Zadanie 2 Dla podanego obwodu, oblicz rozpływ prądu oraz wskazania przyrządów $E_A \!\!=\!\! j220~V$ $Z_A \!\!=\!\! Z_C \!\!=\!\! 10 \!\!+\!\! j10~\Omega$

Z_A=Z_B=Z_C oznacza, że odbiornik jest symetryczny.

Gdy odbiornik jest symetryczny napięci $U_N=0$, więc napięcia fazowe odbiornika są równe napięciom fazowym generatora (napięcia E_B , E_C to napięcia o tej samej amplitudzie i czętotliwości co napięcie fazy odniesienia E_A , ale przesunięte względem niej zgodnie z ruchem wskazówek zegara o kąt 120° i 240°, czyli $E_B=220\,e^{j(90-120)}=220\,e^{-j30}V$, $E_C=220\,e^{j(90-240)}=220\,e^{-j150}V$):

$$U_A = E_A - U_N = E_A = 220 e^{j90} V$$

 $U_B = E_B - U_N = E_B = 220 e^{-j30} V$
 $U_C = E_C - U_N = E_C = 220 e^{-j150} V$

Równolegle do obliczeń rysujemy wykres wskazowy. Zaczynamy od wskazu napięcia E_A , jako fazy odniesienia. Następnie wrysowujemy wskazy napięć kolejnych faz generatora E_B , E_C (przesunięte względem fazy A o kąt kolejno: 120° i 240°). W naszym przypadku możemy od razu oznaczyć napięcia fazowe odbiornika U_A , U_B , U_C .

Prądy fazowe (zgodnie z prawem Ohma):
$$I_A = \frac{U_A}{Z_A} = \frac{220 e^{j90}}{10 + j \cdot 10} = \frac{220 e^{j90}}{10 \sqrt{2} e^{j45}} = 15,56 e^{j45}$$

$$I_B = \frac{U_B}{Z_B} = \frac{220 e^{-j30}}{10 + j \cdot 10} = \frac{220 e^{-j30}}{10 \sqrt{2} e^{j45}} = 15,56 e^{-j75} A$$

$$I_C = \frac{U_C}{Z_C} = \frac{220 e^{-j150}}{10 + j \cdot 10} = \frac{220 e^{-j150}}{10 \sqrt{2} e^{j45}} = 15,56 e^{-j195} A$$

Amperomierze wskazują nam wartość skuteczną, więc wskazania amperomierzy, będą jednakowe: $A_A = A_B = A_C = 15,56 A$

Zaznaczamy wskazy pradów fazowych na wykresie wskazowym:

Moce mierzone przez poszczególne watomierze:

Cewka napięciowa watomierza 1 jest wpięta na napięcie U_{AC} a cewka prądowa na I_A, zgodnie ze wzorem moc będzie równa iloczynowi wartości skutecznych tych dwóch wielkości oraz cosinusa kąta miedzy tymi wskazami tych wielkości. Aby znaleźć kąt między wskazami możemy wspomóc się wykresem wskazowym:

Wskaz prądu I_A jest pod kątem 45°, natomiast wskaz napięcia międzyfazowego U_{AC} pod kątem 60°, więc kąt pomiędzy wskazami wynosi 15°. Podstawiamy więc do wzoru, pamiętając, że wartości

skutecznej napięcia międzyfazowego jest $\sqrt{3}$ raza większa od wartości skutecznej napięcia fazowego, więc napięcie $|U_{AC}|=\sqrt{3}|E|$

$$P_1 = |U_{AC}| |I_A| \cos(i U_{AC} I_A) = \sqrt{3} \cdot 220 \cdot 15,56 \cdot \cos 15^\circ = 5,7 \, kW$$

Analogicznie postępujemy z watomierzem 2. Cewka napięciowa watomierza 2 jest wpięta na napięcie U_{BC} a cewka prądowa na I_{B} , zgodnie ze wzorem moc będzie równa iloczynowi wartości skutecznych tych dwóch wielkości oraz cosinusa kąta miedzy tymi wskazami tych wielkości. Aby znaleźć kąt między wskazami możemy wspomóc się wykresem wskazowym:

Wskaz prądu I_B jest pod kątem -75°, natomiast wskaz napięcia międzyfazowego U_{AC} pod kątem 0°, więc kąt pomiędzy wskazami wynosi 75°. Podstawiamy więc do wzoru, pamiętając, że wartości skutecznej napięcia międzyfazowego jest $\sqrt{3}$ raza większa od wartości skutecznej napięcia fazowego, więc napięcie $|U_{BC}| = \sqrt{3} |E|$

$$P_2 = |U_{BC}||I_B|\cos(iU_{BC}I_B) = \sqrt{3} \cdot 220 \cdot 15,56 \cdot \cos 75^\circ = 1,5 \, kW$$