

Triangles and Its Angles Ex 9.1 Q7 **Answer:**

Since OB and OC are the angle bisector of $\angle B$ and $\angle C$

$$\begin{split} \angle B &= 2 \angle OBC \ \angle C = 2 \angle OCB \\ \angle A + \angle B + \angle C = 180^{\circ} \\ &\Rightarrow 72^{\circ} + 2 \angle OBC + 2 \angle OCB = 180^{\circ} \\ \text{[Sum of the three angles of a triangle is } 180^{\circ} \text{]} \\ &\Rightarrow 2(\angle OBC + \angle OCB) = 108^{\circ} \\ &\Rightarrow \angle OBC + \angle OCB = 54^{\circ} \\ &\Rightarrow 180^{\circ} - \angle BOC = 54^{\circ} \\ &\Rightarrow \angle BOC = 126^{\circ} \end{split} \text{[Since, } \angle OBC + \angle OCB + \angle BOC = 180^{\circ} \text{]} \\ &\Rightarrow \angle BOC = 126^{\circ} \end{split}$$

Hence magnitude of $\angle BOC$ is 126° .

Triangles and Its Angles Ex 9.1 Q8 Answer:

Let ABC be a triangle and BO and CO be the bisectors of the base angle $\angle ABC$ and $\angle ACB$ respectively.

We know that if the bisectors of angles $\angle ABC$ and $\angle ACB$ of a triangle ABC meet at a point O, then $\angle BOC=90^{\circ}+12\angle A$

From the above relation it is very clear that if $\angle BOC$ is equals 90° then $\angle A$ must be equal to zero. Now, if possible let $\angle A$ is equals zero but on other hand it represents that A, B, C will be collinear, that is they do not form a triangle.

It leads to a contradiction.

Hence, the bisectors of base angles of a triangle cannot enclose a right angle in any case.

Triangles and Its Angles Ex 9.1 Q9

Answer:

Let ABC be a triangle and Let BO and CO be the bisectors of the base angle $\angle ABC$ and $\angle ACB$ respectively.

We know that if the bisectors of angles $\angle ABC$ and $\angle ACB$ of a triangle ABC meet at a point O, then

∠BOC=90°+12∠A

∴ 135°=90°+12∠A⇒45°=12∠A⇒∠A=90°

Hence the triangle is a right angled triangle.

********* END ********