"The Raw Material Risk of the Energy Transition"

Outline:

- 1. Introduction
- 2. The Net-Zero-by-2050 Roadmap
- 3. Quantifying the net-zero-Co2 roadmap
 - **3.1** The mineral requirements of Solar PV and Windmills
 - 3.2 High-Impact metal identification for Solar PV, Windmills & Energy Storage
 - **3.3** The SWB rapid developments' implications on raw metal demand requirements
- **4.** Econometric Model
 - 4.1 Historical Data
 - **4.2** Shock Identification
 - **4.3** Shock Responses for Each Metal
 - **4.3.1** Copper VAR model
 - **4.3.2** Lithium VAR model
 - **4.3.3** Nickel VAR model
 - **4.3.4** Aluminum VAR model
- **5.** Elasticity Computation
- **6.** Conclusion

1. Introduction

The rapid development of Solar PV, Windmills, and Energy Storage requires a substantial amount of raw materials and production (mining) capacity to be able to meet the demand for clean electricity set by policies. An important factor in overcoming the challenges lying ahead, like the high face value of green technologies – (C. King, 2018), is designing policies and regulations that are based on informed decisions. Three factors need to be taken into consideration when designing policies for the short and long-term future: the price of metals and minerals, the production of metals & minerals, and the economic activity during the energy transition process.

In this paper, I measure and forecast the relationship between metals & minerals prices, metals & minerals production, and economic activity and their impact on one another. I built a structural Vector Auto Regression model where I make forecasts via impulse response functions on the metal & minerals production and prices and estimate supply elasticities.

2. The Net-Zero-by-2050 Roadmap

On August 16th, 2022, the Biden administration of the United States of America, passed the "Inflation Reduction Act" which allocated \$300 billion for deficit reduction and \$369 billion for modernizing the American energy system and security. (DOE,2022) The aim of modernizing the energy system is to cut emissions by 40% compared to the 2005 levels by the year 2030 and come to a net-zero-CO2 by 2050. The department of energy (DOE) has estimated that the act will reduce emissions to about 1,000 million metric tons by 2030 which constitutes the average annual emissions amount of every US household. – DOE, In addition, such act aims to increase energy security, mitigate climate change, and improve human health prosperities. Economic dynamics are expected to change. Imposed carbon taxes and higher initial capital needed for renewables are expected to drop the US GDP by 2% by 2030 (IMF, 2022), and in another estimation from 3% - 10% by the end of this century. (Federal Budget, 2022)

In 2018 a special report from Intergovernmental Panel on Climate Change (IPCC) stressed the importance of a net-zero target to avoid the catastrophic nature of climate change. (IPCC, 2018) Recently driven by the war in Ukraine governments have now as their main agenda energy security and independence, to secure a stable economy and healthy future. Net-zero pledges have been announced by governments and private corporations. As of 2021, 44 countries and the European Union have pledged to a net-zero policy, altogether accounting for 70% of the total global CO2 emissions. (IEA, 2021) Out of these governments, 10 of them have made it a legal obligation and another 8 are considering doing so as well.

3. Quantifying the net-zero-Co2 roadmap

The International Energy Agency (IEA) in a recent report, the World Energy Outlook 2022 (IEA Outlook, 2022), has forecasted what the global energy landscape could look like. The net-zero scenario has been forecasted for the global electricity sector. By 2050, renewable energy will hike to 88%, with nuclear at 8% and fossil fuels at 0%. Solar PV and Wind will meet the global electricity demand by 37% and 32% respectively, and together they will account for

78% of renewable energy generation. (IEA Dataset)

3.1 The mineral requirements of Solar PV and Windmills

According to the IEA forecast, we notice the large share that Solar PV and Wind will have in meeting the global electricity demand. Also, we will consider Energy Storage as a complement to these technologies. The economic implications of these rapid developments lie in the raw materials needed to build Solar and Wind, moreover in the raw material prices and production. I will be referring to Solar PV, Windmills, & Energy Storage (Batteries) as SWB.

