Exemple A* avec recherche d'un chemin entre deux villes

Graphe de recherche:

 n_0 : ville de départ

 n_6 : destination

h : distance à vol d'oiseau

c : distance réelle entre deux ville

Exemple A* avec recherche dans une ville

<u>Contenu de open à chaque</u> <u>itération (état, f, parent) :</u>

- 1. (*n*₀, 9, void)
- 2. $(n_1,5,n_0)$, $(n_2,6,n_0)$, $(n_3,7,n_0)$
- 3. $(n_2,6,n_0)$, $(n_3,7,n_0)$, $(n_5,12,n_1)$
- 4. $(n_3,7,n_0)$, $(n_4,9,n_2)$, $(n_5,12,n_1)$
- 5. $(n_2,5,n_3)$, $(n_4,6,n_3)$, $(n_5,12,n_1)$ 6. $(n_4,6,n_3)$, $(n_5,12,n_1)$
- 7. $(n_6, 7, n_4)$, $(n_5, 12, n_1)$
- 8. Solution : n_0, n_3, n_4, n_6

<u>Contenu de closed à chaque</u> itération :

1. Vide

- T. VIGE
- 2. $(n_0, 9, \text{void})$
- 3. $(n_0, 9, \text{void}), (n_1, 5, n_0)$
- 4. $(n_0, 9, \text{void}), (n_1, 5, n_0), (n_2, 6, n_0)$
- 5. $(n_0, 9, \text{void}), (n_1, 5, n_0), (n_3, 7, n_0)$
- 6. $(n_0, 9, \text{void}), (n_1, 5, n_0), (n_3, 7, n_0), (n_2, 5, n_3)$

 n_3

 n_6

 $c(n_0, n_3)$

 n_1

 n_{5}

- 7. $(n_0, 9, \text{void}), (n_1, 5, n_0), (n_3, 7, n_0), (n_2, 5, n_3), (n_4, 6, n_3)$
- 8. $(n_0, 9, \text{void}), (n_1, 5, n_0), (n_3, 7, n_0), (n_2, 5, n_3), (n_4, 6, n_3), (n_6, 7, n_4)$

D'autres algorithmes de recherche heuristique

- Best-First-Search
 - ◆ variante plus générale où f peut prendre une forme quelconque
 - \bullet A* est un cas spécial de Best-First-Search, où f(n) = g(n) + h(n)
- Greedy Best-First-Search
 - \diamond c'est un Best-First-Search où f(n) = h(n)
 - n'est pas garanti de trouver un chemin qui est optimal, mais marche parfois bien en pratique

Non-optimalité de Greedy best-First Search

(Illustration par Henry Kautz, U. of Washington)

Démo d'algorithmes de recherche dans un espace d'états

A*, Profondeur, Largeur, Best-First

http://planiart.usherbrooke.ca/~eric/ift615/demos/search/search.html