Компьютерная графика

1. Цветовые системы RGB и CMYK

Цветовая система RGB

RGB (Red, Green, Blue) – аддитивная цветовая модель, основанная на смешении трех основных цветов: красного, зеленого и синего. Эта система используется для отображения цветов на электронных устройствах (мониторах, экранах смартфонов, телевизорах).

Принципы работы RGB:

- Основана на излучении света (аддитивное смешение)
- При смешении всех трех компонентов с максимальной интенсивностью получается белый цвет
- При отсутствии всех компонентов получается черный цвет
- Каждый компонент обычно кодируется 8 битами (значения 0-255)

Представление некоторых цветов в RGB:

• Черный: (0, 0, 0)

• Белый: (255, 255, 255)

• Красный: (255, 0, 0)

• Зеленый: (0, 255, 0)

• Синий: (0, 0, 255)

• Желтый: (255, 255, 0)

• Пурпурный: (255, 0, 255)

Голубой: (0, 255, 255)

Цветовая система СМҮК

CMYK (Cyan, Magenta, Yellow, Key/Black) – субтрактивная цветовая модель, используемая преимущественно в полиграфии и других печатных технологиях.

Принципы работы СМҮК:

- Основана на поглощении света (субтрактивное смешение)
- При отсутствии всех компонентов получается белый цвет (цвет бумаги)
- При смешении голубого, пурпурного и желтого теоретически должен получаться черный, но на практике получается темно-коричневый, поэтому добавляется четвертый компонент черный (К)
- Компоненты выражаются в процентах от 0% до 100%

Представление некоторых цветов в СМҮК:

• Черный: (0%, 0%, 0%, 100%)

• Белый: (0%, 0%, 0%, 0%)

Красный: (0%, 100%, 100%, 0%)Зеленый: (100%, 0%, 100%, 0%)

• Синий: (100%, 100%, 0%, 0%)

• Голубой: (100%, 0%, 0%, 0%)

• Пурпурный: (0%, 100%, 0%, 0%)

• Желтый: (0%, 0%, 100%, 0%)

Сравнение RGB и CMYK

Характеристика	RGB	СМҮК
Принцип смешения	Аддитивный (добавление света)	Субтрактивный (поглощение света)
Применение	Цифровые дисплеи	Печать на бумаге
Базовый цвет	Черный (0,0,0)	Белый (0,0,0,0)
Полное смешение	Белый (255,255,255)	Черный (теоретически 100,100,100,0)
Цветовой охват	Шире, чем СМҮК	Уже, чем RGB

2. Гистограммы тоновых изображений

Гистограмма тонового изображения – графическое представление распределения яркостей пикселей в изображении. По горизонтальной оси откладываются уровни яркости (обычно 0-255), по вертикальной – количество пикселей с данным уровнем яркости.

Анализ гистограммы позволяет определить:

- Общую яркость изображения (смещение гистограммы влево темное, вправо светлое)
- Контрастность (узкая гистограмма низкий контраст, широкая высокий контраст)
- Наличие областей с потерей деталей (пики на краях гистограммы)
- Преобладающие тона (пики на гистограмме)

Выравнивание гистограммы

Выравнивание гистограммы (histogram equalization) – метод обработки изображений, который улучшает контраст путем "растяжения" динамического диапазона яркостей.

Алгоритм выравнивания гистограммы:

- 1. Построение гистограммы исходного изображения
- 2. Расчет функции кумулятивного распределения (CDF)
- 3. Нормализация CDF для получения новых значений яркости

4. Преобразование яркостей пикселей исходного изображения согласно новой функции

Математически это выражается формулой:

```
g(i) = round((L-1) \times cdf(i))
```

где:

- g(i) новое значение яркости
- L количество уровней яркости (обычно 256)
- cdf(i) нормализованная кумулятивная функция распределения

Матрицы совместной встречаемости уровней серого тона

Матрица совместной встречаемости уровней серого тона (Gray Level Co-occurrence Matrix, GLCM) – инструмент для анализа текстуры изображения, который учитывает пространственные отношения между пикселями.

