

Amino Acids

Subject & topics: Biology | Biochemistry | Proteins Stage & difficulty: A Level C1

Part A General structure	
An amino acid is an organic molecule, containing a central to three other chemical groups:	atom bound to a hydrogen atom and group (COOH), and
There are standard amino acids that are coded for by t standard amino acids, humans can only synthesise 11 , and so we have the synthese 9 amino acids are sometimes called amino acids.	ve to get the other 9 from our diet.
Items: 100 an amino 20 an alcohol essential an R oxygen can anitrate	arbon (a carboxyl) (dispensable)

Figure 1: The molecular structures of six organic molecules (a-f).

Which of the org	anic molecules in Figure 1	1 are amino acids? S	select all that apply.	
а				
b				
С				
d				
е				
f				
none of	them			

Figure 2: The molecular structures of two amino acids: alanine and glycine.

Figure 2 shows the molecular structures of two amino acids: alanine and glycine. Which molecule below represents the dipeptide that would be formed from these amino acids?

$$H_2N$$
— CH — C — O — CH — C — OH
 CH_3

Molecule A

Molecule B

Molecule C

Molecule D

() A

() E

 \bigcirc

____ D

Created for isaacphysics.org by Lewis Thomson

Protein Primary Structure

Subject & topics: Biology | Biochemistry | Proteins Stage & difficulty: A Level C1

amino acids to tens of thousands of amino acids, but most are between 50 and 2000 amino acids. A chain of two amino acids is called a	amino acids to tens of thousands of amino acids, but most are between 50 and 2 000 amino acids. A chain of two amino acids is called a A chain of many amino acids is called a The sequence of amino acids is called the of the protein. Items: dipeptide monosaccharides monomers amino acids secondary structure glucose diamide	Part A The building blocks
The sequence of amino acids is called the of the protein. tems: dipeptide monosaccharides monomers amino acids secondary structure glucose diamide	The sequence of amino acids is called the of the protein. tems: dipeptide monosaccharides monomers amino acids secondary structure glucose diamide	
tems: dipeptide monosaccharides monomers amino acids secondary structure glucose diamide	tems: dipeptide monosaccharides monomers amino acids secondary structure glucose diamide	A chain of two amino acids is called a A chain of many amino acids is called a
dipeptide monosaccharides monomers amino acids secondary structure glucose diamide	dipeptide monosaccharides monomers amino acids secondary structure glucose diamide	The sequence of amino acids is called the of the protein.
		tems:
primary structure polyamine quaternary structure tertiary structure polypeptide	primary structure polyamine quaternary structure tertiary structure polypeptide	dipeptide monosaccharides monomers amino acids secondary structure glucose diamide
		primary structure polyamine quaternary structure tertiary structure polypeptide

Part B Formation and breakdown
Amino acids join together by the process of During this process, the $\ensuremath{\text{group}}$ (NH $_2$) of one amino acid reacts with the $\ensuremath{\text{group}}$ (COOH) of another amino acid to form a bond and $\ensuremath{\text{group}}$.
Proteins are broken down into amino acids by the process of During this process, is used to break apart the bond.
Part C Polypeptide possibilities
There are 20 different standard amino acids that are used to build proteins. How many primary structures could be produced for a protein that is 50 amino acids long? Give your answer to 2 significant figures.
Created for isaacphysics.org by Lewis Thomson

Levels of Protein Structure

Subject & topics: Biology | Biochemistry | Proteins Stage & difficulty: A Level P1

Part A Levels overview
Match the terms to the definitions.
: the association of several polypeptides with each other and (in some cases) with non-protein groups e.g. haemoglobin is made of four polypeptides and four haem groups (iron-containing organic molecules). Not all proteins have this level of structure, as some are only made of one polypeptide.
: the folding of the polypeptide due to hydrogen bonds between the H of one amino acid's NH group (within the peptide bond) and the O of another amino acid's CO group (within the peptide bond). Depending on the amino acid sequence, these hydrogen bonds can cause the polypeptide chain to form a tight coil (α -helix) or a long, snaking chain (β -sheet).
: the sequence of amino acids in the polypeptide (e.g. methionine-alanine-glycine-tyrosine). : the folding of the polypeptide due to interactions between R side-chains of different amino acids (which are able to interact due to coiling/zig-zagging caused by hydrogen bonds). These interactions
include ionic bonds (between carboxyl and amino groups within the R side-chains), disulfide bridges (between the S of one amino acid and the S of another), and hydrophilic/hydrophobic interactions (i.e. the polypeptide will fold such that hydrophilic R side-chains are on the outside, and hydrophobic R side-chains are on the inside).
Primary structure Secondary structure Tertiary structure Quaternary structure

