CPE201 Digital Design

By Benjamin Haas

Class 2: Number Systems

Corrections

No partial credit for either submission of assignments

Announcements

- Discord server for this course see Syllabus
- Labs start this week
- First homework due next Wednesday
- When HW is posted
- Makeup and resubmission lab
 - Thursdays 1-5pm

To the Experts here

 "What were we put here to do if not help each other through?"-Mark Horstman

Outline

- Number representations (number systems)
- Conversions+

Decimal

- The system you are used to
 - There are 10 digits (0 [the first] to 9 [the tenth])
- When you use all the digits, a new digit goes in the next position up

$$42 = (4 \times 10) + (2 \times 1)$$

The new position has added weight

Decimal

Each digit to the left has increasing weight

10⁵ 10⁴ 10³ 10² 10¹ 10⁰

Weights continue to work after a decimal point

 $10^2\ 10^1\ 10^0\ .\ 10^{-1}\ 10^{-2}\ 10^{-3}$

Example

$$851.96$$
 $(8 \times 10^{2}) + (5 \times 10^{1}) + (1 \times 10^{0}) + (9 \times 10^{-1}) + (6 \times 10^{-2})$
 $(8 \times 100) + (5 \times 10) + (1 \times 1) + (9 \times 0.1) + (6 \times 0.01)$
 $800 + 50 + 1 + 0.9 + 0.06$

• The weight on the 6 is 0.01 (or 1/100)

University of Nevada, Reno

Decimal

Power of 10	Decimal
100	1
10 ¹	10
10 ²	100
10 ³	Thousand or Kilo
106	Million or Mega
10 ⁹	Billion or Giga
10 ¹²	Trillion or Tera

Power of 10	Decimal
10-1	Tenth
10-2	Hundredth
10-3	Thousandth or Milli
10-6	Micro
10-9	Nano
10-12	Pico

Binary

- Same a decimal, but there are only 2 digits (bits)
- 0 then 1 then 10 then 11 then 100
- Weight increases with each digit to the left
 - The base is different (2 instead of 10)

$$100 = (1 \times 2^{2}) + (0 \times 2^{1}) + (0 \times 2^{0})$$
$$= (1 \times 4) + (0 \times 2) + (0 \times 1)$$

MSB and LSB

- Left most bit = Most significant bit
- Rightmost bit = Least significant bit
 1010
 MSB LSB

Binary

- Weights can continue after binary point
 - We usually don't use it

Binary	Decimal
2-1	1/2 or 0.5
2-2	1/4 or 0.25
2-3	1/8 or 0.125

Binary and Decimal

Decimal	Binary	De
0	0000	8
1	0001	9
2	0010	10
3	0011	11
4	0100	12
5	0101	13
6	0110	14
7	0111	15

Decimal	Binary
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111

Powers of 2

Power of 2	Decimal
20	1
21	2
22	4
23	8
24	16
25	32
26	64

Power of 2	Decimal
27	128
28	256
2 ⁹	512
210	1,024 = 1k
2 ²⁰	1,048,576 = 1M
230	1,073,741,824 = 1G
240	1T

Bits needed

- How many bits to represent a decimal number?
- Largest decimal number = 2ⁿ 1
 - Need to include zero
 - How many bits is n

$$2^2 - 1 = 3$$

$$2^3 - 1 = 7$$

$$2^4 - 1 = 15$$

Octal

- Base 8 number system
 - Not used a lot these days
 - chmod command

Decimal	Octal
0	0
1	1
2	2
2 3	3
4	4
5	5
6	6
7	7
8	10
9	11

Hexadecimal

- Base 16NumberSystem
- Need extra digits that aren't in

Decimal	Hex	Decimal	Hex
0	0	9	9
1	1	10	Α
2	2	11	В
3	3	12	C
4	4	13	D
5	5	14	Е
6	6	15	F
7	7	16	10
8	8	17	11

decimal system

Converions

Binary, Octal, Hex, and Decimal 1011001111110₂=5476₈=B3E₁₆=2878₁₀ also
 0b101100111110=0o5476=0xB3E=2878

Binary to Octal/Hex and vice versa

- Easiest
- Hex is a grouping of 4 bits $(2^4 = 16)$
- Octal is a grouping of 3 bits $(2^3 = 8)$

Example

```
1011001111110_{2} = 101 100 111 110
  = 5 4 7 6
  = 5476_{\circ}
101100111110_{2} = 1011 0011 1110
  = B 3 E
  = B3E_{16}
```


Example

```
A49_{16} = A 4 9
   = 1010 0100 1001
   = 101001001001<sub>2</sub>
713_8 = 7 \ 1 \ 3
   = 111 001 011
   = 111001011<sub>2</sub>
```


Binary to Decimal

Use your powers of 2 and add

$$2^{7}2^{6}2^{5}2^{4}2^{3}2^{2}2^{1}2^{0}$$

$$2^7 + 2^6 + 2^3 + 2^1$$

$$128+64+8+2 = 202$$

Decimal to Binary

- Sum of Weights Method
 - Use largest weight that is smaller than you #, then subtract and repeat until zero is left

102 next smallest weight is 64=26

102-64=38 next smallest weight is 32=2⁵

38-32=6 next smallest weight is $4=2^2$

6-4=2 next smallest weight is 2=2¹

2-2=0 DONE

 $102=2^62^52^22^1=1100110_2$

Decimal to Binary

- Divide by 2 Method
 - Divide number by 2 repeatedly (whole #s and remainders until zero is left)

```
102/2=51 even # to start, so no remainder = 0
51/2=25 odd # to start, so remainder = 1
25/2=12 odd # to start, so remainder = 1
12/2=6 even # to start, so no remainder = 0
6/2=3 even # to start, so no remainder = 0
3/2=1 odd # to start, so remainder = 1
1/2=0 odd # to start, so remainder = 1 DONE
Put the numbers together backwards (first division was LSB, last one was MSB)
102 = 1100110<sub>3</sub>
```


Decimal to Octal/Hex and vice versa

- Decimal -> Binary -> Octal/Hex
- Octal/Hex -> Binary -> Decimal
- You already know all of these steps

Reading

- This lecture
 - Sections 2.1-2.3, 2.8-2.9
- Next lecture
 - Sections 2.4-2.7