

Lecture 03

Lexical Analysis

Part 2: Recognition of tokens

Hyosu Kim

School of Computer Science and Engineering
Chung-Ang University, Seoul, Korea

https://hcslab.cau.ac.kr

hskimhello@cau.ac.kr, hskim.hello@gmail.com

Overview

What does a lexical analyzer do?

Remaining questions in designing lexical analyzers

- 1. How to specify the patterns for tokens? Regular languages
- 2. How to recognize the tokens from input streams? Finite automata

Outline

In this lecture, you will learn

1. What a finite automata is

2. How we can recognize tokens with the use of a finite automata

3. How to implement a lexical analyzer

The implementation for recognizing tokens

It accepts or rejects inputs based on the patterns specified in the form of regular expressions e.g., if $s \in L(token)$, then accept

A finite automata $M = \{Q, \Sigma, \delta, q_0, F\}$

- A finite set of states $Q = \{q_0, q_1, q_2, \dots, q_i\}$
- An input alphabet Σ = a finite set of input symbols
- A start state q_0
- A set of accepting (or final) states F which is a subset of Q
- A set of state transition functions δ e.g., $\delta(q_0,a)=q_1$: the state transition from q_0 to q_1 on the input symbol a

A finite automata can be expressed in the form of graphs, a transition graph

A state

A start state

An accepting state

A state transition (e.g., $\delta(q_i, a) = q_j$)

If
$$\Sigma = \{0\}$$

• For a regular expression 0, where $L(0) = \{0\}$

$$M = \{Q = \{q_0, q_1\}, \Sigma = \{0\}, \delta = \{\delta(q_0, 0) = q_1\}, q_0, F = \{q_1\}\}$$

If
$$\Sigma = \{0\}$$

• For a regular expression 0^* , where $L(0^*) = \{\epsilon, 0, 00, 000, \dots\}$

$$M = \{Q = \{q_0\}, \Sigma = \{0\}, \delta = \{\delta(q_0, 0) = q_0\}, q_0, F = \{q_0\}\}$$

If $\Sigma = \{0, 1\}$, what is the regular expression this transition graph describes?

Finite automata

A special kind of state transition: *ϵ*-move

• A finite automata machine can move from q_i to q_j without reading inputs

If $\Sigma = \{0, 1, 2, ..., 9, -\}$, what is the regular expression this transition describes?

Finite automata

A finite automata can be also expressed in the form of table, a transition table

	0
q_0	q_1
q_1	Ø

	0
q_0	q_0

	ϵ
q_i	q_j
q_{j}	Ø

Deterministic finite automata (DFA)

- (Exactly or at most) one transition for each state and for each input symbol
- No ϵ -moves

Non-deterministic finite automata (NFA)

- Multiple transitions for each state and for each input symbol are allowed
- ϵ -moves are allowed

DFAs and NFAs can recognize the same set of regular languages

e.g., If $\Sigma = \{0,1\}$, for a regular expression $(0|1)^*00$

- One deterministic path for a single input
- Accepted if and only if the path is from the start state to one of the final states

NFA

- Multiple possible paths for a single input
- Accepted if and only if any path among the possible paths is from the start state to one of the final states

DFAs and NFAs can recognize the same set of regular languages

e.g., If $\Sigma = \{0,1\}$, for a regular expression $(0|1)^*00$

Faster to execute!

NFA

Simpler to represent!

	DFA	NFA	
# of transitions per input per state	Zero or one	Zero or more	
ϵ -move	X	Ο	
# of path for a given input	Only one	One or more	
Accepting condition	For a given input, its path must end in one of accepting states	For a given input, there must be at least one path ending in one of accepting states	
Pros	Fast to execute (only one path)	Simple to represent (easy to make/understand)	
Cons	Complex -> space problem (exponentially larger than NFA)	Slow -> performance problem (several paths)	

Procedures for implementing lexical analyzers

Lexical specifications Regular expressions NFA DFA (in the form of a transition table)

McNaughton-Yamada-Thompson algorithm (a.k.a., Thomson's construction)

This works recursively by splitting an expression into its constituent subexpressions

Examples

For a regular expression

•
$$a$$
, $L(a) = \{a\}$

For a regular expression

• r_1r_2

For a regular expression

• $r_1 | r_2$

For a regular expression

• r_1^*

For a regular expression

• Q.
$$r_1^+ = r_1 r_1^*$$
??

