Számítógépes alkalmazások Mikroszámítógépek

Soós Sándor

SOPRON, 2015.

Tartalomjegyzék.

Tartalomjegyzék

1. A mikroszámítógép	2
1.1. A mikroszámítógép felépítése	2
1.2. Mikroprocesszor	2
1.3. A mikroprocesszorok technológiája	3
2. Perifériák	9
2.1. Kommunikációs formák	9
2.2. Perifériák	10
Miről lesz szó a mai órán?.	
• A mikroszámítógép felépítése	
\bullet A mikroprocesszorok technológiája, Moore törvénye	
• A mikroprocesszorok csoportosítása (Risc, Cisc)	
$ \bullet \ {\rm Mikroprocesszor/regiszterek} \\$	
ullet Mikroprocesszor/ALU	
\bullet Mikroprocesszor/CU és mikroprogram tár	
• A mikroprocesszor működése	
• Órajel, gépi ciklus, belső sín	
• Memória: funkció, osztályozás	
\bullet A sín (busz) rendszer funkciója, részei, jellemzői	
• Szabványos interfészek	
• Adatátviteli megoldások	
• Perifériák és tulajdonságaik	
• Háttértárak és jellemzőik	
"Puska:"	
• Pluhár Gábor: Informatikai Értelmező Szótár http://mek.nii	m f.hu/00000/00083/00083.htm

 \bullet PC World IT Lexikon: http://pcworld.hu/szotar

1. A mikroszámítógép

1.1. A mikroszámítógép felépítése

A mikroszámítógép felépítése.

Bemeneti egység (input) – amely az adatok és a programok bevitelét biztosítja

Operatív memória (RAM) – amely a műveletek elvégzéséhez szükséges adatokat és programokat, valamint az eredményt tárolja későbbi felhasználás céljából

Mikroprocesszor (CPU) – amely a memóriából kapott adatokon a programnak megfelelő logikai és számítási műveleteket elvégzi

Kimeneti egység (output) – amelyen keresztül az eredmény eljut a felhasználóhoz

A mikroszámítógép felépítése.

1.2. Mikroprocesszor

A mikroprocesszor.

- a számítógép központi egysége
- CPU: Central Processing Unit
- ez irányítja a számítógépet, futtatja a programokat

- "Mikro"
 - kis fizikai méret
 - alacsony fogyasztás
 - alacsony ár
- univerzális működés
- széleskörű felhasználás
- nagy sorozatú gyártás
- ullet csökkenő ár

1.3. A mikroprocesszorok technológiája

A mikroprocesszorok technológiája.

- szilicium alapú CMOS technológia
- Cél: minél több alkatrész kerüljön egy chipre
- Előny: olcsóbb, gyorsabb, kis helyen elfér
- Hátrány: melegedés, meg kell oldani a hűtést

Típus	Évjárat	Tranzisztorszám	Sűrűség
Intel 8086	1978	29 000	$3 \mu m$
Intel Pentium	1993	3 000 000	$0.8 \ \mu m$
Intel 8-core Xeon Nehalem-EX	2010	2 300 000 000	45 nm
12-core POWER8	2013	4 200 000 000	22 nm
IBM z13 Storage Controller	2015	7 100 000 000	22 nm

Forrás: http://en.wikipedia.org/wiki/Transistor count

Moore törvénye (1965) másfél évente megduplázódik a chipenkénti tranzisztorok száma és a teljesítmény

Mikroprocesszorok csoportosítási lehetőségei.

Mikroprocesszorok összehasonlítása.

Szóhosszúság: 4 bit ... 64 bit

Utasításformátum: RISC (Reduced) , CISC (Complex)

CISC	RISC	
Complex Instruction Set Computer	Reduced Instruction Set Computer	
sok utasítás, többségüket mikro-	kevés utasítás, hardveres megvalósí-	
program definiálja	tás	
bonyolult címzési módok	egyszerű címzési módok	
változó utasításhossz	fix kódhosszúság	
különböző órajel hosszúságú utasí-	minden utasítás 1 órajel hosszú	
tások		
egyszerűbb assembly programozás	hosszabb assembly programokra	
	van szükség	
Pl. Intel 286/386/486, Pentium	Pl. PowerPC	

Mikroprocesszorok funkcionális egységei.

- \bullet Regiszterek
- Aritmetikai-logikai egység (ALU)
- Vezérlő egység (CU)
- Mikroprogram-tár
- Belső buszrendszer

Regiszterek.

