FURIJEOVA TRANSFORMACIJA

Primena DSP u upravljanju

Aperiodični signali

- Aperiodičan signal je specijalni slučaj periodičnog kod kog perioda teži beskonačnosti
- $T_P \to \infty$ odatle sledi da $\omega_P = \frac{2\pi}{T_P} \to d\omega$, odnosno $\frac{1}{T_P} \to \frac{d\omega}{2\pi}$
- Razmak između susednih harmonika teži nuli
- lacktriangle Diskretni harmonici $n\omega_P$ prelaze u kontinualnu veličinu ω
- Spektar postaje kontinualna funkcija, a koeficijenti Furijeovog reda $d_n \to d(\omega)$ kompleksna funkcija

Furijeova transformacija

- Neka je f(t) aperiodični signal (funkcija), tada je razvoj u Furijeov red:
- $d_n = \frac{1}{T_P} \int_{-T_P/2}^{T_P/2} f(t) e^{-jn\omega_P t} dt \to d(\omega) = \frac{d\omega}{2\pi} \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt$
- Pošto je $\frac{1}{T_p} \rightarrow \frac{d\omega}{2\pi}$
- Ako izvršimo normalizaciju deljenjem obe strane jednakosti sa $\frac{d\omega}{2\pi}$ dobija se Furijeova transformacija signala f(t)
- $F(j\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt$ $F(j\omega) = \mathcal{F}\{f(t)\}$

$$F(j\omega) = \mathcal{F}\{f(t)\}\$$

- Dok je inverzna Furijeova transformacija spektra $F(j\omega)$ data izrazom:

$$f(t) = \mathcal{F}^{-1}\{F(j\omega)\}\$$

Primer 1: Furijeova transformacija Dirakovog impulsa

Primer 2: Furijeova transformacija pravougaonog impulsa

$$F(j\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt = \int_{\chi\tau-\tau}^{\chi\tau} Ae^{-j\omega t}dt = A\frac{1}{j\omega}e^{-j\omega t}\Big|_{\chi\tau}^{\chi\tau-\tau} = A\frac{1}{j\omega}\left(e^{-j\omega(\chi\tau-\tau)} - e^{-j\omega\chi\tau}\right)$$

$$F(j\omega) = A \frac{2\tau}{2j\omega\tau} e^{-j\omega x\tau} \left(e^{j\omega\tau} - 1\right) = A \frac{2\tau}{2j\omega\tau} e^{-j\omega x\tau} e^{j\omega\tau/2} \cdot \left(e^{j\omega\tau/2} - e^{-j\omega\tau/2}\right) = A\tau e^{j\omega} \left(\frac{1}{2} - x\right)\tau \frac{\sin(\frac{\omega t}{2})}{2}$$

Ukoliko je x=0, odnosno impuls simetričan oko t=0

$$F(j\omega) = A\tau \frac{\sin(\frac{\omega\tau}{2})}{\frac{\omega\tau}{2}}$$

 $F(j\omega) = A\tau \frac{\sin(\frac{\omega\tau}{2})}{\frac{\omega\tau}{2}}$ Podsetimo se vrednosti koeficijenata Furijeovog reda za periodičnu povorku pravougaonih impulsa

$$d_n = \frac{A\tau}{T_P} \frac{\sin(\frac{n\omega_0 t}{2})}{\frac{n\omega_0 \tau}{2}}$$

Furijeova transformacija periodičnih signala

$$f(t) = \sum_{n=-\infty}^{\infty} d_n e^{jn\omega_P t}$$

$$d_n = \frac{1}{T_P} \int_{-T_P/2}^{T_P/2} f(t) e^{-jn\omega_P t} dt$$

$$F(j\omega) = A\tau \frac{\sin(\frac{\omega t}{2})}{\frac{\omega \tau}{2}}$$

$$F(j\omega) = 0 \ za \ \omega = \frac{2k\pi}{\tau} \text{ odnosno } f = \frac{k}{\tau}$$

Osobine: Linearnost

- $= a \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt + b \int_{-\infty}^{\infty} g(t)e^{-j\omega t}dt = a\mathcal{F}\{f(t)\} + b\mathcal{F}\{g(t)\}$

Osobine: Vremensko pomeranje

- Važno je primetiti da vremensko kašnjenje prouzrokuje pomeranje faze u frekvencijskom domenu
- lacktriangle Pomeranje faze je proporcionalno frekvenciji: $\Delta \varphi = -\omega au$

Osobine: Skaliranje

- Za a>0 važi:
- Za a<0 obrću se granice integraljenja, ali je i 1/a <0 pa važi:
- $\mathcal{F}\{f(at)\} = \frac{1}{a} \int_{-\frac{\infty}{a}}^{\frac{\infty}{a}} [f(p)] e^{-j\omega \frac{p}{a}} dp = -\frac{1}{|a|} \int_{-\infty}^{-\infty} [f(p)] e^{-j\omega \frac{p}{a}} dp = \frac{1}{|a|} \int_{-\infty}^{\infty} [f(p)] e^{-j\omega \frac{p}{a}} dp = \frac{1}{|a|$
- Proširivanje signala dovodi do sužavanja spektra i obrnuto

