Normal Forms

- If a relation schema is in a normal forms, we know that it is in some particular shape/health in the sense that certain kinds of problems and issues (related to redundancy) will not arise
- Given a relation schema R, we need to determine if it is in certain normal form. If it is not, we need methods to decompose it into smaller such normal relations. How?
- To address these issues, we study normal forms

Normal Forms

■ The normal forms as defined and captured by FD's:

■ First normal form (1NF)

■ Second normal form (2NF)

√ Third normal form (3NF)

√ Boyce-Codd normal form (BCNF)

■ The relationships among these normal forms:

Third Normal Form (3NF)

Let **R** be a relation schema with a set of FD's **F**.

- We say R w.r.t. F is in 3NF (third normal form), if for every FD X → A in F, at least one of the following conditions holds:
 - $X \rightarrow A$ is a trivial, i.e., $A \in X$, or
 - X is a superkey, or
 - X is not a key but A is part of some key of R
- → Therefore, to determine if **R** is in 3NF w.r.t. F, we need to:
 - Check if the LHS of each nontrivial FD in **F** is a superkey
 - If not, check if its RHS is part of any key of R

3

Boyce-Codd Normal Form

Given: A relation schema R with a set of FD's F on R.

- We say R w.r.t. F is in Boyce-Codd normal form, if for every FD X → A in F, at least one of the following conditions holds:
 - $A \in X$, that is, $X \rightarrow A$ is a trivial FD, or
 - X is a superkey
- To determine if **R** is in BCNF w.r.t. **F**,

For every FD $X \rightarrow A$, check if its LHS X is a superkey.

For any FD $X \rightarrow A$ in F, if there is an attribute B of R that is not in X^+ , then R is not in BCNF.

Decomposition into BCNF

- Consider <R, F>, where R is in 1NF.
- If R is not in BCNF, we can always obtain a lossless-join decomposition of R into a collection of BCNF relations
- However, this decomposition may not always be dependency preserving
- The basic step of a BCNF algorithm (done recursively):

Pick every FD $X \rightarrow A \in F$ that violates the BCNF requirement:

- 1. Decompose R into two relations: XA and R A
- 2. If either R-A or XA is not in BCNF, decompose it further

Example (Decomposition into BCNF relations) R = ABCDE $F = \{A \rightarrow B, C \rightarrow D\}$ $R_{1} = AB$ $R_{2} = ACDE$ $F_{2} = \{C \rightarrow D\}$ $R_{22} = ACE$ $F_{21} = \{C \rightarrow D\}$ $R_{22} = ACE$ $F_{22} = \{C \rightarrow D\}$

5

Decomposition into 3NF

- We can always obtain a lossless-join, dependency-preserving decomposition of a relation into 3NF relations. How?
- We discuss 2 solution approaches for 3NF decomposition.
- Approach 1: using the binary decomposition method.

Let $\underline{R} = \{R_1, R_2, \dots R_n\}$ be the result. Recall that this is always lossless-join, but may not preserve all the FD's \rightarrow need to fix this!

- $\,\blacksquare\,$ Identify the set N of FD's in F which we lost in the decomposition proc.
- For each FD $X \rightarrow A$ in N, create a relation schema XA and add it to R
- A refinement step to avoid creating MANY relations: if there are several FD's with the same LHS, e.g., $X \to A_1$, $X \to A_2$, ..., $X \to A_k$, create just one relation with schema $XA_1...A_k$

Decomposition into 3NF (Using the synthesis approach)

Consider <R, F>

- The synthesis approach:
 - Get a minimal cover F^c of F
 - For each FD X → A in F^c, add schema XA to R
 - If the decomposition <u>R</u> is not lossless, add to <u>R</u> an extra relation containing any key of R

