

Lecture 3: Optimization and Linear Regression

Applied Machine Learning

Volodymyr Kuleshov Cornell Tech

Part 1: Optimization and Calculus Background

In the previous lecture, we learned what is a supervised machine learning problem.

Before we turn our attention to Linear Regression, we will first dive deeper into the question of optimization.

Review: Components of A Supervised Machine Learning Problem

At a high level, a supervised machine learning problem has the following structure:

The predictive model is chosen to model the relationship between inputs and targets. For instance, it can predict future targets.

Optimizer: Notation

At a high-level an optimizer takes

- ullet an objective J (also called a loss function) and
- a model class $\mathcal M$ and finds a model $f\in \mathcal M$ with the smallest value of the objective J.

$$\min_{f \in \mathcal{M}} J(f)$$

Intuitively, this is the function that bests "fits" the data on the training dataset $\mathcal{D} = \{(x^{(i)}, y^{(i)}) \mid i = 1, 2, \dots, n\}.$

We will use the a quadratic function as our running example for an objective J.

```
In [2]: import numpy as np
   import matplotlib.pyplot as plt
   plt.rcParams['figure.figsize'] = [8, 4]

In [3]: def quadratic_function(theta):
        """The cost function, J(theta)."""
        return 0.5*(2*theta-1)**2
```

We can visualize it.

```
In [4]: # First construct a grid of thetal parameter pairs and their corresponding
  # cost function values.
  thetas = np.linspace(-0.2,1,10)
  f_vals = quadratic_function(thetas[:,np.newaxis])

plt.plot(thetas, f_vals)
  plt.xlabel('Theta')
  plt.ylabel('Objective value')
  plt.title('Simple quadratic function')
```

Out[4]: Text(0.5, 1.0, 'Simple quadratic function')

Calculus Review: Derivatives

Recall that the derivative

$$\frac{df(\theta_0)}{d\theta}$$

of a univariate function $f: \mathbb{R} \to \mathbb{R}$ is the instantaneous rate of change of the function $f(\theta)$ with respect to its parameter θ at the point θ_0 .

Out[5]: Text(0.5, 1.0, 'Simple quadratic function')

Out[6]: Text(0.5, 1.0, 'Simple quadratic function')

Calculus Review: Partial Derivatives

The partial derivative

$$\frac{\partial f(\theta_0)}{\partial \theta_i}$$

of a multivariate function $f: \mathbb{R}^d \to \mathbb{R}$ is the derivative of f with respect to θ_j while all other inputs θ_k for $k \neq j$ are fixed.

Calculus Review: The Gradient

The gradient $\nabla_{\theta} f$ further extends the derivative to multivariate functions $f: \mathbb{R}^d \to \mathbb{R}$, and is defined at a point θ_0 as

$$\nabla_{\theta} f(\theta_0) = \begin{bmatrix} \frac{\partial f(\theta_0)}{\partial \theta_1} \\ \frac{\partial f(\theta_0)}{\partial \theta_2} \\ \vdots \\ \frac{\partial f(\theta_0)}{\partial \theta_d} \end{bmatrix}.$$

The j-th entry of the vector $\nabla_{\theta} f(\theta_0)$ is the partial derivative $\frac{\partial f(\theta_0)}{\partial \theta_j}$ of f with respect to the j-th component of θ .

We will use a quadratic function as a running example.

```
In [7]: def quadratic function2d(theta0, theta1):
             """Quadratic objective function, J(theta0, theta1).
             The inputs theta0, theta1 are 2d arrays and we evaluate
            the objective at each value theta0[i,j], theta1[i,j].
            We implement it this way so it's easier to plot the
            level curves of the function in 2d.
            Parameters:
            theta0 (np.array): 2d array of first parameter theta0
            thetal (np.array): 2d array of second parameter thetal
            Returns:
            fvals (np.array): 2d array of objective function values
                fvals is the same dimension as theta0 and theta1.
                fvals[i,j] is the value at theta0[i,j] and theta1[i,j].
            theta0 = np.atleast 2d(np.asarray(theta0))
            theta1 = np.atleast 2d(np.asarray(theta1))
            return 0.5*((2*theta1-2)**2 + (theta0-3)**2)
```

