

School of Applied Sciences Department of Mathematics

LAB MANUAL

VI Semester B.Sc. Numerical Methods Lab

Contents

1.	Bisection Method	1
2.	Regula-Falsi Method	2
3.	Newton-Raphson Method	3
4.	Solving system of equation using Jacobi method	4
5.	Solving system of equation using Gauss – Seidel method	6
6.	Solving for largest Eigenvalue by power method	7
7.	Modified Euler's Method	8
8.	Runge Kutta Fourth Order Method	10
9.	Evaluating integrals using Trapezoidal Rule	11
10.	Simpson's one-third method	12
11.	Simpson's three-eighth method	13
12.	Newton Gregory forward interpolation	14
13.	Lagrange Interpolation	16

1. Bisection Method

The method consists of locating the root of the equation f(x) = 0 between a and b (a < b). If f(x) is continuous in the interval [a, b] and f(a) and f(b) are of opposite signs then there is a root between a and b. For definiteness, f(a) be negative and f(b) be positive. Then the first approximation to the root is $x_1 = \frac{a+b}{2}$. If $f(x_1) = 0$ then x_1 is a root of f(x) = 0. Otherwise, the root lies between a and a or a and a are a continue the process until the root is found to the desired accuracy.

1.1. **Program.** Program to find the root of $x^3 - 9x + 1 = 0$ using bisection method

```
clc;
clear;
function y=f(x)
    y = x^3-9*x+1;
endfunction
a=input("Enter the lower limit of the interval:")
b=input("Enter the upper limit of the interval:")
if f(a)*f(b)<0 then
   for i = 1 : 5000
     c = (a+b)/2;
     if abs (f(c)) \le 0.00000001 then
      mprintf("The required root of the function is:
                                                          %f
                                                             \n", c);
      mprintf("Number of required iterations is %d", i)
      break;
     else
       if f(a)*f(c) < 0 then
         b = c;
       else
         a = c;
       end
     end
   end
else
   disp("Enter different interval in which the root lies.")
end
```

1.2. Exercise. Find the root of the following equations by bisection method

(1)
$$x^3 - 5x + 1 = 0$$

```
(2) x^4 - x^3 - 2x^2 - 6x - 4 = 0

(3) 2x = 3 + \cos x

(4) xe^x - 1 = 0

(5) x \log_e x = 12

(6) \cos x - xe^x = 0
```

2. Regula-Falsi Method

The Regula-Falsi method is based on replacing the part of the curve between the points $(x_1, f(x_1))$ and $(x_2, f(x_2))$ by the chord joining these two points and then taking the point of intersection of the chord with x- axis as an approximation to the root. We obtain $x = \frac{x_1 f(x_2) - x_2 f(x_1)}{f(x_2) - f(x_1)}$, which gives the first approximation. Using this equation we get a sequence of approximations till we get the root to the desired accuracy.

2.1. **Program.** Program to find the root of $x^3 + 4x^2 - 10 = 0$ using Regula-Falsi method.

```
clc;
clear;
function y=f(x)
    y = x^3 - 9*x + 1;
endfunction
a=input("Enter the lower limit of the interval:")
b=input("Enter the upper limit of the interval:")
if f(a)*f(b)<0 then
   for i = 1 : 5000
     c=(a*f(b)-b*f(a))/(f(b)-f(a));
     if abs (f(c)) \le 0.00000001 then
       mprintf("The required root of the function is : %f\n", c)
       mprintf("Number of iteration to converge is %d",i);
       break;
     else
       if (f(a)*f(c)) < 0 then
          b = c;
       else
          a = c;
       end
     end
   end
else
```

disp("Enter different interval in which the root lies.")
end

- 2.2. Exercise. Find the root of the following equations by Regula-Falsi method
 - (1) $x^4 x 10 = 0$
 - (2) $x^5 x^4 x^3 1 = 0$
 - (3) $\cos x = 3x 1$
 - $(4) \tan x + \tanh x = 0$
 - (5) $x \log_{10} x = 1.2$
 - (6) $xe^x x^2 = 4$

3. Newton-Raphson Method

Assuming that x_0 is an approximate value of a real root of the equation f(x) = 0, let x_1 be the exact root and $x_1 = x_0 + h$, where h is small correction. Using Taylor's expansion and neglecting higher powers of h $(h^2, h^3, ...)$, we get $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$.

In general,
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \quad n = 0, 1, 2, \dots$$

This is Newton-Raphson iterative formula.