For Solar Photovoltaic systems, the main materials used are Aluminum at 88% and second comes copper at 11.2%. At a smaller amount but at high costs come Silver, Zinc, Lead, Indium, Nickel, and Molybdenum. (World Bank, 2020)

The major share of metals needed for windmills is Iron at 85%, Copper at 4.4%, and the rest follows with Aluminum, Chromium, Lead, and Nickel, mainly. (World Bank, 2020)

The share of metals and minerals demand energy storage starts with Graphite at 53.8%, Nickel 18.6%, Cobalt 6.2%, Lithium 4%, Lead 6%, and Manganese 6.0%. (World Bank, 2020)

3.2 High-Impact metal identification for Solar PV, Windmills & Energy Storage.

A High-Impact metal is a metal with wide usage across the three different technologies we are considering and a metal with high net usage. I call it the "cross-usage index". The values of weight and cross-usage are between 0% - 100%. A high percentage weight refers to a large share of raw metal needed for production. A high cross-usage percentage refers to a large adoption of raw metal across Solar, Wind, and Energy Storage technologies. I have identified four metals that have the strongest impact on Solar, Wind, and energy storage, those are *Aluminum*, *Copper*, *Nickel*, and *Lithium*.

88.80% 0.80% 12.94% 29.03% 2.56% 2.52% 0.56%	66.67% 100.00% 66.67% 100.00% 66.67%
12.94% 29.03% 2.56% 2.52%	100.00% 66.67% 100.00% 66.67%
29.03% 2.56% 2.52%	66.67% 100.00% 66.67%
2.56% 2.52%	100.00% 66.67%
2.52%	66.67%
0.56%	66.67%
	00.077
0.52%	33.33%
6.76%	100.00%
2.07%	33.33%
17.93%	33.33%
4.00%	33.33%
0.28%	33.33%
0.32%	66.67%
0.04%	33.33%
	33.33%
	0.04% 0.04%

Aluminum is a metal that will be required highly to build the structural parts of every green technology. Copper is a crucial part of the energy system infrastructure and is being adopted by every technology. Nickel serves as a critical ingredient for the manufacturing of batteries, solar panels, and windmills. Lastly, Lithium is a mineral that is used in smaller net-weight amounts for energy storage batteries and is a critical ingredient for lithium-ion batteries. (IEA, 2022)

3.3 The SWB rapid developments' implications on raw metal demand requirements.

In another report from IEA – "The Role of Critical Minerals on Clean Energy Transitions" (<u>IEA, 2022</u>), IEA forecasts raw metal requirements of each technology for the years 2030, and 2040. The relationship between

the growth of SWB technologies and their raw metal requirements is non-linear. While the SWB technologies will have to be developed 3-4 folds (meeting the net-zero targets), the results from the IEA study indicate that the raw material requirements will climb 3-20 folds by the year 2040. The graphs below give a visual representation of 3 of the metals we have considered as high impact. (Aluminum not visualized due to the lack of data.)

The major requirements will come from EVs, and Battery storage. This growth for all three metals climbs to thousands of percentages of current production. In effect, the risks of encountering supply shortages are high.

4. Econometric Model

After having identified the high-impact metals & minerals I will model a Structural Vector Autoregression for *Aluminum*, *Lithium*, *Copper*, and *Nickel*. The three factors that I consider as crucial in understanding the landscape of the energy transition are; the price of metals & minerals, the production of metals & minerals, and economic activity. Therefore, testing for shocks on each factor will help in shaping policies.

In my VAR model I am including 4 endogenous variables; the log of economic activity industrial production index REA, the percentage change of global production of each metal, the log of the price of each metal, and an anchor variable the log of cotton price representing the aggregate demand serving as a frontiers of global trade while being dissociated from the metals impact. To understand the relationship between the three factors; prices, production of each metal, and economic activity I want to shock test each factor. Namely, I am referring to these shocks as Metal-Specific Demand Shock, Metal-Specific supply Shock, and Aggregate Demand Shock, respectively.

4.1 Historical Data

The time-series data for each metal's global production and price has been sourced from the (<u>U.S. Geological Survey</u>, <u>2019</u>). The global economic activity industrial production has been sourced from (<u>FRED</u>, <u>2022</u>) economic data. The global cotton price has been sourced from the commodity market prices of the (<u>World Bank</u>, <u>2022</u>) I have tried to go back in time as much as possible to capture the full effect of the VAR model, namely 1970 – 2018.

4.2 Shock Identification

- A positive aggregate demand shock effect indicates that the economy is in an expanding business cycle and every variable's demand increases.
- Metal-specific supply shock refers to a new opening of a supply chain, namely a new mine, or reserves release.

 This positive shock will increase industrial production activity and reduce metal-specific prices. Regarding the price of cotton, there should be negligible change.
- Metal-specific demand shock refers to a steep rise in prices due to a shortage of supply only for the metals we are considering in this paper. This shock has no effect on industrial production but in the long term, it should increase production.

