BACHELOR OF COMPUTER SCIENCE ENGINEERING EXAMINATION, 2011

(2nd Year, 2nd Semester)

MATHEMATICS - VI D

PAPER: PROBABILITY

Time: Three Hours Full Marks - 100

Attempt any Five questions.

Each question carries 20 makrs

- 1. Define the following terms (giving an example to each term):
 - a) Random Experiment.
 - b) Sample space finite, infinite.
 - c) Events, null event, sure event, elementary event.
 - d) Axioms of probability (give example on a concrete sample space, defining a probability obeying these axioms).

2+4+6+8=20

- 2. a) On a certain day, it rains with probability 0.4 and it snows with probability 0.8. If the probability to rain or snow is 1, find the probability of both raining and snowing.
 - b) If P(A)=0.5, P(B)=P(C)=0.3, $P(A \cup B \cup C)=1$ and $P(A \cap B)=P(B \cap C)=P(C \cap A)=P(A \cap B \cap C)=x$, find x. 10+10=20

[Turn over

- 3 -

- 3. State the classical Matching problem and find the probability of exactly k matches where k is any non-negative integer.
- 4. a) Motivate and define conditional probability. State and prove Bayes' theorem.
 - b) There are 3 Physics books, each with 2 volumes and 5 Mathematics books, each with 3 volumes. Find the probability of placing these 21 books on a shelf with increasing volume numbers, given that Mathematics books are placed before Physics books if both of them have identical volume numbers.

 10+10=20
- 5. a) Define a geometric random variable through coin tossing, hence, find its mean, variance and characteristic function.
 - b) Let x be a continuous random variable with density (p.d.f.) given by

$$f(x) = \begin{cases} \frac{1}{2}e^{-\frac{x}{2}} & \text{if } x > 0\\ 0 & \text{otherwise} \end{cases}$$

Find the mean, variance and characteristic function of x.

10+10=20

- a) Define a Hypergeometric random variable by occupancy problems (distribution of balls in urns). Hence find its mean, median and mode.
 - b) Find the mean, median and mode of a binomial random variable. 10+10=20
- 7. Let \tilde{X}_{2x1} be a two dimensional random vector with joint density (jt.p.d.f.)

$$f\begin{pmatrix} x \\ y \end{pmatrix} = K.e^{-\frac{1}{2}} \begin{pmatrix} x \\ y \end{pmatrix}^t \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} (x, y)$$

where K^{ER} is a constant and x.y

Find K_0 , $E(\tilde{X})_{2x1}$ and the dispersion (variance-covariance) matrix of X_{2x1} .