

潘承洞《数论基础》选解

作者: 韦明

时间: May 7, 2025

E-mail: wm31415926535@outlook.com

目录

第1章 作业

1.1 第三周作业

第二章

8 试证: 当 $\omega(n) > 1$ 时, $\sum_{d|n} \mu(d) \log d = 0$; 一般若 $m \geqslant 1$ 且 $\omega(n) > m$,则 $\sum_{n} \mu(d) \log^m d = 0.$

证明 由于若 d 存在平方因子,则 $\mu(d)=0$,不妨设

$$n = p_1 p_2 \cdots p_k$$

其中 $p_i, p_i (i \neq j)$ 为互异素因子。

$$\sum_{d|n} \mu(d) \log d = \sum_{S \subseteq \{p_1, p_2, \dots, p_k\}} \mu(\prod_{p \in S} p) \log(\prod_{p \in S} p)$$
$$= \sum_{S \subseteq \{p_1, p_2, \dots, p_k\}} (-1)^{|S|} \sum_{p \in S} \log p$$

交换求和次序,有:

$$\sum_{d|n} \mu(d) \log d = \sum_{p|n} \log p \sum_{\substack{d|n \\ p|d}} \mu(d)$$

固定p,则

$$\sum_{\substack{d|n\\p|d}} \mu(d) = (-1) \left[(-1)^0 \binom{k-1}{0} + (-1)^1 \binom{k-1}{1} + \dots + (-1)^{k-1} \binom{k-1}{k-1} \right]$$
$$= (-1)(-1+1)^{k-1}$$
$$= 0$$

因此,

$$\sum_{d|n} \mu(d) \log d = 0$$

(b). 若 $m \ge 1$, 且 $\omega(n) > m$, 则 $\sum_{d|n} \mu(d) \log^m d = 0$ 。

$$k = \omega(n) > m \ge 1 \implies k > 1$$

$$\sum_{d|n} \mu(d) \log^m d = \sum_{d|n} \mu(d) \sum_{\substack{p_1|d,\dots,p_m|d\\ \text{subs}}} \log p_1 \dots \log p_m$$

交换求和次序,有:

$$\sum_{d|n} \mu(d) \log^m d = \sum_{p_1|n} \cdots \sum_{p_m|n} \log p_1 \cdots \log p_m \sum_{\substack{d|n \\ p_1|d, \dots, p_m|d}} \mu(d)$$

固定 p_1, p_2, \dots, p_m ,令 $S = \{s : s = p_i, i = 1, 2, \dots, m\}$ 为其中不同素因子的集合;设 r = |S|,则 $r \le m < k$.则:

$$\sum_{\substack{d|n\\p_1|d,\cdots,p_m|d\\}} \mu(d)$$

$$= (-1)^r \left[(-1)^0 \binom{k-r}{0} + (-1)^1 \binom{k-r}{1} + \cdots + (-1)^{k-r} \binom{k-r}{k-r} \right]$$

$$= (-1)^r (-1+1)^{k-r}$$

$$= 0$$

因此,

$$\sum_{d|n} \mu(d) \log^m d = 0$$

10 求 $\sum_{i=1}^{\infty} \mu(n!)$ 之值.

解 对于 $n \ge 4$, 有 $2^2 = 4|n$, 故 $\mu(n) = 0$ 。

则:

$$\sum_{n=1}^{\infty} \mu(n!) = \mu(1) + \mu(2) + \mu(6) = 1 + (-1) + (-1)^2 = 1$$

11 证明:
$$\sum_{d|n} \mu^2(d) = 2^{\omega(n)} \ \ \ \ \ \sum_{t|n} \mu(t) d(t) = (-1)^{\omega(n)}$$
 .

证明

(a). 设
$$f = \mu^2 * u$$
,则 f 为积性函数,且 $f(n) = \sum_{d|n} \mu^2(d)$ 。

设 $n = p^{\alpha}$, 则有:

$$f(p^{\alpha}) = \begin{cases} 1, & \alpha = 0 \\ 2, & \alpha \ge 1 \end{cases}$$

若 $m=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_s^{\alpha_s}$,则

$$f(m) = f(p_1^{\alpha_1}) f(p_2^{\alpha_2}) \cdots f(p_s^{\alpha_s}) = 2^{\omega(m)}$$

即

$$\sum_{d|n} \mu^2(d) = 2^{\omega(n)}$$

(b). 设 $g = \mu d * u$, 则 g 为积性函数,且 $g(n) = \sum_{t|n} \mu(t)d(t)$ 。

设 $n = p^{\alpha}$, 则有:

$$g(p^{\alpha}) = \begin{cases} 1, & \alpha = 0 \\ -1, & \alpha \ge 1 \end{cases}$$

若 $m=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_s^{\alpha_s}$,则

$$g(m) = g(p_1^{\alpha_1})g(p_2^{\alpha_2})\cdots g(p_s^{\alpha_s}) = (-1)^{\omega(m)}$$

即

$$\sum_{t|n} \mu(t)d(t) = (-1)^{\omega(n)}$$

12 $\exists \text{tie:} \sum_{d|n} \mu(d)\sigma(d) = (-1)^{\omega(n)} \prod_{p|n} p \not \gtrsim \sum_{d|n} \mu(d)\varphi(d) = (-1)^{\omega(n)} \prod_{p|n} (p-2)$.

证明

(a).
$$\sum_{d|n}\mu(d)\sigma(d)=(-1)^{\omega(n)}\prod_{p|n}p_o$$
设 $f=\mu*\sigma$,则 f 为积性函数,且 $f(n)=\sum_{d|n}\mu(d)\sigma(d)_o$ 设 $n=p^\alpha$,则有:

$$f(p^{\alpha}) = \begin{cases} 1, & \alpha = 0 \\ -p, & \alpha \ge 1 \end{cases}$$

若
$$m = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_s^{\alpha_s}$$
,则
$$f(m) = f(p_1^{\alpha_1}) f(p_2^{\alpha_2}) \cdots f(p_s^{\alpha_s}) = (-1)^{\omega(m)} \prod_{n \mid m} p_n^{\alpha_s}$$

即

$$\sum_{d|n} \mu(d)\sigma(d) = (-1)^{\omega(n)} \prod_{p|n} p$$

(b).
$$\sum_{d|n} \mu(d)\varphi(d) = (-1)^{\omega(n)} \prod_{p|n} (p-2).$$
 设 $g = \mu * \varphi$,则 g 为积性函数,且 $g(n) = \sum_{d|n} \mu(d)\varphi(d).$ 设 $n = p^{\alpha}$,则有:

$$g(p^{\alpha}) = \begin{cases} 1, & \alpha = 0\\ 2 - p, & \alpha \ge 1 \end{cases}$$

若
$$m = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_s^{\alpha_s}$$
,则
$$g(m) = g(p_1^{\alpha_1}) g(p_2^{\alpha_2}) \cdots g(p_s^{\alpha_s}) = (-1)^{\omega(m)} \prod_{p \mid m} (p-2)$$

即

$$\sum_{d|n} \mu(d)\varphi(d) = (-1)^{\omega(n)} \prod_{p|n} (p-2)$$

14(1)设
$$n > 1$$
,证明: $\sum_{\substack{1 \leqslant d \leqslant n \\ (n,d)=1}} d = \frac{1}{2} n \varphi(n)$;

(2) 设
$$n$$
 为奇数,证明:
$$\sum_{\substack{1 \leqslant d \leqslant \frac{n}{n} \\ (d,n)=1}} d = \frac{1}{8} n \varphi(n) - \frac{1}{8} \prod_{p|n} (1-p) .$$

证明

(a). 若 n > 1,则

$$\sum_{\substack{1 \le d \le n \\ (n,d)=1}} d = \frac{1}{2} \sum_{\substack{1 \le d \le n \\ (n,d)=1}} d + \frac{1}{2} \sum_{\substack{1 \le d \le n \\ (n,d)=1}} (n-d)$$

$$= \frac{1}{2} \sum_{\substack{1 \le d \le n \\ (n,d)=1}} n$$

$$=\frac{1}{2}n\varphi(n)$$

(b). 设
$$S = \sum_{\substack{1 \leq d \leq \frac{n}{2} \\ (d,n)=1}} d$$
,则有

$$S = \sum_{d=1}^{\lfloor \frac{n}{2} \rfloor} d \cdot I((d, n))$$

其中 $I = \mu * u$, 故

$$I((d,n)) = \sum_{k|(d,n)} \mu(k)$$

于是,

$$S = \sum_{d=1}^{\lfloor \frac{n}{2} \rfloor} d \sum_{k \mid (d,n)} \mu(k)$$

交换求和次序,有

$$S = \sum_{k|n} \mu(k) \sum_{\substack{1 \le d \le \lfloor \frac{n}{2} \rfloor \\ k \mid d}} d$$

固定 k, 设 d = km, 则

$$\sum_{\substack{1 \leq d \leq \lfloor \frac{n}{2} \rfloor \\ k \mid d}} d = k \sum_{m=1}^{\lfloor \frac{n}{2k} \rfloor} m = k \cdot \frac{M(M+1)}{2}$$

其中, $M = \lfloor \frac{n}{2k} \rfloor$ 。

$$\lfloor \frac{n}{2k} \rfloor = \lfloor \frac{\frac{n}{k}}{2} \rfloor = \frac{\frac{n}{k} - 1}{2}$$

因此,

$$\sum_{\substack{1 \le d \le \lfloor \frac{n}{2} \rfloor \\ k \mid d}} d = k \cdot \frac{\frac{\frac{n}{k} - 1}{2} \left(\frac{\frac{n}{k} - 1}{2} + 1\right)}{2}$$

$$=\frac{n^2-k^2}{8k}$$

则

$$S = \sum_{k|n} \mu(k) \cdot \frac{n^2 - k^2}{8k}$$
$$= \frac{1}{8} \left(n^2 \sum_{k|n} \frac{\mu(k)}{k} - \sum_{k|n} \mu(k)k \right)$$

其中,

$$\sum_{k|n} \frac{\mu(k)}{k} = \frac{\varphi(n)}{n}$$

$$\sum_{k|n} \mu(k)k = \prod_{p|n} (1-p)$$

于是,

$$S = \frac{1}{8} \left(n^2 \cdot \frac{\varphi(n)}{n} - \prod_{p|n} (1-p) \right)$$
$$= \frac{1}{8} n \varphi(n) - \frac{1}{8} \prod_{p|n} (1-p)$$

16 求出所有使 $\varphi(n) = 24$ 的自然数.

