Álgebra II. Hoja de ejercicios 8: Polinomios irreducibles y cuerpos Universidad de El Salvador, ciclo par 2018

Por cualquier pregunta, no duden en escribir al grupo ues-algebra-2@googlegroups.com.

Polinomios irreducibles (continuación)

Ejercicio 1. Factorice el polinomio $X^4 + 4$ en polinomios irreducibles en $\mathbb{Z}[X]$.

Ejercicio 2. Consideremos el polinomio $f = X^3 + 8X^2 + 6 \in \mathbb{Z}[X]$.

- 1) Demuestre que f es irreducible usando el criterio de Eisenstein.
- 2) Factorice este polinomio en $\mathbb{F}_p[X]$ para p=2,3,5,7. (En efecto, el primer primo p tal que \overline{f} queda irreducible en $\mathbb{F}_p[X]$ es 29.)

Ejercicio 3. Factorice el polinomio $X^n + Y^n$ en polinomios lineales en $\mathbb{C}[X,Y]$.

Ejercicio 4 (Teorema de las raíces racionales). Sea

$$f = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0 \in \mathbb{Z}[X]$$

un polinomio con coeficientes enteros. Demuestre que si $\frac{a}{b}$ es una raíz racional de f tal que mcd(a,b) = 1, entonces $a \mid a_0 \mid b \mid a_n$.

Ejercicio 5. Consideremos el polinomio $f = X^3 - nX + 2 \in \mathbb{Z}[X]$. Demuestre que es irreducible para todo $n \neq -1,3,5$. Encuentre sus factorizaciones para n = -1,3,5. Indicación: use el ejercicio anterior.

Ejercicio 6. Encuentre los coeficientes en la expansión de los polinomios ciclotómicos Φ_{10} y Φ_{15} .

Ejercicio 7. Sea p un número primo. Factorice el polinomio ciclotómico Φ_{p^k} en $\mathbb{F}_p[X]$.

Cuerpos

Ejercicio 8. Sea K un cuerpo y

$$f = X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0 \in K[X]$$

un polinomio irreducible. Denotemos por α la imagen de X en el cociente L := K[X]/(f). Encuentre una fórmula explícita para α^{-1} en términos de la base $1, \alpha, \alpha^2, \ldots, \alpha^{n-1}$.

Ejercicio 9. Consideremos el polinomio $f := X^3 + X^2 + X + 2 \in \mathbb{Q}[X]$.

- 1) Demuestre que f es irreducible.
- 2) Denotemos por α la imagen de X en el cociente $K := \mathbb{Q}[X]/(f)$. Exprese los elementos

$$(\alpha^2 + \alpha + 1) (\alpha^2 + \alpha), \quad (\alpha - 1)^{-1} \in K$$

en términos de la base $1, \alpha, \alpha^2$.

Ejercicio 10. Encuentre un polinomio cúbico irreducible $f \in \mathbb{F}_2[X]$ y considere el cuerpo $k := \mathbb{F}_2[X]/(f)$. Verifique directamente que el grupo k^{\times} es cíclico mostrando que todos sus elementos son potencias de un generador.