Let's visualize this function.

```
In [8]: theta0_grid = np.linspace(-4,7,101)
    theta1_grid = np.linspace(-1,4,101)
    theta_grid = theta0_grid[np.newaxis,:], theta1_grid[:,np.newaxis]
    J_grid = quadratic_function2d(theta0_grid[np.newaxis,:], theta1_grid[:,np.newaxis])

X, Y = np.meshgrid(theta0_grid, theta1_grid)
    contours = plt.contour(X, Y, J_grid, 10)
    plt.clabel(contours)
    plt.axis('equal')
```

Out[8]: (-4.0, 7.0, -1.0, 4.0)

Let's write down the derivative of the quadratic function.

```
In [9]:
        def guadratic derivative2d(theta0, theta1):
             """Derivative of quadratic objective function.
             The inputs theta0, theta1 are 1d arrays and we evaluate
            the derivative at each value theta0[i], theta1[i].
            Parameters:
            theta0 (np.array): 1d array of first parameter theta0
            thetal (np.array): 1d array of second parameter thetal
            Returns:
            grads (np.array): 2d array of partial derivatives
                 grads is of the same size as theta0 and theta1
                 along first dimension and of size
                 two along the second dimension.
                 grads[i,j] is the j-th partial derivative
                 at input theta0[i], theta1[i].
            # this is the gradient of 0.5*((2*theta1-2)**2 + (theta0-3)**2)
            grads = np.stack([theta0-3, (2*theta1-2)*2], axis=1)
            grads = grads.reshape([len(theta0), 2])
            return grads
```

We can visualize the derivative.

```
In [10]: theta0_pts, theta1_pts = np.array([2.3, -1.35, -2.3]), np.array([2.4, -0.15, 2.7 5])
```

Out[10]: (-4.0, 7.0, -1.0, 4.0)

Part 1b: Gradient Descent

Next, we will use gradients to define an important algorithm called gradient descent.

Calculus Review: The Gradient

The gradient $\nabla_{\theta} f$ further extends the derivative to multivariate functions $f: \mathbb{R}^d \to \mathbb{R}$, and is defined at a point θ_0 as

$$\nabla_{\theta} f(\theta_0) = \begin{bmatrix} \frac{\partial f(\theta_0)}{\partial \theta_1} \\ \frac{\partial f(\theta_0)}{\partial \theta_2} \\ \vdots \\ \frac{\partial f(\theta_0)}{\partial \theta_d} \end{bmatrix}.$$

The j-th entry of the vector $\nabla_{\theta} f(\theta_0)$ is the partial derivative $\frac{\partial f(\theta_0)}{\partial \theta_j}$ of f with respect to the j-th component of θ .

Out[11]: (-4.0, 7.0, -1.0, 4.0)

Gradient Descent: Intuition

Gradient descent is a very common optimization algorithm used in machine learning.

The intuition behind gradient descent is to repeatedly obtain the gradient to determine the direction in which the function decreases most steeply and take a step in that direction.

Gradient Descent: Notation

More formally, if we want to optimize $J(\theta)$, we start with an initial guess θ_0 for the parameters and repeat the following update until θ is no longer changing:

$$\theta_i := \theta_{i-1} - \alpha \cdot \nabla_{\theta} J(\theta_{i-1}).$$

As code, this method may look as follows:

```
theta, theta_prev = random_initialization()
while norm(theta - theta_prev) > convergence_threshold:
    theta_prev = theta
    theta = theta_prev - step_size * gradient(theta_prev)
```

In the above algorithm, we stop when $||\theta_i - \theta_{i-1}||$ is small.

It's easy to implement this function in numpy.

```
In [24]: convergence_threshold = 2e-1
    step_size = 2e-1
    theta, theta_prev = np.array([[-2], [3]]), np.array([[0], [0]])
    opt_pts = [theta.flatten()]
    opt_grads = []

while np.linalg.norm(theta - theta_prev) > convergence_threshold:
    # we repeat this while the value of the function is decreasing
    theta_prev = theta
    gradient = quadratic_derivative2d(*theta).reshape([2,1])
    theta = theta_prev - step_size * gradient
    opt_pts += [theta.flatten()]
    opt_grads += [gradient.flatten()]
```

We can now visualize gradient descent.

