2D OS du 21V19 24 courgé meccint

I) Camparer of 1 1 15-1:

Dra 15 > 2 danc 0 < 15-2 < 15-2 a la faretra invene al stritural dinimant un R++ Jue 15-2 > 15-1

Company -4 (1- 52)2+3 at -4 (1-13)2+3

Dua 1 < 12 < 13

Jane -1 > -42 > -43

0 >1-52>1-53

a la fantian caule est attect went d'enancent un TR-

0 < (1-45)2 < (1-43)2

due 0 >-4 (1-V2) > -4 (1-V3)2

-4 (1-12)2+3 > -4(1-13)2+3

I) Resoule (E): 5+3 = 5x-3

carditain: 14x-140 con x 4 d x x y - 4

(E) (5x+3)(4x+2)=(5x-3)(4x-2) dx+44 dx+-4

(E) 00 29 h + 17 x +/5 = 29 h - 17 x +/3 1 x + 2 1 x + -2

(a) 342=0 dn + 2 dn + - 2

(E) (n = 0 + n + 2 + n + - 4 J= 104

Risadu (I): 1 € 32-4 € 2

cardità: 2+5 40 @ 24-5

Reduces (In): 16 34-4

(In) c=> 2+5-3x+4 € 0 xh ~ 4-5

(In) 60 -22+9 60 st 24-5

2	- CD	-5		9/2	+00	
-2n+9	+		+	a		المن دوان كـ و ب
21.5		Φ	+	工		الماسا - المارك المارك
a		1) -	+	φ	_	

Risolvan (I_2) : $\frac{3x-4}{245} \le 2$

(I) = 32-1-22-10 <0 al 2+-5

(E) (D) 2-14 50 1-4-5

	~ + 3						
ૠ	-00	-5		14	_ <u>+</u> 🛩		
2-14	_		_	<u> </u>	+	92=7-5	
245	-	Ф	+		+	75= 1-2	ניייו
Q	+-		-	Ф	+		
Rilan 9.	= 4, 1	١٦٠] ء	多。	14]		

II) Enquite 5 Vanailly

1) A=T , B= DUT , C= DOF= B

2) Probabilité de A, B of C

Faisan un diagramen de Wenn:

La personne est interroga en basend. Il y a des equipo behilité su a : A(-2/2) et O(0/4) den AD (2) due $p(T) = \frac{\text{now de can favorable } s.T}{\text{now both decean}} = \frac{60}{100} = 0.6$

2) coordonnées de I part table william de [48] doc no = 24+46 = -2+4 = 1 1 32= 4+140 = 2+0 = 1 I(1,1)

3) Coordonnées de D

Part De (Oy) don 20=0 on a c(2;-2) at I(1;1) done EI (2) on a c(2;-2) at D(0; 30) due cD (-2

Par De(CE) done CD (2) at collison = CE(-1) due -6+ 40+2 =0 done yo = 4

Bilan D(0,4)

4) Appartrance de D an cord de diameter [16]

Apelan & a unde

par @ I at 4 wition de [AR] due le a pour centre I at pan royan IA.

On at down un repete attorname due IA= V(14-41) + (14-12) = V3+1 = V70 20 = \((20 - 2) 2 + (30 - 5E) = \(1+9 = 140 done I appartiant an unde de center I at de royan IA dar DEE

5) Natur de ALBO

c(21-2) st 8(410) danc co (2)

In The Co In ACBD of un parallelogramme

de plus d'apris 4) Dappartient ou unde de dianité [AB] done le travelle ADB est rechargle en B done le parallelegamen sesso a un augle drait due 160 et un rectagle

day AN = 52

2) AN en fantion de a par Me [AB] Jun AAG AM CAB dam 0 € x < 8 due 2 6 [0:8[]

Dam le transle DCN, les paint N, A et D sont ationés ainsi que N, Metc. Par (ABCD ast un recharge dane: (AM) 11 (DC) due d'april le Hourne de Thate an a : AN = AM a AE[ND] doe ON = DA+AN don AN = AM der AN = 2 dare 8 AN = 5 n + n AN due (8-2) AN = 5x

