Algoritmi di Parsing: Top-down Parsing

Slides based on material by Ras Bodik available at http://inst.eecs.berkeley.edu/~cs164/fa04

Now let's parse a string

- recursive descent parsers compute (left-most) derivations by trying each production in turn
 - until there is a mismatch (backtracking)
 - or until it matches derived string with the input string

Recursive Descent Parsing

Consider the grammar

```
E \rightarrow T + E \mid T

T \rightarrow (E) * T \mid (E) \mid int * T \mid int
```

- Token stream is: int₅ * int₂
- Start with top-level non-terminal E
- Try the rules for E in order

Recursive Descent Parsing. Example (Cont.)

- Try $E_0 \rightarrow T_1 + E_1$
- Then try a rule for $T_1: T_1 \rightarrow (E_2) * T_2$
 - But (does not match input token int₅
- Try $T_1 \rightarrow (E_2)$
 - But (does not match input token int₅
- Try $T_1 \rightarrow int * T_2$
 - Then all rules for T_2 until $T_2 \rightarrow$ int. This matches!
- But + after T₁ will be unmatched
 - Backtrack to choice for E₀

Recursive Descent Parsing. Example (Cont.)

- Try $E_0 \rightarrow T_1$
- Follow same steps as before for T_1
 - And succeed with $T_1 \rightarrow \text{int *} T_2$ and $T_2 \rightarrow \text{int}$
 - With the following parse tree

A Recursive Descent Parser (2)

- Define boolean functions that check the token string for a match of
 - A given token terminal
 bool term(TOKEN tok) { return in[next++] == tok; }
 A given production of S (the nth)
 bool S_n() { ... }
 Any production of S:
 bool S() { ... }
- These functions advance next

A Recursive Descent Parser (3)

- For production $E \to T + E$ bool $E_1()$ { return T() && term(PLUS) && E(); }
- For production E → T
 bool E₂() { return T(); }
- For all productions of E (with backtracking)

A Recursive Descent Parser (4)

Functions for non-terminal T

```
bool T_1() { return term(OPEN) && E() && term(CLOSE) &&
                                    term(TIMES) && T(); }
bool T_2() { return term(OPEN) && E() && term(CLOSE); }
bool T_3() { return term(INT) && term(TIMES) && T(); }
bool T_4() { return term(INT); }
   bool T() {
     int save = next;
     return T_1()
            || (next = save, T_2()) || (next = save, T_3())
            || (next = save, T_{\Delta}());
```

Recursive Descent Parsing. Notes.

- To start the parser
 - Initialize next to point to first token
 - Invoke E()
- Suppose a special character \$ to be put at the end of input string in the in[] array
- Parsing is successful if, at end of execution,
 E() returns true and next points to \$
- Notice how this simulates our backtracking example from lecture

Recursive Descent Parsing. Notes.

Easy to implement (also by hand)

But does not always work ...

When Recursive Descent Does Not Work

- Consider a production $S \rightarrow S$ a:
 - In the process of parsing S we try the above rule
 - What goes wrong?
- A <u>left-recursive grammar</u> has a non-terminal S
 (not necessarily the initial one) such that

$$S \Rightarrow^{+} S\alpha$$
 for some α

- Recursive descent does not work in such cases
 - It goes into an infinite loop

Elimination of Left Recursion

Consider the left-recursive grammar

$$S \rightarrow S \alpha \mid \beta$$

with α not being ϵ and β not starting with δ

- 5 generates all strings starting with a β and followed by a number of α
- · Can rewrite using right-recursion

$$S \rightarrow \beta S'$$

 $S' \rightarrow \alpha S' \mid \epsilon$

Elimination of Left-Recursion. Example

Consider the grammar

$$S \rightarrow S 0 \mid 1$$
 ($\beta = 1 \text{ and } \alpha = 0$)

