.This course focuses on **implementing tools** and **techniques to** effectively manage your **modeling resources** and **best serve batch** and **real-time inference requests**.

In this course, you'll implement effective search strategies for the best model that will scale for various serving needs while constraining model complexity and hardware requirements. You'll optimize and manage this compute storage and IO resources your model needs in production environments during its life cycle.

In this journey, you will continue to use the **TFX library** and rely on tools like **AutoML** for finding the **best suitable model and TensorFlow model analysis to address model fairness, explainability issues, and mitigate bottlenecks.** Along the way, you'll learn about more specialized **scenarios** like **dimensionality reduction** and **pruning** to manage your model resources wisely

exploring **pipelining** and **parallelism** and high-performance **ingestion** to make the most of your computational resources.

A Production ML system must **run nonstop**, **at the minimum cost** while producing the maximum performance.

Hyperparameter Tuning

Keras Tuner.

similarities between hyperparameter tuning and neural architecture search.

Neural architecture search, or NAS: automating the design of neural networks -> find the optimal architecture.

Types of parameters in ML Models:

Trainable parameters:

- learned by the algorithm during training. (weights bias of a neural netwok)

Hyperparamters:

- set before launching the learning process
- not updated in each training ste (learning rate or the number of units in a dense layer)

Hyperparameter

- architecture options
- activation functions
- weight initialization strategy
- optimization hyperparameters (learning rate, stop condition),

Tuning methods:

- Random search
- Hyperband
- Bayesian optimization
- sklearn

Keras Autotuner

```
Get Started
           autotuner.py 2, U X
autotuner.py > ...
     import tensorflow as tf
     from tensorflow import keras
     mnist = tf.keras.datasets.mnist
     (x train,y train),(x test,y test) = mnist.load data()
     x train, x test = x train /255.0, x test /255.0
     model = tf.keras.models.Sequential([
          tf.keras.layers.Flatten(input shape=(28, 28)),
 10
          tf.keras.layers.Dense(512, activation='relu'),
 11
 12
          tf.keras.layers.Dropout(0.2),
 13
          tf.keras.layers.Dense(10, activation = 'softmax')
 14
      1)
 15
 16
     model.compile(optimizer='adam',
 17
                  loss='sparse categorical crossentropy',
 18
                  metrics=['accuracy'])
 19
     model.fit(x train,y train, epochs=5)
 20
     model.evaluate(x test,y test)
 21
```

pip install -q -U keras-tuner

Is this architecture optimal?

- Do the model need more or less hidden units to perform well?
- How does model size affect the convergence speed?
- Is there any trade off between convergence speed, model size and accuracy?
- Search automation is the natural path to take
- Keras tuner built in search functionality.

Other search strategen:

The parameters you choose will vary based on your strategy. But the important one to note is the **objective**.

In this case, our objective is val_accuracy, so we want to maximize on the validation accuracy. You can find details on the rest at the Keras site. Search can take a while to complete and use a lot of compute resources.

But you can configure a an **early stopping callback** that stops the search when the conditions are met. So for example, here I'm monitoring the validation loss and the patience is set to **five**, which means that it doesn't change significantly, or if it doesn't change significantly in five epics, then stop searching on this iteration. And you set the **call back as a search parameter**. The rest of the parameter specify **how to search**, such as the **data** and **label**, the number of **epics to train** for, and the validation split. So for example how much data you will use to validate against the training set.

As it searches, you'll see the results of each trial.

In the example: searching on one parameter, the units in the dense hidden layer. As you can see as it updates, you can keep track of the best value so far. Which at this point that we have in the slide is 48, and in this case actually it ended up that way too when it completed. So I can go back and try my architecture again and use the results of the Keras tuner to set the number of units manually, this time with 48 neurons in the layer, which is the number that we got from from Keras tuner.

