<인터넷 프로토콜>

작성자_2018320161_송대선 작성일_05_30

SMTP은 debugging이 쉽다.

HELO trump.com

MAIL FROM: trump@trump.com
RCPT TO: backgom07@naver.com

HELO

QUIT

Command 중에서 VRFY가 있다.

- -> mailbox 중에서 이런 사람 있어? 하고 물어본다.
- -> 보안 문제 때문에 대부분 막혀있음
- -> spammailer가 확인해서 spam을 마음대로 뿌릴 수가 있다.

RCPT TO는 자신의 mail box에서 확인이 가능하지만,

MAIL FROM은 체크할 방법이 없다.

-> spam filter가 없으면 안된다. 얼마든지 허위 메일을 보낼 수 있다.

사실 MAIL FROM을 검사해 볼 수 있는 방법이 있기는 하다. source IP주소를 PTR type으로 DNS 서버에게 물어봐서 없다고 하면 버린다.

Spam filter

-> format이 이상하게 단순하거나, spam에 쓰이는게 많으면 spammail 폴더로 배달한다.

MTA는 호스크가 정확히 어디에 있는지 모르기 때문에,

(host의 IP주소가 계속 바뀌기 때문에)

MTA를 사용하지를 못한다.

->다른 프로토콜을 사용한다.

SMTP는 목적지가 Mail server일 때만, mail을 넣어줄 때 쓴다. 꺼내오는 것은 POP, IMAP, HTTP protocol이 한다.

POP3는 port번호가 110이다.

-> TCP 연결을 하고, user-name(mailbox name), password를 입력하고, list해서 email 리스트를 쭉 보고, 읽고싶은 email을 retrieve(가져온다) 한다.

MIME: Multi Internet Mail Exchange

목적 1. 첨부파일 기능을 사용할 때

목적 2. 영어가 아닌 다른 언어를 사용할 때

-> 전부 7bit-ASCII code가 아니다.

사실은 8bit인데, 첫 bit가 0으로 시작하면 printable한 문자이다.

(1이면 unprintable)

E-mail system은 오직 7-bit ASCII 코드만 사용한다. MIME는 non-7-bit ASCII -> 7-bit ASCII 7-bit ASCII -> non-7-bit ASCII 의 역할을 한다.

E-mail header

MIME headers

MIME-Version: 1.1 Content-Type: type/subtype

Content-Transfer-Encoding: encoding type

Content-Id: message id

Content-Description: textual explanation of nontextual contents

E-mail body

MIME를 사용하려면, E-mail header에 MIME header를 넣어줘야 한다.

MIME-Version: (MIME-Version)

Content-Type:

->

Table 23.3 Data Types and Subtypes in MIME

Туре	Subtype	Description			
Text	Plain	Unformatted			
Text	HTML	HTML format (see Appendix E)			
Multipart	Mixed	Body contains ordered parts of different data types			
	Parallel	Same as above, but no order			
	Digest	Similar to Mixed, but the default is message/RFC822			
	Alternative	Parts are different versions of the same message			
Message	RFC822	Body is an encapsulated message			
	Partial	Body is a fragment of a bigger message			
	External-Body	Body is a reference to another message			
Image	JPEG	Image is in JPEG format			
	GIF	Image is in GIF format			
Video	MPEG	Video is in MPEG format			
Audio	Basic	Single channel encoding of voice at 8 KHz			
Application	PostScript	Adobe PostScript			
	Octet-stream	General binary data (eight-bit bytes)			

Type에 없으면 Application/Octet-stream에 넣어버린다.

Content-Transfer-Encoding: (사용한 encoder)

Table 23.4 Content-Transfer-Encoding

Туре	Description					
7bit	NVT ASCII characters and short lines					
8bit	Non-ASCII characters and short lines					
Binary	Non-ASCII characters with unlimited-length lines					
Base64	6-bit blocks of data are encoded into 8-bit ASCII characters					
Quoted-printable	Non-ASCII characters are encoded as an equal sign plus an ASCII code					

Base64->한글을 넣기 위해 제일 많이 쓰이는 encoding이다.

-Base64-

Base-64 converter는 6bit짜리 byte에 "00"을 앞에 붙여주는 역할을 한다. 그리고 ASCII 코드를 주는데, 이때 ASCII 코드의 값을 따르는 것이 아니라, Base-64의 Table을 따른다.

Table 23.5 Base-64 Converting Table

Value	Code										
0	A	11	L	22	W	33	h	44	s	55	3
-1	В	12	M	23	X	34	i	45	t	56	4
2	С	13	N	24	Y	35	j	46	u	57	5
3	D	14	0	25	Z	36	k	47	v	58	6
4	E	15	P	26	a	37	1	48	w	59	7
5	F	16	Q	27	b	38	m	49	x	60	8
6	G	17	R	28	c	39	n	50	y	61	9
7	Н	18	S	29	d	40	0	51	z	62	+
8	I	19	T	30	e	41	Р	52	0	63	1
9	J	20	U	31	f	42	q	53	1		
10	K	21	V	32	g	43	r	54	2		

Base-64의 Table은 A~Z, a~z, 0~9, +, /으로 구성되어 있다.

(이메일 원본을 보자!)

-SNMP- : Simple Network Management Protocol Network Management에는 5가지의 요소가 있다.

- 1. Configuration Management: initial configure, configure setting 등
- 2. Fault Management: 만일 device가 고장나면 어찌해야하는가?
- -> reactive (사후처리)
- -> 사전대응
- 3. Performance Management:

성능 저하가 일어날 때 어찌할 것인가? 성능을 어찌 유지하나? 등

- 4. Security Management: 보안 인증, 암호화 등
- 5. Accounting Management: 가격, 과금

Manager는 그냥 host이다.

관리하려는 device마다 agent라는 software를 심어둔다.

Agent는 변수들을 정의하고 보고와 명령을 한다.

보고: 변수값을 읽고 Manager에게 알려줌

명령: 변수값을 변경

변수에도 "Read Only variable"과 "Read and Write variable"이 있다.

변수에 대한 반응은 software 자체에서 구현한다.

Management에는 3가지 요소가 있다.

- 1. SNMP: 언어를 의미
- 2. MIB(Management Information Base):

agent가 읽고 쓸 수 있는 변수들에 대한 description file이다.

- -> 이러이러한 변수가 있고, 이런 기능이 있다.
- 3. SMI(Structure of Management Information):

데이터 문법 -> 데이터들이 어떤 모양으로 어떤 타입인지를 정의해준다.

SNMP는 응용계층 프로토콜이다.

->UDP를 transport 계층 프로토콜로 사용한다.

왜 UDP인가?

UDP는 TCP와 다르게 연결(Connetion)이 필요없다.

Management는 fault management를 고려해야 한다.

-> 만일 연결기반에서 기기가 고장나버리면 해결할 방법이 없다.

인터넷의 설계 철학처럼 하나가 고장나도 전체가 작동되도록 만들어야한다.