Lista 9

Questão 9.

Seja $f:[a,b]\to\mathbb{R}$ uma função integrável, que se anula fora de um conjunto de medida nula. Prove que sua integral é igual a zero.

Prova:

Seja $X = \{x \in [a,b] : f(x) \neq 0\}$ o conjunto onde f não se anula, então X está contido num conjunto de medida nula (por hipóteses), e portanto X é de medida nula.

- 1. Se f é integrável então |f| é integrável.
- 2. Dado $I \subset [a,b]$ um intervalo não-degenerado, então $\inf\{|f(x)| : x \in I\} = 0$. Suponha, por absurdo, que existe um intervalo não-degenerado $I \subset [a,b]$ tal que $r = \inf\{|f(x)| : x \in I\} > 0$, isto implica que $|f(x)| \ge r$ para todo $x \in I$. Portanto $I \subset X$, o que é um absurdo, já que I não tem medida nula.
- 3. s(|f|,p)=0 para toda partição p de [a,b]. Consequentemente, temos que $\underline{\int_a^b}|f|=0$.

Seja $p = \{t_0, t_1, \dots, t_n\}$ uma partição de [a, b]

$$s(|f|, p) = \sum_{i=0}^{n} \underbrace{m_i}_{=0} (t_i - t_{i-1}) = 0$$

onde $m_i = \inf\{|f(x)| : x \in [t_{i-1}, t_i]\} = 0$ (pelo item 2).

4.
$$\int_a^b |f| = 0$$
, pois $|f|$ é integrável e $\underline{\int_a^b |f|} = 0$.

5.
$$\left| \int_a^b f \right| \le \int_a^b |f| = 0 \Rightarrow \left| \int_a^b f \right| = 0 \Rightarrow \int_a^b f = 0.$$