Comp 441 - Human-Computer Interface Design

Week I - 19th January 2017

Dr Nick Hayward

Course Details

Lecturer

Name: Dr Nick Hayward

Office: 531 Lewis Towers (WTC)

Office hours

• Monday afternoon by appointment (531 Lewis Towers, WTC)

Faculty Page

Course Schedule

Important dates for this semester

- Class schedule = Thursday @ 7pm (9/9.15pm with no break)
- Spring break: 6th to 11th March 2017
 - **n.b.** no formal class: 9th March 2017
- Easter holiday: 13th to 17th April 2016
 - n.b. no formal class: 13th April 2017
- Final class: 27th April 2017
 - Final presentation due on Thursday 27th April 2017 @ 7pm
- Exam week: 1st May to 6th May 2017
 - Final assessment due on Thursday 4th May 2017 @ 7pm

Assignments and Coursework

Course will include

- weekly bibliography and reading
- weekly notes, examples, extras...

Coursework will include

- quizzes or group exercises at the end of each section (Total = 30%)
 - based on course notes, reading, and examples
 - multiple-choice questions for quizzes
- preparatory work for final assessment (Total = 40%)
 - throughout the semester
 - posted to Trello group...
- demo and report of final assessment (Total = 30%)
 - demo due 27th April 2017 @ 7pm
 - report due 4th May 2017 @ 7pm

Final Assessment

Initial overview

- combination of semester's preparatory work and final demo and report
- final demo
 - presentation, online demo, video overview...it's your choice
 - anonymous peer review
- individual work or group (max. 4 persons)
- design and develop a new interface for an existing computing product, service, application, tool or publication
 - idea is not to invent completely new product etc...
 - iterate or modify to meet specified requirements
- explain pros and cons of existing interface
- contrast old and new interface

Goals of the course

A study of the interaction between humans and computer-based systems.

Course will provide

- methods for evaluating, designing, and developing better interfaces
- focus upon interface design
 - guidelines and examples
 - prototyping
 - testing...
- additional details on interaction
- acquire an awareness of different design and evaluation methods
- practical and effective methods for improving interfaces and interaction

Course Resources

Website

Course website is available at http://csteach441.github.io

- timetable
- course overview
- course blog
- assignments & coursework
- bibliography
- links & resources
- notes & material

GitHub

Course repositories available at http://github.com/csteach441/

weekly notes, examples, and source code (where applicable)

What is human-computer interface design?

- inherently a simple topic or concept
- simple act of inserting a mediating computer
- eg: a user wants to send a message or play some music...
 - could use paper and pen, or play an instrument
 - may involve an intermediary tool
 - essence of design and usage bears some resemblance to HCI
 - related discipline of human factors
- it is the computer that makes HCl distinctive

Adding a computer

- transforms the representation of a task and required skills
- changes our user's act of writing or playing a musical instrument
 - flesh out a message or story
 - compile, contrast, splice, and manipulate our music
- add users, become a crowd or group
- add networks and more machines
- disparate variants of computer mediation forming our concept of HCI

HCI Components

- an object, an artifact that needs engineering and implementing
- the process of design for the interaction, and the objects themselves
- the principles, theories, abstractions, guidelines, facts...surrounding HCI

We can consider these as

- engineering interaction
- designing interaction
- the actual science of interaction itself

HCI as a technology

- importance of linking engineering, design, and science together
- technologies largely derived from other technologies
 - Brian Arthur, W. 'The Nature of Technology: What it is and how it evolves.' Free Press. 2011.
- technologies composed of disparate parts, each technologies as well
- technologies devolve to a point where they cease to be a technology
 - this is the point where science plays a role
 - eg: keyboards and electrical capacitance
- exploitation of natural occurrence of capacitance
 - provides HCl function of signaling known, reliable interaction

For example, text editor keypress demo

HCI and Science

- science should continue to play an important role in the development of HCI
- development and promotion of theory
- enables further explanatory evaluation
 - expand upon rudimentary A-B testing
 - limited without an understanding of why
- enables generative design
 - allows us to modify design based upon an understanding of interaction
 - adjust design according to interaction

Historical Background

- advent of interactive computer systems and promotion of good design
- publication of user-interface design guidelines
- notable examples since early 1976
 - 1976: CHERITON and early interactive computer systems
 - 1983: NORMAN's rules for designing user-interfaces based upon human cognition
 - 1986: SMITH & MOSIER penned one of the most comprehensive sets of user-interface design guidelines
 - 1987: SHNEIDERMAN's "Eight Golden Rules of Interface Design", which is now in its fifth edition.
 - 1988: BROWN wrote a set of design guidelines, simply entitled "Human-Computer Interface Design Guidelines"
 - 1990: NIELSEN & MOLICH suggested a set of design rules for the application of heuristic evaluation of user interfaces.
 - 1992: MARCUS presented guidelines for graphic design in online documents and user interfaces

21st Century Approach

- growing popularity of mobile platforms and online systems
- new and targeted user-interface guidelines
- notable examples include
 - 2005: STONE et al outlined general guidelines for user-interface design and evaluation
 - 2006: KOYANI et al addressed design and usability guidelines specifically for research-based web design
 - 2007: JOHNSON suggested some common user-interface design do's and don'ts
 - 2009: SHNEIDERMAN updated his well-known tome to its current 5th edition

Platform Guidelines

- new century saw more platform specific publications
 - Apple, Google, Microsoft...many, many others
- each set promotes design suggestions, preferences, rules for their given platform
- examples include
 - Apple UI Design Basics
 - Gnome Human Interface Guidelines
 - Google Material Design
 - Microsoft Guidelines for Windows Runtime apps
 - and many, many more...

