

Congruent Triangles Ex 10.5 Q1

Answer:

We have to prove that $\triangle ABC$ is isosceles.

Let DE and DF be perpendicular from D on AB and AC respectively.

In order to prove that AB = AC

We will prove that $\triangle BDE \cong \triangle CDF$

Now in $\triangle BDE$ and $\triangle CDF$ we have

$$\angle BED = \angle CFD = 90^{\circ}$$

BD = CD (Since D is mid point of BC)

$$DE = DF$$
 (Given)

So by RHS congruence criterion we have

$$\Delta BDE \cong \Delta CDF$$

$$\Rightarrow \angle B = \angle C$$

And
$$AC = AB$$

Hence $\triangle ABC$ is isosceles.

Congruent Triangles Ex 10.5 Q2

Answer:

It is given that $BE \perp AC$, and $CF \perp AB$ And BE = CF.

We have to prove $\triangle ABC$ is isosceles.

To prove $\triangle ABC$ is isosceles we will prove $\angle B = \angle C$

For this we have to prove $\triangle BFC \cong \triangle CEB$

Now comparing ΔBFC and ΔCEB we have

BE = CF (Given)

BC = BC (Common side)

So, by right hand side congruence criterion we have

 $\Delta BFC \cong \Delta CEB$

 $\Rightarrow \angle FBC = \angle ECB$

 $\Rightarrow \angle ABC = \angle ACB$

So AB = AC (since sides opposite to equal angle are equal)

Hence $\triangle ABC$ is isosceles.

Congruent Triangles Ex 10.5 Q3

Answer:

Let P be a point within $\angle ABC$ such that PM = PN

We have to prove that P lies on the bisector of $\angle ABC$

In ΔPMB and ΔPNB we have

PM = PN (We have)

BP = BP (Common)

 $\angle BMP = \angle BNP = 90^{\circ}$

So by right hand side congruence criterion, we have

 $\Delta PBM \cong \Delta PBN$

So, $\angle 1 = \angle 2$

Hence P lies on the bisector of $\angle ABC$ proved.

********* END ********