

NCERT solutions for class 9 Maths Areas of Parallelograms and Triangles Ex 9.4

Q1. Parallelogram ABCD and rectangle ABEF are on the same base AB and have equal areas. Show that the perimeter of the parallelogram is greater than that of the rectangle.

Ans. Given: Parallelogram ABCD and rectangle ABEF are on same base AB and between the same parallels AB and CF.

 \therefore ar (\parallel gm ABCD) = ar (rect. ABEF)

To prove: AB + BC + CD + AD > AB + BE + EF + AF

Proof: AB = CD [∵ opposites sides of a parallelogram are always equal]

AB = EF [: opposites sides of a rectangle are always equal]

$$\therefore$$
 CD = EF

Adding AB both sides,

$$AB + CD = AB + EF \dots (i)$$

Off all the segments that can be drawn to a given line from a point not lying on it, the perpendicular segment is the shortest.

$$\therefore$$
 BE < BC and AF < AD

$$\Rightarrow$$
 BC > BE and AD > AF

$$\therefore$$
 BC + AD > BE + AF(ii)

From eq. (i) and (ii),

$$AB + CD + BC + AD = AB + EF + BE + AF$$

Q2. In figure, D and E are two points on BC such that BD = DE = EC. Show that ar (ABD) = ar (ADE) = ar (AEC). Can you know answer the question that you have left in the 'introduction' of this chapter, whether the field of Budhia has been actually divided into three parts of equal area?

Ans. In \triangle ABC, points D and E divides BC in three equal parts such that BD = DE = EC.

$$\therefore BD = DE = EC = \frac{1}{3} BC$$

Draw AF⊥BC

$$ar(\Delta ABC) = \frac{1}{2} \times BC \times AF \dots (i)$$

and ar
$$(\Delta ABD) = \frac{1}{2} \times BC \times AF$$
(ii)

$$= \frac{1}{2} \times \frac{BC}{3} \times AF = \frac{1}{3} \times \left[\frac{1}{2} \times BC \times AF \right]$$

$$=\frac{1}{3}$$
 ar (\triangle ABC)(iii)

And ar
$$(\triangle AEC) = \frac{1}{3}$$
 ar $(\triangle ABC)$ (iv)
From (ii), (iii) and (iv),
ar $(\triangle ABD) = ar (\triangle ADE) = ar (\triangle AEC)$

Q3. In figure, ABCD, DCFE and ABFE are parallelograms. Show that ar (ADE) = ar (BCF).

Ans. As we know that opposite sides of a parallelogram are always equal.

∴ In parallelogram ABFE, AE = BF and AB = EF In parallelogram DCFE, DE = CF and DC = EF In parallelogram ABCD, AD = BC and AB = DC Now in \triangle ADE and \triangle BCF,

AE = BF [Opposite sides of parallelogram ABFE]

DE = CF [Opposite sides of parallelogram DCFE]

And AD = BC [Opposite sides of parallelogram ABCD]

- $\triangle \Delta ADE \cong \Delta BCF [By SSS congruency]$
- \therefore ar (\triangle ADE) = ar (\triangle BCF)

[\because Area of two congruent figures is always equal]

Q4. In figure, ABCD is a parallelogram and BC is produced to a point Q such that AD = CQ. If AQ intersects DC at P, show that ar (BPC) = ar (DPQ).

Ans. Join A and C.

 \triangle APC and \triangle BPC are on the same base PC and between the same parallels PC and AB.

$$\therefore$$
 ar (\triangle APC) = ar (\triangle BPC)(i)

Now ACBD is a parallelogram.

AD = BC [opposite sides of a parallelogram are always equal]

Also BC = CQ [given]

$$\therefore$$
 AD = CQ

Now AD | CQ [Since CQ is the extension of BC]

And AD = CQ

· ADQC is a parallelogram.

