

WORLD INTELLECTUAL PROPERTY ORGANIZATION

(3'

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:
C12N 15/62, C07K 14/47, 14/705, A61K 38/04

(11) International Publication Number:

WO 99/32640

(43) International Publication Date:

1 July 1999 (01.07.99)

(21) International Application Number:

PCT/CA98/01138

A1

(22) International Filing Date:

8 December 1998 (08.12.98)

(30) Priority Data:

08/995,927

22 December 1997 (22.12.97) US

(71) Applicant: HOPITAL SAINTE-JUSTINE [CA/CA]; 3175 Côte Sainte-Catherine, Montréal, Québec H3T 1C5 (CA).

- (72) Inventors: CHEMTOB, Sylvain; 6885 Banting, Montréal, Québec H4W 1G1 (CA). PERI, Krishna, G.; Apartment 315, 3555 Atwater Avenue, Montréal, Québec H3H 1Y3 (CA). POTIER, Michel; 6100 Chemin Deacon, Montréal, Québec H3S 2V6 (CA).
- (74) Agents: CÔTÉ, France et al.; Swabey Ogilvy Renault, Suite 1600, 1981 McGill College Avenue, Montréal, Québec H3A 2Y3 (CA).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: ANTAGONISTS OF G-PROTEIN-COUPLED RECEPTOR

(57) Abstract

The present invention relates to a new class of G-protein-coupled receptor antagonists which bind to the intracellular molecular interface between the receptor and the G-protein, thus hampering signal transduction. The present invention describes peptide sequences derived from the prostaglandin receptor $F_{2\alpha}$ and the G-protein, $G_{\alpha q}$ protein, produced by molecular biology techniques or chemical synthesis, as selective inhibitors of signal transduction involved in the stimulation of this receptor. Such peptides or molecules derived from their primary, secondary and tertiary structures may be used as effective tocolytics for the prevention of premature labor or be utilized for the treatment of dysmenorrhea.

ANTAGONISTS OF G-PROTEIN-COUPLED RECEPTOR

BACKGROUND OF THE INVENTION

(a) Field of the Invention

5

30

35

The invention relates to G-protein-coupled receptor antagonists which bind to the intracellular molecular interface between the receptor for $PGF_{2\alpha}$ (FP receptor) and the G-protein.

(b) Description of Prior Art

Prostaglandins are derived from the oxygenation 10 of arachidonic acid by prostaglandin synthases. taglandins mediate a wide variety of physiological actions, such as vasomotricity, sleep/wake intestinal secretion, lipolysis, glomerular filtration, mast cell degranulation, neurotransmission, platelet 15 aggregation, leuteolysis, myometrial contraction and labor, inflammation and arthritis, patent ductus arteriosus, cell growth and differentiation. Prostanoids mediate their actions through binding to distinct receptors which belong to the super family of rhodop-20 sin-like seven transmembrane helical receptors. receptors are coupled to heterotrimeric G-proteins consisting of α , β and γ subunits which, upon activation, elicit alterations in cell calcium, initiate phosphoinositide hydrolysis or promotion or repression of cyclic adenosine monophosphate synthesis C.D., et al., Ann. Rev. Biochem. 63: 101-132, 1994).

Of the five pharmacologically distinct prostanoid receptors for E_2 , I_2 , D_2 , TxA_2 and $F_{2\alpha}$ and their many isoforms, the receptor for $PGF_{2\alpha}$, also called FP receptor, shows limited tissue distribution, predominantly expressed in corpora leutea, uterine myometrium, trabecular meshwork of the eye, and to a lesser extent in vascular smooth muscle. Initiation of labor is marked by tremendous rise in $PGF_{2\alpha}$ levels and increased

uterine contractility. The wide spread use of $PGF_{2\alpha}$ analogues to induce labor in veterinary industry points to the primary role of $PGF_{2\alpha}$ and its receptor in parturition. This is underscored by the fact that mice lacking the FP receptor fail to undergo labor (Sugimoto, Y., et al., *Science*, 277: 81-83, 1997).

