Politechnika Warszawska

Praca Inżynierska

Program do wyznaczania trójwymiarowej trajektorii znaczników na ciele, na podstawie rejestracji z dwóch kamer.

Autor: Aleksandra Michalska

Zakres

- Wybór metody śledzenia znaczników na podstawie przeglądu literatury.
- Implementacja metody śledzenia znacznika na filmie dwuwymiarowym.
- Implementacja metody złożenia wyznaczonych trajektorii dwuwymiarowych w dwóch rzutach do trajektorii trójwymiarowej
- Weryfikacja działania programu w oparciu o rejestracje ruchu o znanych parametrach.

Wymagania

- Implementacja programu w środowisku Matlab.
- Obsługa programu przez interfejs graficzny.

Schemat blokowy systemu

Rejestracja danych wideo Synchronizacja nagrań Import danych do programu Zaznaczenie obszaru zainteresowania i wskazanie środka znacznika Śledzenie trajektorii wybranych punktów osobno w dwóch płaszczyznach Skalowanie Złożenie trajektorii dwuwymiarowych w trójwymiarową Wyświetlanie wyznaczonej trajektorii oraz jej eksport do pliku *.mat

Rysunek 1. Schemat blokowy systemu

Wymagania dla rejestracji danych

- Prostopadłe ustawienie kamer, znajdujące się w tej samej odległości od obrazowanego obiektu
- Równomierne oświetlenie stanowiska badawczego
- Znacznik
 - trójwymiarowy
 - kontrastowy kolor względem otoczenia
 - stabilnie umieszczony
 - rozmiar znacznika pozwalający na dokładne wskazanie punktu anatomicznego
 - widoczny przez obie kamery podczas trwania rejestracji

Wprowadzone parametry

otoczenie – wyznacza obszar wokół środka znacznika;
określany przez użytkownika; inny dla każdej płaszczyzny

Rysunek 2. obraz pierwszej klatki nagrania z zaznaczonym przez użytkownika obszaru wokół znacznika wraz z jego środkiem

Rysunek 3. Obraz znacznika ograniczonego przez parametr otoczenie

 zasięg – informuje o maksymalnym przemieszczeniu środka znacznika pomiędzy dwoma następującymi po sobie klatkami nagrania

Ogólny sposób wyznaczania parametru zasięg.

Dane:
$$FPS = n[\frac{klatek}{S}]$$
 (FPS – liczba klatek na sekundę) $v_{max} = v[\frac{m^S}{S}]$ l metrów odpowiada h pikselom

Obliczenia:

czas trwania jednej klatki t

$$t=\frac{1}{n}[s]$$

ilość metrów s pokonana przez znacznik w czasie t

$$s = v * t [m]$$

ilość pikseli odpowiadająca odległości s

$$x = \frac{s [m] * h[pix]}{l[m]} = \frac{s * h}{l} [pix]$$

Obliczona wartość x to parametr zasięg.

Wprowadzone nazwy obrazów

- obraz bazowy pierwsza klatka nagrania
- obraz odniesienia obraz znacznika w pierwszej klatce nagrania, ze znanymi współrzędnymi środka, ograniczony przez parametr otoczenie
- obraz referencyjny obraz znacznika w klatce n-1, ograniczony parametrem otoczenie, o znanych współrzędnych środka (n ∈<2,m), m – liczba klatek nagrania)
- **obraz bieżący** obraz znacznika w klatce n, ograniczony parametrem otoczenie lecz o nieznanym środku $(n \in <2,m)$)

Rozmiary obrazów odniesienia, referencyjnego oraz bieżącego są takie same.

Śledzenie trajektorii znacznika w przestrzeni dwuwymiarowej

Rysunek 4. Schemat blokowy działania algorytmu wyznaczającego współrzędne środków znaczników

Rysunek 5. Rysunek przedstawiający obraz klatki *n-1* z zaznaczonym za niebiesko obrazem referencyjnym. (x,y) - współrzędne środka znacznika

Rysunek 6. Obraz klatki n, z zaznaczonym obrazem referencyjnym oraz środkiem znacznika (x,y) z klatki n-1, powiększonym o parametr zasięg; wewnątrz zielonego obszaru tworzone są obrazy bieżące

Kryterium porównawcze wymaga, aby porównywane obrazy miały ten sam rozmiar. Z uwagi na, to wewnątrz zielonego obszaru zaznaczonego na rysunku 6, tworzone są obrazy bieżące. Środki obrazów bieżących wyznaczane są w pętlach zmieniających współrzędne x i y względem środka z klatki n-1.