[: If one pair of opposite sides of a quadrilateral is equal and parallel then it is a parallelogram]

Since diagonals of a parallelogram bisect each other.

$$\therefore$$
 AP = PQ and CP = DP

Now in \triangle APC and \triangle DPQ,

AP = PQ [Proved above]

 \angle APC = \angle DPQ [Vertically opposite angles]

PC = PD [Prove above]

$$\triangle APC \cong \triangle DPQ \dots (ii)$$

 \Rightarrow ar (\triangle APC) = ar (\triangle DPQ) [area of congruent figures is always equal]

From eq. (i) and (ii),

$$ar(\Delta BPC) = ar(\Delta DPQ)$$

Q5. In figure, ABC and BDF are two equilateral triangles such that D is the mid-point of BC. If AE intersects BC at F, show that:

(i) ar (BDE) =
$$\frac{1}{4}$$
 ar (ABC)

(ii) ar (BDE) =
$$\frac{1}{2}$$
 ar (BAE)

(iv)
$$ar(BFE) = ar(AFD)$$

$$(v)$$
 ar $(BFE) = 2$ ar (FED)

(vi) ar (FED) =
$$\frac{1}{8}$$
 ar (AFC)

Ans. Join EC and AD.

Since \triangle ABC is an equilateral triangle.

$$\therefore \angle \mathbf{A} = \angle \mathbf{B} = \angle \mathbf{C} = 60^{\circ}$$

Also \triangle BDE is an equilateral triangle.

$$\therefore \angle B = \angle D = \angle E = 60^{\circ}$$

If we take two lines, AC and BE and BC as a transversal.

Then
$$\angle B = \angle C = 60^{\circ}$$
 [Alternate angles]

$$\Rightarrow$$
 BE || AC

Similarly, for lines AB and DE and BF as transversal.

Then
$$\angle B = \angle C = 60^{\circ}$$
 [Alternate angles]

$$\Rightarrow$$
 BE \parallel AC

(i) Area of equilateral triangle BDE =
$$\frac{\sqrt{3}}{4}$$
 (BD)²(i)

Area of equilateral triangle ABC =
$$\frac{\sqrt{3}}{4}$$
 (BC)²

Dividing eq. (i) by (ii),

$$\frac{\text{ar}\left(\Delta BDE\right)}{\text{ar}\left(\Delta ABC\right)} = \frac{\frac{\sqrt{3}}{4}{(BD)^2}}{\frac{\sqrt{3}}{4}{(BC)}^2} \Rightarrow \frac{\text{ar}\left(\Delta BDE\right)}{\text{ar}\left(\Delta ABC\right)} = \frac{\frac{\sqrt{3}}{4}{(BD)^2}}{\frac{\sqrt{3}}{4}{(2BD)}^2}$$

[: BD = DC]

$$\Rightarrow \frac{\operatorname{ar}(\Delta BDE)}{\operatorname{ar}(\Delta ABC)} = \frac{(BD)^{2}}{(2BD)^{2}} \Rightarrow \frac{\operatorname{ar}(\Delta BDE)}{\operatorname{ar}(\Delta ABC)} = \frac{1}{4}$$

$$\Rightarrow$$
 ar $(\triangle BDE) = \frac{1}{4}$ ar $(\triangle ABC)$

(ii) In ∆ BEC, ED is the median.

$$\therefore$$
 ar (\triangle BEC) = ar (\triangle BAE)(i)

[Median divides the triangle in two triangles having equal area]

Now BE | AC

And \triangle BEC and \triangle BAE are on the same base BE and between the same parallels BE and AC.

$$\therefore$$
 ar (\triangle BEC) = ar (\triangle BAE)(ii)

Using eq. (i) and (ii), we get

$$Ar(\Delta BDE) = \frac{1}{2} ar(\Delta BAE)$$

(iii) We have ar
$$(\triangle BDE) = \frac{1}{4} \text{ ar } (\triangle ABC)$$

[Proved in part (i)](iii)

ar (
$$\triangle$$
BDE) = $\frac{1}{4}$ ar (\triangle BAE) [Proved in part (ii)]

$$ar(\Delta BDE) = \frac{1}{4} ar(\Delta BEC)$$
 [Using eq. (iii)](iv)

From eq. (iii) and (iv), we het

$$\frac{1}{4}$$
 ar $(\triangle ABC) = \frac{1}{4}$ ar $(\triangle BEC)$

$$\Rightarrow$$
 ar (\triangle ABC) = 2 ar (\triangle BEC)

(iv) \triangle BDE and \triangle AED are on the same base DE and between same parallels AB and DE.

$$\therefore$$
 ar (\triangle BDE) = ar (\triangle AED)

