Project A20 FYS-MENA4111

Erlend Tiberg North & Alexandra Jahr Kolstad

20. november 2020 Week 44-

Abstract

Innhold

1	Introduction	3
2	Method2.1 Energy convergence	3 3
3	Results3.1 Energy convergence3.2 K-points convergence	4 4
4	Discussion	4
5	Conclusion	4
6	References	4
A	Convergence energy	4
В	Convergence kpoints	5
\mathbf{C}	Quinizarin-bilder	6
D	DOS-bilder	8
E	Y-bilder	11
F	Yb-bilder	16
\mathbf{G}	Appendix 2	20

Ting å gjøre:

• lage en mappe på saga for begge

done

• skaffe POSCAR, jobfile og INCAR (de andre følger fra disse)

done

• sjekke at den konvergerer (decent ENCUT og KPOINTS)

done

The data shows that we should use $450 \mathrm{eV}$ for ENCUT as that is the 1st job with a difference less than $3 \mathrm{meV}$.

For k-density we see that even the lowest value, 1.0, is within 3 meV (1.0 gives around 1.75 meV), so this can be used. However, the data shows that 3.0 is below 1 meV, with 4.0 being identical in energy to 5.0. This can possibly be discussed in group, but 1.0 should technically be enough for k-density.

• relaxe POSCAR og static etter relax POSCAR

done

• total og relativ energi (fra static etter relax)

done

- \bullet DOS (båndspruktur) $\label{eq:done} \textbf{done}$
- romlig elektronstruktur; 3D-plot av ladningstetthet (VESTA)
- bytte ut hydrogen i alkoholgruppen med lantanoidatomer (Yb, Nd, Tm og Y)
- relaxe POSCAR og static etter relax POSCAR
- total og relativ energi (fra static etter relax)
- DOS (båndsp) og LDOS (båndstruktur)
- romlig elektronstruktur; 3D-plot av ladningstetthet (VESTA)

Ting å ha i LATEX:

- abstrakt
- kort introduksjon av materialet
- kort om metode, valg av paramtere (CUTOFF, etc)
- presentasjon av de viktigste resultatene
- diskusjon av hvordan resultatene kan tolkes, f.eks. sammenligne til eksperimenter eller tidligere beregninger i litteraturen
- konklusjon/oppsummering
- kilder
- appendix ?

OBS: husk å lagre bilder for rapporten og presentasjonen mens man gjør beregningene

1 Introduction

2 Method

2.1 Energy convergence

ENCUT: 300 to 900

2.2 K-points convergence

K-point density: 1.0 to 6.0

3 Results

3.1 Energy convergence

Started to convergence around 450 eV for ENCUT.

3.2 K-points convergence

4 Discussion

5 Conclusion

6 References

[1] Ben G. Streetman & Sanjay Kumar Banerjee, 2016, Solid State Electronic Devices seventh edition, Pearson Education

A Convergence energy

Figur 1: .

Figur 2: .

B Convergence kpoints

Figur 3: .

Figur 4: .

C Quinizarin-bilder

Figur 5: .

Figur 6: .

Figur 7: .

Figur 8: .

D DOS-bilder

Figur 9: .

Figur 10: .

Figur 11: .

Figur 12: .

Figur 13: .

Figur 14: .

Figur 15: .

Figur 16: .

E Y-bilder

Figur 17: .

Figur 18: .

Figur 19: .

Figur 20: .

Figur 21: .

Figur 22: .

Figur 23: .

Figur 24: .

Figur 25: .

Figur 26: .

Figur 27: .

Figur 28: .

F Yb-bilder

Figur 29: .

Figur 30: .

Figur 31: .

Figur 32: .

Figur 33: .

Figur 34: .

Figur 35: .

Figur 36: .

Figur 37: .

Figur 38: .

Figur 39: .

Figur 40: .

G Appendix 2