MPOS-STD2 EV KIT User Guide

Ref: UG25H10
Revision A

Maxim Integrated PROPRIETARY – CONFIDENTIALITY

This document contains confidential information that is the strict proprietary of Maxim Integrated, and may be disclosed only under the writing permission of Maxim Integrated itself. Any copy, reproduction, modification, use or disclose of the whole or only part of this document if not expressly authorized by Maxim Integrated is prohibited. This information is protected under trade secret, unfair competition and copying laws. This information has been provided under a Non Disclosure Agreement. Violations thereof may result in criminalities and fines.

Maxim Integrated reserves the right to change the information contained in this document to improve design, description or otherwise. Maxim Integrated does not assume any liability arising out of the use or application of this information, or of any error of omission in such information. Except if expressly provided by Maxim Integrated in any written license agreement, the furnishing of this document does not give recipient any license to any intellectual property rights, including any patent rights covering the information in this document.

All trademarks referred to this document are the property of their respective owners.

Revision History

Rev A	2014-Nov-17	1 st release

Disclaimer

To our valued customers

We constantly strive to improve the quality of all our products and documentation. We have spent an exceptional amount of time to ensure that this document is correct. However, we realize that we may have missed a few things. If you find any information that is missing or appears in error, please contact us via www.maximintegrated.com/support. We appreciate your assistance in making this a better document.

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Maxim Integrated Office.

Maxim Integrated Technologies may only be used in life-support devices or systems with the express written approval of Maxim Integrated, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Table of Contents

Ma	xim Inte	grated PROPRIETARY – CONFIDENTIALITY		2
Rev	vision H	story		3
		ntents		
Lis	t of Figu	res		5
Lis	t of table	9S		6 —
Ret	erences			7
GIO	ssary			გ ბ
1	Introdu	uction		9
2 .1	C l			\sim
2.2	Header	Numbering		'n
2.3	Not No	ma Drafiy	~ ~ ~	ما
	inet ina	Numbering		_
3	Delive	able		1
4	Overvi	ew		2
5 5.1	Board	Usage Supply		4
J. 1		Control		_
	5.1.1 5.1.2	OR Resistors	1 1	5
5.2	Reset		1	15
5.3	Jumpe	Default Configuration		5
5.4	Parinha	erals	1	7
J.4		ADC Inputs		, _
	5.4.1 5.4.2	ADC Output	1 1	/ 0
	5.4.2	DAC OutputPWM/Timers Output	۱ 1	o R
	5.4.4	MSR		8
	5.4.5	TFT Interface		9
•	SPI 4-wire	e to 3-wire adaptation	2	20
•	SPI2 bus	(Not available if TFT is running)	2	20
	5.4.6	Battery Charger	2	1
5.5	IOs Po	ts		
	• Coi	mmunication Interfaces	2	2
		ver Supplies Header		
	• Spa	re IOs	2	6
		ernal Sensors		
5.6		ints Description		
Apı				
		ver Supply Checkup		
	 Iss 	ues and solutions		1

List of Figures

Figure 1 : SymbolsFigure 2 : Header Numbering	
Figure 3: Top View	
Figure 4: Bottom View	13
Figure 5 : Jumper Configuration	16
Figure 6 : TFT Display schematics	
Figure 7 : SPI2 Signal Accessibility	21
	,

List of tables

Table 1 : Prefix	10
Table 2 : Power Supplies	14
Table 3: 0R Resistors	15
Table 4 : ADC Description	17
Table 5 : ADC schematics	17
Table 6 : DAC Description	18
Table 7 : Timers description	18
Table 8 : Battery charger status	21
Table 9 : uart1 : bluetooth module	22
Table 10 : SPI0	22
Table 11 : spi1 Table 12 : uart0 and I ² C	23
Table 12 : uart0 and I ² C	23
Table 13 : smartcard	24
Table 13 : smartcard	24
Table 15 : power supplies header	25
Table 16 : contactless analog power supply selection	25
Table 17: spare los	26
Table 18 : external sensors	26
Table 19: test points list	29

References

- MPOS-STD2 EV KIT Schematics
- MPOS-STD2 Build Of Materials

Glossary

Inter Integrated Circuit Protocol

JTAG Joint Test Action Group - IEEE 1149.1 Standard Test Access Port

I/O Input / Output

SPI Serial Peripheral Interface

TFT Thin Film Transistor

UART Universal Asynchronous Receiver/Transmitter for serial

communications

PCBA Printed Circuit Board Assembled

EV KIT Evaluation Kit

LiPo Lithium-Ion Polymer

TP Test Point

PCLK Pixel Clock

HSYNC Horizontal Synchronization

VSYNC Vertical Synchronization

1 Introduction

MPOS-STD2 EVKIT is dedicated to software development for MPOS-STD2 platform. This document provides useful information for users.

