10.2 The labor supply of married women has been a subject of a great deal of economic research. Consider the following supply equation specification

$$HOURS = \beta_1 + \beta_2 WAGE + \beta_3 EDUC + \beta_4 AGE + \beta_5 KIDSL6 + \beta_6 NWIFEINC + e$$

where *HOURS* is the supply of labor, *WAGE* is hourly wage, *EDUC* is years of education, *KIDSL6* is the number of children in the household who are less than 6 years old, and *NWIFEINC* is household income from sources other than the wife's employment.

- a. Discuss the signs you expect for each of the coefficients.
- **b.** Explain why this supply equation cannot be consistently estimated by OLS regression.
- c. Suppose we consider the woman's labor market experience EXPER and its square, $EXPER^2$, to be instruments for WAGE. Explain how these variables satisfy the logic of instrumental variables.
- **d.** Is the supply equation identified? Explain.
- e. Describe the steps [not a computer command] you would take to obtain IV/2SLS estimates.

```
a. B1: not sure wage attracts more people to work
                                                   B3: -, when the education level more more officient, cause the need of
                                                  B4: - , As the age increase, the energy decrease, which may cause to supply of labous decrease.
                                                      Bs: -, with more children at home, them nomen may choose to look after them
  Bb: -, when women can get more from other sources, shey may choose to work less.

b. There B a feed back relationship between woge and hour, cov (wage, e) to.

It's Endogeneous.

CI Exper, Teper
                One direct effect on hour

The not correlated with the regression error

The correlated with words a higher wage

There exper tends to have a higher wage

The contains IV to deal with

The contains Base.

The contains by the deal with

The contains by the contains by the contains by the deal with

The contains by the c
```

- 10.3 In the regression model $y = \beta_1 + \beta_2 x + e$, assume x is endogenous and that z is a valid instrument. In Section 10.3.5, we saw that $\beta_2 = \text{cov}(z, y)/\text{cov}(z, x)$.
 - a. Divide the denominator of $\beta_2 = \cos(z, y)/\cos(z, x)$ by $\sin(z)$. Show that $\cos(z, x)/\sin(z)$ is the coefficient of the simple regression with dependent variable x and explanatory variable z, $x = \gamma_1 + \theta_1 z + v$. [Hint: See Section 10.2.1.] Note that this is the first-stage equation in two-stage least squares.
 - **b.** Divide the numerator of $\beta_2 = \text{cov}(z, y)/\text{cov}(z, x)$ by var(z). Show that cov(z, y)/var(z) is the coefficient of a simple regression with dependent variable y and explanatory variable z, $y = \pi_0 + \pi_1 z + u$. [Hint: See Section 10.2.1.]
 - c. In the model $y = \beta_1 + \beta_2 x + e$, substitute for x using $x = \gamma_1 + \theta_1 z + v$ and simplify to obtain $y = \pi_0 + \pi_1 z + u$. What are π_0 , π_1 , and u in terms of the regression model parameters and error and the first-stage parameters and error? The regression you have obtained is a **reduced-form** equation.
 - **d.** Show that $\beta_2 = \pi_1/\theta_1$.
 - e. If $\hat{\pi}_1$ and $\hat{\theta}_1$ are the OLS estimators of π_1 and θ_1 , show that $\hat{\beta}_2 = \hat{\pi}_1/\hat{\theta}_1$ is a consistent estimator of $\beta_2 = \pi_1/\theta_1$. The estimator $\hat{\beta}_2 = \hat{\pi}_1/\hat{\theta}_1$ is an **indirect least squares** estimator.