LaPIS Diagnostic Test Workbook - Mathematics

Name : Shanthini Sriya

Class: 7

Section : C

School : AKV Public School

Login ID : AKV195

Shanthini Sriya's Performance Report

Score: 18/40 Percentage: 45.0%

Shanthini Sriya's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sig
		Teacher's Fe	edback to Student		
	Class Teacher S			ipal Signature	

Basic arithmetic

	Topics to be Improved
Types of angles	Identification of types of angles

Hi, here in this video you will learn Types of Angles

Question: 1

Find the angles.

Answer:

The angle ranges from $__$ ° to $__$ °.

The angle perpendicular to 0° is $___{\circ}$.

The straight line measures $__$ °.

Question: 2

The angle formed between the directions

(i) West and East is _____ angle.

(ii) North and East is angle.
(iii) East and South is angle.
Answer:
The angle formed between West and East is° and it is called angle.
The angle formed between North and East is° and it is called angle.
The angle formed between East and South is° and it is called angle.
$Question: \ 3$
The addition of straight angle and right angle is angle.
Answer:
The measurement of straight angle is°
The measurement of right angle is°.
Straight angle + Right angle = + =
It is called as angle.

Data handling

Topics to be Improved	
Arithmetic mean, mode and median	Mean, Median and Mode
Chance of probability	Sample space in probability, Basis of probability
Range	Finding the range

Hi, here in this video you will learn Mean, Median, Mode

Question: 4	
-------------	--

Find the mode of the following data: 5, 15, 23, 5, 32, 44, 72, 55, 6, 3, 5, 65, 45, 67, 24, 19 and 98.

Answer:

Mode is the number that occurs	(frequently / rarely) in a given list of observations.
Arranging the data in ascending order:	
occurs most number of times.	Γhen, mode of the given data is

Which shape contains median of the given data 3, 5, 6, 2, 7, 9, 6, 4 and 1

Answer:

Median is the ______(first/central/last) value of a data when the data is arranged in ascending or descending order.

Arrange the given data in ascending order: ______ and it is the ______ of a data.

 $\underline{Question: \ 6}$

Marks scored	100	90	80	70
Number of students	$oxed{4}$	5	2	1

$Mean = \underline{\hspace{1cm}} , Median = \underline{\hspace{1cm}} and Mode = \underline{\hspace{1cm}} .$
Answer:
$Mean = \frac{\text{of all observation}}{\text{number of observation}}.$
Here s sum of all observation =, number of observation = Therefore, mean = Arrange the data in ascending order : Here, median =, mode =
Hi, here in this video you will learn Basics of probability Question: 7
Which of the following contains list of all possible outcomes.
Probability Sample space Sure events Impossible events
$\underline{Answer:}$
Probability is the measure of (chance /number) of an events happenings. Sample space consists of (possible/ impossible) outcomes. Sure events always (occurs/don't occurs).

 $Question:\ 8$

Write the possible outcomes while spinning the given wheel.

Impossible events _____ (occurs/don't occurs).
Therefore, ____ contains list of possible outcomes.

.....

Outcomes are (possible/impossible) results of an experiment. The possible outcomes while spinning wheel are ₹0, ₹10,
Question: 9
A bag contains three balss of colour blue, green and red. Write the possible outcomes if two balls are taken out.
Answer:
A bag contains, and balls. If one of the ball is blue in colour, then other ball can be or If one of the ball is green in colour, then other ball can be or
Therefore, if two balls are taken out then possible outcomes are blue +, ,,
Hi, here in this video you will learn Range
Question: 10
Range of the data =
Answer:
The difference between highest value and lowest value is Example: Find the range of 10, 5, 30, 23, 54, 39 and 16 Highest value = , Lowest value = Range = =
Question: 11
Circle the correct range for the following data 31, -20, 35, -38, 29, 0, 43, -25, 51, 14, 9
$-20+51$ $\frac{-38-51}{2}$ $51+38$ $\frac{51+20}{2}$
Answer: Range =
Question: 12 Find the range of first 10 multiple of 5.
Answer: First 10 multiple of 5 = Therefore, Highest value = , Lowest value = , Range = – =

