Ecuaciones Diferenciales

Tema 2. Ecuaciones diferenciales lineales de orden superior

Ing. Eduardo Flores Rivas

Facultad de Ingeniería Universidad Nacional Autónoma de México

Semestre 2026-1

Contenido

- Ecuación diferencial lineal de orden n
- Operador diferencial
- 3 EDO Lineal Homogénea de Coeficientes Constantes
- Dependencia e Independencia Lineal
- Reducción de orden
- 6 Método de solución de una ED lineal homogénea
- Solución de ecuaciones diferenciales no homogéneas
- 8 Contacto
- 9 Referencias

Ecuación diferencial lineal de orden n

Una **ecuación diferencial lineal de orden** *n* tiene la forma general:

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \cdots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x),$$

donde:

- $a_n(x), \ldots, a_0(x)$: Coeficientes (funciones de x o constantes).
- $\frac{d^n y}{dx^n}, \dots \frac{dy}{dx}$: Derivadas de y respecto a x.

Además de que, si g(x) = 0, se trata de una ecuación homogénea

Ejemplo. Identificar el orden y coeficientes de:

$$y''' - 2xy'' + \sin(x)y = e^x.$$

Problema de valores iniciales de orden n

Un problema de valores iniciales de orden n consiste en resolver una **ecua-**ción diferencial lineal de orden n

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \cdots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x),$$

Sujeta a las condiciones

$$y(x_0) = y_0, \ y'(x_0) = y_1, \cdots, y^{(n-1)}(x_0) = y_{n-1}$$

La solución es una función definida en un intervalo I, que contiene x_0 , y satisface la EDO lineal y las n condiciones.

TEOREMA: Existencia de una solución única

Sean $a_n(x), \ldots, a_0(x)$ y g(x) continuas en un intervalo I en el que $a_n(x) \neq 0$ para toda x. Si $x = x_0$ es cualquier punto del intervalo, existe una solución y(x) en dicho intervalo I para el PVI representado por EDO lineal de orden n sujeta a las n condiciones.

Operador diferencial

El **operador diferencial** *D* simplifica la notación de derivadas:

$$D \equiv \frac{d}{dx}, \quad D^2 \equiv \frac{d^2}{dx^2}, \quad \cdots, \quad D^k \equiv \frac{d^k}{dx^k}.$$

Se le llama operador porque transforma una función diferenciable en otra **Ejemplos**:

- Dy = y'.
- $D^2y 3Dy + 2y = 0$ equivale a y'' 3y' + 2y = 0.
- $D(\cos(4x)) = -4\sin(4x)$

Ejercicio. Reescribir usando *D*:

$$\frac{d^3y}{dx^3} + 4\frac{dy}{dx} = \cos(x).$$

Polinomios diferenciales

Un **polinomio diferencial de orden** n se define como:

$$L = a_n(x)D^n + a_{n-1}(x)D^{n-1} + \cdots + a_1(x)D + a_0(x)$$

El operador *D* es lineal, ya que cumple con las propiedades de:

Superposición (aditividad):

$$D(u(x) + v(x)) = Du(x) + Dv(x)$$

Homogeneidad (multiplicación escalar):

$$D(\alpha u(x)) = \alpha Du(x)$$

Lo mismo aplica para *L*:

$$L(\alpha u(x) + \beta v(x)) = \alpha Lu(x) + \beta Lv(x)$$

Ejercicio: Representar la ED y'' + 5y' + 6y = 5x - 3 con el operado diferencial D y especificar su polinomio diferencial L.

Igualdad entre Polinomios Diferenciales

Dos polinomios diferenciales L_1 y L_2 son **iguales** si:

- Tienen el mismo grado.
- Sus coeficientes correspondientes son iguales.

Ejemplo: Verificar la igualdad de los polinomios

$$L_1 = D^2 + 3D + 2$$
 y $L_2 = (D+1)(D+2)$

Operaciones clave:

- Suma: $(L_1 + L_2)(y) = L_1(y) + L_2(y)$.
- Composición: $(L_1 \circ L_2)(y) = L_1(L_2(y))$.

Ejercicio. Dados $L_1 = D - 1$ y $L_2 = D + 2$, calcular $L_1 \circ L_2$. **Solución**:

$$(L_1 \circ L_2)(y) = ((D+2)-1)y = Dy + y$$

EDO Lineal Homogénea de Coeficientes Constantes

Una ecuación diferencial lineal de orden n es **homogénea** si cumple con la forma:

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \cdots + a_1(x)\frac{dy}{dx} + a_0(x)y = 0,$$

mientras que la ecuación

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \cdots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x),$$

donde $g(x) \neq 0$, es **no homogénea**.

