#### **CS2109S: Introduction to AI and Machine Learning**

# Lecture 9: Intro to Neural Networks

25 March 2025

### Outline

- Perceptron
  - Biological inspiration
  - Perceptron Learning Algorithm
- Neural Network
  - Neuron
  - AND Gate Modelling
  - XNOR Gate Modelling
  - Single-layer and Multi-layer Neural Networks
- Multi-class Classification

### Outline

#### Perceptron

- Biological inspiration
- Perceptron Learning Algorithm
- Neural Network
  - Neuron
  - AND Gate Modelling
  - XNOR Gate Modelling
  - Single-layer and Multi-layer Neural Networks
- Multi-class Classification

### Brain and Neuron



## Neuron



## Perceptron



### Perceptron: Data

#### Suppose:

- We are given N data points.
- Each data point consists of features and a target variable.
- The features are described by a vector of real numbers in dimension d.
- The target is {-1,1}, where -1 is "negative" class and 1 is "positive" class.

### Perceptron: Data – Math

#### Suppose:

$$D = \{(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \dots, (\mathbf{x}^{(N)}, y^{(N)})\},\$$

where for all  $i \in \{1, ..., N\}$ 

Features:  $\mathbf{x}^{(i)} \in \mathbb{R}^d$ 

Targets:  $y^{(i)} \in \{-1,1\}$ 

### Perceptron

Given an input vector x of dimension d, the Perceptron model is defined as:



$$h_{\mathbf{w}}(\mathbf{x}) = g(\mathbf{w}^T \mathbf{x}) = g(\sum_{j=0}^d \mathbf{w}_j x_j) = g(\mathbf{w}_0 x_0 + \mathbf{w}_1 x_1 + \mathbf{w}_2 x_2 + \dots + \mathbf{w}_d x_d)$$

where  $w_0, ..., w_d$  are parameters/weights,  $x_0 = 1$  is a dummy variable. g is sign function:

$$g(z) = \begin{cases} +1 & \text{if } z \ge 0 \\ -1 & \text{if } z < 0 \end{cases}$$

### Perceptron: An Example





$$\hat{y} = \begin{cases} +1 & \text{if } w_0 x_0 + w_1 x_1 \ge 0 \\ -1 & \text{otherwise} \end{cases}$$

$$\begin{aligned} w_0 &= -1.5 \\ w_1 &= 1 \end{aligned}$$

$$\hat{y} = \begin{cases} +1 & \text{if } -1.5 + 1x_1 \ge 0 \longrightarrow x_1 \ge 1.5 \\ -1 & \text{otherwise} \end{cases}$$

Cancer prediction: benign (-1), malignant (+1)



### Perceptron: An Example

$$\hat{y} = h_{\mathbf{w}}(\mathbf{x}) = g(\sum_{j=0}^{d} w_{j}x_{j})$$

$$x_{0} = 1 \text{ (dummy variable)}$$



$$\hat{y} = \begin{cases} +1 & \text{if } w_0 x_0 + w_1 x_1 \ge 0 \\ -1 & \text{otherwise} \end{cases}$$

$$\begin{aligned} w_0 &= -1.5 \\ w_1 &= 1 \end{aligned}$$

$$\hat{y} = \begin{cases} +1 & \text{if } -1.5 + 1x_1 \ge 0 \longrightarrow x_1 \ge 1.5 \\ -1 & \text{otherwise} \end{cases}$$

Cancer prediction: benign (-1), malignant (+1)



Current model cannot predict all the labels correctly -> Need to update **w** 

### Perceptron Learning Algorithm

- Initialize w
- Loop (until convergence or max steps reached)
  - For each instance  $(x^{(i)}, y^{(i)})$ , classify  $\hat{y}^{(i)} = h_{\mathbf{w}}(x^{(i)})$
  - Select one misclassified instance  $(x^{(k)}, y^{(k)})$
  - Update weights:  $\mathbf{w} \leftarrow \mathbf{w} + \gamma \big( y^{(k)} \hat{y}^{(k)} \big) \mathbf{x}^{(k)}$ Learning rate

Use  $y^{(i)}$  during training, supervised Learning!



