Chapter 2: Processes

Mr. SUBHASIS DASH
SCHOLE OF COMPUTER ENGINEERING.
KIIT UNIVERSITY, BHUBANESWAR
subhasisbbsr@gmail.com

Process Management

- □ A process is a program in execution. It is a unit of work within the system. Program is a *passive entity*, process is an *active entity*.
- Process needs resources to accomplish its task
 - □ CPU, memory, I/O, files
 - Initialization data
- Process termination requires reclaim of any reusable resources
- Single-threaded process has one program counter specifying location of next instruction to execute
 - Process executes instructions sequentially, one at a time, until completion
- Multi-threaded process has one program counter per thread
- Typically system has many processes, some user, some operating system running concurrently on one or more CPUs
 - Concurrency by multiplexing the CPUs among the processes / threads

Process Management Activities

The operating system is responsible for the following activities in connection with process management:

- Creating and deleting both user and system processes
- Suspending and resuming processes
- Providing mechanisms for process synchronization
- Providing mechanisms for process communication
- Providing mechanisms for deadlock handling

Process Concept

- An operating system executes a variety of programs:
 - □ Batch system jobs
 - ☐ Time-shared systems user programs or tasks
- Textbook uses the terms job and process almost interchangeably
- Process a program in execution; process execution must progress in sequential fashion
- A process includes:
 - program counter
 - stack
 - data section

Process in Memory

Process State

- ☐ As a process executes, it changes *state*
 - new: The process is being created
 - running: Instructions are being executed
 - waiting: The process is waiting for some event to occur
 - □ ready: The process is waiting to be assigned to a processor
 - terminated: The process has finished execution

Diagram of Process State

Process Control Block (PCB)

Information associated with each process

- Process state
- Program counter
- CPU registers
- CPU scheduling information
- Memory-management information
- Accounting information
- I/O status information

process state process number program counter registers memory limits list of open files

CPU Switch From Process to Process

Process Scheduling Queues

- □ **Job queue** set of all processes in the system
- Ready queue set of all processes residing in main memory, ready and waiting to execute
- □ Device queues set of processes waiting for an I/O device
- Processes migrate among the various queues

Ready Queue And Various I/O Device Queues

Representation of Process Scheduling [continued......]

- Two types of queue :
 - -- READY QUEUE. & DEVICE QUEUE.
 - -- RECTANGLES ARE REPRESENTED AS QUEUES.
- Circles represents resources :
 - -- SERVES THE QUEUES.
- Arrows represents flow :
 - -- EXECUTION FLOW OF PROCESS IN A SYSTEM.
- Working Procedure :
 - -- Process put into ready queue [process selection] & wait [start] for execution.
 - -- Process could issue an I/O request & then place it in I/O queue.
 - -- Process executes for given time slice until expires ,then CPU switches to other process.
 - -- Process could create new sub-process [child process] & wait for termination.
 - -- Interrupt could forcibly removed a process from execution & put it back to ready queue.

Representation of Process Scheduling

Schedulers

- During process life time, it switches from one scheduling queue to another.
- ✓ Process selection is carried out by scheduler.
- □ Long-term scheduler (or job scheduler)
 - selects which processes should be brought into ready queue from disk
 - Executes less frequently.
 - Controls degree of multiprogramming
 - **▶** Avg. No. of process creation = Avg. No. of process termination.
- Short-term scheduler (or CPU scheduler)
 - selects which process should be executed next and allocates CPU
 - CPU selects process & execute quite frequently.

Addition of Medium Term Scheduling

Schedulers (Cont.)

- □ Short-term scheduler is invoked very frequently (milliseconds) ⇒ (must be fast)
- □ Long-term scheduler is invoked very infrequently (seconds, minutes)
 ⇒ (may be slow)
- The long-term scheduler controls the degree of multiprogramming
- Processes can be described as either:
 - I/O-bound process spends more time doing I/O than computations, many short CPU bursts
 - CPU-bound process spends more time doing computations;
 few very long CPU bursts

Context Switch

- When CPU switches to another process, the system must save the state of the old process and load the saved state for the new process
- Context-switch time is overhead; the system does no useful work while switching
- Time dependent on hardware support

End of Chapter 2