RF TEST REPORT

Report No.: CE_ SL18040201-RIO-001_BLE

Supersede Report No.: None

Applicant	Resin.io	
Product Name	Raspberry Compute Module 3 Lite	
Model No.	Balena Fin	
Test Standard	EN 300 328 V2.1.1 (2016-11)	
Test Method	EN 300 328 V2.1.1 (2016-11)	
Date of test	05/01/2018 - 06/14/2018	
Issue Date	06/15/2018	
Test Result	<u>Pass</u> Fail	
Equipment complied with the specification		[x]
Equipment did not comply with the specification		[]
	May	and
Benjamin Jing		Chen Ge
Test Engineer		Engineer Reviewer
		y be reproduced in full only port is applicable to the tested sample only

Issued By:
SIEMIC Laboratories
775 Montague Expressway, Milpitas, 95035 CA

Test report No.	CE_SL18040201-RIO-001_BLEo
Page	2 of 30

Laboratory Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Accreditations for Conformity Assessment

	ricordantations for combining ricodociment				
Country/Region	Accreditation Body	Scope			
USA	FCC, A2LA	EMC, RF/Wireless, Telecom			
Canada	IC, A2LA, NIST	EMC, RF/Wireless, Telecom			
Taiwan	BSMI, NCC, NIST	EMC, RF, Telecom, Safety			
Hong Kong	OFTA, NIST	RF/Wireless, Telecom			
Australia	NATA, NIST	EMC, RF, Telecom, Safety			
Korea	KCC/RRA, NIST	EMI, EMS, RF, Telecom, Safety			
Japan	VCCI, JATE, TELEC, RFT	EMI, RF/Wireless, Telecom			
Mexico	NOM, COFETEL, Caniety	Safety, EMC, RF/Wireless, Telecom			
Europe	A2LA, NIST	EMC, RF, Telecom, Safety			
Israel	MOC, NIST	EMC, RF, Telecom, Safety			

Accreditations for Product Certifications

Country	Accreditation Body	Scope
USA	FCC TCB, NIST	EMC, RF, Telecom
Canada	IC FCB, NIST	EMC, RF, Telecom
Singapore	iDA, NIST	EMC, RF, Telecom
EU	NB	EMC & R&TTE Directive
Japan	MIC (RCB 208)	RF, Telecom
Hong Kong	OFTA (US002)	RF, Telecom

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	CE_SL18040201-RIO-001_BLEo
Page	3 of 30

CONTENTS

1	RE	EPORT REVISION HISTORY	4
2	ΕX	XECUTIVE SUMMARY	5
3	Cl	USTOMER INFORMATION	5
4	TE	EST SITE INFORMATION	5
5	M	ODIFICATION	5
6	El	UT INFORMATION	6
	6.1	EUT Description	6
	6.2	Radio Description	6
	6.3	EUT Operational Condition	6
	6.4	EUT test modes/configuration Description	7
7	SU	UPPORTING EQUIPMENT/SOFTWARE AND CABLING DESCRIPTION	8
	7.1	Supporting Equipment	8
	7.2	Cabling Description	8
	7.3	Test Software Description	8
8	TE	EST SUMMARY	9
9	MI	EASUREMENT UNCERTAINTY	10
	9.1	Radiated Emissions (30MHz to 1GHz)	10
	9.2	Radiated Emissions (1GHz to 40GHz)	10
	9.3	RF conducted measurement	11
1)	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	12
	10.1	RF Output Power	12
	10.2	Power Spectral Density	14
	10.3	Occupied Channel Bandwidth	16
	10.4	TX Unwanted Emissions in the OOB Domain	18
	10.5	TX Unwanted Emissions in the spurious domain	20
	10.6	Receiver Spurious Emissions	23
	10.7	Receiver Blocking	26
۸			
А	NNEX	(A. TEST INSTRUMENT	28

Test report No.	CE_SL18040201-RIO-001_BLEo
Page	4 of 30

Report Revision History

Report No.	Report Version	Description	Issue Date
CE_SL18040201-RIO-001_BLE	None	Original	06/15/2018

Test report No.	CE_SL18040201-RIO-001_BLEo
Page	5 of 30

2 Executive Summary

The purpose of this test program was to demonstrate compliance of following product

Company: Resin.io

Product: Raspberry Compute Module 3 Lite

Model: Balena Fin

against the current Stipulated Standards. The specified model product stated above has demonstrated compliance with the Stipulated Standard listed on 1st page.

3 Customer information

Applicant Name	Resin.io	
Applicant Address	One London Wall 6th floor London EC2Y 5EB United Kingdom	
Manufacturer Name	Resin.io	
Manufacturer Address	One London Wall 6th floor London EC2Y 5EB United Kingdom	

4 Test site information

Lab performing tests	SIEMIC Laboratories	
Lab Address	775 Montague Expressway, Milpitas, CA 95035	
FCC Test Site No.	881796	
IC Test Site No.	4842D-2	
VCCI Test Site No.	A0133	

5 Modification

Index	Item	Description	Note
-	-	-	-

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	CE_SL18040201-RIO-001_BLEo
Page	6 of 30

6 EUT Information

6.1 EUT Description

U.I LUT DESCRIPTION	
Product Name	Raspberry Compute Module 3 Lite
Model No.	Balena Fin
Trade Name	Resin.io
Serial No.	N/A
Input Power	220VAC/50Hz
Power Adapter Manu/Model	VEL36US120-US-JA
Power Adapter SN	E317867
Hardware version	N/A
Software version	N/A
Date of EUT received	04/15/2018
Equipment Class/ Category	DTS
Port/Connectors	1 X RJ45, 2 X USB, 1 X mini USB, 1 X HDMI
Remark	NONE

6.2 Radio Description

Spec for Bluetooth

Specifor Diactootif	
Radio Type	Bluetooth (Ver4.0)
Operating Frequency	2402MHz-2480MHz
Modulation	GFSK (LE)
Channel Spacing	2MHz (LE)
Antenna Type	External antenna : ¼ Dipole Omni Embedded antenna : SMT
Antenna Gain	External antenna : 2 dBi Embedded antenna : 1 dBi
Antenna Connector Type	U.FL -

