基于《机械制造工程实训及创新教育》 (ISBN: 9787-7-302-36963-9)

本文在@~(̄▽ ̄~)~的基础上改动

2018©Fu_Qingchen, Typora

铸造实训

1.砂型铸造的材料有两种:型砂和芯砂,型砂由原砂黏土和水混合而成。

2.型砂的性能:透气性(越密越紧越差),耐火性,可塑性,退让性(常加入木屑提高),强度

3.模样和芯盒的制造需要考虑的事情:①**分型面的选择**(常最大截面处)②**起模角度**③**加工余量④收缩量**⑤**铸造圆角**⑥**芯头**

4.造型方法: 手工造型、机器造型 (只适合两箱造型)

5.铸件常见缺陷: 浇不足、气孔、缩孔、错箱、裂纹等

6.铸造示意图:

序号	名称	主要作用
1	上型	形成上半部分铸型
2	型芯出气孔	排出型芯中的空气
3	出气孔	排出型砂中的空气
4	浇注系统	把金属液引入铸造型腔中
5	型芯	形成铸件的内嵌形状或孔
6	型腔	容纳金属液,形成铸件的轮廓
7	下形	形成下半部分铸型
8	分型面	分开上下铸型
9	砂箱	承载型砂
10	外浇口	容纳金属液,缓解液态金属对型砂的冲击
11	直浇道	连接外浇口与横浇道的垂直通道
12	横浇道	分配金属液进入内浇道, 挡渣
13	内浇道	调节金属流入型腔的方向和速度,调节铸件的冷却速度
14	铸件	-

为了方便记忆

锻造实训

- 1.锻造分为自由锻 (手工自由锻, 机器自由锻) 和模锻
- 2.对于大型锻件,自由锻是唯一的加工方法
- 3.用于锻造的材料应具有良好的塑形和较小的变形抗力(塑性材料),铸铁无论在常温还是加热,塑形都很差
- 4. 锻件加热的目的: 提高金属的塑形和降低变性抗力
- 5.实训中根据坯料的颜色和明亮度不同来判别温度
- 6.碳素结构钢的始锻温度 (开始锻造的温度) 为1200℃-1250℃ 淡黄色 ; 终锻温度为800摄氏度 樱红色

7.由于加热不当,碳钢加热时可能出现多种加热缺陷

名称	实质	危害	措施
过 热	温度过高,停留时间过长造成晶 体粗大	锻件力学性能降低,需要再次经 过锻造或热处理才能改善	过或热的坯料通过多次锻打 或锻后正火处理消除
过烧	加热温度接近材料的熔化温度, 造成晶粒界面杂质氧化	坯料一锻即碎, 只能报废	正确控制加热温度和保温时 间

8.锻件的冷却:锻件中的**碳及合金含量越多**,锻件**体积越大**,**形状越复杂**,冷却速度越要缓慢,否则造成表面过硬不易切学加工、变形甚至开裂等缺陷

9.自由锻基本工序

名称	注意事项
墩 粗	①墩粗分为完全墩粗与局部镦粗②墩粗坯料的高度与直径的比应小于2.5-3
拔 长	①拔长送进量应该为配料宽度的0.3-0.7②拔长圆形断面的坯料时,应拔长为大断面是方坯,再拔长为小断面的方坯,最后滚圆

除此之外,还有弯曲、扭转、切割等方式。

焊接实训

1.焊接方法可以分为三大类:熔化焊、压力焊、钎焊

2.熔化焊:将焊头接头加热至熔化状态而不加压力的一类加工方法

3.直流电弧焊接法

• 正接法: 工件接正极,产生热量高,适合焊厚板

• 反接法: 工件接负极,产生热量少,适合焊薄板、碱性焊条

4.电焊条

名称	作用	
焊芯	①作为电极②作为焊缝金属	
药皮	①稳定电弧②保护熔池③改善焊缝状态	

5.酸性焊条与碱性焊条 (酸性焊条操作简单,运用广泛,效果欠缺;碱性焊条效果好[脱硫磷能力;焊缝塑形,韧性,抗裂性],但适用范围小)

6.焊接接头形式:对接(受力均匀,最常用)、搭接、角接、T形接

7.焊缝坡口作用:保证电弧深入焊缝根部,使根部焊透

8.焊接位置:平焊、立焊、横焊、仰焊

9.焊条工艺参数规律: 焊板厚度 / >>> 焊条直径 / >>> 电流 /

10.操作时常用短焊保证焊接质量,一般为2~4mm

11.**焊条电弧焊的基本操作**:焊接接头处清理 >>> 操作姿势 >>> 引弧 >>> 焊接的点固 >>> 运条 >>> 灭弧 >>> 焊件

清理

12.常见的焊接缺陷:咬边、烧穿、未焊透、裂纹

车铣实训

1.切削3要素: 进给量, 切削深度, 切削

项目	车削	铣削
主运动	工件的旋转	刀具的旋转
进给运动	刀具的运动	工件的运动
适用范围	各种回转体	平面、弧面、台阶、齿轮等
公差等级	IT11~6	IT9~7
粗糙度值Ra	12.5~0.8µm	6.3~1.6μm
数控系统	华中数控系统	FANUC系统

2.车刀主要材料: 高速钢, 硬质合金

3.车刀结构:三面两线一点

4.车刀安装注意事项:

- 1. ①车刀刀尖应与工件轴线等高
- 2. ②车刀刀杆应与车床主轴轴线垂直
- 3. ③车刀不能伸出太长,一般不超过刀杆厚度的1.5倍
- 4. ④垫片必须平整, 宽度应与刀杆一致, 长度应与被夹持部分一致, 数量不宜过多
- 5. ⑤车刀位置转正后, 应交替拧紧刀架螺丝

5.试切方法步骤

- 1. ①开车对刀, 使车刀与工件表面接触
- 2. ②向右退刀
- 3. ③横向进刀,切削深度ap1
- 4. ④切削纵向深度1~3mm
- 5. ⑤退刀,测量
- 6. ⑥如果尺寸不够,继续切削深度ap1

钳工实训

1.基本操作: 锉削、划线、锯切、攻螺纹、钻孔等

2.划线的作用

- 1. ①表示出加工余量、加工位置或画出加工位置的找正线
- 2. ②检查毛坯尺寸,避免不合格产品继续加工
- 3. ③使加工余量合理分配
- 3.画线工具:划针、划规、划线平板、高度游标尺

其他

1.CNC: 计算机数字控制机床(Computer numerical control)的简称

2.常见的程序指令

指令	功能	指令	功能
G00	快速定位	M03	主轴正转
G01	直线插补	M04	主轴反转
G02	顺时针圆弧	M05	主轴停止
G03	逆时针圆弧	M30	程序结束
G90	绝对方式	F	指定插补进给速度
G91	增量方式	Т	指定所选刀具
S	指定主轴转速	-	-

3.线切割条件: ①钼丝与工件表面需保持一定距离②在绝缘液体中进行③采用脉冲电源

4.线切割编程采用3B代码或B代码