Numerik I Dörfler SS08 - Vorlesungsmitschrieb

Inhaltsverzeichnis

	0.1	Aufga	ben
	0.2	Hilfsm	ittel
1	Anw	vendung	gsbeispiele 3
	1.1		uterTomographie
		1.1.1	Modell
		1.1.2	Das Tomographie-Problem
		1.1.3	Ein diskretes Tomographie-Problem
	1.2	Wärm	eleitung
		1.2.1	Wärmeleitungsgleichung
		1.2.2	Diskretisierung
	1.3	Berech	nnung elektrostatischer Felder
		1.3.1	Elektrostatische Potenziale und Felder
		1.3.2	Das Prinzip der virtuellen Arbeit
		1.3.3	Das Poisson-Problem
		1.3.4	Diskretisierung des Poissonproblems
		1.3.5	Konvergenzbetrachtung
2	Run	dungsf	ehler und numerische Stabilität 11
_	2.1	_	en der Genauigkeit
	2.2		arstellung
		2.2.1	Zahlsysteme
		2.2.2	Maschinenzahlen
		2.2.3	Rundungsfehleranalyse
	2.3		tionen von Abbildungen
	2.0	2.3.1	Norm- und komponentenweise Kondition
		2.3.1	Beispiele
	2.4		ität numerischer Algorithmen
	∠. '1	2.4.1	Vorwärtsanalyse
		2.4.1 $2.4.2$	Rückwärtsanalyse
		4.4.4	ituckwai isanaiyst

3	Line	are Gleichu	ingssysteme 18	8
	3.1	Direkte Ve	erfahren: Gauß-Elimination	8
		3.1.1 Da	s Gaußsche Eliminationsverfahren	8
		3.1.2 Die	e LR-Zerlegung	9
		3.1.3 Piv	votisierung	2
		3.1.4 Rec	chenaufwand	3
		3.1.5 Ga	uß-Elimination für Bandmatrizen	3
		3.1.6 Blo	ock-Gauß-Elimination	4
		3.1.7 Exi	istenz der LR -Zerlegung ohne Pivotisierung $\ldots 2$	5
		3.1.8 Nu	merische Stabilität	6
		3.1.9 Bei	merkungen	6
	3.2	Cholesky-Z	Zerlegung	7
	3.3	Iterative V	$V_{ m erfahren}$	8
		3.3.1 Bas	$sisiteration \dots \dots$	8
		3.3.2 Ko	nvergenz linearer Interationen	8
		3.3.3 Die	e "klassischen Iterationsverfahren"	C
		3.3.4 Ko	nvergenz des Jakobi- und Gauß-Seidel-Verfahrens	2
		3.3.5 Ko	nvergenzsatz des SOR-Verfahrens	3
		3.3.6 Ko	nvergenz des SSOR	4
		3.3.7 Bei	ispiele	4
		3.3.8 Ko	nsistent geordnete Matrizen	5
		3.3.9 Rec	chenaufwand	6
		3.3.10 Ide	e Des Mehrgitterverfahrens	8
	3.4	Das CG-V	Terfahren	9
		3.4.1 Das	s Gradientenverfahren	9
		3.4.2 Feb	nlerminimierung auf Unterräumen 40	C
		3.4.3 Kr	ylovräume	1
		3.4.4 Da	s CG-Verfahren nach Hestenes/ Stiefel (1954)	1
		3.4.5 Ko	nvergenz des CG-Verfahrens	4
		3.4.6 Voi	$egin{array}{cccccccccccccccccccccccccccccccccccc$	7
	3.5	GMRES (Generalized minimal residuals, 1986)	8
		3.5.1 Mi	nmale Residuen	8
		3.5.2 Ko	nstruktion des GMRES-Verfahrens	9
4		ntlineare Gl	•	
	4.1	-	(Ergänzung 5)	
			spunkte und Nullstellen	
			nachscher Fixpunktsatz	
			ispiele	
			nvergenzordnung	
	4.2		g von Nullstellen	
			trema (Ergänzung 7) 50	
			llstellen reeller Funktionen	
		4.2.3 Lol	kale Konvergenz des Newtonverfahrens 60	0

4.2.4 Globale Konvergenz	4.2.4	Globale Konvergenz																											(i2
--------------------------	-------	--------------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	----

Einteilung der angewandten und numerischen Mathematik

0.1 Aufgaben

- Modellbildung (mathematische Formulierung für physikalische, technische, biologische, ökonomische, ... Prozesse)
- Diskretes Modell (Reduktion auf ein Modell mit endlich vielen zu bestimmenden Parametern)
- Algorithmenentwurf (Befehlsfolge zur Lösung des diskreten Problems)
- Nachweis der "Konvergenz" und "Stabilität"
- Komplexität und Effizienz

0.2 Hilfsmittel

- Ana I-III, lineare Algebra, Funktionalanalysis, partielle Differentialgleichungen und andere "reine Mathematik"
- Programmiersprachen
- Rechnerarchitekturen
- Kenntnisse im Anwendungsgebiet
- Bandbreite: Numerische Analysis wissenschaftliches Rechnen

1 Anwendungsbeispiele

1.1 ComputerTomographie

1.1.1 Modell

Tomographie-Problem:

Rekonstruiere aus den Intensitätsmessungen die innere Struktur von Ω .

1.1.2 Das Tomographie-Problem

x Koordinate längs eines Strahles S,

I(x) Intensität in $x, I(0) = I_0, I_S = I(x_D), S = [0, x_D]$

 $\varrho(x)$ Absorptionskoeffizient in x: $\varrho(x) \geq 0$ für $x \in [0, x_D]$ und $\varrho = 0$ außerhalb von Ω

Modell der Absorption

Abnahme der Intensität zwischen x und $x+\Delta x$ (Δx klein) ist proportional zur Intensität

$$I(x + \Delta x) - I(x) \sim -I(x)\Delta x$$

Bildchen

Wir setzen daher $I(x + \Delta x) - I(x) = -\varrho(x)I(x)\Delta x + \underbrace{\mathcal{O}(\Delta x^2)}_{\leq C(\Delta x)^2}$.

Teilen durch Δx und $\Delta x \rightarrow 0$ führt auf

$$\frac{dI}{dx}(x) = I'(x) = -\varrho(x)I(x) \ \forall x \in S$$

Für I(x) > 0 gilt

$$(\log(I(x)))' = \frac{I'(x)}{I(x)} = -\varrho(x)$$

Integration von 0 nach x_D liefert:

$$\log\left(\frac{I_0}{I_S}\right) = \int_0^{x_D} \varrho(x) \, \mathrm{d}x = \int_S \varrho$$

Die Radontransformation

Zu einem Winkel φ betrachten wir ein Bündel von Parallelstrahlen, welche mittels s parametrisiert sind.

$$\omega(\varphi) = [\cos(\varphi); \sin(\varphi)]$$

d.h. $|\omega(\varphi)| = 1$. $\omega(\varphi)^{\top}$ sei der um $\frac{\pi}{2}$ gedrehte Vektor in mathematisch positiver Richtung (Gegenuhrzeigersinn)

Zu $\varrho : \mathbb{R}^2 \to \mathbb{R}$, gegeben, mit Träger in Ω (supp $(\varrho) := \overline{\{x \in \mathbb{R}^2 : \varrho(x) > 0\}}$) definieren wir die Radontransformierte $R_{\varrho} : \mathbb{R} \times [0, 2\pi] \to \mathbb{R}$ wie folgt:

$$R_{\varrho}(\delta, \varphi) = \int_{\mathbb{R}} \varrho(\delta\omega(\varphi) + t\omega(\varphi)^{\top}) dt$$

Bemerkung

Die Radontransformierte R ist linear: $R(\lambda \varrho_1 + \varrho_2) = \lambda R_{\varrho_1} + R_{\varrho_2}$ für alle $\lambda \in \mathbb{R}$ und Funktionen ϱ_1, ϱ_2 .

Mathematisches Tomographie-Problem:

Finde zu gegebenem $f: \mathbb{R} \times [0, 2\pi) \to \mathbb{R}$ ein $\varrho: \mathbb{R}^2 \to \mathbb{R}$ mit $R_{\varrho} = f$

Aufgabe:

Existenz und Eindeutigkeit einer Lösung (unter Voraussetzungen). Diskutiere "Stabilität": Ist Δf eine Störung des Datums f und $\Delta \varrho$ die daraus resultierende Störung der Lösung ϱ , gilt dann $\|\Delta \varrho\| \le C \|\Delta f\|$ mit nicht zu großem C ($\|\cdot\|$ Abstand)

1.1.3 Ein diskretes Tomographie-Problem

Datenerhebung ist diskret s_1, \ldots, s_n Parameter der Parallelstrahlen $\varphi_1, \ldots, \varphi_m$ Winkeleinstellungen

Problem: Zu gegebenem $f: \mathbb{R} \times [0, 2\pi) \to \mathbb{R}$ finde $\varrho: \mathbb{R}^2 \to \mathbb{R}$ mit

$$R_{\rho}(s_i, \varphi_j) = f(s_i, \varphi_j) \quad i = 1, \dots, n; \ j = 1, \dots, m$$

So nicht lösbar, denn es gibt unendlich viele ϱ , die dies lösen. Wir benötigen ein endlich dimensionales Modell für ϱ

Idee: Führe Rasterungen ein (Fernsehen, Zeitung)

lexikographische Anordnung: Charakteristische Funktion einer Zeile $Z_i:\chi_{Z_i}:\mathbb{R}^2\to\mathbb{R}$

$$\chi_{Z_i} = \begin{cases} 1, & x \in Z_i \\ 0, & \text{sonst} \end{cases}$$

Ansatz für $\tilde{\varrho}$ (diskretes Modell)

$$\tilde{\varrho}(x) = \sum_{i=1}^{M} \tilde{\varrho}_i \chi_{Z_i}(x)$$

Die Zahlen $\tilde{\varrho_i}$ sind zu bestimmen aus den Messdaten. Einsetzen:

$$f(s_i, \varphi_j) \stackrel{!}{=} R_{\tilde{\varrho}}(s_i, \varphi_j) = R(\sum_{i=1}^{M} \tilde{\varrho}_i \chi_{Z_i})(s_i, \varphi_j) \stackrel{R \text{ linear }}{=} \sum_{i=1}^{M} \tilde{\varrho}_i(R\chi_{Z_i})(s_i, \varphi_j)$$

Lexikographische Anordnung der Punktepaare $[s_i, \varphi_j]$:

$$\underbrace{[s_1,\varphi_1]}_{=x_1},\underbrace{[s_2,\varphi_1]}_{=x_2},\ldots,\underbrace{[s_n,\varphi_1]}_{=x_n},\underbrace{[s_1,\varphi_2]}_{=x_{n+1}},\ldots,\underbrace{[s_n,\varphi_m]}_{=x_N}, \quad N=n\cdot m$$

Eineindeutige Zuordnung

$$x_k \leftrightarrow [s_i, \varphi_i], \ k = (j-1)n + i$$

Wir schreiben: $f_k := f(s_i, \varphi_j), A_{kl} = R\chi_{Z_l}(x_k) = R\chi_{Z_l}(s_i, \varphi_j)$ und erhalten

$$\sum_{l=1}^{M} A_{kl} \tilde{\varrho}_l = f_k \ k = 1, \dots, N$$

Dies kann man als lineares Gleichungssystem Au=b schreiben mit $A=[A_{kl}]_{kl}\in\mathbb{R}^{N,M};\ b=[f_k]_k\in\mathbb{R}^N;\ u=[\tilde{\varrho}_l]_l\in\mathbb{R}^M$

1.2 Wärmeleitung

1.2.1 Wärmeleitungsgleichung

Wärmetransport entlang eines Stabes oder Drahtes (Eindimensionale Struktur) Bild

 $\Omega = (0,1)$, Variablen: t Zeit, x Ort q(t,x) Wärmestrom in x zur Zeit t

Erhaltungssatz

Die zeitliche Änderung des Energieinhaltes in $I \subset \mathbb{R}$ ist gleich der Wärmeflussbilanz über dem Rand von I zuzüglich der in I erzeugten oder verbrauchten Energie.

$$\partial_{t} \left(\int_{I} u(t, x) \, \mathrm{d}x \right) = q(t, x_{+}) + q(t, x_{-}) + \int_{I} \underbrace{\varrho(t, x)}_{\text{Quelldichte}} \, \mathrm{d}x$$

$$\Leftrightarrow$$

$$\int_{I} \left[\partial_{t} u(t, x) - \partial_{x} q(t, x) - \varrho(t, x) \right] \, \mathrm{d}x = 0$$

 $I = [x_-, x_+]$ Da I beliebig

$$\partial_t u(t,x) - \partial_x q(t,x) = \varrho(t,x) \quad \forall x \in (0,1), t > 0$$

Fourier: $q(t,x) \sim \partial_x u(t,x)$, also zum Beispiel

$$q(t,x) = \underbrace{a(t,x)}_{\text{Wärmeleitkoeff.}} \partial_x u(t,x)$$

Wir erhalten dann die Wärmeleitungsgleichung:

$$\partial_t u(t,x) - \partial_x (a(t,x)\partial_x u(t,x)) = \rho(t,x)$$
 (*)

Ziel: Gegeben $\alpha, \beta \in \mathbb{R}$, $\varrho : \mathbb{R}_{>0} \times [0,1) \to \mathbb{R}$, $\varphi : [0,1] \to \mathbb{R}$, $a : \mathbb{R}_{>0} \times (0,1) \to \mathbb{R}_{>0}$, finde $u : \mathbb{R}_{>0} \times (0,1) \to \mathbb{R}$, welches (*) löst und $u(t,0) = \alpha$, $u(t,1) = \beta$ und $u(0,x) = \varphi(x)$

Beispiele:

- keine Erzeugung, kein Verbrauch: $\varrho(t,x)=0$
- Wärmeabstrahlung: $\varrho(t,x) = \sigma u(t,x)^4$ (bei Draht)
- Chemische Reaktion: $\varrho(t,x) = \omega e^{-\lambda/u(t,x)}$ (Arrhenius Gesetz)

Fragestellungen der Analysis

- Formulierung der Gleichung
- Existenz von Lösungen
- Qualitative Eigenschaften der Lösung

stationäres Problem: Wir betrachten das zeitunabhängige Problem und lassen die Variable t weg (und A = 1, a = 0, b = 1). Es ergibt sich das RWP

$$\left\{ \begin{array}{ll} -u''(x) = \varrho(x) = \varphi(x,u(x)), & \forall x \in (0,1) \\ u(0) = \alpha, \ u(1) = \beta \end{array} \right.$$

1.2.2 Diskretisierung

Numerik des stationären Modells. Suchen endliches Modell.

Finite Differenzen: Wähle ein uniformes Gitter, d.h. zu $N \in \mathbb{N}$ wählen wir $h = \frac{1}{N+1}$ und "Gitterpunkte" $x_i = ih$ für $i = 0, \dots, N+1$ (N+2 Punkte).

Wir suchen Approximationen u_i an $u(x_i)$.

Randbedingungen $u_0 = \alpha$, $u_{N+1} = \beta$

$$u'(x_i) \approx \frac{u_i - u_{i-1}}{h}$$
 $u''(x_i) \approx \frac{u'(x_{i+1}) - u'(x_i)}{h} \approx \frac{u_{i+1} - 2u_i + u_{i-1}}{h^2}$

Also:

$$u_0 = \alpha,$$

$$-u_{i-1} + 2u_i - u_{i+1} = h^2 \varphi(x_i, u_i) \quad i = 1, \dots, N$$

$$u_{N+1} = \beta$$

Als Gleichungssystem:

$$\begin{bmatrix} 1 & & & & & \\ -1 & 2 & -1 & & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ & & & & 1 \end{bmatrix} \cdot \begin{bmatrix} u_0 \\ u_1 \\ \vdots \\ u_N \\ u_{N+1} \end{bmatrix} = h^2 \begin{bmatrix} 0 \\ \varphi(x_1, u_1) \\ \vdots \\ \varphi(x_N, u_N) \\ 0 \end{bmatrix} + \begin{bmatrix} \alpha \\ 0 \\ \vdots \\ 0 \\ \beta \end{bmatrix}$$

 $\Leftrightarrow Au_h = \Phi(u_h) \text{ mit } A \in \mathbb{R}^{N+2,N+2}, \ u_h \in \mathbb{R}^{N+2}, \ \Phi: \mathbb{R}^{N+2} \to \mathbb{R}^{N+2}$

Besteht rechts keine Abhängigkeit von u_h , so ist dies ein lineares Gleichungssystem. Andernfalls ist es ein Nullstellenproblem:

$$F(u_h) = Au_h - \Phi(u_h) \stackrel{!}{=} 0$$

Fragestellungen der Numerischen Analysis:

- 1. Gilt $u_n \to u$ für $N \to \infty$? In welchem Sinne?
- 2. Wie findet man Nullstellen von F (N groß)?
- 3. Wie löst man Gleichungssysteme für große N?
- 4. A ist "dünnbesetzt", d.h. hat nur 3 Nichtnullelemente pro Zeile, unabhängig von N.
- 5. Lösbarkeit der diskreten Gleichung? Eigenschaften von u_h
- 6. Verfahren effizient? Wie viele Operationen braucht ein Algorithmus? Was wäre ggf. optimal?
- 7. Aussagen über die Güte des Resultats

1.3 Berechnung elektrostatischer Felder

Bild

$$\Phi: \mathbb{R}^2 \setminus \Omega \to \mathbb{R}$$
 "Potenzial", $\Phi(x) \to 0$ für $|x| \to \infty$
Elektrisches Feld: $E = -\nabla \Phi = \begin{bmatrix} -\partial_1 \Phi \\ -\partial_2 \Phi \\ -\partial_2 \Phi \end{bmatrix}$

1.3.1 Elektrostatische Potenziale und Felder

Bild $\partial \Omega = \partial O \cup \Gamma$

Wir suchen Φ mit $\Phi = 0$ auf Γ , $\Phi = 1$ auf ∂O .

 Φ heißt Porenzial und $E := -\nabla \Phi$ das elektrische Feld (oder grad (Φ))

1.3.2 Das Prinzip der virtuellen Arbeit

Wie sieht Φ in Ω aus? Wir definieren eine Menge von Funktionen:

$$U := \{ \varphi \in C^1(\Omega, \mathbb{R}) : \varphi = 0 \text{ auf } \Gamma, \ \varphi = 1 \text{ auf } \partial O \}$$

die Menge der zulässigen Potenziale. Das gesuchte Potenzial Φ ist dasjenige mit minimaler Feldenergie ε in U, d.h. mit $\varepsilon: U \to \mathbb{R}_{\geq 0}$ def. durch

$$\varepsilon(\Psi) = \frac{1}{2} \int_{\Omega} |\nabla \Psi|^2 = \frac{1}{2} \int_{\Omega} |\partial_1 \Psi|^2 + |\partial_2 \Psi|^2$$

gilt $\varepsilon(\Phi) = \min_{\Psi \in U} \varepsilon(\Psi)$

Weiter def. wir $U_0 := \{ \xi \in C^1(\Omega, \mathbb{R}) : \xi = 0 \text{ auf } \partial \Omega \}$. Dann gilt: mit $\Phi \in U$ ist auch

 $\Phi + t\zeta \in U$, falls $\zeta \in U_0$ und $t \in \mathbb{R}$ ist. Ist Φ ein Minimum von ε , so wird die reellwertige Funktion $t \mapsto \varepsilon(\Phi + t\zeta)$ stationär in t = 0 sein.

$$\varepsilon'(\Phi)[\zeta] = \frac{\mathrm{d}}{\mathrm{d}t}\varepsilon(\Phi + t\zeta)|_{t=0} \stackrel{!}{=} 0$$

Es folgt

$$0 \stackrel{!}{=} \frac{1}{2} \int_{\Omega} |\nabla(\Phi + t\zeta)|^{2}$$

$$= \frac{1}{2} \frac{d}{dt} \cdot \left(\int_{\Omega} \left\{ |\nabla \Phi|^{2} + 2t \nabla \Phi \cdot \nabla \zeta + t^{2} \cdot |\nabla \zeta|^{2} \right\} \right)$$

$$= \int_{\Omega} \left\{ \nabla \Phi \cdot \nabla \zeta + t |\nabla \zeta|^{2} \right\}$$

d.h. für t = 0:

$$0 = \int\limits_{\Omega} \nabla \Phi \cdot \nabla \zeta \quad \forall \zeta \in U_0$$

"Das Prinzip der virtuellen Arbeit", "Variatonsgleichung" Erfüllt Φ die Variationsgleichung, ist es dann ein Minimum?