Subtracting \triangle FED from both the sides,

$$\operatorname{ar}(\Delta BDE) - \operatorname{ar}(\Delta FED) = \operatorname{ar}(\Delta AED) - \operatorname{ar}(\Delta FED)$$

$$\Rightarrow$$
 ar (\triangle BFE) = ar (\triangle AFD)(v)

(v) An in equilateral triangle, median drawn is also perpendicular to the side,

$$\therefore$$
 AD \perp BC

Now ar
$$(\triangle AFD) = \frac{1}{2} \times FD \times AD$$
(vi)

Draw EG [⊥] BC

$$\therefore \operatorname{ar}(\Delta \operatorname{FED}) = \frac{1}{2} \times FD \times EG \qquad \dots (vii)$$

Dividing eq. (vi) by (vii), we get

$$\frac{\operatorname{ar}\left(\Delta AFD\right)}{\operatorname{ar}\left(\Delta FED\right)} \frac{\frac{1}{2} \times FD \times AD}{\frac{1}{2} \times FD \times EG} \implies \frac{\operatorname{ar}\left(\Delta AFD\right)}{\operatorname{ar}\left(\Delta FED\right)} = \frac{AD}{EG}$$

$$\Rightarrow \frac{\text{ar}\left(\Delta AFD\right)}{\text{ar}\left(\Delta FED\right)} = \frac{\frac{\sqrt{3}}{4}BC}{\frac{\sqrt{3}}{4}BD} \text{ [Altitude of equilateral]}$$

triangle =
$$\frac{\sqrt{3}}{4}$$
 side]

$$\Rightarrow \frac{\text{ar} \left(\Delta AFD\right)}{\text{ar} \left(\Delta FED\right)} = \frac{2BD}{BD} \text{ [D is the mid-point of BC]}$$

$$\Rightarrow \frac{\operatorname{ar}(\Delta AFD)}{\operatorname{ar}(\Delta FED)} = 2 \Rightarrow \operatorname{ar}(\Delta AFD) = 2 \operatorname{ar}(\Delta FED)$$
.....(viii)

Using the value of eq. (viii) in eq. (v),

Ar (
$$\triangle$$
 BFE) = 2 ar (\triangle FED)

(vi) ar
$$(\triangle AFC)$$
 = ar $(\triangle AFD)$ + ar $(\triangle ADC)$ = 2 ar $(\triangle FED)$ + $\frac{1}{2}$ ar $(\triangle ABC)$ [using (v)

= 2 ar (
$$\triangle$$
 FED) + $\frac{1}{2}$ [4 × ar (\triangle BDE)] [Using result of part (i)]

= 2 ar (
$$\Delta$$
 FED) + 2 ar (Δ BDE) = 2 ar (Δ FED) + 2 ar (Δ AED)

[\triangle BDE and \triangle AED are on the same base and between same parallels]

=
$$2 \operatorname{ar} (\Delta \operatorname{FED}) + 2 [\operatorname{ar} (\Delta \operatorname{AFD}) + \operatorname{ar} (\Delta \operatorname{FED})]$$

= 2 ar (
$$\triangle$$
 FED) + 2 ar (\triangle AFD) + 2 ar (\triangle FED)
[Using (viii)]

=
$$4 \operatorname{ar} (\Delta \operatorname{FED}) + 4 \operatorname{ar} (\Delta \operatorname{FED})$$

$$\Rightarrow$$
 ar (\triangle AFC) = 8 ar (\triangle FED)

$$\Rightarrow$$
 ar (\triangle FED) = $\frac{1}{8}$ ar (\triangle AFC)

Q6. Diagonals AC and BD of a quadrilateral ABCD intersect each other at P. Show that:

$$ar(APB) \times ar(CPD) = ar(APD) \times ar(BPC)$$

Ans. Given: A quadrilateral ABCD, in which diagonals AC and BD intersect each other at point E.

To Prove: ar (\triangle AED) \times ar (\triangle BEC)

=
$$ar(\Delta ABE) \times ar(\Delta CDE)$$

Construction: From A, draw AM \perp BD and

from C, draw CN \perp BD.

