## FIG.1A

| ACTO       | GCAA(      | CCCT       | AATC!      | AGĀG(      | CCA        | A          |            |            |            |            |            |            | leu<br>CTG |            |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|            | 10         |            |            |            |            |            |            |            |            |            | 20         |            |            |            |
|            | leu        |            |            |            |            | gln<br>CAG |            |            |            |            | gln        |            |            |            |
|            |            |            | i          |            |            | 30         |            |            | _          |            | _          | _          |            | _          |
| his<br>CAC | ser        | leu<br>CTC | leu<br>CTG | pro<br>CCT | val<br>GTG | GAC.       | ATT        | arg<br>CGA | gln<br>CAG | tyr<br>TAC | leu<br>TTG | ala<br>GCT | Val<br>GTC | TGG        |
|            | 40         |            |            |            |            | _          |            |            |            | _          | 50         |            |            |            |
|            |            |            |            |            |            | gln<br>CAG |            |            |            |            |            |            |            |            |
|            | _          |            |            |            | _          | 60         |            |            | _          |            |            | _          | _          |            |
| rcc        | AAG        | GCT        | ACC        | Met        | CTA        | phe<br>TTC | phe<br>TTC | CAC        | phe<br>TTC | 1eu<br>TTG | asp<br>GAT | gln<br>CAG | leu<br>CTG | AAC        |
|            | 70         |            |            |            |            |            |            |            |            |            | 80         |            |            |            |
| tyr<br>TAT | glu<br>GAG | TGT        | GGC        | arg<br>CGT | TGC        | ser        | gln<br>CAG | GyC        | CCY        | glu<br>GAG | ser<br>TCC | leu<br>TTG | leu<br>TTG | leu<br>CTG |
|            |            |            |            |            |            | 90         |            |            |            |            |            |            |            |            |
| gln<br>CAG | his<br>CAC | nes<br>TAA | leu<br>TTG | arg<br>CGG | yyy        | phe<br>TTC | cys<br>TGC | CGG        | asp<br>GAC | ile<br>ATT | gln<br>CAG | pro<br>CCC | phe<br>TTT | ser<br>TCC |
| _          | 100        |            |            | _          |            | _          | _          |            |            |            | 110        |            |            |            |
|            |            |            |            |            |            | ala<br>GCT |            |            |            |            |            |            |            |            |
|            | _          | _          |            |            |            | 120        | _          | _          | _          |            |            |            | _          |            |
| glu<br>GAA | glu<br>GAA | yyy<br>Jaa | arg<br>AGA | ATT        | leu<br>TTG | lle<br>ATC | gln<br>CAG | ala<br>GCT | gln<br>CAG | arg<br>AGG | ala<br>GCC | gln<br>CAA | leu<br>TTG | glu<br>GAA |
| •          | 130        |            |            |            | _          |            |            |            | _          | _          | 140        | _          | _          |            |
| CVY        | GGA        | GAG        | CCA        | GTT        | CTC        | glu<br>GAA | ACA        | Pro<br>CCT | GTG        | GAG        | AGC        | G1n<br>CAG | CAA        | his<br>CAT |
| glu        | ile        | glu        | ser        | arg        | ile        | 150<br>leu | asp        | leu        | arq        | ala        | met        | met        | glu        | lys        |
| ĞAG        | TTA        | ĞAA        | TCC        | CGĞ        | ATC        | CTG        | GAT        | TTA        | AGĞ        | GCT        | ATG        | ATG        | ĞAG        | AÃG        |
| leu        | 160<br>val | lys        | ser        | ile        | ser        | gln<br>CAA | leu        | lys        | asp        | gln        | 170<br>gln | asp        | val        | phe        |
| CIG        | GIN        | vvv        | 100        | MIC        | AGC        | CAA        | CIG        | TAT        | GUC        | CNG        | CAG        | GNI        | 910        | 110        |

FIG.1B Session Name: rb cys phe arg tyr lys ile gln ala lys gly lys thr pro ser leu TGC TTC CGA TAT AAG ATC CAG GCC AAA GGG AAG ACA CCC TCT CTG 190 200 asp pro his gln thr lys glu gln lys ile leu gln glu thr leu GAC CCC CAT CAG ACC AAA GAG CAG AAG ATT CTG CAG GAA ACT CTC 210 asn glu leu asp lys arg arg lys glu val leu asp ala ser lys AAT GAA CTG GAC AAA AGG AGA AAG GAG GTG CTG GAT GCC TCC AAA 220 ala leu leu gly arg leu thr thr leu ile glu leu leu leu pro GCA CTG CTA ĞGC CGÁ TTA ACT ACC CTA ATC GAG CTA CTG CTG CCA lys leu glu glu trp lys ala gln gln lys ala cys ile arg AÀG TTG GAG GAG TGG AÀG GCC CAG CAG CAA AÀA GCC TGC ATC AGÀ ala pro ile asp his gly leu glu gln leu glu thr trp phe thr GCT CCC ATT GAC CAC GGG TTG GAA CAG CTG GAG ACA TGG TTC ACA ala gly ala lys leu leu phe his leu arg gln leu leu lys glu GCT GGA GCA ANG CTG TTG TTT CAC CTG AGG CAG CTG CTG AAG GAG leu lys gly leu ser cys leu val ser tyr gln asp asp pro leu CTG AAG GGA CTG AGT TGC CTG GTT AGC TAT CAG GAT GAC CCT CTG 300 thr lys gly val asp leu arg asn ala gln val thr glu leu leu ACC AAA GGG GTG GAC CTA CGC AAC GCC CAG GTC ACA GAG TTG CTA 310 gln arg leu leu his arg ala phe val val glu thr gln pro cys ČAG CGŤ CTG CTC CAC AGA GCC TTT GTG GTA GAA ACC CAG CCC TGC 330 met pro gln thr pro his arg pro leu ile leu lys thr gly ser ATG CCC CAA ACT CCC CAT CGA CCC CTC ATC CTC AAG ACT GGC AGC 340 350 lys phe thr val arg thr arg leu leu val arg leu gln glu gly AAG TTC ACC GTC CGA ACA AGG CTG CTG GTG AGA CTC CAG GAA GGC 360 asn glu ser leu thr val glu val ser ile asp arg asn pro pro AAT GAG TCA CTG ACT GTG GAA GTC TCC ATT GAC AGG AAT CCT CCT 370 380 gln leu gln gly phe arg lys phe asn ile leu thr ser asn gln CAA TTA CAA GGC TTC CGG AAG TTC AAC ATT CTG ACT TCA AAC CAG 390 lys thr leu thr pro glu lys gly gln ser gln gly leu ile trp

## FIG.1C

| Sess        | sion              | Name       | e: rb      | )           | Ī          | -10               | 3. I       |            |            |            |                   |            |            |            |
|-------------|-------------------|------------|------------|-------------|------------|-------------------|------------|------------|------------|------------|-------------------|------------|------------|------------|
| AAA         | ACT               | TTG        | ACC        | ccc         | GAG        | AAG               | GGG        | CAG        | AGT        | CAG        | GGT               | ТТG        | ATT        | TGG        |
|             |                   | gly<br>GGT |            |             |            |                   |            |            |            |            |                   |            |            |            |
| gly<br>GGA  | lys<br>AAG        | gly<br>GGC | ser<br>AGC | asn<br>AAT  | lys<br>AAG | 420<br>gly<br>GGG | pro<br>CCA | leu<br>CTA | gly<br>GGT | val<br>GTG | thr<br>ACA        | glu<br>GAG | glu<br>GAA | leu<br>CTG |
| his<br>CAC  | 430<br>ile<br>ATC | ile        | ser<br>AGC | phe<br>TTC  | thr<br>ACG | val<br>GTC        | lys<br>AAA | tyr<br>TAT | thr<br>ACC | tyr<br>TAC | 440<br>gln<br>CAG | gly<br>GGT | leu<br>CTG | lys<br>AAG |
|             |                   | leu<br>CTG |            |             |            |                   |            |            |            |            |                   |            |            |            |
| met<br>ATG  | 460<br>asn<br>AAC | gln<br>CAG | leu<br>CTC | ser<br>TCA  | ile<br>ATT | ala<br>GCC        | trp<br>TGG | ala<br>GCT | ser<br>TCA | val<br>GTT | 470<br>leu<br>CTC | trp<br>TGG | phe<br>TTC | asn<br>AAT |
|             |                   | ser<br>AGC |            |             |            |                   |            |            |            |            |                   |            |            |            |
| pro<br>CCC  | 490<br>lys<br>AAG | ala<br>GCC | pro<br>CCC | trp<br>TGG  | ser<br>AGC | leu<br>TTG        | leu<br>CTG | gly<br>GGC | pro<br>CCT | ala<br>GCT | 500<br>leu<br>CTC | ser<br>AGT | trp<br>TGG | gln<br>CAG |
| phe<br>TTC  | ser<br>TCC        | ser<br>TCC | tyr<br>TAT | val<br>GTT  | gly<br>GGC | 510<br>arg<br>CGA | gly<br>GGC | leu<br>CTC | asn<br>AAC | ser<br>TCA | asp<br>GAC        | gln<br>CAG | leu<br>CTG | ser<br>AGC |
| met<br>ATG  | 520<br>leu<br>CTG | arg<br>AGA | asn<br>AAC | lys<br>AAG  | leu<br>CTG | phe<br>TTC        | gly<br>GGG | gln<br>CAG | asn<br>AAC | cys<br>TGT | 530<br>arg<br>AGG | thr<br>ACT | glu<br>GAG | asp<br>GAT |
| pro.<br>CCA | leu<br>TTA        | leu<br>TTG | ser<br>TCC | trp<br>TGG  | ala<br>GCT | 540<br>asp<br>GAC | phe<br>TTC | thr<br>ACT | lys<br>AAG | arg<br>CGA | glu<br>GAG        | ser<br>AGC | pro<br>CCT | pro<br>CCT |
| gly<br>GGC  | 550<br>lys<br>AAG | leu<br>TTA | pro<br>CCA | phe<br>TTC  | trp<br>TGG | thr<br>ACA        | trp<br>TGG | leu<br>CTG | asp<br>GAC | lys<br>AAA | 560<br>ile<br>ATT | leu<br>CTG | glu<br>GAG | leu<br>TTG |
| val<br>GTA  | his<br>CAT        | asp<br>GAC | his<br>CAC | leu<br>CTG  | lys<br>AAG | 570<br>asp<br>GAT | leu<br>CTC | trp<br>TGG | asn<br>AAT | asp<br>GAT | gly<br>GGA        | arg<br>CGC | ile<br>ATC | met<br>ATG |
| gly<br>GGC  | 580<br>phe<br>TTT | val<br>GTG | ser<br>AGT | arg.<br>CGG | ser<br>AGC | gln<br>CAG        | glu<br>GAG | arg<br>CGC | arg<br>CGG | leu        | 590<br>leu<br>CTG | lys<br>AAG | lys<br>AAG | thr<br>ACC |
| met<br>ATG  | ser<br>TCT        | gly<br>GGC | thr<br>ACC | phe<br>TTT  | leu<br>CTA | 600<br>leu<br>CTG | arg<br>CGC | phe<br>TTC | ser<br>AGT | glu<br>GAA | ser<br>TCG        | ser<br>TCA | glu<br>GAA | gly<br>GGG |