Con el objetivo de resolver una EDO lineal no homogénea, debemos resolver primero su ecuación homogénea asociada.

Nota: En este contexto, la palabra homogénea se refiere a la ED lineal, distinto a las ecuaciones de coeficientes homogéneos estudiadas antes.

Principio de Superposición

Teorema

Si y_1, y_2, \dots, y_k son soluciones de una EDO lineal homogénea L(y) = 0, entonces:

$$y(x) = c_1y_1(x) + c_2y_2(x) + \cdots + c_ky_k(x)$$

también es solución, para cualquier $c_i \in \mathbb{R}$.

Interpretación física:

- En sistemas lineales, la respuesta total es la suma de respuestas individuales.
- Aplicable en: circuitos eléctricos, vibraciones mecánicas, etc.

Ejemplo rápido

Si
$$y_1 = e^{2x}$$
 y $y_2 = e^{-3x}$ resuelven $y'' + y' - 6y = 0$, entonces:

$$y = 5e^{2x} - 2e^{-3x}$$
 también es solución.

Demostración del Principio de Superposición

Hipótesis:

- L(y) = 0 es una EDO lineal homogénea.
- $y_1(x), y_2(x), \dots, y_k(x)$ son soluciones en I.

Tesis: $y(x) = c_1 y_1(x) + c_2 y_2(x) + \cdots + c_k y_k(x)$ también es solución.

Paso 1: Aplicar *L* a la combinación lineal:

$$L(y) = L(c_1y_1 + c_2y_2 + \cdots + c_ky_k)$$

Paso 2: Por linealidad de L:

$$L(y) = c_1 L(y_1) + c_2 L(y_2) + \cdots + c_k L(y_k)$$

Paso 3: Como cada y_i es solución ($L(y_i) = 0$):

$$L(y) = c_1 \cdot 0 + c_2 \cdot 0 + \cdots + c_k \cdot 0 = 0$$

Soluciones de una ED lineal homogénea

Para toda ED lineal homogénea se cumple que:

- La combinación lineal de sus soluciones, es una solución.
- ② La función y = 0 es una solución (llamada solución trivial).

Ejemplo: La ecuación lineal homogénea

$$x^3y''' - 2xy' + 4y = 0$$

tiene por soluciones $y_1 = x^2$ y $y_2 = x^2 \ln(x)$. Comprobar que su combinación lineal

$$y = 2x^2 + x^2 \ln(x)$$

y que y = 0 son soluciones de la ED.

Dependencia e Independencia Lineal

Contexto en EDOs lineales: Para construir la solución general de una EDO lineal homogénea de orden n, se requiere un conjunto de n soluciones linealmente independientes.

Definición: Un conjunto de funciones $\{y_1(x), \dots, y_n(x)\}$ es:

• Linealmente dependiente (LD) en I si existen constantes c_1, \ldots, c_n (no todas cero) tales que:

$$c_1y_1(x)+\cdots+c_ny_n(x)=0$$
 en I

• Linealmente independiente (LI) si la única solución es $c_1 = \cdots = c_n = 0$.

Implicación práctica:

- LD: Al menos una solución es redundante.
- LI: Cada solución aporta información única al sistema.

Ejemplo 1 de dependencia lineal

Las funciones

$$y_1 = e^x$$
, $y_2 = e^{-x}$ son LI.
 $y_1 = e^x$, $y_3 = 2e^x$ son LD.

Si el cociente de dos funciones $f_1(x)/f_2(x)$ es constante en un intervalo, $f_1(x)$ y $f_2(x)$ son linealmente dependientes.

Dependencia lineal en funciones

Ejemplo 2 de dependencia lineal

El conjunto de funciones

$$f_1(x) = \cos^2(x), \quad f_2(x) = \sin^2(x), \quad f_3(x) = \sec^2(x), \quad f_4(x) = \tan^2(x)$$

Son linealmente dependientes en el intervalo $(-\pi/2, \pi/2)$.

Observe que, de las expresiones trigonométricas siguientes:

$$\cos^2 x + \sin^2 x = 1$$

$$1 + \tan^2 x = \sec^2 x \quad \rightarrow \quad \tan^2 x - \sec^2 x = -1$$

se puede obtener su combinación lineal

$$1 + (-1) = 0$$

$$cos^{2}x + sen^{2}x + tan^{2}x - sec^{2}x = 0$$

$$c_{1}cos^{2}x + c_{2}sen^{2}x + c_{3}tan^{2}x + c_{4}sec^{2}x = 0$$

Con $c_1 = c_2 = c_3 = 1$, $c_4 = -1$

Comparación gráfica de funciones trigonométricas cuadradas

$$c_1 cos^2 x + c_2 sen^2 x + c_3 tan^2 x + c_4 sec^2 x = 0$$

Funciones trigonométricas cuadráticas

Ejemplo 3 de dependencia lineal

Un conjunto de funciones $\{y_1(x), y_2(x), \dots, y_n(x)\}$ es linealmente dependiente en un intervalo si al menos una de las funciones puede expresarse como una combinación lineal de las otras.

