5.B Eigenvectors and Upper-Triangular Matrices

```
Thursday 16 May 2024 18:21

Definition: Suppose T \in \mathcal{L}(V), p \in P(F) where p(z) = \sum_{i=0}^{\infty} a_i z^i for z \in F then p(T) := a_0 I + a_1 T + a_2 T^2 + \cdots + a_m T^m

Corollary: Siven T, function f: P(F) \to \mathcal{L}(V) defined by p \to p(T) is linear p \to p(T) = p(T) + q(T), f(Ap) = Ap(T)
```

definition: if $p,q \in P(F)$, then $pq \in P(F)$ is $(pq)^{(e)} := p(z)q(z^{e})$

Corollery: any 2 polynomials of an operator commutes $P^{(T)}q(T)=q(T)p(T)$ $P^{roof}: p(z)q(z)=q(z)p(z) \Rightarrow pq=qp$

theorem; every operator on finite dimensional, nonzero, complex V has an eigenvalue proof: suppose $\dim(V) = n > 0$ and $T \in \mathcal{L}(V) \Rightarrow \{v, Tv, T^{2}v, ..., T^{N}\}$ is not linearly independent as the length of the set is not $\Rightarrow \exists \{a_{i}\}_{i} : \in [0, n] \text{ s.t. } 0 = a_{0}V + a_{i}T_{V} + a_{2}T_{V} + ... + a_{m}T^{N}_{V} \text{ and not all } \{a_{i}\}_{min} 0.$ Let $p \in P(U)$ s.t. $p(T) = \sum_{i=0}^{n} (T^{i})_{i} \cdot T^{N} = I \Rightarrow 0 = c \prod_{i=0}^{m} (T^{i})_{i} \cdot T^{N} = 0$ for an least one i (Fundamental Theorem at Alberta).

definition: $T \in L(V)$, $\{v_i : i \in [i,n]\}$ by $i_s \circ f(V)$, $M(T) = A_{s,t}$. $Tv_k = A_{j,k} V_j$

theorem: $T \in L(V)$, $\{V_i : i \in [I,N]\}$ then M(T) with $\{V_i\}$ basis uppertriangular $\Rightarrow Tv_j \in span(\{V_i \in [I,j]\})$ for each $j \in [I,N]$ $\Rightarrow span(\{V_i \in [I,j]\})$ for each $j \in [I,N]$ is invariant under T $\Rightarrow span(\{V_i \in [I,j]\})$ for each $f \in [I,N]$ is invariant under $f \in S$ $\Rightarrow span(\{V_i \in [I,j]\})$ $\Rightarrow span(\{V$

theorem: $V \cong \mathbb{C}^n$, then $T \in L(V)$ has an upper triangular matrix with some basis of V proof: induction if $dim(V)=1 \Rightarrow any \mid by \mid matrices over triangular$ suppose dim(V)=n>1 and assume the results holds for all vector spaces $\cong \mathbb{C}^{n-1}$ let V, be an eigenvector of T, let $U=span(V) \Rightarrow U$ is invariant under T and $dim(U)=1 \Rightarrow dim(V)U \Rightarrow dim(V) - dim(V) - n-1 \Rightarrow T/U \in L(V/U)$ has triangular matrix with some basis $\{V_2+U, \cdots, V_n+U\}$ $\Rightarrow (T/U)(V_1+U) \in span(V_1+U, \cdots, V_1+U)$ for each $j \in [1, n]$ $\Rightarrow (T/U)(V_1+U) = T_{V_1}+U \in span(V_1+U, \cdots, V_1+U) \Rightarrow T_{V_1} \in span(V_1, \cdots, V_1)$ for each $j \in [1, n]$

theorem; if $T \in L(V)$ has apper-triangular matrix with some basis then $(T \text{ in vertible } c \Rightarrow (\text{all diagonal entries} \neq 0))$ proof: suppose $M(T) = \begin{pmatrix} \lambda_i & * \\ 0 & \lambda_n \end{pmatrix}$ with basis $\{V_i : i \in I, nJ\}$

(=) if $\lambda_i \neq 0 \ \forall i \in [l, n] \Rightarrow T_{i_1} = \lambda_i v_i \Rightarrow T(\frac{1}{\lambda_i} v_i) = v_i \Rightarrow v_i \in I_n(T)$ and $T(\frac{1}{\lambda_i} v_i) = \alpha v_i + v_i \in I_n(T)$ and $\alpha v_i \in I_n(T) \Rightarrow v_i \in I_n(T)$ $\Rightarrow v_i \in I_n(T) \ \forall i \in [l, n] \Rightarrow \{v_i\} \text{ begins of } I_n(T) \Rightarrow V = I_n(T) \Rightarrow T \text{ surjective} \Rightarrow T \text{ invertible}$

(>) if T invartible \Rightarrow (if $\lambda_{i=0} \Rightarrow Tv_{i=0} \Rightarrow T$ not injective) $\Rightarrow \lambda_{i\neq 0}$ assume $\lambda_{j=0}$ for some $j \in [12,n] \Rightarrow Tv_{j} \in Span(v_{i},...,v_{j+1}) \Rightarrow T$ mays $Span(v_{i},...,v_{j+1}) \Rightarrow Span(v_{i},...,v_{j+1}) \Rightarrow T$ restricted to $Span(v_{i},...,v_{j+1})$ is not injective $\Rightarrow \exists a,b \in Span(v_{i},...,v_{j+1}) \Rightarrow V$.

theorem: if $T \in L(V)$ has upper-triangular matrix with some basis then eigenvalues of T are the diagonal entries of the upper-triangular matrix $Proof: Suppose M(T) = \begin{pmatrix} \lambda, & * \\ o & \lambda_n \end{pmatrix}$, $\lambda \in \mathbb{F} \Rightarrow M(T-\lambda I) = \begin{pmatrix} \lambda, -\lambda & * \\ o & \lambda, -\lambda \end{pmatrix}$. $T-\lambda I$ not invertible $L \Rightarrow \lambda_i - \lambda = 0$ for some $i \in E(I, n) \in \{\lambda_i: i \in E(I, n)\}$ are eigenvalues