Span, Linear Independence, Dimension

Math 240

Spanning sets

Linear

Bases and Dimension

Span, Linear Independence, and Dimension

Math 240 — Calculus III

Summer 2013, Session II

Thursday, July 18, 2013

Math 240
Spanning sets

Linear independence

Bases an

1. Spanning sets

2. Linear independence

3. Bases and Dimension

Spanning sets

Linear

Bases and Dimension Yesterday, we saw how to construct a subspace of a vector space as the span of a collection of vectors.

Question

What's the span of $\mathbf{v}_1 = (1,1)$ and $\mathbf{v}_2 = (2,-1)$ in \mathbb{R}^2 ?

Answer: \mathbb{R}^2 .

Today we ask, when is this subspace equal to the whole vector space?

Spanning sets

Linear independent

Bases and Dimension

Definition

Let V be a vector space and $\mathbf{v}_1,\ldots,\mathbf{v}_n\in V$. The set $\{\mathbf{v}_1,\ldots,\mathbf{v}_n\}$ is a **spanning set** for V if

$$\operatorname{span}\{\mathbf{v}_1,\ldots,\mathbf{v}_n\}=V.$$

We also say that V is **generated** or **spanned** by $\mathbf{v}_1, \dots, \mathbf{v}_n$.

Theorem

Let $\mathbf{v}_1, \dots, \mathbf{v}_n$ be vectors in \mathbb{R}^n . Then $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ spans \mathbb{R}^n if and only if, for the matrix $A = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix}$, the linear system $A\mathbf{x} = \mathbf{v}$ is consistent for every $\mathbf{v} \in \mathbb{R}^n$.

Spanning sets

Linear independenc

Bases and Dimension Determine whether the vectors $\mathbf{v}_1 = (1, -1, 4)$, $\mathbf{v}_2 = (-2, 1, 3)$, and $\mathbf{v}_3 = (4, -3, 5)$ span \mathbb{R}^3 .

Our aim is to solve the linear system $A\mathbf{x} = \mathbf{v}$, where

$$A = \begin{bmatrix} 1 & -2 & 4 \\ -1 & 1 & -3 \\ 4 & 3 & 5 \end{bmatrix} \text{ and } \mathbf{x} = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix},$$

for an arbitrary $\mathbf{v} \in \mathbb{R}^3$. If $\mathbf{v} = (x,y,z)$, reduce the augmented matrix to

$$\begin{bmatrix} 1 & -2 & 4 & x \\ 0 & 1 & -1 & -x - y \\ 0 & 0 & 0 & 7x + 11y + z \end{bmatrix}.$$

This has a solution only when 7x + 11y + z = 0. Thus, the span of these three vectors is a plane; they do not span \mathbb{R}^3 .

Bases and Dimension Observe that $\{(1,0),(0,1)\}$ and $\{(1,0),(0,1),(1,2)\}$ are both spanning sets for \mathbb{R}^2 . The latter has an "extra" vector: (1,2) which is unnecessary to span \mathbb{R}^2 . This can be seen from the relation

$$(1,2) = 1(1,0) + 2(0,1).$$

Theorem

Let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be a set of at least two vectors in a vector space V. If one of the vectors in the set is a linear combination of the others, then that vector can be deleted from the set without diminishing its span.

The condition of one vector being a linear combinations of the others is called **linear dependence**.

Spanning sets

Linear independence

Bases and Dimension

Definition

A set of vectors $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is said to be **linearly dependent** if there are scalars c_1, \dots, c_n , not all zero, such that

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_n\mathbf{v}_n=\mathbf{0}.$$

Such a linear combination is called a **linear dependence** relation or a **linear dependency**. The set of vectors is **linearly independent** if the *only* linear combination producing $\mathbf{0}$ is the trivial one with $c_1 = \cdots = c_n = 0$.

Example

Consider a set consisting of a single vector \mathbf{v} .

- ▶ If v = 0 then $\{v\}$ is linearly dependent because, for example, 1v = 0.
- ▶ If $\mathbf{v} \neq \mathbf{0}$ then the only scalar c such that $c\mathbf{v} = \mathbf{0}$ is c = 0. Hence, $\{\mathbf{v}\}$ is linearly independent.

Spanning sets

Linear independence

Bases and Dimension

Theorem

A set consisting of a single vector \mathbf{v} is linearly dependent if and only if $\mathbf{v}=\mathbf{0}$. Therefore, any set consisting of a single nonzero vector is linearly independent.

In fact, including ${\bf 0}$ in any set of vectors will produce the linear dependency

$$\mathbf{0} + 0\mathbf{v}_1 + 0\mathbf{v}_2 + \dots + 0\mathbf{v}_n = \mathbf{0}.$$

Theorem

Any set of vectors that includes the zero vector is linearly dependent.

Bases and Dimension 1. Find a linear dependency among the vectors

$$f_1(x) = 1$$
, $f_2(x) = 2\sin^2 x$, $f_3(x) = -5\cos^2 x$

in the vector space $C^0(\mathbb{R})$.

2. If $\mathbf{v}_1=(1,2,-1)$, $\mathbf{v}_2=(2,-1,1)$, and $\mathbf{v}_3=(8,1,1)$, show that $\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}$ is linearly dependent in \mathbb{R}^3 by exhibiting a linear dependency.