 \mathbf{R} 对于 $n \in \mathbb{N}^+$,作如下素因数分解

$$n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$$

则

$$\varphi(n) = n \prod_{p|n} (1 - \frac{1}{p})$$

$$= p_1^{\alpha_1 - 1} (p_1 - 1) p_2^{\alpha_2 - 1} (p_2 - 1) \cdots p_k^{\alpha_k - 1} (p_k - 1)$$

注意到: $24 = 2^3 \times 3$

(a).
$$n = p^k$$

$$p^{k-1}(p-1) = 2^3 \times 3$$

无解。

(b).
$$n = p^a q^b$$

$$p^{a-1}(p-1)q^{b-1}(q-1) = 2^3 \times 3$$

I. a = 1, b = 1, 则

$$(p-1)(q-1) = 24$$

而
$$24 = 1 \times 24 = 2 \times 12 = 3 \times 8 = 4 \times 6$$

又 p, q 均为素数,故

$$(p,q) = (3,13), (5,7)$$

于是

$$n = pq = 39, 35$$

II. $a = 2, b = 1, \mathbb{N}$

$$p(p-1)(q-1) = 24$$

故

$$(p,q) = (2,13), (3,5)$$

于是

$$n = p^2 q = 52,45$$

III. a=3, b=1, \mathbb{N}

$$p^2(p-1)(q-1) = 24$$

故

$$(p,q) = (2,7)$$

于是

$$n = p^3 q = 56$$

IV. $a = 3, b = 2, \ \mathbb{N}$

$$p^2(p-1)q(q-1) = 24$$

故

$$(p,q) = (2,3)$$

于是

$$n = p^3 q^2 = 72$$

V. 其他情况,均无解。

(c). $n = p^a q^b r^c$

$$p^{a-1}(p-1)q^{b-1}(q-1)r^{c-1}(r-1) = 24$$

I. a = b = c = 1, 则

$$(p-1)(q-1)(r-1) = 24$$

币 $24 = 1 \times 2 \times 12 = 1 \times 3 \times 8 = 1 \times 4 \times 6 = 2 \times 3 \times 4$ 故

$$(p,q,r) = (2,3,13), (2,5,7)$$

于是

$$n = pqr = 78,70$$

II. a = 2, b = c = 1, \mathbb{N}

$$p(p-1)(q-1)(r-1) = 24$$

故

$$(p,q,r) = (2,3,7), (3,2,5)$$

于是

$$n = p^2 qr = 84,90$$

III. a=b=2, c=1 或其它情况,均无解。

(d). $n = p^a q^b r^c s^t$.

因为若 $n=2\times3\times5\times7=210$,则 $\varphi(n)=48>24$,故无解。综上所述,n 所有可能的取值为

$$39, 35, 52, 45, 56, 72, 78, 70, 84, 90$$

共10种。

19 求出所有 $4 \nmid \varphi(n)$ 的自然数 n.

 \mathbf{R} 对于 $n \in \mathbb{N}^+$,作如下素因数分解

$$n = p_1^{k_1} p_2^{k_2} \cdots p_m^{k_m}$$

则

$$\varphi(n) = p_1^{k_1 - 1}(p_1 - 1)p_2^{k_2 - 1}(p_2 - 1) \cdots p_m^{k_m - 1}(p_m - 1)$$

设 $n = 2^a \cdot m$, 其中 $2^a \mid n$ 而 $2^{a+1} \nmid m$ 。 由于 $\varphi(n)$ 为积性函数,于是

$$\varphi(n) = \varphi(2^a) \cdot \varphi(m)$$

(a). a = 0, 则 n 为奇数。 对于 m 作素因数分解

$$m = p_1^{b_1} p_2^{b_2} \cdots p_t^{b_t}$$

其中 p_i 为奇质数。

I. 若
$$p_i \equiv 1 \pmod{4}$$
,则 $p_i - 1 \equiv 0 \pmod{4}$,则 $4|\varphi(m)$

II. 若 $p_i \equiv 3 \pmod{4}$, 则

$$\varphi(p_i^{b_i}) = p_i^{b_i - 1}(p_i - 1) \equiv 2 \pmod{4}$$

若 $t \le 2$, 则存在 i, j 使得 $4|(p_i - 1)(p_j - 1)$, 故 $4|\varphi(n)$ 。

若 t = 0, 则 n = 1, $\varphi(1) = 1$, 有 $4 \nmid \varphi(1)$ 。

若 t=1, 则 $n=p^b$, 其中 $p\equiv 3\pmod 4$, 故 $\varphi(p^b)\equiv 2\pmod 4$ 。

(b). a = 1,则

$$\varphi(n) = \varphi(2 \cdot m) = \varphi(2)\varphi(m) = \varphi(m)$$

与上一种情况类似,故

$$4 \nmid \varphi(n) \Longleftrightarrow n = 2 \not \le n = 2 \cdot p^k$$

其中 $p \equiv 3 \pmod{4}$, $k \ge 1$ 。

(c). a = 2, \mathbb{N}

$$\varphi(n) = \varphi(4 \cdot m) = \varphi(4)\varphi(m) = 2\varphi(m)$$

比较可知, $4 \nmid \varphi(m) \iff m = 1 \iff n = 4$ 。

(d). $a \ge 3$, 则 $4|\varphi(n)$, 无解。

综上所述, n 所有可能的取值为

$$1, 2, 4, p^k, 2 \cdot p^k$$

其中p为素数且 $p \equiv 3 \pmod{4}$, $k \ge 1$ 。

22 设 $\Lambda(n)$ 为 Mangoldt 函数,且 $\psi(x) = \sum_{n \le x} \Lambda(n)$,则

$$\sum_{n \le x} \psi\left(\frac{x}{n}\right) = \sum_{n \le x} \Lambda(n) \left[\frac{x}{n}\right] = \sum_{n \le x} \log n.$$

证明

(a).

$$\sum_{n \le x} \psi\left(\frac{x}{n}\right) = \sum_{n \le x} \sum_{m \le \frac{x}{n}} \Lambda(m)$$
$$= \sum_{m \le x} \Lambda(m) \sum_{n \le \frac{x}{m}} 1$$
$$= \sum_{m \le x} \Lambda(m) \left[\frac{x}{m}\right]$$

(b).

$$\sum_{n \le x} \log n = \sum_{n \le x} \sum_{d|n} \Lambda(d)$$

$$= \sum_{d \le x} \Lambda(d) \sum_{k \le \frac{x}{d}} 1$$

$$= \sum_{d \le x} \Lambda(d) \left[\frac{x}{d} \right]$$

- 24 设 $\sigma(n)$ 为除数和函数,证明:
 - (1) $\sigma(n) = n + 1$ 的充要条件是 n 为素数;
 - (2) 如果 n 为完全数,即 $\sigma(n) = 2n$,则

$$\sum_{d|n} \frac{1}{d} = 2$$

证明

(a). 必要性显然。

充分性:

若 n=1, 则 $\sigma(1)=1$, 而 1+n=2, 故不满足。 若 n 为合数, 则存在 d ($d \neq 1$ 且 $d \neq n$) s.t. d|n. 而

$$\sigma(n) \ge 1 + d + n > 1 + n$$

故 $\sigma(n) \neq 1 + n$,矛盾。 因此,n 为素数。

(b).

$$\sum_{d|n} \frac{1}{d} = \frac{1}{n} \sum_{d|n} \frac{n}{d} = \frac{1}{n} \sum_{d|n} d = \frac{\sigma(n)}{n} = \frac{2n}{n} = 2$$

1.2 第四周作业

第三章

1 试证 $\prod_{p} \frac{p^2}{p^2 - 1} = \frac{\pi^2}{6}$.

证明 考虑 Riemann zeta 函数 $\zeta(s)$ 的 Euler 乘积公式:

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p} \left(1 - \frac{1}{p^s}\right)^{-1}$$

其中乘积遍历所有素数 p,该公式对于 Re(s) > 1 成立。

令 s=2,我们知道 $\zeta(2)=\sum_{n=1}^{\infty}\frac{1}{n^2}=\frac{\pi^2}{6}$ 。将 s=2 代入 Euler 乘积公式,得到:

$$\zeta(2) = \prod_{p} \left(1 - \frac{1}{p^2}\right)^{-1} = \frac{\pi^2}{6}$$

现在考察题目中给出的无穷乘积:

$$\prod_{p} \frac{p^{2}}{p^{2} - 1} = \prod_{p} \frac{1}{\frac{p^{2} - 1}{p^{2}}}$$

$$= \prod_{p} \frac{1}{1 - \frac{1}{p^{2}}}$$

$$= \prod_{p} (1 - p^{-2})^{-1}$$

比较可知,该乘积正是 $\zeta(2)$ 的 Euler乘积表示。因此,

$$\prod_{p} \frac{p^2}{p^2 - 1} = \zeta(2) = \frac{\pi^2}{6}$$

证毕。

2 试证级数 $\sum_{p} \frac{1}{p}$ 发散.

证明 采用反证法。假设级数 $\sum_{p} \frac{1}{p}$ 收敛。根据 Cauchy 准则,这意味着对于

任意 $\epsilon > 0$, 存在 N 使得对所有 $n > m \geq N$, 有 $\sum_{k=m+1}^{n} \frac{1}{p_k} < \epsilon$ 。特别地, 这

意味着尾项级数 $\sum_{k=K+1}^{\infty} \frac{1}{p_k}$ 对于任意 K 都是收敛的(作为 $n \to \infty$ 的极限)。设 K 为任意正整数。考虑所有素因子都大于 p_K 的正整数集合 $M_K = \{m \in \mathbb{N} \mid \forall p \text{ s.t. } p \mid m, p > p_K \}$ 。由于 $\sum_{k=K+1}^{\infty} \frac{1}{p_k}$ 收敛(由假设),根据无穷乘积与级

数的关系,无穷乘积 $\prod_{k=K+1}^{\infty} (1-\frac{1}{p_k})$ 收敛到一个正值 $P_K'>0$ 。

因此,Euler 乘积 $\sum_{m \in M_K} \frac{1}{m} = \prod_{k=K+1}^{\infty} (1 - \frac{1}{p_k})^{-1} = \frac{1}{P_K'}$ 收敛到一个有限值 V_K 。现在,令 $P_K = p_1 p_2 \cdots p_K$ 为前 K 个素数的乘积。考虑形如 $1 + q P_K$ 的整

现在, $\forall P_K = p_1 p_2 \cdots p_K$ 为則 K 个系数的乘积。考虑形如 $1 + q P_K$ 数,其中 $q = 1, 2, 3, \ldots$ 。

任何 $1 + qP_K$ 的素因子 p 必须满足 $p \nmid P_K$, 否则 $p \mid qP_K$ 且 $p \mid (1 + qP_K)$,这意味着 $p \mid 1$,这是不可能的。

因此, $1+qP_K$ 的所有素因子都大于 p_K ,即 $1+qP_K \in M_K$ 对所有 $q \ge 1$ 成立。

于是, 我们有级数不等式:

$$\sum_{q=1}^{\infty} \frac{1}{1 + qP_K} \le \sum_{m \in M_K} \frac{1}{m} = V_K$$

这表明,如果 $\sum_{p} \frac{1}{p}$ 收敛,则级数 $\sum_{q=1}^{\infty} \frac{1}{1+qP_K}$ 必须收敛。

然而,我们使用极限比较判别法,将级数 $\sum_{q=1}^{\infty} \frac{1}{1+qP_K}$ 与发散的调和级数

 $\sum_{q=1}^{\infty} \frac{1}{q}$ 进行比较:

$$\lim_{q \to \infty} \frac{\frac{1}{1+qP_K}}{\frac{1}{q}} = \lim_{q \to \infty} \frac{q}{1+qP_K} = \frac{1}{P_K}$$

由于 $P_K = p_1 \cdots p_K \ge 2$, 极限值 $\frac{1}{P_K}$ 是一个正的有限常数。

因为调和级数 $\sum_{q=1}^{\infty} \frac{1}{q}$ 发散,根据极限比较判别法,级数 $\sum_{q=1}^{\infty} \frac{1}{1+qP_K}$ 也必须发散。

这与我们从 " $\sum_{p} \frac{1}{p}$ 收敛" 这一假设推导出的结论 " $\sum_{q=1}^{\infty} \frac{1}{1+qP_K}$ 收敛" 相矛盾。

因此,最初的假设 " $\sum_{p} \frac{1}{p}$ 收敛" 必定是错误的。这意味着级数 $\sum_{p} \frac{1}{p}$ 不满足 Cauchy 准则,故该级数发散。证毕。

3 试证数列 $\{6n-1\}$ 中包含无限个素数.