Hi, here in this video you will learn Basics of probability
Question: 13
Identify the sure events and impossible events
(i) The sun rises in the west.
(ii) Water is colourless.
(iii) Clock rotates in clock wise direction.
(iv) Ball is square in shape.
Answer:
Events that always occur are called (sure/ impossible) events. Events that cannot occur are called (sure/ impossible) events. Here, The sun rises in the west is event. Water is colourless is event. Clock rotates in clock wise direction is event. Ball is square in shape is event.
<u>Question: 14</u>
Probability of sure events is (greater / smaller) than probability of impossible events.
Answer:
Probability of sure event = $\underline{\hspace{1cm}}$ (0/ 1/ any number). Probability of impossible event = $\underline{\hspace{1cm}}$ (0/ 1/ any number). Therefore, Probability of sure event $\underline{\hspace{1cm}}$ Probability of impossible event.
Question: 15
Raju has pencil, an eraser, a scale, sharpener, colour pencil and protractor in his box. What is the probability of getting a pen from his box.
Answer:
Things Raju have Does Raju have pen in his box, (Yes/ No). Then probability of getting pen from his box is (0/1)

Geometry

Topics to be Improved		
Right angle triangle and pythagoras property	Basics of Pythagoras property	
Related angles	Basic of angles, Complementary angles	
Sum of lengths of two sides of a triangle	Sum of two sides of a triangle	
Faces vertex and edges	Idenfication of faces, edges and vertices	
Lines of symmetry for regular polygons	Identification of lines of symmetry	

Hi, here in this video you will learn Pythagoras property

Question: 16

In a right angled triangle, square of the _____ = sum of the squares of the legs.

Answer:

Pythagoras theorem is only applicable for ______ triangle.

Longest side of the triangle is _____ (hypotenuse/ legs) and other two sides are called _____ (hypotenuse/ legs).

Pythagoras theorem states that _____ .

Question: 17

Find the hypotenuse of the triangle ABC if base is 12 m and altitude is 5 m.

Answer:

Pythagoras theorem states that square of the _____ = sum of the squares of its

 $Given: Base = \underline{\hspace{1cm}}, Altitude = \underline{\hspace{1cm}},$

Base and altitude are _____ (hypotenuse/ legs) of the triangle.

Therefore, hypotenuse of the triangle is _____.

Question: 18

Find the length of the rectangle, if breadth is 3 cm and diagonal is 5 cm.

Answer:

Pythagoras theorem states that square on the _____ = sum of the squares on

Is Pythagoras theorem applicable in rectangle? ____ (yes/ no).

Given: breadth = _____, length of diagonal = _____

By Pythagoras theorem,
$$(____)^2 = (____)^2 + (____)^2$$

Therefore, diagonal of the rectangle is _____

Hi, here in this video you will learn Related Angles

Question: 19

- (i) When two rays of an angle are perpendicular, then the angle formed between them is a _____ angle .
- (ii) When two rays of an angle are in opposite sides, then the angle formed between them is a _____ angle .

 $\underline{Answer:}$

A _____ (line segment /ray) begins from one point and travels endlessly in a direction.

(i) The angle formed between two perpendicular rays is ____° and it is called _____ angle.

(ii) If two rays starting at same point moves in opposite direction, they form a _____ (straight / perpendicular) line. The measure of the angle formed is ____ °and it is called ____ angles.

Question: 20

Find the angle of $\angle DBE$

Answer:

BA and BC are _____ (parallel / perpendicular) rays. The angle formed between this rays is ____, $\angle ABC$ = ____.

$$\angle ABC = \angle ABE + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= 30^{\circ} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= \underline{\hspace{1cm}}$$
 Therefore,
$$\angle DBE = \underline{\hspace{1cm}}$$

$Question:\ 21$

Find the complementary angles in the given diagram.