Channel List

Ondimor Liot			
Туре	Channel No.	Frequency (MHz)	Available (Y/N)
	0	2402	Y
			Y
Bluetooth LE	19	2440	Υ
			Y
	39	2480	Y

Table of Power Setting

TEST SOFTWARE VERSION		Note			
FREQUENCY(MHz)	2402	2402 2440 2480			
BT LE SETTING	DEFAULT	DEFAULT	DEFAULT	-	

6.3 EUT Operational Condition

	Item	Range		
	AC Adaptor Voltage	230 V AC 50Hz		
Е	Environmental Condition	Tnom = 25 °C	Tmax = 55 °C	Tmin = -20°C

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	CE_SL18040201-RIO-001_BLEo
Page	7 of 30

6.4 EUT test modes/configuration Description

Test mode

Test Mode		Note
Pre_test_mode_1 Continuous Transmit		-
Pre_test_mode_2	Normal Operation Mode (duty cycle transmit power)	-

Test report No.	CE_SL18040201-RIO-001_BLEo
Page	8 of 30

7 Supporting Equipment/Software and cabling Description

7.1 Supporting Equipment

Item	Supporting Equipment Description	Model	Serial Number	Manufacturer	Note
1	Laptop	LATITUDE 3550	N/A	Dell	-
2	Router	WNR2000	N/A	Netgear	

7.2 Cabling Description

NI	Connection Start		Connection Stop		Length / shielding Info		NI - I -
Name	From	I/O Port	То	I/O Port	Length (m)	Shielding	Note
Ethernet	RJ-45	EUT	RJ-45	Laptop	Ethernet 1 m	no	Unshiel ded

7.3 Test Software Description

Test Item	Software	Description
RF Testing	Dut Labtoole	Set the EUT to transmit continuously in different test mode

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	CE_SL18040201-RIO-001_BLEo
Page	9 of 30

Test Summary

Summary for 2.4GHz (BT-LE)

Summary id	Summary for 2.4GHZ (B1-LE)						
Test Item		Test standard	Test Method/Procedure	Pass / Fail			
	RF Output Power	EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	Pass			
	Power Spectral Density	EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	Pass			
Duty	Cycle, Tx-sequence, Tx-gap	EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	N/A*			
Dwell time,	Minimum Frequency Occupation & Hopping Sequence	EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	N/A			
Hopping Frequency Separation		EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	N/A			
Medium Utilisation		EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	N/A			
	Adaptivity	EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	N/A*			
Occ	cupied Channel Bandwidth	EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	Pass			
TX Unwan	ted Emissions in the OOB domain	EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	Pass			
TX Unwante	d Emissions in the spurious domain	EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	Pass			
Re	ceiver spurious emissions	EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	Pass			
Receiver Blocking		EN 300 328 V2.1.1 (2016-11)	EN 300 328 V2.1.1 (2016-11)	Pass			
		ies do not take into consideration for all					
Remark	all normal operating condition	ure frequency stability by showing that an emission is maintained within the band of operation of the user's manual.					
	3. N/A* is not applicable due to output power less than 10dBm e.i.r.p.						

Test report No.	CE_SL18040201-RIO-001_BLEo
Page	10 of 30

9 Measurement Uncertainty

9.1 Radiated Emissions (30MHz to 1GHz)

The test is to measure the radiated emissions of the EUT.

Some error sources that can contribute to the total uncertainty:

- Uncertainty of the receiver
- Uncertainty of the antenna
- Uncertainty of cables
- Uncertainty due to the mismatches
- NSA Calibration
- Etc., details see the below table

Source of Uncertainty	Value (dB)	Probability Distribution	Division	Sensitivity Coefficient	Expanded Uncertainty	
Receiver Reading	0.12	Rectangular	1.732	1	0.069284	
Cable Insertion Loss	0.21	Normal	2	1	0.105	
Filter Insertion Loss	0.25	Normal	2	1	0.125	
Antenna Factor	0.65	Normal	2	1	0.325	
Receiver CW accuracy	0.5	Rectangular	1.732	1	0.2886836	
Pulse Amplitude Response	1.5	Rectangular	1.732	1	0.86605081	
PRF Response	1.5	Rectangular	1.732	1	0.86605081	
Mismatch Filter - Receiver	0.25	U-Shape	1.414	1	0.1768033	
NSA Calibration	4.0	U-Shape	1.414	1	2.8288543	
Combined Standard Uncertaint	3.0059131					
Expanded Uncertainty (K=2)	Expanded Uncertainty (K=2)					

The total derived measurement uncertainty is +/- 6.00 dB.

9.2 Radiated Emissions (1GHz to 40GHz)

The test is to measure the radiated emissions of the EUT.

Some error sources that can contribute to the total uncertainty:

- Uncertainty of the receiver
- Uncertainty of the antenna
- Uncertainty of cables
- Uncertainty due to the mismatches
- VSWR Calibration
- Etc., details see the below table

Source of Uncertainty	Value	Probability	Division	Sensitivity	Expanded
Source of Officertainty	(dB)	Distribution	DIVISION	Coefficient	Uncertainty
Receiver Reading	0.12	Rectangular	1.732	1	0.0692840
Cable Insertion Loss	0.21	Normal	2	1	0.1050000
Filter Insertion Loss	0.25	Normal	2	1	0.1250000
Antenna Factor	0.65	Normal	2	1	0.3250000
Receiver CW accuracy	0.5	Rectangular	1.732	1	0.2886836
Pulse Amplitude Response	1.5	Rectangular	1.732	1	0.8660508
PRF Response	1.5	Rectangular	1.732	1	0.8660508
Mismatch Filter - Receiver	0.25	U-Shape	1.414	1	0.1768033
VSWR Calibration	2.0	U-Shape	1.414	1	1.4144272
Combined Standard Uncertain	4.2363				
Expanded Uncertainty (K=2	8.4726				
The Askel shows a discourse as well		/ O 47 ID	•	·	·

The total derived measurement uncertainty is +/- 8.47 dB.

