탄색적 데이터 분석을 통한 지역사회 문제 해결

창의융합 A반

1. 공공데이터 수집

1.1 국가통계포털 소개

국가통계포털은 국가승인 통계를 국민에게 서비스하기 위하여 통계정보를 한 곳에서 검색, 분석·활용할 수 있도록 대한민국 통계청에서 구축하여 운영하고 있는 사이트로, 국내 및 국제, 북한의 주요통계를 한 곳에 모아 이용자가 원하는 통계를 한 번에 찾을 수 있도록 통계청이 제공하는 One-Stop통계 서비스입니다.

국가통계포털 주소

https://kosis.kr/index/index.do

1.2 공공데이터 수집방법

② KOSIS 국가통계포털 - 통계놀이터를 클릭합니다.

③ KOSIS통계놀이터 - 비주얼통계 - ♡를 클릭합니다.

④ 비주얼통계 - "우리나라 출생아 수와 합계출산율의 변화"를 클릭합니다.

⑤ "우리나라 출생아 수와 합계출산율의 변화" - 관련통계표를 클릭합니다.

⑥ 관련통계표 - "인구동태건수 및 동태율추이(출생,사망,혼인,이혼)" 클릭합니다.

⑦ KOSIS "인구동태건수 및 동태율추이(출생,사망,혼인,이혼)" - 조회설정을 클릭합니다.

⑧ 조회조건 - 항목 - "인구동태건수 및 동태율 추이"에 체크합니다.

⑨ 조회조건 – 기본항목별 - "출생아수, 사망자수, 합계출산율"에 체크합니다.

⑩ 조회조건 - 시점(년)- "2015 ~ 2023"에 체크한 다음 "조회"를 클릭합니다.

⑪ 조회된 데이터를 확인 후 상단의 "다운로드"를 클릭합니다.

① 파일형태 - CSV(인코딩: ANSI)로 설정한 다음 다운로드를 클릭합니다.

③ 상단의 △ 에서 다운로드되는지 확인합니다.

(A) 아래와 같이 다운로드된 CSV파일을 확인합니다.

2. 파이참(Pycharm) 활용

2.1 파이참(Pycharm) 소개

Pycharm은 특히 파이썬 프로그래밍 언어에 특화된 컴퓨터 프로그래밍에 사용되는 통합개발환경으로, 코드 분석, 그래피컬 디버거, 통합단위 시험기, 버전 관리 시스템과의 연동을 제공하고 장고, 그리고 아나콘다가 있는 데이터 사이언스를 지원합니다.

2.2 파이참(Pycharm) 설치방법

① 크롬에서 pycham을 검색해서 Pycham 다운로드 사이트를 클릭합니다.

② PyCham Community Edition을 다운로드 받습니다.

③ 폴더 열기를 해서 다운로드 받은 폴더로 이동합니다.

④ 다운로드 받은 설치 파일을 더블 클릭합니다.

⑤ 다음을 클릭합니다.

⑥ 다음을 클릭합니다.

⑦ 체크박스를 모두 체크하고 다음을 클릭합니다.

⑧ 설치를 클릭합니다.

⑨ 설치가 완료되었습니다. 마침을 클릭하고 재부팅합니다.

2.3 파이참(Pycharm) 디렉토리 만들기

① New Project를 클릭합니다.

② 그림과 같이 순서대로 작성해서 프로젝트를 생성합니다. 폴더이름은 app02

③ Python version을 3.9.13으로 선택합니다. Create를 클릭합니다.

④ app02 폴더에 마우스 오른쪽 버튼을 클릭합니다. New에서 Pythno File을 선택합니다.

⑤ 파일 이름을 py01로 입력합니다. 파이썬 파일이 생성됩니다.

⑥ 파일 탐색기에서 프로젝트가 있는 위치로 이동합니다. C:\app02\app02\.venv\Scripts

⑦ 그림과 같이 cmd를 입력하고 엔터를 누릅니다.

® activate를 입력하고 엔터를 누릅니다. 가상환경이 실행됩니다.

Microsoft Windows [Version 10.0.19045.2965]
(c) Microsoft Corporation. All rights reserved.

C:\app02\app02\,venv\Scripts>activate_ ME

⑨ 판다스 라이브러리를 설치합니다. pip install pandas

```
Microsoft Windows [Version 10.0.19045.2965]
(c) Microsoft Corporation. All rights reserved.

C:\app02\app02\app02\.venv\Scripts>activate

(.venv) C:\app02\app02\app02\.venv\Scripts>pip install pandas.
```

⑩ matplotlib 라이브러리를 설치합니다. pip install matplotlib

⑪ 실행. 마우스 오른쪽 버튼 클릭 → Run 클릭.

