EE364b Prof. S. Boyd

EE364b Homework 5

1. Distributed method for bi-commodity network flow problem. We consider a network (directed graph) with n arcs and p nodes, described by the incidence matrix $A \in \mathbf{R}^{p \times n}$, where

$$A_{ij} = \begin{cases} 1, & \text{if arc } j \text{ enters node } i \\ -1, & \text{if arc } j \text{ leaves node } i \\ 0, & \text{otherwise.} \end{cases}$$

Two commodities flow in the network. Commodity 1 has source vector $s \in \mathbf{R}^p$, and commodity 2 has source vector $t \in \mathbf{R}^p$, which satisfy $\mathbf{1}^T s = \mathbf{1}^T t = 0$. The flow of commodity 1 on arc i is denoted x_i , and the flow of commodity 2 on arc i is denoted y_i . Each of the flows must satisfy flow conservation, which can be expressed as Ax + s = 0 (for commodity 1), and Ay + t = 0 (for commodity 2).

Arc i has associated flow cost $\phi_i(x_i, y_i)$, where $\phi_i : \mathbf{R}^2 \to \mathbf{R}$ is convex. (We can impose constraints such as nonnegativity of the flows by restricting the domain of ϕ_i to \mathbf{R}^2_+ .) One natural form for ϕ_i is a function only the total traffic on the arc, *i.e.*, $\phi(x_i, y_i) = f_i(x_i + y_i)$, where $f_i : \mathbf{R} \to \mathbf{R}$ is convex. In this form, however, ϕ is not strictly convex, which will complicate things. To avoid these complications, we will assume that ϕ_i is strictly convex.

The problem of choosing the minimum cost flows that satisfy flow conservation can be expressed as

minimize
$$\sum_{i=1}^{n} \phi_i(x_i, y_i)$$

subject to $Ax + s = 0$, $Ay + t = 0$,

with variables $x, y \in \mathbb{R}^n$. This is the bi-commodity network flow problem.

- (a) Propose a distributed solution to the bi-commodity flow problem using dual decomposition. Your solution can refer to the conjugate functions ϕ_i^* .
- (b) Use your algorithm to solve the particular problem instance with

$$\phi_i(x_i, y_i) = (x_i + y_i)^2 + \epsilon(x_i^2 + y_i^2), \quad \text{dom } \phi_i = \mathbf{R}_+^2,$$

with $\epsilon = 0.1$. The other data for this problem can be found in bicommodity_data.m. To check that your method works, compute the optimal value p^* , using cvx.

For the subgradient updates use a constant stepsize of 0.1. Run the algorithm for 200 iterations and plot the dual lower bound versus iteration. With a logarithmic vertical axis, plot the norms of the residuals for each of the two flow conservation equations, versus iteration number, on the same plot.

Hint: We have posted a function [x,y] = quad2_min(eps,alpha,beta), which computes

 $(x^*, y^*) = \underset{x>0}{\operatorname{argmin}} \left((x+y)^2 + \epsilon(x^2 + y^2) + \alpha x + \beta y \right)$

analytically. You might find this function useful.

Solution:

(a) The Lagrangian of the flow control problem is

$$L(x, y, \mu, \nu) = \sum_{i=1}^{n} \phi_i(x_i, y_i) + \mu^T (Ax + s) + \nu^T (Ay + t)$$
$$= \mu^T s + \nu^T t + \sum_{i=1}^{n} (\phi_i(x_i, y_i) + (\Delta \mu_i) x_i + (\Delta \nu_i) y_i),$$

where $\Delta \mu_i = a_i^T \mu$ and $\Delta \nu_i = a_i^T \nu$. The dual function is

$$g(\mu, \nu) = \inf_{x \succeq 0, y \succeq 0} L(x, y, \mu, \nu)$$

= $\mu^T s + \nu^T t - \sum_{i=1}^n \phi_i^* (-\Delta \mu_i, -\Delta \nu_i),$

where $\phi_i^*(u,v) = \sup_{x \ge 0, y \ge 0} (xu + yv - \phi_i(x,y))$. The dual is the unconstrained problem

maximize
$$g(\mu, \nu)$$
.

In complete analogy to the analysis of the lecture notes, by using a subgradient method to solve the dual problem we obtain the following algorithm.

given initial potential vectors μ and ν .

repeat

Determine link flows from potential differences.

