BEST AVAILABLE COPY

I hereby certify that this correspondence is being deposited with the United States Postal Service as first class mail in an envelope addressed to: Commissioner for Patents, Washington, D.C. 20231 on November, 31, 13001.

Bv Printed:

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:

Hillman et al.

Title:

DISEASE ASSOCIATED CALMODULIN PROTEIN

Serial No.:

09/272,943

Filing Date: March 18, 1999

Examiner:

Chen, S.

Group Art Unit: 1633

Box:

Commissioner for Patents Washington, D.C. 20231

DECLARATION OF LARS MICHAEL FURNESS UNDER 37 C.F.R. § 1.132

- I, L. MICHAEL FURNESS, a citizen of the United Kingdom, residing at 2 Brookside, Exning, Newmarket, United Kingdom, declare that:
- 1. I am employed by Incyte Genomics, Inc. (hereinafter "Incyte") as a Director of Pharmacogenomics.
- 2. In 1984, I received a B.Sc.(Hons) in Biomolecular Science (Biophysics and Biochemistry) from Portsmouth Polytechnic.

From 1985-1987 I was at the School of Pharmacy in London, United Kingdom, during which time I analyzed lipid methyltransferase enzymes using a variety of protein analysis methods, including one-dimensional (1D) and two-dimensional (2D) gel electrophoresis, HPLC, and a variety of enzymatic assay systems.

I then worked in the Protein Structure group at the National Institute for Medical Research until 1989, setting up core facilities for nucleic acid synthesis and sequencing, as well as assisting in programs on protein kinase C inhibitors.

After a year at Perkin Elmer-Applied Biosystems as a technical specialist, I

1 09/272,943 87253

THIS PAGE BLANK (USPTO)

worked at the Imperial Cancer Research Fund between 1990-1992, on a Eureka-funded program collaborating with Amersham Pharmacia in the United Kingdom and CEPH (Centre d'Etude du Polymorphisme Humaine) in Paris, France, to develop novel nucleic acid purification and characterization methods.

In 1992, I moved to Pfizer Central Research in the United Kingdom, where I stayed until 1998, initially setting up core DNA sequencing and then a DNA arraying facility for gene expression analysis in 1993. My work also included bioinformatics and I was responsible for the support of all Pfizer neuroscience programs in the United Kingdom. This then led me into carrying out detailed bioinformatics and wet lab work on the sodium channels, including antibody generation, Western and Northern analyses, PCR, tissue distribution studies, and sequence analyses on novel sequences identified.

Since 1998 I have been at Incyte in the Pharmacogenomics group, looking at the application of genomics and proteomics to the pharmaceutical industry. In the last two years I have directed the LifeExpress Lead Program to use microarray and protein expression data to identify pharmacologically and toxicologically relevant mechanisms to assist in improved drug design and development.

- I have reviewed the specification of a United States patent application that I understand was filed on March 18, 1999 in the names of Hillman et al. and was assigned Serial No.09/272,943 (hereinafter "the Hillman '943 application"). Furthermore, I understand that this United States patent application was a divisional application of and claimed priority to United States patent application Serial No.08/963,409 filed on November 3, 1997 (hereinafter "the Hillman '409 application"), having the identical specification. My remarks herein will therefore be directed to the Hillman '409 patent application, and November 3, 1997, as the relevant date of filing. In broad overview, the Hillman '409 specification pertains to certain nucleotide and amino acid sequences and their use in a number of applications, including gene and protein expression monitoring applications that are useful in connection with (a) developing drugs (e.g., for the treatment of cancer), and (b) monitoring the activity of drugs for purposes relating to evaluating their efficacy and toxicity.
- 4. I understand that (a) the Hillman '943 application contains claims that are directed to a substantially purified polypeptide having the sequence shown as SEQ ID NO:1 (hereinafter "the SEQ ID NO:1 polypeptide"), and (b) the Patent Examiner has rejected those claims on the grounds that the specification of the Hillman '943 application does not disclose a 87253

 2

 09/272,943

THIS PAGE BLANK (USPTO)

Docket No.:PF-0418-1 DIV

substantial, specific and credible utility for the claimed SEQ ID NO:1 polypeptide. I further understand that whether or not a patent specification discloses a substantial, specific and credible utility for its claimed subject matter is properly determined from the perspective of a person skilled in the art to which the specification pertains at the time of the patent application was filed. In addition, I understand that a substantial, specific and credible utility under the patent laws must be a "real-world" utility.

