First Order Logic

Outline

- ☐ First-Order Logic (FOL)
 - Syntax
 - Semantics
 - Representation

Objects, Relations and Functions

- First Order Logic resembles natural language in dealing with objects and relations between objects
- ☐ Objects: people, houses, colors etc.
 - E.g. John, Red, Ball
- Relations: Verbs or Phrases that relate objects to each other
 - Some relations are unary or properties: they state some fact about a single object: Round(ball).
 - n-ary relations state facts about two or more objects:
- Married(John, Mary), LargerThan(3,2).

Ontological Commitment

- What the language assumes about the nature of reality
- FOL vs Propositional logic
 - Propositional logic assumes that there are facts that either hold or do not hold
 - FOL assumes there are objects in the world, and there are relations among them that do or do not hold
- Temporal logic
 - Facts hold at particular times
- Higher-order logic
 - Relations and functions are also objects
- 4 More expressive than FOL

Epistemological Commitments

Possible states of knowledge a logic allows wrt each fact

Language	Ontological Commitment (What exists in the world)	Epistemological Commitment (What an agent believes about facts)
Propositional logic First-order logic Temporal logic Probability theory Fuzzy logic	facts facts, objects, relations facts, objects, relations, times facts facts with degree of truth $\in [0, 1]$	true/false/unknown true/false/unknown true/false/unknown degree of belief $\in [0, 1]$ known interval value

Models of FOL

- Domain of a model- set of objects it contains
- Objects are also called domain elements
- Relations are sets of tuples of objects that are related
- Functions should be total functions

Models for FOL

Symbols

- Constant symbols
 - For objects e.g. Richard, John
- Predicate symbols
 - ☐ For relations e.g. Brother, OnHead, Person
- Function symbols
 - ☐ For functions e.g. LeftLeg

Specify arity

Interpretations

- An intended interpretation specifies
 - Which object is referred by a constant symbol
 - Richard refers to Richard the Lionheart
 - Which relation is referred by a predicate symbol
 - Brother refers to brotherhood relation
 - Which function is referred by a function symbol
 - I leftLeg refers to the left leg function
- Truth should be defined in terms of all possible models and all possible interpretations

Syntax of FOL: basic elements

- □ Constants Dan, UoM, 5, ...
- ☐ Predicates Brother, >, Before...
- Functions Sqrt, Length, ...
- \square Variables x, y, a, b,...
- \square Connectives \Rightarrow , \land , \lor , \Leftrightarrow
- □ Equality =
- \square Quantifiers \forall , \exists

Terms

- Logical expressions that refer to objects
 - John
 - LeftLeg(John)
 - LeftLeg(x)

Syntax of FOL: Sentence

- □ Sentence →AtomicSentence
 - | Sentence Connective Sentence
 - | Quantifier Variable, ... Sentence
 - | ¬Sentence
- □ AtomicSentence →
 - Predicate(Term, ...) | Term = Term
- \square Term \rightarrow
 - Function(Term, ...) | Constant | Variable
- □ Connective \rightarrow \Rightarrow $| \land | \lor | \Leftrightarrow$
- \square Quantifier $\rightarrow \forall \mid \exists$

Sentences Atomic sentences

- Formed by a predicate symbol followed by a parenthesized list of terms
 - Brother(Richard, John)
- May have complex terms as arguments
 - ☐ Married(Father(Richard), Mother(John))

Complex sentences

- Constructed by using logical connectives
- Similar to sentences in propositional logic
 - □ ¬Brother(LeftLeg(Richard), John)
 - □ Brother(Richard, John) \land Brother(John, Richard)
 - King(Richard) V King(John)

 $\neg King(Richard) \Rightarrow King(John)$

Quantifiers

 Allows us to express properties of collections of objects instead of enumerating objects by name

- □ Universal: "for all"
- ☐ Existential: "there exists" ∃

Universal quantification

```
∀ < variables > < sentence >
```

Everyone at UoM is smart:

$$\forall x \ At(x, UoM) \Rightarrow Smart(x)$$

 $\forall x P$ is true in a model m iff P is true with x being **each** possible object in the model

Roughly speaking, equivalent to the conjunction of instantiations of P

```
At(Dan, UoM) \Rightarrow Smart(Dan)
 \land At(Richard, UoM) \Rightarrow Smart(Richard)
 \land At(Ben, UoM) \Rightarrow Smart(Ben)
 \land ...
```

A common mistake to avoid

- \square Typically, \Rightarrow is the main connective with \forall
 - A universal quantifier is also equivalent to a set of implications over all objects

 \square Common mistake: using \land as the main connective with \forall :

 $\forall x At(x, UoM) \land Smart(x)$

means "Everyone is at UoM and everyone is smart"

Leads to overly strong statements

Existential quantification

∃ < variables > < sentence >

Someone at UoM is smart:

 $\exists x At(x, UoM) \land Smart(x)$

- $\exists x P$ is true in a model m iff P is true with x being **some** possible object in the model
- □ Roughly speaking, equivalent to the disjunction of instantiations of P
 At(Dan, UoM) ∧ Smart(Dan)
 - V At(Richard, UoM) ∧ Smart(Richard)
 - \vee At(Ben, UoM) \wedge Smart(Ben)
 - V ...

