

Hierarchical Convolutional Features for Visual Tracking

Chao Ma, Jia-Bin Huang, Xiaokang Yang, and Ming-Hsuan Yang

Introduction

Challenges:

► Significant appearance variations caused by deformation, abrupt motion, illumination changes, background clutter, heavy occlusion, out-of-view, etc.

Contributions:

- ► Use the rich feature hierarchies of CNNs as target representations for visual tracking, where both semantics and fine-grained details are simultaneously exploited to handle large appearance variations and avoid drifting;
- Adaptively learn linear correlation filters on each CNN layer to alleviate the sampling ambiguity, and infer the target location using the multi-level correlation response maps in a coarse-to-fine fashion.

Our Observation

Fig. 1. Visualization of the CNN features using VGG-Net-19 [1].

- ► The *conv5-4* layer is less effective to locate the step edge due to its low spatial resolution;
- ► The *conv3-4* layer is more useful for precise localization.

Method Overview

Fig. 2. Main steps of the proposed algorithm.

- Crop the search window;
- Compute the response map for each layer;
- Estimate translation hierarchically.

CNN Features

- Fig. 3. Visualization of convolutional layers.
- (d) is with semantic abstraction, and is robust to appearance changes;
- ► (b) (c) contains more fine-grained spatial details, and is helpful for precise localization;
- ► It is important to exploit the merits of all layers for robust visual tracking.

Correlation Filters

A correlation filter \mathbf{w} is trained from all the circularly shifted input \mathbf{x} with a Gaussian function label $y_{m,n}$

$$\min_{\mathbf{w}} \sum_{m,n} \|\mathbf{w} \cdot \mathbf{x}_{m,n} - y(m,n)\|^2 + \lambda \|\mathbf{w}\|_2^2, \qquad (1)$$

where $\mathbf{w} \cdot \mathbf{x}_{m,n} = \sum_{d=1}^{D} \mathbf{w}_{m,n,d}^{\top} \mathbf{x}_{m,n,d}$. Using the FFT trick, (1) is minimized in the frequency domain on the d-th $(d \in \{1, \ldots, D\})$ channel as

$$\mathbf{W}^{d} = \frac{\mathbf{Y} \odot \bar{\mathbf{X}}^{d}}{\sum_{i=1}^{D} \mathbf{X}^{i} \odot \bar{\mathbf{X}}^{i} + \lambda}.$$
 (2)

Given an new image on the I-th layer with feature \mathbf{z} of size $M \times N \times D$, the response is:

$$f_I = \mathcal{F}^{-1} \left(\sum_{d=1}^{D} \mathbf{W}^d \odot \bar{\mathbf{Z}}^d \right).$$
 (3)

Overall Performance

Fig. 4. Distance precision and overlap success plots on OTB-100 [3] using OPE,TRE and SRE.

More Results

on at a threshold of 20 pixels, overlap success (OS) rate at a threshold of 0.5 and center location error (CLE) on OTB-50 (I) [2] and OTB-100 (II) [3].

		Ours	DLT	KCF	STC	Struck	SCM	СТ	LSHT	CSK	MIL	TLD	MEEM	TGP
DP rate (%)		89.1	54.8	74.1	54.7	65.6	64.9	40.6	56.1	54.5	47.5	60.8	83.0	70.5
	Ш	83.7	52.6	69.2	50.7	63.5	57.2	35.9	49.7	51.6	43.9	59.2	<u>78.1</u>	64.3
OS rate (%)		74.0	47.8	62.2	36.5	55.9	61.6	34.1	45.7	44.3	37.3	52.1	69.6	62.8
	Ш	65.5	43.0	54.8	31.4	51.6	51.2	27.8	38.8	41.3	33.1	49.7	62.2	53.5
CLE (pixel)		15.7	65.2	35.5	80.5	50.6	54.1	78.9	55.7	88.8	62.3	48.1	20.9	51.3
	Ш	22.8	66.5	45.0	86.2	47.1	61.6	80.1	68.2	305	72.1	60.0	<u>27.7</u>	55.5
Speed (FPS)		11.0	8.59	245	687	10.0	0.37	38.8	39.6	<u>269</u>	28.1	21.7	20.8	0.66
	Ш	10.4	8.43	243	653	9.84	0.36	44.4	39.9	<u>248</u>	28.0	23.3	20.8	0.64

Ablation Study

Fig. 5. Results with VGG-Net and AlexNet. c5,c4 and c3: each single convolutional layer; c5-c4: the combination of *conv5* and *conv4*; c543: the concatenation of three convolutional layers.

Discussion

Our method performs favorably against state-of-the-art methods:

- ► CNN features (e.g., VGG-Net) learned with category-level supervision are effective in discriminating targets from background;
- ► The deeper layer (conv5-4) is insensitive to appearance changes, and is weighted more than earlier layers (conv3-4 and conv4-4).

Reference

- [1] K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," *ICLR*, 2015.
- [2] Y. Wu, J. Lim, and M.-H. Yang, "Online object tracking: A benchmark," in *CVPR*, 2013.
- [3] Y. Wu, J. Lim, and M.-H. Yang, "Object tracking benchmark," *TPAMI*, PrePrints.