Алгоритмы и модели вычислений.

Задание 5: сложность вычислений: классы P, NP, co-NP II

Сергей Володин, 272 гр.

задано 2014.03.13

Задача 1

- 1. Докажем, что НАМРАТН \leqslant_m^p UHAMPATH.
 - $HAMPATH = \{(G, s, t) | G$ ориентированный граф, в G существует гамильтонов путь из s в $t\}$,

UHAMPATH = $\{(G, s, t)|G$ — неориентированный граф, в G существует гамильтонов путь из s в t $\}$.

Пусть G — ориентированный граф, s и t — его вершины. x=(G,s,t). Определим f(x)=(G',s',t'). Для каждой вершины $v\in V(G)$, кроме s и t, добавим в V(G') три вершины v_i,v_m,v_o . Для s и t добавим s_o и t_i . Соединим $v_i\leftrightarrow v_m$ и $v_m\leftrightarrow v_o$ (стрелкой \leftrightarrow обозначено неориентированное ребро). Для каждого $(u,v)\in E(G)$ добавим $(u_o,v_i)\in E(G')$. G' — получившийся граф, $s'=s_o, t'=t_i$.

- (а) Пусть $x = (G, s, t) \in$ НАМРАТН. Тогда существует путь $s \to v_1 \to v_2 \to ... \to v_n \to t$. По построению, тогда существует путь $s_o \leftrightarrow v_{1i} \leftrightarrow v_{1m} \leftrightarrow v_{1o} \leftrightarrow ... \leftrightarrow v_{ni} \leftrightarrow v_{nm} \leftrightarrow v_{no} \leftrightarrow t_i$, который является гамильтоновым путем в G' (все вершины по построению: для каждой вершины исходного графа, кроме s и t добавляются s в образе, все они посещены. s_o и s также посещены. Если есть повтор s поэтому s то (структура пути в образе) есть повтор s s то s то
- (b) Пусть $f(x) = (G', s_o, t_i) \in \text{UHAMPATH}$. Из вершины с индексом \cdot_o по построению есть ребра только в вершины с индексом \cdot_i . Из вершины v_i есть ребро только в v_m , из вершины v_m только в v_o . Поэтому гамильтонов путь имеет вид $s_o \leftrightarrow v_{1i} \leftrightarrow v_{1m} \leftrightarrow v_{1o} \leftrightarrow ... \leftrightarrow v_{ni} \leftrightarrow v_{nm} \leftrightarrow v_{no} \leftrightarrow t_i$, значит, в исходном графе G есть путь $s \to v_1 \to v_2 \to ... \to v_n \to t$, и он гамильтонов (аналогично: все вершины по построению, повтор означает повтор в другом пути противоречие), поэтому $x \in \text{HAMPATH}$
- (c) f вычислима за полиномиальное время (линейное по количеству ребер и вершин время)
- 2. Поскольку НАМРАТН ∈ NP-с, НАМРАТН ≤ UHAMPATH, UHAMPATH ∈ NP, то (см. решение 4-го задания, вспомогательные утверждения, 2) UHAMPATH ∈ NP-с ■