- 3) Martin que (a) = AN Pan @ pan tout n do [0;8[, (4) = 40 -5 = 40 -5 (8-4) = 54 = AN
- 4) Variation de f. m. [0;8[Pau ton my my the que 0 & my < mz < 8

ma: 03-777-7-8

8 > 8 - 47 > 8 - 42 > 0

le farction inverse set stictement Dissincent un R++

done
$$\frac{1}{8} \leqslant \frac{1}{8-n_1} < \frac{1}{8-n_2}$$

done $\frac{n_0}{8-n_1} < \frac{60}{8-n_2}$

done $\frac{40}{8-n_1} - 5 < \frac{40}{8-n_2} - 5$

done $\frac{40}{8-n_1} - 5 < \frac{40}{8-n_2} - 5$

By law: If all statement consent run [0,18[]

- 5) 5 M >4 on a 87 AM 74 done 8>2>4 a feel stictural vissant un [0;8[
 - hu (1) > 1(1) W > 5
- 6) AN > 2019 ?

En traçant of un la calablatice, on remarque que plus in ne reproduct 8, plus f(h) devient grand. Calcular par except 1(7,99):

 $f(7,99) = \frac{5 \times 7,59}{8 - 7,99} = \frac{33,65}{0,01} = 3595$

Bilan: si AM = 7,89 alors AN = 3995

le con AN > 2019 et danc possible

Classes de 2nde	Corrigó de la Composition nº3 de mathématiques	Jeudi 23 mars 2017
Calculatrice autorisée	Corrigé de la Composition n°2 de mathématiques	Durée : 3h00

Exercice 1:

Partie A:

f est une fonction définie sur l'intervalle $[\ 2\ ; 3]$ dont voici le tableau de variation :

х	-2	1	3
variations de f	-1 /	≠ ² \	\ ₀

		-
1.	Pour tout nombre réel x de $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$, $f(x) \ge 0$	F
2.	Pour tout nombre réel x de $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$, $f(x) \le 3$	٧
3.	Il existe un nombre réel x de $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ tel que $f(x) < 0$	٧
4.	Il existe un nombre réel x de $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ tel que $f(x) = 2$	F
5.	Pour tout nombre réel x de $[2;3]$, il existe un nombre réel x' de $[2;3]$ tel que $f(x') > f(x)$	F

Partie B:

6.	Si f est croissante sur $[0; 2]$, alors f est croissante sur $[0; 1]$	٧
7.	Si f est décroissante sur $[0;2]$, alors $f(0,5) \ge f(0,6)$	V
8.	Si $f(0) < f(1)$, alors f est croissante sur $[0;1]$	F
9.	Si f admet un maximum en 1 sur $[0;1]$, alors f est croissante sur $[0;1]$	F
10.	Si f n'est pas croissante sur $[0;1]$, alors f est décroissante sur $[0;1]$	F

Exercice 2 (9 points) : On considère les fonctions f:x $x^2 + 6x$ 5 et g:x $1 + \frac{4}{x-1}$.

1. Ensembles de définition D_f et D_g : Pas de valeur interdite pour f(x) donc D_f =

$$D_a = \{x \in /x \mid 1 \neq 0\} = \{1\}$$

2. Montrer que f atteint un maximum de 4 sur \cdot

Pour tout x de , déterminons le signe de f(x) f(3):

$$f(x)$$
 $f(3) = x^2 + 6x$ 5 $(3^2 + 6 \times 3)^2 = x^2 + 6x$ 9 = $(x + 3)^2$.

Un carré étant toujours positif ou nul : f(x) $f(3) \le 0$ donc $f(x) \le f(3)$ avec f(3) = 4

Donc f admet un maximum de 4 atteint en 3 sur

3. a.

Variations de f sur] ∞; 3].

