Data Wrangling and M Regressio

JSC 370: Data Sc

February 5, 20

Today's goals

We will learn how to wrangle and manipulate large data with dtplyr - i

- Selecting variables.
- Filtering data.
- Creating variables.
- Summarize data.

Throughout the session we will see examples using:

- data.table in R,
- **dtplyr** in R, and
- <u>pydatatable</u>

All with the MET dataset.

We will also take a look at advanced regression, for which you will need

Data wrangling in R

Data wrangling describes the processes designed to import, clean up, a complex "raw" forms into high-quality data. You can use your wrangled

Data wrangling in R

Overall, you will find the following approaches:

- base R: Use only base R functions.
- dplyr: Using "verbs".
- data.table: High-performing (ideal for large data)
- **dplyr** + **data.table** = **dtplyr**: High-performing + dplyr verbs.

Other methods involve, for example, using external tools such as Spark,

We will be focusing on data.table because of this

Take a look at this very neat cheat sheet by Erik Petrovski here.

Selecting variables: Load the p

library(data.table)
library(dtplyr)
library(dplyr)
library(ggplot2)
library(mgcv)
library(lubridate)

The dtplyr R package translates dplyr (tidyverse) syntax to data verbs while at the same time leveraging the performance of data tab

The mgcv package enables advanced regression models with basis spli

Loading the data

We will use the MET dataset, which we can download (and load) directly

```
# Where are we getting the data from
met_url <- "https://raw.githubusercontent.com/JSC370/JSC3
# Downloading the data to a tempfile (so it is destroyed
# you can replace this with, for example, your own data:
# tmp <- tempfile(fileext = ".gz")
tmp <- "met.gz"

# We sould be downloading this, ONLY IF this was not down
# otherwise is just a waste of time.
if (!file.exists(tmp)) {
   download.file(
        url = met_url,
        destfile = tmp,
        # method = "libcurl", timeout = 1000 (you may need
   )
}</pre>
```

Now we can load the data using the fread () function.

Reading in the data

In R, fread, do a quick wrangle to remove outliers (discovered earlier), as

```
met_dt <- fread(tmp)
met_dt <- met_dt[temp > -10][order(temp)]
head(met_dt)
```

In Python, import with datatable, read, and print first 5 rows

```
import datatable as dt
met_dt_py = dt.fread("met.gz")
met_dt_py.head(5)
```

Before we continue, let's learn a bit more on data.table and dtplyr

data.table and dtplyr: Dat

• As you have seen in previous lectures, in data.table all happens with imagine DT:

Take **DT**Subset rows using then calculate **j**grouped by **by**

• Any time that you see := in j that is "Assignment by reference." Using =

data.table and dtplyr: Dat

Operations applied in j are evaluated within the data, meaning that name

```
# This returns an error (met is not referencing the data.
met[, elev]
```

```
# This works fine
met_dt[, elev]
```

data.table and dtplyr:Dat

Furthermore, we can do things like this:

met_dt[, plot(temp, elev)]

NULL

Lazy loading, queries

- From <u>Wikipedia</u> "Lazy Loading" (also known as asynchronous loadi computer programming and mostly in web design and developmen at which it is needed. It can contribute to efficiency in the program'
- Lazy loading means that the code for a particular function doesn't a minute – when it's actually being used.
- When you create a "lazy" query, you're creating a pointer to a set o
 actually run and the data isn't actually loaded until you call "next" o
 and load it into an object.

data.table and dtplyr:Laz

- The dtplyr package provides a way to translate dplyr verbs to d
- The key lies on the function lazy_dt from dtplyr (see ?dtplyr
- This function creates a wrapper that "points" to a data.table ob

data.table and dtplyr:Laz

```
# Creating a lazy table object
met_ldt <- lazy_dt(met_dt, immutable = FALSE)

# We can use the address() function from data.table
address(met_ldt)
address(met_ldt$parent)

## [1] "0x7fcbff8c9788"
## [1] "0x7fcbe5255c00"</pre>
```


