Kummer theory for algebraic groups

Sebastiano Tronto

2020-10-28

- The objects of interest
 - Setting
 - Motivation
- 2 Known results
 - Basic properties
 - Classical results
- New results
 - General framework
 - Elliptic curves
- Technical details

Setting

Fix:

- K number field with algebraic closure \overline{K}
- G commutative, connected algebraic group over K
- $A \subseteq G(K)$ finitely generated, torsion-free subgroup

Notation:

- $G[n] = G(\overline{K})[n]$ and $G_{tors} = \bigcup_{n \geq 1} G[n]$
- $s \geq 1$ such that $G[n] \cong (\mathbb{Z}/n\mathbb{Z})^s$ for all n
- $r = \operatorname{rk}(A)$

Division points

For every positive integer n we consider the n-division points of A

$$n^{-1}A := \left\{ P \in G(\overline{K}) \mid nP \in A \right\}$$

and we let $\Gamma_A := \bigcup_{n>1} n^{-1}A$.

Division points

Example

If A = 0 then $n^{-1}A = G[n]$ and $\Gamma_A = G_{tors}$

Example

If $G = \mathbb{G}_m$ (so $G(K) = K^{\times}$ and $G(\overline{K}) = \overline{K}^{\times}$) and $A = \langle a \rangle$ with $a \in K^{\times}$ not a root of unity, then $n^{-1}A$ is the group generated by all n-th roots of a. It contains the n-th roots of unity of \overline{K} .

Kummer extensions

The field $K(n^{-1}A)$:

- Galois over K, contains K(G[n]).
- Generalization of classical Kummer extensions.

Goal

Studying the extensions $K \subseteq K(G[n]) \subseteq K(n^{-1}A)$, in particular the degree of $K(n^{-1}A)$ over K(G[n]).

Why is this interesting?

- Interesting objects in their own right.
- Related to torsion fields and Galois representations.
- Density problems: $\{\mathfrak{p} \text{ prime of } K \mid \ell \nmid \#(A \bmod \mathfrak{p})\}$ for ℓ fixed prime.

Basic properties

Consider $A = \langle P \rangle$, fix $Q \in G(\overline{K})$ with nQ = P.

- if $nQ_1 = nQ_2 = P$ then $Q_1 Q_2 \in G[n]$, so $\{q \in G(\overline{K}) \mid nq = P\} = Q + G[n]$, which generates $n^{-1}A$.
- The Kummer map

$$\mathsf{Gal}(\mathcal{K}(n^{-1}A) \mid \mathcal{K}(\mathcal{G}[n])) o \mathcal{G}[n] \ \sigma o \sigma(Q) - Q$$

is an injective homomorphism.

• \implies in general $[K(n^{-1}A):K(G[n])]$ divides $(\#G[n])^{rk(A)}=n^{rs}$.

Classical results

Theorem (Ribet 1979)

Assume that G is the product of an abelian variety and a torus.

Suppose that $A = \langle P_1, \dots, P_r \rangle$ and that P_1, \dots, P_t are $\operatorname{End}_K(G)$ -linearly independent modulo P_{t+1}, \dots, P_r .

Then there is a positive integer C=C(K,G,A) such that for every $n\geq 1$

$$\frac{n^{ts}}{[K(n^{-1}A):K(G[n])]} \quad divides \quad C$$

Classical results

- Ribet's theorem:
 - Open image theorem for $K(\Gamma_A)$.
 - Not effective.
- Key objects and properties:
 - Properties of the $End_K(G)$ -module generated by A.
 - Galois representations associated with G.
 - Cohomology group $H^1(Gal(K(G_{tors}) \mid K), G_{tors})$.

