AMENDMENTS TO THE CLAIMS:

The following listing of claims will replace all prior versions and listings of claims in the application.

Claims 1-12 (canceled)

Claim 13 (currently amended): An N-substituted pyrazolylcarboxanilide of formula (I)

in which

R⁴

R¹ represents methyl, trifluoromethyl, or difluoromethyl,

R² represents hydrogen, fluorine, chlorine, methyl or trifluoromethyl, either

(a) R3 represents hydrogen, and

represents $C_1 \cdot C_6$ -alkyl, $C_4 \cdot C_6$ -alkylsulphinyl, $C_4 \cdot C_6$ -alkylsulphonyl, $C_1 \cdot C_4$ -alkoxy- $C_1 \cdot C_4$ -alkyl, or $C_3 \cdot C_8$ -oyeloalkyl; represents $C_1 \cdot C_6$ -haloalkyl-sulphonyl, $C_4 \cdot C_4$ -haloalkyl-sulphonyl, halo- $C_4 \cdot C_4$ -alkoxy- $C_4 \cdot C_4$ -alkyl, or $C_3 \cdot C_6$ -halooyeloalkyl-having in-each ease 1-to 9 fluorine, chlorine, and/or-bromine atoms; represents formyl-formyl- $C_4 \cdot C_3$ -alkyl, $(C_1 \cdot C_3$ -alkyl)earbonyl- $C_4 \cdot C_3$ -alkyl-or $(C_1 \cdot C_3$ -alkyl)earbonyl- $C_4 \cdot C_3$ -alkyl-perpesents halo- $(C_4 \cdot C_3$ -alkyl-having in-each ease 1-to 13 fluorine, chlorine, and/or bromine atoms; represents $(C_3 \cdot C_3$ -cycloalkyl)carbonyl- $(C_4 \cdot C_3 \cdot C_3$

or

(b) R³ represents halogen, C₁-C₆-alkyl, or C₁-C₆-haloalkyl, and
R⁴ represents C₁-C₈-alkyl, G₁-C₆-alkylsulphinyl, C₁-C₆-alkylsulphinyl, C₁-C₆-alkyl

CS8775

- alkyl, G_1 - C_4 -haloalkylthio, C_1 - C_4 -haloalkyl-bulphinyl, C_1 - C_4 -haloalkyl-bulphonyl, halo- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_6 -haloeycloalkyl having in each ease 1 to 9 fluorine, chlorine, and/or bromine atoms; represents formyl, formyl- C_1 - C_3 -alkyl, $(C_1$ - C_3 -alkyl)carbonyl- C_1 - C_3 -alkyl, represents halo- $(C_4$ - C_3 -alkyl) earbonyl- C_1 - C_3 -alkyl or halo- $(C_4$ - C_3 -alkoxy)carbonyl- C_4 - C_3 -alkyl having in each ease 1 to 13 fluorine, chlorine, and/or bromine atoms; represents $(C_4$ - C_8 -alkyl)carbonyl, $(C_4$ - C_8 -alkoxy)carbonyl, $(C_4$ - C_4 -alkyl)carbonyl, or $(C_3$ - C_8 -cycloalkyl)carbonyl, $(C_4$ - C_4 -alkyl)carbonyl, or $(C_3$ - C_8 -cycloalkyl)carbonyl, represents $(C_4$ - C_4 -alkyl)carbonyl, or $(C_3$ - C_8 -haloalkoxy)carbonyl, (halo- C_4 - C_4 -alkyl)carbonyl, or $(C_3$ - C_8 -haloalkoxy)carbonyl, having in each ease 1 to 9 fluorine, chlorine, and/or bromine atoms; or represents $(C_4$ - (C_6) - (C_6) - (C_8) -
- R⁵ represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; or represents C₁-C₆-haloalkyl, C₁-C₆-haloalkoxy, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms [f,1].
- R^e-and R², independently of one another, each represent hydrogen, C₁-C₈-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-eycloalkyl; represent C₁-C₈-haloalkyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-haloeycloalkyl; represent C₁-C₈-haloalkyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-haloeycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R⁶-and R² together with the nitrogen-atom to which they are attached form a saturated heteroeycle having 5 to 8 ring atoms that is optionally mone—or polysubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₄-alkyl, where the heterocycle optionally contains 1 or 2 further non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR¹⁰;
- R⁸-and R⁹, independently of one another, represent hydrogen, C₁-C₈-alkyl, or C₃-C₈eyeloalkyl; or represent C₁-C₈-haloalkyl or C₃-C₈-halocycloalkyl having in each
 ease 1-to 9 fluorine, chlorine, and/or bromine atoms; or R⁸ and R⁹-together
 with the nitrogen atom to which they are attached form a saturated heteroeyele having 5-to 8-ring atoms that is optionally mono- or polysubstituted by
 identical or different substituents selected from the group consisting of

- 3 -

CS8775

halogen and C_1 - C_4 -alkyl, where the heterocycle optionally contains 1 or 2 further non-adjacent heteroatoms selected from the group consisting of exygen, sulphur, and NR 10 , and

R¹⁰ represents hydrogen or C₁-C₆-alkyl.

