ОТВЕТЫ

- **2.** $x_{1,2} = (2 \pm \sqrt{7})/3$. **3.** $\xi = \sqrt{3}/3$.
- **23.** Применить теорему Коши о среднем к функциям f(x)/x и 1/x.
- **30.** Применить теорему Коши о среднем к функциям f(x) и 1/x.

§ 17. Правило Лопиталя

СПРАВОЧНЫЕ СВЕДЕНИЯ

Tеорема (правило Лопиталя раскрытия неопределенности вида $\frac{0}{0}$ или $\frac{\infty}{\infty}$). Пусть функции f(x) и g(x):

- а) дифференцируемы в окрестности точки a, за исключением, быть может, самой точки a, причем $g'(x) \neq 0$ в этой окрестности;
- б) функции f(x) и g(x) являются одновременно либо бесконечно малыми, либо бесконечно большими при $x \to a$;
 - в) существует конечный $\lim_{x\to a} \frac{f'(x)}{g'(x)}$.

Тогда существует

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$
 (1)

Eсли функции f(x) и g(x) дифференцируемы в точке $a,\ f(a)=g(a)=0,\ g'(a)
eq 0,\ mo$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{f'(a)}{g'(a)}.$$
 (2)

примеры с решениями

 Π ример 1. Найти $\lim_{x \to 1} \frac{x^5 - 1}{2x^3 - x - 1}$.

▲ Применяя формулу (2), получаем

$$\lim_{x \to 1} \frac{x^5 - 1}{2x^3 - x - 1} = \lim_{x \to 1} \frac{5x^4}{6x^2 - 1} = 1. \blacktriangle$$

Теорема остается в силе при $a=+\infty,\ a=-\infty,$ а также в случае одностороннего предела $(x\to a+0, x\to a-0)$ при выполнении условий а)-в) соответственно на интервалах $(\delta;+\infty),\ (-\infty;-\delta),\ (a;a+\delta),\ (a-\delta;a),\ \delta>0.$

Если выполнены условия a), б), a $\lim_{x\to a} \frac{f'(x)}{g'(x)}$ равен $+\infty$ или $-\infty$,

то $\lim_{x\to a} \frac{f(x)}{g(x)}$ также равен соответственно $+\infty$ или $-\infty$.

Пример 2. Найти $\lim_{x\to 0} \frac{x-\arctan x}{x^3}$.