실행되지 않을경우 파워쉘에서 다음과 같이 진행합니다.

12 pip install msvc-runtime

3. 맵플로우립(Matplotlib)기본 사용법

3.1 맵플로우립(Matplotlib) 소개

Matplotlib는 Python 프로그래밍 언어 및 수학적 확장 NumPy 라이브러리를 활용한 플로팅 라이브러리로, Tkinter, wxPython, Qt 또는 GTK 와 같은 범용 GUI 툴킷을 사용하여 애플리케이션에 플롯을 포함하기 위한 객체 지향 API를 제공합니다.

3.2 맵플로우립(Matplotlib) 설정

① 한글 폰트 설정 - 'matplotlib.rcParams['font.family'] = 'Malgun Gothic' '

import matplotlib.pyplot as plt import matplotlib

matplotlib.rcParams['font.family'] = 'Malgun Gothic' matplotlib.rcParams['axes.unicode_minus'] = False

② 선 그래프를 그리는 함수 - 'ax.plot'

import matplotlib.pyplot as plt import matplotlib

matplotlib.rcParams['font.family'] = 'Malgun Gothic' matplotlib.rcParams['axes.unicode_minus'] = False

- # 모든 그래프 구성요소(축, 그래픽, 텍스트, 레이블 등)를 포함하는 최상위 객체 fig 생성.
- # (그래프를 그리기 전에 액자와 같은 모양을 Figure라고 하겠습니다.)
- # 눈금과 레이블이 있는 테두리박스(그래프) 생성. 서브플롯입니다.

fig, ax = plt.subplots()

x = [1, 2, 3, 4, 5]y = [1, 4, 9, 16, 25]

ax.plot(x, y) # 리스트 x, y를 넣어서 그래프 그리기. 리스트 x는 x축의 값, 리스트 y는 y축의 값.

ax.set_xlabel('x축 이름') # x축 레이블 설정 ax.set_ylabel('y축 이름') # y축 레이블 설정 plt.grid(True) # 격자(grid) 설정 plt.title('선 그래프') # 제목 설정

plt.show() # 그래프를 화면에 나타낸다.

③ 산점도를 그리는 함수 - 'ax.scatter'

import matplotlib.pyplot as plt import matplotlib

matplotlib.rcParams['font.family'] = 'Malgun Gothic' matplotlib.rcParams['axes.unicode_minus'] = False

fig, ax = plt.subplots()

$$x = [1, 2, 3, 4, 5]$$

 $y = [1, 4, 9, 16, 25]$

ax.scatter(x, y) ax.set_xlabel('x축 이름') ax.set_ylabel('y축 이름') plt.grid(True) plt.title('산전도 그래프')

④ 가로 막대 그래프를 그리는 함수 - 'ax.barh'

import matplotlib.pyplot as plt import matplotlib

matplotlib.rcParams['font.family'] = 'Malgun Gothic' matplotlib.rcParams['axes.unicode_minus'] = False

fig, ax = plt.subplots()

categories = ['A', 'B', 'C', 'D', 'E'] values = [5, 7, 3, 8, 6]

ax.barh(categories, values) # 첫 번째 인자는 Y축. 두 번째 인자는 X축. ax.set_xlabel('값') ax.set_ylabel('카테고리') plt.grid(True) plt.title('가로막대 그래프') plt.show()

⑤ 세로 막대 그래프를 그리는 함수 - 'ax.bar'

import matplotlib.pyplot as plt import matplotlib

matplotlib.rcParams['font.family'] = 'Malgun Gothic' matplotlib.rcParams['axes.unicode_minus'] = False

fig, ax = plt.subplots()

categories = ['A', 'B', 'C', 'D', 'E'] values = [5, 7, 3, 8, 6]

