Supporting Information

Harmonised trait datasets

Discrepancies in trait definitions

in multiple grouping features per database. Hence, differences for reproduction have been described in the paper. Body form traits are not different between databases, except that the Vieira database contains the Table 1: Comparison of trait definitions between invertebrate trait databases. Only traits that are differently The definition is quoted if it enables differences to be identified, otherwise the differences are described. The hyphen indicates a missing trait. Reproduction was captured trait Bluff (blocky) which does not appear in the other databases. described across databases are listed.

Now 7001020	Ivew Zearand
	Australia
	vieira
	CONOS
	Lacilet
Freshwater-	ecology.info
	rait

Shredders					
• Detrivore† • Trait herbivore includes among others the trait shredder					
Shredder					
 "Shred decombosing vascular plant tissue" Trait herbivore includes among others insect that shred living aquatic plants 					
"Eat coarse detritus, plants or animal material"					
"Feed from fallen leaves, plant tissues, CPOM"					
Feeding					

Piercer & en-gulfer	No distinction between active and passive No distinction between tween active and passive	"< 1 generation ductive cycle per year"
Predator 8	tinction be- No distinction No distinction holds active and between active and passive and passive no distinction be- active and passive and passive	"< 1 generation per year"
Engulfers ("ingest prey whole or in parts") & piercers ("prey tissues and suck fluids")	No distinction between active and passive	"< 1 genera- tion per year"
 Carvers, engulfers & swallowers Piercers (plants & animals) are an additional trait 	No dist tween passive	"Life cycle lasts at least two years"
"Eating from prey"	Distinguishes be- No distance active and tween passive passive	Semivoltine in two years."
Feeding	Feeding filter- feeder	Semivoltine

1-2 gener- ations per bi/multivoltinë> 1 repro- ductive cycles up to 5 gen- erations per year up to 10 generations per year"						
 1-2 generations ations per year bi/multivoltinë> du up to 5 generations per year up to 10 generations per year 						
"> 1 generations per year"						
"> 1 genera- tions per year" per year"						
"Able to complete at least two successive generations per year"						
"Three or more generations per year" ‡						
Multi- voltine						

rs col-
Swimmers and (water oumn)
Distinguishes swimmer skater
"Adapted for "fishlike" Swimmer swimming"
l hlike" g"
Surface swimmers (over and under the water sur- face) Full water swimmers (e.g. Baeti- dae).
•
 Passive movement like floating or drifting (trait swim- ming/scating) Active movement (trait swim- ming/diving)
Locomotion

Burrowers (infauna)	1
"Moving deep into the substrate and thus avoiding flow"	1
Burrower	Sprawler
"Inhabiting fine sediment of streams and lakes"	Sprawling: "inhabiting the surface of floating leaves of vascular hydrophytes or fine sediments"
 Burrowing "within the first centime- ters of the benthic fine sediment" Differentiates also the trait interstitial (endoben- thic) 	ı
"Burrowing in soft Locomotion substrates or borburrowing ing in hard substrates" strates"	Sprawling or Sprawling walking with legs, pseu- k walking dopods or on a mucus"
Locomotion	Locomotion sprawling & walking

			Defined as			
			crawling on		Database con-	
		"Crawling over the	the surface		tains traits	C. C
LOCOINOLION	ı	the bottom sub- of	of floating	ı	crawler, sprawler,	(gribarthia)
aw mig		strate"	leaves or fine		climber and	(epipennic)
			sediments on		clinger.	
			the bottom			
omotion	Does not distin- Distinguishes Locomotion guish temporarily	Distinguishes temporarily and	Does not distinguish tem-	Does not distin- Distinguishes guish temporar- temporarily	Distinguishes temporarily	Does not distinguish and temporarily
sessil	and permanently permanently	permanently	poranny and	ily and perma-	permanently	and per-
	attached	attached	permanenay attached	nently attached	attached	manently
			arraciica			attached

Distinguishes spiracle (termed aerial) occur as separate blastron, at traits. Con-formathers and plant breathers and functional amospheric, spiracles	$< 9 \text{ mm}$ $< 9 \text{ mm}^{\dagger\$}$ Multiple size $9 - 16 \text{ mm}$ $9 - 16 \text{ mm}$ $> 16 \text{ mm}$ $> 16 \text{ mm}$
Plastron and spiracle combined into one trait	< 9 mm < 9 - 16 mm 9 > 16 mm >
Definition includes respiration using air stores of aquatic plants	Multiple size classifications¶
Respiration Plastron and spirplastron acle (aerial) are $\&$ spiracle two separate traits	
Respiration plastron $\&$ spiracle	Body size small Body size medium Body size large

[†] Traits from Botwe et al.

