Seminar Presentation

Samuel Goodman

April 2024

1 Setup

First we recall our Global PEL data. Let B be a simple \mathbb{Q} -algebra with center F and maximal $\mathbb{Z}_{(p)}$ -order \mathcal{O}_B that is stable under a positive involution * of B. Let V be a finitely generated left B-module equipped with a nondegenerate * Hermitian form (,). Then suppose that there is a \mathcal{O}_B -stable self-dual $\mathbb{Z}_{(p)}$ -lattice $\Lambda \subset V$. Furthermore, set $F_0 = F^{*=1}$ so that F_0 is totally real. We assume that all places above p are ramified in F/F_0 and that the F-algebra B is split. Letting $C = \operatorname{End}_B(V)$ and $\mathcal{O}_C = \operatorname{End}_{\mathcal{O}_B}(\Lambda)$, both have an involution induced from (,). Furthermore, from Stephanie's talk, we know that the pair (C,*), where C is viewed as a \mathbb{Q} -algebra is of one of the following types:

- A) $M_n \times M_n^{\text{opp}}$ with $(x, y)^* = (y, x)$
- C) M_{2n} with x^* being the adjoint of x wrt a nondegenerate alternating form in 2n variables
- D) M_{2n} with x^* being the adjoint of x wrt a nondegenerate symmetric form in 2n variables.

We will assume that either case A) or C) holds. Then we get a reductive group G/\mathbb{Q} of B-linear similitudes of V, which can be extended to an algebraic group over $\mathbb{Z}_{(p)}$ representing the functor $G(R) = \{g \in (\mathcal{O}_C \otimes_{\mathbb{Z}_p} R)^\times | gg^* \in R^\times \}$. Then fix a homomorphism $h_0 : \mathbb{C} \to C \otimes R$ with $h_0(\bar{z}) = h_0(z)^*$ for all $z \in \mathbb{C}$ and such that the symmetric real form $(v, h_0(i)w)$ on $V \otimes \mathbb{R}$ is positive definite. Let $h : \mathbb{S} \to G \otimes \mathbb{R}$ defined on \mathbb{R} -valued points by $h(z) = h_0(z), z \in \mathbb{C}^\times$. One then gets a tower $\mathrm{Sh}_K, K \subset G(\mathbb{A}_f)$ of Shimura varieties corresponding to compact open subgroups of $G(\mathbb{A}_f)$, which are associated to the pair (G, h^{-1}) . These Shimura varieties can be defined over a number field E, which is the reflex field, as defined in Yuxin's talk.

With this PEL data in mind, first we prove a useful lemma.

Lemma 1: Fix our PEL data and choose (V', (,)') a *-Hermitian B-module such that $V' \cong V$ as B-modules. Thrn assuming there is a self-dual \mathcal{O}_B -stable lattice $\Lambda' \subset V'$, we actually have an isomorphism of *-Hermitian \mathcal{O}_B -modules $V \cong V'$ carrying Λ into Λ' .

Note that F_0 is a field and choose some uniformizer $\pi \in F_0$ be a uniformizer of F_0 . Note that the group N of \mathcal{O}_B -linear hermitian isomorphisms of Λ is unramified over \mathcal{O}_{F_0} . Furthermore, by our type A or C assumption on the simple factors of the PEL data, we know that N is connected. Hence Lang's Theorem implies there is an isomorphism $\Lambda/\pi\Lambda \cong \Lambda'/\pi\Lambda'$ as Hermitian-*- \mathcal{O}_B -modules. Then by a lifting process, we conclude that $\Lambda \cong \Lambda'$ in the same way, as desired.

(This lemma is why we assume such a lattice Λ exists to begin with)

Let \mathfrak{p} be a prime of E lying above p and let $\mathcal{O}_{E_{\mathfrak{p}}}$ be the ring of integers of the complete local field at \mathfrak{p} . Let us now set up our integral model.

