Project Development Phase Model Performance Test

Date - 19 November 2022

Team ID - PNT2022TMID53422

Project Name - Statistical Machine Learning Approaches To Liver Disease Prediction

Maximum Marks - 10 Marks

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.No.	Parameter	Values					Screenshot
1.	Metrics	Classification N Confusion Mat [[130 11] [43 9]] Accuracy Score Classification F	rix - e- 72%				Attached below
			precision	recall	f1-score	support	
		0	0.75	0.92	0.83	141	
		1	0.45	0.17	0.25	52	
		accuracy			0.72	193	
		macro avg	0.60	0.55	0.54	193	
		weighted avg	0.67	0.72	0.67	193	

2.	Tune the Model	Hyperparameter Tuning - GridSearchCV Validation Method - GridSearchCV, XGBClassifier Accuracy after Hyperparameter Tuning- 76%	Attached below
----	-------------------	--	-------------------

Screenshots:

Confusion Matrix and Classification Report:

Accuracy Before Hyperparameter Tuning:

Logistic Regression's Accuracy is: 72.02072538860104

Hyperparameter Tuning:

```
from sklearn-ensemble import Randomforestilassifier
rf_c1f = GridSearchCV(RandomForestClassIfter(), ['a_estlastors':[1, 5, 10, 30, 30, 50, 50, 5000, 5000, 5000]), co-10, return train score-false)
rf_clf.fit(X_train, y_train)
(erf clf.predict(X test)
fracturacy_score(y_test,j)
of alf.ey results
('mean_fit_time': array([5.74145317e-85, 1.35345127e-82, 2.18156338e-82, 5.11844682e-82,
      8.91498565e-02, 1.13623295e-01, 8.89902952e-02, 1.87155395e-01, 1.79693519e-00, 8.54378084e+00, 1.02711471e+01]),
 'mean_score_time': array([0.00296555, 0.00373945, 0.00393867, 0.00715004, 0.00921430,
      0.8098846 , 8.80751784, 8.80967596, 0.11885119, 8.56953221,
      8.74178738]),
 'mean_test_score': array([8.6307692], 0.66410256, 0.66205128, 0.68461538, 0.69487179,
      0.67179487, 0.66410256, 0.66923077, 0.66923077, 0.66923077,
False, False, False].
      fill_valoe-'?'
          dtype-object),
 'params': {{'n_estimators': 1},
  'm_estimators': 5),
  ('m estimators': 18),
  's_estimators': 20),
  ('m_estimators': 38),
  {'n estimators': 30}.
   'n estimators': 40},
  {'n estimators': 50},
  {'n estimators': 60},
  {'n estimators': 1000},
  {'n estimators': 5000},
  {'n estimators': 6000}],
 'rank_test_score': array([11, 10, 3, 2, 1, 5, 9, 6, 6, 6, 4], dtype=int32),
 'split0 test score': array([0.51282051, 0.58974359, 0.61538462, 0.58974359, 0.58974359,
         0.56410256, 0.58974359, 0.56410256, 0.58974359, 0.58974359,
         0.58974359]),
 'split1_test_score': array([0.66666667, 0.58974359, 0.53846154, 0.61538462, 0.71794872,
         0.61538462, 0.58974359, 0.58974359, 0.58974359, 0.58974359,
         0.58974359]),
 'split2_test_score': array([0.64102564, 0.74358974, 0.64102564, 0.69230769, 0.66666667,
         0.64102564, 0.69230769, 0.71794872, 0.71794872, 0.71794872,
         8.71794872]),
 'split3_test_score': array([0.64102564, 0.66666667, 0.76923077, 0.74358974, 0.84615385,
         0.69230769, 0.76923077, 0.71794872, 0.71794872, 0.71794872,
 'split4 test score': array([0.56410256, 0.66666667, 0.71794872, 0.74358974, 0.71794872,
         0.71794872, 0.66666667, 0.69230769, 0.69230769, 0.69230769,
         0.692307691),
 'split5_test_score': array([0.71794872, 0.64102564, 0.69230769, 0.71794872, 0.58974359,
         0.66666667, 0.64102564, 0.58974359, 0.58974359, 0.58974359,
 'split6 test score': array([0.53846154, 0.56410256, 0.61538462, 0.58974359, 0.51282051,
         0.56410256, 0.53846154, 0.61538462, 0.51282051, 0.51282051,
         0.53846154]),
 'split7 test score': array([0.71794872, 0.84615385, 0.74358974, 0.64102564, 0.79487179,
         0.6666667, 0.69230769, 0.71794872, 0.69230769, 0.69230769,
```

Accuracy After Hyperparameter Tuning:

```
'split7_test_score': array([0.71794872, 0.84615385, 0.74358974, 0.64102564, 0.79487179, 0.66666667, 0.69230769, 0.71794872, 0.69230769, 0.69230769]),
'split8_test_score': array([0.64102564, 0.71794872, 0.76923077, 0.76923077, 0.76923077, 0.79487179, 0.79487179, 0.71794872, 0.82051282, 0.82051282]),
'split9_test_score': array([0.66666667, 0.61538462, 0.71794872, 0.74358974, 0.74358974, 0.79487179, 0.666666667, 0.76923077, 0.76923077, 0.76923077]),
'std_fit_time': array([0.00157073, 0.00228115, 0.00260054, 0.01041249, 0.0059753, 0.01008318, 0.00368796, 0.0040749, 0.01746637, 0.26887338,
```

```
[ ] f*100
```

75.64766839378238