Database Management System File Org & Indexing

DPP 03

[MCQ]

- 1. The order of a leaf node in a B⁺ tree is the maximum number of (value, data record pointer) pairs it can hold. Given that the block size is 1K bytes, data record pointer is 8 bytes long, the value field is 10 bytes long and a block pointer is 6 bytes, then what is the order of the leaf node?
 - (a) 53
- (b) 54
- (c) 55
- (d) 56

[NAT]

2. The order of a node in B⁺ tree is defined as the number of pointers it can hold. What is the maximum number of keys that a B⁺ tree of order 4 and height 4 can have

(Assume that the height of a root node is 1)

[MCQ]

- **3.** Given a block can hold either 3 records or 10 key pointers. A database contains P records, then how many blocks do we need to hold the data file and the dense index?
 - (a) $\frac{P}{30}$
- (b) $\frac{F}{3}$
- (c) $\frac{13P}{30}$
- (d) $\frac{P}{10}$

[NAT]

4. The order of an internal node in B⁺ tree index is the maximum number of children it can have. Assume that a child pointer takes 6 bytes, the search field value takes 34 bytes and the blocks size is 2048 bytes. The order of the internal node is _____.

[NAT]

- 5. Assume a disk with block size B = 1024 Bytes, A block pointer is P_B = 12 bytes long and a record pointer is P_R = 18 bytes long. A file has 1,00,000 patients records of size 100 bytes. Suppose the file is ordered by the key field PID and we want to construct a secondary (dense) index on non-key field DeptID (14 bytes), then minimum of how many blocks are required to store index file assuming an unspanned organisation?
 - (a) 3000
- (b) 3100
- (c) 3125
- (d) None of the above

[NAT]

6. The order of a node in B tree is the maximum number of block pointers it can hold. Given that the block size is 2K bytes, data record pointer is 8 bytes long, the search key is 9 bytes long and a block pointer is 5 bytes long. The best possible order of B tree node is _____.

[NAT]

7. The order of a leaf node (P) in a B⁺ tree is the maximum number of (value, data record pointer) pairs it can hold. Given that P=36, data record pointer is 8 bytes long, the search field is 6 bytes long and a block pointer is 8 bytes long. The permissible block size is_____.

[NAT]

8. (Assume that the level of root node is1)

The order of different nodes in B⁺ tree/B tree are given

2 to P block pointers in root node.

 $\left[\frac{P}{2}\right]$ to P block pointers in internal node.

 $\left[\frac{P}{2}\right]$ -1 to (P-1) keys in leaf node.

Let a and b be

The minimum number of keys in

B tree and B+ tree node of order

P = 5 and level = 5. The value of (a + b) is .

[NAT]

9. (Assume that the level of root node is1)

The order of different nodes in B⁺ tree/B tree are given as-

2 to P block pointers in root node.

 $\left\lceil \frac{P}{2} \right\rceil$ to P block pointer is internal node.

 $\left\lceil \frac{P}{2} \right\rceil$ -1 to (P-1) keys in leaf node.

Let a and b be the maximum number of keys in B tree and B^+ tree node of order P = 5 and level = 5. The value of (a + b) is_____.

[NAT]

10. Consider the keys (1–5000) are going to be interested into a B⁺ tree. Assume, all the order are available before insertion. The orders P for B⁺ tree node is defined as-

2 to P pointer for root

 $\left\lceil \frac{P}{2} \right\rceil$ to P pointer for another node.

The maximum possible levels in a B⁺ tree index for P = 9 is_____.

(Assume that level of the root node is 1)

[MCQ]

- 11. Consider the following statements:
 - **S₁:** In a B⁺ tree, data pointers are stored only at the leaf nodes of the tree.
 - S₂: The leaf node has an entry for every value of the search field, along with the data pointer to the record.

Choose the correct statements.

- (a) Only S_1 is true
- (b) Only S₂ is true
- (c) Both S_1 and S_2 are true
- (d) Neither S_1 nor S_2 is true

[MSQ]

- **12.** Which of the following is/are true reading B⁺ tree?
 - (a) Records can be fetched in equal number of disk access.
 - (b) Height of the tree remains balanced and less as compared to B tree.
 - (c) Keys are used for indexing
 - (d) Faster search queries as the data is stored only on the leaf nodes.

[NAT]

13. Consider the keys (1–5000) are going to be interested into a B⁺ tree. Assume, all the order are available before insertion. The orders P for B⁺ tree node is defined as-

2 to P pointer for root

 $\left\lceil \frac{P}{2} \right\rceil$ to P pointer for another node.

The minimum possible levels in a B^+ tree index for P = 9 is _____.

(Assume that level of the root node is 1)

Answer Key

- 1. (d)
- 2. (255)
- **3.** (c)
- 4. (52)
- 5. (c)
- **6.** (93)
- 7. (512)

- 8. (269)
- 9. (5624)
- 10. (6)
- 11. (c)
- 12. (a, b, c, d)
- 13. (4)

Hints & Solutions

1. (d)

Disk block

Given data,

Disk block size = 1K byte = 2^{10} bytes = 1024 bytes

Block pointer (B) = 6 bytes

Key field (K) = 10 bytes

Record/ data pointer (R) = 8 bytes

Order of leaf node= P

$$B + (P)(K + R) < D$$

$$6 + (P)(10 + 8) \le 1024$$

$$18 P < 1024 - 6$$

$$P = \left\lfloor \frac{1018}{18} \right\rfloor$$

$$\therefore P = 56$$

Maximum number of (value, data record pointer)

Pairs = 56

The order of the leaf node is 56.

