

# MA 223 - ANALYSE NUMÉRIQUE TD3 : DÉCOMPOSION QR

**Enseignant :** H. El-Otmany

Semestre : 2 A.U. : 2022-2023

Aero. 3

Dans ce TD consacré à la décomposition QR d'une matrice A, on adoptera les notations suivantes :

- n la taille de A.
- $a_1, a_2, \ldots, a_n$  les colonnes de A. Chaque  $a_i$  est donc un vecteur de  $\mathbb{R}^n$ .
- $q_1, q_2, \ldots, q_n$  les colonnes de Q. Chaque  $q_j$  est donc un vecteur de  $\mathbb{R}^n$ .
- On notera  $r_{ij}$  les coefficients de la matrice R.

# Calcul d'une décomposition QR par la méthode de Gram-Schmidt

On rappelle ici le procédé de décomposition QR d'une matrice inversible A, appelé « procédé d'orthonormalisation de Gram-Schmidt ».

Ce procédé se décompose en n étapes. La j-ième étape contient le calcul des j-ième colonnes de Q et de R, et utilise les colonnes précédemment calculées de Q.

La *j*-ième étape se décrit ainsi :

- 1. Le calcul, pour chaque i avec i < j, des coefficients de R par la formule  $r_{ij} = < a_j, q_i >$ .
- 2. Le calcul d'un vecteur  $w_j = a_j \sum_{k=1}^{j-1} r_{kj} q_k$ .
- 3. Le calcul de  $r_{jj} = ||w_j||$ .
- 4. Enfin le calcul de  $q_j = \frac{w_j}{r_{ij}}$ .

# Exercise n°1. Décomposer la matrice

$$A = \begin{pmatrix} 6 & 6 & 16 \\ -3 & -9 & -2 \\ 6 & -6 & -8 \end{pmatrix}$$

Et vérifier qu'on a bien une décomposition QR. Posons  $a_1 = \begin{pmatrix} 6 \\ -3 \\ 6 \end{pmatrix}$ ,  $a_2 = \begin{pmatrix} 6 \\ -9 \\ -6 \end{pmatrix}$  et  $a_3 = \begin{pmatrix} 16 \\ -2 \\ -8 \end{pmatrix}$ . En

suivant les étapes de l'algorithme de Gram-Schmidt, on a

**Etape 1.** prenons j = 1, nous avons

- 1. Comme les indices commencent avec i = 1 donc il n'y a aucun i avec i < 1. Par conséquent  $r_{i1}$  n'existe pas et il n'y a rien à calculer.
- 2. Comme j = 1, le calcul de  $w_1$  se réduit à  $w_1 = a_1$ .
- 3. On pose  $r_{11} = ||w_1|| = ||a_1|| = 9$ .
- 4. On construit  $q_1 = \frac{w_1}{r_{11}} = \frac{1}{9} \begin{pmatrix} 6 \\ -3 \\ 6 \end{pmatrix} = \begin{pmatrix} 2/3 \\ -1/3 \\ 2/3 \end{pmatrix}$ .

### **Etape 2.** prenons j = 2, nous avons

1. i < 2, donc il faut donc calculer  $r_{12}$ . Par définition, on a

$$r_{12} = \langle a_2, q_1 \rangle = q_1^t a_2 = \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \end{pmatrix} \cdot \begin{pmatrix} 6 \\ -9 \\ -6 \end{pmatrix}$$
$$= \begin{pmatrix} \frac{2}{3} \times 6 - \frac{1}{3} \times (-9) + \frac{2}{3} \times (-6) = 4 + 3 - 4 = 3.$$

- 2. On calcule  $w_2 = a_2 r_{12}q_2 = \begin{pmatrix} 6 \\ -9 \\ -6 \end{pmatrix} 3 \begin{pmatrix} 2/3 \\ -1/3 \\ 2/3 \end{pmatrix} = \begin{pmatrix} 4 \\ -8 \\ -8 \end{pmatrix}$ .
- 3. On pose  $r_{22} = ||w_2|| = \sqrt{4^2 + (-8)^2 + (-8)^2} = \sqrt{144} = 12$ .
- 4. On construit  $q_2 = \frac{w_2}{r_{22}} = \frac{1}{12} \begin{pmatrix} 4 \\ -8 \\ -8 \end{pmatrix} = \begin{pmatrix} 1/3 \\ -2/3 \\ -2/3 \end{pmatrix}$ .