#### Session Name: rb

## FIG.1D

|            |                   |            |            |             |            |                   |            |            |            |                     |                   |            | lys<br>AAG |            |
|------------|-------------------|------------|------------|-------------|------------|-------------------|------------|------------|------------|---------------------|-------------------|------------|------------|------------|
| leu<br>CTC | ile<br>ATC        | tyr<br>TAC | ser<br>TCT | val<br>GTG  | gln<br>CAA | 630<br>pro<br>CCG | tyr<br>TAC | thr<br>ACG | lys<br>AAG | glu<br>GAG          | val<br>GTG        | leu<br>CTG | gln<br>CAG | ser<br>TCA |
| leu<br>CTC | 640<br>pro<br>CCG | leu<br>CTG | thr<br>ACT | glu<br>GAA  | ile<br>ATC | ile<br>ATC        | arg<br>CGC | his<br>CAT | tyr<br>TAC | gln<br>CAG          | 650<br>leu<br>TTG | leu<br>CTC | thr<br>ACT | glu<br>GAG |
| glu<br>GAG |                   |            |            |             |            |                   |            |            |            |                     |                   |            |            |            |
| pro<br>CCC | 670<br>arg<br>CGG | asp<br>GAT | glu<br>GAA | ala<br>GCT  | phe<br>TTT | gly<br>GGG        | сув<br>TGC | tyr<br>ፕእር | tyr<br>TAC | gln<br>CAG          | 680<br>glu<br>GAG | lys<br>AAA | val<br>GTT | asn<br>AAT |
| leu<br>CTC | gln<br>CAG        | glu<br>GAA | arg<br>CGG | arg<br>AGG  | lys<br>AAA | 690<br>tyr<br>TAC | leu<br>CTG | lys<br>AAA | his<br>CAC | arg<br>AGG          | leu<br>CTC        | ile<br>ATT | val<br>GTG | val<br>GTC |
|            | 700<br>asn<br>AAT | arg<br>AGA | gln<br>CAG | val<br>GTG  | asp<br>GAT | glú<br>GAA        | leu<br>CTG | gln<br>CAN | gln<br>CAA | pro<br>CCG          | 710<br>leu<br>CTG | glu<br>GAG | leu<br>CTT | lys<br>AAG |
| CCY<br>CCY | glu<br>GAG        | pro<br>CCA | glu<br>GAG | leu<br>CTG  | glu<br>GAG | 720<br>ser<br>TCA | leu<br>TTA | glu<br>GAG | leu<br>CTG | glu<br>GAA          | leu<br>CTA        | gly<br>GGG | leu<br>CTG | val<br>GTG |
| pro<br>CCA | 730<br>glu<br>GAG | pro<br>CCA | glu<br>GAG | l.eu<br>CTC | ser<br>AGC | leu<br>CTG        | asp<br>GAC | leu<br>TTA | glu<br>GAG | pro<br>CCA          | 740<br>leu<br>CTG | leu<br>CTG | lys<br>AAG | ala<br>GCA |
|            |                   |            |            |             |            |                   |            |            |            |                     |                   |            | ser<br>TCC |            |
|            |                   |            |            |             |            |                   |            |            |            |                     |                   |            | gln<br>CAA | thr<br>ACA |
| val<br>GTG | pro<br>CCA        | glu<br>GAG | pro<br>CCA | asp<br>GAC  | gln<br>CAA | 780<br>gly<br>GGA | pro<br>CCT | val<br>GTA | ser<br>TCX | gln<br>C <b>N</b> G | pro<br>CCA        | val<br>GTG | pro<br>CCA | glu<br>GAG |
| pro        | 790<br>asp<br>GAT | leu<br>TTG | pro        | cys<br>TGT  | asp<br>GAT | leu<br>CTG        | arg<br>AGN | his<br>CAT | leu<br>TTG | asn<br>AAC          | 800<br>thr<br>ACT | glu<br>GAG | pro<br>CCA | met<br>ATG |
| glu<br>GAA | ile<br>ATC        | phe<br>TTC | arg<br>AGA | asn<br>AAC  | cys<br>TGT | 810<br>val<br>GTA | lys<br>AMG | ile<br>ATT | glu<br>GAA | glu<br>GAA          | ile<br>ATC        | met<br>ATG | pro<br>CCG | asn<br>AAT |

### FIG.1E

Session Name: rb

820
gly asp pro leu leu ala gly gln asn thr val asp glu val tyr
GGT GAC CCA CTG TTG GCT GGC CAG AAC ACC GTG GAT GAG GTT TAC

840

val ser arg pro ser his phe tyr thr asp gly pro leu met pro GTC TCC CGC CCC AGC CAC TTC TAC ACT GAT GGA CCC TTG ATG CCT

850 851

## FIG. 2A

#### ATTAAACCTCTCGCCGAGCCCCTCCGCAGACTCTGCGCCGGAAAGTTTCATTTGCTGTATGCCA

#### TCCTCGAGAGCTGTCTAGGTTAACGTTCGCACTCTGTGTATATAACCTCGACAGTCTTGGCACC

#### TAACGTGCTGTGCGTAGCTGCTCCTTTGGTTGAATCCCCAGGCCCTTGTTGGGGCACAAGGTGG

Met Ser Gln Trp Tyr Glu Leu Gln Gln Leu Asp Ser Lys Phe Leu CAGG ATG TCT CAG TGG TAC GAA CTT CAG CAG CTT GAC TCA AAA TTC CTG Glu Gln Val His Gln Leu Tyr Asp Asp Ser Phe Pro Met Glu Ile Arg GAG CAG GTT CAC CAG CTT TAT GAT GAC AGT TTT CCC ATG GAA ATC AGA Gln Tyr Leu Ala Gln Trp Leu Glu Lys Gln Asp Trp Glu His Ala Ala CAG TAC CTG GCA CAG TGG TTA GAA AAG CAA GAC TGG GAG CAC GCT GCC Asn Asp Val Ser Phe Ala Thr Ile Arg Phe His Asp Leu Leu Ser Gln AAT GAT GTT TCA TTT GCC ACC ATC CGT TTT CAT GAC CTC CTG TCA CAG Leu Asp Asp Gln Tyr Ser Arg Phe Ser Leu Glu Asn Asn Phe Leu Leu CTG GAT GAT CAA TAT AGT CGC TTT TCT TTG GAG AAT AAC TTC TTG CTA Gln His Asn Ile Arg Lys Ser Lys Arg Asn Leu Gln Asp Asn Phe Gln CAG CAT AAC ATA AGG AAA AGC AAG CGT AAT CTT CAG GAT AAT TTT CAG Glu Asp Pro Ile Gln Met Ser Met Ile Ile Tyr Ser Cys Leu Lys Glu GAA GAC CCA ATC CAG ATG TCT ATG ATC ATT TAC AGC TGT CTG AAG GAA Glu Arg Lys Ile Leu Glu Asn Ala Gln Arg Phe Asn Gln Ala Gln Ser GAA AGG AAA ATT CTG GAA AAC GCC CAG AGA TTT AAT CAG GCT CAG TCG Gly Asn Ile Gln Ser Thr Val Met Leu Asp Lys Gln Lys Glu Leu Asp GGG AAT ATT CAG AGC ACA GTG ATG TTA GAC AAA CAG AAA GAG CTT GAC Ser Lys Val Arg Asn Val Lys Asp Lys Val Met Cys Ile Glu His Glu AGT AAA GTC AGA AAT GTG AAG GAC AAG GTT ATG TGT ATA GAG CAT GAA Ile Lys Ser Leu Glu Asp Leu Gln Asp Glu Tyr Asp Phe Lys Cys Lys ATC AAG AGC CTG GAA GAT TTA CAA GAT GAA TAT GAC TTC AAA TGC AAA Thr Leu Gln Asn Arg Glu His Glu Thr Asn Gly Val Ala Lys Ser Asp ACC TTG CAG AAC AGA GAA CAC GAG ACC AAT GGT GTG GCA AAG AGT GAT Gln Lys Gln Glu Gln Leu Leu Lys Lys M t Tyr Leu Met Leu Asp CAG AAA CAA GAA CAG CTG TTA CTC AAG AAG ATG TAT TTA ATG CTT GAC

