-1) + n(h-2)$$

Now that we know this, the rest is just algebra

According to the properties of Fibonacci progressions

$$n(h) > n(h-1)$$
, so $n(h-1) > n(h-2)$

By replacing n(h-1) with n(h-2) and dropping the 1, we get

$$n(h) > 2n(h-2)$$

$$n(h) > 2n(h-2)$$

We can stop at this point. We have shown that n(h) at least doubles when h goes up by 2.

$$n(h) > 2n(h-2)$$

We can stop at this point. We have shown that n(h) at least doubles when h goes up by 2. This says that n(h) is exponential in h, and hence h is logarithmic in h

$$n(h) > 2n(h-2)$$

We can stop at this point. We have shown that n(h) at least doubles when h goes up by 2. This says that n(h) is exponential in h, and hence h is logarithmic in h

But let's continue

$$n(h) > 2 (2n(h-4)) = 2^2n(h-4)$$

Thus,

For any
$$i > 0$$
, $n(h) > 2^{i} n(h - 2i)$

Let's **get rid of** *i* **by expressing it in terms of** h, but choose a value that results in making h - 2i either 1 or 2.

Thus,

For any
$$i > 0$$
, $n(h) > 2^{i} n(h - 2i)$

Let's **get rid of** i **by expressing it in terms of** h, but choose a value that results in making h - 2i either 1 or 2.

It is because we know the values for n(1) and n(2)

That is, let

$$i = h/2 - 1$$

Thus,

For any
$$i > 0, n(h) > 2^{i} n(h-2i)$$

Let's **get rid of** i by expressing it in terms of h, but choose a value that results in making h - 2i either 1 or 2.

It is because we know the values for n(1) and n(2)

That is, let

$$i = h/2 - 1$$

$$n(h) > 2^{h/2-1}n(h-2i) = 2^{h/2-1}$$

$$n(h) > 2^{h/2-1}n(h-2i) = 2^{h/2-1}$$

By taking logarithmic of both sides

$$\log(n(h)) > (h/2) - 1 \text{ or}$$

$$h < 2\log(n(h)) + 2$$
Or

 $h < \log(n)$

Did we achieve today's objectives?

- Balanced Binary Search Trees
- AVL Trees
- Insertions and Deletions in AVL Trees
 - Trinode Restructuring (Rotations)
- Height of AVL Trees

Home Work!

- Read about AVL trees in Data Structures & Algo. In Java
 - Understand how "deletions work in AVL trees
- Solve some examples on both insertions and deletions in AVL trees
- Read about Number of different binary trees in Introduction to Algorithms