CS 344: Design and Analysis of Computer Algorithms

Instructor: Kangning Wang

Homework 4: Due on April 7, 2025

Acknowledgment: Our team members are Alexander Lin (al1655), Pranav Tikkawar (pt422), and Ivan Zheng (iz72)

Problem 1

We covered the offline caching problem in class and stated that the farthest-in-future algorithm is optimal. Formally prove its correctness using the exchange argument. You can refer to our textbook [KT, Section 4.3] to see how the proof is done.

Solution. Let S be an optimal strategy for the given request sequence. Let FiF be the strategy followed by the Farthest-in-Future algorithm. Assume that S and FiF behave identically up to a certain point where they differ in their eviction choices. We'll show that we can modify S to align with FiF at that point without increasing the number of misses.

- Consider the first time S and FiF differ in their eviction decisions. Let this be at request r_i where item x is requested, and it's not in the cache.
- At this point, both S and FiF must evict an item to bring in x (since the cache is full and x is not present).
- Suppose FiF evicts item a (the one farthest in the future or never used again) and S evicts item b (b \neq a).
- Since FiF chose a, this means a is used farther in the future than b, or a is not used again while b is used sooner.
- Define S' to be the same as S up to request r_i .
- At r_i , S' evicts a (like FiF) instead of b.
- After r_i , S' behaves optimally but ensures that it doesn't incur more misses than S.
- Case 1: a is never requested again. Evicting a is optimal since keeping b might lead to an earlier eviction of b later. S' doesn't incur extra misses compared to S.
- Case 2: a is requested later than b. By evicting a instead of b, b will be in the cache when it's next needed before a's next request. Thus, S' might avoid a miss on b that S would have had, or at least not do worse.

- In both cases, S' does not have more misses than S.
- Repeat this process for all points where S and FiF differ. Each exchange either keeps the number of misses the same or reduces them. Eventually, S is transformed into FiF without increasing the number of misses.
- Since any optimal strategy S can be transformed into FiF without increasing the number of misses, FiF must itself be optimal.

Problem 2

We have n boxes. The box i has weight w_i and weight limit ℓ_i . A box will break if the sum of weight above it exceeds its weight limit. Each box has the same size of $1 \times 1 \times 1$.

What is the tallest tower we can build by stacking a subset of boxes on top of each other? We can freely choose the order. Give a greedy algorithm and formally prove its correctness using the exchange argument.

Solution. Here is my solution.

Problem 3

Given a weighted undirected graph G = (V, E), decide whether its minimum spanning tree is unique. Give an algorithm that runs in $O(m \log m)$ time and prove its correctness. [Hint: You can modify Kruskal's algorithm.]

Solution. Here is my solution.

Problem 4

In this problem, we will design an algorithm to compute the minimum spanning tree in a given graph in $O(m \log \log n)$ time, where m is the number of edges and n is the number of vertices in the given graph. For example, if $m = \Theta(n)$, then the running time of this algorithm $(\Theta(n \log \log n))$ is better than that $(\Theta(n \log n))$ of Prim's algorithm, Kruskal's algorithm, and Borůvka's algorithm. Here are the ideas.

- In the original Borůvka's algorithm, we might need $\Theta(\log n)$ rounds to merge all vertices into one group, and each round takes O(m) time. The twist is that we now only run Borůvka's algorithm for r rounds.
- After running Borůvka's algorithm for r rounds, we obtain a new graph with at most $\frac{n}{2r}$ vertices and at most m edges. We run Prim's algorithm (with a Fibonacci heap) on it to find its MST.

How should we choose the parameter r so that the total running time becomes $O(m \log \log n)$?

Solution. The proposed algorithm combines Boruvka's algorithm with Prim's algorithm. Run Boruvja's for r rounds, after which the number of remaining components is at most $\frac{n}{2^r}$. Each round takes O(m) time, so r rounds take $O(r \cdot m)$. Then construct the contracted graph, where the vertices are the remaining components after r rounds. The edges are the original edges connecting these components (at most m). Run Prim's algorithm on the contracted graph. Using a Fibonacci heap, Prim's runs in O(m+klogk), where k is the number of vertices. Here, $k \leq \frac{n}{2^r}$, so time is $O(m+\frac{n}{2^r}log\frac{n}{2^r})$.

- The total time is the sum of Boruvka's r rounds $(O(r \cdot m))$ and Prim's on the contracted graph $(O(m + \frac{n}{2r}log\frac{n}{2r}))$. Assuming m dominates (as $m \ge n 1$ for connected graphs), the time simplifies to $O(r \cdot m + \frac{n}{2r}logn)$.
- To choose r, we set $r \cdot m + \frac{n}{2r}logn = O(mloglogn)$. Assuming $m = \Theta(n)$, this becomes $r \cdot n + \frac{n}{2r}logn = O(nloglogn)$. Dividing both sides, $r + \frac{logn}{2r} = O(loglogn)$.
- To balance the terms, set r = loglogn: where first term is loglogn and second term is $\frac{logn}{2^{loglogn}} = \frac{logn}{loqn} = 1$. Thus, loglogn + 1 = O(loglogn).
- For general m, set r = loglogn. Boruvka's time is O(mloglogn) and Prim's time is $O(m + \frac{n}{2loglogn}log\frac{n}{2loglogn})$.
- $2^{loglogn} = logn$, so $\frac{n}{logn}log(\frac{n}{logn}) \approx \frac{n}{logn}(logn loglogn) = n(1 \frac{loglogn}{logn}) = O(n)$. Thus, Prim's time is O(m+n), which is O(m) since $m \geq n-1$. Total time is O(mloglogn+m) = O(mloglogn).
- Therefore, to get runtime O(mloglogn), set the number of Boruvka rounds r to loglogn.

Problem 5

We have an undirected graph G=(V,E). Each edge has a positive length, and there is at most one edge between each pair of vertices. Find the length of the shortest simple cycle in G. Your algorithm should run in $O(n^3)$ time, where n=|V|. [Hint: You can modify the Floyd–Warshall algorithm. Recall that f(k,u,v) is the length of the shortest path from u to v using vertices with indices of at most k. Consider a cycle where k is the largest index among its vertices and v and v are the two neighbors of v in the cycle.]

Solution. Here is my solution.