

Mass Shootings Analysis

Mass Shooting:

4+ victims injured or killed excluding the subject/suspect/perpetrator, one location. (Gun Violence Archive)

Key Questions:

- Have mass shooting rates increased over the years?
- Where are mass shootings happening most often and where are they the deadliest?
- Does gun legislation have any relationship to number of mass shootings?
- Does hate group activity have any relationship with number of mass shootings?

Data Sources:

Mass Shooting Statistics: https://www.gunviolencearchive.org/reports

US Census API: https://github.com/datamade/census
Hate Group Data: https://www.splcenter.org/hate-map
Gun Law Data: https://lawcenter.giffords.org/scorecard/

Data Collection Period:

2014 - 2017

Definitions

Mass Shooting Definition:

4+ victims injured or killed excluding the subject/suspect/perpetrator, one location. (Gun Violence Archive)

Hate Group Definition:

An organization that – based on its official statements or principles, the statements of its leaders, or its activities – has beliefs or practices that attack or malign an entire class of people, typically for their immutable characteristics. (Southern Poverty Law Center)

Region Definitions:

Urban - Region with a density greater than 3000 ppl / sq mi Suburban - Region with a density greater than 1000 ppl / sq mi but less than 3000 ppl / sq mi Rural - Region with a density less than 1000 ppl / sq mi

State Gun Laws:

Attorneys track and analyze gun legislation in all 50 states, evaluating bills for their relative strength or weakness. Taking note of newly enacted laws, they use an exhaustive quantitative rubric to score each state on its gun law strength, adding points for safety regulations like universal background checks and extreme risk protection orders and subtracting points for reckless policies like "Stand Your Ground" and permitless carry laws. (Giffords Law Center)

General Overview

Region

Region

Hate Groups

There is a consistent positive, linear correlation between number of hate groups in a state and the number of mass shooting occurrences

Gun Laws

^{*}Mass Shooting incidents of each State per 1,000,000 people (to avoid decimal in these charts)

Quantitative Analysis
$$\int_{-\infty}^{\infty} e^{-x^{2}} dx = \sqrt{11}$$
Quantitative Analysis
$$\int_{-\infty}^{\infty} (x) = a_{0} + \sum_{n=1}^{\infty} (a_{n} \cos \frac{n\pi x}{2} + b_{n})$$

$$\chi = -b \pm \sqrt{b^{2} - 4ac}$$

$$\chi = \frac{1}{2a} (x_{1} - \bar{x})(x_{1} - \bar{y})$$

$$\chi = \frac{1}{2a} (x_{1} - \bar{x})(x_{1} - \bar{y})$$

$$\chi = \frac{1}{2a} (x_{1} - \bar{x})(x_{1} - \bar{y})$$

	ULS R	egression	n Results			
Dep. Variable:	Per Capita Mass S	hooting	R-squared:		е	.193
Model:		OLS	Adj. R-squar	red:	e	.177
Method:	Least	Squares	F-statistic:		1	1.70
Date:	Sat, 30 M	ar 2019	Prob (F-stat	istic):	1.56	ie-08
Time:	1	7:05:54	Log-Likeliho	ood:	-21	0.06
No. Observations:		200	AIC:		4	30.1
Df Residuals:		195	BIC:		4	46.6
Df Model:		4				
Covariance Type:	no	nrobust				
	coef	std err	t	P> t	[0.025	0.975]
const	-0.4976	0.327	-1.522	0.130	-1.142	0.147
Poverty Rates	0.1207	0.019	6.501	0.000	0.084	0.157
Per Capita Hate Gro		0.300	0.646	0.519	-0.397	0.789
GRADE number	-0.0978	0.037	-2.618	0.010	-0.171	-0.024
Election_Result_B	-0.0491	0.143	-0.344	0.731	-0.330	0.232
Omnibus:	32.37	4 Duph	in-Watson:		2.066	
Prob(Omnibus):	0.00		ue-Bera (JB):		43.967	
Skew:	0.99	COL SCHOOL SON			2.84e-10	
Kurtosis:	4.15		, ,		109.	

'Election_Result_B' (indicating BLUE or RED States)

Dummy variables (0, 1)

The p-value for 'Election_Result_B' (0.731) is greater than the significance level (0.05), we <u>cannot</u> conclude that there is a statistically significant association between the mass shooting incidents Per Capita and the Election results.

Regarding Regression Model reduction, this p-value is also <u>the highest p-value that is greater than 0.05</u>, so we reduce the model by <u>removing</u> this term. We, then, repeat the regression.