5

10

20

25

30

In face of escalating costs incurred as result of premature births and associated complications to the neonate, such as intraventricular hemorrhage, bronchopulmonary displasia and periventricular leukomalacia leading to cerebral palsy, prolongation of gestation by arresting premature labor is an effective preventive therapy. The relative success of nonsteroidal anti-inflammatory drugs as a short term therapy toward prevention of premature labor is based on their inhibitory actions upon the synthesis of prostaglandins, particularly PGE2 and PGF2a. However, inhibition of the former is associated with serious complications to the fetus such as the closure of ductus arteriosus, renal failure and pulmonary hypertension. At another level, PGF₂₀ has been attributed a major role in dysmenorrhea, a condition which afflicts 5%-7% of premenopausal A pre-menstrual increase in PGF₂₀ resulting in myometrial spasms underlies the pathogenesis of this disorder. Lack of effective antagonists of FP receptor for extended therapy hampered the advances in preventing premature labor and associated sequelae.

Human FP receptor is a 45 kDa integral membrane glycoprotein, consisting of 359 amino acids and shares only 47% sequence identity with EP1 receptor, and to a lesser extent with other prostanoid receptors (Abramovitz, M., et al., J. Biol. Chem., 269: 2632-2636, 1994). Binding of $PGF_{2\alpha}$ to FP receptor is followed by the activation of $G_{\alpha q \beta \gamma}$ complex, increased GTP binding by the $G_{\alpha g}$ subunit, stimulation of phospholi-

pase β activity, release of inositol phosphates, increased intracellular calcium and subsequent signal transduction phenomena ultimately leading to smooth muscle contraction. The FP receptor is the only efficacious target for development of therapeutic drugs since a few G_α -proteins catalyze the actions of hundreds of G-protein coupled receptors, thus targets downstream from the receptor are essentially of little use.

Antagonists of FP receptors directed to the ligand binding site could be of limited use since ligand based inhibitors show cross reactivity with other prostanoid receptors; their efficacy will be compromised in face of tremendous increase in $PGF_{2\alpha}$ concentrations in myometrium at the onset of labor; and the basal activity of the receptors in the absence of ligand limits the use of ligand-based inhibitors.

It would be highly desirable to be provided with antagonists of FP receptors which do not cross-react with other prostanoid receptors and which are effective even in the absence of a ligand.

SUMMARY OF THE INVENTION

10

15

20

25

30

35

One aim of the present invention is to provide antagonists of FP receptors which do not cross-react with other prostanoid receptors and which are effective even in the absence of a ligand.

Another aim of the present invention is to provide inhibitors of FP receptors devised by a novel strategy to target the intracellular surface of the receptor at which the cytoplasmic domains of the FP receptor and the G_q protein interact.

In accordance with the present invention there is provided a receptor prostanoid receptor antagonist which binds to an intracellular molecular interface

between a receptor and a G_{α} -protein, wherein said antagonist has a first amino acid sequence coding for a third or fourth intracellular domain, or a part thereof, and a second amino acid sequence coding for α -helices of a G_{α} protein, whereby when bound to the intracellular molecular interface, said antagonist hampers signal transduction from said receptor.

The receptor is preferably the $\text{PGF}_{2\alpha}$ receptor of prostaglandin.

10

15

20

25

30

The antagonist of the present invention preferably comprises an amino acid sequence derived from the sequence of at least one of the prostaglandin $F_{2\alpha}$ receptor and the associated protein $G_{\alpha q}$. More preferably, the antagonist of the present invention consist in an amino acid sequence of the FP receptor selected from the group consisting of RVKFKSQQHR QGRSHHLEM (SEQ ID NO:3) and RKAVLKNLYK LASQCCGVHV ISLHIWELSS IKNSLKVAAI SESPVAEKSA ST (SEQ ID NO:4).

