

UTILITY PATENT APPLICATION TRANSMITTAL

Submit an original and a duplicate for fee processing (Only for new nonprovisional applications under 37 CFR 1.53(b))

ADDRESS TO:

Assistant Commissioner for Patents
Box Patent Application
Washington, D.C. 20231

Attorney Docket No. 94,784-L

First Named Inventor Stojiljkovic

Express Mail No. EL028732014US

Total Pages 143 **APPLICATION ELEMENTS ACCOMPANYING APPLICATION PARTS** Transmittal Form with Fee 8. Assignment Papers Specification (including claims and 2. 9. Power of Attorney abstract) [Total Pages 78] English Translation Document (if applicable) 10. □ Drawings 3. [Total Sheets 47] Information Disclosure Statement (IDS) 11. ○ Oath or Declaration [Total Pages 4] ☐ PTO-1449 Form ☐ Newly executed a. ☐ Copies of IDS Citations Copy from prior application 12. 🛛 **Preliminary Amendment** [Note Boxes 5 and 17 below] 13. 🔯 Return Receipt Postcard Deletion of Inventor(s) Signed i. (Should be specifically itemized) statement attached deleting inventor(s) 14. 🛛 Small Entity Statement(s) named in the prior application ☐ Enclosed 5. Incorporation by Reference: The entire Statement filed in prior application; disclosure of the prior application, from which a status still proper and desired copy of the oath or declaration is supplied under 15. Certified Copy of Priority Document(s) Box 4b, is considered as being part of the disclosure of the accompanying application and is 16. Other: hereby incorporated by reference therein. Microfiche Computer Program Nucleotide and/or Amino Acid Sequence 7. Submission Computer Readable Copy а Paper Copy Statement verifying above copies 17. Main This is a CONTINUING APPLICATION. Please note the following: a.

This is a

Continuation Divisional Continuation-in-part of prior application U.S. Serial No. 08/537,361, filed October 2, 1995, now U.S. Patent No. 6,121,037, issued September 19, 2000, which is a continuation-in-part of U.S. Serial No. 08/326,670, filed October 18, 1994, now U.S. Patent No. 5,698,438, issued December 16, 1997. b.

Cancel in this application original claims _____of the prior application before calculating the filing fee. This is a \square continuation \square divisional \square continuation-in-part of application Serial No. d. Mr The prior application is assigned of record to Oregon Health Sciences University.

LITILITY PATEN	T AD	DI ICATION TOANSMI	TT A I	A44		1 = 0.1	 	
UTILITY PATENT APPLICATION TRANSMITTAL Attorney Docket No. 94,784-L APPLICATION FEES								
BASIC FEE		AFI	FEIGATION FEES): 		6	000.00	
CLAIMS		NUMBER FILED	NUMBER EX	(TRA	RATE	\$	690.00	
Total Claims		6 -20=	HOWBER	VIIVA	x \$18.00	\$	0.00	
Independent Cia	inns	4 - 3=			x \$78.00	\$	0.00 78.00	
		Claims(s) if applicable			+\$270.00	\$	0.00	
Total of above calculations =							768.00	
Reduction by 50% for filing by small entity =						\$ \$1/2		
Assignment fee if applicable + \$40.00						\$	0.00	
						\$	384.00	
18. Please charge my Deposit Account No. 13-2490 in the amount of \$								
 19. A check in the amount of \$ 384.00 is enclosed. 20. The Commissioner is hereby authorized to credit overpayments or charge any additional fees of the following types to Deposit Account No. 13-2490: 								
a. 🛛 I	Fees r	equired under 37 CFR	1.16.					
b. 🛛 I	Fees r	equired under 37 CFR	1.17.					
c. 🗌 I	Fees r	equired under 37 CFR	1.18.					
21. The Commissioner is hereby generally authorized under 37 CFR 1.136(a)(3) to treat any future reply in this or any related application filed pursuant to 37 CFR 1.53 requiring an extension of time as incorporating a request therefor, and the Commissioner is hereby specifically authorized to charge Deposit Account No. 13-2490 for any fee that may be due in connection with such a request for an extension of time.								
22. CERTIFICATE OF MAILING								
I hereby certify that I directed that the correspondence identified above be deposited with the United States Postal Service as "Express Mail Post Office to Addressee" under 37 CFR § 1.10 on the date indicated below and is addressed to the Asst. Commissioner for Patents, Box Patent Application, Washington, DC 20231.								
		23. USPTO	CUSTOMER NU	MBER				
			ENT & TRADEMARK OFFICE					
020306								
24. CORRESPONDENCE ADDRESS								
Name	McD	onnell Boehnen Hulb	ert & Berghoff					
Address	300 South Wacker Drive							
City, State, Zip	Chicago, IL 60606							
25. SIGNATURE OF APPLICANT, ATTORNEY, OR AGENT REQUIRED Name								
Reg. No.	Kevin E. Noonan, Reg. No.35,303							
Signature								
Date	Sept	ember 19, 2000					·	

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE (Case No. 94,784-L)

PATENT

In applicati	on of:)	
	Stojiljkovic <i>et al</i> .)	Before the Examiner:
Serial No.	To be assigned)	
Filed:	September 19, 2000)	Group Art Unit: 1641
For:	Novel Bacterial Hemoglobin Receptor Genes and Uses)))	

PRELIMINARY AMENDMENT

Assistant Commissioner of Patents Washington, D.C. 20231

Sir:

Please enter the following amendments to the above-identified divisional application.

AMENDMENT

IN THE SPECIFICATION:

On page 1, line 1, please insert the following:

This application is a divisional of U.S. Serial No. 08/537,361, filed October 2, 1995, now U.S. Patent No. 6,121,037, issued September 19, 2000, which is a continuation-in-part of U.S. Serial No. 08/326,670, filed October 18, 1994, now U.S. Patent 5,698,438, issued December 16, 1997. The disclosures of each of these prior applications are considered as being part of the disclosure of the application and are explicitly incorporated by reference herein.

On page 6, line 8, please replace "Figure 2" with --Figures 2A-2H--.

On page 6, line 11, please replace "Figure 2" with --Figures 2A-2H--.

On page 6, line 12, please replace "Figure 2" with --Figures 2A-2H--.

On page 6, line 27, please replace "Figure 7" with --Figures 7A-7I--.

On page 7, line 1, please replace "Figure 7" with -- Figures 7A-7I--.

On page 7, line 2, please replace "Figure 7" with --Figures 7A-7I--.

On page 7, line 17, please replace "Figure 8" with -- Figures 8A-8I--.

On page 7, line 20, please replace "Figure 8" with --Figures 8A-8I--.

On page 7, line 21, please replace "Figure 8" with --Figures 8A-8I--.

On page 8, line 8, please replace "Figure 9" with -- Figures 9A-9I--.

On page 8, line 10, please replace "Figure 9" with -- Figures 9A-9I--.

On page 8, line 12, please replace "Figure 9" with --Figures 9A-9I--.

On page 8, line 26, please replace "Figure 2" with --Figures 2A-2H--. Please indent page 8, line 27.

On page 9, line 1, please replace "Figure 7" with --Figures 7A-7I--.

On page 9, line 5, please replace "Figure 8" with -- Figures 8A-8I--.

On page 9, line 8, please replace "Figure 9" with --Figures 9A-9I--.

On page 9, line 24, please replace "Figure 2" with -- Figures 2A-2H--.

On page 9, line 27, please replace "Figure 7" with --Figures 7A-7I--.

On page 10, line 1, please replace "Figure 8" with --Figures 8A-8I--.

On page 10, line 5, please replace "Figure 9" with -- Figures 9A-9I--.

On page 11, line 9, please replace "at" with --that--.

On page 12, line 5, please replace "Figure 2" with -- Figures 2A-2H--.

On page 12, line 8, please replace "Figure 7" with -- Figures 7A-7I--.

On page 12, line 12, please replace "Figure 8" with -- Figures 8A-8I--.

On page 12, line 16, please replace "Figure 9" with -- Figures 9A-9I--.

On page 12, line 20, please delete "each".

On page 13, line 18, please replace "Figure 2" with -- Figures 2A-2H--.

On page 13, line 26, please replace "Figure 7" with -- Figures 7A-7I--.

On page 14, line 4, please replace "Figure 8" with -- Figures 8A-8I--.

On page 14, line 12, please replace "Figure 9" with -- Figures 9A-9I--.

On page 14, line 19, please delete the comma after "human".

On page 15, line 15, please replace "Figure 2" with -- Figures 2A-2H--.

On page 15, line 23, please replace "Figure 7" with --Figures 7A-7I--.

On page 16, line 1, please replace "Figure 8" with -- Figures 8A-8I--.

On page 16, line 11, please replace "Figure 9" with -- Figures 9A-9I--.

On page 16, line 18, please insert a comma after "agonists".

On page 16, line 22, please replace "known or unknown" with --recognized or unrecognized-

On page 17, line 17, please replace "Figure 2" with -- Figures 2A-2H--.

On page 17, line 24, please replace "Figure 4" with -- Figures 4A-4C--.

On page 18, line 9, please replace "Figure 7" with --Figures 7A-7I--.

On page 18, line 12, please replace "Figure 8" with -- Figures 8A-8I--.

On page 18, line 15, please replace "Figure 9" with -- Figures 9A-9I--.

On page 18, line 26, please replace "Figure 11" with -- Figures 11A-11D--.

On page 19, line 6, please delete the comma after "by".

On page 19, line 7, please replace "Figure 2" with -- Figures 2A-2H--.

On page 19, line 7, please replace "7" with --Figures 7A-7I--.

On page 19, line 7, please replace "8" with -- Figures 8A-8I--.

On page 19, line 7, please replace "9" with -- Figures 9A-9I--.

On page 19, line 10, please replace "Figure 2" with --Figures 2A-2H--.

On page 19, line 10, please replace "7" with --Figures 7A-7I--.

On page 19, line 10, please replace "8" with -- Figures 8A-8I--.

On page 19, line 10, please replace "9" with --Figures 9A-9I--.

On page 19, line 19, please replace "Figure 2" with --Figures 2A-2H--.

On page 19, line 19, please replace "7" with --Figures 7A-7I--.

On page 19, line 19, please replace "8" with --Figures 8A-8I--.

On page 19, line 20, please replace "9" with --Figures 9A-9I--.

On page 20, line 15, please insert --can be prepared-- after "protein".

On page 23, line 12, please replace "manitol" with --mannitol-.

On page 23, line 17, please delete the comma after "salts".

On page 24, line 12, please replace "attenutated" with --attenuated--.

On page 27, line 16, please replace "The" with -- Preferred--.

On page 28, line 6, please delete "also".

On page 28, line 26, please replace "a pathogenic" with --pathogenic--.

On page 31, line 2, please replace "hemoglobin" with --Hemoglobin--.

On page 31, line 5, please replace "haemin" with --hemin--.

On page 31, line 5, please replace "haemoglobin" with --hemoglobin--.

On page 31, line 19, please replace "onselective" with --on selective--.

On page 31, line 21, please replace "haemin" with --hemin--.

On page 33, line 2, please replace "Chemicals" with -- Chemical--.

On page 33, line 13, please replace "ClaIfragment" with --ClaI fragment--.

On page 35, line 11, please replace "Figure 2" with -- Figures 2A-2H--.

On page 35, line 19, please replace "Figure 2" with -- Figures 2A-2H--.

On page 36, line 5, please replace "fur-type" with --Fur-type--.

On page 36, line 11, please replace "Figure 2" with -- Figures 2A-2H--.

On page 36, line 18, please replace "Figure 2" with -- Figures 2A-2H--.

On page 37, line 2, please replace "Figure 4" with -- Figures 4A-4C--.

On page 37, line 15, please insert a comma after "Postle".

On page 38, line 12, please replace "Table 2" with -- Table II--.

On page 38, line 13, please replace "Table 2" with -- Table II--.

On page 39, line 16, please replace "our" with --the--.

On page 39, line 16, please replace "probe," with --probe,--.

On page 42, line 11, please replace "Figures 7" with --Figures 7A-7I--.

On page 42, line 11, please replace "8" with --Figures 8A-8I--.

On page 42, line 11, please replace "9" with --Figures 9A-9I--.

On page 42, line 16, please replace "Figures 10" with -- Figure 10--.

On page 42, line 16, please replace "11" with -- Figures 11A-11D--.

On page 42, line 24, please replace "Figure 11" with -- Figures 11A-11D--.

If the Examiner in charge of this application believes it to be helpful, she is invited to contact the undersigned attorney by telephone at (312) 913-0001.

Respectfully submitted,

McDonnell Boehnen Hulbert & Berghoff

Date: September 16, 1999

Kevin E. Noonan, Ph.D.

Reg. No. 35,303

This application is a continuation-in-part of U.S. patent application Serial No. 08/326,670, filed October 18, 1994.

This invention was made with government support under National Institute of Health grants R01 AI32493 and R01 AI22933. The government has certain rights to this invention.

BACKGROUND OF THE INVENTION

10

5

1. Field of the Invention

This invention relates to hemoglobin receptor genes and the proteins encoded therefrom of certain bacterial species, particularly species of Neisseria bacteria. More particularly, this invention relates to hemoglobin receptor genes, polypeptides and peptides useful for preparing vaccines and antibodies against Neisseria, and methods and means for producing such peptides and polypeptides in vitro. Also provided are diagnostic and therapeutic methods and reagents useful in detecting and treating Neisseria infection and methods for developing novel and effective anti-Neisseria agents.

2. **Background of the Invention**

The Neisseriae comprise a genus of bacteria that includes two gram-negative species of pyogenic cocci pathogenic for humans: Neisseria meningitidis and Neisseria gonorrhoeae. N. meningitidis is a major cause of bacterial meningitis in humans, especially children. The disease characteristically proceeds from asymptomatic carriage of the bacterium in the nasopharynx to invasion of the bloodstream and cerebrospinal fluid in susceptible individuals.

Neisseria meningitidis is one of the leading causes of bacterial meningitis in children and healthy adults in the world. The severity of the disease is evidenced by the ability of meningococci to cause the death of previously healthy individuals in less than 24 hours. N. meningitidis has a polysaccharide capsule whose diversity of component antigenic polysaccharide molecules has resulted in the classification of ten different serogroups. Of these, group A strains are the classic epidemic strains; group B and C are generally endemic strains, but C occasionally causes an epidemic outbreak. All known group A strains have the same protein antigens on their

30

5

10

outer membranes, while group B strains have a dozen serotypes or groupings based on the presence of principal outer membrane protein antigens (as opposed to polysaccharides).

Survival of a pathogen such as *N. meningitidis* in a host depends on its ability to overcome a battery of host defense mechanisms. One nonspecific host defense mechanism against microbial intruders is to limit the availability of iron in tissues (Weinberg, 1984, *Physiological. Rev.* 64: 65-102), because iron is a necessary nutrient for most microbial pathogens. The vast majority of iron in the human adult is located intracellularly in the form of hemoglobin (76%) or ferritin (23%). The remainder can be found extracellularly bound to host iron-binding proteins such as transferrin and lactoferrin (Otto *et al.*, 1992, *Crit. Rev. Microbiol.* 18: 217-233).

Pathogenic bacteria have adapted to this iron-limiting environment by developing highly specific and effective iron assimilation systems. A large number of these bacteria secrete siderophores, small, non-protein iron chelators which, due to their extremely high affinity for iron (III), scavenge trace amounts of iron(III) from the environment and shuttle the iron back to the bacterial cell (Baggs and Neilands, 1987, *Microbiol. Rev.* 51: 509-518; Braun and Hantke, 1991, in Winkelmann (ed.), *Handbook of Microbial Iron Chelates*, CRC Press: Boca Raton, Fla., pp. 107-138.).

Alternatively, some bacterial pathogens, like *Neisseriae* species (Archilbald and DeVoe, 1979, *FEMS Microbiol. Lett.* <u>6</u>: 159-162; Mickelson *et al.*, 1982, *Infect. Immun.* <u>35</u>: 915-920; Dyer *et al.*, 1987, *Infect. Immun.* <u>55</u>: 2171-2175), *Haemophilus influenzae* (Coulton and Pang, 1983, *Curr. Microbiol.* <u>9</u>: 93-98; Schryvers, 1988, *Mol. Microbiol.* <u>2</u>: 467-472; Jarosik *et al.*, 1994, *Infect. Immun.* <u>62</u>: 2470-2477), *Vibrio cholerae* (Stoebner and Payne, 1988, *Infect. Immun.* <u>56</u>: 2891-2895; Henderson and Payne, 1994, *J. Bacteriol.* <u>176</u>: 3269-3277), *Yersiniae* (Stojiljkovic and Hantke, 1992, *EMBO J.* <u>11</u>: 4359-4367) and *Actinobacillus pleuropneumoniae* (Gerlach *et al.*, 1992, *Infect. Immun.* <u>60</u>: 3253-3261) have evolved more sophisticated mechanisms to sequester iron from the host. These pathogens can directly bind host's iron-binding proteins such as lactoferrin, transferrin, and heme-containing compounds, and use them as sole sources of iron.

5

10

The importance of iron in the virulence of N. meningitidis was demonstrated by in vivo studies using mice as the animal model system (Calver et al., 1976, Can. J. Microbiol. 22: 832-838; Holbien et al., 1981, Infect. Immun. 34: 120-125). Specific iron-regulated outer membrane receptors have been shown to be involved in the binding and the utilization of lactoferrin- and transferrin-iron in Neisseriae (Schryvers and Morris, 1988, Infect. Immun. 56: 1144-1149 and Mol. Microbiol. 2: 281-288; Legrain et al., 1993, Gene 130: 81-90; Pettersson et al., 1993, Infect. Immun. 61: 4724-4733 and 1994, J. Bacteriol. 176: 1764-1766). These receptors share significant amino acid similarity and, most probably, also the mechanism of iron internalization, with receptors for siderophores and vitamin B12 of other Gram-negative bacteria (Cornelissen et al., 1993, J. Bacteriol. 174: 5788-5797). In contrast, the mechanism by which Neisseriae utilize hemoglobin- and hemin-iron as well as the components involved have so far not been described.

Recently, several proteins with hemoglobin-binding and/or hemin-binding activities have been identified in total membranes of iron-limited N. meningitidis and N. gonorrhoeae.

Lee and Hill, 1992, J. gen. Microbiol. 138: 2647-2656 disclose the specific hemoglobin binding by isolated outer membranes of N. meningitidis.

Martek and Lee, 1994, *Infect. Immun.* <u>62</u>: 700-703 disclosed that acquisition of heme iron by *N. meningitidis* does not involve meningococcal transferrin-binding proteins.

Lee, 1994, Microbiol. 140: 1473-1480 describes the biochemical isolation and characterization of hemin binding proteins from N. meningitidis.

The precise role of these proteins in hemin and/or hemoglobin utilization remains unclear at present, although these proteins are likely to be components of a hemin-utilization system in N. meningitidis.

The dependence on host iron stores for *Neisseria* growth is a potentially useful route towards the development of novel and effective therapeutic intervention strategies. Historically, infections of both *N. meningitidis* and *N. gonorrhoeae* were treated chemoprophylactically with sulfonamide drugs. However, with the development of sulfonamide-resistant strains came the necessity of using alternative modes of therapy such as antibiotic treatment. More recently, the drug treatment of choice includes the administration of high grade penicillin. However, the

5

10

success of antimicrobial treatment is decreased if therapy is not initiated early after infection.

Gonococcal infection has also been treated with penicillin, ampicillin, or amoxicillin, tetracycline hydrochloride, and spectinomycin. Unfortunately, because the incidence of infections due to penicillinase-producing bacteria has increased, several new, more expensive β-lactam antibiotics have been used in treatment. Despite the fact that existing antibiotics have decreased the serious consequences of gonorrhea, their use has not lowered the incidence of the infection in the general population.

Prevention of meningococcal disease has been attempted by chemoprophylaxis and immunoprophylaxis. At present, rifampin and minocycline are used, but only for humans in close contact with an infected person as this treatment has a number of disadvantages. The only commercially available vaccine against meningococcal meningitis has as its major component the bacterial polysaccharide capsule. In adults this vaccine protects against serogroups A, C, Y and W135. It is not effective against serogroup B, and is ineffective in children against serogroup C. Thus far, immunoprophylatic preventive treatment has not been available for N. gonorrhoeae.

Thus, what is needed are better preventative therapies for meningococcal meningitis and gonorrhea including more effective, longer lasting vaccines which protect across all of the serogroups of *N. meningitidis* and all the serotypes of *N. gonorrhoeae*. In addition, better methods are need to treat meningococcal and gonococcal infection.

SUMMARY OF THE INVENTION

The present invention relates to the cloning, expression and functional characterization of genes encoding bacterial hemoglobin receptor proteins. Specifically, the invention relates to genes encoding hemoglobin receptor proteins from *Neisseria* species, in particular *Neisseria* meningitidis and *N. gonorrhoeae*. The invention comprises species of nucleic acids having a nucleotide sequence encoding novel bacterial hemoglobin receptor proteins. Also provided by this invention is the deduced amino acid sequence of the cognate hemoglobin receptor proteins of these bacterial genes.

5

10

The invention provides nucleic acids, nucleic acid hybridization probes, recombinant expression constructs capable of expressing the hemoglobin receptor protein of the invention in cultures of transformed cells, preferably bacterial cells, and such cultures of transformed bacterial cells that express the hemoglobin receptor proteins of the invention. The invention also provides gene knockout vectors for inactivating the hemoglobin receptor protein gene in cells, particularly cells of *Neisseria* species, *via*, for example, homologous recombination and other mechanisms, and cultures of such hemoglobin receptor protein null mutant cells.

The invention also provides homogeneous preparations of the bacterial hemoglobin receptor proteins of the invention, as well as antibodies against and epitopes of the hemoglobin receptor protein. Methods for characterizing this receptor protein and methods for using the protein in the development of agents having pharmacological uses related to this receptor, particularly bactericidal and bacteriostatic uses, are also provided by the invention.

In other embodiments of this invention are provided diagnostic methods and reagents encompassing the use of the anti-Neisseria hemoglobin receptor protein antibodies of the invention. Still further embodiments provided herein include therapeutic methods and reagents encompassing the use of the anti-Neisseria hemoglobin receptor protein antibodies of the invention. Even more embodiments include diagnostic methods and reagents encompassing the use of the Neisseria hemoglobin receptor protein-encoding nucleic acids of the invention, as sensitive probes for the presence of Neisseria infection using nucleic acid hybridization techniques and/or in vitro amplification methodologies. Yet additional embodiments of the invention include therapeutic methods and reagents encompassing the use of the Neisseria hemoglobin receptor protein-encoding nucleic acids of the invention, comprising recombinant expression constructs engineered to produce antisense transcripts of the Neisseria hemoglobin receptor gene and fragments thereof, as well as recombinant knockout vectors of the invention. The invention also provides the Neisseria hemoglobin receptor protein and epitopes thereof as components of vaccines for the development of non-disease associated immunity to pathological infection with bacteria of Neisseria species.

In a first aspect, the invention provides a nucleic acid having a nucleotide sequence encoding a bacterial hemoglobin receptor protein gene. In a preferred embodiment, the bacterial

5

10

hemoglobin receptor protein gene is isolated from bacteria of Neisseria species. In a particularly preferred embodiment, the hemoglobin receptor protein gene is isolated from Neisseria meningitidis, serotype C. In a particular example of this embodiment, the nucleic acid comprises a 3.3 kilobase (kb) BamHI/HindIII fragment of N. meningitidis genomic DNA. In this embodiment, the nucleotide sequence comprises an open reading frame of 2376 nucleotides of N. meningitidis genomic DNA encoding 792 amino acids comprising the hemoglobin receptor gene. In this embodiment of the invention, the nucleotide sequence of the N. meningitidis hemoglobin receptor gene is the sequence depicted in Figure 2 (SEQ ID No:1): It will be understood that the N. meningitidis gene as disclosed herein is defined, insofar as is necessary, by the amino acid sequence of the protein encoded therein, said amino acid sequence being represented in Figure 2 (SEQ. ID No.:2). Thus, it will be understood that the particular nucleotide sequence depicted in Figure 2 (SEQ. ID. No.:1) is but one of a number of equivalent nucleotide sequences that encode the hemoglobin receptor protein, due to the degeneracy of the genetic code, and that all such alternative, equivalent nucleotide sequences are hereby explicitly encompassed within the disclosed nucleotide sequences of the invention. Also included herein are any mutant or allelic variations of this nucleotide sequence, either naturally occurring or the product of in vitro chemical or genetic modification. Each such variant will be understood to have essentially the same nucleotide sequence as the nucleotide sequence of the corresponding N. meningitidis hemoglobin receptor protein disclosed herein.

In another particularly preferred embodiment of this aspect of the invention, the hemoglobin receptor protein gene is isolated from *Neisseria meningitidis*, serotype A. In a particular example of this embodiment, the nucleic acid comprises a 2373 basepair (bp) polymerase chain reaction-amplified fragment of *N. meningitidis*, serotype A genomic DNA. In this embodiment, the nucleotide sequence comprises an open reading frame of 2373 nucleotides of *N. meningitidis* genomic DNA encoding 790 amino acids comprising the hemoglobin receptor gene. In this embodiment of the invention, the nucleotide sequence of the *N. meningitidis* hemoglobin receptor gene is the sequence depicted in Figure 7 (SEQ ID No:3). It will be understood that the *N. meningitidis* gene as disclosed herein is defined, insofar as is necessary, by the amino acid sequence of the protein encoded therein, said amino acid sequence

being represented in Figure 7 (SEQ. ID No.:4). Thus, it will be understood that the particular nucleotide sequence depicted in Figure 7 (SEQ. ID. No.:3) is but one of a number of equivalent nucleotide sequences that encode the hemoglobin receptor protein, due to the degeneracy of the genetic code, and that all such alternative, equivalent nucleotide sequences are hereby explicitly encompassed within the disclosed nucleotide sequences of the invention. Also included herein are any mutant or allelic variations of this nucleotide sequence, either naturally occurring or the product of *in vitro* chemical or genetic modification. Each such variant will be understood to have essentially the same nucleotide sequence as the nucleotide sequence of the corresponding *N. meningitidis* hemoglobin receptor protein disclosed herein.

10

5

In another particularly preferred embodiment of this aspect of the invention, the hemoglobin receptor protein gene is isolated from Neisseria meningitidis, serotype B. In a particular example of this embodiment, the nucleic acid comprises a 2376 basepair (bp) polymerase chain reaction-amplified fragment of N. meningitidis, serotype A genomic DNA. In this embodiment, the nucleotide sequence comprises an open reading frame of 2373 nucleotides of N. meningitidis genomic DNA encoding 791 amino acids comprising the hemoglobin receptor gene. In this embodiment of the invention, the nucleotide sequence of the N. meningitidis hemoglobin receptor gene is the sequence depicted in Figure 8 (SEQ ID No:5). It will be understood that the N. meningitidis gene as disclosed herein is defined, insofar as is necessary, by the amino acid sequence of the protein encoded therein, said amino acid sequence being represented in Figure 8 (SEQ. ID No.:6). Thus, it will be understood that the particular nucleotide sequence depicted in Figure 8 (SEQ. ID. No.:5) is but one of a number of equivalent nucleotide sequences that encode the hemoglobin receptor protein, due to the degeneracy of the genetic code, and that all such alternative, equivalent nucleotide sequences are hereby explicitly encompassed within the disclosed nucleotide sequences of the invention. Also included herein are any mutant or allelic variations of this nucleotide sequence, either naturally occurring or the product of in vitro chemical or genetic modification. Each such variant will be understood to have essentially the same nucleotide sequence as the nucleotide sequence of the corresponding N. meningitidis hemoglobin receptor protein disclosed herein.

5

10

In yet other preferred embodiments, the invention provides nucleic acid encoding a hemoglobin receptor protein gene isolated from Neisseria gonorrhoeae. In a particular example of this embodiment, the nucleic acid comprises a 2378 basepair (bp) polymerase chain reactionamplified fragment of N. gonorrhoeae genomic DNA. In this embodiment, the nucleotide sequence comprises an open reading frame of 2373 nucleotides of N. gonorrhoeae genomic DNA encoding 791 amino acids comprising the hemoglobin receptor gene. In this embodiment of the invention, the nucleotide sequence of the N. gonorrhoeae hemoglobin receptor gene is the sequence depicted in Figure 9 (SEQ ID No:7). It will be understood that the N. gonorrhoeae gene as disclosed herein is defined, insofar as is necessary, by the amino acid sequence of the protein encoded therein, said amino acid sequence being represented in Figure 9 (SEQ. ID No.:8). Thus, it will be understood that the particular nucleotide sequence depicted in Figure 9 (SEQ. ID. No.:7) is but one of a number of equivalent nucleotide sequences that encode the hemoglobin receptor protein, due to the degeneracy of the genetic code, and that all such alternative, equivalent nucleotide sequences are hereby explicitly encompassed within the disclosed nucleotide sequences of the invention. Also included herein are any mutant or allelic variations of this nucleotide sequence, either naturally occurring or the product of in vitro chemical or genetic modification. Each such variant will be understood to have essentially the same nucleotide sequence as the nucleotide sequence of the corresponding N. gonorrhoeae hemoglobin receptor protein disclosed herein.

