

Mid Term Examination (Semester-II) AY 2021-22

Electronics and Telecommunication Engineering

S.Y. B. Tech. Electronic Data Structures ESC 284

Date: 16-03-2022 Time: 11:00-12:00 Max. Marks: 30

Note: All questions are compulsory.

	State true or false for the fo	llowing			5 Marks	00	-
	f [1] It is not possible to a f [2] There is no limit on	the size of the numbers the size of the numbers the in two different files links that the two differents are the size of the numbers that the size of	nat can be stored in the in ed together must be uniquat at a time.	data type	SWAFKS	CO	BT BT1
.2 0	Choose the correct alternative	ve for the following.			5 Marks	CO3	BT2
[2	A. Class is an instant C. Class is an instant Which of the follow A. protected Which of the follow A. Declaring it abstrat B. Declaring it abstrat C. Making at least of D. Making at least of Which of the follow A. Classes cannot have B. Structures can have C. Class members D. Structure members Which of the follow Structure members U. Structure members C. Class members D. Structure members D. Structure members D. Structure members	ce of data type. Ving access specifier is us B. public Wing is used to make an a act using static keyword. Eact using virtual keyword The member function as virtual member function as provided and as protected member ave data as protected members are public by default. The provided with the provided members are private by default. The provided with the provided members are private by default. The provided with the provided members are private by default. The provided members are private by default. The provided members are private by default.	D. Object is an instance of the day of the d	ance of data type. definition? and and			
	A. Abstraction	B. Encapsulation					
Q.3	What are linked lists? Exp	plain.	C. Inheritance D.	Polymorphism	4 Marks	CO1	BT4
Q.3 Q.4		plain.			4 Marks 6 Marks	CO1	BT4
		ic axioms with respect to t	time complexity of progra	ms. grams.	6 Marks		
Q.4	Write a short note on bas	ic axioms with respect to t	time complexity of progra	ms. grams.	6 Marks 2 Marks n> std;		
Q.4	Write a short note on bas 4 Marks Using detailed model of computer determine the total running time for the following function. int sum (int x, int n) { int sum=0; 2 for(int i=0; i <= n; i++) { int prod=1; 4 for((int j =0; j < i; j++) prod *= x; 5 sum += prod; 6 } Return sum; }	Q. 6 Write the out [A] 2 Marks #include <iostream> using namespace std; int x = 1; int main() { int x = 2; { int x = 3; cout << ::x << endl; }</iostream>	time complexity of progra atput for the following pro [B] 2 Marks #include <iostream> using namespace std; int main(int x) { int i = 5; if (i) { cout << i; main(10); }</iostream>	ms. grams. [C] 2 #include <iostream *ptr="new" *ptr;<="" <<="" cout="" in="" int="" main()="" namespace="" s="" td="" using="" {=""><td>6 Marks 2 Marks n> std;</td><td></td><td></td></iostream>	6 Marks 2 Marks n> std;		

S. G. G. S. Institute of Engineering and Technology, Vishnupuri, Nanded. Mid Term Examination Sem-II, AY 2021-22

Class: SY Electronics and Telecommunication Engineering

Date: 22/3/2022 Time: 11am to 12pm Subject: Microcontroller and Applications Code: EC258/PCC-EC206

Max. Marks: 30

Use of non-programmable calculator is permitted.--

Assume suitable data if necessary

Sr. No	Questions	Marks
Q.t	Describe architecture of 8051 microcontroller using block diagram	08
<u>Q.2</u>	Explain immediate and indirect addressing modes in 8051 microcontroller with example.	04
Q.3	Explain CJNE and PUSH instructions.	04
Q.4°	Contents of register A after execution of the following code MOV A, #37H ANL A, #0AH is (a) 02 (b) 03 (c) 10	02
Q.s-	(d) None of these Contents of register A after execution of the code CLR A, ORL A, #99H, CPL A will be (a) 55H (b) 03H (c) 66H	02
0.6	(d) None of these What is the clock source for the timers? Explain each bit TMOD register.	4
Q.6 Q.7	Write a program which will create a square wave of 50% duty cycle on port 2.3 bit. Use timer 1 in mode 1 to generate a time delay of 5 ms. Assume the crystal frequency of 12MHz.	6

Mid Term Examination (Semester-II) 2021-22

Electronics and Telecommunication Engineering S.Y. B. Tech. Analog Circuit Design PCC-EC205 / EC 255

Time: 11:00 to 12:00 Max. Marks: 30

Date: 17 March 2022

Note:(i) Attempt all questions. (ii) Assume suitable data if necessary (iii) Use of non-programmable calculators is permitted