In accordance with the present invention there is also provided a method for preventing premature delivery of fetus comprising the step of administering to a female in need of such a treatment a therapeutically effective amount of a G-protein-coupled receptor antagonist which binds to an intracellular molecular interface between a receptor and a G-protein, wherein the antagonist, when bound to the intracellular molecular interface, hampers the transduction of a signal, thereby reducing contractions.

In accordance with the present invention there is also provided a method for preventing and/or treating dysmenorrhea comprising the step of administering to a female in need of such a treatment a therapeutically effective amount of a G-protein-coupled receptor antagonist which binds to an intracellular molecular interface between a receptor and a G-protein, wherein

the antagonist, when bound to the intracellular molecular interface, hampers the transduction of a signal thereby reducing pain associated with contractions.

5 BRIEF DESCRIPTION OF THE DRAWINGS

Figs. 1A and 1B illustrate the inhibitory effects of PCP-1 and PCP-2 on FP receptor function upon stimulation with PGF $_{2\alpha}$ or PGE $_2$ in accordance with one embodiment of the present invention:

Fig. 2A illustrates the effects of $G_{\alpha q}$ -derived peptides on FP receptor function; and

Fig. 2B illustrates a dose-response of PCP-4 on $\text{PGF}_{2\alpha}$ receptor function.

15 DETAILED DESCRIPTION OF THE INVENTION

In accordance with the present invention, there is provided a new class of G-protein-coupled receptor antagonists which bind to the intracellular molecular interface between the receptor and the G-protein, thus hampering signal transduction.

Hence, a novel strategy to target the intracellular surface of the receptor at which the cytoplasmic
domains of FP receptor and Gq protein interact was
designed. By preventing the binding of Gq protein to
FP receptor with the inhibitors of the present invention, derived from both the FP receptor and Gq protein,
FP receptor function in the presence of its ligand was
diminished. Furthermore, the specificity of the
inhibitors of the present invention is demonstrated by
analyzing the function of a highly related prostaglandin receptor, EP1.

PREPARATION OF INHIBITORS

Cell Culture

A549 lung carcinoma cells (ATCC Accession No.: CCL185, American Type Culture Collection, Rockville, MD

20852) were cultured in Dulbecco's modified Eagles medium (DMEM) with 10% fetal bovine serum (FBS) and antibiotics, penicillin (10 U/ml) and streptomycin (10 μ g/ml) in a humidified atmosphere containing 5% CO₂ at 37°C. The cells were trypsinized and plated in 6-well tissue culture dishes at 2 X 10⁵ cells/well, a day before commencing the experiments.

Cloning FP receptor intracellular domains

The DNA fragments 5' AGA GTT AAA TTT AAA AGT CAG CAG CAC AGA CAA GGC AGA TCT CAT CAT TTG GAA ATG 3' 10 (SEQ ID NO:1) and 5' CGA AAG GCT GTC CTT AAG AAT CTC TAT AAG CTT GCC AGT CAA TGC TGT GGA GTG CAT GTC ATC AGC TTA CAT ATT TGG GAG CTT AGT TCC ATT AAA AAT TCC TTA AAG GTT GCT GCT ATT TCT GAG TCA CCA GTT GCA GAG AAA TCA GCA AGC ACC 3'(SEQ ID NO:2), encoding the intracellular 15 domains of the FP receptor having the following amino acid sequences: RVKFKSQQHR QGRSHHLEM (SEQ (PCP-1) and RKAVLKNLYK LASQCCGVHV ISLHIWELSS IKNSLKVAAI SESPVAEKSA ST (SEQ ID NO:4) (PCP-2) were cloned by RT-Total mRNA from human foreskin fibroblasts were 20 prepared by acid phenol-quanidine isothiocyanate method (Chomczynski, P., and Sacchi, N., Anal. Biochem., 162: 156-159, 1987).

