ALGEBRA 1 TEST 4

Name		Date		_
Directions: Compl	ete as many problems as y	ou can in the 30 minutes	allotted to you. No calcu	ılators!
1. Solve $\frac{x}{-3\frac{1}{2}} = 14$				
(A) −49	(B) −42	(C) -4	(D) $10\frac{1}{2}$	(E) $17\frac{1}{2}$
2. When solving 16	$5 = \left(\frac{3}{x-2}\right)^2$, what is the left	argest value?		
(A) $-\frac{13}{4}$	(B) $-\frac{5}{4}$	(C) $\frac{5}{4}$	(D) $\frac{11}{4}$	(E) $\frac{13}{4}$
3. If $\frac{-27}{a+b} = -9$, fi	and the value of $\frac{1}{a+b}$. (B) $-\frac{1}{3}$			
(A) −3	(B) $-\frac{1}{3}$	(C) $\frac{1}{3}$	(D) $\frac{1}{18}$	(E) 3
4. The volume of a (A) 2	cylinder is 256π and the h (B) 4	eight is 4. Find the radius (C) 8	(D) 12	(E) 16
5. If one angle of a 1 (A) 62.1°	right triangle has a measure (B) 72.1°	of 17.9° , which of the fo (C) 82.1°	llowing is one of the other (\mathbf{D}) 82.2°	angles? (E) 82.3
6. The four angles of (A) 18°	of a quadrilateral are x , $2x$, $3x$ (B) 24°	x , and $4x$, where x is meas (C) 32°	sured in degrees. Find the $(\mathbf{D}) \ 36^{\circ}$	measure of x . (E) 48°
7. Expand $(4x^3 + x^3)$	$(x+2)5x^3-2x^4$.			
(A) $20x^9 + 3x^4$ (D) $20x^6 + 3x^4$	$+10x^{3}$ (B) $20x^{9}$ $+10x^{3}$ (E) $-8x^{7}$	$-2x^4 + 15x^3 +20x^6 - 2x^5 + x^4 + 10x$	(C) $20x^9 - 8x^7 - 2x^5 + 3$	$x^4 + 10x^3$
8. Six less than a nu	umber is equal to three times	the sum of twice a number	er and 6. Find the number.	
(A) $-\frac{24}{5}$	(B) $-\frac{12}{7}$	(C) –24	(D) −12	(E) −4
9. Simplify $5x^2(6x^2)$	(x-2)-3x(4x+2)-2(-5)	(5x+1)		
	$(\mathbf{B}) \ 30^{2} + 4x - 2$ (B) $30^{2} - 16x + 2$ (E) $-30^{2} - 16x + 2$		(C) $30x^3 - 22x^2$	+ 4 <i>x</i> + 2
10. Evaluate –8 <i>a</i> +	$-7a^2 - 3 + 4a - 16a^2 - 2 +$	$9a^2 + 5a + 1 \text{ if } a = 2\frac{9}{17}$		
(A) $-1\frac{9}{17}$	(B) $-1\frac{8}{17}$	(C) 0	(D) $2\frac{9}{17}$	(E) $4\frac{9}{17}$

11. What type of roots does $-5x^3 - 3x = 9x^2$ have?

(A) 2 real and 2 complex

(**B**) 3 complex

(C) 2 real and 1 complex

(E) 3 real

(**D**) 1 real and 2 complex

12. When the largest of 4 consecutive multiples of 4 is doubled, it becomes 8 less than the smallest. Find the sum of the smallest and largest.