ax.bar(categories, values) # 첫 번째 인자는 X축. 두 번째 인자는 Y축. ax.set_xlabel('카테고리') ax.set_ylabel('값') plt.grid(True) plt.title('세로막대 그래프') plt.show()


```
plt.title('그래프 제목')
                              # 기본
plt.title('그래프 제목', loc='left')
                              # 제목을 넣을 위치 (left, center, right)
plt.title('그래프 제목', pad=20)
                              # pad : 제목과 그래프의 간격 (숫자)
# fontdict : 제목의 글꼴. 딕셔너리로 설정
    fontsize - 제목 크기 (숫자)
    fontweight - nomal, bold, heavy, light
    color - 제목 색깔
plt.title('그래프 제목', fontdict={'fontsize': 18, 'fontweight':'bold', 'color':'blue'})
⑦ 그래프 화면에 보여주기 - 'plt.show'
plt.show()
⑧ x축 이름 설정 - 'ax.set_xlabel'
# labelpad: 레이블 여백 (숫자)
# loc: 레이블 위치.
    ax.set_xlabel(loc='center') - 'left', 'center', 'right'
    ax.set_ylabel(loc='top') - 'bottom', 'center', 'top'
# color: 레이블 색깔.
ax.set_xlabel('x축 이름', labelpad=10, loc='center', color='blue')
⑨ 범례 설정 - 'axlegend'
# loc: 위치.
      best, upper right, upper left, upper center
            lower right, lower left, lower center
            center right, center left, center
# fontsize: 글씨 크기 (숫자)
# shadow : 그림자 (True, False)
# fontsize: 글씨 크기 (숫자)
# shadow : 그림자 (True, False)
plt.plot(x, y, label='선 그래프')
ax.legend(loc='upper right', fontsize=18, shadow=True)
# x축, y축 범위는 0~1 값의 범위
# x축 기준으로 0.5 y축 기준으로 0.5에 그린다. 가운데에 그려진다.
ax.legend(loc=(0.5, 0.5))
⑩ 격자 설정 - 'plt.grid()'
# True로 설정하면 x, y 축 둘 다 표시
# plt.grid(True, axis='y') 가로 방향
# plt.grid(True, axis='x') 세 로 방향
# 격자(그리드) y는 가로 방향. 색깔 회색, 투명도 0.2, 선 스타일 실선, 선 두께 1
plt.grid(True, axis='y', color='gray', alpha=0.2, linestyle='-', linewidth=1)
```

⑥ 그래프의 제목 설정 - 'plt.title'

4. 차트 그리기 실습

plt.grid(True)

plt.show()

plt.title('성적 그래프')

① 꺽은 선 차트 그리기 예제 import matplotlib.pyplot as plt import matplotlib matplotlib.rcParams['font.family'] = 'Malgun Gothic' matplotlib.rcParams['axes.unicode_minus'] = False # 꺽은 선 그레프 그리기 # color : 선 색깔 # marker: 마커 스타일 # markersize: 마커 크기 # markeredgecolor: 마커 테두리 색깔 # markerfacecolor: 마커 색깔 # markeredgewidth: 마커 테두리 너비 # linewidth: 선 두께 # linestyle: 선 스타일 # https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html # https://matplotlib.org/stable/api/markers_api.html fig, ax = plt.subplots() score=[90, 80, 70, 77, 58] x=['lee','kim','ryu','kang','park'] ax.plot(x, score, linestyle='--', color='#6BA1FF', marker='o', markersize=8, markeredgecolor='#6BA1FF', markerfacecolor='red', markeredgewidth='3', linewidth=3, label='점수') ax.set_xlabel('이름') ax.set_ylabel('점수') ax.legend(loc='upper right')

② 세로막대 차트 그리기 예제 import matplotlib.pyplot as plt import matplotlib

matplotlib.rcParams['font.family'] = 'Malgun Gothic' matplotlib.rcParams['axes.unicode_minus'] = False

```
fig, ax = plt.subplots()
```

data = [78, 80, 90, 77, 100] x = ['김철수','이영희','홍길동','김민수','김민우']

막대그래프

color: 막대 색깔

width: 너비. 0.2/0.6/0.8/1.0 디폴트는 0.8입니다.

align: center, edge # edgecolor: 테두리 색깔 # linewidth: 테두리 굵기

colors = ['red', 'green', 'blue', '#20FF1F', '#FF6C6D']

ax.bar(x, data, color=colors, width=0.6, align='center', edgecolor='lightgray', linewidth=5)

ax.set_xlabel('이름') ax.set_ylabel('점수') plt.grid(True)

plt.title('점수 그래프')

plt.show()