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	CE_SL18040201-RIO-001_BLEo
Page	11 of 30

9.3 RF conducted measurement

The test is to measure the RF output power from the EUT.

Some error sources that can contribute to the total uncertainty:

- Uncertainty of the Reference Level Uncertainty
- Uncertainty of variable attenuators
- Uncertainty of cables
- Uncertainty due to the mismatches

Source of Uncertainty	Value (dB)	Probability Distribution	Division	Sensitivity Coefficient	Expanded Uncertainty
Reference Level	0.12	Rectangular	1.732	1	0.069284
Cable Insertion Loss	0.21	Normal	2	1	0.105
Attenuator	0.25	Normal	2	1	0.125
Mismatch	0.25	U-Shape	1.414	1	0.1768033
Combined Standard Unce	0.476087				
Expanded Uncertainty (I	<=2)				0.952174

The total derived measurement uncertainty is +/- 0.95 dB.

Test report No.	CE_SL18040201-RIO-001_BLEo
Page	12 of 30

10 Measurements, Examination and Derived Results

10.1 RF Output Power

Spec	Item	Requirement			Applicable		
EN 300 328 V2.1.1	4.3.1	The maximum RF out than 20 dBm.	tput power for adaptive equipm	ent shall be equal to or less			
EN 300 328 V2.1.1	4.3.1	shall be equal to or le	ne maximum RF output power for non-adaptive Frequency Hopping equipment, all be equal to or less than the value declared by the supplier. This declared shall be equal to or less than 20 dBm.				
EN 300 328 V2.1.1	4.3.2.2		ent using wide band modulation power shall be 20 dBm.	ns other than FHSS, the	X		
EN 300 328 V2.1.1	4.3.2	The maximum RF ou the supplier and shall	tput power for non-adaptive eq not exceed 20 dBm.	uipment shall be declared by			
Test Setup		EUT Environmental Cham		Power Meter			
Procedure	2. For the second of the secon	or conducted measuren onnect the power sensor lesse stored samples in a correct one power sensor onnect one power sensor setween the samples of a correct one stored samples of a correct one stored samples in a correct of all Pourst of all Pourst of the (stated) antennation one antennation (G or G + Y) shall be	nents on devices with multiple for to each transmit port for a set is so that they start sampling a sall sensors is less than half the sum the power of the individual following steps. The set is the start and stop times of each burst in the stored op times of each individual burst, as well as the start and stop values (value "A" in dBm) will leassembly gain "G" in dBi of the ditional beamforming gain "Y" is assembly is intended for this	smit chain: the transmit signal and store the transmit chains: ynchronous measurement on a t the same time. Make sure the time between two samples. I samples of all ports and store measurement samples. St calculate the RMS power ow times for each burst. De used for maximum e.i.r.p. ca e individual antenna. In dB. Dower setting, the maximum ow formula below:	all transmits time difference them. Use er the burst. alculations.		
Test Date	05/25/20	018	Environmental condition	Temperature Relative Humidity Atmospheric Pressure	23 ℃ 45 % 1019 mbar		
Remark	-						
Result	⊠ Pass	; □ Fail					
est Data ⊠ Yes	(See belo	w) 🗆 N/A					
est Plot 🗆 Yes	(See belo	w) 🖂 N/A					

Test was done by Benjamin Jing at RF test site.

Test report No.	CE_SL18040201-RIO-001_BLEo
Page	13 of 30

Test Results:

BLE Low Ch: 2402 MHz

Туре	Condition	Voltage	Conducted Output Power (dBm)	Antenna Gain (dBi)	Calculated EIRP (dBm)	Limit (dBm)
	Norm Temp (25°C)	Vnorm(220V)	1.65	2	3.65	20
	Low Temp (-20 °C)	Vmax(240V)	1.21	2	3.21	20
EIRP	Low Temp (-20 °C)	Vmin(206V)	1.21	2	3.21	20
	High Temp (55°C)	Vmax(240V)	1.83	2	3.83	20
	High Temp (55°C)	Vmin(206V)	1.83	2	3.83	20

BLE Mid Ch: 2440 MHz

Туре	Condition	Voltage	Conducted Output Power (dBm)	Antenna Gain (dBi)	Calculated EIRP (dBm)	Limit (dBm)
	Norm Temp (25°C)	Vnorm(220V)	1.35	2	3.35	20
	Low Temp (-20 °C)	Vmax(240V)	1.14	2	3.14	20
EIRP	Low Temp (-20 °C)	Vmin(206V)	1.14	2	3.14	20
	High Temp (55°C)	Vmax(240V)	1.52	2	3.52	20
	High Temp (55°C)	Vmin(206V)	1.52	2	3.52	20

BLE High Ch: 2480 MHz

Type Condition		Voltage	Conducted Output Power (dBm)	Antenna Gain (dBi)	Calculated EIRP (dBm)	Limit (dBm)
	Norm Temp (25°C)	Vnorm(220V)	0.91	2	2.91	20
	Low Temp (-20 °C)	Vmax(240V)	0.83	2	2.83	20
EIRP	Low Temp (-20 °C)	Vmin(206V)	0.83	2	2.83	20
	High Temp (55°C)	Vmax(240V)	1.06	2	3.06	20
	High Temp (55°C)	Vmin(206V)	1.06	2	3.06	20

Note: EIRP is calculated by the external antenna gain 2 dBi.

