

Week	Chapter	Contents
1	1, 2장	강의 소개, 파이썬 복습
2	1, 3장	파이썬 복습, Numpy, Pandas
3	1, 4장	딥러닝을 위한 미분
4	5장	회귀
5	5장	분류
6	6장	XOR문제
7	7장	딥러닝
8	1~7장	중간고사
9	8장	MNIST 필기체 구현 (팀 프로젝트)
10	9장	오차역전파
11	11장	합성곱 신경망(CNN)
12	12장	순환 신경망(RNN)
13	10장	자율주행 (Collision Avoidanve, Transfer Learning)
14	11장	자율주행 (Load Following)
15	8~12장	기말고사 (or 프로젝트 발표)

CONTENTS

- 〔1〕 미분 Derivative
- (2) 편미분 Partial derivative
- (3) 연쇄 법칙 Chain rule
- 4 수치 미분 Numerical derivative

목적: 딥러닝을 위한 미분 학습

목표: 편미분, 수치 미분의 개념과 필요한 이유 학습과 파이썬 구현

내용: 미분의 개념, 편미분, 수치 미분, 연쇄법칙

CONTENTS

- 1 미분 Derivative
- (2) 편미분 Partial derivative
- (3) 연쇄 법칙 Chain rule
- 4 수치 미분 Numerical derivative

평균변화율

• 구간에 대한 평균적인 변화율

•
$$\frac{\Delta y}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

- 평균적인 기울기를 나타냄
- "평균"이기 때문에 정확하지 않은 정보
- → 순간 변화율 (미분계수)

순간 변화율

• 평균 변화율에서 구간(Δx)을 0^+ 로 보낸 값

•
$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

• 해석적인 의미로 x 에서 접선의 기울기를 의미함.

• 순간 변화율을 미분계수로 정의함.

미분 개념 – 미분 계수

미분의 의미

• 입력 x를 현재 값에서 아주 조금 변화(Δx)시키면 함수 f(x)의 값이 변하는 정도를 나타냄.

•
$$f'(x) = \frac{d}{dx}f(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

• 점 x에서 접선의 기울기를 의미함.

선과 선 또는 선과 면이 만나서 생기는 점

머신 러닝/ 딥러닝의 최종 목표?

• 손실(loss, cost)을 최소화 하여 가중치의 최적값을 자동으로 찾는 것.

미분이 필요한 이유?

- 가중치를 조금 변화시켰을 때 (Δx) 손실함수의 **변화량**을 확인하고 **최적값**(손실을 최소로 하는 가중치)과 가까워지도록 **가중치를 갱신**해야 함.
- 즉, 학습은 **미분**을 통해 이루어진다.

딥러닝에 미분이 필요한 이유 – Gradient Descent 예제

CONTENTS

- 1 미분 Derivative
- 2) 편미분 Partial derivative
- (3) 연쇄 법칙 Chain rule
- 4 수치 미분 Numerical derivative

다변함수의 미분 (Multivariable calculus)

다변함수?

• 입력으로 받는 값이 한 개 이상으로 이루어진 함수

$$z = f(x) z = f(x, y)$$

딥러닝에 편미분이 필요한 이유

- 다변함수의 매개변수(가중치) 개수는 모델마다 다르지만 수백,수천만 가지일 수도 있다.
- 위에서 알아본 미분으로는 해결 불가능.
- 따라서, 각 변수의 변화에 따른 가중치의 변화율을 알기 위해 편미분 사용.

편미분 (Partial derivative)?

- 다변수 함수에서 각 변수에 따른 함수 값의 변화율
- ∂: "partial"이라고 읽음 (round, del, dee, partial dee라고도 읽음)
- 미분하지 않는 나머지 변수는 상수로 취급한 후 미분

미분 vs 편미분 (Partial derivative)?

