Results are obtained with h_0^P not estimated

ESTIMATED PARAMETERS ON WEDNESDAYS MLE UNDER P (10 YEARS), h_0^P IS NOT ESTIMATED									
θ	2010	2011	2012	2013	2014	2015	2016	2017	2018
ω	4.9786e - 12	6.8729e - 12	4.3070e - 12	2.1153e - 12	4.5158e - 12	4.6974e - 12	5.4753e - 08	1.0739e - 08	2.4304e - 08
std	(2.5440e - 12)	(9.3121e - 12)	(3.3354e - 12)	(1.0528e - 12)	(4.6460e - 12)	(6.4354e - 12)	(7.0206e - 08)	(3.9640e - 08)	(5.2954e - 08)
α	2.8645e - 06	3.0251e - 06	3.3309e - 06	3.4392e - 06	3.2333e - 06	3.8471e - 06	5.0427e - 06	4.7757e - 06	4.2730e - 06
std	(1.6263e - 07)	(1.4965e - 07)	(6.9978e - 08)	(7.5828e - 08)	(9.6811e - 08)	(4.3882e - 07)	(1.8606e - 07)	(5.0984e - 07)	(6.2838e - 07)
β	0.7557	0.7817	0.7782	0.7762	0.7518	0.7363	0.7175	0.7197	0.7333
std	(0.0087)	(0.0088)	(0.0036)	(0.0032)	(0.0074)	(0.0065)	(0.0056)	(0.0043)	(0.0125)
γ	281.1031	255.9455	243.9846	239.2676	262.6239	247.9208	220.8552	227.3855	232.9115
std	(14.0370)	(9.1797)	(3.5550)	(3.2157)	(5.3793)	(12.7546)	(3.6403)	(15.1128)	(19.5623)
λ	-0.6686	0.1149	0.8716	1.6130	1.6336	1.5308	1.1749	1.1504	1.8159
std	(0.1859)	(0.1649)	(0.4158)	(0.1275)	(0.1329)	(0.1713)	(0.1260)	(0.1080)	(0.5644)
h_0^P	1.7769e - 04	1.5068e - 04	2.8818e - 04	1.6060e - 04	4.8486e - 05	3.9643e - 05	3.4330e - 05	1.1573e - 04	1.8279e - 03
std	(1.0680e - 04)	(9.0269e - 05)	(2.0276e - 04)	(1.2234e - 04)	(2.5281e - 05)	(3.4890e - 05)	(2.8584e - 05)	(7.9827e - 05)	(2.0365e - 03)
persistency	0.9814	0.9796	0.9765	0.9730	0.9747	0.9708	0.9633	0.9642	0.9615
std	(0.0010)	(0.0008)	(0.0014)	(0.0007)	(0.0007)	(0.0029)	(0.0016)	(0.0028)	(0.0058)
logLikValue	3.1133	3.1393	3.1546	3.2163	3.2370	3.2315	3.2017	3.2187	3.2944