2 Notations

2.1 Symbols

Hereafter is the meaning of symbols used in this document.

Symbol	Description	
•	Header pin 1 location	
	Jumper	
2	Tips or warning	

Figure 1 : Symbols

2.2 Header Numbering

Single and double row headers are numbered as follow:

Figure 2 : Header Numbering

2.3 Net Name Prefix

Prefix	Description
V_SBAT_	'S' stands for "Secondary" term. Voltages with this prefix are powered by rechargeable battery, sorted on "Secondary" keyword at battery manufacturers.
V_PBAT_	'P' stands for "Primary" term. Voltages with this prefix are powered by non- rechargeable battery, sorted on "Primary" keyword at battery manufacturers.

Table 1 : Prefix

3 Deliverable

MPOS-STD2 EVKIT contents:

- MPOS-STD2 EV-KIT revision A
- USB cable
- NG25H10RevA/0039219A • Wall power supply with micro-USB termination
- CR1632 battery
- 3.7V 400mAh Li-Polymer battery

4 Overview

MPOS-STD2 EVKIT is based on MPOS-STD2 reference design revision B. It provides additional features for testing and debugging:

- Additional test points
- Headers for probing and analysis
- JTAG connector.

Busses and useful tests points are available on the top side of the EVKIT. The smartcard connector, the rechargeable battery and some additional test points are placed on bottom side.

Note that the tamper mechanisms installed in MPOS-STD2 reference design are not designed in the same way on the EVKIT. They are installed for test purposes.

The pictures below provide locations of test points and connectors:

Figure 3: Top View

5 Board Usage

5.1 Power Supply

The table below provides a list of the power supplies with theirs characteristics and the associated test point.

, , , , , , , , , , , , , , , , , , ,				
Power Supply Net Name	Test Point	Voltage	Max Current	Notes
V_VBUS	TP4	5V	500mA	Battery charge current is limited at 300mA by hardware
V_LDO_USB_CHRG	TP9	3.3V	30mA	Permanent voltage. Present if a working battery is connected
V_PBAT	TP15	3V	- \	Non-rechargeable battery
V_SBAT	TP7	2.4 to 3.7V	400mA	Rechargeable battery
V_VSYSTEM	TP12	2.4 to 4.2V	500mA	4.2V when VBUS is present V_SBAT otherwise
V_SBAT_VDD	TP13	3.3V	570mA	Regulated by U3 (step-up-down)
V_SBAT_SC_VDDA	TP14	5.25V	150mA	Active only if SC_PWR_EN is set.

Table 2: Power Supplies

5.1.1 Control

The two batteries (backup battery + rechargeable battery) are must be connected. To switch-on the EVKIT, there are two ways:

- Connect the USB port to a power source (a USB host or a wall power adaptor)
- Push and maintain "VALID" key

In the second case, the software will have to Set **PWR_SUS_CMD** signal to '1' and the batteries must have a sufficient charging level

For smartcard readers operation the software must enable **V_SBAT VDDA** power rail (Smartcard and Contactless analog power supply) by setting **SC_PWR_EN** signal.

5.1.2 OR Resistors

Some OR resistors are placed on the design allowing performing power supply current consumption measurement:

Voltage Name	Resistor Descriptor	Туре	Description
V_SBAT	R92	PWR	Rechargeable Battery
V_SBAT_VDD	R84	PWR	Main 3.3V Power
V_SBAT_VDDA	R85	PWR	5.25V Power
V_PBAT	R86	PWR	Backup Battery
CLRC663_TVDD	R87	PWR	Contactless Analog Power

Table 3: OR Resistors

5.2 Reset

It is possible to reset platform from three sources:

- JTAG
- **RESET** Button
- Combination of "Abort" and "Valid" key during 4 seconds

5.3 Jumper Default Configuration

An EVKIT is provided with a default jumper configuration:

- External sensors are closed
- o Smartcard readers power supply is set to 5V

The Picture below shows how they are installed and located on the board.