③ 혼합 차트 그리기 예제

```
import matplotlib.pyplot as plt import matplotlib
```

```
matplotlib.rcParams['font.family'] = 'Malgun Gothic' matplotlib.rcParams['axes.unicode_minus'] = False
```

```
fig, ax = plt.subplots()
```

```
kor = [78, 80, 90, 77, 100]
eng = [70, 80, 90, 50, 60]
x=['김철수', '이영희', '홍길동', '김민수', '김민우']
```

ax.bar(x, kor, width=0.3, color='red', label='국어') ax.bar(x, eng, width=0.3, color='blue', label='영어', bottom=kor)

ax.set_xlabel('이름') ax.set_ylabel('점수') ax.legend(loc=(0.6, 0.8), fontsize=12, shadow=True)

plt.grid(True, axis='y', color='gray', alpha=0.2, linestyle='-', linewidth=1) plt.title('국어와 영어점수 막대그래프') plt.show()

④ 파이 차트 그리기 예제

import matplotlib.pyplot as plt import matplotlib

matplotlib.rcParams['font.family'] = 'Malgun Gothic' matplotlib.rcParams['axes.unicode_minus'] = False

fig, ax = plt.subplots()

kor = [78, 80, 90, 77, 100] names = ['김철수', '이영희', '홍길동', '김민수', '김민우'] explode = [0.05, 0.05, 0.05, 0.05, 0.05]

startangle=90 시작 위치를 90도로 설정.

counterclock=False 시계방향으로 그리기.

explode: 간격 띄우기

ax.pie(kor, labels=names, autopct='%.2f%%', startangle=90, counterclock=False, explode=explode) ax.legend(loc=(1.1, 0.3), title='점수')

plt.grid(True, axis='y', color='gray', alpha=0.2, linestyle='-', linewidth=1) plt.title('국어 점수 원그래프') plt.show()

⑤ 파이 차트 그리기 예제

import matplotlib.pyplot as plt import matplotlib

matplotlib.rcParams['font.family'] = 'Malgun Gothic' matplotlib.rcParams['axes.unicode_minus'] = False

fig, ax = plt.subplots()

kor = [78, 80, 90, 77, 100] names = ['김철수', '이영희', '홍길동', '김민수', '김민우'] explode = [0.05, 0.05, 0.05, 0.05, 0.05] colors = ['#ffadad', '#ffd6a5', '#fdffb6', '#caffbf', '#9bf6ff'] wedgeprops = {'width': 0.6, 'edgecolor':'w', 'linewidth':5}

도넛 모양으로 하기위해서 딕셔너리를 만든다

테두리 색은 흰색, 두께 5

ax.pie(kor, labels=names, autopct='%.2f%%', startangle=90,

counterclock=False, explode=explode, wedgeprops=wedgeprops) ax.legend(loc=(1.1, 0.3), title='점수')

plt.grid(True, axis='y', color='gray', alpha=0.2, linestyle='-', linewidth=1) plt.title('국어 점수 원그래프') plt.show()

5. 판다스

5.1 판다스(Pandas)데이터 분석 처리

다양한 분야에서 데이터 분석 처리에 편리하게 사용할 수 있는 판다스에 대해 알아보겠습니다. 판다스(pandas)는 파이썬의 기본적인 코딩을 익힌 후에 공부하는 것을 추천드리며, 파이썬 IDLE과 PyCharm 어떤 것을 사용해도 무관합니다.

5.2 판다스(Pandas) 시작하기

판다스는 파이썬 설치 시 기본 포함되어 있지 않기 때문에 설치가 필요합니다. 파이썬 IDLE을 사용한다면 cmd 커맨드 창을 열고 아래 명령어를 입력하여 설치합니다.

① 판다스 모듈 설치하기

pip install pandas

파이참(PyCharm)에서도 동일하게 터미널에서 위 명령어를 입력해 판다스를 설치합니다. 설치 후, 판다스 모듈을 불러옵니다. 'as' 키워드를 사용하여 별칭을 지정할 수 있습니다.


```
{'Name': ['홍길동', '이순신', '강감찬'], 'Age': [23, 45, 35]}
```

딕셔너리 자료형을 이용해 객체를 생성하고 출력할 수 있습니다. 딕셔너리는 키를 기반으로 값을 저장하며, 각 키에 여러 개의 값을 리스트 형태로 저장하고 1차원 배열구조인 시리즈 형태로 출력합니다.

```
Name Age
0 홍길동 23
1 이순신 45
2 강감찬 35
```

④ 인덱스 추가하기

	Name	Age	
A	홍길동	23	
В	이순신	45	
C	강감친	35	

⑤ columns 추가하기

	이름	LFOI
Α	홍길동	23
В	이순신	45
	강감찬	7 -
L	3 H C	35

```
이름 이순신
나이 45
Name: B, dtype: object
```

