УДК 519.21 ББК 22.171 Л64

Рецензенты:

докт. физ.-мат. наук, проф. Я.Ю. Никитин (С.-Петерб. гос. ун-т), докт. физ.-мат. наук, проф. А.Н. Бородин (ПОМИ РАН)

Печатается по постановлению
Редакционно-издательского совета
С.-Петербургского государственного университета

Лифшиц М.А.

Пособие посвящено оригинальному типу предельных теорем теории вероятностей – результатам о сильной аппроксимации сумм независимых случайных величин суммами аналогичных нормально распределенных величин. Методы исследования, основанные на сильной аппроксимации, существенно повлияли на центральные разделы вероятностной теории и ее статистические приложения. Наряду с классическими результатами рассматривается аппроксимация не одинаково распределенных величин и многомерных векторов.

Предназначено для студентов старших курсов и аспирантов математических специальностей.

ББК 22.171

- © М.А. Лифшиц, 2007
- © С.-Петербургский государственный университет, 2007

1. Введение

Центральная предельная теорема — это утверждение о близости распределения сумм независимых или слабо зависимых случайных величин к нормальному распределению. Функциональная центральная предельная теорема идет дальше и утверждает близость распределения (в подходящем функциональном пространстве) процесса последовательных сумм случайных величин и распределения винеровского процесса. В обоих случаях речь идет не о близости двух стохастических объектов, а лишь о близости их распределений.

Тот же самый эффект нормализации распределений сумм может быть выражен по иному – путем построения двух взаимно близких объектов на одном вероятностном пространстве. Пусть, например, $X=\{X_1,\ldots,X_j,\ldots\}$ – последовательность независимых случайных величин, а $Y=\{Y_1,\ldots,Y_j,\ldots\}$ – соответствующая последовательность гауссовских величин (имеется в виду, что Y_j имеет те же математическое ожидание и дисперсию, что и X_j). Требуется построить на некотором вероятностном пространстве последовательности $\tilde{X}=\{\tilde{X}_1,\ldots,\tilde{X}_j,\ldots\}$ и $\tilde{Y}=\{\tilde{Y}_1,\ldots,\tilde{Y}_j,\ldots\}$, равнораспределенные с X и Y соответственно таким образом, чтобы величина

$$\Delta_n(\tilde{X}, \tilde{Y}) = \max_{1 \le k \le n} \left| \sum_{j=1}^k \tilde{X}_j - \sum_{j=1}^k \tilde{Y}_j \right|$$
 (1.1)

была как можно меньше. При этом малость понимается двояко:

- а) в терминах неравенств: доказывается, что вероятность того, что $\Delta_n(\tilde{X},\tilde{Y})$ велико, мала;
- б) в терминах сходимости почти наверное: доказывается, что при $n \to \infty$ с вероятностью единица $\Delta_n(\tilde{X}, \tilde{Y})$ растет не быстрее, чем некоторая известная функция, определяемая моментными характеристиками последовательности X.

Утверждения типа а) являются фундаментальными, а утверждения типа б) легко выводятся из них и часто используются при решении различных асимптотических задач теории вероятностей и статистики. Поскольку в них речь идет о сближении двух последовательностей с вероятностью единица, то по аналогии с усиленным

законом больших чисел вся тематика получила название *сильной* аппроксимации.

Доказательства утверждений типа а) и б), как правило, трудны, но зато замечательно большое число полезных следствий и результатов может быть получено из них с большой легкостью. Поэтому инструментарий сильной аппроксимации должен быть под рукой у каждого, кто занимается теоретическими исследованиями, связанными так или иначе с суммами случайных величин.

Первый достаточно точный метод сильной аппроксимации (так называемый метод вложения в винеровский процесс) предложил А.В.Скороход. После этого некоторое время считалось, что его оценки оптимальны. В конечном счете, однако, выяснилось, что для суммирования независимых величин можно получить лучший результат (впрочем, в более широком классе мартингальных последовательностей оценки Скорохода действительно являются оптимальными). Оптимальную оценку скорости сильной аппроксимации сумм независимых одинаково распределенных величин нашли венгерские математики Я. Комлош, П. Майор и Г. Тушнади, предложившие в работах [10, 11] метод диадической аппроксимации (называемый чаще по именам авторов КМТ-конструкцией или венгерской конструкцией). Их результаты представлены ниже. Дальнейший прогресс связан, прежде всего, с работами А.И. Саханенко (суммы независимых разнораспределенных величин), У. Айнмаля (U. Einmahl) и А.Ю. Зайцева (суммы независимых векторов).

Содержание этих лекций отчасти представляет собой упрощенный пересказ того, что в разное время объяснял мне А.Ю. Зайцев. Без его дружеской помощи я, разумеется, не смог бы ничего сделать.

2. Теорема Комлоша, Майора и Тушнади

Следующая теорема представляет собой оптимальную оценку в сильной аппроксимации сумм независимых одинаково распределенных случайных величин.

Теорема 2.1. (КМТ-неравенство.) Пусть $X = \{X_j\}$ – последовательность независимых одинаково распределенных случайных величин, имеющих конечный экспоненциальный момент, т.е.

при некотором z>0 **E** $\exp\{z|X_j|\}<\infty$. Тогда существуют такие положительные постоянные C_1,C_2 , зависящие от общего распределения F величин X_j , что для любого n можно построить на некотором вероятностном пространстве последовательность $\tilde{X}=\{\tilde{X}_1,\ldots,\tilde{X}_n\}$, равнораспределенную c последовательностью $\{X_1,\ldots,X_n\}$, и последовательность независимых гауссовских величин $\{\tilde{Y}_1,\ldots,\tilde{Y}_n\}$, имеющих те же математические ожидания и дисперсии, таким образом, чтобы для разности $\Delta_n(\tilde{X},\tilde{Y})$, определенной s (1.1), было выполнено

$$\mathbf{E}\exp\left\{C_1\Delta_n(\tilde{X},\tilde{Y})\right\} \le 1 + C_2 n^{1/2}.\tag{2.1}$$

Следствие 2.2. В условиях теоремы 2.1 мы имеем для любого x>0

$$\mathbf{P}\left\{\Delta_n(\tilde{X}, \tilde{Y}) \ge x\right\} \le \exp\left\{-C_1 x\right\} (1 + C_2 n^{1/2}). \tag{2.2}$$

Это неравенство мгновенно получается из (2.1) применением экспоненциального неравенства Чебышева. Именно в такой форме чаще всего и цитируется КМТ-неравенство. Однако формулировка (2.1) (предложенная Саханенко) выглядит более естественной, так как она не содержит лишнего параметра x. Зависимость параметров C_1, C_2 от свойств распределения F мы обсудим ниже, когда речь пойдет о суммах разнораспределенных величин.

Обратите внимание, что в теореме 2.1 речь идет о построении конечной последовательности величин. Тем не менее, из теоремы 2.1 сравнительно легко вывести следующий результат о сильной аппроксимации бесконечной последовательности.

Следствие 2.3. В условиях теоремы 2.1 можно построить на некотором вероятностном пространстве последовательность $\tilde{X}=\{\tilde{X}_j,\}$, равнораспределенную с последовательностью X, а также последовательность независимых гауссовских величин $\{\tilde{Y}_j\}$, имеющих те же математические ожидания и дисперсии, таким образом, чтобы с вероятностью единица было выполнено

$$\sum_{j=1}^{n} \tilde{X}_{j} - \sum_{j=1}^{n} \tilde{Y}_{j} = O(\log n). \tag{2.3}$$

Доказательство следствия. Положим $n_m = 2^{2^m}$ для всех $m=1,2,\ldots$ Пусть $N_m = \sum_{k \leq m} n_k$, а также $N_0 = 0$. Для каждого m согласно следствию 2.2 построим на некотором вероятностном пространстве Ω_m последовательности случайных величин $\tilde{X}^{(m)} = \{\tilde{X}_j^{(m)}\}$ и $\{\tilde{Y}_j^{(m)}\}$, $1 \leq j \leq n_m$, которые удовлетворяют оценке (2.2),

$$\mathbf{P}\left\{\Delta_{n_m}(\tilde{X}^{(m)}, \tilde{Y}^{(m)}) \ge x\right\} \le \exp\left\{-C_1 x\right\} (1 + C_2 n_m^{1/2}).$$

В частности, ряд из вероятностей

$$\sum_{m} \mathbf{P} \left\{ \Delta_{n_m}(\tilde{X}^{(m)}, \tilde{Y}^{(m)}) \ge A \log n_m \right\}$$

$$\le \sum_{m} \exp \left\{ -C_1 A \log n_m \right\} (1 + C_2 n_m^{1/2})$$

будет сходиться, если $C_1A > 1/2$.

