lab2_danhe178_rical803

Daniel Herzegh & Richard Friberg 2017-10-03

Uppgift 1 Likelihoodfunktioner

```
set.seed(4711)
x1 \leftarrow rgamma(n = 10, shape = 4, scale = 1)
x2 \leftarrow rgamma(n = 100, shape = 4, scale = 1)
a)
llgamma <- function(x, alpha, beta) {</pre>
  return(length(x) * (alpha * log(beta) - lgamma(alpha)) + (alpha -1) * sum(log(x)) - beta * sum(x))
}
b)
beta_tendraws <- c()</pre>
beta_hundreddraws <- c()</pre>
steps <- c()
i = 0.01
while(i <= 3) {
  beta_tendraws <- c(beta_tendraws, llgamma(x1, alpha = 4, beta = i))</pre>
  beta_hundreddraws <- c(beta_hundreddraws, llgamma(x2, alpha = 4, beta = i))
  steps <- c(steps, i)</pre>
  i \leftarrow i + 0.01
}
# plot for ten draws
plot(steps, beta_tendraws)
```


plot for hundred draws
plot(steps, beta_hundreddraws)


```
findMax <- function(vect) {
  i <- NULL
  currentMax <- -Inf
  x <- 1
  while (x < length(vect)) {
   if (vect[x] > currentMax) {
      currentMax <- vect[x]</pre>
```

```
i <- x
}
    x <- x + 1
}
return(i/100)
}</pre>
```

 $\hbox{\it\# Unders\"{o}ker och returnerar vilket betav\"{a}rde som loglikelihoodfunktionen f\"{a}r sitt maxv\"{a}rde p\"{a} find \hbox{\it Max} (beta_tendraws)}$

[1] 0.77

```
findMax(beta_hundreddraws)
```

```
## [1] 0.96
```

Det varierar vilket av de upprepade värdena för beta som ger maximala värdet på loglikelihoodfunktionen, men ökar man antalet dragningar går denna siffra mot 1.0.

c)

```
alpha_tendraws <- c()
alpha_hundreddraws <- c()
steps <- c()

i = 0.01
while(i <= 10) {
    alpha_tendraws <- c(alpha_tendraws, llgamma(x1, alpha = i, beta = 1))
    alpha_hundreddraws <- c(alpha_hundreddraws, llgamma(x2, alpha = i, beta = 1))
    steps <- c(steps, i)
    i <- i + 0.01
}</pre>
```

```
# plot for ten draws
plot(steps, alpha_tendraws)
```


plot for hundred draws
plot(steps, alpha_hundreddraws)

Undersöker och returnerar vilket alphavärde som loglikelihoodfunktionen får sitt maxvärde på findMax(alpha_tendraws)

[1] 5

findMax(alpha_hundreddraws)

[1] 4.13

Det varierar vilket av de upprepade värdena för alpha som ger maximala värdet på loglikelihoodfunktionen, men ökar man antalet dragningar går denna siffra mot 4.0.

d)

Härledning av log-likelihood för normalfördelning:

$$L(\mu, \sigma^{2}) = \prod_{j=1}^{n} f(x_{j} | \mu, \sigma^{2}) = \prod_{j=1}^{n} (2\pi\sigma^{2})^{-\frac{1}{2}} e\left(-\frac{1}{2} \frac{(x_{j} - \mu)^{2}}{\sigma^{2}}\right)$$

$$= (2\pi\sigma^{2})^{-\frac{1}{2}} e\left(-\frac{1}{2\sigma^{2}} \frac{\mathcal{E}}{\mathcal{E}} (x_{j} - \mu)^{2}\right)$$
likelihood for normalfordeling