Soit a et b deux réels tels que $a < b \le 3$. Etudions le signe de f(a) f(b):

$$f(a)$$
 $f(b) = a^2 + 6a$ $5 + b^2$ $6b + 5 = (a + b)(b \ a)$ $6(b \ a) = (b \ a)(a + b \ 6)$

Par hypothèse : $a < b \Rightarrow b$ a > 0a < 3 et $b < 3 \Rightarrow a + b < 6 \Rightarrow a + b$ 6 < 0

donc
$$f(a)$$
 $f(b) < 0$ donc $f(a) < f(b)$ donc $f(a)$ strictement croissante sur $[-\infty, 3]$

Variations de f sur $[3; +\infty[$.

Pour tous réels a et b tels que $3 \le a < b$, étudions le signe de f(a) f(b):

$$f(a) \quad f(b) = (b \quad a)(a+b \quad 6)$$

Par hypothèse : $a < b \Rightarrow b$ a > 0

$$a \ge 3$$
 et $b > 3 \Rightarrow a + b > 6 \Rightarrow a + b \quad 6 > 0$

donc f(a) f(b) > 0 donc f(a) > f(b) donc f(a) > f(b) donc f(a) > f(b) donc f(a) > f(b) donc f(a) > f(b)

b. Tableau de variations de f sur .

x	∞	3	+∞
f		→ 4 <u></u>	→

4. Vérifier que, pour tout x de , f(x) = (x - 5)(x - 1). Pour tout x de , développons l'expression : $(x - 5)(x - 1) = x^2 + 6x - 5 = f(x)$

5. Signe de f(x).

λ	C	∞	1		5	+∞
х	5	1		_	φ -	+
х	1	-	ф	+	-	+
	1	-		_	-	
f(<i>x</i>)	-	0	+	Ф -	_

Bilan:

f(x) est strictement positif sur]1; 5[et C_f est au-dessus de l'axe des abscisses

f(x) est strictement négatif sur] ∞ ; 1[et sur]5; $+\infty$ [et C_f est en-dessous de l'axe des abscisses

f(x) est nul en x = 1 et x = 5 et C_f croise l'axe des abscisses

6. Représentation graphique C_f

7. a. Variations de g sur ∞ ; 1[.

Pour tous réels a et b tels que a < b < 1, étudions le signe de g(a) g(b):

$$g(a)$$
 $g(b) = 1 + \frac{4}{a} + 1$ $\frac{4}{b} = \frac{4(b-1)}{(a-1)(b-1)} = \frac{4(b-a)}{(a-1)(b-1)} = \frac{4(b-a)}{(a-1)(b-1)}$

Par hypothèses :

$$a < b \Rightarrow b$$
 $a > 0$

$$a < 1 \Rightarrow a \quad 1 < 0 \text{ et } b < 1 \Rightarrow b \quad 1 < 0$$

Bilan: g(a) g(b) > 0 donc g(a) > g(b) donc g est strictement décroissante sur] ∞ ; 1

b. Tableau de variations de g sur D_a .

Х	∞	1	+∞
g	_		<i>></i>

8. Résoudre par le calcul : (E) : f(x) = g(x).

(E)
$$\Leftrightarrow$$
 $(x - 5)(x - 1) = 1 + \frac{4}{x - 1}$ et $x \neq 1$

(E)
$$\Leftrightarrow$$
 $(x - 5)(x - 1) = \frac{x + 5}{x - 1}$ et $x \neq 1$

(E)
$$\Leftrightarrow \frac{(x-5)(x-1)^2 + (x-5)}{x-1} = 0 \text{ et } x \neq 1$$

(E)
$$\Leftrightarrow$$
 $(x + 5)(x + 1)^2 + (x + 5) = 0 \text{ et } x \neq 1$

(E)
$$\Leftrightarrow$$
 $(x 5)[(x 1)^2 + 1] = 0 \text{ et } x \neq 1$

(E)
$$\Leftrightarrow$$
 $(x - 5)[(x - 1)^2 + 1] = 0$ et $x \neq 1$

(E)
$$\Leftrightarrow x(x - 5)(2 - x) = 0$$
 et $x \neq 1$

(E)
$$\Leftrightarrow x = 5$$
 ou $x = 0$ ou $x = 2$

$$S = \{0; 2; 5\}$$

Graphiquement cela signifie que les courbes représentatives de f et g ont 3 points d'intersections ayant pour abscisses respectives. 0. 2 et 5.

