Material Teórico - Módulo de Função Exponencial

Gráfico da Função Exponencial

Primeiro Ano - Médio

Autor: Prof. Angelo Papa Neto Revisor: Prof. Antonio Caminha M. Neto

02 de dezembro de 2018

1 Funções convexas

Uma função $f: \mathbb{R} \to \mathbb{R}$ é chamada **convexa**¹ se, para todos $a, b \in \mathbb{R}$, com a < b, tem-se

$$f\left(\frac{a+b}{2}\right) < \frac{f(a)+f(b)}{2}.\tag{1}$$

A interpretação geométrica da desigualdade (1) é dada na Figura 1 a seguir.

Figura 1: gráfico de uma função convexa.

Nela, a reta s, a secante ao gráfico passando pelos pontos (a,f(a)) e (b,f(b)), tem coeficiente angular $\frac{f(b)-f(a)}{b-a}$, logo, equação

$$y - f(a) = \frac{f(b) - f(a)}{b - a} \cdot (x - a).$$

Se $x=\frac{a+b}{2}$ é o ponto médio do intervalo [a,b], então o ponto (x,y) sobre a reta s tem ordenada

$$y = f(a) + \frac{f(b) - f(a)}{b - a} \cdot \left(\frac{a + b}{2} - a\right)$$

$$= f(a) + \frac{f(b) - f(a)}{b - a} \cdot \frac{b - a}{2}$$

$$= f(a) + \frac{f(b) - f(a)}{2}$$

$$= \frac{f(a) + f(b)}{2}.$$

Por outro lado, o ponto do gráfico de f com abscissa $x=\frac{a+b}{2}$ tem ordenada $f(x)=f\left(\frac{a+b}{2}\right)$. Assim, a desigualdade (1) nos diz que o ponto do gráfico de f com

abscissa $\frac{a+b}{2}$ está situado *abaixo* do ponto da reta s com a mesma abscissa.

Uma vez que isso ocorre para qualquer par de números reais a < b, concluímos que uma função é convexa se, e somente se, a porção de seu gráfico em um intervalo qualquer [a,b] está sempre situada abaixo da secante ao gráfico passando pelos pontos (a,f(a)),(b,f(b)). Isso significa que

O gráfico de uma função convexa tem a concavidade voltada para cima.

Na Figura 2, podemos ver duas curvas. A curva da direita tem concavidade voltada para baixo, enquanto a curva da esquerda tem concavidade ora voltada para baixo, ora voltada para cima. Nenhuma dessas curvas pode ser gráfico de uma função convexa, pois, para sê-lo, deveriam ter suas concavidades sempre voltadas para cima.

Figura 2: gráficos de duas funções não convexas.

O exemplo a seguir mostra como podemos, na prática, verificar que uma função dada é, de fato, convexa. (Para outros exemplos desse tipo, referimos o leitor a [1].)

Exemplo 1. A função $f : \mathbb{R} \to \mathbb{R}$, dada por $f(x) = x^2$, é convexa.

Solução. Sejam a < b números reais. A desigualdade (1) é equivalente, para $f(x) = x^2$, a

$$\left(\frac{a+b}{2}\right)^2 < \frac{a^2+b^2}{2}.$$

Expandindo o quadrado do primeiro membro, observamos facilmente que a desigualdade acima é equivalente a $2ab < a^2 + b^2$ ou, ainda, a $(a - b)^2 > 0$. Esta última desigualdade é sempre verdadeira para $a \neq b$.

Mostraremos, no Teorema 3 a seguir, que funções exponenciais são convexas. Para tanto, precisaremos da desigualdade constante do seguinte

 $^{^1\}mathrm{Por}$ vezes (veja [1], por exemplo), uma função $f:\mathbb{R}\to\mathbb{R}$ satisfazendo (1) é dita estritamente convexa. Em tais casos, f será dita convexa se, em vez de (1), tivermos $f\left(\frac{a+b}{2}\right) \leq \frac{f(a)+f(b)}{2}$, para todos $a,b\in\mathbb{R}$. Neste material, seguiremos a definição dada em [1].

Lema 2. Se a e b são números reais positivos, então

$$\sqrt{ab} \le \frac{a+b}{2}.\tag{2}$$

Além disso, a igualdade ocorre se, e somente se, a = b.