Answer:

Two angles are said be complementary if sum of their angles is equal to _____.

$$\angle AOB = \underline{\hspace{1cm}}$$
, and its complement angle is $\underline{\hspace{1cm}}$.

$$\angle BOC =$$
 _____, and its complement angle is _____.

$$\angle COD = \underline{\hspace{1cm}}$$
, and its complement angle is $\underline{\hspace{1cm}}$.

Hi, here in this video you will learn Related Angles	
$Question: \ 22$	
1. Two angles are complementary if their sum is equal to	
2. Two angles are supplementary if their sum is equal to	
$\underline{Answer:}$	
1. When sum of the two angles is equal to 90°, they are called as Example: 45° and 45°,, and	angle.
2. When sum of the two angles is equal to 180°, they are called as Example : 90° and 90°,, and	angle.
Question:~23	
Shade the complementary angles.	
85°, 95°	90°, 90°

Two angles are said be complementary if the sum of their angles are equal to $_$

 $85^{\circ}+95^{\circ}=$ _____ and this is _____ (a / not a) complementary angles. $45^{\circ} + 45^{\circ} =$ and this is _____ angles. $6^{\circ} + 84^{\circ} =$ and this is _____ angles. $73^{\circ} + 107^{\circ} =$ and this is angles. $36^{\circ} + 64^{\circ} =$ and this is _____ angles. $90^{\circ} + 90^{\circ} =$ _____ and this is ____ angles.

Question: 24

Find the complement and supplement of 15° and 90°

Answer:

......

One angle is ______ (complements / supplements) to other angle, when sum of the two angles is equal to 90° .

One angle is _____ (complements / supplements) to other angle, when sum of the two angles is equal to 180° .

Complement of $15^{\circ} = \underline{\hspace{1cm}}$, Supplement of $15^{\circ} = \underline{\hspace{1cm}}$. Complement of $90^{\circ} = \underline{\hspace{1cm}}$. Supplement of $90^{\circ} = \underline{\hspace{1cm}}$

Hi, here in this video you will learn Sum of the length of sides of the triangle

Question: 25

Find the greatest distance to reach C from A in the given diagram.

.....

Answer:

The sides of the given triangle are _____.

The possible way to reach point C from point A are _____ and AB then to

 $\overline{\text{Side AC}} = \underline{\hspace{1cm}}$

Side AB + BC = _____ + ___ = ____

Therefore, the greatest distance to reach C from A in the given diagram is ______.

Question: 26

_____ (Sum of / Difference between) the length of any two sides of a triangle is smaller than the length of the third side.

......

 $\underline{Answer:}$

There are ______ sides in a triangle.

The sum of the two sides of a triangle is _____ than the other side of the triangle.

The difference of the two sides of a triangle is _____ than the other side of the triangle.

Example: In triangle XYZ,

Question: 27

The lengths of two sides of a triangle are 7 cm and 10 cm. Between which two numbers can length of the third side fall?

Answer:

- 1. The sum of the two sides of a triangle is ______ than the third side of the triangle. Therefore, the third side should be _____ (less/ greater) than sum of other two sides. Here, sum of the two sides = ____ + ___ = ___ Therefore, the length of the third side is less than _____
- 2. The difference of the two sides of a triangle is ______ than the third side of the triangle.

 Therefore, the third side should be _____ (less/ greater) than sum of other two sides.

 Here, difference of the two sides = _____ = ___ = ____

 Therefore, the length of the third side is greater than _____

Therefore, length of the third side is greater than ______ but less than _____

Hi, here in this video you will learn Basics of 3D model

Question: 28

A point at which two or more lines segments meet is called _____(Vertex/ edges/ faces).

Answer:

has two end point (line/line segment/ray).

A ______ is a point where two or more line segments meet(Vertex/ edges/ faces).

Mark the vertices in the diagram,

Question: 29					 	
Mark and find the	number of vertice	es, edges and	faces in a	cube.		