Задача 2

См. (каноническое) 21

Получилось доказать не совсем то, что нужно

- 1. $\mathcal{C} \supset \mathsf{NP} \cup \mathsf{co}\text{-}\mathsf{NP}$.
 - (a) Пусть $L \in \mathsf{NP}$. Тогда (семинар) $L \leqslant_m^p \mathsf{SAT} \Leftrightarrow \exists f \colon \Sigma^* \to \Sigma^* \colon \forall x (x \in L \Leftrightarrow f(x) \in \mathsf{SAT}), \ f$ вычислима за полиномиальное время. Определим M_{SAT} : вычисляем за полиномиальное время (определение сводимости) f(x) (xвход), спрашиваем оракула $f(x) \in SAT$ за O(1). Ответ — ответ оракула (корректно из определения сводимости). Время работы полиномиально: T(|x|) = poly(|x|) + O(1) = poly(|x|).
 - (b) Пусть $L \in \text{co-NP}$. Тогда $\overline{L} \leqslant_m^p \text{SAT} \Leftrightarrow \exists f \colon \Sigma^* \to \Sigma^* \colon \forall x (x \in \overline{L} \Leftrightarrow f(x) \in \text{SAT}) \Leftrightarrow \forall x (x \in L \Leftrightarrow f(x) \notin \text{SAT}),$ f — вычислима за полиномиальное время. Определим M_{SAT} : вычисляем за полиномиальное время (определение сводимости) f(x) (x — вход), спрашиваем оракула $f(x) \in SAT$ за O(1). Ответ — противоположный ответу оракула (корректно из определения сводимости). Время работы полиномиально: $T(|x|) = \overline{\operatorname{poly}(|x|) + O(1)} = \operatorname{poly}(|x|)$.
- 2. (Идея обсуждалась с Дарьей Решетовой). Пусть $L \in \mathcal{C}$. Тогда существует МТ M_{SAT} , вычисляющая $x \overset{\scriptscriptstyle{i}}{\in} L$ за полиномиальное время, и делающая не более одного обращения к оракулу $t \in SAT$. Рассмотрим машину M_{SAT} . Она может обращаться к оракулу, либо не обращаться. Если она обращается к оракулу на входе x, обозначим n(x) = 1, иначе n(x) = 0. В первом случае до обращения к оракулу Or(x) она вычисляет вход f(x) для него. После обращения (получения $f(x) \stackrel{.}{\in} L$, 0 либо 1), машина выдает ответ (0 либо 1). Если ответ тот же, что и ответ оракула, обозначим s(x) = 0, иначе s(x) = 1. В случае, если $M_{\rm SAT}$ не обращается к оракулу, она выдает ответ, вычисляя $a(x) \in \{0,1\}$. Поэтому $M_{\rm SAT}$ можно представить следующим псевдокодом:

```
M(x)
1
2
  {
     if(n(x)) return(Or(f(x)) ^ s(x));
4
     else return(a(x));
5
  }
```

Поскольку M_{SAT} полиномиальна, $n(\cdot)$, $s(\cdot)$, $a(\cdot)$ вычислимы за полиномиальное время (в случаях, где они не используются, можно считать их значения, скажем, = 0).

Обозначим

- (a) $L_a = \{x | n(x) = 0 \land a(x) = 1\},\$
- (b) $L_0 = \{x | n(x) = 1 \land s(x) = 0 \land Or(f(x)) = 1\},\$
- (c) $L_1 = \{x | n(x) = 1 \land s(x) = 1 \land Or(f(x)) = 0\}.$

Тогда $L = L_a \cup L_0 \cup L_1$ (все случаи в псевдокоде выше).

- (a) Получаем, что $L_a \in P$ (так как $a(\cdot)$ и $n(\cdot)$ вычислимы за полиномиальное время).
- (b) Докажем, что $L_0 \in \mathsf{NP}$. $Or(f(x)) = 1 \Leftrightarrow f(x) \in \mathsf{SAT}$. Поскольку $\mathsf{SAT} \in \mathsf{NP}$, то $\forall t (t \in \mathsf{SAT} \Leftrightarrow \exists y \colon R_{\mathsf{SAT}}(t,y) = 1)$, R_{SAT} — вычислима за полиномиальное время, $|y| = \mathrm{poly}(|x|)$. Определим $R(x,y) = n(x) \wedge \neg s(x) \wedge R_{\mathrm{SAT}}(f(x),y)$ вычислима за полиномиальное время.
 - і. Пусть $x \in L_0$. Тогда n(x) = 1, s(x) = 0, и $f(x) \in SAT \Rightarrow \exists y \colon R_{SAT}(f(x), y) = 1$. Получаем $x \in L_0 \Rightarrow$
 - ії. Пусть $x \notin L_0$. Тогда, либо n(x) = 0, и тогда для всех $y \hookrightarrow R(x,y) = 0$, аналогично в случае s(x) = 1: $\forall y \hookrightarrow R(x,y) = 0$. Если n(x) = 1 и s(x) = 0, то $f(x) \notin \mathrm{SAT}$, и для всех $y \hookrightarrow R_{\mathrm{SAT}}(x,y) = 0$, откуда $\forall y \hookrightarrow R(x,y) = 0.$

Итак, $\forall x (x \in L_0 \Leftrightarrow \exists y \colon R(x,y) = 1) \blacksquare$

