Εργασία για το μάθημα «Ειδικά Θέματα ΙΙ: Γενικευμένα Μαρκοβιανά Συστήματα» του ΠΜΣ Στατιστική και Μοντελοποίηση

Ζυγογιάννης Κωνσταντίνος Ιακωβίδης Ισίδωρος Χριστόπουλος Γιώργος

Περιγραφή της εξέλιξης της ημιμαρκοβιανής αλυσίδας για κλειστό και ομογενές ως προς τον χρόνο σύστημα

Σκοπός της εργασίας είναι η περιγραφή και παρουσίαση αποτελεσμάτων σχετικά με την εξέλιξη της δομής μιας ημιμαρκοβιανής αλυσίδας για την ειδική περίπτωση όπου το σύστημα θεωρείται κλειστό, δηλαδή ο συνολικός αριθμός των μελών του παραμένει σταθερός καθ'όλη τη διάρκεια της εξέλιξης, και ομογενές ως προς το χρόνο, δηλαδή οι πιθανότητες μετάβασης από κατάσταση σε κατάσταση δεν εξαρτώνται από τη χρονική στιγμή που πραγματοποιείται η μετάβαση , αλλά εξαρτώνται μόνο από το χρονικό διάστημα που μεσολαβεί μεταξύ των μεταβάσεων.

Αρχικά κάνουμε μια περιφραστική περιγραφή του συμβολισμού που χρησιμοποιούμε, και στη συνέχεια αναλύονται τα αποτελέσματα που πήραμε με τη χρήση του προγραμματιστικού περιβάλλοντος Matlab.

Σχόλιο

Η κλειστότητα του συστήματος, καθώς και η ομοιογένεια ως προς τον χρόνο αποτελούν περιορισμούς που εύκολα μπορεί να ξεπεράσει κανείς, έτσι ώστε να μελετηθεί η γενικότερη περίπτωση. Σε γενικό πλαίσιο, σύμφωνα με τον συμβολισμό που θα ακολουθήσει, οι τροποποιήσεις που θα πρέπει να γίνουν, ώστε να περιγραφεί ένα ανοιχτό και μη ομογενές σύστημα είναι:

- a) Η προσθήκη μιας παραμέτρου t, η οποία θα καθορίζει επακριβώς τη χρονική στιγμή που βρισκόμαστε, και
- b) Η εισαγωγή μιας παραπάνω σχέσης, η οποία θα εξυπηρετεί στην περιγραφή των νεοεισελθέντων στο σύστημα, γεγονός που σαφώς επηρεάζει και τις πιθανότητες

μετάβασης, από τη στιγμή που το συνολικό μέγεθος του συστήματος δεν θεωρείται πλέον σταθερό.

Συμβολισμός

Για την παρουσίαση του συμβολισμού θεωρούμε ότι έχουμε k στο πλήθος καταστάσεις και ορίζεται ως k+1 να είναι η κατάσταση αποχώρησης. Στην προσομοιώση που θα ακολουθήσει, μελετάμε ένα σχετικά μικρό σύστημα με 4 καταστάσεις, ούτως ώστε να γίνουν καλύτερα κατανοητά τα αποτελέσματα.

 $N_i(t)$: Ο αναμενόμενος αριθμός μελών του συστήματος στην κατάσταση i στο χρόνο t

N(t): Το διάνυσμα της αναμενόμενης πληθυσμιακής δομής του συστήματος στον χρόνο t για κάθε κατάσταση i=1,2,...,k

Τ : Το μέγεθος του συστήματος

 $N_{k+1}(t)$: Ο αναμενόμενος αριθμός μελών που εγκαταλείπουν το σύστημα στο διάστημα (t-1,t]

 ΔT : Η διαφορά συνολικού μεγέθους του συστήματος (Θα έχουμε ότι $\Delta T=0$ λόγω της κλειστότητας που υποθέσαμε)

 $p_{i,k+1}$: Η πιθανότητα, ένα μέλος του συστήματος που βρίσκεται στην κατάσταση i να αποχωρήσει , δεδομένου ότι η είσοδός του έγινε στην κατάσταση i

 p_{k+1} : Το διάνυσμα πιθανοτήτων εξόδου από το σύστημα

 p_{0i} : Η πιθανότητα, ένα νεοεισερχόμενο μέλος να μπει στο σύστημα στην κατάσταση iως αντικαταστάτης ενός άλλου μέλους που μόλις αποχώρησε

 ${m p}_0$: Το διάνυσμα πιθανοτήτων εισόδου για την αντικατάσταση μέλους του συστήματος

 f_{ij} : Η πιθανότητα, ένα μέλος του συστήματος που εισήλθε στην i, να μεταβεί στην κατάσταση j κατά την επόμενη μετάβασή του