Let $K^p \subset G(\mathcal{A}_f^p)$ be a sufficiently small compact open subgroup. Let \mathfrak{M}_{K^p} be the contravariant set-valued functor defined on the category of locally Noetherian schemes over $\mathcal{O}_{E_\mathfrak{p}}$ associating to each scheme S the set of isomorphism classes of quadruples $(A, \iota, \lambda, \bar{\eta})$, where A is an abelian scheme up to prime to p isogeny over $S, \iota: \mathcal{O}_B \to \operatorname{End}(A), \lambda: A \to A^\vee$ is a prime to p isogeny which is also a polarization, and $\bar{\eta}$ is a level structure of type K^p . Isomorphism classes are defined by prime to p isogenies $\alpha: A \to A'$ carrying ι into ι' , $\bar{\eta}$ into $\bar{\eta}'$, and λ into a $\mathbb{Z}_{(p)}^{\times}$ multiple of λ' locally on S.

Recall that \mathfrak{M}_{K_p} is represented by a quasiprojective scheme \mathcal{M}_{K_p} over $\mathcal{O}_{E_{\mathfrak{p}}}$ and that we have an isomorphism $\mathcal{M}_{K_p} \otimes E_{\mathfrak{p}} \cong \coprod_{\ker^1(\mathbb{Q},G)} \operatorname{Sh}_{G(\mathbb{Z}_p)K^p} \otimes_E E_{\mathfrak{p}}$, where $\ker^1(\mathbb{Q},G) = \ker(H^1(\mathbb{Q},G) \to \prod_v H^1(\mathbb{Q}_v,G))$, which we know is a finite set.

2 Main Content

Now let $K_p \subset G(\mathbb{Z}_p)$ be a compact open subgroup and let \mathcal{M}_{K_p,K^p} be the cover of the set \mathcal{M}_{K_p} that parametrizes K_p -orbits of isomorphisms between $\Lambda \otimes \mathbb{Z}_p$ and the p-adic Tate module T_pA of A, compatible with the \mathcal{O}_B action and the Hermitian forms up to a scalar. Then we have the following proposition:

Proposition 1: The covering map $\pi_{K_p,K^p}: \mathcal{M}_{K_p,K^p} \to M_{K^p} \otimes E_{\mathfrak{p}}$ is finite etale and whenever K_p is normal in $G(\mathbb{Z}_p)$, Galois with Galois group $G(\mathbb{Z}_p)/K_p$. Furthermore, we have that $\mathcal{M}_{K_p,K^p} \cong \coprod_{\ker^1(\mathbb{Q},G)} \operatorname{Sh}_{K_pK^p} \otimes_E E_{\mathfrak{p}}$.

Firstly, over the geometric points, the proposition follows immediately from Lemma 1. Then note that $V_\ell A \cong V \otimes \mathbb{Q}_\ell$ by the existence of K^p -level structures, and so since the characters of $V_p A$ and $V_\ell A$ agree as B-representations, we conclude that $V_p A \cong V \otimes \mathbb{Q}_p$ as well. Now the proof proceeds in the same way as the previous result.

Let $\ell \neq p$ be a prime. Consider a continuous ℓ -adic representation ξ of G(L),

where L is some number field. This construction induces smooth ℓ -adic sheaves \mathcal{F}_{ξ,K^p} on \mathcal{M}_{K_p} by restricting the ℓ -adic representation to K^p and the tower over \mathcal{M}_{K_p} with Galois group K^p to reconstruct \mathcal{F}_{ξ,K^p}). We call this an ℓ -adic local system on \mathcal{M}_{K_p} . We can similarly define such a local system on \mathcal{M}_{K_p,K^p} , which we denote $\mathcal{F}_{\xi,K_p,K^p}$.

Due to certain compatibility relations, this allows us to define the cohomology of the Shimura variety with coefficients in the local system, namely by setting $H_{\xi}^* = \varinjlim_{K_p,K^p} H^*(\mathcal{M}_{K_p,K^p} \otimes \overline{\mathbb{Q}}_p, \mathcal{F}_{\xi,K_p,K^p})$, which is equipped with actions by the groups $G_{E_{\mathfrak{p}}}$ and $G(\mathbb{Z}_p) \times G(\mathbb{A}_f^p)$. In fact, from Proposition 1, it follows that $H_{\xi}^* = \bigoplus_{\ker^1(\mathbb{Q},G)} H_{\operatorname{Sh},\xi}^*$, where $H_{\operatorname{Sh},\xi}^* = H^*(\operatorname{Sh}_{K_pK^p} \otimes_E E_{\mathfrak{p}}, \mathcal{F}_{\xi,K_p,K^p})$.