- (c) Докажем, что $L_1 \in \text{co-NP}$. Определим $R(x,y) = \neg n(x) \lor \neg s(x) \lor R_{\text{SAT}}(f(x),y)$ вычислима за полиномиальное
 - і. Пусть $x \in L_1 \Leftrightarrow x \notin \overline{L_1}$. Тогда $n(x) = 1 \Rightarrow \neg n(x) = 0$, $s(x) = 1 \Rightarrow \neg s(x) = 0$, и $f(x) \notin SAT$, откуда $\forall y \hookrightarrow T$ $R_{\text{SAT}}(f(x),y)=0$. Получаем $x\notin \overline{L_1} \Rightarrow \forall y\hookrightarrow R(x,y)=0\ \lor\ 0\ \lor\ 0=0$.
 - ії. Пусть $x \notin L_1 \Leftrightarrow x \in \overline{L_1}$. Тогда, либо n(x) = 0, и тогда для всех $y \hookrightarrow R(x,y) = 1$, аналогично в случае s(x) = 0: $\forall y \hookrightarrow R(x,y) = 1$. Если n(x) = 1 и s(x) = 1, то $f(x) \in \mathrm{SAT}$, и $\exists y \colon R_{\mathrm{SAT}}(x,y) = 1$, откуда $\exists y \colon R(x,y) = 1$

Итак, $\forall x (x \in \overline{L_1} \Leftrightarrow \exists y : R(x,y) = 1)$

Получаем, что $L=\underbrace{L_a}_{\in\mathsf{P}}\cup\underbrace{L_0}_{\in\mathsf{NP}}\cup\underbrace{L_1}_{\in\mathsf{co}\text{-NP}}$. Поскольку $L_a\cup L_0\in\mathsf{NP}$ (сертификат для слов из L_0 тот же, в предикат добавляется «или $(y=\varepsilon$ и $x\in L_a)$ » вычислимо за полиномиальное время), для краткости запишем $L=L_0\cup L_1$, где $L_0\in \mathsf{NP},\, L_1\in \mathsf{co}\text{-}\mathsf{NP}.$

Итак, NP \cup co-NP $\subset \mathcal{C} \subset \{L | L = L_0 \cup L_1 : L_0 \in \mathsf{NP}, L_1 \in \mathsf{co-NP}\}$

(каноническое) Задача 21

 $\Gamma \coprod = \{G - \text{ ориентированный граф} | \text{в } G \text{ существует гамильтонов цикл} \}.$

 $\Gamma\Pi = \{(G, s, t) - \text{ ориентированный граф, две его вершины } | \text{в } G \text{ существует гамильтонов путь из } s \text{ в } t\}.$

- 1. Докажем, что $\Gamma\Pi \leqslant_m^p \Gamma \coprod$. Пусть x = (G, s, t) граф и две его вершины. Определим граф f(x): возьмем G, удалим все ребра между s и t, все ребра в s, все ребра из t. Добавим одно $t \to s$.
 - (а) Пусть $x \in \Gamma\Pi$, то есть, в G есть гамильтонов путь из s в t. Тогда в этом пути нет ребер из t в s (иначе через t или s путь пройдет дважды). Значит, путь будет гамильтоновым и в f(x). Но в f(x) есть ребро $t \to s$, получаем гамильтонов цикл, составленный из пути и одного ребра. Значит, $f(x) \in \Gamma \coprod$
 - (b) Пусть $f(x) \in \Gamma$ Ц, то есть, в f(x) есть гамильтонов цикл. В этот цикл входят вершины s и t, так как в него входят все вершины графа. Но из t нет других ребер, кроме как в s (по построению), значит, в цикл входит ребро $t \to s$. Рассмотрим весь путь без этого ребра. Он гамильтонов, так как является гамильтоновым циклом без одного ребра. Этот путь будет также путем в G, так как не содержит ребра $t \to s$, а в G ребер больше (кроме $t \to s$). Также этот путь будет гамильтоновым, так как множества вершин G и f(x) совпадают. Значит, $x \in \Gamma\Pi$
 - (c) Сводимость f в явном виде. A[i][j] матрица графа G, B[i][j] матрица графа f(x). $A[i][j] = 1 \Leftrightarrow$ есть ребро из i-й вершины в j-ю. |V(G)| = n. Считаем, что s и t индексы вершин s и t. Алгоритм:

```
for(i = 0; i < n; i++)
1
2
      for(j = 0; j < n; j++)
3
        B[i][j] = A[i][j]; // copying graph <math>f(x) := G
4
5
   for(i = 0; i < n; i++)</pre>
6
7
     B[i][s] = 0; // removing edges to s
8
     B[t][i] = 0; // removing edges from t
9
10
   B[t][s] = 1; // adding edge from t to s
```

Получаем, что f — вычислима за полиномиальное время: $T(G) = O(n^2) + O(n) + O(1) = O(n^2)$. Длина записи графа $l(G) = \Omega(n^2)$ (элементы матрицы $n \times n$), поэтому T(G) = O(l(G)), т.е. время вычисления f линейно по длине входа.

