Семинар 24

1 Повторение

Примеры линейных пространств: арифметическое пространство, множество непрерывных на отрезке функций. пространство решений однородной СЛАУ.

Базис. Единственность разложения по базису. Размерность. Связь размерности и числа элементов в базисе. Изоморфизм конечномерных векторных пространств арифметическому пространству (при фиксации базиса).

Матрица перехода от старого базиса к новому. Невырожденность матрицы перехода. Изменение координат вектора при изменении базиса. Утверждение о том, как меняется матрица перехода при двух последовательных переходах. Подпространства в линейном пространстве.

2 Задачи

Пусть F – поле. Beкторным (линейным) пространством над полем <math>F называется множество V с двумя бинарными операциями

$$+: V \times V \to V$$
 и $\cdot: F \times V \to V$

такими, что для всех $x, y \in V$ и $\alpha, \beta \in F$ выполнено:

- 1. (V, +) абелева группа;
- 2. $\alpha \cdot (x + y) = (\alpha \cdot x) + (\alpha \cdot y)$;
- 3. $(\alpha + \beta) \cdot x = (\alpha \cdot x) + (\beta \cdot x)$;
- 4. $\alpha \cdot (\beta \cdot x) = (\alpha \cdot \beta) \cdot x$;
- 5. $1 \cdot x = x$.

Для векторного пространства V и любых элементов $x \in V, \alpha \in F$ также справедливы следующие соотношения:

1.
$$0 \cdot x = \alpha \cdot 0 = 0$$
;

$$2. \ (-\alpha) \cdot x = -(\alpha \cdot x).$$

Зафиксируем векторное пространство V над F. Линейной комбинацией векторов $v_1, \ldots, v_k \in V$ с коэффициентами $\lambda_1, \ldots, \lambda_k \in F$ называется вектор

$$\lambda_1 v_1 + \ldots + \lambda_k v_k$$
.

Линейная комбинация называется тривиальной, если $\lambda_1 = \ldots = \lambda_k = 0$.

Говорят, что вектор $u \in V$ выражается через вектора v_1, \ldots, v_k , если u равен некоторой линейной комбинации векторов v_i :

$$u = \sum_{i=1}^{k} \lambda_i v_i.$$

Векторы v_1, \ldots, v_k называются *линейно независимыми*, если из того, что линейная комбинация векторов v_i равна нулю, следует, что она тривиальна:

$$\sum_{i=1}^{k} \lambda_i v_i = 0 \implies \lambda_1 = \dots = \lambda_k = 0.$$

Упорядоченный набор векторов $e=(e_i)_{i\in I}\subseteq V$ называется базисом, если

- 1. набор e линейно независим,
- 2. любой вектор из $v \in V$ выражается через e.

Базис в векторном пространстве существует всегда. Пространство V называется конечно-мерным, если в нём существует конечный базис. Везде далее, если не оговорено противное, будем считать V конечномерным.

Свойства базиса:

- 1. любую линейно независимую систему можно дополнить до базиса;
- 2. в любых двух базисах одинаковое количество элементов;
- 3. любой вектор $v \in V$ единственным образом выражается через базис:

$$\sum_{i=1}^n \lambda_i e_i = \sum_{i=1}^n \mu_i e_i \implies \lambda_i = \mu_i \text{ для всех } i = 1, \dots, n.$$

Количество элементов в некотором (а значит и в любом) базисе V называется размерностью V и обозначается $\dim V$. Заметим, что если $v_1, \ldots, v_n \in V$ линейно независимы и $\dim V = n$, то набор v_1, \ldots, v_n автоматически является базисом V.

Координатами вектора v в базисе e_1, \ldots, e_n называется столбец $\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$, где $v = \sum_{i=1}^n x_i e_i$.

Любое конечномерное пространство V размерности n над полем F изоморфно F^n : зафиксировать базис e_1, \ldots, e_n пространства V – это то же самое, что зафиксировать изоморфизм с F^n по правилу

$$V \ni \alpha_1 e_1 + \ldots + \alpha_n e_n \leftrightarrow (\alpha_1, \ldots, \alpha_n) \in F^n.$$

Задача 1. Пусть в некотором базисе векторы заданы своими координатами:

$$e_1 = (1, 1, 1), e_2 = (1, 1, 2), e_3 = (1, 2, 3),$$

 $x = (6, 9, 14).$

Доказать, что векторы e_1, e_2, e_3 сами образуют базис и найти координаты вектора x в этом базисе.

Пусть $e = (e_1, \ldots, e_n)$ и $e' = (e'_1, \ldots, e'_n)$ – два базиса пространства V. Матрицей перехода от базиса e κ базису e' называется такая матрица $C = (c_{ij}) \in \mathcal{M}_n(F)$, что

$$e'_i = \sum_{i=1}^n c_{ji} e_i$$
 для всех $i = 1, \dots, n,$

то есть

$$e' = eC$$
.

При этом, если x и x' – это столбцы координат одного и того же вектора v в базисах e и e' соответственно, то

$$x = Cx'$$
.

