MA1521 CALCULUS FOR COMPUTING

Wang Fei

matwf@nus.edu.sg

Department of Mathematics Office: S17-06-16 Tel: 6516-2937

_	iew	
0): Pre-Calculus	3
1	: Limit and Continuity	. 6
2	2: Derivatives	. 8
3	S: Sequences and Series	. 13
4	E Partial Derivatives	15
5	i: Optimization	. 18
6	contegrals	20
7	'· Ordinary Differential Equations	26

Review 2 / 28

0: Pre-Calculus

- Understand the basic properties of the following functions:
 - o Polynomials;
 - o Rational functions;
 - Root functions;
 - Trigonometric and inverse trigonometric functions;
 - o Logarithm and exponential functions.
- Know how to compute
 - The domain of these functions;
 - o The composite of these functions.
- The graphs of simple functions.
 - $\circ \quad y = ax + b, \quad y = ax^2 + bx + c,$
 - $y = \sin x$, $y = \cos x$, $y = \tan x$,
 - $0 \quad y = \sin^{-1} x, \quad y = \tan^{-1} x,$
 - $\circ \quad y = e^x, \quad y = \ln x, \quad \dots$

3/28

0: Pre-Calculus

- Products of Vectors in \mathbb{R}^3 .
 - \circ Dot product: $\mathbf{u} \bullet \mathbf{v}$.
 - Example: determine the angle between two vectors.
 - $\circ \quad \text{Cross product: } \mathbf{u} \times \mathbf{v}.$
 - Example: evaluate the normal vector of a plane.
- Write the equation of a line.
 - \circ It has direction vector \mathbf{u} and passes through point A.
 - \circ It passes through two points A and B.
 - o The intersection of two planes.
- Write the equation of a plane.
 - \circ It has normal vector \mathbf{u} and passes through point A.
 - \circ It passes through three points A, B and C.
 - It contains a line ℓ and passes through point A.

0: Pre-Calculus

- The complex numbers \mathbb{C} .
 - $\circ \quad z=x+iy, \quad x,y\in \mathbb{R} \text{ and } i^2=-1.$
 - Correspondence between \mathbb{R}^2 and \mathbb{C} : $(x,y) \leftrightarrow x + iy$.
- Given complex numbers, evaluate
 - o Sum, substraction, multiplication, division.
 - Absolute value: $|z| = \sqrt{x^2 + y^2}$.
 - $\circ \quad \text{Argument: } \theta = \arg z, \quad \sin \theta = \frac{y}{|z|}, \cos \theta = \frac{x}{|z|}.$
- Polar form of complex numbers, $z = |z|e^{i\theta}$, $\theta = \arg z$.
 - $\circ \quad \text{Multiplication: } z_1z_2 = \left|z_1\right| \left|z_2\right| e^{i(\theta_1+\theta_2)}.$
 - \circ Power: $z^n = |z|^n e^{in\theta}$.
 - Trigonometric form: $z = |z|(\cos \theta + i \sin \theta)$.

5/28

1: Limit and Continuity

- Limit: $\lim_{x \to a} f(x) = L$.
 - $\circ x \to a \ (x \neq a) \Rightarrow f(x) \to L.$
- f is said to be continuous at a if $\lim f(x) = f(a)$.
 - o Removable and jump discontinuities.
- Find limits:
 - $\circ \quad \text{If } f \text{ is continuous at } a, \text{ then } \lim_{x \to a} f(x) = f(a).$

 - $\circ \quad \text{Factorization: } \lim_{x \to 1} \frac{x^2 1}{x 1}.$ $\circ \quad \text{Rationalization: } \lim_{x \to 0} \frac{\sqrt{x + 4} 2}{x}.$ $\circ \quad \text{Left- and right-hand limits: }$
 - - $\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = L \Leftrightarrow \lim_{x \to a} f(x) = L.$

1: Limit and Continuity

- Find limits: (Cont'd)
 - Squeeze thm: $f(x) \le g(x) \le h(x)$ for all x near a.
 - $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L \Rightarrow \lim_{x \to a} g(x) = L.$
 - \circ -l'Hôpital's rule: 0/0 or ∞/∞ form:
 - $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$ (with lots of restrictions).
 - $\circ \quad \lim_{x \to a} f(g(x)) = f\left(\lim_{x \to a} g(x)\right) \text{ if } f \text{ is continuous}.$
 - $\lim_{x \to a} f(x)^{g(x)} = \lim_{x \to a} \exp(g(x) \ln f(x))$ $= \exp\left(\lim_{x \to a} g(x) \ln f(x)\right)$ $= \exp\left(\lim_{x \to a} \frac{\ln f(x)}{1/q(x)}\right) = \cdots$