Pri et al. (Peri, K.G., et al., J. Biol. Chem., 250 of the cDNAs using the gene-specific primers pcp 1.1:

8 Teverse transcription followed by amplification of the cDNAs using the gene-specific primers pcp 1.1:

5 GCG TCT AGA ATG AGA GTT AAA TTT AAA AGT CAG 3' (SEQ ID NO:5), pcp 1.2: 5' GCG TCT AGA CTA CAT TTC CAA ATG ATG 3' (SEQ ID NO:6) pcp 2.1: 5' CGC TCT AGA ATG CGA AAG GCT GTC CTT AAG 3' (SEQ ID NO:7) and pcp 2.2: 5' GCG TCT GAG CTA GGT GCT TGC TGA TTT CTC 3' (SEQ ID NO:8), derived from the human FP receptor sequence (Abramovitz, M., et al., J. Biol. Chem., 269: 2632-2636, 1994) and Taq™ polymerase (GIBCO Life Technologies, Burlington, ON) were conducted as described by Peri et al. (Peri, K.G., et al., J. Biol. Chem., 270:

24615-24620, 1995). Briefly, two micrograms of total RNA was reverse transcribed using 400 U of M-MLV reverse transcriptase and 10 μg/ml random hexamers, in a 50 μl reaction containing 50 mM Tris-HCl, pH 8.3, 75 mM KCl, 3 mM MgCl₂, 10 mM DTT, and 0.5 mM each of dCTP, dGTP, dATP and dTTP, for 1 h, at 42°C. An aliquot of the cDNA (equivalent to 1 μg of RNA) was amplified using 1.5 U Taq DNA polymerase in a 100 μl reaction buffer containing 20 mM Tris-HCl, pH 8.4, 50 mM KCl, 1.5 mM MgCl₂, 0.2 mM each of dCTP, dGTP, dATP and dTTP, and 0.5 μM each of the primers, for 35 cycles (each cycle was 94°C, 1 min.; 50°C, 1 min.; and 72°C, 1 min.).

The PCR products were digested with Xba I restriction enzyme (GIBCO Life Technologies, Burlington, ON) and cloned into the Xba I site of pRC-CMV vector (Invitrogen, CA). Multiple plasmid clones were sequenced using the T7 sequencing kit (Pharmacia, Baie D'Urfe, PQ) to verify the sequence of the cDNAs.

20 Cell transfection and selection of G418-resistant clones

25

30

The expression plasmids carrying the third (PCP-1) and the fourth (PCP-2) intracellular domains were introduced into A549 cells using Transfectamine lipid (GIBCO Life Technologies, Burlington, ON). Three (3) micrograms of DNA and 16 μg of lipid were mixed in 200 μl of water and incubated at room temperature for 45 min. Then, the lipid-DNA complexes were diluted with 0.8 ml of Opti-MEM™ (GIBCO Life Technologies, Burlington, ON). The cells were washed twice with Hank's Balanced Salt Solution and incubated with lipid-DNA complexes for 6 hours. An equal volume of DMEM with 20% FBS was added and the cells were kept in the incubator overnight. On the next day, the medium was

replaced with DMEM containing 10% FBS and antibiotics and incubated for another 24 hours.

On the following day, the cells were trypsinized and plated in 100 mm cell culture dishes at 1 x 104 cells/ml in DMEM containing 10% FBS, antibiotics and 1 mg/ml of G418 (GIBCO Life Technologies, Burling-The G418 containing medium was replaced every 3 days. G418-resistant colonies were trypsinized and pooled for further analysis. The expression of PCP-1 and PCP-2 peptides was tested by analyzing mRNA 10 expression using RNase protection assays as described by Peri et al. (Peri, K.G., et al., J. Biol. Chem., 270: 24615-24620, 1995). More particularly, total RNA was isolated using acid phenol guanidine isothiocyanate method (Chomczynski, P., and Sacchi, N., Anal. Bio-15 chem., 162: 156-159, 1987). Aliquots of total RNA (10 μq) were mixed with 5 x 10⁵ cpm of [³²P]-labeled cRNA probes (synthesized from pIL3 and pIL4 plasmids which are expression plasmids encoding PCP-1 and PCP-2 peptides, using a commercial in vitro transcription kit sold by Promega, Madison, WI) in a solution containing 80% (v/v) formamide, 40 mM PIPES, pH 6.8 and 0.4 M NaCl and incubated overnight at 50°C. On the next day, the hybrids are digested with RNase A (10 μ g/ml) and RNase T1 (250 U/ml) in a solution containing 10 mM Tris-HCl, 25 pH 7.5, 1 mM EDTA and 0.3 M NaCl for 30 min. at 25°C. Proteinase K (10 μ g) and sarcosyl (1%) were added and the incubation continued for another 30 min. at 37°C. The precipitation of RNA hybrids and resolution of labeled RNAs on urea-polyacrylamide gels were done 30 exactly as described by Peri et al. (Peri, K.G., et al., J. Biol. Chem., 270: 24615-24620, 1995).

