XCPC Templates

Khoray

April 4, 2022

Contents

1.1	历····································	
	欧拉筛/积性函数筛/线性筛	3
1.2	快速幂	3
1.3	组合数	3
	1.3.1 暴力	3
	1.3.2 递推	4
	1.3.3 逆元	4
1.4	ExGCD	5
1.5	拉格朗日插值	5
1.6	原根	6
1.7	Ex-Baby-Step-Giant-Step-Algorithm	7
1.8	逆元	9
	1.8.1 exgcd 求逆元	9
	1.8.2 快速幂求逆元	9
	1.8.3 整数除法取模	9
1.9	上下取整	9
1.10	线性基	10
1.11	高斯消元	11
	1.11.1 解异或线性方程组	12
	1.11.2 解 double 线性方程组	13
	1.11.3 解模意义线性方程组	14
1.12	Miller-Rabin	15
1.13	Pollard-Rho	16
1.14	多项式全家桶	17
1.15	数学公式	21
	1.15.1 多项式牛顿迭代	21
	1.15.2 生成函数/形式幂级数	21
	1.15.3 莫比乌斯反演	21
	1.15.4 分配问题	21
	1.15.5 第二类斯特林数	22
	1.15.6 第一类斯特林数	22
	1.15.7 分拆数	22
	1.15.8 五边形数	22
	1.15.9 Polya	23
九電		25
		25
	1.10 1.11 1.12 1.13 1.14 1.15	1.3.1 暴力 1.3.2 递推 1.3.3 逆元 1.4 ExGCD 1.5 拉格朗日插值 1.6 原根 1.7 Ex-Baby-Step-Giant-Step-Algorithm 1.8 逆元 1.8.1 exgcd 求逆元 1.8.2 快速幂求逆元 1.8.3 整数除法取模 1.9 上下取整 1.10 线性基 1.11 商斯消元 1.11.1 解异或线性方程组 1.11.2 解 double 线性方程组 1.11.3 解模意义线性方程组 1.11.3 解模意义线性方程组 1.11.3 解模意义线性方程组 1.11.3 pollard-Rho 1.14 多项式全家桶 1.15 数学公式 1.15.1 多项式牛顿迭代 1.15.2 生成函数/形式幂级数 1.15.3 莫比乌斯反演 1.15.4 分配问题 1.15.5 第二类斯特林数 1.15.6 第一类斯特林数 1.15.7 分拆数 1.15.8 五边形数

1 数学

1.1 欧拉筛/积性函数筛/线性筛

- 积性函数筛, f(pq) = f(p)f(q), (p,q) = 1
- calc_f(val, power) 返回 $f(val^{power})$

```
// all in which f[pq] = f[p] * f[q] (gcd(p, q) = 1)
    const int N = 1e7 + 5;
   int pri[N / 5], notpri[N], prinum, minpri_cnt[N], f[N];
 5
    int calc_f(int val, int power) {
 6
 7
    }
8
9
    void init_pri() {
       for(int i = 2; i < N; i++) {</pre>
10
11
           if(!notpri[i]) pri[++prinum] = i, minpri_cnt[i] = 1, f[i] = calc_f(i, 1);
           for(int j = 1; j <= prinum && pri[j] * i < N; j++) {</pre>
12
13
              notpri[pri[j] * i] = pri[j];
14
              if(i % pri[j] == 0) {
                  minpri_cnt[pri[j] * i] = minpri_cnt[i] + 1;
15
16
                 f[pri[j] * i] = f[i] / calc_f(pri[j], minpri_cnt[i]) * calc_f(pri[j],
                      minpri cnt[i] + 1);
17
                 break;
18
              }
19
              minpri_cnt[pri[j] * i] = 1;
20
              f[pri[j] * i] = f[i] * calc_f(pri[j], 1);
21
           }
22
       }
23
    }
```

1.2 快速幂

```
1
    int ksm(int a, int b = mod - 2, int MOD_KSM = mod) {
       int ret = 1;
 2
 3
       while(b) {
 4
           if(b & 1) {
              ret = ret * a % MOD_KSM;
 5
 6
           }
 7
           a = a * a % MOD_KSM;
 8
           b >>= 1;
 9
10
       return ret;
11
    }
```

1.3 组合数

1.3.1 暴力

• 暴力求组合数 $\binom{n}{k}$, 时间复杂度 $O(\min(k, n-k))$.

- 前置: 快速幂
- 模数必须是质数!

```
1
    int binom(int n, int k) {
2
       if(n < 0 || k < 0 || k > n) { return 0; }
 3
       k = min(n - k, k);
       int u = 1, v = 1;
 4
 5
       for(int i = 0; i < k; i++) {</pre>
 6
           v = v * (i + 1) % mod;
 7
           u = u * (n - i) % mod;
 8
 9
       return u * ksm(v, mod - 2) % mod;
10
   }
```

1.3.2 递推

• O(n²) 递推求,模数随意。

```
const int N = 31;
1
    int C[N][N];
    void init_C() {
4
       C[0][0] = C[1][0] = C[1][1] = 1;
5
       for(int i = 2; i < N; i++) {</pre>
 6
 7
           C[i][0] = 1;
 8
           for(int j = 1; j <= i; j++)</pre>
 9
              C[i][j] = (C[i - 1][j] + C[i - 1][j - 1]) \% mod;
10
       }
11
    }
12
    int binom(int n, int k) {
13
14
       if(n < 0 || k < 0 || n < k) return 0;
15
       return C[n][k];
16
```

1.3.3 逆元

- 模数必须是质数!
- 前置: 快速幂

```
const int N = 1e7 + 5;
const int mod = 1e9 + 7;
int facinv[N], fac[N];

void init_fac() {
   fac[0] = fac[1] = 1;
   for(int i = 2; i < N; i++) {
      fac[i] = fac[i - 1] * i % mod;
   }

facinv[N - 1] = ksm(fac[N - 1], mod - 2);
for(int i = N - 2; i >= 0; i--) {
```

```
facinv[i] = facinv[i + 1] * (i + 1) % mod;
11
12
       }
13
14
    int binom(int n, int k) {
15
       if(n < 0 || k < 0 || k > n) { return 0; }
       return fac[n] * facinv[n - k] % mod * facinv[k] % mod;
16
17
    }
18
19
    int inv[N];
20
    void init_inv() {
21
       inv[0] = inv[1] = 1;
       for(int i = 2; i < N; i++) {</pre>
22
          inv[i] = (mod - mod / i) * inv[mod % i] % mod;
23
24
       }
25
```