Another common mistake to avoid

- \square Typically, \wedge is the main connective with \exists
- □ Common mistake: using \Rightarrow as the main connective with \exists :

$$\exists x At(x, UoM) \Rightarrow Smart(x)$$

is true even for someone who is not at UoM!

Properties of quantifiers

 $\forall x \ \forall y \text{ is the same as } \forall y \ \forall x$

 $\exists x \exists y \text{ is the same as } \exists y \exists x$

 $\exists x \ \forall y \text{ is } not \text{ the same as } \forall y \ \exists x$

 $\exists x \forall y Loves(x,y)$

"There is a person who loves everyone in the world"

 $\forall y \exists x Loves(x,y)$

- "Everyone in the world is loved by at least one person"
- Quantifier duality: each can be expressed using the other

 $\forall x \text{ Likes}(x,\text{IceCream})$

 $\neg \exists x \neg Likes(x, IceCream)$

 $\exists x \text{ Likes}(x, \text{Broccoli})$ $\neg \forall x \neg \text{Likes}(x, \text{Broccoli})$

De Morgan Rules

- Universal quantifier is a conjunction
- Existential quantifier is a disjunction

$$\forall x \neg P \equiv \neg \exists x \ P \qquad \neg (P \lor Q) \equiv \neg P \land \neg Q$$

$$\neg \forall x \ P \equiv \exists x \neg P \qquad \neg (P \land Q) \equiv \neg P \lor \neg Q$$

$$\forall x \ P \equiv \neg \exists x \neg P \qquad P \land Q \equiv \neg (\neg P \lor \neg Q)$$

$$\exists x \ P \equiv \neg \forall x \neg P \qquad P \lor Q \equiv \neg (\neg P \land \neg Q)$$

Equality

- term₁ = term₂ is true under a given interpretation if and only if term₁ and term₂ refer to the same object
- □ E.g., definition of *Sibling* in terms of *Parent*: $\exists x,y Brother(x, Richard) \land Brother(y, Richard) \land \neg(x=y)$

Using First Order Logic

- Assertions
 - Sentences that are added to the KB using TELL
 - ☐ TELL(KB, King(John))
- Queries (goals)
 - Ask questions of the KB using ASK
 - ☐ ASK(KB, King(John))
 - Quantified queries (Answer is a substitution or a binding list)
 - \square ASK(KB, $\exists x Person(x)$)

Example: The Royal Kinship Domain

- □ Includes facts s.a.
 - Elizabeth is the mother of Charles
 - Charles is the father of William
 - William is the husband of Kate
 - One's grandmother is the mother of one's parent
- Unary predicates
 - Male, Female
- Binary predicates
 - Parent, Sibling, Brother, Sister, Child, Daughter, Son, Spouse,
- ²³ Wife, Husband, Grandparent, GrandChild, Cousin, Aunt, Uncle

Axioms

- Provide the basic factual information from which useful conclusions can be derived
- One's mother is one's female parent
 - \square \forall m,c $Mother(c) = m \Leftrightarrow (Female(m) \land Parent(m,c))$
- One's husband is one's male spouse
 - $\square \forall w, h \; Husband(h, w) \Leftrightarrow Male(h) \land Spouse(h, w)$
- Male and female are disjoint categories
 - $\Box \forall x Male(x) \Leftrightarrow \neg Female(x)$
- Parent and child are inverse relations

Axioms

- The above axioms are also definitions
- Some axioms are just plain facts
 - Male(Harry)
- Some sentences are theorems, which are entailed by axioms
 - $\Box \forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x)$
 - Logically follows from the axiom 'a sibling is another child of one's parent'
 - $\Box \forall x, y \ Sibling(x,y) \Leftrightarrow \neg(x=y) \land \exists p \ Parent(p,x) \land Parent(p,y)$

Summary

- □ First-order logic:
 - Much more expressive than propositional logic
 - Allows objects and relations as semantic primitives
 - Universal and existential quantifiers
 - Syntax