Notes of Modern Quantum Chemistry, Szabo & Ostlund

hebrewsnabla

February 29, 2020

Contents

N-D Complex Vector Spaces
1.4.1 Change of Basis
The Electronic Problem
2.1.1 Atomic Units
2.1.2 The B-O Approximation
2.1.3 The Antisymmetry or Pauli Exclusion Principle
Orbitals, Slater Determinants, and Basis Functions
2.2.1 Spin Orbitals and Spatial Orbitals
2.2.2 Hartree Products
2.2.3 Slater Determinants
2.2.4 The Hartree-Fock Approximation
2.2.5 The Minimal Basis H_2 Model
2.2.6 Excited Determinants
Operators and Matrix Elements
2.3.1 Minimal Basis H ₂ Matrix Elements
2.3.2 Notations for 1- and 2-Electron Integrals
2.3.3 General Rules for Matrix Elements
Second Quantization
2.4.1 Creation and Annihilation Operators and Their Anticommutation Relations
Spin-Adapted Configurations
2.5.1 Spin Operators
2.5.2 Restricted Determinants and Spin-Adapted Configurations

3	The	Hartree-Fock Approximation 7	7									
	3.1	The HF Equations	7									
		3.1.1 The Coulomb and Exchange Operators	7									
		3.1.2 The Fock Operator	7									
	3.2	Derivation of the HF Equations	7									
		3.2.1 Functional Variation	7									
		3.2.2 Minimization of the Energy of a Single Determinant	7									
		3.2.3 The Canonical HF Equations	7									
	3.3	Interpretation of Solutions to the HF Equations	7									
		3.3.1 Orbital Energies and Koopmans' Theorem	7									
		3.3.2 Brillouin's Theorem	3									
		3.3.3 The HF Hamiltonian	3									
	3.4	Restricted Closed-shell HF: The Roothaan Equations	3									
		3.4.1 Closed-shell HF: Restricted Spin Orbitals	3									
		3.4.2 Introduction of a Basis: The Roothaan Equations	3									
		3.4.3 The Charge Density	3									
		3.4.4 Expression for the Fock Matrix	3									
		3.4.5 Orthogonalization of the Basis	3									
		3.4.6 The SCF Procedure)									
		3.4.7 Expectation Values and Population Analysis)									
	3.5	Model Calculations on H_2 and HeH^+)									
		3.5.1 The 1s Minimal STO-3G Basis Set)									
		3.5.2 STO-3G H_2)									
		3.5.3 An SCF Calculation on STO-3G HeH^+)									
	3.6	Polyatomic Basis Sets)									
		3.6.1 Contracted Gaussian Functions)									
		3.6.2 Minimal Basis Sets: STO-3G)									
		3.6.3 Double Zeta Basis Sets: 4-31G)									
		3.6.4 Polarized Basis Sets: $6-31G^*$ and $6-31G^{**}$)									
	3.7	Some Illustrative Closed-shell Calculations)									
		3.7.1 Total Energies)									
		3.7.2 Ionization Potentials)									
		3.7.3 Equilibrium Geometries)									
		3.7.4 Population Analysis and Dipole Moments)									
	3.8	Unrestricted Open-shell HF: The Pople-Nesbet Equations)									
		3.8.1 Open-shell HF: Unrestricted Spin Orbitals)									
		3.8.2 Introduction of a Basis: The Pople-Nesbet Equations)									
		3.8.3 Unrestricted Density Matrices)									
		3.8.4 Expression for the Fock Matrices)									
		3.8.5 Solution of the Unrestricted SCF Equations	L									
		3.8.6 Illustrative Unrestricted Calculations	L									
4		figuration Interaction										
	4.1	Multiconfigurational Wave Functions and the Structure of Full CI Matrix 11										
		4.1.1 Intermediate Normalization and an Expression for the Correlation Energy 11										
	4.2	Doubly Exited CI										
	4.3	Some Illustrative Calculations										
	4.4	Natural Orbitals and the 1-Particle Reduced DM										
	4.5	The MCSCF and the GVB Methods)									

