# Chapter 5 Mixed Models for Discrete Data

#### 5.1 Generalized Linear Mixed Models



- The previous chapter focused on framework of Generalized Estimating Equations
  - by this can be seen as the extension of the marginal models for continuous data of Chapter 2 to the setting of categorical longitudinal responses
- In this chapter we will see the analogue of linear mixed models for categorical data



**Generalized Linear Mixed Models (GLMMs)** 



- The intuitive idea behind GLMMs is the same as in linear mixed models, i.e.,
  - by the correlation between the repeated categorical measurements is induced by unobserved random effects
  - in other words: the categorical longitudinal measurements of a subject are correlated because all of the share the same unobserved random effect (conditional independence assumption)



#### Graphical representation of the conditional independence assumption





- Similarly to Chapter 4, we will focus on grouped dichotomous/binary data
  - ▷ nonetheless, the same ideas and issues also apply to other categorical responses (e.g., Poisson, ordinal data, multinomial data, etc.)
- ullet Suppose we have a binary outcome  $y_{ij}$

$$y_{ij} = \begin{cases} 1, & \text{if subject } i \text{ has a positive response at measurement } j \\ 0, & \text{if subject } i \text{ has a negative response at measurement } j \end{cases}$$



• The generic mixed model for  $y_{ij}$  is a *Mixed-Effects Logistic Regression* and has the form:

$$\begin{cases} \log \frac{\pi_{ij}}{1 - \pi_{ij}} = x_{ij}^{\top} \beta + z_{ij}^{\top} b_i \\ b_i \sim \mathcal{N}(0, D) \end{cases}$$

#### where

 $\triangleright \pi_{ij} = \Pr(y_{ij} = 1)$  the probability of a positive response

 $\triangleright x_{ij}$  a vector of fixed-effects covariates, with corresponding regression coefficients  $\beta$ 

 $\triangleright z_{ij}$  a vector of random-effects covariates, with corresponding regression coefficients  $b_i$ 



- Hence, we have the following three-part specification
  - 1. Conditional on the random effects  $b_i$ , the responses  $y_{ij}$  are independent and have a Bernoulli distribution with mean  $E(y_{ij} \mid b_i) = \pi_{ij}$  and variance  $\text{var}(y_{ij} \mid b_i) = \pi_{ij}(1 \pi_{ij})$
  - 2. The conditional mean of  $y_{ij}$  depends upon fixed and random effects via the following expression:

$$\log \frac{\pi_{ij}}{1 - \pi_{ij}} = x_{ij}^{\mathsf{T}} \beta + z_{ij}^{\mathsf{T}} b_i$$

3. The random effects follow a multivariate normal distribution with mean zero and variance-covariance matrix D



- Notes: On the definition of GLMMs
  - $\triangleright$  The three-part specification of GLMMs corresponds to a full specification of the distribution of the outcome  $y_{ij}$  this in contrast to the GEE approach, which is a semi-parametric method
  - ▶ The mean and correlation structures are simultaneously defined using random effects
    - $\Rightarrow$  As we will see next, this has direct and important implications with respect to the interpretation of parameters

#### 5.2 Interpretation



- Example: In the AIDS dataset, a very low CD4 count (less than 150 cells/mm<sup>3</sup>) is an indicator for opportunistic infections
  - ▷ In the following analysis we dichotomize the CD4 cell counts from the AIDS dataset using this threshold
  - ▶ We fit a mixed effects logistic regression with
    - \* fixed effects: time, treatment and their interaction
    - \* random effects: random intercepts



• The model has the form:

$$\log \frac{\pi_{ij}}{1 - \pi_{ij}} = \beta_0 + \beta_1 \mathsf{Time}_{ij} + \beta_2 \mathsf{ddI}_i + \beta_3 \{\mathsf{Time}_{ij} \times \mathsf{ddI}_i\} + b_i, \quad b_i \sim \mathcal{N}(0, \sigma_b^2)$$

|             | Value  | Std.Err. | z-value | p-value |
|-------------|--------|----------|---------|---------|
| $\beta_0$   | 6.250  | 0.899    | 6.954   | < 0.001 |
| $\beta_1$   | 0.149  | 0.044    | 3.392   | 0.001   |
| $\beta_2$ - | -0.811 | 0.731    | -1.109  | 0.267   |
| $\beta_3$ . | -0.029 | 0.059    | -0.494  | 0.622   |
| $\sigma_b$  | 6.019  |          |         |         |



- Interpretation of fixed effects
  - $\triangleright$  At baseline for group ddC the log odds of a low CD4 cell count are on average  $eta_0 = 6.25$ 
    - \* 95% heterogeneity interval (not confidence interval):  $(\beta_0 1.96\sigma_b ; \beta_0 + 1.96\sigma_b) = (-5.55; 18.05)$
  - $\triangleright$  We translate the log odds to the probability scale: The probability of low CD4 cell count is  $\exp(\beta_0)/\{1+\exp(\beta_0)\}=0.99807$ 
    - \* 95% heterogeneity interval:

$$(1/[1 + \exp{-(\beta_0 - 1.96\sigma_b)}]; 1/[1 + \exp{-(\beta_0 + 1.96\sigma_b)}]) = (0.00389; 1)$$



• When we compare the middle point of the transformed heterogeneity interval with the transformed intercept an **important** observation is made:

$$\triangleright \exp(\beta_0)/\{1 + \exp(\beta_0)\} = 0.99807$$

 $\triangleright$  mean of transformed interval = 0.50194

When we transform the fixed effects to the probability scale, they do not correspond to the average probability



• Let's explain this issue graphically . . .















