চিহ্নযুক্ত সংখ্যা

লেকচার-৭

চিহ্নযুক্ত সংখ্যা

লেকচার-৭

এই পাঠ শেষে যা যা শিখতে পারবে-

- ১। চিহ্নযুক্ত সংখ্যার ধারণা ব্যাখ্যা করতে পারবে।
- ২। চিহ্নযুক্ত সংখ্যা কম্পিউটার সিস্টেমে উপস্থাপনের বিভিন্ন পদ্ধতি ব্যাখ্যা করতে পারবে।
- ৩। রেজিস্টারের প্রাথমিক ধারণা ব্যাখ্যা করতে পারবে।

৪। ২ এর পরিপূরক পদ্ধতিতে চিহ্নযুক্ত সংখ্যার যোগ-বিয়োগ করতে পারবে।

বিভিন্ন গাণিতিক সমস্যা সমাধানের ক্ষেত্রে ধনাত্মক ও ঋণাত্মক সংখ্যা ব্যবহার করা হয়। সংখ্যাটি ধনাত্মক নাকি ঋণাত্মক তা বুঝানোর জন্য সাধারণত সংখ্যার পূর্বে চিহ্ন (+ অথবা -) ব্যবহৃত হয়। অর্থাৎ যখন কোন সংখ্যার পূর্বে ধনাত্মক(+) বা ঋণাত্মক(-) চিহ্ন থাকে তখন সেই সংখ্যাকে চিহ্নযুক্ত সংখ্যা বা সাইনড নম্বর বলা হয়।

বাইনারি পদ্ধতিতে চিহ্নযুক্ত সংখ্যা উপস্থাপনের জন্য প্রকৃত মানের পূর্বে একটি অতিরিক্ত বিট যোগ করা হয়। এ অতিরিক্ত বিটকে চিহ্ন বিট বলে। চিহ্ন বিট ০ হলে সংখ্যাটি ধনাত্মক এবং চিহ্নবিট ১ হলে সংখ্যাটিকে ঋণাত্মক ধরা হয়।

চিহ্নযুক্ত সংখ্যার উপস্থাপনাঃ কম্পিউটার সিস্টেমে ঋণাত্মক(-) চিহ্ন যুক্ত সংখ্যা বা ঋণাত্মক সংখ্যা উপস্থাপনার জন্য তিনটি পদ্ধতি আছে। যথাঃ

- প্রকৃত মান গঠন (Signed magnitude form)
- ১ এর পরিপূরক গঠন (1's Complement form)

• ২ এর পরিপূরক গঠন (2's Complement form)

এক্ষেত্রে তিনটি পদ্ধতিতেই ধনাত্মক সংখ্যার উপস্থাপনা একই। অর্থাৎ ধনাত্মক সংখ্যার ক্ষেত্রে চিহ্ন বিট ছাড়া বাকি অংশটি সংখ্যার মান জ্ঞাপন করে। তবে ঋণাত্মক সংখ্যার ক্ষেত্রে উপস্থাপনা ভিন্ন ভিন্ন হয়।

উপরিউক্ত তিনটি পদ্ধতিতে চিহ্ন যুক্ত সংখ্যা উপস্থাপনার জন্য রেজিস্টার সম্পর্কে প্রাথমিক ধারণা থাকতে হবে। রেজিস্টার হলো একগুচ্ছ ফ্লিপ-ফ্লপ এবং গেইটের সমন্বয়ে গঠিত সার্কিট যা অস্থায়ী মেমোরি হিসেবে কাজ করে। এর প্রত্যেকটি ফ্লিপ-ফ্লপ একটি করে বাইনারি বিট সংরক্ষণ করতে পারে। n বিটের একটি রেজিস্টার হ বিটের বাইনারি তথ্য ধারণ করতে পারে। অর্থাৎ ৮-বিট রেজিস্টার, ১৬- বিট রেজিস্টার, ৩২-বিট রেজিস্টার ইত্যাদি যথাক্রমে ৮, ১৬, ৩২ বিট তথ্য ধারণ করতে পারে। এই অধ্যায়ের শেষের দিকে রেজিস্টার সম্পর্কে বিস্তারিত আলোচনা করা হয়েছে।

