Manifold Optimization Chapter 5: Second-Order Geometry

Xu, Yuan (121090658)

May 20, 2025

1 Differentiating Vector Fields on Manifolds: Connections

Notion of derivative for vector fields on manifolds is called a *connection*, traditionally denoted by ∇ ("nabla"). Given a tangent vector $u \in T_x \mathcal{M}$ and a vector field V, $\nabla_u V$ is the derivative of V at x along u. Formally, we should write $\nabla_{(x,u)} V$ where the base point x is typically clear from context.

Note that we do not need a Riemannian metric yet.

Definition 1.1. A connection on a manifold M is an operator

$$\nabla \colon \operatorname{T} \mathcal{M} \times \mathfrak{X}(\mathcal{M}) \to \operatorname{T} \mathcal{M} : (u, V) \mapsto \nabla_u V$$

where:

- $T \mathcal{M}$ is the tangent vector space
- $\mathfrak{X}(\mathcal{M})$ denotes smooth vector fields on \mathcal{M}

This operator must satisfy four properties for all $u, w \in T \mathcal{M}, U, V, W \in \mathfrak{X}(\mathcal{M}), a, b \in \mathbb{R}$, and $f \in C^{\infty}(\mathcal{M})$:

- 0. Smoothness: $(\nabla_U V)(x) \stackrel{\Delta}{=} \nabla_{U(x)} V$ defines a smooth vector field $\nabla_U V$;
- 1. Linearity in u: $\nabla_{au+bw}V = a\nabla_uV + b\nabla_wV$;
- 2. Linearity in V: $\nabla_u(aV + bW) = a\nabla_uV + b\nabla_uW$;
- 3. Leibniz rule: $\nabla_u(fV) = D f(x)[u] \cdot V(x) + f(x)\nabla_u V$.

The field $\nabla_U V$ is called the *covariant derivative* of V along U with respect to ∇ .

Theorem 1.2. Let \mathcal{M} be an embedded submanifold of a Euclidean space \mathcal{E} . The operator ∇ defined by

$$\nabla_u V = \operatorname{Proj}_x \left(\operatorname{D} \bar{V}(x)[u] \right)$$

is a connection on \mathcal{M} .

Proof. Let \mathcal{M} be an embedded submanifold of a Euclidean space \mathcal{E} by $\bar{\nabla}$. Then $\nabla_u V = \operatorname{Proj}_x (\bar{\nabla}_u \bar{V})$.

Proposition 1.3. Let \mathcal{M} be a manifled with arbitrary connection ∇ . Given a smooth vector field $V \in \mathfrak{X}(\mathcal{M})$ and a point $x \in \mathcal{M}$, if V(x) = 0 then $\nabla_u V = D V(x)[u]$ for all $u \in T_x \mathcal{M}$. In particular, D V(x)[u] is tangent at x.

2 Riemannian Connections

Definition 2.1. For $U, V \in \mathfrak{X}(\mathcal{M})$ and $f \in \mathfrak{F}(\mathcal{U})$ with \mathcal{U} open in \mathcal{M} , define:

- $Uf \in \mathfrak{F}(\mathcal{U})$ such that (Uf)(x) = Df((x)[U(x)];
- $[U, V]: \mathfrak{F}(\mathcal{U}) \to \mathfrak{F}(\mathcal{U})$ such that [U, V]f = U(Vf) V(Uf);
- $\langle U, V \rangle \in \mathfrak{F}(\mathcal{M})$ such that $\langle U, V \rangle(x) = \langle U(x), V(x) \rangle_x$.

The notation Uf captures the action of a smooth vector field U on a smooth function f through derivation, transforming f into another smooth function. The commutator [U,V] of such action is called the Lie bracket. Even in linear spaces [U,V]f is nonzero in general. Notice that $Uf = \langle \operatorname{grad} f, U \rangle$ owing to the definitions of $Uf, \langle V, U \rangle$ and $\operatorname{grad} f$.

Theorem 2.2. On a Riemannian manifold \mathcal{M} , there exists a unique connection ∇ which satisfies two additional properties for all $U, V, W \in \mathfrak{X}(\mathcal{M})$:

- 1. Symmetry: $[U, V]f = (\nabla_U V \nabla_V U)f$ for all $f \in \mathfrak{F}(\mathcal{M})$;
- 2. Compatibility with the metric: $U(V, W) = \langle \nabla_U V, W \rangle + \langle V, \nabla_U W \rangle$.

