Chapter 4 homework

1. Show whether the following series are divergent or convergent or absolutely convergent.

(a)
$$\sum_{n=1}^{\infty} \frac{i^n}{n};$$

(b)
$$\sum_{n=1}^{\infty} \frac{(3+5i)^n}{n!}$$
.

- 2. Is the following statements correct? Why?
 - (a) Every power series converges everywhere on its circle of convergence;
 - (b) The sum function of each power series may have singularity inside the circle of convergence;
 - (c) Every function that is continuous at z_0 must be expanded into a Taylor series in the neighborhood of z_0 .
- 3. Find the radius of convergence of the following series.

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[n]{n!}} z^n;$$

(b)
$$\sum_{n=1}^{\infty} \frac{z^n}{n^2 2^n}$$
;

(c)
$$\sum_{n=1}^{\infty} e^{i\frac{\pi}{n}} z^n.$$

4. Let $\sum_{n=0}^{\infty} c_n$ converges and $\sum_{n=0}^{\infty} |c_n|$ diverges, and prove that the radius of

convergence of
$$\sum_{n=0}^{\infty} c_n z^n$$
 is 1.

5. If $\sum_{n=0}^{\infty} c_n z^n$ is absolutely convergent at a point z_0 on the circumference of its convergence circle, proved that it is absolutely convergent in the domain surrounded by the convergence circle.

- 6. Expand the following functions into power series of z and determine the radius of convergence.
 - (a) $\frac{1}{1+z^3}$;
 - (b) $\frac{1}{(1-z)^2}$;
 - (c) $\cos z^2$;
 - (d) $\sin \frac{1}{1-z}$.
- 7. Find the Taylor series of the following functions at the point z_0 and determine the radius of convergence.
 - (a) $\frac{z-1}{z+1}$, $z_0 = 1$;
 - (b) $\frac{z}{(z+1)(z+2)}$, $z_0 = 2$;
 - (c) $\frac{1}{z^2 z 2}$, $z_0 = 0$;
 - (d) $\frac{z^2}{(1+z)^2}$, $z_0 = 1$.
- 8. Find the Laurent series of the following functions in the specified annulus domain.
 - (a) $\frac{1}{1+z}e^{\frac{1}{1+z}}$, $1 < |z+1| < \infty$;
 - (b) $\frac{1}{(z+i)(z-2)}$, $1 < |z| < 2; 2 < |z| < \infty$;
 - (c) $z^2 e^{\frac{1}{z}}$, $0 < |z| < \infty$.
- 9. Find the Laurent series of $f(z) = \frac{1}{z^2 3z + 2}$ in every annulus centered on the origin.