Introducción a los Sistemas Operativos

Administración de Memoria - II

1.5.0.

- ✓ Versión: Agosto 2013
- ☑ Palabras Claves: Procesos, Espacio de Direcciones, Memoria, Seguridad, Paginación, Segmentación

Algunas diapositivas han sido extraídas de las ofrecidas para docentes desde el libro de Stallings (Sistemas Operativos) y el de Silberschatz (Operating Systems Concepts). También se incluyen diapositivas cedidas por Microsoft S.A.

Paginación

- ✓ La memoria es dividida lógicamente en pequeños trozos de igual tamaño → Marcos
- ☑ El espacio de direcciones de cada proceso es dividido en trozos de igual tamaño que los marcos → Paginas
- ☑El SO mantiene una tabla de paginas por cada proceso.
 - ✓ Contiene el marco en la que esta situada cada pagina.
 - ✓ La dirección lógica consiste en un numero de pagina y un desplazamiento dentro de la misma.

Paginación - Ejemplo

Page 0

Page 1

Page 2

Page 3

logical memory

3

page table

frame number

0

1

Page 1

2

3

Page 3

4

Page 0

5

6

Page 2

physical memory

Paginación - Ejemplo II

Frame number 0	Main memory
0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	

	Main memory
0	A.0
1	A.1
2	A.2
3	A.3
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	

(b) Load Process A

	Main memory
0	A.0
1	A.1
2	A.2
3	A.3
4	11111B'9'
5	////B.i
6	[[[[B2][[[]
7	
8	
9	
10	
11	
12	
13	
14	

Main memory

(c) Load Process B

Paginación - Ejemplo II (cont.)

(e) Swap out B

	Main memory
0	A.0
1	A.1
2	A.2
3	A.3
4	D.0
5	D.1
6	D.2
7	////6////
8	////::5////
9	////51///
10	////83////
11	D.3
12	D.4
13	
14	_

Main memory

(f) Load Process D

Paginación - Ejemplo II (cont.)

Paginación - Direcciones Lógicas

Logical address = Page# = 1, Offset = 478

Traducción de direcciones

Segmentación

- ☑ Esquema que soporta el "punto de vista de un usuario"
- Un programa es una colección de segmentos. Un segmento es una unidad lógica como:
 - ✓ Programa Principal, Procedimientos y Funciones, variables locales y globales, stack, etc.
- ☑ Similar a particiones dinámicas.

Programa desde la visión del usuario

Espacios de direcciones de cada segmento

Segmentación - Vista Lógica

physical memory space

Ejemplo de Segmentación

Compartición de Segmentos

Segmentación (cont.)

- ☑Todos los segmentos de un programa pueden no tener el mismo tamaño (código, datos, rutinas).
- ✓ Las direcciones Lógicas consisten en 2 partes:
 - ✓ Selector de Segmento
 - Desplazamiento dentro del segmento

Segmentación (cont.) - Arquitectura

- ☑ Tabla de Segmentos
 - ✓ Permite mapear la dirección lógica en física. Cada entrada contiene:
 - Base: Dirección física de comienzo del segmento
 - Limit: Longitud del Segmento
- ☑ Segment-table base register (STBR): apunta a la ubicación de la tabla de segmentos.
- ☑ Segment-table length register (STLR): cantidad de segmentos de un programa

Segmentación (cont.)

Segmentación - Direcciones (cont.)

Segmentación Paginada

- ☑ La paginación
 - ✓ Transparente al programador
 - ✓ Elimina Fragmentación externa.
- Segmentación
 - Es visible al programador
 - ✓ Facilita modularidad, estructuras de datos grandes y da mejor soporte a la compartición y protección
- ☑ Cada segmento es dividido en paginas de tamaño fijo.

Segmentación Paginada (cont.)

Intel 386

The Intel 386 uses segmentation with paging for memory management with a two-level paging scheme.