- Gyors működésű átmeneti tárolók:
 - 8...512 db
 - méretük a processzor típusától függően változik: 4 bit ... 64 bit, ezt nevezzük a processzor szóhosszúságának
 - az operatív memóriánál akár 100-szor gyorsabb lehet
 - közvetlenül ezekkel dolgozik a processzor, a memóriából betölti az adatokat a regiszterekbe, feldolgozza, visszatölti a memóriába
- Osztályozásuk:

- Rendszer regiszterek a felhasználó (programok) közvetlenül nem fér hozzá, pl. flag regiszter (állapotjelző), címbusz regiszter, adatbusz regiszter
- Általános célú regiszterek a programok használják, pl. akkumulátor, utasítás regiszter, utasításszámláló, címregiszter, adatregiszter

Flag regiszter.

- minden bitje egy-egy rendszerjellemzőt tárol, pl. az utoljára végrehajtott utasításban volt-e túlcsordulás, 0 volt-e az eredménye, mi volt az előjele, stb.
- bizonyos utasítások a flag regiszter bitjeinek állapotától függően csinálnak valamit
- Például: JZ »cím«
 - "Jump if zero" (ugrás, ha nulla)
 - a gépi kódú utasítások végrehajtásakor a processzor mindig beállítja a flag regiszter egyes bitjeit
 - pl. ha az utoljára végrehajtott gépi kódú utasítás eredménye nulla volt, akkor egyre állítja zéró bitet
 - ha a következő utasítás a JZ »cím «, akkor ha a zéró bit értéke 1, akkor elugrik a »cím « memóriacímre és onnan folytatja a végrehajtást, egyébként folytatja a következő utasításnál
 - ez felel meg a magasszintű programozási nyelvek IF utasításának
 - több hasonló utasítás létezik:

JZ (JE)	ugrás, ha egyenlő (nulla) (equal-zero)
JNZ (JNE)	ugrás, ha nem egyenlő (nem nulla) (nonequal-nonzero)
JG	ugrás, ha nagyobb (greater)
JNG	ugrás, ha nem nagyobb (non-greater)
JA	ugrás, ha előjel nélkül nagyobb
JC	ugrás, ha előjel nélkül kisebb

Aritmetikai-logikai egység (ALU).

Funkciói:

- bináris összeadás
- logikai műveletek (Boole-algebra): AND, OR, XOR, NOT
- bitenkénti léptetés jobbra-balra (osztás, illetve szorzás 2-vel) Miért?

- komplemens képzés
- állapotjelzők (flag regiszter bitjei) beállítása, az utasítás eredménye nulla, pozitív, negatív, előfordult-e túlcsordulás, hiba, stb.

Vezérlő egység (CU-Conrol unit).

Funkciói:

- kiolvassa a memóriából a szükséges adatokat, utasításokat
- értelmezi és végrehajtja az utasításokat az ALU és a mikroprogram-tár segítségével
- vezérli a belső busz adatforgalmát
- összehangolja a CPU többi egységének működését

Mikroprogram-tár.

- a processzor végre tud hajtani bizonyos egyszerűbb utasításokat hardveresen
- ezekből az elemi utasításokból a processzor gyártója elkészít (programoz) összetettebb utasításokat
- ezeket a programokat nevezzük mikroprogramnak
- ezeket tartalmazza a mikroprogram-tár
- a CISC processzorokban több utasítás van megvalósítva hardveresen, kevesebb a mikroprogram
- a RISC processzorokban kevesebb a hardveresen megvalósított utasítás, több a mikroprogram

A mikroprocesszor működése.

- kiolvassa a memóriából a számítógépet vezérlő program utasításait
- dekódolja (értelmezi) az utasításokat
- vezérli és időzíti a műveletek elvégzéséhez szükséges adatforgalmat és a perifériák tevékenységét
- beolvassa a memóriából az utasítás végrehajtásához szükséges adatokat
- a beolvasott adatokon sorban elvégzi a szükséges műveleteket: ezek elsősorban logikai műveletek lehetnek, de erre visszavezethetők az egyéb, pl. aritmetikai műveletek is
- az utasítás eredményét visszaírja a memóriába

Órajel és gépi ciklus.

- a számítógép alkatrészeinek összehangolt működését az órajelgenerátor biztosítja
- minden műveletet ez az órajel ütemez
- minden gépi utasítás a gépi ciklus egészszámú többszöröse alatt megy végbe

Tárolók, memória.

