- 1. Let $f(x,y) = \sqrt{4 + x^2 + y^2}$. Find f_{xx} , f_{xy} and f_{yy} .
- 2. Let $w = \sqrt{x + y + z}$, where $x = \sin t$, $y = \cos t$ and z = t. Using the Chain Rule, compute $\frac{dw}{dt}$.
- 3. Let $f(x,y) = \sin \pi (2x y)$ and $u = (\frac{5}{13}, -\frac{12}{13})$. Compute $D_u f(-1, -1)$.
- 4. Let $f(x,y) = x^4 x^2y + y^2$. Find the unit vectors that give the direction of steepest ascent and steepest descent at P(-1,1).
- 5. Consider the surface given by $z^2 = x^2/16 + y^2/9 + 1$. Find an equation of the tangent plane to the surface at $(4, 3, -\sqrt{3})$.
- 6. Let $f(x,y) = \sqrt{x^2 + y^2}$. Estimate f(3.06, -3.92) using the linear approximation.
- 7. Let $f(x,y) = xye^{-x-y}$. Find the critical points of f and determine whether each critical point is a local maximum, local minimum, or saddle point.
- 8. Let $R = \{(x,y): x^2 + y^2 \le 6\}$. Consider the function $f(x,y) = -x^2 y^2 + \sqrt{3}x y 1$. Find the absolute maximum and minimum values of the function f on the set R.
- 9. Consider $f(x,y,z) = x^2 + y^2 + z^2$. Find the maximum and minimum value of f subject to the constraint z = 1 + 2xy.
- 10. Consider the region $R = \{(x, y) : 1 \le x \le 4, 1 \le y \le 2\}$. Evaluate the double integral

$$\iint\limits_{R} \frac{x}{(1+xy)^2} \, dA.$$

- 11. Evaluate the integral $\int_0^{\pi} \int_x^{\pi} \sin y^2 \, dy \, dx$.
- 12. Find the volume of the solid above the region $R = \{(x, y) : 0 \le x \le 1, 0 \le y \le 2 x\}$ and between the planes -4x 4y + z = 0 and -2x y + z = 8.
- 13. Find the volume of the solid below the paraboloid $z = 4 x^2 y^2$ and above the region

$$R = \{ (r, \theta) : 0 \le r \le 1, \ 0 \le \theta \le 2\pi \}.$$

- 14. Find the average distance between points within the cardioid $r = 1 + \cos \theta$ and the origin.
- 15. Evaluate the integral $\int_0^1 \int_0^{\sqrt{1-x^2}} \int_0^{\sqrt{1-x^2-y^2}} xz \, dz \, dy \, dx$.
- 16. Find the average of the squared distance between the origin and points in the solid cylinder

$$D = \{(x, y, z) : x^2 + y^2 < 4, 0 < z < 2\}.$$

- 17. Evaluate the integral $\int_{-3}^{3} \int_{0}^{\sqrt{9-x^2}} \int_{0}^{2} \frac{1}{1+x^2+y^2} dz dy dx$.
- 18. Evaluate the integral $\int_0^3 \int_0^{\sqrt{9-x^2}} \int_0^{\sqrt{x^2+y^2}} \frac{1}{\sqrt{x^2+y^2}} dz dy dx$.
- 19. Evaluate the integral $\int_0^{2\pi} \int_0^{\pi/3} \int_0^{4\sec\phi} \rho^2 \sin\phi \, d\rho \, d\phi \, d\theta$.
- 20. Find the volume of the region inside the sphere $\rho = 2\cos\phi$ and outside the sphere $\rho = 1$.