高等数学习题册(上)

v0.0.3

这本书是高等数学习题集(同济大学配套资料,由北京大学出版社出版)的 电子化版本。 本书大量借助 AI 进行处理,题干部分经由人工校对,但答案 和解析部分主要由 AI 生成。

由于人手不足,可能存在错误,请读者自行甄别。

如遇错误、疑惑,欢迎提交 issue 或 pull request 进行讨论、修正。(地址: https://github.com/xihale/digital-tongji-calculus-exercises)

目录

第一章 函数与极限	4
第一节 映射与函数	4
第二节 数列的极限	7
第三节 函数的极限	. 10
第四节 无穷小与无穷大	. 13
第五节 极限运算法则	. 13
第六节 极限存在准则 两个重要极限	. 16
第七节 无穷小的比较	. 20
第八节 函数的连续性与间断点	. 22
第九节 连续函数的运算与初等函数的连续性	. 23
第十节 闭区间上连续函数的性质	. 28
总习题一	. 29
第二章 导数与微分	. 34
第一节 导数的概念	. 34
第二节 函数的求导法则	. 37
第三节 高阶导数	. 41
第四节 隐函数及由参数方程所确定的函数的导数 相关变化率	. 44
第五节 函数的微分	. 48
总习题二	. 51
第三章 微分中值定理与导数的应用	. 55
第一节 微分中值定理	. 55
第二节 洛必达法则	. 57
第三节 泰勒公式	
第四节 函数的单调性与曲线的凹凸性	. 62
第五节 函数的极值与最大值最小值	. 67
第六节 函数图形的描绘	. 67
第七节 曲率	. 71
总习题三	. 72
第四章 不定积分	
第一节 不定积分的概念与性质	. 78
第二节 换元积分法(1)	. 80
第二节 换元积分法(2)	. 83
第三节 分部积分法	. 85
第四节 有理函数的积分	. 88
总习题四	. 91
第五章 定积分	. 97

第一节 定积分的概念与性质	98
第二节 微积分基本公式	99
第三节 定积分的换元积分法和分部积分法	103
第四节 反常积分	106
总习题五	109
第六章 定积分的应用	115
第一节 定积分的元素法	115
第二节 定积分在几何学上的应用	115
第三节 定积分在物理学上的应用	117
总习题六	
第七章 微分方程	122
第一节 微分方程的基本概念	122
第二节 可分离变量的微分方程	122
第三节 齐次方程	125
第四节 一阶线性微分方程	127
第五节 可降阶的高阶微分方程	130
第六节 高阶线性微分方程	131
第七节 常系数齐次线性微分方程	132
第八节 常系数非齐次线性微分方程	
总习题七	136
高等数学(上册)期末测试模拟卷(一)	139
高等数学(上册)期末测试模拟卷(二)	145
高等数学(上册)期末测试真题(一)	149
高等数学(上册)期末测试真题(二)	158

第一章 函数与极限

第一节 映射与函数

一、判断题

1.
$$f(x) = x, g(x) = \sqrt{x^2}$$
 是两个相同的函数. ()

2.
$$f(x) = 1, g(x) = \sec^2 x - \tan^2 x$$
 是两个相同的函数. ()

二、选择题

3. 设函数
$$f(x) = \begin{cases} -\sin^3 x & \text{if } -\pi \le x \le 0 \\ \sin^3 x & \text{if } 0 < x \le \pi \end{cases}$$
 则此函数是 .

- A. 周期函数
- B. 单调增函数
- C. 奇函数
- D. 偶函数

4. 设函数 $f(x)=e^x, g(x)=\sin^2 x$,则 f[g(x)]=().

- A. $e^{\sin^2 x}$
- B. $\sin^2 e^x$
- C. $e^x \sin^2 x$
- $\mathsf{D.}\, \left(\sin^2 x\right)^{e^{x^2}}$

三、计算题

5. 求下列函数的自然定义域:

(1)
$$y = \arctan(x-3)$$
;

(2)
$$y = \sqrt{3-x} + \arctan(\frac{1}{x})$$
.

(2)
$$f(\sin x)$$
;

(3)
$$f(x+a) + f(x-a)$$
 $(a > 0)$.

7. 下列函数中哪些是偶函数,哪些是奇函数,哪些既非偶函数又非奇函数? (1)
$$y = \sin x - \cos x + 1$$
;

(2)
$$y = \frac{a^x + a^{-x}}{2}$$
.

四、证明题

- 8. 设下列所考虑的函数都是定义在区间 (-l,l) 内的,证明:
 - (1)两个偶函数的和是偶函数,两个奇函数的和是奇函数;

(2)两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,偶函数与奇函数的乘积是奇函数.

第二节 数列的极限

- 1.下列数列 $\{x_n\}$ 中,收敛的是()
- A. $x_n = (-1)^n \frac{n-1}{n}$
- B. $x_n = \frac{n}{n+1}$
- $\mathsf{C.}\ x_n = \sin(\tfrac{\pi}{2}n)$
- D. $x_n = n (-1)^n$

- 2.下列数列 $\{x_n\}$ 中,发散的是().
- A. $x_n = \frac{1}{2^n}$
- B. $x_n = 5 + \frac{(-1)^n}{n^2}$
- C. $x_n = \frac{2n-1}{3n+2}$
- D. $x_n = \frac{1+(-1)^n}{2}$

二、填空题

3. 设数列 $\{u_n\}$ 的一般项是 $u_n=\frac{3n+1}{2n+1}$,当 $n\geq$ ______ 时,不等式 $|u_n-\frac{3}{2}|<0.01$ 成立。

三、计算题

4. 下列数列是否收敛? 对于收敛数列,通过观察 $\{x_n\}$ 的变化趋势,写出它们的极限: (1) $\{n(-1)^n\}$

(2)
$$\{[(-1)^n+1]\frac{n+1}{n}\}.$$

四、证明题

5. 根据数列极限的定义,证明: (1) $\lim_{n\to\infty} \frac{1}{n^2} = 0$;

(2)
$$\lim_{n\to\infty} \frac{3n+1}{2n+1} = \frac{3}{2}$$
;

(3) $\lim_{n\to\infty} \frac{n^2-n-3}{3n^2+2n-4} = \frac{1}{3}$;

(4) 若 $\lim_{n\to\infty}x_n=a$,则 $\lim_{n\to\infty}|x_n|=|a|$. 反过来成立吗?成立给出证明,不成立举出反例.

第三节 函数的极限

- 1. $\lim_{x\to 1} \frac{|x-1|}{x-1}$ ()
 - A. -1
 - B. 0
 - C. 1
 - D. 不存在

- 2. $\lim_{x\to x_0^+}f(x)$ 和 $\lim_{x\to x_0^-}f(x)$ 存在且相等是 $\lim_{x\to x_0}f(x)$ 存在的().
 - A. 充分条件
 - B. 必要条件
 - C. 充要条件
 - D. 无关条件

- 3. 设函数 $f(x)=rac{2x+|x|}{4x-3|x|}$,则 $\lim_{x o 0}f(x)=($) .
 - A. $\frac{1}{2}$
 - B. $\frac{1}{3}$
 - C. $\frac{1}{4}$
 - D. 不存在

二、填空题

4. 当 $0<|x-3|<\delta$ 时,取 $\delta=$ ________, $|\frac{x^2-9}{x-3}-6|<\varepsilon$ 成立。

三、计算题

5. 对于图 1-1 所示的函数 f(x) ,求下列极限,若极限不存在,说明理由:

Figure 1: 图 1-1

(1)
$$\lim_{x\to 2} f(x)$$

(2)
$$\lim_{x\to -1} f(x)$$

(3)
$$\lim_{x\to 0} f(x)$$

6. 求函数 $f(x) = \frac{x}{x}$, $\varphi(x) = \frac{|x|}{x}$ 当 $x \to 0$ 时的左、右极限,并说明它们当 $x \to 0$ 时的极限是否存在.

四、证明题

7. 根据函数极限的定义,证明: (1) $\lim_{x\to 2} (5x+2) = 12$;

(2)
$$\lim_{x\to\infty} \frac{1+x^3}{2x^3} = \frac{1}{2}$$
.

第四节 无穷小与无穷大 第五节 极限运算法则

一、选择题

- 1. 函数 $f(x) = \frac{x+1}{x^2-1}$ 在()的变化过程中为无穷大
 - A. x -> 0
 - B. \$x -> 1\$
 - C. x -> -1
 - D. $x \rightarrow infinity$

二、计算题

2. 计算下列极限: (1) $\lim_{x\to 1} \frac{x^2-2x+1}{x^2-1}$

(2) $\lim_{h \rightarrow 0} \frac{(x+h)^2 - x^2}{h}$

(3)
$$\lim_{n\to\infty} \left(1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^n}\right)$$

(4)
$$\lim_{n\rightarrow\infty}\frac{(n+1)(n+2)(n+3)}{5n^3}$$

(5)
$$\lim_{x\to 1} \left(\frac{1}{1-x} - \frac{3}{1-x^3}\right)$$

(6)
$$\lim_{x\to 0} x^2 \sin\left(\frac{1}{x}\right)$$

(7)
$$\lim_{x\to\infty} \frac{\arctan x}{x}$$

3. 函数 $y = x \cos x$ 在区间 $(-\infty, +\infty)$ 上是否有界? 这个函数是否为 $x \to +\infty$ 时的无穷大? 为什么?

三、证明题

4. 证明: 函数 $y = \frac{1}{x} \sin(\frac{1}{x})$ 在区间 (0,1] 上无界, 但并不是 $x \to 0^+$ 时的无穷大.

第六节 极限存在准则 两个重要极限

- 1. $\lim_{x\to 0} \frac{\frac{1}{x}\sin x}{\cos x}$ ()
 - A. 1
 - B. ∞
 - C. 不存在
 - D. 0

- 2. $\lim_{x\to\infty} \left(1-\frac{1}{x}\right)^{2x}$ ()
 - A. 2e
 - B. e^{-2}
 - $\mathsf{C.}\ e^2$
 - D. $\frac{2}{e}$

- 二、填空题
- 3. 设 $\lim_{x\to\infty} \left(1+\frac{k}{x}\right)^x = e^3$,则 k =______.

4. 设 $\lim_{x \to \infty} \left(\frac{x+2a}{x-a}\right)^x = 8$,则 a = ______.

三、计算题

5.计算下列极限: (1) $\lim_{x\to 0} x \cot x$;

(2)
$$\lim_{x\to 0} \frac{1-\cos 2x}{x\sin x}$$
;

(3) $\lim_{n\to\infty} 2^n \sin(\frac{x}{2^n})$ (x 为不等于零的常数);

(4) $\lim_{x\to 0} (1-x)^{\frac{1}{x}}$;

(5) $\lim_{x\to 0} (1+x)^{\frac{1}{x}}$

(6) $\lim_{x\to\infty} \left(1-\frac{1}{x}\right)^{kx} (k\in N_+).$

四、证明题

6. 利用极限存在准则,证明:

(1)
$$\lim_{n\to\infty} n\left(\frac{1}{n^2+\pi} + \frac{1}{n^2+2\pi} + \dots + \frac{1}{n^2+n\pi}\right) = 1;$$

(2) 数列
$$\sqrt{2}$$
, $\sqrt{2+\sqrt{2}}$, $\sqrt{2+\sqrt{2}+\sqrt{2}}$, ... 的极限存在;

(3)
$$\lim_{x\to 0} \sqrt[n]{1+x} = 1$$
.

第七节 无穷小的比较

一、填空题

1. 当
$$x \to 0$$
 时, $2x - x^2$ 是 $x^2 - x^3$ 的 ______ 阶无穷小。

2. 设
$$\lim_{x \to 1} \frac{x^2 + ax + b}{1 - x} = 5$$
 , 则 $a = \underline{\hspace{1cm}}$, $b = \underline{\hspace{1cm}}$.

二、计算题

3. 利用等价无穷小的性质,求下列极限: (1) $\lim_{x\to 0} \frac{\tan x - \sin x}{\sin^3 x}$;

(2)
$$\lim_{x\to 0} \frac{\sin x - \tan x}{(\sqrt[3]{1+x^2}-1)(\sqrt{1+\sin x}-1)}$$
.

4. 设
$$\lim_{x \to -1} \frac{x^3 - ax^2 - x + 4}{x + 1} = l(l \neq \infty)$$
 , 试求 a 和 l 的值

三、证明题

5. 证明: 当 $x \to 0$ 时, 有 $\sec x - 1 \sim \frac{x^2}{2}$.

第八节 函数的连续性与间断点

一、填空题

1. 设函数
$$f(x) = \begin{cases} (\frac{1}{x})\sin(\frac{x}{3}) & \text{if } x \neq 0 \\ a & \text{if } x = 0 \end{cases}$$
 在点 $x = 0$ 处连续,则 $a = \underline{\hspace{1cm}}$.

二、计算题

2. 下列函数在指定点处间断,说明这些间断点属于哪一类,如果是可去间断点,那么补充或改变函数的定义使函数在该点处连续:

(1)
$$y = \frac{x^2-1}{x^2-3x+2}$$
; $x = 1, x = 2$;

(2)
$$y = \begin{cases} x-1 & \text{if } x \le 1 \\ 3-x & \text{if } x > 1 \end{cases}$$
 在点 $x = 1$ 处间断.

3. 讨论函数 $f(x) = \lim_{n \to \infty} \frac{1-x^{2n}}{1+x^{2n}}x$ 的连续性, 若有间断点, 则判断其类型.