5.3 판다스(Pandas) 데이터프레임으로 차트 그리기

```
이름
        국어
             영어 수학
  김철수
0
         90
             99
                 75
1
  이영희
         70
             77
                 85
2
   김민수
         80
                 90
             88
```

```
② 판다스 인덱스 추가하기
```

print(df)

```
국어
          영어
                수학
이름
           99
김철수
       90
               75
이영희
       70
           77
               85
김민수
       80
               90
           88
```

```
③ 꺽은선 그래프 그리기
```

```
import matplotlib.pyplot as plt
import matplotlib
import pandas as pd
matplotlib.rcParams['font.family'] = 'Malgun Gothic'
data = {
            '이름':['김철수', '이영희', '김민수'],
            '국어':[90, 70, 80],
            '영어':[99, 77, 88],
            '수학':[75, 85, 90]
df = pd.DataFrame(data)
fig, ax = plt.subplots()
ax.plot(df['이름'], df['국어'], color='blue', label='국어')
ax.plot(df['이름'], df['영어'], color='#FE7D27', label='영어')
ax.plot(df['이름'], df['수학'], color='green', label='수학')
ax.legend(loc='upper right')
ax.tick_params(rotation=0)
plt.title('성적 그래프')
plt.show()
```



```
④ 막대 그래프 그리기
import matplotlib.pyplot as plt
import matplotlib
import pandas as pd
import numpy as np
matplotlib.rcParams['font.family'] = 'Malgun Gothic'
# matplotlib.rcParams['axes.unicode_minus'] = False
data = {
            '이름':['김철수', '이영희', '김민수'],
            '국어':[90, 70, 80],
            '영어':[99, 77, 88],
            '수학':[75, 85, 90]
       }
df = pd.DataFrame(data)
# print(df)
# print(df.shape)
                      # (3, 4)
# print(df.shape[0])
                      # 3
N = df.shape[0]
index = np.arange(N) # [0 1 2]
fig, ax = plt.subplots()
w = 0.25
ax.bar(df.index - w, df['국어'], color='blue', label='국어', width=0.25)
ax.bar(df.index, df['영어'], color='#FE7D27', label='영어', width=0.25)
ax.bar(df.index + w, df['수학'], color='green', label='수학', width=0.25)
ax.set_xticks(index, df['이름'])
ax.tick params(rotation=0)
ax.legend(loc='upper right', ncol=3)
plt.title('성적 그래프')
plt.show()
```



```
⑤ 원 그래프 그리기
```

```
import matplotlib.pyplot as plt
import matplotlib
import pandas as pd
import numpy as np
matplotlib.rcParams['font.family'] = 'Malgun Gothic'
data = {
             '이름':['김철수', '이영희', '김민수'],
             '국어':[90, 70, 80],
             '영어':[99, 77, 88],
             '수학':[75, 85, 90] }
df = pd.DataFrame(data)
df = df.set_index('이름')
# print(df['국어'])
# print(df['국어'].iloc[0])
fig, ax = plt.subplots()
values = [df['국어'].iloc[0], df['국어'].iloc[1], df['국어'].iloc[2]]
labels = [df.index[0], df.index[1], df.index[2]]
explode = [0.02] * 3
colors = ['#ffadad', '#ffd6a5', '#a0c4ff']
ax.pie(values, labels=labels, autopct='%1.1f%%', startangle=90, explode=explode, colors=colors)
