Lecture: RANSAC and feature detectors

Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab

What we will learn today?

- A model fitting method for edge detection
 - RANSAC
- Local invariant features
 - Motivation
 - Requirements, invariances
- Keypoint localization
 - Harris corner detector

What we will learn today

- A model fitting method for line detection
 - RANSAC
- Local invariant features
 - Motivation
 - Requirements, invariances
- Keypoint localization
 - Harris corner detector

Fitting as Search in Parametric Space

- Choose a parametric model to represent a set of features
- Membership criterion is not local
 - Can't tell whether a point belongs to a given model just by looking at that point.
- Three main questions:
 - What model represents this set of features best?
 - Which of several model instances gets which feature?
 - How many model instances are there?
- Computational complexity is important
 - It is infeasible to examine every possible set of parameters and every possible combination of features

Source: L. Lazebnik

Example: Line Fitting

Why fit lines?
 Many objects characterized by presence of straight lines

Wait, why aren't we done just by running edge detection?

Slide credit: Kristen Grauman

- Extra edge points (clutter), multiple models:
 - Which points go with which line, if any?
- Only some parts of each line detected, and some parts are missing:
 - How to find a line that bridges missing evidence?
- Noise in measured edge points, orientations:
 - How to detect true underlying parameters?

Slide credit: Kristen Grauman

Voting

- It's not feasible to check all combinations of features by fitting a model to each possible subset.
- Voting is a general technique where we let the features vote for all models that are compatible with it.
 - Cycle through features, cast votes for model parameters.
 - Look for model parameters that receive a lot of votes.
- Noise & clutter features will cast votes too, but typically their votes should be inconsistent with the majority of "good" features.
- Ok if some features not observed, as model can span multiple fragments.

Slide credit: Kristen Grauman

RANSAC [Fischler & Bolles 1981]

- RANdom SAmple Consensus
- Approach: we want to avoid the impact of outliers, so let's look for "inliers", and use only those.

• Intuition: if an outlier is chosen to compute the current fit, then the resulting line won't have much support from rest of the points.

RANSAC [Fischler & Bolles 1981]

RANSAC loop:

- 1. Randomly select a *seed group* of points on which to base transformation estimate (e.g., a group of matches)
- 2. Compute transformation from seed group
- 3. Find inliers to this transformation
- 4. If the number of inliers is sufficiently large, re-compute least-squares estimate of transformation on all of the inliers
- Keep the transformation with the largest number of inliers

- Task: Estimate the best line
 - How many points do we need to estimate the line?

Task: Estimate the best line

Task: Estimate the best line

Task: Estimate the best line

Lecture 6 - 13

Task: Estimate the best line

Algorithm 15.4: RANSAC: fitting lines using random sample consensus

```
Determine:
    n — the smallest number of points required
    k — the number of iterations required
    t — the threshold used to identify a point that fits well
    d — the number of nearby points required
      to assert a model fits well
Until k iterations have occurred
    Draw a sample of n points from the data
      uniformly and at random
    Fit to that set of n points
    For each data point outside the sample
       Test the distance from the point to the line
         against t; if the distance from the point to the line
         is less than t, the point is close
    end
    If there are d or more points close to the line
       then there is a good fit. Refit the line using all
       these points.
end
Use the best fit from this collection, using the
  fitting error as a criterion
```

RANSAC: How many samples?

- How many samples are needed?
 - Suppose w is fraction of inliers (points from line).
 - n points needed to define hypothesis (2 for lines)
 - k samples chosen.
- Prob. that a single sample of n points is correct: w^n
- Prob. that all k samples fail is: $(1-w^n)^k$
- \Rightarrow Choose k high enough to keep this below desired failure rate.

Slide credit: David Lowe

RANSAC: Computed k (p=0.99)

Sample size	Proportion of outliers						
n	5 %	10%	20%	25%	30%	40%	50%
2	2	3	5	6	7	11	17
3	3	4	7	9	11	19	35
4	3	5	9	13	17	34	72
5	4	6	12	17	26	57	146
6	4	7	16	24	37	97	293
7	4	8	20	33	54	163	588
8	5	9	26	44	78	272	1177

Slide credit: David Lowe

After RANSAC

- RANSAC divides data into inliers and outliers and yields estimate computed from minimal set of inliers.
- Improve this initial estimate with estimation over all inliers (e.g. with standard least-squares minimization).
- But this may change inliers, so alternate fitting with re-classification as inlier/outlier.