5. I have been asked (a) to consider with a view to reaching a conclusion (or conclusions) as to whether or not I agree with the Patent Examiner's position that the Hillman '943 application and its parent, the Hillman '409 application, does not disclose a substantial, specific and credible "real-world" utility for the claimed SEQ ID NO:1 polypeptide, and (b) to state and explain the bases for any conclusions I reach. I have been informed that, in connection with my considerations, I should determine whether or not a person skilled in the art to which the Hillman '409 application pertains on November 3, 1997, would have concluded that the '409 application disclosed, for the benefit of the public, a specific beneficial use of the SEQ ID NO:1 polypeptide in its then available and disclosed form. I have also been informed that, with respect to the "real-world" utility requirement, the Patent and Trademark Office instructs its Patent Examiners in Section 2107 of the Manual of Patent Examining Procedure, under the heading "I. 'Real-World Value' Requirement":

"Many research tools such as gas chromatographs, screening assays, and nucleotide sequencing techniques have a clear, specific and unquestionable utility (e.g., they are useful in analyzing compounds). An assessment that focuses on whether an invention is useful only in a research setting thus does not address whether the specific invention is in fact 'useful' in a patent sense. Instead, Office personnel must distinguish between inventions that have a specifically identified utility and inventions whose specific utility requires further research to identify or reasonably confirm."

6. I have considered the matters set forth in paragraph 5 of this Declaration and have concluded that, contrary to the position I understand the Patent Examiner has taken, the specification of the Hillman '409 patent application disclosed to a person skilled in the art at the time of its filing a number of substantial, specific and credible real-world utilities for the claimed SEQ ID NO:1 polypeptide. More specifically, persons skilled in the art on November 3, 1997 would have understood the Hillman '409 application to disclose the use of the SEQ ID NO:1 polypeptide as a reserach tool in a number of gene and protein expression monitoring

87253 3 09/272,943

THIS PAGE BLANK (USPTO)

applications that were well-known at that time to be useful in connection with the development of drugs and the monitoring of the activity of such drugs. I explain the bases for reaching my conclusion in this regard in paragraphs 7-13 below.

- 7. In reaching the conclusion stated in paragraph 6 of this Declaration, I considered (a) the specification of the Hillman '409 application, and (b) a number of published articles and patent documents that evidence gene and protein expression monitoring techniques that were well-known before the November 3, 1997 filing date of the Hillman '409 application. The published articles and patent documents I considered are:
- (a) Anderson, N.L., Esquer-Blasco, R., Hofmann, J.-P., Anderson, N.G., <u>A Two-Dimensional Gel Database of Rat Liver Proteins Useful in Gene Regulation and Drug Effects Studies</u>, Electrophoresis, 12, 907-930 (1991) (hereinafter "the Anderson 1991 article") (copy annexed at Tab A);
- (b) Anderson, N.L., Esquer-Blasco, R., Hofmann, J.-P., Mehues, L., Raymackers, J., Steiner, S. Witzmann, F., Anderson, N.G., <u>An Updated Two-Dimensional Gel Database of Rat Liver Proteins Useful in Gene Regulation and Drug Effect Studies,</u> Electrophoresis, 16, 1977-1981 (1995) (hereinafter "the Anderson 1995 article") (copy annexed at Tab B);
- (c) Wilkins, M.R., Sanchez, J.-C., Gooley, A.A., Appel, R.D., Humphery-Smith, I., Hochstrasser, D.F., Williams, K.L., <u>Progress with Proteome Projects: Why all Proteins Expressed by a Genome Should be Identified and How To Do It</u>, Biotechnology and Genetic Engineering Reviews, 13, 19-50 (1995) (hereinafter "the Wilkins article") (copy annexed at Tab C);
- (d) Celis, J.E., Rasmussen, H.H., Leffers, H., Madsen, P., Honore, B., Gesser, B., Dejgaard, K., Vandekerckhove, J., <u>Human Cellular Protein Patterns and their Link to Genome DNA Sequence Data: Usefulness of Two-Dimentional Gel Electrophoresis and Microsequencing</u>, FASEB Journal, 5, 2200-2208 (1991) (hereinafter "the Celis article") (copy annexed at Tab D);
- (e) Franzen, B., Linder, S., Okuzawa, K., Kato, H., Auer, G., Nonenzymatic Extraction of Cells from Clinical Tumor Material for Analysis of Gene Expression by Two-Dimensional Polyacrylamide Gel Electrophoresis, Electrophoresis, 14, 1045-1053 (1993) (hereinafter "the Franzen article") (copy annexed at Tab E);
- (f) Bjellqvist, B., Basse, B., Olsen, E., Celis, J.E., Reference Points 87253 4 09/272,943