Постановка задачи электродинамического моделирования

Литература

Обозначения

А — скалярная величина

А — векторная величина

Этапы построения математической модели

• Постановка задачи.

Определение целей расчета.

Определение класса задачи.

Определение необходимого объема входной и выходной информации.

Определение допустимой погрешности результатов.

• Аналитическая обработка.

Формулировка уравнений.

Формулировка начальных условий.

Формулировка граничных условий.

Описание формы расчетной области и свойств среды.

Выбор метода решения.

- Дискретизация модели.
- Решение полученных систем уравнений.
- Обработка результатов.

Этапы построения математической модели

• Постановка задачи.

Определение целей расчета.

Определение класса задачи.

Определение необходимого объема входной и выходной информации.

Определение допустимой погрешности результатов.

• Аналитическая обработка.

Формулировка уравнений.

Формулировка начальных условий.

Формулировка граничных условий.

Описание формы расчетной области и свойств среды.

Выбор метода решения.

- Дискретизация модели.
- Решение полученных систем уравнений.
- Обработка результатов.

Нелинейные среды

Среда называется **нелинейной**, отклик которой на действие внешнего излучения нелинейно зависит от амплитуды возмущения.

В **нелинейных** средах <u>не</u> выполняется принцип суперпозиции: отклик на сумму возмущений <u>не</u> равен сумме откликов на отдельные возмущения.

Прямая задача электродинамики

Прямая задача электродинамики (задача анализа) — определение электромагнитного поля в некоторой области V с определенными начальными и граничными условиями на поверхности S, созданное заданными источниками.

Обратная задача электродинамики

Обратная задача электродинамики (задача синтеза) —

определение параметров среды и (или) источников в области V по известному распределению электромагнитного поля в некоторой другой области V_1 , которая может не совпадать с V.

Пример обратной задачи— диагностика многослойной среды радаром подповерхностного зондирования

Параметры среды

1.
$$\varepsilon_1 = 1.0$$
, $d_1 = 0.5$ M

2.
$$\varepsilon_2$$
 = 4.0, d_2 = 0.10 M

3.
$$\varepsilon_3$$
 = 1.0, d_3 = 0.105 M

4.
$$\varepsilon_{4} = 4.0$$

Зондирующий сигнал

Отраженный сигнал

Корректно поставленная задача

Задача y = A(x) называется корректно поставленной, если для любых входных данных x из некоторого класса решение y существует, единственно и устойчиво по входным данным.

Устойчивость задачи

Пусть δx — погрешность входных данных $y + \delta y = A(x + \delta x)$

 $\delta y = A(x + \delta x) - A(x)$ — неустранимая погрешность решения.

Если решение непрерывно зависит от входных данных, т.е. всегда $||\delta y|| \to 0$ при $||\delta x|| \to 0$, то задача называется устойчивой по входным данным; в противном случае задача неустойчива по входным данным.

Краевые задачи

Для решения задачи используются уравнения Максвелла, записанные через комплексные амплитуды.

Решение производится в частотной области.

Анализ стационарных процессов.

Начально-краевые задачи

Для решения задачи используются уравнения Максвелла, записанные для мгновенных значений.

Решение производится во временной области.

Анализ переходных процессов.

Внутренняя задача

Необходимо найти решение уравнений Максвелла или соответствующих им волновых уравнений в области V, ограниченной поверхностью S.

Это решение должно удовлетворять на поверхности *S* граничным условиям.

Требования для решения внутренней задачи во временной области

Решение внутренней задачи существует и единственно, если:

- 1. В начальный момент времени t_0 во всем объеме V заданы значения напряженностей электрического и магнитного полей.
- 2. На поверхности S заданы касательные составляющие \mathbf{E}_{τ} или \mathbf{H}_{τ} , или на части поверхности заданы \mathbf{E}_{τ} , а на остальной части \mathbf{H}_{τ} .
- 3. В объеме V или его части электропроводность среды отлична от 0.

Требования для решения внутренней задачи в частотной области

Решение внутренней задачи существует и единственно, если:

- 1. На поверхности S заданы касательные составляющие \mathbf{E}_{τ} или \mathbf{H}_{τ} , или на части поверхности заданы \mathbf{E}_{τ} , а на остальной части \mathbf{H}_{τ} .
- 2. В объеме V или его части мнимые части ε и (или) μ среды отлична от 0.

Внешняя задача

Область моделирования не ограничена.

Например, <u>задача излучения</u>: в свободном безграничном пространстве необходимо найти решение неоднородного волнового уравнения, удовлетворяющего условию излучения на бесконечности.

Доказать, что решение этой задачи существует и оно единственно.