7 / 28

2: Derivatives

• Definition of derivative:

$$\circ \quad \frac{df}{dx} = f'(x) = \lim_{h \to x} \frac{f(x+h) - f(x)}{h}.$$

• Differentiation formulas:

$$\begin{array}{ll} \circ & (cf)'=cf', \, (f\pm g)'=f'\pm g', (fg)'=f'g+fg'. \\ \circ & (f/g)'=(f'g-fg')/g^2. \\ \circ & \text{Chain rule: } \frac{dz}{dx}=\frac{dz}{dy}\frac{dy}{dx}. \end{array}$$

$$(f/g)' = (f'g - fg')/g^2$$

$$\circ \quad \text{Chain rule: } \frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}.$$

- Differentiable functions:
 - o Polynomials, rational functions.
 - Power functions: $(x^r)' = rx^{r-1}$.
 - Trigonometric functions: $(\sin x)' = \cos x, \dots$
 - o Inverse trigonometric functions:

•
$$(\sin^{-1} x)' = \cdots$$
, $(\tan^{-1} x)' = \cdots$, ...

 $\circ \quad \text{Logarithm function } (\ln x)' = 1/x, \quad (a^x)' = a^x \ln a.$

2: Derivatives

• Implicit differentiation: $\frac{d}{dx}F(x,y)=0$ to find $\frac{dy}{dx}$.

 $\circ \quad \text{Using multi-variable calculus: } \frac{dy}{dx} = -\frac{F_x}{F_v}.$

Logarithmic differentiation:

 $\circ \quad y = f(x)g(x) \Rightarrow \ln|y| = \ln|f(x)| + \ln|g(x)|.$

$$\circ \quad y = f(x)^{g(x)} \Rightarrow \ln y = g(x) \ln f(x).$$

• Derivative of inverse function:

$$\circ (f^{-1})'(b) = \frac{1}{f'(a)} \text{ if } f(a) = b \text{ and } f'(a) \neq 0.$$

 $\bullet \quad \text{Parametric equations: } x=x(t) \text{ and } y=y(t).$

$$\circ \quad \frac{dy}{dx} = \frac{dy/dt}{dx/dt}, \quad \frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy/dt}{dx/dt}\right) = \cdots.$$

9/28

2: Applications of Derivative

- Extreme values:
 - o global max and min, local max and min.
- Fermat's theorem:
 - \circ If f has a local max/min at c and f'(c) exists, then f'(c) = 0.
- Closed interval method: Find the global max/min of a continuous function f on a finite closed interval [a,b].
 - \circ Evaluate f(x) at end points x = a, x = b.
 - Evaluate f(x) at critical points in (a, b):
 - number $c \in (a, b)$ such that f'(c) does not exist,
 - number $c \in (a, b)$ such that f'(c) = 0.
 - \circ Compare f(x) at end points and critical points.
 - Largest \Rightarrow max; smallest \Rightarrow min.

2: Applications of Derivative

- Increasing Test: Suppose f is continuous on [a, b] and differentiable on (a, b).
 - \circ f'(x) > 0 on $(a, b) \Rightarrow f$ is increasing on [a, b].
 - \circ f'(x) < 0 on $(a, b) \Rightarrow f$ is decreasing on [a, b].
 - \circ f'(x) = 0 on $(a, b) \Leftrightarrow f$ is constant on [a, b].
- Optimization problem: (Single-variable)
 - \circ Express the problem as finding global max/min of y = f(x) on domain A.
 - How to maximize or minimize y = f(x) on A?
 - If A is a finite closed interval [a, b], use the closed interval method.
 - If A is not a finite closed interval, use increasing/decreasing test.

11 / 28

2: Applications of Derivative

- Concavity:
 - \circ f is concave up (resp. down) on interval I
 - $\Leftrightarrow f$ is above (resp. below) all tangent lines on I
 - $\Leftrightarrow f'$ is increasing (resp. decreasing) on I.
 - o Concavity test:
 - f''(x) > 0 on $I \Rightarrow f$ is concave up on I.
 - f''(x) < 0 on $I \Rightarrow f$ is concave down on I.
- ullet First derivative test: Let f be continuous at a critical pt c.
 - \circ f' changes from + to -: local max at c;
 - \circ f' changes from to +: local min at c;
 - \circ f' does not change sign: neither at c.
- Second derivative test: (see Chapter 5).
 - \circ f''(c) = 0 and $f'(c) > 0 \Rightarrow$ local min at c;
 - $\circ f''(c) = 0$ and $f'(c) < 0 \Rightarrow \text{local max at } c$.

