Practice Problem 1 (Atomic Spectra)

Calculate the energy required to completely remove an electron (ionize the atom) from the ground state (n = 1) of a hydrogen atom?

In the 2007 US Open, Venus Williams hit a serve at 207 km/hr. Calculate the deBroglie wavelength of the tennis ball if it weighed 57.0 g?

An electron is moving near an atomic nucleus has a speed of 3×10^6 m/s $\pm 1\%$. What is the **minimum** uncertainty in its position (Δx)?

Practice Problem 4 - Fill the table for n=1, 2, 3, and 4

n	1	m _l	Subshell	Number of	Number of
	(0 to n-1)	(-I to + I)	Designation	orbitals in	orbitals in shell
				subshell	

Practice Problem 5: Quantum Numbers

Practice: Give the name, magnetic quantum numbers, and number of orbitals for each subshell with the given n and I quantum numbers:

(a)
$$n = 2$$
, $l = 1$

(b)
$$n = 1$$
, $l = 0$

(c)
$$n = 5$$
, $l = 2$

(d)
$$n = 3$$
, $l = 3$

Sketch the radial probability distribution for a 2p orbital

(For questions like these, you should be able to roughly determine the shape of the curve, keeping in mind the radial nodes. You are not expected to sketch a precise radial probability distribution chart.)

Which of these following transitions in a Hydrogen atom, will result in the highest amount of energy *released*? Explain your reason. (Assume all are allowed transitions)

- A. From 1s to 2p
- B. From 3p to 2s
- C. From 5f to 2p
- D. From 3p to 1s
- E. From 1s to 5p
- F. From 2p to 1s