Name:					
Roll No.:					
Invi	gilato	r's Si _{	gnature :		
CS/BCA/SEM-1/BM-101/2011-12					
2011					
MATHEMATICS					
Time Allotted: 3 Hours					Full Marks: 70
The figures in the margin indicate full marks.					
Candidates are required to give their answers in their own words					
as far as practicable.					
GROUP – A					
(Multiple Choice Type Questions)					
1. Choose the correct alternatives for any ten of the following : $10 \times 1 = 10$					
i) The degree of the polynomial ($x^2 + x - 2$) / ($x - 1$) is					
		a)	0	b)	1
		c)	2	d)	3.
	ii) If G be a group and $a, b \in G$. Then $(a^{-1} b)^{-1}$ is equal				
		to			
		a)	ab ^{- 1}	b)	b-1a
		c)	$a^{-1} b^{-1}$	d)	$b^{-1}a^{-1}$.

iii)
$$\frac{\partial}{\partial x} (x^y) =$$

a) 1

- b) yx^y
- c) $x^y \log x$
- d) yx^{y-1} .

If $P = \{ 2, 4, 6, 7, 8, 9 \}$, $Q = \{ 1, 2, 6, 9 \}$ then $P \neq Q$ iv) is

- a) {1,2,6} b) {2,6,9}
- c) {1, 6, 9} d) {4, 6, 9}.

The value of $\underset{x \to 3}{Lt} \frac{x^3 - 3^3}{x - 3}$ is v)

b)

c)

d)

If A be a matrix whose inverse exists then which of the vi) following is not true?

- a) $(A^T)^{-1} = (A^{-1})^T$
- b) $A^{-1} = (\det(A))^{-1}$
- c) $(A^2)^{-1} = (A^{-1})^2$
- d) none of these.

- vii) The equation $x^4 + 2x^2 7x 5 = 0$ has
 - a) one real roots and three complex roots
 - b) one complex roots and three real roots
 - c) two real roots and two complex roots
 - d) four real roots.
- viii) Cardan's method is used for solving equation of degree
 - a) 2

b) 3

c) 4

- d) none of these.
- ix) If α , β , γ be the roots of x^3 $3x^2$ + 6x 2 = 0, then $\sum \alpha \beta$ is
 - a) 3

b) 6

c) 2

- d) none of these.
- x) $f(x, y) = \sqrt{x} + \sqrt{y}$ is a function of degree
 - a) $\frac{1}{2}$

b) $\frac{1}{3}$

c) 0

d) $\frac{1}{4}$

- xi) The equation $r = 3 \sin \theta + 4 \cos \theta$ represents
 - a) a parabola
- b) an ellipse
- c) a straight line
- d) a circle.
- xii) The inverse of the matrix $\begin{bmatrix} 2 & 3 \\ 4 & 6 \end{bmatrix}$ is
 - a) $\begin{bmatrix} 2 & -3 \\ 4 & 6 \end{bmatrix}$
- b) $\begin{bmatrix} 1 & 2 \\ -\frac{3}{2} & 3 \end{bmatrix}$
- c) $\begin{bmatrix} -2 & 4 \\ -3 & 6 \end{bmatrix}$
- d) does not exist.

GROUP - B (Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. Prove that the set of real numbers of the form $a + b \sqrt{2}$ where a and b are rational numbers, forms a field under addition and multiplication.
- 3. Solve the equation $x^3 9x^2 + 14x + 24 = 0$, two of whose roots are in the ratio 3:2.
- 4. Prove that, any square matrix can be expressed assume of a symmetric matrix and a skew-symmetric matrix.

5. If
$$u = \tan^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$$
, then show that
$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \frac{1}{4}\sin 2u.$$

6. A function f(x) is defined as follows

$$f(x) = 1 + x \text{ when } x \le 2,$$

= 5 - x when x > 2.

Show that f(x) is continuous at x = 2 but f'(2) does not exist.

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

7. a) State Descart's rule of sign. Using this rule find the nature of the roots of the equation

$$x^4 - 7x^3 + 21x^2 - 9x + 21 = 0.$$

b) Solve the following system of linear equations by Cramer's rule

$$x - y + 2z = 1$$

$$x + y + z = 2$$

$$2x-y+z=5.$$

c) If by a transformation of one rectangular axis to another with same origin the expression ax + by changes to $a^{\top}x^{\top} + b^{\top}y^{\top}$, Prove that $a^{2} + b^{2} = a^{\top 2} + b^{\top 2}$.

- 8. a) Show that the equation $20x^2 + 15xy + 9x + 3y + 1 = 0$ represents a pair of intersecting straight lines which are equidistant from the origin.
 - b) Show that $\cos x > 1 \frac{x^2}{2}$ if $0 < x < \frac{\pi}{2}$.
 - c) If α , β , γ be the roots of the equation

$$x^3 - px^2 + qx - r = 0$$
, then find the value of $\sum \frac{1}{\alpha}$.

9. a) If $A = \{a, b, c, d, e\}$, $B = \{c, a, e, g\}$ and $C = \{b, e, f, g\}$,

then show that
$$(A \cup B) \mathbf{I} C = (A \mathbf{I} C) \cup (B \mathbf{I} C)$$
.

b) Reduce the following equation to the canonical form and determine the nature of the conic represented by it

$$x^2 - 4xy + 4y^2 - 12x - 6y - 39 = 0.$$

c) Evaluate $\lim_{x \to 1} \left(\frac{x}{x-1} - \frac{1}{\log x} \right)$.

1054

10. a) Evaluate
$$\int \frac{\mathrm{d}x}{(1+x)\sqrt{1-x^2}}.$$

b) If PSQ be a focal chord of a conic with focus S and semi-latus rectum l, then prove that $\frac{1}{SP} + \frac{1}{SQ} = \frac{2}{l}$.

c) If
$$A - 2B = \begin{bmatrix} 0 & 6 & 26 \\ 6 & -9 & 12 \\ 2 & 9 & -10 \end{bmatrix}$$
 and

$$2A + B = \begin{bmatrix} 10 & -3 & 4 \\ 12 & -3 & 4 \\ 4 & 3 & 0 \end{bmatrix}, \text{ find } A \text{ and } B.$$

11. a) If G be a group such that $(ab)^2 = a^2b^2 \ \forall \ a, \ b \in G$, show that the group G is abelian.

b) Show that
$$\int_{0}^{1} \frac{\log (1+x)}{1+x^{2}} dx = \frac{\pi}{8} \log 2.$$

c) If $y = e^{-x} \sin x$, then show that $y_4 + 4y = 0$.