

Lecture Plan

- Understand sequence-to-sequence (seq2seq) neural architecture
- How attention mechanism improved seq2seq models
- Understand the Transformer architecture
- Shortcomings of Transformer

Seq2Seq and Attention

Motivation

- Both the input and the output is a sequence of data
 - Examples: Machine Translation
- Solution: Encoder-Decoder models

Closer look

Neural Machine Translation

SEQUENCE TO SEQUENCE MODEL

Je suis étudiant

The Problem

- Fixed source representation is suboptimal:
 - 1. It is hard to encode a sentence into a single vector
 - Vanishing gradient problem
 - 2. Different information may be relevant at different steps

Let's Pay Attention Now

Neural Machine Translation SEQUENCE TO SEQUENCE MODEL WITH ATTENTION Encoding Stage Decoding Stage Attention Decoder RNN Je suis étudiant

Let's Pay Attention Now

Attention at time step 4

Computing Attention Output

- At each decoder state:
 - Inputs: $h_1, h_2, ..., h_m$ (Encoder states), d_t (Decoder state)
 - Compute attention scores: $score(d_t, h_k)$

Attention weights (softmax):
$$a_k^{(t)} = \frac{\exp\left(\operatorname{score}\left(d_t, h_k\right)\right)}{\sum_{i=1}^m \exp\left(\operatorname{score}\left(d_t, h_i\right)\right)}, k = 1, \dots, m$$

• Attention outputs (weighted sum): $c^{(t)} = a_1^{(t)} h_1 + a_2^{(t)} h_2 + \dots + a_m^{(t)} h_m = \sum_{k=1}^{\infty} a_k^{(t)} h_k$

Attention Score Function

Dot-product

$$h_t^T \times \begin{bmatrix} \circ & \circ & \circ \\ \circ & \circ & \circ \\ \circ & \circ & s_k \end{bmatrix}$$

$$score(h_t, s_k) = h_t^T s_k$$

Bilinear

$$\frac{h_t^T}{\circ \circ \circ \circ \circ} \times \left[\bigvee \right] \times \left[\circ \atop \circ \atop \circ \atop \circ \right] s_k$$

$$Score(h_t, s_k) = h_t^T s_k$$
 $Score(h_t, s_k) = h_t^T W s_k$

Multi-Layer Perceptron

$$score(h_t, s_k) = w_2^T \cdot tanh(W_1[h_t, s_k])$$

Attention Learns Alignment

The Problem

- Lack of parallelizability!
 - Forward and backward passes have O(sequence length) unparallelizable operations

Let's make a building block out of Attention!

- Word representation → Query to access and incorporate information from a set of Values
- Attention in Seq2Seq models: From the decoder to encoder
- Self-attention: Compute attention within a sentence
- Number of unparallelizable operations does not increase sequence length
- Maximum interaction distance: O(1), since all words interact at every layer

Attention as a Building BlockSelf-Attention

- Attention operates on queries, keys, and values:
 - Queries $q_1, q_2, ..., q_T$ and $q_i \in \mathbb{R}^d$
 - **Keys** $k_1, k_2, ..., k_T$ and $k_i \in \mathbb{R}^d$
 - Values $v_1, v_2, ..., v_T$ and $v_i \in \mathbb{R}^d$

In self-attention, the queries, keys, and values are drawn from the same source.

Self-Attention

• The self-attention operations are same as Seq2Seq architecture with attention:

Compute Key-Query affinities

$$e_{ij} = q_i^T k_j$$

Compute attention weights from affinities (Softmax)

$$\alpha_{ij} = \frac{\exp\left(e_{ij}\right)}{\sum_{j'} \exp\left(e_{ij'}\right)}$$

Compute outputs as weighted sum of values

$$\mathsf{output}_i = \sum_j \alpha_{ij} v_j$$

The Problem?

Problems and Solutions

Problem	Solution
Doesn't have an inherent notion of order!	

