

MAT1320-Linear Algebra Lecture Notes

Vectors

Mehmet E. KÖROĞLU Spring 2021

YILDIZ TECHNICAL UNIVERSITY, DEPARTMENT OF MATHEMATICS mkoroqlu@yildiz.edu.tr

Table of contents

- 1. Vectors
- 2. Vector Addition
- 3. Scalar Multiplication
- 4. Dot (Inner) Product
- 5. Dot (Inner) Product: Properties
- 6. The Angle Between Two Nonzero Vectors
- 7. Projection of A Vector onto Another
- 8. Cross Product
- 9. Cross Product: Properties
- 10. Mixed Product
- 11. Mixed Product: Properties
- 12. Two Fold Cross Product

Vectors

 Many physical quantities, such as temperature and speed, possess only magnitude. These quantities can be represented by real numbers and are called scalars.

- Many physical quantities, such as temperature and speed, possess only magnitude. These quantities can be represented by real numbers and are called scalars.
- On the other hand, there are also quantities, such as force and velocity, that possess both magnitude and direction.

- Many physical quantities, such as temperature and speed, possess only magnitude. These quantities can be represented by real numbers and are called scalars.
- On the other hand, there are also quantities, such as force and velocity, that possess both magnitude and direction.
- These quantities, which can be represented by arrows having appropriate lengths and directions and emanating from some given reference point A, are called vectors.

The directed line segment \overrightarrow{AB} is called a vector.

The directed line segment \overrightarrow{AB} is called a vector.

A is the start point

The directed line segment \overrightarrow{AB} is called a vector.

A is the start point

The directed line segment \overrightarrow{AB} is called a vector.

A is the start point

The directed line segment \overrightarrow{AB} is called a vector.

A is the start point

The directed line segment \overrightarrow{AB} is called a vector.

A is the start point

The directed line segment \overrightarrow{AB} is called a vector.

A is the start point

The directed line segment \overrightarrow{AB} is called a vector.

A is the start point

The directed line segment \overrightarrow{AB} is called a vector.

A is the start point

The directed line segment \overrightarrow{AB} is called a vector.

A is the start point

Let $P_0(x_0, y_0, z_0)$ and $P_1(x_1, y_1, z_1)$ be two points in \mathbb{R}^3 . Then the vector with start point P_0 and end point P_1 is denoted by $\overrightarrow{P_0P_1}$ and defined as

$$\overrightarrow{\mathbf{v}} = \overrightarrow{P_0P_1} = (x_1 - x_0, y_1 - y_0, z_1 - z_0).$$

• Let $P_0(x_0, y_0, z_0)$ and $P_1(x_1, y_1, z_1)$ be two points in \mathbb{R}^3 . Then the vector with start point P_0 and end point P_1 is denoted by $\overrightarrow{P_0P_1}$ and defined as

$$\overrightarrow{\mathbf{v}} = \overrightarrow{P_0 P_1} = (x_1 - x_0, y_1 - y_0, z_1 - z_0).$$

■ The length or norm of the vector $\overrightarrow{\mathbf{v}}$ is denoted by $|\overrightarrow{\mathbf{v}}|$ and defined as

$$|\overrightarrow{\mathbf{v}}| = \sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2 + (z_1 - z_0)^2}.$$

• Let $P_0(x_0, y_0, z_0)$ and $P_1(x_1, y_1, z_1)$ be two points in \mathbb{R}^3 . Then the vector with start point P_0 and end point P_1 is denoted by $\overrightarrow{P_0P_1}$ and defined as

$$\overrightarrow{\mathbf{v}} = \overrightarrow{P_0 P_1} = (x_1 - x_0, y_1 - y_0, z_1 - z_0).$$

■ The length or norm of the vector $\overrightarrow{\mathbf{v}}$ is denoted by $|\overrightarrow{\mathbf{v}}|$ and defined as

$$|\overrightarrow{\mathbf{v}}| = \sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2 + (z_1 - z_0)^2}.$$

Example

 $P_{0}\left(1,-2\right)$ and $P_{1}\left(-1,3\right)$ be two points in $\mathbb{R}^{2}.$

Example

 $P_{0}\left(1,-2\right)$ and $P_{1}\left(-1,3\right)$ be two points in \mathbb{R}^{2} . Then

$$\overrightarrow{\mathbf{v}} = \overrightarrow{P_0P_1} = (x_1 - x_0, y_1 - y_0) = (-1 - 1, 3 - (-2)) = (-2, 5)$$

and
$$|\vec{\mathbf{v}}| = \sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2}$$

Example

 $P_0\left(1,-2\right)$ and $P_1\left(-1,3\right)$ be two points in \mathbb{R}^2 . Then

$$\overrightarrow{\mathbf{v}} = \overrightarrow{P_0P_1} = (x_1 - x_0, y_1 - y_0) = (-1 - 1, 3 - (-2)) = (-2, 5)$$

and
$$|\overrightarrow{\mathbf{v}}| = \sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2} = \sqrt{(-2)^2 + 5^2} = \sqrt{29}$$

Example

 $P_0\left(1,-2\right)$ and $P_1\left(-1,3\right)$ be two points in \mathbb{R}^2 . Then

$$\overrightarrow{\mathbf{v}} = \overrightarrow{P_0P_1} = (x_1 - x_0, y_1 - y_0) = (-1 - 1, 3 - (-2)) = (-2, 5)$$

and
$$|\overrightarrow{\mathbf{v}}| = \sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2} = \sqrt{(-2)^2 + 5^2} = \sqrt{29}$$

Note: A vector $\overrightarrow{\mathbf{u}}$ is called unit vector if $|\overrightarrow{\mathbf{u}}| = 1$.

Example

 $P_0\left(1,-2\right)$ and $P_1\left(-1,3\right)$ be two points in \mathbb{R}^2 . Then

$$\overrightarrow{\mathbf{v}} = \overrightarrow{P_0P_1} = (x_1 - x_0, y_1 - y_0) = (-1 - 1, 3 - (-2)) = (-2, 5)$$

and
$$|\overrightarrow{\mathbf{v}}| = \sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2} = \sqrt{(-2)^2 + 5^2} = \sqrt{29}$$

Note: A vector $\overrightarrow{\mathbf{u}}$ is called unit vector if $|\overrightarrow{\mathbf{u}}| = 1$.

Note: For any nonzero vector $\overrightarrow{\mathbf{v}}$, the vector $\frac{\overrightarrow{\mathbf{v}}}{|\overrightarrow{\mathbf{v}}|}$ is the unique unit vector in the same direction as $\overrightarrow{\mathbf{v}}$.

Definition

The sum of vectors $\overrightarrow{\mathbf{u}} = (u_1, u_2, \dots, u_n)$, and $\overrightarrow{\mathbf{v}} = (v_1, v_2, \dots, v_n)$ is denoted by $\overrightarrow{\mathbf{u}} + \overrightarrow{\mathbf{v}}$

Definition

The sum of vectors $\overrightarrow{\mathbf{u}} = (u_1, u_2, \ldots, u_n)$, and $\overrightarrow{\mathbf{v}} = (v_1, v_2, \ldots, v_n)$ is denoted by $\overrightarrow{\mathbf{u}} + \overrightarrow{\mathbf{v}}$ and is the vector obtained by adding corresponding components from $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$.

$$\overrightarrow{\mathbf{u}} + \overrightarrow{\mathbf{v}} = (u_1 + v_1, u_2 + v_2, \dots, u_n + v_n)$$

Example

Example

The sum of vectors $\overrightarrow{\mathbf{u}}=(1,-2)$ and $\overrightarrow{\mathbf{v}}=(-1,3)\in\mathbb{R}^2$ is

$$\overrightarrow{\textbf{u}}+\overrightarrow{\textbf{v}}=(1+(-1)\,\text{,}\,-2+3)=(0,1)\,.$$

0,1

Example

$$\overrightarrow{\textbf{u}}+\overrightarrow{\textbf{v}}=(1+(-1)\,\text{,}\,-2+3)=(0,1)\,.$$

Example

$$\overrightarrow{\textbf{u}}+\overrightarrow{\textbf{v}}=(1+(-1)\,\text{,}\,-2+3)=(0,1)\,.$$

Example

$$\overrightarrow{\textbf{u}}+\overrightarrow{\textbf{v}}=\left(1+\left(-1\right),-2+3\right)=\left(0,1\right).$$

Example

$$\overrightarrow{\textbf{u}}+\overrightarrow{\textbf{v}}=(1+(-1)\,\text{,}\,-2+3)=(0,1)\,.$$

Example

$$\overrightarrow{\textbf{u}}+\overrightarrow{\textbf{v}}=(1+(-1)\,\text{,}\,-2+3)=(0,1)\,.$$

Example

$$\overrightarrow{\textbf{u}}+\overrightarrow{\textbf{v}}=(1+(-1)\,\text{,}\,-2+3)=(0,1)\,.$$

Scalar Multiplication

Definition

The scaler product of vector $\overrightarrow{\mathbf{u}} = (u_1, u_2, \dots, u_n)$ by a real number λ , written $\lambda \overrightarrow{\mathbf{u}}$, is the vector obtained by multiplying each component of $\overrightarrow{\mathbf{u}}$ by λ . That is, $\lambda \overrightarrow{\mathbf{u}} = (\lambda u_1, \lambda u_2, \dots, \lambda u_n)$.

Definition

The scaler product of vector $\overrightarrow{\mathbf{u}} = (u_1, u_2, \ldots, u_n)$ by a real number λ , written $\lambda \overrightarrow{\mathbf{u}}$, is the vector obtained by multiplying each component of $\overrightarrow{\mathbf{u}}$ by λ . That is, $\lambda \overrightarrow{\mathbf{u}} = (\lambda u_1, \lambda u_2, \ldots, \lambda u_n)$.

Definition

The scaler product of vector $\overrightarrow{\mathbf{u}} = (u_1, u_2, \ldots, u_n)$ by a real number λ , written $\lambda \overrightarrow{\mathbf{u}}$, is the vector obtained by multiplying each component of $\overrightarrow{\mathbf{u}}$ by λ . That is, $\lambda \overrightarrow{\mathbf{u}} = (\lambda u_1, \lambda u_2, \ldots, \lambda u_n)$.

Note: We have following cases for the $\lambda \overrightarrow{\mathbf{u}}$.

1. If $\lambda > 0$, then $\lambda \overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{u}}$ has the same direction.

Definition

The scaler product of vector $\overrightarrow{\mathbf{u}} = (u_1, u_2, \ldots, u_n)$ by a real number λ , written $\lambda \overrightarrow{\mathbf{u}}$, is the vector obtained by multiplying each component of $\overrightarrow{\mathbf{u}}$ by λ . That is, $\lambda \overrightarrow{\mathbf{u}} = (\lambda u_1, \lambda u_2, \ldots, \lambda u_n)$.

- 1. If $\lambda > 0$, then $\lambda \overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{u}}$ has the same direction.
- 2. If $\lambda < 0$, then $\lambda \overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{u}}$ has opposite direction.

