Vetores e Matrizes

MATA37: Introdução à Lógica de Programação

Prof.: Rafael A. Melo (melo@dcc.ufba.br)
Departamento de Ciência da Computação
Instituto de Matemática
Universidade Federal da Bahia

Vetores

Vetor c:

- Um vetor é uma estrutura de dados que consiste de elementos de dados do mesmo tipo.
 - conjuntos de dados homogêneos
- Um vetor ocupa um grupo de posições consecutivas de memória, todas de mesmo nome e mesmo tipo;
- Cada elemento ocupa uma posição definida no vetor e pode ser referenciado através dela.
- O tamanho (ou dimensão) de um vetor é dado pelo seu número de elementos

c [1]	6
c [2]	0
c [3]	4
c [4]	-5
c [5]	9
c [6]	6
c [7]	24
c [8]	47
c [9]	21
c [10]	-37

Vetor c:

Nome do vetor: c

Cada elemento tem um (sobrenome) em particular: c[1], c[2], ..., c[10].

Cada elemento tem um endereço.

Valor armazenado em c[1]: 6

Valor armazenado em c[2]: 0

Valor armazenado em c[3]: 4

c [1]	6
c [2]	0
c [3]	4
c [4]	-58
c [5]	9
c [6]	6
c [7]	9124
c [8]	47
c [9]	21
c [10]	-357

Vetores - Declaração

```
vetor [1..40] de reais: VetNotasILP, VetNotasCalc;
```

ou

tipo Notas = vetor [1..40] de reais;

Notas: VetNotasILP, VetNotasCalc;

Notas é um novo tipo criado

VetNotasILP e VetNotasCalc são "variáveis" do tipo Notas

Vetores

vetor [1..40] de reais: VetNotas

ou

tipo Notas = vetor [1..40] de reais

Notas: VetNotas

Na memória é reservado espaço para o vetor VetNotas

VetNotas

Vetores

vetor [6..35] de reais: VetNotas

ou

tipo Notas = vetor [6..35] de reais

Notas: VetNotas

VetNotas

 8.5
 7.3
 9.6
 6.4
 ...
 7.3
 8.9

 6
 7
 8
 9
 ...
 34
 35

Manipulando Vetores

tipo Notas = vetor [1..40] de reais;

Notas: VetNotas;

Escreva VetNotas[3]

9.6

Manipulando Vetores

Exemplos de como manipular o conteúdo de um vetor

```
VetNotas[2] ← 8.1 {armazena 8.1 no elemento VetNotas[2]}
```

```
Leia VetNotas[2] {entra com um valor no elemento VetNotas[2], isto é, armazena ali o valor lido }
inteiro: i
i ← 2
Escreva VetNotas[i] {escreve o valor armazenado em VetNotas[2]}
Escreva VetNotas[i+1] {escreve o valor armazenado em VetNotas[3]}
```

$VetNotas[2] \leftarrow 8.1$

VetNotas [1]

8.5

VetNotas [2]

7.3

VetNotas [3]

9.6

VetNotas [4]

6.4

VetNotas [5]

7.5

VetNotas [6]

9.2

VetNotas [7]

8.5

VetNotas [8]

6.4

VetNotas [9]

VetNotas [10]

8.3

8.1

VetNotas[i] ← 10.0
Escreva VetNotas[i+1]

inteiro: i

i ← 5

9.2

VetNotas[2] ← 8.1	VetNotas [1]	8.5
	VetNotas [2]	→ 8.1
	VetNotas [3]	9.6
	VetNotas [4]	6.4
	VetNotas [5]	10.0
inteiro: i	VetNotas [6]	9.2
i ← 5	VetNotas [7]	8.5
VetNotas[i] ← 10.0	VetNotas [8]	6.4
escreva VetNotas[i+1]	VetNotas [9]	8.3
	VetNotas [10]	8.1

Manipulando Vetores

 Não é possível ler ou escrever o conteúdo de um vetor inteiro. Só posição por posição.

Exemplo

vetor [110] de reais: Notas	Notas [1]	8.5
inteiro: i	Notas [2]	7.3
para i de 1 até 10 faça Leia Notas[i]	Notas [3]	9.6
fim-para	Notas [4]	6.4
•	Notas [5]	7.5
. A codo mododo do logo o usuário	Notas [6]	9.2
 A cada rodada do laço, o usuário digita uma nota e esta é armazenada no vetor Notas; 	Notas [7]	8.5
	Notas [8]	6.4
• o contador i é incrementado a	Notas [9]	8.3
cada rodada.	Notas [10]	8.1

Exemplo

vetor [1..10] de reais: Notas
inteiro: i
para i de 1 até 10 faça
Escreva Notas[i]
fim-para

