

Language Model Adaptation: An Overview

Institute of Automation, Chines Academy of Sciences, CASIA
National Laboratory of Pattern Recognition, NLPR
Intelligent Interaction Group
Ye Bai
March 31, 2018

Outline

- Review of Language Models
- Adaptation on n-gram based models
- Adaptation on neural network based models
- Summary

Review of Language Models

• Given a finite set Σ , what is the probability of a string of length T:

$$P(w_1, \dots, w_T) = P(w_1) P(w_2 | w_1) P(w_3 | w_1 w_2) \dots P(w_T | w_1 \dots w_{T-1}),$$

where $\forall w_t \in \Sigma$.

Data sparsity

 Because exponential explosion problem, data sparsity always exists in language modeling.

Simplification based on Markov property.

Markov property in LMs

 In n-gram and neural network language models (NNLMs), language modeling is simplified as a (finite state) Markov chain.

```
\begin{split} &P(w_1, \dots, w_T) \\ &= P(w_1) P(w_2 | w_1) \dots P(w_t | w_{t-n+1} \dots w_{t-1}) \dots P(w_T | w_{T-n+1} \dots w_{T-1}), \end{split}
```

2018/3/31 5

Markov property in LMs

 In recurrent neural network language models (NNLMs), language modeling is simplified as a Markov process.

$$P(w_T|w_1, \dots, w_T) = f(w_T, h_T)$$

Back-off ngram language models

Commonly used in ASR decoders.

$$P(w|h) = \begin{cases} \widehat{P(w|h)} & \text{,if } count(hw) > 0 \\ \widehat{\alpha(h)P(w|h')} & \text{,otherwise} \end{cases}$$

- Katz
- Kneser-Ney

– ...

Neural network language models

Use a continues
 function to approximate
 a discrete probability
 distribution.

Do not need smoothing.

Recurrent neural network language models

 Using a hidden state, say, output of hidden layer, to record history information of a sentence.

Perplexity

$$LP = -\frac{1}{T}\log_2 \hat{Pr}(W_1^T)$$

$$PP = 2^{LP}$$
.

Language Model Adaptation

- For a specific domain, it's difficult to collect text data, e.g., finance, navigation.
- Using another domain data to adapt models.

Outline

- Review of Language Models
- Adaptation on n-gram based models
- Adaptation on neural network based models
- Summary

Adaptation on n-gram models

Linear interpolation

Given *l* models, its convex combination

$$Pr(w; \lambda) = \sum_{i=1}^{r} \lambda_i Pr_i(w)$$

denotes an adapted model.

Use EM algorithm to estimate parameters

$$\lambda_i^{(n+1)} = \sum_{t=1}^m \frac{\lambda_i^{(n)} Pr_i(w_t)}{\sum_{j=1}^l \lambda_j^{(n)} Pr_j(w_t)}.$$

Linear interpolation

Fill-up technique

$$\Pr(w_q|h_q) = \begin{cases} \Pr_A(w_q|h_q) & \text{if } C_A(h_qw_q) \geqslant T; \\ \beta \Pr_B(w_q|h_q) & \text{otherwise,} \end{cases}$$

Maximum a-posteriori

Maximum is a generalization of linear interpolation.

 It introduces a priori to adjust estimated probability distribution.

Review n-gram

- Given a fixed history h, a sample set $S = hw_{h_1}, \dots, hw_{h_m}$ can be seen as a realization of m i.i.d random variables, drawn according to the law represented by $Pr(w \mid h)$.
- N-gram model this distribution as multinomial distribution:

$$Pr(S; \theta) = \frac{m!}{\prod_{w \in V} c(w)!} \prod_{w \in V} \theta_w^{c(w)} \quad \text{where} \quad c(w) = \sum_{i=1}^m \delta(w_i = w)$$

and its maximum likelihood estimator is the word count.

Overfitting.

Maximum a-posteriori

Bayesian formulation:

$$Pr(\theta \mid S) = \frac{Pr(S \mid \theta) \ Pr(\theta)}{Pr(S)}$$

MAP criterion

$$\theta^{MAP} = arg \max_{\theta \in \Theta} Pr(\theta \mid S) = arg \max_{\theta \in \Theta} Pr(S \mid \theta) Pr(\theta)$$

The conjugate prior of the multinomial distribution is Dirichlet distribution

Maximum a-posteriori

 The conjugate prior of the multinomial distribution is Dirichlet distribution. The resulting MAP estimate is

$$\theta^{MAP} = arg \max_{\theta \in \Theta} \prod_{w \in V} \theta_w^{c(w) + c'(w)} = [\frac{c(w) + c'(w)}{m + m'}]_{w \in V}$$

For two samples:

$$Pr^{MAP}(w) = (\frac{m}{m+m'})f(w) + (\frac{m'}{m+m'})f'(w)$$

Cache models

 Motivation: a word which is observed in previous data may be more likely to appear in the future.

