REPORT SIMULAIZONE

Ho impostato l'IP 192.168.32.100 su Kali Linux tramite il comando *sudo nano /etc/network/interfaces*, salvato le modifiche e riavviato la macchina.

```
source /etc/network/interfaces.d/*

# The loopback network interface
auto lo
iface lo inet loopback

auto eth0
iface eth0 inet static
address 192.168.32.100/24
gateway 192.168.32.1
```

```
link/ether 08:00:27:c7:e1:36 brd ff:ff:ff:ff:ff
inet 192 168 32 100/24 brd 192 168 32 255 scope global eth0
valid_lft forever preferred_lft forever
```

Per impostare l'IP 192.168.32.101 su Windows 7 sono andata a cambiare le proprietà della Local Area Connection (percorso: *Control Panel\Network and Internet\Network Connections*) agendo nelle proprietà *dell'Internet Protocol Version 4 (TCP/IPv4)*.


```
C:\Users\Monia>ipconfig

Windows IP Configuration

Ethernet adapter Local Area Connection:

Connection-specific DNS Suffix ::
Link-local IPv6 Address . . . : fe80::a4df:b307:1ec1:a6e7%11
IPv4 Address . . . . : 192.168.32.101
Subnet Mask . . . . . . : 255.255.255.0
Default Gateway . . . . : 192.168.32.1
```

Da specificare che entrambe le macchine lavorano in assenza di connessione di rete, impostata su *rete interna*, e a Windows 7 sono disabilitati i firewall.

Provando su entrambi i sistemi si riescono a pingare senza problemi.

```
(kali@kali)-[~]

$ ping 192.168.32.101

PING 192.168.32.101 (192.168.32.101) 56(84) bytes of data.
64 bytes from 192.168.32.101: icmp_seq=1 ttl=128 time=1.03 ms
64 bytes from 192.168.32.101: icmp_seq=2 ttl=128 time=0.382 ms
64 bytes from 192.168.32.101: icmp_seq=3 ttl=128 time=0.552 ms

C:\Users\Monia\ping 192.168.32.100
```

```
C:\Users\Monia>ping 192.168.32.100

Pinging 192.168.32.100 with 32 bytes of data:

Reply from 192.168.32.100: bytes=32 time<1ms TTL=64

Reply from 192.168.32.100: bytes=32 time<1ms TTL=64

Reply from 192.168.32.100: bytes=32 time=1ms TTL=64

Reply from 192.168.32.100: bytes=32 time<1ms TTL=64
```

Poi ho avviato InetSim su Kali e ho inserito i dati per preparare la simulazione, con il comando sudo mousepad /etc/inetsim/inetsim.conf andando poi a configurare i dati di Service_bind_address, DNS_default_IP e DNS_static, savato e riavviato.

```
(kali@ kali)-[~]

$ sudo mousepad /etc/inetsim/intesim.conf

69 service_bind_address 192.168.32.100

70

207 dns_default_ip 192.168.32.100

208

241 #

242 dns_static epicode.internal 192.168.32.100

243
```

Tornando nelle impostazioni di Windows 7, già precedentemente modificate, ho cambiato il *Preferred DNS server* in 192.168.32.100, e riavviato la macchina.

Use the following DNS server addresses:					
Preferred DNS server:	192 . 168 . 3	2 . 100			
Alternate DNS server:					
✓ Validate settings upon exit		Advanced			

Su Kali ho avviato la simulazione con il comando sudo inetsim.

Su kali avvio il programma Wireshark e subito dopo su Windows7 inserisco l'indirizzo https://epi-code.internal che segnale un problema di sicurezza in quanto non presente il certificato.

Quindi su Wireshark, un packet sniffer cioè un programma che analizza "catturando" i pacchetti che passano sulla rete, si può visualizzare l'indirizzo MAC selezionando il frame n.01 dove con "Who has 192.168.32.100? Tell 192.168.32.101" si chiede *Chi è il server e di dare risposta al Client*, nella sezione sottostante ci viene quindi indicato il MAC in quanto il protocollo ARP è quello incaricato di assegnarlo.