•
$$f'(x) = \frac{d}{dx}f(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

e.g., $f(x) = 2x^2 + 4e^x + 15$, $f'(x) = \frac{d}{dx}f(x) = 4x + 4e^x$

•
$$f_x(x,y) = \frac{\partial}{\partial x} f(x,y) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$$

e.g., $f(x,y) = 2x^2 + 4xy + y^2 + 15$, $f_x(x,y) = \frac{\partial}{\partial x} f(x,y) = 4x + 4y$

편미분 개요

$$z = f(x, y)$$

- $f_x(x,y) : f(x,y) = x$ 로 편미분
- $f_{v}(x,y): f(x,y) = y$ 로 편미분

$$f_{x}(x,y) = \frac{\partial}{\partial x} f(x,y) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x,y)}{\Delta x}$$
$$f_{y}(x,y) = \frac{\partial}{\partial y} f(x,y) = \lim_{\Delta x \to 0} \frac{f(x,y + \Delta x) - f(x,y)}{\Delta x}$$

편미분 해석적 의미

$$z = f(x, y) = x^2 + 2y^2$$

$$f_{\chi}(2,-1)=?$$

편미분 해석적 의미

$$z = f(x, y) = x^2 + 2y^2$$

$$f_x(2,-1) = ?$$

 $f_x(2,1) = ?$ f(x,y)와 y = 1의 교선의 x = 2에서 접선의 기울기

$$f_{\chi}(-1,2)=?$$

- ∇ : "gradient vector" or "nabla" or "del"
- 기울기 벡터

A vector in space

- In space, a vector can be shown as an arrow
 - starting point is the origin
 - ending point are the values of the vector

$$\mathbb{R}^3$$
에서 gradient연산자는 $\nabla = \frac{\partial}{\partial x}\mathbf{i} + \frac{\partial}{\partial y}\mathbf{j} + \frac{\partial}{\partial z}\mathbf{k}$ 로 정의된다. $(\mathbf{i}, \mathbf{j}, \mathbf{k} \leftarrow \mathbb{R}^3$ 단위 직교 기저)

$$\rightarrow \nabla f(x, y, z) = \left\langle \frac{\partial f(x, y, z)}{\partial x}, \frac{\partial f(x, y, z)}{\partial y}, \frac{\partial f(x, y, z)}{\partial z} \right\rangle$$

• Gradient란 최대의 증가율을 나타내는 벡터.

• Gradient가 최대의 증가율을 나타내기 때문에 Gradient의 반대 방향을 따라가면 Local minimum에 가장 빠르게 도달한다.

• 즉 벡터 $\nabla f(x,y,z) = \left\langle \frac{\partial f(x,y,z)}{\partial x}, \frac{\partial f(x,y,z)}{\partial y}, \frac{\partial f(x,y,z)}{\partial z} \right\rangle \vdash f(x,y,z)$ 에서 가장 가파른 방향을 나타냄.

• R³에서의 Gradient descent

• 딥러닝에서 가중치의 수가 차원을 의미하는데 보통 3차원 이상이다.

하지만 3차원 이상은 상상할 수 없다.

n차원 에서도 3차원과 같이 Gradient의 반대 방향으로 학습을 하면 Local minimum에 도달한다.

우리가 상상할 수 있는 \mathbb{R}^3 에서의 Gradient 를 상상하여 \mathbb{R}^n 에서도 같은 결과가 나온다고 생각하자.

이미지 출처 https://www.commonlounge.com/discussion/f5e5b0b3bba44e5daadb93044e8fa648/history

CONTENTS

- 〔1〕 미분 Derivative
- 2 편미분 Partial derivative
- (3) 연쇄 법칙 Chain rule
- 4 수치 미분 Numerical derivative

• Chain rule은 합성함수 미분에 사용됨.

• Let
$$y = f(g(x))$$
, $t = g(x)$

•
$$\frac{dy}{dx} = \frac{d}{dx}f(g(x)) = f'(g(x))g'(x) = \frac{dy}{dt} \times \frac{dt}{dx}$$

$$\therefore \frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$$

• 딥러닝에서는 오차역전파를 이해하는데 필요함.