Definition

The scaler product of vector $\overrightarrow{\mathbf{u}} = (u_1, u_2, \dots, u_n)$ by a real number λ , written $\lambda \overrightarrow{\mathbf{u}}$, is the vector obtained by multiplying each component of $\overrightarrow{\mathbf{u}}$ by λ . That is, $\lambda \overrightarrow{\mathbf{u}} = (\lambda u_1, \lambda u_2, \dots, \lambda u_n)$.

- 1. If $\lambda > 0$, then $\lambda \overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{u}}$ has the same direction.
- 2. If $\lambda < 0$, then $\lambda \overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{u}}$ has opposite direction.
- 3. If $-1 < \lambda < 1$, then $|\lambda \overrightarrow{\mathbf{u}}| < |\overrightarrow{\mathbf{u}}|$.

Definition

The scaler product of vector $\overrightarrow{\mathbf{u}} = (u_1, u_2, \ldots, u_n)$ by a real number λ , written $\lambda \overrightarrow{\mathbf{u}}$, is the vector obtained by multiplying each component of $\overrightarrow{\mathbf{u}}$ by λ . That is, $\lambda \overrightarrow{\mathbf{u}} = (\lambda u_1, \lambda u_2, \ldots, \lambda u_n)$.

- 1. If $\lambda > 0$, then $\lambda \overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{u}}$ has the same direction.
- 2. If $\lambda < 0$, then $\lambda \overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{u}}$ has opposite direction.
- 3. If $-1 < \lambda < 1$, then $|\lambda \overrightarrow{\mathbf{u}}| < |\overrightarrow{\mathbf{u}}|$.
- 4. If $\lambda < -1$ and $1 < \lambda$, then $|\overrightarrow{\mathbf{u}}| < |\lambda \overrightarrow{\mathbf{u}}|$.

Example If $\overrightarrow{\mathbf{v}}=(1,1)$ and $\lambda=-2\in\mathbb{R}$, then

If
$$\overrightarrow{\mathbf{v}} = (1,1)$$
 and $\lambda = -2 \in \mathbb{R}$, then $\lambda \overrightarrow{\mathbf{v}} = -2 \overrightarrow{\mathbf{v}} = ((-2).1, (-2).1)$ $= (-2,-2)$

If
$$\overrightarrow{\mathbf{v}} = (1,1)$$
 and $\lambda = -2 \in \mathbb{R}$, then $\lambda \overrightarrow{\mathbf{v}} = -2 \overrightarrow{\mathbf{v}} = ((-2).1, (-2).1)$ $= (-2, -2)$

If
$$\overrightarrow{\mathbf{v}}=(1,1)$$
 and $\lambda=-2\in\mathbb{R}$, then $\lambda\overrightarrow{\mathbf{v}}=-2\overrightarrow{\mathbf{v}}=((-2).1,(-2).1)$ $=(-2,-2)$

If
$$\overrightarrow{\mathbf{v}}=(1,1)$$
 and $\lambda=-2\in\mathbb{R}$, then $\lambda\overrightarrow{\mathbf{v}}=-2\overrightarrow{\mathbf{v}}=((-2).1,(-2).1)$ $=(-2,-2)$

Definition

The dot product or inner product of vectors $\overrightarrow{\mathbf{u}} = (u_1, u_2, \dots, u_n)$ and $\overrightarrow{\mathbf{v}} = (v_1, v_2, \dots, v_n)$ is denoted by $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}$ or $\langle \overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}} \rangle$

Definition

The dot product or inner product of vectors $\overrightarrow{\mathbf{u}} = (u_1, u_2, \dots, u_n)$ and $\overrightarrow{\mathbf{v}} = (v_1, v_2, \dots, v_n)$ is denoted by $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}$ or $\langle \overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}} \rangle$ and defined as $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n = \sum_{i=1}^n u_i v_i$.

Definition

The dot product or inner product of vectors $\overrightarrow{\mathbf{u}} = (u_1, u_2, \dots, u_n)$ and $\overrightarrow{\mathbf{v}} = (v_1, v_2, \dots, v_n)$ is denoted by $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}$ or $\langle \overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}} \rangle$ and defined as $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n = \sum_{i=1}^n u_i v_i$.

Example

If $\overrightarrow{\bf u}=(2,1,0,1)$ and $\overrightarrow{\bf v}=(-1,1,3,2)$, then the dot product of $\overrightarrow{\bf u}$ and $\overrightarrow{\bf v}$ is

$$\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} = u_1 v_1 + u_2 v_2 + u_3 v_3 + u_4 v_4 = \sum_{i=1}^4 u_i v_i$$
$$= 2(-1) + 1.1 + 0.3 + 1.2 = 1.$$

Definition

The dot product or inner product of vectors $\overrightarrow{\mathbf{u}} = (u_1, u_2, \dots, u_n)$ and $\overrightarrow{\mathbf{v}} = (v_1, v_2, \dots, v_n)$ is denoted by $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}$ or $\langle \overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}} \rangle$ and defined as $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n = \sum_{i=1}^n u_i v_i$.

Example

If $\overrightarrow{\bf u}=(2,1,0,1)$ and $\overrightarrow{\bf v}=(-1,1,3,2)$, then the dot product of $\overrightarrow{\bf u}$ and $\overrightarrow{\bf v}$ is

$$\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} = u_1 v_1 + u_2 v_2 + u_3 v_3 + u_4 v_4 = \sum_{i=1}^4 u_i v_i$$
$$= 2(-1) + 1.1 + 0.3 + 1.2 = 1.$$

Note: The dot product of two vectors is a real number.

1.
$$\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} = \overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{u}}$$

- 1. $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} = \overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{u}}$
- $2. \ \overrightarrow{\textbf{u}} \cdot (\overrightarrow{\textbf{v}} \mp \overrightarrow{\textbf{w}}) = \overrightarrow{\textbf{u}} \cdot \overrightarrow{\textbf{v}} \mp \overrightarrow{\textbf{u}} \cdot \overrightarrow{\textbf{w}}$

- 1. $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} = \overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{u}}$
- 2. $\overrightarrow{\mathbf{u}} \cdot (\overrightarrow{\mathbf{v}} \mp \overrightarrow{\mathbf{w}}) = \overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} \mp \overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{w}}$
- 3. $\alpha(\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}) = (\alpha \overrightarrow{\mathbf{u}}) \cdot \overrightarrow{\mathbf{v}} = \overrightarrow{\mathbf{u}} \cdot (\alpha \overrightarrow{\mathbf{v}})$

- 1. $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} = \overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{u}}$
- 2. $\overrightarrow{\mathbf{u}} \cdot (\overrightarrow{\mathbf{v}} \mp \overrightarrow{\mathbf{w}}) = \overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} \mp \overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{w}}$
- 3. $\alpha(\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}) = (\alpha \overrightarrow{\mathbf{u}}) \cdot \overrightarrow{\mathbf{v}} = \overrightarrow{\mathbf{u}} \cdot (\alpha \overrightarrow{\mathbf{v}})$
- $4. \ \overrightarrow{\mathbf{0}} \cdot \overrightarrow{\mathbf{u}} = 0$

- 1. $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} = \overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{u}}$
- 2. $\overrightarrow{\mathbf{u}} \cdot (\overrightarrow{\mathbf{v}} \mp \overrightarrow{\mathbf{w}}) = \overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} \mp \overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{w}}$
- 3. $\alpha(\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}) = (\alpha \overrightarrow{\mathbf{u}}) \cdot \overrightarrow{\mathbf{v}} = \overrightarrow{\mathbf{u}} \cdot (\alpha \overrightarrow{\mathbf{v}})$
- $4. \ \overrightarrow{\mathbf{0}} \cdot \overrightarrow{\mathbf{u}} = 0$
- 5. $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{u}} = |\overrightarrow{\mathbf{u}}|^2$

- 1. $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} = \overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{u}}$
- 2. $\overrightarrow{u} \cdot (\overrightarrow{v} \mp \overrightarrow{w}) = \overrightarrow{u} \cdot \overrightarrow{v} \mp \overrightarrow{u} \cdot \overrightarrow{w}$
- 3. $\alpha(\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}) = (\alpha \overrightarrow{\mathbf{u}}) \cdot \overrightarrow{\mathbf{v}} = \overrightarrow{\mathbf{u}} \cdot (\alpha \overrightarrow{\mathbf{v}})$
- $4. \ \overrightarrow{\mathbf{0}} \cdot \overrightarrow{\mathbf{u}} = 0$
- 5. $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{u}} = |\overrightarrow{\mathbf{u}}|^2$
- 6. $|\overrightarrow{u} \cdot \overrightarrow{v}| \leqslant |\overrightarrow{u}| |\overrightarrow{v}|$ (Schwartz Inequality)

- 1. $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} = \overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{u}}$
- 2. $\overrightarrow{\mathbf{u}} \cdot (\overrightarrow{\mathbf{v}} \mp \overrightarrow{\mathbf{w}}) = \overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} \mp \overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{w}}$
- 3. $\alpha(\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}) = (\alpha \overrightarrow{\mathbf{u}}) \cdot \overrightarrow{\mathbf{v}} = \overrightarrow{\mathbf{u}} \cdot (\alpha \overrightarrow{\mathbf{v}})$
- $4. \ \overrightarrow{\mathbf{0}} \cdot \overrightarrow{\mathbf{u}} = 0$
- 5. $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{u}} = |\overrightarrow{\mathbf{u}}|^2$
- 6. $|\overrightarrow{u} \cdot \overrightarrow{v}| \leqslant |\overrightarrow{u}| |\overrightarrow{v}|$ (Schwartz Inequality)
- 7. $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} = |\overrightarrow{\mathbf{u}}| |\overrightarrow{\mathbf{v}}| \cos \theta$

- 1. $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} = \overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{u}}$
- 2. $\overrightarrow{u} \cdot (\overrightarrow{v} \mp \overrightarrow{w}) = \overrightarrow{u} \cdot \overrightarrow{v} \mp \overrightarrow{u} \cdot \overrightarrow{w}$
- 3. $\alpha(\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}) = (\alpha \overrightarrow{\mathbf{u}}) \cdot \overrightarrow{\mathbf{v}} = \overrightarrow{\mathbf{u}} \cdot (\alpha \overrightarrow{\mathbf{v}})$
- 4. $\overrightarrow{\mathbf{0}} \cdot \overrightarrow{\mathbf{u}} = 0$
- 5. $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{u}} = |\overrightarrow{\mathbf{u}}|^2$
- 6. $|\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}| \leqslant |\overrightarrow{\mathbf{u}}| |\overrightarrow{\mathbf{v}}|$ (Schwartz Inequality)
- 7. $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} = |\overrightarrow{\mathbf{u}}| |\overrightarrow{\mathbf{v}}| \cos \theta$
- 8. $\theta = \frac{\pi}{2} \Rightarrow \overrightarrow{\mathbf{u}} \perp \overrightarrow{\mathbf{v}} \Leftrightarrow \overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} = 0$

