MATHF411-Analyse Fonctionnelle

Assistant : Robson Nascimento Titulaire : Paul Godin

Espaces de Sobolev-partie II

Exercice 1 Est-il vrai que si $u \in H^1(\mathbb{R})$, alors $u(x) \to 0$ lorsque $|x| \to \infty$?

Exercice 2 Déterminer pour quelles valeurs de s les distributions suivantes appartiennent à $H^s(\mathbb{R})$:

a) $\chi_{[0,1]}(x)$;

b) $\delta_a : \varphi \mapsto \varphi(a)$ où $a \in \mathbb{R}$ et $\varphi \in C_0^{\infty}(\mathbb{R})$;

c)
$$x \mapsto \sum_{j=0}^{m} a_j x^j$$
, où $a_j \in \mathbb{C}$ et $x \in \mathbb{R}$.

Exercice 3 Déterminer pour quelles valeurs de s les distributions suivantes appartiennent à $H^s(\mathbb{R}^2)$:

a) $\chi_{[0,1]\times[0,1]}(x)$;

b) $\delta_a: \varphi \mapsto \varphi(a)$ où $a \in \mathbb{R}^2$ et $\varphi \in C_0^{\infty}(\mathbb{R}^2)$;

c)
$$x \mapsto \sum_{|\alpha| \le m} a_{\alpha} x^{\alpha}$$
, où $a_{\alpha} \in \mathbb{C}$ et $x \in \mathbb{R}^2$.

Exercice 4 Soit $f: \mathbb{R} \to \mathbb{R}$ définie par

$$f(\xi) = \begin{cases} \frac{1}{\xi \ln \xi}, & \text{si } \xi > 2, \\ 0, & \text{si } \xi \le 2. \end{cases}$$

Soit $u \in \mathcal{D}'(\mathbb{R})$ telle que $\hat{u} = f$.

- a) Montrer que $u \in H^{1/2}(\mathbb{R})$.
- b) Posons $a_n = n \int_{\mathbb{R}} u(x) e^{-(nx)^2/2} dx$, $n \in \mathbb{N}$. Montrer que $a_n \to \infty$ lorsque $n \to \infty$.

Indice: Utiliser la formule de Parseval.

- c) Déduire de (b) qu'il n'existe aucun $\alpha > 0$ tel que $u \in L^{\infty}(]-\alpha,\alpha[)$. Ceci montre que le théorème de plongement de Sobolev n'est pas vrai pour $H^{1/2}(\mathbb{R})$.
- d) Déduire du théorème de plongement de Sobolev que $u \notin H^s(\mathbb{R})$ si s > 1/2.