MAT 350 - Applied Linear Algebra

Mr. Ryan Evaul Southern New Hampshire University

November 6, 2017

Contents

1	Class 1 - Thursday, September 19 th , 2017	5
	1.1 §1 Differential Equations	5
2	Class UNK - Monday, October 23 rd , 2017	7
	2.1 §2.8 Subspaces	7
3	Test 01 Corrections	11
4	Class UNK - Monday, October 23 rd , 2017	15
	4.1 §2.8 Subspaces	15
5	Class UNK - Monday, October $30^{\rm rd}$, 2017	17
	5.1 §2.9 Unknown	17
6	Class UNK - Monday, November $6^{\rm th},2017$	21
	6.1 §3.2 Properties of Determinants	21

1

Class 1 - Thursday, September 19th, 2017

1.1 §1 Differential Equations

$$\begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \end{bmatrix}$$

Class UNK - Monday, October 23rd, 2017

2.1 §2.8 Subspaces

Definition 1: Subspace

A subspace of rton is any set H in that has three properties:

- is in H
- For each u, v, in H u+v is also in H (Closure under addition)
- For each u in H and scalar C, cu is in H (Closure under scalar multiplication)

Example 1 fdsaf Is H a subspace of rto2?

- is in $h \checkmark$
- u+v is not in H for all u,v in H
- Not closed under scalar multiplication either (-u not in H).

H is not a subspace

Example 2 • $is in H \checkmark$

ullet closed under addition \checkmark

ullet closed under scalar multiplication \checkmark

H is a subspace of rto2

Example 3 Which of the following are subspaces of \mathbb{R}^2 ?

- not a subspace o is not in h
- \mathbb{R}^2 is a subspace of \mathbb{R}^2
- \mathbb{R}^2 is a subspace of \mathbb{R}^2
- \diamond o is in $H \checkmark$
 - \diamond Closed under scalar multiplication \checkmark
 - \diamond Not closed unfer addition $x \ u+(-v)$ in in H.

not a subspace of \mathbb{R}^2

• stuff

So what are do subspaces of \mathbb{R}^2 look like?

• They are copies of \mathbb{R}^0 , \mathbb{R}^1 , \mathbb{R}^2 ... \mathbb{R}^n that contain the zero vector.

Example 4 In \mathbb{R}^3 , possible subspaces are:

- Zero Subspaces
- Lines
- Planes

Example 5 If $H=spanv_1,v_2$ (av_1,bv_2 for any a,b), then H is a subspace of \mathbb{R}^n

- o is in $H \checkmark$
 - \diamond since $o *v_1 + o *v_2 = o$
- ullet closed under addition \checkmark
 - $\diamond \ u = a_1 v_1 + b_1 v_2$
 - $\diamond \ w = a_2 v_1 + b_2 v_2$

$$\diamond u + w = a_1v_1 + b_1v_2 + a_2v_1 + b_2v_2$$

$$\diamond u + w = (a_1 + a_2)v_1 + (b_1 + b_2)v_2$$

- \diamond which is $spanv_1, v_2$
- closed under scalar multiplication

$$\diamond u = av_1 + bv_2$$

$$\diamond c * u = c(av_1 + bv_2) = (c * a)v_1 + (c * b)v_2$$

which is $spanv_1, v_2$

Definition 2: Column Space

The column space of a matrix A, denoted col(A), is the set of all linear combinations of the columns of A. (col(a) is a subspace)

Example 6 Let
$$A = \begin{bmatrix} 1 & -3 & -4 \\ -4 & 6 & -2 \\ -3 & 7 & 6 \end{bmatrix}$$
 and $b = \begin{bmatrix} 3 \\ 3 \\ -4 \end{bmatrix}$

is b in Col(A)?

if b is a linear combination of the columns of A, the Ax=b has a solution. We are asking whether [A-b] is consistant of not.

$$\begin{bmatrix} 1 & -3 & -4 & | & 3 \\ -4 & 6 & -2 & | & 3 \\ -3 & 7 & 6 & | & -4 \end{bmatrix} \ goes \ to \ \begin{bmatrix} 1 & -3 & -4 & | & 3 \\ 0 & -6 & -18 & | & 15 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

No pivot in augmented column, so b is in col(A).

Note: b in col(A) for every b in \mathbb{R}^m

- Ax=b has a solution for every b in \mathbb{R}^m
- The columns of A span \mathbb{R}^m
- A has a pivot in every row in REF

Definition 3: Null Space

The null space of matrics A, denoted null(A), is the set of all solutions to $Ax = \vec{o}$

Note 1 Any solution set of $Ax=\vec{o}$ can be written in parametric form.

$$x = x_2 \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = span \left\{ \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$$
so $null(A)$ is a subspace.