Harledning as log-likelihood for normaldishibation:

likelihood-funktion for normaldishibation: $\ln \left[(2\pi\sigma^2)^{-N/2} \exp\left(-\frac{1}{2\sigma^2} \mathop{\mathcal{E}}_{(X; -\mu)^2}\right) \right] =$ $= \ln \left((2\pi\sigma^2)^{-N/2} \right) - \frac{1}{2\sigma^2} \mathop{\mathcal{E}}_{j=1}^n (X_j - \mu)^2$ $= -\frac{n}{2} \left(n \left(2\pi\sigma^2 \right) - \frac{1}{2\sigma^2} \mathop{\mathcal{E}}_{j=1}^n (X_j - \mu)^2 \right)$ $= -\frac{n}{2} \left(n \left(2\pi\sigma^2 \right) - \frac{n}{2} \ln(\sigma^2) - \frac{1}{2\sigma^2} \mathop{\mathcal{E}}_{j=1}^n (X_j - \mu)^2 \right)$ $= -\frac{n}{2} \left(n \left(2\pi\sigma^2 \right) - \frac{n}{2} \ln(\sigma^2) - \frac{1}{2\sigma^2} \mathop{\mathcal{E}}_{j=1}^n (X_j - \mu)^2 \right)$

```
llnormal <- function(x, mu, sigma2) {
    xsum <- sum((x - mu)**2)
    return(-length(x)/2*log(2*pi) - length(x)/2 * log(sigma2) - 1/(2 * sigma2) * xsum)
}
llnormal(x = x1, mu = 2, sigma2 = 1) #Fråga om okej</pre>
```

[1] -87.25743

e)

```
mu_tendraws <- c()
mu_hundreddraws <- c()
steps <- c()

i = 0.01
while(i <= 10) {
    mu_tendraws <- c(mu_tendraws, llnormal(x1, mu = i, sigma2 = 1))
    mu_hundreddraws <- c(mu_hundreddraws, llnormal(x2, mu = i, sigma2 = 1))
    steps <- c(steps, i)
    i <- i + 0.01
}</pre>
```

plot for ten draws plot(steps, mu_tendraws)


```
# plot for hundred draws
plot(steps, mu_hundreddraws)
```



```
mu_max_ten <- findMax(mu_tendraws)
alpha_max_ten <- findMax(alpha_tendraws)
beta_max_ten <- findMax(beta_tendraws)
hist(x1, probability = TRUE)
xfit <- seq(0, 10, 0.01)
yfitgamma <- dgamma(xfit, shape = alpha_max_ten, scale = beta_max_ten)
lines(xfit, yfitgamma, col="blue", lwd=2)
yfitnorm <- dnorm(xfit, mean = mu_max_ten, sd = 1)
lines(xfit, yfitnorm, col="red", lwd = 2)</pre>
```

Histogram of x1


```
mu_max_hundred <- findMax(mu_hundreddraws)
alpha_max_hundred <- findMax(alpha_hundreddraws)
beta_max_hundred <- findMax(beta_hundreddraws)
hist(x2, probability = TRUE)
xfit <- seq(0, 10, 0.01)
yfitgamma <- dgamma(xfit, shape = alpha_max_hundred, scale = beta_max_hundred)
lines(xfit, yfitgamma, col="blue", lwd=2)
yfitnorm <- dnorm(xfit, mean = mu_max_hundred, sd = 1)
lines(xfit, yfitnorm, col="red", lwd = 2)</pre>
```


Gammafördelningen tycks passa datamaterialet bäst.

Uppgift 2 Punktskattning med MLE i en gammafördelning

```
gamma_beta_mle <- function(x, alpha) {
   return(length(x)*alpha*1/sum(x))
}
gamma_beta_mle(x1, 4)

## [1] 0.7683785

gamma_beta_mle(x2, 4)</pre>
```

[1] 0.9619473

Vi testade att öka antalet dragningar och drar slutsatsen att estimatet går mot 1.0.