Sei $\Phi \in U$ beliebig. Dann ist $\Psi - \Phi \in U_0$. Es gilt:

$$\begin{array}{lcl} \varepsilon(\Psi) & = & \varepsilon(\Phi + \underbrace{\Psi - \Phi}) \\ & = & \varepsilon(\Phi) + \underbrace{\int\limits_{\Omega} \nabla\Phi \cdot \nabla(\Psi - \Phi)}_{=0} + \underbrace{\frac{1}{2} \int\limits_{\Omega} |\nabla(\Psi - \Phi)|^2 \varepsilon(\Phi)}_{=0} \\ & \geq & \varepsilon(\Phi) \end{array}$$

Sogar: $\varepsilon(\Psi) > \varepsilon(\Phi)$, falls $\Psi \neq \Phi$. Denn: $\int_{\Omega} |\nabla(\Psi - \Phi)|^2 = 0 \Rightarrow \nabla(\Psi - \Phi)(x) = 0 \ \forall x \in \Omega \Rightarrow (\Psi - \Phi)(x) = \text{const in } \Omega \Rightarrow \Psi = \Phi \text{ in } \Omega$, da $\Psi - \Phi|_{\partial\Omega} = 0 \text{ ist.}$

1.3.3 Das Poisson-Problem

Gaußscher Integralsatz:

$$\int\limits_{\Omega}\nabla\Phi\cdot\nabla\zeta=-\int\limits_{\Omega}\nabla\cdot\nabla\Phi\zeta\ , da\ \zeta|_{\partial\Omega}=0$$

Es gilt
$$\nabla \cdot \nabla = \operatorname{div} (\operatorname{grad}) = \Delta = \partial_1^2 + \partial_2^2 \implies \int_{\Omega} \Delta \Phi \zeta = 0 \ \forall \zeta \in U_0$$

$$\Rightarrow \Delta \Phi = \partial_1^2 \Phi + \partial_2^2 \Phi = 0$$

Allgemein: Posisson-Problem

Zu $\Omega \subset \mathbb{R}^d$ und $f: \Omega \to \mathbb{R}$, $r: \Omega \to \mathbb{R}$ finde $u: \Omega \to \mathbb{R}$ mit

$$-\Delta u = f \text{ in } \Omega$$
$$u = r \text{ auf } \Omega$$

1.3.4 Diskretisierung des Poissonproblems

$$\Omega = (0,1)^2$$
. Gitter sei $z_{ij} = \left[\frac{i}{n+1}, \frac{j}{n+1}\right] = h \cdot [i,j], \ n \in \mathbb{N}, \ i,j = 0, \dots, n+1, \ h = \frac{1}{n+1}$ Bild

Ist x_k ein Randpunkt, so gelte $u_k = r(x_k)$ ($u_k \approx u(x_k)$). Für die zweite Ableitung verwenden wir die Formeln aus dem eindimensionalen.

$$\begin{array}{ll} \partial_1^2 u(x_k) + \partial_2^2 u(x_k) & \approx & \frac{1}{h^2} (u_{k+1} - 2u_k + u_{k-1}) + \frac{1}{h^2} \left((u_{k+(n+2)} - 2u_k + u_{k-(n+2)}) \right) \\ & = & \frac{1}{h^2} \left(u_{k+(n+2)} + u_{k+1} - 4u_k + u_{k-1} - u_{k-(n+2)} \right) \end{array}$$

für x_k im Inneren von $\Omega.$ Wir erhalten das Gleichungssystem:

$$-u_{k+(n+2)} - u_{k+1} + 4u_k - u_{k-1} - u_{k-(n+2)} = h^2 f(x_k) \text{ für } x_k \in \Omega$$
$$u_k = r(x_k) \text{ für } x_k \in \partial \Omega$$

Formuliere dies als ein Gleichungssystem in Matrixschreibweise für den Vektor $[u_1, \ldots, u_N]$ Differenzenstern (hier "5-Punkte-Stern")

Bild

Das Gleichungssystem in lexikographischer Anordnung

Reduktion der Randwerte: Ziel: Eliminiere die trivialen Gleichungen Beispiel: 1d

1.
$$u_0 = \alpha$$

$$2. -u_2 + 2u_1 - u_0 = h^2 f_1$$

3. :

Jetzt: Eliminiere 1. und 2. wie folgt

$$u_2 + 2u_1 = \underbrace{h^2 f_1 + \alpha}_{\text{bekannt}}$$

Nun: Au = b mit $A \in \mathbb{R}^{n,n}$, $b \in \mathbb{R}^n$, $u \in \mathbb{R}^n$ und A hat die Gestalt

$$A = \begin{bmatrix} 2 & -1 \\ -1 & 2 & -1 \\ & \ddots & \ddots & \ddots \\ & & \ddots & \ddots & -1 \\ & & & -1 & 2 \end{bmatrix} =: \text{tridiag}(-1, 2, -1)$$

Analog reduzieren wir die Randwerte im 2d-System. Man erhält dann eine Blocktridia-

gonal
matrix
$$\begin{bmatrix} A & B \\ B & A & B \\ & \ddots & \ddots & \ddots \\ & & \ddots & \ddots & B \\ & & B & A \end{bmatrix} \in \mathbb{R}^{n^2,n^2} \text{ mit } A, B \in \mathbb{R}^{n,n}$$

1.3.5 Konvergenzbetrachtung

ÜA: Diese diskrete 2. Ableitung approximiert die exakte 2. Ableitung mit $\mathcal{O}(h^2)$ falls $u \in C^4(\mathbb{R})$. Mann kann dann zeigen, dass

$$\max_{k} |u''(x_k) - u_k''| \le Ch^2$$

mit einem von u unabhängigen C.

2 Rundungsfehler und numerische Stabilität

2.1 Grenzen der Genauigkeit

Wir haben uns in Kapitel I darauf verlassen, dass $\lim_{h\to 0} \frac{u(x+h)-u(x)}{h} = u'(x)$, falls $u\in C^1(\mathbb{R})$ auch auf dem Computer gilt. Wir rechnen das numerisch nach. Dazu definieren wir

$$g^{(1)}(x,h) = \frac{1}{h} (u(x+h) - u(x))$$

$$g^{(2)}(x,h) = \frac{1}{2h} (u(x+h) - u(x-h))$$

Vorwärtsdifferentienquotient bzw Mitteldifferenzenquotient $\operatorname{Sei} x \operatorname{fest} \operatorname{gew\"{a}hlt}$.

Wir stellen den Wert

$$E^{(i)}(h) := |g^{(i)}(x,h) - u'(x)|$$

als Funktion von h dar. Wir erwarten $E^{(i)}(h) = \mathcal{O}(h^{\kappa})$ für ein $\kappa \in \mathbb{N}$. Daraus folgt: $\log(E^{(i)}(h)) = C + \kappa \cdot \log(h)$. Im doppelt logarithmischen Plot erwarten wir eine Gerade mit Steigung κ

2.2 Zahldarstellung

2.2.1 Zahlsysteme

Dezimalbasis: Jede reelle Zahl x hat zur Basis 10 die Darstellung

$$x = x_M \cdot 10^M + x_{M-1} \cdot 10^{M-1} + \dots + x_0 \cdot 10^0 + x_{-1} \cdot 10^{-1} + \dots$$

mit Faktoren $x_l \in \{0, ..., 9\}$. Die Darstellung ist nicht notwendig endlich und nicht eindeutig $(0.\overline{9} = 1.0)$.

Dualbasis: Verwende 2 statt 10.

$$x = x_M \cdot 2^M + x_{M-1} \cdot 2^{M-1} + \ldots + x_0 \cdot 2^0 + x_{-1} \cdot 2^{-1} + \ldots$$

Hexadezimal: zur Bais 16, Speicheradressen: $0, \ldots, 9, A, \ldots, F$

Beispiele:

$$9_{10} = 8 + 1 = 2^{3} + 2^{0} = 1001_{2}$$

$$9.25_{10} = 1001.01_{2}$$

$$0.000\overline{1100}_{2} = \sum_{k=1}^{\infty} 2^{-4k} + 2^{-4k-1} = \sum_{k=1}^{\infty} \left(\frac{1}{16}\right)^{k} + \frac{1}{2} \left(\frac{1}{16}\right)^{k}$$

$$= \frac{3}{2} \left(\frac{1}{1 - \frac{1}{16}} - 1\right) = \frac{1}{10}$$

Bemerkung: $\frac{1}{10}$ hat im Dezimalsystem eine endliche, im Dualsystem eine unendliche Darstellung. Jedoch gilt: $\frac{1}{2} = 5 \cdot 10^{-1}$. Daher hat jede endliche Darstellung im Dualsystem eine endliche im Dezimalsystem.

2.2.2 Maschinenzahlen

Ein Rechner kennt nur endlich viele Zahlen. Man definiert eine Abbildung rd: $\mathbb{R} \to \mathbb{F}$ (Menge der Maschinenzahlen) durch Bestapproximation oder Abschneiden.. Im Dezimalsystem lautet die allgemeine Darstellung einer Maschinenzahl $y \in \mathbb{F}(10, L, E_{min}, E_{max})$:

$$y = \pm 0, \underbrace{*\cdots *}_{\text{Mantisse,}} \cdot 10^{\epsilon}$$

mit
$$e \in \{E_{min}, \dots, E_{max}\} \subset \mathbb{Z}$$

Die Maschinengenauigkeit ε hat nach Definition die Eigenschaft

$$\varepsilon := \inf\{x > 0 : \operatorname{rd}(1 - x) < 1$$

und es gilt:
$$\left|\frac{x-\mathrm{rd}(x)}{x}\right| \leq \varepsilon$$
 für $x \in [\min \mathbb{F}, \max \mathbb{F}] \setminus \{0\}$

In C oder FORTRAN

float, real*4
$$\varepsilon \approx 10^{-8}$$
 double, real*8 $\varepsilon \approx 10^{-16}$

Den arithmetischen Operationen $+,-,\cdot,/$ entsprechen Operationen in der Rechnerarithmetik $\tilde{+},\tilde{-},\tilde{\cdot},\tilde{/}$ und es gilt für $\circ\in\{+,-,\cdot,/\}$

$$\operatorname{rd}(x) \, \tilde{\circ} \, \operatorname{rd}(y) = x \, \circ \, y(1 + \varepsilon_{xy}) \, \operatorname{mit} \, |\varepsilon_{xy}| \leq \varepsilon$$

Leider gleten für das Zahlensystem \mathbb{F} viele der üblichen Regeln (z.B. Assoziativgesetz) (\to ÜA)

2.2.3 Rundungsfehleranalyse

Differenzenquotient: Wir halten in 1.1 die Differenzenquotienten $g^{(1)}(x,h)$ und $g^{(2)}(x,h)$ definiert.

$$g^{(1)}(x,h) = \frac{1}{h} \left(f(x+h)(1+\varepsilon_1) - f(x)(1+\varepsilon_2) \right) \cdot (1+\varepsilon_0)$$
$$= \left(\frac{f(xh) - f(x)}{h} + \frac{\varepsilon_1}{h} f(x+h) - \frac{\varepsilon_2}{h} f(x) \right) (1+\varepsilon_3)$$

Dann ist
$$|g^{(1)}(x,h) - f'(x)| = \mathcal{O}(h) + \mathcal{O}\left(\frac{\varepsilon}{h}\right)$$

Die Abschätzung ist optimal, wenn beide Summanden vergleichbar sind: $h \approx \frac{\varepsilon}{h} \Rightarrow h^2 \approx \varepsilon \Rightarrow h \approx \sqrt{\varepsilon}$. Der optimale Fehler ist dann $\mathcal{O}(\sqrt{\varepsilon})$. Analog für $g^{(2)}: h \approx \sqrt[3]{\varepsilon}$ und den Fehler $\sqrt[3]{\varepsilon}^2$

Skalarprodukt: Sei
$$S \equiv S(y) := [1, \dots, 1] \cdot y = \sum_{k=1}^{n} y_k$$
 für $y \in \mathbb{R}^n$.

Nun wollen wir $y \in \mathbb{F}^n$ annehmen und die Summe \tilde{S} in Rechnerarithmetik bestimmen.

Algorithmus

$$\begin{split} \tilde{S} &:= y_1 \\ \text{for } k = 2 : n \\ \tilde{S} &= \tilde{S} + y_k \\ \text{end} \end{split}$$

Beispiel: n=3

$$\tilde{S} = ((y_1 + y_2)(1 + \varepsilon) + y_3)(1 + \varepsilon_2) = (y_1 + y_2)(1 + \varepsilon_1)(1 + \varepsilon_2) + y_3(1 + \varepsilon_2)$$

Induktion:

$$\tilde{S} = (y_1 + y_2) \prod_{i=1}^{n-1} (1 + \varepsilon_i) + \sum_{k=3}^{n} y_k \prod_{i=k-1}^{n-1} (1 + \varepsilon_i)$$

mit $|\varepsilon_i| \leq \varepsilon$ für $i = 1, \ldots, n$

Lemma 1. Seien ε_i , ε wie oben, $\sigma_i \in \{\pm 1\}$ (i = 1, ..., n) Ist $n\varepsilon < 1$, so gilt

$$\prod_{i=1}^{n} (1 + \varepsilon_i)^{\sigma_i} = 1 + \vartheta_n$$

 $mit \ \vartheta_n \in \mathbb{R}, \ |\vartheta_n| \le \frac{n\varepsilon}{1 - n\varepsilon} =: \gamma_n$

Bemerkung: $n \approx 10^6$ in einfacher und $n \approx 10^{15}$ in doppelter Genauigkeit.

Beweis. Mit Induktion ÜA

Theorem 1. Für die Summation von n Zahlen in Rechnerarithmetik gilt die Abschätzung

$$|\tilde{S} - S| \le |y_1 + y_2|\gamma_{n-1} + \sum_{k=2}^{n} |y_k|\gamma_{n-k+1}$$

sowie

$$\frac{|\tilde{S} - S|}{|S|} \le \gamma_{n-1} \left| \frac{\sum_{k=1}^{n} |y_k|}{\sum_{k=1}^{n} y_k} \right| = \gamma_{n-1} \frac{S(|y|)}{|S(y)|}$$

wobei |y| hier komponentenweise zu verstehen ist.

Beachte: $\gamma_{n-1} \approx n\varepsilon$, falls $n\varepsilon \ll 1$

Beweis. Direkt aus der Darstellung von \tilde{S} und dem Lemma folgt die erste Abschätzung. Die γ_k wachsen monoton mit k, d.h. wir können $|\tilde{S}-S| \leq \gamma_{n-1}(|y_1|+|y_2|)+\gamma_{n-1}\sum\limits_{k=3}^n|y_k|$ abschätzen.

Bemerkungen

- $\gamma_{n-1} \approx n\varepsilon$
- Erst die betraglich kleinen Zahlen addieren
- Schlecht ist der Fall $|S(y)| \ll S(|y|)$, Dies gilt z.B. für Differenzenquotienten

2.3 Konditionen von Abbildungen

Erinnerung: Vektornorm, zugeordnete Operatornorm, verträgliche Operatornorm \rightarrow Ergänzungsblatt

Seien gegeben: Normierte lineare Vektorräume X,Y sowie $f:X\to Y$ stetige Abbildung.

2.3.1 Norm- und komponentenweise Kondition

Definition. Normweise absolute Kondition ist die kleinste Zahl $\kappa_{\rm abs}$ mit

$$||f(\tilde{x}) - f(x)||_Y \le \kappa_{\text{abs}} ||\tilde{x} - x||_X + o(||\tilde{x} - x||)_X \quad (\tilde{x} \to x)$$

Normweise relative Kondition ist die kleinste Zahl $\kappa_{\rm rel}$ mit

$$\frac{\|f(\tilde{x}) - f(x)\|_{Y}}{\|f(x)\|_{Y}} \le \kappa_{\text{rel}} \frac{\|\tilde{x} - x\|}{\|x\|_{X}} + o(\|\tilde{x} - x\|_{X}) \quad (\tilde{x} \to x)$$

 $f\ddot{u}r \ x \neq 0, f(x) \neq 0$

Komponentenweise relative Kondition ist die kleinste Zahl κ_r el mit

$$\left\| \frac{f(\tilde{x}) - f(x)}{f(x)} \right\|_{Y} \le \kappa_{\text{rel}} \left\| \frac{\tilde{x} - x}{x} \right\|_{X} + o(\|\tilde{x} - x\|_{X}) \quad (\tilde{x} \to x)$$

Je nach Größenordnung von $\kappa \in {\kappa_{\rm rel}, \kappa_{\rm abs}}$ nennt man eine Abbildung von f in x gut $(\kappa \approx 1)$ oder schlecht $(\kappa \gg 1)$ konditioniert

Ist f differenzierbare Abbildung, so setzen wir

$$\kappa_{\text{abs}} := \||f'(x)\||$$

$$\kappa_{\text{rel}} := \frac{\||f'(x)\|| \cdot \|x\|_X}{\|f(x)\|_Y} \quad \text{(normweise)}$$

$$\kappa_{\text{rel}} := \left\|\frac{|f'(x)| \cdot |x|}{|f(x)|}\right\|_Y \quad \text{(komponentenweise)}$$

Letzteres mit komponentenweiser Definition von $|\cdot|$ und Division. $|||\cdot|||$ Operatornorm zu $||\cdot||_X, ||\cdot||_Y$

2.3.2 Beispiele

• Addition: $f: \mathbb{R}^2 \to \mathbb{R}$, $[x_1, x_2] \mapsto x_1 + x_2$, $||x|| := |x_1| + |x_2| =: |x|_1$. Es gilt: f'(x) = [1, 1]. Also folgt:

$$\kappa_{\text{abs}} = \max_{y} \frac{|[1,1] \cdot y|}{|y|_{1}} \le \frac{|y_{1}| + |y_{2}|}{|y|_{1}} = 1$$

$$\kappa_{\text{rel}} = \frac{1 \cdot |x|_{1}}{|\underbrace{x_{1} + x_{2}}|} = \frac{|x_{1}| + |x_{2}|}{|x_{1} + x_{2}|} \quad \text{(normweise und komponentenweise)}$$

Die Addition zweier Zahlen ist "schlecht konditioniert" falls $x_1 \approx x_2$ (Stellen-auslöschung). Sie ist "gut konditioniert" falls $|x_1| + |x_2| = |x_1 + x_2| \Rightarrow \kappa_{\text{rel}} = 1$.

• Multiplikation zweier Zahlen $f: \mathbb{R}^2 \to \mathbb{R}, \ [x_1, x_2] \mapsto x_1 \cdot x_2, \ |\cdot|_1$. Es gilt: $f'(x) = [x_2, x_1]$

$$\kappa_{\text{abs}} = \max_{y} \frac{|f'(x) \cdot y|}{|y|_{1}} = \frac{|x_{2}y_{1} + x_{1}y_{2}|}{|y_{1}| + |y_{2}|} \le \max\{|x_{1}|, |x_{2}|\}$$

$$\kappa_{\text{rel}} = \left| \frac{|f'(x)| \cdot |x|}{|f(x)|} \right| = \frac{|[x_{2}, x_{1}] \cdot [x_{1}, x_{2}]|}{|x_{1} \cdot x_{2}|} = \frac{2 \cdot |x_{1}x_{2}|}{|x_{1}x_{2}|} = 2$$

- Lösen eines linearen Gleichungssystem: Gegeben: A invertierbar in $\mathbb{R}^{n,n}$, $b \in \mathbb{R}^n$ Finde $u \in \mathbb{R}^n$ sodass gilt Au = b
 - 1. Störung der rechten Seite b: $f(b):=u=A^{-1}b$ Wir betrachten die normweise Kondition: $f'(b)=A^{-1}$

$$\Rightarrow \kappa_{\rm abs} = |||A^{-1}|||$$

 $\|\cdot\|$ gewählte Vektornorm, $|||\cdot|||$ zugeordnete Operatornorm

$$\kappa_{\text{rel}} = \frac{\||A^{-1}\|| \cdot \|b\|}{\|A^{-1}b\|} = \frac{\||A^{-1}\|| \cdot \|AA^{-1}b\|}{\|A^{-1}b\|} \le \frac{\||A^{-1}\|| \cdot \||A\|| \cdot \|A^{-1}b\|}{\|A^{-1}b\|}$$
$$= \||A^{-1}\|| \cdot \||A\|| =: \text{cond}_{\|\|\cdot\|\|}(A) \text{ (Kondition von } A)$$

2. Einfluss der Störung von A:

Betrachte nun u als Funktion von A: $f: \mathbb{R}^{n,n} \to \mathbb{R}^n, \ f(A) = u = A^{-1}b$ Es gilt:

$$f'(A)E = -A^{-1}EA^{-1}b = -A^{-1}Eu$$

Daraus folgt:

$$|||f'(A)||| = \sup_{E} \frac{||f'(A)E||}{||E||} = \sup_{E} \frac{||A^{-1}Eu||}{||E||}$$

$$\leq \sup_{E} \frac{|||A^{-1}||| \cdot ||E||| \cdot ||u||}{||E||} = |||A^{-1}||| \cdot ||u||$$

$$\Rightarrow \kappa_{\text{rel}} \leq \frac{|||A^{-1}||| \cdot ||u|| \cdot |||A|||}{||u||} = \operatorname{cond}_{|||\cdot|||}(A)$$

2.4 Stabilität numerischer Algorithmen

Die Kondition von f in x beschreibt den unvermeidlichen Fehler der Rechenvorschrift $x \mapsto f(x)$.

Es sei f(x) die Vorschrift zur Berechnung von f(x) wir rechnen damit, dass selbst bei exakter Arithmetik auf \mathbb{F} der relative Fehler $\kappa_f(x)\varepsilon$ auftritt.

2.4.1 Vorwärtsanalyse

Definition. Der Stabilitätsindikator des Algorithmus $\tilde{f}(x)$ zur Berechnung von f(x) ist die kleinste Zahl σ , so dass gilt

$$\frac{\|\tilde{f}(\tilde{x})\|_{Y}}{\|f(\tilde{x})\|_{Y}} \le \sigma \underbrace{\kappa_{f}(\tilde{x})}_{\substack{\kappa_{f} \in \mathbb{N} \\ \text{norm}}} \varepsilon + o(\varepsilon) \quad (\varepsilon \to 0)$$

 $f\ddot{u}r \ alle \ \tilde{x} \ mit \ \|\tilde{x} - x\|_X \le \varepsilon \cdot \|x\|_X$

Der Algorithmus \tilde{f} ist stabil im Sinne der Vorwärtsanalyse, falls σ kleiner gleich der Anzahl der elementaren Rechenoperationen ist.

