UFR - ST

Le Havre Normandie

Matière:

SGBD Groupe:

12

Titre du projet :

Jeu de cartes « Yu -Gi -Oh! »

Membres du groupe :

- 1- Mouhamed Lamine KEBE
- 2- Idriss Ouba HASSANE
- 3- Mamadou Aliou DIALLO
- 4- Awwal Ronald FAGBEHOURO

Sous la supervision de : M. Dominique FOURNIER

Présentation générale du projet :

Yu-Gi-Oh est un jeu de cartes à collectionner populaire qui a été créé au Japon dans les années 1990. Il a depuis été adapté en une série animée, des jeux vidéo et d'autres produits médiatiques.

On retrouve principalement trois(3) catégories de cartes différentes : Cartes Monstre, Magie et Piège. Les joueurs s'affrontent en invoquant des monstres, en lançant des sorts et en utilisant des pièges pour réduire les points de vie de leur adversaire à zéro. Ils peuvent obtenir de nouvelles cartes qui sont régulièrement renouvelés via de nouvelles éditions.

Le but de notre projet est de modéliser une base de données permettant à un collectionneur de gérer sa collection de cartes.

<u>Identifications des attributs :</u>

Pour établir la base de données nous aurons besoin de 18 attributs :

- num_carte : un entier unique obligatoire qui stocke le numéro de la carte.
- carte_nom : une chaîne de caractère obligatoire qui désigne le nom de la carte.
- carte_categorie : une chaîne de caractère à trois valeurs (Monstre, Magie, Piège) qui désigne la catégorie de la carte.
- **carte_attribut :** une chaîne de caractère qui concerne uniquement les cartes monstres et représente leur attribut (Ex : Feu, Ténèbres, Vent, Eau ...).
- carte_niveau : un entier qui concerne uniquement les cartes monstres et représente leur niveau dans le jeu.
- **carte_type**: une chaîne de caractère qui représente pour les cartes monstres leur type (Ex : Guerrier, Magicien, Dragon...) et pour les cartes Magie et Piège la manière dont elles sont utilisés (Ex : Normal, Continu, Equipement, Jeu-Rapide...).
- carte_description : une chaîne de caractère qui permet de stocker la description de chaque carte.
- carte_image : chaîne de caractère qui stocke L'URL de l'image de la carte.
- **carte_specificite :** une chaîne de caractère qui est spécifique aux cartes monstres qui ont des particularités (Ex : Syntoniseur, Fusion, Lien ...).
- **carteATK** et **carteDEF** : deux entiers qui représentent respectivement les points d'attaque et de défense des cartes monstres.
- **num_edition :** un entier unique obligatoire qui stocke le numéro de l'édition dans lequel la carte a été obtenue par le collectionneur.
- nom_edition : une chaîne de caractère obligatoire qui désigne le nom de l'édition.

- date_edition : une date qui représente la date de lancement de l'édition.
- carte_rarete : une chaîne de caractères qui renseigne la rareté de la carte (Ex : rare, ultra-rare, ordinaire).
- **quantite** : un entier obligatoire qui représente le nombre de fois que le collectionneur a obtenu la même carte dans une édition.
- **num_langue :** un entier unique obligatoire qui stocke le numéro de la langue dans la quelle chaque édition est éditée.
- **nom_langue** : une chaîne de caractère obligatoire qui désigne le nom de la langue.

Dépendances Fonctionnelles :

On a la relation suivante:

YuGiOh (num_carte : Entier, carte_nom : Chaîne de caractères, carte_categorie : Chaîne de caractères, carte_attribut : Chaîne de caractères, carte_niveau : Entier, carte_description : Chaîne de caractères, carte_type : Chaîne de caractères, carte_specificite: Chaîne de caractères, carteATK : Entier, carteDEF : Entier, num_edition : Entier, nom_edition: Chaîne de caractères, date_edition : Date, rarete_carte : Chaîne de caractères, quantite : Entier, num_langue : Chaîne de caractères, nom_langue: Chaîne de caractères).