Use last N words to train a LM to adapt.

 A special case widely used for withindomain adaptation.

Learning N-gram Language Models from Uncertain Data

Vitaly Kuznetsov^{1,2}, Hank Liao², Mehryar Mohri^{1,2}, Michael Riley², Brian Roark²

¹Courant Institute, New York University

²Google, Inc.

{vitalyk, hankliao, mohri, riley, roark}@google.com

 Uncertain data: semi-supervised, inaccurate labelled data, e.g., lattices generated from an existing ASR system.

2018/3/31 21

Lattice

 A lattice is a weighted finite state transducer. Input/output labels on edges are words, and weight on edges are scores.

Stochastic WFSTs

23

- Proposition:

 A WFST is stochastic, if and only if it is deterministic and the sum of the weights of the transitions leaving any state is 1.
- A WFST can be viewed as a probability distribution over all strings Σ*.

 Leverage the output of a speech recognition system to adapt an existing language model trained on a source domain to a target domain for which no human transcription is available.

 No exclusive text data. Use transcripts generated from an ASR system.

Fractional count language models:
 Histogram

$$\widehat{\Pr}[\mathbf{w}] = \underset{S \sim \mathcal{L}}{\mathbb{E}} [\widehat{p}_S(\mathbf{w})] = \sum_{S \sim \mathcal{L}} \underset{S \sim \mathcal{L}}{\Pr} [S] \widehat{p}_S(\mathbf{w})$$
$$\underset{S \sim \mathcal{L}}{\mathbb{E}} [\widehat{p}_S(\mathbf{w})] = \sum_{k=0}^{\infty} |q_{\mathcal{L}}(k, \mathbf{w}) f(k),$$
$$q_{\mathcal{L}}(k, \mathbf{w}) = \sum_{S} \underset{S \sim \mathcal{L}}{\Pr} [c_S(\mathbf{w}) = k]$$

Katz back-off model

$$\widehat{\Pr}(w|\mathbf{h}) = \begin{cases}
\frac{1}{\lambda_{\mathbf{h},\mathcal{L}}} \left[\lambda_{\mathbf{h}w,\mathcal{L}} + \sum_{k=1}^{K} q_{\mathcal{L}}(k, w) k \left(\overline{d}_{k} - 1 \right) \right] \\
+ q(0, \mathbf{h}w) \beta_{h}(\mathcal{L}) \widehat{\Pr}(w|\mathbf{h}') & \text{if } \mathbf{h}w \in \mathcal{L}, \\
\beta_{\mathbf{h}}(\mathcal{L}) \widehat{\Pr}(w|\mathbf{h}'), & \text{otherwise,}
\end{cases}$$

- Computing the Histograms
- Assume that the sample consists of two lattices T and U such that $\Pr_{S \sim \mathcal{L}}[S] = \Pr_{T \sim \mathcal{T}}[T] \Pr_{U \sim \mathcal{U}}[U]$.
- Then it can be decomposed as follows:

$$q_{\mathcal{L}}(k, \mathbf{w})$$

$$= \sum_{S} \Pr_{S \sim \mathcal{L}}[c_{S}(\mathbf{w}) = k]$$

$$= \sum_{T} \sum_{U} \sum_{j=0}^{k} \Pr_{T \sim \mathcal{T}}[c_{T}(\mathbf{w}) = j] \Pr_{U \sim \mathcal{U}}[c_{U}(\mathbf{w}) = k - j]$$

$$= \sum_{j=0}^{k} \left(\sum_{T} \Pr_{T \sim \mathcal{T}}[c_{T}(\mathbf{w}) = j] \right) \left(\sum_{U} \Pr_{U \sim \mathcal{U}}[c_{U}(\mathbf{w}) = k - j] \right)$$

$$= \sum_{j=0}^{k} q_{\mathcal{T}}(j, \mathbf{w}) q_{\mathcal{U}}(k - j, \mathbf{w}). \tag{9}$$