Beispiel: Die Summation:

$$\tilde{S}_1 := y_1$$

for $i = 2 : n \ \tilde{S}_i = \tilde{S}_{i-1} \oplus y$

Es gilt:

$$\frac{|\tilde{S}(y) - S(y)|}{|S(y)|} \le \gamma_{n-1} \varepsilon \cdot \frac{S(|y|)}{|S(y)|} = (n-1)\varepsilon \kappa_S + o(\varepsilon), \text{ falls } n\varepsilon \ll 1$$

Also $\sigma < n-1$, d.h. die Summation ist vorwärtsstabil.

2.4.2 Rückwärtsanalyse

Definition. Der Stabilitätsindikator der Rückwärtsanalyse des Algorithmus $x \mapsto \tilde{f}(x), \ x \in E$ ist die kleinstmögliche Zahl ϱ , so dass für alle $\tilde{x} \in E$ mit $\|\tilde{x} - x\|_X \le \varepsilon \|x\|_X$ ein $\hat{x} \in E$ existiert mit $\tilde{f}(\tilde{x}) = f(\hat{x})$, so dass

$$\frac{\|\hat{x} - \tilde{x}\|_X}{\|\tilde{x}\|_X} \le \varrho\varepsilon + o(\varepsilon) \quad (\varepsilon \to 0)$$

Der Algorithmus \tilde{f} heißt stabil im Sinne der Rückwärtsanalyse, falls ϱ kleiner gleich der Anzahl der elementaren Rechenoperationen

Lemma 2. (Rückwärtsstabil ⇒ Vorwärtsstabil)

$$\sigma \leq \varrho$$

Beweis. Sei $\tilde{x} \in E$ mit $||x - \tilde{x}||_X \le \varepsilon \cdot ||x||_X$. Dann gilt

$$\begin{split} \frac{\|\tilde{f}(\tilde{x}) - f(\tilde{x})\|_{Y}}{\|f(\tilde{x})\|_{Y}} & \stackrel{\text{Vor.}}{=} & \frac{\|f(\hat{x}) - f(\tilde{x})\|_{Y}}{\|f(\tilde{x})\|_{Y}} \\ & \stackrel{\text{Def } \kappa_{f}}{\leq} & \kappa_{f}(\hat{x}) \frac{\|\hat{x} - \tilde{x}\|_{X}}{\|\tilde{x}\|_{X}} + o(\varepsilon) \\ & \stackrel{\text{Vor.}}{\leq} & \varrho\varepsilon \cdot \kappa_{f}(\tilde{x}) + o(\varepsilon) \end{split}$$

 $\Rightarrow \sigma \leq \varrho$ nach Def. von σ

Beispiel: Summation: Wir hatten für $y \in \mathbb{F}^n$

$$\tilde{S}(y) = (y_1 + y_2)(1 + \vartheta_{n-1}) + \sum_{k=3}^{n} y_k(1 + \vartheta_{n-k+1})$$

Definiere nun

$$\begin{array}{lcl} \hat{y_1} & := & y_1(1+\vartheta_{n-1}) \\ \hat{y_2} & := & y_2(1+\vartheta_{n-1}) \\ \hat{y_k} & := & y_k(1+\vartheta_{n-k+1}) \text{ für } k \geq 3 \end{array}$$

$$\Rightarrow S(\hat{y}) = \tilde{S}(y)$$

Es gilt die Abschätzung

$$|\hat{y} - y|_1 \le (|y_1| + |y_2|)|\vartheta_{n-1}| + \sum_{k=3}^n |y_k| \cdot |\vartheta_{n-k+1}| \le \gamma_{n-1}|y|_1$$

Es folgt also

$$\varrho = \gamma_{n-1} = \varrho$$

3 Lineare Gleichungssysteme

3.1 Direkte Verfahren: Gauß-Elimination

3.1.1 Das Gaußsche Eliminationsverfahren

 2×2 Systeme: Betrachte das Gleichungssystem

$$A_{11}u_1 + A_{12}u_2 = b_1$$

$$A_{21}u_1 + A_{22}u_2 = b_2$$

wobei die A_{ij} und die b_i gegeben (sodass $A_{11} \neq 0$) und die u_i gesucht sind.

$$A_{11}u_1 + A_{12}u_2 = b_1 \mid \cdot L_{21} = \frac{A_{21}}{A_{11}}$$

 $A_{21}u_1 + A_{22}u_2 = b_2 \mid -L_{21} \cdot 1$. Zeile

Äquivalentes System:

$$A_{11}u_1 + A_{12}u_2 = b_1$$
$$0 \cdot u_1 + (A_{22} - L_{21}A_{12})u_2 = b_2 - L_{21}b_1$$

$$\begin{split} \tilde{A}_{22} &:= A_{22} - L_{21} A_{12}, \ \tilde{b}_2 = b_2 - L_{21} b_1 \\ \text{2. Gleichung ist } \tilde{A}_{22} u_2 &= \tilde{b}_2 \\ \tilde{A}_{22} &\neq 0 \Rightarrow u_2 = \tilde{b}_2 / \tilde{A}_{22} \Rightarrow u_1 = (b_1 - A_{12} \cdot \frac{\tilde{b}_2}{\tilde{A}_{22}}) / A_{11} \end{split}$$

 $n \times n$ Systeme

wobei $L_{j1} := \frac{A_{j1}}{A_{11}}$, falls $A_{11} \neq 0$

Mit $\tilde{A}_{22} := A_{22} - L_{21} \cdot A_{12}, \dots, \tilde{A}_{2n} := A_{2n} - L_{21} \cdot A_{1n}, \ \tilde{A}_{23} := \dots$, allgemein

$$\tilde{A}_{ij} := A_{ij} - L_{i1} \cdot A_{1j}$$
 und $\tilde{b}_i := b_i - L_{i1} \cdot b_1$

ergibt sich das äquivalente System:

$$\begin{bmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ 0 & \tilde{A}_{22} & \dots & \tilde{A}_{2n} \\ \vdots & \vdots & & \vdots \\ 0 & \tilde{A}_{n2} & \dots & \tilde{A}_{nn} \end{bmatrix} \cdot \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} = \begin{bmatrix} b_1 \\ \tilde{b}_2 \\ \vdots \\ \tilde{b}_n \end{bmatrix}$$

 $\tilde{A}_{22}\neq 0$ erlaubt den Algorithmus auf die $n-1\times n-1$ Untermatix anzuwenden. Nach n-1 Schritten erhalten wir, falls $\tilde{A}_{kk}^{(k)}\neq 0$ gilt

$$\begin{bmatrix} * & \cdots & * \\ & \ddots & \vdots \\ 0 & & * \end{bmatrix} \cdot \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} = \begin{bmatrix} * \\ \vdots \\ * \end{bmatrix}$$
 (Rechts – obere Dreiecksmatrix)

Dieses lässt sich einfach auflösen: n-te Gleichung: $\tilde{A}_{nn}^{(n)}u_n = \tilde{b}_n^{(n)}$

$$\Rightarrow u_n = \tilde{b}_n^{(n)}/A_{nn}^{(n)} \text{ falls } \tilde{A}_{nn}^{(n)} \neq 0$$

$$(n-1)\text{-te Gleichung:} \ \underbrace{\tilde{A}_{n-1,n-1}^{(n)}}_{=\tilde{A}_{n-1,n-1}^{(n-1)}} u_{n-1} + \tilde{A}_{n-1,n}^{(n)} \underbrace{u_n}_{\text{bek.}} = \tilde{b}_{n-1}^{(n)}$$

$$\Rightarrow u_{n-1} = \dots$$

usw...

3.1.2 Die LR-Zerlegung

Ziel: formalisiere diesen Algorithmus.

Wir wollen die Elimination in der Form $A \mapsto L \cdot A$ schreiben. Suche L. Sei L_1 die Matrix, die die erste Spalte von A (ab 2. Element) zu 0 mache:

$$(L_1A)_{ij} = \sum_{k=1}^{n} L_{1;ik} A_{kj} \stackrel{!}{=} A_{ij} - L_{i1} \cdot A_{1j}$$

$$k = i : L_{1;ii} = 1$$

$$k = 1 : L_{1;i1} = -L_{i1}$$
 und $L_{1;ik} = 0$ sonst.

 L_1 hat also die Gestalt

$$L_1 = \left[egin{array}{cccc} 1 & & & & \ -L_{21} & \ddots & & \ dots & & \ddots & \ -L_{n1} & & & 1 \end{array}
ight]$$

Genauso folgt:

$$L_{2} = \begin{bmatrix} 1 & & & & \\ & 1 & & & \\ & -L_{32} & \ddots & & \\ & \vdots & & \ddots & \\ & -L_{n2} & & 1 \end{bmatrix}$$

Nach Durchführung von n-1 Schritten erhalten wir die rechts-obere Dreiecksmatrix

$$R = L_{n-1} \cdot \ldots \cdot L_2 \cdot L_1 \cdot A$$

sowie

$$\tilde{b} = L_{n-1} \cdot \ldots \cdot L_2 \cdot L_1 \cdot b$$

Zu $a, b \in \mathbb{R}^n$ sei Schreibweise:

$$a \otimes b := ab^{\top} \in \mathbb{R}^{n,n} \ (a \text{ tensor } b)$$

Achtung: $a \otimes b \overset{\text{i.A.}}{\neq} b \otimes a$

Es gilt aber:

$$(a \otimes b) \otimes c = \left(\sum_{j} a_i \cdot b_j \cdot c_j\right)_i = a(b \cdot c)$$

D.h. dim (Bild $(a \otimes b)$) = 1.

Wir definieren

$$\vec{i_k} := k$$
-ter euklidischer Einheitsvektor

$$\begin{array}{lll} \vec{i_k} &:= & k{\rm -ter~euklidischer~Einheitsvektor} \\ \vec{L_k} &:= & [0,\ldots,\underbrace{0}_k,L_{k+1,k},\ldots,L_{n,k}] \end{array}$$

Damit gilt:
$$L_k = Id_n - \vec{L_k} \otimes \vec{i_k} = \begin{bmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1 & & \\ & & -L_{k+1,k} & \ddots & \\ & & \vdots & & \ddots & \\ & & -L_{n,k} & & 1 \end{bmatrix}$$

Nun ist

$$(Id + \vec{L}_k \otimes \vec{i}_k)L_k = (Id + \vec{L}_k \otimes \vec{i}_k)(Id - \vec{L}_k \otimes \vec{i}_k)$$

$$= Id + \underbrace{\vec{L}_k \otimes \vec{i}_k - \vec{L}_k \otimes \vec{i}_k}_{0} - \underbrace{\vec{L}_k \otimes \vec{i}_k \cdot \vec{L}_k \otimes \vec{i}_k}_{=\vec{L}_k(\underbrace{\vec{i}_k \cdot \vec{L}_k}) \otimes \vec{i}_k}$$

$$= Id$$

$$\Rightarrow L_k^{-1} = Id + \vec{L}_k \otimes \vec{i}_k$$

Damit erhalten wir $(A = L_1^{-1} \cdot \ldots \cdot L_{n-1}^{-1}R)$:

$$L_1^{-1}L_2^{-1} = (Id + \vec{L}_1 \otimes \vec{i}_1)(Id + \vec{L}_2 \otimes \vec{i}_2)$$

$$= Id + \vec{L}_1 \otimes \vec{i}_1 + \vec{L}_2 \otimes \vec{i}_2 + \underbrace{\vec{L}_1 \otimes \vec{i}_1 \cdot \vec{L}_2 \otimes \vec{i}_2}_{=\vec{l}_1 \cdot \vec{L}_2 \otimes \vec{l}_2}$$

$$= Id + \vec{L}_1 \otimes \vec{i}_1 + \vec{L}_2 \otimes \vec{i}_2$$

Mit Induktion folgt:

$$L := L_1^{-1} \cdot \ldots \cdot L_{n-1}^{-1} = Id + \sum_{k=1}^{n-1} \vec{L}_k \otimes \vec{i}_k = \begin{bmatrix} 1 \\ L_{21} & \ddots \\ \vdots & \ddots & \ddots \\ L_{n1} & \cdots & L_{nn-1} & 1 \end{bmatrix}$$

Satz 1. Ist die Gaußsche Elimination für ein $A \in \mathbb{R}^{n,n}$ durchführbar (d.h. gilt $\tilde{A}_{kk}^{(k)} \neq 0$ für $k = 1, \ldots, n - 1$), so besitzt A eine LR-Zerlegung, d.h.

$$A = LR$$

 $mit\ L\ links$ -untere Dreiecksmatrix $mit\ Diagonale\ 1\ und\ R\ eine\ rechts-obere\ Dreiecksmatrix.$

Diese Zerlegung ist für invertierbare Matrizen eindeutig.

Beweis. Beh.: A invertierbar $\Leftrightarrow R$ invertierbar (unter der Voraussetzung der Existenz von L und R)

$$A = LR$$

$$\Leftrightarrow A^{-1} = R^{-1}L^{-1}$$

$$\Leftrightarrow R^{-1} = A^{-1}L$$
(1)

 L^{-1} existiert immer. Weiter gilt:

- (1): $A^{-1} ex. \Rightarrow R^{-1} ex.$ (2): $R^{-1} ex. \Rightarrow A^{-1} ex.$

Wegen der Behauptung folgt im Fall, dass A invertierbar ist die Invertierbarkeit von R. Eindeutigkeit: Es sei $A = LR = \hat{L}\hat{R}$

$$\Rightarrow \underbrace{R\hat{R}^{-1}}_{\text{r.o. }\Delta\text{matrix}} = \underbrace{L^{-1}\hat{L}}_{\text{l.u. }\Delta\text{matrix}}$$

Beide Seiten sind also gleich der Identität, also folgt $R = \hat{R}$ und $L = \hat{L}$

3.1.3 Pivotisierung

Tritt der Fall $\tilde{A}_{kk}^{(k)}=0$ auf, so wollen wir den Algorithmus modifizieren:

Finde nun $l \in \{k+1, \ldots, n\}$, so dass

$$|\tilde{A}_{lk}^{(k)}| \ge \max\{|\tilde{A}_{jk}^{(k)}| : j \in \{k+1,\dots,n\}\}$$

 $|\tilde{A}_{lk}^{(k)}| \geq \max\{|\tilde{A}_{jk}^{(k)}|: j \in \{k+1,\dots,n\}$ Ist $|\tilde{A}_{lk}^{(k)}| = 0$, so hat die Gesamtmatrix keinen maximalen Rang. Ist A invertierbar, so kann dieser Fall nicht auftreten.

Wir vertauschen nun die k-te mit der l-ten Zeile und setzen das Verfahren fort.

Die mathematische Beschreibung dieser Vertauschung ist die Anwendung einer Permutationsmatrix P.

z.B. hier:

bzw. P = Id für k = l.

Die Elimination liefert also $R = L_{n-1}P_{n-1}\cdots L_1P_1A$. Dabei suchen wir in jedem Schritt das maximale Element. Man kann zeigen, dass man dies in der Form LP schreiben kann, L links-untere Dreiecksmatrix, P Permutationsmatrix

Satz 2. Ist $A \in \mathbb{R}^{n,n}$ invertiebar, dann existiert eine Permutationsmatrix P, so dass PA eine LR-Zerlegung besitzt.

3.1.4 Rechenaufwand

 $A \in \mathbb{R}^{n,n}$ vollbesetzt. (Gaußen):

Multiplikationen ist
$$\sum_{k=1}^{n-1} (n-k)^2 = \frac{1}{3}n^3 + \mathcal{O}(n^2) = \mathcal{O}(n^3)$$
.
Speicher: Wird A nicht mehr benötigt, so kann man die Matrizen L und R auf A ab-

speichern.

Die explizite Verwendung der Zerlegung LR zur Lösung der gestaffelten Systeme empfielt sich, wenn man mehrere GLS der Form Ax = b zu versch. b lösen muss. Einmal $\mathcal{O}(n^3)$ -Aufwand und dann nur noch $\mathcal{O}(n^2)$ für jedes folgende System.

3.1.5 Gauß-Elimination für Bandmatrizen

Schwach besetzte Matrizen und Bandmatrizen

 $A \in \mathbb{R}^{n,n}$ heißt schwachbesetzt ("sparse"), falls gilt:

$$compl(A) := \#\{[i, j] \in \{1, ..., n\}^2 : A_{ij} \neq 0\} = \mathcal{O}(n)$$

Wir definieren die Bandlänge von A als das maximale $m \in \mathbb{N}$, für das gilt:

$$|i-j| > \left| \frac{m-1}{2} \right| \Rightarrow A_{ij} = 0$$

Diskretisierung von -u'' in 1d mit "natürlicher Anordnung" führte auf Tridiag-matrix (m=3). Diskretisierung von $-\Delta u$ in 2d in lexikographischer Anordnung ergab

$$\operatorname{compl}(A) = \mathcal{O}(n), \text{ aber } m = O(\sqrt{n})$$

Die Elimination zerstört die Bandstruktur ("fill in"), erhält aber die Bandlänge. Im 1d-Beispiel bleibt es bei einer Tridiagonalmatrix ($\operatorname{compl}(L) = \operatorname{compl}(R) = \mathcal{O}(n)$), aber in 2d folgt compl(L) = compl(R) = $\mathcal{O}(n^{\frac{3}{2}})$

Gauß-Elimination für Bandmatrizen

Hier nur Tridiagonalmatrizen:

mit $a_1 \neq 0$.

1. Schritt:

$$\tilde{A}^{(2)} = \begin{bmatrix} a_1 & a_1^+ & 0 & \cdots \\ 0 & \underbrace{a_2 - \frac{a_2^-}{a_1} a_1^+}_{\tilde{a}_2^{(2)}} & a_2^+ & \cdots \end{bmatrix}$$

Induktiv: $L_{i,i-1} = a_i^- / \tilde{a}_{i-1}^{(i-1)}, \ \tilde{a}_i^{(i)} = \tilde{a}_i^{(i-1)} - L_{i,i-1} \cdot a_{i-1}^+$

$$L = \begin{bmatrix} 1 & & & & \\ L_{21} & \ddots & & & \\ & \ddots & \ddots & & \\ & & L_{n,n-1} & 1 \end{bmatrix}, \quad R = \begin{bmatrix} * & a_1^+ & & \\ & \ddots & \ddots & \\ & & \ddots & a_{n-1}^+ \\ & & & * \end{bmatrix}$$

Anzahl Operationen: $\sim 4n$, falls $\tilde{a}_{i-1}^{(i-1)} \neq 0$. Allgemein ist der Aufwand für Bandmatrizen $\mathcal{O}(m^2n)$ ohne Pivotisierung. Pivotisierung zerstört die Bandstruktur.

3.1.6 Block-Gauß-Elimination

 $A \in \mathbb{R}^{n,n} \text{ mit } n = n_1 + n_2.$

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \quad A_{11} \in \mathbb{R}^{n_1, n_2}; \ A_{22} \in \mathbb{R}^{n_2, n_2}$$

 $u = [u_1, u_2] \in \mathbb{R}^{n_1 + n_2}, \ Au = [b_1, b_2] \in \mathbb{R}^{n_1 + n_2}$

$$A_{11}u_1 + A_{12}u_2 = b_1$$

$$A_{21}u_1 + A_{22}u_2 = b_2$$

 A_{11}^{-1} existiere. Multipliziere 1. Zeile mit $A_{21}A_{11}^{-1} =: L_{21}$ und subtrahiere dies von der 2. Zeile. Wir erhalten das äquivalente System:

$$A_{11}u_1 + A_{12}u_2 = b_1$$

$$0 \cdot u_1 + (\underbrace{A_{22} - A_{21} \cdot A_{11}^{-1} \cdot A_{12}}_{=\tilde{A}_{22}^{(2)}})u_2 = \underbrace{b_2 - A_{21} \cdot A_{11}^{-1} \cdot b_1}_{=\tilde{b}_2^{(2)}}$$

Die Block-LR-Zerlegung:

$$A = LR = \begin{bmatrix} Id_{n_2} & 0 \\ L_{21} & Id_{n_2} \end{bmatrix} \cdot \begin{bmatrix} A_{11} & A_{12} \\ 0 & \tilde{A}_{22}^{(2)} \end{bmatrix}$$

3.1.7 Existenz der LR-Zerlegung ohne Pivotisierung

Satz 3. Sei $A \in \mathbb{R}^{n,n}$.

(i) A heißt diagonaldominant, falls

$$\sum_{\substack{j=1\\j\neq i}}^{n} |A_{ij}| < |A_{ii}| \quad i = 1, \dots, n$$

(ii) A heißt symmetrisch und positiv definit, falls

$$A_{ij} = A_{ji} \text{ und } v \cdot Av > 0 \ \forall v \in \mathbb{R}^n \setminus \{0\}$$

Für Matrizen A mit (i) oder (ii) ist die Elimination ohne Pivotisierung durchführbar.

