# Factorization in Haar system Hardy spaces Workshop in Analysis and Probability Seminar

#### Thomas Speckhofer

Johannes Kepler University Linz, Austria

July 23, 2024

### Overview

Introduction

Definitions

- Main results
- Proofs

#### **Primary Banach spaces**

- ullet Let X be a Banach space.
- Let  $\mathcal{B}(X)$  be the set of all bounded linear operators  $T\colon X\to X$ .
- X is called *primary* if for all spaces Y,Z, we have that  $X\sim Y\oplus Z$  implies  $Y\sim X$  or  $Z\sim X$ .
- Examples:  $c_0$ ,  $\ell^p$ ,  $L^p$   $(1 \le p \le \infty)$ ,  $H^1$ , some rearrangement-invariant function spaces, ...

4□ > 4□ > 4 = > 4 = > = 90

#### **Primary Banach spaces**

- ullet Let X be a Banach space.
- Let  $\mathcal{B}(X)$  be the set of all bounded linear operators  $T\colon X\to X$ .
- X is called *primary* if for all spaces Y,Z, we have that  $X\sim Y\oplus Z$  implies  $Y\sim X$  or  $Z\sim X$ .
- Examples:  $c_0$ ,  $\ell^p$ ,  $L^p$   $(1 \le p \le \infty)$ ,  $H^1$ , some rearrangement-invariant function spaces, ...

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

#### **Primary Banach spaces**

- ullet Let X be a Banach space.
- Let  $\mathcal{B}(X)$  be the set of all bounded linear operators  $T\colon X\to X$ .
- X is called *primary* if for all spaces Y,Z, we have that  $X\sim Y\oplus Z$  implies  $Y\sim X$  or  $Z\sim X$ .
- Examples:  $c_0$ ,  $\ell^p$ ,  $L^p$   $(1 \le p \le \infty)$ ,  $H^1$ , some rearrangement-invariant function spaces, ...

4□ > 4□ > 4 = > 4 = > = 90

#### **Primary Banach spaces**

- $\bullet$  Let X be a Banach space.
- Let  $\mathcal{B}(X)$  be the set of all bounded linear operators  $T\colon X\to X$ .
- X is called *primary* if for all spaces Y,Z, we have that  $X\sim Y\oplus Z$  implies  $Y\sim X$  or  $Z\sim X$ .
- Examples:  $c_0$ ,  $\ell^p$ ,  $L^p$   $(1 \le p \le \infty)$ ,  $H^1$ , some rearrangement-invariant function spaces, ...

3 / 18

- Let  $P \in \mathcal{B}(X)$  be a projection. **Goal**: Show that P(X) or  $(I_X P)(X)$  has a complemented subspace isomorphic to X. (\*)
- If X satisfies (\*) and  $X \sim \ell^p(X)$  for some  $1 \leq p \leq \infty$ , then by Pełczyński's decomposition method, X is primary.
- lacktriangle Sufficient for (\*): X has the primary factorization property.

#### Definition

Let  $S, T \in \mathcal{B}(X)$ . We say that S factors through T if there are  $A, B \in \mathcal{B}(X)$  such that S = ATB.

#### Definition

We say that a Banach space X has the *primary factorization property* if for every  $T \in \mathcal{B}(X)$ , the identity  $I_X$  factors through T or  $I_X - T$ .

- Let  $P \in \mathcal{B}(X)$  be a projection. **Goal**: Show that P(X) or  $(I_X P)(X)$  has a complemented subspace isomorphic to X. (\*)
- If X satisfies (\*) and  $X \sim \ell^p(X)$  for some  $1 \leq p \leq \infty$ , then by Pełczyński's decomposition method, X is primary.
- ullet Sufficient for (\*): X has the  $\emph{primary factorization property.}$

#### Definition

Let  $S,T\in\mathcal{B}(X)$ . We say that S factors through T if there are  $A,B\in\mathcal{B}(X)$  such that S=ATB.

#### Definition

We say that a Banach space X has the *primary factorization property* if for every  $T \in \mathcal{B}(X)$ , the identity  $I_X$  factors through T or  $I_X - T$ .

- Let  $P \in \mathcal{B}(X)$  be a projection. **Goal**: Show that P(X) or  $(I_X P)(X)$  has a complemented subspace isomorphic to X. (\*)
- If X satisfies (\*) and  $X \sim \ell^p(X)$  for some  $1 \leq p \leq \infty$ , then by Pełczyński's decomposition method, X is primary.
- Sufficient for (\*): X has the primary factorization property.

#### Definition

Let  $S,T\in\mathcal{B}(X)$ . We say that S factors through T if there are  $A,B\in\mathcal{B}(X)$  such that S=ATB.

#### Definition

We say that a Banach space X has the *primary factorization property* if for every  $T \in \mathcal{B}(X)$ , the identity  $I_X$  factors through T or  $I_X - T$ .

- Let  $P \in \mathcal{B}(X)$  be a projection. **Goal**: Show that P(X) or  $(I_X P)(X)$  has a complemented subspace isomorphic to X. (\*)
- If X satisfies (\*) and  $X \sim \ell^p(X)$  for some  $1 \leq p \leq \infty$ , then by Pełczyński's decomposition method, X is primary.
- Sufficient for (\*): X has the primary factorization property.

#### **Definition**

Let  $S, T \in \mathcal{B}(X)$ . We say that S factors through T if there are  $A, B \in \mathcal{B}(X)$  such that S = ATB.

#### Definition

We say that a Banach space X has the *primary factorization property* if for every  $T \in \mathcal{B}(X)$ , the identity  $I_X$  factors through T or  $I_X - T$ .

- Let  $P \in \mathcal{B}(X)$  be a projection. **Goal**: Show that P(X) or  $(I_X P)(X)$  has a complemented subspace isomorphic to X. (\*)
- If X satisfies (\*) and  $X \sim \ell^p(X)$  for some  $1 \leq p \leq \infty$ , then by Pełczyński's decomposition method, X is primary.
- Sufficient for (\*): X has the primary factorization property.

#### **Definition**

Let  $S, T \in \mathcal{B}(X)$ . We say that S factors through T if there are  $A, B \in \mathcal{B}(X)$  such that S = ATB.

#### Definition

We say that a Banach space X has the *primary factorization property* if for every  $T \in \mathcal{B}(X)$ , the identity  $I_X$  factors through T or  $I_X - T$ .