Out[25]: (-4.0, 7.0, -1.0, 4.0)

Part 2: Gradient Descent in Linear Models

Let's now use gradient descent to derive a supervised learning algorithm for linear models.

Review: Gradient Descent

If we want to optimize $J(\theta)$, we start with an initial guess θ_0 for the parameters and repeat the following update:

$$\theta_i := \theta_{i-1} - \alpha \cdot \nabla_{\theta} J(\theta_{i-1}).$$

As code, this method may look as follows:

```
theta, theta_prev = random_initialization()
while norm(theta - theta_prev) > convergence_threshold:
    theta_prev = theta
    theta = theta_prev - step_size * gradient(theta_prev)
```

Review: Linear Model Family

Recall that a linear model has the form

$$y = \theta_0 + \theta_1 \cdot x_1 + \theta_2 \cdot x_2 + \ldots + \theta_d \cdot x_d$$

where $x \in \mathbb{R}^d$ is a vector of features and y is the target. The θ_j are the parameters of the model.

By using the notation $x_0 = 1$, we can represent the model in a vectorized form

$$f_{\theta}(x) = \sum_{j=0}^{d} \theta_j \cdot x_j = \theta^{\mathsf{T}} x.$$

Let's define our model in Python.

```
In [26]: def f(X, theta):
    """The linear model we are trying to fit.

Parameters:
    theta (np.array): d-dimensional vector of parameters
    X (np.array): (n,d)-dimensional data matrix

Returns:
    y_pred (np.array): n-dimensional vector of predicted targets
    """
    return X.dot(theta)
```

An Objective: Mean Squared Error

We pick θ to minimize the mean squared error (MSE). Slight variants of this objective are also known as the residual sum of squares (RSS) or the sum of squared residuals (SSR).

$$J(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (y^{(i)} - \theta^{\mathsf{T}} x^{(i)})^2$$

In other words, we are looking for the best compromise in θ over all the data points.

Let's implement mean squared error.

```
In [27]: def mean_squared_error(theta, X, y):
    """The cost function, J, describing the goodness of fit.

Parameters:
    theta (np.array): d-dimensional vector of parameters
    X (np.array): (n,d)-dimensional design matrix
    y (np.array): n-dimensional vector of targets
    """
    return 0.5*np.mean((y-f(X, theta))**2)
```

Mean Squared Error: Partial Derivatives

Let's work out what a partial derivative is for the MSE error loss for a linear model.

$$\frac{\partial J(\theta)}{\partial \theta_j} = \frac{\partial}{\partial \theta_j} \frac{1}{2} (f_{\theta}(x) - y)^2$$

$$= (f_{\theta}(x) - y) \cdot \frac{\partial}{\partial \theta_j} (f_{\theta}(x) - y)$$

$$= (f_{\theta}(x) - y) \cdot \frac{\partial}{\partial \theta_j} \left(\sum_{k=0}^d \theta_k \cdot x_k - y \right)$$

$$= (f_{\theta}(x) - y) \cdot x_j$$

Mean Squared Error: The Gradient

We can use this derivation to obtain an expression for the gradient of the MSE for a linear model $\ensuremath{\mbox{\s$

\end{bmatrix}

$$\begin{bmatrix} (f_{\theta}(x) - y) \cdot x_1 \\ (f_{\theta}(x) - y) \cdot x_2 \\ \vdots \\ (f_{\theta}(x) - y) \cdot x_d \end{bmatrix}$$

= \left(f_\theta(x) - y \right) \cdot \bf{x}. \end{align*}

Let's implement the gradient.

```
In [28]: def mse_gradient(theta, X, y):
    """The gradient of the cost function.

Parameters:
    theta (np.array): d-dimensional vector of parameters
    X (np.array): (n,d)-dimensional design matrix
    y (np.array): n-dimensional vector of targets

Returns:
    grad (np.array): d-dimensional gradient of the MSE
    """

return np.mean((f(X, theta) - y) * X.T, axis=1)
```

The UCI Diabetes Dataset

In this section, we are going to again use the UCI Diabetes Dataset.