Перенесем построенное на единое вероятностное пространство, положив $\Omega = \prod_m \Omega_m$ и определив для $\omega = (\omega_1, \omega_2, \dots)$ случайные величины $\tilde{X}_j, \tilde{Y}_j, \ N_{m-1} < j \leq N_m$ по формуле

$$\tilde{X}_{j}(\omega) = \tilde{X}_{j-N_{m-1}}^{(m)}(\omega_{m}), \qquad \tilde{Y}_{j}(\omega) = \tilde{Y}_{j-N_{m-1}}^{(m)}(\omega_{m}).$$

Заметим, что при каждом m верна оценка

$$\Delta_{N_m}(\tilde{X}, \tilde{Y}) \leq \sum_{k=1}^m \Delta_{n_k}(\tilde{X}^{(m)}, \tilde{Y}^{(m)}).$$

С учетом леммы Бореля–Кантелли и сходимости вышеуказанных рядов имеем почти наверное

$$\Delta_{N_m}(\tilde{X}, \tilde{Y}) = O\left(\sum_{k=1}^m A \log n_k\right) = O(2^m) = O(\log N_m).$$

Поскольку последовательность $\Delta_n(\tilde{X},\tilde{Y})$ является неубывающей и при любом $n \in (N_{m-1},N_m]$ верно $2\log n \geq \log N_m$, то мы можем перейти от подпоследовательности $\{\Delta_{N_m}\}$ ко всей последовательности $\{\Delta_n\}$ и получить оценку (2.3), что и требовалось.

Нетрудно сообразить, что оценка (2.3) является оптимальной. В самом деле, рассмотрим последовательность величин с симметричными экспоненциальными распределениями, т.е. такую, для которой $\mathbf{P}\{|X_j| \geq r\} = \exp\{-r\}$. В этом случае для любого a > 0 ряд

$$\sum_{j} \mathbf{P}\{|X_{j}| \ge a \log j\} = \sum_{j} j^{-a}$$

сходится тогда и только тогда, когда a>1, и по лемме Бореля–Кантелли имеем

$$\limsup_{j \to \infty} |X_j| / \log j = 1$$

почти наверное. В то же время хорошо известно, что для гауссовских величин $\tilde{Y}_j = O(\sqrt{\log j}) = o(\log j)$. Поэтому при любом построении \tilde{X} и \tilde{Y}

$$\limsup_{j \to \infty} \Delta_n(\tilde{X}, \tilde{Y}) / \log n \ge 1/2$$

с вероятностью единица и видно, что (2.3) невозможно улучшить.

На самом деле неулучшаемость (2.3) верна в следующем еще более сильном и даже удивительном смысле: если в (2.3) можно заменить $O(\log j)$ на $o(\log j)$, то, как показал Бартфаи [5], величины X_j имеют нормальные распределения!

Сила КМТ-оценки (2.3) станет еще более очевидной, если сказать, что предшествовавшая ее появлению техника Скорохода давала аналогичные асимптотики с границей всего лишь $O(n^{1/4})$.

С первого взгляда может показаться, что конечность экспоненциального момента, которая требуется в теореме 2.1, делает этот результат недостаточно широко применимым. На самом же деле несложные манипуляции с урезанием случайных величин позволяют вывести из теоремы 2.1 оценки того же типа для последовательностей величин, подчиняющихся гораздо более слабым моментным ограничениям.

Теорема 2.2. Пусть $X = \{X_1, \dots, X_j, \dots\}$ – последовательность независимых одинаково распределенных случайных величин, имеющих конечный момент порядка p > 2, т.е. $\mathbf{E}|X_j|^p < \infty$. Тогда можно таким образом построить на некотором вероятностном пространстве последовательность $\tilde{X} = \{\tilde{X}_1, \dots, \tilde{X}_j, \dots\}$, равнораспределенную c X, и последовательность независимых гауссовских величин $\{\tilde{Y}_1, \dots, \tilde{Y}_j, \dots\}$, имеющих те же математические

ожидания и дисперсии, чтобы с вероятностью единица было выполнено

$$\sum_{j=1}^{n} \tilde{X}_{j} - \sum_{j=1}^{n} \tilde{Y}_{j} = o(n^{1/p}). \tag{2.5}$$

Эту теорему мы выведем из более общих результатов в следующем разделе.

Особый интерес представляет теорема Майора [12], которая рассматривает случай p=2, наиболее естественный с точки зрения условий центральной предельной теоремы.

Теорема 2.3. Пусть $X = \{X_j\}$ последовательность независимых одинаково распределенных случайных величин с нулевыми средними и единичными дисперсиями. Тогда можно таким образом построить на некотором вероятностном пространстве последовательность $\tilde{X} = \{\tilde{X}_j\}$, равнораспределенную с X, и последовательность независимых гауссовских величин $\{\tilde{Y}_j\}$ с нулевыми средними и дисперсиями

$$\mathbf{E}\tilde{Y}_{j}^{2} = \mathbf{Var}(X_{j}\mathbf{1}_{|X_{j}| \leq n}) \to 1,$$

чтобы с вероятностью единица было выполнено

$$\sum_{j=1}^{n} \tilde{X}_j - \sum_{j=1}^{n} \tilde{Y}_j = o(n^{1/2}). \tag{2.6}$$

Разделив (2.6) на $n^{1/2}$ и рассмотрев распределения нормированных сумм, в качестве тривиального следствия получим центральную предельную теорему Леви.

Интересно, что без изменения дисперсий можно получить лишь

$$\sum_{j=1}^{n} \tilde{X}_{j} - \sum_{j=1}^{n} \tilde{Y}_{j} = o((n \log \log n)^{1/2})$$

(Штрассен, [14]), и в общем случае эта оценка неулучшаема.

Для математической статистики большое значение имеет также и другой результат Комлоша, Майора и Тушнади, аналогичный теореме 2.1, но относящийся к аппроксимации эмпирической функции распределения.

3. Сильная аппроксимация не одинаково распределенных величин

В этом разделе мы рассмотрим аналоги КМТ-результатов о сильной аппроксимации сумм независимых величин, имеющих различные распределения. Интуитивно ясно, что нужно потребовать определенную равномерную ограниченность распределений слагаемых (или, по крайней мере, их равномерную близость к классу гауссовских распределений). При этом равномерную ограниченность можно понимать различными способами — в терминах экспоненциальных моментов (Саханенко), в терминах обычных моментов (условия Бернштейна), в терминах параметров характеристических функций (Зайцев). Мы будем двигаться от простого к сложному, от частного к общему, и следить за взаимосвязью возникающих условий.

Параметр Крамера. Говорят, что случайная величина X удовлетворяет условию Крамера, если она имеет конечный экспоненциальный момент, т.е. при некотором h>0

$$\mathbf{E}\exp\{h|X|\}<\infty.$$

Соответственно можно ввести параметр Крамера

$$h(X) = \sup\{h: \mathbf{E} \exp\{h|X|\} < \infty\}$$

как характеристику концентрации распределения X. В дальнейшем мы увидим, что наиболее интересные результаты о сильной аппроксимации достигаются при выполнении условия Крамера, но параметр Крамера не подходит для получения количественных оценок.

Параметр Саханенко. Пусть *X* случайная величина, имеющая нулевое ожидание и удовлетворяющая условию Крамера. Следуя [4], определим *параметр Саханенко* соотношением

$$\lambda(X) = \sup \left\{ \lambda : \ \lambda \mathbf{E} |X|^3 \exp\{\lambda |X|\} \le \mathbf{E} X^2 \right\}.$$

Выражение $\mathbf{E}|X|^3\exp\{\lambda|X|\}$, стоящее под знаком супремума, конечно при $\lambda < h(X)$, так что $0 < \lambda(X) < \infty$ (кроме вырожденного случая X=0, когда $\lambda(X)=\infty$). Разумеется, $\lambda(X)$ зависит только от распределения величины X. Отметим также, что функционал $\lambda(\cdot)$ является однородным степени -1, т.е. $\lambda(cX)=|c|^{-1}\lambda(X)$.

Если величина X ограничена, то параметр $\lambda(X)$ нетрудно оценить. Пусть $|X| \leq a$. Тогда при всех $x \in (0,a)$ запишем неравенство

$$\lambda x^3 e^{\lambda x} = \lambda x e^{\lambda x} x^2 \le \lambda a e^{\lambda a} x^2.$$

Полагая $\lambda = 1/2a$, находим

$$\lambda |\mathbf{E}|X|^3 e^{\lambda X} \le \sqrt{e/4} |\mathbf{E}X|^2 < \mathbf{E}X^2.$$

Поэтому $\lambda(X) \geq 1/2a$, т.е. $\lambda(X)^{-1} \leq 2a$.

Через параметр $\lambda(X)$ можно оценить дисперсию величины X. В самом деле

$$(\mathbf{E}X^2)^{3/2} \le \mathbf{E}|X|^3 \le \mathbf{E}|X|^3 e^{\lambda|X|} \le \lambda^{-1}\mathbf{E}X^2$$

Отсюда

$$Var X = EX^2 \le \lambda(X)^{-2}.$$
 (3.1)

Обсудим теперь связь параметра Саханенко с другими, более известными характеристиками распределения, такими как параметры Бернштейна и Крамера.

