Mother's Advance • Trigonometry

42. Cosider the following statements:

निम्नलिखित कथनों पर विचार करें।

- i. The value of cos 61° + sin 29° cannot exceed 1.
 - cos 61° + sin 29° का मान 1 से अधिक नहीं हो सकता।
- ii. The value of tan 23° cot 67° is less than

tan23° - cot 67° का मान 0 से कम हैं।

Which of the above statements is/are correct? उपरोक्त कथनों में से कौन-सा सही है।

- (A) i Only
- (B) ii Only
- (C) Both i and ii
- (D) Neither i nor ii

43. If $\sin\theta\cos\theta = k$, where $0 \le \theta \le \frac{\pi}{2}$, then which one of the following is correct?

यदि $\sin\theta\cos\theta = \mathbf{k}$ है, जहाँ $0 \le \theta \le \frac{\pi}{2}$ हो, तो निम्नलिखित में से कौनसा सही है ?

- (A) $0 \le k \le 1$
- (B) $0 \le k \le 0.5$ only
- (C) $0.5 \le k \le 1$ only
- (D) 0 < k < 1
- **44.** What is the ratio of the greatest to the smallest value of $2 2 \sin x \sin^2 x$, $0 \le x \le \frac{\pi}{2}$?

 $2-2\sin x-\sin^2 x$, $0 \le x \le \frac{\pi}{2}$ के महत्तम मान का इसके लघुत्तम मान से अनुपात क्या है ?

(A) -3

(B)-2

(C) 2

(D) 3

Solution

1.(A) $10 - \sin^2 \theta$ Max = 10 - 0 = 10

Min = 10 - 1 = 9

2.(D) $20 - \tan^2 \theta$

Max = 20 - 0 = 20

Min = Not Defined

3.(C) $12 - \sec^2 \theta$

Max = 12 - 1 = 11

Min = Not Defined

4.(C) $17 + \csc^2 \theta$

Max = Not Defined

Min = 17 + 1 = 18

5.(D) $16 - 17 \cot^2 \theta$

Max = Not defined

6.(B) $10 + 2\sec^2\theta$

Max = Not Defined

Min = 12

7.(D) $9\sin^2\theta + 21\cos^2\theta$

Max = 21

Min = 9

then the ratio is 7:3

8.(B) $-(9\sin^2\theta + 8\cos^2\theta)$

Max = -8

Min = -9

9.(A) $11 \sec^2 \theta + 17 \tan^2 \theta$ $11 + 11 \tan^2 \theta + 17 \tan^2 \theta$

 $11 + 28 \tan^2 \theta$

Min

11 + 0 = 11

10.(C) $6 \sin \theta + 8 \cos^2 \theta$

 $Max = \sqrt{a^2 + b^2} = 10$

Min = $-\sqrt{a^2 + b^2} = -10$

11.(C) $11 \cos^2 x + 6 \sin x \cos x + 3 \sin^2 x$ $9\cos^2 x + 6\sin\theta\cos\theta + \sin^2\theta + 2$

 $(3\cos\theta + \sin\theta)^2 + 2$

$$Max = \left(\sqrt{10}\right)^2 + 2 = 12$$

Min = 0 + 2 = 2

12.(B) $3\sin\alpha + 4\cos\beta$

Max = 3 + 4 = 7

Min = -3 - 4 = -713.(B) $\sin^5\theta \times \cos^5\theta$

$$Max = \left(\frac{1}{2}\right)^5 = \frac{1}{32}$$

Min =
$$-\left(\frac{1}{2}\right)^5 = -\frac{1}{32}$$

14.(A) $\sin^6\theta \times \cos^6\theta$

$$Max = \left(\frac{1}{2}\right)^6 = \frac{1}{64}$$

Min = 0

15.(A) $\sin^4\theta + \cos^4\theta$

 $1-2 \sin^2\theta \cdot \cos^2\theta$

Max = 1 - 0 = 1

Min =
$$1 - 2 \times \left(\frac{1}{2}\right)^2 = \frac{1}{2}$$

16.(B) $\sin^6\theta + \cos^6\theta$

 $1-3 \sin^2\theta .\cos^2\theta$

Max = 1 - 0 = 1

Min =
$$1 - 3 \times \left(\frac{1}{2}\right)^2 = 1 - \frac{3}{4} = \frac{1}{4}$$