৮-বিট রেজিস্টারের ক্ষেত্রে সর্বভানের ৭-বিট হল ডেটা বিট এবং সর্ব বামের বিটটি চিহ্ন বিট। একইভাবে ১৬-বিট রেজিস্টারের ক্ষেত্রে সর্বভানের ১৫-বিট হল ডেটা বিট এবং সর্ব বামের বিটটি চিহ্ন বিট। অর্থাৎ হ-নরঃ রেজিস্টারের ক্ষেত্রে সর্বভানের হ-১ বিট হল ডেটা বিট এবং সর্ব বামের বিটটি চিহ্ন বিট হিসেবে ব্যবহৃত হয়। কখন কত বিট রেজিস্টার ব্যবহার করতে হবে তা নির্ভর করে প্রদত্ত সংখ্যার উপর। যদি একটি সংখ্যার ডেটা বিট ৭ বিটের বেশি হয় তখন ১৬ রেজিস্টার ব্যবহার করতে হবে এবং ডেটা বিট ১৫ বিটের বেশি হলে ৩২ রেজিস্টার ব্যবহার করতে হবে।

প্রকৃত মান গঠন (Signed magnitude form)

প্রকৃত মান গঠন প্রক্রিয়ায় কোন ধনাত্মক ও ঋণাত্মক সংখ্যা ৮-বিট রেজিস্টারে উপস্থাপনের ক্ষেত্রে রেজিস্টারের সর্বডানের ৭-বিট ডেটা বিট এবং সর্ব বামের বিটটি চিহ্ন বিট হিসেবে ব্যবহৃত হয়। এক্ষেত্রে ধনাত্মক চিহ্নের জন্য চিহ্ন বিট ০ এবং ঋণাত্মক চিহ্নের জন্য চিহ্ন বিট ১। এই প্রক্রিয়ায় +০ এবং -০ এর ভিন্ন ভিন্ন মান পাওয়া যায় যা বাস্তবের সাথে অসামঞ্জস্যপূর্ণ। প্রকৃত মান গঠন সহজ হলেও এর জন্য জটিল বর্তনীর প্রয়োজন হয়।

প্রকৃত মান গঠন প্রক্রিয়ায় +৫ এবং -৫ কে ৮-বিট রেজিস্টারে উপছাপনঃ

এক্ষেত্রে ডেটা বিট ৭-বিটের কম হলে বাকিগুলো ০ দারা পূর্ন করতে হবে।

+5	0	0	0	0	0	1	0	1
Si	gn B	it		Data	Bit			
-5	1	0	0	0	0	1	0	1

যেহেতু ৮-বিট রেজিস্টার ব্যবহৃত হয়েছে, তাই ডেটা বিট ৭-বিট। কিন্তু ৫ এর ডেটা বিট ১০১ তিন বিট। তা বাকি গুলো ০ দ্বারা পূর্ন করা হয়েছে।

১ এর পরিপূরক গঠন কী? (1's Complement form)

কোন বাইনারি সংখ্যার প্রতিটি বিটকে পূরক করে বা উল্টিয়ে যে সংখ্যা পাওয়া যায় তাকে ১ এর পরিপূরক বলা হয়। এই প্রক্রিয়ায় ধনাত্মক সংখ্যার উপস্থাপন প্রকৃত মান গঠনের মতই। অর্থাৎ ধনাত্মক চিহ্নযুক্ত সংখ্যার ক্ষেত্রে ধনাত্মক চিহ্নের জন্য চিহ্ন বিট ০ এবং বাকি ৭-বিট ব্যবহৃত হয় ডেটা বিটের জন্য। ঋণাত্মক চিহ্নযুক্ত সংখ্যার মান নির্ণয়ের জন্য ধনাত্মক চিহ্নযুক্ত সংখ্যার মান নির্ণয়ের জন্য ধনাত্মক চিহ্নযুক্ত সংখ্যার মান নির্ণয় করতে হয়। তারপর চিহ্ন-বিট সহ সবগুলো বিটকে উল্টিয়ে(অর্থাৎ ০ থাকলে ১ এবং ১ থাকলে ০ হয়) ঋণাত্মক চিহ্নযুক্ত সংখ্যার মান নির্ণয় করা হয়। এই প্রক্রিয়াতেও +০ এবং -০ এর ভিন্ন ভিন্ন মান পাওয়া যায় যা বাস্তবের সাথে অসামঞ্জস্যপূর্ণ।

