EVALUATION METHOD TO BE USED:

Continuous assessment	Mid term	End Semester
15(T) + 25 (P)	20	40

CO - PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	✓	✓		✓	✓				✓		✓	✓
CO2	✓	✓	✓	✓	✓				✓			✓
CO3	✓	✓	✓	✓	✓				✓			✓
CO4	✓	✓	✓	✓	✓				✓			✓
CO5	✓	✓	✓	✓	✓				✓			✓
CO6	✓	✓										✓

CS 6108

OPERATING SYSTEMS

Prerequisites for the course: None

OBJECTIVES:

- To learn the basic concepts and functions of operating systems
- To learn the mechanisms of operating systems to handle processes and threads and their communication
- To know the components and management aspects of concurrency management
- To study the basic components of scheduling mechanism
- To learn the mechanisms involved in memory management in contemporary OS
- To appreciate the emerging trends in Operating Systems
- To learn programmatically to implement simple OS mechanisms

OPERATING SYSTEMS	L	Т	Р	EL	TOTA	L CREDIT S
	3	0	4	3		6
MODULE I INTRODUCTION TO OPERATING SYSTEMS			L	Т	Р	EL
			4	0	4	4

Introduction to OS – Operating System Services – Operating System Operations – Virtualization – User and Operating System Interface – System Calls – Operating System Structures - Building and Booting an Operating System

SUGGESTED ACTIVITIES:

PRACTICAL:

I - Shell programming assignments

EL

- 1. Shell programming
- 2. Read the history of Unix/Linux/Windows
- 3. Know the operating system in your phone/laptop
- 4. System boot up process of Windows / Linux

SUGGESTED EVALUATION METHODS:

• Quiz on understanding of Linux and shell programming

MODULE II	INTRODUCTION TO PROCESSES	L	T	Р	EL
		6	0	8	6

Process Concept – Process Scheduling – Context Switch – Operations on Processes – Inter-process Communication – IPC in Shared-Memory Systems – IPC in Message-Passing Systems Examples of IPC Systems – POSIX shared memory

SUGGESTED ACTIVITIES:

Practical:

- 1. Use of ps, ps lx, ps tree, ps –aux commands
- 2. Use of top command to display resource usage statistics of processes
- 3. Use of the fork, clone, exec, wait, exit system calls
- 4. Inter-process communication using pipes, shared memory

EL: Learn to write a makefile, to use gdb and to use grep

SUGGESTED EVALUATION METHODS:

- Implementation evaluation
- EL assignment to be appropriately evaluated

MODULE III	THREADS	L	Т	Р	EL
		3	0	4	3

Threads – Overview – Multithreading models – Pthreads

SUGGESTED ACTIVITIES:

Practical:

Implement multi-threading using the Pthread library

EL: Java threads

SUGGESTED EVALUATION METHODS:

Evaluation of the implementation of multi-threading

MODULE IV	CPU SCHEDULING	L	Т	Р	EL
		3	0	4	3

Basic Concepts of CPU Scheduling - Scheduling Criteria - Scheduling Algorithms

SUGGESTED ACTIVITIES:

Practical:

Simulation of CPU scheduling algorithms

EL:

Assignment problems on CPU scheduling algorithms

SUGGESTED EVALUATION METHODS:

Assignments to be appropriately evaluated.

MODULE V PROCESS SYNCHRONIZATION	L	Т	Р	EL
	6	0	8	6
The Critical-Section Problem - Peterson's Solution - Hardware				
Support for Synchronization - Mutex Locks - Semaphores -				
Monitors				

SUGGESTED ACTIVITIES:

Practical:

- 1. Solutions to Syncronization problems using semaphores
- 2. Introduction to xv6: download and build
- 3. Run the kernel inside QEMU gdb

EL:

Reading details about xv6 operating system

SUGGESTED EVALUATION METHODS:

- Implementation evaluation
- Quiz on the understanding of the different concepts in this module

MODULE V STORAGE MANAGEMENT	L	Т	Р	EL
	4	0	4	4
File Concept – Access Methods – Directory Structure – Protection				
 Directory Implementation – Allocation Methods – Free-Space 				
Management – Disk Structure – Disk Scheduling				

SUGGESTED ACTIVITIES:

Practical:

- 1. Use of system calls like creat, open, read, write, close, dup, readdir and scandir
- 2. Read the file xv6/fs.h to understand how a directory entry, a superblock and the contents of an inode are implemented in xv6
- 3. Read the file xv6/fs.c to understand how a new entry is added to a directory and explain the functions involved.