#### Definition

We say that a Banach space X has the *primary factorization property* if for every  $T \in \mathcal{B}(X)$ , the identity  $I_X$  factors through T or  $I_X - T$ .

ullet For a Banach space X, define

$$\mathcal{M}_X = \{ T \in \mathcal{B}(X) : I_X \text{ does not factor through } T \}.$$

- The set  $\mathcal{M}_X$  is an ideal of  $\mathcal{B}(X) \iff X$  has the primary factorization property (see Dosev-Johnson [1]).
- In that case,  $\mathcal{M}_X$  is the unique maximal ideal of  $\mathcal{B}(X)$ .

◆□▶◆□▶◆壹▶◆壹▶ 壹 める◆

5 / 18

#### Definition

We say that a Banach space X has the primary factorization property if for every  $T \in \mathcal{B}(X)$ , the identity  $I_X$  factors through T or  $I_X - T$ .

• For a Banach space X, define

$$\mathcal{M}_X = \{T \in \mathcal{B}(X) : I_X \text{ does not factor through } T\}.$$

#### Definition

We say that a Banach space X has the primary factorization property if for every  $T \in \mathcal{B}(X)$ , the identity  $I_X$  factors through T or  $I_X - T$ .

• For a Banach space X, define

$$\mathcal{M}_X = \{ T \in \mathcal{B}(X) : I_X \text{ does not factor through } T \}.$$

- The set  $\mathcal{M}_X$  is an ideal of  $\mathcal{B}(X) \iff X$  has the primary factorization property (see Dosev-Johnson [1]).

#### Definition

We say that a Banach space X has the primary factorization property if for every  $T \in \mathcal{B}(X)$ , the identity  $I_X$  factors through T or  $I_X - T$ .

• For a Banach space X, define

$$\mathcal{M}_X = \{ T \in \mathcal{B}(X) : I_X \text{ does not factor through } T \}.$$

- The set  $\mathcal{M}_X$  is an ideal of  $\mathcal{B}(X) \iff X$  has the primary factorization property (see Dosev-Johnson [1]).
- In that case,  $\mathcal{M}_X$  is the unique maximal ideal of  $\mathcal{B}(X)$ .

- Dyadic intervals:  $\mathcal{D} = \left\{ [0,1), [0,\frac{1}{2}), [\frac{1}{2},1), [0,\frac{1}{4}), [\frac{1}{4},\frac{1}{2}), \dots \right\}$
- $I^+ = \text{left half}, I^- = \text{right half of } I \in \mathcal{I}$
- Define  $h_I=\mathbb{1}_{I^+}-\mathbb{1}_{I^-}$ ,  $I\in\mathcal{D}$ .
- Put  $h_{\varnothing} = \mathbb{1}_{[0,1)}$  and  $\mathcal{D}^+ = \mathcal{D} \cup \{\varnothing\}$ .
- The Haar system  $(h_I)_{I\in\mathcal{D}^+}$  is a *Schauder basis* for  $L^p$ ,  $1\leq p<\infty$
- $D \in \mathcal{B}(L^p)$  is called a *Haar multiplier* if  $Dh_I = d_I h_I$  for all  $I \in \mathcal{D}^+$   $(d_I \in \mathbb{R}, I \in \mathcal{D})$ .

6/18

- Dyadic intervals:  $\mathcal{D} = \{[0,1), [0,\frac{1}{2}), [\frac{1}{2},1), [0,\frac{1}{4}), [\frac{1}{4},\frac{1}{2}), \dots \}$
- ullet  $I^+=$  left half,  $I^-=$  right half of  $I\in\mathcal{D}$
- Define  $h_I = \mathbb{1}_{I^+} \mathbb{1}_{I^-}$ ,  $I \in \mathcal{D}$ .
- Put  $h_{\varnothing} = \mathbb{1}_{[0,1)}$  and  $\mathcal{D}^+ = \mathcal{D} \cup \{\varnothing\}$ .
- The Haar system  $(h_I)_{I\in\mathcal{D}^+}$  is a *Schauder basis* for  $L^p$ ,  $1\leq p<\infty$
- $D \in \mathcal{B}(L^p)$  is called a *Haar multiplier* if  $Dh_I = d_I h_I$  for all  $I \in \mathcal{D}^+$   $(d_I \in \mathbb{R}, I \in \mathcal{D}).$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ト ・ 恵 ・ 夕久で

- Dyadic intervals:  $\mathcal{D} = \left\{ [0,1), [0,\frac{1}{2}), [\frac{1}{2},1), [0,\frac{1}{4}), [\frac{1}{4},\frac{1}{2}), \dots \right\}$
- ullet  $I^+=$  left half,  $I^-=$  right half of  $I\in\mathcal{D}$
- Define  $h_I = 1_{I^+} 1_{I^-}$ ,  $I \in \mathcal{D}$ .
- Put  $h_{\varnothing} = \mathbb{1}_{[0,1)}$  and  $\mathcal{D}^+ = \mathcal{D} \cup \{\varnothing\}$ .
- The Haar system  $(h_I)_{I\in\mathcal{D}^+}$  is a *Schauder basis* for  $L^p$ ,  $1\leq p<\infty$ .
- $D \in \mathcal{B}(L^p)$  is called a Haar multiplier if  $Dh_I = d_I h_I$  for all  $I \in \mathcal{D}^+$   $(d_I \in \mathbb{R}, I \in \mathcal{D})$ .

< ロト < 個 ト < 重 ト < 重 ト 三 重 ・ の Q ()

- Dyadic intervals:  $\mathcal{D} = \{[0,1), [0,\frac{1}{2}), [\frac{1}{2},1), [0,\frac{1}{4}), [\frac{1}{4},\frac{1}{2}), \dots \}$
- ullet  $I^+=$  left half,  $I^-=$  right half of  $I\in\mathcal{D}$
- Define  $h_I = 1_{I^+} 1_{I^-}$ ,  $I \in \mathcal{D}$ .
- Put  $h_{\varnothing} = \mathbb{1}_{[0,1)}$  and  $\mathcal{D}^+ = \mathcal{D} \cup \{\varnothing\}$ .
- The Haar system  $(h_I)_{I\in\mathcal{D}^+}$  is a *Schauder basis* for  $L^p$ ,  $1\leq p<\infty$
- $D \in \mathcal{B}(L^p)$  is called a *Haar multiplier* if  $Dh_I = d_I h_I$  for all  $I \in \mathcal{D}^+$   $(d_I \in \mathbb{R}, I \in \mathcal{D})$ .