Table 1. Expected responses

	Industrial Production	Metal-Specific Production	Metal-Specific Price	Cotton Price
Positive Aggregate	+	+	+	+
Demand Shock				
Positive Metal-Specific	+	+	-	0
supply shock				
Positive Metal-Specific	0	+	+	0
demand shock				

4.3 Shock Responses for Each Metal

4.3.1 Copper VAR model

In the appendix section fig, we can see the impulse response functions of each variable. On the second row is displayed the endogenous variable response functions to a positive shock on Industrial production. In the third row, we will see the variable response functions to a positive shock on the price of copper. First row the cotton price shock and forth by the copper production shock. The time-series data I am using is annual and the forecasting period I am doing extends to 22 periods, therefore my forecast is 22 years (the year 2040) from period 0 (the year 2018). Note: *varbasic*, *Production*, *Industrial Pro*; refer to the response of the industrial production to a positive shock on copper production.

- A positive **aggregate demand shock** (row 2) in itself stabilizes after 5-10 periods with minor fluctuations. But its effect on the price of copper is substantial. Initially, the price of copper experiences a slight rise for the first two periods then shifts to a drop for 5 periods before it can start to rise again. It takes the price of copper about 15 periods to return to the initial level. The effect of the positive shock of industrial production is positive on production is , similar to the price of copper but with smaller in size.

	Industrial Production	Metal-Specific Production	Metal-Specific Price	Cotton Price
Aggregate Demand Shock – Responses.	+	+	+	+

- A positive shock on metal-specific supply shock (row 4), which refers to an opening of a new copper mine, shows little to no effect on industrial production. Its effect on the price of copper shows a sight initial increase for 5 periods. The effect of a supply shock on cotton prices is a slight fluctuation around the mean. Lastly, a supply shock increases production in the first period to then stabilize in the following period.

	Industrial Production	Metal-Specific Production	Metal-Specific Price	Cotton Price
Metal-Specific supply	0	+	+	0
shock - Response				

A positive **metal-specific demand shock** is a price increase due to a shortage of supply, hence a positive shock in the copper price for an impulse (row 3). Metal-specific demand shock on industrial production and cotton price has no effect, but in itself, we see an increase for the first 5 periods before returning to the initial level. The most important thing to point out is the small production response to a supply shortage.

	Industrial Production	Metal-Specific Production	Metal-Specific Price	Cotton Price
Metal-Specific demand	0	+	+	0
shock - Response				

Based on the results of each shock I have tested; it is noticeable the highly limited elasticity of supply for copper. The opening of a new copper mine is the only way to increase the supply of copper. Both the aggregate demand and metal-specific demand shock affect production, but by small amounts compared to the demand.

4.3.2 Lithium VAR model

In the appending section in fig 2., we can see the impulse response functions of each variable. On the first row are displayed the response functions of each variable to a shock on the price of cotton, followed second by aggregate demand shock represented by a positive shock on industrial production. The third row displays the variable responses to a shock in the price of lithium and lastly the lithium production shock.

- A **positive shock on aggregate demand** (row 2) shows an initial drop in cotton prices followed by an increase in period 5. In itself, the shock on industrial production takes 10 periods to return to initial levels. Its effect on the lithium price shows an initial drop followed by a slight rise from period 5 to period 10, ending period 22 at a slightly higher level. Lastly, an aggregate demand shock on production follows a similar pattern to its price.

	Industrial Production	Metal-Specific Production	Metal-Specific Price	Cotton Price
Aggregate Demand Shock – Responses.	+	+	+	+

- **Metal-specific supply shock** (row 4) shows no signs of cotton prices (fluctuations around the mean) and industrial production as expected. Moreover, it shows a rise on lithium prices and production. Although we have an increase in supply, the price of lithium stays relatively the same indicating a high demand for the metal, hence a large adoption across many industries.

	Industrial Production	Metal-Specific Production	Metal-Specific Price	Cotton Price
Metal-Specific Supply shock – Responses	0	+	+	0

- Metal-specific demand shock (row 3) shows little signs of cotton prices and industrial production as expected. Its effect on itself shows an increase in period 1 and stabilizes after period 10. The most important effect to point out is the demand shock on production which shows little signs of adjustment on meeting the increased demand.

	Industrial Production	Metal-Specific Production	Metal-Specific Price	Cotton Price
Metal-Specific	0	+	+	0
demand shock –				
Responses				

Based on the results of the VAR model for Lithium we noticed two main qualities. Lithium is a mineral with a high cross-usage among different sectors and the supply elasticity of lithium is also very low in meeting a rapidly growing demand. The rise in production for lithium during the industrial production positive shock can be explained by recycling the metal. These results indicate that demand-imposed price increases of lithium will ripple across many sectors. The chances of that happening are very high considering the low supply of elasticity lithium has.

