Definicija 3.1 Neka je $D \subseteq \mathbb{R}^m \equiv \mathbb{R} \times \cdots \times \mathbb{R}$. • Ako je $D \subseteq \mathbb{R}^2$, funkciju $f:D \longrightarrow \mathbb{R}$ nazivamo funkciju $f:D \longrightarrow \mathbb{R}$ nazivamo realnom funkcijom od m realnih varijabla. $(x,y) \in D \xrightarrow{f} z = f(x,y) \in \mathbb{R}$

$$(x_1, x_2, ..., x_m) \in D \xrightarrow{f} u = f(x_1, x_2, ..., x_m) \in \mathbb{R}$$

(Svakoj uređenoj m-torci $(x_1, x_2, ..., x_m) \in D$ pravilom f pridružen je jedan i samo jedan realan broj $u \in \mathbb{R}$.)

$$\begin{array}{l} (x,y)\in D \stackrel{f}{\longrightarrow} z=f(x,y)\in \mathbb{R} \\ -\,f\,[D]\,=\,\{\,z\mid z=f(x,y),\;(x,y)\in D\,\}\,-\,\text{slika} \\ \text{funkcije,} \end{array}$$

- -x, y nezavisne varijable,
- -z- zavisna vrijabla.

Definicija 3.2 Za bilo koju točku $T_0 \in \mathbb{R}^2$ i bilo koji broj $\varepsilon > 0$, skup

$$K(T_0; \varepsilon) \equiv \{T \in \mathbb{R}^2 \mid d(T_0, T) < \varepsilon\} \subseteq \mathbb{R}^2$$

nazivamo (otvorenom) **kuglom** polumjera ε oko točke T_0 .

.....

Napomena 3.5 Ukoliko je

$$\lim_{\substack{(x,y) \to (x_0,y_0) \\ c_1}} f(x,y) = L_1 \quad \text{ i } \quad \lim_{\substack{(x,y) \to (x_0,y_0) \\ c_2}} f(x,y) = L_2$$

te $L_1
eq L_2$ tada $\lim_{(x,y) o (x_0,y_0)} f(x,y)$ ne postoji. Ovo je postupak kako utvrditi da limes ne postoji (to je puno

Definicija 3.3 Neka su dani funkcija $f:D\to\mathbb{R}$, $D\subseteq\mathbb{R}^2$, i točka T_0 koja nije izolirana točka od D. Reći ćemo da je broj $L_0\in\mathbb{R}$ granična vrijednost funkcije f u točki T_0 ako

$$(\forall \varepsilon > 0)(\exists \delta > 0)(\forall T \in D \setminus \{T_0\})$$
$$d(T, T_0) < \delta \Rightarrow |f(T) - L_0| < \varepsilon.$$

U tom slučaju pišemo

$$\lim_{T \to T_0} f(T) = L_0 \quad \text{ili} \quad \lim_{T_0} f(T) = L_0.$$

Teorem (o uzastopnim limesima za funkciju dvije varijable): Neka je

$$L = \lim_{(x,y) \to (x_0,y_0)} f(x,y).$$

Ako postoje uzastopni limesi

$$\begin{split} L_1 &= \lim_{x \to x_0} \left(\lim_{y \to y_0} f\left(x,y\right) \right) \quad \text{i} \quad L_2 = \lim_{y \to y_0} \left(\lim_{x \to x_0} f\left(x,y\right) \right) \\ \text{onda ie } L_1 = L_2 = L. \end{split}$$

3.5. Parcijalne derivacije

Definicija 3.7 Neka je $f:D\longrightarrow \mathbb{R},\,D\subseteq \mathbb{R}^2,$ funkcija dviju varijabli i $(x_0,y_0)\in D.$ Ako postoji limes

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x} = f_x(x_0, y_0)$$

onda $f_x(x_0,y_0)$ nazivamo prva parcijalna derivacija po x funkcije f u točki (x_0,y_0) . Ako postoji limes

$$\lim_{\Delta y \to 0} \frac{f(x_0, y_0 + \Delta y) - f(x_0, y_0)}{\Delta y} = f_y(x_0, y_0)$$

onda $f_y(x_0,y_0)$ nazivamo prva parcijalna derivacija po y funkcije f u točki $(x_0,\overline{y_0}).$

Definicija 3.6 Neka je dana funkcija $f:D_f\longrightarrow \mathbb{R},$ $D_f\subseteq \mathbb{R}^2.$ Ako je

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0)$$

kažemo da je funkcija f <u>neprekidna u točki</u> $(x_0,y_0)\in D_f$. Ako je f neprekidna u svakoj točki $(x,y)\in D_f$ kažemo da je f neprekidna funkcija.