Asn Lys Arg Lys Glu Val Val His Lys Ile Ile Glu Leu Leu Asn Val AAT AAG AGA AAG GAA GTA GTT CAC AAA ATA ATA GAG TTG CTG AAT GTC

### FIG. 2B

Thr Glu Leu Thr Gln Asn Ala Leu Ile Asn Asp Glu Leu Val Glu Trp ACT GAA CTT ACC CAG AAT GCC CTG ATT AAT GAT GAA CTA GTG GAG TGG Lys Arg Arg Gln Gln Ser Ala Cys Ile Gly Gly Pro Pro Asn Ala Cys AAG CGG AGA CAG CAG AGC GCC TGT ATT GGG GGG CCG CCC AAT GCT TGC Leu Asp Gln Leu Gln Asn Trp Phe Thr Ile Val Ala Glu Ser Leu Gln TTG GAT CAG CTG CAG AAC TGG TTC ACT ATA GTT GCG GAG AGT CTG CAG Gln Val Arg Gln Gln Leu Lys Lys Leu Glu Glu Leu Glu Gln Lys Tyr CAA GTT CGG CAG CTT AAA AAG TTG GAG GAA TTG GAA CAG AAA TAC Thr Tyr Glu His Asp Pro Ile Thr Lys Asn Lys Gln Val Leu Trp Asp ACC TAC GAA CAT GAC CCT ATC ACA AAA AAC AAA CAA GTG TTA TGG GAC Arg Thr Phe Ser Leu Phe Gln Gln Leu Ile Gln Ser Ser Phe Val Val CGC ACC TTC AGT CTT TTC CAG CAG CTC ATT CAG AGC TCG TTT GTG GTG Glu Arg Gln Pro Cys Met Pro Thr His Pro Gln Arg Pro Leu Val Leu GAA AGA CAG CCC TGC ATG CCA ACG CAC CCT CAG AGG CCG CTG GTC TTG Lys Thr Gly Val Gln Phe Thr Val Lys Leu Arg Leu Leu Val Lys Leu AAG ACA GGG GTC CAG TTC ACT GTG AAG TTG AGA CTG TTG GTG AAA TTG Gln Glu Leu Asn Tyr Asn Leu Lys Val Lys Val Leu Phe Asp Lys Asp CAA GAG CTG AAT TAT AAT TTG AAA GTC AAA GTC TTA TTT GAT AAA GAT Val Asn Glu Arg Asn Thr Val Lys Gly Phe Arg Lys Phe Asn Ile Leu GTG AAT GAG AGA AAT ACA GTA AAA GGA TTT AGG AAG TTC AAC ATT TTG Gly Thr His Thr Lys Val Met Asn Met Glu Glu Ser Thr Asn Gly Ser GGC ACG CAC ACA AAA GTG ATG AAC ATG GAG GAG TCC ACC AAT GGC AGT Leu Ala Ala Glu Phe Arg His Leu Gln Leu Lys Glu Gln Lys Asn Ala CTG GCG GCT GAA TTT CGG CAC CTG CAA TTG AAA GAA CAG AAA AAT GCT Gly Thr Arg Thr Asn Glu Gly Pro Leu Ile Val Thr Glu Glu Leu His GGC ACC AGA ACG AAT GAG GGT CCT CTC ATC GTT ACT GAA GAG CTT CAC Ser Leu Ser Phe Glu Thr Gln Leu Cys Gln Pro Gly Leu Val Ile Asp TCC CTT AGT TTT GAA ACC CAA TTG TGC CAG CCT GGT TTG GTA ATT GAC Leu Glu Thr Thr Ser Leu Pro Val Val Val Ile Ser Asn Val Ser Gln CTC GAG ACG ACC TCT CTG CCC GTT GTG GTG ATC TCC AAC GTC AGC CAG Leu Pro S r Gly Trp Ala S r Ile Leu Trp Tyr Asn Met Leu Val Ala CTC CCG AGC GGT TGG GCC TCC ATC CTT TGG TAC AAC ATG CTG GTG GCG Glu Pro Arg Asn Leu Ser Phe Phe Leu Thr Pro Pro Cys Ala Arg Trp GAA CCC AGG AAT CTG TCC TTC TTC CTG ACT CCA CCA TGT GCA CGA TGG

## FIG. 2C

Ala Gln Leu Ser Glu Val Leu Ser Trp Gln Phe Ser Ser Val Thr Lys GCT CAG CTT TCA GAA GTG CTG AGT TGG CAG TTT TCT TCT GTC ACC AAA Arg Gly Leu Asn Val Asp Gln Leu Asn Met Leu Gly Glu Lys Leu Leu AGA GGT CTC AAT GTG GAC CAG CTG AAC ATG TTG GGA GAG AAG CTT CTT Gly Pro Asn Ala Ser Pro Asp Gly Leu Ile Pro Trp Thr Arg Phe Cys GGT CCT AAC GCC AGC CCC GAT GGT CTC ATT CCG TGG ACG AGG TTT TGT Lys Glu Asn Ile Asn Asp Lys Asn Phe Pro Phe Trp Leu Trp Ile Glu AAG GAA AAT ATA AAT GAT AAA AAT TTT CCC TTC TGG CTT TGG ATT GAA Ser Ile Leu Glu Leu Ile Lys Lys His Leu Leu Pro Leu Trp Asn Asp AGC ATC CTA GAA CTC ATT AAA AAA CAC CTG CTC CCT CTC TGG AAT GAT Gly Cys Ile Met Gly Phe Ile Ser Lys Glu Arg Glu Arg Ala Leu Leu GGG TGC ATC ATG GGC TTC ATC AGC AAG GAG CGA GAG CGT GCC CTG TTG Lys Asp Gln Gln Pro Gly Thr Phe Leu Leu Arg Phe Ser Glu Ser Ser AAG GAC CAG CCG GGG ACC TTC CTG CTG CGG TTC AGT GAG AGC TCC Arg Glu Gly Ala Ile Thr Phe Thr Trp Val Glu Arg Ser Gln Asn Gly CGG GAA GGG GCC ATC ACA TTC ACA TGG GTG GAG CGG TCC CAG AAC GGA Gly Glu Pro Asp Phe His Ala Val Glu Pro Tyr Thr Lys Lys Glu Leu GGC GAA CCT GAC TTC CAT GCG GTT GAA CCC TAC ACG AAG AAA GAA CTT Ser Ala Val Thr Phe Pro Asp Ile Ile Arg Asn Tyr Lys Val Met Ala TCT GCT GTT ACT TTC CCT GAC ATC ATT CGC AAT TAC AAA GTC ATG GCT Ala Glu Asn Ile Pro Glu Asn Pro Leu Lys Tyr Leu Tyr Pro Asn Ile GCT GAG AAT ATT CCT GAG AAT CCC CTG AAG TAT CTG TAT CCA AAT ATT Asp Lys Asp His Ala Phe Gly Lys Tyr Tyr Ser Arg Pro Lys Glu Ala GAC AAA GAC CAT GCC TTT GGA AAG TAT TAC TCC AGG CCA AAG GAA GCA Pro Glu Pro Met Glu Leu Asp Gly Pro Lys Gly Thr Gly Tyr Ile Lys CCA GAG CCA ATG GAA CTT GAT GGC CCT AAA GGA ACT GGA TAT ATC AAG Thr Glu Leu Ile Ser Val Ser Glu Val His Pro Ser Arg Leu Gln Thr ACT GAG TTG ATT TCT GTG TCT GAA GTT CAC CCT TCT AGA CTT CAG ACC Thr Asp Asn Leu Leu Pro Met Ser Pro Glu Glu Phe Asp Glu Val Ser ACA GAC AAC CTG CTC CCC ATG TCT CCT GAG GAG TTT GAC GAG GTG TCT Arg Ile Val Gly Ser Val Glu Phe Asp Ser Met Met Asn Thr Val CGG ATA GTG GGC TCT GTA GAA TTC GAC AGT ATG ATG AAC ACA GTA TAG