Prova. Como a > 0 e b > 0, podemos extrair (em \mathbb{R}) as raízes quadradas \sqrt{a} e \sqrt{b} . Logo,

$$(\sqrt{a} - \sqrt{b})^2 \ge 0,$$

pois o quadrado de qualquer número real é não negativo. Desenvolvendo esse quadrado, obtemos a desigualdade $a-2\sqrt{a}\sqrt{b}+b\geq 0$ ou, o que é o mesmo, $a+b\geq 2\sqrt{ab}$. Essa última desigualdade é claramente equivalente a (2).

A igualdade em (2) ocorre se, e somente se, também ocorrer em $(\sqrt{a} - \sqrt{b})^2 \ge 0$. Mas,

$$(\sqrt{a} - \sqrt{b})^2 = 0 \Leftrightarrow \sqrt{a} - \sqrt{b} = 0 \Leftrightarrow \sqrt{a} = \sqrt{b} \Leftrightarrow a = b.$$

Podemos finalmente enunciar e provar o resultado comentado anteriormente.

Teorema 3. A função $f: \mathbb{R} \to \mathbb{R}$, dada por

$$f(x) = B^x$$

onde B > 0 e $B \neq 1$, é convexa.

Prova. Se x < y são números reais quaisquer, então B^x e B^y são números reais positivos e distintos. Aplicando o resultado do Lema 2, com B^x no lugar de a e B^y no lugar de b, obtemos:

$$\sqrt{B^x B^y} < \frac{B^x + B^y}{2}.$$

(Observe que a desigual dade acima é estrita, uma vez que B^x e B^y são números distintos.) De outra forma, temos

$$B^{\frac{x+y}{2}} = \sqrt{B^{x+y}} = \sqrt{B^x B^y} < \frac{B^x + B^y}{2}.$$

Mas isso é o mesmo que $f\left(\frac{x+y}{2}\right) < \frac{f(x)+f(y)}{2}$, que por sua vez é precisamente a desigualdade que desejávamos obter.

2 Gráfico da função exponencial

Para esboçarmos o gráfico da função exponencial $f: \mathbb{R} \to \mathbb{R}$, dada por $f(x) = B^x$, onde a base B é um número real positivo e diferente de 1, precisamos de algumas informações:

(1) Como esse gráfico se curva? O Teorema 3 responde a essa pergunta pois, sendo f convexa, a concavidade de seu gráfico é sempre voltada para cima.

- (2) Como f cresce? Isso depende da base B. No Teorema 7 da aula Função Exponencial e Suas Propriedades, mostramos que, se 0 < B < 1, então f é decrescente, e, se B > 1, então f é crescente.
- (3) Qual é o comportamento de f quando x fica muito grande, ou quando x é negativo com valor absoluto muito grande? Veremos que isso também depende do valor de B.

Uma vez que a pergunta (1) já foi respondida na primeira seção desta aula e a pergunta (2) foi respondida na primeira aula deste módulo, passemos à pergunta (3).

2.1 Caso B > 1

Suponhamos, de início, que B > 1. Multiplicando essa igualdade repetidas vezes por B, vemos que

$$1 < B < B^2 < B^3 < \dots < B^n < B^{n+1} < \dots \tag{3}$$

Além disso, a diferença entre dois termos consecutivos dessa sequência crescente é $B^{n+1}-B^n=B^n(B-1)$, quantidade que aumenta conforme n cresce.

Disso podemos concluir que a sequência (3) não é limitada, ou seja, dado M>0 real, existe um natural suficientemente grande n (que depende de M), tal que $B^n>M$. Então, como $f(x)=B^x$ é crescente (porque B>1) temos que

$$x > n \Rightarrow B^x > B^n \Rightarrow B^x > M$$
.

Em palavras, isso significa que podemos tornar B^x arbitrariamente grande, desde que x seja tomado suficientemente grande. Costumamos indicar esse fato simbolicamente escrevendo

$$\lim_{x \to +\infty} B^x = +\infty. \tag{4}$$

(Lê-se: o limite de B^x quando x tende a mais infinito é mais infinito.)

Vamos continuar a considerar B>1. Se x<0, então -x>0 e $B^x=\frac{1}{B^{-x}}$. Se $\varepsilon>0$ é um número real pequeno (positivo mas próximo de zero), então $M=\frac{1}{\varepsilon}$ é um número real positivo e grande. Mais ainda, quanto menor for ε , maior será M.

