0.1 Singular homology

Definition 0.1.1 (Eilenberg-Steenrod axioms). Top is the category of topological spaces, Ab is the category of abelian groups, \mathcal{T} is the fully faithful subcategory of $Top \times Top$ with objects pairs of topological spaces (X, A) such that $A \subseteq X$, \mathcal{T}_A is the fully faithful subcategory of \mathcal{T} with objects (X, A), $R: \mathcal{T} \to Top$, $(X, A) \mapsto A$, $f \mapsto f|_A$ is a functor

Relative homology are functors $H_n: \mathcal{T} \to Ab$, then $H_n(-, A)$ define functors $\mathcal{T}_A \to Ab$, absolute homology are functors $H_n(-, \varnothing): Top \to Ab$, reduced homology are $\tilde{H}_n = H_n(-, *)$. $\partial_n: H_n \to H_{n-1}R$ are natural transformations

$$H_n(X,A) \xrightarrow{H_n(f)} H_n(Y,B)$$

$$\downarrow_{\partial_n} \qquad \qquad \downarrow_{\partial_n}$$

$$H_{n-1}(A) \xrightarrow{H_{n-1}(f)} H_{n-1}(B)$$

 (H, ∂) is a **homology theory** if it satisfies axioms

Homotopy invariance: $f \simeq g: (X, A) \to (Y, B)$, then $H_n(f) = H_n(g)$

Additivity: $(X, A) = \bigsqcup_{\alpha} (X_{\alpha}, A_{\alpha})$, then $\bigoplus_{\alpha} H_n(X_{\alpha}, A_{\alpha}) \xrightarrow{\bigoplus_{\alpha} H_n(i_{\alpha})} H_n(X, A)$ is an isomorphism

Exactness:

$$\cdots \xrightarrow{\partial_{n+1}} H_n(A) \xrightarrow{H_n(i)} H_n(X) \xrightarrow{H_n(j)} H_n(X,A) \xrightarrow{\partial_n} \cdots$$

Exicision: $\bar{Z} \subseteq \overset{\circ}{U}$, then $H_n(X-Z,U-Z) \xrightarrow{H_n(i)} H_n(X,U)$ is an isomorphism

Dimension: $H_n(*) = 0, \forall n \neq 0, H_0(*)$ is the **coefficient group**

 (H, ∂) is an **extraordinary homology theory** without dimension axiom

Definition 0.1.2. A singular n-simplex in X is just a continuous map $\Delta \xrightarrow{\sigma} X$, the free abelian group $C_n(X)$ with singular n-simplices in X as basis consists of n-chains(singular chain) which are finite sums $\sum n_i \sigma_i$, $n_i \in \mathbb{Z}$, we can tensor $C_n(X)$ with a ring R, $C_n(X;R) := C_n(X) \otimes_{\mathbb{Z}} R$ to be chains with R coefficients, here R could be an abelian group(group ring) or a field Also, if we only consider characteristic maps(for simplicial, Δ , cell complexes), we would get $C_n(X)$ to be simplicial, cellular chains

Remark 0.1.3. Given a topological space, we can form a huge Δ complex S(X) Let $S(X)^0$ be X with discrete topology which can be identified with all the maps $\Delta^0 = * \to X$, then build on it inductively as a CW complex, suppose $S(X)^n$ is constructed, for each map $\Delta^{n+1} \to X$, we add an n+1 cell by gluing its faces to its restrictions, preserving the order Similarly, suppose X is a singular Δ complex, we can also construct a Δ complex $\Delta(X)$ by replacing continuous maps with simplicial maps above

The simplicial homology of S(X), $\Delta(X)$ is the same as the singular homology of X

Definition 0.1.4. The boundary map $\partial_n: C_n(X) \to C_{n-1}(X)$ given by

$$\partial_n \sigma = \sum_{i=0}^n (-1)^i \sigma | [e_0, \cdots, \widehat{e_i}, \cdots, e_n]$$

Where $\sigma: \Delta^n \to X$ is a singular simplex, we can easily show that $\partial_n \partial_{n+1} = 0$, define cycles $Z_n(X) = \ker \partial_n$ and boundaries $B_n(X) = \operatorname{im} \partial_{n+1}$, and the (singular)homology group $H_n(X) = Z_n(X)/B_n(X)$