The invention also provides bacterial hemoglobin receptor proteins. In a preferred embodiment, the bacterial hemoglobin receptor protein is isolated from bacteria of *Neisseria* species. In a particularly preferred embodiment, the hemoglobin receptor protein is isolated from *Neisseria meningitidis*. In a particular example of this embodiment, the protein is derived from *N. meningitidis*, serotype C and comprises an amino acid sequence of 792 amino acids. In this embodiment of the invention, the amino acid sequence of the *N. meningitidis*, serotype C hemoglobin receptor protein is the sequence depicted in Figure 2 (SEQ ID No:2).

In another example of this embodiment, the protein is derived from *N. meningitidis*, serotype A and comprises an amino acid sequence of 790 amino acids. In this embodiment of the invention, the amino acid sequence of the *N. meningitidis*, serotype A hemoglobin receptor

5

10

protein is the sequence depicted in Figure 7 (SEQ ID No:4). In yet another example of this embodiment, the protein is derived from *N. meningitidis*, serotype B and comprises an amino acid sequence of 791 amino acids. In this embodiment of the invention, the amino acid sequence of the *N. meningitidis*, serotype B hemoglobin receptor protein is the sequence depicted in Figure 8 (SEQ ID No:6). The invention also provides hemoglobin receptor protein derived from *N. gonorrhoeae*. In this embodiment of the invention, the protein comprises an amino acid sequence of 791 amino acids, and the amino acid sequence of the *N. gonorrhoeae* hemoglobin receptor protein is the sequence depicted in Figure 9 (SEQ ID No:8). Also explicitly encompassed within the scope of this invention are related bacterial hemoglobin receptor proteins, particularly such proteins isolated from *Neisseria* species, having essentially the same amino acid sequence and substantially the same biological properties as the hemoglobin receptor protein encoded by the *N. meningitidis* and *N. gonorrhoeae* nucleotide sequences described herein.

In another aspect, the invention provides a homogeneous preparation of an approximately 85.5 kiloDalton (kD) bacterial hemoglobin receptor protein or derivative thereof, said size being understood to be the size of the protein before any post-translational modifications thereof. Also provided is a 90kD embodiment of the receptor as determined by sodium dodecyl sulfate/ polyacrylamide gel electrophoresis under reducing conditions. In a preferred embodiment, the bacterial hemoglobin receptor protein is isolated from bacteria of Neisseria species. In a particularly preferred embodiment, the hemoglobin receptor protein is isolated from Neisseria meningitidis. In one embodiment of this aspect of the invention, the protein is isolated from N. meningitidis, serotype C and the amino acid sequence of the bacterial hemoglobin receptor protein or derivative thereof preferably is the amino acid sequence of the hemoglobin receptor protein shown in Figure 2 (SEQ ID No:2). In a second embodiment of this aspect of the invention, the protein is isolated from N. meningitidis, serotype A and the amino acid sequence of the bacterial hemoglobin receptor protein or derivative thereof preferably is the amino acid sequence of the hemoglobin receptor protein shown in Figure 7 (SEQ ID No:4). In a third embodiment of this aspect of the invention, the protein is isolated from N. meningitidis, serotype B and the amino acid sequence of the bacterial hemoglobin receptor protein or derivative thereof

5

10

preferably is the amino acid sequence of the hemoglobin receptor protein shown in Figure 8 (SEQ ID No:6). The invention also provides a homogeneous preparation of a bacterial hemoglobin receptor protein isolated from *N. gonorrhoeae*. In a preferred embodiment, the amino acid sequence of the bacterial hemoglobin receptor protein or derivative thereof preferably is the amino acid sequence of the hemoglobin receptor protein shown in Figure 9 (SEQ ID No:8).

This invention provides nucleotide probes derived from the nucleotide sequences herein provided. The invention includes probes isolated from either complementary DNA (cDNA) copies of bacterial messenger RNA (mRNA) or bacterial genomic DNA (gDNA), as well as probes made synthetically or by *in vitro* amplification methods using the sequence information provided herein. The invention specifically includes but is not limited to oligonucleotide, nick-translated, random primed, or *in vitro* amplified probes made using cDNA or genomic clones embodying the invention, and oligonucleotide and other synthetic probes synthesized chemically using the nucleotide sequence information of cDNA or genomic clone embodiments of the invention.

It is a further object of this invention to provide such nucleic acid hybridization probes to detect the presence of bacteria of *Neisseria* species, particularly *N. meningitidis* and *N. gonorrhoeae*, in a biological sample in the diagnosis of a *Neisseria* infection in a human. Such a biological sample preferably includes blood, urine, semen, mucus, cerebrospinal fluid, peritoneal fluid and ascites fluids, as well as cell scrapings from the epithelium of the mouth, urethra, anus and rectum, and other organs.

The present invention also includes peptides encoded by the nucleotide sequences comprising the nucleic acid embodiments of the invention. The invention includes either naturally occurring or synthetic peptides which may be used as antigens for the production of hemoglobin receptor protein-specific antibodies. The invention also comprises such antibodies, preferably monoclonal antibodies, and cells and cultures of cells producing such antibodies.

Thus, the invention also provides antibodies against and epitopes of bacterial hemoglobin receptor proteins of the invention. It is an object of the present invention to provide antibodies that are immunologically reactive to the bacterial hemoglobin receptor proteins of the invention.

5

10

It is a particular object to provide monoclonal antibodies against these bacterial hemoglobin receptor proteins. In a preferred embodiment, antibodies provided are raised against bacterial hemoglobin receptor protein isolated from bacteria of *Neisseria* species. In a particularly preferred embodiment, such antibodies are specific for the hemoglobin receptor protein isolated from *Neisseria meningitidis* serotypes A, B or C. In additional particularly preferred embodiment, such antibodies are specific for the hemoglobin receptor protein isolated from *Neisseria gonorrhoeae*.

Hybridoma cell lines producing such antibodies are also objects of the invention. It is envisioned at such hybridoma cell lines may be produced as the result of fusion between a non-immunoglobulin producing mouse myeloma cell line and spleen cells derived from a mouse immunized with purified hemoglobin receptor protein or a cell expressing antigens or epitopes of bacterial hemoglobin receptor proteins of the invention. The present invention also provides hybridoma cell lines that produce such antibodies, and can be injected into a living mouse to provide an ascites fluid from the mouse that is comprised of such antibodies. In a preferred embodiment, antibodies provided are raised against bacterial hemoglobin receptor protein isolated from bacteria of *Neisseria* species. In a particularly preferred embodiment, such antibodies are specific for the hemoglobin receptor protein isolated from *Neisseria meningitidis*, serotypes A, B or C. In additional particularly preferred embodiment, such antibodies are specific for the hemoglobin receptor protein isolated from *Neisseria gonorrhoeae*.

It is a further object of the invention to provide immunologically-active epitopes of the bacterial hemoglobin receptor proteins of the invention. Chimeric antibodies immunologically reactive against the bacterial hemoglobin receptor proteins of the invention are also within the scope of this invention. In a preferred embodiment, antibodies and epitopes provided are raised against or derived from bacterial hemoglobin receptor protein isolated from bacteria of *Neisseria* species. In a particularly preferred embodiment, such antibodies and epitopes are specific for the hemoglobin receptor protein isolated from *Neisseria meningitidis*, serotypes A, B or C. In additional particularly preferred embodiment, such antibodies and epitopes are specific for the hemoglobin receptor protein isolated from *Neisseria gonorrhoeae*.

5

10

The present invention provides recombinant expression constructs comprising a nucleic acid encoding a bacterial hemoglobin receptor protein wherein the construct is capable of expressing the encoded hemoglobin receptor protein in cultures of cells transformed with the construct. Preferred embodiments of such constructs comprise the N. meningitidis, serotype C hemoglobin receptor gene depicted in Figure 2 (SEQ ID No.:1), such constructs being capable of expressing the bacterial hemoglobin receptor protein encoded therein in cells transformed with Additional preferred embodiments of such constructs comprise the N. the construct. meningitidis, serotype A hemoglobin receptor gene depicted in Figure 7 (SEQ ID No.:3), such constructs being capable of expressing the bacterial hemoglobin receptor protein encoded therein in cells transformed with the construct. Further additional preferred embodiments of such constructs comprise the N. meningitidis, serotype B hemoglobin receptor gene depicted in Figure 8 (SEQ ID No.:5), such constructs being capable of expressing the bacterial hemoglobin receptor protein encoded therein in cells transformed with the construct. The invention also provides recombinant expression constructs encoding a hemoglobin receptor protein gene isolted from ZN. gonorrhoeae. In a particularly preferred embodiment, such constructs comprise the N. gonorrhoeae hemoglobin receptor gene depicted in Figure 9 (SEQ ID No.:7), the constructs being capable of expressing the bacterial hemoglobin receptor protein encoded therein in cells transformed with the construct.

The invention also provides cultures of cells, preferably bacterial cells, having been transformed with the recombinant expression constructs of the invention, each such cultures being capable of and in fact expressing the bacterial hemoglobin receptor protein encoded in the transforming construct.

The present invention also includes within its scope protein preparations of prokaryotic cell membranes containing the bacterial hemoglobin receptor protein of the invention, derived from cultures of prokaryotic cells transformed with the recombinant expression constructs of the invention.

The invention also provides diagnostic reagents and methods for using such reagents for detecting the existence of an infection in a human, with bacteria of a *Neisseria* species. In preferred embodiments, such diagnostic reagents comprise antibodies that are immunologically

5

10

reactive with a bacterial hemoglobin receptor protein. In a preferred embodiment, such antibodies are raised against a bacterial hemoglobin receptor protein isolated from bacteria of *Neisseria* species. In a particularly preferred embodiment, such antibodies are specific for the hemoglobin receptor protein isolated from *Neisseria meningitidis*, serotypes A, B or C. In additional particularly preferred embodiments, such antibodies are specific for the hemoglobin receptor protein isolated from *Neisseria gonorrhoeae*.

In yet another embodiment of this aspect of the invention are provided diagnostic reagents and methods for using such reagents wherein said reagents are nucleic acid hybridization probes comprising a bacterial hemoglobin receptor gene. In a preferred embodiment, the bacterial hemoglobin receptor protein gene is isolated from bacteria of Neisseria species. In a particularly preferred embodiment, the hemoglobin receptor protein gene is isolated from Neisseria meningitidis. In particular examples of this embodiment of the invention, the nucleic acid probes comprise a specifically-hybridizing fragment of a 3.3 kilobase (kb) BamHI/HindIII fragment of N. meningitidis, serotype C genomic DNA. In this embodiment, the nucleotide sequence comprises all or a specifically-hybridizing fragment of an open reading frame of 2376 nucleotides of N. meningitidis, serotype C genomic DNA encoding 792 amino acids comprising the hemoglobin receptor gene. In this embodiment of the invention, the nucleotide sequence of the N. meningitidis, serotype C hemoglobin receptor gene is the sequence depicted in Figure 2 (SEQ ID No:1). In another example of this embodiment of the invention, the nucleic acid probes comprise a specifically-hybridizing fragment of a 2373bp, polymerase chain reactionamplified fragment of N. meningitidis, serotype A genomic DNA. In this embodiment, the nucleotide sequence comprises all or a specifically-hybridizing fragment of an open reading frame of 2370 nucleotides of N. meningitidis, serotype A genomic DNA encoding 790 amino acids comprising the hemoglobin receptor gene. In this embodiment of the invention, the nucleotide sequence of the N. meningitidis, serotype A hemoglobin receptor gene is the sequence depicted in Figure 7 (SEQ ID No:3). In yet another example of this embodiment of the invention, the nucleic acid probes comprise a specifically-hybridizing fragment of a 2376bp, polymerase chain reaction-amplified fragment of N. meningitidis, serotype B genomic DNA. In this embodiment, the nucleotide sequence comprises all or a specifically-hybridizing fragment

5

10

of an open reading frame of 2373 nucleotides of N. meningitidis, serotype B genomic DNA encoding 791 amino acids comprising the hemoglobin receptor gene. In this embodiment of the invention, the nucleotide sequence of the N. meningitidis, serotype B hemoglobin receptor gene is the sequence depicted in Figure 8 (SEQ ID No:5). The invention also provides nucleic acid hybridization probes comprising a bacterial hemoglobin receptor gene isolated from N. gonorrhoeae. In a preferred embodiment of this aspect of the invention, the nucleic acid probes comprise a specifically-hybridizing fragment of a 2378bp, polymerase chain reaction-amplified fragment of N. gonorrhoeae genomic DNA. In this embodiment, the nucleotide sequence comprises all or a specifically-hybridizing fragment of an open reading frame of 2373 nucleotides of N. gonorrhoeae genomic DNA encoding 791 amino acids comprising the hemoglobin receptor gene. In this embodiment of the invention, the nucleotide sequence of the N. gonorrhoeae hemoglobin receptor gene is the sequence depicted in Figure 9 (SEQ ID No:7). It will be understood that the term "specifically-hybridizing" when used to describe a fragment of a nucleic acid encoding a bacterial hemoglobin receptor gene is intended to mean that nucleic acid hybridization of such a fragment is stable under high stringency conditions of hybridization and washing as the term "high stringency" would be understood by those having skill in the molecular biological arts.

Also provided by the invention are therapeutic agents and methods for using such agents for treating the an infection in a human, with bacteria of a *Neisseria* species. In preferred embodiments, such agents comprise antibodies that are immunologically reactive with a bacterial hemoglobin receptor protein. In a preferred embodiment, such antibodies are raised against a bacterial hemoglobin receptor protein isolated from bacteria of *Neisseria* species. In a particularly preferred embodiment, such antibodies are specific for the hemoglobin receptor protein isolated from *Neisseria meningitidis*, serotypes A, B or C. In additional preferred embodiments, such antibodies are specific for the hemoglobin receptor protein isolated from *Neisseria gonorrhoeae*. Therapeutic agents provided in this aspect of the invention comprise such antibodies in a pharmaceutically-acceptable carrier, along with appropriate adjuvants and the like. In additional embodiments, such antibodies are covalently conjugated to a bactericidal

5

10

or bacteriostatic agent effective against bacteria of *Neisseria* species, preferably *N. meningitidis* and *N. gonorrhoeae*.

In yet another embodiment of this aspect of the invention are provided therapeutic reagents and methods for using such reagents wherein said reagents comprise recombinant expression constructs of the invention, or a homologue thereof that expresses the nucleic acid encoding a hemoglobin receptor in an antisense orientation. In a preferred embodiment, the bacterial hemoglobin receptor protein gene is isolated from bacteria of Neisseria species. In a particularly preferred embodiment, the hemoglobin receptor protein gene is isolated from Neisseria meningitidis. In particular examples of this embodiment of the invention, the nucleic acids comprise a specifically-hybridizing fragment of a 3.3 kilobase (kb) BamHI/HindIII fragment of N. meningitidis, serotype C genomic DNA. In this embodiment, the nucleotide sequence comprises all or a specifically-hybridizing fragment of an open reading frame of 2376 nucleotides of N. meningitidis, serotype C genomic DNA encoding 792 amino acids comprising the hemoglobin receptor gene. In this embodiment of the invention, the nucleotide sequence of the N. meningitidis, serotype C hemoglobin receptor gene is the sequence depicted in Figure 2 (SEQ ID No:1). In another example of this embodiment of the invention, the nucleic acid probes comprise a specifically-hybridizing fragment of a 2373bp, polymerase chain reactionamplified fragment of N. meningitidis, serotype A genomic DNA. In this embodiment, the nucleotide sequence comprises all or a specifically-hybridizing fragment of an open reading frame of 2370 nucleotides of N. meningitidis, serotype A genomic DNA encoding 790 amino acids comprising the hemoglobin receptor gene. In this embodiment of the invention, the nucleotide sequence of the N. meningitidis, serotype A hemoglobin receptor gene is the sequence depicted in Figure 7 (SEQ ID No:3). In yet another example of this embodiment of the invention, the nucleic acid probes comprise a specifically-hybridizing fragment of a 2376bp, polymerase chain reaction-amplified fragment of N. meningitidis, serotype B genomic DNA. In this embodiment, the nucleotide sequence comprises all or a specifically-hybridizing fragment of an open reading frame of 2373 nucleotides of N. meningitidis, serotype B genomic DNA encoding 791 amino acids comprising the hemoglobin receptor gene. In this embodiment of the invention, the nucleotide sequence of the N. meningitidis, serotype B hemoglobin receptor gene

5

10

is the sequence depicted in Figure 8 (SEQ ID No:5). The invention also provides recombinant expression constructs of the invention, or a homologue thereof that expresses the nucleic acid encoding a hemoglobin receptor in an antisense orientation, wherein the nucleic acid encodes a bacterial hemoglobin receptor gene isolated from *N. gonorrhoeae*. In a preferred embodiment of this aspect of the invention, the nucleic acid probes comprise a specifically-hybridizing fragment of a 2378bp, polymerase chain reaction-amplified fragment of *N. gonorrhoeae* genomic DNA. In this embodiment, the nucleotide sequence comprises all or a specifically-hybridizing fragment of an open reading frame of 2373 nucleotides of *N. gonorrhoeae* genomic DNA encoding 791 amino acids comprising the hemoglobin receptor gene. In this embodiment of the invention, the nucleotide sequence of the *N. gonorrhoeae* hemoglobin receptor gene is the sequence depicted in Figure 9 (SEQ ID No:7).

The invention also provides a method for screening compounds for their ability to inhibit, facilitate or modulate the biochemical activity of a bacterial hemoglobin receptor protein of the invention, for use in the *in vitro* screening of novel agonist and antagonist compounds and novel bactericidal and bacteriostatic agents specific for the hemoglobin receptor protein. In preferred embodiments, cells transformed with a recombinant expression construct of the invention are contacted with such a compound, and the binding capacity of the compounds, as well as the effect of the compound on binding of other, known hemoglobin receptor agonists such as hemoglobin and hemin, and antagonists, is assayed. Additional preferred embodiments comprise quantitative analyses of such effects.

The present invention is also useful for the detection of bactericidal and/or bacteriostatic analogues, agonists or antagonists, known or unknown, of a bacterial hemoglobin receptor protein, preferably derived from bacteria of *Neisseria* species, most preferably isolated from *N. meningitidis*, wherein such compounds are either naturally occurring or embodied as a drug.

The invention also provides vaccines for immunizing a human against infection with pathogenic bacteria of *Neisseria* species, the vaccines comprising the hemoglobin binding proteins of the invention or antigenic fragments thereof. In a preferred embodiment, the vaccines of the invention comprise cells expressing a hemoglobin receptor binding protein of the invention, or an antigenic fragment thereof, preferably wherein said cells are attenuated varieties

10

of cells adapted for growth in humans, i.e., wherein such cells are non-pathogenic and do not cause bactermia, endotoxemia or sepsis. Examples of such attenuated varieties of cells include attenuated strains of Salmonella species, for example Salmonella typhi and Salmonella typhimurium, as well as other attenuated bacterial species. Also provided by the invention are recombinant expression constructs as disclosed herein useful per se as vaccines, for introduction into an animal and production of an immunologic response to bacterial hemoglobin receptor protein antigens encoded therein.

Specific preferred embodiments of the present invention will become evident from the following more detailed description of certain preferred embodiments and the claims.

DESCRIPTION OF THE DRAWINGS

The foregoing and other objects of the present invention, the various features thereof, as well as the invention itself may be more fully understood from the following description, when read together with the accompanying drawings in which:

Figure 1 is a schematic drawing of the restriction enzyme digestion map of a N. meningitidis cosmid clone and subclones thereof derived as described in Example 2.

Figure 2 illustrates the nucleotide (SEQ ID No.:1) and deduced amino acid (SEQ ID No.:2) sequences of the *N. meningitidis* hemoglobin receptor protein encoded in a 3.3 kb *BamHI/HindIII* DNA fragment.

Figure 3 presents a photograph of a stained SDS/ 10% PAGE electrophoresis gel showing the results of *in vitro* expression of the *N. meningitidis* hemoglobin receptor gene product as an approximately 90 kilodalton protein, and β -lactamase protein having a molecular weight of about 30.0 kilodaltons used as a molecular weight marker.

Figure 4 presents an amino acid sequence comparison between portions of the N. meningitidis transferrin receptor Tbp1 (SEQ ID No.:9), the N. meningitidis lactoferrin receptor LbpA (SEQ ID No.:10), and N. meningitidis hemoglobin receptor HmbR (SEQ ID No.:2).

Figure 5 illustrates Southern hybridization analysis of chromosomal DNA from N. meningitidis 8013 and the MC8013hmbR mutant using a BamHI-SalI fragment of the hmb gene as probe labeled using a DIG nonradioactive DNA labelling and detection kit (Boehringer

Mannheim Biochemicals, Indianapolis, IN). Lane 1 contains DNA from *N. meningitidis* strain MC8013, digested with *Cla*I; lane 2 is MC8031*hmbR* DNA digested with *Cla*I; lane 3, is MC8013 DNA digested with *Bam*HI and *Sal*I; and lane 4 is MC8013*hmbR* DNA digested with *Bam*HI and *Sal*I.

5

Figure 6 is a graph describing the course of infection using N. meningitidis wild type (MC8013) and hmbR mutant strains in an $in\ vivo$ rat infant infection model. Each strain was injected intraperitoneally (2 x 10^6 CFU) into three infant inbred Lewis rats. The results represent the average of two similarly-performed experiments.

10

Figure 7 illustrates the nucleotide (SEQ ID No.:3) and deduced amino acid (SEQ ID No.:4) sequences of the *N. meningitidis*, serotype A hemoglobin receptor protein encoded on a 2373bp polymerase chain reaction-amplified DNA fragment.

Figure 8 illustrates the nucleotide (SEQ ID No.:5) and deduced amino acid (SEQ ID No.:6) sequences of the *N. meningitidis*, serotype B hemoglobin receptor protein encoded on a 2376bp polymerase chain reaction-amplified DNA fragment.

Figure 9 illustrates the nucleotide (SEQ ID No.:7) and deduced amino acid (SEQ ID No.:8) sequences of the *N. gonorrhoeae* hemoglobin receptor protein encoded on a 2376bp polymerase chain reaction-amplified DNA fragment.

Figure 10 represents a schematic of a nucleic acid sequence comparison between the hemoglobin receptor proteins derived from N. meningitidis, serotypes A (SEQ ID No.:3), B (SEQ ID No.:5) and C (SEQ ID No.:1) and from N. gonorrhoeae (SEQ ID No.:7), wherein the direction of trascription of the genes is in the direction of the arrow, and the following abbreviations refer to restriction endonuclease sites: H represents HindIII; N represents NotI; Bg represents BgII; Bs represents BssHI; Nr represents NruI; Cl represents ClaI; P represents PstI; Sa represents SacI; Av represents AvaI; B represents BamHI; S represents SalI; EV represents EcoRV; Sh represents SphI; and Sy represents StyI.

25

Figure 11 presents an amino acid sequence comparison between the hemoglobin receptor proteins derived from *N. meningitidis*, serotypes A (SEQ ID No.:4), B (SEQ ID No.:6) and C (SEQ ID No.:2) and from *N. gonorrhoeae* (SEQ ID No.:8).

30

5

10

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The term "bacterial hemoglobin receptor" as used herein refers to bacterial proteins comprising the outer membrane of Gram negative bacteria, which specifically mediate transit of hemoglobin-derived hemin, as well as hemin from other sources, through the outer membrane of such bacteria and into the periplasmic space. The bacterial hemoglobin receptor proteins of the invention are characterized by, first, an amino acid sequence that is essentially the sequence depicted in Figures 2 (SEQ ID No.:2), 7 (SEQ ID No.:4), 8 (SEQ ID No.:6) and 9 (SEQ ID No.:8). The bacterial hemoglobin receptor proteins of the invention are further characterized by having substantially the same biological activity as a protein having the amino acid sequence depicted in Figures 2 (SEQ ID No.:2), 7 (SEQ ID No.:4), 8 (SEQ ID No.:6) and 9 (SEQ ID No.:8). This definition is intended to encompass naturally-occurring variants and mutant proteins, as well as genetically engineered variants made by man.

Cloned, isolated and purified nucleic acid provided by the present invention may encode a bacterial hemoglobin receptor protein of any *Neisseria* species of origin, including, most preferably, *Neisseria meningitidis* species and serotypes thereof and *Neisseria gonorhoeae* species.

The nucleic acid hybridization probes provided by the invention comprise DNA or RNA having all or a specifically-hybridizing fragment of the nucleotide sequence of the hemoglobin receptor protein as depicted in Figures 2 (SEQ ID No.:1), 7 (SEQ ID No.:3), 8 (SEQ ID No.:5) and 9 (SEQ ID No.:7), or any portion thereof effective in nucleic acid hybridization. Mixtures of such nucleic acid hybridization probes are also within the scope of this embodiment of the invention. Nucleic acid probes as provided herein are useful for detecting the presence of a bacteria, *inter alia*, in a human as the result of an infection, in contaminated biological samples and specimens, in foodstuffs and water supplies, or in any substance that may come in to contact with the human. Specific hybridization will be understood to mean that the nucleic acid probes of the invention are capable of forming stable, specific hybridization to bacterially-derived DNA or RNA under conditions of high stringency, as the term "high stringency" would be understood by those with skill in the art (see, for example, Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. and Hames and Higgins, eds., 1985, Nucleic Acid Hybridization, IRL Press, Oxford, U.K.).

5

10

Hybridization will be understood to be accomplished using well-established techniques, including but not limited to Southern blot hybridization, Northern blot hybridization, *in situ* hybridization and Southern hybridization to polymerase chain reaction product DNAs. The invention will thus be understood to provide oligonucleotides, specifically, pairs of oligonucleotides, for use as primers in support of *in vitro* amplification of bacterial hemoglobin receptor genes and mRNA transcripts.

The production of proteins such as bacterial hemoglobin receptor proteins from cloned genes by genetic engineering means is well known in this art. The discussion which follows is accordingly intended as an overview of this field, and is not intended to reflect the full state of the art. It will be understood from the following discussion that the hemoglobin receptor protein genes of this invention are particularly advantageous, since expression of such proteins by bacteria, including non-Neisseria species of bacteria, can complement certain auxotrophic mutants of said transformed bacteria otherwise unable to subsist absent supplementation of the growth media with iron (III).

DNA encoding a bacterial hemoglobin receptor protein, in view of the instant disclosure, by chemical synthesis, by screening reverse transcripts of mRNA from appropriate cells, by screening genomic libraries from appropriate cells, or by combinations of these procedures, as illustrated below. Screening of mRNA or genomic DNA may be carried out with oligonucleotide probes generated from the nucleic acid sequence information from the bacterial hemoglobin receptor protein disclosed herein. Probes may be labeled with a detectable group such as a fluorescent group, a radioactive atom or a chemiluminescent group in accordance with know procedures and used in conventional hybridization assays, as described in greater detail in the Examples below. In the alternative, bacterial hemoglobin receptor protein-encoding nucleic acids may be obtained by use of the polymerase chain reaction (PCR) procedure, using appropriate pairs of PCR oligonucleotide primers corresponding to nucleic acid sequence information derived from a bacterial hemoglobin receptor protein as provided herein. See U.S. Patent Nos. 4,683,195 to Mullis et al. and 4,683,202 to Mullis, as specifically disclosed herein in Example 9 below. In another alternative, such bacterial hemoglobin receptor protein-encoding

30

5

10

nucleic acids may be isolated from auxotrophic cells transformed with a bacterial hemoglobin receptor protein gene, thereby relieved of the nutritional requirement for uncomplexed iron (III).

Any bacterial hemoglobin receptor protein of the invention may be synthesized in host cells transformed with a recombinant expression construct comprising a nucleic acid encoding the bacterial hemoglobin receptor protein. Such recombinant expression constructs can also be comprised of a vector that is a replicable DNA construct. Vectors are used herein either to amplify DNA encoding a bacterial hemoglobin receptor protein and/or to express DNA encoding a bacterial hemoglobin receptor protein. For the purposes of this invention, a recombinant expression construct is a replicable DNA construct in which a nucleic acid encoding a bacterial hemoglobin receptor protein is operably linked to suitable control sequences capable of effecting the expression of the bacterial hemoglobin receptor protein in a suitable host cell.

