Evaluating Classifiers

Reading for this topic:

T. Fawcett, An introduction to ROC analysis, Sections 1-4, 7

(linked from class website)

Evaluating Classifiers

• What we want: Classifier that best predicts unseen ("test") data

• Common assumption: Data is "iid" (independently and identically distributed)

Topics

• Cross Validation

• Precision and Recall

• ROC Analysis

• Bias, Variance, and Noise

Cross-Validation

Accuracy and Error Rate

• Accuracy = fraction of correct classifications on unseen data (test set)

• Error rate = 1 - Accuracy

How to use available data to best measure accuracy?

Split data into training and test sets.

But how to split?

Too little training data: Cannot learn a good model

Too little test data: Cannot evaluate learned model

Also, how to learn hyper-parameters of the model?

One solution: "k-fold cross validation"

- Used to better estimate generalization accuracy of model
- Used to learn hyper-parameters of model ("model selection")

Using *k*-fold cross validation to estimate accuracy

- Each example is used both as a training instance and as a test instance.
- Instead of splitting data into "training set" and "test set", split data into k disjoint parts: $S_1, S_2, ..., S_k$.
- For i = 1 to kSelect S_i to be the "test set". Train on the remaining data, test on S_i , to obtain accuracy A_i
- Report $\frac{1}{k} \sum_{i=1}^{k} A_i$ as the final accuracy.

Using *k*-fold cross validation to learn hyper-parameters

(e.g., learning rate, number of hidden units, SVM kernel, etc.)

- Split data into training and test sets. Put test set aside.
- Split training data into k disjoint parts: $S_1, S_2, ..., S_k$.
- Assume you are learning one hyper-parameter. Choose *R* possible values for this hyper-parameter.
- For j = 1 to RFor i = 1 to kSelect S_i to be the "validation set"

Train the classifier on the remaining data using the *j*th value of the hyperparameter

Test the classifier on S_i , to obtain accuracy $A_{i,j}$.

Compute the average of the accuracies: $\overline{A}_j = \frac{1}{k} \sum_{i=1}^k A_{i,j}$

Choose the value j of the hyper-parameter with highest \overline{A}_j .

Retrain the model with all the training data, using this value of the hyper-parameter.

Test resulting model on the test set.

Evaluating classification algorithms

"Confusion matrix" for a given class c

Actual	Predicted (or "classified")			
	Positive (in class c)	Negative (not in class c)		
Positive (in class c)	TruePositive	FalseNegative		
Negative (not in class c)	FalsePositive	TrueNegative		

Example: "A" vs. "B"

Assume "A" is positive class

Confusion Matrix

<u>Instance</u>	Class	Perception Output
1	"A"	-1
2	"A"	+1
3	"A"	+1
4	"A"	-1
5	"B"	+1
6	"B"	-1
7	"B"	-1
1	"B"	-1

Actual	Predicted	
	Positive	Negative
Positive	2	2
Negative	1	3

Accuracy:

Evaluating classification algorithms

"Confusion matrix" for a given class c

Exercise 1

All instances in test set

All instances in test set

Positive Instances

Negative Instances

All instances in test set

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$Instances classified as positive$$

$$Instances classified as negative$$

$$Negative Instances$$

Recall = Sensitivity = True Positive Rate

Example: "A" vs. "B"

Assume "A" is positive class

Results from Perceptron:

Instance	Class	Perception Output	TP
1	"A"	-1	Precision = —
2	"A"	+1	TP + FP
3	"A"	+1	
4	"A"	-1	
5	"B"	+1	
6	"B"	-1	Recall = $\frac{TP}{}$
7	"B"	-1	TP + FN
1	"B"	-1	

F-measure =
$$2 \cdot \frac{precision \cdot recall}{precision + recall}$$

Creating a Precision vs. Recall Curve

Inst#	Class	Score	Inst#	Class	Score
1	p	.9	11	p	.4
2	p	.8	12	n	.39
3	n	.7	13	p	.38
4	p	.6	14	n	.37
5	p	.55	15	n	.36
6	p	.54	16	n	.35
7	n	.53	17	p	.34
8	n	.52	18	n	.33
9	p	.51	19	p	.30
10	n	.505	20	n	.1

Results of classifier

D _	<u> </u>		
1	_	$\overline{TP + FP}$	

$$R = \frac{TP}{TP + FN}$$

			_
Threshold	Accuracy	Precision	Recall
.9	11/20	1	1/10
.8	12/20	1	2/10
.7			
.6			
.5			
.4			
.3			
.2			
.1	10/20	10/20	1
-∞			

ROC Analysis

Receiver Operating Characteristic (ROC) Curves

Alternative to precision/recall curves

 Shows tradeoff between true positive rate and false positive rate.

```
True positive rate = TP/(TP + FN) (1 - "specificity")
False positive rate = FP/(TN + FP)
```


Creating a ROC Curve

.53

.52

.51

.505

n

n

p

n

8

9

10

	0					1.
Inst#	Class	Score	Inst#	Class	Score	
1	p	.9	11	p	.4	_
2	p	.8	12	n	.39	
3	n	.7	13	p	.38	
4	p	.6	14	n	.37	
5	p	.55	15	n	.36	
6	p	.54	16	n	.35	

Results of classifier

17

18

19

20

.34

.33

.30

.1

n

True Positive Peta (- Pacell) -	TP
True Positive Rate (= Recall) =	$\overline{TP + FN}$

False Positive Rate =
$$\frac{FP}{TN + FP}$$

Threshold	Accuracy	TPR	FPR
.9		1/10	0
.8		2/10	0
.7		2/10	1/10
.6			
.5			
.4			
.3			
.2			
.1		1	1
-∞			

Area under ROC curve (AUC)

• Summary statistic: Area under ROC curve (AUC) = probability that classifier will rank a randomly chosen positive instance higher than a randomly chosen negative instance.

• AUC is always between 0 and 1.

How to create a ROC curve for a perceptron

• Run your classifier on each instance in the test data, without doing the *sgn* step:

$$Score(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x}$$

- Get the range [min, max] of your scores
- Divide the range into about 200 thresholds, including $-\infty$ and max
- For each threshold, calculate TPR and FPR
- Plot TPR (y-axis) vs. FPR (x-axis)

In-Class Exercise 1

Bias, Variance, and Noise

Bias:

Classifier is not powerful enough to represent the true function; that is, it *underfits* the function

From http://eecs.oregonstate.edu/~tgd/talks/BV.ppt

Variance:

Classifier's hypothesis depends on specific training set; that is, it *overfits* the function

From http://eecs.oregonstate.edu/~tgd/talks/BV.ppt

Noise:

Underlying process generating data is stochastic, or data has errors or outliers

From http://eecs.oregonstate.edu/~tgd/talks/BV.ppt

• Examples of bias?

• Examples of variance?

• Examples of noise?

Bias/variance tradeoff

- Models with too many parameters may fit the training data well (low bias), but are sensitive to choice of training set (high variance)
- Models with too few parameters may not fit the data well (high bias) but are consistent across different training sets (low variance)

- Generalization error is due to overfitting
- Generalization error is due to underfitting

Illustration of Bias / Variance Tradeoff

Hastie, Tibshirani, Friedman "Elements of Statistical Learning" 2001

Model Error Decomposition: The Math

Let h(x) be our learned model, which estimates true function f(x).

$$Error(x) = E[(f(x) - h(x))^{2}]$$

$$= (E[h(x)] - f(x))^{2} + E[h(x) - E[h(x)]]^{2} + \sigma_{e}^{2}$$

= bias² + variance² + irreducible error

In-Class Exercise 2