5

Eigenvalues and Eigenvectors

5.5

COMPLEX EIGENVALUES

COMPLEX EIGENVALUES

- The matrix eigenvalue-eigenvector theory already developed for \mathbb{R}^n applies equally well to \mathbb{C}^n .
- So a complex scalar λ satisfied $\det(A-\lambda I) = 0$ if and only if there is a nonzero vector x in \mathbb{C}^n such that $Ax = \lambda x$.

• We call λ a (complex) eigenvalue and x a (complex) eigenvector corresponding to λ .

COMPLEX EIGENVALUES

- Example 1 If $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$, then the linear transformation $x \mapsto Ax$ on \mathbb{R}^2 rotates the plane counterclockwise through a quarter-turn.
- The action of A is periodic, since after four quarter-turns, a vector is back where it started.
- Obviously, no nonzero vector is mapped into a multiple of itself, so A has no eigenvectors in \mathbb{R}^2 and hence no real eigenvalues.
- In fact, the characteristic equation of A is

$$\lambda^2 + 1 = 0$$

COMPLEX EIGENVALUES

• The only roots are complex: $\lambda = i$ and $\lambda = -i$. However, if we permit A to act on \mathbb{C}^2 , then

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -i \end{bmatrix} = \begin{bmatrix} i \\ 1 \end{bmatrix} = -i \begin{bmatrix} 1 \\ i \end{bmatrix}$$
$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ i \end{bmatrix} = \begin{bmatrix} -i \\ 1 \end{bmatrix} = -i \begin{bmatrix} 1 \\ i \end{bmatrix}$$

Thus i and -i are eigenvalues, with $\begin{bmatrix} 1 \\ -i \end{bmatrix}$ and $\begin{bmatrix} 1 \\ i \end{bmatrix}$ as corresponding eigenvectors.

REAL AND IMAGINARY PARTS OF VECTORS

- The complex conjugate of a complex vector x in \mathbb{C}^n is the vector \bar{x} in \mathbb{C}^n whose entries are the complex conjugates of the entries in x.
- The **real** and **imaginary parts** of a complex vector x are the vectors Re x and Im x in \mathbb{R}^n formed from the real and imaginary parts of the entries of x.

REAL AND IMAGINARY PARTS OF VECTORS

• Example 4 If
$$x = \begin{bmatrix} 3-i\\i\\2+5i \end{bmatrix} = \begin{bmatrix} 3\\0\\2 \end{bmatrix} + i \begin{bmatrix} -1\\1\\5 \end{bmatrix}$$
, then

Re
$$x = \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix}$$
, Im $x = \begin{bmatrix} -1 \\ 1 \\ 5 \end{bmatrix}$, and $\bar{x} = \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix} - i \begin{bmatrix} -1 \\ 1 \\ 5 \end{bmatrix} = \begin{bmatrix} 3+i \\ -i \\ 2-5i \end{bmatrix}$

EIGENVALUES AND EIGENVECTORS OF A REAL MATRIX THAT ACTS ON

■ Theorem 9: Let A be a real 2×2 matrix with a complex eigenvalue $\lambda = a - bi$ ($b \neq 0$) and an associated eigenvector v in \mathbb{C}^2 . Then

$$A = PCP^{-1}$$
, where $P = [\text{Re } \lor \text{Im } \lor]$ and $C = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$

PROOF

Let v be a vector in \mathbb{C}^n , and A be a real $n \times n$ matrix. First, we show that Re(Av) = A Re(v) and Im(Av) = A Im(v).

- We have: v = Re(v) + Im(v) i.
- ightharpoonup So Av = A Re(v) + A Im(v) i.
- ▶ Since A is real, so are A Re(v) and A Im(v).
- ▶ Thus A Re(v) is the real part of Av and A Im(v) is the imaginary part of Av.

PROOF

Let A be a real $n \times n$ matrix, and v be a complex eigenvector of it $(Re(v), Im(v) \neq o)$. Second, we show that Re(v) and Im(v) are linearly independent.

- Let \overline{v} be the complex conjugate of v. It is easy to see that v and \overline{v} are linearly independent!
- So, the following has only trivial solution:

$$c_1(Re(v) + Im(v)i) + c_2(Re(\overline{v}) + Im(\overline{v})i) = 0$$
 (1)

► Eq. 1 can be simplified as follows:

$$(c_1 + c_2)Re(v) + i(c_1 - c_2)Im(v) = 0$$
 (2)

But the solution to Eq. 2 is equivalent to the solution of the following: $k_1 Re(v) + k_2 Im(v) = 0$.

▶ Therefore, Re(v) and Im(v) are linearly independent.

PROOF

- ▶ If $\lambda = a b i$, then $Av = \lambda v = (a b i)(Re(v) + Im(v) i)$.
- This gives: Av = (a Re(v) + b Im(v)) + (a Im(v) - b Re(v)) i = Re(Av) + Im(Av) i.
- ▶ By the previous slide, we have:
 - ightharpoonup A Re(v) = Re(Av) = a Re(v) + b Im(v)
 - A Im(v) = Im(Av) = -b Re(v) + a Im(v)
- Let $P = [Re(v) \ Im(v)]$. We have: $A \ Re(v) = P \begin{pmatrix} a \\ b \end{pmatrix}$ and $A \ Im(v) = P \begin{pmatrix} -b \\ a \end{pmatrix}$
- ► Therefore, $AP = A [Re(v) \ Im(v)] = \begin{bmatrix} P \begin{pmatrix} a \\ b \end{pmatrix} \ P \begin{pmatrix} -b \\ a \end{pmatrix} \end{bmatrix} = P \begin{bmatrix} a & -b \\ b & a \end{bmatrix} = P C$