Álgebra Clase 6

Tomás Ricardo Basile Álvarez 316617194

4 de octubre de 2020

Ejercicio 6.11

e) ¿Cuántos elementos tiene el grupo $H(\mathbb{Z}_2)$?

Es el grupo :
$$H(\mathbb{Z}_2) = \{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} | a, b, c \in \mathbb{Z}_2 \}$$

Cada entrada a, b, c tiene dos opciones de valores que puede tomar en \mathbb{Z}_2 , puede ser 0 o 1. Para crear una matriz particular del grupo, hay que escoger una de estas opciones para a, b, c. Por lo tanto, existe (2)(2)(2) = 8 opciones.

Entonces hay 8 elementos en el grupo.

f) ¿Puedes encontrar un elemento $A \in H(\mathbb{R})$ diferente de la identidad tal que exista un $k \in \mathbb{Z}/\{0\}$ que cumpla que $A^k = 1$?

No. Se probó en la tarea 1.3 que este grupo $H(\mathbb{R})$ no tiene elementos de orden finito. Si existiera una matriz $A \in H(\mathbb{R})$ con $A^k = 1$ para un $k \in \mathbb{Z} - \{0\}$, si k es positivo, se estaría probando que A tiene un orden finito. Si k es negativo, se prueba que $A^{-1} \in H(\mathbb{R})$ tiene un orden finito.

En cualquier caso, una contradicción a lo demostrado en la tarea 1.3.

g) Considera el conjunto $\mathcal{C}:=\left\{\begin{pmatrix}a&b\\-b&a\end{pmatrix}&|a,b\in\mathbb{R}\right\}$. Prueba que \mathcal{C} es un campo. A qué campo te recuerda?

Probamos primero que $(\mathcal{C} - \{0\}, \cdot)$ es un grupo abeliano.

• Cerradura: Consideramos dos matrices de \mathcal{C} que sean $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$, $\begin{pmatrix} c & d \\ -d & c \end{pmatrix}$ para $a,b,c,d \in \mathbb{R}$.

Entonces su producto es
$$\begin{pmatrix} a & b \\ -b & a \end{pmatrix} \begin{pmatrix} c & d \\ -d & c \end{pmatrix} = \begin{pmatrix} ac - bd & ad + bc \\ -bc - ad & -bd + ac \end{pmatrix} = \begin{pmatrix} ac - bd & ad + bc \\ -(ad + bc) & ac + bd \end{pmatrix}$$
 Que es una matriz de la forma requerida por \mathcal{C}

- Neutro: El neutro de $GL_2(\mathbb{R})$ es $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, que claramente pertenece al subconjunto \mathcal{C} porque tiene la forma requerida.
- Asociatividad: Como en $GL_2(\mathbb{R})$, es asociativo, entonces en particular en $\mathcal{C} \subset GL_2(\mathbb{R})$, el producto también lo es.
- Inverso: Sea $\begin{pmatrix} a & b \\ -b & a \end{pmatrix} \in \mathcal{C} \{0\}$. Como omitimos la matriz 0, a o b son distintas de 0.

Luego, la inversa de la matriz es:
$$\begin{pmatrix} \frac{a}{a^2 + b^2} & \frac{-b}{a^2 + b^2} \\ \frac{b}{a^2 + b^2} & \frac{a}{a^2 + b^2} \end{pmatrix}$$
Lo que se ve porque:
$$\begin{pmatrix} \frac{a}{a^2 + b^2} & \frac{-b}{a^2 + b^2} \\ \frac{b}{a^2 + b^2} & \frac{a}{a^2 + b^2} \end{pmatrix} \begin{pmatrix} a & b \\ -b & a \end{pmatrix} = \begin{pmatrix} \frac{a^2 + b^2}{a^2 + b^2} & \frac{ba - ab}{a^2 + b^2} \\ \frac{ab - ba}{a^2 + b^2} & \frac{b^2 + a^2}{a^2 + b^2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Además, se puede ver que la matriz inversa existe (porque como a o b es distinto de 0, entonces $a^2 + b^2 \neq 0$ y las divisiones están bien definidas) y pertenece a C porque tiene la forma adecuada para hacerlo.