Задача 2. Доказать, что каждая из двух систем

$$e_1 = (1, 2, 1), e_2 = (2, 3, 3), e_3 = (3, 7, 1)$$

И

$$e'_1 = (3, 1, 4), e'_2 = (5, 2, 1), e'_3 = (1, 1, -6),$$

является базисом и найти матрицу перехода между этими базисами.

Пространство F[x] является векторным пространством над F с базисом $1, x, x^2, \ldots$ Для любого $n \in \mathbb{Z}_{\geq 0}$ определим конечномерное подпространство $F[x]_{\leq n} \subseteq F[x]$ многочленов степени не выше n:

$$F[x]_{\leq n} = \{a_0 + a_1 x + \dots + a_n x^n \mid a_i \in F, \ i = 0, \dots, n\}.$$

Задача 3. Найти координаты многочлена

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n \in F[x]_{\le n}$$

в базисе $1, x, x^2, \dots, x^n$. Доказать, что для любого $\alpha \in F$ многочлены

$$1, x-\alpha, (x-\alpha)^2, \dots, (x-\alpha)^n$$

образуют базис пространства $F[x]_{\leq n}$ и найти координаты вектора f в этом базисе. Найти матрицу перехода между указанными базисами.

Пусть V – векторное пространство над полем F. Подмножество $U \subseteq V$ называется nod-npocmpancmsom, если для любых $x \in U$ и $\alpha \in F$ выполнено следующее:

- 1. $(U, +) \le (V, +)$ подгруппа по сложению;
- $2. \ \alpha \cdot x \in U.$

Эквивалентные условия:

- 1. U непусто;
- 2. $\alpha x + \beta y \in U$ для всех $x, y \in U$ и $\alpha, \beta \in F$.

Другими словами, U тоже является векторным пространством относительно операций, заданных на V. Обозначение: $U \leq V$.

Рассмотрим матрицу $A \in \mathrm{Mat}_{k \times n}(F)$. Множество решений ОСЛУ

$$\{x \in F^n \mid Ax = 0\}$$

является векторным пространством (подпространством в F^n) размерности $n-\operatorname{rk} A$. ФСР системы является базисом этого пространства.

Задача 4. Найти базис подпространства в F^n , заданного уравнением

$$x_1 + \ldots + x_n = 0.$$

Рассмотрим векторное пространство V и векторы $v_1, \ldots, v_k \in V$. Множество U всех линейных комбинаций векторов v_1, \ldots, v_k является подпространством. Оно называется линейной оболочкой векторов v_1, \ldots, v_k и обозначается $\langle v_1, \ldots, v_k \rangle$. Говорят также, что U порождается векторами v_1, \ldots, v_k , или что U натянуто на векторы v_1, \ldots, v_k .

Как среди векторов v_1, \ldots, v_k выделить базис подпространства $U = \langle v_1, \ldots, v_k \rangle$ для заданных $v_1, \ldots, v_k \in F^n$? Запишем координаты векторов v_i в матрицу $A \in \operatorname{Mat}_{n \times k}(F)$ по столбцам. Размерность U равна рангу A. Приведём A к улучшенному ступенчатому виду. При элементарных преобразованиях строк A линейные зависимости столбцов сохраняются, поэтому базисом U будут те вектора v_i , индекс которых равен номерам столбцов с лидерами строк. Более того, из улучшенного вида получаем линейные выражения остальных векторов v_j через базисные.

Задача 5. Найти размерность и базис линейного подпространства, натянутого на векторы

$$a_1 = (1, 0, 0, -1), \ a_2 = (2, 1, 1, 0), \ a_3 = (1, 1, 1, 1), \ a_4 = (1, 2, 3, 4), \ a_5 = (0, 1, 2, 3).$$

Выразить все a_i через найденный базис.

Итак, у нас есть два способа задания подпространства: с помощью линейной оболочки и с помощью ОСЛУ. Как от одного перейти к другому?

Если подпространство U задано ОСЛУ, то U натянуто на Φ CP системы (так как это базис U).

Обратно, пусть $U \leq F^n$ задано линейной оболочкой

$$U = \langle v_1, \dots, v_k \rangle.$$

Хотим найти матрицу A коэффициентов ОСЛУ, задающей U. Посмотрим на множество строк A как на подпространство в F^n . Тогда для любой такой строки (a_1, \ldots, a_n) получаем уравнения на коэффициенты a_1, \ldots, a_n :

$$x_{j1}a_1 + \ldots + x_{jn}a_n = 0$$
 для всех $j = 1, \ldots, k$, где $v_j = \begin{pmatrix} x_{j1} \\ \vdots \\ x_{jn} \end{pmatrix}$.

 Φ CP этой системы (её матрица коэффициентов – это векторы v_i , записанные по строкам) и будет строками матрицы A.

Задача 6. Найти ОСЛУ, задающую линейную оболочку векторов

$$a_1 = (1, -1, 1, 0), \ a_2 = (1, 1, 0, 1), \ a_3 = (2, 0, 1, 1).$$