El conjunto

$$f_1(x) = \sqrt{x} + 5$$
, $f_2(x) = \sqrt{x} + 5x$, $f_3(x) = x - 1$, $f_4(x) = x^2$

es LD porque f_2 puede expresarse como una combinación de f_1 , f_3 y f_4 .

$$f_2(x) = 1f_1(x) + 5f_3(x) + 0f_4(x)$$

$$f_2(x) = 1(\sqrt{x} + 5) + 5(x - 1) + 0$$

$$f_2(x) = \sqrt{x} + 5x$$

Wronskiano: Definición y Cálculo

Motivación

Determinar independencia lineal directamente puede ser complejo. El Wronskiano proporciona un **método sistemático** para verificarlo.

Definición formal: Dadas *n* funciones diferenciables, su Wronskiano es:

$$W(y_1,...,y_n)(x) = \begin{vmatrix} y_1(x) & \cdots & y_n(x) \\ y'_1(x) & \cdots & y'_n(x) \\ \vdots & \ddots & \vdots \\ y_1^{(n-1)}(x) & \cdots & y_n^{(n-1)}(x) \end{vmatrix}$$

Ejemplo cálculo

Para
$$y_1 = e^{2x}$$
, $y_2 = e^{-3x}$:

$$W(e^{2x}, e^{-3x}) = \begin{vmatrix} e^{2x} & e^{-3x} \\ 2e^{2x} & -3e^{-3x} \end{vmatrix} = -5e^{-x} \neq 0 \quad \Rightarrow \quad \mathsf{LI}$$

Teorema del Wronskiano para EDOs Lineales

Criterio del Wronskiano

Sea L(y) = 0 una EDO lineal homogénea de orden n con soluciones y_1, \ldots, y_n en I. Entonces:

- $W(y_1, ..., y_n)(x) \neq 0$ para algún $x \in I \implies LI$ en todo I.
- $W(y_1, ..., y_n)(x) = 0$ para algún $x \in I \implies LD$ en todo I.

Consideraciones

- El teorema solo es conclusivo si las funciones son soluciones de una EDO lineal homogénea.
- Para funciones arbitrarias, W = 0 no siempre implica dependencia lineal.

Ejemplo: Las funciones $y_1 = x^3$ y $y_2 = |x^3|$ son linealmente independientes en \mathbb{R} , pero su Wronskiano es cero en x = 0.

Conjunto Fundamental de Soluciones

Definición

Un conjunto $\{y_1(x), y_2(x), \dots, y_n(x)\}$ de n soluciones de una EDO lineal homogénea de orden n en I es un **conjunto fundamental** si:

$$W(y_1, y_2, \dots, y_n)(x) \neq 0$$
 para algún $x \in I$

Teorema: La solución general de la EDO puede expresarse como:

$$y_h(x) = C_1 y_1(x) + C_2 y_2(x) + \cdots + C_n y_n(x)$$

donde C_i son constantes arbitrarias.

Ejemplo

Para y'' + y = 0:

- Conjunto fundamental: $\{\cos x, \sin x\}$
- Solución general: $y(x) = C_1 \cos x + C_2 \sin x$

Reducción de Orden para EDOs Lineales de 2° Orden

Forma general

Una EDO lineal homogénea de segundo orden:

$$a_2(x)y'' + a_1(x)y' + a_0(x)y = 0$$

tiene solución general:

$$y(x) = C_1 y_1(x) + C_2 y_2(x)$$

donde $\{y_1, y_2\}$ son soluciones LI en *I*.

Si dos funciones y_1 , y_2 son LI, entonces su cociente y_2/y_1 no es constante.

$$y_2(x)/y_1(x) = u(x) \rightarrow y_2(x) = u(x)y_1(x)$$

La idea del método es, una vez conocida y_1 , sustituir la ecuación anterior en la EDO de segundo orden para encontrar la función u(x) que nos permital calcular y_2 .