$$\hat{y} = h_{\mathbf{w}}(\mathbf{x}) = g(\sum_{j=0}^{d} \mathbf{w}_{j} x_{j})$$

$$x_{0} = 1 \text{ (dummy variable)}$$

Sign function
$$g(z) = \begin{cases} +1 & \text{if } z \ge 0 \\ -1 & \text{if } z < 0 \end{cases}$$

$$\hat{y} = h_{\mathbf{w}}(\mathbf{x}) = g(w_{0}x_{0} + w_{1}x_{1} + w_{2}x_{2})$$

$$= g(0x_{0} + 1x_{1} + 0.5x_{2})$$

$$g(0 \times 1 + 1 \times 2 + 0.5 \times (-2)) = g(1) = +1$$

$$\mathbf{w} \leftarrow \mathbf{w} + \gamma(y^{(k)} - \hat{y}^{(k)}) x^{(k)}$$

$$\begin{bmatrix} 0 \\ 1 \\ 0.5 \end{bmatrix} + 0.1(-1 - 1) \begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix} = \begin{bmatrix} -0.2 \\ 0.6 \\ 0.9 \end{bmatrix}$$

New  $h_{\mathbf{w}}(\mathbf{x}) = g(-0.2x_0 + 0.6x_1 + 0.9x_2)$  update



$$\hat{y} = h_{\mathbf{w}}(\mathbf{x}) = g(\sum_{j=0}^{d} \mathbf{w}_{j} x_{j})$$

$$x_{0} = 1 \text{ (dummy variable)}$$

Sign function
$$g(z) = \begin{cases} +1 & \text{if } z \ge 0 \\ -1 & \text{if } z < 0 \end{cases}$$

$$\hat{y} = h_{\mathbf{w}}(\mathbf{x}) = g(\mathbf{w}_{0}x_{0} + \mathbf{w}_{1}x_{1} + \mathbf{w}_{2}x_{2})$$

$$= g(-0.2x_{0} + 0.6x_{1} + 0.9x_{2})$$

$$g(-0.2 \times 1 + 0.6 \times (-2) + 0.9 \times 2) = g(0.4)$$

$$= +1$$

$$\mathbf{w} \leftarrow \mathbf{w} + \gamma(y^{(k)} - \hat{y}^{(k)}) \mathbf{x}^{(k)}$$

$$\begin{bmatrix} -0.2 \\ 0.6 \\ 0.9 \end{bmatrix} + 0.1(-1 - 1) \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix} = \begin{bmatrix} -0.4 \\ 1 \\ 0.5 \end{bmatrix}$$

New  $h_{\mathbf{w}}(\mathbf{x}) = g(-0.4x_0 + 1x_1 + 0.5x_2)$ 



$$\hat{y} = h_{\mathbf{w}}(\mathbf{x}) = g(\sum_{j=0}^{d} w_j x_j)$$

$$x_0 = 1 \text{ (dummy variable)}$$

Sign function
$$g(z) = \begin{cases} +1 & \text{if } z \ge 0 \\ -1 & \text{if } z < 0 \end{cases}$$

$$\hat{y} = h_{\mathbf{w}}(\mathbf{x}) = g(\mathbf{w}_{0}x_{0} + \mathbf{w}_{1}x_{1} + \mathbf{w}_{2}x_{2})$$

$$= g(-0.4x_{0} + 1x_{1} + 0.5x_{2})$$

$$g(-0.4 \times 1 + 1 \times 2 + 0.5 \times (-2)) = g(0.6)$$

$$= +1$$

$$\mathbf{w} \leftarrow \mathbf{w} + \gamma(y^{(k)} - \hat{y}^{(k)}) \mathbf{x}^{(k)}$$

$$\begin{bmatrix} -0.4 \\ 1 \\ 0.5 \end{bmatrix} + 0.1(-1 - 1) \begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix} = \begin{bmatrix} -0.6 \\ 0.6 \\ 0.9 \end{bmatrix}$$

New 
$$h_{\mathbf{w}}(\mathbf{x}) = g(-0.6x_0 + 0.6x_1 + 0.9x_2)$$



$$\hat{y} = h_{\mathbf{w}}(\mathbf{x}) = g(\sum_{j=0}^{d} \mathbf{w}_{j} x_{j})$$

$$x_{0} = 1 \text{ (dummy variable)}$$

Sign function
$$g(z) = \begin{cases} +1 & \text{if } z \ge 0 \\ -1 & \text{if } z < 0 \end{cases}$$

$$\hat{y} = h_{\mathbf{w}}(\mathbf{x}) = g(w_0 x_0 + w_1 x_1 + w_2 x_2)$$

$$= g(-0.6x_0 + 0.6x_1 + 0.9x_2)$$

$$g(-0.6 \times 1 + 0.6 \times (-2) + 0.9 \times 2) = g(0)$$

$$= +1$$

$$\mathbf{w} \leftarrow \mathbf{w} + \gamma (y^{(k)} - \hat{y}^{(k)}) x^{(k)}$$

$$\begin{bmatrix} -0.6 \\ 0.6 \\ 0.9 \end{bmatrix} + 0.1(-1 - 1) \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix} = \begin{bmatrix} -0.8 \\ 1 \\ 0.5 \end{bmatrix}$$
Now  $h_{\mathbf{w}}(\mathbf{x}) = g(-0.9x_0 + 1x_0 + 0.5x_0)$ 

