개발역량강화를 위한 알고리즘 정복 CAMP

CHAPTER02 - Time Complexity & Loop Optimization

Time Cost

프로그램의 명령어는 모두 CPU에서 처리될 때 시간을 소요한다. 많은 명령어를 처리할 수록 전체 소요 시간이 증가하게 된다.

당연히 반복문은 반복 횟수에 비례해서 소요 시간이 증가한다.

간단한 코드도 반복 횟수가 많아지면 어느 수준 이상의 시간을 소요하게 된다.

```
/**

* 이 반복문은 N의 크기에 비례해 소요 시간이 증가한다.

*/
for(int i = 0 ; i < N; i++)
{

SomeCode(); //반복문이 없는 상수시간 연산
}
```


Time Cost Anaysis

일반적으로 알고리즘을 설계 할 상황에서는 데이터의 수(혹은 크기)를 대략적으로 예측할 수 있는 경우가 대부분이다.

물론 코딩테스트 문제에서도 직/간접적으로 주어진다.

1) 데이터의 수 n이 항상 x_1 이하라면, 이 알고리즘 은 항상 제한시간 이내에 수행됨을 보장할 수 있는가?

2) 데이터의 수 n이 항상 x_2 정도라면 이 알고리즘은 제한시간을 초과하여 동작할 수 있다. 이 알고리즘을 파기하고 새 알고리즘을 설계해야 하는가?

Time Cost - Order of Function

연산량을 표현한 수식이 더 높은 오더(Order)를 가지는 알고리즘이 데이터 크기가 증가할 수록 더 가파르게 연산량이 증가한다.

Q. 더 높은 오더로 연산량이 표현되는 알고리즘은 항상 더 많은 연산을 수행하는가?

```
/**

* 이 반복문은 N의 크기에 제곱-비례하게 소요 시간이 증가한다.

*/

for(int i = 0 ; i < N; i++)
{

   for(int j = 0 ; j < N; j++)
   {

      SomeCode(); //반복문이 없는 상수시간 연산
   }
}
```


Time Cost - Order of Function

연산량 함수의 오더가 실행 시간의 상승폭을 나타낼 수 는 있지만,

- 물론 가능하다면 낮은 오더의 연산량을 사용하는 것이 유리하다.
- 연산량 표현에 사용되는 기본 요소들과 명칭은 익혀 두자

실제 실행 시간에는 더 많은 요소들이 관여한다.

- 상수 시간 명령어들
- 데이터의 크기
- 입/출력 시간 등

극단적으로는...

- CPU vs GPU분산처리
- 멀티 쓰레딩과 병렬처리
- 하드웨어 스펙 ...
- 언어적 성능
- 컴퓨터의 구조적인 이유

물론 대회나 시험에서는 이런 요소들은 통일하거나 큰 차이가 없도록 한다.

Functions	Name
0(1)	Constant
$O(\log_k N)$	Logarithm
$O(\sqrt[k]{N})$	k-Root
O(N)	Linear
$O(N^k)$	Polynomial
$O(a^N)$ for $a > 1$	Exponential
O(N!)	Factorial

Time Complexity of Algorithms

문제를 해결하기 위해 걸리는 시간과 입력 데이터의 관계를 함수 꼴로 표현한 것. 연산량(수행 시간)이 데이터의 크기에 대해 얼마나 민감하게 변하는지를 나타내는 지표.

일반적으로 Big-O표기법을 사용하여 입력에 대한 연산량을 나타낸다.

- 1. 상수는 모두 무시하고
- 2. 각 변수별로 Order가 가장 높은 항 만을 남겨 표현한다.

예:

- 1. $O(10^3n^2 + 10^9n) = O(n^2)$
- 2. $O(3N^2 \log_2 N + 2M^2 + N) = O(N^2 \log_2 N + M^2)$

일반적으로 시간 복잡도로 최악의 경우에 대한 연산량을 표현하지만, 최소나 평균 연산량을 표현하는 경우도 있다.

Time Complexity Analysis

데이터가 클 수록 더 작은 시간 복잡도를 가지는 알고리즘을 설계하는 것이 유리하다.

