Session 2

Bayesian Methods

Iraj Kazemi

i.kazemi@lancaster.ac.uk

Centre for Applied Statistics, Lancaster University, Lancaster LA1 4YF, England.

March 10-11, 2005

Bayesian Point Estimation

- How do we extract a Bayes estimator for some unknown parameter θ ?
- There are a number of candidates:
- We could follow ML and use the **mode of the distribution** (its maximal value), with

$$\hat{\theta} = \max_{\theta} \pi(\theta|x)$$

• The **median of the posterior distribution**, where the estimator satisfies $Pr(\theta > \hat{\theta}|x) = Pr(\theta < \hat{\theta}|x) = 0.5$, hence

$$\int_{\hat{\theta}}^{\infty} \pi(\theta|x)d\theta = \int_{-\infty}^{\hat{\theta}} \pi(\theta|x)d\theta = \frac{1}{2}.$$

Bayesian Inference

- Suppose we have a sample of n variables $X' = (X_1, \dots, X_n)$, generated from a density function $f(x|\theta)$.
- We assume that the cases are independent given θ , and hence the joint probability density of the sample is

$$f(\mathbf{x}|\theta) = \prod_{i} f(x_i|\theta)$$

- The likelihood function $L(\theta) = f(\mathbf{x}|\theta)$ plays a central role in classical methods.
- Under ML estimation, we would compute the mode (the maximal value of L, as a function of θ given the data \mathbf{x}) of the likelihood function.
- For Bayesian methods, the likelihood function is the instrument to pass from the prior density $\pi(\theta|\mathbf{x})$ via Bayes' Theorem.

• We could take the **expected value** of θ given the data,

$$\hat{\theta} = E(\theta|x) = \int \theta \pi(\theta|x) d\theta$$

- This estimate is defined as the **posterior Bayes estimate** of θ with respect to the prior $\pi(\theta)$.
- The full form of the posterior distribution is not easy to obtain for some complex models, but
- it may still be possible to obtain one of the three above estimators.
- We can generally obtain the posterior by simulation using **Gibbs** sampling, and hence the Bayes estimate can be found.

4

Inferences for a Binomial Probability

- Let θ denotes the proportion of people in England with genotype Z.
- Consider the binary responses X_1, \dots, X_n , where, for $i = 1, \dots, n$,
- $X_i = 1$ if the *i*th person in the sample possesses the genotype Z, and $X_i = 0$ otherwise.
- The number of persons with genotype Z in the sample, $S = \sum_{i} X_{i}$, has a binomial distribution with probability θ and sample size n.
- Assume now that based upon a random sample of size n=2,500, a sample geotype frequency s=50 is observed.
- the ML estimate of θ is $\frac{s}{n} = 0.02$ with the standard error $\sqrt{\frac{\hat{\theta}(1-\hat{\theta})}{n}} = 0.0028$.

- Assuming the prior distribution of θ is Beta(a, b), the posterior density would be Beta(a + s, b + n s).
- Suppose that the prior mean is $E(\theta) = 0.06$, and the precision of the prior distribution, a + b, is 400.
- It follows from $E(\theta) = \frac{a}{a+b}$ that a=24 and b=376,
- i.e., $\theta \sim Beta(24, 376)$ and $\theta | \mathbf{x} \sim Beta(74, 2826)$.
- The posterior mean is

$$E\left(\theta|\mathbf{x}\right) = \frac{a+s}{a+b+n} = 0.0255$$

and the posterior variance

$$var(\theta|\mathbf{x}) = \frac{E(\theta|x)[1 - E(\theta|x)]}{a + b + n + 1} = (0.00293)^2$$

therefore, the posterior s.d. of θ is 0.00293.

WinBUGS program

model{
for(i in 1:N) {y[i]~dbin(theta,2500)}
 theta~dbeta(24,376)
}
#data
list(y=c(50), N=1)
#Initial values
list(theta=850)

- Line 2 specifies that the variable y is distributed binomially with the parameter **theta** and n=2500.
- In WinBUGS distributional relationships are described by the ~symbol
- Line 3 specifies the prior for theta.
- Comments (starting with #) are inserted for ease of reading.
- WinBUGS borrows its notation from S-plus using the convention **c(..)** to represent a vector of observations.

