Model-independent determination of γ with $B^{\pm} \to [h^+h^-\pi^+\pi^-]_D h^{\pm}$ in phase-space bins

Martin Tat

University of Oxford

B2OC meeting

4th April 2024

Introduction to γ and CP violation

- ullet CPV in SM is described by the Unitary Triangle, with angles lpha, eta, γ
- The angle $\gamma = \arg\Bigl(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\Bigr)$ is very important:
 - Negligible theoretical uncertainties: Ideal SM benchmark
 - 2 Accessible at tree level: Indirectly probe New Physics that enter loops
 - Ompare with a global CKM fit: Is the Unitary Triangle a triangle?

(a) Tree level: $\gamma = (72.1^{+5.4}_{-5.7})^{\circ}$

(b) Loop level: $\gamma = \left(65.5^{+1.1}_{-2.7}\right)^{\circ}$

CKMfitter Group (J. Charles et al.), Eur. Phys. J. C41, 1-131 (2005), updated results and plots available at: http://ckmfitter.in2p3.fr

Sensitivity through interference

Measure γ through interference effects in $B^{\pm} \to DK^{\pm}$

- ullet Superposition of D^0 and $ar{D^0}$
 - ullet Consider $D^0/ar{D^0}$ decays to the same final state, such as $D o K^+K^-$
- $b o u \bar c s$ and $b o c \bar u s$ interference o Sensitivity to γ $\mathcal{A}(B^-) = \mathcal{A}_B \left(\mathcal{A}_{D^0} + r_B e^{i(\delta_B \gamma)} \mathcal{A}_{\bar{D^0}} \right)$ $\mathcal{A}(B^+) = \mathcal{A}_B \left(\mathcal{A}_{\bar{D^0}} + r_B e^{i(\delta_B + \gamma)} \mathcal{A}_{D^0} \right)$

Multi-body D decays

This talk: Discuss $D \to K^+K^-\pi^+\pi^-$, where interference effects vary across phase space

- Strong-phase difference δ_D is a function of phase space
- Compare yields of B^+ and B^- and determine the asymmetry in local phase space regions, known as phase-space bins

The BPGGSZ method

Event yield in bin i

$$\begin{aligned} N_i^- &= h_{B^-} \big(F_i + (x_-^2 + y_-^2) \bar{F}_i + 2 \sqrt{F_i \bar{F}_i} (x_- c_i + y_- s_i) \big) \\ N_{-i}^+ &= h_{B^+} \big(F_i + (x_+^2 + y_+^2) \bar{F}_i + 2 \sqrt{F_i \bar{F}_i} (x_+ c_i + y_+ s_i) \big) \end{aligned}$$

- CP observables:
 - $\begin{array}{l} \bullet \ \ x_{\pm}^{DK} = r_B^{DK} \cos \left(\delta_B^{DK} \pm \gamma\right), \quad \ y_{\pm}^{DK} = r_B^{DK} \sin \left(\delta_B^{DK} \pm \gamma\right) \\ \bullet \ \ x_{\xi}^{D\pi} = \mathrm{Re}(\xi^{D\pi}), \ y_{\xi}^{D\pi} = \mathrm{Im}(\xi^{D\pi}) \qquad \left(\xi^{D\pi} = \frac{r_B^{D\pi}}{r_B^{DK}} e^{i(\delta_B^{D\pi} \delta_B^{DK})}\right) \end{array}$
- Fractional bin yield:
 - $F_i = \frac{\int_i \mathrm{d}\Phi |\mathcal{A}(D^0)|^2}{\sum_i \int_i \mathrm{d}\Phi |\mathcal{A}(D^0)|^2}$
 - ullet Floated in the fit, mostly constrained by $B^\pm o D \pi^\pm$
- Amplitude averaged strong phases:

$$c_i = rac{\int_i \mathrm{d}\Phi |\mathcal{A}(D^0)| |\mathcal{A}(ar{D^0})| \cos(\delta_D)}{\sqrt{\int_i \mathrm{d}\Phi |\mathcal{A}(D^0)|^2 \int_i \mathrm{d}\Phi \left|\mathcal{A}(ar{D^0})
ight|^2}} \quad s_i = rac{\int_i \mathrm{d}\Phi |\mathcal{A}(D^0)| |\mathcal{A}(ar{D^0})| \sin(\delta_D)}{\sqrt{\int_i \mathrm{d}\Phi |\mathcal{A}(D^0)|^2 \int_i \mathrm{d}\Phi \left|\mathcal{A}(ar{D^0})
ight|^2}}$$

$D^0 o K^+ K^- \pi^+ \pi^-$ binning scheme

- \bullet Interpretation of γ from the multi-body charm decays require external inputs of the charm strong-phase differences
- Measure model-independent strong-phases at a charm factory, such as BESIII, using an optimised binning scheme

$$D^0 \to K^+ K^- \pi^+ \pi^-$$
 binning scheme

Model-dependent measurement with $D \to K^+K^-\pi^+\pi^-$

From the phase-space binned asymmetries, we obtain:

$$\gamma = (116^{+12}_{-14})^{\circ}$$

How will this evolve with model-independent BESIII inputs? Will the 3σ tension reduce?

Phase-space integrated CP observables

The previous analysis also included phase-space integrated measurements of both $D \to K^+K^-\pi^+\pi^-$ and $D \to \pi^+\pi^-\pi^+\pi^-$

$$D \to K^+K^-\pi^+\pi^-$$

Eur. Phys. J. C **83**, 547 (2023)

- $B^{\pm} \rightarrow [h^+ h^- \pi^+ \pi^-]_D h^{\pm}$ asymmetries:
 - $D \rightarrow K^+K^-\pi^+\pi^-$: $A = 0.095 \pm 0.023 \pm 0.002$
 - $D \to \pi^+\pi^-\pi^+\pi^-$: $\mathcal{A} = 0.061 \pm 0.013 \pm 0.002$

Phase-space integrated CP observables

The previous analysis also included phase-space integrated measurements of both $D \to K^+ K^- \pi^+ \pi^-$ and $D \to \pi^+ \pi^- \pi^+ \pi^-$

$$D \to \pi^+\pi^-\pi^+\pi^-$$
 Eur. Phys. J. C **83**, 547 (2023)

- $B^{\pm} \rightarrow [h^+ h^- \pi^+ \pi^-]_D h^{\pm}$ asymmetries:
 - $D \rightarrow K^+K^-\pi^+\pi^-$: $A = 0.095 \pm 0.023 \pm 0.002$
 - $D \rightarrow \pi^+\pi^-\pi^+\pi^-$: $\mathcal{A} = 0.061 \pm 0.013 \pm 0.002$

Motivation for this analysis

What is new in this presentation?

- Strong-phase analyses of both $D \to K^+K^-\pi^+\pi^-$ (Oxford) and $D \to \pi^+\pi^-\pi^+\pi^-$ (Oxford-USTC) are emerging from BESIII
 - For $D \to \pi^+\pi^-\pi^+\pi^-$, these improve in precision on earlier study made with CLEO-c data JHEP **01** (2018) 144
- Use this input to make first model-independent measurement with $D \to K^+ K^- \pi^+ \pi^-$, updating earlier LHCb model-dependent analysis
- Use same 4-body selection to clone analysis for $D \to \pi^+\pi^-\pi^+\pi^-$, again using BESIII inputs
- After surveying compatibility of results, perform joint model-independent analysis of both modes

Motivation for this analysis

The results shown in this presentation make use of strong-phase results from the BESIII collaboration. They derive from mature analyses led by Oxford and USTC, but are not yet public, and remain preliminary in nature. They are not to be shown outside LHCb. We thank the BESIII management for the privilege of being allowed to use them during the review of this measurement.