반대로, 데이터가 작을 수록 이런 점에서 자유로워진다.

시간 복잡도와 데이터의 최대 크기를 통해 대략적으로 어느 정도 수준의 연산량이 필요할지 예측해볼 수 있다.

보통의 PC에서 수천만 단위의 연산을 처리하면 1~2초 정도의 시간을 소요하게 된다. 이런 정보를 활용해 자신의 알고리즘을 대략적으로 평가할 수 있다. 물론 어느정도는 감각과 경험이 필요하다.

Q. N이 최대 20만인 데이터가 주어지는 문제에서, 내가 설계한 알고리즘이 $O(n^2)$ 의 시간 복잡도를 가진다면 잘 설계한 것일까?

Algorithm Optimization

알고리즘은 출력하고자 하는 값과 입력으로 주어지는 값에 따라서 다양하게 변형될 수 있다.

입력 데이터가 가지는 특징을 이용하여 알고리즘을 간소화할 수 있다.

- 정렬 여부
- 중복 존재 여부
- 입력 값의 범위와 크기
- 기타 수학적 특징 혹은 문제에 제시 된 규칙 등

또한, 우리가 원하는 출력 데이터를 구하기위해 필요하지 않은 정보를 생략함으로서 기존의 알고리즘을 개선하거나 다른 알고리즘을 적용할 수 있게 된다.

- 예시
 - 구체적인 개수가 아닌 존재 여부만이 중요할 때
 - 여러가지 정답 후보들 중 하나만이 필요할 때
 - 등...

Problem 02A. 도토리 키 재기

주어진 조건을 만족하는 최대값을 탐색해야 한다.

왼쪽부터 탐색을 시작하는 것과 오른쪽부터 시작하는 것에 차이가 있을까?

Problem 02A. 도토리 키재기

```
/**
* 생일이 m월인 가장 큰 키의 도토리를 찿는 함수
* @param height 각 도토리의 키
* Oparam month 각 도토리의 출생 월
* @param n 도토리의 수
* @return month[k] == m인 가장 큰 height[k]
*/
public static int getMaximumHeight(int[] height, int[] month, int n, int m)
  int maxHeight = -1; //생일이 m월인 사람이 아무도 없다면 <math>-1일 것이다.
  for(int i = n-1; i>=0; i-=1)
  { //모든 도토리의 출생 월 month[i]에 대해
     //키가 큰 도토리부터 고려하다가
     if(month[i] == m)
     { // 생일이 일치하는 도토리가 등장했다! 저장하자
        maxHeight = height[i];
        //그 이후 (i가 작아지는 방향)에는 어차피 더 큰 키의 사람이 없다.
        //그러므로 더 수행할 필요가 없음이 자명하다.
        break;
  return maxHeight;
```

Problem 02B. 오름차순인가?

문제의 주어진 조건을 활용해 조금 더 효율적인 알고리즘을 설계해보자.

배열 data[0] ~ data[N-1]이 오름차순이다?

- data[i] <= data[i+1]를 만족하는 쌍 <i, i+1>이 총 N-1개 존재해야 한다.
- ⇔ data[i] > data[i+1]를 만족하는 쌍 <i, i+1>이 <u>존재하지 않아야 한다</u>.
- ⇔ 이런 쌍이 하나라도 존재하면 오름차순이 아니다.

Problem 02B. 오름차순인가?

변수의 역할을 정의함에 따라 로직의 구현이 달라질 수 있음에 유의하자.

```
/**
* 주어진 배열이 오름차순인지 검사하는 함수
* @param data
* @param n 데이터의 수
 * @return data[0] ~ data[n-1]이 오름차순이라면 true, else false
public static boolean isOrdered(int[] data, int n)
   int count = 0;
   for(int i = 0; i + 1 < n; i ++)
               ){
   if(
   }else{
```

무작위 배열에서 서로 같은 값들을 찾아 한 번씩만 출력해주어야 한다. 또한 모두 정렬하여 출력해야 한다.