6/18

- Dyadic intervals:  $\mathcal{D} = \{[0,1), [0,\frac{1}{2}), [\frac{1}{2},1), [0,\frac{1}{4}), [\frac{1}{4},\frac{1}{2}), \dots \}$
- ullet  $I^+=$  left half,  $I^-=$  right half of  $I\in\mathcal{D}$
- Define  $h_I = 1_{I^+} 1_{I^-}$ ,  $I \in \mathcal{D}$ .
- Put  $h_{\varnothing} = \mathbb{1}_{[0,1)}$  and  $\mathcal{D}^+ = \mathcal{D} \cup \{\varnothing\}$ .
- The Haar system  $(h_I)_{I \in \mathcal{D}^+}$  is a *Schauder basis* for  $L^p$ ,  $1 \leq p < \infty$ .
- $D \in \mathcal{B}(L^p)$  is called a Haar multiplier if  $Dh_I = d_I h_I$  for all  $I \in \mathcal{D}^+$   $(d_I \in \mathbb{R}, I \in \mathcal{D}).$

6/18

- Dyadic intervals:  $\mathcal{D} = \{[0,1), [0,\frac{1}{2}), [\frac{1}{2},1), [0,\frac{1}{4}), [\frac{1}{4},\frac{1}{2}), \dots \}$
- ullet  $I^+=$  left half,  $I^-=$  right half of  $I\in\mathcal{D}$
- Define  $h_I = 1_{I^+} 1_{I^-}$ ,  $I \in \mathcal{D}$ .
- Put  $h_{\varnothing} = \mathbb{1}_{[0,1)}$  and  $\mathcal{D}^+ = \mathcal{D} \cup \{\varnothing\}$ .
- The Haar system  $(h_I)_{I\in\mathcal{D}^+}$  is a *Schauder basis* for  $L^p$ ,  $1\leq p<\infty$ .
- $D \in \mathcal{B}(L^p)$  is called a *Haar multiplier* if  $Dh_I = d_I h_I$  for all  $I \in \mathcal{D}^+$   $(d_I \in \mathbb{R}, I \in \mathcal{D})$ .

6/18

- A Haar system space X is the completion of  $H = \operatorname{span}\{h_I : I \in \mathcal{D}^+\}$  under a norm  $\|\cdot\|_X$  such that:
  - If  $x,y\in H$  and  $|x|,\,|y|$  have the same distribution, then  $\|x\|_X=\|y\|_X$  .
  - $\|\mathbb{1}_{[0,1)}\|_X = 1$
- Examples:  $L^p$ ,  $1 \le p < \infty$ , all separable rearrangement-invariant function spaces
- Let  $\mathbf{r} = (r_I)_{I \in \mathcal{D}}$  be a *constant* or *independent* family of random variables uniformly distributed on  $\{+1, -1\}$ .
- Haar system Hardy space  $X(\mathbf{r})$ : completion of  $\mathrm{span}\{h_I\}_{I\in\mathcal{D}}$  under

$$\left\| \sum_{I \in \mathcal{D}} a_I h_I \right\|_{X(\mathbf{r})} = \left\| s \mapsto \mathbb{E} \right| \sum_{I \in \mathcal{D}} r_I a_I h_I(s) \left| \right|_X$$
$$= \left\| \sum_I a_I h_I \right\|_X \text{ or } \sim \left\| \left( \sum_I a_I^2 h_I^2 \right)^{1/2} \right\|_X.$$

- A Haar system space X is the completion of  $H = \operatorname{span}\{h_I : I \in \mathcal{D}^+\}$  under a norm  $\|\cdot\|_X$  such that:
  - If  $x,y\in H$  and  $|x|,\,|y|$  have the same distribution, then  $\|x\|_X=\|y\|_X.$
  - $\|\mathbb{1}_{[0,1)}\|_X = 1.$
- Examples:  $L^p$ ,  $1 \le p < \infty$ , all separable rearrangement-invariant function spaces
- Let  $\mathbf{r} = (r_I)_{I \in \mathcal{D}}$  be a *constant* or *independent* family of random variables uniformly distributed on  $\{+1, -1\}$ .
- Haar system Hardy space  $X(\mathbf{r})$ : completion of  $\mathrm{span}\{h_I\}_{I\in\mathcal{D}}$  under

$$\left\| \sum_{I \in \mathcal{D}} a_I h_I \right\|_{X(\mathbf{r})} = \left\| s \mapsto \mathbb{E} \left| \sum_{I \in \mathcal{D}} r_I a_I h_I(s) \right| \right\|_{X}$$
$$= \left\| \sum_{I} a_I h_I \right\|_{X} \text{ or } \sim \left\| \left( \sum_{I} a_I^2 h_I^2 \right)^{1/2} \right\|_{X}.$$

- A Haar system space X is the completion of  $H = \operatorname{span}\{h_I : I \in \mathcal{D}^+\}$  under a norm  $\|\cdot\|_X$  such that:
  - If  $x,y\in H$  and |x|, |y| have the same distribution, then  $\|x\|_X=\|y\|_X.$
  - $\|\mathbb{1}_{[0,1)}\|_X = 1$ .
- Examples:  $L^p$ ,  $1 \le p < \infty$ , all separable rearrangement-invariant function spaces
- Let  $\mathbf{r} = (r_I)_{I \in \mathcal{D}}$  be a *constant* or *independent* family of random variables uniformly distributed on  $\{+1, -1\}$ .
- Haar system Hardy space  $X(\mathbf{r})$ : completion of  $\mathrm{span}\{h_I\}_{I\in\mathcal{D}}$  under

$$\left\| \sum_{I \in \mathcal{D}} a_I h_I \right\|_{X(\mathbf{r})} = \left\| s \mapsto \mathbb{E} \right| \sum_{I \in \mathcal{D}} r_I a_I h_I(s) \left\| \right\|_{X}$$
$$= \left\| \sum_{I} a_I h_I \right\|_{X} \text{ or } \sim \left\| \left( \sum_{I} a_I^2 h_I^2 \right)^{1/2} \right\|_{X}.$$

