ANALYSIS OF ALGORITHMS

- · Why is my program so slow?
- · Why does it run out of memory?

three-sum problem - how many unique triplets
on an array when summed

- · brute force N3
- o sort, get a numbers
 get the 3rd w/ binary search N2 Log N

Experimental Observations

- · MEASUR RUNNING time MANUAlly (stopwatch)
 - 1 . PLOT running time A= function of # inputs (T(N) v= N
 - 20 plot Loglog Plot $\stackrel{do}{\rightarrow}$ linear Regression $\stackrel{mx+b}{\rightarrow}$ If lg(t(h) = b log h + cthen $t(h) = a N^B$ where $a = 2^c$ $t(h) = 2^c \cdot N^B$
 - * Recommended book = ART OF Computer ProGramming
 Donald knuth

System Dependent } depends on computer specifications

Effects And Lowlevel Implementation

CHAN

cost of Arithmetic operation

- · Integer operations faster than float operations
- · divide operations slower than Addition
- Sine and arctangent are significantly slower than operations above

BASIC operations

CONSTANT

dependent on size

- · declaring VARIABLES
- · Array Allocation
- · Assignment
- · String concatenation
- · compare

Exambles of conner observations (instinctions

ARRAY
 Element
 Access

· Finding Zerg on An Array

· Array length String I finding a-sum problem

ORDER OF GROWTH CLASSIFICATION · finding 3- sum problem

· Important!

- Check Slides

ORDER OF GROWTH CLASSIFICATIONS

AMORTIZED

ORDER OF GROWTH

See Stack
Implementation

	1	
	logN	
	N	
	MogN	
	N ²	
-	N2 log N	
	N3	
	24	

- + plot the Graphs
 of theses
 - -> ploy log log plot ALSO.

LOGARITHMIC

- · binary search · divide in half
 - · while N71:

H=H/2

NLOGN (LINEARITHMIC) . Merge Solet

24 ExponentiaL

com pinatorial search

64 bit machine v532bit

- · 8 byte pointers
- , was wemand
- o more pointees

MEMORY

PRIMITIVE types

- · boolean .int
- · byte o +loat
- · Chap · long

10/20 ARRAYT

· depends of size of what's inside each cell

Example:

Char [][] → C N.M + PAdding

Size of Hrows Malums theader

Char

OBIECTS

- · object overhead
- · peference
- · padding.

usage MEMORY CONTINUED

o see Example Class Date

class string

	object overhead	16
-	VAlue (reference)	3
+	offset (int)	4
1	Count (int)	4
1	Hazh (Int)	4
	padding	1 4

SHALLOW MEMORY

don't count referenced objects (pointed to)

vs Leep memory

TALLE Reference

8 bytes (reference to Array)

of overhald bytes per # character

Example Quickunion memory

16 -> object overhead

F

Arrays (1d), (Size)

F

8+ +N+ 20

4 -> int count

Each

Padding

Memory = BN + 88

things to Do)

- D Implement binary search
- T implement a

 Algorithms for

 3-sum problem
- tor a implementations
 - 0F 3-5UM
- P plot order of growth graph
- scan notes