Beweis. (i) $A_{11} \neq 0$ nach Voraussetzung $z.z.: \tilde{A} = L_1 A$ ist wieder diagonaldominant. Elimination: $\tilde{A}_{ij} = A_{ij} - L_{i1} A_{1j}$ für i, j = 2, ..., n Für i = 2, ..., n gilt

$$\sum_{\substack{j=2\\j\neq i}}^{n} |\tilde{A}_{ij}| \leq \sum_{\substack{j=2\\j\neq i}}^{n} \{|A_{ij}| + |L_{i1}| \cdot |A_{1j}|\}$$

$$= \sum_{\substack{j=1\\j\neq i}}^{n} |A_{ij}| - |A_{i1}| + |L_{i1}| \cdot \left(\sum_{j=2}^{n} |A_{1j}| - |A_{1i}|\right)$$

$$< |A_{ii}| - |A_{i1}| + |L_{i1}| \cdot (|A_{11}| - |A_{1i}|)$$

$$= |A_{ii}| - |A_{i1}| + \left|\frac{A_{i1}}{A_{11}}\right| \cdot (|A_{11}| - |A_{1i}|)$$

$$= |A_{ii}| - |L_{i1}| \cdot |A_{1i}|$$

$$\leq |A_{ii} - L_{i1}A_{1i}| = |\tilde{A}_{ii}|$$

(ii) Reicht zu zeigen $\tilde{A} := L_1 A$ wieder symmetrisch und positiv definit. $A_{11} = \vec{i}_1 \cdot A \vec{i}_1 > 0$. \tilde{A} symmetrisch:

$$\tilde{A}_{ij} = A_{ij} - \frac{1}{A_{11}} \underbrace{A_{i1} \cdot A_{1j}}_{=A_{1j} \cdot A_{i1} = A_{j1} \cdot A_{1i}} = A_{ji} - \frac{1}{A_{11}} A_{j1} A_{1i} = \tilde{A}_{ji}$$

$$\tilde{A}$$
 positiv definit:

$$\begin{aligned} \text{wir schreiben } A &= \begin{bmatrix} A_{11} & a_1^\top \\ a_1 & A' \end{bmatrix}, \ v = \begin{bmatrix} v_1 \\ v' \end{bmatrix} \in \mathbb{R} \times \mathbb{R}^{n-1}. \ \text{Sei } v \neq 0. \\ 0 &< v \cdot Av &= \begin{bmatrix} v_1 \\ v' \end{bmatrix} \cdot \begin{bmatrix} A_{11} & a_1^\top \\ a_1 & A' \end{bmatrix} \begin{bmatrix} v_1 \\ v' \end{bmatrix} \\ &= \begin{bmatrix} v_1 \\ v' \end{bmatrix} \cdot \begin{bmatrix} A_{11}v_1 + a_1 \cdot v' \\ v_1a_1 + A'v' \end{bmatrix} \\ &= A_{11}v_1^2 + 2v_1a_1 \cdot v' + v' \cdot A'v' + \frac{1}{A_{11}}(a_1 \cdot v')^2 - \frac{1}{A_{11}}(a_1 \cdot v')^2 \\ &= A_{11}(v_1 - \frac{1}{A_{11}}a_1 \cdot v')^2 + v' \cdot A'v' - \frac{1}{A_{11}} \underbrace{(a_1 \cdot v')^2}_{v' \cdot a_1a_1 \cdot v'} \\ &= A_{11}(v_1 - \frac{1}{A_{11}}a_1 \cdot v')^2 + v' \cdot (A' - \frac{1}{A_{11}}a_1 \otimes a_1)v' \end{aligned}$$

zu $v' \in \mathbb{R}^{n-1}$ beliebig, wähle $v_1 = -\frac{1}{A_{11}}a_1 \cdot v'$ und erhalten

$$0 < v' \cdot \underbrace{\left(A' - \frac{1}{A_{11}} a_1 \otimes a_1\right) v'}_{ij - \text{Komponente ist } A_{ij} - \frac{1}{A_{11}} A_{1i} \cdot A_{1j} = \tilde{A}_{ij}}$$

$$\Rightarrow$$
 Für alle $v' \in \mathbb{R}^{n-1} \setminus \{0\}$ gilt $0 < v' \cdot [\tilde{A}_{ij}]_{\substack{i=2,\ldots,n \ j=2,\ldots,n}} v' \Rightarrow Beh.$

3.1.8 Numerische Stabilität

Satz 4. Zu $A \in \mathbb{R}^{n,n}$ sei $\tilde{L}\tilde{R}$ die numerisch berechnete LR-Zerlegung. Dann gilt:

$$\frac{\|\tilde{L}\tilde{R} - A\|_{\infty}}{\|A\|_{\infty}} \le 2n^3 f(A)\varepsilon + o(\varepsilon)$$

$$mit \ f(A) = \frac{\max\{|\tilde{a}_{ij}^{(k)}| : \ k, i, j\}}{\max\{|a_{ij}| : \ i, j\}}.$$

D.h. Stabilität liegt vor, falls $f(A) \in \mathcal{O}(1)$ ist.

z.B. für diagonaldominante Matrizen $f(A) \leq 2$, aber Beispiele mit $f(A) = 2^n$ sind explizit bekannt.

3.1.9 Bemerkungen

- Man kann mit der Gauß-Elimination auch die Inverse einer Matrix berechnen $(Gau\beta$ -Jordan-Algorithmus)
- Mit der Gauß-Elimination kann man det(A) berechnen:

$$\det(A) = \det(LR) = \det(L) \cdot \det(R) = \det(R) = \prod_{k=1}^{n} R_{kk}$$

3.2 Cholesky-Zerlegung

Satz 5. Sei A spd (symmetrisch, positiv definit) aus $\mathbb{R}^{n,n}$.

Dann ex. eine untere Dreiecksmatrix L mit positiven Diagonaleinträgen, so dass

$$A = L \cdot L^T$$
 (Cholesky – Zerlegung)

Beweis. Mit Induktion über n:

$$n = 1: 0 < A_{11} = \sqrt{A_{11}} \cdot \sqrt{A_{11}}$$

$$\begin{split} n &= 1: \, 0 < A_{11} = \sqrt{A_{11}} \cdot \sqrt{A_{11}} \\ n &- 1 \curvearrowright n: \, Sei \, A = \begin{bmatrix} A' & a_1 \\ a_1^\top & A_{nn} \end{bmatrix} \, mit \, A' \in \mathbb{R}^{n-1,n-1}, \, a_1 \in \mathbb{R}^{n-1} \end{split}$$

Mit v = [v', 0] sieht man: A' spd.

A' hat nach I.V. eine Zerlegung $A' = L'(L')^{\top}$

An satz:

$$A = \begin{bmatrix} A' & a_1 \\ a_1^\top & A_{nn} \end{bmatrix} \quad \stackrel{!}{=} \quad \underbrace{\begin{bmatrix} L' & 0 \\ r^\top & \alpha \end{bmatrix}}_{L} \cdot \underbrace{\begin{bmatrix} (L')^\top & r \\ 0 & \alpha \end{bmatrix}}_{L^\top}$$
$$= \quad \begin{bmatrix} L'(L')^\top & L'r \\ (L'r)^\top & |r|^2 + \alpha^2 \end{bmatrix}$$

Ziel: Gib r, α an.

$$a_1 = L'r \Rightarrow r = (L')^{-1} \cdot a_1$$

Aber:

$$|r|^2 + \alpha^2 \stackrel{!}{=} A_{nn} > 0$$

$$\alpha^2 = A_{nn} - |r|^2 \stackrel{?}{>} 0$$

Falls ja:
$$\alpha := \sqrt{A_{nn} - |r|^2}$$

$$\begin{tabular}{ll} \textit{W\"{a}hle \tilde{r}} := \left((L')^\top \right)^{-1} r \in \mathbb{R}^{n-1} \ \textit{und nutze } 0 < \begin{bmatrix} \tilde{r} \\ -1 \end{bmatrix} \cdot A \begin{bmatrix} \tilde{r} \\ -1 \end{bmatrix}$$

Algorithmus:

Ansatz:
$$A_{ik} = \sum_{j=1}^{k} L_{ij} \cdot L_{kj}, \ i \geq k$$

Spaltenweise auflösen:

$$k = 1, \quad i = 1, \dots, n \quad A_{i1} = L_{i1} \cdot L_{11}$$

$$i = 1 \qquad A_{11} = L_{11}^2 \Rightarrow L_{11} = A_{11}^{1/2}$$

$$i > 1: \qquad L_{i1} = A_{i1}/L_{11} = A_{i1}/\sqrt{A_1 1}$$

$$k = 2, \quad i = 2, \dots, n \quad A_{i2} = L_{i1}L_{21} + L_{i2}L_{22}$$

$$i = 2 \qquad A_{22} = L_{21}^2 + L_{22}^2 \Rightarrow L_{22} = \sqrt{A_{22} - L_{21}^2}$$

$$i > 2: \qquad L_{i2} = \dots$$

Satz 6. Sei $A \in \mathbb{R}^{n,n}$ spd. Algorithmus liefere $A = \tilde{L}(\tilde{L})^{\top}$. Dann gilt

$$\frac{\|\tilde{L}(\tilde{L})^{\top} - A\|_{2}}{\|A\|_{2}} \le 8n(n+1)\varepsilon + o(\varepsilon)$$

Der Algorithmus ist also rückwärtsstabil.

3.3 Iterative Verfahren

3.3.1 Basisiteration

Ziel: Schreibe Au=b als Fixpunktiteration zur Lösung u=Tu+d mit geeignetem $T\in\mathbb{R}^{n,n},\ d\in\mathbb{R}^n$

Sei $B \in \mathbb{R}^{n,n}$ invertierbar. Dann gilt:

$$Au = b \Leftrightarrow BAu = Bb \Leftrightarrow u = u - BAu - Bb \Leftrightarrow u = \underbrace{(Id - BA)}_{=:T} u + \underbrace{Bb}_{=:d}$$

B nennt man Vorkonditionierung (dient der Beschleunigung des folgenden Algorithmus)
Basisiteration:

$$u_{i+1} = (Id - BA)u_i + Bb$$
 (Fixpunktiteration)

Falls $u_i \to u \ (i \to \infty)$, so löst u die Gleichung Au = b

Einschub zu 3.1.: Zerlegungen: Idee um an geeignetes B zu kommen: A = M - N ("Hauptteil" M (invertierbar), "Nebenteil" N)

$$Au = b \Leftrightarrow Mu - Nu = b \Leftrightarrow Mu = Nu + b \Leftrightarrow u = \underbrace{M^{-1}N}_{=T}u + \underbrace{M^{-1}b}_{=d}$$

bzw..
$$B = M^{-1}$$

In 3.3.2.: $M = D$, $N = D(L + R)$

Bemerkung

Optimal wäre $B = A^{-1}$, aber B sollte nur so komplex wie A sein. Widerspricht sich.

3.3.2 Konvergenz linearer Interationen

Satz 7. Zu $u_0 \in \mathbb{R}^n$ definieren wir $u_{i+1} := Tu_i + d$. Ist u Lösung zu u = Tu + d, dann gilt:

1.) Gilt in einer Operatornorm ||T|| < 1, so konv die Folge $\{u_i\}_{i\geq 0}$ gegen u und es gilt:

$$|u_i - u| \le ||T||^i |u_0 - u|$$
 (A priori – Abschätzung)
 $|u_i - u| \le \frac{||T||}{1 - ||T||} |u_i - u_{i-1}|$ (A posteriori)

2.) Es gilt $u_i \to u$ $(i \to \infty)$ für alle $u_0 \in \mathbb{C}^n \Leftrightarrow \rho(T) < 1$

Beweis. 1.) Banachscher Fixpunktsatz:

$$(u_i - u = Tu_{i-1} + d - Tu - d = T(u_{i-1} - u) |u_i - u| \le ||T|| \cdot |u_{i-1} - u| \le \dots \le ||T||^i |u_0 - u|) q := ||T|| < 1$$

$$|u - u_{i}| \leq |u - u_{i+1}| + |u_{i+1} - u_{i}|$$

$$\leq |u - u_{i+1}| + q|u_{i} - u_{i-1}|$$

$$\leq |u - u_{i+2}| + q^{2}|u_{i} - u_{i-1}| + q|u_{i} - u_{i-1}| \leq \dots \leq$$

$$\leq q \cdot \sum_{j=0}^{\infty} q^{j}|u_{i} - u_{i-1}|$$

$$= \frac{q}{1 - q} \cdot |u_{i} - u_{i-1}|$$

2.) " \Rightarrow ": Definiere $e_i := u - u_i$, dann gilt:

$$e_{i+1} = Te_i$$

Mit Induktion folgt:

$$e_i = T^i e_0$$

Beachte: Es gilt

$$u_i \to 0 \ (i \to \infty) \Leftrightarrow e_i \to 0 \ (i \to \infty)$$

Es sei $\lambda \in \mathbb{C}$ ein Eigenwert von T und z ein zugehöriger normierter Eigenvektor (also |z|=1)

$$Tz = \lambda z$$

 $W\ddot{a}hle\ u_0 := u - z$

$$\Rightarrow e_i = T^i e_0 = T^i z = \lambda^i z$$

Nach Vor. gilt $|\lambda|^i = |\lambda|^i |z| = |e_i| \to 0 \ (i \to \infty)$, also gilt

$$|\lambda| < 1$$

Da λ beliebiger Eigenwert war folgt $\Rightarrow \varrho(T) < 1$.

" \Leftarrow ": Da $\varrho(T) < 1$, gibt es ein $\varepsilon > 0$ mit $\varrho(T) < 1 - \varepsilon$. Mit ÜA gilt: $\exists \| \cdot \|_{\varepsilon}$, induzierte Matrixnorm, sodass gilt

$$||T||_{\varepsilon} \leq \underbrace{\varrho(T) + \varepsilon}_{\leq 1}$$

Eigenwerte von Tridiagonalmatrizen

Es seien $a, b, c \in \mathbb{R}$ mit ac > 0 und $A := \operatorname{tridiag}_N[a, b, c]$ eine reelle Tridiagonalmatrix. Dann sind die Eigenvektoren von A gegeben durch

$$s^{k} = \left[\left(\frac{a}{c} \right)^{\frac{j-1}{2}} \sin \left(\frac{k\pi j}{N+1} \right) \right]_{j=1,\dots,N}, \quad k = 1,\dots,N$$

Die zugehörigen Eigenwerte sind

$$\lambda_k = b + 2\operatorname{sgn}(a)\sqrt{ac} \cdot \cos\left(\frac{k\pi}{N+1}\right), \quad k = 1,\dots, N$$

3.3.3 Die "klassischen Iterationsverfahren"

Richardson-Verfahren $B = \omega \cdot Id$ für ein geeignetes $\omega \in \mathbb{R}$. D.h.

$$u_{i+1} = u_i - \omega(Au_i - b) \quad (i > 0)$$

Die Iterationsmatrix ist

$$T_R = Id - \omega A$$

Jakobi-Verfahren (Gesamtschrittverfahren) Zerlegung von A = D(Id - L - R) mit D := diag(A), -DL der links-untere, -DR der rechts-obere Anteil von A (mit Diagonale 0)

$$\begin{bmatrix}
* & * & * \\
* & * & * \\
* & * & *
\end{bmatrix} = \begin{bmatrix}
* & * \\
* & *
\end{bmatrix} + \begin{bmatrix}
* & * \\
* & *
\end{bmatrix} + \begin{bmatrix}
* & * \\
* & *
\end{bmatrix}$$

Iteration:

$$u_{i+1} = u_i - \underbrace{D^{-1}}_{=B} (Au_i - b)$$

Die Iterationsmatrix lautet also:

$$T_J = Id - D^{-1}A$$

In Komponenten:

$$u_{i+1,l} = u_{i,l} - \frac{1}{A_{ll}} \left(\sum_{m=1}^{n} A_{lm} u_{i,m} - b_{l} \right)$$
$$= -\frac{1}{A_{ll}} \left(\sum_{\substack{m=1\\m \neq l}}^{n} A_{lm} u_{i,m} - b_{l} \right)$$

Oft verwendet man noch einen "Dämpfungsfaktor" $\omega \in \mathbb{R}$

$$u_{i+1} = u_i - \omega D^{-1}(Au_i - b)$$
 "Gedämpftes Jakobi-Verfahren"

Hier ist die Iterationsmatrix also

$$T_{J,\omega} = (Id - \omega D^{-1}A)$$

Bemerkung
$$u = [u_{i,l}]_l, \ V \subset \mathbb{R}^n$$

 $V \leftarrow AU, \ V \leftarrow V - b, \ V \leftarrow D^{-1}V$
 $U \leftarrow U - \omega V$

Gauß-Seidel-Verfahren (Einzelschrittverfahren) und das SOR-Verfahren

Einzelschrittverfahren: Idee: nutze schon die neu berechneten Komponenten, um Au zu berechnen.

$$u_{i+1,l} = -\frac{1}{A_{ll}} \left(\sum_{m=1}^{l-1} A_{l,m} u_{i+1,m} + \sum_{m=l+1}^{n} A_{l,m} u_{i,m} - b_l \right) (*)$$

In Matrix-Schreibweise:

$$Du_{i+1} - DLu_{i+1} - DRu_i = b$$

$$D(Id - L)u_{i+1} = b + DRu_i$$

$$\Rightarrow u_{i+1} = (Id - L)^{-1}D^{-1}(b + DRu_i)$$

Die Iterationsmatrix ist also:

$$T_{GS} = (Id - L)^{-1} \cdot R$$

(Formel! Die Implementierung ist die Formel (*)) Hier ist M = D(Id - L) oder $B = (Id - L)^{-1}D^{-1}$

SOR-Verfahren (successive overrelaxation) Mit Dämpfungsparameter $\omega \in \mathbb{R}$

$$u_{i+1} = u_i - \omega D^{-1} (Du_i - DLu_{i+1} - DRu_i - b)$$

bzw.

$$u_{i+1} = u_i - \omega (Id - \omega L)^{-1} D^{-1} (Au_i - b)$$

Die Iterationsmatrix ist

$$T_{\omega}^{SOR^+} = Id - \omega(Id - \omega L)^{-1}D^{-1}A$$

Implementierung:

Mit Hilfe eines Unterprogramms $(U,l) \to (AU-b)_l$ spart man sich den Vektor V gegenüber 3.3.2. Das Verfahren ist aber abhängig vom gewählten Durchlauf

SSOR-Verfahren (Symmetrisches SOR) Erst SOR mit Durchlauf $1, \ldots, n$ dann $n, \ldots, 1$. Außerdem erhält man damit eine symmetrische Iteration. Die Iterationsmatrix $T_{\omega}^{\rm SSOR}$ setzt sich zusammen aus

$$\begin{array}{lll} T_{\omega}^{\mathrm{SOR}^{+}} & := & Id - \omega(Id - \omega L)^{-1}D^{-1}A & \mathrm{und} \\ T_{\omega}^{\mathrm{SOR}^{-}} & := & Id - \omega(Id - \omega R)^{-1}D^{-1}A \end{array}$$

zu deren Produkt:

$$T_{\omega}^{\mathrm{SSOR}} = T_{\omega}^{\mathrm{SOR}^{-}} \cdot T_{\omega}^{\mathrm{SOR}^{+}}$$

3.3.4 Konvergenz des Jakobi- und Gauß-Seidel-Verfahrens

Satz 8. Sei $A \in \mathbb{R}^{n,n}$ mit $A_{ii} \neq 0$ für alle i.

(i) (Starkes Zeilensummenkriterium:) Gilt

$$||L + R||_{\infty} < 1$$
 (Zeilensummennorm)

dann konvergieren Jakobi und GS und es gilt

$$\varrho(T_{GS}) \le \varrho(T_J) < 1$$

(ii) (Schwaches Zeilensummenkriterium:) Es gelte

$$\sum_{\substack{j=1\\j\neq i}}^{n} \left| \frac{A_{ij}}{A_{ii}} \right| \le 1, \quad i = 1, \dots, n$$

aber "<" gelte für wenigstens einen Index. Weiter sei A unzerlegbar (irreduzibel), d.h. gibt es Mengen $M_1, M_2 \subset I = \{1, ..., n\}$ mit $M_1 \cup M_2 = I$, aber $M_1 \cap M_2 = \emptyset$ und gilt $A_{ij} = 0$ für alle $(i, j) \in M_1 \times M_2$, so folgt $M_1 = \emptyset$ oder $M_2 = \emptyset$. (Keine Permutation P führt auf $PA = \begin{bmatrix} * & 0 \\ * & * \end{bmatrix}$)
Dann konvergieren Jakobi- und GS-Verfahren.

Beweis. (ii) z.z. Jakobiverfahren: $T \equiv T_J = Id - D^{-1}A \Rightarrow \varrho(T) < 1$.

Sei $\lambda \in \mathbb{C}$, $v \in \mathbb{C}^n$ mit $|v|_{\infty} = 1$ und $Tv = \lambda v$.

Annahme: $|\lambda| \geq 1$

Dann gilt für jedes $i \in I = \{1, ..., n\}$

$$|v_i| \le |\lambda v_i| = |(Tv)_i| \le \sum_{\substack{j=1\\j\neq i}} \left| \frac{A_{ij}}{A_{ii}} \right| \underbrace{|v_j|}_{\le 1} \le \sum_{\substack{j=1\\j\neq i}} \left| \frac{A_{ij}}{A_{ii}} \right| \le 1$$

Sei i_0 ein Index mit "<".

Dann ist für ein $j \in I$: $A_{i_0j} \neq 0$, denn sonst wäre A reduzibel mit $M_1 = \{i_0\}$, $M_2 = I \setminus \{i_0\}$ Für $i = i_0$ folgt dann also $|v_{i_0}| < 1$.

