LANS Y ETHERNET

Redes de Datos I

LANs y Ethernet

Cuando compartimos un medio de transmisión necesitamos un protocolo para coordinar el acceso al medio.

A la capa de enlace la podemos subdividir en dos capas:

La subcapa MAC (Media Access Control) se encarga de dicha coordinación

La subcapa LLC (Logical Link Control) se encarga del control de flujo, control de errores, y parte del entramado.

LANs y Ethernet

Protocolos de acceso controlado

• Reserva:

- La transmisión se divide en intervalos de tiempos.
- Cada intervalo contiene una trama de reserva y la/s trama/s de datos.
- En la trama de reserva hay una mini ranura para cada estación. Cada estación hace uso de la mini ranura para hacer una reserva y procede a enviar la trama de datos dentro del intervalo.

Protocolos de acceso controlado

Sondeo:

- Se designa una estación primaria (la que controla el enlace) y el resto como secundarias (acatan las instrucciones de la primaria).
- La estación primaria es la que inicia la sesión. Utiliza las funciones de Select/Poll. Si la estación primaria es la que debe enviar datos, debe alertar a la secundaria

Protocolos de acceso controlado

- Paso de testigo:
 - Las estaciones se organizan en un anillo lógico.
 - Hay un paquete especial, el token (testigo) que habilita a una estación a transmitir.
 - El token se va pasando de una a otra por el anillo; debe ser gestionado para evitar que se destruya o se pierda, para gestionar prioridades por estación o tipo de tráfico, y para limitar el tiempo de posesión.

> 1969: Nace ARPANET

■ 1970: Abramson crea la red ALOHAnet

ALOHA: Additive Links On-Line on Hawaii Area

Norman Abramson (1932-2020)

ALOHAnet

ALOHAnet

La estación (esclavo) transmite la trama y espera una confirmación (acuse de recibo); si ésta no se produce dentro del tiempo máximo previsto (timeout), se aguarda un tiempo aleatorio y la trama se retransmite.

Bytes –	→ 4 o 6	≤ 80	2 o 4
	Cabecera	Datos	Comprobación de paridad

> Si la trama se retransmite un número de veces predefinido, se descarta la trama y no se vuelve a transmitirla.

ALOHAnet

Considerando una distribución de Poisson para el tráfico de red, la utilización del canal es de $S = G x e^{-2G}$ (utilización max. = 18%)

Ejemplos, ALOHA

• Una red basada en ALOHA transmite tramas de 200 bits en un canal compartido de 200 kbps. ¿Cuál es el rendimiento que produce el sistema si se generan 1000 tramas por segundo? ¿Y si fueran 500 tramas por segundo? ¿y 250?

El tiempo de transmisión de una trama es de 200 bits/200 kbps = 1 ms

Si se generan 1000 tramas por segundo, equivale a 1 trama cada 1 ms. Por lo tanto, la carga del sistema es 1. Por lo tanto, $S = 1 xe^{-2} = 0,135 (13,5\%)$

Si se generan 500 tramas por segundo, equivale a 0,5 tramas cada 1 ms. Por lo tanto, la carga del sistema es 0,5. Por lo tanto, $S = 0.5 xe^{-1} = 0.18 (18\%)$

Si se generan 250 tramas por segundo, equivale a 0,25 tramas cada 1 ms. Por lo tanto, la carga del sistema es 0,25. Por lo tanto, S = 0,25 $xe^{-0,5} = 0,151$ (15,1%)

■ 1972: ALOHAnet ranurado

Cada trama puede transmitir en intervalos de tiempo prefijados. La longitud de las tramas debe ser fija. La utilización del canal es de $S = G xe^{-G}$ (utilización max. = 37%)

Larry Roberts

Ejemplos, ALOHA (continuación)

 Una red basada en ALOHA ranurado transmite tramas de 200 bits en un canal compartido de 200 kbps. ¿Cuál es el rendimiento que produce el sistema si se generan 1000 tramas por segundo? ¿Y si fueran 500 tramas por segundo? ¿y 250?

El tiempo de transmisión de una trama es de 200 bits/200 kbps = 1 ms

Si se generan 1000 tramas por segundo, equivale a 1 trama cada 1 ms. Por lo tanto, la carga del sistema es 1. Por lo tanto, $S = 1 xe^{-1} = 0,367 (36,7\%)$

Si se generan 500 tramas por segundo, equivale a 0,5 tramas cada 1 ms. Por lo tanto, la carga del sistema es 0,5. Por lo tanto, $S = 0.5 xe^{-0.5} = 0.303 (30.3\%)$

Si se generan 250 tramas por segundo, equivale a 0,25 tramas cada 1 ms. Por lo tanto, la carga del sistema es 0,25. Por lo tanto, S = 0,25 $xe^{-0,25} = 0,195$ (19,5%)

Rendimiento de Aloha suponiendo una distribución de Poisson

- ≥1970: Robert Metcalfe (MIT) empieza tesis en Harvard (optimización Aloha)
- ➤ 1972: Metcalfe llega a Xerox PARC (Palo Alto Research Center); se le encarga diseñar la red del laboratorio

Xerox Corporation lanzó el desarrollo de su computadora personal "Alto".

• Resolución gráfica: 800 x 600

CPU: 5,88 MHz
 Formada por tres tarjetas con
 200 chips cada una

Memoria: 128 KB

• Disco: 2,5 MB

Robert Metcalfe 1946 -

- Metcalfe encontró errores en el diseño de ALOHAnet, le hizo correcciones, y lo utilizó para su tesis doctoral.
- ≥22/5/1973: Metcalfe publica un memorándum en Xerox

➤ 11/11/1973: Ethernet experimental (Metcalfe y David Boggs): 2,94 Mbps, direcciones de 8 bits, CRC-16, 1,6 Km

XEROX

MEND

May 22, 1973

TO: ALTO ALOHA DISTRIBUTION

FROM: BOB METCALFE

SUBJECT: ETHER ACQUISITION

HERE IS MORE ROUGH STUFF ON THE ALTO ALOHA NETWORK.

