CSCE636: Neural Networks

Deep Learning on Graphs

Hongyang Gao

What's convolution?

- What's the key property of convolution layer?
 - weights sharing, sparse connectivity
- What's the input of a 2D convolution layer?
 - HxWxC

What's convolution?

What's the key property of convolution layer?

What's the input of a 2D convolution layer?

Can we apply a 3D convolution layer on this input (H xW x C)? (H xW x C x I)?

What's convolution?

What's the key property of convolution layer?

What's the input of a 2D convolution layer?

HxWxC

Can we apply a 3D convolution layer on this input (H xW x C)?

NO!!! Pixels have order on H and W dimensions NOT on C dimension.

Locality

- Locality is important for convolution.
 - Only apply conv on spatial dimensions (H and W)
- How about pooling layer? Is locality important?

How about data without locality information?

Graph

Economic networks

Social networks

Internet

Networks of neurons

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018

Machine Learning with Graphs

Traditional ML tasks in networks:

- Node classification
 - Predict a type of a given node
- Link prediction
 - Predict whether two nodes are linked
- Graph classification
 - Predict a type of a given graph

Migrate the success of deep learning to graph

Can we?

Easy or hard?

What's the difference between image and graph in terms of structure? (name at least 2)

Image VS. Graph

What's the difference between image and graph in terms of structure?

- The number of neighboring nodes are fixed on image but not on graph
- The neighboring nodes on image are ordered by their relative positions but not on graph

How different?

- Graph is not grid-like data
 - There is no fixed-number of neighboring nodes
 - The neighboring nodes are not ordered

How different?

Graph

- W = $[w_1, w_2, w_3, w_4, w_5, w_6, w_7, w_8, w_9]$ #Trained weights
- How to assign these weights for image and graph?

$g_{\downarrow}conv(H,A) = AHW$

 $A \in \mathbb{R}^{n \times n}$: is adjacency matrix

 $H \in \mathbb{R}^{n \times c}$: is feature matrix

 $W \in R^{c \times d}$: is a weights matrix

What does n mean?

What does c mean?

What does d mean?

Graph Convolutional Networks

$$g_{\downarrow}conv(H,A) = AHW$$

Graph Convolutional Networks

AH: Summation from neighboring nodes

$g_{\downarrow}conv(H,A) = AHW$

Graph Convolutional Networks

AHW: Summation from neighboring nodes then projection

Neighborhood Aggregation

Graph Convolutional Networks

Graph Convolutional Networks

- Some questions about GCNs:
 - Where is weights sharing?
 - How is this related to convolution layer or fully-connected layer?
 - What problem does GCN solve?
 - Node classification? Link prediction? Graph classification?
 - How to apply GCN to graph classification tasks?
 - Any limitations?

CSCE636: Neural Networks Deep Learning on Graphs (2) Hongyang Gao 11/15/2019

- What are challenges of applying deep learning on graphs?
- What's formula of GCN?

$$g_{\downarrow}conv(H,A) = AHW$$

What does AH mean?

What are challenges of applying deep learning on graphs?

What's formula of GCN?

$$g_{\downarrow}conv(H,A) = AHW$$

What does AH mean?

What does AHW mean?

- Why we need pooling?
 - Reduce size
 - Enlarge receptive field
 - Non-linearity (max pooling)

Reduce node numbers

 Hierarchical Graph Representation Learning with Differentiable Pooling

Assign each node to clusters with specific probabilities

Compute New
Graph (Feature
Matrix)

	A	В	С	D	
X	0.3	0.2	0.1	0.2	
Y	0.4	0.7	0.2	0.3	
Z	0.3	0.1	0.7	0.5	
\mathcal{S}^T					

A	9	2	8		
В	6	1	2		
С	3	7	8		
D	5	5	4		
Н					

- Takes the node embeddings
- Aggregates them according to assignment matrix
- Generates embeddings for new clusters

Compute New Graph (Adjacency Matrix)

$$A' = S^T A S$$

A':

	X	Υ	Z
Х	0.16	0.24	0.4
Y	0.24	0.36	0.6
Z	0.4	0.6	I

- Takes the adjacency matrix
- Generates a coarsened adjacency matrix
- Denotes the connectivity strength between each pair of clusters

Graph Pooling

- lacktriangle Assume we have an assignment matrix S
- $A' = S^T A S$
- $H' = S^T H$

Problem?

High-level illustration of DIFFPOOL.

Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., & Leskovec, J. (2018). Hierarchical graph representation learning with differentiable pooling. In *Advances in Neural Information Processing Systems* (pp. 4800-4810).

Graph Pooling Networks

- Some questions:
 - What problem does it solve?
 - Node classification? Link prediction? Graph classification?
 - How is this related to pooling layer?
 - Any limitations?
 - (number of parameters, graph connectivity)