4.6	Truncated	CI and	the Size-	consistency	Problem														1:	2
-----	-----------	--------	-----------	-------------	---------	--	--	--	--	--	--	--	--	--	--	--	--	--	----	---

0

spatial mol orb – ψ – i,j,k,...spatial basis fxn – ϕ – $\mu,\nu,\lambda,...$ spin orb – χ occ mol orb – a,b,c,...vir mol orb – r,s,t,...exact many-elec wfn – Φ approx many-elec wfn – Ψ exact energy – $\mathscr E$ approx energy – E

1

- 1.1
- 1.2
- 1.3

1.4 N-D Complex Vector Spaces

Suppose

$$\mathcal{O}|a\rangle = |b\rangle \tag{1.1}$$

$$\langle i \mid \mathcal{O} \mid j \rangle = O_{ij} \tag{1.2}$$

def the **adjoint** of \mathcal{O} as \mathcal{O}^{\dagger}

$$\langle a | \mathcal{O}^{\dagger} = \langle b | \tag{1.3}$$

$$\langle i \mid \mathcal{O}^{\dagger} \mid j \rangle = O_{ii}^{*} \tag{1.4}$$

1.4.1 Change of Basis

$$|\alpha\rangle = \sum_{i} |i\rangle \langle i|\alpha\rangle = \sum_{i} |i\rangle U_{i\alpha}$$
 (1.5)

$$|i\rangle = \sum_{\alpha} |\alpha\rangle \langle i|\alpha\rangle = \sum_{\alpha} |\alpha\rangle U_{i\alpha}^*$$
 (1.6)

If i, α are all orthonormal, **U** must be unitary.

$$\Omega_{\alpha\beta} = \langle \alpha \, | \, \mathcal{O} \, | \, \beta \rangle = \dots \sum_{ij} U_{\alpha i}^* O_{ij} U_{j\beta}$$
(1.7)

or

$$\mathbf{\Omega} = \mathbf{U}^{\dagger} \mathbf{O} \mathbf{U} \tag{1.8}$$

2.1 The Electronic Problem

- 2.1.1 Atomic Units
- 2.1.2 The B-O Approximation
- 2.1.3 The Antisymmetry or Pauli Exclusion Principle
- 2.2 Orbitals, Slater Determinants, and Basis Functions
- 2.2.1 Spin Orbitals and Spatial Orbitals
- 2.2.2 Hartree Products
- 2.2.3 Slater Determinants

def

$$|\chi_{i}(\mathbf{x}_{1})\chi_{j}(\mathbf{x}_{2})\cdots\chi_{k}(\mathbf{x}_{N})\rangle \equiv \frac{1}{\sqrt{N!}}\begin{vmatrix} \chi_{i}(\mathbf{x}_{1}) & \chi_{j}(\mathbf{x}_{1}) & \cdots & \chi_{k}(\mathbf{x}_{1}) \\ \chi_{i}(\mathbf{x}_{2}) & \chi_{j}(\mathbf{x}_{2}) & \cdots & \chi_{k}(\mathbf{x}_{2}) \\ \vdots & \vdots & & \vdots \\ \chi_{i}(\mathbf{x}_{N}) & \chi_{j}(\mathbf{x}_{N}) & \cdots & \chi_{k}(\mathbf{x}_{N}) \end{vmatrix}$$
(2.1)

It can be further shortened to

$$|\chi_i\chi_j\cdots\chi_k\rangle$$
 (2.2)

2.2.4 The Hartree-Fock Approximation

2.2.5 The Minimal Basis H_2 Model

gerade, ungerade

2.2.6 Excited Determinants

Suppose the ground state det

$$|\psi_0\rangle = |\chi_1 \cdots \chi_a \cdots \chi_b \cdots \chi_N\rangle \tag{2.3}$$

thus, singly excited det

$$|\psi_a^r\rangle = |\chi_1 \cdots \chi_r \cdots \chi_b \cdots \chi_N\rangle \tag{2.4}$$

$$|\psi_{ab}^{rs}\rangle = |\chi_1 \cdots \chi_r \cdots \chi_s \cdots \chi_N\rangle \tag{2.5}$$

How does program determine what dets can exist? by gerade/ungerade?

