Matemática Computacional

Capítulo 2

Estatística descritiva

Licenciatura em Engenharia Informática ISEP (2024/2025)

Conteúdo

- 🚺 Caracterização, organização e representação dos dados
- Medidas descritivas
 - Medidas de localização central
 - Medidas de localização não central
 - Medidas de variabilidade
 - Medidas de assimetria e de curtose

A Estatística descritiva consiste num conjunto de métodos cujo objetivo é organizar, analisar, sintetizar e representar de forma compreensível a informação obtida dos dados.

Caracterização, organização e representação dos dados

- No processo de análise estatística, o objeto de estudo são as variáveis e a informação que estas podem fornecer.
- Variável é uma característica da população que pode tomar vários valores possíveis.
 - Quanto à característica da população que representa, uma variável pode ser:
 - Qualitativa, indicando uma característica n\u00e3o num\u00e9rica.
 - Quantitativa, indicando uma característica numérica.
 - Quanto ao tipo de valores que pode tomar, uma variável classifica-se em:
 - Discreta, pode tomar apenas um conjunto finito ou infinito numerável de valores.
 - Contínua, toma valores num intervalo real.
 - As variáveis qualitativas são variáveis discretas.
 - As variávis quantitativas podem ser discretas ou contínuas.

- Os valores das variáveis qualitativas pertencem a categorias (ou classes), exaustivas e mutuamente exclusivas. Estas variáveis podem ser medidas numa escala:
 - Nominal: categorias, estados ou "nomes de coisas". Por exemplo:
 - CorCabelo= {preto, loiro, castanho, cinzento, branco};
 - EstadoCivil, Profissão, Morada.
 - Ordinal: valores sujeitos a uma ordem (ranking), segundo uma relação descritível mas não quantificável. Por exemplo:
 - Tamanho= {pequeno, médio, grande};
 - Graus académicos, patentes militares;
 - Escalas de Likert: 1 muito insatisfeito, 2 insatisfeito, 3 nem insatisfeito nem satisfeito, 4- satisfeito e 5- muito satisfeito.

 A Categoria (ou classe) de uma variável qualitativa é cada um dos valores que a variável pode tomar.

 A Classe de uma variável quantitativa discreta é o valor numérico que a variável pode tomar.

Dados qualitativos e quantitativos discretos

Frequência absoluta da categoria $i(n_i)$

É o número de observações associadas à categoria i. Verifica-se

$$\sum_{i=1}^{c} n_i = n.$$

sendo n o número total de observações e c o número de categorias.

Frequência relativa da categoria $i(f_i)$

É o quociente entre a frequência absoluta dessa categoria e o número total de observações efetuadas,

$$f_i=\frac{n_i}{n}$$
.

Dados qualitativos e quantitativos discretos

Distribuição de frequência absoluta (ou relativa)

É um arranjo tabular ou uma representação gráfica dos dados que mostra, para cada categoria, a sua frequência absoluta (ou relativa) observada.

Gráfico de barras

É uma representação dos dados em que se usam barras separadas (de igual largura) cuja altura é proporcional à frequência (absoluta e relativa) da categoria correspondente.

Gráfico circular

É uma representação dos dados num círculo dividido em sectores circulares cuja área (e ângulo ao centro correspondente) é proporcional à frequência da categoria/classe que representam.

Exemplo 2.1: Realizou-se um inquérito a 50 habitantes de uma cidade para analisar a preferência na ocupação dos tempos livres. Registou-se a preferência (qualitativa) de cada habitante - unidade estatística - e organizaram-se os resultados na tabela seguinte.

Preferência	Número de habitantes	Frequência relativa		
Leitura	4	4/50 = 8%		
TV ou cinema	23	23/50 = 46%		
Exercício físico	16	16/50 = 32%		
Outra atividade	7	7/50 = 14%		
Total	50	50/50 = 100%		

Dados qualitativos e quantitativos discretos

Exemplo 2.1 (Cont.): Representar os dados num gráfico de barras.

