GUJARAT TECHNOLOGICAL UNIVERSITY

DIPLOMA ENGINEERING - SEMESTER - 2(NEW) • EXAMINATION - SUMMER - 2018

Subject Code: 3320002 Date: 23-May-2018

Subject Name: ADVANCED MATHEMATICS (GROUP-1)

Time: 10:30 AM TO 01:00 PM **Total Marks: 70**

Instructions:

- 1. Attempt ALL questions.
- 2. Make Suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Use of SIMPLE CALCULATOR is permissible. (Scientific/Higher Version not allowed)
- 5. English version is authentic.

Q.1 Fill in the blanks using appropriate choice from the given options. 14

- (d) 1
- 1 If $|\overline{z}| = 16$, then |z| = ...(a) 16 (b) 4 (c) 256 9 $|\overline{z}| = 16$ Elu, al |z| = ...

(c) 1

(d) 1

- i⁹=..... (a)i (b)-i(c)1(d)-1
- ર i⁹=..... (આ) i (બ) -i(ક) 1(ડ) -1
- 3 If z = 5 2i then $\bar{z} =$ ______ (a) -5 + 2i (b) -5 2i (c) 5 + 2i (d) none of these
- z = 5 2i ફોયતો $\bar{z} =$ ____ ______(§)5 + 2*i* (\$) એક પણ નફી (신) -5 + 2i (너) -5 - 2i
- If $f(x) = \log (\tan x)$ then $f(\frac{\pi}{4}) = \underline{\hspace{1cm}}$
- (a) 1 (b) e (c) 0 (d) π 8 $\Re f(x) = \log(\tan x)$ $\operatorname{cl} f\left(\frac{\pi}{4}\right) = \underline{\hspace{1cm}}$
 - (a) 1 (b) e (c) 0 (d) π
- $\lim_{\theta \to 0} \frac{\theta}{\tan 3\theta} = \underline{\qquad}.$
 - (a) 3 (b) $\frac{1}{3}$
- $\lim_{\theta \to 0} \frac{\theta}{\tan 3\theta} = \underline{\hspace{1cm}}.$
 - (a) 3 (b) $\frac{1}{3}$ (c) 1

(d)

6
$$\frac{d}{dx}(x^2+2^x+2^2) = \dots$$

(a) 1 (b) $2x+2^x+2^2$ (c) $2x+2^x\log 2$ (d) 0

(b)
$$2x+2^x+2^2$$

(c)
$$2x+2^x\log 2$$

$$\frac{d}{dx}(x^2+2^x+2^2) = \dots$$
(a) 1 (b) $2x+2^x+2^2$ (c) $2x+2^x\log 2$ (d) 0

(b)
$$2x+2^{x}+2^{2}$$

(c)
$$2x+2^x\log 2$$

7 If
$$y = e^x$$
, then $\frac{d^2y}{dx^2} = \dots$

(b)
$$e^{2x}$$

(c)
$$e^{x^2}$$

જો
$$y = e^x$$
 ફોચ,તો $\frac{d^2y}{dx^2} = \dots$

(b)
$$e^{2x}$$

8 If
$$x=\cos\theta$$
 , $y=\sin\theta$ then $\frac{dy}{dx}=$

(a)
$$\cot \theta$$
 (b) $\tan \theta$ (c) $-\cot \theta$ (d) $-\tan \theta$

$$^{\mathsf{c}}$$
 જો x= $\cos\theta$, y= $\sin\theta$ તો $\frac{dy}{dx}=$

(પ્ય)
$$\cot \theta$$
 (ધ) $\tan \theta$ (§) $-\cot \theta$ (S) $-\tan \theta$

$$\frac{d}{dx}x^x = \underline{\qquad}$$

(a)
$$x - \log x$$

(b)
$$x + \log x$$

(a)
$$x - \log x$$
 (b) $x + \log x$ (c) $x^{x} (1 + \log x)$ (d) $x \cdot x^{x-1}$

$$x \cdot x^{x-1}$$

$$\frac{d}{dx}x^x = \underline{\qquad}$$

(a)
$$x - \log x$$

b)
$$x + \log x$$

(a)
$$x - \log x$$
 (b) $x + \log x$ (c) $x^x (1 + \log x)$ (d) $x \cdot x^{x-1}$

$$x \cdot x^{x-1}$$

$$\int \frac{1}{x^2} dx = \dots + c$$

(a)
$$\frac{1}{x}$$
 (b) $\frac{-1}{x}$ (c) $\frac{-1}{3x^3}$ (d) $\frac{1}{3x^3}$

$$\int \frac{1}{x^2} dx = \dots + c$$

$$(\mathrm{W})_{x}^{\frac{1}{2}} (\mathrm{W})_{x}^{\frac{-1}{2}} (\mathrm{S})_{3x^{3}}^{\frac{-1}{3x^{3}}} (\mathrm{S})_{3x^{3}}^{\frac{1}{3x^{3}}}$$