- A Haar system space X is the completion of  $H = \operatorname{span}\{h_I : I \in \mathcal{D}^+\}$  under a norm  $\|\cdot\|_X$  such that:
  - If  $x,y\in H$  and |x|, |y| have the same distribution, then  $\|x\|_X=\|y\|_X.$
  - $\|\mathbb{1}_{[0,1)}\|_X = 1$ .
- Examples:  $L^p$ ,  $1 \le p < \infty$ , all separable rearrangement-invariant function spaces
- Let  $\mathbf{r} = (r_I)_{I \in \mathcal{D}}$  be a *constant* or *independent* family of random variables uniformly distributed on  $\{+1, -1\}$ .
- Haar system Hardy space  $X(\mathbf{r})$ : completion of  $\mathrm{span}\{h_I\}_{I\in\mathcal{D}}$  under

$$\left\| \sum_{I \in \mathcal{D}} a_I h_I \right\|_{X(\mathbf{r})} = \left\| s \mapsto \mathbb{E} \right| \sum_{I \in \mathcal{D}} r_I a_I h_I(s) \left\| \right\|_{X}$$
$$= \left\| \sum_I a_I h_I \right\|_{X} \text{ or } \sim \left\| \left( \sum_I a_I^2 h_I^2 \right)^{1/2} \right\|_{X}.$$

- A Haar system space X is the completion of  $H = \operatorname{span}\{h_I : I \in \mathcal{D}^+\}$  under a norm  $\|\cdot\|_X$  such that:
  - If  $x,y\in H$  and |x|, |y| have the same distribution, then  $\|x\|_X=\|y\|_X.$
  - $\|\mathbb{1}_{[0,1)}\|_X = 1$ .
- Examples:  $L^p$ ,  $1 \leq p < \infty$ , all separable rearrangement-invariant function spaces
- Let  $\mathbf{r} = (r_I)_{I \in \mathcal{D}}$  be a *constant* or *independent* family of random variables uniformly distributed on  $\{+1, -1\}$ .
- Haar system Hardy space  $X(\mathbf{r})$ : completion of  $\mathrm{span}\{h_I\}_{I\in\mathcal{D}}$  under

$$\left\| \sum_{I \in \mathcal{D}} a_I h_I \right\|_{X(\mathbf{r})} = \left\| s \mapsto \mathbb{E} \right| \sum_{I \in \mathcal{D}} r_I a_I h_I(s) \left\| \right\|_{X}$$
$$= \left\| \sum_{I} a_I h_I \right\|_{X} \text{ or } \sim \left\| \left( \sum_{I} a_I^2 h_I^2 \right)^{1/2} \right\|_{X}.$$

- A Haar system space X is the completion of  $H = \operatorname{span}\{h_I : I \in \mathcal{D}^+\}$  under a norm  $\|\cdot\|_X$  such that:
  - If  $x,y\in H$  and |x|, |y| have the same distribution, then  $\|x\|_X=\|y\|_X.$
  - $\|\mathbb{1}_{[0,1)}\|_X = 1$ .
- Examples:  $L^p$ ,  $1 \leq p < \infty$ , all separable rearrangement-invariant function spaces
- Let  $\mathbf{r} = (r_I)_{I \in \mathcal{D}}$  be a *constant* or *independent* family of random variables uniformly distributed on  $\{+1, -1\}$ .
- Haar system Hardy space  $X(\mathbf{r})$ : completion of  $\mathrm{span}\{h_I\}_{I\in\mathcal{D}}$  under

$$\begin{split} \left\| \sum_{I \in \mathcal{D}} a_I h_I \right\|_{X(\mathbf{r})} &= \left\| s \mapsto \mathbb{E} \left| \sum_{I \in \mathcal{D}} r_I a_I h_I(s) \right| \right\|_{X} \\ &= \left\| \sum_I a_I h_I \right\|_{X} \text{ or } \sim \left\| \left( \sum_I a_I^2 h_I^2 \right)^{1/2} \right\|_{X}. \end{split}$$

- A Haar system space X is the completion of  $H = \operatorname{span}\{h_I : I \in \mathcal{D}^+\}$  under a norm  $\|\cdot\|_X$  such that:
  - If  $x, y \in H$  and |x|, |y| have the same distribution, then  $||x||_X = ||y||_X$ .
  - $\|\mathbb{1}_{[0,1)}\|_X = 1$ .
- $\bullet$  Examples:  $L^p$  ,  $1 \leq p < \infty$  , all separable rearrangement-invariant function spaces
- Let  $\mathbf{r} = (r_I)_{I \in \mathcal{D}}$  be a *constant* or *independent* family of random variables uniformly distributed on  $\{+1, -1\}$ .
- Haar system Hardy space  $X(\mathbf{r})$ : completion of  $\operatorname{span}\{h_I\}_{I\in\mathcal{D}}$  under

$$\left\| \sum_{I \in \mathcal{D}} a_I h_I \right\|_{X(\mathbf{r})} = \left\| s \mapsto \mathbb{E} \left| \sum_{I \in \mathcal{D}} r_I a_I h_I(s) \right| \right\|_{X}$$
$$= \left\| \sum_{I} a_I h_I \right\|_{X} \text{ or } \sim \left\| \left( \sum_{I} a_I^2 h_I^2 \right)^{1/2} \right\|_{X}.$$

7 / 18

Now fix a Haar system Hardy space Y.

8 / 18

Now fix a Haar system Hardy space Y.

### Theorem (R. Lechner and T. S. '23)

Suppose that  $\|\cdot\|_Y \nsim \|\cdot\|_{L^{\infty}}$  on the dyadic simple functions. Let E be one of the following spaces:

- (i) E=Y
- (ii)  $E = \ell^p(Y)$  for some  $1 \le p < \infty$
- (iii)  $E = \ell^{\infty}(Y)$  if Y is "asymptotically curved" w.r.t.  $(h_I)_{I \in \mathcal{D}}$ .

Then E has the primary factorization property, and hence,  $\mathcal{M}_E$  is the unique maximal ideal of  $\mathcal{B}(E)$ . In particular, the spaces in (ii) and (iii) are primary.

