Name

CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CHEMISTRY 0620/03

Paper 3

May/June 2003

1 hour 15 minutes

Candidates answer on the Question Paper. No Additional Materials required.

READ THESE INSTRUCTIONS FIRST

Write your name, Centre number and candidate number in the spaces provided at the top of this page. Write in dark blue or black pen in the spaces provided on the Question Paper.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

The number of marks is given in brackets [] at the end of each question or part question.

A copy of the Periodic Table is provided on page 12.

If you have been given a label, look at the details. If any details are incorrect or missing, please fill in your correct details in the space given at the top of this page.

Stick your personal label here, if provided.

For Eyam	iner's Use
1 Of Exam	11101 3 030
1	
2	
3	
4	
5	
TOTAL	

This document consists of 12 printed pages.

- 1 No one knows where iron was first isolated. It appeared in China, the Middle East and in Africa. It was obtained by reducing iron ore with charcoal.
 - (a) Complete the following equation.

(c)

[2]

(b) In 1705 Abraham Darby showed that iron ore could be reduced using coke in a blast furnace.

(i)	The temperature in the furnace rises to 2000 °C. Write an equation for the exothermic reaction that causes this high temperature.	те
(ii)	In the furnace, the ore is reduced by carbon monoxide. Explain how this is forme	
	formation of slag removes an impurity in the ore. Write a word equation for the slag.	ne
		[0]

(d)	Stai carb	nless steel is an alloy of iron. It contains iron, other metals and about 0.5% coon.	of
	(i)	State a use of stainless steel.	
	(ii)	Name a metal, other than iron, in stainless steel.	
	(iii)	The iron from the blast furnace is impure. It contains about 5% of carbon and other impurities, such as silicon and phosphorus. Describe how the percentage of carbon is reduced and the other impurities are removed.	er
		[6)]
(e)		e of the methods used to prevent iron or steel from rusting is to electroplate it wit ther metal, such as tin. Complete the following.	h
	The	anode is made of	
	The	cathode is made of	
	The	electrolyte is a solution of	3]

0620/03/M/J/03 [Turn over

2 Calcium and other minerals are essential for healthy teeth and bones. Tablets can be taken to provide these minerals.

Healthy Bones

Each tablet contains

calcium

magnesium

zinc

copper

boron

(a)	Bor	on is a non-metal with a macromolecular structure.
	(i)	What is the valency of boron?
	(ii)	Predict two physical properties of boron.
	(iii)	Name another element and a compound that have macromolecular structures.
		element
		compound
	(iv)	Sketch the structure of one of the above macromolecular substances.

		ium hydroxide.	() ()	in execute of aqueous
	(i)	zinc ions		
		addition of aqueous sodium hydro	oxide	
		excess sodium hydroxide		
	(ii)	copper(II) ions		
		addition of aqueous sodium hydro	oxide	
		excess sodium hydroxide		
				[4]
c)	Eac read	h tablet contains the same numb ted with excess hydrochloric acid	per of moles of CaCO ₃ and to produce 0.24 dm ³ of carb	I MgCO ₃ . One tablet on dioxide at r.t.p.
		$\begin{array}{ccc} CaCO_3 \; + \; 2HCl \; \to \\ MgCO_3 \; + \; 2HCl \; \to \end{array}$	$ \begin{array}{l} CaCl_2 + CO_2 + H_2O \\ MgCl_2 + CO_2 + H_2O \end{array} $	
	(i)	Calculate how many moles of Calculate	CO ₃ there are in one tablet.	
		number of moles ${\rm CO_2}$	=	
		number of moles of $CaCO_3$ and N	MgCO ₃ =	
		number of moles of CaCO ₃	=	[3]
	(ii)	number of moles of CaCO ₃ Calculate the volume of hydrochl tablet.		[3]
	(ii)	Calculate the volume of hydrochl	oric acid, 1.0 mol/dm ³ , need	[3]
	(ii)	Calculate the volume of hydrochl tablet. number of moles of CaCO ₃ and N	oric acid, 1.0 mol/dm ³ , need MgCO ₃ in one tablet =	[3]

- 3 Alkenes are unsaturated hydrocarbons. They undergo addition reactions.
 - (a) Two of the methods of making alkenes are cracking and the thermal decomposition of chloroalkanes.
 - (i) Complete an equation for the cracking of the alkane, decane.

 $C_{10}H_{22} \rightarrow \dots + \dots + \dots$ decane

(ii) Propene can be made by the thermal decomposition of chloropropane. Describe how chloropropane can be made from propane.

reagents propane and

conditions[4]

(b) The following alkenes are isomers.

 $\begin{array}{ccc} \mathrm{CH_3-CH_2-CH=CH_2} & & \mathrm{CH_3-C=CH_2} \\ & & \mathrm{CH_3} \end{array}$

(i) Explain why they are isomers.

.....

.....

(ii) Give the name and structural formula of another hydrocarbon that is isomeric with

name

structural formula

the above.

