Laboratório de Física – Cursos de Ciências Exatas e Engenharia Folha de Resultados

Nome:	Bernardo Filipe Cardeira Cozac Nº: 9 0 2 4 2	Classificação
Nome:	Diogo Alexandre Botas Carvalho Nº: 9 0 2 4 7	
Nome:	Diogo Coelho De Freitas Nº: 9 0 1 4 7	
Curso:	LEI Turma: P L 5 Grupo: 2 Data de Realização: 20 /05 /2025	

Ondas estacionárias numa corda

1. Objetivo da Experiência

Neste trabalho, estudámos como se formam ondas estacionárias numa corda esticada e como a frequência dessas vibrações depende de fatores como o modo de vibração, o comprimento da corda, a tensão e a densidade do material. O principal objetivo foi verificar se os resultados experimentais confirmam a fórmula teórica que descreve esse fenómeno.

2. Dados Experimentais

Incerteza da fita métrica: 0,5 (mm)
Incerteza do gerador: 0,1 (Hz)

2.1 - Frequência em função do modo

Parâmetros fixos: $L = 1,200 \text{ m}, m = 300 \text{ g e } \mu = 1,393 \times 10^{-3} \text{ Kg/m}$

n	f (Hz)
1	19,0
2	38,0
3	58,0
4	77,4
5	97,0
6	116,8
7	137,8

Parâmetros fixos: $L = 1,200 \text{ m e } \mu = 1,393 \times 10^{-3} \text{ Kg/m}$

m(g)	f (Hz)	T(N)	$\sqrt{T} (\sqrt{N})$
100	11,3	1,029	1,01
150	13,6	1,519	1,23
200	15,6	2,009	1,42
250	17,4	2,499	1,58
300	19,0	2,989	1,73

2.3 - Frequência em função do comprimento

Parâmetros fixos: $\underline{m} = 300 \text{ g e } \mu = 1,393 \times 10^{-3} \text{ Kg/m}$

L (m)	f (Hz)	1/L (1/m)
1,2	19	0,83
1,0	23,3	1,00
0,8	31,5	1,25
0,6	38,8	1,66
0,4	64,1	2,50

2.4 – Frequência em função da tensão

Parâmetros fixos: $\underline{L} = 1,200 \text{ m e m} = 300 \text{ g}$

μ (kg/m)	f (Hz)	$\sqrt{(1/\mu)} \left(\sqrt{m/Kg}\right)$
$3,853 \times 10^{-3}$	14,5	16,11
$1,393 \times 10^{-3}$	19,0	26,79
$9,443 \times 10^{-4}$	27,7	32,54
$2,933 \times 10^{-4}$	41,0	58,39

(Para calcular o declive experimental, escolhemos dois pontos no gráfico aleatoriamente e calculamos $a = \frac{y_2 - y_1}{x_2 - x_1}$)

Cálculos de f em função de n

$$f_n = \frac{1}{2L} \sqrt{\frac{T}{\mu}} \times n \qquad a_n^t = \frac{1}{2 \times 1, 2} \times \sqrt{\frac{(0, 305 \times 9, 8)}{1, 393 \times 10^{-3}}} = 19, 32 \quad a_n^e = \frac{116, 8 - 38}{6 - 2} = 19, 70$$

$$Erro \% = \left| \frac{19, 43 - 19, 32}{19, 32} \right| \times 100 = 0, 57\%$$

Cálculos de f em função de T

$$f_1 = \frac{1}{2L} \times \frac{1}{\sqrt{\mu}} \times \sqrt{T} \qquad a_T^t = \frac{1}{2 \times 1, 2} \times \frac{1}{\sqrt{1,393 \times 10^{-3}}} \qquad a_T^e = \frac{18 - 12}{1,65 - 1, 1} = 10,90$$

$$Erro \% = \left| \frac{10,90 - 11,16}{11,16} \right| \times 100 = 2,33\%$$

Cálculos de f em função de L

$$f_1 = \frac{1}{2} \sqrt{\frac{T}{\mu}} \times \frac{1}{L} \qquad a_L^t = \frac{1}{2} \times \sqrt{\frac{(0,305 \times 9,8)}{1,393 \times 10^{-3}}} = 23,16 \qquad a_L^e = \frac{57,5-10}{2,25-0,5} = 27,14$$

$$Erro \% = \left| \frac{27,14-23,16}{23,16} \right| \times 100 = 17,18\%$$

Cálculos de f em função de µ

$$f_1 = \frac{1}{2L}\sqrt{T} \times \frac{1}{\sqrt{\mu}} \qquad a_{\mu}^t = \frac{1}{2 \times 1, 2} \times \sqrt{(0, 305 \times 9, 8)} = 0,72 \quad a_{\mu}^e = \frac{32 - 8}{44 - 6} = 0,63$$

$$Erro \% = \left| \frac{0,632 - 0,72}{0,72} \right| \times 100 = 12,20\%$$

3.1 Quadro resumo dos resultados

	a teórico	a experimental	Erro percentual
f em função de n	19,32	19,43	0,57%
f em função de T	11,16	10,90	2,33%
f em função de L	23,16	27,14	17,18%
f em função de μ	0,72	0,63	12,20%

Anexar no final duas folhas de papel milimétrio com os 4 gráficos

Gráfico de f_n em função de n

Gráfico de f_1 em função de \sqrt{T}

Gráfico de f_1 em função de $\frac{1}{L}$

Gráfico de f_1 em função de $\frac{1}{\sqrt{\mu}}$

5. Comentários e conclusões

1. Frequência em função do modo

O erro foi muito pequeno (0,57%), o que mostra que os dados experimentais seguem quase perfeitamente a relação teórica. A proporcionalidade entre a frequência e o número do modo ficou bem confirmada.

2. Frequência em função da tensão

Com um erro de apenas (2,33%), ficou claro que a frequência aumenta com a raiz da tensão, como previsto. Os resultados foram bastante fiáveis e bem alinhados com a teoria.

3. Frequência em função do comprimento

Neste caso, o erro foi mais elevado (17,18%), possivelmente devido à dificuldade em ajustar bem o comprimento da corda ou à sensibilidade maior deste parâmetro. Ainda assim, a tendência teórica foi respeitada.

4. Frequência em função da tensão

O erro (12,20%) indica que os resultados seguiram a tendência teórica, mas com alguma variação. Diferenças entre as cordas (como rigidez ou tensão real) podem ter influenciado ligeiramente os valores obtidos.

No geral, os resultados experimentais confirmaram bem a teoria das ondas estacionárias. Apesar de alguns desvios maiores em certos casos, a relação entre a frequência e os parâmetros físicos da corda ficou bem demonstrada. A experiência permitiu compreender de forma prática como funcionam as ondas estacionárias e como cada variável influencia a vibração da corda.