I PROPOSE WE STOP CALLING THIS THING "THE ALTO ALDHA NETWORK".

FIRST, BECAUSE IT SHOULD SUPPORT ANY NUMBER OF DIFFERENT KINDS
OF STATION -- SAY, NOVA, PDP-11, SECOND, BECAUSE
THE ORGANIZATION IS BEGINNING TO LOOK VERY MUCH MORE BEAUTIFUL
THAN THE ALDHA RADIO NETWORK -- TO USE CHARLES'S "BEAUTIFUL".

"AYBE: "THE ETHER NETWORK". SUGGESTIONS?

TIONS? B

LAZY SUZAN BULLETIN BOARD PARLEY

I HOPE TO BE SIMULATING SOON, HELP? INPUTS?

I HOPE YOU WILL NOT BE OFFENDED BY MY ATTEMPTS TO MAKE THIS THINKING AND DESIGN APPEAR THEORETICAL.

Bol-

XEROX

A CABLE-TREE ETHER

ALTO

DYNABOX

THE ETHER NETHORX

PDP-11

WE PLAN TO BUILD A SO-CALLED BROADCAST COMPUTER COMMUNICATION NETWORK, NOT UNLIKE THE ALCINA SYSTEM'S RADIO NETWORK, BUT SPECIFICALLY FOR IN-BUILDING MINICOMPUTER COMMUNICATION.

WE THINK IN TERMS OF NOVA'S AND ALTO'S JOINED BY COAXIAL CABLES.

WHILE WE MAY END UP USING COAXIAL CABLE TREES TO CARRY OUR BROADCAST TRANSMISSIONS, IT SEEMS WISE TO TALK IN TERMS OF AN ETHER, RATHER THAN "THE CABLE", FOR AS LONG AS POSSIBLE.

THIS WILL KEEP THINGS GENERAL AND WHO KNOWS WHAT OTHER MEDIA WILL PROVE BETTER THAN CABLE FOR A BROADCAST NETWORK; MAYBE RADIO OR TELEPHONE CIRCUITS, OR POWER WIRING OR FREQUENCY-MULTI-PLEXED CATV, OR MICROWAVE ENVIRONMENTS, OR EVEN COMBINATIONS THEREOF.

THE ESSENTIAL FEATURE OF OUR MEDIUM -- THE ETHER -- IS THAT IT CARRIES TRANSMISSIONS, PROPAGATES BITS TO ALL STATIONS.

WE ARE TO INVESTIGATE THE APPLICABILITY OF ETHER NETWORKS.

FACULTAD DE ÎNGENIERÎA
UNIVERSIDAD NACIONAL DE LA PLATA

La red utilizada era un bus lineal, por lo que existían colisiones

Ethernet...CSMA

- ► Para aumentar la eficiencia, diseña CSMA.
- ➤ Carrier Sense Multiple Access
 - La estación escucha si hay alguna transmisión
 - Si el canal está ocupado, espera
 - Si el canal está libre, transmite
 - Aguarda confirmación (acknolowdge)
 - Si no recibe confirmación, asume que hubo colisión, y retransmite
 - Aumenta notablemente la utilización

Ethernet...CSMA

Utilizada por Ethernet

No persistente: Constante o retardo variable Transmite și está libre Si está ocupado, aguarda tiempo aleatorio y repite Si detecta colisión, esperar Canal ocupado tiempo Listo para transmitir p-persistente: Transmite ni bien detecta que el canal está libre, con probabilidad p Si está ocupado, aguarda un slot time 1-persistente: (tiempo de propagación) y repite Transmite ni bien detecta que el canal está libre Si detecta colisión, esperar Si detecta colisión, esperar

Ethernet...CSMA

La historia continua...Ethernet

➤ 1976: Metcalfe y Boggs publican artículo sobre Ethernet

Computer G. Bell, S. Fuller and Systems D. Siewiorek, Editors

Ethernet: Distributed Packet Switching for Local Computer Networks

Robert M. Metcalfe and David R. Boggs Xerox Palo Alto Research Center

Ethernet is a branching broadcast communication system for carrying digital data packets among locally distributed computing stations. The packet transport mechanism provided by Ethernet has been used to build systems which can be viewed as either local computer networks or loosely coupled multiprocessors. An Ethernet's shared communication facility, its Ether, is a passive broadcast medium with no central control. Coordination of access to the Ether for packet broadcasts is distributed among the contending transmitting stations using controlled statistical arbitration. Switching of packets to their destinations on the Ether is distributed among the receiving stations using packet address recognition. Design principles and implementation are

1. Background

One can characterize distributed computing as a spectrum of activities varying in their degree of decentralization, with one extreme being remote computer networking and the other extreme being multiprocessing. Remote computer networking is the loose interconnection of previously isolated, widely separated, and rather large computing systems. Multiprocessing is the construction of previously monolithic and serial computing systems from increasingly numerous and smaller pieces computing in parallel. Near the middle of this spectrum is local networking, the interconnection of computers to gain the resource sharing of computer networking and the parallelism of multiprocessing.

