Community Ecology

Biosphere

Learning Objectives

- Understand community structure and attributes.
- Explain the factors influencing the structure of communities.
- Explain the community dynamics.
- Know how to calculate the species diversity.

Community

- Number of species
- Relative abundance, diversity, richness, dominance of species
- Nature of species interactions (e.g. food webs)
- Physical structure

Community structure

• Species richness (# of species within community)

Table 1. Avifaunal Species Richness in a Vegetated Area.		
Species	# of individuals	
Aplonis panayensis	23	
Copsychus saularis	13	
Muscicapa	8	
Erythropitta erythrogaster	20	
Hirundo tahitica	30	
Nectarinia jugularis	35	
6	129	

Community structure

 Relative abundance (% each species contributes to the total number of individuals)

Species	# of individuals	Relative Abundance
Aplonis panayensis	23	17.83
Copsychus saularis	13	10.08
Muscicapa	8	6.20
Erythropitta	20	
erythrogaster		15.50
Hirundo tahitica	30	23.26
Nectarinia jugularis	35	27.13
6	129	100.00

Species diversity

- measure of the diversity within an ecological community that incorporates:
 - species richness (the number of species in a community)
 - evenness of species (relative abundance)
 - Species diversity is one component of the concept of biodiversity.

Shannon-Weiner Diversity Index

Shannon-Wiener Index denoted by

$$H' = -SUM[(p_i) \times ln(p_i)]$$
 where

- SUM = summation
- p_i = proportion of total sample represented by species i (Divide no. of individuals of species i by total number of samples)
- S = number of species, = species richness
- Hmax = ln(S) Maximum diversity possible
- E = Evenness = H/Hmax

$$\boldsymbol{H'} = -\sum_{i=1}^{s} (\boldsymbol{p}_i)(\ln \boldsymbol{p}_i)$$

Interpretation: "Varies from zero (0) for communities with only a single species to one (1) for communities with many species, each with few individuals."

Shannon-Weiner Diversity Index

- sensitive to change in status of rare species
- High values of H-representative of more diverse communities.
- 2.5 3.0 is the generally accepted range of good biodiversity in the community
- community with only 1 species would have an H value of 0 because pi would equal 1 and be multiplied by In pi which would equal zero
- If the species are evenly distributed then the H value would be high.
- H value -know not only the number of species but how the abundance of the species is distributed among all the species in the community

Simpson's Diversity Index

- A community dominated by one or two species
 - to be less diverse than one in which several different species have a similar abundance

$$D = 1 - \left(\frac{\sum n(n-1)}{N(N-1)}\right)$$

Interpretation of SI Data

Simpson's Index:

Ranges from zero (0) (all species are equally present)
to one (1) (one species dominates the community
completely)

Simpson's diversity index

Table 2. Avifaunal Simpson's Diversity Index in a Vegetated Area.

Species	# of	
	individuals (n)	n(n-1)
Aplonis panayensis	23	506
Copsychus saularis	13	156
Muscicapa	8	56
Erythropitta erythrogaster	20	380
Hirundo tahitica	30	870
Nectarinia jugularis	35	1190
6	129	16512

End of Presentation

Philippine Biodiversity

- Choose a flora/fauna species present in the Philippines and create an infographic about it.
- Format
 - Introduction
 - Population rate
 - Habitat
 - Ecological uses
 - Threats
 - Conservation Status
 - Conservation program
 - References
 - Maximum of 2 pages only
 - Submit in a pdf copy

Note: Your group will present the output on October 9, 2023 (Monday)

Midterm Coverage: October 16,2023

- Environmental Education
- Ecosystem
- Energy Flow in an Ecosystem
- Biogeochemical Cycles
- Population Ecology
- Community Ecosystem
- Biomes of the Earth
- Philippine Biodiversity