১ এর পরিপূরক গঠন প্রক্রিয়ায় +৫ এবং -৫ কে ৮-বিট রেজিস্টারে উপছাপনঃ

এক্ষেত্রেও ডেটা বিট ৭-বিটের কম হলে বাকিগুলো ০ দ্বারা পূর্ন করতে হবে।

+5	0	0	0	0	0	1	0	1
S	ign B							
-5	1	1	1	1	1	0	1	0

২ এর পরিপূরক গঠন কী? (2's Complement form)

কোন বাইনারি সংখ্যার ১ এর পরিপূরকের সাথে বাইনারি ১ যোগ করলে যে সংখ্যা পাওয়া যায় তাকে ২ এর পরিপূরক বলা হয়।এই প্রক্রিয়াতেও ধনাত্মক সংখ্যার উপস্থাপন প্রকৃত মান গঠনের মতই। অর্থাৎ ধনাত্মক চিহ্নুত্রক সংখ্যার ক্ষেত্রে ধনাত্মক চিহ্নের জন্য চিহ্ন বিট ০ এবং বাকি ৭-বিট ব্যবহৃত হয় ডেটা বিটের জন্য। ঋণাত্মক চিহ্নুত্রক সংখ্যার মান নির্ণয়ের জন্য প্রথমে সংখ্যাটির ধনাত্মক সংখ্যার মান নির্ণয় করতে হয়। তারপর ধনাত্মক সংখ্যার মানের ১ এর পরিপূরক করতে হয়। শেষে ১ এর পরিপূরকে প্রাপ্ত মানের সাথে বাইনারি ১ যোগ করতে হয়। ২ এর পরিপূরক গঠনে +০ এবং -০ এর মান একই যা বাস্তবের সাথে সামঞ্জস্যপূর্ণ। এই প্রক্রিয়ার বিভিন্ন সুবিধার কারণে ডিজিটাল ডিভাইসে ব্যপকভাবে ব্যবহৃত হচ্ছে।

২ এর পরিপূরক গঠন প্রক্রিয়ায় +৫ এবং -৫ কে ৮-বিট রেজিস্টারে উপস্থাপনঃ

এক্ষেত্রেও ডেটা বিট ৭-বিটের কম হলে বাকিগুলো ০ দ্বারা পূর্ন করতে হবে।

২ এর পরিপূরক গঠনের গুরুত্ব

- ১। প্রকৃত মান গঠন ও ১ এর পরিপূরক গঠনে +০ এবং
 -০ এর ভিন্ন ভিন্ন মান পাওয়া যায় যা বান্তবের সাথে
 অসামঞ্জস্যপূর্ণ। কিন্তু ২ এর পরিপূরক গঠনে +০ এবং
 -০ এর মান একই যা বান্তবের সাথে সামঞ্জস্যপূর্ণ।
- ২। ২ এর পরিপূরক গঠনে সরল বর্তনী প্রয়োজন যা দামে সম্ভা এবং দ্রুত গতিতে কাজ করে।
- ৩। ২ এর পরিপূরক গঠনে চিহ্ন যুক্ত সংখ্যা এবং চিহ্নবিহীন সংখ্যা যোগ করার জন্য একই বর্তনী ব্যবহার করা যায়।
- ৪। ২ এর পরিপূরক গঠনে যোগ ও বিয়োগের জন্য একই বর্তনী ব্যবহার করা যায়। তাই আধুনিক কম্পিউটারে ২ এর পরিপূরক গঠন ব্যবহৃত হয়।

