CONTENTS

Chapter I. Introduction	1
Chapter II. Modular symbol algorithms	7
2.1 Modular Symbols and Homology	7
2.1.1 The upper half-plane, the modular group and cusp forms	7
2.1.2 The duality between cusp forms and homology	9
2.1.3 Real structure	11
2.1.4 Modular symbol formalism	12
2.1.5 Rational structure and the Manin-Drinfeld Theorem	12
2.1.6 Triangulations and homology	13
2.2 M-symbols and $\Gamma_0(N)$	15
2.3 Conversion between modular symbols and M-symbols	18
2.4 Action of Hecke and other operators	18
2.5 Working in $H^+(N)$	23
2.6 Modular forms and modular elliptic curves	24
2.7 Splitting off one-dimensional eigenspaces	25
2.8 $L(f,s)$ and the evaluation of $L(f,1)/\Omega(f)$	29
2.9 Computing Fourier coefficients	31
2.10 Computing periods I	33
2.11 Computing periods II: Indirect method	37
2.12 Computing periods III: Evaluation of the sums	41
2.13 Computing $L^{(r)}(f,1)$	42
2.14 Obtaining equations for the curves	45
2.15 Computing the degree of a modular parametrization	46
2.15.1 Modular Parametrizations	47
2.15.2 Coset representatives and Fundamental Domains	48
2.15.3 Implementation for $\Gamma_0(N)$	50
Appendix to Chapter II. Examples	52
Example 1. $N = 11$	52
Example 2. $N = 33$	57
Example 3. $N = 37$	58
Example 4. $N = 49$	60
Chapter III. Elliptic curve algorithms	62
3.1 Terminology and notation	62
3.2 The Kraus–Laska–Connell algorithm and Tate's algorithm	64
3.3 The Mordell–Weil group I: finding torsion points	68
3.4 Heights and the height pairing	71
3.5 The Mordell–Weil group II: generators	75
3.6 The Mordell–Weil group III: the rank	78
3.7 The period lattice	97
3.8 Finding isogenous curves	98
3.9 Twists and complex multiplication	101
Chapter IV. The tables	104
Table 1. Elliptic curves	109
Table 2. Mordell–Weil generators	255
Table 3. Hecke eigenvalues	264
Table 4. Birch—Swinnerton-Dyer data	313
Table 5. Parametrization degrees	362
Bibliography	374