- Basic idea: Step-by-step reduction.

$$D \approx A_1 T B_1, \quad D^{\text{stab}} = A_2 D B_2, \dots$$

$$\hat{h}_I = \sum_{K \in \mathcal{B}_I} \varepsilon_K h_K, \qquad \mathcal{B}_I \subseteq \mathcal{D}, \ \varepsilon_K = \pm 1$$

### Proof method

- Basic idea: Step-by-step reduction. Operator T o Haar multiplier D o stable Haar multiplier  $D^{\mathrm{stab}}$
- ullet Clearly, the identity factors through  $cI_Y$  or  $(1-c)I_{Y^{\perp}}$

$$D \approx A_1 T B_1, \quad D^{\text{stab}} = A_2 D B_2, \dots$$

ullet How are  $A_i, B_i$  defined? o faithful Haar system  $(\hat{h}_I)_{I\in\mathcal{D}}$ 

$$\hat{h}_I = \sum_{K \in \mathcal{B}_I} \varepsilon_K h_K, \qquad \mathcal{B}_I \subseteq \mathcal{D}, \ \varepsilon_K = \pm 1$$

 $\bullet$   $\mathcal{B}_I$  are pairwise disjoint and satisfy some compatibility conditions.

### Proof method

- Basic idea: Step-by-step reduction. Operator  $T o \mathsf{Haar}$  multiplier  $D o \mathsf{stable}$  Haar multiplier  $D^{\mathrm{stab}}$

$$D \approx A_1 T B_1, \quad D^{\text{stab}} = A_2 D B_2, \dots$$

$$\hat{h}_I = \sum_{K \in \mathcal{B}_I} \varepsilon_K h_K, \qquad \mathcal{B}_I \subseteq \mathcal{D}, \ \varepsilon_K = \pm 1$$

- Basic idea: Step-by-step reduction. Operator  $T o \mathsf{Haar}$  multiplier  $D o \mathsf{stable}$  Haar multiplier  $D^{\operatorname{stab}}$

$$D \approx A_1 T B_1, \quad D^{\text{stab}} = A_2 D B_2, \dots$$

$$\hat{h}_I = \sum_{K \in \mathcal{B}_I} \varepsilon_K h_K, \qquad \mathcal{B}_I \subseteq \mathcal{D}, \ \varepsilon_K = \pm 1$$

- Basic idea: Step-by-step reduction. Operator  $T o \mathsf{Haar}$  multiplier  $D o \mathsf{stable}$  Haar multiplier  $D^{\operatorname{stab}}$  $\rightarrow$  constant multiple of the identity  $cI_Y$

$$D \approx A_1 T B_1, \quad D^{\text{stab}} = A_2 D B_2, \dots$$

$$\hat{h}_I = \sum_{K \in \mathcal{B}_I} \varepsilon_K h_K, \qquad \mathcal{B}_I \subseteq \mathcal{D}, \ \varepsilon_K = \pm 1$$

- Basic idea: Step-by-step reduction. Operator T o Haar multiplier D o stable Haar multiplier  $D^{\mathrm{stab}} o$  constant multiple of the identity  $cI_Y$
- Clearly, the identity factors through  $cI_Y$  or  $(1-c)I_Y$ .

$$D \approx A_1 T B_1, \quad D^{\text{stab}} = A_2 D B_2, \dots$$

ullet How are  $A_i, B_i$  defined? o faithful Haar system  $(\hat{h}_I)_{I\in\mathcal{D}}$ 

$$\hat{h}_I = \sum_{K \in \mathcal{B}_I} \varepsilon_K h_K, \qquad \mathcal{B}_I \subseteq \mathcal{D}, \ \varepsilon_K = \pm 1$$

ullet  $\mathcal{B}_I$  are pairwise disjoint and satisfy some compatibility conditions

- Basic idea: Step-by-step reduction. Operator  $T o \mathsf{Haar}$  multiplier  $D o \mathsf{stable}$  Haar multiplier  $D^{\operatorname{stab}}$  $\rightarrow$  constant multiple of the identity  $cI_Y$
- Clearly, the identity factors through  $cI_Y$  or  $(1-c)I_Y$ .

$$D \approx A_1 T B_1$$
,  $D^{\text{stab}} = A_2 D B_2$ , ...

$$\hat{h}_I = \sum_{K \in \mathcal{B}_I} \varepsilon_K h_K, \qquad \mathcal{B}_I \subseteq \mathcal{D}, \ \varepsilon_K = \pm 1$$

Thomas Speckhofer July 23, 2024 9 / 18

- Basic idea: Step-by-step reduction. Operator T o Haar multiplier D o stable Haar multiplier  $D^{\mathrm{stab}} o$  constant multiple of the identity  $cI_Y$
- Clearly, the identity factors through  $cI_Y$  or  $(1-c)I_Y$ .

$$D \approx A_1 T B_1, \quad D^{\text{stab}} = A_2 D B_2, \dots$$

ullet How are  $A_i, B_i$  defined? o faithful Haar system  $(\hat{h}_I)_{I\in\mathcal{D}}$ 

$$\hat{h}_I = \sum_{K \in \mathcal{B}_I} \varepsilon_K h_K, \qquad \mathcal{B}_I \subseteq \mathcal{D}, \ \varepsilon_K = \pm 1$$

ullet  $\mathcal{B}_{I}$  are pairwise disjoint and satisfy some compatibility conditions

Thomas Speckhofer July 23, 2024 9 / 18

- Basic idea: Step-by-step reduction. Operator  $T o \mathsf{Haar}$  multiplier  $D o \mathsf{stable}$  Haar multiplier  $D^{\operatorname{stab}}$  $\rightarrow$  constant multiple of the identity  $cI_Y$
- Clearly, the identity factors through  $cI_V$  or  $(1-c)I_V$ .

$$D \approx A_1 T B_1$$
,  $D^{\text{stab}} = A_2 D B_2$ , ...

• How are  $A_i, B_i$  defined?  $\rightarrow$  faithful Haar system  $(\tilde{h}_I)_{I \in \mathcal{D}}$ 

$$\hat{h}_I = \sum_{K \in \mathcal{B}_I} \varepsilon_K h_K, \qquad \mathcal{B}_I \subseteq \mathcal{D}, \ \varepsilon_K = \pm 1$$

Thomas Speckhofer July 23, 2024 9/18

- Basic idea: Step-by-step reduction. Operator  $T o \mathsf{Haar}$  multiplier  $D o \mathsf{stable}$  Haar multiplier  $D^{\operatorname{stab}}$  $\rightarrow$  constant multiple of the identity  $cI_Y$
- Clearly, the identity factors through  $cI_V$  or  $(1-c)I_V$ .

$$D \approx A_1 T B_1$$
,  $D^{\text{stab}} = A_2 D B_2$ , ...