Problem: Sequence Order

- Self-attention doesn't know the order of its inputs
- We need to encode the order of the sentence in our keys, queries, and values
- Consider representing each sequence index as a vector

$$p_i \in \mathbb{R}^d$$
, for $i \in \{1,2,...,T\}$ are position vectors

• Let's add the p_i to our inputs. Let \tilde{v}_i , \tilde{k}_i and \tilde{q}_i be our old values:

$$v_i = \tilde{v}_i + p_i$$

$$q_i = \tilde{q}_i + p_i$$

$$k_i = \tilde{k}_i + p_i$$

Problem: Sequence Order

Sinusoidal position representation:

Pros:

- Periodicity indicates that maybe "absolute position" isn't as important
- Maybe can extrapolate to longer sequences as periods restart!

Cons:

Not learnable; also the extrapolation doesn't really work!

Problem: Sequence Order

- Learnable position representation:
 - Let all p_i be learnable parameters
 - Learn a matrix $p \in \mathbb{R}^{d \times T}$ and let p_i be a column of that matrix
 - Pros:
 - Flexibility: each position gets to be learned to fit the data
 - Cons:
 - Definitely can't extrapolate to indices outside 1, ..., T.
 - Most systems use this!
 - Sometimes people try more flexible representations of position:
 - Relative linear position attention [Shaw et al., 2018]
 - Dependency syntax-based position [Wang et al., 2019]

Problems and Solutions

Problem Solution

Doesn't have an inherent notion of order!	Add position representations to the input
No nonlinearities for deep learning! It's all just weighted averages	

Problem: No Nonlinearities

- Stacking more self-attention layers just re-averages value vectors!
- Fix: Add feed-forward networks to post-process each output vector
- $m_i = MLP$ (output $_i$) = $W_2 * ReLU (W_1 \times output _i + b_1) + b_2$

Problems and Solutions

Problem Solution

Doesn't have an inherent notion of order!	Add position representations to the input
No nonlinearities for deep learning! It's all just weighted averages	Apply the same feedforward network to each self-attention output.
We need to ensure we can't peek at the future when predicting the next token.	

Problem: "Don't Look Ahead" in Decoders

- We need to ensure we can't peek at the future when predicting the next token
- At every timestep, we could change the set of keys and queries to include only past words. (Inefficient!)
- To enable parallelization, we mask out attention to future words by setting attention scores to -∞.

 We can look at these

Problems and Solutions

Problem Solution

Doesn't have an inherent notion of order!	Add position representations to the input
No nonlinearities for deep learning! It's all just weighted averages	Apply the same feedforward network to each self-attention output.
We need to ensure we can't peek at the future when predicting the next token.	Mask out the future by artificially setting attention weights to 0!

Review

Self-Attention:

The basis of the method

Position Representation:

Specify the sequence order, since self-attention is an unordered function of its inputs.

Nonlinearities:

- At the output of the self-attention block
- Frequently implemented as a simple feed-forward network.

Masking:

- In order to parallelize operations while not looking at the future.
- Keeps information about the future from "leaking" to the past.

That's it! But this is not the **Transformer** model we've been hearing about.

The Transformer

[Vaswani et al., 2017]

Attention Is All You Need

Ashish Vaswani*

Google Brain avaswani@google.com Noam Shazeer* Google Brain

Google Research noam@google.com nikip@google.com

Niki Parmar*

Jakob Uszkoreit*

Google Research usz@google.com

Llion Jones*

Google Research llion@google.com Aidan N. Gomez* †

University of Toronto aidan@cs.toronto.edu Łukasz Kaiser*

Google Brain lukaszkaiser@google.com

Illia Polosukhin* ‡

illia.polosukhin@gmail.com

More Details!

- **1.** Key-Query-Value attention: How to get k, q and v vectors from word embeddings
- 2. Multi-headed attention: Attend to multiple places in a single layer
- 3. Tricks to help training:
 - Residual connections
 - Layer normalization
 - Scaling the dot product
 - These tricks don't improve what the model is able to do; they help improve the training process.
 Both of these types of modeling improvements are very important!