证明 采用反证法。假设形式为 6n-1 的素数只有有限个,设为 p_1, p_2, \ldots, p_r 。 考虑整数 $N = 6(p_1p_2\cdots p_r) - 1$ 。

首先,N > 1。N 的素因子分解式中,所有素因子p 必满足 $p \nmid 6$,即p 不能是 2 或 3。因此,N 的任何素因子p 必形如 6k+1 或 6k-1。

注意到 $N = 6(p_1 p_2 \cdots p_r) - 1 \equiv -1 \pmod{6}$ 。

如果 N 的所有素因子都形如 6k+1,那么它们的乘积 N 也必然形如 6k+1。(因为 $(6k_1+1)(6k_2+1)=36k_1k_2+6k_1+6k_2+1=6(6k_1k_2+k_1+k_2)+1\equiv 1\pmod 6$) 这与 $N\equiv -1\pmod 6$ 矛盾。

因此, N 必须至少有一个形如 6k-1 的素因子, 设为 p。

我们证明 p 不等于 p_1, p_2, \ldots, p_r 中的任何一个。如果 $p = p_i$ 对于某个 $i \in \{1, 2, \ldots, r\}$ 成立,则 $p_i \mid N$ 且 $p_i \mid 6(p_1p_2\cdots p_r)$ 。因此 p_i 必须整除它们的差,即 $p_i \mid (6(p_1p_2\cdots p_r)-N)$,也就是 $p_i \mid 1$ 。这是不可能的。

所以,p是一个形如 6k-1 的素数,但它不在我们假设的有限列表 p_1, p_2, \ldots, p_r 中。这与我们的初始假设(所有形如 6n-1 的素数都在该列表中)矛盾。 因此,假设错误,形如 6n-1 的素数有无限多个。证毕。

5 利用
$$\prod_{p \leqslant x} \left(1 - \frac{1}{p}\right)^{-1} \leqslant \prod_{K=2}^{\pi(x)+1} \left(1 - \frac{1}{K}\right)^{-1}$$
, 证明:

- (1) $\pi(x) > \log x 1$;
- (2) $p_n < 3^{n+1}$ (p_n 为第 n 个素数).

证明

(a). 证明 $\pi(x) > \log x - 1$ 。 我们知道对于 $x \ge 1$,有 $\sum_{n \le x} \frac{1}{n} > \log x$ 。 同时,我们有

$$\sum_{n \le x} \frac{1}{n} \le \sum_{n \in S_x} \frac{1}{n} = \prod_{p \le x} \left(1 - \frac{1}{p} \right)^{-1}$$

其中 S_x 是所有素因子都 $\leq x$ 的正整数集合。 结合上述不等式和题目给出的不等式,得到:

$$\log x < \sum_{n \le x} \frac{1}{n} \le \prod_{p \le x} \left(1 - \frac{1}{p} \right)^{-1} \le \prod_{K=2}^{\pi(x)+1} \left(1 - \frac{1}{K} \right)^{-1}$$

计算右侧的乘积:

$$\prod_{K=2}^{\pi(x)+1} \left(1 - \frac{1}{K}\right)^{-1} = \prod_{K=2}^{\pi(x)+1} \left(\frac{K-1}{K}\right)^{-1}$$

$$= \prod_{K=2}^{\pi(x)+1} \frac{K}{K-1}$$

$$= \frac{2}{1} \cdot \frac{3}{2} \cdot \frac{4}{3} \cdot \cdot \cdot \frac{\pi(x)+1}{\pi(x)}$$

$$= \pi(x) + 1$$

因此, 我们得到 $\log x < \pi(x) + 1$ 。 整理可得 $\pi(x) > \log x - 1$ 。

(b). 证明 $p_n < 3^{n+1}$ 。 由 (1) 可知 $\pi(x) > \log x - 1$ 。 令 $x = p_n$,其中 p_n 是第 n 个素数。则 $\pi(x) = \pi(p_n) = n$ 。 代入不等式,得到:

$$n > \log p_n - 1$$

整理得:

$$\log p_n < n+1$$

两边取指数(以自然对数底e):

$$p_n < e^{n+1}$$

由于 $e \approx 2.718 < 3$, 我们有 $e^{n+1} < 3^{n+1}$ 。 因此,

$$p_n < 3^{n+1}$$

证毕。

第四章

1 若 $a_1 \equiv b_1(\bmod m), a_2 \equiv b_2(\bmod m),$ 则

$$a_1a_2 \equiv b_1b_2 \pmod{m}$$
.

证明 由题设 $a_1 \equiv b_1 \pmod{m}$ 和 $a_2 \equiv b_2 \pmod{m}$,根据同余的定义,可知 $m \mid (a_1 - b_1)$ 且 $m \mid (a_2 - b_2)$ 。因此,存在整数 k_1, k_2 使得

$$a_1 - b_1 = mk_1$$

$$a_2 - b_2 = mk_2$$

即 $a_1 = b_1 + mk_1$ 且 $a_2 = b_2 + mk_2$ 。

考察 $a_1a_2 - b_1b_2$:

$$a_1 a_2 - b_1 b_2 = (b_1 + mk_1)(b_2 + mk_2) - b_1 b_2$$

$$= b_1 b_2 + b_1 mk_2 + b_2 mk_1 + m^2 k_1 k_2 - b_1 b_2$$

$$= m(b_1 k_2 + b_2 k_1 + mk_1 k_2)$$

由于 b_1, k_2, b_2, k_1, m 均为整数,所以 $b_1k_2 + b_2k_1 + mk_1k_2$ 也是整数。因此, $m \mid (a_1a_2 - b_1b_2)$ 。根据同余的定义,有

$$a_1 a_2 \equiv b_1 b_2 \pmod{m}$$

证毕。

2 若 $C \equiv d(\text{mod}m), (C, m) = 1$,则

$$aC \equiv bd(\bmod m)$$

与

$$a \equiv b(\bmod m)$$

等价。

证明 (\Longrightarrow) 假设 $a \equiv b \pmod{m}$ 。 由题设 $C \equiv d \pmod{m}$ 。 根据上一题的结论 (同余式的乘法性质),将 $a \equiv b \pmod{m}$ 与 $C \equiv d \pmod{m}$ 两式相乘,得到:

$$aC \equiv bd \pmod{m}$$

(\iff) 假设 $aC \equiv bd \pmod{m}$ 。由题设 $C \equiv d \pmod{m}$,可知 $m \mid (C-d)$,即

d = C - mk 对于某个整数 k 成立。将 d = C - mk 代入 $aC \equiv bd \pmod{m}$:

$$aC \equiv b(C - mk) \pmod{m}$$

$$aC \equiv bC - bmk \pmod{m}$$

由于 $bmk \equiv 0 \pmod{m}$, 上式简化为:

$$aC \equiv bC \pmod{m}$$

这意味着 $m \mid (aC - bC)$, 即 $m \mid (a - b)C$ 。

因为 gcd(C, m) = 1,根据 Euclid 引理,可得 $m \mid (a - b)$ 。根据同余的定义,有

$$a \equiv b \pmod{m}$$

综上所述,两个同余式等价。证毕。

4 设素数 $p \geqslant 3$,若 $a^2 \equiv b^2(\text{mod}p), p \nmid a$,则 $a \equiv b(\text{mod}p)$ 或 $a \equiv -b(\text{mod}p)$ 且仅有一个成立.

证明 由 $a^2 \equiv b^2 \pmod{p}$, 可得 $a^2 - b^2 \equiv 0 \pmod{p}$, 即

$$(a-b)(a+b) \equiv 0 \pmod{p}$$

因为p是素数,根据Euclid 引理,必有 $p \mid (a-b)$ 或 $p \mid (a+b)$ 。

- 若 $p \mid (a-b)$, 则 $a \equiv b \pmod{p}$ 。
- $\not\equiv p \mid (a+b)$, $\not\bowtie a \equiv -b \pmod{p}$.

因此, 至少有 $a \equiv b \pmod{p}$ 或 $a \equiv -b \pmod{p}$ 中的一个成立。

接下来证明仅有一个成立。假设 $a \equiv b \pmod{p}$ 和 $a \equiv -b \pmod{p}$ 同时成立。则 $b \equiv -b \pmod{p}$,即 $2b \equiv 0 \pmod{p}$ 。因为 p 是素数且 $p \geq 3$,所以 $\gcd(2,p)=1$ 。根据同余的性质,由 $2b \equiv 0 \pmod{p}$ 可得 $b \equiv 0 \pmod{p}$ 。又因为 $a \equiv b \pmod{p}$,所以 $a \equiv 0 \pmod{p}$,即 $p \mid a$ 。这与题目条件 $p \nmid a$ 矛盾。

因此, $a \equiv b \pmod{p}$ 和 $a \equiv -b \pmod{p}$ 不能同时成立。

综上所述, $a \equiv b \pmod{p}$ 或 $a \equiv -b \pmod{p}$ 且仅有一个成立。证毕。

5 设正整数

$$a = a_n 10^n + a_{n-1} 10^{n-1} + \dots + a_0, \quad 0 \le a_i < 10$$

则 11 整除 a 的充要条件是

$$11 \mid \sum_{i=1}^{n} (-1)^{i} a_{i}$$

证明 考虑整数 a 模 11 的余数。我们注意到 $10 \equiv -1 \pmod{11}$ 。根据同余的性质,对于任意非负整数 i,有

$$10^i \equiv (-1)^i \pmod{11}$$

现在考察 a 模 11:

$$a = a_n 10^n + a_{n-1} 10^{n-1} + \dots + a_1 10^1 + a_0$$

$$\equiv a_n (-1)^n + a_{n-1} (-1)^{n-1} + \dots + a_1 (-1)^1 + a_0 (-1)^0 \pmod{11}$$

$$\equiv \sum_{i=0}^n a_i (-1)^i \pmod{11}$$

因此, $a \equiv 0 \pmod{11}$ 当且仅当 $\sum_{i=0}^{n} (-1)^i a_i \equiv 0 \pmod{11}$ 。证毕。

6 试找出整数能被37,101 整除的判别条件来。

解 设整数 N 的十进制表示为 $a_k a_{k-1} \cdots a_1 a_0 = \sum_{i=0}^k a_i 10^i$ 。

能被 **37** 整除的判别条件: 我们注意到 $1000 = 27 \times 37 + 1$, 因此 $1000 \equiv 1 \pmod{37}$ 。将整数 N 从右往左每三位分为一组:

$$N = (a_2 a_1 a_0)_{10} + (a_5 a_4 a_3)_{10} \cdot 10^3 + (a_8 a_7 a_6)_{10} \cdot 10^6 + \cdots$$

令 $A_0 = (a_2 a_1 a_0)_{10} = 100 a_2 + 10 a_1 + a_0$, $A_1 = (a_5 a_4 a_3)_{10} = 100 a_5 + 10 a_4 + a_3$, 以此类推。则 $N = A_0 + A_1 \cdot 10^3 + A_2 \cdot (10^3)^2 + \cdots$ 。考虑 N 模 37:

$$N \equiv A_0 + A_1 \cdot 1 + A_2 \cdot 1^2 + \cdots \pmod{37}$$

 $\equiv A_0 + A_1 + A_2 + \cdots \pmod{37}$

因此,一个整数能被37整除的充要条件是:将其从右往左每三位分为一组, 这些组所表示的数之和能被37整除。

能被 **101** 整除的判别条件: 我们注意到 $100 = 1 \times 101 - 1$, 因此 $100 \equiv -1$ (mod 101)。将整数 N 从右往左每两位分为一组:

$$N = (a_1 a_0)_{10} + (a_3 a_2)_{10} \cdot 10^2 + (a_5 a_4)_{10} \cdot 10^4 + \cdots$$

令 $B_0 = (a_1 a_0)_{10} = 10 a_1 + a_0$, $B_1 = (a_3 a_2)_{10} = 10 a_3 + a_2$,以此类推。则 $N = B_0 + B_1 \cdot 10^2 + B_2 \cdot (10^2)^2 + \cdots$ 。考虑 N 模 101:

$$N \equiv B_0 + B_1 \cdot (-1) + B_2 \cdot (-1)^2 + B_3 \cdot (-1)^3 + \cdots \pmod{101}$$

$$\equiv B_0 - B_1 + B_2 - B_3 + \cdots \pmod{101}$$

因此,一个整数能被 101 整除的充要条件是:将其从右往左每两位分为一组,这些组所表示的数的交错和(从右往左,符号为+-+-···)能被 101 整除。

1.3 第五周作业

第四章

7 试证: $641 \mid (2^{32} + 1)$.