	а	а	e	С	а	b	а	а	b	d	С	С
- 1			_	_					l		_	_

하지만 이 문제의 입력 데이터는 모두 오름차순으로 정렬되어 주어진다.

정렬된 데이터는 다양한 특징을 가지게 되어 처리가 용이 해진다.

• 이런 점을 살려, 처리하기 번거로운 데이터는 정렬한 이후 처리하기도 한다.

데이터가 값을 기준으로 정렬되어 있다면, 서로 같은 값은 항상 인접해 있음이 보장된다. 즉, 서로 같은 값들끼리 하나의 범위(그룹)을 이룬다.

각 범위에 대한 대표 원소를 하나 정한 후,

각 그룹에 대해 대표 원소의 값을 한 번씩만 고려해주면 된다!

범위나 그룹처럼 하나의 인덱스로 표현하기 힘든 정보의 경우, 해당 정보를 대표할 수 있는 중복되지 않는 '기준'을 정하여 다루는게 좋다. (Primary Key?)

아래 조건식에 들어갈 내용을 고민해보자.

```
public static int getElementTypeCount(int[] data, int n)
    int countType = 0;
    for(int i = 0 ; i < n ; i ++)</pre>
        if(
            countType += 1;
    return countType;
```

어떤 변수의 '배열'은 한 번에 비교하기 쉽지 않은 구조다.

• 물론 정의하기 나름이지만.

두 배열 내부 각 원소들을 일일이 비교하여 결정하는 경우가 일반적이다.

• 그렇기에 두 배열의 비교는 일반적으로 배열의 길이 만큼의 시간을 소모하는 연산이다.

배열 혹은 문자열을 다루는 내장 기능들과 함수들은 대부분이 길이에 비례한 시간을 소모한다.

• 꼭! 대략적인 시간복잡도는 알아 두는게 좋다.

두 단어 algorithm과 allergy를 생각해보자. 일반적으로 사전을 펼쳤을 때 어떤 단어가 더 앞에 있을까?

우리가 사전에서 단어를 찾아 나갈 때,

- 현재 페이지보다 앞에 있을지
- 현재 페이지보다 뒤에 있을지

판단하는 기준이 무엇일지 생각해보고 명확하게 그 과정을 정의해보자.

a 1 g o r i t h m

a 1 1	e	r g	у
-----------	---	-----	---

일반적으로 두 문자열을 앞에서부터 조회했을 때,

"서로 다른 문자가 등장하는 첫 위치에서의 두 문자의 사전 순 관계"를 두 문자열의 사전 순 관계로 정의한다.

- 'A' < 'B' < ... < 'Z'
- '0' < '1' < ... < '9'
- · 「フ'く…く「ゔ'
- '가' < ... < '힣'


```
class MyString implements Comparable<MyString>
   private char[] characters;
   /**
    * this와 파라미터 o를 사전순으로 비교하여 결과를 -1, 0, 1로 반환하는 함수
   @Override
   public int compareTo(MyString o) {
       int n = Math.min(this.characters.length, o.characters.length);
```

완전 임의로 선택된 두 변수 A, B에 대해서 두 값이 일치할 확률은 상당히 적다.

- 물론 어떤 데이터인지에 따라 변수의 분포나 확률은 달라질 수 있다.
- 이 사실을 이용해 많은 것들을 할 수 있다.

$$P(A = x | B = x) = \frac{1}{\text{해당 변수 정의역의 크기}}$$

그렇다면 두 배열 S, T의 모든 원소가 일치할 확률은 얼마나 적을까?

$$P(S = x | T = x) = \frac{1}{\text{타입 정의역의 크기배열의 길이}}$$

S가 사전순으로 빠름

T가 사전순으로 빠름

우리가 현재 알고 싶은 정보가 '두 문자열(혹은 배열)이 같은가'일 때사전순의 대소관계는 꼭 필요한 정보인가?

아래의 경우 두 배열은 일치하지 않다고 할 수 있다.

- 1. 두 배열의 길이가 다른 경우
- 2. 두 배열의 원소가 하나라도 다른 경우

```
public boolean equals(Object obj)
    if(!(obj instanceof MyString))
        return false;
   MyString o = (MyString)obj;
```

입력으로 주어지는 숫자가 소수인지 판별해야 하므로, 소수가 가지는 특징을 이용한다.