Параметр Бернштейна b(X) определяется для величин с нулевым математическим ожиданием и выражается в терминах моментов величины X:

$$b(X) = \inf\{\tau: |\mathbf{E}X^m| \leq \frac{m!}{2}\tau^{m-2}\mathbf{Var}(X), \quad m = 3, 4, \dots\}.$$

Например, если $|X| \le a$, то $b(X) \le a$.

Параметр Бернштейна напрямую контролирует величину четных моментов, однако и нечетные абсолютные моменты также допускают факториальные оценки. Обозначим $\tau=b(X)$. По неравенству Гельдера для любого нечетного $m\geq 3$ верно

$$\begin{split} \mathbf{E}|X|^m &=& \mathbf{E}(|X|^{(m-1)/2} \; |X|^{(m+1)/2}) \leq [\mathbf{E}X^{m-1}]^{1/2} \; [\mathbf{E}X^{m+1}]^{1/2} \\ &\leq & \left[\frac{(m-1)!}{2} \tau^{m-3} \mathbf{Var}(X) \; \cdot \; \frac{(m+1)!}{2} \tau^{m-1} \mathbf{Var}(X) \right]^{1/2} \\ &=& \frac{m!}{2} \tau^{m-2} \mathbf{Var}(X) [(m+1)/m]^{1/2} \leq \frac{m!}{\sqrt{3}} \tau^{m-2} \mathbf{Var}(X). \end{split}$$

Поэтому для любого u

$$\mathbf{E}|X|^{3}e^{|uX|} = \sum_{m=0}^{\infty} \mathbf{E}|X|^{m+3}|u|^{m}/m!$$

$$\leq \sum_{m=0}^{\infty} \mathbf{Var}(X)\tau^{m+1}|u|^{m}\frac{(m+3)!}{\sqrt{3}\ m!}$$

$$= \frac{\mathbf{Var}(X)\tau}{\sqrt{3}} \sum_{m=0}^{\infty} (m+3)(m+2)(m+1)(\tau|u|)^{m}$$

$$= \frac{\mathbf{Var}(X)x}{\sqrt{3}|u|} \left[6(1-x)^{-1} + 18x(1-x)^{-2} + 18x^{2}(1-x)^{-3} + 6x^{3}(1-x)^{-4} \right],$$

где $x = \tau |u|$. Полагая $u = (7\tau)^{-1}, x = 1/7$, получаем

$$\mathbf{E}|X|^3 e^{|uX|} \le 0.92|u|^{-1} \mathbf{Var}(X),$$

т.е.
$$\lambda(X) \ge (7\tau)^{-1}$$
 или $\lambda(X)^{-1} \le 7b(X)$.

Неравенство в обратную сторону почти очевидно. Если $\lambda=\lambda(X)$, то для любого $m\geq 3$

$$\frac{\mathbf{E}|X|^3(\lambda|X|)^{m-3}}{(m-3)!} \leq \mathbf{E}|X|^3e^{|\lambda X|} \leq \lambda^{-1}\mathbf{Var}(X),$$

откуда

$$\mathbf{E}|X|^m \le (m-3)!\lambda^{2-m}\mathbf{Var}(X) \le \frac{m!}{2}\lambda^{2-m}\mathbf{Var}(X)$$

И

$$b(X) \le \lambda(X)^{-1}$$
.

Что касается связи между параметрами Бернштейна (или эквивалентного ему параметра Саханенко) и Крамера, то почти очевидным является неравенство

$$b(X) \ge h(X)^{-1}.$$

Действительно, если h b(X) < 1, то

$$\begin{split} \mathbf{E}e^{h|X|} & \leq & \sum_{m\geq 0} \frac{h^m |\mathbf{E}X^m|}{m!} \\ & \leq & 1 + h\,\mathbf{E}|X| + \frac{h^2\mathbf{E}X^2}{2} + \sum_{m\geq 3} \frac{h^m b(X)^{m-2}\mathbf{Var}X}{2} < \infty. \end{split}$$

В обратную сторону можно лишь показать, что

$$b(X) \le 2 \inf_{h>0} \frac{\mathbf{E}e^{h|X|}}{h^3 \mathbf{Var} X}$$
,

т.е. показатели Бернштейна и Саханенко конечны тогда и только тогда, когда выполнено условие Крамера. Однако следующий пример показывает, что через параметр Крамера оценить параметр Бернштейна нельзя. Пусть $R\geq 0$ и случайная величина X_R имеет плотность $p(x)=\frac{1}{2}\,e^{R-|x|}\mathbf{1}_{[R,\infty)}(|x|).$ Тогда $h(X_R)=1,$ но

$$b(X_R) \geq \frac{\mathbf{E} X_R^4}{12 \ \mathbf{E} X_R^2} \sim \frac{R^2}{12} \to \infty \quad (R \to \infty).$$

Следующая теорема представляет собой оптимальную оценку в сильной аппроксимации сумм независимых случайных величин в терминах параметра Саханенко.

Теорема 3.1. (Экспоненциальное неравенство Саханенко.) Пусть $X = \{X_j\}$ – последовательность независимых случайных величин, имеющих конечные экспоненциальные моменты. Тогда для любого натурального п можно построить на некотором вероятностном пространстве последовательность $\tilde{X} = \{\tilde{X}_1, \dots, \tilde{X}_n\}$, равнораспределенную с $\{X_1, \dots, X_n\}$, а также последовательность независимых гауссовских величин $\{\tilde{Y}_1, \dots, \tilde{Y}_n\}$, имеющих те же математические ожидания и дисперсии, таким образом, чтобы для разности $\Delta_n(\tilde{X}, \tilde{Y})$, определенной в (1.1), было выполнено

$$\mathbf{E}\exp\left\{C_3\lambda\Delta_n(\tilde{X},\tilde{Y})\right\} \le 1 + \lambda B_n,\tag{3.2}$$

где C_3 некоторая абсолютная постоянная, $B_n^2 = \sum_{j=1}^n \mathbf{Var} X_j$ и $\lambda = \inf_{j \leq n} \lambda(X_j - \mathbf{E} X_j)$.

Замечание 3.2. Неравенство КМТ (2.1) очевидным образом следует из (3.2), причем в нем можно положить $C_1 = C_3 \lambda(X_1)$, $C_2 = \lambda(X_1) (\mathbf{Var} X_1)^{1/2}$.

Явная зависимость всех параметров неравенства (3.2) от распределений слагаемых делает возможным его применение к срезкам случайных величин, не имеющих экспоненциальных моментов. В результате получаются неравенства типа (3.2), хотя и более скромные. Например, для величин, имеющих моменты порядка p > 2, верен следующий аналог теоремы 3.1.

Теорема 3.2. (Степенное неравенство Саханенко.) Пусть $X = \{X_j\}$ – последовательность независимых случайных величин, имеющих конечные моменты порядка p > 2. Тогда для любого натурального п можно построить на некотором вероятностном пространстве последовательность $\tilde{X} = \{\tilde{X}_1, \ldots, \tilde{X}_n\}$, равнораспределенную с $\{X_1, \ldots, X_n\}$, и последовательность независимых

гауссовских величин $\{\tilde{Y}_1, \dots, \tilde{Y}_n\}$, имеющих те же математические ожидания и дисперсии, таким образом, чтобы для разности $\Delta_n(\tilde{X}, \tilde{Y})$, определенной в (1.1), было выполнено

$$\mathbf{E}\Delta_n(\tilde{X}, \tilde{Y})^p \le C(p) \sum_{j=1}^n \mathbf{E}|X_j - \mathbf{E}X_j|^p, \tag{3.3}$$

 $rde\ C(p)$ – некоторая постоянная, зависящая только от p.

Предложение 3.3. Существует такая константа C'(p), что построение из предыдущей теоремы возможно провести так, чтобы неравенство (3.3) выполнялось для всех n одновременно, хотя u c заменой C(p) на C'(p).

