Foundation of Cryptography

Session 16

Date: 09 March 2021

Dr. V. K. Pachghare

Number Theory

- Euler Totient Function
- Extended Euclidean Algorithm
- Chinese Remainder Theorem

Note that 4 and 100 do have a common factor!

Note that 4 and 100 do have a common factor!

Solution:

 $4^{1023} \mod 100$

As 4 and 100 have common factors, we will take any one factor of 100 such as 5, 10, 20, 25 or 50 as modulus.

Note that 4 and 100 do have a common factor!

Solution:

 $4^{1023} \mod 100$

As 4 and 100 have common factors, we will take any one factor of 100 such as 5, 10, 20, 25 or 50 as modulus.

Suppose the common factor selected is 25, then $4^{1023} \mod 25$

Note that 4 and 100 do have a common factor!

Solution:

 $4^{1023} \mod 100$

As 4 and 100 have common factors, we will take any one factor of 100 such as 5, 10, 20, 25 or 50 as modulus.

Suppose the common factor selected is 25, then

 $4^{1023} \mod 25$

 $4^{1023 \mod \varnothing (25)} \mod 25$ $(\varnothing (25) = 20)$

Note that 4 and 100 do have a common factor!

Solution:

 $4^{1023} \mod 100$

As 4 and 100 have common factors, we will take any one factor of 100 such as 5, 10, 20, 25 or 50 as modulus.

Suppose the common factor selected is 25, then

 $4^{1023} \mod 25$

 $4^{1023 \mod \varnothing (25)} \mod 25$ $(\varnothing (25) = 20)$

 $= 4^3 \mod 25$ Since $1023 \mod 20 = 3$

```
= 4^3 \mod 25
```

 $=64 \mod 25$

14, 39, 64

out of these only 64 is divisible by 4.

The number which is power of 4 is selected and that number is the last two digits

So last two digits are 64

Factors of 100 are 5, 10, 20, 25 and 50

4 ¹⁰²³ mod 5	4 ¹⁰²³ mod 10	4 ¹⁰²³ mod 20	4 ¹⁰²³ mod 50
4 ^{1023 mod ∅ (5)} mod 5	4 ^{1023 mod ∅ (10)} mod	4 ^{1023 mod ∅ (20)} mod	4 ^{1023 mod ∅ (50)} mod
	10	20	50
4 ^{1023 mod 4} mod 5	4 ^{1023 mod 4} mod 10	4 ^{1023 mod 8} mod <i>20</i>	4 ^{1023 mod 20} mod <i>50</i>
4 ³ mod 5	4 ³ mod 10	4 ⁷ mod 20	4 ³ mod 50
64 mod 5 = 4 mod 5	64 mod 10 = 4 mod 10	4 ⁷ = 4 ³ *4 ³ *4 4*4*4 mod 20 = 64 mod 20 =4 mod 20	64 mod 50 = 14 mod 50
4, 9, 14, 19, 24, 29, 34, 39, 44, 49, 54, 59, 64, 69, 74, 79, 84, 89, 94, 99	4, 14, 24, 34, 44, 54, 64, 74, 84, 94	4, 24, 44, 64 , 84	14, 64
The number which is power of 4 is the last two digits			

What are the last two digits of 333 2012me

Solution:

We know that
$$\emptyset(100) = 40$$
; So, we need to compute

and raise 3 to that power.

$$\emptyset(40) = 16$$
; $\emptyset(16) = 8$; $\emptyset(8) = 4$; $\emptyset(4) = 2$

