Optimization algorithms Quiz, 10 questions

8/10 points (80%)

~	Cong	ratulations! You passed!	Next Ite			
	×	0 / 1 points				
	1.					
	Which notation would you use to denote the 3rd layer's activations when the input is the 7th example from the 8th minibatch?					
		$a^{[8]\{7\}(3)}$				
	0	$a^{[3]\{7\}(8)}$				
	This	should not be selected				
		$a^{[3]\{8\}(7)}$				
		$a^{[8]\{3\}(7)}$				
	~	1 / 1 points				
	2. Which	of these statements about mini-batch gradient descent do yo	ou agree with?			
	O	One iteration of mini-batch gradient descent (computing on batch) is faster than one iteration of batch gradient descent				

Correct

If the mini-batch size is m, you end up with batch gradient descent, which

If the mini-batch size is m, you end up with stochastic gradient descent,

If the mini-batch size is 1, you end up having to process the entire training

has to process the whole training set before making progress.

which is usually slower than mini-batch gradient descent.

9/9/2017 Coursera | Online Courses From Top Universities. Join for Free You should implement mini-batch gradient descent without an Optimization algorithm oop over different mini-batches, so that the algorithm Quiz, 10 questions processes all mini-batches at the same time (vectorization). Training one epoch (one pass through the training set) using mini-batch gradient descent is faster than training one epoch using batch gradient descent. 1/1 points 3. Why is the best mini-batch size usually not 1 and not m, but instead something inbetween? If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch. Correct

8/10 points (80%)

Correct

1/1 points

Un-selected is correct

Un-selected is correct

set before making any progress.

4. Optimization palgorithms algorithm's cost J, plotted as a function of the number of Quiz, 10 questions iterations, looks like this:

Which of the following do you agree with?

	Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.
	Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.
O	If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.
Corre	ect

If you're using mini-batch gradient descent, something is wrong. But if

you're using batch gradient descent, this looks acceptable.

Optimization algorithms

Quiz, 10 questions

8/10 points (80%)

5.

Suppose the temperature in Casablanca over the first three days of January are the same:

Jan 1st:
$$\theta_1 = 10^{\circ} C$$

Jan 2nd:
$$\theta_2 10^{o} C$$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta = 0.5$ to track the temperature: $v_0 = 0$, $v_t = \beta v_{t-1} + (1 - \beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

$$\bigcirc$$

$$v_2 = 7.5, v_2^{corrected} = 10$$

Correct

$$v_2 = 10, v_2^{corrected} = 10$$

$$v_2 = 7.5, v_2^{corrected} = 7.5$$

$$v_2 = 10, v_2^{corrected} = 7.5$$

1/1

points

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

$$\bigcirc \quad \alpha = \frac{1}{1+2*t} \ \alpha_0$$

$$\bigcirc \quad \alpha = \frac{1}{\sqrt{t}} \alpha_0$$

$$\bigcap \quad \alpha = e^t \alpha_0$$

Optimizatio madgorithms

8/10 points (80%)

Quiz, 10 questions

$$\alpha = 0.95^t \alpha_0$$

1/1 points

7.

You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t = \beta v_{t-1} + (1-\beta)\theta_t$. The red line below was computed using $\beta = 0.9$. What would happen to your red curve as you vary β ? (Check the two that apply)

Decreasing β will shift the red line slightly to the right.

Un-selected is correct

Increasing eta will shift the red line slightly to the right.

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had Optimization and Optimization which is slightly shifted to the right. Quiz, 10 questions

8/10 points (80%)

Decreasing eta will create more oscillation within the red line.

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a yellow line \$\$\beta=0.98\$ that had a lot of oscillations.

Increasing eta will create more oscillations within the red line.

Un-selected is correct

1/1 points

8.

Consider this figure:

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

(1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)

Correct

Optimizati Quiz, 10 questions	(1) is gradient descent with momentum (small eta). (2) is gradient descent. ion algorithms descent with momentum (large eta)	/10 points (80%)
	(1) is gradient descent. (2) is gradient descent with momentum (large β) . (3) is gradient descent with momentum (small β)	
	(1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent	
	X 0/1 points	
	9. Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the cost function $\mathcal{J}(W^{[1]},b^{[1]},\ldots,W^{[L]},b^{[L]})$. Which of the following techniques could help find parameter values that attain a small value for \mathcal{J} ? (Check all that apply)	
	Try tuning the learning rate α	
	Try initializing all the weights to zero Un-selected is correct	
	Try mini-batch gradient descent This should be selected	
	Try better random initialization for the weights Correct	
	Try using Adam	

Optimizatio fraigorithms

Quiz, 10 questions

8/10 points (80%)