Comandos Python:

import seaborn as sns

y = [4, 23, 16, 7]

sns.barplot(x=x,y=y, color = 'red')

Output:

Dados qualitativos e quantitativos discretos

Exemplo 2.1 (Cont.): Representar os dados num gráfico circular.

Comandos Python:

import seaborn as sns
import matplotlib.pyplot as plt
y = [4, 23, 16, 7]
txtLabels = 'Leitura', 'TV ou cinema',
 'Exercício físico', 'Outra atividade'
plt.pie(y, labels=txtLabels,
 autopct='%1.1f%%', shadow=True,
 startangle=90,
 colors=sns.color_palette('muted'))
plt.axis('equal')

Output:

Dados quantitativos discretos

Frequência acumulada absoluta até à classe $i(N_i)$

É o número de observações de valor inferior ou igual ao valor característico da classe i:

$$N_i = \sum_{j=1}^i n_j.$$

Frequência acumulada relativa até à classe $i(F_i)$

É o quociente entre a frequência acumulada absoluta até à classe i e o número total *n* de observações efetuadas (é comum exprimir-se em percentagem):

$$F_i = \frac{N_i}{n} = \sum_{j=1}^i f_j = \frac{1}{n} \sum_{j=1}^i n_j.$$

Exemplo 2.2: Realizou-se um estudo de uma amostra de 5000 apólices do ramo automóvel em que se observou para cada apólice unidade estatística - o número de sinistros (quantitativa discreta) ocorridos nos três primeiros anos de seguro.

Núm. de sinistros	Núm. de habitantes	Frequência relativa
0	2913	2913/5000 = 58%
1	1532	1532/5000 = 31%
2	381	381/5000 = 8%
3	102	102/5000 = 2%
4	72	72/5000 = 1%
Total	5000	5000/5000 = 100%

Dados quantitativos contínuos

- A classe de uma variável quantitativa contínua é um intervalo da forma [a, b[ou]a, b] que representa um conjunto de valores que a variável pode tomar.
- A amplitude da classe [a, b[ou]a, b] é a distância entre o limite superior da classe e o seu limite inferior, isto é, amplitude = b a.
- O centro, marca, ponto médio ou valor característico da classe [a, b[ou]a, b] é o ponto médio da classe, isto é, ^{a+b}/₂.
- O número de classes adequado, c, pode ser obtido pela fórmula (Regra de Sturges),

$$c = Int[1 + 3.3log_{10}(n)],$$

onde n é o número total de observações e Int[x] representa a parte inteira de x.

Dados quantitativos contínuos

Histograma

É uma representação gráfica dos dados em que se marcam as classes no eixo horizontal, as frequências no eixo vertical e em que se usam barras de área proporcional à frequência da classe correspondente. As barras contíguas têm uma fronteira comum.

Quando se elabora uma tabela de distribuições de frequência é necessário definir o número de classes, a amplitude de cada classe e o limite inferior da primeira classe.

Exemplo 2.3: Realizou-se um estudo de uma amostra de 104 doentes renais, registando-se, para cada um, o tempo (meses) (quantitativa contínua) de hemodiaise antes da realização do transplante.

Tempo de hemodialise	Freq. absoluta	Freq. relativa
0 – 15	9	9/104 = 8.7%
15 – 30	35	35/104 = 33.7%
30 – 45	20	20/104 = 19.2%
45 – 60	20	20/104 = 19.2%
60 – 75	7	7/104 = 6.7%
75 – 90	4	4/104 = 3.8%
90 – 105	5	5/104 = 4.8%
105 – 120	1	1/104 = 1%
120 – 135	1	1/104 = 1%
135 — 150	2	2/104 = 1.9%
Total	104	104/104 = 100%

Dados quantitativos contínuos

Exemplo 2.4: Registaram-se, numa escala de 0 a 100 pontos percentuais, as classificações dos 50 estudantes de um curso de Estatística e pretende-se mostrar os dados num histograma. As classificações foram as seguintes:

43	52	57	53	41
56	39	44	47	49
57	33	59	43	69
80	79	56	59	58
71	50	45	78	64
66	61	87	65	61
73	74	36	55	52
65	53	69	77	34
74	76	73	55	60
49	51	53	44	27

Dados quantitativos contínuos

Exemplo 2.4 (Cont.):.