696

467

data.table selecting column

How can we select the columns USAFID, lat, and lon, using data.ta names:

```
met_dt[, list(USAFID, lat, lon, temp, elev)]
# met_dt[, .(USAFID, lat, lon, temp, elev)] # Alternativ
# met_dt[, c("USAFID", "lat", "lon", "temp", "elev")] # A
##
             USAFID
                         lat
                                   lon temp elev
##
          1: 726764 44.683 -111.116 -3.0 2025
          2: 726764 44.683 -111.116 -3.0 2025
          3: 726764 44.683 -111.116 -3.0 2025
##
          4: 726764 44.683 -111.116 -3.0 2025
          5: 720411 36.422 -105.290 -2.4 2554
##
## 2317200: 690150 34.300 -116.166 52.8
                                              696
## 2317201: 690150 34.296 -116.162 52.8
                                              625
## 2317202: 690150 34.300 -116.166 53.9
                                              696
## 2317203: 690150 34.300 -116.166 54.4
```

2317204: 720267 38.955 -121.081 56.0

What happens if instead of list() you used c()?

Selecting columns (cont. 1)

Using the **dplyr::select** verb:

```
met_dt |>
   select(USAFID, lat, lon, temp, elev)
##
             USAFID
                        lat
                                  lon temp elev
##
          1: 726764 44.683 -111.116 -3.0 2025
          2: 726764 44.683 -111.116 -3.0 2025 3: 726764 44.683 -111.116 -3.0 2025
          4: 726764 44.683 -111.116 -3.0 2025
##
##
          5: 720411 36.422 -105.290 -2.4 2554
##
## 2317200: 690150 34.300 -116.166 52.8
                                             696
## 2317201: 690150 34.296 -116.162 52.8
                                             625
## 2317202: 690150 34.300 -116.166 53.9
                                             696
## 2317203: 690150 34.300 -116.166 54.4
                                             696
## 2317204: 720267 38.955 -121.081 56.0
```

Selecting columns (cont. 2)

In the case of pydatatable

```
met_dt_py[:,["USAFID", "lat", "lon", "temp","elev"]]
```

What happens if instead of ["USAFID", "lat", "lon", "temp", "lon", "temp", "elev"} (vector vs set).

Selecting columns (cont. 3)

For the rest of the session we will be using these variables: USAFID, WE wind.sp, temp, and atm.press.

Data filtering: Logical condition

- Based on logical operations, e.g. condition 1 [and|or condition]
- Need to be aware of ordering and grouping of and and or operator
- Fundamental logical operators:

```
x y Negate And Or Xor
!x x & y x | y xor(x, y)

true true false true true false
false true true false true true
true false false false false false false
false false true false false
```

• Fundamental **relational** operators, in R: <, >, <=, >=, ==, !=.

XOR operations

- The XOR logical operation, exclusive or, takes two Boolean operand are different. Conversely, it returns false if the two operands have the
- So, for example, the XOR operator can be used when we have to che same time.

How many ways can you write

Write a function that takes two arguments (x, y) and applies the XOR template:

```
myxor <- function(x, y) {
  res <- logical(length(x))
  for (i in 1:length(x)) {
    res[i] <- # do something with x[i] and y[i]
  }
  return(res)
}

Or if vectorized (this would be better)

myxor <- function(x, y) {
  # INSERT YOUR CODE HERE
}

Hint 1: Remember that negating (x & y) equals (!x | !y).</pre>
```

```
Hint 2: Logical operators are a distributive, meaning a * (b + c) = |.
```

In R

```
myxor1 <- function(x,y) {(x & !y) | (!x & y)}
myxor2 <- function(x,y) {!((!x | y) & (x | !y))}
myxor3 <- function(x,y) {(x | y) & (!x | !y)}
myxor4 <- function(x,y) {!((!x & !y) | (x & y))}
cbind(
   ifelse(xor(test[,1], test[,2]), "true", "false"),
   ifelse(myxor1(test[,1], test[,2]), "true", "false"),
   ifelse(myxor2(test[,1], test[,2]), "true", "false"),
   ifelse(myxor3(test[,1], test[,2]), "true", "false"),
   ifelse(myxor4(test[,1], test[,2]), "true", "false"))

##   [,1]   [,2]   [,3]   [,4]   [,5]
## [2,] "true" "true" "true" "true" "true"
## [3,] "true" "true" "true" "true" "true"
## [4,] "false" "false" "false" "false" "false"</pre>
```