1.4 ExGCD

- 求解 ax + by = (a, b) 的特解 x_0, y_0 .
- 通解 $x^* = x_0 + \frac{bk}{(a,b)}, y^* = y_0 \frac{ak}{(a,b)} (k \in \mathbb{Z}).$

```
1 // ax + by = gcd(a, b)
   // return gcd(a, b)
   // all sol: x = x_0 + k[a, b] / a, <math>y = y_0 - k[a, b] / b;
4
    int exgcd(int &x, int &y, int a, int b) {
 5
       if(!b) {
 6
           x = 1;
7
           y = 0;
 8
           return a;
 9
10
       int ret = exgcd(x, y, b, a % b);
11
       int t = x;
12
       x = y;
13
       y = t - a / b * y;
14
       return ret;
15
    }
```

1.5 拉格朗日插值

- f(x) 是多项式, 并且我们知道一系列连续的点值 $f(l), \dots, f(r)$, 求解 f(n) 。 O(r-l)
- 前置: 逆元组合数
- 模数为质数

```
int LagrangeInterpolation(vector<int> &y, int 1, int r, int n) {
   if(n <= r && n >= 1) return y[n];
   vector<int> lg(r - 1 + 3), rg(r - 1 + 3);
   int ret = 0;
   lg[0] = 1;
   rg[r - 1 + 2] = 1;
```

```
7
       for(int i = 1; i <= r; i++) {</pre>
 8
           lg[i - l + 1] = (long long) lg[i - l] * (n - i) % mod;
 9
10
       for(int i = r; i >= 1; i--) {
11
           rg[i - l + 1] = (long long) rg[i - l + 2] * (n - i) % mod;
12
13
       for(int i = 1; i <= r; i++) {</pre>
          if(r - i & 1) {
14
              ret = (ret - (long long) y[i] * lg[i - 1] % mod * rg[i - 1 + 2] % mod *
15
                  facinv[i - 1] % mod * facinv[r - i] % mod + mod) % mod;
          } else {
16
              ret = (ret + (long long) y[i] * lg[i - 1] % mod * rg[i - 1 + 2] % mod *
17
                  facinv[i - 1] % mod * facinv[r - i] % mod) % mod;
18
           }
19
20
       return ret;
21
   }
```

1.6 原根

若 g 满足:

$$(g,m) = 1$$
$$\delta_m(g) = \phi(m)$$

则 g 为 m 的原根。找所有原根:

 $\phi(m)$

- 1. 找到最小的原根 g。如果一个数 g 是原根,那么 $\forall p | \phi(m) : g$ $p \neq 1$
- 2. 找小于 m 与 $\phi(m)$ 互质的数 k ,则 g^k 也是原根(能覆盖所有原根)个数为 $\phi(\phi(m))$ 个。

题目: 找出 n 的所有原根, 间隔 d 输出。

```
void solve() {
1
       // d 是间隔输出(对题目无影响
 2
 3
       int n, d; cin >> n >> d;
 4
       vector<int> pf; // 质因数分解
 5
       int pn = phi[n];
 6
       while(notpri[pn]) {
 7
          int now = notpri[pn];
 8
          pf.push_back(now);
 9
          while(pn % now == 0) pn /= now;
10
       }
11
       if(pn != 1) {
12
          pf.push_back(pn);
13
       }
14
       int cnt = 0;
15
       int ming = -1;
16
       vector<int> ans, vis(n); // 记录答案
17
       // 找到最小的原根 min_g
18
       for(int i = 1; i < n; i++) {</pre>
19
          if(__gcd(i, n) != 1) continue;
20
          int judge = 1;
          for(auto &p : pf) {
21
```

```
22
              if(ksm(i, phi[n] / p, n) == 1) {
23
                  judge = 0;
                  break;
24
25
              }
26
           }
27
           if(judge) {
28
              ming = i;
29
              break;
           }
30
31
32
       // 还原出所有原根 g
33
       if(ming > 0) {
           for(int i = 1; i < n; i++) {</pre>
34
35
              if(__gcd(i, phi[n]) == 1) {
36
                  int cur = ksm(ming, i, n);
37
                  if(!vis[cur]) {
38
                     vis[cur] = 1;
39
                     ans.push back(cur);
40
                  }
41
              }
42
           }
43
       }
44
       // 排序输出所有原根
45
       cout << ans.size() << '\n';</pre>
       sort(ans.begin(), ans.end());
46
47
       for(auto as : ans) {
48
           cnt++;
49
           if(cnt % d == 0) {
              cout << as << ' ';
50
51
52
53
       cout << '\n';
54
```

1.7 Ex-Baby-Step-Giant-Step-Algorithm

BSGS

求解 $a^x = b \pmod{p}, (0 \le x < p)$

令 $x = A \lceil \sqrt{p} \rceil - B$, 其中 $0 \le A, B \le \lceil \sqrt{p} \rceil$, 则有 $a^{A \lceil \sqrt{p} \rceil - B} \equiv b \pmod{p}$, 稍加变换,则有 $a^{A \lceil \sqrt{p} \rceil} \equiv b a^B \pmod{p}$ 。

我们已知的是 a,b,所以我们可以先算出等式右边的 ba^B 的所有取值,枚举 B,用 'hash'/'map' 存下来,然后逐一计算 $a^{A\lceil\sqrt{p}\rceil}$,枚举 A,寻找是否有与之相等的 ba^B ,从而我们可以得到所有的 $x,\;x=A\left\lceil\sqrt{p}\right\rceil-B$ 。

注意到 A,B 均小于 $\left\lceil \sqrt{p} \right\rceil$,所以时间复杂度为 $\Theta\left(\sqrt{p} \right)$,用 'map' 则多一个 log。exBSGS

其中 a, p 不一定互质。

当 $a\perp p$ 时,在模 p 意义下 a 存在逆元,因此可以使用 BSGS 算法求解。于是我们想办法 让他们变得互质。

具体地,设 $d_1 = \gcd(a, p)$ 。如果 $d_1 \nmid b$,则原方程无解。否则我们把方程同时除以 d_1 ,得到

$$\frac{a}{d_1} \cdot a^{x-1} \equiv \frac{b}{d_1} \pmod{\frac{p}{d_1}}$$

如果 a 和 $\frac{p}{d_1}$ 仍不互质就再除,设 $d_2=\gcd\left(a,\frac{p}{d_1}\right)$ 。如果 $d_2\nmid\frac{b}{d_1}$,则方程无解;否则同时除 以 d_2 得到

$$\frac{a^2}{d_1d_2}\cdot a^{x-2}\;\frac{b}{d_1d_2}\pmod{\frac{p}{d_1d_2}}$$

同理,这样不停的判断下去。直到 $a \perp \frac{p}{d_1 d_2 \cdots d_k}$ 。 记 $D = \prod_{i=1}^k d_i$,于是方程就变成了这样:

$$\frac{a^k}{D} \cdot a^{x-k} \equiv \frac{b}{D} \pmod{\frac{p}{D}}$$

由于 $a\perp \frac{p}{D}$,于是推出 $\frac{a^k}{D}\perp \frac{p}{D}$ 。这样 $\frac{a^k}{D}$ 就有逆元了,于是把它丢到方程右边,这就是一个普通的 BSGS 问题了,于是求解 x-k 后再加上 k 就是原方程的解啦。