• How are  $A_i, B_i$  defined?  $\rightarrow$  faithful Haar system  $(\tilde{h}_I)_{I \in \mathcal{D}}$ 

$$\hat{h}_I = \sum_{K \in \mathcal{B}_I} \varepsilon_K h_K, \qquad \mathcal{B}_I \subseteq \mathcal{D}, \ \varepsilon_K = \pm 1$$

Thomas Speckhofer July 23, 2024 9/18

- Basic idea: Step-by-step reduction. Operator  $T o \mathsf{Haar}$  multiplier  $D o \mathsf{stable}$  Haar multiplier  $D^{\operatorname{stab}}$  $\rightarrow$  constant multiple of the identity  $cI_Y$
- Clearly, the identity factors through  $cI_V$  or  $(1-c)I_V$ .

$$D \approx A_1 T B_1$$
,  $D^{\text{stab}} = A_2 D B_2$ , ...

• How are  $A_i, B_i$  defined?  $\rightarrow$  faithful Haar system  $(\tilde{h}_I)_{I \in \mathcal{D}}$ 

$$\hat{h}_I = \sum_{K \in \mathcal{B}_I} \varepsilon_K h_K, \qquad \mathcal{B}_I \subseteq \mathcal{D}, \ \varepsilon_K = \pm 1$$

•  $\mathcal{B}_I$  are pairwise disjoint and satisfy some compatibility conditions.

Thomas Speckhofer July 23, 2024 9/18

# Faithful Haar systems



Thomas Speckhofer July 23, 2024 10

# Faithful Haar systems



< ロト < 個 ト < 重 ト < 重 ト 三 重 ・ の Q ()

Thomas Speckhofer July 23, 2024 10

# Faithful Haar systems



Thomas Speckhofer July 23, 2024 10

• Associated operators *A*, *B*:

$$Bx = \sum_{I \in \mathcal{D}} \frac{\langle h_I, x \rangle}{|I|} \hat{h}_I, \qquad Ax = \sum_{I \in \mathcal{D}} \frac{\langle \hat{h}_I, x \rangle}{|I|} h_I$$

#### Diagonalization

• Let  $I, J \in \mathcal{D}$  with "I < J". Given  $\hat{h}_I$ , construct  $\hat{h}_J$  out of sufficiently high-frequency "building blocks"  $h_K$ .

$$\Longrightarrow |\langle \hat{h}_I, T\hat{h}_J 
angle|$$
 and  $|\langle \hat{h}_J, T\hat{h}_I 
angle|$  are small.

ullet Put  $Dh_I=rac{\langle \hat{h}_I,T\hat{h}_I
angle}{|I|}h_I$ ,  $I\in\mathcal{D}$ 

$$\implies \|D - ATB\|$$
 is small

Thomas Speckhofer July 23, 2024 11/18

• Associated operators A, B:

$$Bx = \sum_{I \in \mathcal{D}} \frac{\langle h_I, x \rangle}{|I|} \hat{h}_I, \qquad Ax = \sum_{I \in \mathcal{D}} \frac{\langle \hat{h}_I, x \rangle}{|I|} h_I$$

## Diagonalization

• Let  $I, J \in \mathcal{D}$  with "I < J". Given  $\hat{h}_I$ , construct  $\hat{h}_J$  out of sufficiently high-frequency "building blocks"  $h_K$ .

$$\implies |\langle \hat{h}_I, T\hat{h}_J \rangle|$$
 and  $|\langle \hat{h}_J, T\hat{h}_I \rangle|$  are small.

$$\implies \|D - ATB\|$$
 is small

Thomas Speckhofer July 23, 2024 11 / 18

• Associated operators *A*, *B*:

$$Bx = \sum_{I \in \mathcal{D}} \frac{\langle h_I, x \rangle}{|I|} \hat{h}_I, \qquad Ax = \sum_{I \in \mathcal{D}} \frac{\langle \hat{h}_I, x \rangle}{|I|} h_I$$

#### Diagonalization

• Let  $I, J \in \mathcal{D}$  with "I < J". Given  $\hat{h}_I$ , construct  $\hat{h}_J$  out of sufficiently high-frequency "building blocks"  $h_K$ .

$$\implies |\langle \hat{h}_I, T\hat{h}_J \rangle|$$
 and  $|\langle \hat{h}_J, T\hat{h}_I \rangle|$  are small.

• Put  $Dh_I = \frac{\langle \hat{h}_I, T\hat{h}_I \rangle}{|I|} h_I$ ,  $I \in \mathcal{D}$ 

$$\implies \|D - ATB\|$$
 is small

Thomas Speckhofer July 23, 2024 11/18

• Associated operators A, B:

$$Bx = \sum_{I \in \mathcal{D}} \frac{\langle h_I, x \rangle}{|I|} \hat{h}_I, \qquad Ax = \sum_{I \in \mathcal{D}} \frac{\langle \hat{h}_I, x \rangle}{|I|} h_I$$

#### Diagonalization

• Let  $I, J \in \mathcal{D}$  with "I < J". Given  $\hat{h}_I$ , construct  $\hat{h}_J$  out of sufficiently high-frequency "building blocks"  $h_K$ .

$$\implies |\langle \hat{h}_I, T\hat{h}_J \rangle|$$
 and  $|\langle \hat{h}_J, T\hat{h}_I \rangle|$  are small.

• Put  $Dh_I = \frac{\langle \dot{h}_I, T\dot{h}_I \rangle}{|I|} h_I$ ,  $I \in \mathcal{D}$ .

Thomas Speckhofer July 23, 2024 11 / 18

Associated operators A, B:

$$Bx = \sum_{I \in \mathcal{D}} \frac{\langle h_I, x \rangle}{|I|} \hat{h}_I, \qquad Ax = \sum_{I \in \mathcal{D}} \frac{\langle \hat{h}_I, x \rangle}{|I|} h_I$$

#### Diagonalization

• Let  $I, J \in \mathcal{D}$  with "I < J". Given  $\hat{h}_I$ , construct  $\hat{h}_J$  out of sufficiently high-frequency "building blocks"  $h_K$ .

$$\implies |\langle \hat{h}_I, T\hat{h}_J \rangle|$$
 and  $|\langle \hat{h}_J, T\hat{h}_I \rangle|$  are small.

• Put  $Dh_I = \frac{\langle \hat{h}_I, T\hat{h}_I \rangle}{|I|} h_I$ ,  $I \in \mathcal{D}$ .

$$\implies \|D - ATB\|$$
 is small.