WinBUGS Results

7

 node
 mean
 sd
 MC error
 2.5%
 median
 97.5%
 start
 sample

 theta
 0.02551
 0.002928
 9.656E-6
 0.02011
 0.02539
 0.03156
 1
 100000

Inference for Poisson Data

- Suppose that the sample X_1, X_2, \dots, X_n be i.i.d. $Poisson(\theta)$.
- The ML estimator of θ is the sample mean \overline{X} :

$$\hat{\theta}_{MLE} = \overline{X}$$

• Assuming the prior distribution of θ is Gamma(a, b), the prior mean is

$$E(\theta) = \frac{a}{b}$$
.

- We can show that the posterior distribution is $Gamma(\sum x_i + a, n + b)$.
- The posterior Bayes estimate of θ with respect to the gamma prior is

$$\hat{\theta}_{Bayes} = E\left(\theta|\mathbf{x}\right) = \frac{\sum x_i + a}{n+b} = w\overline{x} + (1-w)E\left(\theta\right)$$
where $w = \frac{n}{n+b}$.

the posterior mean = weighted mean of data value and prior mean.

Example: Poisson Data

- Suppose that the number of days (X) absent from school during the school year for each child is Poisson with mean θ .
- Assume that the prior distribution of θ is Gamma(1, 0.04).
- $\bullet \ E\left(\theta\right) = \frac{1}{\theta} = 25.$
- Based on a sample size of n = 146 we wish to estimate θ .

Example: Poisson Data (cont.)

- It can be found that $\sum_{i} x_i = 2403$, thus $\hat{\theta}_{MLE} = 16.459$,
- Since $var(X) = \theta$, then $var(\overline{X}) = \frac{\theta}{n}$, and $std(\hat{\theta}) = \sqrt{\frac{\theta}{n}} = 0.336$.
- The posterior Bayes estimate of θ :

$$\hat{\theta}_{Bayes} = \frac{\sum x_i + a}{n+b} = \frac{2403+1}{146+0.04} = 16.461$$

$$var(\theta|\mathbf{x}) = \frac{2403+1}{(146+0.04)^2} = 0.1127$$

$$\Rightarrow sd(\theta|\mathbf{x}) = \sqrt{0.1127} = 0.336$$

11

WinBUGS program:

```
model{
  for(i in 1:N){days[i]~dpois(theta)}
  theta~dgamma(1,0.04)
}
#initial value
list(theta=16.)
#data
list(N=146, days=c( 2, 11,...,22,37))
```

- Lines 2 specifies that the distribution of observations is Poisson with a mean theta.
- Line 3 specifies that the prior for theta is gamma.

WinBUGS Results:

node mean sd MC error 2.5% median 97.5% start sample
theta 16.46 0.3363 0.001082 15.81 16.46 17.13 1 100000

13

- Bayesian confidence intervals are also called credible intervals.
- Shortest Bayesian confidence regions are called posterior **highest density regions** (*HDR*s), i.e.,
- Regions with the smallest volume in the parameter space.
- For a single parameter, θ , the region reduces to the interval.

Bayesian Interval Estimation

- Posterior mean and mode provide simple summaries of the posterior distribution.
- It can be further useful to find a region that contains θ with a specified probability 1α .
- Given the posterior distribution, construction of confidence intervals is obvious.
- For example, a $100(1-\alpha)\%$ Bayesian confidence interval is given by any $(L_{\alpha/2}, H_{\alpha/2})$ satisfying

$$\int_{L_{\alpha/2}}^{H_{\alpha/2}} \pi(\theta|x) d\theta = 1 - \alpha.$$

14

Example: Normal with known variance

- Conditional on θ , consider a random sample X_1, X_2, \dots, X_n drawn from a $N(\mu, \sigma^2)$ distribution with known σ^2 .
- Suppose $\pi(\mu) \propto 1$.
- The posterior distribution of μ is given by

$$\pi (\mu | \mathbf{x}) \propto L(\mu) \pi(\mu)$$

$$= exp \left\{ -\frac{1}{2\sigma^2} \sum_{i} (x_i - \mu)^2 \right\} \times 1$$

$$\propto exp \left\{ -\frac{n}{2\sigma^2} (\mu - \overline{x})^2 \right\}$$

• Thus $\mu | \mathbf{x} \sim N\left(\overline{x}, \frac{\sigma^2}{n}\right)$. A $(1 - \alpha)\%$ HPD interval is

$$\left(\overline{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \overline{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right)$$

where for $Z \sim N(0,1)$, $Pr\left(Z > z_{\alpha/2}\right) = \frac{\alpha}{2}$.