$\underline{Answer:}$

Mark the vertex, edges and faces in a cube.

Count the number Cube have	, ,			
Question: 30		 	 	

How many vertices, edges and faces does dices have?

Answer:			
The shape of d	ice is		
Dices have	vertices,	$_$ edges and $_$	faces.

Hi, here in this vi	deo you will learn S y	ymmerty	
Question: 31			——————————————————————————————————————
Line of symmetry is didentical) halves.	ivides any shape into	(one / two)	(identical / non
Answer:			
Symmetrical image ha	a line that divides any shave (identified metry is dividing the shave)	tical / non identical) p	
Question: 32			
How many lines of syn	nmetry does square have	?	
Answer:			
Square have	sides.		
*	and all	angles are	
	Mark the line	es of symmetry.	
Therefore, square has	lines of symmetr	ry.	
Question: 33			
v	based on the symmetry. calene triangle, Letter K	, Rhombus, Number 8,	and circle .
$\underline{Answer:}$			
The letter S is			_ (equal / unequal) halves. ve lines of
symmetry. Scalene triangle is symmetry.	(symmetrica	l / asymmetrical) and	havelines of
v	(symmetrical /	asymmetrical) and ha	ve lines of
č č	(symmetrical / asy	mmetrical) and have $_{-}$	lines of
			lines of symmetry. lines of symmetry.

Number system

Topics to be Improved				
Properties of integers	Associative property			
Fractions	Division of fraction, Multiplication of fractions			
Positive and negative rational numbers	Identification of positive rational numbers			
Operations on rational numbers	Division of rational numbers			

Hi,	here	in	this	video	you	will	learn	Pro	perties	of	integers
,			0	0_ 0	.,				P 0- 0-00		

Question: 34

Match the following based on the properties of integers

i	Closure
ii	Associative
iii	Commutative
iv	Identity

a	(5+7)+3=3+(7+5)
b	21 + 0 = 21
c	15 + 17 = 32
d	1 + 99 = 99 + 1

.....

Answer:

(i) Closure property:

The sum of integers is always _____(integer / not a integer).

Therefore, _____ + ____ = ____

From the given option _____ satisfies the closure property.

(ii) Associative property:

Rearranging the parentheses (brackets) $____$ (does not/ does) change the sum.

Therefore, $(a + b) + c = \underline{\hspace{1cm}}$

From the given option ______ satisfies the Associative property.

(iii) Commutative property:

Changing the order of the addends _____ (does not/ does) change the sum.

Therefore, $a + b = \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$

From the given option ______ satisfies the Commutative property.

(iv) Identity property: The sum of _____ and any number always returns same number.

Therefore, $a + \underline{\hspace{1cm}} = a$

From the given option ______ satisfies the Identity property.

Question: 35

Mark the operations in which commutative property holds true for any two integers.

Addition

Subtraction

Multiplication

.....

Division

Answer:

In commutative property, changing the ______ (order/ brackets) of the operands _____ (does not/ does) change the result.

For any two integers, commutative property holds true for _____.

The commutative property for addition is _____.

The commutative property for multiplication is _____.

Question: 36

Are additive identity and multiplicative identity the same? (Yes or No)

Answer:

Identity property holds only for ______, ____ and additive identity is _____.

The Identity property for addition is ______ and additive identity is _____.

The Identity property for multiplication is ______ and multiplicative identity is _____.

Therefore, additive identity is _____ (equal / not equal) to multiplicative identity.

Hi, here in this video you will learn Division on fractions

Question: 37

Find the shape which contains the improper fraction of $5\frac{2}{7}$.

Answer:

 $5\frac{2}{7}$ is a _____ (proper/mixed) fraction. Here, 5 is _____ , 2 is _____ and 7 is _____.