- 1은 소수가 아니다.
- 소수는 1과 자기 자신만을 약수로 가진다.

즉, [1, N]범위에서 N의 약수의 수를 세어 2개가 된다면 소수다. 그렇지 않다면 소수가 아니다.

⇔ 1과 자기 자신을 제외하면 약수의 수가 0개여야만 한다!

짝수들은 2를 제외하고 모두 합성수라는 사실을 이용해 개선 할 수 있다.

1. 연산량이 최대가 되기 위한 N의 조건은 무엇인가?

2. 이 함수의 시간 복잡도를 계산하시오.

3. 문제의 입력 조건 하에서 제한 시간내에 수행 될 수 있겠는가?

```
public static boolean isPrime(int N)
   if( N == 1) return false; //1은 소수가 아니다
   else if( N == 2 ) return true; //2는 소수다
   else if( N % 2 == 0) return false; //나머지 짝수는 소수가 아니다
   int divisorConunt = 0; //1과 자기 자신을 제외한 N의 약수의 수
   for(int i = 3; i < N; i+=2)
   { //모든 N미만의 홀수 자연수 i에 대해
      if( N % i == 0)
      { //N의 약수가 되는 i에 대해 카운트
         divisorConunt += 1;
         //하나라도 발견된 순간 더 챃을 필요는 없다.
         break;
   if(divisorConunt > 0)
      return false;
   }else{
      return true;
```

자연수 N의 한 약수 a를 생각해보자. N을 a로 나눈 몫을 b라고 하면 아래의 식이 성립한다.

$$N = ab$$
 (단, $a \le b$)

즉, 한 자연수 N에 대해 서로 곱하여 N이 되는 약수 쌍 a, b가 항상 존재한다. 편의상 a 는 b이하인 경우만 고려하자.

 $(a \le b)$ 라는 조건 하에서 N에 대한 a의 최대 값은 $a \le \sqrt{N}$ 이다.

• 그러므로 $1 \le a \le \sqrt{N}$, $\sqrt{N} \le b \le N$ 이 된다.

그러므로, N이 소수가 아니라면 $2 \le a \le \sqrt{N}$ 범위에 약수 a가 반드시 존재한다.

대우명제> $2 \le a \le \sqrt{N}$ 범위에 약수가 없다면 N은 소수다.

 \therefore [2, \sqrt{N}] 범위에 대해서만 약수의 존재 여부를 검사하면 소수/합성수를 구분할 수 있다.

- 1) 이 알고리즘의 시간 복잡도를 계산해보자.
- 2) 아래 코드에서 for문의 종료 조건은 모순이 없는가?

3) 더 빠른 방법이 있을까?

```
public static boolean isPrime(int N)
   if(N == 1) return false; //1은 소수가 아니다
   else if( N == 2 ) return true; //2는 소수다
   else if( N % 2 == 0) return false; //나머지 짝수는 소수가 아니다
   for(int i = 3; i*i <= N; i+=2)
   { //모든 N미만의 홀수 자연수 i에 대해
      if( N % i == 0)
      { //이 범위에 약수가 존재한다면 소수일 수 없다.
         return false;
   //약수가 하나도 존재하지 않았다면.
   return true;
```

Problem 02F. 데스티니

두 데이터 i, j의 쌍(혹은 1:1관계) <i, j> 또한 데이터의 집합으로 볼 수 있다.
• 그러므로 유한하게 조회하거나 나열할 수 있다.

```
i가 [0, N-1]범위의 정수이고 j가 [0, M-1] 범위의 정수라고 한다면
• <0, 0>, <0, 1>, ..., <0, M-1>
• <1, 0>, <1, 1>, ..., <1, M-1>
• ...
• <N-1, 0>, <N-1, 1>, ... <N-1, M-1>
```

즉, 모든 경우를 반복문으로 조회해볼 수 있다.

```
for(int i = 0; i < n; i ++)
{
    for(int j = 0; j < m; j++)
    {
        System.out.printf("<%d, %d>\n", i, j);
    }
}
```

Problem 02F. 데스티니

또한 집합이기에 분류할 수 있다.