- 1. $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} = \overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{u}}$
- 2. $\overrightarrow{\mathbf{u}} \cdot (\overrightarrow{\mathbf{v}} \mp \overrightarrow{\mathbf{w}}) = \overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} \mp \overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{w}}$
- 3. $\alpha(\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}) = (\alpha \overrightarrow{\mathbf{u}}) \cdot \overrightarrow{\mathbf{v}} = \overrightarrow{\mathbf{u}} \cdot (\alpha \overrightarrow{\mathbf{v}})$
- $4. \ \overrightarrow{\mathbf{0}} \cdot \overrightarrow{\mathbf{u}} = 0$
- 5. $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{u}} = |\overrightarrow{\mathbf{u}}|^2$
- 6. $|\overrightarrow{u} \cdot \overrightarrow{v}| \leqslant |\overrightarrow{u}| |\overrightarrow{v}|$ (Schwartz Inequality)
- 7. $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} = |\overrightarrow{\mathbf{u}}| |\overrightarrow{\mathbf{v}}| \cos \theta$
- 8. $\theta = \frac{\pi}{2} \Rightarrow \overrightarrow{\mathbf{u}} \perp \overrightarrow{\mathbf{v}} \Leftrightarrow \overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} = 0$
- 9. $\theta = 0$ or $\theta = \pi \Leftrightarrow \overrightarrow{\mathbf{u}} \parallel \overrightarrow{\mathbf{v}}$

$$\cos\theta = \frac{\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}}{|\overrightarrow{\mathbf{u}}| \, |\overrightarrow{\mathbf{v}}|} \Rightarrow \theta = \arccos\left(\frac{\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}}{|\overrightarrow{\mathbf{u}}| \, |\overrightarrow{\mathbf{v}}|}\right)$$

$$\cos\theta = \frac{\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}}{|\overrightarrow{\mathbf{u}}| \, |\overrightarrow{\mathbf{v}}|} \Rightarrow \theta = \arccos\left(\frac{\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}}{|\overrightarrow{\mathbf{u}}| \, |\overrightarrow{\mathbf{v}}|}\right)$$

$$\cos\theta = \frac{\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}}{|\overrightarrow{\mathbf{u}}| \, |\overrightarrow{\mathbf{v}}|} \Rightarrow \theta = \arccos\left(\frac{\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}}{|\overrightarrow{\mathbf{u}}| \, |\overrightarrow{\mathbf{v}}|}\right)$$

$$\cos\theta = \frac{\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}}{\left|\overrightarrow{\mathbf{u}}\right| \left|\overrightarrow{\mathbf{v}}\right|} \Rightarrow \theta = \arccos\left(\frac{\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}}{\left|\overrightarrow{\mathbf{u}}\right| \left|\overrightarrow{\mathbf{v}}\right|}\right)$$

Example

Find the angle between the vectors $\overrightarrow{\bf u}=(2,2,0,1)$ and $\overrightarrow{\bf v}=(-1,1,0,2)$.

$$\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} = \sum_{i=1}^{4} u_i v_i = 2 (-1) + 2.1 + 0.0 + 1.2 = 2$$

Example

Find the angle between the vectors $\overrightarrow{\bf u}=(2,2,0,1)$ and $\overrightarrow{\bf v}=(-1,1,0,2)$.

$$\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} = \sum_{i=1}^{4} u_i v_i = 2 (-1) + 2.1 + 0.0 + 1.2 = 2$$

$$|\overrightarrow{\mathbf{u}}| = \sqrt{4+4+0+1} = 3$$

Example

Find the angle between the vectors $\overrightarrow{\bf u}=(2,2,0,1)$ and $\overrightarrow{\bf v}=(-1,1,0,2)$.

$$\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} = \sum_{i=1}^{4} u_i v_i = 2 (-1) + 2.1 + 0.0 + 1.2 = 2$$

$$|\overrightarrow{\textbf{u}}| = \sqrt{4+4+0+1} = 3$$
 and $|\overrightarrow{\textbf{v}}| = \sqrt{1+1+0+4} = \sqrt{6}$

The Angle Between Two Nonzero Vectors

Example

Find the angle between the vectors $\overrightarrow{u}=(2,2,0,1)$ and $\overrightarrow{v}=(-1,1,0,2)$.

$$\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} = \sum_{i=1}^{4} u_i v_i = 2(-1) + 2.1 + 0.0 + 1.2 = 2$$

$$|\overrightarrow{\mathbf{u}}| = \sqrt{4+4+0+1} = 3$$
 and $|\overrightarrow{\mathbf{v}}| = \sqrt{1+1+0+4} = \sqrt{6}$

$$\cos \theta = \frac{\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}}{\left| \overrightarrow{\mathbf{u}} \right| \left| \overrightarrow{\mathbf{v}} \right|} = \frac{2}{3\sqrt{6}}$$

The Angle Between Two Nonzero Vectors

Example

Find the angle between the vectors $\overrightarrow{\bf u}=(2,2,0,1)$ and $\overrightarrow{\bf v}=(-1,1,0,2)$.

$$\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} = \sum_{i=1}^{4} u_i v_i = 2 (-1) + 2.1 + 0.0 + 1.2 = 2$$

$$|\overrightarrow{\textbf{u}}| = \sqrt{4+4+0+1} = 3 \text{ and } |\overrightarrow{\textbf{v}}| = \sqrt{1+1+0+4} = \sqrt{6}$$

$$\cos \theta = \frac{\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}}{|\overrightarrow{\mathbf{u}}| |\overrightarrow{\mathbf{v}}|} = \frac{2}{3\sqrt{6}} \Rightarrow \theta = \arccos\left(\frac{2}{3\sqrt{6}}\right) = 1,2952$$

The projection of the vector $\overrightarrow{\mathbf{u}} = \overrightarrow{AB}$ onto the nonzero vector $\overrightarrow{\mathbf{v}} = \overrightarrow{AD}$ is denoted by $proj_{\overrightarrow{\mathbf{v}}}(\overrightarrow{\mathbf{u}})$ and is defined as the vector \overrightarrow{AC} .

The projection of the vector $\overrightarrow{\mathbf{u}} = \overrightarrow{AB}$ onto the nonzero vector $\overrightarrow{\mathbf{v}} = \overrightarrow{AD}$ is denoted by $\operatorname{proj}_{\overrightarrow{\mathbf{v}}}(\overrightarrow{\mathbf{u}})$ and is defined as the vector \overrightarrow{AC} .

$$proj_{\overrightarrow{\mathbf{v}}}(\overrightarrow{\mathbf{u}}) = \left(\frac{\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}}{|\overrightarrow{\mathbf{v}}|}\right) \frac{\overrightarrow{\mathbf{v}}}{|\overrightarrow{\mathbf{v}}|} = \frac{\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}}{|\overrightarrow{\mathbf{v}}|^2} \overrightarrow{\mathbf{v}}$$

The projection of the vector $\overrightarrow{\mathbf{u}} = \overrightarrow{AB}$ onto the nonzero vector $\overrightarrow{\mathbf{v}} = \overrightarrow{AD}$ is denoted by $\operatorname{proj}_{\overrightarrow{\mathbf{v}}}(\overrightarrow{\mathbf{u}})$ and is defined as the vector \overrightarrow{AC} .

Let $|\overrightarrow{\mathbf{u}}|\cos\theta = \frac{\overrightarrow{\mathbf{u}}\cdot\overrightarrow{\mathbf{v}}}{|\overrightarrow{\mathbf{v}}|}$ be the scaler projection of the vector $\overrightarrow{\mathbf{u}}$ onto the vector $\overrightarrow{\mathbf{v}}$. Then the vector projection of the vector $\overrightarrow{\mathbf{u}}$ onto the vector $\overrightarrow{\mathbf{v}}$ is denoted by $\operatorname{proj}_{\overrightarrow{\mathbf{v}}}\left(\overrightarrow{\mathbf{u}}\right)$ and defined by

$$proj_{\overrightarrow{V}}(\overrightarrow{u}) = \left(\frac{\overrightarrow{u} \cdot \overrightarrow{V}}{|\overrightarrow{V}|}\right) \frac{\overrightarrow{V}}{|\overrightarrow{V}|} = \frac{\overrightarrow{u} \cdot \overrightarrow{V}}{|\overrightarrow{V}|^2} \overrightarrow{V}$$

The projection of the vector $\overrightarrow{\mathbf{u}} = \overrightarrow{AB}$ onto the nonzero vector $\overrightarrow{\mathbf{v}} = \overrightarrow{AD}$ is denoted by $\operatorname{proj}_{\overrightarrow{\mathbf{v}}}(\overrightarrow{\mathbf{u}})$ and is defined as the vector \overrightarrow{AC} .

$$proj_{\overrightarrow{\mathbf{v}}}(\overrightarrow{\mathbf{u}}) = \left(\frac{\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}}{|\overrightarrow{\mathbf{v}}|}\right) \frac{\overrightarrow{\mathbf{v}}}{|\overrightarrow{\mathbf{v}}|} = \frac{\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}}{|\overrightarrow{\mathbf{v}}|^2} \overrightarrow{\mathbf{v}}$$

The projection of the vector $\overrightarrow{\mathbf{u}} = \overrightarrow{AB}$ onto the nonzero vector $\overrightarrow{\mathbf{v}} = \overrightarrow{AD}$ is denoted by $\operatorname{proj}_{\overrightarrow{\mathbf{v}}}(\overrightarrow{\mathbf{u}})$ and is defined as the vector \overrightarrow{AC} .

Let $|\overrightarrow{\mathbf{u}}|\cos\theta = \frac{\overrightarrow{\mathbf{u}}\cdot\overrightarrow{\mathbf{v}}}{|\overrightarrow{\mathbf{v}}|}$ be the scaler projection of the vector $\overrightarrow{\mathbf{u}}$ onto the vector $\overrightarrow{\mathbf{v}}$. Then the vector projection of the vector $\overrightarrow{\mathbf{u}}$ onto the vector $\overrightarrow{\mathbf{v}}$ is denoted by $\operatorname{proj}_{\overrightarrow{\mathbf{v}}}\left(\overrightarrow{\mathbf{u}}\right)$ and defined by

$$proj_{\overrightarrow{\mathbf{v}}}(\overrightarrow{\mathbf{u}}) = \left(\frac{\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}}{|\overrightarrow{\mathbf{v}}|}\right) \frac{\overrightarrow{\mathbf{v}}}{|\overrightarrow{\mathbf{v}}|} = \frac{\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}}{|\overrightarrow{\mathbf{v}}|^2} \overrightarrow{\mathbf{v}}$$

The projection of the vector $\overrightarrow{\mathbf{u}} = \overrightarrow{AB}$ onto the nonzero vector $\overrightarrow{\mathbf{v}} = \overrightarrow{AD}$ is denoted by $\operatorname{proj}_{\overrightarrow{\mathbf{v}}}(\overrightarrow{\mathbf{u}})$ and is defined as the vector \overrightarrow{AC} .

$$proj_{\overrightarrow{\mathbf{v}}}\left(\overrightarrow{\mathbf{u}}\right) = \left(\frac{\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}}{|\overrightarrow{\mathbf{v}}|}\right) \frac{\overrightarrow{\mathbf{v}}}{|\overrightarrow{\mathbf{v}}|} = \frac{\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}}{|\overrightarrow{\mathbf{v}}|^2} \overrightarrow{\mathbf{v}}$$