## FIG. 2D

**ACCTGTTGATAGCAAGTGAATTTTTCTCTAACTCAGAAACATCAGTTACTCTGAAGGGCATCA** TGCATCTTACTGAAGGTAAAATTGAAAGGCATTCTCTGAAGAGTGGGTTTCACAAGTGAAAAA CATCCAGATACACCCAAAGTATCAGGACGAGAATGAGGGTCCTTTGGGAAAGGAGAAGTTAAG CAACATCTAGCAAATGTTATGCATAAAGTCAGTGCCCAACTGTTATAGGTTGTTGGATAAATC AGTGGTTATTTAGGGAACTGCTTGACGTAGGAACGGTAAATTTCTGTGGGAGAATTCTTACAT GTTTTCTTTGCTTTAAGTGTAACTGGCAGTTTTCCATTGGTTTACCTGTGAAATAGTTCAAAG **CCAAGTTTATATACAATTATATCAGTCCTCTTTCAAAGGTAGCCATCATGGATCTGGTAGGGG** GAAAATGTGTATTTATTACATCTTTCACATTGGCTATTTAAAGACAAAGACAAATTCTGTTT CTTGAGAAGAGAAATTCCAAATTCACAAGTTGTGTTTGATATCCAAAGCTGAATACATTCTG CTTTCATCTTGGTCACATACAATTATTTTTACAGTTCTCCCAAGGGAGTTAGGCTATTCACAA CCACTCATTCAAAAGTTGAAATTAACCATAGATGTAGATAAACTCAGAAATTTAATTCATGTT TCTTAAATGGGCTACTTTGTCCTTTTTGTTATTAGGGTGGTATTTAGTCTATTAGCCACAAAA TTGGGAAAGGAGTAGAAAAGCAGTAACTGACAACTTGAATAATACACCAGAGATAATATGAG **AATCAGATCATTTCAAAACTCATTTCCTATGTAACTGCATTGAGAACTGCATATGTTTCGCTG** GACACAAAAAGTAGATTAAGAGATGGGTTTGACAAGGTTCTTCCCTTTTTACATACTGCTGTCT **ATGTGGCTGTATCTTGTTTTTCCACTACTGCTACCACAACTATATTATCATGCAAATGCTGTA** TTCTTCTTTGGTGGAGATAAAGATTTCTTGAGTTTTGTTTTAAAATTAAAGCTAAAGTATCTG TATTGCATTAAATATAATATCGACACAGTGCTTTCCGTGGCACTGCATACAATCTGAGGCCTC CTCTCTCAGTTTTTATATAGATGGCGAGAACCTAAGTTTCAGTTGATTTTACAATTGAAATGA CTAAAAAACAAAGAAGACAACATTAAAAACAATATTGTTTCTA

## FIG. 3A

ATTAAACCTCTCGCCGAGCCCCTCCGCAGACTCTGCGCCGGAAAGTTTCATTTGCTGTATGCC ATCCTCGAGAGCTGTCTAGGTTAACGTTCGCACTCTGTGTATATAACCTCGACAGTCTTGGCA CCTAACGTGCTGTGCGTAGCTGCTCCTTTGGTTGAATCCCCAGGCCCTTGTTGGGGCACAAGG

Met Ser Gln Trp Tyr Glu Leu Gln Gln Leu Asp Ser Lys Phe TGGCAGG ATG TCT CAG TGG TAC GAA CTT CAG CAG CTT GAC TCA AAA TTC Leu Glu Gln Val His Gln Leu Tyr Asp Asp Ser Phe Pro Met Glu Ile CTG GAG CAG GTT CAC CAG CTT TAT GAT GAC AGT TTT CCC ATG GAA ATC Arg Gln Tyr Leu Ala Gln Trp Leu Glu Lys Gln Asp Trp Glu His Ala AGA CAG TAC CTG GCA CAG TGG TTA GAA AAG CAA GAC TGG GAG CAC GCT Ala Asn Asp Val Ser Phe Ala Thr Ile Arg Phe His Asp Leu Leu Ser GCC AAT GAT GTT TCA TTT GCC ACC ATC CGT TTT CAT GAC CTC CTG TCA Gln Leu Asp Asp Gln Tyr Ser Arg Phe Ser Leu Glu Asn Asn Phe Leu CAG CTG GAT GAT CAA TAT AGT CGC TTT TCT TTG GAG AAT AAC TTC TTG Leu Gln His Asn Ile Arg Lys Ser Lys Arg Asn Leu Gln Asp Asn Phe CTA CAG CAT AAC ATA AGG AAA AGC AAG CGT AAT CTT CAG GAT AAT TTT Gln Glu Asp Pro Ile Gln Met Ser Met Ile Ile Tyr Ser Cys Leu Lys CAG GAA GAC CCA ATC CAG ATG TCT ATG ATC ATT TAC AGC TGT CTG AAG Glu Glu Arg Lys Ile Leu Glu Asn Ala Gln Arg Phe Asn Gln Ala Gln GAA GAA AGG AAA ATT CTG GAA AAC GCC CAG AGA TTT AAT CAG GCT CAG Ser Gly Asn Ile Gln Ser Thr Val Met Leu Asp Lys Gln Lys Glu Leu TCG GGG AAT ATT CAG AGC ACA GTG ATG TTA GAC AAA CAG AAA GAG CTT Asp Ser Lys Val Arg Asn Val Lys Asp Lys Val Met Cys Ile Glu His GAC AGT AAA GTC AGA AAT GTG AAG GAC AAG GTT ATG TGT ATA GAG CAT Glu Ile Lys Ser Leu Glu Asp Leu Gln Asp Glu Tyr Asp Phe Lys Cys GAA ATC AAG AGC CTG GAA GAT TTA CAA GAT GAA TAT GAC TTC AAA TGC Lys Thr Leu Gln Asn Arg Glu His Glu Thr Asn Gly Val Ala Lys Ser AAA ACC TTG CAG AAC AGA GAA CAC GAG ACC AAT GGT GTG GCA AAG AGT Asp Gln Lys Gln Glu Gln Leu Leu Lys Lys Met Tyr Leu Met Leu GAT CAG AAA CAA GAA CAG CTG TTA CTC AAG AAG ATG TAT TTA ATG CTT Asp Asn Lys Arg Lys Glu Val Val His Lys Ile Ile Glu Leu Leu Asn GAC AAT AAG AGA AAG GAA GTA GTT CAC AAA ATA ATA GAG TTG CTG AAT Val Thr Glu Leu Thr Gln Asn Ala Leu Ile Asn Asp Glu Leu Val Glu GTC ACT GAA CTT ACC CAG AAT GCC CTG ATT AAT GAT GAA CTA GTG GAG

## FIG. 3B

Trp Lys Arg Arg Gln Gln Ser Ala Cys Ile Gly Gly Pro Pro Asn Ala TGG AAG CGG AGA CAG CAG AGC GCC TGT ATT GGG GGG CCG CCC AAT GCT Cys Leu Asp Gln Leu Gln Asn Trp Phe Thr Ile Val Ala Glu Ser Leu TGC TTG GAT CAG CTG CAG AAC TGG TTC ACT ATA GTT GCG GAG AGT CTG Gln Gln Val Arg Gln Gln Leu Lys Lys Leu Glu Glu Leu Glu Gln Lys CAG CAA GTT CGG CAG CAT AAA AAG TTG GAG GAA TTG GAA CAG AAA Tyr Thr Tyr Glu His Asp Pro Ile Thr Lys Asn Lys Gln Val Leu Trp TAC ACC TAC GAA CAT GAC CCT ATC ACA AAA AAC AAA CAA GTG TTA TGG Asp Arg Thr Phe Ser Leu Phe Gln Gln Leu Ile Gln Ser Ser Phe Val GAC CGC ACC TTC AGT CTT TTC CAG CAG CTC ATT CAG AGC TCG TTT GTG Val Glu Arg Gln Pro Cys Met Pro Thr His Pro Gln Arg Pro Leu Val GTG GAA AGA CAG CCC TGC ATG CCA ACG CAC CCT CAG AGG CCG CTG GTC Leu Lys Thr Gly Val Gln Phe Thr Val Lys Leu Arg Leu Leu Val Lys TTG AAG ACA GGG GTC CAG TTC ACT GTG AAG TTG AGA CTG TTG GTG AAA Leu Gln Glu Leu Asn Tyr Asn Leu Lys Val Lys Val Leu Phe Asp Lys TTG CAA GAG CTG AAT TAT AAT TTG AAA GTC AAA GTC TTA TTT GAT AAA Asp Val Asn Glu Arg Asn Thr Val Lys Gly Phe Arg Lys Phe Asn Ile GAT GTG AAT GAG AGA AAT ACA GTA AAA GGA TTT AGG AAG TTC AAC ATT Leu Gly Thr His Thr Lys Val Met Asn Met Glu Glu Ser Thr Asn Gly TTG GGC ACG CAC ACA AAA GTG ATG AAC ATG GAG GAG TCC ACC AAT GGC Ser Leu Ala Ala Glu Phe Arg His Leu Gln Leu Lys Glu Gln Lys Asn AGT CTG GCG GCT GAA TTT CGG CAC CTG CAA TTG AAA GAA CAG AAA AAT Ala Gly Thr Arg Thr Asn Glu Gly Pro Leu Ile Val Thr Glu Glu Leu GCT GGC ACC AGA ACG AAT GAG GGT CCT CTC ATC GTT ACT GAA GAG CTT His Ser Leu Ser Phe Glu Thr Gln Leu Cys Gln Pro Gly Leu Val Ile CAC TCC CTT AGT TTT GAA ACC CAA TTG TGC CAG CCT GGT TTG GTA ATT Asp Leu Glu Thr Thr Ser Leu Pro Val Val Val Ile Ser Asn Val Ser GAC CTC GAG ACG ACC TCT CTG CCC GTT GTG GTG ATC TCC AAC GTC AGC Gln Leu Pro Ser Gly Trp Ala Ser Ile Leu Trp Tyr Asn Met Leu Val CAG CTC CCG AGC GGT TGG GCC TCC ATC CTT TGG TAC AAC ATG CTG GTG Ala Glu Pro Arg Asn Leu Ser Phe Phe Leu Thr Pro Pro Cys Ala Arg GCG GAA CCC AGG AAT CTG TCC TTC TTC CTG ACT CCA CCA TGT GCA CGA Trp Ala Gln Leu Ser Glu Val Leu Ser Trp Gln Phe Ser Ser Val Thr TGG GCT CAG CTT TCA GAA GTG CTG AGT TGG CAG TTT TCT TCT GTC ACC