Claim 14 (currently amended): An N-substituted pyrazolylcarboxanilide of formula (I) according to Claim 13 in which

- R¹ represents methyl, trifluoromethyl, or difluoromethyl,
- R² represents hydrogen, fluorine, chlorine, methyl, or trifluoromethyl, either
- (a) R3 represents hydrogen, and
 - R⁴ represents C₁-C₆-alkyl, C₁-C₄-alkylsulphinyl, C₁-C₄-alkylsulphenyl, C₁-C₃-alkoxy-C₁-C₃-alkyl, or C₃-C₆-oyeloalkyl; represents C₁-C₄-haloalkyl, C₁-C₄-haloalkyl, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloaylsylsulphinyl, C₁-C₄-alkyl, having in each ease 1 to 9 fluorine, oblorine, and/or bromine atoms; represents formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)arbonyl-C₁-C₃-alkyl, or halo-(C₁-C₃-alkyl)serbonyl-C₁-C₃-alkyl, arbonyl-C₁-C₃-alkyl, or halo-(C₁-C₃-alkoxy)sarbonyl-C₁-C₃-alkyl having in each ease 1 to 13 fluorine, chlorine, and/or bromine atoms; represents (C₃-C₆-cycloalkyl)sarbonyl; represents (C₃-C₆-halocycloalkyl)sarbonyl having 1 to 9 fluorine, chlorine, and/or bromine atoms; or represents ·C(-C)C(-C)R⁵, -CONR⁶R⁷, -C-CH₂NR⁸P⁹,

or

(b) R³ represents fluorine, chlorine, bromine, iodine, C₁-C₆-alkyl, or C₁-C₆-haloalkyl having 1 to 13 fluorine, chlorine, and/or bromine atoms, and represents C₁-C₆-alkyl, G₁-G₄-alkylsulphinyl, G₁-G₄-alkylsulphonyl, C₁-C₃-alkoxy-C₁-C₃-alkyl, or G₃-G₆-eyeloalkyl; represents C₁-C₄-haloalkyl, G₁-G₄-haloalkylthio, G₁-G₄-haloalkylsulphinyl, G₁-G₄-haloalkylsulphonyl, halo-G₁-G₃-alkoxy-G₁-G₃-alkyl, or G₃-G₆-haloeyeloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; represents formyl, formyl-G₁-G₃-alkyl, (G₁-G₃-alkyl)carbonyl-G₁-G₃-alkyl;

CS8775

or (C₁-C₂-alkoxy)carbonyl-C₁-C₂-alkyl; or represents halo-(C₁-C₂-alkyl)-

earbonyl- C_1 - C_3 -alkyl, halo- $(C_1$ - C_3 -alkoy)earbonyl- C_1 - C_3 -alkyl having in each case 1 to 13 fluorine, chlorine and/or bromine atoms; represents $(C_4$ - C_6 -alkyl)earbonyl, $(C_1$ - C_6 -alkoxy)earbonyl, $(C_1$ - C_3 -alkoxy- C_4 - C_3 -alkoxy- C_4 - C_3 -alkyl)earbonyl, or $(C_3$ - C_6 -cycloalkyl)earbonyl; represents $(C_4$ - C_4 -halo-alkyl)earbonyl, $(C_4$ - C_4 -halo-alkoxy)earbonyl, $(A_4$ - C_4 - C_3 -alkoxy- C_4 - C_3 -alkoxy- C_4 - C_3 -alkoxy- C_4 - C_3 -alkoxy- C_4 - C_4 -halo-each ease 1 to 9-fluorine, chlorine, and/or bromine atoms; or represents $-(C_4)$ - (C_4) - $(C_4$