And when it's retrained, you'll see the results. It's only been five epics and the value isn't quite as good as it was before hand, but our epics are three times quicker than they were. So I can maybe train for longer to get better results knowing that at the very least I've optimized part of my architecture.

```
from gc import callbacks
from pickletools import optimize
from tracemalloc import stop

from yaml import DirectiveToken
import tensorflow as tf
from tensorflow import keras
import keras_tuner as kt

mnist = tf.keras.datasets.mnist
(x_train,y_train),(x_test,y_test) = mnist.load_data()
x_train, x_test = x_train /255.0, x_test /255.0

def model_builder(hp):
    model = keras.Sequential()
    model.add(keras.layers.Flatten(input_shape=(28, 28)))
```

```
max value=512, step=16)
activation='relu'))
  model.add(keras.layers.Dense(hp.Choice('units',
[16,16,512]), activation='relu'))
  model.add(tf.keras.layers.Dropout(0.2))
  model.add(keras.layers.Dense(10))
  model.compile(optimizer='adam',
           loss='sparse categorical crossentropy',
           metrics=['accuracy'])
   return model
tuner = kt.Hyperband(model builder,
                   objective = 'val accuracy',
                   max epochs=10,
                   factor=3,
                   directory='my dir',
                   project name = 'intro to kt')
# kt.RandomSearch
stop early =
tf.keras.callbacks.EarlyStopping(monitor="val loss",
patience=5)
# 5 steps not significantly changed
tuner.search(x train,
           y train,
           epochs=50,
           validation split=0.2,
           callbacks=[stop early])
```

```
best_model = tuner.get_best_models()[0]
```

Ungraded Lab: Intro to Keras Tuner

Developing machine learning models is usually an iterative process. You start with an initial design then reconfigure until you get a model that can be trained efficiently in terms of time and compute resources. As you may already know, these settings that you adjust are called *hyperparameters*. These are the variables that govern the training process and the topology of an ML model. These remain constant over the training process and directly impact the performance of your ML program.

The process of finding the optimal set of hyperparameters is called *hyperparameter tuning* or *hypertuning*, and it is an essential part of a machine learning pipeline. Without it, you might end up with a model that has unnecessary parameters and take too long to train.

Hyperparameters are of two types:

- Model hyperparameters which influence model selection such as the number and width of hidden layers
- 2. Algorithm hyperparameters which influence the speed and quality of the learning algorithm such as the <u>learning rate</u> for Stochastic Gradient Descent (SGD) and the number of nearest neighbors for a k Nearest Neighbors (KNN) classifier.

For more complex models, the number of hyperparameters can increase dramatically and tuning them manually can be quite challenging.

In this lab, you will practice hyperparameter tuning with <u>Keras Tuner</u>, a package from the Keras team that automates this process. For comparison, you will first train a baseline model with preselected hyperparameters, then redo the process with tuned hyperparameters. Some of the examples and discussions here are taken from the <u>official tutorial provided by Tensorflow</u> but we've expounded on a few key parts for clarity.

Download and prepare the dataset

Let us first load the <u>Fashion MNIST dataset</u> into your workspace. You will use this to train a machine learning model that classifies images of clothing.

1 # Import keras

For preprocessing, you will normalize the pixel values to make the training converge faster.

```
1 # Normalize pixel values between 0 and 1
2 img_train = img_train.astype('float32') / 255.0
3 img_test = img_test.astype('float32') / 255.0
```

Baseline Performance

As mentioned, you will first have a baseline performance using arbitrarily handpicked parameters so you can compare the results later. In the interest of time and resource limits provided by Colab, you will just build a shallow dense neural network (DNN) as shown below. This is to demonstrate the concepts without involving huge datasets and long tuning and training times. As you'll see later, even small models can take some time to tune. You can extend the concepts here when you get to build more complex models in your own projects.

```
1 # Build the baseline model using the Sequential API
2 b_model = keras.Sequential()
3 b_model.add(keras.layers.Flatten(input_shape=(28, 28)))
4 b_model.add(keras.layers.Dense(units=512, activation='relu', name='dense_1')) #
5 b_model.add(keras.layers.Dropout(0.2))
6 b_model.add(keras.layers.Dense(10, activation='softmax'))
7
8 # Print model summary
9 b_model.summary()
```

