## 1 Theory

## 1.1 Ising model

The Ising model is applied for the study of phase transistions at finite temperatures for magnetic systems. Energy is expressed as:

$$E = -J \sum_{\langle kl \rangle}^{N} s_k s_l \qquad s_k = \pm 1 \tag{1}$$

N is the number of spins and J is a constant expressing the interaction between neighboring spins. The sum is over the nearest neighbours only, indicated by  $ikl_{\tilde{\ell}}$  the above equation. For J i 0 it is energetically favorable for neighboring spins to align. Leading to, at low temperatures, T, spontanious magnetisation.

A probability distribution is neede in order to calculate the mean energy  $iE_{\xi}$  and magnetization  $iM_{\xi}$  at a given temperature. The distribution is given by:

$$P_i(\beta) = \sum_{i=1}^{M} s_k s_l \exp{-\beta E_i}, \tag{2}$$

where M is all the microstates,  $P_i$  is the probability of having the system in a state/configuration i.