New 
$$h_{\mathbf{w}}(x) = g(-0.8x_0 + 1x_1 + 0.5x_2)$$



$$\hat{y} = h_{\mathbf{w}}(\mathbf{x}) = g(\sum_{j=0}^{d} w_{j}x_{j})$$

$$x_{0} = 1 \text{ (dummy variable)}$$

Sign function
$$g(z) = \begin{cases} +1 & \text{if } z \ge 0 \\ -1 & \text{if } z < 0 \end{cases}$$

$$\hat{y} = h_{\mathbf{w}}(\mathbf{x}) = g(w_0 x_0 + w_1 x_1 + w_2 x_2)$$

$$= g(-0.8x_0 + 1x_1 + 0.5x_2)$$

$$g(-0.8 \times 1 + 1 \times 2 + 0.5 \times (-2)) = g(0.2)$$

$$= +1$$

$$\mathbf{w} \leftarrow \mathbf{w} + \gamma (y^{(k)} - \hat{y}^{(k)}) \mathbf{x}^{(k)}$$

$$\begin{bmatrix} -0.8 \\ 1 \\ 0.5 \end{bmatrix} + 0.1(-1 - 1) \begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix} = \begin{bmatrix} -1 \\ 0.6 \\ 0.9 \end{bmatrix}$$

New  $h_{\mathbf{w}}(\mathbf{x}) = g(-1x_0 + 0.6x_1 + 0.9x_2)$ 



$$\hat{y} = h_{\mathbf{w}}(x) = g(\sum_{j=0}^{d} w_j x_j)$$

$$x_0 = 1 \text{ (dummy variable)}$$

Sign function
$$g(z) = \begin{cases} +1 & \text{if } z \ge 0 \\ -1 & \text{if } z < 0 \end{cases}$$

$$\hat{y} = h_{w}(x) = g(w_{0}x_{0} + w_{1}x_{1} + w_{2}x_{2})$$
$$= g(-1x_{0} + 0.6x_{1} + 0.9x_{2})$$

No misclassifications! Converged!

Different from SVM, we do not maximize margin here.

What if it's not linearly separable?

The algorithm will not converge

### Background: Vector Addition

Suppose that we have two vectors,  $\boldsymbol{u}$  and  $\boldsymbol{v}$ ,

$$r = u + v$$

Vector addition can be visualized in a vector diagram by drawing the vectors to be added tip-to-tail:



### Background: Dot Product and Angle

Suppose that we have two vectors,  $\boldsymbol{u}$  and  $\boldsymbol{v}$ , dot product:

$$\boldsymbol{u} \cdot \boldsymbol{v} = \boldsymbol{u}^T \boldsymbol{v} = \|\boldsymbol{u}\| \|\boldsymbol{v}\| \cos \theta$$

where  $\theta$  is the angle between two vectors and  $0 \le \theta \le \pi$ .

If 
$$\mathbf{u} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$
,  $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ , we have  $\|\mathbf{u}\| = 2$ ,  $\|\mathbf{v}\| = \sqrt{2}$ ,  $\theta = \frac{\pi}{4}$ ,  $\cos \theta = \frac{\sqrt{2}}{2}$ 

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^T \mathbf{v} = \begin{bmatrix} 2 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 2$$

$$\|\mathbf{u}\| \|\mathbf{v}\| \cos \theta = 2 \times \sqrt{2} \times \frac{\sqrt{2}}{2} = 2$$

$$\mathbf{u} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

# Perceptron Learning Algorithm: Why?

$$\hat{y} = g\left(\sum_{j=0}^{d} w_j x_j\right) = g(\mathbf{w}^T \mathbf{x}) = \begin{cases} +1, & \text{if } \mathbf{w}^T \mathbf{x} \ge 0 \\ -1, & \text{if } \mathbf{w}^T \mathbf{x} < 0 \end{cases}$$

When there is a misclassification:

• Case 1: y = +1,  $\hat{y} = -1$ 

What we have:

#### What we want:



$$\hat{y} = -1$$
$$\mathbf{w}^T \mathbf{x} < 0$$

 $\mathbf{w} \cdot \mathbf{x} < 0$ 

 $\cos \theta < 0$ 

 $\|\mathbf{w}\|\|\mathbf{x}\|\cos\theta < 0$ 

$$\hat{y} = +1$$
$$\mathbf{w}^T \mathbf{x} \ge 0$$

$$w \cdot x \geq 0$$

$$\|\mathbf{w}\| \|\mathbf{x}\| \cos \theta \ge 0$$

$$\cos \theta \ge 0$$

$$\frac{\pi}{2} < \theta \le \pi$$
 reduce  $\frac{\pi}{2}$ 



$$w' \leftarrow w + x$$

 $\theta'$  will be smaller (as required)



# Perceptron Learning Algorithm: Why?

$$\hat{y} = g\left(\sum_{j=0}^{d} w_j x_j\right) = g(\mathbf{w}^T \mathbf{x}) = \begin{cases} +1, & \text{if } \mathbf{w}^T \mathbf{x} \ge 0 \\ -1, & \text{if } \mathbf{w}^T \mathbf{x} < 0 \end{cases}$$

When there is a misclassification:

• Case 2: y = -1,  $\hat{y} = +1$ 

What we have:

#### What we want:

Doesn't affect the sign

$$\mathbf{w}^T \mathbf{r} > 0$$

$$\mathbf{w}^T \mathbf{x} \ge 0$$

 $\hat{y} = +1$ 

$$\boldsymbol{w}\cdot\boldsymbol{x}\geq 0$$

$$||w|||x||\cos\theta \ge 0$$

$$\cos \theta \ge 0$$

$$0 \le \theta \le \frac{\pi}{2}$$



$$\|\mathbf{w}\|\|\mathbf{x}\|\cos\theta < 0$$

$$\cos \theta < 0$$

$$\frac{\pi}{2} < \theta \le \pi$$



$$w' \leftarrow w - x$$
  
 $\theta'$  will be large

 $\theta'$  will be larger (as required)

 $y = \cos \theta$ 

# Perceptron Learning Algorithm: Why?

$$\hat{y} = g\left(\sum_{j=0}^{d} w_j x_j\right) = g(\mathbf{w}^T \mathbf{x}) = \begin{cases} +1, & \text{if } \mathbf{w}^T \mathbf{x} \ge 0 \\ -1, & \text{if } \mathbf{w}^T \mathbf{x} < 0 \end{cases}$$

When there is a misclassification:

$$\hat{y} = -1 \qquad w' \qquad x$$

$$y = +1$$

$$x$$







 $\theta'$  will be smaller (as required)

 $w' \leftarrow w + x$ 

$$w' \leftarrow w + 2\gamma x$$
  $\gamma$  is constant  $w + \gamma(+1 - (-1))x$   $w + \gamma(\gamma - \hat{\gamma})x$  Wei

 $w' \leftarrow w - x$  $\theta'$  will be larger (as required)

$$w' \leftarrow w - 2\gamma x$$

nstant 
$$w' \leftarrow w - 2\gamma x$$

$$x \qquad \qquad w + \gamma(-1 - (+1))x$$
Weight updating rule in PLA  $w + \gamma(y - \hat{y})x$ 

$$w + \gamma(y - \hat{y})x$$



### Outline

- Perceptron
  - Biological inspiration
  - Perceptron Learning Algorithm

#### Neural Network

- Neuron
- AND Gate Modelling
- XNOR Gate Modelling
- Single-layer and Multi-layer Neural Networks
- Multi-class Classification

### Neuron

• Neuron is the building block of neural networks. An artificial neuron is a more generalized version of the perceptron.



### Linear Regression Model

Given an input vector x of dimension d, the hypothesis class of linear models is defined as the set of functions:

$$h_{\mathbf{w}}(x) = \sum_{j=0}^{a} \mathbf{w}_{j} x_{j}$$

Where  $w_0, ..., w_d$  are parameters/weights.

## Neuron v.s. Linear Regression Model

 A neuron with linear activation function is equivalent to linear regression model.



### Logistic Regression Model

Given an input vector x of dimension d, the hypothesis class of linear models is defined as the set of functions:

$$h_{\mathbf{w}}(x) = \sigma(\sum_{j=0}^{a} \mathbf{w}_{j} x_{j})$$

Where  $w_0, \dots, w_d$  are parameters/weights and  $\sigma$  is the sigmoid function.

### Neuron v.s. Logistic Regression Model

 A neuron with sigmoid activation function is equivalent to logistic regression model.