证明 注意到 $641 = 5 \cdot 2^7 + 1 = 5^4 + 2^4$ 。由 $641 = 5 \cdot 2^7 + 1$,可得

$$5 \cdot 2^7 \equiv -1 \pmod{641}$$

两边取4次方,得

$$(5 \cdot 2^7)^4 \equiv (-1)^4 \pmod{641}$$

 $5^4 \cdot 2^{28} \equiv 1 \pmod{641}$

又由 $641 = 5^4 + 2^4$, 可得

$$5^4 \equiv -2^4 \pmod{641}$$

代入上式,得

$$(-2^4) \cdot 2^{28} \equiv 1 \pmod{641}$$

 $-2^{32} \equiv 1 \pmod{641}$

即

$$2^{32} \equiv -1 \pmod{641}$$

因此, $2^{32} + 1 \equiv 0 \pmod{641}$, 即 $641 \mid (2^{32} + 1)$ 。

8 若 a 是一奇数,则 $a^{2^n} \equiv 1 \pmod{2^{n+2}}$, $n \geqslant 1$.

证明用数学归纳法证明。

奠基 当 n=1 时,需证 $a^{2^1} \equiv 1 \pmod{2^{1+2}}$,即 $a^2 \equiv 1 \pmod{8}$ 。因为 $a \not\in 6$ 奇数,设 a=2k+1,其中 k 为整数。

$$a^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 4k(k+1) + 1$$

由于 k(k+1) 必为偶数,设 k(k+1)=2j,其中 j 为整数。则 $a^2=4(2j)+1=8j+1\equiv 1\pmod 8$ 。故当 n=1 时命题成立。

归纳 假设当 n = k $(k \ge 1)$ 时命题成立,即 $a^{2^k} \equiv 1 \pmod{2^{k+2}}$ 。这意味着存在整数 c,使得 $a^{2^k} = 1 + c \cdot 2^{k+2}$ 。需要证明当 n = k+1 时命题也

成立,即
$$a^{2^{k+1}} \equiv 1 \pmod{2^{(k+1)+2}}$$
,即 $a^{2^{k+1}} \equiv 1 \pmod{2^{k+3}}$ 。
$$a^{2^{k+1}} = (a^{2^k})^2$$

$$= (1 + c \cdot 2^{k+2})^2$$

$$= 1 + 2 \cdot (c \cdot 2^{k+2}) + (c \cdot 2^{k+2})^2$$

$$= 1 + c \cdot 2^{k+3} + c^2 \cdot 2^{2(k+2)}$$

$$= 1 + c \cdot 2^{k+3} + c^2 \cdot 2^{2k+4}$$

因为 $k \ge 1$,所以 $2k + 4 = (k+3) + (k+1) \ge k + 3 + 2 = k + 5$ 。因此 $2^{k+3} \mid c^2 \cdot 2^{2k+4}$ 。故

$$a^{2^{k+1}} \equiv 1 + c \cdot 2^{k+3} \pmod{2^{k+3}}$$

 $a^{2^{k+1}} \equiv 1 \pmod{2^{k+3}}$

当 n = k + 1 时命题成立。

由数学归纳法原理,原命题对所有 $n \ge 1$ 成立。

9 证明:

 $x = u + p^{s-t}v$, $u = 0, 1, 2, \dots, p^{s-t} - 1$, $v = 0, 1, 2, \dots, p^t - 1$, $t \leq s$ 是模 p^s (p 为素数)的一个完全剩余系。

证明 首先,计算 x 的可能取值的个数。u 有 p^{s-t} 个可能的取值。v 有 p^t 个可能的取值。因此,x 的可能取值总数为 $p^{s-t} \cdot p^t = p^s$ 个。这与模 p^s 的完全剩余系的元素个数相同。接下来,证明这些值两两关于模 p^s 不同余。假设存在两组 (u_1, v_1) 和 (u_2, v_2) ,其中 $0 \le u_1, u_2 < p^{s-t}$ 且 $0 \le v_1, v_2 < p^t$,使得

$$u_1 + p^{s-t}v_1 \equiv u_2 + p^{s-t}v_2 \pmod{p^s}$$

这意味着

$$(u_1 - u_2) + p^{s-t}(v_1 - v_2) \equiv 0 \pmod{p^s}$$

由此可知 $p^s \mid (u_1 - u_2) + p^{s-t}(v_1 - v_2)$ 。这也意味着

$$(u_1 - u_2) + p^{s-t}(v_1 - v_2) \equiv 0 \pmod{p^{s-t}}$$

因为 $p^{s-t}(v_1-v_2)\equiv 0\pmod{p^{s-t}}$, 所以

$$u_1 - u_2 \equiv 0 \pmod{p^{s-t}}$$

即 $p^{s-t} \mid (u_1 - u_2)$ 。又因为 $0 \le u_1, u_2 < p^{s-t}$,所以 $-(p^{s-t}) < u_1 - u_2 < p^{s-t}$ 。

满足 $p^{s-t} \mid (u_1 - u_2)$ 的唯一可能是 $u_1 - u_2 = 0$,即 $u_1 = u_2$ 。将 $u_1 = u_2$ 代入原同余式 $(u_1 - u_2) + p^{s-t}(v_1 - v_2) \equiv 0 \pmod{p^s}$,得到

$$p^{s-t}(v_1 - v_2) \equiv 0 \pmod{p^s}$$

这意味着存在整数 k,使得 $p^{s-t}(v_1-v_2)=k\cdot p^s$ 。两边同除以 p^{s-t} (由于 $t\leq s,s-t\geq 0$),得到

$$v_1 - v_2 = k \cdot p^s / p^{s-t} = k \cdot p^t$$

这意味着 $p^t \mid (v_1 - v_2)$ 。又因为 $0 \le v_1, v_2 < p^t$,所以 $-p^t < v_1 - v_2 < p^t$ 。满足 $p^t \mid (v_1 - v_2)$ 的唯一可能是 $v_1 - v_2 = 0$,即 $v_1 = v_2$ 。因此,如果 $u_1 + p^{s-t}v_1 \equiv u_2 + p^{s-t}v_2 \pmod{p^s}$,则必有 $u_1 = u_2$ 且 $v_1 = v_2$ 。这说明该集合中的 p^s 个数两两关于模 p^s 不同余。综上所述,该集合构成模 p^s 的一个完全剩余系。

- 10 (a). 若 $2 \nmid m$, 则 $2, 4, 6, \dots, 2m$ 是 m 的完全剩余系;

证明

(a). 集合为 $S = \{2k \mid 1 \le k \le m\}$ 。该集合包含 m 个整数。我们需要证明这 m 个整数关于模 m 两两不同余。假设存在 $1 \le k_1, k_2 \le m$,使得 $2k_1 \equiv 2k_2 \pmod{m}$ 。则 $m \mid (2k_1 - 2k_2)$,即 $m \mid 2(k_1 - k_2)$ 。因为 m 是奇数,所以 $\gcd(2, m) = 1$ 。根据同余的性质,可以约去因子 2,得到

$$k_1 \equiv k_2 \pmod{m}$$

即 $m \mid (k_1 - k_2)$ 。又因为 $1 \le k_1, k_2 \le m$,所以 $|k_1 - k_2| < m$ 。满足 $m \mid (k_1 - k_2)$ 的唯一可能是 $k_1 - k_2 = 0$,即 $k_1 = k_2$ 。因此,集合 S 中的 m 个整数关于模 m 两两不同余。由于集合大小为 m,它构成模 m 的一个完全剩余系。

(b). 考虑集合 $T = \{k^2 \mid 1 \le k \le m\}$ 。 我们需要证明当 m > 2 时,这个集合中的数并非关于模 m 两两不同余。考虑 k = 1 和 k = m - 1。因为 m > 2,所以 $m - 1 \ge 2$,且 $1 \ne m - 1$ 。它们都是 $\{1, 2, ..., m\}$ 中的不同元素。计算它们的平方模 m:

$$1^2 = 1 \equiv 1 \pmod{m}$$

 $(m-1)^2 = m^2 - 2m + 1$

因为
$$m^2 \equiv 0 \pmod{m}$$
 且 $-2m \equiv 0 \pmod{m}$,所以
$$(m-1)^2 \equiv 0 - 0 + 1 \equiv 1 \pmod{m}$$

因此,我们找到了两个不同的整数 1 和 m-1 ($1 \le 1, m-1 \le m$),它们的平方关于模 m 同余。这意味着集合 T 中至少有两个元素是相同的(模 m),所以它不能包含 m 个两两不同余的数。故 $1^2, 2^2, \cdots, m^2$ 不是模 m 的完全剩余系。

11 若 m_1, m_2, \dots, m_k 两两互素, x_1, x_2, \dots, x_k 分别通过模 m_1, m_2, \dots, m_k 的 完全剩余系,则

$$x = x_1 + m_1 x_2 + m_1 m_2 x_3 + \dots + m_1 m_2 \dots m_{k-1} x_k$$

通过模 $m_1m_2\cdots m_k$ 的完全剩余系.

