

第二章:数据的机器级表示

结论:

- ▶ 不管以什么形态出现,在计算机内部,数据最终都由机器指令来处理。
- ▶ 从计算机指令集体系结构(Instruction Set Architecture,简称ISA)角度来看,计算机中底层的机器级表示数据只有几类简单的基本数据类型。

问题的引入: 信息从用户到计算机 文字、图、表、声音、视频等各种媒体信息 最终用户角度 对连续信息采样,以使 信息离散化 输入设备 输出设备 对离散样本用0和1进行 编码 二进制编码表示的各种数据 数据的转换 数组、结构、字符串等结构化数据 高级语言程序员角度 指令系统能识别的基本类型数据 低级语言程序员和 硬件系统设计者角度 分类存储 数值型数据 非数值型数据 定点运算指令 编码字符 如:西文字符和汉字 二进制数 二进制编码的 逻辑数据 十进制数 数据处理 整数(定点数) 实数 (浮点数) 逻辑、位操作或字符处理指令 | 浮点运算指令 无符号整数 带符号整数

信息的二进制编码

▶ 机器级数据分两大类:

。数值数据:无符号/带符号整数、浮点数 4实数)、十进制数

。 非数值数据: 逻辑数(包括位串)、西文字符和汉字

- ▶ 计算机内所有信息都用二进制编码
- ▶ 用二进制编码的原因:
 - 制造二个稳定态的物理器件容易
 - 。二进制编码、计数、运算规则简单
 - 。 与逻辑命题真假对应, 便于逻辑运算和实现。
- ▶ 真值和机器数的概念
 - 。 真值: 现实中世界中数的值
 - 机器数: 计算机内部的0/1序列

Q: C语言中哪些类型是数值数据?哪些是非数值数据...?

Ch2: Data Representation 第二章 数据的机器级表示

- 2.1 数值数据的表示
- 2.2 非数值数据表示
- 2.3 数据的宽度、存储排列、纠/检错

一、进位计数制

1. 基本概念

€ 进位计数制:

用少量的数字符号(也称<u>码</u>),按先后次序 把它们排成数位,由低到高进行计数,计满 进位,这样的方法称为进位计数制.

- € 基数:进位制的基本特征数,即所用到的数字符号个数。
- € 权:进位制中各位"1"所表示的值

2.1 数值数据的表示

- ▶ 定点数的表示
 - 进位计数制
 - 定点数的二进制编码
 - 原码、补码、移码表示
 - 定点整数的表示
 - 无符号整数、带符号整数
- · 浮点数格式和表示范围
 - 浮点数的规格化
 - IEEE754浮点数标准
- ▶ C语言程序中的整数类型、浮点数类型

2. 进制数的表示

- 1)用下标加以标注 (10000111.1011)₂ (1011)₁₀
- 2)用后缀字母表示
 - B二进制
 - 0 八进制
 - D 十进制
 - H 十六进制

3.常用几种进制的对应关系

十进制	二进制	八进制	十六进制
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

4. 进制转换

- (1)、X + :按权展开的多项式
- (2) $+ \longrightarrow =$

整数转换规则:除2取余,直至商为0,先得低位

(除基取余法)

小数转换规则:乘2取整,至小数部分为0或取近似值

(乘基取整法)

4. 进制转换

- $(3) \equiv \longrightarrow \bigwedge \longrightarrow +\dot{\gamma}$
- 二 → 八: (整数)从低位开始,每三位一组, 最高位 不足三位,左边补0;

(小数)从高位开始,每三位一组,最低位不足, 右边补0。

二进制小数: 11101101.0101101

八进制分组: 011, 101, 101, 010, 110, 100

八进制数为: 3 5 5.2 6 4

十六进制分组为: 1110, 1101, 0101, 1010

十六进制数为: E D. 5 A

填空题 30分

将下列十进制数转换成二进制数

- 1、(327)₁₀ = ([填空1])₂
- 2、(0.8125)10 =([填空2])2
- 3、(0.2)10=([填空3])2

提问:根据第3题的练习,你有什么结论?