Figure 5 : Jumper Configuration

5.4 Peripherals

5.4.1 ADC Inputs

Two tests points provide an access to ADC inputs:

Signal Name	Pin Number	Enable Signal	Description
SBAT_FB	U1.ADC0	SBAT_ADC_EN	V_VSYSTEM image
PBAT_FB	U1.ADC1	PBAT_ADC_EN	V_PBAT Image

Table 4: ADC Description

Insulation circuitries are placed in between the ADC inputs and the power supply rails. They prevent from short-circuiting a power supply rail through the ESD protection when the device is switched off. To perform battery voltage measurement, the software has to control the insulation circuit first. The schematic below shows one those circuitries.

Table 5 : ADC schematics

- > To measure V_VSYSTEM, SBAT_ADC_EN must be set first.
- > To measure V_PBAT, PBAT_ADC_EN must be set first.

5.4.2 DAC Output

A DAC output is also available even if it is not implemented in the MPOS-STD2 reference design.

Signal Name	Pin Number	Туре	Description	
DAC0	U1.DAC0	Dedicated IO	DAC0 Output	
GROUND	NA	PWR	Analog Ground	N .

Table 6: DAC Description

5.4.3 PWM/Timers Output

The two PWM/Timers I/Os are accessible.

Signal Name	Pin Number	Туре	Description
BT_ACT	U1.TCLK0	Multiplexed IO	Designed for providing Bluetooth status
TFT_PWM_ BL_CTRL	U1.TCLK1	Multiplexed IO	TFT backlight intensity control.

Table 7: Timers description

The application is responsible to control the PWM for enabling those functionalities.

5.4.4 MSR

MPOS-STD2 design provides a 2-tracks magnetic stripe reader and the EVKIT as well. Even if the MAX32550 can drive 3 tracks the third interface is not accessible.

There is no dedicated test point on the magnetic stripe reader interface. Anyway it is possible to install probing if needed. Please refer to schematics.

5.4.5 TFT Interface

The TFT display used is an EVERTRON ET023C1-TP. It is connected to work in **RGB 16-bits** mode with **HSYNC/VSYNC/PCLK** controls.

EVERTRON ET023C1-TP can be interfacing in several ways thanks to its embedded controller: **ILITEK IL9342C**. To select the 16-bit RGB access using HSYNC/VSYNC/PCLK synchronization signals, the display must be configured by sending an appropriate configuration through SPI bus.

A SPI 3-wire 9-bits protocol is used for accessing to the controller registers. Further details can be found in the **ILITEK IL9342C** controller datasheet and MPOS-STD2 software resources (i.e. BSP).

SPI 4-wire to 3-wire adaptation

For debug purposes, it could useful to read back the display controller configuration.

The SPI bus interface available on the **ILITEK IL9342C** controller is a 3-wire meaning that the MISO and MOSI are the same line. Thanks the MAX32550 features it is possible to configure the SPI bus I/Os as open drain then to connect MISO and MOSI line together.

The adaptation must be installed by adding pull-up resistors and by modifying the SPI interface setting:

- On the software side, user must specify:
 - Open-drain type on SPI bus configuration.
- On the hardware side, user must add some resistors:
 - o 1K resistor between V_SBAT_VDD and SPI1_SCLK
 - o 10K resistor between V_SBAT_VDD and SPI1_MOSI
 - 10K resistor between V_SBAT_VDD and SPI1_TFT_CS_N
 - OR resistor between SPI1_MOSI and SPI1_MISO
- To do this modification, user could use J20 header.

For more details about data received format, please refer to ILITEK IL9342C datasheet.

SPI2 bus (Not available if TFT is running)

The I/Os associated to SPI2 bus are configured as TFT color bus. In case the TFT display is not used (and not connected) it is possible to get access to the SPI2 bus.

The SPI2 bus is available on the bottom side of the board:

5.4.6 Battery Charger

The battery charger is the MAX8934EETI+. The charger's status is provided by I/Os and they are accessible on test points:

Signal Name	Pin Number	Pin Name	Test Point	Description
USB_CHG_DONE_N	U2.1	DONE_N	D9 Led	Led if OFF when charge is finished
USB_CHG_DOK_N	U2.26	DOK_N	TP38	'0' : DC Input voltage detected '1' : No DC input
USB_CHG_UOK_N	U2.27	UOK_N	TP34	Normally '1' on this implementation
USB_CHG_FLT_N	U2.28	FLT_N	TP35	Goes low if fault detected. (*)
USB_CHG_OT_N	U2.25	OT_N	TP36	Over Temperature flag active Low
USB_CHG_CHG_N	U2.22	CHG_N	TP37	'0' : battery on fast-charge or prequal state
USB_CHG_PWREN_ N	U2.6	PEN2	TP10	Select maximum Current Charge. (*)
USB_CHG_SUSPEN D_N	U2.12	USUS	TP11	Select maximum Current Charge. Refer to datasheet for more details.
CEN_N	U2.4	CEN_N	TP33	Chip select : active low by default; can be used to go out from FAULT state

Table 8: Battery charger status

(*): Refer to datasheet for more details.

