08:03

03 DMA

Giriş

- https://mikrodunya.wordpress.com/2016/06/23/dma-direct-memory-access-dogrudan-bellek-erisimi/
- **DMA** (Direct Memory Adres), veri transferlerini hiç bir CPU işlemini kullanmadan sağlaması amacıyla oluşturulmuştur.
- Çeşitli çevre birimlerinden okuduğumuz verileri bir değişkene atarız. Bu değişkenler RAM'de depolanır.
 Bu işlem normalde çevre birimlerinde okunan verinin CPU'ya alınıp ardından RAM'e yazılır. Ancak CPU kullanımı hem işlemciyi yorar hemde kayıplara yol açar. DMA sayesinde verileri direk olarak RAM'e yazma imkanı buluruz.
- DMA donanımı CPU'dan bağımsız olarak verilerimizi hızlı bir şekilde kaynak adresten hedef adrese aktarır.
 - peripheral -> memory, bir çevre biriminden (peripheral) gelen veri doğrudan belleğe (memory) aktarılır.
 - mermory -> peripheral, bellekten (memory) alınan veri doğrudan bir çevre birimine (peripheral) gönderilir.
 - o memory -> memory, bir bellek bölgesindeki (memory) veri başka bir bellek bölgesine aktarılır.
- Bu sayede CPU'nun yükünü hafifletmiş oluruz. Sistem sanki 2 CPU ile çalışıyormuş gibi düşünebiliriz.
 Örneğin bilgisayarlarımızda bulunan 4 gerçek 4 sanal çekirdekteki sanal, aslında DMA diyebiliriz. DMA
 isteği için çevresel birim tarafından (ADC, DAC, I2C vs) DMA kontrolcüsüne istek gönderilir, kontrolcüde
 bu isteğin sırası gelince ilgili çevresel birime geri bildirimde bulunur ve işlem kaynak adresten hedef
 adrese doğru gerçekleşir.
- DMA işlemi, özellikle **çok fazla veri** alışverişi yapıldığı durumlarda kullanılmalıdır. CPU Yükünü Azaltma, Verimlilik, Hız, Kesintisizlik gibi nedenlerden dolayı sistem performansını önemli ölçüde artırır.
- STM32F4'te iki adet DMA vardır. DMA1'in DMA 2'den kanal 1'in kanal 2'den yüksek olduğu bilinmektedir.
 Öncelik sırası belirtmek için dört seviye vardır. Low, Medium, High, Very High.
 Aynı anda birçok kanal kullanıldığında hangi kanalın öncelik değeri fazla ise ilk o kanal alınır.
 DMA'lar paralel olarak çalışmazlar, seri olarak çalışırlar. Bu nedenle hangisinin sırası geldi ise o anda o çalışır.

Birim Yapısı

• AHB Master Portları: Şemanın sağ tarafında görülen AHB Master portları, DMA'nın hem bellek portuna

hem de peripheral portlara veri aktarımı yapabilmesini sağlar. Yüksek performanslı bir veri yolu olan AHB'yi kullanarak, verilerin hızlı bir şekilde taşınmasını sağlar.

- Programming Port, DMA'nın programlanmasını ve yapılandırılmasını sağlar. Mikrodenetleyicinin çekirdeği (CPU), DMA'yı programlamak için bu portu kullanır. Bu port üzerinden DMA akışları, kanallar, öncelikler ve diğer parametreler ayarlanır.
- **Memory Port**, DMA'nın belleğe erişmesini sağlar. Bellek portu üzerinden DMA, veriyi bellekten alabilir veya belleğe yazabilir.
- Peripheral Port, DMA'nın peripheral cihazlarla veri alışverişini gerçekleştirir. Örneğin, bir UART cihazından veri almak veya bir ADC'den ölçülen veriyi bellek adresine aktarmak için bu port kullanılır.
- Channel: Şemanın sol tarafında, her bir kanal için (CH0-CH7) bir seçim süreci olduğunu görebiliriz. Bu kanallar, belirli bir donanım isteğine (örneğin, ADC, SPI, UART gibi) karşılık gelir. Her bir kanal belirli bir DMA akışına (Stream) atanabilir.
- Streams: Her bir DMA denetleyicisi 8 ayrı akışa sahiptir (Stream 0 Stream 7). Bu akışlar, aynı anda birden fazla DMA işleminin yürütülmesine izin verir. Bir akış, belirli bir kaynaktan (örneğin, bir peripheral) veriyi alıp belirli bir hedefe (örneğin, bellek) iletebilir. Her akış, belirli bir kanal tarafından tetiklenir ve bu kanal üzerinden veri taşır.

