ROB lab 3,4 Rozpoznawanie cyfr pisanych ręcznie Paweł Paczuski (271082)

Klasyfikacji znaków przy użyciu klasyfikatorów liniowych

Klasyfikatory liniowe zajmują się odseparowywaniem dwóch grup punktów za pomocą, w zależności od liczby wymiarów (cech), prostą, płaszczyzną, hiperpłaszczyzną. W przypadku, gdy dane zawierają więcej niż dwie grupy, np. w klasyfikacja cyfr (10 klas), stosowane są techniki mające na celu uogólnienie klasyfikacji na wiele klas przy użyciu binarnych klasyfikatorów.

Jednym z możliwych rozwiązań jest technika OvO (Onve versus One) – utworzenie $\binom{N}{2}$ klasifikatorów – wszystkich możliwych par klas. Następnie przeprowadzenie klasyfikacji danego elementu, za pomocą wszystkich uzyskanych w ten sposób $\frac{n(n-1)}{2}$ klasyfikatorów. Następnie sumowane są wyniki, zaś ostatecznym wynikiem klasyfikacji jest klasa, na którą zagłosowało najwiecej składowych klasyfikatorów. W przypadku, gdy klasyfikatory nie są zgodne, można uznać daną decyzję jako wymijającą.

Klasyfikacja znaków wiąże się z klasyfikacja danych wielowymiarowych. W przypadku danych MNIST, każdy pixel obrazka jest traktowany jako oddzielna cecha. Aby zmniejszyć wymiarowość problemu, zastosowano algorytm PCA dla 80 składowych, aby tak obrócić osie układu współrzędnych, by wzdłuż nich współrzędne miały jak największą wariancję.

Algorytm wyznaczania parametrów płaszczyzny decyzyjnej

Płaszczyznę decyzyjną wyznaczono za pomocą metody perceptronowej opartej na bardzo prostej zależności zwiazanej z sumą elementów niepoprawnie sklasyfikowanych. Wynika to z tego, że funkcja oceny J(a) jest proporcjonalna do sumy odległości punktów źle sklasyfikowanych od powierzchni decyzyjnej. Po odpowiednich przekształceniach, metoda sformalizowana jest nastepująco:

$$a(k+1) = a(k) + \eta(k) \sum_{y \in Y} y$$
$$\eta = \frac{1}{\sqrt{k}}$$

k-nr iteracji

Y – zbiór niepoprawnie sklasyfikowanych elementów

Zastosowano zmienny współczynnik korekcji η , którego wartość zależy od nr iteracji. Gdy aktualne rozwiązanie zbliża się do lokalnego ektremum, zmniejszają

się zmiany płaszczyzny decyzyjnej, co pozwala na zbliżenie się do najlepszych wartości wag.

Optymalizacją zwiększającą dwukrotnie szybkość (dla mincorrectionnorm=5) działania perceptronu (kosztem precyzji), było zatrzymanie liczenia, gdy rożnica sum błędów między iteracjami jest mniejsza niż zadana wartość.

Jakość klasyfikacji

Rozwiązanie referencyjne

Zbiór uczący MINST

OK	Błąd	Odrzucenie
0.9134	0.0572	0.0294

Zbiór testowy MINST

OK	Błąd	Odrzucenie
0.9155	0.0549	0.0296

Perceptron

Przetestowano implementację perceptronu dla wszystkich par cyfr:

plabel	nlabel	posmiss	${\rm negmiss}$
0	1	0.007766	0.005636
0	2	0.208003	0.098859
0	3	0.130002	0.112053
0	4	0.109742	0.049127
0	5	0.213574	0.112525
0	6	0.163600	0.094120
0	7	0.067871	0.048683
0	8	0.178288	0.084088
0	9	0.048793	0.140528
1	2	0.010976	0.859517
1	3	0.037526	0.512478
1	4	0.009196	0.038514
1	5	0.195343	0.509131
1	6	0.217740	0.160696
1	7	0.010234	0.059537

plabel	nlabel	posmiss	negmiss
1	8	0.035598	0.780550
1	9	0.010383	0.036309
2	3	0.096677	0.089545
2	4	0.870594	0.303663
2	5	0.199899	0.340712
2	6	0.000168	1.000000
2	7	0.799597	0.296409
2	8	0.783988	0.393779
2	9	0.479020	0.317196
3	4	0.204208	0.205923
3	5	0.103898	0.845785
3	6	0.122492	0.074349
3	7	0.981080	0.020591
3	8	0.905888	0.117416
3	9	0.101615	0.622458
4	5	0.192229	0.553034
4	6	0.211058	0.131632
4	7	1.000000	0.000319
4	8	0.782951	0.085114
4	9	0.884629	0.083712
5	6	0.566870	0.108483
5	7	0.188895	0.139984
5	8	0.265265	0.192275
5	9	0.045748	0.793915
6	7	0.164076	0.348125
6	8	0.262420	0.600410
6	9	0.762758	0.460750
7	8	0.335355	0.220475
7	9	0.326257	0.364935
8	9	0.256196	0.638259