Доказательство. Пусть имеется некоторое разбиение натурального ряда на конечные блоки $\{\mathcal{N}_m\}$, причем

$$\sum_{j \in \mathcal{N}_m} \mathbf{E}|X_j - \mathbf{E}X_j|^p \le T_m.$$

Тогда по теореме 3.2 можно так построить для каждого блока аппроксимирующие гауссовские последовательности $\tilde{Y}_j, j \in \mathcal{N}_m$, чтобы соответствующие отклонения Δ_m удовлетворяли оценкам

$$\mathbf{E}\Delta_m^p \le C(p)T_m.$$

Не ограничивая общности, можно считать, что все эти конструкции реализованы на общем вероятностном пространстве. Тогда верны следующие неравенства:

$$\mathbf{E}\Delta_m \le C(p)^{1/p} T_m^{1/p}, \qquad \mathbf{E}\Delta_m^2 \le C(p)^{2/p} T_m^{2/p}.$$

Полагая далее $\tilde{\Delta}_m = \Delta_m - \mathbf{E}\Delta_m$, получаем аналогичные соотношения

$$\mathbf{E}|\tilde{\Delta}_m|^p \le \mathbf{E}\Delta_m^p + (\mathbf{E}\Delta_m)^p \le 2\mathbf{E}\Delta_m^p \le 2 C(p)T_m,$$

$$\mathbf{E}\tilde{\Delta}_m^2 \le \mathbf{E}\Delta_m^2 \le C(p)^{2/p}T_m^{2/p}.$$

Пусть $S = \sum_m \Delta_m, \ \tilde{S} = S - \mathbf{E}S.$ Тогда неравенство Розенталя [3, теорема 3.5.19] дает

$$\mathbf{E}|\tilde{S}|^{p} \leq c_{R}(p) \left(\sum_{m} \mathbf{E}|\tilde{\Delta}_{m}|^{p} + \left(\sum_{m} \mathbf{E}\tilde{\Delta}_{m}^{2} \right)^{p/2} \right)$$

$$\leq c_{R}(p)C(p) \left(2 \sum_{m} T_{m} + \left(\sum_{m} T_{m}^{2/p} \right)^{p/2} \right)$$

с некоторой постоянной $c_R(p)$, зависящей только от p. Имеем также

$$\mathbf{E}S = \sum_{m} \mathbf{E}\Delta_{m} \le C(p)^{1/p} \sum_{m} T_{m}^{1/p}.$$

Поэтому

$$\mathbf{E}S^p = \mathbf{E}(\tilde{S} + \mathbf{E}S)^p \le 2^p \left[\mathbf{E}|\tilde{S}|^p + (\mathbf{E}S)^p \right] \le 2^p C(p)Q, \tag{3.4}$$

где

$$Q = \left(2c_R(p)\sum_m T_m + c_R(p)\left(\sum_m T_m^{2/p}\right)^{p/2} + \left(\sum_m T_m^{1/p}\right)^p\right).$$

Теперь докажем собственно предложение 3.3. Для краткости

записи считаем $\mathbf{E}X_j=0$. Рассмотрим два случая. а) Пусть $T=\sum_j\mathbf{E}|X_j|^p=\infty$. В этом случае мы построим блоки $\{\mathcal{N}_m,-\infty< m<\infty\}$ по формуле

$$\mathcal{N}_m = \left\{ n : 2^{m-1} < \sum_{j \le n} \mathbf{E} |X_j|^p \le 2^m \right\}.$$

Соответственно можно положить $T_m=2^m$. Для всех M и всех $n \in \mathcal{N}_M$ верно

$$\Delta_n(\tilde{X}, \tilde{Y}) \le \sum_{m \le M} \Delta_m.$$

Подставляя в (3.4) конкретные значения T_m , получаем

$$\mathbf{E}\Delta_{n}(\tilde{X}, \tilde{Y})^{p} \leq \mathbf{E} \left(\sum_{m \leq M} \Delta_{m} \right)^{p}$$

$$\leq 2^{p+1+M} C(p) \left(2c_{R}(p) + c_{R}(p) \left(2^{2/p} - 1 \right)^{-p/2} + \left(2^{1/p} - 1 \right)^{-p} \right),$$

в то время как

$$\sum_{j \le n} \mathbf{E} |X_j|^p > 2^{M-1}$$

и (3.3) проверено.

б) Пусть $T = \sum_j \mathbf{E} |X_j|^p < \infty$. Здесь простая конструкция из предыдущего пункта не проходит, так как в один из классов попадет бесконечное число индексов. Построим два типа блоков. По типу предыдущего пункта, положим для m < 0

$$\mathcal{N}_m = \left\{ n : 2^{m-1}T < \sum_{j \le n} \mathbf{E}|X_j|^p \le 2^m T \right\}$$

и $T_m = 2^m T$.

Для m > 0 выберем

$$\mathcal{N}_m = \left\{ n : 2^{-m}T < \sum_{j \ge n} \mathbf{E}|X_j|^p \le 2^{1-m}T \right\}$$

и $T_m = 2^{-m}T$.

При таком построении останется непокрытым единственный индекс

$$n_0 = \inf\{n : \sum_{j>n} \mathbf{E}|X_j|^p > T/2\}.$$

Из него образуем класс \mathcal{N}_0 и положим $T_0 = T$.

Для индексов $n\in \cup_{m<0}\mathcal{N}_m$ проходят оценки из п. а). Для индексов $n\in \cup_{m\geq 0}\mathcal{N}_m$ в силу (3.4) верно

$$\mathbf{E}\Delta_n(\tilde{X}, \tilde{Y})^p \le \mathbf{E}\left(\sum_{m=-\infty}^{\infty} \Delta_m\right)^p \le C'(p)T,$$

в то время как

$$\sum_{j \le n} \mathbf{E} |X_j|^p > T/2$$

и (3.3) проверено.

Сейчас мы покажем как можно пользоваться оценкой (3.3) для получения достаточно произвольных скоростей сходимости. Сначала сформулируем результат для величин с заданными оценками моментов степенного порядка.

Теорема 3.4. (К. Шао, [13].) Пусть $X = \{X_j\}$ – последовательность независимых случайных величин с нулевыми средними, а $H_j \nearrow \infty$ — положительная последовательность u при некотором p>2

$$\sum_{j=1}^{\infty} \frac{\mathbf{E}|X_j|^p}{H_j^p} < \infty. \tag{3.5}$$

Тогда можно таким образом построить на некотором вероятностном пространстве последовательность $\tilde{X}=\{\tilde{X}_j\}$, равнораспределенную с X, и последовательность независимых гауссовских величин $\tilde{Y}=\{\tilde{Y}_j\}$, имеющих $\tilde{\mathbf{E}}\tilde{Y}_j=0$ и $\mathbf{Var}\tilde{Y}_j=\mathbf{Var}X_j$, чтобы для разности $\Delta_n(\tilde{X},\tilde{Y})$, определенной в (1.1), было почти наверное выполнено

$$\Delta_n(\tilde{X}, \tilde{Y}) = o(H_n).$$

Следующая теорема показывает как можно получать оценки типа КМТ на примере сумм случайных величин имеющих равномерно ограниченные хвосты. В случае одинаково распределенных слагаемых из нее мгновенно следует теорема 2.3 и, после небольшого дополнительного вычисления, теорема 2.2.

Теорема 3.5. (К.Шао, У.Айнмаль.) Пусть заданы положительная случайная величина Z, последовательность независимых случайных величин $X = \{X_j\}$ и функция $G: \mathbf{R}_+ \to \mathbf{R}_+$, удовлетворяющие следующим условиям:

- а) при некотором $\alpha > 1$ функция $x \to G(x)/x^{\alpha}$ не убывает;
- б) при некотором q > 0 функция $x \to G(x)/x^q$ не возрастает;
- в) для некоторого c>0 при всех $r\geq 0$ верно

$$\sup_{j} \mathbf{P}\{|X_{j}| \ge r\} \le c \ \mathbf{P}\{Z \ge r\};$$

e) $\mathbf{E}G(Z) < \infty$.

Тогда можно таким образом построить на некотором вероминостном пространстве последовательность $\tilde{X}=\{\tilde{X}_j\}$, равнораспределенную с X, и последовательность независимых гауссовских величин $\tilde{Y}=\{\tilde{Y}_j\}$, имеющих математические ожидания $\mathbf{E}X_j$ и дисперсии

$$\operatorname{Var} \tilde{Y}_j^2 = \operatorname{Var}(X_j \mathbf{1}_{G(|X_j|) \le j}),$$

чтобы почти наверное

$$\sum_{j=1}^{n} \tilde{X}_{j} - \sum_{j=1}^{n} \tilde{Y}_{j} = o(G^{-1}(n)). \tag{3.6}$$

Доказательство теоремы 3.4. Сначала немного уменьшим H_j : выберем такую возрастающую последовательность H'_j , чтобы $H'_j = o(H_j)$, но по-прежнему

$$\sum_{j=1}^{\infty} \frac{\mathbf{E}|X_j|^p}{(H_j')^p} < \infty.$$

Положим $X'_j = X_j/H'_j$ и построим на одном вероятностном пространстве последовательность \tilde{X}' и соответствующую гауссовскую последовательность \tilde{Y}' таким образом, чтобы для любого n выполнялось (3.3), т.е.

$$\mathbf{E}\Delta_{n}(\tilde{X}', \tilde{Y}')^{p} \leq C(p) \sum_{j=1}^{n} \mathbf{E}|X'_{j}|^{p} = C(p) \sum_{j=1}^{n} \frac{\mathbf{E}|X_{j}|^{p}}{(H'_{j})^{p}}.$$
 (3.7)

Поскольку правая часть (3.7) равномерно по n ограничена, то мы имеем

$$\mathbf{E}\Delta_{\infty}(\tilde{X}', \tilde{Y}')^{p} \le C(p) \sum_{j=1}^{\infty} \frac{\mathbf{E}|X_{j}|^{p}}{(H'_{j})^{p}} < \infty,$$

где $\Delta_{\infty}(\tilde{X}',\tilde{Y}')=\sup_{n}\Delta_{n}(\tilde{X}',\tilde{Y}')$. Поэтому последовательность

$$S'_{n} = \sum_{j=1}^{n} \tilde{X}'_{j} - \sum_{j=1}^{n} \tilde{Y}'_{j},$$

для которой $|S_n'| \leq \Delta_n(\tilde{X}', \tilde{Y}')$, будет почти наверное ограничена.

