NP Hardness Reductions

Overview

- We have defined classes P and NP
- Notion of NP hardness and NP completeness
- A problem X is NP-hard \equiv if $X \in P$ then P = NP (alternate definition: every problem in NP poly-time reduces to it)
- A problem X is NP-complete if it is NP-hard and in NP

We will define these reductions today

Overview

- We have defined classes P and NP
- Notion of NP hardness and NP completeness
- A problem X is NP-hard \equiv if $X \in P$ then P = NP (alternate definition: every problem in NP poly-time reduces to it)
- A problem X is NP-complete if it is NP-hard and in NP
- (Cook-Levin). 3SAT/SAT is NP hard
- Today: Problem reductions!
 - Strategy to prove a problem is NP hard— Reduce a known NP hard problem to it
- Will do a bunch of reductions

Relative Hardness

- How do we compare the relative hardness of problems?
- Recurring idea in this class: reductions!
- Informally, we say a problem X reduces to a problem Y, if can use an algorithm for Y to solve X
 - Bipartite matching reduces to max flow
 - Find max-weight feedback set reduces to finding max spanning trees (which in turn reduces to finding MSTs)
 - Finding opportunity cycles reduce to negative cycles

Intuitively, if problem X reduces to problem Y, then solving X is no harder than solving Y

[Karp] Reductions

Definition. Decision problem X polynomial-time (Karp) reduces to decision problem Y if given any instance x of X, we can construct an instance y of Y in polynomial time s.t $x \in X$ if and only if $y \in Y$.

Notation. $X \leq_p Y$

• Solving X is no harder than solving Y: if we have an algorithm for Y, we can use it + poly time reduction to solve X

Reductions Quiz

Say $X \leq_p Y$. Which of the following can we infer?

- If X can be solved in polynomial time, then so can Y.
- X can be solved in poly time iff Y can be solved in poly time.
- If X cannot be solved in polynomial time, then neither can Y.
- If Y cannot be solved in polynomial time, then neither can X.

Digging Deeper

- Graph 2-Color reduces to Graph 3-color
 - We'll see this soon
- Graph 2-Color can be solved in polynomial time
 - How?
 - Can decide if a graph is bipartite in O(n+m) time using BFS
- Graph 3-color (we'll show) is NP hard and unlikely to have a polynomial-time solution

Intuitively, if problem X reduces to problem Y, then solving X is no harder than solving Y

Use of Reductions: $X \leq_p Y$

Design algorithms:

• If Y can be solved in polynomial time, we know X can also be solved in polynomial time

Establish intractability:

• If we know that X is known to be impossible/hard to solve in polynomial-time, then we can conclude the same about problem Y

Establish Equivalence:

• If $X \leq_p Y$ and $Y \leq_p X$ then X can be solved in poly-time iff Y can be solved in poly time and we use the notation $X \equiv_p Y$

NP hard: Operational Definition

- New definition of NP hard using reductions.
 - A problem Y is NP hard, if for any problem $X \in \mathbb{NP}$, $X \leq_p Y$
- Recall we said Y is NP hard if $Y \in P$, then P = NP.
- Lets show that both definitions are equivalent
 - (\Rightarrow) every problem in **NP** reduces to Y, and if $Y \in P$, then P = NP
 - (←) Suppose Y ∈ P, then P = NP: which means every problem in NP(= P) reduces to Y

Proving NP Hardness

- To prove problem Y is NP-hard
 - Difficult to prove every problem in ${\sf NP}$ reduces to Y
 - Instead, we use a known-NP-hard problem Z
 - We know every problem X in NP, $X \leq_p Z$
 - Notice that \leq_p is transitive
 - Thus, enough to prove $Z \leq_p Y$

To prove that a problem Y is NP hard, reduce a known NP hard problem Z to Y

Known NP Hard Problems?

- For now: 3SAT and SAT (Cook-Levin Theorem)
- We will prove a whole repertoire of NP hard and NP complete problems by using reductions
- Before reducing 3SAT to other problems to prove them NP hard, let us practice some easier reductions first

To prove that a problem Y is NP hard, reduce a known NP hard problem Z to Y

 $\mathsf{VERTEX\text{-}COVER} \; \equiv_p \; \mathsf{IND\text{-}SET}$

IND-SET

- Given a graph G = (V, E), an independent set is a subset of vertices $S \subseteq V$ such that no two of them are adjacent, that is, for any $x, y \in S$, $(x, y) \notin E$
- IND-SET Problem. Given a graph G = (V, E) and an integer k, does G have an independent set of size at least k?

