Sujet 1 – corrigé

${ m I} \, \mid \! { m Question \; de \; cours}$

Tracé du diagramme de BODE du circuit RC avec R en sortie.

II | Filtre passe-haut d'ordre 2

On considère le filtre suivant :

1. Justifier que ce filtre est un filtre passe-haut.

Réponse:

On regarde le comportement du filtre à haute et à basse fréquences :

- $\omega \to 0$: le condensateur se comporte comme un interrupteur ouvert et la bobine comme un fil : s=0.
- $\omega \to \infty$: le condensateur se comporte comme un fil et la bobine comme un interrupteur ouvert : s=e.

Le circuit se comporte donc comme un filtre passe-haut.

2. Déterminer sa fonction de transfert et l'écrire sous la forme :

$$\underline{H} = \frac{jQx}{1 + jQ(x - \frac{1}{x})}$$
 avec $x = \frac{\omega}{\omega_0}$.

On donnera l'expression de la pulsation caractéristique ω_0 et celle du facteur de qualité Q.

Réponse:

En utilisant la loi du pont diviseur de tension :

$$\underline{H} = \frac{\underline{s}}{\underline{e}} = \frac{jL\omega}{R + jL\omega + \frac{1}{jC\omega}} = \frac{j\frac{L\omega}{R}}{1 + j\left(\frac{L}{R}\omega - \frac{1}{RC\omega}\right)}.$$

On a donc:

$$\frac{L}{R} = \frac{Q}{\omega_0} \qquad ; \qquad \frac{1}{RC} = Q\omega_0$$

En multipliant et divisant ces équations entre elles, on trouve :

$$Q = \sqrt{\frac{L}{R^2 C}} \qquad ; \qquad \omega_0 = \frac{1}{\sqrt{LC}}$$

- 2
- 3. Déterminer la pente des asymptotes du diagramme de Bode en gain. Tracer qualitativement son allure en supposant que le facteur de qualité est tel que le circuit n'est pas résonant.

Réponse :

On regarde la limite de la fonction de transfert à basse et à haute fréquences :

$$\underline{H}(x \to 0) = \frac{jQx}{-\frac{jQ}{x}} = -x^2 \qquad ; \qquad \underline{H}(x \to \infty) = \frac{jQx}{jQx} = 1.$$

Les gains en décibel $G_{dB} = 20 \log |\underline{H}|$ sont :

$$G_{\mathrm{dB}}(x \to 0) = 20 \log |x^2| = \boxed{40 \log x}$$
 ; $G_{\mathrm{dB}}(x \to \infty) = 20 \log 1 = \boxed{0}$.

Le diagramme de Bode en gain asymptotique est alors :

4. Tracer qualitativement l'allure du diagramme de Bode en phase en supposant toujours que le facteur de qualité est tel que le circuit n'est pas résonant.

Réponse:

Les phases $\varphi = \arg \underline{H}$ asymptotique sont :

$$\varphi(x \to 0) = \pi$$
 ; $\varphi(x \to 1) = \frac{\pi}{2}$; $\varphi(x \to \infty) = 0$.

5. Ce filtre peut-il avoir un comportement dérivateur? intégrateur?

Réponse :

Pour qu'un filtre possède un caractère dérivateur ou intégrateur, il faut qu'il possède une pente $\pm 20 \mathrm{dB/dec}$, ce qui n'est jamais le cas ici. Ce filtre n'a donc un comportement ni dérivateur ni intégrateur.

Sujet 2 – corrigé

I | Question de cours

Domaines intégrateur et dérivateur des filtres du 1er ordre.

I Diagrammes de Bode

1. Sans calculs, prévoir le comportement du filtre à basse fréquence.

Réponse :

$$\underline{H} \rightarrow 2/3$$

2. Faire le circuit équivalent à haute fréquence. Que peut-on dire ?

Réponse:

$$\underline{H} \rightarrow 1/2$$

3. Déterminer l'expression de la fonction de transfert que l'on mettra sous la forme :

$$\underline{H}(j\omega) = H_0 \frac{1 + j\frac{\omega}{\omega_2}}{1 + j\frac{\omega}{\omega_1}}$$

Exprimer H_0 , ω_1 et ω_2 en fonction de R et C.

Réponse :

$$\underline{H} = (1 + RC\omega j)/(3/2 + 2RC\omega j)$$

Par identification

$$\omega_1 = 3/(4RC)$$

$$\omega_2 = 1/(RC)$$

$$H_0 = 2/3$$

4. On pose $\underline{H_1}(j\omega) = 1 + j\frac{\omega}{\omega_1}$ et $\underline{H_2}(j\omega) = 1 + j\frac{\omega}{\omega_2}$. Tracer les diagrammes de Bode en gain et en phase en fonction de $\log(\omega)$ pour les deux fonctions $H_1(j\omega)$ et $H_2(j\omega)$.

Réponse:

5. En déduire les diagrammes de Bode en gain et en phase de la fonction de transfert $\underline{H}(j\omega)$ en fonction de $\log(\omega)$.

Réponse :

Sujet 3 – corrigé

I | Question de cours

Exercice d'application sur le filtrage de sinaux avec un passe-bas du 1er ordre.

${ m II}$ Étude d'un filtre

On considère le circuit suivant avec $R = 100 \Omega$ et L = 1 H.

