Solutions: Amortized Analysis

1. Consider inserting the keys 10, 22, 31, 4, 15, 28, 17, 88, 59 into a hash table of length m = 11 using open addressing with the auxiliary hash function h'(k) = k.

Illustrate the result of inserting these keys using linear probing, using quadratic probing with $c_1 = 1$ and $c_2 = 3$, and using double hashing with $h_1(k) = k$, and $h_2(k) = 1 + (k \mod(m-1))$.

Solution: We use T_i to represent each time stamp and $i \in N$ start with i = 0, and if encountering a collision, then iterate i from i = 1 until there is no collision.

For linear probing: Hash function is h(k,i) = k + i and the procedure of inserting keys to hash table can be presented with the table below. In T_8 , we got the final hash table.

h(k,i) = (k+i)	$\mod 11$	T_0	T_1	T_2	T_3	T_4	T_5	T_6	T_7	T_8
0	$\mod 11$		22	22	22	22	22	22	22	22
1	$\mod 11$								88	88
2	$\mod 11$									
3	$\mod 11$									
4	$\mod 11$				4	4	4	4	4	4
5	$\mod 11$					15	15	15	15	15
6	$\mod 11$						28	28	28	28
7	$\mod 11$							17	17	17
8	$\mod 11$									59
9	$\mod 11$			31	31	31	31	31	31	31
10	$\mod 11$	10	10	10	10	10	10	10	10	10

For quadratic probing: Hash function is $h(k,i)=(k+i+3i^2)$ and the procedure of inserting keys to hash table can be presented with the table below. In T_8 , we got the final hash table.

$h(k,i) = (k+i+3i^2)$	$\bmod \ 11$	T_0	T_1	T_2	T_3	T_4	T_5	T_6	T_7	T_8
0	mod 11		22	22	22	22	22	22	22	22
1	$\mod 11$									
2	$\mod 11$								88	88
3	$\mod 11$							17	17	17
4	$\mod 11$				4	4	4	4	4	4
5	$\mod 11$									
6	$\mod 11$						28	28	28	28
7	$\mod 11$									59
8	$\mod 11$					15	15	15	15	15
9	$\mod 11$			31	31	31	31	31	31	31
10	$\mod 11$	10	10	10	10	10	10	10	10	10

For double hashing: Hash function is $h(k,i) = (k+i(1+k \mod 10))$ and the procedure of inserting keys to hash table can be presented with the table below. In T_8 , we got the final hash table.

$h(k,i) = (k + i(1 + k \mod 10))$	$\mod 11$	T_0	T_1	T_2	T_3	T_4	T_5	T_6	T_7	T_8
0	mod 11		22	22	22	22	22	22	22	22
1	$\mod 11$									
2	$\mod 11$									59
3	$\mod 11$							17	17	17
4	$\mod 11$				4	4	4	4	4	4
5	$\mod 11$					15	15	15	15	15
6	$\mod 11$						28	28	28	28
7	$\mod 11$								88	88
8	$\mod 11$									
9	$\mod 11$			31	31	31	31	31	31	31
10	$\bmod \ 11$	10	10	10	10	10	10	10	10	10

2. Suppose we perform a sequence of n operations on a data structure in which the ith operation costs i if i is an exact power of 2, and 1 otherwise. Use aggregate analysis to determine the amortized cost per operation.

Solution:

For *n* operations, there are $\lfloor log_2 n \rfloor + 1$ exact power of 2, e.g., 1, 2, 4, ..., $2^{\lfloor log_2 n \rfloor}$. So, the total cost of these operations is a geometric sum:

$$\textstyle \sum_{i=0}^{\lfloor log_2 n \rfloor} 2^i = \ 2^{\lfloor log_2 n + 1 \rfloor} - 1 \ \leq 2^{(log_2 n) + 1} = 2n$$

The rest of the operations are cheap, each having a cost of l, and there are less than n such operations.

So, the total cost
$$T(n) \le 2n + n = 3n = O(n)$$

It means that the amortized cost per operation is $\frac{O(n)}{n} = O(1)$

3. Redo the question.2 using a potential method of analysis.

Solution:

Define
$$\Phi$$
: $\Phi(D_0) = 0$; $\Phi(D_i) = (2i - 2^{\lfloor \log_2 i \rfloor + 1}) + 1$, for $i > 0$

$$\Phi(D_i) \ge 0 = \Phi(D_0)$$

For i, which is an exact power of 2, the potential difference is:

$$\Phi(D_i) - \Phi(D_{i-1}) = (2i - 2i + 1) - (2(i-1) - i + 1) = 2 - i$$

So,
$$\widehat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) = i + 2 - i = 2$$

For i, which is not an exact power of 2: $2^{x-1} < i < 2^x, x \in N^+$

$$\Phi(D_i) - \Phi(D_{i-1}) = (2i - 2^x + 1) - (2(i-1) - 2^x + 1) = 2$$

So,
$$\widehat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) = 1 + 2 = 3$$

Which means, the amortized cost per operation is O(1)