0.	T			s is permit	ited.	
N.		Question		Marks	CO	BT
Q.1	a	$R_{S} = C_{S}$ $V_{i} = C_{P}$	For the circuits in Figure 1.a the parameters are: $R_S = 1 \text{ K}\Omega$, $R_P = 10 \text{ K}\Omega$, $C_S = 10 \mu\text{F}$, and $C_P = 30 p\text{F}$. Find lower and higher cut off frequencies.		1	1
		Figure 1.a				
	ь	V_{CC} $R_{S_{1}}$ $R_{C_{1}}$ $R_{R_{2}}$ $R_{R_{2}}$ $R_{R_{2}}$ $R_{R_{2}}$ $R_{R_{2}}$ $R_{R_{2}}$ $R_{R_{3}}$ $R_{R_{4}}$ $R_{R_{5}}$ $R_{R_{6}}$ $R_{R_{1}}$ $R_{R_{7}}$ $R_{R_{8}}$ $R_{1} R_{2}$ $R_{R_{8}}$ $R_{1} R_{2}$ $R_{R_{1}}$ $R_{R_{1}}$ $R_{R_{1}}$ $R_{R_{2}}$ $R_{R_{3}}$ R_{4} $R_{1} R_{2}$ R_{5} R_{6} $R_{1} R_{2}$ R_{7} R_{8} $R_{1} R_{2}$	For the circuit shown in Figure 1.b, the parameters are: $R_1 = 51.2 \text{ K}\Omega$, $R_2 = 9.6 \text{ K}\Omega$, $R_C = 2 \text{ K}\Omega$, $R_E = 0.4 \text{ K}\Omega$, $R_{Si} = 0.1 \text{ K}\Omega$, $C_C = 0.1 \text{ \mu}F$, and $V_{CC} = 10 \text{ V}$. The transistor parameters are: $V_{BE(on)} = 0.7 \text{ V}$, $\beta = 100$, and $V_A = \infty$. Find lower cutoff frequency and voltage gain.		1	2
	С	=	Consider a bipolar transistor with parameters $r_{\pi}=2.6~\mathrm{K}\Omega$, $C_{\pi}=0.5~\mathrm{pF}$, and $C_{\mu}=0.025~\mathrm{pF}$. Determine the 3 dB frequency of the short-circuit current gain of a bipolar transistor. (Figure 1.c)	2	2	3
Q.2	a	$I_{s} \uparrow \qquad R_{B} \downarrow V_{\pi} \downarrow r_{\pi} \qquad C_{\pi} \downarrow \qquad C_{M} \downarrow \qquad R_{C} \downarrow R_{C} \downarrow R_{L} \downarrow \qquad R_{C} \downarrow R_{L} \downarrow R_{C} \downarrow R_{C} \downarrow R_{L} \downarrow R_{C} \downarrow R_{$	Determine the 3 dB frequency of the current gain for the circuit shown in Figure 2.a, both with and without the effect of C_M . The circuit parameters are: $R_C = R_L = 4$ $K\Omega$, $r_\pi = 2.6$ $K\Omega$, $R_B = 200$ $K\Omega$, $C\pi = 0.8$ pF, $C_\mu = 0.05$ pF, and $g_m = 38.5$ mA/V.	2	6	(PT O)

