Combinational circuit

Vikas Dhiman for ECE275

September 9, 2022

1 Learning objectives

- 1. Representing digital circuits
- 2. Converting between different notations: Boolean expression, logic networks and switching circuits
- 3. Converting between different logic network specifications: truth table, minterm, maxterms, product of sums canonical form and sum of product canonical form.

2 Basic Gates and notations summary

Venn diagram		x $+$ x	x_1 \bar{x}_1
(ANSI) symbol	x_1 x_2 x_3	$x_1 \underbrace{L(x_1, x_2)}$	x_1
Switching circuit	Power Supply T N ₁ N ₂ Light	Power Supply Supply T. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	Power supply T
Truth Table	$\begin{array}{c cccc} x_1 & x_2 & x_1 \cdot x_2 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{array}$	$ \begin{array}{c c c} x_1 & x_2 & x_1 + x_2 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{array} $	$\begin{array}{c c} x_1 & \overline{x_1} \\ \hline & 0 & 0 \\ 0 & 1 \end{array}$
Boolean expr.	$L = x_1 \cdot x_2 = x_1 x_2$	$L = x_1 + x_2$	$L=\bar{x}_1=x_1'$
C/Verilog	L = x1 & x2	L = x1 x2	L = ~ x1
Name	AND Gate	OR Gate	NOT Gate

Digital circuits or networks

$$Y = F(A, B, C)$$
 $Z = G(A, B, C)$

Solution function

Two input networks

Example 1. Convert the following (ANSI) network into a Boolean expression, a truth table and a

Example 2. Convert the following Boolean expression into a (ANSI) network, a truth table and a Venn diagram:

Problem 1. Convert the following (ANSI) network into a Boolean expression, a truth table and a Venn diagram.

Example 3. Convert the following Boolean expression into a network, a truth table and a Venn diagram:

Problem 2. Can two different circuits have the same truth table? Can two different truth tables have the same circuit? Consider the following two circuits for example

Remark 1. Truth tables and Venn diagrams define what the combinational circuit should do. Truth tables define output for every input. Boolean expression and networks define how to achieve the desired input output relationship.

カレ 5 Multi-input networks

Example 4. Convert the following (ANSI) network into a Boolean expression and a truth table.

9

٥

00

f=m,+m,+m,3 4.B.CD+ABCD

Problem 3. Convert the following (ANSI) network into a Boolean expression and a truth table.

6 Minterms and Maxterms

6.1 Minterms

Minterm is a product involving all inputs (or complements) to a function. Every row of a truth table has a corresponding minterm. Minterm is true if and only if the corresponding row in the table is active.

N	I int ϵ	erms define	d as follows	for each row of a two input truth table:	TA C	۱ د
\mathbf{A}	В	\min term	$\min term$	$m = \overline{\Lambda} \overline{\Delta} =$	OT	\Box
			name			ン
0	0	$ar{A}ar{B}$	m_0	200 - 700	Ta 1	7
0	1	$\bar{A}B$	m_1	$m_1 = A.B$	18	_)
1	0	$Aar{B}$	m_2	M2 = A B	1 6	>
1	1	AB	m_3			-
				m = A B	1 1	

Consider a two input circuit whose output Y is given by the truth table:

0011	oracor	CC 0 11	o mpar em	care milese ca	<u>rep</u> are 1 10 81.011	o, 0110 01 01011 0	cosc.				
A	В	Y	minterm	$\min term$							
				name				_	. ^		
0	0	0	$ar{A}ar{B}$	m_0		₩ 4	M . —	AB+	AB	١	
0	1		$\bar{A}B$	m_1	1 =	₩ +	113 =	715	ر		
1	0	0	$A\bar{B}$	m_2							
1	1		AB	m_3							
then	Y =	$= \overline{AB}$	+AB = n	$n_1 + m_3 = \sum ($	(1,3).				2	77	ž W
This	also	give	s the sum	of products ca	$\underline{nonical\ form}$.				0	0	00
Eva	mnl	0.5	What is t	minten	for a linnu	t circuit with	innute r u ~ a	u (ordered from			

Example 5. What is the motion m_{13} for a 4-input circuit with inputs x, y, z, w (ordered from MSB to LSB).

(3 → 1) Ø 1

Problem 4. What is the maxterm m_{23} for a 5-input circuit with inputs a, b, c, d, e (ordered from MSB to LSB).

Example 6. Convert the following 4-input truth table into sum of minterms and sum of products canonical form.

minterm	A	В	C	D	f
name					
m_0	0	0	0	0	0
m_1	0	0	0	1	1
m_2	0	0	1	0	0
m_3	0	0	1	1	0
m_4	0	1	0	0	0
m_5	0	1	0	1	1
m_6	0	1	1	0	0
m_7	0	1	1	1	0
m_8	1	0	0	0	0
m_9	1	0	0	1	0
m_{10}	1	0	1	0	0
m_{11}	1	0	1	1	0
m_{12}	1	1	0	0	0
m_{13}	1	1	0	1	1
m_{14}	1	1	1	0	0
m_{15}	1	1	1	1	0

