

FCC PART 24 E

MEASUREMENT AND TEST REPORT

For

Dyal Trading Limited

Coxmoor Road, Sutton in Ashfield, Nottinghamshire, NG17 5LA, UK

FCC ID: XWN5017271000016C

Report Type: **Product Type:** Watch Phone Original Report Vi cent. Kang **Test Engineer:** Vicent Kang **Report Number:** RSZ09110901 **Report Date:** 2009-12-08 Merry Zhao merry, Thuo **Reviewed By:** EMC Engineer Bay Area Compliance Laboratories Corp. (Shenzhen) **Prepared By:** 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report **must not** be used by the customer to claim product certification, approval, or endorsement by NVLAP*, NIST, or any agency of the Federal Government. * This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk "*" (Rev.2)

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
ЕUT Рното	4
Objective	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
TEST FACILITY	5
SYSTEM TEST CONFIGURATION	6
JUSTIFICATION	
EQUIPMENT MODIFICATIONS	
CONFIGURATION OF TEST SETUP	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	7
FCC §1.1307 & §2.1093 - RF EXPOSURE	8
APPLICABLE STANDARD	8
Test Result	8
FCC §2.1047 - MODULATION CHARACTERISTIC	9
FCC §2.1046, & §24.232(C) - RF OUTPUT POWER	10
APPLICABLE STANDARD	10
Test Procedure	10
TEST EQUIPMENT LIST AND DETAILS	10
Test Data	11
FCC §2.1049 & §24.238 - OCCUPIED BANDWIDTH	
APPLICABLE STANDARDS	12
Test Procedure	
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	12
FCC §2.1051 & §24.238(A) - SPURIOUS EMISSIONS AT ANTENNA TERMINALS	15
APPLICABLE STANDARDS	15
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	16
FCC §2.1053 & §24.238 - SPURIOUS RADIATED EMISSIONS	
APPLICABLE STANDARDS	
TEST PROCEDURE	18
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	19
FCC §24.238(A) - BAND EDGES	
APPLICABLE STANDARDS.	
TEST PROCEDURE TEST EQUIPMENT LIST AND DETAILS	
TEST DATATEST AND DETAILS	
FCC§2.1055 & §24.235 - FREQUENCY STABILITY	22

Dyal Trading Limited

FCC ID: XWN5017271000016C

APPLICABLE STANDARD	22
Test Procedure	22
TEST EQUIPMENT LIST AND DETAILS.	
TEST DATA	

GENERAL INFORMATION

Product Description for Equipment Under Test (EUT)

The *Dyal Trading Limited*'s product, model number: *sWaP Classic BX1-S (FCC ID: XWN5017271000016C)* or the "EUT" as referred to in this report is a *Watch Phone*, which measures approximately: 5.0 cm L x 6.2 cm W x 8.5 cm H, rated input voltage: DC 3.7V battery.

Frequency Range:

PCS Band: 1850-1910 MHz (TX), 1930-1990 MHz (RX)

Bluetooth: 2400-2483.5 MHz (TX/Rx)

Modulation Mode: GMSK(PCS); GFSK(Bluetooth)

Transmitter Output Power:

PCS Band: 30±2 dBm Bluetooth: -6~4 dBm

Adapter Information: POWER SUPPLY

MODEL: CGSW-0500500 INPUT: 100-240V AC 50/60Hz

OUTPUT: 5V 500mA

EUT Photo

Please see additional photos in Exhibit B&C

^{*} All measurement and test data in this report was gathered from production sample serial number: 0911013 (Assigned by BACL, Shenzhen). The EUT was received on 2009-11-09.

Objective

This type approval report is prepared on behalf of *Dyal Trading Limited* in accordance with Part 2, Subpart J, and Part 24 Subpart E of the Federal Communication Commissions rules.

The objective is to determine compliance with FCC rules for output power, modulation characteristic, occupied bandwidth, and spurious emission at antenna terminal, spurious radiated emission, frequency stability, band edge and radiated margin.

Related Submittal(s)/Grant(s)

FCC Part 15.247 submission with FCC ID: XWN5017271000016C.

Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of Federal Regulations Title 47 Part 2, Sub-part J as well as the following parts:

Part 24 Subpart E - Personal Communication Services

Applicable Standards: TIA/EIA 603-C, ANSI C63.4-2003.

All radiated and conducted emissions measurements were performed at Bay Area Compliance Laboratories Corp. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp.(Shenzhen) to collect test data is located in the 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China.