# wedgeprops = {'width': 0.6, 'edgecolor':'white', 'linewidth':5}
# ax.pie(values, labels=labels, autopct='%1.1f%%', startangle=90, explode=explode, colors=colors,
wedgeprops=wedgeprops)
ax.legend(loc=(1.0, 0.3), title='국어 성적')
plt.title('성적 그래프')
plt.show()
```



```
⑥ 과목별 원 그래프 그리기
import matplotlib.pyplot as plt
import matplotlib
import pandas as pd
import numpy as np
matplotlib.rcParams['font.family'] = 'Malgun Gothic'
data = {
             '이름':['김철수', '이영희', '김민수'],
            '국어':[90, 70, 80],
            '영어':[99, 77, 88],
            '수학':[75, 85, 90] }
df = pd.DataFrame(data)
df = df.set_index('이름')
# print(df['국어'])
# print(df['국어'].iloc[0])
fig, axes = plt.subplots(1, 3, figsize=(18, 6))
labels = [df.index[0], df.index[1], df.index[2]]
values1 = [df['국어'].iloc[0], df['국어'].iloc[1], df['국어'].iloc[2]]
values2 = [df['영어'].iloc[0], df['영어'].iloc[1], df['영어'].iloc[2]]
values3 = [df['수학'].iloc[0], df['수학'].iloc[1], df['수학'].iloc[2]]
axes[0].pie(values1, labels=labels, autopct='%1.1f%%', startangle=90)
axes[0].set_title('국어 점수 비율')
axes[1].pie(values2, labels=labels, autopct='%1.1f%%', startangle=90)
axes[1].set_title('영어 점수 비율')
axes[2].pie(values3, labels=labels, autopct='%1.1f%%', startangle=90)
axes[2].set_title('수학 점수 비율')
plt.suptitle('성적 그래프')
plt.show()
```



```
⑦ 과목별 막대그래프 그리기
import matplotlib.pyplot as plt
import matplotlib
import pandas as pd
import numpy as np
matplotlib.rcParams['font.family'] = 'Malgun Gothic'
data = {
            '이름':['김철수', '이영희', '김민수'],
            '국어':[90, 70, 80],
            '영어':[99, 77, 88],
            '수학':[75, 85, 90]}
df = pd.DataFrame(data)
df = df.set index('이름')
# print(df['국어'])
# print(df['국어'].iloc[0])
fig, axes = plt.subplots(1, 3, figsize=(18, 6))
names = [df.index[0], df.index[1], df.index[2]]
values1 = [df['국어'].iloc[0], df['국어'].iloc[1], df['국어'].iloc[2]]
values2 = [df['영어'].iloc[0], df['영어'].iloc[1], df['영어'].iloc[2]]
values3 = [df['수학'].iloc[0], df['수학'].iloc[1], df['수학'].iloc[2]]
axes[0].bar(names, values1, width=0.6)
axes[0].set_xlabel('이름')
axes[0].set_title('국어 점수')
axes[1].bar(names, values2, width=0.6)
axes[1].set_xlabel('이름')
axes[1].set title('영어 점수')
axes[2].bar(names, values3, width=0.6)
axes[2].set_xlabel('이름')
axes[2].set_title('수학 점수')
plt.suptitle('성적 그래프')
plt.show()
```



```
⑧ 성적 그래프 그리기 (중간고사 성적) - p01.py
import pandas as pd
import numpy as np
# 난수 생성기를 초기화합니다. 777은 시드 값입니다.
# 시드 값을 설정하면, 이후에 생성되는 난수들이 항상 동일한 순서로 생성됩니다.
# 이는 코드 실행 시마다 같은 난수를 얻기 위해 사용됩니다.
np.random.seed(777)
# print(np.random.rand(5)) # 항상 동일한 값이 출력
# 5행 4열의 2차원 배열을 생성하고, 각 요소는 0과 100 사이의 무작위 수(난수)로 채웁니다.
data = np.random.randint(0, 101, size=(5, 4))
# print(data)
col = ['국어', '영어', '수학', '과학']
ind = ['홍길동','김철수','이영희','김민수','김민우']
df = pd.DataFrame(
   data=data,
   columns=col,
   index=ind
)
print(f'******중간고사 성적******')
print(df)
```