二、 符号数的表示格式与编码

复习概念

机器数:数在计算机中的二进制表示形式

真值: 机器数的形式值不等于所代表的数的真正的数值.

1、数的表示格式

(1) 定点数及其表示

定点数:数据格式中小数点的位置固定不变. 计算机中的定点数只采用纯整数或者纯小数表示

0100 整数4

0100 小数0.5

□ Signed integer,定点整数

—— 计算机必须能处理正数(positive) 和负数 (negative), MSB表示数符。

三种定点编码方式

- Signed magnitude (原码) 现用来表示浮点 (实)数的尾数
- One's complement (反码) 现已不用于表示数值数据
- Two's complement (补码)

1950s后,整数都用补码来表示;

(1) 定点数的表示

对定点数: $X = X_0 X_1 \cdots X_n$

✓Sign and Magnitude (原码的表示)

1. 数学定义

假设用 X₀X₁X₂······X₀ 来表示一个定点数

定点整数:
$$[x]$$
 原 = $[x, 2^n > x >= 0]$
 $[2^n-x = 2^n + |x|, 0 >= x > -2^n]$

16

✓原码表示法

2. 特殊数的表示 [+0] 原 = 0,00…0

[-0] 原 = 1,00…0

3. 表示规律 0正1负,数码位不变。

原码表示数的范围(以n=5为例)

4. 表示范围

二进	制真值	原码
零	+0.0000	0.0000
-	-0.0000	1.0000
正数	+0.0001	0.0001
	+0.1111	0.1111
负数	-0.0001	1.0001
	-0.1111	1.1111

∴ 正数有 2ⁿ⁻¹-1个 负数有 2ⁿ⁻¹-1个

17

✓补码表示法

1. 数学定义

设小数: X0. X1X2···Xn

定点小数:

$$[x] \stackrel{?}{\Rightarrow} = \begin{cases} x & , 1 > x > = 0 \\ 2 + x = 2 - |x| & , 0 > = x > = -1 \end{cases}$$
 Mod 2

定点整数:

$$[x] \dot{\not} h = \left\{ \begin{array}{l} x \ , \ 2^n > x > = 0 \\ 2^{n+1} + x = 2^{n+1} - \left| x \right| \ , \ 0 > = x > = -2^n \end{array} \right.$$

✓原码表示法

Decimal	Binary	Decimal	Binary
0	0000	-0	1000
1	0001	-1	1001
2	0010	-2	1010
3	0011	-3	1011
4	0100	-4	1100
5	0101	-5	1101
6	0110	-6	1110
7	0111	-7	1111

- ◆ 容易理解, 但是:
 - ✓ 0 的表示不唯一,故不利于程序员编程
 - ✓ 加、减运算方式不统一
 - ✓ 需额外对符号位进行处理,故不利于硬件设计
 - ✓ 特别当 a<b时, 实现 a-b比较困难

18

✓补码表示法

2. 特殊数的表示

0的补码形式唯一: 0,00…0 (mod 2)

- 3. 表示规律 *0正1负,从右至左,见1后反*
- 4. 表示范围

补码表示数的范围(以n=5为例):

二日	进制 真值	补码
零	±0.0000	0.0000
正数	+0.0001	0.0001
正数	+0.1111	0.1111
	-0.0001	1.1111
负数	-0.1111	1.0001
	-1.0000	1.0000

20

∴ 正数有 2ⁿ⁻¹-1个 负数有 2ⁿ⁻¹ 个

课堂练习

1. 设机器数有8位, 求123和-123的补码表示。

```
解: 123 = 127- 4 = 01111111B - 100B = 01111011B
-123= - 01111011B

[01111011]<sub>孙</sub> = 2<sup>8</sup> + 01111011 = 100000000 + 01111011
= 01111011 (mod 2<sup>8</sup>),即 7BH。

[-01111011]<sub>孙</sub> = 2<sup>8</sup> - 01111011 = 10000 0000 - 01111011
= 1111 1111 - 0111 1011 +1
= 1000 0100 +1 ← 各位取反,末位加1
= 1000 0101,即 85H。
```