Notas [1] Notas [2] Notas [3] Notas [4] Notas [5] Notas [6] Notas [7] Notas [8] Notas [9]

Notas [10]

8.5 i=1 7.3 i=2 9.6 i=3 6.4 i=4 7.5 i=5 9.2 i=6 8.5 i=7 6.4 i=8 8.3 i=9 8.1

8.5 7.3 9.6 6.4 7.5 9.2 8.5 6.4 8.3 8.1

Exemplo

vetor [110] de reais: Notas
inteiro: i
para i de 1 até 10 faça
Escreva "Nota ",i, "=" Notas[i]
fim-para

7		· /
Notas [1]	8.5	i=1
Notas [2]	7.3	i=2
Notas [3]	9.6	i=3
Notas [4]	6.4	i=4
Notas [5]	7.5	i=5
Notas [6]	9.2	i=6
Notas [7]	8.5	i=7
Notas [8]	6.4	i=8
Notas [9]	8.3	i=9
Notas [10]	8.1	i=10

Nota 1 = 8.5 Nota 2 = 7.3 Nota 3 = 9.6 Nota 4 = 6.4 Nota 5 = 7.5 Nota 6 = 9.2 Nota 7 = 8.5 Nota 8 = 6.4 Nota 9 = 8.3 Nota 10 = 8.1 Exemplo: Cálculo da média de uma turma com 10 alunos.

```
{ declaração de variáveis }
real: Nota, {nota de cada aluno}
  MediaTurma, {média da turma}
  acum {acumulador das médias}
inteiro: i {variável de controle}
inicio {cálculo da média de uma turma com dez alunos}
  acum \leftarrow 0 \{inicialização do acumulador\}
  para i de 1 até 10 faça
      Leia Nota { entrada de dados }
      acum ← acum + Nota
  fim-para
  MediaTurma ← acum/10 {calcula a média da turma}
  Escreva "A média da turma é", MediaTurma
fim
```

E se quisermos saber quantos alunos tiveram média acima da média da turma?

```
para i de 1 até 10 faça
    Leia Nota
    acum ← acum + Nota
fim-para
MediaTurma \leftarrow acum/10
if (Nota > MediaTurma) então
   cont \leftarrow cont + 1
```

Nota

8.1

- Observe que cada vez que o laço é executado, um novo valor de Nota é lido;
- Então, a cada vez, o valor lido anteriormente é perdido.
- Como vamos poder comparar cada Nota com a média, se ao final do laço só temos a última Nota lida?

E se quisermos saber quantos alunos tiveram média acima da média da turma? (Exemplo sem vetor)

```
real: N1, N2, N3, N4, N5, N6, N7, N8, N9, N10,
    MediaTurma {média da turma}
inteiro: NotasAcima {contador de notas acima da média}
inicio
  NotasAcima \leftarrow 0
  Leia N1, N2, N3, N4, N5, N6, N7, N8, N9, N10
  MediaTurma \leftarrow (N1+N2+N3+N4+N5+N6+N7+N8+N9+N10)/10
  se (N1 > MediaTurma) então
      NotasAcima ← NotasAcima + 1
  fim-se
  se (N2 > MediaTurma) então
      NotasAcima ← NotasAcima + 1
                                                    Continua...
  fim-se
```

E se quisermos saber quantos alunos tiveram média acima da média da turma? (Exemplo sem vetor)

```
se (N3 > MediaTurma) então
    NotasAcima ← NotasAcima + 1
fim-se
se (N4 > MediaTurma) então
    NotasAcima ← NotasAcima + 1
fim-se
se (N5 > MediaTurma) então
    NotasAcima ← NotasAcima + 1
fim-se
se (N6 > MediaTurma) então
    NotasAcima ← NotasAcima + 1
fim-se
                                             Continua...
```

E se quisermos saber quantos alunos tiveram média acima da média da turma? (Exemplo sem vetor)

```
se (N7 > MediaTurma) então
      NotasAcima ← NotasAcima + 1
  fim-se
  se (N8 > MediaTurma) então
      NotasAcima ← NotasAcima + 1
  fim-se
  se (N9 > MediaTurma) então
      NotasAcima ← NotasAcima + 1
  fim-se
  se (N10 > MediaTurma) então
      NotasAcima ← NotasAcima + 1
  fim-se
  Escreva NotasAcima
fim.
```

E se quisermos saber quantos alunos tiveram média acima da média da turma? (Exemplo com vetor)

```
vetor [1..10] de reais: Notas {vetor para guardar as notas}
real: MediaTurma, {média da turma}
                                                                     8.5
                                                    Notas [1]
     Soma
                                                                     7.3
                                                    Notas [2]
inteiro: NotasAcima, i
                                                                     9.6
                                                    Notas [3]
inicio
                                                                     6.4
                                                    Notas [4]
  Soma ← 0
                                                                     7.5
                                                    Notas [5]
  NotasAcima \leftarrow 0
                                                                     9.2
                                                    Notas [6]
  para i de 1 até 10 faça
                                                                     8.5
                                                    Notas [7]
       Leia Notas[i]
                                                                     6.4
                                                    Notas [8]
  fim-para
                                                                     8.3
                                                    Notas [9]
  para i de 1 até 10 faça
                                                                     8.1
                                                    Notas [10]
       Soma ← Soma + Notas[i]
  fim-para
```

Continua...