9. Résoudre par le calcul $f(x) \ge g(x)$ sur D_a .

$$f(x) \ge g(x) \Leftrightarrow \Leftrightarrow \frac{x(x-5)(2-x)}{x-1} \ge 0 \text{ et } x \ne 1$$

, () = 0 ()		x 1			
x	∞	0 1	L :	2 5	5 +∞
x	Ī	0 +	+	+	+
<i>x</i> 5	-	-	-	- () +
<i>x</i> 1	Ī	- (+	+	+
2 x	+	+	+ (_	_
x(x-5)(-x+2)	-	0 +	- () + (_
x-1					

$$S = [0; 1[\cup [2; 5].$$

Graphiquement cela signifie que la courbe représentatives de f se situe au-dessus de celle de g sur les intervalles [0;1[et [2;5]

Exercice 3 (2,5 points):

1. Traduire à l'aide des notations d'ensemble et de logique chacun des évènements suivants :

$$C = A \cap B$$
 $D = \overline{A}$ $E = \overline{A} \cap \overline{B} = \overline{A \cup B}$

- **2.** a. Définir l'événement $A \cap \overline{B}$ par une phrase : « la souris ne présente que la maladie A »
- b. L'événement « La souris présente la maladie A mais pas la maladie B » est-il inclus dans \bar{B} ? Oui
- 3. La probabilité qu'une souris n'ait pas la maladie A est 0,7, donc $P(\overline{A})=0,7$ et P(A)=1 $P(\overline{A})=0,3$ La probabilité qu'une souris ait la maladie A ou la maladie B est 0,7 donc $P(A \cup B)=0,7$ La probabilité qu'une souris ait la maladie A et la maladie B est 0,2 donc $P(A \cap B)=0,2$ Or $P(A \cup B)=P(A)+P(B)$ $P(A \cap B)=0,3$

donc
$$0.7 = 0.3 + P(B)$$
 0.2

donc
$$P(B) = 0.6$$
 donc $P(\overline{B}) = 1$ $P(B) = 0.4$

Exercice 4 (2 points):

1. Que représentent les variables F et S dans cet algorithme ? F représente la valeur obtenue lors du dernier lancé de dé et S représente la somme des lancés de dés.

2. Déterminer un univers de l'expérience

$$\Omega = \{(1;1;1);(1;1;2);(1;1;3);(1;1;4);(1;1;5);(1;1;6);(1;2;1);(1;2;2);...(6;6;4);(6;6;5);(6;6;6)\}$$
 Les issues sont équiprobables et il y en a $6 \times 6 \times 6 = 216$

Calculer p(A):

L'événement A correspond à une seule issue : (1;1;1) et il y a équiprobabilité donc :

$$P(A) = \frac{\text{nombre d'issues de A}}{\text{nombre total d'issues}} = \frac{1}{216}$$

Exercice 5 (4 points):

1. Justifier que $(A; \overline{AB}, \overline{AC})$ est un repère du plan.

ABC étant un triangle non aplati, les vecteurs \overline{AB} et \overline{AC} ne sont pas colinéaires. Ils forment donc bien avec le point A un repère du plan.

2. a. Coordonnées des points A, B, C et I dans ce repère.

A étant l'origine du repère, A(0,0).

$$\overline{AB} = 1 \overline{AB} + 0 \overline{AC} \text{ d'où } B(1.0)$$

$$\overline{AC} = 0 \overline{AB} + 1 \overline{AC} \text{ d'où } C(0,1)$$

I est le milieu de [*BC*] donc
$$x_I = \frac{x_B + x_C}{2} = \frac{1}{2}$$
 et $y_I = \frac{y_B + y_C}{2} = \frac{1}{2}$ d'où $B\left(\frac{1}{2}, \frac{1}{2}\right)$

b. Coordonnées des points M et N en fonction de m, pour $m \in ...$

Par hypothèses,
$$\overline{AM} = (1 \quad m)\overline{AB} + m\overline{AC}$$
 et $\overline{AN} = m\overline{AB} + (1 \quad m)\overline{AC}$ donc: $M(1 \quad m,m)$ et $N(m,1 \quad m)$

3. Si m=1, où sont les points M et N?

Si m=1, M(0.1) donc M est confondu avec C et N(1.0) donc N est confondu avec B.