Chaque carte est caractérisée par un numéro et à chaque numéro de carte on a un nom, une catégorie, un attribut, un niveau, une spécification, une attaque et une défense (s'il s'agit d'une carte monstre) et un type. Donc : num_carte -> (carte_nom, carte_categorie, carte_attribut, carte_niveau, carte_image, carte_langue, carte_type, carte_specificite, carteATK, carteDEF, carte_rarete, carte_description).

A chaque numéro d'édition, on a un nom et une date de lancement. Donc : **num_edition -> (nom_edition, date_edition)**.

A chaque numéro de langue, on a un nom de langue. Donc : **num_langue** → **nom_langue** .

Chaque carte n'est associée qu'à une seule édition donc : **num_carte** → **num_edition**.

Le collectionneur peut obtenir la même carte en plusieurs langues différentes. On s'intéressera dans notre travail à combien d'exemplaires de la carte le collectionneur a en une langue précise. On a alors : (num_carte, num_langue) → quantite .

Au total, on a:

 F_{yuGiOh} = {num_carte \rightarrow (carte_nom, carte_categorie, carte_attribut, carte_niveau, carte_image, carte_langue, carte_type, carte_specificite, carteATK, carteDEF, carte_rarete, carte_description, num_edition);

num edition → (nom edition, date edition);

```
num_langue → nom_langue ; (num_carte, num_langue) → quantite }
```

Clé minimale:

Les attributs num_carte, num_langue déterminent à eux deux tous les autres attributs de la relation.

Donc K = (**num_carte**, **num_langue**) est la clé minimale de notre relation.

Forme normale:

1NF : Car tous les attributs ont des valeurs atomiques (non décomposables) ;

2NF : Non car il y a des attributs non clés qui dépendent d'une partie de la clé (Ex : nom_langue dépend de num_langue).

Décomposition SPI SPD:

Edition(num_edition, nom_edition, date_edition);

Carte(num_carte, carte_nom, carte_categorie, carte_attribut, carte_niveau, carte_image, carte_langue, carte_type, carte_specificite, carteATK, carteDEF, carte_rarete, carte_description, num_edition);

Langue(num_langue, nom_langue);

CarteLangue(num_carte, num_langue, quantite).

BCNF:

• **Edition**(num_edition, nom_edition, date_edition)

Clé minimale:

k =(num_edition)

Formes normales:

1NF: parce que tous les attributs ont des valeurs atomiques

2NF parce que la clé est unique.

3NF parce qu'aucun attribut non clé ne dépend d'un autre attribut non clé.

BCNF parce qu'aucun attribut non clé n'est source.

• Carte(num_carte, carte_nom, carte_categorie, carte_attribut, carte_niveau, carte_image, carte_langue, carte_type, carte_specificite, carteATK, carteDEF, carte_rarete, carte_description, num_edition)

Clé minimale:

 $K = (num_carte)$.

Formes normales:

1NF: parce que tous les attributs ont des valeurs atomiques.

2NF: parce que la clé est unique.

3NF: parce qu'aucun attribut non clé ne dépend d'un autre attribut non clé.

BCNF: Oui parce qu'aucun attribut non clé n'est source.

• Langue(num_langue, nom_langue).

Clé minimale :

k =(num_langue);

Formes normales:

1NF: parce que tous les attributs ont des valeurs atomiques.

2NF :parce qu'aucun attribut non clé ne dépend d'une partie de la clé.

3NF: parce qu'aucun attribut non clé ne dépend d'un autre attribut non clé.

BCNF parce qu'aucun attribut non clé n'est source.

• **CarteLangue(**num_carte, num_langue, quantite)

Clé minimale

k =(num_langue, num_carte)

Formes normales:

1NF: parce que tous les attributs ont des valeurs atomiques.

2NF :parce qu'aucun attribut non clé ne dépend d'une partie de la clé.

3NF: parce qu'aucun attribut non clé ne dépend d'un autre attribut non clé.

BCNF parce qu'aucun attribut non clé n'est source.