EDAV Project 2: Regression with Principal Components

Aim: Visualize and analyze relationship between flood characteristics and number of people displaced

1. Visualize distribution of variables

Magnitude:

• Duration:

Affected area:

• Number displaced:

2. Center and scale

Except for magnitude, other variables are not normally distributed, so log-transform them and then center and scale all variables.

3. Linear regression

Perform multiple linear regression with "displaced" as dependent variable and other three variables ("magnitude", "duration", "affected") as independent variables.

This model seems to explain \sim 20% of number of people displaced (model R2 = 0.19).

Model 1. regress std_log_displaced std_magnitude std_log_duration std_log_affected

Source	SS	df M	S		r of obs = , 3030) =	3034 238.20
Residual 2	2454.19999	3 192.93 3030 .80996	6995	Prob R-squ Adj R	> F = ared =squared =	0.0000 0.1908 0.1900
Total 3	3032.99998	3033 .99999	9994	Root	MSE =	.89998
std_log_displa~d	Coef.	. Std. Err	. t	P> t	[95% Conf.	Interval]
std_magnitude std_log_duration std_log_affected _cons	.2125168	.0464031 .0844968	4.58	0.017 0.000 0.890 0.000	.0480809 .1215321 1774131 1000437	.4801559 .3035015 .1539406 0351292

Remove "affected" since not significantly associated with dependent variable. R2 remains unchanged.

 $\textbf{Model 2.} \quad \texttt{regress std_log_displaced std_magnitude std_log_duration}$

Source		SS	df	_	MS			Number			3034	
								F(2,		,	357.40	
Model			2					Prob >		=	0.0000	
Residual		4.21562	3031					R-squa			0.1908	
+								Adj R-	-		0.1903	
Total	303	2.99998	3033	.9999	99994			Root M	SE	=	.89984	
											T	
std_log_displa		Coe		Std. Er		t	P>	τļ	[95%	Coni.	Interv	7al]
std magnitu		.24919		.024417		.0.21	0.0	100	.2013	101	.2970	716
std log durati		.21803		.024417		9.08	0.0		.1709		.2650	
_ ~_					-							
_cc	ons	06751	۷,	.016542	3 -	4.08	0.0	100	0999	14/9	0350) / / 4

Check assumptions of linear regression:

• Assumption of normality of residuals appears satisfied.

• Assumption of homoscedasticity of residuals appears satisfied.

• No evidence of significant collinearity (VIF <10).

Variable	VIF	1/VIF
std_log_du~n std_magnit~e	2.21 2.21	0.452957 0.452957
Mean VIF	2 21	

• Assumption of linearity appears satisfied.

4. Perform principal components analysis on "magnitude" and "duration"

Estimate principal components.

 pca std_magnitude std_log_duration
 Number of obs = 4312

 Principal components/correlation
 Number of comp. = 2

 Number of comp. = 2
 2

 Trace = 2
 2

 Rotation: (unrotated = principal)
 Rho = 1.0000

 Component | Eigenvalue Difference | Proportion Cumulative | Comp1 | 1.73842 | 1.47684 | 0.8692 | 0.8692 | 0.8692 | 0.0000

 Comp2 | .261578 | . 0.1308 | 1.0000

Principal components (eigenvectors)

Variable	Comp1	Comp2	Unexpla	ined
std_magnit~e std_log_du~n	0.7071 0.7071	0.7071 -0.7071	 	0

Component 1 explains ~87% of variance, so compute score of that component (pc1) and regress on that alone. R2 of Model 3 is similar to the earlier Model 2 with separate terms for "magnitude" and "duration".

Model 3. regress std log displaced pc1

Source	SS	df		MS		Number of obs		3034
Model Residual 	578.41338 2454.5866 3032.99998	1 3032 3033	578. .8095 			F(1, 3032) Prob > F R-squared Adj R-squared Root MSE	= = =	714.48 0.0000 0.1907 0.1904 .89976
std_log_di~d	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
pc1 _cons	.3297514 0676347	.0123		26.73 -4.09	0.000	.3055626 1000453	-	3539401 0352241

Regression model with "pc1" (Model 3 above) appears to have superior R2 (0.19) than regression models with "duration" alone (0.16) (Model 4 below) or "magnitude" alone (0.17) (Model 5 below).

Model 4. regress std_log_displaced std_log_duration

Source	SS	df	MS		Number of ol		3034
•	94.448928 538.55105	1 4 3032 .	94.448928 837252986	3	F(1, 3032 Prob > F R-squared Adj R-square	= =	0.0000 0.1630
•			999999994				.91502
std_log_displa~d			. Err.	t P	> t [95%	Conf.	Interval]
std_log_duration _cons	.399227	5 .01	64281 68168		.000 .3670 .0000965		.4314389 0306235

Model 5. regress std_log_displaced std_magnitude

Source	SS	df	MS			3034
Model Residual		1 5 3032 .	11.983959 831469664		Prob > F = R-squared =	615.76 0.0000 0.1688 0.1685
Total	3032.99998	3033 .	999999994		Root MSE =	.91185
std_log_dis~d				P> t	[95% Conf. I	-
std_magnitude _cons	.4132298	.01665	28 24.81	0.000	.3805779	.4458817

Check assumptions of linear regression for model with principal component alone (Model 3):

• Assumption of normality of residuals appears satisfied.

• Assumption of homoscedasticity of residuals appears satisfied.

• No evidence of significant collinearity (VIF <10).

Variable	VIF	1/VIF
pc1	1.00	1.000000
Mean VIF	1.00	

• Assumption of linearity appears satisfied.

5. Visually assess relationship between multiple flood characteristics and the number of people displaced

Such a visualization would be difficult to perform with traditional linear regression in the presence of multiple independent variables.

6. Summmary

Principal components analysis allowed dimension reduction to one dimension, thereby allowing direct visualization between predictor and outcome.

Regression using one principal component was superior to regression limited to one traditional independent variable.