Multinomial Logistic Regression: Speed Dating

Signal Data Science

You'll be formally learning about multinomial logistic regression today (sometimes called *softmax regression*¹).

Previously, you used binomial logistic regression to do *two-class classification*, where you modeled the log-odds associated with a binary outcome as being linearly related to a number of predictor variables. The technique of *multinomial logistic regression* is a straightforward extension of this: our outcome variable has more than two categories, and we model the log-odds associated with falling into each category as being linearly related to our predictor variables.

Using multinomial logistic regression

You can use multinomial logistic regression with glmnet(x, y, family="multinomial"), where x is a scaled matrix of predictors and y is a numeric vector representing a categorical variable. In the following, we can simply use unregularized logistic regression because the number of predictors is relatively low. To do so, don't pass in lambda=0 to glmnet(); instead, call glmnet() without specifying the lambda parameter, and when calling predict() or coef() on the output of glmnet(), simply set s=0.

Converting to probabilities

Suppose that we've fit a multinomial logistic regression model to some data and made predictions on the dataset. Now, for each particular row, we have a log-odds L_i associated to each outcome i. We sometimes want to convert to probabilities P_i , which ought to be proportional to the exponentiated log-odds $\exp(L_i)$. We can exponentiate and obtain just $\exp(L_i)$, but those values might not necessarily sum to 1: $\sum_i \exp(L_i) \neq 1$. This is a problem, because probabilities have to sum to 1, that is, $\sum_i P_i = 1$.

¹This comes from the usage of the *softmax function*, which is a continuous approximation of the indicator function.

To resolve this, we divide each $\exp(L_i)$ by the proper *normalization factor*. That is, we can compute

$$P_i = \exp(L_i) / \sum_i \exp(L_i)$$

which makes all the values of P_i sum to 1 as desired while still being proportional to $\exp(L_i)$.

Speed dating dataset

Return to the aggregated speed dating dataset (speeddating-aggregated.csv in the speed-dating folder).

- Use table() on the career code column to find the four most common listed careers in the dataset.
- Restricting to those four careers, predict career in terms of self-rated activity participation and average ratings by other participants. Interpret the coefficients of the resulting linear model. Visualize them with corrplot().
 - You can combine the output of coef() with cbind(), do.call(), and as.matrix() as input into corrplot(). Be sure to plot just the coefficients, not the intercepts of the linear models.
- Write a function probabilities (preds, rownum) that takes in a matrix preds of predictions generated from multinomial logistic regression (i.e., a matrix of log-odds) and a row number rownum, returning row rownum converted into probabilities. Verify that the output sums to 1 as expected.