HD74HC298

Quad. 2-input Multiplexers (with storage)

HITACHI

Description

This circuit is controlled by the signals word select and clock. When the word select input is taken low word 1 (A_1 , B_1 , C_1 and D_1) is presented to the inputs of the flip-flops, and when word select is high word 2 (A_2 , B_2 , C_2 and D_2) is presented to the inputs of the flip-flops. The selected word is clocked to the output terminals on the negative edge of the clock pulse.

Features

• High Speed Operation: t_{pd} (Clock to Q) = 19 ns typ ($C_L = 50 \text{ pF}$)

• High Output Current: Fanout of 10 LSTTL Loads

• Wide Operating Voltage: $V_{CC} = 2 \text{ to } 6 \text{ V}$

• Low Input Current: 1 µA max

• Low Quiescent Supply Current: I_{CC} (static) = 4 μ A max

Function Table

Inputs		Outputs	Outputs								
Word Select	Clock	Q _A	Q _B	Q _c	Q _D						
L	_	a ₁	b ₁	C ₁	d ₁						
Н		a_2	b ₂	C_2	d_2						
X	Н	Q_{A0}	Q _{B0}	Q _{co}	Q _{D0}						

HD74HC298

Pin Arrangement

DC Characteristics

			Ta =	= 25°(;	Ta = - +85°0	-40 to			
Item	Symbol	V _{cc} (V)	Min	Тур	Max	Min	Max	Unit	Test Condition	ıs
Input voltage	V _{IH}	2.0	1.5	_	_	1.5	_	V		
		4.5	3.15	i —	_	3.15	_	=		
		6.0	4.2	_	_	4.2	_	=		
	V _{IL}	2.0	_	_	0.5	_	0.5	V		
		4.5	_	_	1.35	_	1.35			
		6.0	_	_	1.8	_	1.8	=		
Output voltage	V _{OH}	2.0	1.9	2.0		1.9	_	V	$Vin = V_{IH} \text{ or } V_{IL}$	I _{OH} = -20 μA
		4.5	4.4	4.5	_	4.4	_			
		6.0	5.9	6.0	_	5.9	_	_		
		4.5	4.18	· —		4.13	_		•	I _{OH} = -4 mA
		6.0	5.68	i —	_	5.63	_		•	$I_{OH} = -5.2 \text{ mA}$
	V _{OL}	2.0	_	0.0	0.1	_	0.1	V	$Vin = V_{IH} \text{ or } V_{IL}$	I _{OL} = 20 μA
		4.5	_	0.0	0.1	_	0.1			
		6.0	_	0.0	0.1	_	0.1	_		
		4.5	_	_	0.26	_	0.33	_	•	I _{OL} = 4 mA
		6.0	_	_	0.26	_	0.33	_		I _{OL} = 5.2 mA
Input current	lin	6.0	_	_	±0.1	_	±1.0	μΑ	Vin = V _{CC} or GN	ID
Quiescent supply current	I _{cc}	6.0	_	_	4.0	_	40	μΑ	$Vin = V_{cc} \text{ or } GN$	ID, lout = 0 μA

HD74HC298

AC Characteristics ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 6 \text{ ns}$)

Ta = -40 to $Ta = 25^{\circ}C$ +85°C

								_	
Item	Symbol	V _{cc} (V)	Min	Тур	Max	Min	Max	Unit	Test Conditions
Propagation delay	t _{PLH}	2.0	_	_	170	_	215	ns	Clock to Q
time	$t_{\tiny PHL}$	4.5	_	19	34	_	43	_	
		6.0	_	_	29	_	37	_	
Pulse width	t _w	2.0	80	_	_	100	_	ns	Clock
		4.5	16	10	_	20	_	=	
		6.0	14	_	_	17	_	_	
Setup time	t _{su}	2.0	150	_	_	190	_	ns	
		4.5	30	16	_	38	_	=	
		6.0	26	_	_	33	_	_	
Hold time	t _h	2.0	5	_	_	5	_	ns	
		4.5	5	-5	_	5	_	=	
		6.0	5	_	_	5	_	=	
Output rise/fall	t _{TLH}	2.0	_	_	75	_	95	ns	
time	t_{THL}	4.5	_	5	15	_	19	=	
		6.0	_	_	13	_	16	=	
Input capacitance	Cin	_	_	5	10	_	10	pF	

Unit: mm 19.20 20.00 Max 16 7.40 Max 6.30 1.3 1.11 Max 7.62 5.06 Max 2.54 Min 0.51 Min $0.25^{+0.13}_{-0.05}$ 0.48 ± 0.10 2.54 ± 0.25 $0^{\circ} - 15^{\circ}$ Hitachi Code DP-16 **JEDEC** Conforms EIAJ Conforms Weight (reference value) 1.07 g

Unit: mm

Hitachi Code	FP-16DA
JEDEC	_
EIAJ	Conforms
Weight (reference value)	0.24 g

*Dimension including the plating thickness
Base material dimension

Unit: mm

*Dimension including the plating thickness
Base material dimension

Hitachi Code	FP-16DN
JEDEC	Conforms
EIAJ	Conforms
Weight (reference value)	0.15 g