Delhivery:

Delhivery is the largest and fastest-growing fully integrated player in India by revenue in Fiscal 2021. They aim to build the operating system for commerce, through a combination of world-class infrastructure, logistics operations of the highest quality, and cutting-edge engineering and technology capabilities.

Basic data cleaning and exploration:

• Importing Libraries:

```
[ ] import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import scipy.stats as spy
```

Loading dataset:

[] data.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 144867 entries, 0 to 144866 Data columns (total 24 columns): Non-Null Count Dtype # Column -----0 data 144867 non-null object 1 trip_creation_time 144867 non-null object 144867 non-null object 2 route_schedule_uuid 144867 non-null object 3 route_type 144867 non-null object 144867 non-null object 4 trip_uuid 5 source_center 144867 non-null object 6 source name 7 destination_center 8 destination name 9 od_start_time 10 od_end_time 144867 non-null object 144867 non-null float64 11 start_scan_to_end_scan 12 is_cutoff 144867 non-null bool 13 cutoff factor 144867 non-null int64 14 cutoff_timestamp 144867 non-null object 15 actual_distance_to_destination 144867 non-null float64 16 actual_time 144867 non-null float64 17 osrm_time 144867 non-null float64 144867 non-null float64 18 osrm_distance 19 factor 144867 non-null 144867 non-null float64 20 segment_actual_time 21 segment_osrm_time 144867 non-null float64 144867 non-null float64 22 segment_osrm_distance 23 segment_factor 144867 non-null float64 dtypes: bool(1), float64(10), int64(1), object(12)

data.shape

(144867, 24)

lata.describe().T								
	count	mean	std	min	25%	50%	75%	max
start_scan_to_end_scan	144867.0	961.262986	1037.012769	20.000000	161.000000	449.000000	1634.000000	7898.000000
cutoff_factor	144867.0	232.926567	344.755577	9.000000	22.000000	66.000000	286.000000	1927.000000
actual_distance_to_destination	144867.0	234.073372	344.990009	9.000045	23.355874	66.126571	286.708875	1927.447705
actual_time	144867.0	416.927527	598.103621	9.000000	51.000000	132.000000	513.000000	4532.000000
osrm_time	144867.0	213.868272	308.011085	6.000000	27.000000	64.000000	257.000000	1686.000000
osrm_distance	144867.0	284.771297	421.119294	9.008200	29.914700	78.525800	343.193250	2326.199100
factor	144867.0	2.120107	1.715421	0.144000	1.604264	1.857143	2.213483	77.387097
segment_actual_time	144867.0	36.196111	53.571158	-244.000000	20.000000	29.000000	40.000000	3051.000000
segment_osrm_time	144867.0	18.507548	14.775960	0.000000	11.000000	17.000000	22.000000	1611.000000
segment_osrm_distance	144867.0	22.829020	17.860660	0.000000	12.070100	23.513000	27.813250	2191.403700
segment_factor	144867.0	2.218368	4.847530	-23.444444	1.347826	1.684211	2.250000	574.250000

data.describe(include="object").T

	count	unique	top	freq
trip_creation_time	144316	14787	2018-10-01 05:04:55.268931	101
route_schedule_uuid	144316	1497	thanos::sroute:4029a8a2-6c74-4b7e-a6d8-f9e069f	1812
trip_uuid	144316	14787	trip-153837029526866991	101
source_center	144316	1496	IND000000ACB	23267
source_name	144316	1496	Gurgaon_Bilaspur_HB (Haryana)	23267
destination_center	144316	1466	IND000000ACB	15192
destination_name	144316	1466	Gurgaon_Bilaspur_HB (Haryana)	15192
segment_key	144316	26222	trip-153755502932196495_IND160002AAC_IND562132AAA	81

data.isna().sum()

data	0
trip_creation_time	0
route schedule uuid	0
route_type	0
trip_uuid	0
source_center	0
source_name	293
destination_center	0
destination_name	261
od_start_time	0
od_end_time	0
start_scan_to_end_scan	0
is_cutoff	0
cutoff_factor	0
cutoff_timestamp	0
actual_distance_to_destination	0
actual_time	0
osrm_time	0
osrm_distance	0
factor	0
segment_actual_time	0
segment_osrm_time	0
segment_osrm_distance	0
segment_factor	0
dtype: int64	

About dataset:

- The given dataset has details about the delivery of the goods and it has 144876 rows and 24 columns.
- The data is given from the period '2018-09-12 00:00:16' to '2018-10-08 03:00:24'.
- There are about 14787 unique trip IDs, 1496 unique source centers, 1466 unique destination centers, 1260 unique source cities, 1256 unique destination cities.
- Most of the data is for testing than for training.
- Most common route type is Carting.
- The names of 10 unique location ids are missing in the data.
- There 293 null values in source name column and 261 null values in destination column.

