```
In [1]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    import warnings
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler
    from sklearn.decomposition import PCA
    from sklearn.linear_model import LogisticRegression
    from sklearn.metrics import confusion_matrix, accuracy_score
    %matplotlib inline
    warnings.filterwarnings('ignore')
    sns.set()
```

```
In [2]: df=pd.read_csv('wine.csv')
df
```

Out[2]:

	Alcohol	Malic_Acid	Ash	Ash_Alcanity	Magnesium	Total_Phenois	Flavanoids	Nonflavano
0	14.23	1.71	2.43	15.6	127	2.80	3.06	
1	13.20	1.78	2.14	11.2	100	2.65	2.76	
2	13.16	2.36	2.67	18.6	101	2.80	3.24	
3	14.37	1.95	2.50	16.8	113	3.85	3.49	
4	13.24	2.59	2.87	21.0	118	2.80	2.69	
173	13.71	5.65	2.45	20.5	95	1.68	0.61	
174	13.40	3.91	2.48	23.0	102	1.80	0.75	
175	13.27	4.28	2.26	20.0	120	1.59	0.69	
176	13.17	2.59	2.37	20.0	120	1.65	0.68	
177	14.13	4.10	2.74	24.5	96	2.05	0.76	

178 rows × 14 columns

In [3]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 178 entries, 0 to 177
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	Alcohol	178 non-null	float64
1	Malic_Acid	178 non-null	float64
2	Ash	178 non-null	float64
3	Ash_Alcanity	178 non-null	float64
4	Magnesium	178 non-null	int64
5	Total_Phenols	178 non-null	float64
6	Flavanoids	178 non-null	float64
7	Nonflavanoid_Phenols	178 non-null	float64
8	Proanthocyanins	178 non-null	float64
9	Color_Intensity	178 non-null	float64
10	Hue	178 non-null	float64
11	OD280	178 non-null	float64
12	Proline	178 non-null	int64
13	Customer_Segment	178 non-null	int64
		/ - \	

dtypes: float64(11), int64(3)

memory usage: 19.6 KB

In [4]: df.describe().round(2)

Out[4]:

	Alcohol	Malic_Acid	Ash	Ash_Alcanity	Magnesium	Total_Phenols	Flavanoids	Nonfla
count	178.00	178.00	178.00	178.00	178.00	178.00	178.00	
mean	13.00	2.34	2.37	19.49	99.74	2.30	2.03	
std	0.81	1.12	0.27	3.34	14.28	0.63	1.00	
min	11.03	0.74	1.36	10.60	70.00	0.98	0.34	
25%	12.36	1.60	2.21	17.20	88.00	1.74	1.20	
50%	13.05	1.87	2.36	19.50	98.00	2.36	2.13	
75%	13.68	3.08	2.56	21.50	107.00	2.80	2.88	
max	14.83	5.80	3.23	30.00	162.00	3.88	5.08	
4								•

In [5]: df.nunique()

Out[5]: Alcohol

126 Malic_Acid 133 Ash 79 63 Ash_Alcanity Magnesium 53 Total_Phenols 97 Flavanoids 132 Nonflavanoid_Phenols 39 Proanthocyanins 101 Color_Intensity 132 Hue 78 0D280 122 121 Proline Customer_Segment 3 dtype: int64

In [6]: df.isnull().sum()

Out[6]: Alcohol 0 Malic_Acid 0 Ash 0 Ash_Alcanity 0 0 Magnesium Total_Phenols 0 Flavanoids 0 Nonflavanoid_Phenols 0 Proanthocyanins 0 Color_Intensity 0 Hue 0 0D280 0 Proline 0 Customer_Segment 0 dtype: int64

```
In [7]: correlation_matrix = df.corr()
   plt.figure(figsize=(20, 12))
   sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm')
   plt.title('Correlation Heatmap')
   plt.show()
```


In [8]: df

Out[8]:

	Alcohol	Malic_Acid	Ash	Ash_Alcanity	Magnesium	Total_Phenols	Flavanoids	Nonflavano
0	14.23	1.71	2.43	15.6	127	2.80	3.06	
1	13.20	1.78	2.14	11.2	100	2.65	2.76	
2	13.16	2.36	2.67	18.6	101	2.80	3.24	
3	14.37	1.95	2.50	16.8	113	3.85	3.49	
4	13.24	2.59	2.87	21.0	118	2.80	2.69	
173	13.71	5.65	2.45	20.5	95	1.68	0.61	
174	13.40	3.91	2.48	23.0	102	1.80	0.75	
175	13.27	4.28	2.26	20.0	120	1.59	0.69	
176	13.17	2.59	2.37	20.0	120	1.65	0.68	
177	14.13	4.10	2.74	24.5	96	2.05	0.76	

178 rows × 14 columns

→

```
In [9]: sns.histplot(
    data=df,
    x="Alcohol",
    y="Proline")
```

Out[9]: <Axes: xlabel='Alcohol', ylabel='Proline'>

In [10]: sns.distplot(a=df["Alcohol"],hist=True, kde=False, rug=False)

Out[10]: <Axes: xlabel='Alcohol'>

In [11]: sns.displot(data=df["Customer_Segment"], kde=True)

Out[11]: <seaborn.axisgrid.FacetGrid at 0x1ed6627e710>


```
In [13]: fig, axs = plt.subplots(nrows=4, ncols=3, figsize=(15,20))
    axs=axs.flat
    for i in range(len(df.columns)-1):
        sns.histplot(data=df, x=df.columns[i],hue="Customer_Segment",ax=axs[i])
```

IndexError: index 12 is out of bounds for axis 0 with size 12


```
In [14]: sns.displot( data=df["Total_Phenols"], kde=True )
```

Out[14]: <seaborn.axisgrid.FacetGrid at 0x1ed697eda10>


```
In [15]: plt.figure(figsize=(10, 6))
    sns.scatterplot(data=df, x='Alcohol', y='Malic_Acid', hue='Customer_Segment',
    plt.title('Relationship between Alcohol and Malic Acid')
    plt.xlabel('Alcohol')
    plt.ylabel('Malic Acid')
    plt.legend(title='Customer Segment')
    plt.show()
```



```
In [16]: plt.figure(figsize=(10, 6))
    sns.scatterplot(data=df, x='Total_Phenols', y='Color_Intensity', hue='Customer
    plt.title('Relationship between Total Phenols and Color Intensity')
    plt.xlabel('Total Phenols')
    plt.ylabel('Color Intensity')
    plt.legend(title='Customer Segment')
    plt.show()
```



```
In [18]: plt.figure(figsize=(10, 6))
    sns.violinplot(data=df, x='Customer_Segment', y='Flavanoids', palette='viridis
    plt.title('Distribution of Flavanoids across Customer Segments')
    plt.xlabel('Customer Segment')
    plt.ylabel('Flavanoids')
    plt.show()
```