Nun sei $M_1 = \{i \in I : |v_i| = 1\} \text{ und } M_2 = I \setminus M_1.$

Dann ist $M_1 \neq \emptyset$ nach Vor. $|v|_{\infty} = 1$. Sei $i \in M_1$. Weil nicht $A_{ij} = 0$ für alle $j \in M_2$ gelten kann, kann man $|v_i| < 1$ wie oben zeigen. Wid.

Gauß-Seidel-Verfahren: Wähle λ, v wie oben für $T = T_{GS}$ Für T gilt:

$$(Tv)_i = \sum_{i=1}^{i-1} \frac{A_{ij}}{A_{ii}} (Tv)_j + \sum_{i=i+1}^n \frac{A_{ij}}{A_{ii}} \cdot v_j$$

Mit Induktion folgt: $|(Tv)_j| \le 1$ für $j \in I$. Damit $|(Tv)_j| = |\lambda v_j| = |\lambda| \cdot |v_j| \le |v_j| \Rightarrow |\lambda| \le 1$ Somit

$$|(Tv)_i| \leq \sum_{j=1}^{i-1} \left| \frac{A_{ij}}{A_{ii}} \underbrace{(Tv)_j}_{\leq 1} \right| + \sum_{j=i+1}^n \left| \frac{A_{ij}}{A_{ii}} \right| \underbrace{v_j}_{\leq 1} \leq \sum_{j=1 \atop j \neq i}^n \left| \frac{A_{ij}}{A_{ii}} \right|$$

Dann geht der Beweis wie oben.

3.3.5 Konvergenzsatz des SOR-Verfahrens

Satz 9. Es sei $A \in \mathbb{R}^{n,n}$ mit $A_{ii} \neq 0$, i = 1, ..., n mit $T_{GS,\omega}$ sei die Iterationsmatrix des SOR-Verfahrens. Dann gilt:

1.)

$$\varrho(T_{GS,\omega}) \ge |\omega - 1|$$

D.h. SOR konvergiert höchstens für $\omega \in (0,2)$

2.) Ist A spd, so gilt:

$$\varrho(T_{GS,\omega}) < 1$$
 für $\omega \in (0,2)$

Beweis. 1.) $T = T_{GS,\omega}$ hat die Form

$$T = Id - \omega(Id - \omega L)^{-1}D^{-1}A$$
$$= (Id - \omega L)^{-1}(Id - \omega L - \omega D^{-1}A)$$
$$= (Id - \omega L)^{-1}((1 - \omega)Id + \omega R)$$

$$\det(T) = \det((Id - \omega L)^{-1}) \cdot \det((1 - \omega)Id + \omega R) = (1 - \omega)^n.$$

$$Wegen \ \det(T) = \prod_{i=1}^n \lambda_i \ folgt: \ es \ ex \ ein \ i_0 \in I \ mit \ \varrho(T) \ge |\lambda_{i_0}| \ge |\omega - 1|.$$

2.) Aufwändig.

Bemerkung Konvergenzkriterium ist unabhängig von der Nummerierung.

3.3.6 Konvergenz des SSOR

Satz 10. Sei $A \in \mathbb{R}^{n,n}$ spd. $Zu \ \omega \in \mathbb{R}$ sei

 $T^+_{GS,\omega}$: SOR-Operator mit Durchlauf $i=1,\ldots,n$

 $T^{-}_{GS,\omega}$: SOR-Operator mit Durchlauf $i=n,\ldots,1$

Dann ist die Iterationsmatrix des SSOR-Verfahrens durch $\delta_{\omega} = T_{GS,\omega}^- \cdot T_{GS,\omega}^+$ gegeben. Es gilt:

$$\varrho(\delta_{\omega}) \ge |\omega - 1|^2$$
 und $\varrho(\delta_{\omega}) < 1$ für $\omega \in (0, 2)$

Beweis. Korollar zum letzten Theorem

3.3.7 Beispiele

A := tridiag(-1, 2, -1).

Mit $h := \frac{1}{n+1}$ erhalten wir die Eigenwerte $\lambda_k = 2(1 - \cos(k\pi h))$ Wir suchen $\varrho(T)$ für verschiedene Verfahren:

1.) Jakobi-Verfahren:

$$T_J = Id - D^{-1}A = Id - \frac{1}{2}A$$

 $T_J = Id - D^{-1}A = Id - \frac{1}{2}A$ Eigenwerte: $\lambda_{J,k} = 1 - \frac{1}{2}\lambda_k = \cos(k\pi h)$

$$\Rightarrow \varrho(T_J) = \cos(\pi h) = 1 - \frac{1}{2}(\pi h)^2 + \mathcal{O}(h^4) = 1 - \frac{1}{2}\frac{\pi^2}{n^2} + \mathcal{O}(n^{-3})$$

2.) Gauß-Seidel-Verfahren:

Für die Komponenten von $T_{GS} \cdot u$ gilt:

$$(T_{GS}u)_{l} = \frac{1}{2}((T_{GS}u)_{l-1} + u_{l+1})$$

Ist $T_{GS}u = \lambda_{GS}u$, so folgt:

$$\lambda_{GS} u_{l} = \frac{1}{2} (\lambda_{GS} u_{l-1} + u_{l+1}) | \cdot \lambda_{GS}^{-\frac{l+1}{2}} = \sqrt{\lambda_{GS}}^{-(l+1)}$$

$$\Leftrightarrow \sqrt{\lambda_{GS}}^{-l+1} u_{l} = \frac{1}{2} (\sqrt{\lambda_{GS}}^{-l+1} u_{l-1} + \sqrt{\lambda_{GS}}^{-l-1} u_{l+1})$$

$$\Leftrightarrow \sqrt{\lambda_{GS}} v_{l} = \frac{1}{2} (v_{l-1} + v_{l+1}) = (T_{J} v)_{l}$$

Ist λ_J Eigenwert von T_J , so ist λ_J^2 Eigenwert von T_{GS}

$$\varrho(T_{GS}) = \cos(\pi h)^2 = (1 - \pi h + \mathcal{O}(h^4))^2 = 1 - \pi^2 h^2 + \mathcal{O}(n^3)$$

3.) SOR-Verfahren:

$$T_{\omega} \equiv T_{SOR,\omega} \ (\omega = 1 : T_1 = T_{GS})$$

$$(T_{\omega}u)_{l} = (1 - \omega)u_{l} + \frac{1}{2}\omega(\lambda_{\omega}u_{l-1} + u_{l+1}))$$

$$\Rightarrow (1 - \omega)u_l + \frac{1}{2}\omega\sqrt{\lambda_{\omega}}(\sqrt{\lambda_{\omega}}u_{l-1} + \frac{1}{\sqrt{\lambda_{\omega}}}u_{l+1}) = \lambda_{\omega}u_l$$

Multiplikation der Gleichung mit $\sqrt{\lambda_{\omega}}^{-l}$ und Substitution von $v_l = \sqrt{\lambda_{\omega}}^{-l} \cdot u_l$ ergibt:

$$(1 - \omega)v_l + \frac{1}{2}\omega\sqrt{\lambda_{\omega}}(v_{l-1} + v_{l+1}) = \lambda_{\omega}v_l$$

$$\Rightarrow \frac{1}{\omega\sqrt{\lambda_{\omega}}}(\lambda_{\omega} + \omega - 1)v_l = \frac{1}{2}(v_{l-1} + v_{l+1})$$

D.h.
$$\lambda \omega \in \operatorname{spec}(T_{\omega}) \Rightarrow \frac{1}{\omega \sqrt{\lambda_{\omega}}} (\lambda_{\omega} + \omega - 1) \in \operatorname{spec}(T_J) = \{ \cos(k\pi h) : k = 1, \dots, n \}$$

$$\Rightarrow (\sqrt{\lambda_{\omega}})^2 - \omega \cos(k\pi h) \sqrt{\lambda_{\omega}} + \omega - 1 = 0$$

Lösung der quadratischen Gleichung ergibt die Eigenwerte des SOR-Verfahrens.

Wir berechnen nun ω , so dass $\varrho(T_{\omega})$ minimal ist.

 $(\omega = 1)$: Eigenwerte des GS-Verfahrens: $\lambda_{\omega=1} = \cos(k\pi h)^2$

Bild

Es folgt:

$$\omega_{\text{opt}} = \frac{2}{1 + \sqrt{1 - \varrho(T_J)^2}} \ge 1$$
 $\varrho_{\text{opt}} = \omega_{\text{opt}} - 1$

Für unser Beispiel und $h \to 0$:

$$1 - \varrho(T_J)^2 \approx 1 - (1 - \frac{1}{2}\pi^2 h^2)^2 \approx \pi^2 h^2$$

$$\omega_{\text{opt}} = \frac{2}{1 + \pi h} \approx 2(1 - \pi h)$$

$$\rho_{\text{opt}} \approx 1 - 2\pi h$$

3.3.8 Konsistent geordnete Matrizen

Definition. $A \in \mathbb{R}^{n,n}$ heißt konsistent geordnet, wenn gilt: bzgl. der Zerlegung A = D(Id - L - R) sind die Eigenwerte von $\alpha L + \frac{1}{\alpha}R$ unabhängig von $\alpha \in \mathbb{C} \setminus \{0\}$

Satz 11. Für konsistent geordnete Matrizen A mit $A_{ii} \neq 0$ und $\operatorname{spec}(T_J) \subset (-1,1)$ gilt

$$\varrho(T_{GS}) = \varrho(T_J)^2$$

und für das SOR-Verfahren gilt

$$\omega_{\text{opt}} = \frac{2}{1 + \sqrt{1 - \varrho(T_J)^2}} \in (1, 2)$$

$$\varrho_{\text{opt}} = \omega_{\text{opt}} - 1$$

Beweis. $\ddot{U}A$

Beispiele konsistent geordneter Matrizen:

- Tridiagonalmatrizen
- Block-Tridiagonalmatrizen
- Zwei-zyklische oder Red-Black-Matirzen

A heißt zwei-zyklisch oder red-black-Matrix, falls es eine Permutation gibt, so dass A auf die Form $\begin{bmatrix} D_1 & * \\ * & D_2 \end{bmatrix}$ mit Diagonalmatrizen D_1, D_2 gebracht werden kann.

3.3.9 Rechenaufwand

1.) Es sei $\varrho = \varrho(T) < 1$ und $\text{compl}(T) \approx \text{compl}(A)$. Der Aufwand zur Fehlerreduktion um den Faktor $\tau \in (0,1)$ sei die Anzahl der Rechenoperationen um u_m mit

$$|u_m - u_*| \le \tau |u_0 - u_*|$$

 $(Au_* = b)$ zu erhalten.

Wir erhalten $\frac{|u_m - u_*|}{|u_0 - u_*|} \le \varrho^m \le \tau$.

$$\Rightarrow m \cdot \log(\varrho) \le \log(\tau) \Rightarrow m \ge \frac{\log(\tau)}{\log(\varrho)} = \frac{\log(1/\tau)}{\log(1/\varrho)}$$

Aufwand:= $m \cdot \text{compl}(T) \approx m \cdot \text{compl}(A)$

 $compl(A) \sim n$

$$\log(1/\varrho) = |\log(\varrho)| \approx |\log(1 - \frac{1}{2}\pi^2 h^2)| \approx \frac{1}{2}\pi^2 h^2 \approx \frac{1}{2}\frac{\pi^2}{n^2}$$

für das Beispiel aus 3.7

$$\Rightarrow \operatorname{Aufwand}_{J} \sim n \cdot n^{2} \cdot \log(1/\tau) \sim n^{3} \cdot \log(1/\tau)$$

$$\operatorname{Aufwand}_{GS} \approx \frac{1}{2} \cdot \operatorname{Aufwand}_{J} \sim n^{3} \cdot \log(1/\tau)$$

$$\operatorname{Aufwand}_{SOR} \sim n \cdot \frac{\log(1/\tau)}{h} \sim n^{2} \cdot \log(1/\tau) \sim \frac{1}{n} \cdot \operatorname{Aufwand}_{GS}$$

2.) SSOR-Verfahren ist nicht schneller als das Gauß-Seidel-Verfahren:

$$\varrho(\delta_{\omega}) = \varrho(T_{GS,\omega(2-\omega)}) \ge \varrho(T_{GS,1})$$

3.) Diagonaldominante A, A = tridiag(-1, a, -1) mit a > 2. Dann wird $\varrho(T_J) = 2/a < 1$ unabhängig von n. Der Aufwand ist dann $\sim n \cdot \log(1/\tau)$

Beispiel:

$$\partial_t u - u'' = 0 \text{ in } (0,1)$$

$$u(t,0) = u(t,1) = 0 \forall t > 0$$

$$u(0,x) = \varphi(x) \forall x \in (0,1)$$

Wir diskretisieren:

$$\partial_t u(t,x) \approx \frac{u(t,x) - u(t - \Delta t, x)}{\Delta t}$$

Mit $u_i^k \approx u(t_k, x_i), \ t_k = k\Delta t, \ x_i = ih$

$$\frac{u_i^{k+1} - u_i^k}{\Delta t} + \frac{1}{h^2} (-u_{i+1}^{k+1} + 2u_i^{k+1} - u_{i-1}^{k+1}) = 0$$

In Matrixschreibweise:

$$\left(Id_n + \frac{\Delta t}{h^2} \operatorname{tridiag}_n(-1, 2, -1)\right) u^{k+1} = u^k \quad (*)$$

wobei
$$u^k = \left[u_i^k\right]_{i=1,\dots,n}$$

 u^0 (Startwert: $u_i^0 = \varphi(x_i)$)
 $\to u^1$ (Löse * für $k=0$)
 $\to u_2$ (Löse * für $k=1$)
 $\to \dots$

Matrix in (*) (Mult mit
$$\frac{h^2}{\Delta t}$$
)
tridiag_n $(-1, \underbrace{2 + \frac{h^2}{\Delta t}}_{=:a>2}, -1)$

Zusatz: 2D-Fall Bsp.: $\begin{bmatrix} -1 & \frac{-1}{4} & -1 \end{bmatrix}$ auf $[0,1]^2$ mit lexikographischer Anordnung. Sei n Anzahl der Punkte in einer Raumrichtung, $N=n^2$, $h=\frac{1}{n+1}\approx \frac{1}{n}=\frac{1}{\sqrt{N}}$

$$\varrho_J = 1 - \mathcal{O}(h^2) = 1 - \mathcal{O}\left(\frac{1}{N}\right)$$

$$\varrho_{GS} = 1 - \mathcal{O}(h^2) = 1 - \mathcal{O}\left(\frac{1}{N}\right)$$

$$\varrho_{\text{opt}} = 1 - \mathcal{O}(h) = 1 - \mathcal{O}\left(\frac{1}{\sqrt{N}}\right)$$

Weiter gilt:

$$\begin{array}{lll} {\rm Aufwand}_{J} & \sim & N^2 \\ {\rm Aufwand_{GS}} & \sim & N^2 \\ {\rm Aufwand_{opt}} & \sim & N \cdot \sqrt{N} = N^{3/2} \end{array}$$

Gaußelimination: Bandmatrix der Breite $m=n\approx \sqrt{N}$

Aufwand_{GE} =
$$m^2 N \approx N^2$$

Abbruchkriterium für Iterationen:

$$|u_i - u_{i+1}| \le \text{Tol} \quad \text{oder} \quad \underbrace{|Au_i - b|}_{\text{Residuum}} \le \text{Tol} \cdot |b|$$

wobei $Tol \in \mathbb{R}_+$ die "Toleranz" ist.

3.3.10 Idee Des Mehrgitterverfahrens

Problem: Aufwand ist noch $\mathcal{O}(n^{\kappa})$ mit $\kappa > 1$.

Wir suchen schnelle Löser: $\kappa = 1$.

Gedämpftes Jakobi-Verfahren mit $\omega = 1/2$.

$$T_J = Id - \frac{1}{2}(\frac{1}{2})A = Id - \frac{1}{4}A$$

im Beispiel aus 3.7. Dann ist

$$\operatorname{spec}(T_{J,1/2}) = \left\{ 1 - \frac{1}{4}\lambda : \ \lambda \in \operatorname{spec}(A) \right\} = \left\{ \frac{1}{2}(1 + \cos(k\pi n)) : \ k = 1, \dots, n \right\}$$

Für den Fehlervektor e_{i+1} gilt: $e_{i+1} = T_{J,1/2}e_i$. Sei $\{s_l\}_{l=1,\dots,n}$ Eigenbasis von A. Stelle e_i als Linearkombination der s_i dar:

$$e_i = \sum_{l=1}^n \alpha_l^{(i)} s_l$$

Dann folgt für i + 1:

$$e_{i+1} = T_{J,1/2} e_i = \sum_{l=1}^{n} \lambda_l \alpha_l^{(i)} s_l$$

Sei nun n gerade. Wir definieren

$$e_i^{\text{NF}} := \sum_{l=1}^{n/2} \alpha_l^{(i)} s_l$$
 (Niederfrequenter Anteil)
$$e_i^{\text{HF}} := \sum_{l=\frac{n}{2}+1}^{n} \alpha_l^{(i)} s_l$$
 (Hochfrequenter Anteil)

Bilder

Es gilt:

$$\begin{aligned} \left| T_J e_i^{\rm NF} \right| & \leq & \left| e_i^{\rm NF} \right| \\ \left| T_J e_i^{\rm HF} \right| & \leq & \frac{1}{2} \left| e_i^{\rm HF} \right| \end{aligned}$$

Idee: Verwende 2 Löser, einen für den NF-Anteil und gedämpftes Jakobi-Verfahren für den HF-Anteil

Bildchen

NF-Löser ist ein direktes Verfahren auf den Knoten echt unterhalb des feinsten Levels. Trick: Verfahre analog für das Grobgitterproblem. Hierzu wird Jakobi heute noch verwendet.

Theorie: N-unabhängige Konvergenzrate.

Entwicklung des Mehrgitter-Verfahrens: 1965-1990.

3.4 Das CG-Verfahren

3.4.1 Das Gradientenverfahren

Definition. Sei $A \in \mathbb{R}^{n,n}$ spd und $b \in \mathbb{R}^n$ beliebig. Dann heißt die Abbildung $\varepsilon : \mathbb{R}^n \longrightarrow \mathbb{R}$ def. durch

$$\varepsilon(v) := v \cdot Av - b \cdot v$$

die Energie.

 ε ist strikt konvexe, nach unten beschränkte Funktion mit $\lim_{|v| \to \infty} \varepsilon(v) = \infty$. Weiter gilt

$$\varepsilon'' = A$$

Bildchen

Also hat ε ein eindeutiges Minimum in u_* und dies ist ist charakterisiert durch $\varepsilon'(u_*)[d] = 0 \ \forall d \in \mathbb{R}^n$. Es gilt:

$$\varepsilon'(v)d = (Av - b) \cdot d \quad \forall d \in \mathbb{R}^n$$

Also folgt:

$$\varepsilon'(u_*) = 0 \Leftrightarrow Au_* = b$$

Idee: konstruiere Folge $\{u_k\}_k$, so dass $\varepsilon(u_{k+1}) < \varepsilon(u_k)$ ist mit $\lim_{k \to \infty} \varepsilon(u_k) = \min_{v \in \mathbb{R}^n} \varepsilon(v) = \varepsilon(u_*)$

Der steilste Ansteig in u_k ist

$$-\nabla \varepsilon(u_k) = -(Au_k - b) =: -r_k$$

Ansatz für k-ten Schritt:

$$u_{k+1} = u_k - \alpha_k r_k$$

Mit $\alpha_k \in \mathbb{R}$. Bestimme α_k wie folgt: Def.

$$\Phi(\alpha) := \varepsilon(u_k - \alpha r_k) \quad (\alpha \in \mathbb{R})$$

 Φ ist nach unten beschränkt und strikt konvex mit $\lim_{|v|\to\infty} \Phi(\alpha) = \infty$ Daher ex. α_k mit $\Phi(\alpha_k) = \min_{\alpha\in\mathbb{R}} \Phi(\alpha)$ und es gilt: $\Phi'(\alpha_k) = 0$.

$$0 \stackrel{!}{=} \Phi'(\alpha_k) = \varepsilon'(u_k - \alpha_k r_k) \cdot (-r_k)$$

$$= (A(u_k - \alpha_k r_k) - b) \cdot (-r_k)$$

$$= -(r_k - \alpha_k A r_k) \cdot r_k$$

$$= -r_k \cdot r_k + \alpha_k A r_k \cdot r_k$$

$$\Rightarrow \alpha_k = \frac{|r_k|^2}{Ar_k \cdot r_k}$$

Denn: $r_k \cdot Ar_k \stackrel{!}{=} 0 \Rightarrow r_k = 0 \Rightarrow Au_k = b$. Fertig!

Satz 12. Sei A spd, $(v, w)_A := Av \cdot w$, $||v||_A := (v, v)_A^{1/2}$ Ist Au = b und $u_0 \in \mathbb{R}^n$, so konvergiert die Folge $\{u_k\}_k$ mit

$$u_{k+1} = u_k - \frac{|r_k|^2}{\|r_k\|_A^2} r_k, \quad k \ge 0, \ r_k = Au_k - b$$

gegen u und es gilt:

$$||u_{k+1} - u||_A \le \frac{\kappa - 1}{\kappa + 1} ||u_k - u||_A = \left(1 - \frac{2}{\kappa + 1}\right) ||u_k - u||_A$$

wobe
i $\kappa=\mathrm{cond}_2(A)=\frac{\lambda_{\max}}{\lambda_{\min}}.$ Bea.: ||.|| heißt Energienorm.

3.4.2 Fehlerminimierung auf Unterräumen

Algorithmus in 4.1 (CG-Verfahren) ist zu langsam.

