Heart Disease Data Analysis: Report Unified Mentor

BY: SHAKTI SIDDHARTH RAY

EMAIL: SHAKTIRAYIT@GMAIL.COM

MOBILE: +91 7684026987

LinkedIn: https://www.linkedin.com/in/shaktiray/

01 Introduction

Project Description , Data and Libraries used

Problem Statement

Overview

Health is real wealth, and during the pandemic, we all realized the brute effects of COVID-19 on everyone, irrespective of status; therefore, you are required to analyze health and medical data for better future preparation to understand and mitigate the risks associated with heart disease.

Tools and Libraries

ETL Process:

- Use Python libraries such as pandas for data manipulation.
- Utilize Jupyter Notebook for database interactions.

Exploratory Data Analysis (EDA):

- Perform EDA with **pandas** using Python.
- Visualize data with **matplotlib** and **seaborn**.
- Focus on insights related to heart disease rates, gender, and age.

Data: Attributes

- age
- sex
- chest pain type (4 values)
- resting blood pressure
- serum cholestoral in mg/dl
- fasting blood sugar > 120 mg/dl
- resting electrocardiographic results (values 0,1,2)
- maximum heart rate achieved
- exercise induced angina
- oldpeak = ST depression induced by exercise relative to rest
- the slope of the peak exercise ST segment
- number of major vessels (0-3) colored by flourosopy
- thal: 0 = normal; 1 = fixed defect; 2 = reversable defect

Null Value Check!


```
missing_values = df.isnull().sum()
[5]:
     missing_values
[5]:
     age
      sex
     ср
     trestbps
     chol
     fbs
     restecg
     thalach
     exang
     oldpeak
      slope
     ca
     thal
     target
     dtype: int64
```


Attribute Name Change

```
df.columns
```

YLL	C
1/h xsh	6
SX' Alik	6
76:	S
	t

df.columns=new headers

df.columns

```
chest_pain_type

cholesterol

cholesterol

electrocardiographic

exercise_induced_agina

slope

sex

resting_blood_pressure

blood_sugar

maximum_heat_rate

oldpeak
```

new headers=["age", "sex", "chest pain type", "resting blood pressure", "cholestoral", "blood_sugar", "electrocardiographic", "maximum_heart_rate", "exercise_ind

Analysis and Insights

Statistics, Graphs and charts d

Basic Statistics

summary statistics (mean, median, standard deviation, min and max) for numerical attributes like age, blood pressure, cholesterol, and heart rate.

```
[13]:
      summary stats=df.describe()
      attributes=['age','resting blood pressure','cholestoral','maximum heart rate']
      selected stats=summary_stats.loc[['mean','50%','std',"max","min"],attributes]
      print("\nsummary statics:")
      print(selected stats)
      summary statics:
                        resting blood pressure cholestoral maximum heart rate
            54.434146
                                    131.611707
                                                  246,00000
                                                                     149.114146
                                    130.000000
                                                  240.00000
                                                                     152,000000
       50%
            56.000000
             9.072290
                                     17.516718
                                                   51.59251
                                                                      23,005724
      std
            77.000000
                                    200.000000
                                                  564.00000
                                                                      202,000000
      max
            29.000000
                                     94.000000
                                                  126,00000
                                                                      71,000000
      min
```

It shows a middle-aged population with slightly elevated average blood pressure and cholesterol levels. Maximum heart rate varies widely but generally falls within expected physiological ranges.

Basic Statistics

Prevalence: The prevalence of heart disease in the dataset is calculated as 51.32%, indicating that slightly over half of the individuals in the sample have been diagnosed with heart disease.

```
[15]: prevalence=df["target"].mean()*100
print(f'Prevalence of Heart Disease in the Dataset:{prevalence:.2f}%')
Prevalence of Heart Disease in the Dataset:51.32%
```

Distribution: Out of 1025 individuals in the dataset, approximately 69.56% are male (713 individuals), and 30.44% are female (312 individuals). This gender distribution is crucial for understanding the prevalence of heart disease across genders in the sample.

```
[53]: males = df['sex'].sum() males

[53]: 713
```


Heart disease is more prevalent among men, consistent with a higher proportion of male samples in the dataset. This suggests that while males outnumber females in the dataset, both genders exhibit similar percentages of heart disease prevalence.

Distribution by Gender

Distribution by Age Group

The prevalence of heart disease increases with age, peaking in midlife.

Distribution with Type of Chest Pain

Type 1 and 2 chest pain types indicate higher chances of having heart disease, with type 1 showing approximately 80% and type 2 around 70% likelihood based on data analysis.

Most of the sample does not have exercise-induced angina, suggesting that heart disease factors related to this condition are minimal in this particular sample.

Exercise induced Agina by heart Disease

Y.

- 1.0

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

- -0.

Heart Disease by Cholesterol

Cholesterol level among those are way over range for Heart Disease Patient.

There are higher outlier with heart disease and cholesterol.

Chest Pain with Gender

Most Cases are of Typical Agina and in which too are more of male patient.

More Insights

Following shows more heart Disese with different attribute distribution.

- Age: Average 54.4 years (Range: 29-77)
- Resting Blood Pressure: Average 131.6 mmHg (Range: 94-200 mmHg)
 - Suggests slight elevation compared to normal (<120/80 mmHg)
- Cholesterol Level: Average 246 mg/dL (Range: 126-564 mg/dL)
 - Elevated above the healthy range (<200 mg/dL)

Maximum Heart Rate: Average 149.1 bpm (Range: 71-202 bpm)

· Slightly lower than expected for similar age groups

Prevalence of Heart Disease: 51.32% of the sample has heart dise

Gender Analysis:

- Among those with heart disease, females outnumber males.
- Conversely, among those without heart disease, there are more males than females.

Age Groups and Heart Disease:

- Individuals aged 40-59 years show the highest prevalence of heart disease.
- The 20-39 age group has lower prevalence compared to 40-59 years.
- The 60-79 age group exhibits the lowest prevalence.
- The 40-59 age group is not only most affected by heart disease but als the largest segment of the sample.

- Thalassemia Type :
 - Reversible' or 'fixed defect' types link to higher heart disease prevalence.
 - 'Normal' type shows lower incidence, 'not found' type mixed but generally lower prevalence.
- Resting ECG Results:
 - 'Left ventricular hypertrophy' correlates with higher heart disease.
 - 'Normal' and 'ST-T wave abnormality' vary, 'Normal' usually lower.
 - Slope of Peak Exercise ST Segment:
 - 'Downsloping' ST segment associates with higher heart disease.
 - 'Flat' and 'upsloping' vary, 'upsloping' generally lower.

- Correlation Matrix :
 - Age, max heart rate, and possibly cholesterol correlate with heart disease.
- Scatter Plot: Age vs. Max Heart Rate :
 - Heart disease linked to lower max heart rates with age.
- Gender and Chest Pain Types :
 - Gender impacts chest pain reporting.
- Cholesterol Levels (Box Plot):
 - Higher in heart disease cases.
- Major Vessels Colored (Bar Plot):
 - More vessels colored indicates more heart disease cases.

Thanks!

Do you have any questions?

shaktirayit@gmail.com

Please keep this slide for attribution