注意,不排除解小于等于 k 的情况,所以在消因子之前做一下 $\Theta(k)$ 枚举,直接验证 $a^i \equiv b \pmod{p}$,这样就能避免这种情况。

- 注意, inv 必须由扩欧求!
- 注意开 long long
- 前置: ksm, exgcd 求逆元

```
int bsgs(int a, int b, int p) { //BSGS算法
 1
       unordered_map<int, int> f;
 2
 3
       int m = ceil(sqrt(p));
 4
       b %= p;
 5
       for(int i = 1; i <= m; i++) {</pre>
          b = b * a % p;
 6
 7
          f[b] = i;
 8
 9
       int tmp = ksm(a, m, p);
10
       b = 1;
11
       for(int i = 1; i <= m; i++) {</pre>
          b = b * tmp % p;
12
13
          if(f[b]) {
              return (i * m - f[b] + p) % p;
14
15
           }
16
17
       return -1;
18
19
    int exbsgs(int a, int b, int p) {
20
       b %= p;
21
       a %= p;
       if(b == 1 || p == 1) {
22
           return 0; //特殊情况, x=0时最小解
23
24
25
       int g = gcd(a, p), k = 0, na = 1;
26
       while(g > 1) {
27
           if(b % g != 0) {
              return -1; //无法整除则无解
28
29
           }
30
          k++;
31
          b /= g;
32
           p /= g;
```

```
33
          na = na * (a / g) % p;
          if(na == b) {
              return k; //na=b说明前面的a的次数为0, 只需要返回k
35
36
37
          g = \underline{gcd(a, p)};
       }
38
39
       int f = bsgs(a, b * inv(na, p) % p, p);
40
       if(f == -1) {
41
          return -1;
42
43
       return f + k;
44
```

1.8 逆元

1.8.1 exgcd 求逆元

- 前置: exgcd
- (x,p) = 1

```
int inv(int x, int p) {
   int y, k;
   int gcd = exgcd(y, k, x, p);
   int moder = p / gcd;
   return (y % moder + moder) % moder;
}
```

1.8.2 快速幂求逆元

根据费马小定理: $p \in primes \rightarrow a^{-1} \equiv a^{p-2} \pmod{p}$

1.8.3 整数除法取模

如果 $\frac{a}{b} \in \mathbb{N}, b \times p$ 可以在计算机中表示,那么 $\frac{a}{b} \bmod p = \frac{a \bmod (p \times b)}{b}$

1.9 上下取整

• b 必须为正整数。

```
1  // b must be positive integer
2  int updiv(int a, int b) {
4   return a > 0 ? (a + b - 1) / b : a / b;
5  }
6  int downdiv(int a, int b) {
7   return a > 0 ? a / b : (a - b + 1) / b;
9  }
```

1.10 线性基

- $O(\log x)$ insert
- $O(\log^2 x)$ get-kth
- $O(\log x)$ get-max
- 如果问能否通过选一些数(不能不选)异或得到0,必须特判。

```
1
    struct linear_basis {
 2
       vector<int> base, kth;
 3
       int size, max_size, builded;
 4
       linear_basis(int n) : base(n), size(0), max_size(n), builded(0) {}
 5
 6
       void insert(int x) {
 7
          builded = 0;
 8
           for(int i = max_size - 1; i >= 0; i--) {
              if((x >> i) & 1) {
9
10
                  if(!base[i]) {
11
                     base[i] = x, size++;
                     break;
12
13
                  }
14
                 else x ^= base[i];
              }
15
16
           }
17
       }
18
19
       int get_max() {
20
          int ret = 0;
21
           for(int i = max_size - 1; i >= 0; i--) {
22
              if(!((ret >> i) & 1) && base[i]) ret ^= base[i];
23
          }
24
           return ret;
25
       }
26
27
       bool can_eq(int x) {
          int now = 0;
28
29
           for(int i = max_size - 1; i >= 0; i--) {
30
              if(((now >> i) & 1) != ((x >> i) & 1)) {
31
                  if(!base[i]) return false;
32
                  else now ^= base[i];
33
              }
34
          }
35
           return true;
36
       }
37
38
       int get_kth(int k) {
39
40
          if(k >= 1ll << size) return -1;</pre>
41
           if(!builded) buildk();
42
           int ret = 0;
43
           for(int i = size - 1; ~i; i--) {
              if(k >> i & 1) {
44
```

```
45
                 ret ^= kth[i];
46
              }
47
           }
48
           return ret;
49
50
51
       int get_rank(int x) { // return the number of values less than x TODO
52
           int tmpsz = size, ret = 0, now = 0;
           for(int i = max_size - 1; i >= 0; i--) {
53
54
              if(base[i]) tmpsz--;
55
              if((x >> i) & 1) {
56
                  if(!((now >> i) & 1)) {
57
                     ret += tmpsz * tmpsz;
58
                     if(!base[i]) break;
59
                     else now ^= base[i];
                  } else {
60
61
                     if(base[i]) ret += tmpsz * tmpsz;
62
              } else {
63
64
                  if((now >> i) & 1) {
65
                     if(!base[i]) break;
66
                     else now ^= base[i];
67
                  }
68
              }
           }
69
70
           return ret;
71
       }
72
    private:
73
       void buildk() {
74
           builded = 1;
75
           kth.resize(size);
76
           int cnt = size;
77
           for(int i = max_size - 1; ~i; i--) {
78
              if(base[i]) {
79
                  for(int j = i - 1; ~j; j--) {
80
                     if(base[i] >> j & 1) {
81
                        base[i] ^= base[j];
82
                     }
83
                  }
84
              }
85
           }
86
           for(int i = max_size - 1; ~i; i--) {
87
              if(base[i]) {
                  kth[--cnt] = base[i];
88
89
              }
90
           }
91
       }
92
    };
```