3: Sequences and Series

Power series representation:

$$\circ \quad f(x) = \sum_{n=0}^{\infty} c_n x^n. \quad \text{e.g., } \frac{1}{1-x} = \sum_{n=0}^{\infty} x^n, \, |x| < 1.$$

 \circ Radius of convergence: $R = L^{-1}$.

•
$$L = \lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right|$$
 or $L = \lim_{n \to \infty} \sqrt[n]{|c_n|}$.

 $\sum\limits_{n=0}^{\infty}c_{n}x^{n}$ converges if |x|< R and diverges if |x|>R.

Taylor's theorem:

$$\circ \quad \text{If } f(x) = \sum_{n=0}^{\infty} c_n x^n, \text{ then } c_n = \frac{f^{(n)}(0)}{n!}.$$

$$\therefore \quad f^{(n)}(0) = n! \, c_n.$$

$$\therefore f^{(n)}(0) = n! c_n.$$

13 / 28

3: Sequences and Series

- How to determine whether $\sum_{n=0}^{\infty} a_n$ converges or diverges?
 - Suppose $a_n \ge 0$ for all n.

 - If $\lim_{n\to\infty}a_n\neq 0$, then it diverges.
 If $\lim_{n\to\infty}a_n=0$, use (limit) comparison test.

Compare with a known series, such as geometric series or *p*-series.

- \circ Suppose a_n are not always positive.
 - If $\lim_{n\to\infty}a_n\neq 0$, then it diverges. Suppose $\lim_{n\to\infty}a_n=0$.

If $\sum_{n=0}^{\infty} a_n$ is an alternating series, use alternating series test.

Otherwise, use absolute convergence test.

4: Partial Derivatives

- Multi-variable function z = f(x, y).
 - Partial derivatives: $f_x(x,y) = \frac{\partial z}{\partial x}$, $f_y(x,y) = \frac{\partial z}{\partial y}$.
 - Gradient vector: $\nabla f(x,y) = (f_x(x,y), f_y(x,y))$
 - Directional derivative along unit vector \mathbf{u} : ($|\mathbf{u}| = 1$)
 - $D_{\mathbf{u}}f(x,y) = \nabla f(x,y) \bullet \mathbf{u}$.
 - Tangent plane at (x_0, y_0, z_0) :
 - $z z_0 = f_x(x_0, y_0)(x x_0) + f_y(x_0, y_0)(y y_0).$
 - Linearization of f at (x_0, y_0) :
 - $f(x,y) \approx f(x_0,y_0) + f_x(x_0,y_0)(x-x_0) + f_y(x_0,y_0)(y-y_0)$.

15 / 28

4: Partial Derivatives

• Chain rule: z = f(x, y) and x = x(t), y = y(t).

$$\circ \quad \frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt}.$$

Suppose z = f(x, y) and x = x(s, t), y = y(s, t).

$$\circ \frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}.$$

$$\circ \frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}.$$

$$\circ \quad \frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}.$$

Implicit differentiation (Revisited):

$$\circ \quad f(x,y) = 0 \Rightarrow \frac{dy}{dx} = -\frac{f_x(x,y)}{f_y(x,y)}.$$

4: Partial Derivatives

• Second Partial Derivatives. z = f(x, y).

$$\circ \quad f_{xx} = \frac{\partial^2 z}{\partial x^2}, \quad f_{yy} = \frac{\partial^2 z}{\partial y^2}, \quad f_{xy} = f_{yx} = \frac{\partial^2 z}{\partial x \partial y}.$$

- Functions of three variables: w = f(x, y, z).
 - o Partial and second partial derivatives,
 - f_x , f_y , f_z , f_{xx} , f_{yy} , f_{zz} , f_{xy} , f_{yz} , f_{zx} .
 - $\quad \text{o} \quad \text{Gradient } \nabla f(x,y,z) = (f_x,f_y,f_z) \text{,} \\$
 - Directional derivative $D_{\mathbf{u}}f(x,y,z) = \nabla f(x,y,z) \bullet \mathbf{u}$.
 - Chain rule: Suppose x = x(t), y = y(t), z = z(t).
 - $\frac{dw}{dt} = \frac{\partial w}{\partial x} \frac{dx}{dt} + \frac{\partial w}{\partial y} \frac{dy}{dt} + \frac{\partial w}{\partial z} \frac{dz}{dt}$
 - \circ Tangent plane to f(x,y,z)=c at $P(x_0,y_0,z_0)$: $f_x(P)(x-x_0)+f_y(P)(y-y_0)+f_z(P)(z-z_0)=0.$

