ÁLGEBRA :: PROVA 01

PROF. TIAGO MACEDO

 $\{f\colon G\to G\mid f\text{ \'e um isomorfismo de grupos}\}.$

Questão 1. Dado um grupo G, denote por $\operatorname{Aut}(G)$ o conjunto

Data: 19 de setembro de 2017.

(a) (1,0 ponto) Mostre que $\operatorname{Aut}(G)$ munido da função $m : \operatorname{Aut}(G) \times \operatorname{Aut}(G) \to \operatorname{Aut}(G)$ dada por $m(f,g) = f \circ g$ (composição de funções) é um grupo.
(b) (2,0 pontos) Considere o grupo aditivo \mathbb{Z} . Calcule $\operatorname{Aut}(\mathbb{Z})$. (Ou seja, encontre un grupo conhecido ao qual $\operatorname{Aut}(G)$ é isomorfo.)
 (a) Vamos mostrar as condições (i)-(iii) da definição de grupos. (i) Dadas f, g, h ∈ Aut(G), temos que m(f, m(g, h)) = f ∘ m(g, h) = f ∘ (g ∘ h) = f ∘ g ∘ h = (f ∘ g) ∘ h = m(f, g) ∘ h = m(m(f, g), h). (ii) A função id_G: G → G, dada por id_G(g) = g para todo g ∈ G, pertence a Aut(G). De fato, id_G(gh) = gh = id_G(g)id_G(h) para todo g, h ∈ G. Aléndisso, m(id_G, f)(g) = (id_G ∘ f)(g) = id_G(f(g)) = f(g) = f(id_G(g)) = (f ∘ id_G)(g) = m(f, id_G)(g) para todos f ∈ Aut(G) e g ∈ G. Portanto, id_G⁻¹ = id_G ∘ e_{Aut(G)} = id_G. (iii) Por definição, toda f ∈ Aut(G) é bijetora. Portanto existe f⁻¹: G → G vamos mostrar que f⁻¹ ∈ Aut(G). De fato, basta mostrar que f⁻¹ é un homomorfismo de grupos, pois f = (f⁻¹)⁻¹. Dados g, h ∈ G, denote f⁻¹(g) = g f⁻¹(h) = h ∈ G, e observe que g = f(g), h = f(h). Então temos que f⁻¹(gh) = f⁻¹(f(g)f(h)) = f⁻¹(f(gh)) = gh = f⁻¹(g)f⁻¹(h). Isso mostra que f⁻¹ é um homomorfismo de grupos e portanto f⁻¹ ∈ Aut(G).
(b) Suponha que $f: \mathbb{Z} \to \mathbb{Z}$ é um isomorfismo de grupos. Em particular, temos $f(n) = nf(1)$ para todo $n \in \mathbb{Z}$, e im $(f) = \mathbb{Z}$. Consequentemente, $\mathbb{Z} = \{nf(1) \mid n \in \mathbb{Z}\} = \{f(1)\}$, ou seja, $f(1)$ é um gerador de \mathbb{Z} . Como os únicos geradores de \mathbb{Z} são -1 e 1 (Proposição 6.15), então $f(1) \in \{-1,1\}$. Para cada $i \in \{-1,1\}$, denote po $f_i: \mathbb{Z} \to \mathbb{Z}$ a função dada por $f(n) = ni$. Vamos mostrar que $\varphi: \mathbb{Z}_2 \to \operatorname{Aut}(\mathbb{Z})$ dada por $\varphi(\overline{i}) = f_{(-1)^i}$ $(i \in \{0,1\})$ é un isomorfismo de grupos. Primeiro, observe que φ é bijetora. Agora, para terminar, va mos mostrar que φ é um homomorfismo de grupos. De fato, $(\varphi(\overline{i}) \circ \varphi(\overline{j}))(n) = f_{(-1)^i}(f_{(-1)^j}(n)) = f_{(-1)^i}(n(-1)^j) = (n(-1)^j)(-1)^i = n(-1)^{i+j} = f_{(-1)^{i+j}}(n) = \varphi(\overline{i+j})(n)$ para todos $n \in \mathbb{Z}$, $i, j \in \{-1, 1\}$.

