## Exercice 1:

On considère la fonction f de degré 2 définie sur [-2;8], dont la représentation graphique  $\mathcal P$  dans un repère orthonormal est la portion de parabole ci-dessous.



1) Donner les valeurs de f(5) puis de f'(5).

$$f(5) = 4$$
;  $f'(5) = -1$ 

2) Déterminer par lecture graphique le coefficient directeur de la tangente à la parabole 𝒯 au point d'abscisse − 1.

3) Quel est le nombre dérivé de f en 3?

$$f'(3) = 0$$

4) Quel est le **signe** de f'(4)?

5) Tracer la droite  $\mathcal{D}$  d'équation y = 0.5x + 4.  $\mathcal{D}$  est-elle tangente à  $\mathcal{P}$ ?...N.0.N.....

## Exercice 2:

Soit f une fonction définie et dérivable sur [-2; 2], représentée ci-dessous.  $\mathcal{T}_1$  est la tangente à  $\mathcal{C}_f$  en l'origine.

- 1) Que valent f(0) et f'(0)?
- 2) En quelle(s) valeur(s) le nombre dérivé de la fonction est-il nul?
- 3) Sur quel(s) intervalle(s) le nombre dérivé de la fonction est-il négatif?
- 4) Sur quel(s) intervalle(s) le nombre dérivé de la fonction est-il positif?
- 5) Quel est le lien entre le nombre dérivé et les variations de f ?



1) 
$$f(0) = -2$$
;  $f'(0) = -2$ 

2) 
$$f'(x) = 0$$
 pour  $x = 1$ 

5) Si 
$$f'(x)>0 = 7$$
 f croissante  
Si  $f'(x) \perp 0 = 7$  f décroissante  
Si  $f'(x)=0 = 7$  f constante

## Exercice 3:

Soit f une fonction définie et dérivable sur  $[-2\,;\,2]$ , représentée ci-dessous.  $\mathcal{T}_0$  est la tangente à  $\mathcal{C}_f$  en l'origine.

- 1) Que valent f(0) et f'(0)?
- 2) En quelle(s) valeur(s) le nombre dérivé de la fonction est-il nul?
- 3) Sur quel(s) intervalle(s) le nombre dérivé de la fonction est-il négatif?
- 4) Sur quel(s) intervalle(s) le nombre dérivé de la fonction est-il positif?
- 5) Quel est le lien entre le nombre dérivé et les variations de f ?



2) 
$$f'(x) = 0$$
 pour  $x = -1$  et  $x = 1$ 

$$SI f'(x) = 0 = ) f constante$$