1.11 高斯消元

• equ 是方程个数, n 是变元个数, 答案存在 ans。

• return: 无解 (-1), 自由变元个数。

1.11.1 解异或线性方程组

```
const int N = 1005;
1
 2
    template<int N>
    struct Matrix {
 4
       bitset<N> mat[N];
 5
       Matrix() { }
 6
       bitset<N> &operator [] (int idx) { return mat[idx]; }
 7
    };
8
9
    template<int N>
    int guass(int n, int equ, Matrix<N> a, vector<int> b, vector<int> &ans) {
10
       fill(ans.begin(), ans.end(), 0);
11
12
       vector<int> fre(n + 1);
13
        int row, col;
14
       for(row = 1, col = 1; col <= n; col++) {</pre>
15
           if(!a[row][col]) {
16
               int sw = 0;
17
              for(int i = row + 1; i <= equ; i++) {</pre>
18
                  if(a[i][col]) {
19
                      swap(a[row], a[i]);
20
                      swap(b[row], b[i]);
21
                      sw = 1;
22
                      break;
23
                  }
24
              }
               if(!sw) {
25
26
                  fre[col] = 1;
27
                  continue;
28
               }
29
           }
30
           for(int i = row + 1; i <= equ; i++) {</pre>
31
               if(a[i][col]) {
32
                  a[i] ^= a[row];
                  b[i] ^= b[row];
33
34
               }
35
           }
36
           row++;
37
38
       if(row <= equ) {</pre>
39
           for(int i = row; i <= equ; i++) {</pre>
40
               if(b[i]) return -1;
41
           }
        }
42
43
       int all = 0;
44
        for(col = n; col >= 1; col--) {
           if(fre[col]) {
45
46
              ans[col] = 1;
47
              all++;
48
           } else {
49
               row--;
```

```
50
               ans[col] = b[row];
51
               for(int i = col + 1; i <= n; i++) {</pre>
                   if(a[row][i]) ans[col] ^= ans[i];
52
53
               }
54
           }
        }
55
56
        return all;
57
    }
```

1.11.2 解 double 线性方程组

```
1
    const int N = 1005;
    template<int N>
 3
    struct Matrix {
 4
       bitset<N> mat[N];
 5
       Matrix() { }
       bitset<N> &operator [] (int idx) { return mat[idx]; }
 6
 7
    };
8
    template<int N>
9
    int guass(int n, int equ, Matrix<N> a, vector<double> b, vector<double> &ans) {
       fill(ans.begin(), ans.end(), 0);
10
11
       vector<int> fre(n + 1);
12
       int row, col;
13
        for(row = 1, col = 1; col <= n; col++) {</pre>
14
           double mx = fabs(a[row][col]);
15
           int mxp = row;
16
           for(int i = row + 1; i <= equ; i++) {</pre>
17
               if(fabs(a[row][col]) > mx) {
18
                  mx = fabs(a[row][col]);
19
                  mxp = i;
20
               }
21
           }
22
           if(mxp != row) {
23
               for(int i = col; i <= n; i++) {</pre>
24
                  swap(a[row][i], a[mxp][i]);
25
               }
26
               swap(b[row], b[mxp]);
27
28
           if(fabs(a[row][col]) < eps) {</pre>
29
              fre[col] = 1;
30
31
           for(int i = row + 1; i <= equ; i++) {</pre>
32
               if(fabs(a[i][col]) > eps) {
33
                  double k = a[i][col] / a[row][col];
                  for(int j = col; j <= n; j++) {</pre>
34
35
                      a[i][j] -= a[row][j] * k;
36
37
                  b[i] -= b[row] * k;
               }
38
39
           }
40
           row++;
       }
41
```

```
// 判断解是否存在
42
43
        if(row <= equ) {</pre>
44
           for(int i = row; i <= equ; i++) {</pre>
45
               if(fabs(b[i]) > eps) return -1;
46
           }
47
       }
48
49
       // 回代求解
50
       int all = 0;
51
       for(col = n; col >= 1; col--) {
52
           if(fre[col]) {
53
               ans[col] = 0;
54
               all++;
55
           } else {
56
               row--;
57
              ans[col] = b[row];
58
              for(int i = col + 1; i <= n; i++) {</pre>
59
                  ans[col] -= ans[i] * a[row][i];
60
61
              ans[col] /= a[row][col];
62
           }
63
        }
64
       return all;
65
    }
```

1.11.3 解模意义线性方程组

• 时间复杂度 $O(n^3 \log mod)$

```
#define mul(a, b) (ll(a) * (b) % mod)
    #define add(a, b) (((a) += (b)) >= mod ? (a) -= mod : 0) // (a += b) %= P
 2
   #define dec(a, b) (((a) -= (b)) < 0 ? (a) += mod: 0) // ((a -= b) += P) %= P
 5
    const int N = 1005;
 6
    const int mod = 1e9 + 7;
 7
    template<int N>
8
    struct Matrix {
9
       int mat[N][N];
10
       Matrix() { }
       int* operator [] (int idx) { return mat[idx]; }
11
12
   };
13
    template<int N>
    int guass(int n, int equ, Matrix<N> a, vector<int> b, vector<int> &ans) {
14
15
       fill(ans.begin(), ans.end(), 0);
16
       vector<int> fre(n + 1);
       int row, col;
17
18
       for(row = 1, col = 1; col <= n; col++) {</pre>
19
           if(!a[row][col]) {
              int sw = 0;
20
21
              for(int i = row + 1; i <= equ; i++) {</pre>
                  if(a[i][col]) {
22
23
                     for(int j = col; j <= n; j++) {</pre>
```

```
swap(a[row][j], a[i][j]);
24
25
26
                      swap(b[row], b[i]);
27
                      sw = 1;
28
                      break;
                  }
29
30
               }
31
              if(!sw) {
                  fre[col] = 1;
32
33
                  continue;
34
               }
35
           for(int i = row + 1; i <= equ; i++) {</pre>
36
37
               if(a[i][col]) {
                  int k = a[i][col] * ksm(a[row][col]) % mod;
38
39
                  for(int j = col; j <= n; j++) {</pre>
40
                      dec(a[i][j], a[row][j] * k % mod);
41
42
                  dec(b[i], b[row] * k % mod);
43
               }
44
           }
45
           row++;
46
        }
       if(row <= equ) {</pre>
47
48
           for(int i = row; i <= equ; i++) {</pre>
49
               if(b[i]) return -1;
50
           }
51
       }
52
       int all = 0;
53
       for(col = n; col >= 1; col--) {
54
           if(fre[col]) {
               ans[col] = 0;
55
56
               all++;
57
           } else {
58
               row--;
59
               ans[col] = b[row];
60
               for(int i = col + 1; i <= n; i++) {</pre>
                  dec(ans[col], ans[i] * a[row][i] % mod);
61
62
63
               mul(ans[col], ksm(a[row][col]));
           }
64
65
        }
66
       return all;
67
```