### OR Gate Modelling

With Logistic Regression Model



$$\hat{y} = h_{\mathbf{w}}(\mathbf{x}) = \sigma(\sum_{j=0}^{d} \mathbf{w}_{j} x_{j})$$
  $x_{0} = 1$  (dummy variable)

Decision threshold:  $\hat{y} = \sigma(\sum_{i=0}^{d} w_i x_i) = 0.5 = \sigma(0)$ 

Decision boundary:  $z = \sum_{i=0}^{d} w_i x_i = 0$ 

**x**:1 **x**:0

| $x_0$ | $x_1$ | $x_2$ | y |
|-------|-------|-------|---|
| 1     | 0     | 0     | 0 |
| 1     | 0     | 1     | 1 |
| 1     | 1     | 0     | 1 |
| 1     | 1     | 1     | 1 |

$$\hat{y} = \sigma(z), z = w_0 x_0 + w_1 x_1 + w_2 x_2 \quad z \ge 0, \text{ predicted as } 1$$

$$x^{(1)} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, y^{(1)} = 0: \qquad x^{(2)} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, y^{(2)} = 1:$$

$$z^{(1)} = w_0 < 0 \qquad \qquad z^{(2)} = w_0 + w_2 \ge 0$$

$$x^{(3)} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, y^{(3)} = 1: \qquad x^{(4)} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, y^{(4)} = 1$$

$$z^{(3)} = w_0 + w_1 \ge 0 \qquad \qquad z^{(4)} = w_0 + w_1 + w_2 \ge 0$$

### AND Gate Modelling

With Logistic Regression Model



$$\hat{y} = h_{\mathbf{w}}(\mathbf{x}) = \sigma(\sum_{j=0}^{d} \mathbf{w}_{j} x_{j}) \quad x_{0} = 1 \text{ (dummy variable)}$$
 Decision threshold: 
$$\hat{y} = \sigma(\sum_{j=0}^{d} \mathbf{w}_{j} x_{j}) = 0.5 = \sigma(0)$$

Decision boundary:  $z = \sum_{i=0}^{d} w_i x_i = 0$ 

| $x_0$ | $x_1$ | $x_2$ | у |
|-------|-------|-------|---|
| 1     | 0     | 0     | 0 |
| 1     | 0     | 1     | 0 |
| 1     | 1     | 0     | 0 |
| 1     | 1     | 1     | 1 |

$$\hat{y} = \sigma(z)$$
,  $z = w_0 x_0 + w_1 x_1 + w_2 x_2$   $z \ge 0$ , predicted as 1  $z < 0$ , predicted as 0

### Poll Everywhere

To correctly model the AND gate, which of the following options can be used to set the parameters in the logistic regression model?

A: 
$$w_0 = -6$$
,  $w_1 = 4$ ,  $w_2 = 4$ 

B: 
$$w_0 = -5$$
,  $w_1 = 2$ ,  $w_2 = 2$ 

C: 
$$w_0 = 3$$
,  $w_1 = -2$ ,  $w_2 = -2$ 

D: 
$$w_0 = -4$$
,  $w_1 = -2$ ,  $w_2 = -2$ 

| $x_0$ | $x_1$ | $x_2$ | у |
|-------|-------|-------|---|
| 1     | 0     | 0     | 0 |
| 1     | 0     | 1     | 0 |
| 1     | 1     | 0     | 0 |
| 1     | 1     | 1     | 1 |

$$\hat{y} = \sigma(z), z = w_0 x_0 + w_1 x_1 + w_2 x_2$$
  
 $z \ge 0$ , predicted as 1  
 $z < 0$ , predicted as 0



### Poll Everywhere

To correctly model the AND gate, which of the following options can be used to set the parameters in the logistic regression model?

A: 
$$w_0 = -6$$
,  $w_1 = 4$ ,  $w_2 = 4$ 

B: 
$$w_0 = -5$$
,  $w_1 = 2$ ,  $w_2 = 2$ 

C: 
$$w_0 = 3$$
,  $w_1 = -2$ ,  $w_2 = -2$ 

D: 
$$w_0 = -4$$
,  $w_1 = -2$ ,  $w_2 = -2$ 

| $x_0$ | $x_1$ | $x_2$ | у |
|-------|-------|-------|---|
| 1     | 0     | 0     | 0 |
| 1     | 0     | 1     | 0 |
| 1     | 1     | 0     | 0 |
| 1     | 1     | 1     | 1 |

$$\hat{y} = \sigma(z), z = w_0 x_0 + w_1 x_1 + w_2 x_2$$
  
 $z \ge 0$ , predicted as 1  
 $z < 0$ , predicted as 0



### AND Gate Modelling

With Logistic Regression Model



$$\hat{y} = h_{\mathbf{w}}(\mathbf{x}) = \sigma(\sum_{j=0}^{d} \mathbf{w}_{j} x_{j})$$
  $x_{0} = 1$  (dummy variable)

Decision threshold:  $\hat{y} = \sigma(\sum_{i=0}^{d} w_i x_i) = 0.5 = \sigma(0)$ 