- For each patient we have a access to a measurement of their body mass index (BMI) and a quantiative diabetes risk score (from 0-300).
- We are interested in understanding how BMI affects an individual's diabetes risk.

```
In [29]: %matplotlib inline
   import matplotlib.pyplot as plt
   plt.rcParams['figure.figsize'] = [8, 4]
   import numpy as np
```

```
import pandas as pd
from sklearn import datasets

# Load the diabetes dataset
X, y = datasets.load_diabetes(return_X_y=True, as_frame=True)

# add an extra column of onens
X['one'] = 1

# Collect 20 data points and only use bmi dimension
X_train = X.iloc[-20:].loc[:, ['bmi', 'one']]
y_train = y.iloc[-20:] / 300

plt.scatter(X_train.loc[:,['bmi']], y_train, color='black')
plt.xlabel('Body Mass Index (BMI)')
plt.ylabel('Diabetes Risk')
```

Out[29]: Text(0, 0.5, 'Diabetes Risk')

Gradient Descent for Linear Regression

Putting this together with the gradient descent algorithm, we obtain a learning method for training linear models.

```
theta, theta_prev = random_initialization()
while abs(J(theta) - J(theta_prev)) > conv_threshold:
    theta_prev = theta
    theta = theta_prev - step_size * (f(x, theta)-y) * x
```

This update rule is also known as the Least Mean Squares (LMS) or Widrow-Hoff learning rule.

```
In [34]: | threshold = 1e-3
         step size = 4e-1
         theta, theta prev = np.array([2,1]), np.ones(2,)
         opt pts = [theta]
         opt grads = []
         iter = 0
         while np.linalg.norm(theta - theta prev) > threshold:
             if iter % 100 == 0:
                 print('Iteration %d. MSE: %.6f' % (iter, mean squared error(theta, X tra
         in, y train)))
             theta prev = theta
             gradient = mse gradient(theta, X train, y train)
             theta = theta prev - step size * gradient
             opt_pts += [theta]
             opt grads += [gradient]
             iter += 1
```

Iteration 0. MSE: 0.171729 Iteration 100. MSE: 0.014765 Iteration 200. MSE: 0.014349 Iteration 300. MSE: 0.013997 Iteration 400. MSE: 0.013701

```
In [35]: x_line = np.stack([np.linspace(-0.1, 0.1, 10), np.ones(10,)])
    y_line = opt_pts[-1].dot(x_line)

    plt.scatter(X_train.loc[:,['bmi']], y_train, color='black')
    plt.plot(x_line[0], y_line)
    plt.xlabel('Body Mass Index (BMI)')
    plt.ylabel('Diabetes Risk')
```

Out[35]: Text(0, 0.5, 'Diabetes Risk')

Part 3: Ordinary Least Squares

In practice, there is a more effective way than gradient descent to find linear model parameters.

We will see this method here, which will lead to our first non-toy algorithm: Ordinary Least Squares.

Review: The Gradient

The gradient $\nabla_{\theta} f$ further extends the derivative to multivariate functions $f: \mathbb{R}^d \to \mathbb{R}$, and is defined at a point θ_0 as

$$\nabla_{\theta} f(\theta_0) = \begin{bmatrix} \frac{\partial f(\theta_0)}{\partial \theta_1} \\ \frac{\partial f(\theta_0)}{\partial \theta_2} \\ \vdots \\ \frac{\partial f(\theta_0)}{\partial \theta_d} \end{bmatrix}.$$

In other words, the j-th entry of the vector $\nabla_{\theta} f(\theta_0)$ is the partial derivative $\frac{\partial f(\theta_0)}{\partial \theta_j}$ of f with respect to the j-th component of θ .

The UCI Diabetes Dataset

In this section, we are going to again use the UCI Diabetes Dataset.

