

Statistics and Data Science for Engineers E178 / ME276DS

Neural networks

Recall linear regression: $\hat{\theta}_{0} \in \mathbb{R}$ $\hat{\theta}_{0} + \hat{\phi}^{T} \hat{\theta}_{1} \rightarrow \hat{y}$ $\hat{\theta}_{0} + \hat{\phi}^{T} \hat{\theta}_{1} \rightarrow \hat{y}$

ê, pe R

· I have to manually design the features of.

Newal networks can be understood as a way to

design the features automatically.

 $\phi: \mathbb{R}^D \to \mathbb{R}^P$ inputs features

Pictorial representation of linear regression

$$\hat{y} = \theta_0 + \phi^T(x)\underline{\theta}_1 = \theta_0 + \sum_{j=1}^P \phi_j(x)\theta_j$$

1) Generic nonlinearities, a.k.a. <u>activation functions</u>

sigmoid:
$$\phi(\xi) = \frac{1}{1 + e^{-\xi}}$$

tanh:
$$\phi(\xi) = \frac{e^{2\xi} - 1}{e^{2\xi} + 1}$$

$$\text{ReLU:} \qquad \phi(\xi) = \max(0,\xi)$$

2) Weights on the inputs

$$\hat{y} = \theta_0 + \phi^T(b + Ax)\underline{\theta}_1 = \theta_0 + \sum_{j=1}^P \phi_j(b_j + A_jx)\theta_j$$

$$\phi_1(a_{11}x^1 + a_{12}x^2 + a_{13}x^3 + b_1)\theta_1$$

$$\phi_1(A_1x + b_1)$$

$$A_1 = \begin{bmatrix} a_1, & a_2, & a_3 \end{bmatrix}$$

• Output layer: $(\theta_0, \underline{\theta}_1)$... final linear regression. (regression problem)

Put it all together:

$$\hat{y} = h(x) = \theta_0 + \underline{\theta}_1 \cdot \overline{\Phi}_L \left(b_L + \underline{A}_L \cdot \overline{\Phi}_{L-1} \left(b_{L-1} + \underline{A}_{L-1} \cdot \overline{\Phi}_{L-2} \left(\dots \cdot \overline{\Phi}_1 \left(b_1 + \underline{A}_1 \cdot x \right) \dots \right) \right) \right).$$

... complicated nested. function. $\overline{\tau}_{L-1}$

White this in a recursive form

$$\begin{pmatrix}
\hat{y} = \theta_0 + \theta_1 \Phi_L(\xi_L) \\
\xi_L = \theta_L + A_L \Phi_{L-1}(\xi_{L-1})
\end{pmatrix}$$

$$\xi_L = \theta_L + A_L \Phi_{L-2}(\xi_{L-2})$$

$$\xi_L = \theta_L + A_L \Phi_{L-1}(\xi_{L-1})$$

$$\hat{y} = \theta_0 + \theta_1 \Phi_L(\xi_L)$$
 $\hat{z}_{L-1} = b_L + A_L \Phi_{L-1}(\xi_{L-1})$
 $\hat{z}_{L-1} = b_{L-1} + A_{L-1} \Phi_{L-2}(\xi_{L-2})$
 $\hat{z}_{L-2} = b_L + A_L \Phi_{L-1}(\xi_{L-1})$ (general form)

Classification networks

$$x^1$$
 x^2
 A_1
 b_1
 \vdots
 b_2
 \vdots
 x^D
 A_2
 \vdots
 A_2
 \vdots

$$A_L$$
:

Properties:
$$\hat{P}_{x} > 0$$
.

• presenves order:
$$0:>0; \Rightarrow \hat{p}:>\hat{p};$$

Softmay.

Continue. One-hot encoding (OHE)
$$c_1 \longrightarrow \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix} \qquad c_2 \longrightarrow \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \\ 0 \end{bmatrix} \qquad \dots \qquad c_{K-1} \longrightarrow \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ 0 \end{bmatrix} \qquad c_K \longrightarrow \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$

Example: Binary output

t		0-1 encoding	OHE	
	y_i	$y_i \! = \! 0$ for c_1 $y_i \! = \! 1$ for c_2	$y_i = egin{bmatrix} y_i^1 \\ y_i^2 \end{bmatrix} \hspace{-0.2cm} egin{smallmatrix} & = egin{bmatrix} 1 \\ 0 \end{bmatrix} & ext{for } c_1 \\ & = egin{bmatrix} 0 \\ 1 \end{bmatrix} & ext{for } c_2 \end{bmatrix}$	
	\hat{p}_i	\hat{p}_i \in [0,1].	$\hat{p}_i = \begin{bmatrix} \hat{p}_i^1 \\ \hat{p}_i^2 \end{bmatrix} = \begin{bmatrix} \mathbf{i} - \hat{p}_i \\ \mathbf{i} \mathbf{m} \cdot \hat{p}_i \end{bmatrix} \dots$	[0.7]c(.
		0.3 c	.1	

Recall on neural networks.	
· From linear regression> perceptron.	
· Classification	- Regression : Linear regression
- Output: probabilities over classes -> OHEncode y.	L Classification: Softman
Loss function: Multiclass CE.	