4. Figure dans les cas suivants : m = 1 (en rouge) puis m = 3 (en vert).

5. Montrer que, pour tout m de \overline{BM} est colinéaire à \overline{BC} . Que peut-on en déduire ?

Pour tout
$$m$$
 de , on a par hypothèses : $\overline{AM} = (1 \quad m)\overline{AB} + m\overline{AC}$

$$\operatorname{donc}: \overline{BM} = \overline{BA} + \overline{AM} = \overline{AB} + (1 \quad m)\overline{AB} + m\overline{AC} = m\overline{AB} + m\overline{AC} = m(\overline{BA} + \overline{AC}) = m\overline{BC}$$

$$\operatorname{donc} \overline{BM} \text{ est toujours colinéaire à } \overline{BC}.$$

On en déduit que M est toujours aligné avec B et C.

6. Déterminer les valeurs de m pour lesquelles M et N sont confondus.

D'après 2)b, on a :
$$M(1 m, m)$$
 et $N(m, 1 m)$

donc : M et N confondus
$$\Leftrightarrow x_M = x_N$$
 et $y_M = y_N \Leftrightarrow 1$ $m = m \Leftrightarrow 1 = 2m \Leftrightarrow m = \frac{1}{2}$

7. Montrer que, pour tout m de , I est le milieu de [MN].

Calculons les coordonnées du milieu
$$\Omega$$
 de [MN] : $x_{\Omega} = \frac{x_M + x_N}{2} = \frac{1 - m + m}{2} = \frac{1}{2}$ $y_{\Omega} = \frac{y_M + y_N}{2} = \frac{m + 1 - m}{2} = \frac{1}{2}$ Ω et l'ayant les mêmes coordonnées, l'est bien le milieu de [MN].

I) 1) Arbie de l'expressence

Il y a 24 issues équipobables

- 2) Appelan E, l'événement "Dot ni à la roit B pair D". Il , a 4 resultats possibles siqualis par x p(Ex) = nbu d'inces de Ex = $\frac{4}{24} = \frac{1}{6} \approx 0,17$
- 3) Appelan Ez l'évérement "Obtenir con duraitur position". Il y a 6 resultat possibles signales par o $p(E_2) = \frac{6}{24} = \boxed{\frac{1}{4}} = 0,25$
- 4) Appelan Ez l'événement "le jelon restant est 4". Aly a 6 wellot penilles siquoli par a p(E3) = 6 = 1 = 0,25
- II) Probabilité que les dux qui chet roient avent cotte probabilité est p (A NB). On sait qu'il ya taijaus an mais un quichet avect lone p (AUB) = 1

 $o_{A} \rho (A \cup B) = \rho(A) + \rho(B) - \rho (A \cap B)$ due 1 = 0,73 + 0,54 - p (A MB)

due p(ANB) = 0,73 + 0,54 - 1 = 0,27

To nobability and les deux quichets soient awents ent 0,27

II) 1) Extrum de f m-1

Pan tout on de R, Literuinas le sigue de f(n) - f(-1) 1(x)-1(1)=8-2(x+1)2-8+2x02 = -2(x+1)2 or un caux est baijour postil as mul doc -2 (n+1)2 60 done f(n) - 1(-1) 60 dare f(m) & f(-1) avec f(-1) = 8 dere faduet un naximum de 8 en - 1 seu Th

2) Signe do a Pan tout on de R 1-21,

 $g(x) = 8 - \frac{2}{x+1} = \frac{8(x+1)-2}{x+2} = \frac{8x+6}{x+1} = \frac{2(4x+3)}{x+1}$ Fairais un hablear de signe:

n	-00	-1		- 44	+00
42+3	_		_	φ	+
2+1	_	Φ	+		+
3(2)	+	1	_	Þ	+

Bilan:

3) Variations de f sur] - 0; -1]

Pau lan as in the que my < n2 < -1 étudian le signe de f(m) - f(m): 1(m) - 1(m) = 8 - 2(m+2)2 - 8 + 2(m2+2)2 = 2 (2 + 1)2 - (21 + 1)2] = 2 (2+1+2+1)(2+1-7-1) = 2 (m, +m, +2) (m2 - m1)

Dr. nar (H) my < my danc my - my >0 ny <-1 et n2 <-1 done ny +n2 <-2 done 2,+2,+2 <0

Bilan: f(m) - f(m) <0 done f(m) < f(m) done If et stictuent crimant sur] -00; -2]

Variations de 1 m [-1;+00[Pan bon my, m2 tith que -1 & my < m2 a a (m) - 1(m) = 2 (m+m+2)(m2-m1) In par (A) n₁ < n₂ danc n₂ -n₁ >0 n, 7-2 d n2>-1 dare n+n2>-2 due no + 2 +2 >0

Bilan: (m) - (m2) >0 dore (mx) > (m2) der [lest strictment licrossant sur [-1; +05[

1 8

4) Variation d g sur] - 1 ; -1[

Pau tous my , me tito que my < me < -1 an a my+1 < my +1 < 0 or la faction inverse at stitutent l'enoissant sur RA-

on la fantia affire n -> 8-22 at striterent décrossant un P due 8 - 2 < 8 - 2 / 2,+1

don g(m) < g(m2) Bilan, g est stictment crainant m.] -00; -1[Variation de g m]-1; +00[

Par lan my , me tets que -1 < my < me a a: 0 < 3,+2 < 32+1 a la faction inverse est statement d'invisant un R#+ danc $\frac{1}{n_1+1} > \frac{1}{n_2+1}$ or la faction affine n Lo 8- 24 at statement dicinant in R

Jac 8 - 2 < 8 - 2 due $g(n_1) < g(n_2)$

Bilan, g at stictment minant sur]-1; +00[]

Tablean de variation

() Intersections de 4 avec (On) Resolvan l'equation (6)=0: 1(n)=0 0 8-2(2+1)2=0 (=> 4 - (n+1)2=0 @ (2-2-2)(2+x+1)=0 € (1-2)(2+3) = 0 (m) n=1 a n=-3 ch a done dung paint l'intersections avec (On): A(1;0) et B(-3;0)

Interestan & y are (0y) $\Lambda(n|j) \in \mathcal{Y} \Lambda(0y) \Leftrightarrow \begin{cases}
y = 1/4, \\
x = 0, \\
x \in 0y
\end{cases}$ $\lambda = 0, \quad \lambda = 0, \quad$ of a dar un paint d'intersection avec (03): [C(0;6)

7) Position relatives de Cf et Cg Of = R et Dg = R \1-24 due Df n Dg = R \1-24 Pau but on de R 1-24, étudions le signe de ((n) - g(n) $\frac{1}{3}(m) - \frac{1}{3}(m) = 8 - 2(m+1)^2 - 8 + \frac{2}{m+1}$ = 2 [1 - (2+1)] $=2\left[\frac{\lambda-(n+4)^3}{n+4}\right]$ $= 2 \left[\frac{\left(\sqrt{1 - (n+2)} \right) \left(\sqrt{1 + (n+1) + (n+1)^2} \right)}{n+1} \right]$ = -2n(n+2+n2+2n+1) $=\frac{-2n\left(n^2+3n+3\right)}{n+4}$ $= \frac{-2n\left[\left(n+\frac{3}{2}\right)^{2}-\frac{2}{4}+\frac{12}{7}\right]}{n+4}$ $= \frac{-2\pi \left[\left(n + \frac{3}{2} \right)^2 + \frac{3}{4} \right]}{24 + 3}$

