Your title here!

2	¹ Affiliation1, ² Affiliation2
3	Author 1^{*1} , Author 2^{-1} , Author 3^{-2}

4 Abstract

Your abstract goes here...

6 Contents

7	1	Introduction	1
8	2	Methods	2
9	3	Results	3
.0		3.1 Lateral hydrological connectivity - revisited	3
.1		3.2 Lateral hydrological connectivity and diversity	3
.2	4	Discussion	3
2	R	eferences	3

1 Introduction

- 15 Connectivity is an important but inconsistently defined concept in spatial ecology and conservation biology
- 16 more especially in large rivers.
- Floodplain connectivity is reduced by human activity. Moreover, the degree to which the remaining habitats
- 18 are functionally linked with flow processes becomes increasingly important in floodplain management. This
- 9 link is called lateral hydrological connectivity.
- 20 It is desirable to quantify connectivity and use this measurement as a basis for decision making in large river
- 21 floodplains.
- 22 If connectivity is to serve as a guide, at least in part, it clearly matters how it is measured. Unfortunately,
- the ecological literature is awash with different connectivity metrics (Paillex versus Riquier).

 $^{^*}$ Corresponding author: email@email.com

- Measures of connectivity differ in their data requirements and informational yield.
- 25 Two approaches have been employed: i) direct measurements based upon hydrological variables such as
- the duration or frequency of surface connections between the river and the floodplain channels (Richter &
- 27 Richter, 2000; Rader, Voelz & Ward, 2008; Bogan, Boersma & Lytle, 2013; Warfe et al., 2014; Fournier et al.,
- 28 2015), ii) indirect assessments based upon environmental characteristics of the floodplain channels, such as
- 29 the amount of hydrophytic vegetation or the organic matter content of the sediment, considered as proxy
- 30 integrating some effects of LHC, especially the shear stress developed during connection phases (Arscott et
- al., 2005; Paillex, Castella & Carron, 2007; Paillex et al., 2013; Besacier-Monbertrand, Paillex & Castella,
- ³² 2010; Gallardo et al., 2014).
- How to efficiency choose between these two alternatives of connectivity measurement? How connectivity is
- best measured to explain diversity in large river floodplains?
- This framework can be used to decide which connectivity metrics to choose, given particular datasets or,
- conversely, which type of data to collect, given a particular metric.
- 37 EPT and gastropod group served for richness measures to assess the ecological status of floodplain channels
- because 1) EPT species represent good indicators of well oxygenated water and hydraulic conditions i.e. shear
- 39 stress and 2) gastropods are typical habitant of lowlands and thus are well suited to characterize environmental
- 40 conditions in lentic conditions [1] (Reckendorfer et al., 2006; Dolédec et al., 2007; Mérigoux et al., 2009;
- 41 Gallardo et al., 2014). Nevertheless, traditional taxonomic richness measures may not detect discrete changes
- 42 in assemblage features (Tupinambás et al., 2014). Hence, we incorporated functional diversity as an additional
- metric of the two previous taxonomic-based metrics.
- 44 Figure 1. (A) quadrat methodology involving actual environmental variables (indirect estimation of connec-
- tivity) and (B) direct estimation of hydrological connectivity.

46 2 Methods

47	##	[1]	"Simpson"	"RawRichness"	"RarRichness"	"GastRichness"
48	##	[5]	"MayRichness"	"PlecRichness"	"TRichRichness"	"BivRichness"
49	##	[9]	"AmphRichness"	"vol"	"pred"	"fil"
50	##	[13]	"shr"	"F1"	"Overflow"	"station"
51	##	[17]	"site"	"sector"	"season"	"year"
52	##	[21]	"EPTRichness"	"fstat"	"F1_r"	"Overflow_r"

3 Results

$_{54}$ 3.1 Lateral hydrological connectivity - revisited

[Figure 1 about here.]

56 3.2 Lateral hydrological connectivity and diversity

[Figure 2 about here.]

[Figure 3 about here.]

59 4 Discussion

60 References

- [1] A. Paillex, E. Castella, and G. Carron, "Aquatic macroinvertebrate response along a gradient of lateral
- connectivity in river floodplain channels," J. North Am. Benthol. Soc., vol. 26, no. 4, pp. 779–796, Dec.
- 63 2007.

64 List of Figures

65	1	Lateral hydrological connectivity according to Paillex et al. vs. Lateral hydrological connectivity
66		according to Riquier et al
67	2	Rarefied richness vs. lateral hydrological Connectivity
68	3	Feeding group ratios vs. lateral hydrological Connectivity

Figure 1: Lateral hydrological connectivity according to Paillex et al. vs. Lateral hydrological connectivity according to Riquier et al.

Figure 2: Rarefied richness vs. lateral hydrological Connectivity

Figure 3: Feeding group ratios vs. lateral hydrological Connectivity