The need for such control sequences will vary depending upon the host cell selected and the transformation method chosen. Generally, bacterial control sequences include a transcriptional promoter, an optional operator sequence to control transcription, a sequence encoding suitable mRNA ribosomal binding sites (the Shine-Delgarno sequence), and sequences which control the termination of transcription and translation. Amplification vectors do not require expression control domains. All that is needed is the ability to replicate in a host, usually conferred by an origin of replication, and a selection gene to facilitate recognition of transformants. See, Sambrook et al., 1989, ibid.

Vectors useful for practicing the present invention include plasmids and virus-derived constructs, including phage and particularly bacteriophage, and integratable DNA fragments (i.e., fragments integratable into the host genome by homologous recombination). The vector replicates and functions independently of the host genome, or may, in some instances, integrate into the genome itself. Suitable vectors will contain replicon and control sequences which are derived from species compatible with the intended expression host. A preferred vector is pLAFR2 (see Riboli et al., 1991, Microb. Pathogen. 10: 393-403).

Transformed host cells are cells which have been transformed or transfected with recombinant expression constructs made using recombinant DNA techniques and comprising nucleic acid encoding a bacterial hemoglobin receptor protein. Preferred host cells are cells of Neisseria species, particularly N. meningitidis, as well as Salmonella typhi and Salmonella

5

10

typhimurium species, and Escherichia coli auxotrophic mutant cells (hemA aroB). Transformed host cells may express the bacterial hemoglobin receptor protein, but host cells transformed for purposes of cloning or amplifying nucleic acid hybridization probe DNA need not express the receptor protein. When expressed, the bacterial hemoglobin receptor protein of the invention will typically be located in the host cell outer membrane. See, Sambrook et al., ibid.

Cultures of bacterial cells, particularly cells of *Neisseria* species, and certain *E. coli* mutants, are a desirable host for recombinant bacterial hemoglobin receptor protein synthesis. In principal, any bacterial cell auxotrophic for uncomplexed iron (III) is useful for selectively growing bacterial hemoglobin receptor protein-transformed cells. However, for this purpose, well-characterized auxotrophs, such as *E. coli hemA aroB* mutants are preferred.

The invention provides homogeneous compositions of a bacterial hemoglobin receptor protein produced by transformed cells as provided herein. Each such homogeneous composition is intended to be comprised of a bacterial hemoglobin receptor protein that comprises at least 90% of the protein in such a homogeneous composition. The invention also provides membrane preparations from cells expressing a bacterial hemoglobin receptor protein as the result of transformation with a recombinant expression construct of the invention, as described herein.

Bacterial hemoglobin receptor proteins, peptide fragments thereof and membranes derived from cells expressing such proteins in accordance with the present invention may be used for the production of vaccines effective against bacterial infections in a human, with pathogenic microorganisms expressing such bacterial hemoglobin receptor proteins. Such vaccines preferably would be effective in raising an immunological response against bacteria of *Neisseria* species, most preferably *N. meningitidis* and *N. gonorhoeae*. Also encompassed within the vaccines provided by the invention are recombinant expression constructs as disclosed herein useful *per se* as vaccines, for introduction into an animal and production of an immunologic response to bacterial hemoglobin receptor protein antigens encoded therein.

Preparation of vaccines which contain polypeptide or polynucleotide sequences as active ingredients is well understood in the art. Typically, such vaccines are prepared as injectables, either as liquid solutions or suspensions. However, solid forms suitable for solution in, or suspension in, liquid prior to injection may also be prepared. The preparation may also be

BANNER & ALLEGRETTI, Ltd. Ten South Wacker Drive, Suite 3000 Chicago, Illinois 60606

(312) 715-1000

30

5

10

The active immunogenic ingredient is often mixed with excipients which are emulsified. pharmaceutically acceptable and compatible with the active ingredient. Suitable excipients are, for example, water, saline, dextrose, glycerol, ethanol, or the like and combinations thereof. In addition, if desired, the vaccine may contain minor amounts of auxiliary substances such as wetting or emulsifying agents, pH buffering agents, or adjuvants which enhance the effectiveness of the vaccine. The vaccines are conventionally administered parenterally, by injection, for example, either subcutaneously or intramuscularly. Additional formulations which are suitable for other modes of administration include suppositories and, in some cases, oral formulations. For suppositories, traditional binders and carriers may include, for example, polyalkalene glycols or triglycerides; such suppositories may be formed from mixtures containing the active ingredient in the range of 0.5% to 10%, preferably 1 to 2%. Oral formulations include such normally employed excipients as, for example, pharmaceutical grades of manitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate and the like. These compositions take the form of solutions, suspensions, tablets, pills, capsules, sustained release formulations or powders and contain 10% to 95% of active ingredient, preferably 25 to 70%.

The polypeptides of the invention may be formulated into the vaccine as neutral or salt forms. Pharmaceutically acceptable salts, include the acid additional salts (formed with the free amino groups of the peptide) and which are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids as acetic, oxalic, tartaric, mandelic, and the like. Salts formed with the free carboxyl groups may also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, 2-ethylamino ethanol, histidine, procaine, and the like.

In another embodiment, such vaccines are provided wherein the bacterial hemoglobin receptor proteins or peptide fragments thereof are present in the intact cell membranes of cells expressing such proteins in accordance with the present invention. In preferred embodiments, cells useful in these embodiments include attenuated varieties of cells adapted to growth in humans. Most preferably, said cells are attenuated varieties of cells adapted for growth in humans, *i.e.*, wherein such cells do not cause frank disease or other pathological conditions, such as bactermia, endotoxemia or sepsis. For the purposes of this invention, "attenuated" cells

30

. 15

5

10

will be understood to encompass prokaryotic and eukaryotic cells that do not cause infection. disease, septicemia, endotoxic shock, pyrogenic shock, or other serious and adverse reactions to administration of vaccines to an animal, most preferably a human, when such cells are introduced into the animal, whether such cells are viable, living, heat-, chemically- or genetically attenuated or inactivated, or dead. It will be appreciated by those with skill in this art that certain minor side-effects of vaccination, such as short-term fever, muscle discomfort. general malaise, and other well-known reactions to vaccination using a variety of different types of vaccines, can be anticipated as accompanying vaccination of an animal, preferably a human. using the vaccines of the invention. Such acute, short-term and non-life-threatening side effects are encompassed in the instant definition of the vaccines of the invention, and vaccines causing such side-effects fall within the definition of "attenuated" presented herein. Preferred examples of such attenuated cells include attenuated varieties of Salmonella species, preferably Salmonella typhi and Salmonella typhimurium, as well as other attenuated bacterial species. It will be specifically understood that these embodiments of the vaccines of the invention encompass socalled "live" attenuated cell preparations as well as heat- or chemically-inactivated cell preparations.

In other embodiments of the invention are provided vaccines that are DNA vaccines. comprising the nucleic acids of the invention in recombinant expression constructs competant to direct expression of hemoglobin receptor proteins when introduced into an animal. In preferred embodiments, such DNA vaccines comprise recombinant expression constructs wherein the hemoglobin receptor-encoding nucleic acids of the invention are operably linked to promoter elements, most preferably the early gene promoter of cytomegalovirus or the early gene promoter of simian virus 40. DNA vaccines of the invention are preferably administered by intramuscular injection, but any appropriate route of administration, including oral, transdermal, rectal, nasal, aerosol administration into lung, or any other clinically-acceptable route of administration can be used by those with skill in the art.

In general, the vaccines of the invention are administered in a manner compatible with the dosage formulation, and in such amount as will be therapeutically effective and immunogenic. The quantity to be administered depends on the subject to be treated, capacity of the subject's immune system to synthesize antibodies, and the degree of protection desired. Precise amounts of active ingredient required to be administered depend on the judgment of the practitioner and are peculiar to each individual. However, suitable dosage ranges are of the

30

5

10

order of several hundred micrograms active ingredient per individual. Suitable regimes for initial administration and booster shots are also variable, but are typified by an initial administration followed in one or two week intervals by a subsequent injection or other administration.

The recombinant expression constructs of the present invention are also useful in molecular biology to transform bacterial cells which do not ordinarily express a hemoglobin receptor protein to thereafter express this receptor. Such cells are useful, *inter alia*, as intermediates for making cell membrane preparations useful for receptor binding activity assays, vaccine production, and the like, and in certain embodiments may themselves be used, *inter alia*, as vaccines or components of vaccines, as described above. The recombinant expression constructs of the present invention thus provide a method for screening potentially useful bactericidal and bacteriostatic drugs at advantageously lower cost than conventional screening protocols. While not completely eliminating the need for ultimate *in vivo* activity and toxicology assays, the constructs and cultures of the invention provide an important first screening step for the vast number of potentially useful bactericidal and bacteriostatic drugs synthesized, discovered or extracted from natural sources each year. In addition, such bactericidal or bacteriostatic drugs would be selected to utilize a nutritional pathway associated with infectious virulence in these types of bacteria, as disclosed in more detail below, thus selectively targeting bacteria associated with the development of serious infections *in vivo*.

Also, the invention provides both functional bacterial hemoglobin receptor proteins, membranes comprising such proteins, cells expressing such proteins, and the amino acid sequences of such proteins. This invention thereby provides sufficient structural and functional activity information to enable rational drug design of novel therapeutically-active antibacterial drugs using currently-available techniques (*see* Walters, "Computer-Assisted Modeling of Drugs", *in* Klegerman & Groves, eds., 1993, <u>Pharmaceutical Biotechnology</u>, Interpharm Press: Buffalo Grove, IL, pp. 165-174).

Nucleic acids and oligonucleotides of the present invention are useful as diagnostic tools for detecting the existence of a bacterial infection in a human, caused by a hemoglobin receptor protein-expressing pathological organism of *Neisseria* species. Such diagnostic reagents comprise nucleic acid hybridization probes of the invention and encompass paired oligonucleotide PCR primers, as described above. Methods provided by the invention include blot hybridization, *in situ* hybridization and *in vitro* amplification techniques for detecting the

30

5

10

presence of pathogenic bacteria in a biological sample. Appropriate biological samples advantageously screened using the methods described herein include plasma, serum, lymph, cerebrospinal fluid, seminal fluid, mucosal tissue samples, biopsy samples, and other potential sites of bacterial infection. It is also envisioned that the methods of the invention may be used to screen water, foodstuffs, pharmaceuticals, and other potential sources of infection.

The invention also provides antibodies that are immunologically reactive to a bacterial hemoglobin receptor protein or epitopes thereof provided by the invention. The antibodies provided by the invention may be raised, using methods well known in the art, in animals by inoculation with cells that express a bacterial hemoglobin receptor protein or epitopes thereof, cell membranes from such cells, whether crude membrane preparations or membranes purified using methods well known in the art, or purified preparations of proteins, including fusion proteins, particularly fusion proteins comprising epitopes of a bacterial hemoglobin receptor protein of the invention fused to heterologous proteins and expressed using genetic engineering means in bacterial, yeast or eukaryotic cells, said proteins being isolated from such cells to varying degrees of homogeneity using conventional biochemical means. Synthetic peptides made using established synthetic means in vitro and optionally conjugated with heterologous sequences of amino acids, are also encompassed in these methods to produce the antibodies of the Animals that are used for such inoculations include individuals from species invention. comprising cows, sheep, pigs, mice, rats, rabbits, hamsters, goats and primates. Preferred animals for inoculation are rodents (including mice, rats, hamsters) and rabbits. preferred animal is the mouse.

Cells that can be used for such inoculations, or for any of the other means used in the invention, include any cell that naturally expresses a bacterial hemoglobin receptor protein as provided by the invention, or any cell or cell line that expresses a bacterial hemoglobin receptor protein of the invention, or any epitope thereof, as a result of molecular or genetic engineering, or that has been treated to increase the expression of an endogenous or heterologous bacterial hemoglobin receptor protein by physical, biochemical or genetic means. Preferred cells are *E. coli* auxotrophic mutant *hemA aroB* cells transformed with a recombinant expression construct of the invention and grown in media supplemented with hemin or hemoglobin as the sole iron (III) source, and cells of *Neisseria* species.

10

The present invention also provides monoclonal antibodies that are immunologically reactive with an epitope of a bacterial hemoglobin receptor protein of the invention, or fragment thereof, present on the surface of such cells, preferably *E. coli* cells. Such antibodies are made using methods and techniques well known to those of skill in the art. Monoclonal antibodies provided by the present invention are produced by hybridoma cell lines, that are also provided by the invention and that are made by methods well known in the art (*see* Harlow and Lane, 1988, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.).

Hybridoma cell lines are made by fusing individual cells of a myeloma cell line with spleen cells derived from animals immunized with a homogeneous preparation of a bacterial hemoglobin receptor protein, membranes comprised thereof, cells expressing such protein, or epitopes of a bacterial hemoglobin receptor protein, used per se or comprising a heterologous or fusion protein construct, as described above. The myeloma cell lines used in the invention include lines derived from myelomas of mice, rats, hamsters, primates and humans. Preferred myeloma cell lines are from mouse, and the most preferred mouse myeloma cell line is P3X63-Ag8.653. The animals from whom spleens are obtained after immunization are rats, mice and hamsters, preferably mice, most preferably Balb/c mice. Spleen cells and myeloma cells are fused using a number of methods well known in the art, including but not limited to incubation with inactivated Sendai virus and incubation in the presence of polyethylene glycol (PEG). The most preferred method for cell fusion is incubation in the presence of a solution of 45% (w/v) PEG-1450. Monoclonal antibodies produced by hybridoma cell lines can be harvested from cell culture supernatant fluids from in vitro cell growth; alternatively, hybridoma cells can be injected subcutaneously and/or into the peritoneal cavity of an animal, most preferably a mouse, and the monoclonal antibodies obtained from blood and/or ascites fluid.

Monoclonal antibodies provided by the present invention are also produced by recombinant genetic methods well known to those of skill in the art, and the present invention encompasses antibodies made by such methods that are immunologically reactive with an epitope of a bacterial hemoglobin receptor protein of the invention. The present invention also encompasses fragments, including but not limited to F(ab) and F(ab)'₂ fragments, of such antibody. Fragments are produced by any number of methods, including but not limited to

30

proteolytic cleavage, chemical synthesis or preparation of such fragments by means of genetic engineering technology. The present invention also encompasses single-chain antibodies that are immunologically reactive with an epitope of a bacterial hemoglobin receptor protein, made by methods known to those of skill in the art.

5

The antibodies and fragments used herein can be labeled preferably with radioactive labels, by a variety of techniques. For example, the biologically active molecules can also be labeled with a radionucleotide via conjugation with the cyclic anhydride of diethylenetriamine penta-acetic acid (DPTA) or bromoacetyl aminobenzyl ethylamine diamine tetra-acidic acid (BABE). See Hnatowich et al. (1983, Science 220: 613-615) and Meares et al. (1984, Anal. Biochem. 142: 68-78, both references incorporated by reference) for further description of labeling techniques.

10

The present invention also encompasses an epitope of a bacterial hemoglobin receptor protein of the invention, comprised of sequences and/or a conformation of sequences present in the receptor molecule. This epitope may be naturally occurring, or may be the result of proteolytic cleavage of a receptor molecule and isolation of an epitope-containing peptide or may be obtained by synthesis of an epitope-containing peptide using methods well known to those skilled in the art. The present invention also encompasses epitope peptides produced as a result of genetic engineering technology and synthesized by genetically engineered prokaryotic or eukaryotic cells.

The invention also includes chimeric antibodies, comprised of light chain and heavy chain peptides immunologically reactive to a bacterial hemoglobin receptor protein-derived epitope. The chimeric antibodies embodied in the present invention include those that are derived from naturally occurring antibodies as well as chimeric antibodies made by means of genetic engineering technology well known to those of skill in the art.

25

Also provided by the present invention are diagnostic and therapeutic methods of detecting and treating an infection in a human, by a pathogenic organisms expressing a bacterial hemoglobin receptor protein. Diagnostic reagents for use in such methods include the antibodies, most preferably monoclonal antibodies, of the invention. Such antibodies are used in conventional immunological techniques, including but not limited to enzyme-linked immunosorbent assay (ELISA), radioimmune assay (RIA), Western blot assay, immunological

titration assays, immunological diffusion assays (such as the Ouchterlony assay), and others known to those of skill in the art. Also provided are epitopes derived from a bacterial hemoglobin receptor protein of the invention and immunologically cross-reactive to said antibodies, for use in any of the immunological techniques described herein.

5

10

Additional diagnostic assays include nucleic acid hybridization assays, using the nucleic acids of the invention or specifically-hybridizing fragments thereof, for sensitive detection of bacterial genomic DNA and/or mRNA. Such assays include various blot assays, such as Southern blots, Northern blots, dot blots, slot blots and the like, as well as *in vitro* amplification assays, such as the polymerase chain reaction assay (PCR), reverse transcriptase-polymerase chain reaction assay (RT-PCR), ligase chain reaction assay (LCR), and others known to those skilled in the art. Specific restriction endonuclease digestion of diagnostic fragments detected using any of the methods of the invention, analogous to restriction fragment linked polymorphism assays (RFLP) are also within the scope of this invention.

5

The invention also provides therapeutic methods and reagents for use in treating infections in a human, cause by a microorganism expressing a bacterial hemoglobin receptor protein of the invention, most preferably a bacteria of Neisseria species. Therapeutic reagents for use in such methods include the antibodies, most preferably monoclonal antibodies, of the invention, either per se or conjugated to bactericidal or bacteriostatic drugs or other antibiotic compounds effective against the infectious microorganism. In such embodiments, the antibodies of the invention comprise pharmaceutical compositions, additionally comprising appropriate pharmaceutically-acceptable carriers and adjuvants or other ancillary components where necessary. Suitable carriers are, for example, water, saline, dextrose, glycerol, ethanol, or the like and combinations thereof. In addition, if desired, the pharmaceutical formulation may contain minor amounts of auxiliary substances such as wetting or emulsifying agents, pH buffering agents, or other compounds which enhance the effectiveness of the antibody. In these embodiments, it will be understood that the therapeutic agents of the invention serve to target the infectious bacteria, either by immunologically "tagging" the bacteria with an antibody of the invention for recognition by cytotoxic cells of a human's immune system, or by specifically delivering an antimicrobial drug to the infectious microorganism via the bacterial hemoglobin receptor protein.

30

5

10

Additional therapeutic reagents include the nucleic acids of the invention or fragments thereof, specifically antisense embodiments of such nucleic acids. Such antisense nucleic acids may be used themselves or embodied in a recombinant expression construct specific for antisense expression, wherein said construct is genetically engineered to co-opt a portion of the genome of a bacterial virus, preferably a bacteriophage, infectious for the bacterial pathogen responsible for the infection. In these embodiments, introduction of the antisense nucleic acids of the invention into the bacterial cell inhibits, attentuates or abolishes expression of the bacterial hemoglobin receptor, thereby reducing the virulence of the bacterial infection and enabling more effective antibacterial interventions. In additional embodiments, bacteriophage are provided bearing "knockout" copies of a bacterial hemoglobin receptor gene, whereby the phage achieves genetic mutation of the endogenous hemoglobin receptor gene in the infectious bacteria via, for example, homologous recombination of the exogenous knockout copy of the bacterial hemoglobin receptor gene with the endogenous hemoglobin receptor gene in the infectious microorganism.

The Examples which follow are illustrative of specific embodiments of the invention, and various uses thereof. They set forth for explanatory purposes only, and are not to be taken as limiting the invention.

EXAMPLE 1

Plasmids, bacteria, and media

Plasmids and bacteria used herein are listed on Table 1. E. coli strains were routinely grown in Luria-Bertani (LB) broth supplemented with 5-aminolevulinic acid and 50mg/L hemin chloride as necessary. N. meningitidis 8013 is a serogroup C clinical isolate (Nassif et al., 1993, Mol. Microbiol. 8: 719-725). The meningococci were routinely grown on GCB agar (Difco) supplemented as described by Kellogg et al. (1963, J. Bacteriol 85: 1274-1279), and incubated at 37°C under a 5% CO₂ atmosphere. Transformation of meningococci was performed as described by Nassif et al. (1992, Mol. Microbiol. 6: 591-597). When necessary, the following antibiotics were used with E. coli: rifampicin, 100 mg/L; tetracycline, 15 mg/L; kanamycin, 30 mg/L; chloramphenicol, 20 mg/L; carbenicillin, 100 mg/L. For Neisseriae, kanamycin at 100 mg/L was used when needed.

30

5

10

EXAMPLE 2

Auxotroph Complementation Cloning of a hemoglobin Receptor Gene from Neisseria meningitidis

In order to identify *N. meningitidis* outer membrane receptor(s) involved in the uptake of haemin and/or haemoglobin iron, an auxotroph complementation cloning strategy was used, similar to the approach previously taken to identify the *Y. enterocolitica* and *V. cholerae* hemin receptors (*see* Stojiljkovic and Hantke, 1992, *EMBO J.* 11: 4359-4367; Henderson and Payne, 1994, *J. Bacteriol.* 176: 3269-3277). This strategy is based on the fact that the outer membrane of Gram-negative bacteria is impermeable to hemin (McConville and Charles, 1979, *J. Microbiol.* 113: 165-168) and therefore *E. coli* porphyrin biosynthesis mutants cannot grow on exogenously supplied hemin. If provided with the *N. meningitidis* outer membrane hemin receptor gene, the *E. coli* porphyrin mutant would be able to use exogenously supplied hemin as its porphyrin source.

A cosmid bank of *N. meningitidis* 8013 clone 6 DNA was prepared using conventional cosmid cloning methodologies (Sambrook *et al.*, 1989, *ibid.*). *N. meningitidis* bacterial DNA was partially digested by *MboI*, size fractionated on sucrose gradients and cloned into the *BamHI* site of the cosmid vector pLAFR2 (Riboli *et al.*, 1991, *Microb. Pathogen.* 10: 393-403). This cosmid bank was mobilized into the *E. coli hemA aroB Rif'* recipient strain by triparental matings using a conjugal plasmid pRK2013::Tn9. The mating mixture was plated onselective plates containing hemin chloride (50mg/L), 0.1 mM 2,2'-dypyridil and rifampicin (100 mg/L). Several clones growing on exogenously supplied haemin were isolated after an overnight incubation.

The hemin utilization phenotype of these transformants was tested by re-introduction of the cosmids into naive E. coli hemA aroB cells and by monitoring the growth on hemin-supplemented plates. The ability of E. coli strains to utilize heme or hemoglobin as the sole iron source was tested as previously described (Stojiljkovic and Hantke, 1992, *ibid*.). Cells were grown on LB agar supplemented with 50μ M deferoxamine mesylate (an iron chelating agent, obtained from Sigma Chemical Co., St. Louis, MO). Filter discs (1/4 inches, Schleichner & Schuell, Inc., Keene, NH.) impregnated with the test compounds (20 μ L of 5 mg/ml stock solutions unless otherwise stated) were placed on these plates. After overnight growth at 37°C

TABLE I

	STRAIN	GENOTYPE
5	E. coli K12	
	EB53	hemA, aroB, rpoB
	KP1041	MC4100tonB::Km ^r
	H1388	exbB::Tn10 Δlac pro
	TSM348	endA, hsdR, pro, supF, pRK2013::Tn9
10	IR754	EB53, tonB::Km ^r
	IR736	EB53, exbB::Tn10
	$DH5\alpha$	recA, gyrB
	N. meningitidis	
and order.	ATCC 13077	Serotype A
15		Serotype B*
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	MC8013	clone 6, wild type
	MChmbR	hmbR::aphA-3
	N. gonorrhoeae MS11A	
Table ()		
	<u>PLASMIDS</u>	
Target Ta	pSUSK	pA15 replicon, chloramphenicol ^r
20	pHEM22	pLAFR2, hemoglobin-utilizing cosmid
NATURAL NATURAL NATURAL NATURAL	pHEM44	pLAFR2, hemin-utilizing cosmid
AND COLOR	pIRS508	6kb <i>Cla</i> I, pSUSK
25	pIRS523	3kb BamHI/SalI, pUC19
	pIRS525	1.2kb aphA-3, in NotI site of pIRS523
	pIRS527	4kb BamHI/ClaI, pBluescript
	pIRS528	0.7kb NotI/BamHI, pBluescript
	pIRS692	3.3kb BamHI/HindIII, SU(SK)
30		

^{*} Laboratory collection

10

with 5% CO₂, zones of growth around the discs were monitored. The iron-bound proteins tested in this assay (all obtained from Sigma Chemicals Co.) were hemoglobin from human, baboon, bovine and mouse sources, bovine hemin, human lactoferrin (90% iron saturated), and human transferrin (90% iron saturated, obtained from Boehringer Mannheim Biochemicals, Indianapolis, IN). A total of six hemin utilization positive cosmids were obtained using this protocol. Results using such assays are shown in Table II.

EXAMPLE 3

Restriction Enzyme Digestion Mapping of Hemin Utilization Positive Cosmids

Cosmid DNA from six hemin-utilization positive cosmids obtained as described in Example 2 were digested with ClaI, and the resulting fragments were cloned into ClaI-digested pSU(SK) vector (obtained from Stratagene, LaJolla, CA). One subclone, containing a 6 kb ClaIfragment from cosmid cos22 (the resultant plasmid was designated pIRS508), was determined to allow utilization of hemin and hemoglobin by E. coli hemA aroB assayed as described in Example 2. Another such clone, containing an 11 kb ClaI fragment from cos44 was also determined to allow hemin utilization in these auxotrophic mutant cells. Restriction analysis and Southern hybridization indicated that the DNA fragments originating from cos22 and cos44 are unrelated.

The deduced restriction enzyme digestion map of cosmid clone pIRS508 is shown in Figure 1. Plasmid pIRS508 enabled *E. coli hemA aroB* to use both hemin and bovine hemoglobin as iron sources although growth on hemoglobin was somewhat weaker than on hemin (Table II). Further subcloning localized the hemin/hemoglobin utilization locus to the *BamHI/HindIII* fragment of the insert. In addition to sequences encoding the hemoglobin receptor gene (designated *hmbR*), sequences for a *Neisseria* insertion element (IS1106) and a portion of a *Neisseria* small repetitive element (IR1) are also represented in the Figure.

25

10

Table II

STRAIN	φ-TYPE .	HEMIN IRON	PORPHYRIN	Hb IRON
N. meningitidis				
MC8013	wild type	+++	N.T.	+++
MChmbR	Hb ^R mutant	+++	N.T.	_
E. coli				
EB53	iron utilization	-	-	_
EB53 (pIRS508)	tonB ⁺ , exbB ⁺ , hmbR ⁺	+++	+++	+
IR754(pIRS508)	tonB ⁺ , exbB ⁺ , hmbR ⁺	-	-	•
IR736(pIRS508)	tonB ⁺ ,exbB ⁻ ,hmbR ⁺	-	-	-

N.T.-not tested. Use of hemin/hemoglobin as a porphyrin source was tested by scoring for growth of strains around hemin (5mg/mL) or hemoglobin (for $E.\ coli$, 10 mg/mL; for $N.\ meningitidis$, 5 mg/mL) discs on LB plates. The use of the hemin/hemoglobin as an iron source was tested similarly except NBD plates supplemented with 50 μ L of 5 g/L delta-aminolevulinic acid were used (GCB plates supplemented with the 50μ M Desferal in the case of $N.\ meningitidis$).

-: indicates no growth; +: less then 100 mm of growth zone around the disc: $+++:\pm 15$ mm of growth zone around the disc.

30

5

10

EXAMPLE 4 Nucleotide Sequence Analysis of a Cosmid Clone Encoding <u>a Neisseria Hemoglobin Receptor Gene</u>

The nucleotide sequence of the 3.3 kb BamHI-HindIII DNA fragment carrying the hmbR gene and its promoter region was determined using the dideoxy chain termination method using a Sequenase 2.0 kit (obtained from U.S. Biochemicals, Cleveland, OH) and analyzed using a BioRad electrophoresis system, an AutoRead kit (obtained from Pharmacia, Uppsala, SE) and an ALF-370 automatic sequenator (Pharmacia, Uppsala, Sweden). Plasmid subclones for sequencing were produced by a nested deletion approach using Erase-a-Base kit (obtained from Promega Biotech, Madison, WI) using different restriction sites in the hmbR gene. The nucleotide and predicted amino acid sequences of the hmbR gene are shown in Figure 2

An open reading frame (ORF) encoding the *N. meningitidis*, serotype C hemoglobin receptor protein begins at position 470 of the sequence and encodes a protein having an amino acid sequence of 792 amino acids, with a calculated molecular weight of 85.5 kDa. A Shine-Delgarno sequence (SD) is found at position 460. The HmbR receptor protein contains a signal peptidase I recognition sequence at residues 22 to 24 of the protein (underlined), consistent with the fact that it is an outer membrane protein.

