Computabilidad y Complejidad Práctica 1

- 1) Probar la siguiente ley distributiva $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- 2) Probar la siguiente ley de Morgan: El Complemento de A unión B es igual al complemento de A intersección el complemento de B
- 3) Probar que el complemento del complemento de A es igual a A
- 4) Sea A el conjunto de los números naturales tales que, si son mayores que 5 o bien terminan en 5, entonces contienen algún dígito 1 ó 2
 - a) Cuáles de los siguientes números pertenecen a A:

3, 5, 10, 15, 30, -10

- b) Expresar el enunciado como una fórmula proposicional donde m significa "mayores que 5", t es "terminan en 5", u es "contiene algún dígito 1" y d es "contiene algún dígito 2"
- c) Transformar la fórmula del inciso anterior de manera que no tenga una implicación y aplicar una ley de Morgan al resultado. Expresarlo en una frase.
- 5) Sean: $X = \{x / x \in \mathbb{N}, x \text{ es impar}\}\$

 $Y = \{y / y \in N, y \text{ es primo}\}\$

 $Z = \{z \mid z \in \mathbb{N}, z \text{ es múltiplo de } 3\}$

Describir cada uno de los siguientes conjuntos:

- a) $X \cap Y$
- b) $X \cap Z$
- c) $Y \cap Z$
- d) Z Y
- e) $X (Y \cap Z)$
- f) $(Y \cap Z) X$
- $g)\: X \cup Y$
- 6) Calcular los conjuntos de partes en los siguientes casos:
 - a) Ø
 - b) $\{a, b, c\}$
 - c) $\{\emptyset\}$
 - d) $\{\emptyset, \{\emptyset\}\}$
 - e) $\{a, \{b, c\}\}$

7) Presentar una lista con todos los elementos en cada uno de los conjuntos siguientes:
a) $\{x, y\} \times \{a, b, c\}$
b) $\{a, b, c\} \times \{x, y\}$
c) $\{x, y\} \times \{y, x\}$
d) $\{x, y\}^2 \times \{\}$
e) $\{\}^{10} \times \{2, 3, 4\}^{20}$
f) $\{1\}^5$
g) $\{1,2\} \times \{a\} \times \{a,b\}$
8) ¿Cuál es el cardinal de $A \times B$ si $ A = n$ y $ B = m$?
9) Demostrar por inducción que si A es un conjunto finito $ A = n \Rightarrow \rho(A) = 2^n$
10) Mostrar que $ N \times N = N^+ $
11) Mostrar que $ Q^+ \le N $, siendo Q^+ el conjunto de los racionales positivos
12) Mostrar que la cardinalidad del conjunto de todas las funciones de R a {0, 1} es menor o igual a la del conjunto de todas las funciones que van:
a) de R a N
b) de R a $\{a, b, c\}$
13) Dar un ejemplo de 2 conjuntos disjuntos no vacíos, A y B tales que:
a) $ A \leq B \leq A \cup B $
b) $ A < B = A \cup B $
c) $ A = B = A \cup B $
14) Mostrar que $ N - \{7, 9, 15, 34, 21, 344, 990\} = N $
15) ¿El conjunto de todas las frases en el idioma español es contable o incontable? Justificar.
16) Dar ejemplos para mostrar que la intersección de 2 conjuntos incontables puede ser
a) finita
b) infinita contable
c) incontable
17) Mostrar que la unión de 2 conjuntos contables es contable
18) Muestre que, si X es un conjunto incontable e Y es un conjunto contable, entonces X-Y debe ser incontable
19) Mostrar que un conjunto puede tener la misma cardinalidad que un subconjunto propio de sí mismo.