Napomena Ako želimo naći f_x , tada u f(x,y) varijablu y treba tretirati kao konstantu i derivirati po x. Analogno, ako tražimo f_y .

Napomena Graf z=f(x,y) funkcije je ploha. Presječemo li tu plohu ravninom $x=x_0$ ili $y=y_0$ dobit ćemo ravninske krivulje Γ_2 odnosno Γ_1 , redom. Geometrijska interpretacija parcijalnih derivacija $f_x(x_0,y_0)$ i $f_y(x_0,y_0)$: to su koeficijenti smjera tangente na Γ_1 , odnosno Γ_2 u točki $T_0(x_0,y_0,z_0=f(x_0,y_0))$.

Napomena Analogno se definiraju i parcijalne derivacije funkcija tri i više varijabli. Npr. za u=f(x,y,z) imamo

$$\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0, z_0) - f(x_0, y_0, z_0)}{\Delta x} = f_x(x_0, y_0, z_0)$$

Ako funkcija f ima u točki T_0 parcijalnu derivaciju po svakoj varijabli onda kažemo da je funkcija f **derivabilna u točki** T_0 . Ako je f derivabilna u svakoj točki $T \in D$, nazivamo ju **derivabilnom funkcijom**.

Teorem 3.9 (Schwartzov) Neka je funkcija $f:D\to\mathbb{R}$, $D\subseteq\mathbb{R}^2$, derivabilna na nekoj ε -kugli $K((x_0,y_0);\varepsilon)\subseteq D$ i neka f ima na toj kugli i parcijalnu derivaciju drugoga reda po x i y redom, f_{xy} . Ako je funkcija

$$f_{xy}|_{K((x_0,y_0);\varepsilon)}:K((x_0,y_0);\varepsilon)\to\mathbb{R}$$

neprekidna u točki (x_0,y_0) , onda postoji parcijalna derivacija drugoga reda funkcije f po y i x redom u točki (x_0,y_0) i pritom je

$$f_{xy}(x_0, y_0) = f_{yx}(x_0, y_0).$$

Definicija 3.11 Funkcija $z=f\left(x,y\right)$ je diferencijabilana funkcija u točki (x_{0},y_{0}) ako se prirast

$$\Delta z = \Delta f(x, y) = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)$$

dade zapisati u obliku

$$\Delta z = f_x(x_0, y_0) (x - x_0) + f_y(x_0, y_0) (y - y_0) + \varepsilon \cdot \sqrt{(\Delta x)^2 + (\Delta y)^2}$$

gdje
$$\varepsilon \longrightarrow 0$$
 kad $(\Delta x, \Delta y) \longrightarrow (0, 0)$.

Napomena Ako postoje prve parcijalne derivacije od $z=f\left(x,y\right)$ onda kažemo da je $z=f\left(x,y\right)$ derivabilna. Derivabilnost funkcije ne jamči i difere cijabilnost (kod funkcija jedne varijable ti su pojmc ekvivalentni).

3.9. Ekstremi funkcija više varijabli

Definicija 3.18 Za funkciju $f:D\to\mathbb{R},\,D\subseteq\mathbb{R}^m,$ kažemo da ima <u>lokalni maksimum</u> (<u>minimum</u>) u točki $T_0\in D$, ako postoji ε -okolina $K(T_0,\varepsilon)\subseteq D$ točke T_0 sa svojstvom da je

$$f\left(T\right) < f\left(T_{0}\right), \quad \text{za svaku točku } T \in K(T_{0},\varepsilon) \setminus \{T_{0}\}$$

(
$$f\left(T\right)>f\left(T_{0}\right),\;\;$$
 za svaku točku $T\in K(T_{0},\varepsilon)\backslash\{T_{0}\}$)

Ukoliko je

$$f\left(T\right) \leq f\left(T_0\right), \quad \mathsf{za} \; \mathsf{svaki} \; \; T \in D$$

(
$$f(T) \ge f(T_0)$$
, za svaki $T \in D$)

onda kažemo da f ima globalni maksimum (minimum) u točki $T_0 \in D$.

Kao i do sada promatrat ćemo funkcije dviju varijabli.

