Espaces normés

Normes

Exercice 1 [00454] [Correction]

Soient N_1, N_2 deux normes sur un \mathbb{R} -espace vectoriel E

a) On note $B_1 = \{x \in E \mid N_1(x) \le 1\}$ et $B_2 = \{x \in E \mid N_2(x) \le 1\}$. Montrer

$$B_1 = B_2 \implies N_1 = N_2$$

b) Même question avec les boules unités ouvertes.

Exercice 2 [02639] [Correction]

On définit sur $E = \mathcal{C}^{0}([0;1],\mathbb{R})$ une norme par

$$N(f) = \int_0^1 |f(t)| \, \mathrm{d}t$$

a) Soient $a, b \ge 0$ et u, v > 0. Établir que

$$\sqrt{a} + \sqrt{b} = 1 \implies \frac{1}{u+v} \le \frac{a}{u} + \frac{b}{v}$$

b) Soient $f, g \in E$ telles que f, g > 0. Montrer

$$N((f+g)^{-1}) \le \frac{N(f)^2 N(f^{-1}) + N(g)^2 N(g^{-1})}{(N(f) + N(g))^2}$$

c) En déduire que

$$N(f+g)N((f+g)^{-1}) \le \max(N(f)N(f^{-1}), N(g)N(g^{-1}))$$

Exercice 3 [02766] [Correction]

Soit $(E, \|.\|)$ un espace vectoriel normé sur $\mathbb{K}(\mathbb{K} = \mathbb{R} \text{ ou } \mathbb{C})$.

a) Montrer que pour tous $x, y \in E$

$$||x|| + ||y|| \le 2 \max\{||x + y||, ||x - y||\}$$

b) Montrer que l'on peut avoir l'égalité avec $x \neq 0$ et $y \neq 0$. Désormais la norme est euclidienne. c) Montrer que pour tous $x, y \in E$

$$||x|| + ||y|| \le \sqrt{2} \max\{||x + y||, ||x - y||\}$$

d) Peut-on améliorer la constante $\sqrt{2}$?

Exercice 4 [00795] [Correction]

Soit $n \in \mathbb{N}$ avec $n \geq 2$. Existe-t-il une norme $\|.\|$ sur $\mathcal{M}_n(\mathbb{C})$ invariante par conjugaison, c'est-à-dire telle que :

$$\forall (A, P) \in \mathcal{M}_n(\mathbb{C}) \times \mathrm{GL}_n(\mathbb{C}), ||A|| = ||P^{-1}AP||$$

Etude de normes

Exercice 5 [00457] [Correction]

Pour $A = (a_{i,j}) \in \mathcal{M}_{n,p}(\mathbb{K})$. On pose

$$\|A\|_1 = \sum_{i=1}^n \sum_{j=1}^p |a_{i,j}|, \|A\|_2 = \sqrt{\sum_{i=1}^n \sum_{j=1}^p |a_{i,j}|^2} \text{ et } \|A\|_{\infty} = \max_{1 \leq i \leq n, 1 \leq j \leq p} |a_{i,j}|$$

Montrer que $\|.\|_1$, $\|.\|_2$ et $\|.\|_{\infty}$ définissent des normes sur $\mathcal{M}_{n,p}(\mathbb{K})$.

Exercice 6 [00459] [Correction]

Pour $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{R})$ on pose

$$||A|| = \left(\sum_{i,j=1}^{n} a_{i,j}^{2}\right)^{1/2}$$

Montrer que $\|.\|$ est une norme matricielle *i.e.* que c'est une norme sur $\mathcal{M}_n(\mathbb{R})$ vérifiant

$$\forall A, B \in \mathcal{M}_n(\mathbb{R}), ||AB|| \le ||A|| \, ||B||$$

Exercice 7 [03625] [Correction]

Pour $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{C})$, on pose

$$||A|| = \sup_{1 \le i \le n} \sum_{j=1}^{n} |a_{i,j}|$$

- a) Montrer que $\|.\|$ définit une norme sur $\mathcal{M}_n(\mathbb{C})$.
- b) Vérifier

$$\forall A, B \in \mathcal{M}_n(\mathbb{C}), ||AB|| \le ||A|| \, ||B||$$

Exercice 8 [00460] [Correction]

Pour $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{C})$, on pose

$$||A|| = \sup_{1 \le i \le n} \sum_{j=1}^{n} |a_{i,j}|$$

- a) Montrer que $\|.\|$ est une norme d'algèbre sur $\mathcal{M}_n(\mathbb{C})$.
- b) Montrer que si λ est valeur propre de A alors $|\lambda| \leq ||A||$.

Exercice 9 [00461] [Correction]

Soient p > 1 et q > 1 tel que 1/p + 1/q = 1.

a) Pour $a, b \ge 0$, montrer que

$$ab \le \frac{1}{p}a^p + \frac{1}{q}b^q$$

Pour $x = (x_1, \dots, x_n) \in \mathbb{K}^n$ et $y = (y_1, \dots, y_n) \in \mathbb{K}^n$, on pose :

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p} \text{ et } ||y||_q = \left(\sum_{i=1}^n |y_i|^q\right)^{1/q}$$

b) Soit x et y dans \mathbb{K}^n non nuls. Établir

$$\frac{|x_i y_i|}{\|x\|_p \|y\|_q} \le \frac{1}{p} \frac{|x_i|^p}{\|x\|_p^p} + \frac{1}{q} \frac{|y_i|^q}{\|y\|_q^q}$$

et en déduire

$$\sum_{i=1}^{n} |x_i y_i| \le ||x||_p ||y||_q$$

c) En écrivant

$$(|x_i| + |y_i|)^p = |x_i| (|x_i| + |y_i|)^{p-1} + |y_i| (|x_i| + |y_i|)^{p-1}$$

justifier

$$||x+y||_p \le ||x||_p + ||y||_p$$

d) Conclure que $\|.\|_p$ définit une norme sur \mathbb{K}^n .

Exercice 10 [00462] [Correction]

Pour $x = (x_1, \ldots, x_n) \in \mathbb{K}^n$ et $p \ge 1$ on pose

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

Montrer

$$||x||_{\infty} = \lim_{p \to +\infty} ||x||_p$$

Exercice 11 [03248] [Correction]

Soient a_1, \ldots, a_n des réels et $N \colon \mathbb{K}^n \to \mathbb{R}$ l'application définie par

$$N(x_1,...,x_n) = a_1 |x_1| + \cdots + a_n |x_n|$$

À quelle condition sur les a_1, \ldots, a_n , l'application N définit-elle une norme sur \mathbb{K}^n ?

Exercice 12 [00456] [Correction]

Soient $f_1, \ldots, f_n \colon [0;1] \to \mathbb{R}$ continues.

À quelle condition l'application

$$N: (x_1, \dots, x_n) \mapsto ||x_1 f_1 + \dots + x_n f_n||_{\infty}$$

définit-elle une norme sur \mathbb{R}^n ?

Exercice 13 [00455] [Correction]

Montrer que l'application $N \colon \mathbb{R}^2 \to \mathbb{R}$ définie par

$$N(x_1, x_2) = \sup_{t \in [0;1]} |x_1 + tx_2|$$

est une norme sur \mathbb{R}^2 .

Représenter la boule unité fermée pour cette norme et comparer celle-ci à $\|.\|_{\infty}$.

Exercice 14 [03905] [Correction]

On note $\ell^1(\mathbb{N}, \mathbb{K})$ l'ensemble des suites $u = (u_n)_{n \in \mathbb{N}} \in \mathbb{K}^{\mathbb{N}}$ sommable i.e.

$$\ell^{1}(\mathbb{N}, \mathbb{K}) = \left\{ u \in \mathbb{K}^{\mathbb{N}} / \sum |u_{n}| < +\infty \right\}$$

Montrer que $\ell^1(\mathbb{N}, \mathbb{K})$ est un \mathbb{K} -espace vectoriel et que l'application donnée par

$$||u||_1 = \sum_{n=0}^{+\infty} |u_n|$$

y définit une norme

Exercice 15 [03903] [Correction]

Soit I un intervalle d'intérieur non vide de \mathbb{R} . On note $L^1(I, \mathbb{K})$ l'ensemble des fonctions $f: I \to \mathbb{K}$ continues et intégrables *i.e.*

$$L^1(I,\mathbb{K}) = \left\{ f \in \mathcal{C}(I,\mathbb{K}) \mid \int_I |f| < +\infty \right\}$$

Montrer que $L^1(I,\mathbb{K})$ est un \mathbb{K} -espace vectoriel et que

$$||f||_1 = \int_I |f(t)| \,\mathrm{d}t$$

y définit une norme.

Exercice 16 [03904] [Correction]

Soit I un intervalle d'intérieur non vide de \mathbb{R} . On note $L^2(I, \mathbb{K})$ l'ensemble des fonctions $f: I \to \mathbb{K}$ continue et de carré intégrable *i.e.*

$$L^{2}(I, \mathbb{K}) = \left\{ f \in \mathcal{C}(I, \mathbb{K}) \mid \int_{I} |f|^{2} < +\infty \right\}$$

Montrer que $L^2(I, \mathbb{K})$ est un \mathbb{K} -espace vectoriel et que

$$||f||_2 = \left(\int_I |f(t)|^2 dt\right)^{1/2}$$

y définit une norme.

Exercice 17 [03906] [Correction]

On note $\ell^2(\mathbb{N}, \mathbb{K})$ l'ensemble des suites $u = (u_n) \in \mathbb{K}^{\mathbb{N}}$ de carré sommable i.e.

$$\ell^{2}(\mathbb{N}, \mathbb{K}) = \left\{ u \in \mathbb{K}^{\mathbb{N}} \mid \sum |u_{n}|^{2} < +\infty \right\}$$

Montrer que $\ell^2(\mathbb{N}, \mathbb{K})$ est un \mathbb{K} -espace vectoriel et que l'application donnée par

$$||u||_2 = \left(\sum_{n=0}^{+\infty} |u_n|^2\right)^{1/2}$$

y définit une norme.

Exercice 18 [04096] [Correction]

On introduit une norme $\|.\|$ sur l'espace des colonnes $\mathcal{M}_{n,1}(\mathbb{R})$ en posant

$$||X|| = \max_{1 \le i \le n} |x_i|$$

et on note S l'ensemble formé des colonnes de $\mathcal{M}_{n,1}(\mathbb{R})$ de norme égale à 1.

a) Soit $A \in \mathcal{M}_n(\mathbb{R})$. Montrer l'existence de

$$\sup_{X \in S} \|AX\|$$

b) On pose

$$N(A) = \sup_{X \in S} ||AX||$$

Justifier que pour tout $X \in \mathcal{M}_{n,1}(\mathbb{R})$, $||AX|| \leq N(A) ||X||$.

- c) Vérifier que N définit une norme sur $\mathcal{M}_n(\mathbb{R})$.
- d) Montrer

$$N(A) = \sup_{1 \le i \le n} \sum_{j=1}^{n} |a_{i,j}|$$

Exercice 19 [04136] [Correction]

Pour $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{R})$, on pose

$$||A|| = \sup_{1 \le i \le n} \sum_{j=1}^{n} |a_{i,j}|$$

- a) Montrer que $\|.\|$ définit une norme sur $\mathcal{M}_n(\mathbb{R})$.
- b) Pour X colonne de $\mathcal{M}_{n,1}(\mathbb{R})$, on pose

$$N(X) = \max_{1 \le i \le n} |x_i|$$

Vérifier

$$\forall X \in \mathcal{M}_{n,1}(\mathbb{K}), N(AX) \leq ||A|| N(X)$$

c) En déduire

$$||A|| = \sup_{N(X)=1} N(AX)$$

Distance

Exercice 20 [03272] [Correction]

On norme l'espace $\mathcal{B}(\mathbb{N}, \mathbb{R})$ des suites bornées par la norme infinie notée $\|.\|_{\infty}$. Déterminer la distance de la suite e constante égale à 1 au sous-espace vectoriel \mathcal{C}_0 des suites réelles convergeant vers 0.

Exercice 21 [03273] [Correction]

On norme l'espace $\mathcal{B}(\mathbb{N}, \mathbb{R})$ des suites bornées par la norme infini notée $\|.\|_{\infty}$. Déterminer la distance de la suite $u = ((-1)^n)_{n \in \mathbb{N}}$ au sous-espace vectoriel \mathcal{C} des suites réelles convergentes.

Exercice 22 [00470] [Correction]

On norme l'espace $\mathcal{B}(\mathbb{N}, \mathbb{R})$ des suites bornées par la norme infini notée $\|.\|_{\infty}$. Pour $x \in \mathcal{B}(\mathbb{N}, \mathbb{R})$, on note Δx la suite de terme général

$$\Delta x(n) = x(n+1) - x(n)$$

puis on forme $F = \{ \Delta x \mid x \in \mathcal{B}(\mathbb{N}, \mathbb{R}) \}.$

Déterminer la distance de la suite e constante égale à 1 au sous-espace vectoriel F.

Exercice 23 [03463] [Correction]

Soit E l'espace des fonctions bornées de [-1;1] vers $\mathbb R$ normé par

$$||f||_{\infty} = \sup_{x \in [-1;1]} |f(x)|$$

Déterminer la distance de la fonction

$$f \colon x \mapsto \begin{cases} 1 & \text{si } x \in]0;1] \\ 0 & \text{si } x = 0 \\ -1 & \text{si } x \in [-1;0[$$

au sous-espace vectoriel F de E formé des fonctions continues de [-1;1] vers \mathbb{R} .

Comparaison de normes

Exercice 24 [00466] [Correction]

Soit $E = \mathcal{C}^0([0;1],\mathbb{R})$. On définit les normes $\|.\|_1, \|.\|_2$ et $\|.\|_{\infty}$ par :

$$\|f\|_1 = \int_0^1 |f(t)| \, \mathrm{d}t, \|f\|_2 = \left(\int_0^1 f(t)^2 \, \mathrm{d}t\right)^{1/2} \, \, \mathrm{et} \, \, \|f\|_\infty = \sup_{[0;1]} |f|$$

- a) Montrer que $\|.\|_{\infty}$ est plus fine que $\|.\|_1$ et $\|.\|_2$ mais qu'elle n'équivaut ni à l'une, ni à l'autre.
- b) Comparer $\|.\|_1$ et $\|.\|_2$.