- 4. 下列陈述中,哪些是对的,哪些是错的?如果是对的,请说明理由;如果是错的,试给出一个反例:
 - (1) 如果函数 f(x) 在点 x = a 处连续, 那么函数 |f(x)| 也在点 x = a 处连续;

(2) 如果函数 |f(x)| 在点 x = a 处连续, 那么函数 f(x) 也在点 x = a 处连续.

第九节 连续函数的运算与初等函数的连续性

- 1. 设函数 $f(x) = \frac{1-2e^{\frac{1}{x}}}{1+e^{\frac{1}{x}}}\arctan(\frac{1}{x})$, 则 x = 0 是 f(x) 的().
 - A. 可去间断点
 - B. 跳跃间断点
 - C. 无穷间断点
 - D. 振荡间断点

- 2. 设函数 $f(x) = \begin{cases} x & \text{if } x \geq 0 \\ 0 & \text{if } x < 0 \end{cases}$ $g(x) = \begin{cases} x + 1 & \text{if } x < 1 \\ x & \text{if } x \geq 1 \end{cases}$ 则 f(x) + g(x) 的连续区间是 ().
 - A. $(-\infty, +\infty)$
 - B. $(-\infty,0) \cup (0,+\infty)$
 - C. $(-\infty, 1) \cup (1, +\infty)$
 - D. $(-\infty, 0) \cup (0, 1) \cup (1, +\infty)$

- 3. 已知当 $x \to 0$ 时, $\sqrt{1-x} \sqrt{1+x} \sim ax$, 则常数 a = (
 - A. 1
 - B. -1

- C. 2
- D. -2

- 4.当 $x \to 1$ 时, 1-x 是 $1-\sqrt[3]{x}$ 的()
- A. 等价无穷小
- B. 高阶无穷小
- C. 同阶无穷小, 但不是等价无穷小
- D. 低阶无穷小

二、填空题

5. 设函数
$$f(x) = \begin{cases} e^x & \text{if } x < 0 \\ a + x & \text{if } x \ge 0. \end{cases}$$
 若 $f(x)$ 在点 $x = 0$ 处连续,则 $a = 0$

三、计算题

6. 求下列极限: (1)
$$\lim_{x\to 1} \frac{\sqrt{5x-4}-\sqrt{x}}{x-1}$$
;

(2)
$$\lim_{x\to a} \frac{\sin x - \sin a}{x-a}$$
;

(3)
$$\lim_{x\to+\infty} \left(\sqrt{x^2+x} - \sqrt{x^2-x}\right)$$

(4)
$$\lim_{x\to 0} \frac{\left(1-\frac{x^2}{2}\right)^{\frac{2}{3}}-1}{x\ln(1+x)}$$
;

(5)
$$\lim_{x\rightarrow 0}\left(1+3\tan^2x\right)^{\cot^2x}$$
 ;

(6)
$$\lim_{x\to+\infty} \left(\frac{3+x}{6+x}\right)^{\frac{x-1}{2}}$$
;

(7)
$$\lim_{x\to 0} \frac{e^{3x}-e^{2x}-e^x+1}{\sqrt[3]{(1-x)(1+x)-1}}$$
.

7.设函数
$$f(x) = \begin{cases} \frac{x^4 + ax + b}{(x-1)(x+2)} & \text{if } x \neq 1 \\ x \neq -2 & \text{if } x = 1 \end{cases}$$
 在点 $x = 1$ 处连续,试求 a, b 的值

四、证明题

8. 设函数 f(x) 与 g(x) 在点 x_0 处连续,证明: $\varphi(x)=\max\{f(x),g(x)\},\psi(x)=\min\{f(x),g(x)\}$ 在点 x_0 处也连续

第十节 闭区间上连续函数的性质

- 一、证明题
- 1. 证明: 方程 $x^5 3x = 1$ 至少有一个根介于 1 和 2 之间.

2. 证明: 方程 $x = a \sin x + b (a > 0, b > 0)$ 至少有一个正根, 并且它不超过 a + b .

3. 设函数 f(x) 在区间 [0,1] 上连续,且对 [0,1] 上任一点 x 有 $0 \le f(x) \le 1$. 试证:在 [0,1] 上必存在一点 c ,使得 f(c) = c (c 称为函数 f(x) 的不动点).

4. 设函数 f(x) 在区间 [a,b] 上连续, $a < x_1 < x_2 < \ldots < x_n < b(n \geq 3)$,证明:在区间 (x_1,x_n) 内至少存在一点 ξ ,使得 $f(\xi) = \frac{f(x_1)+f(x_2)+\ldots+f(x_n)}{n}$.

总习题一

- 1. 当 $x \to 0$ 时, $(1 \cos x)^2$ 是 $\sin^2 x$ 的() .
 - A. 高阶无穷小
 - B. 同阶无穷小, 但不是等价无穷小
 - C. 低阶无穷小
 - D. 等价无穷小

- 2. 设 f(x) 为奇函数,则下列函数中() 也为奇函数.
 - A. f(x) + C, 其中 C 为非零常数
 - B. f(-x) + C, 其中 C 为非零常数
 - C. f(x) + f(-x)
 - D. f[f(x)]

- 3. 设函数 $f(x)=x^2+\arctan\left(\frac{1}{x-1}\right)$,则 x=1是 f(x)的() .
 - A. 可去间断点
 - B. 跳跃间断点
 - C. 无穷间断点
 - D. 振荡间断点

- 二、填空题
- 4. 数列 $\{x_n\}$ 有界是 $\{x_n\}$ 收敛的 _____ 条件

5. 函数 $f(x) = \frac{x-2}{\ln|x-1|}$ 的一个无穷间断点是 _____

三、计算题

8. 求下列极限: (1)
$$\lim_{x\to+\infty}x\left(\sqrt{x^2+1}-x\right)$$

(2)
$$\lim_{x\to\infty} \left(\frac{2x+3}{2x+1}\right)^{x+1}$$

(3)
$$\lim_{x\to 0} \frac{\tan x - \sin x}{x^3}$$

四、证明题

9. 根据函数极限的定义,证明:
$$\lim_{x\to 3} \frac{x^2-x-6}{x-3} = 5$$
.

10. 证明:
$$\lim_{n\to\infty} \left(\frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \dots + \frac{1}{\sqrt{n^2+n}} \right) = 1.$$

11. 证明: 方程 $\sin x + x + 1 = 0$ 在开区间 $(-\frac{\pi}{2}, \frac{\pi}{2})$ 内至少有一个根.

第二章 导数与微分

第一节 导数的概念

- 1. 设函数 f(x) = x(x-1)(x+2)(x-3)...(x+100) , 则 f'(1) = ().
 - A. 101!
 - B. $-\frac{101!}{100}$
 - C. -100!
 - D. $\frac{100!}{99}$

- 2. 设函数 $f(x) = \begin{cases} \frac{1-e^{-x^2}}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$ 则 f'(0) = ().
 - A. 0
 - B. $\frac{1}{2}$
 - C. 1
 - D. -1

二、填空题

3. 设 $f'(x_0)$ 存在,根据导数的定义:

(1)
$$\lim_{\Delta x \rightarrow 0} \frac{f(x_0 - \Delta x) - f(x_0)}{\Delta x} =$$
 ;

(2)
$$\lim_{h\to 0} \frac{f(x_0+h)-f(x_0-h)}{h} =$$

4. 函数
$$y=x^2 \frac{\sqrt[3]{x^2}}{\sqrt{x^5}}$$
 的导数等于

5. 曲线 $y=e^x$ 上点(0,1)处的切线方程为

6.	已知某物体的运动规律为 $s=t^3$ (单位: m), 则该物体在 $t=2$ (单位: s)
	时的速度为

三、计算题

7. 设函数 $f(x) = 10x^2$, 试按导数的定义求 f'(-1) .

8. 求曲线 $y = \cos x$ 上点 $\left(\frac{\pi}{3}, \frac{1}{2}\right)$ 处的切线方程和法线方程

9. 在抛物线 $y=x^2$ 上取横坐标分别为 $x_1=1$ 及 $x_2=3$ 的两点,过这两点作此抛物线的割线。问:该抛物线上哪一点处的切线平行于这条割线?

10. 已知函数 $f(x) = \begin{cases} \sin x & \text{if } x < 0 \\ x & \text{if } x \ge 0 \end{cases}$ 求 f'(x).

11. 讨论函数 $y=\left\{egin{array}{ll} x^2\sin(\frac{1}{x}) & \text{if } x\neq 0 \\ 0 & \text{if } x=0 \end{array} \right.$ 在点 x=0 处的连续性与可导性

第二节 函数的求导法则

一、选择题

- 1. 设在点 x_0 处函数 f(x) 可导, g(x) 不可导,则在点 x_0 处().
 - A. f(x) + g(x) 必可导
 - B. f(x)g(x) 必不可导
 - C. f(x) g(x) 必不可导
 - D. $\frac{f(x)}{g(x)}$ 必可导

二、计算题

2. 求下列函数的导数: (1)
$$y = 2 \tan x + \sec x - 1$$
;

(2)
$$y = \frac{\ln x}{x}$$
;

(3)
$$y = \frac{e^x}{x^2} + \ln 3$$
;

$$(4) y = x^2 \ln x \cos x.$$

3. 求函数 $f(x) = \frac{3}{5-x} + \frac{x^2}{5}$ 在点 x = 0 和点 x = 2 处的导数

4. 求下列函数的导数: (1) $y = \arctan e^x$

(2)
$$y = \arcsin^2 x$$

(3)
$$y = \ln(x + \sqrt{a^2 + x^2})$$
;

(4)
$$y = \ln \tan(\frac{x}{2})$$
;

(5)
$$y = e^{\arctan \sqrt{x}}$$
;

(6)
$$y = e^{-x}(x^2 - 2x + 3)$$
;

(7)
$$y = x \arcsin(\frac{x}{2}) + \sqrt{4 - x^2}$$
.

5. 设函数 f(x) 可导,求函数 $y = f(\sin^2 x) + f(\cos^2 x)$ 的导数 $\frac{dy}{dx}$.

三、证明题

- 6. 设函数 f(x) 满足下列条件:
 - (1) $f(x+y) = f(x)f(y), \forall x, y \in R$,
 - (2) f(x)=1+xg(x) , fin $\lim_{x\to 0}g(x)=1$

试证: f(x) 在 R 上处处可导, 且 f'(x) = f(x)

第三节 高阶导数

一、选择题

- 1. 若函数 $f(x) = \sin(\frac{x}{2}) + \cos 2x$,则 $f^{27}(\pi) = ($).
 - A. 0
 - B. $-\frac{1}{2^{27}}$
 - C. $2^{27} \frac{1}{2^{27}}$
 - D. 2^{27}

二、填空题

2. 设函数 $y = (1 + x^2) \arctan x$, 则 $y'' = \underline{\hspace{1cm}}$

3. 若 f''(x) 存在,函数 $y = \ln f(x)$,则 $\frac{d^2y}{dx^2} =$ _______.

三、计算题

4. 求下列函数的二阶导数: (1) $y = e^{-t} \sin t$

(2)
$$y = \ln(x + \sqrt{1 + x^2})$$
.

5. 设 f''(x) 存在,求函数 $y=f(x^2)$ 的二阶导数 $\frac{d^2y}{dx^2}$.

6. 求下列函数所指定阶的导数: (1) $y = e^x \cos x$, 求 y^4

(2)
$$y = x^2 \sin 2x$$
 , $x y^{50}$.

四、证明题

7. 试从 $d\frac{x}{d}y = \frac{1}{y'}$ 导出:

(1)
$$d^2 \frac{x}{(dy)^2} = -\frac{y''}{(y')^3}$$
;

(2) 第二问求证: 第二阶导数的导数形式

第四节 隐函数及由参数方程所确定的函数的 导数 相关变化率

一、选择题

- 1. 设函数 $y = (1+x)^{\frac{1}{x}}$, 则 y'(1) = ().
 - A. 2
 - B. 8
 - C. $\frac{1}{2} \ln 2$
 - D. $1 \ln 4$

2. 已知曲线 L 的参数方程为 $\begin{cases} x=2(t-\sin t) \\ y=2(1-\cos t) \end{cases}$ 则 L 上点 $t=\frac{\pi}{2}$ 处的切线方程是 ().

A.
$$x + y = \pi$$

B.
$$x - y = \pi - 4$$

C.
$$x - y = \pi$$

D.
$$x + y = \pi - 4$$

二、填空题

3. 设函数 y=y(x) 由方程 $x\sin y+ye^x=0$ 所确定,则 y'(0)=

4. 设函数 y=y(x) 由参数方程 $\begin{cases} x=a\cos^3\varphi \\ y=a\sin^3\varphi \end{cases}$ 所确定,则 $\frac{dy}{dx}=$ _______.

三、计算题

5. 求由方程 $xy = e^{x+y}$ 所确定的隐函数的导数 $\frac{dy}{dx}$.

6. 求曲线 $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$ 上点 $\left(\frac{\sqrt{2}}{4}a,\frac{\sqrt{2}}{4}a\right)$ 处的切线方程和法线方程

7. 求由方程 $y = \tan(x+y)$ 所确定的隐函数的二阶导数 $\frac{d^2y}{dx^2}$.

8. 用对数求导法求函数 $y = \left(\frac{x}{1+x}\right)^x$ 的导数

9. 求由参数方程 $\begin{cases} x=at^2 \\ y=bt^3 \end{cases}$ 所确定的函数的导数 $\frac{dy}{dx}$.

11. 求由下列参数方程所确定的函数的二阶导数
$$\frac{d^2y}{dx^2}$$
 (1) $\begin{cases} x=3e^{-t} \\ y=2e^t \end{cases}$

(2)
$$\begin{cases} x = f'(t) \\ y = tf'(t) - f(t) \end{cases}$$
 设 $f''(t)$ 存在且不为零.

