Model Testing

example, photography studios $X_{i} = adults, \quad X_{2} = Income, \quad y = Sales$ $\Gamma_{12} = .78 \qquad \Gamma_{Y1} = .945$

Approach 1: t-statistics

$$H_0: \beta_{\ell} = 0$$
, $E_{\ell}^* = \frac{b_{\ell}}{5E(b_{\ell})}$

null distribution ±(n-p)

Tyz= ,836

example:
$$t_1^* = 6.87$$
 $t_2^* = 2.305$ $p = .000$ $(p = .000)$ $(p = .000)$ $(p = .000)$

The data supports a model which includes both predictors

Le is testing the partial effect of input Xe accounting for the effects of all other inputs.

Recall that B account of the second of the secon

Recall that Be represents I the imput effect, with all other imputs held fixed

Approach 2: General Linear Test

example:
$$\frac{\text{candidate models}}{\text{Mi2}}$$
, $y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$ (fill-mod)

 M_1 , $y = \beta_0 + \beta_1 X_1 + \varepsilon$ (adults.mod)

 M_2 , $y = \beta_0 + \beta_2 X_2 + \varepsilon$ (income.mod)

 M_0 , $y = \beta_0 + \varepsilon$ (null.mod)

testing a reduced model against a full model

2

SSE(F) =
$$\frac{n}{\xi} (Y_i - \hat{Y}_i)^2 = SSE$$
, $df_{\epsilon}(F) = n-p$
 $(\hat{Y}_i = b_0 + b_1 X_{i1} + b_2 X_{i2})$

$$SSE(R) = {\atop \stackrel{n}{\xi}} (Y_i - \overline{Y})^2 = SSTO, df_E(R) = n-1$$

test statistiz:
$$F' = \frac{MSR}{MSE}$$
, null distribution $F(p-1,n-p)$

example:
$$F' = 99.103$$
, $p = .000$ anova (null.mod, $= .mod$)

The data supports a models which include at least one of the predictors. $(R^2 = .9167)$

SSR(X1,X2) measures variation in y explained by inputs X1,X2.

(F' is testing the joint effect of all inputs (X1,...,Xr).)

3

Now consider testing for the individual effects of X1, X2.

l	test for X, effect	test for X2 effect	/
margmal effect	(F): MI, (R): Mo	(F): M2, (R): Mo	
Partial effect	(F): M12, (R) M2	(F): M12, (R): M1	

example: (F) M, (R) Mo

anova (null.mod, adults.mod)

SSE(R) = SSTO, SSE(F) = SSE(X_i) = $\frac{2}{5}(Y_i - \hat{Y}_i(X_i))^2$ $\hat{Y}_i(X_i) = \hat{b}_0^{(i)} + \hat{b}_i^{(i)} X_{ii}$

SSR(X1) = SSTO - SSE(X1), df = (n-1)-(n-2) = 1

SSR(X_1) measures the variation in response (sales) explained by X_1 (adults), not accounting for information on X_2 .

$$F_{i}^{*} = 157.22$$
 , $SSR(X_{i}) = 23372$

SSTO = 26196.2 SSR(X) = 23372

 $R^{2}(x_{i}) = .89$

of X1, not accounting for information on X2.

anova (adults.mod, tot.mod)

$$SSE(R) = SSE(X_1)$$
, $SSE(F) = SSE(X_1,X_2)$

$$SSR(X_2|X_1) = SSE(X_1) - SSE(X_1,X_2)$$

$$= SSR(X_1,X_2) - SSR(X_1)$$

extra sum of squares
$$SSR(X_2|X_1)$$
 measures the variation in response (sales) explained by X_2 (community income) beyond that explained by X_1 (community size).

$$F_{211}^* = 5.31 \ (p=.03) \ , \ SSR(X_2|X_1) = 643.5$$

Fall is testing the partial effect of X2, after accounting for the effect of X1

$$SSR(X_2|X_1)$$
 $SSR(X_1,X_2)$ $SSR(X_1)$

sequential sum of squares:
$$SSR(X_1, X_2) = SSR(X_1) + SSR(X_2|X_1)$$

R: $Im(Y \sim XI + X2)$ = $SSR(X_2) + SSR(X_1|X_2)$
anora (mad)

thought experiments:

- · burgers after pizza
- · two good catchers on the same team

(5)

Multicollinearity exists when input variables are highly correlated among themselves

example: $X_1 = triceps$, $X_2 = thigh$, $X_3 = midarm$, y = body fat $(X_1, X_2, X_3 \text{ are easy measurements})$ Y is combersome and expensive)

correlation matrix
$$\Gamma_{12} = .924$$
, $\Gamma_{13} = .458$, $\Gamma_{23} = .085$
 $\Gamma_{Y1} = .843$, $\Gamma_{Y2} = .878$, $\Gamma_{Y3} = .142$

Input space is multi-dimensional, not necessarily rectangular,

Analysis must include an understanding of how input variables are related

Thoughts:

(1) Interpretation of a regression coefficient depends on which other inputs are in the model

examples
$$\rightarrow$$
 $Y = body fat$, $X_1 = weight$, $X_2 = abdomen size$
 \rightarrow $Y = exam score$, $X_1 = difficulty$, $X_2 = ability$
 \rightarrow $Y = school quality$, $X_1 = money spent$, $X_2 = teacher quality$
 \rightarrow $Y = wins$, $X_1 = shots on goal$, $X_2 = geals scored$

simple example: $E(Y) = 2x_1 - x_2$, $r_{12} > > 0$.

X2 has a negative partial effect,
given a fixed level of X1

X2 has a positive marginal effect,
not accounting for the level of X1

example:
$$y = 117.085 + 4.334 \times_1 - 2.857 \times_2 - 2.186 \times_3$$

(recall that $r_{y2} > > 0$)

(2) If an input is highly correlated with response, additional inputs are limited in how much new information can be provided.

example:

$$SSR(x_i) = 352.27$$

$$R^{2}(X_{i}) = .711$$

F = 21.52 (p=.000)