Exercice 25 [00467] [Correction]

Soit $E = \mathcal{C}^1([-1;1],\mathbb{R})$. On définit N_1, N_2 et N_3 par

$$N_1(f) = \sup_{[-1;1]} |f|, N_2(f) = |f(0)| + \sup_{[-1;1]} |f'| \text{ et } N_3(f) = \int_{-1}^1 |f|$$

- a) Montrer que N_1, N_2 et N_3 sont des normes sur E.
- b) Comparer N_1 et N_2 d'une part, N_1 et N_3 d'autre part.

Exercice 26 [02412] [Correction]

Soient l'espace $E = \{ f \in \mathcal{C}^1([0;1],\mathbb{R}) \mid f(0) = 0 \}$ et N l'application définie sur E par

$$N(f) = N_{\infty}(3f + f')$$

- a) Montrer que (E,N) est un espace vectoriel normé puis qu'il existe $\alpha>0$ tel que $N_{\infty}(f)\leq \alpha N(f)$.
- b) Les normes N_{∞} et N sont-elles équivalentes?

Exercice 27 [00465] [Correction]

Soient $E = C^1([0;1],\mathbb{R})$ et $N: E \to \mathbb{R}_+$ définie par

$$N(f) = \sqrt{f^2(0) + \int_0^1 f'^2(t) \, \mathrm{d}t}$$

- a) Montrer que N définit une norme sur E.
- b) Comparer N et $\|.\|_{\infty}$.

Exercice 28 [00473] [Correction]

Sur $\mathbb{R}[X]$ on définit N_1 et N_2 par :

$$N_1(P) = \sum_{k=0}^{+\infty} |P^{(k)}(0)| \text{ et } N_2(P) = \sup_{t \in [-1,1]} |P(t)|$$

- a) Montrer que N_1 et N_2 sont deux normes sur $\mathbb{R}[X]$.
- b) Étudier la convergence pour l'une et l'autre norme de la suite de terme général

$$P_n = \frac{1}{n}X^n$$

c) Les normes N_1 et N_2 sont-elles équivalentes?

Exercice 29 [00468] [Correction]

On note $\mathbb{R}^{(\mathbb{N})}$ l'ensemble des suites réelles nulles à partir d'un certain rang. On définit des normes $\|.\|_1$, $\|.\|_2$ et $\|.\|_{\infty}$ sur $\mathbb{R}^{(\mathbb{N})}$ en posant

$$||u||_1 = \sum_{n=0}^{+\infty} |u_n|, ||u||_2 = \left(\sum_{n=0}^{+\infty} u_n^2\right)^{1/2} \text{ et } ||u||_{\infty} = \sup_{n \in \mathbb{N}} |u_n|$$

- a) Comparer $\|.\|_1$ et $\|.\|_{\infty}$.
- b) Comparer $\|.\|_1$ et $\|.\|_2$.

Exercice 30 [00469] [Correction]

On note $\ell^1(\mathbb{N}, \mathbb{R})$ l'espace des suites réelles sommables. Cet espace est normé par

$$||u||_1 = \sum_{n=0}^{+\infty} |u_n|$$

a) Soit $u \in \ell^1(\mathbb{N}, \mathbb{R})$. Montrer que u est bornée. Cela permet d'introduire la norme $\|.\|_{\infty}$ définie par

$$||u||_{\infty} = \sup_{n \in \mathbb{N}} |u_n|$$

Comparer $\|.\|_1$ et $\|.\|_{\infty}$.

b) Soit $u \in \ell^1(\mathbb{N}, \mathbb{R})$. Montrer que u est de carré sommable Cela permet d'introduire la norme $\|.\|_2$ définie par

$$\|u\|_2 = \left(\sum_{n=0}^{+\infty} u_n^2\right)^{1/2}$$

Comparer $\|.\|_1$ et $\|.\|_2$.

Exercice 31 [03265] [Correction]

On note $\mathcal{B}(\mathbb{N}, \mathbb{R})$ l'espace des suites réelles bornées normé par $\|.\|_{\infty}$.

a) Soit $a = (a_n)$ une suite réelle. Former une condition nécessaire et suffisante sur la suite a pour que l'application

$$N_a \colon x \mapsto \sum_{n=0}^{+\infty} a_n \, |x_n|$$

définit une norme sur $\mathcal{B}(\mathbb{N}, \mathbb{R})$.

b) Comparer N_a et $\|.\|_{\infty}$.

Exercice 32 [00039] [Correction]

On note E l'espace des suites réelles bornées $u=(u_n)_{n\in\mathbb{N}}$ telles que $u_0=0$.

a) Montrer que

$$N_{\infty}(u) = \sup_{n \in \mathbb{N}} |u_n| \text{ et } N(u) = \sup_{n \in \mathbb{N}} |u_{n+1} - u_n|$$

définissent des normes sur l'espace E.

b) Montrer que

$$\forall u \in E, N(u) \le 2N_{\infty}(u)$$

Déterminer une suite non nulle telle qu'il y ait égalité.

c) Montrer que ces deux normes ne sont pas équivalentes.

Comparaison de normes équivalentes

Exercice 33 [00463] [Correction]

On note $E = \mathcal{C}^1([0;1], \mathbb{R})$.

a) Pour $f \in E$, on pose

$$N(f) = |f(0)| + ||f'||_{\infty}$$

Montrer que N est une norme sur E.

b) Pour $f \in E$, on pose

$$N'(f) = ||f||_{\infty} + ||f'||_{\infty}$$

On vérifie aisément que N' est une norme sur E. Montrer qu'elle est équivalente à N.

c) Les normes N et N' sont elles équivalentes à $\|.\|_{\infty}$?

Exercice 34 [03267] [Correction]

Soient l'espace $E = \{f \in \mathcal{C}^1([0;1],\mathbb{R}) \mid f(0) = 0\}$ et N_1, N_2 les applications définies sur E par

$$N_1(f) = ||f'||_{\infty} \text{ et } N_2(f) = ||f + f'||_{\infty}$$

- a) Montrer que N_1 et N_2 définissent des normes sur E.
- b) Montrer que N_2 est dominée par N_1 .
- c) En exploitant l'identité

$$f(x) = e^{-x} \int_0^x (f(t) + f'(t)) e^t dt$$

montrer que N_1 est dominée par N_2 .

Exercice 35 [00464] [Correction]

On note E le \mathbb{R} -espace vectoriel des fonctions $f:[0;1]\to\mathbb{R}$ de classe \mathcal{C}^1 vérifiant f(0)=0. Pour $f\in E$, on pose

$$N_1(f) = \sup_{x \in [0,1]} |f(x)| + \sup_{x \in [0,1]} |f'(x)| \text{ et } N_2(f) = \sup_{x \in [0,1]} |f(x) + f'(x)|$$

Montrer que N_1 et N_2 sont deux normes sur E et qu'elles sont équivalentes.

Exercice 36 [02411] [Correction] Soit

$$E = \left\{ f \in \mathcal{C}^2([0; \pi], \mathbb{R}) \mid f(0) = f'(0) = 0 \right\}$$

a) Montrer que

$$N: f \mapsto ||f + f''||_{\infty}$$

6

est une norme sur E.

b) Montrer que N est équivalente à

$$\nu \colon f \mapsto \|f\|_{\infty} + \|f''\|_{\infty}$$

Exercice 37 [03262] [Correction]

Soient $E = \mathcal{C}([0;1],\mathbb{R})$ et E^+ l'ensemble des fonctions de E qui sont positives et ne s'annulent qu'un nombre fini de fois. Pour toute fonction $\varphi \in E^+$ et pour toute fonction $f \in E$ on pose

$$||f||_{\varphi} = \sup_{t \in [0;1]} \{|f(t)|\,\varphi(t)\}$$

- a) Montrer que $\|.\|_{\varphi}$ est une norme sur E
- b) Montrer que si φ_1 et φ_2 sont deux applications strictement positives de E^+ alors les normes associées sont équivalentes.
- c) Les normes $\|.\|_{r}$ et $\|.\|_{r^{2}}$ sont elles équivalentes?

Exercice 38 [02767] [Correction]

Soient $E = \mathcal{C}([0;1],\mathbb{R})$ et E^+ l'ensemble des fonctions de E qui sont positives et ne s'annulent qu'un nombre fini de fois. Pour toute fonction $\varphi \in E^+$ et pour toute fonction $f \in E$ on pose

$$||f||_{\varphi} = \int_0^1 |f(t)| \, \varphi(t) \, \mathrm{d}t$$

- a) Montrer que $\|.\|_{\varphi}$ est une norme sur E
- b) Montrer que si φ_1 et φ_2 sont deux applications strictement positives de E^+ alors les normes associées sont équivalentes.
- c) Les normes $\|.\|_x$ et $\|.\|_{x^2}$ sont elles équivalentes?

Equivalence de normes en dimension finie

Exercice 39 [00458] [Correction]

Soit N une norme sur $\mathcal{M}_n(\mathbb{R})$. Montrer qu'il existe c>0 tel que

$$N(AB) \le cN(A)N(B)$$

Exercice 40 [03146] [Correction]

Soient $n \in \mathbb{N}$ et E l'espace des polynômes réels de degrés inférieurs à n. Montrer qu'il existe $\lambda > 0$ vérifiant

$$\forall P \in E, \int_0^1 |P(t)| \, \mathrm{d}t \ge \lambda \sup_{t \in [0:1]} |P(t)|$$

Exercice 41 [00474] [Correction]

Pour $d \in \mathbb{N}$, on pose $E = \mathbb{R}_d[X]$ l'espace des polynômes réels en l'indéterminée X de degrés inférieurs ou égaux à d.

a) Pour $\xi = (\xi_0, \dots, \xi_d)$ famille de d+1 nombres réels distincts et $P \in E$, on pose

$$N_{\xi}(P) = \sum_{k=0}^{d} |P(\xi_k)|$$

Montrer que N_{ξ} définit une norme sur E.

b) Soit (P_n) une suite de polynômes éléments de E. Pour tout $n \in \mathbb{N}$, on écrit

$$P_n = \sum_{k=0}^d a_{k,n} X^k$$

Établir que les assertions suivantes sont équivalentes :

- (i) la suite de fonctions (P_n) converge simplement sur \mathbb{R} ;
- (ii) la suite de fonctions (P_n) converge uniformément sur tout segment de \mathbb{R} ;
- (iii) pour tout $k \in \{0, \ldots, d\}$, la suite $(a_{k,n})$ converge.

Exercice 42 [02768] [Correction]

Soit E un sous-espace vectoriel de dimension finie $d \geq 1$ de l'espace $\mathcal{C}([0\,;1],\mathbb{R})$ de fonctions continues.

a) Établir l'existence de $(a_1, \ldots, a_d) \in [0, 1]^d$ tel que l'application

$$N \colon f \in E \mapsto \sum_{i=1}^{d} |f(a_i)|$$

soit une norme.

b) Soit (f_n) une suite de fonctions de E qui converge simplement vers une fonction $f:[0;1] \to \mathbb{R}$.

Montrer que f est élément de E et que la convergence est uniforme.

Exercice 43 [01582] [Correction]

Montrer que si $(P_n)_{n\in\mathbb{N}}$ est une suite de fonctions polynomiales toute de degré inférieur à N convergeant simplement vers une fonction f sur \mathbb{R} alors f est une fonction polynomiale et la convergence est uniforme sur tout segment de \mathbb{R} .

Exercice 44 [02409] [Correction]

a) Quelles sont les valeurs de $a \in \mathbb{R}$ pour lesquelles l'application

$$(x,y) \mapsto N_a(x,y) = \sqrt{x^2 + 2axy + y^2}$$

définit une norme sur \mathbb{R}^2 .

b) Si N_a et N_b sont des normes, calculer

$$\inf_{(x,y)\neq 0} \frac{N_a(x,y)}{N_b(x,y)} \text{ et } \sup_{(x,y)\neq 0} \frac{N_a(x,y)}{N_b(x,y)}$$

Suites de vecteurs

Exercice 45 [03143] [Correction] Soient $A, B \in \mathcal{M}_p(\mathbb{R})$. On suppose

$$(AB)^n \to O_p$$

Montrer que

$$(BA)^n \to O_p$$

Exercice 46 [01670] [Correction]

Soient $A, B \in \mathcal{M}_n(\mathbb{R})$ telles que

$$A^k \xrightarrow[k \to +\infty]{} P \text{ et } B^k \xrightarrow[k \to +\infty]{} Q$$

On suppose que les matrices A et B commutent. Montrer que les matrices P et Q commutent.

Exercice 47 [00471] [Correction]

Soit (A_n) une suite de matrices inversibles de $\mathcal{M}_p(\mathbb{K})$. On suppose

$$A_n \to A \text{ et } A_n^{-1} \to B$$

Montrer que A est inversible et déterminer son inverse.

Exercice 48 [00472] [Correction]

À quelle condition sur $A \in \mathcal{M}_p(\mathbb{K})$ existe-t-il $M \in \mathcal{M}_p(\mathbb{K})$ vérifiant

$$M^n \xrightarrow[n \to +\infty]{} A?$$

Exercice 49 [03010] [Correction]

Soit $A \in \mathcal{M}_p(\mathbb{C})$. On suppose que la suite $(A^n)_{n \in \mathbb{N}}$ converge vers B. Montrer que B est semblable à une matrice diagonale n'ayant que des 0 et des 1.

Exercice 50 [03022] [Correction]

- a) Soit $A \in \mathcal{M}_p(\mathbb{R})$ diagonalisable vérifiant $\operatorname{Sp}(A) \subset]-1;1[$. Montrer $A^n \to O_p$.
- b) Même question avec trigonalisable au lieu de diagonalisable.

