6.3 图解法设计凸轮轮廓

6.3.1凸轮轮廓设计的反转法原理

反转原理:

给整个凸轮机构施以-ω时,不影响各构件之间的相对运动,此时,凸轮将静止,而从动件尖顶复合运动的轨迹即凸轮的轮廓曲线。

依据此原理可以用几何作图的方法 设计凸轮的轮廓曲线

6.3.2 图解法设计凸轮廓线

1.对心尖顶直动从动件盘形凸轮轮廓的绘制。

对心尖顶直动从动件凸轮机构中,已知凸轮的

基圆半径 \mathbf{r}_0 ,角速度 ω 和从动件的运动规律,

设计该凸轮轮廓曲线。

设计步骤小结:

- ①选比例尺 µ /作基圆 r₀。
- ②反向等分各运动角。原则是: 陡密缓疏。
- ③确定反转后,从动件尖顶在各等份点的位置。
- ④将各尖顶点连接成一条光滑曲线。

2.偏置尖顶直动从动件盘形凸轮轮廓的绘制

偏置尖顶直动从动件凸轮机构中,已知凸轮的基圆半径 \mathbf{r}_0 ,角速度 ω 和从动件的运动规律和偏距 \mathbf{e} ,设计该凸轮轮廓曲线。

设计步骤小结:

- ①选比例尺 μ_l 作偏距圆e和基圆 \mathbf{r}_0 ;
- ②反向等分各运动角;
- ③确定反转后,从动件尖顶在各等份点的位置;
- ④将各尖顶点连接成一条光滑曲线。

3.滚子直动从动件盘形凸轮轮廓的绘制

滚子直动从动件凸轮机构中,已知凸轮的基圆 半径 \mathbf{r}_{0} ,角速度 ω 和从动件的运动规律,设计

该凸轮轮廓曲线。

- ①选比例尺 μ 作基圆 r₀。
- ②反向等分各运动角。原则是: 陡密缓疏。
- ③确定反转后,从动件尖顶在各等份点的位置。
- ④将各尖顶点连接成一条光滑曲线。
- ⑤作各位置滚子圆的包络线。

4.平底直动从动件盘形凸轮轮廓的绘制

对心平底直动从动件凸轮机构中,已知凸轮的

基圆半径 \mathbf{r}_0 ,角速度 ω 和从动件的运动规律,

设计该凸轮轮廓曲线。

- ①选比例尺 μ_l 作基圆 r_0 。
- ②反向等分各运动角。原则是: 陡密缓疏。
- ③确定反转后,从动件平底直线在各等份点的位置。
- ④作平底直线族的包络线。

6.3.3 摆动从动件盘形凸轮轮廓的绘制 摆动从动件凸轮机构中,已知凸轮的基圆半径r₀,角速度ω, 摆杆长度/以及摆杆回转中心与凸轮回转中心的距离d,摆杆角

6.4 凸轮机构基本尺寸的确定

6.4.1 压力角

压力角----正压力F与从动件的运动方向之间所夹的锐角 α

F'----有用分力,沿导路方向

F"----有害分力,垂直于导路

F'=F cos
$$\alpha$$

F"=F' tg α
F=fF"

F'一定时, $\alpha \uparrow \rightarrow F'' \uparrow$, 若 α 大到一定程度时,会有:

$$\mathbf{F}_f > \mathbf{F}'$$
 →机构发生自锁。

为了保证凸轮机构正常工作,要求:

$$\alpha_{max} < [\alpha]$$

6.4.2 基圆半径r₀的选取

P点为速度瞬心, 于是有:

$$v = l_{OP} \omega \longrightarrow l_{OP} = v / \omega = ds/d \delta$$

$$tg \alpha = \frac{ds/d \delta}{S + r_0} \rightarrow r_0 = \frac{ds/d \delta}{tg \alpha} - S$$

$$r_0 \downarrow \qquad \rightarrow \alpha \uparrow$$

6.4.2 滚子半径的选择

 ρ '一实际轮廓的曲率半径 ρ '= ρ_{min} - $r_r>0$ ρ_{min} -理论轮廓外凸部分的最小曲率半径 r_r -滚子半径

(1)
$$\rho_{min} > r_r \quad \rho' > 0$$

(2)
$$\rho_{min} = r_r \rho' = 0$$

(3)
$$\rho_{min} < r_r \quad \rho' < 0$$

对于外凸轮廓,要保证正常工作,应使: $r_r \leq \rho_{min}$

本章重要知识点

- ◆凸轮机构的组成、类型及特点
- ◆从动件的常用运动规律 根据凸轮机构的工作条件、要求,设计从动件的运动规律
- ◆图解法设计凸轮轮廓 凸轮轮廓设计原理及设计步骤
- ◆凸轮机构基本尺寸的确定 设计凸轮机构时应确定其压力角、基圆半径和滚子半径