Quantum mechanics notes

Danny Nygård Hansen

21st February 2022

1 • Wave functions

Consider a (classical) monochromatic plane electromagnetic wave in vacuum, with amplitude E_0 . The average power per unit area transported by this wave is the *intensity* and is given by

$$I = \frac{1}{2}c\varepsilon_0 E_0^2.$$

Recall that the electric field (and the magnetic field) constitutes the wave function for electromagnetic waves, so we see that the density f is proportional to the *square* of the wave function. Writing $f = |\psi|^2$, we call ψ the *probability amplitude* for X. (Here we normalise the wave function to obtain ψ such that $|\psi|^2$ becomes a density.) We take the modulus of ψ to allow for the possibility that ψ be complex-valued.

As an example, consider a photon passing through a double slit. Let ψ_1 and ψ_2 be the contributions to ψ from each of the two slits, such that $\psi = \psi_1 + \psi_2$. If the second slit is closed, then $\psi_2 = 0$, and similarly if the first slit is closed. If both slits are open, then we might expect that $P_X(M) = (|\psi_1|^2 + |\psi_2|^2) dA$. However, the probability that the photon hits the patch M is instead

$$P_X(M) = |\psi|^2 dA = |\psi_1 + \psi_2|^2 dA$$

¹ We are not appealing to any intrinsic randomness in quantum mechanics, only the experimental fact that photons appear seemingly randomly on the screen.

by the principle of superposition.

2 • The Schrödinger equation

2.1. Unitary time evolution

Let $|\psi(t)\rangle$ denote the state of a quantum mechanical system at time t. We say that the time evolution of the system is *unitary* if there is a two-parameter family of unitary operators U(s,t), where s and t are real parameters (and U(s,t) is suitably smooth in s and t), such that

$$|\psi(t_2)\rangle = U(t_2, t_1)|\psi(t_1)\rangle$$

for all appropriate t_1 , t_2 . Note that if a system has unitary time evolution, then the entire evolution of the system (both in the future and in the past) is determined by the state of the system at a single point in time.

2.2. Derivation of the Schrödinger equation

Assume that the time evolution of the system in question is unitary. Further assume that the Hilbert space \mathcal{H} of states of the system is finite-dimensional. Let $I \subseteq \mathbb{R}$ be an open interval, and consider the evolution of the system in this interval. Define a map $\Psi \colon I \to \mathcal{H}$ by $\Psi(t) = |\psi(t)\rangle$.

For $t \in I$ also define a map $G(t) \colon \mathcal{H} \to \mathcal{H}$ by $\Psi(t) \mapsto \Psi'(t)$. Notice that, since the time evolution is unitary, it is deterministic. The state $\Psi(t)$ of the system thus determines its entire time evolution, hence determines $\Psi'(t)$, so G(t) is well-defined. Furthermore, if $\Phi \colon I \to \mathcal{H}$ is another possible time-evolution and $\beta \in \mathbb{C}$, then

$$G(t)[\beta \Psi(t) + \Phi(t)] = G(t)[(\beta \Psi + \Phi)(t)] = (\beta \Psi + \Phi)'(t)$$

= $\beta \Psi'(t) + \Phi'(t) = \beta G(t)[\Psi(t)] + G(t)[\Phi'(t)],$

so G(t) is linear for each fixed $t \in I$, so we denote application of G(t) by juxtaposition.³

² Since \mathcal{H} is finite-dimensional, the derivative of Ψ is well-defined and lies in \mathcal{H} .

³ There seems to be a subtlety here, in that it should be possible to obtain any state in \mathcal{H} for $\mathsf{G}(t)$ to make sense.

Next, unitary evolution implies that normalised states remain normalised. Denoting the inner product on \mathcal{H} by $\langle \cdot, \cdot \rangle$, for $t \in I$ it follows that

$$0 = \frac{d}{ds} \Big|_{s=t} \langle \Psi(s), \Psi(s) \rangle$$

$$= \langle \Psi'(t), \Psi(t) \rangle + \langle \Psi(t), \Psi'(t) \rangle$$

$$= \langle G(t)\Psi(t), \Psi(t) \rangle + \langle \Psi(t), G(t)\Psi(t) \rangle$$

$$= \langle \Psi(t), \left[G(t)^{\dagger} + G(t) \right] \Psi(t) \rangle.$$

Since this holds for all $\Psi(t) \in \mathcal{H}$, it follows that $G(t)^{\dagger} + G(t) = 0$, so G(t) is anti-Hermitian. The Hermitian operator $H(t) = i \hbar G(t)$ is called the *Hamiltonian operator*, and in terms of this we have

$$H(t)\Psi(t) = i\hbar\Psi'(t).$$

Or in bra-ket notation,

$$H(t)|\psi(t)\rangle = i \hbar \frac{d}{dt}|\psi(t)\rangle.$$

2.3. Uniform dynamics

If the dynamics are uniform, then the evolution operators constitute a one-parameter family $t\mapsto \mathsf{U}(t)$ of unitary operators, and the Hamiltonian $\mathsf{H}(t)=\mathsf{H}$ is time-independent. Hence we have $|\psi(t)\rangle=\mathsf{U}(t)|\psi(0)\rangle$, and we can write the Schrödinger equation

$$\mathsf{HU}(t)|\psi(0)\rangle = \mathrm{i}\,\hbar\frac{\mathrm{d}}{\mathrm{d}t}\mathsf{U}(t)|\psi(0)\rangle.$$

We may also be tempted to write this as

$$HU(t) = i \hbar \frac{d}{dt} U(t), \qquad (2.1)$$

and while the left-hand side is unproblematic, we have to be careful with the right-hand side. The right-hand denotes the operator which first applies U(s), with s ranging over I, to some vector, and then differentiates the results with respect to s in s = t. More precisely we have, for $\psi \in \mathcal{H}$,

$$\left(\frac{\mathrm{d}}{\mathrm{d}t}\mathsf{U}(t)\right)\psi = \frac{\mathrm{d}}{\mathrm{d}s}\bigg|_{s=t}\mathsf{U}(s)\psi = \lim_{s\to t}\frac{\mathsf{U}(s)\psi - \mathsf{U}(t)\psi}{s-t}.$$

Thus $s \mapsto \mathsf{U}(s)$ need only be strongly differentiable. If $\dim \mathcal{H} < \infty$, then this is the same as it being differentiable with respect to the operator norm (or any norm on $\mathcal{L}(\mathcal{H})$ since they are all equivalent). Furthermore, the derivative of

 $s \mapsto \mathsf{U}(s)\psi$ at s=t is just $\mathsf{U}'(t)\psi$. Hence in this case we may indeed interpret (2.1) as a differential equation in an operator-valued variable. This has the solution

$$U(t) = \exp\left(-\frac{\mathrm{i}}{\hbar}Ht\right).$$