Esercizio 81. Un supermercato ha sia una fila rapida che una super-rapida. Sia X_1 il numero di clienti che passano per la fila rapida in un certo giorno e sia X_2 quelli che passano invece per la fila super-rapida nello stesso giorno. Supponiamo che la densità discreta sia:

		x_2					
		0	1	2	3		
	0	.08	.07	.04	.00		
	1	.06	.15	.05	.04		
X_1	2	.05	.04	.10	.06		
	3	.00	.03	.04	.07		
	4	.00	.01	.05	.06		

- a) Trovare $P[X_1 + X_2] < 5$;
- b) Verificare se X_1 e X_2 sono indipendenti o scorrelate.
- c) Trovare $P[X_2 < 2|X_1 > 1]$
- (Risposta: a) 0.71 c) $\frac{0.13}{0.51}$)

Esercizio 82. Annie e Alvie si sono accordati per pranzare insieme tra mezzogiorno (0:00PM) e le 1:00PM. Indichiamo il tempo di arrivo di Annie con X, mentre con Y quello di Alvie e supponiamo che siano indipendenti con densità:

$$f_X(x) = \begin{cases} 3x^2 & 0 \le x \le 1\\ 0 & altrimenti \end{cases}$$

$$f_Y(y) = \begin{cases} 2y & 0 \le y \le 1\\ 0 & altrimenti \end{cases}$$

Qual è il valor medio del tempo che aspetterà il primo arrivato? (Suggerimento: h(X,Y) = |X-Y|).

(Risposta: $\frac{1}{4}$)

Esercizio 83. Date due variabili aleatorie X ed Y dimostrare che

$$Var[X + Y] = Var[X] + Var[Y] + 2Cov[X, Y]$$

e

$$Var[X - Y] = Var[X] + Var[Y] - 2Cov[X, Y]$$

Esercizio 84. a) Usando le proprietà del valore atteso mostrare che Cov[aX + b, cY + d] = acCov[X, Y].

- b) Usando la parte (a) insieme alle proprietà di varianza e deviazione standard provare che Corr(aX+b,cY+d)=Corr(X,Y) quando a e c hanno lo stesso segno.
- c) Cosa accade se a e c hanno segni opposti?

Esercizio 85. Un istruttore ha dato ai suoi studenti un quiz diviso in due parti. Per uno studente a caso, sia X il numero di punti fatti nella prima parte e Y i punti fatti nella seconda. Supponiamo che la distribuzione congiunta di X e Y sia data dalla seguente tabella: a) Se il punteggio totale è dato dalla somma delle due parti, qual è il valore atteso dei voti? b) Se il punteggio totale è dato dal massimo dei due risultati, qual è il valore atteso dei voti? c) Verificare che X e Y sono correlate

(Risposta: a) 12.6 - b) 9.6)

*	XY		5		15
•	0	0.02	0.06	0.02	0.10
	5	0.04	0.15	0.20	0.10
	10	0.01	0.15	0.14	0.01

Esercizio 86. Siano X_1 ed X_2 con distribuzione congiunta in figura.

- a) Trovare $E[X_2|X_1=k]$ per k=1,2,3.
- b) Descrivere la variabile aleatoria $E[X_2|X_1]$.
- c) Calcolare $E[X_2]$

(Risposta: a) $\frac{2}{3}$, 1, $\frac{4}{3}$ - c) 1)

X ₂ \	4	0	1	2	fx2
C)	1/9	1/9	0	2/9
1		2/9	1/9	2/9	5/9
2)	0	1/9	1/9	2/9
P fx		1/3	1/3	1/3	1

Esercizio 87. X e Y hanno densità congiunta

$$f_{(X,Y)}(x,y) = \frac{e^{-y}}{y} \mathbb{1}_{\{y>0\}}(x,y) \mathbb{1}_{\{0 < x < y\}}(x,y).$$

Trovare il valore atteso di X^2 dato Y.

(Risposta:
$$\frac{Y^2}{3}$$
)

 \diamond Se $\mathbb{P}[A] = 0, 6$ e $\mathbb{P}[B] = 0, 5$ allora $\mathbb{P}[A \cup B] = 1$. [V][F] $\diamond \mathbb{P}(A)\mathbb{P}(B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$ allora $A \in B$ sono indipendenti. [V][F] \diamond Non esistono variabili casuali con densità f(x) dispari, cioè tale che f(x)

[V][F][V] [F]

-f(-x). \diamond Sia a > 0. Allora $\mathbb{P}(X < a) \leq \mathbb{P}(|X| < a)$.