Vertex-Cover

- Given a graph G = (V, E), a vertex cover is a subset of vertices $T \subseteq V$ such that for every edge $e = (u, v) \in E$, either $u \in T$ or $v \in T$.
- VERTEX-COVER Problem. Given a graph G = (V, E) and an integer k, does G have a vertex cover of size at most k?

Our First Reduction

- VERTEX-COVER \leq_p IND-SET
 - Suppose we know how to solve independent set, can we use it to solve vertex cover?
- Claim. S is an independent set of size k iff V-S is a vertex cover of size n-k.
- **Proof.** (\Rightarrow) Consider an edge $e = (u, v) \in E$
 - S is independent: u, v both cannot be in S
 - At least one of $u, v \in V S$
 - V-S covers e
 - •

Our First Reduction

- VERTEX-COVER \leq_p IND-SET
 - Suppose we know how to solve independent set, can we use it to solve vertex cover?
- Claim. S is an independent set of size k iff V-S is a vertex cover of size n-k.
- **Proof.** (\Leftarrow) Consider an edge $e = (u, v) \in E$
 - V-S is a vertex cover: at least one of u, v must be in V-S
 - Both u, v cannot be in S
 - Thus, S is an independent set. \blacksquare

$Vertex Cover \equiv_p IND Set$

- VERTEX-COVER \leq_p IND-SET
- Reduction. Let G' = G, k' = n k.
 - (\Rightarrow) If G has a vertex cover of size at most k then G' has an independent set of size at least k'
 - (\Leftarrow) If G' has an independent set of size at least k' then G has a vertex cover of size at most k
- IND-SET \leq_p VERTEX-COVER
 - Same reduction works: G' = G, k' = n k
- VERTEX-COVER \equiv_{p} IND-SET

VERTEX-COVER \leq_p SET-COVER

Set Cover

• **Set-Cover.** Given a set U of elements, a collection S of subsets of U and an integer k, are there **at most** k subsets S_1, \ldots, S_k whose union covers U, that is, $U \subseteq \bigcup_{i=1}^k S_i$

$$U = \{ 1, 2, 3, 4, 5, 6, 7 \}$$
 $S_a = \{ 3, 7 \}$
 $S_b = \{ 2, 4 \}$
 $S_c = \{ 3, 4, 5, 6 \}$
 $S_d = \{ 5 \}$
 $S_e = \{ 1 \}$
 $S_f = \{ 1, 2, 6, 7 \}$
 $k = 2$

a set cover instance

Vertex Cover \leq_p Set Cover

- Theorem. VERTEX-COVER \leq_p SET-COVER
- **Proof.** Given instance $\langle G, k \rangle$ of vertex cover, construct an instance $\langle U, \mathcal{S}, k' \rangle$ of set cover problem such that
- G has a vertex cover of size at most k if and only if $\langle U, \mathcal{S}, k' \rangle$ has a set cover of size at most k.

Algorithm for VertexCover

Vertex Cover \leq_p Set Cover

- Theorem. VERTEX-COVER \leq_p SET-COVER
- **Proof.** Given instance $\langle G, k \rangle$ of vertex cover, construct an instance $\langle U, \mathcal{S}, k \rangle$ of set cover problem that has a set cover of size k iff G has a vertex cover of size k.
- Reduction. U = E, for each node $v \in V$, let $S_v = \{e \in E \mid e \text{ incident to } v\}$

$$U = \{ e_1, e_2, ..., e_7 \}$$

$$S_a = \{ e_3, e_7 \} \qquad S_b = \{ e_2, e_4 \}$$

$$S_c = \{ e_3, e_4, e_5, e_6 \} \qquad S_d = \{ e_5 \}$$

$$S_e = \{ e_1 \} \qquad S_f = \{ e_1, e_2, e_6, e_7 \}$$

vertex cover instance (k = 2)

set cover instance (k = 2)

