MISSING CHILD IDENTIFICATION SYSTEM USING DEEP LEARNING AND MULTICLASS SVM

¹RAYABARAPU ALEKYA, ²Dr. P. VELAYUTHAM

¹MCA Student, ²Assistant Professor DEPARTMENT OF MCA SREE CHAITANYA COLLEGE OF ENGINEERING, KARIMNAGAR

ABSTRACT

In India a countless number of children are reported missing every year. Among the missing child cases a large percentage of children remain untraced. This paper presents a novel use of deep learning methodology for identifying the reported missing child from the photos of multitude of children available, with the help of face recognition. The public can upload photographs of suspicious child into a common portal with landmarks and remarks. The photo will be automatically compared with the registered photos of the missing child from the repository. Classification of the input child image is performed and photo with best match will be selected from the database of missing children. For this, a deep learning model is trained to correctly identify the missing child from the missing child image database provided, using the facial image uploaded by the public. The Convolutional Neural Network (CNN), a highly effective deep learning technique for image based applications is adopted here for face recognition. Face descriptors are extracted from the images using a pre-trained CNN model VGG-Face deep architecture. Compared with normal deep learning applications, our algorithm uses convolution network only as a high level feature extractor and the child recognition is done by the trained SVM classifier. Choosing the best performing CNN model for face recognition, VGG-Face and proper training of it results in a deep learning model invariant to noise, illumination, contrast, occlusion, image pose and age of the child and it outperforms

earlier methods in face recognition based missing child identification. The classification performance achieved for child identification system is 99.41%. It was evaluated on 43 Child cases.

I. INTRODUCTION

Children are the greatest asset of each nation. The future of any country depends upon the right upbringing of its children. India is the second populous country in the world and children represent a significant percentage of total population. But unfortunately a large number of children go missing every year in India due to various reasons including abduction or kidnapping, run-away children, trafficked children and lost children. A deeply disturbing fact about India's missing children is that while on an average 174 children go missing every day, half of them remain untraced. Children who go missing may be exploited and abused for various purposes. As per the National Crime Records Bureau (NCRB) report which was cited by the Ministry of Home Affairs (MHA) in the Parliament (LS Q no. 3928, 20-03- 2018), more than one lakh children (1,11,569 in actual numbers) were reported to have gone missing till 2016, and 55,625 of them remained untraced till the end of the year. Many NGOs claim that estimates of missing children are much higher than reported. Mostly missing child cases are reported to the police. The child missing from one region may be found in another region or another state, for various reasons. So even if a child is found, it is difficult to identify him/her from the reported missing cases. A framework and methodology for developing an assistive tool for tracing missing child is described in this paper. An idea for maintaining a virtual space is proposed, such that the recent photographs of children given by parents at the time of reporting missing cases is saved in a repository. The public is given provision to voluntarily take photographs of children in suspected situations and uploaded in that portal. Automatic searching of this photo among the missing child case images will be provided in the application.

This supports the police officials to locate the child anywhere in India. When a child is found, the photograph at that time is matched against the images uploaded by the Police/guardian at the time of missing. Sometimes the child has been missing for a long time. This age gap reflects in the images since aging affects the shape of the face and texture of the skin. The feature discriminator invariant to aging effects has to be derived. This is the challenge in missing child identification compared to the other face recognition systems. Also facial appearance of child can vary due to changes in pose, orientation, illumination, occlusions, noise in background etc. The image taken by public may not be of good quality, as some of them may be captured from a distance without the knowledge of the child. A deep learning [1] architecture considering all these constrain is designed here. The proposed system is comparatively an easy, inexpensive and reliable method compared to other biometrics like finger print and iris recognition systems.

II. SYSTEM ANALYSIS EXISTING SYSTEM

Mostly missing child cases are reported to the police. The child missing from one region may be found in another region or another state, for various reasons. So even if a child is found, it is difficult to identify him/her from the reported missing cases. A framework and methodology

for developing an assistive tool for tracing missing child is described in this paper. An idea for maintaining a virtual space is proposed, such that the recent photographs of children given by parents at the time of reporting missing cases is saved in a repository.

