

WAS4728Q

Low On Resistance Dual SPDT Analog Switch

Descriptions

The WAS4728Q is a high performance, dual Single Pole Double Throw (SPDT) analog switch that features ultra-low Ron of 0.5 Ω (typical) at 3.0V VCC. The WAS4728Q operates over a wide VCC range of 2.3V to 5.5V and is designed for break-before-make operation. The select input is TTL-level compatible.

WAS4728Q is also featured with smart circuitry to minimize VCC leakage current even when the control voltage is lower than VCC supply voltage. This feature suits mobile handset applications by allowing direct interface with baseband processor general-purpose IO with minimal battery consumption. In other word, there is no need of additional device to shift control level to be the same as that of VCC in real application.

The WAS4728Q is available in QFN1418-10L package. Standard product is Pb-Free and halogen-Free.

Features

Supply voltage : 2.3 ~ 5.5V
 ultra-low On Resistance : 0.5 Ω

High Off isolation : -81dB @ 1KHzCrosstalk Rejection : -83dB @ 1KHz

-3dB Bandwidth : 50MHz

Rail-to-Rail Signal Range

Break-Before-Make Switching

 Low quiescent current over an Expanded Control Input Range

HBM JEDEC: JESD22-A114

♦ IO to GND : ±8KV
 ♦ Power to GND : ±5KV

Applications

- Cell phones, PDA, Digital Camera and Notebook
- LCD Monitor, TV and Set-Top Box
- Audio and Video Signal Routing
- Other electronics equipments

Http//:www.willsemi.com

Pin configuration (Top view)

28 = Device code * = Month (A~Z) Marking

Order information

Device	Package	Shipping
WAS4728Q-10/TR	QFN1418-10L	3000/Reel&Tape

Pin descriptions

Pin Number	Symbol	Descriptions
1,3	NOx	Data Port(Normally open)
4	GND	Ground
2,10	NC _X	Data Port(Normally closed)
5,8	COM _X	Common Data Port
9	VCC	Positive Power Supply
6,7	IN _X	Logic Control

Function descriptions

Logic Input(IN _X)	Function
0	NC _X Connected to COM _X
1	NO _X Connected to COM _X

Note: x=1 or 2

Functional Block Diagram

Absolute Maximum Ratings (1)

Parameter	Symbol	Value	Unit
Supply Voltage	V _{cc}	-0.3 ~ 6.5	V
Control Input Voltage	VIN _X	-0.3 ~ 6.5	V
DC Input Voltage (2)	V _{INPUT}	-0.3 ~ 6.5	V
Continuous Current NO_NC_COM_		±300	mA
Peak Current NO_NC_COM_ (pulsed at 1ms 50% duty cycle)		±400	mA
Peak Current NO_NC_COM_ (pulsed at 1ms 10% duty cycle)		±500	mA
Storage Temperature Range	T _{STG}	-55 ~ 150	°C
Junction Temperature under Bias	T _J	150	°C
Lead Temperature (Soldering, 10 seconds)	TL	260	°C
Power Dissipation	P _D	250	mW

Recommend operating ratings (3)

Parameter	Symbol	Value	Unit
Supply Voltage Operating	V _{CC}	2.3 ~ 5.5	V
Control Input Voltage	V _{IN}	0.0 ~ V _{CC}	V
Input Signal Voltage	V _{IS}	0.0 ~ V _{CC}	V
Operating Temperature	T _A	-40 ~ 85	°C
Input Raise and Fall Time(Control Input V _{CC} =2.3~3.6V)	t_r, t_f	0 ~ 10	ns/V
Thermal Resistance	$R_{ heta JA}$	350	°C/W

Note:

- "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating
 and operation of the device at these or any other conditions beyond those indicated in the operational
 sections of this specification is not implied.
- 2. The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.
- 3. Control input must be held high or Low, it must not float.

