RNA-seq解析パイプライン: Transcript-based

Shuji Shigenobu 重信 秀治

基礎生物学研究所 生物機能解析センター

Two Basic Pipelines

Choice of reference

- ► **Genome** standard for genome-known species
- Transcript the only way for genome-unknown species
 -- can be used for genome-known species

A transcript-based pipeline (alignment-free method)

Alignment-free RNAseq quantification

Software

- Salmon
- Kallisto
- Sailfish

Concept

- Precise alignments are not required to assign reads to their origins.
- > => "psudo-alignment" using a de bruijn graph information (kallisto), a k-mer approach (Sailfish old ver.) or a "quasi-mapping" (Salmon)

Benefit

- Ultrafast
- Computationally cheap
- Accuracy: similar or better than mapping-based methods

Salmon —Don't count . . . quantify!

Overview

Salmon is a tool for quantifying the expression of transcripts using RNA-seq data. Salmon uses new algorithms (specifically, coupling the concept of quasi-mapping with a two-phase inference procedure) to provide accurate expression estimates very quickly (i.e. wicked-fast) and while using little memory. Salmon performs its inference using an expressive and realistic model of RNA-seq data that takes into account experimental attributes and biases commonly observed in real RNA-seq data.

Citing Salmon

If you find Salmon useful, or have suggestions for improv https://combine-lab.github.io/salmon/ Salmon in your work, please cite the Salmon paper:

Salmon

Salmon is a tool for quantifying the expression of transcripts using RNA-seq data. Salmon uses new algorithms to provide accurate expression estimates very quickly.

```
(example)
$salmon index ... # step 1. build index
$salmon quant ... # step 2. quantification
```

Input

- reference (fasta) and reads (fastq)
- Output
 - Count estimation table: quant.sf

Let's Try Salmon

Map 75-bp Illumina reads to a transcript reference and quantify the abundance.

Prepare reads and reference genome

Sequences for this exercise are stored in ~/data/SS/.

```
IlluminaReads1.fq - Illumina reads in fastq format
minimouse_mRNA.fa - a set of transcript sequences
```

Build index of reference sequence

```
$salmon index -t minimouse_mRNA.fa ¥
-i minimouse_mRNA.fa.salmon.idx -k 31
```

Quantification

```
$salmon quant -i minimouse_mRNA.fa.salmon.idx \footnote{1} -1 A -o salmon_out -r IlluminaReads1.fq
```

Table of counts

data import

diagnostics

normalization

DE testing

evaluation

List of DE gene

edgeR

- A Bioconductor package for differential expression analysis of digital gene expression data
- Model: An over dispersed Poisson model, negative binomial (NB) model, is used
- Normalization: TMM method (trimmed mean of M values) to deal with composition effects
- ▶ **DE test**: exact test and generalized linear models (GLM)

edgeR (classic)

- input: **count data** (not RPKM or TPM)
- output: gene table with DE significance statistics (FDR)

```
(example)
$ R
> library(edgeR)
                                  #load edgeR library
> dat <- read.delim("count_data.txt", ...) #import count table to R</pre>
> group <- c(rep("M", 3), rep("H", 3)) #assign groups</pre>
> D <- DGEList(dat, group=group) #import data to edgeR</pre>
                           #normalization (TMM)
> D <- calcNormFactors(D)</pre>
> D <- estimateCommonDisp(D) #estimate common disbpersion
> D <- estimateTagwiseDisp(D) #estimate tagwise dispersion</pre>
> de <- exactTest(D, pair=c("M", "H")) #DE test</pre>
> topTags(de)
Comparison of groups: H-M
            logConc logFC P.Value
                                                   FDR
AT5G48430 -15.36821 6.255498 9.919041e-12 2.600872e-07
AT5G31702 -15.88641 5.662522 3.637593e-10 4.083773e-06
AT3G55150 -17.01537 5.870635 4.672331e-10 4.083773e-06
```

Let's try edgeR

- edgeR classic
 - ▶ ex5: Differential expression analysis with edgeR (pairwise)

edgeR (GLM)

- input: **count data** (not RPKM or TPM)
- output: gene table with DE significance statistics (FDR)

```
(example)
$ R
> library(edgeR)
                                    #load edgeR library
> dat <- read.delim("count data.txt", ...) #import count table to R
> treat <- factor(c("M", "M", "M", "H", "H", "H")) ")</pre>
> treat <- relevel(treat, ref="M)</pre>
> design <- model.matrix(~treat)</pre>
> rownames(design) <- colnames(y)</pre>
> D <- DGEList(dat, group=treat) #import data to edgeR
> D <- calcNormFactors(D, method="TMM") #normalization (TMM)</pre>
> D <- estimateDisp(D, design) #estimate dispersion</pre>
> fit <- glmFit(D, design) #fitting to model</pre>
> lrt <- glmLRTt(D, coef=2)) #DE test</pre>
> topTags(lrt)
> ...
```

