

CS/ECE/EEE/INSTR F215:Digital Design

Lecture 33: ASM_2 *Thu, 02 Dec 2021*

BITS Pilani

Hyderabad Campus

Dr. R. N. Ponnalagu, EEE

"Today could be one day closer to success A little progress each day adds up to big results".

Example

- ➤ Design a Digital system having two FFs E and F, one 4-bit binary counter A (individual FFs :A3A2A1A0).
- ➤ Initial state is the reset state: **S_idle** (state reached by application of reset_b)
- A Start signal initiates the operation by clearing counter A and flip-flop F.
- ➤ Counter incremented by one starting from next clock pulse, continues to increment until operations are such that it stops.
- Counter bits A2 and A3 determine sequence of operations
 - ✓ If A2 = 0, E is cleared to 0 and count continues
 - ✓ If A2 = 1, E set to 1; then if A3=0, count continues,
 - ✓ but if A3 = 1, F is set to 1 on next clock pulse and system stops counting.
- \triangleright If Start = 0 system remains in initial state, but if Start = 1 cycle repeats.

- \triangleright When no operations the system is in initial state S_idle awaiting for *Start* signal
- ➤ When input *Start* = 1, state changes to *S_1* and the counter A and flip-flop F are cleared. The register operations occur unconditionally (Moore type).
- \triangleright Register A is incremented at every clock edge while machine is state S_1 .
- \triangleright In state S_1 when the counter is incremented with every clock pulse and at the same time, one of three operations occur during clock transition either
 - \checkmark E is cleared and control stays in state S_1 (A2 = 0); or
 - \checkmark E is set and control stays in state S_1 (A2A3 = 10); or
 - ✓ E is set and control goes to state S_2 (A2A3 = 11).
- \triangleright Hence block with state S_1 has two decision and two conditional boxes
- ➤ In state S_2, a Moore type control signal is asserted to set flipflop F and state changes to S idle.

Sequence of operations

bequence of operations								
Counter	Flipflops	_						
A3 A2 A1 A0	E F	Conditions	State					
0 0 0 0	1 0	A2=0, A3=0	$\left(S_{1}\right)$					
0 0 0 1	0 0							
0 0 1 0	0 0							
0 0 1 1	0 0							
0 1 0 0	0 0	A2=1, A3=0						
0 1 0 1	1 0							
0 1 1 0	1 0							
0 1 1 1	1 0							
1 0 0 0	1 0	A2=1, A3=0						
1 0 0 1	(0)							
1 0 1 0	$0 \ \ 0$							
1 0 1 1	0 0							
1 1 0 0	$\sqrt{0 \setminus 0}$	A2=1, A3=1						
1 1 0 1	1 0		S_2					
1 1 0 1	(I 1).		S_idle					

•		•			•		
Counter		Flip-Flops					
A ₃	A ₂	A_1	A_0	E	F	Conditions	State
0	0	0	0	1	0	$A_2 = 0, A_3 = 0$	S_1
0	0	0	1	0	0		
0	0	1	0	0	0		
0	0	1	1	0	0		
0	1	0	0	0	0	$A_2 = 1, A_3 = 0$	
0	1	0	1	1	0		
0	1	1	0	1	0		
0	1	1	1	1	0		
1	0	0	0	1	0	$A_2 = 0, A_3 = 1$	
1	0	0	1	0	0		
1	0	1	0	0	0		
1	0	1	1	0	0		
1	1	0	0	0	0	$A_2 = 1, A_3 = 1$	
1	1	0	1	1	0		S_2
1	1	0	1	1	1		S_idle

- The data path unit consists of a four-bit binary counter and two JK flip-flops.
- The counter is incremented with every clock pulse when the controller state is S_1.
- It is cleared only when control is at state S_idle and Start is equal to 1.
- The logic for the signal clr_A_F will be included in the controller and requires an AND gate to guarantee that both conditions are present.
- Similarly, we can anticipate that the controller will use AND gates to form signals set_E and clr_E.
- Depending on whether the controller is in state
 S_1 and whether A2 is asserted, set_F controls
 flip-flop F and is asserted unconditionally during state S_2.
- Note that all flip-flops and registers, including the flip-flops in the control unit, use a common clock.

Design of logic circuit of the controller

State diagram

State Table

 $incr_A = S_1$

		(State Tal	ble	S_idle	->(00)
	Present State	Inputs	Next State	Outputs	S.1 -	ラ ^{0 1}
Present-State Symbol	G ₁ G ₀	extill Statu	sifnall A3 G1 G0	set_E dr_E set_F cdr_A_F	Sidle Sidle	5-1-5-2 h, Dao 0 0
S_idle S_idle S_1 S_1 S_1 S_1 S_1 S_2	$ \begin{array}{c c} 0 & 0 \\ 0 & 0 \\ \hline 0 & 1 \\ \hline 0 & 1 \\ \hline 1 & 1 \end{array} $		$\begin{array}{c cccc} X & 0 & 0 \\ X & 0 & 1 \\ \hline X & 0 & 1 \\ \hline 0 & 0 & 1 \\ \hline 1 & 1 & 1 \\ X & 0 & 0 \\ \end{array}$	$\begin{array}{c ccccc} 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \end{array}$	0 1 1 1 1 0 G1 G0	A2 0 1
$D_{G0} = Stat$ $set_E = cIr_E = set_F = c$	$S_1A_2A_3$ $S_1A_2A_3$ $S_1A_2A_3$ $S_1A_2A_3$ $S_1A_2A_3$ $S_1A_2A_3$ $S_1A_2A_3$ $S_1A_2A_3$ $S_1A_2A_3$ $S_1A_2A_3$ $S_1A_2A_3$ $S_1A_2A_3$ $S_1A_2A_3$	S. &	3 - 60 GO	Set-E CIR-E Set-F Set-F CIR-A-F cin(r)A=	S-1 A2 = Gi Go S-1 A2 Gi Go S-2 = Gidle Start = Gi	Da 5-1 A2 A3

Sidlo = 60 Sidlo = 60

Logic circuit of the controller

BINARY MULTIPLIER

To Multiply two unsigned binary numbers.

Sequential Multiplier

Uses One adder and a shift register.

Less hardware but takes more clock cycles to complete the operation

The process consists of successively adding and shifting copies of the multiplicand.

The product obtained from the multiplication of two binary numbers of n bits each can have up to 2 n bits.

multiply the two binary numbers 10111 and 10011:

Block diagram