- For each patient we have a access to a measurement of their body mass index (BMI) and a quantiative diabetes risk score (from 0-300).
- We are interested in understanding how BMI affects an individual's diabetes risk.

```
In [36]: %matplotlib inline
   import matplotlib.pyplot as plt
   plt.rcParams['figure.figsize'] = [8, 4]

   import numpy as np
   import pandas as pd
   from sklearn import datasets
```

```
# Load the diabetes dataset
X, y = datasets.load_diabetes(return_X_y=True, as_frame=True)
# add an extra column of onens
X['one'] = 1
# Collect 20 data points
X_train = X.iloc[-20:]
y_train = y.iloc[-20:]
plt.scatter(X_train.loc[:,['bmi']], y_train, color='black')
plt.xlabel('Body Mass Index (BMI)')
plt.ylabel('Diabetes Risk')
```

Out[36]: Text(0, 0.5, 'Diabetes Risk')

Notation: Design Matrix

Machine learning algorithms are most easily defined in the language of linear algebra. Therefore, it will be useful to represent the entire dataset as one matrix $X \in \mathbb{R}^{n \times d}$, of the form: $X = \left(1\right)_1 \times x^{(1)}_1 \times x^{(1)}_2 \times \left(1\right)_2 \times x^{(1)}_1 \times x^{(1)}_1 \times x^{(1)}_2 \times \left(1\right)_2 \times x^{(1)}_1 \times x^{(1)}_2 \times x^{$

\end{bmatrix}

$$\begin{bmatrix} - & (x^{(1)})^{\mathsf{T}} & - \\ - & (x^{(2)})^{\mathsf{T}} & - \\ \vdots & & \\ - & (x^{(n)})^{\mathsf{T}} & - \end{bmatrix}$$

We can view the design matrix for the diabetes dataset.

In [37]: X_train.head()

Out[37]:

		age	sex	bmi	bp	s1	s2	s3	s4	s5	s6	one
-	122	-0.078165	0.050680	0.077863	0.052858	0.078236	0.064447	0.026550	-0.002592	0.040672	-0.009362	1
4	123	0.009016	0.050680	-0.039618	0.028758	0.038334	0.073529	-0.072854	0.108111	0.015567	-0.046641	1
4	124	0.001751	0.050680	0.011039	-0.019442	-0.016704	-0.003819	-0.047082	0.034309	0.024053	0.023775	1
4	125	-0.078165	-0.044642	-0.040696	-0.081414	-0.100638	-0.112795	0.022869	-0.076395	-0.020289	-0.050783	1
4	126	0.030811	0.050680	-0.034229	0.043677	0.057597	0.068831	-0.032356	0.057557	0.035462	0.085907	1

Notation: Design Matrix

Similarly, we can vectorize the target variables into a vector $y \in \mathbb{R}^n$ of the form

$$y = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{bmatrix}$$

Squared Error in Matrix Form

Recall that we may fit a linear model by choosing θ that minimizes the squared error:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (y^{(i)} - \theta^{\mathsf{T}} x^{(i)})^{2}$$

In other words, we are looking for the best compromise in β over all the data points.

We can write this sum in matrix-vector form as:

$$J(\theta) = \frac{1}{2} (y - X\theta)^{\mathsf{T}} (y - X\theta) = \frac{1}{2} ||y - X\theta||^{2},$$

where X is the design matrix and $\|\cdot\|$ denotes the Euclidean norm.

The Gradient of the Squared Error

We can a gradient for the mean squared error as follows.

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \frac{1}{2} (X\theta - y)^{\mathsf{T}} (X\theta - y)$$

$$= \frac{1}{2} \nabla_{\theta} \left((X\theta)^{\mathsf{T}} (X\theta) - (X\theta)^{\mathsf{T}} y - y^{\mathsf{T}} (X\theta) + y^{\mathsf{T}} y \right)$$

$$= \frac{1}{2} \nabla_{\theta} \left(\theta^{\mathsf{T}} (X^{\mathsf{T}} X) \theta - 2(X\theta)^{\mathsf{T}} y \right)$$

$$= \frac{1}{2} \left(2(X^{\mathsf{T}} X) \theta - 2X^{\mathsf{T}} y \right)$$

$$= (X^{\mathsf{T}} X) \theta - X^{\mathsf{T}} y$$

We used the facts that $a^{T}b = b^{T}a$ (line 3), that $\nabla_{x}b^{T}x = b$ (line 4), and that $\nabla_{x}x^{T}Ax = 2Ax$ for a symmetric matrix A (line 4).