Exercice 51 [03036] [Correction]

Soit (A_n) une suite convergente d'éléments de $\mathcal{M}_n(\mathbb{K})$ et de limite A_{∞} . Montrer que pour n assez grand

$$\operatorname{rg}(A_n) \ge \operatorname{rg}(A_\infty)$$

Exercice 52 [03475] [Correction]

Soit (A_k) une suite de matrice de $\mathcal{M}_n(\mathbb{C})$ convergeant vers $A \in \mathcal{M}_n(\mathbb{C})$. On suppose que les A_k sont tous de rang p donné. Montrer que rg $A \leq p$.

Exercice 53 [03413] [Correction]

Soit $q \in \mathbb{N}^*$. On note E_q l'ensemble des $A \in \mathrm{GL}_n(\mathbb{C})$ telles que

$$A^q = I_n$$

- a) Que dire de $A \in E_q$ telle que 1 est seule valeur propre de A?
- b) Montrer que I_n est un point isolé de E_q .

Exercice 54 [03851] [Correction]

Soit $a \in \mathbb{R}$. Déterminer $\lim_{n \to +\infty} A_n^n$ avec

$$A_n = \begin{pmatrix} 1 & -a/n \\ a/n & 1 \end{pmatrix}$$

Exercice 55 [03925] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice antisymétrique telle que la suite $(A^k)_{k \in \mathbb{N}}$ converge vers B dans $\mathcal{M}_n(\mathbb{R})$.

Que dire de B?

Séries de vecteurs

Exercice 56 [02728] [Correction]

Soit $M \in \mathcal{M}_n(\mathbb{C})$. Montrer l'équivalence de :

- (i) toute valeur propre de M est de module strictement inférieur à 1 ;
- (ii) la suite (M^k) tend vers 0;
- (iii) la série de terme général M^k converge.

Exercice 57 [04052] [Correction]

Soient E un espace de dimension finie de norme $\|.\|$ et f une application de E vers E.

On dit que f est contractante si

$$\exists k \in [0; 1[, \forall x, y \in E, ||f(y) - f(x)|| \le k ||y - x||$$

a) On suppose que f est contractante et l'on introduit la suite $(x_n)_{n\in\mathbb{N}}$ déterminée par

$$x_0 \in E \text{ et } \forall n \in \mathbb{N}, x_{n+1} = f(x_n)$$

- Montrer la convergence de la série $\sum x_{n+1} x_n$.
- b) En déduire que lorsque f est contractante, elle admet un point fixe et justifier que celui-ci est unique.
- c) Montrer que s'il existe $p \in \mathbb{N}^*$ tel que f^p soit contractante alors f admet un unique point fixe.

Corrections

Exercice 1 : [énoncé]

- a) Soit $x \in E$. Si x = 0 alors $N_1(x) = N_2(x) = 0$. Sinon : Posons $y = \frac{x}{N_1(x)}$. On a $y \in B_1 \subset B_2$ donc $N_2(y) \le 1$ d'où $N_2(x) \le N_1(x)$. De manière symétrique $N_1(x) \le N_2(x)$ puis l'égalité.
- b) On reprend la démarche ci-dessus à partir de

$$y = \frac{x}{N_1(x) + \varepsilon}$$

avec $\varepsilon > 0$ pour obtenir $N_2(x) < N_1(x) + \varepsilon$ avant de faire tendre ε vers 0.

Exercice 2 : [énoncé]

a) Par réduction au même dénominateur

$$\frac{a}{u} + \frac{b}{v} - \frac{1}{u+v} = \frac{av(u+v) + bu(u+v) - uv}{uv(u+v)}$$

qu'on peut réécrire

$$\frac{a}{u} + \frac{b}{v} - \frac{1}{u+v} = \frac{(\sqrt{av} - \sqrt{bu})^2 + (a+b+2\sqrt{ab} - 1)uv}{uv(u+v)}$$

et si $\sqrt{a} + \sqrt{b} = 1$ alors

$$\frac{a}{u} + \frac{b}{v} - \frac{1}{u+v} = \frac{(\sqrt{a}v - \sqrt{b}u)^2}{uv(u+v)} \ge 0$$

b)

$$N((f+g)^{-1}) = \int_0^1 \frac{\mathrm{d}t}{f(t) + g(t)} \le a \int_0^1 \frac{\mathrm{d}t}{f(t)} + b \int_0^1 \frac{\mathrm{d}t}{g(t)} = aN(f^{-1}) + bN(g^{-1})$$

qui donne l'inégalité voulue avec

$$a = \frac{N(f)^2}{(N(f) + N(g))^2}$$
 et $b = \frac{N(g)^2}{(N(f) + N(g))^2}$

qui sont tels que $\sqrt{a} + \sqrt{b} = 1$.

c) Par l'inégalité triangulaire

$$N(f+g)N((f+g)^{-1}) \le (N(f)+N(g))N((f+g)^{-1})$$

et en vertu de ce qui précède

$$N(f+g)N((f+g)^{-1}) \le \frac{N(f)^2 N(f^{-1})}{N(f) + N(g)} + \frac{N(g)^2 N(g^{-1})}{N(f) + N(g)}$$

qui donne

$$N(f+g)N((f+g)^{-1}) \le \frac{N(f)}{N(f)+N(g)}M + \frac{N(g)}{N(f)+N(g)}M = M$$

avec

$$M = \max(N(f)N(f^{-1}), N(g)N(g^{-1}))$$

Document3

Exercice 3: [énoncé]

a) $x = \frac{1}{2}(x+y) + \frac{1}{2}(x-y)$ donc

$$||x|| \le \max\{||x+y||, ||x-y||\}$$

Aussi $||y|| \le \max\{||x+y||, ||x-y||\}$ donc

$$||x|| + ||y|| \le 2 \max\{||x + y||, ||x - y||\}$$

- b) Sur \mathbb{R}^2 avec $\|\cdot\| = \|\cdot\|_{\infty}$, il y a égalité pour x = (1,0) et y = (0,1).
- c) On a déjà

$$(\|x\| + \|y\|)^2 \le 2\|x\|^2 + 2\|y\|^2$$

Or $x = \frac{1}{2}(x+y) + \frac{1}{2}(x-y)$ donne

$$||x||^2 = \frac{1}{4} (||x + y||^2 + ||x - y||^2 + 2 ||x||^2 - 2 ||y||^2)$$

aussi

$$||y||^2 = \frac{1}{4} (||x + y||^2 + ||x - y||^2 - 2 ||x||^2 + 2 ||y||^2)$$

donc

$$||x||^2 + ||y||^2 \le \frac{1}{2} (||x+y||^2 + ||x-y||^2)$$

puis

$$(\|x\| + \|y\|)^2 \le 2 \max\{\|x + y\|, \|x - y\|\}^2$$

qui permet de conclure.

d) Non, sur \mathbb{R}^2 , il y a égalité pour x = (1,0) et y = (0,1).

Exercice 4: [énoncé]

Cas n=2

Par l'absurde supposons qu'une telle norme existe.

Posons
$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 et $B = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}$.

Les matrices A et B sont semblables (via P = diag(1/2, 1)) donc ||A|| = ||B||. Or B = 2A donc ||B|| = 2 ||A|| puis ||A|| = 0.

C'est absurde car $A \neq O_2$.

Cas général : semblable.

Exercice 5 : [énoncé]

Ce sont les normes usuelles associées à la base canonique sur $\mathcal{M}_{n,p}(\mathbb{K})$.

Exercice 6 : [énoncé]

 $\|.\|$ est une norme sur $\mathcal{M}_n(\mathbb{R})$ car c'est la norme 2 associée à la base canonique de $\mathcal{M}_n(\mathbb{R})$.

On a

$$||AB||^2 = \sum_{i,j=1}^n \left(\sum_{k=1}^n a_{i,k} b_{k,j}\right)^2$$

Par l'inégalité de Cauchy-Schwarz,

$$\left(\sum_{k=1}^{n} a_{i,k} b_{k,j}\right)^{2} \leq \sum_{k=1}^{n} a_{i,k}^{2} \sum_{\ell=1}^{n} b_{\ell,j}^{2}$$

donc

$$||AB||^2 \le \sum_{i,k=1}^n a_{i,k}^2 \sum_{j,\ell=1}^n b_{\ell,j}^2 = ||A||^2 ||B||^2$$

puis

$$||AB|| \le ||A|| \, ||B||$$

Exercice 7 : [énoncé]

a) L'application $\|\cdot\|$ est bien définie de $\mathcal{M}_n(\mathbb{C})$ dans \mathbb{R}_+ . Si $\|A\| = 0$ alors

$$\forall 1 \le i \le n, \sum_{j=1}^{n} |a_{i,j}| = 0$$

et donc

$$\forall 1 \leq i, j \leq n, a_{i,j} = 0$$

ainsi la matrice A est nulle.

De plus

$$\|\lambda A\| = \sup_{1 \le i \le n} \sum_{j=1}^{n} |\lambda a_{i,j}|$$

$$= \sup_{1 \le i \le n} |\lambda| \sum_{j=1}^{n} |a_{i,j}|$$

$$= |\lambda| \sup_{1 \le i \le n} \sum_{j=1}^{n} |a_{i,j}|$$

$$= |\lambda| \|A\|$$

et

$$||A + B|| = \sup_{1 \le i \le n} \sum_{j=1}^{n} |a_{i,j} + b_{i,j}|$$

$$\le \sup_{1 \le i \le n} \sum_{j=1}^{n} |a_{i,j}| + |b_{i,j}|$$

$$\le \sup_{1 \le i \le n} \sum_{j=1}^{n} |a_{i,j}| + \sup_{1 \le i \le n} \sum_{j=1}^{n} |b_{i,j}|$$

$$= ||A|| + ||B||$$

b) On a

$$||AB|| = \sup_{1 \le i \le n} \sum_{j=1}^{n} \left| \sum_{k=1}^{n} a_{i,k} b_{k,j} \right| \le \sup_{1 \le i \le n} \sum_{j=1}^{n} \sum_{k=1}^{n} |a_{i,k} b_{k,j}|$$

Or

$$\sum_{j=1}^{n} \sum_{k=1}^{n} |a_{i,k}b_{k,j}| \le \sum_{k=1}^{n} \sum_{j=1}^{n} |a_{i,k}| |b_{k,j}|$$

$$= \sum_{k=1}^{n} |a_{i,k}| \sum_{j=1}^{n} |b_{k,j}|$$

$$\le \sum_{k=1}^{n} |a_{i,k}| ||B||$$

$$\le ||A|| ||B||$$

donc

$$||AB|| \le ||A|| \, ||B||$$

Exercice 8 : [énoncé]

a) L'application $\|.\|$ est bien définie de $\mathcal{M}_n(\mathbb{C})$ dans \mathbb{R}_+ . Si $\|A\| = 0$ alors

$$\forall 1 \le i \le n, \sum_{i=1}^{n} |a_{i,j}| = 0$$

et donc

$$\forall 1 \leq i, j \leq n, a_{i,j} = 0$$

ainsi la matrice A est nulle.

De plus

$$\|\lambda A\| = \sup_{1 \le i \le n} \sum_{j=1}^{n} |\lambda a_{i,j}| = \sup_{1 \le i \le n} |\lambda| \sum_{j=1}^{n} |a_{i,j}| = |\lambda| \sup_{1 \le i \le n} \sum_{j=1}^{n} |a_{i,j}| = |\lambda| \|A\|$$

 $_{
m et}$

$$||A + B|| = \sup_{1 \le i \le n} \sum_{j=1}^{n} |a_{i,j} + b_{i,j}| \le \sup_{1 \le i \le n} \sum_{j=1}^{n} |a_{i,j}| + |b_{i,j}|$$

donc

$$||A + B|| \le \sup_{1 \le i \le n} \sum_{i=1}^{n} |a_{i,j}| + \sup_{1 \le i \le n} \sum_{i=1}^{n} |b_{i,j}| = ||A|| + ||B||$$

Enfin

$$||AB|| = \sup_{1 \le i \le n} \sum_{j=1}^{n} \left| \sum_{k=1}^{n} a_{i,k} b_{k,j} \right| \le \sup_{1 \le i \le n} \sum_{j=1}^{n} \sum_{k=1}^{n} |a_{i,k} b_{k,j}|$$

Or

$$\sum_{j=1}^{n} \sum_{k=1}^{n} |a_{i,k}b_{k,j}| \le \sum_{k=1}^{n} \sum_{j=1}^{n} |a_{i,k}| |b_{k,j}| = \sum_{k=1}^{n} |a_{i,k}| \sum_{j=1}^{n} |b_{k,j}| \le \sum_{k=1}^{n} |a_{i,k}| ||B|| \le ||A|| ||B||$$

donc

$$||AB|| \le ||A|| \, ||B||$$

b) Soit $\lambda \in \operatorname{Sp}(A)$, il existe $X \neq 0$, $AX = \lambda X$. En notant x_1, \ldots, x_n les éléments de la colonne X (non tous nuls) on a

$$\forall i \in \{1,\ldots,n\}, \lambda x_i = \sum_{j=1}^n a_{i,j} x_j$$

Considérons $i \in \{1, \ldots, n\}$ tel que $|x_i| = \max_{1 \le j \le n} |x_j| \ne 0$. La relation précédente donne :

$$|\lambda| |x_i| \le \sum_{j=1}^n |a_{i,j}| |x_j| \le \sum_{j=1}^n |a_{i,j}| |x_i|$$

donc

$$|\lambda| \le \sum_{i=1}^n |a_{i,j}| \le ||A||$$

Exercice 9 : [énoncé]

a) L'inégalité vaut pour a=0 ou b=0. Pour a,b>0. La fonction ln est concave :

$$\forall \lambda \in [0; 1], \forall x, y > 0, \lambda \ln(x) + (1 - \lambda) \ln(y) \le \ln(\lambda x + (1 - \lambda)y)$$