A typical Fur binding nucleotide sequence (designated "Fur box") was found in the promoter region of the *hmbR* gene (Figure 2). Like hemin utilization in *Yersiniae* and *Vibrio*, hemin and hemoglobin utilization in *Neisseria* are known to be iron-inducible phenotypes (West and Sparling, 1985, *Infect. Immun.* 47: 388-394; Dyer *et al.*, 1987, *Infect. Immun.* 55: 2171-2175). In Gram-negative bacteria, conditional expression of many iron utilization genes is regulated by the Fur repressor, which recognizes a 19 bp imperfect dyad repeat (Fur-box) in the promoter regions of Fur-repressed genes. Recently, a genetic screen (FURTA) for the identification of Fur-regulated genes from different Gram-negative bacteria was described (Stojiljkovic *et al.*, 1994, *J. Mol. Biol.* 236: 531-545), and this assay was used to test whether *hmbR* expression was controlled in this way. Briefly, a plasmid carrying a Fur-box sequence is transformed into an *E. coli* strain (H1717) which possesses a Fur-regulated *lac* fusion in the chromosome. Expression of this Fur-regulated *lac* fusion is normally repressed. Introduction of a multicopy Fur-box sequence on the plasmid titrates the available Fur repressor thus allowing

30

5

10

expression of the Fur-regulated *lac* fusion (this phenotype is termed FURTA positive). Using this screen, the smallest insert fragment from cosmid pIRS508 that produced a FURTA positive result was a 0.7 kb *BamHI-NotI* DNA fragment carried on plasmid pIRS528 (*see* Figure 1). This result indicated that the 0.7 kb *BamHI-NotI* fragment carries a Fur-box and that gene expression from the *hmbR* promoter is controlled by a fur-type operon.

N. meningitidis, serotype C hemoglobin receptor protein was expressed in vitro using an E. coli S30 extract system from Promega Biotech (Madison, WI). The 3.3 kb BamHI-HindIII fragment, expressed in vitro, encoded a 90kDa protein which corresponds in size to the predicted molecular weight of the unprocessed HmbR receptor. SDS/ 10% PAGE analysis showing the observed M_r of 90K is shown in Figure 3.

Immediately downstream of the *hmbR* gene (at positions 2955 to 3000 bp in Figure 2) was found a short nucleotide sequence that is 99% identical to the flanking sequence of the PIII gene of *N. gonorrhoeae* (Gotschlich *et al.*, 1987, *J. Exp. Med.* 165: 471-482). The first 26 bp of this sequence represents one half of the inverted repeat (IR1) of the *N. gonorrhoeae* small repetitive element. This element is found in approximately 20 copies in both *N. gonorrhoeae* and *N. meningitidis* (Correia *et al.*, 1988, *J. Biol. Chem.* 263: 12194-12198). The analysis of the nucleotide sequence from position 3027 to the *ClaI* (3984) restriction site (only the nucleotide sequence from *BamHI* (1) to *HindIII* (3370) is shown in Figure 2) indicated the presence of an IS1106 element (Knight *et al.*, 1992, *Mol. Microbiol.* 6: 1565-1573). Interestingly, no nucleotide sequence similar to the IS1106 inverted repeat was found between the IR1 element and the beginning of the homology to IS1106.

These results were consistent with the cloning and identification of a novel hemoglobin receptor protein gene from *N. meningitidis*, embodied in a 3.3kb *BamHI/HindIII* fragment of *N. meningitidis* genomic DNA.

EXAMPLE 5

Amino Acid Sequence Comparison of the N. meningitidis Hemoglobin Receptor Protein and Neisseria Lactoferrin and Transferrin Receptor Proteins

A comparison of the transferrin (Tbp1; Legrain et al., 1993, Gene 130: 81-90), lactoferrin (LbpA; Pettersson et al., 1993, Infect. Immun. 61: 4724-4733, and 1994, J.

Bacteriol. 176: 1764-1766) and hemoglobin receptors (HmbR) from N. meningitidis is shown in Figure 4. The comparison was done with the CLASTAL program from the PC/GENE program package (Intelligenetics, Palo Alto, CA). Only the amino-terminal and carboxyl terminal segments of the proteins are shown. An asterisk indicates identity and a point indicates similarity at the amino acid level. Lactoferrin and transferrin receptors were found to share 44.4% identity in amino acid sequence. In contrast, homology between these proteins and the hemoglobin receptor disclosed herein was found to be significantly weaker (22% amino acid sequence identity with lactoferrin and 21% with transferrin receptor).

10

5

EXAMPLE 6

TonB/ExbBD-Dependence of Hemin Transport by the N. meningitidis Hemoglobin Receptor

It was known that the transport of iron-containing siderophores, some colicins and vitamin B12 across the outer membrane of *E. coli* depends on three cytoplasmic membrane proteins: TonB, ExbB and ExbD (Postle 1990, *Mol. Microbiol.* 133: 891-898; Braun and Hantke, 1991, *in* Winkelmann, (ed.), Handbook of Microbial Iron Chelates, CRC Press, Boca Raton, Fla., pp. 107-138). In *Yersinia* and *Hemophilus*, hemin uptake was shown to be a TonB-dependent process (Stojiljkovic and Hantke, 1992, *ibid.*; Jarosik *et al.*, 1994, *Infect. Immun.* 62: 2470-2477). Through direct interaction between the outer membrane receptors and the TonB cytoplasmic machinery, the substrate bound to the receptor is internalized into the periplasm (Heller *et al.*, 1988, *Gene* 64: 147-153; Schoffler and Braun, 1989, *Molec. Gen. Genet.* 217: 378-383). This direct interaction has been associated with a particular amino acid sequence in membrane proteins associated with the TonB machinery.

All TonB-dependent receptors in Gram-negative bacteria contain several regions of high homology in their primary structures (Lundrigan and Kadner, 1986, *J. Biol. Chem.* 261: 10797-10801). In the amino acid sequence comparison described in Example 5, putative TonB-boxes of all three proteins are underlined. The carboxyl terminal end of the HmbR receptor contains the highly conserved terminal phenylalanine and position 782 arginine residues thought to be part of an outer membrane localization signal (Struyve *et al.*, 1991, *J. Mol. Biol.* 218: 141-148; Koebnik, 1993, *Trends Microbiol.* 1: 201). At residue 6 of the mature HmbR protein, an amino

30

25

30

5

10

acid sequence - ETTPVKA - is similar in sequence to the so called TonB-boxes of several Gramnegative receptors (Heller et al., 1988, ibid.). Interestingly, the putative TonB-box of HmbR has more homology to the TonB-box of the N. gonorrhoeae transferrin receptor (Cornelissen et al., 1992, J. Bacteriol. 174: 5788-5797) than to the TonB-boxes of E. coli siderophore receptors. When the sequence of the HmbR receptor was compared with other TonB-dependent receptors, the highest similarity was found with Y. enterocolitica HemR receptor although the similarity was not as high as to the Neisseria receptors.

In order to prove the TonB-dependent nature of the *N. meningitidis*, serotype C hemoglobin receptor, *hmbR* was introduced into *exbB* and *tonB* mutants of *E. coli* EB53, and the ability of the strains to utilize hemin and hemoglobin as porphyrin and iron sources was assessed. In these assays, both mutants of *E. coli* EB53 were unable to use hemin either as a porphyrin source or as an iron source in the presence of a functional *hmbR* (Table 2). The usage of hemoglobin as an iron source was also affected (Table 2). These results are consistent with the notion that the *hmbR* gene product, the *N. meningitidis* hemoglobin receptor protein of the invention, is TonB-dependent, since expression of this gene in TonB wild type *E. coli* supported the use of hemin and hemoglobin as sole iron source in the experiments disclosed in Example 2.

EXAMPLE 7

Functional Demonstration that the *hmbR* Gene Product is the <u>Hemoglobin Receptor Protein in N. meningitidis</u>

As shown in the data presented in Table II, hmbR mediated both hemin and hemoglobin utilization when expressed in E. coli, but hemoglobin utilization was less vigorous than hemin utilization. To determine if the HmbR receptor has the same specificity in N. meningitidis, hmbR was inactivated with a 1.2kb kanamycin cassette (aphA-3; Nassif et al., 1991, ibid.) and transformed into wild-type N. meningitidis 8013 clone 6 (serotype C) cells. The inactivation of the chromosomal hmbR copy of the Km-resistant transformants was confirmed by Southern hybridization, as shown in Figure 5. As can be seen from Figure 5, wild-type N. meningitidis genomic DNA contains only one copy of the hmbR gene (lanes 1 and 3). In the Km^r transformants, the size of the DNA fragments containing the wild-type gene has increased by

5

10

1.2 kb, which is the size of the Kan cassette (Figure 5, lanes 2 and 4). When tested for its ability to utilize different iron-containing compounds, these mutant cells were found to be unable to use hemoglobin-bound iron, regardless of the source (human, bovine, baboon, mouse). The ability of the mutant to utilize hemoglobin-haptoglobin was not tested because the wild-type N. meningitidis strain is unable to use haptoglobin-haemoglobin complex as an iron source. However, the mutant was still able to use hemin iron, lactoferrin- and transferrin-bound iron as well as citrate-iron (Table II). As the iron-containing component of hemoglobin is hemin, a hemoglobin receptor would be expected to be capable of transporting hemin into the periplasm. Indeed, the cloning strategy disclosed herein depended on the ability of the cloned meningococcal receptor to transport hemin into the periplasm of E. coli. These results strongly suggest that N. meningitidis has at least two functional receptors that are involved in the internalization of hemin-containing compounds. One is the hemoglobin receptor described herein, which allows the utilization of both hemin and hemoglobin as iron sources. The other putative receptor in N. meningitidis is a hemin receptor which allows utilization of only hemin. This schema is also consistent with the isolation of several cosmid clones that allow E. coli EB53 to utilize hemin. DNAs from these cosmids do not hybridize with our hmbR probe, indicating that these clones encode a structurally-distinct receptor protein capable of transporting hemin into the periplasm of N. meningitidis cells.

EXAMPLE 8

Attenuation of Virulence in hmbR Mutant N. meningitidis Cells In Vivo

In order to test the importance of hemoglobin and hemin scavenging systems of N. meningitidis in vivo, the hmbR -mutant and the wild type strain of N. meningitidis, serotype C were inoculated into 5 day old infant rats and the numbers of bacteria recovered from blood and cerebrospinal fluid were followed. In these experiments, the method for the assessing N. meningitidis, serotype C virulence potential was essentially the same as described by Nassif et al. (1992, ibid.) using infant inbred Lewis rats (Charles River, Saint Aubin les Elbeufs, France). Inbred rats were used to minimize individual variations. Briefly, the 8013 strain was reactivated by 3 animal passages. After the third passage, bacteria were kept frozen in aliquots at -80° C.

10

To avoid the possibility that modifications in the course of infection could result from selection of one spontaneous avirulent variant, one aliquot from the animal-passed frozen stock of 8013 was transformed with chromosomal DNA from the *hmbR* mutant, the resultant Kan^r transformants were pooled without further purification and kept frozen at -80°C. For each experiment, all infant rats were from the same litter. *N. meningitidis* 8013 was grown overnight and 2 X 10⁶ bacteria injected intraperitoneally into the infant rat. Three rats were used for each meningococcal strain. The course of infection was followed over a 24 hours time period with blood collected at the indicated times. At the 24 h time period, the rats were sacrificed, the cerebrospinal fluid (CSF) collected and the number of colony-forming units (CFU) determined. Each experiment was performed in replicate; similar results were obtained both times.

The results of these experiments are shown in Figure 6. The *hmbR* strain, which is unable to use hemoglobin as an iron source, was recovered from the blood of infected animals in significantly lower numbers when compared with the wild type strain. Both the mutant and the wild type strain were still able to cross the blood-brain barrier as indicated by the isolation of bacteria from the cerebrospinal fluid. These results indicate that hemoglobin represents an important iron source for *N. meningitidis* during growth *in vivo*.

EXAMPLE 9

Polymerase Chain Reaction Amplification of Hemoglobin Receptor Genes from N. meningitidis Serotypes and N. gonorrhoeae

From the nucleotide sequence of the 3.3 kb *BamHI-HindIII* DNA fragment carrying the *hmbR* gene and its promoter region was determined specific oligonucleotide promers for *in vitro* amplification of the homologous hemoglobin receptor protein genes from *N. meningitidis* serotypes A and B and *N. gonorrhoeae* MS11A as follows.

25

The following oligonucleotide primers were developed for *in vitro* amplification reactions using the polymerase chain reaction (PCR; Saiki *et al.*, 1988, *Science* 230: 1350-1354):

5'-AAACAGGTCTCGGCATAG-3' (sense primer)

(SEQ ID No.:11)

5'-CGCGAATTCAAACAGGTCTCGGCATAG-3' (antisense primer)

(SEQ ID No.:12)

for amplifying the hemoglobin receptor protein from N. meningitidis, serotype A;

30

5'-CGCGAATTCAAAAACTTCCATTCCAGCGATACG-3' (sense primer) (SEQ ID No.:13)

5'-TAAAACTTCCATTCCAGCGATACG-3' (antisense primer)

(SEQ ID No.:14)

for amplifying the hemoglobin receptor protein from N. meningitidis, serotype B;

5'-AAACAGGTCTCGGCATAG-3' (sense primer)

(SEQ ID No.:15)

or

5

10

5'-CGCGAATTCAAACAGGTCTCGGCATAG-3' (sense primer)

(SEQ ID No.:16)

and

5'-CGCGAATTCAAAAACTTCCATTCCAGCGATACG-3'

(SEQ ID No.:17)

(antisense primer)

or

5'-TAAAACTTCCATTCCAGCGATACG-3' (antisense primer)

(SEQ ID No.:18)

for amplifying the hemoglobin receptor protein from N. gonorrhoeae MS11A.

Genomic DNA from N. meningitidis serotype A or B or N. gonorrhoeae species was prepared using standard techniques (see Sambrook, et al., ibid.), including enzymatic degradation of bacterial cell walls, protoplast lysis, protease and RNase digestion, extraction with organic solvents such as phenol and/or chloroform, and ethanol precipitation. Crude DNA preparations were also used. An amount (typically, about $0.1\mu g$) of genomic DNA was used for each amplification reaction. A PCR amplification reaction consisted of Pfu polymerase (Stratagene, LaJolla, CA) and/or Taq polymerase (Boehringer Mannheim, Germany) in the appropriate buffer including about 20picomoles of each amplification primer and 200nanomoles of each deoxynucleoside triphosphate. Amplification reactions were performed according to the following scheme:

First cycle

5 min at 95°C

2 min at 51°C

6 min at 72°C

Cycles 2-13

45 sec at 95°C

35 sec at 49°C

10 min at 72°C

30

25

10

25

Upon completion of the amplification reaction, DNA fragments were cloned either blunt-ended or, after EcoRI digestion, into EcoRI digested pSUKS or pWKS30 vectors and transformed into bacteria. Positively-selected clones were then analyzed for the presence of recombinant inserts, which were sequenced as described above in Example 4.

As a result of these experiments, three clones encoding the hemoglobin receptor genes from N. meningitidis serotypes A and B and N. gonorrhoeae MS11A were cloned and the sequence of these genes determined. The nucleic acid sequence for each of these genes are shown in Figures 7 (N. meningitidis, serotype A), 8 (N. meningitidis, serotype A) and 9 (N. gonorrhoeae MS11A).

The degree of homology between the cloned hemoglobin receptors from the different N. meningitidis serotypes and N. gonorrhoeae MS11A was assessed by nucleic acid and amino acid sequence comparison, as described in Example 5 above. The results of these comparisons are shown in Figures 10 and 11, respectively. Hemoglobin receptor genes from the three N. meningitidis serotypes and N. gonorrhoeae MS11A were found to be from 86.5% to 93.4% homologous; the most homologous nucleic acids were N. meningitidis serotypes B and C, and the most divergent nucleic acids were N. meningitidis serotype B and N. gonorrhoeae MS11A (Figure 10 and Table III). Homoglobin receptor proteins from all four Neisseria species showed a high degree of homology to the other members of the group, ranging from 87% homology between the hemoglobin receptor proteins from N. gonorrhoeae MS11A and N. meningitidis serotype B to 93% homology between hemoglobin receptor proteins from N. meningitidis serotypes A and B (Figure 11). In this comparison, all four receptors were found to share 84.7% amino acid sequence identity, and up to 11.6% sequence similarity (i.e., chemicallyrelated amino acid residues at homologous sites within the amino acid sequence). The nonconserved amino acids were found clustered in the regions of the amino acid sequence corresponding to the external loops in the predicted topographical structure of the hemoglobin receptor proteins.

10

TABLE III

*	A	В	C	MS11
A	X	92.2%	93.0%	90.4%
В	93.3%	X	93.4%	86.5%
С	93.2%	93%	X	90.4%
MS11	91.1%	86.8%	91.4%	X

* The numbers in the upper quadrant of the Table (in **boldface**) represent nucleic acid sequence homology between the different hemoglobin receptor genes of the invention, while the numbers in the lower quadrant of the Table represent amino acid sequence homology between the different hemoglobin receptor proteins

It should be understood that the foregoing disclosure emphasizes certain specific embodiments of the invention and that all modifications or alternatives equivalent thereto are within the spirit and scope of the invention as set forth in the appended claims.

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: Stojiljkovic, Igor So, Magdalene Hwa, Vivian Heffron, Fred Nassif, Xavier
 - (ii) TITLE OF INVENTION: Novel Bacterial Hemoglobin Receptor Genes and Uses
 - (iii) NUMBER OF SEQUENCES: 14
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: McDonnell Boehnen Hulbert & Berghoff
 - (B) STREET: 300 South Wacker Drive, 32nd Floor
 - (C) CITY: Chicago
 - (D) STATE: Illinois
 - (E) COUNTRY: USA
 - (F) ZIP: 60606
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 08/537,361
 - (B) FILING DATE: 02-OCT-1995
 - (C) CLASSIFICATION:
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Noonan, Kevin E
 - (B) REGISTRATION NUMBER: 35,303
 - (C) REFERENCE/DOCKET NUMBER: 94,784-A
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 312-913-0001
 - (B) TELEFAX: 312-913-0002
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3319 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 471..2848

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

•	. ,	~					~									
AGAAC	CTAGTG	GATC	CAATI	T GO	:GCGC	CGGCG	TTI	TTGT	TCA	AACA	ACGCC	CCA A)AAA/	CTCGAT	60)
TACAA	ACGGCG	AACA	CGGCC	GC GC	CGCCA	CCTC	GCI	CCGC	CATC	CCGA	ACGGG	CC G	GCGGC	CAAACA	120)
CTGGC	CGCGCC	TTCG	rcga(C AT	CTTG	BAACO	CTI	TGA	ACCT	GACT	ccc	BAA C	GCCG <i>I</i>	AGCGG	180)
AAGCC	CATTCA	AGGC	GCGCC	GC GF	AGCC	CTTTC	CAT	TCT	CAA	AGTO	CGTGT	TTG (CGCGI	AACCT	240)
TCGGC	CTTGGC	AGCC	GATGO	CC GA	AGCC	cccc	AAC	GTAT	GAT	GCC	CAC	AGG (CACTA	AAAAA	300)
TAATO	CGAACC	AAAT	AAAC	AA GO	TCTC	CGGCI	A TAC	CTGT	TTG	CAGO	GACC	CTT 7	TAAT	TACACG	360)
GCGCG	GCTTT	GTTT	ACATO	G AI	TACT	GTCT	TAT	TAAZ	TAT	TAAT	GAT"	TAT	CATA	AATCT	420)
ATTAT	FTCGCT	AACC	GATGO	GA TO	BAACA	ATCO	C ATA	ACATO	CTTG	AGTT	rgat <i>i</i>		ATG A Met I 1		476	5
	TTA CAA Leu Glr	Met													524	Ŧ
	CCG GTO Pro Val 20														572	2
	GCA GAO Ala Glu														620)
	GCT GTO Ala Val														668	3
	GAC AAC Asp Asr														716	ว์
	AGC GGC Ser Gly 85	/ Arg													764	4
Asn A	CGT GTO Arg Val	C GGC L Gly	GTG Val	AGC Ser	ATA Ile 105	GAC Asp	GGC Gly	GTA Val	AAC Asn	CTG Leu 110	CCT Pro	GAT Asp	TCC Ser	GAA Glu	812	2
GAA A Glu A 115	AAC TCO Asn Sei	G CTG	TAC Tyr	GCC Ala 120	CGT Arg	TAT Tyr	GGC Gly	AAC Asn	TTC Phe 125	AAC Asn	AGC Ser	TCG Ser	CGT Arg	CTG Leu 130	860	Э
TCT A	ATC GAO	C CCC Pro	GAA Glu 135	CTC Leu	GTG Val	CGC Arg	AAC Asn	ATC Ile 140	GAC Asp	ATC Ile	GTA Val	AAA Lys	GGG Gly 145	GCG Ala	908	8
GAC T	TCT TTO Ser Pho	C AAT e Asn	ACC Thr	GGC Gly	AGC Ser	GGC Gly	GCC Ala	TTG Leu	GGC Gly	GGC Gly	GGT Gly	GTG Val	AAT Asn	TAC Tyr	956	6

CAA ACC CTG CAA GGA CGT GAC TTA CTG TTG CCT GAA CGG CAG TTC GGC Gln Thr Leu Gln Gly Arg Asp Leu Leu Pro Glu Arg Gln Phe Gly GTG ATG AAA AAC GGT TAC AGC ACG CGT AAC CGT GAA TGG ACA AAT Val Met Met Lys Asn Gly Tyr Ser Thr Arg Asn Arg Glu Trp Thr Asn ACC CTC GGT TTC GGC GTG AGC AAC GAC CGC GTG GAT GCC GCT TTG CTG Thr Leu Gly Phe Gly Val Ser Asn Asp Arg Val Asp Ala Ala Leu Leu TAT TCG CAA CGG CGC GGC CAT GAA ACT GAA AGC GCG GGC AAG CGT GGT Tyr Ser Gln Arg Arg Gly His Glu Thr Glu Ser Ala Gly Lys Arg Gly TAT CCG GTA GAG GGT GCT GGT AGC GGA GCG AAT ATC CGT GGT TCT GCG Tyr Pro Val Glu Gly Ala Gly Ser Gly Ala Asn Ile Arg Gly Ser Ala CGC GGT ATT CCT GAT CCG TCC CAA CAC AAA TAC CAC AGC TTC TTG GGT Arg Gly Ile Pro Asp Pro Ser Gln His Lys Tyr His Ser Phe Leu Gly AAG ATT GCT TAT CAA ATC AAC GAC AAC CGC ATC GGC GCA TCG CTC Lys Ile Ala Tyr Gln Ile Asn Asp Asn His Arg Ile Gly Ala Ser Leu AAC GGT CAG CAG GGG CAT AAT TAC ACG GTT GAA GAG TCT TAC AAC CTG Asn Gly Gln Gln Gly His Asn Tyr Thr Val Glu Glu Ser Tyr Asn Leu CTT GCT TCT TAT TGG CGT GAA GCT GAC GAT GTC AAC AGA CGG CGT AAC Leu Ala Ser Tyr Trp Arg Glu Ala Asp Asp Val Asn Arg Arg Asn ACC AAC CTC TTT TAC GAA TGG ACG CCG GAA TCC GAC CGG TTG TCT ATG Thr Asn Leu Phe Tyr Glu Trp Thr Pro Glu Ser Asp Arg Leu Ser Met GTA AAA GCG GAT GTC GAT TAT CAA AAA ACC AAA GTA TCT GCG GTC AAC Val Lys Ala Asp Val Asp Tyr Gln Lys Thr Lys Val Ser Ala Val Asn TAC AAA GGT TCG TTC CCG ATA GAG GAT TCT TCC ACC TTG ACA CGT AAC Tyr Lys Gly Ser Phe Pro Ile Glu Asp Ser Ser Thr Leu Thr Arg Asn TAC AAT CAA AAG GAC TTG GAT GAA ATC TAC AAC CGC AGT ATG GAT ACC Tyr Asn Gln Lys Asp Leu Asp Glu Ile Tyr Asn Arg Ser Met Asp Thr CGC TTC AAA CGC ATT ACC CTG CGT TTG GAC AGC CAT CCG TTG CAA CTC Arg Phe Lys Arg Ile Thr Leu Arg Leu Asp Ser His Pro Leu Gln Leu GGG GGG GGG CGA CAC CGC CTG TCG TTT AAA ACT TTC GCC AGC CGC CGT

Gly	Gly	Gly	Arg 390	His	Arg	Leu	Ser	Phe 395	Lys	Thr	Phe	Ala	Ser 400	Arg	Arg	
					AAC Asn											1724
					AGT Ser											1772
					GAC Asp 440											1820
					TAC Tyr											1868
					GCT Ala											1916
					GGT Gly											1964
					TAC Tyr											2012
					TTC Phe 520											2060
					AAA Lys											2108
					GAA Glu										CAA Gln	2156
					TTC Phe											2204
					ACT Thr											2252
					AAA Lys 600										AAG Lys 610	2300
					ATC Ile										AAA Lys	2348

GTA GCG TCT TTT GTT CCT GAG GGC TGG AAA CTG TTC GGC TCG CTG Val Ala Ser Phe Val Pro Glu Gly Trp Lys Leu Phe Gly Ser Leu 630 640	
TAT GCG AAA AGC AAA CTG TCG GGC GAC AAC AGC CTG CTG TTC ACC Tyr Ala Lys Ser Lys Leu Ser Gly Asp Asn Ser Leu Leu Phe Thr 645 650 655	
CCG TTG AAA GTG ATT GCC GGT ATC GAC TAT GAA AGT CCG AGC GAA Pro Leu Lys Val Ile Ala Gly Ile Asp Tyr Glu Ser Pro Ser Glu 660 665 670	
TGG GGC GTG TTC TCC CGC CTG ACC TAT CTG GGC GCG AAA AAG GTC Trp Gly Val Phe Ser Arg Leu Thr Tyr Leu Gly Ala Lys Lys Val 675 680 685	
GAC GCG CAA TAC ACC GTT TAT GAA AAC AAG GGC TGG GGT ACG CCT Asp Ala Gln Tyr Thr Val Tyr Glu Asn Lys Gly Trp Gly Thr Pro 695 700 705	
CAG AAA AAG GTA AAA GAT TAC CCG TGG CTG AAC AAG TCG GCT TAT Gln Lys Lys Val Lys Asp Tyr Pro Trp Leu Asn Lys Ser Ala Tyr 710 715 720	
TTC GAT ATG TAC GGC TTC TAC AAA CCG GTG AAA AAC CTG ACT TTG Phe Asp Met Tyr Gly Phe Tyr Lys Pro Val Lys Asn Leu Thr Leu 725 730 735	
GCA GGC GTA TAT AAT GTG TTC AAC CGC AAA TAC ACC ACT TGG GAT Ala Gly Val Tyr Asn Val Phe Asn Arg Lys Tyr Thr Thr Trp Asp 740 745 750	
CTG CGC GGC CTG TAT AGC TAC AGC ACC ACC TCG GTC GAC CGC Leu Arg Gly Leu Tyr Ser Tyr Ser Thr Thr Asn Ser Val Asp Arg 755 760 765	
GGC AAA GGC TTA GAC CGC TAC CGC GCC CCA AGC CGT AAT TAC GCC Gly Lys Gly Leu Asp Arg Tyr Arg Ala Pro Ser Arg Asn Tyr Ala 775 780 785	
TCG CTG GAA TGG AAG TTT TA ATCTGGTATT ATTGAATTAA TCGCCTTGTT Ser Leu Glu Trp Lys Phe 790	2878
GAAAATTAAA GCCGTCCGAA TTGTGTTCAA GAACTCATTC GGACGGTTTT TACCC	GAATCT 2938
GTGTGTGGGT TTATAGTGGA TTAACAAAAA TCAGGACAAG GCGACGAAGC CGCAC	GACAGT 2998
ACAGATAGTA CGGAACCGAT TCACTTGGTG AGACCTTTGC AAAATTCCTT TCCCT	TCCCGA 3058
CAGCCGAAAC CCAAACACAG GTTTTCGGCT GTTTTCGCCC CAAATACCTC CTAA	TTCTAC 3118
CCAAATACCC CCTTAATCCT CCCCGATACC CGATAATCAG GCATCCGGCG CCTT	TAGGCG 3178
GCAGCGGGCG CACTTAACCT GTTGGCGGCT TTCAAAAGGT TCAAACACAT CGCC	ITCAGG 3238
TGCCTTTGCG CACTCACTTT AATCAGTCCG AAATAGGCCG CCCGCGCATA GCAGA	AACTTA 3298
CGGTGCAGCG TACCGAAGCT T	3319