Decision boundary:  $z = \sum_{i=0}^{d} w_i x_i = 0$ 

**x**:1 **x**:0

 $x_1$ 

| $x_0$ | $x_1$ | $x_2$ | у |
|-------|-------|-------|---|
| 1     | 0     | 0     | 0 |
| 1     | 0     | 1     | 0 |
| 1     | 1     | 0     | 0 |
| 1     | 1     | 1     | 1 |

$$\hat{y} = \sigma(z)$$
,  $z = w_0 x_0 + w_1 x_1 + w_2 x_2$   $z \ge 0$ , predicted as 1  $z < 0$ , predicted as 0

$$\mathbf{x}^{(1)} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \mathbf{y}^{(1)} = 0: \qquad \mathbf{x}^{(2)} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \mathbf{y}^{(2)} = 0:$$

$$z^{(1)} = w_0 < 0$$
  $z^{(2)} = w_0 + w_2 < 0$ 

$$x^{(3)} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, y^{(3)} = 0$$
  $x^{(4)} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, y^{(4)} = 1$ 

$$z^{(3)} = w_0 + w_1 < 0$$
  $z^{(4)} = w_0 + w_1 + w_2 \ge 0$ 

### XNOR Gate Modelling

With Logistic Regression Model





Decision boundary:  $z = \sum_{i=0}^{d} w_i x_i = 0$ 

Consider  $x_1, x_2 \in \{1,0\}$ 



| $x_0$ | $x_1$ | $x_2$ | у |
|-------|-------|-------|---|
| 1     | 0     | 0     | 1 |
| 1     | 0     | 1     | 0 |
| 1     | 1     | 0     | 0 |
| 1     | 1     | 1     | 1 |

Not linearly separable

 $\hat{y} = \sigma(z), z = w_0 x_0 + w_1 x_1 + w_2 x_2$ 

Feature engineering is needed to transform existing features:

- Manually create new features, e.g.,  $x_1^2$ ,  $e^{x_2}$ ,  $x_1x_2$  ...
- Use neurons to transform features

#### Decision threshold: $\hat{y} = 0.5 = \sigma(0)$

### XNOR Gate Modelling

With More Neurons

 $a_1$  and  $a_2$  are new features created based on existing features  $x_1$  and  $x_2$ .



$$a_1 = \sigma(-6 + 4x_1 + 4x_2)$$

$$a_2 = \sigma(2 + (-4)x_1 + (-4)x_2)$$

With More Neurons

 $a_1$  and  $a_2$  are new features created based on existing features  $x_1$  and  $x_2$ .



$$a_1 = \sigma(-6 + 4x_1 + 4x_2)$$

$$= \sigma(-6 + 4 \times 0 + 4 \times 0) = 0.002$$

$$a_2 = \sigma(2 + (-4)x_1 + (-4)x_2)$$

$$= \sigma(2 + (-4) \times 0 + (-4) \times 0) = 0.881$$

| $x_1$ | $x_2$ | у |
|-------|-------|---|
| 0     | 0     | 1 |
| 0     | 1     | 0 |
| 1     | 0     | 0 |
| 1     | 1     | 1 |

| $a_1$ | $a_2$ |
|-------|-------|
| 0.002 | 0.881 |
|       |       |
|       |       |
|       |       |

With More Neurons

 $a_1$  and  $a_2$  are new features created based on existing features  $x_1$  and  $x_2$ .



$$a_1 = \sigma(-6 + 4x_1 + 4x_2)$$

$$= \sigma(-6 + 4 \times 0 + 4 \times 1) = 0.119$$

$$a_2 = \sigma(2 + (-4)x_1 + (-4)x_2)$$

$$= \sigma(2 + (-4) \times 0 + (-4) \times 1) = 0.119$$

| $x_1$ | $x_2$ | у |
|-------|-------|---|
| 0     | 0     | 1 |
| 0     | 1     | 0 |
| 1     | 0     | 0 |
| 1     | 1     | 1 |

| $a_1$ | $a_2$ |
|-------|-------|
| 0.002 | 0.881 |
| 0.119 | 0.119 |
|       |       |
|       |       |

With More Neurons

 $a_1$  and  $a_2$  are new features created based on existing features  $x_1$  and  $x_2$ .