 $(x_i, y_i) := \operatorname{argmin} \left(\phi_i(x_i, y_i) + (\Delta \mu_i) x_i + (\Delta \nu_i) y_i \right), \quad j = 1, \dots, n.$

Compute flow surplus at each node.

$$S_i := a_i^T x + s_i, \quad i = 1, \dots, p.$$

 $T_i := a_i^T y + t_i, \quad i = 1, \dots, p.$

$$T_i := a_i^T y + t_i, \quad i = 1, \dots, p.$$

Update node potentials.

$$\mu_i := \mu_i + \alpha_k S_i, \quad i = 1, \dots, p.$$

$$\nu_i := \nu_i + \alpha_k T_i, \quad i = 1, \dots, p.$$

(b) The following code solves the problem

bicommodity_data;

% Get solution cvx_begin

```
variables x_star(n) y_star(n)
    dual variables mu_star nu_star
    minimize(sum((x_star+y_star).^2)+eps*(sum(x_star.^2+y_star.^2)))
    subject to
        mu_star: A*x_star+s==0;
        nu_star: A*y_star+t==0;
        x_star >= 0;
        y_star >= 0;
cvx_end
f_min = cvx_optval;
% Dual decomposition
mu = zeros(p,1); nu = zeros(p,1);
x = zeros(n,1); y = zeros(n,1);
MAX_ITER = 200;
L = []; infeas1 = []; infeas2 = [];
for i = 1:MAX_ITER
    % Potential differences
    delta_mu = A'*mu; delta_nu = A'*nu;
    % Update flows
    for j = 1:n
        [x(j),y(j)] = quad2\_min(eps,delta\_mu(j),delta\_nu(j));
    end
    infeas1 = [infeas1 norm(A*x+s)];
    infeas2 = [infeas2 norm(A*y+t)];
    % Update lower bound
    1 = sum((x+y).^2) + eps*(sum(x.^2+y.^2)) + mu'*(A*x+s) + nu'*(A*y+t);
    L = [L 1];
    % Update potentials
    alpha = .1;
    mu = mu + alpha * (A * x + s);
    nu = nu+alpha*(A*y+t);
end
figure
plot(1:MAX_ITER,L,'b-',[1 MAX_ITER],[f_min f_min],'r--')
legend('lb','opt')
xlabel('iter')
```


Figure 1: Lower bound $g(\mu, \nu)$ on flow cost versus iteration k.

```
figure
semilogy(infeas1)
xlabel('iter')
ylabel('ninfeas1')

figure
semilogy(infeas2)
ylabel('ninfeas2')
xlabel('iter')
```


Figure 2: Evolution of infeasibility for commodity 1 versus iteration k.

Figure 3: Evolution of infeasibility for commodity 2 versus iteration k.

2. Minimum eigenvalue via convex-concave procedure. The (nonconvex) problem

minimize
$$x^T P x$$

subject to $||x||_2^2 \ge 1$,

with $P \in \mathbf{S}_{+}^{n \times n}$, has optimal value $\lambda_{\min}(P)$; x is optimal if and only if it is an eigenvector of P associated with $\lambda_{\min}(P)$. Explain how to use the convex-concave procedure to (try to) solve this problem.

Generate and (possibly) solve a few instances of this problem using the convex-concave procedure, starting from a few (nonzero) initial points. Compare the values found by the convex-concave procedure with the optimal value.

Solution. We solve the problem

minimize
$$x^T P x$$

subject to $1 - ||x||_2^2 \le 0$

using the convex-concave procedure. Linearizing $1 - ||x||_2^2$ around the point $x^{(k)}$, we set $x^{(k+1)}$ to the optimal point x in the problem

minimize
$$x^T P x$$

subject to $1 - (\|x^{(k)}\|^2 + 2x^{(k)T}(x - x^{(k)})) \le 0$.

An example graph, and its generating Matlab code, appear below.

randn('state', 1091); rand('state', 1091); n = 40;

P = randn(n); P = 3*eye(n) + P'*P;

```
vals = [];
xold = 1/n*ones(n, 1);
Nmax = 8;
for i = 1:Nmax
    cvx_begin
        cvx_quiet(true);
        variable x(n)
        minimize(x'*P*x)
        1 - 2*xold*(x - xold) - xold*xold <= 0;
    cvx_end
    disp(cvx_optval)
    vals = [vals; cvx_optval];
    xold = x;
end
figure(1); cla;
plot(vals); hold on;
plot([1 Nmax], min(eig(P))*[1 1], 'k--');
xlabel('x'); ylabel('y');
print -deps2 mineig.eps
```

3. Ellipsoid method for an SDP. We consider the SDP

```
maximize \mathbf{1}^T x
subject to x_i \succeq 0, \Sigma - \mathbf{diag}(x) \succeq 0,
```

with variable $x \in \mathbf{R}^n$ and data $\Sigma \in \mathbf{S}_{++}^n$. The first inequality is a vector (component-wise) inequality, and the second inequality is a matrix inequality. (This specific SDP arises in several applications.)