1.12 Miller-Rabin

- 前置: 快速幂 (___int128!!!)
- int 范围: 2, 7, 61
- long long 范围: 2, 325, 9375, 28178, 450775, 9780504, 1795265022
- 4E13: 2, 2570940, 211991001, 3749873356

- 3E15: 2, 2570940, 880937, 610386380, 4130785767
- 注意看判断范围是 int 还是 long long

```
1
    bool is_prime(int n) {
 2
       if(n < 2 || n % 6 % 4 != 1) return (n | 1) == 3;</pre>
 3
       int A[] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022},
                s = __builtin_ctzll(n - 1), d = n >> s;
 4
 5
       for(int a : A) { // ^ count t ra i l in g zeroes
 6
           int p = ksm(a % n, d, n), i = s;
 7
          while(p != 1 && p != n - 1 && a % n && i--)
 8
              p = (_int128) p * p % n;
 9
          if(p != n - 1 && i != s) return 0;
10
       }
11
       return 1;
12
    }
```

1.13 Pollard-Rho

• 前置: Miller-Rabin

```
1
    inline int pollard_rho(int x) {
 2
       auto f = [&](int x, int c, int n) {
 3
           return ((__int128) x * x + c) % n;
 4
       };
 5
       int s = 0, t = 0, c = 111 * rand() % (x - 1) + 1;
 6
       int stp = 0, goal = 1;
 7
       int val = 1;
 8
       for(goal = 1;; goal <<= 1, s = t, val = 1) {</pre>
 9
           for(stp = 1; stp <= goal; ++stp) {</pre>
10
              t = f(t, c, x);
              val = (\underline{int128})val * abs(t - s) % x;
11
12
              if((stp % 127) == 0) {
13
                  int d = __gcd(val, x);
                  if(d > 1)
14
15
                      return d;
               }
16
17
           int d = __gcd(val, x);
18
19
           if(d > 1)
               return d;
20
21
        }
22
   }
23
    inline void get_factor_a(int x, vector<int> &fac) {
24
25
       if(x < 2) return;</pre>
26
       if(is prime(x)) {
27
           fac.push_back(x);
28
           return;
29
        }
30
       int p = x;
31
       while(p >= x) p = pollard_rho(x);
```

```
32  while((x % p) == 0) x /= p;
33  get_factor_a(x, fac), get_factor_a(p, fac);
34 }
```

