Activity Classification

HCRE

Modeling

Hidden CRFs for Human Activity Classification from RGBD Data

Avi Singh & Ankit Goyal IIT-Kanpur

CS679: Machine Learning for Computer Vision

April 13, 2015

Overview

Activity Classification

Problem

Feature

Models HMM MEMM CRF HCRF

Our Solution Features

Modeling

Result

Future Scope

deference

- 1 Problem
- 2 Features
- 3 Models
 - HMM
 - MEMM
 - CRF
 - UKF
 - HCRF
- 4 Our Solution
 - Features
 - Modeling
- 5 Results
- 6 Future Scope
- 7 References

Problem Statement

Problem

Feature

Models
HMM
MEMM
CRF
HCRF

Our Solution Features

Results

Future Scope

Reference

Input

An RGBD video with a human subject performing some day-to-day activity like drinking water.

Output

A classification label as to what that activity is.

Application: Assistive Robotics

Popular 3D Features for human activity recognition

Activity Classification

Proble

Features

Models
HMM
MEMM
CRF
HCRF

Our Solution
Features

Modeling

Results

Future Scope

- 3D silhouettes
- Skeletal joints or body part tracking
- Local Spatio-temporal features
- Local 3D occupancy features
- 3D optical flow

Models for Structured Prediction

Activity Classification

Proble

Featur

Models

HMM MEMM CRF HCRF

HCRF
Our Solution

Features

Results

Future Scope

- Hidden Markov Models (HMM)
- Maximum Entropy Markov Models (MEMM)
- Conditional Random Fields (CRF)

Hidden Markov Model (HMM)

Activity Classification

нмм

- Generative model
- Predicts the (hidden) state of a system from the visible output
- Have been traditionally used in temporal pattern recognition such as speech recognition

Figure: Hidden Markov Model

Problems with HMM

Activity Classification

нмм

- Requires enumeration of all possible observation sequences.
- Requires the observations to be independent of each other.
- Generative approach for solving a conditional problem leading to unnecessary computations.

Maximum Entropy Markov Model (MEMM)

Activity Classification

Problem

Feature

HMM MEMM CRF HCRF

HCRF
Our Solution

Modeling

ruture Scope

- Conditional model.
- Unlike HMM, uses a set of overlapping features.
- Uses the maximum entropy framework to fit a set of exponential models that represent the probability of a state given an observation and the previous state.
- More efficient training algorithms than HMM or CRF

Figure: Hidden Markov Model

Problems with MFMM

Label Bias Problem

- States with low-entropy transition distributions "effectively ignore" their observations. States with lower transitions have "unfair advantage",
- Since training is always done with respect to known previous tags, so the model struggles at test time when there is uncertainty in the previous tag.

Conditional Random Fields (CRF)

Activity Classification

Problen

Feature

Models HMM MEMM CRF

HCRF
Our Solution

Features

Results

Future Scope

- Conditional Models.
- Uses a single exponential model for joint probability of entire sequence of labels given the observation sequence.
- Avoids the limitations of MEMM.

Figure: Conditional Random Field Model

Hidden Conditional Random Fields

Activity Classification

Problen

Feature

Models HMM

CRF

HCRF

Our Solution

ь .

Future Scope

- An extension of CRF.
- Discriminative latent variable model for classifying of a sequence of observations.

Hidden Conditional Random Fields

Activity Classification

Probler

Feature

Models HMM MEMM CRF HCRF

CRF HCRF

Features

Result

Future Scope

Reference

- Aim: To predict the label y from \mathbf{x} . Each y is a member of a set Y of possible labels and each vector \mathbf{x} is a vector of local observations $\mathbf{x} = \{x_1, x_2, \dots, x_m\}$. And $\mathbf{h} = \{h_1, h_2, \dots, h_m\}$ is the vector of latent states.
- lacksquare A conditional probabilistic model with heta as parameter is defined:

$$P(y, \mathbf{h} \mid \mathbf{x}, \theta) = \frac{e^{\Psi(y, \mathbf{h}, \mathbf{x}; \theta)}}{\sum_{y', \mathbf{h}} e^{\Psi(y', \mathbf{h}, \mathbf{x}; \theta)}}, \qquad (1)$$

■ This model gives $P(y \mid \mathbf{x}, \theta)$:

$$P(y \mid \mathbf{x}, \theta) = \sum_{\mathbf{h}} P(y, \mathbf{h} \mid \mathbf{x}, \theta) = \frac{\sum_{\mathbf{h}} e^{\Psi(y, \mathbf{h}, \mathbf{x}; \theta)}}{\sum_{y', \mathbf{h}} e^{\Psi(y', \mathbf{h}, \mathbf{x}; \theta)}}.$$
 (2)

Hidden Conditional Random Fields

Activity Classification

HCRE

■ The objective function while training is chosen as:

$$L(\theta) = \sum_{i} \log P(y_i \mid \mathbf{x}_i, \theta) - \frac{1}{2\sigma^2} \|\theta\|^2.$$
 (3)

- \blacksquare Ψ is the potential function and takes the following form: $\Psi(y, \mathbf{h}, \mathbf{x}; \theta) = \sum_{i} \phi(x_i) \cdot \theta(h_i) + \sum_{i} \theta(y, h_i) + \sum_{(i,k) \in \mathcal{E}} \theta(y, h_i, h_k),$
- $\theta^* = \arg \max L(\theta)$ is calculated from the training example using quasi-Newton gradient descent.
- Exact methods for the inference and parameter estimation are tractable.