- az adatokat és az utasításokat a számítógép a memóriában tárolja
- a memória egysége a szó, a byte (bájt) egészszámú többszöröse
- minél nagyobb a szó mérete, annál nagyobb adatokkal képes a processzor egy lépésben műveleteket végezni
- minden rekesznek egyedi címe, sorszáma van (fizikai cím)
- ennek alapján bármelyik rekesz közvetlenül elérhető
- a tárkapacitást a rendelkezésre álló rekeszek (bájtok) számával mérjük

```
 \begin{array}{lll} 1 \text{ KByte} &=& 1024 \text{ bájt} \\ 1 \text{ MByte} &=& 1024 \text{ KByte} \\ 1 \text{ GByte} &=& 1024 \text{ MByte} \\ 1 \text{ TByte} &=& 1024 \text{ GByte} \end{array}
```

Tárolók osztályozása.

- 1. Az adatok elérése szerint:
 - soros, pl. mágnesszalag
 - közvetlen, direkt, pl. RAM (Random Access Memory)
 - asszociatív, tartalom szerint
- 2. Az adatok módosíthatósága szerint:
 - csak olvasható, pl. ROM (Read Only Memory)
 - írható/olvasható, pl. RAM
 - újraprogramozható, pl. EPROM (Erasable Programmable Read Only Memory)

- 3. Működési elv szerint:
 - mágneses
 - kondenzátoros
 - optikai
- 4. Az adatok tárolási módja szerint:
 - dinamikus: az áramellátás megszűnésekor törlődik, pl. memória modulok
 - statikus: áramellátás nélkül is megőrzi tartalmát, pl. merevlemez
- 5. Funkció szerint:
 - operatív tár: gyors, de drága
 - háttértár: olcsó, de lassú

Kapcsolat a számítógép alkatrészei között.

Hogyan kapcsolhatjuk össze egy rendszer különböző komponenseit?

- 1. mindenkit-mindenkivel
 - nagyon sok egyedi kapcsolat
 - egyszerű adminisztráció
 - nehezen bővíthető
- 2. mindenki kapcsolódjon egy közös kommunikációs felületre
 - könnyen bővíthető
 - kevesebb "kábel"
 - bonyolult adminisztráció
- A mikroszámítógépek tervezői a 2. megoldást használják
- Ezt nevezzük bus, vagy sín topológiának

Bus (sín) topológia.

Különböző bus (sín) rendszerek.

- ISA (Industry Standard Architecture)
 - először 8, majd 16 bit
 - 8 MHz, 6 MB/s
- MCA (Micro Channel)
 - -32 bit
 - 10 MHz
- EISA (Extended ISA)
 - -32 bit
 - 8 MHz, 32 MB/s
- VESA (Video Electronics Standards Association)
 - -32-64 bit
 - 40-50 MHz, 132+ MB/s
- PCI (Peripherial Component Interconnect)
 - 64 bit
 - 33 MHz, 120 MB/s

2. Perifériák

2.1. Kommunikációs formák

Szabványos interfészek.

- soros port (aszinkron, Serial, RS-232C, COM)
- párhuzamos port (Parallel, Printer, Centronics, LPT)
- game port
- SCSI (Small Computer System Interface) gyors, de drága
- \bullet Firewire port, IEEE 1394, soros, 63 eszköz, 400 Mbit/s
- USB (Universal Serial Bus) jellemzői:
 - egyszerű csatlakoztathatóság
 - legfeljebb 127 eszközt támogat egyidejűleg
 - valós idejű perifériák kiszolgálása (pl. hang, telefon)
 - plug and play technika (bedugás után önállóan települ)
 - elektromos energiaellátás és adatátvitel egy kábelen
 - két bemeneti eszköz között nincs adatforgalom

Adatátviteli megoldások.

Programozott adatátvitel a perifériával történő kommunikáció a mikroprocesszor feladata (közben nem csinálhat mást)

Megszakításos adatátvitel a mikroprocesszor közli a feladatot a perifériával, folytatja saját munkáját, a periféria megszakítással jelentkezik be ismét, ha elkészült a feladatával, vagy hiba történt

Közvetlen memória hozzáférés ha az adatátvitel forrása és célja sem a processzor, akkor az a DMA (Direct Memory Access) egység segítségével is lebonyolítható; a processzor csak definiálja a DMA feladatát, adatot nem küld és nem fogad

2.2. Perifériák

Perifériák.

Merevlemez felépítése és működése.

A CD meghajtó felépítése.

Egy mikroszámítógép alaplapja.

beviteli perifériák (input)	kimeneti perifériák (output)	input/output perifériák
billentyűzet	monitor	floppy disk
egér	nyomtató	winchester
fényceruza	plotter, rajzgép	streamer
touchpad	hangeszközök	CD meghajtó
digitalizáló tábla	projektor	DVD meghajtó
szkenner		pendrive
joystick		SSD disk

Befejezés.

Köszönöm a figyelmet!