The separation between computers and the associated bit rate of their communication can be used to divide the distributed computing spectrum into broad activities. The product of separation and bit rate, now about 1 gigabit-meter per second (1 Gbmps), is an indication of the limit of current communication technology and can be expected to increase with time:

Activity	Separation	Bit rate
Remote networks	> 10 km	< .1 Mbps
Local networks	101 km	.1-10 Mbps
Multiprocessors	< .1 km	> 10 Mbps

1.1 Remote Computer Networking

Computer networking evolved from telecommunications terminal-computer communication, where the object was to connect remote terminals to a central computing facility. As the need for computer-computer interconnection grew, computers themselves were used to provide communication [2, 4, 29]. Communication using computers as packet switches [15-21, 26] and

- Cuando dos tramas colisionan, el medio permanece inutilizable mientras dure la transmisión de ambas tramas dañadas.
- Esto puede reducirse si una estación continúa escuchando el medio mientras dure la transmisión -> CSMA/CD (Carrier Sense Multiple Access with Collision Detection):
 - 1. Si el medio está libre durante un período de 12 bytes, transmite; en otro caso, paso 2.
 - 2. Si el medio está ocupado, escucha hasta que el canal se libere y luego de un período 12 bytes, transmite inmediatamente.
 - 3. La estación que transmite se queda escuchando si se produce una colisión durante la transmisión; en ese caso, se transmite una pequeña señal de interferencia (jam, 48 bits) para asegurarse de que todas las estaciones constaten la colisión y deja de transmitir.
 - 4. Tras la emisión de la señal de interferencia, se espera una cantidad aleatoria de tiempo (espera o backoff) volviendo al paso 1.

> Retroceso exponencial binario truncado (backoff)

Luego de una colisión, antes de intentar transmitir de vuelta, aguarda un tiempo

R x (slot time)

R: variable aleatoria

■ $0 \le R \le 2^k - 1$

• k = Min(N,10)

N= número de retransmisiones

Intenta retransmitir hasta 16 veces

➤ Retroceso exponencial binario truncado (backoff)

Tiempos máximos de backoff en un sistema 10 Mbps				
Colisiones	Rango de números aleatorio	Rango de valores de tiempo de backoff		
1	0,1	0 , 51.2 μs		
2	03	0 153.6 µs		
3	07	0 358.4 µs		
4	015	0 768.0 µs		
5	031	0 1.59 ms		
6	063	0 3.23 ms		
7	0 27	0 6.50 ms		
8	0255	0 13.10 ms		
9	0511	0 26.20 ms		
10-15	0 1023	0 52.40 ms		
16	N/A	Descarta el frame		

■ En CSMA/CD se necesita restringir el tamaño de la trama, con mínimo y máximo.

El tiempo de la trama debe ser mayor o igual al doble del tiempo de propagación entre estaciones extremas: slot time

- En Ethernet se especifica una distancia máxima de 2.500 metros entre estaciones.
- Considerando una velocidad de propagación de 2/3 de la velocidad de la luz, el tiempo de propagación es igual a 12,5 us.
- Se pueden utilizar hasta 4 repetidores, que aumentan el retardo.
- El retardo máximo (RTT) sumando todos los componentes, es de 51,2 us.
- Con Ethernet a 10 Mbps, el tamaño de trama mínimo es: 512 bits (64 bytes)

- Cuando una estación comienza a transmitir, hay un período de tiempo en que pueden ocurrir colisiones.
- Es el período de contención (slot time), igual al doble del tiempo máximo de propagación.
- Una vez superado ese período de tiempo, ya no podrá haber colisión, ya que la estación está segura que todas las otras estaciones oyeron su trama.
- Se dice que luego de ese período, la estación se apoderó del canal.
- En Ethernet, a 10 Mbps, el período de contención es 51,2 us

Ethernet

United States Patent [19]

Metcalfe et al.

- [54] MULTIPOINT DATA COMMUNICATION SYSTEM WITH COLLISION DETECTION
- [75] Inventors: Robert M. Metcalfe, Woodside;

David R. Boggs; Charles P. Thacker, both of Palo Alto; Butler W.

Lampson, Portola Valley, all of Calif.

[73] Assignee: Xerox Corporation, Stamford, Conn.

La historia continua...Ethernet

- ➤En 1976 Xerox creó una nueva división para el lanzamiento comercial de los PCs y de Ethernet, pero esta no prosperó. Se cambia el nombre a X-wire
- ➤En 1979 se creó el consorcio DIX entre Digital Equipment Corporation (DEC), Intel y Xerox para potenciar el uso de Ethernet (ya entonces a 10 Mb/s). Metcalfe abandonó Xerox y creó 3Com. Vuelve el nombre de Ethernet
- ►En 1980 DIX publicó Ethernet v 1.0.

La historia continua...Ethernet

The Ethernet

A Local Area Network Data Link Layer and Physical Layer Specifications XEROX intط Digital Equipment Corporation Intel Corporation Xerox Corporation Maynard, MA Santa Clara, CA Stamford, CT Version 1.0 September 30, 1980

- Voltages are measured differentially at output of transceiver cable driver.
- 2. Rise and fall times meet 10,000 series ECL requirements.

Figure 7-3: Typical Transceiver Cable Waveform

The transceiver cable driver must be capable of maintaining the specified minimum differential signal into the worst case low cable impedance (73 Ω differential, 18.5 Ω common mode) in the environment specified in section 7-7.

The idle state of the output shall be high (+ 700 mV nominal); the first transition presented is negative-going, the last transition must be positive-going. Note that the presence of AC coupling may cause the voltage as specified at the output of the transceiver cable drive circuit not to appear on the transceiver cable in the idle state.

A typical transceiver cable drive circuit is given in Appendix D.

