量化子「非可算個存在して」を 持つ論理の完全性 Part I

後藤 達哉

2024年6月11日 算術と様相論理の研究・論文セミナー @ 神戸大学

目次

- 1 導入
- 2 弱完全性定理
- 3 タイプの排除定理
- 4 初等鎖定理

目次

- 1 導入
- 2 弱完全性定理
- 3 タイプの排除定理
- 4 初等鎖定理

目標

● 一階述語論理 L に「非可算個のx が存在して」という解釈を持つ量化子 (Qx) を加えた論理の完全性を証明する.

参考文献

[Kei70] H. Jerome Keisler. "Logic with the quantifier "there exist uncountably many"". In: Annals of Mathematical Logic 1.1 (1970), pp. 1–93.

Keisler 以前に Mostowski, Fuhrken, Vaught もこの論理を研究している.

論理 L(Q) とのその弱構造

L(Q) を一階述語論理 L (等号記号を含め,可算個の述語記号,関数記号,定数記号を持つ) に量化子 (Qx) を加えた論理とする.

L(Q) の弱構造とは,(A, q) であって,A は一階述語論理 L の構造であって, $q \subseteq \mathcal{P}(A)$ を満たすもののこと.

L(Q) の弱構造 (A,q) と L(Q) 論理式 $\varphi(x_1,\ldots,x_n)$ と A の要素 a_1,\ldots,a_n について関係 $(A,q) \models \varphi[a_1,\ldots,a_n]$ を通常通りに定める.ただし,

$$(\mathcal{A},q)\models (\mathcal{Q}\mathsf{v}_m)\varphi[\mathsf{a}_1,\ldots,\mathsf{a}_n]\iff \{b\in\mathcal{A}: (\mathcal{A},q)\models \varphi[\mathsf{a}_1,\ldots,b,\ldots,\mathsf{a}_n]\}\in q$$

論理 *L(Q)* の標準構造

L(Q) の標準構造とは弱構造 (A,q) であって q が A の非可算部分集合全体の集合となっているものをいう.

標準構造 (A, q) については $(A, q) \models \varphi[a_1, \ldots, a_n]$ を単に q を省略して $A \models \varphi[a_1, \ldots, a_n]$ と書く.

論理 L(Q) の証明論

L(Q) の公理を次で定める:

公理 0 L の公理図式すべて (等号公理も含める).

公理
$$1 \neg (Qx)(x = y \lor x = z)$$
.

公理 2
$$(\forall x)(\varphi \to \psi) \to ((Qx)\varphi \to (Qx)\psi)$$
.

公理 $3(Qx)\varphi(x,...)\leftrightarrow (Qy)\varphi(y,...)$. (ただし $\varphi(x,...)$ は自由変数 x に y を代入可能な論理式)

公理 4 $(Qy)(\exists x)\varphi \to (\exists x)(Qy)\varphi \lor (Qx)(\exists y)\varphi$.

ここで φ,ψ は自由変数を含んで良い論理式で、x,y,z は互いに異なる変数である。

論理 L(Q) の証明論

L(Q) の推論規則は Modus Ponens と一般化である.

メイン定理

Keisler の完全性定理

T を L(Q) の文の集合とする. T が L(Q) で無矛盾ならば,T は標準モデルを持つ.

余談:量化子「無限個存在して」を持つ完全な証明体系はない

量化子「無限個存在して」を持つ完全な証明体系はない. なぜなら, あると したらその論理についてコンパクト性定理も成り立つ. ところが理論

$$T = \{\neg(Ix)(x = x), (\exists x_0) \dots (\exists x_n) \bigwedge_{i < j \le n} x_i \neq x_j : n \in \omega\}$$

はコンパクト性定理の反例となる (ただし (I_X) が無限個 X が存在して,という量化子).

地図

目次

- 1 導入
- 2 弱完全性定理
- 3 タイプの排除定理
- 4 初等鎖定理

弱完全性定理

Keisler の完全性定理のために、まず以下を示す.

弱完全性定理

T を L(Q) の文の集合とする. T が L(Q) で無矛盾ならば,T は弱モデルを持つ.

証拠集合

定義

T を L(Q) の文の集合とする.C を定数記号の集合とする.C が T の証拠集合であるとは,任意の $\varphi(x)$ について $c \in C$ があって,

$$T \vdash (\exists x)\varphi(x) \rightarrow \varphi(c).$$

弱完全性のための補題

補題

T を L(Q) の文の極大無矛盾集合とし,C を T の証拠集合とする.T は弱モデル (A,q) を持ち,そのどんな元 $a \in A$ もある $c \in C$ の解釈である.

