Contents

1	Introduzione				2
	1.1	Intro			2
2	Introduction				3
	2.1	Formu	ule Valide in ogni frame		3
	2.2	Formu	ule di Logica modale e significato		4
		2.2.1	Relazione seriale		
		2.2.2	Relazione simmetrica		4
		2.2.3	Funzione parziale		5
		2.2.4	Funzione totale		6
		2.2.5	Relazione euclidea		6
3	Semantica				8
	3.1	Simbo	oli secessari		8
	3.2		he		
4	Verso la decidibilità - Logica determinata				10
	4.1	Insiem	ne Λ consistente e sue proprietà		10
	4.2		ne Λ consistente massimale		
		421	Teorema		12

Introduzione

1.1 Intro

Se voi signorine finirete questo corso, e se sopravviverete sarete dispensatori di fbf e pregherete per modellizzare sistemi assurdi in modo ancora più assurdo, ma fino a quel giorno non siete altro che buoni annulla convinti che tutti i cretesi sono stupidi e forse mentono.

Lasciate il formaggio fuori dall'aula.

Introduction

aè vera nel mondo $\alpha,$ e scriviamo $\mu \models_{\alpha} a$ se

- a è una lettera enunciativa allora deve valere $a \in V(\alpha)$
- a è del tipo: $a \lor b$ allora.... $\mu \models_{\alpha} a$ oppure $\mu \models_{\alpha} b$

2.1 Formule di Logica modale e significato

2.1.1 Relazione seriale

Ip) Frame F con relazione R seriale

Ts)
$$\Box a \implies \diamond a$$

Dimostrazione:

Se non vale: $\mu \models_{\alpha} \Box a$ allora immediatemente si ha la tesi in quanto l'antecedente è falso.

Se invoce: $\mu \models_{\alpha} \Box a$ allora

 $\forall \beta : \alpha R \beta \Rightarrow \mu \models_{\beta} a \text{ per definizione di box,}$

inoltre dato che R seriale per Ip si ha anche che $\exists \beta : (\alpha, \beta) \in R$

da cui: $\mu \models_{\alpha} \diamond a$ per definizione di diamond (esiste β in relazione con α per la serialità e in α vale a dato che $\mu \models_{\alpha} \Box a$)

- Ip) $\Box a \implies \diamond a$
- Ts) Frame F con relazione R seriale

Per assurdo:

Suppongo di trovarmi in un mondo come quello in figura (wow) in cui $\mu \models_{\alpha} \Box a$, e suppongo che la relazione R del frame NON sia seriale cioè $\sim \exists \beta : (\alpha R \beta)$, se è così vale sicuramente $\mu \models_a \Box a$ (dato che α non ha successori), d'altra parte per come è il mondo considerato, cioè si nega la tesi, assurdo-

2.1.2 Relazione simmetrica

Ip) R simmetrica

Ts) $a \implies \Box \diamond a$

Suppongo che $\mu \models_{\alpha} a$ (se no avrei già la tesi), due casi:

Caso 1: Da α non parte nessun arco, allora sicuramente $\mu \models_{\alpha} \Box x$ con x qualsiasi e in particolare $\mu \models_{\alpha} \Box \diamond a$

Caso 2: Esiste almeno un β tale che $\alpha R\beta$.

Dato che la relazione è simmetrica se $\alpha R\beta$ allora $\beta R\alpha$. Dato che $\mu \models_{\alpha} a$, in ognuno di questi β , β' , β'' ecc. vale $\diamond a$ perché ognuno di loro è in relazione con α .

Allora per ognuno di questi β si ha $\mu \models_{\beta} \diamond a$, (esiste infatti un mondo, α , in cui vale a) da cui: $\mu \models_{\alpha} \Box \diamond a$

- $Ip) \ a \implies \Box \diamond a$
- Ts) R simmetrica

Per assurdo:

suppongo R non sia simmetrica e considero un frame con soli α e β e in cui $R = \{(\alpha, \beta)\}$. In questo frame considero un modello con funzione di verità tale che: $V(A) = \{\alpha\}$.

In β non vale $\diamond a$ perché β non è in relazione con nessun mondo, per questo: $\mu \nvDash_{\alpha} \Box \diamond a$

2.1.3 Funzione parziale

 $\diamond a \Rightarrow \Box a$ funzione parziale $\forall \alpha : \alpha R \beta, \beta R \gamma \Rightarrow \beta = \gamma$

Funzione parziale, dimostrazione

Ip) funzione parziale

Ts) $\diamond a \Rightarrow \Box a$

.

 $\diamond a$ falsa allora dato che l'antecedente è falso di ha $\diamond a \Rightarrow \Box a$ $\diamond a$ vera allora $\exists \beta : \alpha R \beta \in V(\beta)$, ma dato che la funzione è parziale questo β è unico ! da cui $\mu \models \diamond a \Rightarrow \Box a$

.