Comandos Python:

import seaborn as sns
import matplotlib.pyplot as plt
df = pd.read_csv('notas_est_csv.csv')
plt.hist(df, bins='auto')

Output:

Frequência acumulada absoluta até à classe $i(N_i)$

- É o número de observações de valor inferior ou igual ao valor limite superior da classe i, no caso de intervalos do tipo]a, b].
- É o número de observações de valor inferior ao valor limite superior da classe i, no caso de intervalos do tipo [a, b[. Ou seja,

$$N_i = \sum_{j=1}^i n_j.$$

Frequência acumulada relativa até à classe $i(F_i)$

É o quociente entre a frequência acumulada absoluta até à classe *i* e o número total *n* de observações efetuadas (é comum exprimir-se em percentagem):

$$F_i = \frac{N_i}{n} = \sum_{i=1}^i f_i = \frac{1}{n} \sum_{j=1}^i n_j.$$

Medidas descritivas

Medidas descritivas

As medidas descritivas são estatísticas amostrais (funções de uma amostra) que sumariam características importantes das amostas e dividem-se em três categorias:

- Medidas de posição ou localização.
 - Medidas de localização central: média, mediana e moda.
 - Medidas de localização não central: quantis (quartis, decis e percentis).
- Medidas de variabilidade: Amplitude interquartil, variância, desvio padrão e coeficiente de variação.
- Medidas de assimetria e de curtose.

Média aritmética (dados não classificados)

A média \bar{x} de um conjunto de n valores observados $x_1, x_2, ..., x_n$ é dada por,

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

Média aritmética (dados classificados)

A média \bar{x} de um conjunto de n valores observados, agrupados em c classes é dada por,

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{c} n_i x_i = \sum_{i=1}^{c} f_i x_i,$$

em que n_i é a frequência absoluta da classe i, f_i é a frequência relativa da classe i e x_i é o valor característico da classe i.

Mediana \tilde{x} (dados discretos ou contínuos não classificados)

Dado um conjunto de n valores observados $x_1, x_2, ..., x_n$, seja $x_{(1)}, x_{(2)}, ..., x_{(n)}$ a ordenação dos dados por ordem crescente, ou seja, $x_{(1)} \leq x_{(2)} \leq ... \leq x_{(n)}$. A mediana é dada por,

$$ilde{x} = \left\{ egin{array}{ll} rac{X_{\left(rac{n}{2}
ight)} + X_{\left(rac{n}{2}+1
ight)}}{2}, & ext{se } n \, ext{par} \ X_{\left(rac{n+1}{2}
ight)}, & ext{se } n \, ext{impar} \end{array}
ight. .$$

Moda (dados não classificados e dados classificados discretos)

É o valor que ocorre com maior frequência num conjunto de observações.

Mediana \tilde{x} (dados contínuos classificados)

Dado um conjunto de valores de uma variável contínua agrupados em classes, a mediana é dada por,

$$\tilde{x} = \ell_{e-1} + \frac{0.5 - F_{e-1}}{f_e} (\ell_e - \ell_{e-1}),$$

em que e é a classe da mediana (tal que $F_{e-1} < 0.5$ e $F_e > 0.5$), f_e é a frequência relativa da classe e, F_{e-1} é a frequência acumulada relativa até à classe e-1, e ℓ_{e-1} e ℓ_e são, respetivamente, os limites inferior e superior da classe da mediana.

Moda (dados contínuos classificados)

Numa distribuição de frequência, com intervalos de classe de igual amplitude, a classe modal é a classe com maior frequência.