can be rewritten as

$$S \rightarrow 1 S'$$

 $S' \rightarrow 0 S' \mid \epsilon$

More Elimination of Left-Recursion

In general

$$S \rightarrow S \alpha_1 \mid ... \mid S \alpha_n \mid \beta_1 \mid ... \mid \beta_m$$

with all of α_i not being ϵ and all of β_i not starting with S

- All strings derived from 5 start with one of $\beta_1,...,\beta_m$ and continue with several instances of $\alpha_1,...,\alpha_n$
- Rewrite as

$$S \rightarrow \beta_1 S' \mid ... \mid \beta_m S'$$

 $S' \rightarrow \alpha_1 S' \mid ... \mid \alpha_n S' \mid \epsilon$

(done automatically by ANTLR4)

General Left Recursion

The grammar

$$\begin{array}{c|c} S \to A \ \alpha \ | \ \delta \\ A \to S \ \beta \\ \text{is also left-recursive because} \\ S \Rightarrow^+ S \ \beta \ \alpha \end{array}$$

 This left-recursion can also be eliminated with the algorithm in the next slide

Algorithm for Left Recursion Elimination

List non-terminal symbols in order: A_1 , A_2 , ..., A_n For i := 1 to n

- Replace all $A_i \rightarrow A_j \beta$ such that j < i (i.e. immediate left-recursion for A_j already eliminated) with $A_i \rightarrow \delta_1 \beta \mid \delta_2 \beta \mid ... \mid \delta_k \beta$ (where $A_j \rightarrow \delta_1 \mid \delta_2 \mid ... \mid \delta_k$)
- Eliminate immediate left recursion for A_i (with the previously presented algorithm)

After i-th step, all productions $A_i \rightarrow A_k \beta$ are such that k > i (works if there are no unit productions $A \rightarrow B$ and no epsilon productions $A \rightarrow \epsilon$, but there are techniques to remove such productions -see Chomsky Normal Form)

Summary of Recursive Descent

- simple parsing strategy
 - left-recursion must be eliminated first
 - ... but that can be done automatically
- unpopular because of backtracking
 - thought to be too inefficient
 - in practice, backtracking is (sufficiently) eliminated by restricting the class of grammars
- so, it's good enough for small languages
 - careful, though: order of productions important even after left-recursion eliminated
 - try to reverse the order of $T \rightarrow int * T$ and $T \rightarrow int$
 - what goes wrong? (consider our input example int*int)

Predictive parsers

Motivation

- · Wouldn't it be nice if
 - the r.d. parser just knew which production to expand next?
 - Idea: replace

```
return E1() || (next = save, E2());
```

- with

```
switch ( something ) {
  case L1: return E1();
  case L2: return E2();
  otherwise: print "syntax error";
}
```

- what's "something", L1, L2?
 - · the parser will do lookahead (look at next token)

Predictive Parsers

- Like recursive-descent but parser can "predict" which production to use
 - By looking at the next few tokens
 - No backtracking
- Predictive parsers accept LL(k) grammars
 - L means "left-to-right" scan of input
 - L means "leftmost derivation"
 - k means "predict based on k tokens of lookahead"
- We will analyse LL(1)
 - ANTLR uses LL(*), a more sophisticated technique that considers as many tokens as needed (not covered by the slides)

LL(1) Languages

- In recursive-descent, for each non-terminal and input token there may be a choice of production
- LL(1) means that for each non-terminal and token there is at most one production that could lead to success (possible only if grammar is non ambiguous)
- Can be specified as a 2D table
 - One dimension for current non-terminal to expand
 - One dimension for next token
 - A table entry contains one production

Left factoring

Predictive Parsing and Left Factoring

Recall the grammar

```
E \rightarrow T + E \mid T

T \rightarrow (E) \mid (E) * T \mid int \mid int * T
```

- · Impossible to predict because
 - For T two productions start with int and two with (
 - For E it is not clear how to predict
- In general a grammar must be <u>left-factored</u> before using predictive parsing (managed automatically by ANTLR4 LL(*) algorithm)