		What is the f _H ? (Figure 2.b)	1		
Tb	+5.V	VY Mate is the - II (C	1	1	
	$R_D = 6.7 \text{ k}\Omega$				1
	000				11
	$ \begin{cases} R_L = \\ 10 \text{ k} \Omega \end{cases} $				
	$V_{i} \begin{pmatrix} * \\ * \end{pmatrix} \qquad \begin{cases} R_{G} = \\ * \\ 50 \text{ k} \Omega \end{cases} \qquad \begin{cases} R_{S} = \frac{1}{12} \end{cases}$				
	Figure 2.b				
		The unity-gain frequency	is 3		3
3 a	C_{μ}	found to be $f_T = 3$ GF	[z.		
	B C	Determine ti	he		
	+ + "	transconductance and the bi	as		
	l_b $V_{\pi} \ge c_{\pi}$ $+ C_{\pi}$ $\downarrow c_{\pi} $ $\downarrow c_{\pi}$ $\downarrow c_{\pi}$	current of the MOSFE	Т.		
	E	Determine the Mille			
	±	capacitance and cuto	ff		
	Figure 3.a	frequency of an FET circui	t,		
	The parameters of an n-channel MOSFET are $K_n =$	when a load resistance of 10 I			
	1.2 mA/V ² , $V_{TN} = 0.5$ V, $\lambda = 0$, $C_{gd} = 8$ fF, and $C_{gs} =$	is connected at the output	.		
	60 fF.	(Figure 3.a)	1	1	1
b		nust deliver a swing of 50 mV to		1	1
110	the speaker that reproduces the voice. Calculate the rec	Determine the voltage gain of	5 2	2	3
2.4 a		this amplifier? (Figure 4.a)	2	4	
	$v_{\text{in}} \stackrel{+}{\bigcirc} r_{\pi} \geqslant v_{\pi} i_{1} \stackrel{+}{\checkmark} g_{\text{m}} v_{\pi} R_{\text{L}} \geqslant \sqrt[4]{\frac{v_{\text{out}}}{R_{\text{L}}}} v_{\text{out}}$	ine ampaner (rague na)			
	Figure 4.a				1
b	A transistor is biased at a collector current of 1 mA. I	Determine the small-signal model	1	1	1
	(transconductance and r_{π}) if $\beta = 100$ and Early voltage				
Q.5 -a	Distinguish between practical and ideal op amp.		3	3	2,4
to	8.	ator.	2	3	
Q.6 a	For the given circuit, (Figure 6.a) show that $V_{out} = 8V_1 + 2V_2 - 9V_3$	90	3	3	4,5
	$V_{\text{out}} - 8V_1 + 2V_2 - 9V_3$	V AAA V Vcc			,,,,
		V ₁ —V _{voir}			
		V. AAA			
		Figure			
		6.2			
	b For the given circuit (Figure 6.b) find V _o	6.a	2		
	b For the given circuit (Figure 6.b) find $V_0 = \frac{1 + \frac{p_0}{p_0}}{\frac{p_0}{p_0}}$	6.a 2R	2	3	5
	b For the given circuit (Figure 6.b) find $V_0 = \frac{V_0}{V_{10}} = 1 + \frac{P_0 F_0}{P_0}$	6.a	2	3	5
	b For the given circuit (Figure 6.b) find $V_0 = \frac{1}{\sqrt{16}} = 1 + \frac{R_F}{R_I}$	6.a 2R 1+10 V V ₀	2	3	5
	V.n = 1+ RF	6.a 2R -10 V Vo	2	3	5
	V.0 = 1+ RF	6.a 2R +10 V Vo	2	3	5
	V.n = 1+ RF	Figure 6.b			5

Class: Second Year D. Tech (AL.)

Examination: Mid Term Exam

Date: 17/02/2020

Academic Year: 2019-20

Subject: Human Values and Professional Ethics

Time: 11:00 to 12:00

Semester: II

Course Code: HMC278/HS222

Max. Marks:30

Notes:

1. Solve Any Three questions.

2. Figures to right indicate full marks.

Question No.	Question	Marks
Q. 1	Define Human Being. Explain the Difference Between Body & I	10
	on the Basis of Different Characteristics.	
Q. 2	What is Harmon? What are the 4 Levels of Human Existence?	10
Q. 3	Elucidate Abraham Maslow's Hierarchy of Needs in Detail.	10
Q. 4	Briefly Explain Schwartz Theory of Basic Human Values.	10

BEST LUCK

Mid Term Examination (Semester-II) 2021-22

Communication Engineering

Electronics & Telecommunication Engineering

Principles

EC257/PCC-EC204

Date: 21/03/2022

Time:11am

Max. Marks: 30

Note: i. Attempt all questions

ii. Assume suitable data if necessary

iii. Use of non-programmable calculator is permitted. iv. This paper contains one page.

	A given composite signal consists of the leave	Marks	CO	BT
	A given composite signal consists of dc 10V, 15Hz of 8V, 8Hz of 6V, 4Hz of 4V and 2Hz of 2V. Draw these signals in time and frequency domain.	[5]	EC204.1	BT4
Q.2	A non-periodic finite signal $x(t) = \begin{cases} t & 0 \le t \le 1 \\ t-1 & 1 \le t \le 2 \end{cases}$ Find the	[5]	EC204.4	BT5
-Q.3	Tilld the energy of the signal			+
	Draw the block diagram and describe each of the blocks of communication system.	[5]	EC2041&2	BT1
Q.4	Draw the block diagram of transmitting antenna and its equivalent circuit diagram, also explain how maximum power is transmitted from this transmitting antenna. Or	[5]	EC2041&3	BT3
Q.5)	Explain the need of modulation in communication system. The modulated signal $12\cos(2\pi 10^2 t)$ is used to modulate a carrier signal $30\cos(2\pi 10^8 t)$.			
Q.6	percentage modulation, frequencies of side band component and their amplitudes. What is the bandwidth of the	[5]	EC204.5	BT4
2.0	Draw the block diagram of square law modulator and derive the expression of square law modulated signal.	[5]	EC2041&4	BT2

Course Outcomes (CO)

EC204.1-Draw

EC204.2- Describe

EC204.3-Explain

EC204.4-Derive EC204.5- Calculate

Bloom's Taxonomy (BT)

BT1- Remember, BT2- Understand, BT3- Apply, BT4- Analyze, BT5- Evaluate, BT6- Create