RANSAC: Pros and Cons

• Pros:

- General method suited for a wide range of model fitting problems
- Easy to implement and easy to calculate its failure rate

• Cons:

- Only handles a moderate percentage of outliers without cost blowing up
- Many real problems have high rate of outliers (but sometimes selective choice of random subsets can help)
- A voting strategy, The Hough transform, can handle high percentage of outliers

What we will learn today?

- A model fitting method for edge detection
 - RANSAC
- Local invariant features
 - Motivation
 - Requirements, invariances
- Keypoint localization
 - Harris corner detector

Some background reading: Rick Szeliski, Chapter 4.1.1; David Lowe, IJCV 2004

Image matching: a challenging problem

Image matching: a challenging problem

by **Diva Sian**

by **swashford**

Harder Case

by <u>Diva Sian</u>

by <u>scgbt</u>

Harder Still?

NASA Mars Rover images

Answer Below (Look for tiny colored squares)

NASA Mars Rover images with SIFT feature matches (Figure by Noah Snavely)

Motivation for using local features

- Global representations have major limitations
- Instead, describe and match only local regions
- Increased robustness to
 - Occlusions

Articulation

Intra-category variations

Slide credit: Bastian Leibe

General Approach

- Find a set of distinctive key-points
- 2. Define a region around each keypoint
- 3. Extract and normalize the region content
- 4. Compute a local descriptor from the normalized region
- 5. Match local descriptors

Common Requirements

- Problem 1:
 - Detect the same point independently in both images

No chance to match!

We need a repeatable detector!

Common Requirements

- Problem 1:
 - Detect the same point independently in both images
- Problem 2:
 - For each point correctly recognize the corresponding one

We need a reliable and distinctive descriptor!

Invariance: Geometric Transformations

Levels of Geometric Invariance

Slide credit: Tinne Tuytelaars

Invariance: Photometric Transformations

Requirements

- Region extraction needs to be repeatable and accurate
 - Invariant to translation, rotation, scale changes
 - Robust or covariant to out-of-plane (≈affine) transformations
 - Robust to lighting variations, noise, blur, quantization
- Locality: Features are local, therefore robust to occlusion and clutter.
- Quantity: We need a sufficient number of regions to cover the object.
- Distinctivenes: The regions should contain "interesting" structure.
- Efficiency: Close to real-time performance.

Slide credit: Bastian Leibe

Many Existing Detectors Available

```
• Hessian & Harris [Beaudet '78], [Harris '88]
```

- Laplacian, DoG [Lindeberg '98], [Lowe '99]
- Harris-/Hessian-Laplace [Mikolajczyk & Schmid '01]
- Harris-/Hessian-Affine [Mikolajczyk & Schmid '04]
- EBR and IBR [Tuytelaars & Van Gool '04]
- MSER [Matas '02]
- Salient Regions [Kadir & Brady '01]
- Others...
- Those detectors have become a basic building block for many recent applications in Computer Vision.

What we will learn today?

- A model fitting method for edge detection
 - RANSAC
- Local invariant features
 - Motivation
 - Requirements, invariances
- Keypoint localization
 - Harris corner detector

Some background reading: Rick Szeliski, Chapter 4.1.1; David Lowe, IJCV 2004

Keypoint Localization

Goals:

- Repeatable detection
- Precise localization
- Interesting content
- ⇒ Look for two-dimensional signal changes

Finding Corners

- Key property:
 - In the region around a corner, image gradient has two or more dominant directions
- Corners are repeatable and distinctive

C.Harris and M.Stephens. "A Combined Corner and Edge Detector."

Proceedings of the 4th Alvey Vision Conference, 1988.

Corners as Distinctive Interest Points

- Design criteria
 - We should easily recognize the point by looking through a small window (locality)
 - Shifting the window in any direction should give a large change in intensity (good localization)

"flat" region:
no change in all
directions

"edge":
no change along
the edge direction

"corner": significant change in all directions

Corners versus edges

$$\begin{array}{ccc} \sum I_x^2 & \longrightarrow & \text{Large} \\ \sum I_y^2 & \longrightarrow & \text{Large} \end{array}$$

$$\begin{array}{ccc} \sum I_x^2 & \longrightarrow & \text{Small} \\ \sum I_y^2 & \longrightarrow & \text{Large} \end{array}$$
 Edge

$$\sum I_x^2 \longrightarrow \text{Small}$$

$$\sum I_y^2 \longrightarrow \text{Small}$$

Nothing

Corners versus edges

$$\sum I_x^2 \longrightarrow ??$$

$$\sum I_y^2 \longrightarrow ??$$

Corner

Slide credit: Rick Szeliski

Harris Detector Formulation

Change of intensity for the shift [u,v]:

Harris Detector Formulation

This measure of change can be approximated by:

$$E(u,v) \approx [u \ v] M \begin{bmatrix} u \\ v \end{bmatrix}$$

where M is a 2×2 matrix computed from image derivatives:

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_xI_y \\ I_xI_y & I_y^2 \end{bmatrix} \text{ Gradient with respect to } x, \\ \text{times gradient with respect to } y$$

Sum over image region – the area we are checking for corner

$$M = \begin{bmatrix} \sum_{I_x I_x} & \sum_{I_x I_y} \\ \sum_{I_x I_y} & \sum_{I_y I_y} \end{bmatrix} = \sum_{I_y I_y} \begin{bmatrix} I_x \\ I_y \end{bmatrix} [I_x I_y]$$

Harris Detector Formulation

Image I

where M is a 2×2 matrix computed from image derivatives:

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$
 Gradient with respect to x , times gradient with respect to

times gradient with respect to y

Sum over image region – the area we are checking for corner

$$M = \begin{bmatrix} \sum_{I_x I_x} & \sum_{I_x I_y} \\ \sum_{I_x I_y} & \sum_{I_y I_y} \end{bmatrix} = \sum_{I_y I_y} \begin{bmatrix} I_x \\ I_y \end{bmatrix} [I_x I_y]$$

Slide credit: David Jacobs

What Does This Matrix Reveal?

• First, let's consider an axis-aligned corner:

$$M = \begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

Slide credit: David Jacobs

What Does This Matrix Reveal?

• First, let's consider an axis-aligned corner:

$$M = \begin{bmatrix} \sum I_x^2 & \sum I_x I_y \\ \sum I_x I_y & \sum I_y^2 \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$$

- This means:
 - Dominant gradient directions align with x or y axis
 - If either λ is close to 0, then this is not a corner, so look for locations where both are large.
- What if we have a corner that is not aligned with the image axes?

General Case

• Since M is symmetric, we have $M=R^{-1}igg|egin{array}{cccc} \lambda_1 & 0 \ 0 & \lambda_2 \end{array}igg|R$

(Eigenvalue decomposition)

 We can visualize M as an ellipse with axis lengths determined by the eigenvalues and orientation determined by R

Interpreting the Eigenvalues

Classification of image points using eigenvalues of M:

Corner Response Function

$$Q = \det(M) - a \operatorname{trace}(M)^2 = {1 \choose 1}_2 - a({1 \choose 1} + {1 \choose 2}^2$$

- Fast approximation
 - Avoid computing the eigenvalues
 - α: constant
 (0.04 to 0.06)

Slide credit: Bastian Leibe

Window Function w(x,y)

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

- Option 1: uniform window
 - Sum over square window

$$M = \sum_{x,y} \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Problem: not rotation invariant

1 in window, 0 outside

- Option 2: Smooth with Gaussian
 - Gaussian already performs weighted sum

$$M = g(\sigma) * \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Result is rotation invariant

Slide credit: Krystian Mikolajczyk

Summary: Harris Detector [Harris88]

Compute second moment matrix (autocorrelation matrix)

2. Square of derivatives

3. Gaussian filter $g(\sigma_l)$

4. Cornerness function - two strong eigenvalues

$$Q = \det[M(S_I, S_D)] - a[\operatorname{trace}(M(S_I, S_D))]^2$$

= $g(I_x^2)g(I_y^2) - [g(I_xI_y)]^2 - \alpha[g(I_x^2) + g(I_y^2)]^2$

5. Perform non-maximum suppression

Slide adapted from Darya Frolova, Denis Simakov

Harris Detector: Workflow

Harris Detector: Workflow

- computer corner responses θ

Harris Detector: Workflow

- Take only the local maxima of θ , where θ >threshold

Harris Detector: Workflow

- Resulting Harris points

Harris Detector – Responses [Harris88]

Slide credit: Krystian Mikolajczyk

Harris Detector – Responses [Harris88]

Harris Detector – Responses [Harris88]

Results are well suited for finding stereo correspondences

Harris Detector: Properties

Translation invariance?

Slide credit: Kristen Grauman

Harris Detector: Properties

- Translation invariance
- Rotation invariance?

Ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner response θ is invariant to image rotation

Slide credit: Kristen Grauman

Harris Detector: Properties

- Translation invariance
- Rotation invariance
- Scale invariance?

Not invariant to image scale!

What we are learned today?

- A model fitting method for edge detection
 - RANSAC
- Local invariant features
 - Motivation
 - Requirements, invariances
- Keypoint localization
 - Harris corner detector