Part B Prima	ry structure
/hich c	of these describes the primary structure of a protein? Select all that apply.
	the sequence of amino acids in a polypeptide chain e.g. methionine-glycine-alanine-glycine-lysine-alanine-leucine
	the 3D folding of a polypeptide chain due to hydrogen bonds, disulfide bridges, ionic bonds, and hydrophobic/hydrophilic interactions
	the coiling of a polypeptide chain to form an $lpha$ -helix
	the association between multiple protein-subunits and non-protein groups to form a single, large protein
	the snaking of a polypeptide chain to form a eta -sheet
Secor	idary structure If these describes the secondary structure of a protein? Select all that apply
Secor	Idary structure of these describes the secondary structure of a protein? Select all that apply. the snaking of a polypeptide chain to form a β -sheet
Secor	of these describes the secondary structure of a protein? Select all that apply.
Secor	of these describes the secondary structure of a protein? Select all that apply. the snaking of a polypeptide chain to form a eta -sheet
Secor	If these describes the secondary structure of a protein? Select all that apply. The snaking of a polypeptide chain to form a β -sheet the association between multiple protein-subunits and non-protein groups to form a single, large protein the sequence of amino acids in a polypeptide chain e.g. methionine-glycine-alanine-glycine-lysine-alanine-
	If these describes the secondary structure of a protein? Select all that apply. The snaking of a polypeptide chain to form a β -sheet the association between multiple protein-subunits and non-protein groups to form a single, large protein the sequence of amino acids in a polypeptide chain e.g. methionine-glycine-alanine-glycine-lysine-alanine-leucine the 3D folding of a polypeptide chain due to hydrogen bonds, disulfide bridges, ionic bonds, and

ich o	f these describes the tertiary structure of a protein? Select all that apply.
	the association between multiple protein-subunits and non-protein groups to form a single, large protein
	the 3D folding of a polypeptide chain due to hydrogen bonds, disulfide bridges, ionic bonds, and hydrophobic/hydrophilic interactions
	the snaking of a polypeptide chain to form a β -sheet
	the coiling of a polypeptide chain to form an $lpha$ -helix
	the sequence of amino acids in a polypeptide chain e.g. methionine-glycine-alanine-glycine-lysine-alanine-leucine
rt E uate	rnary structure
uate	rnary structure f these describes the quaternary structure of a protein? Select all that apply.
uate	
uate	f these describes the quaternary structure of a protein? Select all that apply.
uate	f these describes the quaternary structure of a protein? Select all that apply. the association between multiple protein-subunits and non-protein groups to form a single, large protein the sequence of amino acids in a polypeptide chain e.g. methionine-glycine-alanine-glycine-lysine-alanine-
uate	f these describes the quaternary structure of a protein? Select all that apply. the association between multiple protein-subunits and non-protein groups to form a single, large protein the sequence of amino acids in a polypeptide chain e.g. methionine-glycine-alanine-glycine-lysine-alanine-leucine

Tertiary Structure Interactions 1

Subject & topics: Biology | Biochemistry | Proteins Stage & difficulty: A Level C1

Within a polypeptide, the R groups/side-chains of amino acids interact with each other, and with the surrounding water, to produce the tertiary structure of the protein.

Figure 1 shows a selection of eight amino acids.

Figure 1: The chemical structures of eight amino acids.

In each part below, identify the amino acids whose R groups could form the given bond type with other amino acids within the same polypeptide.