4.3.3 Nickel VAR model

In the appendix section fig 3., we can see the response functions for each variable for a nickel. In the second row, we can see the response functions of each variable from a shock on industrial production. The first row displayed the cotton price shocks, the third comes the variable responses from a shock in nickel price. Fourth row the effect a shock on nickel production has on our selected variables.

- A positive aggregate demand shock (row 1) can be described as a shock on industrial production. Its effect on cotton is positive, indicating an expanding business cycle, as expected. The same positive effects can be seen in the nickel price, although with high fluctuations. In the case of production, we see a slight increase for the first 15 periods.

	Industrial Production	Metal-Specific Production	Metal-Specific Price	Cotton Price
Aggregate Demand Shock – Responses.	+	+	+	+

Metal-specific supply shock (row 4) can be described as a positive shock on production. As expected, the opening of a nickel mine does not affect industrial production and cotton prices. However, we notice a slight drop in the prices of nickel. The production rate increases for the first period and then it stabilizes in period 4 to initial levels.

	Industrial Production	Metal-Specific Production	Metal-Specific Price	Cotton Price
Metal-Specific Supply	0	+	-	0
shock – Responses				

- **Metal-specific demand shocks** its displayed-on row 3. Its effect on industrial production and cotton price is 0. However, after a price shock, it takes about 10 periods for prices to return to initial levels. Another important response is the production response to a shortage in supply, almost non-existent.

	Industrial Production	Metal-Specific Production	Metal-Specific Price	Cotton Price
Metal-Specific	0	~0	+	0
demand shock –				
Responses				

Based on the results of the model I have built the only issue that we can point out is the low elasticity of supply for a nickel.

4.3.4 Aluminum VAR model

Based on the impulse response functions results for aluminum fig 4. we notice a positive response of aluminum production under the industrial production shock. The industrial production shock has a strong effect on the price of Aluminum but less so on the production of Aluminum. This indicates that aluminum is a widely used metal that has matured on the market, and it can meet its market demand through recycling. Similar to what we saw with other metals a rapid increase in demand for aluminum will increase prices as the supply faces a shortage.

5 Elasticity Computation

The supply elasticity of each metal and mineral is given by the production response for a given positive shock to price. We compute the elasticity by regressing the table data of price responses and production responses to a positive price shock. In this section, we introduce the results, and in the appendix, we attach the STATA results under the name of "Elasticity Table". The coefficient represents the percentage rise in production for a 1%-demand shock-price increase.

Metal or Mineral	Coefficient
Copper	.20
Lithium	.69
Nickel	.045
Aluminum	02

6 Conclusion

On this paper I pointed out some high impact metals and minerals needed for the energy transition. The data on this paper was collected from a single source. The authors of the time-series data mention that some of the metal productions time series were withheld from the private mining companies due to proprietary rights. Nonetheless, the results of the paper do point out the supply shortage risk we are facing towards reaching net-zero aspirations. Rapid investment in renewables would induce elevated raw material prices due to the supply shortage given by the low supply elasticities. This in effect would increase inflation due to higher energy prices and in part due to the role these raw materials play in other sectors. Governments should start investing first in raw material supply chain security and domestic mining. The second investment should go towards green technologies development to reach higher efficiency and reduce raw material requirements.