Similarly, we can define simplicial cycles, boundaries and homology groups correspondingly For cell complexes, if $\partial_n \sigma \subseteq X^{n-1}$, σ is called a cellular cycle, and cellular boundary is defined to be the image of some cellular chain, we can therefore define cellular homology

Definition 0.1.5. Define $C_n(X, A)$ to be $C_n(X)/C_n(A)$, $C_{\bullet}(X, A)$ form a chain complex, $Z_n(X, A)$ can be represented by n-chains with its boundary in A

The cellular homology could also be defined as the homology groups of $\cdots \to H_{n+1}(X^{n+1}, X^n) \xrightarrow{d_{n+1}} H_n(X^n, X^{n-1}) \to \cdots$, where d_{n+1} is induced by $H_{n+1}(X^{n+1}, X^n) \to H_n(X^n, X^{n-1})$

Definition 0.1.6. Suppose $\mathcal{U} = \{U_j\}$ are a family of subspaces of X and interiors of U_j form an open cover of X, define $C_n^{\mathcal{U}}(X)$ to be n-chains $\sum n_i \sigma_i$ such that the image of each σ_i is contained in some U_j , $C_n^{\mathcal{U}}(X,A) := C_n^{\mathcal{U}}(X)/C_n^{\mathcal{U}}(A)$

Theorem 0.1.7. The inclusion $C_n^{\mathcal{U}}(X,A) \to C_n(X,A)$ is a chain homotopy equivalence Excision theorem for singular homology

 ${\bf Theorem~0.1.8~(Excision~theorem~for~singular~homology).~Singular~homology~satisfies~excision~theorem}$

Proof. Suppose $\bar{Z} \subseteq \overset{\circ}{U}$, let $A = U, B = X - Z, \mathcal{U} = \{A, B\}$, only need to show $H_n^{\mathcal{U}}(A \cup B, A) \cong H_n(A \cup B, A) \cong H_n(X, U) \cong H_n(X - Z, U - Z) \cong H_n(B, A \cap B) \cong H_n^{\mathcal{U}}(B, A \cap B)$ Consider $C_n^{\mathcal{U}}(B) \hookrightarrow C_n^{\mathcal{U}}(X) \to C_n^{\mathcal{U}}(X)/C_n^{\mathcal{U}}(A)$ has kernel $C_n^{\mathcal{U}}(A \cap B)$, thus $C_n^{\mathcal{U}}(B)/C_n^{\mathcal{U}}(A \cap B) \cong C_n^{\mathcal{U}}(X)/C_n^{\mathcal{U}}(A)$

Definition 0.1.9. (X, A) is called a good pair if A has a neighborhood U deformation retracts onto A

Definition 0.1.10. The reduced singular homology $\tilde{H}_n(X)$ is defined to be the homology group of the chain complex

$$\cdots \xrightarrow{\partial} C_1(X) \xrightarrow{\partial} C_1(X) \xrightarrow{\varepsilon} \mathbb{Z}$$

Lemma 0.1.11. $\tilde{H}_n(X) \to H_n(X,*)$ is an isomorphism induced from $C_n(X) \to C_n(X,*)$

Proof. For $\sum n_i \sigma_i \in C_1(X)$, if $\sum n_i \partial \sigma_i \in C_0(*)$, then $\sum n_i \partial \sigma_i = 0$, thus $H_1(X,*) \cong \tilde{H}_1(X)$ For any $\sum n_i P_i \in C_0(X,*)$ where P_i are points, then $\sum n_i P_i - \sum n_i *$ is a preimage in $Z_0(X)$, a boundary in $Z_0(X)$ certainly maps to a boundary in $C_0(X,*)$, suppose $\sum n_i P_i \in C_0(X,*)$ is a boundary, $\sum n_i P_i - \sum n_i *$ has to be a boundary in $C_0(X)$, thus $H_0(X,*) \cong \tilde{H}_0(X)$

Theorem 0.1.12. If (X, A) is called a good pair, $H_n(X, A) \xrightarrow{q_*} \tilde{H}_n(X/A)$ is an isomorphism