Proof: ar (
$$\triangle$$
ABE) = $\frac{1}{2} \times BE \times AM$ (i)

And ar
$$(\triangle AED) = \frac{1}{2} \times DE \times AM$$
(ii)

Dividing eq. (ii) by (i), we get,

$$\frac{\text{ar}\left(\Delta AED\right)}{\text{ar}\left(\Delta ABE\right)} = \frac{\frac{1}{2} \times DE \times AM}{\frac{1}{2} \times BE \times AM} \Rightarrow \frac{\text{ar}\left(\Delta AED\right)}{\text{ar}\left(\Delta ABE\right)} = \frac{DE}{BE}$$
.....(iii)

Similarly
$$\frac{\text{ar}(\Delta \text{CDE})}{\text{ar}(\Delta \text{BEC})} = \frac{\text{DE}}{\text{BE}}$$
(iv)

From eq. (iii) and (iv), we get

$$\frac{\text{ar}\left(\Delta AED\right)}{\text{ar}\left(\Delta ABE\right)} = \frac{\text{ar}\left(\Delta CDE\right)}{\text{ar}\left(\Delta BEC\right)}$$

$$\Rightarrow$$
 ar (\triangle AED) \times ar (\triangle BEC) = ar (\triangle ABE) \times ar (\triangle CDE)

Hence proved.

Q7. P and Q are respectively the mid-points of sides AB and BC or a triangle ABC and R is the mid-point of AP, show that:

(i) ar (PRQ) =
$$\frac{1}{2}$$
 ar (ARC)

(ii) ar (RQC) =
$$\frac{3}{8}$$
 ar (ABC)

Ans. (i) PC is the median of \triangle ABC.

$$\therefore$$
 ar (\triangle BPC) = ar (\triangle APC)(i)

RC is the median of \triangle APC.

$$\therefore \operatorname{ar}(\Delta ARC) = \frac{1}{2} \operatorname{ar}(\Delta APC) \dots (ii)$$

[Median divides the triangle into two triangles of equal area]

PQ is the median of \triangle BPC.

$$\therefore$$
 ar $(\triangle PQC) = \frac{1}{2}$ ar $(\triangle BPC)$ (iii)

From eq. (i) and (iii), we get,

$$\operatorname{ar}(\Delta PQC) = \frac{1}{2} \operatorname{ar}(\Delta APC) \dots (iv)$$

From eq. (ii) and (iv), we get,

$$ar(\Delta PQC) = ar(\Delta ARC)....(v)$$

We are given that P and Q are the mid-points of AB and BC respectively.

$$\therefore$$
 PQ || AC and PA = $\frac{1}{2}$ AC

 \Rightarrow ar (\triangle APQ) = ar (\triangle PQC)(vi) [triangles between same parallel are equal in area]

From eq. (v) and (vi), we get

$$ar(\Delta APQ) = ar(\Delta ARC)....(vii)$$

R is the mid-point of AP. Therefore RQ is the median of Δ APQ.

$$\therefore$$
 ar $(\triangle PRQ) = \frac{1}{2}$ ar $(\triangle APQ)$ (viii)

From (vii) and (viii), we get,

$$ar(\Delta PRQ) = \frac{1}{2} ar(\Delta ARC)$$

(ii) PQ is the median of \triangle BPC

$$\therefore \operatorname{ar}(\triangle PQC) = \frac{1}{2} \operatorname{ar}(\triangle BPC) = \frac{1}{2} \times \frac{1}{2} \operatorname{ar}(\triangle ABC)$$
$$= \frac{1}{4} \operatorname{ar}(\triangle ABC) \dots (ix)$$

Also ar
$$(\triangle PRC) = \frac{1}{2}$$
 ar $(\triangle APC)$ [Using (iv)]

$$\Rightarrow \operatorname{ar}(\triangle \operatorname{PRC}) = \frac{1}{2} \times \frac{1}{2} \operatorname{ar}(\triangle \operatorname{ABC}) = \frac{1}{4} \operatorname{ar}(\triangle \operatorname{ABC})$$
.....(x)

Adding eq. (ix) and (x), we get,

$$\operatorname{ar}(\Delta PQC) + \operatorname{ar}(\Delta PRC) = \left(\frac{1}{4} + \frac{1}{4}\right) \operatorname{ar}(\Delta ABC)$$

$$\Rightarrow$$
 ar (quad. PQCR) = $\frac{1}{2}$ ar (\triangle ABC)(xi)

