King County House Sales

By: Eduardo Osorio

Overview

The purpose of this report is to provide recommendations on which houses in kings county would have the highest return on investment. We're taking a look at a range of different metrics to pinpoint which features are statistically significant for our model.

Questions

- 1. Are waterfront properties more valuable?
- 2. How does the square footage affect the price?
- 3. How does the number of floors affect the price?

What Data was used?

The data we're looking at today is the King County House Sales Datasheet. The data frame contained:

- 21,597 Houses.
- The houses were built between 1900 2015.
- Using 70 different Zip Codes in the King county area.
- Grades ranging from 3 13 (overall grade given to the housing unit, based on King County grading system. Assuming 13 is the highest.)
- Conditions ranging from 1 5 (How good the condition of the house is. Assuming 5 is the highest.)

EDA

- Removed Null values in the 'waterfront' column
- Replaced the Null values in the 'yr_renovated' column so that I could use it to engineer another column that counted how many years since the last renovation.
- Dropped the 'view' column since it showed no purpose.
- Dropped 'bathrooms, sqft_lot15, and sqft_above' since they showed collinearity to other columns.
- Created a month_sold column to show us the month the house was last sold.

Final model

The features used in this model were: price, sqft_living, sqft_lot, sqft_living15, yr_built, bedrooms, floors, waterfront, condition, grade, yrs_renovated, sale_month.

- Sqft_living15 is the square footage of interior housing living space for the nearest 15 neighbors.
- Yrs_renovated is a feature engineered for this model that counts how many years since the last renovation.

I used a stepwise function with backwards elimination to test every variable and delete the ones with p-values over .05.

Finally I used Scikit-Learn's Recursive Feature Elimination to select the most relevant features for my model.

Dep. Variable:	price_log		R-squared:		0.660	r.
Model:	OLS		Adj. R-squared:		0.659	
Method:	Least Squares		F-statistic:		992.6	
Date:	Sun, 01 Nov 2020		Prob (F-statistic):		0.00	ř.
Time:	10:49:54		Log-Likelihood:		-3627.1	
No. Observations:	15372		AIC:		7316.	
Df Residuals:	15341			BIC:	7553.	
Df Model:		30				
Covariance Type:	nonrobust					
	coef	std err	t	P> t	[0.025	0.975]
const	88.1215	1.804	48.852	0.000	84.586	91.657
sqft_living_log	0.4385	0.011	39.120	0.000	0.416	0.460
yr_built_log	-10.5552	0.238	-44.374	0.000	-11.021	-10.089
sqft_living15_log	0.2660	0.012	21.331	0.000	0.242	0.290
sqft_lot_log	-0.0572	0.003	-17.309	0.000	-0.064	-0.051
grade_6	-0.2239	0.010	-22.698	0.000	-0.243	-0.205
grade_8	0.2082	0.007	29.938	0.000	0.195	0.222
grade_5	-0.3854	0.025	-15.488	0.000	-0.434	-0.337
grade_9	0.4429	0.010	42.665	0.000	0.423	0.463
waterfront_1.0	0.5381	0.029	18.513	0.000	0.481	0.595

Final model

- The R squared for this model is .66 which is lower than ideal. The reason for this is because some features were taken out to avoid overfitting.
- The is **RMSE \$203618**.
- The first plot seems to show that the data is evenly scattered
- The QQ plot shows us that the data sets come from common distributions.

summary/conclusions

The final conclusions for this model are:

- For every unit of sq ft living area the price increases by \$1.56
- If a house is a waterfront property you can expect the price to go up by 80 percent.
- 2 bedroom homes make the price go up by 12% while 4 bedroom homes make the price go down by 7%
- For total floors, houses with both 1.5 and 2.5 floors, increase the value by 3%. Houses with 3 floors increase the value by 25%

Next steps

- Due to the number of zip codes in this county adding them to the model would lead to overfitting. With more time, I would like to test every zip code to see which increase the price of houses the most.

Thank you!

I would like to thank Yish for all the help she's provided and everyone for listening to my presentation.

Sources Used:

- https://towardsdatascience.com/linear-regression-in-6-lines-of-python-5e1d0cd05b8d
- https://machinelearningmastery.com/rfe-feature-selection-in-python/
- https://scikit-learn.org/

Contact info:

• Eduardo.osorio231@gmail.com