3.1. **Program.** Program to find the root of $\cos x - xe^x = 0$, using Newton-Raphson method.

```
clc;
clear;
function [y]=f(x)
    y = cos(x) - (x*exp(x));
endfunction
function y=df(x)
    y = -\sin(x) - x \cdot \exp(x) - \exp(x);
endfunction
x0 = input("Enter the initial condition: ");
for i = 1 : 1000
    xn = x0 - (f(x0)/df(x0));
    if (abs(f(xn))) \le 0.00001 then
        mprintf("Root is ");
        disp(xn);
        disp(i);
        abort;
```

3.2. Exercise. Find the root of the following equations by Newton-Raphson method

(1)
$$x^3 - 2x - 5 = 0$$

$$(2) x \sin x + \cos x = 0$$

(3)
$$x^2 - 4\sin x = 0$$

(4)
$$\tan x + x = 0$$

$$(5) x^2 \log x = 2$$

(6)
$$e^x - 4x = 0$$

4. Solving system of equation using Jacobi method

Consider the system of equations:

$$a_1 x + b_1 y + c_1 z = d_1 (1)$$

$$a_2x + b_2y + c_2z = d_2 (2)$$

$$a_3x + b_3y + c_3z = d_3 (3)$$

From the given system, we have

$$x = \frac{1}{a_1}[d_1 - b_1 y - c_1 z],\tag{4}$$

$$y = \frac{1}{b_2}[d_2 - a_2x - c_2z],\tag{5}$$

$$z = \frac{1}{c_3}[d_3 - a_3x - b_3y]. (6)$$

Initially we give the values $x = x_0, y = y_0, z = 0$. Using these values in the equations (4), (5), (6), we get first approximation to x, y, z

$$x_{1} = \frac{1}{a_{1}}[d_{1} - b_{1}y_{0} - c_{1}z_{0}],$$

$$y_{1} = \frac{1}{b_{2}}[d_{2} - a_{2}x_{0} - c_{2}z_{0}],$$

$$z_{1} = \frac{1}{c_{3}}[d_{3} - a_{3}x_{0} - b_{3}y_{0}].$$
(7)

Using first approximation (7), in equations (4), (5), (6), we obtain second approximation to x, y, z.

The above process is repeated until two consecutive iterative values are same.

4.1. **Program.** Solve the following system of equations using Jacobi iteration method.

```
10x + y + z = 12, 2x + 10y + z = 13, 2x + 2y + 10z = 14.
clc;
clear;
funcprot(0);
n = 3;
A=input("Enter the coefficient matrix: ")
B=input("Enter the constant matrix as column matrix: ")
xold = [0; 0; 0];
x = xold;
for itr = 1 : 500
    for i = 1 : n
        sum = 0;
        for j = 1 : n
             if \ i \iff j \ then \\
                 sum = sum + A(i,j) * xold(j);
             end
        end
        x(i) = (B(i) - sum)/A(i,i);
    end
    if abs (max(x - xold)) \le 0.00001 then
        mprintf('The required solution is ');
        disp(x);
          mprintf('The number of iterations taken is %d \n ',i);
        break;
    else
        xold = x;
    end
end
```

4.2. Exercise. Solve the following system of equations by Gauss - Jacobi iterative method

```
(1) 5x - 2y + z = -4, x + 6y - 2z = -1, 3x + y + 5z = 13.
```

- (2) 8x + y + z = 8, 2x + 4y + z = 4, x + 3y + 5z = 5.
- (3) 9x + 2y + 2z = 20, x + 10y + 4z = 6, 2x 4y + 10z = -15.
- (4) 20x + 2y + 6z = 28, x + 20y + 9z = -23, 2x 7y 20z = -57.

5. Solving system of equation using Gauss – Seidel method

Consider the system of equations:

$$a_1 x + b_1 y + c_1 z = d_1 (8)$$

$$a_2x + b_2y + c_2z = d_2 (9)$$

$$a_3x + b_3y + c_3z = d_3 (10)$$

From the given system, we have

$$x = \frac{1}{a_1}[d_1 - b_1 y - c_1 z], \tag{11}$$

$$y = \frac{1}{b_2} [d_2 - a_2 x - c_2 z], \tag{12}$$

$$z = \frac{1}{c_3} [d_3 - a_3 x - b_3 y]. (13)$$

Initially we give the values $x = x_0, y = y_0, z = 0$. Using these values in the equations (11), (12), (13), we get first approximation to x, y, z

$$x_{1} = \frac{1}{a_{1}}[d_{1} - b_{1}y_{0} - c_{1}z_{0}],$$

$$y_{1} = \frac{1}{b_{2}}[d_{2} - a_{2}x_{1} - c_{2}z_{0}],$$

$$z_{1} = \frac{1}{c_{3}}[d_{3} - a_{3}x_{1} - b_{3}y_{1}].$$
(14)

Using first approximation (14), in equations (11), (12), (13), we obtain second approximation to x, y, z.