To convert mixed fraction into improper fraction, $\frac{\text{(Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}}$

$$5\frac{2}{7} = \frac{(--- \times ---) + ---- }{7} = \frac{\square}{\square}$$

Question: 38

Solve: $\frac{1}{3} \div \frac{14}{3}$

Answer:

To divide a fraction by another fraction, multiply the dividend by $___$ (same / reciprocal) of the divisor. Here, dividend = $___$ and divisor = $___$.

$$\frac{1}{3} \div \frac{14}{3} = \frac{1}{3} \times \boxed{ } = \boxed{ }$$

.....

Question: 39

Find the half of the fraction $\frac{12}{40}$.

Answer:

To find half of a number, divide the number by _____

$$\frac{12}{40} \div \underline{} = \frac{12}{40} \times \underline{} = \underline{}$$

Then the answer is _____

Hi, here in this video you will learn **Positive and Negative rational numbers**

Question: 40

Segregate positive and negative rational number.

Answer:

(positive/negative), then it is positive rational number.
• If either the numerator and the denominator of a rational number are negative, then it is (positive/negative) rational number.
In the given circle, positive rational numbers are and negative rational numbers are
Question: 41
$\frac{-3}{-4}$ is a (positive /negative / neither positive nor negative) rational number.
Answer:
-3 is a number, -4 is a number.
Division of $\frac{-3}{-4} = \square$ and this rational number.
(Positive / Negative / Neither positive nor negative rational number)
Question: 42
The product of a positive rational number and a negative rational number isrational number. (Positive/ Negative/ neither positive nor negative)
Answer:
Examples for positive rational numbers: Examples for negative rational numbers: Positive rational number × Negative rational number = × = and this is rational number
Hi, here in this video you will learn Operation on rational numbers
Question: 43
Fill in the boxes to make the given expression correct.
$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \frac{\square}{\square}$
Answer:
When any fraction is divided by a fraction, we multiply the dividend by the (same/reciprocal) of the divisor.
Here, dividend = and divisor =
$\frac{1}{5} \div \frac{14}{15} = \frac{1}{\square} \times \square = \square$

Question: 44
Solve: $\frac{18}{7} \div 0.6$
$\underline{Answer:}$
Fraction form of $0.6 = \underline{\hspace{1cm}}$, when any fraction is divided by a fraction, we multiply the dividend by the $\underline{\hspace{1cm}}$ (same/reciprocal) of the divisor. Here, dividend $= \underline{\hspace{1cm}}$ and divisor $= \underline{\hspace{1cm}}$.
$\frac{18}{7} \div \boxed{\square} = \frac{18}{7} \times \boxed{\square} = \boxed{\square}$
Question: 45 Find the missing number in the expression $\frac{8}{3} \div \frac{16}{\square} = 2$
Answer:
$\frac{8}{3} \div \frac{16}{\square} = 2$
$\frac{8}{3} \times \frac{\square}{16} = 2$
Transposing 8/3 to RHS,
$\frac{\square}{16} = 2 \square \frac{8}{3}$
$\frac{\square}{16} = 2 \times \boxed{\square}$

Transposing 16 to other side, the result is $___$.

 Hi , here in this video you will learn $\operatorname{\mathbf{Multiplication}}$ on $\operatorname{\mathbf{fractions}}$

Question: 46

Fill the boxes

$$2 + 4 + \frac{6}{2} = \frac{2}{\Box} + \frac{4}{\Box} + \frac{3}{\Box} = \frac{\Box}{\Box} = 9$$

Answer:

The whole number can be expressed in fraction with denominator equal to _____ (zero/one). Therefore, 2 can be written as _____ in fraction.

4 can be written as _____ in fraction.

$$2 + 4 + \frac{6}{2} = \frac{2}{1} + \frac{4}{\square} + \dots = \frac{2}{1} + \frac{4}{\square} + \frac{3}{\square} = \frac{\square}{\square} = 9$$

..... Question: 47

There are 400 students in a school. Find the number of girls, if three sixteenth of the students are girls.

Answer:

Total number of students = _____

Fraction of students who are girls = _____

Number of girls = \times = = =

Question: 48

Solve: $2\frac{7}{4} \times \frac{2}{3}$

Answer:

 $2\frac{7}{4}$ is a _____ (proper / mixed) fraction. Here, 2 is ____, 7 is ____ and 4 is ____.

