Рациональный выбор в отсутствие противоборства

Отсутствие противоборства не исключает для лица, принимающего решение (ЛПР) необходимости в рациональном поведении, поскольку для удовлетворения своих потребностей он взаимодействует **c** окружающей средой. В этом случае зависимость от других лиц (членов группы) замещается зависимостью от состояния среды.

В отличие от людей окружающая среда не имеет своих интересов и, следовательно, не ведет себя антагонистично по отношению к индивидууму. Она существует по своим законам и меняет свое состояние под воздействием внешних и внутренних факторов.

Разумность поведения индивидуума в этих условиях проявляется в учете влияния состояния среды на его выбор. Задача в такой постановке изучается в рамках *игры с природой*. Здесь *природо* выступает в роли второго игрока с нейтральным поведением. Согласно этой интерпретации так же, как и в антагонистической игре, взаимодействие игрока с природой оценивается функцией полезности u(x, y). Будем использовать для анализа функцию выигрышей, поскольку, учитывая взаимную дополнительность функций потерь и выигрышей, применение любой из них ведет к одинаковому результату.

Поскольку игра с природой рассматривается как двусторонняя, ходы игрока представляются множеством $X = \{x_1,...,x_i,...,x_m\}$, а ходы (состояния) природы — множеством $Y = \{y_1,...,y_j,...,y_n\}$. При конечном числе ходов m и m функция выигрышей так же, как и в антагонистической игре, представляется матрицей выигрышей (см. табл. 1).

			Таблица 1		
Y	y_1	\boldsymbol{y}_2	y_3	\mathcal{Y}_4	
x_1	u_{11}	u_{12}	u_{13}	u_{14}	
\mathcal{X}_2	u_{21}	u_{22}	u_{23}	u_{24}	

Учитывая неоднозначность соответствия между ходом игрока $x_i \in X$ его исходами (состояниями природы) $y_j \in Y, j=1,...,n$, в игре с природой также имеет место *неопределенность* выбора. В зависимости от имеющейся информации о механизме выбора природой своих состояний различают случаи *полной* и *статистической* неопределенности. В первом случае механизм выбора природой своих состояний игроку неизвестен, а во втором случае считается, что механизм выбора случаен и имеется информация о вероятностях состояний природы.

В случае статистической неопределенности игра с природой интерпретируется как лотерея с известными вероятностями исходов. Рассмотрим функции полезности, которыми может руководствоваться игрок в игре с природой в условиях полной неопределенности.

Поиск седловой точки для выбора оптимального хода игрока в игре с природой не имеет смысла, поскольку выше было отмечено, что природа не имеет своих интересов и, следовательно, не будет стремиться к выбору хода, соответствующего седловой точке. Игрок в игре с природой руководствуется принципом максимизации выигрыша, либо минимизации потерь.

При многократных повторениях игры игрок может применять *смешан- ные* стратегии, используя смешанное расширение игры

$$\Gamma: \widetilde{\Gamma} = < P, Y, u >,$$

где P — множество смешанных стратегий игрока; u — среднее значение его выигрыша в случае применения смешанной стратегии $P = (p_1, ..., p_i, ..., p_m)$ при состоянии природы $y_j \in Y$:

$$\widetilde{u}(p, y_j) = \sum_{i=1}^{m} p_i u(x_i, y_j)$$
(12)

Оптимальное решение при использовании игроком смешанных стратегий следует искать на границах множества выигрышей (или платежного

множества в случае матрицы потерь), т.е. на выпуклой оболочке Π_0 , многогранника Π . Она представляет собой крайние точки выпуклого многогранника, характеризуемые множеством векторов-строк матрицы выигрышей:

$$\prod_{0} = \left\{ \pi^{i} = (u_{i1}, ..., u_{in}) \mid i = \overline{1, m} \right\}.$$

Для случая полной неопределенности состояния природы наибольшую известность получили следующие функции полезности, названные по имени их авторов критериями Вальда, Гурвица и Сэвиджа. Рассмотрим их применение на примере матрицы выигрышей размерностью 3×2 , размещенной в левой части табл. 7.

Таблица 7

X	y_1	\mathcal{Y}_2	\overline{u}_{i}	$f_{\scriptscriptstyle B}$	$p_{\scriptscriptstyle B}$	$f_{\scriptscriptstyle{\Gamma,1}}$	$f_{\scriptscriptstyle \Gamma,2}$	$p_{\scriptscriptstyle \Gamma}$
\mathcal{X}_1	5,0	1,0	3,0		0	3,0	4,00	1
X_2	4,0	2,0	3,0	2	0,33	3,0	3,50	0
X_3	2,0	3,0	2,4//	♦ 2	0,67	2,5	2,25	0
p	0,5	0,5		7				

В четвертом столоце табл. 7 приведены оценки среднего выигрыша \bar{u}_i полученные по формуле

$$\bar{a}_{i} = \sum_{j=1}^{n} p_{j} a_{ij}, \quad i = 1, ..., m,$$
(12*)

где a_{ij} выигрыш игрока при выборе i – zo хода в предположении, что природа находится в j – m состоянии; p_j – вероятность нахождения природы в j – m состоянии; j = 1,...,n .

Эти значения получены для случая *статистической* неопределенности в предположении равных вероятностей состояний природы p = (0,5;0,5), что фактически соответствует случаю *полной* неопределенности. Согласно мак-

симальным оценкам $\max_i(\overline{u}_i)$ =3, выделенным жирным шрифтом, наилучшими признаются ходы x_1 и x_2 . Этот результат выбора примем в качестве базового для сопоставления с результатами выбора по перечисленным критериям.

Для наглядного представления поставленной задачи и возможности ее геометрического решения представим три вектор-строки матрицы выигрышей в виде треугольника с вершинами π_1 , π_2 , π_3 на плоскости с координатами u_1 и u_2 , которые соответствуют выигрышам игрока при состояниях природы y_1 и y_2 (рис. 3).

Рис. 3. Оптимизация выбора игрока для разных критериев