The projection of the vector $\overrightarrow{\mathbf{u}} = \overrightarrow{AB}$ onto the nonzero vector $\overrightarrow{\mathbf{v}} = \overrightarrow{AD}$ is denoted by $\operatorname{proj}_{\overrightarrow{\mathbf{v}}}(\overrightarrow{\mathbf{u}})$ and is defined as the vector \overrightarrow{AC} .

$$proj_{\overrightarrow{\mathbf{v}}}(\overrightarrow{\mathbf{u}}) = \left(\frac{\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}}{|\overrightarrow{\mathbf{v}}|}\right) \frac{\overrightarrow{\mathbf{v}}}{|\overrightarrow{\mathbf{v}}|} = \frac{\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}}{|\overrightarrow{\mathbf{v}}|^2} \overrightarrow{\mathbf{v}}$$

The projection of the vector $\overrightarrow{\mathbf{u}} = \overrightarrow{AB}$ onto the nonzero vector $\overrightarrow{\mathbf{v}} = \overrightarrow{AD}$ is denoted by $\operatorname{proj}_{\overrightarrow{\mathbf{v}}}(\overrightarrow{\mathbf{u}})$ and is defined as the vector \overrightarrow{AC} .

$$proj_{\overrightarrow{\mathbf{v}}}(\overrightarrow{\mathbf{u}}) = \left(\frac{\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}}{|\overrightarrow{\mathbf{v}}|}\right) \frac{\overrightarrow{\mathbf{v}}}{|\overrightarrow{\mathbf{v}}|} = \frac{\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}}{|\overrightarrow{\mathbf{v}}|^2} \overrightarrow{\mathbf{v}}$$

The projection of the vector $\overrightarrow{\mathbf{u}} = \overrightarrow{AB}$ onto the nonzero vector $\overrightarrow{\mathbf{v}} = \overrightarrow{AD}$ is denoted by $\operatorname{proj}_{\overrightarrow{\mathbf{v}}}(\overrightarrow{\mathbf{u}})$ and is defined as the vector \overrightarrow{AC} .

Let $|\overrightarrow{\mathbf{u}}|\cos\theta = \frac{\overrightarrow{\mathbf{u}}\cdot\overrightarrow{\mathbf{v}}}{|\overrightarrow{\mathbf{v}}|}$ be the scaler projection of the vector $\overrightarrow{\mathbf{u}}$ onto the vector $\overrightarrow{\mathbf{v}}$. Then the vector projection of the vector $\overrightarrow{\mathbf{u}}$ onto the vector $\overrightarrow{\mathbf{v}}$ is denoted by $\operatorname{proj}_{\overrightarrow{\mathbf{v}}}(\overrightarrow{\mathbf{u}})$ and defined by

$$proj_{\overrightarrow{\mathbf{v}}}(\overrightarrow{\mathbf{u}}) = \left(\frac{\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}}{|\overrightarrow{\mathbf{v}}|}\right) \frac{\overrightarrow{\mathbf{v}}}{|\overrightarrow{\mathbf{v}}|} = \frac{\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}}{|\overrightarrow{\mathbf{v}}|^2} \overrightarrow{\mathbf{v}}$$

The projection of the vector $\overrightarrow{\mathbf{u}} = \overrightarrow{AB}$ onto the nonzero vector $\overrightarrow{\mathbf{v}} = \overrightarrow{AD}$ is denoted by $\operatorname{proj}_{\overrightarrow{\mathbf{v}}}(\overrightarrow{\mathbf{u}})$ and is defined as the vector \overrightarrow{AC} .

$$proj_{\overrightarrow{\mathbf{v}}}(\overrightarrow{\mathbf{u}}) = \left(\frac{\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}}{|\overrightarrow{\mathbf{v}}|}\right) \frac{\overrightarrow{\mathbf{v}}}{|\overrightarrow{\mathbf{v}}|} = \frac{\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}}{|\overrightarrow{\mathbf{v}}|^2} \overrightarrow{\mathbf{v}}$$

The projection of the vector $\overrightarrow{\mathbf{u}} = \overrightarrow{AB}$ onto the nonzero vector $\overrightarrow{\mathbf{v}} = \overrightarrow{AD}$ is denoted by $\operatorname{proj}_{\overrightarrow{\mathbf{v}}}(\overrightarrow{\mathbf{u}})$ and is defined as the vector \overrightarrow{AC} .

The projection of the vector $\overrightarrow{\mathbf{u}} = \overrightarrow{AB}$ onto the nonzero vector $\overrightarrow{\mathbf{v}} = \overrightarrow{AD}$ is denoted by $\operatorname{proj}_{\overrightarrow{\mathbf{v}}}(\overrightarrow{\mathbf{u}})$ and is defined as the vector \overrightarrow{AC} .

Let $|\overrightarrow{\mathbf{u}}|\cos\theta = \frac{\overrightarrow{\mathbf{u}}\cdot\overrightarrow{\mathbf{v}}}{|\overrightarrow{\mathbf{v}}|}$ be the scaler projection of the vector $\overrightarrow{\mathbf{u}}$ onto the vector $\overrightarrow{\mathbf{v}}$.

The projection of the vector $\overrightarrow{\mathbf{u}} = \overrightarrow{AB}$ onto the nonzero vector $\overrightarrow{\mathbf{v}} = \overrightarrow{AD}$ is denoted by $\operatorname{proj}_{\overrightarrow{\mathbf{v}}}(\overrightarrow{\mathbf{u}})$ and is defined as the vector \overrightarrow{AC} .

Let $|\overrightarrow{\mathbf{u}}|\cos\theta = \frac{\overrightarrow{\mathbf{u}}\cdot\overrightarrow{\mathbf{v}}}{|\overrightarrow{\mathbf{v}}|}$ be the scaler projection of the vector $\overrightarrow{\mathbf{u}}$ onto the vector $\overrightarrow{\mathbf{v}}$. Then the vector projection of the vector $\overrightarrow{\mathbf{u}}$ onto the vector $\overrightarrow{\mathbf{v}}$ is denoted by $\operatorname{proj}_{\overrightarrow{\mathbf{v}}}(\overrightarrow{\mathbf{u}})$ and defined by

$$\textit{proj}_{\overrightarrow{\boldsymbol{\mathsf{V}}}}\left(\overrightarrow{\boldsymbol{\mathsf{u}}}\right) = \left(\frac{\overrightarrow{\boldsymbol{\mathsf{u}}}\cdot\overrightarrow{\boldsymbol{\mathsf{V}}}}{|\overrightarrow{\boldsymbol{\mathsf{V}}}|}\right)\frac{\overrightarrow{\boldsymbol{\mathsf{V}}}}{|\overrightarrow{\boldsymbol{\mathsf{V}}}|}$$

The projection of the vector $\overrightarrow{\mathbf{u}} = \overrightarrow{AB}$ onto the nonzero vector $\overrightarrow{\mathbf{v}} = \overrightarrow{AD}$ is denoted by $\operatorname{proj}_{\overrightarrow{\mathbf{v}}}(\overrightarrow{\mathbf{u}})$ and is defined as the vector \overrightarrow{AC} .

$$proj_{\overrightarrow{\mathbf{v}}}(\overrightarrow{\mathbf{u}}) = \left(\frac{\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}}{|\overrightarrow{\mathbf{v}}|}\right) \frac{\overrightarrow{\mathbf{v}}}{|\overrightarrow{\mathbf{v}}|} = \frac{\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}}{|\overrightarrow{\mathbf{v}}|^2} \overrightarrow{\mathbf{v}}$$

Example

J

Let $\overrightarrow{\mathbf{u}} = (2, 2, 0, 1)$ and $\overrightarrow{\mathbf{v}} = (-1, 1, 0, 2)$ be two nonzero vectors. Find $proj_{\overrightarrow{\mathbf{v}}}(\overrightarrow{\mathbf{u}})$.

$$proj_{\overrightarrow{\mathbf{v}}}(\overrightarrow{\mathbf{u}}) = \frac{\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}}{|\overrightarrow{\mathbf{v}}|^2} \overrightarrow{\mathbf{v}}$$

$$\frac{1}{3}$$
, $\frac{1}{3}$, 0 , $\frac{2}{3}$

1

Example

Let $\overrightarrow{\mathbf{u}} = (2, 2, 0, 1)$ and $\overrightarrow{\mathbf{v}} = (-1, 1, 0, 2)$ be two nonzero vectors.

Find $proj_{\overrightarrow{V}}(\overrightarrow{u})$.

$$proj_{\overrightarrow{V}}(\overrightarrow{u}) = \frac{\overrightarrow{u} \cdot \overrightarrow{V}}{|\overrightarrow{V}|^2} \overrightarrow{V}$$

$$\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} = \sum_{i=1}^{4} u_i v_i = 2 (-1) + 2.1 + 0.0 + 1.2 = 2$$

Example

Let $\overrightarrow{\mathbf{u}} = (2, 2, 0, 1)$ and $\overrightarrow{\mathbf{v}} = (-1, 1, 0, 2)$ be two nonzero vectors.

Find $proj_{\overrightarrow{V}}(\overrightarrow{u})$.

$$proj_{\overrightarrow{\mathbf{V}}}\left(\overrightarrow{\mathbf{u}}\right) = \frac{\overrightarrow{\mathbf{u}}\cdot\overrightarrow{\mathbf{V}}}{\left|\overrightarrow{\mathbf{V}}\right|^{2}}\overrightarrow{\mathbf{V}}$$

$$\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} = \sum_{i=1}^{4} u_i v_i = 2 (-1) + 2.1 + 0.0 + 1.2 = 2$$

$$|\overrightarrow{\mathbf{v}}| = \sqrt{1+1+0+4} = \sqrt{6}$$

Example

Let $\overrightarrow{\mathbf{u}} = (2, 2, 0, 1)$ and $\overrightarrow{\mathbf{v}} = (-1, 1, 0, 2)$ be two nonzero vectors.