Użycie opisanej implementacji perceptronu wewnątrz komitetu OvO dla zbioru testowego MNIST dało następujące rezultaty:

OK	Błąd	Odrzucenie
0.8951	0.0759	0.0288

Macierz pomyłek:

5599	0	23	12	5	61	71	4	29	2	117
0	6376	57	25	4	20	9	45	115	5	86
45	39	5258	69	74	24	104	54	95	16	180

24	49	101	5340	3	211	30	62	84	43	184
6	23	44	2	5272	12	76	16	29	205	157
61	37	20	181	28	4525	79	47	113	45	285
47	25	83	1	21	80	5523	0	27	0	111
12	42	64	21	46	14	5	5749	17	135	160
35	103	65	120	27	155	36	48	4908	79	275
27	19	31	80	170	33	1	198	52	5161	177

Zbiór testowy MNIST

		OK	В	Błąd	Odrzucen	ie				
		0.89	980 0	.0723	0.0297	_				
932	0	2	2	0	13	10	2	1	0	18
0	1074	4	7	0	1	4	2	31	0	12
7	3	917	15	12	2	11	8	17	4	36
4	2	14	907	0	23	2	18	14	3	23
1	4	7	0	896	1	11	3	4	31	24
11	5	5	35	3	738	12	8	16	10	49
11	2	8	0	7	15	891	0	3	0	21
1	10	19	5	7	0	1	931	4	23	27
10	7	13	21	8	23	9	15	816	11	41
5	3	5	8	33	5	1	23	2	878	46

Analiza macierzy pomyłek sugeruje, że komitet najgorzej sobie radzi z cyfrą 5 – jest ona mylona z 3, 8 i 6, wobec tej cyfry komitet najczęściej wstrzymał się od decyzji. Problematyczna też jest cyfra 4 – mylona jest z 6 i 8.

Próba usprawnienia klasyfikacji

Zgodnie z sugerowanym w instrukcji do laboratorium sposobem usprawnienia klasyfikacji, dokonano próby podziału cyfy na grupy, aby następnie dokonać klasyfikacji na zmniejszonej liczbie klas wewnątrz grup.

Podział na dwie lub trzy grupy za pomocą kmeans

Grupy zwracane przez kmeans były następnie analizowane pod kątem procentowego udziału poszczególnych klas. Poszczególne cyfry przydzielono do grupy, w ktorej występowały częściej. Zastosowano algorytm kmeans w celu podziału cyfr na dwie grupy:

$$g0 = [0\ 1\ 4\ 6\ 7];$$

$$g1 = [2 \ 3 \ 5 \ 8 \ 9];$$

Wyniki klasyfikatorów przydzielających cyfry do jednej z dwóch grup:

OK	Błąd	Odrzucenie
0.9089333	0.0855000	0.0055667

Sumaryczne wyniki dla klasyfikatorów działających wewnątrz grup, po scaleniu wynikow:

OK	Błąd	Odrzucenie
0.866100	0.122350	0.011550

Podział na trzy grupy za pomocą kmeans

Podział na dwie grupy wg kmeans nie przyniósł poprawy (wręcz odwrotnie), dlatego podjęto próbę podziału cyfr na trzy grupy.

Analogicznie do poprzednego podziału zbioru cyft, przydzielono każdą z cyfr do jednej z trzech grup:

$$g0 = [0 \ 2 \ 3 \ 5 \ 6];$$

 $g1 = [1 \ 8];$
 $g2 = [4 \ 7 \ 9];$

Wyniki klasyfikatorów przydzielających cyfry do jednej z trzech grup:

OK	Błąd	Odrzucenie
0.9326333	0.0625333	0.0048333

Sumaryczne wyniki dla klasyfikatorów działających wewnątrz grup, po scaleniu wynikow:

OK	Błąd	Odrzucenie
0.884067	0.103667	0.012267

Najlepszy znaleziony podział

Aby zmaksymalizować skuteczność wstępnego podziału zbioru cyfr – znaleźć najlepszy podział, można przetestować każdy możliwy podział. Liczność możliwych podziałów zbioru opisują liczby Bella. Dla zbioru 10-elementowego (0-9) istnieje $B_{10}=115975$ podziałów. Sprawdzenie każdego z podziałów wymaga wytrenowania klasyfikatorów na zbiorze MNIST, co zajmuje kilka

sekund. Ostatecznie, sprawdzenie wszystkich możliwości uznano za nieopłacalne czasowo. Pomimo nieopłacalności sprawdzenia wszystkich możliwości, za pomocą skryptu autopartition, sprawdzajacego kolejno wszystkie możliwe podziały, zwracającego na bieżąco najlepszy do tej pory znaleziony, wykryto najlepszy z testowanych podziałów:

 $g0 = [0 \ 1 \ 2 \ 3 \ 5 \ 8];$

 $g1 = [4 \ 6];$

 $g2 = [7 \ 9];$

Wyniki klasyfikatorów przydzielających cyfry do jednej z trzech grup:

Macierz pomyłek:

35046 558 378 44 640 10766 244 110 626 212 11321 55

Ocena klasyfikacji:

OK	Błąd	Odrzucenie		
0.9522167	0.0443000	0.0034833		

Szczegółowe wyniki klasyfikatorow działających wewnątrz grup

Pierwsza grupa:

5695	2	32	12	0	52	0	0	25	0	34
0	6451	41	24	0	13	0	0	90	0	57
29	29	5353	66	0	31	0	0	72	0	96
6	31	83	5480	0	175	0	0	73	0	115
23	42	63	13	0	2	0	0	41	0	30
39	14	43	161	0	4694	0	0	107	0	132
40	35	145	2	0	126	0	0	36	0	42
29	67	96	27	0	4	0	0	20	0	20
17	77	69	123	0	133	0	0	5138	0	132
42	37	51	92	0	35	0	0	75	0	31

OK	Błąd	Odrzucenie
0.903586	0.077440	0.018974

Druga grupa

0	0	0	0	15	0	47	0	0	0	0
0	0	0	0	6	0	4	0	0	0	0
0	0	0	0	110	0	98	0	0	0	0

0	0	0	0	1	0	28	0	0	0	0
0	0	0	0	5243	0	33		0	0	0
0	0	0	0	57	0	106	0	0	0	0
0	0	0	0	44	0	5446	0	0	0	0
0	0	0	0	62	0	3	0	0	0	0
0	0	0	0	35	0	51	0	0	0	0
0	0	0	0	145	0	2	0	0	0	0

OK	Błąd	Odrzucenie
0.92658	0.07342	0.00000

Trzecia grupa:

0	0	0	0	0	0	0	5	0	0	0
0	0	0	0	0	0	0	43	0	5	0
0	0	0	0	0	0	0	44	0	11	0
0	0	0	0	0	0	0	68	0	71	0
0	0	0	0	0	0	0	35	0	209	0
0	0	0	0	0	0	0	8	0	49	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	5739	0	191	0
0	0	0	0	0	0	0	22	0	52	0
0	0	0	0	0	0	0	209	0	5182	0

OK	Błąd	Odrzucenie
0.91443	0.08557	0.00000

Elementy zbioru, których przynależności do grup wstępny przydział nie był w stanie rozstrzygnąć, zostały sklasyfikowane za pomocą pełnego zbioru klasyfikatorów:

3	0	0	0	0	1	0	1	0	0	1
0	2	0	0	0	0	0	1	0	0	0
0	0	3	0	1	0	0	1	0	1	6
0	0	0	1	0	0	1	0	0	0	1
0	0	0	0	96	0	0	1	0	3	7
0	0	0	0	1	4	0	0	0	0	3
0	0	0	0	0	0	1	0	0	0	0
0	0	1	0	1	2	0	1	1	0	3
0	0	0	0	2	0	0	0	2	1	2
0	0	0	0	16	2	0	0	1	21	7

Sumaryczne wyniki dla klasyfikatorów działających wewnątrz grup, po scaleniu wynikow:

OK	Błąd	Odrzucenie
0.910187	0.078289	0.011523

Sumaryczne wyniki są nieco lepsze w stosunku do rozwiązania z użyciem komitetu z własną implementacją perceptronu, jednak nie można stwierdzić, że są one lepsze w stosunku do rozwiązania referencyjnego (przyczyną może być np. optymalizacja działania perceptronu polegająca na zakończeniu obliczania, gdy zmiany płaszczyzny są mniejsze niż określona ręcznie wartość, która przyspiesza ok. dwukrotnie działanie programu).

Skuteczność tego rozwiązania oparta jest w dużej mierze na wysokiej skuteczności klasyfikatorów binarnych w grupach 2 i 3. Przez to, że te grupy zawierają tylko dwie cyfry, to są to pojedyncze kanoniczne klasyfikatory wyciągnięte poza komitet głosujący, nie mogą wycofać się z głosowania, co okazuje się, że ma pozytywny wpływ na sumaryczny wynik. Możliwe, że istnieje jeszcze lepszy sposób podziału zbioru cyfr, który pozwoliłby na uzyskanie znacznej poprawy jakości klasyfikacji.