2. (255)

A B⁺ tree of order n and height h can have at most n^h – 1 keys. Therefore, maximum number of keys– 4^4 – 1 = 255.

3. (c)

For storing the records, numbers of blocks required =

P

and for storing the leave in dense index number of

 $\frac{\mathbf{r}}{3}$ and for storing the keys in dense index number of

blocks required = $\frac{P}{10}$.

So, total blocks required are $\frac{P}{3} + \frac{P}{10} = \frac{13 P}{30}$

4. (52)

Size of child pointer = 6 bytes

Size of search field value = 34 bytes

Block size = 2048.

Order of internal node = P

(: Number of blocks pointer in any node)

$$(P-1)34 + P \times 6 \le 2048$$

$$34P + 6P < 2048 + 34$$

$$P \le \frac{2082}{40}$$

$$= \lfloor 52.05 \rfloor \simeq 52$$

5. (c)

Blocking factor, bfr = |1024/100|

= 10 records per block

Number of blocks needs for file = $\lceil r/bfr \rceil$

$$= \lceil 100000/10 \rceil = 10000$$

 $Index \ records \ size \ R_i \!\! = \!\! (Non-Key \ DeptID + P_R))$

$$= 14 + 18 = 32$$
 bytes

Index blocking factors bfri = $\lfloor B/R_i \rfloor = \lfloor 1024/32 \rfloor$

$$= 32$$

Number of 1^{st} level index entries r_1 = number of – records in the file = 100000 entries.

Number of first level index blocks $b_1 = \lceil r_1/bfri \rceil$

$$= [100000/32] = 3125$$
 blocks

6. (93)

Order P: maximum blocks pointers per node.

Block size $\geq P \times (Block \ size \ pointer) + (P-1) \times (size \ of \ keys + size \ of \ record \ pointers)$

Block size $> P \times 5 + (P-1) \times (9+8)$

$$2048 \ge 5P + 17P - 17$$

 $22P \le 2065$

$$P = \left\lfloor \frac{2065}{22} \right\rfloor = 93$$

7. (512)

Order P: maximum number of (value, data record pointer) pairs

Block size $\geq P \times$ (keys size + Record pointer size) + $1 \times$ (Block pointer size)

Block size $\geq P \times (6+8) + 1 \times (8)$

Block size $\geq 14 * 36 + 8$

Block Size = 512 bytes

8. (269)

Level	Minimum	Minimum	Minimum
	Number of	number of	number of
	Nodes	Blocks pointer	keys
1	1	2	1
2	2	$2 \times \left\lceil \frac{5}{2} \right\rceil = 6$	2 × 2
3	6	$6 \times 3 = 18$	6×2
4	18	$18 \times 3 = 54$	18×2
5	54	$54 \times 3 = 162$	54 × 2

 $a = minimum number of keys in B tree \rightarrow 161$

For a B^+ tree, keys are present in last level only b = 108

$$\therefore$$
 a + b = 161 + 108 = 269

9. (5624)

Level	Max. No. of nodes	Max. No. of Blocks pointer	Max. No. of keys
1	1	5	4
2	5	5 × 5	5 × 4
3	25	25 × 5	25 × 4
4	125	125 × 5	125 × 4
5	625	625 × 5	625 × 4

a = maximum number of keys in B tree \rightarrow 3124 For a B⁺ tree, keys are present in last level only b = 2500.

10. (6)

For maximum possible levels, minimum number of keys should be present in an index node.

Number of nodes in the last level = $\left\lfloor \frac{5000}{4} \right\rfloor = 1250$

[Minimum
$$\left(\left|\frac{9}{2}\right|-1\right)$$
 keys for other node]
$$1 \text{ Node} \rightarrow \text{root} \rightarrow \lfloor 2/2 \rfloor = 1 \text{ node}$$

 $\begin{array}{c|c}
2 \text{ Nodes} & \rightarrow \lfloor 10/5 \rfloor = 2 \text{ nodes} \\
\hline
10 \text{ Nodes} & \rightarrow \lfloor 50/2 \rfloor = 10 \text{ nodes} \\
\hline
50 \text{ Nodes} & \rightarrow \lfloor 250/5 \rfloor = 50 \text{ nodes} \\
\hline
250 \text{ Nodes} & \rightarrow \lfloor 1250/5 \rfloor = 250 \text{ nodes} \\
\hline
1250 \text{ Nodes} & \rightarrow \boxed{1250/5} = 250 \text{ nodes}
\end{array}$

11. (c)

 $S_1(True)$: In a B^+ tree, data pointers are stored only at the leaf nodes of the tree.

 $S_2(True)$: the leaf nodes have an entry for every value of the search field, along with the data pointer to the record.

12. (a, b, c, d)

True: Records can be fetched in equal number of accesses

True: Height of the tree remains balanced and less as compared to B tree.

True: We can access the data stored in a B^+ tree sequentially as well.

True: Faster search queries as the data is stored only on the leaf node.

13. (4)

For minimum possible levels, maximum number of keys should be present in index node.

$$= \left\lceil \frac{5000}{8} \right\rceil = 625$$

$$= \left\lceil \frac{625}{9} \right\rceil = 70$$

$$= \left\lceil \frac{70}{9} \right\rceil = 8 \quad \text{Minimum number of level} = 4$$

$$= \left\lceil \frac{8}{9} \right\rceil = 1 \quad \text{node}$$

Any issue with DPP, please report by clicking here: https://forms.gle/t2SzQVvQcs638c4r5
For more questions, kindly visit the library section: Link for web: https://smart.link/sdfez8ejd80if