7.2.5 Transceiver Cable Receive

The following sections specify the requirements for receiving signals from any signal pair in the transceiver cable: transmit, receive, and collision presence. The circuit must be capable of receiving the signals from the transceiver cable driver

La historia continua...Ethernet

- ➤En Febrero de 1980 el IEEE creó el proyecto 802 para aprobar 'el' estándar de LANs
- ➤DIX intentó 'imponer' Ethernet al IEEE 802
- ➤ El IEEE 802 recibió tres propuestas:
 - ➤ CSMA/CD (DIX)
 - ➤ Token Bus (General Motors)
 - ➤ Token Ring (IBM)
- ➤ Resultado: se creó un subcomité para cada propuesta (802.3, 802.4 y 802.5) mas dos de tipo general: 802.1 y 802.2 (LLC)

Estándares IEEE 802

Evolución de los estándares Ethernet

Estándar	Año	Descripción	
Ethernet	1976	Xerox Palo Alto Research Center: Robert M. Metcalfe, 2.94 Mbps	
Ethernet V1	1980	DEC-Intel-Xerox (DIX Ethernet Standard) 10Mbps	
Ethernet V2	1982	DEC-Intel-Xerox (DIX V2.0) 10 Mbps	
IEEE 802.3a	1985	10 Mbps sobre coaxial fino	
IEEE 802.3c	1985	Repetidores de 10 Mbps	
IEEE 802.3d	1987	Fibra óptica, 10 Mbps, 1000m	
IEEE 802.3i	1990	Par trenzado a 10 Mbps	
IEEE 802.3j	1993	Fibra óptica, 10 Mbps, 2000m	
IEEE 802.3u	1995	Par trenzado, 100 Mbps (Fast Ethernet) y autonegociación	

Evolución de los estándares Ethernet

Estándar	Año	Descripción
IEEE 802.3x	1997	Full duplex
IEEE 802.z	1998	Fibra óptica, 1000 Mbps (Gigabit Ethernet)
IEEE 802.3ab	1999	Par trenzado, 1000 Mbps (Gigabit Ethernet)
IEEE 802.3ac	1998	Extensión de la trama máxima a 1522 byte (Vlans)
IEEE 802.3ae	2002	10 GigaBit Ethernet
IEEE 802.3af	2003	Alimentación sobre Ethernet (POE)
IEEE 802.3an	2006	Par trenzado, 10 Gbps
IEEE 802.3av	2009	Red óptica pasiva Ethernet a 10 Gbit/s
IEEE 802.3bm	2015	Fibra óptica, 100 Gbps/40 Gbps

Formato de la trama

Ethernet V2 – IEEE 802.3

- Preámbulo: 56 bits (7 bytes) de sincronización (secuencia de 1s y 0s alternados)
- Delimitador de comienzo: (1Byte) termina con dos "1" consecutivos
- Destino: 6 bytes, dirección física del nodo destino (MAC address)
- Origen: 6 bytes, dirección del nodo origen (MAC address)
- Longitud/Tipo: (Protocol Type, "Type", "Ethertype") 2 bytes:

PT > 0x800: Type (Ethernet V2- DIX) - especifica el protocolo de la capa superior

PT < 0x800: Length (IEEE 802.3) -- indica el número de bytes en el campo siguiente (datos).

Formato de la trama (cont.)

Ethernet V2 – IEEE 802.3

- Datos: entre 46 y 1500 bytes, datos enviados desde o hacia la capa superior según el protocolo especificado en ET (Ethernet) o en la capa LLC (802.3)
- Pad: bytes insertados, longitud de la trama >= 64 bytes.
- Frame Check Sequence (FCS): 4-byte cyclic redundancy check (CRC). El cálculo incluye desde la dirección de destino hasta el padding incluido.
- **IFS** Interframe spacing, período vació que indica la terminación de una trama (también identificado como **IFG** Interframe Gap)

Formato de la trama (cont.)

Cabecera LLC

- El IEEE suprimió el Ethertype de la cabecera de la trama 802.3. Sin embargo, era necesario conocer el tipo.
- El IEEE decidió trasladarlo a la cabecera LLC (en todas las tramas 802)
- La cabecera LLC tiene dos formatos posibles:
 - LLC/SNAP (SubNetwork Access Protocol): es una cabecera adicional, de 8 bytes. El Ethertype se ubica en los dos últimos byes
 - LLC "puro": es una cabecera de 3 bytes, poco utilizada. No se utiliza el código Ethertype sino un código de 6 bits (64 posibilidades) que solo usan unos pocos protocolos.

Formato de la trama (cont.)

Direcciones MAC

El OUI (Organization Unique Identifier) lo asignaba inicialmente Xerox a las empresas que lo solicitaban. Al adoptarse este formato de dirección para todas las redes 802 la tarea pasó a realizarla el IEEE

Direcciones MAC

Algunos bloques asignados en el mundo de la automatización y control

> 00000C Cisco

➤ 00000E Fujitsu

➤ 000023 ABB Automation AB, Dept. Q

> 000068 Rosemount Controls

➤ 0000AA Xerox

> 0000AE Dassault Automatismes et Telecommunications

➤ 0000BC Rockwell Automatation

➤ 0000D1 Adaptec, Inc.