- (2) INFORMATION FOR SEQ ID NO:2:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 792 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Lys Pro Leu Gln Met Leu Pro Ile Ala Ala Leu Val Gly Ser Ile 1 10 15

Phe Gly Asn Pro Val Phe Ala Ala Asp Glu Ala Ala Thr Glu Thr Thr 20 25 30

Pro Val Lys Ala Glu Val Lys Ala Val Arg Gly Lys Gly Gln Arg Asn 35 40 45

Ala Pro Ala Ala Val Glu Arg Val Asn Leu Asn Arg Ile Lys Gln Glu 50 55 60

Met Ile Arg Asp Asn Lys Asp Leu Val Arg Tyr Ser Thr Asp Val Gly 65 70 75 80

Leu Ser Asp Ser Gly Arg His Gln Lys Gly Phe Ala Val Arg Gly Val 85 90 95

Glu Gly Asn Arg Val Gly Val Ser Ile Asp Gly Val Asn Leu Pro Asp 100 105 110

Ser Glu Glu Asn Ser Leu Tyr Ala Arg Tyr Gly Asn Phe Asn Ser Ser 115 120 125

Arg Leu Ser Ile Asp Pro Glu Leu Val Arg Asn Ile Asp Ile Val Lys 130 135 140

Gly Ala Asp Ser Phe Asn Thr Gly Ser Gly Ala Leu Gly Gly Val 145 150 155 160

Asn Tyr Gln Thr Leu Gln Gly Arg Asp Leu Leu Pro Glu Arg Gln 165 170 175

Phe Gly Val Met Met Lys Asn Gly Tyr Ser Thr Arg Asn Arg Glu Trp 180 185 190

Thr Asn Thr Leu Gly Phe Gly Val Ser Asn Asp Arg Val Asp Ala Ala 195 200 205

Leu Leu Tyr Ser Gln Arg Arg Gly His Glu Thr Glu Ser Ala Gly Lys 210 215 220

Arg Gly Tyr Pro Val Glu Gly Ala Gly Ser Gly Ala Asn Ile Arg Gly 225 230 235 240

Ser Ala Arg Gly Ile Pro Asp Pro Ser Gln His Lys Tyr His Ser Phe

D1

L

THE COLUMN TO SERVICE AND THE COLUMN TO SERV

-

245

250

255

Leu Gly Lys Ile Ala Tyr Gln Ile Asn Asp Asn His Arg Ile Gly Ala 260 265 270

Ser Leu Asn Gly Gln Gln Gly His Asn Tyr Thr Val Glu Glu Ser Tyr 275 280 285

Asn Leu Leu Ala Ser Tyr Trp Arg Glu Ala Asp Asp Val Asn Arg Arg 290 295 300

Arg Asn Thr Asn Leu Phe Tyr Glu Trp Thr Pro Glu Ser Asp Arg Leu 305 310 315 320

Ser Met Val Lys Ala Asp Val Asp Tyr Gln Lys Thr Lys Val Ser Ala 325 330 335

Val Asn Tyr Lys Gly Ser Phe Pro Ile Glu Asp Ser Ser Thr Leu Thr 340 345 350

Arg Asn Tyr Asn Gln Lys Asp Leu Asp Glu Ile Tyr Asn Arg Ser Met 355 360 365

Asp Thr Arg Phe Lys Arg Ile Thr Leu Arg Leu Asp Ser His Pro Leu 370 375 380

Gln Leu Gly Gly Gly Arg His Arg Leu Ser Phe Lys Thr Phe Ala Ser 385 390 395 400

Arg Arg Asp Phe Glu Asn Leu Asn Arg Asp Asp Tyr Tyr Phe Ser Gly
405 410 415

Arg Val Val Arg Thr Thr Ser Ser Ile Gln His Pro Val Lys Thr Thr
420 425 430

Asn Tyr Gly Phe Ser Leu Ser Asp Gln Ile Gln Trp Asn Asp Val Phe 435 440 445

Ser Ser Arg Ala Gly Ile Arg Tyr Asp His Thr Lys Met Thr Pro Gln 450 460

Glu Leu Asn Ala Glu Cys His Ala Cys Asp Lys Thr Pro Pro Ala Ala 465 470 475 480

Asn Thr Tyr Lys Gly Trp Ser Gly Phe Val Gly Leu Ala Ala Gln Leu 485 490 495

Asn Gln Ala Trp Arg Val Gly Tyr Asp Ile Thr Ser Gly Tyr Arg Val 500 505 510

Pro Asn Ala Ser Glu Val Tyr Phe Thr Tyr Asn His Gly Ser Gly Asn 515 520 525

Trp Leu Pro Asn Pro Asn Leu Lys Ala Glu Arg Thr Thr His Thr 530 540

Leu Ser Leu Gln Gly Arg Ser Glu Lys Gly Thr Leu Asp Ala Asn Leu 545 550 555 560

Tyr Gln Ser Asn Tyr Arg Asn Phe Leu Ser Glu Glu Gln Lys Leu Thr 565 570 575

Thr Ser Gly Asp Val Ser Cys Thr Gln Met Asn Tyr Tyr Tyr Gly Met 580 585 590

Cys Ser Asn Pro Tyr Ser Glu Lys Leu Glu Trp Gln Met Gln Asn Ile 595 600

Asp Lys Ala Arg Ile Arg Gly Ile Glu Leu Thr Gly Arg Leu Asn Val 610 615 620

Asp Lys Val Ala Ser Phe Val Pro Glu Gly Trp Lys Leu Phe Gly Ser 625 630 635

Leu Gly Tyr Ala Lys Ser Lys Leu Ser Gly Asp Asn Ser Leu Leu Phe 645 650 655

Thr Gln Pro Leu Lys Val Ile Ala Gly Ile Asp Tyr Glu Ser Pro Ser 660 665 670

Glu Lys Trp Gly Val Phe Ser Arg Leu Thr Tyr Leu Gly Ala Lys Lys 675 680 685

Val Lys Asp Ala Gln Tyr Thr Val Tyr Glu Asn Lys Gly Trp Gly Thr 690 695 700

Pro Leu Gln Lys Lys Val Lys Asp Tyr Pro Trp Leu Asn Lys Ser Ala 705 710 715 720

Tyr Val Phe Asp Met Tyr Gly Phe Tyr Lys Pro Val Lys Asn Leu Thr 725 730 735

Leu Arg Ala Gly Val Tyr Asn Val Phe Asn Arg Lys Tyr Thr Trp 740 745 750

Asp Ser Leu Arg Gly Leu Tyr Ser Tyr Ser Thr Thr Asn Ser Val Asp 755 760 765

Arg Asp Gly Lys Gly Leu Asp Arg Tyr Arg Ala Pro Ser Arg Asn Tyr 770 775 780

Ala Val Ser Leu Glu Trp Lys Phe 785 790

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2376 base pairs
 - (B) TYPE: nucleic acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (ix) FEATURE:

 - (A) NAME/KEY: CDS
 (B) LOCATION: 1..2373
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

		ATG Met						48
		TTT Phe						96
		GTA Val						144
		GAA Glu						192
		AAA Lys 70						240
		CGT Arg						288
		GGC Gly						336
		CTG Leu						384
		CCC Pro						432
		AAT Asn 150						480
		CAA Gln						528
		AAA Lys						576

	AAT Asn															624
	CTG Leu 210															672
	GGT Gly															720
	GCG Ala															768
	GGT Gly															816
	CTC Leu															864
	CTG Leu 290															912
	AAC Asn															960
	ATG Met															1008
	AAC Asn															1056
	TAC Tyr															1104
															CAA Gln	1152
	GGG Gly															1200
CGT Arg	GAT Asp	TTT Phe	GAA Glu	AAC Asn 405	TTA Leu	AAC Asn	CGC Arg	GAC Asp	GAT Asp 410	TAC Tyr	TAC Tyr	TTC Phe	AGC Ser	GGC Gly 415	CGT Arg	1248
GTT Val	GTT Val	CGA Arg	ACC Thr 420	ACC Thr	AAC Asn	AGT Ser	ATC Ile	CAG Gln 425	CAT His	CCG Pro	GTG Val	AAA Lys	ACC Thr 430	ACC Thr	AAC Asn	1296

		TTC Phe 435														1344
		GCA Ala														1392
		GCC Ala														1440
		AAA Lys														1488
_	_	TGG Trp														1536
		TCT Ser 515														1584
		AAT Asn														1632
		CAG Gln														1680
		AAT Asn														1728
		ACA Thr														1776
		CCC Pro 595														1824
AAG Lys	GCC Ala 610	AGA Arg	ATC Ile	CGC Arg	GGT Gly	ATC Ile 615	GAG Glu	TTG Leu	ACA Thr	GGC Gly	CGT Arg 620	CTG Leu	AAT Asn	GTG Val	GAC Asp	1872
AAA Lys 625	GTA Val	GCG Ala	TCT Ser	TTT Phe	GTT Val 630	CCT Pro	GAG Glu	GGT Gly	TGG Trp	AAA Lys 635	CTG Leu	TTC Phe	GGC Gly	TCG Ser	CTG Leu 640	1920
		GCG Ala														1968
CAG Gln	CCG Pro	CTG Leu	AAA Lys 660	GTG Val	ATT Ile	GCC Ala	GGT Gly	ATC Ile 665	GAC Asp	TAT Tyr	GAA Glu	AGT Ser	CCG Pro 670	AGC Ser	GAA Glu	2016

	GGC Gly 675								2064
	GCG Ala								2112
	AAA Lys								2160
	GAT Asp								2208
	GGC Gly								2256
	CGC Arg 755								2304
	AAA Lys								2352
	CTG Leu			TAA					2376

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 791 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Met Lys Pro Leu Gln Met Pro Pro Ile Ala Ala Leu Leu Gly Ser Ile 1 5 10

Phe Gly Asn Pro Val Phe Ala Ala Asp Glu Ala Ala Thr Glu Thr Thr 20 25 30

Pro Val Lys Ala Glu Val Lys Ala Val Arg Val Lys Gly Gln Arg Asn 35 40 45

Ala Pro Ala Ala Val Glu Arg Val Asn Leu Asn Arg Ile Lys Gln Glu 50 55 60

Met Ile Arg Asp Asn Lys Asp Leu Val Arg Tyr Ser Thr Asp Val Gly 65 70 75 80

Leu Ser Asp Arg Ser Arg His Gln Lys Gly Phe Ala Ile Arg Gly Val 85 90 95

Glu Gly Asp Arg Val Gly Val Ser Ile Asp Gly Val Asn Leu Pro Asp 100 105 110

Ser Glu Glu Asn Ser Leu Tyr Ala Arg Tyr Gly Asn Phe Asn Ser Ser 115 120 125

Arg Leu Ser Ile Asp Pro Glu Leu Val Arg Asn Ile Asp Ile Val Lys
130 135 140

Gly Ala Asp Ser Phe Asn Thr Gly Ser Gly Ala Leu Gly Gly Gly Val 145 150 155 160

Asn Tyr Gln Thr Leu Gln Gly Arg Asp Leu Leu Pro Glu Arg Gln
165 170 175

Phe Gly Val Met Met Lys Asn Gly Tyr Ser Thr Arg Asn Arg Glu Trp 180 185 190

Thr Asn Thr Leu Gly Phe Gly Val Ser Asn Asp Arg Val Asp Ala Ala 195 200 205

Leu Leu Tyr Ser Gln Arg Arg Gly His Glu Thr Glu Ser Ala Gly Lys 210 215 220

Arg Gly Tyr Pro Val Glu Gly Ala Gly Ser Gly Ala Asn Ile Arg Gly 225 230 235 240

Ser Ala Arg Gly Ile Pro Asp Pro Ser Gln His Lys Tyr His Ser Phe 245 250 255

Leu Gly Lys Ile Ala Tyr Gln Ile Asn Asp Asn His Arg Ile Gly Ala 260 265 270

Ser Leu Asn Gly Gln Gln Gly His Asn Tyr Thr Val Glu Glu Ser Tyr 275 280 285

Asn Leu Leu Ala Ser Tyr Trp Arg Glu Ala Asp Asp Val Asn Arg Arg 290 295 300

Arg Asn Thr Asn Leu Phe Tyr Glu Trp Thr Pro Glu Ser Asp Arg Leu 305 310 315 320

Ser Met Val Lys Ala Asp Val Asp Tyr Gln Lys Thr Lys Val Ser Ala 325 330 335

Val Asn Tyr Lys Gly Ser Phe Pro Thr Asn Tyr Thr Thr Trp Glu Thr 340 350

Glu Tyr His Lys Lys Glu Val Gly Glu Ile Tyr Asn Arg Ser Met Asp 355 360 365

Thr Thr Phe Lys Arg Ile Thr Leu Arg Met Asp Ser His Pro Leu Gln 370 375 380

Leu Gly Gly Gly Arg His Arg Leu Ser Phe Lys Thr Phe Ala Gly Gln 385 390 395 400

Arg Asp Phe Clu Asn Leu Asn Arg Asp Asp Tyr Tyr Phe Ser Gly Arg 405 410 415

Val Val Arg Thr Thr Asn Ser Ile Gln His Pro Val Lys Thr Thr Asn 420 425 430

Tyr Gly Phe Ser Leu Ser Asp Gln Ile Gln Trp Asn Asp Val Phe Ser 435 440 445

Ser Arg Ala Gly Ile Arg Tyr Asp His Thr Lys Met Thr Pro Gln Glu 450 455 460

Leu Asn Ala Asp Cys His Ala Cys Asp Lys Thr Pro Pro Ala Ala Asn 465 470 475 480

Thr Tyr Lys Gly Trp Ser Gly Phe Val Gly Leu Ala Ala Gln Leu Ser 485 490 495

Gln Thr Trp Arg Leu Gly Tyr Asp Val Thr Ser Gly Phe Arg Val Pro 500 505

Asn Ala Ser Glu Val Tyr Phe Thr Tyr Asn His Gly Ser Gly Thr Trp 515 520 525

Lys Pro Asn Pro Asn Leu Lys Ala Glu Arg Ser Thr Thr His Thr Leu 530 540

Ser Leu Gln Gly Arg Gly Asp Lys Gly Thr Leu Asp Ala Asn Leu Tyr 545 550 555 560

Gln Ser Asn Tyr Arg Asn Phe Leu Ser Glu Glu Gln Asn Leu Thr Val $565 \hspace{1.5cm} 570 \hspace{1.5cm} 575$

Ser Gly Thr Pro Gly Cys Thr Glu Glu Asp Ala Tyr Tyr Tyr Arg Cys 580 585

Ser Asp Pro Tyr Lys Glu Lys Leu Asp Trp Gln Met Lys Asn Ile Asp 595 600 605

Lys Ala Arg Ile Arg Gly Ile Glu Leu Thr Gly Arg Leu Asn Val Asp 610 615 620

Lys Val Ala Ser Phe Val Pro Glu Gly Trp Lys Leu Phe Gly Ser Leu 625 630 635 640

Gly Tyr Ala Lys Ser Lys Leu Ser Gly Asp Asn Ser Leu Leu Ser Thr 645 650 655

Gln Pro Leu Lys Val Ile Ala Gly Ile Asp Tyr Glu Ser Pro Ser Glu 665 670

Lys Trp Gly Val Phe Ser Arg Leu Thr Tyr Leu Gly Ala Lys Lys Val 675 680 685

Lys Asp Ala Gln Tyr Thr Val Tyr Glu Asn Lys Gly Trp Gly Thr Pro 690 695 700

Leu 705	Gln	Lys	Lys	Val	Lys 710	Asp	Tyr	Pro	Trp	Leu 715	Asn	Lys	Ser	Ala	Tyr 720	
Val	Phe	Asp	Met	Tyr 725	Gly	Phe	Tyr	Lys	Pro 730	Ala	Lys	Asn	Leu	Thr 735	Leu	
Arg	Ala	Gly	Val 740	Tyr	Asn	Leu	Phe	Asn 745	Arg	Lys	Tyr	Thr	Thr 750	Trp	Asp	
Ser	Leu	Arg 755	Gly	Leu	Tyr	Ser	Tyr 760	Ser	Thr	Thr	Asn	Ala 765	Val	Asp	Arg	
qaA	Gly 770	Lys	Gly	Leu	Asp	Arg 775	Tyr	Arg	Ala	Pro	Gly 780	Arg	Asn	Tyr	Ala	
Val 785	Ser	Leu	Glu	Trp	Lys 790	Phe										
(2)	INFO	ORMA:	rion	FOR	SEQ	ID 1	10:5	:								
	(i)	(1	A) L1 3) T; C) S;	CE CI ENGTI YPE: IRANI OPOLO	H: 23 nucl	379 k Leic ESS:	ase acio sino	pai: d	rs							
	(ii)) MO	LECUI	LE T	YPE:	DNA	(gei	nomi	c)							
	(ix)		A) N2	E: AME/I OCATI			2376									
	(xi) SE	QUEN	CE DI	ESCR	IPTI	ON:	SEQ :	ID N	0:5:						
	AAA Lys															48
	GGC Gly															96
CCC Pro	GTT Val	AAG Lys 35	GCA Ala	GAG Glu	GTA Val	AAA Lys	GCA Ala 40	GTG Val	CGC Arg	GTT Val	AAA Lys	GGC Gly 45	CAG Gln	CGC Arg	AAT Asn	144
GCG Ala	CCT Pro 50	GCG Ala	GCT Ala	GTG Val	GAA Glu	CGC Arg 55	GTC Val	AAC Asn	CTT Leu	AAC Asn	CGT Arg 60	ATC Ile	AAA Lys	CAA Gln	GAA Glu	192
ATG Met 65	ATA Ile	CGC Arg	GAC Asp	AAC Asn	AAA Lys 70	GAC Asp	TTG Leu	GTG Val	CGC Arg	TAT Tyr 75	TCC Ser	ACC Thr	GAT Asp	GTC Val	GGC Gly 80	240

TTG AGC GAC AGC GGC CGC CAT CAA AAA GGC TTT GCC GTT CGC GGC GTG Leu Ser Asp Ser Gly Arg His Gln Lys Gly Phe Ala Val Arg Gly Val

	GGC Gly															336
	GAA Glu															384
	CTG Leu 130															432
	GCG Ala															480
	TAC Tyr															528
	GGC Gly															576
	AAT Asn															624
	CTG Leu 210															672
	GGT Gly															720
	GCG Ala															768
	GGT Gly															816
	CTC Leu															864
AAC Asn	CTG Leu 290	CTT Leu	GCT Ala	TCT Ser	TAT Tyr	TGG Trp 295	CGT Arg	GAA Glu	GCT Ala	GAC Asp	GAT Asp 300	GTC Val	AAC Asn	AGA Arg	CGG Arg	912
CGT Arg 305	AAC Asn	ACC Thr	AAC Asn	CTC Leu	TTT Phe 310	TAC Tyr	GAA Glu	TGG Trp	ACG Thr	CCG Pro 315	GAA Glu	TCC Ser	GAC Asp	CGG Arg	TTG Leu 320	960
TCT Ser	ATG Met	GTA Val	AAA Lys	GCG Ala 325	GAT Asp	GTC Val	GAT Asp	TAT Tyr	CAA Gln 330	AAA Lys	ACC Thr	AAA Lys	GTA Val	TCT Ser 335	GCG Ala	1008

			AAA Lys 340													1056
			AAT Asn													1104
			TTC Phe													1152
			GGG Gly													1200
			TTT Phe													1248
			CGA Arg 420													1296
			TTC Phe													1344
			GCA Ala													1392
			GCC Ala													1440
			AAA Lys													1488
			TGG Trp 500													1536
			TCC Ser													1584
			AAT Asn													1632
CTC Leu 545	TCT Ser	CTG Leu	CAA Gln	GGC Gly	CGC Arg 550	AGC Ser	GAA Glu	AAA Lys	GGT Gly	ACT Thr 555	TTG Leu	GAT Asp	GCC Ala	AAC Asn	CTG Leu 560	1680
			AAT Asn													1728

					AGC Ser											1776
					TCC Ser											1824
					CGC Arg											1872
					TTT Phe 630											1920
					AGC Ser											1968
					GTG Val											2016
					TTC Phe											2064
					TAC Tyr											2112
					GTA Val 710											2160
					TAC Tyr											2208
					TAT Tyr											2256
					CTG Leu										GAC Asp	2304
CGC Arg	GAT Asp 770	GGC Gly	AAA Lys	GGC Gly	TTA Leu	GAC Asp 775	CGC Arg	TAC Tyr	CGC Arg	GCC Ala	CCA Pro 780	AGC Ser	CGT Arg	AAT Asn	TAC Tyr	2352
					TGG Trp 790			TAA								2379

⁽²⁾ INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 792 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Met Lys Pro Leu Gln Met Leu Pro Ile Ala Ala Leu Val Gly Ser Ile 1 5 10 15

Phe Gly Asn Pro Val Phe Ala Ala Asp Glu Ala Ala Thr Glu Thr Thr 20 25 30

Pro Val Lys Ala Glu Val Lys Ala Val Arg Val Lys Gly Gln Arg Asn 35 40 45

Ala Pro Ala Ala Val Glu Arg Val Asn Leu Asn Arg Ile Lys Gln Glu 50 60

Met Ile Arg Asp Asn Lys Asp Leu Val Arg Tyr Ser Thr Asp Val Gly 65 70 75 80

Leu Ser Asp Ser Gly Arg His Gln Lys Gly Phe Ala Val Arg Gly Val
85 90 95

Glu Gly Asn Arg Val Gly Val Ser Ile Asp Gly Val Asn Leu Pro Asp 100 105 110

Ser Glu Glu Asn Ser Leu Tyr Ala Arg Tyr Gly Asn Phe Asn Ser Ser 115 120 125

Arg Leu Ser Ile Asp Pro Glu Leu Val Arg Asn Ile Asp Ile Val Lys 130 135 140

Gly Ala Asp Ser Phe Asn Thr Gly Ser Gly Ala Leu Gly Gly Gly Val $145 \\ 150 \\ 155 \\ 160$

Asn Tyr Gln Thr Leu Gln Gly Arg Asp Leu Leu Pro Glu Arg Gln 165 170 175

Phe Gly Val Met Met Lys Asn Gly Tyr Ser Thr Arg Asn Arg Glu Trp 180 185 190

Thr Asn Thr Leu Gly Phe Gly Val Ser Asn Asp Arg Val Asp Ala Ala 195 200 205

Leu Leu Tyr Ser Gln Arg Arg Gly His Glu Thr Glu Ser Ala Gly Lys 210 215 220

Arg Gly Tyr Pro Val Glu Gly Ala Gly Ser Gly Ala Asn Ile Arg Gly 225 230 235 240

Ser Ala Arg Gly Ile Pro Asp Pro Ser Gln His Lys Tyr His Ser Phe \$245\$ \$250\$ \$255

Leu Gly Lys Ile Ala Tyr Gln Ile Asn Asp Asn His Arg Ile Gly Ala

260 265 270

Ser Leu Asn Gly Gln Gln Gly His Asn Tyr Thr Val Glu Glu Ser Tyr 275 280 285

Asn Leu Leu Ala Ser Tyr Trp Arg Glu Ala Asp Asp Val Asn Arg Arg

290 295 300

Arg Asn Thr Asn Leu Phe Tyr Glu Trp Thr Pro Glu Ser Asp Arg Leu 305 310 315 320

Ser Met Val Lys Ala Asp Val Asp Tyr Gln Lys Thr Lys Val Ser Ala 325 330 335

Val Asn Tyr Lys Gly Ser Phe Pro Ile Glu Asp Ser Ser Thr Leu Thr 340 345 350

Arg Asn Tyr Asn Gln Lys Asp Leu Asp Glu Ile Tyr Asn Arg Ser Met 355 360 365

Asp Thr Arg Phe Lys Arg Ile Thr Leu Arg Leu Asp Ser His Pro Leu 370 375 380

Gln Leu Gly Gly Gly Arg His Arg Leu Ser Phe Lys Thr Phe Ala Ser 385 390 395 400

Arg Arg Asp Phe Glu Asn Leu Asn Arg Asp Tyr Tyr Tyr Phe Ser Gly
405 410 415

Arg Val Val Arg Thr Thr Ser Ser Ile Gln His Pro Val Lys Thr Thr
420 425 430

Asn Tyr Gly Phe Ser Leu Ser Asp Gln Ile Gln Trp Asn Asp Val Phe 435 440 445

Ser Ser Arg Ala Gly Ile Arg Tyr Asp His Thr Lys Met Thr Pro Gln 450 455 460

Glu Leu Asn Ala Glu Cys His Ala Cys Asp Lys Thr Pro Pro Ala Ala 465 470 475 480

Asn Thr Tyr Lys Gly Trp Ser Gly Phe Val Gly Leu Ala Ala Gln Leu 485 490 495

Asn Gln Ala Trp Arg Val Gly Tyr Asp Ile Thr Ser Gly Tyr Arg Val 500 505 510

Pro Asn Ala Ser Glu Val Tyr Phe Thr Tyr Asn His Gly Ser Gly Asn 515 520 525

Trp Leu Pro Asn Pro Asn Leu Lys Ala Glu Arg Ser Thr Thr His Thr 530 540

Leu Ser Leu Gln Gly Arg Ser Glu Lys Gly Thr Leu Asp Ala Asn Leu 545 550 560

Tyr Gln Ser Asn Tyr Arg Asn Phe Leu Ser Glu Glu Gln Lys Leu Thr

565 570 575

Thr Ser Gly Asp Val Ser Cys Thr Gln Met Asn Tyr Tyr Tyr Gly Met 580 585 590

Cys Ser Asn Pro Tyr Ser Glu Lys Leu Glu Trp Gln Met Gln Asn Ile 595 600 605

Asp Lys Ala Arg Ile Arg Gly Ile Glu Leu Thr Gly Arg Leu Asn Val 610 620

Asp Lys Val Ala Ser Phe Val Pro Glu Gly Trp Lys Leu Phe Gly Ser 625 630 635 640

Leu Gly Tyr Ala Lys Ser Lys Leu Ser Gly Asp Asn Ser Leu Leu Ser 645 650 655

Thr Gln Pro Leu Lys Val Ile Ala Gly Ile Asp Tyr Glu Ser Pro Ser 660 665 670

Glu Lys Trp Gly Val Phe Ser Arg Leu Thr Tyr Leu Gly Ala Lys Lys 675 680 685

Val Lys Asp Ala Gln Tyr Thr Val Tyr Glu Asn Lys Gly Trp Gly Thr 690 695 700

Pro Leu Gln Lys Lys Val Lys Asp Tyr Pro Trp Leu Asn Lys Ser Ala 705 710 715 720

Tyr Val Phe Asp Met Tyr Gly Phe Tyr Lys Pro Val Lys Asn Leu Thr 725 730 735

Leu Arg Ala Cly Val Tyr Asn Val Phe Asn Arg Lys Tyr Thr Trp 740 745 750

Asp Ser Leu Arg Gly Leu Tyr Ser Tyr Ser Thr Thr Asn Ser Val Asp
755 760 765

Arg Asp Gly Lys Gly Leu Asp Arg Tyr Arg Ala Pro Ser Arg Asn Tyr 770 780

Ala Val Ser Leu Glu Trp Lys Phe 785 790

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2378 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)
- (ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 1..2370

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

		_	-					~									
					ATG Met											4.8	3
					TTG Leu											96	5
CCC Pro	GTT Val	AAA Lys 35	GCA Ala	GAG Glu	ATA Ile	AAA Lys	GAA Glu 40	GTG Val	CGC Arg	GTT Val	AAA Lys	GAC Asp 45	CAG Gln	CTT Leu	AAT Asn	144	ł
					GAA Glu											192	2
					AAA Lys 70											240)
					CGC Arg											288	3
					GGT Gly											336	5
					CTG Leu											384	1
CGC Arg	CTG Leu 130	TCT Ser	ATC Ile	GAC Asp	CCC Pro	GAA Glu 135	CTC Leu	GTG Val	CGC Arg	AAC Asn	ATC Ile 140	GAA Glu	ATC Ile	GCG Ala	AAG Lys	432	2
GGC Gly 145	GCT Ala	GAC Asp	TCT Ser	TTC Phe	AAT Asn 150	ACC Thr	GGT Gly	AGC Ser	GGC Gly	GCA Ala 155	TTG Leu	GGT Gly	GGC Gly	GGC Gly	GTG Val 160	480)
AAT Asn	TAC Tyr	CAA Gln	ACC Thr	CTG Leu 165	CAA Gln	GGA Gly	CAT His	GAT Asp	TTG Leu 170	CTG Leu	TTG Leu	GAC Asp	GAC Asp	AGG Arg 175	CAA Gln	528	3
TTC Phe	GGC Gly	GTG Val	ATG Met 180	ATG Met	AAA Lys	AAC Asn	GGT Gly	TAC Tyr 185	AGC Ser	ACG Thr	CGC Arg	AAC Asn	CGC Arg 190	GAA Glu	TGG Trp	576	5
ACA Thr	AAT Asn	ACA Thr 195	CTC Leu	GGT Gly	TTC Phe	GGT Gly	GTG Val 200	AGC Ser	AAC Asn	GAC Asp	CGC Arg	GTG Val 205	GAT Asp	GCC Ala	GCT Ala	624	1
TTG Leu	CTG Leu	TAT Tyr	TCG Ser	CAA Gln	CGT Arg	CGC Arg	GGT Gly	CAT His	GAG Glu	ACC Thr	GAA Glu	AGC Ser	GCG Ala	GGC Gly	GAG Glu	672	2

