Computer Organization Lab4

Name:梁詠晴

ID:109550134

Architecture diagrams:

Hardware module analysis:

比起 single cycle cpu,在 stage 之間新增 reg 以將會用到的資料傳到下個

stage : reg if/id \cdot reg id/ex \cdot reg ex/mem \cdot reg mem/wb

Finished part:

執行結果和預期相符:

Register								
r0=	0, r1=	3, r2=	4, r3=	1, r4=	б, т5=	2, тб=	7, r7=	1
r8=	1, r9=	0, r10=	3, r11=	0, r12=	0, r13	3= 0, r14	= 0, r15=	0
г1б=	0, r17=	0, r18=	0, r19=	0, r20	= 0, r	r21= 0, r	22= 0, r23=	0
r24=	0, r25=	0, r26=	0, r27=	0, r28	= 0, r	r29= 0, r	30= 0, r31=	0
Memo ry====================================								
mO=	0, m1=	3, m2=	0, m3=	0, m4=	0, m5=	0, m6= 0	, m7= O	
m8=	0, m9=	0, m10=	0, m11=	0, m12=	0, m13=	0, m14=	0, m15=	0
r16=	0, m17=	0, m18=	0, m19=	0, m20=	0, m21=	0, m22=	0, m23=	0
m24=	0, m25=	0, m26=	0, m27=	0, m28=	0, m29=	0, m30=	0, m31=	0

Problems you met and solutions:

在測試時發現有被使用、應該要跑出數值的 reg 顯示時都變成顯示 x。後來發現是因為在計算 ID/EX reg 時將 reg 的大小算錯了,使 reg 漏存部分資料導致。

Bonus (optional):

將 I3 和 I10 提前到 I2 前執行·I8 和 I6 交換順序·便可以解決 data hazard 的問題。下圖為調整過後的順序:

```
00100000000000010000000000010000
                                   I1: addi $1,$0,16
-00100000000000110000000000001000
                                   I3: addi $3,$0,8
                                   I10: addi $9,$0,100
00100000000010010000000001100100
                                   I2: addi $2,$1,4
001000000010001000000000000000100
10101100000000010000000000000100
                                   I4: sw $1,4($0)
10001100000001000000000000000100
                                   I5: 1 \le 4.4(\$0)
                                   18: addi $7,$1,10
001000000010011100000000000001010
                                   I7: add $6,$3,$1
00000000011000010011000000100000
                                   I6: sub $5,$4,$3
_00000000100000110010100000100010
,00000000111000110100000000100100
                                   I9: and $8,$7,$3
```

執行結果:

Summary:

這次 lab 讓我深刻體驗到細心的重要,為了找出 bug,我重複檢查了好幾次 cpu module 中的接線,卻一直假設 reg 大小沒有錯而略過檢查。若是能更仔 細檢查,便能大幅減少找出問題的時間。