Uppgift 3 Punktskattning med MLE i en normalfördelning

a)

```
norm_mu_mle <- function(x) {</pre>
  return(sum(x)/length(x))
}
norm_sigma2_mle <- function(x) {</pre>
  mean_x <- norm_mu_mle(x)</pre>
  sumhelp \leftarrow sum((x - mean_x)**2)
  return(sumhelp/length(x))
}
test_x <- 1:10
norm_mu_mle(x = test_x)
## [1] 5.5
norm_sigma2_mle(x = test_x)
## [1] 8.25
b)
set.seed(42)
\# Skattning med n = 10
y1 \leftarrow rnorm(n = 10, mean = 10, sd = 2)
norm_mu_mle(x = y1)
## [1] 11.09459
norm_sigma2_mle(x = y1)
## [1] 2.512709
\# Skattning med n = 10000
y2 \leftarrow rnorm(n = 10000, mean = 10, sd = 2)
norm_mu_mle(x = y2)
## [1] 9.9762
norm_sigma2_mle(x = y2)
```

Desto större antal dragningar som görs, desto närmare kommer vi mu och sigma2, med respektive norm_mu_mle och norm_sigma2_mle. Detta följer av centralagärnsvärdessatsen som ger oss ett y som går mot normalfördelning och därmed tydligare väntevärde samt varians.

[1] 4.048198

Uppgift 4 Samplingfördelningen för Bmle, MUmle och sigma2mle

a)

```
beta1_mle <- c(1:2000)
beta2_mle <- c(1:2000)
mu1 <- c(1:2000)
mu2 <- c(1:2000)
sigma1 <- c(1:2000)
sigma2 <- c(1:2000)
i <- 1
while (i \leq 2000) {
  x1 \leftarrow rgamma(n = 10, shape = 4, rate = 1)
  x2 \leftarrow rgamma(n = 10000, shape = 4, rate = 1)
  beta1_mle[i] <- gamma_beta_mle(x = x1, alpha = 4)</pre>
  beta2_mle[i] <- gamma_beta_mle(x = x2, alpha = 4)
  y1 \leftarrow rnorm(n = 10, mean = 10, sd = 2)
  y2 \leftarrow rnorm(n = 10000, mean = 10, sd = 2)
  mu1[i] \leftarrow norm_mu_mle(x = y1)
  mu2[i] \leftarrow norm_mu_mle(x = y2)
  sigma1[i] <- norm_sigma2_mle(x = y1)</pre>
  sigma2[i] <- norm_sigma2_mle(x = y2)</pre>
  i <- i + 1
}
```

hist(beta1_mle)

Histogram of beta1_mle

hist(beta2_mle)

Histogram of beta2_mle

hist(mu1)

Histogram of mu1

hist(mu2)

Histogram of mu2

hist(sigma1)

Histogram of sigma1

Histogram of sigma2

som tidigare ser vi att ju fler dragningar så närmar sig histogrammen en normalfördelning vilket följer av den centrala gränsvärdessatsen.

Precis

Uppgift 5 Log-likelihoodfunktionen för betafördelning

a)

```
llbeta <- function(par, x){
   sum1 <- (par[1]-1)*sum(log(x))
   sum2 <- (par[2]-1)*sum(log(1-x))
   sum3 <- length(x)*log(gamma(par[1])*gamma(par[2])/gamma(par[1] + par[2]))
   return((sum1 + sum2 - sum3)*-1) # <- Varför multiplicera med -1??
}
llbeta(par = c(2, 2), x = c(0.01, 0.5, 0.99))</pre>
```

[1] 5.241457

b)

```
x3 <- rbeta(100, 0.2, 2)
hist(x3)
```

Figure 1: Härledning av log-likelihood för betafördelning

Histogram of x3

c)

```
opt_res <- optim(par= c(0.2, 2), fn = llbeta, x=x3, upper=Inf,method ="L-BFGS-B", lower =
opt_res$par
## [1] 0.2008169 1.8445239</pre>
```

d)

hist(alpha_mle)

```
alpha_mle <- c(1:2000)
beta_mle <- c(1:2000)
i <- 1
while(i <= 2000) {
    x3 <- rbeta(100, 0.2, 2)
    opt_res <- optim(par= c(0.2, 2), fn = llbeta, x=x3, upper=Inf,method ="L-BFGS-B", lower = .Machine$dot
    alpha_mle[i] <- opt_res$par[1]
    beta_mle[i] <- opt_res$par[2]
    i <- i + 1
}</pre>
```

Histogram of alpha_mle

hist(beta_mle)

Histogram of beta_mle

