Voting Assemblies: Adaboost

Jerry Bonnell, Gururaj Shriram, and Lloyd Beaufils

ECE548 Group 7

December 4, 2017

Why bother **boosting**?

- Data used for induction rarely captures all aspects of the class.
- Individual classifiers suffer from **bias-related** error.
- How about using **many** classifiers? "Collective wisdom"?

A bit of theory...

Adaboost

- "Examples are chosen from a probabilistic distribution that is gradually modified in a way that makes the whole "assembly" focus on those aspects that appear to be difficult."
- Miroslav Kubat, An Introduction to Machine Learning
 - Improvement over bagging and Schapire's boosting.
 - Reduce randomness and the need for great many examples.
 - Classifiers should build upon the weaknesses of others.

A Practical Approach

- \blacksquare Selecting examples for T_i is done **probabilistically**.
- For T_1 : each example has p = 1/m
 - "Wheel of Fortune"
- For each following T_i :
 - Calculate $\varepsilon_i = \sum_{i=1}^m p_i(\mathbf{x}_j) * e_i(\mathbf{x}_j)$
 - Calculate $\beta_i = \varepsilon_i/(1 \varepsilon_i)$
- Scale **correctly** classified examples by $p_{i+1}(\mathbf{x}_j) = p_i(\mathbf{x}_j) * \beta_i$
 - lacksquare $arepsilon_{i}$ small ightarrow reduce chance of selection.
- Normalize to ensure the new distribution sums to 1.
- From each "custom" T_i, a C_i is induced.

Weighted Majority Voting

- Each classifier's vote has a weight.
- Higher classifier performance = votes worth more = higher weight
- Sum these weights for W_{pos} and W_{neg} to see which has higher support.
- How to obtain these weights? Use **perceptron learning**.
 - Present the assembly one example at a time from the training set.
 - Upon misclassification, use classical weight-updating formula (Chapter 4)

Hypothesis

- Training and testing error rate should decrease when more classifiers added.
 - Minimize variance-based error.
- We would like to see weak learners approximate the accuracy of a strong learner.
- Error rates should plateau after some large number of classifiers.

Does experience agree?

Implementation

- Adaboost in Python
- Weak learner: **Perceptron** (ours, in Python)
- Strong learner: **Decision Tree** (Scikit)
- Learning rate $\eta = 0.05$ and $\eta_{\text{weights}} = 0.0001$
- Threshold $\theta = 0.05$ and $\theta_{weights} = 0.05$
- Each training subset T_i will hold 20% of the training set.
- Training set 65% / Testing set 35%

Experiment

- Begin with one learner. Add learners till 50 reached.
- Average this process for 5 times.
- Measure # classifiers vs. error rate

Domains

UCI Repository

- **I lonosphere** (34 attributes, 351 instances, 64.1% pos / 35.9% neg)
- 2 Breast Cancer (10 attributes, 683 instances, 34.9% pos / 65.1% neg)
- **Musk** (168 attributes, 476 instances, 43.4% pos / 56.6% neg)
- Exclusively **binary** classification tasks.

Ionosphere

Ionosphere

Breast Cancer

Breast Cancer

Musk

Musk

Conclusions

- Adaboost drives the error rate down on testing set with increasing number of classifiers.
- Shows promise in situations with **imbalanced** training sets.
- However, little "boosting" observed in more equally represented datasets (Musk)
- Would have liked to test with 100+ classifiers to observe greater convergence in error.

Questions?