GLCM характеризует, как часто разные комбинации яркостей пикселей встречаются в изображении при заданном пространственном отношении.

Формирование GLCM:

- 1. Выбор направления и расстояния между пикселями
- 2. Подсчет количества пар пикселей с яркостями і и ј
- 3. Формирование матрицы, где элемент (i,j) содержит число таких пар

На основе GLCM вычисляются различные характеристики текстуры:

- Энергия мера однородности изображения
- Контраст мера локальных вариаций
- Корреляция мера линейной зависимости
- Гомогенность мера близости распределения к диагонали
- Энтропия мера неупорядоченности

3. Линейная и нелинейная фильтрации тоновых изображений

Линейная фильтрация

Линейная фильтрация – процесс обработки изображения, при котором значение яркости каждого пикселя заменяется взвешенной суммой яркостей соседних пикселей. Математически это описывается операцией свертки (convolution).

Основные типы линейных фильтров:

1. Сглаживающие фильтры (фильтры низких частот):

• Фильтр усреднения (box filter):

• Гауссовский фильтр:

```
h = 1/16 × [ 1 2 1 ]
            [ 2 4 2 ]
            [ 1 2 1 ]
```

2. Фильтры подчеркивания краев (фильтры высоких частот):

• Лапласиан:

```
h = [0 -1 0]
[-1  4 -1]
[0 -1  0]
```

• Операторы Собеля:

```
h_x = [ -1 0 1 ]
[ -2 0 2 ]
[ -1 0 1 ]
```

Нелинейная фильтрация

Нелинейная фильтрация – процесс обработки изображения, при котором значение яркости каждого пикселя заменяется результатом некоторой нелинейной функции от яркостей соседних пикселей.

Основные типы нелинейных фильтров:

1. Медианный фильтр:

- Заменяет значение пикселя на медиану значений в его окрестности
- Эффективен для удаления импульсного шума ("соль и перец")
- Хорошо сохраняет границы объектов

2. Ранговые фильтры:

- Минимальный фильтр (эрозия) заменяет пиксель на минимальное значение в окрестности
- Максимальный фильтр (дилатация) заменяет пиксель на максимальное значение в окрестности

3. Билатеральный фильтр:

- Учитывает как близость пикселей в пространстве, так и близость их яркостей
- Сглаживает изображение, сохраняя края
- Используется для удаления шума с сохранением деталей

Сравнение линейной и нелинейной фильтрации:

Характеристика	Линейная фильтрация	Нелинейная фильтрация
Математическая модель	Свертка	Различные нелинейные операции
Влияние на края	Часто размывает	Часто сохраняет
Удаление импульсного шума	Малоэффективно	Эффективно
Вычислительная сложность	Обычно ниже	Обычно выше

4. Использование видового и перспективного преобразований при построении изображений трехмерных объектов

Видовое преобразование

Видовое преобразование (view transformation) – преобразование координат объектов из мировой системы координат в видовую систему координат, связанную с наблюдателем (камерой).

Основные параметры видового преобразования:

- Положение камеры (eye point)
- Точка, на которую направлена камера (look-at point)
- Вектор, указывающий направление "вверх" (up vector)

Матрица видового преобразования:

$$V = R \times T$$

где:

- R матрица поворота, выравнивающая оси координат с осями камеры
- T матрица переноса, перемещающая начало координат в точку расположения камеры

Перспективное преобразование

Перспективное преобразование (perspective transformation) – проецирование трехмерных объектов на двумерную плоскость с учетом эффекта перспективы, при котором более удаленные объекты выглядят меньше.

Основные параметры перспективного преобразования:

- Угол обзора (field of view, FOV)
- Соотношение сторон экрана (aspect ratio)
- Расстояние до ближней плоскости отсечения (near clipping plane)
- Расстояние до дальней плоскости отсечения (far clipping plane)

Матрица перспективного преобразования создает усеченную пирамиду видимости (frustum).