The above process is repeated until two consecutive iterative values are same.

5.1. **Program.** Solve the following system of equations by Gauss-Seidel method

$$10x + 2y + z = 9, \quad x + 10y - z = -22, \quad -2x + 3y + 10z = 22.$$
 clc; clear; funcprot(0); n = 3;
A=input("Enter the coefficient matrix: ")
B=input("Enter the constant matrix as column matrix: ")
xold = [0; 0; 0];
x = xold;
for it = 1 : 500
for i = 1 : n
sum = 0;

```
for j = 1 : n
            if i <> j then
                sum = sum + A(i,j) * x(j);
            end
        end
        x(i) = (B(i) - sum)/A(i,i);
    end
    if abs (max(x - xold)) \le 0.00001 then
        mprintf('The required solution is ');
        disp(x);
       mprintf('The number of iterations taken is %d \n ',i);
        break;
    else
        xold = x;
    end
end
```

5.2. Exercise. Solve the following system of equations by Gauss-Seidel method

```
(1) x + y + 54z = 110, 27x + 6y - z = 85, 6x + 15y + 2z = 72.
```

(2)
$$5x + 2y + z = 12$$
, $x + 4y + 2z = 15$, $x + 2y + 5z = 0$.

(3)
$$28x + 4y - z = 32$$
, $2x + 77y + 4z = 35$, $x + 3y + 10z = 24$.

(4)
$$8x - 3y + 2z = 20$$
, $6x + 3y + 12z = 35$, $4x + 11y - z = 33$.

6. Solving for largest Eigenvalue by power method

Suppose A is the given square matrix, we assume initially an eigen vector X_0 in a simple

Suppose A is the given square matrix, we assume initially an eigen vector
$$X_0$$
 in a simple form like $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ or $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ or $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ and find the matrix AX_0 which will also be column

matrix. Take of the largest element as the common factor to obtain $AX_0 = \lambda^{(1)}X^{(1)}$, we then compute $AX^{(1)}$ and again put it in the form $AX^{(1)} = \lambda^{(2)}X^{(2)}$ by normalization. This iterative process is continued till two consecutive iterative values of λ and X are same up to a desired accuracy. The values so obtained are respectively the largest eigen value and the corresponding eigen vector of the given square matrix A.

6.1. **Program.** Find the largest eigen value by power method for the matrix

$$\begin{bmatrix} -15 & 4 & 3 \\ 10 & -12 & 6 \\ 20 & -4 & 2 \end{bmatrix}$$

```
clc;
clear;
funcprot(0);
A=input("Enter the square matrix: ")
//A = [-15 \ 4 \ 3; \ 10 \ -12 \ 6; \ 20 \ -4 \ 2];
X = [1; 0; 0];
small = 0;
for i = 1 : 400
    X1 = A*X
    big = max(X1);
    lambda = max(X1)
    X1 = X1/lambda;
    if abs(big - small) \le 0.00001 then
        mprintf("The required eigenvectors are ");
        disp(X1);
        mprintf("The required eigevnvalue is %f", lambda);
       break;
    else
        X = X1;
        small = big;
    end
end
```