Links & Resources

More to come later in the semester.

Video - User-Interface Design Rules - 4

Introduction to Google's Material Design

YouTube - Google's Material Design

Image - User-Interface Design Rules - 5

Microsoft's platform convergence...

Resolving Conflicts

- following user-interface design guidelines is not always simple
- aspirational goals of design rules and guidelines
 - inherently general to broaden potential application
 - often open to broad interpretation
- many rules will appear to be suitable for a given design situation
- applicable design rules will often appear to conflict
- application of these rules will suggest potentially different designs
- designers will need to choose their preferred design rule for a given situation...
- designers choose an order of precedence for their design

Conflicting Goals

- design problems and scenarios will often present conflicting goals
- potential for conflicting design guidelines and rules
- examples such as
 - Powerful and Simple
 - High Resolution and Fast Loading
 - Multifunctional and Easy to Learn
 - WYSIWYG and Accessible for the Blind
- designers need to address such conflicts and make informed decisions
- decisions guided, not restricted or dominated, by design guidelines and rules

Application of Laws

- consider user-interface design rules and guidelines as a set of laws
 - instead of step-by-step recipes
- laws interpreted and applied by experienced practitioners
- understand the basis for user-interface rules
- learn from experience the application of these rules
- focus upon an understanding of how to apply these guidelines
- understand the underlying rationale of user-interface rules

Quick Comparison: User-Interface Design Guidelines

Nielsen & Molich (1990)	Shneiderman & Plaisant (2009)
Aesthetic & minimalist design	Cater to universal usability
Consistency & standards	Design task flows to yield closure
Error prevention	Make users feel they are in control
Flexibility & efficiency of use	Minimise short-term memory load
Help users recognise, diagnose, and recover from errors	Offer informative feedback
Match between system and real world	Permit easy reversal of actions
Provide online documentation & help	Prevent errors
Recognition rather than recall	Strive for consistency
User control & freedom	
Visibility of system status	

Origin of Design Guidelines

- similarity between each set of rules is not simply due to coincidence or inheritance
 - not the result of author's whim...
- noticeable similarity, and close association in context and emphasis
- due to the influence of human psychology
 - how we learn, perceive, reason, remember, process and convert intentions into actions
- many authors of guidelines had a background in psychology
 - this was then applied to the design of computer interfaces
- Brown, Molich, Nielsen, Norman, and Shneiderman...
 - applied knowledge of cognitive and perceptual psychology
 - improve the design of interactive systems

User-Interface guidelines are based upon human psychology.

Image - Design Example - I

The world is awash with poorly designed things...

Remote controls are a prime example!

Image - Design Example - 2

and many good things aswell...

1931 London Underground Map

Image - Design Example - 3

Does it really matter if things are poorly designed?

You may camp in the wrong place, and at the wrong time...

Image - Design Example - 4

Confusion due to poor design

2000 USA Presidential Ballot in Florida

Cultural considerations...

- standardising an interface or localising...
- local issues arise from cultural misunderstanding
- Cardiff City Football Club change their colours...then change them back again
 - Report

This is a very interesting consideration for interface design.

More to come later in the semester.

Image - HCI - I

The many fields of HCI

Not just computer science and design...

HCI Components

- Guidelines
- Methods
- Models
- Principles
- Techniques
- Theories

HCI - 3

HCI is

- Creative
- Design aware
- Evaluative

HCI - 4

Design

- design is all around us
- art, music, culture in general
- to be good designers we have to appreciate the arts
- understand the rich history of graphic design
- its trends, products, and leading figures
- Vimeo Milton Glaser Intro
 - http://vimeo.com/11577085

References

- Brown, CM. "Human-computer interface design guidelines."
 Ablex Publishing Corp. 1988.
- Cheriton, DR. "Man-machine interface design for timesharing systems." Proc ACM National Conference. 1976. PP.362-380.
- Koyani, SJ. et al. "Research-based web design and usability guidelines." U.S. Dept of Health and Hum Serv. 2006.
- Marcus, A. "Graphic Design for electronic documents and user interfaces." Addison-Wesley. 1992.
- Nielsen, J. & Molich, R. "Heuristic evaluation of user interfaces." *Proc ACM CHI'90 Conference, Seattle.* 1990.
 PP.249-256. (NB: Updated by Nielsen, J. & Mack, RL. "Usability Inspection Methods." John Wiley & Sons, Inc. 1994.)
- Norman, DA. "Design rules based on analysis of human error." *Commun ACM*. 1983. PP.254-258.
- Norman, DA. "Design principles for human-computer interfaces." In Janda, A. ed. Proceedings of the CHI-83 conference on human factors in computing systems, Boston. ACM Press. 1983.
- Shneiderman, B. & Plaisant, C. "Designing the user interface: Strategies for effective human-computer interaction." 5th Edition. Addison-Wesley. 2009.
- Smith, SL. & Mosier, JN. "Guidelines for designing user interface software." *National Technical Information Service*. 1986. Technical Report ESD-TR-86-278.

Stone, D. et al. "User interface design and evaluation." Morgan Kaufmann. 2005.