Set $K_{g^p}^p = K^p \cap g^{-p} K^p g^p$. Next we define the notion of a Kottwitz triple.

Definition: Let j be a positive integer and set $r = j[k_{E_{\mathfrak{p}}} : \mathbb{F}_p]$. Then a degree j Kottwitz triple consists of $(\gamma_0, \gamma, \delta)$, where γ_0 is a semisimple stable conjugacy class of $G(\mathbb{Q})$, γ is a conjugacy class of $G(\mathbb{A}_f^p)$ that is stably conjugate to γ_0 , and δ is a σ -conjugacy class of $G(\mathbb{Q}_{p^r})$ such that $N\delta$ is stably conjugate to γ_0 such that γ_0 is elliptic in $G(\mathbb{R})$ and $\kappa_{G\otimes\mathbb{Q}_p}(p\delta) = \mu^{\sharp}$.

We will seek to count fixed points in our moduli problem. A fixed point in the correspondence is given by a point $(\bar{A}, \iota, \gamma, \bar{\eta}) \in \mathcal{M}_{K^p_{g^p}}(\overline{\mathbb{F}_p})$ such that $(\bar{A}, \iota, \gamma, \bar{\eta})$ and $\sigma^r(\bar{A}, \iota, \gamma, \eta \bar{g}^p)$ give the same point of $\mathcal{M}_{K^p}(\overline{\mathbb{F}_p})$, where σ is the pth power map on $\bar{\mathbb{F}}_p$ and the action of σ^r is obtained by extension of scalars. This is equivalent to saying that there is a prime to p isogeny $u : \sigma^r(\bar{A}) \to \bar{A}$ compatible with ι mapping $\sigma^r(\eta \bar{g}^p)$ into $\bar{\eta}$ and such that the induced action of u^* on λ satisfies $u^*\lambda = c_0\sigma^r(\delta)$.

Set I/\mathbb{Q} to be the group of self-quasiisogenies of (A, ι, λ) , which gives an algebraic group over \mathbb{Q} . Set L_r to be the unramified extension of $E_{\mathfrak{p}}$ with residue field of degree r over $k_{E_{\mathfrak{p}}}$ and then. Then let K_r be the stabilizer of $\Lambda_0 \subset V \otimes_{\mathbb{Q}} L_r$, which we define to be the extension of scalars of our original lattice Λ . Now recall the map $h: \mathbb{S} \to G \otimes \mathbb{R}$, which induces a map $\mu_h: G_m \to G_{\mathbb{C}}$. Then the $G(\mathbb{C})$ -conjugacy class of homomorphisms of μ_h gives a $G(\mathbb{Q}_p)$ -class of homomorphisms $\mu: G_m \to G_{\mathbb{Q}_p}$ fixed by G_{L_r} . Furthermore, let $a = \mu^{-1}(p^{-1})$ and set $N' = K_r a K_r$ to be a double coset. The key innovation of Kottwitz is a count of the fixed points in terms of orbital integrals, namely $\operatorname{Vol}(I(\mathbb{Q})\backslash I(\mathbb{A}_f))O_{\gamma}(f^p)\operatorname{TO}_{\sigma^{-1}(\delta)}(\phi_r)$, where ϕ_r is the characteristic function of $K_r a K_r$, $O_{\gamma}(f^p) = \int_{I(\mathbb{A}_f^p)\backslash G(\mathbb{A}_f^p)} f^p(y^{-1}\gamma y)$ and $\operatorname{TO}_{\delta}(\phi_r) = \int_{I(\mathbb{Q}_p)\backslash G(L_r)} \phi_r(y^{-1}\delta\sigma(y))$