Στο σημείο αυτό ορίζουμε την έννοια της «ταυτότητας μέλους», η οποία ερμηνεύεται ως : Ένα μέλος του συστήματος ή κάποιος αντικαταστάτης που πήρε τη θέση ενός μέλους που μόλις αποχώρησε. Οπότε, συνεχίζοντας με τον συμβολισμό, έχουμε :

 $q_{ij}(t)$: Η πιθανότητα, μία ταυτότητα μέλους που εισήλθε στην κατάσταση i, να βρίσκεται μετά από χρόνο t στην κατάσταση j

Q(t): Ο στοχαστικός πίνακας διάστασης $k \ x \ k$ των q_{ij} για i,j=1,2,...,k

 p_{ij} : Η πιθανότητα, μια ταυτότητα μέλους που εισήλθε στην κατάσταση i, να κάνει την επόμενη μετάβασή της στην κατάσταση j

P: O στοχαστικός πίνακας διάστασης $k \times k$ των p_{ij} για i, j = 1, 2, ..., k

 $h_{ij}(m)$: Η πιθανότητα, μία ταυτότητα μέλους, που βρίσκεται στην κατάσταση i, να παραμείνει εκεί για m χρονικές μονάδες, δεδομένου ότι επόμενη μετάβαση θα γίνει στην κατάσταση j.

(Ο χρόνος παραμονής στις καταστάσεις του συστήματος μπορεί εν γένει να ακολουθεί οποιαδήποτε κατανομή, και όχι απαραίτητα την ίδια για όλες τις καταστάσεις. Για τα δικά μας δεδομένα, θα θεωρήσουμε ότι σε όλες τις καταστάσεις ο χρόνος παραμονής ακολουθεί την γεωμετρική κατανομή)

H(m): Ο πίνακας διάστασης $k \ x \ k$ των χρόνων παραμονής σε οποιαδήποτε κατάσταση, δεδομένης της κατάστασης όπου θα γίνει η επόμενη μετάβαση

 $w_i(m)$: Η πιθανότητα, ο χρόνος παραμονής στην κατάσταση i να είναι ίσος με m για μία ταυτότητα μέλους, πριν γίνει η επόμενη μετάβαση οπουδήποτε

 $w_i(m)$: Η συνάρτηση επιβίωσης για την $w_i(m)$

 $^>W(m)$: Διαγώνιος πίνακας διάστασης k x k, όπου το i στοιχείο της διαγωνίου είναι ίσο με: $1-\sum_{n=1}^m w_i(n)$

C(m): 0 πίνακας πυρήνας, που προκύπτει να είναι το Hadamard γινόμενο $P^{\square}H(m)$

Αξιοποιώντας τον παραπάνω συμβολισμό, παραθέτουμε τις σχέσεις που θα χρησιμοποιήσουμε για να υπολογίσουμε την ζητούμενη περιγραφή της δομής:

Τελικός σκοπός μας είναι να προσδιορίσουμε την αναμενόμενη πληθυσμιακή δομή N(t)

Προκειμένου να φτάσουμε σ'αυτό το σημείο, η πορεία είναι η εξής:

$$p_{ij} = f_{ij} + p_{i,k+1}p_{0i}$$

$$w_i(m) = \sum_{j=1}^k p_{ij}h_{ij}(m)$$

$${}^{>}w_i(m) = \sum_{n=m+1}^{\infty} w_i(n)$$

$$q_{ij}(t) = \delta_{ij} \sum_{m=t+1}^{\infty} w_i(m) + \sum_{x=1}^k \sum_{m=1}^n p_{ix}h_{ix}(m) q_{xj}(t-m)$$
 (1)

Με αρχική συνθήκη $q_{ij}(0) = \delta_{ij}$, όπου δ_{ij} είναι το δ του Kronecker

$$N_j(t) = \sum_{i=1}^k N_i(0) q_{ij}(t)$$
 (2)

Όπου ως αρχική συνθήκη έχουμε τα $N_i(0)$, για κάθε i=1,2,...,k τα οποία θεωρούνται δεδομένα από το πρόβλημα, εφόσον πρόκειται για το «πώς είναι μοιρασμένος» ο συνολικός πληθυσμός στις καταστάσεις αρχικά.

Οι αντίστοιχες σχέσεις των (1),(2) σε μορφή πινάκων είναι:

$$Q(t) = {}^{>}W(t) + \sum_{m=1}^{t} C(m)Q(t-m)$$
 (3)

$$N(t) = N(0)Q(t) \tag{4}$$

Περιγραφή της εφαρμογής και των αποτελεσμάτων.

