Epreuve écrite

Examen de fin d'études secondaires 2008

Numéro d'ordre du candidat

Section: B

Branche: Mathématiques I

Question I (5+10 = 15 points)

1) Le plan complexe est rapporté à un repère orthonormé.

Soit
$$z' = \frac{z-4+3i}{z-i}$$
 avec $z = x + yi$ $(x, y \in \mathbb{R})$ et $z \neq i$.

E est l'ensemble des points M d'affixe z tels que z' soit réel et F est l'ensemble des points M d'affixe z tels que z' soit imaginaire pur.

Déterminer et construire E et F.

- 2) Soit $P(z) = z^3 + \alpha z^2 + \beta z 12i$ avec α et β complexes.
 - a) Déterminer α et β sachant que i est une racine de P(z) et que le reste de la division de P(z) par z-2 est 10-10i.
 - b) Résoudre ensuite l'équation P(z) = 0 en remplaçant α et β par les valeurs trouvées dans a).
 - c) Dans le plan complexe rapporté à un R.O.N. (O, \vec{i}, \vec{j}) représenter les points A, B et C dont les affixes sont les solutions de l'équation P(z) = 0. Déterminer la nature du triangle ABC. Justifier la réponse.

Question II (4+3+8 = 15 points)

- 1) De combien de manières peut-on choisir parmi les 12 élèves d'une classe un groupe de 6 élèves pour fêter les résultats d'un examen
 - a) si Claudine et Martine n'acceptent de participer que s'ils sont ensemble?
 - b) și Pierre refuse de participer avec Jean?
- 2) Calculer le terme en x^3 provenant du développement de $\left(\sqrt{3} x^2 \frac{1}{3x}\right)^{15}$.
- 3) Une société émet des billets de loterie à gratter ayant chacun 9 cases. Sur chaque billet il y a exactement 4 cases derrière lesquelles se cache l'image d'un coeur. Pour que le billet soit valide, il faut gratter exactement 3 cases. On gagne si on a gratté 3 coeurs. Monsieur Dupont achète 4 billets et gratte correctement. Soit X le nombre de gains.
 - a) Quelle est la loi de probabilité de X? Justifier.
 - b) Quelle est la probabilité pour qu'il gagne au moins une fois ?
 - c) Calculer l'espérance mathématique et l'écart-type de X.
 - d) Calculer le nombre minimal de billets que Monsieur Dupont aurait dû acheter pour que la probabilité de gagner au moins une fois soit strictement supérieure à 0,5.

Tourner s.v.p.

Epreuve écrite

Examen de fin d'études secondaires 2008

Section: B

Branche: Mathématiques I

Numéro d'ordre du candidat

Question III (4+11 = 15 points)

- 1) Identifier la courbe C : $x = 2 \sqrt{4 y}$ et tracer-la dans un repère orthonormé du plan (unité : 1 cm).
- 2) a) Déterminer la nature et les éléments caractéristiques (centre, axe focal, sommets, foyers, directrices, asymptotes) de la conique Γ d'équation $x^2 \frac{y^2}{Q} = 1$.
 - b) Déterminer une équation des tangentes perpendiculaires à la droite d d'équation x-4y+2=0 à la conique Γ . Déterminer les coordonnées des points de tangence.
 - c) Dessiner Γ et les tangentes dans un repère orthonormé.

Question IV (6+9 = 15 points)

1) Identifier et représenter graphiquement dans un repère orthonormé la courbe Γ suivante :

$$\Gamma: \begin{cases} x = 2 + \sin \theta \\ y = -1 + 2\cos \theta \end{cases}, \ \theta \in \left] -\frac{\pi}{4}, \frac{5\pi}{6} \right[$$

- 2) a) Déterminer et analyser le lieu L_k des points dont la somme des carrés des distances aux quatre côtés d'un rectangle dont la longueur vaut le double de sa largeur est une constante k donnée.
 - b) Déterminer k pour que le lieu passe par les quatre sommets du rectangle. Quel est le lieu dans ce cas ?