Questão 2. Considere o grupo $G = \{a + b\sqrt{2} \in \mathbb{R} \mid a, b \in \mathbb{Q}\}$ munido da função $m \colon X \times X \to X$ dada por m(x, y) = x + y (soma de dois números reais).

- (a) (1,0 ponto) Mostre que $H = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}$ é um subgrupo de G.
- (b) (2,0 pontos) Considere o grupo quociente G/H. Mostre que todo elemento $x \in G/H$ tem ordem finita.
- (a) Vamos mostrar as condições (i), (ii) da definição de subgrupo.
 - (i) Dados $a, b, c, d \in \mathbb{Z}$, temos que $m((a+b\sqrt{2}), (c+d\sqrt{2})) = (a+c) + (b+d)\sqrt{2}$. Como $a, b, c, d \in \mathbb{Z}$, então $(a+b), (c+d) \in \mathbb{Z}$. Portanto $m((a+b\sqrt{2}), (c+d\sqrt{2}))$ pertence a H.
 - (ii) Observe que o inverso de $(a + b\sqrt{2})$ é $((-a) + (-b)\sqrt{2})$. De fato,

$$m\left(\left(a+b\sqrt{2}\right),\left((-a)+(-b)\sqrt{2}\right)\right)=0=m\left(\left((-a)+(-b)\sqrt{2}\right),\left(a+b\sqrt{2}\right)\right),$$

 $m(c+d\sqrt{2},0)=c+d\sqrt{2}\quad \text{para todos } c,d\in\mathbb{Z}.$

Como $a, b \in \mathbb{Z}$, então $-a, -b \in \mathbb{Z}$. Portanto o inverso de $a + b\sqrt{2}$ pertence a H.

(b) Lembre que todo $x \in G/H$ é da forma $(a+b\sqrt{2})$ para alguns $a, b \in \mathbb{Q}$. Denote $a = p_a/q_a$ e $b = p_b/q_b$, onde $p_a, p_b \in \mathbb{Z}$, $q_a, q_b \in \mathbb{Z} \setminus \{0\}$ e $\mathrm{mdc}(p_a, q_a) = \mathrm{mdc}(p_b, q_b) = 1$. Tome $k = q_a q_b \in \mathbb{Z} \setminus \{0\}$ e observe que

$$k\overline{(a+b\sqrt{2})} = \overline{(ka) + (kb)\sqrt{2}} = \overline{(q_bp_a) + (q_ap_b)\sqrt{2}} = \overline{0},$$

pois $(q_b p_a), (q_a p_b) \in \mathbb{Z}$. Isso mostra que a ordem de $x = \overline{(a + b\sqrt{2})}$ é finita $(\leq k)$.

Questão 3. Sejam G um grupo finito e $\sigma \colon G \to G$ um isomorfismo de grupos que satisfaz: $\sigma^2 = \mathrm{id}_G$; $\sigma(g) = g$ se, e somente se, $g = e_G$.

- (a) (1,0 ponto) Mostre que $G = \{g^{-1}\sigma(g) \mid g \in G\}.$
- (b) (1,0 ponto) Mostre que $\sigma(g) = g^{-1}$ para todo $g \in G$.
- (c) (1,0 ponto) Mostre que G é abeliano.
- (a) Para todo $g \in G$, temos que g^{-1} , $\sigma(g) \in G$, e portanto $g^{-1}\sigma(g) \in G$. Então considere a função $f \colon G \to G$ dada por $f(g) = g^{-1}\sigma(g)$. Por construção, a imagem de f é $\{g^{-1}\sigma(g) \mid g \in G\}$. Se mostrarmos que f é injetora, obteremos que f é uma bijeção entre G e $\{g^{-1}\sigma(g) \mid g \in G\}$. Como G é finito e $\{g^{-1}\sigma(g) \mid g \in G\} \subseteq G$, segue daí que $G = \{g^{-1}\sigma(g) \mid g \in G\}$.

