

V1.6 June 26, 2019

POWERBUS[®]总线收发器

Check for Samples: PB331

特性

- 总线可供电,通讯和供电无需电气隔离
- 总线抗干扰能力强,可与市电并走
- 可同时挂接256个设备
- 通讯距离可达3000m
- 支持无极性布线
- 支持任意拓扑布线: 树形, 星形, 总线型
- 无特殊线缆要求
- 最大总线电压可达48V
- 透明串口协议,可兼容原RS485系统
- 自适应9600bps和2400bps半双工通讯
- 低成本的解决方案
- 可隔离设计又可非隔离设计,保证电磁兼容特 性

描述

PB331是POWERBUS®技术的从站通讯芯片。

POWERBUS属于低压供电总线技术。通过在供电电缆上调制控制信号,替代了传统分离的控制电缆和供电电缆并大幅度提高通讯稳定性。

POWERBUS采用电压发送,电流信号回传的方式,提供了高通讯抗干扰能力。

PB331能适应现场使用的各种线材并实现远距离通讯的功能。电缆可以总线型、树型或星型等任意方式铺设,极大方便施工布线,并且可以防止错接发生,简化施工维护。

PB331可通过POWERBUS总线,满足设备供电和通讯的需求。

应用

- 消防监控
- 智能楼宇
- 集中抄表
- 智能照明
- 传感器网络
- 自动化控制

www.powerbus.com.cn Rev.1.6 June,2019

历史修订记录 ^(†)

Rev.1.5 Jun,2018	页码
 更新典型应用电路。R3从100Ω改成68Ω,合理增加信号发射功率。 	6
● 更新典型应用电路。去掉EMC电容。	6
• 典型应用电路中输入构架优化,增加US1M可选ES1D,更低压降。	6
Rev.1.6 June,2019	
增加系统及高级优化设计技巧共地桥章节并入PBD02手册	7

T NOTE: 以前版本的页码可能与当前版本的页码不同。

Rev.1.6 June,2019

绝对最大值 ^(†)

表 1.

参数	范围
Vcc 至 GND电压	-0.3V ~ 6.0V
TX , RX , PI , PO	-0.3V ~ Vcc+0.3V
储存温度	−65°C to +150°C
工作温度	-40°C to +85°C
焊接温度(引脚,10 秒)	220°C
ESD额定值 (HBM)	4KV
ESD额定值 (CDM)	2KV
ESD额定值 (MM)	400V

† 注:如果器件工作条件超过上述"绝对最大值",可能引起器件 永久性损坏。这仅是极限参数,我们不建议器件在极限值或超过 上述极限值的条件下工作。器件长时间工作在极限条件下可能会 影响其可靠性。

引脚排列

图1 引脚排列

ESD警告

ESD(静电放电)敏感器件。

带电器件和电路板可能会在没有察觉的情况下放电。 尽管本产品具有专利或专有保护电路,但在遇到高 能量ESD时,器件可能会损坏。因此,应当采取适当 的ESD防范措施,以避免器件性能下降或功能丧失。

表2. 引脚功能描述

引脚编号	引脚名称	说明
1	VCC	电源供电正
2	TX	串行发送。接至MCU的RX
3	RX	串行接收。接至MCU的TX
4	NC	无连接
5	PO	POWERBUS信号输出
6	PI	POWERBUS信号输入
7	NC	无连接
8	GND	电源供电负

版权 © 2013, 北京强联通讯技术有限公司

www.powerbus.com.cn

技术规格

除非另有说明,-40℃≤TA≤+85℃,所有所有电压测量都是相对GND。

表 3.

参数		测试条件	最小值 典型值	最大值	单位
一般DC规格	i				
Vcc	供电输入	引脚 Vcc	2.7	5.5	V
lcc	静态工作电流	VCC = 3.3V, 无数据通讯		8.0	mA
		VCC = 5V,无数据通讯		1.2	mA
串口DC规格					
VIL	RX 低电平逻辑电压	2.7 ≤ Vcc ≤ 5.5		0.2Vcc	V
VIH	RX 高电平逻辑电压	2.7 ≤ Vcc ≤ 5.5	0.6 Vcc		V
Vol	TX 低电平逻辑电压	ITX = 1.1 mA		0.6	V
Vон	TX 高电平逻辑电压	ITX = 1.1 mA	Vcc - 0.7		V
串口定时规	格				
Ton	上电延迟 (1)		2	20	mS
T _{d(TX)}	发送延时 ⁽²⁾			11*Tbit	uS
$T_{d(RX)}$	接收延时(2)			11*Tbit	uS

