День #8, Строки-2 ЛКШ.2018.Июль, Берендеевы Поляны, 12 июля 2018

Содержание

Задачи		2
Задача 8А.	Помогите, спасите! [0.25 sec, 256 mb]	2
Задача 8В.	LZSS encoding [1 sec, 256 mb]	3
Задача 8С.	Набор строк [1 sec, 256 mb]	4
Задача 8D.	Ненокку [2 sec, 256 mb]	5

В некоторых задачах большой ввод и вывод. Пользуйтесь быстрым вводом-выводом.

В некоторых задачах нужен STL, который активно использует динамическую память (set-ы, map-ы) переопределение стандартного аллокатора ускорит вашу программу.

День #8, Строки-2 ЛКШ.2018.Июль, Берендеевы Поляны, 12 июля 2018

Задачи

Задача 8A. Помогите, спасите! [0.25 sec, 256 mb]

Дана строка. Найдите для каждого её префикса количество различных подстрок в нём.

Формат входных данных

В единственной строке входных данных содержится непустая строка S, состоящая из N $(1 \le N \le 2 \cdot 10^5)$ маленьких букв английского алфавита.

Формат выходных данных

Выведите N строк, в i-й строке должно содержаться количество различных подстрок в i-м префиксе строки S.

Примеры

stdin	stdout
aabab	1
	2
	5
	8
	11
atari	1
	3
	5
	9
	14

Задача 8B. LZSS encoding [1 sec, 256 mb]

Алиса хочет отправить сообщение Бобу. Она хочет зашифровать сообщение, используя оригинальный метод шифрования. Сообщение – строка S, состоящая из N строчных английских букв.

 $S[a\dots b]$ означает подстроку S от S[a] до S[b] ($0\leqslant a\leqslant b< N$). Если первые i букв уже зашифрованы, Алиса найдёт такие $(j,k)\colon s[j..j+k]=s[i..i+k], k\geqslant 0, 0\leqslant j< i, k=\max$. Если несколько j дают максимальное k, Алиса выберет минимальное j. Если k>0 Алиса добавит пару $\langle k,j\rangle$ в шифр и увеличит i на k, иначе Алиса добавит -1 и ASCII код буквы S[i] в шифр и увеличит i на 1.

Очевидно шифр начнёт с -1, далее будет ASCII код символа S[0]. Помогите Алисе реализовать её метод шифрования.

Формат входных данных

Перрвая строка ввода содержит количество тестов T ($1 \le T \le 50$). Следующие T строк содержат сообщения для шифровки, каждое длины от 1 до 10^5 , состоящие из строчных английских букв. Гарантируется, что суммарная длина всех сообщений не превосходит $2 \cdot 10^6$.

Формат выходных данных

Для каждого теста на отдельной строке выведите "Case #X:", где X – номер теста, нумерация с 1. Далее выведите шифр, в каждой строке по два целых числа через пробел.

Примеры

stdin	stdout
2	Case #1:
aaaaaa	-1 97
aaaaabbbbbaaabbc	5 0
	Case #2:
	-1 97
	4 0
	-1 98
	4 5
	5 2
	-1 99

День #8, Строки-2 ЛКШ.2018.Июль, Берендеевы Поляны, 12 июля 2018

Задача 8С. Набор строк [1 sec, 256 mb]

В Инновационном Отделе НИИ Исследований Данных Строк разработана клавиатура для внутреннего пользования, облегчающая набор строк огромной длины. Кроме обычных клавиш, соответствующих маленьким латинским буквам, на клавиатуре есть еще n функциональных клавиш F_1, \ldots, F_n , соответствующих заданным строкам из словаря $S_1, \ldots S_n$. При нажатии такой клавиши F_i строка S_i загружается во внутреннюю память клавиатуры. В каждый момент времени в памяти может находиться не более одной строки из словаря.

Кроме того, в клавиатуру встроен графический манипулятор «Кыш», с помощью которого легким движением руки можно ввести любую подстроку находящейся в памяти строки.

Вася занимается исследованием эффективности данного нововведения. Для этого ему требуется написать программу, которая будет вычислять минимальное необходимое количество действий (нажатий и использований «Кыш») для ввода данной строки S. В момент начала ввода строки память пуста.

Например, если требуется ввести строку "abacaba", а в словаре есть строки "baba" и "caca", то это можно сделать за четыре действия — нажать F_1 , выбрать манипулятором подстроку "aba", затем нажать 'c', и опять выбрать манипулятором подстроку "aba". Если бы нужно было набрать с таким словарем "bacababa", то это можно сделать за пять действий: 'b', F_2 , "aca", F_1 , "baba".

Формат входных данных

В первой строке входного файла задано число n ($1 \le n \le 50$). В последующих n строках заданы S_i , составленные из не более чем 500 символов. В последней строке вводится непустая строка S, длина которой не превосходит 100 000. Все символы строк — маленькие латинские буквы.

Формат выходных данных

Выведите минимальное необходимое количество действий.

Пример

stdin	stdout
2	4
baba	
caca	
abacaba	
2	5
baba	
caca	
bacababa	

Задача 8D. Ненокку [2 sec, 256 mb]

Очень известный автор не менее известной книги решил написать продолжение своего произведения. Он писал все свои книги на компьютере, подключенном к интернету. Из-за такой неосторожности мальчику Ненокку удалось получить доступ к еще ненаписанной книге. Каждый вечер мальчик залазил на компьютер писателя и записывал на свой компьютер новые записи. Ненокку, записав на свой компьютер очередную главу, заинтересовался, а использовал ли хоть раз писатель слово "книга". Но он не любит читать книги (он лучше полазает в интернете), и поэтому он просит вас узнать есть ли то или иное слово в тексте произведения. Но естественно его интересует не только одно слово, а достаточно много.

Формат входных данных

В каждой строчке входного файла записано одна из двух записей.

- 1. ? <слово> (<слово> это набор не более 50 латинских символов);
- 2. A <текст> (<текст> это набор не более 10^5 латинских символов).
- 1 означает просьбу проверить существование подстроки <слово> в произведение.
- 2 означает добавление в произведение <текст>.

Писатель только начал работать над произведением, поэтому он не мог написать более 10^5 символов. Суммарная длина всех запросов не превосходит 15 мегабайт плюс 12140 байт.

Формат выходных данных

Выведите на каждую строчку типа 1 "YES", если существует подстрока <слово>, и "NO" в противном случае. Не следует различать регистр букв.

Пример

stdin	stdout
? love	NO
? is	NO
A Loveis	YES
? love	NO
? WHO	YES
A Whoareyou	
? is	