

IMPLEMENTASI PENGENALAN IRIS MATA MENGGUNAKAN METODE SUPPORT VECTOR MACHINES DAN HAMMING DISTANCE

Penyusun Tugas Akhir:

Afdhal Basith Anugrah

(5112 100 153)

Dosen Pembimbing:

Dr. Eng. Nanik Suciati, S.Kom, M.Kom

Dr. Eng. Chastine Fatichah, S.Kom, M.Kom

PENDAHULUAN

RANCANGAN & IMPLEMENTASI

SKENARIO UJI COBA

KESIMPULAN & SARAN

LATAR BELAKANG

- Teknologi biometrik digunakan untuk mengenali seseorang melalui ciri unik yang dimiliki orang tersebut
- Iris mata manusia unik dan tidak berubah dari waktu ke waktu
- Karakterisik iris bisa dijadikan sebagai teknologi biometrik untuk mengidentifikasi individu

RUMUSAN MASALAH

- Bagaimana melakukan identifikasi ROI iris pada citra mata?
- Bagaimana melakukan pengklasifikasian dengan Support Vector Machines pada pengenalan iris mata
- Bagaimana melakukan dengan *Hamming distance* pada pengenalan iris mata?

BATASAN MASALAH

- Implementasi dilakukan dengan menggunkana Matlab
- Data yang digunakan adalah data citra mata yang berasal dari database Chinese Academy of Sciences - Institute of Automation (CASIA) v1.0 (http://biometrics.idealtest.org)
- Database citra memiliki ukuran 320 x 280 piksel dengan format grayscale

TUJUAN

- Membandingkan dua buah metode klasifikasi pengenalan iris mata dengan melihat masing-masing akurasinya
- Merancang perangkat lunak yang bisa melakukan pengenalan seseorang melalui iris mata

PENDAHULUAN

RANCANGAN & IMPLEMENTASI

SKENARIO UJI COBA

KESIMPULAN & SARAN

ANATOMI MATA

CITRA MATA CASIA v1.0

- Berekstensi .bmp dengan basis warna grayscale
- Berdimensi 320 x 280
- Berjumlah total 756 citra mata dari 108 subjek/kelas

DIAGRAM ALIR PROSES UTAMA

DIAGRAM ALIR PROSES UTAMA

DIAGRAM ALIR PRE-PROCESSING

DETEKSI TEPI CANNY

- Mendeteksi batas tepi yang terdapat pada citra mata
- · Mendeteksi lingkaran iris dan pupil

Citra asli

Deteksi tepi

DETEKSI BATAS PUPIL & IRIS

- · Menggunakan citra mata hasil deteksi tepi
- Menggunakan Circular Hough Transform
- Mendeteksi lingkaran pada iris dan pupil
- Mencari titik pusat lingkaran dan radius dengan menggunakan persamaan

$$(x_c - a)^2 + (y_c - b)^2 = r^2$$

DETEKSI BATAS PUPIL & IRIS

Citra mata

Hasil deteksi pupil & iris

PEMISAHAN NOISE

- Bulu mata dan kelopak mata yang berada pada daerah iris
- Menandai noise tersebut untuk nantinya nilai pikselnya diganti
- Noise yang berhasil terdeteksi akan diubah nilai pikselnya menjadi NaN

PEMISAHAN NOISE

Citra mata

Hasil deteksi pupil & iris

Menandai noise

NORMALISASI IRIS

- Menggunakan Daugmann Rubber Sheet Model
- Membuat dimensi iris menjadi konsisten dan mengatasi pelebaran pada pupil
- Mengubah ROI iris dari bidang Kartesian menjadi bidang Polar menggunakan persamaan

$$I(x(r,\theta),y(r,\theta)) \to I(r,\theta)$$

dimana

$$x(r,\theta) = (1-r)x_p(\theta) + rx_i(\theta)$$

$$y(r,\theta) = (1-r)y_p(\theta) + ry_i(\theta)$$

NORMALISASI IRIS

NORMALISASI IRIS

 Mengubah piksel noise yang sudah ditandai menjadi rata-rata piksel iris

Citra iris dengan noise yang ditandai

18 July 2016

TUGAS AKHIR - KI141502

DIAGRAM ALIR PROSES UTAMA

DIAGRAM ALIR EKSTRAKSI FITUR

18 July 2016

TUGAS AKHIR - KI141502

WAVELET HAAR

 Menggunakan wavelet Haar dalam melakukan dekomposisi pada citra iris ternormalisasi