- (1) 从上电开始器件到正常工作的延时。
- (2) 由于数据转发缓冲产生的延时,在连续发送或接收时,总延时不变。

UART 通讯接口

PB331波特率根据主机设置自适应9600bps和2400bps。

接收和发送自适应支持8位9位数据方式,第9位可以是数据位、校验位、地址位。

8位串口数据:起始位+8位数据位+停止位

9位串口数据:起始位+8位数据位+第9位数据位+停止位

版权 © 2013, 北京强联通讯技术有限公司

应用信息

负载的电源供给

负载电源可以从图6的DCS端口处取得,可将此DCS处电 压当做普通DC直流供电线使用,进行降压供给低压系 统,或直接带载。

注意:不可将负载直接跨接在二总线上,这将会造 成主站检测到短路进行保护动作。

负载要求

POWERBUS总线是智能低压供电二总线,负载可以是 任意阻性,感性。负载设备可以是:电动机、步进电 机、电热执行器、继电器、高功率LED等。负载电流动 态变化,不会影响通讯。

图4 直流负载连接

PB331供电

PB331为宽供电范围,可以使用LDO或DC/DC降压器, 从DCS处降压取电获得,可以与MCU共用供电,以保证 TTL接口电平相同。

注意当从站有电磁铁,继电器等强感性负载时,请注 意做好续流,防止负压损坏PB331或其他器件。

FUSE作用与从站短路保护

图6中FUSE可以是可恢复保险丝PPTC,也可以是电阻。 作用为防止短路和减少上电冲击。若从站损坏变成短 路状态时,FUSE可以使此从站从总线脱离,而不影响 总线和其他从站。主站可以通过巡检检测到此故障。 可选器件, 如不需要可以省略。

定负载

对于不需要通讯的线上定负载,如风机,常亮指示等 ,可以使用图5电路:

定负载无极性应用

版权 © 2013, 北京强联通讯技术有限公司

图6 PB331 基本应用电路

Cin选择与DCS输出纹波情况

图6中Cin为供电输出稳压电容,此电容位于DCS端口处,可根据负载电流选择Cin值。只要纹波的低谷不跌破10V,纹波大小并不影响通讯。Cin可以是电解电容,钽电容,陶瓷电容。

表4. Cin容量VS纹波

W. C.											
负载电流 (1)	DCS处纹波 ⁽²⁾										
贝鞃电流	10uF	22uF	33uF	47uF	100uF	220uF	470uF	1000uF			
10mA	400mV	250mV	170mV	100mV	40mV	不可测	不可测	不可测			
50mA	2000mV	1100mV	600mV	400mV	180mV	90mV	50mV	20mV			
100mA	4000mV	2000mV	1200mV	800mV	350mV	200mV	100mV	50mV			
200mA		3000mV	2200mV	1600mV	700mV	350mV	200mV	100mV			
300mA		5000mV	3500mV	2500mV	1300mV	600mV	300mV	150mV			
500mA			5000mV	3800mV	2000mV	900mV	450mV	250mV			
1000mA				7800mV	4000mV	2000mV	1000mV	500mV			

⁽¹⁾ 持续负载电流。

Cin容量并不是越大越好,过大的Cin一方面增加成本与体积,一方面还增加主站端的上电冲击。一般来说,不论采用LDO还是DCDC降压方式,以设备最低允许工作电压时候的Cin电流,按0.5uF/mA · 1uF/mA选择Cin常为性价比较高选择。

版权 © 2013, 北京强联通讯技术有限公司

⁽²⁾ 此值仅与负载电流有关,跟总线所用电压无关。

应用信息:系统级优化技巧

Cin选取技巧实例

例1: 某系统中传感器2.5V@350mA, 采用DCDC降压方式为传感器供电。

此时一般从站最低输入电压为Cin电压纹波谷值是否跌破10V决定。忽略DCDC效率10V时CIN电流约为87.5mA,若使用47uF Cin,理论最低此从站可通讯电压约为10.8V。使用更大的电容时,最低工作电压提升并不明显。

例2:某系统从站主负载12V串联灯珠,采用70%最大占空比降压型DCDC恒流驱动300mA。

在此应用场景中,从站的最低工作电压由LED最低可驱动电压决定,即17.14V。忽略DCDC效率Cin电流约为210mA,此时Cin若选择100uF,即可保证Cin电压在17.84V即可满功率驱动LED。