In particular, $3^k = 3 \mod 4$ for any value of k. Working backwards

3^{mo} (10) mod 0(

$$3^{3^{3}} (3^{3} \mod (2)) \mod 3 = 3^{3} \mod \mod 2 = 1$$

$$3^{3^{3}} (3^{3} \mod (4)) \mod 3$$

$$3^{3^{3}} (3^{3} \mod (8)) \mod 3$$

$$3^{3^{3}}$$
 $(3^{3}\text{mod}(2))\text{mod} = 3^{3}\text{mod} \mod 2 = 1$
 $3^{3^{3}}$ $(3^{3}\text{mod}(4))\text{mod} = 3^{3}\text{mod} \mod 2 = 3$
 $3^{3^{3}}$ $(3^{3}\text{mod}(8))\text{mod} = 3^{3}\text{mod} \mod 2 = 3$
 $3^{3^{3}}$ $(3^{3}\text{mod}(8))\text{mod} = 3^{3}\text{mod} \mod 2 = 3$
 $3^{3^{3}}$ $(3^{3}\text{mod}(8))\text{mod} = 3^{3}\text{mod} \mod 2 = 3$
 3^{3} $(3^{3}\text{mod}(16))\text{mod} = 3^{3}\text{mod} \mod 2 =$

$$3^{3^{3}}$$
 $(3^{3}\text{mod}(2))\text{mod} = 3^{3}\text{mod}(2)$ $(3^{3}\text{mod}(2))\text{mod} = 3^{3}\text{mod}(2)$ $(3^{3}\text{mod}(2))\text{mod} = 3^{3}\text{mod}(2)$ $(3^{3}\text{mod}(4))\text{mod} = 3^{3}\text{mod}(2)$ $(3^{3}\text{mod}(4))\text{mod} = 3^{3}\text{mod}(2)$ $(3^{3}\text{mod}(8))\text{mod} = 3^{3}\text{mod}(2)$ $(3^{3}\text{mod}(10))\text{mod} = 3^{3}\text{mod}(2)$ $(3^{3}\text{mod}(2))\text{mod} = 3^{3}\text{mod}(2)$ $(3^{3}\text{mod}(2))$ $(3^{3}$

$$3^{3^{3}} \qquad \qquad (3^{3} \mod (2)) \mod = 3^{3} \mod (3^{3} \mod (2)) \mod = 3^{3} \mod (3^{3} \mod (4)) \mod = 3^{3} \mod (3^{3} \mod (4)) \mod = 3^{3} \mod (3^{3} \mod (8)) \mod (3^{3} \mod (8)) \mod (3^{3} \mod (8)) \mod (3^{3} \mod (8)) \mod (3^{3} \mod (16)) \mod (3^{3} \mod (16))$$

$$3^{3^{3}} (3^{3} \mod (2)) \mod = 3^{3} \mod \mod 2 = 1$$

$$3^{3^{3}} (3^{3} \mod (4)) \mod = 3^{3} \mod \mod 2 = 3$$

$$3^{3^{3}} (3^{3} \mod (8)) \mod = 3^{3} \mod \mod 2 = 3$$

$$3^{3^{3}} (3^{3} \mod (8)) \mod 8 = 3^{3} \mod \mod 2 = 3$$

$$3^{3^{3}} (3^{3} \mod (16)) \mod 6 \qquad (3^{3} \mod (16)) \mod 6 = 3^{3} \mod 8 \mod 6 = 11$$

$$[3^{4} \mod 0 = 1] = > [3^{1} = (3^{4})^{2} (3^{3} \mod 0 = 1) = > [3^{3} \mod 0 = 27]$$

$$3^{3^{3} \mod (40)} (3^{3} \mod (40)) \mod 0 = 3^{3} \mod 6 \mod 0 = 3^{1} \mod 0 = 27$$