6.2. Exercise. Find the largest eigen value for the following matrices by power method.

$$(1) \begin{bmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{bmatrix}$$

$$(2) \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$

$$(3) \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$

7. Modified Euler's Method

Consider the differential equation $\frac{dy}{dx} = f(x, y)$, with the initial condition $y(x_0) = y_0$. To find y at $x_1 = x_0 + h$. First approximation $y(x_1) = y_1$ is obtained by Euler's formula $y_1 = y_0 + hf(x_0, y_0)$. For the accuracy, this value is modified and is given by $y_1^{(1)} = y_0 + h[f(x_0, y_0) + f(x_1, y_1)]$. Second modified value of y_1 is given by $y_1^{(2)} = y_0 + h[f(x_0, y_0) + f(x_1, y_1)]$. $f(x_1, y_1^{(1)})$]. The third modified value of y_1 is $y_1^{(3)} = y_0 + h[f(x_0, y_0) + f(x_1, y_1^{(2)})]$ and so on. The procedure is repeated till two consecutive values of y are equal to the desired degree of accuracy.

```
7.1. Program. Solve the initial value problem \frac{dy}{dx} = 2x; y(0) = 0, by modified Euler's
method to compute y(0.2) by taking h = 0.1
clear;
clc;
function[z]=f(x,y)
    z=2*x //(x0=0,y0=0,h=0.1,xf=0.2)
endfunction
mprintf("Modified Euler Method for finding the numerical solution of first")
mprintf("order Differential equation in the given interval\n")
xi=input("Enter initial values of x:")
yi=input("Enter initial values of y:")
h=input("Enter width of the subinterval h:")
xf=input("Enter final value of x:")
    x(1)=xi
    y(1)=yi
    n=(xf-xi)/h;
    mprintf(" 1 t y(%2f)=%f n",x(1),y(1));
    for i=2:n+1
        x(i)=x(i-1)+h
        y(i)=y(i-1)+h*f(x(i-1),y(i-1));
        y(i,1)=y(i);
        for j=2:20
            y(i,j)=y(i-1)+h*(f(x(i-1),y(i-1))+f(x(i),y(i,j-1)))/2;
            if abs(y(i,j)-y(i,j-1))<10^{-4} then
                 y(i)=y(i,j);
                break;
            end
        end
        mprintf("%d\t y(%2f)=%f \n",i,x(i),y(i));
    end
```

7.2. **Exercises:** Solve the following initial value problems by applying modified Euler's method.

(1)
$$\frac{dy}{dx} = x^2 + y$$
; $y(0) = 1$, in range $0 \le x \le 0.06$. Choose $h = 0.02$.

(2)
$$\frac{dy}{dx} = 1 + \frac{y}{x}$$
, $y(1) = 2$. Choose $h = 0.2$ compute y at $x = 1.4$.

(3)
$$\frac{dy}{dx} = x + y$$
, $y(0) = 1$, by choosing $h = 0.1$ obtain the solution at $x = 0.2$.

(4)
$$\frac{dy}{dx} = \frac{y-x}{y+x}$$
, $y(0) = 1$. Compute $y(0.1)$.

8. Runge Kutta Fourth Order Method

Consider the differential equation $\frac{dy}{dx} = f(x, y)$, with the initial condition $y(x_0) = y_0$. Let $x_{n+1} = x_n + h$ for n = 0, 1, 2, ..., Then the Runge Kutta fourth order method is given by,

$$y_{n+1} = y_n + \frac{1}{6} (K_1 + 2K_2 + 2K_3 + K_4), \text{ for } n = 0, 1, 2, \dots$$

where for n = 0, 1, 2, ...

clc;

$$K_1 = hf(x_n, y_n)$$

$$K_2 = hf\left(x_n + \frac{h}{2}, y_n + \frac{K_1}{2}\right)$$

$$K_3 = hf\left(x_n + \frac{h}{2}, y_n + \frac{K_2}{2}\right)$$

$$K_4 = hf(x_n + h, y_n + K_3)$$

8.1. **Program:** Solve the initial value problem $\frac{dy}{dx} = 2x$; y(1) = 2 by Runge-Kutta 4th order method to find the solution at x = 1.2.

```
k1=(h*f(x,y))
    k2=(h*f(x+h/2,y+k1/2))
    k3=(h*f(x+h/2,y+k2/2))
    k4=(h*f(x+h,y+k3))
    k=(k1+2*k2+2*k3+k4)/6
    yn=(y+k)
    x=x+h
    mprintf("y for %f is %f \n",x,yn)
    y=yn
end
```

8.2. Exercises:

- (1) Solve $\frac{dy}{dx} = \frac{1}{x+y}$, y(0.4) = 1, by Runge Kutta fourth order method. Obtain
- the solution at x = 0.5.

 (2) Solve $\frac{dy}{dx} = 3e^x + 2y$, y(0) = 0, by Runge Kutta fourth order method. Obtain the solution at x = 0.1.

