BIO392-cnv-freq

Yasmine Douar

28.09.2022

Step 1: Install package

```
if (!require(devtools)){ install.packages('devtools')
}

## Loading required package: devtools

## Loading required package: usethis

if (!require(pgxRpi)){ devtools::install_github('progenetix/pgxRpi')}
}

## Loading required package: pgxRpi
library(pgxRpi)
```

Step2: Search esophageal adenocarcinoma NCIt code

C4025

Step3: Access the CNV frequency data from samples with esophageal adenocarcinoma

```
frequency <- pgxLoader(type = "frequency", output = "pgxseg", filters = "NCIT:C3058", codematches=T)</pre>
```

The retreived data is an object containing two slots meta and data.

The meta slot looks like this:

```
frequency$meta
##
                        label sample_count
## 1 NCIT:C3058 Glioblastoma
                                      4384
                                      4384
          total
The data slot includes two matrices.
names(frequency$data)
## [1] "NCIT:C3058" "total"
The frequency matrix looks like this
head(frequency$data$`NCIT:C3058`)
        filters reference name
                                             end gain_frequency loss_frequency no
                                  start
## 1 NCIT:C3058
                                      0 400000
                                                          4.174
                                                                          4.151 1
```

##	2 NCIT:C3058	1 400000	1400000	10.903	6.911	2
##	3 NCIT:C3058	1 1400000 3	2400000	13.047	8.805	3
##	4 NCIT:C3058	1 2400000 3	3400000	14.690	15.420	4
##	5 NCIT:C3058	1 3400000 4	4400000	16.036	17.769	5
##	6 NCIT:C3058	1 4400000 !	5400000	11.747	19.662	6

Dimension of this matrix

Step4: Visualize data

By genome

By chromosome

pgxFreqplot(frequency, chrom = 20)

Step5: Analyse the data

According the plot, we can see frequenct gains on chromosome 7p, 8q, 20p,20q and frequenct losses on chromosome 4p,4q, 5q, 9p, 17p, 18q, 21q.

There is a literature where the findings are consistent with the majority of mine. Here is the paper-link.

A more detailed use case see this link.