12. 以 4 m³/min 的速率向深 8 m、上顶直径 8 m 的正圆锥形容器中注水, 当水深为 5 m 时,水面上升的速率为多少?

第五节 函数的微分

一、选择题

- 1. 一切初等函数在其定义区间内().
 - A. 可微
 - B. 不可微
 - C. 连续
 - D. 有界

二、填空题

3. $d(\sqrt{x}\arcsin\sqrt{x}) = \underline{\qquad} dx$.

4. 设 f(x) 与 g(x) 都是可导函数,又函数 $y=f[g(2-x^3)]$,则当 $\Delta x\to 0$ 时,无穷小 Δy 关于 Δx 的线性主部为 ______.

三、计算题

5. 求下列函数的微分:

(1)
$$y = x^2 e^{2x}$$
;

(2)
$$y = \ln^2(1-x)$$
;

(3)
$$y = \arcsin \sqrt{1 - x^2}$$
;

(4)
$$y = \tan^2(1 + 2x^2)$$
.

6. 已知 $\begin{cases} x=f'(t) \\ y=tf'(t)-f(t) \end{cases}$ 设 f''(t) 存在且不为零, 求 y 对 x 的微分.

7. 设函数 y = y(x) 由方程 $y^2 f(x) + x f(y) = x^2$ 所确定, 其中 f(x) 是 x 的可微函数, 试求 dy .

8. 计算 ∛996 的近似值

总习题二

一、选择题

- 1. 设函数 $f(x)=(x-a)\varphi(x)$, 其中函数 $\varphi(x)$ 在点 x=a 处连续,则必有 ().
 - A. $f'(x) = \varphi(x)$
 - B. $f'(x) = \varphi(x) + (x a)\varphi'(x)$
 - C. $f'(a) = \varphi(a)$
 - D. $f'(a) = \varphi'(a)$

- 2. 若函数 y=f(x) 有 $f'(x_0)=\frac{1}{2}$,则当 $\Delta x\to 0$ 时该函数在点 $x=x_0$ 处的微分 dy 是 Δx 的 ().
 - A. 同阶无穷小, 但不是等价无穷小
 - B. 等价无穷小
 - C. 低阶无穷小
 - D. 高阶无穷小

二、填空题

3. 设函数
$$s=e^{-t}\cos 3t+\sin 1$$
 ,则 $\frac{ds}{dt}=$ ______

4. 设函数
$$y=2^{\ln \tan x}$$
 ,则 $dy=$ ______

5. 设函数
$$y=\frac{x}{1-2\sin x}-\ln(4-x)$$
 ,则 $y'\mid_{x=\pi}=$ _______

6. 曲线
$$y = 2x^3 - 5x^2 + 4x - 5$$
 上点 $(2, -1)$ 处的法线方程是 _____

7. 设 f(x) 是可导函数, Δx 是自变量在点 x 处的增量,则有 $\lim_{\Delta x \to 0} \frac{f^2(x+\Delta x)-f^2(x)}{\Delta x} =$ _____

三、计算题

8. 讨论函数 $f(x) = \begin{cases} x \sin(\frac{1}{x}) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$ 在点 x = 0 处的连续性与可导性

9. 求函数 $y = \arctan(\frac{1+x}{1-x})$ 的导数

10. 求函数 $y = \cos^2 x \ln x$ 的二阶导数

11. 设函数 y=y(x) 由方程 $e^y+xy=e$ 所确定,求 y''(0) .

12. 求由参数方程 $\begin{cases} x=\ln\sqrt{1+t^2} \\ y=\arctan t \end{cases}$ 所确定的函数的一阶导数 $\frac{dy}{dx}$ 及二阶导数 $\frac{d^2y}{dx^2}$.

第三章 微分中值定理与导数的 应用

第一节 微分中值定理

一、选择题

1.	设函数 $f(x) = \sin x$	在区间	$[0,\pi]$	上满足罗尔	中值定理	的条件,	则罗尔中
	值定理结论中的 ξ =	= ()	•				

- Α. π
- B. $\frac{\pi}{2}$
- C. $\frac{\pi}{3}$
- D. $\frac{\pi}{4}$

2. 下列函数中在区间
$$[1,e]$$
 上满足拉格朗日中值定理条件的是 $($ $)$.

- A. $\ln x$
- B. $\ln \ln x$
- C. $\frac{1}{\ln}x$
- D. ln(2-x)

二、填空题

3. 设函数 f(x)=(x-1)(x-2)(x-3)(x-5) ,则 f'(x)=0 有 ______ 个实根,分别位于区间 _____ 中。

三、证明题

4. 证明恒等式: $\arcsin x + \arccos x = \frac{\pi}{2}(-1 \le x \le 1)$.

5. 若函数 f(x) 在区间 (a,b) 内具有二阶导数,且 $f(x_1)=f(x_2)=f(x_3)$,其中 $a < x_1 < x_2 < x_3 < b$,证明:在区间 (x_1,x_3) 内至少存在一点 ξ ,使得 $f''(\xi)=0$.

6. 设 a>b>0 , 证明: $\frac{a-b}{a}<\ln\left(\frac{a}{b}\right)<\frac{a-b}{b}$

第二节 洛必达法则

一、选择题

1. 下列式子中运用洛必达法则正确的是()

A.
$$\lim_{n\to\infty} \sqrt[n]{n} = e^{\lim_{n\to\infty} \frac{\ln n}{n}} = e^{\lim_{n\to\infty} \left(\frac{1}{n}\right)} = 1$$

$$\text{B. } \lim_{x\to 0} \tfrac{x+\sin x}{x-\sin x} = \lim_{x\to 0} \tfrac{1+\cos x}{1-\cos x} = \infty$$

C.
$$\lim_{x\to 0} \frac{x^2\sin(\frac{1}{x})}{\sin x} = \lim_{x\to 0} \frac{2x\sin(\frac{1}{x})-\cos(\frac{1}{x})}{\cos x}$$
 不存在

D.
$$\lim_{x\to 0} \frac{x}{e^x} = \lim_{x\to 0} \frac{1}{e^x} = 1$$

2. 下列式子中,极限存在但不能用洛必达法则计算的是()

A.
$$\lim_{x\to 0} x^2(\sin x)$$

B.
$$\lim_{x\to 0^+} \left(\frac{1}{x}\right)^{\tan x}$$

C.
$$\lim_{x\to\infty} \frac{x+\sin x}{x}$$

D.
$$\lim_{x\to+\infty} \frac{x^n}{e^x}$$

二、填空题

3.
$$\lim_{x \to \frac{\pi}{2}} \frac{\cos 5x}{\cos 3x} =$$

4. $\lim_{x\to+\infty} \frac{\ln(1+\frac{1}{x})}{\arctan x} = \underline{\hspace{1cm}}$

三、计算题

5. 用洛必达法则计算下列极限: (1) $\lim_{x\to 0} \frac{e^x-e^{-x}}{\sin} x$;

(1)
$$\lim_{x\to 0} \frac{e^x - e^{-x}}{\sin} x$$
;

(2)
$$\lim_{x\to 0^+} \frac{\ln(\tan 7x)}{\ln(\tan 2x)}$$
;

(3)
$$\lim_{x\to 0} \frac{\ln(1+x^2)}{\sec x - \cos x}$$
;

(4)
$$\lim_{x\to 0} x^2 e^{\frac{1}{x^2}}$$
;

(5)
$$\lim_{x\rightarrow 1}\!\left(\frac{2}{x^2-1}-\frac{1}{x-1}\right)$$
 ;

(6)
$$\lim_{x\to 0^+} x^{\sin x}$$

(7)
$$\lim_{x\to 1^-}(1-x)\tan\bigl(\pi\frac{x}{2}\bigr)$$
;

(8) $\lim_{x\to 0^+} \left(\frac{1}{x}\right)^{\tan x}$.

第三节 泰勒公式

一、选择题

- 1. 已知 $\cos x = 1 \frac{x^2}{2} + R_3(x)$, 则 $R_3(x) = ($).
 - A. $\frac{\sin \xi}{3!}x^3$
 - B. $-\frac{\sin \xi}{3!}x^3$
 - C. $\frac{\cos \xi}{4!}x^4$
 - D. $-\frac{\cos \xi}{4!}x^4$

- 2. 函数 f(x) 的泰勒展开式 $f(x) = \sum_{k=0}^n a_k (x-x_0)^k + R_{n(x)}$ 中拉格朗日余 项 $R_{n(x)} = ($).
 - A. $f^{n+1} \frac{\theta x}{(n+1)!} (x x_0)^{n+1} \ (0 < \theta < 1)$
 - B. $f^{n+1} \frac{x_0 + \theta x}{(n+1)!} (x x_0)^{n+1} \ (0 < \theta < 1)$
 - C. $f^{n+1} \frac{x_0 + \theta(x x_0)}{(n+1)!} (x x_0)^n \ (0 < \theta < 1)$

D.
$$f^{n+1} \frac{x_0 + \theta(x - x_0)}{(n+1)!} (x - x_0)^{n+1} \ (0 < \theta < 1)$$

二、计算题

3. 求函数 $f(x) = \sqrt{x}$ 按 (x-4) 的幂展开的带有拉格朗日余项的三阶泰勒公式

4. 求函数 $f(x) = \frac{1}{x}$ 按 (x+1) 的幂展开的带有拉格朗日余项的 n 阶泰勒公式

5. 求函数 $f(x) = xe^x$ 带有佩亚诺余项的 n 阶麦克劳林公式

6. 应用三阶泰勒公式求 ∛30 的近似值,并估计误差

7. (附加题)利用泰勒公式求下列极限: (1)
$$\lim_{x\to 0} \frac{\cos x - e^{-\frac{x^2}{2}}}{x^2[x + \ln(1-x)]}$$
;

(2)
$$\lim_{x\to\infty} \left[x - x^2 \ln\left(1 + \frac{1}{x}\right)\right]$$
.

第四节 函数的单调性与曲线的凹凸性

一、选择题

- 1. 设函数 f(x), g(x) 在区间 [a,b] 上可导,且 f'(x) > g'(x) ,则在 (a,b) 内有 ().
 - A. f(x) g(x) > 0
 - B. $f(x) g(x) \ge 0$
 - C. f(x) g(x) > f(b) g(b)
 - D. f(x) g(x) > f(a) g(a)

- 2. 设函数 f(x) = |x(1-x)|,则().
 - A. x=0 是 f(x) 的极值点,但 (0,0) 不是曲线 y=f(x) 的拐点
 - B. x=0 不是 f(x) 的极值点,但 (0,0) 是曲线 y=f(x) 的拐点
 - $C. \ x = 0$ 是 f(x) 的极值点,且 (0,0) 是曲线 y = f(x) 的拐点
 - D. x=0 不是 f(x) 的极值点, (0,0) 也不是曲线 y=f(x) 的拐点

- 3. 曲线 $y = (x-1)^2(x-3)^2$ 的拐点个数是 ().
 - A. 0
 - B. 1
 - C. 2

D. 3

二、填空题

4. 函数 $y = \frac{10}{4x^3 - 9x^2 + 6x}$ 的单调增加区间是 ______

5. 曲线 $y=xe^{-x}$ 的凹区间是 _____

三、计算题

7. 判定函数 $f(x) = x + \cos x$ 的单调性

8. 求下列函数的单调区间:

(1)
$$y = 2x^3 - 6x^2 - 18x - 7$$
;

(2)
$$y = \sqrt[3]{(2x-a)(a-x)^2}$$
 ($a > 0$).

9. 求下列函数曲线的拐点及凹凸区间:

(1)
$$y = x^3 - 5x^2 + 3x + 5$$
;

(2)
$$y = \ln(x^2 + 1)$$
.

10. 试确定曲线 $y=ax^3+bx^2+cx+d$ 中的 a,b,c,d ,使得 x=-2 处曲 线有水平切线,(1,-10) 为其拐点,且点 (-2,44) 在曲线上.

四、证明题

11. 证明下列不等式:

(1)
$$\exists x > 0$$
 时, $1 + \frac{x}{2} > \sqrt{1+x}$;

(2) 当
$$0 < x < \frac{\pi}{2}$$
 时, $\sin x + \tan x > 2x$.

第五节 函数的极值与最大值最小值

这节什么都没有~

第六节 函数图形的描绘

一、选择题

1. 已知函数 $f(x) = x^4 + ax^2 + bx$ 在点 x = 1 处有极值 -2, 则常数 a, b 的值为 ().

A.
$$a = -2, b = 1$$

B.
$$a = 1, b = -1$$

C.
$$a = 0, b = -3$$

D.
$$a = -1, b = -2$$

2. 函数 y = f(x) 在点 x_0 处连续且取得极大值,则().

A.
$$f'(x_0) = 0$$

B.
$$f''(x_0) < 0$$

C.
$$f'(x_0) = 0$$
 且 $f''(x_0) < 0$

D.
$$f'(x_0) = 0$$
 或不存在

- 3. 已知 $\lim_{x\to a} \frac{f(x)-f(a)}{x-a} = -1$,则在点 x=a 处 ().
 - A. 函数 f(x) 的导数存在且 $f'(a) \neq 0$
 - B. 函数 f(x) 取得极小值
 - C. 函数 f(x) 取得极大值
 - D. 函数 f(x) 的导数不存在

- 4. 曲线 $y = \frac{x^2}{1+x}$ 的渐近线有 ().
 - A. 2条
 - B. 3条
 - C. 4条
 - D. 5 条

- 二、填空题
- 5. 已知函数 $f(x) = \frac{x^2}{1+x^2}$, 其极大值为 _______, 极小值为 _______.

