PRELIMINARY EXAM, SPRING 2005

(3 hours, 8 problems counted equally)

#1. Let P(x) and Q(x) be open sentences containing the variable x, and consider the following statements.

$$A: \forall x, (P(x) \Rightarrow Q(x))$$
 and $B: (\forall x, P(x)) \Rightarrow (\forall x, Q(x))$

- (a) Prove that $A \Rightarrow B$.
- (b) Give an example of open sentences P(x) and Q(x) to show that $B \Rightarrow A$ need not be true.
- #2. Recall that the Fibonacci numbers are defined by $F_0 = 1, F_1 = 1$, and then

$$F_n = F_{n-1} + F_{n-2}$$
 for integers $n \ge 2$.

Prove that any two successive Fibonacci numbers F_n, F_{n+1} are relatively prime.

- #3. Prove that there is exactly one real value of x satisfying $x^3 = 29 x$.
- #4. (a) Give the ϵ, δ definition for continuity of a function $f: \mathbb{R} \to \mathbb{R}$ at a point $x_0 \in \mathbb{R}$.
- (b) Assume that $f: \mathbb{R} \to \mathbb{R}$ is continuous and that $\{a_n\}$ is a sequence of real numbers with $\lim_{n\to\infty} a_n = L$. Prove that $\lim_{n\to\infty} f(a_n) = f(L)$.
- #5. Suppose that $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation satisfying T(1,1) = (5,3) and T(2,3) = (7,9). Find the standard matrix of T.
- #6. Suppose A is a 3×3 matrix and $\vec{v_1}, \vec{v_2}, \vec{v_3} \in \mathbb{R}^3$. Prove the following.
- (a) If $\vec{v}_1, \vec{v}_2, \vec{v}_3$ are linearly dependent, then $A\vec{v}_1, A\vec{v}_2, A\vec{v}_3$ are linearly dependent.
- (b) If $\vec{v}_1, \vec{v}_2, \vec{v}_3$ are linearly independent and $A\vec{v}_1, A\vec{v}_2, A\vec{v}_3$ are linearly dependent, then A is singular.
- #7. Find all cube roots of 2-2i and express them in the standard form a + bi.
- #8. (a) Provide examples to show that the series $\sum_{n=1}^{\infty} a_n^2$ may or may not converge when the series $\sum_{n=1}^{\infty} a_n$ converges conditionally.
- (b) Prove that if the series $\sum_{n=1}^{\infty} a_n$ converges absolutely, then the series $\sum_{n=1}^{\infty} a_n^2$ must converge.