Paper Outline / Road Map

LIG - Verimag May 9, 2017

1 Abstract

we will keep it to the end.

2 Introduction

2.1 General intoduction

- IEEE 802.15.4 overview (1 paragraph).
- TSCH Table Structure.
- 6top protocol and cell reservation.

2.2 The project objectives and Results

- Randomity of cell selection in 6 top.
- Identifying the problem.(collision in the Dedicated cells of the TSCH tables between neighbor nodes)
- The suggested solution. (local mutual execlusion while reserving cells using 6top protocol)

3 Background

3.1 6top cell reservation

- The rule of 6top.
- 2-step 6top Transaction
- 3-step 6top Transaction
- The communication of the cell reservation and deletion in the shared slot.

3.2 filtering of the RX at the mac sublayer

currently reading for This section to be updated soon

3.3 The concept of collision, hidden and exposed terminal.

(collision only occurs at the reception)

4 Proposed Mechanism

- The new created structure that will reserve the cells taken by the neighbors.
- The use of the cell reservation Response to update the created structure.
- An schematics to explain the problem and the solution.
- Why we need to buffer the reserved cells , and how it's going to improve our approach.
- The calculation of the buffer length.
- The used value and why it fits the topologies.

5 Results

to be discussed with the supervisor, I will supply many options for the representions to choose the best fit for us

6 Related Work

- The work done by Muraoka et al (the simulator creators), "6 Top House-keeping"
- \bullet The work done by Phan Duy et al , a paper published in 22/03/2017 dealed with the same problem we are trying to solve.(I will supply you with the paper)
- Compariasno between Housekeeping and our approach.

7 Conclusion

we will keep it to the end.

References

- [1] Q.Wang, and X. Vilajosana, 6top Protocol (6P). Internet Engineering Task Force, Tech. Rep. draft-ietf-6tisch-6top-protocol-00 https://tools.ietf.org/html/draft-ietf-6tisch-6top-protocol-00, April 2016.
- [2] T. Watteyne et al, Using IEEE 802.15.4e Time-Slotted Channel Hopping (TSCH) in the Internet of Things (IoT): Problem Statement https://tools.ietf.org/html/rfc7554, May 2015.

- [3] T. Winter et al, RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks https://tools.ietf.org/html/rfc6550, March 2012.
- [4] D. Dujovne et al, 6tisch: deterministic ip-enabled industrial internet(of things) IEEE Communications Magazine Communications Standards Supplement, December 2014.
- [5] J. Tripathi et al, A Performance Evaluation Study of RPL: Routing Protocol for Low Power and Lossy Networks Information Sciences and Systems (CISS), 44th Annual Conference on (pp. 1-6). IEEE, March 2010.
- [6] F. Theoleyre and G. Papadopoulos, Experimental Validation of a Distributed Self-Configured 6TiSCH with Traffic Isolation in Low Power Lossy Networks Proceedings of the 19th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems (pp. 102-110). ACM, November 2017.
- [7] N. Accettura et al, A Decentralized Traffic Aware Scheduling in 6TiSCH Networks: Design and Experimental Evaluation IEEE Internet of Things Journal, 2(6), 455-470, December 2015.
- [8] M. R. Palattella et al, On-the-Fly Bandwidth Reservation for 6TiSCH Wireless Industrial Networks IEEE Sensors Journal, 16(2), 550-560, September 2015.
- [9] M. R. Palattella et al, Traffic Aware Scheduling Algorithm for Reliable Low-Power Multi-Hop IEEE 802.15.4e Networks IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications - (PIMRC), September 2012.
- [10] N. Accettura et al, Decentralized Traffic Aware Scheduling for Multi-hop Low Power Lossy Networks in the Internet of Things In World of Wireless, Mobile and Multimedia Networks (WoWMoM), 2013 IEEE 14th International Symposium and Workshops on a (pp. 1-6). IEEE, June 2013.
- [11] S. Duquennoy et al, Orchestra: Robust Mesh Networks Through Autonomously Scheduled TSCH—Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems (pp. 337-350). ACM, November 2015.
- [12] K. Muraoka et al, Simple Distributed Scheduling With Collision Detection in TSCH Networks IEEE Sensors Journal, 16(15), 5848-5849, May 2016.
- [13] L. Lamport, Time, clocks, and the ordering of events in a distributed system Communications of the ACM, 21(7), 558-565, July 1978.
- [14] T. P. Duy, Distributed cell selection for scheduling function in 6TiSCH networks Computer Standards and Interfaces, 53, 80-88, March 2017.