Model: "sequential"

Layer (type)	Output Shape	Param #
flatten (Flatten)	(None, 784)	Θ
dense_1 (Dense)	(None, 512)	401920

```
dropout (Dropout) (None, 512) 0

dense (Dense) (None, 10) 5130

Total params: 407,050
Trainable params: 407,050
Non-trainable params: 0
```

As shown, we hardcoded all the hyperparameters when declaring the layers. These include the number of hidden units, activation, and dropout. You will see how you can automatically tune some of these a bit later.

Let's then setup the loss, metrics, and the optimizer. The learning rate is also a hyperparameter you can tune automatically but for now, let's set it at 0.001.

With all settings set, you can start training the model. We've set the number of epochs to 10 but feel free to increase it if you have more time to go through the notebook.

```
1 # Number of training epochs.
2 NUM_EPOCHS = 10
3
4 # Train the model
5 b_model.fit(img_train, label_train, epochs=NUM_EPOCHS, validation_split=0.2)
```

```
Epoch 1/10
Epoch 2/10
Epoch 3/10
Epoch 4/10
Epoch 5/10
Epoch 6/10
Epoch 7/10
Epoch 8/10
Epoch 9/10
Epoch 10/10
<keras.callbacks.History at 0x7fb8e002bf50>
```

Finally, you want to see how this baseline model performs against the test set.

Let's define a helper function for displaying the results so it's easier to compare later.

```
1 # Define helper function
 2 def print results(model, model name, eval dict):
 3
    Prints the values of the hyparameters to tune, and the results of model evalu
 5
6
    Args:
7
      model (Model) - Keras model to evaluate
      model name (string) - arbitrary string to be used in identifying the model
8
9
      eval dict (dict) - results of model.evaluate
10
    print(f'\n{model_name}:')
11
12
13
    print(f'number of units in 1st Dense layer: {model.get layer("dense 1").units
14
    print(f'learning rate for the optimizer: {model.optimizer.lr.numpy()}')
15
16
    for key,value in eval dict.items():
      print(f'{key}: {value}')
17
18
19 # Print results for baseline model
20 print results(b model, 'BASELINE MODEL', b eval dict)
```

```
BASELINE MODEL:
number of units in 1st Dense layer: 512
learning rate for the optimizer: 0.0010000000474974513
loss: 0.35033318400382996
accuracy: 0.878000020980835
```

That's it for getting the results for a single set of hyperparameters. As you can see, this process can be tedious if you want to try different sets of parameters. For example, will your model improve if you use <code>learning_rate=0.00001</code> and <code>units=128?</code> What if <code>0.001</code> paired with 256? The process will be even more difficult if you decide to also tune the dropout and try out other activation functions as well. Keras Tuner solves this problem by having an API to automatically search for the optimal set. You will just need to set it up once then wait for the results. You will see how this is done in the next sections.

Keras Tuner

To perform hypertuning with Keras Tuner, you will need to:

- Define the model
- Select which hyperparameters to tune
- Define its search space
- Define the search strategy

Install and import packages

You will start by installing and importing the required packages.

Define the model

The model you set up for hypertuning is called a *hypermodel*. When you build this model, you define the hyperparameter search space in addition to the model architecture.

You can define a hypermodel through two approaches:

- By using a model builder function
- By <u>subclassing the HyperModel class</u> of the Keras Tuner API

In this lab, you will take the first approach: you will use a model builder function to define the image classification model. This function returns a compiled model and uses hyperparameters you define inline to hypertune the model.

The function below basically builds the same model you used earlier. The difference is there are two hyperparameters that are setup for tuning:

- the number of hidden units of the first Dense layer
- the learning rate of the Adam optimizer

You will see that this is done with a HyperParameters object which configures the hyperparameter you'd like to tune. For this exercise, you will:

- use its Int() method to define the search space for the Dense units. This allows you to set a minimum and maximum value, as well as the step size when incrementing between these values.
- use its Choice() method for the learning rate. This allows you to define discrete values to include in the search space when hypertuning.