- $Ip) \diamond a \Rightarrow \Box a$
- Ts) funzione parziale

•

Per assurdo: suppongo non che la funzione non sia parziale. Se è così $\exists \alpha: \alpha R\beta$, $\alpha R\gamma$, considero un modello in cui V(A) = $\{\beta\}$, $\Box A$ non vale in α dato che A è falsa in γ , il che contraddice l'ipotesi (BAM!)

2.1.4 Funzione totale

 $\diamond a \iff \Box a \mid \text{funzione totale} \mid \forall \alpha \exists ! \beta : \alpha R \beta$

non ci sono "conti" da fare, R è seriale sse R è seriale $\Box a \implies \diamond a$, e se R è una funzione parziale $\diamond a \Rightarrow \Box a$

quindi dato che l'implica prevede un and di implica da una parte e dall'altra per definizione abbiamo la tesi

.

2.1.5 Relazione euclidea

 $\diamond a \Rightarrow \Box \diamond a$ relazione euclidea $\forall \alpha, \beta, \gamma : (\alpha R \beta, \alpha R \gamma) \Rightarrow \beta R \gamma$ da cui anche: $\beta R \beta, \gamma R \gamma, \gamma R \beta$

Ip) relazione euclidea

Ts) $\diamond a \Rightarrow \Box \diamond a$

Suppongo sia vero l'antecedente (se falso ho finito), quindi vale: $\diamond a$ da cui: $\mu \models \diamond a$ dato che $\diamond a$ si ha che esiste almeno un β tale che in beta vale a solo un beta: autoanello perché euclidea e quindi $\square \diamond a$

diversi beta: ognuno dei vari β' , β'' , ecc. sono in relazione con β , dato che la relazione è euclidea, pertanto dato che in β vale a, in ognuno di loro vale $\diamond a$

 $Ip) \diamond a \Rightarrow \Box \diamond a$

Ts) relazione euclidea

Per assurdo, suppondo valga ip) ma non la tesi

Considero un Frame in cui: $\alpha R\beta$, $\alpha R\gamma$, $\beta R\gamma$ ma NON $\beta R\gamma$ cioè si ha un frammento in cui non vale l'euclidea. Poniamo che il modello sia tale che $V(A) = \{\gamma\}$

In queste ipotesi vale $\diamond a$ dato che in γ vale a. In β non vale a e neppure $\diamond a$ perché non ha "uscite", da cui in a non vale $\square \diamond a$ contraddicendo così l'ipotesi (BAM!)

Semantica

3.1 Simboli secessari

 $a \vdash b$ cioè a è conseguenza semantica di b
, se in ogni Frame, Modello e Mondo in cui $\mu \models b$ si ha anche
 $\mu \models a$

```
\begin{array}{l} \diamond a \equiv \neg \Box \neg a \\ \text{Vale da sinistra a destra,} \\ \text{Infatti:} \\ \text{se } \mu \models_{\alpha} \diamond a \text{ allora} \\ \exists \beta : \alpha R \beta \text{ e } \mu \models_{\beta} a \text{ da cui:} \\ \mu \nvDash_{\beta} \neg a \\ \text{per questo in } \alpha \text{ non vale } \Box \neg a \text{ (perché non vale } \neg a \text{ in } \beta) \\ \text{allora in } \alpha \text{ vale } \neg \Box \neg a \text{ cioè } \mu \models_{\alpha} \neg \Box \neg a \text{ cioè la tesi.} \end{array}
```

Vale anche da destra a sinistra, dimostrazione simile.

3.2 Logiche

Una logica Λ su L è un insieme di fbf su L che:

- contiene tutte le tautologie
- è chiusa rispetto al Modus Ponens

Ad esempio; $PL(\phi)$ cioè i teoremi della logica proposizionale Altro esempio $\Lambda_C = \{a \mid F \models a \ per \ ogni \ F \in C\}$ infatti:

• contiene tutte le tautologie perché sono vere mondo per mondo dappertutto

• MP : suppongo che in un mondo α accada che: $\mu \nvDash_{\alpha} b$, $\mu \models_{\alpha} a$. Se vale anche $\mu \models_{\alpha} a \Rightarrow b$... l'antecedente è vero, quindi dato che l'implicazione è vera, deve essere vero anche il conseguente da cui non può che essere $\mu \models_{\alpha} b$

Una logica si dice **uniforme** se è chiusa rispetto a sostituzioni uniformi cioè se sostituendo a una lettere uguali formule uguali in una tautologia, ottengo una tautologia.

