

PHYSIOLOGIE DE L'HÉMOSTASE

- DR R.NACIB
- SERVICE HEMATOLOGIE ET THERAPIE CELLULAIRE, CLCC BATNA
 - SEPTEMBRE 2024

PLAN

- 1. Introduction
- 2. Hemostase primaire
- ☐ Définition
- Intervenants
- ☐ Déroulement
- 2. Coagulation
- Définition
- Intervenants
- ☐ Déroulement
- 3. Explorations
- 4. Application a la pathologie

INTRODUCTION

- Ensemble des mécanismes qui concourent à maintenir le sang à l'état fluide à l'intérieur des vaisseaux:
- ☐ soit arrêter les hémorragies et empêcher les thromboses.

On distingue 3 temps:

- a- <u>Hémostase primaire</u>: ferme la brèche vasculaire par un "thrombus blanc" (clou plaquettaire).
- b- <u>Coagulation</u>: consolide ce premier thrombus en formant un réseau de fibrine emprisonnant des globules rouges (thrombus rouge).
- **c-** <u>Fibrinolyse</u> : permet la **destruction** des caillots ou la **limitation** de leur extension.

- L'hémostase primaire:
- ACTEURS : vaisseau sanguin, les plaquettes, le fibrinogène et le facteur de VON WILLEBRAND)
- thrombus blanc.
- 2) Coagulation:
- une série d'activations enzymatiques en cascade
- thrombus rouge.
- 2) Fibrinolyse:
- permet la destruction des caillots ou la limitation de leur extension.

Brèche vasculaire

Thrombus plaquettaire

Coagulation

Thrombus fibrino-plaquettaire

Arrêt du saignement

Fibrinolyse

Dissolution du caillot Reperméabilisation du vaisseau

L'hémostase

HÉMOSTASE PRIMAIRE

- ☐ C'est la première phase de l'hémostase
- définie par une succession d' événements aboutissant:
- à la formation d'un clou plaquettaire

Les éléments intervenants dans l'hémostase primaire

1- Paroi vasculaire:

l'endothélium et le sous-endothélium Endothélium Intima :

- -surface thrombo-résistante
- -synthese: FVW-F tissulaire+++

Sous-endothélium: thrombogène

(collagène)

Média Adventice

2-Plaquettes:

- ☐ Les plus petits éléments figurés du sang, anucléés de 2 à 4 microns.
- ☐ Leur durée de vie est courte 4 à 8 jours
- ☐ Membrane :
- Double couche de phospholipides (PL) Glycoprotéines (GP) : GP IIb-IIIa, GP Ib-IX-V, récepteur à la thrombine
- Cytoplasme: granules denses, granules alpha, grains lysosomiaux

Lignée mégacaryocytaire

Mégacaryoblaste

Mégacaryocyte

Amas de plaquettes

3-Facteur Von Willebrand:

- ☐ Glycoprotéine synthétisée dans
- ☐ cellules endothéliales (70%) et les mégacaryocytes (30%).
- Interviendra dans l'adhésion plaquettaire,
- ☐ il circule lié au facteur anti-hémophilique A (FVIII) qu'il protège contre la protéolyse.

4-Fibrinogène:

- ☐ Un dimère synthétisé par le foie
- il interviendra dans l'agrégation plaquettaire et
- également la coagulation.

DÉROULEMENT DE L'HÉMOSTASE PRIMAIRE:

Dès qu'une brèche vasculaire se constitue, le processus d'hémostase primaire se met en jeu.

1-Temps vasculaire:

une vasoconstriction reflexe et immédiate

2-Temps plaquettaire:

a- Adhésion plaquettaire :

- les plaquettes adhèrent à la structure sous-endothéliale mise à nu par la brèche vasculaire.
- ☐ L'adhésion se produit en grande partie par la GP-Ib-IX-V plaquettaire
- qui se colle au sous-endothélium grâce au facteur Willebrand qui sert de ciment.

L'Adhésion plaquettaire

Plaquette quiescente circulante

b-Activation et sécrétion plaquettaire :

- Les plaquettes adhérentes s'activent et changent de forme
- Les plaquettes activées vont libérer les substances contenues dans leur granules alpha et denses ayant une action agrégante : ADP, sérotonine, adrénaline,
- Agregation+recrutement plq

- cette activation aboutit aussi à la transformation des phospholipides membranaires en thromboxane A2 (TXA2), puissant agrégeant plaquettaire
- La sécrétion d'ADP et la production de TxA2 entraine l'amplification du processus d'activation plaquettaire.

c-Agrégation plaquettaire :

- ☐ c'est l'adhésion des plaquettes entre elles
- Les complexes GP IIb IIIa des plaquettes vont établir des ponts grâce au fibrinogène,
- Avec formation du thrombus blanc ou clou plaquettaire.