6. 已知函数 $y = x + \sqrt{1-x}$, 在区间 [-5,1] 上,它的最大值为 _______,最小值为 ______.

三、计算题

7. 求下列函数的极值:

(1)
$$y = x - \ln(1+x)$$
;

(2)
$$y = 3 - 2(x+1)^{\frac{1}{3}}$$
.

8. 问:函数 $y = x^2 - \frac{54}{x}(x < 0)$ 在何处取得最小值?

9. 描绘下列函数的图形:

(1)
$$y = \frac{1}{5}(x^4 - 6x^2 + 8x + 7)$$
;

(2)
$$y = x^2 + \frac{1}{x}$$
.

四、应用题

10. 要造一圆柱形油罐, 体积为 V, 问: 底半径 r 和高 h 各等于多少时, 才能使表面积最小? 这时底直径与高的比是多少?

11. 一房产公司有 50 套公寓要出租。当月租金定为 4000 元时,公寓可以全部租出去,月租金每增加 200 元,就会多一套公寓租不出去,而租出去的公寓平均每月需花费 400 元的维修费。试问: 月租金定为多少时可获得最大收入?

第七节 曲率

一、填空题

1. 曲线 $y = x^2 + e^{x^2}$ 在点(0,1)处的曲率为 _______, 曲率半径为 ______

2. 抛物线 $y = x^2 - 4x + 4$ 在其顶点处的曲率为 ________,曲率半径为

二、计算题

3. 求椭圆 $4x^2 + y^2 = 4$ 在点(0,2)处的曲率

4. 求曲线 $\begin{cases} x=a\cos^3t \\ y=a\sin^3t \end{cases}$ 在点 $t=t_0$ 处的曲率

三、应用题

5. 一飞机沿抛物路径 $y = \frac{x^2}{10000}$ (y 轴铅直向上, 单位: m) 做俯冲飞行. 在坐标原点 O 处飞机速度为 $v = 200\frac{m}{s}$. 飞行员体重 G = 70kg . 求飞机俯冲至最低点即坐标原点 O 处时座椅对飞行员的作用力.

总习题三

一、选择题

- 1. 设在区间 [0,1] 上 f''(x) > 0 ,则下列判断正确的是().
 - A. f'(1) > f'(0) > f(1) f(0)
 - B. f'(1) > f(1) f(0) > f'(0)
 - C. f(1) f(0) > f'(1) > f'(0)
 - D. f'(1) > f(0) f(1) > f'(0)

- 2. 设 $f'(x_0) = f''(x_0) = 0, f'''(x_0) > 0$, 则().
 - A. $f'(x_0)$ 是 f'(x) 的极大值
 - B. $f(x_0)$ 是 f(x) 的极大值
 - $C. f(x_0)$ 是 f(x) 的极小值
 - D. $(x_0, f(x_0))$ 是曲线 y = f(x) 的拐点

二、填空题

3. 函数 $y = \ln \sin x$ 在区间 $\left[\frac{\pi}{6}, \frac{5\pi}{6}\right]$ 上满足罗尔中值定理的 ξ 值是

4.
$$\lim_{x\to 0} \frac{e^x + e^{-x} - 2}{x^2} = \underline{\hspace{1cm}}$$

5.曲线 $y=xe^{-x}$ 的拐点是 $(2,2e^{-2})$,凸区间是 $(-\infty,2)$,凹区间是

6. 函数 $f(x)=8\ln x-x^2$ 在区间 $(0,+\infty)$ 上的最大值是 ______

7. 曲线 $f(x) = \frac{e^x}{x+1}$ 的渐近线为 _____

8.抛物线 $y = x^2 - 4x + 3$ 在其顶点处的曲率为 ______

三、计算题

- 9. 求下列极限: (1) $\lim_{x\to 1} \frac{x-x^x}{1-x+\ln x}$;

(2) $\lim_{x\to+\infty} \left(\left(\frac{2}{\pi}\right) \arctan x\right)^x$.

- 10. 求下列函数在指定点处具有指定阶数及余项的泰勒公式:
 - (1) $f(x) = \arctan x, x_0 = 0, n = 3$, 佩亚诺余项;

(2) $f(x)=x^3\ln x, x_0=1, n=4$,拉格朗日余项

11. 设 a>1 ,函数 $f(x)=a^x-ax$ 在区间 $(-\infty,+\infty)$ 上的驻点为 x(a) . 问: a 为何值时, x(a) 最小? 并求出最小值.

12. 曲线弧 $y = \sin x (0 < x < \pi)$ 上哪一点处的曲率半径最小? 求出该点处的曲率半径.

13. 试确定常数 a,b , 使得 $f(x)=x-(a+b\cos x)\sin x$ 为当 $x\to 0$ 时关于 x 的五阶无穷小。

四、证明题

14. 设
$$a_0+\frac{a_1}{2}+\frac{a_2}{3}+...+\frac{a_n}{n+1}=0$$
 , 证明: 多项式
$$f(x)=a_0+a_1x+a_2x^2+...+a_nx^n$$

在区间(0,1)内至少有一个零点.

15. 证明: 当 $e < a < b < e^2$ 时, $\ln^2 b - \ln^2 a > \left(\frac{4}{e^2}\right)(b-a)$.

第四章 不定积分

第一节 不定积分的概念与性质

- 一、判断题(如果错误,请加以改正)
- 1. 有界函数一定存在原函数. ().

2. 设函数 f(x) 的原函数存在, k 为任意常数,则 $\int kf(x)\,\mathrm{d}x=k\int f(x)\,\mathrm{d}x.$

3. 设 F'(x) = f(x) , 则 $\left[\int dF(x) \right]' = f(x) + C$. ().

二、计算题

4. 计算下列不定积分:

(1)
$$\int \frac{\mathrm{d}x}{x^2\sqrt{x}} = \int x^{-\frac{5}{2}} \,\mathrm{d}x = -2x^{-\frac{3}{2}} + C$$

(2)
$$\int x^2 \sqrt[3]{x} \, dx = \int x^{\frac{7}{3}} \, dx = \frac{3}{10} x^{\frac{10}{3}} + C$$
;

(3)
$$\int \frac{1+\sin 2x}{\cos x+\sin x} \, \mathrm{d}x = \int \frac{\sin^2 x+\cos^2 x+2\sin x\cos x}{\cos x+\sin x} \, \mathrm{d}x = \int (\sin x+\cos x) \, \mathrm{d}x = \sin x - \cos x + C \; ;$$

(4)
$$\int \frac{x^4}{1+x^2} dx = \int \left[x^2 - 1 + \frac{1}{1+x^2} \right] dx = \frac{x^3}{3} - x + \arctan x + C$$
;

(5)
$$\int \frac{\cos 2x}{\cos^2 x \sin^2 x} dx = \int \frac{\cos^2 x - \sin^2 x}{\cos^2 x \sin^2 x} dx = \int (\sec^2 x - \csc^2 x) dx = \tan x + \cot x + C$$
;

(6)
$$\int \frac{3 \cdot 2^x - 2 \cdot 3^x}{3^x} \, \mathrm{d}x = \int \left[3 \left(\frac{2}{3} \right)^x - 2 \right] \, \mathrm{d}x = -3 \frac{\left(\frac{2}{3} \right)^x}{\ln \left(\frac{3}{2} \right)} - 2x + C.$$

5. 一曲线过点 $(e^2,3)$,且该曲线在任一点处的切线斜率等于该点横坐标的 倒数,求该曲线的方程.

6. 已知函数 F(x) 的导函数为 $\frac{1}{\sqrt{1-x^2}}$,且当 x=1 时函数值为 $\frac{3\pi}{2}$,试求此函数。

三、证明题

7. 证明: $\arcsin(2x-1)$, $\arccos(1-2x)$ 和 $2\arctan\sqrt{\frac{x}{1-x}}$ 都是 $\frac{1}{\sqrt{x-x^2}}$ 的原 函数.

第二节 换元积分法(1)

- 一、判断题(如果错误,请加以改正)
- 1. 因 $\int \cos x \, dx = \sin x + C$, 故 $\int \cos 2x \, dx = \sin 2x + C$.

2. 若 $\int f(x) dx = F(x) + C$, 则 $\int f(u) dx = F(u) + C$.

- 二、填空题
- 3. 将合适的函数填入下列空格中:
 - (1) _____ dif x = dif(a x + b);
 - (2) dif $\underline{} = x \text{ dif } x;$
 - (3) dif $_{---} = (1/x)$ dif x;

- (4) dif $\underline{\hspace{1cm}} = \cos x \operatorname{dif} x$;
- (5) dif $\underline{\hspace{1cm}} = \sin x \operatorname{dif} x$;
- (6) dif _____ = $e^{(2x)}$ dif x ;
- (7) dif $\underline{} = 1/sqrt(x)$ dif x;
- (8) dif _____ = $1/x^2$ dif x .

三、计算题

4. 计算下列不定积分: (1)
$$\int \frac{\mathrm{d}x}{(3x-2)^2}$$
;

(2)
$$\int \frac{x}{\sqrt{1+x^2}} \, \mathrm{d}x \; ;$$

(3)
$$\int \frac{3x^3}{1-x^4} \, \mathrm{d}x$$
;

(4)
$$\int \frac{\mathrm{d}x}{x \ln x \ln \ln x}$$
;

$$(5) \int \cos^3 x \, \mathrm{d}x$$

(6)
$$\int \frac{\mathrm{d}x}{e^x + e^{-x}};$$

(7)
$$\int \frac{e^{\arctan x}}{1+x^2} \, \mathrm{d}x.$$

5.(附加题)计算下列不定积分:

(1)
$$\int \frac{x}{x^2 + 2x + 2} \, \mathrm{d}x \; ;$$

(2)
$$\int \frac{\cos x}{\sin x + \cos x} \, \mathrm{d}x.$$

第二节 换元积分法(2)

一、填空题

- 1. 如果被积函数中含有 $\sqrt{a^2-x^2}$,可做代换将根式化去,此时 $\mathrm{d}x=$ ______,其中 $x=a\sin t$
- 2. 如果被积函数中含有 $\sqrt{a^2+x^2}$,可做代换将根式化去,此时 $\mathrm{d}x=$ _______,或 $a\cosh t\,\mathrm{d}t$
- 3. 如果被积函数中含有 $\sqrt{x^2-a^2}$,可做代换将根式化去,此时 $\mathrm{d}x=$ ______,或 $a\sinh t\,\mathrm{d}t$

二、计算题

4. 计算下列不定积分: (1) $\int \frac{dx}{x\sqrt{1+x^2}}$;

(2) $\int \sin \sqrt{x} \, \mathrm{d}x$;

(3)
$$\int \frac{x^2}{\sqrt{a^2-x^2}} \, \mathrm{d}x$$
;

(4)
$$\int \frac{\mathrm{d}x}{1+\sqrt{2x}}$$
;

(5)
$$\int \frac{\mathrm{d}x}{\sqrt{(x^2+1)^3}}$$
;

(6)
$$\int \frac{\mathrm{d}x}{x + \sqrt{1 - x^2}};$$

$$(7) \int \frac{\sqrt{x^2-4}}{x} \, \mathrm{d}x_{\circ}$$

5.(附加题)计算下列不定积分: (1) $\int \frac{x^3+1}{(x^2+1)^2} dx$;

(2)
$$\int \frac{dx}{x^{100}+x}$$
 •

第三节 分部积分法

- 一、简答题
- 1. 写出不定积分的分部积分公式及其推导过程(作业讲评时随机点名答辩).

二、计算题

2. 计算下列不定积分:

$$(1) \int x e^{-x} \, \mathrm{d}x$$

(2) $\int x \cos\left(\frac{x}{3}\right) dx$;

(3)
$$\int x^2 \cos x \, \mathrm{d}x;$$

 $(4) \int x^3 \ln^2 x \, \mathrm{d}x;$

(5) $\int \arcsin^2 x \, \mathrm{d}x$;

(6) $\int \cos \ln x \, \mathrm{d}x$;

$$(7) \int e^{\sqrt{3x+9}} \, \mathrm{d}x.$$

3. 设函数 f(x) 的一个原函数是 $\frac{\sin x}{x}$, 求 $\int x f'(x) \, \mathrm{d}x$.

