Monday, November 2, 2020 7:53 AM

4.3

Increas

4.3 What does (f) tell us about (f)

demotive the purportion of th

Q can f' fud formons of f the domain of f where f is increasing or debreasing (stope)

 $\frac{1}{d} \quad \text{(i)} \quad f'(x) \quad \text{(i)} \quad \text{in} \quad \text{is bec}, \quad \text{fin interesting} \quad \text{on} \quad (b,c)$

(ii) f(x) <0 ~ A to B, f is decrary on (a,5)

(iii) f(x) <0 in (to D, f decreamy on (Gd

Increasing Decreasing Test

(i) If f(x) > 0 on an interval, f is increasing on that

(i) If f'(x) (o on an interval, f is decreasing on that

 $f(x) = 3x^{9} - 4x^{3} - 17x^{2} + 5$

had the person of the domain of f where f is

Solution

$$f'(x) = 11x^3 - 12x^2 - 14x$$

$$= 11x (x^2 - x - 2)$$

$$f'(x) = 11x (x - 2) (x + 1)$$

To partition the domain, we need to find the Critical points

Set f'(x)=0, sowe for x $12 \times (x-2)(x+1)=0$, sowe for x $12 \times 20 \text{ or } x-2=0 \text{ or } x+1=0$ x=0 or x-2 or x=-1So the (orbital points and x=0)

Foroth

product

properts

If a.b = 0

then enter

a=0, b=0,

or both are

aside

f'(x) < 0 or (1,∞) $en \left(-\infty, -1\right), \left(1, \infty\right)$

(f(x) >0 on (-0,1) >)

f is decreasing on (1,0)

f is increasing on (-a, 1)

(b) f"(x) > 0 £"(×) < 0 on (-2,2)

(meanty test f is concare upward on (-0,-1), (1,4) f is concave downward on (-1,7)

f has Horizontal asymptote line: y = -2

of has Horizontal asymptote line: y=0

Second derivative Ten

(converse of the Fernet's theorem) t an additional condition

() If f(c) = 0, f(c) > 0 Her f hes a local min at C

(b) If f'(c)=0, f"(c)<0 then f has a local max at C Recall Fenant's Themen

If f her a local mon/max at c then c is a (rhical point (f(c) = 0)

laboration the the state of the same If f'(c)=0, then f has a local min/ f does not have

The Second derivative test is inconclusive when f"(c) = 0

Example

Discuss the Curve

$$y = x^4 - 4x^3$$

With respect to containty, point of inflection, local max/min

Solution

$$f(x) = x^4 - 4x^3$$

$$f'(x) = 4x^3 - 12x^2 = 4x^2(x-3)$$

 $f''(x) = 12x^2 - 24x = 12x(x-2)$

Hext find the contral points

Set
$$f'(x) = 0$$
, some for x

$$f(x) = 4x^{2}(x-3) = 0$$

$$4\times^{2}(\times-3)=0$$

$$4x^2 = 0$$
 or $x-3 = 0$

using and derivative terr,

2.
$$f'(3) = 0$$
, $f''(3) = 36 > 0$ (there is a local min at 3) $f(3) = -27$

Using the first derivative tens at o

×	4×2	×-3	f'(x)	t
×40	418	-16	-76	
0<×13	+ve	-12	-12	

(we do not get 9 local mun (max at 8)

ande

I 9-6 = 0

zeroth product

then either a=0 or b=0 or both one zero

Interval	12×	X-1	f"(x)
(_∞, 0)	-16	- 78	+~10
(0,2)	+18	-18	-12
(2,∞)	+12	tue	416

(orlanty Lert

$$f''(x)$$
 70 on $(-\omega, 0)$, (orland

on $(-\omega, 0)$
 $f''(x)$ (on $(0, 2)$, (or cord

downwast

on $(0, 2)$
 $f''(x)$ 70 on $(2, \omega)$, (or cord)

on (1,0)

