网络技术与应用第六次实验

• 实验名称: NAT配置

• 专业: 物联网工程

姓名:秦泽斌学号: 2212005

一、实验要求

- 1. 仿真环境下的NAT服务器配置
 - 。 学习路由器的NAT配置过程。
 - o 组建由NAT连接的内网和外网。
 - 。 测试网络的连通性, 观察网络地址映射表。
 - 在仿真环境的"模拟"方式中观察IP数据报在互联网中的传递过程,并对IP数据报的地址进行分析。
- 2. 在仿真环境下完成如下实验
 - 将内部网络中放置一台Web服务器,请设置NAT服务器,使外部主机能够顺利使用该Web服务。

二、实验内容

1. 建立网络

搭建网络拓扑图,如下图所示:

本网络中共有6台设备,其中**PC0、PC1、Switch0、Server0、Router0属于内网**,**Router1属于外网** 其中设置各设备ip如下:

PC0: 192.168.10.2

PC1: 192.168.10.3

Server0: 192.168.10.4

Router0: Gig0/0: 192.168.10.1

Gig0/1: 66.1.1.1

Router1: Gig0/0: 66.1.1.254

2. 配置NAT

配置命令如下:

```
1 1. 创建ACL
   命令:access-list acl编号 permit 私网IP网段 反向掩码
   Router(config)#access-list 1 permit 192.168.10.0 0.0.0.255
3
   Router(config)#
5
6
  2. 创建公网ip地址池
   命令:ip nat pool 地址池名字 公网ip起始地址 公网ip结束地址 netmask 公网ip掩码
7
8
        这里在地址池创建66.1.1.2~66.1.1.5 四个公网IP, 为地址转换提供
9
   Router(config)#ip nat pool natpool 66.1.1.2 66.1.1.5 netmask 255.255.255.0
10
   Router(config)#
11
   3. acl与地址池进行映射
12
   命令:ip nat inside source list acl编号 pool 地址池名字 overload
13
        注: overload意思是开启端口映射
14
15
   Router(config)#ip nat inside source list 1 pool natpool overload
16
   Router(config)#
17
18
   4. 将Gig0/0口设置为内网口
19
   Router(config)#interface GigabitEthernet0/0
   Router(config-if)#ip nat inside
20
   Router(config-if)#
21
22
   Router(config-if)#exit
23
   Router(config)#
24
   5. 将Gig0/1设置为外网口
25
   Router(config)#interface GigabitEthernet0/1
26
27
   Router(config-if)#ip nat outside
```

检查客户路由器表的NAT转换表:

```
louter>
louter>
louter>
           转换成的公网IP和对应的端口号
louter>
louter>
louter>
                            私网IP和对应的端口号
louter>
louter>enable
                                                    目标Ip和对应的端口号
louter#
louter#show imat trans
            nat translations
louter#show
Router#show ip nat translations
Pro Inside global
                     Inside local
                                        Outside local
                                                          Outside global
icmb 66.1.1.2:21
                     192.168.10.2:21
                                        66.1.1.254:21
                                                          66.1.1.254:21
icmp 66.1.1.2:22
                     192.168.10.2:22
                                        66.1.1.254:22
                                                          66.1.1.254:22
icmp 66.1.1.2:23
                     192.168.10.2:23
                                       66.1.1.254:23
                                                          66.1.1.254:23
icmp 66.1.1.2:24
                     192.168.10.2:24
                                       66.1.1.254:24
                                                          66.1.1.254:24
icmb 66.1.1.2:5
                     192.168.10.3:5
                                       66.1.1.254:5
                                                         66.1.1.254:5
icmp 66.1.1.2:6
                     192.168.10.3:6
                                       66.1.1.254:6
                                                          66.1.1.254:6
                                                          66.1.1.254:7
icmp 66.1.1.2:7
                     192.168.10.3:7
                                       66.1.1.254:7
icmp 66.1.1.2:8
                     192.168.10.3:8
                                        66.1.1.254:8
                                                          66.1.1.254:8
```

10m+0m#

三、实验结果

• PC0 ping Router1,可以连通

```
C:\>ping 66.1.1.254
Pinging 66.1.1.254 with 32 bytes of data:

Reply from 66.1.1.254: bytes=32 time<1ms TTL=254
Reply from 66.1.1.254: bytes=32 time=10ms TTL=254
Reply from 66.1.1.254: bytes=32 time<1ms TTL=254
Reply from 66.1.1.254: bytes=32 time<1ms TTL=254
Ping statistics for 66.1.1.254:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 10ms, Average = 2ms</pre>
```

• 在仿真环境的"模拟"方式中观察IP数据报在互联网中的传递过程,一切正常。

Event Li		
Vis.	Time(sec)	Last Device
	0.000	
	0.000	
	0.001	PC1
	0.002	Switch0
	0.002	Switch0
	0.003	Router0
	0.004	Switch0
	0.004	
	0.005	PC1
	0.006	Switch0
	0.007	Router0
	0.008	Router1
	0.009	Router0
	0.010	Switch0
	0.063	
	0.064	Switch0

• 使用PCO访问ServerO,可有正常访问。

四、总结与分析

通过本次实验,我学会了路由器的NAT配置过程,组建了由NAT连接的内网和外网,并在内部网络中放置一台Web服务器,设置NAT服务器,使外部主机能够顺利使用该Web服务,加深了对计算机网络的理解以及对NAT知识的掌握。