Or in Python

```
# Loading the libraries
import numpy as np
import pandas as pa

# Defining the data
x = [True, True, False, False]
y = [False, True, True, False]
ans = {
    'x' : x,
    'y' : y,
    'and' : np.logical_and(x, y),
    'cor' : np.logical_or(x, y),
    'xor' : np.logical_xor(x, y)
}
pa.DataFrame(ans)
```

```
Or in Python (bis)
```

We will now see applications using the met dataset

Filtering (subsetting) the data

Need to select records according to some criteria. For example:

- First day of the month, and
- Above latitude 40, and
- Elevation outside the range 500 and 1,000.

The logical expressions would be

```
(day == 1)(lat > 40)((elev < 500) | (elev > 1000))
```

Respectively.

In R with data.table:

In R with **dplyr::filter()**:

```
met_ldt |>
  filter(day == 1, lat > 40, (elev < 500) | (elev > 1000)
  collect() |> # Notice this line!
  nrow()

## [1] 27049
```

With lazy tables, R delays doing any work until the last possible momen and then sends it to the database in one step.

In Python

In the case of pydatatable we use ${\tt dt.f.}$ to refer to a column. ${\tt df.}$ is where ${\tt dt.f.}$ is a column.

The f. is a symbol that allows accessing column names in a datatable's

More wrangling questions

- 1. How many records have a temperature within 18 and 25 C?
- 2. Some records have missings. Count how many records have temp
- 3. Following the previous question, plot a sample of 1,000 of (lat, with data.

Solutions

```
# Question 1
message("Question 1: ", nrow(met_dt[(temp < 25) & (temp >
## Question 1: 908047

# met_dt[temp %between% c(18, 25), .N]

# met_ldt |>
# filter(between(temp, 18, 25)) |>
# collect() |>
# nrow()

# Question 2
message("Question 2: ", met_dt[is.na(temp), .N])

## Question 2: 60089

• Note the special symbol .N in j
```

• N can be used in j, which is particularly useful to get the number

Solutions (con't)

```
# Question 3
set.seed(123)
message("Question 3")

# Drawing a sample
idx <- met_dt[, list(x = sample.int(.N, 2000, replace = F

# Visualizing the data
ggplot(map_data("state"), aes(x = long, y = lat)) +
    geom_map(aes(map_id = region), map = map_data("state"),
    geom_jitter(
    data = met_dt[idx],
    mapping = aes(x = lon, y = lat, col = is.na(temp)),
    inherit.aes = FALSE, alpha = .5, cex = 2
)</pre>
```

Solutions (con't)

Creating variables: Data types

- logical: Bool true/false type, e.g. dead/alive, sick/healthy, good/bad
- strings: string of characters (letters/symbols), e.g. names, text, etc
- integer: Numeric variable with no decimal (discrete), e.g. age, days
- double: Numeric variable with decimals (continuous), e.g. distance

In C (and other languages), strings, integers, and doubles may be speci 9, 16, and 32 bits. This is relevant when managing large datasets, where

Creating variables: Special dat

Most programming languages have special types which are built using I

- time: Could be date, date + time, or a combination of both. Usually R, the Date class has as reference 1970-01-01, in other words, "day
- **categorical**: Commonly used to represent strata/levels of variables as a factor, where the data is stored as numbers but has a label.
- ordinal: Similar to factor, but it has ordering, e.g. "satisfaction level

Other special data types could be ways to represent missings (usually ce.g. +-Inf and Undefined (NaN).

