Chapter 11

Minimum Spanning Tree Recitation.

11.1 The Spanning Tree Problem.

Definition 11.1.1. A spanning tree T of a graph G = (V, E) is a subset of edges in E such that T is a tree (having no cycles), and the graph (V, T) is connected.

Problem 11.1.1 (MST). Let G=(V,E) be a weighted graph with weight function $w:E\to\mathbb{R}$. We extend the weight function to subsets of E by defining the weight of $X\subset E$ to be $w(X)=\sum_{e\in X}w(e)$. The minimum spanning tree (MST) of G is the spanning tree of G that has the minimal weight according to w. Note that in general, there might be more than one MST for G.

Definition 11.1.2. Let $U \subset V$. We define the cut associated with U as the set of outer edges of U, namely all the edges $(u,v) \in E$ such that $u \in U$ and $v \notin U$. We use the notation $X = (U, \bar{U})$ to represent the cut. We say that $E' \subset E$ respects the cut if $E' \cap X = \emptyset$.

Lemma 11.1.1 (The Cut-Lemma). Let T be an MST of G. Consider a forest $F \subset T$ and a cut X that respects X (i.e. $F \cap X = \emptyset$). Then $F \cup \operatorname{arg\,min}_e w(e)$ is also contained in some MST. Note that it does not necessarily have to be the same tree T.

Proof. If $e \in T$ then $F \cup \{e\} \subset T$ and we done. So consider the second case $e \notin T$. The intersection $T \cap X$ must not be empty, otherwise there is no path connecting vertices on the opposite ends of the cut (In notations of Definition 11.1.2, no path connects vertices in U to vertices in \bar{U}), and that is contradiction for T be a spanning tree. Denote by $e' = T \cap X$. And consider $T' = T/\{e'\} \cup \{e\}$.

First assume that

In the lecture, you have seen the Kruskal algorithm for finding an MST. This algorithm constructs the MST iteratively, where in each step it holds a forest F contained in the MST and then looks for the minimal edge in a cut that it respects. Note that since F has no cycles, any edge $e \subset E$ that does not close a cycle in F must belong to some cut X that is respected by F. By enforcing the order of edges being examined to be increasing in weight, it follows that the first edge that does not close a cycle is also the one with the minimum weight among them. Therefore,

by Lemma 11.1.1, we can conclude that the forest obtained by adding e into F is contained in the MST, and we can continue with it.

```
Result: Returns MST of given G=(V,E,w)

1 sorts the E according to w

2 define F_0=\emptyset and i\leftarrow 0

3 for e\in E in sorted order do

4 | if F_i\cup\{e\} has no cycle then

5 | F_{i+1}\leftarrow F_i\cup\{e\}

6 | i\leftarrow i+1

7 | end

8 end

9 return F_i

Algorithm 1: Kruskal alg.
```