Will Semiconductor Ltd. 3 Mar, 2017 - Rev. 1.5

DC Electronics Characteristics (Ta=25°C, VCC=4.5V, unless otherwise noted)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
lament lamin bink lavel	\/	VCC: 3.0 ~ 4.5	1.6			V
Input logic high level	V_{IH}	VCC: 2.3 ~ 3.0	1.4			V
legat legis legalege	\/	VCC: 3.0 ~ 4.5			0.6	V
Input logic low level	V_{IL}	VCC: 2.3 ~ 3.0			0.4	V
Supply guidesent ourrent	1	I _{OUT} =0,			1.0	
Supply quiescent current	I _{cc}	$V_{IN} = 0$ or $V_{IN} = VCC$			1.0	uA
Increase in L. per input	ı	I _{OUT} =0, VCC=4.5			2.0	uA
Increase in I _{CC} per input	I _{CCT}	V _{IN} >1.8 or V _{IN} <0.5			2.0	uA
Input leakage current	I _{IN}	V _{SEL} =VCC			±1.0	uA
Off state switch leakage current	I_{OFF}				±1.0	uA
On state switch leakage current	I _{ON}				±1.0	uA
		VCC=4.5V,				
	R _{ON}	V _{IS} =0~4.5V,		0.5		Ω
On-Resistance		I _{OUT} =100mA,				
On-Resistance		VCC=3.0V,				
		V _{IS} =0~3.0V,		0.6		Ω
		I _{OUT} =100mA,				
		VCC=4.5V,				
		V _{IS} =0.8V,		0.08		Ω
On-Resistance Matching Between	Δ R _{ON}	I _{OUT} =100mA,				
Channels	ΔKON	VCC=3.0V,				
		V _{IS} =0.8V,		0.12		Ω
		I _{OUT} =100mA,				
		VCC=4.5V,				
On-Resistance Flatness		V _{IS} =0~4.5V,			0.2	Ω
	D	I _{OUT} =100mA,				
On-inesistance Flathess	R _{FLAT(ON)}	VCC=3.0V,				
		V _{IS} =0~3.0V,			0.2	Ω
		I _{OUT} =100mA,				

AC Electronics Characteristics (Ta=25°C, VCC=4.5V, unless otherwise noted)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
		VCC=4.5V,				
Turn-On Time	T _{ON}	V _{IS} =1.5V,		200		ns
		$C_L=35pF, R_L=50\Omega$				
		VCC=4.5V,				
Turn-Off Time	T _{OFF}	V _{IS} =1.5V,		200		ns
		$C_L=35pF, R_L=50\Omega$				
Break-Before-Make time	T _{BBM}	Generate by design		100		ns
-3dB Bandwidth	BW	$R_L=50\Omega$, $C_L=0pF$		50		MHz
Off inclution	OIDD	F=1KHz, R_L =50 Ω		-81		dB
Off isolation	OIRR	F=10KHz, R_L =50 Ω		-80		dB
Croostalle	Vtalle	F=1KHz, R _L =50Ω		-83		dB
Crosstalk	Xtalk	F=10KHz, R _L =50Ω		-82		dB
Tatal Hanna dia Biatantia	TUD	F=20Hz to 20KHz		0.02		0/
Total Harmonic Distortion	THD	$R_L=32\Omega$, $V_{IS}=2Vp-p$		0.02		%

Capacitance (Ta=25°C unless otherwise noted)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Off capacitance	C_{OFF}	F=100KHz, VCC=3.3		40		pF
On capacitance	C _{ON}	F=100KHz, VCC=3.3		100		pF

Will Semiconductor Ltd. 5 Mar, 2017 - Rev. 1.5

Typical Characteristics (Ta=25°C, VCC=4.5V, unless otherwise noted)

Bandwidth (BW)

THD+N

Test Circuits

ON-Resistance (Ron)

ON/OFF Time Waveforms (T_{ON} / T_{OFF})

Crosstalk (Xtalk)

Off isolation (OIRR)

Bandwidth (BW)

THD+N

PACKAGE OUTLINE DIMENSIONS

QFN1418-10L

TOP VIEW

BOTTOM VIEW

Symbol	Dimensions in Millimeters					
	Min. Typ.		Max.			
А	0.50	0.55	0.60			
A1	0.00	0.00 - 0.05				
А3	0.15 Ref.					
D	1.35	1.40	1.45			
Е	1.75	1.85				
b	0.15	0.15 0.20				
L	0.30 0.40 0.50					
L1	0.40	0.50	0.60			
е	0.40 BSC					

Will Semiconductor Ltd. 8 Mar, 2017 - Rev. 1.5

TAPE AND REEL INFORMATION

Reel Dimensions

Tape Dimensions

Quadrant Assignments For PIN1 Orientation In Tape

User Direction of Feed

RD	Reel Dimension	☑ 7inch	☐ 13inch		
W	Overall width of the carrier tape	▼ 8mm	☐ 12mm		
P1	Pitch between successive cavity centers	☐ 2mm	✓ 4mm	☐ 8mm	
Pin1	Pin1 Quadrant	▼ Q1	□ Q2	□ Q3	□ Q4