## FIG. 3C

Lys Arg Gly Leu Asn Val Asp Gln Leu Asn Met Leu Gly Glu Lys Leu AAA AGA GGT CTC AAT GTG GAC CAG CTG AAC ATG TTG GGA GAG AAG CTT Leu Gly Pro Asn Ala Ser Pro Asp Gly Leu Ile Pro Trp Thr Arg Phe CTT GGT CCT AAC GCC AGC CCC GAT GGT CTC ATT CCG TGG ACG AGG TTT Cys Lys Glu Asn Ile Asn Asp Lys Asn Phe Pro Phe Trp Leu Trp Ile TGT AAG GAA AAT ATA AAT GAT AAA AAT TTT CCC TTC TGG CTT TGG ATT Glu Ser Ile Leu Glu Leu Ile Lys Lys His Leu Leu Pro Leu Trp Asn GAA AGC ATC CTA GAA CTC ATT AAA AAA CAC CTG CTC CCT CTC TGG AAT Asp Gly Cys Ile Met Gly Phe Ile Ser Lys Glu Arg Glu Arg Ala Leu GAT GGG TGC ATC ATG GGC TTC ATC AGC AAG GAG CGA GAG CGT GCC CTG Leu Lys Asp Gln Gln Pro Gly Thr Phe Leu Leu Arg Phe Ser Glu Ser TTG AAG GAC CAG CAG CCG GGG ACC TTC CTG CTG CGG TTC AGT GAG AGC Ser Arg Glu Gly Ala Ile Thr Phe Thr Trp Val Glu Arg Ser Gln Asn TCC CGG GAA GGG GCC ATC ACA TTC ACA TGG GTG GAG CGG TCC CAG AAC Gly Gly Glu Pro Asp Phe His Ala Val Glu Pro Tyr Thr Lys Lys Glu GGA GGC GAA CCT GAC TTC CAT GCG GTT GAA CCC TAC ACG AAG AAA GAA Leu Ser Ala Val Thr Phe Pro Asp Ile Ile Arg Asn Tyr Lys Val Met CTT TCT GCT GTT ACT TTC CCT GAC ATC ATT CGC AAT TAC AAA GTC ATG Ala Ala Glu Asn Ile Pro Glu Asn Pro Leu Lys Tyr Leu Tyr Pro Asn GCT GCT GAG AAT ATT CCT GAG AAT CCC CTG AAG TAT CTG TAT CCA AAT Ile Asp Lys Asp His Ala Phe Gly Lys Tyr Tyr Ser Arg Pro Lys Glu ATT GAC AAA GAC CAT GCC TTT GGA AAG TAT TAC TCC AGG CCA AAG GAA Ala Pro Glu Pro Met Glu Leu Asp Gly Pro Lys Gly Thr Gly Tyr Ile GCA CCA GAG CCA ATG GAA CTT GAT GGC CCT AAA GGA ACT GGA TAT ATC Lys Thr Glu Leu Ile Ser Val Ser Glu Val AAG ACT GAG TTG ATT TCT GTG TCT GAA GTG TAAGTGAACACAGAAGAGTGACA TGTTTACAAACCTCAAGCCAGCCTTGCTCCTGGCTGGGGCCTGTTGAAGATGCTTGTATTTTA CTTTTCCATTGTAATTGCTATCGCCATCACAGCTGAACTTGTTGAGATCCCCGTGTTACTGCC TATCAGCATTTTACTACTTTAAAAAAAAAAAAAAAAGCCAAAAACCAAATTTGTATTTAAGGT 

FIG. 4

113

91

84

48

Sau3Al Smal Afill

FIG. 5B



# FIG. 6

| 1   | MSQWYELQQLDSKFLEQVHQLYDDSFPMEIRQYLAQWLEKQDWEHAANDV      |
|-----|---------------------------------------------------------|
| 51  | SFATIRFHDLLSQLDDQYSRFSLENNFLLQHNIRKSKRNLQDNFQEDPIQ      |
| 101 | MSMIIYSCLKEERKILENAQRFNQAQSGNIQSTVMLDKQKELDSKVRNVK      |
| L51 | DKVMCIEHEIKSLEDLQDEYDFKCKTLQNREHETNGVAKSDQKQEQLLLK      |
| 201 | KMYLMLDNKRKEVVHKIIELLNVTELTQNALINDELVEWKRRQQSACIGG      |
| 251 | PPNACLDQLQQVRQQLKKLEELEQKYTYEHDPITKNKQVLWDRTFSLFQQ      |
| 301 | LIQSSFVVERQPCMPTHPQRPLVLKTGVQFTVKLRLLVKLQELNYNLKVK      |
| 351 | VLFDKDVNERNTVKGFRKFNILGTHEKVMNMEESTNGSLAAEFRHLQLKE      |
| 101 | QKNAGTRTNEGPLIVTEELHSLSFETQLCQPGLVIDLETTSLPVVVISNV      |
| 151 | SQLPSGWASILWYNMLVAEPRNLSFFLTPPCARWAQLSEVLSWQFSSVTK      |
| 01  | RGLNVDOLNMLGEKLLGPNASPDGLIPWTRFCKENINDKNFPFWLWIESI 119  |
| 51  | LELIKKHLLPLWNDGCIMGFISKERERALLKDQQPGTFLLRFSESSREGA      |
| 01  | ITFTWVERSQNGGEPDFHAVEPYTKKELSAVTFPDIIRNYKVMAAENIPE 113a |
| 51  | NPLKYLYPNIDKDHAFGKYYSRPKEAPEPMELDGPKGTGYIKTELISVSE 113b |
| 01  | VHPSRLQTTDNLLPMSPEEPDEVSRIVGSVEFDSMMNTV                 |
|     | last amino acid of 84 kd                                |



FIG. 7B

1 2 3 4 5

ISGF-3 →

γ-Components →

FIG. 80 maqwemlqnldspeqdolholyshsllpvdirqylavwiedqnwqeaalgsddskatmlf ··

FHFLDQLNYECGRCSQDPESLLLQHNLRKFCRDIQPFSQDPTQLAEMIFNLLLEEKRILI 61: QAQRAQLEQGEPVLETPVESQQHEIESRILDLRAMMEKLVKSISQLKDQQDVFCFRYKIQ 121:

AKGKTPSLDPHQTKEQKILQETLNELDKRRKEVLDASKALLGRLTTLIELLLPKLEEWKA 181:

QQQKACIRAPIDHGLEQLETWFTAGAKLLFHLRQLLKELKGLSCLVSYQDDPLTKGVDLR 241:

naqvtellqrlhrafvvetqpcmpqtphrplilktgskftvrtrllvrlqegnesltve 301:

VSIDRNPPQLQGFRKFNILTSNQKTLTPEKGQSQGLIWDFGYLTLVEQRSGGSGKGSNKG 361:

PLGVTEELHIISFTVKYTYQGLKQELKTDTLPVVIISNMNQLSIAWASVLWFNLLSPNLQ 421:

NQQFFSNPPKAPWSLLGPALSWQFSSYVGRGLNSDQLSMLRNKLFGQNCRTEDPLLSWAD 481:

FTKRESPPGKLPFWTWLDKILELVHDHLKDLWNDGRIMGFVSRSQERRLLKKTMSGTFLL 541: **RFSESSEGGITCSWVEHQDDDKVLIYSVQPYTKEVLQSLPLTEIIRHYOLLTEENIPENP** 601: LRFLYPRIPRDEAFGCYYQEKVNLQERRKYLKHRLIVVSNRQV<mark>DE</mark>LQQPLEL®PEPELES 661:

LELELGIVPEPELSLOLEPLIX AGLOLGPELESVLESTLEPVIEPTLCMVSQTVPEPEQG PVSQPVPBPDLPCDLRHINTBPMBIFRNCVKIBBIMPNGDPLLAGONTVDBVYVSRPSHF 721: 781:

YTDGPLMPSDF 841:

# FIG. 8b

| 113 kDa   | MAQWEMLQNLDSPFQDQLHQLXSHSLLPVDIRQXLAVWIEDQNWQEAALGSDDSKATMLF                                                                 |
|-----------|------------------------------------------------------------------------------------------------------------------------------|
| 91/84 kDa | MSQWYELQQLDSKFLEQVHQLXDDS-FPMEIRQXUAQWLEKQDWEHAANDVSFATIRE                                                                   |
| 6 1       | FHFLDQINYECGRCSQDPESLLLQHNLRKFCRDIQP-FSQDFTQLAEMIFNLLLEEKRII                                                                 |
| 5 7       | HDLLSQIDDQYSRFSLE-NNFLLQHNIRKSKRNLQDNFQEDFIQMSMIIYSCLKEERKII                                                                 |
| 120       | I QAQRAQLEQGEPVLETPVESQOHEIESRILDLRAMMEKLVKSISQUKDQQDVFCFRYK-                                                                |
| 117       | ENAQRFNQAQSGNIQSTVMLDKQKELDSKVRNVKDKVMCIEHEUKSUEDLQDEYDFKCKT                                                                 |
| 179       | IQAKGKTPSLDPHQTKEQKILQETLNELDKRRKEVLDASKALLGRITTLIEÜLLPK                                                                     |
| 177       | LQNREHETNGVAKSDQKQEQLLLKKMYLMLDNKRKEVVHKIIELL-NVTELTQNALINDE                                                                 |
| 235       | LEEWKAQQQKACIRAPIDHGLEQUETWFTAGAKLLFHLRQLLKELKGLSCLVSYQDDFLT                                                                 |
| 236       | LVEWKRRQQSACIGGPPNACLDQLQQVRQQLKKLEELEQKYTYEHDBIT                                                                            |
| 295       | KGVDLRNAQVTELLORILHRAFVVETQPCMPQTPHRPLILKTGSKFTVRTRLLVRLQEGN                                                                 |
| 285       | KNKQVLWDRTFSUFQQUIQSSFVVERQPCMPTHPQRPLVLKTGVQFTVKLRLLVKLQELN                                                                 |
| 355       | ESUTVEVSIDRNPPQLQGFRKFNIUTSNQKTLTPEKGQSQGLIWDFGYUTLVEQRSG                                                                    |
| 345       | YNUKVKVLFDKDVNERNTVKGFRKFNIUGTHTKVMNMEESTNGSLAAEFRHUQLKEQKNA                                                                 |
| 412       | GSGKGSNKGPLGVTEELHIISFTVKYTYQGIKQELKTDTLPVVIISNMNQISIAWASVLW                                                                 |
| 405       | GTRTNEGPLIVTEELHSUSFETQLCQPGIVIDLETTSLPVVVISNVSQIPSGWASILW                                                                   |
| 472       | FNLLSPNLQNQOFFSNPPKAPWSLIGPALSWQFSSYVGRGLNSDQLSMIRNKIFGONCRT<br>YNMLVAEPRNLSFFLTPPCARWAQISEVLSWQFSSVTKRGLNVDQLNMIGEKILGPNASP |
| 532       | EDPLLSWADETKRESPPGKLPFWTWLDKILELVHDHLKDLWNDGRIMGFVSRSQERRLLK                                                                 |
| 523       | DG-LIPWTRECKENINDKNFPFWLWIESILELIKKHILPLWNDGCIMGFISKERERALLK                                                                 |
| 5 9 2     | KTMSGTFLLRFSESS-EGGITCSWVEH-QDDDKVLIYSVQPYTKEVLQSLPLTEIIRHXQ                                                                 |
| 5 8 2     | DQQPGTFLLRFSESSREGAITFTWVERSQNGGEPDFHAVEPYTKKELSAVTFPDLIRNXK                                                                 |
| 650       | LLTEENIPENPLRFLYPRIPRDEAFGCYYQEKVNLQERRKYLKHRLIVVSNR                                                                         |
| 642       | VMAAENIPENPLKYLYPNIDKDHAFGKYYSRPKEAPEPMELDGPKGTGYIKTELISVSEV                                                                 |
| 702       | QVDELQQPLELKP                                                                                                                |
| 702       | HPSRLQTTDNULP                                                                                                                |

FIG. 9A

BMV
Marker
Sizes

110 kD
97 kD

35 kD

FIG. 9B



FIG. 10A

FIG. 10B



FIG. 11
1 2 3 4 5 6 7



FIG. 12



## FIG. 13A

#### Mouse 91kD (protein)

#### Amino acid sequence (deduced)

1 MSQWFELQQL DSKFLEQVHQ LYDDSFPMEI RQYLAQWLEK QDWEHAAYDV 51 SFATIRFHOL LSQLDDQYSR FSLENNFLLQ HNIRKSKRNL QDNFQEDPVQ 101 MSMIIYNCLK EERKILENAQ RFNQAQEGNI QNTVMLDKQK ELDSKVRNVK 151 DQVMCIEQEI KTLEELQDEY DFKCKTSQNR EGEANGVAKS DQKQEQLLLH 201 KMFLMLDNKR KEIIHKIREL LNSIELTQNT LINDELVEWK RRQQSACIGG 251 PPNACLDQLQ TWFTIVAETL QQIRQQLKKL EELEQKFTYE PDPITKNKQV 301 LSDRTFLLFQ QLIQSSFVVE RQPCMPTHPQ RPLVLKTGVQ FTVKSRLLVK 351 LQESNLLTKV KCHFDKDVNE KNTVKGFRKF NILGTHTKVM NMEESTNGSL 401 AMELRHLQLK EQKNAGNRTN EGPLIVTEEL HSLSFETQLC QPGLVIDLET TSLPVVVISN VSQLPSGWAS ILWYNMLVTE PRNLSFFLNP PCAWWSQLSE 451 501 VLSWQFSSVT KRGLNADQLS MLGEKLLGPN AGPDGLIPWT RFCKENINDK NFSFWPWIDT ILELIKNDLL CLWNDGCIMG FISKERERAL LKDQQPGTFL 551 601 LRFSESSREG AITFTWVERS QNGGEPDFIIA VEPYTKKELS AVTFPDIIRN 651 YKVMANENIP ENPLKYLYPN IDKDHAFGKY YSRPKEAPEP MELDDPKRTG 701 YIKTELISVS EVHPSRLQTT DNLLPMSPEE FDEMSRIVGP EFDSMMSTV

## FIG. 13B

#### Mouse 91kD (protein) DNA sequence

caggatgtca cagtggttcg agcttcagca gctggactcc aagttcctgg 51 agcaggtcca ccagctgtac gatgacagtt tccccatgga aatcagacag 101 tacctggccc agtggctgga aaagcaagac tgggagcacg ctgcctatga 151 tgtctcgttt gcgaccatcc gcttccatga cctcctctca cagctggacg 201 accagtacag ccgcttttct ctggagaata atttcttgtt gcagcacaac 251 atacggaaaa gcaagcgtaa totocaggat aacttocaag aagatocogt 301 acagatgtcc atgatcatct acaactgtct gaaggaagaa aggaagattt 351 tggaaaatgc ccaaagattt aatcaggccc aggagggaaa tattcagaac 401 actgtgatgt tagataaaca gaaggagetg gacagtaaag tcagaaatgt 451 gaaggatcaa gtcatgtgca tagagcagga aatcaagacc ctagaagaat 501 tacaagatga atatgacttt aaatgcaaaa cctctcagaa cagagaaggt 551 gaagccaatg gtgtggcgaa gagcgaccaa aaacaggaac agctgctgct 601 ccacaagatg tttttaatgc ttgacaataa gagaaaggag ataattcaca

## FIG. 13C

651 aaatcagaga gttgctgaat tccatcgagc tcactcagaa cactctgatt 701 aatgacgage tegtggagtg gaagegaagg cagcagageg cetgcategg 751 gggaccgccc aacgcctgcc tggatcagct gcaaacgtgg ttcaccattg 801 ttgcagagac cctgcagcag atccgtcagc agcttaaaaa gctggaggag 851 ttggaacaga aattcaccta tgagcccgac cctattacaa aaaacaagca 901 ggtgttgtca gatcgaacct tcctcctctt ccagcagctc attcagagct 951 cettegtggt agaacgacag cegtgeatge ceacteacee geagaggeee 1001 ctggtcttga agactggggt acagttcact gtcaagtcga gactgttggt 1051 gaaattgcaa gagtcgaatc tattaacgaa agtgaaatgt cactttgaca 1101 aagatgtgaa cgagaaaaac acagttaaag gatttcggaa gttcaacatc 1151 ttgggtacgc acacaaagt gatgaacatg gaagaatcca ccaacggaag 1201 totggcaget gagetocgae acctgcaact gaaggaacag aaaaacgetg 1251 ggaacagaac taatgagggg ceteteattg teadegaaga actteactet 1301 cttagctttg aaacccagtt gtgccagcca ggcttggtga ttgacctgga 1351 gaccacctct cttcctgtcg tggtgatctc caacgtcagc cagctcccca

## **FIG. 13D**

1401 gtggctgggc gtctatcctg tggtacaaca tgctggtgac agagcccagg 1451 aatototoot tottootgaa occoocytyo yeytyytyyt occayototo 1501 agaggtgttg agttggcagt tttcatcagt caccaagaga ggtctgaacg 1551 cagaccaget gageatgetg ggagagaage tgetgggeee taatgetgge 1601 cctgatggtc ttattccatg gacaaggttt tgtaaggaaa atattaatga 1651 taaaaattto toottotggo ottggattga caccatoota gagotoatta 1701 agaacgacct getgtgcctc tggaatgatg ggtgcattat gggcttcatc 1751 agcaaggage gagaacgege tetgeteaag gaccageage cagggacgtt 1801 cctgcttaga ttcagtgaga gctcccggga aggggccatc acattcacat 1851 gggtggaacg gtcccagaac ggaggtgaac ctgacttcca tgccgtggag 1901 ccctacacga aaaaagaact ttcagctgtt actttcccag atattattcg 1951 caactacaaa gtcatggctg ccgagaacat accagagaat cccctgaagt 2001 atotgtacco caatattgac aaagaccacg cotttgggaa gtattattoc. 2051 agaccaaagg aagcaccaga accgatggag cttgacgacc ctaagcgaac 2101 tggatacate aagactgagt tgatttetgt gtetgaagte caccetteta 2151 gacttcagac cacagacaac ctgcttccca tgtctccaga ggagtttgat 2201 gagatgtccc ggatagtggg ccccgaattt gacagtatga tgagcacagt 2251 ataaacacga atttctctct ggcgaca

## FIG. 14A

13sf1 (protein)