Ejemplo de Reducción de Orden

Paso 1: Dada la EDO y'' - y = 0 y solución conocida $y_1 = e^x$

Paso 2: Proponer $y_2 = u(x)e^x$ y calcular derivadas:

$$y'_2 = (u' + u)e^x$$

 $y''_2 = (u'' + 2u' + u)e^x$

Paso 3: Sustituir en la EDO y simplificar:

$$(u'' + 2u' + u) - u = 0 \Rightarrow u'' + 2u' = 0$$

Paso 4: Sustituir w = u' para obtener la EDO de primer orden y resolverla

$$w' + 2w = 0$$
 \rightarrow $\frac{dw}{w} = -2dx$ \rightarrow $w = c_1e^{-2x}$

Paso 5: Devolver la sustitución w = u' y calcular $y_2 = u(x)y_1$

$$u = -\frac{1}{2}c_1e^{-2x} + c_2 \quad \rightarrow \quad y_2 = -\frac{c_1}{2}e^{-x} + c_2e^x$$

Caso general

La forma estándar de la EDO lineal homogénea de segundo orden se obtiene al dividir la ecuación entre $a_2(x)$:

$$y'' + P(x)y' + Q(x)y = 0$$

Teorema de Reducción de Orden

Si $y_1(x)$ es solución conocida no trivial, entonces una segunda solución LI es:

$$y_2(x) = y_1(x) \int \frac{e^{-\int P(x)dx}}{y_1^2(x)} dx$$

Método de solución de una ED lineal homogénea

Para la solución de una ecuación con la forma

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_1 y' + a_0 y = 0$$

se recomienda:

- **1** Proponer una solución exponencial: $y = e^{rx} \Rightarrow y^{(k)} = r^k e^{rx}$
- 2 Sustituir la solución propuesta y sus derivadas en la EDO:

$$a_n r^n e^{rx} + a_{n-1} r^{n-1} e^{rx} + \dots + a_1 r e^{rx} + a_0 e^{rx} = 0$$

Obtener ecuación característica (factorizando la función exponencial):

$$(a_n r^n + a_{n-1} r^{n-1} + \dots + a_1 r + a_0) e^{rx} = 0$$

$$a_n r^n + a_{n-1} r^{n-1} + \dots + a_1 r + a_0 = 0$$

- **①** Calcular raíces de la ecuación característica $r_1, r_2, \ldots, r_{n-1}, r_n$
- Escribir la solución general de la EDO (según el tipo de raíces encontradas).

Caso 1: Raíces Reales Diferentes

Si la ecuación auxiliar tiene n raíces reales distintas $(r_1, r_2, ..., r_{n-1}, r_n)$, la solución general es:

$$y = C_1 e^{r_1 x} + C_2 e^{r_2 x} + \dots + C_{n-1} e^{r_{n-1} x} + C_n e^{r_n x}$$

Ejemplo:

Resolver la EDO

$$y''' - 6y'' + 11y' - 6y = 0$$

Tiene como ecuación auxiliar

$$r^3 - 6r^2 + 11r - 6 = 0$$

Cuyas raíces son: r = 1, 2, 3. Por lo que su solución general es:

$$y(x) = C_1 e^x + C_2 e^{2x} + C_3 e^{3x}.$$

Caso 2: Raíces Reales Repetidas

Si r es una raíz de multiplicidad m (aparece m veces), se generan m soluciones linealmente independientes:

$$e^{rx}$$
, xe^{rx} , x^2e^{rx} , ..., $x^{m-1}e^{rx}$.

Ejemplo: Resolver la EDO

$$y'' - 4y' + 4y = 0$$

Tiene como ecuación auxiliar

$$r^2 - 4r + 4 = 0$$

Con raíz repetida r = 2. Por lo que su solución general es:

$$y(x) = C_1 e^{2x} + C_2 x e^{2x}.$$

Caso 3: Raíces Complejas Conjugadas

Si aparecen raíces complejas conjugadas $r=\alpha\pm i\beta$, las soluciones reales son:

$$e^{\alpha x}\cos(\beta x)$$
 y $e^{\alpha x}\sin(\beta x)$.

Ejemplo: Resolver la EDO

$$y'' + 4y' + 13y = 0$$

Tiene como ecuación auxiliar:

$$r^2 + 4r + 13 = 0$$

Con raíces complejas $r = -2 \pm 3i$.

Por lo que la solución general de la EDO es:

$$y(x) = e^{-2x} (C_1 \cos(3x) + C_2 \sin(3x)).$$

Nota: Para raíces complejas repetidas $r=\alpha\pm i\beta$ con multiplicidad m, semultiplican por x^k $(k=0,\ldots,m-1)$.