Exemplo 2.5:

Comandos Python:

```
# Para a média e mediana também se pode usar a biblioteca numpy import statistics as st x = [0, 1, 1, 1, 2, 3, 4, 5, 6, 6, 7, 8, 9, 0] print(f'A média dos valores é st.mean(x):.2f;', end = "") print(f'A mediana dos valores é st.median(x):.2f') print(f'A moda dos valores é st.mode(x)')
```

Output: A média dos valores é 3.79; A mediana dos valores é 3.50 A moda dos valores é 1

Comandos Python:

```
import pandas as pd
state = pd.read_csv('state.csv')
state['Population'].mean(), state['Population'].median()
```

Output: (6162876.3, 4436369.5)

Distribuição simétrica

Distribuição assimétrica positiva ou enviesada à direita

Distribuição assimétricas negativa ou enviesada à esquerda

- A média é a medida de localização mais usada, pois é a mais fácil de calcular e tem tratamento matemático simples.
- A média tem a vantagem do seu cálculo incluir todos os valores do conjunto de dados e varia menos com a amostra do que a mediana.
- No entanto, se a distribuição de frequência é assimétrica, a média tende a afastar-se da zona de concentração de observações, devido à influência de valores extremos atípicos ou *outliers*.
- A mediana pode ter mais interesse quando as obervações incluem valores extremos atípicos ou outliers.
- A moda não é muito prática na maioria das situações.

Quantis

Percentil

Considere um conjunto de dados ordenado em ordem crescente.

- Os percentis dividem um conjunto de dados em 100 partes iguais.
- O valor do percentil de ordem k (k = 1, 2, ..., 99) é denotado por p_k .
- Cerca de k% das observações são menores do que p_k.

Por exemplo, se num conjunto de dados se verifica que $p_{25} = 3.6$, então significa que 25% das observações é menor que 3.6.

Quantis

Decil

Considere um conjunto de dados ordenado em ordem crescente.

- Os decis dividem um conjunto de dados, em 10 partes iguais.
- O valor do decil de ordem k (k = 1, 2, ..., 9) é denotado por d_k .
- Cerca de 10k% das observações são menores do que d_k.

Por exemplo, se num conjunto de dados se verifica que $d_5 = 3.6$, então significa que 50% das observações é menor que 3.6.

Quantis

Quartil

Considere um conjunto de dados ordenado em ordem crescente.

- Os quartis dividem um conjunto de dados, em 4 partes iguais.
- O valor do quartil de ordem k (k = 1, 2, 3) é denotado por q_k .
- Cerca de 25k% das observações são menores do que q_k.

Por exemplo, se num conjunto de dados se verifica que $q_3 = 3.6$, então significa que 75% das observações é menor que 3.6.

Medidas de localização não central

Comandos Python:

```
import statistics as st
x = [1, 5, 7, 5, 43, 43, 8, 43, 6, 65, 63, 42, 1, 76, 43, 87, 53, 54]
decis = st.quantiles(x, n=10)
quartis = st.quantiles(x, n=4)
print(f'Os 4 quartis são: quartis\n')
percentis = st.quantiles(x, n=100)
print(f'O percentil de ordem 50 é percentis[49]')
print(f'O decil de ordem 5 é decis[4]')
print(f'O quartil de ordem 2 é quartis[1]')
```

```
Output: Os quartis são: [5.75, 43.0, 56.25]
```

- O percentil de ordem 50 é 43.0
- O decil de ordem 5 é 43.0
- O quartil de ordem 2 é 43.0

Amplitude total, r

É a diferença entre o maior e o menor dos valores do conjunto de observações:

$$r = \max\{x_1, x_2, ..., x_n\} - \min\{x_1, x_2, ..., x_n\} = x_{(n)} - x_{(1)},$$

se $x_{(1)} \le x_{(2)} \le ... \le x_{(n)}$ for a ordenação das obervações por ordem crescente.

Amplitude interquartil, r_q

$$r_q = q_3 - q_1,$$

representa a diferença entre o terceiro e o primeiro quartil, ou seja, indica como estão dispersas 50% das observações.

Variância s² de uma amostra

Para dados não classificados: $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$, sendo x_i o valor da observação i.

Para dados classificados: $s^2 = \frac{1}{n-1} \sum_{i=1}^{c} n_i (x_i - \bar{x})^2$, sendo x_i o valor característico da classe i.