Find $proj_{\overrightarrow{V}}(\overrightarrow{u})$.

$$\textit{proj}_{\overrightarrow{\textbf{v}}}\left(\overrightarrow{\textbf{u}}\right) = \frac{\overrightarrow{\textbf{u}} \cdot \overrightarrow{\textbf{v}}}{\left|\overrightarrow{\textbf{v}}\right|^2} \overrightarrow{\textbf{v}}$$

$$\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} = \sum_{i=1}^{4} u_i v_i = 2 (-1) + 2.1 + 0.0 + 1.2 = 2$$

$$|\overrightarrow{\mathbf{v}}| = \sqrt{1+1+0+4} = \sqrt{6}$$

$$proj_{\overrightarrow{\mathbf{v}}}(\overrightarrow{\mathbf{u}}) = \frac{2}{6}(-1, 1, 0, 2) = (\frac{-1}{3}, \frac{1}{3}, 0, \frac{2}{3})$$

Definition

Let $\overrightarrow{\mathbf{u}} = (u_1, u_2, u_3)$ and $\overrightarrow{\mathbf{v}} = (v_1, v_2, v_3)$ be two vectors in \mathbb{R}^3 . The cross product of the vectors $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$ is denoted by $\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}$ or $\overrightarrow{\mathbf{u}} \wedge \overrightarrow{\mathbf{v}}$ and defined as follows:

Definition

Let $\overrightarrow{\mathbf{u}} = (u_1, u_2, u_3)$ and $\overrightarrow{\mathbf{v}} = (v_1, v_2, v_3)$ be two vectors in \mathbb{R}^3 . The cross product of the vectors $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$ is denoted by $\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}$ or $\overrightarrow{\mathbf{u}} \wedge \overrightarrow{\mathbf{v}}$ and defined as follows:

Definition

Let $\overrightarrow{\mathbf{u}} = (u_1, u_2, u_3)$ and $\overrightarrow{\mathbf{v}} = (v_1, v_2, v_3)$ be two vectors in \mathbb{R}^3 . The cross product of the vectors $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$ is denoted by $\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}$ or $\overrightarrow{\mathbf{u}} \wedge \overrightarrow{\mathbf{v}}$ and defined as follows:

Definition

Let $\overrightarrow{\mathbf{u}} = (u_1, u_2, u_3)$ and $\overrightarrow{\mathbf{v}} = (v_1, v_2, v_3)$ be two vectors in \mathbb{R}^3 . The cross product of the vectors $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$ is denoted by $\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}$ or $\overrightarrow{\mathbf{u}} \wedge \overrightarrow{\mathbf{v}}$ and defined as follows:

Definition

Let $\overrightarrow{\mathbf{u}} = (u_1, u_2, u_3)$ and $\overrightarrow{\mathbf{v}} = (v_1, v_2, v_3)$ be two vectors in \mathbb{R}^3 . The cross product of the vectors $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$ is denoted by $\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}$ or $\overrightarrow{\mathbf{u}} \wedge \overrightarrow{\mathbf{v}}$ and defined as follows:

Definition

Let $\overrightarrow{\mathbf{u}} = (u_1, u_2, u_3)$ and $\overrightarrow{\mathbf{v}} = (v_1, v_2, v_3)$ be two vectors in \mathbb{R}^3 . The cross product of the vectors $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$ is denoted by $\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}$ or $\overrightarrow{\mathbf{u}} \wedge \overrightarrow{\mathbf{v}}$ and defined as follows:

Definition

Let $\overrightarrow{\mathbf{u}} = (u_1, u_2, u_3)$ and $\overrightarrow{\mathbf{v}} = (v_1, v_2, v_3)$ be two vectors in \mathbb{R}^3 . The cross product of the vectors $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$ is denoted by $\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}$ or $\overrightarrow{\mathbf{u}} \wedge \overrightarrow{\mathbf{v}}$ and defined as follows:

Definition

Let $\overrightarrow{\mathbf{u}} = (u_1, u_2, u_3)$ and $\overrightarrow{\mathbf{v}} = (v_1, v_2, v_3)$ be two vectors in \mathbb{R}^3 . The cross product of the vectors $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$ is denoted by $\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}$ or $\overrightarrow{\mathbf{u}} \wedge \overrightarrow{\mathbf{v}}$ and defined as follows:

Definition

Let $\overrightarrow{\mathbf{u}} = (u_1, u_2, u_3)$ and $\overrightarrow{\mathbf{v}} = (v_1, v_2, v_3)$ be two vectors in \mathbb{R}^3 . The cross product of the vectors $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$ is denoted by $\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}$ or $\overrightarrow{\mathbf{u}} \wedge \overrightarrow{\mathbf{v}}$ and defined as follows:

$$\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}} = \left| \begin{array}{ccc} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{array} \right|$$

$$\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} \\
= \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix} \vec{i} - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_2 \end{vmatrix} \vec{j} + \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \vec{k}$$

$$\vec{\mathbf{u}} \times \vec{\mathbf{v}} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$

$$= \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix} \vec{i} - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix} \vec{j} + \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \vec{k}$$

 $\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}} = \left(\left| \begin{array}{ccc} u_2 & u_3 \\ v_2 & v_3 \end{array} \right|, \left| \begin{array}{ccc} u_3 & u_1 \\ v_3 & v_1 \end{array} \right|, \left| \begin{array}{ccc} u_1 & u_2 \\ v_1 & v_2 \end{array} \right| \right)$

Mehmet E. KÖROĞLU

or

$$\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} \\
= \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \overrightarrow{k}$$

or

$$\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}} = \left(\left| \begin{array}{cc|c} u_2 & u_3 \\ v_2 & v_3 \end{array} \right|, \left| \begin{array}{cc|c} u_3 & u_1 \\ v_3 & v_1 \end{array} \right|, \left| \begin{array}{cc|c} u_1 & u_2 \\ v_1 & v_2 \end{array} \right| \right)$$

Note: The cross product is only defined over \mathbb{R}^3 .

Example

Let $\overrightarrow{\mathbf{u}} = (1, 2, -1)$ and $\overrightarrow{\mathbf{v}} = (-2, 3, 4) \in \mathbb{R}^3$. Find the cross product of $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$.

$$\begin{vmatrix}
1 & 2 & -1 \\
-2 & 3 & 4
\end{vmatrix}$$

$$(8+3)_{i} - (4-2)_{j} + (3+4)_{k}$$

$$11_{i} - 2_{j} + 3_{k}$$

Example

Let $\overrightarrow{u}=(1,2,-1)$ and $\overrightarrow{v}=(-2,3,4)\in\mathbb{R}^3.$ Find the cross product of \overrightarrow{u} and \overrightarrow{v} .

I. Method:
$$\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 1 & 2 & -1 \\ -2 & 3 & 4 \end{vmatrix}$$

Example

Let $\overrightarrow{\mathbf{u}} = (1, 2, -1)$ and $\overrightarrow{\mathbf{v}} = (-2, 3, 4) \in \mathbb{R}^3$. Find the cross product of $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$.

I. Method:
$$\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 1 & 2 & -1 \\ -2 & 3 & 4 \end{vmatrix}$$
$$= \begin{vmatrix} 2 & -1 \\ 3 & 4 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} 1 & -1 \\ -2 & 4 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} 1 & 2 \\ -2 & 3 \end{vmatrix} \overrightarrow{k}$$

Example

Let $\overrightarrow{\mathbf{u}} = (1, 2, -1)$ and $\overrightarrow{\mathbf{v}} = (-2, 3, 4) \in \mathbb{R}^3$. Find the cross product of $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$.

I. Method:
$$\vec{u} \times \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 2 & -1 \\ -2 & 3 & 4 \end{vmatrix}$$

$$= \begin{vmatrix} 2 & -1 \\ 3 & 4 \end{vmatrix} \vec{i} - \begin{vmatrix} 1 & -1 \\ -2 & 4 \end{vmatrix} \vec{j} + \begin{vmatrix} 1 & 2 \\ -2 & 3 \end{vmatrix} \vec{k}$$

$$= 11\vec{i} - 2\vec{j} + 7\vec{k} = (11, -2, 7)$$

Example

Let $\overrightarrow{u} = (1, 2, -1)$ and $\overrightarrow{v} = (-2, 3, 4) \in \mathbb{R}^3$. Find the cross product of \overrightarrow{u} and \overrightarrow{v} .

I. Method:
$$\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 1 & 2 & -1 \\ -2 & 3 & 4 \end{vmatrix}$$
$$= \begin{vmatrix} 2 & -1 \\ 3 & 4 \end{vmatrix} \overrightarrow{i} - \begin{vmatrix} 1 & -1 \\ -2 & 4 \end{vmatrix} \overrightarrow{j} + \begin{vmatrix} 1 & 2 \\ -2 & 3 \end{vmatrix} \overrightarrow{k}$$
$$= 11\overrightarrow{i} - 2\overrightarrow{j} + 7\overrightarrow{k} = (11, -2, 7)$$

II. Method:
$$\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}} = \left(\begin{vmatrix} 2 & -1 \\ 3 & 4 \end{vmatrix}, \begin{vmatrix} -1 & 1 \\ 4 & -2 \end{vmatrix}, \begin{vmatrix} 1 & 2 \\ -2 & 3 \end{vmatrix} \right)$$

Example

Let $\overrightarrow{u} = (1, 2, -1)$ and $\overrightarrow{v} = (-2, 3, 4) \in \mathbb{R}^3$. Find the cross product of \overrightarrow{u} and \overrightarrow{v} .

I. Method:
$$\vec{\mathbf{u}} \times \vec{\mathbf{v}} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 2 & -1 \\ -2 & 3 & 4 \end{vmatrix}$$

$$= \begin{vmatrix} 2 & -1 \\ 3 & 4 \end{vmatrix} \vec{i} - \begin{vmatrix} 1 & -1 \\ -2 & 4 \end{vmatrix} \vec{j} + \begin{vmatrix} 1 & 2 \\ -2 & 3 \end{vmatrix} \vec{k}$$

$$= 11\vec{i} - 2\vec{j} + 7\vec{k} = (11, -2, 7)$$

II. Method:
$$\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}} = \begin{pmatrix} 2 & -1 \\ 3 & 4 \end{pmatrix}, \begin{vmatrix} -1 & 1 \\ 4 & -2 \end{vmatrix}, \begin{vmatrix} 1 & 2 \\ -2 & 3 \end{vmatrix}$$

$$= (11, -2, 7)$$

Let
$$\overrightarrow{\mathbf{u}} = (u_1, u_2, u_3)$$
, $\overrightarrow{\mathbf{v}} = (v_1, v_2, v_3)$ and $\overrightarrow{\mathbf{w}} = (w_1, w_2, w_3) \in \mathbb{R}^3$ and $c \in \mathbb{R}$.

Let
$$\overrightarrow{\mathbf{u}} = (u_1, u_2, u_3)$$
, $\overrightarrow{\mathbf{v}} = (v_1, v_2, v_3)$ and $\overrightarrow{\mathbf{w}} = (w_1, w_2, w_3) \in \mathbb{R}^3$ and $c \in \mathbb{R}$.

1.
$$\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}} = -\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{u}}$$

Let
$$\overrightarrow{\mathbf{u}} = (u_1, u_2, u_3)$$
, $\overrightarrow{\mathbf{v}} = (v_1, v_2, v_3)$ and $\overrightarrow{\mathbf{w}} = (w_1, w_2, w_3) \in \mathbb{R}^3$ and $c \in \mathbb{R}$.

- 1. $\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}} = -\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{u}}$
- 2. $(c\overrightarrow{\mathbf{u}}) \times \overrightarrow{\mathbf{v}} = c(\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}) = \overrightarrow{\mathbf{u}} \times (c\overrightarrow{\mathbf{v}})$

Let
$$\overrightarrow{\mathbf{u}} = (u_1, u_2, u_3)$$
, $\overrightarrow{\mathbf{v}} = (v_1, v_2, v_3)$ and $\overrightarrow{\mathbf{w}} = (w_1, w_2, w_3) \in \mathbb{R}^3$ and $c \in \mathbb{R}$.

