NCTU-EE IC LAB – Fall 2019

Lab12 Exercise

Design: Artificial Neural Network APRII

Data Preparation

1. Extract test data from TA's directory:

% tar xvf ~iclabta01/Lab12.tar

2. The extracted LAB directory contains:

a. 00 TESTBED

e. 04 MEM

b. 01 RTL

f. 05 APR

c. 02 SYN

g. 06_POST

d. 03 GATE

Description

In this lab you are gonna finish the **backend flow (APR)** for this design and use the **IR drop** and **Power Analysis** tool for your layout.

Inputs and Outputs

Input Signals	Bit Width dia	Definition
clk	1 Multi-	Clock.
rst n	1	Asynchronous active-low reset.
in valid d	securit	High when data point is valid.
in valid t	1 8	High when target is valid.
in valid w1	1\ EEC PL	High when weight 1 is valid
in_valid_w2	1	High when weight2 is valid
data_point	8	The input data point, 4 data points
		represent a data. The arithmetic
		representation follows the IEEE-754
		floating number format.
target	8	The target for current data. The
		arithmetic representation follows the
		IEEE-754 floating number format.
weight1	8	The weight for first layer. The
		arithmetic representation follows the
		IEEE-754 floating number format.
weight2	8	The weight for second layer. The
		arithmetic representation follows the
		IEEE-754 floating number format.

Output signal	Bit width	Definition
out_valid	1	Enable output check
out	8	Output number

Layout Specifications

- 1. CHIP.sdc (provided by TA) period is fixed to 20ns input/output delay is fixed to 10ns
- 2. Core power pad and io power pad
 - a. At least one pair at each side.
- 3. Floorplanning
 - a. Core size:
 - ✓ Defined by you
 - b. Core to IO boundary:
 - ✓ Each side must larger than 100
- 4. Power Planning
 - a. Core Ring
 - ✓ Top & Bottom: metal layer must be odd and width is fixed to 9.
 - ✓ Left & Right: metal layer must be even and width is fixed to 9.
 - ✓ Each side must be wire group, interleaving, and at least 4 pairs.
 - b. Stripes
 - ✓ Vertical: metal layer must be even and width is defined by you.
 - ✓ Horizontal: metal layer must be odd and width is defined by you.
 - ✓ Number of pairs is defined by you
 - **C.** Timing Analysis
 - ✓ Timing Slack:

NO negative slacks after setup/hold time analysis (include SI)

✓ Design Rule Violation (DRV)

The DRV of (fanout, cap, tran) should be all 0 after setup/hold time analysis (include SI).

- d. Design Verification Result
 - ✓ LVS: No LVS violations after "verify connectivity"
 - ✓ DRC : No DRC violations after "verify geometry"
- e. Rail Analysis:
 - ✓ VDD Threshold set to 1.7
 - ✓ GND Threshold set to 0.1
 - ✓ No IR drop is allowed larger than 5mV

Note

- 1. Complete CHIP.io and CHIP_SHELL.v
- 2. Do all the flow as in APRI (Lab11) with Layout Specification above
- 3. Run Power Analysis (Setup & Run)
- 4. Run Rail Analysis
 - Set PG Library Mode
 - Generate PG Library
 - Setup Rail Analysis
 - Run Rail Analysis
- 5. Report Power Grid Library
- 6. Observe the IR Drop to analyze whether IR drop is within 5mV.
- 7. Please upload the following file on e3 platform before (2019/12/30 Mon 12:00)
 - CHIP APR2 iclab??.tar:

Please follow the following steps to put all required files in one folder named CHIP APR iclab??/ and compress the folder as CHIP APR2 iclab??.tar:

- 1) In Exercise/05_APR folder, create a folder named CHIP_APR2_iclab?? linux01[Exercise/05_APR]% mkdir CHIP_APR2_iclab??
- 2) Copy the following files/directories into the folder:
 - i. CHIP.inn
 - ii. CHIP.inn.dat (this one is a directory so remember to use -r)

iii. CHIP_SHELL.v iv. CHIP.io

3) Compress the CHIP_APR2_iclab?? folder into the tar file CHIP_APR2_iclab??.tar linux01[Exercise/05_APR]% tar cvf CHIP_APR2_iclab??.tar CHIP_APR2_iclab??/

Grading Policy

• Post simulation correctness & Within Tolerable IR Drop: 100%

Appendix

- Provided library files
 - Timing libraries

Directory	Contain
/05_APR/Library/lib/	slow.lib
	fast.lib
	umc18io3v5v_slow.lib
	umc18io3v5v_fast.lib

- Physical libraries

Directory	Contain	
/05_APR/Library/lef/	ef/ umc18_6lm.lef	
	umc18_6lm_antenna.lef	
	umc18io3v5v_6lm.lef	

- RC extraction table/files

Directory	Contain
/05_APR/Library/rc/	umc18_1p6m.captbl
	RCGen.tch

CeltIC libraries

Directory	Contain
/05_APR/Library/cdb/	slow.cdb
	fast.cdb

- Layermap

Directory	Contain
/05_APR/Library/layermap/	lefdef.layermap
	qrc_lefdef.layermap