21

- ·如何理解补码? -模运算 (modular运算)
 - ▶ 计算机中硬件(如运算器、寄存器)能表示的数据位数是有限的,所以其运算都是有模运算,当运算结果超过最大表示范围(也就是模)时,就会溢出,并自动舍弃溢出量。

特殊数的补码

假定机器数有n位

①
$$[-2^{n-1}]_{\stackrel{*}{\nearrow}}=2^n-2^{n-1}=10...0 \quad (n-1 \uparrow 0) \pmod{2^n}$$

②
$$[-1]_{k}=2^n-0...01=11...1 \quad (n^1) \pmod{2^n}$$

③
$$[-1.0]_{\sharp h} = 2 - 1.0 = 1.00...0 \quad (n-1 \uparrow 0) \pmod{2}$$

$$(4)$$
 $[+0]_{*k} = [-0]_{*k} = 00...0 (n \uparrow 0)$

22

·如何理解补码? - 补数

对于两个整数a, b. 如果用某个正整数k去除a, b, 所得的余数相同, 则称a, b对于模k来说是同余数, 也叫互补, 即a, b对模k互补时, a, b在模k的意义下是相等的. 记作:

$$a = b \pmod{k}$$

如: 13=25 (mod 12)

推广:
$$a+k=a \pmod{k}$$

$$a + 2k = a \pmod{k}$$

......

 $a + nk = a \pmod{k}$

当a为 负数时?

当a为负数时

如: a = -5, k = 12时,则有

 $-5 + 12 = -5 \pmod{12}$

即: $7 = -5 \pmod{12}$

记作: [-5]补=7

说明:

在模12的意义下, -5相当于+7, 这样就将<u>正负数</u> 之间的相加转化为正数的相加.

25

✓ 变形补码/模4补码

- 双符号位表示
- 左符号是真正的符号位,右符号可用来判断"溢出"

00111

Dec	imal	补码	变形补码	Decimal	Inverse	补码	变形补码
+0和-0/	0	0000	00000	-0	1111	0000	00000
+0和-0/ 表示唯一	1	0001	00001	-1	1110	1111	11111
	2	0010	00010	-2	1101	1110	11110
	3	0011	00011	-3	1100	1101	11101
	4	0100	00100	-4	1011	1100	11100
	5	0101	00101	-5	1010	1011	11011
	6	0110	00110	-6	1001	1010	11010

Bitwise

-7 1000

1001

1000

11001

11000

8 1000 01006 -8 0111 值太大,用4位补码无法表录,故"溢出"! 但用 变形补码可保留符号位和最高数值位。

0111

小结:

补码正是利用补数概念,把负数映射到正数域中 (<mark>平移模值, 小数的模为2, n位整数的模为2ⁿ),</mark> 从而将数的正负符号数码化,将减法运算转换为加法 运算。

运算器是一个模运算系统,适合用补码表示和运算。

✓反码表示法

定义略。物理实现: 触发器

▲: 0的反码:

$$[+0]$$
 $\bigcirc = 0,00...0$

[x]补=[x]反+ 2^{-n} 通过反码求补码

✓Excess (biased) notion-移码表示

·什么是 "excess (biased) notation-移码表示"?

将每一个数值加上一个偏置常数 (Excess / bias)

。一般来说,当编码位数为n时,bias取(2ml))

Ex. n=4: $E_{biased} = E + 2^3$ (bias= $2^3 = 1000B$)

 $-8 (+8) \sim 0000B$

 $-7 (+8) \sim 0001B$

0 (+8) ~ 1000B

0 负1 正,数码位同补码

移码主要用来表示

浮点数阶码!

+7 (+8) ~ 1111B

(2) Unsigned integer 无符号整数

- ▶ 在不出现负值的场合下,可使用无符号数表示。 如:地址,编号。
- ▶ 编码中没有符号位,能表示的最大值大于位数相同的 带符号整数

例如, 8位带符号整数最大为127(01111111) 8位无符号整数最大是255(111111111)

总是整数, 所以经常简称为"无符号数"

0000 0000 0000 0000 0000 0000 0000 1011

(Most Significant Bit)

(Least Significant Bit) 最低有效位

✓移码表示法

应用:表示浮点数的阶码:

如: x = +10101

[x]移 = 1,10101

x = -10101

[x]移 = 0,01011

为什么要用移码来表示指数(阶码)?

