The 27th Information-Based Induction Sciences Workshop

時系列テンソルデータストリームに対する関心の拡散パターンの抽出手法

東口慎吾

大阪大学 産業科学研究所 shingo88@sanken.osaka-u.ac.jp

松原靖子

大阪大学 産業科学研究所 yasuko@sanken.osaka-u.ac.jp

川畑光希

大阪大学 産業科学研究所 koki@sanken.osaka-u.ac.jp

2つのサブアルゴリズムにより構成される

櫻井保志

大阪大学 産業科学研究所 yasushi@sanken.osaka-u.ac.jp

最適化アルゴリズム モチベーション

Given: 社会活動テンソルデータストリーム

e.g., Google検索数データ {Time, Keyword, Location}

(1)複合的なパターン: トレンド・季節性・外れ値・地域間の拡散

(2)高次元かつ半無限長、(3)パターンの時間変化: 流行の変遷

Goal: 時間変化する複合的なパターンを抽出し、将来予測を行う

結論

データストリームの継続的なモデリングと将来予測を行う手法 D-Tracker を提案。提案手法は以下のような特徴を持つ

- 1.解釈可能: トレンドや拡散、季節性の変動を解釈可能な形で抽出
- 2. スケーラブル: 計算時間はデータストリームの長さに依存しない
- **3. 全自動:** 提案手法はハイパーパラメータを持たない

提案モデル

①. 背景とモデル概要

Background - 反応拡散方程式 化学物質や熱量などの、 局所的な増減 (反応項) や 地点間の拡散 (拡散項)を 記述する数理モデル

$$\frac{\partial u_i}{\partial t} = f(u_i) + \sum_j D \cdot (u_j - u_i)$$
反応項 拡散項

② D-Tracker モデル

 $\mathcal{X}^c \approx \hat{\mathcal{X}}_d + \hat{\mathcal{X}}_s + \hat{\mathcal{X}}_o$

トレンド・拡散

モデル概要

反応拡散システムにより生成された潜在ダイナミクスと、 キーワード/地域ファクタによってトレンドテンソルを表現

$$\hat{X}_d = W^{\text{(core)}} \times_{\text{key}} W^{\text{(key)}} \times_{\text{loc}} W^{\text{(loc)}}$$
 $\theta_d = \{\theta, W^{\text{(key)}}, W^{\text{(loc)}}\}$ 潜在ダイナミクス キーワード/地域ファクタ (重み)

反応拡散システム (Reaction-diffusion system, RDS)

$$\frac{dw_{ij}}{dt} = a_{ij}w_{ij} + \sum_{j'} d_{ijj'}(w_{ij'} - w_{ij}), (1 \le i \le d_k, 1 \le j \le d_l)$$
反応項 拡散項
$$\theta = \{A, \mathcal{D}\}$$

 a_{ij} : w_{ij} の増加率 $d_{iji'}$: $w_{ij'}$ から w_{ij} への拡散の強さ 潜在ダイナミクス w (core) は反応拡散システムにより生成

季節性

潜在的な季節性ダイナミクスと、

キーワード/地域ファクタによって季節性テンソルを表現

$$\hat{X}_s = S^{\text{(time)}} \times_{\text{key}} S^{\text{(key)}} \times_{\text{loc}} S^{\text{(loc)}}$$

潜在ダイナミクス キーワード/地域ファクタ (重み)

Single model parameter: $\boldsymbol{\Theta} = \{\boldsymbol{\theta_d}, \boldsymbol{\theta_s}, \widehat{\boldsymbol{\chi_o}}\}$

複数のモデルを切り替えることで、

時間変化するパターンを捉えてデータストリーム全体をモデリング

1 ModelEstimation

スクラッチで推定

Given: 入力テンソル X_c Object: $\min_{\alpha \in \widehat{\mathcal{X}}_{c}} \| \mathcal{X} - \widehat{\mathcal{X}}_{d} - \widehat{\mathcal{X}}_{s} - \widehat{\mathcal{X}}_{o} \|$

(MDL理論に基づく目的関数)

| Idea: 交互最小二乗法 (ALS) により推定

ModelEstimation: 現在のウィンドウ (X_c) からモデル (Θ) を

ModelUpdate: 1で推定したモデルをフルパラメータ (\mathcal{F}) に

加えて新しいモデルにスイッチするかどうかを判定する

2 ModelUpdate

新しいデータが到着した時、

新しいモデルにスイッチする or 現在のモデルを使う

をMDL理論に基づく目的関数より判定

0.90 1.95 1.19 2.45 3.85 7.26 1.54 3.19 1.31 2.13 2.21 3.16 2.07 4.31 1.80 3.79 0.97 2.18 1.22 2.60 3.97 7.63 1.21 2.76 1.34 2.22 2.37 3.34 2.37 5.83 1.74 3.77 26 0.59 1.83 0.66 1.91 2.83 6.95 0.84 1.82 0.74 1.63 1.88 2.42 2.53 11.42 2.36 11.17 39 0.63 2.02 0.78 2.22 2.79 6.84 1.69 2.57 1.13 2.07 1.98 2.61 1.55 5.50 3.27 15.18 | 26 | **0.35** | <u>1.14</u> | 1.12 | 2.68 | 1.42 | 3.33 | 0.50 | 1.97 | <u>0.41</u> | **0.93** | 2.03 | 3.65 | 0.80 | 2.13 | 0.47 | 1.73 | 39 | **0.40** | <u>1.32</u> | 1.36 | 3.19 | 1.51 | 3.44 | 0.51 | 2.50 | 0.54 | **1.08** | 2.01 | 3.55 | 0.81 | 2.13 | <u>0.49</u> | 1.79 7 0.47 1.40 1.12 2.87 1.95 2.75 1.60 5.55 1.10 2.39 4.60 5.41 2.39 7.91 1.23 7.07 14 0.70 2.42 1.33 3.94 1.97 2.85 2.04 7.64 1.18 2.97 2.30 3.88 2.10 6.78 1.45 8.50 21 0.98 3.65 1.58 5.83 1.98 3.08 2.24 17.30 1.25 3.25 2.61 4.40 1.74 5.71 1.72 9.14

(b) スケーラビリティ -A- PatchTST -E- Autoformer -⊕ DeepAR -⊕ LaST -⊕ CoST *--*--*--*--Y 2020 D-Trackerの計算時間は

データストリームの長さ に依存しない

'iPhone" に対する関心の拡散パターンを抽出