Appendix

Figure 1. Copper VAR model – Impulse Response Functions Graphs

Table 1.1 Copper IRF Table

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
step	irf	irf	irf	irf	irf	irf	irf	irf	irf	irf	irf	irf
	1	0	0	0	0	0	0	1	0	0	0	1
	.723577	1.17666	.766571	231084	633402	132776	210702	694658	323402	031925	.075516	082011
	.008815	467098	354797	207802	185649	024181	029645	.155996	.196906	039739	.088869	.122143
	574271	-1.30718	70596	.129026	.346513	051555	.168921	.262185	.204914	016065	07237	.128821
	161043	308422	095561	.072806	.089232	.018447	.002432	.041905	04529	.025499	.146303	.084042
	13547	269545	264597	.012086	.059858	.089221	.026534	.075651	.095405	.056041	.10874	.075407
;	.070402	.462283	057049	.011119	021584	031748	03057	154545	029219	012919	04213	.027985
	.091887	.067589	068874	.009451	008136	.010643	.002082	.061777	.042792	.002616	.026493	.044001
	.062244	.119084	.042104	03411	084607	.012715	017508	064273	012809	004201	029933	.000115
	.014614	058858	.038457	016643	.004771	02583	003951	.035911	008668	004097	.011565	.0158
0	037144	087473	052525	.013485	.024468	006862	.013273	.012427	.014306	003379	007211	.004654
1	015683	028912	006111	000164	004272	.007462	001793	00244	001383	.002514	.01413	000108
2	024049	052763	030268	.002379	.015358	.005827	.005807	.017156	.011123	.004828	.006622	.009436
3	.004756	.043558	002629	.005237	.002908	005255	002206	015155	005821	001586	003459	.001639
4	.009458	.007612	006043	000201	004132	.004737	000486	.005025	.004948	.001458	.005399	.002788
5	.005564	.015589	.004246	004107	008213	.000918	001915	007834	001372	000468	004591	000234
6	.003077	00196	.004351	000432	.001993	003973	00026	.004022	001346	000909	.000503	.001703
.7	002292	007525	004125	.000911	.000497	.000455	.001092	.000695	.001546	000185	000511	000192
.8	001395	002944	.001293	00095	001225	.000666	000485	00054	000607	.000257	.00118	000256
9	003026	006677	003418	.000732	.002855	000211	.000895	.002435	.00112	.000285	.000372	.001037
0	.000346	.004281	000485	.000752	.000111	000233	000187	001761	000535	000148	000205	00012
1	.000691	.000023	000447	000292	000662	.000823	000093	.000632	.000569	.000294	.00075	.000249
2	.000427	.001878	.000406	000287	000422	000193	000152	000823	000246	000099	000656	.000041

⁽¹⁾ irfname = varbasic, impulse = Industrial_Pro, and response = Industrial_Pro
(2) irfname = varbasic, impulse = Industrial_Pro, and response = Price_copper
(3) irfname = varbasic, impulse = Industrial_Pro, and response = Production_Copper

⁽³⁾ irfname = varbasic, impulse = Industrial_Pro, and response = Production_Copper
(4) irfname = varbasic, impulse = Cotton_P, and response = Industrial_Pro
(5) irfname = varbasic, impulse = Cotton_P, and response = Price_copper
(6) irfname = varbasic, impulse = Cotton_P, and response = Production_Copper
(7) irfname = varbasic, impulse = Price_copper, and response = Industrial_Pro
(8) irfname = varbasic, impulse = Price_copper, and response = Price_copper
(9) irfname = varbasic, impulse = Price_copper, and response = Production_Copper
(10) irfname = varbasic, impulse = Production_Copper, and response = Price_copper
(11) irfname = varbasic, impulse = Production_Copper, and response = Price_copper
(12) irfname = varbasic, impulse = Production_Copper, and response = Production_Copper

Figure 2. Lithium VAR model – Impulse Response Functions Graphs

Table 2.1 Lithium IRF Table

step	(1) irf	(2) irf	(3) irf	(4) irf	(5) irf	(6) irf	(7) irf	(8) irf	(9) irf	(10) irf	(11) irf	(12) irf
0	1	0	0	0	1	0	0	0	1	0	0	0
1	.293704	433464	509666	-1.1562	.997979	03109	1.11529	945278	.083093	.048198	.317138	.283116
2	027526	.008316	089976	371146	.527434	.147869	.344848	467163	074823	1399	.472882	.399301
3	136988	888961	-1.04331	.467826	. 492622	.326493	486551	581249	397956	.027453	.324566	.271558
4	120267	433518	560248	.617813	1.18285	.932194	606962	-1.14678	879972	011846	235964	251074
5	03547	017606	090375	.002647	.210665	085993	.004473	213048	.096391	.001178	.147914	.150217
6	.104815	.352713	.295327	237505	027177	297925	.237308	.049632	.331779	.043757	.039269	.02069
7	.080481	.171531	.110194	092528	412607	652444	.090539	.403554	. 652083	001521	038332	059336
8	010796	.068887	.01249	00436	150845	327132	.002034	.13576	.319311	034159	010971	020864
9	027219	032144	086493	.047688	.304452	.176638	050987	316248	181285	.006378	.02227	.011899
10	011183	073742	12253	.099127	.344338	.218352	098833	343148	210685	.01215	021845	03265
11	006654	012862	04851	.02901	.06871	054791	027354	069309	.059517	0056	.016178	.010851
12	.01119	.066313	.038186	041943	011627	115662	.041719	.010683	.11941	.002887	.029153	.023387
13	.018289	.048028	.020566	015869	008789	099394	.015096	.007335	.101975	.005702	006934	014636
14	.001785	.013638	011121	.011179	006399	08493	011443	.003092	.08494	005443	009805	014905
15	005913	.005699	015532	.006463	.053083	009694	007017	056433	.009314	002146	.008886	.005218
16	000333	00152	020675	.012974	.084619	.030058	013326	085524	028252	.004137	.00169	002634
17	.000757	000888	017004	.012471	.035209	016023	012264	035709	.017814	.000052	001369	004715
18	.000813	.013128	.000136	003244	.005421	038867	.003249	006492	.039754	001171	.006387	.003999
19	.003301	.014489	.002813	004202	.014244	023158	.00392	015098	.024037	.001551	.002531	000188
20	.001851	.005398	005218	.004191	.013545	019509	004316	01437	.020161	.000108	002627	005046
21	000844	.003135	005884	.003355	.01325	014998	003433	014279	.015239	001063	.001355	000326
22	000073	.003615	004227	.001586	.021186	002695	001727	021835	.003181	.000613	.002332	.000712

```
(1) irfname = varbasic, impulse = Industrial_Pro, and response = Industrial_Pro
```

