COSE222, COMP212 Computer Architecture Assignment #6

Solutions

Prepared by Sunhee Kong

Exercise 5.2.1

4 $16 \text{ bytes} = 4 \times 32 \text{ bits}$

Exercise 5.2.2

a.	I, J, B[I][0]
b.	I, J

Exercise 5.2.3

a.	A[I][J]
b.	A[J][I]

Exercise 5.3.1

a.	Word Address	Binary Form* (Byte Address)	Tag	Index	Hit/Miss
	3	0000 0000 0000 0000 0000 0000 00 <mark>00 11</mark> 00	00000	0011	Miss
	180	0000 0000 0000 0000 0000 0010 11 <mark>01 00</mark> 00	01011	0100	Miss
	43	0000 0000 0000 0000 0000 0000 10 <mark>10 11</mark> 00	00010	1011	Miss
	2	0000 0000 0000 0000 0000 0000 00 <mark>00 10</mark> 00	00000	0010	Miss
	191	0000 0000 0000 0000 0000 0010 11 <mark>11 11</mark> 00	01011	1111	Miss
	88	0000 0000 0000 0000 0000 0001 01 <mark>10 00</mark> 00	00101	1000	Miss
	190	0000 0000 0000 0000 0000 0010 11 <mark>11 10</mark> 00	01011	1110	Miss
	14	0000 0000 0000 0000 0000 0000 00 <mark>11 10</mark> 00	00000	1110	Miss
	181	0000 0000 0000 0000 0000 0010 11 <mark>01 01</mark> 00	01011	0101	Miss
	44	0000 0000 0000 0000 0000 0000 10 <mark>11 00</mark> 00	00010	1100	Miss
	186	0000 0000 0000 0000 0000 0010 11 <mark>10 10</mark> 00	01011	1010	Miss
	253	0000 0000 0000 0000 0000 0011 11 <mark>11 01</mark> 00	01111	1101	Miss

^{*} The upper 30 bits surrounded by a border is block address.

 $^{^{\}star}$ The 28 bits shaded yellow is tag and other 4 bits shaded blue is index.

b.	Word Address	Binary Form* (Byte Address)	Tag	Index	Hit/Miss
	21	0000 0000 0000 0000 0000 0000 01 <mark>01 01</mark> 00	00001	0101	Miss
	166	0000 0000 0000 0000 0000 0010 10 <mark>01 10</mark> 00	01010	0110	Miss
	201	0000 0000 0000 0000 0000 0011 00 <mark>10 01</mark> 00	01100	1001	Miss
	143	0000 0000 0000 0000 0000 0010 00 <mark>11 11</mark> 00	01000	1111	Miss
	61	0000 0000 0000 0000 0000 0000 11 <mark>11 01</mark> 00	00011	1101	Miss
	166	0000 0000 0000 0000 0000 0010 10 <mark>01 10</mark> 00	01010	0110	Hit
	62	0000 0000 0000 0000 0000 0000 11 <mark>11 10</mark> 00	00011	1110	Miss
	133	0000 0000 0000 0000 0000 0010 00 <mark>01 01</mark> 00	01000	0101	Miss

111	0000 0000 0000 0000 0000 0001 10 <mark>11 11</mark> 00	00110	1111	Miss
143	0000 0000 0000 0000 0000 0010 00 <mark>11 11</mark> 00	01000	1111	Miss
144	0000 0000 0000 0000 0000 0010 01 <mark>00 00</mark> 00	01001	0000	Miss
61	0000 0000 0000 0000 0000 0000 11 <mark>11 01</mark> 00	00011	1101	Hit