Phosphoinositide hydrolysis

The cells in 6-well dishes (5 X $10^5/\text{well}$) were incubated with $[^3\text{H}]$ -myo inositol (1 $\mu\text{Ci/ml}$ of 10

specific activity: Amersham Canada, Mississauga, ON) for 24 hours in DMEM containing 5% FBS and antibiotics to label the inositol phospholipids. The cells were washed with DMEM containing 50 mM LiCl twice and incubated in the same medium for 15 min. Then the cells were stimulated with 1 μM of PGF $_{2\alpha}$ or PGE_2 for 30 min. The cells were washed with phosphatebuffered saline (PBS) once and the reactions were stopped by adding 0.4 ml of ice-cold methanol. cells were scraped, collected into 1.5 ml microfuge tubes, 0.4 ml of water and 0.4 ml of chloroform were added, vortexed vigorously for 30 sec. and centrifuged at 14,000 x g for 10 min. The aqueous layer was applied to Dowex™ AG1-X8 (formate form) ion-exchange columns (Bio-Rad, Mississauga, ON). The inositol phosphates were eluted with increasing concentrations of ammonium formate in 0.1 M formic acid exactly as described by Berridge et al.

Introduction of peptides into cells

10

15

The saponin treatment of cells on ice with pep-20 tides was conducted exactly as described by Johnson et al. (Johnson, J. A., et al., Circ. Res., 79: 10086-10099, 1996). Briefly, the media from cells (at 80% confluence) in 6-well dishes was removed and saved. The cells were treated with 2 ml of room temperature 25 PBS for 2 min. followed by ice-cold PBS for an additional 2 min. on ice. The cells were then incubated for 10 min. in 2 ml of freshly prepared permeabilization buffer (20 mM HEPES, pH 7.4, 10 mM EGTA, 140 mM KCl, 50 μ g/ml saponin, 6 mM ATP and 5 mM oxalic acid) 30 containing varying concentrations of peptides, PCP-3 and PCP-4. The cells were washed gently four times on ice with 2 ml of ice-cold PBS each time. were incubated for 20 min. in the fifth wash on ice. The cells were then successively incubated for 2 min. 35

with 2 ml of PBS at room temperature and at 37°C. The conditioned media was returned to the cells and they were allowed to recover for 30 min. before determining phosphoinositide hydrolysis in response to prostaglandins.

Discussion

5

10

15

20

25

30

35

In accordance with the present invention, a novel strategy of utilizing intracellular interface between the FP receptor and the $G_{\alpha q}$ -protein as a target for designing inhibitors of FP receptor function was used. This method can be generalized to all G-protein-coupled receptors. Peptides derived from the intracellular domains of FP receptors (PCP-1 and PCP-2) and the αN and αC helices of Gq-protein (PCP-3 and PCP-4 respectively) were found to be effective inhibitors of FP receptor.

The present invention will be more readily understood by referring to the following examples which are given to illustrate the invention rather than to limit its scope.