Appliquée à $x=a^p,\,y=b^q$ et $\lambda=1/p$ ce la donne :

$$\frac{1}{p}\ln(a^p) + \frac{1}{q}\ln(b^q) \le \ln\left(\frac{1}{p}a^p + \frac{1}{q}b^q\right)$$

puis

$$ab \leq \frac{1}{p}a^p + \frac{1}{q}b^q$$

b) On applique le résultat précédent à $a = \frac{|x_i|}{\|x\|_p}$ et $b = \frac{|y_i|}{\|y\|_p}$ pour obtenir

$$\frac{|x_i y_i|}{\|x\|_p \|y\|_q} \le \frac{1}{p} \frac{|x_i|^p}{\|x\|_p^p} + \frac{1}{q} \frac{|y_i|^q}{\|y\|_q^q}$$

En sommant pour $i \in \{1, ..., n\}$, on obtient

$$\sum_{i=1}^{n} \frac{|x_i y_i|}{\|x\|_p \|y\|_q} \le \frac{1}{p} + \frac{1}{q} = 1$$

puis

$$\sum_{i=1}^{n} |x_i y_i| \le ||x||_p ||y||_q$$

c) Par l'inégalité triangulaire

$$||x + y||_p^p = \sum_{i=1}^n |x_i + y_i|^p \le \sum_{i=1}^n (|x_i| + |y_i|)^p$$

Or par l'identité proposée

$$\sum_{i=1}^{n} (|x_i| + |y_i|)^p \le \sum_{i=1}^{n} |x_i| (|x_i| + |y_i|)^{p-1} + \sum_{i=1}^{n} |y_i| (|x_i| + |y_i|)^{p-1}$$

Par l'inégalité du b)

$$\sum_{i=1}^{n} (|x_i| + |y_i|)^p \le ||x||_p \left(\sum_{i=1}^{n} (|x_i| + |y_i|)^{(p-1)q} \right)^{1/q} + ||y||_p \left(\sum_{i=1}^{n} (|x_i| + |y_i|)^{(p-1)q} \right)^{1/q} + ||y||_$$

donc

$$\sum_{i=1}^{n} (|x_i| + |y_i|)^p \le (||x||_p + ||y||_p) \left(\sum_{i=1}^{n} (|x_i| + |y_i|)^p\right)^{1/q}$$

car (p-1)q = pq - q = ppuis

$$\left(\sum_{i=1}^{n} (|x_i| + |y_i|)^p\right)^{1/p} \le ||x||_p + ||y||_p$$

car 1 - 1/q = 1/p (et l'inégalité vaut que $\sum_{i=1}^{n} (|x_i|^p + |y_i|^p) \neq 0$ ou non) Finalement

$$||x+y||_n \le ||x||_n + ||y||_n$$

d) Les propriétés $||x||_p = 0 \implies x = 0$ et $||\lambda x||_p = |\lambda| ||x||_p$ sont immédiates.

Exercice 10: [énoncé]

Si $||x||_{\infty} = 0$ alors x = 0 et $||x||_{n} = 0$ donc

$$||x||_{\infty} = \lim_{p \to +\infty} ||x||_p$$

Si $||x||_{\infty} \neq 0$. Pour tout $p \geq 1$,

$$||x||_{\infty} \le ||x||_{p} \le (n ||x||_{\infty}^{p})^{1/p} = n^{1/p} ||x||_{\infty} \underset{p \to +\infty}{\longrightarrow} ||x||_{\infty}$$

donc

$$\lim_{p \to +\infty} \|x\|_p = \|x\|_{\infty}$$

Exercice 11 : [énoncé]

Notons (e_1, \ldots, e_n) la base canonique de \mathbb{K}^n .

Si N est une norme alors

$$N(e_i) = a_i > 0$$

Il est donc nécessaire que les a_1, \ldots, a_n soient tous strictement positifs pour que N soit une norme.

Inversement, supposons que les a_1, \ldots, a_n sont tous strictement positifs.

L'application N est alors à valeurs dans \mathbb{R}_+ .

La relation $N(\lambda x) = |\lambda| N(x)$ est immédiate. Puisque les a_i sont positifs, on a $N(x+y) \leq N(x) + N(y)$ car

Enfin, si N(x) = 0 alors par nullité d'une somme de quantités positives

$$\forall i \in \{1, \dots, n\}, a_i |x_i| = 0$$

donc

$$\forall i \in \{1, \dots, n\}, x_i = 0$$

i.e. $x = 0_{K^n}$

Exercice 12 : [énoncé]

L'application $N: \mathbb{R}^n \to \mathbb{R}_+$ est bien définie car toute fonction continue sur le segment [0:1] v est bornée

La liberté de la famille (f_1, \ldots, f_n) est une condition nécessaire car, sinon, une relation linéaire sur la famille (f_1, \ldots, f_n) détermine un n-uplet (x_1, \ldots, x_n) non nul tel que $N(x_1, \ldots, x_n) = 0$.

Inversement, supposons la famille (f_1, \ldots, f_n) libre.

Soient
$$\lambda \in \mathbb{R}$$
, $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ et $y = (y_1, \dots, y_n) \in \mathbb{R}^n$.

Si N(x) = 0 alors $x_1 f_1 + \cdots + x_n f_n = 0$ et donc $(x_1, \dots, x_n) = (0, \dots, 0)$ car (f_1, \dots, f_n) libre.

$$N(\lambda x) = \|\lambda x_1 f_1 + \dots + \lambda x_n f_n\|_{\infty}$$

= $\|\lambda (x_1 f_1 + \dots + x_n f_n)\|_{\infty} = |\lambda| N(x).$

$$N(x+y) = \|(x_1+y_1)f_1 + \dots + (x_n+y_n)f_n\|_{\infty}$$

= $\|(x_1f_1 + \dots + x_nf_n) + (y_1f_1 + \dots + y_nf_n)\|_{\infty}$
 $\leq N(x) + N(y).$

Finalement N est une norme sur \mathbb{R}^n

Exercice 13: [énoncé]

Quand t varie de 0 à 1, l'expression $|x_1 + tx_2|$ varie de $|x_1|$ à $|x_1 + x_2|$ Par suite, on peut exprimer plus simplement l'action de N:

$$N(x_1, x_2) = \max\{|x_1|, |x_1 + x_2|\}\$$

Soient $x = (x_1, x_2)$ et $y = (y_1, y_2)$ deux vecteurs de \mathbb{R}^2 .

$$\begin{split} N(x+y) &= \max \left\{ |x_1 + y_1|, |x_1 + y_1 + x_2 + y_2| \right\} \\ &\leq \max \left\{ |x_1| + |y_1|, |x_1 + x_2| + |y_1 + y_2| \right\} \\ &\leq N(x) + N(y) \end{split}$$

Pour $\lambda \in \mathbb{R}$,

$$N(\lambda . x) = \max\{|\lambda| |x_1|, |\lambda| |x_1 + x_2|\} = |\lambda| N(x)$$

Enfin si N(x) = 0 alors $|x_1| = |x_1 + x_2| = 0$ et donc $x_1 = x_1 + x_2 = 0$ puis x = 0. Ainsi N définie bien une norme sur \mathbb{R}^2 .

Si $x_1 \ge 0, x_2 \ge 0$ alors $N(x) = x_1 + x_2$.

Si $x_1 \le 0, x_2 \ge 0$ alors $N(x) = \max(-x_1, |x_1 + x_2|)$.

Si $x_1 \ge 0, x_2 \le 0$ alors $N(x) = \max(x_1, |x_1 + x_2|)$.

Si $x_1 \le 0, x_2 \le 0$ alors $N(x) = -(x_1 + x_2)$.

Ces considérations permettent de représenter la boule unité fermée. De manière immédiate : $N(x) \le 2 \|x\|_{\infty}$.

Aussi $|x_1| \le 2N(x)$ et puisque $|x_2| \le |x_1 + x_2| + |x_1|$ on a aussi $|x_2| \le 2N(x)$. On en déduit $||x||_{\infty} \le 2N(x)$.

FIGURE 1 – La boule unité fermée pour la norme N

Exercice 14 : [énoncé]

 $\ell^1(\mathbb{N},\mathbb{K})\subset\mathbb{K}^\mathbb{N}$ et $\mathbb{K}^\mathbb{N}$ est un $\mathbb{K}\text{-espace}$ vectoriel.

 $(0)_{n\in\mathbb{N}}\in\ell^1(\mathbb{K}).$

Pour $\lambda, \mu \in \mathbb{K}$ et $u, v \in \ell^1(\mathbb{N}, \mathbb{K})$,

$$|(\lambda u + \mu v)_n| \le |\lambda| |u_n| + |\mu| |v_n|$$

Par comparaison de séries à termes positifs

$$\lambda u + \mu v \in \ell^1(\mathbb{N}, \mathbb{K})$$

 $\ell^1(\mathbb{N},\mathbb{K})$ est un sous-espace vectoriel de $\mathbb{K}^\mathbb{N},$ c'est donc un \mathbb{K} -espace vectoriel.

L'application $\|.\|_1:\ell^1(\mathbb{N},\mathbb{K})\to\mathbb{R}_+$ est bien définie.

Soit $u \in \ell^1(\mathbb{N}, \mathbb{K})$. Si $||u||_1 = 0$ alors $\sum_{n=0}^{+\infty} |u_n| = 0$ donc pour tout $n \in \mathbb{N}$, $|u_n| = 0$ et par suite u = 0.

Soit $\lambda \in \mathbb{K}$ et $u \in \ell^1(\mathbb{N}, \mathbb{K})$

$$\|\lambda u\|_1 = \sum_{n=0}^{+\infty} |\lambda u_n| = \sum_{n=0}^{+\infty} |\lambda| |u_n| = |\lambda| \sum_{n=0}^{+\infty} |u_n| = |\lambda| \|u\|_1$$

Soit $u, v \in \ell^1(\mathbb{N}, \mathbb{K})$

$$||u+v||_1 = \sum_{n=0}^{+\infty} |u_n + v_n| \le \sum_{n=0}^{+\infty} (|u_n| + |v_n|) = \sum_{n=0}^{+\infty} |u_n| + \sum_{n=0}^{+\infty} |v_n| = ||u||_1 + ||v||_1$$

Exercice 15: [énoncé]

 $L^1(I,\mathbb{K}) \subset \mathcal{C}(I,\mathbb{K})$ et $\mathcal{C}(I,\mathbb{K})$ est un \mathbb{K} -espace vectoriel. $\tilde{0} \in L^1(I,\mathbb{K})$.

Soit $\lambda, \mu \in \mathbb{K}$ et $f, g \in L^1(I, \mathbb{K})$.

Pour tout $t \in I$,

$$|(\lambda f + \mu g)(t)| \le |\lambda| |f(t)| + |\mu| |g(t)|$$

donc par comparaison de fonctions positives $\lambda f + \mu g \in L^1(I, \mathbb{K})$.

Finalement $L^1(I, \mathbb{K})$ est un sous-espace vectoriel de $\mathcal{C}(I, \mathbb{K})$ et c'est donc un \mathbb{K} -espace vectoriel.

L'application $\|.\|_1: L^1(I, \mathbb{K}) \to \mathbb{R}_+$ est bien définie.

Soit $f \in L^1(I, \mathbb{K})$. Si $||f||_1 = 0$ alors $\int_I |f(t)| dt = 0$ or |f| est continue et positive sur I d'intérieur non vide donc f = 0.

Soit $\lambda \in \mathbb{K}$ et $f \in L^1(I, \mathbb{K})$.

$$\left\|\lambda f\right\|_{1} = \int_{I} \left|\lambda\right| \left|f(t)\right| \mathrm{d}t = \left|\lambda\right| \left\|f\right\|_{1}$$

Soient $f, g \in L^1(I, \mathbb{K})$

$$||f + g||_1 \le \int_I |f(t)| + |g(t)| \, \mathrm{d}t = ||f||_1 + ||g||_1$$

 $\|.\|_1$ définit bien une norme sur $L^1(I,\mathbb{K})$

Exercice 16: [énoncé]

 $L^2(I, \mathbb{K}) \subset \mathcal{C}(I, \mathbb{K})$ et $\mathcal{C}(I, \mathbb{K})$ est un \mathbb{K} -espace vectoriel. $0 \in L^2(I, \mathbb{K})$.

Soit $\lambda \in \mathbb{K}$ et $f \in L^2(I, \mathbb{K})$. Pour tout $t \in I$.

$$|(\lambda f)(t)|^2 = |\lambda|^2 |f(t)|^2$$

donc par comparaison $\lambda f \in L^2(I, \mathbb{K})$. Soit $f, g \in L^2(I, \mathbb{K})$. Pour tout $t \in I$

$$|(f+g)(t)|^2 \le (|f(t)| + |g(t)|)^2 = |f(t)|^2 + 2|f(t)||g(t)| + |g(t)|^2 \le 2(|f(t)|^2 + |g(t)|^2)$$

 $car 2ab \le a^2 + b^2$

Par comparaison de fonctions positives $f + g \in L^2(I, \mathbb{K})$.

Finalement $L^2(I, \mathbb{K})$ est un sous-espace vectoriel de $C(I, \mathbb{K})$ et c'est donc un \mathbb{K} -espace vectoriel.

L'application $\|.\|_2: L^2(I,\mathbb{K}) \to \mathbb{R}_+$ est bien définie.

Soit $f \in L^2(I, \mathbb{K})$. Si $||f||_2 = 0$ alors $\int_I |f(t)|^2 dt = 0$ or $|f|^2$ est continue et positive sur I d'intérieur non vide donc

$$\forall t \in I, |f(t)|^2 = 0$$

puis $f = \tilde{0}$.