২ এর পরিপূরক পদ্ধতিতে যোগ

- ১। প্রদত্ত চিহ্নযুক্ত সংখ্যা দুটির ২ এর পরিপূরক পদ্ধতিতে মান নির্নয় করতে হবে।
- ২। অতঃপর প্রাপ্ত মানের বাইনারি যোগ করতে হবে।
- ৩। যোগফলে অতিরিক্ত ক্যারি বিট (অর্থাৎ ৮ বিট রেজিস্টারের ক্ষেত্রে যোগফল ৮ বিটের বেশি হলে সর্ব বামের বিটটিকে ক্যারি বিট বলা হয়) থাকলে তা বাদ দিতে হবে।
- ৪। এভাবে প্রাপ্ত সংখ্যাটিই হবে প্রদত্ত সংখ্যা দুটির যোগফল।

উদাহরন-১ঃ ৮-বিট রেজিস্টারের জন্য -২৫ এবং +১২ এর যোগফল নির্ণয়।

+১২ = ০০০০১১০০

+২৫ = ০০০১১০০১

- ২৫ = ১১১০০১১০ (১ এর পরিপূরক)

- ২৫ = ১১১০০১১১ (২ এর পরিপূরক)

এখন,

+১২ = ০০০০১১০০

- ২৫ = ১১১০০১১১

-১৩ = ১১১১০০১১

যেহেতু চিহ্নবিট ১ তাই যোগফল ঋণাত্মক। একে পূনরায়

২ এর পরিপূরক করলে প্রকৃত ফলাফল পাওয়া যাবে।
সতরাং যোগফল = ১১১১০০১১

উদাহরন-২৪ ৮-বিট রেজিস্টারের জন্য +২৫ এবং -১২ এর যোগফল নির্ণয়।

উদাহরন-৩ঃ ৮-বিট রেজিস্টারের জন্য -২৫ এবং -১২ এর যোগফল নির্ণয়।

উদাহরন-৪ঃ ৮-বিট রেজিস্টারের জন্য +২৫ এবং +১২ এর যোগফল নির্ণয়।

যোগের মাধ্যমে পার্থক্য নির্ণয়

২ এর পরিপূরক পদ্ধতিতে বিয়োগঃ

- ১। প্রদত্ত চিহ্নযুক্ত সংখ্যা দুটির মধ্যে যে সংখ্যাটি বিয়োগ করতে হবে তার চিহ্ন পরিবর্তন করে তার ২ এর পরিপূরক পদ্ধতিতে মান নির্নয় করতে হবে(অর্থাৎ +৫ থাকলে -৫ এর মান অথবা -৫ থাকলে +৫ এর মান নির্নয় করতে হবে)।
- ২। অপর চিহ্নযুক্ত সংখ্যাটির ২ এর পরিপূরক পদ্ধতিতে মান নির্নয় করতে হবে।
- ৩। অতঃপর প্রাপ্ত মানের বাইনারি যোগ করতে হবে (বিয়োগের ক্ষেত্রেও যোগ করতে হয়)।
- 8। যোগফলে অতিরিক্ত ক্যারি বিট (অর্থাৎ ৮ বিট রেজিস্টারের ক্ষেত্রে যোগফল ৮ বিটের বেশি হলে সর্ব বামের বিটটিকে ক্যারি বিট বলা হয়) থাকলে তা বাদ দিতে হবে।
- ৫। এভাবে প্রাপ্ত সংখ্যাটিই হবে প্রদত্ত সংখ্যা দুটির
 বিয়োগফল।

উদাহরন-১ঃ ৮-বিট রেজিস্টারের জন্য -২৫ থেকে +১২ বিয়োগ কর।

+>@ = 00055005

- ২৫ = ১১১০০১১০ (১ এর পরিপূরক)