Her bir stream, 8 olası kanal isteği arasından seçilebilecek bir DMA isteği ile ilişkilendirilmiştir. Çevresel birimlerden (TIM, ADC, SPI, I2C, vb.) gelen 8 request, her bir kanala bağımsız olarak bağlanır ve bu bağlantı ürünün uygulanmasına bağlıdır. DMA istek eşlemeleri için aşağıdaki tabloları inceleyebilirsiniz.

DMA1 request mapping

		- 1	JMA1 requ	iest mappir	ng			
Peripheral requests	Stream 0	Stream 1	Stream 2	Stream 3	Stream 4	Stream 5	Stream 6	Stream 7
Channel 0	SPI3_RX	-	SPI3_RX	SPI2_RX	SPI2_TX	SPI3_TX		SPI3_TX
Channel 1	12C1_RX	-	TIM7_UP	(*)	TIM7_UP	I2C1_RX	I2C1_TX	I2C1_TX
Channel 2	TIM4_CH1		I2S3_EXT_ RX	TIM4_CH2	I2S2_EXT_ TX	I2S3_EXT_ TX	TIM4_UP	TIM4_CH3
Channel 3	I2S3_EXT_ RX	TIM2_UP TIM2_CH3	12C3_RX	I2S2_EXT_ RX	12C3_TX	TIM2_CH1	TIM2_CH2 TIM2_CH4	TIM2_UP TIM2_CH4
Channel 4	UART5_RX	USART3_RX	UART4_RX	USART3_TX	UART4_TX	USART2_RX	USART2_TX	UART5_TX
Channel 5	UART8_TX ⁽¹⁾	UART7_TX ⁽¹⁾	TIM3_CH4 TIM3_UP	UART7_RX ⁽¹⁾	TIM3_CH1 TIM3_TRIG	TIM3_CH2	UART8_RX ⁽¹⁾	TIM3_CH3
Channel 6	TIM5_CH3 TIM5_UP	TIM5_CH4 TIM5_TRIG	TIM5_CH1	TIM5_CH4 TIM5_TRIG	TIM5_CH2	-	TIM5_UP	-
Channel 7	-	TIM6_UP	12C2_RX	12C2_RX	USART3_TX	DAC1	DAC2	I2C2_TX

DMA2 request mapping

Peripheral requests	Stream 0	Stream 1	Stream 2	Stream 3	Stream 4	Stream 5	Stream 6	Stream 7
Channel 0	ADC1	SAI1_A ⁽¹⁾	TIM8_CH1 TIM8_CH2 TIM8_CH3	SAI1_A ⁽¹⁾	ADC1	SAI1_B ⁽¹⁾	TIM1_CH1 TIM1_CH2 TIM1_CH3	2
Channel 1	-	DCMI	ADC2	ADC2	SAI1_B ⁽¹⁾	SPI6_TX ⁽¹⁾	SPI6_RX ⁽¹⁾	DCMI
Channel 2	ADC3	ADC3	*	SPI5_RX ⁽¹⁾	SPI5_TX ⁽¹⁾	CRYP_OUT	CRYP_IN	HASH_IN
Channel 3	SPI1_RX	15.	SPI1_RX	SPI1_TX		SPI1_TX	- 2	
Channel 4	SPI4_RX ⁽¹⁾	SPI4_TX ⁽¹⁾	USART1_RX	SDIO	-	USART1_RX	SDIO	USART1_TX
Channel 5	-	USART6_RX	USART6_RX	SPI4_RX ⁽¹⁾	SPI4_TX ⁽¹⁾		USART6_TX	USART6_TX
Channel 6	TIM1_TRIG	TIM1_CH1	TIM1_CH2	TIM1_CH1	TIM1_CH4 TIM1_TRIG TIM1_COM	TIM1_UP	TIM1_CH3	-
Channel 7	-	TIM8_UP	TIM8_CH1	TIM8_CH2	TIM8_CH3	SPI5_RX ⁽¹⁾	SPI5_TX ⁽¹⁾	TIM8_CH4 TIM8_TRIG TIM8_COM

