#### Performance Measures

Return The average upside/downside

Risk The variability in the Return

Risk adjusted Return Accounts for both of the above

#### Risk Adjusted Return

There are some special measures which help account for both the Return and Risk of a trading strategy

#### Sharpe Ratio

is a pretty famous Risk adjusted return measure

Average Return Sharpe Ratio = <sup>I</sup>p

Risk-free rate
/of return

Risk i.e. Standard deviation of Return

## Sharpe Ratio = $\frac{r_p - r_f}{\sigma_p}$

# The Sharpe Ratio is a very standard measure to evaluate a trading strategy

Sharpe Ratio = 
$$\frac{r_p - r_f}{\sigma_p}$$

## There are a few conventions to how it is calculated

Sharpe Ratio = 
$$\frac{r_p - (r_f)}{\sigma_p}$$

# Often, the risk-free rate is assumed to be 0

Sharpe Ratio = 
$$\frac{\mathbf{r}_{p} - \mathbf{r}_{f}}{\sigma_{p}}$$

# Often, the risk-free rate is assumed to be 0 Information Ratio

Sharpe Ratio = 
$$\frac{r_p - r_f}{\sigma_p}$$

## In the US, the risk-free rate of return (from treasury bonds) ~ 0

## Sharpe Ratio = $\frac{r_p - (r_f)}{\sigma_p}$

# For futures? - add explanation here

Sharpe Ratio = 
$$\frac{r_p - r_f}{\sigma_p}$$

# The Sharpe ratio is normally calculated using Annualized Returns

Sharpe Ratio = 
$$\frac{r_p - r_f}{\sigma_p}$$

First, let's consider the relationship between daily and annual returns

# Here is a time series of price data for the NIFTY

| Date |           | Price   |
|------|-----------|---------|
|      | 3/31/2016 | 7738.4  |
|      | 3/30/2016 | 7735.2  |
|      | 3/29/2016 | 7597    |
|      | 3/28/2016 | 7615.1  |
|      | 3/23/2016 | 7716.5  |
|      | 3/22/2016 | 7714.9  |
|      | 3/21/2016 | 7704.25 |
|      | 3/18/2016 | 7604.35 |
|      | 3/17/2016 | 7512.55 |
|      | 3/16/2016 | 7498.75 |
|      | 3/15/2016 | 7460.6  |
|      | 3/14/2016 | 7538.75 |
|      | 3/11/2016 | 7510.2  |
|      | 3/10/2016 | 7486.15 |
|      | 3/9/2016  | 7531.8  |
|      | 3/8/2016  | 7485.3  |
|      | 3/4/2016  | 7485.35 |
|      | 3/3/2016  | 7475.6  |
|      | 3/2/2016  | 7368.85 |
|      | 3/1/2016  | 7222.3  |
|      | 2/29/2016 | 6987.05 |
|      | 2/26/2016 | 7029.75 |
|      | 2/25/2016 | 6970.6  |
|      | 2/24/2016 | 7018.7  |

| Date |           | Price   | DailyReturns |
|------|-----------|---------|--------------|
|      | 3/31/2016 | 7738.4  | 0.04%        |
|      | 3/30/2016 | 7735.2  | 1.82%        |
|      | 3/29/2016 | 7597    | -0.24%       |
|      | 3/28/2016 | 7615.1  | -1.31%       |
|      | 3/23/2016 | 7716.5  | 0.02%        |
|      | 3/22/2016 | 7714.9  | 0.14%        |
|      | 3/21/2016 | 7704.25 | 1.31%        |
|      | 3/18/2016 | 7604.35 | 1.22%        |
|      | 3/17/2016 | 7512.55 | 0.18%        |
|      | 3/16/2016 | 7498.75 | 0.51%        |
|      | 3/15/2016 | 7460.6  | -1.04%       |
|      | 3/14/2016 | 7538.75 | 0.38%        |
|      | 3/11/2016 | 7510.2  | 0.32%        |
|      | 3/10/2016 | 7486.15 | -0.61%       |
|      | 3/9/2016  | 7531.8  | 0.62%        |
|      | 3/8/2016  | 7485.3  | 0.00%        |
|      | 3/4/2016  | 7485.35 | 0.13%        |
|      | 3/3/2016  | 7475.6  | 1.45%        |
|      | 3/2/2016  | 7368.85 | 2.03%        |
|      | 3/1/2016  | 7222.3  | 3.37%        |
|      | 2/29/2016 | 6987.05 | -0.61%       |
|      | 2/26/2016 | 7029.75 | 0.85%        |
|      | 2/25/2016 | 6970.6  | -0.69%       |
|      | 2/24/2016 | 7018.7  | -1.28%       |