Soit $\lambda \in \mathbb{K}$ et $f \in L^2(I, \mathbb{K})$.

$$\|\lambda f\|_{2} = \left(\int_{I} |\lambda|^{2} |f(t)|^{2} dt\right)^{2} = |\lambda| \|f\|_{2}$$

Soit $f, g \in L^2(I, \mathbb{K})$.

$$\|f + g\|_2^2 \le \int_I \left(|f(t)| + |g(t)|\right)^2 \mathrm{d}t = \|f\|_2^2 + 2 \int_I |f(t)| \, |g(t)| \, \mathrm{d}t + \|g\|_2^2$$

Par l'inégalité de Cauchy-Schwarz, pour $f,g:[a;b]\to\mathbb{R}$ continue par morceaux,

$$\left| \int_a^b f(t)g(t) \, \mathrm{d}t \right| \le \left(\int_a^b f(t)^2 \, \mathrm{d}t \right)^{1/2} \left(\int_a^b g(t)^2 \, \mathrm{d}t \right)^{1/2}$$

Ici

$$\int_{a}^{b} |f(t)| |g(t)| dt \le \left(\int_{a}^{b} |f(t)|^{2} dt \right)^{1/2} \left(\int_{a}^{b} |g(t)|^{2} dt \right)^{1/2} \le \|f\|_{2} \|g\|_{2}$$

Or pour $f\colon I\to\mathbb{R}_+$ continue par morceaux intégrable

$$\forall [a;b] \subset I, \int_a^b f(t) \, \mathrm{d}t \leq \int_I f$$

donc ici

$$\int_{I} |f(t)| |g(t)| \, \mathrm{d}t \le \|f\|_{2} \|g\|_{2}$$

et enfin

$$||f + g||_2^2 \le (||f||_2 + ||g||_2)^2$$

ce qui permet de conclure.

Exercice 17 : [énoncé]

 $\ell^2(\mathbb{N}, \mathbb{K}) \subset \mathbb{K}^{\mathbb{N}}$ et $\mathbb{K}^{\mathbb{N}}$ est un \mathbb{K} -espace vectoriel. $0 \in \ell^2(\mathbb{K})$.

Pour $\lambda \in \mathbb{K}$ et $u \in \ell^2(\mathbb{N}, \mathbb{K})$, $\lambda u \in \ell^2(\mathbb{N}, \mathbb{K})$. Pour $u, v \in \ell^2(\mathbb{N}, \mathbb{K})$,

$$|(u+v)_n|^2 \le |u_n|^2 + 2|u_n||v_n| + |v_n|^2 \le 2(|u_n|^2 + |v_n|^2)$$

 $car 2ab < a^2 + b^2$.

Par comparaison de séries à termes positifs, $u + v \in \ell^2(\mathbb{N}, \mathbb{K})$.

 $\ell^2(\mathbb{N}, \mathbb{K})$ est un sous-espace vectoriel de $\mathbb{K}^{\mathbb{N}}$, c'est donc un \mathbb{K} -espace vectoriel. L'application $\|.\|_2: \ell^2(\mathbb{N}, \mathbb{K}) \to \mathbb{R}_+$ est bien définie.

Soit $u \in \ell^2(\mathbb{N}, \mathbb{K})$. Si $||u||_2 = 0$ alors $\sum_{n=0}^{+\infty} |u_n|^2 = 0$ donc pour tout $n \in \mathbb{N}$, $|u_n|^2 = 0$ puis u = 0.

Soit $\lambda \in \mathbb{K}$ et $u \in \ell^2(\mathbb{N}, \mathbb{K})$

$$\|\lambda u\| = \sqrt{\sum_{n=0}^{+\infty} |\lambda u_n|^2} = \sqrt{\sum_{n=0}^{+\infty} |\lambda|^2 |u_n|^2} = |\lambda| \sqrt{\sum_{n=0}^{+\infty} |u_n|^2} = |\lambda| \|u\|_2$$

Soit $u, v \in \ell^2(\mathbb{N}, \mathbb{K})$

$$||u+v||_2^2 = \sum_{n=0}^{+\infty} |u_n+v_n|^2 \le \sum_{n=0}^{+\infty} |u_n|^2 + 2\sum_{n=0}^{+\infty} |u_n| |v_n| + \sum_{n=0}^{+\infty} |v_n|^2$$

Or par l'inégalité de Cauchy-Schwarz

$$\sum_{n=0}^{N} |u_n| |v_n| \le \sqrt{\sum_{n=0}^{N} |u_n|^2} \sqrt{\sum_{n=0}^{N} |v_n|}$$

En passant à la limite quand $N \to +\infty$

$$\sum_{n=0}^{+\infty} |u_n| \, |v_n| \le \sqrt{\sum_{n=0}^{+\infty} |u_n|^2} \sqrt{\sum_{n=0}^{+\infty} |v_n|}$$

Ainsi

$$||u + v||_2^2 \le (||u||_2 + ||v||_2)^2$$

puis

$$\|u+v\|_2 \leq \|u\|_2 + \|v\|_2$$

Exercice 18: [énoncé]

a) Pour $X \in \mathcal{M}_{n,1}(\mathbb{R})$, on a

$$\forall 1 \le i \le n, |(AX)_i| \le \sum_{j=1}^n |a_{i,j}| |x_j| = \sum_{j=1}^n |a_{i,j}|$$

et donc

$$||AX|| \le \sum_{j=1}^{n} |a_{i,j}| \le \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{i,j}| = M$$

Ainsi, l'ensemble $\{||AX|| \mid X \in S\}$ est une partie de \mathbb{R} non vide et majorée, elle admet une borne supérieure.

- b) Si X=0, c'est immédiat. Si $X\neq 0$, on introduit $X'=X/\|X\|\in S$ et l'on exploite $\|AX'\|\leq N(A)$.
- c) L'application N est bien définie à valeurs dans \mathbb{R}_+ en vertu de ce qui précède. Si N(A)=0 alors pour tout $X\in\mathcal{M}_{n,1}(\mathbb{R})$, on a ||AX||=0. En particulier, en prenant des colonnes X élémentaires, on obtient que chaque colonne de A est nulle.

$$N(\lambda A) = \sup_{X \in S} \|\lambda AX\| = \sup_{X \in S} |\lambda| \|AX\| = |\lambda| \sup_{X \in S} \|AX\| = |\lambda|$$

Enfin

$$N(A + B) = \sup_{X \in S} \|(A + B)X\|$$

$$\leq \sup_{X \in S} \|AX + BX\|$$

$$\leq \sup_{X \in S} \|AX\| + \sup_{X \in S} \|BX\|$$

$$= N(A) + N(B)$$

Finalement, N définit bien une norme sur $\mathcal{M}_n(\mathbb{R})$.

d) On a déjà vu

$$N(A) \le \max_{1 \le i \le n} \sum_{i=1}^{n} |a_{i,j}|$$

Soit i_0 l'indice pour lequel

$$\max_{1 \le i \le n} \sum_{j=1}^{n} |a_{i,j}| = \sum_{j=1}^{n} |a_{i_0,j}|$$

Prenons ensuite $X = {}^t (x_1 \cdots x_n)$ avec $x_j = \pm 1$ de sorte que $a_{i_0,j}x_j = |a_{i_0,j}|$.

On a $X \in S$ et $||AX|| = \sum_{i=1}^{n} |a_{i_0,j}|$ donc

$$N(A) \ge \sum_{j=1}^{n} |a_{i_0,j}|$$

puis l'égalité voulue.

Exercice 19: [énoncé]

a) L'application $\|.\|$ est bien définie de $\mathcal{M}_n(\mathbb{R})$ dans \mathbb{R}_+ . Si $\|A\| = 0$ alors

$$\forall 1 \le i \le n, \sum_{j=1}^{n} |a_{i,j}| = 0$$

et donc

$$\forall 1 \leq i, j \leq n, a_{i,j} = 0$$

ainsi la matrice A est nulle.

De plus

$$\|\lambda A\| = \sup_{1 \le i \le n} \sum_{j=1}^{n} |\lambda a_{i,j}|$$

$$= \sup_{1 \le i \le n} |\lambda| \sum_{j=1}^{n} |a_{i,j}|$$

$$= |\lambda| \sup_{1 \le i \le n} \sum_{j=1}^{n} |a_{i,j}|$$

$$= |\lambda| \|A\|$$

et

$$||A + B|| = \sup_{1 \le i \le n} \sum_{j=1}^{n} |a_{i,j} + b_{i,j}|$$

$$\leq \sup_{1 \le i \le n} \sum_{j=1}^{n} |a_{i,j}| + |b_{i,j}|$$

$$\leq \sup_{1 \le i \le n} \sum_{j=1}^{n} |a_{i,j}| + \sup_{1 \le i \le n} \sum_{j=1}^{n} |b_{i,j}|$$

$$= ||A|| + ||B||$$

b) Pour $X \in \mathcal{M}_{n,1}(\mathbb{R})$,

$$N(AX) = \max_{1 \le i \le n} \left| \sum_{j=1}^{n} a_{i,j} x_{j} \right|$$

$$\leq \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{i,j}| |x_{j}|$$

$$\leq \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{i,j}| N(X)$$

$$= ||A|| N(X)$$

c) Pour $X \in \mathcal{M}_{n,1}(\mathbb{R})$ vérifiant N(X) = 1, on a immédiatement $N(AX) \leq ||A||$. On en déduit l'inégalité suivante avec existence de la borne supérieure

$$\sup_{N(X)=1} N(AX) \le ||A||$$

Pour l'inégalité inverse, introduisons i_0 l'indice pour lequel

$$N(A) = \sum_{i=1}^{n} |a_{i_0,j}|$$

et introduisons X la colonne dont les coefficients sont donnés par

$$x_j = \begin{cases} 1 & \text{si } a_{i_0, j} \ge 0 \\ -1 & \text{sinon} \end{cases}$$

de sorte que $|x_j| = 1$ et $a_{i_0,j}x_j = |a_{i_0,j}|$. La colonne X vérifie alors

$$N(X) = 1$$
 et $N(AX) \ge (AX)_{i_0} = \sum_{j=1}^{n} |a_{i_0,j}| = ||A||$

On peut donc affirmer

$$\sup_{N(X)=1} N(AX) \ge ||A||$$

puis l'égalité. En fait, la borne supérieure est un max!

Exercice 20 : [énoncé]

Puisque $0 \in \mathcal{C}_0$, on a déjà

$$d(e, \mathcal{C}_0) \le d(e, 0) = ||e||_{\infty} = 1$$

Soit $x \in \mathcal{C}_0$. On a

$$|x_n - 1| \le ||x - e||_{\infty}$$

et donc quand $n \to +\infty$

$$1 \le \|x - e\|_{\infty}$$

On en déduit

$$d(e, C_0) > 1$$

et donc $d(e, \mathcal{C}_0) = 1$.

Exercice 21 : [énoncé]

Puisque $0 \in \mathcal{C}_0$, on a déjà

$$d(u, C) \le d(u, 0) = ||u||_{\infty} = 1$$

Soit $x \in \mathcal{C}$ et $\ell \in \mathbb{R}$ sa limite. Pour n = 2p pair

$$|x_{2p} - u_{2p}| \le ||x - u||_{\infty}$$

donne $|x_{2p}-1| \leq ||x-u||_{\infty}$ puis à la limite

$$|\ell-1| \leq ||x-u||_{\infty}$$

De même avec n = 2p + 1 impair on obtient

$$|\ell+1| \leq ||x-u||_{\infty}$$

On en duite

$$|1| = \left| \frac{1+\ell}{2} + \frac{1-\ell}{2} \right| \le \frac{1}{2} \left(|1+\ell| + |1-\ell| \right) \le ||x-u||_{\infty}$$

On en déduit

$$d(u, \mathcal{C}) \ge 1$$

et donc $d(u, \mathcal{C}) = 1$.

Exercice 22 : [énoncé]

Puisque $0 \in F$, $d(e, F) \le d(e, 0) = 1$.

En raisonnant par l'absurde montrons d(e, F) = 1 en supposant d(e, F) < 1. Il existe alors une suite $x \in \mathcal{B}(\mathbb{N}, \mathbb{R})$ vérifiant $\|\Delta x - e\|_{\infty} = \rho$ avec $\rho < 1$.

Pour tout $k \in \mathbb{N}$, $|\Delta x(k) - 1| \le \rho$ donc $\Delta x(k) \ge 1 - \rho$.

En sommant ces inégalités pour k allant de 0 à n-1, on obtient $x(n)-x(0) \ge n(1-\rho)$ et donc $x \to +\infty$.

Ceci contredit $x \in \mathcal{B}(\mathbb{N}, \mathbb{R})$ et permet de conclure.

Exercice 23: [énoncé]

Par définition

$$d(f, F) = \inf_{g \in F} ||f - g||_{\infty}$$

Puisque la fonction nulle est continue

$$d(f,F) \leq ||f - \tilde{0}||_{\infty} = 1$$

Inversement, soit $q \in F$.

Pour tout x > 0.

$$|f(x) - g(x)| = |1 - g(x)| \le ||f - g||_{\infty}$$

donc à la limite quand $x \to 0^+$

$$|1 - g(0)| \le ||f - g||_{\infty}$$

De même, pour x < 0,

$$|f(x) - g(x)| = |1 + g(x)| \le ||f - g||_{\infty}$$

et donc à la limite quand $x \to 0^-$

$$|1+g(0)| \le ||f-g||_{\infty}$$

On en déduit

$$2 \le |1 + g(0)| + |1 - g(0)| \le 2 ||f - g||_{\infty}$$

et donc

$$1 \le \|f - g\|_{\infty}$$

Finalement $1 \le d(f, F)$ puis d(f, F) = 1.

Exercice 24 : [énoncé]

a)
$$||f||_1 \le \int_0^1 ||f||_{\infty} \le ||f||_{\infty}$$

 $_{
m et}$

$$||f||_2 \le \left(\int_0^1 ||f||_\infty^2\right)^{1/2} \le ||f||_\infty$$

Posons $f_n(x) = x^n$, $||f_n||_{\infty} = 1$ alors que $||f_n||_1 = \frac{1}{n+1} \to 0$ et $||f_n||_2 = \frac{1}{\sqrt{2n+1}} \to 0$. Les normes ne sont donc pas équivalentes.

b) Par l'inégalité de Cauchy-Schwarz :

$$\int_0^1 1 \times |f(t)| \, \mathrm{d}t \le \left(\int_0^1 1 \, \mathrm{d}t \right)^{1/2} \left(\int_0^1 f(t)^2 \, \mathrm{d}t \right)^{1/2}$$

donc

$$||f||_1 \le ||f||_2$$

Pour $f_n(x) = \sqrt{2n+1}x^n$, $||f_n||_2 = 1$ et $||f_n||_1 = \frac{\sqrt{2n+1}}{n+1} \to 0$, les normes ne sont donc pas équivalentes.