For a regular expression

For a regular expression

For a regular expression

For a regular expression

For a regular expression


```
L(sIdentifier) = \{a, \quad aA, \quad A, \quad Aa, \quad AC, \quad AC123, \quad A123a, \dots\} letter = a|b|c|\dots|z|A|B|C|\dots|Z digit = 0|1|2|\dots|9 sIdentifier = letter(digit|letter)^*
```


Subset (powerset) construction algorithm

Basic idea: Grouping a set of NFA states reachable after seeing some input strings

Definitions

- ϵ -closure (q^N) : A set of NFA states reachable from NFA state q^N with only ϵ -moves (q^N) is also included)
- ϵ -closure(T): A set of NFA states reachable from some NFA state in a set $T=\{q_i,...\}$ with only ϵ -moves

Examples

- ϵ -closure(A) = {A,B,C}
- ϵ -closure({A, B, C, D}) = {A, B, C, D, F}

Subset (powerset) construction algorithm

Basic idea: Grouping a set of NFA states reachable after seeing some input strings

Step 1: Compute ϵ -closure (q_0^N) , where q_0^N is the start state of NFA (Let denote the computation result as T_0)

$$T_0 = \epsilon$$
-closure(A) = {A,B,C}

Subset (powerset) construction algorithm

• Basic idea: Grouping a set of NFA states reachable after seeing some input strings

Step 2: Compute ϵ -closure $(\delta(T_0, s))$ for each input symbol s in Σ and denote the result as T_i iff $T_i \neq T_j$ $(0 \leq j < i)$

$$T_{0} = \epsilon \text{-}closure(A) = \{A, B, C\}$$

$$T_{1} = \epsilon \text{-}closure(\delta(T_{0}, a)) = \epsilon \text{-}closure(D) = \{D, F, G\}$$

$$T_{2} = \epsilon \text{-}closure(\delta(T_{0}, b)) = \epsilon \text{-}closure(E) = \{E, F, G\}$$

$$\bullet \qquad \qquad \bullet \qquad \qquad \bullet \qquad \bullet \qquad \bullet \qquad \bullet$$

$$\bullet \qquad \qquad \bullet \qquad \qquad \bullet \qquad \bullet$$

$$\bullet \qquad \qquad \bullet \qquad \qquad \bullet \qquad \bullet$$

$$\bullet \qquad \qquad \bullet \qquad \qquad \bullet \qquad \bullet$$

$$\bullet \qquad \qquad \bullet \qquad \qquad \bullet \qquad \bullet$$

$$\bullet \qquad \qquad \bullet \qquad \qquad \bullet \qquad \bullet$$

$$\bullet \qquad \qquad \bullet \qquad \qquad \bullet \qquad \bullet$$

$$\bullet \qquad \qquad \bullet \qquad \qquad \bullet$$

Subset (powerset) construction algorithm

• Basic idea: Grouping a set of NFA states reachable after seeing some input strings

Step 3: Repeat the step 2 for each new set of NFA states T_i until there is no more new result

$$T_{0} = \epsilon\text{-}closure(A) = \{A, B, C\}$$

$$T_{1} = \epsilon\text{-}closure(\delta(T_{0}, a)) = \epsilon\text{-}closure(D) = \{D, F, G\}$$

$$T_{2} = \epsilon\text{-}closure(\delta(T_{0}, b)) = \epsilon\text{-}closure(E) = \{E, F, G\}$$

$$T_{3} = \epsilon\text{-}closure(\delta(T_{1}, a)) = \epsilon\text{-}closure(H) = \{H\}$$

$$\epsilon\text{-}closure(\delta(T_{1}, b)) = \emptyset$$

$$\epsilon\text{-}closure(\delta(T_{2}, a)) = \epsilon\text{-}closure(H) = \{H\}$$

$$\epsilon\text{-}closure(\delta(T_{2}, b)) = \emptyset$$

$$\epsilon\text{-}closure(\delta(T_{3}, a)) = \emptyset$$

$$\epsilon\text{-}closure(\delta(T_{3}, b)) = \emptyset$$

Subset (powerset) construction algorithm

Basic idea: Grouping a set of NFA states reachable after seeing some input strings