Es. $\Lambda_C = \{a \mid F \models aper \ ogni \ F \in C\}$ NON è uniforme infatti se considero V(A) = S, dove S sono tutti gli stati possibili (mondi), vale anche $\mu \models_{\alpha} A$, e cioè A è una tautologia, se al posto di A sostituisco $B \wedge \neg B$ (falsa in ogni modello e mondo) non ottengo una tautologia.

Teorema

Sono equivalenti:

- 1. Λ è normale
- 2. per ogni intero $n \ge 0$,

$$\vdash_{\Lambda} a1 \land a2 \land ... \land an \implies a \text{ implica} \vdash_{\Lambda} \Box a1 \land \Box a2 \land ... \land \Box an \implies \Box a$$

- 3. valgono:
 - (a) $\vdash_{\Lambda} \Box T$
 - (b) $\vdash_{\Lambda} \Box a \land \Box b \implies \Box (a \land b)$
 - (c) $\vdash_{\Lambda} a \Rightarrow b \text{ implica} \vdash_{\Lambda} \Box a \implies \Box b$

Dimostrazione

$$1 \Longrightarrow 2$$

per induzione.

se n = 0 allora $\vdash_{\Lambda} a$ allora $\vdash_{\Lambda} \Box a$ per la regola RN che vale in Λ per ipotesi se n > 0 (passo induttivo) suppongo valga l'antecedente, altrimenti 2 vale senz'altro; Ricordiamo che $a1 \land a2 \land ... \land an \implies a \equiv a1 \land a2 \land ... a_{n-1} \implies (an \implies a)$

Verso la decidibilità - Logica determinata

4.1 Insieme Λ consistente e sue proprietà

Sia Λ una logica (cioè ha tutte le tautologie ed è chiusa rispetto al Modus Ponens) Γ si dice Λ -consistente se: $\Gamma \nvdash_{\Lambda} \bot$, dove $\bot = A \land \neg A$ Δ si dice Λ -consistente massimale se per ogni fbf a $a \in \Delta$ oppure $\neg a \in \Delta$

Proprietà:

- 1. Se $\Gamma \vdash_{\Lambda} a$ e $\Gamma \subseteq \Delta$ allora $\Delta \vdash_{\Lambda} a$. Ovvero se alcune premesse non mi servono posso comunque metterle per dedurre una formula
- 2. Se $\Gamma \vdash_{\Lambda} a$ e $\Lambda \subseteq \Lambda'$ allora $\Gamma \vdash_{\Lambda'} a$. Ovvero quello che posso dedurre in una logica più scarna (es. PL) lo posso dedurre anche in una più ricca che la contien (es. Modale)
- 3. se $a\in\Gamma$ allora $\Gamma\vdash_{\Lambda}a$. Infatti $\vdash_{\Lambda}a\implies a$ è un teorema dato che $a\implies a$ è una tautologia
- 4. $\{a|\Gamma \vdash_{\Lambda} a\}$ è la minima logica che contiene $\Gamma \cup \Lambda$. Infatti posso dedurre tutte le tautologie da Γ , anche se non userò nessuna formula di Γ ma solo quelle che già sono nella logica Λ
- 5. Se $\Gamma \vdash_{\Lambda} a$ e $\{a\} \vdash_{\Lambda} b$ allora $\Gamma \vdash_{\Lambda} b$ Infatti: per dedurre a uso regole di inferenza, formule di Γ , assiomi di Λ . Per arrivare in b uso assiomi di Λ e regole di inferenza, quindi posso arrivare da Γ direttamente in b usando formule di Γ , regole di inf. e assiomi di Λ
- 6. Se $\Gamma \vdash_{\Lambda} a \in \Gamma \vdash_{\Lambda} a \Rightarrow b$ allora $\Gamma \vdash_{\Lambda} b$, dato che Λ è chiusa rispetto al MP
- 7. $\Gamma \cup \{a\} \vdash_{\Lambda} b$ se e solo se $\Gamma \vdash_{\Lambda} a \Rightarrow b$ **Andata**: $\vdash_{\Lambda} a_1 \land ... \land a \land ... \land a_n \implies b$ (per definizione di teorema), si può portare

a alla destra dell'implicazione $\vdash_{\Lambda} a_1 \land ... \land a_n \implies (a \implies b)$ **Ritorno**: $\vdash_{\Lambda} a_1 \land ... \land a_n \implies (a \implies b)$, basta portare a tra le and.

