Модельная общность для неускоренных и ускоренных блочно-покомпонентных методов

Жолобов Владимир, Научный руководитель: Александр Гасников

MIPT

Moscow, 2020

Введение

Цель

Построить модельную общность для ускоренных и неускоренных блочно-покомпонентных методов.

Введение

Пример для неускоренного случая

$$x_{k+1} = \arg\min_{x \in Q} \{V[x_k](x) + \alpha \langle \tilde{\nabla} f(x_k), x - x_k \rangle \}$$

Предположения

Выпуклость

Для всех $x\in Q$ модель $\psi_i(y,x)$ выпукла по $y\in Q$ и существует $\gamma>0$ такая, что для любых $x,y\in Q$

$$\mathbb{E}_i\psi_i(y,x)\leq \frac{1}{\gamma}(f(y)-f(x))$$

Гладкость

Для любых x_k, x_{k+1} , полученных алгоритмом верно

$$f(x_{k+1}) \le f(x_k) + \psi_i(x_{k+1}, x_k) + V[x_k](x_{k+1})$$

Предположения

Функция V

$$V[z](x) = \frac{1}{2} \sum_{i=1}^{n} L_i ||x^{(i)} - z^{(i)}||_2^2, \quad Q = \bigotimes_{i=1}^{n} Q_i$$

Алгоритм с модельной общностью для неускоренного случая

```
Algorithm 3: Non-accelerated Random Block-Coordinate Descent (NR-BCD)
```

```
BCD)

Input: starting point x_0 \in Q^0 = \bigotimes_{i=1}^n Q_i^0, number of iterations N, prox-setup: d(x), V[u](x), see subsection 1.1.

Set k = 0.

repeat

Choose randomly i \in \{1, \dots, n\} (\mathbb{P}(i = j) = 1/n for all j = 1, \dots, n)

x_{k+1} = \arg\min_{x \in Q} \{V[x_k](x) + \psi_i(x, x_k)\}
Set k = k+1.

until k \leq N;
Output: The point x_N.
```

Скорость сходимости

Theorem

При данных предположениях и x_k , сгенерированных с помощью алгоритма скорость сходимости имеет вид для $N\geq 1$

$$\mathbb{E} f(\overline{x}_N) - f(x^*) \leq \frac{\gamma}{N} (f(x_0) - f(x^*)) + \frac{\gamma}{N} V[x_0](x^*),$$

где $\overline{x}_N = rac{1}{N} \sum_{k=0}^{N-1} x_k$, x^* решение оптимизационнюй задачи.

Дальнейшие исследования

 В дальнейшем планируется построить модельную общность для ускоренных блочно-покомпонентных методов.

Литература

- Dvinskikh D. M. et al. Accelerated and Unaccelerated Stochastic Gradient Descent in Model Generality //Mathematical Notes. – 2020. – T. 108. – №. 3. – C. 511-522.
- 2. Gasnikov A. V., Tyurin A. I. Fast gradient descent for convex minimization problems with an oracle producing a (, I)-model of function at the requested point //Computational Mathematics and Mathematical Physics. 2019. T. 59. №. 7. C. 1085-1097.