1. Pour le circuit ci-dessus,

- étudier le comportement du filtre à très basses et à très hautes fréquences,
- exprimer la fonction de transfert \underline{H} en fonction de la résistance R, de l'inductance L et de la pulsation ω ,
- exprimer la pulsation de coupure ω_c en fonction de R et L,
- exprimer le gain en décibel ainsi que la phase de la fonction de transfert en fonction de $x = \omega/\omega_c$,
- faire l'étude asymptotique du gain et de la phase,
- tracer les diagrammes de Bode,
- préciser si le circuit présente un caractère dérivateur ou intégrateur.

Réponse:

 $\lim_{\omega\to 0} G = 0$ et $\lim_{\omega\to +\infty} G = 1/2$. C'est donc un filtre passe-haut.

Fonction de transfert :

$$\underline{H}(j\omega) = \frac{jL\omega/R}{1+2jL\omega/R} = H_0 \frac{jx}{1+jx}$$
 avec $H_0 = 1/2$; $\omega_c = \frac{R}{2L}$

$$Gain: G(x) = \frac{x/2}{\sqrt{1+x^2}}$$

Justification des asymptotes :

• à basse fréquence $\underline{H} \sim H_0 j x$, donc $G(x) \sim H_0 x$, donc

$$G_{\text{dB}} \approx 20 \log(H_0) + 20 \log(x) = -6dB + 20 \log(x) \quad ; \quad \phi(x) \to \pi/2$$

• à haute fréquence $\underline{H} \sim H_0$, donc $G(x) \sim H_0 = 1/2$, donc

$$G_{\rm dB} \approx 20 \log(H_0) = -6dB$$
 ; $\phi(x) \to 0$

• à
$$x = 1$$
, $G(x = 1) = \frac{1}{2\sqrt{2}}$, $G_{\text{dB}} = -6 - 3 = -9dB$ et $\phi(x = 1) = \pi/4$

Le circuit possède un caractère dérivateur pour $\omega \ll \omega_c$.

2. Calculer la fréquence de coupure.

Réponse:

$$\omega_c = 50 \,\mathrm{rad \cdot s^{-1}}, \,\mathrm{donc} \,\, f_c = \frac{\omega_c}{2\pi} = 8 \,\mathrm{Hz}$$

3. On alimente le circuit avec la tension

 $e_1(t) = 2.0 + 5.0\cos(2\pi \cdot 8t + \pi/4) + 5.0\cos(2\pi \cdot 800t)$ avec t en seconde et e_1 en volt. Exprimer la tension $s_1(t)$.

Réponse:

$$s_1(t) = S_0 + S_1 \cos(2\pi \cdot 8t + \theta_1) + S_2 \cos(2\pi \cdot 800t + \theta_2)$$

avec

- $S_0 = E_0 G(\omega \to 0) \cos(\phi(\omega \to 0)) = 0 \operatorname{car} G(\omega \to 0) = 0$
- Pour calculer S_1 et θ_1 , on a la fréquence de coupure, donc

$$S_1 = \frac{5}{\sqrt{2}} = 3.5 \,\text{V}$$
 ; $\theta_1 = \pi/4 + \pi/4 = \pi/2$

• Pour calculer S_2 et θ_2 , on a la fréquence $f = 100 f_c \gg f_c$, donc on se situe au niveau de l'asymptote horizontale à haute fréquence, d'où

$$S_2 = 5G(\omega \to +\infty) = \frac{5}{2} = 2.5 \,\text{V}$$
 ; $\theta_2 = 0 + \phi(\omega \to +\infty) = 0$

On en déduit $s_1(t) = 3.5\cos(2\pi \cdot 8t + \pi/2) + 5.0\cos(2\pi \cdot 800t)$

III Circuit RLC en RSF

On dispose de deux circuits A et B ci-dessous, qui sont alimentés par un GBF de f.e.m. $e(t) = E_0 \cos(\omega t)$ (avec E_0 une constante positive) et de résistance interne R_g .

Figure 3.1 – Montage A

Figure 3.2 – Montage B

On donne les graphiques de l'évolution de l'amplitude I_0 en ampère de l'intensité i(t), ainsi que celle de l'amplitude U_0 en volt de la tension u(t) en fonction de la fréquence f.

III. Circuit RLC en RSF

1. Pour chaque graphique, déterminer quelle est la courbe correspondant au montage A et celle au montage B. Déterminer les valeurs de E_0 , R, R_g , L et C.

Réponse:

Courbes 1 $I_0(B)$; courbe 2 $I_0(A)$

Courbe 3 $U_0(B)$; courbe 4 $U_0(A)$

Utilisation de
$$f_0 = \frac{1}{2\pi\sqrt{LC}} = 600\,\mathrm{Hz}$$

$$I_{0,max}(A) = \frac{E_0}{R + R_g} = 40 \text{ mA et } I_{0,max}(B) = \frac{E_0}{R/2 + R_g} = 60 \text{ mA, donc } \boxed{R = 2R_g}$$

$$E_0 = 5 \,\mathrm{V}$$

$$U(f_0) = QE_0 : Q_B = 1 = \frac{1}{2R_g} \sqrt{L/C}$$

Pente à l'origine de I_0 : $a=2\pi C E_0=1\times 10^{-4}\,\mathrm{s}$

$$C = 3.2 \,\mu\text{F}$$
, $L = 22 \,\text{mH}$, $R_g = 42 \,\Omega$, $R = 84 \,\Omega$