⁽²⁾ irfname = varbasic, impulse = Industrial_Pro, and response = Production_Lithium
(3) irfname = varbasic, impulse = Industrial_Pro, and response = Price_Lithium
(4) irfname = varbasic, impulse = Production_Lithium, and response = Industrial_Pro

⁽⁴⁾ irrname = varbasic, impulse = Production_Lithium, and response = Industrial_Pro
(5) irfname = varbasic, impulse = Production_Lithium, and response = Production_Lithium
(6) irfname = varbasic, impulse = Production_Lithium, and response = Price_Lithium
(7) irfname = varbasic, impulse = Price_Lithium, and response = Industrial_Pro
(8) irfname = varbasic, impulse = Price_Lithium, and response = Production_Lithium

⁽⁹⁾ irfname = varbasic, impulse = Price_Lithium, and response = Price_Lithium (10) irfname = varbasic, impulse = Cotton_P, and response = Industrial_Pro (11) irfname = varbasic, impulse = Cotton_P, and response = Production_Lithium

⁽¹²⁾ irfname = varbasic, impulse = Cotton_P, and response = Price_Lithium

Figure 3. Nickel VAR model – Impulse Response Functions Graphs

Table 3.1 Nickel IRF Table

step	(1) irf	(2) irf	(3) irf	(4) irf	(5) irf	(6) irf	(7) irf	(8) irf	(9) irf	(10) irf	(11) irf	(12) irf
)	1	0	0	0	1	0	0	0	1	0	0	0
	.15616	032817	597602	.028229	.24075	.077135	.011972	.074189	. 25362	141227	.27803	187189
2	052075	602619	.427586	032364	155185	.102495	024287	065872	408713	133523	.230655	919169
3	179646	.151413	. 453159	.020835	357503	429517	031921	057452	.073281	.109011	.237685	601465
	038619	.076514	.236925	.011255	092047	179857	.016502	.061525	.249025	.050213	000129	.246557
5	047925	.123303	.301376	031552	.097864	.220448	.010448	.048263	054698	.0049	13651	147789
5	.043869	067344	012622	.007193	.191509	004706	015076	033426	115519	.016431	066832	618957
7	.036919	052142	080939	.012551	.039183	117093	.004011	015759	.015519	015084	.002123	.078271
}	018866	082308	.084536	003508	090081	.067806	.008878	.011614	.057183	012318	.094259	.311417
)	009385	.041488	.001218	.006812	064248	006607	00689	000101	006458	.019309	.059067	180656
LO	.001993	.055144	044093	.001558	007011	074817	002444	000965	051903	003054	056271	126708
.1	007545	.011641	.078181	012464	.025528	.033824	.004083	.004399	.008789	005125	051773	.126829
12	.004202	013038	.004474	.001696	.040715	.035769	000602	.000714	.042705	.011858	.016384	.002891
13	.007695	020212	063712	.006672	.008903	01662	00047	001921	019856	005233	.010414	06107
L 4	005906	016651	.017432	002422	027998	002231	.000663	003226	028222	00897	.003289	.023865
15	001416	.01267	.021672	.000075	017009	005813	000952	000707	.022495	.007861	.013911	.019143
16	.002944	.01776	018894	.001576	.004455	00755	.00037	.004248	.011562	.002313	005228	003227
L 7	002251	00199	.006511	002884	.009204	.013997	.000602	.001065	01733	004906	015894	006185
L8	.000249	006103	.007141	000266	.00752	.002168	00091	003203	00085	.001824	.000561	013757
19	.002504	003005	012244	.002088	000236	008908	.000236	000097	.009399	.00092	.006781	.010687
20	001656	002727	.002053	000462	007127	.004858	.000692	.00143	002496	002241	.002828	.014367
21	00093	.002714	.004824	000308	003097	.000783	000651	000756	003564	.001065	.000762	014759
22	.00125	.004501	004233	.000426	.002033	006465	000183	000164	.001592	.000805	003105	004685

```
(1) irfname = varbasic, impulse = Industrial_Pro, and response = Industrial_Pro
(2) irfname = varbasic, impulse = Industrial_Pro, and response = Production_Nickel
(3) irfname = varbasic, impulse = Industrial_Pro, and response = Price_Nickel
(4) irfname = varbasic, impulse = Production_Nickel, and response = Industrial_Pro
(5) irfname = varbasic, impulse = Production_Nickel, and response = Production_Nickel
(6) irfname = varbasic, impulse = Production_Nickel, and response = Price_Nickel
(7) irfname = varbasic, impulse = Price_Nickel, and response = Price_Nickel
(8) irfname = varbasic, impulse = Price_Nickel, and response = Price_Nickel
(9) irfname = varbasic, impulse = Price_Nickel, and response = Price_Nickel
```