- This HPD interval is identical to the classical $(1 \alpha)\%$ confidence interval for the mean of a normal population when the variance is known.
- However, the meaning is different.
- The interpretation of the $(1-\alpha)\%$ confidence interval is based on a repeatation of the sampling process, so that if we could take, say, 100 samples, we would expect that in $(1-\alpha)\%$ of times the interval $\overline{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$ contains the true value of μ .
- With the Bayesian HDR, conditional on the information currently available we believe that, with probability (1α) , θ belongs to the interval $\overline{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$.

17

- In the classical statistical framework, we use the observed data to test the significant of a particular hypothesis, and compute a p-value.
- In a Bayesian framework, as using the posterior distribution

$$Pr(\theta > \theta_0) = \int_{\theta_0} \pi(\theta|x) d\theta$$

and

$$Pr(\theta_0 < \theta < \theta_1) = \int_{\theta_0}^{\theta_1} \pi(\theta|x) d\theta$$

Bayesian Hypothesis Testing

- In the classical hypothesis testing framework, we have two alternatives.
- The null hypothesis H_0 that the unknown parameter θ belongs to some set or interval Θ_0 ($\theta \in \Theta_0$), versus
- the alternative hypothesis H_1 that θ belongs to the alternative set Θ_1 ($\theta \in \Theta_1$).
- Two sets Θ_0 and Θ_1 contain no common elements $(\Theta_0 \cap \Theta_1 = \emptyset)$ and the union of Θ_0 and Θ_1 contains the entire space of values for θ (i.e., $\Theta_0 \cup \Theta_1 = \Theta$).

18

• To operationalize, let

$$p_0 = Pr(\theta \in \Theta_0 | \mathbf{x}); \quad p_1 = Pr(\theta \in \Theta_1 | \mathbf{x})$$

denote the posterior probability that θ is in the null (p_0) and alternative (p_1) hypothesis sets.

- Since $\Theta_0 \cap \Theta_1 = \emptyset$ and $\Theta_0 \cup \Theta_1 = \Theta$, it follows that $p_0 + p_1 = 1$.
- For the prior probabilities we have

$$\pi_0 = Pr(\theta \in \Theta_0); \quad \pi_1 = Pr(\theta \in \Theta_1)$$

• Thus the **prior odds** of H_0 versus H_1 are π_0/π_1 , while the **posterior odds** are p_0/p_1 .

• The **Bayes factor** B_0 in favor of H_0 versus H_1 is given by the ratio of the posterior odds divided by the prior odds,

$$B_0 = \frac{p_0/p_1}{\pi_0/\pi_1} = \frac{p_0\pi_1}{\pi_0p_1} \text{ or } B_0 = \frac{p_0(1-\pi_0)}{\pi_0(1-p_0)}$$

• By symmetry note that the Bayes factor B_1 in favor of H_1 versus H_0 is just

$$B_1 = 1/B_0$$

• When the hypotheses are simple, say $\Theta_0 = \theta_0$ and $\Theta_1 = \theta_1$, then for i = 0, 1,

$$p_i \propto \pi(\theta_i) L(\theta_i) = \pi_i L(\theta_i)$$

Thus

$$\frac{p_0}{p_1} = \frac{\pi_0 L(\theta_0)}{\pi_1 L(\theta_1)}$$

and the Bayes factor (in favor of the null) reduces the

$$B_0 = \frac{L(\theta_0)}{L(\theta_1)}$$

22

which is simply a likelihood ratio.

21

Example: Poisson Distribution

• Let X_1, \dots, X_n be i.i.d. Poisson with mean θ . Thus, the likelihood function

$$L(\theta) \propto \theta^{\sum x_i} e^{-n\theta},$$

- Let $H_0: \theta = \theta_0$ and $H_1: \theta = \theta_1$ be two simple hypotheses, with $p(H_0) = p(H_1)$.
- The Bayes factor is

$$B_0 = \left(\frac{\theta_0}{\theta_1}\right)^{\sum x_i} e^{n(\theta_1 - \theta_0)}$$

and hence, since the prior odds are equal to 1, the decision rule is to accept H_0 if the Bayes factor is greater than 1.

