Practical 13

Euler's Method

Euler's Method with subinterval length h as input-:

Q. Using Euler's Method, find approximate solution to the initial value problem

$$x'(t) = -2 tx^2$$
, $0 \le t \le 1$, $x(0) = 1$ with
(a) $h = 0.2$

(b) h = 0.1.

EulerMethod[0, 1, h, f, 1];

Solution-:

```
EulerMethod[a0_, b0_, h0_, f_, alpha_] :=
 Module[{a = a0, b = b0, h = h0, n, ti},
  n = (b - a) / h;
  ti = Table[a + (j - 1) h, {j, 1, n + 1}];
  wi = Table[0, {n+1}];
  wi[[1]] = alpha;
  OutputDetails = {{0, ti[[1]], alpha}};
  For [i = 1, i \le n, i++,
   wi[[i+1]] = wi[[i]] + h * f[ti[[i]], wi[[i]]];
   OutputDetails = Append[OutputDetails,
     {i, N[ti[[i+1]]], N[wi[[i+1]]]}];];
  Print[NumberForm[TableForm[OutputDetails,
     TableHeadings \rightarrow {None, {"i", "t<sub>i</sub>", "w<sub>i</sub>"}}], 6]];
  Print["Subinterval size h used = ", h];
f[t_{x}] := -2tx^2;
h = 0.2;
EulerMethod[0, 1, h, f, 1];
i t<sub>i</sub> w<sub>i</sub>
1 0.2 1.
2 0.4 0.92
3 0.6 0.784576
4 0.8 0.636842
5 1. 0.50706
Subinterval size h used = 0.2
h = 0.1;
```

i	t_i	Wi
0	0	1
1	0.1	1.
2	0.2	0.98
3	0.3	0.941584
4	0.4	0.888389
5	0.5	0.82525
6	0.6	0.757147
7	0.7	0.688354
8	0.8	0.622018
9	0.9	0.560113
10	1.	0.503642

Subinterval size h used = 0.1