

Electrical Circuits for Engineers (EC1000)

Lecture-2 (a) (Chapter-2) Basic Laws

Overview

- Ohm's law
- Kirchoff's law
- Network topology
- Series and Parallel connection
- Verification of Ohm's law and Kirchoff's law
- Practice problems

Ohm's law

Ohm's law states that "The voltage 'V' across a resistor is directly proportional to the current 'I' flowing through the resistor".

$$V \alpha I$$

$$V = I R$$

Some expressions for power

$$P = \frac{V^2}{R}$$

$$P = I^2 R$$

$$P = VI$$

Open circuit

An open circuit is a circuit element with resistance approaching infinity.

$$R = \frac{V}{I}$$

Short circuit

A short circuit is a circuit element with resistance approaching zero.

Network topology

Node

A node is the point of connection between two or more branches.

Branch

A branch represents a single element such as a voltage source or a resistor.

1. How many nodes and branches does the below circuit have?

Loop

A loop is any closed path in a circuit.

Mesh

A mesh is the most elementary form of a loop and cannot be further divided into other loops.

Kirchhoff's current law (KCL)

Current law states that the "Algebraic sum of currents entering a node (a closed bath) is zero".

i.e Total current entering a node is exactly equal to the total current leaving the same node.

Kirchoff voltage law

It states that the "Algebraic sum of all voltages around a closed path (loop) is zero".

$$\Sigma v = 0$$

i.e. Sum of voltage drops=Sum of voltages rises

$$-V_{ab} + V_1 + V_2 = 0$$

$$V_{ab} = V_1 + V_2$$

$$-V_{ab} + V_1 + V_2 - V_3 = 0$$

$$V_{ab} = V_1 + V_2 - V_3$$

 $I_T = I_1 - I_2 + I_3$

Find voltages v₁ and v₂ using KVL

$$v_1 = 2i, \qquad v_2 = -3i$$

$$-20 + v_1 - v_2 = 0$$

Ans: $v_1 = 8 \text{ V}, v_2 = -12 \text{ V}$

Find V₀ for the below circuit

Ans: $v_0 = 48 \text{ V}$

Parallel connection

Series connection

Resistance in Series

$$v_1=iR_1, \qquad v_2=iR_2$$

$$\frac{i}{v} = \frac{1}{R_1 + R_2}$$

$$-v + v_1 + v_2 = 0$$

$$\frac{1}{R} = \frac{1}{R_1 + R_2}$$

$$v = v_1 + v_2 = i(R_1 + R_2)$$

$$i = \frac{v}{R_1 + R_2}$$

$$R_{\rm eq} = R_1 + R_2$$

Voltage division rule

$$i = \frac{v}{R_1 + R_2}$$

$$v_1 = iR_1,$$
 $V_1 = \frac{R_1}{R_1 + R_2}V$ $v_2 = iR_2$ $V_2 = \frac{R_2}{R_1 + R_2}V$

Parallel Connection & Current Division

$$\frac{1}{R_{\rm eq}} = \frac{1}{R_1} + \frac{1}{R_2}$$

$$\frac{1}{R_{\rm eq}} = \frac{R_1 + R_2}{R_1 R_2}$$

$$R_{\rm eq} = \frac{R_1 R_2}{R_1 + R_2}$$

$$R_{\text{eq}} = \frac{R_1 R_2}{R_1 + R_2} \qquad i_1 = \frac{R_2 i}{R_1 + R_2}, \qquad i_2 = \frac{R_1 i}{R_1 + R_2} \qquad \frac{1}{R_{\text{eq}}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N}$$

$$v = i_1 R_1 = i_2 R_2$$

$$i_1 = \frac{v}{R_1}, \qquad i_2 = \frac{v}{R_2}$$

Applying KCL at node a gives the total current i as

$$i = i_1 + i_2$$

$$i = \frac{v}{R_1} + \frac{v}{R_2} = v\left(\frac{1}{R_1} + \frac{1}{R_2}\right) = \frac{v}{R_{\text{eq}}}$$

$$\frac{1}{R_{\rm eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N}$$

Find R_{eq}

$$6\Omega \parallel 3\Omega = \frac{6\times 3}{6+3} = 2\Omega$$

$$1\Omega + 5\Omega = 6\Omega$$

$$R_{\rm eq} = 4 \Omega + 2.4 \Omega + 8 \Omega = 14.4 \Omega$$

1. Find R_{eq}

2. Find R_{eq}

3. Find R_{ab}

Ans: 10 Ω

4. Find G_{eq}

Ans: 10 S

Find i_0 and v_0 in the circuit shown here. Calculate the power dissipated in the 3 Ω resistor.

Ans: 4/3 A, 4 V, and 5.33 W

Find v_1 and v_2 in the circuit shown here. Also calculate i_1 and i_2 , and power dissipated in 12 Ω and 40 Ω resistors.

Answer: $v_1 = 10 \text{ V}$, $i_1 = 833.3 \text{ mA}$, $p_1 = 8.333 \text{ W}$, $v_2 = 20 \text{ V}$, $i_2 = 500 \text{ mA}$, $p_2 = 10 \text{ W}$.

Practical Problems

Find the voltage V_{AB}

Find the current I

Thank You