Теперь на том же вероятностном пространстве вернем величинам правильный масштаб и положим $\tilde{X}_j = H_j' \tilde{X}_j', \tilde{Y}_j = H_j' \tilde{Y}_j'$. Для разностей имеем

$$\sum_{j=1}^{k} \tilde{X}_{j} - \sum_{j=1}^{k} \tilde{Y}_{j} = \sum_{j=1}^{k} H'_{j} (\tilde{X}'_{j} - \tilde{Y}'_{j})$$

$$= \sum_{j=1}^{k} H'_{j} (S'_{j} - S'_{j-1}) = H'_{k} S'_{k} - \sum_{j=1}^{k-1} S'_{j} (H'_{j+1} - H'_{j}).$$

Следовательно,

$$\left| \sum_{j=1}^{k} \tilde{X}_{j} - \sum_{j=1}^{k} \tilde{Y}_{j} \right| \leq 2H'_{k} \sup_{1 \leq j < \infty} |S'_{j}| = O(H'_{k}) = o(H_{k}).$$

Поскольку \tilde{X}_j и \tilde{Y}_j имеют нужные распределения и обладают требуемой независимостью, теорема 3.4 доказана.

Доказательство теоремы 3.5. Будем считать, что $\mathbf{E} X_j = 0$. Положим $H_j = G^{-1}(j)$ и разобьем X_j на три части:

$$X_{j} = (X_{j}\mathbf{1}_{|X_{j}| \le H_{j}} - \mathbf{E}[X_{j}\mathbf{1}_{|X_{j}| \le H_{j}}]) + X_{j}\mathbf{1}_{|X_{j}| > H_{j}} - \mathbf{E}[X_{j}\mathbf{1}_{|X_{j}| > H_{j}}].$$
(3.8)

Аппроксимации (с помощью теоремы 3.4) заслуживает только первое слагаемое. Проверим выполнение условия (3.5) применительно к величинам $X_j \mathbf{1}_{|X_j| \leq H_j} - \mathbf{E}[X_j \mathbf{1}_{|X_j| \leq H_j}]$. Убедимся, что для любого p > q

$$\sum_{j=1}^{\infty} \frac{\mathbf{E}|X_j|^p \mathbf{1}_{|X_j| \le H_j}}{H_j^p} < \infty. \tag{3.9}$$

По формуле интегрирования по частям и условию в) при всех u>0 и j

$$\begin{aligned} \mathbf{E}|X_{j}|^{p}\mathbf{1}_{|X_{j}|\leq u} &= \int_{0}^{u} px^{p-1}\mathbf{P}\{|X_{j}| \geq v\}dv - u^{p}\mathbf{P}\{|X_{j}>u\} \\ &\leq c \int_{0}^{u} px^{p-1}\mathbf{P}\{Z \geq v\}dv = c \ \mathbf{E}Z^{p}\mathbf{1}_{Z\leq u} + c \ u^{p}\mathbf{P}\{Z>u\}. \end{aligned}$$

Применяя это к $u = H_i$, мы придем к необходимости оценить ряды

$$\sum_{i=1}^{\infty} \frac{\mathbf{E} Z^p \mathbf{1}_{Z \le H_j}}{H_j^p} , \qquad \sum_{i=1}^{\infty} \mathbf{P} \{ Z > H_j \}.$$

Для второго ряда по условию г)

$$\sum_{j=1}^{\infty} \mathbf{P}\{Z \ge H_j\} = \mathbf{E} \sum_{j=1}^{[G(Z)]} 1 \le \mathbf{E}G(Z) < \infty.$$
 (3.10)

Для первого ряда

$$\sum_{j=1}^{\infty} \frac{\mathbf{E} Z^p \mathbf{1}_{Z \leq H_j}}{H_j^p} \leq \mathbf{E} Z^p \sum_{j=N(Z)}^{\infty} H_j^{-p},$$

где

$$N=N(Z)=egin{cases} [G(Z)]+1, & ext{если } G(Z) \text{ не целое,} \ G(Z), & ext{если } G(Z) \text{ целое.} \end{cases}$$

Далее, из условия б) теоремы следует, что функция

$$y \to G^{-1}(y)y^{-1/q}$$

не убывает. Соответственно при любом $j \geq N$ имеем

$$\frac{H_j}{j^{1/q}} = \frac{G^{-1}(j)}{j^{1/q}} \ge \frac{G^{-1}(N)}{N^{1/q}},$$

$$H_j \ge \frac{j^{1/q} G^{-1}(N)}{N^{1/q}}$$
,

откуда

$$\sum_{j=N}^{\infty} H_j^{-p} \le G^{-1}(N)^{-p} N^{p/q} \sum_{j=N}^{\infty} j^{-p/q}$$

 $\le c(p,q)G^{-1}(N)^{-p} N \le c(p,q)Z^{-p} N.$

(Отметим, что в последнем переходе было использовано неравенство $G^{-1}(N(Z)) \geq Z$.) Следовательно,

$$\sum_{j=1}^{\infty} \frac{\mathbf{E}Z^p \mathbf{1}_{Z \le H_j}}{H_j^p} \le c(p,q) \mathbf{E}N(Z) \le c(p,q) (\mathbf{E}G(Z) + 1) < \infty.$$

Таким образом, условие (3.9) проверено. Учитывая, что для любой случайной величины V по неравенству Йенсена

$$\mathbf{E}|V - \mathbf{E}V|^p \le 2^p \mathbf{E} \max\{|V|^p; |\mathbf{E}V|^p\}$$

$$\leq 2^p (\mathbf{E}|V|^p + |\mathbf{E}V|^p) \leq 2^{p+1} \mathbf{E}|V|^p,$$

мы видим, что первые слагаемые в (3.8) подчиняются условию теоремы 3.4 и тем самым для их сумм имеется гауссовская аппроксимация нужного порядка $o(H_n) = o(G^{-1}(n))$.

Теперь покажем, что второе и третье слагаемое в (3.8) никакой роли не играют. В самом деле, для второго слагаемого по (3.10) мы имеем

$$\sum_{j} \mathbf{P}\{|X_j| > H_j\} \le c \sum_{j} \mathbf{P}\{Z \ge H_j\} < \infty.$$

Поэтому по лемме Бореля–Кантелли второе слагаемое, начиная с некоторого номера j, просто обращается в нуль.

Для оценки третьего слагаемого воспользуемся известной леммой Кронекера. Она утверждает, что для произвольной последовательности x_j и произвольной положительной последовательности $c_n \nearrow \infty$ из $\sum_j \frac{x_j}{c_j} < \infty$ следует $\frac{1}{c_n} \sum_{j \le n} x_j \to 0$. Поэтому для проверки соотношения

$$\frac{1}{H_n} \sum_{j \le n} \mathbf{E}[X_j \mathbf{1}_{|X_j| > j}] \to 0,$$

уничтожающего третье слагаемое, достаточно проверить конечность суммы

$$\sum_{j=1}^{\infty} \frac{\mathbf{E}|X_j|\mathbf{1}_{|X_j|>H_j}}{H_j}.$$

Поскольку для любых u > 0 и j

$$\begin{split} \mathbf{E}|X_j|\mathbf{1}_{|X_j|>u} &= u \; \mathbf{P}\{|X_j|>u\} + \int_u^\infty \mathbf{P}\{|X_j|>v\}dv \\ &\leq c \; u \; \mathbf{P}\{Z>u\} + c \int_u^\infty \mathbf{P}\{Z>v\}dv \\ &= c \; \mathbf{E}Z\mathbf{1}_{Z>u} \; , \end{split}$$

то дело сводится к математическому ожиданию

$$\mathbf{E}\left(Z\sum_{j< G(Z)}H_j^{-1}\right).$$

Воспользуемся условием в) теоремы. Оно гарантирует, что функция $x \to G^{-1}(x)x^{-1/\alpha}$ не возрастает. Поэтому для любого $j \le m$, где m=m(Z)=[G(Z)]+1, имеем

$$\frac{H_j}{j^{1/a}} = \frac{G^{-1}(j)}{j^{1/a}} \ge \frac{G^{-1}(m)}{m^{1/a}} = \frac{H_m}{m^{1/a}},$$

$$H_j \ge \frac{H_m j^{1/a}}{m^{1/a}}$$

и так как $\alpha > 1$, то

$$\begin{split} \sum_{j \leq m} H_j^{-1} & \leq m^{1/\alpha} H_m^{-1} \sum_{j \leq m} j^{-1/\alpha} \\ & \leq & m^{1/\alpha} H_m^{-1} c(\alpha) m^{1-1/\alpha} = c(\alpha) \ m \ H_m^{-1}. \end{split}$$

С учетом неравенства $Z \leq H_{m(Z)}$,

$$\begin{split} \mathbf{E}\left(Z\sum_{j< G(Z)}H_{j}^{-1}\right) &\leq \mathbf{E}\left(Z\sum_{j\leq m(Z)}H_{j}^{-1}\right) \\ &\leq &c(\alpha)\mathbf{E}\left(Z\;m(Z)H_{m(Z)}^{-1}\right) \\ &\leq &c(\alpha)\mathbf{E}m(Z)\leq c(\alpha)(\mathbf{E}G(Z)+1)<\infty. \end{split}$$

Этого достаточно для применения леммы Кронекера и уничтожения третьей части в (3.8).