Proposition

Any set of vectors that are not all zero contains a linearly independent subset with the same span.

Proof.

Remove 0 and any vectors that are linear combinations of the others. $\mathcal{Q}.\mathcal{E}.\mathcal{D}.$

Spanning sets

Linear independence

Bases and Dimension

Theorem

Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ be vectors in \mathbb{R}^n and $A = \begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_k \end{bmatrix}$. Then $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is linearly dependent if and only if the linear system $A\mathbf{x} = \mathbf{0}$ has a nontrivial solution.

Corollary

- 1. If k > n, then $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is linearly dependent.
- 2. If k = n, then $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is linearly dependent if and only if $\det(A) = 0$.

Spanning sets
Linear
independence

Bases and Dimension

Definition

A set of functions $\{f_1, f_2, \dots, f_n\}$ is **linearly independent on an interval** I if the only values of the scalars c_1, c_2, \dots, c_n such that

$$c_1f_1(x)+c_2f_2(x)+\cdots+c_nf_n(x)=0 \text{ for all } x\in I$$
 are $c_1=c_2=\cdots=c_n=0.$

Definition

Let $f_1, f_2, \dots, f_n \in C^{n-1}(I)$. The **Wronskian** of these functions is

$$W[f_1, \dots, f_n](x) = \begin{vmatrix} f_1(x) & f_2(x) & \cdots & f_n(x) \\ f'_1(x) & f'_2(x) & \cdots & f'_n(x) \\ \vdots & \vdots & \ddots & \vdots \\ f_1^{(n-1)}(x) & f_2^{(n-1)}(x) & \cdots & f_n^{(n-1)}(x) \end{vmatrix}.$$

Linear independence

Bases and Dimension

Theorem

Let $f_1, f_2, \ldots, f_n \in C^{n-1}(I)$. If $W[f_1, f_2, \ldots, f_n]$ is nonzero at some point in I then $\{f_1, \ldots, f_n\}$ is linearly independent on I.

Remarks

- 1. In order for $\{f_1, \ldots, f_n\}$ to be linearly independent on I, it is enough for $W[f_1, \ldots, f_n]$ to be nonzero at a single point.
- 2. The theorem *does not say* that the set is linearly dependent if $W[f_1, \ldots, f_n](x) = 0$ for all $x \in I$.
- 3. The Wronskian will be more useful in the case where f_1, \ldots, f_n are the solutions to a differential equation, in which case it will completely determine their linear dependence or independence.

Math 240
Spanning sets

Linear

Bases and Dimension Since we can remove vectors from a linearly dependent set without changing the span, a "minimal spanning set" should be linearly independent.

Definition

A set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ in a vector space V is called a **basis** (plural **bases**) for V if

- 1. The vectors are linearly independent.
- 2. They span V.

Examples

1. The **standard basis** for \mathbb{R}^n is

$$\mathbf{e}_1 = (1, 0, 0, \dots), \ \mathbf{e}_2 = (0, 1, 0, \dots), \ \dots$$

2. Any linearly independent set is a basis for its span.

Spanning sets

Linear independence

Bases and Dimension

- 1. Find a basis for $M_2(\mathbb{R})$.
- 2. Find a basis for P_2 . In general, the standard basis for P_n is

$$\{1, x, x^2, \ldots, x^n\}.$$

Spanning sets

Linear independence

Bases and Dimension \mathbb{R}^3 has a basis with 3 vectors. Could any basis have more? Suppose $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ is another basis for \mathbb{R}^3 and n>3. Express each \mathbf{v}_j as

$$\mathbf{v}_i = (v_{1j}, v_{2j}, v_{3j}) = v_{1j}\mathbf{e}_1 + v_{2j}\mathbf{e}_2 + v_{3j}\mathbf{e}_3.$$

lf

$$A = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix} = [v_{ij}]$$

then the system $A\mathbf{x} = \mathbf{0}$ has a nontrivial solution because $\operatorname{rank}(A) \leq 3$. Such a nontrivial solution is a linear dependency among $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$, so in fact they do not form a basis.

Theorem

If a vector space has a basis consisting of m vectors, then any set of more than m vectors is linearly dependent.

Spanning sets

Linear independence

Bases and Dimension

Corollary

Any two bases for a single vector space have the same number of elements.

Definition

The number of elements in any basis is the **dimension** of the vector space. We denote it $\dim V$.

Examples

1. dim
$$\mathbb{R}^n = n$$

4.
$$\dim P = \infty$$

2. dim
$$M_{m \times n}(\mathbb{R}) = mn$$

5. dim
$$C^k(I) = \infty$$

3.
$$\dim P_n = n + 1$$

6.
$$\dim\{\mathbf{0}\} = 0$$

A vector space is called **finite dimensional** if it has a basis with a finite number of elements, or **infinite dimensional** otherwise.

Spanning sets

Linear independent

Bases and Dimension

Theorem

If $\dim V = n$, then any set of n linearly independent vectors in V is a basis.

Theorem

If $\dim V = n$, then any set of n vectors that spans V is a basis.

Corollary

If S is a subspace of a vector space V then

$$\dim S \le \dim V$$

and S = V only if $\dim S = \dim V$.

