Nerve and Graph Induced Complex

Mathieu Carrière

Inria Saclay, 24/10/2017

Nerve and Graph Induced Complex

Mathieu Carrière + Marc Glisse

Inria Saclay, 24/10/2017

What is a Nerve?

What is a Nerve?

Def: Let: P = point cloud

$$C = \{C_n\}_{1 \le i \le n}$$
 cover of P , i.e. $P = \bigcup_{i=1}^n C_i$

Then, the $Nerve\ S$ is a simplicial complex s.t.

$$Vertices = \{C_1, ..., C_n\}$$

$$\{C_{i_1},...,C_{i_k}\}\in S\iff\bigcap_{j=1}^kC_{i_j}\neq\emptyset$$

What is a Graph Induced Complex?

What is a Graph Induced Complex?

Def: Let: P= point cloud $C=\{C_n\}_{1\leq i\leq n}$ cover of P, i.e. $P=\bigcup_{i=1}^n C_i$ G= graph with vertex set P

Then, the Graph Induced Complex S is a simplicial complex s.t.

$$\text{Vertices} = \{C_1,...,C_n\}$$

$$\{C_{i_1},...,C_{i_k}\} \in S \Longleftrightarrow \exists (p_{i_1},...,p_{i_k}) \in C_{i_1} \times ... \times C_{i_k} \text{ s.t.}$$

$$\{p_{i_1},...,p_{i_k}\} \text{ is a } \textit{clique} \text{ in } G$$

Subsample P with m points: $\{q_1,...,q_m\} \subset P$

Subsample P with m points: $\{q_1,...,q_m\} \subset P$

Voronoi cover $C = \{C_1, ..., C_m\}$:

$$p \in C_i \iff d(p,q_i) \le d(p,q_j) \text{ for all } 1 \le j \le m$$

Subsample P with m points: $\{q_1,...,q_m\} \subset P$

Voronoi cover $C = \{C_1, ..., C_m\}$:

$$p \in C_i \iff d(p,q_i) \le d(p,q_j)$$
 for all $1 \le j \le m$

d is not the Euclidean distance! Rather the geodesic distance

Subsample P with m points: $\{q_1,...,q_m\} \subset P$

Voronoi cover $C = \{C_1, ..., C_m\}$:

$$p \in C_i \iff d(p,q_i) \le d(p,q_j)$$
 for all $1 \le j \le m$

d is not the Euclidean distance! Rather the geodesic distance

•

Not well defined...

Subsample P with m points: $\{q_1,...,q_m\} \subset P$

Voronoi cover $C = \{C_1, ..., C_m\}$:

$$p \in C_i \iff d(p,q_i) \le d(p,q_j)$$
 for all $1 \le j \le m$

d is not the Euclidean distance! Rather the geodesic distance

Computed with shortest path distance on neighborhood graph

The Mapper is a particular nerve

The Mapper is a particular nerve

Let $f:P\to\mathbb{R}^d$ and \tilde{C} a cover of $\mathrm{im}(f)$ with open sets $C=f^{-1}(\tilde{C})$ is a cover of P

The Mapper is a particular nerve

Let $f:P\to\mathbb{R}^d$ and \tilde{C} a cover of $\mathrm{im}(f)$ with open sets $C=f^{-1}(\tilde{C})$ is a cover of P

 ${\cal C}$ can be refined into its different connected components. The Mapper is the nerve of the refined ${\cal C}$

Note: d=1 and \tilde{C} minimal \Longrightarrow the Mapper is a graph

The Mapper is a particular nerve

Let $f:P\to\mathbb{R}^d$ and \tilde{C} a cover of $\mathrm{im}(f)$ with open sets $C=f^{-1}(\tilde{C})$ is a cover of P

C can be refined into its different connected components. The Mapper is the nerve of the refined C Not well defined...

Note: d=1 and \tilde{C} minimal \Longrightarrow the Mapper is a graph

The Mapper is a particular nerve

Let $f:P\to\mathbb{R}^d$ and \tilde{C} a cover of $\mathrm{im}(f)$ with open sets $C=f^{-1}(\tilde{C})$ is a cover of P

 ${\cal C}$ can be refined into its different connected components. The Mapper is the nerve of the refined ${\cal C}$

Note: d=1 and \tilde{C} minimal \Longrightarrow the Mapper is a graph

Computed with connected components of δ -neighborhood graph


```
	ilde{C} is usually parametrized by: resolution r>0 (interval length) gain 0< g<1 (overlap percentage): length(I\cap J)=gr
```

```
	ilde{C} is usually parametrized by: resolution r>0 (interval length) gain 0< g<1 (overlap percentage): length(I\cap J)=gr
```

Statistical Analysis and Parameter Selection for Mapper, C., Michel, Oudot, 2017

Heuristic for a choice of δ and r that ensures fast convergence to Reeb graph no discretization artifacts

1. Graph

- a. From file
- b. From 1-skeleton of Rips complex

2. Cover

- a. From file
- b. From preimages of a function
- c. From Voronoi
- 3. Nerve
- 4. GIC
- 5. Visualization
 - a. txt file (kepler mapper)
 - b. dot file (neato)
 - c. off file (geomview)

1. Graph

- a. From file
- b. From 1-skeleton of Rips complex

```
set_graph_from_file (string filename)
set_graph_from_OFF (string filename)
set_graph_from_rips (double delta, distance d)
set_graph_from_automatic_rips (distance d)
```

2. Cover

- a. From file
- b. From preimages of a function
- c. From Voronoi

```
set_cover_from_file (string filename)
set_cover_from_function ()
set_function_from_file (string filename)
set_function_from_coordinate (int k)
set_gain (double gain)
set_resolution (double reso)
set_automatic_resolution ()
```

3. Nerve 4. GIC

```
set_type (string type) "Nerve" or "GIC"
find_simplices ()
```

5. Visualization

```
a. txt file (kepler mapper)b. dot file (neato)c. off file (geomview)
```

```
set_color_from_file (string filename)
set_color_from_coordinate (int k)

plot_DOT ()
plot_OFF ()
write_info ()
```

Examples