ooo Exercice 31.

Déterminer la forme algébrique des nombres complexes suivants :

1.
$$a = 5i(1 + i)$$

2.
$$b = 3i((1+2i) - (4+i))$$

3.
$$c = 2i^4 + i + 2(1 - 2i)$$

4.
$$d = i^3 - 1$$

ooo Exercice 32.

Donner la forme algébrique des nombres complexes z_1 , z_2 , z_3 et z_4 définis dans la console python par les commandes suivantes :

- Pour z_1 :
- 1 z1=complex(3,2)
- Pour z_2 :
- z2 = complex(-5,2)
- Pour z_3 :
- 1 z3=z1+z2
- Pour z_4 :
- 1 z4=z1*z2

•00 Exercice 33.

Déterminer la forme algébrique des nombres complexes suivants puis vérifier les résultats à la calculatrice :

1.
$$a = 1 - (1 - 2i)(1 + 2i)$$

2.
$$b = (2 + i)(3 - 5i)(1 + 2i)$$

3.
$$c = (4+2i)^2 - 5i(1-3i)$$

4.
$$d = (5 + 3i)^2$$

$\bullet \infty$ Exercice 34.

On considère deux nombres complexes z = a + ib et z' = a' + ib'.

- 1. Démontrer que Re(zz') = aa' bb'.
- 2. Déterminer Im(zz').

••o Exercice 35.

On considère la suite (u_n) à valeurs complexes définies par : $u_0 = 1$ et $u_{n+1} = (1+i)u_n$ pour tout entier naturel n.

- 1. Calculer les trois premiers termes de cette suite.
- 2. Démontrer que pour tout entier naturel n on a $u_n = (1 + i)^n$.
- 3. Soit $k \in \mathbb{N}$. Démontrer que u_{2k} est réel.

•00 Exercice 36.

Pour tout nombre complexe $z=x+\mathrm{i}y,$ on donne :

$$P(z) = z^2 + 3i$$
.

- 1. Exprimer la partie réelle et la partie imaginaire de P(z) en fonction de x et y.
- 2. En déduire la forme algébrique de P(1+5i).

••o Exercice 37.

Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n=i^n$.

- 1. On dit qu'une suite est périodique de période T si pour tout entier naturel $n, u_{n+T} = u_n$.
 - Démontrer que la suite $(u_n)_{n\in\mathbb{N}}$ est périodique de période 4.
- 2. Calculer i²⁰²³.
- 3. Calculer $S_n = \sum_{k=0}^{n-1} \mathbf{i}^k$.
- 4. Pour quelles valeurs de n a-t-on $S_n = 0$?

•00 Exercice 38.

Écrire le conjugué de chacun des nombres suivants :

- 1. 5
- 2. $\frac{2-4i}{3+2i}$
- 3. $(4+5i)^2$
- 4. $\frac{(3-4i)(4+i)}{2+3i}$

●○○ Exercice 39.

Exprimer le conjugué des nombres complexes suivants :

1.
$$z^2 - iz + 3i - 4$$

2.
$$3i + (2 + i)z$$

3.
$$\frac{3z+i}{z-i}$$

●○○ Exercice 40.

On considère un polynôme P(z) de degré 2 à coefficients réels.

Montrer que si z_0 est une racine de P alors $\overline{z_0}$ l'est aussi.

•00 Exercice 41.

Déterminer la forme algébrique des nombres complexes suivants :

1.
$$a = \frac{1}{2 - i}$$

2.
$$b = \frac{3}{2+i}$$

3.
$$c = \frac{2i}{5 - 3i}$$

4.
$$d = \frac{-1 + i}{1 + i}$$

• ∞ Exercice 42.

Résoudre dans \mathbb{C} les équations suivantes :

1.
$$6z - 1 = -1 + 5i$$

2.
$$5z + 5 = 2z + 3 + 2i$$

3.
$$(4+z)(5+2z) = 4i + 2z^2$$

•oo Exercice 43.

