Fault Location in Power Distribution Systems via Graph Convolutional Networks*

Kunjin Chen*, Jun Hu*, Yu Zhang[†], Zhanqing Yu*, Jinliang He*

*Tsinghua University, [†]UC Santa Cruz

Funding ACK: National Key Research and Development Program of China Grant-2018YFB0904603, NSFC Grant-51720105004, State Grid Corporation of China Grant-5202011600UJ, Faculty Research Grant (FRG) of UC Santa Cruz, Hellman Fellowship

*IEEE Journal on Selected Areas in Communications, vol. 38, no. 1, pp. 119-131, Jan. 2020. https://ieeexplore.ieee.org/document/8892483

Overview

- Introduction
- 2 Fault Location Based on Graph Convolutional Networks (GCN)
 - Spectral Convolution on Graphs
 - GCN for Fault Location
- Results and Discussion
 - Implementation Details
 - Fault Location Performance
 - Visualization of Data

Fault Location in Distribution Systems

 Power distribution systems are constantly under the threat of short-circuit faults that would cause power outages.

- System operators have to deal with outages timely to achieve high reliability.
- Goal: Accurately locate faults after the occurrence, so that quick restoration can be achieved.

Fault Location in Distribution Systems

Locating a fault in a distribution system:

Motivation

Existing methods:

- Methods based on impedance, voltage sag, traveling wave, and classical machine learning algorithms.
- They work fine theoretically, but are easily affected by noise, missing data, topology changes, etc.

The starting point of this work:

- Measuring phasors of voltage and current at lots of nodes becomes possible.
- Find a proper machine learning model that can use measurements from plenty of sensors to locate the fault in a distribution grid.

Problem Statement

We formulate the task of fault location as a classification problem.

 For a given measured bus, assume that we have access to its three-phase voltage and current phasors:

$$(V_1,\theta_1^V,V_2,\theta_2^V,V_3,\theta_3^V,I_1,\theta_1^I,I_2,\theta_2^I,I_3,\theta_3^I) \in \mathbb{R}^{12}.$$

- A data sample of measurements: $\mathbf{X} \in \mathbb{R}^{n_o \times 12}$, where n_o is the number of observed buses. Values for unmeasured phases are set to zero.
- Given a data sample \mathbf{X}_i , the faulty bus $\tilde{y}_i = f(\mathbf{X}_i)$, where f is a classification model. A fault is correctly located if $\tilde{y}_i = y_i$, where y_i indicates the true faulty bus.

Graph Convolutional Networks (GCN)

- Graph is a natural representation of a power network: nodes for buses; edges for power lines.
- GCNs is a powerful predictive tool: leverages the information contained in the data and the relationships between data.
- In each GCN layer, the normalized graph structure is multiplied by the node properties and weights, and then passes through an activation function.

Figure: https://bit.ly/3h5IAz0

Spectral Graph Theory

- Consider an undirected weighted graph $\mathcal{G}=(\mathcal{V},\mathcal{E},\mathbf{W})$, the unnormalized graph Laplacian is $\mathbf{L}_u=\mathbf{D}-\mathbf{W}$, where \mathbf{D} is the degree matrix and \mathbf{W} is the weighted adjacency matrix.
- Normalized graph Laplacian is given as:

$$\mathbf{L} = \mathbf{D}^{-1/2} \mathbf{L}_u \mathbf{D}^{-1/2} = \mathbf{I} - \mathbf{D}^{-1/2} \mathbf{W} \mathbf{D}^{-1/2} \succeq \mathbf{0}$$
 (1)

- Eigendecomposition: $\mathbf{L} = \mathbf{\Phi} \mathbf{\Lambda} \mathbf{\Phi}^{\top}$, where $\mathbf{\Phi} = (\phi_1, \dots, \phi_n)$ are orthonormal eigenvectors of \mathbf{L} , and $\mathbf{\Lambda} = \mathrm{diag}(\lambda_1, \dots, \lambda_n)$ collects ordered eigenvalues $\lambda_1 \leq \lambda_2 \leq \dots \leq \lambda_n$.
- $\lambda_1=0$ with the eigenvector $\phi_1=\frac{1}{\sqrt{n}}\mathbf{1}$.
- Algebraic multiplicity of $\lambda_1 = \dim(\operatorname{null}(\mathbf{L})) = \operatorname{the}$ number of connected components of the graph.