LA COAGULATION L'HÉMOSTASE SECONDAIRE

- La coagulation regroupe l'ensemble des phénomènes
- solidifier le clou plaquettaire en créant un caillot de fibrine
- Obture définitivement la brèche vasculaire.

l'étape de coagulation au sens strict. aboutit à la formation d'un caillot sanguin composé de filaments très solides de <u>fibrine</u>, qui emprisonnent les hématies

Elle met en jeu une cascade de réactions enzymatiques.

Coagulation

- Le but de la coagulation est de transformer le fibrinogène en une substance insoluble appelée fibrine sous l'action de la thrombine (IIa).
- ☐ Cette formation de fibrine correspond à la fin d'une longue cascade enzymatique
- ☐ Deux concepts

LES FACTEURS DE LA COAGULATION

- a) Facteurs de la coagulation (système procoagulant) :
- Lieu de synthèse : le foie
- Les facteurs II VII IX et X sont vitamino K dépendants

b) Le facteur tissulaire. : (facteur III de la coagulation)

- c) Les régulateurs physiologiques de la coagulation (système anticoagulant)
- L'antithrombine III (AT III).
- L'inhibiteur plasmatique de la voie du facteur tissulaire Tissue Factor Pathway inhibitor ou TFPI.
- Le système de la protéine C: la protéine C (PC) et la protéine S(PS)

- d) Les plaquettes
- e) L'endothélium vasculaire
- f) Calcium : facteur IV de la coagulation

N°	Nom	Origine	Fonction
I	Fibrinogène → fibrine (l activée)	Foie et plaquettes	Forme des caillots (fibrine)
II	Prothrombine → Thrombine (Il activée)	Foie	Active I, V, VIII, XI, XIII, protéine C, plaquettes Vitamine K dépendant
Ш	Facteur tissulaire		Active le facteur VII
IV	Calcium	Plasma	Lien phospholipide /facteur
V	Proaccélérine	Foie et plaquettes	Augmente l'activité enzymatique du co-facteur Xa
VI	Accélérine (ancien nom Facteur Va)		
VII	Proconvertine	Foie	Active IX, X Vitamine K dépendant
VIII	Facteur antihémophile A	Foie	Augmente l'activité enzymatique du co-facteur IX
IX	Facteur Christmas ou antihémophile B	Foie	Active le facteur X Vitamine K dépendant
X	Facteur Stuart Prower	Foie	Active le facteur II Vitamine K dépendant
XI	Facteur Rosenthal	Foie	Active le facteur XII, IX et prékallikréine
XII	Facteur Hageman	Foie	Active prékallikréine et fibrinolyse
XIII	Facteur fibrin stabilizing	Foie, moelle osseuse	Stabilise la fibrine
	Facteur de Willebrand	Plaquettes et cellules	Transporte le facteur VIII

ANCIEN CONCEPT: INVITRO

• <u>A. la voie endogène ou intrinsèque</u> ne faisant intervenir que des <u>facteurs plasmatiques</u>, dont le premier est activé au contact du <u>sous</u> endothélium vasculaire.

• <u>B.la voie exogène ou extrinsèque</u> nécessitant le passage dans le sang d'un <u>facteur tissulaire</u>, libéré par la destruction des cellules endothéliales suite à une brèche.

La thrombine n'existe pas à l'état physiologique. Elle est formée localement à partir d'un complexe moléculaire enzymatique (complexe prothrombinase), lui-même constitué de facteur X activé (Xa), de facteur V activé, de calcium et d'un phospholipide (facteur 3 plaquetaire).

Schéma simplifié de la coagulation montrant le rôle de la thrombine et l'importance du VII

NOUVEAU CONCEPT: INVIVO

Initiation

Amplification

Propagation

Les deux premières phases se terminent par la formation du complexe prothrombinase et la troisième, par le pic de thrombine

REGULATION DE LA COAGULATION

Les **inhibiteurs physiologiques** de la coagulation:

- appartiennent à trois familles :
- 1-Elles incluent l'antithrombine, le cofacteur II de l'héparine
- 2-Le système de la protéine C fait intervenir
- deux récepteurs membranaires (thrombomoduline et EPCR) et
- deux protéines plasmatiques, la protéine C (zymogène
- d'une sérine protéase) et la **protéine S** (son cofacteur).
- Il régule la coagulation par protéolyse.
- 3-Le tissue factor pathway inhibitor (TFPI) appartient
- aux inhibiteurs qui se présentent comme de faux substrats vis-à-vis de leurs enzymes cibles