Let's try edgeR (GLM)

- edgeR linear model [advanced]
 - ▶ ex12-1: Differential expression analysis with edgeR (GLM)
 - ex12-2: Differential expression analysis with edgeR (GLM; considering batch effect)

A Pipeline: Transcript-based

Mapping – alignment software

For mapping reads onto transcript reference short read mapper (unspliced read aligner) is used

Bowtie2

http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

bowtie2

Bowtie is an ultrafast, memory-efficient short read aligner.

http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

```
(example)
$ bowtie2 -x transcript.fa -U reads.fq -a -S out.sam
```

- Input
 - Reads (fastq) and reference (bowtie2-db)
- Output
 - ▶ Alignment in SAM format: out.sam

Let's Try Bowtie2

Align 75-bp Illumina reads with a transcript reference using Bowtie2.

Prepare reads and reference genome

Sequences for this exercise are stored in ~/data/SS/.

```
IlluminaReads1.fq - Illumina reads in fastq format
minimouse mRNA.fa - a set of transcript sequences
```

Build index of reference sequence

```
$bowtie2-build minimouse mRNA.fa myref
```

Align reads with reference

```
$bowtie2 -x myref -U IlluminaReads1.fq -a -S out.sam
```

Count Reads by Transcript/gene

- ▶ The simplest way: just count reads by contig.
- But...
- Mapping ambiguity should be taken into consideration.

Estimate Abundance

- Multimapping issues
 - Isoforms
 - Very similar paralogs
 - Repetitive sequences
 - > => cannot align reads uniquely
- Mapping ambiguity should be taken into consideration.

- Critical for RNA-seq de novo analysis
- Software: RSEM and eXpress (EM algorithm)

eXpress

eXpress is a streaming tool for quantifying the abundances of a set of target sequences from sampled subsequences.

http://bio.math.berkeley.edu/eXpress/

```
(example)
$ express transcripts.fasta hits.bam
```

- Input
 - alignment (bam|sam) and reference (fasta)
- Output
 - Count estimation table: results.xprs

Google™ Custom Search

Search

Home About **Download Getting Started Manual FAO** Source Home **Download** News **Current Release** 02.09.2014 • eXpress Mac 1.5.1 binary updated. eXpress 1.5.0 → Mac OS X (64-bit) Binary The previous 1.5.1 binary for OSX was linked with a dynamic Protobuf library that caused the binary to fail on → Linux (64-bit) Binary systems without the library installed. The binary has now been updated. → Windows (64-bit) Binary There is no need to update if you were not using this binary or the binary was working for you previously. → Source **Previous Versions** 12.08.2013 • eXpress now available in the cloud with eXpress-D! → View All Thanks in major part to the amazing work of Harvey Feng, a distributed, batch version of eXpress can now be run on a cluster using Apache Spark to provide a scalable solution for fragment assignment and **Support** abundance estimation. Since express-D uses the full batch EM algorithm, it provides the most accurate estimates according to our tests. **Email your questions to** For more details, please read our manuscript in BMC Bioinformatics and check out the wiki on GitHub. ask.xprs@gmail.com

https://pachterlab.github.io/eXpress/index.html

Let's Try eXpress

Prepare alignments and reference genome

Sequences for this exercise are stored in ~/data/SS/.

```
IlluminaReads1.fq - Illumina reads in fastq format
out.sam - this file should be generated in the previous bowtie practice
```

Run eXpress

```
$ express minimouse_mRNA.fa out.sam
```

```
Output : results.xprs, params.xprs
```

