Savoir démontrer qu'une fonction admet un extrémum :

Exercice n°1:

Soit f la fonction définie sur \mathbb{R} par $f(x) = -x^2 + 8x - 1$

- 1. Utiliser la le menu graph, et fonction trace de la calculatrice pour visualiser l'allure de la courbe et l'ordonnée du point de la courbe d'abscisse x = 4. S'agit-il d'un maximum , ou d'un minimum ?
- 2. Par le calcul, montrer que la fonction f admet un extremum sur \mathbb{R} , donner la nature et la valeur de cet extremum.

Exercice n°2:

Soit f la fonction définie sur \mathbb{R} par $f(x) = x^2 + 2x + 3$

Montrer que la fonction f admet un extremum sur \mathbb{R} pour x = -1, donner la nature et la valeur de cet extremum.

Exercice n °3:

Soit f la fonction définie sur \mathbb{R} par $f(x) = 2(x - \frac{5}{2})^2 + 5$

Montrer que la fonction f admet un extremum sur \mathbb{R} pour $x=\frac{5}{2}$, donner la nature et la valeur de cet extremum.

Exercice n °4:

Soit f la fonction définie sur \mathbb{R} par $f(x) = 2x^2 - 10x + \frac{45}{4}$

Montrer que la fonction f admet un extremum sur \mathbb{R} pour $x = \frac{5}{2}$, et donner la nature et la valeur de cet extremum.

Exercice n °1: Correction

15 semble être le maximum de cette fonction, et il est atteint pour x=4

Par le calcul, montrons que : f(4) = 15 et que pour tout réel x on a $f(x) \le 15$

1.
$$f(4) = -4^2 + 8 \times 4 - 1 = -16 + 32 - 1 = 15$$

pour tout réel x on a

$$f(x) \leq 15$$

est équivalent à montrer que pour tout réel x on a $f(x) - 15 \le 0$

$$f(x) - 15 = -x^2 + 8x - 1 - 15$$

$$f(x) - 15 = -x^2 + 8x - 16$$

$$f(x) - 15 = -(x^2 - 8x + 16) = -(x - 4)^2$$
 or un carré est toujours positif donc

pour tout réel
$$x$$
, $f(x) - 15 \le 0$. De plus $f(4) = 15$

donc 15 est le maximum de f sur \mathbb{R} , et il est atteint pour x=4

Exercice n °2: Correction

Par le calcul, montrons que : f(-1) = 2 et que pour tout réel x on a $f(x) \ge 2$

$$f(-1) = (-1)^2 + 2 \times (-1) + 3 = 1 - 2 + 3 = 2$$

Montrer aue

pour tout réel x on a

équivaut à montrer que pour tout réel x on a $f(x) - 2 \ge 0$

$$f(x)-2\geq 0$$

$$f(x) - 2 = x^2 + 2x + 3 - 2 = x^2 + 2x + 1 = (x + 1)^2$$
 or un carré est toujours positif donc

pour tout réel x on a
$$f(x) - 2 \ge 0$$
 donc pour tout réel x on a $f(x) \ge 2$

Conclusion: f admet 2 pour minimum sur \mathbb{R} , et il est atteint pour x=-1.

Exercice $n \circ 3$: Correction

Par le calcul, montrons que : $f\left(\frac{5}{2}\right) = 5$ et que pour tout réel x on a $f(x) \ge 5$

$$f\left(\frac{5}{2}\right) = 2\left(\frac{5}{2} - \frac{5}{2}\right)^2 + 5 = 5$$

Montrer que

pour tout réel x on a

$$f(x) \geq 5$$

équivaut à montrer que pour tout réel x on a $f(x) - 5 \ge 0$

$$f(x) - 5 \ge 0$$

$$f(x) - 5 = 2(x - \frac{5}{2})^2 + 5 - 5 = 2(x - \frac{5}{2})^2$$
 or un carré est toujours positif donc

pour tout réel x on a

$$f(x) - 5 \ge 0$$
 donc pour tout réel x on a $f(x) \ge 5$

Conclusion: f admet 5 pour minimum sur \mathbb{R} , et il est atteint pour $x = \frac{5}{2}$.

Exercice n °4: Correction

Montrons que $-\frac{5}{4}$ est le minimum de f sur R, et qu'il est atteint pour $x = \frac{5}{2}$

montrons que : $f\left(\frac{5}{2}\right) = -\frac{5}{4}$ et que pour tout réel x on a $f(x) \ge -\frac{5}{4}$ (ou encore que $f(x) + \frac{5}{4} \ge 0$)

$$f\left(\frac{5}{2}\right) = 2 \times \left(\frac{5}{2}\right)^2 - 10\left(\frac{5}{2}\right) + \frac{45}{4} = 2 \times \frac{25}{4} - 10 \times \frac{5}{2} + \frac{45}{4} = \frac{50}{4} - \frac{100}{4} + \frac{45}{4} = -\frac{5}{4}$$

$$f(x) + \frac{5}{4} = 2x^2 - 10x + \frac{45}{4} + \frac{5}{4} = 2x^2 - 10x + \frac{50}{4} = 2\left(x^2 - 5x + \frac{25}{4}\right) = 2\left(x - \frac{5}{2}\right)^2$$

Or un carré est toujours positif donc pour tout réel x on a $f(x) + \frac{5}{4} \ge 0$

<u>Conclusion</u>: pour tout réel x on a $f(x) \ge -\frac{5}{4}$ et : $f\left(\frac{5}{2}\right) = -\frac{5}{4}$ donc $-\frac{5}{4}$ est le minimum de f sur R, et qu'il est atteint pour $x = \frac{5}{2}$