1.14 多项式全家桶

- 注意调整原根 g, 模数 mod, N 开 3 到 4 倍数据范围, 附录 A
- 注意 resize()
- 注意 Inv/Ln 的时候常数项不能为 0
- 注意 Exp 的时候常数项必须是 0
- 注意这里面的 ksm() 第三个参数是初值而不是模数

```
#define fp(i, a, b) for (int i = (a); i \leftarrow (b); i++)
   #define fd(i, a, b) for (int i = (a); i >= (b); i--)
   const int N = 3e5 + 5, mod = 998244353; // (N = 4 * n)
5
  using ll = int64_t;
  using Poly = vector<int>;
   /*-----*/
7
8
   // 二次剩余
9
   class Cipolla {
10
      int mod, I2{};
      using pll = pair<ll, ll>;
11
12
   #define X first
   #define Y second
13
14
      11 MUL(11 a, 11 b) const { return a * b % mod; }
      pll MUL(pll a, pll b) const { return {(a.X * b.X + I2 * a.Y % mod * b.Y) % mod,
15
          (a.X * b.Y + a.Y * b.X) % mod}; }
16
      template<class T> T ksm(T a, int b, T x) { for (; b; b >>= 1, a = MUL(a, a)) if
          (b & 1) x = MUL(x, a); return x; }
17
   public:
18
      Cipolla(int p = 0) : mod(p) {}
19
      pair<int, int> sqrt(int n) {
20
         int a = rand(), x;
21
         if (!(n %= mod)) return {0, 0};
22
         if (ksm(n, (mod - 1) >> 1, 1ll) == mod - 1) return {-1, -1};
         while (ksm(I2 = ((11) a * a - n + mod) % mod, (mod - 1) >> 1, 111) == 1) a =
23
             rand();
         x = (int) ksm(pll{a, 1}, (mod + 1) >> 1, {1, 0}).X;
24
25
         if (2 * x > mod) x = mod - x;
         return {x, mod - x};
26
27
   #undef X
28
29
   #undef Y
30 | };
   /*-----*/
31
32 | #define MUL(a, b) (ll(a) * (b) % mod)
   #define ADD(a, b) (((a) += (b)) >= mod ? (a) -= mod : 0) // (a += b) %= P
34 | #define DEC(a, b) (((a) -= (b)) < 0 ? (a) += mod: 0) // ((a -= b) += P) %= P
```

```
Poly getInv(int L) { Poly inv(L); inv[1] = 1; fp(i, 2, L - 1) inv[i] = MUL((mod - 1))
       mod / i), inv[mod % i]); return inv; }
   int ksm(11 a, int b = mod - 2, 11 x = 1) { for (; b; b >>= 1, a = a * a % mod) if (b
36
        & 1) x = x * a % mod; return x; }
37
   auto inv = getInv(N); // NOLINT
38
   /*----*/
39
   namespace NTT {
40
      const int g = 3;
41
       Poly Omega(int L) {
42
          int wn = ksm(g, mod / L);
43
          Poly w(L); w[L >> 1] = 1;
44
          fp(i, L / 2 + 1, L - 1) w[i] = MUL(w[i - 1], wn);
45
          fd(i, L / 2 - 1, 1) w[i] = w[i << 1];
46
          return w;
47
48
       auto W = Omega(1 << 20); // NOLINT</pre>
49
       void DIF(int *a, int n) {
50
          for (int k = n >> 1; k; k >>= 1)
51
             for (int i = 0, y; i < n; i += k << 1)</pre>
52
                for (int j = 0; j < k; ++j)
53
                   y = a[i + j + k], a[i + j + k] = MUL(a[i + j] - y + mod, W[k + j]),
                        ADD(a[i + j], y);
54
       }
55
       void IDIT(int *a, int n) {
56
          for (int k = 1; k < n; k <<= 1)
57
             for (int i = 0, x, y; i < n; i += k << 1)
58
                for (int j = 0; j < k; ++j)
59
                   x = a[i + j], y = MUL(a[i + j + k], W[k + j]),
                   a[i + j + k] = x - y < 0 ? x - y + mod : x - y, ADD(a[i + j], y);
60
61
          int Inv = mod - (mod - 1) / n;
62
          fp(i, 0, n - 1) a[i] = MUL(a[i], Inv);
63
          reverse(a + 1, a + n);
64
       }
65
   /*-----Polynomial 全家桶
66
        */
    namespace Polynomial {
67
68
       // basic operator
       int norm(int n) { return 1 << (__lg(n - 1) + 1); }</pre>
69
70
       void norm(Poly &a) { if (!a.empty()) a.resize(norm(a.size()), 0); else a = {0};
          }
71
       void DFT(Poly &a) { NTT::DIF(a.data(), a.size()); }
72
       void IDFT(Poly &a) { NTT::IDIT(a.data(), a.size()); }
       Poly &dot(Poly &a, Poly &b) { fp(i, 0, a.size() - 1) a[i] = MUL(a[i], b[i]);
73
          return a; }
74
75
       // MUL / div int
       Poly & operator*=(Poly &a, int b) { for (auto &x : a) x = MUL(x, b); return a; }
76
77
       Poly operator*(Poly a, int b) { return a *= b; }
78
       Poly operator*(int a, Poly b) { return b * a; }
79
       Poly &operator/=(Poly &a, int b) { return a *= ksm(b); }
80
       Poly operator/(Poly a, int b) { return a /= b; }
81
```

```
82
        // Poly ADD / sub
83
        Poly &operator+=(Poly &a, Poly b) {
84
            a.resize(max(a.size(), b.size()));
85
           fp(i, 0, b.size() - 1) ADD(a[i], b[i]);
86
           return a;
87
        }
88
        Poly operator+(Poly a, Poly b) { return a += b; }
89
        Poly &operator-=(Poly &a, Poly b) {
            a.resize(max(a.size(), b.size()));
90
91
           fp(i, 0, b.size() - 1) DEC(a[i], b[i]);
92
           return a;
93
94
        Poly operator-(Poly a, Poly b) { return a -= b; }
95
96
        // Poly MUL
97
        Poly operator*(Poly a, Poly b) {
98
           int n = a.size() + b.size() - 1, L = norm(n);
99
            if (a.size() <= 8 || b.size() <= 8) {</pre>
100
               Poly c(n);
101
               fp(i, 0, a.size() - 1) fp(j, 0, b.size() - 1)
102
                  c[i + j] = (c[i + j] + (ll) a[i] * b[j]) % mod;
103
               return c;
104
           }
105
           a.resize(L), b.resize(L);
106
           DFT(a), DFT(b), dot(a, b), IDFT(a);
107
           return a.resize(n), a;
108
        }
109
        // Poly inv
110
111
        Poly Inv2k(Poly a) \{ // |a| = 2 \wedge k \}
112
           int n = a.size(), m = n >> 1;
113
           if (n == 1) return {ksm(a[0])};
114
           Poly b = Inv2k(Poly(a.begin(), a.begin() + m)), c = b;
115
           b.resize(n), DFT(a), DFT(b), dot(a, b), IDFT(a);
           fp(i, 0, n - 1) a[i] = i < m ? 0 : mod - a[i];
116
117
           DFT(a), dot(a, b), IDFT(a);
118
           return move(c.begin(), c.end(), a.begin()), a;
119
        }
        Poly Inv(Poly a) {
120
           int n = a.size();
121
122
           norm(a), a = Inv2k(a);
123
           return a.resize(n), a;
        }
124
125
126
        // Poly div / mod
127
        Poly operator/(Poly a,Poly b){
128
            int k = a.size() - b.size() + 1;
129
           if (k < 0) return {0};
130
           reverse(a.begin(), a.end());
131
           reverse(b.begin(), b.end());
132
           b.resize(k), a = a * Inv(b);
133
           a.resize(k), reverse(a.begin(), a.end());
134
           return a;
```

```
135
        }
136
        pair<Poly, Poly> operator%(Poly a, const Poly& b) {
137
            Poly c = a / b;
138
            a -= b * c, a.resize(b.size() - 1);
139
            return {c, a};
140
        }
141
142
        // Poly calculus
143
        Poly deriv(Poly a) {
144
            fp(i, 1, a.size() - 1) a[i - 1] = MUL(i, a[i]);
145
            return a.pop_back(), a;
146
147
        Poly integ(Poly a) {
148
            a.push_back(0);
149
            fd(i, a.size() - 1, 1) a[i] = MUL(inv[i], a[i - 1]);
150
            return a[0] = 0, a;
151
        }
152
        // Poly ln
153
154
        Poly Ln(Poly a) {
155
            int n = a.size();
156
            a = deriv(a) * Inv(a);
157
            return a.resize(n - 1), integ(a);
158
        }
159
160
        // Poly exp
161
        Poly Exp(Poly a) {
162
            int n = a.size(), k = norm(n);
            Poly b = \{1\}, c, d; a.resize(k);
163
164
            for (int L = 2; L <= k; L <<= 1) {
165
               d = b, b.resize(L), c = Ln(b), c.resize(L);
               fp(i, 0, L - 1) c[i] = a[i] - c[i] + (a[i] < c[i] ? mod : 0);
166
167
               ADD(c[0], 1), DFT(b), DFT(c), dot(b, c), IDFT(b);
168
               move(d.begin(), d.end(), b.begin());
            }
169
170
            return b.resize(n), b;
171
        }
172
173
        // Poly sqrt
174
        Poly Sqrt(Poly a) {
175
            int n = a.size(), k = norm(n); a.resize(k);
176
            Poly b = {(new Cipolla(mod))->sqrt(a[0]).first, 0}, c;
177
            for (int L = 2; L <= k; L <<= 1) {</pre>
               b.resize(L), c = Poly(a.begin(), a.begin() + L) * Inv2k(b);
178
179
               fp(i, L / 2, L - 1) b[i] = MUL(c[i], (mod + 1) / 2);
180
            }
181
            return b.resize(n), b;
182
        }
183
184
        // Poly pow
185
        Poly Pow(Poly &a, int b) { return Exp(Ln(a) * b); } // a[0] = 1
186
        Poly Pow(Poly a, int b1, int b2) \{ // b1 = b \% \text{ mod}, b2 = b \% \text{ phi(mod)} \text{ and } b >= n \}
              iff a[0] > 0
```

```
187
           int n = a.size(), d = 0, k;
188
           while (d < n && !a[d]) ++d;</pre>
           if ((11) d * b1 >= n) return Poly(n);
189
           a.erase(a.begin(), a.begin() + d);
190
191
           k = ksm(a[0]), norm(a *= k);
           a = Pow(a, b1) * ksm(k, mod - 1 - b2);
192
193
           a.resize(n), d *= b1;
194
           fd(i, n - 1, 0) a[i] = i >= d ? a[i - d] : 0;
           return a;
195
196
        }
197
198
199
    using namespace Polynomial;
```

