Answer1

a.
$$CPI = 1 \times 50\% + 2 \times 20\% + 8 \times 20\% + 20 \times 10\% = 4.5$$

b.
$$MIPS = 50 \div 4.5 = 11.1$$
 $Time = \frac{4.5 \times 400000}{50 \times 10^6} = 3.6 \times 10^{-2} s$

- easy to implement,
 the cycle time is associated to the longest instruction,
 signal asynchrony.
- d. CPU_A instr count = $25 \times 2 + 75 \times 1 = 125$ CPU_B instr count = $25 \times 2 + 50 \times 1 = 100$

Case 1

$$CPU_A \ rate = 1.5m$$
 $CPU_B \ rate = m$ $CPU_A \ time = \frac{125}{1.5m}$ $CPU_B \ time = \frac{100}{m}$ $CPU_A \ is \ faster$

Case 2

$$CPU_A \ rate = 1.2m$$
 $CPU_B \ rate = m$ $CPU_B \ time = \frac{125}{1.2m}$ $CPU_B \ time = \frac{100}{m}$ $CPU_B \ time = \frac{100}{m}$

Answer2

- a. No, because the value in r5 register hasn't been written back, thus leading to **data hazard**.
- b. Yes, because there are *two multiply units* thus avoiding structure hazard.
- c. It will cause data hazard, control hazard.
- d. Using hardware implemented with algorithm like *scoreboard* and *tomasulo*. Using *stall* and *forwarding* to avoid hazards.

Answer3

a.

Inst.	OP	RegWrite	RegDst	ALUSrc	Branch	MemWrite	MemToReg	ALUOp
R-type	000000	1	1	0	0	0	00	1-
lw	100011	1	0	1	0	0	01	00
SW	101011	0	-	1	0	1		00
beq	000100	0	-	0	1	0		01
lb	100000	1	-	1	0	0	11	00
lbu	100100	1	-	1	0	0	10	00

b.

Inst.	OP	Rt	RegWrite	RegDst	ALUSrc	Branch	MemWrite	MemToReg	ALUOp
R-type	000000	-	1	01	0	00	0	00	1-
lw	100011	-	1	00	1	00	0	01	00
SW	101011	-	0		1	00	1		00
beg	000100	-	0		0	01	0		01
bgezal	000001	10000	1	10	_	10	00	10	

Answer4

```
a
```

- 1) 7
- 2) 8
- 3) No. The predicted PC can't be calculated until the fetch stage is finished for the jmp instruction.

```
b
  [1]
      icode:ifun←"M" _"1" [PC]
      rA:rB←"M" _"1" [PC+1]
valC←"M" _"4" [PC+2]
      valP←PC+6
  [2]
      valA←R[rA]
      valB←R[rB]
  [3]
      valM←"M" _"4" [valE]
      "M" _"4" [valE] ← valA
  [4]
      R[rA]~valM
С
  [1]M
            [2]E
                        [3]E
                                     [4]--
  [5]done
            [6]E
                        [7]W
                                     [8]M
  [9]11
            [10]--
                        [11]0x44F
  [12]W
            [13]D
                        [14]M
  [15]6
           [16]0x44F
d
  18
  F F
  D D F F
                                3
  E E D D F F
  EEDEDFF
  M M E E D D F F
  WWEMEDDFF
       E W E D D F F
                                7
             M D E D F
       М
             \mathsf{M} \mathsf{D} \mathsf{E} \mathsf{E} \mathsf{D}
                                9
             M D E E D
                                10
             W E M M D
                                11
               E W W D
                                12
                        Е
                                13
               Μ
                        Е
                W
                                14
                                15
                        М
                                16
                        Μ
                                17
                        W
                                18
```