Taking a look at the data
Data munging
Fitting
Formatting the output
Fixing the numbers
Start Over

A regression model

We will start with the mpg dataset that comes with the **ggplot2** package, and fit a linear regression model to see how city fuel efficiency depends on the year, transmission, number of cylinders, drive and class of vehicle

A lot of the work in this tutorial will use string manipulations using functions from the **stringr** package. This package does have a cheatsheet

(https://github.com/rstudio/cheatsheets/raw/master/strings.pdf/that you can download.

Looking at the output

library(broom)
out <- tidy(fit, conf.int = TRUE)
out</pre>

term <chr></chr>	estimate <dbl></dbl>	std.error <dbl></dbl>	sta
(Intercept)	20.56224257	1.1227750	18.313
year2008	0.46240897	0.2712424	1.704
transmanual	0.40247464	0.3106162	1.29
cyl5	-2.10580025	1.0607113	-1.98
cyl6	-3.41624564	0.3620780	-9.43
cyl8	-5.59382007	0.4951472	-11.29
drvf	2.50309332	0.4872506	5.13
drvr	-0.08735267	0.5793938	-0.150
classcompact	-1.67746356	1.1124558	-1.507
classmidsize	-2.29142648	1.1438440	-2.003
1-10 of 14 rows 1-4	of 7 colu Prev	ious 1 2	Next
1			•

We need to fix the terms first. The factor variables have the unfortunate default behavior of being represented as with no real formatting. Also we could change the base level of drv

Taking a look at the data
Data munging
Fitting
Formatting the output
Fixing the numbers
Start Over

to f (front wheel drive) from 4 (4-wheel drive), but we'll let it be for now.

Munging output

We're going to build up the code to get this output data where we'd like it.

First, we need to identify the factor variables so that we can change them. Fortunately, R has already stored this information in the fit object.

```
fit$xlevels
```

```
## $year
## [1] "1999" "2008"
## $trans
## [1] "auto"
                "manual"
##
## $cyl
## [1] "4" "5" "6" "8"
##
## $drv
## [1] "4" "f" "r"
##
## $class
                    "compact"
## [1] "2seater"
                                  "midsize"
"minivan"
             "pickup"
## [6] "subcompact" "suv"
```

So we can see exactly which variables in the model are categorical and what their levels are.

Fixing the numbers

We're going to restrict the numbers to 2 decimals

```
Code Start Over Solution

1 for(n in names(fit$xlevels)){
2 out <- out %>%
3 mutate(term = ifelse(str_detect(term, n),
4 str_replace(term, n, paste(n,'= term))
6 }
7
8 out <- out %>%
9 mutate____(______, ~round(., 2))
```

This is quite reasonable for printing now.

Taking a look at the data

Data munging

Fitting

Formatting the output

Fixing the numbers

Start Over

term	estimate	std.error	statistic	p.va
(Intercept)	20.5622426	1.1227750	18.3137694	0.0000
year = 2008	0.4624090	0.2712424	1.7047815	0.0896
trans = manual	0.4024746	0.3106162	1.2957299	0.1964
cyl = 5	-2.1058003	1.0607113	-1.9852718	0.0483
cyl = 6	-3.4162456	0.3620780	-9.4351106	0.0000
cyl = 8	-5.5938201	0.4951472	-11.2972877	0.0000
drv = f	2.5030933	0.4872506	5.1371787	0.0000
drv = r	-0.0873527	0.5793938	-0.1507656	0.8802
class = compact	-1.6774636	1.1124558	-1.5078924	0.1330
class = midsize	-2.2914265	1.1438440	-2.0032683	0.0463
class = minivan	-4.3516621	1.2936355	-3.3639014	0.0009
class = pickup	-3.5335839	1.1133642	-3.1737898	0.0017
class = subcompact	-0.5689003	1.0690946	-0.5321328	0.5951
class = suv	-3.0282240	1.0504330	-2.8828341	0.0043

Previous Topic

Taking a look at the data Data munging Fitting Formatting the output Fixing the numbers Start Over

Plotting

We're now in a position to plot this out

```
Code
       Start Over
                                           ► Run Code
      for(n in names(fit$xlevels)){
  1
2
3
4
5
6
7
8
        out <- out %>%
          mutate(term = ifelse(str_detect(term, n),
                             str_replace(term, n, paste(n,
    #
      out <- out %>%
 9
10
        mutate_if(is.numeric, ~round(., 2))
    11
 12
 13
      geom_pointrange() +
 14
      coord_flip()
```


Modify this code to make the plot prettier. The reference level should be $\boldsymbol{0}$

Taking a look at the data		
Data munging		
Fitting		
Formatting the output	4	
Fixing the numbers		
Start Over		