연쇄 법칙 Chain rule

- Let y = f(g(x)), t = g(x)
- $\frac{dy}{dx} = \frac{d}{dx}f(g(x)) = f'(g(x))g'(x) = \frac{dy}{dt} \times \frac{dt}{dx}$

$$\therefore \frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$$

when
$$f(x) = e^{4x^2}$$
, let $4x^2 = t$, then $f(x) = e^t$

$$\frac{df}{dx} = \frac{df}{dt} * \frac{dt}{dx} = \frac{d(e^t)}{dt} * \frac{d(4x^2)}{dx}$$

CONTENTS

- (1) 미분 Derivative
- (2) 편미분 Partial derivative
- (3) 연쇄 법칙 Chain rule
- 4 수치 미분 Numerical derivative

수치 미분이란?

- 함수의 미분이 복잡하거나 계산에 비용이 많이 드는 경우 미분계수의 근사값을 얻기 위해 사용하는 미분 법.
- 전방 차분(forward scheme)
- 후방 차분(backward scheme)
- 중앙 차분(central scheme)
- 의 세가지 방법이 존재

• 전방 차분(forward scheme)

$$\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$$

• 후방 차분(backward scheme)

$$\lim_{h\to 0} \frac{f(a)-f(a-h)}{h}$$

• 중앙 차분(central scheme)

$$\lim_{h\to 0} \frac{f(a+h)-f(a-h)}{2h}$$

- 중앙 차분이 미분계수에 가장 근접하다. (오차가 작다)
- → 앞으로 수치 미분에는 중앙 차분 사용

- For sufficiently small h, h>0
- 1) 전방 차분 (후방 차분도 같은 방법으로 증명)

By Tayler series,

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(c)}{2!}(x - a)^2, c \in [a, a + h]$$
$$x \leftarrow a + h$$

$$f(a+h) = f(a) + f'(a)h + \frac{f''(c)}{2!}h^2$$

양변 h로 나눈 후 정리

$$\frac{f(a+h)-f(a)}{h} - f'(a) = \frac{f''(c)}{2!}h$$

 $\frac{f(a+h)-f(a)}{h}$: 전방 차분으로 구한 수치 미분 값, f'(a): 미분계수 값

$$\left| \frac{f(a+h)-f(a)}{h} - f'(a) \right| = 2^{\frac{h}{2!}}$$

: Error of forward scheme = $|f''(c)| \frac{h}{2!}$

수치 미분 - 중앙 차분 오차 증명 (생략 가능)

2) 중앙 차분

By Tayler series,

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \frac{f^{(3)}(c)}{3!}(x - a)^3$$
, $c \in [a, a + h]$

(a) $x \leftarrow a + h$

$$\Rightarrow f(a+h) = f(a) + f'(a)h + \frac{f''(a)}{2!}h^2 + \frac{f^{(3)}(c)}{3!}h^3$$

(b) $x \leftarrow a - h$

⇒
$$f(a-h) = f(a) - f'(a)h + \frac{f''(a)}{2!}h^2 - \frac{f^{(3)}(c)}{3!}h^3$$

③-⑤
$$\rightarrow f(a+h) - f(a-h) = 2f'(a)h + 2\frac{f^{(3)}(c)}{3!}h^3$$
, 양변 $2h$ 로 나눈 후 정리

$$\frac{f(x+h)-f(x-h)}{2h} - f'(a) = \frac{f^{(3)}(c)}{3!}h^2$$

 $\frac{f(x+h)-f(x-h)}{2h}$: 중앙 차분으로 구한 수치 미분 값, f'(a): 미분계수 값

$$\left| \frac{f(x+h) - f(x-h)}{2h} - f'(a) \right| = \mathfrak{L}^{+} = \left| f^{(3)}(c) \right| \frac{h^2}{3!}$$

: Error of forward scheme = $|f^{(3)}(c)|^{\frac{h^2}{3!}}$

- Error of forward scheme = $|f''(c)| \frac{h}{2!}$
- Error of forward scheme = $|f^{(3)}(c)| \frac{h^2}{3!}$

For sufficiently small h, h>0 $\rightarrow h \gg h^2$

따라서 중앙 차분의 결과가 오차가 작다.

