

Breve revisão de conceitos....

Os átomos são formados por 3 tipos de partículas subatómicas:

Representação esquemática do átomo de Bohr

Os eletrões mais exteriores determinam a maioria das propriedades elétricas, químicas, térmicas e óticas dos materiais.

Cada elemento químico é caracterizado por:

- número atómico (Z): número de protões (partículas carregadas positivamente) do núcleo;
- massa atómica (MA): massa, em gramas, de 6,022×10²³ átomos (o número de Avogadro, N_A) desse elemento.

Estrutura dos sólidos

Elementos eletropositivos:

cedem eletrões para se tornarem iões positivos (catiões)

Elementos eletronegativos:

aceitam eletrões para se tornarem iões negativos (aniões).

Qual é a massa em gramas de um átomo de Cu? MA(Cu) = 63,546 g/mol

1,05 x 10⁻²² g/átomo de Cu

Quantos átomos de Cu há em 1 g de Cu?

9,48 x 10²¹ átomos/1 g de Cu

Configuração eletrónica é a distribuição dos eletrões de um átomo pelas respetivas orbitais atómicas.

Principal Quantum Number n	Shell Designation	Subshells	Number of States	Number of Electrons	
				Per Subshell	Per Shell (2nd
1	K	S	1	2	2
2	L	s p	1 3	2 6	8
3	M	s p d	1 3 5	2 6 10	18
4	N	s p d	1 3 5	2 6 10	32
		f	7	14	

Escreva a configuração eletrónica do átomo Fe (Z=26) e dos iões Fe²⁺ e Fe³⁺.

Ligação química (primária) entre átomos:

iónica, covalente e metálica

Ligação iónica: transferência de eletrões de um átomo para outro; as forças envolvidas são forças de atração eletrostática (forças de Coulomb).

$$_{17}CI$$
 1s² 2s² 2p⁶ 3s² 3p⁵

Ligação covalente: partilha de eletrões entre átomos adjacentes; ligação simples e ligações múltiplas (duplas e triplas).

Representação esquemática da ligação covalente (simples) na molécula de CH₄.

Ligação metálica: ligação típica que ocorre em metais e em ligas

metálicas.

Representação esquemática da ligação metálica.

ductilidade, tenacidade, condutividade elétrica e térmica

Estrutura cristalina versus Estrutura não cristalina (amorfa)

Um sólido diz-se **cristalino** quando os seus átomos ou iões se arranjam num padrão que se repete segundo as 3 dimensões (**célula unitária**).

cristal com muitas células unitárias

Todos os **metais**, muitos **cerâmicos** e alguns **polímeros** possuem **estruturas cristalinas (rede)** quando solidificam em condições normais.

A maioria dos **metais** cristaliza em 3 geometrias **cristalinas compactas**:

- cúbica de corpo centrado (CCC)
- cúbica de faces centradas (CFC)
- hexagonal compacta (HC)

maior estabilidade mais baixa energia

Estrutura não cristalina

• Estrutura cristalina (densa)

Estruturas cristalinas tendem a ter baixas energias!

Table 3.1 Atomic Radii and Crystal Structures for 16 Metals

Metal	Crystal Structure ^a	Atomic Radius ^b (nm)	Metal	Crystal Structure	Atomic Radius (nm)
Aluminum	FCC	0.1431	Molybdenum	BCC	0.1363
Cadmium	HCP	0.1490	Nickel	FCC	0.1246
Chromium	BCC	0.1249	Platinum	FCC	0.1387
Cobalt	HCP	0.1253	Silver	FCC	0.1445
Copper	FCC	0.1278	Tantalum	BCC	0.1430
Gold	FCC	0.1442	Titanium (α)	HCP	0.1445
Iron (α)	BCC	0.1241	Tungsten	BCC	0.1371
Lead	FCC	0.1750	Zinc	HCP	0.1332

^a FCC = face-centered cubic; HCP = hexagonal close-packed; BCC = body-centered cubic.

^b A nanometer (nm) equals 10⁻⁹ m; to convert from nanometers to angstrom units (Å), multiply the nanometer value by 10.

À temperatura ambiente, o comprimento da aresta da célula unitária da estrutura CCC do Fe- α é 0,287×10-9 m (0,287 nm). Se as células unitárias do Fe- α se alinharem lado a lado, quantas células unitárias existirão em 1 mm?

3484321 células unitárias

Tamanho extremamente pequeno da célula unitária!

Estrutura cristalina cúbica de corpo centrado (CCC)

a – parâmetro de rede

R – raio atómico

- > cada célula possui o equivalente a 2 átomos por célula unitária
- > os átomos tocam-se segundo a diagonal do cubo
- relação entre a e R: $a = \frac{4R}{\sqrt{3}}$

Estrutura cristalina cúbica de faces centradas (CFC)

a – parâmetro de rede

R – raio atómico

- > cada célula possui o equivalente a 4 átomos por célula unitária
- > os átomos tocam-se segundo as diagonais das faces do cubo

> relação entre
$$a$$
 e R : $a = \frac{4R}{\sqrt{2}}$

Estrutura cristalina hexagonal compacta (HC)

a, c – parâmetros de rede

- > cada célula possui o equivalente a 6 átomos por célula unitária
- \triangleright relação entre a e R: a=2R
- razão entre c e a para estrutura cristalina HC ideal: $\frac{c}{a} = 1,633$

