Parallel Metropolis-Hastings

Boyan Bejanov

bbejanov@bankofcanada.ca
Data and Statistics Office, Bank of Canada

COMP5704 School of Computer Science, Carleton University

Motivation

- Economists at BoC use a large DSGE model to simulate the Canadian economy
 - 350+ equations, 300+ variables, 150+ parameters
 - The solution is in the form

$$X_t = T(\theta)X_{t-1} + R(\theta)\varepsilon_t$$
$$Y_t = d(\theta) + ZX_t + v_t$$

• The likelihood, $P(Y_t|\theta)$, is evaluated by Kalman filter

Motivation

Point estimates for θ are obtained by maximum likelihood

For confidence intervals we use Bayesian inference:

$$P(\theta|Y_t) \propto P(Y_t|\theta)P(\theta)$$

- We need a sample from $P(\theta|Y_t)$
- Sampling in this context is done by Metropolis-Hastings algorithm

Outline

- Brief introduction to Markov Chains
- Metropolis-Hastings Algorithm
- Overview of parallelization approaches
- Prefetching algorithm
- Analysis
- Implementation details
- Computational experiments
- Conclusions

Markov Chains - definition

- Markov chain is an infinite sequence of random variables: X₀, X₁, X₂, ...
- Interpretation: X_t is the state of the system at time t.
- Markovian property: the transition rule depends only on the current state

$$P(X_{t+1}|X_t,...,X_0) = P(X_{t+1}|X_t)$$

• The function $p(x,y) = P(X_{t+1} = y | X_t = x)$ is called *transition kernel*.

Markov Chains - properties

Stationary distribution

$$\pi(x) = \int p(y, x) \pi(y) dy$$

- The time it takes to converge is called burn-in
 - depends on both p(x, y) and the initial state, X_0

Metropolis-Hastings Algorithm

- Markov Chain Monte Carlo (MCMC)
 - the limiting distribution, $\pi(x)$, is known here we call $\pi(x)$ the **target density**
 - find a transition kernel, p(x, y)

 Metropolis-Hastings Algorithm is a recipe for building a transition kernel for given target density.

Metropolis-Hastings Algorithm

- Proposal kernel, q(x, y)
 - when the chain is at state $X_t = x$, the proposal generates a candidate $Y \sim q(x, \cdot)$
- The candidate is accepted with probability

$$\alpha = \min \left\{ \frac{\pi(y)q(y,x)}{\pi(x)q(x,y)}, 1 \right\}$$

Metropolis-Hastings Algorithm

```
Input: \pi(x), X_0, n, q(x,y)
for k = 0 to n - 1
   generate Y \sim q(X_k, \cdot)
  compute \alpha = \frac{\pi(Y)q(Y,X_k)}{\pi(X_k)a(X_k,Y)}
  generate U \sim uniform(0,1)
  if U < \alpha then set X_{k+1} = Y (accept)
  else set X_{k+1} = X_k (reject)
next k
```

Assumptions and Goals

- The target distribution is high-dimensional (30+)
 - Long burn-in time
- Computation of $\pi(x)$ is the most expensive operation

 We want a general algorithm, not one specific to a narrow class of target distributions.

Parallel M-H approaches

- An *independence* proposal does not depend on the current state, i.e. q(x,y) = q(y)
 - Generate n proposals, $Y_1, ..., Y_n$, and pre-compute $\pi(Y_1), ..., \pi(Y_n)$ on p processors in n/p time.
 - Gather these values on processor 0 and run the chain sequentially.

- A good q(y) is problem specific, or
- q(y) is estimated from the chain **adaptive M-H**

Parallel M-H approaches

- Regeneration time is a time when the state is independent of the history of the chain up to that time.
 - Independent tours between regeneration times
 - Run p tours in parallel, then stitch them together to form a single long chain

- Identification of regeneration times is very difficult
- The expected length of a tour increases dramatically with the dimension of $\pi(x)$

Parallel M-H approaches

Prefetching

- Generate proposals for all possible paths h steps into the future
- Compute the target densities in parallel
- Run h steps of M-H sequentially

- A.E.Brockwell (2006)
- J.Byrd et.al. (2008), Strid (2010)

Prefetching

 At each of the h steps we either accept or reject the proposed candidate

 There are 2^h possible paths from the root to a leaf

Complexity Math

- n = h (the problem size)
- $T_S = n$

•
$$p = 2^n - 1$$
: $T(p) = 1$, $s(p) = \frac{T_s}{T(p)} = n$, $e(p) = \frac{s(p)}{p} = O(n2^{-n})$

- not optimal, not even efficient, not NC
- For a general p: $T(n,p) = \frac{2^{n}-1}{p}$, $s(n,p) = \frac{np}{2^{n}-1}$

P-Completeness

- Given an instance of generability problem
 - have a set X, with |X| = n, a subset $T \subseteq X$, an element $x \in X$ and a binary operation *
 - Is x in the closure of T under *?
- Construct a Markov chain that solves it
 - WLOG assume $X = \{0, 1, ..., n 1\}$
 - state space: $2^X = \{0, ..., 2^n 1\}$
 - initial state: $t = \sum_{i \in T} 2^i$
 - transition rule: when current state is $a = \sum_{i \in A} 2^i$
 - propose candidate b by selecting at random(?) one of the 0 bits in a and setting it to 1, i.e. $b = a + 2^k$ for some k.
 - if k = i * j for some $i, j \in A$, then accept b, otherwise reject it

- Each leaf uniquely determines the path. From the index, we should be able to determine:
 - At which step was X_k first proposed?
 - What was the current point when X_k was proposed?
 - What other points are needed in order to reach X_k at the bottom?

