

计算机系统实验

2023.02

课程性质与定位

本课程是计算机专业一门重要的专业必修实验课,它是在学生完成计算机专业软硬件基础与必修课程之后,让学生从计算机整体组成、总体设计的角度来研究和实现计算机系统,学习如何根据各种实际应用的需要,考虑和构建计算机软硬系统结构,以满足实际的应用需求。

内容安排

- 每人一组、1套开发板
- 基本部分:
 - □任务1、MIPSCPU的改造,适合N4板,下板;
 - □任务2、µC/OS-II或其它操作系统的移植。

扩展部分:

□任务3、应用程序开发,包括GUI程序等类别;

实验1:CPU改造、下板

- 改造54条指令cpu,支持到89条,实现CP0、异常处理,以下需要新增指令。
- 参见《自己动手写CPU》的基础

```
//新扩展指令对应信号
wire MOVN="inst[31]&inst[30]&"inst[29]&"inst[28]&"inst[27]&inst[26]&"inst[5]&inst[4]&"inst[3]&"inst[2]&inst[1]&inst[0];
wire MOVZ="inst[31]&inst[30]&"inst[29]&"inst[28]&"inst[27]&inst[26]&"inst[5]&inst[4]&"inst[3]&"inst[2]&inst[1]&"inst[0];
wire CLO= op& inst[5]&inst[4]& inst[3]& inst[2]& inst[1]&inst[0];
wire MADD="inst[31]&inst[30]&inst[29]&inst[28]&"inst[27]&"inst[26]&"inst[5]&"inst[4]&"inst[4]&"inst[27]&"inst[17]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"inst[18]&"i
wire MADDU="inst[31]&inst[30]&inst[29]&inst[29]&inst[27]&inst[26]&inst[5]&inst[4]&inst[3]&inst[2]&inst[1]&inst[0];
wire MSUB="inst[31]&inst[30]&inst[29]&inst[28]&"inst[27]&"inst[26]&"inst[5]&"inst[4]&"inst[3]&inst[2]&"inst[1]&"inst[0];
vire MSUBU="inst [31]&inst [30]&inst [29]&inst [28]& inst [27]& inst [26]& inst [5]& inst [4]& inst [3]&inst [2]& inst [1]&inst [0]:
wire B="inst[31]&"inst[30]&"inst[29]&inst[28]&"inst[27]&"inst[26];
wire BAL="inst[31]&"inst[30]&"inst[29]&"inst[28]&"inst[27]&inst[26]&inst[20]&"inst[19]&"inst[18]&"inst[17]&inst[16];
wire BGEZAL="inst[31]&"inst[30]&"inst[29]&"inst[28]&"inst[27]&inst[26]&inst[20]&"inst[19]&"inst[18]&"inst[17]&inst[16]:
                                                                                                                                                                                                   //版本原因,和BAL可能有冲突
wire BGIZ="inst[31]&"inst[30]&"inst[29]&inst[28]&inst[27]&inst[26]:
wire BLEZ="inst[31]&"inst[30]&"inst[29]&inst[28]&inst[27]&"inst[26]
wire BLTZ="inst [31]&"inst [30]&"inst [29]&"inst [28]&"inst [27]&inst [26]&"inst [20]&"inst [19]&"inst [18]&"inst [17]&"inst [16];
wire BLTZAL="inst[31]&"inst[30]&"inst[29]&"inst[28]&"inst[27]&inst[26]&inst[20]&"inst[19]&"inst[18]&"inst[17]&"inst[16];
wire LL="inst[31]&inst[30]&inst[29]&inst[28]&inst[27]&inst[26]&inst[5]&inst[4]&"inst[3]&inst[2]&inst[1]&"inst[0];
wire LWL=inst[31]& inst[30]& inst[29]& inst[28]& inst[27]& inst[26];
wire LWR=inst[31]& inst[30]& inst[29]&inst[28]&inst[27]& inst[26]
wire SC="inst[31]&inst[30]&inst[29]&inst[28]&inst[27]&inst[26]&inst[5]&"inst[4]&"inst[3]&inst[2]&inst[1]&"inst[0];
wire SWL=inst[31]&~inst[30]&inst[29]&~inst[28]&inst[27]&~inst[26];
wire SWR=inst[31]&~inst[30]&inst[29]&inst[28]&inst[27]&~inst[26];
wire TGE= op&inst[5]&inst[4]&inst[3]&inst[2]&inst[1]&inst[0];
wire TGEU="inst[31]&"inst[30]&"inst[29]&"inst[28]&"inst[27]&inst[26]&"inst[20]&inst[19]&"inst[18]&"inst[17]&inst[16];
wire TLT= op&inst[5]&inst[4]& inst[3]& inst[2]&inst[1]& inst[0];
wire TLTU="inst[31]&"inst[30]&"inst[29]&"inst[28]&"inst[27]&inst[26]&"inst[20]&"inst[19]&"inst[18]&inst[17]&inst[16];
wire TNE= op&inst[5]&inst[4]& inst[3]&inst[2]&inst[1]& inst[0]:
wire TEQI="inst[31]&"inst[30]&"inst[29]&"inst[28]&"inst[27]&inst[26]&"inst[20]&inst[19]&inst[18]&"inst[17]&"inst[16];
wire TGEI="inst[31]&"inst[30]&"inst[29]&"inst[28]&"inst[27]&inst[26]&"inst[20]&inst[19]&"inst[18]&"inst[17]&"inst[16];
wire TGEIU="inst[31]&"inst[30]&"inst[29]&"inst[28]&"inst[27]&inst[26]&"inst[20]&inst[19]&"inst[18]&"inst[17]&inst[16]:
wire TLTI="inst [31]&"inst [30]&"inst [29]&"inst [28]&"inst [27]&inst [26]&"inst [20]&inst [19]&"inst [18]&inst [17]&"inst [16]:
vire TLTIU="inst[31]&"inst[30]&"inst[29]&"inst[28]&"inst[27]&inst[26]&"inst[20]&inst[19]&"inst[18]&inst[17]&inst[16]:
wire TNEI="inst[31]&"inst[30]&"inst[29]&"inst[28]&"inst[27]&inst[26]&"inst[20]&inst[19]&inst[18]&inst[17]&"inst[16];
wire NOP=!inst;
wire SSNOP=! (inst&32' hffffffbf)&&inst[6];
wire SYMC="op&"inst[5]&"inst[4]&inst[3]&inst[2]&inst[1]&inst[0]:
wire PREF="inst[31]&inst[30]&inst[29]&inst[28]&inst[27]&inst[26]&inst[5]&inst[4]&"inst[3]&inst[2]&"inst[1]&inst[0];
```

