DSC 204a Scalable Data Systems

- Haojian Jin

Where are we in the class?

Foundations of Data Systems (2 weeks)

 Digital representation of Data → Computer Organization → Memory hierarchy → Process → Storage

Scaling Distributed Systems (3 weeks)

Cloud → Network → Distributed storage → Partition and replication (HDFS) → Distributed computation

Data Processing and Programming model (5 weeks)

Data Models evolution → Data encoding evolution → → IO & Unix Pipes →
 Batch processing (MapReduce) → Stream processing (Spark)

Today's topic: Column-oriented storage

- OLTP v.s. OLAP
- Data warehousing
- Schemas for Analytics
- Column-oriented storage
- Data cubes and materialized views

CRUD

Database transactions

- Make sale
- Place an order
- Pay an employee's salary
- Comment a blog post
- Act in games
- Add/remove contract to an address book

Online transaction processing (OLTP)

Walmart Beer and Diaper (1988)

Sales of diapers and beer

Unexpected correlation:

Forbes 1988

Data analytics

- What was the total revenue of each of our stores in Jan?
- How many more bananas that usual did we sell during our latest data?
- Which brand of baby food is most often purchased together with brand X diapers?

Online analytic processing (OLAP)

OLTP v.s. OLAP

Property	Transaction processing systems (OLTP)	Analytic systems (OLAP)		
Main read pattern	Small number of records per query, fetched by key	Aggregate over large number of records		

OLTP v.s. OLAP

Property	Transaction processing systems (OLTP)	Analytic systems (OLAP)
Main read pattern	Small number of records per query, fetched by key	Aggregate over large number of records
Main write pattern	Random-access, low-latency writes from user input	Bulk import (ETL) or event stream
Primarily used by	End user/customer, via web application	Internal analyst, for decision support
What data represents	Latest state of data (current point in time)	History of events that happened over time
Dataset size	Gigabytes to terabytes	Terabytes to petabytes

Today's topic: Column-oriented storage

- OLTP v.s. OLAP
- Data warehousing
- Schemas for Analytics
- Column-oriented storage
- Data cubes and materialized views

Transaction systems are complex.

Elon Musk's Twitter System Design Diagram Explained https://www.youtube.com/watch?v=_Y5aGCOkymQ

Transaction systems need to be highly available.

- Low latency.
- Highly available.
- Ad hoc analytic queries are expensive. https://twitter.com/alexxubyte/status/1594008281340530688

Data warehouse

- A separate database that analysts can query to their hearts' content, without affecting OLTP operations.
- Maintain a read-only copy for analytic purposes.
- Only exist in almost all large enterprises.

Small companies?

Extract-Transform-Load (ETL)

- Extract
 - Periodica data dump
 - Continuous streaming
- Transform
 - Analysis-friendly schema
 - Data cleaning
- Load into a data warehouse

Why data warehouse?

- Separation of concerns
 - Performance (reliability, latency)
 - Expertise requirement, management
- The indexes in last lecture (e.g., SSTable, B-tree) are not good for reading and writing a single record.
 - But are not good at answering analytic queries.

How do you interact with OLAP & OLTP

- SQL query interface
 - Select * from
 - "A database system can be considered mature when it has an SQL query interface".
 - Both OLAP and OLTP
- OLAP:
 - More and more codeless user interfaces.

Data wrangler

DataWrangler

SIGCHI 2011
https://www.trifacta.com/
\$400 million, Feb 2022

Today's topic: Column-oriented storage

- OLTP v.s. OLAP
- Data warehousing
- Schemas for Analytics
- Column-oriented storage
- Data cubes and materialized views

Data analytic queries

- What was the total revenue of each of our stores in Jan?
- How many more bananas that usual did we sell during our latest data?
- Which brand of baby food is most often purchased together with brand X diapers?

Data model

- Relation (SQL)
- Document (NoSQL)
- Graph (GraphQL)
- Network
- Hierarchy
- Stars
- Snowflake

Dimension N PK N Nicht-PK 1 Nicht-PK 2 Nicht-PK 3 **Dimension** 4 Dimension "Ort" PK 4 PLZ-ID (PK) Stadt-ID (PK) Nicht-PK 1 PLZ Nicht-PK 2 Ort Stadt-ID (FK) Stadt-ID (FK) Nicht-PK 3 PLZ-ID (FK) Zeit-ID (FK) FK 3 FK 4 FK N Attribut 1 Attribut 2 Attribut 3 Dimension 3 Dimension "Zeit" PK 3 Zeit-ID (PK) Faktentabelle Quartal-ID (PK) Semester-ID Nicht-PK 1 Monat (PK) Quartal Nicht-PK 2 Ouartal-ID(FK) Semester Semester-ID (FK) Nicht-PK 3 Jahr-ID (FK)

Star

Snowflake

Star schema

- Fact table in the middle
 - A collection of events
 - e.g., click events, page views, retail sales
 - Two types of columns
 - Attributes
 - References to dimension tables.
- Fact table: event meta data
- Dimensions: who, what, where, when, how, and why of the event.

Example: dim_date table

- Speed up the analysis.
- Easier development.

	dim_date table						\
1	date_key	year	month	day	weekday	is_holiday	
	140101	2014	jan	1	wed	yes	
	140102	2014	jan	2	thu	no	
	140103	2014	jan	3	fri	no	
			_				

Snowflake schema

 More normalized data model

Database normalization

- Storage redundancy
- Easy interactions.

Snowflake schema tradeoffs

- More storage efficiency
- Enforces data quality
- Slower
- Lots of overhead upon initial setup
- High maintenance costs

Today's topic: Column-oriented storage

- OLTP v.s. OLAP
- Data warehousing
- Schemas for Analytics
- Column-oriented storage
- Data cubes and materialized views

Data scale

- Fact tables
 - Hundreds of columns
 - Trillions of rows
 - Petabytes of data
- Dimension tables
 - Million of rows.
 - Can be wide. But less common.

How many columns do we need?

- What was the total revenue of each of our stores in Jan?
- How many more bananas that usual did we sell during our latest data?
- Which brand of baby food is most often purchased together with brand X diapers?