Desvio padrão s de uma amostra

É raíz quadrada positiva da variância, $s = \sqrt{s^2}$.

Coeficiente de variação c_{ν}

É dado por, $c_{\nu} = \frac{s}{|\bar{x}|}$, para $\bar{x} \neq 0$. Trata-se de uma medida adimensional e representa-se, em geral, na forma de percentagem.

Comandos Python:

```
Gender TV
0 f 3.4
1 f 3.5
2 m 2.6
3 f 4.0
4 m 4.1
5 m 4.1
6 f 5.1
7 m 3.9
8 f 3.7
9 m 2.1
10 m 4.3
```

Output:

	TV	mean	std	min	25%	50%	75%	may
Gender	Counc	ilican	scu	IIIIII	23/6	30%	7 3/0	IIIdA
f	5.0	3.940000	0.687750	3.4	3.500	3.7	4.0	5.1
m	6.0	3.516667	0.926103	2.1	2.925	4.0	4.1	4.3

O diagrama de extremos e quartis (boxplot) é uma representação gráfica dos valores: mínimo, q_1 , mediana, q_3 , máximo.

Verifica-se:

- Os extremos da caixa são os primeiro e terceiro quartis, ou seja, o comprimento da caixa é a amplitude interquartil;
- A mediana é marcada como uma linha na caixa;
- Duas linhas extendem-se até aos valores mínimo e máximo;
- Os outliers, que se podem definir como sendo os valores que se afastam da mediana mais do que 1.5 vezes a amplitude interquartil, são representados isoladamente.

plot the data
grouped.boxplot()
plt.show()

Get the groups as DataFrames df_female = grouped.get_group('f') values_female = df_female.values print(values_female)

```
[['f' 3.4]
['f' 3.5]
['f' 4.0]
['f' 5.1]
['f' 3.7]]
```

Momento amostral centrado de ordem r

É a média dos desvios em relação a \bar{x} elevados à potência r (inteiro não negativo).

Para dados não classificados,

$$m_r = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^r,$$

sendo x_i o valor da observação i.

Para dados classificados,

$$m_r = \frac{1}{n} \sum_{i=1}^{c} n_i (x_i - \bar{x})^r,$$

sendo x_i o valor característico da observação i.

O coeficiente de assimetria amostral é uma medida de assimetria que indica se uma distribuição de frequências é enviesada ou assimétrica. Seja,

$$a_3=\frac{m_3}{s^3}$$

- m₃ é o momento centrado de ordem 3;
- s o desvio padrão experimental;
- a₃ > 0 para uma distribuição enviesada à direita ou assimétrica positiva;
- a₃ < 0 para uma distribuição enviesada à esquerda ou assimétrica negativa;
- a₃ = 0 para uma distribuição simétrica.

O coeficiente de curtose amostral dá-nos informação sobre o peso das caudas de uma distribuição e é dado por,

$$a_4=rac{m_4}{s^4}$$

- m₄ é o momento centrado de ordem 4;
- s o desvio padrão experimental.
- a₄ > 3 para uma distribuição mais esguia, caudas mais pesadas do que a distribuição Normal;
- a₄ = 3 para uma distribuição Normal;
- a₄ < 3 para uma distribuição mais achatada, caudas menos pesadas do que a distribuição Normal.

O coeficiente de assimetria amostral e o coeficiente de curtose amostral são adimensionais, facilitando a comparação entre distribuições de frequências distintas.

Comandos Python:

```
from scipy import stats
```

```
x = [88, 85, 82, 97, 67, 77, 74, 86, 81, 95, 77, 88, 85, 76, 81]
```

```
# calcula o coeficiente de assimetria amostral assimetria = stats.skew(data, bias= False )
```

```
# calcula o coeficiente de curtose amostral curtose = stats.kurtosis(data, fisher = False)
```

print(f'O valor do coeficiente de assimetria amostral é assimetria:.4f') print(f'O valor do coeficiente de curtose amostral é curtose:.4f')

Output:

- O valor do coeficiente de assimetria amostral é 0.0293
- O valor do coeficiente de curtose amostral é 2.7073