Rysunek 7. Przykładowe obrazy bieżące, gdzie x to środek obrazu referencyjnego

Kryterium porównawcze

Jako kryterium porównawcze wybrano obliczenie sumy kwadratów różnic.

$$R(x,y) = \sum_{x'y'} [W(x',y') - O(x + x',y + y')]^2$$
 (1)

gdzie:

W – obraz odniesienia

O – obraz bieżący

Ze względu na skalę kolorów RGB, odejmowane są od siebie osobno obrazy składowych kolorów R, G i B, a następnie różnice podniesione są do kwadratu. Ostateczny wynik to zsumowane wartości dla każdej składowej koloru.

Obliczone różnice powstałych obrazów bieżących dla danej klatki, zapisywane są w macierzy o strukturze pokazanej na rysunku 8.

	Indeksy wektora –zasięg:+zasięg w osi x
Indeksy wektora –zasięg:+zasięg w osi y	Wartości obliczonych różnic

Rysunek 8. Struktura macierzy różnic

Obraz bieżący którego różnica z obrazem odniesienia jest najmniejsza, oznacza znalezienie współrzędnych środka znacznika w danej klatce. Taki obraz bieżący staje się obrazem referencyjnym dla następnej klatki.

- Wartości współrzędnych środka znacznika w każdej klatce dla nagrania z danej płaszczyzny, zapisywane są do macierzy srodki1.
- Algorytm powtarzany jest dla nagrania z drugiej płaszczyzny.

Skalowanie

- Przedmiot o znanej długości umieszczony w miejscu znacznika
- Rejestracja krótkich nagrań
- Import nagrań do programu
- Mierzenie długości przedmiotu na obrazie (w pikselach)
 - wykorzystane funkcje: imdistline() i getDistence()
- Skalowanie wektorów srodki1 i srodki2

Rysunek 9. Przykładowy obraz do skalowania

Weryfikacja dokładności opracowanego programu

- Rodzaj ruchu jazda na rowerze stacjonarnym
- Ustawienie roweru prostopadle do kamer
- Znacznik
 - kształt sześcian
 - kolor czerwony
 - długość boku 2 cm
 - umieszczenie na pedale
- Zdarzenie synchronizacyjne błysk świetlny
- Długość korby 170 mm
- Wartość parametru zasięg 9
- Wartość parametru otoczenie 5

Oczekiwania

 Trajektoria znacznika z nagrania z płaszczyzny bocznej – okrąg o średnicy 170mm; z płaszczyzny frontowej – linia prosta

Rysunek 10. Trajektoria znacznika z płaszczyzny bocznej z zaznaczonymi różnicami między maksymalnymi i minimalnymi wartościami w obu osiach

Trajektoria środka znacznika nagrania II 220 240 $\Delta y2$ 260 280 300 320 340 360 363.5 364 364.5 365 363 365.5 Х

Rysunek 11. Trajektoria znacznika z płaszczyzny frontowej z zaznaczoną różnicą między maksymalną a minimalną wartością w osi pionowej

Tabela 1. Wyniki weryfikacji dokładności działania algorytmu

	Wartość zmierzona [mm]	Wartość oczekiwana [mm]	Błąd bezwzględny [mm]	Błąd względny [%]
Δx1	334	340	6	1,76
Δ y1	330	340	10	3,03
Δx2	0	0	0	0
Δу2	332	340	4	2,41

Trajektorie trójwymiarowe

Trójwymiarowa trajektoria znacznika.

Rysunek 12. Trajektorie 3D

Graficzny Interfejs Użytkownika

Rysunek 13. GUI

Trajektorie trójwymiarowe

Rysunek 14. Trójwymiarowe trajektorie znacznika umieszczonego na wysokości stawy skokowego podczas jazdy na rowerze stacjonarnym

Podsumowanie

- Znacznik
 - długość boku 2 cm otrzymanie dokładnych trajektorii
- Wartość błędu bezwzględnego wynosi maksymalnie 10 mm
- Wartość błędu względnego wynosi 3,03%
- Wartość błędów perspektywy 10% i 12%

Na wartość błędów wpływa proces skalowania oraz odległość urządzeń rejestrujących od środka objętości pomiarowej.

Z uwagi na fakt, że znacznik nie poruszał się w całej objętości pomiarowej, otrzymane wyniki można traktować jako poprawne.