9 Réduction des matrices carrées

I - Matrice diagonalisable

1 - Définition

Définition 9.1 – Soit $A \in \mathcal{M}_n(\mathbf{R})$ une matrice carrée. On dit que la matrice A est **diagonalisable** si et seulement s'il existe une matrice $P \in \mathcal{M}_n(\mathbf{R})$ inversible et une matrice $D \in \mathcal{M}_n(\mathbf{R})$ diagonale telle que

$$A = PDP^{-1}$$
.

Remarque 9.2 -

- On a $A = PDP^{-1} \iff P^{-1}AP = D$.
- "Diagonaliser une matrice" signifie trouver deux matrices D et P, respectivement diagonale et inversible, telle que $A = PDP^{-1}$.

Exemple 9.3 – Montrer que la matrice $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ est diagonalisable, en considérant les matrices $P = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ et $D = \begin{pmatrix} 3 & 0 \\ 0 & -1 \end{pmatrix}$.

Remarque 9.4 – En pratique, il n'est pas nécessaire de calculer P^{-1} pour montrer que A est diagonalisable, comme le montre la proposition ci-dessous.

Proposition 9.5

Soit A une matrice, D une matrice diagonale et P une matrice inversible. Si AP = PD, alors la matrice A est diagonalisable.

Exemple 9.6 - On considère les matrices

$$A = \begin{pmatrix} 1 & 1 \\ 3 & 3 \end{pmatrix}, \qquad P = \begin{pmatrix} 1 & 1 \\ 3 & -1 \end{pmatrix} \quad \text{ et } \quad D = \begin{pmatrix} 4 & 0 \\ 0 & 0 \end{pmatrix}.$$

2 - Application au calcul de puissance

Proposition 9.7

Soit *A* une matrice. On suppose qu'il existe une matrice *P* inversible et une matrice *D* telle que $A = PDP^{-1}$. Alors, pour tout $n \in \mathbb{N}$, on a

$$A^n = PD^nP^{-1}.$$

Démonstration.

Remarque 9.8 – Si le calcul de P^{-1} n'est pas nécessaire pour montrer qu'une matrice A est diagonalisable, il est cependant **indispensable** pour obtenir une expression explicite des puissances de A, ce qui est souvent ce que l'on cherche à obtenir.

II - Valeurs propres et vecteurs propres

1 – Définition

Définition 9.9 – Soit $A \in \mathcal{M}_n(\mathbf{R})$ une matrice et λ un réel.

• On dit que λ est une **valeur propre** de la matrice A si et seulement si

il existe
$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbf{R}) \text{ non-nul tel que } AX = \lambda X.$$

• La matrice colonne X est alors appelée **vecteur propre** associé à la valeur propre λ .

Exemple 9.10 - On considère les matrices

$$M = \begin{pmatrix} 3 & -2 & -5 \\ 5 & -4 & -5 \\ -8 & 8 & 6 \end{pmatrix}, \qquad V_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \qquad V_2 = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}, \quad \text{et} \quad V_3 = \begin{pmatrix} -1 \\ 0 \\ -1 \end{pmatrix}.$$

Montrer que V_1 , V_2 et V_3 sont des vecteurs propres de la matrice M et préciser les valeurs propres associées.

Proposition 9.11

Soit $A \in \mathcal{M}_n(\mathbf{R})$ une matrice et λ un réel. Il n'y a que deux possibilités pour l'ensemble des solutions de l'équation $AX = \lambda X$, d'inconnue $X \in \mathcal{M}_{n,1}(\mathbf{R})$.

- Ou bien cet ensemble contient uniquement la matrice colonne nulle, auquel cas λ n'est pas valeur propre de A,
- ou bien cet ensemble ne contient pas uniquement la matrice colonne nulle, auquel cas λ est valeur de propre de A, et toute matrice **non-nulle** de cet ensemble est un vecteur propre associé à la valeur propre λ .

Exemple 9.12 – On considère la matrice $A = \begin{pmatrix} 0 & -6 & 6 \\ -1 & -5 & 6 \\ -1 & -8 & 9 \end{pmatrix}$. Les réels 2 et 3 sont-ils valeurs propres de A? Si oui, déterminer un vecteur propre de A associé à cette valeur propre.

2 – Polynôme annulateur de A

Définition 9.13 – Soit $A \in \mathcal{M}_n(\mathbf{R})$ une matrice carrée et $P = a_0 + a_1 X + a_2 X^2 + ... + a_p X^p$ un polynôme. On définit le **polynôme matriciel** P(A) comme étant la matrice carrée

$$P(A) = a_0 I_n + a_1 A + a_2 A^2 + \dots + a_p A^p.$$

On dit que le polynôme P est un **polynôme annulateur** de la matrice A lorsque $P(A) = O_n$.

