

Bachelorthesis Optimierung von Clustern von Wortverwendungsgraphen

November 30, 2021

Benjamin Tunc

Institut für Maschinelle Sprachverarbeitung, Universität Stuttgart

Motivation

Figure 1: Wortverwendungsgraph (WUG) von zersetzen aus DWUG DE¹

¹https://www.ims.uni-stuttgart.de/data/wugs

Motivation (2)

SemEval-2020 Task 1: Unsupervised Lexical Semantic Change Detection Schlechtweg et al. (2020)

Datensätze

- ▶ DWUG Datensätze (EN V1.0.0, DE V1.1.0, SV 1.0.0) ²
- ▶ 30-50 Wörter mit je 200 Verwendungen pro Datensatz
- für ihre semantische Nähe auf der DURel relatedness scale annotiert

²https://www.ims.uni-stuttgart.de/data/wugs

Datensätze (2)

- 4: Identical
- 3: Closely Related
 2: Distantly Related
 - 1: Unrelated

Table 1: DURel relatedness scale.

Sense descriptions

- bei 24 deutschen Wörtern
- Beschreibung des Wortsinns
- Annotatoren wählen aus einem Set von verschiedenen Wortbedeutungen ein passendes aus

Correlation Clustering

- Methode zur Aufteilung der Knoten eines gewichteten
 Graphen G = (U, E, W) in eine optimale Anzahl von Clustern
- ► Kantengewicht W(e) der Kanten $e = (u, v) \in E$ sind binär $W(e) \in \{-1, 1\}$
- Minimierung der Summe der positiven Kantengewichte zwischen verschiedenen Clustern und die Summe der negativen Kantengewichte innerhalb von Clustern

DWUG Correlation Clustering

- Kantengewichte sind nicht-binär
- ▶ die Gewichte W(e) werden nach W'(e) = W(e) 2.5 verschoben

$$L(C) = \sum_{e \in \phi_{E,C}} W'(e) + \sum_{e \in \psi_{E,C}} |W'(e)| \tag{1}$$

Simulated Annealing

```
state \leftarrow initial
while attempts < max A and i < max I do
    temp \leftarrow T(i)
    i \leftarrow i + 1
    if temp = 0 then
        break
    else
        delta_e \leftarrow L(nqhbr) - L(state)
        prob \leftarrow exp(delta_e/temp)
        random \leftarrow random(0, 1)
        if delta_e > 0 or random < prob then
            state \leftarrow nghbr
            attempts \leftarrow 0
        else
            attempts \leftarrow attempts + 1
        end if
    end if
end while
```

Figure 2: Pseudocode umgewandelt von mlrose Simulated Annealing ³

³https://github.com/gkhayes/mlrose.

Parameter

Maximale Clusteranzahl s:

- ▶ keine feste Clusteranzahl *k*
- ▶ iterieren durch $0 \le k \le s$
- $s \in \{5, 7, 10, 15, 20\}$

Figure 3: Anzahl von Clustern pro Datensatz.

Parameter (2)

MaxA und MaxI:

- maxA = maximale Anzahl der Versuche, in einen Nachbarzustand zu wechseln
- maxI = maximale Anzahl der Iterationen, die der Algorithmus durchläuft
- $maxA/maxI \in \{100/10000, 100/20000, 500/10000, 1000/10000, 1000/20000, 5000/10000, 5000/20000\}$
- Wiederholungen
- Initialisierung:
 - unabhängig: ein Clustering mit einer zufälligen Initialisierung und ein Clustering, welches mit Connected Compontents initalisiert wird (Schlechtweg et al., 2021)
 - abhängig:ein Clustering mit einer zufälligen Initialisierung und ein Clustering initialisiert mit der bisdato besten Lösung

Parameter (3)

Stoppkriterien:

- Feste Anzahl von Wiederholungen (r = 5, r = 10)
- ▶ Vergleich mit der letzten Wiederholung (r = 11)
- Vergleich mit den letzten drei Wiederholungen (r = 13)

Figure 4: Verlauf eines Modells beim Wort Knotenpunkt

Evaluierungsmetrik

- Loss
- Laufzeit
- ► Adjusted Rand Index (ARI)
 - Adjusted Rand Index zwischen einer Clusterlösung und den sense descriptions
 - ▶ zwischen −1.0 und 1.0
- Robustheit
 - Adjusted Rand Index zwischen Clusterlösungen des gleichen Modells
 - ightharpoonup zwischen -1.0 und 1.0

Experimente

- ► Modellstruktur: s, maxA, maxI, Initialisierung, r
- 10 Durchläufe pro Modell
- Durchschnitt der Medianwerte eines Modells
- ▶ 320 Modelle insgesamt
- ▶ Zusatzmodell: s = 20, maxA = 2000, maxI = 50000, unabhängig initialisiert und r = 5

Resultate - Welches Modell findet den niedrigsten Loss?

