

1.º Teste de Introdução à Arquitetura de Computadores

1.º Semestre 2017/2018 Duração: 60 minutos

IST – LEIC-Taguspark 23 outubro 2017

NOME NÚMERO

(3 valores) Considere o seguinte circuito, com barramentos de 8 bits. C é o *clock* (tanto do trinco como da báscula) e S é o sinal de seleção do *multiplexer* (S=0 seleciona a entrada X). Assumindo que os sinais C e S evoluem ao longo do tempo da forma indicada na tabela seguinte, preencha os valores estáveis no resto da tabela (escreva todas as células, mesmo que o valor se mantenha). Todos os valores de 8 bits estão representados em hexadecimal (não é preciso colocar o H).

2. (2 + 1 + 3 valores) Considere o seguinte programa no PEPE-16:

MOV R1, -2734; constante em decimal MOV R2, 85FH; constante em hexadecimal

ADD R1, R2

a) Indique cada um dos 16 bits do R1, após o primeiro MOV.

b) Indique cada um dos 16 bits do R2, após o segundo MOV.

c) Indique cada um dos 16 bits do R1 e o respetivo valor em decimal, após o ADD.

3. (2 valores) A figura seguinte representa o diagrama de blocos básico do PEPE-8, processador de 8 bits, bem como as memórias a que está ligado.

Na tabela seguinte estão referidos os sinais usados para comandar quer a Unidade de Dados, quer a Unidade de Controlo. Preencha esta tabela, especificando para cada sinal qual a indicação concreta que fornece no caso de o PEPE-8 estar a executar a instrução ADD 4FH (A \leftarrow A + 4FH). Para cada sinal, use a indicação que for mais conveniente:

- Ativo / Não ativo:
- Um valor numérico;
- Uma indicação simples que especifique a opção a selecionar (ex: esquerda / direita);
- Um simples traco horizontal, ou uma cruz (não interessa para esta instrução).

Constante	WR	SEL_A	SEL_B	ESCR_A	SEL_ALU	SEL_PC
4FH	Não ativo	Esquerda	Esquerda	Ativo	Soma	0

4. (2 valores) Considere que o PEPE (processador de 16 bits, <u>endereçamento de byte</u>) está ligado a uma memória com 11 bits de endereço cuja primeira célula está acessível a partir do endereço 6 K.

Qual a capacidade em bytes da RAM (valor em decimal)?

2048

Qual o endereço (em hexadecimal) da primeira célula da RAM?

1800 H

5. (3 valores) Complete o programa do lado direito, preenchendo os retângulos com os valores corretos.

Registo – registo onde a instrução dessa linha armazena o resultado **Valor** – valor desse registo <u>após</u> a execução da instrução

ROL – Rotação à esquerda

 Instrução

 MOV
 R2
 37C8H

 ADD
 R2, 5

 ROL
 R2
 3

 MOV
 R3
 4BA7H

 AND
 R2, R3

 Registo e valor

 R2
 37C8H

 R2
 37CDH

 R2
 DE69H

 R3
 4BA7H

 R2
 0A21H

6. (1 + 3 valores) Considere o seguinte programa em linguagem assembly do PEPE-16.

Endereços	_		
	PLACE	2000H	
	MARCA	EQU	0FFFFH
2000H	tabela:	WORD	6
2002H		WORD	12
2004H		WORD	7
2006Н		WORD	MARCA
2008H	var:	WORD	0
	PLACE	0000H	
0000Н		MOV	R1, tabela
0002H	ciclo:	MOV	R2, [R1]
0004H		MOV	R3, MARCA
0006Н		CMP	R2, R3
0008H		JZ	fim
000AH		MOV	R4, var
000CH		MOV	R5, [R4]
000EH		ADD	R5, R2
0010H		MOV	[R4], R5
0012H		ADD	R1, 2
0014H		JMP	ciclo
0016H	fim:	JMP	fim

- a) Preencha os <u>endereços que faltam</u> (lado esquerdo, preencha apenas as linhas em que tal faça sentido). Considera-se que cada MOV com uma constante <u>ocupa apenas uma palavra</u>.
- b) Acabe de preencher a tabela com informação sobre os <u>acessos à memória</u> feitos pelo programa, de leitura (L) ou escrita (E). <u>Use apenas as linhas que necessitar</u>.

Endereço em que está a instrução que faz o acesso	Endereço acedido	L ou E	Valor lido ou escrito
0002Н	2000H	L	6
000CH	2008H	L	0
0010Н	2008H	E	6
0002Н	2002Н	L	12
000CH	2008H	L	6
0010Н	2008H	E	18
0002Н	2004Н	L	7
000CH	2008H	L	18
0010Н	2008H	E	25
0002Н	2006Н	L	FFFFH