When storing/sharing datasets, it is a good practice to do it along a dict

Questions 3: What's the best v following

- 0, 1, 1, 0, 0, 1
- Diabetes type 1, Diabetes type 2, Diabetes type 1, Diabetes type 2
- on, off, off, on, on, on
- 5, 10, 1, 15, 0, 0, 1
- 1.0, 2.0, 10.0, 6.0
- high, low, medium, medium, high
- -1, 1, -1, -1, 1,
- .2, 1.5, .8, *π*
- π , exp 1, π , π

Variable creation

If we wanted to create two variables, elev^2 and the scaled version of do the following

With data.table

Variable creation (cont. 1)

With the verb **dplyr::mutate()**:

6 726764 94163 2019

```
met_dt[, c("elev2", "windsp_scaled") := NULL] # This to d
met_ldt |>
  mutate(
                  = elev ^2,
    windsp_scaled = wind.sp/sd(wind.sp,na.rm=TRUE)
  ) |>
  collect()
## # A tibble: 2,317,204 × 15
    USAFID WBAN year month day hour
##
                                           min
                                                 lat
                                                      l
##
      <int> <int> <int> <int> <int> <int> <dbl> <dbl
## 1 726764 94163 2019 8 27
                                    11
                                            50 44.7 -11
                        8 27
8 27
8 27
8 18
8 26
                                                44.7 -11
## 2 726764 94163 2019
                                      12
                                            10
## 3 726764 94163 2019
                                            30
                                                44.7 -11
                                      12
## 4 726764 94163 2019
                                      12
                                            50
                                                44.7 -11
## 5 720411
            137 2019
                                      12
                                            35
                                                36.4 - 10
```

12

30

44.7 -11

```
8
                                   26
                                                   44.7 -11
   7 726764 94163
                    2019
                                         12
                                               50
                                                   44.7 -11
   8 726764 94163
                    2019
                             8
                                   26
                                         13
                                               10
##
   9 726764 94163
                    2019
                             8
                                   27
                                         10
                                               30
                                                   44.7 -11
## 10 726764 94163 2019
                                   27
                                         10
                                               50
                                                   44.7 -11
```

Variable creation (cont. 2)

Imagine that we needed to generate all those calculations (scale by sd) **.SD** symbol:

```
# Listing the names
in_names <- c("wind.sp", "temp", "atm.press")</pre>
out_names <- paste0(in_names, "_scaled")</pre>
met_dt[,
     c(out_names) := lapply(.SD, function(x) x/sd(x, na.rm
     .SDcols = in_names
# Looking at the first 4
head(met_dt[, .SD, .SDcols = out_names], n = 4)
##
      wind.sp_scaled temp_scaled atm.press_scaled
## 1:
                   0 -0.4955951
                                                 NA
## 2:
                   0 -0.4955951
                                                 NA
## 3:
                   0 - 0.4955951
                                                 NA
## 4:
                   0 - 0.4955951
                                                 NA
```

- Key things to notice here: **c(out_names)**, **.SD**, and **.SDCols**.
- More on SD

Variable creation (cont. 3)

In the case of dplyr, we could use the following

```
as_tibble(met_ldt) |>
  mutate(
    across(
      all_of(in_names),
       function(x) x/sd(x, na.rm = TRUE),
       .names = "{col}_scaled2"
       )
  # Just to print the last columns
  select(ends_with("_scaled2")) |>
  head(n = 4)
## # A tibble: 4 × 3
    wind.sp_scaled2 temp_scaled2 atm.press_scaled2
##
##
              <dbl>
                          <dbl>
## 1
                          -0.496
                                                NA
## 2
                          -0.496
                                                NA
```

```
## 3 0 -0.496 NA
## 4 0 -0.496 NA
```

Key thing here: This approach has no direct translation to data.table

Merging data

- While building the MET dataset, we dropped the State data.
- We can use the original Stations dataset and *merge* it to the MET d
- But we cannot do it right away. We need to process the data some

Merging data (cont. 1)

```
stations <- fread("ftp://ftp.ncdc.noaa.gov/pub/data/noaa/
stations[, USAF := as.integer(USAF)]

# Dealing with NAs and 999999
stations[, USAF := fifelse(USAF == 9999999, NA_integer_,
stations[, CTRY := fifelse(CTRY == "", NA_character_, Cstations[, STATE := fifelse(STATE == "", NA_character_,

# Selecting the three relevant columns, and keeping unique
stations <- unique(stations[, list(USAF, CTRY, STATE)])

# Dropping NAs
stations <- stations[!is.na(USAF)]
head(stations, n = 4)

## USAF CTRY STATE
## 1: 7018 <NA> <NA>
## 2: 7026 AF <NA>
## 3: 7070 AF <NA>
## 3: 7070 AF <NA>
```

```
## 4: 8260 <NA> <NA>
```

Notice the function fifelse(). Now, let's try to merge the data!

