Wheeled robot control

Robot description

Differential equations of motion

Assuming a kinematic model where the two wheels can only move along x_r when they are spinning (i.e. they don't slip) and calling ω_1 and ω_2 the angular speed and u_1 and u_2 the linear speed of respectively wheel 1 and wheel 2, we have:

$$u_1=\omega_1 r \ u_2=\omega_2 r$$

Let u and v be the linear speed of the centre of mass of the robot along x_r and y_r , then:

$$u=\omega_1rac{r}{2}+\omega_2rac{r}{2} \ v=0$$

And finally the differential equation of motion, where the state variables are $[x, y, \psi]$:

$$egin{aligned} \dot{x} &= u \cos(\psi) \ \dot{y} &= u \sin(\psi) \ \dot{\psi} &= \omega_2 rac{r}{d} - \omega_1 rac{r}{d} \end{aligned}$$

To make the model more realistic we assume that each wheel's speed controller responds as a first order with transfer function $\frac{1}{s+1}$ and has an error factor respectively of 1.02 and 1.06.

Control system

The control system assumes 2 setpoints (that could be from a user or from a path planner):

 $\psi_{deg_{des}}$: yaw angle in degrees

 u_{des} : linear speed in m/s

To control the linear speed we assume that we have no access to the actual speed measurement, therefore we simply use the knowledge of the system:

$$\omega_{avg_{des}} = rac{u_{des}}{r}$$

To control the yaw angle we use a PI controller that outputs $\Delta \omega_{des}$.

Then we have:

$$\omega_{1_{des}} = \omega_{avg_{des}} - \Delta \omega_{des}$$

$$\omega_{2_{des}} = \omega_{avg_{des}} + \Delta \omega_{des}$$

Xcos model

Simulation - control system

Simulation - robot position

