Tutorial 3

Last Updated:

June 20, 2024

Problem 1. Suppose that the conditional distribution of Y given X = x is Poisson with mean E(Y|X = x) = x and that the p.d.f of X is $f_X(x) = e^{-x}$ if $x \ge 0$ and 0 elsewhere.

- (a) Find E(Y).
- (b) Find Var(Y).

Solution. (a) We use the law of total expectation:

$$\mathbb{E}[Y] = \mathbb{E}(\mathbb{E}[Y|X])$$

$$= \int_0^\infty \mathbb{E}[Y|X = x] f_X(x) \, dx$$

$$= \int_0^\infty x e^{-x} \, dx$$

$$= 1$$

(b) We use the law of total variance:

$$Var(Y) = \mathbb{E}(Var(Y|X)) + Var(\mathbb{E}(Y|X))$$

$$= \int_0^\infty Var(\underline{Y|X=x}) f_X(x) \, dx + Var(X)$$

$$= \int_0^\infty x e^{-x} + 1$$

$$= 2$$

1

Problem 2. Let X_1 and X_2 be independent normal random variables, $X_i \sim N(0,1)$, and let $Y_1 = aX_1 + bX_2$ and $Y_2 = cX_1 + dX_2$

- (a) Show that Y_1 and Y_2 are bivariate normal.
- (b) Specify the mean vector and covariance matrix in the joint distribution of Y_1 and Y_2
- (c) Calculate directly, the mean, variance and covariance of Y_1 , Y_2 .

Solution. (a) We check the joint mgf.

$$\begin{split} M_{Y_1,Y_2}(t_1,t_2) &= \mathbb{E}[\exp(t_1Y_1+t_2Y_2)] \\ &= \mathbb{E}[\exp(t_1(aX_1+bX_2)+t_2(cX_1+dX_2))] \\ &= \mathbb{E}[\exp(t_1(aX_1+bX_2)+t_2(cX_1+dX_2))] \\ &= \mathbb{E}[\exp(t_1a+t_2c)X_1+(t_1b+t_2d)X_2] \\ &= M_{X_1}(t_1a+t_2c)\cdot M_{X_2}(t_1b+t_2d) \end{split} \qquad \qquad \begin{cases} \mathbb{S}_1, \mathbb{S}_2 &= \mathbb{M}_{X_1}(\mathbb{S}_1) \cdot \mathbb{M}_{X_2}(\mathbb{S}_2) \\ \mathbb{S}_2 &= \mathbb{S}_1 \cdot \mathbb{S}_1 \cdot \mathbb{S}_2 \\ \mathbb{S}_2 &= \mathbb{S}_1 \cdot \mathbb{S}_2 \cdot \mathbb{S}_2 \\ \mathbb{S}_2 &= \mathbb{S}_1 \cdot \mathbb{S}_2 \cdot \mathbb{S}_2 \cdot \mathbb{S}_2 \\ \mathbb{S}_2 &= \mathbb{S}_1 \cdot \mathbb{S}_2 \cdot \mathbb{S}_2 \cdot \mathbb{S}_2 \cdot \mathbb{S}_2 \\ \mathbb{S}_2 &= \mathbb{S}_1 \cdot \mathbb{S}_2 \cdot \mathbb{$$

Where
$$\Sigma$$
 is $\begin{pmatrix} a^2 + b^2 & ac + bd \\ ac + bd & c^2 + d^2 \end{pmatrix}$.

- (b) The mean is $\mathbf{0}$ and the covariance matrix is Σ .
- (c) Same answer as (b).

$$\begin{aligned}
&\text{Cov} (Y_1, Y_1) \\
&= \text{Cov} (\alpha X_1 + b X_2, \alpha X_1 + b X_2) \\
&= \alpha^2 \text{Cov} (X_1, X_1) + b^2 \text{Cov} (X_2, X_2) \\
&= \alpha^2 + b^2.
\end{aligned}$$

Problem 3. Let X have p.d.f. $f_X(x) = \frac{2}{9}(x+1)$ for $-1 \le x \le 2$. Find the p.d.f. of $Y = X^2$.

Solution. Let $g(x) = x^2$. Observe that for $y \le 1$, there are two pre-images and for y > 1 there is only one in the support. The distorting factor is:

$$|g'(x)| = g'(\sqrt{y}) = 2\sqrt{y}$$

For $y \in [0, 1]$:

$$f_Y(y) = \frac{f_X(-\sqrt{y})}{2\sqrt{y}} + \frac{f_X(\sqrt{y})}{2\sqrt{y}} = \frac{2}{9\sqrt{y}}$$

For $y \in (1, 4]$:

$$f_Y(y) = \frac{f_X(\sqrt{y})}{2\sqrt{y}} = \frac{2 \cdot (1 + \sqrt{y})}{9 \cdot 2 \cdot \sqrt{y}} = \frac{1}{9} + \frac{1}{9\sqrt{y}}$$

The p.d.f. of Y is

$$f_Y(y) = \begin{cases} 2/(9\sqrt{y}) & 0 \le y \le 1\\ 1/9 + 1/(9\sqrt{y}) & 1 < y \le 4\\ 0 & \text{otherwise} \end{cases}$$

Type of object.

Random Variable in Y

Number

Random variable in X, 4(x) $\psi:12\rightarrow02$

R.V in X, $\Psi(x)$ for some φ .

number

number

71

useful fact:

$$\mathfrak{G} = [\psi(x), \psi(x) - \varepsilon[\psi(x)].$$