11
$$\int \frac{1}{x^2 + 25} dx = \dots + c$$

(a)
$$\tan^{-1}\left(\frac{x}{5}\right)$$
 (b) $\frac{1}{5}\tan^{-1}\left(\frac{x}{5}\right)$ (c) $\frac{1}{5}\tan^{-1}\left(\frac{5}{x}\right)$ (d) $\tan^{-1}\left(\frac{5}{x}\right)$

$$\int \frac{1}{x^2 + 25} dx = \dots + c$$

(
$$ext{W}$$
) $an^{-1}\left(\frac{x}{5}\right)$ ($ext{W}$) $an^{-1}\left(\frac{x}{5}\right)$ ($ext{S}$) $an^{-1}\left(\frac{5}{x}\right)$ ($ext{S}$) $an^{-1}\left(\frac{5}{x}\right)$

$$\int_0^1 e^x dx = \dots$$

૧૨
$$\int_0^1 e^x dx =$$
(આ)e-1 (બ)1-e (ક) e (ડ)-e

13 The order of a differential equation
$$\frac{d^2y}{dx^2} = \left(3 + \frac{dy}{dx}\right)^3$$
 is

(a) 3 (b) 2 (c) 1 (d) 6
વિકલ્ સમીકરણ
$$\frac{d^2y}{dx^2} = \left(3 + \frac{dy}{dx}\right)^3$$
 ની કક્ષા છે.
(a) 3 (b) 2 (c) 1 (d) 6

The integrating factor(I.F.) of
$$\frac{dy}{dx} + \frac{2y}{x} = e^x$$
 is

(a)
$$\frac{2}{x^2}$$
 (b) $\frac{2}{x^2}$ (c) x^2

૧૪ વિકલ્ સમીકરણ
$$\frac{dy}{dx} + \frac{2y}{x} = e^x$$
 નો સંકલ્ચ્કારક અવયવ (I.F.) છે.

(a)
$$\frac{2}{x^2}$$
 (b) $\frac{2}{x^2}$ (c) x^2

Find the modulus and principal argument of $z = \sqrt{3} + i$ and express z into 1.

 $z=\sqrt{3}+i$ નો માનાંક અને કોણાંક શોધો, તથા z ને ધૃવિય સ્વરૂપમાં અભિવ્યક્ત કરો ٩.

Find the square root of $3-4\sqrt{10}i$ 3 – $4\sqrt{10}i$ નું વર્ગમુળ શોધો

₹.

3. Prove that
$$(1 + \cos \theta + i \sin \theta)^n = 2^n \cos^n \left(\frac{\theta}{2}\right) \left[\cos \frac{n\theta}{2} + i \sin \frac{n\theta}{2}\right]$$

06

3. સાબિત કરો કે
$$(1+\cos\theta+i\sin\theta)^n=2^n\cos^n\left(\frac{\theta}{2}\right)\left[\cos\frac{n\theta}{2}+i\sin\frac{n\theta}{2}\right]$$

(b) Attempt any two કોઇપણ બે ના જવાબ આપો.

08

1. If $f(x) = \log x$, then prove that

(i)
$$f(x) + f(y) = f(xy)$$
 and (ii) $f(x) - f(y) = f(x/y)$

૧. જો $f(x) = \log x$ ફોય, તો સાબિત કરોકે

(i)
$$f(x) + f(y) = f(xy)$$
 and (ii) $f(x) - f(y) = f(x/y)$

- Evaluate: $\lim_{x\to 0} \frac{3\sin x \sin 3x}{x^3}$
- $\lim_{x\to 0} \frac{3\sin x \sin 3x}{x^3} \quad \text{had}$
- Evaluate : $\lim_{\substack{x \to 0 \\ \text{He silbl}}} \frac{x \log (1+x)}{1-\cos x}$ લક્ષ શોધો $\lim_{\substack{x \to 0 \\ \text{He silbl}}} \frac{x \log (1+x)}{x \log (1+x)}$ $x \rightarrow 0$ $1 - \cos x$
- (a) Attempt any two કોઇપણ બે ના જવાબ આપો. **Q.3**

06

- Differentiate 1. e^x with respect to x using first principle of differentiation
- e^x નું વિકલન x ની સાપેક્ષ વિકલનનાં પ્રથમ સિધ્ધાંત થી કરો
- Find $\frac{dy}{dx}$ if $y = \log(\sec x + \tan x)$
- ર. જો $y=\log(\sec x + \tan x)$ તો $\frac{dy}{dx}$ મેળવો
- Equation of motion of a particle is $s = t^3 6t^2 + 8t 4$. Then find the velocity and acceleration of the moving particle at t = 3 second.
- કણની ગતિનું સમીકરણ $s=t^3-6t^2+8t-4$ છે .તો t=3 સેકન્ડે કણનો વેગ અને પ્રવેગ શોધો.