⁽¹⁰⁾ irfname = varbasic, impulse = Cotton P, and response = Industrial Pro (11) irfname = varbasic, impulse = Cotton P, and response = Production Nickel (12) irfname = varbasic, impulse = Cotton P, and response = Price Nickel

Figure 4. Aluminum VAR model – Impulse Response Functions

Table 4.1 Aluminum IRF Table

step	(1) irf	(2) irf	(3) irf	(4) irf	(5) irf	(6) irf	(7) irf	(8) irf	(9) irf	(10) irf	(11) irf	(12) irf
0	1	0	0	0	0	0	0	1	0	0	0	1
1	.457446	.240455	.107688	152108	030137	.35646	006453	.001661	.185826	074987	318544	018008
2	.053596	2.20774	.378875	187539	-1.11816	77651	.022728	108443	.209099	055282	555266	395421
3	344035	363067	114924	.154468	.690154	122077	067232	314359	097267	.112457	.394383	.148483
4	245064	-1.64114	598559	.091438	.484752	. 623233	010188	.095335	061151	.070542	.432129	.351401
5	003425	263603	32756	02354	2133	042733	.015606	.034273	.054628	042797	304319	068544
6	.101557	.730278	.350758	050483	2866	35517	.026302	.018306	.048204	020455	14606	209323
7	.033828	102048	.010158	.025437	.3474	.186898	.002152	015761	02355	.016852	.253019	.138442
8	.046794	027348	193948	019176	037842	.13952	.000367	.066312	.01701	016349	066049	.085755
9	.023106	.348067	.185701	025629	301035	195219	009439	021658	.013328	01434	212049	160616
10	049431	028858	.124477	.024233	.086099	055317	0057	049275	022124	.023425	.119001	006351
11	059477	398504	230157	.028087	.256163	.180124	.001052	005418	012726	.014115	.150662	.13209
12	.018224	.034058	070073	020412	131327	006426	.005401	.036269	.019125	016925	117699	03275
13	.033685	.22965	.16513	01099	123667	125439	.000164	005532	.003378	005629	068708	083505
14	004458	066208	.006712	.013159	.126044	.046475	000224	010018	010841	.010526	.102705	.050262
15	005326	093551	105532	000716	.03777	.074144	.000538	.010783	.003615	002658	.005193	.041161
16	.011202	.121218	.047062	011819	120334	066751	000909	.003683	.007483	007469	08442	054745
17	006356	.020237	.064173	.006616	.016942	032083	001885	015147	007345	.006231	.02862	01166
18	01449	122235	066055	.008698	.089903	.063677	.00077	.000235	004383	.004999	.05864	.047443
19	.005655	.008449	033569	006799	038261	.004208	.001385	.010621	.006712	005979	039377	006503
20	.010417	.088578	.059974	004694	054952	049263	000335	001855	.001613	002173	031058	033662
21	004491	029158	.006961	.005968	.046468	.013444	000579	00608	005083	.004613	.038789	.016101
22	003949	047923	044234	.000799	.022695	.031617	.000459	.004146	.000844	000301	.008468	.019225

```
(1) irfname = varbasic, impulse = Industrial Pro, and response = Industrial Pro (2) irfname = varbasic, impulse = Industrial Pro, and response = Price_Al (3) irfname = varbasic, impulse = Industrial Pro, and response = Production_Al (4) irfname = varbasic, impulse = Cotton_P, and response = Industrial_Pro (5) irfname = varbasic, impulse = Cotton_P, and response = Price_Al (6) irfname = varbasic, impulse = Cotton_P, and response = Production_Al
```