Résoudre dans $\mathbb C$ les équations suivantes :

1.
$$i\overline{z} - 1 = 7i + \overline{z}$$

2.
$$4i\overline{z} - 4i = 1 - \overline{z} + i$$

••o Exercice 44.

Résoudre dans $\mathbb C$ les équations suivantes :

1.
$$z + 3 + i = 2\overline{z} + 7 + 3i$$

2.
$$2z - 4 = 5i + 4\overline{z}$$

3.
$$z\overline{z} = z + 2$$

4.
$$\overline{z} - 1 = z\overline{z} - i$$

••o Exercice 45.

Résoudre dans \mathbb{C} l'équation $z^2 - 2\overline{z} = -1$.

••o Exercice 46.

Soient a et b deux réels non nuls en même temps.

Démontrer que
$$Z = \frac{a+\mathrm{i}b}{a-\mathrm{i}b} + \frac{a-\mathrm{i}b}{a+\mathrm{i}b}$$
 est réel.

●○○ Exercice 47.

On considère le nombre complexe z = a + 2i avec $a \in \mathbb{R}$.

Déterminer a pour que z^2 soit imaginaire pur.

•∞ Exercice 48.

Soit z un nombre complexe non nul.

1. Écrire le conjugué des nombres suivants en fonction de z et \overline{z} :

(a)
$$Z_1 = z + \overline{z}$$

(b)
$$Z_2 = z^2 + \overline{z}^2$$

(c)
$$Z_3 = \frac{z - \overline{z}}{z + \overline{z}}$$

(d)
$$Z_4 = \frac{z^2 - \overline{z}^2}{z\overline{z} + 3}$$

2. Déterminer si chacun des nombres précédents est un nombre réel, un nombre imaginaire pur ou ni l'un ni l'autre.

••o Exercice 49.

Soit $Z = \frac{z+i}{z-i}$ pour tout $z \neq i$.

- 1. Exprimer \overline{Z} en fonction de \overline{z} .
- 2. En déduire tous les nombres complexes z tels que Z soit réel.

• ∞ Exercice 50.

Soit k un nombre réel et on pose :

$$z = 5k^2 + 3k - 8 - (k^2 + k - 2)i$$
.

- 1. Déterminer la ou les valeur(s) du réel k pour que z soit un nombre réel.
- 2. Déterminer la ou les valeur(s) du réel k pour que z soit un nombre imaginaire pur.
- 3. Existe-t-il une valeur ou plusieurs valeurs du réel k pour que z soit nul?

••o Exercice 51.

À l'aide du binôme de Newton voire du triangle de Pascal, donner la forme algébrique des nombres suivants :

- 1. $(1+i)^3$
- 2. $(1+2i)^4$
- 3. $(2-i)^4$

•00 Exercice 52.

- 1. Dans la formule du binôme de Newton avec $(x+y)^8$, trouve-t-on un terme en x^5y^3 ? Si oui, préciser son coefficient.
- 2. Même question avec x^2y^6 .

••o Exercice 53.

On considère la fonction Python suivante :

```
def developpe(a,b):

S=0

L=[1,4,6,4,1]

for k in range(5):

S=S+L[k]*a**(4-k)*b**k

return(S)
```

- 1. (a) Que représente les termes de la liste L?
 - (b) Déterminer l'expression de S en fonction de a et b.
 - (c) Quelle valeur renvoie la fonction pour : a = 1 et b = i?
- 2. Louise a testé la fonction et a obtenu le résultat suivant :

Quelle égalité mathématique peut-elle en déduire?

••o Exercice 54.

- 1. Écrire une formule inspirée par le binôme de Newton pour $(a-b)^n$ en remarquant que a-b=a+(-b).
- 2. En déduire que $\sum_{k=0}^{k=n} (-1)^k \binom{n}{k} = 0$.
- 3. Quel est le coefficient du terme en a^3b^7 dans le développement de $(a-b)^{10}$?