Teorem 3.19 (Nužan uvjet za lokalni ekstrem) Ako funkcija $f:D\to\mathbb{R},\ D\subseteq\mathbb{R}^2$, ima u točki $T_0=(x_0,y_0)\in D$ lokalni ekstrem i ako je u toj točki derivabilna, onda je

$$f_x(x_0, y_0) = 0, \quad f_y(x_0, y_0) = 0.$$

Teorem 3.12 Ako parcijalne derivacije f_x i f_y postoje u okolini točke (x_0,y_0) i neprekidne su u točki (x_0,y_0) tada je funkcija $z=f\left(x,y\right)$ diferencijabilana funkcija u točki (x_0,y_0) .

Definicija 3.13 Totalni diferencijal $df\left(x_{0},y_{0}\right)$ funkcije f u točki (x_{0},y_{0}) definiramo kao

$$df(x_0, y_0) = f_x(x_0, y_0) dx + f_y(x_0, y_0) dy$$

gdje su dx i dy diferencijali nezavisnih varijabli x i y.

Napomena Budući je $\triangle x = dx$ i $\triangle y = dy$, onda linearnu aproksimaciju možemo zapisati kao

$$f(x,y) \approx L(x,y) = f(x_0,y_0) + df(x_0,y_0).$$

Teorem 3.20 (Dovoljan uvjet za lokalni ekstrem) Neka je $T_0=(x_0,y_0)\in D$ stacionarna točka funkcije $f:D\to\mathbb{R},\ D\subseteq\mathbb{R}^2,$ i neka su druge parcijalne derivacije funkcije f neprekidne na nekoj ε -kugli $K(T_0;\varepsilon)\subseteq D.$ Neka je

$$\begin{split} D(\boldsymbol{T}_0) \; &= \; f_{xx}(\boldsymbol{T}_0) \cdot \boldsymbol{f}_{yy}(\boldsymbol{T}_0) - [f_{xy}(\boldsymbol{T}_0)]^2 = \\ &= \; \left| \begin{array}{cc} f_{xx}(\boldsymbol{T}_0) & f_{xy}(\boldsymbol{T}_0) \\ f_{xy}(\boldsymbol{T}_0) & f_{yy}(\boldsymbol{T}_0) \end{array} \right|. \end{split}$$

Tada vrijedi:

- Ako je $D(T_0)>0$ i $f_{xx}(T_0)>0$, tada je f u točki T_0 ima lokalni minimum $f\left(T_0\right)$;
- Ako je $D(T_0)>0$ i $f_{xx}(T_0)<0$, tada je f u točki T_0 ima lokalni maksimum $f\left(T_0\right)$;
- Ako je $D(T_0) < 0$, tada f u točki T_0 nema ekstrem.

Napomena Ako je $D(T_0)=0$ ne možemo zaključiti ništa o ekstremu. U ovom slučaju možemo imati ekstrem, ali i sedlastu točku. Tu je potrebno daljnje ispitivanje.

Točka u kojima se prve parcijalne derivacije poništavaju naziva se <u>stacionarna točka.</u>

Slično imamo za funkcije tri varijable.

Teorem 3.19a) (Nužan uvjet za lokalni ekstrem) Ako funkcija $f:D\to\mathbb{R},\ D\subseteq\mathbb{R}^3$, ima u točki $T_0=(x_0,y_0,z_0)\in D$ lokalni ekstrem i ako je u toj točki derivabilna, onda je

$$f_x(x_0, y_0, z_0) = 0, \ f_y(x_0, y_0, z_0) = 0, \ f_z(x_0, y_0, z_0) = 0.$$

Teorem 3.21 Ako je $z=f\left(x,y\right)$ neprekidna na zatvorenom omeđenom skupu $D\subseteq\mathbb{R}^2$, tada postoje točke (x_1,y_1) i (x_2,y_2) u kojima f ima globalni maksimum $f\left(x_1,y_1\right)$ i globalni minimum $f\left(x_2,y_2\right)$, redom.

Traženje globalnih ekstrema:

- a) Nađu se stacionarne točke (lokalni ekstremi) funkcije *f* i vrijednosti od *f* u njima;
- b) Nađu točke ekstrema od f na rub od D i vrijednosti od f u njima;
- c) Točka kojoj pripada najveća vrijednost od f iz a) i b) je točka globalnog maksimuma, a točka kojoj pripada najmanja vrijednost od f je točka globalnog minimuma.