Требования для решения внешней задачи

Решение внешней задачи существует и единственно, если:

на поверхности областей, вне которых задано ЭМ поле, заданы касательные составляющие $\mathbf{E}_{_{\mathrm{T}}}$ или $\mathbf{H}_{_{\mathrm{T}}}$, а энергия ЭМ поля, создаваемого источниками конечной интенсивности и размера, во всем пространстве остается конечной.

$$\lim_{r \to \infty} \int_{V} \left(\varepsilon_{a} |\vec{\mathbf{E}}|^{2} + \mu_{a} |\vec{\mathbf{H}}|^{2} \right) r^{2} dr d\theta d\phi < \infty \qquad (1.1)$$

r — расстояние от источников

V — заполняет все пространство

Алгоритмы оптимизации

- Алгоритм градиентного спуска.
- Алгоритм Нелдера-Мида (симплекс-метод).
- Алгоритм имитации отжига.
- Генетический алгоритм.
- Алгоритм роя частиц.
- Алгоритм дифференциальной эволюции.

• ...

Классы задач, решаемые в дальнейшем

- Линейные задачи.
- Корректные задачи.
- Прямые задачи (задачи анализа).
- Начально-краевые задачи.
- Задачи о вынужденных колебаниях.
- Размерности задачи 1D, 2D.
- Внутренние задачи.

Этапы построения математической модели

• Постановка задачи.

Определение целей расчета.

Определение класса задачи.

Определение необходимого объема входной и выходной информации.

Определение допустимой погрешности результатов.

• Аналитическая обработка.

Формулировка уравнений.

Формулировка начальных условий.

Формулировка граничных условий.

Описание формы расчетной области и свойств среды.

Выбор метода решения.

- Дискретизация модели.
- Решение полученных систем уравнений.
- Обработка результатов.

Этапы построения математической модели

• Постановка задачи.

Определение целей расчета.

Определение класса задачи.

Определение необходимого объема входной и выходной информации.

Определение допустимой погрешности результатов.

• Аналитическая обработка.

Формулировка уравнений.

Формулировка начальных условий.

Формулировка граничных условий.

Описание формы расчетной области и свойств среды.

Выбор метода решения.

- Дискретизация модели.
- Решение полученных систем уравнений.
- Обработка результатов.

Точность решения

Математическая точность решения должна быть в несколько раз (2 — 4 раза) выше, чем ожидаемая точность модели.

Источники погрешности

- Погрешность за счет неточности исходных данных.
- Погрешность математической модели.
- Погрешность метода за счет дискретизации задачи.
- Вычислительная погрешность.

Этапы построения математической модели

• Постановка задачи.

Определение целей расчета.

Определение класса задачи.

Определение необходимого объема входной и выходной информации.

Определение допустимой погрешности результатов.

• Аналитическая обработка.

Формулировка уравнений.

Формулировка начальных условий.

Формулировка граничных условий.

Описание формы расчетной области и свойств среды.

Выбор метода решения.

- Дискретизация модели.
- Решение полученных систем уравнений.
- Обработка результатов.

Этапы построения математической модели

• Постановка задачи.

Определение целей расчета.

Определение класса задачи.

Определение необходимого объема входной и выходной информации.

Определение допустимой погрешности результатов.

• Аналитическая обработка.

Формулировка уравнений.

Формулировка начальных условий.

Формулировка граничных условий.

Описание формы расчетной области и свойств среды.

Выбор метода решения.

- Дискретизация модели.
- Решение полученных систем уравнений.
- Обработка результатов.

Итерационный алгоритм создания сетки разбиения

Итерационный алгоритм создания сетки разбиения

Итерационный алгоритм создания сетки разбиения

Этапы построения математической модели

• Постановка задачи.

Определение целей расчета.

Определение класса задачи.

Определение необходимого объема входной и выходной информации.

Определение допустимой погрешности результатов.

• Аналитическая обработка.

Формулировка уравнений.

Формулировка начальных условий.

Формулировка граничных условий.

Описание формы расчетной области и свойств среды.

Выбор метода решения.

- Дискретизация модели.
- Решение полученных систем уравнений.
- Обработка результатов.

Классификация вычислительных методов

Этапы построения математической модели

• Постановка задачи.

Определение целей расчета.

Определение класса задачи.

Определение необходимого объема входной и выходной информации.

Определение допустимой погрешности результатов.

• Аналитическая обработка.

Формулировка уравнений.

Формулировка начальных условий.

Формулировка граничных условий.

Описание формы расчетной области и свойств среды.

Выбор метода решения.

- Дискретизация модели.
- Решение полученных систем уравнений.
- Обработка результатов.