WAVELET HAAR

- Tiap level dekomposisi merupakan hasil dari sub bidang aproksimasi pada level sebelumnya
- Koefisien dari sub bidang aproksimasi pada hasil dekomposisi menjadi vektor fitur

Citra iris ternormalisasi

Sub bidang aproksimasi

LOG-GABOR FILTER

- Citra iris ternormalisasi dikonvulsikan dengan filter log-Gabor
- Filter log-Gabor tersebut dibuat dengan menggunakan persamaan.

$$G(f) = \exp\left(-\frac{\left(\log\left(\frac{f}{f_0}\right)^2\right)}{2(\log(\sigma)^2)}\right)$$

- dimana :
 - *f* = nilai frekuensi
 - σ = standar deviasi

LOG-GABOR FILTER

- Pengkonvulsian dilakukan dalam domain frekuensi
- Citra iris ternormalisasi terlebih dahulu diubah ke dalam domain frekuensi kemudian dikembalikan ke domain spasial
- Hasil akhirnya adalah vektor fitur biner (1 atau 0)

EKSTRAKSI FITUR

DIAGRAM ALIR PROSES UTAMA

DIAGRAM ALIR KLASIFIKASI

Support Vector Machine

HAMMING DISTANCE

Input Vektor Fitur

- Data Latih
- Data Uji

Hitung Distance

• $HD = \frac{1}{N} \sum_{j=1}^{N} X_j (XOR) Y_j$

Hasil

 Kelas data uji dengan distance terkecil

Sorting Jarak

 Mengurutkan dari terkecil hingga terbesar

EVALUASI HASIL

PENDAHULUAN

RANCANGAN & IMPLEMENTASI

SKENARIO UJI COBA

KESIMPULAN & SARAN

DATA UJI DAN DATA LATIH

sesi 1 sesi 2

- Berjumlah total 756 citra mata dari 108 kelas/mata
 - 432 (data latih)
 - 324 (data uji)
- Perhitungan Akurasi

SKENARIO 1 (SVM)

- Variasi level dekomposisi Haar Wavelet
 - Level 1
 - Level 2
 - Level 3
 - Level 4
- C = 1
- Kernel = RBF

SKENARIO 1 (SVM)

 Hasil terbaik yang didapatkan ketika mengunakan level dekomposisi level 2

Level Dekomposisi	Akurasi (%)	Waktu Eksekusi (s)
1	91.98	165.36
2	91.98	39.82
3	89.81	8.60
4	85.19	1.84

SKENARIO 2 (SVM)

- Dekomposisi Haar Wavelet level 2
- Variasi nilai C pada SVM
 - 1
 - 10
 - 20
 - 30
 - 40
- Kernel = RBF

SKENARIO 2 (SVM)

• Akurasi terbaik yang didapatkan ketika nilai C = 30

Level Dekomposisi wavelet	С	Akurasi (%)
2	1	91.98
	10	91.98
	20	91.98
	30	92.28
	40	91.98

SKENARIO 3 (SVM)

- Dekomposisi Haar Wavelet level 2
- C = 30
- Variasi Kernel
 - Linear
 - Polynomial 2
 - Polynomial 3
 - RBF

SKENARIO 3 (SVM)

• Akurasi terbaik yang didapatkan ketika Kernel = RBF

Level Dekomposisi wavelet	С	Kernel	Akurasi (%)
2	30	Linear	91.98
		Polynomial 2	91.98
		Polynomial 3	91.67
		RBF	92.28