8. $\Gamma \vdash_{\Lambda} a$ se e solo se $\Gamma \cup \{\neg a\}$ non è Λ -consistente

Andata: $\Gamma \vdash_{\Lambda} a$, $\Gamma \vdash_{\Lambda} \neg a$, posso dedure \bot che è contro la definizione di Λ -consistenza

Ritorno: Se $\Gamma \cup \{\neg a\}$ non è Λ -consistente, allora $\Gamma \cup \{\neg a\} \vdash_{\Lambda} \bot$ da cui per 7. $\Gamma \vdash_{\Lambda} \neg a \implies \bot$ (sposto $\neg a$ a destra e metto l'implica), Dato che $(\neg a \implies \bot) \implies a$ è una tatutologica, per MP ottengo

9. $\Gamma \stackrel{.}{e} \Lambda - consistente$ se e solo se $\exists \beta : \Gamma \nvdash_{\Lambda} \beta$

Andata: Basta prendere $\neg a \land a$

Ritorno: Se deducessi tutte le formule $(\neg \exists \beta : \Gamma \nvdash_{\Lambda} \beta \text{ significa } \forall \beta : \Gamma \vdash_{\Lambda} \beta)$, potrei dedurre anche \bot , da cui la non consistenza

- 10. Γ è Λ consistente se per ogni a
 - $\Gamma \cup \{a\} \circ \Gamma \cup \{\neg a\} \grave{e} \Lambda consistente$

se $\Gamma \vdash_{\Lambda} a$ allora $\Gamma \cup \{\neg a\}$ non è consistente perché con a e $\neg a$ posso dedurre \bot , ma $\Gamma \cup \{a\}$ lo è

se $\Gamma \vdash_{\Lambda} \neg a$ allora $\Gamma \cup \{\neg a\}$ è consistente ma non $\Gamma \cup \{a\}$

- 11. $\perp \notin \Gamma$ se Γ è Λ consistente (altrimenti potrei dedurlo per il 3.)
- 12. Se Δ è Λ consistente massimale e $\Delta \vdash_{\Lambda} a$ allora $a \in \Delta$ se $a \notin \Delta$ allora $\neg a \in \Delta$ (dato che Δ è massimale) ma se Δ contiene $\neg a$ allora per il 2.) $\Delta \vdash_{\Lambda} \neg a$, che insieme a $\Delta \vdash_{\Lambda} a$ mi da $\Delta \vdash_{\Lambda} \bot$
- 13. Se Δ è Λ consistente massimale e $a \in \Delta$. $a \Rightarrow b \in \Delta$ allora $b \in \Delta$. Lo si vede subito usando 2.) se tutti e tre, e poi 6.) (deduco $a, a \Rightarrow b$, allora deduco anche b)

4.2 Insieme Λ consistente massimale

Lemma di Lindelman - Esistenza dell'insieme Λ - consistente massimale in una logica Λ consistente

Considero tutte le formule $b1, b2, b3, \ldots$ della logica Λ (posso farlo perché sono un'infinità numerabile)

Chiamo Γ_0 un insieme che contiene una sola formula (ad esempio una tautologia) Dopodichè iterativamente, per ogni formula mi chiedo

$$\Gamma_0 \vdash_{\Lambda} b1 ? \begin{cases} si: & \Gamma_1 = \Gamma_0 \cup b1 \\ no: & \Gamma_1 = \Gamma_0 \cup \neg b1 \end{cases}$$
$$\Gamma_1 \vdash_{\Lambda} b2 ? \begin{cases} si: & \Gamma_2 = \Gamma_1 \cup b2 \\ no: & \Gamma_2 = \Gamma_1 \cup \neg b2 \end{cases}$$

 $\Delta = \bigcup_{n \geq 0} \Gamma_i \ \ (\text{nota, questa unione è infinita})$

 Δ è consistente massimale infatti:

- 1. Massimale in quanto contiene a oppure $\neg a$ per costruzione
- 2. Consistente. Per assurdo se non lo fosse avrei: $\Delta \vdash_{\Lambda} \bot$ cioè esiste un numero finito di formule di Δ da cui deduco il falso, dato che è un numero finito di formule, sta in Γ_i , cioè esiste un Γ_i non consistente, assurdo perché lo sono tutti per costruzione 4

Nota:

- ullet Non sappiamo costruire Δ perché nasce da unione infinita
- Non è unico, infatti se considero formule in ordine diverse potrei "dire" si o no in modo diverso

es. $a, a \Rightarrow b, b$ (allora Δ contiene b) es. b, c (allora Δ contiene $\neg b$)

4.2.1 Teorema

 $\Gamma \vdash_{\Lambda} a$ se e solo se $a \in a$ tutti i quei $\Delta \Lambda - consistenti massimali tali che: <math>\Gamma \subseteq \Delta$

Andata:

 $\Gamma \vdash_{\Lambda} a$, anche $\Delta \vdash_{\Lambda} a$ per la 1.)

Ritorno

Per assurdo, se $\Gamma \nvdash_{\Lambda} a$ allora $\Gamma \cup \{\neg a\}$ è $\Lambda - consistente$ (per la 8.) da cui per Lindellman esiste Δ' che contiene $\Gamma \cup \{\neg a\}$ consistente massimale data la consistenza Δ' non contiene a, il che è contro l'ipotesi \not