******	승간고시	성적*	****	
	국어	영어	수학	과학
홍길동	47	59	38	87
김철수	49	71	29	39
이영희	89	46	24	39
김민수	18	13	14	32
김민우	91	65	82	84

```
③ 성적 그래프 그리기 (기말고사 성적) - p02.py
import pandas as pd
import numpy as np

np.random.seed(888)

data = np.random.randint(0, 101, size=(5, 4))
# print(data)

col = ['국어', '영어', '수학', '과학']
ind = ['홍길동','김철수','이영희','김민수','김민우']

df = pd.DataFrame(
    data=data,
    columns=col,
    index=ind
)

print(f'********기말고사 성적*******)
print(df)
```

```
영어 수학
    22
            60
        46
17
            12
    16
        93
            26
        80
96
    3
19
        82
            46
    26
    52
94
         1
             2
```

```
***********종합성적**********
        국어
             영어 수학
                         과학
 홍길동
        36.5
                   42.0
              40.5
                         73.5
 김철수
        33.0
             43.5
                   61.0
                         25.5
이영희
        92.5
                   52.0
              24.5
                         32.5
 김민수
        18.5
              19.5
                   48.0
                         39.0
 김민우
        92.5
              58.5
                   41.5
                         43.0
```

① 종합성적 막대그래프 그리기 - p04.py

```
import p03
import matplotlib.pyplot as plt
import matplotlib
import pandas as pd
import numpy as np
matplotlib.rcParams['font.family'] = 'Malgun Gothic'
df = p03.df
# print(df)
N = df.shape[0]
index = np.arange(N) # [0 1 2 3 4]
# print(index)
names = [df.index[0], df.index[1], df.index[2], df.index[3], df.index[4]]
korean_scores = df['국어'].tolist()
english_scores = df['영어'].tolist()
math_scores = df['수학'].tolist()
science_scores = df['과학'].tolist()
```

② 종합성적 막대그래프 그리기 (계속) - p04.py

```
fig, ax = plt.subplots(figsize=(10,6))
```

```
ax.bar(index-0.3, korean_scores, width=0.2, label='국어')
ax.bar(index-0.1, english_scores, width=0.2, label='영어')
ax.bar(index+0.1, math_scores, width=0.2, label='수학')
ax.bar(index+0.3, science_scores, width=0.2, label='과학')

for i in range(0, len(index), 1):
    ax.text(i-0.4, korean_scores[i]+1.5, korean_scores[i], va='center', fontsize=11, color='blue')
    ax.text(i-0.2, english_scores[i]+1.5, english_scores[i], va='center', fontsize=11, color='blue')
    ax.text(i, math_scores[i]+1.5, math_scores[i], va='center', fontsize=11, color='blue')
    ax.set_vi+0.2, science_scores[i]+1.5, science_scores[i], va='center', fontsize=11, color='blue')
ax.set_ylabel('이름')
ax.set_ylabel('점수')
ax.set_yticks(index, names)
ax.set_yticks(np.arange(0, 120, 20))
ax.legend(loc='upper right', ncol=1)
```

plt.show()

③ 종합성적 과목별 막대그래프 그리기

korean_scores = df['국어'].tolist()

```
import p03
import matplotlib.pyplot as plt
import matplotlib
import pandas as pd
import numpy as np

matplotlib.rcParams['font.family'] = 'Malgun Gothic'

df = p03.df
N = df.shape[0]
index = np.arange(N)  # [0 1 2 3 4]
names = [df.index[0], df.index[1], df.index[2], df.index[3], df.index[4]]
```

④ 종합성적 과목별 막대그래프 그리기 (계속)

```
english_scores = df['영어'].tolist()
math_scores = df['수학'].tolist()
science_scores = df['과학'].tolist()
```

fig, ax = plt.subplots(2, 2, figsize=(12, 8))

ax[0][0].bar(names, korean_scores, label='국어') # ax[0][0].bar(names, df['국어'], label='국어') ax[0][0].set_title('국어 점수')

ax[0][1].bar(names, english_scores, label='영어') ax[0][1].set_title('영어 점수')

ax[1][0].bar(names, math_scores, label='수학') ax[1][0].set_title('수학 점수')

ax[1][1].bar(names, science_scores, label='과학') ax[1][1].set_title('과학 점수')

plt.suptitle('종합성적') plt.show()


```
⑤ 종합성적 과목별 원그래프 그리기
import p03
import matplotlib.pyplot as plt
import matplotlib
import pandas as pd
matplotlib.rcParams['font.family'] = 'Malgun Gothic'
matplotlib.rcParams['axes.unicode_minus'] = False
df = p03.df
N = df.shape[0]
index = np.arange(N)
                         # [0 1 2 3 4]
names = df.index.values # ['홍길동' '김철수' '이영희' '김민수' '김민우']
subject_names = df.columns.values # ['국어' '영어' '수학' '과학']
# print('index: ', index)
# print('학생 이름:', names)
# print('과목 이름:', subject_names)
korean_scores = df['국어'].to_list()
english_scores = df['영어'].tolist()
math_scores = df['수학'].tolist()
science_scores = df['과학'].tolist()
scores_list = [korean_scores, english_scores, math_scores, science_scores]
# print(scores_list)
이것도 가능
scores_list = []
for sub_name in subject_names:
    scores_list.append(df[sub_name].to_list())
fig, ax = plt.subplots(2, 2, figsize=(12, 8))
n = 0
for i in range(0, 2, 1):
                              # 0 1
                              # 0 1
    for j in range(0, 2, 1):
        ax[i][j].pie(scores_list[n], labels=names, autopct='%1.1f%%', startangle=90)
        ax[i][j].set_title(subject_names[n]) # 0 0, 0 1, 1 0, 1 1
        n=n+1
plt.legend(loc=(1.0, 0.8))
plt.suptitle('종합성적')
```

plt.show()

6. 연도별 출산율 데이터 분석

6.1 활용데이터 찾기

① 활용데이터 찾기 : 국가통계포털 - 통계놀이터 - "출산율" 검색 - 지역별(시도)합계 출산율을 클릭합니다.

