EXERCISES 5.5

In Problems 1–22, use Theorems, when appropriate, to evaluate the given integral along the indicated closed contour(s).

1.
$$\oint_C \frac{4}{z-3i} dz; |z| = 5$$

2.
$$\oint_C \frac{z^2}{(z-3i)^2} dz; |z| = 5$$

3.
$$\oint_C \frac{e^z}{z - \pi i} dz$$
; $|z| = 4$ 4. $\oint_C \frac{1 + e^z}{z} dz$; $|z| = 1$

4.
$$\oint_C \frac{1+e^z}{z} dz; |z| = 1$$

5.
$$\oint_C \frac{z^2 - 3z + 4i}{z + 2i} dz$$
; $|z| = 3$ **6.** $\oint_C \frac{\cos z}{3z - \pi} dz$; $|z| = 1.1$

6.
$$\oint_C \frac{\cos z}{3z - \pi} dz$$
; $|z| = 1.1$

7.
$$\oint_C \frac{z^2}{z^2+4} dz$$
; (a) $|z-i|=2$, (b) $|z+2i|=1$

8.
$$\oint_C \frac{z^2 + 3z + 2i}{z^2 + 3z - 4} dz$$
; (a) $|z| = 2$, (b) $|z + 5| = \frac{3}{2}$

9.
$$\oint_C \frac{z^2+4}{z^2-5iz-4} dz$$
; $|z-3i|=1.3$ 10. $\oint_C \frac{\sin z}{z^2+\pi^2} dz$; $|z-2i|=2$

10.
$$\oint_C \frac{\sin z}{z^2 + \pi^2} dz$$
; $|z - 2i| = 2$

11.
$$\oint_C \frac{e^{z^2}}{(z-i)^3} dz$$
; $|z-i|=1$ **12.** $\oint_C \frac{z}{(z+i)^4} dz$; $|z|=2$

12.
$$\oint_C \frac{z}{(z+i)^4} dz$$
; $|z| = 2$

13.
$$\oint_C \frac{\cos 2z}{z^5} dz; \ |z| = 1$$

14.
$$\oint_C \frac{e^{-z} \sin z}{z^3} dz$$
; $|z - 1| = 3$

15.
$$\oint_C \frac{2z+5}{z^2-2z} dz$$
; (a) $|z|=\frac{1}{2}$, (b) $|z+1|=2$ (c) $|z-3|=2$, (d) $|z+2i|=1$

16.
$$\oint_C \frac{z}{(z-1)(z-2)} dz$$
; (a) $|z| = \frac{1}{2}$, (b) $|z+1| = 1$ (c) $|z-1| = \frac{1}{2}$, (d) $|z| = 4$

17.
$$\oint_C \frac{z+2}{z^2(z-1-i)} dz$$
; (a) $|z|=1$, (b) $|z-1-i|=1$

18.
$$\oint_C \frac{1}{z^3(z-4)} dz$$
; (a) $|z| = 1$, (b) $|z-2| = 1$

19.
$$\oint_C \left(\frac{e^{2iz}}{z^4} - \frac{z^4}{(z-i)^3} \right) dz; \ |z| = 6$$

20.
$$\oint_C \left(\frac{\cosh z}{(z-\pi)^3} - \frac{\sin^2 z}{(2z-\pi)^3} \right) dz; \ |z| = 3$$

21.
$$\oint_C \frac{1}{z^3(z-1)^2} dz$$
; $|z-2|=5$

22.
$$\oint_C \frac{1}{z^2(z^2+1)} dz$$
; $|z-i| = \frac{3}{2}$