	Ex. 3.12
74	We will denote this new augmented Matrix as:
	Xa = X where dimensions are: X = NxP In = PxP
	[N/2 IP] IP= PxP
	$\Rightarrow X_{\alpha} = (N+P) \times P$
	Now we will calculate the least squares estimates
	OF this augmented data: $\hat{\beta}_{15} = (X_a^T X_a)^{-1} X_a^T Y_a$
	Dis = (Na Na) Na ya
	Where Ya = Y, where Y and Op are vectors
	Of length N and P denoting
	the labels of X and the O Vector
	respectively.
	Nou, FUT THE X
	Now, $X_{\alpha}^{T}X_{\alpha} = \begin{bmatrix} X^{T}, \sqrt{\lambda} I_{P} \end{bmatrix} = X^{T}X + \lambda I_{P}$
	and VIV [VI [T] Y] VIV
	Xa Ya = [X Ja Ip] Op] = XTY
	So $\hat{\beta}_{1s} = (X^TX + \lambda I_P)^T X^T Y$
	and since X has been Centered this is Simply
1	the ridge regression estimates of X and Y