2.3 Operators and Matrix Elements

2.3.1 Minimal Basis H₂ Matrix Elements

2.3.2 Notations for 1- and 2-Electron Integrals

For spin orb, physicists'

$$\langle ij | kl \rangle = \left\langle \chi_i(1)\chi_j(2) \left| \frac{1}{r_{12}} \right| \chi_k(1)\chi_l(2) \right\rangle$$
 (2.6)

$$\langle ij \parallel kl \rangle = \langle ij \mid kl \rangle - \langle ij \mid lk \rangle$$
 (2.7)

chemists'

$$[ij|kl] = \left\langle \chi_i(1)\chi_j(1) \left| \frac{1}{r_{12}} \right| \chi_k(2)\chi_l(2) \right\rangle$$
 (2.8)

For spatial orb

$$(ij|kl) = \left\langle \psi_i(1)\psi_j(1) \left| \frac{1}{r_{12}} \right| \psi_k(2)\psi_l(2) \right\rangle$$
(2.9)

2.3.3 General Rules for Matrix Elements

1. $|K\rangle = |\cdots mn \cdots \rangle$

$$\langle K \, | \, \mathcal{H} \, | \, K \rangle = \sum_{m}^{N} \langle m \, | \, h \, | \, m \rangle + \frac{1}{2} \sum_{m}^{N} \sum_{n}^{N} \langle mn \, | | \, mn \rangle = \sum_{m}^{N} [m|h|m] + \frac{1}{2} \sum_{m}^{N} \sum_{n}^{N} ([mm|nn] - [mn|nm])$$
(2.10)

or (Since [mm|mm] - [mm|mm] = 0)

$$\langle K | \mathcal{H} | K \rangle = \sum_{m}^{N} [m|h|m] + \sum_{m}^{N} \sum_{n>m}^{N} ([mm|nn] - [mn|nm])$$
 (2.11)

2. $|K\rangle = |\cdots mn \cdots\rangle, |L\rangle = |\cdots pn \cdots\rangle$

$$\langle K \mid \mathcal{H} \mid L \rangle = \langle m \mid h \mid p \rangle + \sum_{n=1}^{N} \langle mn \parallel pn \rangle = [m|h|p] + \sum_{n=1}^{N} ([mp|nn] - [mn|np]) \qquad (2.12)$$

3.
$$|K\rangle = |\cdots mn \cdots\rangle, |L\rangle = |\cdots pq \cdots\rangle$$

$$\langle K | \mathcal{H} | L\rangle = \langle mn || pq\rangle = [mp|nq] - [mq|np] \tag{2.13}$$

2.4 Second Quantization

2.4.1 Creation and Annihilation Operators and Their Anticommutation Relations

$$a_i^{\dagger} a_i^{\dagger} + a_i^{\dagger} a_i^{\dagger} = 0 \quad a_i a_i + a_i a_i = 0 \tag{2.14}$$

$$\{a_i, a_i^{\dagger}\} \equiv a_i a_i^{\dagger} + a_i^{\dagger} a_i = \delta_{ij} \tag{2.15}$$

2.5 Spin-Adapted Configurations

2.5.1 Spin Operators

total spin

$$\hat{\mathscr{P}} = \sum_{i}^{N} \hat{\mathbf{s}}(i) \tag{2.16}$$

$$\hat{\mathscr{S}}_x = \sum_{i}^{N} \hat{\mathbf{s}}_x(i) \tag{2.17}$$

$$\hat{\mathscr{S}}_{+} = \sum_{i}^{N} \hat{\mathbf{s}}_{+}(i) \tag{2.18}$$

$$\hat{\mathcal{S}}^2 = \hat{\mathcal{S}}_+ \hat{\mathcal{S}}_- - \hat{\mathcal{S}}_z + \hat{\mathcal{S}}_z^2 \tag{2.19}$$

$$\hat{\mathscr{S}}^2 |\Phi\rangle = S(S+1) |\Phi\rangle \tag{2.20}$$

$$\hat{\mathscr{S}}_z |\Phi\rangle = M_S |\Phi\rangle \tag{2.21}$$

$$\hat{\mathscr{S}}_z |ij\cdots k\rangle = \frac{1}{2} (N^\alpha - N^\beta) |ij\cdots k\rangle$$
 (2.22)