Pelo que vimos no parágrafo anterior, existe um natural n tal que $B^n > M$. Logo,

$$x < -n \Rightarrow -x > n \Rightarrow B^x = \frac{1}{B^{-x}} < \frac{1}{M} = \varepsilon.$$

Isso significa que, para B > 1, quando x se distancia muito da origem à esquerda, B^x se aproxima mais e mais de zero. Indicamos esse fato escrevendo

$$\lim_{x \to -\infty} B^x = 0. \tag{5}$$

(Lê-se: o limite de B^x quando x tende a menos infinito é igual a zero.)

Com as informações reunidas até aqui, o gráfico de $f: \mathbb{R} \to \mathbb{R}$ dada por $f(x) = B^x$, com B > 1, tem o aspecto da Figura 3 abaixo.

Figura 3: aspecto do gráfico de uma função exponencial com base B>1.

Na Figura 3, o gráfico da função dada por $f(x) = B^x$ está totalmente acima do eixo x porque $B^x > 0$, para qualquer x real, como já vimos na Observação 7 da aula Função Exponencial e Propriedades. A concavidade do gráfico está voltada para cima, como esperado, já que a função exponencial é convexa, conforme demonstramos na seção 1. A função é crescente, o que pode ser visualizado no gráfico como uma "subida" da esquerda para a direita, ou seja, abscissas maiores correspondem a pontos sobre o gráfico com ordenadas maiores.

Como B^x , com B>1, tende a $+\infty$, se x tende a $+\infty$, o gráfico não é limitado superiormente, embora a discussão que fizemos anteriormente não seja suficiente para decidirmos o quão rapidamente B^x cresce, à medida em que x cresce.

É possível provar que, para qualquer n natural e qualquer M > 0 real, tem-se $B^x > Mx^n$ para todo x suficientemente grande. Isso significa que B^x cresce "mais rapidamente" que qualquer função polinomial.

Ainda em relação à Figura 3, o gráfico de f aparentemente encontra o eixo x à esquerda. Na realidade, de acordo com a discussão acima, resumida no limite (5), o gráfico da função dada por $f(x) = B^x$ se aproxima indefinidamente do eixo x, sem nunca tocá-lo.

Realmente, se olharmos o gráfico dessa função mais de perto (Figura 4), veremos que ele de fato não toca o eixo x, por mais que se aproxime dele.

2.2 Caso 0 < B < 1

Tudo o que fizemos para o caso B>1 poderia ser repetido no caso 0< B<1. No entanto, há um caminho mais simples, usando a ideia de $reflex\~ao$ em torno do eixo y.

Figura 4: olhando o gráfico mais de perto.

Considere a função $g: \mathbb{R} \to \mathbb{R}$, dada por $g(x) = B^x$, onde 0 < B < 1. Seja $f: \mathbb{R} \to \mathbb{R}$ a função dada por f(x) = g(-x).

Um ponto (x, y) pertence ao gráfico de f se, e somente se, y = f(x). Mas, como f(x) = g(-x), temos que y = f(x) se, e somente se, y = g(-x). Isso é equivalente a dizer que o ponto (-x, y) pertence ao gráfico de g. Assim, podemos afirmar o seguinte:

O ponto (x, y) pertence ao gráfico de f se, e somente se, o ponto (-x, y) pertence ao gráfico de g.

De outra forma, a afirmação acima significa que os gráficos de f e g podem ser obtidos um a partir do outro por uma reflexão em torno do eixo y.

A título de ilustração preliminar, consideremos o seguinte

Exemplo 4. As funções f e g, dadas por $f(x) = x^2 + 3x + 1$ e $g(x) = x^2 - 3x + 1$ são tais que f(x) = g(-x). Os gráficos de f e g aparecem na Figura 5 em vermelho e verde, respectivamente. Conforme antecipado pela discussão anterior, eles podem ser obtidos um a partir do outro por uma reflexão em torno do eixo y.

Figura 5: simetria, em relação ao eixo y, dos gráficos de $f(x) = x^2 + 3x + 1$ e $g(x) = x^2 - 3x + 1$.

Ainda com respeito à simetria de gráficos em relação ao eixo y, dizemos que uma função $f: \mathbb{R} \to \mathbb{R}$ é **par** se f(-x) = f(x). Neste caso, a reflexão do gráfico de f em torno do eixo y coincide com o próprio gráfico, ou seja, o gráfico de uma função par é simétrico em relação ao eixo y. Vejamos um

Exemplo 5. A função $f: \mathbb{R} \to \mathbb{R}$, dada por $f(x) = x^4 - 4x^2 + 1$, é par, uma vez que $x^4 = (-x)^4$ e $x^2 = (-x)^2$. Portanto, seu gráfico, esboçado na Figura 6, é simétrico em relação ao eixo y.