Outras importantes características da estrutura do cristal:

número de coordenação (NC): número de vizinhos mais próximos de um átomo

> fator de empacotamento ou fator de compacidade atómica (FCA):

ightharpoonup massa volúmica do metal (teórica): $ho_V = rac{massa\ da\ célula\ unitária}{volume\ da\ célula\ unitária}$

Estrutura dos sólidos

NC = 8 FCA = 0.68

Cristal CFC

Cristal HC

$$NC = 12$$
 $FCA = 0.74$

Estrutura dos sólidos

				•
	cúbica simples (CS)	cúbica de corpo centrado (CCC)	cúbica de faces centradas (CFC)	hexagonal compacta (HC)
nº de átomos / célula	$\frac{1}{8} \times 8 = 1$	$\frac{1}{8} \times 8 + 1 = 2$	$\frac{1}{8} \times 8 + 6 \times \frac{1}{2} = 4$	$12 \times \frac{1}{6} + 2 \times \frac{1}{2} + 3 = 6$
parâmetro de rede (a)	2R	$\frac{4 R}{\sqrt{3}}$	$\frac{4 R}{\sqrt{2}}$	$a = 2R$ $c = 4 \frac{\sqrt{2}}{\sqrt{3}} R$
diagonal da face (df)	2 √2 R	$4 \frac{\sqrt{2}}{\sqrt{3}} R$	4 R	não se aplica
diagonal do cubo (dc)	2 √3 R	4 R	$4 \frac{\sqrt{3}}{\sqrt{2}} R$	não se aplica
fator de compacidade atómica (FCA)	0,52	0,68	0,74	0,74

CS – estrutura hipotética para metais puros; os metais não cristalizam neste tipo de estrutura cristalina.

$\rho_{\text{metais}} > \rho_{\text{cerâmicos}} > \rho_{\text{polímeros}}$

Metais

- empacotamento compacto (ligação metálica)
- massas atómicas elevadas

Cerâmicos

- empacotamento pouco denso
- elementos leves

Polímeros

- pouco densos (geralmente amorfos)
- elementos leves(C,H,O)

Compósitos

valores intermédios

Estrutura dos sólidos

Muitos elementos existem em mais do que uma forma cristalina para diferentes condições de temperatura e pressão

Polimorfismo ou Alotropia

Formas cristalinas alotrópicas de alguns metais

METAL	ESTRUTURA NA TEMP. AMBIENTE	EM OUTRAS TEMPERATURAS
Ca	CFC	CCC (>447°C)
Co	HC	CFC (>427°C)
Hf	HC	CFC (>1742°C)
Fe	ccc	CFC (912-1394°C) CCC (>1394°C)
Li	ccc	HC (<-193°C)
Na	ccc	HC (<-233°C)
TI	HC	CCC (>234°C)
Ti	HC	CCC (>883°C)
Υ	HC	CCC (>1481°C)
Zr	HC	CCC (>872°C)

Estrutura dos sólidos

Transição alotrópica do estanho

Specimen of white tin (left). Another specimen disintegrated upon transforming to gray tin (right) after it was cooled to and held at a temperature below 13.2°C for an extended period of time.

Em geral, pode dividir-se a **solidificação** de um metal, ou liga, nas seguintes etapas:

- formação, no líquido, de núcleos estáveis (nucleação);
- crescimentos dos núcleos, originando cristais;
- formação de uma estrutura em grão.

arrefecimento

Muitas propriedades importantes dos materiais são devidas à presença de imperfeições!

- Que tipo de imperfeições/defeitos são esses?
- Porque são eles importantes?

Micro scópicos

Principais tipos de defeitos:

defeitos pontuais (lacunas...);

➤ impurezas;

- defeitos lineares (ou deslocações);
- > defeitos interfaciais (incluem as superfícies exteriores e os limites de grão interiores).
- defeitos macroscópicos tridimensionais (poros, fendas e inclusões)

Lacuna e defeito auto-intersticial:

Impurezas (substitucionais e intersticiais):

Defeitos lineares (ou deslocações): distorção da rede centrada em torno de uma linha (tipo cunha, parafuso e mista).

Defeitos interfaciais: os limites de grão são defeitos interfaciais que separam grãos

(cristais) com diferentes orientações.

material policristalino

Fronteiras de grão:

- · ligeira desordem
- baixa densidade (desajustamento atómico)
 - elevada mobilidade
 - elevada difusividade
 - elevada reatividade química

Estrutura dos sólidos

Gamas de tamanho de vários tipos de estruturas encontradas nos materiais

Poder de resolução de diferentes técnicas microscópicas

Difusão – transporte de massa devido ao movimento atómico.

- Gases e líquidos movimento aleatório (Browniano)
- > Sólidos difusão substitucional e difusão intersticial

Num elemento sólido, os átomos também migram:

posição atómica inicial

algum tempo depois...

Numa liga metálica, os átomos tendem a migrar de regiões de elevada concentração para regiões de mais baixa concentração:

Difusão atómica substitucional

- > os átomos trocam de lugar com a lacuna
- ➤ a velocidade de difusão depende de:
 - número de lacunas
 - energia de ativação.

Difusão atómica intersticial

- > pequenos átomos podem difundir-se entre átomos
- > mais rápida que a difusão substitucional

Resumindo.....

Difusão RÁPIDA para....

- estruturas cristalinas abertas
- materiais com ligações secundárias
- átomos pequenos
- materiais de baixa densidade

Difusão LENTA para...

- estruturas compactas
- materiais com ligações químicas (primárias)
- átomos grandes
- materiais de elevada densidade