> 0019e0 TP-Link

➤ 0016DB Samsung Electronics

➤ 000B82 Grandstream

http://standards-oui.ieee.org/oui.txt

https://www.adminsub.net/mac-address-finder

Tipos de transmisión

➤ Nota: Multicast y broadcast, sólo en dirección de destino

Direcciones MAC

Direcciones MAC

Identificadores IEEE

La IEEE asignó identificadores a los diferentes medios que puede utilizar Ethernet. Este identificador consta de tres partes:

Ethernet....10 Mbps

	10Base5	10Base2	10Base-T	10Base-F
Medio de Transmisión	Cable coaxial grueso (50 ohm)	Cable coaxial fino (50 ohm)	UTP (Cat. 3)	Fibra óptica 850nm
Señalización	Manchester	Manchester	Manchester	Manchester on/off
Topología	Bus	Bus	Estrella	Estrella
Máx. long. del segmento (m)	500	185	100	2000
Nodos por segmento	100	30	1024	1024
Diámetro del cable (mm)	10	5	0.4 a 0.6	62.5/125um

FastEthernet...100 Mbps

- El tamaño mínimo de trama es de 512 bits (64 bytes).
- En Ethernet, 10 Mbps, el tiempo mínimo de transmisión debe ser de 51,2 us por lo que el "diámetro" de la red es de 4,6 km (teóricos), 2,8 km (reales).
- Si aumentamos la velocidad a 100 Mbps (FastEthernet), el tiempo mínimo de transmisión se reduce en 10 (5,12 us), por lo que el "diámetro" de la red es de 460 m (teórico), 410 m (reales).

	100Ba	se-TX	100Base-FX	100Base-T4
Medio de Transmisión	2 pares STP	2 pares UTP Cat 5	Fibra óptica	4 pares UTP Cat 3,4,5
Señalización	MLT-3	MLT-3	4B5B, NRZI	8B6T, NRZ
Máx. long. del segmento (m)	100	100	100	100

FastEthernet...100 Mbps

Gigabit Ethernet...1 Gbps

- Al aumentar la velocidad a 1 Gbps, si se mantiene el "slot time", disminuye considerablemente el diámetro de la red.
- La solución es utilizar una extensión de portadora (carrier extensión)
- ➤ De esta manera, se garantiza la interoperabilidad con Ethernet y FastEthernet

Preámbulo	Destino	Origen	Tipo	Datos (Cheque	0
8	6	6	2	46 - 1500	4	Extensión
← 512 bits (trama mínima) ← 64 bytes						
◆ 4096 bits (slot time) → 512 bytes						

Gigabit Ethernet ...1 Gbps

- La extensión de portadora produce una baja performance cuando las tramas son cortas, y hay muchas tramas por enviar.
- > Solución: enviar las tramas en forma de ráfaga (frame bursting)
- ➤ Longitud máxima < 65.536 bits más la última ráfaga
- ➤ Así funciona:
 - La primer trama de la "ráfaga" se envía normalmente (si hace falta, se utiliza extensión):

> Las siguientes ráfagas se envían una tras otra, insertando símbolos de extensión en los IFG:

Gigabit Ethernet ...1 Gbps...10 Gbps

	1000Base-SX	1000Base-LX	1000Base-T	
Medio de Transmisión	Fibra óptica multimodo	Fibra óptica mono/multimodo	4 pares UTP Cat 5e	
Señalización	8B-10B, NRZ	8B-10B, NRZ	PAM-5	
Máx. long. del segmento (m)	250-500	500-2000	100	
	10GBase-SR	10GBase-LR	10GBase-T	
Medio de Transmisión	Fibra óptica multimodo	Fibra óptica monomodo	4 pares UTP Cat 6 o 7	
Señalización	64B-66B, NRZ	64B-66B, NRZ	PAM-16	
Máx. long. del segmento (m)	300	10,000	100	

Gigabit Ethernet ...1 Gbps...10 Gbps

Ethernet

Rendimiento

Ethernet:

Trama mínima: 64 bytes a nivel MAC

84 bytes a nivel físico

46 bytes de datos

Eficiencia = 46/84 = 54,76%

1 paquete equivale a 672 bits

A 10 Mbps → 14.880 paq/s

Ethernet

Rendimiento

Ethernet:

Trama máxima: 1.518 bytes a nivel MAC

1.538 bytes a nivel físico

1.500 bytes de datos

Eficiencia = 1.500/1.538 = 97,52%

1 paquete equivale a 12.304 bits

A 10 Mbps \rightarrow 813 paq/s

Ethernet

Rendimiento

Preámbulo	Destino	Origen	Tipo	o Datos	CRC	
8	6	6	2	46 - 1500	4	Extensión
◆ 512 bits (trama mínima) →						
	•			4096 bits (slot time) -		-

Gigabit

Trama mínima: 512 bytes a nivel MAC

Ethernet:

532 bytes a nivel físico

46 bytes de datos

Eficiencia = 46/532 = 8,64%

Ethernet....Jumbo Frames

- > Tamaño máximo de la trama: 1518 bytes
- ➤ Algunos fabricantes permiten tramas de hasta aproximadamente 9000 bytes: son los jumbo frames
- > Mejora el rendimiento, menor gasto de procesamiento y menor overhead
- > Problema: toda la red debe soportar estas tramas, aumentan la latencia y el riesgo de errores
- > 802.3 II no soporta longitudes mayores de 1500 bytes: entonces, se utiliza el formato DIX

- ➤ El dispositivo puede enviar y recibir datos simultáneamente (en teoría ofrece el doble de ancho de banda).
- > No se comparte el segmento físico: sólo se interconectan dos dispositivos
- Las dos estaciones deben ser capaces y estar configuradas para trabajar en full dúplex (si no lo están, puede haber colisiones tardías).
- > Trayectorias independientes (no se utiliza CSMA/CD, aunque se respeta el IFG)
- ➤ El protocolo CSMA/CD queda deshabilitado y las restricciones de RTT desaparecen

Control de flujo

- El suplemento 802.3x (ethernet full dúplex), de marzo de 1997, incluye una especificación de un mecanismo de control de acceso al medio (MAC) opcional que permite, entre otras cosas, enviar un mensaje para control del flujo llamado PAUSE.
- Las tramas de control MAC se identifican porque el valor de tipo es 0x8808.
- Estas tramas tienen códigos de operación (opcodes) en el campo de datos. El tamaño de estas tramas se fija al mínimo establecido en el estándar (es decir 46 bytes de carga útil).
- El opcode está en los dos primeros bytes del campo de datos.