Explain how to use the ellipsoid method to solve this problem. Describe your choice of initial ellipsoid and how you determine a subgradient for the objective (expressed as $-\mathbf{1}^T x$, which is to be minimized) or constraint functions (expressed as $\max_i(-x_i) \leq 0$ and $\lambda_{\max}(\operatorname{\mathbf{diag}}(x) - \Sigma) \leq 0$). You can describe a basic ellipsoid method; you do not need to use a deep-cut method, or work in the epigraph.

Try out your ellipsoid method on some randomly generated data, with $n \leq 20$. Use a stopping criterion that guarantees 1% accuracy. Compare the result to the solution found using cvx. Plot the upper and lower bounds from the ellipsoid method, versus iteration number.

Solution. There are many possible choices for an initial ellipsoid that contains the optimal point x^* . For example, we can use the fact that all feasible x lie in the box $0 \leq x \leq \operatorname{diag}(\Sigma)$. One simple starting ellipsoid is the Euclidean ball centered at $x = (1/2)\operatorname{diag}(\Sigma)$ (the center of the box), with radius $(1/2)(\sum_{i=1}^n \Sigma_{ii}^2)^{1/2}$. Suppose that at the kth iteration we have $D^{(k)} = \operatorname{diag}(x^{(k)})$.

We'll transform the problem to one of minimizing $f(x) = -\mathbf{1}^T x$. When $x^{(k)}$ is feasible, the subgradient of f is simply $-\mathbf{1}$. If a component of $x^{(k)}$ (say, the jth component) is negative, we use the constraint subgradient $g = -e_j$.

The interesting case comes when $x^{(k)} \succeq 0$, but $\lambda_{\max}(\operatorname{\mathbf{diag}}(x^{(k)}) - \Sigma) > 0$. In this case we can find a constraint subgradient as follows. Find an eigenvector v associated with the largest eigenvalue of $\Sigma - \operatorname{\mathbf{diag}}(x^{(k)})$. By the weak subgradient calculus, we can find any subgradient of the function

$$v^{T}(\mathbf{diag}(x^{(k)} - \Sigma)v = -v^{T}\Sigma v + \sum_{i=1}^{n} v_{i}^{2}x_{i}^{(k)}.$$

But this is trivial, since this function is affine: We can take $g_i = v_i^2$, for i = 1, ..., n. The following Matlab code implements the ellipsoid method.

```
randn('state',0); n = 20;
Sigma = randn(n,n);
Sigma = Sigma'*Sigma+eye(n);
x = 0.5*diag(Sigma);
A = diag(ones(n,1)*0.25*sum(diag(Sigma).^2));
maxiters = 5000; U = inf; L = -inf; hist = []; feas = 0;
tol = 0.01;
for k = 1:maxiters
    % find a subgradient
    [val,ind] = min(x);
    [V,d] = eig(diag(x)-Sigma);
    if (val <= 0)
        feas = 0;
        g = zeros(n,1); g(ind) = -1;
    elseif (max(diag(d)) >= 0)
        feas = 0;
        g = V(:,n).^2;
    else
        g = -ones(n,1);
        feas = 1; D = diag(x);
        U = \min(U, -sum(x));
        L = max(L, -sum(x) - sqrt(g'*A*g));
    end
    hist = [hist [k;feas;U;L]];
    if (((U-L) < tol*sum(x)) \&\& (feas == 1)) break; end;
    % update the ellipsoid
    g = g/sqrt(g'*A*g);
```

```
x = x-A*g/(n+1);
    A = (n^2/(n^2-1))*(A-A*g*g'*A*(2/(n+1)));
end
cvx_begin
    variable xopt(n)
    Sigma-diag(xopt) == semidefinite(n);
    xopt >= 0;
    minimize(-sum(xopt))
cvx_end
figure;
set(gca,'Fontsize',16);
plot(hist(3,:),'k-'); hold on;
plot(hist(4,:),'k--');
plot(1:length(hist(3,:)),cvx_optval*ones(length(hist(3,:)),1),'k:');
xlabel('k'); ylabel('ul');
axis([0,2000,-120,-20]);
print('-depsc', 'ellipsoid_sdp.eps');
```

The following figure shows the progress of the ellipsoid method with iteration number k. The solid line shows the upper bound u_k , the dashed line shows the lower bound l_k , and the dotted line is the optimal value p^* , obtained by using cvx.

