6. Порты и подсистемы Ports & Subsystems

Подсистема — это фрагмент **Simulink**-модели, оформленный в виде отдельного блока. Виртуальные и монолитные подсистемы. Управляемые и неуправляемые подсистемы. Типы управляемых подсистем. Связь подсистемы с моделью. Использование подсистем в **Simulink**-моделях.

6.1. Постановка задачи

К неподвижной опоре на невесомой нерастяжимой нити длины $\mathbf{L}[M]$ подвешен груз массы $\mathbf{m}[\kappa z]$. Нить препятствует удалению груза от центра на расстояние, большее длины нити, но не никак не мешает движению груза внутри круга радиуса $\mathbf{L}[M]$. Построить модель движения груза, если ускорение свободного падения равно $\mathbf{g}[M/c^2]$, а сопротивление среды прямо пропорционально скорости движения маятника с коэффициентом $\mathbf{k}[\kappa z/c]$. В начальный момент времени груз находится в самой нижней точке подвеса и движется строго горизонтально слева направо со скоростью $\mathbf{V}[M/c]$.

Идея построения модели: сконструировать подсистемы, моделирующие:

- Затухающие колебания груза (Управляемая подсистема)
 - есть центробежная сила
 - расстояние до центра равно L
- Свободное падение груза (Управляемая подсистема)
 - отсутствует центробежная сила
 - расстояние до центра не превосходит L
- *Удар* (*Переключаемая подсистема*). Мгновение, когда груз, двигаясь свободно, натягивает нить (расстояние до центра становится равным L). При этом мгновенно меняется направление скорости согласно правилу: "Угол падения равен углу отражения".

Рис. 6.1. Траектория движения маятника на нити

6.2. Теория: Движение тела в поле тяжести с учетом сопротивления воздуха

Цель задания – построить **S**-модель и исследовать движение тела, брошенного под углом к горизонту, с учетом сопротивления воздуха. Также необходимо ответить на вопрос, при каком угле бросания дальность полета будет достигать максимального значения, если учитывать сопротивление воздуха.

Рис. 1. Траектория полета тела, брошенного под углом к горизонту

6.2.1. Аналитическое исследование

Пусть тело массой m брошено под углом α_0 к горизонту с начальной скоростью V_0 . Требуется вывести уравнение движения тела, с учетом сопротивления воздуха, и построить соответствующую **S**-модель. **S**-модель должна вычислять положение тела в любой момент времени.

Исходные данные:

m — масса тела;

 V_0 — начальная скорость;

 R_0 (**x**₀, **y**₀) – начальные координаты;

 α_0 – угол броска тела.

Полагаем:

- тело считаем материальной точкой массой m, положение которой совпадает с центром масс тела;
- движение тела происходит под действием силы тяжести с постоянным ускорением свободного падения в плоскости, перпендикулярной поверхности земли, и описывается законами классической механики Ньютона.

Введём прямоугольную систему координат, как показано на рис.1. В начальный момент времени тело массой \boldsymbol{m} находится в точке \boldsymbol{R}_0 (\boldsymbol{x}_0 , \boldsymbol{y}_0). Вектор ускорения свободного падения \boldsymbol{g} направлен вертикально вниз и имеет координаты ($\boldsymbol{0}$, $-\boldsymbol{g}$). \vec{v}_0 — вектор начальной скорости. Разложим этот вектор по базису: $\vec{v}_0 = v_{0x}\vec{i} + v_{0y}\vec{j}$. Здесь $v_{0x} = v_0\cos\alpha_0, \dots v_{0y} = v_0\sin\alpha_0$, α_0 - угол бросания.

Запишем второй закон Ньютона: $\vec{a} = \frac{\vec{F}}{m}$.

Ускорение в каждый момент времени есть (мгновенная) скорость изменения скорости, то есть производная от скорости по времени: $\vec{a} = \frac{d\vec{v}}{dt}$.

Следовательно, 2-й закон Ньютона можно переписать в следующем виде:

$$m\frac{d\vec{v}}{dt} = \vec{F} ,$$

где \vec{F} — это равнодействующая всех сил, действующая на тело. Так как на тело действуют сила тяжести $m \vec{g}$ и сила сопротивления воздуха \vec{F}_c , то имеем:

$$m\frac{d\vec{v}}{dt} = m\vec{g} + \vec{F}_c. \tag{1}$$

Рассмотрим два случая:

- 1) Сила сопротивления воздуха равна 0: $\vec{F}_c = 0$.
- 2) Сила сопротивления воздуха противоположно направлена с вектором скорости, и её величина пропорциональна скорости: $\vec{F}_c = -k\vec{v}, \cdots k > 0$.

Составим математическую модель системы.