#### We can compute the daily returns from the prices



Return = Ptoday/Pyest-1

| Date |           | Price   | DailyReturns |
|------|-----------|---------|--------------|
|      | 3/31/2016 | 7738.4  | 0.04%        |
|      | 3/30/2016 | 7735.2  | 1.82%        |
|      | 3/29/2016 | 7597    | -0.24%       |
|      | 3/28/2016 | 7615.1  | -1.31%       |
|      | 3/23/2016 | 7716.5  | 0.02%        |
|      | 3/22/2016 | 7714.9  | 0.14%        |
|      | 3/21/2016 | 7704.25 | 1.31%        |
|      | 3/18/2016 | 7604.35 | 1.22%        |
|      | 3/17/2016 | 7512.55 | 0.18%        |
|      | 3/16/2016 | 7498.75 | 0.51%        |
|      | 3/15/2016 | 7460.6  | -1.04%       |
|      | 3/14/2016 | 7538.75 | 0.38%        |
|      | 3/11/2016 | 7510.2  | 0.32%        |
|      | 3/10/2016 | 7486.15 | -0.61%       |
|      | 3/9/2016  | 7531.8  | 0.62%        |
|      | 3/8/2016  | 7485.3  | 0.00%        |
|      | 3/4/2016  | 7485.35 | 0.13%        |
|      | 3/3/2016  | 7475.6  | 1.45%        |
|      | 3/2/2016  | 7368.85 | 2.03%        |
|      | 3/1/2016  | 7222.3  | 3.37%        |
|      | 2/29/2016 | 6987.05 | -0.61%       |
|      | 2/26/2016 | 7029.75 | 0.85%        |
|      | 2/25/2016 | 6970.6  | -0.69%       |
|      | 2/24/2016 | 7018.7  | -1.28%       |

#### Let's consider a simple trading strategy where we hold a long position on the Nifty for the entire period

| Date |           | Price   | DailyReturns |
|------|-----------|---------|--------------|
|      | 3/31/2016 | 7738.4  | 0.04%        |
|      | 3/30/2016 | 7735.2  | 1.82%        |
|      | 3/29/2016 | 7597    | -0.24%       |
|      | 3/28/2016 | 7615.1  | -1.31%       |
|      | 3/23/2016 | 7716.5  | 0.02%        |
|      | 3/22/2016 | 7714.9  | 0.14%        |
|      | 3/21/2016 | 7704.25 | 1.31%        |
|      | 3/18/2016 | 7604.35 | 1.22%        |
|      | 3/17/2016 | 7512.55 | 0.18%        |
|      | 3/16/2016 | 7498.75 | 0.51%        |
|      | 3/15/2016 | 7460.6  | -1.04%       |
|      | 3/14/2016 | 7538.75 | 0.38%        |
|      | 3/11/2016 | 7510.2  | 0.32%        |
|      | 3/10/2016 | 7486.15 | -0.61%       |
|      | 3/9/2016  | 7531.8  | 0.62%        |
|      | 3/8/2016  | 7485.3  | 0.00%        |
|      | 3/4/2016  | 7485.35 | 0.13%        |
|      | 3/3/2016  | 7475.6  | 1.45%        |
|      | 3/2/2016  | 7368.85 | 2.03%        |
|      | 3/1/2016  | 7222.3  | 3.37%        |
|      | 2/29/2016 | 6987.05 | -0.61%       |
|      | 2/26/2016 | 7029.75 | 0.85%        |
|      | 2/25/2016 | 6970.6  | -0.69%       |
|      | 2/24/2016 | 7018.7  | -1.28%       |

# Then these would be the returns we would get as a result of the trading strategy

| Date |           | Price   | DailyReturns |
|------|-----------|---------|--------------|
|      | 3/31/2016 | 7738.4  | 0.04%        |
|      | 3/30/2016 | 7735.2  | 1.82%        |
|      | 3/29/2016 | 7597    | -0.24%       |
|      | 3/28/2016 | 7615.1  | -1.31%       |
|      | 3/23/2016 | 7716.5  | 0.02%        |
|      | 3/22/2016 | 7714.9  | 0.14%        |
|      | 3/21/2016 | 7704.25 | 1.31%        |
|      | 3/18/2016 | 7604.35 | 1.22%        |
|      | 3/17/2016 | 7512.55 | 0.18%        |
|      | 3/16/2016 | 7498.75 | 0.51%        |
|      | 3/15/2016 | 7460.6  | -1.04%       |
|      | 3/14/2016 | 7538.75 | 0.38%        |
|      | 3/11/2016 | 7510.2  | 0.32%        |
|      | 3/10/2016 | 7486.15 | -0.61%       |
|      | 3/9/2016  | 7531.8  | 0.62%        |
|      | 3/8/2016  | 7485.3  | 0.00%        |
|      | 3/4/2016  | 7485.35 | 0.13%        |
|      | 3/3/2016  | 7475.6  | 1.45%        |
|      | 3/2/2016  | 7368.85 | 2.03%        |
|      | 3/1/2016  | 7222.3  | 3.37%        |
|      | 2/29/2016 | 6987.05 | -0.61%       |
|      | 2/26/2016 | 7029.75 | 0.85%        |
|      | 2/25/2016 | 6970.6  | -0.69%       |
|      | 2/24/2016 | 7018.7  | -1.28%       |