5.5 IOs Ports

Communication Interfaces

J18: UART1: Used for Bluetooth module

Signal Name	Pin Number	Туре	Description
UART1_RX	J18.1	Multiplexed IO	UART1 RX or GPIO0.12
UART1_TX	J18.2	Multiplexed IO	UART1 TX or GPIO0.13
UART1_CTS	J18.3	Multiplexed IO	UART1 CTS or GPIO0.15
UART1_RTS	J18.4	Multiplexed IO	UART1 RTS or GPIO0.14
BT_SHUT	J18.5	Multiplexed IO	GPI01.23
_DOWN		•	
NC	J18.6	Multiplexed IO	-

Table 9 : uart1 : bluetooth module

J19: SPI0 : Used for TFT display

Signal Name	Pin Number	Туре	Description
SPIO_SCLK	J19.1	Multiplexed IO	SPIO Clock or GPIO0.18
SPI0_MOSI	J19.2	Multiplexed IO	SPI0 MOSI or GPI00.17
SPI0_MISO	J19.3	Multiplexed IO	SPI0 MISO or GPIO0.16
SPIO_NFC_CS_N	J19.4	Multiplexed IO	SPI SSEL0 or GPIO0.19
NFC_IRQ	J19.5	Multiplexed IO	GPIO1.6
GROUND	J19.6	Multiplexed IO	Digital Ground

Table 10: SPIO

J20: SPI1 : Used for Contactless CLRC663 Chipset

Signal Name	Pin Number	Туре	Description
TFT_RESET_N	J20.1	Multiplexed IO	GPIO1.16
SPI1_FL_CS_N	J20.2	Multiplexed IO	SPI1 SSEL0 or GPIO1.28
SPI1_MOSI	J20.3	Multiplexed IO	SPI1 MOSI or GPIO0.26
SPI1_SCLK	J20.4	Multiplexed IO	SPI SCLK or GPIO0.27
SPI_TFT_CS_N	J20.5	Multiplexed IO	SPI1 SSEL1 or GPIO1.29
SPI1_MISO	J20.6	Multiplexed IO	SPI1 MISO or GPI00.25

Table 11 : spi1

J21: I2C & UARTO

Signal Name	Pin Number	Туре	Description
V_SBAT_VDD	J21.1	PWR	3.3V
I2C_SCL	J21.2	Multiplexed IO	I2C Clock
I2C_SDA	J21.3	Multiplexed IO	I2C Data
UARTO TX	J21.4	Multiplexed IO	UART0 TX or GPIO0.9
UARTO RX	J21.5	Multiplexed IO	UARTO RX or GPIO0.8
GROUND	J21.6	Multiplexed IO	Digital Ground

Table 12: uart0 and I²C

 \leq For debugging purpose it could be useful to connect the UARTO to a TTL (3.3V) RS232 transceiver.

J23: Smartcard IOs

Signal Name	Pin Number	Туре	Description
CARD_DET	J23.1	Dedicated IO	Card Detection
CARD_IO	J23.2	Dedicated IO	Card IO
CORD_CLK	J23.3	Dedicated IO	Card Clock
CARD_RST	J23.4	Dedicated IO	Card Reset
SPARE_IO3	J23.5	Dedicated IO	Card C4 (Not Used)
SPARE_IO4	J23.6	Dedicated IO	Card C8 (Not Used)
CARD_VCC	J23.7	Dedicated IO	Digital Ground
GROUND	J23.8	Dedicated IO	Card VCC

Table 13 smartcard

J24: Available

Signal Name	Pin Number	Туре	Description
U1.DAC0	J24.1	Dedicated IO	DAC0 Output
GROUND	J24.2	PWR	Analog Ground

Table 14 : DAC Header

• Power Supplies Header

J26: Power

Signal Name	Pin Number	Туре	Description
V_SBAT_VDD	J26.1	PWR	3.3V Power
V_SBAT_SC_VDDA	J26.2	PWR	5.25V Power
V_PBAT	J26.3	PWR	3V Power (non-rechargeable battery)
V_SYSTEM	J26.4	PWR	2.4 to 4.2V Power (USB Charger Output)
GROUND	J26.5	PWR	Digital Ground
GROUND	J26.6	PWR	Digital Ground

Table 15: power supplies header

J25: Contactless Analog Power

The CLRC663 Contactless controller analog part can be powered at 3.3V or 5V. Anyway it is recommended to power it at 5V.