Test site at Bay Area Compliance Laboratories Corp. (Shenzhen) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on November 21, 2007. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2003.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, Bay Area Compliance Laboratories Corp. (Shenzhen) is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (Lab Code 200707-0).

The current scope of accreditations can be found at http://ts.nist.gov/Standards/scopes/2007070.htm

SYSTEM TEST CONFIGURATION

Justification

The EUT was configured for testing according to TIA/EIA-603-C.

The final qualification test was performed with the EUT operating at normal mode.

Equipment Modifications

No modifications were made to the EUT.

Configuration of Test Setup

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§1.1307, §2.1093	RF Exposure (SAR)	Compliant *
§2.1046; §24.232(c)	RF Output Power	Compliant
§2.1047	Modulation Characteristics	N/A
\$2.1049 \$24.238	99% & -26 dB Occupied Bandwidth	Compliant
§2.1051, §24.238(a)	Spurious Emissions at Antenna Terminal	Compliant
\$2.1053 \$24.238(a)	Field Strength of Spurious Radiation	Compliant
§24.238(a)	Out of band emission, Band Edge	Compliant
\$2.1055 \$24.235	Frequency stability vs. temperature Frequency stability vs. voltage	Compliant

Note: *Please refer to SAR report released by BACL, Report Number: R0911164-SAR

FCC §1.1307 & §2.1093 - RF EXPOSURE

Applicable Standard

FCC §1.1307 and §2.1093.

Test Result

Compliance

The EUT is a portable device and SAR evaluation is required. Please refer to BACL SAR Report: R0911164-SAR.

FCC §2.1047 - MODULATION CHARACTERISTIC

According to FCC §2.1047(d), Part 24E there is no specific requirement for digital modulation, therefore modulation characteristic is not presented.

FCC §2.1046, & §24.232(c) - RF OUTPUT POWER

Applicable Standard

According to FCC $\S 2.1046$ and $\S 24.232$ (C), in no case may the peak output power of a base station transmitter exceed 2 watt EIRP.

Test Procedure

Conducted method:

The RF output of the transmitter was connected to the wireless test set and the spectrum analyzer through sufficient attenuation.

Radiated method:

TIA 603-C section 2.2.17

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Sunol Sciences	Horn Antenna	DRH-118	A052604	2009-05-05	2010-05-04
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2009-03-11	2010-03-11
Rohde & Schwarz	Spectrum Analyzer	FSEM30	849720/019	2009-07-08	2010-07-07
HP	Preamplifier	8449B	3008A00277	2009-09-12	2010-09-11
HP	Signal Generator	HP8657A	2849U00982	2009-10-28	2010-10-27
HP	Amplifier	HP8447D	2944A09795	2009-08-02	2010-08-02
НР	Synthesized Sweeper	8341B	2624A00116	2009-11-07	2010-11-06
COM POWER	Dipole Antenna	AD-100	041000	2009-09-25	2010-09-25
A.H. System	Horn Antenna	SAS-200/571	135	2009-05-17	2010-05-16
Rohde & Schwarz	Universal Radio Communication Tester	CMU200	109038	2009-06-11	2010-06-10

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Report No.: RSZ09110901 Page 10 of 23 FCC Part 24E Test Report

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	56 %
ATM Pressure:	100.0kPa

The testing was performed by Vicent Kang on 2009-11-24.

Conducted Power

Mode	e Channel Frequency (MHz)		Output Power (dBm)
	512	1850.2	30.30
GSM	661	1880.0	30.80
	810	1909.8	29.89
	512	1850.2	30.32
GPRS	661	1880.0	30.80
	810	1909.8	29.88

Radiated Power (EIRP)

Indi	cated	Table	Test A	ntenna	Sı	ubstituted		Ant	Cable	Absolute	Part 24E
Freq. (MHz)	S.A. Reading (dBµV)	Angle Degree	Height (m)	Polar (H/V)	Freq. (MHz)	Level (dBm)	Ant. Polar (H/V)	Gain Cord. (dBi)	Cord. Loss (dB)	Level (dBm)	Limit (dBm)
	Low Channel										
1850.2	122.21	298	1.5	Н	1850.2	21.1	Н	6.2	1.02	26.28	33
1850.2	122.34	292	1.5	V	1850.2	23.5	V	6.2	1.02	28.68	33
	Middle Channel										
1880	123.51	354	1.3	Н	1880	22.1	Н	6.2	1.03	27.27	33
1880	124.03	284	1.9	V	1880	24.2	V	6.2	1.03	29.37	33
	High Channel										
1909.8	120.19	160	1.4	Н	1909.8	20.0	Н	6.2	1.03	25.17	33
1909.8	123.36	269	1.2	V	1909.8	23.9	V	6.2	1.03	29.07	33

FCC §2.1049 & §24.238 - OCCUPIED BANDWIDTH

Applicable Standards

FCC §2.1049 and §24.238.

