Arktel: 12340306 Exercise Sheet O Mathematics for AI I => Ex O(Exercise sheet 0) A. Which of the following is a proposition?

All 13 e) 3<1 f) Every positive integer can be written as the sum of two

9(42) = 12+ 2.1.2+2 prime numbers. while rest does not give any touth value. B. Let A, B be propositions. Determine a truth table for the propositions. 9)-(A1-B), b) -AVB Inth table The fourth table of - (A1-13), -AVB and A > B are same or equivalent. e. Let A, B be any propositions on F a contradiction. Using truth tables, prove: A >B and A1-B > F are equivalent. Touth table $A \mid B \mid \neg B \mid F \mid A \Rightarrow B \mid A \land \neg B \Rightarrow F \mid$ Hence, A>B and A1-1B>F are logically equivalent.

D. Let A, B and C be any propositions and T a truto logy.

9) (A => B) and (B=>C) => (A=>C) and T are logically equivalent.

	, _\	10								
	T	T	C	A ⇒B	B ⇒ (1 A > C	(A > B) 1(B > C) A >	(A>C)	T	
	T	7	F	Ť	F.	F	7		T	
	T	F	F	F	T	T	T	- 400	Ţ	
	F	T	T C	Ţ	T	7	Ţ		T	
	F	F	T	T	T	T	Ţ		T	
Ĺ				*			1		T	
	11-					·		//		

Hence, (A >B) 1(B > U => (A > U) and T are equivalent.

b) A ⇔ B and (A ⇒ B) 1 (B ⇒ A) are logically equivalent.

A B A BB	$ A \Rightarrow B B \Rightarrow A$	(A > B) 1 (B > A)
TTTT	TTT	T
FTF	TF	F
FFT	T	T

Hence, (A =>B) and (A >B) 1 (B=>A) are equivalent. Prove

e. Let A,B and C any psopositions. Porve

Alal				
TTT	(AMB)	(BAC)	(AMB)AC	AN(DIC)
	1	T	T	T
		F	F	F
7 5 1		F	F	F
		F	E	F
FEF	+	<u> </u>	F	F
FFF		 	F	F
FFF	E	F		F
FIF		r	F	

Hence The Houth table of (AAB) 1 c and A1(B1C) is same. Hence, they are equivalent.

b) (AVB) AC and (AAC) V (BAC) are logically equivalent

A	B	C	AVB)1C	(114)	(B14)	(110) (B1C)
T	T	T	T	T	T	T
		r T	+	F	F	F
1+1	F	É	F		F	T
F	T	T	T	F	7	
F	T	F	F	F	F	F
F	F	T	F	F	F	F
F	r	<i>F</i>	<i>F</i>	F	F	F *

The touth table of AVBINC and ANCIV (BNC) are equal.
Hence, they are equivalent.

F. For this exercise the corresponding class of x is \$2:= "all possible AI students". We defined predicates. P(.): "Student... was in at least one Math lesson." · B(.): " Student... was in all Math lessons." Write the following propositions and their negations in words. Tor every student in the class of all possible AI students it is true that

Note: the student was in at least one Math lesson." Negation: > There exists at least one student in the class of all possible AI students such that the student was not in at least one math lesson. b) $\exists x \in \Omega : P(x)$ These exists at least one student in all possible AI students it is such not true that the student was in at least one Math lesson." Negation: > For every students in the class of all possible A! students, it is not tone that the students was in at least one Mathlesson." c) tx E si q(x) -> "For every students in the class of all possible AT students, it is true that the student was nall Math lessons." Megation: "These exists at least one student in the classiful possible AI students such that the student was in all Math ressors." d) $\exists x \in \Omega : Q(x)$ There exists at least one student in the class of all possible AI students, such that the student was in all Math lessons. Negation: > "For every student in the class of all possible AI students, it is

JYU not true that the student was in all Math lessons."