弱完全性のための補題:証明 (1/6)

T を L(Q) の文の極大無矛盾集合とし,C を T の証拠集合とする.T は弱モデル (A, q) であって,どんな $a \in A$ もある $c \in C$ の解釈である.

証明. $T_0 = T \cap L$ とおく. T_0 は L の意味で極大無矛盾であり,C は T_0 の証拠集合でもある. したがって,一階述語論理の完全性定理の証明より, T_0 はモデル A を持ち,その任意の元は C の元の解釈である.

 $c \in C$ について \bar{c} を c の A の中での解釈とする.よって, $A = \{\bar{c} : c \in C\}$.これから q を定義して (A,q) が弱モデルとなるようにする.

弱完全性のための補題:証明 (2/6)

一個しか自由変数を持たない論理式 $\varphi(x)$ について,

$$S_{\varphi} = \{\bar{c} : c \in C, T \vdash \varphi(c)\}$$

とおく.

$$q = \{S_{\varphi} : T \vdash (Qx)\varphi(x)\}$$

とおく.

弱完全性のための補題:証明 (3/6)

この q が所望のものなことを示そう. よって,文 φ に関する帰納法で,

$$(\mathcal{A},q) \models \varphi \iff T \vdash \varphi$$

を示す.

 φ が原子論理式のときは $\varphi\in L$ なのでよい. $\neg\varphi$ や $\varphi\wedge\psi$ の場合も Γ の極大性 からわかる.

 $\varphi \equiv (\exists x)\psi(x)$ とする. このとき

$$(\mathcal{A},q) \models \varphi \iff (\mathcal{A},q) \models \psi(c) \text{ for some } c \in C$$

$$\iff T \vdash \psi(c) \text{ for some } c \in C \text{ (by IH)}$$

$$\iff T \vdash (\exists x) \psi(x) \text{ (by } C : 証拠集合)$$

|弱完全性のための補題:証明 (4/6)

最後に $\varphi \equiv (Qx)\psi(x)$ のときを考える. まず次に注意する.

$$egin{aligned} S_{\psi} &= \{ar{c}: T dash \psi(c)\} \ &= \{ar{c}: (\mathcal{A},q) \models \psi(c)\} \quad ext{ by IH} \ &= \{ar{c}: (\mathcal{A},q) \models \psi[c]\} \end{aligned}$$

もし、 $T \vdash (Qx)\psi(x)$ ならば、 $S_{\psi} \in q \ (q \ \mathfrak{o}$ 定義). よって (*) より、 $(\mathcal{A},q) \models (Qx)\psi(x)$.

弱完全性のための補題:証明 (5/6)

逆に $(A, q) \models (Qx)\psi(x)$ とする.すると $S_{\psi} \in q$ なので,q の定義より, $S_{\psi} = S_{\theta}$ かつ $T \vdash (Qy)\theta(y)$ となる θ がある.今,各 $c \in C$ について次を持つ.

$$ar{c} \in \mathcal{S}_{\psi} \iff \mathcal{T} \vdash \psi(c)$$
 $ar{c} \in \mathcal{S}_{\theta} \iff \mathcal{T} \vdash \theta(c)$

したがって,T が極大無矛盾性より,各 $c \in C$ について $T \vdash \psi(c) \leftrightarrow \theta(c)$.u を ψ にも θ にも登場しない変数とする.すると C が証拠集合かつ T が極大無矛盾なことより次を得る.

$$T \vdash (\forall u)(\psi(u) \leftrightarrow \theta(u))$$

弱完全性のための補題:証明 (6/6)

したがって公理2より,

$$T \vdash (Qu)\psi(u) \leftrightarrow (Qu)\theta(u).$$

これプラス公理3を2回使うと,

$$T \vdash (Qx)\psi(x) \leftrightarrow (Qy)\theta(y).$$

したがって, $T \vdash (Qy)\theta(y)$ より $T \vdash (Qx)\psi(x)$. これで証明終了!

弱完全性定理

弱完全性定理

T を L(Q) の文の集合とする. T が L(Q) で無矛盾ならば,T は弱モデルを持つ.

証明.さっきの補題を使えば,一階述語論理の完全性のときと全く同じ証明ができる. ■

目次

- 1 導入
- 2 弱完全性定理
- 3 タイプの排除定理
- 4 初等鎖定理

タイプの排除定理 in 一階述語論理

定理 (タイプの排除 in 一階述語論理)

T を L の無矛盾な文の集合とする.また各 $n \in \omega$ について $\Sigma_n(x_n)$ を L の論理式 $(x_n$ だけが自由変数) の集合とする.次を仮定する:各 $n \in \omega$ と L 論理式 $\varphi(x_n)$ について,もし $(\exists x_n)\varphi$ が T と無矛盾であれば, $\sigma \in \Sigma_n$ があり, $(\exists x_n)(\varphi \land \neg \sigma)$ も T と無矛盾である.このとき,T は可算モデル A を持ち,すべての Σ_n $(n \in \omega)$ を排除する.