4.(附加题)综合所学积分方法, 计算下列不定积分:

(1)
$$\int \frac{\ln(2+\sqrt{x})}{x+2\sqrt{x}} \, \mathrm{d}x;$$

(2)
$$\int \frac{\arctan e^x}{e^{2x}} \, \mathrm{d}x.$$

第四节 有理函数的积分

- 一、判断题(如果错误,请加以改正)
- 1.有理函数也称为有理分式,整式也是有理分式的一种()
- 2.有理分式 $\frac{x^3+x^2-x-1}{2x^3+3x^2+6x}$ 是真分式 ()

3. $\diamondsuit t=\tan(\frac{x}{2})$,则 $\int \frac{\tan x}{\sin x+\cos x-1}\,\mathrm{d}x=\int \frac{A}{(1-t)(1-t^2)}\,\mathrm{d}t$ 中 A=-2 ()

4. 在计算三角函数有理式的不定积分 $\int R(\sin x,\cos x)\,\mathrm{d}x$ 时,一般使用变换 $t=\tan(\frac{x}{2})$ ()

5.所有连续函数均存在初等函数的原函数()

- 二、计算题
- 6. 计算下列不定积分: (1) $\int \frac{x^3}{x+3} dx$;

(2)
$$\int \frac{2x+3}{x^2+3x-10} \, \mathrm{d}x$$
;

(3)
$$\int \frac{x+1}{x^2+2x+5} \, \mathrm{d}x$$
;

(4)
$$\int \frac{\mathrm{d}x}{x(x^2+1)} ;$$

(5)
$$\int \frac{\mathrm{d}x}{(x^2+1)(x^2+x+1)}$$
;

(6)
$$\int \frac{\mathrm{d}x}{3+\sin^2 x} .$$

7.(附加题)试用两种方法计算不定积分 $\int \frac{\mathrm{d}x}{\sin 2x + 2\sin x}$

总习题四

- 一、选择题
- 1. 若函数 f(x) 在区间 (a,b) 内连续,则在 (a,b) 内 f(x) ().
 - A. 必有导函数
 - B. 必有原函数
 - C. 必有界
 - D. 必有极限

- 2. 若 $F'(x)=f(x), \varphi'(x)=f(x)$, 则 $\int f(x)\,\mathrm{d}x=($) .
 - A. F(x)
 - B. $\varphi(x)$
 - C. $\varphi(x) + C$
 - D. $F(x) + \varphi(x) + C$

- 3.下列式子中正确的是()
- A. $d[\int f(x) dx] = f(x)$
- $\mathsf{B.}\ \tfrac{\mathrm{d}[\int f(x)\,\mathrm{d}x]}{dx} = f(x)\,\mathrm{d}x$
- C. $\int df(x) = f(x)$
- $D. \int df(x) = f(x) + C$

- 4. 设函数 $f(x)=e^{-x}$, 则 $\int rac{f(\ln x)}{x}\,\mathrm{d}x=($) .
 - A. $\frac{1}{x} + C$
 - B. $\ln x + C$

C.
$$-\frac{1}{x} + C$$

$$D. - \ln x + C$$

$$5. \int \frac{\mathrm{d}x}{\sqrt{x(1-x)}} = ()$$

- A. $\frac{1}{2} \arcsin \sqrt{x} + C$
- B. $\arcsin \sqrt{x} + C$
- C. $2\arcsin(2x-1)+C$
- $\mathsf{D.}\ \arcsin(2x-1) + C$

二、填空题

6.
$$\int (1 - \sin^2(\frac{x}{2})) dx =$$

7. 若 e^x 是函数 f(x) 的一个原函数, 则 $\int x^2 f(\ln x) dx =$ ______.

8. 设 F'(x)=f(x) , 则 $\int f(ax+b)\,\mathrm{d}x=$ ______.

9. 设 $\int x f(x) dx = \arcsin x + C$,则 $\int \frac{dx}{f(x)} =$ ______.

10. 若 $\int x f(x) dx = x \sin x - \int \sin x dx$, 则 f(x) = ______.

三、计算题

- 11. 计算下列不定积分:
 - (1) $\int \cos \sqrt{x} \, \mathrm{d}x$;

(2) $\int \frac{\sin 2x}{\cos^4 x - \sin^4 x} \, \mathrm{d}x;$

(3) $\int \frac{\mathrm{d}x}{\cos^2 x \sqrt[4]{\tan x}} ;$

(4) $\int \frac{x \ln(1+x^2)}{1+x^2} dx$.

12. 设函数 $f(\sin^2 x) = \frac{x}{\sin x}$, 求 $\int \frac{\sqrt{x}}{\sqrt{1-x}} f(x) dx$.

13. 已知函数 f(x) 的一个原函数为 $\ln^2 x$, 求 $\int x f'(x) \, \mathrm{d}x$.

第五章 定积分

- 一、判断题(如果错误, 请加以改正)
- 1. $\frac{d\int_a^b f(x) \, \mathrm{d}x}{dx} = f(x)$ ().

2. 定积分的定义中," $\lambda \to 0$ "可以换成" $n \to \infty$ ". ().

3. 交换定积分的上下限,定积分的值不变.().

4. 若等式 $\int_a^b f(x) \, \mathrm{d}x = \int_a^c f(x) \, \mathrm{d}x + \int_c^b f(x) \, \mathrm{d}x$ 成立,则必有 a < c < b. ().

第一节 定积分的概念与性质

一、判断题(如果错误,请加以改正)

1.
$$\frac{d\int_a^b f(x) \, \mathrm{d}x}{dx} = f(x) \quad ()$$

- 2. 定积分的定义中, " $\lambda \to 0$ "可以换成" $n \to \infty$ ". ()
- 3.交换定积分的上下限,定积分的值不变.()
- 4.若等式 $\int_a^b f(x) \, \mathrm{d}x = \int_a^c f(x) \, \mathrm{d}x + \int_c^b f(x) \, \mathrm{d}x$ 成立,则必有 a < c < b.

二、计算题

- 5. $\c y \int_{-1}^{1} 3f(x) dx = 18, \int_{-1}^{3} f(x) dx = 4, \int_{-1}^{3} g(x) dx = 3, \ \ \c x :$
 - (1) $\int_{-1}^{1} f(x) dx = \frac{18}{3} = 6;$
 - (2) $\int_{1}^{3} f(x) dx = \int_{-1}^{3} f(x) dx \int_{-1}^{1} f(x) dx = 4 6 = -2$;
 - (3) $\int_{3}^{-1} g(x) dx = -\int_{-1}^{3} g(x) dx = -3$;
 - (4) $\int_{-1}^{3} \left(\frac{1}{5}\right) [4f(x) + 3g(x)] dx = \left(\frac{1}{5}\right) [4 \times 4 + 3 \times 3] = \frac{25}{5} = 5.$
- 6. 利用定积分的几何意义, 求下列定积分的值(要求作图):
 - (1) $\int_0^t (2x+1) dx = t^2 + t$;
 - (2) $\int_{-1}^{2} |x-1| \, \mathrm{d}x = \frac{(1-(-1))^2}{2} + \frac{(2-1)^2}{2} = 2 + \frac{1}{2} = \frac{5}{2}$;
 - (3) $\int_{-3}^{3} \sqrt{9 x^2} \, \mathrm{d}x = \frac{\pi \times 3^2}{2} = 9\frac{\pi}{2}$ (半圆面积).

7. 估计下列定积分的值:

- (1) $\int_{\frac{\pi}{4}}^{5\frac{\pi}{4}} (1+\sin^2 x) \, \mathrm{d}x$; 当 $x \in \left[\frac{\pi}{4}, 5\frac{\pi}{4}\right]$ 时, $1 \le 1+\sin^2 x \le 2$,所以 $\pi \le I < 2\pi$
- (2) $\int_2^0 e^{x^2-x} dx$. 这是负积分, $= -\int_0^2 e^{x^2-x} dx$
- 8. (附加题)利用定积分的定义计算定积分 $\int_0^1 e^x dx$.

三、证明题

9. (附加题)我们知道,当 a>0 时, $ax^2+bx+c\geq 0$ 恒成立 $\Leftrightarrow b^2-4ac\leq 0$. 试用此结论证明: 若函数 f(x) 在区间 [0,1] 上连续,则 $\int_0^1 f^2(x)\,\mathrm{d}x\geq \left(\int_0^1 f(x)\,\mathrm{d}x\right)^2\,.$

第二节 微积分基本公式

一、计算题

1.计算下列导数: (1) $\frac{d}{dx} \int_0^{x^2} \sqrt{1+t^2} \, dt$;

(2)
$$\frac{d}{dx} \int_{x^2}^{x^3} \frac{dt}{\sqrt{1+t^4}}$$
;

(3) $\frac{d}{dx} \int_{\sin x}^{\cos x} \cos(\pi t^2) dt$.

2. 求下列极限:

(1)
$$\lim_{x\to 0} \frac{\int_0^x \cos t^2 dt}{x}$$
;

(2)
$$\lim_{x\to 0} \frac{\left(\int_0^x e^{t^2} dt\right)^2}{\int_0^x te^{2t^2} dt}$$
;

(3)
$$\lim_{x\to+\infty} \frac{\int_0^x \arctan^2 t \, \mathrm{d}t}{\sqrt{x^2+1}}$$
.

3. 计算下列定积分:

(1)
$$\int_0^{\sqrt{3}a} \frac{\mathrm{d}x}{a^2+x^2}$$
;

(2)
$$\int_{-1}^{0} \frac{3x^4 + 3x^2 + 1}{x^2 + 1} \, \mathrm{d}x$$
;

$$(3) \int_0^{2\pi} |\sin x| \, \mathrm{d}x;$$

(4)
$$\int_0^2 f(x) \, \mathrm{d}x$$
 , 其中 $f(x) = \begin{cases} x+1 & \text{if } x \le 1 \\ \frac{1}{2}x^2 & \text{if } x > 1 \end{cases}$

(5) $\int_0^2 \max\{x^2, x^3\} dx$.

4. 设函数 y = f(x) 具有三阶连续导数,其部分图形如图 5-1 所示,试确定下列定积分的符号:

Figure 2: 图 5-1

(1) $\int_{-3}^{2} f(x) dx$;

(2) $\int_{-3}^{2} f'(x) dx$;

(3)
$$\int_{-3}^{2} f''(x) dx$$
;

(4)
$$\int_{-3}^{2} f'''(x) dx$$
.

第三节 定积分的换元积分法和分部积分法

一、判断题(如果错误,请加以改正)

1.
$$\int_{1}^{2} \frac{\mathrm{d}x}{(11+5x)^{3}} \stackrel{[u=11+5x]}{=} \frac{1}{5} \int_{1}^{2} \frac{\mathrm{d}u}{u^{3}} = \frac{1}{5} \cdot \left(-\frac{1}{2}u^{-2} \mid_{1}^{2} \right) = \frac{3}{40} \ ()$$

2.
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^2 \sqrt{1-\cos^2 x} \, \mathrm{d}x = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^2 \sin x \, \mathrm{d}x$$
,由于 $x^2 \sin x$ 是奇函数,因此有

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^2 \sqrt{1 - \cos^2 x} \, \mathrm{d}x = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^2 \sin x \, \mathrm{d}x = 0 \quad ()$$

二、计算题

3. 计算下列定积分: (1)
$$\int_{-\sqrt{2}}^{\sqrt{2}} \sqrt{2-x^2} \, dx$$
;

(2)
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos x \cos 2x \, dx$$
;

(3)
$$\int_{1}^{\sqrt{3}} \frac{\mathrm{d}x}{x^2 \sqrt{1+x^2}}$$
;

(4)
$$\int_1^4 \frac{\mathrm{d}x}{1+\sqrt{x}} \; ;$$

(5)
$$\int_1^{e^2} \frac{\mathrm{d}x}{x\sqrt{1+\ln x}};$$

(6)
$$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{x}{\sin^2 x} \, \mathrm{d}x$$
;

(7)
$$\int_0^1 x \arctan x \, \mathrm{d}x$$
;

$$(8) \int_1^4 \frac{\ln x}{\sqrt{x}} \, \mathrm{d}x.$$

4. 设函数
$$f(x) = x - \int_0^\pi f(x) \cos x \, \mathrm{d}x$$
 , 求 $f(x)$.

5.(附加题)设函数
$$f(x) = \int_1^{x^2} \frac{\sin t}{t} dt$$
 , 求 $\int_0^1 x f(x) dx$.

第四节 反常积分

- 一、判断题(如果错误,请加以改正)
- 1. 已知 $\sin x$ 是奇函数,则 $\int_{-\infty}^{+\infty} \sin x \, dx = 0$ ()

2.
$$\int_{-\infty}^{+\infty} \sin x \, dx = \lim_{b \to +\infty} \int_{-b}^{b} \sin x \, dx = \lim_{b \to +\infty} (-\cos b + \cos b) = 0$$

3.
$$\int_{-2}^{3} \frac{dx}{x} = \ln|x| \mid_{-2}^{3} = \ln 3 - \ln 2$$
. ()

二、计算题

4. 判定下列反常积分的敛散性,若收敛,计算反常积分的值: (1) $\int_1^{+\infty} \frac{\mathrm{d}x}{x^4}$;

(2)
$$\int_{-\infty}^{+\infty} \frac{\mathrm{d}x}{x^2 + 2x + 2}$$
;

(3)
$$\int_{\frac{2}{\pi}}^{+\infty} \frac{1}{x^2} \sin\left(\frac{1}{x}\right) dx;$$

(4)
$$\int_0^1 \frac{x}{\sqrt{1-x^2}} \, \mathrm{d}x$$
;

(5)
$$\int_1^e \frac{\mathrm{d}x}{x\sqrt{1-\ln^2 x}}$$
.

5. 当 k 为何值时,反常积分 $\int_2^{+\infty} \frac{\mathrm{d}x}{x \ln^k x}$ 收敛?当 k 为何值时,该反常积分 发散?又当 k 为何值时,该反常积分取得最小值?