证明 令 $M = m_1 m_2 \cdots m_k$ 。首先,计算 x 的可能取值的个数。 x_1 有 m_1 个可能的取值。 x_2 有 m_2 个可能的取值。... x_k 有 m_k 个可能的取值。由于 x_i 的选择是独立的,x 的总取值个数为 $m_1 m_2 \cdots m_k = M$ 个。这与模 M 的完全剩余系的元素个数相同。接下来,证明这些值两两关于模 M 不同余。假设存在两组 (x_1, x_2, \ldots, x_k) 和 $(x_1', x_2', \ldots, x_k')$,其中 x_i, x_i' 分别是模 m_i 的完全剩余系的代表元,使得

$$x_1 + m_1 x_2 + m_1 m_2 x_3 + \dots + m_1 \cdots m_{k-1} x_k$$

$$\equiv x_1' + m_1 x_2' + m_1 m_2 x_3' + \dots + m_1 \cdots m_{k-1} x_k' \pmod{M}$$

记此同余式为(*)。因为 $m_1 \mid M$,所以上述同余式也意味着模 m_1 同余:

$$x_1 + m_1 x_2 + \dots + m_1 \dots m_{k-1} x_k$$

 $\equiv x_1' + m_1 x_2' + \dots + m_1 \dots m_{k-1} x_k' \pmod{m_1}$

由于 $m_1x_2, m_1m_2x_3, \ldots$ 都是 m_1 的倍数,它们模 m_1 都同余于 0。所以 $x_1 \equiv x_1' \pmod{m_1}$ 。因为 x_1, x_1' 都来自模 m_1 的一个完全剩余系,所以 $x_1 = x_1'$ 将 $x_1 = x_1'$ 代入 (*) 并消去,得到

$$m_1 x_2 + m_1 m_2 x_3 + \dots + m_1 \dots m_{k-1} x_k$$

 $\equiv m_1 x_2' + m_1 m_2 x_3' + \dots + m_1 \dots m_{k-1} x_k' \pmod{M}$

两边同除以 m_1 (这是允许的,因为 $M=m_1(m_2\cdots m_k)$),得到

$$x_2 + m_2 x_3 + \dots + m_2 \cdots m_{k-1} x_k$$

 $\equiv x_2' + m_2 x_3' + \dots + m_2 \cdots m_{k-1} x_k' \pmod{m_2 \cdots m_k}$

记此同余式为 (**)。因为 $m_2 \mid (m_2 \cdots m_k)$, 所以上述同余式也意味着模 m_2 同余:

$$x_2 + m_2 x_3 + \dots \equiv x_2' + m_2 x_3' + \dots \pmod{m_2}$$
$$x_2 \equiv x_2' \pmod{m_2}$$

因为 x_2, x_2' 都来自模 m_2 的一个完全剩余系,所以 $x_2 = x_2'$ 。我们可以继续这个过程。假设我们已经证明了 $x_1 = x_1', x_2 = x_2', \ldots, x_{j-1} = x_{j-1}'$ 。将这些代入 (*) 并消去相应的项,然后两边同除以 $m_1 m_2 \cdots m_{j-1}$,我们得到

$$x_j + m_j x_{j+1} + \dots + m_j \cdots m_{k-1} x_k$$

 $\equiv x'_j + m_j x'_{j+1} + \dots + m_j \cdots m_{k-1} x'_k \pmod{m_j m_{j+1} \cdots m_k}$

考虑模 m_i ,得到

$$x_j \equiv x_j' \pmod{m_j}$$

因为 x_j, x_j' 都来自模 m_j 的一个完全剩余系,所以 $x_j = x_j'$ 。通过归纳,我们可以证明对所有的 j = 1, 2, ..., k,都有 $x_j = x_j'$ 。因此,如果两个 x 值关于模 M 同余,那么它们必定是由完全相同的 $(x_1, ..., x_k)$ 序列生成的。这证明了由不同序列生成的 M 个 x 值两两关于模 M 不同余。综上所述,这些 x 值构成了模 M 的一个完全剩余系。

- 22 判断下列同余方程是否有解,若有解求其解:
 - (a). $20x \equiv 4 \pmod{30}$;
 - (b). $15x \equiv 25 \pmod{35}$;
 - (c). $15x \equiv 0 \pmod{35}$.

解 线性同余方程 $ax \equiv b \pmod{m}$ 有解当且仅当 $gcd(a, m) \mid b$ 。若有解,则恰有 gcd(a, m) 个模 m 的互不同余解。

- (a). $20x \equiv 4 \pmod{30}$ 。 计算 $\gcd(20,30) = 10$ 。 因为 $10 \nmid 4$,所以该同余方程无解。
- (b). $15x \equiv 25 \pmod{35}$ 。计算 $\gcd(15,35) = 5$ 。因为 $5 \mid 25$,所以该同余方

程有解, 且恰有 5 个模 35 的互不同余解。原方程等价于 15x = 25 + 35k 对于某个整数 k。两边同除以 gcd(15, 35) = 5:

$$3x \equiv 5 \pmod{7}$$

为解此方程, 我们需要找到 3 模 7 的逆元。观察可知 $3 \times 5 = 15 \equiv 1$ (mod 7)。所以 3 的逆元是 5。用 5 乘以上述同余式两边:

$$5 \cdot (3x) \equiv 5 \cdot 5 \pmod{7}$$

 $15x \equiv 25 \pmod{7}$
 $x \equiv 4 \pmod{7}$

所以解的形式为x = 4+7t,其中t是整数。这些解在模 35下为:当t = 0时,x = 4。当t = 1时,x = 4+7=11。当t = 2时,x = 4+14=18。当t = 3时,x = 4+21=25。当t = 4时,x = 4+28=32。当t = 5时, $x = 4+35=39\equiv 4 \pmod{35}$,开始重复。因此,解为 $x \equiv 4,11,18,25,32 \pmod{35}$ 。

(c). $15x \equiv 0 \pmod{35}$ 。 计算 $\gcd(15,35) = 5$ 。 因为 $5 \mid 0$,所以该同余方程有解,且恰有 5 个模 35 的互不同余解。原方程等价于 15x = 35k 对于某个整数 k。两边同除以 $\gcd(15,35) = 5$:

$$3x \equiv 0 \pmod{7}$$

因为 gcd(3,7) = 1, 我们可以约去 3, 得到:

$$x \equiv 0 \pmod{7}$$

所以解的形式为 x=7t, 其中 t 是整数。这些解在模 35 下为: 当 t=0 时, x=0。当 t=1 时, x=7。当 t=2 时, x=14。当 t=3 时, x=21。当 t=4 时, x=28。当 t=5 时, $x=35\equiv 0 \pmod{35}$,开始重复。因此,解为 $x\equiv 0,7,14,21,28 \pmod{35}$ 。

23 解二元一次同余方程组

$$\begin{cases} x + 4y - 29 \equiv 0 \pmod{143} \\ 2x - 9y + 84 \equiv 0 \pmod{143} \end{cases}$$

解 将方程组写为标准形式:

$$\begin{cases} x + 4y \equiv 29 \pmod{143} & (1) \\ 2x - 9y \equiv -84 \pmod{143} & (2) \end{cases}$$

注意到 $143 = 11 \times 13$ 。我们可以用消元法。将方程 (1) 乘以 2:

$$2x + 8y \equiv 58 \pmod{143} \tag{3}$$

用方程(3)减去方程(2):

$$(2x + 8y) - (2x - 9y) \equiv 58 - (-84) \pmod{143}$$

 $17y \equiv 142 \pmod{143}$

因为 $142 \equiv -1 \pmod{143}$, 所以

$$17y \equiv -1 \pmod{143}$$

我们需要解这个关于y的线性同余方程。首先计算 $\gcd(17,143)$ 。因为 $143 = 11 \times 13$,17 是素数,且 $17 \neq 11$, $17 \neq 13$,所以 $\gcd(17,143) = 1$ 。这保证了方程有唯一解。我们需要找到17模143的逆元。使用扩展欧几里得算法:

$$143 = 8 \times 17 + 7$$
$$17 = 2 \times 7 + 3$$
$$7 = 2 \times 3 + 1$$

现在反向代入:

$$1 = 7 - 2 \times 3$$

$$= 7 - 2 \times (17 - 2 \times 7)$$

$$= 7 - 2 \times 17 + 4 \times 7$$

$$= 5 \times 7 - 2 \times 17$$

$$= 5 \times (143 - 8 \times 17) - 2 \times 17$$

$$= 5 \times 143 - 40 \times 17 - 2 \times 17$$

$$= 5 \times 143 - 42 \times 17$$

从 $5 \times 143 - 42 \times 17 = 1$, 我们得到 $-42 \times 17 \equiv 1 \pmod{143}$ 。所以 17 模 143 的逆元是 $-42 \equiv -42 + 143 = 101 \pmod{143}$ 。将 $17y \equiv -1 \pmod{143}$

两边乘以101:

$$101 \cdot (17y) \equiv 101 \cdot (-1) \pmod{143}$$

 $y \equiv -101 \pmod{143}$
 $y \equiv -101 + 143 \equiv 42 \pmod{143}$

将 y = 42 代入方程 (1):

$$x + 4(42) \equiv 29 \pmod{143}$$
$$x + 168 \equiv 29 \pmod{143}$$

因为
$$168=143+25\equiv 25\pmod{143}$$
,所以
$$x+25\equiv 29\pmod{143}$$

$$x\equiv 29-25\pmod{143}$$

$$x\equiv 4\pmod{143}$$

因此, 方程组的解为 $x \equiv 4 \pmod{143}$, $y \equiv 42 \pmod{143}$ 。

- 25 判断下列同余方程组是否有解,若有解求其解:
 - (a). $x \equiv 1 \pmod{4}$, $x \equiv 0 \pmod{3}$, $x \equiv 5 \pmod{7}$;
 - (b). $x \equiv 2 \pmod{4}$, $x \equiv 7 \pmod{10}$, $x \equiv 1 \pmod{3}$;
 - (c). $x \equiv 2 \pmod{3}$, $x \equiv 3 \pmod{5}$, $x \equiv 5 \pmod{2}$;
 - (d). $x \equiv 3 \pmod{8}$, $x \equiv 11 \pmod{20}$, $x \equiv 1 \pmod{15}$.

解 使用中国剩余定理 (CRT)。若模数不互素,则先檢查相容性。

(a). $x \equiv 1 \pmod{4}, x \equiv 0 \pmod{3}, x \equiv 5 \pmod{7}$. 模数 $m_1 = 4, m_2 = 3, m_3 = 7$ 两两互素。故有唯一解模 $M = 4 \times 3 \times 7 = 84$ 。 $M_1 = M/m_1 = 84/4 = 21$ 。解 $M_1y_1 \equiv 1 \pmod{m_1}$,即 $21y_1 \equiv 1 \pmod{4}$ ⇒ $y_1 \equiv 1 \pmod{4}$ 。取 $y_1 = 1$ 。 $M_2 = M/m_2 = 84/3 = 28$ 。解 $M_2y_2 \equiv 1 \pmod{m_2}$,即 $28y_2 \equiv 1 \pmod{3}$ ⇒ $y_2 \equiv 1 \pmod{3}$ 。取 $y_2 = 1$ 。 $M_3 = M/m_3 = 84/7 = 12$ 。解 $M_3y_3 \equiv 1 \pmod{m_3}$,即 $12y_3 \equiv 1 \pmod{7}$ ⇒ $5y_3 \equiv 1 \pmod{7}$ 。因为 $5 \times 3 = 15 \equiv 1 \pmod{7}$,取 $y_3 = 3$ 。根据 CRT,解为 $x = a_1M_1y_1 + a_2M_2y_2 + a_3M_3y_3 \pmod{M}$ 。

$$x \equiv 1 \cdot 21 \cdot 1 + 0 \cdot 28 \cdot 1 + 5 \cdot 12 \cdot 3 \pmod{84}$$

$$x \equiv 21 + 0 + 180 \pmod{84}$$
$$x \equiv 201 \pmod{84}$$

因为 $201 = 2 \times 84 + 33$,所以 $x \equiv 33 \pmod{84}$ 。

- (b). $x \equiv 2 \pmod{4}, x \equiv 7 \pmod{10}, x \equiv 1 \pmod{3}$. 模数 4 和 10 不互素, $\gcd(4,10) = 2$ 。需要检查相容性。 $x \equiv 2 \pmod{4} \implies x$ 是偶数。 $x \equiv 7 \pmod{10}$ 。考虑模 2: $x \equiv 7 \equiv 1 \pmod{2} \implies x$ 是奇数。一个数不能同时是奇数和偶数。这两个条件矛盾。因此,该同余方程组无解。
- (c). $x \equiv 2 \pmod{3}, x \equiv 3 \pmod{5}, x \equiv 5 \pmod{2}$. 最后一个同余式可简化为 $x \equiv 1 \pmod{2}$ 。 方程组为 $x \equiv 2 \pmod{3}, x \equiv 3 \pmod{5},$ $x \equiv 1 \pmod{2}$. 模数 $m_1 = 3, m_2 = 5, m_3 = 2$ 两两互素。故有唯一解模 $M = 3 \times 5 \times 2 = 30$ 。 $M_1 = M/m_1 = 30/3 = 10$ 。解 $10y_1 \equiv 1 \pmod{3} \implies y_1 \equiv 1 \pmod{3}$ 。取 $y_1 = 1$ 。 $M_2 = M/m_2 = 30/5 = 6$ 。解 $6y_2 \equiv 1 \pmod{5} \implies y_2 \equiv 1 \pmod{5}$ 。取 $y_2 \equiv 1 \pmod{5}$ 。取 $y_3 \equiv 1 \pmod{2}$ 。取 $y_3 \equiv 1$ 。解 为 $x = a_1M_1y_1 + a_2M_2y_2 + a_3M_3y_3 \pmod{M}$ 。

$$x \equiv 2 \cdot 10 \cdot 1 + 3 \cdot 6 \cdot 1 + 1 \cdot 15 \cdot 1 \pmod{30}$$
$$x \equiv 20 + 18 + 15 \pmod{30}$$
$$x \equiv 53 \pmod{30}$$