Test report No.	CE_SL18040201-RIO-001_BLEo
Page	14 of 30

10.2 Power Spectral Density

Requirement(s):

Spec	Item	Requirement			Applicable
EN 300 328 V2.1.1	4.3.2.3	For equipment using wide ba Spectral Density is limited to	and modulations other than FH 10 dBm per MHz	SS, the maximum Power	X
Test Setup		pectrum Analyzer	ЕИТ		
Procedure	2. 3. 4. 5.	- Start Frequency: 2 400 MH - Stop Frequency: 2 483,5 M - Resolution BW: 10 kHz - Video BW: 30 kHz - Sweep Points: > 8 350 - Detector: RMS - Trace Mode: Max Hold - Sweep time: Auto For non-continuous signals, with the start point of the said (e.i.r.p.) measured. Starting from the first sample representing a 1 MHz segment This is the Power Spectral D Shift the start point of the said (i.e. sample #2 to #101). Repeat step 6 until the end of each of the 1 MHz segments From all the recorded results	wait for the trace to be completed to some smart antenna systems undeasurement for each of the trace uses for the different transmit of the december of the samples are for amplitude so that the sum of the file (lowest frequency), and the file (lowest frequency).	ed. Save the (trace) data s sing either operating mode nsmit ports. For each frequal nains and use this as the n in the file. m is equal to the RF Output add up the power of the follower and position (i.e. same Hz segment which shall be sample and repeat the pro- adiated Power Spectral Densi	e 2 or 3 (see uency point, add ew data set. ut Power llowing samples ple #1 to #100). recorded. cedure in step 5 nsity values for ty for the UUT.
Test Date	06/06/20	118	Environmental condition	Temperature Relative Humidity Atmospheric Pressure	23 ℃ 45 % 1019 mbar
Remark	Normal	test condition-			
Result	⊠ Pass	☐ Fail			
Test Data ⊠ Y	es (See bel	low) N/A			
Test Plot □ Y	es (See bel	ow) 🖂 N/A			

Test was done by Benjamin Jing at RF test site.

Test report No.	CE_SL18040201-RIO-001_BLEo
Page	15 of 30

PSD measurement results

Туре	Frequency (MHz)	Channel	Measured PSD (eirp) (dBm/1MHz)	Limit (eirp) (dBm/1MHz)	Result
Maximum PSD	2402	Low	1.47	≤10	Pass
	2440	Mid	1.39	≤10	Pass
1 00	2480	High	1.33	≤10	Pass

Test report No.	CE_SL18040201-RIO-001_BLEo
Page	16 of 30

10.3 Occupied Channel Bandwidth

Spec	Item	Requirement			Applicable			
EN 300 328 V2.1.1	4.3.2.7	The Occupied Channel 2483.5 MHz.	el Bandwidth shall fall completely w	ithin the band of 2400 –	X			
EN 300 328 V2.1.1	4.3.1	For non-adaptive systems using wide band modulations other than FHSS and with e.i.r.p greater than 10 dBm, the occupied channel bandwidth shall be less than 20 MHz						
Test Setup		spectrum Analyzer	EUT					
Procedure	 Connect the UUT to the spectrum analyser and use the following settings: Centre Frequency: The centre frequency of the channel under test Resolution BW: ~ 1 % of the span without going below 1 % Video BW: 3 × RBW Frequency Span: 2 × Occupied Channel Bandwidth (e.g. 40 MHz for a 20 MHz channel) Detector Mode: RMS Wait until the trace is completed. 							
Test Date	06/11/20	118	Environmental condition	Temperature Relative Humidity Atmospheric Pressure	23 ℃ 45 % 1019 mbar			
Remark	Normal	test condition						
Result	⊠ Pass	□ Fail	-					

Test Data		□ N/A
Test Plot	⊠ Yes	□ N/A
Test was do	one by Benjamin Jing	at RF test site.

Test report No.	CE_SL18040201-RIO-001_BLEo
Page	17 of 30

Test Result:

Туре	Freq (MHz)	Test mode	99% Bandwidth (MHz)	F∟ at 99% Bandwidth (MHz)	FH at 99% Bandwidth (MHz)	Limit (F∟/Fн) (MHz)	Pass/F ail
99%OBW	2402	BLE	1.27	2401.49	2402.51	>2400	Pass
99%OBW	2480	BLE	1.26	2479.49	2480.51	<2483.5	Pass

Lowest Channel

Highest Channel

Test report No.	CE_SL18040201-RIO-001_BLEo
Page	18 of 30

10.4 TX Unwanted Emissions in the OOB Domain

Spec	Item	Requirement	Applicabl e					
EN 300 328 V2.1.1	4.3.2.3	The transmitter unwanted emissions in the out-of-band domain, but outside the allocated band, shall not exceed the values provided by the mask in figure at below, Spurious Domain Out Of Band Domain (OOB) Aliccated Band Out Of Band Domain (OOB) Squrious Domain Out Of Band Domain (OOB) Squrious Domain A 2 400 MHz - 2BW 2 400 MHz - BW 2 400 MHz 2 483,5 MHz 2 483,5 MHz + BW 2 483,5 MHz + 2BW A: -10 dBm/MHz e.i.r.p. B: -20 dBm/MHz e.i.r.p. C: Spurious Domain limits						
Test Setup	NO	EUT Spectrum Analyzer						
Procedur e		- Centre Frequency: 2 484 MHz - Span: 0 Hz - Resolution BW: 1 MHz - Filter mode: Channel filter - Video BW: 3 MHz - Detector Mode: RMS - Trace Mode: Clear / Write - Sweep Mode: Continuous - Sweep Points: 5 000 - Trigger Mode: Video trigger - Sweep Time: Suitable to capture one transmission burst						

