Course Code: ESC106A Course Title: Construction Materials and Engineering Mechanics

Lecture No. 27: Types of Loads

Delivered By: Nimmy Mariam Abraham

Lecture Intended Learning Outcomes

At the end of this lecture, students will be able to:

•Identify and explain different types of loads

Contents

Types of loads, trusses and frames

Types of Loads

- Point load (concentrated load)
- Distributed load
- Coupled load

distributed load

Point Load (Concentrated Load)

- Point load is that load which acts over a small distance
- Because of concentration over small distance this load can may be considered as acting on a point
- Point load is denoted by P and symbol of point load is arrow heading downward (↓)

Distributed Load

- •Distributed load is that acts over a **considerable length** or you can say over a length which is measurable.
- Distributed load is measured as per unit length

Uniformly Distributed Load (UDL)

- Uniformly distributed load is that whose magnitude remains uniform throughout the length.
- Uniformly distributed load is usually represented by 'W' and is pronounced as intensity of Udl over the beam, slab etc

Uniform Distributed Load To Point Load

- Conversion of uniform distributed load to point load is very simple.
- By simply multiplying the intensity of Udl with its loading length.

Equivalent Concentrated load = Udl intensity (W) x **Loading length**

Uniformly Varying Load

 Triangular load is that whose magnitude is zero at one end of span and increases constantly till the 2nd end of the span

Coupled load

- Coupled load is that in which two equal and opposite forces acts on the same span.
- The lines of action of both the forces are parallel to each other but opposite in directions.
- This type of loading creates a couple load.

Classification of Structures

Axial Force Members

 Members with length significantly greater than the largest crosssectional dimension and with loads applied along the longitudinal axis.

Simply supported column subjected to axial load F

Trusses

 A truss is a structure comprising five or more triangular units constructed with straight members whose ends are connected at joints referred to as nodes.

Planar truss

- The simplest form of a truss is one single triangle. This type of truss is seen in a framed roof consisting of rafters and a ceiling joist
- A planar truss lies in a single plane.
- Planar trusses are typically used in parallel to form roofs and bridges

Space Frame Truss

- A space frame truss is a three-dimensional framework of members pinned at their ends.
- A tetrahedron shape is the simplest space truss, consisting of six members which meet at four joints.

Frames

 Frame structures are the structures having the combination of beam, column and slab to resist the lateral and gravity loads.

Types of frame structures: Frames structures can be differentiated into,

- Rigid frame structure
- Braced frame structure

Advantages of Frame Structures

- One of the best advantages of frame structures is their ease in construction.
- It is very easy to teach the labor at the construction site.
- Frame structures can be constructed rapidly.
- Economy is also very important factor in the design of building systems.
- Frame structures have economical designs

Cables

- Cables carry applied loads & develop mostly tensile stresses Loads applied through hangers - Cables near the end supporting structures experience bending moments and shear forces.
- It is used to transmit large tensile forces

Summary

- Loads are classified into point loads, distributed loads and coupled loads
- Point load is that load which acts over a small distance
- Distributed loads are further classified into uniformly distributed load and uniformly varying load
- Coupled load is that in which two equal and opposite forces acts on the same span
- A truss is a structure comprising five or more triangular units constructed with straight members whose ends are connected at joints referred to as nodes
- Frame structures are the structures having the combination of beam,
 column and slab to resist the lateral and gravity loads

