

1. reg 型与 wire 型变量的差别是什么。并试说明在什么情况下如何选择两种类型。

• wire 和 reg 的区别

- 1、wire型数表示的网线类型,<mark>相当于物理连线</mark>。只能在assign左侧赋值,默认初始值是z。
- 2、reg型表示的寄存器类型,相当于触发器,<mark>存储单元</mark>。在initial和always过程内被赋值的信号。默认初始值是x。
- 3、reg寄存器型数据保持最后一次的赋值,而wire需要持续的驱动;wire表示直通,即只要输入有变化,输出马上无条件地反映;reg表示一定要有触发,输出才会反映输入。
- 4、wire使用在<mark>连续赋值语句</mark>中,而reg使用在<mark>过程赋值语句</mark>中。wire只能被assign连续赋值,<mark>reg只能在initi</mark> al和always中赋值。模块的输入输出端口类型都默认为wire型。
- 5、wire型的变量综合出来一般是一根导线; reg变量在always块中有两种情况: always后不带时钟触发的
- ,综合出来是组合逻辑; always后的敏感表中是带时钟边沿触发的,综合出来一般是时序逻辑。
 - 2. 请详细解析阻塞赋值与非阻塞赋值的区别

0=, <=

②在一个begin end中,先执行当前,再执行下一行 非:同时见武位

第3页 共72

end else begin

四、综合题 (共 46 分)

cuse (In) 试设计一个 3/8 译码器。现定模块定义为 module De 器输出, In为详码器输入, En为译码使能输入。

A2 A1 A0 Y7 ... Y0 0 0 0 1 11 11 10

module Decoder (Out. In. En); input [2:0] In;

input En;

output reg[7:0] Out;

always @ (In) begin if LIEI begin

の以大=8'b「(1) || (1) ||

wire [3:0] C = 4'bx01z wire signed[3:0] D = 4'b1001;

3' booo : Out = 8 6 1111_110 :

3. p11) : Out=8, p0 111 111 :

end case end end module.

移位运算符

算术右移将操作数右移n位,并且在左边空出 来的位置补n位操作数的符号;

逻辑右移将操作数右移n位,并且在左边空出 来的位置补n位0、忽略操作数的符号。

算术左移和逻辑左移相同、都是在以为后右 边空出的位置补0,忽略操作数的符号

操作符	功能
<<	逻辑左移
>>	逻辑右移
<<<	算数左移
>>>	算数右移

设计示例

例: (分频器)

通过变换得到所需的各种频率成分。

常用的偶数分频、奇数分频。

代码,图象

带复位的二分频电路:

module div 2(clk,rst,out); input clk,rst; output out; reg q; always@(posedge clk or negedge rst) if(!rst) q <= 1'b0;else

 $q \le -q$; assign out=q; endmodule

input [2:0] addr ; output reg [7:0] decoder ;

always @ (addr) begin

endmodule

case (addr)

3'b000 : decoder =8'b1111 1110 ; 3'b001 : decoder =8'b1111 1101 ; 3'b010 : decoder =8'b1111 1011 ; 3'b011 : decoder =8'b1111 0111 ; 3'b100 : decoder =8'b1110 1111 ; 3'b101 : decoder =8'b1101 1111 ; 3'b110 : decoder =8'b1011 1111 ; 3'b111 : decoder =8'b0111 1111 ; endcase

如何带复位?

安徽大学 20 22 - 20 23 学年第 2 学期 《FPGA 数字系统设计》期末考试试卷(A 卷)

年级	专业		姓名		学号		
	大项	-	-	Ξ	73	总分	阅卷人
	登分						
分.共:		答案中共	出一个证	E畸答》	E. 并将其	号码填在	E題干后的括号内。每题
下列标识 A. syst	符中。(teml	Вг)是不 eg	合法的	标识符。 C. \$latc	h	D. exec§
下面运算 A、<<	符,优先约	及最高的 B、*	是(3	C. ~		D, +
在 verilog A、8	语言中警	型数据 i B、16	integer 与	1) 位存 C、32	器数据在	在实际意义上是相同的。 D、64
C. >>>	逻辑右移。	左边补	0	В) 、 条件操 或者 Z,则		于拼接操作符 X
A 阻塞 B 非阻息 C 赋值	医值属于哪 多獸值属于 操作符是一	呼执行, 并行执行 "的过程	即下一 行语句。[是阻塞性	条语句即下一 b过程制	条语句的拼	首前语句 (行和当)	一定会执行完毕。 前语句的执行是同时进行
A、时间	定义为 'ti]精度 10ns 精度 100p		10ns/100 _j	ps. 下列	说法正确的 B、时间 D、时间	可单位 10	0ps
) , C. assign		D、元件例化语句
	g 语言中。 011				C. 1b		D. 19.0