(c) Give the name of the product when but-1-ene reacts with each of the following.

steam

hydrogen

bromine[3]

- (d) Alkenes can polymerise.
 - (i) Deduce the name and structural formula of the monomer from the structure of the polymer.

name of monomer

structural formula

(ii) Draw the structure of the polymer formed from the following monomer.

$$\begin{array}{c} H \\ C = C \\ O - C - CH^{3} \end{array}$$

(iii) Describe the pollution problems caused by the disposal of polymers in landfill sites and by burning.

andfill sites	
	[2]
urning	
	F4.1

- 4 Nitrogen dioxide, NO₂, is a dark brown gas.
 - (a) Most metal nitrates decompose when heated to form the metal oxide, nitrogen dioxide and oxygen.
 - (i) Write a symbol equation for the decomposition of lead(II) nitrate.

$$Pb(NO_3)_2 \rightarrow \dots + \dots + \dots + \dots$$
 [2]

(ii) Potassium nitrate does not form nitrogen dioxide on heating. Write the word equation for its decomposition.

.....[1]

(b) When nitrogen dioxide is cooled, it forms a yellow liquid and then pale yellow crystals. These crystals are heated and the temperature is measured every minute. The following graph can be drawn.

(i) Describe the arrangement and movement of the molecules in the region A-B.

.....

	(ii)	Name the change that occurs in the region B – C
		[4]
(c)	Nitr	ogen dioxide and other oxides of nitrogen are formed in car engines.
	(i)	Explain how these oxides are formed.
	(ii)	How are they removed from the exhaust gases?
		[4]
(d)	Des	ogen dioxide, oxygen and water react to form dilute nitric acid. cribe how lead(II) nitrate crystals could be prepared from dilute nitric acid and d(II) oxide.
		[3]

5

		t three elements in Period 6 of the Periodic Ta and lanthanum.	able of the Elements are caesium,
(a)	tha	w many more protons, electrons and neutrons and in one atom of caesium. Use your copy of the pyou.	
	nun	mber of protons	
	nun	mber of electrons	
	nun	mber of neutrons	[3]
(b)		three metals can be obtained by the electrolysis he aqueous halides does not produce the metal.	of a molten halide. The electrolysis
	(i)	Complete the equation for the reduction of electrode (cathode).	lanthanum ions at the negative
		La^{3+} + \rightarrow	
	(ii)	Name the three products formed by the electro	·
(c)	All	three metals react with cold water. Complete the	e word equation for these reactions.
		metal + water \rightarrow +	[2]
(d)	con aro	rium chloride is an ionic compound. Draw a diagnound, the charges on the ions and gives the alund the negative ion. Experience electron distribution of a barium atom is 2.8.18.	rrangement of the valency electrons
		e x to represent an electron from a barium atom. e o to represent an electron from a chlorine atom	

(e) Describe, by means of a simple diagram, the lattice structure of an ionic compound, such as caesium chloride.
[2]
(f) The reactions of these metals with oxygen are exothermic.
2Ba(s) + O₂(g) → 2BaO(s)
(i) Give an example of bond forming in this reaction.

(ii) Explain using the idea of bond breaking and forming why this reaction is

exothermic.

DATA SHEET
The Periodic Table of the Elements

The Periodic Table of the Elements		1	11 12 14 16 19 20	27 28 31 32 35.5 40 All Minimism Silicon Phosphorus Sulphur CI Ar 13 14 15 15 16 Ar	51 52 55 56 59 59 64 65 70 73 75 79 80	Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine 36 36 37 37 38 34 35 36	93 96 101 103 106 108 112 115 119 122 128 127 127 128 128 128 128 128 128 128 128 128 128	ND I/NO IC KU KN Palladium Palladium Silver Cadmium Indium Tin Antimory Tellurium Iodine I 41 42 43 44 45 46 47 48 49 50 51 52 53 54	181 184 186 190 192 195 197 201 204 207 209 At Tantalum W Re Os Ir Pt Au Hg Timilium Lead Bismuth Polonium Astatine 73 74 75 76 76 77 78 80 81 82 84 85		Pr Nd Neodymium Neodymium
The Per					55 Mn	romium Manganese 25	É	Technetium 43	186 Re Rhenium 75		Neodymium F
						nadium		Z Iobium	Ta Ta Intalum		
					84 📙	Titanium 22	91	Zirconium 40	178 Hf Hafnium	+	1
				T	9 ⁴	Scandium 21	88	Yttrium 39	139 La Lanthanum 57	AC Actinium 89	series series
	=		9 Be Beryllium	Mg Magnesium	9 Q	20	8 6	Strontium 38	137 Ba Barium 56	226 Ra Radium	*58-71 Lanthanoid series †90-103 Actinoid series
			7 Lithium	23 Na Sodium	% ×	Potassium 19	85	Rubidium 37	133 CS Caesium 55	Fr Francium 87	*58-71

- 60														
00:200	140	141	144			152	157		162	165		169	173	175
noid series	S	ቯ	PN	Pm	Sm	Eu	Вg	Тр	۵	웃	ш	H	Υp	בי
	Cerium	Praseodymium	Neodymium			Europium	Gadolinium		Dysprosium	Holmium		Thulium	Ytterbium	Lutetium
_	28	29	09	61	62	63	64	65	99	29	89	69	20	74
a = relative atomic mass	232		238											
X = atomic symbol	丘	Ъа	-	Ν	Pu	Am	S	路	ర	Es	Fm	Md	8	ځ
b = proton (atomic) number	Thorium 90	Protactinium 91	Uranium 92		Plutonium 94	6	Curium 96	Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Mendelevium 101	_	Lawrencium 103

в **X**

Key

Q

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).