Estudiante 1: Andrés Carrillo Bejarano Estudiante 2: Javier Bermejo Torrent

Problema

1. Con la red neuronal implementada en el apartado 2, rellene los resultados obtenidos de predecir TODO el conjunto de datos en la siguiente tabla.

Número de neuronas ocultas	Tasa de acierto
1	68.30
2	86.20
3	98.30
4	98.10
5	99.20
10	99.70

Mostrar gráficas con datos y frontera de decisión para número de neuronas en la capa oculta de 1, 2, 3, 4, 5 y 10.

Nota: Con el objeto de distinguir las gráficas, ponga como título en cada gráfica el número de neuronas de la capa oculta.

Ilustración 1: Frontera de decisión con 3 neuronas

Ilustración 2: Frontera de decisión con 2 neuronas

Ilustración 3: Frontera de decisión con 3 neuronas

Ilustración 4: Frontera de decisión con 4 neuronas

Ilustración 5: Frontera de decisión con 5 neuronas

Ilustración 6: Frontera de decisión con 10 neuronas

Después de analizar las gráficas anteriores, responda a las siguientes cuestiones:

¿Cuál es el mejor valor del parámetro "número de neuronas en la capa oculta"? ¿Por qué?

Respuesta:

En este caso, el mejor número de neuronas a utilizar serían: 4 neuronas. Porque con un número reducido de neuronas se obtiene bastante precisión, pero en caso de utilizar un mayor número de neuronas el modelo sería más propenso a overfitting.

¿Por qué la red neuronal con 1 y 2 neuronas en la capa oculta no funciona bien?

Respuesta:

Porque la frontera de decisión deberia ser circular y con los modelos obtenidos de las redes neuronales de 1 y 2 neuronas obtenemos una linea recta y una curva que no se ajustan bien a la frontera de decisión deseada.

¿Qué comportamiento observas en la red neuronal cuando se aumenta el número de neuronas en la capa oculta?

Respuesta:

Conforme se aumenta el número de neuronas en la capa oculta, las fronteras de decisión se vuelven más ajustadas a los datos que tenemos produciendose overfitting.

¿Qué harías para poder usar modelos de redes neuronales con un número elevado de neuronas en la capa oculta?

Respuesta:

Aplicar regularización para así penalizar los parámetros thetas para que no tenga tanta importancia los datos de entrenamiento y disminuir el overfitting para que se obtenga un modelo que se pueda ajustar a otro conjunto de datos.

2. Con la red neuronal implementada en el apartado 4, mostrar gráficas con datos y frontera de decisión para parámetro de regularización λ 0.01, 0.03, 0.1, 0.3, 1 y 3. **Nota:** Con el objeto de distinguir las gráficas, ponga como título en cada gráfica el valor de λ .

Ilustración 7: Frontera de decisión con λ = 0.01

Ilustración 8: Frontera de decisión con λ = 0.03

Ilustración 9: Frontera de decisión con λ = 0.1

Ilustración 10: Frontera de decisión con λ = 0.3

Ilustración 11: Frontera de decisión con λ = 1

Ilustración 62: Frontera de decisión con λ = 3

¿Qué comportamiento observas en la red neuronal cuando se aumenta el parámetro de regularización λ ?

Respuesta:

El modelo reduce su overfitting, obteniendo asi un modelo más bueno que se ajusta menos a el conjunto de datos, como se puede comprobar al aplicarle un mayor lambda se ajustan menos para puntos concretos, y se ajusta mejor para el conjunto de datos.

¿Cuál es el mejor valor del parámetro λ ? ¿Por qué?

Respuesta:

Cuando lambda vale 3, debido a que obtenemos un modelo mas ajustado al circulo que se busca en este problema.