Step 3: Repeat the step 2 for each new set of NFA states T_i until there is no more new result

$$T_{0} = \epsilon \text{-}closure(A) = \{A, B, C\}$$

$$T_{1} = \epsilon \text{-}closure(\delta(T_{0}, a)) = \epsilon \text{-}closure(D) = \{D, F, G\}$$

$$T_{2} = \epsilon \text{-}closure(\delta(T_{0}, b)) = \epsilon \text{-}closure(E) = \{E, F, G\}$$

$$T_{3} = \epsilon \text{-}closure(\delta(T_{1}, a)) = \epsilon \text{-}closure(H) = \{H\}$$

$$\epsilon \text{-}closure(\delta(T_{1}, b)) = \emptyset$$

$$\epsilon \text{-}closure(\delta(T_{2}, a)) = \epsilon \text{-}closure(H) = \{H\}$$

$$\epsilon \text{-}closure(\delta(T_{2}, a)) = \emptyset$$

$$\epsilon \text{-}closure(\delta(T_{3}, a)) = \emptyset$$

$$\epsilon \text{-}closure(\delta(T_{3}, a)) = \emptyset$$

$$\epsilon \text{-}closure(\delta(T_{3}, b)) = \emptyset$$

$$\epsilon \text{-}closure(\delta(T_{3}, b)) = \emptyset$$

Subset (powerset) construction algorithm

Basic idea: Grouping a set of NFA states reachable after seeing some input strings

Step 4: Based on the computation results T_i , construct DFA as follows

- Each T_i is a DFA state
- T_0 is the start state of DFA
- Every T_i which includes any final state in NFA is the final state of DFA

	a	b	DFA for $(a b)a$
T_0	T_1	T_2	a a
T_1	T_3	Ø	T_0
T_2	T_3	Ø	
T_3	Ø	Ø	$ b$ T_2 a

$$L(sIdentifier) = \{a, \quad aA, \quad A, \quad Aa, \quad AC, \quad AC123, \quad A123a, \dots\}$$

$$letter = a|b|c|\dots|z|A|B|C|\dots|Z$$

$$digit = 0|1|2|\dots|9$$

$$sIdentifier = letter(digit|letter)^*$$

digit

 T_3

$$L(sIdentifier) = \{a, \quad aA, \quad A, \quad Aa, \quad AC, \quad AC123, \quad A123a, \dots\}$$

$$letter = a|b|c|\dots|z|A|B|C|\dots|Z$$

$$digit = 0|1|2|\dots|9$$

$$sIdentifier = letter(digit|letter)^*$$

$$T_{0} = \epsilon - closure(A) = \{A\}$$

$$T_{1} = \epsilon - closure(\delta(T_{0}, letter)) = \{B, C, D, E, G, J\}, \ \epsilon - closure(\delta(T_{0}, digit)) = \emptyset$$

$$T_{2} = \epsilon - closure(\delta(T_{1}, letter)) = \{D, E, G, H, I, J\}$$

$$T_{3} = \epsilon - closure(\delta(T_{1}, digit)) = \{D, E, G, F, I, J\}$$

$T_3 = \epsilon - closure(\delta(T_1, digit)) = \{D, E, G, F, I, J\}$		lettei
$\epsilon - closure(\delta(T_2, letter)) = \{D, E, G, H, I, J\} = T_2$	T_0	T_1
$\epsilon - closure(\delta(T_2, digit)) = \{D, E, G, F, I, J\} = T_3$	<i>T</i> ₁	T_2
$\epsilon - closure(\delta(T_3, letter)) = \{D, E, G, H, I, J\} = T_2$	<i>T</i> ₂	T_2
$\epsilon - closure(\delta(T_3, digit)) = \{D, E, G, H, I, J\} = T_3$	<i>T</i> ₃	T_2

Regular expressions

NFA

DFA (in the form of a transition table)

mIdx = 0; $for \ 1 \leq i \leq n$ $if \ a_1a_2 \dots a_i \in L(Merged), mIdx = i$ end $partition \ and \ classify \ a_1a_2 \dots a_{mIdx}$

How can we do this task efficiently?