# $a_1 = \sigma(-6 + 4x_1 + 4x_2)$ $= \sigma(-6 + 4 \times 1 + 4 \times 0) = 0.119$ $a_2 = \sigma(2 + (-4)x_1 + (-4)x_2)$ $= \sigma(2 + (-4) \times 1 + (-4) \times 0) = 0.119$

| $x_1$ | $x_2$ | у |
|-------|-------|---|
| 0     | 0     | 1 |
| 0     | 1     | 0 |
| 1     | 0     | 0 |
| 1     | 1     | 1 |

| $a_1$ | $a_2$ |
|-------|-------|
| 0.002 | 0.881 |
| 0.119 | 0.119 |
| 0.119 | 0.119 |
|       |       |

With More Neurons

 $a_1$  and  $a_2$  are new features created based on existing features  $x_1$  and  $x_2$ .





$$a_1 = \sigma(-6 + 4x_1 + 4x_2)$$

$$= \sigma(-6 + 4 \times 1 + 4 \times 1) = 0.881$$

$$a_2 = \sigma(2 + (-4)x_1 + (-4)x_2)$$

$$= \sigma(2 + (-4) \times 1 + (-4) \times 1) = 0.002$$

| $x_1$ | $x_2$ | у |
|-------|-------|---|
| 0     | 0     | 1 |
| 0     | 1     | 0 |
| 1     | 0     | 0 |
| 1     | 1     | 1 |

| $a_1$ | $a_2$ |
|-------|-------|
| 0.002 | 0.881 |
| 0.119 | 0.119 |
| 0.119 | 0.119 |
| 0.881 | 0.002 |

With More Neurons

 $z = -2 + 4x_1 + 4x_2 = 0$  created

 $a_1$  and  $a_2$  are new features created based on existing features  $x_1$  and  $x_2$ .



Multi-layer neural network

$$a_1 = \sigma(-6 + 4x_1 + 4x_2)$$

$$a_2 = \sigma(2 + (-4)x_1 + (-4)x_2)$$

$$\hat{y} = \sigma(-2 + 4a_1 + 4a_2)$$

Consider  $x_1, x_2 \in \{1,0\}$ 

**x**:1 **x**:0

| $x_1$ | $x_2$ | y |
|-------|-------|---|
| 0     | 0     | 1 |
| 0     | 1     | 0 |
| 1     | 0     | 0 |
| 1     | 1     | 1 |

| $a_1$ | $a_2$ | $\widehat{\mathcal{Y}}$ | Pred. label |
|-------|-------|-------------------------|-------------|
| 0.002 | 0.881 | 1.532                   | 1           |
| 0.119 | 0.119 | -1.048                  | 0           |
| 0.119 | 0.119 | -1.048                  | 0           |
| 0.881 | 0.002 | 1.532                   | 1           |

How to learn the weights for neurons will be covered in the next lecture.

# Neural Network v.s. Logistic Regression Model

With Feature Engineering

Logistic regression relies on manual feature engineering to capture complex patterns, while a multi-layer neural network learns its own feature representations through its layers with activation functions.





Manual feature engineering in logistic regression

#### Neural Network v.s. Linear Regression Model

With Feature Engineering

Linear regression relies on manual feature engineering to capture complex patterns, while a multi-layer neural network learns its own feature representations through its layers with activation functions.





















Single-layer



# Input (number of weights per neuron / input variables)

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \quad \mathbf{W} = \begin{bmatrix} W_{11} & W_{12} \\ W_{21} & W_{22} \\ W_{31} & W_{32} \end{bmatrix} \qquad \mathbf{\hat{y}} = g(\mathbf{W}^T \mathbf{x}) = g\left( \begin{bmatrix} W_{11} & W_{12} \\ W_{21} & W_{22} \\ W_{31} & W_{32} \end{bmatrix}^T \begin{bmatrix} x_1 \\ x_2 \\ W_{31} & W_{32} \end{bmatrix} \right) = g\left( \begin{bmatrix} W_{11} & W_{21} & W_{31} \\ W_{12} & W_{22} & W_{32} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \right) = \begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \end{bmatrix}$$

Multi-layer



$$) \longrightarrow \hat{y}_{1} \qquad W^{[1]} = \begin{bmatrix} W_{11}^{[1]} & W_{12}^{[1]} & W_{13}^{[1]} \\ W_{21}^{[1]} & W_{22}^{[1]} & W_{23}^{[1]} \\ W_{31}^{[1]} & W_{32}^{[1]} & W_{33}^{[1]} \end{bmatrix}$$

$$\hat{y}_{2} \qquad W^{[2]} = \begin{bmatrix} W_{11}^{[2]} & W_{12}^{[2]} \\ W_{21}^{[2]} & W_{22}^{[2]} \\ W_{31}^{[2]} & W_{32}^{[2]} \end{bmatrix}$$