Solución General de EDOs No Homogéneas

Estructura Fundamental

Para una EDO lineal no homogénea de orden n:

$$L(y) = a_n(x)y^{(n)} + \dots + a_0(x)y = g(x) \quad \text{con } g(x) \neq 0$$

la solución general es: $|y(x) = y_h(x) + y_p(x)|$

Solución Complementaria (y_h)

Resuelve la ecuación homogénea asociada: L(y) = 0Forma general:

$$y_h(x) = c_1 y_1(x) + \cdots + c_n y_n(x)$$

donde y_1, \ldots, y_n son soluciones LI.

Solución Particular (y_n)

Satisface la ecuación completa:

$$L(y_p) = g(x)$$

Se obtiene por:

- Coeficientes indeterminados
- Variación de parámetros

Método de Coeficientes Indeterminados

Idea fundamental del método:

Proponer una solución particular y_p con forma análoga al término no homogéneo g(x), ajustando coeficientes por sustitución.

Casos Aplicables

Polinomios:

$$a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$$

- Exponenciales: $e^{\alpha x}$
- Trigonométricas: $sin(\beta x), cos(\beta x)$
- Combinaciones: $P_n(x)e^{\alpha x}\sin(\beta x)$

Donde n es un entero no negativo, α y β son números reales.

Casos No Aplicables

- Funciones trascendentales:
 - In x
 - tan x
- Singularidades:

•
$$x^{-k}$$
 $(k > 0)$

- Trigonométricas inversas:
 - arcsin x
 - arctan x

Etcétera.

Procedimiento de Coeficientes Indeterminados

Algoritmo de Solución

- **1 Identificar** y_h : Resolver primero L(y) = 0
- **2 Proponer** y_p según g(x):
 - Forma análoga a g(x)
 - Ajustar si hay solapamiento con y_h : multiplicar por x^k (k multiplicidad)
- **3 Sustituir** y_p y sus derivadas en L(y) = g(x)
- Oeterminar coeficientes igualando términos
- **5** Construir solución general: $y = y_h + y_p$

Ejemplo: $y'' - y = 2e^x$

```
Paso 1: y_h = C_1 e^x + C_2 e^{-x} (contiene e^x con k = 1)
```

Paso 2: Proponer
$$y_p = Axe^x$$
 (ajuste por x^1)

Paso 3:
$$y'_p = Ae^x(x+1), y''_p = Ae^x(x+2)$$

Paso 4:
$$Ae^{x}(x+2-x) = 2e^{x} \Rightarrow 2A = 2$$

Solución:
$$y = C_1 e^x + C_2 e^{-x} + x e^x$$

Tabla Estándar: Soluciones Particulares para y_p

Tipo de función	Forma de $g(x)$	Propuesta de y_p
Constante	а	A
Polinomio de grado n	$a_n x^n + \cdots + a_0$	$A_n x^n + \cdots + A_0$
Exponencial	$e^{\alpha x}$	$Ae^{\alpha x}$
Seno	$sin(\beta x)$	$A\sin(\beta x) + B\cos(\beta x)$
Coseno	$\cos(\beta x)$	$A\sin(\beta x) + B\cos(\beta x)$
Combinación seno/coseno	$\sin(\beta x) + \cos(\beta x)$	$A\sin(\beta x) + B\cos(\beta x)$
Exponencial-seno	$e^{\alpha x} \sin(\beta x)$	$e^{\alpha x}[A\sin(\beta x)+B\cos(\beta x)]$
Exponencial-coseno	$e^{\alpha x}\cos(\beta x)$	$e^{\alpha x}[A\sin(\beta x)+B\cos(\beta x)]$
Combinación completa	$e^{\alpha x}(\sin(\beta x)+\cos(\beta x))$	$e^{\alpha x}[A\sin(\beta x)+B\cos(\beta x)]$
Polinomio-exponencial	$P_n(x)e^{\alpha x}$	$Q_n(x)e^{\alpha x}$

Recordando: Operador Diferencial Polinomial

Definición

Un operador diferencial de orden n con coeficientes constantes:

$$L(D) = a_n D^n + a_{n-1} D^{n-1} + \cdots + a_1 D + a_0$$

donde $D = \frac{d}{dx}$ y $D^k = \frac{d^k}{dx^k}$.

Propiedad: Factorización de operadores

Los operadores de coeficientes constantes son conmutativos.

