E-Commerce Shipment On-Time Delivery

Agenda

- 01 Business Problem
- 02 Exploratory Data Analysis
- 03 Predictive Modeling
- 04 Conclusions
- 05 Recommendation
- 06 Next Steps

01

Business Problem

The company has experienced decline in customer satisfaction at one of its major distribution centers due to excessive late deliveries.

We are charged with:

- Analyze the shipping data to find root cause of lateness.
- Create a model to predict if a shipment will be late, so that the company can preemptively take corrective action.

02

Data Analysis

The dataset used in this analysis contained records of 11,000 shipments, including details regarding:

- Warehouse block
- Mode of shipment
- Customer care calls
- Customer rating
- Cost of the product

- Prior purchases
- Product importance
- Gender
- Discount offered
- Weight
- Was the shipment late?

Source: E-Commerce Shipping Data (kaggle.com)

Problems with the Data: Shipment Weight

Problems with the Data: Shipment Weight

- Strange segmentation in scatterplots
- Further investigation is required

Problems with the Data: Discount Offered

Leading Theory:
A discount of more than \$10 is only offered if a shipment is late.

If true, we cannot use

Discount offered as a predictor of whether a shipment will be late!

further investigation is required.

Problems with the Data: Little Correlation

Where We Are

Due to unanswered questions about the data, we are still here

However, we can offer preliminary stop-gap predictive models

03

Predictive Modeling

Possible prediction outcomes:

- We correctly predict a shipment will be late (True Positive)
- We correctly predict a shipment will be on-time (True Negative)
- We <u>incorrectly</u> predict a shipment will be late (False Positive)
- We <u>incorrectly</u> predict a shipment will be on-time (False Negative)

Optimize for Recall Score

Modeling Process Methodology

- Feature Selection, outlier removal, create baseline model
- Key hyperparameter grid search with 5-fold cross-validation (optimize Recall)
- Probability threshold tuning of the final models (Maximize Recall, holding Accuracy @ ~63%)

Logistic Regression Baseline Model

Precision	F1	Accuracy	Recall
0.63	0.72	0.63	0.79

Logistic Regression Hyperparameter Tuned

Precision	F1	Accuracy	Recall
0.65	0.72	0.63	0.80

Best Hyperparameters:

• GridSearch: (CV: 5, Scoring: Recall)

C: 0.01

Class_weight: None

• Max_iter: 100

Penalty: I2

Solver: lbfgsTol: 0.0001

Performance of All Models

Classifier Models Average Probability Classifier **Voting Classifier** Bagging Classifier Logistic Regression LightGBM Classifier **Decision Tree**

All Tuned Models Final Scoring

Model Selected: Average Probability Classifier

Conclusion

Best Model: Average Probability Classifier

- Highest Primary Metric: Recall
- Accuracy was not the highest, but comparable to other models
- Combines predictions from multiple models

Final Metrics:

Precision	F1	Accuracy	Recall
0.64	0.73	0.63	0.85

Recommendation

- 1. Back to square 1: Business Understanding <-> Data Understanding
- 2. Improve data acquisition methods to increase performance of future models

- m T
- 3. Implement the **Average Probability Classification** model as a stop-gap to avoid late shipments until items 1 and 2 can be addressed

Final Metrics:

Precision	F1	Accuracy	Recall
0.64	0.73	0.63	0.85

Next Steps

- 1. Prioritize focus on **Business/Data Understanding**; answer:
 - Are discounts offered over \$10 due to prior knowledge lateness?
 - Root cause(s) for segmentation in shipment weight data
 - Root cause(s) for segmentation in ID... is the data time sequential?
- 2. Investigate improving data acquisition:
 - What data can we gather that will help us better predict lateness?
- 3. Deployment of Average Probability Classification, predict late shipments:
 - Flag potential late shipments for expediting delivery
 - If lateness cannot be corrected, preemptively engage with customer to inform,
 offer discount, etc.

Thanks!

Do you have any questions?

Dale DeFord daledeford@gmail.com

Brian Woo brianhwwoo@gmail.com

