Comparison of tree based models and SVMs on High-frequency LOB dynamics and feature importance study

IEOR 222 Final Project

Shengying Wang

Department of Statistics, UC Berkeley

December 10 2014

Outline of this presentation

- Project framework
- Strategies
- Results
- Conclusions

Project framework

- Fit a single decision tree to obtain the effect of each market feature by a tree diagram.
- Fit random forests to obtain test accuracy and time costs to compete with SVMs.
- Fit random forests to study the feature importance and compare with Lasso.
- Predict spread crossing for different time intervals by random forests and SVM to test robustness.

Strategies

Data Attributes

Different situations

Data Attributes (based on Kercheval and Zhang's work)

One can design his/her own feature sets.

	N ₂
Basic Set	Description(i = level index)
$V_1 = \{P_i^{ask}, V_i^{ask}, P_i^{bid}, V_i^{bid}\}_{i=1}^n,$	price and volume(n levels, n=10)
Time-insensitive Set	Description(i = level index)
$V_2 = \{(P_i^{\text{ask}} - P_i^{\text{bid}}), (P_i^{\text{ask}} + P_i^{\text{bid}})/2\}_{i=1}^n,$	bid-ask spreads and mid-prices
$v_3 = \{P_n^{ask} - P_1^{ask}, P_1^{bid} - P_n^{bid}\},$	max-min price differences
$V_4 = \{ P_{i+1}^{ask} - P_i^{ask} , P_{i+1}^{bid} - P_i^{bid} \}_{i=1}^{n-1},$	price level differences
$\textit{V}_{5} = \{ \tfrac{1}{n} \sum_{i=1}^{n} \textit{P}^{ask}_{i}, \ \tfrac{1}{n} \sum_{i=1}^{n} \textit{P}^{bid}_{i}, \ \tfrac{1}{n} \sum_{i=1}^{n} \textit{V}^{ask}_{i}, \ \tfrac{1}{n} \sum_{i=1}^{n} \textit{V}^{bid}_{i} \},$	mean prices and volumes
$v_6 = \{\sum_{i=1}^n (P_i^{ask} - P_i^{bid}), \sum_{i=1}^n (V_i^{ask} - V_i^{bid})\},$	accumulated differences
Time-sensitive Set	Description(i = level index)
$v_7 = \{dP_i^{ask}/dt, dP_i^{bid}/dt, dV_i^{ask}/dt, dV_i^{bid}/dt\}_{i=1}^n,$	price and volume derivatives
$\textit{V}_{8} = \{\lambda_{\Delta t}^{\textit{la}}, \ \lambda_{\Delta t}^{\textit{lb}}, \ \lambda_{\Delta t}^{\textit{ma}}, \ \lambda_{\Delta t}^{\textit{mb}}, \ \lambda_{\Delta t}^{\textit{ca}}, \ \lambda_{\Delta t}^{\textit{cb}}\}$	average intensity of each type
$\textit{V}_{9} = \{\textbf{1}_{\{\lambda_{\Delta t}^{\textit{lg}} > \lambda_{\Delta T}^{\textit{lg}}\}}, \textbf{1}_{\{\lambda_{\Delta t}^{\textit{lg}} > \lambda_{\Delta T}^{\textit{lg}}\}}, \textbf{1}_{\{\lambda_{\Delta t}^{\textit{ma}} > \lambda_{\Delta T}^{\textit{ma}}\}}, \textbf{1}_{\{\lambda_{\Delta t}^{\textit{mb}} > \lambda_{\Delta T}^{\textit{mb}}\}}\},$	relative intensity indicators
$v_{10} = \{d\lambda^{ma}/dt, \ d\lambda^{lb}/dt, \ d\lambda^{mb}/dt, \ d\lambda^{la}/dt\},$	accelerations(market/limit)

Different situations

- Situation1: up and stationary
- Situation2: down and stationary
- Situation3: up, down and stationary

Sample Stock

- Tractor Supply Company (up case)
- DuPont (down case)
- Exxon Mobil (regular case)

Single Tree

Stationary: -1 Up: 1

In "up case", spread is the most significant feature.

Random Forests

Right: sample prediction table calculated from training data

• 1: up

• 0: stationary

	truth		
predict	0	1	
0	2621	27	
1	1	351	

- All the classifiers give the similar results in general.
- It is easy to make mistake classifying spread-crossings as stationary state.

Accuracy (10-fold Cross Validation)

1: simple RF 2:complex RF 3:linear SVM 4:cubic SVM 5:radial SVM

- Random forests are competitive.
- Need to deal with over-fitting issues.