#### Amino acid sequence of 13sf1

1 MSQWNQVQQL EIKFLEQVDQ FYDDNFPMEI RHLLAQWIET QDWEVASNNE TMATILLONL LIQLDEQLGR VSKEKNLLLI HNLKRIRKVL QGKFHGNPMH 101 VAVVISNCLR EERRILAAAN MPIQGPLEKS LQSSSVSERQ RNVEHKVSAI 151 KNSVQMTEQD TKYLEDLQDE FDYRYKTIQT MDQGDKNSIL VNQEVLTLLQ 201 EMLNSLDFKR KEALSKMTQI VNETDLLMNS MLLEELQDWK KRIRIACIGG 251 PLHNGLDQLQ NCFTLLAESL FQLRQQLEKL QEQSTKMTYE GDPIPAQRAH 301 LLERATFLIY NLFKNSFVVE RHACMPTHPQ RPMVLKTLIQ FTVKLRLLIK 351 LPELNYQVKV KASIDKNVST LSNRRFVLCG THVKAMSSEE SSNGSLSVEL DIATQGDEVQ YWSKGNEGCH MVTEELHSIT FETQICLYGL TINLETSSLP 451 VVMISNVSQL PNAWASIIWY NVSTNDSQNL VFFNNPPSVT LGQLLEVMSW 501 QFSSYVGRGL NSEQLNMLAE KLTVQSNYND GHLTWAKFCK EHLPGKTFTF WTWLEAILDL IKKHILPLWI DGYIMGFVSK EKERLLLKDK MPGTFLLRFS 601 ESHLGGITFT WVDQSENGEV RFHSVEPYNK GRLSALAFAD ILRDYKVIMA 651 ENIPENPLKY LYPDIPKDKA FGKHYSSQPC EVSRPTERGD KGYVPSVFIP ISTIRSDSTE PQSPSDLLPM SPSAYAVLRE NLSPTTIETA MNSPYSAE

## **FIG. 14B**

#### 13sf1 (DNA)

#### DNA sequence of 13sf1

1 tgccactacc tggacggaga gagagagagc agcatgtctc agtggaatca agtccaacaa ttagaaatca agtttttgga gcaagtagat cagttctatg 51 atgacaactt tectatggaa ateeggeate tgetagetea gtggattgag 101 151 actcaagact gggaagtagc ttctaacaat gaaactatgg caacaattct gcttcaaaac ttactaatac aattggatga acagttgggg cgggtttcca 201 251 aagaaaaaaa tetgetattg atteacaate taaagagaat tagaaaagtt 301 cttcagggca agtttcatgg aaatccaatg catgtagctg tggtaatttc aaattgctta agggaagaga ggagaatatt ggctgcagcc aacatgccta 351 tccagggacc tctggagaaa tccttacaga gttcttcagt ttctgaaaga 401 caaaggaatg tggaacacaa agtgtctgcc attaaaaaca gtgtgcagat 451 501 gacagaacaa gataccaaat acttagaaga cctgcaagat gagtttgact 551 acaggtataa aacaattcag acaatggatc agggtgacaa aaacagtatc ctggtgaacc aggaagtttt gacactgctg caagaaatgc ttaatagtct 601 651 ggacttcaag agaaaggaag cactcagtaa gatgacgcag atagtgaacg agacagacct gctcatgaac agcatgcttc tagaagagct gcaggactgg 701 751 aaaaagcggc acaggattgc ctgcattggt ggcccgctcc acaatgggct ggaccagctt cagaactgct ttaccctact ggcagagagt cttttccaac 801 851 tcagacagca actggagaaa ctacaggagc aatctactaa aatgacctat

## **FIG. 14C**

#### 13sf1 (DNA)

901 gaaggggatc ccatccctgc tcaaagagca cacctcctgg aaagagctac 951 cttcctgatc tacaaccttt tcaagaactc atttgtggtc gagcgacacg 1001 catgcatgcc aacgcaccct cagaggccga tggtacttaa aaccctcatt 1051 1101 tcaggtgaaa gtaaaggcgt ccattgacaa gaatgtttca actctaagca 1151 atagaagatt tgtgctttgt ggaactcacg tcaaagctat gtccagtgag 1201 gaatcttcca atgggagcct ctcagtggag ttagacattg caacccaagg 1251 agatgaagtg cagtactgga gtaaaggaaa cgagggctgc cacatggtga 1301 cagaggagtt gcattccata acctttgaga cccagatctg cctctatggc 1351 ctcaccatta acctagagac cagctcatta cctgtcgtga tgatttctaa 1401 tgtcagccaa ctacctaatg catgggcatc catcatttgg tacaatgtat 1451 caactaacga ctcccagaac ttggttttct ttaataaccc tccatctgtc 1501 actttgggcc aactcctgga agtgatgagc tggcaatttt catcctatgt 1551 cggtcgtggc cttaattcag agcagctcaa catgctggca gagaagctca 1601 cagttcagtc taactacaat gatggtcacc tcacctgggc caagttctgc 1651 aaggaacatt tgcctggcaa aacatttacc ttctggactt ggcttgaagc 1701 aatattggac ctaattaaaa aacatattet teeeetetgg attgatgggt 1751 acatcatggg attigttagt aaagagaagg aacggctict gctcaaagat 1801 aaaatgcctg ggacattttt gttaagattc agtgagagcc atcttggagg

## FIG. 14D

#### 13sf1 (DNA)

1851 gataacette acetgggtgg accaatetga aaatggagaa gtgagattee 1901 actetgtaga accetacaac aaagggagac tgtcggctct ggccttcgct 1951 gacateetge gagactacaa ggttateatg getgaaaaca teeetgaaaa ccctctgaag tacctctacc ctgacattcc caaagacaaa gcctttggca 2001 2051 aacactacag ctcccagccg tgcgaagtct caagaccaac cgaacgggga 2101 gacaagggtt acgtcccctc tgtttttatc cccatttcaa caatccgaag 2151 cgattccacg gagccacaat ctccttcaga ccttctcccc atgtctccaa gtgcatatgc tgtgctgaga gaaaacctga gcccaacgac aattgaaact 2201 2251 gcaatgaatt ccccatattc tgctgaatga cggtgcaaac ggacacttta 2301 aagaaggaag cagatgaaac tggagagtgt tctttaccat agatcacaat 2351 ttatttcttc ggctttgtaa atacc

## FIG. 15A

#### 19sf6 (DNA)

#### Amino acid sequence of 19sf6

1 MAQWNQLQQL DTRYLKQLHQ LYSDTFPMEL RQFLAPWIES QDWAYAASKE SHATLVFHNL LGEIDQQYSR FLQESNVLYQ HNLRRIKQFL QSRYLEKPME 51 101 IARIVARCLW EESRLLQTAA TAAQQGGQAN HPTAAVVTEK QQMLEQHLQD 151 VRKRVQDLEQ KMKVVENLQD DFDFNYKTLK SQGDMQDLNG NNQSVTRQKM 201 QQLEQMLTAL DQMRRSIVSE LAGLLSAMEY VQKTLTDEEL ADWKRRPEIA 251 CIGGPPNICL DRLENWITSL AESQLQTRQQ IKKLEELQQK VSYKGDPIVQ 301 HRPMLEERIV ELFRNLMKSA FVVERQPCMP MHPDRPLVIK TGVQFTTKVR 351 LLVKFPELNY QLKIKVCIDK DSGDVAALRG SRKFNILGTN TKVMNMEESN 401 NGSLSAEFKH LTLREQRCGN GGRANCDASL IVTEELHLIT FETEVYHQGL 451 KIDLETHSLP VVVISNICOM PNAWASILWY NMLTNNPKNV NFFTKPPIGT 501 WDQVAEVLSW QFSSTTKRGL SIEQLTTLAE KLLGPGVNYS GCQITWAKFC 551 KENMAGKGFS FWVWLDNIID LVKKYILALW NEGYIMGFIS KERERAILST 601 KPPGTFLLRF SESSKEGGVT FTWVEKDISG KTQIQSVEPY TKQQLNNMSF 651 AEIIMGYKIM DATNILVSPL VYLYPDIPKE EAFGKYCRPE SQEHPEADPG 701 SAAPYLKTKF ICVTPTTCSN TIDLPMSPRT LDSLMQFGNN GEGAEPSAGG 751 QFESLTFDMD LTSECATSPM

## FIG. 15B

#### 19sf6 (DNA)

#### Amino acid sequence of 19sf6

geogegacea gecaggeegg ceagteggge teageeegga gacagtegag 51 accectgact geageaggat ggeteagtgg aaceagetge ageagetgga 101 cacacgetae etgaageage tgeaceaget gtacagegae acgttececa 151 tggagctgcg gcagttcctg gcaccttgga ttgagagtca agactgggca 201 tatgcagcca gcaaagagtc acatgccacg tigglightc ataatctctt 251 gggtgaaatt gaccagcaat atagccgatt cctgcaagag tccaatgtcc 301 totatoagoa caacettoga agaatcaago agtttotgoa gagoaggtat 351 cttgagaagc caatggaaat tgcccggatc gtggcccgat gcctgtggga 401 agagtotogo otootocaga oggoagocac ggoagoccag caagggggco 451 aggccaacca cccaacagcc gccgtagtga cagagaagca gcagatgttg 501 gagcagcate tteaggatgt eeggaagega gtgeaggate tagaacagaa 551 aatgaaggtg gtggagaacc tccaggacga ctttgatttc aactacaaaa 601 ccctcaagag ccaaggagac atgcaggate tgaatggaaa caaccagtct 651 gtgaccagac agaagatgca gcagctggaa cagatgctca cagccctgga 701 ccagatgcgg agaagcattg tgagtgagct ggcggggctc ttgtcagcaa 751 tggagtacgt gcagaagaca ctgactgatg aagagctggc tgactggaag 801 aggeggeeag agategegtg categgagge ceteceaaca tetgeetgga 851 ccgtctggaa aactggataa cttcattagc agaatctcaa cttcagaccc

