FINITE ELEMENT METHOD PROJECT

Baling-Baling Bambu

KSATRIA RAULINZHA NUGRAHA 13620031 HILMI NURUZZAMAN 13620033

SEBASTIAN ARNOLD OMPI 13619116

Background

BALING-BALING BAMBU

Apakah mungkin dibuat?
Bagaimana tingkat kegagalannya?

Scope of Problem

PEMBEBANAN STATIK

Tidak menghitung pembebanan dinamik
Perhitungan pembebanan dilakukan sederhana

Assumption BALING-BALING BAMBU

- 1. Maximum payload= 200 kg
- 2. Maximum speed= 80km/h
 - 3. Airfoil NACA4412
- 4. Menggunakan classical blade theory
 - 5. Drag dari payload akan diabaikan.
- . Maximum thrust sama dengan maximum payload
 - 7. Perhitungan dilakukan pada sea level.

Geometri

BALING-BALING BAMBU

tinggi = 0.15 m lebar = 0.34 m

Material LAMINATED BAMBOO

E1	E2	E3	Mu12	Mu13	Mu23	G12	G13	G23
9643	2443	1811	0.33	0.34	0.58	1085	659	458

Compi	ression	Ten	Shear		
Longitudinal	Transverse	Longitudinal	Transverse	Silear	
60	22	116	3	17	

Element Type CONTINUUM SHELL

Digunakan supaya memudahkan melakukan layup composite dan melihat Hashin criteria

Meshing GLOBAL ELEMENT SIZE = 5 MM

Load Case

- 1. NAIK VERTIKAL 80 KMPH DENGAN PAYLOAD 200 KG
- 2. MEMBAWA DORAEMON DENGAN KECEPATAN HORIZONTAL 80 KMPH
- 3. HOVER DENGAN PAYLOAD 200 KG

Ketiga load case dipilih karena diharapkan menghasilkan profil

pembebanan yang berbeda.

Boundary Condition

DISPLACEMENT/ROTATION

Pada ujung batang dibebaskan rotasi arah sumbu-y

Composite Layup LAMINATED BAMBOO

Dibuat dua lapisan pada blade dan satu lapisan pada batang

RESULT

Total Element	Max. Hashin Compressive Fibre	Max. Hashin Tensile Fibre	Max. Hashin Compressive Matrix	Max. Hashin Tensile Matrix
889	35430	6199	45520	543700
890	50330	6340	17070	1564000
898	46840	10360	96830	2278000
941	63090	16540	8003	1091000
1214	359000	43780	38610	2190000
1803	164200	29130	37120	1015000
12795	180500	25370	9945	663200
30620	155200	28370	15780	804200
48904	146700	29500	12500	1343000
202366	144000	28500	18540	2863000
314693	140700	24930	14650	3446000
372816	156600	28240	20230	2683000
428500	161300	23770	33300	2021000
526662	158400	25680	29530	1361000
613261	148200	26450	25340	3702000

RESULT

Total elements	Max. Hashin Compressive Fibre	Max. Hashin Tensile Fibre	Max. Hashin Compressive Matrix	Max. Hashin Tensile Matrix
889	35730	6247	45900	548200
890	50750	6388	17200	1577000
898	47220	10440	97740	2297000
941	63610	16660	8306.9	1099000
1214	361800	44120	38860	2206000
1803	165500	29330	37360	1023000
12795	181900	25530	10010	668900
30620	156400	28600	15920	810600
48904	147800	29710	12610	1353000
202366	145100	28700	18690	2885000
314693	141700	25130	14790	3473000
372816	157800	28430	20370	2657000
428500	162600	23930	33530	2037000
526662	159600	25880	29760	1371000
613261	149300	26620	25580	3730000

RESULT

Total Elements	Max. Hashin Compressive Fibre	Max. Hashin Tensile Fibre	Max. Hashin Compressive Matrix	Max. Hashin Tensile Matrix
889	36610	6387	47040	551100
890	51990	6537	17560	1615000
898	48320	10690	100500	2352000
941	65160	17030	8253	1124000
1214	36610	6387	47040	561100
1803	169300	29950	38140	1047000
12795	186200	26110	10220	685400
30620	160100	29280	16300	830000
48904	151300	30350	12920	1385000
202366	148400	29360	19120	2954000
314693	144900	25720	15150	3558000
372816	161400	29030	20840	2719000
428500	166200	24430	34300	2084000
526662	163400	26460	30480	1404000
613261	152600	27180	26230	3818000

LOAD CASE 1

Convergence Test LOAD CASE 2

Analisis

NILAI KRITERIA HASHIN

Seluruh nilai diatas 1, tidak mungkin ada Baling-Baling Bambu

LETAK KEGAGALAN

Terletak pada pangkal blade, akibat pembebanan hanya terjadi di blade

PROPERTI MATERIAL

Sangat tidak mungkin untuk membentuk Baling-Baling Bambu, harus dimodifikasi.

CONVERGENCE TEST

Hasil convergence test pada tensile matrix tidak konvergen, karena material terlalu lemah

Kesimpulan

Saran

- 1. Kriteria Hashin Baling-Baling Bambu terlampau besar.
- 2. Laminated bamboo saat ini tidak dapat digunakan sebagai material utama.
- 3. Letak pembebanan kritis terjadi pada pangkal blade karena model pembebanan.

- 1. Mencari model airfoil yang menghasilkan Cl lebih besar.
- 2. Melakukan perhitungan dengan teori yang lebih advanced.
- 3. Mencari properti laminated bamboo yang lebih memungkinkan menahan pembebanan.
- 4. Membuat bias pada saat meshing supaya jumlah elemen tidak terlalu banyak.
- 5. Menggunakan peralatan yang lebih canggih supaya hasil dapat konvergen semua.

YOUS.