- ২৫ = ১১১০০১১১ (২ এর পরিপুরক)

+55 = 00005500

- ১২ = ১১১১০০১১ (১ এর পরিপূরক)

- ১২ = ১১১১০১০০ (২ এর পরিপুরক)

এখন,

-25 = 22220200

- <@ = 55500555

-09 = <u>5</u>55055055

অতিরিক্ত ক্যারি বিট বিবেচনা করা হয় না। সুতরাং বিয়োগফল =১১০১১০১১

যেহেতু চিহ্নবিট ১ তাই বিয়োগফল ঋণাত্মক। একে পূনরায় ২ এর পরিপূরক করলে প্রকৃত ফলাফল পাওয়া যাবে।

উদাহরন-২ঃ ৮-বিট রেজিস্টারের জন্য +২৫ থেকে -১২ বিয়োগ কর।

উদাহরন-৩ঃ ৮-বিট রেজিস্টারের জন্য -২৫ থেকে -১২ বিয়োগ কর।

উদাহরন-৪ঃ ৮-বিট রেজিস্টারের জন্য +২৫ থেকে +১২ বিয়োগ কর।

পাঠ মূল্যায়ন-

জ্ঞানমূলক প্রশ্নসমূহঃ

১। সাইনড নম্বর বা চিহ্নযুক্ত সংখ্যা কাকে বলে?

উত্তরঃ যখন কোন সংখ্যার পূর্বে ধনাত্মক(+) বা ঋণাত্মক(-) চিহ্ন থাকে তখন সেই সংখ্যাকে চিহ্নযুক্ত সংখ্যা বা সাইনড নম্বর বলা হয়।

২। চিহ্ন বা সাইন বিট কী?

উত্তরঃ বাইনারি পদ্ধতিতে চিহ্নযুক্ত সংখ্যা উপস্থাপনের জন্য প্রকৃত মানের পূর্বে অতিরিক্ত একটি বিট ব্যবহার করা হয়। এই অতিরিক্ত বিটকে চিহ্ন বিট বলে। চিহ্ন বিট ০ হলে সংখ্যাটি ধনাতাক এবং চিহ্নবিট ১ হলে সংখ্যাটিকে ঋণাতাক ধরা হয়।

৩। ১ এর পরিপূরক কী?

উত্তরঃ কোন বাইনারি সংখ্যার প্রতিটি বিটকে পূরক করে যে সংখ্যা পাওয়া যায় তাকে ১ এর পরিপূরক বলা হয়।

৪। ২ এর পরিপূরক কী?

উত্তরঃ কোন বাইনারি সংখ্যার ১ এর পরিপূরকের সাথে ১ যোগ করলে যে সংখ্যা পাওয়া যায় তাকে ২ এর পরিপূরক বলা হয়।

অনুধাবনমূলক প্রশ্নসমূহঃ

- 🕽 । চিহ্নযুক্ত সংখ্যা বলতে কি বুঝ? ব্যাখ্যা কর।
- ২। ২-এর পরিপূরক কেন গুরুত্বপূর্ণ? ব্যাখ্যা কর।
- ৩। বিয়োগের কাজ যোগের মাধ্যমে সম্ভব ব্যাখ্যা কর।

সৃজনশীল প্রশ্নসমূহঃ

উদ্দীপকটি পড় এবং প্রশ্নের উত্তর দাওঃ

আইসিটি শিক্ষক সংখ্যা পদ্ধতি পড়াচ্ছিলেন। এক ছাত্রকে রোল জিজ্ঞাস করায় সে $(375)_{10}$ উত্তর দিল। শিক্ষক ৮টি মৌলিক চিহ্ন বিশিষ্ট সংখ্যা পদ্ধতিতে রূপান্তর করে দেখালেন। ছাত্রটির গত বছরের রোল নম্বর $(17C)_{16}$ জানতে পেরে শিক্ষক তার শেষ পরীক্ষার ফলাফল ভালো হয়েছে মন্তব্য করলেন।

