Chapitre 19

Calcul différentiel

Définition 19.1 - application différentiable

Soit E et F deux espaces vectoriels normés de dimension finie, U un ouvert de E, $f:U\to F$ une fonction.

On dit que f est différentiable en un point a de U lorsqu'il existe $L_a \in \mathcal{L}(E,F)$ telle que :

$$f(x+a) \underset{x\to 0}{=} f(a) + L_a(x) + o(x)$$

L'application L_a est alors appelée différentielle $\mathrm{d}f_a$ de f en a.

Proposition 19.7 - différentielle d'une fonction d'une seule variable réelle

Soit F un espace vectoriel normé de dimension finie, U un ouvert de $\mathbb{R}, f: U \to F$ une fonction.

f est différentiable en a si seulement si f est dérivable en a. Le cas échéant :

$$df_a: \mathbb{R} \longrightarrow F$$

 $x \longmapsto xf'(a)$

et en particulier, $df_a(1) = f'(a)$.

Définition 19.8 - dérivée selon un vecteur

Soit E et F deux espaces vectoriels normés de dimension finie, U un ouvert de E, $f:U\to F$ une fonction. Soit $u\in E, a\in U$. Il existe $V\in \mathcal{V}_{\mathbb{R}}(0)$ tel que pour tout $t\in V, a+tu\in U$

On dit que f admet une dérivée selon le vecteur u au point a lorsque la fonction $t \mapsto f(a+tu)$, définie de V à valeurs dans F, est dérivable en $0_{\mathbb{R}}$.

Le vecteur dérivé correspondant est appelé la dérivée de f suivant le vecteur u, et noté :

$$D_u f(a) = \lim_{t \to 0} \frac{f(a+tu) - f(a)}{t}$$

Théorème 19.9 - différentiabilité ⇒ existence de dérivée selon tout vecteur

Soit E et F deux espaces vectoriels normés de dimension finie, U un ouvert de $E, f: U \to F$ une fonction.

Si f est différentiable en a, alors pour tout vecteur $u \in E$, f admet une dérivée selon u en a et :

$$D_u f(a) = df_a(u)$$

Définition 19.13 - matrice jacobienne

Soit E et F deux espaces vectoriels normés de dimension finie, U un ouvert de E, $f:U\to F$ une fonction différentiable en $a\in U$.

On appelle matrice jacobienne de f en un point $a \in U$ relativement aux bases \mathcal{B} et \mathcal{B}' la matrice :

$$J_f(a) = \operatorname{Mat}_{\mathcal{B}, \mathcal{B}'}(df_a)$$

Proposition 19.13 bis - expression de la matrice jacobienne

Soit E et F deux espaces vectoriels normés de dimension finie, U un ouvert de E, $f:U\to F$ une fonction différentiable en $a\in U$.

La matrice jacobienne de f en a prend la forme :

$$J_f(a) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(a) & \frac{\partial f_1}{\partial x_2}(a) & \dots & \frac{\partial f_1}{\partial x_n}(a) \\ \frac{\partial f_2}{\partial x_1}(a) & \frac{\partial f_2}{\partial x_2}(a) & \dots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1}(a) & \frac{\partial f_n}{\partial x_2}(a) & \dots & \frac{\partial f_n}{\partial x_n}(a) \end{pmatrix}$$

Définition 19.14 - déterminant jacobien

Soit E et F deux espaces vectoriels normés de dimension finie commune, U un ouvert de E, $f:U\to F$ une fonction différentiable en $a\in U$.

Puisqu'ici E et F sont de même dimension, la matrice $J_f(a)$ est carrée. On appelle déterminant jacobien son déterminant, noté :

$$\frac{D(f_1, \ldots, f_n)}{D(x_1, \ldots, x_n)}(a) = \det J_f(a)$$

Théorème 19.18 - composition d'applications différentiables

Soit E, F et G trois espaces vectoriels normés de dimension finie. Soit f une application d'un ouvert U de E vers F, g une application d'un ouvert V de F vers G, telles que $f(U) \subset V$. Supposons que f est différentiable en $a \in U$ et que g est différentiable en f(a).

Alors $g \circ f$ est différentiable en a avec :

$$d(g \circ f)_a = dg_{f(a)} \circ df_a$$

Théorème 19.19 - règle de la chaîne

Soit E, F et G trois espaces vectoriels normés de dimension finie. Soit f une application d'un ouvert U de E vers F, g une application d'un ouvert V de F vers G, telles que $f(U) \subset V$. Supposons que f est différentiable en $a \in U$ et que g est différentiable en f(a).

La matrice jacobienne de $g \circ f$ en a est le produit des matrices jacobiennes de g en f(a) et de f en a. Plus précisément, en manipulant les bases \mathcal{B}_E , \mathcal{B}_F et \mathcal{B}_G appropriées, on a :

$$\operatorname{Mat}_{\mathcal{B}_{E},\mathcal{B}_{G}}\left(d(g\circ f)_{a}\right) = \operatorname{Mat}_{\mathcal{B}_{F},\mathcal{B}_{G}}\left(dg_{f(a)}\right) \times \operatorname{Mat}_{\mathcal{B}_{E},\mathcal{B}_{F}}\left(dg_{a}\right)$$