6.(附加题)证明:若函数 f(x) 在区间 $(-\infty,+\infty)$ 上连续,且 $\int_{-\infty}^{+\infty}f(x)\,\mathrm{d}x$ 收敛,则 $\forall x\in(-\infty,+\infty)$,恒有

$$\frac{d}{dx} \int_{-\infty}^{x} f(t) dt = f(x), \quad \frac{d}{dx} \int_{x}^{+\infty} f(t) dt = -f(x)$$

总习题五

一、选择题

- 1. 设 $I = \int_a^b f(x) dx$, 根据定积分的几何意义可知()
 - A. I 是由曲线 y=f(x) 及直线 x=a, x=b 与 x 轴所围成图形的面积,所以 I>0
 - B. 若 I=0,则上述图形面积为零,从而图形的"高" f(x)=0
 - $C.\ I$ 是曲线 y=f(x) 及直线 x=a, x=b 与 x 轴之间各部分面积的代数
 - D. I 是由曲线 y = |f(x)| 及直线 x = a, x = b 与 x 轴所围成图形的面积

2. 函数 f(x) 在区间 [a,b] 上连续是 f(x) 在 [a,b] 上可积的()

- A. 必要条件
- B. 充分条件
- C. 充要条件
- D. 无关条件

- 3. 若函数 $f(x) = \begin{cases} x & \text{if } x \ge 0 \\ e^x & \text{if } x < 0 \end{cases}$ 则 $\int_{-1}^{2} f(x) \, \mathrm{d}x = ($)
 - A. $3 e^{-1}$
 - B. $3 + e^{-1}$
 - C. 3 e
 - D. 3 + e

- 4. 设函数 f(x) 连续, x>0 ,且 $\int_1^{x^2} f(t) \, \mathrm{d}t = x^2(x-1)$,则 f(2)= ()
 - A. $\frac{3\sqrt{2}}{2} 1$
 - B. $2\sqrt{2} 12$
 - C. $12 2\sqrt{2}$
 - D. $1 \frac{3\sqrt{2}}{2}$

- 5. 若函数 $f(x) = \begin{cases} \frac{\int_0^x \left(e^{t^2}-1\right) dt}{x^2} & \text{if } x \neq 0 \\ a & \text{if } x = 0 \end{cases}$ 且已知 f(x) 在点 x = 0 处连续,则必有
 - A. a = 1
 - B. a = 2
 - C. a = 0
 - D. a = -1

二、填空题

6.
$$\frac{d}{dx} \int_a^b \arctan x \, dx = \underline{\hspace{1cm}}$$

7.
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{1 - \cos^2 x} \, \mathrm{d}x = \underline{\qquad}$$

8. 由区间 [a,b] 上连续曲线 y=f(x) ,直线 x=a, x=b(a < b) 和 x 轴所 围成图形的面积为 S= _______ .

9.
$$\int_{-1}^{0} |3x+1| \, \mathrm{d}x =$$

10. 已知 xe^x 为函数 f(x) 的一个原函数, 则 $\int_0^1 x f'(x) dx =$ ______

三、计算题

- 11. 计算下列定积分:
 - $(1) \int_1^e \frac{\ln x}{x} \, \mathrm{d}x;$

(2)
$$\lim_{x\to 0} \frac{\int_0^x 2t \cos t \, dt}{1-\cos x}$$
;

(3)
$$\int_{-1}^{1} \frac{x}{\sqrt{5-4x}} \, \mathrm{d}x$$
;

$$(4) \int_1^2 x \log_2 x \, \mathrm{d}x ;$$

(5)
$$\int_1^e \sin \ln x \, \mathrm{d}x.$$

四、证明题

12. 设 f''(x) 在区间 [a,b] 上连续,证明:

$$\int_a^b x f''(x) \,\mathrm{d}x = \left[bf'(b) - f(b)\right] - \left[af'(a) - f(a)\right]$$

第六章 定积分的应用

第一节 定积分的元素法

这节什么都没有~

第二节 定积分在几何学上的应用

一、填空题			
. 能用定积分表示的量具有如下特征:			
(1)			
(2)			
(3)			
2. 若要求由曲线 $y=x^3$ 和 $y=x^2+2x$ 所围成图形的面积,则其面积元素 为,面积的表达式为			
3. 若要求底面半径为 R ,高为 H 的圆锥的体积,可建立以底面圆心 O 为坐标原点,高为 x 轴的坐标系,则其体积元素为,体积的表达式为。			
二、计算题			
4. 求由曲线 $y=\frac{1}{x}$ 和直线 $y=x$ 及 $x=2$ 所围成图形的面积			

5. 求由曲线 $y=e^x$ 及 $y=e^{-x}$ 与直线 x=1 所围成图形的面积

6. 求由抛物线 $y^2=2px$ 及其在点 $(\frac{p}{2},p)$ 处的法线所围成图形的面积

7. 求由摆线 $\begin{cases} x=a(t-\sin t) \\ y=a(1-\cos t) \end{cases}$ $(0 \le t \le \pi)$ 的一拱与 x 轴所围成图形的面积

8. 由曲线 $y = x^3$ 与直线 x = 2 及 y = 0 所围成的图形分别绕 x 轴及 y 轴 旋转一周,计算所得两个旋转体的体积.

9. 由曲线 $y=x^2$ 及 $y^2=x$ 所围成的图形绕 y 轴旋转一周,计算所得旋转体的体积

10. 计算曲线 $y = \ln x$ 上相应于 $\sqrt{3} \le x \le \sqrt{8}$ 的一段弧的长度.

11. (附加题) 由圆 $x^2 + (y-1)^2 = 1$ 所围成的图形分别绕 x 轴和 y 轴旋转 一周, 计算所得旋转体的体积.

第三节 定积分在物理学上的应用

一、填空题

1. 设 x 轴上有一长度为 l , 线密度为常数 μ 的细棒, 在与细棒右端的距离为 a 处有一质量为 m 的质点 M (见图 6-1). 已知万有引力常数为 G , 则质 点 M 与细棒之间的引力大小为

Figure 3: 图 6-1

二、应用题

2.	试根据胡克定律,	计算弹簧由原长拉伸 6	cm 所需要做的功(已知弹簧的劲
	度系数以 N/m 为	单位时数值为 k)	

3. 一物体按规律 $x = ct^3$ 做直线运动,介质的阻力与速度的平方成正比,计算该物体由 x = 0 移至 x = a 时,克服介质阻力所做的功。

4. 有一圆锥形贮水池(上大下小),深 15 m,口径 20 m,盛满水,现用泵将水吸尽,需做多少功?

5. 有一等腰梯形闸门, 它的两条底边分别长 10 m 和 6 m, 高为 20 m, 较长的底边与水面相齐. 计算闸门的一侧所受的水压力.

6. 一底为 8 cm, 高为 6 cm 的等腰三角形铅直地浸没在水中, 顶在上, 底在下且与水面平行, 而顶离水面 3 cm, 试求它每面所受的水压力.

7.(附加题)半径为 r 的球沉入水中,球的上部与水面相切,球的密度 ρ 与水相同,现将球从水中取出,需做多少功?

总习题六

一、选择题

- 1. 由曲线 $y=e^x$ 和直线 x=0 及 y=2 所围成的曲边梯形的面积为().
 - A. $\int_1^2 \ln y, dy$
 - B. $\int_0^{e^2} e^x, dy$
 - C. $\int_1^{\ln 2} \ln y, dy$
 - D. $\int_{1}^{2} (2 e^x) dx$
- 2.如图 6-2 所示, 阴影部分面积为()

Figure 4: 图 6-2

A.
$$\int_a^b [f(x) - g(x)] dx$$

B.
$$\int_a^c [g(x) - f(x)] \, \mathrm{d}x + \int_c^b [f(x) - g(x)] \, \mathrm{d}x$$

C.
$$\int_{a}^{b} [f(x) + g(x)] dx$$

D.
$$\int_{a}^{c} [f(x) - g(x)] dx + \int_{c}^{b} [g(x) - f(x)] dx$$

二、填空题

- 3.由抛物线 $y=x^2+2x$,直线 x=1 和 x 轴所围成图形的面积为
- 4. 曲线 $y = \sqrt{x} \frac{1}{3}\sqrt{x^3}$ 相应于区间[1,3]上的一段弧的长度为 ______
- 5. 由曲线 $y = \sin x$ 和它在 $x = \frac{\pi}{2}$ 处的切线以及直线 $x = \pi$ 所围成图形绕 $x = \pi$ 种旋转一周所得旋转体的体积为 ______
- 6. 水下有一个宽 2 m,高 3 m 的矩形闸门铅直地浸没在水中,水面超过门顶 2 m,则闸门上所受的水压力为 ______
- 7. 连续函数 y = f(x, m) 对于任意常数 m 恒大于零,则由曲线 y = f(x, m) 及直线 x = a , x = b , y = 0 所围成图形的面积为 ______.

三、计算题

8. 求 C 的值 $(0 < C \le 1)$,使得由两曲线 $y = x^2$ 与 $y = Cx^3$ 所围成图形的面积为 $\frac{2}{3}$.

9. 求 a 的值,使得由曲线 $y = a(1-x^2)(a>0)$ 与它在点 (-1,0) 和 (1,0) 处的法线所围成图形的面积最小.

10. 有一立体以由抛物线 $y^2 = 2x$ 与直线 x = 2 所围成的图形为底,而垂直于抛物线轴的截面都是等边三角形,求其体积。

第七章 微分方程

第一节 微分方程的基本概念

这节什么都没有~

第二节 可分离变量的微分方程

一、选择题

- 1. 关于微分方程 $\frac{d^2y}{dx^2+2\frac{dy}{dx}+y=e^x}$ 的下列结论: ① 该方程是齐次微分方程, ② 该方程是线性微分方程, ③ 该方程是常系数微分方程, ④ 该方程为二阶 微分方程, 其中正确的是 .
 - A. (1)(2)(3)
 - B. 124
 - C. 134
 - D. 234

2.下列方程中 是一阶微分方程

A.
$$(y - xy')^2 = x^2y''$$

B.
$$(y'')^2 + 5(y')^4 - y^5 + x^7 = 0$$

C.
$$(x^2 - y^2) dx + (x^2 + y^2) dy = 0$$

D.
$$xy'' + y' + y = 0$$

二、填空题

- 3. $xy'' + 2x^2(y')^2 + x^3y = x^4 + 1$ 是 ______ 阶微分方程
- 4. 微分方程 $y'=2\frac{y}{x}$ 的通解为 _____

三、计算题

5. 确定函数 $y=(C_1+C_2x)e^{2x}$ 中所含的参数,使得该函数满足初值条件 $\begin{cases} y\mid_{x=0}=0 \\ y'\mid_{x=0}=1 \end{cases}$

6. 写出在点 (x,y) 处的切线的斜率等于该点横坐标平方的曲线所满足的微分方程

7. 求下列微分方程的通解:

(1)
$$xy' - y \ln y = 0$$
;

(2)
$$(e^{x+y} - e^x) dx + (e^{x+y} + e^y) dy = 0.$$

8. 求下列微分方程满足所给初值条件的特解:

(1)
$$\cos x \sin y \, dy = \cos y \sin x \, dx, y|_{x=0} = \frac{\pi}{4}$$

(2)
$$y' \sin x = y \ln y, y|_{x=\frac{\pi}{2}} = e$$

9. 一曲线通过点 (2,3),且它在两坐标轴间的任一切线均被切点所平分,求该曲线方程

四、应用题

10. 一个半球体形状的雪堆, 其体积融化率与半球体面积 A 成正比, 比例系数 k>0. 假设在融化过程中雪堆始终保持半球体形状, 已知半径为 r_0 的雪堆在开始融化的 3h 内, 融化了其体积的 $\frac{7}{8}$, 问: 雪堆全部融化需要多少时间?

五、证明题

11. 验证: $x^2 - xy + y^2 = C$ 所确定的函数为微分方程 (x - 2y)y' = 2x - y 的解.

第三节 齐次方程

一、选择题

- 1. 微分方程 $\frac{dy}{dx} = \frac{y}{x} + \tan(\frac{y}{x})$ 的通解为
 - A. $\sin(\frac{y}{x}) = Cx$
 - B. $\sin\left(\frac{y}{x}\right) = \frac{1}{Cx}$
 - $C. \sin\left(\frac{x}{y}\right) = Cx$

D.
$$\sin\left(\frac{x}{y}\right) = \frac{1}{Cx}$$

二、计算题

2. 求下列齐次方程的通解:

(1)
$$x \frac{dy}{dx} = y \ln(\frac{y}{x})$$
;

(2)
$$(x^3 + y^3) dx - 3xy^2 dy = 0$$

3. 求下列齐次方程满足所给初值条件的特解:

(1)
$$(y^2 - 3x^2) dy + 2xy dx = 0, y|_{x=0} = 1;$$

(2)
$$(x^2 + 2xy - y^2) dx + (y^2 + 2xy - x^2) dy = 0, y|_{x=1} = 1$$

第四节 一阶线性微分方程

- 一、判断题
- 1. $y' = \sin y$ 是一阶线性微分方程

2.
$$y' = x^3y^3 + xy$$
 不是一阶线性微分方程

- 二、选择题
- 3. 以下 是一阶线性微分方程

A.
$$y' = \sec y$$

B.
$$yy' = 1$$

C.
$$x^2y'' + 3xy' + y = 0$$

D.
$$\frac{dy}{dx} = -\frac{x^2 + x^3 + y}{1 + x}$$

三、计算题

4. 求下列微分方程的通解:

(1)
$$xy' + y = x^2 + 3x + 2$$
;

(2)
$$(y^2 - 6x)\frac{dy}{dx} + 2y = 0$$
.