Το κλειστό και ομογενές ημι Μαρκοβιανό σύστημα που μελετάται περιλαμβάνει 4 καταστάσεις. Ο υποστοχαστικός πίνακας πιθανοτήτων μετάβασης για ένα μέλος του

συστήματος είναι
$$F = \begin{pmatrix} \frac{1}{2} & \frac{1}{4} & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{4} & 0 \\ 0 & 0 & \frac{6}{10} & 0 \\ 0 & 0 & \frac{3}{10} & \frac{5}{10} \end{pmatrix}$$
, το διάνυσμα πιθανοτήτων εξόδου ενός ατόμου

από το σύστημα είναι $p_{k+1}=(\frac{1}{4},\frac{1}{4},\frac{1}{10},\frac{1}{5})$ και το διάνυσμα πιθανοτήτων εισόδου $p_0=(\frac{1}{4},\frac{1}{4},\frac{1}{4},\frac{1}{4})$ και διάνυσμα αρχικής κατάστασης $N_0=(50\ 100\ 150\ 200)$.

Ως συνθήκη τερματισμού του αλγόριθμου υπολογισμού των πινάκων H(m) καθώς και της μέγιστης χρονικής στιγμής δηλαδή του m_{max} επιλέχθηκε ότι όλα τα στοιχεία του πίνακα της απόλυτης τιμής της διαφοράς μεταξύ δύο πινάκων H(m) διαδοχικών χρονικών στιγμών να είναι μικρότερη από 10^{-9} , $\left|h_{ij}(m)-h_{ij}(m-1)\right|<10^{-9}$, $i,j=\{1,2,3,4\}$ με σκοπό την ακρίβεια στο δεύτερο δεκαδικό ψηφίο για το διάνυσμα αναμενόμενης πληθυσμιακής δομής του συστήματος. Και επομένως υπολογίζουμε το διάνυσμα αναμενόμενης πληθυσμιακής δομής για $m_{max}=24$ χρονικές στιγμές.

Επομένως τα αποτελέσματα συνοψίζονται στον παρακάτω πίνακα

t	N_1	N_2	N_3	N_4
0	50	100	150	200
1	53.2499999991195	94.5624999999982	194.812499966223	157.374999997166
2	57.2905468733469	93.7214062499969	223.044609309177	125.943437495630
3	60.6221574193942	94.5491198242143	239.270377145754	105.558345502213
4	63.1678153800708	95.8265493952578	248.084208229241	92.9214268493099
5	65.0310970324364	97.0831570170510	252.638135935221	85.2476098309407
6	66.3500911614758	98.1575973839276	254.852490457087	80.6398207746936
7	67.2588244812362	99.0154642886139	255.832735161966	77.8929758068148
8	67.8711489156945	99.6723409708985	256.192115030555	76.2643947829119
9	68.2762023193943	100.160702753974	256.259718375108	75.3033762130227
10	68.5400014971059	100.515605271865	256.205537999547	74.7388548544386
11	68.7095169634706	100.768761383502	256.112934854870	74.4087863825932
12	68.8171720194721	100.946513268063	256.019558193560	74.2167560648376
13	68.8848249488574	101.069624579638	255.939911467713	74.1056385112343
14	68.9269330684417	101.153870304690	255.877470638779	74.0417254570533
15	68.9529084476357	101.210904186555	255.830976450231	74.0052103460710
16	68.9687966005628	101.249144393695	255.797551051539	73.9845073462294
17	68.9784353481302	101.274559897085	255.774131746872	73.9728723614770
18	68.9842356765625	101.291316858643	255.758046081487	73.9664006984107
19	68.9876978596463	101.302283822162	255.747172515359	73.9628450794776
20	68.9897472437109	101.309412465325	255.739918759718	73.9609207694341
21	68.9909498012165	101.314016689807	255.735133828885	73.9598988798224
22	68.9916489033342	101.316972695684	255.732008070530	73.9593694917264
23	68.9920512115409	101.318859808161	255.729983677918	73.9591044251991
24	68.9922801114613	101.320058082483	255.728682680973	73.9589782094457

Και οι αντίστοιχες γραφικές παραστάσεις για την εξέλιξη της πληθυσμιακής δομής κάθε κατάστασης σχετικά με το χρόνο είναι.

Figure 1 Εξέλιξη της αναμενόμενης πληθυσμιακής δομής για την κατάσταση 1

Figure 2 Εξέλιξη της αναμενόμενης πληθυσμιακής δομής για την κατάσταση 2

Figure 3 Εξέλιξη της αναμενόμενης πληθυσμιακής δομής για την κατάσταση 3

Figure 4 Εξέλικη της αναμενόμενης πληθυσμιακής δομής για την κατάσταση 4

Figure 5 Εξέλιξη της αναμενόμενης πληθυσμιακής δομής του συστήματος και για τις 4 καταστάσεις