BESIII preliminary $D^0 o K^+ \overline{K^- \pi^+ \pi^-}$ strong-phase results

First binned strong-phase analysis of $D^0 \to K^+K^-\pi^+\pi^-$, which uses the 2×4 binning scheme with 16 fb⁻¹ $\psi(3770)$ data

$$\begin{aligned} c_1 &= -0.28 \pm 0.09 \pm 0.01 \\ s_1 &= -0.68 \pm 0.24 \pm 0.04 \\ c_2 &= +0.83 \pm 0.04 \pm 0.01 \\ s_2 &= -0.18 \pm 0.19 \pm 0.03 \\ c_3 &= +0.83 \pm 0.03 \pm 0.01 \\ s_3 &= +0.27 \pm 0.17 \pm 0.03 \\ c_4 &= -0.28 \pm 0.10 \pm 0.01 \\ s_4 &= +0.54 \pm 0.28 \pm 0.04 \end{aligned}$$

Measured values (black) are consistent and close to LHCb model predictions (blue), so central values are not expected to change much

BESIII preliminary $D^0 \to \pi^+\pi^-\pi^+\pi^-$ strong-phase results

- Binned strong-phase analysis of $D^0 \to \pi^+\pi^-\pi^+\pi^-$ uses the 2 × 5 "optimal" binning scheme with 3 fb⁻¹ $\psi(3770)$
- Earlier CLEO-c analysis with 0.8 fb⁻¹ JHEP **01** (2018) 144
- New BESIII analysis uses a new and optimised binning scheme
 - Published BESIII amplitude model constructed from a larger data set
 - In principle more sensitive
- Two binning schemes are available:
 - We use the more sensitive "optimal" binning with Q=0.85
 - The other "equal δ " binning has Q=0.80

BESIII preliminary $D^0 \to \pi^+\pi^-\pi^+\pi^-$ strong-phase results

Small differences between model prediction and measurement, but data points are generally close to the unit circle

$$c_1 = +0.12 \pm 0.09 \pm 0.02$$

$$s_1 = -0.42 \pm 0.21 \pm 0.04$$

$$c_2 = +0.74 \pm 0.04 \pm 0.02$$

$$s_2 = -0.39 \pm 0.16 \pm 0.06$$

$$s_3 = -0.25 \pm 0.12 \pm 0.03$$

$$c_3 = +0.81 \pm 0.03 \pm 0.01$$

$$c_4 = +0.42 \pm 0.06 \pm 0.02$$

$$s_4 = +0.86 \pm 0.19 \pm 0.07$$

$$c_5 = -0.27 \pm 0.09 \pm 0.03$$

$$s_5 = -0.22 \pm 0.25 \pm 0.08$$

The HyperPlot software is used (binary lookup tree in 5D phase space)

Global fit

Global fit of $K^+K^-\pi^+\pi^-$ remains as in model-dependent publication:

- $B^{\pm} \rightarrow [K^+K^-\pi^+\pi^-]_D h^{\pm}$ signal yield:
 - $B^{\pm} \to DK^{\pm}$: 3051 ± 38
 - $B^{\pm} \to D\pi^{\pm}$: 44356 ± 218

Global fit

How do we include the $\pi^+\pi^-\pi^+\pi^-$ mode?

- We already have tuples of $B^\pm \to [\pi^+\pi^-\pi^+\pi^-]_D h^\pm$ from phase-space integrated measurement
 - 1 Different D daughter PID cuts in stripping
 - ② No $D \to K\pi\pi\pi\pi^0$ background
 - Oharmless background recalculated using the sideband
 - Use same BDT
- Sort candidates into phase-space bins using BESIII binning scheme
- Can fit separately or simultaneously with $K^+K^-\pi^+\pi^-$

Global fit

Global fit of $\pi^+\pi^-\pi^+\pi^-$ has a good fit quality:

- $B^{\pm} \rightarrow [\pi^+\pi^-\pi^+\pi^-]_D h^{\pm}$ signal yield:
 - $B^{\pm} \to DK^{\pm}$: 8745 \pm 105
 - $B^{\pm} \to D\pi^{\pm}$: 126314 ± 385

CP fit

After global fit, perform a "CP fit" to study CP violation:

- Split candidates by:
 - \bullet B^+ and B^- charges
 - 2 $B^{\pm} \rightarrow DK^{\pm}$ and $B^{\pm} \rightarrow D\pi^{\pm}$ decays
 - O phase-space bins
- Combinatorial and low-mass backgrounds are floating in each category
- Parameterise signal yields in terms of x_{\pm}^{DK} , y_{\pm}^{DK} , $x_{\xi}^{D\pi}$, $y_{\xi}^{D\pi}$
- 2N-1 floating F_i parameters
- c_i and s_i are Gaussian constrained

CP fit categories

Summary of free parameters in the CP fit:

$$K^+K^-\pi^+\pi^-$$

2 × 2 × 2 × 4 = 32 categories

- 6 CP observables
- \bullet 7 F_i parameters
- 8 c_i and s_i parameters
- 32 combinatorial yields
- 32 low mass yields
- 4 global normalisations
- Total: 89 parameters

$$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$$
 2 × 2 × 2 × 5 = 40 categories

- 6 CP observables
- 9 F_i parameters
- 10 c_i and s_i parameters
- 40 combinatorial yields
- 40 low mass yields
- 4 global normalisations
- Total: 109 parameters

In a combined fit where CP observables are shared, there are 89+109-6=192 parameters

CP fit bin asymmetry

Example of bin asymmetry in $D \to K^+K^-\pi^+\pi^-$ bin -3:

CP fit bin asymmetry

Example of bin asymmetry in $D \to \pi^+\pi^-\pi^+\pi^-$ bin +5:

CP fit toy studies

In toy studies biases in $D\pi$ observables are consistent with model-dependent analysis

CP fit toy studies

Minor biases in x_{\pm}^{DK} are seen but can be corrected for...

CP fit toy studies

...but y_{\pm}^{DK} pulls are now slightly asymmetric!

Strong-phase parameters in CP fit

Why are c_i and s_i Gaussian constrained?

- Previous BPGGSZ analyses have kept c_i and s_i fixed
 - \bigcirc c_i and s_i uncertainties are added as a systematic through smearing
 - Convenient for calculating correlations between different analyses
 - **3** Appropriate when c_i and s_i uncertainties are small
- In four-body analyses, uncertainties on γ from c_i and s_i are almost the same size as the statistical uncertainty
- ullet Large s_i uncertainties introduces non-Gaussian uncertainties on y_\pm
- ullet γ moves significantly when fixing s_i instead of constraining them
- These effects are largest for $K^+K^-\pi^+\pi^-$, but are also seen in $\pi^+\pi^-\pi^+\pi^-$ and in the combined fit

x_{\pm}^{DK} agree well between likelihood scan and Hesse approximation

x_{\pm}^{DK} agree well between likelihood scan and Hesse approximation

y_{\pm}^{DK} diverges from Hesse approximation outside 1σ

y_{\pm}^{DK} diverges from Hesse approximation outside 1σ

What do the likelihood scans tell us?

- Uncertainties from c_i and s_i are significant, which justifies Gaussian constraining c_i and s_i
- Non-Gaussian uncertainties means GammaCombo cannot be used
- New strategy:
 - Produce a likelihood function from CP fit
 - 2 Interpret CP observables in terms of γ , etc
 - Must profile all nuisance parameters (F_i , c_i , s_i , backgrounds yields, normalisation constants)
 - **9** Provide direct measurements of γ , δ_B and r_B without GammaCombo

Summary of LHCb internal systematic uncertainties

Internal LHCb systematic uncertainties from model-dependent analysis of $K^+K^-\pi^+\pi^-$:

Source	x_DK	y_{-}^{DK}	x_{+}^{DK}	y_+^{DK}	$\chi_{\varepsilon}^{D\pi}$	$y_{\xi}^{D\pi}$
Statistical	2.87	3.40	2.51	3.05	4.24	5.17
Mass shape	0.02	0.02	0.03	0.06	0.02	0.04
Bin-dependent mass shape	0.11	0.05	0.10	0.19	0.68	0.16
PID efficiency	0.02	0.02	0.03	0.06	0.02	0.04
Low-mass background model	0.02	0.02	0.03	0.04	0.02	0.02
Charmless background	0.14	0.15	0.12	0.14	0.01	0.02
CP violation in low-mass background	0.01	0.10	0.08	0.12	0.07	0.26
Semi-leptonic b-hadron decays	0.05	0.27	0.06	0.01	0.07	0.19
Semi-leptonic charm decays	0.02	0.07	0.03	0.15	0.06	0.24
$D o K^-\pi^+\pi^-\pi^+$ background	0.11	0.05	0.07	0.04	0.09	0.05
$\Lambda_b o pD\pi^-$ background	0.01	0.25	0.14	0.04	0.06	0.34
$D \rightarrow K^- \pi^+ \pi^- \pi^+ \pi^0$ background	0.30	0.05	0.19	0.07	0.05	0.01
Fit bias	0.06	0.05	0.13	0.02	0.06	0.13
Total LHCb systematic	0.37	0.43	0.34	0.32	0.70	0.57

Give systematic uncertainties in terms of CP observables (not γ) since these are more Gaussian and better behaved

Summary of LHCb internal systematic uncertainties

Internal LHCb systematics for $\pi^+\pi^-\pi^+\pi^-$ have not been calculated yet, but the plan is to run the same procedure from $K^+K^-\pi^+\pi^-$ on this mode during review, with minor simplifications:

- **1** No $K\pi\pi\pi$ background
- ② No $K\pi\pi\pi\pi^0$ background
- No D semileptonic background

Reminder: LHCb internal systematic uncertainties are expected to be an order of magnitude smaller than statistical uncertainties!

Interpretation strategy

From CP fit, we have a (negative log) likelihood function with nuisance parameters n_k :

$$\mathcal{L}(x_{-}^{DK},y_{-}^{DK},x_{+}^{DK},y_{+}^{DK},x_{\xi}^{D\pi},y_{\xi}^{D\pi},\{n_{k}\})$$

Express in terms of physics parameters:

$$\mathcal{L}(\gamma, \delta_B^{DK}, r_B^{DK}, \delta_B^{D\pi}, r_B^{D\pi}, \{n_k\})$$

In this step, also add a Gaussian smearing term on CP observables to account for internal LHCb systematics

Interpretation toys

We can perform toy studies on the interpretation fit, but we do <u>not</u> expect these to behave very Gaussian...

Indeed, small but significant biases are observed!

Use pull distributions to correct central values of physics parameters

Interpretation toys

We can perform toy studies on the interpretation fit, but we do <u>not</u> expect these to behave very Gaussian...

 $K^+K^-\pi^+\pi^ \gamma$ pull distributions

$$\pi^+\pi^-\pi^+\pi^-$$

The absolute bias corrections are:

$$K^+K^-\pi^+\pi^-$$
: +5.6°, $\pi^+\pi^-\pi^+\pi^-$: -3.0°, combined: -3.0°

Interpretation results

Results from interpretation, after correcting for biases in central values (not uncertainties):