Spectral Convolution on Graphs

- For a signal $\mathbf{f} \in \mathbb{R}^n$ on the vertices of graph \mathcal{G} (a scalar for each vertex), the graph Fourier transform (GFT) is performed as $\hat{\mathbf{f}} = \mathbf{\Phi}^{\top} \mathbf{f}$ while the inverse GFT is $\mathbf{f} = \mathbf{\Phi} \hat{\mathbf{f}}$.
- ullet The spectral convolution of two signals ${f g}$ and ${f f}$ is defined as

$$\mathbf{g} * \mathbf{f} := \underbrace{\mathbf{\Phi}}_{\mathsf{IGFT}} \left(\underbrace{(\mathbf{\Phi}^{\top} \mathbf{g})}_{\mathsf{GFT}} \circ \underbrace{(\mathbf{\Phi}^{\top} \mathbf{f})}_{\mathsf{GFT}} \right) = \mathbf{\Phi} \operatorname{diag}(\hat{g}_1, \dots, \hat{g}_n) \mathbf{\Phi}^{\top} \mathbf{f},$$

• Convolution of signal ${f f}$ with a filter ${f B}={
m diag}({m eta})$ is defined as:

$$\mathbf{B} * \mathbf{f} = \mathbf{\Phi} \mathbf{B} \mathbf{\Phi}^{\top} \mathbf{f}.$$

- The above filtering may not be spatially localized and is computationally expensive.
- Localized filters are able to extract features from small areas of interest instead of the whole input.

ChebNet

Using filters that are smooth in spectral domain can bypass such an issue.
 e.g., polynomial filters represented in the Chebyshev basis, which stabilizes the training of the filters.

$$h_{\alpha}(\tilde{\mathbf{\Lambda}}) = \sum_{k=0}^{K} \alpha_k T_k(\tilde{\mathbf{\Lambda}}), \tag{2}$$

where $\{\alpha_k\}$ are learnable coefficients; eigenvalues of $\tilde{\Lambda} = 2\lambda_n^{-1}\Lambda - \mathbf{I}$ are rescaled frequency in the interval [-1,1].

The Chebyshev polynomials are recursively defined as

$$T_k(x) = 2x T_{k-1}(x) - T_{k-2}(x),$$
 (3)

with $T_0 = 1$, $T_1 = x$.

ChebNet (Con't)

ullet Since $\mathbf{L}^k = oldsymbol{\Phi} oldsymbol{\Lambda}^k oldsymbol{\Phi}^ op$, the filtering becomes

$$\boldsymbol{\Phi} h_{\boldsymbol{\alpha}}(\boldsymbol{\Lambda}) \boldsymbol{\Phi}^{\top} \mathbf{f} = h_{\boldsymbol{\alpha}}(\mathbf{L}) \mathbf{f} = \sum_{k=0}^{K} \alpha_k T_k(\tilde{\mathbf{L}}) \mathbf{f},$$

where $\tilde{\mathbf{L}} = 2\lambda_n^{-1}\mathbf{L} - \mathbf{I}$.

• Define $\mathbf{d}_0 = \mathbf{f}$ and $\mathbf{d}_1 = \tilde{\mathbf{L}}\mathbf{f}$, we have the recursive update

$$\mathbf{d}_k = 2\tilde{\mathbf{L}}\mathbf{d}_{k-1} - \mathbf{d}_{k-2}.$$

Consider the filtering operation

$$h_{\boldsymbol{\alpha}}(\mathbf{L})\mathbf{f} = [\mathbf{d}_0, \cdots, \mathbf{d}_K]\boldsymbol{\alpha}$$

It has a complexity of $\mathcal{O}(K|\mathcal{E}|)$ thanks to the sparsity of \mathbf{L} .

• Because of the Kth order truncation, the filter is K-hop localized w.r.t. the connections embodied in \mathbf{L} ; i.e., it depends only on nodes that are at maximum K steps away from the central node.

The GCN Model

Figure: The input X passes through L_c graph convolution layers and L_f fully-connected layers followed by the softmax operator.

• The *j*th feature map of a graph convolution layer is

$$\mathbf{y}_j = \sum_{i=1}^{N_{in}} h_{\alpha_{i,j}}(\mathbf{L}) \mathbf{x}_i, \tag{4}$$

where $\mathbf{x}_i \in \mathbb{R}^n$ is the *i*th input feature map, $\alpha_{i,j} \in \mathbb{R}^K$ contains the trainable coefficients, and N_{in} is the number of filters of the previous layer.