Полный конвейер преобразований для построения 3D-изображений:

- 1. Модельное преобразование из локальной системы координат объекта в мировую
- 2. Видовое преобразование из мировой системы в систему координат камеры
- 3. Перспективное преобразование проецирование на плоскость изображения
- 4. Переход к экранным координатам преобразование координат проекции в координаты пикселей

5. Алгоритмы удаления невидимых линий при построении каркасных моделей трехмерных объектов

Каркасная модель (wireframe model) – представление трехмерного объекта в виде набора линий (ребер), соединяющих вершины объекта.

Основные алгоритмы удаления невидимых линий:

1. Алгоритм Робертса:

- Один из первых алгоритмов удаления невидимых линий
- Работает с выпуклыми многогранниками
- Ребро считается видимым, если хотя бы один из инцидентных ему многоугольников обращен к наблюдателю

2. Алгоритм художника (Painter's algorithm):

- Основан на принципе рисования от дальних объектов к ближним
- Все многоугольники сортируются по расстоянию от наблюдателя
- Отрисовываются в порядке от дальних к ближним
- Может иметь проблемы с циклическими перекрытиями

3. Z-буфер (буфер глубины):

- Для каждого пикселя экрана хранится z-координата (глубина) ближайшей точки
- При обработке новой точки ее z-координата сравнивается с сохраненной
- Если новая точка ближе, ее координаты и цвет записываются в буферы
- Наиболее распространенный алгоритм в современной компьютерной графике

4. Алгоритм плавающего горизонта:

- Специализированный алгоритм для функциональных поверхностей
- \circ Подходит для поверхностей вида z = f(x,y)

• Построчная обработка изображения с отслеживанием верхнего и нижнего "горизонтов"

5. BSP-деревья (Binary Space Partitioning):

- Разделение пространства плоскостями объектов
- Создание бинарного дерева для определения порядка отрисовки
- Обход дерева в зависимости от положения наблюдателя
- Эффективен для статических сцен

6. Сегментация тоновых изображений

Сегментация изображения – процесс разделения изображения на несколько сегментов (областей, объектов) с похожими характеристиками. Целью сегментации является упрощение и/или изменение представления изображения для облегчения его анализа.

Основные методы сегментации:

1. Пороговая сегментация (Thresholding):

- Разделение пикселей по уровню яркости
- Порог может быть глобальным или адаптивным
- Метод Оцу автоматическое определение оптимального порога
- Простота реализации, но ограниченная эффективность

2. Сегментация на основе обнаружения краев:

- Выделение краев с помощью операторов Собеля, Канни и др.
- Связывание краев для формирования замкнутых контуров
- Чувствительность к шуму и проблемы с формированием замкнутых областей

3. Сегментация методом разрастания областей (Region growing):

- Начинается с "семян" начальных пикселей
- Область расширяется, включая соседние пиксели с похожими свойствами
- Хорошо работает для однородных областей, но чувствительна к выбору начальных точек

4. Сегментация методом водораздела (Watershed):

- Изображение рассматривается как топографическая поверхность
- "Затопление" начинается с локальных минимумов
- Границы формируются на "водоразделах"
- Склонность к избыточной сегментации

5. Сегментация методом кластеризации:

- Группировка пикселей в кластеры по их характеристикам
- Алгоритмы К-средних, нечеткие С-средние
- Не требует предварительной информации о форме объектов

6. Сегментация на основе графов:

• Изображение представляется как граф, где вершины – пиксели

- Разрез графа минимизирует функцию энергии
- Глобальный подход к сегментации, но высокая вычислительная сложность

Оценка качества сегментации:

- Визуальная оценка
- Сравнение с эталонной сегментацией
- Количественные метрики (точность, коэффициент Дайса, IoU)

Выбор метода сегментации зависит от характеристик изображения, требуемой точности и вычислительных ресурсов.