Definition 4: Basis for a Subspace

A basis for a subspace H is a linearly independent set that spans H.

Example 7 Find a basis for
$$null(A)$$
, if $A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}$

$$A = \begin{bmatrix} 1 & -2 & 0 & -1 & -3 & | & 0 \\ 0 & 0 & 1 & 2 & -2 & | & 0 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$$

$$x_{1} - 2x_{2} - x_{4} + 3x_{5} = 0$$

$$x_{2} = x_{2}$$

$$x_{3} + 2x_{4} - 2x_{5} = 0$$

$$x_{4} = x_{4}$$

$$x_{5} = x_{5}$$

Test 01 Corrections

Problem 1 10pts

Sub-Problem A Correct

Sub-Problem B Correct

Problem 2
$$A = \begin{bmatrix} 1 & 2 & 1 \\ -3 & -1 & 2 \\ 0 & 5 & 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 \\ 5 \\ -1 \end{bmatrix}$

$$\begin{bmatrix} 1 & 2 & 1 & | & 0 \\ -3 & -1 & 2 & | & 5 \\ 0 & 5 & 3 & | & -1 \end{bmatrix}$$

$$r_2 \to r_2 + 3r_1 \begin{bmatrix} 1 & 2 & 1 & | & 0 \\ 0 & 5 & 5 & | & 5 \\ 0 & 5 & 3 & | & -1 \end{bmatrix}$$

$$r_2 \to r_2/5 \begin{bmatrix} 1 & 2 & 1 & | & 0 \\ 0 & 1 & 1 & | & 1 \\ 0 & 5 & 3 & | & -1 \end{bmatrix}$$

$$r_3 \to r_3 - 5r_2 \begin{bmatrix} 1 & 2 & 1 & | & 0 \\ 0 & 1 & 1 & | & 1 \\ 0 & 0 & -2 & | & -6 \end{bmatrix}$$

$$r_3 \to r_3/-2 \begin{bmatrix} 1 & 2 & 1 & | & 0 \\ 0 & 1 & 1 & | & 1 \\ 0 & 0 & 1 & | & 3 \end{bmatrix}$$

$$r_{1} \rightarrow r_{1} - 2r_{2} \begin{bmatrix} 1 & 0 & -1 & | & -2 \\ 0 & 1 & 1 & | & 1 \\ 0 & 0 & 1 & | & 3 \end{bmatrix}$$

$$r_{1} \rightarrow r_{1} + r_{3} \begin{bmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & 1 & | & 1 \\ 0 & 0 & 1 & | & 3 \end{bmatrix}$$

$$r_{2} \rightarrow r_{2} - r_{3} \begin{bmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & | & -2 \\ 0 & 0 & 1 & | & 3 \end{bmatrix}$$

Yes, B is in the subset spanned by the columns of A.

$$0 \begin{bmatrix} 1 \\ -3 \\ 0 \end{bmatrix} + 5 \begin{bmatrix} 2 \\ -1 \\ 5 \end{bmatrix} - 1 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}$$

Problem 3 Yes, the figure does have a solution; if you express the vectors as a linear combination $x_1v_1 + x_2v_2 + x_3v_3 = b$ you can change the values of the scalars (x_1, x_2, x_3) to any value which, when multiplied by the vectors will give us any b; which causes the answer to b to be non-unique.

Problem 4 10pts

Sub-Problem A

$$\begin{bmatrix} 1 & 3 & 1 \\ 0 & 3 & 6 \\ 0 & 0 & 0 \end{bmatrix}$$

$$r_{1} \rightarrow r_{1} - r_{2} \begin{bmatrix} 1 & 0 & -5 \\ 0 & 3 & 6 \\ 0 & 0 & 0 \end{bmatrix}$$

$$r_{2} \rightarrow r_{2}/3 \begin{bmatrix} 1 & 0 & -5 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

$$1x_{1} - 5x_{3} = 0$$

$$1x_{2} + 2x_{3} = 0$$

$$x_{1} = 5x_{3}$$

$$x_{2} = -2x_{3}$$

$$x_{3} = x_{3}$$

$$\begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = \begin{bmatrix} 5x_{3} \\ -2x_{3} \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 5x_{3} \\ -2x_{3} \\ 0 \end{bmatrix} = x_{3} \begin{bmatrix} 5 \\ -2 \\ 0 \end{bmatrix}$$

Sub-Problem B

$$0 \begin{bmatrix} 5 \\ -2 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Sub-Problem C Yes, x_3 is a free variable, any value will have a solution.

