§5. Модуль вещественного числа и его свойства

Определение 5.1. *Абсолютной величиной (модулем)* вещественного числа x называется число, обозначаемое через |x| и определяемое формулой:

$$|x| = \begin{cases} x, & \text{если } x \ge 0; \\ -x, & \text{если } x < 0. \end{cases}$$

Замечание 5.1. Геометрически |x| интерпретируется как расстояние от точки x числовой прямой до точки O (начала отсчёта) (рис. 5.1, 5.2).

Рис. 5.1. К замечанию 5.1, x > 0, |x| = |OA| Рис. 5.2. К замечанию 5.1, x < 0, |x| = |OA|

Свойства абсолютной величины

- **1.** Неравенство $|x| \ge 0$ выполняется для $\forall x \in \mathbb{R}, |x| = 0$ только для x = 0.
- **2.** Для $\forall x \in \mathbb{R}$ справедливо равенство: |x| = |-x|.
- **3.** Для $\forall x \in \mathbf{R}$ справедливо неравенство: $-|x| \le x \le |x|$.
- **4.** Неравенства $|x| \le a$ и $-a \le x \le a$ равносильны для $\forall a > 0$ и $\forall x \in \mathbb{R}$.
- **5.** Неравенство $|x| \ge a$ и объединение двух неравенств: $x \le -a \lor x \ge a$ равносильны для $\forall a > 0$ и $\forall x \in \mathbb{R}$.
- **6.** $|x \cdot y| = |x| \cdot |y|$ для $\forall x \in \mathbb{R}$, $\forall y \in \mathbb{R}$, если $y \neq 0$, то |x/y| = |x|/|y|.
- **7.** Неравенство $||x| |y|| \le |x + y| \le |x| + |y|$ справедливо для $\forall x, y \in \mathbb{R}$.

Замечание 5.2. Из свойства 4 следует, что число x находится в данном случае на числовой прямой на отрезке длиной 2a между точками -a, a и на расстоянии от точки 0, не большем, чем a (рис. 5.3), а из свойства 5 — число x находится от точки 0 на расстоянии, не меньшем, чем a (рис. 5.4).

Рис. 5.3. К замечанию 5.2

Рис. 5.4. К замечанию 5.2

Замечание 5.3. Неравенство $|x+y| \le |x| + |y|$ называют неравенством треугольника. Можно доказать и более общее утверждение: пусть n-3 заданное натуральное число, а $x_1, x_2, ..., x_n-3$ заданные вещественные числа, тогда справедливо неравенство: $|x_1+x_2+...+x_n| \le |x_1| + |x_2| + ... + |x_n|$.

- ▶1. Пусть $x \ge 0$, тогда |x| = x (определение 5.1), поэтому $|x| \ge 0$. Для x < 0 имеем |x| = -x (определение 5.1) и потому |x| > 0, так как (-x) > 0.
- **2.** Пусть $x \ge 0$, |x| = x, |-x| = -(-x) = x (определение 5.1) и |x| = |-x|. Если x < 0, |x| = -x, |-x| = -x (определение 5.1). Итак, и в этом случае |x| = |-x|.
- **3.** Пусть $x \ge 0$, тогда |x| = x (определение 5.1) и $-|x| \le x$, так как $-|x| \le 0$ (свойство 1), а $x \ge 0$. Таким образом, заключаем: $-|x| \le x = |x|$. Для x < 0

имеем |x| = -x (определение 5.1), поэтому -|x| = x. В то же время: $x \le |x|$, ибо $|x| \ge 0$ (свойство 1), а x < 0. Итак, для x < 0 верно соотношение: $-|x| = x \le |x|$.

4. Пусть $|x| \le a$, отсюда имеем: $-|x| \ge -a$. Эти два неравенства и свойство 3 приводят к соотношению: $-a \le -|x| \le x \le |x| \le a$ или $-a \le x \le a$.

Предположим теперь, что $-a \le x \le a$. Для x: $0 \le x \le a$ имеем |x| = x (определение 5.1), поэтому приходим к неравенству: $|x| \le a$. Для x: $-a \le x \le 0$ имеем |x| = -x (определение 5.1), откуда следует, что $-a \le -|x|$ или $|x| \le a$.

- 5. Доказательство аналогично доказательству свойства 4.
- **6.** Доказательство следует из определения 5.1 и свойств действий с действительными числами.
- **7.** В силу свойства 3 для $\forall x, y \in \mathbf{R}$ справедливы неравенства: $-|x| \le x \le |x|$, $-|y| \le y \le |y|$. Сложив их почленно, получим: $-(|x| + |y|) \le x + y \le |x| + |y|$. Отсюда, по свойству 4 имеем $|x+y| \le |x| + |y|$.

Представим число x в виде: x = (x + y) + (-y). В силу вышедоказанного и свойства 2 имеем: $|x| \le |x+y| + |-y| = |x+y| + |y|$ или $|x| - |y| \le |x+y|$. Проведя аналогичные рассуждения для y, получим: $|y| - |x| \le |x+y|$. Объединение двух последних неравенств приводит к неравенству: $||x| - |y|| \le |x+y|$.

Пример 5.1. Решить неравенства: a) $|x-1| \le 3$, б) $|x+2| \ge 2$, в) $|x+2| \ge -2$.

- ▶ а) В силу свойства 4 имеем $-3 \le x 1 \le 3$. Прибавив ко всем частям неравенства по 1, получим: $-2 \le x \le 4$ или $x \in [-2, 4]$.
- б) Из свойства 5 имеем: $x+2 \le -2 \lor x +2 \ge 2$. Прибавив ко всем частям этих неравенств по -2, получим $x \le -4 \lor x \ge 0$, или $x \in (-\infty, -4] \cup [0, +\infty)$.
 - в) В силу свойства 1 решением данного неравенства является $\forall x \in \mathbb{R}$.