# **Attention Is All You Need**





## **Sequence transduction** — transformation of input sequences into output sequences:

- Machine translation
- Speech recognition
- Spelling correction
- Part of speech tagging



#### Recap | RNNs







#### **Problems:**

- Learns slow
- Vanishing/exploding gradients
- Difficult to learn dependencies between distant positions





GRU

#### Recap | Attention



Classical seq2seq

#### **Attention:**

- Improves performance
- Helps with vanishing gradients
- Solves the bottleneck problem
- Helps with interpretability



Attention seq2seq

**BUT:** Models get more and more complex and the computations still can not be done in parallel => **SLOW** 

### - Transformer

Was proposed in 2017 by Google

In WMT (MT conference + competition):

The summary report in 2016 contains the word 'RNN' 44 times

The summary report in 2018 contains the word 'RNN' 9 times and the word 'Transformer' 63 times



Figure 1: The Transformer - model architecture.



Encoder receives a list of fixed size of vectors each of the size of the embeddings dimensionality





#### **Architecture**

All Encoder and Decoder blocks have the same architecture, but they do not share weights.



Self-attention is an attention mechanism relating different positions of a single sequence in order to compute a representation of the sequence.



Self-attention in Encoder and Decoder are the same, except for the fact that Decoder can look only on the words previous to the current one



#### **Self-Attention**



#### **Self-Attention**



$$z_i = \sum_{j=1}^{input\_len} w_j v_j$$

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$







Value



#### **Self-Attention**

Scaled Dot-Product Attention

SoftMax

Mask (opt.)

Scale

MatMul

Multi-Head Attention
just does the same
thing h times and then
concatenates the results
and projects it back to
the dimension of x with a
linear layer



#### **Self-Attention examples**









#### Positional encoding



$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$
  
 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$ 



## **Architecture** Add & Normalize Feed Forward Feed Forward ▲ Add & Normalize LayerNorm( Z<sub>1</sub> Self-Attention ENCODING

**Machines** 

**ENCODER** #1

Thinking



There are skip connections around each of the sublayers of the blocks and layer normalization after each sublayer.

| Layer Type                  | Complexity per Layer     | Sequential Operations | Maximum Path Length |
|-----------------------------|--------------------------|-----------------------|---------------------|
| Self-Attention              | $O(n^2 \cdot d)$         | O(1)                  | O(1)                |
| Recurrent                   | $O(n \cdot d^2)$         | O(n)                  | O(n)                |
| Convolutional               | $O(k \cdot n \cdot d^2)$ | O(1)                  | $O(log_k(n))$       |
| Self-Attention (restricted) | $O(r \cdot n \cdot d)$   | O(1)                  | O(n/r)              |

Motivating our use of self-attention we consider three desiderata.

- One is the total computational complexity per layer.
- Another is the amount of computation that can be parallelized, as measured by the minimum number of sequential operations required.
- The third is the path length between long-range dependencies in the network. Learning long-range dependencies is a key challenge in many sequence transduction tasks.



### **Training**

#### **Target Model Outputs**



**Untrained Model Output** 



Correct and desired output



The output is a probability distribution.

Cross-entropy:

#### Loss:

$$-\sum_{i} y_{true_{i}} log (p_{pred_{i}})$$

• KL - divergence: 
$$-\sum_{i} p_{true_{i}} \log \left( \frac{p_{true_{i}}}{p_{pred_{i}}} \right)$$

#### **English French Translation Quality**



Transformers are used in both Google and Yandex Translate

#### Results in 2017

#### **English German Translation quality**





- Что подается на вход Encoder-y трансформера?
- Что такое q, k, v в слое self-attention?
- Чем отличаются слои self-attention y Encoder-a и Decoder-a?



- <a href="https://arxiv.org/pdf/1706.03762.pdf">https://arxiv.org/pdf/1706.03762.pdf</a> (original paper)
- <a href="https://habr.com/ru/post/341240/">https://habr.com/ru/post/341240/</a> (less papers but in Russian)
- http://jalammar.github.io/illustrated-transformer/ (best pics and explained quite nicely)
- <a href="https://www.youtube.com/watch?v=S0KakHcj\_rs&t=1132s">https://www.youtube.com/watch?v=S0KakHcj\_rs&t=1132s</a> (video on the paper)
- <a href="https://www.youtube.com/watch?v=QEw0qEa0E50&feature=youtu.be">https://www.youtube.com/watch?v=QEw0qEa0E50&feature=youtu.be</a> (CS224n, Stanford's course on NLP)
- https://ai.googleblog.com/2017/08/transformer-novel-neural-network.
   html