Teorem 3.20a) (Dovoljan uvjet za lokalni ekstrem)

Neka je $T_0=(x_0,y_0,z_0)\in D$ stacionarna točka funkcije $f:D\to\mathbb{R},\,D\subseteq\mathbb{R}^3$, i neka su druge parcijalne derivacije funkcije f neprekidne na nekoj ε -kugli $K(T_0;\varepsilon)\subseteq D$. Neka je

$$\Delta_{3} = \begin{vmatrix} f_{xx}(T_{0}) & f_{xy}(T_{0}) & f_{xz}(T_{0}) \\ f_{xy}(T_{0}) & f_{yy}(T_{0}) & f_{yz}(T_{0}) \\ f_{xz}(T_{0}) & f_{yz}(T_{0}) & f_{zz}(T_{0}) \end{vmatrix}$$

$$\Delta_{2} = \begin{vmatrix} f_{xx}\left(T_{0}\right) & f_{xy}\left(T_{0}\right) \\ f_{xy}\left(T_{0}\right) & f_{yy}\left(T_{0}\right) \end{vmatrix} \quad \mathbf{i} \quad \Delta_{1} = f_{xx}\left(T_{0}\right)$$

- Ako je $\Delta_3 > 0, \, \Delta_2 > 0$ i $\Delta_1 > 0, \, \text{tada je } f$ u točki T_0 ima lokalni minimum $f\left(T_0\right)$;
- Ako je $\Delta_3 < 0,\, \Delta_2 > 0$ i $\Delta_1 < 0,\,$ tada je f u točki T_0 ima lokalni maksimum $f\left(T_0\right)$;
- U svim ostalim slučajevima kada je $\Delta_2 \neq 0$, f u točki T_0 nema lokalni ekstrem;
- Ako je $\Delta_2 = 0$ nema odluke.

Definicija 4.1 Dvostruki integral funkcije $f:K\longrightarrow \mathbb{R}$ nad pravokutnikom $K\subseteq \mathbb{R}^2$ je broj

$$I = \lim_{\substack{m \to \infty \\ n \to \infty}} \sum_{i=1}^{m} \sum_{j=1}^{n} f(x_i^*, y_j^*) \triangle x \triangle y$$

(uz oznake od prije) ukoliko on postoji.

Uobičajena oznaka je

$$I = \iint_K f(x, y) \, \mathrm{d}x \, \mathrm{d}y.$$

Definicija 4.2 Trostruki integral funkcije $f:K\longrightarrow \mathbb{R}$ nad nad kvadrom $K\subseteq \mathbb{R}^3$ je broj

$$J = \lim_{l,m,n\to\infty} \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} f(x_i^*, y_j^*, z_k^*) \triangle x \triangle y \triangle z$$

ukoliko on postoji.

Uobičajena oznaka je

$$J = \iiint_K f(x, y, z) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z.$$

Napomena:

- **1.** Suma $\sum\limits_{i=1}^{m}\sum\limits_{j=1}^{n}f(x_{i}^{*},y_{j}^{*})\triangle x\triangle y$ naziva se Riemannovom sumom, a integral $\iint_{K}f(x,y)\,\mathrm{d}x\,\mathrm{d}y$ Riemannovim integralom funkcije f nad K.
- **2.** Limes iz Definicije 4.1. uvijek postoji ukoliko je funkcija *f* neprekidna. On postoji i za neke prekidne funkcije.

Teorem 4.3 (Fubini) Neka je $f:K\to\mathbb{R}$ neprekidna funkcija, pri čemu je $K=[a,b]\times[c,d]\subset\mathbb{R}^2$ pravokutnik. Tada vrijedi

$$\iint_K f(x,y) \, \mathrm{d}x \, \mathrm{d}y =$$

$$= \int_a^b \left(\int_c^d f(x,y) \, \mathrm{d}y \right) \, \mathrm{d}x = \int_c^d \left(\int_a^b f(x,y) \, \mathrm{d}x \right) \, \mathrm{d}y.$$
Uobičajeni zapis je
$$\int_a^b \left(\int_c^d f(x,y) \, \mathrm{d}y \right) \, \mathrm{d}x = \int_a^b \, \mathrm{d}x \int_c^d f(x,y) \, \mathrm{d}y,$$

$$\int_a^d \left(\int_c^b f(x,y) \, \mathrm{d}x \right) \, \mathrm{d}y = \int_a^d \, \mathrm{d}y \int_a^b f(x,y) \, \mathrm{d}x$$

i pritom kažemo da smo proveli integraciju u redoslijedu yx, odnosno xy. **Definicija 4.4** Neka je $f:D\to\mathbb{R}$ neprekidna funkcija pri čemu je $D\subset\mathbb{R}^2$ omeđen skup. Neka je $K\subset\mathbb{R}^2$ bilo koji pravokutnik što sadrži D, a funkcija $\widetilde{f}:K\to\mathbb{R}$ trivijalno proširenje funkcije f. Ako je funkcija \widetilde{f} integrabilna onda **dvostruki integral** (na D) od f definiramo formulom

$$\iint_D f(x,y) \, \mathrm{d}x \, \mathrm{d}y = \iint_K \widetilde{f}(x,y) \, \mathrm{d}x \, \mathrm{d}y. \tag{1}$$