CGT GGC TAT CCG GTA GAG GGT GCT GGC AGC GGA GCA ATT ATC CGT GGT Arg Gly Tyr Pro Val Glu Gly Ala Gly Ser Gly Ala Ile Ile Arg Gly TCG TCA CGC GGT ATC CCT GAT CCG TCC AAA CAC AAA TAC CAC AAC TTC Ser Ser Arg Gly Ile Pro Asp Pro Ser Lys His Lys Tyr His Asn Phe TTG GGT AAG ATT GCT TAT CAA ATC AAC GAC AAG CAC CGC ATC GGC CCA Leu Gly Lys Ile Ala Tyr Gln Ile Asn Asp Lys His Arg Ile Gly Pro TCG TTT AAC GGC CAG CAG GGG CAT AAT TAC ACG ATT GAA GAG TCT TAT Ser Phe Asn Gly Gln Gln Gly His Asn Tyr Thr Ile Glu Glu Ser Tyr AAC CTG ACC GCT TCT TCC TGG CGC GAA GCC GAT GAC GTA AAC AGA CGG Asn Leu Thr Ala Ser Ser Trp Arg Glu Ala Asp Asp Val Asn Arg Arg CGC AAT GCC AAC CTC TTT TAC GAA TGG ACG CCT GAT TCA AAT TGG CTG Arg Asn Ala Asn Leu Phe Tyr Glu Trp Thr Pro Asp Ser Asn Trp Leu TCG TCT TTG AAG GCG GAT TTC GAT TAT CAG ACA ACC AAA GTG GCG GCG Ser Ser Leu Lys Ala Asp Phe Asp Tyr Gln Thr Thr Lys Val Ala Ala GTT AAC AAC AAA GGC TCG TTC CCG ACG GAT TAT TCC ACC TTG ACG CGC Val Asn Asn Lys Gly Ser Phe Pro Thr Asp Tyr Ser Thr Leu Thr Arg AAC TAT AAT CAG AAG GAT TTG GAG AAT ATA TAC AAC CGC AGC ATG GAC Asn Tyr Asn Gln Lys Asp Leu Glu Asn Ile Tyr Asn Arg Ser Met Asp ACC CGA TTC AAA CGT TTT ACT TTG CGT ATG GAC AGC CAA CCG TTG CAA Thr Arg Phe Lys Arg Phe Thr Leu Arg Met Asp Ser Gln Pro Leu Gln CTG GGC GGC CAA CAT CGC TTG TCG CTT AAA ACT TTC GCC AGT CGG CGT Leu Gly Gly Gln His Arg Leu Ser Leu Lys Thr Phe Ala Ser Arg Arg GAG TTT GAA AAC TTA AAC CGC GAC GAT TAT TAC TTC AGC GAA AGA GTA Glu Phe Glu Asn Leu Asn Arg Asp Asp Tyr Tyr Phe Ser Glu Arg Val TCC CGT ACT ACC AGC TCG ATT CAA CAC CCC GTG AAA ACC ACT AAT TAT Ser Arg Thr Thr Ser Ser Ile Gln His Pro Val Lys Thr Thr Asn Tyr GGT TTC TCA CTG TCT GAT CAA ATC CAA TGG AAC GAC GTG TTC AGC AGC Gly Phe Ser Leu Ser Asp Gln Ile Gln Trp Asn Asp Val Phe Ser Ser CGT GCA GAT ATC CGT TAC GAT CAT ACC AAA ATG ACG CCT CAG GAA TTG

Arg	Ala 450	Asp	Ile	Arg	Tyr	Asp 455	His	Thr	Lys	Met	Thr 460	Pro	Gln	Glu	Leu	
					GCT Ala 470											1440
					GGA Gly											1488
					TAC Tyr											1536
GCG Ala	TCC Ser	GAA Glu 515	GTG Val	TAT Tyr	TTC Phe	ACT Thr	TAC Tyr 520	AAC Asn	CAC His	GGT Gly	TCG Ser	GGT Gly 525	AAT Asn	TGG Trp	CTG Leu	1584
					AAA Lys											1632
					GAA Glu 550											1680
					TTC Phe											1728
					ACT Thr											1776
					AAA Lys											1824
GCC Ala	Arg	Ile	Arg	Gly	CTT Leu	Glu	Leu	Thr	Gly	Arg	Leu	Asn	GTG Val	ACA Thr	AAA Lys	1872
GTA Val 625	GCG Ala	TCT Ser	TTT Phe	GTT Val	CCT Pro 630	GAG Glu	GGC Gly	TGG Trp	AAA Lys	TTG Leu 635	TTC Phe	GGC Gly	TCG Ser	CTG Leu	GGT Gly 640	1920
TAT Tyr	GCG Ala	AAA Lys	AGC Ser	AAA Lys 645	CTG Leu	TCG Ser	GGC Gly	GAC Asp	AAC Asn 650	AGC Ser	CTG Leu	CTG Leu	TCC Ser	ACA Thr 655	CAG Gln	1968
CCG Pro	CCG Pro	AAA Lys	GTG Val 660	ATT Ile	GCC Ala	GGT Gly	ATC Ile	GAC Asp 665	TAT Tyr	GAA Glu	AGT Ser	CCG Pro	AGC Ser 670	GAA Glu	AAA Lys	2016
TGG Trp	GGT Gly	GTG Val 675	TTC Phe	TCC Ser	CGC Arg	CTG Leu	ACT Thr 680	TAT Tyr	CTG Leu	GGT Gly	GCG Ala	AAA Lys 685	AAG Lys	GTC Val	AAA Lys	2064

	GCG Ala 690									٠	2112
_	AAA Lys										2160
_	GAT Asp										2208
	GGC Gly										2256
	CGC Arg										2304
_	AAA Lys 770	_									2352
	CTG Leu			TGA	ATTC(Ţ.					2378

- (2) INFORMATION FOR SEQ ID NO:8:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 790 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Met Lys Pro Leu His Met Leu Pro Ile Ala Ala Leu Val Gly Ser Ile 1 5 10 15

Phe Gly Asn Pro Val Leu Ala Ala Asp Glu Ala Ala Thr Glu Thr Thr 20 25 30

Pro Val Lys Ala Glu Ile Lys Glu Val Arg Val Lys Asp Gln Leu Asn 35 40 45

Ala Pro Ala Thr Val Glu Arg Val Asn Leu Gly Arg Ile Gln Glu 50 55 60

Met Ile Arg Asp Asn Lys Asp Leu Val Arg Tyr Ser Thr Asp Val Gly 65 70 75 80

Leu Ser Asp Ser Gly Arg His Gln Lys Gly Phe Ala Val Arg Gly Val 85 90 95

Glu Gly Asn Arg Val Gly Val Ser Ile Asp Gly Val Ser Leu Pro Asp

105 100 110 Ser Glu Glu Asn Ser Leu Tyr Ala Arg Tyr Gly Asn Phe Asn Ser Ser 120 125 Arg Leu Ser Ile Asp Pro Glu Leu Val Arg Asn Ile Glu Ile Ala Lys 135 Gly Ala Asp Ser Phe Asn Thr Gly Ser Gly Ala Leu Gly Gly Gly Val 155 Asn Tyr Gln Thr Leu Gln Gly His Asp Leu Leu Asp Asp Arg Gln 165 170 Phe Gly Val Met Met Lys Asn Gly Tyr Ser Thr Arg Asn Arg Glu Trp 185 Thr Asn Thr Leu Gly Phe Gly Val Ser Asn Asp Arg Val Asp Ala Ala 200 Leu Leu Tyr Ser Gln Arg Arg Gly His Glu Thr Glu Ser Ala Gly Glu 210 215 Arg Gly Tyr Pro Val Glu Gly Ala Gly Ser Gly Ala Ile Ile Arg Gly Ser Ser Arg Gly Ile Pro Asp Pro Ser Lys His Lys Tyr His Asn Phe 245 250 Leu Gly Lys Ile Ala Tyr Gln Ile Asn Asp Lys His Arg Ile Gly Pro Ser Phe Asn Gly Gln Gln Gly His Asn Tyr Thr Ile Glu Glu Ser Tyr 275 280 Asn Leu Thr Ala Ser Ser Trp Arg Glu Ala Asp Asp Val Asn Arg Arg 290 295 Arg Asn Ala Asn Leu Phe Tyr Glu Trp Thr Pro Asp Ser Asn Trp Leu Ser Ser Leu Lys Ala Asp Phe Asp Tyr Gln Thr Thr Lys Val Ala Ala 325 330 Val Asn Asn Lys Gly Ser Phe Pro Thr Asp Tyr Ser Thr Leu Thr Arg Asn Tyr Asn Gln Lys Asp Leu Glu Asn Ile Tyr Asn Arg Ser Met Asp 355 Thr Arg Phe Lys Arg Phe Thr Leu Arg Met Asp Ser Gln Pro Leu Gln 375 Leu Gly Gly Gln His Arg Leu Ser Leu Lys Thr Phe Ala Ser Arg Arg 385 390 Glu Phe Glu Asn Leu Asn Arg Asp Asp Tyr Tyr Phe Ser Glu Arg Val 405 410

Ser Arg Thr Thr Ser Ser Ile Gln His Pro Val Lys Thr Thr Asn Tyr 420 425 430

Gly Phe Ser Leu Ser Asp Gln Ile Gln Trp Asn Asp Val Phe Ser Ser 435 440 445

Arg Ala Asp Ile Arg Tyr Asp His Thr Lys Met Thr Pro Gln Glu Leu 450 455 460

Asn Ala Glu Cys His Ala Cys Asp Lys Thr Pro Pro Ala Ala Asn Thr 465 470 475 480

Tyr Lys Gly Trp Ser Gly Phe Val Gly Leu Ala Ala Gln Leu Asn Gln
485 490 495

Ala Trp His Val Gly Tyr Asp Ile Thr Ser Gly Tyr Arg Val Pro Asn 500 505 510

Ala Ser Glu Val Tyr Phe Thr Tyr Asn His Gly Ser Gly Asn Trp Leu 515 520 525

Pro Asn Pro Asn Leu Lys Ala Glu Arg Ser Thr Thr His Thr Leu Ser 530 535 540

Leu Gln Gly Arg Ser Glu Lys Gly Thr Leu Asp Ala Asn Leu Tyr Gln 545 550 555 560

Ser Asn Tyr Arg Asn Phe Leu Ser Glu Glu Gln Lys Leu Thr Thr Ser 565 570 575

Gly Asp Val Gly Cys Thr Gln Met Asn Tyr Tyr Tyr Gly Met Cys Ser 580 585 590

Asn Pro Tyr Ser Glu Lys Pro Glu Trp Gln Met Gln Asn Ile Asp Lys 595 600 605

Ala Arg Ile Arg Gly Leu Glu Leu Thr Gly Arg Leu Asn Val Thr Lys 610 615 620

Val Ala Ser Phe Val Pro Glu Gly Trp Lys Leu Phe Gly Ser Leu Gly 625 630 635 640

Tyr Ala Lys Ser Lys Leu Ser Gly Asp Asn Ser Leu Leu Ser Thr Gln 645 650 655

Pro Pro Lys Val Ile Ala Gly Ile Asp Tyr Glu Ser Pro Ser Glu Lys 660 665 670

Trp Gly Val Phe Ser Arg Leu Thr Tyr Leu Gly Ala Lys Lys Val Lys 675 680 685

Asp Ala Gln Tyr Thr Val Tyr Glu Asn Lys Gly Arg Gly Thr Pro Leu 690 695 700

Gln Lys Lys Val Lys Asp Tyr Pro Trp Leu Asn Lys Ser Ala Tyr Val 705 710 715 720

Phe Asp Met Tyr Gly Phe Tyr Lys Leu Ala Lys Asn Leu Thr Leu Arg

Ala Gly Val Tyr Asn Val Phe Asn Arg Lys Tyr Thr Thr Trp Asp Ser 740 745 750

Leu Arg Gly Leu Tyr Ser Tyr Thr Thr Thr Asn Ala Val Asp Arg Asp 755 760 765

Gly Lys Gly Leu Asp Arg Tyr Arg Ala Ser Gly Arg Asn Tyr Ala Val 770 780

Ser Leu Asp Trp Lys Phe 785 790

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 600 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

Met Gln Gln His Leu Phe Arg Leu Asn Ile Leu Cys Leu Ser Leu 1 5 10 15

Met Thr Ala Leu Pro Val Tyr Ala Glu Asn Val Gln Ala Glu Gln Ala 20 25 30

Gln Glu Lys Gln Leu Asp Thr Ile Val Lys Ala Lys Lys Gln Lys Thr 35 40 45

Arg Arg Asp Asn Glu Val Thr Gly Leu Gly Lys Leu Val Lys Ser Ser 50 55 60

Asp Thr Leu Ser Lys Glu Gln Val Leu Asn Ile Arg Asp Leu Thr Arg 65 70 75 80

Tyr Asp Pro Gly Ile Ala Val Val Glu Gln Gly Arg Gly Ala Ser Ser 85 90 95

Gly Tyr Ser Ile Arg Gly Met Asp Lys Asn Arg Val Ser Leu Thr Val 100 105 110

Asp Gly Val Ser Gln Ile Gln Ser Tyr Thr Ala Gln Ala Leu Gly
115 120 125

Gly Thr Arg Thr Ala Gly Ser Ser Gly Ala Ile Asn Glu Ile Glu Tyr 130 135 140

Glu Asn Val Lys Ala Val Glu Ile Ser Lys Gly Ser Asn Ser Ser Glu 145 150 155 160

Tyr Gly Asn Gly Ala Leu Ala Gly Ser Val Ala Phe Gln Thr Lys Thr 165 170 175

Ala Ala Asp Ile Ile Gly Glu Gly Lys Gln Trp Gly Ile Gln Ser Lys 180 185 190

Thr Ala Tyr Ser Gly Lys Asp His Ala Leu Thr Gln Ser Leu Ala Leu 195 200 205

Ala Gly Arg Ser Gly Gly Ala Glu Ala Leu Leu Ile Tyr Thr Lys Arg 210 215 220

Arg Gly Arg Glu Ile His Ala His Lys Asp Ala Gly Lys Gly Val Gln 225 230 235 240

Ser Phe Asn Arg Leu Pro Ile Cys Arg Phe Gly Asn Asn Thr Tyr Thr 245 250 255

Asp Cys Thr Pro Arg Asn Ile Gly Gly Asn Gly Tyr Tyr Ala Ala Val 260 265 270

Gln Asp Asn Val Arg Leu Gly Arg Trp Ala Asp Val Gly Ala Gly Ile 275 280 285

Arg Tyr Asp Tyr Arg Ser Thr His Ser Glu Asp Lys Ser Val Ser Thr 290 295 300

Gly Thr His Arg Asn Leu Ser Trp Asn Ala Gly Val Val Leu Lys Pro 305 310 315 320

Phe Thr Trp Met Asp Leu Thr Tyr Arg Ala Ser Thr Gly Phe Arg Leu 325 330 335

Pro Ser Phe Ala Glu Met Tyr Gly Trp Arg Ala Gly Glu Ser Leu Lys 340 345 350

Thr Leu Asp Leu Lys Pro Glu Lys Ser Phe Asn Arg Glu Ala Gly Ile 355 360 365

Val Phe Lys Gly Asp Phe Gly Asn Leu Glu Ala Ser Tyr Phe Asn Asn 370 375 380

Ala Tyr Arg Asp Leu Ile Ala Phe Gly Tyr Glu Thr Arg Thr Gln Asn 385 390 395 400

Gly Gln Thr Ser Ala Ser Gly Asp Pro Gly Tyr Arg Asn Ala Gln Asn 405 410 415

Ala Arg Ile Ala Gly Ile Asn Ile Leu Gly Lys Ile Asp Trp His Gly 420 425 430

Val Trp Gly Gly Leu Pro Asp Gly Leu Tyr Ser Thr Leu Ala Tyr Asn 435 440 445

Arg Ile Lys Val Lys Asp Ala Asp Arg Ala Asp Arg Thr Phe Val Thr 450 455 460

Ser Tyr Leu Phe Asp Ala Val Gln Pro Ser Arg Tyr Val Leu Gly Leu 465 470 475 480

Gly Tyr Asp His Pro Asp Gly Ile Trp Gly Ile Asn Thr Met Phe Thr 485 490 495 Tyr Ser Lys Ala Lys Ser Val Asp Glu Leu Leu Gly Ser Gln Ala Leu 500 505 510

Leu Asn Gly Asn Ala Asn Ala Lys Lys Ala Ala Ser Arg Arg Thr Arg 515 520 525

Pro Trp Tyr Val Thr Asp Val Ser Gly Tyr Tyr Asn Ile Lys Lys His 530 535

Leu Thr Leu Arg Ala Gly Val Tyr Asn Leu Leu Asn Tyr Arg Tyr Val 545 550 560

Thr Trp Glu Asn Val Arg Gln Thr Ala Gly Gly Ala Val Asn Gln His
565 570 575

Lys Asn Val Gly Val Tyr Asn Arg Tyr Ala Ala Pro Gly Arg Asn Tyr 580 585 590

Thr Phe Ser Leu Glu Met Lys Phe 595 600

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 607 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Met Asn Lys Lys His Gly Phe Gln Leu Thr Leu Thr Ala Leu Ala Val 1 5 10 15

Ala Ala Ala Phe Pro Ser Tyr Ala Ala Asn Pro Glu Thr Ala Ala Pro 20 25 30

Asp Ala Ala Gln Thr Gln Ser Leu Lys Glu Val Thr Val Arg Ala Ala 35 40 45

Lys Val Gly Arg Arg Ser Lys Glu Ala Thr Gly Leu Gly Lys Ile Ala 50 55 60

Lys Thr Ser Glu Thr Leu Asn Lys Glu Gln Val Leu Gly Ile Arg Asp 65 70 75 80

Leu Thr Arg Tyr Asp Pro Gly Val Ala Val Val Glu Gln Gly Asn Gly 85 90 95

Ala Ser Gly Glu Tyr Ser Ile Arg Gly Val Asp Lys Asn Arg Val Ala
100 105 110

Val Ser Val Asp Gly Val Ala Gln Ile Gln Ala Phe Thr Val Gln Gly
115 120 125

Ser Leu Ser Gly Tyr Gly Gly Arg Gly Gly Ser Gly Ala Ile Asn Glu

Leu Pro Glu Gly Leu Tyr Thr Thr Leu Ala Tyr Asn Arg Ile Lys Pro 450 450 460

Lys Ser Val Ser Asn Arg Pro Gly Leu Ser Leu Arg Ser Tyr Ala Leu 465 470 475 480

Asp Ala Val Gln Pro Ser Arg Tyr Val Leu Gly Phe Gly Tyr Asp Gln 485 490 495

Pro Glu Gly Lys Trp Gly Ala Asn Ile Met Leu Thr Tyr Ser Lys Gly 500 505 510

Lys Asn Pro Asp Glu Leu Ala Tyr Leu Ala Gly Asp Gln Lys Arg Tyr 515 520 525

Ser Thr Lys Arg Ala Ser Ser Ser Trp Ser Thr Ala Asp Val Ser Ala 530 540

Tyr Leu Asn Leu Lys Lys Arg Leu Thr Leu Arg Ala Ala Ile Tyr Asn 545 550 555 560

Ile Gly Asn Tyr Arg Tyr Val Thr Trp Glu Ser Leu Arg Gln Thr Ala 565 570 575

Glu Ser Thr Ala Asn Arg His Gly Gly Asp Ser Asn Tyr Gly Arg Tyr
580 585 590

Ala Ala Pro Gly Arg Asn Phe Ser Leu Ala Leu Gly Met Lys Phe 595 600 605

(2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

AAACAGGTCT CGGCATAG

- (2) INFORMATION FOR SEQ ID NO:12:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA

, ¥

	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:12:	
CGC	GAATT	CA AACAGGTCTC GGCATAG	27
(2)	INFO	RMATION FOR SEQ ID NO:13:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: cDNA	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:13:	
CGC	GAATT	CA AAAACTTCCA TTCCAGCGAT ACG	33
(2)	INFO	RMATION FOR SEQ ID NO:14:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: cDNA	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:14:	
TAA	AACTT	CC ATTCCAGCGA TACG	24

What is claimed is:

- 1. An isolated and purified recombinant nucleic acid encoding a hemoglobin receptor protein having an amino acid sequence that is the amino acid sequence depicted as Seq. I.D. No. 6.
- 2. A recombinant expression construct comprising a nucleic acid that encodes a hemoglobin receptor protein from a *Neisseria* species having an amino acid sequence that is the amino acid sequence depicted as Seq. I.D. No. 6.
- 3. A transformed cell culture comprising the recombinant expression construct of Claim 2.
- 4. An isolated and purified recombinant nucleic acid encoding a hemoglobin receptor protein having an amino acid sequence that is the amino acid sequence depicted as Seq. I.D. No. 8.
- 5. A recombinant expression construct comprising a nucleic acid that encodes a hemoglobin receptor protein from a *Neisseria* species having an amino acid sequence that is the amino acid sequence depicted as Seq. I.D. No. 8.
- 6. A transformed cell culture comprising the recombinant expression construct of Claim 5.

10

ABSTRACT OF THE DISCLOSURE

The present invention relates to novel bacterial hemoglobin receptor proteins and genes that encode such proteins. The invention is directed toward the isolation, characterization, diagnostic and therapeutic use of bacterial hemoglobin receptor proteins, nucleic acid encoding such proteins, recombinant expression constructs comprising such nucleic acids and cells transformed therewith, and antibodies and epitopes of such hemoglobin receptor proteins. The invention relates particularly to hemoglobin receptor proteins and genes encoding such proteins from *Neisseria* species, especially *N. meningitidis* and serotypes thereof, and *N. gonorrhoeae*. Methods for the diagnostic and therapeutic use of the proteins, epitopes, antibodies and nucleic acids of the invention are also provided, including the use of the proteins, epitopes, antibodies and nucleic acids of the invention for the production of vaccines effectinve in providing immunization of a human against infection by pathogenic bacteria of *Neisseria* species.

BANNER & ALLEGRETTI, Ltd. Ten South Wacker Drive, Suite 3000 Chicago, Illinois 60606 (312) 715-1000

Figure 1

FIG. 2A

SHEET 2/47

FIG. 2B

SHEET 3/47

510
 ACAAATGCTCCCTATCGCCGCGCTGGTCGGCAGTATTTTCGGCAATCCGGTCTTTGCGGC UGInMetLeuProlleAlaAlaLeuValGlySerllePheGlyAsnProValPheAlaAl
260
AGATGAAGCTGCAACTGAAACCACCCCGTTAAGGCAGAGGTAAAAGCAGTGCGCGTTAA aAspGluAlaAlaThrGluThrThrProValLysAlaGluValLysAlaValArgValLy
610
AGGCCAGCGCAATGCGCCTGCGGCTGTGGAACGCGTCAACCTTAACCGTATCAAACAAA
710
AATGATACGCGACAACAAGACTTGGTGCGCTATTCCACCGATGTCGGCTTGAGCGACAG uMetlleArgAspAsnLysAspLeuValArgTyrSerThrAspValGlyLeuSerAspSe
CGGCCGCCATCAAAAAGGCTTTGCTGTGCGGCGTGGAAGGCAACCGTGTCGGCGTGAG
TAGACGGCGTAAACCTGCTGAT

FIG. 2C

GCGTGGTTATCCGGTAGAGGGTGCTGGTAGCGGAGCGAATATCCGTGGTTCTGCGCGGG eAsnAspAsnHisArg IleGlyAlaSerLeuAsnGlyGlnGlnGlyHisAsnTyrThrVa 096 TTACAGCACGCGTAACCGTGAATGGACAAATACCCTCGGTTTCGGCGTGAGCAACGACCG CGTGGATGCCGCTTTGCTATTCGCAACGGCGCGCCATGAAACTGAAAGCGCGGCAAA **TATTCCTGATCCGTCCCAACACAATACCACAGCTTCTTGGGTAAGATTGCTTATCAAAT** CAACGACAACCACCGCATCGCATCGCTCAACGGTCAGCAGGGGCATAATTACACGGT CCTGCAAGGACGTGACTTACTGTTGCCTGAACGGCAGTTCGGCGTGATGATGAAAAACGG gValAspAlaAlaLeuLeuTyrSerGlnArgArgGlyHisGluThrGluSerAlaGlyLy <u> AGGGGCGGACTCTTTCAATACCGGCAGCGGCGCCTTGGGCGGCGGTGTGAATTACCAAAC</u> sGlyAlaAspSerPheAsnThrGlySerGlyAlaLeuGlyGlyGlyValAsnTyrGlnTh yTyrSerThrArgAsnArgGluTrpThrAsnThrLeuGlyPheGlyValSerAsnAspAr r L e u G l n G l y A r g A s p L e u L e u L e u P r o G l u A r g G l n P h e G l y V a l M e t M e t L y s A s n G l y I leProAspProSerGlnHisLysTyrHisSerPheLeuGlyLysIleAlaTyrGlnIl s Arg Gly Tyr ProValGluGly AlaGly SerGly Ala Asn Ile Arg Gly Ser Ala Arg Gl 1060

FIG. 2D

_		1360
TGAAGAGTCTTACAACCT	CCTGCTTGCTTCTTATTG	CCTGCTTGCTTCTTATTGGCGTGAAGCTGACGATGTCAACAGACG nLeuLeuAlaSerTyrTrpArgGluAlaAspAspValAsnArgAr 1410
GCGTAACACCAACCTCTTT gArgAsnThrAsnLeuPhe 1460	TTACGAATGGACGCCGGAATCCGA	CTTTTACGAATGGACGCCGGAATCCGACCGGTTGTCTATGGTAAAuPheTyrGluTrpThrProGluSerAspArgLeuSerMetValLy460
AGCGGATGTCGATTATCALSAI aAspVaIAspTyrG11	CAAAAACCAAAGTATC GlnLysThrLysValSe	TCAAAAAACCAAAGTATCTGCGGTCAACTACAAAGGTTCGTTC
GATAGAGGATTCTTCCACO	ACCTTGACACGTAACTACAATAATTAAAA	CACCTTGACACGTAACTACAAAAAGGACTTGGATGAAATCTA
CAACCGCAGTATGGATACC	ACCCGCTTCAAACGCATT	
GCAACTCGGGGGGGGGGGGG	ACACCGCCTGTCGTT7 8HisArgLeuSerPhe 1710	
 GAAACCTAAACCGCGAC e GluAsnLeuAsnArgAsp	CGATTATTACTTCAGC	

FIG. 2E

1760
TATCCAGCATCCGGTGAAAACCACCAACTACGGTTTCTCACTGTCTGACCAAATTCAATG r I l eGlnHisProValLysThrThrAsnTyrGlyPheSerLeuSerAspGlnIleGlnTr
GAACGACGTGTTCAGTAGCCGCGCGGGTATCCGTTACGATCATACCAAAATGACGCCTCA
GGAATTGAATGCCGAGTGTCATGCTTGTGACAAACACGCCTGCAGCCAACACTTATAA nGluLeuAsnAlaGluCysHisAlaCysAspLysThrProProAlaAlaAsnThrTyrLy
1960
AGGCTGGAGCGGTTTTGTCGGCTTGGCGGCGCAACTGAATCAGGCTTGGCGTGTCGGTTA sGlyTrpSerGlyPheValGlyLeuAlaAlaGluLeuAsaGluAlaTrpArgValGlyTy
0107
U > <
0007
CGGTTCGGGTAATTGGCTGCCCAATCCCAACCTGAAAGCCGAGCGCACGACCACCACAC 8GlySerGlyAsnTrpLeuProAsnProAsnLeuLysAlaGluArgThrThrHisTh 2110
,
CTTCTCTCTGCAAGGCCGCAGCGAAAAAGGTACTTTGGATGCCAACCTGTATCAAAGCAA