Control de flujo

- El opcode para el comando PAUSE es 0x0001
- Sólo las estaciones configuradas para operación full dúplex pueden enviar tramas PAUSE.
- Las tramas que envían el comando PAUSE llevan como dirección MAC destino 01:80:c2:00:00:01 (una dirección multicast, reservada para los tramas PAUSE)
- Además del opcode, el comando PAUSE lleva en dos bytes el tiempo que se desea se haga la pausa. El tiempo de pausa es medido en unidades de 512 bit times (esta unidad la denominan "quanta")

Ejemplo de trama PAUSE

Autonegociación

- ➤ Suplemento 802.3u de Fast Ethernet en 1995
- ➤ Se puede deshabilitar
- Permite negociar la velocidad del enlace (10/100/1000Mbps) y el tipo de operación (Half / Full Duplex)
- La negociación es en base a una tabla de prioridad
- ➤ En fibra sólo se negocia el tipo de operación

Prioridad	Velocidad	Tipo	
1	10 Gbps	Full Duplex	
2	1 Gbps	Full Duplex	
3	1 Gbps	Half Duplex	
4	100 Mbps	Full Duplex	
5	100 Mbps	Half Duplex	
6	10 Mbps	Full Duplex	
7	10 Mbps	Half Duplex	


```
GigabitEthernet1/0/5 is up, line protocol is up (connected)
 Hardware is Gigabit Ethernet, address is 08d0.9f5f.f405 (bia 08d0.9f5f.f405)
 Description: "WIFI Ingenieria"
 MTU 1500 bytes, BW 100000 Kbit/sec, DLY 100 usec,
    reliability 255/255, txload 1/255, rxload 1/255
 Encapsulation ARPA, loopback not set
 Keepalive set (10 sec)
 Full-duplex, 100Mb/s, media type is 10/100/1000BaseTX
 input flow-control is off, output flow-control is unsupported
 ARP type: ARPA, ARP Timeout 04:00:00
 Last input never, output 00:00:00, output hang never
 Last clearing of "show interface" counters never
 Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 92362
 Queueing strategy: fifo
 Output queue: 0/40 (size/max)
 5 minute input rate 0 bits/sec, 0 packets/sec
 5 minute output rate 28000 bits/sec, 45 packets/sec
    34601620 packets input, 5788817424 bytes, 0 no buffer
    Received 437831 broadcasts (110 multicasts)
    0 runts, 0 giants, 0 throttles
    0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored
    0 watchdog, 110 multicast, 0 pause input
    0 input packets with dribble condition detected
    820094295 packets output. 81482522311 bytes, 0 underruns
    0 output errors, 0 collisions, 1 interface resets
    0 unknown protocol drops
    O babbles, O late collision, O deferred
    0 lost carrier, 0 no carrier, 0 pause output
    0 output buffer failures, 0 output buffers swapped out
```


Dispositivos

Repetidor

- Unen dos segmentos del mismo tipo
- Amplifica y regenera la señal
- Opera en la capa física
- No analiza formatos

Dispositivos

Concentrador (Hub)

- Repetidor multipuerto
- Dispositivo que actúa como punto de conexión central entre los nodos que componen una red.
- Topología física en estrella pero lógica de bus

Puentes (Bridges)

- Trabajan a nivel de capa dos
- Analizan y reconocen direcciones MAC
- Arman tablas y toman decisiones de "ruteo"
- Separan redes a nivel MAC

Puentes: tabla CAM (Content Addressable Memory) В1 B2 ∞ Tabla del Bridge B2 **B1** A transmite a C C responde a A A,C E transmite a A A,C A,B,C B transmite a D A responde a E A,B,C

D,E

A,B,C

D responde a B

Conmutadores (Switches)

- Trabajan a nivel de capa dos
- Similar a los bridge
- Operan por hardware
- Utilizan chips diseñados para la conmutación (Application Specific Integrated Circuit, ASIC)
- Puertos de distinta velocidad

- > Dominio de colisión: grupo de nodos que se encuentran en un medio compartido
- Dominio de broadcast: grupo de nodos entre los cuales el mensaje de difusión de un nodo puede llegar a todos los demás nodos.

Clasificación

- Los puentes/conmutadores (bridge/switch) se clasifican en:
 - Transparentes
 - Source Routing Bridge
 - Source Routing Transparent Bridging
 - Translational

Puentes transparentes (802.1d)

- ➤ Desarrollados por DEC, principios de 1980
- > Funcionan en modo promiscuo
- > Analiza la dirección de destino
- ➤ Regla de las tres Fs
 - Forward
 - Flood
 - Filter o forget
- La trama reenviada es idéntica a la que ingresa
- > Reenvían las tramas que:
 - Van dirigidas a una estación del otro lado, o
 - Tienen un destino que no figura en su tabla de direcciones, o
 - Tienen una dirección de grupo (broadcast o multicast)

Puentes transparentes: Aging

- Proceso de envejecimiento
- Luego de un tiempo, si la entrada no es vuelta a usar, el switch la remueve
- Si la entrada es vuelta a usar, el temporizador se resetea a 0

Puentes transparentes

Tabla CAM (Content Addressable Memory)