Teorem 4.7 Neka je $f:D\to\mathbb{R},$ funkcija, pri čemu je

$$D = \left\{ \begin{array}{c} (x,y,z) \mid a \leq x \leq b, \; \varphi_1(x) \leq y \leq \varphi_2(x), \\ g_1(x,y) \leq z \leq g_2(x,y) \end{array} \right\},$$

gdje su φ_1, φ_2 i g_1, g_2 neprekidne funkcije (Slika 4.9.). Tada je

$$\iiint_{D} f(x, y, z) dx dy dz =$$

$$= \int_{a}^{b} \left(\int_{\varphi_{1}(x)}^{\varphi_{2}(x)} \left(\int_{g_{1}(x,y)}^{g_{2}(x,y)} f(x, y, z) dz \right) dy \right) dx. \quad (4)$$

4.4 Nekoliko primjena višestrukog integrala

Pokazali smo da ako je funkcija $f:D\to\mathbb{R}$, $D\subset\mathbb{R}^2$, neprekidna i nenegativna, onda pripadni dvostruki integral mjeri volumen geometrijskoga tijela Ω određenoga osnovicom D i plohom G_f , tj.

$$V(\Omega) = \iint_D f(x, y) \, \mathrm{d}x \, \mathrm{d}y.$$

Primijetimo da u slučaju konstantne funkcije f(x,y)=1 promatrani integral mjeri površinu ravninskoga skupa D, tj.

$$P(D) = \iint_D dx \, dy.$$

Teorem 4.5 Neka je $f:D\to\mathbb{R}$ funkcija, pri čemu je $D\subset\mathbb{R}^2$ omeđen grafovima neprekidnih funkcija $\varphi_1,\varphi_2:[a,b]\to\mathbb{R},\,\varphi_1\leq\varphi_2$ (Slika 4.6.(a)). Tada je

$$\iint_D f(x,y) \, \mathrm{d}x \, \mathrm{d}y = \int_a^b \left(\int_{\varphi_1(x)}^{\varphi_2(x)} f(x,y) \, \mathrm{d}y \right) \, \mathrm{d}x. \quad (2)$$

Posve slično, kad je $D\subset\mathbb{R}^2$ omeđen grafovima neprekidnih funkcija $\psi_1,\psi_2:[c,d]\to\mathbb{R},\ \psi_1\leq\psi_2$ (Slika 4.6.(b)), vrijedi

$$\iint_D f(x,y) \, \mathrm{d}x \, \mathrm{d}y = \int_c^d \left(\int_{\psi_1(y)}^{\psi_2(y)} f(x,y) \, \mathrm{d}x \right) \, \mathrm{d}y. \quad (3)$$

Teorem 4.6 Neka je $f:K\to\mathbb{R}$ funkcija, pri čemu je $K=[a,b]\times[c,d]\times[r,s]\subset\mathbb{R}^3$ kvadar. Tada vrijedi:

$$\iiint_K f(x, y, z) dx dy dz$$

$$= \int_a^b \left(\int_c^d \left(\int_r^s f(x, y, z) dz \right) dy \right) dx.$$

"Izmijenjujući mjesta" varijablama dobivamo analogne integracijske formule.

U slučaju trostrukog integrala, ako funkcija $f:D\to\mathbb{R}$, $D\subset\mathbb{R}^3$, predstavlja gustoću tvarnoga tijela Ω što zaprema geometrijsko tijelo $D,\,\Omega\equiv D$, pripadni integral mjeri masu, tj.

$$m(\Omega) = \iiint_D f(x, y, z) dx dy dz.$$

Uočimo da za konstantnu funkciju f(x,y,z)=1 (homogenost) pripadni integral mjeri volumen tvarnoga tijela Ω što zaprema geometrijsko tijelo D, $\Omega\equiv D$

$$V(\Omega) = \iiint_D dx \, dy \, dz.$$