Data Science for Social Good

Johannes J. Müller – CorrelAid e.V.

23.06.2018

Twitter: @jj_mllr

Agenda

Part 1: Machine Learning

Part 2: Use Cases

Welche Werbung funktioniert bei wem besonders gut?

Version 1:

COMPLICIT 38.214 Aufrufe

16 763 **4** 137 → TEILEN =+ ···

Version 2:

Rationaleres Profil

Donald Trump - Crooked Hillary Ad 5.709 Aufrufe

1 49 **4** 4 → TEILEN =+ ...

Welche Werbung für wen?

Was brauchen wir für die Klassifikation

- 1. Wie können wir messen ob jemand neurotisch ist oder nicht?
- 2. Woher bekommen wir einen Datensatz mit dem wir unser Modell "trainieren" können?
- 3. Wie können wir klassifizieren ob jemand zur ängstlichen Gruppe gehört nur mit Facebook-Daten?

Persönlichkeitsprofile

Persönlichkeitsprofile

Datensatz

Name	Neurotisch	BMW_Like	Adele_Like	Trump_Like
Alan	JA	JA	JA	JA
Betty	NEIN	NEIN	JA	NEIN
Jean	JA	NEIN	NEIN	JA
Satoshi	NEIN	JA	JA	NEIN
	•••		•••	

Supervised Learning

Logistic Regression

Decision Trees

Neural Networks

Klassifikationsmethode: Decision Tree

Datensatz

ID	Neurotisch	BMW_Like	Adele_Like	Trump_Like	Vorhersage
Alan	JA	JA	JA	JA	RICHTIG
Betty	NEIN	NEIN	JA	NEIN	RICHTIG
Jean	JA	NEIN	NEIN	JA	FALSCH
Satoshi	NEIN	JA	JA	NEIN	RICHTIG
		•••	•••	•••	

Den Decision Tree "trainieren"

→ Richtige Vorhersagen: 85%

→ Richtige Vorhersagen: 70%

→ Richtige Vorhersagen: 90%

Klassifikation

Steps of Machine Learning

- 1. Daten sammeln
- 2. Daten labeln
- 3. Daten aufbereiten
- 4. Modell trainieren, evaluieren, anpassen,
- 5. Vorhersagen treffen

Wie können wir diese Technik für etwas Gutes nutzen?

CASE: Blutspenden vorhersagen

Mobile Blood Donation Vehicle in Taiwan: The Blood Transfusion Service Center drives to different universities and collects blood as part of a blood drive. We want to predict whether or not a donor will give blood the next time the vehicle comes to campus.

Vorgehen

	Months since Last Donation	Number of Donations	Total Volume Donated (c.c.)	Months since First Donation
619	2	50	12500	98
664	0	13	3250	28
441	1	16	4000	35
160	2	20	5000	45
358	1	24	6000	77

- Daten über BlutspenderInnen werden anonymisiert
- Für jedeN SpenderIn wird berechnet wie wahrscheinlich er oder sie wieder spenden wird
- Daraus lässt sich ableiten ob der Bedarf durch die Blutspenden gedecket werden kann

What's up with Deep Neural Networks?

Was der Computer sieht

Was der Computer sieht

CASE: Give Directly

Dymo

User: brian Image: KE2013071461-iron.png

Instructions:

- Identify thatch roofs by clicking on them.
- Identify iron roofs by shift+clicking on them.
- · If you need to restart, press 'Clear'
- When you're done with an image, press 'Submit'

Labels:

- iron x: 133, y: 227
- thatch x: 68, y: 230
- thatch x: 33, y: 118
- thatch x: 63, y: 95
- thatch x: 299, y: 137
- thatch x: 360, y: 171
- iron x: 374, y: 353
- thatch x: 139, y: 376
- thatch x: 180, y: 217
- thatch x: 203, y: 234
- thatch x: 269, y: 223
- iron x: 276, y: 150
- . thatch x: 269, y: 44
- thatch x: 17, y: 326

- Projekt mit GiveDirectly in Uganda & Kenya
- Wo werden Micro-Spenden am dringendsten gebraucht?
- Dichte der Metall-Dächer als Proxy für finanzielle Lage eines Dorfes
- Machine Learning um Dächer zu klassifizieren

ml5.js

Friendly Machine Learning for the Web.