⁽⁷⁾ irfname = varbasic, impulse = Price_Al, and response = Industrial_Pro (8) irfname = varbasic, impulse = Price_Al, and response = Price_Al (9) irfname = varbasic, impulse = Price_Al, and response = Production_Al

⁽¹⁰⁾ irfname = varbasic, impulse = Production Al, and response = Industrial Pro (11) irfname = varbasic, impulse = Production_Al, and response = Price_Al (12) irfname = varbasic, impulse = Production_Al, and response = Production_Al

8 References

- 1. US Department of Energy. "The Inflation Reduction Act Drives Significant Emissions ... Energy." US Department of Energy. DOE, August 2022. https://www.energy.gov/sites/default/files/2022-08/8.18%20InflationReductionAct_Factsheet_Final.pdf
- 2. International Monetary Fund. "World Economic Outlook, October 2022: Countering the Cost-of-Living Crisis." IMF. International Monetary Fund, October 2022. <a href="https://www.imf.org/en/Publications/WEO/Issues/2022/10/11/world-economic-outlook-october-2022#:~:text=Press% 20Briefing% 3A% 20World% 20Economic% 20Outlook% 2C% 20October% 202022,-October% 2011% 2C% 202022 & text=The% 20IMF% 20forecasts% 20global% 20growth, acute% 20phase% 20of% 20the% 20pandemic
- 3.. The White House. "Quantifying Risks to the Federal Budget from Climate Change." The White House. The United States Government, April 4, 2022. https://www.whitehouse.gov/omb/briefing-room/2022/04/04/quantifying-risks-to-the-federal-budget-from-climate-change/
- 4.. Intergovernmental Panel on Climate Change, IPCC. "Summary for Policymakers IPCC." https://www.ipcc.ch/site/assets/uploads/sites/2/2022/06/SPM_version_report_LR.pdf, 2018. https://www.ipcc.ch/site/assets/uploads/sites/2/2022/06/SPM_version_report_LR.pdf
- 5. International Energy Agency, IEA. "Net Zero by 2050 Iea." IEA, October 2021. https://iea.blob.core.windows.net/assets/deebef5d-0c34-4539-9d0c-10b13d840027/NetZeroby2050-ARoadmapfortheGlobalEnergySector_CORR.pdf
- 6. International Energy Agency. "World Energy Outlook 2022." IEA, n.d. https://iea.blob.core.windows.net/assets/7e42db90-d8ea-459d-be1e-1256acd11330/WorldEnergyOutlook2022.pdf
- 7. International Energy Agency. "World Energy Outlook 2022 Dataset Data Product." IEA, October 2022. https://www.iea.org/data-and-statistics/data-product/world-energy-outlook-2022-free-dataset
- 8. World Bank. "Minerals for Climate Action: The Mineral Intensity of the Clean Energy Transition," 2020. https://pubdocs.worldbank.org/en/961711588875536384/Minerals-for-Climate-Action-The-Mineral-Intensity-of-the-Clean-Energy-Transition.pdf
- 9. International Energy Agency. "The Role of Critical Minerals in Clean Energy Transition," May 2021. https://iea.blob.core.windows.net/assets/ffd2a83b-8c30-4e9d-980a-52b6d9a86fdc/TheRoleofCriticalMineralsinCleanEnergyTransitions.pdf
- 10. U.S. Geological Survey. "Historical Statistics for Mineral and Material Commodities in the United States." Historical Statistics for Mineral and Material Commodities in the United States | U.S. Geological Survey, 2019. https://www.usgs.gov/centers/national-minerals-information-center/historical-statistics-mineral-and-material-commodities
- 11. FRED Statistics. "Industrial Production: Total Index." FRED, November 16, 2022. https://fred.stlouisfed.org/series/IPB50001N
- 12. World Bank. "Commodity Markets." World Bank, November 2, 2022. https://www.worldbank.org/en/research/commodity-markets

13. King, Lewis C., and Jeroen C. J. M. van den Bergh. "Implications of Net Energy-Return-on-Investment for a Low-Carbon Energy Transition." Nature News. Nature Publishing Group, March 19, 2018. https://www.nature.com/articles/s41560-018-0116-

1#:~:text=Correcting%20from%20gross%20to%20net,trends%20of%200.5%25%20per%20annum