5. 求下列微分方程满足所给初值条件的特解:

(1)
$$\frac{dy}{dx} + \frac{y}{x} = \sin \frac{x}{x}, y|_{x=\pi} = 1$$

(2)
$$\frac{dy}{dx} + 3y = 8, y|_{x=0} = 2$$

6. 求一曲线方程,该曲线通过坐标原点,且它在点 (x,y) 处的切线的斜率等于 2x+y

7. 用适当的变量代换将下列微分方程化为可分离变量的微分方程, 然后求其通解:

(1)
$$xy' + y = y(\ln x + \ln y)$$
;

(2)
$$y(xy+1) dx + x(1+xy+x^2y^2) dy = 0$$

第五节 可降阶的高阶微分方程

一、填空题

- 1. 微分方程 $y'' = \sin 2x \cos x$ 的通解是 ______
- 2. 微分方程 $y'' = e^{2x}$ 的通解是 ______

二、计算题

3. 求下列微分方程的通解:

(1)
$$y'' = \frac{1}{1+x^2}$$

(2)
$$yy'' + 2(y')^2 = 0_{\circ}$$

4. 求下列微分方程满足所给初值条件的特解:

(1)
$$y'' = e^{2y}, y|_{x=0} = y'|_{x=0} = 0;$$

(2)
$$y'' + (y')^2 = 1, y|_{x=0} = 0, y'|_{x=0} = 0$$

三、应用题

5. 设有一质量为 m 的物体在空中由静止开始下落。如果空气阻力 R=cv (c 为常数, v 为物体运动的速度), 试求物体下落的距离 s 与时间 t 的函数关系。

第六节 高阶线性微分方程

这节什么都没有~

第七节 常系数齐次线性微分方程

一、选择题

- 1. 设线性无关的函数 y_1, y_2, y_3 都是二阶非齐次线性微分方程 y'' + P(x)y' + Q(x)y = f(x) 的解, C_1, C_2, C_3 是任意常数,则该微分方程的通解是 ().
 - A. $C_1y_1 + C_2y_2 + C_3y_3$
 - B. $C_1y_1 + C_2y_2 (C_1 + C_2)y_3$
 - C. $(1 + C_1 + C_2)y_1 + C_1y_2 + C_2y_3$
 - D. $(1 + C_1 + C_2)y_1 C_1y_2 C_2y_3$

二、填空题

- 2. 设 $y_1 = \cos x$ 与 $y_2 = \sin x$ 是微分方程 y'' + y = 0 的两个解,则该微分 方程的通解为 ______
- 3. 微分方程 y'' 2y' + y = 0 的通解为 ______
- 4. 已知 $y = e^x$ 与 $y = e^2x$ 是某二阶常系数齐次线性微分方程的两个解,则该微分方程为 _____

三、计算题

5. 求下列微分方程的通解:

$$(1) y'' + y' - 2y = 0$$

(2)
$$y'' - 4y' + 5y = 0$$
.

6. 求下列微分方程满足所给初值条件的特解:

(1)
$$y'' - 3y' - 4y = 0, y|_{x=0} = 0, y'|_{x=0} = -5;$$

(2)
$$y'' - 4y' + 13y = 0, y|_{x=0} = 0, y'|_{x=0} = 3.$$

四、应用题

7. 设圆柱形浮筒的底面直径为 0.5 m, 将它铅直地放在水中, 当稍向下压后突然放开, 浮筒在水中上下振动的周期为 2 s, 求浮筒的质量.

五、证明题

8. 验证: $y = C_1 x^2 + C_2 x^2 \ln x$ (C_1, C_2 是任意常数) 是微分方程 $x^2 y'' - 3xy' + 4y = 0$ 的通解.

9. 验证: $y = \frac{1}{x}(C_1e^x + C_2e^{-x}) + \frac{e^x}{2}(C_1, C_2)$ 是任意常数)是微分方程 $xy'' + 2y' - xy = e^x$ 的通解.

第八节 常系数非齐次线性微分方程

一、选择题

1. 微分方程 $y'' - y = 3e^x + 2$ 的一个特解具有形式 (a, b) 为常数)().

$$A. y^* = ae^x + b$$

$$B. y^* = ae^x + bx$$

C.
$$y^* = axe^x + b$$

$$D. y^* = axe^x + bx$$

2. 微分方程 $y'' + y = \sin x$ 的一个特解具有形式().

A.
$$y^* = a \sin x$$

$$B. y^* = a \cos x$$

C.
$$y^* = x(a\sin x + b\cos x)$$

 $D. y^* = a\cos x + b\sin x$

二、计算题

3. 求下列微分方程的通解:

(1)
$$2y'' + 5y' = 5x^2 - 2x - 1$$
;

(2)
$$y'' - 6y' + 9y = (x+1)e^{3x}$$

4. 求下列微分方程满足所给初值条件的特解:

(1)
$$y'' - 3y' + 2y = 5, y|_{x=0} = 1, y'|_{x=0} = 2;$$

(2)
$$y'' - 10y' + 9y = e^{2x}, y|_{x=0} = \frac{6}{7}, y'|_{x=0} = \frac{33}{7}$$
.

三、应用题

5. 大炮以仰角 α , 初速度 v_0 发射炮弹,若不计空气阻力,求弹道曲线

总习题七

一、选择题

- 1. 设非齐次线性微分方程 y''+P(x)y=Q(x) 有两个不同的解 $y_1(x)$ 与 $y_2(x)$,C 为任意常数,则该微分方程的通解是().
 - A. $C[y_1(x) y_2(x)]$
 - B. $y_1(x) + C[y_1(x) y_2(x)]$
 - C. $C[y_1(x) + y_2(x)]$
 - ${\rm D.}\ y_1(x) + C[y_1(x) + y_2(x)]$

2. 具有特解 $y_1 = e^{-x}, y_2 = 2xe^{-x}, y_3 = 3e^x$ 的三阶常系数齐次线性微分方程 是()

A.
$$y''' - y'' - y' + y = 0$$

B.
$$y''' + y'' - y' - y = 0$$

C.
$$y''' - 6y'' + 11y' - 6y = 0$$

D.
$$y''' - 2y'' - y' + 2y = 0$$

二、填空题

3. 已知 $y = 1, y = x, y = x^2$ 是某二阶非齐次线性微分方程的三个解,则该微分方程的通解为

三、计算题

- 4. 求下列微分方程的通解:
 - (1) $xy' \ln x + y = ax(\ln x + 1)$;

(2)
$$y'' + y'' - 2y' = x(e^x + 4)$$

5. 求下列微分方程满足所给初值条件的特解:

(1)
$$y^3 dx + 2(x^2 - xy^2) dy = 0, y|_{x=1} = 1$$
;

(2)
$$y'' + y' - 2y = e^x$$
, $y|_{x=0} = 1$, $y'|_{x=0} = 2$.

6. 已知某曲线通过点 (1,1), 且该曲线上任意一点处的切线在纵轴上的截距等于切点的横坐标, 求该曲线方程

高等数学(上册)期末测试模拟卷(一)

- 一、选择题(每小题 3 分, 共 15 分)
- 1. 当 $x \to 0$ 时, 下列()是 x 的同阶(不等价)无穷小。
 - A. $\sin x x$
 - B. $\ln(1-x)$
 - C. $x^2 \sin x$
 - D. $e^{x} 1$

- 2.下列命题中不正确的是()
- A. 若函数 f(x) 在点 x_0 处不连续,则 f(x) 在点 x_0 处必不可导
- B. 若 $\lim_{x\to x_0}f(x)$ 不存在, 则函数 f(x) 在点 x_0 处不连续
- C. 若函数 f(x) 在点 x_0 处可导,则 f(x) 在点 x_0 处必可微
- D. 若函数 f(x) 在区间 [a,b] 上可积,则 f(x) 在 [a,b] 上必连续

3. 设函数 $f(x) = \frac{1+e^{\frac{1}{x}}}{3+2e^{\frac{1}{x}}}$, 则 x = 0 是 f(x) 的()

A. 跳跃间断点

- B. 可去间断点
- C. 无穷间断点
- D. 振荡间断点

4.下列不定积分的计算不正确的是()

A.
$$\int \frac{\mathrm{d}x}{\sqrt{4-x^2}} = \arcsin(\frac{x}{2}) + C$$

B.
$$\int \frac{\mathrm{d}x}{x^2 - 2x + 2} = \arctan(x - 1) + C$$

C.
$$\int 2^x \cdot 3^x \, dx = \frac{2^x \cdot 3^x}{\ln 2 + \ln 3} + C$$

D.
$$\int \frac{x}{1+x^2} \, \mathrm{d}x = \arctan x + C$$

5.下列反常积分收敛的是()

A.
$$\int_1^{+\infty} \frac{\mathrm{d}x}{\operatorname{sqrt} x}$$

$$B. \int_{-\infty}^{+\infty} \frac{\mathrm{d}x}{x^2 + 4x + 5}$$

C.
$$\int_0^1 \frac{\mathrm{d}x}{x^2}$$

D.
$$\int_{-1}^{1} \frac{\mathrm{d}x}{x}$$

- 二、填空题(每小题 3 分, 共 18 分)
 - 6. 设函数 $f(x) = \begin{cases} \frac{\sin 3x}{\ln(1+x)} & \text{if } -1 < x < 0 \\ a \sec x + 1 & \text{if } x \ge 0 \end{cases}$ 在点 x = 0 处连续,则 $a = a \sec x + 1 = a \sec x + 1$

7. 已知参数方程 $\left\{egin{array}{l} x=\ln(1+t^2) \ y=t-rctan t \end{array}
ight.$ 则 $rac{dy}{dx}=$

8. 函数 $f(x) = xe^x$ 的带有拉格朗日余项的三阶麦克劳林公式为

9. 曲线 $y=4x-x^2$ 在其顶点处的曲率 k=

10.
$$\int_{-2}^{2} \frac{x|\sin x| + 4 - x^{2}}{\sqrt{4 - x^{2}}} \, \mathrm{d}x = ($$

11. 微分方程 $\frac{dy}{dx}=(1+y^2)e^x$ 的通解为

三、计算题(12~15 题每小题 7 分, 16~17 题每小题 8 分, 共44 分)

12.
$$\vec{x} \lim_{x \to +\infty} \frac{\int_0^x \arctan^2 t \, dt}{\sqrt{x^2+1}}$$
.

13. 已知函数 y(x) 由方程 $x^3 + y^3 - 3x + 3y - 2 = 0$ 所确定,求 y''(1) .

15. $\Re \int_0^{\pi} x^2 |\cos x| dx$.

16. 设函数 $f(x) = \begin{cases} 1+x^2 & \text{if } x < 0 \\ e^{-x} & \text{if } x \ge 0 \end{cases}$ 求 $\int_1^3 f(x-2) \, \mathrm{d}x$.

17. 求曲线 $y = x^4 (12 \ln x - 7)$ 的凹凸区间及拐点

- 四、应用题(每小题 9 分, 共 18 分)
- 18. 要做一个容积为 2π 的密闭圆柱形罐头筒,问:半径和高分别为多少时能使所用材料最省?

19. 求由抛物线 $y^2 = 2x$ 与直线 y = x - 4 所围成图形的面积,并求此图形 绕 y 轴旋转一周所得旋转体的体积.

五、证明题(5分)

20. 若函数 f(x) 在区间 (a,b) 内具有二阶导数且 $f(x_1)=f(x_2)=f(x_3)$, 其中 $a < x_1 < x_2 < x_3 < b$,证明:在 (a,b) 内至少存在一点 ξ ,使得 $f''(\xi)=0$.

高等数学(上册)期末测试模拟卷(二)

- 一、选择题(每小题 3 分, 共 15 分)
- 1. 当 $x \to 0$ 时,下列是 x 的三阶无穷小
 - A. $\sqrt[3]{x^2} \sqrt{x}$
 - B. $\sqrt{a+x^3}-\sqrt{a}$ (a>0 是常数)
 - C. $x^3 + 0.0001x^2$
 - D. $\sqrt[3]{\tan x}$

- 2. 设函数 f(x) 满足关系式 $f''(x) + [f'(x)]^2 = x$,且 f'(0) = 0 ,则下列选项中正确的是
 - A. f(0) 是 f(x) 的极大值
 - B. f(0) 是 f(x) 的极小值
 - C.(0, f(0)) 是曲线 y = f(x) 的拐点
 - D. f(0) 不是 f(x) 的极值, (0,f(0)) 也不是曲线 y=f(x) 的拐点

3. 函数 $f(x) = \sin \frac{x}{x(x-1)(x-\pi)}$ 的无穷间断点的个数为

- A. 1
- B. 2
- C. 3
- D. 4

4.下列不定积分的计算不正确的是

A.
$$\int \frac{\mathrm{d}x}{\sqrt{4-x^2}} = \arcsin(\frac{x}{2}) + C$$

B.
$$\int \frac{\mathrm{d}x}{x^2 + 2x + 2} = \arctan(x+1) + C$$

$$C. \int \sin^2 x \, \mathrm{d}x = \frac{1}{3} \sin^3 x + C$$

D.
$$\int 2^x \cdot 3^x \, dx = \frac{2^x \cdot 3^x}{\ln 2 + \ln 3} + C$$

5.下列方程中为一阶线性微分方程

$$A. y' + xy^2 = e^x$$

$$B. yy' + xy = e^x$$

$$\mathsf{C.}\ y' = \cos y + x$$

$$\mathsf{D.}\ y' = x + y\sin x$$

- 二、填空题(每小题 3 分, 共 18 分)
- 6. 设函数 $f(x) = \begin{cases} x \sin(\frac{1}{x}) + \frac{\sin(ax)}{x} & \text{if } x > 0 \\ e^x 2 & \text{if } x \le 0 \end{cases}$ 要使得 f(x) 在点 x = 0 处连续,则 a =_______.

7. 曲线 $\begin{cases} x = e^t + \ln(1+t^2) \\ y = \arctan t \end{cases}$ 在点 t = 0 处的切线方程为 ______.