- R⁵ represents hydrogen, C₁-C₆-alkyl, C₁-C₄-alkoxy, C₁-C₃-alkoxy-C₁-C₃-alkyl, or C₃-C₆-cycloalkyl; represents C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, or C₃-C₆-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms [f.1].
- R⁶-and R², independently of one another, each represent hydrogen, C₄-C₆-alkyl, C₄-C₃-alkyl, or C₃-G₆-cycloalkyl; represent C₄-C₄-haloalkyl, halo-C₄-C₅-alkyl, or C₃-G₆-halocycloalkyl having in each ease 1 to 9 fluorine, chlorine, and/or bromine atoms; or R⁶-and R²-tegether with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms that is optionally mone- to tetrasubstituted by identical or different substituents selected from the group consisting of halogen and C₄-C₄-alkyl, where the heterocycle optionally contain 1 or 2 further non-adjacent heteroatoms selected from the group consisting of exygen, sulphur and NR¹⁰;
- R⁸-and R⁹, independently of one another, represent hydrogen, C₄-C₆-alkyl, or C₃-C₆eycloalkyl; represent C₄-C₄-haloalkyl or C₃-C₆-halocycloalkyl having in each
 case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R⁸-and R⁹ together
 with the nitrogen atom to which they are attached form a saturated heteroeycle having 5 to 8 ring atoms that is optionally mono- to tetrasubstituted by
 identical or different substituents selected from the group consisting of
 halogen and C₄-C₄-alkyl, where the heterocycle optionally contains 1 or 2
 further non-adjacent heteroatoms selected from the group consisting of
 exygen, sulphur, and NR¹⁰, and

R¹⁰ represents hydrogen or C₁-C₄-alkyl.

CS8775 - 5 -

Claim 15 (currently amended): An N-substituted pyrazolylcarboxanilide of formula (lb)

in which

R^{4A} represents C₁-C₈-alkyl, C₁-C₆-alkylsulphinyl, C₁-C₆-alkylsulphenyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or-C₃-C₈-cycloalkyl; represents C₁-C₆-haloalkyl, G₁-C₄-haloalkylthio, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylthio, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or-bromine atoms; represents formyl, formyl-C₁-C₃-alkyl, (C₁-C₂-alkyl)earbonyl-C₁-C₃-alkyl, or (C₁-C₂-alky)earbonyl-C₁-C₃-alkyl)earbonyl-C₁-C₃-alkyl or halo-(C₁-C₃-alkyl)earbonyl-C₁-C₃-alkyl or halo-(C₁-C₃-alkyl)earbonyl-C₁-C₃-alkyl having in each case 1 to 13 fluorine, chlorine, and/or-bromine atoms; represents (C₃-C₈-balocycloalkyl)earbonyl; represents (C₃-C₈-halocycloalkyl)earbonyl having 1 to 9 fluorine, chlorine, and/or-bromine atoms; or represents -C(=O)C(=O)R⁵, -CONR⁶R⁷, or -CH₂NR⁸R⁹;

R¹ represents methyl, trifluoromethyl, or difluoromethyl,

R² represents hydrogen, fluorine, chlorine, methyl or trifluoromethyl, and

R⁵ represents hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; or represents C₁-C₆-haloalkyl, C₁-C₆-haloalkoxy, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms [[,]] .

R⁶-and R², independently of one another, each represent hydrogen, C₁-C₈-alkyl, C₁-C₄-alkyl, or C₃-G₈-cycloalkyl; represent C₁-C₈-haloalkyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-haloeycloalkyl having in each case 1-to 9 fluorine, chlorine, and/or bromine atoms; or R⁶-and R²-together with the nitrogen atom to which they are attached form a saturated heterocycle having 5-to 8-ring atoms that is optionally mono-or polysubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₂-alkyl, where the heterocycle optionally contains 1-or 2 further non-

CS8775 - 6 -

adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR 10-and

 R^8 -and R^9 , independently of one another, represent hydrogen, $\mathsf{C}_4\text{-}\mathsf{G}_8$ -alkyl, or $\mathsf{C}_3\text{-}\mathsf{C}_8$ -alcoalkyl-or $\mathsf{C}_3\text{-}\mathsf{C}_8$ -haloalkyl-or $\mathsf{C}_3\text{-}\mathsf{C}_8$ -haloeveloalkyl-having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R^8 and R^9 -together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms that is optionally mono-or polysubstituted by identical or different substituents selected from the group consisting of halogen and $\mathsf{C}_4\text{-}\mathsf{C}_4\text{-}$ alkyl, where the heterocycle optionally contains 1 or 2 further non-adjacent heteroatoms selected from the group consisting of oxygen, sulphur, and NR 10 .