2.5.2 Restricted Determinants and Spin-Adapted Configurations

$$|^{1}\Psi_{1}^{2}\rangle = \frac{1}{\sqrt{2}}(|1\bar{2}\rangle + |\bar{1}2\rangle) = \frac{1}{\sqrt{2}}(\psi_{1}(1)\psi_{2}(2)\alpha(1)\beta(2) - \psi_{2}(1)...)$$
 (2.23)

3 The Hartree-Fock Approximation

3.1 The HF Equations

3.1.1 The Coulomb and Exchange Operators

$$\mathscr{J}_b(1) = \int \mathrm{d}x_2 \chi_b^*(2) r_{12}^{-1} \chi_b(2) \tag{3.1}$$

$$\mathscr{K}_b(1) = \int dx_2 \chi_b^*(2) r_{12}^{-1} \hat{\mathscr{P}}_{12} \chi_b(2)$$
(3.2)

$$= \int \mathrm{d}x_2 \chi_b^*(2) r_{12}^{-1} \chi_b(1) \hat{\mathscr{P}}_{12} \tag{3.3}$$

$$\langle \chi_a(1) | \mathcal{J}_b(1) | \chi_a(1) \rangle = J_{ab} \tag{3.4}$$

$$\langle \chi_a(1) \mid \mathcal{K}_b(1) \mid \chi_a(1) \rangle = K_{ab} \tag{3.5}$$

3.1.2 The Fock Operator

3.2 Derivation of the HF Equations

- 3.2.1 Functional Variation
- 3.2.2 Minimization of the Energy of a Single Determinant
- 3.2.3 The Canonical HF Equations

3.3 Interpretation of Solutions to the HF Equations

3.3.1 Orbital Energies and Koopmans' Theorem

$$\varepsilon_{i} = \langle i \mid h \mid i \rangle + \sum_{b} \langle ib \parallel ib \rangle \tag{3.6}$$

$$= \langle i \mid h \mid i \rangle + \sum_{b}^{3} (\langle ib \mid ib \rangle - \langle ib \mid bi \rangle)$$
 (3.7)

Koopmans' Theorem

$$IP = -\varepsilon_a \quad EA = -\varepsilon_r \tag{3.8}$$

Koopmans' EA is often bad.

3.3.2 Brillouin's Theorem

$$\langle \Psi_0 \,|\, \mathcal{H} \,|\, \Psi_a^r \rangle = 0 \tag{3.9}$$

3.3.3 The HF Hamiltonian

$$\mathcal{H}_0 = \sum_{i=1}^{N} f(i) \tag{3.10}$$

3.4 Restricted Closed-shell HF: The Roothaan Equations

3.4.1 Closed-shell HF: Restricted Spin Orbitals

$$E_0 = 2\sum_a h_{aa} + \sum_a \sum_b (2J_{ab} - K_{ab})$$
(3.11)

3.4.2 Introduction of a Basis: The Roothaan Equations

- 3.4.3 The Charge Density
- 3.4.4 Expression for the Fock Matrix
- 3.4.5 Orthogonalization of the Basis

$$\mathbf{X}^{\dagger}\mathbf{S}\mathbf{X} = \mathbf{1} \tag{3.12}$$

S can be diagonalized by unitary matrix U:

$$\mathbf{U}^{\dagger}\mathbf{S}\mathbf{U} = \mathbf{s} \tag{3.13}$$

Symmetric Orthogonalization

$$\mathbf{X} = \mathbf{S}^{-1/2} = \mathbf{U}\mathbf{s}^{-1/2}\mathbf{U}^{\dagger} \tag{3.14}$$

(linear dependence must be removed)