8.函数 $f(x) = 2^x$ 的带有拉格朗日余项的三阶麦克劳林公式为 ______

- 9.曲线 $y = \ln \sec x$ 在点 (x, y) 处的曲率为 _____
- 10. $\int_{-1}^{1} \frac{x^2 \sin x + 1 x^2}{\sqrt{1 x^2}} \, \mathrm{d}x = \underline{\hspace{1cm}}$
- 11. 微分方程 $(1+y)^2 \frac{dy}{dx} + x^3 = 0$ 的通解为 ______

- 三、计算题(12~15 题每小题 7 分, 16~17 题每小题 8 分, 共 44 分)
- 13. 已知函数 y = f(x) 由方程 $e^y + xy 2x 1 = 0$ 所确定,求 y''(0).
- 14. 求 $\int e^{\sqrt{x}} dx$
- 15. $\[\stackrel{\pi}{x} \]_{-\frac{\pi}{4}}^{\frac{\pi}{2}} \sqrt{\cos x \cos^3 x} \, \mathrm{d}x \]$.
- 16. 设函数 $f(x) = \begin{cases} \frac{1}{1+x^2} & \text{if } x \le 0 \\ \ln x & \text{if } x > 0 \end{cases}$ 求 $\int_{-1}^{1} x f(x) \, \mathrm{d}x$.
- 17. 求曲线 $y=(x-1)\sqrt[3]{x^2}$ 的凹凸区间及拐点
- 四、应用题(每小题 9 分, 共 18 分)
- 18. 要造一个长方体无盖蓄水池, 其容积为 500 m³, 底面为正方形。设底面与四壁所使用材料的单位造价相同,问:底边和高分别为多少时,才能使所用材料费最省?
- 19. 求由曲线 $y = x^{\frac{3}{2}}$,直线 x = 4 及 x 轴所围成图形的面积,并求此图形 绕 x 轴旋转一周所得旋转体的体积。
- 五、证明题(5分)
- 20. 设函数 f(x) 在区间 [0,1] 上连续,在 (0,1) 内可导,且 $\int_0^1 f(x) dx = 0$,证明:必存在 $\xi \in (0,1)$,使得 $2f(\xi) = -\xi f'(\xi)$.

高等数学(上册)期末测试真题(一)

- 一、选择题(每小题 3 分, 共 30 分)
- 1. 若 $\lim_{x \to \infty} \left(1 + \frac{k}{2x}\right)^x = e^3$,则 k =
 - A. $\frac{2}{3}$
 - B. 6
 - C. $\frac{3}{2}$
 - D. 不存在

- 2. 当 $x \to 0$ 时, $\sin x + x^2 \cos\left(\frac{1}{x}\right)$ 是 $(1 + \cos x) \ln(1 + x)$ 的
 - A. 高阶无穷小
 - B. 等价无穷小
 - C. 同阶无穷小, 但不是等价无穷小
 - D. 低阶无穷小

- 3. 设函数 $f(x) = \begin{cases} (\frac{2}{\pi})\arctan(\frac{1}{x}) & \text{if } x < 0 \\ (1+x)^x & \text{if } x \geq 0 \end{cases}$ 则 x = 0 是 f(x) 的 .
 - A. 跳跃间断点

- B. 可去间断点
- C. 连续点
- D. 第二类间断点

- 4.方程 $x^4 4x = 1$ 在区间(0,1)内
- A. 无实根
- B. 有唯一实根
- C. 有两个实根
- D. 有三个实根

- 5. 设 f'(x) = g(x) , 则 $\frac{d}{dx}f(\sin^2 x) =$
 - A. $2g(x)\sin x$
 - B. $g(x) \sin 2x$
 - C. $g(\sin^2 x)$
 - D. $g(\sin^2 x)\sin 2x$

- 6. 设函数 f(x) 具有二阶连续导数,且 $f'(0)=0,\lim_{x\to 0}\frac{f''(x)}{\cos x}=1$,则
 - A. f(0) 是 f(x) 的极大值
 - B. f(0) 是 f(x) 的极小值
 - C.(0, f(0)) 是曲线 y = f(x) 的拐点
 - D. f(0) 不是 f(x) 的极值, (0, f(0)) 也不是曲线 y = f(x) 的拐点

7. 设函数 f(x) 具有二阶连续导数,其部分图形如图 1 所示,试确定下列定积分的符号: (1) $\int_{-3}^{2} f(x) dx$; (2) $\int_{-3}^{2} f'(x) dx$;

Figure 5: 图 1

- (3) $\int_{-3}^{2} f''(x) dx$; (4) $\int_{-3}^{2} f'''(x) dx$.
- 8. 设线性无关的函数 y_1, y_2, y_3 都是二阶非齐次微分方程 y'' + p(x)y' + q(x)y = f(x) 的特解, C_1, C_2 是任意常数,则该非齐次微分方程的通解 是().

A.
$$C_1y_1 + C_2y_2 + y_3$$

B.
$$C_1y_1 + C_2y_2 - (C_1 + C_2)y_3$$

$$\mathsf{C.}\ C_1y_1 + C_2y_2 - (1-C_1-C_2)y_3$$

- ${\rm D.}\ C_1y_1+C_2y_2+(1-C_1-C_2)y_3$
- 9. 由曲线 $y = \ln x$ 与直线 $y = \ln a, y = \ln b (b > a > 0)$ 及 y 轴所围成图形的面积为 .
 - A. $\frac{1}{b} \frac{1}{a}$
 - B. $\frac{1}{a} \frac{1}{b}$
 - C. b-a
 - D. a-b

- 10.下列反常积分收敛的是
- A. $\int_{-\infty}^{+\infty} \cos x \, \mathrm{d}x$
- $B. \int_0^{+\infty} e^{-2x} dx$
- C. $\int_{-1}^{1} \frac{dx}{x^2}$
- D. $\int_1^3 \frac{\mathrm{d}x}{\ln x}$

- 二、填空题(每小题 3 分, 共 18 分)
- 11. 已知 $\lim_{x\to 1}f(x)$ 存在,且函数 $f(x)=x^2+2x\lim_{x\to 1}f(x)$,则 $\lim_{x\to 1}f(x)=$ _____

12. 曲线 $\begin{cases} x = \ln(1+t^2) \\ y = t - \arctan t = 2 \end{cases}$ 在点 t = 2 处的切线方程为 y = 1

13. 设函数 $f(x) = k \tan 2x$ 的一个原函数为 $-\ln \cos 2x$,则 k =

14.
$$\int_{-\infty}^{+\infty} \frac{\mathrm{d}x}{x^2 + 2x + 2} =$$

15.
$$\int_{-1}^{1} \frac{2x^2 + x \sin^2 x}{1 + \sqrt{1 - x^2}} \, \mathrm{d}x =$$

16. 曲线 $y = x^4(12 \ln x - 7)$ 的拐点为 _____

三、计算题(每小题 7 分, 共 35 分)

17. 已知连续函数 $f(x)=\int_0^{3x}f\left(\frac{t}{3}\right)\mathrm{d}t+e^{2x}$, 求 f(x) .

18. 已知 $f(\pi)=1$,函数 f(x) 二阶连续可微,且 $\int_0^\pi [f(x)+f''(x)]\sin x\,\mathrm{d}x=3$,求 f(0) .

19. 求微分方程 $y'' - y' = 4xe^x$ 满足初值条件 $y|_{x=0} = 0, y'|_{x=0} = 1$ 的特解.

20. 设函数 y = y(x) 由方程 $x^4 - xy - ye^x = 1$ 所确定,求 $\frac{d^2y}{dx^2|_{x=0}}$.

四、应用题(10分)

22. 如图 2 所示, 由抛物线 $y=2x^2$ 与直线 x=a, x=2 及 y=0 所围成的 平面图形为 D_1 , 由抛物线 $y=2x^2$ 与直线 x=a 及 y=0 所围成的平面图形为 D_2 , 其中 0< a< 2 .

Figure 6: 图 2

(1) 试求 D_1 绕 x 轴旋转一周所得旋转体的体积 V_1 ;

(2) 试求 D_2 绕 y 轴旋转一周所得旋转体的体积 V_2 ;

(3) 问: 当 a 为何值时, $V = V_1 + V_2$ 取得最大值? 并求出该最大值.

五、选答题(7分)(考生可从下面2个题中任选1个作答,多做不多得分)

23. 设函数 f(x) 在区间 [a,b] 上连续,在 (a,b) 内可导,又 f'(x)>0 ,且 极限 $\lim_{x\to a^+} \frac{f(2x-a)}{x-a}$ 存在,证明:在 (a,b) 内存在一点 ξ ,使得

$$\left(\frac{b^2-a^2}{\int_a^b f(x)dx} = \frac{2*\xi}{f(\xi)}\right)$$

24. 证明: 当 x > 0 时, $\frac{x}{1+x} < \ln(1+x) < x$.

高等数学(上册)期末测试真题(二)

- 一、选择题(每小题 3 分, 共 30 分)
- 1. 若 $\lim_{x\to\infty} \frac{ax^3+bx^2+2}{x^2+2} = 1(a,b)$ 为常数),则().
 - A. $a = 0, b \in R$
 - B. a = 0, b = 1
 - C. $a \in R, b = 1$
 - D. $a \in R, b \in R$

- 2.当 $x \to \infty$ 时, $x \cos x$ is()
- A. 无穷小
- B. 无穷大
- C. 有界但不是无穷小
- D. 无界但不是无穷大

3. 设函数 $y=e^{2x-1}$,则 $y^{20}(1)=($) . A. $2^{20}e$

- B. $2^{20}e^{-1}$
- $C. 2^{20}$
- D. e

- 4.当 $x \to 0$ 时, ()是 $x \sin x$ 的同阶无穷小
- A. $x + \tan x$
- B. $x \tan x$
- C. $x^2 + \tan x$
- D. $x^2 \tan x$

- 5. x = 1 是函数 $f(x) = \frac{\ln x}{|}x 1|$ 的(z).
 - A. 可去间断点
 - B. 跳跃间断点
 - C. 无穷间断点
 - D. 振荡间断点

- 6. 设函数 y=f(x) 具有二阶导数,且 $f'(x)>0, f''(x)<0, \Delta x$ 为自变量 在点 x_0 处的增量, Δy 与 dy 分别为 f(x) 在点 x_0 处对应的增量与微分。若 $\Delta x>0$,则().
 - A. $0 < dy < \Delta y$
 - B. $0 < \Delta y < dy$
 - C. $\Delta y < dy < 0$
 - D. $dy < \Delta y < 0$

- 7. 设函数 f(x) 的一个原函数为 xe^{-x} ,则 f'(x)=().
 - A. xe^{-x}
 - B. $(1-x)e^{-x}$
 - C. $(2+x)e^{-x}$
 - D. $(-2+x)e^{-x}$

- 8. 设函数 f(x) 在点 x_0 的某邻域内可导,且 $\lim_{x\to x_0} \frac{f'(x)}{x-x_0} = a(a<0)$,则().
 - A. $f(x_0)$ 是 f(x) 的极小值
 - B. $f(x_0)$ 是 f(x) 的极大值

- C. 在点 x_0 的某邻域内 f(x) 单调增加
- D. 在点 x_0 的某邻域内 f(x) 单调减少

- 9. 设函数 f(x) 连续,则 $\lim_{x\to 2} \left(\frac{1}{x-2}\right) \int_4^{2x} f(\frac{t}{2}) \, \mathrm{d}t = ($).
 - A. f(2)
 - B. f(1)
 - C. 2f(2)
 - D. 2f(1)

- - A. $e^x \ln 2$
 - B. $e^2 x \ln 2$
 - C. $e^x + \ln 2$
 - D. $e^2 x + \ln 2$

二、填空题(每小题 3 分, 共 18 分)

11.
$$\lim_{x\to 0^+} (1+\sin x)^{\ln x} =$$

12. 若
$$\lim_{h \to 0} \frac{f(1-2h)-f(1)}{h} = 6$$
 ,则 $f'(1) =$ _____

13.
$$\int_{-1}^{1} (x^2 + \sqrt{4 - x^2} \cdot \sin x) dx = \underline{\qquad}$$

14. 设参数方程
$$\begin{cases} x=f(t)-\pi \\ y=f(e^{2t}-1) \end{cases}$$
 函数 f 可导,且 $f'(0) \neq 0$,则 $\frac{dy}{dx|_{t=0}}=$

15. 曲线 $y = -\frac{3}{2}x^3 + \frac{9}{2}x^2$ 在其拐点处的切线方程是 ______

16. 微分方程 $y' = \frac{1}{x+y}$ 的通解为 ______

- 三、计算题(每小题 7 分, 共 35 分)
- 17. 求 $\lim_{x\to 0^+} (\tan 3x)^{\frac{1}{2\ln x}}$.

19. 求微分方程 $y'' - y' - 2y = (1 - 2x)e^x$ 的通解

20. $Rightharpoons \int_0^{+\infty} x^2 e^{-x} dx$.

21. 求函数 $f(x) = (2x+3)e^{\frac{2}{x}}$ 的单调区间、极值以及渐近线方程

四、应用题(10分)

22. 设函数 f(x) 在区间 [0,1] 上连续,在 (0,1) 内大于零,且满足 $xf'(x)=f(x)-3x^2$,曲线 y=f(x) 与直线 x=0, x=1, y=0 所围成图形 D 的面积为 2。求: (1)函数 f(x) (2) D 绕 x 轴旋转一周所得旋转体的体积

- 五、选答题(7分)(考生可从下面 2个题中任选 1个作答,多做不多得分)
- 23. 已知函数 f(x) 在区间 [0,1] 上连续,在 (0,1) 内可导,且满足 f(0)=0, f(1)=1 ,证明: (1) 存在 $\xi\in(0,1)$,使得 $f(\xi)=1-\xi$;

(2)存在不同的 $\eta_1,\eta_2\in(0,1)$,使得 $f'(\eta_1)f'(\eta_2)=1.$

24. 已知 y=f(x) 是由方程 $x\cos y+\sin x+e^y=1$ 所确定的隐函数,求: (1) $\frac{dy}{dx}$;

(2) $\lim_{x\to 0} \left[\frac{1-f(x)}{1+f(x)}\right]^{\frac{1}{x}}$.