Idee: $\{V_k\}_{k=1,\dots,n}$ sei eine Folge von Unterräumen des \mathbb{R}^n mit dim $V_k=k$.

Ausgehend von $u_0 \in \mathbb{R}^n$ machen wir den Ansatz

$$u_{k+1} = u_k + p_{k+1} \quad \text{mit } p_{k+1} \in V_{k+1}$$

Wir definieren p_{k+1} durch

$$||e_{k+1}||_A = ||e_k + p_{k+1}||_A \stackrel{!}{=} \min_{p \in V_{k+1}} ||e_k + p||_A.$$

Wegen $0 \in V_{k+1}$ gilt $||e_{k+1}||_A \le ||e_k||_A$ und mit $V_n = \mathbb{R}^n$ ist $u_n = u$ die Lösung. Wir definieren $\Phi: V^{k+1} \longrightarrow \mathbb{R}$ durch

$$\Phi(p) := \|e_k + p\|_A^2 \quad (p \in V^{k+1})$$

 Φ ist strikt konvex und es gilt $\Phi(p) \to \infty(|p| \to \infty)$. Das Minimum in p_{k+1} ist vollständig charakterisiert durch

$$0 \stackrel{!}{=} (\nabla \Phi(p_{k+1}), q)_A$$

$$= 2(e_k + p_{k+1}, q)_A$$

$$= 2(e_{k+1}, q)_A \quad \forall q \in V_{k+1}$$

 \Rightarrow $(e_{k+1},q)_A=0$ für alle $q\in V_{k+1}$. Wir nennen diese Eigenschaft von e_{k+1} A-Orthogonalität von e_{k+1} und V_{k+1} (Schreibweise $e_{k+1}\bot_A V_{k+1}$)

3.4.3 Krylovräume

Für die Idee aus 4.2 wählen wir zu $d_0 \in \mathbb{R}^n \setminus \{0\}$ die Räume

$$V_k \equiv V_k(A, d_0) = \text{span}\{d_0, Ad_0, \dots, A^{k-1}d_0\} \quad (k \ge 1)$$

Wir nehmen erstmal an, dass dim $V_k = k$ ist. Wir errichten nun auf V_k eine orthogonale Basis mit dem Gram-Schmidt-Verfahren ausgehend von d_0 . Ansatz:

$$d_{k+1} = Ad_k - \sum_{l=0}^k \sigma_{kl} d_l$$

Bestimme die σ_{kl} durch die Forderung $(d_{k+1}, d_j)_A = 0$ $j = 0, \dots, k$. (Tatsächlich benötigt man nur σ_{kk} und $\sigma_{k,k-1}$). Es gilt

$$V_k = \operatorname{span}\{d_0, \dots, d_{k-1}\}\$$

und Ad_k ist genau dann linear unabhängig von $\{d_0,\ldots,d_k\}$ solange $A^{k+1}d_0\notin \operatorname{span}\{d_0,\ldots,A^kd_0\}$ ist.

Beweis.
$$Dazu: d_1 \in Ad_0 + \operatorname{span}\{d_0\} = Ad_0 + V_1 \subset V_2$$

 $I.V.: d_k \in A^k d_0 + \operatorname{span}\{d_0, \dots, d_{k-1}\} \subset A^k d_0 + V_k \Rightarrow Ad_k \in A^{k+1} d_0 + AV_k \subset V_{k+1}$

3.4.4 Das CG-Verfahren nach Hestenes/ Stiefel (1954)

Idee aus 4.3 aber mit einer Modifikation, die die Zahl der Koeffizienten reduziert. $u_0 \in \mathbb{R}^n$, $r_0 = Au_0 - b =: d_0$,

$$d_{k+1} = r_{k+1} + \sum_{l=0}^{k} \sigma_{kl} d_l \quad (k \ge 0)$$

Lemma 3.

$$\text{span}\{d_l: l=0,\ldots,k\} \subset V_{k+1}(A,r_0) \equiv V_{k+1}$$

Beweis. k = 1: span $\{d_0\}$ = span $\{r_0\}$ = V_1 Ann.: span $\{d_l: l = 0, ..., k\} \subset V_{k+1} \stackrel{!}{\Rightarrow} d_{k+1} \in V_{k+2}$

$$d_{k+1} \in r_{k+1} + \operatorname{span}\{d_0, \dots, d_k\} \stackrel{\text{I.V.}}{=} Au_{k+1} - b + V_{k+1}$$

$$\subset A(u_k + V_{k+1}) - b + V_{k+1}$$

$$= \underbrace{r_k}_{\in V_{k+1}} + AV_{k+1} + V_{k+1} \subset V_{k+2}$$

$$= AV_{k+1} + V_{k+1} \subset V_{k+2}$$

Konstruktion des Verfahrens

Es gelte $e_k \perp_A V_k$, $(d_i, d_j)_A = 0$ für $i, j \leq k, i \neq j$. Geforderte Minimalität des Fehlers:

$$0 \stackrel{!}{=} (e_{k+1}, d_j)_A = A e_{k+1} \cdot d_j$$

= $A(u_{k+1} - u) \cdot d_j$
= $r_{k+1} \cdot d_j \quad (j = 0, \dots, k)$

Weiter

$$0 = r_{k+1} \cdot Ad_i = (r_{k+1}, d_i)_A \quad (i = 0, \dots, k-1)$$

Berechnung der σ_{kl} für $j=0,\ldots,k-1$:

$$0 \stackrel{!}{=} (d_{k+1}, d_j)_A \stackrel{\text{orth.}}{=} \underbrace{(r_{k+1}, d_j)_A}_{=0} + \sigma_{kj} ||d_j||_A^2$$

 $\Rightarrow \sigma_{kj} = 0 \text{ für } j = 0, \dots, k-1.$

Es bleibt j = k:

$$0 \stackrel{!}{=} (d_{k+1}, d_k)_A = (r_{k+1}, d_k)_A + \sigma_{kk} ||d_k||_A^2$$

$$\Rightarrow \beta_k := \sigma_{kk} = -\frac{(r_{k+1}, d_k)_A}{\|d_k\|_A^2} \Rightarrow d_{k+1} = r_{k+1} + \beta_k d_k$$
 Aus $e_k \bot_A V_k$ folgt

$$(e_k, d_k)_A = (e_k, r_k)_A + \beta_{k-1}(e_k, \underbrace{d_{k-1})_A}_{\in V_k}$$

= $(e_k, r_k)_A = Ae_k \cdot r_k = |r_k|^2$

Orthogonalisierung des Fehlers e_{k+1}

$$0 = (e_{k+1}, d_j)_A \text{ für } j < k$$

$$\Rightarrow (e_k + p_{k+1}, \underbrace{d_j}_{\in V_k})_A = (p_{k+1}, d_j)_A$$
 für $j < k$. Also $p_{k+1} \sim d_k$, etwa $p_{k+1} = \alpha_k d_k$ und

damit

$$(*) u_{k+1} = u_k - \alpha_k d_k$$

 α_k folgt aus

$$(e_{k+1}, d_k)_A = (e_k - \alpha_k d_k, d_k)_A$$

= $(e_k, d_k)_A - \alpha_k ||d_k||^2$
= $|r_k|^2 - \alpha_k ||d_k||_A^2$

$$\Rightarrow \alpha_k = \frac{|r_k|^2}{\|d_k\|_A^2}$$

Damit lässt sich β_k eleganter schreiben: aus (*) folgt:

$$r_{k+1} = r_k - \alpha_k A d_k$$

Dann ist

$$(r_{k+1}, d_k)_A = r_{k+1} \cdot A d_k$$

$$= r_{k+1} \cdot \left(-\frac{1}{\alpha_k} (r_{k+1} - r_k) \right)$$

$$= -\frac{\|d_k\|_A^2}{|r_k|^2} (|r_{k+1}|^2 - \underbrace{r_{k+1} \cdot r_k}_{=0(z,z_i)})$$

und es folgt
$$\beta_k = -\frac{(r_{k+1},d_k)_A}{\|d_k\|_A^2} = \frac{|r_{k+1}|^2}{|r_k|^2}$$
 Noch z.z.: $r_{k+1}\cdot r_k = 0$:

$$r_{k+1} \cdot r_k = (r_k - \alpha_k A d_k) \cdot r_k$$

$$= |r_k|^2 - \alpha_k A d_k \cdot r_k$$

$$= |r_k|^2 - \frac{|r_k|^2}{\|d_k\|_A^2} A d_k \cdot (d_k - \beta_{k-1} d_{k-1})$$

$$= |r_k|^2 - |r_k|^2 = 0$$

Der Algorithmus

Initialisierung $u_0 \in \mathbb{R}^n, r_0 = Au_0 - b, d_0 = r_0$

 $lteration \ k \geq 0$

$$\begin{array}{rcl} \alpha_k & = & \frac{|r_k|^2}{d_k \cdot A d_k} = \frac{|r_k|^2}{\|d_k\|_A^2} \\ u_{k+1} & = & u_k - \alpha_k d_k \\ r_{k+1} & = & r_k - \alpha_k A d_k \\ \beta_k & = & \frac{|r_{k+1}|^2}{|r_k|^2} \\ d_{k+1} & = & r_{k+1} + \beta_k d_k \end{array}$$

Wohldefiniert?

$$r_k = 0 \Leftrightarrow Au_k = b \checkmark$$

$$d_{k+1} = 0$$
 ?

Dann wäre
$$\sum_{j=0}^{k+1} \gamma_j A^j d_0 = 0$$
 für $\gamma \in \mathbb{R}^{k+2} \setminus \{0\}$

$$\gamma_0 \neq 0$$
: $\underbrace{d_0}_{=r_0} = \sum_{j=1}^{k+1} \frac{\gamma_j}{\gamma_0} A^j d_0$

$$\Rightarrow e_0 = A^{-1}r_0 = A^{-1}d_0 = -\sum_{j=0}^k \frac{\gamma_{j-1}}{\gamma_0} A^j d_0 \in V_{k+1}$$

Folgt genauso, falls $\gamma_0 = 0$ und $\gamma_1 \neq 0$ wäre.

$$e_{k+1} = e_k + p_{k+1} = e_{k-1} + p_k + p_{k+1} = \dots \in e_0 + V_{k+1} \subseteq V_{k+1}$$
 da $e_0 \in V_{k+1}$
 $\Rightarrow e_{k+1} = 0$, da $e_{k+1} \perp_A V_{k+1}$

- MV $\hat{=}$ Matrix * Vektor
- \bullet VV $\hat{=}$ Skalarprodukte
- $\bullet\,$ SV $\hat{=}$ Skalar * Vektor
- Speicher: zusätzlicher Speicher

3.4.5 Konvergenz des CG-Verfahrens

Ausgangspunkt:

$$||e_k||_A = \min_{p \in V_k} ||e_{k-1} + p||_A$$

 $V_k = \operatorname{span}\{d_0, \dots, A^{k-1}d_0\}$. Aus $u_k \in u_0 + V_k$ folgt $e_k \in e_0 + V_k$

$$\Rightarrow e_k = e_0 + \sum_{j=0}^{k-1} u_{kj} A^j d_0$$

für geeignete u_{kj} . Es ist $d_0 = r_0 = Ae_0$, also gilt

$$e_k = e_0 + A \cdot \sum_{j=0}^{k-1} u_{kj} \cdot A^j e_0$$

Es gibt also ein Polynom $q_k \in \mathbb{P}_k^* = \{q \in \mathbb{P}_k : q(0) = 1\}$ mit $e_k = q_k(A)e_0$. D.h. wir können auch schreiben

$$||e_k||_A = \min_{q \in \mathbb{P}_k^*} \{||q(A)e_0||_A\}$$

Asp
d $\Rightarrow \exists$ ONB $\{z_l\}_l$ mit $Az_l=\lambda_l z_l,\,\lambda_l$ die Eigenwerte von
 A. Dann gilt etwa

$$q(A)e_0 = q(A)\sum_{l=1}^n \alpha_l z_l = \sum_{l=1}^n \alpha_l q(\lambda_l) z_l$$

Für den Fehler e_k gilt:

$$||e_k||_A^2 = \sum_{l=1}^n \alpha_l^2 q_k(\lambda_l)^2$$

$$\leq \max\{|q_k(\lambda_l)|^2\} \cdot \sum_{l=1}^n \alpha_l^2$$

$$\leq \max_{\lambda \in \operatorname{spec}(A)} \{|q_k(\lambda)|^2\} \cdot ||e_0||_A^2$$

Wir nehmen an, dass $\operatorname{spec}(A) \subset [a, b] \subset \mathbb{R}_+$ ist. Dann ist

$$\max_{\lambda \in \operatorname{spec}(A)} \{ |q_k(\lambda)^2 \} \le \max_{\lambda \in [a,b]} \{ |q_k(\lambda)|^2 \}$$

Insgesamt ist

$$||e_k||_A^2 \le \min_{q \in \mathbb{P}_k^*} \max_{\lambda \in [a,b]} |q(\lambda)|^2 \cdot ||e_0||_A^2$$

Den Vorfaktor nennen wir $\varrho_{a,b,k}^2$

Bildchen

Die Lösung ist lange bekannt, es gilt:

$$\varrho_{a,b,k} \le 2 \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \right)^k \text{ mit } \kappa = b/a > 1$$

 $\kappa = 1 \Rightarrow b = a \Rightarrow A \sim Id.$

Optimal: $a = \lambda_{\min}(A), b = \lambda_{\max}(A)$

 $\Rightarrow \kappa$ ist die Kondition cond₂(A)

Satz 13. Das CG-Verfahren für eine symmetrisch positive Matrix A konvergiert für alle Startwerte wenigstens linear, d.h.

$$||u_k - u||_A \le 2\left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^k ||u_0 - u||_A = 2\left(1 - \frac{2}{\sqrt{\kappa} + 1}\right)^k ||u_0 - u||_A$$

Beweis. A: Das Problem wird gelöst von $q_k(x) = \frac{T_k\left(\frac{b+a-2x}{b-a}\right)}{T_k\left(\frac{b+a}{b-a}\right)}, \ d.h$

$$\max_{\lambda \in [a,b]} |q_k(\lambda)|^2 = \min_{q \in \mathbb{P}_k^*} \min_{\lambda \in [a,b]} |q(\lambda)|^2$$

 T_k ist das k-te Tschebyscheff-Polynom:

$$T_k(t) = \cos(k \cdot \arccos(t))$$

Das Argument ist die Transformation $[a,b] \rightarrow [-1,1]$ z.z.: T_k ist ein Polynom:

Sei $\theta := \arccos(t)$. Dann gilt:

$$T_{k}(t) = \cos(k\theta)$$

$$= \frac{1}{2} \left(e^{ik\theta} + e^{-ik\theta} \right)$$

$$= \frac{1}{2} \left(\left(e^{i\theta} \right)^{k} + \left(e^{-i\theta} \right)^{k} \right)$$

$$= \frac{1}{2} \left((\cos(\theta) + i \cdot \sin(\theta))^{k} + (\cos(\theta) - i \cdot \sin(\theta))^{k} \right)$$

$$= \frac{1}{2} \cdot \sum_{l=0}^{k} {k \choose l} \cos(\theta)^{k-l} \left((i \cdot \sin(\theta))^{2} + (-i \cdot \sin(\theta))^{2} \right)$$

$$= \sum_{\substack{l=0 \ l \text{ gerade}}}^{k} {k \choose l} \underbrace{\cos(\theta)^{k-l} \cdot \underbrace{(i \cdot \sin(\theta))^{2}}_{=\sqrt{1-t^{2}}}}$$

$$\stackrel{l=2l'}{=} - \sum_{l'=0}^{\lfloor k/2 \rfloor} {k \choose 2l'} t^{k-2l'} (1-t^{2})^{l'} \in \mathbb{P}_{k}$$

Also $q_k \in \mathbb{P}_k$, $q_k(0) = 1$. Für $t \in [-1, 1]$ ist $|T_k(t)| \le 1$ und mit $\kappa = \frac{b}{a}$ gilt

$$\max_{x \in [a,b]} |q_k(x)| \le \frac{1}{T_k \left(\frac{\kappa+1}{\kappa-1}\right)}$$

Aus der obigen Rechnung:

$$T_k(t) = \frac{1}{2} \left((t + \sqrt{t^2 - 1})^k + (t - \sqrt{t^2 - 1})^k \right)$$

Weiter gilt:

$$\left(\frac{\kappa+1}{\kappa-1}\right)^2 - 1 = \frac{\kappa^2 + 2\kappa + 1 - (\kappa^2 - 2\kappa + 1)}{(\kappa-1)^2} = \frac{4\kappa}{(\kappa-1)^{\kappa}}$$

Insgesamt folgt:

$$T_{k}\left(\frac{\kappa+1}{\kappa-1}\right) \geq \frac{1}{2}\left(\frac{\kappa+1}{\kappa-1} + \sqrt{\left(\frac{\kappa+1}{\kappa-1}\right)^{2} - 1}\right)^{k}$$

$$\geq \frac{1}{2}\left(\frac{\kappa+1}{\kappa-1} + \frac{2\sqrt{\kappa}}{\kappa-1}\right)^{k}$$

$$= \frac{1}{2}\left(\frac{(\sqrt{\kappa}+1)^{2}}{(\sqrt{\kappa}+1)(\sqrt{\kappa}-1)}\right)^{k}$$

$$= \frac{1}{2}\left(\frac{\sqrt{\kappa}+1}{\sqrt{\kappa}-1}\right)^{k}$$

3.4.6 Vorkonditionierung

In der Praxis: $\kappa = \kappa_n \to \infty (n \to \infty)$ liefert zu langsame Konvergenz. C sei spd. Dann schreiben wir

$$CAu = Cb$$
.

Wir wenden das CG-Verfahren auf dieses System an. CA ist i.A. nicht symmetrisch. Wir benötigen die Symmetrie aber nur im $(.,.)_A$ -Skalarprodukt. Dies gilt: Seien $x,y \in \mathbb{R}^n$:

$$(CAx, y)_A = A(CA)x \cdot y = CAx \cdot Ay = Ax \cdot CAy = (x, CAy)_A$$

 $\Rightarrow \operatorname{adj}_A(CA) = CA.$

Damit schreibt sich das CG-Verfahren wie folgt:

Initialisierung:

$$u_0, r_0 = Au_0 - b, d_0 = Cr_0 = h_0$$

Iteration für $k \ge 0$:

$$\begin{array}{rcl} \alpha_k & = & \frac{r_k \cdot h_k}{d_k \cdot A d_k} \\ u_{k+1} & = & u_k - \alpha_k d_k \\ r_{k+1} & = & r_k - \alpha_k A d_k \\ h_{k+1} & = & C r_{k+1} \\ \beta_k & = & \frac{r_{k+1} \cdot h_{k+1}}{(r_k \cdot h_k)} \\ d_{k+1} & = & h_{k+1} + \beta_k d_k \end{array}$$

C = Id : CG wie vorher.

 $h_{k+1} = h_k - \alpha_k$ (Ad_k ist das Residuum der neuen Gleichung.)

Der Krylorraum ist $V_k(CA, d_0)$

Abbruch:

$$\sqrt{\frac{|r_k \cdot h_k|}{b \cdot cb}} \le \text{Tol}$$

In der Fehlerabschätzung steht dann $\kappa = \kappa(CA)$.

Am besten: $C \approx A^{-1}$, aber auch compl $(C) \approx \text{compl}(A)$ - Widerspricht sich!

Beispiele:

• $C = \operatorname{diag}(A)^{-1}$ Billig, aber nur sinnvoll, wenn die Diagonale stark variiert. • C = T, T ein Schritt eines konvergenten iterativen Verfahrens. Etwa $T_{\rm SSOR}$ (symmetrisch!)