Los Sw se inicializan
PC1 transmite a PC4
PC4 transmite a PC1
PC2 transmite a PC1
PC3 transmite Broadcast
PC1 transmite a PC2
PC1 transmite a PC4
PC2 transmite a PC4
·

Tabla S1					
2	3				
PC1					
PC1					
PC1	PC2				
PC1	PC2				
PC1	PC2				
PC1	PC2				
PC1	PC2				
	PC1 PC1 PC1 PC1 PC1 PC1				

Tabla S2					
1	2	3			
PC1					
PC1		PC4			
PC1		PC4			
PC1	PC3	PC4			
PC1	PC3	PC4			
PC1	PC3	PC4			
PC1,PC2	PC3	PC4			

Tabla CAM (Content Addressable Memory)

FACULTAD DE ÎNGENIERÎA

Logout

Store & Forward

Puentes transparentes:

Cut-Through

Collision Free

- Se recibe el paquete completo
- Se carga en memoria, se analiza el CRC y se reenvía
- Evita reenviar paquetes colisionados o dañados

Store & Forward

Puentes transparentes: Cut-Through

Collision Free

- Analiza la dirección destino y reenvía
- Es más rápido, pero puede reenviar paquetes dañados o colisionados

Puentes transparentes:

Store & Forward Cut-Through

Collision Free

- Analiza los primeros 64 bytes
- Evita paquetes colisionados

Agregación de enlaces

802.3ad

- "Link Aggregation Group" (LAG), también conocido como "Ethernet trunking", "Etherchannel" o "Port trunking"
- Proporciona mayor ancho de banda, fiabilidad y balanceo de carga.
- Los enlaces utilizados se ven como un único enlace.
- Todos los enlaces deben tener la misma velocidad.
- Dos modos: manual o negociado (Link Aggregation Control Protocol, LACP)

Product Picture				
Model	TL-SG1008	TL-SG1016D	TL-SG1024D	
	IEEE 802.3,	IEEE 802.3,	IEEE 802.3,	
Standards	IEEE 802.3u,	IEEE 802.3u,	IEEE 802.3u,	
	IEEE 802.3x	IEEE 802.3x	IEEE 802.3x	
Network Ports	8*10/100/1000Mbps RJ45 ports	16*10/100/1000Mbps RJ45 ports	24*10/100/1000Mbps RJ45 p	
Auto Negotiation	YES	YES	YES	
Auto MDI/MDIX	YES	YES	YES	
Systems	Windows 2000/XP/Vista/7 Linux/MAC OS	Windows 2000/XP/Vista/7 Linux/MAC OS	Windows 2000/XP/Vista/7 Linux/MAC OS	
Forwarding Mode	Store and Forward	Store and Forward	Store and Forward	
Switch Capacity	16 Gbps	32 Gbps	48 Gbps	
MAC Address Table	8 K	8 K	8 K	
Jumbo Frame	10 KB	10 KB	10 KB	
Flow Conrol	YES	YES	YES	
Fanless	YES	YES	YES	
Green Technology	YES	YES	YES	
Power Saving	Up to 75%	Up to 40%	Up to 40%	
LED	Power、1000Mbps、Link/Act	Power、1000Mbps、Link/Act	Power、1000Mbps、Link/Ad	
Dimensions	294*180*44 mm	294*180*44 mm	294*180*44 mm	
Operating Temperature	0°C~40°C (32°F~104°F)	0°C~40°C (32°F~104°F)	0°C~40°C (32°F~104°F)	
Storage Temperature	-40°C~70°C (-40°F~158°F)	-40°C~70°C (-40°F~158°F)	-40°C~70°C (-40°F~158°F)	
Operating Humidity	10%~90% non-condensing	10%~90% non-condensing	10%~90% non-condensing	
Storage Humidity	5%~90% non-condensing	5%~90% non-condensing	5%~90% non-condensing	
Ordering Information	8-Port Gigabit switch	16-Port Gigabit switch	24-Port Gigabit switch	

TAD DE INGENIERÍA

Configuración en las placas de red

Configuración en las placas de red

Configuración en switch

DE INGENIERÍA

- ARP (Address Resolution Protocol) tiene como misión traducir la dirección IP de una estación a la dirección física del adaptador de red.
- Para enviar un datagrama, la estación origen debe conocer la dirección MAC de la estación destino.
- ARP se utiliza en todas las redes LANs broadcast, y soporta cualquier protocolo de red. Se especifica en RFC 826.

- Un equipo envía un ARP Request en difusión (broadcast) preguntando por la dirección física de una determinada IP.
- Le responde el equipo que tiene esa IP con un ARP Reply que le informa la dirección física.
- Debido a que enviar ARP Request/Reply para cada paquete IP introduce demasiado overhead, cada host mantiene una tabla ARP (ARP cache).
- Cada entrada en la ARP cache es una correspondencia entre las direcciones IP y la direcciones MAC.
- Cada entrada expira después de 15 minutos en switch y routers. En las PCs expira entre 15 y 45 segundos.

- Supongamos una estación A con dirección IP 10.0.0.10 que desea enviar un datagrama IP a la estación B con dirección IP 10.0.0.20
- Analizando las direcciones, A conoce que el destino está en la misma LAN.
- La estación A necesita la dirección MAC de B para armar la trama.