Experiments

		Word Error Rate (WER)		
7	Fokens	Base-	Adapted	
Google Preferred Lineup	$\times 1000$	line	1-best Lattice	Δ
Video Games (dev set)	23.8	41.2	40.3 39.5	1.6
Anime & Teen Animation	4.3	29.9	30.3 29.7	0.2
Beauty & Fashion	37.3	29.6	29.1 28.0	1.6
Cars, Trucks & Racing	5.7	21.6	22.1 21.6	0.0
Comedy	9.3	55.3	54.9 54.9	0.4
Entertainment & Pop Culture	27.8	39.3	39.4 38.9	0.4
Food & Recipes	11.4	42.6	43.0 41.7	0.9
News	12.3	27.4	27.3 26.7	0.7
Parenting & Children Interest	11.7	38.0	38.4 37.1	0.9
Science & Education	15.9	22.0	22.4 21.5	0.5
Sports	6.7	47.3	47.9 47.3	0.0
Technology	23.7	23.1	23.1 22.3	0.8
Workouts, Weightlifting & Wellness	13.2	31.0	30.5 29.1	1.8
All test lineups	179.2	28.8	28.8 28.0	0.8

Outline

- Review of Language Models
- Adaptation on n-gram based models
- Adaptation on neural network based models
- Summary

Adaptation on neural network based models

 Most work is about fine-tuning: pre-train a model on background data, and then fine-tune on specific domain

A comparative study

Approaches for Neural-Network Language Model Adaptation

Min Ma¹*, Michael Nirschl², Fadi Biadsy², Shankar Kumar²

¹Graduate Center, The City University of New York, NY, USA ²Google Inc, New York, NY, USA

mma@gradcenter.cuny.edu, {mnirschl, biadsy, shankarkumar}@google.com

Data

 typed texts: 29 billion sentences from Google Search, Google Maps and crawled web documents.

 spoken texts: 2.6 million sentences from speech transcripts.

Adaptation on neural network based models

Three adaptation schemes

- Scheme I: fine-tune softmax layer
- Observation: transfer learning becomes easier and more effective with high-level abstract features.
- Fine-tuning all parameters may cause
 Overfitting. Table 1: Cluster perplexity on development set of pre-tree

Table 1: Cluster perplexity on development set of pre-trained model ("pre"), adapted model ("post") and relative changes.

Model and Adaptation Strategy	pre	post	Δ PPL
MaxEnt Baseline LM	40	29	-27.5%
DNN LM using Scheme I	46	35	-23.9%
+ wordSF		35	-23.9%
+ wordSF, + DNN		43	-6.5%
LSTM LM using Scheme I	46	34	-26.1%
+ wordSF		35	-23.9%

Three adaptation schemes

- Scheme II: add an adaptation layer
- Add the adaptation layer between the hidden layer and softmax.
- This approach is conceptually similar to the linear hidden layer for acoustic model adaptation.

 Table 2: Cluster perplexity on development set of pre-trained

Table 2: Cluster perplexity on development set of pre-trained model ("pre"), adapted model ("post") and relative changes.

Model and Adaptation Strategy	pre	post	Δ PPL
DNN LM using Scheme II	46	34	-26.1%
+ wordSF		34	-26.1%
LSTM LM using Scheme II	46	34	-26.1%
+ wordSF		34	-26.1%

Three adaptation schemes

 Scheme III: add DNN adaptation layer in both pre-training and adaptation.

Model and Adaptation Strategy	pre	post	Δ PPL
LSTM LM using Scheme III	43	30	-30.2%
+ wordSF		31	-27.9%
+ wordSF, + LSTM		198	+360.5%

Experiments on ASR

Language Model	w_{NN}	Rel Δ (%)	WER(%)
non-adapted MaxEnt	0.0	+5.5	7.1
adapted MaxEnt baseline	0.0	0.0	6.7
non-adapted DNN (I)	0.5	+1.2	6.8
non-adapted DNN (I)	1.0	+6.0	7.1
adapted DNN (I)	0.5	0.0	6.7
adapted DNN (I)	1.0	+1.5	6.8
non-adapted LSTM (I)	0.5	+1.4	6.8
non-adapted LSTM (I)	1.0	+7.0	7.2
adapted LSTM (I)	0.5	0.0	6.7
adapted LSTM (I)	1.0	+3.2	6.9
non-adapted LSTM (III)	0.5	0.0	6.7
non-adapted LSTM (III)	1.0	+5.8	7.1
adapted LSTM (III)	0.5	-2.3	6.6
+wordSF	0.5	-2.0	6.6
adapted LSTM (III)	1.0	+1.7	6.8
+wordSF	1.0	0.0	6.7

Outline

- Review of Language Models
- Adaptation on n-gram based models
- Adaptation on neural network based models
- Summary

Summary

- N-gram adaptation
 - Interpolation
 - Uncertain data
- NNLM
 - Fine-tuning
 - Multitask leanring

Thank you!