CS-751-Parallel Computing

Max. Marks: 60 Date: November 12, 2007
Duration 3.00 Hrs.

- Note: 1. Attempt any five questions
 - **2.** Figure to the right indicates maximum marks
 - 3. Draw neat diagrams, if needed
 - **4.** In case of any doubt, mention your assumptions in the answerbook and proceed for your answers.
- Q.1 (A) Devise a parallel algorithm for finding x^n (x power n) using [6] doubling technique. What is the parallel time and processors complexity?
 - (B) Write a multithreaded program to find numerical integration using [6] trapezoidal rule (S = $\sum_{i=1}^{n} \frac{(f_i + f_{i+1})}{2} *h$). The different threads compute intermediate values, x_1 and x_2 are two end points of the interval where the function value of f_1 and f_2 is calculated, h is a step size. Use a condition variable to recognize when each thread completed its designated computation.
- **Q.2 (A)** Develop a row-oriented parallel program for multiplying two [8] $n \times n$ matrices. Obtain it computational and communication complexities. Explain different possible MPI calls you can use to implement this procedure.
 - (B) Explain Foster's design methodology with a proper example. [4]
- Q.3 (A) What criteria are used to understand effectiveness in [4] implementing efficient parallel algorithms on real architecture?
 - (B) With a proper diagram explain the *cluster system architecture*. [4]
 - (C) Explain the concept of reducing the number of processors in a [4] computation.

Q. 4(A)	Explain the OpenMP Programming Model. Write an OpenMP π - finding code with reduction clause.	[6]
(B)	Explain the P-RAM model of computation. Show that p-processors PRIORITY PRAM can be simulated by a p-processor EREW PRAM with the time complexity increased by a factor of (log n).	[6]
Q.5 (A)	Show that the total number of processors in a Pyramid Network of size k^2 is $(4/3)k^2$ - $(1/3)$.	[4]
(B)	What is <i>race condition</i> ? Explain in context to shared memory programming.	[3]
(C)	Explain the working behavior of the following program segment and write your comments. Assume that there is no syntax error in the program segment.	[5]
	int a[10], b[10], npes, myrank; MPI_status status;	
	MPI_Comm_size(MPI_COMM_WORLD, &npes); MPI_Comm_rank(MPI_COMM_WORLD, &myrank); MPI_Send(a, 10, MPI_INT, (myrank+1)%npes, 1, MPI_COMM_WORLD); MPI_Recv(b, 10, MPI_INT, (myrank-1+npes)%npes, 1, MPI_COMM_WORLD);	
Q. 6(A)	Discuss issues involved in parallelizing compilers.	[4]
(B)	What are the lock routines and runtime environment routines used in OpenMP?	[4]
(C)	How do various PRAM models differ in handling the read or write conflicts?	[4]
Q.7 (A)	Explain the cube connected cycled network of processors.	[4]
(B)	What are the alternatives for programming shared memory multiprocessors. Which one is better and why?	[4]
(C)	Discuss the role of work sharing constructs in OpenMP.	[4]