Exemple 9.14 – Soit *A* une matrice de $\mathcal{M}_3(\mathbf{R})$.

- 1. Si $P(X) = X^2 + 2X$, alors P(A) =
- 2. Si $P(X) = X^3 3X^2 + 2X + 1$, alors P(A) =
- 3. Si P(x) = -3, alors P(A) =

Exemple 9.15 – On considère la matrice $M = \begin{pmatrix} 1 & -1 & -1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$.

Montrer que le polynôme $X^3 + X^2 + 1$ est un polynôme annulateur de M.

Proposition 9.16

Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbf{R})$ une matrice.

Le polynôme $X^2 - (a+d)X + (ad-bc)$ est un polynôme annulateur de A.

Démonstration.

Exemple 9.17 – Soit $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$. Donner un polynôme annulateur de A.

Théorème 9.18

Soit *A* une matrice carrée et *P* un polynôme annulateur de *A*.

Toute valeur propre λ de A est racine du polynôme P.

ATTENTION! Ce résultat nous indique **seulement** que les valeurs propres de A sont également des racines du polynôme P. Il peut donc y avoir des racines du polynôme P qui **ne sont pas** des valeurs propres de A.

Exemple 9.19 – On considère la matrice $A = \begin{pmatrix} -2 & 0 & 2 \\ 1 & 1 & -2 \\ -1 & 0 & 1 \end{pmatrix}$.

1. Montrer que le polynôme $P = X^3 - X$ est annulateur de A.

- 2. En déduire les valeurs propres possibles de *A*.
- 3. Déterminer lesquelles sont bien des valeurs propres de *A*.

Remarque 9.20 - Comme on l'a déjà vu dans le Chapitre 5, disposer d'un polynôme annulateur permet également, dans certains cas, d'obtenir l'inversibilité et l'inverse d'une matrice.

Par exemple, on a vu que le polynôme $X^3 + X^2 + 1$ est un polynôme annulateur de $M = \begin{pmatrix} 1 & -1 & -1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$.

III - Diagonalisation pratique

Théorème 9.21

Soit A une matrice de $\mathcal{M}_n(\mathbf{R})$. On suppose que A possède n valeurs propres distinctes $\lambda_1, \lambda_2, ..., \lambda_n$ avec $V_1, V_2, ..., V_n$ des vecteurs propres associés.

Alors la matrice P obtenue en juxtaposant les matrices colonnes $V_1, V_2, ..., V_n$ est inversible, et en notant D la matrice diagonale

$$D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda_n \end{pmatrix}, \quad \text{alors } A = PDP^{-1}.$$

Remarque 9.22 -

• Dans le cas n=2, le théorème précédent se réécrit : Si A est une matrice de $\mathcal{M}_2(\mathbf{R})$, ayant deux valeurs propres λ_1 et λ_2 , avec $V_1=\begin{pmatrix} a \\ b \end{pmatrix}$ un vecteur propre associé à λ_1 et $V_2=\begin{pmatrix} c \\ d \end{pmatrix}$ un vecteur propre associé à λ_2 , alors la matrice $P=\begin{pmatrix} a & c \\ b & d \end{pmatrix}$ est inversible et en notant D la matrice diagonale $D=\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$, on a

$$A = PDP^{-1}$$
.

• Dans le cas n=3, le théorème précédent se réécrit : Si A est une matrice de $\mathcal{M}_3(\mathbf{R})$, ayant trois valeurs propres λ_1 , λ_2 et λ_3 , avec $V_1=\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ un vecteur propre associé à λ_1 , $V_2=\begin{pmatrix} d \\ e \\ f \end{pmatrix}$ un vecteur propre associé à λ_2 et $V_3=\begin{pmatrix} g \\ h \\ i \end{pmatrix}$ un vecteur propre associé à λ_3 , alors la matrice $P=\begin{pmatrix} a & d & g \\ b & e & h \\ c & f & i \end{pmatrix}$ est inversible et en notant D la matrice diagonale $D=\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}$, on a

$$A = PDP^{-1}$$

Exemple 9.23 – On considère la matrice $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$.

1. Montrer que le polynôme $P = X^2 - 2X - 3$ est annulateur de A.

2. Calculer les racines α et β de P .	
3. Montrer que $lpha$ et eta sont des valeurs propres de A et calculer les vecteurs propres associés.	
4. Justifier que A est diagonalisable et la diagonaliser.	