Left-Factoring Example

Recall the grammar

$$E \rightarrow T + E \mid T$$

 $T \rightarrow (E) \mid (E) * T \mid int \mid int * T$

Factor out common prefixes of productions

$$E \rightarrow T X$$

 $X \rightarrow + E \mid \varepsilon$
 $T \rightarrow (E) Y \mid int Y$
 $Y \rightarrow * T \mid \varepsilon$

LL(1) parser (details)

LL(1) parser

· to simplify things, instead of

```
switch ( something ) {
  case L1: return E1();
  case L2: return E2();
  otherwise: print "syntax error";
}
```

- we'll use a LL(1) table and a parse stack
 - the LL(1) table will replace the switch
 - the parse stack will replace the call stack

LL(1) Parsing Table Example

Left-factored grammar

$$E \rightarrow T X$$
 $X \rightarrow + E \mid \epsilon$
 $T \rightarrow (E) Y \mid int Y$ $Y \rightarrow * T \mid \epsilon$

The LL(1) parsing table:

	int	*	+	()	\$
T	int Y			(E)Y		
E	ΤX			ΤX		
X			+ E		3	3
У		* T	3		3	3

LL(1) Parsing Table Example (Cont.)

- Consider the [E, int] entry
 - "When current non-terminal is E and next input is int, use production $E\to T\,X"$
 - This production can generate an int in the first place
- Consider the [Y,+] entry
 - "When current non-terminal is Y and current token is +, get rid of Y"
 - We'll see later why this is so

LL(1) Parsing Tables. Errors

- Blank entries indicate error situations
 - Consider the [E,*] entry
 - "There is no way to derive a string starting with * from non-terminal E"

Using Parsing Tables

- Method similar to recursive descent, except
 - For each non-terminal S
 - We look at the next token a
 - And choose the production shown at [S,a]
- We use a stack to keep track of pending nonterminals (as in leftmost derivations)
- · We reject when we encounter an error state
- We accept when we encounter end-of-input

LL(1) Parsing Algorithm

```
    add $ at the end of the array of tokens

· initialize next pointing to the first token
• initialize stack = <5 $>
repeat
  case stack of
    \langle X \text{ rest} \rangle: if T[X,*\text{next}] = Y_1...Y_n
                       then stack \leftarrow \langle Y_1... Y_n \text{ rest} \rangle;
                       else error ();
    <t rest> : if t == *(next++)
                       then stack \leftarrow <rest>:
                       else error ();
until stack == < >
```

LL(1) Parsing Example

Stack	Input	Action
E\$	int * int \$	ΤX
T X \$	int * int \$	int Y
int Y X \$	int * int \$	terminal
Y X \$	* int \$	* T
* T X \$	* int \$	terminal
T X \$	int \$	int Y
int Y X \$	int \$	terminal
Y X \$	\$	3
X \$	\$	3
\$	\$	terminal
		ACCEPT

Constructing Parsing Tables

- LL(1) languages are those defined by a parsing table for the LL(1) algorithm
- No table entry can be multiply defined (deterministic parsing algorithm!)
- We want to generate parsing tables from CFG

Constructing Predictive Parsing Tables

- Consider the state $5\$ \Rightarrow * \beta A \gamma$
 - With b the next token
 - Trying to match input string $\beta b \delta$

There are two possibilities:

- 1. b belongs to an expansion of A
 - Production $\mathbf{A} \to \alpha$ can be used if b can start a string derived from α

In this case we say that b is in First(α)

Or...

Constructing Predictive Parsing Tables (Cont.)

