Natural Language Processing & Applications

Why Text?

GRECOMMIND MASSIVE GROWTH IN UNSTRUCTURED CONTENT Worldwide Corporate Data Growth 80% of Data Growth is Unstructured 45,000 40,000 35,000 25,000 20,000 15,000 10,000 5,000 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 Source: IDC The Digital Universe, Dec 2012 ■ Structured Data ■ Unstructured Data

Source: RECOMND

Natural Language Processing

- A hallmark of human intelligence.
- Natural Language Processing
 - Natural Language Understanding
 - Natural Language Generation
 - Process information contained in natural language text.
 - Computational Linguistics (CL), Human Language Technology (HLT), Natural Language Engineering (NLE)
- Can machines understand human language?
 - Ultimate goal

Analyze, understand and generate human languages just like humans do.

Fitting in CS taxonomy

NLP- Tasks

Natural Language Understanding

Taking some spoken/typed sentence and working out what it means

Natural Language Generation

Taking some formal representation of what you want to say and working out a way to express it in a natural (human) language (e.g., English)

Working towards

- Applying computational techniques to language domain.
- Use the theories to build systems that can be of social use.
- Make computers learn our language rather than we learn theirs.

Natural language understanding

Raw speech signal /Raw Text

Speech recognition

Sequence of words spoken /written

Syntactic analysis

Structure of the sentence

Semantic analysis

Partial representation of meaning of sentence

Discourse & Pragmatic analysis

Final representation of meaning of sentence

Aspects of Language Processing

- Phonology Speech processing
- Word, lexicon: lexical analysis
 - Morphology, word segmentation
- Syntax
 - Sentence structure, phrase, grammar, ...
- Semantics
 - Meaning
- Discourse analysis
 - Meaning of a text
 - Relationship between sentences
- Pragmatics

The study of meaning in different contexts of use

Phonology

Speech processing

- Humans process speech remarkably well.
- Speech interface can replace keyboards and monitors.
- Convert Acoustic signals to Text.
- Phonemes are the smallest recognizable speech unit in a language.

Morphology

- Structures and patterns in words
- Words are a sequence of Morphemes.
 - Morpheme smallest meaningful unit in a word.
- Analyses how words are formed from morphemes.

- Inflectional Morphology Same Part of Speech
 - Buses = Bus + es
 - Carried = Carry + ed
- Derivational Morphology Change PoS.
 - Destruct + ion = Destruction (Noun)
 - Beauty + ful = Beautiful (Adjective)
- Affixes Prefixes, Suffixes Rules govern the fusion.

Syntax

- Words when put together they convey more.
- Syntax is the grammatical structure of the sentence.
- Syntactic Analysis (Parsing)

Process of assigning a parse tree to a sentence.

Syntactic Analysis - Grammar

```
sentence -> noun phrase, verb phrase
noun phrase -> proper noun
noun phrase -> determiner, noun
verb phrase -> verb,
                 noun phrase
proper noun -> [mary]
noun -> [apple]
verb -> [ate]
determiner -> [the]
```

Parsing

Analyze the structure of a sentence

Semantic Analysis

- What do you mean..?
- Words Lexical Semantics
- Sentences Compositional Semantics
- Converting the syntactic structures to semantic format meaning representation.
- Semantics: the meaning of a word or phrase within a sentence
- e.g., "I saw the prudential building flying into Boston"

Semantic Representations

- Meaning representation of the sentence from its syntactic structure(s)
- Ways of meaning representing the sentence:
 - Logical forms

Representation: $\exists x \text{ man}(x) \& \text{tall}(x) \& \text{plays}(x, \text{basketball})$

Semantic role labelling

Representation: Kill(Agent: X, Victim: 3 people, Instrument: Gun)

Discourse Analysis

- The meaning of an individual sentence may depend on the sentences that precede it and may influence the meaning of the sentence that follow it.
- Issues related to discourse Integration
 - Anaphora
 - Resolving the pronoun's reference. Co-reference resolution
 - Coreference resolution is the task of finding all expressions that refer to the same entity in a text.
 - Ellipsis
 - Incomplete sentences

Anaphora Resolution

Discourse Structures- Ellipsis

• Ellipsis – Incomplete sentences

The second sentence is not complete, but what it means can be inferred from the first one.

Pragmatics

Uses context of utterance

• Where, by who, to whom, why, when it was said

• Intentions: inform, request, promise, criticize, ...

Syntax Ambiguity

Semantic Ambiguity

Semantic ambiguity: "I saw the prudential building flying into Boston"

Semantic Restriction, Domain Knowledge - Ontology

Pragmatics Ambiguity

Pragmatic ambiguity: "you're late"

What's the speaker's intention: informing or criticizing?

Computing Techniques

- Stemming
 - Reduce words to base form.
- POS Tagging
 - Determine for each word whether it is a noun, adjective, verb,
- Parsing
 - sentence ⇒ parse tree
- Word Sense Disambiguation
 - orange juice vs. orange coat
- Semantic analysis
 - Semantic representations and Evaluation

Application Areas

- ➤ Machine Translation
- > Information Retrieval

Selecting from a set of documents the ones that are relevant to a query

- ➤ Text Categorization

 Sorting text into fixed topic categories
- **➤** Question Answering
- Information Extraction
 Converting unstructured text into structured data

Application Areas (cont..)

- ➤ Spoken language control systems
- > Spelling and grammar checkers
- ➤ Sentiment Analysis
- ➤ Text-to-Speech & Speech recognition
- ➤ Natural Language Dialogue Interfaces to Databases
- ➤ Plagiarism detection

Information Retrieval

Email Spam Filtering/Categorizing

Machine Translation

- Multilingual Usage
- Machine-assisted human Translation
- Scope

Creating Language resources.

Translate

Turn off instant translation

Information Extraction

Information extraction systems

- Find and understand relevant parts of text.
- Produce a structured representation of the relevant information from text, in the form of :
 - entities,
 - relations between entities ,
 - events in which the entities are involved.
- Produce a structured representation of the relevant informationrelations/events

Plagiarism Detection

Current Technology Giants

- IBM Watson
- Google
- Microsoft Oxford
- Wolfram Natural Language Understanding System

TOOLS

Conclusion

- Complete human-level natural language understanding is still a distant goal
- Develop Algorithms for each level.
- Find appropriate match between application domain and the available methods

References

Books

- Allen.J, "Natural Language Understanding", second edition, Benjamin Cummings Publishing Co.
- Manning.C.D and Schutze.H, "Foundations of Statistical Natural Language Processing", MIT Press.

Web references

- research.microsoft.com/en-us/groups/nlp/
- nlp.stanford.edu/