Merging data (cont. 2)

```
merge(
    # Data
    x = met_dt,
    y = stations,
    # List of variables to match
    by.x = "USAFID",
    by.y = "USAF",
    # Which obs to keep?
    all.x = TRUE,
    all.y = FALSE
    ) |> nrow()
## [1] 2385443
```

This is more rows! The original dataset, met_dt, has 2317204. This me IDs. We can fix this:

```
stations[, n := 1:.N, by = .(USAF)]
stations <- stations[n == 1,][, n := NULL]</pre>
```

Merging data (cont. 3)

We now can use the function merge() to add the extra data

```
## 3: 690150 93121 CA
## 4: 690150 93121 CA
```

What happens when you change the options all.x and all.y?

Aggregating data: Adding grou

- Many times we need to either impute some data, or generate varial
- If we, for example, wanted to impute missing temperature with the with the data.table::fcoalesce() function:

```
met_dt[, temp_imp := fcoalesce(temp, mean(temp, na.rm =
    by = .(STATE, year, month, day)]
```

• In the case of dplyr, we can do the following using **dplyr::group_by** togo

```
# We need to create the lazy table again, since we repl
met_ldt <- lazy_dt(met_dt, immutable = FALSE)

met_ldt |>
    group_by(STATE, year, month, day) |>
    mutate(
        temp_imp2 = coalesce(temp, mean(temp, na.rm = TRUE)
        ) |> collect()
```

Aggregating data: Adding grou (cont.)

Let's see how it looks like

```
# Preparing for ggplot2
plotdata <-met_dt[USAFID == 720172][order(year, month, da
plotdata <- rbind(
   plotdata[, .(temp = temp, type = "raw")],
    plotdata[USAFID == 720172][, .(temp = temp_imp, type =
)

# Generating an 'x' variable for time
plotdata[, id := 1:.N, by = type]

plotdata |>
   ggplot(aes(x = id, y = temp, col = type, lty = type)) +
   geom_line()
```

Aggregating data: Adding grou (cont.)

Aggregating data: Summary ta

- Using by also allow us creating summaries of our data.
- For example, if we wanted to compute the average temperature, wi we could do the following

```
met_dt[, .(
                  = mean(temp, na.rm=TRUE),
     temp_avg
    wind.sp_avg = mean(wind.sp, na.rm=TRUE),
    atm.press_avg = mean(atm.press, na.rm = TRUE)
    ),
     by = STATE
     ][order(STATE)] |> head(n = 4)
##
      STATE temp_avg wind.sp_avg atm.press_avg
        AL 26.19799
## 1:
                                      1016.148
                        1.563645
## 2:
         AR 26.20697
                        1.872876
                                      1014.551
## 3:
        AZ 28.80596
                        2.983999
                                      1010.771
## 4:
        CA 22.36199
                        2.614711
                                      1012.637
```

Aggregating data: Summary ta

When dealing with too many variables, we can use the . SD special sym

```
# Listing the names
 in_names <- c("wind.sp", "temp", "atm.press")</pre>
 out_names <- paste0(in_names, "_avg")</pre>
 met_dt[,
   setNames(lapply(.SD, mean, na.rm = TRUE), out_names),
   .SDcols = in_names, keyby = STATE
   ] |> head(n = 4)
      STATE wind.sp_avg temp_avg atm.press_avg AL 1.563645 26.19799 1016.148
## 1:
## 2:
          AR
                 1.872876 26.20697
                                            1014.551
## 3:
          ΑZ
                 2.983999 28.80596
                                            1010.771
                 2.614711 22.36199
## 4:
          \mathsf{C}\mathsf{A}
                                            1012.637
```

Notice the keyby option here: "Group by STATE and order by STATE".

