Отчёт по лабораторной работе: Анализ главных компонент (PCA)

Выполнили: Смирнов Олег, Муртазалиев Матвей. Группа J3110 Санкт-Петербург, 2025

1 Цели и задачи

Цель: Реализовать алгоритм PCA и применить его к тестовым данным для анализа влияния шума.

Задачи:

- 1. Реализовать метод Гаусса для решения систем линейных уравнений (СЛАУ).
- 2. Реализовать функции центрирования данных и вычисления матрицы ковариаций.
- 3. Найти собственные значения и векторы матрицы ковариаций.
- 4. Выполнить проекцию данных и оценить долю объяснённой дисперсии.
- 5. Исследовать влияние шума на результаты РСА.
- 6. Визуализировать проекции данных на первые две главные компоненты.

2 Теоретическая часть

РСА основан на следующих этапах:

1. Центрирование данных:

$$X_c = X - \bar{X},$$

где X — исходная матрица данных размером $n \times m, \bar{X}$ — вектор средних значений признаков.

2. Вычисление матрицы ковариаций:

$$\Sigma = \frac{1}{n-1} X_c^T X_c,$$

где X_c — центрированная матрица данных.

- 3. Нахождение собственных значений и векторов: Собственные значения λ_i и векторы v_i матрицы Σ определяют направления главных компонент.
 - 4. Проекция данных:

$$X_{\text{proj}} = X_c V_k,$$

где V_k — матрица первых k собственных векторов.

5. Оценка качества: Доля объяснённой дисперсии:

$$\gamma = \frac{\sum_{i=1}^{k} \lambda_i}{\sum_{i=1}^{m} \lambda_i}.$$

3 Доказательство того, что оптимальные направления в PCA совпадают с собственными векторами матрицы ковариаций

Постановка задачи

Дана центрированная матрица данных $\mathbf{X} \in \mathbb{R}^{n \times m}$, где n — количество объектов, а m — количество признаков, причём каждый столбец имеет нулевое среднее ($\sum_{i=1}^{n} x_{ij} = 0$). Матрица ковариаций определяется как:

$$\mathbf{\Sigma} = \frac{1}{n-1} \mathbf{X}^T \mathbf{X}$$

где \mathbf{X}^T — транспонированная матрица размером $m \times n$, а $\mathbf{X}^T \mathbf{X} \in \mathbb{R}^{m \times m}$.

Цель PCA — найти единичные векторы $\mathbf{v} \in \mathbb{R}^m$, такие что $\|\mathbf{v}\| = 1$, которые максимизируют дисперсию данных, спроецированных на \mathbf{v} . Эти векторы называются главными компонентами.

Доказательство

Шаг 1: Дисперсия проекций

Рассмотрим проекцию i-го объекта $\mathbf{x}_i \in \mathbb{R}^{1 \times m}$ (i-я строка матрицы \mathbf{X}) на единичный вектор \mathbf{v} :

$$\operatorname{proj}_{\mathbf{v}}(\mathbf{x}_i) = \mathbf{x}_i \cdot \mathbf{v}$$

Поскольку данные центрированы, среднее значение проекций равно нулю:

$$Mean(proj_{\mathbf{v}}) = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_i \cdot \mathbf{v}) = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{m} x_{ij} v_j = \sum_{j=1}^{m} v_j \left(\frac{1}{n} \sum_{i=1}^{n} x_{ij} \right) = 0$$

так как $\sum_{i=1}^{n} x_{ij} = 0$ для всех j.