S	MaxA	Maxl	Init	r	Loss	Laufzeit	ARI	Robust
10	500	10k	a.	10/5/I3	8.0	30/15/ 17	.72/.70/.71	.97/.96/.96
15	500	10k	a.	10	8.0	36	.71	.98
20	500	10k	a.	10	8.0	43	.73	.98
10	500	20k	a.	10/I3	8.0	51/27	.72/.72	.98/.97
15	500	20k	a.	10	8.0	51	.73	.98
20	500	20k	a.	10	8.0	62	.73	.99
10	1000	10k	a.	10/I3	8.0	31/ 17	.73 /.72	.98/.97
15	1000	20k	a.	10	8.0	64	.73	.98
15	5000	20k	a.	10	8.0	32	.72	.98

Table 2: Übersicht über alle Modelle mit dem niedrigsten Median-Loss.

Resultate - Welches Modell findet den niedrigsten Loss?

Muster der Topmodelle:

 $s \in \{10, 15, 20\}$, $maxA \in \{500, 1000, 5000\}$, $maxI \in \{10000, 20000\}$ und abhängig initialisiert

Resultate - Sind die Wiederholungen sinnvoll?

- ightharpoonup S = 20, maxA = 5000, maxI = 50000, r = 1
- Loss von 13.0 und Laufzeit von 29s
- ► S = 20, maxA = 500, maxI = 10000, abhängig Initialisiert, r = I3
- Loss von 9.55 und Laufzeit von 22s

Resultate - Welches Modell ist besonders effizient?

- ▶ Nur Modelle mit einem Loss-Median von 10.0 (16%)
- Vergleich der Laufzeiten
- s = 10, maxA = 500, maxI = 10000, abhängige Initialisierung und r = I1 mit Loss von 9.35 und Laufzeit von 7s

Resultate - Stoppkriterien im Vergleich

r	ARI	Loss	Robust	Laufzeit
10	.72	9.5 11.6 12.0 10.5	.97	64.6
5	.69	11.6	.95	32.5
11	.68	12.0	.94	14.7
l3	.70	10.5	.95	35.1

Table 3: Metrik für Stoppkriterien (Deutscher Datensatz).

Resultate - niedrigerer Loss = höhere Robustheit?

- \triangleright Spearman's rank correlation coefficient von -0.73
- ▶ alle Modelle aus Tabelle 2 haben eine hohe Robustheit zwischen 0.96 and 0.99

Figure 5: Loss und Robustheit aller Clusterlösungen.

Resultate - Welches Modell erzielt den höchsten ARI?

- ▶ Höchster ARI (0.73) wurde von 16 Modellen erzielt
- ▶ alle Modelle aus der Tabelle 2 haben einen annähernd guten ARI-Wert
- 5 Modelle haben auch den niedrigsten Median-Loss
- Die anderen Modelle haben vergleichsweise gute Loss-Werte

Resultate - Gibt es einen Zusammenhang?

- ► Spearman Correlation von −0.45
- ▶ Bei 19 von 24 deutschen Wörtern mit sense descriptions ist die Clusterlösung mit dem höchsten ARI auch die Lösung mit dem geringsten Loss

Resultate - unabhängige Initialisierung oder abhängige Initialisierung?

Init.	Loss	Laufzeit	ARI	Robust
unabhängig abhängig	12.7	28	.62	.92
abhängig	10.6	27	.70	.96

Table 4: Vergleich von unabhängiger Initialisierung und abhängiger Initialisierung.

Figure 6: Vergleich von unabhängiger Initialisierung und abhängiger Initialisierung beim Wort *Knotenpunkt*.

Resultate - Liegt es an Connected Components?

▶ Unterschied von 0.5 im Loss-Median \rightarrow kein nennenswerter Unterschied

Figure 7: Vergleich von unabhängiger Initialisierungen mit und ohne Conected Components.

Resultate - Wieso? (2)

- Median-Loss ohne zufällige Initialisierung: 24.0
- ► Median-Loss mit zufällige Initialisierung: 9.8

Figure 8: Modell beim Wort *Knotenpunkt* ohne die zufällige Initialisierung.

Resultate - Welche Parameterkombination für Simulated Annealing ist zu empfehlen?

MaxA	MaxI	Loss	Laufzeit	ARI	Robust
100	10000	12.9	14	.63	.89
100	20000	12.8	15	.63	.89
500	10000	11.0	25	.67	.96
500	20000	11.1	42	.67	.96
1000	10000	11.2	25	.67	.96
1000	20000	11.3	46	.68	.96
5000	10000	11.1	26	.68	.96
5000	20000	11.4	46	.68	.96

Table 5: Durchschnittliche Resultate von verschiedenen *maxl* und *maxA* Kombinationen.

Resultate - Wie sieht es bei anderen Datensätzen aus?