3- La fibrinolyse:

La fibrinolyse:

- un phénomène physiologique
- Consistant à dégrader la fibrine insoluble lorsque le vaisseau est réparé.
- Elle fait intervenir une enzyme très puissante : <u>la plasmine.</u>

Coagulation

Thrombine

Formation de Fibrine (Polymérisation)

Fibrinolyse

Plasmine

Dégradation de Fibrine (Hydrolyse)

Plasminogène: glycoprotéine plasmatique, synthétisée par foie L'activation du plasminogène libère plasmine, qui reste localisée au niveau de la fibrine dégradation progressive de la fibrine en **PDF**, de plus en plus courts. tous les **PDFibrine** contiennent domaines **D-D** appelée D-Dimères (car les liaisons covalentes entre monomères de fibrine ne sont pas rompues par la plasmine) L'existence de **D-Dimères**: preuve de la formation de fibrine stabilisée donc d'une coagulation, puis de sa lyse par plasmine

EXPLORATION DE L'HÉMOSTASE

Hemostase primaire:

a-Numération des plaquettes :

- se fait à l'aide de compteurs globulaires automatiques.
- ☐ Le nombre normal est de 150.000 à 400.000 éléments/mm3
- ☐ FS: car possibilité de fausse thrombopenies

b-<u>Temps de saignements</u>:

- une exploration globale de l'hémostase primaire in vivo.
- ☐ TS < 5 min si méthode de Duke (lobe de l'oreille)
- ☐ TS <10 min si méthode d'Ivy (avant-bras, 3 points de piqûre ou incision d'1 cm sous pression de 50 mmHg).

c-Temps d'occlusion plaquettaire:

_(Platelet Function Analyzer) : le test consiste à mesurer le temps d'adhésion et d'agrégation des plaquettes

Allongement : déficit en facteur de Willebrand et les Thrombopathies.

d- Tests d'agrégation :

ce sont des tests qui sont fait en **présence d'agents** qui entrainent l'agrégation : ADP, collagène, épinephrine, ristrocétine

e-Immunomarquage par Cytométrie en flux :

- une technique qui permet la détection des protéines membranaires
- utilisée pour confirmer le diagnostic des Thrombopathies
- par anomalies des glycoprotéines de la surface plaquettaire

Maladie de Bernard soulier : défaut d'adhesion plaquettaire. CD Ib IX
 V

thrombasthenie de Glanzman : défaut d'agregation CD IIb IIIa

EXPLORATION DE LA COAGULATION

PARAMETRES ORIENTATION PARAMETRE DE CERTITUDE

ORIENTATION

Le TCA et le TQ sont les tests les plus utilisés

- TCA (ou TCK): temps de Cephaline Activé (kaoulin).
- ☐ TQ: temps de Quiq Dosage des facteurs de la coagulation.

Le TCA (Temps de Céphaline avec Activateur)

C'est le temps de coagulation d'un plasma citraté déplaquetté auquel on ajoute un activateur des facteurs contacts et de la céphaline, substitut du facteur 3 plaquettaire, puis après incubation à 37°c du Calcium.

Le TCA explore la voie endogène de la coagulation : prékallicréine, kininogène de haut poids moléculaire, XII, XI, VIII et IX (et la voie finale commune : X, V, II, I).

- Le TQ (Temps de Quick):
- C'est le temps de coagulation du plasma décalcifié, recalcifié in vitro en présence de thromboplastine tissulaire.
- Il explore la voix exogene, c'est-à-dire le facteur VII et la voie finale commune : X, V, II, I.

Les résultats peuvent être exprimés de plusieurs façons en :

- Dourcentage d'activité par rapport à une droite d'étalonnage (taux de prothrombine : TP, normal de 70 à 100%).
- ☐ -INR (International Normalised Ratio). INR = [TQ malade/TQ témoin]
- ☐ Courbe TP/TQ

Les facteurs de coagulation explorés par le TT, TQ et TCK

CERTITUDE

Dosage des différents facteurs de la coagulation:

- ☐ Le fibrinogène est exprimé en gramme par litre (normale de 2 à 4 g/l).
- Les autres facteurs sont exprimés en pourcentage de la valeur normale.

APPLICATION A LA PATHOLOGIE

HEMOSTASE PRIMAIRE

- ANOMALIES VASCULAIRES
- ANOMALIES PLAQUETTAIRES

QUALITATIVE

QUANTITATIVE

COAGULATION

- ANOMALIES ACQUISES
- ANOMALIES CONGENITALES

Merci pour votre attention