- i < j 인 경우
- i = j 인 경우
- i > j 인 경우

특정 상황에서는 두 데이터에 대한 관계 <i, j>에 대하여

- 어떤 관계인가
- 각 관계에 대해 무슨 작업을 할 것인가

에 따라서 조회가 불필요하거나, 중복적인 관계가 발생할 수 있다.

이런 경우는 제외하고 탐색하는 것이 당연히 효율적이다.

Problem 02F. 데스티니

가장 가까운 거리와, 그 거리를 가지는 쌍의 수를 한 번에 조회해보자.

```
int min_sqd = Integer. MAX_VALUE; //가장 거리가 가까운 두 점의 거리의 제곱
int min_cnt = 0;
for(int i = 0; i < n; i ++)
   for(int j = 0; j < i; j++)
```

Problem 02G. 버블 소트 구현하기

Algorithm>

앞에서부터 차례로 인접한 두 숫자를 비교하며

- a[j] <= a[j+1]면 continue;
- a[j] > a[j+1]면 두 숫자를 바꾼다.

가장 큰 숫자가 가장 뒤로 이동하게 된다.

이 과정을 N번 반복한다.

Problem 02G. 버블 소트 구현하기

```
public static void bubbleSort(int[] data, int n)
   for(int i = 0 ; i < n ; i++)</pre>
       for(int j = 0; j < ; j ++)
           if( data[j] > data[j+1] )
```

Problem 02H. 픽셀 수 세기

2차원 상에서 원의 위치는 정답에 영향을 주지 않으므로, 다루기 편할 것 같은 위치에 있다고 가정하자.

원의 중심이 원점에 있다고 가정하니, 각 사분면의 픽셀 수는 모두 같다.

: 생략 가능하다.

Problem 02H. 픽셀 수 세기

2차원 평면 상에서 격자의 수는 무한하게 많다.

하지만 정답이 될 수 있는 격자의 범위는 유한하다.

- x좌표나 y좌표가 R을 초과하는 점은 원 안에 포함될 리 없다.
- 정답의 후보에서 배제하자.
- $\therefore R^2$ 개의 격자들 중 원에 포함되는 픽셀의 수를 세자
 - 각 격자를 구분할 수 있는 기준을 정해야 한다.
 - 격자의 네 점 중 '왼쪽 아래 점의 좌표'를 사용해보자.

Problem 02H. 픽셀 수 세기

네 점 모두 원 안에 있거나, 두 개 이상의 변과 교차한다.

⇔ 왼쪽 아래 점(x,y) 이 원 안에 있다.

$$\Leftrightarrow \sqrt{(x-0)^2 + (y-0)^2} < R$$

```
/**
* 왼쪽 아래 좌표가 (x,y)인 픽셀이 반지름 R인 원에 포함되는가?
 * Qparam X
 * Qparam y
 * Qparam R
 * @return 포함된다면 true, else false
*/
public static boolean isInside(long x, long y, long R)
   long sqd = x *x + y * y ; //거리의 제곱
   if ( sqd < R * R ) //반지름의 제곱
   { //원점과의 거리가 반지름보다 작다면, 원 안에 있다.
      return true;
   return false;
```


But, $R^2 = 4 \times 10^{10}$ 이다. 모든 격자를 일일이 순회하는 건 어렵다.

x좌표가 같은 격자끼리 하나의 그룹(열)으로 묶어보자.

각 그룹별로 가장 위의 격자의 위치를 알 수 있다면? 그 아래의 격자 수는 자명 해진다.

• 격자는 1x1크기로 정수 좌표계에 하나씩 존재하기 때문.