Loss function: Multi-class cross entropy

Recall: Binary cross entropy under 0-1 encoding (logistic regression)

$$\mathrm{CE}(y_i, \hat{p}_i) = -y_i \log(\hat{p}_i) - (1-y_i) \log(1-\hat{p}_i)$$

Example

Example 3-class classification.

OHE class 3.

$$y_i \quad y^k \quad -y^k \log \hat{p}^k$$

$$\hat{p}^1 = 0.695$$

$$\hat{p}^2 = 0.115$$

$$\hat{p}^3 = 0.190$$

OEE $(y, \hat{p}) = -\log 0.19 = 1.66$.

CE (C1, P) = - log 0.695: shaller

Training the neural network

... Backpropagation of the loss.

- **Hyper-parameters**
 - \blacktriangleright # of layers L
 - # of "neurons" in each layer 🧖
 - activation function for each layer
- Tunable parameters

 All edge weights

Regression network \boldsymbol{x} • • • $\boldsymbol{\theta} = (A_1, b_1, A_2, b_2, \dots, A_L, b_L, \boldsymbol{\theta}_0, \underline{\boldsymbol{\theta}}_1)$ $\hat{\theta} = \underset{i=1}{\operatorname{arsmin}} \sum_{i=1}^{N} \lfloor (y_i, h(x_i; \theta)) \rfloor$ PRH = DR - Y VOL (DR).

$$L = 2 \frac{dL}{d\hat{y}} \sqrt{\frac{g}{y}} \sqrt$$

- dL -

$$\sqrt{2}$$

Gradient of the loss ∇_{θ} .

Computing $\nabla_{\theta} h$ with back-propagation

$$\begin{split} \hat{y} &= \theta_0 + \Phi_L^T(z_L) \underline{\theta}_1 \\ z_L &= \underline{b}_L + A_L \Phi_{L-1}(z_{L-1}) \\ z_{L-1} &= \underline{b}_{L-1} + A_{L-1} \Phi_{L-2}(z_{L-2}) \\ \vdots \end{split}$$

$$\frac{\partial h}{\partial \theta_{0}} = 1$$

$$\frac{\partial h}{\partial \theta_{0}} = \Phi_{L}(\mathcal{Z}_{L})$$

$$\frac{\partial h}{\partial \theta_{0}} = \Phi_{L}(\mathcal{Z}_{L})$$

$$\frac{\partial h}{\partial \theta_{0}} = \frac{\partial h}{\partial \theta_{0}} = \frac{\partial \Phi_{L}}{\partial \mathcal{Z}_{L}}$$

$$\frac{\partial h}{\partial h} = \frac{\partial h}{\partial \theta_{0}} = \frac{\partial \Phi_{L}}{\partial \mathcal{Z}_{L}}$$

$$\frac{\partial h}{\partial h} = \frac{\partial h}{\partial \theta_{0}} = \frac{\partial \Phi_{L}}{\partial \mathcal{Z}_{L}}$$

$$\frac{\partial h}{\partial h} = \frac{\partial h}{\partial \theta_{0}} = \frac{\partial \Phi_{L}}{\partial \mathcal{Z}_{L}}$$

$$\frac{\partial h}{\partial h} = \frac{\partial h}{\partial \theta_{0}} = \frac{\partial \Phi_{L}}{\partial \mathcal{Z}_{L}}$$

$$\frac{\partial h}{\partial h} = \frac{\partial h}{\partial \theta_{0}} = \frac{\partial \Phi_{L}}{\partial \mathcal{Z}_{L}}$$

$$\frac{\partial h}{\partial h} = \frac{\partial h}{\partial \theta_{0}} = \frac{\partial \Phi_{L}}{\partial \mathcal{Z}_{L}}$$

$$\frac{\partial h}{\partial h} = \frac{\partial \Phi_{L}}{\partial \theta_{0}} = \frac{\partial \Phi_{L}}{\partial \mathcal{Z}_{L}}$$

$$\frac{\partial h}{\partial h} = \frac{\partial \Phi_{L}}{\partial \theta_{0}} = \frac{\partial \Phi_{L}}{\partial \mathcal{Z}_{L}}$$