In [19]: average_proline = df.groupby('Customer_Segment')['Proline'].mean().reset_index
plt.figure(figsize=(10, 6))
sns.barplot(data=average_proline, x='Customer_Segment', y='Proline', palette='
plt.title('Average Proline Value for Each Customer Segment')
plt.xlabel('Customer Segment')
plt.ylabel('Average Proline')
plt.show()


```
In [20]: df
Out[20]:
           Alcohol Malic_Acid Ash Ash_Alcanity Magnesium Total_Phenols Flavanoids Nonflavano
         0
             14.23
                     1.71 2.43
                                  15.6
                                                   2.80
                                                           3.06
         1
             13.20
                     1.78 2.14
                                  11.2
                                          100
                                                    2.65
                                                           2.76
         2
             13.16
                     2.36 2.67
                                  18.6
                                          101
                                                    2.80
                                                           3.24
         3
                                                   3.85
             14.37
                     1.95 2.50
                                  16.8
                                          113
                                                           3.49
         4
             13.24
                     2.59 2.87
                                  21.0
                                                   2.80
                                                           2.69
                                          118
         ...
        173
             13.71
                     5.65 2.45
                                  20.5
                                           95
                                                    1.68
                                                           0.61
        174
             13.40
                     3.91 2.48
                                  23.0
                                          102
                                                    1.80
                                                           0.75
            13.27
                                  20.0
                                                    1.59
                                                           0.69
        175
                     4.28 2.26
                                          120
                                  20.0
        176
            13.17
                     2.59 2.37
                                          120
                                                    1.65
                                                           0.68
        177
             14.13
                     4.10 2.74
                                  24.5
                                           96
                                                    2.05
                                                           0.76
       178 rows × 14 columns
       X = df.iloc[:, :-1].values
In [21]:
Out[21]: array([[1.423e+01, 1.710e+00, 2.430e+00, ..., 1.040e+00, 3.920e+00,
              1.065e+03],
             [1.320e+01, 1.780e+00, 2.140e+00, ..., 1.050e+00, 3.400e+00,
             1.050e+03],
             [1.316e+01, 2.360e+00, 2.670e+00, ..., 1.030e+00, 3.170e+00,
             1.185e+03],
             [1.327e+01, 4.280e+00, 2.260e+00, ..., 5.900e-01, 1.560e+00,
             8.350e+02],
             [1.317e+01, 2.590e+00, 2.370e+00, ..., 6.000e-01, 1.620e+00,
             8.400e+02],
             [1.413e+01, 4.100e+00, 2.740e+00, ..., 6.100e-01, 1.600e+00,
             5.600e+02]])
In [22]: y = df.iloc[:, -1].values
2, 2,
             2, 2,
                 2,
                                                               2,
                    2,
             2, 2,
                 2,
             2, 2,
                 2,
                    2,
                      2,
                        2,
                                                            3,
             3, 3], dtype=int64)
In [23]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, ran
In [24]:
       sc = StandardScaler()
       X_train = sc.fit_transform(X_train)
       X_test = sc.transform(X_test)
In [25]: X_train.shape
Out[25]: (142, 13)
In [26]: X_test.shape
Out[26]: (36, 13)
```

```
In [27]: pca = PCA(n_components = 2)
In [28]: X_train = pca.fit_transform(X_train)
In [29]: X_test = pca.transform(X_test)
In [30]: X_train.shape
Out[30]: (142, 2)
In [31]: X_test.shape
Out[31]: (36, 2)
          plt.figure(figsize=(8,6))
In [32]:
          plt.scatter(X_train[:,0],X_train[:,1],c=y_train,cmap='rainbow')
          plt.xlabel('First principal component')
          plt.ylabel('Second Principal Component')
Out[32]: Text(0, 0.5, 'Second Principal Component')
               4
               3
               2
           Second Principal Component
               1
               0
              -1
              -2
              -3
                                                                                      4
                                            First principal component
In [33]: pca.components_
Out[33]: array([[ 0.12959991, -0.24464064, -0.01018912, -0.24051579, 0.12649451,
                    0.38944115, 0.42757808, -0.30505669, 0.30710508, 0.37636185, 0.2811085],
                                                             0.30775255, -0.11027186,
                  [-0.49807323, -0.23168482, -0.31496874, 0.02321825, -0.25841951,
                   \hbox{-0.1006849 , -0.02097952, -0.0399057 , -0.06746036, -0.53087111,}
                    0.27161729, 0.16071181, -0.36547344]])
In [34]: pca.explained_variance_ratio_
Out[34]: array([0.36884109, 0.19318394])
In [35]: classifier = LogisticRegression(random_state = 0)
```

```
In [36]: classifier.fit(X_train, y_train)
Out[36]:
                   LogisticRegression
           learn.org/1.4/modules/generated/sklearn.linear_model.Lc
LogisticRegression(random_state=0)
                                              (https://scikit-
In [37]: y_pred = classifier.predict(X_test)
          y_pred
Out[37]: array([1, 3, 2, 1, 2, 1, 1, 3, 2, 2, 3, 3, 1, 2, 3, 2, 1, 1, 2, 1, 2, 1,
                  1, 2, 2, 2, 2, 2, 3, 1, 1, 2, 1, 1], dtype=int64)
In [38]: y_test
Out[38]: array([1, 3, 2, 1, 2, 2, 1, 3, 2, 2, 3, 3, 1, 2, 3, 2, 1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 1, 1, 2, 1, 1], dtype=int64)
In [39]: cm = confusion_matrix(y_test, y_pred)
          print(cm)
          [[14 0 0]
           [ 1 15 0]
           [0 0 6]]
In [40]: | accuracy_score(y_test, y_pred)
Out[40]: 0.97222222222222
 In [ ]:
```