Si una EDO lineal tiene como polinomio característico factorizable

$$a_n r^n + a_{n-1} r^{n-1} + \cdots + a_1 r + a_0 = 0$$

con r_1, r_2, \ldots, r_n raíces, entonces el operador diferencial L puede representarse como

$$L = (D - r_1)(D - r_2) \dots (D - r_{n-1})(D - r_n)$$

Operador Anulador de una Función

Definición

Un operador diferencial lineal de coeficientes constantes A(D) es anulador de una función derivable f(x) si:

$$A(f(x))=0$$

Propiedades

- No unicidad: Múltiples operadores pueden anular la misma función
- Anulador mínimo: El de orden mínimo es el más útil
- **Linealidad**: Si $L(y_1) = 0$ y $L(y_2) = 0$, entonces:

$$L(c_1y_1 + c_2y_2) = 0$$

• Conmutabilidad: Si $L_1(y_1) = 0$, $L_2(y_2)$, y $L_1(y_2) \neq 0$, $L_2(y_1) \neq 0$, entonces

$$L_1L_2 = L_2L_1$$
 y $L_1L_2(c_1y_1 + c_2y_2) = 0$

Tabla de Anuladores para Funciones Comunes

Función $g(x)$	Anulador A(D)
$e^{\alpha x}$	$(D-\alpha)$
x ⁿ	D^{n+1}
$sin(\beta x)$ o $cos(\beta x)$	$(D^2 + \beta^2)$
$e^{\alpha x}\sin(\beta x)$ o $e^{\alpha x}\cos(\beta x)$	$[(D-\alpha)^2+\beta^2]$
$x^n e^{\alpha x}$	$(D-\alpha)^{n+1}$
$x^k e^{\alpha x} \sin(\beta x)$ o $x^k e^{\alpha x} \cos(\beta x)$	$[(D-\alpha)^2+\beta^2]^{k+1}$

Regla de Composición

Para combinaciones lineales, usar el producto de anuladores individuales

Fundamento del Método de Anuladores

Para EDOs lineales no homogéneas con coeficientes constantes:

$$L(D)y=g(x)$$

donde g(x) es combinación de funciones: polinomiales, exponenciales $(e^{\alpha x})$, y/o trigonométricas $(\sin \beta x, \cos \beta x)$.

Existe un operador A(D) que anula g(x) al aplicarse a ambos lados:

$$A(D)L(D)y = A(D)g(x) = 0$$

Se obtiene una nueva EDO, cuya solución contiene:

- Solución homogénea y_h de L(D)y = 0
- Solución particular y_p de L(D)y = g(x)

Resumen

$$L(D)y = g(x) \xrightarrow{A(D)} A(D)L(D)y = 0$$

 \Rightarrow Forma general de $y \Rightarrow$ Filtrar y_p

Método de Solución con Anuladores

Para resolver una EDO lineal no homogénea de coeficientes constantes L(D)y = g(x) con g(x) polinomial, exponencial $(e^{\alpha x})$, y/o trigonométrica $(\sin \beta x, \cos \beta x)$, se recomienda:

Algoritmo

- Identificar la ecuación homogénea asociada L(D)y = 0 y obtener su solución y_h
- 2 Encontrar anulador A(D) para g(x)
- 3 Aplicar a ambos lados: A(D)L(D)y = 0
- **1** Resolver la EDO homogénea de orden superior (obtener y_A)
- **9** Eliminar de y_A los términos repetidos con y_h para generar la propuesta de solución particular y_p
- **6** Sustituir y_p y sus derivadas en la EDO original
- \odot Determinar coeficientes para la solución particular y_p

Ejemplo de Operador Anulador

Resolver $y'' - y = e^{2x}$

Ecuación homogénea asociada:

$$y'' - y = 0$$
 $\rightarrow (D^2 - 1)y = 0$ $\rightarrow y_h = c_1 e^x + c_2 e^{-x}$

2 Operador anulador de g(X)

$$g(x) = e^{2x} \rightarrow A(D) = (D-2)$$

- **1** Resolver la EDO homogénea anulada: $y_A = c_1 e^x + c_2 e^{-x} + c_3 e^{2x}$
- **1** Eliminar los términos LD $y_p = Ae^{2x}$
- \odot Sustituir y_p y sus derivadas

$$y_p'' = 4Ae^{2x} \rightarrow 4Ae^{2x} - Ae^{2x} = e^{2x}$$

① Determinar el coeficiente de y_p : $3Ae^{2x}=e^{2x} \rightarrow A=\frac{1}{3}$ La solución de la EDO es:

$$y = c_1 e^x + c_2 e^{-x} + \frac{1}{3} e^{2x}$$

Método de Variación de Parámetros: Contexto Histórico

Limitaciones del Método de Coeficientes indeterminados

- Solo para EDOs con coeficientes constantes
- Restringido a g(x) polinomial/exponencial/trigonométrica