Time Costs

1: RF (50 trees) 2:RF (200 trees) 3:linear SVM 4:cubic SVM 5:radial SVM

- Random forests cost more time to run.
- Two-class problems save time for SVMs.

Feature Importance

Most of features don't have much contribution.

mod.rf

Feature Importance

All of those three feature sets make differences.

1: "Up" case

2: "Down" case

3: "Regular" case

Feature Importance

top 10 features from random forests vs top 5 features from Lasso

Sample1 (up case):

Random forests

spread1	spread3	price_accum_diff	spread4	price_ask3
5880.120	4430.281	4101.554	3531.477	2745.262
price_ask1	price_mean_ask	price_ask5	price_ask2	spread5
2741.408	2619.677	2603.736	2573.764	2524.812

Lasso

price_diff_ask5	price_diff_bid5	spread1	price_ask1	price_deri_bid1
-7.642773e+01	-3.728444e+01	-3.503420e+01	-2.052818e+01	-1.152060e+01

Sample2 (down case):

Random forests

volume_deri_bid4	price_diff_bid1	volume_deri_bid3	volume_ask2	lambda_m_bid
9205.707	5399.919	5192.244	5137.731	4045.056
volume_bid1	volume_deri_bid5	lambda_l_bid	volume_ask4	spread1
3189.179	3025.360	2633.816	2374.771	2353.565

Lasso

price_diff_ask1	price_diff_ask3	price_diff_bid3	lambda_m_ask	price_bid1
2.782643e+14	1.070470e+14	1.513864e+12	1.245938e+03	1.615552e+01

Robustness Study

Build random forests models with 1500 observations and test for new observations in next 1, 5 and 10 seconds. Repeat for 10 times.

Generally, the test error is getting larger when increasing the time period for prediction. The variance is increasing as well.

Robustness Study

We divide 3000 observations within 3 minutes into 4 subsets in the order of time. Then we fit random forests model to each subset with 750 observations to get top ten features.

```
price_deri_ask4 price_deri_ask3 price_deri_ask1
                                                       lambda_1_ask price_deri_ask5
       24.00489
                        17.91012
                                          15.65325
                                                           15.36460
                                                                            15.09402
                   spread4 lambda_l_ask lambda_m_ask lambda_c_ask
     spread1
    26.91964
                  23.80486
                                19.04082
                                              17.07954
                                                            15.43593
lambda_deri_m_a price_deri_bid5 price_deri_bid4
                                                     volume ask1
                                                                      price_ask1
       4.085210
                       2.680605
                                        2.492422
                                                        2.388728
                                                                         2.086369
     price_ask5
                     price_ask2
                                     mid_price5
                                                      mid_price1 price_mean_ask
       1.757893
                       1.631791
                                       1.513661
                                                        1.476331
                                                                        1.183117
                 price_deri_bid5
                                  price_deri_bid4
lambda_deri_m_a
                                                                     volume_mean_ask
                                                        volume_ask1
                      2.84549321
     4.29959326
                                        2.65443566
                                                         2.50183664
                                                                           0.90594729
                 lambda_deri_l_a volume_deri_ask1
   lambda lask
                                                       lambda c ask
                                                                         lambda l bid
     0.50689173
                      0.50637678
                                        0.16392072
                                                         0.03472007
                                                                           0.03397282
lambda_deri_m_a
                 price_deri_bid4
                                   price_deri_bid5
                                                        volume ask1
                                                                     volume mean ask
     4.39174218
                       2.92531263
                                        2.69412199
                                                         1.75392579
                                                                          1.68804661
                 lambda_deri_l_a volume_deri_ask1
   lambda_l_ask
                                                       lambda_l_bid
                                                                        lambda_c_ask
     0.51965882
                       0.33839811
                                        0.14381480
                                                         0.04452700
                                                                          0.03642339
```

We do obtain some robustness since most of the top ten features are about price, volume and arrival rates. But the order is changing all the time.

Conclusions

- Trees gives clear interpretation.
- The prediction results and time costs obtained by Random Forests are competitive.
- All of those three sets of feature make contributions. Basic sets are more stable. Lasso may give different feature selection results.
- Models are not robust, with large variance in terms of prediction. But it is robust for feature importance in a short time period within a couple minutes.

Problems and Feature Work

- Get optimal number of time steps to be predicted.
- Build feature selection methods to improve models in terms of prediction accuracy and time cost.
- Deal with correlation among features.
- The response variable y (the spread crossing metric as up, down and stationary) may not be independent.
- Traditional cross validation methods no longer work.

Thank you.