Exercice 25 : [énoncé]

- a) Sans difficultés.
- b) On a $N_1(f) \leq N_2(f)$ car

$$|f(x)| \le |f(0)| + \left| \int_0^x f'(t) dt \right| \le |f(0)| + |x| \sup_{[-1,1]} |f'|$$

et sans difficultés on a aussi $N_3(f) \leq 2N_1(f)$.

Posons

$$f_n(x) = x^n$$

On a $N_1(f_n) = 1$, $N_2(f_n) = n$ et $N_3(f_n) = \frac{2}{n+1}$.

On en déduit que les normes N_1 et N_2 d'une part, N_1 et N_3 d'autre part, ne sont pas équivalentes.

Exercice 26: [énoncé]

a) Les propriétés $N(f+g) \leq N(f) + N(g)$ et $N(\lambda f) = |\lambda| N(f)$ sont faciles. Si N(f) = 0 alors la résolution de l'équation différentielle f' + 3f = 0 avec la condition initiale f(0) = 0 donne f = 0. Ainsi l'application N est bien une norme sur E.

On remarque

$$f(x) = e^{-3x} \int_0^x (f(t)e^{3t})' dt = e^{-3x} \int_0^x (3f(t) + f'(t))e^{3t} dt$$

Par suite $|f(x)| \le e^3 N(f)$ pour tout $x \in [0;1]$ et donc $N_{\infty}(f) \le \alpha N(f)$ avec $\alpha = e^3$.

b) Pour $f_n(x) = x^n$, $N_{\infty}(f) = 1$ et $N(f) = N_{\infty}(x \mapsto 3x^n + nx^{n-1}) = n + 3 \to +\infty$. Les normes N_{∞} et N ne sont pas équivalentes.

Exercice 27 : [énoncé]

- a) Posons $\varphi(f,g) = f(0)g(0) + \int_0^1 f'(t)g'(t) dt$. φ est une forme bilinéaire symétrique, $\varphi(f,f) \geq 0$ et si $\varphi(f,f) = 0$ alors f(0) = 0 et pour tout $t \in [0;1]$, f'(t) = 0 donc f = 0. φ est donc un produit scalaire et N apparaît comme étant la norme associée.
- b) Pour tout $x \in [0;1]$, $|f(x)| \le |f(0)| + \left|\int_0^x f'(t) dt\right| \le \sqrt{2}N(f)$, donc $||f||_{\infty} \le \sqrt{2}N(f)$. Pour $f(x) = \sin(nx\pi)$, $||f||_{\infty} = 1$ et $N(f) = n\pi/\sqrt{2} \to +\infty$. Les deux normes ne sont donc pas équivalentes.

Exercice 28: [énoncé]

a) $N_1, N_2 \colon \mathbb{R}[X] \to \mathbb{R}$.

$$N_1(P+Q) = \sum_{k=0}^{+\infty} \left| P^{(k)}(0) + Q^{(k)}(0) \right| \le \sum_{k=0}^{+\infty} \left| P^{(k)}(0) \right| + \left| Q^{(k)}(0) \right|$$
$$= \sum_{k=0}^{+\infty} \left| P^{(k)}(0) \right| + \sum_{k=0}^{+\infty} \left| Q^{(k)}(0) \right| = N_1(P) + N_1(Q)$$

$$N_1(\lambda P) = \sum_{k=0}^{+\infty} \left| \lambda P^{(k)}(0) \right| = |\lambda| \sum_{k=0}^{+\infty} \left| P^{(k)}(0) \right| = |\lambda| \, N_1(P)$$
$$N_1(P) = 0 \implies \forall k \in \mathbb{Z}, P^{(k)}(0) = 0$$

or

$$P = \sum_{k=0}^{+\infty} \frac{P^{(k)}(0)}{k!} X^k$$

et donc P=0.

Finalement, N_1 est une norme.

$$\begin{split} N_2(P+Q) &= \sup_{t \in [-1;1]} |P(t) + Q(t)| \le \sup_{t \in [-1;1]} |P(t)| + |Q(t)| \\ &\le \sup_{t \in [-1;1]} |P(t)| + \sup_{t \in [-1;1]} |Q(t)| = N_2(P) + N_2(Q) \end{split}$$

$$N_2(\lambda P) = \sup_{t \in [-1;1]} |\lambda P(t)| = \sup_{t \in [-1;1]} |\lambda| |P(t)| = |\lambda| \sup_{t \in [-1;1]} |P(t)| = |\lambda| N_2(P)$$

$$N_2(P) = 0 \implies \forall t \in [-1; 1], P(t) = 0$$

et par infinité de racines P=0.

- b) La suite $(\frac{1}{n}X^n)_{n\in\mathbb{N}}$ converge vers 0 pour N_2 mais n'est pas bornée et donc diverge pour N_1 .
- c) Les normes ne peuvent être équivalentes car sinon les suites convergeant pour l'une des normes convergerait pour l'autre.

Exercice 29: [énoncé]

- a) Aisément $\|.\|_{\infty} \leq \|.\|_{1}$ Soit u^{N} définie par $u_{n}^{N}=1$ si n < N et $u_{n}^{N}=0$ sinon. On a $\|u^{N}\|_{1}=N$ et $\|u^{N}\|_{\infty}=1$ donc il n'existe pas de $\alpha>0$ tel que $\|.\|_{1}\leq \alpha\,\|.\|_{\infty}$. $\|.\|_{1}$ et $\|.\|_{\infty}$ ne sont pas équivalentes.
- b) En introduisant N tel que $n > N \implies u_n = 0$ on a

$$||u||_{2}^{2} = \sum_{n=0}^{+\infty} |u_{n}|^{2} = \sum_{n=0}^{N} |u_{n}|^{2} \le \left(\sum_{n=0}^{N} |u_{n}|\right)^{2} = \left(\sum_{n=0}^{+\infty} |u_{n}|\right)^{2} = ||u||_{1}^{2}$$

Ainsi $\|.\|_2 \le \|.\|_1$. Soit u^N définie par $u_n^N = 1$ si n < N et $u_n^N = 0$ sinon. On a $\|u^N\|_1 = N$ et $\|u^N\|_2 = \sqrt{N}$ donc il n'existe pas de $\alpha > 0$ tel que $\|.\|_1 \le \alpha \|.\|_2$. $\|.\|_1$ et $\|.\|_2$ ne sont pas équivalentes.

Exercice 30 : [énoncé]

a) La suite u étant sommable, elle converge vers 0 et est par conséquent bornée. Pour tout $n \in \mathbb{N}$.

$$|u_n| \le \sum_{k=0}^{+\infty} |u_k|$$

donc

$$||u||_{\infty} \le ||u||_1$$

Soit u^N définie par $u_n^N = 1$ si n < N et $u_n^N = 0$ sinon. $u^N \in \ell^1(\mathbb{R})$.

On a $\|u^N\|_1 = N$ et $\|u^N\|_{\infty} = 1$ donc il n'existe pas de $\alpha > 0$ tel que $\|.\|_1 \le \alpha \|.\|_{\infty}$. $\|.\|_1$ et $\|.\|_{\infty}$ ne sont pas équivalentes.

b) On a $\sum_{n=0}^{N} |u_n|^2 \le \left(\sum_{n=0}^{N} |u_n|\right)^2$ donc quand $N \to +\infty$:

$$||u||_{2}^{2} = \sum_{n=0}^{+\infty} |u_{n}|^{2} \le \left(\sum_{n=0}^{+\infty} |u_{n}|\right)^{2} = ||u||_{1}^{2}$$

Ainsi $\|.\|_2 \le \|.\|_1$. Soit u^N définie par $u_n^N = 1$ si n < N et $u_n^N = 0$ sinon. $u^N \in \ell^1(\mathbb{R})$. On a $\|u^N\|_1 = N$ et $\|u^N\|_2 = \sqrt{N}$ donc il n'existe pas de $\alpha > 0$ tel que $\|.\|_1 \le \alpha \|.\|_2$. $\|.\|_1$ et $\|.\|_2$ ne sont pas équivalentes.

Exercice 31 : [énoncé]

a) Supposons que N_a est une norme sur $\mathcal{B}(\mathbb{N}, \mathbb{R})$. Pour $m \in \mathbb{N}$, la suite élémentaire $e_m = (\delta_{m,n})_{n \in \mathbb{N}}$ est non nulle donc

$$N_a(e_m) = a_m > 0$$

De plus, pour la suite constante $u=(1)_{n\in\mathbb{N}}$, la quantité $N_a(u)$ existe et donc la série $\sum a_n$ converge.

Inversement, si $\sum a_n$ est une série convergente à termes strictement positifs alors on montre que l'application $N_a \colon \mathcal{B}(\mathbb{N}, \mathbb{R}) \to \mathbb{R}_+$ est bien définie et que celle-ci est une norme sur l'espace $\mathcal{B}(\mathbb{N}, \mathbb{R})$.

b) On a aisément $N_a \leq k \|.\|_{\infty}$ avec $k = \sum_{n=0}^{+\infty} a_n$. Inversement, supposons $\|.\|_{\infty} \leq k' N_a$. Pour la suite élémentaire e_m , on obtient $\|e_m\|_{\infty} \leq k' N_a(e_m)$ et donc $a_m \geq 1/k$ pour tout $m \in \mathbb{N}$. Cette propriété est incompatible avec la convergence de la série $\sum a_n$. Ainsi N_a est dominée par $\|.\|_{\infty}$ mais ces deux normes ne sont pas équivalentes.

Exercice 32 : [énoncé]

a) N_{∞} est bien connue pour être une norme sur l'ensemble des fonctions bornées, il en est de même sur l'ensemble des suites bornées dont le premier terme est nul.

L'application $N: E \to \mathbb{R}_+$ est bien définie. On vérifie aisément $N(u+v) \le N(u) + N(v)$ et $N(\lambda u) = |\lambda| N(u)$. Si N(u) = 0 alors pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n$ et puisque $u_0 = 0$, on obtient u = 0. Ainsi N est une norme sur E.

b) Pour $u \in E$, on a, pour tout $n \in \mathbb{N}$,

$$|u_{n+1} - u_n| \le |u_{n+1}| + |u_n| \le 2N_{\infty}(u)$$

On en déduit

$$N(u) \le 2N_{\infty}(u)$$

La suite u définie par $u_0 = 0$ et $u_n = (-1)^n$ pour $n \ge 1$ est une suite non nulle pour laquelle il y a égalité.

c) Considérons la suite $u^{(p)}$ définie par

$$u^{(p)}(n) = \begin{cases} n & \text{si } n \le p \\ p & \text{sinon} \end{cases}$$

On a

$$u^{(p)} \in E, N_{\infty}(u^{(p)}) = p \text{ et } N(u^{(p)}) = 1$$

On en déduit que les normes N et N_{∞} ne sont pas équivalentes car

$$\frac{N_{\infty}(u^{(p)})}{N(u^{(p)})} \to +\infty$$

Exercice 33 : [énoncé]

a) L'application N est bien définie sur E et valeurs dans \mathbb{R}_+ . Si N(f)=0 alors par nullité d'une somme de positifs f(0)=0 et $\|f'\|_{\infty}=0$ et donc f est constante égale à 0.

$$\begin{split} N(\lambda f) &= |\lambda f(0)| + \|\lambda f'\|_{\infty} = |\lambda| \, |f(0)| + |\lambda| \, \|f'\|_{\infty} = |\lambda| \, N(f). \\ N(f+g) &= |f(0)+g(0)| + \|f'+g'\|_{\infty} \leq |f(0)| + |g(0)| + \|f'\|_{\infty} + \|g'\|_{\infty} = \\ N(f) + N(g). \end{split}$$

b) Aisément $N(f) \leq N'(f)$ car $|f(0)| \leq ||f||_{\infty}$. Pour tout $x \in [0; 1]$,

$$|f(x)| = \left| f(0) + \int_0^x f'(t) \, \mathrm{d}t \right| \le |f(0)| + \int_0^x ||f'||_{\infty} \le |f(0)| + x \, ||f'||_{\infty} \le N(f)$$

Par suite $||f||_{\infty} \leq N(f)$ puis sachant $||f'|| \leq N(f)$ on a

$$N'(f) \le 2N(f)$$

c) Pour $f_n(x) = x^n$.

$$||f_n||_{\infty} = 1 \text{ et } N(f_n) = n \xrightarrow[n \to +\infty]{} +\infty$$

Donc N et $\|.\|_{\infty}$ ne sont pas équivalentes. A fortiori, N' n'est pas non plus équivalente à $\|.\|_{\infty}$.

Exercice 34: [énoncé]

a) Les applications sont bien définies $N_i : E \to \mathbb{R}_+$ car toute fonction continue sur un segment y est bornée.

Les propriétés $N_i(f+g) \leq N_i(f) + N_i(g)$ et $N_i(\lambda f) = |\lambda| N_i(f)$ sont faciles. Si $N_1(f) = 0$ alors f' = 0 et sachant f(0) = 0, on obtient f = 0.

Si $N_2(f) = 0$ alors la résolution de l'équation différentielle f' + f = 0 avec la condition initiale f(0) = 0 donne f = 0.

Ainsi les applications N_1, N_2 sont bien des normes sur E.

b) Pour $f \in E$, on a

$$f(x) = \int_0^x f'(t) \, \mathrm{d}t$$

ce qui permet d'établir $||f||_{\infty} \le ||f'||_{\infty}$.

