Обмін речовин та енергії в клітині

Мета: Сформувати поняття про обмін речовин та перетворення енергії в клітині; показати асиміляцію і дисиміляцію як дві сторони єдиного процесу обміну речовин; сформувати уявлення про основні етапи енергетичного обміну, особливості їх проходження взаємозв'язки і результати; розвивати вміння робити логічні висновки та виділяти головне при вивченні нового матеріалу.

Основні поняття: Метаболізм, Асиміляція, Дисиміляція, Енергетичний обмін, Пластичний обмін, Автотрофи, Гетеротрофи, Хемотрофи, Ферменти.

Тип уроку: вивчення нового матеріалу

Тестування з теми: Будова клітини

https://naurok.com.ua/test/join?gamecode=6155878

Професор А. П. Мясніков визначив зміни, які відбуваються за добу в організмі людини масою 70 кг.

Розщеплюється 125 г білка, 70 г жиру, 450 г вуглеводів з виді ленням 12 600 Дж енергії; поглинається 460 л кисню й виділяється 403 л вуглекислого газу; гине й замінюється 450 млрд еритроцитів, від 22 до 30 млрд лейкоцитів і від 270 до 430 млрд тромбоцитів; гине й відновлюється 50 % від загальної кількості епітеліальних клітин шлунка й кишечнику; відновлюється й гине 1/75 частина кісткових клітин скелета; гине й відновлюється 1/20 частина покривного епітелію тіла.

Чому відбуваються такі колосальні зміни в людському організму і навіщо вони?

Форми існування енергії в біологічних системах

Матаболізм - це сукупність процесів, які забезпечують перетворення речовин, енергії та інформації в клітині, що є основою її життєдіяльності.

Обмін речовин та енергії = МЕТАБОЛІЗМ

Зовнішній обмін

Поглинання речовин виділення речовин

Пластичний обмін = анаболізм Асиміляція

Сукупність процесів синтезу складних речовин із простих (супроводжується поглинанням енергії)

Внутрішній обмін

Енергетичний обмін = катаболізм Дисиміляція Сукупність процесів розщеплення складних речовин до простих (супроводжується виділенням енергії)

Пластичний обмін (анаболізм, асиміляція) - сукупність реакцій синтезу, які забезпечують ріст клітин, поновлення їхнього хімічного складу

В основі реакції біосинтезу - утворення складних органічних речовин із простих

На здійснення цих процесів витрачається енергія, тому вони будуть ендотермічними

Основні процеси в клітині: фотосинтез, хемосинтез, біосинтез білків

Енергетичний обмін (катаболізм, дисиміляція) - сукупність реакцій розщеплення, які забезпечують клітину енергією

В основі реакції розщеплення - розклад складних органічних речовин на простіші

Ці процеси супроводжуються виділенням енергії і називаються **екзотермічними**

Основні процеси в клітині: гліколіз, бродіння, кисневе розщеплення.

Процеси енергетичного і пластичного обміну - це різні сторони єдиного процесу обміну речовин і перетворення енергії у живих клітинах.

Особливості процесів обміну:

висока швидкість перебігу завдяки участі ферментів

Гідролази - ферменти, що каталізують реакції розпаду

Синтетази - ферменти, що каталізують реакції синтезу

надзвичайна впорядкованість, організованість, точність, що обумовлено певним упорядкованим розташуванням ферментів на мембранах

Живлення – це спосіб отримання живими істотами енергії й речовин для здійснення процесів життєдіяльності

Джерела енергії, які є доступними для живих організмів, - це <u>енергія</u> сонячного світла й <u>енергія хімічних реакцій</u>, що відбуваються з органічними і неорганічними сполуками.