因为 $53 = 1 \times 30 + 23$, 所以 $x \equiv 23 \pmod{30}$ 。

(d). $x \equiv 3 \pmod{8}, x \equiv 11 \pmod{20}, x \equiv 1 \pmod{15}$. 模数 8, 20, 15 两两不都互素。 $\gcd(8,20) = 4, \gcd(8,15) = 1, \gcd(20,15) = 5$ 。需要检查相容性。从 $x \equiv 3 \pmod{8}$ 和 $x \equiv 11 \pmod{20}$ 检查 $\gcd(8,20) = 4$ 。 $x \equiv 3 \pmod{4}$ 。 $x \equiv 3 \pmod{4}$ 。 这两个条件相容。从 $x \equiv 11 \pmod{20}$ 和 $x \equiv 1 \pmod{15}$ 检查 $\gcd(20,15) = 5$ 。 $x \equiv 11 \pmod{20}$ 和 $x \equiv 1 \pmod{5}$ 。 $x \equiv 1 \pmod{5}$ 。 $x \equiv 1 \pmod{5}$ 。 这两个条件相容。从 $x \equiv 1 \pmod{5}$ 。 $x \equiv 1 \pmod{5}$ 和 $x \equiv 1 \pmod{5}$

因为所有条件都相容, 所以方程组有解。我们可以将原方程组分解为关于素数幂的模: $x \equiv 3 \pmod{8}$ $x \equiv 11 \pmod{20} \implies x \equiv 11 \pmod{4}$

(已包含在 $x \equiv 3 \pmod 8$) 中) 且 $x \equiv 11 \pmod 5$) $\implies x \equiv 1 \pmod 5$. $x \equiv 1 \pmod 5$ $\implies x \equiv 1 \pmod 5$ (已存在)。简化后的等价方程组为: $x \equiv 3 \pmod 8$ $x \equiv 1 \pmod 5$ (已存在)。简化后的等价方程组为: $x \equiv 3 \pmod 8$ $x \equiv 1 \pmod 3$ $x \equiv 1 \pmod 5$ 模数 $m_1 = 8, m_2 = 3, m_3 = 5$ 两两互素。有唯一解模 $M = 8 \times 3 \times 5 = 120$ 。 $M_1 = M/m_1 = 120/8 = 15$ 。解 $15y_1 \equiv 1 \pmod 8$ $\implies -y_1 \equiv 1 \pmod 8$ $\implies y_1 \equiv -1 \equiv 7 \pmod 8$ 。取 $y_1 = 7$ 。 $M_2 = M/m_2 = 120/3 = 40$ 。解 $40y_2 \equiv 1 \pmod 3$ 。取 $y_2 \equiv 1 \pmod 3$ 。取 $y_2 \equiv 1 \pmod 5$ $\implies 4y_3 \equiv 1 \pmod 5$ $\implies -y_3 \equiv 1 \pmod 5$ $\implies 3 \equiv -1 \equiv 4 \pmod 5$ 。取 $y_3 = 4$ 。解为 $x = a_1M_1y_1 + a_2M_2y_2 + a_3M_3y_3 \pmod M$ 。

$$x \equiv 3 \cdot 15 \cdot 7 + 1 \cdot 40 \cdot 1 + 1 \cdot 24 \cdot 4 \pmod{120}$$

 $x \equiv 315 + 40 + 96 \pmod{120}$
 $x \equiv 451 \pmod{120}$

因为 $451 = 3 \times 120 + 91$,所以 $x \equiv 91 \pmod{120}$ 。 27 解同余方程组:

$$2x \equiv 3 \pmod{5}, \quad 3x \equiv 1 \pmod{7}.$$

解 先分别解每一个线性同余方程。第一个方程: $2x \equiv 3 \pmod{5}$ 。我们需要找到 2 模 5 的逆元。 $2 \times 3 = 6 \equiv 1 \pmod{5}$ 。逆元是 3。方程两边乘以 3:

$$3 \cdot (2x) \equiv 3 \cdot 3 \pmod{5}$$

 $6x \equiv 9 \pmod{5}$
 $x \equiv 4 \pmod{5}$

第二个方程: $3x \equiv 1 \pmod{7}$ 。我们需要找到 3 模 7 的逆元。 $3 \times 5 = 15 \equiv 1 \pmod{7}$ 。逆元是 5。方程两边乘以 5:

$$5 \cdot (3x) \equiv 5 \cdot 1 \pmod{7}$$
$$15x \equiv 5 \pmod{7}$$
$$x \equiv 5 \pmod{7}$$

现在我们需要解联立方程组:

$$\begin{cases} x \equiv 4 \pmod{5} \\ x \equiv 5 \pmod{7} \end{cases}$$

模数 $m_1=5, m_2=7$ 互素。有唯一解模 $M=5\times 7=35$ 。 $M_1=M/m_1=35/5=7$ 。解 $7y_1\equiv 1\pmod 5$ $\Longrightarrow 2y_1\equiv 1\pmod 5$ 。逆元是 3,所以 $y_1=3$ 。 $M_2=M/m_2=35/7=5$ 。解 $5y_2\equiv 1\pmod 7$ 。逆元是 $3(5\times 3=15\equiv 1\pmod 7)$,所以 $y_2=3$ 。根据 CRT,解为 $x=a_1M_1y_1+a_2M_2y_2\pmod M$ 。

$$x \equiv 4 \cdot 7 \cdot 3 + 5 \cdot 5 \cdot 3 \pmod{35}$$
$$x \equiv 84 + 75 \pmod{35}$$
$$x \equiv 159 \pmod{35}$$

因为 $159 = 4 \times 35 + 19$,所以 $159 \equiv 19 \pmod{35}$ 。因此,方程组的解为 $x \equiv 19 \pmod{35}$ 。

1.4 第六周作业

第四章

- 13 (a). 求 3⁴⁰⁰ 的最后一位数字;
 - (b). 求 $(12371^{56} + 34)^{28}$ 被 111 除以后所得的余数.

解

- (a). $3^{400} \equiv 3^{4 \times 100} \equiv (3^4)^{100} \equiv 1^{100} \equiv 1 \pmod{10}$ 故其最后一位数字为 1。
- (b). 注意到 $12371 \equiv 111^2 + 50$. 因此

$$12371 \equiv 50 \pmod{111}$$

故

$$(12371^{56} + 34)^{28} \equiv (50^{56} + 34)^{28} \pmod{111}$$

我们有

$$50^2 \equiv 58 \pmod{111}$$
$$50^4 \equiv 34 \pmod{111}$$

$$50^8 \equiv 46 \pmod{111}$$

$$50^{16} \equiv 7 \pmod{111}$$

$$50^{32} \equiv 49 \pmod{111}$$

因此

$$50^{56} \equiv 50^{32} \times 50^{16} \times 50^8 \equiv 16 \pmod{111}$$

于是

$$(50^{56} + 34)^{28} \equiv 50^{28} \pmod{111}$$

而

$$50^{28} \equiv 50^{16} \times 50^8 \times 50^4 \equiv 70 \pmod{111}$$

综上, 其余数为70。

- 14 (a). 求 3⁴⁰⁰ 的最后两位数字;
 - (b). 求 9⁹⁹ 的最后两位数字.

解

$$3^{\phi(100)} = 3^{40} \equiv 1 \pmod{100}$$

于是

$$3^{400} \equiv (3^{40})^{10} \equiv 1 \pmod{100}$$

故其末两位为01.

(b). 我们有

$$9^9 \equiv 9^{2 \times 4 + 1} \equiv (9^2)^4 \times 9 \equiv (1)^4 \times 9 \equiv 9 \pmod{40}$$

由 Euler 定理知

$$9^{\phi(100)} = 9^{40} \equiv 1 \pmod{100}$$

因此

$$9^{9^9} \equiv 9^9 \pmod{100}$$

对 9,100 进行辗转相除法,有

$$9^{-1} \equiv 89 \pmod{100}$$

而

$$9^9 \times 9 = 9^{10} \equiv 1 \pmod{100}$$

故

$$9^9 \equiv 9^{-1} \equiv 89 \pmod{100}$$

综上, 其最后两位数字为89

21 当 a 为何值时 $x^3 \equiv a \pmod{9}$ 有解.

解 遍历 $\mathbb{Z}/9\mathbb{Z}$, 当且仅当 $a \equiv 0, 1, 8 \pmod{9}$ 时该方程有解。

28 设 m_1, m_2, \dots, m_K 两两互素,则同余方程组 $a_i x \equiv b_i \pmod{m_i}, 1 \leqslant i \leqslant K$ 有解的充要条件是每一个同余方程 $a_i x \equiv b_i \pmod{m_i}$ 均可解.

