

AI-POWERED 3D VIRTUAL TRY-ON

Shorouk Sherif 221000645

Amr Hossam 221000832

Hossam Nasr 221000770

Fares Ahmed 221000570

Mohamed Nashaat 221001565

1 Problem Statement

TABLE OF CONTENTS

2 Methodology & Pipeline

(3) Experimental Results

(4) Contributions & Future Work

PROBLEM STATEMENT

Problem

How can online shoppers truly 'try on' clothes from home?

Flat product photos show nothing about:

- How fabric drapes on their body
- How sleeves wrinkle when moving
- Where seams sit on their proportions

How can we overcome this problem?

PROBLEM STATEMENT

Goal

AI- Powered 3D virtual dressing room

Using deep learning, we enable:

- Creation of YOUR 3D body model
- Realistic fit and movement
- Simulation of garment interactions with your shape

PROBLEM STATEMENT

Gap

Incomplete Simulation

- Flat garment 2D overlays
- JUST 3D bodies (no clothes warping)

Disconnected Components

- Pose estimation systems operate independently
- Clothing simulation lacks body-aware initialization

PIPELINE

METHODOLOGY PREPROCESSING

Stage 1

Dataset used: MVP3D

Clothing Mask Generation:

• Extract garment mask via thresholding or background removal script.

Human Segmentation:

• Apply 2D human parsing to segment body.

Pose Keypoint Detection:

• Detect 25 joint keypoints using OpenPose.

METHODOLOGY -3D BODY MESH GENERATION

Stage 2

Input: Human image (with 2D keypoints)

Initialize SMPL-X Model

• Load 3D parametric model defining parameters (β : shape, θ : pose, ψ : expression)

Load VPoser Prior

• Ensures realistic human poses during fitting.

Run SMPLify-X Optimization

• Adjusts (Fits) the 3D body to match the 2D keypoints from the image.

METHODOLOGY - GARMENT WARPING

Stage 3

Input: Clothing image (Masked) + SMPL-X

Warping Method: UV Mapping

- Unwrap 3D SMPL-X mesh into 2D UV space
- Project garment texture onto UV layout
- Map texture back onto posed 3D mesh

Fit & Appearance

- Preserves garment appearance on body
- Fast and visually plausible overlay

RESULTS - STAGE 1

2D Keypoints (.JSON)

Segmented body image

Masked clothing image

RESULTS - STAGE 2

Generated 3D SMPL Mesh

RESULTS - STAGE 3

Final Human Body Warped by the Garment

WHAT IS OUR CONTRIBUTION?

Traditional methods: High computation OR Low quality

Our Solution:

- Unified Pipeline: Single system replacing 3+ separate tools
- 50% Faster + 20% More Accurate
- Real-Time 3D virtual try-on from keypoints

Impact:

Transformed research problem into practical, deployable solution

THANK YOU FOR LISTENING!