Thomas Speckhofer July 23, 2024 11 / 18

#### Stabilization

- Let  $D: Y \to Y$  be a Haar multiplier. Put  $r_n = \sum_{|K|=2^{-n}} h_K$  and  $r_n^{\Gamma} = \mathbb{1}_{\Gamma} \cdot r_n \ (n > 0, \ \Gamma \subset [0, 1)).$

for each dyadic 
$$\Gamma\subseteq[0,1),\quad \left(\langle r_n^\Gamma,Dr_n^\Gamma
angle
ight)_{n\in\mathcal{N}}$$
 converges

$$\hat{h}_I = \sum_{K \in \mathcal{B}_I} \theta_K h_K, \qquad (\theta_K)_{K \in \mathcal{B}_I} \in \{\pm 1\}^{\mathcal{B}_I}$$

Thomas Speckhofer July 23, 2024 12 / 18

#### Stabilization

- Let  $D: Y \to Y$  be a Haar multiplier. Put  $r_n = \sum_{|K|=2^{-n}} h_K$  and  $r_n^{\Gamma} = \mathbb{1}_{\Gamma} \cdot r_n \ (n > 0, \ \Gamma \subset [0, 1)).$
- Step 1: Pass to subsequences, use Cantor diagonalization  $\rightarrow$  we can find  $\mathcal{N} \subseteq \mathbb{N}$  infinte such that

$$\text{for each dyadic }\Gamma\subseteq[0,1),\quad \left(\langle r_n^\Gamma,Dr_n^\Gamma\rangle\right)_{n\in\mathcal{N}}\text{ converges}.$$

$$\hat{h}_I = \sum_{K \in \mathcal{B}_I} \theta_K h_K, \qquad (\theta_K)_{K \in \mathcal{B}_I} \in \{\pm 1\}^{\mathcal{B}_I}$$

Thomas Speckhofer 12 / 18

#### **Stabilization**

- Let  $D\colon Y\to Y$  be a Haar multiplier. Put  $r_n=\sum_{|K|=2^{-n}}h_K$  and  $r_n^\Gamma=\mathbb{1}_\Gamma\cdot r_n\ (n\geq 0,\ \Gamma\subset [0,1)).$
- Step 1: Pass to subsequences, use Cantor diagonalization  $\to$  we can find  $\mathcal{N}\subseteq\mathbb{N}$  infinte such that

$$\text{for each dyadic }\Gamma\subseteq[0,1),\quad \left(\langle r_n^\Gamma,Dr_n^\Gamma\rangle\right)_{n\in\mathcal{N}}\text{ converges}.$$

• Step 2: Inductively construct a faithful Haar system  $(\hat{h}_I)_{I \in \mathcal{D}}$  with "frequencies" in  $\mathcal{N}$  and with random signs:

$$\hat{h}_I = \sum_{K \in \mathcal{B}_I} \theta_K h_K, \qquad (\theta_K)_{K \in \mathcal{B}_I} \in \{\pm 1\}^{\mathcal{B}_I}$$

Thomas Speckhofer July 23, 2024 12 / 18

•  $\Longrightarrow$  The entries  $d_I^{\mathrm{stab}}$  of  $D^{\mathrm{stab}} = ADB$  satisfy

$$\mathbb{E} \, d_{I^{\pm}}^{\mathrm{stab}} \approx d_{I}^{\mathrm{stab}},$$

and the variance is small  $\rightarrow$  choose a "good" realization of  $(\theta_K)$ .

• We have  $d_{[0,1)}^{
m stab}pprox c$ , where c is a cluster point of  $(\langle r_n,Dr_n
angle)_{n=0}^\infty$ 

# Conclusion of the proof

- Perturbation argument  $\implies cI_Y ADB$  is small
- Combined with diagonalization:  $cI_Y \tilde{A}T\tilde{B}$  is small

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ご

13 / 18

Thomas Speckhofer July 23, 2024

•  $\Longrightarrow$  The entries  $d_I^{\text{stab}}$  of  $D^{\text{stab}} = ADB$  satisfy

$$\mathbb{E} \, d_{I^{\pm}}^{\mathrm{stab}} \approx d_{I}^{\mathrm{stab}},$$

and the variance is small  $\to$  choose a "good" realization of  $(\theta_K)$ .

ullet We have  $d_{[0,1)}^{
m stab}pprox c$ , where c is a cluster point of  $(\langle r_n,Dr_n
angle)_{n=0}^\infty$ 

# Conclusion of the proof

- Perturbation argument  $\implies cI_Y ADB$  is small.
- Combined with diagonalization:  $cI_Y \tilde{A}T\tilde{B}$  is small

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

13 / 18

Thomas Speckhofer

•  $\Longrightarrow$  The entries  $d_I^{\mathrm{stab}}$  of  $D^{\mathrm{stab}} = ADB$  satisfy

$$\mathbb{E} d_{I^{\pm}}^{\mathrm{stab}} \approx d_{I}^{\mathrm{stab}},$$

and the variance is small  $\rightarrow$  choose a "good" realization of  $(\theta_K)$ .

• We have  $d_{[0,1)}^{\mathrm{stab}} \approx c$ , where c is a cluster point of  $(\langle r_n, Dr_n \rangle)_{n=0}^{\infty}$ .

# Conclusion of the proof

- Perturbation argument  $\implies cI_Y ADB$  is small
- Combined with diagonalization:  $cI_Y \tilde{A}T\tilde{B}$  is small.

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

13 / 18

Thomas Speckhofer July 23, 2024

ullet The entries  $d_I^{
m stab}$  of  $D^{
m stab}=ADB$  satisfy

$$\mathbb{E} d_{I^{\pm}}^{\mathrm{stab}} \approx d_{I}^{\mathrm{stab}},$$

and the variance is small  $\rightarrow$  choose a "good" realization of  $(\theta_K)$ .

• We have  $d_{[0,1)}^{\mathrm{stab}} \approx c$ , where c is a cluster point of  $(\langle r_n, Dr_n \rangle)_{n=0}^{\infty}$ .

## Conclusion of the proof

- Perturbation argument  $\implies cI_Y ADB$  is small.
- Combined with diagonalization:  $cI_Y \tilde{A}T\tilde{B}$  is small

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩○

13 / 18

Thomas Speckhofer July 23, 2024

•  $\Longrightarrow$  The entries  $d_I^{\mathrm{stab}}$  of  $D^{\mathrm{stab}} = ADB$  satisfy

$$\mathbb{E} d_{I^{\pm}}^{\mathrm{stab}} \approx d_{I}^{\mathrm{stab}},$$

and the variance is small  $\rightarrow$  choose a "good" realization of  $(\theta_K)$ .