Доказательство теоремы 2.2. Не ограничивая общности, можно считать, что наши одинаково распределенные величины X_j имеют единичные дисперсии и нулевые средние. Применяя теорему 3.5 с $G(x)=x^p$, мы построим гауссовские величины \tilde{Y}_j , дающие нужный порядок аппроксимации $o(n^{1/p})$, но имеющие не единичные дисперсии. Исправляя этот недостаток, полагаем

$$Y_j = (\mathbf{Var}\tilde{Y}_j)^{-1/2}\tilde{Y}_j.$$

Достаточно проверить, что разности $Z_j = Y_j - \tilde{Y}_j$ почти наверное удовлетворяют оценке

$$n^{-1/p} \sum_{j=1}^{n} Z_j \to 0.$$

По усиленному закону больших чисел Колмогорова, для этого достаточно убедиться в сходимости ряда из дисперсий

$$\sum_{j=1}^{\infty} j^{-2/p} \mathbf{Var}(Z_j). \tag{3.11}$$

Положим $v_j = \mathbf{Var} Y_j$ и запишем тождество

$$Z_j = (v_j^{-1/2} - 1)\tilde{Y}_j = \frac{1 - v_j}{v_j^{1/2}(v_j^{-1/2} + 1)}\tilde{Y}_j.$$

По построению из доказательства теоремы 3.2 мы имеем $H_j = j^{1/p},$ а также

$$1 - v_{j} = \mathbf{E}X_{j}^{2} - \mathbf{E}X_{j}^{2}\mathbf{1}_{|X_{j}| \leq H_{j}} + (\mathbf{E}X_{j}\mathbf{1}_{|X_{j}| \leq H_{j}})^{2}$$

$$= \mathbf{E}X_{j}^{2}\mathbf{1}_{|X_{j}| > H_{j}} + (\mathbf{E}X_{j}\mathbf{1}_{|X_{j}| > H_{j}})^{2}$$

$$\leq 2\mathbf{E}X_{j}^{2}\mathbf{1}_{|X_{j}| > H_{j}} = 2\sigma_{j}^{2} \searrow 0.$$

Более того,

$$\sum_{j=1}^{\infty} \sigma_{j}^{2} j^{-2/p} = \mathbf{E} \left(X_{1}^{2} \sum_{j=1}^{\infty} \mathbf{1}_{|X_{1}| > j^{1/p}} j^{-2/p} \right)$$

$$\leq c(p) \mathbf{E} \left(X_{1}^{2} [|X_{1}|^{p}]^{1-2/p} \right)$$

$$\leq c(p) \mathbf{E} |X_{1}|^{p} < \infty.$$

Учитывая, что $\{\sigma_j^2\}$ монотонная последовательность, находим отсюла

$$\sigma_n^2 \le c(p) \ \mathbf{E} |X_1|^p \left(\sum_{j=1}^n j^{-2/p}\right)^{-1} \le c \ n^{\frac{2-p}{p}}.$$

Окончательно, пользуясь неравенством p > 2, имеем

$$\sum_{j=1}^{\infty} j^{-2/p} \mathbf{Var}(Z_j) \le \sum_{j=1}^{\infty} \frac{(cj^{\frac{2-p}{p}})^2}{(1+o(1))j^{2/p}} \le c \sum_{j=1}^{\infty} j^{\frac{2-2p}{p}} < \infty,$$

и (3.11) проверено. Теорема доказана.

Параметр Зайцева. Пусть X случайная величина. Рассмотрим ее комплексные экспоненциальные моменты

$$\Lambda(u) = \mathbf{E} \exp\{uX\}, \quad u \in \mathbf{C}$$

и определим, следуя работе [1], параметр Зайцева соотношением

$$\tau_z(X) = \inf\{\tau : |(\log \Lambda)'''(u)| \le \tau \mathbf{Var}(X), \quad \forall u : |u| \le \tau^{-1}\}.$$

Здесь имеется в виду, что функция $\Lambda(\cdot)$ определена и дифференцируема во всех точках упомянутого круга $\{u: |u| \leq \tau^{-1}\}$. Разумеется, если $\tau_z(X) \geq \tau$, то конечны и вещественные экспоненциальные моменты $\mathbf{E} \exp\{\lambda X\}$, $\lambda \in (-\tau^{-1},\tau^{-1})$). Параметр $\tau_z(X)$ характеризует близость распределения X к классу нормальных распределений. Очевидно, что $\tau_z(X) = 0$ эквивалентно нормальности распределения X (в самом деле, условие $(\log \Lambda)^{'''}(\cdot) = 0$ означает, что $\log \Lambda$ есть многочлен второго порядка). В отличие от параметра Саханенко, малость параметра $\tau_z(X)$ не означает малость случайной величины X (которая может быть сама по себе достаточно большой, но близкой по распределению к некоторой нормальной величине).

Функционал $\tau_z(X)$ является однородным степени 1, т.е. верно $\tau_z(cX) = |c|\tau_z(X)$.

Выполнено также замечательное свойство согласованности с операцией суммирования независимых величин (свертки распределений): для любых независимых величин X,Y верно $\tau_z(X+Y) \leq \max\{\tau_z(X),\tau_z(Y)\}$.

Следующая теорема представляет собой оптимальную оценку в сильной аппроксимации сумм независимых случайных величин в терминах параметра Зайцева.

Теорема 3.6. (Одномерное неравенство Зайцева.) Пусть $X = \{X_j\}$ – последовательность независимых случайных величин, имеющих нулевые средние и единичные дисперсии. Тогда для любого натурального п можно таким образом построить на некотором вероятностном пространстве последовательность $\tilde{X} = \{\tilde{X}_j\}_{j \leq n}$, равнораспределенную с $\{X_j\}_{j \leq n}$, и последовательность независимых гауссовских величин $\{\tilde{Y}_j\}_{j \leq n}$ с теми же средними и единичными дисперсиями, чтобы для разности $\Delta_n(\tilde{X}, \tilde{Y})$, определенной в (1.1), было выполнено

$$\mathbf{E}\exp\left\{C_1\tau^{-1}\Delta_n(\tilde{X},\tilde{Y})\right\} \le \exp\{C_2\log^+(n/\tau^2)\},\tag{3.12}$$

 $r\partial e\ C_1, C_2$ – некоторые абсолютные постоянные, u

$$\log^+ v = \max\{1, \log v\}, \qquad \tau = \tau_n = \sup_{j \le n} \tau_z (X_j - \mathbf{E} X_j) .$$

Отсюда, конечно, вытекает экспоненциальное неравенство — для любого x>0

$$\mathbf{P}\left\{\Delta_n(\tilde{X}, \tilde{Y}) \ge C_2 \tau \log^+(n/\tau^2)/C_1 + x\right\} \le \exp\left\{-C_1 x/\tau\right\} \quad (3.13)$$

и логарифмическая аппроксимация КМТ-типа (2.3) для бесконечной последовательности, если

$$\sup_{1 \le j < \infty} \tau_z (X_j - \mathbf{E} X_j) < \infty.$$

Связь параметров Зайцева и Саханенко. Оценим параметр Зайцева через параметр Саханенко. Пусть X – вещественная случайная величина и $\lambda = \lambda(X) < \infty$. Положим $D = \mathbf{Var}(X)$ и

 $\Lambda(u) = \mathbf{E} e^{uX}$. Мы уже видели, что $D \leq \lambda(X)^{-2}$. Для оценки параметра $\tau_z(X)$ необходимо оценить величину

$$(\log \Lambda)'''(u) = \frac{\Lambda'''}{\Lambda}(u) - \frac{3\Lambda''\Lambda'}{\Lambda^2}(u) + \frac{2(\Lambda')^3}{\Lambda^3}(u)$$
 (3.14)

для не слишком больших $u \in \mathbf{C}$. Пусть $|u| \le c\lambda$. Оценим Λ и производные $\Lambda', \Lambda'', \Lambda'''$, появляющиеся в (3.14).

