Math 214 Homework 1

Alexander Powell

Due date: January 22, 2014

Solve the following problems. Please remember to use complete sentences and good grammar. Each problem is 4 points.

- 1. Write each of the following sets as specified.
 - (a) List the elements in the set $A = \{n \in \mathbb{N} : n^3 < 100\}.$

Solution: Set A can be written as $A = \{1, 2, 3, 4\}$.

(b) Describe the set $B = \{-3, -2, -1, 0, 1, 2, 3\}$ using the notation $\{n : p(n)\}$, where p(n) specifies the property of element n.

Solution: The set can be described as $B = \{n \in \mathbb{Z} : -3 \le n \le 3\}$.

- 2. Recall that for a set A, $\mathcal{P}(A)$ denotes the power set of A.
 - (a) Find $\mathcal{P}(\mathcal{P}(\{1\}))$ and its cardinality.

Solution: If $\mathcal{P}(A) = \{\emptyset, \{1\}\}\$, then $\mathcal{P}(\mathcal{P}(A)) = \{\emptyset, \{\emptyset\}, \{\{1\}\}, \{\emptyset, \{1\}\}\}\$.

(b) Give examples of a set S such that $S \subseteq \mathcal{P}(\mathbb{N})$ and |S| = 5.

Solution: The set $S = \{\{1\}, \{2\}, \{3\}, \{4\}, \{5\}\}$ has cardinality of 5 and it is a subset of $\mathcal{P}(\mathbb{N})$.

(c) Give examples of a set S such that $S \in \mathcal{P}(\mathbb{N})$ and |S| = 5.

Solution: The set $S = \{1, 2, 3, 4, 5\}$ has cardinality of 5 and belongs to $\mathcal{P}(\mathbb{N})$.

- 3. The following problems involve set operations.
 - (a) Given an example of three sets A, B, and C such that $B \neq C$ but B A = C A.

Solution: Let $A = \{1, 2\}$, let $B = \{3\}$ and let $C = \{2, 3\}$. With these three sets, $B - A = C - A = \{3\}$, and $B \neq C$.

(b) Let $A = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}\}\$. Find $\{\emptyset, \{\emptyset\}\}\} \cap A$.

Solution: $\{\emptyset, \{\emptyset\}\} \cap \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}\} = \{\emptyset, \{\emptyset\}\}\}$

4. For a real number r, define S_r to be the interval [r-1,r+2]. Let $A=\{1,3,4\}$. Determine $\bigcup_{\alpha\in A}S_\alpha$ and $\bigcap_{\alpha\in A}S_\alpha$.

Solution: If $A = \{1, 3, 4\}$ and S_r is the interval [r-1, r+2] then the following can be calculated:

$$S_1 = [1 - 1, 1 + 2] = [0, 3]$$

$$S_3 = [3-1, 3+2] = [2, 5]$$

$$S_4 = [4 - 1, 4 + 2] = [3, 6]$$

Therefore, $\bigcup_{\alpha \in A} S_{\alpha} = [0,3] \cup [2,5] \cup [3,6] = [0,6]$ and $\bigcap_{\alpha \in A} S_{\alpha} = [0,3] \cap [2,5] \cap [3,6] = \{3\}.$

- 5. For two sets A and B, recall that $A \times B$ is the Cartesian product of A and B.
 - (a) Let $A = \{a, b\}$. Determine $A \times \mathcal{P}(A)$.

Solution: If $A = \{a, b\}$ and $\mathcal{P}(A) = \{\{a, b\}, \{a\}, \{b\}, \emptyset\}$ then

$$A\times\mathcal{P}(A)=\{a,b\}\times\{\{a,b\},\{a\},\{b\},\emptyset\}$$

$$= \{(a, \{a, b\}), (a, \{a\}), (a, \{b\}), (a, \emptyset), (b, \{a, b\}), (b, \{a\}), (b, \{b\}), (b, \emptyset)\}$$

(b) Let $A = \{0, 1\}$ and $B = [0, 2] \cap [1, 3]$. Describe the graph of $A \times B$.

Solution: The graph of $A \times B$ is the union of two parallel line segments, one from (0,1) to (0,2) and the other from (1,1) to (1,2).

- (c) Let $A = \{0, 1\}$, $B = (0, 1) \cap A$ and $C = \mathbb{R}$. What is $A \times B \times C$.
- 6. Determine all different partitions of the set $\{1, 2, 3\}$.

Solution: All partitions of the set $\{1, 2, 3\}$ are listed below:

$$\{\{1,2,3\}\}$$