EL:

Read about the contents of a superblock, a directory entry, and an inode in UNIX-like operating systems

SUGGESTED EVALUATION METHODS:

Quizzes

MODULE VI MEMORY MANAGEMENT	L	T	Р	EL
Contiguous Memory Allocation – Paging – Structure of the Page Table – Segmentation – Paging with segmentation	6	0	8	6

SUGGESTED ACTIVITIES:

Practical:

1. Read and understand appropriate files in xv6 related to process scheduling and memory management

EL:

Assignment problems on memory management

SUGGESTED EVALUATION METHODS:

Quiz on xv6 study files

MODULE VII	VIRTUAL MEMORY MANAGEMENT	L	Т	Р	EL
		3	0	4	3
Demand Paging -	- Page Replacement - Allocation of Frames -				
Thrashing					

SUGGESTED ACTIVITIES

Practical:

- Implementation of at least one of the page replacement policies
- Implementation of a new system call in xv6

EL:

Assignments on page replacement algorithms

SUGGESTED EVALUATION METHODS

- Evaluation of the coding assignments
- Quiz on the different parts of the module

OUTCOMES:

Upon completion of the course, the students will be able to:

- Articulate the main concepts, key ideas, strengths and limitations of Operating Systems
- Analyze the structure and basic architectural components of OS
- Elaborate and design various scheduling algorithms
- Discuss various memory management schemes and design them
- Point out the various aspects of storage management

TEXT BOOK:

1. Abraham Silberschatz, Greg Gagne and Peter B. Galvin. "Operating System Concepts", 10th Edition, Wiley, 2018.

REFERENCES:

- 1. Andrew S. Tanenbaum. "Modern Operating Systems", Addison Wesley, Fourth Edition, 2014.
- 2. D. M. Dhamdhere. "Operating Systems: A Concept-Based Approach", 3rd. Edition, Tata McGraw-Hill, 2017.
- 3. William Stallings. "Operating Systems: Internals and Design Principles", 7th Edition, Prentice Hall, 2013.
- 4. Russ Cox, Frans Kaashoek and Robert Morris. "xv6: A Simple, Unix-like Teaching Operating System", Revision 8. (Free and can be downloaded)

SOURCE CODE

The xv6 source code is available via : git clone git://pdos.csail.mit.edu/xv6/xv6.git

EVALUATION METHOD TO BE USED:

Category of Course	Continuous Assessment	Mid – Semester Assessment	End Semester
Theory Integrated with Practical	15(T) + 25 (P)	20	40

CO - PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
CO1	✓	✓					✓				✓	✓
CO2	✓	✓		✓	✓	✓					✓	✓
CO3	✓	✓	✓	✓	✓		✓				✓	✓
CO4	✓	✓	✓	✓	✓	✓					✓	✓
CO5	✓	✓				✓	✓				✓	✓

CS 6109

COMPILER DESIGN

OBJECTIVES:

- To know about the various transformations in the different phases of the compiler, error handling and means of implementing the phases
- To learn about the techniques for tokenization and parsing
- To understand the ways of converting a source language to intermediate representation
- To have an idea about the different ways of generating assembly code
- To have a brief understanding about the various code optimization techniques

COMPILER DESIGN		L	Т	Р	EL	. C	CREDITS	
		3	0	4	3		6	
MODULE I:				L	T	Р	EL	
				3	0	4	3	

Phases of the compiler – compiler construction tools – role of assemblers, macroprocessors, loaders, linkers.

SUGGESTED ACTIVITIES:

- EL Constructs of programming languages C, C++, Java
- LEX tool tutorial

SUGGESTED EVALUATION METHODS:

Tutorial problems