Figura 6: o gráfico de $f(x) = x^4 - 4x^2 + 1$ é simétrico em relação ao eixo y.

Voltemos, agora, à análise do gráfico da função exponencial $g: \mathbb{R} \to \mathbb{R}$ dada por $g(x) = B^x$, com 0 < B < 1. Seja $f: \mathbb{R} \to \mathbb{R}$ dada por f(x) = g(-x). Temos:

$$f(x) = g(-x) = B^{-x} = \frac{1}{B^x} = \left(\frac{1}{B}\right)^x = A^x.$$

Como $A=\frac{1}{B}>1$, o que discutimos na subseção 2.1 vale para f, ou seja, o gráfico de f tem o aspecto mostrado na Figura 3.

Pela discussão anterior, sobre simetria de gráficos em relação ao eixo y, a identidade f(x) = g(-x) implica que o gráfico de g é obtido a partir do gráfico de f por uma reflexão em torno do eixo g (veja a próxima figura):

Figura 7: o gráfico de g (linha cheia) é o resultado da reflexão do gráfico de f (linha tracejada) em torno do eixo u.

Como consequência da discussão acima, temos que, se 0 < B < 1, então:

- O gráfico de g está sempre acima do eixo x, pois g(x) > 0, para todo x real.
- A função g, dada por $g(x) = B^x$, é descrescente (como, aliás, já tínhamos concluído na aula Função $Exponencial\ e\ Propriedades$); o gráfico de g "desce", à medida em que x avança para a direita.
- A concavidade do gráfico de g é voltada para cima.
 Realmente, os argumentos usados na primeira seção desta aula independem da base ser maior ou menor do que 1.
- $\lim_{x \to +\infty} g(x) = 0$. Isso se dá porque $g(x) = f(-x) = \frac{1}{f(x)}$; assim, quando f(x) fica muito grande, g(x) se aproxima de zero.
- $\lim_{x \to -\infty} g(x) = +\infty$. Isso ocorre porque $g(x) = \frac{1}{f(x)}$. Quando x se afasta da origem para a esquerda, f(x) se aproxima de zero e é positiva, logo $\frac{1}{f(x)}$ fica cada vez maior.

Dicas para o Professor

A presente aula pode ser coberta em três ou quatro encontros de 50 minutos.

Uma descrição precisa do gráfico da função exponencial pode ser feita usando-se recursos do Cálculo Diferencial. Como já examinamos o crescimento de uma função exponencial na primeira aula deste módulo, conseguimos analisar seu crescimento sem precisar recorrer à noção de derivada. Na primeira seção desta aula, introduzimos a noção de função convexa e demonstramos que a função exponencial é convexa. Com isso, podemos estudar a concavidade do seu gráfico sem precisar recorrer à noção de derivada de segunda ordem.

Ao dicutirmos o comportamento da função exponencial quando x se distancia da origem, introduzimos as notações $+\infty$, $-\infty$ e lim. O intuito aqui não é abordar de maneira rigorosa a noção de limite no infinito, mas simplesmente estabelecer uma notação que é concisa, eficaz e amplamente utilizada. Os estudantes devem compreender que, por exemplo, a notação $\lim_{x\to-\infty} B^x=0$ indica que há uma tendencia a B^x se aproximar de zero à medida em que x se afasta da origem à esquerda, ou, de modo mais preciso, que B^x pode se tornar tão pequeno quanto se queira, bastando para isso considerar x suficientemente afastado da origem à esquerda.

Quando 0 < B < 1, a obtenção do gráfico de uma função exponencial com base B por reflexão, em torno do eixo y, do gráfico da função exponencial de base $\frac{1}{B} > 1$, é uma boa ilustração da noção de reflexão no plano, e também abre espaço para o estudo das relações entre isometrias geométricas e algébricas, como no caso das funções pares.

Sugestões de Leitura Complementar

- A. Caminha, Topicos de Matematica Elementar, vol. 3, SBM, Rio de Janeiro, 2013.
- G. Iezzi, O. Dolce, C. Murakami, Fundamentos de Matemática Elementar, vol. 2, quarta edição, São Paulo, Ed. Atual, 1985.
- 3. E.L.Lima, Logaritmos, SBM, Rio de Janeiro, 1991.