No.	Time	Source	Destination	Protocol	Length Info
	1 0.000000000	PcsCompu_af:3d:77	Broadcast	ARP	60 Who has 192.168.32.100? Tell 192.168.32.10:
	2 0.000020749	PcsCompu_c7:e1:36	PcsCompu_af:3d:77	ARP	42 192.168.32.100 is at 08:00:27:c7:e1:36
	3 0.000389949	192.168.32.101	192.168.32.100	TCP	66 49197 → 443 [SYN] Seq=0 Win=8192 Len=0 MSS:
	4 0.000425283	192.168.32.100	192.168.32.101	TCP	66 443 → 49197 [SYN, ACK] Seq=0 Ack=1 Win=642
	5 0.000600971	192.168.32.101	192.168.32.100	TCP	60 49197 → 443 [ACK] Seq=1 Ack=1 Win=65700 Le
	6 0.001127252	192.168.32.101	192.168.32.100	TLSv1	215 Client Hello
	7 0.001154888	192.168.32.100	192.168.32.101	TCP	54 443 → 49197 [ACK] Seq=1 Ack=162 Win=64128 I
	8 0.066190679	192.168.32.100	192.168.32.101	TLSv1	1373 Server Hello, Certificate, Server Key Excha
	9 0.075127950	192.168.32.101	192.168.32.100	TLSv1	188 Client Key Exchange, Change Cipher Spec, Er
	10 0.075168025	192.168.32.100	192.168.32.101	TCP	54 443 → 49197 [ACK] Seq=1320 Ack=296 Win=641:
	11 0.075924755	192.168.32.100	192.168.32.101	TLSv1	113 Change Cipher Spec, Encrypted Handshake Me:
	12 0.087715824	PcsCompu_af:3d:77	Broadcast	ARP	60 Who has 192.168.32.1? Tell 192.168.32.101
	13 0.278862983	192.168.32.101	192.168.32.100	TCP	60 49197 → 443 [ACK] Seq=296 Ack=1379 Win=643:
	1/1 020250027	DesCompu af+2d+77	Proadcast	ADD	60 Who has 100 160 20 10 Toll 100 160 20 101
→ Fra	ame 1: 60 bytes or	n wire (480 bits), 60	bytes captured (480	bits) on	interface ε 0000 ff ff ff ff ff ff 08 00 27 af
→ Etl	hernet II, Src: Po	csCompu_af:3d:77 (08:6	00:27:af:3d:77), Dst:	: Broadcas	st (ff:ff:ff 0010 08 00 06 04 00 01 08 00 27 af
•	Destination: Broad	dcast (ff:ff:ff:ff	0020 00 00 00 00 00 c0 a8 20 64		
→	Source: PosCompu	af:3d:77 (08:00:27:af	:3d:77)		0030 00 00 00 00 00 00 00 00
	Type: ARP (0x0806))			
	Padding: 000000000	, 9000000000000000000000000000000000000	900000		
		Protocol (request)			
		,,,			

Filtrando, invece, tramite il numero della porta 443, cioè la porta dedicata all'https, vediamo sia la procedura di Three way handshake nel quale il client invia un pacchetto dati SYN, gli viene risposto con una ricevuta SYN/ACK dal server e il client risponde di nuovo con un pacchetto ACK, da qui si crea la connessione, che il protocollo TLSv1 che indica la crittografia prevista per l'https.

Ripetendo il procedimento ma inserendo sul browser di Windows 7 l'indirizzo <u>http://epicode.internal</u> accertando il funzionamento del collegamento.

In questo caso nella cattura di Wideshark invece del protocollo TLSv1 vediamo il protocollo HTTP che non prevede la crittografia.