FIG. 2F

	2 2 1 0
TTACCGCAATTTCCTGTCTGAAGAGCAGAAGCTGACCACC	GTCTGAAGAGCAGAAGCTGACCACCAGCGGCGATGTCAGCTGTAC
TCAGATGAATTACTACTACGGTATGTGTAGCAATCCTTATTCCGAAAArGInMetAsnTyrTyrGlyMetCysSerAsnProTyrSerGluLy2310	 ATCCTTATTCCGAAAAACTGGAATGGCA snProTyrSerGluLysLeuGluTrpGl
GATGCAAATATCGACAAGGCCAGAATCCGCGC	CAAGGCCAGAATCCGCGGTATCGAGCTGACGGGCCGTCTGAATGT pLysAlaArgIleArgGlyIleGluLeuThrGlyArgLeuAsnVa 360
GGACAAAGTAGCGTCTTTTGTTCCTGAGGGCTGGAA 1AspLysValAlaSerPheValProGluGlyTrpLy 2410	TTTTGTTCCTGAGGCTGGAAACTGTTCGGCTCGCTGGGTTATGC rPheValProGluGlyTrpLysLeuPheGlySerLeuGlyTyrAl
	CCG1 ProI
CGGTATCGACTATGAAAGTCCGAGCGAAAATCaGlyIleAspTyrGluSerProSerGluLysT	AAGTCCGAGCGAAAAATGGGGCGTGTTCTCCCGCCTGACCTATCT
GGGCGCGAAAAGGTCAAAGACGCGCAATACA	

FIG. 2G

SHEET 8/47

2610
TATGTACGGCTTCTACAAACCGGTGAAAAACCTGACTTTGCGTGCAGGCGTATATATGT pMetTyrGlyPheTyrLysProValLysAsnLeuThrLeuArgAlaGlyValTyrAsnVa
2710
g .
CAACTCGGTCGACCGCGATGGCAAAGGCTTAGACCGCTACCGCGCCCCAAGCCGTAATTA rAsnSerValAspArgAspGlyLysGlyLeuAspArgTyrArgAlaProSer <u>Arg</u> AsnTy
AATCIGGIATIAIIGAAIIAAICGCCIIGII TOP
AATTAAAGCCGTCCGAATTGTGTTCAAGAACTCATTCGGACGGTTTTTACCGAATCTGTG
2960
TGTGGG <u>TTTATAGTGGATTAACAAAATCAGGACAAGGCGACGAAGCCGCAGACAGTACA</u>

$^{4}IG.$ 2H

SHEET 9/47

GCGGGCGCACTTAACCTGTTGGCGGCTTTCAAAGGTTCAAACACACATCGCCTTCAGGTGC 3060 GATAGTACGGAACCGATTCACTTGGTGAGACCTTTGCAAAATTCCTTTCCCTCCGACAG CCGAAACCCAAACACAGGTTTTCGGCTGTTTTCGCCCCAAATACCTCGTAATTCTACCCA <u> AATACCCCTTAATCCTCCCGATACCCGATAATCAGGCATCCGGCGCCTTTAGGCGGCA</u> ---> IS1106 TGCAGCGTACCGAAGCTT 3010

Figure 3

SHEET 10/47

FIG. 4A

SHEET 11/47

BP1M BPA MBR	MQQQHLFRLNILCLSLMTALPVYABNVQAEQAQEKQLDTIOVKAKKQ MNKKHGFQLTLTALAVAAAFPSYAANPETAAPDAAQTQSLKEVTVRAAKV MKPLQMLPIAALVGSIFGN-PVFAADEAATETTPVKAEVKAVR	4 7 5 0 4 3 4 3
BP1M BPA MBR	KTRRDNEVTGLGKLVKSSDTLSKEQVLNIRDLTRYDPGIAVVEQGRGASS - GRRSKEATGLGKIAKTSETLNKEQVLGIRDLTRYDPGVAVVEQGNGASG KGQRNA-PAAVERVNLNRIKQEMIRDNKDLVRYSTDVGLSDSGRHQK- ************************************	9 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
BP1M BPA MBR	GYSIRGMDKNRVSLTVDGVSQIQSYTAQAALGGTRTAGSSGAINEIEYEN GYSIRGVDKNRVAVSVDGVAQIQAFTVQGSLSGYGGRGGSGAINEIEYEN GFAVRGVEGNRVGVSIDGVNLPDS EENSLYARYGNFNSSRLS - IDPEL	147 149 136
BP1MBPA	VKAVEISKGSNSSEYGNGALAGSVAFQTKTAADIIGEGKQWGIQSKTAYS ISTVEIDKGAGSSDHGSGALGGAVAFRTKEAADLISDGKSWGIQAKTAYG VRNIDIVKGADSFNTGSGALGGGVYNQTLQGRDLLLPERQFGVMMKNGYS	197
BP1M BPA IMBR	GKDHALTQSLALAGRSGGAEALLIYTKRRGREIHAHKDAGKGVQ-SFNRL SKNRQFMKSLGAGFSKDGWEGLLIRTERQGRETHPHGDIADGVAYGINRL TRNREWTNTLGFGVSNDRVDAALLYSQRRGHETESAG	9 9 9 4 4 9

FIG. 4B

SHEET 12/47

TBP1M LBPA HMBR	PICRFGNNTYT-DCTPRNIGGNGYYAAVQDNVRLGRWADVGAGIRYDYRS SVCGYIETLRSRKCVPRKINGSNIHISLNDRFSIGKYFDFSLGGRYDRKN SSIQHPVKTTNYGFSLSDQIQWNDVFSSRAGIRYDHTK	6 0 1 6 3 5 4 6 0
TBP1M LBPA HMBR	THSEDKSVSTGTHRNLSWNAGVVLKPFTWMDLTYRASTGF FTTSEELVRSGRYVDRSWNSGIVFKPNRHFSLSYRASSGF MTPQELNAECHACDKTPPAANTYKGWSGFVGLAAQLNQAWRVGYDITSGY	641 675 510
TBP1M LBPA HMBR	RLPSFAEMYGWRAGESLKTLDLKPEKSFNREAGIVFKGDFGNLEAS RTPSFQELFGIDIYHDYPKGWQRPALKSEKAANREIGLQWKGDFGFLEIS RVPNASEVY-FTYNHGSGNWLPNPNLKAERTTTHTLSLQGRSEKGTLDAN * *. *	5 2 2 2 2 2 3 2 5 2 5 2 5 2 5 2 5 2 5 2
TBP1M LBPA HMBR	YFNNAYRDL I AFGYET RTQNGQTSASGDPGYR	7 1 7 6 0 6 0
TBP1M LBPA HMBR	- NAQNARIAGINILGKIDWHGVWGGLPDG LYSTLAYNRIKVKDADIRA - NAQNMSLQGVNILGKIDWNGVYGKLPEG LYTTLAYNRIKPKSVSNRP QNIDKARIRGIELTGRLNVDKVASFVPEGWKLFGSLGYAKSKLSG * * * * * * * * * * * * * *	7 6 8 0 6 5

FIG. 4C

SHEET 13/47

IBP 1M LBPA HMBR	DRTFVTSYLFDAVQPSRYVLGLGYDHPDGIWGINTMFTYSKAKSVDE GLSL-RSYALDAVQPSRYVLGFGYDQPEGKWGANIMLTYSKGKNPDE DNSLLSTQPLKVIAGIDYESPSEKWGVFSRLTYLGAKKVKDAQY ** ** ** ** ** ** **	8 1 3 8 5 3 6 9 4
FBP 1M LBPA HMBR	- LLGSQALLNGNANAKKAASRRTRPWYVTDVSGYYNIKKHLTLRAGVYNL - L AYLAGDQK - RYSTKRASSSWSTADVSAYLNLKKRLTLRAAIYNI TVYENKGWGTPLQKKVKDYPWLNKSAYVFDMYGFYKPVKNLTLRAGVYNV * * * * * * * * * * * * * * * * * * *	8 6 2 8 9 7 7 4 4
TBP1M LBPA HMBR	LNYRYVTWENVRQ TAGGAVNQHKNVGVYNRYAAPGRNYTFSLEMKF GNYRYVTWESLRQ TAESTANRHGGDSNYGRYAAPGRNFSLALEMKF FNRKYTTWDSLRGLYSYSTTNSVDRDGKGLDRYRAPSRNYAVSLEWKF	9 0 8 9 4 3 7 9 2

Figure 5

SHEET 14/47

- 12 kb

- 6 kb 4 kb 3 kb
- 2 kb
- 1 kb

16/47	48	96	144	192	240	288
SHEET 1						
SH	ATT Ile	ACA Thr	AAT Asn	GAA	666 61y 80	GTG Val
	AGT Ser 15	ACC Thr	CGC Arg	CAA Gln	GTC Val	66C 61y 95
	GGC G1y	GAA Glu 30	CAG Gln	AAA Lys	GAT Asp	CGC Arg
	CTC	ACT Thr	GGT G1 <i>y</i>	ATC Ile	ACC Thr	ATT Ile
7A	CTG	GCA Ala	AAA Lys	CGT Arg 60	TCC	GCC Ala
FIG. 7A	GCG	GCT Ala	GTT Val	AAC Asn	TAT Tyr 75	TTT Phe
	GCC GCG Ala Ala 10	GAA Glu	CGC Arg	CTT Leu	CGC Arg	66C 61y 90
	ATC Ile	GAT Asp 25	GTG Val	AAC Asn	GTG Val	AAA Lys
	CCT Pro	GCA Ala	GCA Ala 40	GTC Val	TTG Leu	CAA Gln
	CCC Pro	GCG Ala	AAA Lys	CGC Arg ss	GAC Asp	CAT His
	ATG Met	TTT Phe	GTA Val	GAA Glu	AAA Lys 70	CGT Arg
	CAA Gln 5	GTC Val	GAG Glu	GTG Val	AAT Asn	AGC Ser 85
	TTA Leu	CCG Pro	GCA Ala	GCT Ala	GAC Asp	AGG Arg
	CCA Pro	AAT Asn	AAG Lys 35	GCG Ala	CGC Arg	GAC Asp
	AAA Lys	GGC Gly	GTT Val	CCT Pro 50	ATA Ile	AGC Ser
	ATG Met	rTC Phe	CCC	GCG Ala	ATG Met 65	TTG Leu

7/47	336	384	432	480	528	576
SHEET 17/47						
SH	GAT Asp	TCG Ser	AAA Lys	GTG Val 160	CAG Gln	TGG Trp
	CCT Pro 110	AGC Ser	GTA Val	GGT Gly	CGG Arg 175	GAA Glu
	CTG Leu	AAC Asn	ATC Ile	GGC Gly	GAA Glu	CGT Arg 190
	AAC Asn	TTC Phe 125	GAC Asp	GGC Gly	CCT	AAC Asn
JB	GTA Val	AAC Asn	ATC Ile 140	TTG Leu	TTG Leu	CGT Arg
FIG. 7B	GAC GGC Asp Gly	GGC Gly	AAC Asn	GCC Ala 155	CTG Leu	ACG Thr
 	GAC	\mathtt{TAT}	CGC Arg	GGC Gly	TTA Leu 170	AGC Ser
	ATT Ile 105	CGT Arg	GTG Val	AGC Ser	GAC	TAC Tyr 185
	AGT Ser	GCC Ala 120	CTC Leu	GGC Gly	CGT Arg	GGT Gly
	GTT Val	\mathtt{TAC}	GAA Glu 135	ACC Thr	GGA Gly	AAC Asn
	GGC Gly	CTG Leu	CCC Pro	AAT Asn 150	CAA Gln	AAA Lys
	GTC Val	TCG Ser	GAC Asp	TTC Phe	CTG Leu 165	ATG Met
	CGT Arg	AAC Asn	ATC Ile	TCT	ACC Thr	ATG Met 180
	GAC Asp	GAA Glu 115	TCT Ser	GAC Asp	CAA G1n	GTG Val
	GGC Gly	GAA Glu	CTG Leu L30	GCG Ala	TAC TYr	GGC Gly
	GAA Glu	TCC	CGT Arg	GGG G1y 145	AAT Asn	TTC

18/47	624	672	720	768	816	864
			-	-		
SHEET	GCT Ala	AAG Lys	GGT Gly 240	TTC Phe	GCA Ala	TAC Tyr
	GCC Ala	GGC G1y	CGT Arg	AGC Ser 255	GGC Gly	TCT Ser
	GAT Asp	GCG Ala	ATC Ile	CAC His	ATC 11e 270	GAG Glu
	GTG Val 205	AGC Ser	AAT Asn	TAC Tyr	CGC Arg	GAA Glu 285
7C	CGC Arg	GAA Glu 220	GCG Ala	$\lambda\lambda\lambda$ Lys	CAC His	GTT Val
FIG. 7C		ACT Thr	GGA G1y 235	CAC His	AAC Asn	ACG Thr
	AAC GAC Asn Asp	GAA G1u	AGC Ser	CAA Gln 250	GAC Asp	TAC TYr
	AGC Ser	CAT His	GGT Gly	TCC Ser	AAC Asn 265	AAT Asn
	GTG Val 200	GGC Gly	GCT Ala	CCG Pro	ATC Ile	CAT His 280
	GGC Gly	CGC Arg 215	GGT Gly	GAT Asp	CAA Gln	666 61y
	TTC	CGG Arg	GAG Glu 230	CCT	\mathtt{TAT} $\mathtt{TY}x$	CAG Gln
	GGT	CAA Gln	GTA Val	ATT Ile 245	GCT Ala	CAG Gln
	CTC Leu	TCG	CCG	GGT Gly	ATT Ile 260	GGT Gly
	ACC Thr 195	\mathtt{TAT}	$\mathtt{TAT}\\\mathtt{T}\mathtt{Y}\mathtt{r}$	CGC Arg	AAG ${ m L}{ m ys}$	AAC Asn 275
	AAT Asn	CTG Leu 210	GGT	GCG Ala	GGT Gly	CTC Leu
	ACA Thr	TTG	CGT Arg 225	TCT Ser	TTG	TCG Ser

19/47	912	096	1008	1056	1104	1152
SHEET 1	0.		Ä	ਜ	∺	H
	CGG Arg	TTG Leu 320	GCG Ala	ACC Thr	GAT Asp	CAA Gln
	AGA Arg	CGG Arg	TCT Ser 335	GAA Glu	ATG Met	TTG Leu
	AAC Asn	GAC Asp	GTA Val	TGG Trp 350	AGC Ser	CCG
	GTC Val	TCC	AAA Lys	ACA Thr	CGC Arg 365	CAT His
JD	GAT Asp 300	GAA Glu	ACC Thr	ACC Thr	AAC Asn	AGC Ser 380
FIG. 7D		CCG Pro 315	AAA Lys	TAC Tyr	TAT Tyr	GAC Asp
 	GCT GAC Ala Asp	ACG	CAA Gln 330	AAT Asn	ATC Ile	ATG Met
	GAA Glu	TGG Trp	\mathtt{TAT}	ACG Thr 345	GAA Glu	CGT Arg
	CGT Arg	GAA Glu	GAT Asp	CCG Pro	GGC G1Y 360	CTG Leu
	766 7rp 295	\mathtt{TAC}	GTC Val	TTC Phe	GTT Val	ACG Thr 375
	\mathtt{TAT}	TTT Phe 310	GAT Asp	TCG Ser	GAA Glu	ATT Ile
	TCT	CTC Leu	GCG Ala 325	GGT Gly	AAG Lys	CGT Arg
	GCT Ala	AAC Asn	AAA Lys	AAA Lys 340	AAA Lys	AAA Lys
	CTT Leu	ACC Thr	GTA Val	TAC Tyr	CAT His 355	TTC Phe
	CTG Leu 290	AAC Asn	ATG Met	AAC Asn	TAC Tyr	ACC Thr 370
	AAC Asn	CGT Arg 305	TCT Ser	GTC Val	GAG Glu	ACA Thr

20/47	1200	1248	1296	1344	1392	1440
SHEET 2	H	• •	-	-		-
S	CAG Gln 400	CGT Arg	AAC Asn	AGT Ser	GAA	AAC Asn 480
	GGG G1 y	GGC Gly 415	ACC Thr	TTC Phe	CAG Gln	GCC Ala
	GCC Ala	AGC Ser	ACC Thr 430	GTG Val	CCT Pro	GCA Ala
	TTT Phe	TTC Phe	AAA Lys	GAC Asp 445	ACG Thr	CCT Pro
Œ	ACC Thr	TAC Tyr	GTG Val	AAC Asn	ATG Met 460	CCG Pro
FIG.	AAA Lys 395	TAC Tyr	CCG	TGG Trp	AAA Lys	ACA Thr 475
	TTC Phe	GAT Asp 410	CAT His	CAA Gln	ACC Thr	AAA Lys
	TCG Ser	GAC Asp	CAG Gln 425	ATC Ile	CAC His	GAC Asp
	CTG Leu	CGC Arg	ATC Ile	CAA Gln 440	GAC Asp	TGT Cys
	CGC Arg	AAC Asn	AGT Ser	GAC Asp	TAC Tyr 455	GCT Ala
	CAC His 390	TTA Leu	AAC Asn	TCC Ser	CGT Arg	CAT His 470
	CGA Arg	AAC Asn 405	ACC Thr	CTG Leu	ATC Ile	$ ext{TGT}$
	GGG Gly	GAA Glu	ACC Thr 420	TCG Ser	GGT	GAC Asp
	GGG Gly	TTT Phe	CGA Arg	TTC Phe 435	GCA Ala	GCC Ala
	GGG Gly	GAT Asp	GTT Val	GGT Gly	CGC Arg 450	AAT Asn
	CIC Leu 385	CGT	GTT Val	TAC Tyr	AGC Ser	TTG Leu

488	.536	1584	1632	1680	1728
	**	V 1	••	· ·	
AGC Ser	CCG	TGG Trp	CTG	TAT Tyr 560	GTC Val
CTG Leu 495	GTG Val	ACT Thr	ACC Thr	CTG	ACT Thr 575
CAG Gln	CGC Arg 510	GGC Gly	CAC His	AAC Asn	CTG Leu
GCG Ala	TTC Phe	TCG Ser 525	ACC Thr	GCC Ala	AAT Asn
GCG Ala	GGT Gly	GGT	ACC Thr 540	GAT Asp	CAG Gln
TTG Leu	TCA Ser	CAC	AGC Ser	CTG Leu 555	GAG Glu
GGC Gly 490	ACC Thr	AAC Asn	CGC Arg	ACA	GAA G1u 570
GTC Val	GTG Val 505	TAC Tyr	GAA Glu		TCG Ser
TTT Phe	GAT Asp	ACT Thr 520	GCA Ala		CTG Leu
GGA Gly	TAC Tyr	TTC Phe	AAG Lys 535		TTC Phe
AGC Ser	GGT	TAT TYr	TTG		AAC Asn
ПGG Пчр 485	TTG Leu	GTG Val	AAT Asn		CGA Arg 565
GGC Gly	CGT Arg 500	GAA Glu	CCT	666 G1y	TAC Tyr
AAA Lys	TGG Trp	TCT Ser 515	AAT Asn	CAG Gln	AAT Asn
$\mathtt{TAT}\\\mathtt{TY} x$	ACA Thr	GCG Ala	CCT Pro 530	TTG Leu	AGC Ser
ACT	CAA Gln	AAT Asn	AAG Lys	Я В В В В В В В В В В В В В В В В В В В	CAA Gln
	TAT AAA GGC TGG AGC GGA TTT GTC GGC TTG GCG GCG CAG CTG AGC Tyr Lys Gly Trp Ser Gly Phe Val Gly Leu Ala Ala Gln Leu Ser 495	TAT AAA GGC TGG AGC GGA TTT GTC GGC TTG GCG CTG AGC TYR LYS Gly Trp Ser Gly Phe Val Gly Leu Ala Ala Gln Leu Ser 495 ACA TGG CGT TTG GGT TAC GAT GTG ACC TCA GGT TTC CGC GTG CCG Thr Trp Arg Leu Gly Tyr Asp Val Thr Ser Gly Phe Arg Val Pro 500 505	TYI LYS GLY Trp Ser GLY Phe Val GLY Leu Ala Ala GLN Leu Ser 485 ACA TGG CGT TGG GGG TTT GTC GGC TTG GCG CGG CTG AGC 495 ACA TGG CGT TTG GGT TAC GAT GTG ACC TCA GGT TTC CGC GTG CCG Thr Trp Arg Leu GLY TYI ASP Val Thr Ser GLY Phe Arg Val Pro 500 GCG TCT GAA GTG TAT TC ACT TAC AAC CAC GGT TCG GGC ACT TGG Ala Ser Glu Val TYI Phe Thr TYI ASN His GLY Ser GLY Thr Trp 515 516	TAT AAA GGC TGG AGC GGA TTT GTC GCC TTG GCG CAG CTG AGC TYT LYS G1y Trp Ser G1y Phe Val G1y Leu Ala Ala Gln Leu Ser 495 ACA TGG CGT TTG GGT TAC GAT GTG ACC TCA GGT TTC CGC GTG CCG Thr Trp Arg Leu G1y Tyr Asp Val Thr Ser G1y Phe Arg Val Pro 500 GCG TCT GAA GTG TAT TTC ACT TAC AAC GAT TCG GGT TCG GTG TTG Ala Ser G1u Val Tyr Phe Thr Tyr Asn His G1y Ser G1y Thr Trp 515 CCT AAT CCT AAT TTG AAG GCA GAA GGC ACC CAC CAC CTG FINAL THIS THR	TYY LYS G1Y Trp Ser G1y Phe Val G1y Leu Ala Ala G1n Leu Ser 495 ACA TGG CGT TTG GAT TTG GAT G1Y Leu Ala Ala G1n Leu Ser A90 ACA TGG CGT TTG GAT GAT GAT GTG ACC TCA GGT TTC CGC GTG CCG TTAC A90 ACA TGG CGT TTG GAT TTG ACT TAC AAC CAC GGT TTG CGC GTG CCG ACG TCT CAC GTG TTG CGC TCT CAC AAC CAC GTG TTG CAC TCT CAC AAC CAC GTG TTG CAC TCT TAC AAC TAC AAC CAC GGT TCG GGC ACT TGG AAC CAC AAC CAC GGT TAC AAC CAC GGT TTG GAT TTG AAC TAC AAC CAC GGT TAC GGC ACC CAC CAC CAC TAC TAC AAC CAC AAC CAC C

22/47	1776	1824	1872	1920	1968	2016
SHEET 22/47	•	**	••	••		
	TGC Cys	GAC Asp	GAC Asp	CTG Leu 640	ACA Thr	GAA Glu
	AGA Arg	ATC Ile	GTG Val	TCG Ser	TCC Ser 655	AGC Ser
	ТАТ Туг 590	AAT Asn	AAT Asn	66C 61y	CTG Leu	CCG Pro 670
	TAC Tyr	AAA Lys 605	CTG Leu	TTC Phe	CTG Leu	AGT Ser
7G	TAC Tyr	ATG Met	CGT Arg 620	CTG	AGC Ser	GAA Glu
FIG. 7G	GAT GCT Asp Ala	CAG Gln	GGC Gly	AAA Lys 635	AAC Asn	\mathtt{TAT} \mathtt{TYr}
 (GAT Asp	TGG Trp	ACA Thr	TGG Trp	GAC Asp 650	GAC Asp
	GAG Glu 585	GAT Asp	TTG Leu	GGT	GGC Gly	ATC 11e 665
	GAG Glu	CTG Leu 600	GAG Glu	GAG Glu	TCG Ser	GGT
	ACT Thr	AAA Lys	ATC Ile 615	CCT Pro	CTG	GCC Ala
	TGT Cys	GAA Glu	GGT Gly	GTT Val 630	AAA Lys	ATT Ile
	GGC Gly	AAA Lys	CGC Arg	TTT Phe	AGC Ser 645	GTG Val
	CCC Pro 580	\mathtt{TAC}	ATC Ile	TCT Ser	AAA Lys	AAA Lys 660
	ACA Thr	CCC Pro 595	AGA Arg	GCG Ala	GCG Ala	CTG
	GGC Gly	GAC Asp	GCC Ala 610	GTA Val	TAT Tyr	CCG Pro
	AGC	AGC Ser	AAG Lys	AAA Lys 625	GGT Gly	CAG Gln

23/47	2064	2112	2160	2208	2256	2204
SHEET 23/47	CQ .			.,		
	GTC Val	CCT Pro	TAT Tyr 720	TTG Leu	GAT Asp	CGC Arg
	AAG Lys	ACG Thr	GCT Ala	ACT Thr 735	TGG Trp	GAC Asp
	AAA Lys	GGT	TCG Ser	CTG Leu	ACT Thr 750	GTC val
	GCG Ala 685	TGG Trp	AAG Lys	AAC Asn	ACC Thr	GCG Ala 765
7H	66C 61y	GGC GJY 700	AAC Asn	AAA Lys	\mathtt{TAC}	AAT Asn
FIG. 7H		AAG Lys	CTG Leu 715	GCT Ala	AAA Lys	ACC Thr
	TAT CTA Tyr Leu	AAC Asn	TGG Trp	CCG Pro 730	CGC Arg	ACC Thr
	ACC Thr	GAA Glu	CCG Pro	AAA Lys	AAC Asn 745	AGC Ser
	CTG Leu 680	\mathtt{TAT}	TAC Tyr	TAC Tyr	TTC Phe	TAC Tyr 760
	CGC Arg	GTT Val 695	GAT Asp	TTC	CTG	AGC Ser
	TCC Ser	ACC Thr	AAA Lys 710	GGC Gly	AAC Asn	TAT Tyr
	TTC Phe	$\mathtt{TAC}\\\mathtt{TY}r$	GTA Val	TAC Tyr 725	TAC Tyr	TTA Leu
	GTA Val	CAA Gln	AAG Lys	ATG Met	GTG Val 740	GGT Gly
	GGC G1y 675	GCG Ala	AAA Lys	GAT Asp	GGC Gly	CGC Arg 755
·	TGG Trp	GAC Asp 690	CAG Gln	TTT Phe	GCA Ala	CTG Leu
	AAA Lys	AAA Lys	TTG Leu 705	GTG Val	CGT Arg	TCC

SHE T	
GCC	
TAC GCC Tyr Ala	
AAT '	
CGC A Arg A	
CC A1	
71 GGC G1y 780	
FIG. 7I CCA GGC Pro Gly 780	
FIG. 7I GCC CCA GGC C Ala Pro Gly A 780	
CGC	
TAC Tyr	TAA *
CGC Arg 775	TTT Phe
GAC Asp	AAG Lys 790
TTA GAC Leu Asp	TGG Trp
GGC Gly	GAA Glu
AAA Lys	CTG Leu
GGC G1y 770	TCG
GAT Asp	GTA Val 785

SHEET 24/47

5/47	48	96	144	192	240	288
SHEET 25/47						
	ATT Ile	ACA Thr	AAT Asn	GAA Glu	GGC G1y 80	GTG Val
	AGT Ser 15	ACC Thr	CGC Arg	CAA Gln	GTC Val	GGC G1y 95
	GGC G1y	GAA G1u 30	CAG Gln	AAA Lys	GAT Asp	CGC Arg
	GTC Val	ACT Thr	GGC Gly 45	ATC Ile	ACC Thr	GTT Val
8 A	CTG Leu	GCA Ala	AAA Lys	CGT Arg 60	TCC Ser	GCT Ala
FIG. 8A	GCG Ala 10	GCT Ala	GTT Val	AAC Asn	TAT Tyr 75	TTT Phe
	GCC Ala	GAA Glu	CGC Arg	CTT	CGC Arg	66C 61y 90
	ATC Ile	GAT Asp	GTG Val	AAC Asn	GTG Val	AAA Lys
	CCT Pro	GCA Ala 25	GCA Ala 40	GTC Val	TTG	CAA Gln
	CTC Leu	GCG Ala	AAA Lys	CGC Arg ss	GAC Asp	CAT His
	ATG Met	TTT Phe	GTA Val	GAA Glu	AAA Lys 70	CGC Arg
	CAA Gln 5	GTC Val	GAG Glu	GTG Val	AAC Asn	GGC G1Y 85
	TTA Leu	CCG Pro 20	GCA Ala	GCT Ala	GAC Asp	AGC Ser
	CCA	AAT Asn	AAG Lys 35	GCG Ala	CGC Arg	GAC Asp
	AAA Lys	GGC Gly	GTT Val	CCT Pro 50	ATA Ile	AGC Ser
	ATG Met 1	TTC Phe	CCC Pro	GCG Ala	ATG Met 65	TTG