DISADVANTAGES:

Earliest methods for face recognition commonly used computer vision features such as HOG, LBP, SIFT, or SURF. However, features extracted using a CNN network for getting facial representations gives better performance in face recognition than handcrafted features.

PROPOSED SYSTEM

This paper presents a novel use of deep learning methodology for identifying the reported missing child from the photos of multitude of children available, with the help of face recognition. The public can upload photographs of suspicious child into a common portal with landmarks and remarks. The photo will be automatically compared with the registered photos of the missing child from the repository. Classification of the input child image is performed and photo with best match will be selected from the database of missing children. For this, a deep learning model is trained to correctly identify the missing child from the missing child image database provided, using the facial image uploaded by the public.

ADVANTAGES:

A deep learning architecture considering all these constrain is designed here.

The proposed system is comparatively an easy, inexpensive and reliable method compared to other biometrics like finger print and iris recognition systems.

SYSTEM ARCHITECTURE

WORK FLOW OF FACE RECOGNITION Here we propose a methodology for missing child identification which combines facial feature extraction based on deep learning and matching based on support vector machine. The proposed system utilizes face recognition for missing child identification. This is to help authorities and parents in missing child investigation. The architecture of the proposed frame work is given below

Fig: 1. Architecture of proposed child identification system

III. IMPLEMENTATION MODULES

A.Face Detection

Firstly, face patterns are generated using Histogram of Oriented Gradients (HOG) algorithm. The images are made black and white. Here, the part of the images that looks more like the original HOG face pattern is found. Finally, the detected face is bounded by a bounding box.

B.Extraction: Sixty eight specific points (landmarks) that are existing on every face are figured out by using the face landmark estimation algorithm. From the landmarks

found, image transformations like scaling, shearing and rotation are used by the OpenCV's affine transformation to make the lips and eyes appear in the same location on every image.

C.Features Comparison: The face images are then passed through deep convolutional neural network. By doing this, we obtain 128 measurements which are 128 dimension hypersphere. And no one knows which parts of the face the 128 measurements representing. All we know is that the network outputs the same 128 numbers for two different images of the same person.

D.Result Matching: Finally, a linear SVM classifier is used to recognize the face. The classifier has been trained in such a way that it can take the measurements from a test image and gives the closest match as output.

IV. CONCLUSION

A missing child identification system is proposed, which combines the powerful CNN based deep learning approach for feature extraction and support vector machine classifier for classification of different child categories. This system is evaluated with the deep learning model which is trained with representations of children faces. By discarding the softmax of the VGG-Face model and extracting CNN image features to train a multi class SVM, it was possible to achieve superior performance. Performance of the proposed system is tested using the photographs of children with different lighting conditions, noises and also images at different ages of children. The classification achieved a higher accuracy of 99.41% which shows that the proposed methodology of face recognition could used for reliable missing children identification.

REFERENCES

- [1] Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning", Nature, 521(7553):436–444, 2015.
- [2] O. Deniz, G. Bueno, J. Salido, and F. D. la Torre, "Face recognition using histograms of oriented gradients", Pattern Recognition Letters, 32(12):1598–1603, 2011.
- [3] C. Geng and X. Jiang, "Face recognition using sift features", IEEE International Conference on Image Processing(ICIP), 2009.
- [4] Rohit Satle, Vishnuprasad Poojary, John Abraham, Shilpa Wakode, "Missing child identification using face recognition system", International Journal of Advanced Engineering and Innovative Technology (IJAEIT), Volume 3 Issue 1 July August 2016.
- [5] https://en.wikipedia.org/wiki/FindFace
- [6] https://www.reuters.com/article/us-china-trafficking-apps/mobileapp-helps-china-recover-hundreds-of-missing-childrenidUSKBN15J0GU
- [7] Simonyan, Karen and Andrew Zisserman, "Very deep convolutional networks for large-scale image recognition", International Conference on Learning Representations (ICLR), April 2015. [8] O. M. Parkhi, A. Vedaldi, and A. Zisserman, "Deep Face Recognition," in British Machine Vision Conference, vol. 1, no. 3, pp. 1-12, 2015.
- [9] A. Vedaldi, and K. Lenc, "MatConvNet: Convolutional Neural Networks for MATLAB", ACM International Conference on Multimedia, Brisbane, October 2015