Canonical Orthogonalization

$$\mathbf{X} = \mathbf{U}\mathbf{S}^{-1/2} = \mathbf{U}\mathbf{s}^{-1/2}\mathbf{U}^{\dagger} \tag{3.15}$$

Suppose s has m small values, we make a truncated $K \times (K - m)$ matrix

$$\tilde{\mathbf{X}} = \dots \tag{3.16}$$

thus

$$\phi'_{\mu} = \sum_{\nu}^{K} \phi_{\nu} \tilde{X}_{\nu\mu} \qquad \mu = 1, 2, \cdots, K - m$$
 (3.17)

However, calculate 2e integrals in transformed matrix is very time-consuming. Since

$$\phi' = \phi \mathbf{X} \tag{3.18}$$

$$\psi = \phi \mathbf{C} \tag{3.19}$$

we have

$$\psi = \phi' \mathbf{X}^{-1} \mathbf{C} \tag{3.20}$$

Let

$$\mathbf{C}' = \mathbf{X}^{-1}\mathbf{C} \qquad or \ \mathbf{C} = \mathbf{X}\mathbf{C}' \tag{3.21}$$

thus

$$\mathbf{FXC'} = \mathbf{SXC'}\boldsymbol{\varepsilon} \tag{3.22}$$

$$(\mathbf{X}^{\dagger}\mathbf{F}\mathbf{X})\mathbf{C}' = (\mathbf{X}^{\dagger}\mathbf{S}\mathbf{X})\mathbf{C}'\boldsymbol{\varepsilon} = \mathbf{C}'\boldsymbol{\varepsilon}$$
(3.23)

def:

$$\mathbf{F}' = \mathbf{X}^{\dagger} \mathbf{F} \mathbf{X} \tag{3.24}$$

3.4.6 The SCF Procedure

P. 148

I think \mathbf{C}' should be $(K-m) \times K$.

3.4.7 Expectation Values and Population Analysis

$$N = \sum_{\mu} \sum_{\nu} P_{\mu\nu} S_{\mu\nu} = \operatorname{tr} \mathbf{PS}$$
 (3.25)

Mulliken:

$$q_A = Z_A - \sum_{\mu \in A} (\mathbf{PS})_{\mu\mu} \tag{3.26}$$

Löwin:

$$q_A = Z_A - \sum_{\mu \in A} (\mathbf{S}^{1/2} \mathbf{P} \mathbf{S}^{1/2})_{\mu\mu}$$
 (3.27)

3.5 Model Calculations on H_2 and HeH^+

3.5.1 The 1s Minimal STO-3G Basis Set

$$\alpha = \alpha_{(\zeta = 1.0)} \times \zeta^2 \tag{3.28}$$

3.5.2 STO-3G H₂

3.5.3 An SCF Calculation on STO-3G HeH⁺

3.6 Polyatomic Basis Sets

3.6.1 Contracted Gaussian Functions

Notation: (pGTO)/[cGTO] (ignore $p_x, p_y, ...$)

$$\begin{array}{ccc} {\rm STO\text{-}3G} & (6{\rm s3p/3s})/[2{\rm s1p/1s}] \\ 4{\rm -}31{\rm G} & (8{\rm s4p/4s})/[3{\rm s2p/2s}] \\ {\rm T.\ Dunning\ (JCP\ 1970)} & (9{\rm s5p/4s})/[3{\rm s2p/2s}] \\ 6{\rm -}31{\rm G}^*\ ({\rm sph}) & (10{\rm s4p1d})/[3{\rm s2p1d/2s}] \\ 6{\rm -}31{\rm G}^{**}\ ({\rm sph}) & (10{\rm s4p1d/4s1p})/[3{\rm s2p1d/2s1p}] \end{array}$$

- 3.6.2 Minimal Basis Sets: STO-3G
- Double Zeta Basis Sets: 4-31G
- 3.6.4 Polarized Basis Sets: 6-31G* and 6-31G**

What's D polarized basis?