A general framework

Fixing a compatible basis for G_{tors} we have a representation

$$ho: \mathsf{Gal}(\overline{K} \mid K) o \mathsf{GL}_s(\hat{\mathbb{Z}})$$

Some notation:

- $H := \rho(\mathsf{Gal}(\overline{K} \mid K))$
- H_ℓ projection of H in $GL_s(\mathbb{Z}_\ell)$
- ullet $\mathbb{Z}_\ell[H_\ell]$ closed \mathbb{Z}_ℓ -subalgebra of $\mathsf{Mat}_{s imes s}(\mathbb{Z}_\ell)$ generated by H_ℓ

A general framework

Theorem

If there are positive integers d_A , N_G and M_G such that

- ② for every prime ℓ we have $\mathbb{Z}_{\ell}[H_{\ell}] \supseteq N_G \operatorname{\mathsf{Mat}}_{s \times s}(\mathbb{Z}_{\ell})$ and
- **3** the exponent of $H^1(Gal(K(G_{tors}) | K), G_{tors})$ divides M_G ; then for every $n \ge 1$:

$$\frac{n^{rs}}{[K(n^{-1}A):K(G[n])]} \quad divides \quad (d_A N_G M_G)^{rs}$$

The parameter d_A

Example

Let $P \in G(K) \setminus G(K)_{tors}$ and, for $n \ge 1$, let $A(n) = \langle nP \rangle$.

Then $K(n^{-1}A(n)) = K(G[n])$ and $d_{A(n)} \ge n$.

Elliptic curves - maximal growth

- Let G = E be an elliptic curve with $End_K(E) = \mathbb{Z}$.
- Let n_{ℓ} be the smallest integer such that

$$\#(H_\ell \bmod \ell^{n+1})/\#(H_\ell \bmod \ell^n) = egin{cases} \ell^4 & ext{if E does not have CM} \\ \ell^2 & ext{if E has CM} \end{cases}$$

for all $n \geq n_{\ell}$.

• n_{ℓ} is effectively computable.

Elliptic curves - bad primes

Let S(E) be the set of primes ℓ such that:

- If E does not have CM, one of the following holds:
 - $0 \ell \mid 2 \cdot 3 \cdot 5 \cdot \Delta_{K/\mathbb{O}};$
 - $(H_{\ell} \mod \ell) \ncong \operatorname{GL}_{2}(\mathbb{F}_{\ell});$
 - **3** E has bad reduction at some prime of K above ℓ .
- If E has CM (by \mathcal{O} , $F = \operatorname{Frac}(\mathcal{O})$), one of the following holds:
 - **1** ℓ divides the conductor of \mathcal{O} ;
 - 2 ℓ ramifies in $K \cdot F$;
 - **3** E has bad reduction at some prime of K above ℓ .

In both cases S(E) is finite and effectively computable.

Elliptic curves - parameters for Cartan subgroups

If E has CM:

- H_{ℓ} is contained in the normaliser of a Cartan subgroup C_{ℓ} of $GL_2(\mathbb{Z}_{\ell})$;
- C_{ℓ} is determined by parameters $(\gamma_{\ell}, \delta_{\ell}) \in \mathbb{Z}_{\ell}^2$;
- $(\gamma_{\ell}, \delta_{\ell})$ are computable.

Elliptic curves - results

Theorem (D. Lombardo, S. T.)

Let E be an elliptic curve over K with $\operatorname{End}_K(E) = \mathbb{Z}$ and let $A \subseteq E(K)$ be a torsion-free subgroup of rank r. Define N and M as follows:

• If E does not have CM, let

$$N = \prod_{\ell \in S(E)} \ell^{2n_{\ell}}, \quad M = \prod_{\ell \in S(E)} (\ell^2 - 1)(\ell^2 - \ell)$$

• If E has CM, let

$$N = \prod_{\ell \in S(E)} \ell^{n_\ell + \nu_\ell(4\delta_\ell)}, \quad M = 2^{24[K:\mathbb{Q}]} \cdot \prod_{\substack{\ell \text{ odd prime,} \\ (\ell-1)|3[K:\mathbb{Q}]}} \ell^{12[K:\mathbb{Q}]}$$

Then for every $n \ge 1$ the ratio $\frac{n^{2r}}{[K(n^{-1}A):K(E[n])]}$ divides $(d_ANM)^{2r}$.

