Architecture des ordinateurs Pipeline simple

Daniel Etiemble de@lri.fr

L'exécution d'une instruction

· Les étapes fondamentales

Instructions UAL	Instructions Mémoire	Instructions Branchement
Lecture instruction	Lecture instruction	Lecture instruction
Incrémentation CP	Incrémentation CP	Incrémentation CP
Décodage de l'instruction	Décodage de l'instruction	Décodage de l'instruction
Lecture des opérandes	Calcul de l'adresse	Calcul de l'adresse de
Exécution	mémoire	branchement
Ecriture du résultat	Accès mémoire	Exécution
	Rangement du résultat	

Exécution d'une instruction : les différentes étapes

- · Instructions entières LI/CP DI/LR EX ER
- · Instructions flottantes
 LI/CP DI/LR EX1 EX2 ... ER
- · Instructions mémoire LI/CP DI/LR CAAM ER
- · Instructions de branchement

LI/CP DI/CAB/EX

Pipeline 1 instruction par cycle

Pipeline R2000-R3000

Latence : 5 cycles

Débit : 1 instruction par cycle

Exécution scalaire MIPS (pipelinée)

L3 Informatique – PolyTech4 2013-

Architecture des ordinateurs D. Etiemble

4

Aléas de données

Time (clock cycles)

L3 Informatique – PolyTech4 2013-

Architecture des ordinateurs D. Etiemble

(

Envoi pour éviter les aléas

L3 Informatique – PolyTech4 2013-

Architecture des ordinateurs D. Etiemble

Matériel pour l'envoi

L3 Informatique – PolyTech4 2013-

Architecture des ordinateurs

Aléas de données incontournables

Time (clock cycles)

Aléas de données incontournables

Les délais liés au pipeline

DELAI DE CHARGEMENT

DELAI DE BRANCHEMENT

1 cycle

L3 Informatique – PolyTech4 2013-

Architecture des ordinateurs

11

Le problème des branchements

- · INSTRUCTIONS SAUT/BRANCHEMENT : possibilités
 - Annulation par matériel de l'instruction qui suit.
 - · Toute instruction de contrôle prend 2 cycles.
 - Insérer une instruction NOP
 - · Toute instruction de contrôle prend 2 cycles
 - Saut/branchement retardé d'un cycle
 - · L'instruction après le branchement est exécutée avant que le branchement ou le saut soit effectué
 - · Si le compilateur peut réordonnancer les instructions, saut et branchement en 1 cycle

Les branchements conditionnels retardés

Schémas de réordonnancement

L3 Informatique – PolyTech4 2013-

Architecture des ordinateurs D. Etiemble

13

Approche superpipeline

D. Etiemble

PolyTech4 2013-

Superpipelines: chargements et branchements

Superpipeline MIPS R4000

Pipelines Pentium III et Pentium 4

 Superpipeline : technique permettant d'utiliser des fréquences d'horloge élevée (2 à 3 GHz en 2003)

PolyTech4 2013-

Latences chargement/branchement

Latence de chargement

Pénalité de mauvaise prédiction

- · Optimisation matérielle
 - Prédiction de branchement
- · Optimisation programmeur/compilateur
 - Ordonnancement des instructions
 - Conversion SI
 - · Utilisation des instructions de transfert conditionnel pour supprimer des branchements conditionnels

L3 Informatique – PolyTech4 2013-

Architecture des ordinateurs

17

Caractéristiques des superpipelines

i LII LI2 DI EX LD1 LD2 T ER

· Avantages

- Simple extension du pipeline scalaire

· Inconvénients

- fréquence d'horloge plus élevée
- circuits d'anticipation (forwarding) plus complexes
- Délais de branchement et chargement plus élevés,

· Remarque

 La compatibilité binaire doit être préservée : Pb des branchements retardés (SPARC, MIPS)

L3 Informatique – PolyTech4 2013-

Architecture des ordinateurs

18

Le problème des branchements

· Exemple du 21064

Comportement du branchement connu à la fin de EX1

L3 Informatique – PolyTech4 2013-

Architecture des ordinateurs

19