This connection is called the Levi-Civita or Riemannian connection.

Theorem 2.3. The Riemannian connection on a Euclidean space \mathcal{E} with any Euclidean metric $\langle \cdot, \cdot \rangle$ is $\nabla_u V = D V(x)[u]$: the canonical Euclidean connection.

Theorem 2.4. Let \mathcal{M} be an embedded submanifold of a Euclidean space \mathcal{E} . The connection ∇ defined by 1.2 is symmetric on \mathcal{M} .

Theorem 2.5. Let M be a Riemannian submanifold of a Euclidean space. The connection ∇ defined by 1.2 is the Riemannian connection on \mathcal{M} .

Proposition 2.6. Let U, V be two smooth vector fields on a manifold \mathcal{M} . There exists a unique smooth vector field W on \mathcal{M} such that [U, V]f = Wf for all $f \in \mathfrak{F}(\mathcal{M})$. Therefore, we identify [U, V] with that smooth vector field. Explicitly, if ∇ is any symmetric connection, then $[U, V] = \nabla_U V - \nabla_V U$.

3 Riemannian Hessians

Definition 3.1. Let \mathcal{M} be a Riemannian manifold with its Riemannian connection ∇ . The Riemannian Hessian of $f \in \mathfrak{F}(\mathcal{M})$ at $x \in \mathcal{M}$ is the linear map Hess $f(x) : T_x \mathcal{M} \to T_x \mathcal{M}$ defined as follows:

$$\operatorname{Hess} f(x)[u] = \nabla_u \operatorname{grad} f.$$

Equivalently, Hess f maps $\mathfrak{X}(\mathcal{M})$ to $\mathfrak{X}(\mathcal{M})$ as Hess $f[U] = \nabla_U \operatorname{grad} f$.

Proposition 3.2. The Riemannian Hessian is self-adjoint with respect to the Riemannian metric. That is, for all $x \in \mathcal{M}$ and $u, v \in T_x \mathcal{M}$, $\langle \text{Hess } f(x)[u], v \rangle_x = \langle u, \text{Hess } f(x)[v] \rangle_x$.

Corollary 3.3. Let \mathcal{M} be a Riemannian submanifold of a Euclidean space. Consider a smooth function $f: \mathcal{M} \to \mathbb{R}$. Let \bar{G} be a smooth extension of grad f—that is, \bar{G} is any smooth vector field defined on a neighborhood of \mathcal{M} in the embedding space such that $\bar{G}(x) = \operatorname{grad} f(x)$ for all $x \in \mathcal{M}$. Then, $\operatorname{Hess} f(x)[u] = \operatorname{Proj}_x(D\bar{G}(x)[u])$.

4 Connections as Pointwise Derivatives*

Definition 4.1. A connection on a manifold \mathcal{M} is an operator

$$\nabla \colon \mathfrak{X}(\mathcal{M}) \times \mathfrak{X}(\mathcal{M}) \to \mathfrak{X}(\mathcal{M}) : (U, V) \mapsto \nabla_U V$$

which has three properties for all $U, V, W \in \mathfrak{X}(\mathcal{M}), f, g \in \mathfrak{F}(\mathcal{M})$ and $a, b \in \mathbb{R}$:

- 1. $\mathfrak{F}(\mathcal{M})$ -linearity in U: $\nabla_{fU+gW}V = f\nabla_U V + g\nabla_W V$;
- 2. R-linearity in $V: \nabla_U(aV + bW) = a\nabla_U V + b\nabla_U W$; and
- 3. Leibniz rule: $\nabla_U(fV) = (Uf)V + f\nabla_UV$.

The field $\nabla_U V$ is the covariant derivative of V along U with respect to ∇ .

Proposition 4.2. For any connection ∇ and smooth vector fields U, V on a manifold \mathcal{M} , the vector field $\nabla_U V$ at x depends on U only through U(x).