Організми які можуть самі синтезувати органічні сполуки з неорганічних

Хемотрофи

Джерелом енергії є хімічні реакції неорганічних речовин, що їх поглинають організми

Використовують у якості джерела енергії для життєдіяльності світлову енергію

Гетеротрофи

Організми, які не можуть самостійно синтезуватити органічні речовини, тому поглинають їх із навколишнього

Типи живлення

Характеристики	Автотрофи		Гетеротрофи
	Фототрофи	Хемотрофи	
Джерела енергії	Світло	Неорганічні сполуки	Органічні сполуки
<u>Джерела Карбону</u>	Вуглекислий газ	Вуглекислий газ	Органічні сполуки
<u>Джерела органічних</u> <u>речовин</u>	Непотрібні	Непотрібні	Органічні сполуки, синтезовані іншими організмами
Приклади організмів із таким типом живлення	Ціанобактерії, більшість рослин і водоростей	Нітрифікувальні бактерії, залізобактерії, сіркобактерії, археї	Тварини, гриби, більшість бактерій

Перший етап

підготовчий

Другий етап

безкисневий

Третій етап

кисневий

Енергетичний обмін (катаболізм, дисиміляція)

ebiologinia_ergenierna

Перший етап підготовчий

Другий етап безкисневий

Третій етап кисневий

Підготовчий етап відбувається у цитоплазмі; у тварин - у травних вакуолях і травній системі. Білки розщеплюються до амінокислот. Жири - до гліцерину та жирних кислот. Полісахариди - до моносахаридів. Нуклеїнові кислоти - до нуклеотидів.

Виділяється всього 0,2 - 0,8 % енергії.

Вся енергія, що вивільняється, розсіюється у вигляді теплоти.

Безкисневий (анаеробний) етап відбувається і гіалоплазмі.

Гліколіз - сукупність ферментативних реакцій, які забезпечують безкисневе розщеплення молекул глюкози з утворенням молочної кислоти та A ТФ

Безкисневий (анаеробний) етап відбувається і гіалоплазмі (в рідкому середовищі клітини)

Енергетичний ефект гліколізу – 200 кДж (116 кДж – на тепло, 84 кДж – на $AT\Phi$)

При анаеробних умовах існування, при недостатньому вмісті кисню, як це буває в м'язах, які активно скорочуються, кінцевим продуктом гліколізу є молочна кислота (С3H6O3), яка утворилася з піровиноградної кислоти (С3H4O3).

 $C_6H_{12}O_6 + 2H_3PO_4 + 2AД\Phi \rightarrow 2C_3H_6O_3 + 2H_2O + 2AT\Phi + 200 кДж$

Бродіння - процес розкладу органічних речовин (здебільшого вуглеводів) мікроорганізмів в анаеробних умов

До бродіння здатні дріжджі, бактерії, мукорові гриби і окремі найпростіші.

Вихідними продуктами для бродіння є вуглеводи, а також органічні кислоти, амінокислоти та ін.

Кінцеві продукти реакції: органічні кислоти (молочна, масляна тощо), спирти (етиловий, бутиловий тощо), ацетон, а також CO2 і H2O.

Окисно-відновні реакції бродіння здійснюються за участю специфічного переносника водню, який позначають як НАД (нікотинамідаденіндинуклеотид)

Перший етап підготовчий

Другий етап безкисневий

Третій етап кисневий

Кисневий етап відбувається у матриксі і на кристах мітохондрій за участі кисню.

На цьому етапі аеробне перетворення вуглеводів продовжується за рахунок розщеплення молочної кислоти до води і вуглекислого газу.

Енергетичний ефект: 2600 кДж 1088 кДж - на тепло, 1512 кДж - на *A*ТФ

 $2C_3H_6O_3 + O_2 + 36H_3PO_4 + 36AДФ \rightarrow CO_2 + 42H_2O + 36AТФ$

Кисневий (аеробний етап)

Аеробне дихання відбувається в мітохондріях і здійснюється поетапно:

- 1. Окиснювальне декарбоксилювання перетворення піровиноградної кислоти у матриксі мітохондрій на ацетилкоензим А (ацетил-КоА), який доставляє атоми Карбону з ацетил-групою до циклу Кребса.
- 2. **Цикл Кребса** (цикл трикарбонових кислот) відбувається <u>у матриксі</u> мітохондрій:
 - ацетил-КоА окиснюється до СО2 з виділенням енергії та утворенням АТФ та атомів Гідрогену
 - СО2 виходить за межі мітохондрії і виділяється з клітини

За один оберт циклу (8 ферментативих реакцій) відбувається повне окиснення 1 молекули ацетил-КоА.