Column profiling:

- data tells whether the data is testing or training data
- trip_creation_time Timestamp of trip creation
- route_schedule_uuid Unique Id for a particular route schedule
- route_type Transportation type
- FTL Full Truck Load: FTL shipments get to the destination sooner, as the truck is making no other pickups or drop-offs along the way
- Carting: Handling system consisting of small vehicles (carts)
- trip_uuid Unique ID given to a particular trip (A trip may include different source and destination centers)
- source_center Source ID of trip origin
- source_name Source Name of trip origin
- destination_cente Destination ID

- destination_name Destination Name
- od_start_time Trip start time
- od_end_time Trip end time
- start_scan_to_end_scan Time taken to deliver from source to destination
- is_cutoff Unknown field
- cutoff factor Unknown field
- cutoff_timestamp Unknown field
- actual_distance_to_destination Distance in Kms between source and destination warehouse
- actual_time Actual time taken to complete the delivery (Cumulative)
- osrm_time An open-source routing engine time calculator
 which computes the shortest path between points in a given map
 (Includes usual traffic, distance through major and minor roads)
 and gives the time (Cumulative)
- osrm_distance An open-source routing engine which computes the shortest path between points in a given map (Includes usual traffic, distance through major and minor roads) (Cumulative)
- factor Unknown field
- segment_actual_time This is a segment time. Time taken by the subset of the package delivery
- segment_osrm_time This is the OSRM segment time. Time taken by the subset of the package delivery
- segment_osrm_distance This is the OSRM distance. Distance covered by subset of the package delivery
- segment_factor Unknown field

Merging rows:

Create a unique identifier for different segments of a trip based on the combination of the trip_uuid, source_center, destination_center and name it as segment_key.


```
# Merging rows
create_segment_dict={ "data" : "first",
                      "route_type" : "first",
                      "trip_creation_time" : "first",
                      "trip_uuid" : "first",
                      "source center" : "first",
                      "source_name" : "first",
                      "destination_center" : "first",
                      "destination_name" : "last",
                      "od_start_time" : "first",
                      "od_end_time" : "first",
                      "start_scan_to_end_scan" : "first",
                      "actual_distance_to_destination" : "last",
                      "actual_time" : "last",
                      "osrm_time" : "last",
                      "osrm_distance" : "last",
                      "segment_actual_time" : "sum",
                       "segment_osrm_time" : "sum",
                      "segment_osrm_distance" : "sum"}
segmented_data = data.groupby(by= "segment_key", as_index = False).agg(create_segment_dict)
segmented_data = segmented_data.sort_values(by=["segment_key","od_end_time"], ascending=True)
segmented_data.head()
```


Business insights:

Most of the data is related to training data.

Most of the route type is of carting type.

- From the above line plot it can be inferred that most of the trips are created in the mid of the month. That means customers usually make more orders in the mid of the month.
- Also most of the data is from the month of September.

• From the above heat map we can get that high correlation exists between the numerical columns.

• From the above plots it can be seen that maximum trips originated from Maharashtra state followed by Karnataka and Haryana. City wise maximum trips originated from Gurgaon, Bengaluru and Bhiwandi.

 From the above box plots it can be clearly seen that there are outliers in all the numerical columns that need to be treated.

Hypothesis testing:

1. <u>actual time aggregated value and OSRM time</u> <u>aggregated value.</u>

HO - actual time aggregated value and OSRM time aggregated value are same.

HA - actual time aggregated value and OSRM time aggregated value are different.

Assumptions of the test:

• **Normality**: From the below QQ plot we can observe that data does not follow normal distribution.

• **Equal Variance**: From levene's test we can conclude that the datas have different variance.

```
# Homogeneity of Variances using Lavene's test

# HO- Variance are significantly different

# HA- Variance are not significantly different

test_stat, p_value = spy.levene(trip_data["actual_time"], trip_data["osrm_time"])

print('p-value', p_value)

if p_value < 0.05:
    print("Variance are significantly different")

else:
    print("Variance are not significantly different")
```

Since the samples are not normally distributed, T-Test cannot be applied here, we can perform its non parametric equivalent test i.e., Mann-Whitney U rank test for two independent samples.

```
[51] # Since the samples do not follow any of the assumptions T-Test cannot be applied here.
    # we can perform its non parametric equivalent test i.e., Mann-Whitney U rank test for two independent samples.

t_stat, p_value = spy.mannwhitneyu(trip_data["actual_time"], trip_data["osrm_time"])

print("p-value", p_value)

if p_value < 0.05:
    print("The samples are not similar")

else:
    print("The samples are similar")

p-value 9.509176874996746e-61
The samples are not similar</pre>
```

2. <u>actual time aggregated value and segment actual time</u> aggregated value.

HO - actual time aggregated value and segment actual time value are same.

HA - actual time aggregated value and segment actual time value are different.

Assumptions of the test:

• **Normality**: From the below QQ plot we can observe that data does not follow normal distribution.