Model independent

Model dependent

$$\gamma = (117 \pm 15)^{\circ} \qquad \gamma = (116^{+12}_{-14})^{\circ}
\delta_{B}^{DK} = (83 \pm 12)^{\circ} \qquad \delta_{B}^{DK} = (81^{14}_{-13})^{\circ}
r_{B}^{DK} = (12.1 \pm 2.6) \times 10^{-2} \qquad r_{B}^{DK} = (11.0 \pm 2.0) \times 10^{-2}
\delta_{B}^{D\pi} = (295 \pm 74)^{\circ} \qquad \delta_{B}^{D\pi} = (298^{+62}_{-118})^{\circ}
r_{B}^{D\pi} = (0 \pm 5) \times 10^{-3} \qquad r_{B}^{D\pi} = (4^{+5}_{-4}) \times 10^{-3}$$

LHCb systematics not included yet, but central value of γ remains high... ... it seems that the large tension with the LHCb global result

$$\gamma = (63.8^{+3.5}_{-3.7})^{\circ}$$
 remains

Interpretation results

Results from interpretation, after correcting for biases in central values (not uncertainties):

$$K^+K^-\pi^+\pi^- \qquad \qquad \pi^+\pi^-\pi^+\pi^-$$

$$\gamma = (117 \pm 15)^{\circ}$$
 $\gamma = (45 \pm 11)^{\circ}$ $\delta_{B}^{DK} = (83 \pm 12)^{\circ}$ $\delta_{B}^{DK} = (115 \pm 11)^{\circ}$ $\delta_{B}^{DK} = (12.1 \pm 2.6) \times 10^{-2}$ $r_{B}^{DK} = (8.2 \pm 1.9) \times 10^{-2}$ $\delta_{B}^{D\pi} = (295 \pm 74)^{\circ}$ $\delta_{B}^{D\pi} = (204 \pm 42)^{\circ}$ $r_{B}^{D\pi} = (0 \pm 5) \times 10^{-3}$

 $\pi^+\pi^-\pi^+\pi^-$ is in much better agreement with LHCb global result, but there is a tension with $K^+K^-\pi^+\pi^-...$

Interpretation results

Results from interpretation, after correcting for biases in central values (not uncertainties):

$$K^{+}K^{-}\pi^{+}\pi^{-}$$
 $\pi^{+}\pi^{-}\pi^{+}\pi^{-}$

$$\gamma = (117 \pm 15)^{\circ}$$
 $\gamma = (45 \pm 11)^{\circ}$
 $\delta_{B}^{DK} = (83 \pm 12)^{\circ}$
 $\delta_{B}^{DK} = (115 \pm 11)^{\circ}$
 $\epsilon_{B}^{DK} = (12.1 \pm 2.6) \times 10^{-2}$
 $\delta_{B}^{D\pi} = (295 \pm 74)^{\circ}$
 $\epsilon_{B}^{D\pi} = (295 \pm 74)^{\circ}$
 $\epsilon_{B}^{D\pi} = (0 \pm 5) \times 10^{-3}$
 $\epsilon_{B}^{D\pi} = (4 \pm 5) \times 10^{-3}$

 $\pi^+\pi^-\pi^+\pi^-$ is in much better agreement with LHCb global result, but there is a tension with $K^+K^-\pi^+\pi^-...$...but how Gaussian are these uncertainties?

Likelihood scan of interpretation fit

In fact, a likelihood scan shows that $D \to K^+K^-\pi^+\pi^-$ and $D \to \pi^+\pi^-\pi^+\pi^-$ agree within 2σ (no LHCb systematics yet)

When all biases, correlations and non-Gaussian uncertainties are accounted for, the tension with the LHCb average has reduced significantly

Likelihood scan of interpretation fit

In fact, a likelihood scan shows that $D \to K^+K^-\pi^+\pi^-$ and $D \to \pi^+\pi^-\pi^+\pi^-$ agree within 2σ (no LHCb systematics yet)

However, with all the non-Gaussian behaviour and asymmetric pull distributions, do we actually trust the uncertainties?

