GHOST

Yedida, R., & Menzies, T. (2021). On the value of oversampling for deep learning in software defect prediction. *IEEE Transactions on Software Engineering*.

Rahul Yedida, NC State

Tim Menzies, NC State

1

What is the problem?

Class imbalance

- Defect prediction: given static code features about files, can we predict if they are buggy?
- Defect prediction datasets have a high degree of class imbalance.

Project	Train versions	Test versions	Training Buggy %	Test Buggy %	
ivy	1.1, 1.4	2.0	22	11	
lucene	2.0, 2.2	2.4	53	60	
poi	1.5, 2.0, 2.5	3.0	46	65	
synapse	1.0, 1.1	1.2	20	34	
velocity	1.4, 1.5	1.6	71	34	
camel	1.0, 1.2, 1.4	1.6	21	19	
jEdit	3.2, 4,0, 4.1, 4.2	4.3	23	2	
log4j	1.0, 1.1	1.2	29	92	
xalan	2.4, 2.5, 2.6	2.7	38	99	
xerces	1.2, 1.3	1.4	16	74	

Solution 0.5

"Oversampling"

• If n is the fraction of samples with class c0:

$$\hat{\mathcal{L}}(y_i, \hat{y}_i) = \frac{w_i}{n} \sum_{\substack{i=1 \ y_i = c_0}}^{m} \mathcal{L}(y_i, \hat{y}_i) + \sum_{\substack{i=1 \ y_i \neq c_0}}^{m} \mathcal{L}(y_i, \hat{y}_i)$$

Solution 0.5

"Oversampling"

Solution 0.6 Better oversampling

- Use SMOTE + hyper-parameter optimization (Fu & Menzies, 2017; Menzies et al., 2018) using DODGE (Agrawal et al., 2019)
- See also: using conditional WGANs to resample data (Shu et al., 2022)

Solution 0.6 Better oversampling

Why does it not work?

Boundary engineering

- Insight #1: the decision boundary is too close to the data samples.
- How to push it away?
 - Add in samples around each point: fuzzy sampling

frac = len(idx) * 1. / len(y)

idx = np.where(y == 1)[0]

def fuzz_data(X, y, radii=(0., 1.5, .5)):

 $fuzzed_x = []$ $fuzzed_y = []$

bit.ly/fuzzy-sampling

```
print('debug: weight =', 1./frac)
for row in X[idx]:
    for i, r in enumerate(np.arange(*radii)):
        for j in range(int((1./frac) / pow(2., i))):
            fuzzed_x.append([val - r for val in row])
            fuzzed_x.append([val + r for val in row])
            fuzzed y.append(1)
            fuzzed_y.append(1)
return np.concatenate((X, np.array(fuzzed_x)), axis=0), np.concatenate((y, np.array(fuzzed_y)))
```

Solution 0.8 Add in fuzzy sampling

We're doing better!

	^ω deep learning	^റ oversampling	o SMOTE	ع fuzzy sampler	θ tuning	Median (50th)	IQR	•= median and lines shows IQR
#1	1					0	11	•
#2	1	/				0	4	•
#3	1	/	1	/		0	15	•-
#4	/	/	/		1	0	29	•—
#5	1		1	/	1	51	25	
#6	/	/		/	1	51	25	
#7	1	1	1	1	1	51	25	-•

Solution 1.0 GHOST

Insight #2: we can do the same for the majority samples!

Summary

- We oversample (fuzzy sampling)
- We oversample again (fuzzy sampling #2)
- We oversample yet again (SMOTE)
- We also use weighted loss functions

By the way:

Fuzzy sampling improves beta-smoothness

Thank you!

GHOST paper http://tiny.cc/ghost-paper

Weighted fuzzy oversampling <u>bit.ly/fuzzy-sampling</u>

These slides <u>bit.ly/ghost-slides</u>

Contact me <u>ryedida@ncsu.edu</u>