• Conmutatividad Consideramos dos matrices de \mathcal{C} que sean $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$, $\begin{pmatrix} c & d \\ -d & c \end{pmatrix}$ para $a, b, c, d \in \mathbb{R}$.

para
$$a, b, c, d \in \mathbb{R}$$
.

Entonces su producto es $\begin{pmatrix} a & b \\ -b & a \end{pmatrix} \begin{pmatrix} c & d \\ -d & c \end{pmatrix} = \begin{pmatrix} ac - bd & ad + bc \\ -bc - ad & -bd + ac \end{pmatrix} = \begin{pmatrix} ac - bd & ad + bc \\ -(ad + bc) & ac + bd \end{pmatrix}$

Por otro lado, el producto al conmutar es: $\begin{pmatrix} c & d \\ -d & c \end{pmatrix} \begin{pmatrix} a & b \\ -b & a \end{pmatrix} = \begin{pmatrix} ac - bd & bc + ad \\ -ad - bc & -bd + ac \end{pmatrix} = \begin{pmatrix} ac - bd & ad + bc \\ -(ad + bc) & ac + bd \end{pmatrix}$

Por lo que ambos resultados son iguales.

Ahora probamos que (C, +) es un grupo abeliano:

• Cerradurda: Sea $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$, $\begin{pmatrix} c & d \\ -d & c \end{pmatrix}$ matrices de C.

Entonces, su suma es: $\begin{pmatrix} a & b \\ -b & a \end{pmatrix} + \begin{pmatrix} c & d \\ -d & c \end{pmatrix} = \begin{pmatrix} a+c & b+d \\ -b-d & a+c \end{pmatrix} = \begin{pmatrix} a+c & b+d \\ -(b+d) & a+c \end{pmatrix}$ Que tiene la forma requerida para pertenecer a $\mathcal C$ y queda probada la cerradura

- Neutro: El neutro aditivo es $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ que claramente tiene la forma que pide $\mathcal C$
- Asociatividad: Como el conjunto GL_2 tiene suma asociativa y $\mathcal{C} \subset GL_2$, entonces la suma es asociativa en \mathcal{C}
- Inverso: Sea $\begin{pmatrix} a & b \\ -b & a \end{pmatrix} \in \mathcal{C}$. Entonces, su inverso aditivo es: $\begin{pmatrix} -a & -b \\ b & -a \end{pmatrix}$ Pues se cumple que $\begin{pmatrix} a & b \\ -b & a \end{pmatrix} + \begin{pmatrix} -a & -b \\ b & -a \end{pmatrix} = \begin{pmatrix} a-a & b-b \\ -b+b & a-a \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ Y este inverso $\begin{pmatrix} -a & -b \\ b & -a \end{pmatrix}$ pertenece a \mathcal{C} , pues tiene la forma requerida.

Ya solamente falta probar la distributividad del producto sobre la suma. Pero esta propiedad se cumple en en anillo GL_2 , por lo que en particular se cumplen en $\mathcal{C} \subset GL_2$.

Este grupo es similar al grupo de los números complejos.

Ya que cualquier matriz del grupo $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ se puede escribir como $a \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ Similar a como cualquier complejo se puede escribir como una parte real y una imaginaria. En este caso, la unidad 'real' es $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ y la unidad imaginaria es $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

Sin embargo, los complejos además de poder escribirse así, cumplen la propiedad que define a la unidad imaginaria i, que $i^2 = -1$.

En este caso, nuestro conjunto de matrices también lo cumple pues la unidad 'imaginaria' al cuadrado es:

 $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}^2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} = -\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Este resultado es el inverso aditivo de la matriz unidad 'real'. Por tanto, se cumple el equivalente a $i^2 = -1$.

Entonces, el grupo \mathcal{C} se define similarmente a los complejos como todas las combinaciones lineales con escalares en \mathbb{R} de una unidad real y una unidad imaginaria, con la condición de que la unidad imaginaria al cuadrado es el inverso aditivo de la unidad real.