

Bayesian Statistics and Hierarchical Bayesian Modeling for Psychological Science

Lecture 01

Lei Zhang

Social, Cognitive and Affective Neuroscience Unit (SCAN-Unit)

Department of Basic Psychological Research and Research Methods

What comes to your mind when talking about Statistics?

Goal of this course

Practical R programming

Practical model-building in Stan, model diagnostics

(Enough) theory to ground you

 Be comfortable to use R/Stan for your own work + very basic knowledge of GitHub

A clear goal depends on knowledge & expectations

Pre-course survey

- sent to 9 registered students
- received 8
- 89% return rate, many thanks!

spontaneous feedback are still welcome at any time!

Your knowledge of stats

Your knowledge of programming

Your expectations

Schedule of Lectures

10.09	L01	Introduction and overview
16.10	L02	Introduction to R
23.10	L03	Probability; Bayes' Theorem
30.10	L04	Binomial model; MCMC & Stan
06.11	L05	Simple linear model
13.11	L06	Cognitive Modeling; Reinforcement learning model
20.11	L07	More on RL model
27.11	L08	Hierarchical modeling
04.12	L09	More on hierarchical modeling
11.12	L10	Optimizing Stan codes
08.01	L11	PRL task & model comparison
?? (15.01)	L12	Introduction to model-based fMRI
22.01	L13	Stan style tip & debugging
29.01	L14	Programming project + summary + HPC demo

Review a paper #1

Review a paper #2

Course structure (from L02)

90 min

80-85 min (intermixed)

Lecture + Programming

5-10 min
Discussion &
feedback

PAIR PROGRAMMING

Review of a paper?

After L06

students 1:5

students 6:9

After LII

students 6:9

students 1:5

How to review a paper?

- Suppose you are invited by a journal editor to review a paper
- Of course, you have to read it⁽²⁾, carefully and critically
- Then write a review report to the editor
 - (I) Make a summary. What is this paper about? What was done? What was the conclusion?
 - (2) List your concerns. Is the design appropriate? Are the analyses sound? Do their data support the conclusion? What can be done better?
- For this course:
 - up to 3 pages (11pt, 1.5 space)
 - be independent: okay to discuss HOW to review, but do NOT discuss WHAT to review

Programming project

- will be announced after L03
- can be summitted at any time before end of semester (23.02.2020)
- use R and RStan
- will be a real-world cognitive modeling problem
- hand in the *.R and *.stan files in a ZIP file
- name as: lastname_matriculatenumber_200140.ZIP
- no need to write a report

Gradings

- Regular participation (30%; 3 lectures are allowed to miss)
- Review of paper#1, 10 (25%), due on <u>20.11.2019</u>*
- Review of paper#2, 10 (25%), due on <u>15.01.2020*</u>
- Programming work, I0 (20%), due on <u>23.02.2020</u>*

- Grades: >87% I, >75% 2, >63% 3, >50% 4, <=50% 5
- At least <u>51%</u> to obtain 4 ECTS

Overview

What is your experience with...

- Statistics?
- R? (and / or Matlab?)
- Cognitive Modeling?

You would like to...

- gain knowledge of Bayesian stats?
- be able to read "computational modeling" section in papers?
- write your own model?

More survey results.

More Qs about the course

NA

Is there a way of checking if my R skills are sophisticated enough? And will there be a tutorium or some explanations around it?

Not yet

If I have learned some R before, but never actually used it, will I be able to follow the course, if I study hard?

Q regarding the instructor

NA

Not yet

What are your research interests?

Further questions

- What knowledge is expected as a prerequisite?
 - some stats, some programming, but I'll start from the beginning

- How many R skills will we get taught?
 - As much as I could, but fit everything in 13 lectures is difficult

Anything else?

How to Get the Most out of the course

- Lecture structure: 60min theory + demo, 20-30min exercise + discussion
- Work in pairs: Talk to each other & help each other
- Ask questions
- Try the exercises

PAIR PROGRAMMING

The dark side of pair programming.

A quick at GitHub

I say this a lot, bc I am also confused quite often.

Anna Jacobson @AnnaChingChing · Feb 21

"If you are confused, it is only because you are trying to understand." -@rlmcelreath in Statistical Rethinking

Now let's begin!

Overview

This course is **NOT** about...

- ... Bayes in the brain (e.g. predictive coding)
- ... Bayesian statistics to supersede classic statistics

However, Bayesian statistics offer great tools to analyze cognitive processes!

- Construct cognitive models
- Estimate posterior distributions of parameters
- Compare models: which is the best one, given the data
- Perform model-based analysis, e.g. model-based fMRI/EEG/eye-movement

What We Talk About When We Talk About "Bayesian" Models

Parameter estimate

Resources

Statistical Thinking for the 21st Century

Copyright 2018 Russell A. Poldrack

Draft: 2018-11-22

http://thinkstats.org/

https://www.datacamp.com/

https://jasp-stats.org/

AN JEST ON