1) Из разложения

$$\Lambda(u) = \mathbf{E}e^{uX} = \mathbf{E}(1 + uX + u^2X^2/2 \pm (|uX|^3/6 + ...))$$

следует

$$|\Lambda(u)| \geq 1 - |u|^2 D/2 - |u|^3 \mathbf{E}(|X|^3 e^{|uX|})/6$$

$$\geq 1 - |u|^2 D/2 - |u|^3 \lambda^{-1} D/6$$

$$\geq 1 - (c^2/2 + c^3/6) = c_0.$$

2) Из разложения

$$\Lambda'(u) = \mathbf{E}Xe^{uX} = \mathbf{E}(X + uX^2 \pm |X|(|uX|^2/2 + ...))$$

следует

$$|\Lambda'(u)| \le D|u| + |u|^2 \mathbf{E}|X|^3 e^{|uX|}/2$$

 $\le D|u| + |u|^2 \lambda^{-1} D/2 \le D|u|(1 + c/2).$

3) Из разложения

$$\Lambda''(u) = \mathbf{E} X^2 e^{uX} = \mathbf{E} (X^2 \pm X^2 (|uX| + ...))$$

следует

$$|\Lambda''(u)| \le D + |u|\mathbf{E}|X|^3 e^{|uX|} \le D + |u|\lambda^{-1}D \le D(1+c).$$

4) Из представления $\Lambda'''(u) = \mathbf{E} X^3 e^{uX}$ следует

$$|\Lambda'''(u)| \le \mathbf{E}|X|^3 e^{|uX|} \le \lambda^{-1} D.$$

Собирая все оценки вместе, находим

$$|(\log \Lambda)'''(u)|$$

$$\leq \frac{\lambda^{-1}D}{c_0} + \frac{3D(1+c)D|u|(1+c/2)}{c_0^2} + \frac{2(D|u|(1+c/2))^3}{c_0^3}$$

$$\leq \lambda^{-1}D\left[\frac{1}{c_0} + \frac{3c(1+c)(1+c/2)}{c_0^2} + \frac{2c^3(1+c/2)^3}{c_0^3}\right].$$

Полагая здесь c = 1/3, получаем

$$|(\log \Lambda)'''(u)| \le 3\lambda^{-1}D = c^{-1}\lambda^{-1}D,$$

откуда следует $\tau_z(X) \leq c^{-1}\lambda^{-1} = 3\lambda(X)^{-1}$. Таким образом, для любой случайной величины X верно

$$\tau_z(X) \leq 3\lambda^{-1}(X)$$
.

Оценка параметра Саханенко (или Бернштейна) через параметр Зайцева требует дополнительного ограничения на дисперсию. Предположим, что $\tau_z(X) \leq 1$, $\mathbf{E}X = 0$ и $D = \mathbf{Var}(X) \leq 1$. Тогда для $u: |u| \leq 1$ мы имеем $|(\log \Lambda)'''(u)| \leq D$, а также начальные условия $(\log \Lambda)''(0) = D$, $(\log \Lambda)'(0) = (\log \Lambda)(0) = 0$. Интегрирование дает

$$|(\log \Lambda)'(u)| \le D(|u| + |u|^2/2)$$

И

$$|(\log \Lambda)(u)| \le D(|u|^2/2 + |u|^3/6).$$

Отсюда моментное неравенство для вещественных u:

$$\begin{split} |\mathbf{E}X^{2}(e^{uX}-1)| &= |\Lambda''(u) - \Lambda''(0)| \le \int_{0}^{u} |\Lambda'(v)| dv \\ &= \int_{0}^{u} |(\log \Lambda)'(v) \Lambda(v)| dv \\ &\le \int_{0}^{u} D(|v| + |v|^{2}/2) \exp\{D(|u|^{2}/2 + |u|^{3}/6)\} dv \\ &\le D(|u|^{2}/2 + |u|^{3}/6) \exp\{2/3\} \\ &\le \frac{2}{3} \exp\{2/3\} D = c \ D. \end{split}$$

Полагая $u = \pm 1$, после осреднения получаем

$$c D \ge \left| \mathbf{E} X^2 \left(\frac{e^X + e^{-X}}{2} - 1 \right) \right| = \mathbf{E} \sum_{m=1}^{\infty} \frac{X^{2m+2}}{(2m)!}.$$

Для любого четного момента

$$\mathbf{E}X^{2m+2} \le c(2m)!D.$$

Для нечетных абсолютных моментов по неравенству Гельдера

$$\begin{array}{lcl} \mathbf{E} X^{2m+1} & \leq & [\mathbf{E} X^{2m}]^{1/2} \ [\mathbf{E} X^{2m+2}]^{1/2} \\ & \leq & c \ D(2m-1)! \sqrt{2m/(2m-1)} \leq \sqrt{2} c D(2m-1)!. \end{array}$$

Поскольку при всех $m \geq 3$ верно $\sqrt{2}c \leq (2^{3/2}c)^{m-2}/2$, то $b(X) \leq 2^{3/2}c < 4$. В силу однородности показателей Зайцева и Бернштейна имеем для всех случайных величин с нулевым средним

$$b(X) \le 4 \max\{\tau_z(X), \sqrt{\mathbf{Var}(X)}\}.$$

Требуемая оценка получена.

4. Сильная аппроксимация сумм многомерных величин

В этом разделе мы рассматриваем ту же задачу о сильной аппроксимации сумм, предполагая, что величины X_j принимают значения в \mathbf{R}^d . Соответственно нам потребуются такие понятия как евклидова норма $\|\cdot\|$, скалярное произведение (\cdot,\cdot) в \mathbf{R}^d и \mathbf{C}^d ; математическое ожидание $\mathbf{E}X \in \mathbf{R}^d$ и ковариационный оператор $D = \mathbf{Cov}X : \mathbf{R}^d \to \mathbf{R}^d$ для \mathbf{R}^d -значной случайной величины X, определяемые формулами

$$(\mathbf{E}X, v) = \mathbf{E}(X, v),$$

$$(Dv, w) = \mathbf{Cov}((X, v), (X, w)) = \mathbf{E}(X - \mathbf{E}X, v)(X - \mathbf{E}X, w).$$

Символом $\partial_v f$ обозначаем частную производную функции f в направлении $v \in \mathbf{R}^d$. Аналогично $\partial_v^2 f$ обозначает частную производную второго порядка.

Результаты, которые удается получить для многомерного случая, во многом аналогичны одномерным, но приходится учитывать новый мешающий фактор – возможное вырождение ковариационных операторов. Это не так важно для случая одинаково распределенных слагаемых, где линейной заменой можно привести ситуацию к сложению векторов с единичными ковариациями, но может сильно испортить дело, если мы складываем величины, чьи ковариации вырождаются в разных направлениях.

Определим многомерные аналоги условия Крамера, а также параметров Бернштейна, Саханенко и Зайцева. Случайная величина $X \in \mathbf{R}^d$ удовлетворяет условию Крамера, если она имеет конечный экспоненциальный момент, т.е. при некотором h>0

$$\mathbf{E}\exp\{h||X||\}<\infty.$$

Как и в одномерном случае, наиболее интересные результаты получаются при выполнении этого условия.

Параметр Саханенко. Пусть $X \in \mathbf{R}^d$ случайная величина, имеющая нулевое ожидание и удовлетворяющая условию Крамера.

Определим параметр Саханенко соотношением

$$\lambda(X) = \sup \left\{ \lambda : \lambda \mathbf{E} \left((X, v)^2 | (X, w) | \exp \left\{ \lambda | (X, w) | \right\} \right) \le \mathbf{E}(X, w)^2,$$
$$\forall v, w \in \mathbf{R}^d : ||v|| = ||w|| = 1 \right\}.$$

Параметр Бернштейна определяется для величин с нулевым математическим ожиданием и выражается в терминах моментов величины X:

$$b(X) = \inf\{\tau : |\mathbf{E}(X, v)^{2}(X, w)^{m-2}| \le \frac{m!}{2} \tau^{m-2} \mathbf{E}(X, v)^{2}, \forall v, w \in \mathbf{R}^{d}, ||w|| = 1, \forall m = 3, 4, ... \}.$$

Параметр Зайцева. Пусть $X \in \mathbf{R}^d$ случайная величина. Рассмотрим ее комплексные экспоненциальные моменты

$$\Lambda(u) = \mathbf{E} \exp\{(u, X)\}, \qquad u \in \mathbf{C}^d$$

и определим параметр Зайцева соотношением

$$\tau_z(X) = \inf \left\{ \tau : \partial_w \partial_v^2(\log \Lambda)(u) | \le \tau(\mathbf{Cov}X \, v, v), \right.$$
$$\forall u \in \mathbf{C}^d, v, w \in \mathbf{R}^d : |u| \le \tau^{-1}, ||w|| = ||v|| = 1 \right\}.$$

Соотношения между тремя показателями такие же, как в одномерном случае. Параметры Бернштейна и Саханенко эквивалентны, т.е.

