Нижние оценки в задаче коммивояжера

Примитивная оценка. Плата за выезд $a_i = \min_{j \neq i} c_{ij}$, i = 1, ..., n.

Плата за въезд $b_j = \min_{i \neq j} (c_{ij} - a_i)$, j = 1, ..., n.

Teopema.
$$OPT(c_{ij}) \ge \sum_{i=1}^n a_i + \sum_{j=1}^n b_j$$
.

Доказательство. Положим $c'_{ij} = c_{ij} - a_i$, $1 \le i, j \le n$. Тогда

$$\mathit{OPT}(c_{ij}) = \mathit{OPT}(c'_{ij}) + \sum_{i=1}^n a_i$$
. Аналогично, $c''_{ij} = c'_{ij} - b_j$, $1 \leq i,j \leq n$ и

$$OPT(c_{ij}) = OPT(c''_{ij}) + \sum_{i=1}^{n} a_i + \sum_{j=1}^{n} b_j \ge \sum_{i=1}^{n} a_i + \sum_{j=1}^{n} b_j$$
.

Оценка линейного программирования

Введем переменные $x_{ij} = \begin{cases} 1, & \text{если из города } i \text{ едем в город } j \\ 0, & \text{в противном случае} \end{cases}$

Математическая модель
$$\min \sum_{i=1}^n \sum_{j=1}^n c_{ij} x_{ij}$$

при ограничениях:

$$\sum_{i=1}^{n} x_{ij} = 1, \ j \in J,$$

$$\sum_{j=1} x_{ij} = 1, \quad i \in J,$$

$$\sum_{j=1}^N x_{ij}=1,\ i\in J,$$
 $\sum_{j\in J\setminus S} x_{ij}\geq 1,\ orall S\subset J, \qquad S
eq \emptyset.$ (исключение подциклов)

$$x_{ij} \in \{0,1\}, \quad i, j \in J.$$

Заменяя $x_{ij} \in \{0,1\}$ на $0 \le x_{ij} \le 1$, получаем задачу линейного программирования, которая дает нижнюю оценку для оптимума, не хуже предыдущей (?).

1-Деревья для симметричных матриц

Хотим найти гамильтонов цикл минимального веса. Необходимо найти:

- ровно n ребер,
- которые покрывают все вершины,
- имеют минимальный суммарный вес и
- каждая вершина инцидентна ровно двум ребрам.

Заменим последнее условие на следующее:

— одна заданная вершина инцидентна ровно двум ребрам.

Ослабили условия, значит, получим нижнюю оценку.

Алгоритм построения 1-дерева

- 1. Удаляем заданную вершину и строим остовное дерево минимального веса (алгоритм Крускала, Прима).
- 2. Добавляем два ребра минимального веса, проходящих через заданную вершину, получаем 1-дерево.

Задача о назначениях

Дано: n рабочих, n станков, c_{ij} — время работы -рабочего на j-м станке.

Найти назначение рабочих на станки с минимальным суммарным временем.

Переменные задачи:
$$x_{ij} = \begin{cases} 1, & \text{рабочий } i \text{ получил станок } j \\ 0, & \text{в противном случае} \end{cases}$$

Математическая модель

$$\min \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$$

при ограничениях:

$$\sum_{i=1}^{n} x_{ij} = 1, \ j \in J,$$

$$\sum_{j=1}^{n} x_{ij} = 1, \quad i \in J,$$

$$x_{ij} \in \{0,1\}, \ 1 \le i, j \le n.$$

Свойство задачи: среди оптимальных решений линейной релаксации всегда найдется целочисленное решение.

Определение. Пусть $\Delta = (\Delta_1, ..., \Delta_n)$ — некоторый вектор. Элемент c_{ij} называется -минимальным, если $c_{ij} - \Delta_j \le c_{ik} - \Delta_k$ для всех $1 \le k \le n$.

Теорема. Пусть для некоторого Δ существует набор Δ -минимальных элементов $(c_{1j(1)}, ..., c_{nj(n)})$ по одному в каждой строке и столбце. Тогда этот набор является оптимальным решением задачи.

Доказательство. Решение $(c_{1j(1)}$, ... , $c_{nj(n)})$ является допустимым и

$$\sum_{i=1}^{n} c_{ij(i)} = \sum_{i=1}^{n} (c_{ij(i)} - \Delta_{j(i)}) + \sum_{j=1}^{n} \Delta_{j}.$$

В правой части равенства первая сумма является минимальной среди всех допустимых назначений, а вторая сумма является константой, то есть полученное решение является оптимальным.