SKENARIO 4 (Hamming Distance)

- Klasifikasi Hamming Distance
- Variasi nilai standar deviasi pada filter log-Gabor
 - 0.2
 - 0.4
 - 0.6
 - 0.8

SKENARIO 4 (Hamming Distance)

• Akurasi terbaik yang didapatkan ketika standar deviasi = 0.2

Standar Deviasi	Akurasi (%)	Waktu Eksekusi (s)
0.2	91.67	279.52
0.4	86.73	280.32
0.6	82.41	278.93
0.8	76.23	281.84

SKENARIO 5 (Hamming Distance)

- Klasifikasi Hamming Distance
- Variasi level dekomposisi Haar Wavelet
 - Level 1
 - Level 2
 - Level 3
 - Level 4

SKENARIO 5 (Hamming Distance)

 Hasil terbaik yang didapatkan ketika mengunakan level dekomposisi level 1

Level Dekomposisi	Akurasi (%)	Waktu Eksekusi (s)
1	83.02	311.15
2	78.09	76.74
3	75.00	17.88
4	64.81	2.52

SKENARIO 6 (SVM)

- Variasi nilai standar deviasi pada filter log-Gabor
 - 0.2
 - 0.4
 - 0.6
 - 0.8
- C = 1
- Kernel = RBF

SKENARIO 6 (SVM)

• Hasil terbaik yang didapatkan ketika nilai standar deviasi = 0.2

Standar deviasi	Akurasi (%)	Waktu Eksekusi (s)
0.2	89.51	45.96
0.4	81.48	46.77
0.6	73.15	45.90
0.8	55.86	47.45

SKENARIO 7 (SVM)

- Standar deviasi = 0.2
- Variasi nilai C pada SVM
 - 1
 - 10
 - 20
 - 30
 - 40
- Kernel = RBF

SKENARIO 7 (SVM)

• Hasil terbaik yang didapatkan ketika nilai C = 1

Standar Deviasi	С	Akurasi (%)
0.2	1	89.51
	10	88.58
	20	88.27
	30	88.27
	40	88.27

SKENARIO 8 (SVM)

- Standar deviasi = 0.2
- C = 30
- Variasi Kernel
 - Linear
 - Polynomial 2
 - Polynomial 3
 - RBF

SKENARIO 8 (SVM)

• Akurasi terbaik yang didapatkan ketika Kernel = RBF

Standar Deviasi	С	Kernel	Akurasi (%)
0.2	Linear	87.96	
	1	Polynomial 2	88.89
		Polynomial 3	89.20
		RBF	89.51

ANALISIS HASIL UJI COBA

- Klasifikasi *Support Vector Machines* dengan menggunakan *Wavelet Haar*
- Klasifikasi *Hamming distance* dengan menggunakan *log-Gabor filter*

Ekstraksi Fitur	Klasifikasi	Akurasi (%)
Wavelet Haar	SVM	92.28
Wavelet Haar	Hamming distance	83.02
Log-Gabor Filter	SVM	89.51
Log-Gabor Filter	Hamming distance	91.67

PENDAHULUAN

RANCANGAN & IMPLEMENTASI

SKENARIO UJI COBA

KESIMPULAN & SARAN

KESIMPULAN

- Metode pengenalan dengan classifier dan perhitungan jarak memberikan hasil yang cukup baik
- SVM memberikan hasil lebih baik daripada Hamming distance
- Kernel yang menghasilkan akurasi terbaik adalah RBF
- Akurasi tertinggi yaitu 92.28%, menggunakan wavelet Haar dekomposisi level 2 dan menggunakan klasifikasi support vector machines dengan nilai C = 30 dengan kernel RBF

SARAN

- Pengembangan aplikasi ke dalam bidang iridologi untuk mendeteksi kelainan organ dalam
- Mengembangkan sistem yang dapat mengenali iris berdasarkan warna dan tekstur.

Terima Kasih