Elementary Linear Algebra - MATH 2250 - Quiz 14

Name:

1. T F The projection of 2a onto b is equal to 2 times the projection of a onto b. Give a detailed example.

2. T F The projection of a onto 2b is equal to 2 times the projection of a onto b. Give a detailed example.

3. Let a = (1, 1, 1, 1) and b = (1, -1, 1, -1). Find p, the projection of a onto b, and draw all **three** vectors.

4. Let $\mathbf{a} = (1, 1, 1, 1)$ and $\mathbf{b} = (2, 2, 2, 2)$. Find \mathbf{q} , the projection of \mathbf{b} onto \mathbf{a} , and draw all three vectors.

- 5. If b = ca, for a real number c, then projection of b onto a is ______.
- 6. If b = ca, for a real number c, then projection of a onto b is _____.

7.	Let •	a = (1	1, 2, 0,	2).		
	(a)	Find	$\boldsymbol{a}^T \boldsymbol{a}$.	Is it	nonzero	?

(b) Find aa^T . What is its rank?

(c) Find the projection matrix P that projects every vector onto \boldsymbol{a} . What is its rank?

(d) Find the column space of P.

(e) Is P symmetric?

(f) If you find the vector $P\mathbf{b}$ for some vector \mathbf{b} , where do you expect it to live? Be as precise as possible.

(g) Let $\boldsymbol{b}=(2,0,3,6).$ Find $\boldsymbol{a}^T\boldsymbol{b},$ and $\frac{\boldsymbol{a}^T\boldsymbol{b}}{\boldsymbol{a}\boldsymbol{a}^T}.$

(h) Find $P\boldsymbol{b}$.

(i) Note that Pb is a multiple of a. What multiple is it?

(j) Find $P^2 \boldsymbol{b}$.

(k) What do you expect about P^3 **b**, P^4 **b** etc?

(1) Is $P^2 = P$?

- (m) What about P^3 , P^4 and P^5 ?
- 8. Consider the equation $A\mathbf{x} = \mathbf{b}$, where $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix}$. Does it have a solution?

Find $B = A^T A$.

Find $\boldsymbol{p} = A^T \boldsymbol{b}$.

Solve the system $B\hat{x} = p$.

10. Draw a picture similar to the one in page 221 of the book for Problem 8.