[‡] Contains also bivoltine (two generations per year), trivoltine (three generations per year) and flexible.

[§] Contains a size trait with numeric size values. Contains also traits classifying size like Tachet and like the North American trait databases.

 $[\]P \text{ Size classifications: } <= 0.25 \ cm, > 0.25 - 0.5 \ cm, 0.5 - 1 \ cm, 1 - 2 \ cm, 2 - 4 \ cm, 4 - 8 \ cm, > 8 \ cm. \text{ No distinction into small, medium and large.}$

 $[\]star$ Size classifications: > 0.25-0.5 cm, 0.5-1 cm, 1-2 cm, 2-4 cm, 4-8 cm. No distinction into small, medium and large.

Comparing aggregation methods

Comparison of family-level aggregated traits with family-level assigned traits

Figure 1: Cases (factor combination of investigated families and traits) where differences occurred between aggregated traits and expert assigned traits at family level for the North American dataset. Violin plots - mirrored density plots - show the density of the absolute trait affinity differences for the grouping features locomotion, respiration, and body size. For more details see Figure ??.

Comparison of aggregation methods with varying taxonomic hierarchies and trait variability

Figure 2: Ranges of aggregated trait affinities for the three examples of taxonomic hierarchies and simulated levels of trait variability. Shown are the results for the simulated traits T2 and T3. Boxplots depict results for 100 replicated simulations of each trait aggregation method. Trait aggregation methods are in order of least to greatest produced ranges to improve visual inspection. For more details see Figure ??.

Taxonomic hierarchy in the trait datasets used for comparisons with assigned traits at family level

Figure 3: Number of genera per family and species per genus for those families of the North American trait dataset that have been compared with assigned traits at family level. For better visual display only families with more than 15 genera are displayed.

Figure 4: Number of genera per family and species per genus for the Australian trait dataset. For better visual display only families with more than 7 genera are displayed.

Effects of harmonisation and trait aggregation on inferences regarding trait-environment relationships

Table 2: Mean, median and standard deviation of the affinities of traits that were responsive to the salinity gradient in the original study but not in the re-analysis using the harmonised European trait dataset.

Type	Trait	Mean	Median	SD	Responsive?
Stepw_median	Shredder	0.20	0.14	0.25	No
Stepw_mean	Shredder	0.18	0.12	0.22	No
$Direct_{median}$	Shredder	0.21	0.14	0.25	No
$Direct_mean$	Shredder	0.19	0.14	0.22	No
Weighted	Shredder	0.19	0.14	0.22	No
Harmonised; not_aggregated	Shredder	0.18	0.12	0.24	No
Original	Shredder	0.25	0.14	0.32	Yes
Stepw_median	Gills	0.30	0.27	0.32	Yes
Stepw_mean	Gills	0.29	0.22	0.32	Yes
$\operatorname{Direct_median}$	Gills	0.30	0.30	0.32	Yes
Direct_mean	Gills	0.30	0.30	0.32	Yes
Weighted	Gills	0.30	0.30	0.32	Yes
Harmonised; not_aggregated	Gills	0.30	0.25	0.32	No
Original	Gills	0.28	0.00	0.33	Yes
Stepw_median	Short life cycle	0.64	0.75	0.39	No
Stepw_mean	Short life cycle	0.64	0.79	0.39	No
$Direct_{median}$	Short life cycle	0.67	0.75	0.37	Yes
$Direct_mean$	Short life cycle	0.67	0.79	0.38	Yes
Weighted	Short life cycle	0.67	0.79	0.38	Yes
Harmonised; not_aggregated	Short life cycle	0.64	0.75	0.40	Yes
Original	Short life cycle	0.64	0.75	0.40	Yes
Stepw_median	Long life cylce	0.36	0.25	0.39	No
Stepw_mean	Long life cylce	0.36	0.21	0.39	No
$Direct_median$	Long life cylce	0.33	0.25	0.37	Yes
$Direct_mean$	Long life cylce	0.33	0.21	0.38	Yes
Weighted	Long life cylce	0.33	0.21	0.38	Yes
Harmonised; not_aggregated	Long life cylce	0.36	0.25	0.40	Yes
Original	Long life cylce	0.36	0.25	0.40	Yes

Figure 5: RDA of traits constrained by electric conductivity for the data aggregated with direct_agg mean, stepwise_agg mean, and weighted_agg. Shown are boxplots of the site scores along the conductivity axis. The rug on the right side of each plot indicates species scores of the traits on the conductivity axis. For more details see Figure ??. Abbreviations: lcd, life cycle duration; nr.cy, potential number of cycles per year.