 (3) Solve $\frac{dy}{dx} = 1 + y^2$, y(0) = 0, by Runge Kutta fourth order method. Obtain the solution for x = 0.2(0.2)0.4.
- (4) solve $\frac{dy}{dx} = x^2y + x$, y(0) = 1, by Runge Kutta fourth order method. Obtain the solution at x = 0.1 and x = 0.2.

9. Evaluating integrals using Trapezoidal Rule

Let $I = \int_a^b f(x)dx$, where y = f(x) takes the values $y_0, y_1, y_2, \dots, y_n$ for $x = x_0, x_1, x_2, \dots, x_n$. Divide the interval (a, b) into n number of equal sub-intervals of width h. Trapezoidal rule is as follows

$$\int_{x_0}^{x_n} f(x)dx = \frac{h}{2} \left[(y_0 + y_n) + 2(y_1 + y_2 + \dots + y_{n-1}) \right]$$

9.1. **Program.** Write a program to evaluate the given integral $\int_{0}^{6} \frac{1}{1+x^2} dx$ using Trapezoidal Rule.

```
clc;
clear;
//The integral function
function y=f(x)
 y=1/(1+x^2);
endfunction
```

9.2. Exercise. Evaluate the following using Trapezoidal rule

(1)
$$\int_{0}^{6} \frac{dx}{1+x}$$
(2)
$$\int_{0}^{6} (2x-x^{2})^{1/2} dx$$
(3)
$$\int_{0}^{5} \frac{dx}{4x+5}$$

10. Simpson's one-third method

Let $I = \int_a^b f(x)dx$, where y = f(x) takes the values $y_0, y_1, y_2, \dots, y_n$ for $x = x_0, x_1, x_2, \dots, x_n$. Divide the interval (a, b) into even number of equal sub-intervals of width h. Simson's one-third rule is as follows

$$\int_{x_0}^{x_n} f(x)dx = \frac{h}{3} \left[(y_0 + y_n) + 4(y_1 + y_3 + \dots + y_{n-1}) + 2(y_2 + y_4 + \dots + y_{n-2}) \right]$$

10.1. **Program.** Write a program to evaluate the given integral $\int_{0}^{6} \frac{1}{1+x^2} dx$ using Simpson's one-third Rule.

```
clc;
clear;
//The integral function
function y=f(x)
  y=1/(1+x^2);
endfunction

//Method
x0=input("enter lower limit x0 : ");
```

```
xn=input("enter upper limit xn : ");
n=input("enter even number of intervals : ");
h=(xn-x0)/n;
sum1=f(x0)+f(xn);
for i=1:n-1
    if modulo(i,2)==0 then
        sum1=sum1+2*f(x0+i*h)
    else
        sum1=sum1+4*f(x0+i*h)
    end
end
area=sum1*h/3;
mprintf("Integral Value= %f",area);
```

10.2. Exercise. Evaluate the following using Simpson's one-third rule

(1)
$$\int_{0}^{6} \frac{dx}{1+x}$$
(2)
$$\int_{0}^{5} (2x-x^{2})^{1/2} dx$$
(3)
$$\int_{0}^{5} \frac{dx}{4x+5}$$

11. Simpson's three-eighth method

Let $I = \int_a^b f(x)dx$, where y = f(x) takes the values $y_0, y_1, y_2, \dots, y_n$ for $x = x_0, x_1, x_2, \dots, x_n$. Divide the interval (a, b) into a number which is multiple of 3 sub-intervals. Simson's three-eighth rule is as follows

$$\int_{x_0}^{x_n} f(x)dx = \frac{3}{8}h\left[(y_0 + y_n) + 3(y_1 + y_2 + y_4 + y_5 + \dots + y_{n-4} + y_{n-2} + y_{n-1}) + 2(y_3 + y_6 + \dots + y_{n-3}) \right]$$

11.1. **Program.** Write a program to evaluate the given integral $\int_{0}^{6} \frac{1}{1+x^2} dx$ using Simpson's three-eighth Rule.

```
clc;
clear;

//Integral function
function z=f(x)
z=1/(1+x^2)
```

endfunction

```
//Method
x0=input("enter lower limit x0 : ");
xn=input("enter upper limit xn : ");
n=input("enter the number of intervals which is multiple of 3:");
h=(xn-x0)/n;
sum1=f(x0)+f(xn);
for i=1:n-1
    if modulo(i,3)==0 then
        sum1=sum1+2*f(x0+i*h);
    else
        sum1=sum1+3*f(x0+i*h);
    end
end
area=sum1*h*3/8;
mprintf("Integral Value= %f",area);
```

11.2. Exercise. Evaluate the following using Simpson's three-eighth rule

(1)
$$\int_{0}^{6} \frac{dx}{1+x}$$
(2)
$$\int_{0}^{5} (2x-x^{2})^{1/2} dx$$
(3)
$$\int_{0}^{5} \frac{dx}{4x+5}$$

12. Newton Gregory forward interpolation

Let the function y = f(x) take the values y_0, y_1, y_2, \ldots corresponding to the values $x_0, x_0 + h, x_0 + 2h, \ldots$ of x. To find the value of f(x) for $x = x_0 + ph$, where p is any real number.

