Exam 2 - Wed, March 11 (regular class/time)

Bring calculator, 1 page (front back) note sheet

Contrage: Discrete Dist - Greneral Continuous Dist (Lecture 5-9)

Practice Exam Posted

In-class Renew on Monday.

Lecture 12

Gamma Distribution

STAT 330 - Iowa State University

1/9

Gamma Distribution

Gamma Distribution

Setup: The gamma distribution is commonly used to model the total time for a procedure composed of α independent occurrences, where the time between each occurrence follows $Exp(\lambda)$

$$\begin{array}{c} \boxed{\text{Exp(\lambda)} \ \text{Exp(\lambda)} \ \\ \hline \text{Gamma} \ \text{Gamma} \ \text{distribution}, \qquad \text{alpha} \ \text{A} \\ X \sim \text{Gamma}(\alpha, \lambda) \qquad \qquad \text{lambda} \ \text{A} \ \text{(rate)} \end{array}$$

where $\lambda > 0$ is there rate parameter, and $\alpha > 0$ is the shape parameter

Probability Density Function (pdf)

•
$$Im(X) = (0, \infty)$$

• $f(x) = \begin{cases} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x} & \text{for } x > 0 \\ 0 & \text{otherwise} \end{cases}$
where $\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx$ is called the "gamma function".

2/9

Gamma PDF

Don't need

directly.

Figure 1: PDFs for gamma distribution with fixed λ and $\alpha = 0.5, 1, 1.5$

Gamma Distribution Summary

Won't deal S with this directly

• Cumulative distribution function (cdf)

hard to integrate

 $F_X(t) = \int_0^t f(x)dx = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} \int_0^t x^{\alpha-1} e^{-\lambda x} dx$

• Expected Value: $E(X) \neq \frac{\alpha}{\lambda}$

• Variance: $Var(X) = \frac{\alpha}{\lambda^2}$

* Worlt use the Gramma PDF/CDF directly to calculate probabilities

* Instead we will use a trick to turn a Gumma R.V into a different Poisson R.V, and then calculate probabilities using Poisson CDF.

4/9

Examples

Gamma Distribution Example

Example 1: Compilation of a computer program consists of 3 blocks that are processed sequentially, one after the other. Each block is independent of the other blocks, and takes Exponential time with mean of 5 minutes. We are interested in the total compilation time.

Exp ($\frac{1}{5}$) Exp($\frac{1}{5}$) Exp($\frac{1}{5}$) Exp($\frac{1}{5}$) $\frac{1}{5}$

• Total compilation time modeled using Gamma distribution.

Define the R.V: T = total compilation time

Distribution of T: $T \sim Gamma(\alpha, \lambda) \equiv Gamma(?,?)$

- What value should we use for α and λ ?
 - α is the number of independent occurrences (blocks) in the full procedure: $\alpha = 3$
 - Time for each occurrence (call this " T_i ") is exponential with mean 5 min. $E(T_i) = \frac{1}{\lambda} = 5 \rightarrow \lambda = \frac{1}{5}$

$$T \sim Gramma(d=3, \lambda=1/5)$$
 5/9

Gamma Distribution Example

T =total compilation time

$$T \sim Gamma(3, \frac{1}{5})$$
 $A = \frac{1}{5}$

1. What is the expected value of total compilation time?

$$E(T) = \frac{K}{\lambda} = \frac{3}{(1/5)} = 15 \text{ min}$$

2. What is the variance of total compilation time?

$$Var(T) = \frac{x}{\lambda^2} = \frac{3}{(1/5)^2} = 75 \text{ min}^2$$

3. What is the probability for the entire program to be compiled in less than 12 minutes

in less than 12 minutes.

$$P(T<12) = \int_{12}^{12} f(x) dx = \int_{-\infty}^{12} \frac{\lambda^{n}}{\pi(n)} x^{n-1} e^{-\lambda x} dx$$

$$= \int_{-\infty}^{12} \frac{(1/5)^{3}}{\pi(3)} x^{3-1} e^{-\lambda x} dx$$

Poisson Approximation to Gamma Distribution

Gamma Distribution Example

- Could answer the previous question by using the Gamma CDF directly (requires repeated integration by parts)
- Instead, simplify Gamma probabilities by turning it into a Poisson problem!
- Turn a Gamma random variable into Poisson random variable using the Gamma-Poisson formula.

using the Gamma-Poisson formula.

Gamma-Poisson Formula

For
$$T \sim \text{Gamma}(\alpha, \lambda)$$
 and $X \sim \text{Pois}(\lambda t)$, parameter Poisson

 $P(T > t) = P(X < \alpha)$

and

$$P(T \le t) = P(X \ge \alpha)$$

Gamma Distribution Example

- 3. What is the probability that total compilation is under 12 min? P(T < 12)
- Step 1: Define our Gamma random variable: $T \sim Gamma(\alpha, \lambda) \equiv Gamma(3, \frac{1}{5})$ t = 12. We want to know P(T < t) = P(T < 12) = ?
- Step 2: Convert the Gamma R.V (T) into a Poisson R.V (X): $X \sim Pois(\lambda t) \equiv Pois(\frac{1}{5} \cdot 12) \equiv Pois(2.4)$ Parameter for Poisson Distribution
- Step 3: Use Gamma-Poisson formula: $P(T \le t) = P(X \ge \alpha)$

$$P(T < 12) = P(T \le 12) = P(X \ge 3)$$
 \leftarrow Gramma-Poisson Formula

 $f(T < 12) = P(T \le 12) = P(X \ge 3)$ \leftarrow Gramma-Poisson Formula

 $f(T < 12) = P(T \le 12) = P(X \le 3)$
 $f(T < 12) = 1 - P(X \le 2)$ \leftarrow Gramma-Poisson Formula

 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X \le 2)$
 $f(T < 12) = 1 - P(X$

Gamma Distribution Example

4. What is the probability that it takes at least 5 minutes to compile the entire program? $P(T \ge 5)$

STEP 1 = Define my 8000 Gramma R.V
$$T \sim Gramma (N = 3, \lambda = 75). Want P(T \ge 5)$$

STEP3: Use Grammy-Poisson Formula:
$$P(T>t) = P(X < K)$$

$$P(T \ge 5) = P(T > 5) \quad (T \text{ is (onlineous R.V)})$$

$$= P(X < X)$$

$$= P(X < 3) \leftarrow Gramma-Poiss Formula$$

$$= P(X \le 2) \quad (X \text{ is } Discrete (Poisson) R.V)$$

$$= F(X = Z)$$

$$= 0.9196$$

Px(0) +Px(1) +Px(2) = P(X=0) = +P(X=1)

+P(X=2)