Elliptic curves - results

Theorem (D. Lombardo, S. T.)

There is a universal constant $C \ge 1$ such that, for every elliptic curve E over $\mathbb Q$ and every torsion-free subgroup $A \subseteq E(K)$ of rank r, for every $n \ge 1$ the ratio $\frac{n^{2r}}{[K(n^{-1}A):K(E[n])]}$ divides $(d_AC)^{2r}$.

What about CM?

Assume that $\mathcal{O} := \operatorname{End}_{\mathcal{K}}(E) \neq \mathbb{Z}$.

- Let $P \in E(K)$ non-torsion, fix $Q \in E(\overline{K})$ with nQ = P.
- Let $A := \mathcal{O}P$ and $A' = \mathbb{Z}P$.
- $n^{-1}\sigma(P) = \sigma(Q) + E[n]$ for every $\sigma \in \mathcal{O}$.
- Then $n^{-1}A = \langle n^{-1}\sigma(P) \mid \sigma \in \mathcal{O} \rangle = \langle \mathcal{O}Q + E[n] \rangle$.
- In particular $K(n^{-1}A) \subseteq K(n^{-1}A')$, so

$$\frac{n^4}{[K(n^{-1}A):K(E[n])]} = \frac{n^4}{[K(n^{-1}A'):K(E[n])]} \ge n^2$$

• Focus on $K(\Gamma_A) = \bigcup_{n \ge 1} K(n^{-1}A)$

$$1 \longrightarrow \mathsf{Gal}(K(\Gamma_A) \mid K(G_\mathsf{tors})) \longrightarrow \mathsf{Gal}(K(\Gamma_A) \mid K) \longrightarrow \mathsf{Gal}(K(G_\mathsf{tors}) \mid K) \longrightarrow 1$$

• Focus on $K(\Gamma_A) = \bigcup_{n \ge 1} K(n^{-1}A)$

$$1 \longrightarrow \mathsf{Gal}(\mathcal{K}(\Gamma_A) \mid \mathcal{K}(G_\mathsf{tors})) \longrightarrow \mathsf{Gal}(\mathcal{K}(\Gamma_A) \mid \mathcal{K}) \longrightarrow \mathsf{Gal}(\mathcal{K}(G_\mathsf{tors}) \mid \mathcal{K}) \longrightarrow 1$$

$$\downarrow^{\rho}$$

$$\mathsf{Aut}(G_\mathsf{tors})$$

• Focus on $K(\Gamma_A) = \bigcup_{n \geq 1} K(n^{-1}A)$

• Focus on $K(\Gamma_A) = \bigcup_{n \ge 1} K(n^{-1}A)$

• Study the abelian groups $A \subseteq A + G_{tors} \subseteq \Gamma_A$ and their relative automorphism groups.

Automorphism groups

• We have an exact sequence:

$$1 \to \mathsf{Aut}_{\mathcal{A} + \mathsf{G}_\mathsf{tors}}(\mathsf{\Gamma}_\mathcal{A}) \to \mathsf{Aut}_\mathcal{A}(\mathsf{\Gamma}_\mathcal{A}) \to \mathsf{Aut}(\mathsf{G}_\mathsf{tors}) \to 1$$

There is a canonical isomorphism:

$$\mathsf{Aut}_{A+G_\mathsf{tors}}(\Gamma_A) \overset{\sim}{\to} \mathsf{Hom}(\Gamma_A/(A+G_\mathsf{tors}), G_\mathsf{tors})$$
$$\sigma \mapsto (\varphi_\sigma : [b] \mapsto \sigma(b) - b)$$

• In particular $Aut_{A+G_{tors}}(\Gamma_A)$ is abelian.