To convert mixed fraction into improper fraction, $\frac{\text{(Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}}$ Improper fraction of $2\frac{7}{4} = \underline{\hspace{1cm}}$

$$2\frac{7}{4} \times \frac{2}{3} = \boxed{\qquad} \times \frac{2}{3} = \boxed{\qquad}$$

Comparing Quantities

Topics to be Improved		
Simple interest Calculation of simple interest		
Equivalent ratios Basic of proportion		

Hi, here in this video you will learn **Simple Interest**

Question: 49

Match the following.

Column A		
i	Principle(P)	
ii	Amount (A)	
iii	Rate (R)	
iv	Time period (T)	

Column B				
a	Interest calculated based on this			
b	Total sum you borrow			
С	Number of years			
d	Total sum with interest			

Answer:
Formula for calculating simple interest = Interest calculated based on Total sum you borrow is known as Number of years is Total sum with interest is
Question: 50
Sara deposited Rs.1200 in a bank. After three years, she received Rs.1320. Find the interest she earned.
Answer:
Given: Amount =, Principle =, Time period = If Amount and principle is given, then formula for calculating interest is Interest = =
Question: 51
The simple interest on Rs.5000 for 3 years is Rs.1350. Find the rate of interest.
Answer:
$Interest = \underline{\hspace{1cm}}, \ Time \ period = \underline{\hspace{1cm}}, \ Principal = \underline{\hspace{1cm}}.$

D . C.	$=\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$						
Rate of interest	= Principal x	-					
Substituting value	s in the formula,						
-	= <u>x 100</u>						
Rate of interest	= ————————————————————————————————————						
Rate of interest =							
Therefore, the rate	e of interest is	%					
Hi, here in thi	s video you will le	earn Basics	of pro	portic	n		
Question: 52							
If a:b and c:d are	equivalent ratio, then	it can be exp	ressed as		-		
$\underline{Answer:}$							
(rtion / ratio) is used t express proportion is	-	(on	e/two) e	equivale	ent ratios.	
Question: 53							
	haded part to unshad						
	A						
				В			
$\underline{Answer:}$							
	•			form =			
Fractional form =	o unshaded parts of B ————————————————(equal/ not		action for	m of B.			
_	proportion, shade the						
•		-					

Answer:

Two equivalent ratio which are proportion, it can be written as a : b :: c : d or ____ = ___ (in fraction) . First and fourth term are called ____ and second and third term are called ____. In proportion, product of extreme terms is ____ (equal to/ not equal to) product of middle terms. Therefore, $a \times d =$

Therefore, $a \times d = \underline{\hspace{1cm}}$, then $a = \underline{\hspace{1cm}}$ and $c = \underline{\hspace{1cm}}$

Algebra

Topics to be Improved				
subtraction of algebraic expressions	subtraction of algebraic expressions			
Addition and subtraction of algebraic expressions	Like terms and Unlike terms			
Monomials, binomials, trinomials and polynomials	Types of algebraic expression			
Basics of simple equation	Solving of simple equation			

Hi.	here in	this	video	vou	will	learn	Subtraction	on	expression
,	11010 111	CIII	11400	., 0 01	* * * * * *	100111		~	CIPI CODICI

Question: 55		
Find the sum of t	a over a	

Answer:

The given two expressions are and
The two terms will get added only if they are(Like/ Unlike) terms.
The sum of two expressions $=$ $+$ $-$.
The answer is

Question: 56

	School A	School B
Number of boys	100b	250b
Number of girls	150g	200g
Number of teachers	25t	45t

......

- (i) Total number of boys in school A and B is _____
- (ii) Total number of students in school B is _____
- (iii) How many more teachers are there in school B than school A?

