Лабораторная работа №6

Основы работы с Midnight Commander (mc). Структура программы на языке ассемблера NASM. Системные вызовы в ОС GNU Linux

Виктор Максимович Кадров

Содержание

1	Цель работы	4
2	Задание	5
3	Теоретическое введение	6
4	Выполнение лабораторной работы	7
5	Задания для самостоятельной работы	11
6	Выводы	14

Список иллюстраций

4.1	Создание папки	7
4.2	Код программы	8
4.3	Выполнение прогрмаммы	8
4.4	Измененный код	Ç
4.5	Проверка исполнения	Ç
4.6	Замена вызываемой функции	10
4.7	Результат выполнения	10
5.1	Код программы	11
5.2	Исполнение программы	12
5.3	Код lab06-2	12
5.4	Проверка результата	1.3

1 Цель работы

Приобретение практических навыков работы в Midnight Commander. Освоение инструкций языка ассемблера mov и int.

2 Задание

- 1. Создания программы ввода-вывода
- 2. Создание программы с использованием внешнего файла
- 3. Выполнение задания для саомстоятельной работы

3 Теоретическое введение

Midnight Commander (или просто mc) — это программа, которая позволяет просматривать структуру каталогов и выполнять основные операции по управлению файловой системой, т.е. mc является файловым менеджером. Midnight Commander позволяет сделать работу с файлами более удобной и наглядной.

Программа на языке ассемблера NASM, как правило, состоит из трёх секций: секция кода программы (SECTION .text), секция инициированных (известных во время компиляции) данных (SECTION .data) и секция неинициализированных данных (тех, под которые во время компиляции только отводится память, а значение присваивается в ходе выполнения программы) (SECTION .bss).

Для объявления инициированных данных в секции .data используются директивы DB, DW, DD, DQ и DT, которые резервируют память и указывают, какие значения должны храниться в этой памяти.

4 Выполнение лабораторной работы

Создаем папку lab06 и файл lab06-1.asm в ней (рис. 4.1). Пишем код прогроммы в созданный файл (рис. 4.2). Создаем исполняемый файл и проверяем, что ввод и вывод происходит корректно (рис. 4.3). Изменяем код программы так, чтобы для выполнения ввода и вывода использовался код из внешнего файла (рис. 4.4). Выполняем его (рис. 4.5). Заменяем в кода программы sprintLf на sprint (рис. 4.6). После выполнения (рис. 4.7) можно заметить, что ввод происходит на той же строке, что и вывод.

Рис. 4.1: Создание папки

Рис. 4.2: Код программы

Рис. 4.3: Выполнение прогрмаммы

```
The Character Character of State Character Cha
```

Рис. 4.4: Измененный код

Рис. 4.5: Проверка исполнения

Рис. 4.6: Замена вызываемой функции

Рис. 4.7: Результат выполнения

5 Задания для самостоятельной работы

Изменяем код lab06-1 так, чтобы введенная строка выводилась на экран (рис. 5.1). Проверяем, что все выполняется корректно (рис. 5.2). Аналогично меняем код lab06-2 (рис. 5.3) и проверяем результат (рис. 5.4).

```
The control of the co
```

Рис. 5.1: Код программы

Рис. 5.2: Исполнение программы

Рис. 5.3: Код lab06-2

Рис. 5.4: Проверка результата

6 Выводы

В ходе выполнения лабораторной работы были приобретены практические навыкы работы в Midnight Commander. Также были освоены инструкции языка ассемблера mov и int.