## FIG. 15C

#### 19sf6 (DNA)

901 gccaacaaat taagaaactg gaggagctgc agcagaaagt gtcctacaag 951 ggcgacccta tcgtgcagca ccggcccatg ctggaggaga ggatcgtgga 1001 gctgttcaga aacttaatga agagtgcctt cgtggtggag cggcagccct 1051 gcatgcccat gcacccggac cggcccttag tcatcaagac tggtgtccag 1101 tttaccacga aagtcaggtt gctggtcaaa tttcctgagt tgaattatca. 1151 gcttaaaatt aaagtgtgca ttgataaaga ctctggggat gttgctgccc 1201 tcagagggtc tcggaaattt aacattctgg gcacgaacac aaaagtgatg 1251 aacatggagg agtctaacaa cggcagcctg tctgcagagt tcaagcacct 1301 gacccttagg gagcagagat gtgggaatgg aggccgtgcc aattgtgatg 1351 cctccttgat cgtgactgag gagctgcacc tgatcacctt cgagactgag 1401 gtgtaccacc aaggcctcaa gattgaccta gagacccact ccttgccagt 1451 tgtggtgatc tccaacatct gtcagatgcc aaatgcttgg gcatcaatcc 1501 tgtggtataa catgctgacc aataacccca agaacgtgaa cttcttcact 1551 aagccgccaa ttggaacctg ggaccaagtg gccgaggtgc tcagctggca 1601 gttctcgtcc accaccaage gagggctgag catcgagcag ctgacaacge 1651 tggctgagaa gctcctaggg cctggtgtga actactcagg gtgtcagatc 1701 acatgggcta aattctgcaa agaaaacatg gctggcaagg gcttctcctt 1751 ctgggtctgg ctagacaata tcatcgacct tgtgaaaaag tatatcttgg 1801 ccctttggaa tgaagggtac atcatgggtt tcatcagcaa ggagcgggag

## FIG. 15D

#### 19sf6 (DNA)

1851 cgggccatcc taagcacaaa gcccccgggc accttcctac tgcgcttcag 1901 cgagagcagc aaagaaggag gggtcacttt cacttgggtg gaaaaggaca 1951 tcagtggcaa gacccagatc cagtctgtag agccatacac caagcagcag 2001 ctgaacaaca tgtcatttgc tgaaatcatc atgggctata agatcatgga 2051 tgcgaccaac atcctggtgt ctccacttgt ctacctctac cccgacattc 2101 ccaaggagga ggcatttgga aagtactgta ggcccgagag ccaggagcac 2151 cccgaagccg acccaggtag tgctgccccg tacctgaaga ccaagttcat 2201 ctgtgtgaca ccaacgacct gcagcaatac cattgacctg ccgatgtccc 2251 cccgcacttt agattcattg atgcagtttg gaaataacgg tgaaggtgct 2301 gageceteag caggagggea gtttgagteg eteacgtttg acatggatet 2351 gacctcggag tgtgctacct ccccatgtg aggagctgaa accagaagct gcagagacgt gacttgagac acctgecceg tgctccacce ctaagcagec gaaccccata tcgtctgaaa ctcctaactt tgtggttcca gattttttt 2501 tttaatttcc tacttctgct atctttgggc aatctgggca ctttttaaaa 2551 gagagaaatg agtgagtgtg ggtgataaac tgttatgtaa agaggagaga 2601 cctctgagtc tggggatggg gctgagagca gaagggaggc aaaggggaac 2651 acctcctgtc ctgcccgcct gccctccttt ttcagcagct cgggggttgg 2701 ttgttagaca agtgcctcct ggtgcccatg gctacctgtt gccccactct 2751 gtgagctgat accccattct gggaactcct ggctctgcac tttcaacctt

# FIG. 15E

#### 19sf6 (DNA)

2801 gctaatatcc acatagaagc taggactaag cccaggaggt tcctctttaa

2851 attaaaaaaa aaaaaaaaa

FIG. 16A



FIG. 16B









FIG.17C







FIG. 19



FIG. 20



FIG. 21



FIG. 22A



FIG. 22B



# FIG.23A

| Š         | (188)<br>(168)<br>(168)                                                                                                                          | (184)     | (374)      |                                        |      |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|----------------------------------------|------|
|           | WND GRCIMGFISKERELEA DOOF GIFLLANDS ESSREGAIFWYER WYFGKI TRRESERLL NPENPRGIFLYRES ETTR GAYCLSVSD WFFKNL SRKDAEROLL APGNTHGSFLIRES ESTA GSFSLSVRD | GRSISLRY  | ) DYTLTLRK | XXXXXX                                 | မ    |
|           | ESTA O                                                                                                                                           | DRRP C    | STRAM      | XX                                     | BC   |
| 885<br>   | TFLVRES<br>SFLIRES                                                                                                                               | SFLVRES   | TFLVRDA    | XXXXX                                  | 88   |
|           | NPENPRG<br>APGNTHG                                                                                                                               | SGIN G    | ס סגדס     | []                                     | YB.  |
| αλ2<br> - | KEREKALLA<br>RRESERLLI<br>RKDAEROLI                                                                                                              | RNAAEYLLS | REEVNEKLA  | XXXXXXXX                               | ઇ    |
|           | KI TAGELS                                                                                                                                        | S Ads     | SDI S      | XXX XXXX XXXX XXXX XXX XXX XXX XXX XXX | A.A. |
| gai<br>-  | WYE O                                                                                                                                            | WAHO      | MXM        | X T                                    | gy.  |
|           | AEE                                                                                                                                              | EKHS      | QDAE       |                                        | , AZ |
|           | (145)<br>(127)                                                                                                                                   | (141)     |            |                                        |      |
| 0         | 2 2 2                                                                                                                                            | abl       | p85an      | SCR'S                                  | Name |

|         | 54)                                                     | 10)            | 39)            | (0)           | 38)           |           |                                                              |
|---------|---------------------------------------------------------|----------------|----------------|---------------|---------------|-----------|--------------------------------------------------------------|
|         | (6                                                      | (210)          | (189           | (200          | (388)         |           |                                                              |
|         | EN PL                                                   | U              | U              | U             | U             | × -       |                                                              |
|         | AENIE                                                   | LDS            | F DN           | A SD          | 成<br>U        | -         | An: DE                                                       |
|         | ž.                                                      | I RK           | <b>X</b>       | F             | H FH          | ×         | _<br>_ &                                                     |
| β06<br> | GGEPDFHAVEPYTKKELSAVTFP IIRNYKV MAAENIPEN PL (664)<br>D | NVKHYKI RKL DS | WYCHYKI RNL DN | RVYHYRI NTASD | NNKLIKI FHR D | XXXXXXX X | An An DE                                                     |
|         | VTEP 1                                                  | ~              |                |               |               | •         | -                                                            |
|         | ELSA                                                    |                |                |               |               |           | <br>                                                         |
|         | YTKK                                                    |                |                |               |               |           | }<br>}<br>!                                                  |
|         | GAVEP                                                   |                |                |               |               |           |                                                              |
|         | PDF                                                     |                |                |               |               |           | ֓֞֝֝֟֝֝֞֝֟֝֓֓֓֞֝֞֜֜֝֓֓֓֞֜֜֝֡֓֓֡֓֞֜֜֜֝֡֓֡֡֡֓֡֡֡֡֡֡֡֝֡֡֡֡֡֡֡֡֡ |
|         | 0<br>0<br>0                                             | GL             | GE<br>GE       | ပ             | ႘ၟ            |           | l<br>!<br>!                                                  |
|         | N<br>O<br>S                                             | FD NAK GL      | FD QNQ GE      |               |               |           | )<br>)<br>!                                                  |
|         | w                                                       | Eu<br>Eu       | L<br>D         | 回回            |               |           | ا<br>پ                                                       |
|         | (620)                                                   | (183)          | (169)          | (182)         | (375)         |           |                                                              |
|         | stat91                                                  | បូ             | 1ck            | рĵ            | p85aN         | SCR'S     | o men                                                        |

# FIG.23B

|         | (704)                            | (227)        | (238)        | (427)            |           |           |
|---------|----------------------------------|--------------|--------------|------------------|-----------|-----------|
|         | ELD GPK GTGYIKT<br>RLT NVC PTS   | RLS RPCQTQ   | 1            | DVKL. LYP        |           | က ၁၅      |
|         | PK EA PEP M<br>AD GL CH          | SD GL CT     | AD GL IT     | S LA QYN PKLDVKL | 1 1       | <b>98</b> |
| œ3<br>— | K KDHAFGKYYSRP<br>S SLOOLVAYYSKH | GLHDLVRHYTNA | TLAELVHHHSTV | SVVEL INHYRHE    | XXXXXXXXX | 80        |
|         | K N                              |              |              | Z                |           |           |
|         | NID                              | ITE          | SRF          | LTF              |           | BF.       |
|         | P TSE                            | SPR          | SSE          | SDP              | _         | 臣         |
|         |                                  | GFYI         |              |                  | X [       | ,<br>BE   |
|         | (665)<br>(211)                   | (190)        | (201)        | (388)            |           |           |
|         | stat91<br>src                    | 1ck          | abl          | p85an            | SCR'S     | Name      |