ELETTRONICA DIGITALE

Corso di Laurea in Ingegneria Informatica

Prova scritta del 13 settembre 2016

Esercizio A

$R_1 = 50 \Omega$	$R_{11}=300\;k\Omega$]	V _{cc} ▲ V _{cc} ▲	C₂ V _{cc} ♠
$R_2=30\;k\Omega$	$R_{12}=2.8~k\Omega$		R_2 R_5	R_{12}
$R_4=5\;k\Omega$	$R_{13}=22\ k\Omega$	_	·	R_7 R_8 Q_2 C_4
$R_5 = 27.5 \text{ k}\Omega$	$R_{14} = 30 \text{ k}\Omega$	R₁	C_1 R_4 Q_1	$R_{9} \geqslant R_{13} \geqslant R_{14} \geqslant V_{0}$
$R_6 = 1 k\Omega$	$C_1 = 3.3 \text{ nF}$			
$R_7 = 50 \Omega$	$C_2 = 330 \text{ nF}$	$V_i \begin{pmatrix} + \\ - \end{pmatrix}$	$R_3 \geqslant R_6 \leqslant$	ntn ntn
$R_8 = 450 \Omega$	$C_3=1\mu F$	ntn	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
$R_9 = 19.5 \text{ k}\Omega$	C ₄ = 470 nF			$R_{11} \leq \frac{1}{T} C_3 \qquad V_{cc}$
$R_{10}=200\;k\Omega$	$V_{CC} = 18 \text{ V}$			mn mn

 Q_1 è un transistore BJT BC109B resistivo con $h_{re} = h_{oe} = 0$, Q_2 è un transistore MOS a canale n resistivo, con la corrente di drain in saturazione data da $I_D = k(V_{GS} - V_T)^2$ con k = 0.5 mA/V² e $V_T = 1$ V;. Con riferimento al circuito in figura:

- Calcolare il valore della resistenza R₃ in modo che, in condizioni di riposo, la tensione sul drain di Q₂ sia 11 V. Determinare, inoltre, il punto di riposo dei due transistori e verificare la saturazione di Q₂.
 (R: R₃ = 5448 Ω)
- 2) Determinare l'espressione e il valore di V_U/V_i alle frequenze per le quali C_1 , C_2 , C_3 e C_4 possono essere considerati dei corto circuiti. (R: $V_U/V_i = -2.1$)
- 3) (<u>Solo per 12 CFU</u>) Determinare la funzione di trasferimento V_U/V_i e tracciarne il diagramma di Bode quotato asintotico del modulo. (R: f_{z1} =0 Hz; f_{p1} =10500 Hz; f_{z2} =1071 Hz; f_{p2} =1089 Hz; f_{z3} = f_{p3} ; f_{z4} =0 Hz; f_{p4} =10.4 Hz;)

Esercizio B

Progettare una porta logica in tecnologia CMOS, utilizzando la tecnica della pull-up network e della pull-down network, che implementi la funzione logica:

$$Y = \left(\overline{\overline{A} + \overline{B}}\right)\left(\overline{CD} + \overline{E}\right) + \left(\overline{\overline{A} + B}\right)\left(\overline{C} + \overline{E}\right) + \overline{D}\left(\overline{A + \overline{B}}\right) + \overline{D} \ E$$

Determinare il numero dei transistori necessari e disegnarne lo schema completo. Dimensionare inoltre il rapporto (W/L) di tutti i transistori, assumendo, per l'inverter di base, W/L pari a 2 per il MOS a canale n e pari a 5 per quello a canale p. Si specifichino i dettagli della procedura di dimensionamento dei transistori.

Esercizio C

$R_1 = 100 \Omega$	$R_6 = 2 \text{ k}\Omega$
$R_2 = 750 \ \Omega$	$R_7 = 1 \text{ k}\Omega$
$R_3 = 10 \text{ k}\Omega$	C = 680 nF
$R_4 = 10 \text{ k}\Omega$	$\mathbf{V}_{\mathrm{CC}} = 6 \ \mathbf{V}$
$R_5 = 2 \text{ k}\Omega$	

Il circuito IC_1 è un NE555 alimentato a $V_{CC} = 6V$; Q_1 ha una $R_{on} = 0$ e $V_T = -1V$; Q_2 e Q_3 hanno una $R_{on} = 0$ e $V_T = 1V$; gli inverter sono ideali. Determinare la frequenza del segnale di uscita del multivibratore in figura. (R: f = 1912 Hz)