

Primer Taller

Solución de ecuaciones de una variable e interpolación

Problema 1

Métodos de solución de ecuaciones de una variable

a)
$$e^x - 4 + x = 0$$

b)
$$x - 0.2\sin(x) - 0.5 = 0$$

c)
$$e^{x/2} - x^2 - 3x = 0$$

d)
$$e^x \cos(x) - x^2 + 3x = 0$$

e)
$$0.53x^3 + x^2 - 2x - 5 = 0$$

f)
$$e^x - 4x^2 - 8x = 0$$

Comparar la velocidad de convergencia entre los diferentes métodos para cada uno de los ejercicios y emplear un criterio de parada de $\epsilon < 10^{-4}$. (1 punto)

Problema 2

La velocidad de una paracaidista se define como:

$$v = \frac{gm}{c} \left(1 - e^{-\frac{c}{m}t} \right)$$

Teniendo presente que el valor aproximado de la gravedad es de $g\approx 9.81\,\mathrm{m/s^2}$, , emplee el método de bisección y de falsa posición, con un error inferior a $E_{rr}\leqslant 0.02\%$ para:

- a) Calcular el valor de la masa m para una velocidad $v=36\,\mathrm{m/s}$ con un coeficiente de resistencia $c=15\,\mathrm{kg/s}$ en un tiempo $t=10\,\mathrm{s}$.
- **b**) Calcular el valor del coeficiente de resistencia c para que un paracaidista de $82\,\mathrm{kg}$ tenga una velocidad de $36\,\mathrm{m/s}$ después de $4\,\mathrm{s}$ de caída libre.

(**0,5** punto)

Problema 3

Encuentre el máximo de la función $f(x)=-2x^6-1.5x^4+10x+2$ con un error inferior al 0.05% utilizando:

- a) El método de iteración de falso punto.
- **b**) El método de Newton-Raphson iniciando en $x_0 = 1$.
- ${f c})\;\; {
 m El}\; {
 m m\'etodo}\; {
 m de}\; {
 m la}\; {
 m secante}\; {
 m a}\; {
 m partir}\; {
 m de}\; x_{i-1}=0\; {
 m y}\; x_i=1.$

Indique cuál es la técnica más adecuada para este problema y justifique su respuesta. (1 punto)

Problema 4

Interpolación y Splines

Dada la tabla de datos:

$$\begin{array}{c|cc} x & f(x) \\ \hline 1.6 & 2 \\ 2 & 8 \\ 2.5 & 14 \\ 3.2 & 15 \\ 4 & 8 \\ 4.5 & 2 \\ \hline \end{array}$$

- a) Encuentre el polinomio interpolador de Lagrange que pasa por los puntos de la tabla de datos.
- **b**) Grafique la tabla de datos y el polinomio interpolador obtenido.
- c) Calcule el valor de f(2.8).

(**0.5** punto)

Problema 5

a) Considerando la siguiente tabla de datos:

- (a) Encuentre el spline cúbico que pase por los puntos de la tabla de datos.
- (b) Grafique la tabla de datos y el spline obtenido.
- (c) Utilice los resultados para estimar el valor en x = 5.
- **b**) Teniendo en cuenta la siguiente tabla de datos:

\boldsymbol{x}	$\int f(x)$
1	3
2	6
3	19
5	99
7	291
8	444

- (a) Encuentre el spline cúbico que pase por los puntos de la tabla de datos.
- (b) Grafique la tabla de datos y el spline obtenido.
- (c) Utilice los resultados para estimar el valor en x = 4 y x = 2.25.

(0.5 punto)

Problema 6

Desarrolle un código que permita calcular el valor de intermedio en una tabla de datos a partir de Polinomios de Lagrange. El código debe recibir dos arreglos unidimensionales que representan x y f(x) y un valor que se desee estimar a partir de la información contenida en dichos arreglos. El código debe encontrar el intervalo en donde se localiza el valor que se desea estimar y luego aproximarlo mediante polinomios cúbicos de Lagrange. Para los intervalos primero y último emplee polinomios cuadráticos y para valores fuera del rango de datos indique la presencia de un error en la información suministrada. Una vez realizado el código puede probarlo con $f(x) = \ln x$ siendo $x = 1, 2, 3, \ldots, 10$. (1 punto)

Problema 7

Para la función:

$$f(x) = \frac{1}{1 + 25x^2}$$

a) Grafique la función en el intervalo x = [-1, 1].

ANÁLISIS NUMÉRICO Y COMPUTACIÓN CIENTÍFICA

- **b**) Obtenga y grafique el polinomio de Lagrange usando valores equiespaciados x = [-1, -0.5, 0, 0.5, 1].
- c) Repita b) empleando splines cúbicos.
- **d**) Explique los resultados obtenidos

(**0.5** punto)