EXAMPLE I

Effects of intracellular expression of PCP-1 and PCP-2 peptides on FP receptor function

Cell lines expressing the peptides, PCP-1 and PCP-2, were stimulated with 1 μ M PGF_{2 α} and PGE₂ for 30 min. and the inositol phosphates were measured by anion exchange chromatography as described by Berridge et al. (Berridge, M.J., et al., *Biochem. J.*, **212**: 473-482, 1983). Briefly, the medium was discarded and the inositol triphosphate (IP3) synthesis was stopped by adding 0.6 ml ice-cold methanol. The cells were scraped and collected into polypropylene tubes. Distilled water (0.5 ml) and chloroform (0.6 ml) were added and vigorously vortexed for 2 min. The phases were separated by centrifugation at 6000 x g for 10

min. The aqueous phase was applied to AG-1X-8 (Formate form) anion exchange columns (1 ml bed volume) and free inositol was eluted with 10 ml of water, followed by 60 mM ammonium formate in 0.1 M formic acid. Then, the inositol phosphates were eluted with 5 ml of 1.2 M ammonium formate in 0.1 M formic acid. After adding 3 volumes of scintillation cocktail (Optiphase-HiSafe III^M), the eluates were counted by scintillation spectrophotometry.

5

As shown in Fig. 1A, expression of either PCP-1 10 or PCP-2 inhibited ligand-stimulated phosphoinositide hydrolysis (n=3). Both PCP-1 and PCP-2 were stably expressed intracellularly. The cells were labeled with $^3H\text{-myo}$ inositol for 24 hours and stimulated with 1 μM of $PGF_{2\alpha}$ or PGE_2 for 30 min. 15 Inositol phosphates were separated by ion exchange chromatography and determined by scintillation counting. Data are expressed as fold stimulation in phosphoinositide hydrolysis unstimulated controls. On the other hand, stimulation of a related prostaglandin receptor expressed in these 20 cells (with which FP receptor shows highest sequence identity among all G-protein-coupled receptors), EP1, with PGE_2 did not affect inositol phosphate generation by this receptor (Fig. 1B). Both EP1 and FP receptors are coupled to Gq-class of G-proteins and generate 25 inositol phosphates upon stimulation with ligands. inhibition of FP receptor by ectopically expressed PCP-1 and PCP-2 peptides is specific and these peptides will be modified to produce smaller and more diffusible 30 inhibitors of FP function.

EXAMPLE II

Effects of PCP-3 and PCP-4 peptides of human Gq protein on FP receptor function

The second component of interaction between the FP receptor and G-protein is the domain of Gq which is

composed of αN and αC helices (Lambright, D.G., et al., Nature, 379: 311-319, 1996). Peptides CLSEEAKEAR RINDEIEROL RRDKRDARRE-NH, (SEQ ID NO:9) (PCP-3) and (SEO ID NO:10) (PCP-4), EYNLV-NH, KDTILOLNLK corresponding to αN and αC helices, respectively, were chemically synthesized using F moc chemistry and introduced transiently into permeabilized A549 cells. The cells were stimulated with $PGF_{2\alpha}$, as described above and inositol phosphate synthesis was measured. The results are expressed as fold stimulation of phosphoinositide hydrolysis by the ligand (n=3). αN and αC helical peptides of Gq protein inhibited agonist-induced activation of FP receptor, whereas a control peptide (poly aspartic acid, Asp6) did not affect the receptor function (Fig. 2A). PCP-3 and PCP-4, at 100 $\mu\mathrm{M}$, were introduced into $^{3}\mathrm{H}\text{-myo}$ inositollabeled permeabilized A549 cells and stimulated with 1 PGF₂₀ for 30 min. Inositol phosphates were separated by ion exchange chromatography and determined by scintillation counting. A dose-response of receptor revealed a half maximal peptide on FP inhibitory concentration of 50 μM of peptide under these conditions (Fig. 2B). In Fig. 2B, data are expressed as fold-stimulation by $PGF_{2\alpha}$ over control cells not treated with peptide.