Normal Equations

Setting the above derivative to zero, we obtain the normal equations:

$$(X^{\mathsf{T}}X)\theta = X^{\mathsf{T}}y.$$

Hence, the value θ^* that minimizes this objective is given by:

$$\theta^* = (X^\top X)^{-1} X^\top y.$$

Note that we assumed that the matrix $(X^{\top}X)$ is invertible; if this is not the case, there are easy ways of addressing this issue.

Let's apply the normal equations.

0 -3.888868 204.648785 -64.289163 -262.796691 14003.726808 -11798.307781 -5892.15807 -1136.947646 -2736.597108 -393

We can now use our estimate of theta to compute predictions for 3 new data points.

```
In [22]: # Collect 3 data points for testing
    X_test = X.iloc[:3]
    y_test = y.iloc[:3]

# generate predictions on the new patients
    y_test_pred = X_test.dot(theta_best)
```

Let's visualize these predictions.

```
In [23]: # visualize the results
    plt.xlabel('Body Mass Index (BMI)')
    plt.ylabel('Diabetes Risk')
    plt.scatter(X_train.loc[:, ['bmi']], y_train)
    plt.scatter(X_test.loc[:, ['bmi']], y_test, color='red', marker='o')
    plt.plot(X_test.loc[:, ['bmi']], y_test_pred, 'x', color='red', mew=3, markersiz
    e=8)
    plt.legend(['Model', 'Prediction', 'Initial patients', 'New patients'])
```

Out[23]: <matplotlib.legend.Legend at 0x128d89668>

Algorithm: Ordinary Least Squares

- Type: Supervised learning (regression)
- Model family: Linear models
- Objective function: Mean squared error
- Optimizer: Normal equations

Part 4: Non-Linear Least Squares

So far, we have learned about a very simple linear model. These can capture only simple linear relationships in the data. How can we use what we learned so far to model more complex relationships?

We will now see a simple approach to model complex non-linear relationships called *least* squares.

Review: Polynomial Functions

Recall that a polynomial of degree p is a function of the form

$$a_p x^p + a_{p-1} x^{p-1} + \ldots + a_1 x + a_0.$$

Below are some examples of polynomial functions.

```
In [24]: import warnings
warnings.filterwarnings("ignore")

plt.figure(figsize=(16,4))
x_vars = np.linspace(-2, 2)

plt.subplot('131')
plt.title('Quadratic Function')
plt.plot(x_vars, x_vars**2)
plt.legend(["$x^2$"])
```

```
plt.subplot('132')
plt.title('Cubic Function')
plt.plot(x_vars, x_vars**3)
plt.legend(["$x^3$"])

plt.subplot('133')
plt.title('Third Degree Polynomial')
plt.plot(x_vars, x_vars**3 + 2*x_vars**2 + x_vars + 1)
plt.legend(["$x^3 + 2 x^2 + x + 1$"])
```

Out[24]: <matplotlib.legend.Legend at 0x128ed2ac8>

Modeling Non-Linear Relationships With Polynomial Regression

Specifically, given a one-dimensional continuous variable x, we can defining a feature function $\phi:\mathbb{R}\to\mathbb{R}^{p+1}$ as

$$\phi(x) = \begin{bmatrix} 1 \\ x \\ x^2 \\ \vdots \\ x^p \end{bmatrix}.$$

The class of models of the form

$$f_{\theta}(x) := \sum_{j=0}^{p} \theta_{p} x^{p} = \theta^{\mathsf{T}} \phi(x)$$

with parameters θ and polynomial features ϕ is the set of p-degree polynomials.

- This model is non-linear in the input variable x, meaning that we can model complex data relationships.
- It is a linear model as a function of the parameters θ , meaning that we can use our familiar ordinary least squares algorithm to learn these features.

The UCI Diabetes Dataset

In this section, we are going to again use the UCI Diabetes Dataset.

