Name:

ID number:

1. (5 points) Notes of discussion

I promise that I will complete this QUIZ independently and will not use any electronic products or paper-based materials during the QUIZ, nor will I communicate with other students during this QUIZ.

True or False: I have read and understood the notes. $\sqrt{\text{True}}$ () False

2. (10 points) True or False

Determine whether the following statements are true or false.

(a)	(b)	(c)	(d)	(e)
T	T	F	T	F

- (a) (2') In a linked list, we can insert after a given node without knowing the head of the linked list.
- (b) (2') If we implement a stack using an array, we can get the size of the stack in constant time.
- (c) (2') Reversing a singly linked list takes constant time.
- (d) (2') If we implement a queue using circular array, the minimal memory we need is related to the maximal possible numbers of elements in the queue.
- (e) (2') Given a pointer to any node in a singly linked list, we are able to gain access to every node of it.

3. (8 points) Array capacity

Suppose there are two initially empty arrays of capacity 4. Now you will continuously push elements into these arrays. When you want to push an element into a **full** array, you need to increase the array's capacity and copy all the old elements to the new array. The first array's capacity will increase by 2 each time. The second array's capacity will increase by a factor of 2 each time. Answer the following questions, **the questions are independent of each other**.

lues	stions, the questions are independent of each other.	
(a)	(2') Suppose we insert 7 elements into the first array, the unused memory is1	, the
	total number of copies is	
(b)	(2') Suppose we insert 7 elements into the second array, the unused memory is1	,
	the total number of copies is4	
(c)	(2') Suppose we insert 17 elements into the first array, the unused memory is1	, the
	total number of copies is $\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	
(d)	(2') Suppose we insert 17 elements into the second array, the unused memory is15	
	the total number of copies is	

4. ((10	points'	Queue	and	Stack

As we all know, Queue has three basic operations: push(), pop(), and isEmpty(). In this question, you are only given 2 stacks. These stacks have functions: push(), pop(), isEmpty(), and top(). Your task is to use the given two stacks to implement a special Queue.

(a)	(2') First, you need to know the difference between Queue and Stack. Queue's push() and pop()
	areB, but stack's push() and pop() areA
	A. LIFO (Last-In-First-Out) B. FIFO (First-In-First-Out)
	Now you are given the pseudocode of Queue's $push()$, $pop()$, and $isEmpty()$, here $S1$ is the first
	stack and $S2$ is the second stack.

1: f u	$\mathbf{nction} \ \mathbf{Q}$ UEUE- \mathbf{P} USH $(element)$
2:	$S2.\mathrm{push}(element)$
3: e i	nd function

```
1: function Queue-Pop
2:
      if S1.isEmpty() then
          while not S2.isEmpty() do
3:
                 (1)
4:
                  (2)
5:
                 (3)
6:
          end while
7:
8:
      end if
      S1.pop()
10: end function
```

```
1: function Queue-isEmpty
2: return (4)
3: end function
```

(b) (4') Fill in the blank (1), (2), and (3) to finsh pop, we will **never** try to pop element from an empty Queue. You may not need all the blanks.

```
Solution: (1)S1.push(S2.top()) (2)S2.pop()
```

(c) (2') Fill in the blank (4).

```
Solution: S1.isEmpty() and S2.isEmpty()
```

(d) (2') However, every stack has its capacity (the maximal number of elements that it can store). S1's capacity is n and S2's capacity is m. What is the capacity of your Queue in the worst case?

Solution: min(n, m)