- 1. $\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}} = -\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{u}}$
- 2. $(c\overrightarrow{\mathbf{u}}) \times \overrightarrow{\mathbf{v}} = c(\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}) = \overrightarrow{\mathbf{u}} \times (c\overrightarrow{\mathbf{v}})$
- 3. $\overrightarrow{u} \times (\overrightarrow{v} \mp \overrightarrow{w}) = \overrightarrow{u} \times \overrightarrow{v} \mp \overrightarrow{u} \times \overrightarrow{w}$

Let
$$\overrightarrow{\mathbf{u}} = (u_1, u_2, u_3)$$
, $\overrightarrow{\mathbf{v}} = (v_1, v_2, v_3)$ and $\overrightarrow{\mathbf{w}} = (w_1, w_2, w_3) \in \mathbb{R}^3$ and $c \in \mathbb{R}$.

- 1. $\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}} = -\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{u}}$
- 2. $(c\overrightarrow{\mathbf{u}}) \times \overrightarrow{\mathbf{v}} = c(\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}) = \overrightarrow{\mathbf{u}} \times (c\overrightarrow{\mathbf{v}})$
- 3. $\overrightarrow{\mathbf{u}} \times (\overrightarrow{\mathbf{v}} \mp \overrightarrow{\mathbf{w}}) = \overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}} \mp \overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{w}}$
- 4. $(\overrightarrow{u} \mp \overrightarrow{v}) \times \overrightarrow{w} = \overrightarrow{u} \times \overrightarrow{w} \mp \overrightarrow{v} \times \overrightarrow{w}$

Let
$$\overrightarrow{\mathbf{u}} = (u_1, u_2, u_3)$$
, $\overrightarrow{\mathbf{v}} = (v_1, v_2, v_3)$ and $\overrightarrow{\mathbf{w}} = (w_1, w_2, w_3) \in \mathbb{R}^3$ and $c \in \mathbb{R}$.

- 1. $\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}} = -\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{u}}$
- 2. $(c\overrightarrow{\mathbf{u}}) \times \overrightarrow{\mathbf{v}} = c(\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}) = \overrightarrow{\mathbf{u}} \times (c\overrightarrow{\mathbf{v}})$
- 3. $\overrightarrow{\mathbf{u}} \times (\overrightarrow{\mathbf{v}} \mp \overrightarrow{\mathbf{w}}) = \overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}} \mp \overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{w}}$
- 4. $(\overrightarrow{u} \mp \overrightarrow{v}) \times \overrightarrow{w} = \overrightarrow{u} \times \overrightarrow{w} \mp \overrightarrow{v} \times \overrightarrow{w}$
- 5. $\overrightarrow{\mathbf{u}} \cdot (\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}) = (\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}) \cdot \overrightarrow{\mathbf{w}}$

Let
$$\overrightarrow{\mathbf{u}} = (u_1, u_2, u_3)$$
, $\overrightarrow{\mathbf{v}} = (v_1, v_2, v_3)$ and $\overrightarrow{\mathbf{w}} = (w_1, w_2, w_3) \in \mathbb{R}^3$ and $c \in \mathbb{R}$.

- 1. $\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}} = -\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{u}}$
- 2. $(c\overrightarrow{\mathbf{u}}) \times \overrightarrow{\mathbf{v}} = c(\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}) = \overrightarrow{\mathbf{u}} \times (c\overrightarrow{\mathbf{v}})$
- 3. $\overrightarrow{\mathbf{u}} \times (\overrightarrow{\mathbf{v}} \mp \overrightarrow{\mathbf{w}}) = \overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}} \mp \overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{w}}$
- 4. $(\overrightarrow{u} \mp \overrightarrow{v}) \times \overrightarrow{w} = \overrightarrow{u} \times \overrightarrow{w} \mp \overrightarrow{v} \times \overrightarrow{w}$
- 5. $\overrightarrow{\mathbf{u}} \cdot (\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}) = (\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}) \cdot \overrightarrow{\mathbf{w}}$
- 6. $\overrightarrow{\mathbf{u}} \times (\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}) = (\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{w}}) \overrightarrow{\mathbf{v}} (\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}) \overrightarrow{\mathbf{w}}$

Let
$$\overrightarrow{\mathbf{u}} = (u_1, u_2, u_3)$$
, $\overrightarrow{\mathbf{v}} = (v_1, v_2, v_3)$ and $\overrightarrow{\mathbf{w}} = (w_1, w_2, w_3) \in \mathbb{R}^3$ and $c \in \mathbb{R}$.

- 1. $\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}} = -\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{u}}$
- 2. $(c\overrightarrow{\mathbf{u}}) \times \overrightarrow{\mathbf{v}} = c(\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}) = \overrightarrow{\mathbf{u}} \times (c\overrightarrow{\mathbf{v}})$
- 3. $\overrightarrow{\mathbf{u}} \times (\overrightarrow{\mathbf{v}} \mp \overrightarrow{\mathbf{w}}) = \overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}} \mp \overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{w}}$
- 4. $(\overrightarrow{u} \mp \overrightarrow{v}) \times \overrightarrow{w} = \overrightarrow{u} \times \overrightarrow{w} \mp \overrightarrow{v} \times \overrightarrow{w}$
- 5. $\overrightarrow{\mathbf{u}} \cdot (\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}) = (\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}) \cdot \overrightarrow{\mathbf{w}}$
- 6. $\overrightarrow{u} \times (\overrightarrow{v} \times \overrightarrow{w}) = (\overrightarrow{u} \cdot \overrightarrow{w}) \overrightarrow{v} (\overrightarrow{u} \cdot \overrightarrow{v}) \overrightarrow{w}$
- $\begin{array}{l} 7. \ \overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}} = (\left|\overrightarrow{\mathbf{u}}\right|\left|\overrightarrow{\mathbf{v}}\right|\sin\theta) \ \overrightarrow{\mathbf{n}} \\ (\overrightarrow{\mathbf{u}} \perp \overrightarrow{\mathbf{n}}, \ \overrightarrow{\mathbf{v}} \perp \overrightarrow{\mathbf{n}}, \ \mathrm{ve} \ \left|\overrightarrow{\mathbf{n}}\right| = 1) \end{array}$

Let
$$\overrightarrow{\mathbf{u}} = (u_1, u_2, u_3)$$
, $\overrightarrow{\mathbf{v}} = (v_1, v_2, v_3)$ and $\overrightarrow{\mathbf{w}} = (w_1, w_2, w_3) \in \mathbb{R}^3$ and $c \in \mathbb{R}$.

- 1. $\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}} = -\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{u}}$
- 2. $(c\overrightarrow{\mathbf{u}}) \times \overrightarrow{\mathbf{v}} = c(\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}) = \overrightarrow{\mathbf{u}} \times (c\overrightarrow{\mathbf{v}})$
- 3. $\overrightarrow{\mathbf{u}} \times (\overrightarrow{\mathbf{v}} \mp \overrightarrow{\mathbf{w}}) = \overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}} \mp \overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{w}}$
- 4. $(\overrightarrow{u} \mp \overrightarrow{v}) \times \overrightarrow{w} = \overrightarrow{u} \times \overrightarrow{w} \mp \overrightarrow{v} \times \overrightarrow{w}$
- 5. $\overrightarrow{\mathbf{u}} \cdot (\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}) = (\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}) \cdot \overrightarrow{\mathbf{w}}$
- 6. $\overrightarrow{\mathbf{u}} \times (\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}) = (\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{w}}) \overrightarrow{\mathbf{v}} (\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}) \overrightarrow{\mathbf{w}}$
- 7. $\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}} = (|\overrightarrow{\mathbf{u}}| |\overrightarrow{\mathbf{v}}| \sin \theta) \overrightarrow{\mathbf{n}}$ $(\overrightarrow{\mathbf{u}} \perp \overrightarrow{\mathbf{n}}, \overrightarrow{\mathbf{v}} \perp \overrightarrow{\mathbf{n}}, \text{ ve } |\overrightarrow{\mathbf{n}}| = 1)$
- 8. $\theta = 0$ or $\theta = \pi \Rightarrow \overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}} = \overrightarrow{\mathbf{0}}$

Let
$$\overrightarrow{\mathbf{u}} = (u_1, u_2, u_3)$$
, $\overrightarrow{\mathbf{v}} = (v_1, v_2, v_3)$ and $\overrightarrow{\mathbf{w}} = (w_1, w_2, w_3) \in \mathbb{R}^3$ and $c \in \mathbb{R}$.

1.
$$\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}} = -\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{u}}$$

2.
$$(c\overrightarrow{\mathbf{u}}) \times \overrightarrow{\mathbf{v}} = c(\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}) = \overrightarrow{\mathbf{u}} \times (c\overrightarrow{\mathbf{v}})$$

3.
$$\overrightarrow{\mathbf{u}} \times (\overrightarrow{\mathbf{v}} \mp \overrightarrow{\mathbf{w}}) = \overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}} \mp \overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{w}}$$

4.
$$(\overrightarrow{u} \mp \overrightarrow{v}) \times \overrightarrow{w} = \overrightarrow{u} \times \overrightarrow{w} \mp \overrightarrow{v} \times \overrightarrow{w}$$

5.
$$\overrightarrow{\mathbf{u}} \cdot (\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}) = (\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}) \cdot \overrightarrow{\mathbf{w}}$$

6.
$$\overrightarrow{\mathbf{u}} \times (\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}) = (\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{w}}) \overrightarrow{\mathbf{v}} - (\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}) \overrightarrow{\mathbf{w}}$$

7.
$$\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}} = (|\overrightarrow{\mathbf{u}}| |\overrightarrow{\mathbf{v}}| \sin \theta) \overrightarrow{\mathbf{n}}$$

 $(\overrightarrow{\mathbf{u}} \perp \overrightarrow{\mathbf{n}}, \overrightarrow{\mathbf{v}} \perp \overrightarrow{\mathbf{n}}, \text{ ve } |\overrightarrow{\mathbf{n}}| = 1)$

8.
$$\theta = 0$$
 or $\theta = \pi \Rightarrow \overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}} = \overrightarrow{\mathbf{0}}$

9.
$$\overrightarrow{\mathbf{u}} \perp (\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}})$$
 and $\overrightarrow{\mathbf{u}} \perp (\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}})$

Definition

Let $\overrightarrow{\mathbf{u}} = (u_1, u_2, u_3)$, $\overrightarrow{\mathbf{v}} = (v_1, v_2, v_3)$ and $\overrightarrow{\mathbf{w}} = (w_1, w_2, w_3)$ be three vectors in \mathbb{R}^3 . Then the mixed product of the vectors $\overrightarrow{\mathbf{u}}$, $\overrightarrow{\mathbf{v}}$ and $\overrightarrow{\mathbf{w}}$ is denoted by $\overrightarrow{\mathbf{u}} \cdot (\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}})$ or $(\overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}}, \overrightarrow{\mathbf{w}})$

Definition

Let $\overrightarrow{\mathbf{u}} = (u_1, u_2, u_3)$, $\overrightarrow{\mathbf{v}} = (v_1, v_2, v_3)$ and $\overrightarrow{\mathbf{w}} = (w_1, w_2, w_3)$ be three vectors in \mathbb{R}^3 . Then the mixed product of the vectors $\overrightarrow{\mathbf{u}}$, $\overrightarrow{\mathbf{v}}$ and $\overrightarrow{\mathbf{w}}$ is denoted by $\overrightarrow{\mathbf{u}} \cdot (\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}})$ or $(\overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}}, \overrightarrow{\mathbf{w}})$ and defined by

$$\overrightarrow{\mathbf{u}} \cdot (\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}) = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}.$$

Definition

Let $\overrightarrow{\mathbf{u}} = (u_1, u_2, u_3)$, $\overrightarrow{\mathbf{v}} = (v_1, v_2, v_3)$ and $\overrightarrow{\mathbf{w}} = (w_1, w_2, w_3)$ be three vectors in \mathbb{R}^3 . Then the mixed product of the vectors $\overrightarrow{\mathbf{u}}$, $\overrightarrow{\mathbf{v}}$ and $\overrightarrow{\mathbf{w}}$ is denoted by $\overrightarrow{\mathbf{u}} \cdot (\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}})$ or $(\overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}}, \overrightarrow{\mathbf{w}})$ and defined by

$$\overrightarrow{\mathbf{u}} \cdot (\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}) = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}.$$

Note: Mixed product is only defined over \mathbb{R}^3 .