Cartesian: xx, yy, zz, xy, yz, xzSpherical: $3z^2 - r^2, x^2 - y^2, xy, yz, zx$, $(r^2 \text{ is removed})$

Some Illustrative Closed-shell Calculations

- Total Energies
- 3.7.2 Ionization Potentials
- **Equilibrium Geometries**
- 3.7.4 Population Analysis and Dipole Moments

Unrestricted Open-shell HF: The Pople-Nesbet Equations

Open-shell HF: Unrestricted Spin Orbitals

$$f^{\alpha}(1) = h(1) + \sum_{a}^{N_{\alpha}} \left[J_a^{\alpha}(1) - K_a^{\alpha}(1) \right] + \sum_{a}^{N_{\beta}} J_a^{\beta}(1)$$
 (3.29)

$$E_0 = \sum_{a} h_{aa} + \frac{1}{2} \sum_{a}^{N_{\alpha}} \sum_{b}^{N_{\alpha}} (J_{ab}^{\alpha\alpha} - K_{ab}^{\alpha\alpha}) + \frac{1}{2} \sum_{a}^{N_{\beta}} \sum_{b}^{N_{\beta}} (J_{ab}^{\beta\beta} - K_{ab}^{\beta\beta}) + \sum_{a}^{N_{\alpha}} \sum_{b}^{N_{\beta}} J_{ab}^{\alpha\beta}$$
(3.30)

3.8.2 Introduction of a Basis: The Pople-Nesbet Equations

$$\mathbf{F}^{\alpha}\mathbf{C}^{\alpha} = \mathbf{S}\mathbf{C}^{\alpha}\boldsymbol{\varepsilon}^{\alpha} \tag{3.31}$$

$$\mathbf{F}^{\beta}\mathbf{C}^{\beta} = \mathbf{S}\mathbf{C}^{\beta}\boldsymbol{\varepsilon}^{\beta} \tag{3.32}$$

3.8.3 Unrestricted Density Matrices

spin density

$$\rho^{S}(\mathbf{r}) = \rho^{\alpha}(\mathbf{r}) - \rho^{\beta}(\mathbf{r}) \tag{3.33}$$

$$\mathbf{P}^S = \mathbf{P}^\alpha - \mathbf{P}^\beta \tag{3.34}$$

3.8.4 Expression for the Fock Matrices

$$F_{\mu\nu}^{\alpha} = H_{\mu\nu}^{\text{core}} + \sum_{\lambda} \sum_{\sigma} \left[P_{\lambda\sigma}^{T}(\mu\nu|\sigma\lambda) - P_{\lambda\sigma}^{\alpha}(\mu\lambda|\sigma\nu) \right]$$
 (3.35)

$$F_{\mu\nu}^{\beta} = H_{\mu\nu}^{\text{core}} + \sum_{\lambda} \sum_{\sigma} \left[P_{\lambda\sigma}^{T}(\mu\nu|\sigma\lambda) - P_{\lambda\sigma}^{\beta}(\mu\lambda|\sigma\nu) \right]$$
 (3.36)

3.8.5 Solution of the Unrestricted SCF Equations

3.8.6 Illustrative Unrestricted Calculations

4 Configuration Interaction

4.1 Multiconfigurational Wave Functions and the Structure of Full CI Matrix

1.

$$\langle \Psi_0 \,|\, \mathcal{H} \,|\, S \rangle = 0 \tag{4.1}$$

- 2. Slater dets which differ by > 2 spin orbitals are zero. Non-zero blocks are sparse.
- 3. Single excitations have a very small effect on the ground state energy, but not small for dipole and excited states.