Claim 16 (currently amended): An N-substituted pyrazolylcarboxanilide of formula (Ic)

$$H_3C$$
 F
 H_4C
 H_4

in which

R^{3B} represents halogen, C₁-C₈-alkyl, or C₁-C₈-haloalkyl,

R^{4B} represents C₁-C₈-alkyl, G₁-G₈-alkylsulphinyl, G₁-G₆-alkylsulphonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or-G₂-G₈-eycloalkyl; represents C₁-C₆-haloalkyl, G₁-G₄-haloalkylthio₇-G₁-G₄-haloalkylsulphonyl, halo-G₁-G₄-alkoxy-G₁-G₄-alkyl, or-G₂-G₈-haloeycloalkyl having in each-case 1-to 9 fluorine, ehlorine, and/or-bromine atoms; represents formyl, formyl-G₁-G₃-alkyl, (G₁-G₃-alkyl)carbonyl-G₁-G₃-alkyl, or-(G₁-G₃-alkoxy)carbonyl-G₁-G₃-alkyl; represents halo-(G₁-G₃-alkyl)carbonyl-G₁-G₃-alkyl or halo-(G₁-G₃-alkoxy)carbonyl-G₁-G₃-alkyl-having in each case 1-to 13 fluorine, chlorine, and/or-bromine atoms; represents (G₁-G₈-alkyl)carbonyl, (G₁-G₈-alkoxy)carbonyl, represents (G₁-G₄-alkoxy-G₁-G₄-alkyl)carbonyl, or-(G₃-G₈-cycloalkyl)carbonyl, represents (G₁-G₄-alkoxy-G₁-G₄-alkyl)carbonyl, (G₁-G₂-baloalkoxy)carbonyl, (halo-G₁-G₄-alkoxy-G₁-G₄-alkyl)carbonyl, (G₁-G₂-G₈-baloakyl)carbonyl, (halo-G₁-G₄-alkoxy-G₁-G₄-alkyl)carbonyl, (G₁-G₂-G₈-baloaycloalkyl)carbonyl, fine case 1-to 9

- fluorine, chlorine, and/or bromine atoms; or represents -C(=O)C(=O)R⁵, -CONR⁶R⁷-or -CH₂NR⁸R⁹-
- R¹ represents methyl, trifluoromethyl, or difluoromethyl,
- R² represents hydrogen, fluorine, chlorine, methyl or trifluoromethyl, and
- R⁵ represents hydrogen, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₆-cycloalkyl; or represents C₁-C₆-haloalkyl, C₁-C₆-haloalkoxy, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₆-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms [I.1] .
- R^6 -and R^7 -independently of one another, each represent hydrogen, C_1 - C_8 -alkyl, C_4 - C_4 -alkoxy- C_4 - C_4 -alkyl, or C_3 - C_8 -balooyeloalkyl; represent C_4 - C_8 -baloalkyl, halo- C_4 - C_4 -alkoxy- C_4 - C_4 -alkyl, or C_3 - C_8 -balooyeloalkyl; represent C_4 -baloakyl-having in each case 1-to-9 fluorine, chlorine, and/or bromine atoms; or R^6 and R^7 -together with the nitrogen atom to which they are attached form a saturated heterocycle having 5-to-8 ring atoms that is optionally mone-or-polysubstituted by identical or different substituents selected from the group-consisting of halogen and C_4 - C_4 -alkyl, where the heterocycle optionally contains 1-or 2 further non-adjacent heteroatoms selected from the group-consisting of oxygen, sulphur, and NR^{10} -and
- R⁸-and R⁹, independently of one another, represent hydrogen, C₁-C₈-alkyl, or C₃-C₈-beloalkyl; or represent C₁-C₈-haloalkyl or C₃-C₈-haloeyeloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R⁸ and R⁹-together with the nitrogen atom to which they are attached form a saturated heterocycle having 5 to 8 ring atoms that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₄-alkyl, where the heterocycle optionally contains 1 or 2 further non-adjacent heteroatoms selected from the group consisting of exverse, sulphur, and NR¹⁰.

Claim 17 (canceled)

Claim 18 (previously presented): An N-substituted pyrazolylcarboxanilide of formula (I) according to Claim 13 in which R⁴ represents -C(=O)C(=O)R⁵ and R⁵ is as defined in Claim 13.

CS8775 - 8 -

Claim 19 (canceled)

Claim 20 (previously presented): A composition for controlling unwanted microorganisms comprising one or more N-substituted pyrazolylcarboxaniildes of formula (I) according to Claim 13 and one or more extenders and/or surfactants.

Claim 21 (withdrawn): A method of controlling unwanted microorganisms comprising applying an effective amount of an N-substituted pyrazolylcarboxanilide of formula (I) according to Claim 13 to the microorganisms and/or their habitat.

Claims 22-24 (canceled)

CS8775 - 9 -