• **Equal Variance**: From levene's test we can conclude that the datas have different variance.

```
# Homogeneity of Variances using Lavene's test
# HO- Variance are significantly different
# HA- Variance are not significantly different

test_stat, p_value = spy.levene(trip_data["actual_time"], trip_data["segment_actual_time"])
print("p-value", p_value)
if p_value < 0.05:
    print("Variance are significantly different")
else:
    print("Variance are not significantly different")

p-value 2.1119134589517006e-23
Variance are significantly different</pre>
```

Since the samples are not normally distributed, T-Test cannot be applied here, we can perform its non parametric equivalent test i.e., Mann-Whitney U rank test for two independent samples.

The samples are not similar

```
# Since the samples do not follow any of the assumptions T-Test cannot be applied here.
# we can perform its non parametric equivalent test i.e., Mann-Whitney U rank test for two independent samples.

t_stat, p_value = spy.mannwhitneyu(trip_data["actual_time"], trip_data["segment_actual_time"])

print("p-value", p_value)
    if p_value < 0.05:
        print("The samples are not similar")
    else:
        print("The samples are similar")

p-value 2.3269870249576406e-184</pre>
```

3. OSRM distance aggregated value and segment OSRM distance aggregated value.

- H0 OSRM distance aggregated value and segment OSRM distance aggregated value are same.
- HA OSRM distance aggregated value and segment OSRM distance aggregated value are different.

Assumptions of the test:

• **Normality**: From the below QQ plot we can observe that data does not follow normal distribution.

• **Equal Variance**: From levene's test we can conclude that the datas have different variance.

```
[65] # Homogeneity of Variances using Lavene's test

# H0- Variance are significantly different
# HA- Variance are not significantly different

test_stat, p_value = spy.levene(trip_data["osrm_distance"], trip_data["segment_osrm_distance"])
print("p-value", p_value)
if p_value < 0.05:
    print("Variance are significantly different")
else:
    print("Variance are not significantly different")

p-value 1.5684805255129562e-18
Variance are significantly different</pre>
```

Since the samples are not normally distributed, T-Test cannot be applied here, we can perform its non parametric equivalent test i.e., Mann-Whitney U rank test for two independent samples.

```
[59] # Since the samples do not follow any of the assumptions T-Test cannot be applied here.
    # we can perform its non parametric equivalent test i.e., Mann-Whitney U rank test for two independent samples.

t_stat, p_value = spy.mannwhitneyu(trip_data["osrm_distance"], trip_data["segment_osrm_distance"])
    print("p-value", p_value)
    if p_value < 0.05:
        print("The samples are not similar")
    else:
        print("The samples are similar")

p-value 6.077882880733487e-272
The samples are not similar</pre>
```

4. OSRM time aggregated value and segment OSRM time aggregated value.

- HO OSRM time aggregated value and segment OSRM time aggregated value are same.
- HA OSRM time aggregated value and segment OSRM time aggregated value are different.

Assumptions of the test:

• **Normality**: From the below QQ plot we can observe that data does not follow normal distribution.

• **Equal Variance**: From levene's test we can conclude that the datas have different variance.

```
[64] # Homogeneity of Variances using Lavene's test

# H0- Variance are significantly different
# HA- Variance are not significantly different

test_stat, p_value = spy.levene(trip_data["osrm_time"], trip_data["segment_osrm_time"])
print("p-value", p_value)
if p_value < 0.05:
    print("Variance are significantly different")
else:
    print("Variance are not significantly different")
p-value 3.372487757874399e-21</pre>
```

p-value 3.372487757874399e-21 Variance are significantly different

Since the samples are not normally distributed, T-Test cannot be applied here, we can perform its non parametric equivalent test i.e., Mann-Whitney U rank test for two independent samples.

```
# Since the samples do not follow any of the assumptions T-Test cannot be applied here.
# we can perform its non parametric equivalent test i.e., Mann-Whitney U rank test for two independent samples.

t_stat, p_value = spy.mannwhitneyu(trip_data["osrm_time"], trip_data["segment_osrm_time"])

print("p-value", p_value)

if p_value < 0.05:
    print("The samples are not similar")

else:
    print("The samples are similar")

p-value 1.6475103625829434e-233
The samples are not similar</pre>
```

Recommendations:

- OSRM time and actual time are different. Team needs to make sure this
 difference is reduced, so that better delivery time prediction can be made
 and it becomes convenient for the customer to expect an accurate delivery
 time.
- OSRM distance and actual distance covered are also not same. . Team
 needs to look into it as if maybe the delivery person is not following the
 predefined route which may lead to late deliveries or the OSRM devices is
 not properly predicting the route based on distance, traffic and other
 factors.
- Most of the orders are from/reaching to states like Maharashtra, Karnataka, Haryana and Tamil Nadu. The existing platforms should be improved to increase more customer interactions.
- The team should also focus on marketing in moderate states to improve the market hold.
- Customer profiling of the customers of these states has to be done to get to know why major orders are coming from these states and to improve customer's buying and delivery experience.