iı iı

c to in r:

It ra

ſ.

 \mathbf{F}_{0} \mathbf{V}_{0}

is

C

T

f

W

gı

 g_1

r€

Pipe Material	ε , ft	€, cm
Steel Commercial Corrugated Riveted Galvanized	0.00015 0.003-0.03 0.003-0.03 0.0002-0.0008	0.004 6 0.09-0.9 0.09-0.9 0.006-0.025
Mineral Brick sewer Cement–asbestos Clays Concrete	0.001-0.01	0.03-0.3
Wood stave	0.0006-0.003	0.018-0.09
Cast iron Asphalt coated Bituminous lined Cement lined Centrifugally spun	0.00085 0.0004 0.000008 0.000008 0.00001	0.025 0.012 0.000 25 0.000 25 0.000 31
Drawn tubing	0.000005	0.000 15
Miscellaneous Brass Copper Glass Lead Plastic Tin	0.000005	0.000 15
Galvanized	0.0002-0.0008	0.006-0.025
Wrought iron	0.00015	0.004 6
PVC	Smooth	Smooth

Other forms of the Moody diagram have been developed in order to simplify calculations in problems where iterative methods (or trial and error) are required (i.e., volume flow rate Q unknown, diameter D unknown). Consider that in a piping problem, six variables can enter the problem: Δp (or Δh), Q, D, v, L, and ε . Usually in the traditional type of problem, five of these variables are known and the sixth is to be found. When pressure drop Δp (or head loss $\Delta h = \Delta pg_c/pg$) is unknown, then the problem can be solved in a straightforward manner using the Moody diagram, as in Figure 3.3. When volume flow rate Q is unknown, use of the Moody diagram requires a trial-and-error procedure to obtain a solution. If a graph of f versus $\mathbf{Re}\sqrt{f}$ is available, however, then the unknown Q problem can be solved in a straightforward manner. Such a graph is provided in Figure 3.4.