Geometrically, mixed product of the vectors $\overrightarrow{\mathbf{u}}$, $\overrightarrow{\mathbf{v}}$ and $\overrightarrow{\mathbf{w}}$ is the volume of the parallelepiped having edges as $\overrightarrow{\mathbf{u}}$, $\overrightarrow{\mathbf{v}}$ and $\overrightarrow{\mathbf{w}}$.

Geometrically, mixed product of the vectors $\overrightarrow{\mathbf{u}}$. $\overrightarrow{\mathbf{v}}$ and $\overrightarrow{\mathbf{w}}$ is the volume of the parallelepiped having edges as $\overrightarrow{\mathbf{u}}$, $\overrightarrow{\mathbf{v}}$ and $\overrightarrow{\mathbf{w}}$. Let $A = |\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}|$ be the area of the base and $h = |\overrightarrow{\mathbf{u}}| \cos \phi$ height, then the volume is $V = |\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}| |\overrightarrow{\mathbf{u}}| \cos \phi =$ $\overrightarrow{\mathbf{u}} \cdot (\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}})$.

Geometrically, mixed product of the vectors $\overrightarrow{\mathbf{u}}$. $\overrightarrow{\mathbf{v}}$ and $\overrightarrow{\mathbf{w}}$ is the volume of the parallelepiped having edges as $\overrightarrow{\mathbf{u}}$, $\overrightarrow{\mathbf{v}}$ and $\overrightarrow{\mathbf{w}}$. Let $A = |\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}|$ be the area of the base and $h = |\overrightarrow{\mathbf{u}}| \cos \phi$ height, then the volume is $V = |\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}| |\overrightarrow{\mathbf{u}}| \cos \phi =$ $\overrightarrow{\mathbf{u}} \cdot (\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}})$.

Geometrically, mixed product of the vectors $\overrightarrow{\mathbf{u}}$. $\overrightarrow{\mathbf{v}}$ and $\overrightarrow{\mathbf{w}}$ is the volume of the parallelepiped having edges as $\overrightarrow{\mathbf{u}}$, $\overrightarrow{\mathbf{v}}$ and $\overrightarrow{\mathbf{w}}$. Let $A = |\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}|$ be the area of the base and $h = |\overrightarrow{\mathbf{u}}| \cos \phi$ height, then the volume is $V = |\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}| |\overrightarrow{\mathbf{u}}| \cos \phi =$ $\overrightarrow{\mathbf{u}} \cdot (\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}})$.

Geometrically, mixed product of the vectors $\overrightarrow{\mathbf{u}}$, $\overrightarrow{\mathbf{v}}$ and $\overrightarrow{\mathbf{w}}$ is the volume of the parallelepiped having edges as $\overrightarrow{\mathbf{u}}$, $\overrightarrow{\mathbf{v}}$ and $\overrightarrow{\mathbf{w}}$. Let $A = |\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}|$ be the area of the base and $h = |\overrightarrow{\mathbf{u}}| \cos \phi$ height, then the volume is $V = |\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}| |\overrightarrow{\mathbf{u}}| \cos \phi =$ $\overrightarrow{\mathbf{u}} \cdot (\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}})$.

Geometrically, mixed product of the vectors $\overrightarrow{\mathbf{u}}$, $\overrightarrow{\mathbf{v}}$ and $\overrightarrow{\mathbf{w}}$ is the volume of the parallelepiped having edges as $\overrightarrow{\mathbf{u}}$, $\overrightarrow{\mathbf{v}}$ and $\overrightarrow{\mathbf{w}}$. Let $A = |\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}|$ be the area of the base and $h = |\overrightarrow{\mathbf{u}}| \cos \phi$ height, then the volume is $V = |\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}| |\overrightarrow{\mathbf{u}}| \cos \phi =$ $\overrightarrow{\mathbf{u}} \cdot (\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}})$.

Geometrically, mixed product of the vectors $\overrightarrow{\mathbf{u}}$, $\overrightarrow{\mathbf{v}}$ and $\overrightarrow{\mathbf{w}}$ is the volume of the parallelepiped having edges as $\overrightarrow{\mathbf{u}}$, $\overrightarrow{\mathbf{v}}$ and $\overrightarrow{\mathbf{w}}$. Let $A = |\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}|$ be the area of the base and $h = |\overrightarrow{\mathbf{u}}| \cos \phi$ height, then the volume is $V = |\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}| |\overrightarrow{\mathbf{u}}| \cos \phi = \overrightarrow{\mathbf{u}} \cdot (\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}})$.

Geometrically, mixed product of the vectors $\overrightarrow{\mathbf{u}}$, $\overrightarrow{\mathbf{v}}$ and $\overrightarrow{\mathbf{w}}$ is the volume of the parallelepiped having edges as $\overrightarrow{\mathbf{u}}$, $\overrightarrow{\mathbf{v}}$ and $\overrightarrow{\mathbf{w}}$. Let $A = |\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}|$ be the area of the base and $h = |\overrightarrow{\mathbf{u}}| \cos \phi$ height, then the volume is $V = |\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}| |\overrightarrow{\mathbf{u}}| \cos \phi = \overrightarrow{\mathbf{u}} \cdot (\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}})$.

Geometrically, mixed product of the vectors $\overrightarrow{\mathbf{u}}$, $\overrightarrow{\mathbf{v}}$ and $\overrightarrow{\mathbf{w}}$ is the volume of the parallelepiped having edges as $\overrightarrow{\mathbf{u}}$, $\overrightarrow{\mathbf{v}}$ and $\overrightarrow{\mathbf{w}}$. Let $A = |\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}|$ be the area of the base and $h = |\overrightarrow{\mathbf{u}}| \cos \phi$ height, then the volume is $V = |\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}| |\overrightarrow{\mathbf{u}}| \cos \phi = \overrightarrow{\mathbf{u}} \cdot (\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}})$.

Example

The mixed product $\overrightarrow{\boldsymbol{u}}\cdot(\overrightarrow{\boldsymbol{v}}\times\overrightarrow{\boldsymbol{w}})$, of the vectors $\overrightarrow{\boldsymbol{u}}=(1,2,-1)$, $\overrightarrow{\boldsymbol{v}}=(-2,3,4)$ and $\overrightarrow{\boldsymbol{w}}=(2,1,0)\in\mathbb{R}^3$ is

$$\overrightarrow{\mathbf{u}} \cdot (\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}) = \begin{vmatrix} 1 & 2 & -1 \\ -2 & 3 & 4 \\ 2 & 1 & 0 \end{vmatrix}$$

Example

The mixed product $\overrightarrow{\boldsymbol{u}}\cdot(\overrightarrow{\boldsymbol{v}}\times\overrightarrow{\boldsymbol{w}})$, of the vectors $\overrightarrow{\boldsymbol{u}}=(1,2,-1)$, $\overrightarrow{\boldsymbol{v}}=(-2,3,4)$ and $\overrightarrow{\boldsymbol{w}}=(2,1,0)\in\mathbb{R}^3$ is

$$\overrightarrow{\mathbf{u}} \cdot (\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}) = \begin{vmatrix} 1 & 2 & -1 \\ -2 & 3 & 4 \\ 2 & 1 & 0 \end{vmatrix}$$
$$= 1 \begin{vmatrix} 3 & 4 \\ 1 & 0 \end{vmatrix} - 2 \begin{vmatrix} -2 & 4 \\ 2 & 0 \end{vmatrix} - 1 \begin{vmatrix} -2 & 3 \\ 2 & 1 \end{vmatrix}$$

Example

The mixed product $\overrightarrow{\boldsymbol{u}}\cdot(\overrightarrow{\boldsymbol{v}}\times\overrightarrow{\boldsymbol{w}})$, of the vectors $\overrightarrow{\boldsymbol{u}}=(1,2,-1)$, $\overrightarrow{\boldsymbol{v}}=(-2,3,4)$ and $\overrightarrow{\boldsymbol{w}}=(2,1,0)\in\mathbb{R}^3$ is

$$\overrightarrow{\mathbf{u}} \cdot (\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}) = \begin{vmatrix} 1 & 2 & -1 \\ -2 & 3 & 4 \\ 2 & 1 & 0 \end{vmatrix}$$
$$= 1 \begin{vmatrix} 3 & 4 \\ 1 & 0 \end{vmatrix} - 2 \begin{vmatrix} -2 & 4 \\ 2 & 0 \end{vmatrix} - 1 \begin{vmatrix} -2 & 3 \\ 2 & 1 \end{vmatrix}$$
$$= -4 + 16 + 8 = 20.$$

Let
$$\overrightarrow{\mathbf{u}} = (u_1, u_2, u_3)$$
, $\overrightarrow{\mathbf{v}} = (v_1, v_2, v_3)$, $\overrightarrow{\mathbf{w}} = (w_1, w_2, w_3)$ and $\overrightarrow{\mathbf{r}} = (r_1, r_2, r_3) \in \mathbb{R}^3$ $c \in \mathbb{R}$.

Let
$$\overrightarrow{\mathbf{u}} = (u_1, u_2, u_3)$$
, $\overrightarrow{\mathbf{v}} = (v_1, v_2, v_3)$, $\overrightarrow{\mathbf{w}} = (w_1, w_2, w_3)$ and $\overrightarrow{\mathbf{r}} = (r_1, r_2, r_3) \in \mathbb{R}^3$ $c \in \mathbb{R}$.

1. $\overrightarrow{\mathbf{u}} \cdot (\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}) = \overrightarrow{\mathbf{w}} \cdot (\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}) = \overrightarrow{\mathbf{v}} \cdot (\overrightarrow{\mathbf{w}} \times \overrightarrow{\mathbf{u}})$

Let
$$\overrightarrow{\mathbf{u}} = (u_1, u_2, u_3)$$
, $\overrightarrow{\mathbf{v}} = (v_1, v_2, v_3)$, $\overrightarrow{\mathbf{w}} = (w_1, w_2, w_3)$ and $\overrightarrow{\mathbf{r}} = (r_1, r_2, r_3) \in \mathbb{R}^3$ $c \in \mathbb{R}$.