Example: Normal Distribution

• Suppose X_1, \dots, X_n are i.i.d. $N(\theta, 1)$, and we wish to test

$$\begin{cases} H_0: \ \theta = 0 \\ H_1: \ \theta = 1 \end{cases}$$

• Then Bayes factor is

$$B_0 = \frac{(2\pi)^{-n/2} e^{-\frac{1}{2}\sum x_i^2}}{(2\pi)^{-n/2} e^{-\frac{1}{2}\sum (x_i-1)^2}}$$
$$= e^{(\frac{n}{2}-\sum x_i)}$$

• Suppose n = 10 and $\sum x_i = 4.5$. Then

$$B_0 = e^{\frac{10}{2} - 4.5} = e^{0.5} = 1.65,$$

which is weak evidence in favour of H_0 : $\theta = 0$.

• Note if $\sum x_i = 4.5$, then $B_0 = e^{5-1} = e^4 = 55$, which is strong evidence in favour of $H_0: \theta = 0$.

23

A Primer on MCMC and The Gibbs Sampler

What is a Markov Chain?

- Let θ_t denote the value of a random variable at time t, and let the state space refer to the range of possible θ values.
- The random variable θ is a Markov process if the transition probabilities between different values in the state space depend only on the random variable's current state, i.e.,

$$Pr(\theta_t|\theta_{t-1},\cdots,\theta_1,\theta_0) = Pr(\theta_t|\theta_{t-1})$$

• Thus for a Markov random variable the only information about the past needed to predict the future is the current state of the random variable. • A Markov chain refers to a sequence of random variables $(\theta_0, \dots, \theta_n)$ generated by a Markov process.

• A particular chain is defined most critically by its *transition* probabilities, $Pr(i,j) = Pr(i \rightarrow j)$, which is the probability that a process at state space s_i moves to state s_j in a single step,

$$Pr(i,j) = Pr(\theta_t = s_j | \theta_{t-1} = s_i).$$

25

27

A Simple Example:

A discrete vote choice between two political parties

- Suppose that voters that normally select θ_1 have an 80% chance of continuing to do so, and
- voters that normally select θ_2 have only a 40% chance of continuing to do so.
- Since there are only two choices, this leads the transition matrix *P*:

current period
$$\begin{cases} \theta_1 & \theta_2 \\ \theta_2 & \begin{bmatrix} 0.8 & 0.2 \\ 0.6 & 0.4 \end{bmatrix} \end{cases}$$

• All Markov chains begin with a starting point assigned by the researcher.

• This initial state defines the proportion of individuals selecting θ_1 and θ_1 before beginning the chain. Consider the starting point:

$$S_0 = [0.50 \ 0.5].$$

• That is, before running the Markov chain 50% of the observed population select each alternative.

• For the first state we simply multiply the initial state by the transition matrix:

$$S_1 = \begin{bmatrix} 0.5 & 0.5 \end{bmatrix} \begin{bmatrix} 0.8 & 0.2 \\ 0.6 & 0.4 \end{bmatrix} = \begin{bmatrix} 0.7 & 0.3 \end{bmatrix}.$$

• So after the first iteration we have the new proportions: 70% select θ_1 and 30% select θ_2 .

26

• This process continues multiplicatively as long as we like:

second state :
$$S_2 = \begin{bmatrix} 0.7 & 0.3 \end{bmatrix} \begin{bmatrix} 0.8 & 0.2 \\ 0.6 & 0.4 \end{bmatrix} = \begin{bmatrix} 0.74 & 0.26 \end{bmatrix}$$
.
third state : $S_3 = \begin{bmatrix} 0.74 & 0.26 \end{bmatrix} \begin{bmatrix} 0.8 & 0.2 \\ 0.6 & 0.4 \end{bmatrix} = \begin{bmatrix} 0.748 & 0.252 \end{bmatrix}$.
fourth state : $S_4 = \begin{bmatrix} 0.748 & 0.253 \end{bmatrix} \begin{bmatrix} 0.8 & 0.2 \\ 0.6 & 0.4 \end{bmatrix} = \begin{bmatrix} 0.7496 & 0.2504 \end{bmatrix}$