1.15 数学公式

- 1.15.1 多项式牛顿迭代
- 1.15.2 生成函数/形式幂级数
- 1.15.3 莫比乌斯反演
- 1.15.4 分配问题
 - 1. n 个球放到 k 个盒子,每个盒子只有一种形态。

n 个球	k 个盒子	盒子可以为空	每个盒子内至少有一个球
有标号	有标号	k^n	$k!S_2(n,k)$
有标号	无标号	$\sum_{i=1}^k S_2(n,i)$	$S_2(n,k)$
无标号	有标号	C(n+k-1,k-1)	C(n-1,k-1)
无标号	无标号	p(n+k,k)	p(n,k)

其中 $S_2(n,k)$ 为第二类 'Stirling 数', p(n,k) 为'分拆数'

2. n 个球放到 k 个盒子,每个盒子至少一个球,装有 i 个球的盒子有 f_i $(i \ge 1)$ 种形态。 F(x) 是 f_i 的 o.g.f. , E(x) 是 f_i 的 e.g.f.

n 个球	k 个盒子	关于 n 方案的生成函数
有标号	有标号	$e.g.f = E(x)^k$
有标号	无标号	$e.g.f = \frac{1}{k!}E(x)^k$
无标号	有标号	$o.g.f = F(x)^k$
无标号	无标号	不会

3. n 个球放到若干盒子,每个盒子至少一个球,装有 i 个球的盒子有 f_i (i ≥ 1) 种形态.

n 个球	盒子	方案的生成函数
有标号	有标号	$e.g.f = \frac{1}{1 - E(x)}$
有标号	无标号	$e.g.f = \exp(E(x))$
无标号	有标号	$o.g.f = \frac{1}{1 - F(x)}$
无标号	无标号	$o.g.f = \prod_{i \ge 1} \left(\frac{1}{1 - x^i}\right)^{f_i} = \exp\left(\sum_{j \ge 1} \frac{1}{j} F\left(x^j\right)\right)$

1.15.5 第二类斯特林数

性质:

1.
$$\binom{n}{k} = \binom{n-1}{k-1} + k \binom{n-1}{k}$$
 边界条件 $\binom{x \neq 1}{0} = 0, \binom{0}{0} = 1$

2.
$$\binom{n}{k} = \frac{1}{k!} \sum_{i=0}^{k} (-1)^{i} \binom{k}{i} (k-i)^{n}$$
 (用来求第二类斯特林数·行,考虑容斥)

3.
$$k^n = \sum_{i=0}^k {n \brace i} k^i$$
 (性质 2 的反演)

4. 重要公式:
$$x^n = \sum_{k=0}^n {n \brace k} x^k$$
 (基于 3, x 个球 n 个盒子)

5. 关于 n 的 $e.g.f. = \frac{(e^x-1)^k}{k!}$ (考虑将 n 个物品染成 k 种颜色,每一种物品的指数生成函数为 e^x-1)(用于求第二类斯特林数.列)

1.15.6 第一类斯特林数

性质:

1.
$$\binom{n}{k} = \binom{n-1}{k-1} + (n-1) \binom{n-1}{k}$$
 边界条件 $\binom{n \neq 1}{0} = 0$, $\binom{0}{0} = 1$

3. 有符号的第一类斯特林数:
$$S_1(n,k) = (-1)^{n+k} {n \brack k}$$

$$x^{\underline{n}} = \sum_{k=0}^n S_1(n,k) x^n$$

4. 关于
$$n$$
 的 $e.g.f. = \frac{(-\ln(1-x))^k}{k!}$. (列)

1.15.7 分拆数

性质:

1.
$$p(n,k) = p(n-1,k-1) + p(n-k,k)$$

2.
$$o.g.f. = x^k \prod_{i=1}^k \frac{1}{1-x^i}$$
 (考虑 Ferrers 图中长度为 i 的一列有多少个)

1.15.8 五边形数

性质:

1.
$$p(n) = \sum_{k=1}^{n} p(n,k)$$

2.
$$o.g.f. = \prod_{i \ge 1} \frac{1}{1-x^i}$$
 考虑求 $\ln \ , o.g.f. = \exp(\sum_{n > 1} \sum_{d \mid n} \frac{x^n}{d}) \ O(n \log n)$

- 3. 递推公式:
 - (a) 考虑 $Q(x) = \prod_{i>1} (1-x^i)$
 - (b) $Q(x) = \sum_{n \geq 0} (q_{even}(n) q_{odd}(n)) x^n$ $q_{even/odd}$ 表示有偶数/奇数行,每一行的个数都不相同,大部分 $q_{even}(n)$ 和 $q_{odd}(n)$ 抵消,小部分也就是有 b 行, $n = \frac{b(3b-1)}{2}$ 和 $n = \frac{b(3b+1)}{2}$ 无法抵消。其系数都是 $(-1)^b$

(c) 则
$$Q(x) = 1 + \sum_{i \ge 1} (-1)^i x^{\frac{(3i \pm 1)i}{2}}$$

(d)
$$P(x) = Q^{-1}(x) \ \mathbb{M}, p(n) = \sum_{k \ge 1} (-1)^{k-1} \left(p\left(n - \frac{(3k-1)k}{2}\right) + p\left(n - \frac{(3k+1)k}{2}\right) \right)$$

1.15.9 Polya

置换群

G 是置换的集合, 。 是置换的复合, 且 (G, \circ) 为一个群时, 称 (G, \circ) 为一个置换群。

旋转群:

设 n 元环的 n 个结点分别为 $a_1, a_2, ..., a_n$,旋转操作可以看成 $A = a_1, ..., a_n$ 上的 n 个置换,其中第 i 个置换为 $g_i = [i+1, i+2, ..., n, 1, ..., i]。$

设集合 $G = \{g_0, g_1, ..., g_{n-1}\}$,则 (G, \circ) 是一个置换群,称为正 n 边形的旋转群。

群对集合的作用

一个操作会将一个对象改变为另一个对象,形式化地:

设 (G, \circ) 是一个群, 其单位元为 e, X 是一个集合, 群 G 对集合 X 的一个作用是一个 $G \times X$ 到 X 的映射 f, 满足:

- $\forall x \in X. f(e, x) = x$
- $\forall g,h \in G.f(h \circ g,x) = f(h,f(g,x))$ 我们把 f(g,x) 简记成 $g_f(x)$ 或(在没有歧义的情况下记成)g(x)。
- 设 n 元环的 n 个结点分别为 a_1, a_2, \ldots, a_n , 令 $A = \{a_1, \ldots, a_n\}$ 。 设颜色集合为 $B = \{b_1, b_2, \ldots, b_m\}$ 。 给 n 元环染色可以看成 A 到 B 的一个映射 $x: A \to B$, 令 X 是所有这些映射的集合,即 $X = \{x \mid x: A \to B\}$ 。
- 令 $G = \{g_0, g_1, \dots, g_{n-1}\}$ 是正 n 边形的旋转群, 定义 $G \times X$ 到集合 X 的映射 f, 其中 $\forall i = 0..n 1, x \in X.y = f(g_i, x)$ 满足 $\forall j = 1..n.y(a_j) = x(g_i(a_j))$, 可以证明 f 是群 G 到集合 X 的一个作用, 因此我们简记 $y = f(g_i, x)$ 为 $y = g_i(x)$ 。
- X 上的 G 关系为 $R_G = \{(x,y) \mid x,y \in X \land (\exists g \in G.y = g(x))\}, xR_Gy$ 当且仅当染色方案 x 能通过旋转得到 y 。

要求所有不同的染色方案,即是求X上的G-轨道的数量。

Burnside 引理

设有限群 (G, \circ) 作用在有限集 X 上, 则 X 上的 G-轨道数量为

$$N = \frac{1}{|G|} \sum_{g \in G} \Psi(g)$$

其中 $\Psi(q)$ 表示 q(x) = x 的 x 的数量。

轮换指标

设 (G, \circ) 是一个 n 元置换的置换群, 它的轮换指标为

$$P_G(x_1, x_2, \dots, x_n) = \frac{1}{|G|} \sum_{q \in G} x_1^{b_1} x_2^{b_2} \dots x_n^{b_n}$$

 $x_i^{b_i}$ 表示 g 这个置换的长度为 i 的环有 b_i 个。

正 n 边形旋转群轮换指标:

$$P_G = \frac{1}{n} \sum_{d|n} \varphi(d) x_d^{n/d}$$

正 n 边形二面体群轮换指标 (即可对称):

$$P_G = \frac{1}{2n} \sum_{d|n} \varphi(d) x_d^{n/d} + \begin{cases} \frac{1}{2} x_1 x_2^{\frac{n-1}{2}}, & n \text{ 为奇数} \\ \frac{1}{4} \left(x_2^{\frac{n}{2}} + x_1^2 x_2^{\frac{n-2}{2}} \right), & n \text{ 为偶数} \end{cases}$$

正方体置换群:

顶点置换群:

$$P_G = \frac{1}{24} \left(x_1^8 + 8x_1^2 x_3^2 + 9x_2^4 + 6x_4^2 \right)$$

边置换群:

$$P_G = \frac{1}{24} \left(x_1^{12} + 8x_3^4 + 6x_1^2 x_2^5 + 3x_2^6 + 6x_4^3 \right)$$

面置换群:

$$P_G = \frac{1}{24} \left(x_1^6 + 8x_3^2 + 6x_2^3 + 3x_1^2 x_2^2 + 6x_1^2 x_4 \right)$$

Polya 定理

集合 X 可以看成是给集合 $A = \{a_1, a_2, \dots, a_n\}$ 的每个元素赋予式样(颜色, 种类等)的映射的集合

引入表示式样的集合 B, 令 $X = \{x \mid x : A \to B\}$, 记为 B^A

式样清单: G 作用在 B^A 上的 G-轨道的集合称为 B^A 关于 G 的**式样清单**,记为 F

种类的权值: 假设 B 上的每个元素 b 都赋予了权值 w(b)

 $f \in B^A$ 的权值: 定义 $w(f) := \prod_{a \in A} w(f(a))$

G-轨道的权值: w(F) := w(f), 任选一个 $f \in F$

定理:

 B^A 关于 G 的**式样清单**记为 \mathcal{F} , 则

$$\sum_{F \in \mathcal{F}} w(F) = P_G \left(\sum_{b \in B} w(b), \sum_{b \in B} w(b)^2, \dots, \sum_{b \in B} w(b)^n \right)$$

2 杂项

2.1 debuger

```
#include<bits/stdc++.h>
1
    using namespace std;
 3
    #define out(args...) { cout << "Line " << __LINE__ << ": [" << #args << "] = [";</pre>
4
        debug(args); cout << "]\n"; }</pre>
 5
    template<typename T> void debug(T a) { cout << a; }</pre>
 6
 7
8
    template<typename T, typename...args> void debug(T a, args...b) {
 9
       cout << a << ", ";
10
       debug(b...);
11
    }
12
13
    template<typename T>
14
    ostream& operator << (ostream &os, const vector<T> &a) {
15
       os << "[";
16
       int f = 0;
17
       for(auto &x : a) os << (f++ ? ", " : "") << x;</pre>
       os << "]";
18
19
       return os;
20
   }
21
22
   template<typename T>
23
   ostream& operator << (ostream &os, const set<T> &a) {
24
       os << "{";
25
       int f = 0;
26
       for(auto &x : a) os << (f++ ? ", " : "") << x;</pre>
27
       os << "}";
28
       return os;
29
   }
30
31
   template<typename T>
32
   ostream& operator << (ostream &os, const multiset<T> &a) {
33
       os << "{";
       int f = 0;
34
       for(auto &x : a) os << (f++ ? ", " : "") << x;</pre>
35
36
       os << "}";
       return os;
37
    }
38
39
40
    template<typename A, typename B>
   ostream& operator << (ostream &os, const map<A, B> &a) {
41
       os << "{";
42
       int f = 0;
43
       for(auto &x : a) os << (f++ ? ", " : "") << x;</pre>
44
       os << "}";
45
46
       return os;
47
    }
48
```

```
49
   template<typename A, typename B>
   ostream& operator << (ostream &os, const pair<A, B> &a) {
       os << "(" << a.first << ", " << a.second << ")";
51
52
       return os;
53
   }
54
55
   template<typename A, size_t N>
   ostream& operator << (ostream &os, const array<A, N> &a) {
57
       os << "{";
58
       int f = 0;
59
       for(int i = 0; i < N; i++) {</pre>
          os << (f++ ? ", " : "") << a[i];
60
61
       }
       os << "}";
62
63
       return os;
64 }
```