(A) -52

(B) −48

(C) -36

(D) -25

(E) -24

13. The slope of the line that goes through $\left(-\frac{1}{2}, -\frac{1}{12}\right)$ and $\left(y, \frac{1}{6}\right)$ is $\frac{2}{3}$. Find y.							
$(\mathbf{A}) \ -\frac{1}{2}$	(B) $-\frac{1}{3}$	(C) $-\frac{1}{4}$	(D) $-\frac{1}{8}$	$(\mathbf{E}) \; \frac{1}{3}$			
14. Evaluate $-5x^{-3} + 2x^{-5}$ if $x = -\frac{1}{2}$.							
(A) -104		(C) −24	(D) 34	(E) 104			
15. The number of teachers was $\frac{1}{24}$ the number of students. What percent of the school were students?							
(A) $\frac{23}{24} \cdot 100\%$	22	4	(D) 95%	(E) 96%			
16. What is the <i>x</i> coordinate	of the vertex for $x = -3y^2$	$^{2} + 5y - \frac{2}{36}$?					
(A) $-\frac{77}{36}$	(B) $-\frac{51}{18}$	(C) 2	(D) $\frac{49}{18}$	(E) $\frac{73}{36}$			
17. A line passes through $(16,-4)$ and has a slope of $-\frac{7}{4}$. Find the value of $\frac{2}{3}\left(y+\frac{7}{4}x\right)$.							
(A) −6	(B) $-\frac{64}{3}$	(C) $\frac{64}{3}$	(D) 6	(E) 16			
18. $l_1 \perp l_2$, $l_1 \parallel l_3$, and the ed	equation of l_2 is $5x - 3y =$	= 78,456 . Using the equa	ation for l_3 that goes through	gh (5,000,-2,000),			
find the value of $y + \frac{3}{5}x - 8{,}000$.							
(A) -9,000	(B) −8,000	(C) −7,000	(D) −6,000	(E) −5,000			
19. If $y = jx + 10$ is a linear	r equation that goes throug	gh $(5,-240)$ and $(12,c)$.	Find c .				
(A) -610	(B) −590	(C) -564	(D) −542	(E) -532			
20. If $-de^2 - fe - g = 0$, the	nen $e =$						
(A) $\frac{f \pm \sqrt{f^2 + 4dg}}{-2d}$ (D) $\frac{-f \pm \sqrt{f^2 + 4dg}}{-2d}$	$(\mathbf{B}) \ \frac{-f \pm \sqrt{f^2}}{-2a}$	$\frac{d^2-4dg}{d}$	$(C) \frac{f \pm \sqrt{f^2 - 4dg}}{-2d}$				
$\mathbf{(D)} \ \frac{-f \pm \sqrt{f^2 + 4dg}}{-2d}$	$(\mathbf{E}) \ \frac{-f \pm \sqrt{f^2}}{2d}$	$\frac{d^2+4dg}{dt}$					
21. For a trapezoid, the nonparallel sides have lengths $3\sqrt{5}$ and $7\sqrt{2}$, the bases have lengths of $2\sqrt{5}$ and $3\sqrt{10}$, and half the							
height is $8\sqrt{5}$. Find the area	ı.						
(A) $40 + 60\sqrt{2}$	(B) $80 + 120\sqrt{2}$	(C) $16\sqrt{5} + 120\sqrt{2}$	(D) $80 + 48\sqrt{5}$	(E) $160 + 240\sqrt{2}$			
22. The average of $-6a^6b^9$, $-12a^9b^6$, and c is $-8a^6b^9-4a^9b^6$. Find the value of c.							
(A) $-30a^6b^9$	(B) $-24a^6b^9$	(C) $-18a^6b^9$	(D) $-12a^6b^9$	$(\mathbf{E}) -6a^6b^9$			
23. Given $(a+b+c)^3 - 8(a+b+c)^2 + 12(a+b+c) = 0$. Find the value of $a+b$. Assume $a+b+c \ne 6$ or 0.							
$(\mathbf{A}) 2-c$	(B) $2+c$	(C) $-2-c$	(D) $-2+c$	(E) $-6-c$			
24. You studied for 20 minutes? Assume the amount (A) 18							
25. For $y = \sqrt{3}x^2 + 6\sqrt{15}x - \sqrt[3]{17} + \sqrt[4]{29}$, which equation is the axis of symmetry?							
(A) $x = -3\sqrt{5}$	(B) $x = -5\sqrt{3}$	(C) $x = 5\sqrt{3}$ (D)	$x = 3\sqrt{5}$ (E) $x = 3\sqrt{5}$	$= \sqrt{3}\sqrt{5} - \sqrt[3]{17} + \sqrt[4]{29}$			

ALGEBRA 1 TEST 4 ANSWERS

1. A	2. D	3. C	4. C	5. B
6. D	7. D	8. A	9. A	10. B
11. E	12. A	13. D	14. C	15. E
16. E	17. E	18. C	19. B	20. C
21. B	22. C	23. A	24. D	25. A

1.
$$14 \cdot -\frac{7}{2} = -49$$

2.
$$\frac{3}{x-2} = \pm 4 \rightarrow x = \frac{11}{4}$$

3.
$$a+b=3 \to \frac{1}{a+b} = \frac{1}{3}$$

4.
$$256\pi = \pi r^2 \cdot 4 \rightarrow r = 8$$

$$5. 90 - 17.9 = 72.1$$

6.
$$10x = 360 \rightarrow x = 36$$

7.
$$20x^6 + 3x^4 + 10x^3$$

8.
$$n-6=3(2n+6) \rightarrow n=-\frac{24}{5}$$

9.
$$30x^3 - 22x^2 + 4x - 2$$

10.
$$2\frac{9}{17} - 4 = -1\frac{8}{17}$$

12.
$$-30-20=-52$$

13.
$$-\frac{3}{4} = -1 - 2y \rightarrow y = -\frac{1}{8}$$

14.
$$40 - 64 = -24$$

15.
$$\frac{24}{25} = 96\%$$

16.
$$x = -3\left(y - \frac{5}{6}\right)^2 + \frac{73}{36}$$

17.
$$y + \frac{7}{4}x = 24 \rightarrow \frac{2}{3}\left(y + \frac{7}{4}x\right) = 16$$

18.
$$y + \frac{3}{5}x = 1000 \rightarrow y + \frac{3}{5}x - 8000 = -7000$$

19.
$$\frac{c+240}{12-5} = -50 \rightarrow c = -590$$

20.
$$\frac{f \pm \sqrt{f^2 - 4dg}}{-2d}$$

21.
$$8\sqrt{5}(2\sqrt{5}+3\sqrt{10})=80+120\sqrt{2}$$

22.
$$c = -18a^6b^9$$

23.
$$x(x-2)(x-6) = 0 \rightarrow a+b+c=2 \rightarrow a+b=2-c$$

24.
$$\frac{20}{16} = \frac{30}{x} \rightarrow x = 24$$

25.
$$y = \sqrt{3}(x + 3\sqrt{5})^2 \dots \rightarrow x = -3\sqrt{5}$$