1.	What is NOT machine learning? Explicit, step-by-step programming Learning from data Data-driven decisions Discover hidden patterns	1/1 point
2.	 Correct That's correct! Which of the following is NOT a category of machine learning? Classification Cluster Analysis Algorithm Prediction Regression Association Analysis 	1/1 point
3.	Correct That's correct! Which categories of machine learning techniques are supervised? classification and regression cluster analysis and association analysis regression and association analysis	1/1 point
4.	 Correct That's correct! In unsupervised approaches, ● the target is unknown or unavailable. ○ the target is unlabeled. ○ the target is what is being predicted. 	1/1 point
5.	 the target is provided. Correct That's correct! What is the sequence of the steps in the machine learning process? Acquire -> Prepare -> Analyze -> Act -> Report Prepare -> Acquire -> Analyze -> Act -> Report Acquire -> Prepare -> Analyze -> Act -> Report Acquire -> Prepare -> Analyze -> Report -> Act Prepare -> Acquire -> Analyze -> Report -> Act 	1/1 point
6.	 Correct That's correct! Are the steps in the machine learning process apply-once or iterative? Apply-once Iterative The first two steps, Acquire and Prepare, are apply-once, and the other steps are iterative. Correct 	1/1 point
7.	That's correct! Phase 2 of CRISP-DM is Data Understanding. In this phase, we define the problem or opportunity to be addressed. we prepare the data for analysis. we acquire as well as explore the data that is related to the problem.	1/1 point
8.	What is the main difference between KNIME and Spark MLlib? KNIME requires programming, while Spark MLlib does not. KNIME originated in Germany, while Spark MLlib was created in California, USA. KNIME requires programming in Java, while Spark MLlib requires programming in Python. KNIME is a graphical user interface-based machine learning tool, while Spark MLlib provides a programming-based distributed platform for scalable machine learning algorithms.	1/1 point