Test report No.	CE_SL18040201-RIO-001_BLEo
Page	19 of 30

- 3. (segment 2 483,5 MHz + BW to 2 483,5 MHz + 2BW)
- Change the centre frequency of the analyser to 2 484 MHz + BW and perform the measurement for the first 1 MHz segment within range 2 483,5 MHz + BW to 2 483,5 MHz + 2BW. Increase the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 483,5 MHz + 2 BW - 0,5 MHz.
- 4. (segment 2 400 MHz BW to 2 400 MHz)
- Change the centre frequency of the analyzer to 2 399,5 MHz and perform the measurement for the first 1 MHz segment within range 2 400 MHz BW to 2 400 MHz Reduce the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 400 MHz 2BW + 0,5 MHz.
- 5. (segment 2 400 MHz 2BW to 2 400 MHz BW)
- Change the centre frequency of the analyser to 2 399,5 MHz BW and perform the measurement for the first 1 MHz segment within range 2 400 MHz - 2BW to 2 400 MHz - BW. Reduce the centre frequency in 1 MHz steps and repeat the measurements to cover this whole range. The centre frequency of the last 1 MHz segment shall be set to 2 400 MHz - 2BW + 0,5 MHz.
- 6. In case of conducted measurements on equipment with a single transmit chain, the declared antenna assembly gain "G" in dBi shall be added to the results for each of the 1 MHz segments and compared with the limits provided by the mask given in figures 1 or 3. If more than one antenna assembly is intended for this power setting, the antenna with the highest gain shall be considered.
- 7. In case of conducted measurements on smart antenna systems (equipment with multiple transmit chains), the measurements need to be repeated for each of the active transmit chains. The declared antenna assembly gain "G" in dBi for a single antenna shall be added to these results. If more than one antenna assembly is intended for this power setting, the antenna with the highest gain shall be considered. Comparison with the applicable limits shall be done using any of the options given below:
- Option 1: the results for each of the transmit chains for the corresponding 1 MHz segments shall be added. The additional beamforming gain "Y" in dB shall be added as well and the resulting values compared with the limits provided by the mask given in figures 1 or 3.
- Option 2: the limits provided by the mask given in figures 1 or 3 shall be reduced by 10 x log10(Ach) and the additional beamforming gain "Y" in dB. The results for each of the transmit chains shall be individually compared with these reduced limits.

NOTE 2: Ach refers to the number of active transmit chains.

Test Date	06/06/2018		Environmental condition	Temperature Relative Humidity Atmospheric Pressure	23 ℃ 48 % 1019 mbar						
Remark	Normal test con	Normal test condition									
Result	⊠ Pass	□ Fail									

Test Data ⊠ Yes (See below) □ N/A

Test Plot ☐ Yes (See below) ☐ N/A

Test was done by Benjamin Jing at RF test site Test Result:

Туре	Frequency (MHz) Mode		OOB Frequency (MHz)	OOB Emission level (dBm)	Limit (dBm)
OOB	2402 BLE		2402 BLE 2399.99		-10
OOB	2480 BLE		2487.24	-40.40	-10

Note: The results above show only the worst case.

Test report No.	CE_SL18040201-RIO-001_BLEo
Page	20 of 30

10.5 TX Unwanted Emissions in the spurious domain Requirement(s):

Spec	Item	Requirement			Applicable				
		The spurious emissions of the t below in the indicated bands.							
		Transmitter limits for narrowband spurious emissions Frequency range Maximum power Bandwidth							
		Frequency range	Bandwidth						
		30 MHz to 47 MHz	-36 dBm	100 KHz					
EN 200 200		47 MHz to 74 MHz	-54 dBm	100 KHz					
EN 300 328	4.3.2.9	74 MHz to 87.5 MHz	-36 dBm	100 KHz	\boxtimes				
V2.1.1		87.5 MHz to 118 MHz	-54 dBm	100 KHz	_				
		118 MHz to 174 MHz	-36 dBm	100 KHz					
		174 MHz to 230 MHz	-54 dBm	100 KHz					
		230 MHz to 470 MHz	-36 dBm	100 KHz					
		470 MHz to 862 MHz	-54 dBm	100 KHz					
		862 MHz to 1 GHz	-36 dBm	100 KHz					
		1 GHz to 12.75 GHz	-30 dBm	1 MHz	ļ				
Test Setup Below 1GHz		EUT 1.5m	Antenna Ground Plane	1-4m Spectrum An	b. alyzer				
Test Setup Above 1GHz		Radio Absorbing Material	ai Anechoic Chamber 3m	1-4m Spectrum At	alyzer				
Procedure	Refer to	Clause 5.3.10. of ETSI EN 300 3	328 V1.9.1						
Remark	Both hor	izontal and vertical polarities wer	re investigated. The results sh	ow only the worst case					
Result	⊠ Pass	☐ Fail							

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	CE_SL18040201-RIO-001_BLEo
Page	21 of 30

Radiated Emission

Test specification	Radiated emissions 30MHz -	- 12.75 GHz			
	Temp (°C):	22	7		
Environmental Conditions:	Humidity (%)	46			
	Atmospheric (mbar):	1012	Result	Pass	
Mains Power:	220VAC, 50Hz				
Tested by:	Benjamin Jing				
Test Date:	06/03/2018	06/03/2018			
Remarks:	Remarks: TX MODE				

External Antenna:

BLE - 2402MHz

In	dicated		Test A	Antenna	Substituted						
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
190.66	-48.27	280	100	V	190.66	-73.46	0	1.28	-72.18	-54	-18.18
190.66	-44.46	93	230	Н	190.66	-66.43	0	1.28	-65.15	-54	-11.15
4804	-65.26	236	165	V	4804	-42.18	10.54	4.32	-48.40	-30	-18.40
4804	-66.99	167	176	Н	4804	-43.91	10.54	4.32	-50.13	-30	-20.13
7206	-78.28	264	168	V	7206	-46.98	10.13	4.36	-52.75	-30	-22.75
7206	-80.43	252	162	Н	7206	-49.13	10.13	4.36	-54.90	-30	-24.90

BLE - 2480MHz

In	dicated		Test A	Antenna	Substituted						
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
207.03	-46.52	66	100	V	207.03	-68.17	0	1.31	-66.86	-54	-12.86
207.03	-40.48	138	229	Н	207.03	-62.56	0	1.31	-61.25	-54	-7.25
4960	-65.37	236	165	V	4960	-42.29	10.52	4.35	-48.46	-30	-18.46
4960	-66.18	167	176	Н	4960	-43.10	10.52	4.35	-49.27	-30	-19.27
7440	-78.53	264	168	V	7440	-47.23	10.67	4.38	-53.52	-30	-23.52
7440	-79.42	252	162	Н	7440	-48.12	10.67	4.38	-54.41	-30	-24.41

Note: Both horizontal and vertical polarities were investigated. The results above show only the worst case.