But, 가능한 y좌표가 최대 R개 이므로 각 열 별로 모든 y좌표를 탐색한다면 결국 $O(R^2)$

But, $R^2 = 4 \times 10^{10}$ 이다. 모든 격자를 일일이 순회하는 건 어렵다.

```
public static void testCase(int caseIndex) {
   long R = scanner.nextLong();
   long sum = 0; //1사분면에 존재하는 총 픽셀의 수
   for(long x = 0; x \leftarrow R; x \leftrightarrow H)
       long height = 0;
       for(long y = R; y \ge 0; y --)
          if(isInside(x, y, R))
           { //위에서 부터 내려오다가
              //가장 최초로 원 안에 포함된 픽셀 (x, y)
              //이 그룹의 높이는 (y+1)이 된다.
              height = (y+1);
              break;
       sum += height; //너비는 10/므로
   System.out.printf("#%d\n", caseIndex);
   System. out. printf("%d\n", sum * 4); //모든 사분면의 픽셀 수
```


원점을 중심으로 가지는 원은 1사분면에서

• x좌표가 증가할 수 록 y좌표가 감소한다.

즉, 각 그룹의 높이는 내림차순 배열과 같다.

- 한 그룹의 높이는 자기 자신 왼쪽의 그룹 높이보다 작다.
- R부터가 아닌, 왼쪽 그룹의 높이부터 검사해도 충분하다.


```
public static void testCase(int caseIndex) {
   long R = scanner.nextLong();
   long sum = 0; //1사분면에 존재하는 총 픽셀의 수
   long y = R;
   for(long x = 0; x \leftarrow R; x \leftrightarrow H)
       long height = 0;
       for( ; y \ge 0; y \longrightarrow
           if(isInside(x, y, R))
           { //위에서 부터 내려오다가
              //가장 최초로 원 안에 포함된 픽셀 (x, y)
              //이 그룹의 높이는 (y+1)이 된다.
              height = (y+1);
              break;
       sum += height; //너비는 1이므로
   System.out.printf("#%d\n", caseIndex);
   System. out. printf("%d\n", sum * 4); //모든 사분면의 픽셀 수
```


상수 시간이 소요되는 F를 Basic Operation으로 정의했을 때,

1) F는 최대 몇 번 수행될 수 있는가?

2) 반지름 R에 대하여, 이 알고리즘의 시간 복잡도를 계산 하시오.

```
public static void testCase(int caseIndex) {
   long R = scanner.nextLong();
   long sum = 0; //1사분면에 존재하는 총 픽셀의 수
   long y = R;
   for(long x = 0; x \leftarrow R; x \leftrightarrow ++)
       long height = 0;
       for ( y \ge 0; y --)
           if(isInside(x, y, R))
           { //위에서 부터 내려오다가
               //가장 최초로 원 아에 포함된 픽셀 (x, y)
               //이 그룹의 높이 = (y+1)이 된다.
               height = (y+1);
               break;
       sum += height; //너비는 1이므로
   System.out.printf("#%d\n", caseIndex);
   System. out. printf("%d\n", sum * 4);
```

주어진 배열을 정렬했을 때, 1씩 증가하는 연속 수열이 되는가?

물론 직접 (빠른) 정렬을 한 후, 차례로 1씩 증가하는지 검사해볼 수 도 있다.

• 과제로 남깁니다. 한 번 해보세요.

하지만 굳이 정렬을 해야 하기에 최소 $O(N \log_2 N)$ 의 시간이 소요된다.

또한, 정렬을 하면 안되거나 하기 싫을 때에는 사용할 수 없다.

다른 방법은 무엇이 있을까?

A를 입력 받은 배열, B를 어떤 정렬 된 연속 수열이라고 하자.

두 배열이 집합적으로 같다면 (모든 원소가 일치한다면), A를 정렬하면 B가 된다.

-> A를 정렬하면 연속 수열이 된다.

즉, B와 같은 수열이 존재함을 보이면 된다.

주어진 배열의 최소값을 L, 최대값을 G라고 하자. 그렇다면, 배열에 L보다 작거나 G보다 큰 값은 존재하지 않는다.

배열에 [L, G]범위의 모든 정수가 하나씩 존재한다면, 정렬했을 때 연속 수열이 된다.

정수 [L, G] 범위에는 정확히 M = (G - L + 1)가지의 정수가 존재한다.

