EQUALITY OF NORMS IN \mathbb{R}^n

REAL ANALYSIS PRESENTATION

Hung, Zhangsheng

1

Definition

A norm on \mathbb{R}^n is a function $\|\cdot\|:\mathbb{R}^n\to\mathbb{R}$ with the following properties: For all $x,y\in\mathbb{R}^n$ and $a\in\mathbb{R}$

- 1. $||x|| \ge 0$, ||x|| = 0 iff x = 0
- 2. ||ax|| = |a|||x||
- 3. $||x + y|| \le ||x|| + ||y||$

1-norm

For $x \in \mathbb{R}^n$,

$$||x||_1 = \sum_{i=1}^n |x_i|$$

It is easy to see that it satisfy properties 1 and 2, so we shall show the triangle of inequality property

$$||x + y||_1 = \sum_{i=1}^n |x_i + y_i| \le \sum_{i=1}^n |x_i| + |y_i| = \sum_{i=1}^n |x_i| + \sum_{i=1}^n |y_i| = ||x||_1 + ||y||_1$$

Definition

Two norms $\|\cdot\|_a$ and $\|\cdot\|_b$ on \mathbb{R}^n are equivalent if there exists two constants $c_1, c_2 > 0$ such that

$$c_1 ||x||_b \le ||x||_a \le c_2 ||x||_b$$

Theorem (Extreme Value Theorem)

Let $f: X \to \mathbb{R}$ be continuous. If X is compact¹, then there exists points c and d such that

$$f(c) \le f(x) \le f(d)$$

for all $x \in X$.

 $^{^{1}}$ closed and bounded by Heine-Borel theorem when in $X=\mathbb{R}^{n}$

IDEA OF PROOF

Steps

- 1. Transitivity property of norm equivalence
- 2. Consideration of only $||x||_1 = 1$
- 3. Continuity of any norm $\|\cdot\|_q$ under the 1–norm
- 4. Maximum and minimum of $\|\cdot\|_a$ on the 1—norm unit sphere

TRANSITIVITY PROPERTY OF NORM EQUIVALENCE

Suppose we have two norms $\|\cdot\|_a$, $\|\cdot\|_{a'}$ that are equivalent to constants $c_1, c_2 > 0$ and $c_1', c_2' > 0$ respectively:

$$c_1 ||x||_1 \le ||x||_a \le c_2 ||x||_1$$

 $c'_1 ||x||_1 \le ||x||_{a'} \le c'_2 ||x||_1$

then

$$\frac{c_1'}{c_2} \|x\|_a \le c_1' \|x\|_1 \le \|x\|_{a'} \le c_2' \|x\|_1 \le \frac{c_2'}{c_1} \|x\|_a$$

which shows that if every norm in \mathbb{R}^n is equivalent to the 1-norm, it implies that all the norms in \mathbb{R}^n are equivalent.

TRANSITIVITY PROPERTY OF NORM EQUIVALENCE

Consideration of only $||x||_1 = 1$

We want to show that for every norm $\|\cdot\|_a$ in \mathbb{R}^n ,

$$c_1||x||_1 \leq ||x||_a \leq c_2||x||_1$$

this is trivially true for x=0 and thus for $x\neq 0$, we can normalize x such that it is unit length in the 1-norm, by scaling x be a multiple of $1/\|x\|_1$, i.e.

$$c_1 = c_1 \|u\|_1 \le \|u\|_a \le c_2 \|u\|_1 = c_2$$
 (1)

where $u=x/\|x\|_1$. This means if we can show that (1) holds for the set $\{x\in\mathbb{R}^n|\|x\|_1=1\}$, it is same as showing for all $x\in\mathbb{R}^n$.

Consideration of only $||x||_1 = 1$

CONTINUITY OF ANY NORM $\|\cdot\|_a$ UNDER THE 1-NORM

Showing that every norm $\|\cdot\|_a$ is continuous under the 1- norm allows us to apply the generalised extreme value theorem from earlier.

Leave to Hung from here

Continuity of any norm $\|\cdot\|_a$ under the 1- norm

MAXIMUM AND MINIMUM OF $\|\cdot\|_a$ ON THE 1-NORM UNIT SPHERE

Here we proof the claim that $S := \{x \in \mathbb{R}^n | ||x||_1 = 1\}$ is a compact set.

Proof.

Let y be any limit point of S, then given any $\delta > 0$, we have an open ball of radius δ centered at y, denoted by $B_{\delta}(y)^2$ such that $B_{\delta}(y) \cap S \neq \emptyset$. Pick $z \in B_{\delta}(y) \cap S$, then

$$\delta > ||y - z||_1 > |||y||_1 - ||z||_1| = |||y||_1 - 1|$$

since δ is arbitrary, we have $||y||_1 = 1$ and thus we have shown S is closed since its limit points are all in S. S is bounded by construction of the set.

 ${}^{2}B_{\delta}(y) := \{x \mid ||y - x||_{1} < \delta\}$

14