Puisque

$$N_2(f) \le ||f||_{\infty} + ||f'||_{\infty} \le 2N_1(f)$$

la norme N_2 est dominée par la norme N_1 .

c) Sachant f(0) = 0, on a

$$f(x) = e^{-x} \int_0^x (f(t) e^t)' dt = e^{-x} \int_0^x (f(t) + f'(t)) e^t dt$$

donc

$$|f(x)| \le N_2(f)$$

Puisque

$$|f'(x)| \le |f(x) + f'(x)| + |f(x)|$$

on obtient

$$|f'(x)| \le 2N_2(f)$$

et finalement

$$N_1(f) \le 2N_2(f)$$

Exercice 35 : [énoncé]

Pour tout $f, g \in E$ et tout $\lambda \in \mathbb{R}$, il est clair que $N_i(f+g) \leq N_i(f) + N_i(g)$ et que $N_i(\lambda f) = \lambda N_i(f)$.

Supposons $N_1(f) = 0$, on a alors $\sup_{x \in [0:1]} |f(x)| = 0$ donc f = 0.

Supposons maintenant que $N_2(f) = 0$, on a alors $\sup_{x \in [0,1]} |f(x) + f'(x)| = 0$ donc f(x) + f'(x) = 0. Après résolution de l'équation différentielle sous-jacente,

 $f(x) = \lambda e^{-x}$ avec $\lambda = f(0) = 0$ et finalement f = 0.

Finalement N_1 et N_2 sont bien deux normes sur E.

Il est clair que

$$N_2(f) \le N_1(f)$$

Posons maintenant $M = N_2(f)$. Pour tout $x \in [0; 1]$, on a

$$|f(x) + f'(x)| \le M$$

donc

$$\left| \left(f(x) e^x \right)' \right| \le M e^x$$

d'où

$$|f(x) e^x| = \left| \int_0^x (f(t) e^t)' dt \right| \le \int_0^x M e^t dt \le M ex$$

puis $|f(x)| \leq M$ e pour tout $x \in [0; 1]$. Ainsi

$$\sup_{x \in [0;1]} |f(x)| \le M e$$

De plus

$$|f'(x)| \le |f(x) + f'(x)| + |f(x)| \le M(1 + e)$$

donc

$$\sup_{x \in [0;1]} |f'(x)| \le M(1 + e)$$

et finalement

$$N_1(f) \le M(1+2e) = N_2(f)(1+2e)$$

On peut conclure que les deux normes sont effectivement équivalentes.

Exercice 36: [énoncé]

a) L'application $N\colon E\to\mathbb{R}_+$ est bien définie et on vérifie aisément $N(\lambda f)=|\lambda|\,N(f)$ et $N(f+g)\le N(f)+N(g)$. Supposons maintenant N(f)=0, la fonction f est alors solution de l'équation différentielle y''+y=0 vérifiant les conditions initiales y(0)=y'(0)=0 ce qui entraı̂ne f=0. Finalement N est une norme sur E. b) On a évidemment $N \leq \nu$.

Inversement, soit $f \in E$ et g = f + f''. La fonction f est solution de l'équation différentielle

$$y'' + y = g$$

vérifiant les conditions initiales y(0) = y'(0) = 0. Après résolution via la méthode de variation des constantes, on obtient

$$f(x) = \int_0^x \sin(x - t)g(t) dt$$

On en déduit $|f(x)| \le x \|g\|_{\infty} \le \pi \|g\|_{\infty}$ et donc $\|f\|_{\infty} \le \pi N(f)$. De plus $\|f''\|_{\infty} \le \|f + f''\|_{\infty} + \|f\|_{\infty}$ donc $\nu(f) \le (\pi + 1)N(f)$.

Exercice 37 : [énoncé]

a) $\|.\|_{\varphi}: E \to \mathbb{R}_+$ est bien définie.

Si $||f||_{\varphi} = 0$ alors la fonction $t \mapsto |f(t)| \varphi(t)$ est nulle. En dehors des valeurs où φ est nulle, la fonction f s'annule. Or φ ne s'annule qu'un nombre fini de fois, donc par un argument de continuité, f s'annule aussi en ces points et finalement $f = \tilde{0}$.

Les propriétés $\|\lambda f\|_{\varphi} = |\lambda| \|f\|_{\varphi}$ et $\|f + g\|_{\varphi} \le \|f\|_{\varphi} + \|g\|_{\varphi}$ sont immédiates.

- b) Considérons la fonction φ_2/φ_1 . Cette fonction est définie et continue sur le segment $[0\,;1]$, elle y est donc bornée et il existe $M\in\mathbb{R}_+$ vérifiant $\forall x\in[0\,;1], \varphi_2(x)\leq M\varphi_1(x)$. On en déduit $\|.\|_{\varphi_1}\leq M\,\|.\|_{\varphi_2}$. Ainsi $\|.\|_{\varphi_1}$ est dominée par $\|.\|_{\varphi_2}$ et par un argument symétrique $\|.\|_{\varphi_2}$ est dominée par $\|.\|_{\varphi_1}$.
- c) On a facilement $\|.\|_{x^2} \leq \|.\|_x$.

Pour $f_n(x) = (1-x)^n$, on a après étude des variations des fonction $x \mapsto x(1-x)^n$ et $x \mapsto x^2(1-x)^n$

$$||f_n||_x = \frac{1}{n+1} \left(1 - \frac{1}{n+1}\right)^n \sim \frac{e^{-1}}{n}$$

 $_{
m et}$

$$\|f_n\|_{x^2} = \left(\frac{2}{n+2}\right)^2 \left(1 - \frac{2}{n+2}\right)^n \sim \frac{e^{-2}}{n^2}$$

donc il n'existe pas de constante $M \ge 0$ telle que $\|.\|_x \le M \|.\|_{x^2}$. Les deux normes $\|.\|_x$ et $\|.\|_{x^2}$ ne sont pas équivalentes.

Exercice 38: [énoncé]

- a) L'application $\|.\|_{\varphi}: E \to \mathbb{R}_+$ est bien définie. Si $\|f\|_{\varphi} = 0$ alors par nullité de l'intégrale d'une fonction continue et positive, la fonction $t \mapsto |f(t)| \, \varphi(t)$ est nulle. En dehors des valeurs où φ est nulle, la fonction f s'annule. Or φ ne s'annule qu'un nombre fini de fois, donc par un argument de continuité, f s'annule aussi en ces points et finalement $f = \tilde{0}$. Les propriétés $\|\lambda f\|_{\varphi} = |\lambda| \, \|f\|_{\varphi}$ et $\|f + g\|_{\varphi} \le \|f\|_{\varphi} + \|g\|_{\varphi}$ sont immédiates.
- b) Considérons la fonction φ_2/φ_1 . Cette fonction est définie et continue sur le segment [0;1], elle y est donc bornée et il existe $M \in \mathbb{R}_+$ vérifiant

$$\forall x \in [0;1], \varphi_2(x) \le M\varphi_1(x)$$

On en déduit

$$\forall f \in E, \int_0^1 |f(t)| \, \varphi_1(t) \, \mathrm{d}t \le M \int_0^1 |f(t)| \, \varphi_2(t) \, \mathrm{d}t$$

Autrement dit $\|.\|_{\varphi_1} \leq M \, \|.\|_{\varphi_2}.$ La norme $\|.\|_{\varphi_1}$ est dominée par $\|.\|_{\varphi_2}$ et, par un argument symétrique, $\|.\|_{\varphi_2}$ est dominée par $\|.\|_{\varphi_1}.$

c) On vérifie facilement $\|.\|_{x^2} \leq \|.\|_x$ car

$$\forall t \in [0;1], t^2 \le t$$

Pour $f_n(x) = (1 - x)^n$, on a

$$||f_n||_x = \frac{1}{(n+1)(n+2)}$$

et

$$\|f_n\|_{x^2} = \frac{2}{(n+1)(n+2)(n+3)}$$

donc il n'existe pas de constante $M \geq 0$ telle que $\|.\|_x \leq M \|.\|_{x^2}$. Les deux normes $\|.\|_x$ et $\|.\|_{x^2}$ ne sont pas équivalentes.

Exercice 39: [énoncé]

On sait $N_{\infty}(AB) \leq nN_{\infty}(A)N_{\infty}(B)$ et $\alpha N \leq N_{\infty} \leq \beta N$ avec $\alpha, \beta > 0$ donc

$$N(AB) \le \frac{1}{\alpha} N_{\infty}(AB) \le \frac{n}{\alpha} N_{\infty}(A) N_{\infty}(B) \le \frac{n\beta^2}{\alpha} N(A) N(B)$$

Exercice 40: [énoncé]

Les applications

$$N_1 \colon P \mapsto \int_0^1 |P(t)| \, \mathrm{d}t \, \, \mathrm{et} \, \, N_2 \colon P \mapsto \sup_{t \in [0;1]} |P(t)|$$

définissent deux normes sur l'espace E. Puisque l'espace E est de dimension finie, ces deux normes sont équivalentes et en particulier N_2 est dominée par N_1

Exercice 41 : [énoncé]

- a) facile.
- b) (i) \Longrightarrow (ii) Supposons que la suite (P_n) converge simplement sur \mathbb{R} vers une certaine fonction f. On ne sait pas a priori si cette fonction est, ou non, polynomiale.

Soit $\xi = (\xi_0, \dots, \xi_d)$ une famille de d+1 réels distincts et $P \in E$ déterminé par $P(\xi_k) = f(\xi_k)$. On peut affirmer que la (P_n) suite converge vers P pour la norme N_{ξ} . Soit [a;b] un segment de \mathbb{R} avec a < b. $N = \|.\|_{\infty,[a;b]}$ définit une norme sur E qui est équivalent à N_{ξ} car E est de dimension finie. Puisque (P_n) converge vers P pour la norme N_{ξ} , on peut affirmer que la convergence a aussi lieu pour la norme N et donc (P_n) converge uniformément vers P sur le segment [a;b]. Au passage, on en déduit que f=P.

(ii) \Longrightarrow (iii) Si la suite (P_n) converge uniformément sur tout segment vers une fonction f, elle converge aussi simplement vers f et l'étude ci-dessus montre que f est un polynôme. En introduisant la norme infinie relative aux coefficients polynomiaux :

$$||a_0 + \dots + a_d X^d||_{\infty} = \max_{0 \le k \le d} |a_k|$$

l'équivalence de norme permet d'établir que les coefficients de P_n convergent vers les coefficients respectifs de f.

(iii) \Longrightarrow (i) immédiat.

Exercice 42 : [énoncé]

a) L'application $N \colon E \to \mathbb{R}_+$ proposée vérifie aisément

$$N(\lambda f) = |\lambda| N(f)$$
 et $N(f+g) \le N(f) + N(g)$

Le problème est l'obtention de l'implication de séparation

$$N(f) = 0 \implies f = 0$$

Procédons par récurrence sur $d \in \mathbb{N}^*$.

Cas $d=1: E=\mathrm{Vect}(g)$ avec $g\neq \tilde{0}$. Un réel $a_1\in [0\,;1]$ tel que $g(a_1)\neq 0$ convient.

Supposons la propriété au rang $d \ge 1$.

Soit E un sous-espace vectoriel de dimension d+1 de $\mathcal{C}^0([0\,;1],\mathbb{R})$. Il existe une fonction g non nulle élément de E et il existe $a_{d+1}\in[0\,;1]$ tel que $g(a_{d+1})\neq 0$. Considérons alors $H=\{f\in E\mid f(a_{d+1})=0\}$. On vérifie aisément $E=H\oplus \mathrm{Vect}\,g$. Puisque H est alors de dimension d, on peut appliquer l'hypothèse de récurrence pour introduire $(a_1,\ldots,a_d)\in[0\,;1]^d$ tel que $h\mapsto \sum_{i=1}^d |h(a_i)|$ soit une norme $\mathrm{sur} H$.

Considérons alors l'application

$$N \colon f \in E \mapsto \sum_{i=1}^{d+1} |f(a_i)|$$

et montrons

$$N(f) = 0 \implies f = 0$$

Supposons N(f) = 0 et donc $|f(a_1)| = \ldots = |f(a_d)| = |f(a_{d+1})| = 0$. Puisque $E = H \oplus \operatorname{Vect} g$, on peut écrire $f = h + \lambda g$ avec $h \in H$ et $\lambda \in \mathbb{R}$. La propriété $|f(a_{d+1})| = 0$ entraı̂ne $\lambda = 0$ et la propriété $|f(a_1)| = \ldots = |f(a_d)| = 0$ entraı̂ne alors h = 0. On peut donc conclure f = 0. Récurrence établie.

b) Introduisons $E' = E + \operatorname{Vect} f$ de dimension d ou d+1. Sur E', on peut introduire une norme du type précédent et l'hypothèse de convergence simple donne alors que (f_n) tend vers f pour la norme considérée. Or sur E' de dimension finie toutes les normes sont équivalentes et donc (f_n) tend aussi vers f pour la norme $\|.\|_{\infty}$ ce qui signifie que (f_n) converge uniformément vers f.

Il reste à montrer que $f \in E$. Par l'absurde, supposons que $f \notin E$. On a alors $E' = E \oplus \text{Vect } f$. Considérons alors la projection p sur Vect f parallèlement à E. C'est une application linéaire au départ d'un espace de dimension finie, elle est donc continue. Or $p(f_n) = 0 \to 0$ et $p(f_n) \to p(f) = f \neq 0$. C'est absurde.

Exercice 43: [énoncé]

Soient a_0,\dots,a_N des réels deux à deux distincts. Considérons la fonction polynôme P de degré inférieur à N vérifiant

$$\forall k \in \{0, \dots, N\}, P(a_k) = f(a_k)$$

Sur l'espace $\mathbb{R}_N[X]$, on peut introduire la norme donnée par

$$N(Q) = \max_{0 \le k \le N} |Q(a_k)|$$

Pour cette norme, on peut affirmer que la suite (P_n) converge vers P. Or l'espace $\mathbb{R}_N[X]$ est de dimension finie, toutes les normes y sont donc équivalentes. La convergence de (P_n) vers P a donc aussi lieu pour les normes données par

$$||Q||_{\infty,[a;b]} = \sup_{t \in [a;b]} |Q(t)|$$

La suite (P_n) converge vers P sur tout segment de \mathbb{R} et donc converge simplement vers P. Par unicité de la limite simple, la fonction f est égale à P.

