Calculabilitate & ComplexitățiSubiectul 4

Complexitate Timp

Ce tre să știi?

Nota 6:

- modelul de masina Turing pe care se face evaluarea masurii timp
- definitia masurii timp
- definirea claselor de complexitate timp
- comprimarea benzilor (enunturi)
- eliminarea constantelor (enunturi)
- ierarhii de complexitate (enunturi)

Fiecare demonstratie, la alegere: 2p

Modelul de mașină Turing folosit

Vom folosi mașina Turing cu k benzi infinite la ambele capete. Poate să nu miște capul de citire-scriere la un moment dat. Mașinile considerate se opresc pe fiecare input.

Definiții

- Time_M(n) = numărul maxim de paşi pe care îi face maşina M pentru a decide o intrare de lungime n.
- (D/N)TIME_k(f(n)) = {L | există o mașină Turing M deterministă/nedeterministă cu
 k benzi astfel încât L(M) = L și există n₀ cu Time_M(n) <= f(n) pentru orice n >= n₀}
- 3. O funcție f(n) se numește **timp construibilă** dacă există o mașină Turing M și un n0 astfel încât **Time_M(n) = f(n)** pentru orice n > n0.
- 4. O funcție f(n) se numește **timp construibilă complet** dacă există o mașină Turing M astfel încât **Time**_M(n) = f(n) pentru orice n.

Teoreme

- Comprimarea timpului de lucru cu un factor constant:
 - o $(D/N)TIME_k(f(n)) = (D/N)TIME_k(c f(n))$, unde c este o constanta pozitivă nenulă dacă
 - 1. k > 1
 - 2. f(n) / n tinde la infinit când n tinde la infinit
 - $(D/N)TIME_k(t n) = (D/N)TIME_k((1 + epsilon) n)$, pentru orice k > 1 și epsilon > 0.
- Reducerea numarului de benzi:
 - $((D/N)TIME_{\iota}(f(n)) \subseteq (D/N)TIME_{\iota}(f(n)^2)$, pentru orice k > 1 și orice f.
 - $((D/N)TIME_k(f(n)) \subseteq (D/N)TIME_2(f(n)\log(f(n)))$, pentru orice k > 1 și orice f.

Se aplică și pentru DSPACE, NTIME, NSPACE.

• Fie T1, T2 doua funcții, T2 timp construibila complet. Dacă limita când n tinde la infinit din T1(n)*log(T1(n)) / T2(n) tinde la 0, atunci există un L care aparține lui DTIME(T2(n)) și nu aparține lui DTIME(T1(n).

lerarhie

- DTIME(f(n)) \subseteq DSPACE(f(n))
- DSPACE(f(n)) \subseteq DTIME($c^{f(n)}$), pentru $f(n) \ge \log(n)$
- NTIME(f(n)) \subseteq NSPACE(f(n))
- NTIME(f(n)) \subseteq DTIME($c^{f(n)}$)
- NSPACE(f(n)) \subseteq DSPACE($f(n)^2$), pentru $f(n) \ge \log(n)$ și f spațiu construibilă complet (Teorema lui Savitch)
- $P = \bigcup_{k} DTIME(n^{k}), NP = \bigcup_{k} NTIME(n^{k})$
 - DSPACE(log n) \subseteq P \subseteq NP \subseteq NSPACE = PSPACE $\stackrel{.}{\circ}$ DSPACE(log n) \subset PSPACE

Demonstrații

 $((D/N)TIME_k(f(n)) \subseteq (D/N)TIME_1(f(n)^2)$, pentru orice k > 1 și orice f.

Fie maşina Turing M cu TimeM(n) = f(n).

Şi acum, construim maşina M' astfel:

- M' are o singură bandă auxiliară, iar elementele ei vor fi vectori cu 2k piste:
 - Pe pista 2 * i 1 se află conținutul benzii i a mașinii M
 - Pista 2 * i conține 0-uri mai puțin pe o poziție are 1 unde se afla capul de citire-scriere al benzii i a mașinii M.

O pistă poate avea în cel mai rău caz f(n) celule ocupate (deoarece TimeM(n) = f(n), M nu are timp să ocupe mai mult de f(n) celule pe una dintre benzile ei).

Mașina M':

- Citește conținutul benzii de la stânga la dreapta și memorează simbolurile de pe pistele 2 * i - 1 aflate imediat deasupra simbolurilor 1 de pe pistele 2 * i (maxim f(n) pași)
- Actualizează conținutul benzii de la dreapta la stânga:
 - Parcurgerea fiecărei celule: maxim f(n) pași:
 - Actualizarea simbolurilor de pe celula i: 1 pas
 - Dacă un cap de citire scriere aflat pe poziția i al mașinii M se mută la dreapta, trebuie actualizate pistele pare de pe celula din dreapta:
 - Un pas ca să ne mutăm la dreapta cu o poziție
 - Un pas ca să ne întoarcem
 - => 3f(n) pasi

Deci, sunt f(n) + 3f(n) = 4f(n) paşi care pot fi executați de maxim f(n) ori => 4f(n)) * f(n).

Nu știm dacă putem aplica teorema pentru eliminarea constantelor pentru că nu știm dacă funcția f este supraliniară. Dar, putem construi mașina M'' cu L(M'') = L care face maxim f(n)/2 pași.

Atunci, maşina M' poate simula în acelaşi mod maşina M'' şi va face $4\left(\frac{f(n)}{2}\right)^2 = f(n)^2$ paşi.

Oricare ar fi f(n) recursivă, există un limbaj recursiv L astfel încât L $\not\equiv$ DTIME(f(n)).

Fie L = { w \in {0, 1}* | w nu este acceptat de M în cel mult f(n) **pași**, unde $\widehat{M} = \widehat{w}$ }.

Notăm cu \widehat{w} poziția lui w în mulțimea {0, 1, 00, 01, 10, 11, 000,}.

Codificărilor mașinilor Turing sunt peste alfabetul $\{0, 1, 2, (,), L, R\}$, iar \widehat{M} reprezintă numărul de ordine al mașinii M în ordinea dată mai întâi de lungimea codificării și, în caz de egalitate, lexicografic.

Presupunem că există mașina M care acceptă L:

- M are ca input w
- Calculează lungimea lui |w| = n pe o bandă auxiliară
- Calculează f(n) pe aceeași bandă
- Găseste M' astfel încât $\widehat{w} = \widehat{M}'$
- Simulează mașina M' pe intrarea w, pentru maxim f(n) pași.
- Acceptă dacă M' se oprește și respinge sau dacă în cei f(n) pași pentru care a rulat simularea M' nu s-a oprit.

=> L = L(M). Mașina M e deterministă si se oprește pe fiecare intrare.

Am demonstrat că limbajul L e recursiv. Rămâne să demonstrăm că nu aparține lui DTIME(f(n)).

Alegem w cu $\widehat{M} = \widehat{w}$.

M acceptă în maxim f(n) pași => w nu e acceptat de M - contradicție.

M respinge în maxim f(n) pași => w ar trebui sa fie acceptat de M din definiția lui L - contradicție.

- => M trebuie sa accepte w în mai mult de f(n) pași.
- => TimeM(|w|) > f(|w|), deci L nu aparține lui DTIME(f(n)).