Aggregating data: Summary ta

• Using **dplyr** verbs

```
met_ldt |>
    group_by(STATE) |>
    summarise(
                  = mean(temp, na.rm=TRUE),
      temp_avg
      wind.sp_avg = mean(wind.sp, na.rm=TRUE),
      atm.press_avg = mean(atm.press, na.rm = TRUE)
    ) |> arrange(STATE) |> head(n = 4)
## Source: local data table [4 x 4]
## Call: head(setorder(`_DT3`[, .(temp_avg = mean(temp,
##
     wind.sp_avg = mean(wind.sp, na.rm = TRUE), atm.pres
          na.rm = TRUE)), keyby = .(STATE)], STATE, na.la
##
##
##
    STATE temp_avg wind.sp_avg atm.press_avg
##
## <chr> <dbl> <dbl>
                                     <dbl>
## 1 AL
              26.2
                         1.56
                                      1016.
```

```
## 2 AR 26.2 1.87 1015.
## 3 AZ 28.8 2.98 1011.
## 4 CA 22.4 2.61 1013.
```

Other data.table goodies

- shift() Fast lead/lag for vectors and lists.
- fifelse() Fast if-else, similar to base R's ifelse().
- fcoalesce() Fast coalescing of missing values.
- %between% A short form of (x < lb) & (x > up)
- %inrange% A short form of x %in% lb:up
- %chin% Fast match of character vectors, equivalent to x %in% X,
- nafill() Fill missing values using a constant, last observed value

Machine Learning 1: Advanced

• Linear regression is useful, but there are so many ways in which it can fa

Machine Learning 1: Advanced

- A linear model tries to fit the best straight line that passes through
- ullet In general, $Y(s)=f(s)+\epsilon$ where in regular linear regression f(s)
- If we want to represent the regression more generally, we can define basis function consisting of 'non-linear' terms.

Basis Function

Basics of Basis Functions

- We will start with a 1-dimensional, univariate case. For example this coutime (x) with basis functions.
- Polynomial bases are a good way to illustrate what is going on. Consider

$$y_i = f(x_i) + \epsilon_i$$

and let's expand it out by a polynomial

$$y_i=eta_0+eta_1x_i+eta_2x_i^2+eta_3x_i^3-$$

Basis Function

Here

$$f(x_i)=eta_0+eta_1x_i+eta_2x_i^2+eta_3$$

is a 4th order polynomial. So, f(x) is a function represented by **five** base

$$f(x_i)=\sum_{j=1}^5 x^jeta_j=\sum_{j=1}^5 b_j$$

that are defined by:

$$b_1(x) = 1, b_2(x) = x, b_3(x) = x^2, b_4(x)$$

Basis Functions

- In general, a basis is a set of functions that can be added together complicated function
- Here our weights are the regression coefficients β_i
- In general, a basis function is represented by

$$f_i = \sum b_j(x_i)eta_j$$

$$\begin{pmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \\ f_5 \end{pmatrix} = \begin{bmatrix} 1 & b_1(x_1) & b_2(x_1) & b_3(x_1) & b_4(x_1) & b_5(x_1) \\ 1 & b_1(x_2) & b_2(x_2) & b_3(x_2) & b_4(x_2) & b_5(x_2) \\ 1 & b_1(x_3) & b_2(x_3) & b_3(x_3) & b_4(x_3) & b_5(x_3) \\ 1 & b_1(x_4) & b_2(x_4) & b_3(x_4) & b_4(x_4) & b_5(x_4) \\ 1 & b_1(x_5) & b_2(x_5) & b_3(x_5) & b_4(x_5) & b_5(x_5) \end{bmatrix}$$

Polynomial Basis

Figure 3.1 Illustration of the idea of representing a function in a polynomial basis. The first 5 panels (starting from top left), by (a) for a 4th order polynomial basis. The basis functions

 $o_j(x)$, for a 4m oracle polynomial basis. The basis functions valued parameter, β_j , and are then summed to give the final constraint is shown in the bottom right panel. By varying the β_j , we can vary polynomial function of order 4 or lower. See also figure 3.