 \diamond Se la coppia (X,Y) di v.c ha densità simmetrica $f_{X,Y}(x,y) = f_{Y,X}(y,x)$ allora $\mathbb{P}(X > Y) = 0.5$. [V] [F]

 \diamond Se $\mathbf{E}(X^2) = 0$ allora $\mathbf{E}(X) = 0$. [V] [F]

♦ Siano
$$X, Y \sim Bernoulli(p)$$
 ed indipendenti. Allora $\mathbf{E}[XY] = p^2$.
♦ Per ogni variabile casuale X a quadrato integrabile vale $\mathbf{E}[X^2] \geq (\mathbf{E}[X])^2$.
♦ Se $\mathbb{P}[B] = \mathbb{P}[A|B] = \mathbb{P}[C|A \cap B] = 1/2$ allora $\mathbb{P}[A \cap B \cap C] = 1/8$.
♦ Se $\mathbb{P}[A] = \frac{1}{4}$ e $\mathbb{P}[B] = \frac{1}{4}$ allora $\mathbb{P}[A \cap B] = 0$.
♦ Sia $X \simeq Exp(\lambda)$. Allora $\mathbb{P}[X > t + s | X > t] = \mathbb{P}[X > s]$, $\forall t, s \geq 0$
♦ Se $\mathbb{E}[X] = 2$ allora $\mathbb{E}[X^2] = 4$.

$$\diamond$$
 Se $\mathbf{E}[X] = 2$ allora $\mathbf{E}[\frac{1}{X}] = \frac{1}{2}$.

$$\diamond$$
 Siano $X \sim Exp(\lambda_1)$ e $Y \sim Exp(\lambda_2)$ ed indipendenti. Allora $X + Y \sim Exp(\lambda_1 + \lambda_2)$
 \diamond Siano A_1 ed A_2 due eventi indipendenti. Allora $\mathbb{P}[B] = \mathbb{P}[B|A_1]\mathbb{P}[A_1] + \mathbb{P}[B|A_2]\mathbb{P}[A_1]$

 \diamond Siano $X, Y \sim Bernoulli(p)$ ed indipendenti. Allora $\mathbf{E}[\min(X, Y)] = p^2$.

$$\diamond$$
 Se $\mathbb{P}[A] = \frac{1}{2}$, $\mathbb{P}[B] = \frac{3}{4}$

$$\diamond$$
 Rispondendo a caso a queste sei domande la probabilità di sbagliarne esattamente una è $\frac{6}{64}$. [V] [F]

⇒ Siano
$$A_1$$
 ed A_2 due eventi indipendenti. Allora $\mathbb{P}[B] = \mathbb{P}[B|A_1]\mathbb{P}[A_1] + \mathbb{P}[B|A_2]\mathbb{P}[A_2]$. [V] [F] ⇒ Se $\mathbb{P}[A] = \frac{1}{2}$, $\mathbb{P}[B] = \frac{3}{4}$ allora $\mathbb{P}[A \cup B] = 1$. [V] [F]

Siano X e Y due variabili aleatorie indipendenti con distribuzione uniforme su [0, 1]. Allora:

$$\boxed{\mathbf{A}} \ \mathbb{P}(Y - X \le \frac{1}{2}) = \frac{3}{4}$$

$$\boxed{\mathbb{B}} \ \mathbb{P}(Y - X \le \frac{1}{2}) = \frac{1}{8}$$

$$\boxed{\mathbf{C}} \ \mathbb{P}(Y - X \le \frac{1}{2}) = \frac{7}{8}$$

Siano X e Y due variabili aleatorie di Bernoulli di parametro p indipendenti. Allora:

$$\boxed{\mathbf{A}} \ \mathbb{P}(X+Y=0) = 2(1-p)$$

B
$$\mathbb{P}(X - Y = 0) = 1 - p(1 - p)$$

$$CP(X + Y = 0) = 2(1 - p)^2$$

$$D | \mathbb{P}(X - Y = 0) = 1 - 2p(1 - p)$$

Quattro coppie di gemelli sono disposte in riga casualmente. La probabilità che ognuno sia vicino al proprio gemello è:

B
$$\frac{2^4 4!}{8!}$$

$$C = \frac{2^4}{8!}$$

$$\boxed{D} \frac{4!}{8!}$$