Schwedisch:

- Der niedrigste Loss (2.5) wurde mit 9 unabhängigen Modellen und 29 abhängigen Modellen erzielt
- Stoppkriterien r = 13 und r = 10 sind am häufigsten

MaxA	MaxI	Loss	Laufzeit	Robust
100	10000	2.9	9	.93
100	20000	3.0	11	.89
500	10000	2.8	15	.93
500	20000	2.8	29	.98
1000	10000	2.8	15	.98
1000	20000	2.8	27	.98
5000	10000	2.7	23	.98
5000	20000	2.8	27	.97

Table 6: Durchschnittliche Resultate von verschiedenen *maxl* und *maxA* Kombinationen (Schwedischer Datensatz).

Resultate - Wie sieht es bei anderen Datensätzen aus? (2)

r	Loss	Robust	Laufzeit
10	2.7 2.8	.98	35.5
5	2.8	.96	17.7
l1 l3	2.8 3.0 2.8	.96	7.5
l3	2.8	.96	16.5

Table 7: Metrik für Stoppkriterien (Schwedischer Datensatz).

Resultate - Wie sieht es bei anderen Datensätzen aus? (3)

Englisch:

- ► Niedrigster Loss (14.0) wurde von einem unabhängigen Modell gefunden
- ▶ Niedrigster Loss eines abhängigen Modells: 14.9
- Durchschnittlicher Loss der Modelle: 16.5

MaxA	MaxI	Loss	Laufzeit	Robust
100	10000	17.7	11	.82
100	20000	18.0	12	.82
500	10000	16.4	19	.92
500	20000	16.1	33	9 1
1000	10000	16.3	20	.92
1000	20000	16.2	36	.92
5000	10000	16.9	30	.91
5000	20000	16.3	37	.92

Table 8: Durchschnittliche Resultate von verschiedenen *maxl* und *maxA* Kombinationen (Englischer Datensatz).

Resultate - Wie sieht es bei anderen Datensätzen aus? (4)

r	Loss	Robust	Laufzeit
10	16.2 16.7 17.0 16.8	.91	45.0
5	16.7	.89	22.4
11	17.0	.89	9.9
l3	16.8	.89	21.5

Table 9: Metrik für Stoppkriterien (Englischer Datensatz).

Zusammenfassung

► Initialisierung:

- ▶ abhängige Initialisierung erzielt bessere Resultate
- eine rein abhängige Initialisierung wird wahrscheinlich in einem lokalen Minimum stecken bleiben und sollte von einer zusätzlichen zufälligen Initialisierung ergänzt werden

Wiederholungen und Stoppkriterien:

- eine mehrmalige Wiederholung des Clustering ist besser als eine einmalige Durchführung mit Brute-Force-Parametern
- Ermöglicht die Nutzung von Stoppkriterien zur Laufzeitreduzierung ohne großen Qualitätsverlust

ARI, Loss, Robustheit:

- Verringerung des Loss führt zu einer besseren externen Qualität
- Minimierung des Loss führt zu hohe Robustheit

Datensätze:

- gleiche Resultate in Bezug auf Stoppingkriterien
- ▶ gleiche Resultate in Bezug auf Parameterkombinationen
- gleiche Resultate bei DWUG SV in Bezug auf Initialisierung
- ▶ andere Resultate bei DWUG EN in Bezug auf Initialisierung

References I

- Bansal, N., Blum, A., & Chawla, S. (2004). Correlation clustering. Machine Learning, 56(1-3), 89–113. doi: 10.1023/B:MACH.0000033116.57574.95
- Hayes, G. (2019). mlrose: Machine Learning, Randomized Optimization and SEarch package for Python. https://github.com/gkhayes/mlrose. (Accessed: May 22, 2020)
- Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2, 193-218.
- McCarthy, D., Apidianaki, M., & Erk, K. (2016). Word sense clustering and clusterability. *Computational Linguistics*, 42(2), 245-275.
- Pincus, M. (1970). A monte carlo method for the approximate solution of certain types of constrained optimization problems. *Operations Research*, 18(6), 1225–1228. doi: 10.1287/opre.18.6.1225
- Schlechtweg, D., McGillivray, B., Hengchen, S., Dubossarsky, H., & Tahmasebi, N. (2020). SemEval-2020 Task 1: Unsupervised Lexical Semantic Change Detection. In *Proceedings of the 14th International Workshop on Semantic Evaluation*. Barcelona, Spain: Association for Computational Linguistics. Retrieved from https://www.aclweb.org/anthology/2020.semeval-1.1/
- Schlechtweg, D., Schulte im Walde, S., & Eckmann, S. (2018). Diachronic Usage Relatedness (DURel): A framework for the annotation of lexical semantic change. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (pp. 169–174). New Orleans, Louisiana. Retrieved from https://www.aclweb.org/anthology/N18-2027/
- Schlechtweg, D., Tahmasebi, N., Hengchen, S., Dubossarsky, H., & McGillivray, B. (2021). DWUG: A large Resource of Diachronic Word Usage Graphs in Four Languages.. Retrieved from https://arxiv.org/abs/2104.08540