Contribución de Lagrange (1774)

- Generalización para EDOs lineales de cualquier tipo
- Permite cualquier función continua g(x)
- Idea fundamental: "Variar las constantes" $c_k \rightarrow u_k(x)$

Esencia del Método

Si $y_h = c_1 y_1(x) + \cdots + c_n y_n(x)$, entonces:

$$y_p = u_1(x)y_1(x) + \cdots + u_n(x)y_n(x)$$

donde $u_k(x)$, k = 1, 2, ..., n se determinan resolviendo un sistema de ecuaciones formado por la combinación de u'_k y las derivadas de $y_1, y_2, ..., y_n$.

Caso de Interés: EDO Lineal de Primer Orden

Forma estándar

$$\frac{dy}{dx} + P(x)y = f(x)$$

con P(x) y f(x) continuas en un intervalo I.

Solución homogénea asociada

Sea $y_1(x)$ solución conocida de: $y_1' + P(x)y_1 = 0$ Solución general homogénea:

$$y_h(x) = c_1 y_1(x)$$

Propuesta de solución particular

Aplicando variación de parámetros:

$$y_p(x) = u_1(x)y_1(x)$$

donde $u_1(x)$ reemplaza a la constante c_1 .

Caso de Interés: EDO Lineal de Primer Orden

- ① Derivamos y_p : $y'_p = u'_1(x)y_1(x) + u_1(x)y'_1(x)$
- Sustituimos en la EDO original:

$$\underbrace{u_1'y_1 + u_1y_1'}_{\frac{d}{dx}[u_1y_1]} + P(x)u_1y_1 = f(x)$$

Como y_1 satisface la ecuación homogénea $(y_1' + P(x)y_1 = 0)$:

$$u_1(y_1' + P(x)y_1) + y_1u_1' = f(x) \implies y_1u_1' = f(x)$$

Solución final

$$u_1(x) = \int \frac{f(x)}{y_1(x)} dx \quad \Rightarrow \quad y_p(x) = y_1(x) \int \frac{f(x)}{y_1(x)} dx$$

Caso de Interés: EDO Lineal de Segundo Orden

Forma estándar

$$y'' + P(x)y' + Q(x)y = f(x)$$

con P(x), Q(x) y f(x) continuas en I.

Solución homogénea conocida

Sean $y_1(x)$ y $y_2(x)$ soluciones LI de: y'' + P(x)y' + Q(x)y = 0 con Wronskiano $W(y_1, y_2) \neq 0$.

Propuesta de solución particular

$$y_p(x) = u_1(x)y_1(x) + u_2(x)y_2(x)$$

Derivando: $y_p' = u_1'y_1 + u_1y_1' + u_2'y_2 + u_2y_2'$ Imponemos condición: $u_1'y_1 + u_2'y_2 = 0$ (Condición de Lagrange)

Caso de Interés: EDO Lineal de Segundo Orden

De la derivada segunda y sustitución en la EDO:

$$\begin{cases} u'_1y_1 + u'_2y_2 = 0 \\ u'_1y'_1 + u'_2y'_2 = f(x) \end{cases}$$

Solución del sistema

Usando el Wronskiano $W = y_1y_2' - y_2y_1'$, e integrando

$$u_1 = -\int \frac{W_1}{W} dx = -\int \frac{y_2 f(x)}{W} dx, \quad u_2 = \int \frac{W_2}{W} dx = \int \frac{y_1 f(x)}{W} dx$$

Donde:

$$W = egin{array}{c|c} y_1 & y_2 \ y_1' & y_2' \ \end{array}, \quad W_1 = egin{array}{c|c} 0 & y_2 \ f(x) & y_2' \ \end{pmatrix}, \quad W_2 = egin{array}{c|c} y_1 & 0 \ y_1' & f(x) \ \end{array}$$

Método de Variación de Parámetros

 Asegurarse de que la EDO esté en su forma estándar (el coeficiente del término de mayor orden es 1).

$$y^{(n)} + P(x)y^{(n-1)} + \cdots + Q(x)y = f(x)$$

- ② Resolver la EDO homogénea y obtener $y_h = c_1 y_1 + \cdots + c_n y_n$
- **3** Calcular el Wronskiano W de las funciones $y_1, y_2, \ldots, y_{n-1}, y_n$

$$W(y_1,...,y_n)(x) = \begin{vmatrix} y_1(x) & \cdots & y_n(x) \\ y'_1(x) & \cdots & y'_n(x) \\ \vdots & \ddots & \vdots \\ y_1^{(n-1)}(x) & \cdots & y_n^{(n-1)}(x) \end{vmatrix} \neq 0$$

1 Proponer la solución particular como variación de las constantes: $y_p = u_1(x)y_1 + \cdots + u_n(x)y_n$

Condiciones

El método requiere que $P_k(x)$ y f(x) sean continuas en el intervalo de solución, y que $W \neq 0$.