- As you might guess, the choice proportions are converging to [0.75, 0.25].
- This is because the transition matrix is pushing toward a steady state or more appropriately "stationary" distribution of the proportions.
- The operation of running a Markov chain until it reaches its stationary distribution is exactly the process employed in MCMC.
 - (1) The sampler starts with some initial value y_0 for y and obtains x_0 by generating a random variable from the conditional distribution $f(x|y=y_0)$.
 - (2) The sampler then uses x_0 to generate a new value of y_1 , drawing from the conditional distribution based on the value x_0 , $f(y|x=x_0)$.
 - (3) The sampler proceeds as follows

$$x_t \sim f(x|y = y_{t-1})$$

 $y_t \sim f(y|x = x_t)$

- (4) Repeating this process T times, generates a Gibbs sequence of length T, where a subset of points (x_t, y_t) for $1 \le t \le m < T$ are taken as our simulated draws from the full joint distribution.
- The Gibbs sequence converges to a stationary distribution that is independent of the starting values, and by construction this stationary distribution is the target distribution we are trying to simulate.

The Gibbs Sampler

- The aim is to specify how to construct a Markov Chain whose values converge to the target distribution.
- To introduce the Gibbs sampler, consider a bivariate random variable (X, Y), and suppose we wish to compute one or both marginals, f(x) and f(y).
- The idea behind the sampler is that
- it is so easy to consider a sequence of conditional distributions, f(x|y) and f(y|x), than obtain marginal densities by integration of the joint density f(x,y), e.g., $f(x) = \int p(x,y)dy$.

30

Example

• Suppose the joint distribution of (X, θ) is given by

$$f(x,\theta) = \binom{n}{x} y^{x+\alpha-1} (1-y)^{n-x+\beta-1},$$

for $x = 0, 1, \dots, n$ and $0 < \theta < 1$

- We denote that the conditional distribution of $X|\theta \sim Bin(n,\theta)$, while $\theta|x \sim Beta(x+\alpha,n-x+\beta)$.
- By computing a sequence of a binomial and then a beta we can compute marginal distributions.

- Suppose $\alpha = 1, \beta = 2$, and n = 10.
- Start the sampler with (say) $\theta_0 = 1/2$,
- (i) x_0 is obtained by generating a random $Bin(n, \theta_0) = Bin(10, 1/2)$ random variable, giving $x_0 = 5$ in our simulation.
- (ii) θ_1 is obtained from a $Beta(x_0 + \alpha, n x_0 + \beta) = Beta(5+1, 10-5+2)$ random variable, giving $\theta_1 = 0.33$.
- (iii) x_1 is a realization of a $Bin(n, \theta_1) = Bin(10, 0.33)$ random variable, giving $x_1 = 3$.
- (iv) θ_2 is obtained from a $Beta(x_1 + \alpha, n x_1 + \beta) = Beta(3 + 1, 10 3 + 2)$ random variable, giving $\theta_2 = 0.56$.
- (v) x_2 is obtained from a $Bin(n, \theta_2) = Bin(10, 0.56)$ random variable, giving $x_2 = 0.7$.
- So our realization of the Gibbs sequence after three iterations is (5, 0.5), (3, 0.33), (7, 0.56).
- We can continue this process to generate a chain of the desired length.

This suggests an iterative algorithm of the following form:

- Starting with an initial estimate $(\theta_1^{(0)}, \cdots, \theta_k^{(0)})$
- (1) Draw $\theta_1^{(1)}$ at random from $f\left(\theta_1|\mathbf{x},\theta_2^{(0)},\cdots,\theta_k^{(0)}\right)$
- (2) Draw $\theta_2^{(1)}$ at random from $f\left(\theta_2|\mathbf{x},\theta_1^{(1)},\theta_3^{(0)},\cdots,\theta_k^{(0)}\right)$; and so on down to
- k. Draw $\theta_k^{(1)}$ at random from $f\left(\theta_k|\mathbf{x},\theta_1^{(1)},\cdots,\theta_{k-1}^{(1)}\right)$
- This is only one iteration of the Gibbs sampler.
- Repeat until convergence to the stationary distribution.

34

End of Session