Определение. Для вектора Δ выделим в каждой строке по одному Δ -минимальному элементу и назовем его Δ -основой. Другие Δ -минимальные элементы будем называть *альтернативными* Δ -основами. Число столбцов матрицы c_{ij} без Δ -основ назовем ∂ ефеком.

Общая идея алгоритма

Начинаем с $\Delta \equiv 0$. На каждом этапе алгоритма дефект уменьшается на 1, т.е. не более чем за n этапов найдем оптимальное решение задачи.

Описание одного этапа

- 1. Выберем столбец без Δ -основы и обозначим его S_1 .
- 2. Увеличим Δ_{S_1} на максимальное δ так, чтобы все Δ -минимальные элементы остались Δ -минимальными (возможно $\delta=0$). Получим для некоторой

строки i_1 новый Δ -минимальный элемент $c_{i_1S_1}$ назовем его альтернативной основой для строки i_1 .

3. Для строки i_1 столбец $j(i_1)$ с Δ -основой пометим меткой S_2 .

4. Увеличим Δ_{S_1} и Δ_{S_2} на максимальное δ так, чтобы все Δ -основы остались Δ -минимальными элементами.

Найдем новую альтернативную основу в одном из столбцов S_1 или S_2 . Пусть она оказалась в строке i_2 . Пометим столбец $j(i_2)$ меткой S_3 и будем продолжать этот процесс до тех пор, пока не встретим столбец с двумя или более основами.

- 5. Строим новый набор из Δ-основ. Заменой основы в строке назовем следующую операцию: альтернативная основа становится основой, а старая перестает быть основой.
 - 5.1. Произведем замену основ в строке, где лежит последняя альтернативная основа (строка i_k). Тогда в столбце $j(i_k)$ число основ уменьшится на 1, но останется положительным.

В столбце, где появилась новая основа, возьмем старую основу и в этой строке тоже проведем замену основ и т.д. до тех пор, пока не доберемся до столбца S_1 . В итоге, столбец S_1 получит основу, а число основ в столбце $j(i_k)$ уменьшится на 1.

Упражнение. Оценить трудоемкость алгоритма решения задачи о назначениях. Придумать алгоритм решения задачи с трудоемкостью $O(n^3)$.

Вопросы

- Задача о назначениях дает нижнюю оценку для задачи коммивояжера, которая хуже оценки линейного программирования (Да или Hem?)
- Задача о назначениях полиномиально разрешима *(Да или Hem?)*
- Изменится ли примитивная нижняя оценка, если сначала взять плату за въезд, а затем плату за выезд? Если да то, сколько разных нижних оценок можно получить таким способом?
- Зависит ли нижняя оценка через 1-деревья от выбора удаляемой вершины? Если да то, как найти наилучшую вершину?
- Оценка линейного программирования имеет только теоретический интерес, т.к. использует экспоненциальное число ограничений (Да или Нет?)

Метод ветвей и границ

В основе метода лежит принцип «разделяй и властвуй».

Пусть D — множество допустимых решений задачи

$$\min\{f(x)\mid x\in D\},\$$

и для любого подмножества $d \subseteq D$ умеем вычислять:

LB(d) — нижнюю оценку для минимума f(x), $x \in d$,

UB(d) — верхнюю оценку для минимума f(x), $x \in d$,

т. е.

 $LB(d) \le \min\{f(x) | \in D\} \le UB(d)$, для любого $d \subseteq D$.

Основная идея

Пусть x^* — текущий рекорд и сначала $f(x^*) = UB(D)$. Вычисляем LB(D) и, если LB(D) = UB(D), то STOP, x^* — оптимальное решение задачи. В противном случае разбиваем D на подмножества $D = d_1 \cup ... \cup d_k$. Для каждого подмножества вычисляем $UB(d_i)$, $LB(d_i)$, i = 1, ..., k.

Если $f(x^*) > UB(d_i)$, то меняем рекорд. Если $LB(d_i) \geq f(x^*)$, то выбрасываем d_i , иначе дробим d_i на подмножества. Так как D — конечное множество, то процесс конечен и дает точное решение задачи.

Описание метода

На каждом шаге имеется

- рекорд x^* ;
- просмотренная часть $P \subset D$, для которой $f(x) \ge f(x^*)$, $x \in P$;
- разбиение множества $D \setminus P$ на подмножества. d_{i_1} , d_{i_2} , ..., d_{i_k} .

Шаг состоит в следующем.