学生各题注意: 勿超黑线两

9、reg[3:0] A; 执	行 A=2"h0F: 那么最后?	变量 A ditte ii /	
A 4'b0011	B 4°h0F	C 4'61111	,
			D 4'50000
10、在 Verilog HD	L 的逻指运算中,设A	=8"b11010001. R=8"	500011001. 则表达式"A&B"的
结果为()	D-0	MOUTION. MERCAN, ARB III
A.8'50001000	В.8-Б1101100	01 C.8°b11001000	D.8'b00110111
二、填空题: (注	青在横线上填写答案。自	等空2分,共30分)	
1、变量是在程席型,一般指示硬位元件。	运行过程中其值可以改 件电路的物理连接,另一	变的量。变量分为两一种是对	种,一种类型为类 应的是具有状态保持作用的存储
2、Verilog 的端口	1具有以下三种类型:	input	
3、IEEE 标准的	硬件描述语言有		阿种 。
钟周期后,左侧 always	程序中 q3 的值变成 @(posedge clk)	always @(posedge o). 1. 2 和 3. 那么经过 1 个时 P中 q3 的值变成。 :lk)
be	gin q1 = in;	begin q1 <= in;	
	q2 = q1;	q2 <= q1;	
	q3 = q2;	q3 <= q2;	
end		end	
5、请写出下列。 wire [3:0] A = 47 wire [3:0] B = 47 wire [3:0] C = 47 wire signed[3:0]	b1001; bx010;	二进制数表示)。	
(1) A&B	运行结果为		
(2) A && B	运行结果为		
(3) B&C	运行结果为		
(4) B&&C	运行结果为	;	
(5) B>>2	运行结果为	<u> </u>	
(6) D>>2	运行结果为	1	
(7) B>>>2	运行结果为		

三、简答题(请在答题卡填写答案。共20分)

- 1、简述有限状态机 FSM 分为哪两类?有何区别?有限状态机的状态编码主要有哪三种?
- 2、简述 Verilog 电路模型三种抽象级别的特点:结构描述,行为描述,数据流描述。

四、程序设计题 (请在答题卡填写答案。共30分)

- 1、编写四选一数据选择器程序,并进行仿真测试。(10分)
- (1) 通过选择信号,选择不同的输入信号输出到输出端,如下图真值表,sel[1:0]为选择信号,a,b,c,d 为输入信号,Mux 为输出信号。

	降信号		输	入		输出
sel[1]	sel[0]	a	b	c	d	Mux
0	0	X	X	X	×	Mux
0	1	X	X.	X	×	a h
1	0	X	X	X	×	0
1	1	X	X	X	*	

module top_mux(a, b, c, d, sel, Mux);

(请补充完整)

endmodule

(2) 根据如下时序仿真图,完成仿真文件的编写。

'timescale Ins/Ins module th top mux;

(请补充完整)

endmodule

2、根据下图的状态转移关系图, 编写状态机程序。其中 A、B、C 是状态, z 是输出, w 是状态转移 条件, rst_n 是复位。(10分)

(请补充完整)

endmodule

3、如下图所示,有一个周期脉冲信号 a,编写一个程序检测 a 信号的上升沿,给出指示信号 rise,当 a 信号出现下降沿时给出指示信号 down;复位时不工作;rise,down 应为单脉冲信号.在相应边沿出现时输出为高,之后恢复到 0,一直到再一次出现相应的边沿。请将程序补充完整。(10 分)

module edge detect(input clk, input rst n, input a, output reg rise, output reg down);

(请补充完整)

endmodule

																					٠											٠				٠		
		٠			٠			٠	٠	٠		٠		٠	٠			٠									٠	٠	٠			٠				٠	٠	
٠	•	٠			٠	•	•	٠	٠	٠	•	٠	•	٠	٠			٠	•					•	•	•	٠	٠	٠	•	٠	٠	•	•	•	٠	٠	•
	•	•	•	•	•	•	•	٠	٠	٠	•	•	•	٠	•	٠	٠	٠	•	٠	•	٠	٠	•	•	•	٠	٠	٠	•	•	•	•	•	•	•	٠	•
•	•	٠	•	•	٠	•	•	٠	•	٠	•	٠	•	٠	٠	•	•	•	•	•	•	•	•	•	•	•	٠	٠	٠	•	٠	•	•		•	•	•	•
٠	•	•	•	•	•	•	•	٠	•	٠	•	•	•	٠	•	•	•		•	•	•	•	•	•	•	•	٠	٠	٠	•	•	•				•		•
		٠			٠			٠	٠	٠		٠		٠	٠	٠	٠	٠		٠		٠	٠				٠	٠	٠		٠	٠				٠	٠	
								٠		٠		٠			٠												٠	٠						٠				
•	•	٠	٠	٠	٠	•	•	٠	٠	٠	•	٠	•	٠	٠	٠	٠	٠	•	٠		٠	٠	•	•	•	٠	٠	٠	•	٠	٠	•	•	•	٠	٠	•
•	•	٠	•	•	٠	•	•	٠		٠	•	٠	•	•	٠	•	•	•	•	•		•	•	•	•	•	٠	٠	٠	•	•						•	•
		٠	٠	٠	٠			٠	٠	٠		٠		٠	۰	٠	٠	٠						•			٠	٠			٠						٠	•
		٠			٠			٠	٠	٠		٠		٠	٠			٠									٠	٠	٠			٠				٠	٠	
٠	•	٠			٠	•	•	٠	٠	٠	•	٠	•	٠	٠			٠	•					•	•	•	٠	٠	٠	•	٠	٠	•	•	•	٠	٠	•
٠	•	•	•	•	•	•	•	•	٠	•	•	•	•	٠	•	•	•	•	•	•	٠	•	•	•	•	•	•	•		•	•	٠	•		•	٠	•	•
								٠		٠		٠			٠												٠	٠						•				
																																					٠	
•									٠														٠		٠					•			•	•			٠	
•									•																						•			•				
•					•				٠																						•	•		•				
٠									٠																									•				