Signal Name	Pin Number	Type	Description
V_SBAT_VDD	J25.1	PWR	3.3V Power supply
CLRC663_TVDD	J25.2	PWR	CLRC663 Analog Power Supply
V_SBAT_SC _VDDA	J25.3	PWR	5.25V Power Supply

Table 16: contactless analog power supply selection

Spare IOs

J22: Spare IOs

Signal Name	Pin Number	Туре	Description
NC	J22.1	NA	-
SPARE_IO3	J22.2	SCI IO	Smartcard C4
SPARE_IO4	J22.3	SCI IO	Smartcard C8
NC	J22.4	NA	- 0
NC	J22.5	NA	- 00
GROUND	J22.6	PWR	Digital Ground

Table 17 : spare ios

• External Sensors

J3: External Sensors

Signal Name	Pin Number	Туре	Description
EXTSO_OUT	J3.1	Dedicated IO	External Sensor 0 output
EXTSO_IN	J3.2	Dedicated IO	External Sensor 0 input
EXTS1_OUT	J3.3	Dedicated IO	External Sensor 1 output
EXTS1_IN	J3.4	Dedicated IO	External Sensor 1 input
EXTS2_OUT	J3.5	Dedicated IO	External Sensor 2 output
EXTS2_IN	J3.6	Dedicated IO	External Sensor 2 input
EXTS3_OŬT	J3.7	Dedicated IO	External Sensor 3 output
EXTS3_IN	J3.8	Dedicated IO	External Sensor 3 input
EXTS4_OUT	J3.9	Dedicated IO	External Sensor 4 output
EXTS4_IN	J3.10	Dedicated IO	External Sensor 4 input
EXTS5_OUT	J3.11	Dedicated IO	External Sensor 5 output
EXTS5_IN	J3.12	Dedicated IO	External Sensor 5 input
		- 10	

Table 18 : external sensors

5.6 Test Points Description

Test Point	Signal / Description	Туре	Description
Reference			
TP1	RST_OUT	Signal	Reset Status
TP4	USB VBUS	Power	USB VBUS voltage
TP5	USB DP	Signal	USB+
TP6	USB DM	Signal	USB-
ТР7	VSBAT	Power	Rechargeable battery voltage level
TP9	VLDO_USB_CHG	Voltage	3.3V permanent power source
TP10	CHG_PWREN_N	Signal	USB Charger IO control
TP11	CHG_SUSPEND_N	Signal	USB Charger IO control
TP33	CEN_N	Signal	USB Charger IO control
TP34	UOK_N	Signal	USB Charger IO control
TP35	USB_CHG_FLT_N	Signal	Charger USB fault indicator
TP36	OT_N	Signal	USB Charger IO control
TP37	CHG_N	Signal	USB Charger IO control
TP38	DOK_N	Signal	USB Charger IO control
TP12	V_SSYSTEM	Voltage	USB Charger Output voltage
TP13	V_SBAT_VDD	Voltage	3.3V regulated voltage
TP14	V_SBAT_VDDA	Voltage	5.25V regulated voltage
TP15	VPBAT	Voltage	No-rechargeable battery voltage level
TP16	PWR_ON_CMD	Signal	System Power-On Command
TP17	SYS_EN	Signal	VDD power-on signal
TP18	JTAG_RESET	Signal	RESET signal from JTAG
TP23	CLRC663 SIGOUT	Signal	CLRC663 Auxiliary output
TP24	CLRC663 SIGIN	Signal	CLRC663 Auxiliary input