Proof. Consider the quotient map $q: X \to X/A$ induces $H_n(X,A) \to H_n(X/A,*) \to \tilde{H}_n(X/A)$, we show that q_* is an isomorphism, suppose U is a neighborhood of A that deformation retracts onto it, consider the following diagram

$$H_n(X,A) \xrightarrow{i_*} H_n(X,U) \longleftarrow \stackrel{i_*}{\longleftarrow} H_n(X-A,U-A)$$

$$\downarrow^{q_*} \qquad \qquad \downarrow^{q_*} \qquad \qquad \downarrow^{q_*}$$

$$H_n(X/A,*) \xrightarrow{i_*} H_n(X/A,U/A) \longleftarrow \stackrel{i_*}{\longleftarrow} H_n(X-A/A,U-A/A)$$

 $H_n(X,A) \xrightarrow{i_*} H_n(X,U), \ H_n(X/A,*) \xrightarrow{i_*} H_n(X/A,U/A)$ are isomorphisms because of the deformation retraction, $H_n(X-A,U-A) \xrightarrow{i_*} H_n(X,U), \ H_n(X-A/A,U-A/A) \xrightarrow{i_*} H_n(X/A,U/A)$ are isomorphisms because of the Theorem 0.1.8, $H_n(X-A,U-A) \xrightarrow{q_*} H_n(X-A/A,U-A/A)$ is an isomorphism since $(X-A,U-A) \xrightarrow{q} (X-A/A,U-A/A)$ is a homeomorphism

Theorem 0.1.13 (Mayer Vietoris sequence). Suppose A, B are subspaces of X that the interior of A, B covers X, then we have an exact sequence of homology groups $\cdots \to H_n(A \cap B) \to H_n(A) \oplus H_n(B) \to H_n(A \cup B) \to \cdots$

Proof. It is not hard to see there is a short exact sequence $0 \to C_n^{\mathcal{U}}(A \cap B) \to C_n^{\mathcal{U}}(A) \oplus C_n^{\mathcal{U}}(B) \to C_n^{\mathcal{U}}(A \cup B) \to 0$, $x \mapsto (x, x)$ and $(x, y) \mapsto x - y$

Theorem 0.1.14. Suppose X has a Δ complex structure, $H_n^{\Delta}(X) \to H_n(X)$, $\Phi_{\alpha}^n \mapsto \Phi_{\alpha}^n$ is an isomorphism

Definition 0.1.15. $S^n \xrightarrow{f} S^n$ induces $\mathbb{Z} \cong H_n S^n \xrightarrow{f_*} H_n S^n \cong \mathbb{Z}$, $f_*(1)$ is the **degree** of f

Proposition 0.1.16 (Properties of degrees).

- 1. deg 1 = 1
- **2.** $\deg(fg) = \deg f \deg g$
- **3.** If f is not surjective, $\deg f = 0$
- **4.** If f is a reflection, $\deg f = -1$
- 5. Let a be the antipodal map, then $\deg a = (-1)^{n+1}$
- **6.** If f has no fixed points on S^n , then f is homotopic to the antipodal map Proof.
- 1. Let Δ_1^n, Δ_2^n maps to the upper and lower hemisphere be a Δ complex structure on S^n , then $\Delta_1^n \Delta_2^n$ would be a generator, and f maps them to $\Delta_2^n \Delta_1^n$, thus $\deg f = -1$
- **2.** a is the composition of n+1 reflections
- 3. Since $f(x) \neq -x$, $\frac{(1-t)f(x)-tx}{|(1-t)f(x)-tx|}$ homotopy f to a

Definition 0.1.17. View Δ^n as $\{0 \le x_1 \le \cdots \le x_n \le 1\}$, we can cut $\Delta^n \times \Delta^m = \{0 \le x_1 \le \cdots \le x_n \le 1\} \times \{0 \le x_{n+1} \le \cdots \le x_{n+m} \le 1\}$ into $\binom{n+m}{m}$ simplices

$$\Delta^n \times \Delta^m = \bigcup_{\sigma} \Delta_{\sigma}, \quad \Delta_{\sigma} = \{0 \le x_{\sigma(1)} \le \cdots \le x_{\sigma(n+m)} \le 1\}$$

 σ runs over (n, m)-shuffles. Each σ can be viewed as a path through a grid as in Definition ??. Associate a linear map $\ell_{\sigma}: \Delta^{n+m} \to \Delta_{\sigma} \subseteq \Delta^n \times \Delta^m$, sending the k-th vertex to vertex in the grid. The **cross product**

$$C_n(X) \otimes C_m(Y) \to C_{n+m}(X \times Y)$$

 $f \otimes g \mapsto f \times g$

Where

$$f imes g = \sum_{\sigma} (-1)^{|\sigma|} (f imes g) \ell_{\sigma}$$

Here on the right hand side $f \times g : \Delta^n \times \Delta^m \to X \times Y$, $(a, b) \mapsto (f(a), g(b))$ is different from the left hand side. We have $\partial (f \times g) = \partial f \times g + (-1)^n f \times \partial g$