Calculation of the Graph Laplacian

- Find the distance matrix $\mathbf{S} \in \mathbb{R}^{n \times n}$. The entry \mathbf{S}_{ij} is the length of the shortest path between bus i and bus j.
- Ascending-sort (from left to right) and keep the smallest K_n values in each row of \mathbf{S} to obtain $\tilde{\mathbf{S}} \in \mathbb{R}^{n \times K_n}$ and calculate the normalization factor $\sigma_S = \sum_i \tilde{\mathbf{S}}_{iK_n}/n$.
- Calculate $\tilde{\mathbf{W}}_{ij} = e^{-\tilde{\mathbf{S}}_{ij}^2/\sigma_S^2}$. Obtain the weighted adjacency matrix $\mathbf{W} \in \mathbb{R}^{n \times n}$ by restoring the positional correspondence of $\tilde{\mathbf{W}}_{ij}$ to bus i and bus j.
- Calculate the Laplacian matrix $\mathbf{L} = \mathbf{I} \mathbf{D}^{-1/2} \mathbf{W} \mathbf{D}^{-1/2}$.

The IEEE 123 Bus Test Case

- Three types of faults: single phase to ground, two phase to ground, and two phase short-circuit.
- Training and test data samples are simulated using OpenDSS.

Figure: Dashed lines: normally closed switches; (r): with regulators. The red color numbers denote the 20 buses that are closest (in distance) to bus 67.

Implementation Details

- A total of 119 labels for the classification task.
- 20 data samples for each type of fault at each bus.
- 3 graph convolution layers, each with 256 filters.
- 2 fully-connected layers (512 & 256 hidden units), dropout rate = 0.5.
- $K_n = 20, K = [3, 4, 5].$
- Adam optimizer, 400 epochs, mini-batch size = 32.

Visualization of L^m : Locality of the Spectral Filters

Figure: Visualization of the absolute values in \mathbf{L}^m when $K_n=20$, (a) m=1, (b) m=3, (c) m=5, and (d) m=10. When m=5, the support of filters becomes the whole graph.

- The size of filters grows fast with the increase of *m*.
- Relatively large absolute values are mainly limited to entries corresponding to closer buses.
- ullet Polynomials of ${f L}$ represent the filters. Higher-order terms facilitate the filters to explore more nodes.
- The locality of filters are ensured when choose K_n properly.

Classification Accuracy

3 types of data modifications are considered in the test set:

- Add Gaussian noise (SNR = 45 dB).
- Data loss of buses: randomly drop the data of N_{drop} buses (i.e., set the measured values to 0) per data sample.
- Random data loss for measured data: Each measurement at all buses is replaced by 0 with a probability P_{loss} .

TABLE II
FAULT LOCATION ACCURACIES OF THE MODELS UNDER VARIOUS MEASUREMENT MODIFICATIONS

Model	Noise (I)	Bus (II)	Random (III)	I + II	I + III	II + III	I + II + III
PCA + SVM PCA + RF FCNN GCN	89.13 / 97.30 85.94 / 96.77 85.72 / 95.95 97.10 / 99.72	58.73 / 79.97 53.82 / 67.62 62.61 / 82.93 92.67 / 97.44	58.57 / 74.07 69.40 / 88.09	61.24 / 82.47	56.94 / 73.23	45.44 / 69.64 40.55 / 55.84 53.54 / 76.42 83.55 / 94.51	40.05 / 55.64 54.12 / 76.83

Classification Accuracy (Cont'd)

• Add Gaussian noise to training data:

TABLE III
FAULT LOCATION ACCURACIES OF THE MODELS UNDER VARIOUS MEASUREMENT MODIFICATIONS WHEN TRAINED WITH NOISY DATA

Model	Noise	Noise + Bus	Noise + Random	All Combined
PCA + SVM	85.70 / 96.21	55.98 / 77.74	58.00 / 80.17	44.12 / 68.51
PCA + RF	86.51 / 97.55	64.11 / 81.61	66.12 / 84.90	52.34 / 72.13
FCNN	86.95 / 97.19	61.95 / 82.58	70.32 / 88.52	53.98 / 76.55
GCN	97.52 / 99.73	92.67 / 98.26	88.76 / 96.44	84.53 / 94.77

• Add data augmentation to training data (applying random modifications to training data samples):

Visualization of Transformed Data

• Visualizing the test data processed by PCA and t-distributed stochastic neighbor embedding (t-SNE).

Figure: Visualization of hidden features of test data added with all three types of modifications using t-SNE with two components: (a) the FCNN model, and (b) the GCN model.

Thank You!