Homework 3

- 1. Suppose we have i.i.d. $X_1,...,X_n \sim N(\mu,\sigma^2)$. From the class, we know that $\frac{\sum_{i=1}^n (X_i \bar{X})^2}{\sigma^2} \sim \chi_{n-1}^2$. Use this fact, together with the mean and variance calculation from the last homework, and answer the following questions.
 - (a) Consider an estimator $\hat{\sigma}_c^2 = c \sum_{i=1}^n (X_i \bar{X})^2$. For which c is $\hat{\sigma}_c^2$ the MLE?
 - (b) Find the mean and variance of $\hat{\sigma}_c^2$. For which c is $\hat{\sigma}_c^2$ unbiased?
 - (c) Find the MSE $\mathbb{E}[\hat{\sigma}_c^2 \sigma^2]^2$. For which c is the MSE minimized?
- 2. Suppose we have i.i.d. $Z_1, Z_2 \sim N(0,1)$. In the class, we learned that $\frac{Z_1}{|Z_2|}$ is distributed by Cauchy. What is the distribution of $\frac{Z_1}{Z_2}$?
- 3. Consider random (column) vectors $X \in \mathbb{R}^p$ and $Y \in \mathbb{R}^q$. The covariance between the two vectors is defined by $\text{Cov}(X,Y) = \mathbb{E}[(X \mathbb{E}X)(Y \mathbb{E}Y)^T] \in \mathbb{R}^{p \times q}$. For matrices $A \in \mathbb{R}^{d \times p}$ and $B \in \mathbb{R}^{k \times q}$, show $\text{Cov}(AX, BY) = A\text{Cov}(X, Y)B^T$.
- 4. Consider $Z \sim N(0,1)$ and we know that Z^2 is distributed by χ^2_1 .
 - (a) Show $\mathbb{P}(Z^2 \le t) = 2\mathbb{P}(Z \le \sqrt{t}) 1$.
 - (b) The density of N(0,1) is given by $\phi(t) = \frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}$. Calculate the density of χ_1^2 by $\frac{d}{dt}\mathbb{P}(Z^2 \leq t)$. Check Wikipedia to see if your answer is correct.
- 5. Consider i.i.d. random variables $Z_1, ..., Z_n \sim N(0, 1)$. According to the class, it can be compactly written as an n-dimensional column vector $Z \sim N(0, I_n)$. Let $\mathbb{1}_n$ be an n-dimensional column vector with all entries 1. Then, $\mathbb{1}_n \mathbb{1}_n^T$ is an $n \times n$ matrix of all entries 1. Define $P = \frac{1}{n} \mathbb{1}_n \mathbb{1}_n^T$.
 - (a) Show $P^2 = P$, $(I_n P)^2 = (I_n P)$, and $(I_n P)P = 0$.
 - (b) Show $\sum_{i=1}^{n} (Z_i \bar{Z})^2 = ||(I_n P)Z||^2$ and $\bar{Z} = \frac{1}{n} \mathbb{1}_n^T P Z$.
 - (c) Show $||(I_n P)Z||^2$ and $\frac{1}{n}\mathbb{1}_n^T PZ$ are independent by computing the covariance $\text{Cov}((I_n P)Z, PZ)$. This is a matrix proof of Conclusion 3 of the theorem we learned in the class.