

Daily Tutorial Sheet 9 Level – 2

106.(ABCD)(A) \rightarrow correct $3p_v \rightarrow 2$ nodes Total nodes = n-1

$$n = 3$$

(C) $'\ell'$ is p-orbital has value 1

(D) Magnetic quantum number may positive as well as negative value

(B) Self explanatory

107.(ABD) $C \rightarrow incorrect$

Radial probability density = $4\pi r^2 \varphi^2$

108.(BCD) (A) Heisenberg's principle is applicable for non-stationary electron having certain velocity.

$$\Delta p \, \Delta x \geq \frac{h}{4\pi}$$

109.(ABCD)All are facts

(B) Energy order \rightarrow 3s < 3p < 3d < 3f

3s is closer to nucleus : is most stable.

Whereas 3f is farthest from nucleus and hence has maximum energy and is least stable.

110.(ABC) $D \rightarrow incorrect$

 $3d^2z$ has 2 angular nodes angular nodes = ℓ = 2

111.(ABD) $C \rightarrow incorrect$

Energy of electron in an atomic orbital of multi electron atom depends on 'n', ' ℓ ', 'm $_{\ell}$ '.

112.(ACD) $B \rightarrow incorrect$

According to Bohr's theory, an electron continuously moves in fixed energy having quantized energy.

113.(D) A, B, facts

D splitting of spectrum lines in presence of electric field is known as stark effect.

114.(ABC) mvr = $n \frac{h}{2\pi}$ n = integer value = 1, 2, 3, 4,...

 $D \rightarrow incorrect$

$$mvr = \frac{nh}{2\pi}; \ n = 1, 2, 3,, 4$$

115.(C) $\lambda \propto \frac{1}{V} \propto \frac{1}{\sqrt{T}}$

$$\frac{\lambda_1}{\lambda_2} = \sqrt{\frac{T_2}{T_1}} \qquad \Rightarrow \qquad \frac{\lambda'}{\lambda} = \sqrt{\frac{300}{1200}}$$

$$\Rightarrow \qquad \quad \lambda' = \frac{\lambda}{2}$$