- Arbiter: DMA denetleyicisinde, aynı anda birden fazla akışın (Stream) çalışabileceğini söyledik. Ancak aynı anda birden fazla akışın aynı hedefe (örneğin, belleğe) erişmeye çalışması durumunda, bir çakışma olabilir. Bu çakışmayı yönetmek için bir arbiter bulunur. Arbiter, hangi akışın öncelikli olacağına ve hangi akışın belleğe veya peripheral porta erişim sağlayacağına karar verir.
- FIFO: Her akışın (Stream) bir FIFO tampon belleği (buffer) vardır. Bu FIFO tamponları, veri akışını geçici olarak depolamak için kullanılır. FIFO kullanımı, DMA'nın veriyi daha etkin bir şekilde yönetmesine yardımcı olur, özellikle de veri hızları arasında bir uyuşmazlık olduğunda (örneğin, veri kaynağı veriyi çok hızlı gönderiyorsa veya hedef veriyi daha yavaş alıyorsa)

Register

Offset	Register	31	30	20	28	27	26	25	24	23	22	21	20	19	18	11	16	15	14	13	12	=	10	6	00	7	9	2	4	6	2	-	0
0x0 <mark>000</mark>	DMA_LISR	Reserved			TCIF3 HTIF3 TEIF3 DMEIF3			Reserved	FEIF3	TCIF2	HTIF2	TEIF2	DMEIF2	Reserved	FEIF2	F	Rese	rve	d	TCIF1	HTIF1	TEIF1	DMEIF1	Reserved	FEIF1	TCIF0	HTIF0	TEIFO	DMEIFO	Reserved	FEIF0		
	Reset value				0	0	0	0	Re	0 0		0	0	0	Re	0					0	0	0	0	Re	0	0	0	0	0	Re	0	
0x0004	DMA_HISR	F	Reserved		TCIF7 HTIF7 TEIF7		TEIF7	DMEIF7	Reserved	FEIF7	TCIF6	HTIF6	TEIF6	DMEIF6	Reserved	FEIF6	Reserved			d	TCIF5	HTIF5	TEIF5	DMEIF5	Reserved	FEIF5	TCIF4	HTIF4	TEIF4	DMEIF4	Reserved	FEIF4	
	Reset value			0	0	0	0	ď	0	0	0	0	0	0						0	0	0	0	æ	0	0	0	0	0	œ	0		
0x0008	DMA_LIFCR	Reserved		CTCIF3 CHTIF3 TEIF3		CDMEIF3	rved	CFEIF3	CTCIF2	CHTIF2	CTEIF2	CDMEIF2	Reserved	CFEIF2	Reserved		4	CTCIF1	CHTIF1	CTEIF1	CDMEIF1	Reserved	CFEIF1	CTCIFO	CHTIFO	CTEIF0	CDMEIF0	Reserved	CFEIF0				
0.0000	Reset value	Reserved			0	0	0	0	Reserved	0	0	0	0	0	Reserved	Reserved		Reserved			0	0	0	0	Reserved	0	0	0	0	0	Reserved	0	
0x000C	DMA_HIFCR	F	Reserved		CTCIF7 CHTIF7 CTEIF7 CDMEIF7		CDMEIF7	Reserved	CFEIF7	CTCIF6	CHTIF6	CTEIF6	CDMEIF6	-	CFEIF6	F	Rese	rve	d	CTCIF5	CHTIF5	CTEIF5	CDMEIF5	-	CFEIF5	CTCIF4	CHTIF4	CTEIF4	CDMEIF4	-	CFEIF4		
	Reset value						0	0	0 0		0	0	0	0	0	-	0					0	0	0	0	-	0	0	0	0	0	-	0
0x0010	DMA_SOCR	Reserved			CHSEL[2:0]			in Edward II.	PBURSTI1:01		PBURST[1:0]		Reserved	CT	DBM	DI [13-0]	L	PINCOS	MSIZEI 1:01		PSIZEI1-01		MINC	PINC	CIRC	DIRIT-01	6:1	PFCTRL	TCIE	HTIE	TEIE	DMEIE	EN
	Reset value					0 0 0		0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0x0014	DMA_SONDTR					77.	Reserved											IDT	[15:	.]			•										
0.00014	Reset value						0 0 0 0 0 0 0												0	0	0	0	0	0	0	0							
0x0018	DMA_SOPAR																PA[31:0	1														
	Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x001C	DMA_S0M0AR				(3)	W			202 8				26-3	ic .	52	N	AON	[31:	0]						***			200 - 60		8		267.	i C
Reset value		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0020	DMA_S0M1AR															N	И1A	[31:	0]														
	Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x0024	DMA_SOFCR		Reserved											FEIE	Reserved	F	S[2:	:0]	DMDIS		TH :0]												
Reset value																									0	Re	1	0	0	0	0	1	