Correctness

- Claim. (\Rightarrow) If G has a vertex cover of size at most k, then U can be covered using at most k subsets.
- **Proof.** Let $X \subseteq V$ be a vertex cover in G
 - Then, $Y = \{S_v \mid v \in X\}$ is a set cover of U of the same size

$$U = \{ e_1, e_2, \dots, e_7 \}$$

$$S_a = \{ e_3, e_7 \} \qquad S_b = \{ e_2, e_4 \}$$

$$S_c = \{ e_3, e_4, e_5, e_6 \} \qquad S_d = \{ e_5 \}$$

$$S_e = \{ e_1 \} \qquad S_f = \{ e_1, e_2, e_6, e_7 \}$$

vertex cover instance (k = 2)

set cover instance (k = 2)

Correctness

- Claim. (\Leftarrow) If U can be covered using at most k subsets then G has a vertex cover of size at most k.
- **Proof.** Let $Y \subseteq \mathcal{S}$ be a set cover of size k
 - Then, $X = \{v \mid S_v \in Y\}$ is a vertex cover of size k

$$U = \{ e_1, e_2, ..., e_7 \}$$

$$S_a = \{ e_3, e_7 \} \qquad S_b = \{ e_2, e_4 \}$$

$$S_c = \{ e_3, e_4, e_5, e_6 \} \qquad S_d = \{ e_5 \}$$

$$S_e = \{ e_1 \} \qquad S_f = \{ e_1, e_2, e_6, e_7 \}$$

vertex cover instance (k = 2)

set cover instance (k = 2)

Class Exercise

IND-SET \leq_p Clique

Clique

- A **clique** in an undirected graph is a subset of nodes such that every two nodes are connected by an edge. A k-clique is a clique that contains k nodes.
- CLIQUE. Given a graph G and a number k, does G contain a k -clique?

Clique

- A **clique** in an undirected graph is a subset of nodes such that every two nodes are connected by an edge. A k-clique is a clique that contains k nodes.
- CLIQUE. Given a graph G and a number k, does G contain a k -clique?
- CLIQUE ∈ NP
 - Certificate: a subset of vertices
 - Poly-time verifier: check is each pair of vertices have an edge between them and if size of subset is \boldsymbol{k}

IND-SET to CLIQUE

- Theorem. IND-SET \leq_p CLIQUE.
- In class exercise. Reduce IND-SET to Clique. Given instance $\langle G, k \rangle$ of independent set, construct an instance $\langle G', k' \rangle$ of clique such that
 - G has independent set of size k iff G' has clique of size k'.

Algorithm for IND-SET

IND-SET to CLIQUE

- Theorem. IND-SET \leq_p CLIQUE.
- Proof. Given instance $\langle G, k \rangle$ of independent set, we construct an instance $\langle G', k' \rangle$ of clique such that G has independent set of size k iff G' has clique of size k'

Reduction.

- Let $G' = (V, \overline{E})$, where $e = (u, v) \in \overline{E}$ iff $e \notin E$ and k' = k
- (\Rightarrow) G has an independent set S of size k, then S is a clique in G'
- (\Leftarrow) G' has a clique Q of size k, then Q is an independent set in G

Reductions: General Pattern

- Describe a polynomial-time algorithm to transform an arbitrary instance x of Problem X into a special instance y of Problem Y
- Prove that:
 - If x is a "yes" instance of X, then y is a "yes" instance of Y
 - If y is a "yes" instance of Y, then x is a "yes" instance of X \iff if x is a "no" instance of X, then y is a "no" instance of Y

Reductions: General Pattern

- Describe a polynomial-time algorithm to transform an arbitrary instance x of Problem X into a special instance y of Problem Y
- Notice that correctness of reductions are not symmetric:
 - the "if" proof needs to handle arbitrary instances of X
 - ullet the "only if" needs to handle the special instance of Y

Acknowledgments

- Some of the material in these slides are taken from
 - Kleinberg Tardos Slides by Kevin Wayne (https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/
 04GreedyAlgorithmsI.pdf)
 - Jeff Erickson's Algorithms Book (http://jeffe.cs.illinois.edu/
 teaching/algorithms/book/Algorithms-JeffE.pdf)