$$\widehat{\mathbf{y}} = g^{[2]} \left( W^{[2]^T} g^{[1]} \left( W^{[1]^T} \mathbf{x} \right) \right) = g^{[2]} \left( \begin{bmatrix} W_{11}^{[2]} & W_{12}^{[2]} \\ W_{21}^{[2]} & W_{22}^{[2]} \\ W_{31}^{[2]} & W_{32}^{[2]} \end{bmatrix}^T g^{[1]} \left( \begin{bmatrix} W_{11}^{[1]} & W_{12}^{[1]} & W_{13}^{[1]} \\ W_{21}^{[1]} & W_{22}^{[1]} & W_{23}^{[1]} \\ W_{31}^{[1]} & W_{32}^{[1]} & W_{33}^{[1]} \end{bmatrix}^T \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \right) \right) = \begin{bmatrix} \widehat{y}_1 \\ \widehat{y}_2 \end{bmatrix}$$



$$\widehat{\mathbf{y}} = g^{[2]} \left( W^{[2]^T} g^{[1]} \left( W^{[1]^T} \mathbf{x} \right) \right) = g^{[2]} \left( \begin{bmatrix} W_{11}^{[2]} & W_{12}^{[2]} \\ W_{21}^{[2]} & W_{22}^{[2]} \\ W_{31}^{[2]} & W_{32}^{[2]} \end{bmatrix}^T g^{[1]} \left( \begin{bmatrix} W_{11}^{[1]} & W_{12}^{[1]} & W_{13}^{[1]} \\ W_{21}^{[1]} & W_{22}^{[1]} & W_{23}^{[1]} \\ W_{31}^{[1]} & W_{32}^{[1]} & W_{33}^{[1]} \end{bmatrix}^T \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \right) \right) = \begin{bmatrix} \widehat{y}_1 \\ \widehat{y}_2 \end{bmatrix}$$

54

Multi-layer



The process by which input data passes through a neural network to generate an output prediction.

Forward Propagation

$$\widehat{\boldsymbol{y}} = g^{[L]} \left( \boldsymbol{W^{[L]}}^T \dots g^{[L-1]} \left( \boldsymbol{W^{[L-1]}}^T \dots g^{[l]} \left( \boldsymbol{W^{[l]}}^T \dots g^{[2]} \left( \boldsymbol{W^{[2]}}^T g^{[1]} \left( \boldsymbol{W^{[1]}}^T \boldsymbol{x} \right) \right) \right) \right) \right) = \begin{bmatrix} \widehat{y}_1 \\ \dots \\ \widehat{y}_c \end{bmatrix}$$

#### Outline

- Perceptron
  - Biological inspiration
  - Perceptron Learning Algorithm
- Neural Network
  - Neuron
  - AND Gate Modelling
  - XNOR Gate Modelling
  - Single-layer and Multi-layer Neural Networks
- Multi-class Classification

#### Multi-class Classification

With Logistic Regression Model

Given a set of features (e.g.,  $x_1$ ,  $x_2$ ),

Predict whether it is belongs to class 1, 2, or 3.



- Fit one classifier per class,
- Fit against all other classes
- Pick highest probability



#### Multi-class Classification

With Neural Network

# $\hat{y}_1 \in [0,1]$ $\hat{y}_i \in [0,1]$ $x_j$ ... $\hat{y}_c \in [0,1]$

- **Softmax activation**
- Set the number of neurons in the last layer as  $\emph{c}$
- Predict the probability of each class
- Pick highest probability

*c*-class Classification

#### Softmax Function

Given a vector  $\mathbf{z} = [z_1, z_2 \dots z_c]$ , the softmax function computes the output for each  $z_i$  as:

$$g(z_i) = \frac{e^{z_i}}{\sum_{j=1}^c e^{z_j}} \in [0,1]$$

And  $g(z_1) + g(z_2) ... + g(z_c) = 1$ .

Softmax function can be used to

- Convert raw scores  $z_i$  into probabilities
- Ensure that the output values sum to 1.

#### **Softmax activation**



#### Summary

- Perceptron
  - Biological inspiration: brain, neural network, neuron
  - Perceptron Learning Algorithm:
    - $w \leftarrow w + \gamma (y^{(j)} \hat{y}^{(j)}) x^{(j)}$  on a misclassified instance
- Neural Networks
  - Linear regression model: A neuron with linear activation function
  - Logistic regression model: A neuron with sigmoid activation function
  - Neurons can be used to transform features
  - Multi-layer Neural Networks
- Multi-class Classification
  - Softmax activation function should be applied.

#### Coming Up Next Week

#### More on Neural Networks

- Backpropagation
- Convolution Neural Networks
- ...

#### To Do

- Lecture Training 9
  - +250 Free EXP
  - +100 Early bird bonus