Features

Activity Classification

Probler

Feature

HMM MEMM CRF

Our Solution

Features Modeling

Result

Future Scop

Figure: Joint Coordinates from Single Depth Image

Preprocessing

Activity Classification

Featur

Models HMM MEMM CRF HCRF

Our Solution

Features Modeling

Future Scope

Defenence

 X,Y,Z coordinates of 20 body joints extracted from depth image

- Coordinates originally in Kinect frame transformed to the person's frame of reference
- A normalization technique used to account for changes in body part size
- The motion information is captured by calculating the difference in coordinates between successive frames.

Our Model

Activity Classification

Problei

Featur

Models
HMM
MEMM
CRF

Our Solution

Features Modeling

....

Future Scope

References

We used Hidden-state Conditional Random Fields. Some hyperparameters:

■ Number of hidden states: 10

■ Window Size: 1

Optimizer: Broyden Fletcher Goldfarb Shanno algorithm

(MSR Daily Activity 3D dataset)

Activity Classification

1 TODIEI

Ecotur

Models HMM MEMM CRF HCRF

Our Solution Features

Results

Future Scope

Reference

■ 10 subjects

- 16 activities: drink, eat, read book, call cellphone, write on a paper, use laptop, use vacuum cleaner, cheer up, sit still, toss paper, play game, lie down on sofa, walk, play guitar, stand up, sit down
- Each subject performs each activity twice (sitting/standing)
- 10x16x2 = 320 RGBD videos + skeleton data

Reduced Dataset

Activity Classification

Problen

Ecotura

Models HMM MEMM CRF

HCRF
Our Solution

Features Modeling

Results

Future Scope

References

Due to computational restrictions, we used a subset of the original dataset.

We used 6 activities, 10 subjects, and one video for every subject (sitting position)

Training/Testing

Activity Classification

Problei

Featur

Models HMM MEMM CRF HCRF

Our Solution Features Modeling

Results

Future Scope

References

We did 5-fold cross validation. 48/12 split for training/testing

All the testing was performed in "new person" setting.

Final Accuracy Obtained: 71.67%

Confusion Matrix

Activity Classification

Problem

Feature

Models HMM MEMM CRF HCRF

Our Solution Features Modeling

Results

Future Scop

Figure: The Confusion Matrix

Future Scope

Activity Classification

Featur

Models HMM MEMM CRF HCRF

Our Solution Features

Results

Future Scope

- Including more features from the skeleton data, especially those having nonlinear relation to joint coordinates.
- Including features to model interaction between different objects in the scene and the human.
- Bayesian optimization for the hyper-parameters like number of hidden sates.
- Exploring other models like Structured SVM.

References

Activity Classification

Problen

Feature

Models HMM MEMM CRF

Our Solution

Modeling

- . .

Future Scope

References

A. Quattoni, S. Wang, L.-P Morency, M. Collins, T. Darrell; Hidden-state Conditional Random Fields PAMI 2005

Sy Bor Wang, Ariadna Quattoni, Louis-Philippe Morency, David Demirdjian, Trevor Darrell Hidden Conditional Random Fields for Gesture Recognition

CVPR 2006

John Lafferty, Andrew McCallum, Fernando C.N. Pereira
Conditional Random Fields: Probabilistic Models for Segmenting and
Labeling Sequence Data

ICML 2001

Andrew McCallum, Dayne Freitag, Fernando C.N. Pereira
Maximum Entropy Markov Models for Information Extraction and
Segmentation

ICML 2000

References

Activity Classification

Problen

Featur

HMM MEMM CRF HCRF

Our Solution Features Modeling

Results

Future Scope

References

Lawrence M. Rabiner

A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition

Jaeyong Sung, Colin Ponce, Bart Selman and Ashutosh Saxena Unstructured Human Activity Detection from RGBD Images *ICRA 2012*

Jamie Shotton, Andrew Fitzgibbon, Mat Cook, Toby Sharp, Mark Finocchio, Richard Moore, Alex Kipman, Andrew Blake

Real-Time Human Pose Recognition in Parts from Single Depth Images

CVPR 2011

J.K. Aggarwal, Lu Xia

Human activity recognition from 3D data: A review Pattern Recognition Letters 2014

Activity Classification

CRF

Features Modeling

References

The End