-Part1-

제4장 상수란 무엇인가?

(교재 75페이지 ~ 88페이지)

학습목차

4.1 상수란

-교재 77페이지 -

4.2 리터럴 상수와 심볼릭 상수

-교재 78페이지 -

4.1 상수란

-교재 77페이지 -

4.1 상수란

- ▶ 상수란?
 - ✓ 어떤 상황에서도 변하지 않는 값을 의미
- ▶ 프로그램에서 데이터는 변수 또는 상수의 형태로 사용한다
 - √ 변수의 경우

√ 상수의 경우

10=5; ----- 데이터를 올바르게 사용하지 못한 경우

4.2 리터럴 상수와 심볼릭 상수

-교재 78페이지 -

4.2 리터럴 상수와 심볼릭 상수 (1/7)

▶ 상수의 종류

- ✓ 리터럴 상수: 글자 그대로의 의미가 있어서 이름이 없는 상수
 - 정수형 상수
 - 실수형 상수
 - 문자 상수
 - 문자열 상수
- ✓ 심볼릭 상수: 상수를 기호화 하여 변수처럼 이름이 있는 상수
 - const 키워드 이용하기
 - #define문 이용하기

4.2 리터럴 상수와 심볼릭 상수 (2/7)

▶ 리터럴 상수 - 정수형 상수 예제 실습

```
/* 4-1.c */
#include<stdio.h>
int main(void)
{
    printf("10진수 정수형 상수 %d + %d = %d 입니다. ₩n", 10, 20, 10+20);
    printf("16진수 정수형 상수 %x + %x = %x 입니다. ₩n", 0x10, 0x20, 0x10+0x20);
    printf(" 8진수 정수형 상수 %o + %o = %o 입니다. ₩n", 010, 020, 010+020);
    return 0;
}
```


10진수	16진수	8진수
0	0x0	00
1	0x1	01
2	0x2	<mark>0</mark> 2
3	<mark>0</mark> x3	<mark>0</mark> 3
4	0x4	<mark>0</mark> 4
5	0x5	<mark>0</mark> 5
6	<mark>0</mark> x6	<mark>0</mark> 6
7	0x7	<mark>0</mark> 7
8	0x8	<mark>0</mark> 10
9	<mark>0</mark> x9	<mark>0</mark> 11
10	0xa	<mark>0</mark> 12
11	0xb	<mark>0</mark> 13
12	0xc	<mark>0</mark> 14
13	0xd	<mark>0</mark> 15
14	0xe	<mark>0</mark> 16
15	0xf	<mark>0</mark> 17
16	<mark>0</mark> x10	<mark>0</mark> 20
17	0x11	<mark>0</mark> 21

4.2 리터럴 상수와 심볼릭 상수 (3/7)

▶ 리터럴 상수 - 실수형 상수 예제 실습

```
/* 4-2.c */
#include<stdio.h>
int main(void)
{
    printf("실수형 상수 %lf + %lf = %lf 입니다. ₩n", 3.1, 4.1, 3.1+4.1);
    return 0;
}
```

```
© C:\WINDOWS\system32\cmd.exe _ □ X
실수형 상수 3.100000 + 4.100000 = 7.200000 입니다. ▲
계속하려면 아무 키나 누르십시오 . . . ■

▼
```


4.2 리터럴 상수와 심볼릭 상수 (4/7)

- ▶ 리터럴 상수 문자 상수 예제 실습
 - ✓ 알파벳과 특수 기호가 왜 문자 상수 인가?
 - ✓ 부록 ASCII 코드 (703페이지 ~ 707페이지) 참고

C:\WINDOWS\system32\cmd.... - \Box

4.2 리터럴 상수와 심볼릭 상수 (5/7)

▶ 리터럴 상수 - 문자 상수 예제 실습

```
문자 상수 a b c 는
ASCII 코드 10진수로 97 98 99
ASCII 코드 16진수로 61 62 63
/* 4-4.c */
#include < stdio.h >
                                                           문자 상수 ! @ # 는
ASCII 코드 10진수로 33 64 35
ASCII 코드 16진수로 21 40 23
계속하려면 아무 키나 누르십시오
int main(void)
  printf("문자 상수 %c %c %c 는 ₩n", 'a', 'b', 'c');
  printf("ASCII 코드10진수로 %d %d %d ₩n", 'a', 'b', 'c');
  printf("ASCII 코드16진수로 %x %x %x ₩n", 'a', 'b', 'c');
  printf("₩n-----₩n");
  printf("문자 상수 %c %c %c 는 ₩n", '!', '@', '#');
  printf("ASCII 코드 10진수로 %d %d %d ₩n", '!', '@', '#');
  printf("ASCII 코드 16진수로 %x %x %x ₩n", '!', '@', '#');
  return 0;
```


4.2 리터럴 상수와 심볼릭 상수 (6/7)

▶ 리터럴 상수 - 문자열 상수 예제 실습

```
/* 4-5.c */
#include < stdio.h >
int main(void)
{
    printf("문자열 상수는 %s 입니다. ₩n", "A");
    printf("문자열 상수는 %s 입니다. ₩n", "10+10");
    printf("문자열 상수는 %s 입니다. ₩n", "Hi, everyone");
    return 0;
}
```


4.2 리터럴 상수와 심볼릭 상수 (7/7)

- ▶ 심볼릭 상수: 상수를 기호화 하여 변수처럼 이름이 있는 상수
 - ① const 키워드 이용하기
 - ② #define문 이용하기

```
/* 4-6.c */
#include < stdio.h >
int main(void)
{
    const int NUM = 100;
    const double PI = 3.14;

    // NUM = 200;
    // PI = 4.14;

    return 0;
}
```

```
/* 4-8.c */
#include <stdio.h>
#define PI 3.14
#define NUM 100
#define BUFFER_SIZE 200
int main()
  printf("%If ₩n", PI);
  printf("%d \wn", \NUM);
  printf("%d ₩n", BUFFER_SIZE);
  return 0;
```

공부한 내용 떠올리기

- ▶ 상수의 개념
- ▶ 리터럴 상수의 종류와 의미
- ▶ 심볼릭 상수의 종류와 만드는 방법

여우의 불평 (출처: 사랑과 지혜의 탈무드)

