Total No. of Questions : 6]	SEAT No. :
P5800	[Total No. of Pages : 2

B.E./Insem./Oct.-515

B.E. (Mechanical)

CAD/CAM & AUTOMATION (2015 Pattern) (Semester - I) Time: 1 Hour] IMax. Marks: 30

- Instructions to the candidates:
 - Answer Q1 or Q2, Q3 or Q4, Q5 or Q6. 1)
 - Figures to the right side indicate full marks. 2)
 - Neat diagrams must be drawn wherever necessary. 3)
 - Use of scientific calculator allowed. 4)
- A Line **PQ** with P(4, 6), and Q(20, 30) is rotated by 30° CCW about **01**) a) point P. Derive concatenated transformation matrix and find new coordinates of points. [6]
 - Explain need of for mapping of geometric models. b)

OR

- Q2) Find the coordinates of triangle having vertex at A(6,10), B(6,25) and C(16,25)when reflected along a line having Y intercept 4 and inclined at $+20^{\circ}$ with X axis. Find concatenated matrix and transformed coordinates of triangle with graphical representation.
- *Q3*) a) A line drawn from point $P_1(12,3,9)$ and has length of 10 units. The unit direction vector is $0.2i \rightarrow 0.8j + 0.566k$. Determine endpoint of line. [4]
 - b) Explain, in brief

[6]

[4]

- Geometry and Topology with suitable example, i)
- Coons Patch Surface. ii)

OR

- Determine the center point and radius of a circle passing through two **Q4**) a) diametrically opposite points $P_1(10,20)$ and $P_2(25,50)$. Determine parametric equation of circle and coordinates of four equispaced points in first quadrant. [6]
 - Explain B-spline Surfaces. b)

[4]

Q5) The stepped bar shown in **figure 1** is loaded axially by load P = 50kN, the modulus of elasticity of the bar is 0.7×10⁵ N/mm². Determine nodal displacement, elemental stress and reaction at support. [10]

Figure 1: Q.5

OR

For the Axially Loaded Spring System as shown in figure 2, determine **Q6)** a) (i) Nodal displacements, (ii) Deformation of each spring. [6]

Figure 2 : Q 6(a)

Discuss Strain Displacement relations in FEA. b)