

Projektüberblick

- Förderung im Rahmen von Smart Mobility durch das Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg und das Ministerium für Verkehr **Baden-Württemberg**
- Laufzeit
 - 3,3 Jahre
 - 01.11.2018 28.02.2022
- Rechtliche Begleitforschung
- Nutzung des Testfeld Autonomes Fahren Baden-Württemberg

MINISTERIUM FÜR WISSENSCHAFT. FORSCHUNG UND KUNST

MINISTERIUM FÜR VERKEHR

Ziele und Herausforderungen

- Automatisiertes Valet Parking (AVP)
 - Reduzierung des Parksuchverkehrs
 - Entlastung der Innenstädte
 - Automatisiertes Laden
 - Erweiterung des Car-Sharings
- Herausforderungen
 - Verschiedene Hersteller und Anbieter
 - Wandel vom manuellen zum automatisierten Fahren
- AVP für Fahrzeuge verschiedener Automatisierungsgrade
- Evaluation von Standards

Verteilung der Funktionalität

Verteilung der Funktionalität

Aufbau des Automated Valet Parking (AVP) Systems aus Parkmanagementsystem und (teil-) automatisierten Fahrzeugen

		I_1	I_2	I_3	I_4
Comm.	V2X	V / P	V / P	V / P	V / P
Environment	Sensors	V	V / P	V / P	P
	Parking Space Occ.	V / P	P	P	P
	Objects, free space	V	V / P	V / P	P
	Map	V	V / P	P	P
Localization and Odometry		V	V	V	V / P
Planning	Assignment	P	P	P	P
	Mission	V	P	P	P
	Maneuver	V	V	P	P
	Trajectory	V	V	V	P
Execution	Emergency Stop	V	V	V	V
	Control	V	V	V	V
	Actuators	V	V	V	V

Mindestanforderung an Fahrzeuge

- Aktuatoren
- Notstopp-System

Parkmanagementsystem (P)
Fahrzeuge (V)

Funktionale Sicherheit

Verschiedene Systemvarianten (SAE Level des Fahrzeuges)

Einbezug von verschiedenen Standards (Safety Normen)

Funktionale Sicherheit

Analyse der funktionalen Sicherheit:

- Hazard and Risk Analysis (HARA)
- Failure Mode and Effects Analysis (FMEA)
- Analyse von Relationen zwischen den Gefahren, Safety Goals, Situation und Fehlfunktionen

Ableitung von Safety Mechanismen

- Kontinuierliche Überwachung der Kommunikation zwischen Parkhausmanagementsystem und Fahrzeugen
- Begrenzung der Höchstgeschwindigkeit für das autonome Fahrzeug

- ...

Ableitung von Handlungsempfehlungen

- Nutzung von Safety Contracts an Informationsschnittstellen zwischen Parkhaus und Fahrzeug
- ...

Koordination der Fahrzeuge

500 FZI

DROPOFF

TRANSFER

PICKUP

PARKING

PARKED

UNPARKING

- Optimierte Parkplatz Zuweisung mittels Mixed Integer Linear Programming
 - Optimierung nach Ladezustand, zurückgelegte Distanz, ...
- Individuelle Routen- und Trajektorienplanung für jedes Fahrzeug
- Fahranweisungen zugeschnitten auf Automatisierungsgrad des Fahrzeugs

Konzepte zur geteilten Umgebungswahrnehmung

Zwischen verschiedenen Akteuren

Zentrale Fusion (Late Fusion)	Verteilte Fusion (Early Fusion)			
 Versenden von Sensordaten Fusion der Sensordaten beim Empfänger 	 Direkte Verarbeitung der Sensordaten Versenden von abstrahierten Informationen Fusion der abstrahierten Informationen beim Empfänger 			
+ keine Abstraktion, optimale Präzision+ hohe Rechenkapazität im PMS	- Abstrahierte Information			
Verfügbarkeit von Rohdaten, SensorabhängigkeitSchlechte SkalierbarkeitKommunikation: Datenmenge, Protokolle	 + Flexibilität, Sensorunabhängigkeit + Skalierbarkeit + Kommunikation: geringe Datenmengen, ETSI standardisierte Protokolle 			

Konzepte zur Fusion von Sensorinformationen

Austausch von Informationen

- Erkannte Objekte werden mittels Cooperative Perception Messages (CPM) ausgetauscht
- Reichweite und Brandbreite ausreichend aber begrenzt
 - Datenmenge und Sendefrequenz abhängig von Fähigkeiten und Anzahl der Fahrzeuge
- Neue Nachrichtenstandards notwendig für Fahrzeuginformationen und Fahranweisungen im Bereich des AVP
 - High-Level: Parkplatz, Route
 - Low-Level: Trajektorie
 - Zustand: Pose, Ladezustand, ...

Entwicklungsbegleitende Evaluation in Simulation

- Machbarkeit
- Übertragbarkeit
- Skalierbarkeit

- Hardware / Software-inthe-Loop
- Verschiedene
 Verteilungen der
 Intelligenz
- Steigerung der Auslastung verfügbarer Ladeinfrastruktur

Zusammenfassung

- Aufteilung der Funktionen des AVP Gesamtsystems
- Analyse der funktionalen Sicherheit des System of Systems
- Konzepte für intelligente und optimierte Koordination der Fahrzeuge
- Konzepte für Fusion von Umgebungsinformationen verschiedener Sensortypen
- Konzepte für Fusion von Umgebungsinformationen verschiedener Akteure
- Erkenntnisse über und Erweiterungen von Kartenformaten und Kommunikationsprotokollen
- Simulative und reale Erprobung
- Fortlaufende Veröffentlichung und Verbreitung der Ergebnisse auch nach Projektende
- Anschließende Fragestellungen:
 - Großflächig angelegte Realerprobung
 - Schritte zur Realisierung (Gestaltung Parkanlagen, Sensorausstattung, minimale Anforderungen an Fahrzeuge, ...)

Kontakt

FZI Forschungszentrum Informatik

Philip Schörner, M.Sc.

Haid-und-Neu-Str. 10-14 76131 Karlsruhe

+49 721 9654 - 366 schoerner@fzi.de

www.fzi.de