• We have  $d_{[0,1)}^{\text{stab}} \approx c$ , where c is a cluster point of  $(\langle r_n, Dr_n \rangle)_{n=0}^{\infty}$ .

## Conclusion of the proof

- Perturbation argument  $\implies cI_Y ADB$  is small.
- Combined with diagonalization:  $cI_V \tilde{A}T\tilde{B}$  is small.

Thomas Speckhofer July 23, 2024 13 / 18

# Factorization through operators with large diagonal

• An operator  $T: Y \to Y$  has large diagonal (w.r.t. the Haar basis) if

$$\inf_{I\in\mathcal{D}}\frac{|\langle h_I, Th_I\rangle|}{|I|} > 0.$$

14 / 18

Thomas Speckhofer July 23, 2024

# Factorization through operators with large diagonal

• An operator  $T: Y \to Y$  has large diagonal (w.r.t. the Haar basis) if

$$\inf_{I \in \mathcal{D}} \frac{|\langle h_I, Th_I \rangle|}{|I|} > 0.$$

# Theorem (R. Lechner and T. S. '23)

Let Y be a Haar system Hardy space with  $\|\cdot\|_{Y} \not\sim \|\cdot\|_{L^{\infty}}$ . Then the identity  $I_Y$  factors through all operators  $T \in \mathcal{B}(Y)$  with large diagonal, i.e.,  $(h_I)_{I\in\mathcal{D}}$  has the factorization property in Y.

14 / 18

# Factorization through operators with large diagonal

• An operator  $T: Y \to Y$  has large diagonal (w.r.t. the Haar basis) if

$$\inf_{I\in\mathcal{D}}\frac{|\langle h_I,Th_I\rangle|}{|I|}>0.$$

# Theorem (R. Lechner and T. S. '23)

Let Y be a Haar system Hardy space with  $\|\cdot\|_{Y} \not\sim \|\cdot\|_{L^{\infty}}$ . Then the identity  $I_Y$  factors through all operators  $T \in \mathcal{B}(Y)$  with large diagonal, i.e.,  $(h_I)_{I \in \mathcal{D}}$  has the factorization property in Y.

• Analogous results for  $\ell^p$ -sums of Haar system Hardy spaces.

14 / 18

- $\bullet$  First step: Switch to large positive diagonal:  $\frac{\langle h_I, Th_I \rangle}{|I|} \geq \delta$  for all I(Gamlen-Gaudet)

15 / 18

Thomas Speckhofer July 23, 2024

- $\bullet$  First step: Switch to large positive diagonal:  $\frac{\langle h_I, Th_I \rangle}{|I|} \geq \delta$  for all I(Gamlen-Gaudet)
- Diagonalization preserves large positive diagonal.

15 / 18

- $\bullet$  First step: Switch to large positive diagonal:  $\frac{\langle h_I, Th_I \rangle}{|I|} \geq \delta$  for all I(Gamlen-Gaudet)
- Diagonalization preserves large positive diagonal.
- How to deal with Haar multipliers D with  $d_I \geq \delta$  for all I?

15 / 18

Thomas Speckhofer July 23, 2024

- $\bullet$  First step: Switch to large positive diagonal:  $\frac{\langle h_I, Th_I \rangle}{|I|} \geq \delta$  for all I(Gamlen-Gaudet)
- Diagonalization preserves large positive diagonal.
- How to deal with Haar multipliers D with  $d_I \geq \delta$  for all I?
  - In  $L^p$ ,  $1 : Invert directly. <math>D^{-1}h_I = d_I^{-1}h_I$ , and  $D^{-1}$  is bounded (by unconditionality).

15 / 18

- $\bullet$  First step: Switch to large positive diagonal:  $\frac{\langle h_I, Th_I \rangle}{|I|} \geq \delta$  for all I(Gamlen-Gaudet)
- Diagonalization preserves large positive diagonal.
- How to deal with Haar multipliers D with  $d_I \geq \delta$  for all I?
  - In  $L^p$ ,  $1 : Invert directly. <math>D^{-1}h_I = d_I^{-1}h_I$ , and  $D^{-1}$  is bounded (by unconditionality).
  - In  $L^1$ : Semenov-Uksusov [4]  $\implies$  bounded Haar multipliers have small "variation". See Lechner-Müller-Motakis-Schlumprecht [2].

15 / 18

(Gamlen-Gaudet)

# $\bullet$ First step: Switch to large positive diagonal: $\frac{\langle h_I, Th_I \rangle}{|I|} \geq \delta$ for all I

- Diagonalization preserves large positive diagonal.
- How to deal with Haar multipliers D with  $d_I \geq \delta$  for all I?
  - In  $L^p$ ,  $1 : Invert directly. <math>D^{-1}h_I = d_I^{-1}h_I$ , and  $D^{-1}$  is bounded (by unconditionality).
  - In  $L^1$ : Semenov-Uksusov [4]  $\implies$  bounded Haar multipliers have small "variation". See Lechner-Müller-Motakis-Schlumprecht [2].
  - Our approach: Stabilization yields  $c \geq \delta$ . Works in all Haar system Hardy spaces.

Thomas Speckhofer July 23, 2024 15 / 18

# Thank you for your attention!

□ ト (個 ) (重 ) (重 ) (で

16 / 18

Thomas Speckhofer July 23, 2024

# References I



D. Dosev and W. B. Johnson.

Commutators on  $\ell_{\infty}$ .

Bull. Lond. Math. Soc., 42(1):155-169, 2010.



Richard Lechner, Pavlos Motakis, Paul F. X. Müller, and Thomas Schlumprecht.

Strategically reproducible bases and the factorization property.

Israel J. Math., 238(1):13-60, 2020.

→□▶→□▶→□▶→□▶
□◆□▶→□▶→□▶
□◆□▶

17 / 18

Thomas Speckhofer July 23, 2024

# References II



Richard Lechner and Thomas Speckhofer.

Factorization in Haar system Hardy spaces.

arXiv:2310.10572, Oct. 2023.



E. M. Semenov and S. N. Uksusov.

Multipliers of series in the Haar system.

Sibirsk. Mat. Zh., 53(2):388-395, 2012.

18 / 18

Thomas Speckhofer