Test report No.	CE_SL18040201-RIO-001_BLEo
Page	22 of 30

Embedded Antenna

BI F - 2402MHz

In	dicated		Test A	Antenna	Substituted							
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)	
190.66	-48.27	280	100	V	190.66	-73.46	0	1.28	-72.18	-54	-18.18	
190.66	-44.46	93	230	Н	190.66	-66.43	0	1.28	-65.15	-54	-11.15	
4804	-65.26	236	165	V	4804	-42.18	10.54	4.32	-48.40	-30	-18.40	
4804	-66.99	167	176	Н	4804	-43.91	10.54	4.32	-50.13	-30	-20.13	
7206	-78.28	264	168	V	7206	-46.98	10.13	4.36	-52.75	-30	-22.75	
7206	-80.43	252	162	Н	7206	-49.13	10.13	4.36	-54.90	-30	-24.90	

BI F - 2480MHz

In	dicated		Test A	Antenna	Substituted						
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
227.03	-41.59	353	143	V	227.03	-63.29	0	1.35	-61.94	-54	-7.94
227.03	-35.63	116	159	Н	227.03	-58.33	0	1.35	-56.98	-54	-2.98
4960	-65.37	236	165	V	4960	-42.29	10.52	4.35	-48.46	-30	-18.46
4960	-66.18	167	176	Н	4960	-43.10	10.52	4.35	-49.27	-30	-19.27
7440	-78.53	264	168	V	7440	-47.23	10.67	4.38	-53.52	-30	-23.52
7440	-79.42	252	162	Н	7440	-48.12	10.67	4.38	-54.41	-30	-24.41

Note: Both horizontal and vertical polarities were investigated. The results above show only the worst case.

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Visit us at: www.siemic.com; Follow us at: Visit us at: www.siemic.com; Follow us at:

Test Data ⊠ Yes (See below)

Test Plot ⊠ Yes (See below)

Test was done by Benjamin Jing at 10m chamber.

Test report No.	CE_SL18040201-RIO-001_BLEo
Page	23 of 30

10.6 Receiver Spurious Emissions

Requirement(s):

Spec	Item	Requirement		Applicable
EN 300 328 V2.1.1	4.3.2.10	Receiver spurious emissions are emissions at any frequency when the equipre received mode. The spurious emissions of the receiver shall not exceed the values in the table the indicated bands. Frequency range Maximum power Bandw 30 MHz to 1GHz -57 dBm 100 MHz to 1GHz -47 dBm 1 MHz	es below in	\boxtimes
Test Setup Below 1GHz		Radio Absorbing Material Radio Absorbing Material 1.5m Antenna Antenna Ground Plane	Spectrum Analys	ter
Test Setup Above 1GHz		Radio Absorbing Material Semi Anchoic Chamber Radio Absorbing Material Antenna 1.5m Ground Plane	Spectrum Analy	Ter.
Procedure	Refer to C	Clause 5.3.11 of ETSI EN 300 328 V2.1.1		_
Remark	NONE			
Result	⊠ Pass	☐ Fail		

 \square N/A

Test report No	CE_SL18040201-RIO-001_BLEo
Page	24 of 30

Receiver Radiated Emissions

Test specification	Radiated emissions 30MHz	z - 12.75 GHz		
	Temp (°C):	22		
Environmental Conditions:	Humidity (%)	46		
	Atmospheric (mbar):	1012	Result	Pass
Mains Power:	220VAC, 50Hz		- Nesuit	1 433
Tested by:	Benjamin Jing			
Test Date:	06/03/2018			
Remarks:	RX MODE			

External Antenna:

BLE 2402 MHz

	Indicated Test Antenna					Substituted					
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
190.66	-48.19	280	100	V	190.66	-73.53	0	1.28	-72.25	-57	-15.25
190.66	-44.26	93	230	Н	190.66	-66.45	0	1.28	-65.17	-57	-8.17
207.03	-46.53	66	100	V	207.03	-68.28	0	1.31	-66.97	-57	-9.97
207.03	-40.29	138	229	Н	207.03	-62.93	0	1.31	-61.62	-57	-4.62

Note: Both horizontal and vertical polarities were investigated. The results above show only the worst case.

BLE 2480 MHz

Ir	Indicated Test Antenna				Substituted						
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
1952	-79.34	236	150	V	1952	-66.56	10.25	2.08	-74.73	-47	-27.73
1952	-79.18	167	150	Н	1952	-66.40	10.25	2.08	-74.57	-47	-27.57
1632	-79.47	264	150	V	1632	-68.73	10.08	1.78	-77.03	-47	-30.03
1632	-79.63	252	150	Н	1632	-68.89	10.08	1.78	-77.19	-47	-30.19

Note: Both horizontal and vertical polarities were investigated. The results above show only the worst case.

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Test report No.	CE_SL18040201-RIO-001_BLEo
Page	25 of 30

Embedded Antenna

BLE 2402 MHz

	Indicated Test Antenna		Substituted								
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
190.66	-48.19	280	100	V	190.66	-73.53	0	1.28	-72.25	-57	-15.25
190.66	-44.26	93	230	Н	190.66	-66.45	0	1.28	-65.17	-57	-8.17
207.03	-46.53	66	100	V	207.03	-68.28	0	1.31	-66.97	-57	-9.97
207.03	-40.29	138	229	Н	207.03	-62.93	0	1.31	-61.62	-57	-4.62

BLE 2480 MHz

In	Indicated Test Antenna		Antenna	Substituted							
Frequency (MHz)	Raw (dBm)	Degree	Height (cm)	Polarity	Frequency (MHz)	Level (dBm)	Ant Gain (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)	Margin (dB)
1952	-79.34	236	150	V	1952	-66.56	10.25	2.08	-74.73	-47	-27.73
1952	-79.18	167	150	Н	1952	-66.40	10.25	2.08	-74.57	-47	-27.57
1632	-79.47	264	150	V	1632	-68.73	10.08	1.78	-77.03	-47	-30.03
1632	-79.63	252	150	Н	1632	-68.89	10.08	1.78	-77.19	-47	-30.19

Note: Both horizontal and vertical polarities were investigated. The results above show only the worst case.

