Diabetes Prediction Analysis

Objective:

Predict the onset of diabetes based on diagnostic measurements.

Dataset Description:

This dataset contains diagnostic measurements for 768 individuals.

The Outcome variable indicates whether the patient has diabetes (1) or not (0)

Import data:

```
# Import data from Kaggle using RKaggle package
diabetes <- get_dataset('akshaydattatraykhare/diabetes-dataset')</pre>
```

Convert to python dataframe:

```
# Convert r dataframe to python dataframe using Reticulate package
diabetes = r.diabetes
```

Exploratory Data Analysis:

Information of dataset:

	Pregnancies	Glucose	BloodPressure	 DiabetesPedigreeFunction	Age	Outcome
0	6.0	148.0	72.0	 0.627	50.0	1.0
1	1.0	85.0	66.0	 0.351	31.0	0.0
2	8.0	183.0	64.0	 0.672	32.0	1.0
3	1.0	89.0	66.0	 0.167	21.0	0.0
4	0.0	137.0	40.0	 2.288	33.0	1.0

[5 rows x 9 columns]

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	float64
1	Glucose	768 non-null	float64
2	BloodPressure	768 non-null	float64
3	SkinThickness	768 non-null	float64
4	Insulin	768 non-null	float64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	float64
8	Outcome	768 non-null	float64

dtypes: float64(9)
memory usage: 54.1 KB

Missing values:

No missing values observed in Table 1 for any of the columns.

Distribution of age:

The average age of the participants: 33 year's old

0
0
0
0
0
0
0
0
0

Table 1: Amount of missing values per column

Figure 1: Distribution of Age

Figure 2: A heatmap showing if any correlations could be determined

Figure 3

Split the data for Machine Learning:

The Accuracy score is: 73.16%

Cross-validated accuracy: 74.61% (+/- 4.27%)

Hyperparameter Tuning:

Best parameters found: {'max_depth': 5, 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_e

Best cross-validation accuracy: 77.67%

Conclusion:

The feature importance plot highlights that Glucose, BMI, and Age are the most influential factors in predicting diabetes within this dataset.

In conclusion, this analysis provides insights into the diabetes dataset, identifies key predictive features and demostrates a machine learning workflow for predicting diabetes.

Future work:

- Explore Other Machine Learning Models
- Further Hyperparameter Tuning
- Interpretability Analysis