Osobine: Simetrija

- Ako je $F(j\omega) = \mathcal{F}\{f(t)\}$ tada je $\mathcal{F}\{F(t)\} = 2\pi f(-j\omega)$
- $F(j\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt, \text{ ako zamenimo promenljive } t \leftrightarrow \omega \text{ tada važi}$
- $F(t) = \int_{-\infty}^{\infty} f(j\omega) e^{-j\omega t} d\omega$
- Sa druge strane: $\mathcal{F}^{-1}\{2\pi f(-j\omega)\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} 2\pi f(-j\omega) e^{j\omega t} d\omega$ smenom $-\omega = \omega$
- $\blacksquare \mathcal{F}^{-1}\{2\pi f(-j\omega)\} = \int_{-\infty}^{\infty} f(j\omega)e^{-j\omega t}d\omega = F(t)$

Osobine: Konvolucija

- $f(t) * g(t) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau)d\tau$
- $\blacksquare \mathcal{F}\{f(t) * g(t)\} = \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} f(\tau)g(t-\tau)d\tau \right] e^{-j\omega t} dt$
- $\blacksquare \mathcal{F}\{f(t) * g(t)\} = \int_{-\infty}^{\infty} f(\tau) \left[\int_{-\infty}^{\infty} g(p) e^{-j\omega(p+\tau)} dp \right] d\tau$

Parselvalova teorema

$$W = \int_{-\infty}^{\infty} |f(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |F(j\omega)|^2 d\omega$$

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(j\omega) e^{j\omega t} d\omega \quad i \quad f(t)^* = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(j\omega)^* e^{-j\omega t} d\omega$$

$$W = \int_{-\infty}^{\infty} |f(t)|^2 dt = \int_{-\infty}^{\infty} f(t)f(t)^* dt = \int_{-\infty}^{\infty} f(t) \left[\frac{1}{2\pi} \int_{-\infty}^{\infty} F(j\omega)^* e^{-j\omega t} d\omega \right] dt$$

$$W = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(j\omega)^* \left[\int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt \right] d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(j\omega)^* F(j\omega) d\omega$$

$$W = \frac{1}{2\pi} \int_{-\infty}^{\infty} |F(j\omega)|^2 d\omega$$

 $|F(j\omega)|^2$ se naziva spektralna gustina energije

Osobine F.T. sumarno

TABLE 3.1 Properties of the Fourier Transform	
Property	Transform Pair/Property
Linearity	$ax(t) + bv(t) \leftrightarrow aX(\omega) + bV(\omega)$
Right or left shift in time	$x(t-c) \leftrightarrow X(\omega)e^{-j\omega c}$
Time scaling	$x(at) \leftrightarrow \frac{1}{a} X\left(\frac{\omega}{a}\right) a > 0$
Time reversal	$x(-t) \leftrightarrow X(-\omega) = \overline{X(\omega)}$
Multiplication by a power of t	$t^n x(t) \leftrightarrow j^n \frac{d^n}{d\omega^n} X(\omega) \ n = 1, 2, \dots$
Multiplication by a complex exponential	$x(t)e^{j\omega_0 t} \leftrightarrow X(\omega - \omega_0) \ \omega_0 \text{ real}$
Multiplication by $\sin(\omega_0 t)$	$x(t)\sin(\omega_0 t) \leftrightarrow \frac{j}{2}[X(\omega + \omega_0) - X(\omega - \omega_0)]$
Multiplication by $\cos(\omega_0 t)$	$x(t)\cos(\omega_0 t) \leftrightarrow \frac{1}{2}[X(\omega + \omega_0) + X(\omega - \omega_0)]$
Differentiation in the time domain	$\frac{d^n}{dt^n}x(t) \leftrightarrow (j\omega)^n X(\omega) \ n = 1, 2, \dots$
Integration in the time domain	$\int_{-\infty}^{t} x(\lambda) d\lambda \leftrightarrow \frac{1}{j\omega} X(\omega) + \pi X(0) \delta(\omega)$
Convolution in the time domain	$x(t) * v(t) \leftrightarrow X(\omega)V(\omega)$
Multiplication in the time domain	$x(t)v(t) \leftrightarrow \frac{1}{2\pi}X(\omega)*V(\omega)$
Parseval's theorem	$\int_{-\infty}^{\infty} x(t)v(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} \overline{X(\omega)}V(\omega) d\omega$
Special case of Parseval's theorem	$\int_{-\infty}^{\infty} x^2(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) ^2 d\omega$
Duality	$X(t) \leftrightarrow 2\pi x(-\omega)$