Answer:

(i) Number of boys in school A = _____,

Number of boys in school $B = \underline{\hspace{1cm}}$

Total number of boys in school A and school B is _____ + ___ = ____

(ii) Number of boys in school B = _____,

Number of girls in school B = _____

Total number of students in school B is $___$ + $___$ = $___$.

(iii) Number of teachers more in school B than school A = Teachers in school B - Teachers in school A = $__$.

Question: 57

Solve the following:

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

Answer:

The two terms will get added only if they are _____ (like/unlike) terms.

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{r}
 3a - 5b \\
 \hline
 (-) \quad 5a - 7b \\
 \hline
 -2a - \underline{\hspace{1cm}}
 \end{array}$$

Hi, here in this video you will learn **Addition on expression**

 $Question:\ 58$

Shade the like terms.

Answer:

Given terms are ______

Two or more term have _____ (same/ different) variables is called like terms.

Here, like terms are ______.

Question: 59

Complete the expression $7r^2 + r \square - 2 \square = \underline{r^2}$

Answer:

(Like / Unlike) terms can be a	dded or subtra	acted.		
$7r^2 + r \square - 2 \square$	_ = (7 -	+ 2)	_{r2} =	
Question: 60				am.
(i) Total chocolates Ram and Sam h			v	
(ii) How many icecreams Sam have n		ı:		
Answer:				
	Chocolates	Icecream		
Sam				
Ram				
 (i) Total chocolates Ram and Sam h Ram's chocolate + Sa (ii) How many icecreams Sam have n icecream 	m's chocolates nore than Ram	.:		
Hi, here in this video you will le				
There are terms in the express	ion $7x + 3y +$	m+5.		

$\underline{Answer:}$

In algebraic expression, _____ (variables/ terms) are connected together with operations of addition.

The terms in the expression are _____ , ____ , and _____ .

Therefore, there are _____ terms in the expression.

Question: 62

Classify the following expression into monomial, binomial and polynomial.

- 1. 7m + n + 2
- 2. $8x^2 + 0$

3. 7xy + 4m

Answer:

1. The terms in expression $8x^2 + 0$ are _____. Here, expression has _____ term and it is a _____.

2. The terms in expression 7xy + 4m are _____. Here, expression has _____ term and it is a _____.

3. The terms in expression 7m + n + 2 are _____. Here, expression has ____ term and it is a _____.

Question: 63

 $5m^2 + m + 0$ is a ______ expression. (Monomial/ Binomial/ Trinomial)

Answer:

The terms in expression $5m^2 + m + 0$ are _____.

Here, the expression has ______ terms and it is called a _____ expression.

.....

.....

.....

......

Hi, here in this video you will learn Solving an equation

Question: 64

If ©=5, then 5 © +5 =

Answer:

The value of the given smiley © is _____.

Substituting the value in the expression $= 5(\underline{\hspace{1cm}}) + 5 = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$.

Question: 65

Which of the following number can be placed in the box to make the equation correct (-2, -1, 0, 1, 2)

7 + 3 = -4

Answer:

The given equation is 7 = -4 Substitute the values (-2, -1, 0, 1, 2) in the circle,

$$7 \times \underline{\hspace{1cm}} + 3 = \underline{\hspace{1cm}}$$

$$7 \times __+3 = __$$

$$7 \times$$
 ____+ $3 =$ ____

$$7 \times __+3 = __$$

Therefore, _____ is the number that can be placed in a box to make the equation correct.

Question: 66

Arrange the terms in the descending order when the value of x is 2. 2x $5x \times 1$ x + 3 2x - 4 $\frac{1}{2}x$

Answer:

The given expression are _____.

The value of x is _____.

substituting value of x

$$2x = 2 \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}} 2x - 4 = 2 \times \underline{\hspace{1cm}} - 4 = \underline{\hspace{1cm}}$$
 $x + 3 = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$
 $5x \times 1 = 5 \times \underline{\hspace{1cm}} \times 1 = \underline{\hspace{1cm}}$

Arranging in descending order: ____, ____, ____, ____, ____.
Their respective algebraic terms are ____, ____, ____, ____, ____.