^{*}For regression, Mass Shooting incidents of each State per 1,000,000 people

^{**}A significance level of 0.05 indicates a 5% risk of concluding that an association exists when there is no actual association.

Dep. Variable:	Per Capita Mass	Shooting	R-squared:		6	.193	
Model:		OLS	Adj. R-squa	ared:	6	.181	
Method:	Leas	t Squares	F-statistic	c:	1	15.63	
Date:	Sat, 30	Mar 2019	Prob (F-sta	atistic):	3.76	ie-09	
Time:		16:55:08	Log-Likeli	nood:	-21	10.12	
No. Observations:		200	AIC:		4	428.2	
Df Residuals:		196	BIC:		4	141.4	
Df Model:		3					
Covariance Type:		nonrobust					
	coef	std err	t	P> t	[0.025	0.975	
const	-0.5747	0.238	-2.419	0.016	-1.043	-0.106	
Poverty Rates	0.1218	0.018	6.676	0.000	0.086	0.158	
Per Capita Hate Gr	oup 0.2113	0.295	0.717	0.474	-0.370	0.793	
GRADE number	-0.0902	0.030	-2.996	0.003	-0.150	-0.031	
Omnibus:	33.	037 Durb	in-Watson:		2.072		
Prob(Omnibus):	0.	000 Jarq	ue-Bera (JB)	:	45.242		
Skew:	1.	004 Prob	(JB):		1.50e-10		
Kurtosis:	1	181 Cond	. No.		90.9		

Variables with a p value > 0.05

Per Capita Hate Group

The p-value for 'Per Capita Hate Group' (0.474) is greater than the significance level (0.05), we <u>cannot</u> conclude that there is a statistically significant association between the mass shooting incidents Per Capita and Hate group count Per Capita.

Variables with a p value < 0.05

Poverty Rates

= (Poverty counts per State) / (Population of that State)

GRADE number (Gun Law Strength)

where

scale: 0 = more legislation, 5.5 = less legislation

Gun Law Strength							
GRADE letter	GRADE number						
А	0.0						
A-	0.5						
B+	1.0						
В	1.5						
B-	2.0						
C+	2.5						
С	3.0						
C-	3.5						
D+	4.0						
D	4.5						
D-	5.0						
F	5.5						

^{*}For regression, Mass Shooting incidents of each State per 1,000,000 people

^{**}A significance level of 0.05 indicates a 5% risk of concluding that an association exists when there is no actual association.

Dep. Variable:	Per Cap	ita Mass	Shooting	R-so	uared:		0.156
Model:			OLS	Adj.	R-squared	l:	0.152
Method:		Leas	st Squares	F-st	atistic:		36.58
Date:		Sat, 30	Mar 2019	Prob	(F-statis	tic):	7.20e-09
Time:			16:55:21	Log-	Likelihood	:	-214.61
No. Observations:			200	AIC:			433.2
Df Residuals:			198	BIC:			439.8
Df Model:			1				
Covariance Type:			nonrobust				
	coef	std er	r	t	P> t	[0.025	0.975]

	coef	std err	t	P> t	[0.025	0.975]
const	-0.5716	0.240	-2.378	0.018	-1.046	-0.098
Poverty Rates	0.1004	0.017	6.048	0.000	0.068	0.133
Omnibus:		37.281	Durbin-Wa	atson:		2.129
Prob(Omnibus):		0.000	Jarque-Be	era (JB):		54.814
Skew:	5kew: 1.066		Prob(JB):		1.25e-12	
Kurtosis:		4.425	Cond. No.			69.5

(Y = m*X + const)

Mass Shooting Per Capita = 0.1004*Poverty Rates - 0.5716

2.115

84.939 3.59e-19

OLS Regression Results

Dep. Variable:	Per Ca	pita Mass S	hooting	oting R-squared:			0.000
Model:			OLS	Adj.	R-square	d:	-0.005
Method:		Least	Squares	F-sta	tistic:		0.001593
Date:		Sat, 30 M	ar 2019	Prob	(F-stati	stic):	0.968
Time:		1	d:	-231.56			
No. Observations:			200	AIC:			467.1
Df Residuals:			198	BIC:			473.7
Df Model:			1				
Covariance Type:		no	nrobust				
	coef	std err	t	:	P> t	[0.025	0.975]
const	0.8453	0.128	6.593	1	0.000	0.592	1.098
GRADE number	0.0011	0.029	0.040)	0.968	-0.055	0.058

Prob(JB):

Omnibus:

Prob(Omnibus):

Poverty Rates (p value < 0.05)

We conclude that <u>there is a statistically significant</u> <u>association</u> between the mass shooting incidents Per Capita and Poverty rates.