Дисперсия проекций определяется как:

$$\operatorname{Var}(\operatorname{proj}_{\mathbf{v}}) = \frac{1}{n-1} \sum_{i=1}^{n} (\mathbf{x}_i \cdot \mathbf{v})^2$$

В матричной форме сумма квадратов проекций равна:

$$\sum_{i=1}^{n} (\mathbf{x}_i \cdot \mathbf{v})^2 = (\mathbf{X}\mathbf{v})^T (\mathbf{X}\mathbf{v}) = \mathbf{v}^T \mathbf{X}^T \mathbf{X}\mathbf{v}$$

где $\mathbf{X}\mathbf{v} \in \mathbb{R}^{n \times 1}$ содержит проекции всех объектов. Таким образом, дисперсия:

$$Var(proj_{\mathbf{v}}) = \frac{1}{n-1} \mathbf{v}^T \mathbf{X}^T \mathbf{X} \mathbf{v}$$

Подставляя $\Sigma = \frac{1}{n-1} \mathbf{X}^T \mathbf{X}$, получаем:

$$Var(proj_{\mathbf{v}}) = \mathbf{v}^T \mathbf{\Sigma} \mathbf{v}$$

Задача сводится к максимизации квадратичной формы $\mathbf{v}^T \mathbf{\Sigma} \mathbf{v}$ при условии $\mathbf{v}^T \mathbf{v} = 1$.

Шаг 2: Свойства матрицы ковариаций

Матрица ковариаций Σ обладает следующими свойствами:

1. Симметричность:

$$\boldsymbol{\Sigma}^T = \left(\frac{1}{n-1}\mathbf{X}^T\mathbf{X}\right)^T = \frac{1}{n-1}(\mathbf{X}^T\mathbf{X})^T = \frac{1}{n-1}\mathbf{X}^T\mathbf{X} = \boldsymbol{\Sigma}$$

Таким образом, Σ — симметричная матрица.

2. **Неотрицательная определённость**: Для любого ненулевого вектора $\mathbf{w} \in \mathbb{R}^m$.

$$\mathbf{w}^T \mathbf{\Sigma} \mathbf{w} = \frac{1}{n-1} \mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w} = \frac{1}{n-1} ||\mathbf{X} \mathbf{w}||^2 \ge 0$$

Так как $\|\mathbf{X}\mathbf{w}\|^2 \ge 0$, Σ неотрицательно определена. Если \mathbf{X} имеет полный ранг $(n \ge m)$, то Σ положительно определена.

3. Спектральное разложение: Согласно спектральной теореме для симметричных матриц, Σ раскладывается как:

$$\Sigma = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T$$

где $\mathbf{V} = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m]$ — ортогональная матрица собственных векторов $(\mathbf{v}_i^T \mathbf{v}_j = \delta_{ij})$, а $\mathbf{\Lambda} = \mathrm{diag}(\lambda_1, \lambda_2, \dots, \lambda_m)$ — диагональная матрица неотрицательных собственных значений, упорядоченных как $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_m \geq 0$. Собственные векторы удовлетворяют:

$$\Sigma \mathbf{v}_i = \lambda_i \mathbf{v}_i$$

Шаг 3: Максимизация квадратичной формы

Необходимо решить задачу:

$$\max_{\mathbf{v}} \mathbf{v}^T \mathbf{\Sigma} \mathbf{v}$$
 при условии $\mathbf{v}^T \mathbf{v} = 1$

По спектральной теореме любой единичный вектор ${\bf v}$ можно представить в базисе собственных векторов:

$$\mathbf{v} = \sum_{i=1}^{m} \alpha_i \mathbf{v}_i,$$
 где $\sum_{i=1}^{m} \alpha_i^2 = 1$

Квадратичная форма равна:

$$\mathbf{v}^T \mathbf{\Sigma} \mathbf{v} = \left(\sum_{i=1}^m \alpha_i \mathbf{v}_i\right)^T \mathbf{\Sigma} \left(\sum_{j=1}^m \alpha_j \mathbf{v}_j\right) = \sum_{i=1}^m \sum_{j=1}^m \alpha_i \alpha_j \mathbf{v}_i^T \mathbf{\Sigma} \mathbf{v}_j$$

Используя $\mathbf{\Sigma}\mathbf{v}_j=\lambda_j\mathbf{v}_j$ и ортогональность $\mathbf{v}_i^T\mathbf{v}_j=\delta_{ij},$ получаем:

$$\mathbf{v}^T \mathbf{\Sigma} \mathbf{v} = \sum_{i=1}^m \sum_{j=1}^m \alpha_i \alpha_j \lambda_j \mathbf{v}_i^T \mathbf{v}_j = \sum_{i=1}^m \alpha_i^2 \lambda_i$$