便于浮点数加减运算时的对阶操作(比较大小)

例: 1.01 x2⁻¹+1.11 x2⁻³ 补码: 111 < 011?

简化比较

1.01 x2⁻¹+1.11 x2³+

符号数 vs. 无符号数

• 扩充操作有差别

如, MIPS提供了两种加载指令

无符号数: lbu \$t0, 0(\$s0); \$t0高24位补0(0扩展)

带符号整数: 1b \$t0, 0(\$s0); \$t0高24位补符(符号扩展)

• 数的比较有差异

无符号数: MSB为1的数比MSB为0的数大 带符号整数: MSB为1的数比MSB为0的数小

溢出判断有差异

扩展操作举例

i = -32768

ui = 32768

例1(扩展操作): 在32位机器上输出si, usi, i, ui的十进制(真值)和十六进制值(机器数)是什么?

带符号整数: 符号扩展

无符号数: 0扩展

FF FF 80 00

00 08 00 00

考虑C代码

- 1. int x=-1;
- unsigned u=2147483648
- 3. printf("x = %u = %d"x,x);
- 4. printf("u=%u=%d"u,u);

(32位机)输出:

x=4294967295=-1 u=2147483648=-2147483648

34

C语言程序中的整数

无符号数: unsigned int; 带符号整数: int

同时有无符号和带符号整数:带符号数强制<mark>转换为无符号数</mark> 以下表达式在32位用补码表示的机器上执行,结果是什么?

关系表达式	类型	结果	说明
$0 = = 0\mathbf{U}$	无	1	000B = 000B
-1 < 0	带	1	111B (-1) < 000B (0)
-1 < 0U	无	0*	$111B(2^{32}-1) > 000B(0)$
2147483647 > -2147483647 - 1	带	1	$0111B(2^{31}-1) > 1000B(-2^{31})$
2147483647U > -2147483647 - 1	无	0*	$0111B(2^{31}-1) < 1000B(2^{31})$
2147483647 > (int) 2147483648U	带	1*	$0111B(2^{31}-1) > 1000B(-2^{31})$
-1 > -2	带	1	111B (-1) > 1110B (-2)
(unsigned) -1 > -2	无	1	$111B (2^{32}-1) > 1110B (2^{32}-2)$

带*的结果与常规预想的相反!

✓移位操作

- 对于带符号的定点数应采用算术移位方式,即只对数值部分 移位而符号位不动。
- 在计算机内部移位操作在移位器中进行,移位器位数固定, 所以<mark>移位前后数的位数不变</mark>。
- 右移时低位要移出,<mark>高位补足</mark>相应的位数,低位移出时可能 会使有效数字丢失所以要考虑相应的舍入方式
- <mark>左移</mark>时高位要移出,<mark>低位补足</mark>相应的位数,左移后数值扩大 到原数的若干倍,因此有可能会发生溢出

37

✓移位操作(略)

6) 填充处理

在计算机内部,有财需要将一个取来的短数扩展为一个长数,此时要进行填充处理。

对于定点小数, 在低位进行。

对于定点整数, 在符号位后的数值高位进行。

①原码

定点小数;在原数的末位后面补足0。

定点整数: 符号位不变, 在原数的符号位后补足()。

2补码

定点小数:在原数的末位后面补足0。

定点整数: 符号位不变, 在原数的符号位后用数符补足

所需的位数。

✓移位操作(略)

各种编码的数值部分的移位规则如下:

①原码

左移:高位|移出,末位补0。移出非零时,发生溢出。

右移:高位补0,低位移出。移出时进行舍入操作。

2补码

左移;高位移出,末位补O。移出非符时,发生溢出。 右移;高位补符,低位移出。移出时进行舍入操作。

③ 反码

左移:高位移出,末位补符。移出非符时,发生溢出。右移:高位补符,低位移出。移出时进行舍入操作。

38

小结

• 定点数的表示 进位计数制 定点数的二进制编码 原码、反码、补码、移码表示 定点整数的表示 无符号整数、带符号整数