Key-Query-Value Attention

- We saw that the k, q and v vectors come from the same source
 - The Transformer does this in a particular way
 - Let $x_1, ..., x_T$ be input vectors to the Transformer encoder; $x_i \in \mathbb{R}^d$
- The keys, queries, and values are:
 - $k_i = W^K x_i$, where $W^K \in \mathbb{R}^{d \times d}$ is the key matrix
 - $q_i = W^Q x_i$, where $W^Q \in \mathbb{R}^{d \times d}$ is the query matrix
 - $v_i = W^V x_i$, where $W^V \in \mathbb{R}^{d \times d}$ is the key matrix
- These matrices allow different aspects of the x vectors to be used/emphasized in each of the three roles

Key-Query-Value Attention

Key-Query-Value Attention

Multi-headed Attention

- What if we want to look in multiple places in the sentence at once?
 - For word i, self-attention "looks" where $x_j^T Q^T K x_j j$ is high, but maybe we want to focus on different j for different reasons?
- We'll define multiple attention "heads" through multiple W^Q , W^K , and W^V matrices
- Let, W_l^K , W_l^Q , $W_l^V \in \mathbb{R}^{d \times \frac{d}{h}}$ where h is the number of attention heads

Residual Connections

Residual connections are a trick to help models train better.

[Loss landscape visualization, Li et al., 2018, on a ResNet]

Layer Normalization

- Independently normalizes vector representation of each example in batch
- Improves convergence stability and sometimes even quality

The Transformer Encoder-Decoder Scaled Dot Product

- When dimensionality d becomes large, dot products between vectors tend to become large.
- Because of this, inputs to the softmax function can be large, making the gradients small.
- Consequently instead of:

$$\mathsf{output}_{\,\ell} = \mathsf{softmax}\left(Q_{\ell}K_{\ell}^{\mathsf{T}}\right) * V_{\ell}$$

. We divide the attention scores by $\sqrt{\frac{d}{h}}$, to stop the scores from becoming large just as a function of $\frac{d}{h}$ (The dimensionality divided by the number of heads.)

$$\text{output }_{\ell} = \text{softmax}(\frac{Q_{\ell}K_{\ell}^{\top}}{\sqrt{\frac{d}{h}}}) * V_{\ell}$$

Final Result - Encoder Block

What's next?

Contextualized Embeddings

Using Transformer Architecture

Contextualized Embeddings Using Transformer Architecture

- 175 billion parameters
 - GPT-2 had 1.5B
 - The largest so far (by Microsoft) had 17B

• Training cost: \$12M

Quadratic compute in self-attention:

- Computing all pairs of interactions means our computation grows quadratically with the sequence length!
- For recurrent models, it only grew linearly!

Position representations:

- Are simple absolute indices the best we can do to represent position?
- Relative linear position attention [Shaw et al., 2018]
- Dependency syntax-based position [Wang et al., 2019]

Quadratic Computation

- Transformer benefit over recurrent networks → Highly parallelizable
- Drawback \rightarrow total number of operations grows as $O(T^2d)$
 - T is the sequence length, and d is the dimensionality.

Need to compute all pairs of interactions! $O(T^2d)$

- Example: *d* as around 1000:
 - If $T \le 30$; $T^2 \le 900$
 - In practice we set a bound like T = 512
 - What if we are working on a long sentence where $T \ge 10{,}000$

Quadratic Computation

- Linformer [Wang et al., 2020]
- Key Idea:
 - map the sequence length dimension to a lower dimensional space for values, keys

Figure 2: Left and bottom-right show architecture and example of our proposed multihead linear self-attention. Top right shows inference time vs. sequence length for various Linformer models.

Quadratic Computation

- BigBird [Zaheer et al., 2021]
- Key Idea:
 - replace all-pairs interactions with a family of other interactions, like local windows, looking at everything, and random interactions.

Position Embeddings

- Q: Do we actually need absolute position embeddings?
 - A: It turns out, not really!

Figure 1: Transformer language models trained without explicitly encoding positional information (*NoPos*) approach the performance of models trained with various positional encoding methods. All models have 1.3B parameters, and are trained on an excerpt of the Pile.

Question?

References and Further Reading

- Jay Alammar, The Illustrated Transformer
- Lena Voita, Sequence to Sequence (seq2seq) and Attention
- John Hewitt, Stanford CS224N Lecture 9 Self- Attention and Transformers