A が Σ を排除するとは,すべての $a \in A$ についてある $\sigma \in \Sigma$ があって $A \models \neg \sigma(a)$ となることをいう.

タイプの排除定理の応用例

脱線するが,一階述語論理のタイプの排除の応用例を一つ見る.

例 Peano 算術の任意の可算モデル A についてそれの初等的な真の終拡大が存在する.

A の各元 $a \in A$ に対する定数記号と新しい定数記号 c を用意する.理論 T を $(A,a)_{a \in A}$ の理論と $\{c > a : a \in A\}$ の和集合とする.

 $\Sigma_a(x) = \{x < a\} \cup \{x \neq b : b < a\}$ とおく.これらが排除定理の仮定を満たすことを示すのは演習とする!

すべての Σ_a を排除する T のモデルは A の初等的な終拡大である.

タイプの排除定理 in L(Q)

定理 (タイプの排除 in L(Q))

T を L(Q) の無矛盾な文の集合とする.また各 $n \in \omega$ について $\Sigma_n(x_n)$ を L(Q) の論理式 (x_n) だけが自由変数) の集合とする.次を仮定する:各 $n \in \omega$ と L(Q) 論理式 $\varphi(x_n)$ について,もし $(\exists x_n)\varphi$ が T と無矛盾であれば, $\sigma \in \Sigma_n$ があり, $(\exists x_n)(\varphi \land \neg \sigma)$ も T と無矛盾である.このとき,T は可算弱モデル (A, q) を持ち,すべての Σ_n $(n \in \omega)$ を排除する.

タイプの排除定理 in L(Q) の証明 (1/4)

 ω 個存在する Σ_n $(n \in \omega)$ の代わりに一個の Σ の場合の証明をする.

主張 T は L(Q) の無矛盾な文の集合. $\Sigma(x)$ を L(Q) の論理式(x だけが自由変数)の集合.各 L(Q) 論理式 $\varphi(x)$ について,もし $(\exists x)\varphi$ が T と無矛盾であれば, $\sigma \in \Sigma$ があり, $(\exists x)(\varphi \land \neg \sigma)$ も T と無矛盾.このとき,T は可算弱モデル (A,q) を持ち, Σ $(n \in \omega)$ を排除する.

証明・ $C = \{c_0, c_1, \ldots\}$ を可算個の新しい定数記号とし $L^*(Q) = L(Q) \cup C$ とする・ $L^*(Q)$ の文を $\varphi_0, \varphi_1, \ldots$ と枚挙する・これから $L^*(Q)$ の文の無矛盾な理論の拡大列 T_0, T_1, \ldots を作っていく・

タイプの排除定理 in L(Q) の証明 (2/4)

理論の拡大列 T_0, T_1, \ldots の条件は次の通り:

- **1** $T_0 = T$
- ② 各 T_m は L*(Q) の無矛盾な T の有限拡大

- ⑤ $\sigma(x) \in \Sigma(x)$ が存在して、 $(\neg \sigma(c_m)) \in T_{m+1}$

タイプの排除定理 in L(Q) の証明 (3/4)

列の構成. T_m まで構成されたと仮定し, T_{m+1} を構成する.

 $T_m = T \cup \{\theta_1, \dots, \theta_r\}$ とし $\theta :\equiv \theta_1 \wedge \dots \wedge \theta_r$ とする. c_0, \dots, c_n を θ の中の C に属する定数全てとする. 論理式 θ' を θ の各定数 c_i を x_i に置換し,先頭に $(\exists x_i)$ を付けて $(i \neq m)$ 得られるものとする. $(\exists x_m)\theta'$ は T と無矛盾. そこで 定理の仮定より,ある $\sigma(x) \in \Sigma(x)$ について $(\exists x_m)(\theta(x_m) \wedge \neg \sigma(x_m))$ は T と無矛盾. $\neg \sigma(c_m)$ を T_{m+1} に入れる. φ_m か $\neg \varphi_m$ のどちらかも無矛盾性を保ったまま T_{m+1} にいれる. もし, $\varphi_m \equiv (\exists x)\psi(x)$ が無矛盾ならば, $\psi(c_p)$ も T_{m+1} に入れる.

列の構成終わり.

