Кольца Ньютона (4.2.1)

Манро Эйден

Цель работы: Познакомиться с явлением интерференции в тонких плёнках (полосы равной толщины) на примере колец Ньютона и с методикой интерференционных измерений кривизны стеклянной поверхности.

В работе используются: Измерительный микроскоп с опак-иллюминатором, плоско-выпуклая линза; пластинка из чёрного стекла, ртутная лампа типа ДРШ, щель, линзы, призма прямого зрения, объектная шкала.

Теоретические сведения

Рис. 1: Экспериментальная установка

Этот классический опыт используется для определения радиуса кривизны сферических поверхностей линз. В этом опыте наблюдается интерференция волн, отражённых от границ тонкой воздушной прослойки, образованной сферической поверхностью линзы и плоской стеклянной пластиной. При нормальном падении света (рис. 1) интерференционные полосы локализованы на сферической поверхности и являются полосами равной толщины.

Геометрическая разность хода между интерферирующими лучами равна удвоенной толщине воздушного зазора 2d в данном месте. Для точки на сферической поверхности, находящейся на

расстоянии r от оси системы, имеем $r^2 = R^2 - (R - d)^2 = 2Rd - d^2$, где R — радиус кривизны сферической поверхности (рис. 1).

При $R \gg d$ получим $d = r^2/2R$. С учётом изменения фазы на π при отражении волны от оптически более плотной среды (на границе воздух-стекло) получим оптическую разность хода интерферирующих лучей:

$$\Delta = \frac{\lambda}{2} + 2d = \frac{r^2}{2R} + \frac{\lambda}{2} \tag{1}$$

Из условия интерференционного минимума $\Delta=\frac{(2m+1)\lambda}{2},\ m=0,1,2..$ получим радиусы темных колец r_m , а из аналогичного условия максимума $\Delta=m\lambda$ радиусы светлых r_m' :

$$r_m = \sqrt{m\lambda R}, \qquad r'_m = \sqrt{\frac{(2m-1)\lambda R}{2}}$$
 (2)

Экспериментальня установка

Схема экспериментальной установки приведена на рис. 2. Опыт выполняется с помощью измерительного микроскопа. На столике микроскопа помещается держатель с пластинкой чёрного стекла. На пластинке лежит исследуемая линза. Источником света служит ртутная лампа, находящаяся в защитном кожухе. Для получения монохроматического света применяется призменный монохроматор, состоящий из конденсора K, коллиматора (щель S и объектив O) и призмы прямого зрения Π . Эти устройства с помощью рейтеров располагаются на оптической скамье. Свет от монохроматора попадает на опак-иллюминатор (ОИ), расположенный между окуляром и объективом микроскопа — специальное устройство для освещения объекта при работе в отражённом свете. Внутри опак-иллюминатора находится полупрозрачная пластинка P, наклоненная под углом 45° к оптической оси микроскопа. Свет частично отражается от этой пластинки, проходит через объектив микроскопа и попадает на исследуемый объект. Пластинка может поворачиваться вокруг горизонтальной оси x, а опак-иллюминатор — вокруг вертикальной оси.

Столик микроскопа может перемещаться в двух взаимно перпендикулярных направлениях с помощью винтов препаратоводителя. Отсчетный крест окулярной шкалы перемещается перпендикулярно оптической оси микроскопа с помощью микрометрического винта. Оптическая схема монохроматора позволяет получить в плоскости входного окна опак-иллюминатора достаточно хорошо разделённые линии спектра ртут-

Рис. 2: Экспериментальная установка

ной лампы. Изображение щели S фокусируется на поверхность линзы объективом микроскопа, и в том же месте находится плоскость наблюдения микроскопа, т.е. точка источника и точка наблюдения интерференции совпадают. Картина интерференции как и в случае расположения пластинки сверху, так и в данном случае не зависит от коэффициента преломления линзы и определяется величной зазора между нижней поверхностью линзы и стеклянной пластинкой. Рекомендуется сначала настроить микроскоп на кольца Ньютона в белом свете (свете ртутной лампы), а затем после выделения монохроматором зелёной линии провести измерения в монохроматическом свете.

Ход работы

Измерение радиуса кривизны линзы

Полученные данные приведены в таблице 1.

m	r_m , MKM	r'_m , MKM
1	87.2	61.9
2	120.8	106.9
3	148.7	135.5
4	3,51	160.1
5	171.3	180.8
6	209.5	200.1
7	223.2	217.9

Таблица 1: Радиусы тёмных и светлых колец

Рис. 3: Линеаризованные графики радиусов колец

Как видим, наклоны прямых практически равны, поэтому для простоты возмьем среднее значение (7185 ± 40) мкм². Согласно формулам (1) и (2) наклоны прямых равны $\lambda\cdot R$. Длины волн компонент желтого дуплета ртутной лампы 577 ± 10 нм. Отсюда можем найти радиус кризны линзы

$$R = (1.25 \pm 0.02) \text{ cm}$$
 (3)

Рис. 4: Кольца Ньютона

Биения

При пропускнии света с двумя компонентами монохроматичности возникают биения вследствии наложения двух систем колец. Когда максимумы одной системы ложатся на минимумы другой системы, четкость картинки теряется. Период границ четкости (в кольцах) приблизительно равен $\Delta m = \lambda/\Delta\lambda$. Визуальными измерениями получили период границ четкости в 18 полос. $\lambda \approx 577$ нм $\Rightarrow \Delta\lambda \approx 32$ нм. Из данных про спектр ртутной лампы имеем $\lambda_1 = 577$ нм, $\lambda_2 = 546$ нм, $\Delta\lambda = 33$ нм.

Выводы

Успешно пронаблюдали кольца Ньютона, которые появляются вследствие многолучевой интерференции в зазоре между линзой и черным стеклом. Радиусы светлых и темных колец с хорошей точностью описываются теоретической формулой.

Пронаблюдали биения интерференционной картины вследствии немонохроматичности света. Оценка разности длин волн спектральных компонент в световой смеси достаточно близко к табличным значениям, однако это ни о чем не говорит, потому что оценка строится на не совсем точных принципах, а погрешность измерения границ четкости сильно большая из за незоркого зрения наблюателя.