② 관련통계표 - KOSIS 통계목록 - 시군구/출생아수,합계출생율을 클릭합니다.

③ 전체선택 [출생아 수, 합계출산율], 시군구별[구미시], 시점[2011 ~ 2023]

④ 행렬전환해서 적용 합니다.

⑤ 다운로드 - CSV(인코딩: ANSI - 다운로드 클릭합니다.

⑥ 다운로드한 활용데이터를 파이참 디렉토리에 넣고 파이썬 파일을 만들어 코딩합니다.

import matplotlib.pyplot as plt import matplotlib import pandas as pd import numpy as np

matplotlib.rcParams['font.family'] = 'Malgun Gothic' matplotlib.rcParams['axes.unicode_minus'] = False

df = pd.read_csv('시군구_출생아수_합계출산율_20240627002952.csv', encoding='cp949') # print(df)

year = df['시점'][1:] df.iloc[13, 0] = df.iloc[13, 0][:4] # print(df)

⑦ 계속

```
new_df = pd.DataFrame(
    {
        '년도': df['시점'][1:].astype(int),
        '출생아수': df['구미시'][1:].astype(int),
        '합계출산율': df['구미시.1'][1:].astype(float),
    }
)
print(new_df)
fig, ax = plt.subplots(figsize=(10, 6))
ax.bar(new_df['년도'], new_df['출생아수'], color='#E8C288', label='출생아 수')
for i in range(0, len(new_df.index), 1):
    ax.text(
            new_df.iloc[i]['년도'], int(new_df.iloc[i]['출생아수']+95), int(new_df.iloc[i]['출생아수']),
                                            # 글씨 크기
            fontsize=10,
            color='royalblue',
                                            # 글씨 색깔
            fontweight='bold',
                                            # 굵게
                                           # 밝은 회색 배경 색
            backgroundcolor='lightgray',
                                            # 0.5 투명도
            alpha=0.5,
            va='center',
                                           # 세로축 정렬: top, bottom, center
            ha='center',
                                           # 가로축 정렬: left, right, center
            rotation='horizontal',
                                          # 회전: vertical, horizontal
            bbox=dict(boxstyle='round', facecolor='white', alpha=0.4, edgecolor="blue", pad=0.1)
        )
ax.legend(loc=(0.81, 0.88), fontsize=12, shadow=True)
ax.set_xlabel('년도', labelpad=10, loc='center', color='blue')
ax.set_ylabel('출생아 수(명)', labelpad=20, loc='top', color='blue')
# x축을 공유하는 axis를 만든다
ax2 = ax.twinx()
ax2.plot(new_df['년도'], new_df['합계출산율'],
         color='#6BA1FF',
         marker='o',
         markersize=8,
         markeredgecolor='#6BA1FF',
         markerfacecolor='white',
         markeredgewidth='3',
         linewidth=3,
         label='합계출산율')
```

⑧ 계속

```
for i in range(0, len(new_df.index), 1):
    ax2.text(new_df.iloc[i]['년도'], new_df.iloc[i]['합계출산율']-0.04, new_df.iloc[i]['합계출산율'],
    fontsize=10,
    color='green',
    fontweight='bold',
    va='center',
    ha='center'
    )

ax2.set_ylabel('합계출산율', labelpad=10, loc='center', color='#6BA1FF')

ax2.legend(loc=(0.81, 0.8), fontsize=12, shadow=True)

ax2.tick_params(axis='y', direction='inout', length=5, pad=10, labelsize=12, labelcolor='blue', width=2, color='red')

plt.grid(True, axis='y', color='gray', alpha=0.2, linestyle='-', linewidth=1)

plt.title('우리고장 출생아 수 및 합계출산율', loc='center', pad=20, fontdict={'fontsize': 18, 'fontweight':'bold', 'color':'blue'})

plt.show()
```