- 2. Otherwise the expansion of A can be empty and b belongs to an expansion of γ
 - Means that b can appear after A in a derivation of the form $S \ \, \Rightarrow^* \beta Ab \omega$
 - We say that b is in Follow(A) in this case
 - Which production of A can we use in this case?
 - $A \rightarrow \alpha$ can be used if α can expand to ϵ
 - We say that ε is in First(α) in this case

Computing First, Follow sets

First Sets. Example

Recall the grammar

$$E \rightarrow T X$$
 $X \rightarrow + E \mid \epsilon$ $T \rightarrow (E) Y \mid int Y$ $Y \rightarrow * T \mid \epsilon$

First sets

First(
$$T$$
) = {int, (} First(E) = {int, (} First(X) = {+, ϵ } First(Y) = {*, ϵ }

Computing First Sets

Definition First(X) = { b | $X \Rightarrow^* b\alpha$ } \cup { ϵ | $X \Rightarrow^* \epsilon$ } (where X is a non-terminal or terminal symbol)

- 1. First(b) = { b }
- 2. For all productions $X \rightarrow A_1 \dots A_n$ with n>=0
 - Add First(A_1) { ϵ } to First(X). Stop if $\epsilon \notin First(A_1)$
 - Add First(A_2) { ϵ } to First(X). Stop if $\epsilon \notin First(A_2)$
 - •
 - Add First(A_n) { ϵ } to First(X). Stop if $\epsilon \notin First(A_n)$
 - Add ε to First(X)
- 3. Repeat step 2 until no First set grows

Computing First Sets

```
Definition (n>=0 symbols) First(X_1X_2...X_n) = 
{ b | X_1X_2...X_n \Rightarrow^* b\alpha} \cup {\epsilon | X_1X_2...X_n \Rightarrow^* \epsilon}
```

- Add First(X_1) $\{\epsilon\}$ to First($X_1X_2...X_n$). Stop if $\epsilon \notin First(X_1)$
- Add First(X_2) $\{\epsilon\}$ to First($X_1X_2...X_n$). Stop if $\epsilon \notin \text{First}(X_2)$
- Add First(X_n) $\{\epsilon\}$ to First($X_1X_2...X_n$). Stop if $\epsilon \notin First(X_n)$
- Add $\{\varepsilon\}$ to First($X_1X_2...X_n$).

Follow Sets. Example

Recall the grammar

$$E \rightarrow TX$$
 $X \rightarrow + E \mid \varepsilon$
 $T \rightarrow (E) Y \mid int Y$ $Y \rightarrow * T \mid \varepsilon$

Computing Follow Sets

```
Definition Follow(X) = { b | 5\$ \Rightarrow^* \beta \times b \delta }
```

- 1. Add \$ to Follow(S) (if S is the start non-terminal)
- 2. For all productions $Y \to \alpha X$ $A_1 \dots A_n$ with n>=1 $Add \ First(A_1 \dots A_n) - \{\epsilon\} \ to \ Follow(X)$ and for all productions $Y \to \alpha X$ or $Y \to \alpha X\beta$ with $\epsilon \in First(\beta)$ $Add \ Follow(Y) \ to \ Follow(X)$
- 1. Repeat step 2 until no Follow set grows

Follow Sets. Example

Recall the grammar

$$E \rightarrow T X$$
 $X \rightarrow + E \mid \epsilon$ $T \rightarrow (E) Y \mid int Y$ $Y \rightarrow * T \mid \epsilon$

Follow sets

Follow(E) =
$$\{\$, \}$$
 Follow(X) = $\{\$, \}$ Follow(T) = $\{+, \$, \}$

Follow()) = {*, +, \$, }} (we will not use Follow on terminals, though)

Constructing the LL(1) parsing table

Constructing LL(1) Parsing Tables

- Construct a parsing table T for CFG G
- For each production $A \rightarrow \alpha$ in G do:
 - For each terminal $b \in First(\alpha)$ do
 - T[A, b] = α
 - If $\varepsilon \in \text{First}(\alpha)$, for each $b \in \text{Follow}(A)$ do
 - T[A, b] = α