Граничные условия

Граничные условия

Граничные условия — соотношения между векторами поля в двух очень близких точках, находящихся по обе стороны границы раздела двух сред.

Поверхность раздела двух диэлектриков

Касательные составляющие напряженностей электрического и магнитного полей должны удовлетворять условиям:

$$\mathbf{n} \times (\mathbf{E}_{\tau 1} - \mathbf{E}_{\tau 2}) = \mathbf{J}_{s}^{m}$$
$$\mathbf{n} \times (\mathbf{H}_{\tau 2} - \mathbf{H}_{\tau 1}) = \mathbf{J}_{s}^{e}$$

n — нормаль к поверхности раздела, направленная из первой среды во вторую,

 ${f J}_s^{\ e}$ — поверхностная плотность электрического тока, протекающего по поверхности раздела, ${f J}_s^{\ m}$ — поверхностная плотность магнитного тока, протекающего по поверхности раздела.

Поверхность раздела двух диэлектриков

Нормальные составляющие индукции связаны соотношениями:

$$\mathbf{n} \cdot (\mathbf{D}_{n2} - \mathbf{D}_{n1}) = \rho_s^e$$
$$\mathbf{n} \cdot (\mathbf{B}_{n2} - \mathbf{B}_{n1}) = \rho_s^m$$

n — нормаль к поверхности раздела, направленная из первой среды во вторую,

 $\rho_s^{\ e}$, $\rho_s^{\ m}$ — поверхностные плотности электрического и магнитного заряда, находящихся на поверхности раздела

$$\mathbf{D} = \varepsilon \varepsilon_0 \mathbf{E} [K\pi/M^2]$$
$$\mathbf{B} = \mu \mu_0 \mathbf{H} [T\pi]$$

Поверхность раздела диэлектрика и идеального проводника

Касательная составляющая вектора напряженности электрического поля **E** равна нулю

$$\mathbf{E}_{\tau 1} = 0$$

Нормальная составляющая вектора напряженности магнитного поля **H** равна нулю

$$\mathbf{H}_{n1} = 0$$

$$\mathbf{H}_{\tau 1} \times \mathbf{n} = \mathbf{j}$$

Поверхность раздела диэлектрика и идеального магнетика

Нормальная составляющая вектора напряженности электрического поля **E** равна нулю

$$E_{n1} = 0$$

Касательная составляющая вектора напряженности магнитного поля **H** равна нулю:

$$\mathbf{H}_{\tau 1} = 0$$

Electromagnetic Band Gap (EBG)

Поверхность раздела диэлектрика и металла с конечной проводимостью

Поле в диэлектрике с потерями уменьшается экспоненциально:

$$|\dot{\mathbf{E}}(x)| = |\dot{\mathbf{E}}_{\mathbf{0}}|e^{-x/\delta}$$

$$\delta = \sqrt{\frac{2}{\omega\mu\sigma}}$$

δ — глубина проникновения.

Поверхность раздела диэлектрика и металла с конечной проводимостью

Приближенные граничные условия Леонтовича (импедансные граничные условия):

$$\dot{\mathbf{E}}_{\tau} = \dot{Z}_{s} (\dot{\mathbf{H}}_{\tau} \times \mathbf{n})$$

 $\dot{\mathbf{E}}_{ au}, \dot{\mathbf{H}}_{ au}$ — касательные составляющие комплексных амплитуд напряженности электрического и магнитного полей

 \dot{Z}_{s} — поверхностное сопротивление металла

$$\dot{Z}_s = (1+i)\sqrt{\frac{\omega\mu}{2\sigma}}$$

Эти условия справедливы, если радиус кривизны поверхности металла много больше глубины проникновения.

Граничные условия на ребре

Электромагнитная энергия, запасенная в любом конечном объеме вблизи ребра, должна оставаться конечной.

Любая составляющая векторов **E** и **H** при приближении к ребру должна расти не быстрее, чем $r^{\tau-1}$, $\tau > 0$

r — расстояние от ребра до точки наблюдения.

т — определяется электрофизическими свойствами сред, образующих ребро, и формой поверхностей раздела.

Lockheed F-117 Nighthawk

Уфимцев П.Я. «Метод краевых волн в физической теории дифракции», 1962 г.

Условие излучения

Энергия поля должна быть конечной.

Напряженность электрического и магнитного полей должна убывать на бесконечности быстрее, чем $1 \ / \ r$.

Условие излучения Зоммерфельда:

$$\lim_{r\to\infty} \left\{ r \left[\frac{\partial}{\partial r} \left(\mathbf{E} \right) - \sqrt{\varepsilon \mu} \frac{\partial}{\partial t} \left(\mathbf{E} \right) \right] \right\} = 0$$