Модель без учета сопротивления воздуха

Рассмотрим <u>первый случай</u>, когда отсутствует сопротивление воздуха. Тогда из (1) имеем $m\frac{d\vec{v}}{dt} = m\vec{g}$, или

$$\frac{d\vec{v}}{dt} = \vec{g} \ . \tag{2}$$

Из (2) следует, что

$$\vec{v} = \vec{v}_0 + \vec{g} t \,. \tag{3}$$

Т.е. в отсутствии сопротивления воздуха скорость неограниченно увеличивается (равноускоренное движение).

Так как

$$\vec{\mathbf{v}} = \frac{d\vec{R}}{dt} \,, \tag{4}$$

где \vec{R} - радиус-вектор, то из (3) и с учетом (4) имеем: $\frac{d\vec{R}}{dt} = \vec{v}_0 + \vec{g} t$.

Отсюда получаем формулу закона движения тела при равноускоренном движении:

$$\vec{R} = \vec{R}_0 + \vec{v}_0 t + \frac{\vec{g} t^2}{2} \,. \tag{5}$$

Запишем равенство (2) в скалярном виде:

$$\frac{dv_x}{dt} = 0, \dots \frac{dv_y}{dt} = -g. \tag{6}$$

доцент Голубева Л.Л., доцент Малевич А.Э.

Согласно второму закону Ньютона и с учетом (4) и (6) дифференциальные уравнения движения в проекциях на оси x и y имеют вид

$$m\frac{d^2x}{dt^2} = 0$$
, $m\frac{d^2y}{dt^2} = -mg$, $v_x = \frac{dx}{dt}$, $v_y = \frac{dy}{dt}$ (7)

при следующих начальных условиях:

$$x(0) = x_0, \ y(0) = y_0, \ v_x(0) = v_0 \cos \alpha_0, \ v_y(0) = v_0 \sin \alpha_0.$$
 (8)

Математическая постановка соответствует задаче Коши для системы обыкновенных дифференциальных уравнений с заданными начальными условиями.

Найдем зависимости x(t), y(t), $v_x(t)$, $v_y(t)$. Из (7) запишем систему ОДУ первого порядка:

$$\frac{dv_x}{dt} = 0, \quad \frac{dv_y}{dt} = -g, \quad v_x = \frac{dx}{dt}, \quad v_y = \frac{dy}{dt}.$$
 (9)

После интегрирования системы (9) и с учетом начальных условий (8) получаем аналитическое решение

$$x(t) = x_0 + v_0 \cos \alpha_0 \cdot t, \quad y(t) = y_0 + v_0 \sin \alpha_0 \cdot t - \frac{gt^2}{2},$$

$$v_x(t) = v_0 \cos \alpha_0, \quad v_y(t) = v_0 \sin \alpha_0 - gt,$$
(10)

из которого следует, что полет тела, брошенного под углом к горизонту, при отсутствии сопротивления воздуха происходит по параболической траектории.

Модель с учетом сопротивления воздуха

Теперь рассмотрим **второй случай**, когда сила сопротивления воздуха противоположно направлена с вектором скорости, и ее величина пропорциональна скорости: $\vec{F}_c = -k\vec{v}, \cdots k > 0$.

В этом случае второй закон Ньютона имеет вид $m\frac{d\vec{v}}{dt}=m\vec{g}-k\vec{v}$, отсюда

$$\frac{d\vec{v}}{dt} = \vec{g} - \frac{k}{m} \vec{v} .$$

Запишем это равенство в скалярном виде:

$$\frac{dv_x}{dt} = -\frac{k}{m}v_x, \dots \frac{dv_y}{dt} = -g - \frac{k}{m}v_y. \tag{11}$$

Имеем два линейных дифференциальных уравнения. Тогда система (9) для случая учета сопротивления воздуха перепишется в виде:

$$\frac{dv_x}{dt} = -\frac{k}{m}v_x, \dots \frac{dv_y}{dt} = -g - \frac{k}{m}v_y, \qquad v_x = \frac{dx}{dt}, \quad v_y = \frac{dy}{dt}.$$
 (12)

Математическая постановка соответствует задаче Коши для системы обыкновенных дифференциальных уравнений (12) с заданными начальными условиями (8).

6.3. Enabled Subsystems

Управляемая уровнем сигнала подсистема Enabled Subsystem выполняется, пока управляющий сигнал control signal положителен. Она начинает выполнение на том временном шаге, где управляющий сигнал переходит через 0 (с отрицательного в положительном направлении) и выполняется до тех пор, пока управляющий сигнал остается положительным.

