

Learning to Check Contract Inconsistencies

Shuo Zhang

zs412082986@stu.xjtu.edu.cn

Shuo Zhang, Junzhou Zhao, Pinghui Wang, Nuo Xu, Yang Yang, Yiting Liu, Yi Huang, Junlan Feng

MOE KLINNS Lab, XJTU, China JIUTIAN Team, China Mobile Research

SUMMARY

- Formulated the Contract Inconsistency Checking (CIC) problem that has not yet been studied in the AI community
- A novel Pair-wise Blank Resolution (PBR) framework to address CIC with a BlankCoder that extends Transformer encoder to model meaningless blanks
- Collected and labeled a large-scale Chinese contract corpus for CIC. The experimental results show the promising performance of our PBR method

INTRODUCTION

What is Contract Review?

- In real-world scenarios, a standard contract is often prepared by filling blanks in a template
- Contract review corrects errors before final confirmation, which is essential to assure the legal validity of the contracts.
- Contract review is labor-intensive and costly, that costs big companies billions annually
- What to Review ?
- Compliance: Against written regulations E.g., "Private equity fund" must be marked in the title of a contractual fund contract
- **Legality:** Against the law E.g., Conceal cancer in an insurance contract to defraud insurance money

Consistency

Two blanks that should be filled with the same (or different) content are incorrectly filled with different (or same) content (see Fig. 1)

TASK

Contract Inconsistency Checking (CIC)

Figure 1: Examples of contract inconsistencies. The two blanks with red background refer to the same item for sale but incorrectly filled with different content. The two blanks with yellow background refer to two different prices (one with tax and the other without tax) but incorrectly filled with the same price.

Aim:

Automatically detect contract inconsistencies as shown above in a data-driven and End2end way with high accuracy.

CIC as Pair-wise Binary Classification

Given a pair of blanks occurred in the contract document, we want to predict whether they should be filled with the same content or not

Towards Data Scarcity

- Easy to label, do not need to predefine classes for the filled contents
- Comparative

 Data Efficient to Train

Comparison to Existing Al-based Tasks

METHOD

Pair-wise Blank Resolution Framework

Figure 2: The PBR Framework

- Fully Data-driven and End2End Framework
- Siamese Architecture with a novel BlankCoder to efficiently encode meaningless blanks
- FFNN-based binary classifier to predict consistency relation label (1→should fill with the same content)
- **BlankCoder**
- Semantic Encoding for Blanks

Two-stage Blank Modeling Strategy

For final payment, buyer shall pay the sum of ____ dollars in ten days ... 2. Update by recurrent semantic comparison For final payment, buyer shall pay the sum of ____ dollars in ten days ...

. Initialize the Blank representation with nearby relevant descriptions

BlankCoder Architecture

- Extends the Transformer Encoder architecture with twostage modeling strategy as shown above to generate blank-centered sentence representation
- Multi-Head Context Attention to associate relevant context words
- Local Visible Pooling to initiates the blank representation with local keywords
- global update to refine and update the blank representation with related context words

EXPERIMENTS

Dataset

contract dataset	# contracts	# blank-pairs	pos: neg
Chinese Contracts	281	299,621	1:59
ICAIL Contracts	1,526	67,765	1:48

Chinese Contracts:

Manually collected 246 open source business contract templates and 35 real contracts from a company

Highly Imbalanced: focus comparing F1 & MCC

Overall Performance

	Chinese Contracts				ICAIL Contracts							
model	AUC	accuracy	precision	recall	F1	MCC	AUC	accuracy	precision	recall	F1	MCC
BiLSTM	98.26	92.58	88.24	86.11	87.16	86.96	96.06	84.86	79.22	70.11	74.39	74.03
Transformer	94.45	88.51	79.47	77.36	78.40	78.04	93.37	83.09	74.36	66.67	70.30	69.82
Transformer-seg	97.15	92.32	85.15	86.90	86.01	85.78	95.26	83.99	77.78	68.39	72.78	72.40
CenteredLSTM	98.35	92.68	88.96	86.59	87.76	87.56	96.15	85.71	78.62	71.84	75.08	74.66
AttnLSTM	98.62	92.85	90.83	85.51	88.09	87.93	96.19	85.76	80.92	70.69	75.46	75.16
CorefBERT	93.06	90.20	53.85	81.58	64.87	65.61	-	_	_	_	_	_
PBR	98.73	94.05	93.74	88.22	90.90	90.77	96.25	86.01	81.22	72.08	76.38	76.09
%Improvement	0.11	1.29	3.20	1.88	3.19	3.23	0.06	0.29	0.37	0.33	1.22	1.24

- PBR outperforms others in all evaluation metrics
- Significant improvements over Transformer-based methods
- Performance decline on ICAIL Contracts
- Attribute this to data anonymity and the ambiguous blank pair samples (see chapter 5.3 in our paper)

Ablation Study

Metrics	AUC	accuracy	precision	recall	F1	MCC
PBR	98.73	94.05	93.74	88.22	90.90	90.77
-no local	97.76	92.31	81.51	87.86	84.57	84.36
-no update	98.14	92.95	87.81	86.11	86.95	86.74
-no cmp	98.38	93.43	93.57	86.96	90.14	90.04

- local visible pooling is more critical
- contrastive supervision helps

Hyper-parameter sensitivity

 Bigger N → Better performance Proper k is necessary

Case Study

- Transformer encoder incorrectly highlighted irrelevant descriptions
- BlankCoder generates an accurate and expressive blank representation without noise information through two-stage blank modeling strategy

For final payment, Buyer shall pay the sum of ____ dollars in ten days of Seller's delivery of the Goods. .. Buyer shall pay the sum of • Global Update (N=3)For final payment, Buyer shall pay the sum of ____ dollars For final payment, Buyer shall pay the sum of ____ dollars in ten days of Seller's delivery of the Goods. For final payment, Buyer shall pay the sum of in ten days of Seller's delivery of the Goods.

ACKNOWLEDGEMENTS

The research presented in this paper is supported in part by National Key R&D Program of China (2018YFC0830500), National Natural Science Foundation of China (61922067, U1736205, 61902305), MoE-CMCC "Artifical Intelligence" Project (MCM20190701), Natural Science Basic Research Plan in Shaanxi Province of China (2019JM-159), Natural Science Basic Research Plan in Zhejiang Province of China (LGG18F020016).