17 / 28

5: Optimization

- Definition of extreme values:
 - o Global maximum/minimum, local maximum/minimum.
- First derivative test for local extreme values:
 - Suppose f(x, y) has local extreme value at (a, b).
 - If f_x and f_y exist, then $f_x(a,b) = f_y(a,b) = 0$.
 - \circ A point (a,b) in the domain is a critical point if
 - $f_x(a,b) = f_y(a,b) = 0$, or
 - at least one of $f_x(a,b)$ and $f_y(a,b)$ does not exist.
 - \circ If f(x,y) has local extreme value at (a,b),
 - then (a,b) is a critical point of f.
 - \circ (a,b) is said to be a saddle point of f if
 - (a,b) is a critical point of f, but f does not have local extreme value at (a,b).

5: Optimization

- Second derivative test for two-variable functions.
 - $\circ \quad \text{Let } H(x,y) = f_{xx}f_{yy} (f_{xy})^2.$

Suppose $f_x(a,b) = f_y(a,b) = 0$.

- \circ $H(a,b) < 0 \Rightarrow$ saddle point at (a,b).
- $\circ \quad H(a,b)>0 \ \& \ f_{xx}(a,b)>0 \Rightarrow \text{local min at } (a,b).$
- \circ $H(a,b) > 0 & f_{xx}(a,b) < 0 \Rightarrow \text{local max at } (a,b).$
- Lagrange multiplier: Find the local maximum and minimum of z=f(x,y) subject to the restriction g(x,y)=0.
 - $\circ \quad \text{Solve } f_x = \lambda g_x, \, f_y = \lambda g_y \text{ and } g(x,y) = 0.$
- Lagrange multiplier: Find the local maximum/minimum of w=f(x,y,z) subject to g(x,y,z)=h(x,y,z)=0.
 - $\circ \quad \text{Solve } f_x=\lambda g_x+\mu h_x \text{, } f_y=\lambda g_y+\mu h_y \text{, } f_z=\lambda g_z+\mu h_z \text{, } g(x,y,z)=0 \text{, } h(x,y,z)=0.$

19 / 28

6: Integrals

• Definite integral defined using Riemann sum

$$\circ \int_a^b f(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i^*) \Delta x.$$

It represents the net area bounded between the curve y = f(x), and the x-axis from a to b.

• Basic properties of definite integrals.

$$\circ \int_a^b (\alpha f(x) + \beta g(x)) dx = \alpha \int_a^b f(x) dx + \beta \int_a^b g(x) dx.$$

$$\circ \int_a^b f(x) \, dx + \int_b^c f(x) \, dx = \int_a^c f(x) \, dx.$$

- Fundamental Theorem of Calculus (Part I)
 - \circ Let f be continuous on [a,b], $g(x)=\int_{-x}^{x}f(t)\,dt$.
 - g is continuous on [a,b] and g'(x)=f(x) on (a,b).

6: Integrals

- Fundamental Theorem of Calculus (Part II).
 - \circ Let f be a continuous function. If F is continuous on [a,b] and F'(x)=f(x) on (a,b), then

•
$$\int_a^b f(x) dx = F(b) - F(a) = F(x) \Big|_{x=a}^{x=b}$$
.

• Indefinite integral:

$$\circ \int f(x) dx = F(x) + C \Leftrightarrow f(x) = F'(x).$$

• Substitution rule (I).

21 / 28

6: Integrals

• Improper integrals.

$$\circ \int_{a}^{b} f(x) dx = \lim_{t \to b^{-}} \int_{a}^{t} f(x) dx.$$

$$\circ \int_{a}^{\infty} f(x) dx = \lim_{t \to \infty} \int_{a}^{t} f(x) dx.$$

• Substitution rule (II)

$$\circ \quad \text{Let } x = g(t). \ \int f(x) \, dx = \int f(g(t))g'(t) \, dt.$$

Note: x = g(t) must be a 1-1 function.

$$t = x^{1/n}, t = \ln x, t = e^x, \dots$$

$$t = x^{1/n}, t = \ln x, t = e^x, ...$$

 $t = \sin^{-1} x, t = \tan^{-1} x, t = \sec^{-1} x, t = \tan \frac{x}{2}, ...$

Integral by parts:

$$\circ \int u \, dv = uv - \int v \, du.$$

6: Integrals

- Integration of rational functions $\int \frac{A(x)}{B(x)} \, dx$.
 - 1. If $\deg A \ge \deg B$, write A(x) = B(x)Q(x) + R(x).

$$\circ \quad \frac{A(x)}{B(x)} = Q(x) + \frac{R(x)}{B(x)}, \quad \deg R < \deg B.$$

- 2. Factorize B(x) into linear and quadratic factors.
- 3. Convert $\frac{A(x)}{B(x)}$ into its partial fraction form.
 - \circ Note that the number of terms of the partial fraction form equals the degree of B.
- 4. Integrate term by term.