The coefficient (0.1004) of the term represents the change in the mean response for one unit of change in Poverty Rates.

Also, the coefficient is <u>positive</u>, as Poverty Rates increases, the mean value of the Mass Shooting incidents Per Capita increases.

The R-squared of this regression is the fraction (0.156) of the variation in Mass Shooting Per Capita that is accounted for (or predicted by) Poverty rates.

A high or low R-square isn't necessarily good or bad. You can get a low R-squared for a good model, or a high R-square for a poorly fitted model, and vice versa.

Conclusion

Key Questions:

Have mass shooting rates increased over the years?

From 2014 - 2016 mass shootings increased, in 2017 the number of mass shootings decreased but the number of victims increased.

Where are mass shootings happening most often and where are they the deadliest?

There is a relationship between a higher poverty rates and a higher amount of people affected by a mass shooting. The incidents occur the most in dense population centers, however, fatality rates are highest in the rural areas. Poverty rates and fatality rates did not have a relationship.

Does gun legislation have any relationship to number of mass shootings?

There does not seem to be a noticeable linear correlation between gun law strength and mass shootings. Note, this study disregards gun crime.

Does hate group activity have any correlation with number of mass shootings?

Hate group activity does not have any significant effect on the number of mass shootings overall. However, in states which experience at least one mass shooting there is a positive linear correlation between number of hate groups and mass shootings.

Appendix

Mass Shootings Analysis: Total Count by State

Mass Shootings Analysis: Per 100,000,000 people

Hate Groups 2017

Ideology	
Black Nationalist	233
Neo-Nazi	121
Anti-Muslim	114
White Nationalist	100
Ku Klux Klan	72
Racist Skinhead	71
General Hate	55
Anti-LGBT	51
Neo-Confederate	31
Neo-Volkisch	28
Anti-Immigrant	22
Christian Identity	20
Hate Music	15
Radical Traditional Catholicism	11
Holocaust Denial	10

Total Count 2017

Per Capita 2017

2017 Census Data

Mass Shootings Analysis: US Census Overview

 There appears to be no strong correlation between state poverty rate and mass shootings

- There does not appear to be a strong correlation between state household income and mass shootings
- States with an average household income of over \$70k did not experience more than 15 mass shootings in 2017

Mass Shootings Analysis: US Census Overview

- There does not appear to be a strong linear correlation between per capita income and mass shootings
- States with a per capita income of \$35k or less experience a higher number of mass shootings

 There does not appear to be a strong correlation between per unemployment and mass shootings

Regional Studies - Census Data

Regional Studies - Census Data

Isolated Vs Recurring Locations: Victim Count

Isolated Vs Recurring Locations: Total Incidents

Gun Laws

*Mass Shooting incidents of each State per 1,000,000 people (to avoid decimal in these charts)

*Mass Shooting incidents of each State per 1,000,000 people (to avoid decimal in these charts)

OLS Regression Results

Dep. Variable: Pe	r Capita Mass	Shooting	R-squared:		e	.196
Model:		OLS	The state of the s	red:	0.175	
Method:	Leas	t Squares	F-statistic			.438
Date:			Prob (F-sta		4.54	e-08
Time:	1	14:19:12			-20	9.79
No. Observations:		200	AIC:		4	31.6
Df Residuals:		194	BIC:		4	51.4
Df Model:		5				
Covariance Type:		nonrobust				
	coef	std err	t	P> t	[0.025	0.975
const	-0.3400	0.189	-1.798	0.074	-0.713	0.03
Poverty Rates			6.531			
Per Capita Hate Group			0.654			
GRADE number		0.038	-2.546	0.012	-0.169	-0.02
Gun Check per capita	-0.4684	0.648	-0.723	0.470	-1.746	0.80
Election Result B		0.082	-2.467	0.014	-0.365	-0.04
Election_Result_R	-0.1371	0.147	-0.933	0.352	-0.427	0.15
Omnibus:	31	774 Durb	in-Watson:		2.030	
Prob(Omnibus):			ue-Bera (JB):		42.881	
Skew:		979 Prob			4.88e-10	
Kurtosis:		145 Cond			1.56e+17	

Warnings

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 1.87e-30. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