Subtracting ar (\triangle PRQ) from the both sides,

ar (quad. PQCR) – ar (
$$\triangle$$
 PRQ) = $\frac{1}{2}$ ar (\triangle ABC) –

$$\Rightarrow$$
 ar $(\triangle RQC) = \frac{1}{2}$ ar $(\triangle ABC) - \frac{1}{2}$ ar $(\triangle ARC)$

[Using result (i)]

$$\Rightarrow$$
 ar (\triangle ARC) = $\frac{1}{2}$ ar (\triangle ABC) - $\frac{1}{2} \times \frac{1}{2}$ ar (\triangle

APC)

$$\Rightarrow$$
 ar $(\triangle RQC) = \frac{1}{2}$ ar $(\triangle ABC) - \frac{1}{4}$ ar $(\triangle APC)$

$$\Rightarrow$$
 ar $(\triangle RQC) = \frac{1}{2}$ ar $(\triangle ABC) - \frac{1}{4} \times \frac{1}{2}$ ar $(\triangle$

ABC) [PC is median of \triangle ABC]

$$\Rightarrow$$
 ar $(\triangle RQC) = \frac{1}{2}$ ar $(\triangle ABC) - \frac{1}{8}$ ar $(\triangle ABC)$

$$\Rightarrow$$
 ar $(\Delta RQC) = \left(\frac{1}{2} - \frac{1}{8}\right) \times ar (\Delta ABC)$

$$\Rightarrow$$
 ar $(\triangle RQC) = \frac{3}{8}$ ar $(\triangle ABC)$

(iii) ar
$$(\triangle PRQ) = \frac{1}{2}$$
 ar $(\triangle ARC)$ [Using result (i)]

$$\Rightarrow$$
 2 ar (\triangle PRQ) = ar (\triangle ARC) ..(xii)

$$\operatorname{ar}(\Delta PRQ) = \frac{1}{2} \operatorname{ar}(\Delta APQ)$$
 [RQ is the median of

$$\Delta$$
 APQ](xiii)

But ar (\triangle APQ) = ar (\triangle PQC) [Using reason of eq. (vi)](xiv)

From eq. (xiii) and (xiv), we get,

$$\operatorname{ar}(\Delta PRQ) = \frac{1}{2} \operatorname{ar}(\Delta PQC) \dots (xv)$$

But ar (\triangle BPQ) = ar (\triangle PQC) [PQ is the median of \triangle BPC](xvi)

From eq. (xv) and (xvi), we get,

$$ar(\Delta PRQ) = \frac{1}{2} ar(\Delta BPQ)....(xvii)$$

Now from (xii) and (xvii), we get,

$$2\left(\frac{1}{2}\operatorname{ar}\left(\Delta BPQ\right)\right) = \operatorname{ar}\left(\Delta ARC\right) \Rightarrow \operatorname{ar}\left(\Delta BPQ\right) = \operatorname{ar}\left(\Delta ARC\right)$$

- **Q8.** In figure, ABC is a right triangle right angled at A. BCED, ACFG and ABMN are squares on the sides BC, CA and AB respectively. Line segment AX^{\perp} DE meets BC at Y. Show that:
- (i) \triangle MBC \cong \triangle ABD
- (ii) ar(BYXD) = 2 ar(MBC)
- (iii) ar (BYXD) = ar (ABMN)
- (iv) \triangle FCB \cong \triangle ACE
- (v) ar (CYXE) = 2 ar (FCB)
- (vi) ar (CYXE) = ar (ACFG)
- (vii) ar (BCED) = ar (ABMN) + ar (ACFG)

Ans. (i)
$$\angle$$
 ABM = \angle CBD = 90°

Adding \(ABC \) both sides, we get,

$$\angle$$
 ABM + \angle ABC = \angle CBD + \angle ABC \Rightarrow \angle MBC = ABD(i)

Now in \triangle MBC and \triangle ABD,

MB = AB [equal sides of square ABMN]

BC = BD [sides of square BCED]

$$\angle$$
 MBC = \angle ABD [proved above]

$$\triangle$$
 MBC $\cong \triangle$ ABD [By SAS congruency]