 $\textbf{Problem 5.} \ \textit{Convert the following 4-input truth table into sum of minterms and sum of products } \\ \textit{canonical form.}$

minterm	A	В	C	D	f
name					
$\overline{m_0}$	0	0	0	0	0
m_1	0	0	0	1	0
m_2	0	0	1	0	0
m_3	0	0	1	1	1
m_4	0	1	0	0	0
m_5	0	1	0	1	0
m_6	0	1	1	0	0
m_7	0	1	1	1	1
m_8	1	0	0	0	0
m_9	1	0	0	1	0
m_{10}	1	0	1	0	0
m_{11}	1	0	1	1	1
m_{12}	1	1	0	0	0
m_{13}	1	1	0	1	1
m_{14}	1	1	1	0	1
m_{15}	1	1	1	1	0

6.2 Maxterms

Maxterm is a sum involving all inputs (or complements) to a function. Every row of a truth table has a corresponding maxterm. Minterm is false if and only if the corresponding row in the table is active.

Maxterms are defined as follows for each row of a two input truth table:

A	В	maxterm	maxterm
			name
0	0	A + B	M_0
0	1	$A + \bar{B}$	M_1
1	0	$\bar{A} + B$	M_2
1	1	$\bar{A} + \bar{B}$	M_3

Consider a two input circuit whose output Y is given by the truth table:

A	В	Y	maxterm	maxterm
				name
0	0	0	A + B	M_0
0	1	1	$A + \bar{B}$	M_1
1	0	0	$\bar{A} + B$	M_2
1	1	1	$\bar{A} + \bar{B}$	M_3

then $Y = (A + B)(\bar{A} + B) = M_0 M_2$.

Writing a functional specification in terms of minterms is also called product of sums canonical form.

Example 7. Write the maxterm M_{11} for 4-input Boolean function with the ordered inputs A, B, C, D.

Example 8. Convert the following 4-input truth table into product of maxterms and product of sums canonical form.

maxterm	A	B	C	D	$\mid f \mid$
name					
M_0	0	0	0	0	0
M_1	0	0	0	1	0
M_2	0	0	1	0	0
M_3	0	0	1	1	1
M_4	0	1	0	0	0
M_5	0	1	0	1	0
M_6	0	1	1	0	0
M_7	0	1	1	1	1
M_8	1	0	0	0	0
M_9	1	0	0	1	0
M_{10}	1	0	1	0	0
M_{11}	1	0	1	1	1
M_{12}	1	1	0	0	0
M_{13}	1	1	0	1	1
M_{14}	1	1	1	0	1
M_{15}	1	1	1	1	0

Problem 6. Convert the following 4-input truth table into product of maxterms and products of sums canonical form.

maxterm	A	B	C	D	f
name					
M_0	0	0	0	0	0
M_1	0	0	0	1	1
M_2	0	0	1	0	1
M_3	0	0	1	1	1
M_4	0	1	0	0	1
M_5	0	1	0	1	0
M_6	0	1	1	0	1
M_7	0	1	1	1	1
M_8	1	0	0	0	0
M_9	1	0	0	1	1
M_{10}	1	0	1	0	1
M_{11}	1	0	1	1	1
M_{12}	1	1	0	0	0
M_{13}	1	1	0	1	1
M_{14}	1	1	1	0	1
M_{15}	1	1	1	1	0

Example 9. Write the 3-input truth table for the function $f = m_2 + m_3 + m_7$.

Problem 7. Write the 3-input truth table for the function $f = M_4 M_5 M_7$.

Problem 8. Write the truth table for the function $f = \bar{A}B\bar{C} + AB\bar{C}$.

7 Karnaugh maps

7.1 Two input K-maps

Example 10. Convert the following truth table into a K-map.

A	B	f
0	0	0
0	1	1
1	0	1
1	1	0

Problem 9. Convert the following Venn Diagram into a K-map.

7.2 Three input K-maps

$^{\rm A}$	B ₀₀	01	11	10
0	m_0	m_2	m_6	m_4
1	m_1	m_3	m_7	m_5

Problem 10. Draw a K-map for the function $f = \bar{A}\bar{B}C + AB\bar{C}$.

7.3 Four input K-maps

CDA	B ₀₀	01	11	10
00	m_0	m_4	m_{12}	m_8
01	m_1	m_5	m_{13}	m_9
11	m_3	m_7	m_{15}	m_{11}
10	m_2	m_6	m_{14}	m_{10}

Problem 11. Draw a K-map for a 4-input function $f = m_1 + m_2 + m_7$.

7.4 Five input K-maps

A = 0						A = 1				
	DE B	C ₀₀	01	11	10	DE	3C ₀₀	01	11	10
	00	m_0	m_4	m_{12}	m_8	00	m_{16}	m_{20}	m_{28}	m_{24}
	01	m_1	m_5	m_{13}	m_9	01	m_{17}	m_{21}	m_{29}	m_{25}
	11	m_3	m_7	m_{15}	m_{11}	11	m_{19}	m_{23}	m_{31}	m_{27}
	10	m_2	m_6	m_{14}	m_{10}	10	m_{18}	m_{22}	m_{30}	m_{26}

Problem 12. Draw a K-map for a 5-input function $f = M_1 M_2 M_7$.