证明 必要性显然,下证充分性。

假设 $a_i x \equiv b_i \pmod{m_i}, 1 < i < k$ 的可解,则

$$(a_i, m_i) \mid b_i$$

令
$$d_i = (a_i, m_i), a'_i = \frac{a_i}{d_i}, b'_i = \frac{b_i}{d_i}, m'_i = \frac{m_i}{d_i}$$
。
则有

$$a_i x \equiv b_i \pmod{m_i} \Leftrightarrow a'_i x \equiv b'_i \pmod{m'_i}$$

由于 $(a'_i, m'_i) = 1$, 故方程有唯一一解

$$x \equiv x_{i,0} \pmod{m_i'}$$

因此,原同余方程组等价于

$$\begin{cases} x \equiv x_{1,0} \pmod{m'_1} \\ x \equiv x_{2,0} \pmod{m'_2} \\ \dots \\ x \equiv x_{k,0} \pmod{m'_k} \end{cases}$$

对于 $i,j \in \{1,2,\cdots,k\}; i \neq j$,取素数 $p \mid (m'_i,m'_j)$,则 $p \mid m_i$ 且 $p \mid m_j$,而 $(m_i,m_j)=1$ 。故 p 不存在。 因此

$$(m'_i, m'_j) = 1, 1 \le i \ne j \le k$$

由中国剩余定理知同余方程组有解。

29 设 (a,b) = 1, C > 0, 证明一定存在整数 x, 使 (a+bx,C) = 1. 证明 证明: 对 C 进行素因子分解

$$C = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$$

构造如下的同余方程组

$$x \equiv d_i \pmod{p_i}, i = 1, 2, \dots, k$$

其中,

$$d_{i} = \begin{cases} 0, & p_{i} \nmid b \\ -ab^{-1} + 1 \pmod{p_{i}}, & p_{i} \mid b \end{cases}$$

由于 p_1, p_2, \dots, p_k 两两互素,由中国剩余定理知其有唯一解 x_0 。由方程组的构造知

$$a + bx_0 \not\equiv 0 \pmod{p_i}, i = 1, 2, \cdots, k$$

因此

$$(a+bx_0,C)=1$$

第五章

1 设整数 $\alpha \ge 1, p$ 是奇素数, 若 $p^{\alpha} \nmid a$, 求

$$x^2 \equiv a \, (\bmod p^{\alpha})$$

的一切解.

$$\mathbf{H}(1)$$
 若 $\left(\frac{a}{p}\right) = -1$,则 $x^2 \equiv a \pmod{p}$ 无解,故 $x^2 \equiv a \pmod{p^{\alpha}}$ 无解。

(2) 若 $\left(\frac{a}{p}\right) = 1$, 则 $x^2 \equiv a \pmod{p}$ 有解, 由 Hensel 引理知 $x^2 \equiv a \pmod{p^{\alpha}}$ 恰有两解且在模 p^{α} 意义下互为相反数。

(3) 若
$$\left(\frac{a}{p}\right) = 0$$
,设 $a = p^k b$,其中 $1 \le k < \alpha$ 且 $p \nmid b$

- 1) 若 $2 \nmid k$, 则方程无解。
- 2) 若 $2 \mid k$, 设 k = 2m, 令 $x = p^m y$, 则

$$x^2 \equiv a \pmod{p^{\alpha}}$$

 $\iff p^{2m}y^2 \equiv p^{2m}b \pmod{p^{\alpha}}$
 $\iff y^2 \equiv b \pmod{p^{\alpha-2m}}$

同上,若
$$\left(\frac{b}{p}\right)=1$$
,则恰有两解,设 $y_0^2\equiv b\pmod{p^{\alpha-2m}}$,则 $x_1\equiv p^my_0\pmod{p^{\alpha}}$, $x_2\equiv p^m(p^{\alpha-2m}-y_0)\pmod{p^{\alpha}}$ 。若 $\left(\frac{b}{p}\right)=-1$,则方程无解。

3 分别写出 7,13,29,37 的全体二次剩余和非剩余.

		二次剩余	二次非剩余
	7	1, 2, 4	3, 5, 6
	13	1, 3, 4, 9, 10, 12	2, 5, 6, 7, 8, 11
解	29	1, 4, 5, 6, 7, 9, 13, 16, 20, 22, 23,	2, 3, 8, 10, 11, 12, 14, 15, 17, 18,
		24, 25, 28	19, 21, 26, 27
	37	1, 3, 4, 7, 9, 10, 11, 12, 16, 21,	2, 5, 6, 8, 13, 14, 15, 17, 18, 19,
		25, 26, 27, 28, 30, 33, 34, 36	20, 22, 23, 24, 29, 31, 32, 35

4 设p > 2为奇素数,证明:

(a).
$$\left(\frac{-1}{p}\right) = 1$$
 的充要条件是 $p = 4n + 1$;

(b).
$$\left(\frac{2}{p}\right) = 1$$
 的充要条件是 $p = 8n \pm 1$;

(c). $\left(\frac{-2}{p}\right) = 1$ 的充要条件是 p = 8n + 1, 8n + 3; 并由此进一步证明对任意素数 p, -1, -2, 2 中必有一个是 p 的平方剩余.

证明

(a).
$$\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}} = 1 \Leftrightarrow p = 4n+1$$

(b).
$$\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}} = 1 \Leftrightarrow p = 8n \pm 1$$

(c).
$$\left(\frac{-2}{p}\right) = \left(\frac{-1}{p}\right) \left(\frac{2}{p}\right) = (-1)^{\frac{(p-1)(p+5)}{8}}$$
$$\left(\frac{-2}{p}\right) = 1 \Leftrightarrow p = 8n+1, 8n+3$$

因此,对于任意奇素数 p, -1, -2, 2 中必有一个是 p 的二次剩余。

7 设 x, y 为整数,(x, y) = 1 ,问: $x^2 + y^2$ 的大于 2 的素因子一定具有什么形式? $x^2 + 2y^2$ 的大于 2 的素因子一定具有什么形式?

解(1)

$$x^{2} \equiv -y^{2} \pmod{p}$$

$$\Leftrightarrow \left(\frac{-1}{p}\right) = 1$$

$$\Leftrightarrow p = 4n + 1$$

$$x^{2} \equiv -2y^{2} \pmod{p}$$

$$\Leftrightarrow \left(\frac{-2}{p}\right) = 1$$

$$\Leftrightarrow p = 8n + 1, 8n + 3$$

1.5 第七周作业

第五章

5 利用上题证明:对任意素数p,必有整数x,使

$$p\mid x^8-16$$
 证明 若 $\left(\frac{2}{p}\right)=1$ 或 $\left(\frac{-2}{p}\right)=1$,则有
$$x^2\equiv 2\pmod{p}$$
 或 $x^2\equiv -2\pmod{p}$

故

$$x^8 \equiv 16 \pmod{p}$$

若
$$\left(\frac{-1}{p}\right) = 1$$
,则有

$$t^2 \equiv -1 \pmod{p}$$

设 x = 1 + t, 有

$$x^{2} = t^{2} + 2t + 1 \equiv 2t \pmod{p}$$

$$x^{4} \equiv -4 \pmod{p}$$

$$x^{8} \equiv 16 \pmod{p}$$

6 证明: 同余式 $x^2 + 1 \equiv 0 \pmod{p}, p = 4m + 1$ 的解是

$$x \equiv (2m)! (\bmod p).$$

证明 由 Wilson 定理,知

$$(p-1)! \equiv -1 \pmod{p}$$

即

$$[(2m)!]^2 = 1 \times 2 \times \cdots \times 2m \times (-2m) \times \cdots \times (-1)$$

$$= 1 \times 2 \times \cdots \times 2m \times (2m+1) \times \cdots \times (4m)$$

$$= (4m)!$$

$$\equiv -1 \pmod{p}$$

8 计算:
$$\left(\frac{-23}{83}\right), \left(\frac{51}{71}\right), \left(\frac{71}{73}\right), \left(\frac{-35}{97}\right)$$
.

解

(a).

$$\left(\frac{-23}{83}\right) = \left(\frac{-1}{83}\right) \cdot \left(\frac{23}{83}\right)$$

$$= (-1)^{\frac{83-1}{2}} \cdot (-1) \cdot \left(\frac{83}{23}\right)$$

$$= \left(\frac{83}{23}\right)$$

$$= \left(\frac{-9}{23}\right)$$

$$= \left(\frac{-1}{23}\right) \cdot \left(\frac{9}{23}\right)$$

$$= (-1)^{\frac{23-1}{2}} \cdot (-1) \cdot \left(\frac{23}{9}\right)$$

$$= -1 \cdot 1$$

因此
$$\left(\frac{-23}{83}\right) = -1$$

(b).

$$\begin{pmatrix} \frac{51}{71} \end{pmatrix} = \begin{pmatrix} \frac{3}{71} \end{pmatrix} \cdot \begin{pmatrix} \frac{17}{71} \end{pmatrix}$$

$$= (-1) \cdot \begin{pmatrix} \frac{71}{3} \end{pmatrix} \cdot \begin{pmatrix} \frac{71}{17} \end{pmatrix}$$

$$= (-1) \cdot \begin{pmatrix} \frac{2}{3} \end{pmatrix} \cdot \begin{pmatrix} \frac{3}{17} \end{pmatrix}$$

$$= (-1) \cdot (-1)^{\frac{9-1}{8}} \cdot \begin{pmatrix} \frac{17}{3} \end{pmatrix}$$

$$= (-1) \cdot \begin{pmatrix} \frac{2}{3} \end{pmatrix}$$

$$= -1$$

(c).

$$\left(\frac{71}{73}\right) = \left(\frac{73}{71}\right)$$

$$= \left(\frac{2}{71}\right)$$

$$= (-1)^{\frac{71^2 - 1}{8}}$$

$$= 1$$

(d).

$$\left(\frac{-35}{97}\right) = \left(\frac{-1}{97}\right) \cdot \left(\frac{35}{97}\right)$$

$$= \left(\frac{-1}{97}\right) \cdot \left(\frac{97}{35}\right)$$

$$= (-1)^{\frac{97-1}{2}} \cdot \left(\frac{-1}{35}\right) \cdot \left(\frac{2}{35}\right) \cdot \left(\frac{4}{35}\right)$$

$$= (-1)^{\frac{35-1}{2}} \cdot (-1)^{\frac{35^2-1}{8}} \cdot 1$$

$$= (-1) \cdot (-1) \cdot 1$$

$$= 1$$

9 设p > 3为素数,证明:

(a).
$$\left(\frac{3}{p}\right) = 1$$
 之充要条件为 $p = 12n \pm 1$;

(b).
$$\left(\frac{-3}{p}\right) = 1$$
 之充要条件为 $p = 6n + 1$.

证明

(a).

$$\left(\frac{3}{p}\right)\left(\frac{p}{3}\right) = (-1)^{\frac{p-1}{2}\frac{3-1}{2}} = (-1)^{\frac{p-1}{2}}$$

于是

$$\left(\frac{3}{p}\right) = (-1)^{\frac{p-1}{2}} \left(\frac{p}{3}\right)$$

其中

$$\left(\frac{p}{3}\right) = 1 \iff p \equiv 1 \pmod{3}$$

$$\left(\frac{p}{3}\right) = -1 \iff p \equiv 2 \pmod{3}$$

故

$$\left(\frac{3}{p}\right) = 1$$

$$\iff p \equiv 3 \pmod{4} \land p \equiv 2 \pmod{3}$$

$$\not x p \equiv 1 \pmod{4} \land p \equiv 1 \pmod{3}$$

$$\iff p \equiv \pm 1 \pmod{12}$$

$$\iff p = 12n \pm 1$$

(b).

$$\left(\frac{-3}{p}\right) = \left(\frac{-1}{p}\right) \left(\frac{3}{p}\right)$$
$$= (-1)^{\frac{p-1}{2}} \cdot (-1)^{\frac{p-1}{2}} \left(\frac{p}{3}\right)$$
$$= (-1)^{p-1} \left(\frac{p}{3}\right)$$

于是

$$\left(\frac{-3}{p}\right) = 1 \Leftrightarrow p \equiv 1 \pmod{2} \land p \equiv 1 \pmod{3}$$

$$\lor p \equiv 0 \pmod{2} \land p \equiv 2 \pmod{3}$$

$$\Leftrightarrow p \equiv 1 \pmod{6}$$

$$\Leftrightarrow p = 6n + 1.$$

12 设p > 2为素数,(a, p) = 1,则

$$\sum_{x=1}^{p} \left(\frac{ax+b}{p} \right) = 0.$$

证明

$$\sum_{x=1}^{p} \left(\frac{ax+b}{p} \right) = \sum_{y=1}^{p} \left(\frac{y}{p} \right) = \frac{p-1}{2} - \frac{p-1}{2} + 0 = 0$$

第六章

1 写出模 3,5,11,13,19 的指数表,并指出它们的所有原根.