Examples

$$Merged = sIdentifier|lparen$$
 $letter = a|b|c|...|z|A|B|C|...|Z$
 $digit = 0|1|2|...|9$
 $sIdentifier = letter(digit|letter)^*$
 $lparen = ($

	letter	digit	(
T_0	T_1	Ø	T_4
T_1	T_2	T_3	Ø
T_2	T_2	T_3	Ø
T_3	T_2	T_3	Ø
T_4	Ø	Ø	Ø

For an input string **COMPARE(A**

-		Input symbol	Next state
	T_0	С	T_1

Examples

$$Merged = sIdentifier|lparen$$
 $letter = a|b|c|...|z|A|B|C|...|Z$
 $digit = 0|1|2|...|9$
 $sIdentifier = letter(digit|letter)^*$
 $lparen = ($

	letter	digit	(
T_0	T_1	Ø	T_4
T_1	T_2	T_3	Ø
T_2	T_2	T_3	Ø
T_3	T_2	T_3	Ø
T_4	Ø	Ø	Ø

For an input string **COMPARE(A**

Step	State	Input symbol	Next state
1	T_0	С	T_1
2	T_1	0	T_2
3	T_2	M	T_2
4	T_2	Р	T_2
5	T_2	А	T_2
6	T_2	R	T_2
7	T_2	Е	T_2

Examples

$$Merged = sIdentifier|lparen$$
 $letter = a|b|c|...|z|A|B|C|...|Z$
 $digit = 0|1|2|...|9$
 $sIdentifier = letter(digit|letter)^*$
 $lparen = ($

	letter	digit	(
T_0	T_1	Ø	T_4
T_1	T_2	T_3	Ø
<i>T</i> ₂	T_2	T_3	Ø
<i>T</i> ₃	T_2	T_3	Ø
T_4	Ø	Ø	Ø

For an input string COMPARE(A

Step	State	Input symbol	Next state
1	T_0	С	T_1
2	T_1	0	T_2
3	T_2	M	T_2
4	T_2	Р	T_2
5	T_2	Α	T_2
6	T_2	R	T_2
7	T_2	E	T_2
8	T_2	(

No transition rule!! Error

Find the last input which reaches at an accepting state

Examples

$$Merged = sIdentifier|lparen$$
 $letter = a|b|c|...|z|A|B|C|...|Z$
 $digit = 0|1|2|...|9$
 $sIdentifier = letter(digit|letter)^*$
 $lparen = ($

	letter	digit	(
T_0	T_1	Ø	T_4
T_1	T_2	T_3	Ø
<i>T</i> ₂	T_2	T_3	Ø
<i>T</i> ₃	T_2	T_3	Ø
T_4	Ø	Ø	Ø

For an input string **COMPARE(A**

Step	State	Input symbol	Next state
1	T_0	С	T_1
2	T_1	0	T_2
3	T_2	М	T_2
4	T_2	Р	T_2
5	T_2	Α	T_2
6	T_2	R	T_2
7	T_2	Е	T_2
8	T_2	(

Partition "COMPARE" and classify it as sIdentifier

Examples

$$Merged = sIdentifier|lparen$$
 $letter = a|b|c|...|z|A|B|C|...|Z$
 $digit = 0|1|2|...|9$
 $sIdentifier = letter(digit|letter)^*$
 $lparen = ($

	letter	digit	(
T_0	T_1	Ø	T_4
T_1	T_2	T_3	Ø
T_2	T_2	T_3	Ø
T_3	T_2	T_3	Ø
T_4	Ø	Ø	Ø

For the remaining string (A

Step	State	Input symbol	Next state
1	T_0	(T_4
2	T_4	Α	

Partition "(" and classify it as *lparen*

Examples

$$Merged = sIdentifier|lparen$$
 $letter = a|b|c|...|z|A|B|C|...|Z$
 $digit = 0|1|2|...|9$
 $sIdentifier = letter(digit|letter)^*$
 $lparen = ($

	letter	digit	(
T_0	T_1	Ø	T_4
T_1	T_2	T_3	Ø
T_2	T_2	T_3	Ø
T_3	T_2	T_3	Ø
T_4	Ø	Ø	Ø

For the remaining string A

Step	State	Input symbol	Next state
1	T_0	А	T_1
2	T_1	End-of-input	

Partition "A" and classify it as sIdentifier

Summary

What does a lexical analyzer do?

- 1. Reading the input characters of a source program
- 2. Grouping the characters into meaningful sequences, called lexemes
- 3. Producing a sequence of tokens
- 4. Storing the token information into a symbol table
- 5. Sending the tokens to a syntax analyzer

What does a lexical analyzer do?

Remaining questions in designing lexical analyzers

- 1. How to specify the patterns for tokens? Regular languages
- 2. How to recognize the tokens from input streams? Finite automata