(ii) From above, \triangle MBC \cong \triangle ABD

$$\Rightarrow$$
 ar $(\triangle MBC) = ar (\triangle ABD) \Rightarrow ar (\triangle MBC) = ar (trap. ABDX) - ar (\Delta ADX)$

$$\Rightarrow$$
 ar $(\Delta MBC) = \frac{1}{2} (BD + AX) BY - \frac{1}{2} DX.AX$

$$\Rightarrow$$
 ar $(\Delta MBC) = \frac{1}{2} BD.BY + \frac{1}{2} AX.BY - \frac{1}{2}$

DX.AX

$$\Rightarrow$$
 ar $(\Delta MBC) = \frac{1}{2} BD.BY + \frac{1}{2} AX (BY - DX)$

$$\Rightarrow$$
 ar $(\Delta MBC) = \frac{1}{2} BD.BY + \frac{1}{2} AX. o [BY = DX]$

$$\Rightarrow$$
 ar $(\Delta MBC) = \frac{1}{2} BD.BY$

 \Rightarrow 2 ar (\triangle MBC) = BD.BY \Rightarrow 2 ar (\triangle MBC) = ar (rect. BYXD)

Hence ar (BYXD) = $2 \text{ ar} (\Delta \text{MBC})$

(iii) Join AM. ABMN is a square.

Therefore, NA \parallel MB \Rightarrow AC \parallel MB

Now \triangle AMB and \triangle MBC are on the same base and between the same parallels MB and AC.

$$\therefore$$
 ar (\triangle AMB) = ar (\triangle MBC)(ii)

From result (ii), we have ar (BYXD) = 2 ar (Δ MBC)(iii)

Using eq. (ii) and (iii), we get, ar (BYXD) = 2 ar (Δ AMB)

[Diagonal AM of square ABMN divides it in two triangles of equal area]

(iv) In \triangle FCB and \triangle ACE,

FC = AC [sides of square ACFG]

BC = CE [sides of square BCED]

$$\angle BCF = \angle ACE \ [\because \angle ACF = \angle BCE = 90^{\circ}]$$

Adding \(\text{ACB both sides,} \)

$$\angle$$
 BCF + \angle ACB = \angle ACE + \angle ACB \Rightarrow \angle BCF = \angle ACE

$$\triangle$$
 FCB $\cong \triangle$ ACE [By SAS congruency]

(v) From (iv), we have,
$$\triangle$$
 FCB \cong \triangle ACE

$$\Rightarrow$$
 ar $(\triangle FCB) = ar (\triangle ACE) \Rightarrow ar (\triangle FCB) = ar (trap. ACEX) - ar ($\triangle AEX$)$

$$\Rightarrow$$
 ar $(\Delta FCB) = \frac{1}{2} (CE + AX) CY - \frac{1}{2} XE.AX$

$$\Rightarrow$$
 ar $(\Delta FCB) = \frac{1}{2} CE.CY + \frac{1}{2} AX.CY - \frac{1}{2}$

XE.AX

$$\Rightarrow$$
 ar $(\Delta FCB) = \frac{1}{2} CE.CY + \frac{1}{2} AX (CY - XE)$

$$\Rightarrow$$
 ar $(\triangle FCB) = \frac{1}{2} CE.CY + \frac{1}{2} AX. o [CY = XE]$

$$\Rightarrow$$
 ar (\triangle FCB) = $\frac{1}{2}$ CE.CY

$$\Rightarrow$$
 2 ar (\triangle FCB) = CE.CY \Rightarrow 2 ar (\triangle FCB) = ar (rect. CYXE)

Hence ar (BYXD) = 2 ar (Δ FCB)

(vi) Join AF. ACFG is a square.

$$\therefore$$
 FC || AG \Rightarrow FC || AB

Now \triangle ACF and \triangle FCB are on the same base FC and between the same parallels FC and AB.

$$\therefore$$
 ar (\triangle ACF) = ar (\triangle FCB)(v)

From result (v), we get, ar (CYXE) = 2 ar (\triangle FCB)(vi)

Using eq. (v) in (vi), we get, ar (CYXE) = 2 ar (Δ ACF)

Diagonal AF of square ACFG divides it in two triangles of equal area.

(vii) Adding eq. (iv) and (vii), we get,

$$ar(BYXD) + ar(CYXE) = ar(ABMN) + ar(ACFG)$$

$$\Rightarrow$$
 ar (BCED) = ar (ABMN) + ar (ACFG)

******* END ********