Поскольку $\lambda_1 \geq \lambda_i$ для всех i

$$\mathbf{v}^T \mathbf{\Sigma} \mathbf{v} = \sum_{i=1}^m \alpha_i^2 \lambda_i \le \lambda_1 \sum_{i=1}^m \alpha_i^2 = \lambda_1$$

Равенство достигается при $\mathbf{v} = \mathbf{v}_1$, собственном векторе, соответствующем наибольшему собственному значению λ_1 . Таким образом, максимальная дисперсия:

$$Var(proj_{\mathbf{v}}) = \lambda_1$$

достигается при $\mathbf{v} = \mathbf{v}_1$.

Шаг 4: Последующие главные компоненты

Вторая главная компонента \mathbf{v}_2 максимизирует дисперсию при условии ортогональности к \mathbf{v}_1 : $\mathbf{v}_2^T\mathbf{v}_1=0$. Представим $\mathbf{v}=\sum_{i=1}^m\alpha_i\mathbf{v}_i$ с $\sum_{i=1}^m\alpha_i^2=1$. Условие ортогональности:

$$\mathbf{v}^T \mathbf{v}_1 = \sum_{i=1}^m \alpha_i \mathbf{v}_i^T \mathbf{v}_1 = \alpha_1 = 0$$

Таким образом, $\mathbf{v} = \sum_{i=2}^m \alpha_i \mathbf{v}_i$, и:

$$\mathbf{v}^T \mathbf{\Sigma} \mathbf{v} = \sum_{i=2}^m \alpha_i^2 \lambda_i \le \lambda_2 \sum_{i=2}^m \alpha_i^2 = \lambda_2$$

Максимум достигается при $\alpha_2 = 1, \ \alpha_i = 0$ для i > 2, то есть $\mathbf{v} = \mathbf{v}_2$.

Аналогично, k-я главная компонента — это собственный вектор \mathbf{v}_k , соответствующий λ_k , ортогональный всем $\mathbf{v}_1, \dots, \mathbf{v}_{k-1}$.

Шаг 5: Заключение

Главные компоненты — это собственные векторы матрицы Σ , упорядоченные по убыванию собственных значений:

- Первая главная компонента ${\bf v}_1$ соответствует λ_1 и задаёт направление максимальной дисперсии.
- Вторая главная компонента \mathbf{v}_2 соответствует λ_2 и максимизирует дисперсию в подпространстве, ортогональном \mathbf{v}_1 , и так далее.

4 Реализация

Реализация выполнена на Python с использованием собственных классов и методов для матричных операций. Все операции производятся над разреженными матрицами. Ниже описаны ключевые функции.

4.1 Метод Гаусса

Метод Гаусса с частичным выбором главного элемента решает СЛАУ Ax = b.

4.2 Центрирование данных

Центрирование вычитает среднее значение по каждому признаку.

4.3 Матрица ковариаций

Матрица ковариаций вычисляется по центрированным данным.

4.4 Собственные значения и векторы

Собственные значения находятся методом бисекции, а векторы — решением однородной СЛАУ.

4.5 Полный алгоритм РСА

Основная функция РСА объединяет все шаги.

4.6 Анализ шума

Функция add_noise_and_compare добавляет гауссов шум и сравнивает результаты PCA.

5 Результаты

Для тестирования использовалась матрица X размером 4×2 :

$$X = \begin{bmatrix} 1 & 2 \\ 4 & 3 \\ 5 & 6 \\ 8 & 7 \end{bmatrix}$$

Применён шум с уровнем 0.2. Результаты функции add_noise_and_compare:

- Доля объяснённой дисперсии (без шума): 1.
- Доля объяснённой дисперсии (с шумом): 1.
- Среднеквадратичная ошибка проекций: 1.24.

Рис. 1: Визуализация проекций на первые две главные компоненты для датасета iris.