Tableau di signe (2+3)2+3 161-261

Sine]-0;-1[m m n e] 0;+00[, dans f(m) - g(n) <0 done f(m) < g(n) dance (C) est situes en dessan de Ca) Sine]-1;0[, alon f(m) - g(m) > 0 dare f(m) > g(m) done of est situer our dessus de Cy

alon f(n) = g(n) et 4 cape (g

T)A)		graines jaunes	graines vertes	Total
3).1)	graines lisses	3057	1021	4078
	graines ridées	1012	341	1353
	Total	4069	1362	5 431

2) Il ya equipobabilit danc p(A) = nbu de cos favora blos à A = 4063 x 0,75 De mine p(B) = 5137 x 0,75

3) ABB est l'evenuent "la graine et janne ET line" danc p (AB) = \\\ \frac{3057}{5637} \times 0,56 AUB et l'evenement "la graine est jame ou liene" dune p(AUB) = P(A) + P(B) - P(AMB) = 5090 × 0,89 A est l'evouvent "le graine n'est paijoure" on encore elle est vert " p(A) = 1-p(A) = 1362 × 0,25 ANB est l'evenouent "le graine n'est m' janue, ui live" en encue "elle est vert et ridé"

4) 1l ja hujan squi polabilit: p(c) = \(\frac{1012}{4069} \properce 0,75\)

I) le nombre de personnes interogées après les travaisse est n = 500 Parui cas persones, la frequence do cellos qui habitent has du département est 1 = 122 = 0,344 0,344 Appelais o cet un me fréquence parceir bois les slièmes de la saison qui suit les travaisse. Ici u>25 et 1 € [0,2;0,8]. Déterminan l'intervalle de cartiane de p: 1- = \$ 0,30 et 1+ = \$ 0,39 Il ya dane 95% de chances qu'apris les traverso la préguence des alieurs has département sat ent 0,30 et 0,33. Avoid les towars cet prépuence stant de 0,25. le paracertage des alicens has dipartment a dare tim probablement orguents et cett augmentation est pentite due our travarso

1) Narten que : (0A) 1 (0B) 6 repen ent orthourseal danc DA? = (x4-20) + (y4-y0)? = 5 De withe DB2= (ng-ng)2+(yg-yg)2=5 of AB2= (mg-mg)2+(yg-yg)2=10 In remarque que DA2+ DB2= 5+5= 10= AB2 Done North to recipagne of Pythogore, I tray DAB of rectangle en D danc (04) 1 (08)

2) Nartier que O, A et O sont aliques on a: $\vec{OA} \begin{pmatrix} 2 \\ 4 \end{pmatrix}$ et $\vec{OB} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$. On runarque que $\vec{OA} = 20\vec{O}$ have \vec{OA} et \vec{OB} collimates dare \vec{O} , \vec{A} , \vec{O} aligning

3) condonnées de C

4) Equation de (OA): (OA) est non vertical et pare par O. Sou eg est de la faure y = an a A E (OA) danc y = a 2/4 danc a = 1/2 = 2 danc (OA): y = 22

Equation de (CB): Sort M(x15) un paint quelcarque ne(c8) = cn (3+5) extraction a cB (3-4) => -4(n+5)-8(y-5)=0 => y=-2n+5

Intersection de (OA) et (CB) M(x1x) ∈ (A) ∩ (B) ← | y=2n |

5) DA= 0B= DO 0'april 1) DA2 = DB2 = 5 or des distances étant tois ans positives, or a danc DA = DB = 15 De plus DO = \(\langle n_0 - n_0 \rangle^2 + (8 0 - 3 0)^2 = \(1 + 4 = 15 \) danc \(\O A = OB = OO \)

Pan @ K ent 6 withou k [60] done \ \ y = \frac{70 1 hc}{3 \tau = 3 \text{dane DK} = \frac{1}{3 \tau = 3 \text{dane DK}} = \frac{1}{3 () Natur que KE (D; BB) Nature de ORAB