The Newton-Gregory forward interpolation formula is

$$y_x = y_0 + p\Delta y_0 + \frac{p(p-1)}{2!}\Delta^2 y_0 + \frac{p(p-1)(p-2)}{3!}\Delta^3 y_0 + \cdots$$

12.1. Program.

```
clear;
x=input("Enter the values for x : ");
y=input("Enter the values for y : ");
n=length(x);
ny=length(y);
```

```
d=zeros(n);
if n<>ny then
   mprintf("No. of elements of x and y must be same");
   abort;
end
for i=1:n
d(i,1)=y(i);
end
for i=2:n
for j=i:n
d(j,i)=d(j,i-1)-d(j-1,i-1);
end
end
printf("Differencee table\n");
disp(d)
x1=input("Enter the value of x for which y is to be found :")
h=x(2)-x(1);
u=(x1-x(1))/h;
res=y(1);
for i=1:n-1
  f=1;
  for k=1:i
     f=f*k;
  end
  p(i)=1.0;
  for j=0:i-1
   p(i)=p(i)*(u-j);
end
p(i)=p(i)/f;
end
   for i=1:n-1
   res=res+p(i)*d(i+1,i+1);
   printf("required interpolating value is %f ",res);
```

12.2. Exercise.

- (1) Given that $\sin 45^0 = 0.7071$, $\sin 50^0 = 0.7660$, $\sin 55^0 = 0.8192$, $\sin 60^0 = 0.8660$, find $\sin 52^0$ using Newton-Gregory forward interpolation formula.
- (3) From the table find the value of $e^{0.24}$

X	0.1	0.2	0.3	0.4	0.5
у	1.10517	1.22140	1.34986	1.49182	1.64872

13. Lagrange Interpolation

Let y = f(x) be a function whose values are $y_0, y_1, y_2, \ldots, y_n$ corresponding to $x = x_0, x_1, x_2, \ldots, x_n$ not necessarily equally spaced.

Lagrange interpolation formula is

$$f(x) = \frac{(x - x_1)(x - x_2) \cdots (x - x_n)}{(x_0 - x_1)(x_0 - x_2) \cdots (x_0 - x_n)} f(x_0)$$

$$+ \frac{(x - x_0)(x - x_2) \cdots (x - x_n)}{(x_1 - x_0)(x_1 - x_2) \cdots (x_1 - x_n)} f(x_1) + \cdots$$

$$+ \frac{(x - x_0)(x - x_1) \cdots (x - x_{n-1})}{(x_n - x_0)(x_n - x_1) \cdots (x_n - x_{n-1})} f(x_n)$$

13.1. Program.

```
clc;
clear;
mprintf("Scilab Program for Lagrange Interpolation\n");
x=input("Enter the values of x as row vector:")
y=input("Enter the corresponding values of y as row vector:")
x1=input("Enter the value of x to which corresponding value of y to be found:")
nx=length(x);
ny=length(y);
sum1=0;
if nx<>ny then
   mprintf("No. of elements of x and y must be same");
   abort;
end
for k=1:nx
   p(k)=1;
   for i=1:nx
     if i~=k then
```

```
p(k)=p(k)*(x1-x(i))/(x(k)-x(i));
end
end
end
for i=1:nx
    sum1=sum1+p(i)*y(i);
end
mprintf("Value of y at x=%f is %f",x1,sum1);
```

13.2. Exercise.

(1) Estimate f(7) by Lagrange's method, given the following

X	2	5	8	10	12
f(x)	4.4	6.2	6.7	7.5	8.7

- (2) Apply Lagrange's formula to find f(5) and f(6) given that f(1) = 2, f(2) = 4, f(3) = 8, f(7) = 128.
- (3) Given the values

X	5	7	11	13	17
f(x)	150	392	1452	2366	5202