Lemma 4.3. Given any real numbers $0 < r_1 < r_2$ and any point x in a Euclidean space \mathcal{E} with norm $\|\cdot\|$, there exists a smooth function $b: \mathcal{E} \to \mathbb{R}$ such that

- b(y) = 1 if $||y x|| < r_1$;
- b(y) = 0 if $||y x|| \ge r_2$; and
- $b(y) \in (0,1)$ if $||y-x|| \in (r_1, r_2)$.

Using bump functions, we can show that $(\nabla_U V)(x)$ depends on U and V only through their values in a neighborhood around x. This is the object of the two following lemmas.

Lemma 4.4. Let V_1, V_2 be smooth vector fields on a manifold M equipped with a connection ∇ . If $V_1 \mid_{\mathcal{U}} = V_2 \mid_{\mathcal{U}}$ on some open set \mathcal{U} of \mathcal{M} , then $(\nabla_{\mathcal{U}} V_1) \mid_{\mathcal{U}} = (\nabla_{\mathcal{U}} V_2) \mid_{\mathcal{U}}$ for all $\mathcal{U} \in \mathfrak{X}(\mathcal{M})$.

Lemma 4.5. Let U_1, U_2 be smooth vector fields on a manifold \mathcal{M} equipped with a connection ∇ . If $U_1 \mid_{\mathcal{U}} = U_2 \mid_{\mathcal{U}}$ on some open set \mathcal{U} of \mathcal{M} , then $(\nabla_{U_1} V) \mid_{\mathcal{U}} = (\nabla_{U_2} V) \mid_{\mathcal{U}}$ for all $V \in \mathfrak{X}(\mathcal{M})$.

Lemma 4.6. Let U be a neighborhood of a point x on a manifold \mathcal{M} . Given a smooth function $f \in \mathfrak{F}(\mathcal{U})$, there exists a smooth function $g \in \mathfrak{F}(\mathcal{M})$ and a neighborhood $\mathcal{U}' \subseteq \mathcal{U}$ of x such that $g \mid \mathcal{U}' = f \mid \mathcal{U}'$.

Lemma 4.7. Let U be a neighborhood of a point x on a manifold \mathcal{M} . Given a smooth vector field $U \in \mathfrak{X}(\mathcal{U})$, there exists a smooth vector field $V \in \mathfrak{X}(\mathcal{M})$ and a neighborhood $U' \subseteq \mathcal{U}$ of x such that $V \mid_{\mathcal{U}'} = U \mid_{\mathcal{U}'}$.

Lemma 4.8. Let U, V be two smooth vector fields on a manifold \mathcal{M} equipped with a connection ∇ . Further let \mathcal{U} be a neighborhood of $x \in \mathcal{M}$ such that $U|_{\square} = g_1W_1 + \cdots + g_nW_n$ for some $g_1, \ldots, g_n \in \mathfrak{F}(\mathcal{U})$ and $W_1, \ldots, W_n \in \mathfrak{X}(v)$. Then,

$$(\nabla_U V)(x) = g_1(x)(\nabla_{W_1} V)(x) + \dots + g_n(x)(\nabla_{W_n} V)(x),$$

where each vector $(\nabla_{W_i}V)(x)$ is understood to mean $(\nabla_{\widetilde{W}_i}V)(x)$ with \widetilde{W}_i any smooth extension of W_i to \mathcal{M} around x.

5 Differentiating Vector Fields on Curves

Definition 5.1. Let $c: I \to \mathcal{M}$ be a smooth curve on \mathcal{M} defined on an open interval I. A map $Z: I \to T \mathcal{M}$ is a vector field on c if Z(t) is in $T_{c(t)} \mathcal{M}$ for all $t \in I$. Moreover, Z is a smooth vector field on c if it is also smooth as a map from I to $T \mathcal{M}$. The set of smooth vector fields on c is denoted by X(c).