Volumentation 1 def model builder(hp): 2 Builds the model and sets up the hyperparameters to tune. 3 4 5 Args: 6 hp - Keras tuner object 7 8 Returns: 9 model with hyperparameters to tune 10 11 12 # Initialize the Sequential API and start stacking the layers model = keras.Sequential() 13 14 model.add(keras.layers.Flatten(input shape=(28, 28))) 15 16 # Tune the number of units in the first Dense layer # Choose an optimal value between 32-512 17 hp units = hp.Int('units', min value=32, max value=512, step=32) 18 model.add(keras.layers.Dense(units=hp units, activation='relu', name='dense 1 19 20 21 # Add next layers model.add(keras.layers.Dropout(0.2)) 22 model.add(keras.layers.Dense(10, activation='softmax')) 23 24 # Tune the learning rate for the optimizer 25 26 # Choose an optimal value from 0.01, 0.001, or 0.0001 27 hp learning rate = hp.Choice('learning rate', values=[1e-2, 1e-3, 1e-4]) 28 29 model.compile(optimizer=keras.optimizers.Adam(learning rate=hp learning rate) loss=keras.losses.SparseCategoricalCrossentropy(), 30 31 metrics=['accuracy']) 32 33 return model

Instantiate the Tuner and perform hypertuning

Now that you have the model builder, you can then define how the tuner can find the optimal set of hyperparameters, also called the search strategy. Keras Tuner has <u>four tuners</u> available with built-in strategies - RandomSearch, Hyperband, BayesianOptimization, and Sklearn.

In this tutorial, you will use the Hyperband tuner. Hyperband is an algorithm specifically developed for hyperparameter optimization. It uses adaptive resource allocation and early-stopping to quickly converge on a high-performing model. This is done using a sports

championship style bracket wherein the algorithm trains a large number of models for a few epochs and carries forward only the top-performing half of models to the next round. You can read about the intuition behind the algorithm in section 3 of this paper.

Hyperband determines the number of models to train in a bracket by computing 1 + log factor (max_epochs) and rounding it up to the nearest integer. You will see these parameters (i.e. factor and max_epochs passed into the initializer below). In addition, you will also need to define the following to instantiate the Hyperband tuner:

- the hypermodel (built by your model builder function)
- the objective to optimize (e.g. validation accuracy)
- a directory to save logs and checkpoints for every trial (model configuration) run during the hyperparameter search. If you re-run the hyperparameter search, the Keras Tuner uses the existing state from these logs to resume the search. To disable this behavior, pass an additional overwrite=True argument while instantiating the tuner.
- the project_name to differentiate with other runs. This will be used as a subdirectory name under the directory.

You can refer to the documentation for other arguments you can pass in.

Let's see a summary of the hyperparameters that you will tune:

```
1 # Display hypertuning settings
2 tuner.search_space_summary()
```

```
Search space summary
Default search space size: 2
units (Int)
{'default': None, 'conditions': [], 'min_value': 32, 'max_value': 512, 'step'
learning_rate (Choice)
{'default': 0.01, 'conditions': [], 'values': [0.01, 0.001, 0.0001], 'orderec
```

You can pass in a callback to stop training early when a metric is not improving. Below, we define an <u>EarlyStopping</u> callback to monitor the validation loss and stop training if it's not improving after 5 epochs.

```
1 stop_early = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=5)
```

You will now run the hyperparameter search. The arguments for the search method are the same as those used for tf.keras.model.fit in addition to the callback above. This will take around 10 minutes to run.

```
1 # Perform hypertuning
2 tuner.search(img_train, label_train, epochs=NUM_EPOCHS, validation_split=0.2, c

Trial 30 Complete [00h 00m 46s]
  val_accuracy: 0.8854166865348816

Best val_accuracy So Far: 0.8872500061988831
  Total elapsed time: 00h 12m 03s
  INFO:tensorflow:Oracle triggered exit
  INFO:tensorflow:Oracle triggered exit
```