Example

- R = (A, B, C)
- $F = \{ A \rightarrow B, C \rightarrow B \}$
- Decompose R into $R_1 = (\mathbf{A}, \mathbf{B})$ and $R_2 = (\mathbf{B}, \mathbf{C})$
- This decomposition is not lossless
 - \rightarrow Add R₃ = (**A**, **C**)
- The decomposition R = {R₁, R₂, R₃} is both lossless and dependency-preserving

12

An Algorithm to Check Lossless join

Suppose relation $R\{A_1, \ldots, A_k\}$ is decomposed into R_1, \ldots, R_n To determine if this decomposition is lossless, we use a table, $\lfloor [1...n][1...k]$

Initializing the table:

for each relation R, do for each attribute A_i do if A_i is an attribute in R_i then $L[i][j] \leftarrow a_i$ else $L[i][j] \leftarrow b_{ii}$

Algorithm to Check Lossless (cont'd)

```
for each FD X \rightarrow Y in F do:
      if \exists rows i and j such that L [i] == L [j], for each attribute in X,
                 then for ∀ column t corresponding to an attribute A<sub>t</sub> in Y do:
                            if L[i][t] == a_t
                                      then L[j][t] \leftarrow a_t
                            else if L[j][t] == a_t
                                       then L[i][t] \leftarrow a_t
                             else L[j][t] \leftarrow L[i][t]
```

until no change

The decomposition is lossless if, after performing this algorithm, L contains a row of all a's. That is, if there exists a row i in L such that: L [i][j] == a_i for every column j corresponding to each attribute A_j in R

Examples

- Given $\langle R, F \rangle$, where R = (A, B, C, D), and $F = \{A \rightarrow B, A \rightarrow C, C \rightarrow D\}$ is a set of FD's on R
- Is the decomposition $\mathbf{R} = \{R_1, R_2\}$ lossless, where $R_1 = (A, B, C)$ and $R_2 = (C, D)$?
 - To be discussed in class
- Now consider **S** = (**A**, **B**, **C**, **D**, **E**) with the FD's: $G = \{AB \rightarrow CD, A \rightarrow E, C \rightarrow D\}$
- Is decomposition of $\underline{\mathbf{S}} = \{S_1, S_2, S_3\}$ lossless, where $S_1 = (A, B, C), S_2 = (B, C, D), and S_3 = (C, D, E)$?
 - To be discussed in class

Checking if a decomposition is **Dependency-Preserving?**

```
Inputs: Let \langle R,F \rangle, where F = \{X_1 \rightarrow Y_1, ..., X_n \rightarrow Y_n\}.
                   Suppose \underline{\mathbf{R}} = \{ \mathbf{R}_1, \dots, \mathbf{R}_k \} is a decomposition of \mathbf{R}
                    and F<sub>i</sub> is the projection of F on schema R<sub>i</sub>
```

Method:

```
preserved ← TRUE
for each FD X \rightarrow Y in F and while preserved == TRUE
do compute X^+ under F_1 \cup ... \cup F_k;
     if Y \nsubseteq X^+ then {preserved \leftarrow FALSE; exit };
end
```

Example

- Consider $R = (A, B, C, D), F = \{A \rightarrow B, B \rightarrow C, C \rightarrow D\}$
- Is the decomposition $\mathbf{R} = \{R_1, R_2\}$ dependency-preserving, where

```
R_1 = (A, B), F_1 = \{A \rightarrow B\}, R_2 = (A, C, D), AND F_2 = \{C \rightarrow D, A \rightarrow D, A \rightarrow C\}?
```

- Check if A → B is preserved Compute A^+ under $\{A \rightarrow B\} \cup \{C \rightarrow D, A \rightarrow D, A \rightarrow C\}$
- A* = { A, B, C, D} Check if B ∈ A*
- A →B is preserved
 Check if B → C is preserved
 - Compute B^+ under $\{A \rightarrow B\} \cup \{C \rightarrow D, A \rightarrow D, A \rightarrow C\}$
 - Check if C ∈ B+
 - B → C is not preserved
- → The decomposition is not dependency-preserving