Exercise 5.3.2

a. [Word Address	Binary Form* (Byte Address)	Tag	Index	Hit/Miss
	Ω	0000 0000 0000 0000 0000 0000 00 <mark>00 1</mark> 100	00000	001	Miss
	180	0000 0000 0000 0000 0000 0010 11 <mark>01 0</mark> 000	01011	010	Miss
	43	0000 0000 0000 0000 0000 0000 10 <mark>10 1</mark> 100	00010	101	Miss
	2	0000 0000 0000 0000 0000 0000 00 <mark>00 1</mark> 000	00000	001	Hit
	191	0000 0000 0000 0000 0000 0010 11 <mark>11 1</mark> 100	01011	111	Miss
	88	0000 0000 0000 0000 0000 0001 01 <mark>10 0</mark> 000	00101	100	Miss
	190	0000 0000 0000 0000 0000 0010 11 <mark>11 1</mark> 000	01011	111	Hit
	14	0000 0000 0000 0000 0000 0000 00 <mark>11 1</mark> 000	00000	111	Miss
	181	0000 0000 0000 0000 0000 0010 11 <mark>01 0</mark> 100	01011	010	Hit
	44	0000 0000 0000 0000 0000 0000 10 <mark>11 0</mark> 000	00010	110	Miss
	186	0000 0000 0000 0000 0000 0010 11 <mark>10 1</mark> 000	01011	101	Miss
	253	0000 0000 0000 0000 0000 0011 11 <mark>11 0</mark> 100	01111	110	Miss

The upper 29 bits surrounded by a border is block address.

 $^{^{\}star}$ The 28 bits shaded yellow is tag and the 3 bits shaded blue is index.

b.	Word Address	Binary Form* (Byte Address)	Tag	Index	Hit/Miss
	21	0000 0000 0000 0000 0000 0000 01 <mark>01 0</mark> 100	00001	010	Miss
	166	0000 0000 0000 0000 0000 0010 10 <mark>01 1</mark> 000	01010	011	Miss
	201	0000 0000 0000 0000 0000 0011 00 <mark>10 0</mark> 100	01100	100	Miss
	143	0000 0000 0000 0000 0000 0010 00 <mark>11 1</mark> 100	01000	111	Miss
	61	0000 0000 0000 0000 0000 0000 11 <mark>11 0</mark> 100	00011	110	Miss
	166	0000 0000 0000 0000 0000 0010 10 <mark>01 1</mark> 000	01010	011	Hit
	62	0000 0000 0000 0000 0000 0000 11 <mark>11 1</mark> 000	00011	111	Miss
	133	0000 0000 0000 0000 0000 0010 00 <mark>01 0</mark> 100	01000	010	Miss
	111	0000 0000 0000 0000 0000 0001 10 <mark>11 1</mark> 100	00110	111	Miss
	143	0000 0000 0000 0000 0000 0010 00 <mark>11 1</mark> 100	01000	111	Miss
	144	0000 0000 0000 0000 0000 0010 0100 0	01001	000	Miss
	61	0000 0000 0000 0000 0000 0000 11 <mark>11 0</mark> 100	00011	110	Hit

^{*} The upper 30 bits surrounded by a border is block address.

* The 28 bits shaded yellow is tag and the 4 bits shaded blue is index.

^{*} The upper 29 bits surrounded by a border is block address.

* The 28 bits shaded yellow is tag and the 3 bits shaded blue is index.

Exercise 5.4.1

Exercise 5.4.2

Exercise 5.4.3

Exercise 5.4.4

. 4	4 blocks												
	Byte Address	0	4	16	132	232	160	1024	30	140	3100	180	2180
	Index	0	0	0	4	7	5	0	0	4	0	5	4
	Hit/Miss	М	Н	Н	M	M	M	M	M	Н	M	Н	M
				3.7	7.7	N	N	Υ	Υ	N	Υ	N	Y
	Replace * Index = (Blo		N nod (# of E	N Entries) =	N {Address	L				l			L
	* Index = (Blo	ck Addr) n	1	L	L	L				l			L
	* $Index = (Blocker)$	ck Addr) n	1	L	L	L				l			L
	* Index = (Blooks) O blocks Byte	ck Addr) n	nod (# of E	Intries) =	{Address	» (Block	off + Byt	te of f)} m	od (# of E	Entries) =	- : [Address	/2 ⁵] mod	32
	* Index = (Bld O blocks Byte Address	o o	4 and (# of E	Intries) =	{Address	» (Block	off + Byt	te off)} m	od (# of E	Intries) =	: [Address	/2 ⁵] mod	2180