Eilenberg-Zilber theorem

Theorem 0.1.18 (Eilenberg-Zilber theorem). $C_*(X \times Y) \to C_*(X) \otimes C_*(Y)$ is a natural equivalence

Proof. Consider $Top \times Top$ with model $\mathcal{M} = \{(\Delta^n, \Delta^m)\}$, $F, G: Top \times Top \to Ch_{\geq 0}$, $F(X, Y) = C_*(X \times Y)$, $G(X, Y) = C_*(X) \otimes C_*(Y)$, $H_i(\Delta^n \times \Delta^m) = 0$ for $i \neq 0$,

$$F_k(X,Y) = \left\{ \Delta^k \xrightarrow{(\mathrm{id},\mathrm{id})} \Delta^k \times \Delta^k \xrightarrow{\sigma} X \times Y \right\}.$$
 By Exercise ??, $H_i(C_*(X) \otimes C_*(Y)) = 0$ for

$$\begin{split} i \neq 0, \ C_k(X) = \left\{ \Delta^k \xrightarrow{\mathrm{id}} \Delta^k \xrightarrow{\sigma} X \right\}, \ G_k(X,Y) = \left\{ (\sigma \otimes \tau) (\mathrm{id}_{\Delta^p} \otimes \mathrm{id}_{\Delta^q}) \middle| \Delta^p \xrightarrow{\sigma} X, \Delta^q \xrightarrow{\tau} Y \right\} \\ \text{There is a natural equivalence } \phi_0 : H_0F \to H_0G \text{ induced by } \varphi : C_0(X \times Y) = F_0(X,Y) \to G_0(X,Y) = C_0(X) \otimes C_0(Y), \ (\sigma,\tau) \mapsto \sigma \otimes \tau, \text{ since } H_0(X \times Y) = C_0(X \times Y)/(x_0,y_0) \sim (x_1,y_1), \ (x_0,y_0), (x_1,y_1) \text{ are connected by a path, } H_0(C_*(X) \times C_*(Y)) = C_0(X) \otimes C_0(Y)/(x_0,y_0) \sim (x_1,y_0) \sim (x_1,y_0) \sim (x_1,y_1) \end{split}$$

Cross product and its dual for homology

Remark 0.1.19. We define the cross product $C_*(X) \otimes C_*(Y) \xrightarrow{\times} C_*(X \times Y)$ and its dual φ Define $T: C_*(X \times Y) \to C_*(Y \times X), \ (x,y) \mapsto (y,x), \ \tau: C_*(X) \otimes C_*(Y) \to C_*(Y) \otimes C_*(X), \ x \otimes y \mapsto (-1)^{|x||y|} y \otimes x, \ T^2 = 1, \ \tau^2 = 1, \$

 \neg

$$\begin{array}{ccc} C*(X)\otimes C_*(Y) & \stackrel{\times}{\longrightarrow} & C_*(X\times Y) \\ & \downarrow^{\tau} & \downarrow^{T} \\ C_*(Y)\otimes C_*(X) & \stackrel{\times}{\longrightarrow} & C_*(Y\times X) \end{array}$$

Is not commutative, but \times and $T \circ \times \circ \tau$ are chain homotopic

$$\begin{array}{ccc} C_*(X\times Y) & \stackrel{\theta}{\longrightarrow} C*(X)\otimes C_*(Y) \\ \downarrow^T & & \downarrow^\tau \\ C_*(Y\times X) & \stackrel{\theta}{\longrightarrow} C_*(Y)\otimes C_*(X) \end{array}$$

Is not commutative, but θ and $\tau \circ \theta \circ T$ are chain homotopic

Topological Kunneth formula

Theorem 0.1.20 (Topological Kunneth formula).

$$0 \to \bigoplus_{p+q=n} H_p(X) \otimes H_q(Y) \to H_n(X \times Y) \to \bigoplus_{p+q=n-1} Tor_1(H_p(X), H_q(Y)) \to 0$$

Is exact

Proof. Apply Theorem 0.1.18 and Theorem ??

0.2 Cellular homology