1.
$$\overrightarrow{\mathbf{u}} \cdot (\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}) = \overrightarrow{\mathbf{w}} \cdot (\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}) = \overrightarrow{\mathbf{v}} \cdot (\overrightarrow{\mathbf{w}} \times \overrightarrow{\mathbf{u}})$$

$$2. \ -\overrightarrow{\textbf{u}}\cdot(\overrightarrow{\textbf{w}}\times\overrightarrow{\textbf{v}}) = -\overrightarrow{\textbf{v}}\cdot(\overrightarrow{\textbf{u}}\times\overrightarrow{\textbf{w}}) = -\overrightarrow{\textbf{w}}\cdot(\overrightarrow{\textbf{v}}\times\overrightarrow{\textbf{u}})$$

Mixed Product: Properties

Let
$$\overrightarrow{\mathbf{u}} = (u_1, u_2, u_3)$$
, $\overrightarrow{\mathbf{v}} = (v_1, v_2, v_3)$, $\overrightarrow{\mathbf{w}} = (w_1, w_2, w_3)$ and $\overrightarrow{\mathbf{r}} = (r_1, r_2, r_3) \in \mathbb{R}^3$ $c \in \mathbb{R}$.

- 1. $\overrightarrow{\mathbf{u}} \cdot (\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}) = \overrightarrow{\mathbf{w}} \cdot (\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}) = \overrightarrow{\mathbf{v}} \cdot (\overrightarrow{\mathbf{w}} \times \overrightarrow{\mathbf{u}})$
- $2. \ -\overrightarrow{\textbf{u}}\cdot(\overrightarrow{\textbf{w}}\times\overrightarrow{\textbf{v}}) = -\overrightarrow{\textbf{v}}\cdot(\overrightarrow{\textbf{u}}\times\overrightarrow{\textbf{w}}) = -\overrightarrow{\textbf{w}}\cdot(\overrightarrow{\textbf{v}}\times\overrightarrow{\textbf{u}})$
- 3. $(c\overrightarrow{u}) \cdot (\overrightarrow{v} \times \overrightarrow{w}) = \overrightarrow{u} \cdot ((c\overrightarrow{v}) \times \overrightarrow{w}) = \overrightarrow{u} \cdot (\overrightarrow{v} \times (c\overrightarrow{w}))$

Mixed Product: Properties

Let
$$\overrightarrow{\mathbf{u}} = (u_1, u_2, u_3)$$
, $\overrightarrow{\mathbf{v}} = (v_1, v_2, v_3)$, $\overrightarrow{\mathbf{w}} = (w_1, w_2, w_3)$ and $\overrightarrow{\mathbf{r}} = (r_1, r_2, r_3) \in \mathbb{R}^3$ $c \in \mathbb{R}$.

- 1. $\overrightarrow{\mathbf{u}} \cdot (\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}) = \overrightarrow{\mathbf{w}} \cdot (\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}) = \overrightarrow{\mathbf{v}} \cdot (\overrightarrow{\mathbf{w}} \times \overrightarrow{\mathbf{u}})$
- $2. \ -\overrightarrow{\textbf{u}}\cdot(\overrightarrow{\textbf{w}}\times\overrightarrow{\textbf{v}}) = -\overrightarrow{\textbf{v}}\cdot(\overrightarrow{\textbf{u}}\times\overrightarrow{\textbf{w}}) = -\overrightarrow{\textbf{w}}\cdot(\overrightarrow{\textbf{v}}\times\overrightarrow{\textbf{u}})$
- 3. $(c\overrightarrow{u}) \cdot (\overrightarrow{v} \times \overrightarrow{w}) = \overrightarrow{u} \cdot ((c\overrightarrow{v}) \times \overrightarrow{w}) = \overrightarrow{u} \cdot (\overrightarrow{v} \times (c\overrightarrow{w}))$
- $4. \ (\overrightarrow{u} + \overrightarrow{r}) \cdot (\overrightarrow{v} \times \overrightarrow{w}) = \overrightarrow{u} \cdot (\overrightarrow{v} \times \overrightarrow{w}) + \overrightarrow{r} \cdot (\overrightarrow{v} \times \overrightarrow{w})$

Mixed Product: Properties

Let
$$\overrightarrow{\mathbf{u}} = (u_1, u_2, u_3)$$
, $\overrightarrow{\mathbf{v}} = (v_1, v_2, v_3)$, $\overrightarrow{\mathbf{w}} = (w_1, w_2, w_3)$ and $\overrightarrow{\mathbf{r}} = (r_1, r_2, r_3) \in \mathbb{R}^3$ $c \in \mathbb{R}$.

- 1. $\overrightarrow{\mathbf{u}} \cdot (\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}) = \overrightarrow{\mathbf{w}} \cdot (\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}}) = \overrightarrow{\mathbf{v}} \cdot (\overrightarrow{\mathbf{w}} \times \overrightarrow{\mathbf{u}})$
- $2. \ -\overrightarrow{\textbf{u}}\cdot(\overrightarrow{\textbf{w}}\times\overrightarrow{\textbf{v}})=-\overrightarrow{\textbf{v}}\cdot(\overrightarrow{\textbf{u}}\times\overrightarrow{\textbf{w}})=-\overrightarrow{\textbf{w}}\cdot(\overrightarrow{\textbf{v}}\times\overrightarrow{\textbf{u}})$
- 3. $(c\overrightarrow{u}) \cdot (\overrightarrow{v} \times \overrightarrow{w}) = \overrightarrow{u} \cdot ((c\overrightarrow{v}) \times \overrightarrow{w}) = \overrightarrow{u} \cdot (\overrightarrow{v} \times (c\overrightarrow{w}))$
- $4. \ (\overrightarrow{u} + \overrightarrow{r}) \cdot (\overrightarrow{v} \times \overrightarrow{w}) = \overrightarrow{u} \cdot (\overrightarrow{v} \times \overrightarrow{w}) + \overrightarrow{r} \cdot (\overrightarrow{v} \times \overrightarrow{w})$
- 5. $\overrightarrow{\mathbf{u}} \cdot (\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}) = 0 \Leftrightarrow \overrightarrow{\mathbf{u}} \parallel \overrightarrow{\mathbf{v}} \text{ or } \overrightarrow{\mathbf{u}} \parallel \overrightarrow{\mathbf{w}} \text{ or } \overrightarrow{\mathbf{v}} \parallel \overrightarrow{\mathbf{v}} \parallel \overrightarrow{\mathbf{v}} \text{ or } \overrightarrow{\mathbf{v}} \parallel \overrightarrow{\mathbf{v}} \parallel \overrightarrow{\mathbf{v}} \parallel \overrightarrow{\mathbf{v}} \text{ or } \overrightarrow{\mathbf{v}} \parallel \overrightarrow$

Two Fold Cross Product

Definition

The two fold cross product of the vectors $\overrightarrow{\mathbf{u}} = (u_1, u_2, u_3)$, $\overrightarrow{\mathbf{v}} = (v_1, v_2, v_3)$ and $\overrightarrow{\mathbf{w}} = (w_1, w_2, w_3) \in \mathbb{R}^3$ is defined by $\overrightarrow{\mathbf{u}} \times (\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}) = (\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{w}}) \overrightarrow{\mathbf{v}} - (\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}) \overrightarrow{\mathbf{w}}.$

Definition

The two fold cross product of the vectors $\overrightarrow{\mathbf{u}} = (u_1, u_2, u_3)$, $\overrightarrow{\mathbf{v}} = (v_1, v_2, v_3)$ and $\overrightarrow{\mathbf{w}} = (w_1, w_2, w_3) \in \mathbb{R}^3$ is defined by $\overrightarrow{\mathbf{u}} \times (\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}) = (\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{w}}) \overrightarrow{\mathbf{v}} - (\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}) \overrightarrow{\mathbf{w}}.$

Note: The result of two fold cross product is a vector over \mathbb{R}^3 .

Example

Let $\overrightarrow{\mathbf{u}}'=(1,2,-1)$, $\overrightarrow{\mathbf{v}}=(-2,3,4)$ and $\overrightarrow{\mathbf{w}}=(2,1,0)\in\mathbb{R}^3$ given. Find $\overrightarrow{\mathbf{u}}\times(\overrightarrow{\mathbf{v}}\times\overrightarrow{\mathbf{w}})$.

$$\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{w}} = 1.2 + 2.1 + (-1).0 = 4$$

Example

Let
$$\overrightarrow{\mathbf{u}} = (1, 2, -1)$$
, $\overrightarrow{\mathbf{v}} = (-2, 3, 4)$ and $\overrightarrow{\mathbf{w}} = (2, 1, 0) \in \mathbb{R}^3$ given. Find $\overrightarrow{\mathbf{u}} \times (\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}})$.

$$\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{w}} = 1.2 + 2.1 + (-1).0 = 4$$

 $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} = 1.(-2) + 2.3 + (-1).4 = 0$

Example

Let $\overrightarrow{\mathbf{u}} = (1, 2, -1)$, $\overrightarrow{\mathbf{v}} = (-2, 3, 4)$ and $\overrightarrow{\mathbf{w}} = (2, 1, 0) \in \mathbb{R}^3$ given. Find $\overrightarrow{\mathbf{u}} \times (\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}})$.

$$\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{w}} = 1.2 + 2.1 + (-1).0 = 4$$

$$\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} = 1.(-2) + 2.3 + (-1).4 = 0$$

$$\overrightarrow{\mathbf{u}} \times (\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}) = (\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{w}}) \overrightarrow{\mathbf{v}} - (\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}) \overrightarrow{\mathbf{w}}$$

Example

Let $\overrightarrow{\mathbf{u}} = (1, 2, -1)$, $\overrightarrow{\mathbf{v}} = (-2, 3, 4)$ and $\overrightarrow{\mathbf{w}} = (2, 1, 0) \in \mathbb{R}^3$ given. Find $\overrightarrow{\mathbf{u}} \times (\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}})$.

$$\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{w}} = 1.2 + 2.1 + (-1) \cdot 0 = 4$$

$$\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} = 1 \cdot (-2) + 2.3 + (-1) \cdot 4 = 0$$

$$\overrightarrow{\mathbf{u}} \times (\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}) = (\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{w}}) \overrightarrow{\mathbf{v}} - (\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}) \overrightarrow{\mathbf{w}}$$

$$= 4\overrightarrow{\mathbf{v}} - 0\overrightarrow{\mathbf{w}} = 4(-2, 3, 4)$$

Example

Let $\overrightarrow{\mathbf{u}} = (1, 2, -1)$, $\overrightarrow{\mathbf{v}} = (-2, 3, 4)$ and $\overrightarrow{\mathbf{w}} = (2, 1, 0) \in \mathbb{R}^3$ given. Find $\overrightarrow{\mathbf{u}} \times (\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}})$.

$$\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{w}} = 1.2 + 2.1 + (-1) \cdot 0 = 4$$

$$\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}} = 1 \cdot (-2) + 2.3 + (-1) \cdot 4 = 0$$

$$\overrightarrow{\mathbf{u}} \times (\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}) = (\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{w}}) \overrightarrow{\mathbf{v}} - (\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}) \overrightarrow{\mathbf{w}}$$

$$= 4 \overrightarrow{\mathbf{v}} - 0 \overrightarrow{\mathbf{w}} = 4 (-2, 3, 4)$$

$$= (-8, 12, 16)$$

?