· D'apt 2) 0, A of D sout aligner at d'apt 5) DO = 04 danc Dest le vilien de [OA] Dayin 4) De(BC) it par @ KE(BC) done K, Dat B sout aligner. De place d'aptr 6) DK = DB done Dat le ucilian de [KB] le quadrileture CKAB a danc sos diajonales qui se conjent en leur milien et est un parallelo granne. • 0 lagrer 1) (DA) L (DB) danc le parallelograme OLAB a ses diajonales perpendiculares et est un losange

· D'apr 5) DA=DB or D Thurk le milion de [OA] et [BB] on a OA = KB danc le losange OUAB a ser diojonales de nouve largueur et est un carré

A=input("donner la valeur de A : N=input("donner la valeur de N : U=A II 1) 1=1 HN=3 A=12 A N=5 1 1 2 3 4 5 U/12->6 6 -3 3-40 10 ->5 5->16 1 1 2 3 U 1-4 4-2 2-31 U=3*U+1 print U if U>Umax: Umax=U print "Valeur maxi de U : ", Umax Affichage: 6 3 10 5 16 Allichage: 4 2 1

I) 1) me et me sont les solutions de l'ag (6)=0, c'est à dère les abscisses des pais d'intersection de Pavec l'are des abscisses. Posas [2=-1 et 2=3

2) Calad de a) laper 1) In a pau bout n de TR, \((n) = a(n+1)(n-3) Dr S(1:6) & 9 danc 1(1)=6 danc a (1+1)(1-3)=6 danc a=-} et (n)=-3(n+1)(n-3)

3) Pontian relatives & P et 1 graphiquement: A confe S en duns pais d'abscisses -1,75 et 2. Pertan dessus de D entr un pais et en dessus de D o l'extérioun.

algebriquement: Résolvais (I): $f(x) \gg \frac{21}{3} \times -\frac{3}{4}$ $n - \infty$ $- \frac{7}{4}$ $\frac{1}{2}$ $+ \infty$ Bilan: S at Δ so carpent so $n = -\frac{7}{4}$ at n = 2 $\frac{n-1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ Sent stict want our dessess de \$\Delta\ par n \in]-\frac{2}{3}; 2[
Sent stict went on dessous de \$\Delta\ par n \in]-\frac{2}{3}[\delta\ n \in]2; +∞[

(Deuteur obtenue RougeBleue/Vertedjaume Benéfice du joueur -5 0 15 25 My a equipobabilité danc « bénélic et: -5×12+15×3+05×1=40 ≈ 3,63 3) Bénéfice nozen par n quelcaque: Pan tont nd WA, a bénéfice et: $\frac{-5n + 13 \times 3 + 95 \times 1}{n + 6 + 3 + 1} = \left[\frac{-5n + 140}{n + 40}\right]$ 4) From reduct: Pan tank on do TR+, (n) = -5 n + 140 = -5 (n + 20) + 50 + 140 = -5 + 140 (w=-5 + p=180) 5) Variations de b mm Thet danc -5+ 190 > -5+ 130 Pan fans ny my tels que 05 my < mz done to est of divinant un Int ana: 10 5 mm + 10 < mm + 10 or be fet invene est of som R++ Tablean de variations: danc = 1 > 1 / m2+10 Janc 130 > 190 m2+10

7) @ Pan que le propriétaire gagne en moyenne 1,5 x par parte, les joueurs doivent partie en moyenne 1,5 x! De souhait du popistaire se traduit par l'inéquation (1): b(n) €-15

@ Resolution graphique de (I): les solutions sont les obscisses des paints de les vitués en dessons de la droit d'equation y = -1,5 | J=[a;+oo[avec a & 44,3

@ Résolution algébrique de (I):

(I): b(x) < -1/5 if $x \in \mathbb{R}^+$ (I) $(=) \cdot \cdot \cdot \cdot = \frac{-3/5 \cdot x + 455}{2x + 40} \le 0$ if $x \in \mathbb{R}^+$ $(x) = \frac{-3/5 \cdot x + 455}{2x + 40} = 0$

O D'apur O et O, a déduit que la roue dait cont mi au moiss 45 secturs runges pan que le propriétaire sont soits fait