Internet Protocols EBU5403 The Data Link Layer Part I C4

Michael Chai (michael.chai@qmul.ac.uk)
Richard Clegg (r.clegg@qmul.ac.uk)
Cunhua Pan (c.pan@qmul.ac.uk)

	Part I	Part 2	Part 3	Part 4
Ecommerce + Telecoms I	Richard Clegg		Cunhua Pan	
Telecoms 2	Michael Chai			

Structure of course

- Part A
 - Introduction to IP Networks
 - The Transport layer (part 1)
- Part B
 - The Transport layer (part II)
 - The Network layer (part I)
 - Class test
- Part C
 - The Network layer (part II)
 - The Data link layer (part I)
- Part D
 - The Data link layer (part II)
 - Network management and security
 - Class test

Data Link Layer

Link layer, LANs: outline

- 6.1 introduction, services
- 6.2 error detection, correction
- 6.3 multiple access protocols
- 6.4 LANs
 - addressing, ARP
 - Ethernet
 - switches
 - VLANS

- 6.5 link virtualization: MPLS
- 6.6 a day in the life of a web request

Link layer: introduction

terminology:

- hosts and routers: nodes
- communication channels that connect adjacent nodes along communication path: links
 - wired links
 - wireless links
 - LANs
- layer-2 packet: frame, encapsulates datagram

data-link layer has responsibility of transferring datagram from one node to physically adjacent node over a link

Link layer: context

- datagram transferred by different link protocols over different links:
 - e.g., Ethernet on first link, frame relay on intermediate links, 802. I I on last link
- each link protocol provides different services
 - e.g., may or may not provide rdt over link

Link layer services

- framing, link access:
 - encapsulate datagram into frame, adding header, trailer
 - channel access if shared medium
 - "MAC" addresses used in frame headers to identify source, destination
 - different from IP address!
- reliable delivery between adjacent nodes
 - we learned how to do this already (transport layer)!
 - seldom used on low bit-error link (fiber, some twisted pair)
 - wireless links: high error rates
 - Q: why both link-level and end-end reliability?

Link layer services (more)

flow control:

pacing between adjacent sending and receiving nodes

error detection:

- errors caused by signal attenuation, noise.
- receiver detects presence of errors:
 - signals sender for retransmission or drops frame

error correction:

 receiver identifies and corrects bit error(s) without resorting to retransmission

half-duplex and full-duplex

 with half duplex, nodes at both ends of link can transmit, but not at same time

Where is the link layer implemented?

- in each and every host
- link layer implemented in "adaptor" (aka network interface card NIC) or on a chip
 - Ethernet card, 802.11 card; Ethernet chipset
 - implements link, physical layer
- attaches into host's system buses
- combination of hardware, software, firmware

Link layer, LANs: outline

- 6. I introduction, services
- 6.2 error detection, correction
- 6.3 multiple access protocols
- 6.4 LANs
 - addressing, ARP
 - Ethernet
 - switches
 - VLANS

- 6.5 link virtualization: MPLS
- 6.6 a day in the life of a web request

Error detection

EDC= Error Detection and Correction bits (redundancy)

- D = Data protected by error checking, may include header fields
- Error detection not 100% reliable!
 - protocol may miss some errors, but rarely
 - larger EDC field yields better detection and correction

Parity checking

single bit parity:

detect single bit errors

two-dimensional bit parity:

detect and correct single bit errors

$$\begin{array}{r}
 101011 & 101011 \\
 111100 & 10110 & parity \\
 \hline
 011101 & 011101 \\
 \hline
 001010 & parity \\
 \hline
 no errors & parity \\
 error \\
 \hline
 correctable & parity \\
 \hline
 \hline
 101011 & parity \\
 \hline
 011101 & parity \\
 \hline
 0 0 1010 & parity \\
 \hline
 correctable & parity \\
 \hline
 0 0 1010 & parity \\
 0 0 1010 & parity \\
 \hline
 0 0 1010 & parity \\
 \hline
 0 0 1010 & parity \\
 \hline
 0 0 1010 & parity \\
 0 0 1010 & parity \\
 \hline
 0 0 1010 & parity \\
 \hline
 0 0 1010 & parity \\
 \hline
 0 0 1010 & parity \\
 0 0 1010 & parity \\
 \hline
 0 0 1010 & parity \\
 \hline
 0 0 1010 & parity \\
 \hline
 0 0 1010 & parity \\
 0 0 1010 & parity \\
 \hline
 0 0 1010 & parity \\
 \hline
 0 0 1010 & parity \\
 \hline
 0 0 1010 & parity \\
 0 0 1010 & parity \\
 \hline
 0 0 1010 & parity \\
 \hline
 0 0 1010 & parity \\
 \hline
 0 0 1010 & parity \\
 0 0 1010 & parity \\
 \hline
 0 0 1010 & parity \\
 \hline
 0 0 1010 & parity \\
 \hline
 0 0 1010 & parity \\
 0 0 1010 & parity \\
 \hline
 0 0 1010 & parity \\
 \hline
 0 0 1010 & parity \\
 \hline
 0 0 1010 & parity \\
 0$$

single bit error

^{*} Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Internet checksum (review)

goal: detect "errors" (e.g., flipped bits) in transmitted packet (note: used at transport layer only)

sender:

- treat segment contents as sequence of 16-bit integers
- checksum: addition (I's complement sum) of segment contents
- sender puts checksum value into UDP checksum field

receiver:

- compute checksum of received segment
- check if computed checksum equals checksum field value:
 - NO error detected
 - YES no error detected.
 But maybe errors nonetheless?

Real layer 2 systems: Cyclic Redundancy Check (CRC) algorithm has good protection against bursts of errors.

Cyclic redundancy check

- more powerful error-detection coding
- view data bits, D, as a binary number
- choose r+l bit pattern (generator), G
- goal: choose r CRC bits, R, such that
 - <D,R> exactly divisible by G (modulo 2)
 - receiver knows G, divides <D,R> by G. If non-zero remainder: error detected!
- widely used in practice (Ethernet, 802.11 WiFi, ATM)

CRC example

want:

 $D \cdot 2^r XOR R = nG$

equivalently:

 $D \cdot 2^r = nG XOR R$

equivalently:

if we divide D.2^r by G, want remainder R to satisfy:

$$R = remainder[\frac{D \cdot 2^r}{G}]$$

^{*} Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Test your understanding

Using CRC, find CRC bit, **R**.

- Data bits, D= 1011010010
- Generator bits, G=110010
- CRC bits, **R** =?
- Frame =?

Test your understanding (Solution)

Frame: 101101001001000

Test your understanding (Solution)

Frame: 101101001001000; G = 110010

What have we learned?

- Data link layer has responsibility of transferring datagram from one node to physically adjacent node over a link.
- Key topics we learnt in this part:
 - Data link services: framing, link access and reliable delivery between adjacent nodes.
 - Error detection methods: Error Detection and Correction, Parity Check and CRC