TASK 1:

- 1. Überlegt euch einen Use Case für eine Bildklassifikations-App
- 2. Bringt euren ersten Prototypen zum laufen
- 3. Testet die App

Das Potential von Datenanalyse demokratisieren

Ideation @CorrelAid

Ideation @CorrelAid

Wirkungslogik

- Welche Impact-Ziele gibt es?
- Wie sieht die Wirkungslogik aus?

Herausforderungen

Vor welchen Herausforderungen steht die Organisation?

Daten

- Welche Daten sind vorhanden?
- Wie können diese Daten genutzt werden?

Mission

Was möchte die Organisation erreichen?

TASK 1:

Diskutiert 10 Minuten was Herausforderungen in gemeinnützigen Organisationen sind? Am besten am Beispiel einer Organisation in der Ihr euch engagiert.

Worüber wir reden wenn wir von Daten reden

Aufgezeichnete Daten

Geordnete Daten

Netzwerk-Daten

H	4	Α	В	С	D	E
1	1	Datum	Kunde	Artikel	Menge	Wert
	2	15.09.1996	Mayer	Ball	12	300,00
	3	15.09.1996	Mayer	Schläger	3	3.750,00
	4	15.09.1996	Mayer	Schuhe	5	3.900,00
	5	17.09.1996	Berger	Dress	1	290,00
	6	17.09.1996	Berger	Ball	6	150,00
	7	17.09.1996	Huber	Ball	24	600,00
	8	22.09.1996	Mayer	Dress	4	1.160,00
	9	24.09.1996	Huber	Schläger	6	7.500,00
	10	25.09.1996	Mayer	Dress	2	580,00
	11	25.09.1996	Mayer	Schläger	8	10.000,00
	12	26.09.1996	Huber	Schläger	2	2.500,00
	13	26.09.1996	Huber	Ball	12	300,00
	14	26.09.1996	Berger	Schläger	7	8.750,00
	15	26.09.1996	Berger	Ball	9	225,00
	16	02.10.1996	Mayer	Schläger	8	10.000,00
	17	05.10.1996	Berger	Ball	36	900,00
	18	07.10.1996	Huber	Ball	24	600,00
	19	07.10.1996	Huber	Dress	1	290,00
	20	07.10.1996	Huber	Schläger	3	3.750,00

Wo kommen die Daten her?

Spendendaten

> Twitter-Daten

Protokolle

Mitgliederdatenbank

Bewerbungsformulare

Erfahrungsberichte Umfragedaten

Newsletter-Daten

Website-Daten

Mitglieder-Spenden-Umfrage-**Strukturiert** daten datenbank daten Newsletter-Twitter-Daten Daten Website-Daten Bewerbungsformulare Unstrukturiert Erfahrungs-Protokolle berichte

"Gefundene Daten"

"bewusste Datenerhebung"

Strukturiert

Unstrukturiert

"Gefundene Daten"

"bewusste Datenerhebung"

TASK 2:

Überlegt, welche Datenquellen es in eurer Organisation geben könnte. Sind diese zugänglich? Was für Probleme könnte es mit den Daten geben?

Mögliche Ziele

- Vorhersagen
- Klassifikation/ Mustererkennung
- Vorschläge
- Wirkungsanalyse
- Informierte Entscheidungen
- •

Analyseverfahren

Use Cases: Teil 1

Klassifikation

- Muster entdecken
- Gruppen zuordnen

Vorhersage

- Bedarf vorhersagen
- Erfolgsfaktoren identifizieren

Exploration

- Zielgruppe besser verstehen
- Mitgliederstrukturen verstehen
- Hypothesen testen

Use Cases: Teil 2

Netzwerkanalyse

- Einflussreiche Personen im Netzwerk identifizieren
- Beziehungen verstehen
- Informationsflüsse nachvollziehen

Evaluation

- Wirksamkeit messen
- Marketingmaßnahmen evaluieren

Visualisierung

- Storytelling
- Tracking von KPIs

Wie sozial inklusiv ist meine Organisation?