解

(a). 3 的指数表

 $(\mathbb{Z}/3\mathbb{Z})^*$ 的元素 a 及其阶 $\operatorname{ord}_3(a)$ 如下:

a=1	a=2
$ord_3(1) = 1$	$ord_3(2) = 2$

原根: 2.

(b). 5 的指数表

 $(\mathbb{Z}/5\mathbb{Z})^*$ 的元素 a 及其阶 $\operatorname{ord}_5(a)$ 如下:

a=1	a=2	a=3	a=4
$\operatorname{ord}_5(1) = 1$	$ord_5(2) = 4$	$\operatorname{ord}_5(3) = 4$	$\operatorname{ord}_5(4) = 2$

原根: 2,3.

(c). 11 的指数表

 $(\mathbb{Z}/11\mathbb{Z})^*$ 的元素 a 及其阶 $\mathrm{ord}_{11}(a)$ 如下:

1	2	3	4	5	6	7	8	9	10
1	10	5	5	5	10	10	10	5	2

原根: 2, 6, 7, 8.

(d). 13 的指数表

 $(\mathbb{Z}/13\mathbb{Z})^*$ 的元素 a 及其阶 $\mathrm{ord}_{13}(a)$ 如下:

1	2	3	4	5	6	7
1	12	3	6	4	12	12

8	9	10	11	12
4	3	6	12	2

原根: 2, 6, 7, 11.

(e). 19 的指数表

 $(\mathbb{Z}/19\mathbb{Z})^*$ 的元素 a 及其阶 $\mathrm{ord}_{19}(a)$ 如下:

1	2	3	4	5	6	7	8	9
1	18	18	9	9	9	3	6	9

10	11	12	13	14	15	16	17	18
18	3	6	18	18	18	9	9	2

原根: 2, 3, 10, 13, 14, 15.

2 求 $\delta_{43}(7)$, $\delta_{41}(10)$.

解
$$\delta_{43}(7) = 6$$
, $\delta_{41}(10) = 5$

3 设 p 为素数, $n \ge 1$, (n, p - 1) = 1 . 证明: 当 x 通过模 p 的完全系时, x^n 亦通过模 p 的完全系。

证明 证明

设 $f: (\mathbb{Z}/p\mathbb{Z})^* \longrightarrow (\mathbb{Z}/p\mathbb{Z})^*, \quad x \mapsto x^n.$

即证 ƒ 为双射.

取 $(\mathbb{Z}/p\mathbb{Z})^*$ 的一个原根 g, 则

$$f(g^k) = (g^k)^n = g^{kn}$$

由于 (n, p-1) = 1, 设

$$h: \mathbb{Z}/(p-1)\mathbb{Z} \longrightarrow \mathbb{Z}/(p-1)\mathbb{Z}, \quad k \mapsto kn$$

则 $h \in Aut(\mathbb{Z}/(p-1)\mathbb{Z})$.

因此, f 为双射. 证毕.

5 设素数 p > 2,证明: $\delta_p(a) = 2$ 的充要条件是 $a \equiv -1 \pmod{p}$.

证明

(a). "
$$\Longrightarrow$$
"

若
$$\delta_p(a)=2$$
, 则

$$a^2 \equiv 1 \pmod{p}$$

 $\iff (a-1)(a+1) \equiv 0 \pmod{p}$
 $\iff p \mid (a-1) \lor p \mid (a+1)$

若 $p \nmid (a+1)$,则 $\delta_p(a) = 1$,矛盾,故

$$p \mid a-1$$

即

$$a \equiv -1 \pmod{p}$$

(b). "⇐="

$$a^2 \equiv 1 \pmod{p}$$

故

$$\delta_p(a) = 2$$

9 设 $n=2^k, k>3$,证明: $\delta_n(a)=2^{k-2}$ 的充要条件是 $a\equiv \pm 3 \pmod 8$. 证明 对于 $(\mathbb{Z}/2^k\mathbb{Z})^*, k\geq 3$,有

$$(\mathbb{Z}/2^k\mathbb{Z})^* = \{(-1)^a 5^b \mid a = 0, 1, 0 \le b < 2^{k-2}\}$$

即

$$(\mathbb{Z}/2^k\mathbb{Z})^* \cong C_2 \times C_{2^{k-2}}$$

对于 $\forall a \in (\mathbb{Z}/2^k\mathbb{Z})^*$, 设

$$a \equiv (-1)^u 5^v \pmod{2^k}$$

其中 $u = 0, 1, 0 < v < 2^{k-2}$.

于是

$$\delta_{2^k}(a) = \left[2^u, \frac{2^{k-2}}{(v, 2^{k-2})}\right]$$

(a). "⇒"

I. 若 u = 0, 则 $\delta_{2^k}(a) = \frac{2^{k-2}}{(v, 2^{k-2})} = 2^{k-2}$ 故 $v \equiv 1 \pmod{2}$.

II. 若 u = 1, 则 $\delta_{2^k}(a) = \left[2, \frac{2^{k-2}}{(v, 2^{k-2})}\right] = 2^{k-2}$. 故 $v \equiv 1 \pmod{2}$. 由于 $v \equiv 1 \pmod{2}$, 因此

$$5^v \equiv 5 \pmod{8}$$

于是

$$a \equiv (-1)^u 5^v \equiv (-1)^u 5 \equiv \pm 5 \equiv \pm 3 \pmod{8}$$

(b). "⇐="

若 $a \equiv \pm 3 \pmod{8}$, 则 $v \equiv 1 \pmod{2}$, 于是

$$\delta_{2^k}(a) = \left[2^u, \frac{2^{k-2}}{(v, 2^{k-2})}\right] = \left[2^u, 2^{k-2}\right] = 2^{k-2}$$

10 设m > 2并有原根存在,证明:

(a). a 是模 m 的二次剩余的充要条件是

$$a^{\varphi(m)/2} \equiv 1 \pmod{m};$$

- (b). 若 $a \not\in m$ 的二次剩余,则 $x^2 \equiv a \pmod{m}$ 恰有二解;
- (c). 模 m 恰有 $\frac{1}{2}\varphi(m)$ 个二次剩余.

证明 设 g 为 m 的一个原根,则 $(\mathbb{Z}/m\mathbb{Z})^* = \langle g \rangle$.

(a). 设 $a \equiv g^k \pmod{m}, 0 < k \le \varphi(m)$.

$$\exists x : x^2 \equiv a \pmod{m}$$

$$\iff \exists 0 < j \le \varphi(m) : g^{2j} \equiv g^k \pmod{m}$$

$$\iff \exists 0 < j \le \varphi(m) : 2j \equiv k \pmod{\varphi(m)}$$

$$\iff (2, \varphi(m)) \mid k$$

而 $2 \mid \varphi(m)$, 故 $2 \mid k$. 设 k = 2t, 于是

$$a^{\frac{\varphi(m)}{2}} \equiv (g^{2t})^{\frac{\varphi(m)}{2}} \equiv g^{t\varphi(m)} \equiv (g^{\varphi(m)})^t \equiv 1 \pmod{m}$$

(b). 设 $a = g^{2t}, x = g^j \pmod{m}$ 为其中一解,则

$$x^2 \equiv a \pmod{m}$$

$$\iff \exists 0 < j \le \varphi(m) : j \equiv t \pmod{\frac{\varphi(m)}{2}}$$

$$\iff x \equiv g^j \pmod{m} \lor x \equiv g^{j + \frac{\varphi(m)}{2}} \pmod{m}$$

恰有二解.

(c). 即在 $1, 2, 3, ..., \varphi(m)$ 中的偶数个数

$$\frac{\varphi(m)}{2}$$

11 设素数 p > 2, 若 g 为模 p 的原根, 且

$$q^{p-1} \equiv 1 \pmod{p^2}$$

则 g 不是 p^k 的原根, $k \ge 2$.

证明 使用反证法.

若g为 p^k 的原根,则g+p亦为 p^k 的原根.g为p的原根.

若 $g^{p-1} \equiv 1 \pmod{p^2}$, 则

$$(g+p)^{p-1} \equiv g^{p-1} + {p-1 \choose 1} g^{p-2} p \pmod{p^2}$$

 $\equiv 1 + (p-1)g^{p-2} p \pmod{p^2}$

由于 $p^2 \nmid (p-1)g^{p-2}p$, 故

$$(g+p)^{p-1} \not\equiv 1 \pmod{p^2}$$

因此存在 p^k 的原根 g 使之为 p 的原根且 $g^{p-1} \not\equiv 1 \pmod{p^2}$.

- 12 (a). 若 q = 4k + 1, p = 2q + 1 均为素数,则 2 是 p 的原根;
 - (b). 若 q = 2k + 1(k > 1), p = 2q + 1 均为素数,则 -3, -4 均为 p 的原根.

证明

(a). 对于 2^2 , 由于 $p = 2q + 1 = 8k + 3 \ge 11$, 故 $2^2 \not\equiv 1 \pmod{p}$.

$$2^q \equiv 2^{\frac{p-1}{2}} \equiv \left(\frac{2}{p}\right) \pmod{p}$$

其中

$$\left(\frac{2}{p}\right) = (-1)^{\frac{p^2 - 1}{8}} = -1$$

故

$$2^q \not\equiv 1 \pmod{p}$$

又由 Lagrange 定理知 $\operatorname{ord}(2) \mid \varphi(p) = 2q$, 故 $\operatorname{ord}(2) = 2q$. 故 2 是 p 的原根.

(b). I. -3 为 p 的原根.

对于 $(-3)^2$, 由于 $p = 2q + 1 = 4k + 3 \ge 11$, 故 $(-3)^2 \not\equiv 1 \pmod{p}$. 若 $(-3)^q \equiv (-3)^{\frac{p-1}{2}} \equiv \left(\frac{-3}{p}\right) \equiv 1 \pmod{p}$, 则 $p \equiv 1 \pmod{6}$. 而 $p = 4k + 3 \not\equiv 1 \pmod{6}$.

故
$$\left(\frac{-3}{p}\right) \not\equiv 1 \pmod{p}$$
.

由 Lagrange 定理知 ord $(-3) \mid \varphi(p) = 2q$, 故 ord(-3) = 2q. 即 -3 为 p 的原根.

II. -4 为 p 的原根.

对于
$$(-4)^2$$
, 由于 $p = 2q + 1 = 4k + 3 \ge 11, \ldots$, 故 $(-4)^2 \ne 1$

$$(\text{mod } p).$$
 若 $(-4)^q \equiv (-4)^{\frac{p-1}{2}} \equiv \left(\frac{-4}{p}\right) \equiv 1 \pmod{p}.$ 而
$$\left(\frac{-4}{p}\right) = \left(\frac{-1}{p}\right) \left(\frac{2}{p}\right)^2$$

$$= (-1)^{\frac{p-1}{2}} \cdot 1$$

$$= (-1)^q \cdot 1$$

$$= -1$$

故 $(-4)^q \not\equiv 1 \pmod{p}$. 由 Lagrange 定理知 $\operatorname{ord}(-4) \mid \varphi(p) = 2q$, 故 $\operatorname{ord}(-4) = 2q$. 即 -4 为 p 的原根.