97

- La estación A busca en su ARP cache y no encuentra la dirección de B.
- La estación A envía un broadcast "ARP request" preguntando quien tiene la dirección 10.0.0.20
- Todas las estaciones reciben el broadcast, pero sólo B lo va a procesar, ya que están preguntando por él.
- La estación B se anota la dirección MAC de A en su tabla ARP
- La estación B responde con un unicast "ARP reply" dirigido a A informándole su MAC
- La estación A obtiene la dirección MAC de B

- Hardware Type: tipo de protocolo de la capa de enlace (Ethernet=1)
- ProtocoloType: tipo de protocolo de capa de red (IPv4=0x0800)
- Hardware y Protocol Lenght expresados en bytes
- Operation code:
 - 1 ARP Request
 - 2: ARP Reply
- Direcciones origen y destino (MAC e IP)

Continuando el ejemplo:

MAC Destino: 00:00:00:00:00:00

IP Destino: 10.0.0.20

Continuando el ejemplo:

ARP Reply	Destino	Origen	Ethertype	ARP
	MAC de A	MAC de B	0x0806	Op. Code: 1 MAC Origen: MAC de B IP de origen: 10.0.0.20 MAC Destino: MAC de A IP Destino: 10.0.0.10

■ ARP Gratuito: se lo utiliza para actualizar tablas ARP, anunciarse o en sistemas redundantes. Es un ARP Reply, que nunca fue solicitado (por rso es gratuito)

IP Destino: 10.0.0.10

 ARP Probe: se lo utiliza para sondear la red para validar que una dirección IP no está ya en uso.

ARP Probe

Destino Origen Ethertype ARP

FF:FF:FF:FF:FF:FF MAC de A 0x0806

Op. Code: 1

MAC Origon: M

¿Alguien tiene la 10.0.0.10? Previene que se actualicen las tablas ARP MAC Origen: MAC de A

IP de origen: 0.0.0.0

MAC Destino: 00:00:00:00:00:00

IP Destino: 10.0.0.10

 ARP Announcement: si no hay respuesta al ARP Probe, la estación confirma la dirección IP y la anuncia al resto

No.	Time	Source	Destination	Protocol	Length	Info
1280	2.410497	Palladiu_66:90:9e	Broadcast	ARP	42	Who has 192.168.30.101? Tell 192.168.30.108
1281	2.447921	Motorola_2d:26:0e	Palladiu_66:90:9e	ARP	42	192.168.30.101 is at c8:c7:50:2d:26:0e
1282	2.447959	192.168.30.108	192.168.30.101	ICMP	74	Echo (ping) request id=0x0001, seq=7710/771
1283	2.646633	Motorola_2d:26:0e	Broadcast	ARP	42	Who has 192.168.30.108? Tell 192.168.30.101
1284	2.646649	Palladiu_66:90:9e	Motorola_2d:26:0e	ARP	42	192.168.30.108 is at 5c:c9:d3:66:90:9e
1288	3.658008	192.168.30.101	192.168.30.108	ICMP	74	Echo (ping) reply id=0x0001, seq=7710/771

- > Frame 1280: 42 bytes on wire (336 bits), 42 bytes captured (336 bits)
- Ethernet II, Src: Palladiu_66:90:9e (5c:c9:d3:66:90:9e), Dst: Broadcast (ff:ff:ff:ff:ff:ff)
 - > Destination: Broadcast (ff:ff:ff:ff:ff)
 - > Source: Palladiu_66:90:9e (5c:c9:d3:66:90:9e)

Type: ARP (0x0806)

Address Resolution Protocol (request)

Hardware type: Ethernet (1) Protocol type: IPv4 (0x0800)

Hardware size: 6 Protocol size: 4 Opcode: request (1)

Sender MAC address: Palladiu_66:90:9e (5c:c9:d3:66:90:9e)

Sender IP address: 192.168.30.108

Target MAC address: 00:00:00_00:00:00 (00:00:00:00:00:00)

Target IP address: 192.168.30.101

Una estación preguntando si la MAC Address de quien utiliza la 192.168.30.108

ARP Request

No.	Time	Source	Destination	Protocol	Length	Info
1280	2.410497	Palladiu_66:90:9e	Broadcast	ARP	42	Who has 192.168.30.101? Tell 192.168.30.108
1281	2.447921	Motorola_2d:26:0e	Palladiu_66:90:9e	ARP	42	192.168.30.101 is at c8:c7:50:2d:26:0e
1282	2.447959	192.168.30.108	192.168.30.101	ICMP	74	Echo (ping) request id=0x0001, seq=7710/771
1283	2.646633	Motorola_2d:26:0e	Broadcast	ARP	42	Who has 192.168.30.108? Tell 192.168.30.101
1284	2.646649	Palladiu_66:90:9e	Motorola_2d:26:0e	ARP	42	192.168.30.108 is at 5c:c9:d3:66:90:9e
1288	3.658008	192.168.30.101	192.168.30.108	ICMP	74	Echo (ping) reply id=0x0001, seq=7710/771

- > Frame 1281: 42 bytes on wire (336 bits), 42 bytes captured (336 bits)
- ▼ Ethernet II, Src: Motorola_2d:26:0e (c8:c7:50:2d:26:0e), Dst: Palladiu_66:90:9e (5c:c9:d3:66:90:9e)
 - > Destination: Palladiu_66:90:9e (5c:c9:d3:66:90:9e)
 - > Source: Motorola_2d:26:0e (c8:c7:50:2d:26:0e)

Type: ARP (0x0806)

✓ Address Resolution Protocol (reply)

Hardware type: Ethernet (1) Protocol type: IPv4 (0x0800)

Hardware size: 6 Protocol size: 4 Opcode: reply (2)

Sender MAC address: Motorola_2d:26:0e (c8:c7:50:2d:26:0e)

Sender IP address: 192.168.30.101

Target MAC address: Palladiu_66:90:9e (5c:c9:d3:66:90:9e)

Target IP address: 192.168.30.108

La estación con la 192.168.30.108 responde informando su MAC Address

ARP reply

