From Policy Gradient to Actor-Critic methods On-policy versus Off-policy

Olivier Sigaud

Sorbonne Université http://people.isir.upmc.fr/sigaud

Basic concepts

- ► To understand the distinction, one must consider three objects:
 - ▶ The behavior policy $\beta(s)$ used to generate samples.
 - ▶ The critic, which is generally V(s) or Q(s, a)
 - The target policy $\pi(s)$ used to control the system in exploitation mode.

Singh, S. P., Jaakkola, T., Littman, M. L., & Szepesvári, C. (2000) Convergence results for single-step on-policy reinforcement-learning algorithms. *Machine learning*, 38(3):287–308

Off-policy learning: definitions

- "Off-policy learning": learning about one way of behaving, called the target policy, from data generated by another way of selecting actions, called the behavior policy.
- lacktriangle "Off-policy data": training samples which were not generated using $\pi(s)$
- Two research topics:
 - Off-policy policy evaluation (not covered): how can we get the critic related to a policy given off-policy data?
 - Off-policy control: how can we get an optimal policy by training a policy given off-policy data?
- Ex: stochastic behavior policy, deterministic target policy.
- ▶ Training data can be more or less off-policy (close to data from $\pi(s)$)
- An algo. is said off-policy if it reaches the optimal policy using off-policy data.

Maei, H. R., Szepesvári, C., Bhatnagar, S., & Sutton, R. S. (2010) Toward off-policy learning control with function approximation. *ICML*, pages 719–726.

Why preferring off-policy to on-policy control?

- ► Reusing old data, e.g. from a replay buffer (sample efficiency)
- ► More freedom for exploration
- Learning from human data (imitation)
- ► Transfer between policies in a multitask context

An illustrative study: two steps

- Open-loop study
 - ▶ Use uniform sampling as "behavior policy" (few assumptions)
 - No exploration issue, no bias towards good samples
 - ▶ NB: in uniform sampling, samples do not correspond to an agent trajectory
 - ► Study critic learning from these samples
- ► Then close the loop:
 - ▶ Use the target policy + some exploration as behavior policy
 - If the target policy gets good, bias more towards good samples

Learning a critic from samples

- ▶ General format of samples $S: (\mathbf{s}_t, \mathbf{a}_t, \mathbf{r}_t, \mathbf{s}_{t+1}, \mathbf{a}')$
- ▶ Makes it possible to apply a general update rule:

$$Q(\mathbf{s}_t, \mathbf{a}_t) \leftarrow Q(\mathbf{s}_t, \mathbf{a}_t) + \alpha[\mathbf{r}_t + \gamma Q(\mathbf{s}_{t+1}, \mathbf{a}') - Q(\mathbf{s}_t, \mathbf{a}_t)]$$

- ► There are three possible update rules:
 - 1. $a' = \operatorname{argmax} aQ(\mathbf{s}_{t+1}, \mathbf{a})$ (corresponds to Q-LEARNING)
 - 2. $a' = \beta(\mathbf{s}_{t+1})$ (corresponds to SARSA)
 - 3. $a' = \pi(\mathbf{s}_{t+1})$ (corresponds e.g. to <code>DDPG</code>, an <code>ACTOR-CRITIC</code> algorithm)

Results

- ► Rule 1 learns an optimal critic (thus Q-LEARNING is truly off-policy)
- ► Rule 2 fails (thus SARSA is not off-policy)
- ▶ Rule 3 fails too (thus an algorithm like DDPG is not truly off-policy!)
- ▶ NB: different ACTOR-CRITIC implementations behave differently
- lacktriangle E.g. if the critic estimates $V(\mathbf{s})$, then equivalent to Rule 1

Three contexts

- ► Closed-loop case: data is on-policy
- ► Replay Buffer (RB) case: intermediate
- ► Open-loop case: offline RL

Closing the loop

- If $\beta(\mathbf{s}) = \pi^*(\mathbf{s})$, then Rules 2 and 3 are equivalent,
- Furthermore, $Q(\mathbf{s}, \mathbf{a})$ will converge to $Q^*(\mathbf{s}, \mathbf{a})$, and Rule 1 will be equivalent too.
- Quite obviously, Q-LEARNING still works
- ightharpoonup SARSA and ACTOR-CRITIC work too: ho(s) becomes "Greedy in the Limit of Infinite Exploration" (GLIE)
- In the closed-loop case, data is on-policy, on-policy algorithms can converge to b.
- An on-policy algorithm can only converge if the data is on-policy.

Replay buffer case

- ▶ With a replay buffer, $\beta(s)$ is generally close enough to $\pi(s)$
- ▶ The bigger the RB, the more off-policy the data
- Being (at least partly) off-policy is a necessary condition for using a replay buffer

Off-policy and actor-critic

- Because AC algorithms use a TD mechanism, they perform one-step updates
- Performing one-step updates is a necessary condition for using a replay buffer
- Thus AC algos often use a replay buffer (A2C and A3C are counter-examples)
- Thus AC algos are often said off-policy
- DDPG, TD3 and SAC are AC algos, they use a replay buffer and they are said off-policy

Off-policy RB algorithms: remark

- ▶ DDPG, TD3 and SAC use off-policy samples to update the critic
- To udpate the actor, they use $\delta_t = r_t + \gamma \hat{Q}_{\phi}^{\pi_{\theta}}(\mathbf{s}_{t+1}, \pi_{\theta}(\mathbf{s}_{t+1})) \hat{Q}_{\phi}^{\pi_{\theta}}(\mathbf{s}_t, \mathbf{a}_t)$
- Thus updating the actor uses on-policy samples
- ► Alternative: $\delta_t = r_t + \gamma \hat{Q}_{\phi}^{\pi_{\theta}}(\mathbf{s}_{t+1}, \mathbf{a}_{t+1}) \hat{Q}_{\phi}^{\pi_{\theta}}(\mathbf{s}_t, \mathbf{a}_t)$
- ▶ Using samples $(\mathbf{s}_t, \mathbf{a}_t, \mathbf{r}_t, \mathbf{s}_{t+1}, \mathbf{a}_{t+1})$
- ► Would be a deep SARSA

Offline RL case

- ▶ Q-LEARNING is the only truly off-policy algorithm that I know about
- Offline RL: find the assumptions on the data so as to guarantee the optimal behavior can be found

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020

Any question?

Send mail to: Olivier.Sigaud@upmc.fr

Levine, S., Kumar, A., Tucker, G., and Fu, J. (2020).

Offline reinforcement learning: Tutorial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643.

Maei, H. R., Szepesvári, C., Bhatnagar, S., and Sutton, R. S. (2010). Toward off-policy learning control with function approximation.

In ICML, pages 719-726.

Singh, S. P., Jaakkola, T., Littman, M. L., and Szepesvári, C. (2000).

Convergence results for single-step on-policy reinforcement-learning algorithms. *Machine learning*, 38(3):287–308.