Nachname: Vorname: Matrikelnr:

1	2	3	4	\sum	Note

Prüfung zu ${\bf Schulmathematik\ Analysis}$

WS 2018/19, R. Steinbauer, E. Süss-Stepancik

Kreuzen	Sie für	jede A	Antwor	tmöglich	nkeit a	an, ob	Sie	${\rm diese}$	für	richtig	(R)	${\rm oder}$	falsch	(F)
bzw. zut	reffend	halten	. (Je 1	Punkt r	oro rio	chtiger	Ant	wort.)					

	3. Termin, 25.4.2019 $GRUPPE \boxed{A}$							
1	Faktenwissen zur Schulmathematik	Analysis						
	zen Sie für jede Antwortmöglichkeit an, ob Sie diese für ric zutreffend halten. (Je 1 Punkt pro richtiger Antwort.)	htig (R) oder fal	sch (F)					
1.1.	Es gibt injektive Funktionen, die nicht surjektiv sind.	(R)	(F)					
1.2.	Jede nach oben beschränkte und nicht leere Menge $M\subseteq\mathbb{R}$ hat ein Supremum.	(R)	(F)					
1.3.	Die Folge $\langle 2,4,8,16,\ldots\rangle$ ist eine . (1) arithmetische Folge	(2) geometrisch	e Folge.					
1.4.	Jede beschränkte (reelle) Folge konvergiert.	(R)	(F)					
1.5.	Hat eine (reelle) Folge einen Häufungswert, dann konvergiert sie auch.	(R)	(F)					
1.6.	Hat eine (reelle) Folge zwei verschiedene Häufungswerte, dann konvergiert sie nicht.	(R)	(F)					
1.7.	Welche der folgenden Schreibweisen für den Limes einer Fol $\lim_{n\to\infty}x_n\to a\\ (n\to\infty)$	ge ist korrekt: (J) (J)	(N) (N)					
1.8.	Eine Funktion $f: \mathbb{R} \to \mathbb{R}$ konvergiert an der Stelle $x_0 \in \mathbb{R}$ gegen der Wert $c \in \mathbb{R}$, falls $\forall \varepsilon > 0 \; \exists \delta > 0: \; \forall x \geq \delta \implies f(x) - c < \varepsilon.$	(R)	(F)					
1.9.	Rationale Funktionen sind auf ihrem ganzen Definitionsbereich differenzierbar.	(R)	(F)					
.10.	Sei $f:\mathbb{R}\to\mathbb{R}$ eine stetige Funktion. Für jede Gerade g du gilt	·	[0, f(0))					
	$r(h) := f(h) - g(h) \rightarrow 0 (h \rightarrow 0)$							

$$r(h) := f(h) - g(h) \to 0 \quad (h \to 0).$$
 (R)

1.11. Für jede Stammfunktion G der stetigen Funktion $f: \mathbb{R} \to \mathbb{R}$ gilt

$$G(x) = \int_0^x f(t) dt + C$$

wobei C eine Konstante ist.

$$(R) (F)$$

1.12. Falls $f: \mathbb{R} \to \mathbb{R}$ stetig ist, dann ist

$$F(x) = \int_0^x f(t) \, dt$$

eine stetig diffferenzierbare Funktion.

$$(R) (F)$$

- 1.13. Eine beschränkte Funktion $f:[a,b]\to\mathbb{R}$ heißt integrierbar, falls die Ober- und die Untersummen konvergieren.
- (R) (F)
- 1.14. Sei $f:[a,b]\to\mathbb{R}$ stetig. Der Ausdruck $\int_a^x f(x)\,dx$ ist sinnvoll.
- (R) (F)

1.15. Für eine (reelle) Folge gilt $\lim_{n\to\infty} x_n = a$, falls $\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} : |x_n - a| < \varepsilon$

$$(R) (F)$$

1.16. Eine Funktion $f: \mathbb{R} \to \mathbb{R}$ ist (sicher) nicht differenzierbar, wenn

(a) ihr Graph einen Sprung hat.

(R) (F)

(b) ihr Graph einen Knick hat.

(R) (F)

1.17. $\sum_{k=1}^{\infty} \frac{1}{k}$ konvergiert.