- 2. (Идея обсужалась с Игорем Силиным). Докажем, что $\Gamma \coprod \leqslant_m^p \Gamma \Pi$. Пусть x = G граф. Фиксируем некоторую его вершину v. «Разделим» ее на две вершины s и t, из s добавим все ребра из v, в t направим все ребра в v. Удалим ребра между s и t. Получим граф G'. Определим f(x) = (G', s, t).
 - (a) Пусть $x \in \Gamma$ Ц. Тогда в x = G существует гамильтонов цикл. Он содержит все вершины, в том числе и вершину $v: v \to v_1 \to \dots \to v_n \to v$. Тогда в графе G' образа f(x) будет путь $s \to v_1 \to \dots \to v_n \to t$, и он будет гамильтоновым (все вершины по построению, вершины v_i не повторяются, т.к. исходный цикл гамильтонов, если t или s повторяется, то v встречается более 2-х раз в цикле противоречие), т.е. $f(x) \in \Gamma \Pi$
 - (b) Пусть $f(x) \in \Gamma \Pi$. Тогда существует гамильтонов путь $s \to ... \to t$. Значит, в G есть цикл $v \to ... \to v$, и он гамильтонов (в ... все вершины, кроме s и t для образа, значит, там все вершины, кроме v для исходного графа). Получаем $x \in \Gamma \Pi$.
 - (c) Сводимость f в явном виде. A[i][j] матрица графа x = G, B[i][j] матрица графа из f(x). |V(G)| = n. Алгоритм:

```
v = n - 1; // any vertex of G
2
3
   t = v + 1; // new vertex
4
5
   for(i = 0; i < n + 1; i++)
6
     for(j = 0; j < n + 1; j++)
7
       B[i][j] = 0;
8
9
   for(i = 0; i < n; i++)</pre>
10
   {
      if(A[v][i] == 1)
11
12
       B[s][i] = 1; // (v, i) in E \iff (s, i) in E'
13
      if(A[i][v] == 1)
        B[i][t] = 1; // (i, v) in E \iff (i, t) in E
14
   }
15
16
17
   for(i = 0; i < n - 1; i++)
18
     for(j = 0; j < n - 1; j++)
19
          B[i][j] = A[i][j]; // copying rest of the graph
20
   B[t][s] = 0; // (t, s) not in E'
21
   B[s][t] = 0; // (s, t) not in E'
```

Получаем, что f — вычислима за полиномиальное время: $T(G) = O(n^2) + O(n) + O(1) = O(n^2)$, аналогично T(G) = O(l(G)).

(каноническое) Задача 23

- 2. $\chi(x_1, x_2, x_3) \stackrel{\text{def}}{=} (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_2 \lor x_3) \land \neg x_3$. Семейство подмножеств (n = 3) $A_{\chi} = \{\{x_1, \neg x_1\}, \{x_2, \neg x_2\}, \{x_3, \neg x_3\}, \{x_1, x_2, x_3\}, \{\neg x_1\}, \{x_1, \neg x_2\}, \{x_1, \neg x_2\}, \{x_1, \neg x_2\}, \{\neg x_1, x_2, x_3\}, \{\neg x_3\}\}$. Пусть A протыкающее множество. Тогда $A \cap \{\neg x_3\} \neq \emptyset \Rightarrow A \ni \neg x_3$. Также $A \cap \{x_1, \neg x_1\} \neq \emptyset$, поэтому A содержит x_1 или $\neg x_1$. Аналогично $x_2 \in A$ или $\neg x_2 \in A$. Получаем, что A содержит не менее трех элементов. Предположим, что их ровно 3. Рассмотрим все возможные 4 случая (или×или раньше по тексту):
 - (a) $A = \{x_1, x_2, \neg x_3\}$. Тогда $A \cap \{\neg x_1, \neg x_2\} = \emptyset$ противоречие.
 - (b) $A = \{x_1, \exists x_2, \exists x_3\}$. Тогда $A \cap \{\exists x_1, x_2, x_3\} = \emptyset$ противоречие.
 - (c) $A = \{ \exists x_1, x_2, \exists x_3 \}$. Тогда $A \cap \{x_1, \exists x_2 \} = \emptyset$ противоречие.
 - (d) $A = \{ \exists x_1, \exists x_2, \exists x_3 \}$. Тогда $A \cap \{x_1, x_2, x_3\} = \emptyset$ противоречие.

Получаем, что A содержит более трех элементов