Кисневий (аеробний етап)

2. **Цикл Кребса** (цикл трикарбонових кислот) відбувається <u>у матриксі</u> мітохондрій:

Піровиноградна (молочна) кислота реагує із щавлевооцтовою (оксалоацетатом), утворюючи лимонну кислоту (цитрат), яка проходить ряд послідовних реакцій, перетворюючись на інші кислоти. У результаті цих перетворень виникає щавлевооцтова кислота (оксалоцетат), яка знову реагує з піровиноградною. Вільний водень з'єднується з НАД (нікотинамідаденіндинуклеотид), утворюючи сполуку НАДН

Кисневий (аеробний етап) енергетичного обміну

Аеробне дихання відбувається в мітохондріях і здійснюється поетапно:

3. Окиснювальне фосфорилювання - це послідовне перетворення атомів Гідрогену на дихальному ланцюзі ферментів з утворенням Н2О й АТФ, що відбувається <u>на кристах мітохондрій</u>.

фузія АТФ із мітохондрії

НАДН окиснюється до НАД⁺, Н⁺ та електрона. За допомогою переносників електрони транспортуються на внутрішню поверхню мембрани мітохондрій, іони Н⁺ накопичуються на зовнішній поверхні.

У внутрішній мембрані мітохондрій локалізована ферментна система АТФ-синтетаза, завдяки якій з АДФ і фосфорної кислоти синтезується АТФ

Кисневий (аеробний етап) енергетичного обміну

Аеробне дихання відбувається в мітохондріях і здійснюється поетапно:

3. Окиснювальне фосфорилювання – це послідовне перетворення атомів Гідрогену на дихальному ланцюзі ферментів з утворенням Н2О й АТФ, що відбувається на кристах мітохондрій.

Сумарним енергетичним результатом повного розщеплення глюкози є 2800 кДж енергії

Повне рівняння розщеплення глюкози має вигляд:

 $C_6H_{12}O_6 + 6O_2 + 38H_3PO_4 \rightarrow 6CO_2 + 44H_2O + 38AT\Phi$

Схема повного кисневого розщеплення речовин

- 1. Підготовчий етап
- 2. Безкисневий етап
- 3. Кисневий етап

Назва етапу	Де відбувається	Що відбувається	Енергія, що виділяється
Перший етап - підготовчий	У тварин у травних вакуолях або травній системі, у рослин - у цитоплазмі	Під впливом травних ферментів складні органічні сполуки розщеплюються до сполук, які може засвоювати організм. Білки розщеплюються до амінокислот, полісахариди - до моносахаридів, жири - до гліцерину і жирних кислот, нуклеїнові кислоти - до нуклеотидів	Енергетичний ефект цього етапу незначний, і вся енергія розсіюється у вигляді тепла
Другий етап – безкисневий (анаеробний)	У цитоплазмі клітини	Гліколіз - ферментативне розщеплення глюкози, за якого з однієї молекули глюкози утворюються дві молекули піровиноградної кислоти або молочної кислоти	З однієї молекули глюкози 40% енергії акумулюється у 2 молекулах АТФ
Третій етап - кисневий (аеробний)	У мітохондріях	Подальше розщеплення органічних сполук, що утворилися на безкисневому етапі до кінцевих продуктів СО2 та Н2О. Відбувається цикл кребса працює дихальний ланцюг	У результаті розщеплення у процесі аеробного дихання двох молекул піровиноградної кислоти синтезується в цілому 36 молекул АТФ
Загальний енергетичний результат			38 молекул АТФ на одну молекулу глюкози

ПРАКТИЧНЕ ЗНАЧЕННЯ ЗНАНЬ ПРО МЕТАБОЛІЧНІ ПРОЦЕСИ

Домашне завдання:

Опрацювати параграф 15 термінологія Конспект теми