You can get the top performing model with the get_best_hyperparameters() method.

```
1 # Get the optimal hyperparameters from the results
2 best_hps=tuner.get best hyperparameters()[0]
3
4 print(f"""
5 The hyperparameter search is complete. The optimal number of units in the first 6 layer is {best_hps.get('units')} and the optimal learning rate for the optimize 7 is {best_hps.get('learning_rate')}.
8 """)
9
10 best_model = tuner.get best models()[0]
```

The hyperparameter search is complete. The optimal number of units in the fir layer is 192 and the optimal learning rate for the optimizer is 0.001.

Build and train the model

Now that you have the best set of hyperparameters, you can rebuild the hypermodel with these values and retrain it.

```
1 # Build the model with the optimal hyperparameters
2 h_model = tuner.hypermodel.build(best hps)
3 h_model.summary()
```

Model: "sequential_1"

Layer (type)	Output	Shape	Param #
flatten_1 (Flatten)	(None,	784)	0

```
      dense_1_1 (Dense)
      (None, 192)
      150720

      dropout_1 (Dropout)
      (None, 192)
      0

      dense_1 (Dense)
      (None, 10)
      1930
```

Total params: 152,650 Trainable params: 152,650 Non-trainable params: 0

```
1 # Train the hypertuned model
```

```
2 h_model.fit(img_train, label_train, epochs=NUM_EPOCHS, validation_split=0.2)
```

```
Epoch 1/10
Epoch 2/10
Epoch 3/10
Epoch 4/10
Epoch 5/10
Epoch 6/10
Epoch 7/10
    1500/1500 [=====
Epoch 8/10
Epoch 9/10
Epoch 10/10
<keras.callbacks.History at 0x7fb84d6808d0>
```

You will then get its performance against the test set.

return_dict: If True, loss and metric results are returned as a dict, with each key being the name of the metric. If False, they are returned as a list.

```
1 # Evaluate the hypertuned model against the test setare returned as a list
2 h_eval_dict = h_model.evaluate(img_test, label_test, return dict=True)
```

We can compare the results we got with the baseline model we used at the start of the notebook. Results may vary but you will usually get a model that has less units in the dense layer, while having comparable loss and accuracy. This indicates that you reduced the model size and saved compute resources while still having more or less the same accuracy.

```
1 # Print results of the baseline and hypertuned model
2 print_results(b_model, 'BASELINE MODEL', b_eval_dict)
3 print_results(b_model 'HYPERTINED MODEL' b_eval_dict)
```

J PLINT LESUCES (H_MOUSE, HILLENTONED MODEL , H_SVAC_UICE)

BASELINE MODEL:

number of units in 1st Dense layer: 512

learning rate for the optimizer: 0.0010000000474974513

loss: 0.35033318400382996 accuracy: 0.878000020980835

HYPERTUNED MODEL:

number of units in 1st Dense layer: 10

learning rate for the optimizer: 0.0010000000474974513

loss: 0.34706664085388184 accuracy: 0.8773000240325928

Bonus Challenges (optional)

If you want to keep practicing with Keras Tuner in this notebook, you can do a factory reset (Runtime > Factory reset runtime) and take on any of the following:

- hypertune the dropout layer with hp.Float() or hp.Choice()
- hypertune the activation function of the 1st dense layer with hp.Choice()
- determine the optimal number of Dense layers you can add to improve the model. You can use the code here as reference.
- explore pre-defined HyperModel classes <u>HyperXception and HyperResNet</u> for computer vision applications.

Wrap Up

In this tutorial, you used Keras Tuner to conveniently tune hyperparameters. You defined which ones to tune, the search space, and search strategy to arrive at the optimal set of hyperparameters. These concepts will again be discussed in the next sections but in the context of AutoML, a package that automates the entire machine learning pipeline. On to the next!

✓ 0 s Abgeschlossen um 09:11