- গ) শিক্ষকের প্রদর্শিত পদ্ধতিতে বর্তমান রোল নম্বরটি রূপান্তর কর।
- ঘ) যোগের মাধ্যমে রোল নম্বরদ্বয়ের পার্থক্য নির্ণয় করে শিক্ষকের মন্তব্য মূল্যায়ন কর।

উদ্দীপক অনুসারে প্রশ্নের উত্তর দাওঃ

আইসিটি ক্লাসে বিভিন্ন সংখ্যা পদ্ধতি এবং এদের পারক্ষারিক রূপান্তর সম্পর্কে পড়াচ্ছিলেন। উদাহরণম্বরূপ (৭৬) এবং (৪৮) সংখ্যা দুটিকে বাইনারীতে রূপান্তর করে দেখালেন। অতঃপর তিনি এমন একটি পদ্ধতি ব্যাখ্যা করলেন যেটি ব্যবহার করে একই সার্কিট এর মাধ্যমে যোগ ও বিয়োগের কাজ করা যায়। পরবর্তীতে তিনি বিভিন্ন কোড সম্পর্কে আলোচনা করতে গিয়ে একটি কোডের কথা উল্লেখ করলেন যেটি ব্যবহার করে বর্তমানে যেকোন ভাষাকে কম্পিউটারে ইনপুট দেয়া যায়।

ঘ) উদ্দীপকে উল্লিখিত পদ্ধতি ব্যবহার করে ১ম সংখ্যা থেকে ২য় সংখ্যা বিয়োগ কর এবং পদ্ধতিটির গুরুত্ব বিশ্লেষণ কর।

উদ্দীপক অনুসারে প্রশ্নের উত্তর দাওঃ

লিমা তার আইসিটি স্যারের কাছে $(72)_8$ ও $(3D)_{16}$ সংখ্যা দুটির যোগফল জানতে চাইল। স্যার লিমাকে যোগফল দেখালো এবং বলল কম্পিউটারের অভ্যন্তরে সমস্ত কর্মকাণ্ড একটি মাত্র অপারেশনের মাধ্যমে হয়। যোগের ক্ষেত্রে এক ধরনের সার্কিট ও ব্যবহৃত হয়।

ঘ) স্যার যে অপারেশনের ইঙ্গিত দিয়েছেন তার সাহায্যে উদ্দীপকের সংখ্যা দুটি বিয়োগ কর ।

উদ্দীপক অনুসারে প্রশ্নের উত্তর দাওঃ

রাসেল (৩৬০০), টাকায় (৩২০), টি পেন্সিল ক্রয় করল। তার মধ্যে (২৫৭), টি পেন্সিল তার ছোট ভাই পাভেলকে দিয়ে দিল।

ঘ) পাভেলকে দেওয়ার পর কতটি পেন্সিল রইল তা শুধুমাত্র যোগের মাধ্যমে বের কর।

বহুনিবাচনি প্রশ্নসমূহঃ

- ১। নিচের কোন পরিপূরক পদ্ধতিটি কম্পিউটারে ব্যবহৃত হয়?
- ক) ১ এর পরিপূরক খ) ২ এর পরিপূরক
- গ) ১০ এর পরিপুরক ঘ) ৯ এর পরিপুরক

- ২। ২ এর পরিপূরক নির্ণয়ের সুত্র কোনটি?
- ক) ১ এর পরিপূরক + ১
- খ) ১ এর পরিপূরক ১
- গ) ১ এর পরিপূরক + সংখ্যাটির সমকক্ষ বাইনারি
- ঘ) ১ এর পরিপূরক + ১০
- ৩। দশমিক সংখ্যা ১২ এর ২ এর পরিপূরক কত?
- oo**८८**००० (क
- খ) ১১১১১১০০
- গ) ১১১১০০১১
- ঘ) ১১১১০১০০