08

- (b) Attempt any two કોઇપણ બે ના જવાબ આપો.
- 1. If $x^3 + y^3 = 3axy$ then find $\frac{dy}{dx}$
- ૧. જો $x^3 + y^3 = 3axy$ તો $\frac{dy}{dx}$ શોધો.

2. If
$$x = \frac{1}{2} \left(t + \frac{1}{t} \right)$$
 and $y = \frac{1}{2} \left(t - \frac{1}{t} \right)$ then find $\frac{dy}{dx}$.

ર. જો
$$x = \frac{1}{2} \left(t + \frac{1}{t} \right)$$
 અને $y = \frac{1}{2} \left(t - \frac{1}{t} \right)$ તો $\frac{dy}{dx}$ મેળવો.

- Find the maximum and minimum values of $f(x) = 3x^3 4x^2 x + 5$ $f(x) = 3x^3 4x^2 x + 5$ નાં મહત્તમ અને ન્યુનતમ મુલ્લો શોધો.
- **Q.4** Attempt any two કોઇપણ બે ના જવાબ આપો. (a)

1. Find
$$\int \cos x \cdot \sqrt{\sin x} \, dx$$

શોધો: $\int \cos x \cdot \sqrt{\sin x} \, dx$

2. Find
$$\int \frac{x}{(x+1)(x+2)} dx$$

ર. શોધો:
$$\int \frac{x}{(x+1)(x+2)} dx$$

3. Evaluate:
$$\int_{0}^{\frac{\pi}{2}} \log \cot x \, dx$$
3. કિંમત શોધો:
$$\int_{0}^{\frac{\pi}{2}} \log \cot x \, dx$$

3. કિંમત શોધો:
$$\int\limits_0^{\overline{2}} \log \cot x \, dx$$

(b) Attempt any two કોઇપણ બે ના જવાબ આપો.

1. Find
$$\int x \cdot e^{3x} dx$$

૧ શોધો :
$$\int x \cdot e^{3x} dx$$

2. Evaluate:
$$\int_{0}^{5} \frac{\sqrt[3]{x+2}}{\sqrt[3]{x+2} + \sqrt[3]{7-x}} dx$$
ર. કિંમત શોધો:
$$\int_{0}^{5} \frac{\sqrt[3]{x+2} + \sqrt[3]{7-x}}{\sqrt[3]{x+2} + \sqrt[3]{7-x}} dx$$

ર. કિંમત શોધો:
$$\int_{0}^{5} \frac{\sqrt[3]{x+2}}{\sqrt[3]{x+2} + \sqrt[3]{7-x}} dx$$

Find the area bounded by the curve $y = x^2 - 7x + 10$ and x-axis. 3.

- 3. વક $y = x^2 7x + 10$ અને X-અક્ષ વચ્ચે ઘેરાયેલા પ્રદેશનું ક્ષેત્રફળ શોધો
- Q.5 (a) Attempt any two કોઇપણ બે ના જવાબ આપો.

1. Evaluate :
$$\lim_{x\to 1} \frac{x^3 - x^2 + x - 1}{x^2 - 1}$$

^૧. મેળવો :
$$\lim_{x\to 1} \frac{x^3-x^2+x-1}{x^2-1}$$

- 2. Find the order and degree of $\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}} = \rho \left(\frac{d^2y}{dx^2}\right)^2$
 - ર. $\left[1+\left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}=\rho\left(\frac{d^2y}{dx^2}\right)^2$ ની કક્ષા અને પરિમાણ મેળવો.
 - Form the differential equation whose general solution is Y=A cos x + B sin X
 - 3. જેનો સામાન્ય ઉકેલ $Y = A \cos x + B \sin X$ તે વિકલ સમીકરણ મેળવો.
- (b) Attempt any two ક્રોઇપણ બે ના જવાબ આપો.

1. Solve :
$$\frac{dy}{dx} = \frac{y}{x}$$

૧. ઉકેલો :
$$\frac{dy}{dx} = \frac{y}{x}$$

Solve
$$\frac{dy}{dx} = \frac{y}{x} + \csc\left(\frac{y}{x}\right)$$
.

ર.
$$\frac{dy}{dx} = \frac{y}{x} + \csc\left(\frac{y}{x}\right)$$
 ઉકેલો.

- 3. solve: $x \log x \frac{dy}{dx} + y = \log x^2$
- 3. ઉક્રેલો: $x \log x \frac{dy}{dx} + y = \log x^2$