Problem 5 30pts

Sub-Problem A Correct

Sub-Problem B Yes, because there is no way to reduce the matrices to be in the other matrix.

Sub-Problem C No, it is linearly dependent because v_1 , v_2 are dependent.

Sub-Problem D No, because the vectors are not necessarily related.

Sub-Problem E Yes, because the columns are related and a part of the same system.

Sub-Problem F Yes, there are pivots in each column and there is no free variable therefore the sets are independent of each other.

Problem 6
$$\begin{bmatrix} 2 \\ 0 \end{bmatrix} - 3 \begin{bmatrix} 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix} - \begin{bmatrix} 9 \\ 6 \end{bmatrix} = \begin{bmatrix} -7 \\ -6 \end{bmatrix}$$

Problem 7 10pts

 $e_1 = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, $e_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ because we want a transformation instead of a rotation, we need to switch the signs in the first row because that will effect the x values.

Problem 8 15pts

Sub-Problem A Sub-Sub-Problem A.1 Yes, there is one possible solution to the matrix.

Sub-Sub-Problem A.2 Yes, all of the columns span \mathbb{R}^m

Sub-Problem B Sub-Sub-Problem B.1 Correct

Sub-Sub-Problem B.2 Yes, all of the columns span \mathbb{R}^m

Sub-Problem C Sub-Sub-Problem C.1 Yes, the equation only has the trivial solution.

Sub-Sub-Problem C.2 No, not all of the columns span \mathbb{R}^m

Class UNK - Monday, October 23rd, 2017

4.1 §**2.8** Subspaces

Example 8 Find a basis for Col(A) and Nul(A):

$$A = \begin{bmatrix} 4 & 5 & 9 & -2 \\ 6 & 5 & 1 & 12 \\ 3 & 4 & 8 & -3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 6 & -5 \\ 0 & 1 & 5 & -6 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 0 & -4 & 7 \\ 0 & 1 & 5 & -6 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$x_1 - 4x_3 + 7x_4 = 0$$

$$x_2 + 5x_3 - 6x_4 = 0$$

$$x_3 = x_3$$

$$x_4 = x_4$$

Example 9

Class UNK - Monday, October 30rd, 2017

5.1 §2.9 Unknown

Definition 5: Dimension

The dimension of a non-zero subspace H, denoted $\dim(H)$, is the number of vectors in any basis for H. The dimension of o is defined to be zero.

Example 10
$$\left\{\begin{bmatrix}1\\0\end{bmatrix},\begin{bmatrix}0\\1\end{bmatrix}\right\}$$

Example 11 How do we know?

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \text{ is in REF, there is a picot in every row and column, so } \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\} \text{ is a basis for } \mathbb{R}^2$$

Note 2 It can be shown that any basis of a subspace H must have the same number of vectors.

Definition 6: Rank

The rank of A is $\dim(\operatorname{Col}(A))$.

Why do we care about rank?

Col(A) = span of all columns of A

= set of all linear combinations of the columns of A

$$= x_1 a_1 + \dots + x_n a_n$$

= Ax for any x in \mathbb{R}^n

= All b that we can solve Ax=b for

rank(A) = dimension of above space

Example 12 Determine the rank(A), dim(null(A)), for

$$\begin{bmatrix} 2 & 5 & -3 & -4 & 8 \\ 4 & 7 & -4 & -3 & 9 \\ 6 & 9 & -5 & 2 & 4 \\ 0 & -9 & 6 & 5 & 6 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 5 & -3 & -4 & 8 \\ 0 & -3 & 2 & 5 & -7 \\ 0 & 0 & 0 & 4 & 6 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Rank(A) = number of pivot=3 columnsdim(nul(A)) = number of free = 2 variables

Theorem 1: The Rank Theorem

If Matrix A has n columns, then Rank (A) + Dim(Nul(A)) = n

- 1. Rank(A) = Number of pivot columns
- 2. Dim(Nul(A)) = Number of free variables
- 3. N= Total number of columns

Problem 9 Suppose that a basis for
$$Col(A)$$
 is $\left\{\begin{bmatrix}1\\2\\4\end{bmatrix},\begin{bmatrix}0\\1\\1\end{bmatrix}\begin{bmatrix}2\\7\\14\end{bmatrix}\right\}$ and $Nul(A)=x_4\begin{bmatrix}2\\-3\\0\\1\end{bmatrix}$

Sub-Problem A What is dim(Col(A))? 3

Sub-Problem B What is dim(Nul(A))? 1

Sub-Problem C What is the rank of A? 3

Sub-Problem D What size matrix should A be? 3x4

Sub-Problem E What is the reduced row echelon form of A?

