Dimensionality Reduction

Week 8- Principle Component Analysis

Mohammad Esmalifalak

Why We Reduce Dimension?

- Less Memory Usage
- Speeding up learning algorithms
- Visualization

Principle Component Analysis (2D)

Reducing dimension from 2D to 1D will not cause two much of information loss

Principle Component Analysis (2D)

Reducing dimension from 2D to 1D could cause two much of information loss

Principle Component Analysis (3D)

PCA for Visualization

```
In [1]:
    # Let's read in the dataset. I found this dataset on Kaggle
    countries = read.csv('../input/countries of the world.csv', na.string = c("", "NA"))

In [2]:
    # Let's check the head of the dataframe
    head(countries)
```

Country	Region	Population	Areasqmi	PopDensityper.sqmi	Coastlinecoast.area.ratio.	Net.migration	Infant.mortalitype
Afghanistan	ASIA (EX. NEAR EAST)	31056997	647500	48,0	0,00	23,06	163,07
Albania	EASTERN EUROPE	3581655	28748	124,6	1,26	-4,93	21,52
Algeria	NORTHERN AFRICA	32930091	2381740	13,8	0,04	-0,39	31
American Samoa	OCEANIA	57794	199	290,4	58,29	-20,71	9,27
Andorra	WESTERN EUROPE	71201	468	152,1	0,00	6,6	4,05
Angola	SUB- SAHARAN AFRICA	12127071	1246700	9,7	0,13	0	191,19
←							

PCA for Visualization

PCA-Algorithm

Training set: $x^{(1)}, x^{(2)}, \dots, x^{(m)}$ Preprocessing (feature scaling/mean normalization):

$$\mu_j = \frac{1}{m} \sum_{i=1}^m x_j^{(i)}$$

Replace each $x_i^{(i)}$ with $x_i - \mu_i$.

If different features on different scales (e.g., $x_1 =$ size of house, $x_2 =$ number of bedrooms), scale features to have comparable range of values.

- 2 Sigma = $\frac{1}{m} \sum_{i=1}^{m} (x^{(i)})(x^{(i)})^T$

$$U_k^T \times X = Z$$

$$(k \times n) \times (n \times 1) = (k \times 1)$$

PCA-Choosing 'K'

$${\tt Sigma = } \frac{1}{m} \sum_{i=1}^{m} (x^{(i)})(x^{(i)})^T \qquad \qquad [{\tt U,S,V}] = {\tt svd(Sigma)};$$

$$\begin{pmatrix}
S_{11} & 0 \\
S_{22} & \\
\vdots & \vdots \\
0 & S_{nn}
\end{pmatrix}$$

$$1 - \frac{\sum_{i=1}^{k} S_{ii}}{\sum_{i=1}^{n} S_{ii}} < 0.01$$
99% of variance is retained

PCA-Reconstruction (X_{app})

$$x \in \mathbb{R}^n \longrightarrow z \in \mathbb{R}^k \longrightarrow x \in \mathbb{R}^n$$

$$U_k^T \times X = Z$$

$$U_k \times Z = X_{app}$$

$$(k \times n) \times (n \times 1) = (k \times 1)$$

$$(n \times k) \times (k \times 1) = (n \times 1)$$

References:

[1] Andrew Ng, Principal components analysis, CS229 Lecture notes

[2] http://www.nlpca.org

[3] SVD MIT OpenCourseWare

https://www.youtube.com/watch?v=EqSJLHkixSs

© All rights reserved. All content within our courses, such as this video, is protected by copyright and is owned by the course author or unless otherwise stated. Third party copyrighted materials (for example, images and text) have either been licensed for use in any given course, or have been copied under an exception or limitation in Canadian Copyright law. For further information, please contact the McMaster University Centre for Continuing Education ccecrsdv@mcmaster.ca.