Test Point	Signal / Description	Туре	Description
Reference			
TP59	NFC_PDOWN	Signal	CLRC663 IO Control
TP25	ADC IN VSBAT	Analog	ADC input voltage
TP26	ADC IN VPBAT	Analog	ADC input voltage
TP60	SBAT_ADC_EN	Analog	ADC input voltage activation
TP61	PBAT_ADC_EN	Analog	ADC input voltage activation
TP27	GROUND	Power	Digital Ground
TP28	GROUND	Power	Digital Ground
TP29	GROUND	Power	Digital Ground
TP30	GROUND	Power	Digital Ground
TP31	GROUND	Power	Digital Ground
TP39	SC_PWR_EN	Signal	V_SBAT_VDDA power-on signal
TP40	KEY_ABORT	Signal	"ABORT" key management
TP41	KEY_VALID	Signal	"VALID" key management
TP42	KEY_ROW0	Signal	Keypad IO
TP43	KEY_ROW1	Signal	Keypad IO
TP44	KEY_ROW2	Signal	Keypad IO
TP45	KEY_ROW3	Signal	Keypad IO
TP46	KEY_COL2	Signal	Keypad IO
TP47	KEY_COL1	Signal	Keypad IO
TP48	KEY_COL0	Signal	Keypad IO
TP49	GROUND	Power	Digital Ground
TP50	SPI2_SCLK	Signal	SPI2 auxiliary port (use TFT lines)
TP51	SPI2_MOSI	Signal	SPI2 auxiliary port (use TFT lines)
TP52	SPI2_MISO	Signal	SPI2 auxiliary port (use TFT lines)
TP53	SPI2_SS0	Signal	SPI2 auxiliary port (use TFT lines)

Test Point Reference	Signal / Description	Туре	Description
TP54	SPI2_SS1	Signal	SPI2 auxiliary port (use TFT lines)
TP55	SPI2_SS2	Signal	SPI2 auxiliary port (use TFT lines)
TP56	SPI2_SS3	Signal	SPI2 auxiliary port (use TFT lines)
TP57	GROUND	Power	Digital Ground
TP58	FL_WP_N	Signal	SPI Flash Write Protect

Table 19: test points list

The test points from TP1 to TP32 are common with MPOS-STD2 product version. The test points from TP33 to TP61 are specific to MPOS-STD2 EV KIT Board.

Appendix

• Power Supply Checkup

Test Description	Test Point	Expected result
	Reference	
Check if backup battery (non-	NA	Connected
rechargeable) is connected	NA	Connected
rechargeable) is connected		
Check if main battery (rechargeable)	NA	Connected
is connected		
Check backup battery voltage :		\sim
Battery is on place : if VPBAT = 0V,	TP15	2.5 to 3.3V
replace battery by a new one.		
Disconnect USB cable.		
Check main battery voltage:	TP7	2.4 to 3.8V
If voltage is 0V, connect USB cable for	- 0	
recharge during 1 hour.		
Check voltage after recharge:		
If voltage is around OV, battery is		
DEAD and must be replaced by a new		
one.		
Connect USB Cable.		
Check SYS_EN signal	TP17	2.4V
Keep USB cable connected.		
Check V_VBUS voltage	TP4	V_VBUS = 5V
Check V_VSYSTEM voltage	TP12	V_VSYSTEM = [3.84.2]V
Check V_SBAT_VDD voltage	TP13	V_SBAT_VDD = 3.3V
Check RST_OUT voltage	TP1	RST_OUT = 3.3V
Keep USB cable connected.		
Check USB charger status :		
Measure USB_CHG_FLT_N	TP35	$V(USB_CHG_FLT_N) = 3.3V$
Measure VLDO_USB_CHG	TP9	V(VLDO_USB_CHG) = 3.3V
Measure CHG_PWREN	TP10	V(CHG_PWREN) = 0V
Measure CHG_SUSPEND	TP11	V(CHG_SUSPEND) = 0V
ı		

Issues and solutions

Issue Description	Solutions
JTAG Not responding	Check right connection of JTAG probe
	 Check board power supplies : Use Power Supply
	Checkup
VDDA voltage is not 5.25V	Check if SC_PWR_EN signal is set
TFT Display backlight cutoff without	 Rechargeable battery needs to be recharging
particular reason	Setup lower duty cycle for backlight PWM control
ADC measurement result is null	 Check enable signal: it must be set before ADC conversion
Smartcard inserted is not detected	Check presence of 100K pull-down on CARD_DET net
Platform reset during external	Check presence of all EXTS[05] jumpers
sensors activation	

More Information

For Technical Support: http://www.maximintegrated.com/support
Other Questions and Comments: http://www.maximintegrated.com/contact

JG25H110RevA/