ASSIGNMENT 01

Name: M. Irtaza Karanat

Reg: FA21-BEE-116

Submitted to: Syed Kazim Sir

QUESTION 01 Position rectors A(41+41+K) B(-41+31-4K) (41-j-2K) Find equation of plane ABC AB=(-4-4, 3-4,-4-1) 2 (-8, -1, -5) BC 2 (4+4)-1-3,-2+4) 2(8)-4,2)

2 1 J K -8 -1 -5 8 -4 2 $= i \begin{vmatrix} -1 & -5 \\ -4 & 2 \end{vmatrix} - j \begin{pmatrix} -8 & -6 \\ 8 & 2 \end{vmatrix} - j \left(-8 & -4 \right)$

= i(-2 420)-1(-164+40)+K(32+8)

2 -221 - 24j +40K

2-22 (n-a)-24(y-b)+40(z-c) =

taking A(Ui+Yj+K)

12-22(n-4)-24(y-4)+40(2-1)

2-22N+88-24y+96+402-40.

2-22 n 24y +402 +144

At origina Final perpendicular distance 0(0,0,0) P2 (1-22(0)-24(0)-440(0)-1144)

QUESTION 02

Show that
$$n^2 - 6n + 420$$
 $n^2 - 6n + 420$
 $n^2 - 6n +$

proved

ABD

$$AB_{2}(11-7, 3-4, 0+1) = (4,-1,1)$$

 $BD_{2}(2-11, 7-3) = (-9, 4, 1)$

$$\frac{2}{4} \left| \frac{1}{4} \right| \frac{1}{4} \left| \frac{1}{4} \right|$$

$$\frac{1}{4} \left(-1 - 4 \right) - \frac{1}{4} \left(4 + 4 \right) + \frac{1}{4} \left(16 - 4 \right)$$

$$\frac{2}{4} \left(-1 - 4 \right) - \frac{1}{4} \left(4 + 4 \right) + \frac{1}{4} \left(16 - 4 \right)$$

$$\frac{2}{4} \left(-1 - 4 \right) - \frac{1}{4} \left(4 + 4 \right) + \frac{1}{4} \left(16 - 4 \right)$$

$$\frac{2}{4} \left(-1 - 4 \right) - \frac{1}{4} \left(4 + 4 \right) + \frac{1}{4} \left(4 - 4 \right) + \frac{$$

taking if

$$2 + 5(x-1)-13(y-1)+7(2-1)$$
 $2 + 6(x-1)-13(y-1)+7(2+1)$
 $2 + 6(x-1)-13(y+1)+7(2+1)$
 $2 + 6(x-1)-13(y+1)+7(2+1)$
 $2 + 6(x-1)+7+7+7$
 $2 + 6(x-1)+7+7+7$

Also

in $x=4$ Supt $x=1$

BD $x=1$
 $x=$

0

Acute angle: -

Cos 02 (-81-27j+74)(-51-13j-17k) [64-1729+49 -125+67+49]

COS 02 90 + 351 + 49 1842 - 5243

Q 2 (05) (462.33

0 = 18 24

A (titj)
B (-21-j)
C (jt & K)
D (-2jt K)

$$AB_{2}(-2-t,-1-1)$$
 $2(-2-t,-2,0)$
 $LD_{2}(-2-1,-1-t)$ $2(0,-3,-1-t)$

2 ; (+2+2t)=j(2+2+++++2)+K(+6+3t)

Ouestion
$$5(a)$$

P(-2,-1), $0(-6,-3)$

find equation of circle

Finding midpoints

 $(-2-6)$, $(-1-3)$
 (-4) , -2

So $(x+45)^2+(y+2)^2=x^2$

for x^2 put $p(-2,-1)$ in (x,y) in (i)

 $(x+4)^2+(-11)^2=x^2$
 $(2)^2+(1)^2=x^2$
 $(2)^2+(1)^2=x^2$

So putting x^2 in equil

 $(x+4)^2+(-11)^2=x^2$

Circle passes through $(4,0)$ and $(0,2)$

Find centeradius of circle.

As equation is in a companion is in a companion is in a companion in the context of $(x+2)^2+(y+2)^2=x^2$
 $(x+2)^2+(y+2)^2=x^2$
 $(x+3)^2+(y+2)^2=x^2$
 $(x+3)^2+(y+2)^2+(y+2)^2=x^2$
 $(x+3)^2+(y+2)^2+(y+2)^2=x^2$
 $(x+3)^2+(y+2)^2+(y+2)^2=x^2$
 $(x+3)^2+(y+2)^2+(y+2)^2=$

-b+4=2b= 5 comparing (1) and (1) (b-2) 2 16+ b2 B+4-40 2 16+8 1-674 b/2 -4(分型)=16 b-1 2 -4 b 2 -3 by ear 1 Y22 42+ (-3)2 x2 2 16 +9 r2 225 725 Final equation of parabola 42 = 100 M As in parabola
y2 = + 4an so +4a2 100 a 2 + 25

so equation of direction is 26.

Find major ans length for ellipse
$$\left(\frac{u^2}{25}\right)^2 + \left(\frac{y^2}{16}\right)^2 = 1$$

$$\frac{\chi^2}{25^2} + \frac{y^2}{16^2} = 1$$

2 1 369 2±3√41 =±19.21

major anis 12

minor anis B

Find ea/nation of ellipse

No 20210

a25

also 2028

b24