第 34 章

低ランク近似

ランク 1 行列による圧縮

1 つのグレースケール画像を行列 $A \in \mathbb{R}^{m \times n}$ に見立てると、画像のファイルサイズは mn に比例する。単純に行列の成分を保存しようとすると、膨大な記憶容量が必要となる。

そこで、圧縮に向けた一つの考え方として、 $m \times n$ 型行列 A を、

いくつかの「縦ベクトルと横ベクトルの積」の和として近似的に表現

する

ことを考える。

ランク 1 行列

ここで重要なのは次の事実である。

「縦ベクトルと横ベクトルの積」は階数が 1 の行列

たとえば、

$$\boldsymbol{u} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad \boldsymbol{v}^{\top} = \begin{pmatrix} 4 & 5 \end{pmatrix}$$

とすると、これらの積は次のように計算される。

$$\boldsymbol{u}\boldsymbol{v}^{\top} = \begin{pmatrix} 1 \cdot 4 & 1 \cdot 5 \\ 2 \cdot 4 & 2 \cdot 5 \\ 3 \cdot 4 & 3 \cdot 5 \end{pmatrix} = \begin{pmatrix} 4 & 5 \\ 8 & 10 \\ 12 & 15 \end{pmatrix}$$

各行は、最初の行 (4,5) のスカラー倍となっていることに注目しよう。 つまり、独立な行は (4,5) だけであり、他の行はこの行の線形結合で表現できる。 独立な行が 1 つしかないので、この行列の階数は 1 である。

このことは、一般的な成分表示で考えることもできる。

$$oldsymbol{u} = egin{pmatrix} u_1 \ dots \ u_m \end{pmatrix}$$
 , $oldsymbol{v}^ op = egin{pmatrix} v_1 & \cdots & v_n \end{pmatrix}$

とおくと、これらの積は次のように計算される。

$$oldsymbol{u}oldsymbol{v}^ op = egin{pmatrix} u_1v_1 & u_1v_2 & \cdots & u_1v_n \ u_2v_1 & u_2v_2 & \cdots & u_2v_n \ dots & dots & dots & dots \ u_mv_1 & u_mv_2 & \cdots & u_mv_n \end{pmatrix}$$

ここで、i 行目を取り出すと、

$$u_i \cdot ig(v_1 \quad \cdots \quad v_nig) = u_i oldsymbol{v}^ op$$

となっているので、すべての行は \mathbf{v}^{T} のスカラー倍で表現できることがわかる。

低ランク近似による圧縮

縦ベクトルと横ベクトルの積は階数 1 の行列となることから、もし k 個の和で近似するならば、近似した行列の階数は k 以下となる。

もし、k 個の和で良い近似になっているのであれば、

- n 次元ベクトル(横ベクトル)を k 本

保持すればよいことになる。

これで、mn 個の成分を保持する必要はなくなり、k(m+n) 個の成分を保持すれば十分となる。

たとえば、m=1000, n=1000 の行列を k=50 個の和でうまく近似できるとしたら、

$$\frac{k(m+n)}{mn} = \frac{50(1000+1000)}{1000\times1000} = 0.1$$

より、ファイルサイズを 90% 削減できることがわかる。

このようなアイデアを、工学では圧縮といい、数学的には行列の低ランク近似という。

特異値分解による低ランク近似

さて、O でない任意の行列 A は、次のように特異値分解できた。

$$A = \sigma_1 \boldsymbol{u}_1 \boldsymbol{v}_1^\top + \cdots + \sigma_k \boldsymbol{u}_k \boldsymbol{v}_k^\top + \cdots + \sigma_r \boldsymbol{u}_r \boldsymbol{v}_r^\top$$

これは、「縦ベクトルと横ベクトルの積」の和の形になっている。

さらに、特異値 σ_i は大きい順に並んでいるので、ランク κ の行列の中で、

$$A_k = \sigma_1 \boldsymbol{u}_1 \boldsymbol{v}_1^\top + \cdots + \sigma_k \boldsymbol{u}_k \boldsymbol{v}_k^\top$$

が A に最も近い近似となるのではないか?と予想できる。

ここで、「Aとの近さ」を測るためには、行列に関するノルムを考える必要がある。