- **DMA_LISR** ve **DMA_HISR** (Low/High Interrupt Status Register), DMA'nın düşük ve yüksek öncelikli kesmelerin durumunu izleyen register'lardır. Her bir bit, ilgili DMA kanalındaki bir kesmeyi temsil eder.
- DMA_LIFCR ve DMA_HIFCR (Low/High Interrupt Flag Clear Register), DMA'nın düşük ve yüksek öncelikli kesme bayraklarını temizlemek için kullanılır. Her bir bit, ilgili DMA kanalındaki bir kesme bayrağını temsil eder.
- **DMA_SxCR** (Stream x Configuration Register), DMA'nın belirli bir kanalının yapılandırma register'ıdır. Kanalın çalışma modu, transfer yönü, veri genişliği, bellek ve perifer adresi inkrement modu gibi özellikleri icerir.
- **DMA_SxNDTR** (Stream x Number of Data Register), İlgili DMA kanalında aktarılacak veri miktarını belirten register'dır.
- **DMA_SxPAR** (Stream x Peripheral Address Register), DMA'nın belirli bir kanalındaki perifer başlangıç adresini belirten register'dır.
- DMA_SxMxAR ve DMA_SxMxAR (Stream x Memory 0/1 Address Register), DMA'nın belirli bir kanalındaki bellek başlangıç adreslerini belirten register'lardır. Bazı STM32 modellerinde birden fazla bellek adresi kullanılabilir.
- **DMA_SxFCR** (Stream x FIFO Control Register), DMA FIFO (First In, First Out) kontrolünü sağlayan register'dır. FIFO'nun kullanılması, DMA transfer performansını artırabilir.

Sürec

- DMA kullanarak herhangi bir işlemci üzerinde veri transferi gerçekleştirmek için genel adım sıralaması aşağıdaki gibidir.
 - o Kullanılacak DMA Denetleyicisinin Belirlenmesi
 - Uygulamanız için uygun olan DMAx denetleyicisini belirleyin. İşlemcinizin hangi DMA kanallarının kullanılabilir olduğunu öğrenin.

• Yapılandırma Ayarların Yapılması

- Verilerin nereden nereye transfer edileceğini belirleyin.
- Transfer edilecek **veri miktarını** (byte, half-word, word) belirleyin
- Veri transferinin yönünü (kaynak->hedef) ve modunu (normal, döngüsel, vb.) ayarlayın.
- Transfer tamamlandığında veya hata durumunda kesme kullanmak istiyorsanız, ilgili kesme yapılandırmalarını yapın ve kesme hizmet rutini (ISR) tanımlayın.

• Transferin Tetiklenmesi

• Tüm yapılandırmalar tamamlandıktan sonra, DMA kanalını başlatın. Bu işlem, yazılım veya donanım tetiklemesi ile gerçekleştirilebilir.

o Transferin İzlenmesi ve Tamamlanmasının Beklenmesi

- Transfer sırasında DMA durumunu izleyin ve transferin tamamlanmasını bekleyin. Eğer kesme kullanıyorsanız, kesme servis rutininde gerekli işlemleri yapın.
- Transfer tamamlandıktan sonra DMA kanalını devre dışı bırakın ve gerekli temizleme işlemlerini yapın.