775 Montague Expressway, Milpitas, CA 95035, USA • Phone: (+1) 408 526 1188 • Facsimile (+1) 408 526 1088

Visit us at: www.siemic.com; Follow us at:

Test report No.	CE_SL18040201-RIO-001_BLEo
Page	26 of 30

10.7 Receiver Blocking

Requirement(s):

Spec	Item	Requirement					Applicable
		4.3.2.11.4.2 Table 14 cont	Receiver Categorians the Receiver Blocking p Table 14: Receiver Blocking Manted signal mean	arameters for Receiver cking parameters fo	or Receiver Cate	gory 1 equipment	
			power from companion device (dBm)	frequency (MHz)	signal power (dBm) (see note 2)	signal	
EN 300			P _{min} + 6 dB	2 380 2 503,5	-53	CW	
328 V2.1.1	4.3.2.11		P _{min} + 6 dB	2 300 2 330 2 360	-47	cw	
(2016-11)			P _{min} + 6 dB	2 523,5 2 553,5 2 583,5 2 613,5 2 643,5 2 673,5	-47	cw	
			any blocking sign NOTE 2: The levels specifi	nance criteria as define nal. ied are levels in front of urements, the levels ha	d in clause 4.3.2.1 f the UUT antenna	1.3 in the absence of . In case of	
		4.3.2.11.4.3 Table 15 conta	Receiver Catego ains the Receiver Blocking pa Table 15: Receiver Blocking	rameters for Receiver			
		- 11	Wanted signal mean	Blocking signal	Blocking	Type of blocking	
EN 300 328			power from companion device (dBm)	frequency (MHz)	signal power (dBm) (see note 2)	signal	
328 V2.1.1	4.3.2.11					signal CW	
328 V2.1.1	4.3.2.11		device (dBm) P _{min} + 6 dB P _{min} + 6 dB	2 380 2 503,5 2 300 2 583,5	(dBm) (see note 2) -57	CW	
328 V2.1.1	4.3.2.11		P _{min} + 6 dB P _{min} + 6 dB P _{min} + 6 dB NOTE 1: P _{min} is the minimu minimum performany blocking signa	(MHz) 2 380 2 503,5 2 300 2 583,5 Im level of the wanted sance criteria as defined al. ed are levels in front of rements, the levels have	(dBm) (see note 2) -57 -47 signal (in dBm) rec I in clause 4.3.2.11 the UUT antenna.	CW CW uired to meet the .3 in the absence of	
328 V2.1.1	4.3.2.11		device (dBm) P _{min} + 6 dB P _{min} + 6 dB NOTE 1: P _{min} is the minimum performany blocking signany block	(MHz) 2 380 2 503,5 2 300 2 583,5 Im level of the wanted sance criteria as defined al. ed are levels in front of rements, the levels have	(dBm) (see note 2) -57 -47 signal (in dBm) rec I in clause 4.3.2.11 the UUT antenna.	CW CW uired to meet the .3 in the absence of	
328	4.3.2.11	Comp De	device (dBm) P _{min} + 6 dB P _{min} + 6 dB NOTE 1: P _{min} is the minimum performany blocking signany block	(MHz) 2 380 2 503,5 2 300 2 583,5 Im level of the wanted sance criteria as defined al. ed are levels in front of rements, the levels have	(dBm) (see note 2) -57 -47 signal (in dBm) red in clause 4.3.2.11 the UUT antenna. we to be corrected in the	CW CW uired to meet the .3 in the absence of In case of by the actual	
328 V2.1.1 (2016-11)	4.3.2.11	Comp De	device (dBm) P _{min} + 6 dB P _{min} + 6 dB NOTE 1: P _{min} is the minimum performany blocking signal NOTE 2: The levels specific conducted measurantenna assembly Variable altenuator step size ≤ 1 dB	(MHz) 2 380 2 503,5 2 300 2 583,5 um level of the wanted sance criteria as defined al. ed are levels in front of rements, the levels havy gain. Direct Coupler Spectrum	(dBm) (see note 2) -57 -47 signal (in dBm) rection clause 4.3.2.11 the UUT antenna. The to be corrected to be	CW CW uired to meet the .3 in the absence of In case of by the actual	
328 V2.1.1 (2016-11)		Coming De	device (dBm) P _{min} + 6 dB P _{min} + 6 dB NOTE 1: P _{min} is the minimum performany blocking signal NOTE 2: The levels specific conducted measurantenna assembly Variable altenuator step size ≤ 1 dB	(MHz) 2 380 2 503,5 2 300 2 583,5 um level of the wanted sance criteria as defined al. ed are levels in front of rements, the levels havy gain. Direct Coupler Spectrum Analyzer	(dBm) (see note 2) -57 -47 signal (in dBm) rection clause 4.3.2.11 the UUT antenna. The to be corrected to be	CW CW uired to meet the .3 in the absence of In case of by the actual	

Test was done by Rachana Khanduri at RF test site.

 \boxtimes N/A

☐ Yes (See below)

Test Plot

Test report No.	CE_SL18040201-RIO-001_BLEo
Page	27 of 30

Test Result for Receiver Blocking

Low CH: 2402 MHz

Туре	Frequency (MHz)	Level (dBm)	Туре	Result
	2380	57		Pass
Receiver Blocking	2503.5		CW	Pass
	2300	-47		Pass
	2583.5	-41		Pass

Mid CH: 2440 MHz

Туре	Frequency (MHz)	Level (dBm)	Туре	Result
Receiver Blocking	2380	-57	CW	Pass
	2503.5	-51		Pass
	2300	-47		Pass
	2583.5	-41		Pass

High CH: 2480 MHz

Туре	Frequency (MHz)	Level (dBm)	Туре	Result
Receiver Blocking	2380 2503.5	-57	CIM	Pass Pass
	2300 2583.5	-47	CW	Pass Pass

Note:

The EUT is category 2 receiver.