$$[7 \ \lambda(X)]^{-1} \le b(X) \le \lambda(X)^{-1}.$$

Параметр Зайцева можно оценить через параметр Бернштейна или Саханенко – с некоторой абсолютной постоянной c верно

$$\tau_z(X) \le c \ b(X).$$

Для обратной оценки приходится привлекать величину B^2 максимального собственного числа оператора $\mathbf{Cov}(X)$ (в одномерном случае здесь использовалась дисперсия). Имеем для величин с нулевым средним и некоторой абсолютной постоянной c:

$$b(X) \le c \max\{\tau_z(X), B\}.$$

Теорема 4.1. (Многомерное неравенство Зайцева.) Пусть заданы $\alpha>0,\, D>0,\, a\, X=\{X_j\}$ – последовательность независимых случайных величин, имеющих нулевые средние и ковариационные

операторы D_j , удовлетворяющие условию равномерной невырожденности

$$|\beta_1||v||^2 \le D^2(D_j v, v) \le |\beta_2||v||^2, \ \forall v \in \mathbf{R}^d.$$
 (4.1)

Тогда для любого натурального n можно таким образом построшть на некотором вероятностном пространстве последовательность $\tilde{X}=\{\tilde{X}_1,\ldots,\tilde{X}_n\}$, равнораспределенную c $\{X_1,\ldots,X_n\}$, u последовательность независимых гауссовских случайных величин $\{\tilde{Y}_1,\ldots,\tilde{Y}_n\}$ c нулевыми средними и ковариационными операторами D_j , чтобы для разности

$$\Delta_n(\tilde{X}, \tilde{Y}) = \max_{1 \le k \le n} \left\| \sum_{j=1}^k \tilde{X}_j - \sum_{j=1}^k \tilde{Y}_j \right\|$$

было выполнено

$$\mathbf{E} \exp \left\{ \frac{C_1 D \Delta_n(\tilde{X}, \tilde{Y})}{\tau d^{9/2} \log^+ d} \right\} \le \exp \{ C_2 d^{3+\alpha} \log^+(n/\tau^2) \}, \tag{4.2}$$

где C_1, C_2 — некоторые постоянные, зависящие от $lpha, eta_1, eta_2$, u

$$\tau = \max\{1, \tau_z(X_1), \dots, \tau_z(X_n)\}.$$

Следствие 4.2. В условиях теоремы верно экспоненциальное неравенство – для любого x>0

$$\mathbf{P}\left\{C_1 \Delta_n(\tilde{X}, \tilde{Y}) \ge C_2 \tau d^{15/2 + \alpha} \log^+ d \log^+(n/\tau^2) + x\right\}$$

$$\le \exp\left\{-\frac{x}{\tau d^{9/2} \log^+ d}\right\}.$$

Следствие 4.3. Если ковариационные операторы равномерно ограничены в смысле (4.1) и

$$\sup_{1 \le j < \infty} \tau_z(X_j) < \infty,$$

то для бесконечной последовательности верна аппроксимация КМТ-типа

$$\sum_{j=1}^{n} \tilde{X}_{j} - \sum_{j=1}^{n} \tilde{Y}_{j} = O(\log n).$$

В частности, это верно для сумм независимых одинаково распределенных \mathbf{R}^d -значных случайных величин, удовлетворяющих условию Крамера.

Замечание 4.4. Ввиду отмеченных выше соотношений между параметрами Бернштейна, Зайцева и Саханенко, в формулировке теоремы можно заменить $\tau_z(X_i)$ на $b(X_i)$ или $\lambda(X_i)^{-1}$.

Замечание 4.5. Определенное неудобство в применении теоремы может выбрать равномерность оценки (4.1). В этом отношении представляет интерес следующее обобщение теоремы 4.1 (собственно говоря, оно и представляет собой настоящее неравенство Зайцева). Отрезок натурального ряда [1..n] разбивается на последовательные блоки $\mathcal{N}_1, \ldots, \mathcal{N}_l$ и вместо (4.1) ограничение накладывается на ковариации блочных сумм, т.е.

$$\beta_1||v||^2 \le D^2 \sum_{j \in \mathcal{N}_k} (D_j v, v) \le \beta_2 ||v||^2, \ \forall k \le l, \quad \forall v \in \mathbf{R}^d.$$

Тогда верно (4.2) с заменой n на l в правой части.

Замечание 4.6. В некоторых случаях можно несколько улучшить зависимость постоянных от размерности. Например, если все величины X_j имеют единичные ковариационные операторы, то, согласно работе [15], вместо (4.2) можно записать

$$\mathbf{E} \exp \left\{ \frac{C_1 D \Delta_n(\tilde{X}, \tilde{Y})}{\tau d^3 \log^+ d} \right\} \le \exp \{ C_2 d^{9/4 + \alpha} \log^+ n \},$$

где C_1, C_2 – некоторые постоянные, зависящие от α . С другой стороны, если моменты третьего порядка всех слагаемых равны нулю, то можно выбросить $\log^+ d$ в знаменателе левой части (4.2).

Замечание 4.7. Ограничение, присутствующее в теореме 4.1 не позволяет использовать возможную малость параметров $\tau_z(X_j)$, т.е. близость распределений к гауссовским. Результаты без этого ограничения (но только для достаточно гладких распределений с единичными ковариационными операторами) см. в работе [9].

Литература

- 1. Зайцев А.Ю. Оценки расстояния Леви-Прохорова в многомерной центральной предельной теореме для случайных векторов с конечными экспоненциальными моментами // Теория вероятностей и ее применения. 1986. Т. 31. С. 246–265.
- 2.~3айцев A.HO. Multidimensional version of a result of Sakhanenko in the invariance principle for vectors with finite exponential moments // Теория вероятностей и ее применения. 2000. Т. 45. С. 718–738.

- 3. *Петров В.В.* Предельные теоремы для сумм независимых случайных величин. М., 1987.
- 4. Саханенко А.И. Скорость сходимости в принципе инвариантности для разнораспределенных величин с экспоненциальными моментами // Труды Института Математики СО АН СССР. 1984. Т. 3. С. 4–49.
- 5. Bártfai P. Die Bestimmung der zu einem wiederkehrenden Prozess gehörenden Verteilungfunktion aus den mit Fehlern behafteten Daten einer einzigen Realisation// Studia Sci. Math. Hungar. 1966. Vol. 1. P. 161–168.
- 6. Csörgő M., Révész P. Strong Approximations in Probability and Statistics. New York, 1981.
- 7. Einmahl U. Strong invariance principles for partial sums of independent random vectors // Ann. Probab. 1987. Vol. 15. P. 1419–1440.
- 8. Einmahl U. Extensions of results of Komlós, Major, and Tusnády to the multivariate case // J. Multivar. Anal. 1986. Vol. 28. P. 20–68.
- 9. Götze F., Zaitsev A. Yu. Hungarian construction for vectors with almost Gaussian smooth distributions // Asymptotic Methods in Probability and Statistics with Applications. Boston, 2001. P. 101–132.
- 10. Komlós J., Major P., Tusnády G. An approximation of partial sums of independent RV'-s and the sample DF.I // Z. Wahrscheinlichkeitstheor. verw. Geb. 1975. Vol. 32. P. 111–131.
- 11. Komlós J., Major P., Tusnády G. An approximation of partial sums of independent RV'-s and the sample DF.II // Z. Wahrscheinlichkeitstheor. verw. Geb. 1976. Vol. 34, P. 34–58.
- 12. Major P. An improvement of Strassen's invariance principle. // Ann. Probab. 1979. Vol. 7. P. 55–61.
- 13. Shao Q. Strong approximation theorems for independent random variables and their applications // J. Multivar. Anal. 1995. Vol. 52. P. 107–130.
- 14. Strassen V. An invariance principle for the law of iterated logarithm // Z. Wahrscheinlichkeitstheor. verw. Geb. 1964. Vol. 3. P. 211–226.
- 15. Zaitsev A. Yu. Multidimensional version of the results of Komlós, Major, and Tusnády for vectors with finite exponential moments // ESAIM: Probability and Statistics. 1998. Vol. 2. P. 41–108.

Оглавление

1.	Введение	. 3
2.	Теорема Комлоша, Майора и Тушнади	. 4
3.	Сильная аппроксимация не одинаково распределенных	
	величин	. 9
4.	Сильная аппроксимация сумм многомерных величин	26
Л	итература	29

Михаил Анатольевич Лифшиц

ЛЕКЦИИ ПО СИЛЬНОЙ АППРОКСИМАЦИИ

Учебно-методическое пособие

Зав. редакцией Г.И. Чередниченко Редактор Ф.С. Бастиан Техн. редактор Л.Н. Иванова Обложка А.В. Калининой Компьютерная верстка автора

Подписано в печать с оригинала-макета 15.01.2007. Ф-т 60x84/16. Усл. печ. л. 1,86. Уч.-изд. л. 1,6. Тираж 100 экз. Заказ N

РОПИ С.-Петербургского государственного университета. 199034, С.-Петербург, Университетская наб., 7/9.

Отпечатано в отделе оперативной полиграфии НИИХ СПбГУ с оригинала-макета заказчика. 198504, С.-Петербург, Старый Петергоф. Университетский пр. 26. Предназначено для учебного процесса.