Test Procedure

The RF output of the transmitter was connected to the simulator and the spectrum analyzer through sufficient attenuation.

The resolution bandwidth of the spectrum analyzer was set at $30~\mathrm{kHz}$ (Cellular /PCS) and the $26~\mathrm{dB}$ & 99% bandwidth was recorded.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	100224	2009-11-07	2010-10-06
Rohde & Schwarz	Universal Radio Communication Tester	CMU200	109038	2009-06-11	2010-06-10

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	56 %
ATM Pressure:	100.0kPa

The testing was performed by Vicent Kang on 2009-11-24.

Channel	Frequency (MHz)	99% Emission Bandwidth (kHz)	26 dB Emission Bandwidth (kHz)
661	1880.0	250	336

Please refer to the following plots.

99% Emission Bandwidth

Date: 24.NOV.2009 10:23:24

26 dB Emission Bandwidth

Date: 24.NOV.2009 10:14:45

FCC §2.1051 & §24.238(a) - SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Applicable Standards

FCC §2.1051 and §24.238(a).

The spectrum was to be investigated to the tenth harmonics of the highest fundamental frequency as specified in § 2.1051.

Test Procedure

The RF output of the transceiver was connected to a spectrum analyzer and simulator through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100 kHz. Sufficient scans were taken to show any out of band emissions up to 10th harmonic.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Spectrum Analyzer	FSEM30	849720/019	2009-07-08	2010-07-07
Rohde & Schwarz	Universal Radio Communication Tester	CMU200	109038	2009-06-11	2010-06-10
Rohde & Schwarz	EMI	ESCI	100224	2009-11-07	2010-11-06

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	56 %
ATM Pressure:	100.0kPa

The testing was performed by Vicent Kang on 2009-11-24.

Please refer to the following plots.

30-1000 MHz, Middle Channel

Date: 24.NOV.2009 10:43:52

1-2 GHz, Middle Channel

Date: 24.NOV.2009 10:42:32

2-20 GHz, Middle Channel

FCC §2.1053 & §24.238 - SPURIOUS RADIATED EMISSIONS

Applicable Standards

FCC §2.1053 and §24.238.

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to tenth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in $dB = 10 lg (TXpwr in Watts/0.001) - the absolute level Spurious attenuation limit in <math>dB = 43 + 10 Log_{10}$ (power out in Watts)

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Sunol Sciences	Horn Antenna	DRH-118	A052604	2009-05-05	2010-05-04
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2009-03-11	2010-03-11
Rohde & Schwarz	Spectrum Analyzer	FSEM30	849720/019	2009-07-08	2010-07-07
НР	Preamplifier	8449B	3008A00277	2009-09-12	2010-09-11
HP	Signal Generator	HP8657A	2849U00982	2009-10-28	2010-10-27
HP	Amplifier	HP8447D	2944A09795	2009-08-02	2010-08-02
HP	Synthesized Sweeper	8341B	2624A00116	2009-11-07	2010-11-06
COM POWER	Dipole Antenna	AD-100	041000	2009-09-25	2010-09-25
A.H. System	Horn Antenna	SAS-200/571	135	2009-05-17	2010-05-17
Rohde & Schwarz	Universal Radio Communication Tester	CMU200	109038	2009-06-11	2010-06-10

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Report No.: RSZ09110901 Page 18 of 23 FCC Part 24E Test Report

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	56 %
ATM Pressure:	100.0kPa

The testing was performed by Vicent Kang on 2009-11-25.

