BAYESIAN METHODS FOR MATERIALS MODELING

Logan Ward Asst. Computational Scientist Argonne National Laboratory

7 February 2022

Why do we need Bayesian modeling?

How certain should I be in my parameters?

Which model should I choose?

Bayes Rule: Infer parameters using evidence

"Posterior": Probability of parameters (θ) given observations (D) and model (M)

"Likelihood": Probability of observations given parameters and model

"Prior": Initial assumption of parameters given model

"Evidence": Likelihood of observations given model

Using Bayes' rule: Integrals over the posterior

You can use integration to solve for probabilistic measures of the integral

Math: $E(h(\theta)|D) = \int h(\theta)p(\theta|D)d\theta$

English: Expected value of $h(\theta)$ by average over all possible θ weighted by the probability of θ

Solving that integral analytically is often impossible. Can always solve numerically:

Math: $\int h(\theta)p(\theta|D)d\theta \approx \frac{1}{S}\sum_{s=1}^{S}h(\theta_s)$

English: Compute the average of $h(\theta)$ for many samples of θ taken from the posterior distribution

Problem: How do you generate samples from the posterior!?

Markov-Chain Monte Carlo: Sampling S with balance

Algorithm:

- 1. Select initial point, θ_0 , from prior distributions
- 2. Generate new point: $\theta_i = \mathcal{N}(\theta_{i-1}, \sigma)$ Pick a new point from Normal Distribution
- 3. Compute posterior probability for θ_i and θ_{i-1} $P(\theta_n|D,M) = P(D|\theta_n,M)P(\theta_n|M) \longleftarrow$

See practical exercises

4. Compute "acceptance probability"

$$P(\text{accept}) = \min\left(1, \frac{P(\theta_i|D, M)}{P(\theta_{i-1}|D, M)}\right)$$

This assures samples will follow posterior distribution "detailed balance"

- 5. With probability P(accept), keep θ_i as the current point
- 6. Repeat from 2

There are better methods for doing this

Kombine (Farr and Farr, 2015)

MultiNest (Feroz et al., 2013)

KOMBINC

Table Of Contents

kombine

- Example Usage
- User Guide
- API Documentation
- Contributors

This Page

Show Source

Ouick search

kombine

kombine is an ensemble sampler built for efficiently exploring multimodal distributions. By using estimates of ensemble's instantaneous distribution as a proposal, it achieves very fast burnin, followed by sampling with very short autocorrelation times.

Example Usage

Construct an 8-D bimodal target distribution:

```
import numpy as np

class Target(object):
    def __init__(self, ndim, nmodes):
        # Generate random inverse variances for each dimension
        self.ivar = 1. / np.random.rand(ndim)

# Space modes 5-sigma apart
    std = np.sqrt(1/self.ivar)
    self.means = 5 * std * np.arange(nmodes)[:, np.newaxis]
```


Welcome to pymultinest's documentation!

About

This is the documentation for two python modules for Bayesian analysis, parameter estimation and model selection: pymultinest and pycuba.

- . PyMultiNest interacts with MultiNest, a Nested Sampling Monte Carlo library.
- PyCuba interacts with cuba, a library for various numerical integration methods.

Get PyMultiNest

- · Follow the instructions in the installation guide.
- . You can download the source code from the GitHub code repository.

Citing PyMultiNest

Many great things once you can compute integrals

Sample a many points from the posterior, then you can...

$$E(h(\theta)|D) = \int h(\theta)p(\theta|D)d\theta$$

MATERIALS ENGINEERING EXAMPLE

Courtesy of Paulson et al.

Thermodynamic modeling: CALPHAD

Step 1: Fit thermodynamic models of materials

Step 2: Use them to compute relative stability

Figure: PyCalphad

Key issue: Fitting thermodynamic models

Many problems:

- 1. Uncertainty in model form
- 2. Noise in data collection
- 3. Disagreement between sources

Solution: Bayesian methods!