Método de Variación de Parámetros

1 Plantear el sistema de n ecuaciones para u_i' :

$$\begin{cases} u'_1 y_1 + \dots + u'_n y_n = 0 \\ u'_1 y'_1 + \dots + u'_n y'_n = 0 \\ \vdots \\ u'_1 y_1^{(n-1)} + \dots + u'_n y_n^{(n-1)} = f(x) \end{cases}$$

Resolver el sistema de ecuaciones por regla de Cramer e integrar

$$u_k' = \frac{W_k}{W} \quad \to \quad u_k = \int \frac{W_k}{W} dx$$

Donde:

- W es el Wronskiano de $y_1, y_2, \dots, y_{n-1}, y_n$
- W_k es el determinante obtenido de reemplazar la columna k de W por la columna del lado derecho del sistema de ecuaciones (formado por $0, 0, \ldots, f(x)$).

Ejemplo: Variación de Parámetros para EDO de 3er Orden

Resolver:

$$2y''' - 4y'' - 2y' + 4y = 2e^{3x}$$

Forma estándar:

$$y''' - 2y'' - y' + 2y = e^{3x}$$

Solución homogénea:

$$r^{3} - 2r^{2} - r + 2 = 0 \Rightarrow r = -1, 1, 2$$

 $y_{h} = C_{1}e^{-x} + C_{2}e^{x} + C_{3}e^{2x}$

Wronskiano:

$$W = \begin{vmatrix} e^{-x} & e^{x} & e^{2x} \\ -e^{-x} & e^{x} & 2e^{2x} \\ e^{-x} & e^{x} & 4e^{2x} \end{vmatrix} = 6e^{2x} \neq 0$$

Propuesta de solución particular:

Ejemplo (Continuación)

Sistema para u'_k :

$$\begin{cases} u_1'e^{-x} + u_2'e^x + u_3'e^{2x} = 0 \\ -u_1'e^{-x} + u_2'e^x + 2u_3'e^{2x} = 0 \\ u_1'e^{-x} + u_2'e^x + 4u_3'e^{2x} = e^{3x} \end{cases}$$

Resolver por Cramer:

$$W_1 = \begin{vmatrix} 0 & e^x & e^{2x} \\ 0 & e^x & 2e^{2x} \\ e^{3x} & e^x & 4e^{2x} \end{vmatrix} = e^{6x}, \quad u_1' = \frac{W_1}{W} = \frac{e^{4x}}{6}, \quad u_1 = \frac{1}{24}e^{4x}$$

$$W_2 = \begin{vmatrix} e^{-x} & 0 & e^{2x} \\ -e^{-x} & 0 & 2e^{2x} \\ e^{-x} & e^{3x} & 4e^{2x} \end{vmatrix} = -3e^{4x}, \quad u_2' = \frac{W_2}{W} = -\frac{e^{2x}}{2}, \quad u_2 = -\frac{1}{4}e^{2x}$$

$$W_3 = \begin{vmatrix} e^{-x} & e^x & 0 \\ -e^{-x} & e^x & 0 \\ e^{-x} & e^x & e^{3x} \end{vmatrix} = 2e^{3x}, \quad u_3' = \frac{W_3}{W} = \frac{e^x}{3}, \quad u_3 = \frac{1}{3}e^x$$

Ejemplo (Continuación)

Solución particular:

$$y_p = u_1 e^{-x} + u_2 e^x + u_3 e^{2x}$$

$$y_p = \frac{e^{4x}}{24} e^{-x} - \frac{e^{2x}}{4} e^x + \frac{e^x}{3} e^{2x}$$

$$y_p = \frac{1}{24} e^{3x} - \frac{1}{4} e^{3x} + \frac{1}{3} e^{3x} = \frac{1}{8} e^{3x}$$

Solución general:

$$y = c_1 e^{-x} + c_2 e^x + c_3 e^{2x} + \frac{1}{8} e^{3x}$$

Contacto

Eduardo Flores Rivas Ingeniero Mecatrónico Facultad de Ingeniería, UNAM eduardo.flores@ingenieria.unam.edu

Referencias

ZILL, Dennis G.

Ecuaciones diferenciales con problemas de valores en la frontera. 8a. edición. México. Cengage Learning, 2013.