Part A lonic bonds
Which amino acids could form ionic bonds with other amino acids within the same polypeptide?
alanine
arginine
aspartic acid
cysteine
glutamine
leucine
phenylalanine
serine
none of the above

Part B Hydrogen bonds
Which amino acids could form strong hydrogen bonds with other amino acids within the same polypeptide?
alanine
arginine
aspartic acid
cysteine
glutamine
leucine
phenylalanine
serine
none of the above

Part C Disulfide bridges		
Which amino acids could form disulfide bridges with other amino acids within the same polypeptide?		
alanine		
arginine		
aspartic acid		
cysteine		
glutamine		
leucine		
phenylalanine		
serine		
none of the above		
Created for isaacphysics.org by Lewis Thomson		

Tertiary Structure Interactions 2

Subject & topics: Biology | Biochemistry | Proteins Stage & difficulty: A Level C1

Within a polypeptide, the R groups/side-chains of amino acids interact with each other, and with the surrounding water, to produce the tertiary structure of the protein.

Figure 1 shows a selection of eight amino acids.

Figure 1: The chemical structures of eight amino acids.

Part A Hydrophilic interactions
Which amino acids would be involved in hydrophilic interactions?
arginine
aspartic acid
glutamic acid
lysine
phenylalanine
serine
threonine
valine
none of the above

Part B Hydrophobic interactions
Which amino acids would be involved in hydrophobic interactions?
arginine
aspartic acid
glutamic acid
lysine
phenylalanine
serine
threonine
valine
none of the above

Part C Tertiary structure
Which of the following statements explain how hydrophilic and hydrophobic interactions affect the tertiary structure of a protein? Select all that apply.
hydrophilic R groups cluster together on the inside of the protein
hydrophilic R groups are found on the outside of the protein
hydrophobic R groups cluster together on the inside of the protein
hydrophobic R groups are found on the outside of the protein
hydrophilic R groups cause the formation of α -helices and hydrophobic R groups cause the formation of β -sheets
hydrophobic R groups cause the formation of α -helices and hydrophilic R groups cause the formation of β -sheets
Created for isaacphysics.org by Lewis Thomson

Types of Proteins

Subject & topics: Biology | Biochemistry | Proteins Stage & difficulty: A Level P1

Part A Definitions				
Most proteins can be categorized as either fibrous or gl	lobular, based on their struc	ctures.		
Fill in the table below, comparing fibrous and globular p	proteins.			
	Fibrous	Globular		
Primary structure				
Tertiary/quaternary structure				
Solubility in water				
Function(s)				
Items: Complex: highly folded Chemical interactions Simple: long & linear non-repetitive sequence Structural Soluble repetitive sequence (insoluble				

Part D Conjugated proteins
Conjugated proteins are proteins that have a non-protein component, which is called a
is a conjugated protein, as it is made of four polypeptides - each bound to a haem group (an organic molecule containing).
Examples of other non-protein components include carbohydrates and lipids.
Items:
Created for isaacphysics.org by Lewis Thomson

Protein Practicals

Devit A
Part A Testing for proteins
What is the name of the test used to determine if proteins are present in a solution?
Fill in the blanks to explain how this test works.
The protein solution is added to (e.g. sodium hydroxide solution), and dilute copper(II) sulfate
solution is added to this. The solution will change colour from to, due to a reaction between the copper(II) ions and the
Items:
(an alkaline solution) (peptide bonds) (blue) (carboxyl groups) (R side-chains) (purple) (an acidic solution)
red

Figure 1: A thin-layer chromatography (TLC) plate was prepared for one solution ("Solution X"), which contained three amino acids. After 10 minutes, the plate was removed and sprayed with ninhydrin spray to visualise the amino acids (labelled A-C).

In Figure 1, the solvent front (top dotted line) had moved a distance of $18 \, \mathrm{cm}$ above the baseline (bottom dotted line). "A" moved $11.0 \, \mathrm{cm}$. "B" moved $6.8 \, \mathrm{cm}$. "C" moved $2.3 \, \mathrm{cm}$. The retention factor (R_f) values for some amino acids are given in the table below.

Amino acid	R_f value
alanine	0.38
arginine	0.20
cysteine	0.40
glutamine	0.13
methionine	0.55
phenylalanine	0.68
serine	0.27
threonine	0.35
valine	0.61

Which amino acids are present in solution X?

	alanine	
	arginine	
	cysteine	
	glutamine	
	methionine	
	phenylalanine	
	serine	
	threonine	
	valine	
Created for	r isaacphysics.org by Lewis Thomson	