10

15

20

25

While the invention has been described in connection with specific embodiments thereof, it will be understood that it is capable of further modifications and this application is intended to cover any variations, uses, or adaptations of the invention following, in general, the principles of the invention and including such departures from the present disclosure as come within known or customary practice within the art to which the invention pertains and as may be applied to

the essential features hereinbefore set forth, and as follows in the scope of the appended claims.

WHAT IS CLAIMED IS:

- 1. A receptor prostanoid receptor antagonist which binds to an intracellular molecular interface between a receptor and a G_{α} -protein, wherein said antagonist has a first amino acid sequence coding for a third or fourth intracellular domain, or a part thereof, and a second amino acid sequence coding for α -helices of a G_{α} protein, whereby when bound to the intracellular molecular interface, said antagonist hampers signal transduction from said receptor.
- 2. The antagonist of claim 1, wherein the receptor is the $PGF_{2\alpha}$ receptor of prostaglandin.
- 3. The antagonist of claim 2 which comprises an amino acid sequence of the FP receptor selected from the group consisting of RVKFKSQQHR QGRSHHLEM (SEQ ID NO:3) and RKAVLKNLYK LASQCCGVHV ISLHIWELSS IKNSLKVAAI SESPVAEKSA ST (SEQ ID NO:4).
- 4. The antagonist of claim 1 which comprises an amino acid sequence derived from the sequence of at least one of the prostaglandin $F_{2\alpha}$ receptor and the associated protein $G_{\alpha q}$.
- 5. A method for preventing premature delivery of fetus comprising the step of administering to a female in need of such a treatment a therapeutically effective amount of a G-protein-coupled receptor antagonist which binds to an intracellular molecular interface between a receptor and a G-protein, wherein said antagonist, when bound to the intracellular molecular interface, hampers the transduction of a signal, thereby reducing contractions.

6. A method for preventing and/or treating dysmenorrhea comprising the step of administering to a female in need of such a treatment a therapeutically effective amount of a G-protein-coupled receptor antagonist which binds to an intracellular molecular interface between a receptor and a G-protein, wherein said antagonist, when bound to the intracellular molecular interface, hampers the transduction of a signal thereby reducing pain associated with contractions.

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

<211> 52 <212> PRT <213> peptide

SEQUENCE LISTING

<110> HÔPITAL SAINTE-JUSTINE
 CHEMTOB, Sylvain
 PERI, Krishna G.
 POTIER, Michel

<120> ANTAGONISTS OF G-PROTEIN-COUPLED RECEPTOR <130> 12667-13PCT FC/ld <150> US 08/995,927 <151> 1997-12-22 <160> 10 <170> FastSEQ for Windows Version 3.0 <210> 1 <211> 57 <212> DNA <213> Artificial Sequence agagttaaat ttaaaagtca gcagcacaga caaggcagat ctcatcattt ggaaatg 57 <210> 2 <211> 156 <212> DNA <213> Artificial Sequence cgaaaggctg tccttaagaa tctctataag cttgccagtc aatgctgtgg agtgcatgtc 60 atcagcttac atatttggga gcttagttcc attaaaaatt ccttaaaggt tgctgctatt 120 156 tctgagtcac cagttgcaga gaaatcagca agcacc <210> 3 <211> 19 <212> PRT <213> peptide <400> 3 Arg Val Lys Phe Lys Ser Gln Gln His Arg Gln Gly Arg Ser His His 10 1 5 Leu Glu Met <210> 4

```
<400> 4
  Arg Lys Ala Val Leu Lys Asn Leu Tyr Lys Leu Ala Ser Gln Cys Cys
  Gly Val His Val Ile Ser Leu His Ile Trp Glu Leu Ser Ser Ile Lys
          20
                              25
  Asn Ser Leu Lys Val Ala Ala Ile Ser Glu Ser Pro Val Ala Glu Lys
                       40
  Ser Ala Ser Thr
      50
        <210> 5
        <211> 33
        <212> DNA
        <213> Artificial Sequence
        <400> 5
 gcgtctagaa tgagagttaa atttaaaagt cag
                                                                       33
       <210> 6
       <211> 27
       <212> DNA
       <213> Artificial Sequence
       <400> 6
gcgtctagac tacatttcca aatgatg
                                                                      27
       <210> 7
       <211> 30
       <212> DNA
       <213> Artificial Sequence
       <400> 7
cgctctagaa tgcgaaaggc tgtccttaag
                                                                      30
       <210> 8
       <211> 30
       <212> DNA
       <213> Artificial Sequence
      <400> 8
gcgtctgagc taggtgcttg ctgatttctc
                                                                      30
      <210> 9
      <211> 30
      <212> PRT
      <213> peptide
      <400> 9
Cys Leu Ser Glu Glu Ala Lys Glu Ala Arg Arg Ile Asn Asp Glu Ile
               5
                                    10
Glu Arg Gln Leu Arg Arg Asp Lys Arg Asp Ala Arg Arg Glu
            20
                               25
      <210> 10
      <211> 15
      <212> PRT
      <213> peptide
```

