Name: _____

Class #: _____

Section #:

EE2T21 Telecommunicatie B (2015-2016 Q4): 37543-151604

Instructor: Koos Dijkhuis

Assignment: Huiswerkopdracht 9

Class:

Question 1: (5 points)

Een AM-zender wordt gemoduleerd met het signaal $m(t)=\mu x(t)$, met modulatie-index $\mu=0.8$.

Voor x(t) geldt : $x_{\max} = -x_{\min} = 0.5, E\{x^2(t)\} = 0.125;$

het enkelzijdige vermogensspectrum van x(t) is gegeven in figuur 1.

a. Bereken het percentage AM-modulatie.

Het percentage AM-modulatie is _______%

b. De amplitude van de ongemoduleerde draaggolf bedraagt 140 V en de stralingsweerstand van de zendantenne is 95 Ω . Bereken het gemiddeld uitgezonden vermogen p_{qem} .

 $p_{gem} =$ ____dBW.

c. Bereken het PEP (Peak Envelope Power) van het uitgezonden signaal.

 $PEP = \underline{\hspace{1cm}} dBW.$

d. Bereken de modulatie-efficiëntie $E=\frac{p_{zijbanden}}{p_{totaal}}$. 100 % .

De modulatie-efficientie E bedraagt _______%.

e. Bereken de vermogensdichtheid van het uitgezonden signaal op $f=f_{\it C}+160~Hz$.

De vermogensdichtheid bedraagt _____ dBm/Hz.

Question 2: (5 points)

Een SSB zender wordt gemoduleerd met:

$$m(t) = A_m \cos(2 \cdot \operatorname{pi} \cdot f_m t) + B_m \sin(10 \cdot \operatorname{pi} \cdot f_m t)$$

waarbij $A_m = 1$, $B_m = 4.5$. De draaggolfamplitude is $A_c = 130$ V, de zendfrequentie is f_c en het signaal wordt afgegeven aan een belastingsweerstand van 115 Ω .

a. Geef de volledige uitdrukking voor het uitgezonden signaal s(t) indien LSSB modulatie wordt toegepast.

(a)
$$s~t=A~c~A~m\sin(2~\pi\left(f~c-f~m
ight)t)+A~c~B~m\cos(2~\pi\left(f~c-5~f~m
ight)t)$$

(b)
$$s t = A c A m \cos(2 \pi (f c - f m) t) - A c B m \sin(2 \pi (f c - 5 f m) t)$$

(c)
$$s t = A c A m \sin(2 \pi (f c + f m) t) - A c B m \cos(2 \pi (f c + 5 f m) t)$$

(d)
$$s t = A c A m \cos(2 \pi (f c + f m) t) + A c B m \sin(2 \pi (f c + 5 f m) t)$$

	van de amplitude van het SSB signaal $s(t)$.	De RMS-waarde is	V.
c.	Bepaal de piek-waarde van de amplitude van het SSB signaal $s(t)$.	De piek-amplitude bedraagt	V.
d.	Bereken het gemiddelde vermogen P_{gem} , en het piek-omhullende vermogen PEP van het SSB signaal $s(t)$ dat aan de belastingsweerstand wordt afgegeven.	$P_{\text{gem}} = \underline{\qquad} dBW.$ $PEP = \underline{\qquad} dBW.$	