Argumentação

Esdras Lins Bispo Jr. bispojr@ufg.br

Lógica para Ciência da Computação Bacharelado em Ciência da Computação

27 de maio de 2014

Plano de Aula

- Pensamento
- 2 Avisos
- Revisão
 - Argumentação
- Argumentação (Cont.)

Sumário

- Pensamento
- 2 Avisos
- Revisão
 - Argumentação
- 4 Argumentação (Cont.)

Pensamento

Pensamento

Frase

Eu nunca aprendi nada na minha vida através de qualquer homem que tenha concordado comigo.

Quem?

Dudley Field Malone (1882-1950)
Advogado estadunidense e defensor dos
direitos civis.

Sumário

- Pensamento
- 2 Avisos
- RevisãoArgumentação
 - Argumentação
- 4 Argumentação (Cont.)

Avisos

Lista 03 - Exercícios

• Data de Entrega: 02 de junho (Segunda-feira), até 17h.

Avisos

Lista 03 - Exercícios

• Data de Entrega: 02 de junho (Segunda-feira), até 17h.

Datas importantes

• Teste 2: 10 de junho;

Notícias do Santa Cruz

Sumário

- Pensamento
- 2 Avisos
- Revisão
 - Argumentação
- 4 Argumentação (Cont.)

Consequência Lógica

Modus Ponens

$$(p \rightarrow q) \land p \models q$$

Modus Tollens

$$(p \to q) \land \neg q \models \neg p$$

Redução ao absurdo

$$(p \rightarrow q) \land (p \rightarrow \neg q) \models \neg p$$

Silogismo Disjuntivo

$$(p \lor q) \land \neg p \models q$$

Argumento

Um argumento pode ser representado em forma simbólica como $p_1 \wedge p_2 \wedge p_3 \wedge \cdots \wedge p_n \models q$ em que $p_1, p_2, p_3 \cdots, p_n$ e q são fórmulas proposicionais.

Premissas

Chamamos $p_1, p_2, p_3, \dots, p_n$ de premissas (ou hipóteses) do argumento.

Conclusão

Chamamos q de conclusão do argumento.

Terminologia

- ullet q é uma consequência lógica de $p_1, p_2, p_3, \cdots, p_n$
- q pode ser deduzido logicamente de $p_1, p_2, p_3, \cdots, p_n$
- q é uma conclusão lógica de $p_1, p_2, p_3, \cdots, p_n$
- $p_1, p_2, p_3, \cdots, p_n$ implica logicamente em q
- q segue logicamente de $p_1, p_2, p_3, \dots, p_n$

Argumento Válido

Um argumento é válido se $p_1 \wedge p_2 \wedge p_3 \wedge \cdots \wedge p_n \models q$ for válida.

Argumento Válido

Um argumento é válido se $p_1 \wedge p_2 \wedge p_3 \wedge \cdots \wedge p_n \models q$ for válida.

Exemplos

- $p \land q \models r$ é um argumento válido?
- $p \models p \lor q$ é um argumento válido?
- $(p \rightarrow q) \land p \models q$ é um argumento válido?
- $(p \rightarrow q) \land q \models p$ é um argumento válido?

Sumário

- Pensamento
- 2 Avisos
- 3 Revisão
 - Argumentação
- Argumentação (Cont.)

Problema É possível garantir a validade de um argumento sem ter que recorrer à construção de uma tabela-verdade?

Exemplos

- $(p \rightarrow q) \land (p \land r) \models q$ é um argumento válido?
- $(p \land q) \land ((p \lor r) \rightarrow s)) \models p \land s$ é um argumento válido?
- $(p \rightarrow (q \rightarrow r)) \land (p \rightarrow q) \land p \models r$ é um argumento válido?

Definição

Regras de inferência é uma coleção de consequências lógicas válidas notáveis que podem ser referenciadas em uma determinada demonstração.


```
Introdução da Conjunção (\wedge i)

(1) A
(2) B

...
(3) A \wedge B \wedge i (1),(2)
```


Introdução da Conjunção $(\wedge i)$

- (1) A
- (2) B
- (3) $A \wedge B$

 $\wedge i(1),(2)$

Expressão Lógica

$$A \wedge B \models A \wedge B$$

Eliminação da Conjunção (∧e)

(1) $A \wedge B$

(2) $A \wedge e(1)$

Expressão Lógica

$$A \wedge B \models A$$

Éliminação da Conjunção (∧e)

(1) $A \wedge B$

(2) $B \wedge e$ (1)

Expressão Lógica

$$A \wedge B \models B$$

Éliminação da Dupla Negação (¬¬e)

- $(1) \neg \neg A$
- (2) A ¬¬e (1)

Expressão Lógica

$$\neg \neg A \models A$$

Întrodução da Dupla Negação (eg eg i)

- (1) A
- (2) $\neg \neg A$ $\neg \neg i$ (1)

Expressão Lógica

$$A \models \neg \neg A$$

Expressão Lógica

$$A \models A \lor B$$

Onde estudar mais...

Seção 1.3: Lógica Proposicional

GERSTING, J. L. Fundamentos Matemáticos para a Ciência da Computação: um tratamento moderno de matemática discreta. Rio de Janeiro: LTC. 2004.

Argumentação

Esdras Lins Bispo Jr. bispojr@ufg.br

Lógica para Ciência da Computação Bacharelado em Ciência da Computação

27 de maio de 2014