Plugin/Feldman-Cousins method

Feldman-Cousins method, or Plugin, is a "brute-force" approach to assigning a confidence interval

At each scan point of γ , perform these fits to data:

- Fit with all parameters floating, and save the log-likelihood χ^2
- ${\color{red} {\bf 0}}$ Fit with γ fixed to scan point, and save $\chi^2_{\rm fix}$
- **3** Calculate $\Delta \chi^2_{\rm data} = \chi^2_{\rm fix} \chi^2$

We expect $\Delta\chi^2_{\rm data}$ to become large as we move away from best-fit value, but without direct knowledge of underlying PDF, we cannot determine any confidence intervals from this

Plugin/Feldman-Cousins method

Feldman-Cousins method, or Plugin, is a "brute-force" approach to assigning a confidence interval

At each scan point of γ , perform these fits to toy:

- Fix γ to scan point and generate 1000 toys
- f 2 Perform fits to each toy, with γ both floating and fixed
- **3** Calculate $\Delta\chi^2_{\rm toy}$

At each scan point, the fraction of toys with $\Delta\chi^2_{\rm toy} > \Delta\chi^2_{\rm data}$ is equal to $1-{\rm CL}$, and the exact 68% confidence interval can then be obtained using an interpolation between points

Plugin/Feldman-Cousins method

Combined fit shows good agreement between Plugin and Prob scans As expected, $D \to K^+K^-\pi^+\pi^-$ shows a large non-Gaussian tail

Combined fit result: $\gamma = (57 \pm 9)^{\circ}$ Third most precise single measurement of γ in B^{\pm} decays

Conclusion

- Model-independent measurement of γ with $B^{\pm} \rightarrow [h^+h^-\pi^+\pi^-]_D h^{\pm}$ has been performed: $\gamma = (57 \pm 9)^{\circ}$
 - \bullet Uses BESIII strong-phase inputs which are not yet public, but are expected to become so on timescale of ~ 2 months
- 3σ tension in $D \to K^+K^-\pi^+\pi^-$ has reduced to less than 2σ due to:
 - 1 Non-Gaussian uncertainties in y_{+}^{DK} originating from s_i uncertainties
 - 2 Large anti-correlation between $\bar{\gamma}$ and δ^{DK}_{B}
- $D \to \pi^+\pi^-\pi^+\pi^-$ measurement benefits from commonalities with $K^+K^-\pi^+\pi^-$ analysis and larger BESIII data set

Conclusion

- Model-independent measurement of γ with $B^{\pm} \rightarrow [h^+h^-\pi^+\pi^-]_D h^{\pm}$ has been performed: $\gamma = (57 \pm 9)^{\circ}$
 - \bullet Uses BESIII strong-phase inputs which are not yet public, but are expected to become so on timescale of ~ 2 months
- Statistically limited measurement, but s_i uncertainties are large
 - Charm mixing studies will improve this!
- The ANA note is ready and available for B2OC WG review

Thanks for your attention!

Backup:Bin asymmetries

$$B^{\pm} \rightarrow [K^+K^-\pi^+\pi^-]_D h^{\pm}$$
 bin asymmetries

$$B^{\pm} \rightarrow DK^{\pm}$$
 $B^{\pm} \rightarrow D\pi^{\pm}$

Backup:Bin asymmetries

$$B^\pm o [\pi^+\pi^-\pi^+\pi^-]_D h^\pm$$
 bin asymmetries

$$B^{\pm} o DK^{\pm}$$

$$B^{\pm} \rightarrow D\pi^{\pm}$$

Backup: Charm mixing studies with multi-body decays

Sensitivity to c_i : Similar between BESIII and charm mixing at LHCb

- BESIII yields equivalent to 8 fb $^{-1}$ of ψ (3770)
- 4 million $D \to K^+ K^- \pi^+ \pi^-$ candidates in mixing analysis

Backup: Charm mixing studies with multi-body decays

Sensitivity to s_i : Significant improvements expected!

- BESIII yields equivalent to 8 fb⁻¹ of $\psi(3770)$
- 4 million $D \to K^+K^-\pi^+\pi^-$ candidates in mixing analysis