Para mostrar que f é injetora, tome $g, h \in G$. Se f(g) = f(h), então $g^{-1}\sigma(g) = h^{-1}\sigma(h)$. Logo $hg^{-1} = \sigma(h)\sigma(g)^{-1} = \sigma(hg^{-1})$. Como $\sigma(x) = x$ se, e somente se, $x = e_G$, então $hg^{-1} = e_G$. Segue daí que h = g. Isso mostra que f é injetora.

- (b) Vamos mostrar que $g\sigma(g) = e_G$ para todo $g \in G$. Como e_G é o $x \in G$ tal que $\sigma(x) = x$, temos que $g\sigma(g) = e_G$ se, e somente se, $\sigma(g\sigma(g)) = g\sigma(g)$. Por sua vez, $\sigma(g\sigma(g)) = g\sigma(g)$ se, e somente se, $g\sigma(g)g^{-1}\sigma(g)^{-1} = e_G$. Usando novamente que e_G é o $x \in G$ tal que $\sigma(x) = x$, temos que $g\sigma(g)g^{-1}\sigma(g)^{-1} = e_G$ se, e somente se, $\sigma(g\sigma(g)g^{-1}\sigma(g)^{-1}) = g\sigma(g)g^{-1}\sigma(g)^{-1}$, ou seja, $(g\sigma(g)g^{-1}\sigma(g)^{-1})^2 = e_G$. Usando indução em n, vemos que, para todo $g \in G$:
 - $g\sigma(g) = e_G$ se, e somente se, $\left(g\sigma(g)g^{-1}\sigma(g)^{-1}\right)^{2^n} = e_G$ para todo n > 0.

Como, por hipótese, G é finito, então existe n>0 tal que $(g\sigma(g)g^{-1}\sigma(g)^{-1})^{2^n}=e_G$. O resultado segue.

(c) Usando o item (b), temos que $\sigma(g)\sigma(h) = \sigma(gh) = (gh)^{-1} = h^{-1}g^{-1} = \sigma(h)\sigma(g)$ para todos $g, h \in G$. Agora, usando o fato de que σ é um isomorfismo de grupos, temos que $\{\sigma(g) \mid g \in G\} = G$. Isso mostra que xy = yx para todos $x, y \in G$, ou seja, que G é abeliano.

Questão 4. Determine se as afirmações a seguir são verdadeiras ou falsas. É necessário justificar a sua escolha provando as afirmações verdadeiras e encontrando contra-exemplos para as falsas.

- (a) (1,0 ponto) Seja G um grupo. Todo subconjunto finito $X \subseteq G$ tal que $N_G(X) = G$ e $xy \in X$ para todos $x, y \in X$ é um subgrupo normal de G.
- (b) (1,0 ponto) Existe um subgrupo de \mathbb{Z} isomorfo a \mathbb{Z}_{17} .
- (c) (1,0 ponto) Se G é um grupo e os únicos subgrupos $H \subseteq G$ são $H = \{e\}$ e H = G, então G é cíclico.
- (a) Verdadeiro. Se X é um subconjunto finito e $xy \in X$ para todos $x, y \in X$, então X é um subgrupo de G (Proposição 5.9). Se X é um subgrupo e $N_G(X) = G$, então $gXg^{-1} = X$ para todo $g \in G$, ou seja, X é um subgrupo normal de G.
- (b) Falso. Suponha que $H \subseteq \mathbb{Z}$ seja um subgrupo isomorfo a \mathbb{Z}_{17} . Em particular, existe $h \in H \subseteq \mathbb{Z}$, tal que o(h) = 17. Isso significa que 17h = 0. Como $17h = 0 \in \mathbb{Z}$ se, e somente se, h = 0, segue que tal h não pode existir. (Lembre que o(0) = 1.) Portanto tal subgrupo $H \subseteq \mathbb{Z}$ não pode existir.
- (c) Verdadeiro. Se $G = \{e\}$, então G é cíclico. Agora suponha que G é não-trivial e tome $g \in G \setminus \{e_G\}$. Como $\langle g \rangle$ é um subgrupo de G diferente de $\{e_G\}$, por hipótese, $\langle g \rangle = G$. Portanto G é gerado por g, ou seja, G é cíclico. \square