6.3.1. Объединение сигналов

Модель **L0601.mdl**

В модели использованы блоки управляемых подсистем **Enabled Subsystem**, которые выполняют вычисления только в том случае, если на управляющий вход подсистемы подан положительный сигнал. В данной модели подсистема не выполняет какие-либо вычисления, а лишь пропускает сигнал со своего входа на выход. Таким образом, на вход блока объединения сигналов **Signal Routing\Merge** поочередно приходят гармонический либо пилообразный сигналы. Пример модели с E-подсистемой приведен на Puc.6.2.

Рис. 6.2. Модель с Е-подсистемой

Постройте **Simulink**-модель, установите подходящие параметры блоков. Изучите действия новых блоков данной модели.

6.3.2. Разбиение сигнала

Модель **L0602.mdl**

Используя управляемые подсистемы **Enable Subsystems**, составьте модель, разбивающую синусоиду на два сигнала: *положительную* и *отрицательную* полуволны (Рис.6.3).

Рис. 6.3. Разбиение синусоиды на положительную и отрицательную полуволны

6.3.3. Воздействие на сигнал высокочастотной синусоидой

Модель **L0603.mdl**

Наложить на положительные полуволны синусоиды высокочастотную синусоиду малой амплитуды (Рис.6.4). В данной модели следует принудительно установить в Simulation\Configuration Parameters...\Solver максимальный шаг моделирования Max Step Size в 0.001.

Рис. 6.4. Наложение «шума»

6.4. Triggered Subsystems

Управляемая фронтом сигнала подсистема **Triggered Subsystem** — это подсистема, имеющая дополнительный (управляющий) вход. Переключаемая подсистема срабатывает только в те мгновения, когда управляющий сигнал пересекает (в заранее оговоренном направлении: **rising**, **falling**, **either**) нулевую отметку. Все остальное время переключаемая подсистема простаивает.

6.4.1. Положительные полуволны

Модель **L0604.mdl**

Изменить модель **L0603.md1** таким образом, чтобы несущая (низкочастотная) синусоида состояла только из положительных полуволн, оставив при этом на первой полуфазе

высокочастотное возмущение (Рис.6.5). Для реализации использовать **Triggered Subsystem**.

Рис. 6.5. Несущая синусоида с положительными полуволнами

Предложите другие варианты реализации данной задачи.

6.5. Подсистемы управляющей логики

Подсистема управляющей логики Control Flow Subsystem представляет собой подсистему, которая выполняется однократно или неоднократно в течение одного такта моделирования. Управляющая логика блока подобна управляющим операторам языков программирования (if, switch, while, do while, for).

6.5.1. Switch Case Action subsystem

Молель **L0605**.mdl

На Рис. 6.6 показан пример использования блока **Switch Case** совместно с подсистемами **Switch Case Action Subsystem**. В примере первая подсистема пропускает через себя входной сигнал, если входной сигнал блока **Switch Case** равен **1**, вторая — если входной сигнал равен — (минус один), и третья — если входной сигнал не равен ни — 1 ни + 1.

Рис. 6.6. Использование блока Switch Case совместно с подсистемами Switch Case Action Subsystem

6.5.2. If Action subsystem

Модель **L0606.mdl**

Постройте модель, аналогичную модели **L0605.mdl**, но уже с использованием подсистемы **If Action Subsystem**.

6.6. Модель маятника

6.6.1. Структура сигнала модели

Проанализировав поставленную в п.6.1 задачу, выпишите основные параметры (сигналы) модели самостоятельно.

6.6.2. Свободное падение тела, брошенного под углом к горизонту

Модель **L0607.mdl**

Создать модель свободного падения тела, брошенного под углом к горизонту.

- Начальное положение и начальная скорость должны задаваться, а в результате должна получиться траектория движения тела в вертикальной плоскости *x*О*y*.
- В начальный момент времени тело находится в первой четверти и движется вверх и назад.
- Модель прекращает выполнение расчетов, когда тело достигнет земли.
- Параметры массы тела $\mathbf{m}[\kappa \Gamma]$, ускорения свободного падения $\mathbf{g}[\mathrm{M/c}^2]$ должны задаваться в MATLAB.
- Модель оформить в виде подсистемы. На вход в подсистему подаются векторы начального положения $[\mathbf{x}_0, \mathbf{y}_0]$ и начальной скорости $[\mathbf{v}\mathbf{x}_0, \mathbf{x}\mathbf{y}_0]$, а на выход текущие координаты положения тела $[\mathbf{x}, \mathbf{y}]$.
- Создать анимацию движения тела.
- Формулы выписать самостоятельно. Движение (по параболе) задавать в явном виде как функцию координат от времени. В модели не использовать блоки Интегратор!
- Затем реализовать эту же модель при помощи блоков интегрирования.