Test 01: One variable of interest Y

Richard

1/29/2022

Load required packages

```
library(tidyverse)
# if you're using macOS: library(dplyr)
library(skimr)
```

One variable of interest

- Sometimes, we often analyze/care about only one variable: salary, gender, interest, returns, score, pass/fail an exam, ...
- ▶ We can classify these measures into two groups:
 - Numeric variables: which ones above are numeric?
 - Categorical variables: which ones?
- ► Thanks to their data structure, we need different statistical tests applied to them when we ask questions about them
- Let check one example with a categorical variable: gender

Prepare Data

Please read the intro about data at here

```
Hsb <- within(
  read.csv("https://stats.idre.ucla.edu/stat/data/hsb2.csv"
    race <- as.factor(race)
    schtyp <- as.factor(schtyp)
    prog <- as.factor(prog)
})</pre>
```

Check data

head(Hsb[,1:8])

##		id	female	race	ses	schtyp	prog	read	write
##	1	70	0	4	1	1	1	57	52
##	2	121	1	4	2	1	3	68	59
##	3	86	0	4	3	1	1	44	33
##	4	141	0	4	3	1	3	63	44
##	5	172	0	4	2	1	2	47	52
##	6	113	0	4	2	1	2	44	52

Summary data

##

##

##

##

##

summary(Hsb)

id

socst

:26.00

Min.

	•		•			•	
##	Median	:100.50	Median	:1.000	3: 20	Median	:2.000
##	Mean	:100.50	Mean	:0.545	4:145	Mean	:2.055
##	3rd Qu.	:150.25	3rd Qu	.:1.000		3rd Qu	.:3.000
##	Max.	:200.00	Max.	:1.000		Max.	:3.000
##	re	ad	wri	te	ma	th	scie
##	Min.	:28.00	Min.	:31.00	Min.	:33.00	Min.
##	1st Qu.	:44.00	1st Qu.	:45.75	1st Qu.	:45.00	1st Qu
##	Median	:50.00	Median	:54.00	Median	:52.00	${\tt Median}$
##	Mean	:52.23	Mean	:52.77	Mean	:52.65	Mean
##	3rd Qu.	:60.00	3rd Qu.	:60.00	3rd Qu.	:59.00	3rd Qu
##	Max.	:76.00	Max.	:67.00	Max.	:75.00	Max.

Min. : 1.00 Min. :0.000 1: 24 Min.

female

1st Qu.: 50.75 1st Qu.:0.000 2: 11 1st Qu.:2.000

race

ses

:1.000

Questions

- How the authors construct female variable in the Hsb dataset.
- ► How much is the female ratio (female/total students)?
 - ▶ We often compare this ratio to which number/ratio?

Binomial test

- ▶ Hypothesis: Does the female ratio is equal to 0.5 or 50%?
- ▶ Null hypothesis H0: The female ratio is 50%.
- Alternative hypothesis H1: The female ratio is different from 50%.

R function

- ► Function: prop.test
- ► Usage: prop.test(x, n, p)
 - ▶ Recall: how to read help documentation in R?
 - ?prop.test

R code example

```
prop.test(sum(Hsb$female), length(Hsb$female), p = 0.5)
##
##
    1-sample proportions test with continuity correction
##
## data: sum(Hsb$female) out of length(Hsb$female), null |
## X-squared = 1.445, df = 1, p-value = 0.2293
## alternative hypothesis: true p is not equal to 0.5
## 95 percent confidence interval:
## 0.4733037 0.6149394
## sample estimates:
##
      р
## 0.545
```

Discussion

- ▶ In the sample, the female ratio is 54.5%
- ► The binomial test shows that the p-value is 0.2293, which is larger than the significance level (e.g., 10%)
- So we can't reject the null hypothesis
 - we don't have enough evidence to conclude that the female ratio is different than 50%

Similar questions in our life

- We often have same questions in our daily life
 - Does wearing mask prevent us from covid virus?
 - Does wearing helmet will help motorcylists have less serious traffic accidents?

Short quizes in classes

I will give you a sample data, let apply the prop.test with that data in class.

Numeric variable

- Next, switching to a numeric variable, which can receive any continuous value:
 - e.g., salary, returns, interest rate, ...
- ► We often want to know the mean (centralized tendency) and the variance/standard deviation of this variable:
 - e.g.1., what is the average salary after we graduated and got the first job
 - e.g.2., what is the average write score of all students in the class

Questions

- ▶ Check again, what is average write score in our Hbs data
- ▶ Is it equal to 50, or different

Binomial test

- Hypothesis: Does the write score is equal to 50?
- ▶ Null hypothesis H0: The write score is 50.
- ▶ Alternative hypothesis H1: The write score is different from 50.

R function

- ► Function: t.test
- ► Usage:

R code example

```
t.test(Hsb$write, mu = 50)
##
##
   One Sample t-test
##
## data: Hsb$write
## t = 4.1403, df = 199, p-value = 5.121e-05
## alternative hypothesis: true mean is not equal to 50
## 95 percent confidence interval:
## 51.45332 54.09668
## sample estimates:
## mean of x
## 52.775
```

Discussion

► How to read the results?

Short quizes again

▶ Let apply t.test more

Another important stat to measure central tendency: median

▶ Let do the same test, but ask if the median is equal to 50 or not

```
wilcox.test(Hsb$write, mu = 50)

##

## Wilcoxon signed rank test with continuity correction
##

## data: Hsb$write

## V = 13177, p-value = 3.702e-05

## alternative hypothesis: true location is not equal to 50
```

Next lecture

- This lecture introduces to you three important tests:
 - prop.test
 - one-sample t.test
 - one-sample median test wilcox.test
- ▶ We will consider two variables at the same time:
 - One is our variable of interest such as write score
 - Another one is another factor: such as female and male students
 - ▶ So the question is more like: are the write scores the same between female and male students? Or female students write better (thanks to their gifted writing skills) so they score higher?
- Let's see in the next lecture