Test mode: Transmitting

Below 1 GHz:

Indica	ted	Table	Test Aı	ntenna		Substitu	ted		Absolute		
Frequency (MHz)	S.A. Reading (dBµV)	Angle Degree	Height (m)	Polar (H/V)	Frequency (MHz)	Level (dBm)	Ant. Gain (dBi)	Cable Loss (dB)	Level (dBm)	Limit (dBm)	Margin (dB)
	Middle Channel										
332.64	34.57	150	1.5	Н	332.64	-61.6	0	0.71	-37.61	-13	24.61
234.75	34.75	70	1.3	Н	234.75	-61.5	0	0.67	-41.01	-13	28.01
464.56	39.86	260	1.5	V	464.56	-57.6	0	0.77	-43.65	-13	30.65
598.42	42.15	210	1.0	V	598.42	-54.5	0	0.83	-45.73	-13	32.73

Above 1 GHz:

Indica	ted	Table	Test A	ıtenna		Substitu	ted		Absolute		
Frequency (MHz)	S.A. Reading (dBµV)	Angle Degree	Height (m)	Polar (H/V)	Frequency (MHz)	S.G. Level (dBm)	Ant. Gain (dBi)	Cable Loss (dB)	Level (dBm)		Margin (dB)
	Middle Channel										
3760	56.39	102	1.3	V	3760	-41.3	7.0	3.31	-37.61	-13	24.61
3760	53.15	233	1.4	Н	3760	-44.7	7.0	3.31	-41.01	-13	28.01
2947.89	48.83	122	1.0	Н	2947.89	-48.5	7.2	1.27	-42.57	-13	29.57
2496.99	48.08	115	1.5	V	2496.99	-49.6	7.2	1.25	-43.65	-13	30.65
2320.64	47.51	198	1.6	Н	2320.64	-51.7	7.2	1.23	-45.73	-13	32.73
2563.13	46.63	331	1.3	V	2563.13	-52.5	7.2	1.25	-46.55	-13	33.55

FCC §24.238(a) - BAND EDGES

Applicable Standards

According to FCC §24.238(a), the power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The center of the spectrum analyzer was set to block edge frequency, RBW set to 10 kHz.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCI	100224	2009-11-07	2010-11-06
Rohde & Schwarz	Universal Radio Communication Tester	CMU200	109038	2009-06-11	2010-06-10

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	56 %
ATM Pressure:	100.0kPa

The testing was performed by Vicent Kang on 2009-11-24.

Mode	Frequency (MHz)	Emission Level (dBm)	FCC Limit (dBm)
GSM	1850	-15.52	-13
GSM	1910	-20.04	-13
GPRS	1850	-16.85	-13
Grks	1910	-17.10	-13

Lowest Channel (GSM)

Highest Channel (GSM)

Date: 24.NOV.2009 10:20:39 Date: 24.NOV.2009 10:19:51

Lowest Channel (GPRS)

Highest Channel (GPRS)

Date: 24.NOV.2009 10:28:08 Date: 24.NOV.2009 10:29:00

FCC§2.1055 & §24.235 - FREQUENCY STABILITY

Applicable Standard

FCC §2.1055 (a), §2.1055 (d) and §24.235

According to §24.235, the frequency stability shall be sufficient to ensure that the fundamental emissions stays within the authorized frequency block.

Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external DC power supply and the RF output was connected to communication test set via feed-through attenuators. The EUT was placed inside the temperature chamber. The DC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the communication test set.

Frequency Stability vs. Voltage: An external variable DC power supply was connected to the battery terminals of the equipment under test. The voltage was set to 115% of the nominal value and was then decreased until the transmitter light no longer illuminated; i.e., the battery end point. The output frequency was recorded for each battery voltage.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
WUHUAN	Temperature & Humidity Chamber	HTP205	20021115	2009-05-09	2010-05-09
Rohde & Schwarz	Universal Radio Communication Tester	CMU200	109038	2009-06-11	2010-06-10

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Data

Environmental Conditions

Temperature:	25 °C	
Relative Humidity:	56 %	
ATM Pressure:	100.0kPa	

The testing was performed by Vicent Kang on 2009-11-24.

Middle Channel, f _o =1880.0 MHz							
Temperature (°C)			Frequency Error (ppm)				
-30	3.70	-39	-0.02074				
-20	3.70	-43	-0.02287				
-10	3.70	-37	-0.01968				
0	3.70	-35	-0.01862				
10	3.70	-31	-0.01649				
20	3.70	-34	-0.01809				
30	3.70	-47	-0.02500				
40	3.70	-35	-0.01862				
50	3.70	-39	-0.02074				
25	4.20	-43	-0.02287				
25	3.50	-37	-0.01968				

***** END OF REPORT *****