タイプの排除定理 in L(Q) の証明 (4/4)

 $T:=\bigcup_{n\in\omega}T_n$ は無矛盾かつ C は T の証拠集合なので,「弱完全性定理のための補題」より,T の弱モデル (A,q) があり,任意の元は C の定数の解釈である.構成より,(A,q) は Σ を排除している.

長さ ω の対角線論法で定理を証明した.可算個の Σ_n $(n \in \omega)$ の場合も証明もほぼ同じである (可算×可算=可算を使う!).

目次

- 1 導入
- 2 弱完全性定理
- ③ タイプの排除定理
- 4 初等鎖定理

初等鎖

定義 (初等鎖)

 $\langle \mathcal{A}_{\alpha}, q_{\alpha} \rangle_{\alpha < \gamma}$ が初等鎖であるとは,任意の $\alpha < \beta < \gamma$ について, $(\mathcal{A}_{\alpha}, q_{\alpha})$ が $(\mathcal{A}_{\beta}, q_{\beta})$ の初等部分構造となることを言う.

定義 (初等鎖の和)

 $\langle \mathcal{A}_{lpha},q_{lpha}
angle_{lpha<\gamma}$ が初等鎖であるとき,その和とは (\mathcal{A},q) であって, $\mathcal{A}=igcup_{lpha<\gamma}\mathcal{A}_{lpha}$ かつ

$$q = \{S \subseteq A : (\exists \alpha < \gamma)(\forall \beta \in [\alpha, \gamma)) \ S \cap A_{\beta} \in q_{\beta}\}$$

なものを言う.

初等鎖定理

 $\langle \mathcal{A}_{\alpha},q_{\alpha} \rangle_{\alpha<\gamma}$ は初等鎖とし, (\mathcal{A},q) をその和とする.このときすべての $\alpha<\gamma$ について,

$$(\mathcal{A}_{\alpha},q_{\alpha})\prec (\mathcal{A},q).$$

 $\langle \mathcal{A}_{\alpha},q_{\alpha}
angle_{\alpha<\gamma}$ は初等鎖とし, (\mathcal{A},q) をその和とする.このときすべての $\alpha<\gamma$ について,

$$(\mathcal{A}_{\alpha},q_{\alpha})\prec (\mathcal{A},q).$$

証明. 論理式の複雑性に関する帰納法. $(Qx)_{\varphi}$ の形以外は一階述語論理のときと同じ証明.

 $\alpha < \gamma$ を固定する.

主張 $A \models (Qx)\varphi$ ならば, $A_{\alpha} \models (Qx)\varphi$.

$$S = \{a \in A : A \models \varphi(a)\}$$
 とおく、 $A \models (Qx)\varphi$ より $S \in q$. よって $\alpha' < \gamma$ があり,任意の $\beta \in [\alpha', \gamma)$ で $S \cap A_\beta \in q_\beta$ である。 $\beta = \max(\alpha, \alpha')$ とおく、よって,帰納法の仮定と合わせて $A_\beta \models (Qx)\varphi$ となる。 $(A_\alpha, q_\alpha) \prec (A_\beta, q_\beta)$ より $A_\alpha \models (Qx)\varphi$.

 $\alpha < \gamma$ を固定する.

主張 $A \models \neg (Qx)\varphi$ ならば, $A_{\alpha} \models \neg (Qx)\varphi$.

 $S = \{a \in A : A \models \varphi(a)\}$ とおく、 $A \models \neg(Qx)\varphi$ より $S \notin q$. よって任意の $\alpha' < \gamma$ について, $\beta \in [\alpha', \gamma)$ が存在し, $S \cap A_\beta \notin q_\beta$ である。 α' に α を代入する。すると $A_\beta \models \neg(Qx)\varphi$ となる。 $(A_\alpha, q_\alpha) \prec (A_\beta, q_\beta)$ より $A_\alpha \models \neg(Qx)\varphi$. //

これで初等鎖定理が示された.

来週やるメイン補題

メイン補題

(A,q) を可算弱構造で,L(Q) の公理すべてを満たすとする. L^* を L に A の元全てに対する定数記号を付与した言語,A を標準的に L^* 構造に拡大したものを A^* とする. $\varphi(x)$ を $L^*(Q)$ 論理式で $(A^*,q) \models (Qx)\varphi(x)$ となるものとする.このとき次を満たす可算初等拡大 $(\mathcal{B},r) \succ (A,q)$ が存在する:

- ② どんな $L^*(Q)$ 論理式 $\psi(y)$ で, $(\mathcal{A}^*,q) \models \neg(Qy)\psi(y)$ なものについても, $\{a \in B : (\mathcal{B}^*,r) \models \psi[a]\} \subseteq A.$