23 / 28

6: Applications of Integration

• Washer method: Suppose the solid is formed by rotating the region bounded between y=f(x) and the x-axis from a to b about the x-axis. Then

$$\circ \quad V = \int_a^b \pi(\mathrm{radius})^2 \, dx = \int_a^b \pi(f(x))^2 \, dx.$$

Suppose the solid is formed by rotating the region bounded between y=f(x) and y=g(x), $f(x)\geq g(x)$, from a to b about the x-axis. Then

$$V = \int_a^b \pi [(\text{outer radius})^2 - (\text{inner radius})^2] dx.$$

• Cylindrical shell method: Suppose the solid is formed by rotating the region bounded between y=f(x) and the x-axis from a to b about the y-axis. $(f(x) \geq 0, \ a \geq 0)$

$$\circ V = \int_a^b 2\pi (\text{radius}) (\text{height}) \, dx = \int_a^b 2\pi x f(x) \, dx.$$

6: Applications of Integration

 \bullet $\,$ Arc length: Suppose f is smooth (i.e., f' is continuous). Then the arc length of y=f(x), $a\leq x\leq b,$ is

$$L = \int_a^b \sqrt{1 + (f'(x))^2} \, dx.$$

• Surface of revolution: Suppose f is smooth. Then the surface formed by rotating the arc y=f(x), $a\leq x\leq b$, about the x-axis is

$$\circ A = \int_{a}^{b} 2\pi f(x) \sqrt{1 + (f'(x))^{2}} dx.$$

25 / 28

7: Ordinary Differential Equations

• Separable equation: $\frac{dy}{dx} = f(x)g(y)$.

$$\circ \int \frac{1}{q(y)} \, dy = \int f(x) \, dx.$$

• Homogeneous of degree zero: $\frac{dy}{dx} = F(x, y)$,

$$F(tx, ty) = F(x, y)$$
 for all $t \neq 0$.

Let $z = \frac{y}{x}$. Then the equation becomes

$$\circ \quad x \frac{dz}{dx} + z = F(1, z) \Rightarrow \frac{dz}{dx} = \frac{F(1, z) - z}{x},$$

which is separable in x and z.

7: Ordinary Differential Equations

- First order linear equation: $\frac{dy}{dx} + p(x)y = q(x)$.
 - Find an integrating factor $v(x) = \exp\left(\int p(x) dx\right)$.
 - $\circ \quad y = \frac{1}{v(x)} \int v(x) q(x) \, dx.$
- Bernoulli's equation: $\frac{dy}{dx} + p(x)y = q(x)y^n$, $(n \neq 0, 1)$.
 - $\circ \quad {\rm Let} \ z = y^{1-n}.$ Then the equation becomes
 - $\frac{dz}{dx} + (1-n)p(x)z = (1-n)q(x)$.

This is a linear equation in y.

27 / 28

7: Ordinary Differential Equations

- Second Order linear equation: $\frac{d^2y}{dx^2} + p\frac{dy}{dx} + qy = r(x)$.
 - 1. Characteristic equation $\lambda^2 + p\lambda + q = 0$.

 - $\begin{array}{ll} \circ & \lambda_1 \neq \lambda_2 \text{ are real:} & y_1 = e^{\lambda_1 x}, \, y_2 = e^{\lambda_2 x}. \\ \circ & \lambda_1 = \lambda_2 = \lambda \text{:} & y_1 = e^{\lambda x}, \, y_2 = x e^{\lambda x}. \\ \circ & \lambda_{1,2} = a \pm bi \text{:} & y_1 = e^{ax} \cos bx, \, y_2 = e^{ax} \sin bx. \end{array}$
 - 2. $W(y_1, y_2) = \begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = y_1 y'_2 y_2 y'_1.$
 - 3. $v_1 = \int \frac{-y_2 r(x)}{W(y_1, y_2)} dx$, $v_2 = \int \frac{y_1 r(x)}{W(y_1, y_2)} dx$.
 - 4. $y = C_1y_1 + C_2y_2 + v_1y_1 + v_2y_2$.
 - 5. Determine C_1 and C_2 using initial conditions.