DHANAMANJURI UNIVERSITY

Examination- 2024 (Dec)

Four year course B.Sc./B.A. 5th Semester

Name of Programme : B.Sc./B.A. Mathematics

Paper Type : DSE(Theory)
Paper Code : EMA-001

Paper Title : Metric Space

Full Marks: 80

Pass Marks: 32 Duration: 3 Hours

The figures in the margin indicate full marks for the questions:

Answer all the question.

1. Choose and rewrite the correct answer for each of the following:

 $1 \times 3 = 3$

a) In the discrete metric space X_d , the closed sphere $S_r[x] = \{x\}$ if

i) $0 < r \le 1$

ii) 0 < r < 1

iii) 1 < r

- iv) $1 \le r$
- b) The property of convergence of a sequence in a metric space (X, d)
 - i) Does not depend on the space X.
 - ii) depends only on the space X.
 - iii) depends only on the metric used.
 - iv) depends on the space X and the metric used.
- c) Consider the following Statements:

 S_1 : A fine set in any metric space is compact

S2: The usual metric space R_u is compact.

Then

- i) Only S_1 is true.
- ii) Only S_2 is true.
- iii) both S_1 and S_2 are true.
- iv) neither S_1 nor S_2 is true.

2. Write very short answer for each of the following questions:

 $1 \times 6 = 6$

- a) Define dense subset.
- b) Give an example of a Cauchy sequence that is not convergent.
- c) Show that the metric spaces [0,1] and [0,3] with the usual metric are homomorphic.
- d) Define cover of a metric space.
- e) Is the set $\{0, 1, \frac{1}{2}, \frac{1}{3}, ...\}$ in the usual metric space \mathbb{R}_u compact? Justify your answer.
- f) Define Lebesgue number.

3. Write short answer for each of the following questions: $3 \times 5 = 15$

- a) Let X, d be a metric space. Prove that $|d(x, z) d(z, y)| \le d(x, y)$.
- b) Prove that every finite set in a metric space is closed.
- c) Show that a Cauchy sequence in a metric space is convergent if it has a convergent subsequence.
- d) Let (X, d) be a metric space and let $A, B \subset X$ be compact. Prove that $A \cap B$ is compact.
- e) Let (X, d) and (Y,) be metric space and $f : X \to Y$ be a continuous function. If $A \subset X$ is compact in X, then prove that f(A) is compact in Y.

4. Answer the following questions:

 $4 \times 5 = 20$

- a) For $x = (\alpha_1, \alpha_2, ... \alpha_n)$ and $y = (\beta_1, \beta_2, ..., \beta_n)$ in \mathbb{R}^n , define $d(x, y) = \{\sum_{i=1}^n (\alpha_1 \beta_1)^2\}^{\frac{1}{2}}$. Prove that (\mathbb{R}^n, d) is a metric space.
- b) Prove that every open sphere in a metric space is an open set.
- c) Let (X, d) and (Y, f) be metric spaces and $f: X \to Y$ be a function. Prove that f is continuous if and only if $f(A) \subset \overline{f(A)}$, for every subset A of X.
- d) Let (X, d) be a metric space and $A \subset X$. Then, show that the function $f: X \to \mathbf{R}$ given by $f(x) = d(x, A), x \in X$ is uniformly continuous.
- e) Prove that in a compact metric space every closed subset is compact.

5. Answer any two of the following questions:

 $6 \times 2 = 12$

- a) Let (X, d) be a metric space and let $A, B \subset C$. Then prove that
 - i) $A \subset B \Rightarrow A^{\circ} \subset B^{\circ}$.
 - ii) $(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$.
 - iii) $(A \cup B)^{\circ} = A^{\circ} \cup B^{\circ}$.
- b) Let X, d be a metric space. Then prove that
 - i) Arbitrary intersection of closed sets in *X* is closed.
 - ii) Finite union of closed sets in X is closed.
- c) Let (Y, d_Y) be a subspace of a metric space X, d and $A \subset X$. Then prove that
 - i) A is open in Y if and only if \exists an open set G in X such that $A = G \cap Y$.
 - ii) A is closed in Y if and if \exists a closed set F in X such that $A = F \cap Y$.

6. Answer any two of the following questions:

 $6 \times 2 = 12$

- a) Show that the sequence space l^{∞} is a complete metric space.
- b) Show that metric space $(C[0,1],d_1)$, where $d_1(x,y)=\int_0^1|x(t)-y(t)|dt$, is not complete.
- c) Let (X,d) be a complete metric space and let $\{F_n\}$ be a decreasing sequence of non-empty closed subsets of X such that $d(F_n) \to 0$. Then prove that the intersection $\bigcap_{n=1}^{\infty} F_n$ contains exactly one point.

7. Answer any two of the following questions:

 $6\times2=12$

- a) Prove that a metric space is sequentially compact if and only if it has the Bolzano-Weierstrass Property.
- b) Let (X, d) be a metric space. Prove that X is totally bounded if and only if every sequence in X contains a Cauchy sequence.
- c) Show that a metric space (X, d) is compact if only if every collection of closed subsets of X having finite intersection property has non-empty intersection.