$$3^{3} \mod (10)) \mod 0$$

$$3^{3^{3}} (3^{3} \mod (16)) \mod 0$$

$$3^{3^{3^{3}}} (3^{3^{3}} (2)) \mod 3 = 3^{3^{3}} \mod 4 \mod 2 = 1$$

$$3^{3^{3^{3}}} (3^{3^{3}} (2)) \mod 3 = 3^{3^{3}} \mod 4 \mod 2 = 3$$

$$3^{3^{3^{3}}} (3^{3^{3}} (2)) \mod 3 = 3^{3^{3}} \mod 4 \mod 2 = 3$$

$$3^{3^{3^{3}}} (3^{3^{3}} (2)) \mod 3 = 3^{3^{3}} \mod 4 \mod 3 = 3$$

$$3^{3^{3^{3}}} (3^{3^{3}} (2)) \mod 3 = 3^{3^{3}} \mod 4 \mod 3 = 3$$

$$3^{3^{3^{3}}} (3^{3^{3}} (2)) \mod 3 = 3^{3^{3}} \mod 3 \mod 3 = 3$$

$$3^{3^{3^{3}}} (3^{3^{3}} (2)) \mod 3 = 3^{3^{3}} \mod 3 \mod 3 = 3$$

$$3^{3^{3^{3}}} (3^{3^{3}} (2)) \mod 3 = 3^{3^{3}} \mod 3 \mod 3 = 3$$

$$3^{3^{3^{3}}} (3^{3^{3}} (2)) \mod 3 = 3^{3^{3}} \mod 3 \mod 3 = 3$$

$$3^{3^{3^{3}}} (3^{3^{3}} (2)) \mod 3 = 3^{3^{3}} \mod 3 \mod 3 = 3$$

$$3^{3^{3^{3}}} (3^{3^{3}} (2)) \mod 3 = 3^{3^{3}} \mod 3 \mod 3 = 3$$

$$3^{3^{3^{3}}} (3^{3^{3}} (2)) \mod 3 = 3^{3^{3}} \mod 3 \mod 3 = 3$$

$$3^{3^{3^{3}}} (3^{3^{3}} (2)) \mod 3 = 3^{3^{3}} \mod 3 \mod 3 = 3$$

$$3^{3^{3^{3}}} (3^{3^{3}} (2)) \mod 3 = 3^{3^{3}} \mod 3 \mod 3 = 3$$

$$3^{3^{3^{3}}} (3^{3^{3}} (2)) \mod 3 = 3^{3^{3}} \mod 3 \mod 3 = 3$$

$$3^{3^{3^{3}}} (3^{3^{3}} (2)) \mod 3 = 3^{3^{3}} \mod 3 \mod 3 = 3$$

$$3^{3^{3^{3}}} (3^{3^{3}} (2)) \mod 3 = 3^{3^{3}} \mod 3 \mod 3 = 3$$

$$3^{3^{3^{3}}} (3^{3^{3}} (2)) \mod 3 = 3^{3^{3}} \mod 3 \mod 3 = 3$$

$$3^{3^{3^{3}}} (3^{3^{3}} (2)) \mod 3 = 3^{3^{3}} \mod 3 \mod 3 = 3$$

$$3^{3^{3^{3}}} (3^{3^{3}} (2)) \mod 3 = 3^{3^{3}} \mod 3 \mod 3 = 3$$

$$3^{3^{3^{3}}} (3^{3^{3}} (2)) \mod 3 = 3^{3^{3}} \mod 3 \mod 3 = 3$$

$$3^{3^{3^{3}}} (3^{3^{3}} (2)) \mod 3 = 3^{3^{3}} \mod 3 \mod 3 = 3$$

$$3^{3^{3^{3}}} (3^{3^{3}} (2)) \mod 3 = 3^{3^{3}} \mod 3 \mod 3 = 3$$

$$3^{3^{3^{3}}} (3^{3^{3}} (2)) \mod 3 = 3^{3^{3}} \mod 3 \mod 3 = 3$$

$$3^{3^{3^{3}}} (3^{3^{3}} (2)) \mod 3 = 3^{3^{3}} (2) \mod 3 = 3^{3^{3}} (2) \mod 3 = 3^{3^{3}} (2) (2) \mod 3 = 3^{3^{3}} (2) \mod 3 =$$

```
27^{1}mod(100)
=27^{1}mod(0) as(100)=40
=3x3^{26}mod(00)=3x(3^{3})^{2} mod(00)
=3x(3x(3)^{2})^{2}) mod(00)
=87mod(00)
```