

QUANTUM SIMULATORS

RAJESH SATHYA KUMAR

TYPES OF QUANTUM HARDWARES

Leading technologies in NISO era¹ Candidate technologies beyond NISO

26	Leading technologies in NISQ era-		Candidate technologies beyond NISQ		
Qubit type or technology	Superconducting ²	Trapped ion	Photonic	Silicon-based ³	Topological*
Description of qubit encoding	Two-level system of a superconducting circuit	Electron spin direction of ionized atoms in vacuum	Occupation of a waveguide pair of single photons	Nuclear or electron spin or charge of doped P atoms in Si	Majorana particles in a nanowire
Physical qubits ^{4,3}	IBM: 20, Rigetti: 19, Alibaba: 11, Google: 9	Lab environment: AQT ⁶ : 20, lonQ: 14	6×3³	2	target: 1 in 2018
Qubit lifetime	~50–100 μs	~50 s	~150 µs	~1–10 s	target -100 s
Gate fidelity	~99.4%	~99.9%	~98%	~90%	target ~99.9999%
Gate operation time	~10–50 ns	~3-50 μs	~1 ns	~1–10 ns	
Connectivity	Nearest neighbors	All-to-all	To be demonstrated	Nearest neighbor	
Scalability	No major road- blocks near-term	Scaling beyond one trap (>50 qb)	Single photon sources and detection	Novel technology potentially high scalability	?
Maturity or technology readiness level	TRL ²⁰ 5	TRL 4	TRL 3	TRL 3	TRL 1
Key properties	Cryogenic operation Fast gating Silicon technology	Improves with cryogenic temperatures Long qubit lifetime Vacuum operation	Room temperature Fast gating Modular design	Cryogenic operation Fast gating Atomic-scale size	Estimated: Long lifetime High fidelities

FUNCTIONS OF A

FUNCTIONS OF A QUANTUM SIMULATOR

Quantum simulators are software programs that run on classical computers and act as the target machine, making it possible to run and test quantum programs in an environment that predicts how qubits will react to different operations.

The quantum simulator is responsible for providing implementations of quantum operations for an algorithm.

This includes primitive operations such as H, CNOT, and Measure, as well as qubit management and tracking.

The Quantum Development Kit includes different classes of quantum simulators representing different ways of simulating the same quantum algorithm.

AVAILABLE SIMULATORS

- IBM's Qiskit
- Google's Cirq
- Amazon's AWS Bracket
- Microsoft's Q# and Azure Quantum
- Rigetti's Forest
- Xanadu's Pennylane

SOFTWARE COMPARISON

Simulators	Company	Supported Softwares	Hardwares
Qiskit	IBM	Python library	Superconducting Qubit
Cirq and Tensorflow Quantum	Google	Python library	Superconducting Qubit
AWS Bracket	Amazon	IonQ, Rigetti, D-Wave	Only a cloud provider to other hardwares
Q# and Azure Quantum	Microsoft	Q#	Topological Qubit
Rigetti / PyQuil / Forest SDK	Rigetti Computing	Python	Superconducting Qubit
Strawberry fields	Xanadu	Python library	Silicon quantum Photonic chips
Pennylane	Xanadu	Cross-platform python library	Supports Qiskit, Amazon Bracket, Strawberry fields, Cirq, Qulacs, AQT, Honeywell, Microsoft QDK, Rigetti Forest, IonQ, Orquestra, ProjectQ

HARDWARE COMPARISON

Manufacturer	Platform	Cloud access	Max # qubits	Gate fidelity
				(1-qubit,
				2-qubit)
IBM	Superconducting	IBM Quantum	15 (Melbourne)	99.97%, 99.16%
		Experience		(Santiago)
		(Open access)		
IonQ	Trapped Ions	Microsoft Azure	11	99.50%, 97.50%
		or Amazon		
		Bracket		
QuTech	Silicon	Quantum	2 (Spin2-QPU)	$\approx 99\%, \approx 90\%$
		Inspire		
Google	Superconducting	Google Quan-	53 (Sycamore)	99.85%, 99.35%
		tum AI		
Rigetti	Superconducting	Rigetti Quan-	31 (Aspen-8)	99.8%, 95.9%
		tum Cloud		
Honeywell	Trapped Ions	Microsoft Azure	10 (H1)	99.97%, 99.5%
		or Amazon		
		Bracket		

CROSS-PLATFORM QUANTUM SIMULATORS

 Pennylane: A cross-platform Python library for differentiable programming of quantum computers.

LITERATURE REVIEW

- 1. Overview and Comparison of Gate Level Quantum Software Platforms, Ryan LaRose
- 2. Quantum computing hardware in the cloud: Should a computational chemist care? Alessandro Rossi, Paul G. Baity, Vera M. Schafer, and Martin Weides
- 3. "What To Look For In A Quantum Machine Learning Framework" link
- 4. "Trapped Ion, Superconducting, and Photonic" <u>link</u>

THANK YOU