eXpress: output

results.xprs

est_counts => edgeR

∠ A	В	С	D	E	F	G	Н		J	K	L	M	N
	d target_id	length	eff_length				eff_counts	ambig_distr_alpha		fpkm		fpkm_conf_high	
	1 m.245853	621	398.1	807	15	86.2	134.4	9.83E+01		2.34E+01			
	1 m.245856	660	442.0	991	199	919.8	1373.4	5.53E+01		2.25E+02			
	2 m.42076	1959	1591.7	156	156	156.0	192.0	0.00E+00			1.06E+01		
	3 m.60782	291	83.0	12	12	12.0	42.1	0.00E+00	0.00E+00	1.57E+01	1.57E+01	1.57E+01	Т
	4 m.158451	282	64.5	0	0	0.0	0.0	0	0	0.00E+00	0.00E+00	0.00E+00	Т
	5 m.337354	219	39.4	0	0	0.0	0.0	0		0.00E+00		0.00E+00	T
	6 m.338934	261	82.3	0	0	0.0	0.0	0	0	0.00E+00	0.00E+00	0.00E+00	T
9	7 m.5973	822	719.9	4	4	4.0	4.6	0.00E+00	0.00E+00	6.01E-01	6.01E-01	6.01E-01	Т
0	8 m.337793	219	38.7	0	0	0.0	0.0	0	0	0.00E+00	0.00E+00	0.00E+00	Т
.1	9 m.340910	210	40.5	0	0	0.0	0.0	0	0	0.00E+00	0.00E+00	0.00E+00	Т
.2	0 m.289784	3177	2521.4	350	350	350.0	441.0	0.00E+00	0.00E+00	1.50E+01	1.50E+01	1.50E+01	T
3	1 m.248666	240	61.8	1	1	1.0	3.9	0.00E+00	0.00E+00	1.75E+00	1.75E+00	1.75E+00	Т
4	2 m.90727	240	55.7	13	13	13.0	56.1	0.00E+00	0.00E+00	2.53E+01	2.53E+01	2.53E+01	Т
5 1	3 m.338727	216	48.1	0	0	0.0	0.0	0	0	0.00E+00	0.00E+00	0.00E+00	Т
.6	4 m.123519	225	43.2	0	0	0.0	0.0	0	0	0.00E+00	0.00E+00	0.00E+00	Т
7 1	5 m.328661	251	50.8	1	1	1.0	4.9	0.00E+00	0.00E+00	2.13E+00	2.13E+00	2.13E+00	Т
8 1	6 m.26062	642	356.1	1	1	1.0	1.8	0.00E+00	0.00E+00	3.04E-01	3.04E-01	3.04E-01	Т
9 1	7 m.1295	240	53.6	0	0	0.0	0.0	0	0	0.00E+00	0.00E+00	0.00E+00	Т
0 1	8 m.307626	201	220.2	4	3	3.0	2.7	8.33E+00	4.07E+04	1.47E+00	1.46E+00	1.49E+00	Т
1 1	8 m.307625	204	35.7	301	300	301.0	1718.3	1.02E+01	2.10E-03	9.12E+02	9.05E+02	9.18E+02	Т
2 1	9 m.49789	237	51.9	3	3	3.0	13.7	0.00E+00	0.00E+00	6.26E+00	6.26E+00	6.26E+00	Т
	0 m.33508	162	151.3	1	1	1.0	1.1	0.00E+00			7.15E-01		
	1 m.109341	183	286.3	2	2	2.0	1.3	0.00E+00	0.00E+00	7.56E-01	7.56E-01	7.56E-01	Т
	2 m.331919	564	277.3	0		0.0	0.0	0		0.00E+00			
	3 m.23766	303	98.5	3	3	3.0	9.2	0.00E+00		3.30E+00			
	4 m.246777	1149	1152.1	631	29	202.5	202.0	1.58E+02	3.90E+02	1.90E+01	1.65E+01	2.15E+01	Т
	4 m.246852	1323	1315.4	761	156	588.8	592.2	1.22E+02			4.50E+01		
9 2	4 m.246633	207	31.8	10	4	5.7	37.1	1.29E+04	3.27E+04	1.94E+01	1.05E+01	2.82E+01	Т
	4 m.246662	192	200.4	6	3	3.0	2.9	1.20E+01		1.63E+00			
	5 m.99743	1641	1387.9	470	470	470.0	555.7	0.00E+00		3.66E+01			
	6 m.335620	234	58.9	0		0.0	0.0	0		0.00E+00			
	7 m.16882	528	297.5	14	14	14.0	24.9	0.00E+00		5.09E+00			
	8 m.77438	255	81.4	9		9.0	28.2	0.00E+00			1.20E+01	1.20E+01	
	9 m.131505	450	263.2	18		15.8	27.1	8.87E+00		6.51E+00			
	9 m.131517	170	195.9	6		1.8	1.5	8.17E+00			0.00E+00		
	9 m.131504	705	528.2	15		14.4	19.2	6.53E+01		2.95E+00			
2	9 m.131304	/ /05	528.2	15	14	14.4	19.2	0.33E+UI	1.01E+02	2.95E+00	2.09E+00	3.21E+00	11

Let's try mapping & counting

▶ 練習問題 ex2:Transcript-based RNA-seq pipeline (mapping and counting)