4.1.1 Intermediate Normalization and an Expression for the Correlation Energy

Intermediate Normalization:

$$|\Phi_0\rangle = |\Psi_0\rangle + \dots \tag{4.2}$$

thus

$$\langle \Psi_0 \, | \, \Phi_0 \rangle = 0 \tag{4.3}$$

thus

$$E_{\text{corr}} = \langle \Psi_0 | \mathcal{H} - E_0 | \Phi_0 \rangle = \sum_{c < d.t < u} c_{cd}^{tu} \langle \Psi_0 | \mathcal{H} | \Psi_{cd}^{tu} \rangle$$

$$(4.4)$$

4.2 Doubly Exited CI

$$\sum_{c < d, t < u} c_{cd}^{tu} \left\langle \Psi_0 \middle| \mathcal{H} \middle| \Psi_{cd}^{tu} \right\rangle = E_{\text{corr}}$$
(4.5)

$$\langle \Psi_{ab}^{rs} | \mathcal{H} | \Psi_0 \rangle + \sum_{c < d, t < u} c_{cd}^{tu} \langle \Psi_{ab}^{rs} | \mathcal{H} - E_0 | \Psi_{cd}^{tu} \rangle = c_{ab}^{rs} E_{\text{corr}}$$

$$(4.6)$$

def

$$B_{rasb} = \langle \Psi_{ab}^{rs} | \mathcal{H} | \Psi_0 \rangle \tag{4.7}$$

$$D_{rasb,tcud} = \left\langle \Psi_{ab}^{rs} \middle| \mathcal{H} - E_0 \middle| \Psi_{cd}^{tu} \right\rangle \tag{4.8}$$

$$c_{rasb} = c_{ab}^{rs} \tag{4.9}$$

thus

$$\begin{pmatrix} 0 & \mathbf{B}^{\dagger} \\ \mathbf{B} & \mathbf{D} \end{pmatrix} \begin{pmatrix} 1 \\ \mathbf{c} \end{pmatrix} = E_{\text{corr}} \begin{pmatrix} 1 \\ \mathbf{c} \end{pmatrix}$$
 (4.10)

then diagonalize.

Another way:

$$E_{\text{corr}} = -\mathbf{B}^{\dagger} (\mathbf{D} - E_{\text{corr}} \mathbf{1})^{-1} \mathbf{B}$$
(4.11)

solve it iteratively.

4.3 Some Illustrative Calculations

4.4 Natural Orbitals and the 1-Particle Reduced DM

reduced density function

$$\rho(\mathbf{x}_1) = N \int d\mathbf{x}_2 \cdots d\mathbf{x}_N \Phi^*(\mathbf{x}_1, \cdots, \mathbf{x}_N) \Phi(\mathbf{x}_1, \cdots, \mathbf{x}_N)$$
(4.12)

1st-order reduced DM, or 1-P reduced DM

$$\gamma(\mathbf{x}_1, \mathbf{x}_1') = N \int d\mathbf{x}_2 \cdots d\mathbf{x}_N \Phi^*(\mathbf{x}_1, \cdots, \mathbf{x}_N) \Phi(\mathbf{x}_1', \cdots, \mathbf{x}_N)$$
(4.13)

$$\gamma(\mathbf{x}_1, \mathbf{x}_1') = \sum_{ij} \chi_i(\mathbf{x}_1) \gamma_{ij} \chi_j^*(\mathbf{x}_1')$$
(4.14)

def an orthonormal basis $\{\eta_i\}$ (natural spin orb),

$$\eta_i = \sum_k \chi_k U_{ki} \tag{4.15}$$

$$\gamma(\mathbf{x}_1, \mathbf{x}_1') = \sum_{kl} \eta_k(\mathbf{x}_1) (\mathbf{U}^{\dagger} \boldsymbol{\gamma} \mathbf{U})_{kl} \eta_l^*(\mathbf{x}_1')$$
(4.16)

def

$$\lambda = \mathbf{U}^{\dagger} \gamma \mathbf{U} \tag{4.17}$$

find a U to make λ diagonal, thus

$$\gamma(\mathbf{x}_1, \mathbf{x}_1') = \sum_{i} \lambda_i \eta_i(\mathbf{x}_1) \eta_j^*(\mathbf{x}_1')$$
(4.18)

 λ_i is called the occupation number of the natural spin orbs.

4.5 The MCSCF and the GVB Methods

4.6 Truncated CI and the Size-consistency Problem

Truncated CI is not size-consistent.

5 Pair and Coupled-pair Theories

5.1 The Independent Electron Pair Approximation