■ 检查方式: 11个测试函数构成,测试内容覆盖了89条MIPS指令、cp0以及时钟中断

实验2、系统移植

- 实现总线
 - □ 增加Wishbone 总线,GPIO、UART、Flash控制器、 SDRAM控制器,实现一下小的SOPC。
 - □参见《自己动手写CPU》的基础篇
- 系统移植 µC/OS-II
 - □利用Ubuntu上建立交叉编译环境
 - □ 对µC/OS-II系统进行改写、编译
 - □参见P470页
- 检查方式: 串口助手观察加载过程。

实验3、应用开发

- ■实现
- 检查方式: 串口、图形界面

课程安排

■ 第1周 介绍、熟悉任务、了解需求、获取cpu。

- 第6周 → 检查1
- 第7周 _____ 实验2
- 第14周 → 检查2
- 第15、16周 实验3
- 第17周 实验内容验收、答辩
- ■15、16次课时调整至17周用于课程综合设计 实验答辩考核
- ■学生课下完成任务3.
- ■学生可上课时间找老师答疑

考核安排

■ 总体安排:

- □ 平时成绩: 10%
- □ 任务1: CPU改造30% (实验代码、结果、实验报告)
- □ 任务2: 系统移植 40% (实验代码、结果、实验报告)
- □ 任务3: 应用编写 10% (实验代码、结果、实验报告,加分项)
- □ 申优答辩: 10% (申优秀为任务1、任务2、任务3完成者。含PPT讲解、演示、问题回答)
- □ 非申优检查: *不参加申优答辩,要接受检查,会根据检查结果给分。* 原则上不超过5分。

资料和器材

■资料:

https://pan.baidu.com/s/1TJcGZQVahxJb7DzwnIF1xQ

提取码: jwct

- ■MIPSCPU获取
 - □见参考资料
 - □自己动手做cpu
 - □自己找
- ■器材:

Callout	Component Description	Callout	Component Description
1	Power select jumper and battery header	13	FPGA configuration reset button
2	Shared UART/ JTAG USB port	14	CPU reset button (for soft cores)
3	External configuration jumper (SD / USB)	15	Analog signal Pmod connector (XADC)
4	Pmod connector(s)	16	Programming mode jumper
5	Microphone	17	Audio connector
6	Power supply test point(s)	18	VGA connector
7	LEDs (16)	19	FPGA programming done LED
8	Slide switches	20	Ethernet connector
9	Eight digit 7-seg display	21	USB host connector
10	JTAG port for (optional) external cable	22	PIC24 programming port (factory use)
11	Five pushbuttons	23	Power switch
12	Temperature sensor	24	Power jack

http://see.ton

关于上课

- 上课线下,带电脑+板子,自己完成。
- 答疑 QQ群。
- 作业、试验 Canvas。

群名称: 系统试验 (2023)

群号: 688369486