Test report No.	CE_SL18040201-RIO-001_BLEo		
Page	28 of 30		

Annex A. TEST INSTRUMENT

Instrument	Model	Serial #	Cal Date	Cal Cycle	Cal Due	In use
Radiated Emissions		1				
Keysight EXA 44GHz Spectrum Analyzer	N9010A	MY51440112	08/02/2017	1 Year	08/02/2018	<u><</u>
Keysight Signal Generator	MXG N5182A	MY47071065	04/12/2018	1 Year	04/12/2019	>
Pre-Amplifier (1 - 40GHz)	SAS-474	579	04/04/2018	1 Year	04/04/2019	\
RF Preamplifier (100KHz-7GHz)	LPA-6-30	11170602	02/09/2018	1 Year	02/09/2019	~
Bi-Log antenna (30MHz~2GHz)	JB1	A030702	01/13/2018	1 Year	01/13/2019	<
Horn Antenna (1-26.5GHz)	3115	10SL0059	08/11/2017	1 Year	08/11/2018	<
Horn Antenna (700MHz-18GHz)	SAS-571	411	05/13/2018	1 Year	05/13/2019	<
Tuned Dipole Antenna 30 - 1000 MHz (4pcs set)	AD-100	40133	03/08/2018	1 Year	03/08/2019	Y
3 Meters SAC	3M	N/A	09/09/2017	1 Year	09/09/2018	
10 Meters SAC	10M	N/A	10/06/2017	1 Year	10/06/2018	₹
RF Conducted Measurement						
Agilent Spectrum Analyzer	N9010A	10SL0219	11/16/2017	1 Year	11/16/2018	~
Test Equity Environment Chamber	1007H	61201	07/21/2017	1 Year	07/21/2018	>
ETS-Lingren USB RF Power Sensor	7002-006	10SL0190	11/15/2017	1 Year	11/15/2018	V
Receiver Blocking						
R & S Wideband Communication Tester	CMW500	108852	07/28/2017	1 Year	07/28/2018	V

Test report No.	CE_SL18040201-RIO-001_BLEo	
Page	29 of 30	

Annex B. SIEMIC Accreditation

Accreditations	Document	Scope / Remark
ISO 17025 (A2LA)		Please see the documents for the detailed scope
ISO Guide 65 (A2LA)		Please see the documents for the detailed scope
TCB Designation		A1, A2, A3, A4, B1, B2, B3, B4, C
FCC DoC Accreditation		FCC Declaration of Conformity Accreditation
FCC Site Registration		3 meter site
FCC Site Registration		10 meter site
IC Site Registration		3 meter site
IC Site Registration		10 meter site
		Radio & Telecommunications Terminal Equipment: EN45001 – EN ISO/IEC 17025
EU NB		Electromagnetic Compatibility: EN45001 – EN ISO/IEC 17025
Singapore iDA CB(Certification Body)		Phase I, Phase II
Vietnam MIC CAB Accreditation		Please see the document for the detailed scope
	A	(Phase II) OFCA Foreign Certification Body for Radio and Telecom
Hong Kong OFCA		(Phase I) Conformity Assessment Body for Radio and Telecom
		Radio: Scope A – All Radio Standard Specification in Category I
Industry Canada CAB		Telecom: CS-03 Part I, II, V, VI, VII, VIII

Test report No.	CE_SL18040201-RIO-001_BLEo
Page	30 of 30

Japan Recognized Certification Body Designation	因因	Radio: A1. Terminal equipment for purpose of calling Telecom: B1. Specified radio equipment specified in Article 38-2, Paragraph 1, Item 1 of the Radio Law
		EMI: KCC Notice 2008-39, RRL Notice 2008-3: CA Procedures for EMI KN22: Test Method for EMI EMS: KCC Notice 2008-38, RRL Notice 2008-4: CA Procedures for EMS KN24, KN61000-4-2, -4-3, -4-4, -4-5, -4-6, -4-8, -4-11: Test Method for EMS
Korea CAB Accreditation		Radio: RRL Notice 2008-26, RRL Notice 2008-2, RRL Notice 2008-10, RRL Notice 2007-49, RRL Notice 2007-20, RRL Notice 2007-21, RRL Notice 2007-80, RRL Notice 2004-68
		Telecom: President Notice 20664, RRL Notice 2007-30, RRL Notice 2008-7 with attachments 1, 3, 5, 6; President Notice 20664, RRL Notice 2008-7 with attachment 4
Taiwan NCC CAB Recognition		LP0002, PSTN01, ADSL01, ID0002, IS6100, CNS14336, PLMN07, PLMN01, PLMN08
Taiwan BSMI CAB Recognition	7	CNS 13438
Japan VCCI		R-3083: Radiation 3 meter site C-3421: Main Ports Conducted Interference Measurement T-1597: Telecommunication Ports Conducted Interference Measurement
		EMC: AS/NZS CISPR 11, AS/NZS CISPR 14.1, AS/NZS CISPR22, AS/NZS 61000.6.3, AS/NZS 61000.6.4
Australia CAB Recognition		Radio communications: AS/NZS 4281, AS/NZS 4268, AS/NZS 4280.1, AS/NZS 4280.2, AS/NZS 4295, AS/NZS 4582, AS/NZS 4583, AS/NZS 4769.1, AS/NZS 4769.2, AS/NZS 4770, AS/NZS 4771
		Telecommunications: AS/ACIF S002:05, AS/ACIF S003:06, AS/ACIF S004:06 AS/ACIF S006:01, AS/ACIF S016:01, AS/ACIF S031:01, AS/ACIF S038:01, AS/ACIF S040:01, AS/ACIF S041:05, AS/ACIF S043.2:06, AS/ACIF S60950.1
Australia NATA Recognition		AS/ACIF S002, AS/ACIF S003, AS/ACIF S004, AS/ACIF S006, AS/ACIF S016, AS/ACIF S031, AS/ACIF S038, AS/ACIF S040, AS/ACIF S041, AS/ACIF S043.2