Exercise 5.4.5

Byte Address	0	4	16	132	232	160	1024	30	140	3100	180	2180
Index	0	0	0	4	7	5	0	0	4	0	5	4
Hit/Miss	M	Н	Н	M	M	M	M	M	Н	M	Н	M
Replace	N	N	N	N	N	N	Y	Y	N	Y	N	Y
Index = (Block) 0.5			1	l			te off)} m	od (# of E	Entries) =			1
Index = (Block			1	l			te of f)} m	30	Entries) =			1
Index = (Block).5 Byte	Addr) m	od (# of E	Entries) =	{Address	» (Block	off + By			· ·	- - [Address	/2 ⁵] mod	32
Index = (Block).5 Byte Address	Addr) m	od (# of E	2ntries) =	{Address	» (Block	160	1024	30	140	: [Address	/2 ⁵] mod	2180

Exercise 5.7.1

·· ·· ·	0 0 17 12
a.	P1 : 1.52 GHz
	P2 : 1.11 GHz
	1 second/0.66 ns = 1.52G
	1 second/0.90 ns = 1.11G
b.	P1 : 0.926 GHz (926 MHz)
	P2 : 0.495 GHz (495 MHz)
	1 second/1.08 ns = 0.926G
	1 second/2.02 ns = 0.495G

Exercise 5.7.2

```
a. P1 : 6.26 ns

P2 : 5.1 ns

AMAT = Hit time + Miss rate \times Miss penalty
AMAT_{P1} = 0.66ns + 8.0\% \times 70ns
AMAT_{P2} = 0.90ns + 6.0\% \times 70ns

b. P1 : 3.46 ns

P2 : 4.05 ns

AMAT = Hit time + Miss rate \times Miss penalty
AMAT_{P1} = 1.08ns + 3.4\% \times 70ns
AMAT_{P2} = 2.02ns + 2.9\% \times 70ns
```

Exercise 5.7.3

```
a. P1 : 4.05 CPI

P2 : 2.68 CPI

⇒ P2 is faster than P1.

L1 miss penalty<sub>P1</sub> = 70ns = 70ns/0.66ns (cycles) = 106 cycles

CPI_{P1} = 1 + 0.36 \times (0.08 \times 106) = 4.02

L1 miss penalty<sub>P2</sub> = 70ns = 70ns/0.90ns (cycles) = 78 cycles

CPI_{P2} = 1 + 0.36 \times (0.06 \times 78) = 2.68

b. P1 : 1.80 CPI

P2 : 1.37 CPI

⇒ P2 is faster than P1.

L1 miss penalty<sub>P1</sub> = 70ns = 70ns/1.08ns (cycles) = 65 cycles

CPI_{P1} = 1 + 0.36 \times (0.034 \times 65) = 1.80

L1 miss penalty<sub>P2</sub> = 70ns = 70ns/2.02ns (cycles) = 35 cycles

CPI_{P2} = 1 + 0.36 \times (0.029 \times 35) = 1.37
```

Exercise 5.7.4

```
a. 6.42 ns, Worse 

AMAT = Hit time + Miss rate \times Miss penalty

AMAT_{P1} = 0.66ns + 8.0\% \times \{5\% \times 5.62ns + 95\% \times (5.62ns + 70ns)\} = 6.42ns

b. 3.50 ns, Worse 

AMAT = Hit time + Miss rate \times Miss penalty

AMAT_{P1} = 1.08ns + 3.4\% \times \{32\% \times 23.52ns + 68\% \times (23.52ns + 70ns)\} = 3.50ns
```

Exercise 5.7.5

```
4.16 CPI
L2 $ access time = 5.62ns
L1 miss penalty = 5.62ns/0.66ns (cycles) = 9 cycles
Extra penalty = 70ns/0.66ns (cycles) = 106 cycles
CPI<sub>P1</sub> = 1 + 0.36 × {0.08 × (5% × 9 + 95% × (9 + 106)} = 4.16

b. 1.81 CPI
L2 $ access time = 23.52ns
L1 miss penalty = 23.52ns/1.08ns (cycles) = 22cycles
Extra penalty = 70ns/1.08ns (cycles) = 65 cycles
CPI<sub>P1</sub> = 1 + 0.36 × {0.034 × (32% × 22 + 68% × (22 + 65)} = 1.81
```