OLS Regression Results

Dep. Variable: Per	Capita Mass	Shooting	R-squared:		0	.193	
Model:		OLS	Adj. R-squar	ed:	0	.177	
Method:	Leas	t Squares	F-statistic:		11.70 1.56e-08		
Date:	Sat, 30	Mar 2019	Prob (F-stat	istic):			
Time:		17:05:54	Log-Likeliho	od:	-21	0.06	
No. Observations:		200	AIC:		4	30.1	
Df Residuals:		195	BIC:		446.6		
Df Model:		4					
Covariance Type:		nonrobust					
	coef	std err	t	P> t	[0.025		
const			-1.522				
Poverty Rates	0.1207	0.019	6.501	0.000	0.084	0.157	
Per Capita Hate Group	0.1938	0.300	0.646	0.519	-0.397	0.789	
GRADE number	-0.0978	0.037	-2.618	0.010	-0.171	-0.024	
Election_Result_B	-0.0491	0.143	-0.344			0.232	
Omnibus:	32.	374 Durb:	in-Watson:		2.066		
Prob(Omnibus):	0.	000 Jarqu	ue-Bera (JB):		43.967		
Skew:	0.	992 Prob	(JB):		2.84e-10		
Kurtosis:	4.	158 Cond	. No.		109.		

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

OLS Regression Results

Dep. Variable: F	Per Capita Mass Shooting			R-squared:		0.193	
Model:	OLS			Adj. R-squ	ared:	0.181	
Method:	Leas	t Squ	ares	F-statisti	c:	1	5.63
Date:	Sat, 30	Mar	2019	Prob (F-st	atistic):	3.76	e-09
Time:		16:5	5:08	Log-Likeli	hood:	-21	0.12
No. Observations:			200	AIC:		4	28.2
Df Residuals:			196	BIC:		4	41.4
Df Model:			3				
Covariance Type:		nonro	bust				
	coef	sto	err	t	P> t	[0.025	0.975]
const	-0.5747	6	.238	-2.419	0.016	-1.043	-0.106
Poverty Rates	0.1218	9	.018	6.676	0.000	0.086	0.158
Per Capita Hate Grou	p 0.2113	6	.295	0.717	0.474	-0.370	0.793
GRADE number	-0.0902	6	.030	-2.996	0.003	-0.150	-0.031
Omnibus:	33.	037	Durb	in-Watson:		2.072	
Prob(Omnibus):	0.	0.000 Jar		que-Bera (JB):		45.242	
Skew:	1.	004	Prob	(JB):		1.50e-10	
Kurtosis:	4.	181	Cond	. No.		90.9	

OLS Regression	Results
----------------	---------

Dep. Variable:	Incide	nts Per Capit		uared:		0.308
Model:		OL	S Adj.	R-squared:		0.304
Method:	ethod: Les		s F-st	atistic:		73.73
Date:	Mot	n, 01 Apr 201	.9 Prob	(F-statistic)	:	3.28e-27
Time:		04:50:0	7 Log-1	Likelihood:		-682.36
No. Observation	ns:	33	4 AIC:			1371.
Df Residuals: Df Model:		33	1 BIC:			1382.
Covariance Type	e: 	nonrobus	it			
	coef	std err	t	P> t	[0.025	0.975]
const	-1.5440	0.306	-5.052	0.000	-2.145	-0.943
Rural	1.2697	0.217	5.852	0.000	0.843	1.696
Poverty Rate	0.1574	0.019	8.173	0.000	0.120	0.195
Omnibus:		283.953	Durbin-	 -Watson:		1.575
Prob (Omnibus):		0.000	Jarque-	-Bera (JB):		6895.172
Skew:		3.393	Prob(J)			0.00
Kurtosis:		24.199	Cond. I			50.1
						=======

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Regression - States with at least 1 mass shooting

	OLS	Regressio	n Results			
Dep. Variable: F	Per Capita Mass Shooting		R-squared:		0.525	
Model:	OLS		Adj. R-squared:		0.512	
Method:	Least Squares		F-statistic:		40.93	
Date:	Sat, 30 Mar 2019		Prob (F-statistic):		4.60e-23	
Time:	19:38:03		Log-Likelihood:		-177.12	
No. Observations:	153		AIC:		364.2	
Df Residuals:	148		BIC:		379.4	
Df Model:		4				
Covariance Type:	nonrobust					
	coef	std err	t	P> t	[0.025	0.975
const	0.0037	0.345	0.011	0.992	-0.678	0.685
GRADE number	-0.0824	0.050	-1.662	0.099	-0.180	0.016
Per Capita Hate Grou	ıp 1.9998	0.172	11.658	0.000	1.661	2.339
Poverty Rates	0.0537	0.027	1.957	0.052	-0.001	0.108
Election Result R	0.1007	0.184	0.547	0.585	-0.263	0.464