3/3

Inti lional Application No PCT/CA 98/01138

CLASSIFICATION OF SUBJECT MATTER PC 6 C12N15/62 C07K14/47 C07K14/705 A61K38/04 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) C12N C07K A61K IPC 6 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Category ° Relevant to claim No. Α WO 95 21925 A (AMERICAN CYANAMID COMPANY) 1-6 17 August 1995 see the whole document CHEMICAL ABSTRACTS, vol. 125, no. 21, Α 1-6 18 November 1996 Columbus, Ohio, US; abstract no. 276567. M D CARRITHERS & M R LERNER: "Synthesis and characterization of bivalent peptide ligands targeted to G-protein-coupled receptors " XP002103142 & CHEM. BIOL. , vol. 3, no. 7, 1996, pages 537-542, see abstract Further documents are listed in the continuation of box C. X Patent family members are listed in annex. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the International "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the ad-"O" document referring to an oral disclosure, use, exhibition or document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 19 May 1999 01/06/1999 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Masturzo, P

Inti tional Application No PCT/CA 98/01138

	on) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 92 05244 A (DUKE UNIVERSITY) 2 April 1992 see the whole document	1-6
		·

1

.emational application No.

PCT/CA 98/01138

BOX I O	oservations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)
This Interna	tional Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
bed	names Nos.: name Nos.: name of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
bec	ims Nos.: ause they relate to parts of the International Application that do not comply with the prescribed requirements to such extent that no meaningful International Search can be carried out, specifically:
beca	ms Nos.: ause they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
- DOX II ODS	servations where unity of invention is lacking (Continuation of item 2 of first sheet)
THIS ITTEMPLE	nal Searching Authority found multiple inventions in this international application, as follows:
1. As all searc	required additional search fees were timely paid by the applicant, this International Search Report covers all hable claims.
2. As all of any	searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment vadditional fee.
3. As onl	ly some of the required additional search fees were timely paid by the applicant, this International Search Report only those claims for which fees were paid, specifically claims Nos.:
4. No req	uired additional search fees were timely paid by the applicant. Consequently, this International Search Report is ed to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Pro	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

Information on patent family members

Inti tional Application No PCT/CA 98/01138

Patent document cited in search report	t	Publication date	Patent family member(s)		Publication date
WO 9521925	Α	17-08-1995	US AU CA EP JP SG US	5691188 A 1846995 A 2183166 A 0745130 A 9510087 T 49061 A 5846819 A	25-11-1997 29-08-1995 17-08-1995 04-12-1996 14-10-1997 18-05-1998 08-12-1998
WO 9205244	A	02-04-1992	AU AU CA EP JP US US	652576 B 8511591 A 2092717 A 0548165 A 6500693 T 5482835 A 5739029 A	01-09-1994 15-04-1992 14-03-1992 30-06-1993 27-01-1994 09-01-1996 14-04-1998

THE SHEET SHEET HISTON

THIS PAGE BLANK (USPTO)