最后还应通过调整主站最低可通讯电压,并更换不同 Cin值,权衡不同Cin对于最低工作电压的收益。

大网络负载数量与距离优化技巧

POWERBUS作为一种电源远传系统。要考虑由于长线 线阻与线上电流导致的电压损失是必然存在的,这种 损失称为"线损"。

而想带的更多带的更远,有且只有4种办法:

- 1) 提高主站端电压。
- 2) 降低从站功耗: 如使用效率更高的DCDC,降低MCU功耗,以脉冲 式电磁阀代替普通电磁阀,等。
- 3) 加粗线。
- 4) 加中继。

一般来说,方法1)采用高压远传是效果最显著,且最经济的。一方面因为面电源是按瓦计价。另一方面,较高的电源电压不仅使全线从站电压提高,并且随着从站入口电压升高DCDC输入电流也变小,线损又进一步减低。针对任何交直流远程供电系统,高压远传都是首选方式。

冷上电优化与电源管理技巧

在系统冷上电时,对于从站应留给电容充电时间,避免在电容还没充满时,又同时开启重负载。同时也应避免当线路末端线损严重时,强行开启重负载导致多站掉线。以下经验思路供参考:

- 1) 避免无意义的过大的从站端输入电容: 过大的Cin增加了成本与体积,但带来的最低通讯 电压收益并不显著。
- 2) 由于PowerBus从站节点最低入口电容两端电压不得低于12V,所以从站设计中,均可以使用Ldo或DCDC的EN引脚设置欠压,当冷上电Cin电容爬电到12V以上时,才开启MCU供电。
- 3) MCU工作后,应保持最低功耗运行,并且开始通过 ADC采集从站Cin两端爬压。当电压稳定不在爬升时 即为本从站PowerGood,等待主站轮询。
- 4) 主站通过轮询,所有从站都在线并且PowerGood后 ,方可通过轮询的方式挨个通知从站开启重负载。
- 5) 当开启重负载后,可持续采集Cin电压。因为在线路远端,可能由于线损的存在而导致本站大负载开启后,线损导致Cin电压跌落到最低允许带载开启电压下(或因跌破10V影响通讯,或因跌破受控执行器开启电压)。此时再强行开启本站重负载已无意义,还可能使线路末端的多个节点进入欠压。此时可立即关闭本站负载开启,并向主站报告欠压,选择询问是否尝试再次开启。

在大型控制集群网络中,每个从站的上电过程与开启 负载过程应该是完全可控而清晰的。本设计技巧章节 并非强制遵守,只做系统级设计经验思路参考。以进 一步提高系统智能型与可靠性优化。

应用信息

共地接入与测量注意事项

图6所示典型电路为从站全站从总线取电时场景。由于POWERBUS采用电流环上行技术,所以从站整流后GND应保持无源,不能与其他系统共地。而当测试时,为避免其他共地电气连接,若接入示波器可使用隔离差分表笔,若接入电脑通讯可使用TTL隔离评估板,或移除电脑电源使用内置电池。以免引入共地导致测量误差。

隔离设计与其他供电接入

如果从站负载使用其他接地系统供电,如市电。可使用图7所示电路,将总线从UART处隔离,总线只供电PB331与隔离侧。

相对RS485的隔离应用,此电路无需使用DC/DC隔离模块,仅需光耦隔离,亦可以使用磁隔离。

图7 PB331 隔离设计应用电路

从站设备电池备电

版权 © 2013, 北京强联通讯技术有限公司

如从站使用电池作为备电,可使用图8拓扑,从站的供电既可以来自总线也可以来自电池。可以自行设计供电切换路径和切换条件,控制电池供电与总线供电。

图8 从站备电电路拓扑

PB331 — June 2019 PB331 Product data sheet

外形尺寸及推荐LAYOUT板图

8引脚塑封SOIC

- 注: 1.引脚1的标注方式可能不同,但必须在阴影区域内 2.所有的数据单位都是毫米 3.尺寸C和D不包括塑模毛边或突起。塑模每侧的毛边或突起不超过0.15毫米

推荐的焊盘布局

TAPE AND REEL INFORMATION

REEL DIMENSIONS Reel ۵ Diameter Reel Width (W1)

	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	•	Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
PB331	SOIC	D	8	3000	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

版权 © 2013, 北京强联通讯技术有限公司 PB331 — June 2019 PB331 Product data sheet

*All dimensions are nominal

Device	Package Type	Package Type Package Drawing Pins		SPQ	Length (mm)	Width (mm)	Height (mm)	
PB331	SOIC	D	8	3000	367.0	367.0	35.0	