

## Riemannian and Complex Geometry

Lecturers Daniel Galviz & Bowen Liu Teaching Assistants: Anis Bousclet & Julian Alzate PhysicsLatam.com/RC

Submission deadline: 15 October 2025, 5:59 pm (GMT-4)

— Exercises —

## 2.1 Vector fields and differential forms

**Exercise 2.1.** Let  $f: M \to N$  be a smooth map between smooth manifolds. Let  $X_1, X_2$  be vector fields on M and  $Y_1, Y_2$  be vector fields on N such that  $(df)(X_i) = Y_i$  for i = 1, 2. Show that

$$(df)([X_1, X_2]) = [Y_1, Y_2].$$

**Exercise 2.2.** In each of the following cases, compute  $d\omega$  and  $F^*\omega$ , and verify by direct computation that  $F^*(d\omega) = d(F^*\omega)$ .

- 1.  $M = N = \mathbb{R}^2$ :  $F(s,t) = (st, e^t)$ :  $\omega = x dy$ .
- 2.  $M = \mathbb{R}^2$ ,  $N = \mathbb{R}^3$ ;  $F(\theta, \varphi) = ((\cos \varphi + 2) \cos \theta, (\cos \varphi + 2) \sin \theta, \sin \varphi)$ ;  $\omega = y dz \wedge dx$ .

3. 
$$M = \{(u, v) \in \mathbb{R}^2 : u^2 + v^2 < 1\}, N = \mathbb{R}^3 \setminus \{0\}; F(u, v) = \left(u, v, \sqrt{1 - u^2 - v^2}\right);$$

$$\omega = \frac{x dy \wedge dz + y dz \wedge dx + z dx \wedge dy}{(x^2 + y^2 + z^2)^{3/2}}.$$

**Exercise 2.3.** Define a 2-form  $\omega$  on  $\mathbb{R}^3$  by

$$\omega = x dy \wedge dz + y dz \wedge dx + z dx \wedge dy.$$

1. Compute  $\omega$  in spherical coordinates  $(\rho, \varphi, \theta)$  defined by

$$(x, y, z) = (\rho \sin \varphi \cos \theta, \rho \sin \varphi \sin \theta, \rho \cos \varphi).$$

2. Compute  $d\omega$  in both Cartesian and spherical coordinates and verify that both expressions represent the same 3-form.

- 3. Let  $\iota_{\mathbb{S}^2} \colon \mathbb{S}^2 \to \mathbb{R}^3$  be the natural inclusion. Compute the pullback  $\iota_{\mathbb{S}^2}^* \omega$  to  $\mathbb{S}^2$ , using coordinates  $\varphi, \theta$  on the open subset where these coordinates are defined.
- 4. Show that  $\iota_{\mathbb{S}^2}^*\omega$  is a nowhere-vanishing 2-form on  $\mathbb{S}^2$ .

**Exercise 2.4.** Show that there is a smooth vector field on  $\mathbb{S}^2$  that vanishes at exactly one point.

**Exercise 2.5** (hairy ball theorem). There exists a nowhere-vanishing vector field on  $\mathbb{S}^n$  if and only if n is odd. Prove this by showing that the following are equivalent:

- 1. There exists a nowhere-vanishing vector field on  $\mathbb{S}^n$ .
- 2. There exists a continuous map  $V: \mathbb{S}^n \to \mathbb{S}^n$  satisfying  $V(x) \perp x$  (with respect to the Euclidean dot product on  $\mathbb{R}^{n+1}$ ) for all  $x \in \mathbb{S}^n$ .
- 3. The antipodal map  $\alpha$  is homotopic<sup>1</sup> to id<sub>S</sub><sup>n</sup>.
- 4. The antipodal map  $\alpha$  is orientation-preserving.
- 5. n is odd.

## 2.2 Orientation

**Exercise 2.6.** Prove that a real projective space  $\mathbb{RP}^n$  is orientable if and only if n is odd.

**Exercise 2.7.** Prove that a complex projective space  $\mathbb{CP}^n$  is always orientable.

## 2.3 De Rham cohomology

**Exercise 2.8.** Let  $\omega$  be the (n-1)-form on  $\mathbb{R}^n \setminus \{0\}$  defined by

$$\omega = |x|^{-n} \sum_{i=1}^{n} (-1)^{i-1} x^i dx^1 \wedge \dots \wedge \widehat{dx^i} \wedge \dots \wedge dx^n.$$

Show that  $\omega$  is closed but not exact on  $\mathbb{R}^n \setminus \{0\}$ .

<sup>&</sup>lt;sup>1</sup>Let  $f, g: X \to Y$  be two continuous maps between topological spaces. Then f is homotopic to g if there exists a continuous map  $F: X \times [0,1] \to Y$  such that F(x,0) = f(x) and F(x,1) = g(x).