$$\frac{\partial h}{\partial h} = \frac{\partial \Phi_{L}}{\partial \theta_{0}} = \frac{\partial \Phi_{L}}{\partial \mathcal{Z}_{L}}$$

$$\frac{\partial h}{\partial h} = \frac{\partial \Phi_{L}}{\partial \theta_{0}} = \frac{\partial \Phi_{L}}{\partial \mathcal{Z}_{L}}$$

$$\frac{\partial h}{\partial h} = \frac{\partial \Phi_{L}}{\partial \theta_{0}} = \frac{\partial \Phi_{L}}{\partial \mathcal{Z}_{L}}$$

$$\frac{\partial h}{\partial h} = \frac{\partial \Phi_{L}}{\partial \theta_{0}} = \frac{\partial \Phi_{L}}{\partial \mathcal{Z}_{L}}$$

$$\frac{\partial h}{\partial h} = \frac{\partial \Phi_{L}}{\partial \theta_{0}} = \frac{\partial \Phi_{L}}{\partial \mathcal{Z}_{L}}$$

$$\frac{\partial h}{\partial h} = \frac{\partial \Phi_{L}}{\partial \theta_{0}} = \frac{\partial \Phi_{L}}{\partial \theta_{0}}$$

$$\frac{\partial h}{\partial h} = \frac{\partial \Phi_{L}}{\partial \theta_{0}} = \frac{\partial \Phi_{L}}{\partial \theta_{0}}$$

$$\frac{\partial h}{\partial h} = \frac{\partial \Phi_{L}}{\partial \theta_{0}} = \frac{\partial \Phi_{L}}{\partial \theta_{0}}$$

$$\frac{\partial h}{\partial h} = \frac{\partial \Phi_{L}}{\partial \theta_{0}} = \frac{\partial \Phi_{L}}{\partial \theta_{0}}$$

$$\frac{\partial h}{\partial h} = \frac{\partial \Phi_{L}}{\partial \theta_{0}} = \frac{\partial \Phi_{L}}{\partial \theta_{0}}$$

$$\frac{\partial h}{\partial h} = \frac{\partial \Phi_{L}}{\partial \theta_{0}} = \frac{\partial \Phi_{L}}{\partial \theta_{0}}$$

$$\frac{\partial h}{\partial h} = \frac{\partial \Phi_{L}}{\partial \theta_{0}} = \frac{\partial \Phi_{L}}{\partial \theta_{0}}$$

$$\frac{\partial h}{\partial h} = \frac{\partial \Phi_{L}}{\partial \theta_{0}} = \frac{\partial \Phi_{L}}{\partial \theta_{0}}$$

$$\frac{\partial h}{\partial h} = \frac{\partial \Phi_{L}}{\partial \theta_{0}} = \frac{\partial \Phi_{L}}{\partial \theta_{0}}$$

$$\frac{\partial h}{\partial h} = \frac{\partial \Phi_{L}}{\partial \theta_{0}} = \frac{\partial \Phi_{L}}{\partial \theta_{0}}$$

$$\frac{\partial h}{\partial h} = \frac{\partial \Phi_{L}}{\partial \theta_{0}} = \frac{\partial \Phi_{L}}{\partial \theta_{0}}$$

$$\frac{\partial h}{\partial \theta_{0}} = \frac{\partial \Phi_{L}}{\partial \theta_{0}} = \frac{\partial \Phi_{L}}{\partial \theta_{0}}$$

$$\frac{\partial h}{\partial \theta_{0}} = \frac{\partial \Phi_{L}}{\partial \theta_{0}}$$

$$\frac{\partial \Phi_{L}}{\partial \theta_{0}} = \frac{\partial \Phi_{L}}{\partial \theta_{0}}$$

Voh = [300 ' 30, 3h) 3h) 3h) 3AL) ...]

Tenson generalization
of a matrix.

https://playground.tensorflow.org

K Keras

Irrs flower NN model

MNIST demo

Neural networks for images

Convolutional Neural Network.

Convolution operator

Example

1.33

$$= \phi \left(b + \sum_{i} p_{i} f_{i} \right)$$

$$= \text{ReLU}(1 + (1.0)(-0.2) + (0.0)(1.2) + ...)$$

$$= \text{ReLU}(1.33)$$

Convolution of full images

$$* \left\{ \boxplus, b, \phi(\cdot) \right\} =$$

Padding
$$\{ \boxplus, b, \phi(\cdot), p = \text{True } \}$$

Stride $\left\{ \begin{array}{c} \blacksquare \\ \end{array}, \ b \ , \ \phi(\cdot) \ , \ s = 2 \right\}$

kerne Kornel 4

Pooling