$$x_{1} = 2x_{4}$$

$$x_{2} = -3x_{4}$$

$$x_{3} = 0$$

$$x_{4} = x_{4}$$

$$=$$

$$x_{1} - 2x_{4} = 0$$

$$x_{2} + 3x_{4} = 0$$

$$x_{3} = 0$$

$$\begin{bmatrix} 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Sub-Problem F Find a matrix A by row reducing the matrix

$$\begin{bmatrix} 1 & 0 & 2 & a_1 \\ 2 & 1 & 7 & a_2 \\ 4 & 1 & 14 & a_3 \end{bmatrix}$$

to reduced row echelon form, and then choosing the constants a_1, a_2, a_3 such that the reduced row echelon matches the form from the previous problem. How were the first three columns chosen?

$$\begin{bmatrix} 1 & 0 & 2 & a_1 \\ 2 & 4 & 7 & a_2 \\ 4 & 1 & 14 & a_3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 2 & a_1 \\ 0 & 1 & 3 & -2a_1 + a_2 \\ 0 & 1 & 6 & -4a_1 + a_3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 2 & a_1 \\ 0 & 1 & 3 & -2a_1 + a_2 \\ 0 & 0 & 1 & \frac{-2a_1 - a_2 + a_3}{3} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 2 & a_1 \\ 0 & 1 & 3 & -2a_1 + a_2 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 2 & -2 \\ 0 & 1 & 3 & 3 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$a_{1} = -2$$

$$-2a_{1} + a_{2} = 3$$

$$-2(-2) + a_{2} = 3$$

$$4 + a_{2} = 3$$

$$a_{2} = -1$$

$$=$$

$$-2a_{1} - a_{2} + a_{3} = 0$$

$$-2(-2) - (-1) + a_{3} = 0$$

$$5 + a_{3} = 0$$

$$a_{3} = 5$$

Theorem 2: The Basis Theorem

Let H be a p-dimensional subspace of \mathbb{R}^n . Any linearly independent set of p vectors in H is automatically a basis for H. Also, any set of p vectors in H that spans H is automatically a basis for H.

Example 13 Could \mathbb{R}^3 possible contain a 4-dimensional subspace? 4-dimensional = 4 pivots in REF. But we only have 3 rows, so we can only have up to 3 pivots, so NO.

Example 14 What is the rank of a 3x4 matrix whose null space is three dimensional? Rank is 1.

6

Class UNK - Monday, November 6th, 2017

6.1 §3.2 Properties of Determinants

Example 15
$$\begin{bmatrix} 3 & -1 & 2 & -5 \\ 0 & 5 & -3 & -6 \\ -6 & 7 & -7 & 4 \\ -5 & -8 & 0 & 9 \end{bmatrix} = \begin{bmatrix} 3 & -1 & 2 & -5 \\ 0 & 5 & -3 & -6 \\ 0 & 5 & -3 & -6 \\ -5 & -8 & 0 & 9 \end{bmatrix} = \begin{bmatrix} 3 & -1 & 2 & -5 \\ 0 & 5 & -3 & -6 \\ 0 & 0 & 0 & 0 \\ -5 & -8 & 0 & 9 \end{bmatrix} = 0$$

Example 16
$$\begin{bmatrix} 0 & 1 & 2 & -1 \\ 2 & 5 & -7 & 3 \\ 0 & 3 & 6 & 2 \\ -2 & -5 & 4 & -2 \end{bmatrix} = \begin{bmatrix} 2 & 6 & -5 & 2 \\ 2 & 5 & -7 & 3 \\ 0 & 3 & 6 & 2 \\ -2 & -5 & 4 & -2 \end{bmatrix} = \begin{bmatrix} 2 & 6 & -5 & 2 \\ 0 & 0 & -3 & 1 \\ 0 & 3 & 6 & 2 \\ -2 & -5 & 4 & -2 \end{bmatrix} = \begin{bmatrix} 2 & 6 & -5 & 2 \\ 0 & 3 & 6 & 2 \\ -2 & -5 & 4 & -2 \end{bmatrix} = \begin{bmatrix} 2 & 6 & -5 & 2 \\ 0 & 3 & 6 & 2 \\ 0 & 0 & -3 & 1 \\ -2 & -5 & 4 & -2 \end{bmatrix}$$

Example 17
$$\begin{bmatrix} 3 & 3 & -3 \\ 3 & 4 & -4 \\ 2 & -3 & -5 \end{bmatrix} = \begin{bmatrix} 3 & 3 & -3 \\ 0 & -1 & 1 \\ 2 & -3 & -5 \end{bmatrix}$$