Regression Assignment

1.) Problem Statement:

A client wants to predict the insurance charges based on the several parameters.

Stage 1: Machine Learning **Stage 2:** Supervised Learning

Stage 3: Regression

2.) Total number of rows: 1338

Total number of columns: 6

3.) Since it is a nominal data, we are using **ONE-HOT ENCODING** as a preprocessing method.

4.) Final model used: Support Vector Machine with C-value: 5000 and kernel used: rbf

R_score: 0.874777 5.) r_score values:

Multiple Linear Regression - 0.7894790349867009

Support Vector Machine

S.No.	Penalty (C)	Kernel			
		Linear	rbf	Poly	Sigmoid
1	100	0.628879	0.320031	0.617956	0.527610
2	1000	0.764931	0.810206	0.856648	0.287470
3	<mark>5000</mark>	0.741417	0.874777	0.859565	-7.530043

Decision tree

S.No.	Criterion	Splitter	R score
1	squared_error	best	0.6833247504174381
	squared_error	random	0.728775182120118
2	friedman_mse	best	0.6804108541827755
	friedman_mse	random	0.6869117093862669
3	absolute_error	best	0.6502539814719586
	absolute_error	random	0.6716193204403982
4	poisson	best	0.7237932999215247
	poisson	random	0.7237932999215247

Random forest:

n_estimators	r_score
50	0.8498329315421834
100	0.8538307913484513
1000	0.8541778123151671

6.) **Final model used:** Support Vector Machine with C-value:5000 and kernel used:**rbf**Because this model has more r_score value, compared to other models.