Санкт-Петербургский политехнический университет Петра Великого Физико-механический институт

Кафедра прикладной математики и информатики

Математическая статистика

Отчет по лабораторной работе №7

Выполнил студент гр. 5030102/20202

Тишковец С.Е.

Преподаватель

Баженов А.Н.

Санкт-Петербург

2025

Оглавление

1.	Постановка задачи	3
2.	Теоретическая информация	3
2.1.	. Квартиль и интервальные оценки	3
2.2.	. Индекс Жаккара	4
2.3.	. Метод решения	4
3.	Результаты исследования	5
3.1.	. Графики	5
3.2.	. Анализ графика	5
3.3.	. Внутренняя оценка	6
3.4.	. Внешняя оценка	6
3.5.	. Анализ результатов	6
4.	Выводы	7

1. Постановка задачи

Сгенерировать 2 выборки X_1 и X_2 мощностью n = 1000.

Средние и ширины выборок должны отличаться, например:

$$X_1 = N(0,0.95), X_2 = N(1,1.05)$$

где $N(m, \sigma)$ — нормальное распределение.

Для выборок X_1 и X_2 найти внутренние и внешние оценки:

$$\operatorname{Inn} X_i = \left[Q_{1/4}, Q_{3/4} \right]$$

Out
$$X_i = [minX_i, maxX_i]$$

Здесь $Q_{1/4}$, $Q_{3/4}$ — первый и третий квартили

Определить параметр сдвига а: $X_1 + a = X_2$

2. Теоретическая информация

2.1. Квартиль и интервальные оценки

Квартиль — это значение, разделяющее упорядоченные данные на четыре равные части.

- Первый квартиль $(Q_{1/4})$ значение, ниже которого находится 25% данных.
- Третий квартиль $(Q_{3/4})$ значение, ниже которого находится 75% данных.

Внутренняя оценка выборки (Inn X_i) определяется как интервал между первым и третьим квартилем:

$$\operatorname{Inn} X_i = \left[Q_{1/4}, Q_{3/4} \right]$$

Этот интервал отражает «основную массу» данных и устойчив к выбросам.

Внешняя оценка выборки (Out X_i) определяется через минимальное и максимальное значения выборки:

Out
$$X_i = [minX_i, maxX_i]$$

что охватывает всю вариацию данных, включая возможные выбросы.

2.2. Индекс Жаккара

Индекс Жаккара широко используется для оценки степени схожести двух множеств. В случае работы с интервалами он определяется как отношение длины пересечения интервалов к длине их объединения:

$$J(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

Пересечение двух интервалов $[a_1, a_2]$ и $[b_1, b_2]$ вычисляется по формулам:

- левая граница пересечения = $max(a_1, b_1)$
- правая граница пересечения = $min(a_2, b_2)$

Если левая граница пересечения больше или равна правой, пересечение считается пустым.

Объединение интервалов определяется так:

- левая граница объединения = $min(a_1, b_1)$
- правая граница объединения = $max(a_2, b_2)$

Индекс Жаккара принимает значение от 0 (полное отсутствие пересечения) до 1 (полное совпадение интервалов). Использование индекса Жаккара позволяет количественно оценить степень перекрытия интервалов между выборками при различных значениях сдвига.

2.3. Метод решения

Варьировать параметр сдвига a и вычислять 2 меры совместности

$$J_{Inn} = \frac{Inn X_1 \wedge Inn X_2}{Inn X_1 \vee Inn X_2}$$
$$J_{Out} = \frac{Out X_1 \wedge Out X_2}{Out X_1 \vee Out X_2}$$

Здесь Ј - индекс Жаккара

Л,V — минимум и максимум по включению.

Поскольку выборки X_1 и X_2 имеют разные средние значения, предполагается существование параметра а, такого что:

$$X_1 + a \approx X_2$$

В реальных условиях a не известен заранее. Чтобы найти его, мы варьируем a в некотором диапазоне значений и для каждого a рассчитываем индексы $J_{Inn}(a)$ и $J_{Out}(a)$, которые отражают степень совпадения соответствующих интервалов. Наилучшее значение a выбирается как то, при котором индекс Жаккара достигает максимума:

$$a_{Inn} = arg \ max J_{Inn}(a)$$

$$a_{Out} = arg \ max \ J_{Out}(a)$$

Таким образом, задача сводится к оптимизации функции схожести между интервалами двух выборок относительно параметра сдвига a.

3. Результаты исследования

3.1. Графики

Рис. 1. Графики $J_{Inn}(a)$ и $J_{Out}(a)$

3.2. Анализ графика

График J(a) отражает зависимость индекса Жаккара от параметра сдвига a для внутренних ($J_{Inn}(a)$)и внешних ($J_{Out}(a)$)оценок.

- Для внутренних оценок $(J_{Inn}(a))$ график имеет колоколообразную форму с максимумом, близким к теоретическому значению a=1.
- Для внешних оценок ($J_{out}(a)$) график более широкий, с максимумом, смещённым вправо относительно a=1.

• Пик $J_{Inn}(a)$ более узкий, чем $J_{Out}(a)$, что указывает на более высокую чувствительность внутренних оценок к изменению а.

3.3. Внутренняя оценка

Для внутренних оценок, основанных на интерквартильных интервалах, были получены следующие результаты:

- Максимальное значение индекса Жаккара: $J_{Inn} = 0.8721$.
- Оптимальные значения параметра сдвига а: $a_{Inn} \in [0.9459, 1.1142]$.
- Среднее значение параметра сдвига: $\overline{a_{Inn}} = 1.0301$

3.4. Внешняя оценка

Для внешних оценок, основанных на минимаксных интервалах, результаты оказались следующими:

- Максимальное значение индекса Жаккара: $J_{Out} = 0.8731$.
- Оптимальные значения параметра сдвига а: $a_{\text{Out}} \in [0.7859, 1.6542]$.
- Среднее значение параметра сдвига: $\overline{a_{\rm Out}} = 1.2106$

3.5. Анализ результатов

Теоретически, a=1, так как выборки были сгенерированы с математическими ожиданиями, равными 0 и 1.

- 1. Внутренние оценки дают значение a_{Inn} , близкое к теоретическому ($\overline{a_{Inn}}=1.0301$), с узким интервалом оптимальных значений ([0.9459, 1.1142]), что указывает на высокую точность и стабильность метода.
- 2. Внешние оценки менее точны ($\overline{a_{\rm Out}}=1.2106$), с более широким интервалом оптимальных значений ([0.7859,1.6542]), что может быть связано с чувствительностью к выбросам или асимметрией выборок.
- 3. Индексы Жаккара для внутренних ($J_{Inn}=0.8721$) и внешних ($J_{Out}=0.8731$) оценок близки, но более широкий интервал для a_{Out} свидетельствует о меньшей устойчивости внешних оценок.

4. Выводы

Результаты показывают, что внутренние оценки, основанные на интерквартильных интервалах, обеспечивают более точную и устойчивую оценку параметра сдвига а, близкую к теоретическому значению a=1.

Внешние оценки, использующие минимаксные интервалы, демонстрируют меньшую точность и большую чувствительность к выбросам, что проявляется в более широком интервале оптимальных значений a и смещении среднего значения ($\overline{a_{\rm Out}}=1.2106$). Это подтверждает, что для больших выборок (n=1000) внутренние оценки предпочтительнее для задач определения параметра сдвига.