Geometry

Jubair Ahammad Akter

May 6, 2025

1 Angles and Area of Triangles

1.1 Acute Triangle

Definition: All angles less than 90° .

1.2 Right-Angled Triangle

Definition: One angle equals 90° .

1.3 Obtuse Triangle

Definition: One angle greater than 90°.

1.4 Equilateral Triangle

Definition: A triangle with all sides equal and all angles equal to 60°.

Note: Equilateral triangle is an acute triangle and also an isosceles triangle.

Area: $\frac{\sqrt{3}}{4}a^2$, Perimeter: 3a

1.5 Isosceles Triangle

Definition: A triangle with two equal sides and two equal angles.

Area: $\frac{b}{4}\sqrt{4a^2-b^2}$, Perimeter: 2a+b

Types of Isosceles Triangles:

Acute Right-Angled Obtuse

less than 90° equal

1.6 Scalene Triangle

Definition: A triangle with no equal sides or angles.

Area: $\sqrt{s(s-a)(s-b)(s-c)}$, where $s = \frac{a+b+c}{2}$, Perimeter: a+b+c

Types of Scalene Triangles:

Acute

Right-Angled

Obtuse

acute
90° acute

1.7 Area Formulas for Triangles

There are several ways to calculate the area of a triangle, depending on the given information:

- Base and Height: $A = \frac{1}{2} \times b \times h$
- Using All Three Sides (Heron's Formula): $A = \sqrt{s(s-a)(s-b)(s-c)}$, where $s = \frac{a+b+c}{2}$ is the semi-perimeter
- Using Semiperimeter and Inradius: $A = s \times r$, where r is the inradius
- Using Two Sides and Angle: $A = \frac{1}{2} \times a \times b \times \sin(\theta)$
- Circumradius Formula: $A = \frac{abc}{4R}$, where R is the circumradius

2 Area of Quadrilaterals

2.1 Parallelogram

Definition: A quadrilateral with opposite sides parallel and equal. The opposite angles are equal

Area: $A = b \times h$, Perimeter: 2(a + b)

2.2 Rhombus

Definition: A quadrilateral with all sides equal and opposite angles equal.

Area: $A = \frac{1}{2} \times d_1 \times d_2$, Perimeter: 4a

2.3 Rectangle

Definition: A quadrilateral with equal opposite sides and all angles 90°.

Area: $A = l \times w$, Perimeter: 2(l + w)

2.4 Square

Definition: A quadrilateral with all sides equal and all angles 90°.

Area: $A = a^2$, Perimeter: 4a

2.5 Trapezium

Definition: A quadrilateral with a pair of opposite sides parallel.

Types of Trapezium:

Isosceles Trapezium:

Non-Isosceles Trapezium:

2.6 Notes

- a) Square, Rectangle, and Rhombus are all types of parallelograms.
- $\bullet\,$ b) All squares are rhombuses.
- c) All squares are rectangles.

3 Quadrilateral

3.1 Parallelogram

Theorem:

- AB = CD = y
- BC = AD = z (Opposite sides of a parallelogram are equal)
- AX = CX
- BX = DX (Diagonals of a parallelogram are equally divided into two parts)
- $\angle BAC = \angle ACD = m$
- $\angle ADB = \angle CBD = q$
- $\angle CAD = \angle ACB = p$
- $\angle ABD = \angle BDC = n$ (Alternate Angle Theorem)
- $\angle ABC = \angle CDA = n + q$
- $\angle DAB = \angle BCD = m + p$ (Opposite angles are equal)
- The sum of the angles $m+n+p+q=180^\circ$ (Angles around the intersection point X sum to 360°)

3.2 Rhombus

Theorem:

- AB = CD = BC = AD = a (All sides of a rhombus are equal)
- AX = CX
- BX = DX (Diagonals of a rhombus are equally divided into two parts)
- $\angle BAC = \angle ACD = \angle CAD = \angle ACB = y$
- $\angle ADB = \angle CBD = \angle ABD = \angle BDC = 90^{\circ} y$ (Alternate Angle Theorem)
- $\angle ABC = \angle CDA = 180^{\circ} 2y$
- $\angle DAB = \angle BCD = 2y$ (Opposite angles are equal)
- $\angle AXB = \angle CXD = \angle AXD = \angle BXC = 90^{\circ}$ (Diagonal of a rhombus perpendicularly divide one another)

3.3 Rectangle

Theorem:

