CSC453 Homework 2 Due October 7th, 2018 at 11.00pm

Part C: Functional Dependencies

C-1 Transitive Dependency and Keys

You have a relation R(L,M,N,O,P,Q) R(A,B,C,D,E,F) and a set of functional dependencies $F = \{LNO \rightarrow M, MN \rightarrow LOP, N \rightarrow O, OP \rightarrow LN\}$.

• [2pt] Can we infer $NP \rightarrow LM$ from F?

Yes,

 $N \rightarrow 0$

NPO→L

NPOL→LM

Therefore NP→LM

• [3pt] Can we infer $NQ \rightarrow LO$ from F?

No, you can only get N→O but we would need additional information to determine L

C-2 Keys

(i) [5pt] Find all the candidate keys of the Relation R(ABCDE) with FD's:

$$D \rightarrow C$$
, $CE \rightarrow A$, $D \rightarrow A$, and $AE \rightarrow D$
BEC, BEA, BED

(ii) [5pt] Determine **all** the candidate and superkeys of the relation R(ABCDEF) with FD's:

AEF \rightarrow C, BF \rightarrow C, EF \rightarrow D, and ACDE \rightarrow F

Superkeys: ABEF, ABECD, ABEFC, ABEFD

Candidate Keys: ABEF & ABECD

C-3 Minimal Cover

[5pt] Find a minimal cover for the following set F of functional dependencies.

 $A \rightarrow BC$

 $AB \rightarrow D$

 $C \rightarrow AD$

 $D \rightarrow B$

Show your working clearly. Points will be deducted if you do not show the extraneous attributes, and their elimination.

 $A \rightarrow B FD$ extraneous? Yes $(A \rightarrow C \rightarrow D \rightarrow B)$ REMOVE

 $A \rightarrow C$

 $AB \rightarrow D$

 $C \rightarrow A$

 $C \rightarrow D$

 $D \rightarrow B$

 $A \rightarrow C$

 $AB \rightarrow D$ is A extraneous? Yes $(A \rightarrow C \rightarrow D \rightarrow B)$ REMOVE

 $C \rightarrow A$

 $C \rightarrow D$

 $D \rightarrow B$

 $A \rightarrow C$

 $B \rightarrow D$

 $C \rightarrow A$

 $C \rightarrow D$

 $D \rightarrow B$

Minimal Cover:

 $A \rightarrow C$

 $B \rightarrow D$

 $C \rightarrow AD$

 $D \rightarrow B$

C-4 Equivalence (15 points)

[10pt] Consider the following set of F.Ds. Determine if FD1 is equivalent to FD2 or to FD3:

FD1:

 $\{BC->D, ACD->B, CG->B, CG->D, AB->C, C->A, D->E, BE->C, D->G, CE->A, CE->G\}$

FD2:

{AB->C, C->A, BC->D, CD->B, D->E, D->G, BE->C, CG->D}

FD3:

{AB->C, C->A, D->G, BE->C, CG->D, CE->G, BC->D, CD->B, D->E}

Is $FD1 \subseteq of FD2 or FD3$?

FD1's left hand attribute	FD1- closure	FD2- closure	FD3- closure	Same?
(BC)+	BCDEGA	BCADEG	BCADEG	Yes
(ACD)+	ACDBEG	ACDBGE	ACDGBE	Yes
(CG)+	CGBDAE	CGADBE	CGADBE	Yes
(AB)+	ABCDEG	ABCDEG	ABCDEG	Yes
(C)+	CA	CA	CA	Yes
(D)+	DEG	DEG	DGE	Yes
(BE)+	BECDAG	BECADG	BECGDA	Yes
(CE)+	CEAGBD	CEA	CEAGDB	ONLY FD3

 $FD1 \subseteq of FD3$

 $FD3 \subseteq of FD1$?

FD3's left hand attribute	FD1- closure	FD3- closure	Same?
(BC)+	BCDEGA	BCADEG	Yes
(CD)+	ACDBEG	ACDGBE	Yes
(CG)+	CGBDAE	CGADBE	Yes
(AB)+	ABCDEG	ABCDEG	Yes
(C)+	CA	CA	Yes
(D)+	DEG	DGE	Yes
(BE)+	BECDAG	BECGDA	Yes
(CE)+	CEAGBD	CEAGDB	Yes

FD1 is equivalent to FD3