- For each patient we have a access to a measurement of their body mass index (BMI) and a quantiative diabetes risk score (from 0-300).
- We are interested in understanding how BMI affects an individual's diabetes risk.

```
In [25]: %matplotlib inline
    import matplotlib.pyplot as plt
    plt.rcParams['figure.figsize'] = [8, 4]

    import numpy as np
    import pandas as pd
    from sklearn import datasets

# Load the diabetes dataset
X, y = datasets.load_diabetes(return_X_y=True, as_frame=True)
```

```
# add an extra column of onens
X['one'] = 1

# Collect 20 data points
X_train = X.iloc[-20:]
y_train = y.iloc[-20:]

plt.scatter(X_train.loc[:,['bmi']], y_train, color='black')
plt.xlabel('Body Mass Index (BMI)')
plt.ylabel('Diabetes Risk')
```

Out[25]: Text(0, 0.5, 'Diabetes Risk')

Diabetes Dataset: A Non-Linear Featurization

Let's now obtain linear features for this dataset.

```
In [26]: X_bmi = X_train.loc[:, ['bmi']]

X_bmi_p3 = pd.concat([X_bmi, X_bmi**2, X_bmi**3], axis=1)
X_bmi_p3.columns = ['bmi', 'bmi2', 'bmi3']
X_bmi_p3['one'] = 1
X_bmi_p3.head()
```

Out[26]:

	bmi	bmi2	bmi3	one
422	0.077863	0.006063	0.000472	1
423	-0.039618	0.001570	-0.000062	1
424	0.011039	0.000122	0.000001	1
425	-0.040696	0.001656	-0.000067	1
426	-0.034229	0.001172	-0.000040	1

Diabetes Dataset: A Polynomial Model

By training a linear model on this featurization of the diabetes set, we can obtain a polynomial model of diabetest risk as a function of BMI.

Out[27]: [<matplotlib.lines.Line2D at 0x1292c99e8>]

Multivariate Polynomial Regression

We can also take this approach to construct non-linear function of multiples variable by using multivariate polynomials.

For example, a polynomial of degree 2 over two variables x_1 , x_2 is a function of the form $a_{20}x_1^2+a_{10}x_1+a_{02}x_2^2+a_{01}x_2+a_{11}x_1x_2+a_{00}$.

In general, a polynomial of degree p over two variables x_1 , x_2 is a function of the form

$$f(x_1, x_2) = \sum_{i,j \ge 0: i+j \le p} a_{ij} x_1^i x_2^j.$$

In our two-dimensional example, this corresponds to a feature function $\phi:\mathbb{R}^2\to\mathbb{R}^6$ of the form

$$\phi(x) = \begin{bmatrix} 1 \\ x_1 \\ x_2^2 \\ x_2 \\ x_1 x_2 \end{bmatrix}.$$

The same approach holds for polynomials of an degree and any number of variables.

Towards General Non-Linear Features

Any non-linear feature map $\phi(x):\mathbb{R}^d\to\mathbb{R}^p$ can be used in this way to obtain general models of the form

$$f_{\theta}(x) := \theta^{\mathsf{T}} \phi(x)$$

that are highly non-linear in x but linear in θ .

For example, here is a way of modeling complex periodic functions via a sum of sines and cosines.

In [28]: import warnings warnings.filterwarnings("ignore") plt.figure(figsize=(16,4)) x vars = np.linspace(-5, 5)plt.subplot('131') plt.title('Cosine Function') plt.plot(x vars, np.cos(x vars)) plt.legend(["\$cos(x)\$"]) plt.subplot('132') plt.title('Sine Function') plt.plot(x vars, np.sin(2*x vars)) plt.legend(["\$x^3\$"]) plt.subplot('133') plt.title('Combination of Sines and Cosines') plt.plot(x vars, np.cos(x vars) + np.sin(2*x vars) + np.cos(4*x vars)) plt.legend([" $$\cos(x) + \sin(2x) + \cos(4x)$$ "])

Out[28]: <matplotlib.legend.Legend at 0x129571160>

Algorithm: Non-Linear Least Squares

- Type: Supervised learning (regression)
- Model family: Linear in the parameters; non-linear with respect to raw inputs.
- Features: Non-linear functions of the attributes
- Objective function: Mean squared error
- Optimizer: Normal equations

```
In [ ]:
```