- Step s sets bit in position s, counted from right to left
- Rejection sets the bit to 0, acceptance sets it to 1
- Step where X_k was proposed: $s(k) = 1 + \lfloor \log k \rfloor$, k > 0, s(0) = 0
- X_k was proposed from: $c(k) = k 2^{s(k)-1}$

k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
s(k)	/	1	2	2	3			4								
c(k)		0	0	1	0	1	2	3	0	1	2	3	4	5	6	7

To build the tree:

The M-H algorithm

- To compute the target density in parallel:
- OpenMP

```
#pragma omp parallel for for (k = 1; k < 2^h; ++k) compute \pi(X_k)
```

Cilk

```
cilk void prefetch_target(int c, int s) {
   if(s==h) {
      if (c>0) compute \(\pi(X_c);\)
   } else {
      spawn prefetch_target(c, s+1);
      spawn prefetch_target(c+2^s, s+1);
      sync;
}
```

Incomplete Prefetching

Prefetch only the most likely paths

 There is no guarantee that the chain will make h steps.

• Maximize the expected depth for p evaluations of $\pi(x)$.

Incomplete Prefetching

- The contribution of given node is the probability it would be reached
- The probability to reach a node is product of all weights from the root to the node where it is first proposed
- All proposals along the path must be prefetched
- The two children of p are $a = p + 2^{s(p)}$ and $r = a 2^{s(p)-1}$

Incomplete Prefetching

p	D(p)
1	1
2	1.77
3	2.35
4	2.80
5	3.15
6	3.41
7	3.64
8	3.84
9	4.03
10	4.20
11	4.36
12	4.49
13	4.63
14	4.77
15	4.88

• Complexity: example with $\alpha = 0.234$

$$\bullet \quad T(p) = n / D(p), s(p) = D(p)$$

these are expected rates, your mileage may vary

Run Times Full Prefetching

- Intel Xeon E5-2690 8 cores @ 2.90 GHz, dual socket (16 core total)
- n = 1200, $\pi(x)$ is 15 dimensional with added work for delay

h	p	#threads	parallel method	total time	average time per step
	baselir	ne	seq	120.06	0.1017
2	3	3	omp	61.65	0.0514
2	3	3	cilk	62.06	0.0517
3	3	3	cilk	122.66	0.1022
3	5	5	cilk	82.81	0.0690
3	7	7	cilk	42.70	0.0356
3	7	7	omp	42.72	0.0356
4	15	15	omp	34.55	0.0288
4	15	15	cilk	33.93	0.0283
5	16	31	cilk	73.72	0.0614
5	16	16	cilk	67.08	0.0559

Run Times Full Prefetching

Run Times Partial Prefetching

p	D	h	d	total time cilk	total time omp	tree
2	1.766	2	1.66297	74.5942	74.7524	1 2
3	2.35276	3	2.06724	60.8497	60.6849	1 2 4
4	2.80221	4	3.36798	37.5026	37.1227	1 2 4 8
5	3.14649	5	2.71655	47.3608	46.9558	1 2 4 8 <mark>16</mark>
6	3.41021	6	2.90511	44.1376	43.7954	1 2 4 8 16 <mark>32</mark>
7	3.64421	6	3.54142	51.9093	58.3732	1 2 <mark>3</mark> 4 8 16 32
8	3.84622	7	3.45533	51.7107	60.1928	1 2 3 4 8 16 32 <mark>64</mark>
9	4.02547	7	3.44669	55.8634	59.8548	1 2 3 4 <mark>5</mark> 8 16 32 64
10	4.20471	7	3.82428	56.6887	54.4586	1 2 3 4 5 <mark>6</mark> 8 16 32 64
11	4.35945	8	3.85209	52.9827	54.1078	1 2 3 4 5 6 8 16 32 64 <mark>128</mark>
12	4.49675	8	4.50000	43.9406	46.5858	1 2 3 4 5 6 8 <mark>12</mark> 16 32 64 128
13	4.63405	8	4.13495	49.1822	50.4384	1 2 3 4 5 6 8 9 12 16 32 64 128
14	4.77135	8	4.37226	46.3788	47.8808	1 2 3 4 5 6 8 9 <mark>10</mark> 12 16 32 64 128
15	4.88988	9	4.16725	49.4775	49.9524	

Run Times Partial Prefetching

Conclusion

- Prefetching is a viable parallel algorithm for multicore and small h
- Partial prefetching seems promising, although the static acceptance probabilities don't seem to work well
- Next steps
 - integrate with Matlab and R
 - combine with adaptive IMH

Random Number Generators

```
int getRandomNumber()
{
    return 4; // chosen by fair dice roll.
    // guaranteed to be random.
}
```


