

목차

1 ABSTRACT

2 SANDBOX
ENVIRONMENT
IMPLEMENTATION

3 Generative Agent Architecture 4 EVALUATION1 - CONTROLLED

5 EVALUATION2 - END-TO-END

6 DISSCUSTION

7 CONCULSION

1. ABSTRACT

- Generative AI of this paper
 LLM + interactive agent = believable simulation architecture
- Baseline GPT 3.5
- Difference of previous paper 최종 사용자는 에이전트들을 관찰, 상호 작용
- Ex) 예를 들어, 최종 사용자나 개발자가 마을에서 게임 내 발렌타인 데이 파티를 개최하기를 원한다면, 전통적인 게임 환경에서는 수십 명의 캐릭터의 행동을 수동으로 스크립팅해야 합니다. 저희는 생성 에이전트를 사용하면 한 에이전트에게 파티를 열고 싶다고 간단히 말하는 것만으로 충분하다는 것을 보여줍니다."

2. SANDBOX ENVIRONMENT IMPLEMENTATION

• Framework : Phaser

Server: sandbox

3. Generative Agent Architecture

Three main components.

- Memory stream
- Reflection
- Plan

3. Generative Agent Architecture - Memory stream

Memory Stream 2023-02-13 22:48:20: desk is idle 2023-02-13 22:48:20: bed is idle 2023-02-13 22:48:10: closet is idle 2023-02-13 22:48:10: refrigerator is idle 2023-02-13 22:48:10: Isabella Rodriguez is stretching 2023-02-13 22:33:30: shelf is idle 2023-02-13 22:33:30: desk is neat and organized 2023-02-13 22:33:10: Isabella Rodriguez is writing in her journal 2023-02-13 22:18:10: desk is idle 2023-02-13 22:18:10: Isabella Rodriguez is taking a break 2023-02-13 21:49:00: bed is idle 2023-02-13 21:48:50: Isabella Rodriguez is cleaning up the kitchen 2023-02-13 21:48:50: refrigerator is idle 2023-02-13 21:48:50: bed is being used 2023-02-13 21:48:10: shelf is idle 2023-02-13 21:48:10: Isabella Rodriguez is watching a movie 2023-02-13 21:19:10: shelf is organized and tidy 2023-02-13 21:18:10: desk is idle 2023-02-13 21:18:10: Isabella Rodriquez is reading a book 2023-02-13 21:03:40: bed is idle 2023-02-13 21:03:30: refrigerator is idle 2023-02-13 21:03:30: desk is in use with a laptop and some papers ...

Q. What are you looking forward to the most right now?

I'm looking forward to the Valentine's Day party that I'm planning at Hobbs Cafe!

3. Generative Agent Architecture – reflection, plan

4. EVALUATION 1 - CONTROLLED

• 평가 기준이 되는 질문 카테고리 5개 self-knowledge, retrieving memory, generating plans, reacting, and reflecting. 기반으로 질문을 하여 응답 생성.

• 5가지 agents들을 평가하여 ranked

>> trueskill 사용

Full Architecture

No Reflection

No {Reflection, Plan}

No {Reflection, Plan, Observation}

Human Crowdworker

4. EVALUATION 1 – ELO, TrueSkill

기본 개념

ELO는 개별 플레이어 실력의 평균(μ) 및 표준편차(σ) 값을 정규분포한다고 가정한다.

- ELO는, 플레이어의 체스 실력이 **정규 분포²한다고** 가정하였다.
- 이와 같은 가정으로 인해, "플레이어의 실력이 위치할 수 있는 확률 범위"에 대한 계산이 쉬워졌고,
 2명 간 매치 시의 승률 계산이 단순화될 수 있었다.
- 한편, 체스를 기반으로 한 레이팅 공식이므로, 1vs1 상황만을 가정한 공식이다.

플레이어의 실력은 정규 분포를 따르지 않는다!

범위 값은 98% 신뢰도를 가지도록 평균(µ) 및 표준편차(♂) 설정 필요

4. EVALUATION 1 CONTROLLED

RESULT:

Reflection이 행동에 대한 결정을 내릴 때, 생성 에이전트에게 중요한 요소

4. EVALUATION 1 – statistical test

To investigate the statistical significance of these results,

비모수 검정: 데이터가 정규 분포 따르지 않을 때 사용되며, 일원 분산 분석: 그룹 간의 평균 차이가 통계적으로 유의미?

- 1. Kruskal-Wallis 검정 >> (H = 150.29, p < 0.001) 다섯 가지 조건 간의 순위 차이의 통계적 유의성 H0(가설): 조건 간 순위 차이의 전반적인 차이가 있다.
- 2. Dunn 사후 검정 >> (p < 0.001)

X vs. Y Y vs. Z

- **3. Holm-Bonferroni 방법 >> (p < 0.001)** X vs. Y vs. Z
- → 즉, 앞의 자료들이 타당성을 가진다.

5. EVALUATION 2 - END-TO-END

End-to-end:

사용자의 개입 없이 이루어짐

확인할 부분:

정보 확산 + 새로운 관계 형성

<u> 방법.</u>

무방향 그래프

Vertex, *V*: 에이전트. Edge, *E*: 상호 지식

네트워크 밀도: $\eta = 2 * |E| / |V|(|V| - 1)$

결과:

정보 확산 4% → 32%~52% 네트워크 밀도가 0.167에서 0.74로 증가

6. DISSCUSTION

1. Limitations

• 평가 측면에서 연구 추가 진행 필요

2. Ethics and Societal Impact

- people forming parasocial relationships with generative agents
- impact of errors
- over-reliance
- deepfakes, misinformation generation, and tailored persuasion

7. CONCULSION

상호작용 컴퓨터 에이전트 소개 경험 기록, reflection, 환경 이해를 바탕으로 생성 에이전트 구성 아키텍처 신뢰할 수 있는 행동 생성 더 개인화, 효과적인 기술 경험

인지 모델 : 인간 중심 설계 프로세스

Ex) GOMS, klms

다양한 상호작용 응용 분야에서 역할

THANK YOU