Research Title

J. Russo, JJ Dong

Bucknell University, Department of Physics and Astronomy

Motivation/Background

- Ubiquitous threat of antibiotic resistance
- Investigate effect of different cellular transformation rates on antibiotic resistant bacterial population growth
- Plasmids

Diagram of cell with plasmids

Simulation Methods

- Combined approach of Kinetic Monte Carlo simulation and numerical modeling
- Gillespie algorithm
- Well-mixed population
- Three cases
- Constant α
- Linear α
- Recycled α

Simulation Methods

- Combined approach of Kinetic Monte Carlo simulation and numerical modeling
- Gillespie algorithm
- Well-mixed population
- Three cases
- Constant α
- Linear α
- Recycled α

Conclusions

- Combined approach of Kinetic Monte Carlo simulation and numerical modeling
- Gillespie algorithm
- Well-mixed population
- Three cases
- Constant α
- Linear α Recycled α

Simulation Methods

- Combined approach of Kinetic Monte Carlo simulation and numerical modeling
- Gillespie algorithm
- Well-mixed population
- Three cases Constant α
- Linear α
- Recycled α

Acknowledgements

Thank you etc etc

References

- Source 1
- Source 2