Polynomial Basis

- The basis functions are each multiplied by β_j and then summed to give the shown in the bottom left figure.
- Below, we show this concept in terms of an example of CO₂ concentration

- In general, splines are curves that are formed by combining pieces
- There are several types of splines including natural, cubic, and b-sp

$$f(t_i) = \sum_{j=1}^4 t^j eta_j$$

- B-spline curves are made up of polynomial pieces and are defined
- Choosing the number of knots defines how smooth (few) or wiggly

- Smoothing splines with penalty allows us to estimate where to put the kn
- Minimize the function

$$\sum_i (y_i - f(t_i))^2 + \lambda \int f'$$

- $\bullet\,$ Here, λ is a penalty parameter that controls how much to penalize wiggly
- Trade-off between the goodness of fit (the sum of squares) and the wiggli
- Start by putting a knot at every data point, then penalize.
- It is an optimization problem m where we minimize:

$$\sum_i (y_i - B_i^T eta)^2 + \lambda eta^T$$

• the matrix S is constructed by using the spline basis we chose, B is the ba

• This function

$$\sum_i (y_i - f(t_i))^2 + \lambda \int f'$$

represents the loss + penalty.

- We see similar functions in lasso and ridge regression.
- The second derivative $f''(t)^2$ corresponds to how much the slope is changed slope of the function at t).
- The integral $\int f''(t)^2 dt$ is a measure of the total change in the function f f'(t) will be close to constant and the integral will take on a small value.
- A large λ will will make the function f smoother, but $\lambda = 0$ means the powing f will will make the function f smoother, but f means the powing f will be f means the powing f means the power f means the po
- As $\lambda \to \infty$, f will be perfectly smooth, a straight line that passes through

1-D Splines

Types of 1-D splines include:

- cubic splines (basically piecewise cubic polynomials)
- cyclic splines (cubic splines with connected ends)
- basis splines (B-spline) with other polynomial orders
- cardinal splines (where knot placement is always a certain distance)
- wavelets (often cardinal wavelet splines)

Fitting Spline Regression Mode

We will use CO\$_2\$ data from the Mauna Loa observatory in Hawaii: ht

- important variables are: average (monthly CO\$_2\$ concentrations)
- we will make a month-year variable

```
co2 <- read.csv("co2_mm_mlo.csv", skip=40)

co2 <- co2 |>
  mutate(month_year = make_date(co2$year, co2$month)) |>
  rename(co2 = average)

co2 |>
  ggplot(aes(y=co2,x=month_year)) +
  geom_line() +
  labs(x='Date (month-year)', y='CO2 concentration ppm')+
  theme_bw()
```

Fitting Spline Regression Mode

Fitting Spline Regression Mode

```
library(mgcv)
# Using cubic regression spline bases with 4 knots to sho
co2_2023 <- co2[co2$year==2023,]
gam_co2 <- gam(co2~s(month,bs="cr", k=4),data=co2_2023)
plot(gam_co2)</pre>
```


2 4 6 8 month

Fitting Spline Regression Models

```
# try fitting to all data and smoothing date (overall tre
gam_co2_all <- gam(co2~s(decimal.date,bs="cr",k=20)+s(mon
# predict on data
pred_co2 <- predict.gam(gam_co2_all,co2)
plot(pred_co2,type='l')</pre>
```


Index

2-D Splines

- Thin plate splines are smoothing splines in 2-d
- Extend the 1-d case to:

$$\sum_i \left(z_i - g(s_1,s_2)
ight)^2 + \lambda \iint g''(s_i)$$

- where the penalty breaks down to the sum of the partial second derivative
- λ controls the "wiggliness" as in the 1-D spline (roughness penalty)

Thin Plate Splines

The idea behind a thin plate spline is:

- Basically we put a bendable plane through over the space and the points it
- Where there are more points grouped, we expect the plane to be pulled m
- If there is a very bumpy surface, there will be more knots used and a more

Thin Plate Splines

Thin Plate Spline Regression

The height of where the surface is pulled is going to depend on the mag

Thin Plate Spline Regression

Fitting Spline Regression Models

gam_temp <- gam(temp~s(x,y,bs="ts",k=60, fx=TRUE),data=id
plot(gam_temp)
summary(gam_temp)</pre>

More on Advanced Regression

For more information and examples about regression that includes basis Statistical Learning with applications in R