Structure of Γ_A

ullet Any isomorphism $A\stackrel{\sim}{ o} \mathbb{Z}^r$ can be extended (non-canonically) to

$$\Gamma_A \stackrel{\sim}{\to} \mathbb{Q}^r \oplus (\mathbb{Q}/\mathbb{Z})^s$$

It follows that

$$\mathsf{Hom}(\Gamma_A/(A+\mathit{G}_\mathsf{tors}),\mathit{G}_\mathsf{tors}) \cong \mathsf{Hom}\left((\mathbb{Q}/\mathbb{Z})^r,(\mathbb{Q}/\mathbb{Z})^s\right) \cong \mathsf{Mat}_{s\times r}(\hat{\mathbb{Z}})$$

$$\operatorname{\mathsf{Aut}}(\mathit{G}_{\mathsf{tors}}) \cong \operatorname{\mathsf{Aut}}((\mathbb{Q}/\mathbb{Z})^{\mathsf{s}}) \cong \operatorname{\mathsf{GL}}_{\mathsf{s}}(\hat{\mathbb{Z}})$$

Torsion-Kummer representation

Fixing an isomorphism $\Gamma_A \stackrel{\sim}{\to} \mathbb{Q}^r \oplus (\mathbb{Q}/\mathbb{Z})^s$ we have:

We want to bound the index of $V := Im(\kappa)$ in $Mat_{s \times r}(\hat{\mathbb{Z}})$.

Main idea

Strategy:

- Prove that $S := \bigcap_{f \in V} \ker f$ is small.
- By Pontryagin duality V will be large.

Problem:

- We need V to be a $\mathsf{Mat}_{s\times s}(\hat{\mathbb{Z}})$ -module. . .
- ... but it is only a $\hat{\mathbb{Z}}[H]$ -module.

Solution:

• If $\hat{\mathbb{Z}}[H] \supseteq N \cdot \mathsf{Mat}_{s \times s}(\hat{\mathbb{Z}})$, then $N \cdot \mathsf{Mat}_{s \times s}(\hat{\mathbb{Z}}) \cdot V \subseteq V$.

Enter Cohomology

For simplicity identify $\mathsf{Hom}(\Gamma_A/(A+G_\mathsf{tors}),G_\mathsf{tors})$ with $\mathsf{Mat}_{s\times r}(\hat{\mathbb{Z}})$.

- Notice that $S = \bigcap_{f \in V} \ker f = \frac{\Gamma_A \cap G(K(G_{tors}))}{A + G_{tors}}$.
- Define

$$\varphi: S \to H^1(\mathsf{Gal}(K(G_{\mathsf{tors}}) \mid K), G_{\mathsf{tors}})$$
$$[b] \mapsto (\varphi_b: \sigma \mapsto \sigma(b) - b)$$

- We have $\ker \varphi \subseteq S[d_A]$.
- If $M \cdot H^1(\operatorname{Gal}(K(G_{\operatorname{tors}}) \mid K), G_{\operatorname{tors}})$, then $d_A M \cdot S = 0$.

End of the proof

ullet The $\mathsf{Mat}_{s imes s}(\hat{\mathbb{Z}}) ext{-module }W$ generated by V satisfies

$$d_A M \cdot \left(\bigcap_{f \in W} \ker f\right) = 0$$

- By Pontryagin duality $W \supseteq d_A M \cdot \mathsf{Mat}_{s \times r}(\hat{\mathbb{Z}})$.
- So $V \supseteq N \cdot W \supseteq d_A NM \cdot \mathsf{Mat}_{s \times r}(\hat{\mathbb{Z}})$.
- Then for every $n \ge 1$

$$\frac{n^{rs}}{[K(n^{-1}A):K(G[n])]} \quad \text{divides} \quad (d_ANM)^{rs}$$

Final comments

- $\hat{\mathbb{Z}}[H]$ can be studied "prime by prime" (CRT).
- Same for the cohomology group (inflation-restriction sequence).
- The exponent of the cohomology group can be bounded by finding "small" central elements in H (Sah's lemma).

Thank you for your attention!