10.569 Synthesis of Polymers Prof. Paula Hammond

Lecture 7: Crosslinking and Branching, Network Formation and Gelation, Carothers Equation, Pn Approach

Polyimides

Staged formation of Polyimides

Stage 1: Formation of polyamic acid

Stage 2: Cyclization

- reaction takes place in solid state or near solid state
- H₂O removal

T > 150°C Low P (vacuum) Final product is intractable Kapton® Pyralin® Vespel®

Aromatic Polyamides

"Wholly" aromatic

$$\begin{array}{c} \begin{pmatrix} H \\ N - Ar - N - C - Ar - C \end{pmatrix} \\ \begin{pmatrix} H \\ N - Ar - C \end{pmatrix} \\ \end{pmatrix} \\ \begin{pmatrix} H \\ N - Ar - C \end{pmatrix} \\ \end{pmatrix} \\ \begin{pmatrix} H \\ N - Ar - C \end{pmatrix} \\ \end{pmatrix} \\ \begin{pmatrix} H \\ N - Ar - C \end{pmatrix}$$

10.569, Synthesis of Polymers, Fall 2006 Prof. Paula Hammond

⇒ very stable crystallites

Lecture 7 Page 2 of 5

"aramids"

H-bonding β sheets

- ⇒ semicrystalline very high melting points rigid backbones
 - ⇒ liquid crystal phases in soln

Example:

Kevlar® (Dupont)

Compare to: high tensile steel

	Ultimate TS	ε at break	Energy at break	Weakness:
Kevlar 49	3.6 GPa	2.7%	25 MJ/m ³	Low compressive strength. (analogy: broom straws)
High tensile steel	1.5 GPa	0.8%	6 MJ/m ³	

How to react? (making aramids)

• Bulk melt: T_m way too high!

• Interfacial polymerization: possible

Get product as precipitate at interface Works for partially aromatic polyamides Solvent: solvate low + mod MW's Remain phase separated from H₂O

 Not possible

• Solution polymerization:

$$\begin{array}{c} O \\ \parallel \\ C \end{array}$$
 + H_2N — reactive groups

highly reactive - allows dilution

Reaction conditions:

 $T \sim 25^{\circ}C - 50^{\circ}C$ or lower Add Li₂CO₃, Na₂CO₃, CaOH

Solvents: must be very polar, H-binding groups

Advantageous if also sol basic

 \Rightarrow neutralize HCl

10.569, Synthesis of Polymers, Fall 2006 Prof. Paula Hammond Lecture 7 Page 3 of 5

Often add LiCl or other Li salts to solvent

⇒ aid in H-bond break-up

,			
Common Solvents:	CHCl₃		Less polar
	CH ₂ Cl ₂		
	CH₃CN		
	CI-CH ₂ -Br		
DMAc	O H ₃ C-C-N		
NMP	CH ₃		
DMSO		▼	More polar

Kevlar®:

$$\begin{array}{l} T_m = 570^{o}C \\ T_g = ? \\ T_{deg} = 550^{o}C \text{ in } N_2 \\ E_o = 6000 - 8000 \text{ kg/mm}^2 \end{array}$$

Slight Change: go from p (para) to m (meta) linkages

$$T_m = 435^{\circ}C$$

 $T_g = 272^{\circ}C$
 $E_o = 2000 \text{ kg/mm}^2$

Stretches out more

Branching and Network Formation

So far: difunctional monomers: f = 2When monomer functionality $f \ge 3 \Rightarrow$

networks

- crosslinks are individual junctions
- networks are infinitely large

Examples:

1.
$$a-b + a + a \rightarrow branches$$

2. $a-b + a_f + b-b \rightarrow branches$, then crosslinks

10.569, Synthesis of Polymers, Fall 2006 Prof. Paula Hammond Lecture 7 Page 4 of 5

- 3. $a-a+b-b+b_f \rightarrow branches$, then crosslinks
- 4. $a_f + b_f \rightarrow branches$, crosslinked networks