Computing G-star discrepancy

Daniel Miller

August 7, 2016

The basic idea is this. Suppose we have two probability measures μ and ν on **R**. These will be given by explicitly computable cumulative distribution functions cdf_{μ} , cdf_{ν} . For example, we might have

$$\operatorname{cdf}_{\mu}(x) = \begin{cases} 0 & x \leqslant 0\\ \frac{x - \sin(x)\cos(x)}{\pi} & 0 \leqslant x \leqslant \pi\\ 1 & x \geqslant \pi \end{cases}$$
$$\operatorname{cdf}_{\nu}(x) = \frac{\#\{n : x_n < x\}}{N},$$

where (x_1, \ldots, x_N) is a sequence of points in $[0, \pi]$. The *star discrepancy* of ν with respect to μ is just the supremum of the difference between their CDFs:

$$\operatorname{disc}(\mu,\nu) = \sup_{x} |\operatorname{cdf}_{\mu}(x) - \operatorname{cdf}_{\nu}(x)|.$$

The question I am interested in is: when cdf_μ is an explicit smooth function and cdf_ν is an explicit step function as above, how can we compute $\mathrm{disc}(\mu,\nu)$ quickly?