• We did not have this problem in the case of the linear mixed model because we did not have a link function

 $\triangleright$  or put more precisely, the link function was the identity g(x)=x

• Let's see graphically again why for linear mixed models we do <u>not</u> have the same problem . . .







- The same complications also hold for the other fixed-effects coefficients of the logistic regression model
  - $\triangleright$  e.g.,  $\beta_1$  does **not** have the interpretation of the odds ratio for a month increase in follow-up
- Let's see why
  - $\triangleright$  say that we compare two patients at different follow-up times who both took ddC, Patient i at month m and Patient i' at month m+1
  - $\triangleright$  the equation of the model for Patient i is:

$$\log \frac{\pi_{ij}}{1 - \pi_{ij}} = \beta_0 + \beta_1 \{ \text{Time}_{ij} = m \} + \frac{b_i}{b_i}$$



 $\triangleright$  the equation of the model for Patient i' is:

$$\log \frac{\pi_{i'j}}{1 - \pi_{i'j}} = \beta_0 + \beta_1 \{ \text{Time}_{ij} = m + 1 \} + b_{i'}$$

▷ hence, the corresponding odds ratio is:

log odds ratio: 
$$\log \frac{\pi_{i'j}}{1 - \pi_{i'j}} - \log \frac{\pi_{ij}}{1 - \pi_{ij}} = \beta_1 + (b_{i'} - b_i) \Rightarrow$$

odds ratio: 
$$\frac{\pi_{i'j}/(1-\pi_{i'j})}{\pi_{ij}/(1-\pi_{ij})} = \exp\{\beta_1 + (b_{i'} - b_i)\} \neq \exp(\beta_1)$$



- Hence, the interpretation of  $\beta_1$  is not the log odds for unit increase of Time for all subjects, but rather for subjects with the same random-effect value
- To illustrate this again graphically, we depict the relationship between time and the probability of low CD4 cell counts
  - > the grey lines depict 13 random subjects with increasing random effects
  - $\triangleright$  the black line corresponds to the subject with  $b_i = 0$  (i.e., the mean individual)  $\Rightarrow$  This line is actually  $1/[1 + \exp\{-(\beta_0 + \beta_1 \text{Time}_{ij})\}]$
  - b the red line that crosses the 13 lines denotes the average longitudinal evolution of the probability of low CD4 cells counts across subjects







#### • To summarize:

- ➤ The fixed-effects regression coefficients are interpreted in terms of the effects of covariates on changes in an *individual's* transformed mean response, while holding the remaining covariates fixed
- $\triangleright$  Because the components of the fixed effects  $\beta$ , have interpretations that depend upon holding  $b_i$  (the i-th subject's random effects) fixed, they are often referred to as *subject-specific* regression coefficients
- As a result, GLMMs are most useful when the main scientific objective is to make inferences about individuals rather than population averages
- Population averages are the targets of inference in marginal models (i.e., GEE)



Hence, contrary to the marginal and mixed effects model for continuous data (Chapters 2 & 3), the regression coefficients from marginal models for discrete data do not have the same interpretation as the corresponding coefficients from mixed effects models



• Nonetheless, for the special case of random intercepts, there is a closed form expression to obtain the marginal regression coefficients from the subject-specific ones, i.e.,

$$\beta^M = \frac{\beta^{SS}}{\sqrt{1 + 0.346\sigma_b^2}}$$

where

 $\triangleright \beta^M$  denotes the marginal coefficients

 $\triangleright \beta^{SS}$  denotes the subject-specific coefficients

 $\triangleright \sigma_b^2$  denotes the variance of the random intercepts



• Example: We continue on the previous example from the AIDS dataset (see pp.285) and we compute the corresponding marginal regression coefficients

| Subject-specific |        |          |         |         | Marginal |          |
|------------------|--------|----------|---------|---------|----------|----------|
|                  | Value  | Std.Err. | z-value | p-value | Value    | Std.Err. |
| $\beta_0$        | 6.250  | 0.899    | 6.954   | 0.000   | 1.699    | 0.244    |
| $\beta_1$        | 0.149  | 0.044    | 3.392   | 0.001   | 0.040    | 0.012    |
| $\beta_2$        | -0.811 | 0.731    | -1.109  | 0.267   | -0.220   | 0.199    |
| $\beta_3$        | -0.029 | 0.059    | -0.494  | 0.622   | -0.008   | 0.016    |
| $\sigma_b$       | 6.019  |          |         |         |          |          |



- We observe considerable differences between the two sets of parameters
  - b the subject-specific odds ratio for a unit increase in time for a specific ddC patients is 0.54 (95% CI: 0.52; 0.56),
  - b whereas the corresponding marginal odds ratio averaged over all ddC patients equals 0.51 (95% CI: 0.5; 0.52)
  - □ note that the lower limit of the 95% CI for the subject-specific odds ratio equals
     the upper limit of the 95% CI for the marginal odds ratio
    - ⇒ the confidence intervals do not overlap

#### 5.3 Estimation



### 5.3 Estimation (cont'd)



#### 5.4 GLMMs in R



### 5.4 GLMMs in R (cont'd)



#### 5.5 Model Building



### 5.5 Model Building (cont'd)



#### 5.6 Hypothesis Testing



### 5.6 Hypothesis Testing (cont'd)



#### 5.7 Review of Key Points



# 5.7 Review of Key Points (cont'd)



### 5.7 Review of Key Points (cont'd)