Exercice 44: [énoncé]

- a) $N_a(1,1)$ et $N_a(1,-1)$ doivent exister et être strictement positifs. Cela fournit les conditions nécessaires 2a+2>0 et 2-2a>0 d'où $a\in]-1$; 1[. Montrons que cette condition est suffisante. Supposons $a\in]-1$; 1[et considérons $\varphi\colon \mathbb{R}^2\times\mathbb{R}^2\to\mathbb{R}$ définie par $\varphi\left((x,y),(x',y')\right)=xx'+yy'+axy'+ayx'.$ L'application φ est une forme bilinéaire symétrique sur \mathbb{R}^2 et pour $(x,y)\neq (0,0), \varphi\left((x,y),(x,y)\right)\geq (1-|a|)(x^2+y^2)>0$ en vertu de $|2axy|\leq |a|(x^2+y^2)$. Ainsi φ est un produit scalaire sur \mathbb{R}^2 et N_a est la norme euclidienne associée.
- b) Le cas a=b est immédiat. Quitte à échanger, on peut désormais supposer a < b. Par homogénéité, on peut limiter l'étude de $\frac{N_a(x,y)}{N_b(x,y)}$ au couple

Par homogénéité, on peut limiter l'étude de $\frac{N_a(x,y)}{N_b(x,y)}$ au couple $(x,y) = (\cos t, \sin t)$ avec $t \in]-\pi/2;\pi/2].$

Posons

$$f(t) = \left(\frac{N_a(\cos t, \sin t)}{N_b(\cos t, \sin t)}\right)^2 = \frac{1 + a\sin 2t}{1 + b\sin 2t}$$

On a

$$f'(t) = 2\frac{(a-b)\cos(2t)}{(1+b\sin 2t)^2}$$

Les variations de f sont faciles et les extremums de f(t) sont en $t = -\pi/4$ et $t = \pi/4$. Ils valent $\frac{1-a}{1-b}$ et $\frac{1+a}{1+b}$.

On en déduit

$$\inf_{(x,y)\neq 0} \frac{N_a(x,y)}{N_b(x,y)} = \sqrt{\frac{1+a}{1+b}}$$

et

$$\sup_{(x,y)\neq 0} \frac{N_a(x,y)}{N_b(x,y)} = \sqrt{\frac{1-a}{1-b}}$$

(dans le cas a < b).

Exercice 45: [énoncé]

Il suffit d'observer

$$(BA)^{n+1} = B(AB)^n A \to O_p$$

Exercice 46: [énoncé]

Puisque les matrices A et B commutent, il en est de même des matrices A^k et B^k . En passant à la limite la relation

$$A^k B^k = B^k A^k$$

on obtient

$$PQ = QP$$

Exercice 47: [énoncé]

On a

$$A_n A_n^{-1} = I_p$$

En passant cette relation à la limite on obtient

$$AB = I_p$$

Par le théorème d'inversibilité, on peut affirmer que A est inversible et

$$A^{-1} = B$$

Exercice 48: [énoncé]

Si A est limite d'une suite (M^n) alors $M^{2n} \to A$ et $M^{2n} = (M^n)^2 \to A^2$. Par unicité de la limite, on obtient $A^2 = A$.

Inversement, si $A^2 = A$ alors $A = \lim_{n \to +\infty} M^n$ avec M = A.

Exercice 49 : [énoncé]

 $A^{2n} \to B$ et $A^{2n} = A^n \times A^n \to B^2$ donc $B = B^2$ et B est une matrice de projection.

Exercice 50 : [énoncé]

- a) Il existe $P \in GL_p(\mathbb{K})$ tel que $P^{-1}AP = D$ avec $D = \operatorname{diag}(\lambda_1, \dots, \lambda_p)$ et $|\lambda_j| < 1$. On a alors $A^n = PD^nP^{-1}$ avec $D^n = \operatorname{diag}(\lambda_1^n, \dots, \lambda_p^n) \to O_p$ donc $A^n \to PO_pP^{-1} = O_p$.
- b) En reprenant la démarche qui précède, on peut conclure dès que l'on établit que si T est une matrice triangulaire supérieure à coefficients diagonaux dans]-1;1[alors $T^n \underset{n \to +\infty}{\longrightarrow} O_p.$

Raisonnons par récurrence sur $p \in \mathbb{N}^*$.

Pour p = 1, la propriété est immédiate.

Supposons le résultat vrai au rang $p \ge 1$.

Soit $T \in \mathcal{M}_{p+1}(\mathbb{R})$ triangulaire supérieure à coefficients diagonaux dans]-1;1[.

On peut écrire

$$T = \begin{pmatrix} \lambda & L \\ O_{n,1} & S \end{pmatrix}$$

avec $|\lambda| < 1$ et $S \in \mathcal{M}_n(\mathbb{R})$ triangulaire supérieure à coefficients diagonaux dans]-1;1[.

Par le calcul, on obtient

$$T^n = \begin{pmatrix} \lambda^n & L_n \\ O_{n,1} & S^n \end{pmatrix}$$

avec

$$L_n = L \sum_{k=0}^{n-1} \lambda^k S^{n-1-k}$$

On a $\lambda^n \to 0$ et $S^n \to O_n$ par hypothèse de récurrence.

Pour conclure, il suffit de montrer que

$$\sum_{k=0}^{n-1} \lambda^k S^{n-1-k} = \sum_{k=0}^{n-1} \lambda^{n-1-k} S^k \to O_n$$

car ceci entraı̂ne $L_n \to O_{1,n}$.

Soit $\varepsilon > 0$.

Puisque $S^n \to O_n$, il existe un rang $N \in \mathbb{N}$ au-delà duquel $||S^n|| \leq \varepsilon$.

On alors

$$\left\| \sum_{k=N}^{n-1} \lambda^{n-1-k} S^k \right\| \le \varepsilon \sum_{k=N}^{n-1} |\lambda|^{n-1-k} \le \frac{\varepsilon}{1-|\lambda|}$$

De plus, puisque $\sum_{k=0}^{N-1} \lambda^{n-1-k} S^k \xrightarrow[n \to +\infty]{} O_n$ car somme d'un nombre constant de termes de limites nulles, on peut affirmer que pour n assez grand, on a

$$\left\| \sum_{k=0}^{N-1} \lambda^{n-1-k} S^k \right\| \le \varepsilon$$

Ainsi, pour n assez grand

$$\left\| \sum_{k=0}^{n-1} \lambda^{n-1-k} S^k \right\| \le \varepsilon + \frac{\varepsilon}{1-|\lambda|}$$

et on peut conclure. Récurrence établie.

Exercice 51: [énoncé]

Posons $r = \operatorname{rg} A_{\infty}$.

La matrice A_{∞} possède est déterminant extrait non nul de taille r.

Le déterminant extrait correspondant des matrices A_n est alors non nul à partir d'un certain rang et donc $\operatorname{rg}(A_n) \geq r$

Exercice 52 : [énoncé]

Posons $r = \operatorname{rg} A$.

La matrice A possède un déterminant extrait non nul de taille r.

Le déterminant extrait correspondant des matrices A_k est alors non nul à partir d'un certain rang et donc

$$p = \operatorname{rg}(A_k) \ge r = \operatorname{rg} A$$

Exercice 53: [énoncé]

- a) Une matrice $A \in E_q$ annule le polynôme scindé simple $X^q 1$, elle est donc diagonalisable. Si 1 est sa seule valeur propre alors $A = I_n$ car semblable à I_n .
- b) Par l'absurde, supposons qu'il existe une suite (A_p) d'éléments de $E_q \setminus \{I_n\}$ vérifiant

$$A_n \to I_n$$

Par continuité de la trace

$$\operatorname{tr} A_p \to n$$

Or la trace de A_p est la somme de ses valeurs propres, celles-ci ne sont pas toutes égales à 1 et sont racines qème de l'unité donc

$$\operatorname{Re}(\operatorname{tr} A_p) \le (n-1) + \cos \frac{2\pi}{q}$$

Cette majoration est incompatible avec la propriété tr $A_p \to n$.

Exercice 54: [énoncé]

On peut écrire

$$1 = \sqrt{1 + (a/n)^2} \cos(\theta_n)$$
 et $a/n = \sqrt{1 + (a/n)^2} \sin(\theta_n)$

avec

$$\theta_n = \arctan(a/n)$$

On a alors $A_n = \sqrt{1 + (a/n)^2} R(\theta_n)$ avec $R(\theta_n)$ la matrice de rotation

$$R(\theta_n) = \begin{pmatrix} \cos \theta_n & -\sin \theta_n \\ \sin \theta_n & \cos \theta_n \end{pmatrix}$$

Par suite

$$A_n^n = \left(1 + \left(\frac{a}{n}\right)^2\right)^{n/2} \begin{pmatrix} \cos(n\theta_n) & -\sin(n\theta_n) \\ \sin(n\theta_n) & \cos(n\theta_n) \end{pmatrix}$$

Or

$$\left(1 + \left(\frac{a}{n}\right)^2\right)^{\frac{n}{2}} \underset{n \to +\infty}{\longrightarrow} 1 \text{ et } n\theta_n \underset{n \to +\infty}{\longrightarrow} a$$

donc

$$A_n^n \underset{n \to +\infty}{\longrightarrow} \begin{pmatrix} \cos a & -\sin a \\ \sin a & \cos a \end{pmatrix}$$

Exercice 55: [énoncé]

D'une part

$${}^t(A^k) \to {}^tB$$

et d'autre part

$$^t(A^k) = (-1)^k A^k$$

de sorte que

$$^{t}(A^{2p}) = (-1)^{2p}A^{2p} \to B$$

 $_{
m et}$

$$^{t}(A^{2p+1}) = (-1)^{2p+1}A^{2p+1} \rightarrow -B$$

Par unicité de la limite, on obtient

$$B = {}^{t}B = -B$$

On en déduit que la matrice B est nulle.

Exercice 56: [énoncé]

(i) \Longrightarrow (ii) Le plus simple est sans doute d'utiliser la décomposition de Dunford : M=D+N avec D diagonalisable et N nilpotente commutant entre elles. Par la formule du binôme de Newton, on peut calculer M^k et tronquer la somme par la nilpotence de N, on parvient alors à une somme finie de termes qui tendent vers 0 par croissance comparée. Une autre méthode, techniquement plus lourde, consiste à introduire $\rho_\ell^k = \max\left\{\left|(M^k)_{1,\ell+1}\right|, \ldots, \left|(M^k)_{n-\ell,n}\right|\right\}$ qui majorent les coefficients de M^k situés sur la diagonale (pour $\ell=0$), sur la sur-diagonale (pour $\ell=1$) etc. En notant que $\rho=\rho_0^1<1$, on montre par récurrence sur k que $\rho_\ell^k \le k^\ell \, \|M\|_\infty^{\ell+1} \, \rho^{k-\ell}$ ce qui permet de conclure. (ii) \Longrightarrow (iii) Supposons que $M^k \to 0$. On peut alors affirmer que 1 n'est pas valeur

(ii) \Longrightarrow (iii) Supposons que $M^k \to 0$. On peut alors affirmer que 1 n'est pas valeur propre de M car $MX = X \implies M^k X = X$ et donc à la limite $MX = X \implies X = 0$. Par suite la matrice I - M est inversible et puisque $(I - M) \sum_{k=0}^{m} M^k = I - M^{m+1}, \sum_{k=0}^{m} M^k = (I - M)^{-1}(I - M^{m+1})$ d'où la convergence de la série des M^k .

(iii) \Longrightarrow (i) Soit $\lambda \in \operatorname{Sp}(M)$ et $X \neq 0$ tel que $MX = \lambda X$. Puisque $\sum_{k=0}^{m} M^k$ converge quand $\operatorname{rg} C \geq r$, on a $\sum_{k=0}^{m} M^k X$ converge, puis $\sum_{k=0}^{n} \lambda^k X$ converge et donc $|\lambda| < 1$ (car $X \neq 0$).

Exercice 57: [énoncé]

a) Pour tout $n \in \mathbb{N}$, on a

$$||x_{n+1} - x_n|| \le k ||x_n - x_{n-1}|| \le \ldots \le k^n ||x_1 - x_0||$$

Puisque $k \in [0; 1[$, la série numérique $\sum k^n$ converge et par comparaison de séries à termes positifs, la série $\sum ||x_{n+1} - x_n||$ converge. La série télescopique $\sum x_{n+1} - x_n$ est donc absolument convergente et donc convergente car l'espace E est de dimension finie. Ainsi, la suite (x_n) converge.

b) Existence: Introduisons x_{∞} la limite de la suite (x_n) . On a

$$||x_{n+1} - f(x_{\infty})|| = ||f(x_n) - f(x_{\infty})|| \le k ||x_n - x_{\infty}|| \underset{n \to +\infty}{\longrightarrow} 0$$

et donc (x_n) tend aussi vers $f(x_\infty)$. Par unicité de la limite, on obtient $f(x_\infty) = x_\infty$.

Unicité : Si x, y sont points fixes de f alors

$$||y - x|| = ||f(y) - f(x)|| \le k ||y - x|| \text{ avec } k \in [0; 1]$$

entraı̂ne x = y et donc f possède au plus un point fixe.

- c) Si a est point fixe de f alors a est point fixe de f^p et donc a est unique. Inversement, soit a un point fixe de f^p .
 - On a $f^p(a) = a$ donc $f^{p+1}(a) = f(a)$ ce qui donne $f^p(f(a)) = f(a)$. Or le point fixe de f^p est unique donc f(a) = a et a est point fixe de f.