Selected Notes on Infinite Series

Christian Stigen Larsen

May 2017

Geometric series

A geometric series is $\sum_{n=0}^{\infty} a_n$ where each term is a multiple r of the previous, i.e. $a_{n+1} = ra_n$ for all $n \ge 0$.

Theorem If |r| < 1, then the series converges with the sum $\frac{a_0}{1-r}$. If $|r| \ge 1$, it diverges.

Theorem If $\lim_{n\to\infty} a_n \neq 0$ or the limit does not exist, then $\sum a_n$ diverges.

Theorem The harmonic series $\sum \frac{1}{n}$ diverges.

The integral test

Theorem If $f(n) = a_n$ for all n, then $\sum a_n$ and $\int f(x)dx$ either both converge or diverge.

The comparison test

Suppose $\sum a_n$ and $\sum b_n$ are positive-term series. Then

- 1. $\sum a_n$ converges if $\sum b_n$ converges and $a_n \leq b_n$ for all n.
- 2. $\sum a_n$ diverges if $\sum b_n$ diverges and $a_n \geq b_n$ for all n.

The limit comparison test

Suppose $\sum a_n$ and $\sum b_n$ are positive-term series. If $L=\lim_{n\to\infty}\frac{a_n}{b_n}$ exists and $0< L<+\infty$, then either both converge or both diverge.

Alternating series

Theorem If $a_n > a_{n+1} > 0$ for all n and $\lim_{n\to\infty} a_n = 0$, then the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ converges.

Theorem If the series $\sum |a_n|$ converges (absolute convergence), then so does the series $\sum a_n$.

The ratio test

Theorem If $\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$ exists or is infinite, then $\sum a_n$ of nonzero terms

- 1. Converges absolutely if $\rho < 1$
- 2. Diverges if $\rho > 1$
- 3. If $\rho = 1$, the test is inconclusive.

The root test

If $\rho=\lim_{n\to\infty}\sqrt[n]{|a_n|}$ exists or is infinite, then the infinite seris $\sum a_n$

- 1. Converges absolutely if $\rho < 1$
- 2. Diverges if $\rho > 1$
- 3. Is inconclusive if $\rho = 1$.

Power series

Theorem If $\sum a_n x^n$ is a power series, then either

- 1. The series converges absolutely for all x, or
- 2. The series converges only when x = 0, or

3. There exists a number R>0 (radius of convergence) such that $\sum a_n x^n$ converges absolutely if |x|< R and diverges if |x|>R.

After finding the open interval $\langle x_0-R,x_0+R\rangle$, make sure to test each end point for convergence or divergence.