(remember that last rule applies also to \$: If $\varepsilon \in \text{First}(\alpha)$ and $\varphi \in \text{Follow}(A)$ do

• T[A, \$] = α)

Constructing LL(1) Tables. Example

Recall the grammar

$$E \rightarrow TX$$
 $X \rightarrow + E \mid \epsilon$ $T \rightarrow (E) Y \mid int Y$ $Y \rightarrow * T \mid \epsilon$

- Where in the line of Y we put $Y \rightarrow *T$?
 - In the coloumns of First(*T) = { * }
- Where in the line of Y we put $Y \to \varepsilon$?
 - In the coloumns of Follow(Y) = { \$, +,) }

Notes on LL(1) Parsing Tables

- If any entry is multiply defined then G is not LL(1)
 - If G is ambiguous
 - If G (with no useless variables) is left recursive
 - If G (with no useless variables) is not left-factored
 - And in other cases as well
- Most programming language grammars are not LL(1)
- There are tools that build LL(1) tables and there are fully declarative parser generators that use the LL approach

Few words about Ambiguity

• Grammar

$$E \rightarrow E + E \mid E * E \mid (E) \mid int$$

Strings

Ambiguity. Example

This string has two parse trees

+ is associated to the left

Ambiguity. Example

This string has two parse trees

* is given higher precedence than +

Ambiguity (Cont.)

- A grammar is ambiguous if it has more than one parse tree for some string
 - Equivalently, there is more than one right-most or left-most derivation for some string
- Ambiguity is <u>bad</u>
 - Leaves meaning of some programs ill-defined
- Ambiguity is <u>common</u> in programming languages
 - Arithmetic expressions
 - IF-THEN-ELSE

Dealing with Ambiguity

- · There are several ways to handle ambiguity
- Most direct method is to rewrite the grammar unambiguously

```
E \rightarrow E + T \mid T

T \rightarrow T^* \text{ int } \mid T^*(E) \mid \text{ int } \mid (E)
```

- Enforces precedence of * over +
- Enforces left-associativity of + and *

Ambiguity. Example

The int * int + int has only one parse tree now

Ambiguity: The Dangling Else

Consider the grammar

```
S \rightarrow \text{if E then S}
| if E then S else S
```

This grammar is also ambiguous

The Dangling Else: Example

The expression

if E_1 then if E_2 then S_3 else S_4 has two (abstract) parse trees

· Typically we want the first form

The Dangling Else: A Fix

- else matches the closest unmatched then
- We can describe this in the grammar (distinguish between matched and unmatched "then")

```
MIF  /* if where all then are matched */

S → if E then S
    | if E then MIF else S

MIF → if E then MIF else MIF
```

Describes the same set of if-then-else strings

The Dangling Else: Example Revisited

• The expression if E_1 then if E_2 then S_3 else S_4

A valid parse tree

 Not valid because the then expression is not a MIF

Ambiguity

- · No general techniques for handling ambiguity
- Impossible to convert automatically an ambiguous grammar to an unambiguous one
- Used with care, ambiguity can simplify the grammar
 - Sometimes allows more natural definitions
 - We need disambiguation mechanisms

Precedence and Associativity Declarations

- Instead of rewriting the grammar
 - Use the more natural (ambiguous) grammar
 - Along with disambiguating declarations
- LR (bottom-up) parsers and, recently, also
 LL (top-down) parsers allow
 - precedence and associativity declarations to disambiguate grammars
- Examples ...

Associativity Declarations

Consider the grammar

- $E \rightarrow E + E \mid int$
- · Ambiguous: two parse trees of int + int + int

 Left-associativity declaration in LR: %left + (default in ANTLR if <assoc=right> not specified)

Precedence Declarations

- Consider the grammar $E \rightarrow E * E \mid E + E \mid int$
 - And the string int + int * int

Precedence declarations in LR → %left + (in ANTLR based on production %left * order: first one has higher priority)