Fitting Thermodynamic Models

Innovation 1: Choosing different thermodynamic models

$$H(T) - H(298.15K) = \frac{3R\theta}{e^{T} - 1} + a^{\frac{T^2}{2}} + \frac{bT^3}{2}$$

$$C_p(T) = \frac{d}{dT}H(T)$$

Innovation 2: Learning which data sources are more reliable

$$P(D|\theta,\alpha,M) = \prod_{i} \prod_{j} \mathcal{N}(y_{j}^{i}|M(x_{j}^{i},\theta),\frac{1}{\alpha^{i}})$$

Include a "dataset uncertainty" (α)

Loop over datasets (i) and points within dataset (j)

Innovation 3: Fitting to more than one property at a time

$$P(D|\theta, M) = \prod_{i} \mathcal{N}(D_{H,i}|H(T_i, \theta), \epsilon_i) \prod_{j} \mathcal{N}(D_{C_p,j}|C_p(T_j, \theta), \epsilon_j)$$

Different terms for each type of data

Same parameters (θ) in both types

Larger α_i means more weight

Result: Can fit models, parameters, datasets

Can rule out certain models

Table 1Potential models, their log Marginal-Likelihoods and Bayes' Factor with respect to the selected model (marked with an asterisk) are presented for each phase.

Model α -phase	Number of model parameters	Log marginal likelikood	Bayes' factor
Einstein	1	-1744.2	\sim 0
Debye	1	-1262.9	\sim 0
Debye + Linear	2	-1072.6	\sim 0
Debye + Quadratic	3	-813.2	\sim 0
Debye + Cubic	4	-640.2	\sim 0
Debye + Quartic*	5	-623.1	1
Debye + Quintic	6	-627.4	1.4×10^{-2}
Debye + SR	5	-629.7	1.4×10^{-3}
β -phase			
Constant	2	-534.2	\sim 0
Linear	3	-511.1	3.0×10^{-3}
Quadratic*	4	-505.3	1
Cubic	5	-518.5	1.9×10^{-6}
Liquid-phase			
Constant	2	-491.4	\sim 0
Linear*	3	-471.0	1
Quadratic	4	-476.0	6.7×10^{-3}

Parameters and errors for models

Table 2The mean, standard deviation, 2.5th percentile bound and 97.5th percentile bound are presented for each parameter for the best model for each phase.

Parameter α-phase	Mean	Std. dev.	2.5% CI	97.5% CI
θ_{D}	206.45	0.28	205.93	207.02
a_2	1.41×10^{-3}	7.58×10^{-5}	1.26×10^{-3}	1.56×10^{-3}
a_3	9.71×10^{-6}	2.29×10^{-7}	9.26×10^{-6}	1.02×10^{-5}
a_4	-5.61×10^{-9}	2.44×10^{-10}	-6.07×10^{-9}	-5.12×10^{-9}
a_5	1.10×10^{-12}	7.63×10^{-14}	9.41×10^{-13}	1.24×10^{-12}
$\alpha_{Ade1952}$ Adenstedt (1952)	1.111	0.532	0.348	2.402
α _{Aru1972} Arutyunov, Banchila, and Filippov (1972)	0.569	0.138	0.340	0.876
α _{Bur1958} Burk, Estermann, and Friedberg (1958)	0.188	0.023	0.147	0.237
$lpha_{ ext{Cag2008}}$ Cagran, Hüpf, Wilthan, and Pottlacher (2008)	0.533	0.217	0.210	1.046
α _{Cez1974} Cezairliyan and McClure (1975)	4.137	0.959	2.613	6.343
$\alpha_{Col1971}$ Collings and Ho (1971)	0.209	0.040	0.140	0.295
α _{Fie1961} Fieldhouse and Lang (1961)	0.444	0.118	0.250	0.709
α _{Fil1971} Filippov and Yurchak (1971)	0.640	0.163	0.367	1.002

Relative importance of data (α)

Take away points

Bayesian method lets you combine:

- 1. Initial guesses about parameters "priors"
- Experimental evidence

to generate a new distribution of parameters "posterior"

Compute properties by "sampling posterior"

Use Bayesian to get better **confidence intervals** on physics models

Figure: Stan, Reardon. Calphad (2003)