Man erhält $\kappa = \mathcal{O}(\sqrt{N})$ statt $\mathcal{O}(N)$ für das Poissonproblem auf $[0,1]^2$ oder $C = T_{\text{Multigrid}} \Rightarrow \kappa(CA) = \mathcal{O}(1)$

Bemerkungen

- Die Konvergenz des CG-Verfahrens beschleunigt im Laufe der Iteration Bildchen
- Die Konvergenz des CG-Verfahrens hängt von der Eigenwertverteilung ab. Bildchen

3.5 GMRES (Generalized minimal residuals, 1986)

3.5.1 Minmale Residuen

Problem: CG funktioniert nur für symmetrisch positiv definite Matrizen A In vielen Problemen ist A weder symmetrisch noch positiv definit:

$$-u'' + \beta u' = f \qquad \text{(in } \mathbb{R})$$

$$-\Delta u + \underbrace{b \cdot \nabla u}_{\text{Transportterm}} = f \qquad \text{(im } \mathbb{R}^d)$$

Ziel: Nutze Prinzipien aus 4

Idee: A invertierbar $\Rightarrow A^{\top}A$ ist spd.

$$e_k$$
 Fehler $\Rightarrow \|e_k\|_{A^{\top}A} = |Ae_k|_2 = |r_k|_2 = |Au_k - b|_2 \text{ (i.F.: } |.| = |.|_2)$
 $Au = b \Rightarrow A^{\top}Au = A^{\top}b$

"CG-Verfahren für Normalengleichungen" (ÜA)

Die Konvergenz, die sich aus den Fehlerabschätzungen von 4,5 ergibt, ist meist viel zu langsam: $\kappa(A^{\top}A) \stackrel{\text{i.A.}}{\gg} \kappa(A)$. (Wir arbeiten hier auf $V_k(A^{\top}A)$!) Idee: Nutze $\|.\|_{A^{\top}A}$ für den Fehler, aber minimiere auf $V_k = V_k(A, d_0)$. Finde $u_k \in u_0 + V_k$

 mit

$$|r_k| = |Au_k - b| = \min_{v_k \in u_0 + V_k} |Av_k - b|$$
 (*)

$$V_k \in u_0 + V_k \Rightarrow v_k = u_0 + \sum_{l=0}^{k-1} \alpha_l A^l r_0$$
, falls $d_0 \sim r_0$

$$\Rightarrow Av_k - b = \underbrace{Au_0 - b}_{=r_0} + A \cdot \sum_{l=0}^{k-1} \alpha_l A^l r_0$$

$$= \left(Id + A \cdot \sum_{l=0}^{k-1} \alpha_l A^l \right) r_0$$

$$= q(A) r_0 \quad \text{mit einem } q \in \mathbb{P}_k^*$$

Für das Minimum gilt daher:

$$|r_k| = \min_{q \in \mathbb{P}_k^*} |q(A) \cdot r_0| \le \min_{q \in \mathbb{P}_k^*} ||q(A)||_2 |r_0| \ (**)$$

Daraus gewinnen wir Fehlerabschätzungen

Satz 14. (Fehlerabschätzung für GMRES) Sei $A \in \mathbb{R}^{n,n}$ regulär, u_k Lösung von

$$|Au_k - b| = \min_{v_k \in u_0 + V_k} |Av_k - b|$$

1.) A diagonalisierbar mit $A = XDX^{-1}$, D diagonal, $X, D \in \mathbb{C}^{n,n}$, so gilt:

$$|r_k| \le \operatorname{cond}_2(X) \cdot \max_{\lambda \in \operatorname{spec}(A)} |q(\lambda)| |r_0| \quad \forall q \in \mathbb{P}_k^*$$

- 2.) A normal $(AA^{\top} = A^{\top}A)$. Dann gilt 1.) mit $\operatorname{cond}_2(X) = 1$
- 3.) $||Id A||_2 \le \varrho < 1 \Rightarrow |r_k| \le |r_0| \varrho^k$

Beweis. 1.) $q(A) = q(XDX^{-1}) = Xq(D)X^{-1}$ Also ist

$$||q(A)||_2 \leq ||X||_2 \cdot ||X^{-1}||_2 \cdot ||\operatorname{diag}(q(\lambda_1), \dots, q(\lambda_n))||_2$$

$$\leq \operatorname{cond}_2(X) \cdot \max_{\lambda \in \operatorname{spec}(A)} |q(\lambda)|$$

Behauptung folgt aus (**)

- 2.) A normal $\Rightarrow X$ orthonormal $\Rightarrow \text{cond}_2(X) = 1$.
- 3.) Wähle $q(t) := (1-t)^k$. Dann $q \in \mathbb{P}_k^*$.

$$|q(A)||_2 = ||(Id - A)^k||_2 \le ||Id - A||_2^k \le \varrho^k$$

 $\Rightarrow \min_{q \in \mathbb{P}_k^*} \|q(A)\|_2 \le \varrho^k \ Behauptung \ folgt \ mit \ (**)$

Bemerkung Ist spec $(A) \subset [a,b] \subset \mathbb{R}$ für 0 < a < b, so kann man die Abschätzung aus 4.5 verwenden mit $\kappa = b/a$

3.5.2 Konstruktion des GMRES-Verfahrens

Schritt 1: Konstruiere eine euklidisch orthonormale Basis des Krylovraumes (Gram-Schmidt)

Start: $d_0 = \frac{r_0}{|r_0|}$ (o.B.d.A $|r_0| \neq 0$)

Iteration: für $k \ge 0$:

$$\sigma_{kj} = Ad_k \cdot d_j \quad j = 0, \dots, k$$

$$v_{k+1} = Ad_k - \sum_{j=0}^k \sigma_{kj} d_j$$

$$\sigma_{k,k+1} = |v_{k+1}|$$

$$d_{k+1} = \frac{v_{k+1}}{|v_{k+1}|}$$

Aufwand im k-ten Schritt: $\frac{MV \mid VV \mid SV}{1 \mid k+3 \mid k+2}$ Speicher: $(k+2)n + \mathcal{O}(k^2)$ insgesamt Der Aufwand über K Schritte ist $\mathcal{O}(K^2) \sim \sum_{k=1}^K \mathcal{O}(k)$. Speicher: $\mathcal{O}(K)n + \mathcal{O}(K^2)$

Schritt2: Minimierung des Residuums

$$|r_{k}| = \min_{v_{k} \in u_{0} + V_{k}} |Av_{k} - b|$$

$$= \min_{z_{k} \in V_{k}} |\underbrace{Au_{0} - b}_{=r_{0}} + Az_{k}|$$

$$= \min_{z_{k} \in V_{k}} |Az_{k} - \beta_{0}d_{0}| \quad \text{mit } \beta_{0} = -|r_{0}|$$

Es sei $P_k: V_k \to \mathbb{R}^k$ die orthonormale Projektion mit $P_k d_{l-1} = \vec{i}_l$ Aus $Ad_k = \sigma_{k,k+1} d_{k+1} + \sum\limits_{j=0}^k \sigma_{kj} d_j$ folgt $A|_{V_{k+1}} \to V_{k+2}$, d.h. in der Basis $\{d_0,\ldots,d_k\}$ hat A "Hessenberggestalt:

$$A|_{V_k} = \begin{bmatrix} \sigma_{00} & \sigma_{10} & & & & \\ \sigma_{01} & \sigma_{11} & & * & & \\ & \ddots & \ddots & & & \\ & & \ddots & \ddots & & \\ & & & \ddots & \sigma_{k+1,k+1} \\ & & & & \sigma_{k,k+1} \end{bmatrix} \in \mathbb{R}^{k+1}$$

Mit $A_k := P_{k+1}AP_k$ folgt

$$|r_k| = \min_{z_k \in V_k} |P_{k+1}(A \underbrace{P_k^{\top} P_k}_{=Idv_k} z_k - \beta d_0)| = \min_{\omega_k \in \mathbb{R}^k} |A_k \omega_k - \beta_0 \vec{i_1}|$$

Trick: Mittels orthonormaler Matrizen $L_1, \ldots, L_K \in \mathbb{R}^{k+1,k+1}$ kann man erreichen, dass $L_k \cdot \ldots \cdot L_1 A_k = \begin{bmatrix} R_k \\ 0 & \cdots & 0 \end{bmatrix} \in \mathbb{R}^{k+1,k}$ und R_k ist r.o. Dreiecksmatrix. Dann

$$|r_k| = \min_{\omega_k \in \mathbb{R}^k} |\underbrace{L_k \cdot \ldots \cdot L_1}_{\text{orthonormal}} (A_k \omega_k - \beta_0 \vec{i}_1)|$$

$$= \min_{\omega_k \in \mathbb{R}^k} |\begin{bmatrix} R_k \omega_k \\ 0 \end{bmatrix} - \begin{bmatrix} b_k \\ \varrho_k \end{bmatrix}| \quad \text{mit } b_k \in \mathbb{R}^k, \varrho_k \in \mathbb{R}$$

$$\Rightarrow |r_k| = \min_{\omega_k \in \mathbb{R}^k} (|R_k \omega_k - b_k|^2 + \varrho_k^2)^{1/2}$$

Das Minimum wird für $\omega_k = R_k^{-1} b_k$ angenommen (Rang $(R_k) = \text{Rang}(A_k) = \text{Rang}(A|v_k) = k$, falls dim $(V_k) = k$) und dann ist $|r_k| = \varrho_k$.

Zwar ist ω_k billig berechenbar ($\mathcal{O}(k^2)$ Multiplikationen, da Dreiecksmatrix), aber ϱ_k ist bekannt ohne ω_k zu kennen! Wir berechnen ω_k erst, wenn ϱ_k klein genug ist oder $k = k_{max}$ erreicht ist.

Bemerkung:

Man kann c bestimmmen aus der Bedingung, dass der k+1, k-te Eintrag von $L_k(L_{k-1} \cdot \ldots \cdot L_1 A_k) = 0$ wird.

Speicher und Anwendung der Matrizen L_j sind $\mathcal{O}(k)$

Algorithmus: Start: $u_0 \in \mathbb{R}^n$, $r_0 = Au_0 - b \neq 0$, $d_0 := r_0/|r_0|$, $b_0 := -|r_0|\vec{i}_1$

- Stopp, falls $\varrho_k = |b_{k+1,k+1}| < \text{Tol}$, sonst $k \to k+1$
- Berechne σ_{kj} für $j = 0, \dots, k, d_{k+1}, \sigma_{k,k+1}$
- Berechne $\left[\widetilde{R_{k+1}}_{j}\right]_{j=0,\dots,k} = L_k \cdot \dots \cdot L_1[\sigma_{kj}]_{j=0,\dots,k}$ $\left(L_j \in \mathbb{R}^{k,k} \to \begin{bmatrix} L_j & 0 \\ 0 & 1 \end{bmatrix} \in \mathbb{R}^{k+1,k+1}\right)$
- Berechne die Rotation L_{k+1}
- Berechne $[R_{k+1_j}]_{j=0,\dots,k} = L_{k+1}[\widetilde{R_{k+1_j}}]_{j=0,\dots,k}$

• Berechne
$$\omega_k = R_{k+1}^{-1} b_{k+1}$$

 $u = u_0 + \sum_{j=0}^k \omega_{k+1,j} \cdot d_j$

$$\begin{bmatrix} R_k \\ 0 \dots 0 \end{bmatrix} \to \begin{bmatrix} R_k & \vdots \\ \sigma_{kj} \\ \vdots \end{bmatrix} \xrightarrow[\text{auf letzte Spalte}]{L_k \dots L_1 \\ \text{auf letzte Spalte}} \begin{bmatrix} R_k & \vdots \\ \tilde{\sigma}_{kj} \\ * \end{bmatrix} \xrightarrow[*]{L_{k+1}} \begin{bmatrix} R_{k+1} \\ \vdots \\ 0 \end{bmatrix}$$

Rechte Seite:
$$\begin{bmatrix} b_k \\ 0 \end{bmatrix} \xrightarrow{L_{k+1}} \begin{bmatrix} \vdots \\ (*) \end{bmatrix}$$

Satz 15. DAS GMRES-Verfahren (in exakter Arithmetik) ist für invertierbare Matrizen durchführbar und erzeugt eine Folge abnehmender Residuen

$$|r_{k+1}| \le |r_k|$$

(wobei $(r_k = Au_k - b)$ und $r_n = 0$)

Unter geeigneten Voraussetzungen fällt $|r_k|$ streng monoton (siehe Theorem 5.1).

Der Aufwand für k Schritte ist $\mathcal{O}(k^2N)$

Speicher: $\mathcal{O}(kN) + \mathcal{O}(k^2)$

Beweis. Fehlt: dim $(V_k) = k$, bzw. $v_{k+1} \neq 0$ im 1. Schritt (GS). Dann ist $Ad_k \in \text{span}\{d_0,\ldots,d_k\}$

$$\Rightarrow e_0 = A^{-1} r_0 \sim A^{-1} d_0 \overset{\text{wie } 4.4}{\in} \operatorname{span} \{ d_0, \dots, d_k \} = V_{k+1}$$

$$\Rightarrow e_{k+1} \in V_{k+1}, \ e_{k+1} \bot_{A^{\top} A} V_{k+1} \Rightarrow e_{k+1} = 0$$

$$0 \overset{!}{=} v_{k+1} = A d_k + \sum_{j=0}^{k} \sigma_{kj} \cdot d_j$$

Bemerkung

1.) In der Praxis darf k nicht zu groß gwerden GMRES $(k_{\rm max})$ bricht nach $k_{\rm max}$ Schritten ab und startet mit der bis dahin erhaltenen Lösung neu (Restart). Typisch: GMRES(5) bzw. GMRES(25)

2.) Es sei $A = \begin{bmatrix} 0 & 1 \\ 1 & \ddots & \\ & \ddots & \ddots & \\ & & 1 & 0 \end{bmatrix}$. Man kann $b, u_0 \in \mathbb{R}^n$ wählen mit $u_0 = u_1 = \dots u_{n-1}, \ u_n = u$ (u die exakte Lösung) Also $|r_0| = \dots = |r_{n-1}| \neq 0, \ r_n = 0$ $\operatorname{spec}(A) = \{\lambda \in \mathbb{C} : \lambda^n = 1\}$

RESTART-GMRES konv. nicht.

4 Nichtlineare Gleichungen

Sei $D \subset \mathbb{R}^N$ und $F: D \to \mathbb{R}^N$ beliebig. Gesucht wird $U \in \mathbb{R}^N$ mit

$$F(U) = 0$$

Speziell: $F(U) = AU - b, \ A \in \mathbb{R}^{N,N}, \ b \in \mathbb{R}^N$ lineares Problem

4.1 Fixpunkte (Ergänzung 5)

4.1.1 Fixpunkte und Nullstellen

U Fixpunkt von G: U = G(U)

U Nullstelle von F: F(U) = 0

U Fixpunkt von $G \Leftrightarrow U$ Nullstelle von F(X) := X - G(X)

4.1.2 Banachscher Fixpunktsatz

Sei V ein Banach-Raum, $D\subseteq V$ abgeschlossen, $f:D\longrightarrow D$ eine Kontraktion, d.h. $\exists q\in(0,1)$ mit

$$||f(x) - f(y)|| \le q||x - y|| \quad (x, y \in D)$$

Dann gilt:

- (i) f besitzt genau einen Fixpunkt x_* in D
- (ii) Zu jedem $x_0 \in D$ konvergiert die durch $x_{i+1} := f(x_i)$ definierte Folge gegen x_* und es gelten die Abschätzungen

$$||x_i - x_*|| \le q^i ||x_0 - u_*||$$
 (A priori Abschätzung)
$$||x_i - x_*|| \le \frac{q}{1-q} ||x_i - x_{i-1}||$$
 (A posteriori Abschätzung)

4.1.3 Beispiele

- 1.) $f:[a,b]\subseteq \mathbb{R} \to [a,b]$ differenzierbar mit $|f'(x)| \le q < 1 \ \forall x \in [a,b]$ für ein $q \in (0,1)$ $\Rightarrow \exists ! x_* \in [a,b] : f(x_*) = x_*$ und die Fixpunktiteration $x_{i+1} := f(x_i)$ konvergiert für die Startwerte $x_0 \in [a,b]$.
- 2.) Süche Lösung von $x = \cos(x)$:

$$x_0 \in \mathbb{R}, \ x_{i+1} = \cos(x_i)$$

Bildchen

Wende (1) an

$$\max_{x \in \mathbb{R}} |\cos'(x)| = \max_{x \in \mathbb{R}} |\sin(x)| = 1$$

So geht es noch nicht.

Aber: V = [0, 1]. Dann

$$\max_{x \in [0,1]} |\sin(x)| = \sin(1) < 1$$

$$\cos(V) \subset V$$
. Anwendung von (1) ist OK.
 $x_0 \in \mathbb{R} \Rightarrow x_1 = \cos(x_0) \in [-1,1] \Rightarrow x_2 = \cos(x_1) \in [0,1]$
Jetzt weiter wie eben. Konvergenz für alle $x_0 \in \mathbb{R}$

Satz 16. V Banach-Raum, $D \subset V$ abgeschlossen, $f: D \to D$ eine Kontraktion mit Rate q der Fixpunktiteration und Fixpunkt v_x . $g: D \to D$ sei eine Störung von f mit

$$||f(v) - g(v)||_V \le \varepsilon \quad \forall v \in D$$

Definiere $\{v_i\}_i, \{w_i\}$ durch $v_{i+1} := f(v_i), \ w_{i+1} := g(w_i)$ für $v_0, w_0 \in D$ und $\|v_0 - w_0\|_V \le \varepsilon$. Dann qilt:

$$||v_i - w_i||_V \le \frac{\varepsilon}{1 - q}$$

 $||v_* - w_i||_V \le \frac{1}{1 - q} (\varepsilon (1 + 3q^i) + q^i ||w_0 - g(w_0)||_V)$

Bildchen

Beweis. $v_0 \in D \Rightarrow v_1 \in D \Rightarrow \dots$ $w_0 \in D \Rightarrow w_1 \in D \Rightarrow \dots$ Folgen sind wohldefiniert

$$||v_{i+1} - w_{i+1}||_{V} = ||f(v_{i}) - g(w_{i})||_{V}$$

$$\leq ||f(v_{i}) - f(w_{i})||_{V} + ||f(w_{i}) - g(w_{i})||_{V}$$

$$\leq q \cdot ||v_{i} - w_{i}||_{V} + \varepsilon$$

$$\leq q^{2} \cdot ||v_{i-1} - w_{i-1}||_{V} + (1+q)\varepsilon$$

$$\leq \dots \leq q^{i+1} \underbrace{||v_{0} - w_{0}||}_{\leq \varepsilon} + \sum_{j=0}^{i} q^{j} \varepsilon$$

$$\leq \sum_{j=0}^{i+1} q^{j} \varepsilon \leq \sum_{j=0}^{\infty} q^{j} \varepsilon = \frac{1}{1-q} \varepsilon.$$

Mit dem Fixpunktsatz von Banach:

$$\begin{split} \|v_* - w_i\|_V & \leq \|v_* - v_i\|_V + \|v_i - w_i\|_V \\ & = \frac{q^i}{1 - q} \|v_0 - f(v_0)\|_V + \frac{\varepsilon}{1 - q} \\ & \leq \frac{q^i}{1 - q} (\underbrace{\|v_0 - w_0\|_V}_{\leq \varepsilon} + \|w_0 - g(w_0)\|_V + \underbrace{\|g(w_0) - f(v_0)\|_V}_{\leq (1 + q)\varepsilon \leq 2\varepsilon} + \frac{\varepsilon}{1 - q}) \end{split}$$

Problem: Wie schnell sind Fixpunktverfahren?

4.1.4 Konvergenzordnung

V Banach-Raum, $\{v_i\}_i$ eine iterative erzeugte Folge mit $\lim_{i\to\infty}v_i=v_*$. Die Iteration hat Konvergenzordnung $p\geq 1$, falls für den Fehler $e_i:=v_i-v_*$ gilt:

$$\lim_{i \to \infty} \frac{\|e_i\|_V}{\|e_{i-1}\|_V^p} = c \in \mathbb{R}$$

Falls $c \neq 0$, so heißt p die genaue Konvergenzordnung und c heißt asymptotischer Fehlerkoeffizient.

Beispiele

p = 1: Geometrische oder lineare Konvergenz

p=2: Quadratische Konvergenz.

Satz 17. $I \subseteq \mathbb{R}, \Phi: I \longrightarrow \mathbb{R}$ habe einen Fixpunkt $x_* \in I$ und sei p-mal stetig db. mit

$$\Phi'(x_*) = \dots = \Phi^{(p-1)}(x_*) = 0$$
 falls $p > 1$

oder

$$|\Phi'(x_*)| < 1$$
 falls $p = 1$ ist

Dann konvergiert das Iterationsverfahren

$$x_{i+1} = \Phi(x_i)$$

für die Startwerte x_0 nahe x_* und hat bzgl. |.| die Konvergenzordnung p. Ist $\Phi^{(p)}(x_*) \neq 0$, so ist p die genaue Konvergenzordnung.

Beweis. Nach Voraussetzung gibt es für alle $p \ge 1$ eine Umgebung von x_* , in der $|\Phi'| < 1$ gilt. Nach 1.3(1) konvergiert die Fixpunktiteration für alle Startwerte dieser Umgebung gegen x_* .

Mit Taylorentwicklung:

$$x_{i+1} = \Phi(x_i) = \sum_{l=0}^{p-1} \frac{1}{l!} \Phi^{(i)}(x_*) (x_i - x_*)^l + \frac{1}{p!} \Phi^{(p)}(\xi_i) (x_i - x_*)^p$$

 $(\xi_i \text{ zwischen } x_* \text{ und } x_i).$

Einsetzen der Voraussetzung:

$$x_{i+1} = x_* + \frac{1}{p!} \Phi^{(p)}(\xi_i) (x_i - x_*)^p$$

und somit

$$\lim_{i \to \infty} \frac{|x_{i+1} - x_*|}{|x_i - x_*|^p} = \lim_{i \to \infty} \frac{1}{p!} |\Phi^{(p)}(\xi_i)| = \frac{1}{p!} |\Phi^{(p)}(x_*)|$$

Bemerkung: Lineare vs. Quadratische Konvergenz.

$$e_0 = 10^{-1}$$

Lineare Konvergenz: q = 1/2, $e_k = \left(\frac{1}{\alpha}\right)^{\kappa} e_0 \approx 10^{-0.3\kappa} e_0$

1 Stelle \leadsto 3 Iterationen

8 Stellen \rightsquigarrow 24 Iterationen

Quadratische Konvergenz: c=1

$$e_0 = \frac{1}{10}, e_1 = e_0^2 = 10^{-2}, e_2 = 10^{-4}, e_3 = 10^{-8}$$

4.2 Berechnung von Nullstellen

4.2.1 Extrema (Ergänzung 7)

 x_* Extremum von f und f db $\Rightarrow f'(x_*) = 0$

 \leadsto Nullstellenproblem

4.2.2 Nullstellen reeller Funktionen

Im Folgenden sei $I = [a, b] \subset \mathbb{R}, a < b, f$ mindestens stetig.

Bisektionsverfahren Es gelte f(a)f(b) < 0 ("=0" $\Rightarrow f(a) = 0$ oder f(b) = 0).