- 1. Выбрать элемент разбиения, например, d_{i_k} ;
- 2. Вычислить $UB(d_{i_k})$. Если $f(x^*) > UB(d_{i_k})$, то сменить рекорд x^* .
- 3. Вычислить $LB(d_{i_k})$.

- 3.1. Если $LB(d_{i_k}) \geq f(x^*)$, то добавить d_{i_k} к P и перейти к следующему шагу.
- 3.2. Если $LB(d_{i_k}) \leq f(x^*)$, но в множестве d_{i_k} удалось найти наилучший элемент \widetilde{x} : $f(\widetilde{x}) = \min\{f(x)|x\in d_{i_k}\}$, то добавить d_{i_k} к P; если $f(x^*) > f(\widetilde{x})$, то положить $x^*\coloneqq \widetilde{x}$.
- 3.3. Если $LB(d_{i_k}) \leq f(x^*)$, но элемент \tilde{x} найти не удалось, то разбиваем d_{i_k} на подмножества $d_{i_k} = d_{i_{k+1}} \cup ... \cup d_{i_{k+m}}$ и переходим к следующему шагу, имея новое разбиение для $D \backslash P$.

Метод В&Г для задачи коммивояжера

Разбиение множества D представляется в виде бинарного дерева.

Каждой вершине дерева соответствует частичный тур и список запретов.

Например, вершине d_6 соответствует частичный тур 1,5 и запреты $\{4,3\}$ на выход из города 5.

Метод В&Г для задачи коммивояжера

Примитивная нижняя оценка для вершины дерева, например, d_6 при n=5:

$$LB(d_6) = c_{15} + \sum_{i=2}^{5} a_i + \sum_{j=1}^{4} b_j.$$

 c_{15}

Задача о назначениях:

$$LB(d_6) = c_{15} + \sum_{i=2}^5 c_{ij(i)}$$
, при $c_{53} = c_{54} = c_{51} = +\infty$.

Верхняя оценка — алгоритм «Иди в ближайший».

Выбор переменной для ветвления

Основная идея — угадать оптимальное решение на подмножестве d_{i_k} и ветвиться по дугам этого тура:

- ullet для частичного тура i_1, \dots, i_k выбираем минимальный элемент в строке i_k матрицы $c''_{ij} = c_{ij} = a_i b_j, j
 eq i_1, \dots, i_k$
- для частичного тура $i_1, ..., i_k$ строим верхнюю оценку и ветвимся по дуге $(i_1, ..., i_{k+1})$.
- ullet для частичного тура i_1, \dots, i_k решаем задачу о назначениях и ветвимся вдоль цикла, проходящего через вершину i_k .

Выбор подмножества из разбиения $D\setminus P$

Две основные схемы:

• многосторонняя схема ветвления, когда выбирается подмножество d'такое, что

$$LB(d') = \min\{LB(d_i)|i = i_1, ..., i_k\}.$$

Среди элементов разбиения $D \backslash P = d_{i_1} \cup ... \cup d_{i_k}$ выбирается подмножество с наименьшей нижней границей.

ullet односторонняя схема ветвления, когда всегда выбираем последний элемент $d'=d_{i_k}$.

Первая схема требует много оперативной памяти, но в среднем просматривает меньше вершин, чем вторая. Возможна комбинация этих схем: сначала первая, пока хватает памяти, затем вторая.

Влияние основных элементов на трудоемкость

Верхняя оценка UB

Нижняя оценка LB

Схема ветвления и выбор переменной для ветвления

Задача коммивояжера в Интернет

- TSPBIB Home Page
 http://www.ing.unlp.edu.ar/cetad/mos/TSPBIB home.html
- The Hamiltonian Page: Hamiltonian cycle and path problems, their generalizations and variations

http://www.ing.unlp.edu.ar/cetad/mos/Hamilton.html

- Fractal Instances of the Traveling Salesman Problem
 http://www.ing.unlp.edu.ar/cetad/mos/FRACTAL_TSP_home.html
- DIMACS: The Traveling Salesman Problem http://www.research.att.com/~dsj/chtsp/

Вопросы

- Метод ветвей и границ для задачи коммивояжера требует не более n^2 итераций (Да или Hem?)
- Метод ветвей и границ одновременно решает две задачи: найти оптимальное решение и доказать его оптимальность. Если бы первая задача была решена (угадали ответ), от метод работал бы быстрее (Да или Hem?)
- Чем точнее нижняя граница, тем быстрее работает метод ветвей и границ (Да или Hem?)
- Одностороння схема ветвления требует полиномиальной памяти (Да или Hem?)
- Метод ветвей и границ можно переделать в апроксимационную схему и сократить время его работы (Да или Hem?)