							econd harmonics from the following data.
x:	0	1	2	3	4	5	
f(x):	9	18	24	28	26	20	*=

			- 20	
A tightly stretched string with fixed end points $x=0$ and $x=l$ is initially at rest in	12	4	3	1
its equilibrium position. If it is set vibrating giving each point a velocity				

$$30\sin\frac{\pi x}{l}$$
, find the displacement function $y(x,t)$.

- b. A rod, 30 cm. long, has its ends A and B kept at 20°C and 80°C respectively, until steady state conditions prevail. The temperature at each end is then suddenly reduced to 0°C and kept so. Find the resulting temperature function u(x,t).
- Find the Fourier transform of $f(x) = \begin{cases} a^2 x^2, |x| \le a \\ 0, |x| > a \end{cases}$ and hence deduce that

$$\int_{0}^{\infty} \left(\frac{\sin t - t \cos t}{t^3} \right) dt = \frac{\pi}{4}$$

30. a.

- b. Evaluate the following by using transforms methods.

(ii)
$$\int_{0}^{\infty} \frac{dx}{\left(x^2 + a^2\right)\left(x^2 + b^2\right)}$$

32. a. Find inverse Z-transform of

$$F(z) = \frac{3z^2 - 18z + 26}{(z-2)(z-3)(z-4)}$$
 by the method of partial fraction.

b. Solve using Z-transform
$$y_{n+2} - 3y_{n+1} + 2y_n = 2^n$$
, given $y_0 = y_1 = 0$.

Reg. No.														
----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--

B.Tech. DEGREE EXAMINATION, JUNE 2023

Third Semester

18MAB201T - TRANSFORMS AND BOUNDARY VALUE PROBLEMS

(For the candidates admitted from the academic year 2018-2019 to 2021-2022)

Note:
(i)

3 2 2

3 5 2

3 5 2

- Part A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.

(ii)	Part - B & Part - C should be answered in answer booklet.				
Time: 3	hours	Max. I	Marl	ks: 1	00
	PART – A $(20 \times 1 = 20 \text{ Marks})$ Answer ALL Questions	Marks	BL	CO	P
1.		1	1	1]
	(A) 1 (C) 3 (B) 2 (D) 4				
2.	The notation of the partial derivative $\frac{\partial^2 z}{\partial y^2}$ is (A) p (B) q	1	1	1	2
	(A) p (C) r (B) q (D) t				
3.	A solution which is obtained from complete integral by eliminating a constants is known as (A) Complete integral (B) Singular integral (C) General integral (D) Particular integral	rbitrary ¹	2	1	2
4.	The PDE of the form Pp+Qq=R is known as (A) Laplace equation (B) Lagrange's equation (C) Clairaut's equation (D) Higher order equation	1	1	1	2
5.	tanx is a periodic function with period (A) $\pi/2$ (B) π (C) 2π (D) 3π	1	1	2	1
6.	If $\int_{-a}^{a} f(x)dx = 0$, then the function $f(x)$ is (A) Odd (B) Even	1	2	2	2
	(C) Neither odd nor even (D) Periodic				
7.	If $f(x+T) = f(x)$, for all x then the function $f(x)$ is called (A) Odd (B) Even (C) Bounded (D) Periodic	1	1	2	2
8.	The value of a _n in the Fourier series expansion of $f(x) = x^3$ in $(-l, l)$ is	1	2	2	7

(B) *l/2*

(D) 0

(A) $\pi/2$

(C) π

(C)
$$\frac{\partial^2 u}{\partial t^2} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$$

(D)
$$\frac{\partial^2 y}{\partial x^2} = \alpha^2 \frac{\partial^2 y}{\partial t^2}$$

- 10. In one dimensional wave equation, α^2 stands for
 - (A) $K/\rho C$

(C) $\rho C/K$

- (D) K/ρ
- 11. The classification of the PDE $u_{xx} 2u_{xy} + u_{yy} = x + y$ is

1 2 3 1

1 3 1

1 3 2

(A) Elliptic

(B) Parabolic

(C) Hyperbolic

- (D) Both parabolic and hyperbolic
- 12. How many initial and boundary conditions are required to solve one dimensional wave equation
 - (A) Two

(B) Three

(C) Four

- (D) Five
- 1 2 4 2 13. If F[f(x)] = F(s), then F[f(x+a)] =
 - (A) $e^{-i\alpha x}F(x)$

(C) $e^{+ias}F(s)$

- (D) $e^{-ias}F(s)$
- 14. The Fourier cosine transform of e^{-ax} , a > 0 is

1 2 4 2

- 15. The value of $F_s[f(ax)]$ is

1 1 4 2

(A) $\frac{1}{a}F_s\left(\frac{s}{a}\right)$

- 16. The value of $F_c \left[f(x) \cos ax \right]$
- (B) $\frac{1}{2} \left[F_s(s+a) F_s(s-a) \right]$
- (C) $\frac{1}{2} \left[F_c(s+a) + F_c(s-a) \right]$

(A) $\frac{1}{2} \left[F_s(s+a) + F_s(s-a) \right]$

(D) $\frac{1}{2} \left[F_c(s+a) - F_c(s-a) \right]$

- 17. Z-transform of 5 is
 - z-1

- 18. Z-transform of $f(n) = a^n$ is
 - (B) z+a
 - (D)
- 19. Z-transform of f(t) = t is
- $(z-1)^2$
- The inverse Z-transform $F(z) = \frac{z^2 + z}{z^2}$
 - (A) n

(B) n^2

(C) n(n-1)

(D) n(n+1)

$PART - B (5 \times 4 = 20 Marks)$

- Marks BL CO PO Answer ANY FIVE Questions
- 21. Form the PDE by eliminating the arbitrary function from $z = f(x^2 + y^2)$. 22. Find the Root Mean Square value of f(x) = x in (-l, l).
- 23. What are the possible solutions of one dimensional heat equation?
- 24. State and prove change of scale property for Fourier transform.
- 25. If $F(z) = \frac{5z^2}{(z+1)(5z+1)}$, then find f(0). 4 3 5 2
- 4 3 1 2 26. Solve $p^2 + q^2 = npq$.
- 3 3 1 27. A rod, 30 cm long has its ends A and B kept at 40°C and 70°C respectively, until steady state conditions prevail. Find u(x) in the rod.

$PART - C (5 \times 12 = 60 Marks)$ Answer ALL Ouestions

Solve $\left(D^2 + 5DD' + 6D'^2\right)z = \cos(x + 2y) + x^2y$.

- b. Solve (mz ny) p + (nx lz) q = ly mx. 3 1 2
- 29. a. Find the Fourier series of
 - $f(x) = \begin{cases} 1 + \frac{2x}{l}, -l \le x \le 0 \\ 1 \frac{2x}{l}, 0 \le x \le l \end{cases}$
 - in (-l, l) and deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$.

1 2 5 2

2 5 2

2 5 2

2 5 2

3 2 2

3 3 1

Marks BL CO PO

12 3 2 2