Wir konstruieren Intervalle $\{I_k\}_k$ wie folgt:

Start:

 $a_0 := a, b_0 := b, I_0 := [a_0, b_0]$

Iteration: $L \ge 0$

1.)
$$\overline{x} := \frac{1}{2}(a_k + b_k)$$

2.) Stop:
$$f(\overline{x}) = 0$$

3.)
$$f(a_k) \cdot f(\overline{x}) \stackrel{?}{<} 0 : a_{k+1} = a_k, b_{k+1} = \overline{x}$$

sonst: $a_{k+1} = \overline{x}, b_{k+1} = b_k$

4.)
$$k \mapsto k+1$$
, $I_{k+1} = [a_{k+1}, b_{k+1}]$

Abbruch: Tol_X , $Tol_f \ge 0$ gegeben, $Tol_x + Tol_f > 0$

 $k_{\text{max}} \in \mathbb{N}$. Rückgabe x und f(x) mit

x Approximation der Nullstelle mit $|x-x*| \leq \mathrm{Tol}_x$ oder $|f(x)|\mathrm{Tol}_f \;\; f(x)$: Funktionswert in x

Modifikation der Iteration:

$$|f(\overline{x})| \leq \text{Tol}_f:$$

 $\text{return}(\overline{x}, f(\overline{x}));$
 $|b_k - a_k| \leq \text{Tol}_x:$
 $\text{falls } |f(a_k)| < |f(b_k)| \text{ return } (a_k, f(a_k)), \text{ sonst return}(b_k, f(b_k))$

Satz 18. $f:[a,b] \to \mathbb{R}$ stetig mit $f(a) \cdot f(b) < 0$. Tol_x, Tol_f, k_{max} wie oben gegeben. Dann bricht das Bisektionsverfahren nach endich vielen Schritten ab, auch falls $k_{max} = \infty$

Beweis. Das Verfahren ist wohldefiniert aufgrund des Zwischenwertsatzes.

Die Existenz einer Nullstelle in I_k ist für jedes k gesichert.

$$\operatorname{Tol}_{x} > 0 : |I_{k}|| = \left(\frac{1}{2}\right)^{k} |b - a| \stackrel{!}{\leq} \operatorname{Tol}_{x} \Rightarrow k \leq \left\lceil \frac{\log_{2}(b - a)}{\operatorname{Tol}_{x}} \right\rceil$$
$$\operatorname{Tol}_{f} > 0 : b_{k} - a_{k} \to 0$$

Da f stetig ist und eine Nullstelle in $[a_k, b_k]$ hat, gilt $\lim_{k \to \infty} f(a_k) = \lim_{k \to \infty} f(b_k) = 0$

$$\Rightarrow \exists k_f \in \mathbb{N} : \min\{|f(a_{k_f})|, |f(b_{k_f})|\} \leq \operatorname{Tol}_f$$

$$(Gilt |f'(x)| \le C \forall x \in [a,b], \text{ so gilt } z.B.: |f(a_k)| = |f(a_k) - f(x_k)| \le |I_k| \max_{x \in [a,b]} |f'(x)| \le C \left(\frac{1}{2}\right)^k \stackrel{!}{\le} \operatorname{Tol}_f)$$

Probleme

- a,b zu finden mit $f(a)\cdot f(b)<0$ kann sehr schwierig sein.
- Die Konvergenz ist in der Praxis zu langsam. (Siehe 1.5: Konvergenzordnung ist 1 mit $c = \frac{1}{2}$)
- $\bullet\,$ Die Methode ist auf $\mathbb R$ beschränkt

Regula Falsi Wie in 2.2.1 aber mit \overline{x} wie folgt: Bildchen

$$\overline{x} = a_k - \frac{f(a_k)(b_k - a_k)}{f(b_k) - f(a_k)}$$

Keine Auslöschung im Nenner wegen $f(a_k) \cdot f(b_k) < 0$. Weiteres Vorgehen wie in 2.2.1 Konvergenz: Konvergert wie in 2.2.1 im Fall $\text{Tol}_f > 0$. Die Konvergenz kann beliebig langsam sein. Im "besten" Fall ist die Konvergenz linear (unter noch allgemeinen Voraussetzungen)

Das Sekantenverfahren Bildchen

 $f: \mathbb{R} \longrightarrow \mathbb{R}$ stetig. x_1, x_2 gegeben, $x_1 \neq x_2$ und $f(x_1) \neq f(x_2)$ x_3 ist dann die Nullstelle der Sekante

Initialisierung: $x_1 \neq x_2, f(x_1) \neq f(x_2)$

Iteration für $k \ge 0$:

1.) Falls $f(x_{k-1}) \neq f(x_k)$

$$x_{k+1} = x_k - \frac{f(x_k)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}$$

2.) $k \curvearrowright k+1$

Abbruch: $Tol_x, Tol_f, Tol_{f'}, k_{max}$ Wie in 2.2.1 aber mit

$$\begin{array}{rcl} |x_k-x_{k-1}| & \leq & \operatorname{Tol}_x? \\ |f(x_k)| & \leq & \operatorname{Tol}_f? \\ k & \leq & k_{\max} \\ \\ \operatorname{und} |f(x_k)-f(x_{k-1})| & \leq & \operatorname{Tol}_{f'}? \end{array}$$

Die letzten beiden Bedingungen führen zu einem erfolglosen Abbruch.

Bemerkungen

- Keine Erfolgsgarantie für allgemeine Startwerte
- ullet Kleine f-Differenzen erzeugen große Fehler

Aber:

- Günstiger Aufwand (1 f-Auswertung pro Schritt) bei schneller Konvegenz, falls es konvergiert.
- \bullet Gewisse Verallgemeinerung auf \mathbb{R}^N möglich

Satz 19. $f \in C^2(\mathbb{R}), f(x_*) = 0, f'(x_*) \neq 0, f''(x_*) \neq 0.$

Dann ex. eine Umgebung U von x_* , sodass das Sekantenverfahren für alle Startwerte aus U konvergiert und die Konvergenzordnung ist genau $\frac{1}{2}(1+\sqrt{5})\approx 1.6$

Newton-Verfahren $f: \mathbb{R} \longrightarrow \mathbb{R}$ stetig db.

Idee: Verwende Tangende statt Sekante

Bildchen

Initialisierung: $x_1 \min f'(x_1) \neq 0$

Iteration: für $k \ge 0$

1.) Falls $f'(x_k) \neq 0$

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

2.) $k \curvearrowright k+1$

Abbruch: $Tol_x, Tol_f, k_{max}, Tol_{f'}$

$$|x_k - x_{k-1}| \leq \operatorname{Tol}_x$$

$$|f(x_k)| \leq \operatorname{Tol}_f$$

$$k \leq k_{\max}$$

$$|f'(x_k)| \leq \operatorname{Tol}_{f'}$$

In den letzten beiden Fällen ist der Abbruch erfolglos

Bemerkungen

- Keine Garantie eines erfolgreichen Abbruchs (im Allgemeinen)
- \bullet Kleine Werte von f' führen zu großen Fehlern

Aber:

- sehr schnell, falls konvergent
- ullet Verallgemeinerung auf \mathbb{R}^N bzw. Banachräume möglich

Konvergenzordnung des Newton-Verfahrens

$$f \in C^3$$
, $f(x_*) = 0$, $f'(x_*) \neq 0$

Die Iterationsfunktion des Newton-Verfahrens ist

$$\Phi(x) := x - \frac{f(x)}{f'(x)}$$

Nach 1.5 bilden wir $\Phi'(x_*), \Phi''(x_*)$

$$\Phi'(x) = 1 - \left(1 - \frac{f(x)f''(x)}{f'(x)^2}\right) = \frac{f(x)f''(x)}{f'(x)^2} \stackrel{x=x^*}{=} 0$$

$$\Phi''(x) = \frac{f''(x)}{f'(x)} + f(x)(\dots) \stackrel{x=x^*}{=} \frac{f''(x_*)}{f'(x_*)} + 0$$

Die Konvergenz ist quadratisch und sie ist genau quadratisch, falls $f''(x_*) \neq 0$

4.2.3 Lokale Konvergenz des Newtonverfahrens

Es sei $(V, \|.\|_V)$ ein Banachraum, $\emptyset \neq U \subset V$, $f: U \longrightarrow V$ eine stetig db. Funktion mit $f'(v)^{-1} \in \mathbb{L}(V, V)$ für alle $v \in U$ sowie

$$\sup_{v \in U} \|f'(v)^{-1}\|_{\mathbb{L}(V,V)} \le K < \infty$$

und

$$||f'(v) - f'(w)||_{\mathbb{L}(V,V)} \to 0 \ (||v - w||_V \to 0) \text{ glm. für } v, w \in U.$$

Weiter sei $u_* \in U$ eine Nullstelle von f. Dann gibt es zu jedem $g \in (0,1)$ ein $\delta > 0$, so dass für jeden Startwert $u_0 \in B_{\delta}(u_*)$ die Newton-Iteration $u_{i+1} = u_i - f'(u_i)^{-1} f(u_i)$ wohldefiniert ist und für $i \geq 0$ gilt

$$||u_i - u_*||_V \le q||u_0 - u_*||_V$$

Ist f zweimal stetig db, so ist die Konvergenz quadratisch:

$$||u_{i+1} - u_*||_V \le C||u_i - u_*||_V^2$$

für $i \ge 0$ und ein C > 0. C hängt von f ab.

Insbesondere bricht das Verfahren nach endlich vielen Schritten bzgl. der Kriterien

$$||u_i - u_{i-1}||_V \stackrel{!}{\leq} \operatorname{Tol}_x \text{ oder}$$

 $||f(u_i)||_V \leq \operatorname{Tol}_f$

für $Tol_x, Tol_f \ge 0$, $Tol_x + Tol_f > 0$ ab

Bemerkung $T: V \longrightarrow V$ linear, stetig (: $\Leftrightarrow T \in \mathbb{L}(V, V)$),

$$||T||_{\mathbb{L}(V,V)} := \sup_{v \in V} \frac{||Tv||_V}{||v||_V}$$

Beweis. Sei $r_0 > 0$ mit $\overline{B_{r_0}(u_*)} \subset U$. Dann gilt für $u \in B_r(u_*)(0 < r < r_0)$

$$f(u) = f(u_*) + \int_0^1 f'(u_* + t(u - u_*))(u - u_*) dt$$

Die Iterationsfunktion des Newton-Verfahrens ist

$$G(u) := u - f'(u)^{-1} \cdot f(u)$$

G ist auf $B_{r_0}(u_*)$ wohldefiniert und mit $u(t) := u_* + t(u - u_*)$ gilt

$$G(u) - u_* = u - u_* - f'(u)^{-1} \int_0^1 f'(u(t))(u - u_*) dt$$
$$= \int_0^1 f'(u)^{-1} (f'(u) - f'(u(t)))(u - u_*) dt$$

Daher:

$$||G(u) - u_*||_V \le \sup_{v \in B_r(u_*)} ||f'(v)^{-1}||_{\mathbb{L}(V,V)} \cdot \sup_{t \in (0,1)} ||f'(u) - f'(u(t))||_{\mathbb{L}(V,V)} \cdot ||u - u_*||_V$$

 $Zu \ q \in (0,1)$ wähle also δ , so dass

$$||G(u) - u_*||_V \le q \cdot ||u - u_*||_V$$
 für alle $u \in B_\delta(u_*)$

 $F\ddot{u}r\ u_0 \in B_{\delta}(u_*)\ folgt\ also\ induktiv$

$$||u_{i+1} - u_*||_V = ||G(u_i) - u_*||_V \le q \cdot ||u_i - u_*||_V \le \delta$$

d.h. $\{u_i\}_i \in B_{\delta}(u_*)$ und $\lim_{i \to \infty} u_i = u_*$. Insbesondere

$$||u_i - u_*||_V \le q^i ||u_0 - u_*||_V$$

Ist f zweimal stetiq db, so gilt:

$$\sup_{t \in (0,1)} \|f'(u) - f'(u(t))\|_{\mathbb{L}(V,V)} \le C' \|u - u(t)\|_{V}$$

$$\le C' \|u - u_*\|_{V} \quad \text{mit } C' = C'(f'')$$

Also

$$||G(u) - u_*||_V \le KC' ||u - u_*||_V^2 = C||u - u_*||_V^2$$

$$\Rightarrow ||u_{i+1} - u_*||_V \le C||u_i - u_*||_V^2$$

 $Mit \|u_{i+1} - u_i\|_V \le \|u_{i+1} - u_*\|_V + \|u_i - u_*\|_V \le 2 \cdot \|u_i - u_*\|_V.$

Also $||u_{i+1} - u_i||_V \to 0$ und mit Stetigkeit $||f(u_i)||_V \to 0$ für $i \to \infty$. Daraus folgt der Abbruch nach endlich vielen Schritten.

Bemerkungen:

- f' invertierbar heißt, dass u_* eine einfache Nullstelle ist
- u Nullstelle von f. Dann sei $\varepsilon(u)$ der Einzugsbereich von u, d.h. $u_0 \in \varepsilon(u) \Rightarrow$ das Newton-Verfahren ist wohldefiniert für u_0 und die Folge $\{u_i\}_{i\geq 0}$ konvergiert gegen u.

Der vorherige Satz sagt: $B_{\delta}(u) \subseteq \varepsilon(u)$ für δ klein (unter genannten Voraussetzungen)

Beispiel $V = \mathbb{R}, f(x) = \arctan(x)$ Bildchen

$$f(0) = 0$$

$$|x_0| < X_0 \quad \Rightarrow \quad x_i \to 0$$

$$|x_0| > X_0 \quad \Rightarrow \quad |x_i| \to \infty$$

$$x_0 = X_0 \quad \Rightarrow \quad x_i = (-1)^i \cdot x_0$$

Für $V = \mathbb{R}^n$, $n \ge 2$ ist $\varepsilon(u)$ sehr kompliziert.

Wir berechnen für große Raumdimension $n f(u_i)^{-1}$ nicht explizit. Stattdessen lösen wir

$$f'(u_i)d_i = -f(u_i)$$

$$u_{i+1} = u_i + d_i$$

Newton-Kantorovich-Theorem $F: D \subset V \longrightarrow V, V$ Banachraum, D offen und konvex, F stetig db, $x_0 \in D$ und $F'(x_0)$ invertierbar sowie

$$||F'(x_0)^{-1}F(x_0)|| \leq \alpha$$

$$||F'(x_0)^{-1}(F'(y) - F'(x))||_{\mathbb{L}(V,V)} \leq \omega_0 \cdot ||x - y||_V \quad \forall x, y \in D$$

$$h_0 := \alpha\omega_0 < 1/2$$

$$B_{\delta}(x_0) \subset D, \ \delta := \frac{1}{\omega_0}(1 - (1 - 2h_0)^{1/2})$$

Dann ist die Folge $\{x_k\}_k$ der Newton-Iteration wohldefiniert, sie bleibt in $B_{\delta}(x_0)$ und konvergiert gegen ein x_* mit $F(x_*) = 0$. Die Konvergenz ist quadratisch.

Bemerkung

- Die Existenz der Nullstelle wird garantiert. Daher sind solche Theoreme auch in der Analysis interessant.
- Man kann (wie bei Banach) a priori Schranken oder a posteriori Schranken betrachten
- Beachte: $F(u)=0 \Leftrightarrow AF(u)=0$, falls A invertierbar ist. Wie in 2.4.1, 2.4.2 hängen die Konstanten von A ab. Die Größe $F'^{-1}F$ ist invariant gegenüber der Transformation $F\mapsto AF$

4.2.4 Globale Konvergenz

Idee: Definiere eine "Energie", die in jedem Schritt verkleinert wird: für ein $E:V=\mathbb{R}^n\longrightarrow\mathbb{R}$ gelte

$$|u_{i+1}| = |u_i - f'(u_i)^{-1} f(u_i)| = E(u_{i+1}) < E(u_i)$$

Problem: u_{i+1} sollte nicht zu weit weg sein von u_i . Ausweg (siehe Jakobi- oder SOR-Verfahren): Dämpfung.

Für $\tau_i > 0$ ist $u_{i+1} = u_i - \tau_i f'(u_i)^{-1} f(u_i)$ das gedämpfte Newton-Verfahren. "i klein": $\tau_i \in (0,1)$ klein

"i groß": $\tau_i \to 1$ um von der quadratischen Konvergenz zu profitieren. ($\tau \neq 1$: gedämpftes Newton-Verfahren konvergiert nur linear)

Lemma 4. $\emptyset \neq D \subset \mathbb{R}^n$ abgeschlossen und beschränkt. $f \in C^1(D, \mathbb{R}^n)$ und $f'(u)^{-1}$ existiere für alle $u \in D$. |.| eine Vektornorm.

Definiere $E: D \longrightarrow \mathbb{R}$, $u \mapsto E(u) = |f(u)|$ mit $d(u) := -f'(u)^{-1} \cdot f(u)$. Dann gilt: Für alle $\varepsilon > 0$ existiert ein $\delta > 0$ mit

$$E(u + \tau d(u)) \le (1 - \tau + \varepsilon \tau)E(u)$$
 für alle $u \in D, \ \tau \in (0, \delta)$

Beweis. $F\ddot{u}r\ u\in D$:

$$f(u + \tau d(u)) = f(u) + \int_{0}^{\tau} f'(u + sd(u))d(u) ds$$

$$= \left(Id - \int_{0}^{\tau} f'(u + sd(u))f'(u)^{-1} ds\right)f(u)$$

$$= \left((1 - \tau)Id - \int_{0}^{\tau} (f'(u + sd(u)) - f'(u))f'(u)^{-1} ds\right)f(u)$$

au genügend klein:

$$|f(u + \tau d(u))| \le (1 - \tau + \underbrace{\tau \sup_{s \in (0,\tau)} ||f'(u + sd(u)) - f'(u)||_2}_{\le C - 1 \cdot \varepsilon. \text{ falls } \tau \le \delta} \underbrace{||f'(u)^{-1}||_2}_{\le C} \cdot |f(u)|$$

$$\Rightarrow E(u + \tau d(u)) \le (1 - \tau + \varepsilon \tau)E(u)$$

Schrittweitensteuerung f wie in 2.3, E wie oben. Wähle ein $\sigma \in (0,1)$ und $u_0 \in D$. Newton-Verfahren mit Schrittweitensteuerung

Initialisierung: $u_0 \in D$

Iteration: für $k \ge 0$

- 1.) Löse $f'(u_k)d_k = -f(u_k)$ für d_k
- 2.) Bestimme $\tau_k = 2^{-q_k}$ und $q_k \in \mathbb{N}$ minimal mit $B_{\tau|d_k|}(u_k) \subset D$ und $E(u_k + \tau_k d_k) \leq (1 \sigma \tau_k) E(u_k)$
- 3.) $u_{k+1} = u_k + \tau_k d_k$, gehe zu (1)

Wahl des Wertes q_k

k=0: $q=0,1,\ldots$ bist die Bedingung in (2) für ein q_0 zum ersten Mal erfüllt ist. k>0: Probiere $q=q_{k-1}-1,q_{k-1},\ldots$ bist (2) für ein q_K zum ersten Mal erfüllt ist.

Globale Konvergenz

Satz 20. f wie im Lemma in 2.4.1 bzgl. eines D_{α} .

Zu $\alpha > 0$ sei $D_{\alpha} := \{v \in D : |f(v)| \leq \alpha\}$ nichtleer und kompakt. (f darf nur eine Nullstelle haben und muss glm konvergieren)

Dann konvergiert das Verfahren aus 2.4.1 für alle Startwerte $u_0 \in D_\alpha$ gegen eine Nullstelle von f in D_α .

Insbesondere folgt der Abbruch nach endlich vielen Schritten bzgl. des Kriteriums $E(u_k) \le \operatorname{Tol}_f f\ddot{u}r$ ein $\operatorname{Tol}_f > 0$

Beweis. Nach Konstruktion gilt:

$$E(u_{[k+1}) \le E(u_k) \le \ldots \le E(u_0) = \alpha$$

und $\{u_k\}_k \subseteq D_\alpha$.

Die Folge konvergiert daher, weil D_{α} kompakt ist, etwa $u_k \to u_*(k \to \infty)$ für eine Teilfolge. Nach dem Lemma gibt es zu jedem $\varepsilon > 0$ ein $\delta > 0$, so dass

$$|f(u_k + \tau d(u_k))| \le (1 - (1 - \varepsilon)\tau)|f(u_k)|$$

 $f\ddot{u}r \ 0 \le \tau \le \delta$, gleichmäßig in D_{α} .

Nun sei $\varepsilon := 1 - \sigma$, d.h.

$$|f(u_k + \tau d(u_k))| \le (1 - \sigma \tau)|f(u_k)|$$

Diese Ungleichung gilt für $\tau = \delta$, d.h. nach Konstruktion gilt $\tau_k \geq \delta/2$. Insbesondere erhalten wir nach endl. vielen Schritten

$$|f(u_{k+1})| = |f(u_k + \tau_k d_k)| \le (1 - \frac{1}{2}\delta\sigma)|f(u_k)|,$$

also $E(u_{k+1}) \leq \kappa E(u_k)$ für ein $\kappa \in (0,1)$, so dass $\lim_{k \to \infty} E(u_k) = 0$. Insbesondere wird

$$E(u_k) = |f(u_k)| \stackrel{!}{\leq} \operatorname{Tol}_f \ nach \ endlich \ vielen \ Schritten \ erreicht.$$