- AB = CD = l and BC = AD = w (Opposite sides of a rectangle are equal)
- AC = BD (Diagonals of a rectangle are equal)
- AX = CX = BX = DX (Diagonals of a rectangle are equally divided into two parts)
- $\angle BAC = \angle ACD = \angle ABD = \angle BDC = y$
- $\angle ADB = \angle CBD = \angle CAD = \angle ACB = 90^{\circ} y$ (Alternate Angle Theorem)
- $\angle ABC = \angle BCD = \angle CDA = \angle DAB = 90^{\circ}$ (All angles are right angles)

3.4 Square

Theorem:

- AB = CD = BC = AD = s (All sides of a square are equal)
- AC = BD (Diagonals of a square are equal)
- AX = CX = BX = DX (Diagonals of a square are equally divided into two parts)
- $\angle BAC = \angle ACD = \angle ABD = \angle BDC = \angle ADB = \angle CBD = \angle CAD = \angle ACB = 45^{\circ}$
- $\angle ABC = \angle CDA = \angle DAB = \angle BCD = 90^{\circ}$ (All angles are right angles)
- $\angle AXB = \angle CXD = \angle DXA = \angle BXC = 90^{\circ}$ (All angles are right angles)

3.5 Trapezium Characteristics

Trapezium Characteristics:

- A trapezium has one pair of parallel sides. (AB —— CD)
- \bullet The non-parallel sides are called legs. item

3.6 Area of Trapezium

Proof of Area of Trapezium

Given: A trapezium with parallel sides a and b, and height h.

1st Diagram (Trapezium with Parallel Sides a and b):

We divide the trapezium into three parts:

- 1. A rectangle with width a and height h.
- 2. Two right triangles with bases x and b-x-a, and height h.

Adding these areas together, we get the total area of the trapezium:

Total Area =
$$\frac{1}{2} \times x \times h + \frac{1}{2} \times a \times h + \frac{1}{2} \times (b - x - a) \times h$$

Simplifying:

Total Area =
$$\frac{1}{2} \times h \times [x + 2a + (b - x - a)]$$

= $\frac{1}{2} \times h \times (b + b - x)$
= $\frac{1}{2} \times (a + b) \times h$

2nd Diagram (Trapezium with Parallel Sides a and b):

We divide the trapezium into two parts: Both are triangle with different bases a and b and height will be h

Total Area =
$$\frac{1}{2} \times a \times h + \frac{1}{2} \times b \times h$$

= $\frac{1}{2} \times (a+b) \times h$

3.7 Isosceles Trapezium

Isosceles Trapezium:

- AD = BC = z (In an isosceles trapezium, the non-parallel sides (legs) are equal.)
- AC = BD (The diagonals are also equal in length.)
- AX = BX and CX = DX
- $\angle DAB = \angle ABC = m$
- $\angle CDA = \angle BCD = 180 m$ (The angles at the base are equal, and the isosceles trapezium is cyclic, meaning it can be inscribed in a circle.)
- $\triangle AXD \cong \triangle BXC \ (\triangle AXD \ \text{is congruent to} \ \triangle BXC)$
- $\angle XAB = \angle XBA = \angle XCD = \angle XDC = x$
- $\angle XDA = \angle XCB = y$
- $\angle XAD = \angle XBC = 180 2x y$

4 Triangle Congruence

SSS (Side-Side-Side) Theorem

Statement:

If AB = DE, BC = EF, and CA = FD, then $\angle A = \angle D$, $\angle B = \angle E$, and $\angle C = \angle F$.

Explanation: From the known equal sides, we can conclude that the corresponding angles are also equal, which were unknown initially.

SAS (Side-Angle-Side) Theorem

Statement:

If AB = DE, $\angle A = \angle D$, and AC = DF, then $\angle B = \angle E$, $\angle C = \angle F$, and BC = EF,

Explanation: If two sides and the included angle in one triangle are congruent to two sides and the included angle in another triangle, then the triangles are congruent.

ASA (Angle-Side-Angle) Theorem

Statement:

If $\angle A = \angle D$, AB = DE, and $\angle B = \angle E$, then $\angle C = \angle F$, AC = DF and BC = EF.

Explanation: If two angles and the included side in one triangle are congruent to two angles and the included side in another triangle, then the triangles are congruent.

RHS (Right Angle-Hypotenuse-Side) Theorem

Statement:

If the hypotenuse and one leg of a right triangle are congruent to the hypotenuse and one leg of another right triangle, then the two triangles are congruent.

Given, AB = DE, AC = DF and $\angle C = \angle F = 90^{\circ}$.

then, BC = EF, $\angle A = \angle D$ and $\angle B = \angle E$.

Explanation: This theorem is used for right-angled triangles, where the hypotenuse and one leg are congruent.