경우의 수를 나누어 보자.

- 1. M < N 인 경우
 - 1. 비둘기집 원리에 의해, 중복이 존재할 수 밖에 없다.
 - 2. 그러므로 연속 수열이 될 수 없다.
- 2. M > N 인 경우
 - 1. [L, G]범위의 연속 수열이 되기 위해서는 M개의 원소가 필요하다.
 - 2. 하지만 배열의 크기가 그 보다 작으므로 불가능하다.
- 3. M = N 인 경우
 - 1. [L, G]범위의 숫자가 정확히 하나씩 존재할 수 도 있다.
 - 2. 중복이 존재할 수 도 있다.

문제의 지문에 다음과 같은 조건이 있었다.

"철승이는 똑같은 에피소드를 두 번 보지 않는다." ⇔ 배열에 중복은 존재하지 않는다.

- 3. M = N 인 경우
 - 1. [L, G]범위의 숫자가 정확히 하나씩 존재할 수 도 있다.
 - 2. 중복이 존재할 수 도 있다.

그러므로, (G-L+1)=N인 경우에는 주어진 배열을 정렬했을 때 항상 연속 수열이 된다.

Sliding Window Method.

크기가 일정한 범위들을 한 방향으로 순서대로 조회하는 방법.

각 범위 R_i 는 배열의 [i, i+k-1] 인덱스를 포함한다.

모든 범위 R_i 들 중 하나 이상의 범위에 대하여, 범위에 속한 원소들의 총 합이 짝수가 되는 경우가 하나 이상 존재하는지 검사하면 된다.

a_0	a_1	 a_{i-1}	a_i	R	•••	a_{i+k-1}	a_{i+k}	•••	a_{N-2}	a_{N-1}
			i i + k - 1							

아래와 같은 경우 시간 복잡도는 어떻게 될까?

```
int winCount = 0;
for(int i = 0; i + k - 1 < N; i++)
{ // Ri := data[i] ~ data[i+k-1] 범위에 대하여
   long sum = 0;
   for(int j = i; j \le i + k -1; j ++)
   { //범위 Ri의 모든 원소 data[j]의 합을 구한다.
       sum += data[j];
   if( sum % 2 == 0)
       winCount += 1;
       break;
if(winCount > 0)
   //승리할 수 있다
}else{
   //승리할 수 없다.
```

일일이 모든 범위를 매번 조회하는 것은 대략 $O(kN - k^2) \le O(kN)$ 정도의 시간이 소요된다.

N과 k가 10만 이하의 자연수이므로, 최악의 경우 시간 제한 초과를 예상할 수 있다.

하지만 모든 범위에 대해 합을 검사 해야함은 자명하다. 어떻게 모든 범위를 빠르게 조회할 수 있을까?

항상 길이가 k로 같은 범위를 순차적으로 조회하고 있다.

두 범위 R_i 와 R_{i+1} 의 대부분의 범위가 중복된다. 중복되는 정보들을 매번 다시 계산하지 않고 재활용할 수 있을까?

 $(R_{i+1}$ 영역의 합) = $(R_i$ 영역의 합) - a_i + a_{i+k}

1) 이 알고리즘의 시간 복잡도를 계산 하시오.

2) 범위들을 조회하는 문제들 중, 이 알고리즘이 적용될 수 있는 조건은 무엇인가?

```
int winCount = 0;
long sum = 0;
// 첫 (k-1)개의 원소에 대한 합을 계산한다.
for(int i = 0; i < k - 1; i++)
   sum += data[i];
for(int i = 0; i + k - 1 < N; i++)
{ //영역의 왼쪽 끝 인덱스 i에 대해
   if(i > 0)
   { //영역을 벗어나게 되는 원소 제외
      sum -= data[i-1];
   //새로 영역에 들어온 원소 추가
   sum = sum + data[i + k-1];
   if(sum \% 2 == 0)
      winCount += 1;
      break;
```

Fin.

감사합니다.

^{*} 이 PPT는 네이버에서 제공한 나눔글꼴과 아모레퍼시픽의 아리따부리 폰트를 사용하고 있습니다.