

Fig. 1a

	10	20	30	40	50
MP 52	CSRKAHVNF	KDMGWDDWII	APLEYEAFHC	EGLCEFPLRS	HLEPTNHAVI
BMP 2	CKRHPLYVDF	SDVGWNDWIV	APPGYHAFYC	HGECPFPLAD	HLNSTNHAIV
BMP 4	CRRHSLYVDF	SDVGWNDWIV	APPGYQAFYC	HGDCPFPLAD	HLNSTNHAIV
BMP 5	CKKHELYVSF	RDLGWQDWII	APEGYAAYFC	DGECSFPLNA	HMNATNHAIV
BMP 6	CRKHELYVSF	QDLGWQDWII	APKGYAANYC	DGECSFPLNA	HMNATNHAIV
BMP 7	CKKHELYVSF	RDLGWQDWII	APEGYAAYYC	EGERCAFPLNS	YMNATNHAIV
	* + * ***	* *** ****+	* * * + *	* + * *** +	++ ****

卷之三

	60	70	80	90	100
MP 52	QTLMNSMDPE	STPPPTCCVPT	RLSPISILFI	DSANNVVKQ	YEDMVVESCG
					CR
BMP 2	QTLVNSVNS-	KIPKACCVPT	ELSAISMLYL	DENEKVVLKN	YQDMVVVEGCG
					CR
BMP 4	QTLVNSVNS-	SIPKACCVPT	ELSAISMLYL	DEYDKVVLKN	YQEMVVVEGCG
					CR
BMP 5	QTLVHLMFPD	HVPKPCCAPT	KLNAISVLYF	DDSSNVILKK	YRNMVVRSCG
					CH
BMP 6	QTLVHLMNPE	YVPKPCCAPT	KLNAISVLYF	DDNSNVILKK	YRNMVVRACG
					CH
BMP 7	QTLVHFINPE	TVPKPCCAPT	QLNAISVLYF	DDSSNVILKK	YRNMVVRACG
	*** *** **	+ * *** * *	* * * *	* + * * *	* + * * * + ***
					*

Fig. 1b

SCANNED, # 12

MP12I	C C R Q E F F V D F R E I G W H D W I I	10	Q P E G Y A M N F C	20	I G Q C P L H I A G	30
Inhib β A	C C K K Q F F V S F K D I G W N D W I I		A P S G Y H A N Y C		E G E C P S H I A G	
Inhib β B	C C R Q Q F F I D F R L I G W N D W I I		A P T G Y Y G N Y C		E G S C P A Y L A G	
Inhib α	C H R V A L N I S F Q E L G W E R W I V		Y P P S F I F H Y C		H G G C G L H I P -	
	* + + + + + * + + + * *		* + * + * + + + + +		* * * + + + + + +	
MP12I	M P G I A A S F H T A V L N L L K A N T	50	A A G T T G G S C	60	C -- V P T A R R P	70
Inhib β A	T S G S S L S F H S T V I N H Y R M R G		H S S P F A N L K S C		C -- V P T K L R P	
Inhib β B	V P G S A S S F H T A V V N Q Y R M R G		L N P - G T V N S C		C -- I P T K L S T	
Inhib α	- - - P N L S L P V P G A P P T P A Q P		Y S S L L P G A Q P C		C A A L P G T M R P	
	+ + + * + + + + + +		+ + + + + + + +		+ * + * + + + +	
MP12I	L S L L Y Y D R D S N I V K T D - I	90	P D M V V E A C G C S	100		110
Inhib β A	M S M L Y Y D D G Q N I K K D - I		N M I V E E C G C S			
Inhib β B	M S M L Y F D D E Y N I V K R D - V		P N M I V E E C G C A			
Inhib α	L H V R T T S D G G Y S F K Y E T V P N		L L T Q H C A C I			
	+ + + + + + + + + +		+ + + + + + + +		+ + + + + + + +	

Fig.2a

Eco RI Nco I

OD	ATGAATTCCCATGGACCTGGCTGGMAKGAMTGGAT
BMP 2	ACGTGGGTGGAATGACTGGAT
BMP 3	ATATTGGCTGGAGTGAATGGAT
BMP 4	ATGTGGCTGGAATGACTGGAT
BMP 7	ACCTGGGCTGGCAGGACTGGAT
TGF- β 1	AGGACCTCGGCTGGAAGTGGAT
TGF- β 2	GGGATCTAGGGTGGAAATGGAT
TGF- β 3	AGGATCTGGGCTGGAAGTGGGT
inhibin α	AGCTGGGCTGGAACGGTGGAT
inhibin β A	ACATCGGCTGGAATGACTGGAT
inhibin β B	TCATCGGCTGGAACGACTGGAT

Fig.2b

Eco RI

OID	ATGAATTCGAGCTGCGTSGGSRCACAGCA
BMP 2	GAGTTCTGTCGGCACACAGCA
BMP 3	CATCTTTCTGGTACACAGCA
BMP 4	CAGTTCACTGGGCACACAACA
BMP 7	GAGCTGCGTGGCGCACAGCA
TGF- β 1	CAGCGCCTGCGGCACGCAGCA
TGF- β 2	TAAATCTTGGGACACGCAGCA
TGF- β 3	CAGGTCCCTGGGGCACGCAGCA
inhibin α	CCCTGGGAGAGCAGCACAGCA
inhibin β A	CAGCTTGGTGGGCACACAGCA
inhibin β B	CAGCTTGGTGGGAATGCAGCA