E se quisermos saber quantos alunos tiveram média acima da média da turma? (Exemplo com vetor)

MediaTurma ← Soma/10; {calcula a méd	dia da turma}		
Escreva " A média da turma é ", MediaTu	rma		
para i de 1 até 10 faça	Notas [1]	8.5	>media?
•	Notas [2]	7.3	>media?
se (Notas[i] > MediaTurma) então	Notas [3]	9.6	>media?
NotasAcima ← NotasAcima + 1	Notas [4]	6.4	>media?
fim-se	Notas [5]	7.5	>media?
11111-36	Notas [6]	9.2	>media?
fim-para	Notas [7]	8.5	>media?
Escreva NotasAcima, "notas acima da mo	édNotas [8]	6.4	>media?
	Notas [9]	8.3	>media?
fim	Notas [10]	8.1	>media?

Exercício 2

Escreva um algoritmo que armazene 50 inteiros em um vetor, 50 inteiros em outro vetor e some e imprima o resultado da soma entre cada posição dos dois vetores. Além de imprimir, os resultados devem ser colocados em um terceiro vetor.

Α		
1	34	
2	87	
3	21	
4	7	
•	••	
48	25	
49	14	
50	58	

В		
1	20	
2	32	
3	16	
4	53	
•	••	
48	28	
49	42	
50	71	

SOMA			
1	54		
2	119		
3	37		
4	60		
•••			
48	53		
49	56		
50	129		

Exercício 3

- Escreva um algoritmo que preencha um vetor de 100 elementos inteiros, colocando 1 nas posições correspondentes a um número par (índice par) e 0 na posições de índice impar.
- Imprima o vetor.

A		
1	0	
2	1	
3	0	
4	1	
•	•••	
98	1	
99	0	
100	1	

Matrizes

- Assim como os vetores, matrizes são agregados de dados homogêneos
- Enquanto vetores são unidimensionais
 - Possuem apenas um índice;
- Matrizes são estruturas multidimensionais
 - Podem ter dois ou mais índices;
 - As mais comuns são as bidimensionais.

	1	2	3	4
1	9.1	8.8	3.2	1.7
2	4.4	2.1	2.1	8.9
3	1.0	0.0	1.1	7.3

Matrizes - Declaração

matriz [li1..ls1, li2..ls2, liN..lsN] de <tipo>: identificador

ou

tipo identifTipo = matriz [li1..ls1, li2..ls2, liN..lsN] de <tipo>

identifTipo: identifVariavel

Matrizes

matriz [1..4,1..5] de inteiros: MSala

Manipulando Matrizes

Exemplos de como manipular o conteúdo de uma matriz

 $MSala[2,3] \leftarrow 9$

Leia MSala[1,4]

Leia MSala[3,4]

inteiro: i, j

Escreva MSala[i, j]

Escreva MSala[i+1, j+1]

Matrizes

tipo Matriz2 = matriz [1..3, 2..4, 3..4] de inteiros; Matriz2: MAT;

MAT [2, 3, 4]

Exercício 3

- Escreva um algoritmo que
 - armazene 20 inteiros em uma matriz 4x5;
 - armazene mais 20 inteiros em outra matriz 4x5;
 - some as duas matrizes armazenando o resultado em uma terceira matriz.

MATRIZ A

MATRIZ B

	1	2	3	4	5
1	6	8	9	3	5
2	4	3	2	7	3
3	5	5	0	~	6
4	2	7	4	3	0

	1	2	3	4	5
1	1	6	3	8	2
2	3	2	6	5	0
3	1	4	2	0	7
4	7	3	1	4	1

MATRIZ SOMA

	1	2	3	4	5
1	7	14	12	11	7
2	7	5	8	12	3
3	6	9	2	1	13
4	9	10	5	7	1

Vetores e Matrizes

MATA37: Introdução à Lógica de Programação

Prof.: Rafael A. Melo (melo@dcc.ufba.br)
Departamento de Ciência da Computação
Instituto de Matemática
Universidade Federal da Bahia