### **Etape 2.** prenons j = 3, nous avons

1. i < 3, donc il faut donc calculer  $r_{13}$  et  $r_{23}$ . Par définition, on a

$$r_{13} = \langle a_3, q_1 \rangle = q_1^t a_3 = \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \end{pmatrix} \cdot \begin{pmatrix} 16 \\ -2 \\ -8 \end{pmatrix} = 6,$$
  
 $r_{23} = \langle a_3, q_2 \rangle = q_2^t a_3 = \begin{pmatrix} \frac{1}{3} & -\frac{2}{3} & -\frac{2}{3} \end{pmatrix} \cdot \begin{pmatrix} 16 \\ -2 \\ -8 \end{pmatrix} = 12.$ 

- 2. On calcule  $w_3 = a_3 (r_{13}q_1 + r_{23}q_2) = \begin{pmatrix} 16 \\ -2 \\ -8 \end{pmatrix} 6 \begin{pmatrix} 2/3 \\ -1/3 \\ 2/3 \end{pmatrix} 12 \begin{pmatrix} 1/3 \\ -2/3 \\ -2/3 \end{pmatrix} = \begin{pmatrix} 8 \\ 8 \\ -4 \end{pmatrix}$ .
- 3. On pose  $r_{33} = ||w_3|| = \sqrt{8^2 + 8^2 + (-4)^2} = \sqrt{144} = 12$ .
- 4. On construit  $q_3 = \frac{w_3}{r_{33}} = \frac{1}{12} \begin{pmatrix} 8 \\ 8 \\ -4 \end{pmatrix} = \begin{pmatrix} 2/3 \\ 2/3 \\ -1/3 \end{pmatrix}$ .

Par conséquent, les matrices de la décomposition QR sont

$$Q = \begin{pmatrix} q_1 & q_2 & q_3 \\ 2/3 & 1/3 & 2/3 \\ -1/3 & -2/3 & 2/3 \\ 2/3 & -2/3 & -1/3 \end{pmatrix}, \quad R = \begin{pmatrix} r_{11} & r_{12} & r_{13} \\ 0 & r_{22} & r_{23} \\ 0 & 0 & r_{33} \end{pmatrix} = \begin{pmatrix} 9 & 3 & 6 \\ 0 & 12 & 12 \\ 0 & 0 & 12 \end{pmatrix}.$$

Exercise  $n^{\circ}2$ . Résoudre le système AX = B avec A définie à la question précédente et

$$B = \begin{pmatrix} -32\\10\\28 \end{pmatrix}$$

(à l'aide de la décomposition QR calculée).

**Exercise n°3.** Dans cet exercice et le suivant, on va justifier l'algorithme de Gramm-Schmidt. Dans un premier temps, on suppose qu'on a une décomposition QR de A. Montrer les propriétés suivantes :

- Pour i > j, on a  $r_{ij} = 0$ .
- Les vecteurs  $(q_1, q_2, \ldots, q_n)$  constituent une base orthonormée de  $\mathbb{R}^n$ .
- On a les formules suivantes :

$$\forall j, \ a_j = \sum_{k=1}^j r_{kj} q_k$$

— On a pour  $k \leq j$ , la formule  $r_{kj} = \langle a_j, q_k \rangle$ .

Exercise  $n^{\circ}4$ . On va justifier que le procédé peut être appliqué à toute matrice inversible A réelle, et qu'elle aboutit bien à une décomposition QR de A.

- 1. On suppose que l'on a déjà pu réaliser la construction des colonnes précédant la colonne j de Q et R, et on va chercher à démontrer que le calcul de la colonne j est possible.
  - (a) Montrer que pour p < j, on a

$$a_p = \sum_{k=1}^p r_{kp} q_k$$

- (b) Montrer que le seul cas où on ne pourrait pas réaliser toute l'étape j serait la situation où  $w_j$  est nul.
- (c) On suppose  $w_j = 0$ . Déterminer une expression de  $a_j$  en fonction des  $q_k$  pour k < j.
- (d) Que peut-on dire alors de la famille  $(a_1, a_2, \dots, a_i)$ ? Conclure.
- 2. On cherche maintenant à montrer que le procédé permet bien de calculer une décomposition QR.
  - (a) Montrer

$$\forall j, \ a_j = \sum_{k=1}^j r_{kj} q_k$$

et en déduire que A = QR.

- (b) On va démontrer de proche en proche que chaque famille  $(q_1, q_2, q_3, \dots, q_j)$  est une famille orthonormée.
  - i. Montrer que c'est le cas pour j = 1.
  - ii. On suppose que c'est le cas pour j avec j < n. Montrer que c'est aussi le cas pour j + 1. On commencera par examiner les différents produits scalaires  $< w_{j+1}, q_k > \text{pour } k \leq j$ .
- (c) En déduire que Q est orthogonale.
- 3. Conclure.

**Exercise n°5.** Estimer le nombre d'opérations élémentaires exigées par le calcul de cette décomposition.

Exercise  $n^{\circ}6$ . Montrer que pour toute matrice inversible A, il existe une et une seule décomposition QR où tous les coefficients diagonaux de R sont strictement positifs.