#### We can compute the average and Standard deviation for this series

| Date |           | Price   | DailyReturns |
|------|-----------|---------|--------------|
|      | 3/31/2016 | 7738.4  | 0.04%        |
|      | 3/30/2016 | 7735.2  | 1.82%        |
|      | 3/29/2016 | 7597    | -0.24%       |
|      | 3/28/2016 | 7615.1  | -1.31%       |
|      | 3/23/2016 | 7716.5  | 0.02%        |
|      | 3/22/2016 | 7714.9  | 0.14%        |
|      | 3/21/2016 | 7704.25 | 1.31%        |
|      | 3/18/2016 | 7604.35 | 1.22%        |
|      | 3/17/2016 | 7512.55 | 0.18%        |
|      | 3/16/2016 | 7498.75 | 0.51%        |
|      | 3/15/2016 | 7460.6  | -1.04%       |
|      | 3/14/2016 | 7538.75 | 0.38%        |
|      | 3/11/2016 | 7510.2  | 0.32%        |
|      | 3/10/2016 | 7486.15 | -0.61%       |
|      | 3/9/2016  | 7531.8  | 0.62%        |
|      | 3/8/2016  | 7485.3  | 0.00%        |
|      | 3/4/2016  | 7485.35 | 0.13%        |
|      | 3/3/2016  | 7475.6  | 1.45%        |
|      | 3/2/2016  | 7368.85 | 2.03%        |
|      | 3/1/2016  | 7222.3  | 3.37%        |
|      | 2/29/2016 | 6987.05 | -0.61%       |
|      | 2/26/2016 | 7029.75 | 0.85%        |
|      | 2/25/2016 | 6970.6  | -0.69%       |
|      | 2/24/2016 | 7018.7  | -1.28%       |

## Then we know that this trading strategy has

Average daily return = r

Riskson

## The return on each day is a random variable

with mean = rstandard deviation =  $\sigma$ 

Average daily return = r Risk =  $\sigma$ 

### There are, on average, ~252 trading days in a year in the US markets

Annual return = 
$$R_1 + R_2 + R_3 + ... + R_{252}$$

Each of these represents a daily return

## Each of these daily returns is a random variable

It is safe to assume that these random variables are

1) Independent 2) Identically distributed Mean and SP for each Random
Variable

Average daily return = r Risk = o

It is safe to assume that these random variables are

1) Independent 2) Identically distributed



Average daily return = r Risk = o

## If each of these random variables has Mean = r $SD = \sigma$

Annual return = 
$$R_1 + R_2 + R_3 + ... + R_{252}$$
  
Mean =  $r$   
SD =  $\sqrt{252} * \sigma$ 

#### Going back to the Annual Sharpe

Annualised Sharpe 252\*r

\[ \frac{252\*r}{252\*\sigma} \]

#### Going back to the Annual Sharpe

#### Annualised v252\*r Sharpe =



This factor will depend on the trading frequency - daily, weekly, monthly

#### Performance Measures

Return The average upside/downside

Risk The variability in the Return

Risk adjusted Return Accounts for both of the above

#### Quantitative Trading

involves trading in Financial Markets

with the help of Irading Strategies

developed using Mathematical Models

#### Quantitative Trading

involves trading in Financial Markets

developed using Mathematical Models

Now, we come to the heart of the matter

#### Mathematical Models A Quant trader

#### Studies Historical Vata

# Mathematical Models A Quant trader Studies Historical Pata

# Identifies patterns in security prices

## Mathematical Models A Quant trader

Studies Historical Pata

Identifies patterns in security prices

Pevelops mathematical models that capture these patterns

#### Mathematical Models

#### A Quant trader

Studies Historical Pata

Identifies patterns in security prices

Develops mathematical models that capture these patterns

Uses these mathematical models to develop trading strategies

#### Mathematical Models

## There are generally 2 steps involved in developing a trading strategy

Building a model

Testing the model Backtesting

#### Building a model

This step answers one question

Should the trader go long or short on a given security/index?

#### Building a model

The objective is to build a model

Historical 

Model 

Long/
Short







The model inputs could be historical data for the security, for the market, macroeconomic factors etc

#### Mathematical Models

## There are generally 2 steps involved in developing a trading strategy

Building a model

Testing the model Backtesting

#### Backtesting

## Backtesting evaluates how the model would have performed in the past

The return, risk, Sharpe Ratio are calculated by applying the trading strategy to past data

#### Backtesting

Backtesting is a standard way to evaluate how well a trading strategy might perform in reality