(R) (F)

1.18. Die Wurzelfunktion $f(x) = \sqrt{x}$ $(x \in [0, \infty))$ ist stetig auf $[0, \infty)$.

(R) (F)

2 Offene Aufgaben zu Fachbegriffen der Analysis

- 2.1. Funktion.
 - (a) Definieren Sie den Begriff des Graphen einer Funktion $f: \mathbb{R} \to \mathbb{R}$. (1P)
 - (b) Erklären Sie, was der Graph einer Funktion $f:A\to B$ mit einer Wertetabelle zu tun hat. (1P)
 - (c) Geben Sie eine Definition des Funktionsbegriffs mittels des (hier in der Luft liegenden) Paarmengenaspekts. (2P)
- 2.2. Differential rechnung.
 - (a) Definieren Sie für Funktionen $f: \mathbb{R} \to \mathbb{R}$ den Begriff Differenzenquotient in einem Punkt $x_0 \in \mathbb{R}$. (1P)

- (b) Zeigen Sie direkt aus der Definition, dass die Funktion $f(x) = x^2$ im Punkt $x_0 = 0$ die Ableitung f'(0) = 0 besitzt. (1P)
- (c) Diskutieren Sie ausführlich die (Nicht-)Differenzierbarkeit der Funktion f(x) = |x| auf \mathbb{R} . Geben Sie auch eine graphische Interpretation. (2P)
- 2.3. Differential- und Integralrechnung.
 - (a) Formulieren Sie beide Teile des Hauptsatzes der Differential- und Integralrechnung. (2P)
 - (b) Definieren Sie den Begriff Stammfunktion und zeigen Sie die folgende Aussage: Ist F Stammfunktion von f, dann auch jede Funktion G mit G(x) = F(x) + C, wobei $C \in \mathbb{R}$ eine Konstante ist. (2P)

3 Offene Aufgaben zur Unterrichtspraxis

3.1. SchülerInnenäußerung. Betrachten Sie die folgende Äußerung der Schülerin Mira (9. Schulstufe):

Er fragte uns plötzlich, ob $0,\bar{9}$ nicht auch ein Name für 1 wäre, denn zu 1 passt ja auch 1/1 oder $3/3,\,5/5,$ oder 1,0. Ich protestierte natürlich, denn von $0,\bar{9}$ zu 1 fehlt ja noch die Zahl $0,\bar{0}1.$ Zwar darf man in der Mathematik 0,000001 nicht als $0,\bar{0}1$ schreiben, aber wie soll es denn sonst kurz heißen. Ich bin ja nicht Albert Einstein, aber mein (noch) gesunder Menschenverstand sagt mir, dass es zwischen $0,\bar{9}$ und 1 ein winziges Stückchen gibt. Dieses Stückchen verkleinert sich natürlich wenn 0,999 zu 0,9999 wird. Es wird von 0.001 zu 0.0001 kleiner, also: Es ist immer noch da. Und so ist es auch mit einer tausendstelligen Zahl, ein kleines Stück fehlt immer.

Bearbeiten Sie nun die folgenden Punkte:

- (a) Gilt $0, \overline{9} = 1$ oder nicht? (1P)
- (b) Begründen Sie Ihre obige Antwort. (2P)
- (c) Verfassen Sie eine Antwort an Mira, in der Sie auf die Definition periodischer Dezimalzahlen eingehen (2P) und die Konsequenzen von $0,\bar{9}<1$ darstellen. (3P)
- 3.2. Definitionsbereich. Betrachten Sie die folgende Schulbuch-Aufgabe:

Gegeben ist die Funktion $f(x) = \frac{-7}{x^2 + 4}$. Bestimme den Definitionsbereich.

- (a) Wie lautet Ihre Lösung der Aufgabe? Bewerten Sie diese Aufgabe. (2P)
- (b) Bringen Sie diese Aufgabe in eine sinnvollere Form. Erklären Sie, welche Kenntnisse Sie damit abfragen wollen. (2P)

4 Offene Aufgaben: Fachdidaktische Reflexionen

- 4.1. Grundvorstellungen.
 - (a) Was versteht man in der Fachdidaktik unter einer Grundvorstellung zu einem mathematischen Begriff? (1P)
 - (b) Geben Sie alle Grundvorstellungen zum Begriff Funktion an und beschreiben Sie diese möglichst prägnant. (3P)
 - (c) Eine der vier Grundvorstellungen zur Differenzialrechnung zielt auf die lokale Änderungsrate ab.
 - Geben Sie diese Grundvorstellung an! (1P)
 - Beschreiben Sie, wie diese Grundvorstellung im Laufe der Sekundarstufe 2 aufgebaut werden kann und berücksichtigen Sie dabei Lehrplaninhalte und entsprechende Grundkompetenzen aus dem SRP-Konzept. (3P)
- 4.2. Grenzwert-Präzisierung. Diskutieren Sie die Notwendigkeit, den Grenzwertbegriff für Folgen zu präzisieren vor allem im Hinblick auf intuitive Beispiele, wo Konvergenz vorzuliegen scheint, tatsächlich aber nicht vorliegt. (3P)
- 4.3. Ableitungsregel für zusammengesetzte Funktionen im Unterricht erarbeiten. Entwerfen Sie für die Summenregel der Ableitung einen konkreten Unterrichtsgang gemäß der Schrittfolge:
 - (a) Erkunden des Phänomens (2P)
 - (b) Herausarbeiten einer Vermutung (2P)
 - (c) Beweisnotwendigkeit der Vermutung (1P)