Problem:

Write the algorithm to solve Roothan-Hall matrix equation!

Answer:

The algorithm to solve this Roothan-Hall matrix equation is called self-consistent field (SCF) method.

1. Preprocessing

The input of this equation is one-electron and two electron integral, in detail such as:

- nuclear repulsion energy (E_{nuc})
- overlap integrals $(S_{\mu\nu})$
- one-electron kinectic energy integrals ($T_{\mu\nu}$)
- one-electron nuclear repulsion integrals $(V_{\mu\nu}) \rightarrow \text{with } T_{\mu\nu}$ form the core Hamiltonian matrix $(H_{\mu\nu}^{core} = T_{\mu\nu} + V_{\mu\nu})$
- two-electron repulsion integrals $(\mu v \mid \lambda \sigma)$

2. Orthogonalization of the basis set: the $S^{-1/2}$ matrix

a. Diagonalize the overlap matrix, S,

$$SL_S = L_S \Lambda_S$$

where L_s is the matrix of eigenvectors and Λ_s is a diagonal matrix (eigenvalues)

b. Build the symmetric orthogonalization matrix, $S^{-1/2}$, defined as

$$S^{-1/2} = \tilde{L}_S \Lambda_S^{-1/2} \tilde{L}_S$$

 \tilde{L}_{S} is transpose of the matrix

3. The initial (guess) of density matrix

- a. Form an initial Fock matrix F'_0 , in the orthonormal basis using the core Hamiltonian $F'_0 = S^{-1/2} H^{core} S^{-1/2}$
- b. Diagonalize F'_0 , such that

$$F'_0C'_0=C'_0\varepsilon_0$$

c. Transform the resulting eigenvectors into the original (non-orthonormal) basis,

$$C_0 = S^{-1/2}C'_0$$

d. Construct the initial-guess density matrix from C_0

$$D_{\mu\nu}^0 = \Sigma_m^{occ} (\boldsymbol{C_0})_{\mu}^m (\boldsymbol{C_0})_{\nu}^m$$

where m is indexes column of C_0 and the summation includes only occupied (spatial) molecular orbitals.

e. Compute the electronic and total (Born-Oppenheimer) energies

$$E_{elec}^{0} = \Sigma_{\mu\nu}^{AO} D_{\mu\nu}^{0} (\boldsymbol{H}_{\mu\nu}^{core} + \boldsymbol{F}_{\mu\nu}) \quad \& \quad E_{total}^{0} = E_{elec}^{0} + E_{nuc}$$

where 0 denotes the initial SCF energy.

4. The SCF iteration

after the initial guess we can iterate the same procedure, after check the convergence if the energy and density metrix result.

a. For a new matrix, \boldsymbol{F} , that includes the two-electron integral contributions,

$$F_{\mu\nu} = H_{\mu\nu} + \Sigma_{\mu\nu}^{AO} D_{\mu\nu} [2(\mu\nu|\lambda\sigma) - (\mu\lambda|\nu\sigma)]$$

where the double summation runs over all the basis functions.

b. Transform the new Fock matrix to the orthonormal basis

$$F' = S^{-1/2} F S^{-1/2}$$

c. Diagonalize the transformed Fock matrix

$$F'C'=C'\varepsilon$$

d. Transform the resulting eigenvectors into the original basis

$$C = S^{-1/2}C'$$

e. Construct the new density matrix C

$$D_{\mu\nu}^{i} = \Sigma_{m}^{occ}(\boldsymbol{C})_{\mu}^{m}(\boldsymbol{C})_{\nu}^{m}$$

where *i* denotes the current iteration

f. Compute the new electronic and total energies

$$E_{elec}^{i} = \sum_{\mu\nu}^{AO} D_{\mu\nu}^{i} (\boldsymbol{H}_{\mu\nu}^{core} + \boldsymbol{F}_{\mu\nu}) \quad \& \quad E_{total}^{i} = E_{elec}^{i} + E_{nuc}$$

g. Test convergence of the density matrix and the electronic energy

$$rms_{D} = \left[\sum_{\mu\nu}^{AO} \left(D_{\mu\nu}^{i} - D_{\mu\nu}^{i-1}\right)^{2}\right]^{1/2} < \delta_{1}$$
 & $\Delta E = E_{elec}^{i} - E_{elec}^{i-1} < \delta_{2}$

if the root-mean-square (rms_D) difference in the densities and/or the change in the electronic energy does not fall below the chosen thresholds, then return to the start this SCF iteration.

5. Diagram of SCF

Image source: wikipedia

Ref: lecture notes Dr. Yukio Yamaguchi