Beschreibende Analyse

CASE: PFADFINDER- UND PFADFINDERINNENBUND NORD

- Jugendorganisation mit 1000 Mitgliedern aus Norddeutschland, die das Ziel hat die Entwicklung junger Menschen zu fördern.
- Befragung von 567 PfadfinderInnen
- Fragen:
 - Wie sind Minderheiten repräsentiert im Vergleich zur allg. Bevölkerung?
 - Wer übernimmt Verantwortung?
 - Wie wurden die Mitglieder geworben?
- Impact: T\u00e4tigkeiten besser auf Mitglieder abstimmen und potentiell interessierte Jugendliche gezielter ansprechen

Wo ist die Gefahr am größten? Wo werden unsere Ressourcen am dringendsten gebraucht?

Vorhersagende Analyse

CASE: Brandvorhersage in NYC

DataKind

"The American Red Cross Home Fire Preparedness Campaign aims to reduce the number of home-fire deaths and injuries by 25 percent over the next five years, working with community partners and stakeholders to install smoke alarms and provide fire- and disaster-safety education in communities at risk for home fires."

Vorgehen

- Daten über häusliche Katastrophen von American Red Cross werden anonymisiert
- Übersicht erstellen von Mustern in den USA
- Erstellen eines Vorhersagemodells um die risikoreichsten Regionen in den USA zu identifizieren
- Impact: American Red Cross kann entscheiden wo sie ihre nächsten Kampagnen starten sollen

Hat meine Marketing- oder Awareness Kampagne funktioniert?

Wirksamkeitsanalyse

Effekt einer Awareness-Kampagne

www.bcaction.org

Breast Cancer Action

@BCAction

National education & activist organization dedicated to addressing & ending the breast cancer epidemic. Health justice for all!

San Francisco Bay Area, CA

Joined June 2009

Daily Twitter Engagement of @BCAction

Was ist der Effekt in den ersten 20 Tagen?

Durchschnittlicher Täglicher Effekt

- + 260 %
- + 30 Likes/Retweets

Gesamter Effekt

+ 636 Likes/Retweets

Data-driven social media marketing

Netzwerkanalyse

OpenTransfer's most influential followers

Follower Netzwerke

Welche Themen interessiert das Netzwerk?

Per report Meder mensch jung

TASK 3:

Überlegt euch eine oder mehrere Projekte bei denen Datenanalyse diese Organisation helfen könnte.

Das Potential von Datenanalyse demokratisieren

Data for Good

Data for Good

CorrelAid

Wir sind ein deutschlandweites Netzwerk aus 650 jungen Datenanalystinnen und -analysten, das mit einem inklusiven, vernetzten und innovativen Ansatz das Potential von Datenanalyse demokratisiert.

Unsere drei Säulen

- 1) Wir nehmen in Deutschland eine Vorreiterrolle bei der probono Datenanalyse-Beratung von Organisationen mit sozialem Auftrag ein.
- 2) Wir vernetzen junge und engagierte Data Scientists und bieten ihnen eine Plattform, ihre Kenntnisse anzuwenden und zu erweitern.
- 3) Zudem stoßen wir einen Dialog über den Wert und Nutzen von Daten und Datenanalyse für die Zivilgesellschaft an.

Kontakt

Johannes Müller

Vorstandsvorsitzender CorrelAid e.V. johannes.m@correlaid.org
@jj_mllr

www.correlaid.org facebook.com/WeAreCorrelAid @CorrelAid

Machine Learning

Schreibt mir gerne...

johannes.m@correlaid.org

Twitter: @jj_mllr facebook.com/WeAreCorrelAid