Theorem 5.2. Let $c: I \to M$ be a smooth curve on a manifold equipped with a connection ∇ . There exists a unique operator $\frac{D}{dt}: \mathfrak{X}(c) \to \mathfrak{X}(c)$ which satisfies the following properties for all $Y, Z \in \mathfrak{X}(c)$, $U \in \mathfrak{X}(\mathcal{M})$, $g \in \mathfrak{F}(I)$, and $a, b \in \mathbb{R}$:

- 1. \mathbb{R} -linearity: $\frac{D}{dt}(aY + bZ) = a\frac{D}{dt}Y + b\frac{D}{dt}Z;$
- 2. Leibniz rule: $\frac{D}{dt}(gZ) = \frac{dg}{dt}Z + g\frac{D}{dt}Z;$
- 3. Chain rule: $\left(\frac{D}{dt}(U \circ c)\right)(t) = \nabla_{c'(t)}U$ for all $t \in I$;
- 4. Product rule: If M is a Riemannian manifold and ∇ is compatible with its metric (e.g., the Levi-Civita connection), then additionally:

$$\frac{d}{dt}\langle Y, Z \rangle = \left\langle \frac{D}{dt} Y, Z \right\rangle + \left\langle Y, \frac{D}{dt} Z \right\rangle$$

where the inner product $\langle \cdot, \cdot \rangle$ along c is defined by $\langle Y, Z \rangle(t) = \langle Y(t), Z(t) \rangle_{c(t)}$.

We call $\frac{D}{dt}$ the induced covariant derivative (induced by ∇).

Proposition 5.3. Let \mathcal{M} be an embedded submanifold of a Euclidean space \mathcal{E} with connection ∇ as in 1.2. The operator $\frac{D}{dt}$ defined by

$$\frac{D}{dt}Z(t) = \operatorname{Proj}_{c(t)}\left(\frac{d}{dt}Z(t)\right)$$

is the induced covariant derivative, that is, it satisfies properties 1–3 in Theorem 5.2. If \mathcal{M} is a Riemannian submanifold of \mathcal{E} , then $\frac{D}{dt}$ also satisfies property 4 in that same theorem.

6 Acceleration and Geodesics

Definition 6.1. Let $c: I \to \mathcal{M}$ be a smooth curve. Its velocity is the vector field $c' \in \mathfrak{X}(c)$. The acceleration of c is the smooth vector field $c'' \in \mathfrak{X}(c)$ defined by $c'' = \frac{D}{dt}c'$. We also call c'' the intrinsic acceleration of c.

Definition 6.2. On a Riemannian manifold \mathcal{M} , a geodesic is a smooth curve $c: I \to \mathcal{M}$ such that c''(t) = 0 for all $t \in I$, where I is an open interval of \mathbb{R} .

7 A Second-order Taylor Expansion on Curves

Lemma 7.1. Let c(t) be a geodesic connecting x = c(0) to y = c(1), and assume $\text{Hess } f(c(t)) \succeq \mu I$ for some $\mu \in \mathbb{R}$ and all $t \in [0,1]$. Then, $f(y) \geq f(x) + \langle \operatorname{grad} f(x), v \rangle_x + \frac{\mu}{2} ||v||_x^2$.

8 Second-order Retractions

Definition 8.1. A second-order retraction R on a Riemannian manifold \mathcal{M} is a retraction such that, for all $x \in \mathcal{M}$ and all $v \in T_x \mathcal{M}$, the curve $c(t) = R_x(tv)$ has zero acceleration at t = 0, that is, c''(0) = 0.

Proposition 8.2. Consider a Riemannian manifold M equipped with any retraction R, and a smooth function $f: M \to \mathbb{R}$. If x is a critical point of f (that is, if $\operatorname{grad} f(x) = 0$), then

$$f(R_x(s)) = f(x) + \frac{1}{2} \langle \text{Hess} f(x)[s], s \rangle_x + O(\|s\|_x^3).$$

Also, if R is a second-order retraction, then for all points $x \in M$ we have

$$f(R_x(s)) = f(x) + \langle \operatorname{grad} f(x), s \rangle_x + \frac{1}{2} \langle \operatorname{Hess} f(x)[s], s \rangle_x + O(\|s\|_x^3).$$

Proposition 8.3. If the retraction is second order or if grad f(x) = 0, then

$$\operatorname{Hess} f(x) = \operatorname{Hess}(f \circ R_x)(0),$$

where the right-hand side is the Hessian of $f \circ R_x : T_x \mathcal{M} \to \mathbb{R}$ at $0 \in T_x \mathcal{M}$. The latter is a "classical" Hessian since $T_x \mathcal{M}$ is a Euclidean space.

9 Riemannian Submanifolds*

10 Metric Projection Retractions*