26/47	336	384	432	480	528	576
SHEET 2(
	GAT Asp	TCG Ser	AAA Lys	GTG Val 160	CAG Gln	TGG Trp
	CCT	AGC Ser	GTA Val	GGT Gly	CGG Arg 175	GAA Glu
	CTG Leu 110	AAC Asn	ATC Ile	GGC Gly	GAA Glu	CGT Arg 190
	AAC Asn	TTC Phe 125	GAC Asp	GGC Gly	CCT Pro	AAC Asn
8B	GTA Val	AAC Asn	ATC Ile 140	TTG Leu	TTG	CGT Arg
FIG. 8B	GGC Gly	66C G1y	AAC Asn	GCC Ala 155	CTG Leu	ACG Thr
- 	GAC Asp	\mathtt{TAT} $\mathtt{TY}x$	CGC Arg	GGC Gly	TTA Leu 170	AGC Ser
	ATA 11e 105	CGT Arg	GTG Val	AGC Ser	GAC Asp	TAC Tyr 185
	AGC Ser	GCC Ala 120	CTC Leu	GGC Gly	CGT Arg	GGT
	GTG Val	\mathtt{TAC}	GAA Glu 135	ACC Thr	GGA Gly	AAC Asn
	GGC Gly	CTG Leu	CCC Pro	AAT Asn 150	CAA Gln	AAA AAC Lys Asn
	GTC Val	TCG Ser	GAC Asp	TTC Phe	CTG Leu 165	ATG Met
	CGT Arg 100	AAC Asn	ATC Ile	TCT Ser	ACC Thr	ATG Met 180
	AAC Asn	GAA Glu 115	TCT	GAC Asp	CAA Gln	GTG Val
	66C 61y	GAA Glu	CTG Leu 130	GCG Ala	TAC Tyr	GGC Gly
	GAA Glu	TCC	CGT Arg	- GGG G1y 145	AAT Asn	TTC Phe

SHEET 27/47	624	672	720	168	816	864
SH						
	GCT Ala	AAG Lys	GGT G1y 240	TTC Phe	GCA Ala	\mathtt{TAC} \mathtt{TYr}
	GCC Ala	GGC Gly	CGT Arg	AGC Ser 255	GGC G1y	TCT Ser
	GAT Asp	GCG Ala	ATC Ile	CAC His	ATC Ile 270	GAG Glu
	GTG Val 205	AGC Ser	AAT Asn	TAC Tyr	CGC Arg	GAA Glu 285
&C	CGC Arg	GAA Glu 220	GCG Ala	AAA Lys	CAC His	GTT Val
FIG. 8C	GAC Asp	ACT	GGA G1 y 235	CAC His	AAC Asn	ACG Thr
 	AAC GAC Asn Asp	GAA Glu	AGC Ser	CAA G1n 250	GAC Asp	TAC Tyr
	AGC Ser	CAT His	GGT Gly	TCC Ser	AAC Asn 265	AAT Asn
	GTG Val 200	GGC Gly	GCT Ala	CCG	ATC Ile	CAT His 280
	GGC Gly	CGC Arg 215	GGT	GAT	CAA Gln	GGG G1y
	TTC Phe	CGG Arg	GAG Glu 230	CCT	TAT Tyr	CAG Gln
	GGT Gly	CAA Gln	GTA Val	ATT Ile 245	GCT Ala	CAG Gln
	CTC Leu	TCG Ser	CCG	GGT	ATT Ile 260	GGT
	ACC Thr 195	$\mathtt{TAT}\\\mathtt{TY}x$	\mathtt{TAT}	CGC Arg	AAG Lys	AAC Asn 275
	AAT Asn	CTG Leu 210	GGT G1y	GCG Ala	GGT G1y	CTC Leu
	ACA Thr	TTG	CGT Arg 225	TCT Ser	TTG	ACG Ser

SHEET 28/47	911	096	1008	1056	1104	1152
SHEE						
	CGG Arg	TTG Leu 320	GCG Ala	ACA Thr	ATG Met	TTG
	AGA Arg	CGG Arg	TCT Ser 335	TTG Leu	AGT Ser	CCG Pro
	AAC Asn	GAC Asp	GTA Val	ACC Thr 350	CGC Arg	CAT His
	GTC Val	TCC	AAA Lys	TCC	AAC Asn 365	AGC Ser
8D	GAT Asp 300	GAA Glu	ACC Thr	TCT Ser	TAC Tyr	GAC Asp 380
FIG. 8D	GAC	CCG Pro 315	AAA Lys	GAT Asp	ATC Ile	TTG
F	GCT	ACG Thr	CAA Gln 330	GAG Glu	GAA Glu	CGT Arg
	GAA Glu	TGG Trp	TAT Tyr	ATA 11e 345	GAT ASP	CTG
	CGT Arg	GAA Glu	GAT Asp	CCG	TTG Leu 360	ACC Thr
	TGG Trp 295	TAC Tyr	GTC Val	TTC Phe	GAC Asp	ATT 11e 375
	TAT Tyr	TTT Phe 310	GAT Asp	TCG Ser	AAG Lys	CGC Arg
	TCT Ser	CIC	GCG Ala 325	GGT Gly	CAA Gln	AAA Lys
	GCT Ala	AAC Asn	AAA Lys	AAA Lys 340	AAT Asn	TTC Phe
	CTT Leu	ACC Thr	GTA Val	\mathtt{TAC}	TAC TY <i>E</i> 355	CGC Arg
	CTG Leu 290	AAC Asn	ATG Met	AAC Asn	AAC Asn	ACC Thr 370
	AAC Asn	CGT Arg 305	TCT	GTC Val	CGT	GAT Asp
			1	1		

29/47 1200	1248	1296	1344	1392	1440
SHEET 29/47 1200					
AGC Ser 400	GGC Gly	ACC Thr	TTC Phe	CAG Gln	GCC Ala 480
GCC Ala	AGC Ser 415	ACC Thr	GTG Val	CCT	GCA Ala
TTC	TTC Phe	AAA Lys 430	GAC Asp	ACG Thr	CCT Pro
ACT Thr	\mathtt{TAC}	GTG Val	AAC Asn 445	ATG Met	CCG
AAA Lys	TAT Tyr	CCG	TGG Trp	AAA Lys 460	ACA Thr
FIG. 8E TTT AAA Phe Lys 395	GAT Asp	CAT	CAA Gln	ACC Thr	AAA Lys 475
TCG Ser	GAC Asp 410	CAG Gln	ATT Ile	CAT His	GAC Asp
CTG	CGC Arg	ATC Ile 425	CAA Gln	GAT Asp	TGT Cys
CGC Arg	AAC Asn	AGT Ser	GAC Asp 440	TAC TYr	GCT
CAC His	CTA Leu	AGC Ser	TCT	CGT Arg 455	CAT His
CGA Arg 390	AAC Asn	ACC Thr	CTG	ATC Ile	TGT Cys 470
GGG G1y	GAA Glu 405	ACC Thr	TCA Ser	GGT Gly	GAG Glu
GGG G1y	TTT Phe	CGA Arg 420	TTC	GCA Ala	GCC Ala
GGG	GAT Asp	GTT Val	GGT G1y 435	CGC Arg	AAT Asn
CTC	CGT Arg	GTT Val	TAC	AGC Ser 450	TTG Leu
CAA G1n 385	CGC Arg	CGT Arg	AAC Asn	AGT Ser	GAA Glu 465

SHEET 30/47 1488	1536	1584	1632	1680	1728
					-> 4
CTG	GTC Val	AAT Asn	ACC Thr	CTG Leu 560	ACC Thr
CAA Gln 495	CGT Arg	GGT Gly	CAC His	AAC Asn	CTG Leu 575
GCG Ala	TAC Tyr 510	TCG Ser	ACC Thr	GCC Ala	AAG Lys
GCG Ala	GGC Gly	GGT G1y 525	ACC Thr	GAT Asp	CAG Gln
SE TIG Leu	TCC	CAC His	ACG Thr 540	TTG Leu	GAG Glu
FIG. 8F GGC TTG Gly Leu	ACT Thr	AAC Asn	CGC Arg	ACT Thr 555	GAA Glu
GTC Val 490	ATT Ile	\mathtt{TAC}	GAG Glu	GGT Gly	TCT Ser 570
TTT Phe	GAC Asp 505	ACT Thr	GCC Ala	AAA Lys	CTG Leu
GGT	TAC Tyr	TTC Phe 520	TG AAA eu Lys 535	GAA Glu	TTC Phe
AGC Ser	GGT Gly	\mathtt{TAT} \mathtt{TYr}	CTG Leu 535	AGC Ser	AAT Asn
TGG	GTC Val	GTG Val	AAC Asn	CGC Arg 550	CGC Arg
GGC Gly 485	CGT Arg	GAA Glu	CCC Pro	GGC Gly	TAC Tyr 565
AAA Lys	TGG Trp 500	TCC Ser	AAT Asn	CAA Gln	AAT Asn
${\tt TAT} \\ {\tt TYX}$	GCT Ala	GCG Ala 515	CCC	CTG Leu	AGC Ser
ACT Thr	CAG Gln	AAT Asn	CTG Leu 530	TCT Ser	CAA Gln
AAC Asn	AAT Asn	CCC Pro	TGG Trp	CTC Leu 545	TAT Tyr

31/47	1824	1872	1920	1968	2016
SHEET 31/47 1776					
ATG	ATC Ile	GTG Val	TCG Ser 640	TCC	AGC Ser
GGT Gly	AAT Asn	AAT Asn	GGC Gly	CTG Leu 655	CCG
TAC Tyr 590	CAA Gln	CTG	TTC Phe	CTG	AGT Ser 670
TAC Tyr	ATG Met 605	CGT Arg	CTG Leu	AGC Ser	GAA Glu
8G TAC Tyr	CAG Gln	GGC Gly 620	AAA Lys	AAC Asn	\mathtt{TAT}
FIG. 8G ATG AAT TAC Met Asn Tyr	TGG Trp	ACG Thr	TGG Trp 635	GAC Asp	GAC Asp
ATG Met	GAA Glu	CTG	GGC Gly	GGC Gly 650	ATC Ile
CAG G1n 585	CTG Leu	GAG Glu	GAG Glu	TCG Ser	GGT G1y 665
ACT	AAA Lys 600	ATC Ile	CCT Pro	CTG	GCC Ala
TGT Cys	GAA Glu	GGT G1y 615	GTT Val	AAA Lys	ATT Ile
AGC Ser	TCC Ser	CGC Arg	TTT Phe 630	AGC Ser	GTG Val
GTC Val	\mathtt{TAT} \mathtt{TYr}	ATC Ile	TCT Ser	AAA Lys 645	AAA Lys
GAT Asp 580	CCT	AGA Arg	GCG Ala	GCG	TTG Leu 660
GGC G1 y	AAT Asn 595	GCC Ala	GTA Val	\mathtt{TAT} \mathtt{TYr}	CCG
AGC Ser	AGC Ser	AAG Lys 610	AAA Lys	GGT Gly	CAG Gln
ACC Thr	TGT Cys	GAC ASP	GAC Asp 625	CIG	ACC Thr

oses ass. certoo

SHEET 32/47 2064	2112	2160	2208	2256	2304
S AAG Lys	ACG Thr	GCT Ala 720	ACT Thr	Trp	GAC Asp
AAA 1 Lys 1	GGT A	TCG (Ser 7	CTG 7	ACT	GTC (Val 7
GCG Z	TGG (Trp (AAG Lys	AAC (Asn	ACC 7 Thr 750	TCG (
GGC G1y 685	GGC	AAC	AAA Lys	TAC	AAC Asn 765
ı i	AAG Lys 700	CTG	GTG Val	AAA Lys	ACC Thr
FIG. 8H TAT CTG Tyr Leu	AAC Asn	TGG Trp 715	CCG	CGC Arg	ACC Thr
ACC Thr	GAA Glu	CCG Pro	AAA Lys 730	AAC Asn	AGC Ser
CTG	TAT Tyr	TAC Tyr	TAC Tyr	TTC Phe 745	TAC Tyr
CGC Arg 680	GTT Val	GAT Asp	TTC Phe	GTG Val	AGC Ser 760
TCC	ACC Thr 695	AAA Lys	GGC Gly	AAT Asn	\mathtt{TAT}
TTC Phe	TAC Tyr	GTA Val 710	TAC Tyr	\mathtt{TAT} $\mathtt{TY}x$	CTG Leu
GTG Val	CAA Gln	AAG Lys	ATG Met 725	GTA Val	GGC Gly
GGC Gly	GCG Ala	AAA Lys	GAT Asp	GGC Gly 740	CGC
TGG Trp 675	GAC Asp	CAG Gln	TTC Phe	GCA Ala	CTG Leu 755
AAA Lys	AAA Lys 690	TTG	GTG Val	CGT Arg	ACC Ser
GAA G1u	GTC Val	CCT Pro 705	\mathtt{TAT} \mathtt{TY}	TTG Leu	GAT Asp

						; ;	i	! !	" (FIG. 81	X	((· E	E F	C F	SHEET 33/47	33/47
CGC Arg	GAT Asp 770	GGC G1y	AAA Lys	$ ext{GGC}$	TTA Leu	GAC Asp 775	CGC Arg	TAC Tyr	CGC GCC CCA AGC Arg Ala Pro Ser 780	GCC Ala	CCA Pro 780	Ser	Arg	aa Asn	TAT TYF	,	7667
GCC Ala 785	GTA Val	TCG Ser	CIG	GAA Glu	TGG Trp 790	AAG Lys	AAG TTT TAA Lys Phe *	TAA *									2379

192 240 288	GAA Glu GGC G1Y 80 GTG	CAG Gln GTC Val GGC GGY	CAA G1n GAC ASP CGC		GGC Arg 60 TCC Ser GCT Ala	GGC G1y Tyr 75 TTT Phe	CTC Leu CGT Arg GGC GGC	AAC Asn GTG Val AAA Lys		CGT Arg GAC ASP CAT His	GAA Glu AAA 70 CGC	GTG Val AAC ASn GGC G1Y	ACC Thr GAC ASP AGC Ser		CCT Pro 50 ATA Ile AGC Ser	GCG Ala ATG Met 65 TTG Leu
192	GAA Glu	CAG Gln	CAA Gln							CGT Arg 55		GTG Val			CCT Pro 50	
144	AAT Asn	CIT	CAG Gln	GAC Asp 45	AAA Lys	GTT Val	CGC Arg	GTG Val	GAA Glu 40	AAA Lys	ATA Ile	GAG	GCA Ala	AAA Lys 35	GTT Val	
9	ACA Thr	ACC Thr	GAA Glu 30	ACC Thr	GCA Ala	GCT Ala	GAA Glu	GAT Asp 25	GCG Ala	GCA Ala	TTG Leu	GTC Val	CCG Pro 20	AAT Asn	GGC Gly	
SHEET 34/4	ATT Ile	AGT Ser 15	GGC Gly	GTC Val	4	FIG. 9A GCG CTG Ala Leu	GCC Ala 10	ATT Ile	CCT	CTT	ATG Met	CAC His	TTA	CCA	AAA Lys	ATG Met

SHEET 35/4	AGC CTG CCT GAT 336 Ser Leu Pro Asp 110	TTC AAC AGC TCG 384 Phe Asn Ser Ser 125	GAA ATC GCG AAG Glu Ile Ala Lys	GGT GGC GGC GTG Gly Gly Val 160	GAC GAC AGG CAA 528 Asp Asp Arg Gln 175	AAC CGC GAA TGG 576 Asn Arg Glu Trp 190
FIG. 9B	GGC GTG Gly Val	GGC AAC Gly Asn	AAC ATC Asn Ile 140	GCA TTG Ala Leu 155	CTG TTG Leu Leu	AGC CGC Ser Arg
	AGC ATT GAC Ser Ile Asp 105	GCA CGT TAT Ala Arg Tyr 120	CTC GTG CGC Leu Val Arg	GGT AGC GGC Gly Ser Gly	CAT GAT TTG His Asp Leu	GGT TAC AGC Gly Tyr Ser 185
	GGT GTC A	CTG TAT G Leu Tyr A	CCC GAA C Pro Glu I	AAT ACC G Asn Thr G	CAA GGA Gln Gly	AAA AAC G Lys Asn G
	c cGT GTC n Arg Val	A AAC TCA u Asn Ser 5	r ATC GkC r Ile Asp	C TCT TTC p Ser Phe	A ACC CTG n Thr Leu 165	G ATG ATG 1 Met Met 180
	GAA GGC AAC Glu Gly Asn	TCG GAA GAA Ser Glu Glu	CGC CTG TCT Arg Leu Ser 130	GGC GCT GAC Gly Ala Asp 145	AAT TAC CAA Asn Tyr Gln	TTC GGC GTG Phe Gly Val
	<u> </u>	ΗΩ		₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩	4. 4.	Ēά

36/47	624	672	720	768	816	864
SHEET						
	GCT Ala	GAG Glu	GGT G1y 240	TTC Phe	CCA Pro	TAT Tyr
	GCC Ala	GGC Gly	CGT Arg	AAC Asn 255	GGC Gly	TCT
	GAT Asp	GCG Ala	ATC Ile	CAC His	ATC Ile 270	GAG Glu
	GTG Val 205	AGC Ser	ATT Ile	TAC Tyr	CGC Arg	GAA Glu 285
9C	CGC Arg	GAA G1u 220	GCA Ala	AAA Lys	CAC His	ATT Ile
FIG. 9C	AAC GAC (Asn Asp	ACC Thr	GGA G1y 235	CAC His	AAG Lys	ACG
F 1	AAC Asn	GAG Glu	AGC Ser	AAA Lys 250	GAC Asp	TAC Tyr
	AGC Ser	CAT His	GGC Gly	TCC	AAC Asn 265	AAT Asn
	GTG Val 200	GGT G1y	GCT Ala	CCG	ATC Ile	CAT His 280
	GGT Gly	CGC Arg 215	GGT Gly	GAT Asp	CAA G1n	666 61y
	TTC Phe	CGT Arg	GAG Glu 230	CCT	TAT Tyr	CAG Gln
	GGT Gly	CAA Gln	GTA Val	ATC Ile 245	GCT Ala	CAG Gln
	CTC	TCG Ser	CCG	GGT Gly	ATT Ile 260	GGC G1y
	ACA Thr 195	TAT Tyr	\mathtt{TAT}	CGC Arg	AAG Lys	AAC Asn 275
	AAT Asn	CTG Leu 210	GGC	TCA	GGT	TTT Phe
	ACA Thr	TTG	CGT Arg 225	TCG Ser	TTG	TCG Ser

37/47	912	096	1008	1056	1104	1152
SHEET						
	CGG Arg	CTG Leu 320	GCG Ala	CGC	GAC Asp	CAA Gln
	AGA Arg	TGG Trp	GCG Ala 335	ACG Thr	ATG Met	TTG Leu
	AAC Asn	AAT Asn	GTG Val	TGG Trp 350	AGC Ser	CCG Pro
	GTA Val	TCA Ser	AAA Lys	ACC Thr	CGC Arg 365	CAA Gln
9D	GAC Asp 300	GAT Asp	ACC Thr	TCC	AAC Asn	AGC Ser 380
FIG. 9D	GCC GAT Ala Asp	CCT Pro 315	ACA Thr	TAT TYK	TAC TYr	GAC Asp
	GCC Ala	ACG Thr	CAG Gln 330	GAT Asp	ATA Ile	ATG Met
	GAA Glu	TGG Trp	TAT TYĽ	ACG Thr 345	AAT Asn	CGT Arg
	CGC Arg	GAA Glu	GAT Asp	CCG Pro	GAG Glu 360	TTG Leu
	TGG Trp 295	TAC Tyr	TTC Phe	TTC Phe	TTG Leu	ACT Thr 375
	TCC Ser	TTT Phe 310	GAC Asp	TCG	GAT Asp	TTT Phe
	TCT Ser	CTC Leu	GCG Ala 325	GGC Gly	AAG Lys	CGT Arg
	GCT Ala	AAC Asn	AAG Lys	AAA Lys 340	CAG Gln	AAA Lys
	ACC Thr	GCC Ala	TTG Leu	AAC Asn	AAT Asn 355	TTC Phe
	CTG Leu 290	AAT Asn	TCT Ser	AAC Asn	$\mathtt{T}\mathtt{A}\mathtt{T}$	CGA Arg 370
	AAC Asn	CGC Arg 305	TCG Ser	GTT Val	AAC Asn	ACC Thr
			x)	r (

38/47	1200	1248	1296	1344	1392	1440
SHEET 3		•		,		
	CGT Arg 400	GTA Val	TAT Tyr	AGC Ser	TTG	ACT Thr 480
	CGG Arg	AGA Arg 415	AAT Asn	AGC Ser	GAA Glu	AAT Asn
	AGT Ser	GAA Glu	ACT Thr 430	TTC Phe	CAG Gln	GCC Ala
	GCC Ala	AGC Ser	ACC Thr	GTG Val 445	CCT	GCA Ala
9E	TTC Phe	TTC Phe	AAA Lys	GAC Asp	ACG Thr 460	CCT Pro
FIG. 9E	ACT Thr 395	TAC Tyr	GTG Val	AAC Asn	ATG Met	CCG Pro 475
	AAA Lys	TAT Tyr 410	CCC	TGG Trp	AAA Lys	ACA Thr
	CTT	GAT Asp	CAC His 425	CAA Gln	ACC Thr	AAA Lys
	TCG Ser	GAC Asp	CAA Gln	ATC Ile 440	CAT His	GAC Asp
	TTG Leu	CGC Arg	ATT Ile	CAA Gln	GAT Asp 455	TGT Cys
	CGC Arg 390	AAC Asn	TCG Ser	GAT Asp	TAC Tyr	GCT Ala 470
	CAT H1s	TTA Leu 405	AGC Ser	TCT Ser	CGT Arg	CAT His
	CAA Gln	AAC Asn	ACC Thr 420	CTG Leu	ATC Ile	TGT Cys
	GGC Gly	GAA Glu	ACT Thr	TCA Ser 435	GAT Asp	GAG Glu
	GGC Gly	TTT Phe	CGT Arg	TTC Phe	GCA Ala 450	GCC Ala
	CTG Leu 385	GAG Glu	TCC	GGT Gly	CGT Arg	AAT Asn 465

TAT			T G	AGC		TTT	GTC	GGT	TTG	FIG. 9F	9F GCG	CAA	CTG	AAT	CAG	SHEET 39/47 1488
Tyr	. Lys	$Gl\mathtt{y}$		Ser 485	G1y	Phe	Val	G1y		Ala	Ala	Gln	Leu	Asn 495	Gln	
GCT Ala	TGG	CAT His	GTC Val 500	GGT Gly	TAC Tyr	GAC Asp	ATT Ile	ACT Thr 505	TCC	GGC Gly	TAC Tyr	CGT Arg	GTC Val 510	CCC Pro	AAT Asn	1536
GCG Ala	Ser	GAA G1u 515	GTG Val	TAT Tyr	TTC Phe	ACT Thr	TAC TYE 520	AAC Asn	CAC His	GGT Gly	TCG Ser	GGT G1Y 525	AAT Asn	TGG Trp	CTG	1584
CCC Pro	AAT Asn 530	CCC	AAC Asn	CTG	AAA Lys	GCC Ala 535	GAG Glu	CGC	AGC Ser	ACC Thr	ACC Thr 540	CAC His	ACC Thr	CTG Leu	Ser	1632
CTG Leu 545	CAA	GGC Gly	CGC Arg	AGC Ser	GAA G1u 550	AAA Lys	GGT Gly	ACT Thr	TTG Leu	GAT Asp 555	GCC Alá	AAC Asn	CTG	$\mathtt{T}\mathtt{A}\mathtt{T}$	CAA Gln 560	1680
AAC Asn	AAT	TAC Tyr	CGC Arg	AAC Asn 565	TTC Phe	TTG Leu	TCT	GAA Glu	GAG Glu 570	CAG Gln	AAG Lys	CTG Leu	ACC Thr	ACC Thr 575	AGC Ser	1728

40/47	1776	1824	1872	1920	1968	2016
SHEET 40/47						
	AGC Ser	AAG Lys	AAA Lys	GGT G1y 640	CAG Gln	AAA Lys
	TGT Cys	GAT Asp	ACA Thr	CTG	ACA Thr 655	GAA Glu
	ATG Met 590	ATC Ile	GTG Val	TCG Ser	TCC Ser	AGC Ser 670
	GGT Gly	AAT Asn 605	AAT Asn	GGC	CTG	CCG
9G	TAC	CAA Gln	CTG Leu 620	TTC Phe	CTG Leu	AGC Ser
FIG. 9G	TAC Tyr	ATG Met	CGT	TTG Leu 635	AGC Ser	GAA Glu
(TAC Tyr	CAG Gln	GGC Gly	AAA Lys	AAC Asn 650	TAC TYr
	AAT Asn 585	TGG Trp	ACA Thr	TGG Trp	GAC Asp	GAC Asp 665
	ATG Met	GAA Glu 600	CTG	GGC Gly	GGC Gly	GTC Val
	CAG Gln	CCG	GAG Glu 615	GAG Glu	TCG Ser	GGT
	ACT Thr	AAA Lys	CTT	CCT Pro 630	CTG Leu	GCC Ala
	$ ext{TGT}$	GAA Glu	GGT Gly	GTT Val	AAA Lys 645	ATT Ile
	GGC G1y 580	TCC Ser	CGT Arg	TTT Phe	AGC	GTG Val 660
	GTC Val	TAT TYr 595	ATC Ile	TCT Ser	AAA Lys	AAA Lys
	GAT Asp	CCT Pro	CGA Arg 610	GCG	GCG Ala	CCG
	GGC Gly	AAT Asn	GCC Ala	GTA Val 625	TAT Tyr	CCG
			,	<u> </u>		

41/47	2112	2160	2208	2256	2304
SHEET 41/47 2064					
AAA Lys	TTG	GTG Val 720	CGT Arg	Ser	GAT Asp
GCC Ala	CCT	$\mathtt{TAT}\\\mathtt{TY}x$	TTG Leu 735	GAT Asp	CGA Arg
AAG Lys	ACG Thr	GCT Ala	ACT Thr	TGG Trp 750	GAC Asp
AAA Lys 685	GGT Gly	TCG Ser	CTG	ACT Thr	GTC Val 765
9H GCG Ala	CGG Arg 700	AAG Lys	AAC Asn	ACC Thr	GCG Ala
FIG. 9H GGT GCG Gly Ala	GGC Gly	AAC Asn 715	AAA Lys	TAC Tyr	AAC Asn
CTG Leu	AAG Lys	CTG	GCT Ala 730	AAA Lys	ACC Thr
TAT Tyr	AAC Asn	TGG Trp	CTG	CGC Arg 745	ACC Thr
ACT Thr 680	GAA Glu	CCG Pro	AAA Lys	AAC Asn	AGC Ser 760
CTG Leu	TAT TYE 695	TAC Tyr	TAC Tyr	TTC Phe	TAC Tyr
CGC Arg	GTT Val	GAT Asp 710	TTC Phe	GTG Val	AGC Ser
JCC	ACC Thr	AAA Lys	GGC G1y 725	AAT Asn	TAT Tyr
TTC Phe	TAC Tyr	GTA Val	TAC Tyr	TAT Tyr 740	TTG Leu
GTG Val 675	CAA Gln	AAG Lys	ATG Met	GTA Val	GGT Gly 755
GGT	GCG Ala 690	AAA Lys	GAT Asp	GGC Gly	CGC Arg
TGG Trp	GAC Asp	CAG Gln 705	TTT Phe	GCA Ala	CTG
		х.,	ž ×		

SHEET 42/47	2352	2378
SHEE		
	TAC GCC GTA Tyr Ala Val	
	AAT Asn	
FIG. 9I	TAC CGC GCC TCA GGC CGT Tyr Arg Ala Ser Gly Arg 775	TGA ATTCC *
	GC AAA GGC TTA GAC CGC TABLY Lys Gly Leu Asp Arg T	CG CTG GAT TGG AAG TTT To Ser Leu Asp Trp Lys Phe 790
	였다	ပ္စစ္

Figure 10

SHEET 43/47

	FIG. 11A SHEET 44/47	44/47
HMBRA	MKPLQMLPIAALVGSI FGNPVLAADEAATETTPVKAEIKAVRVKGQRNAP	50
HMBRB	MKPLQMPPIAALLGSI FGNPVFAXDEAATETTPVKAEVKAVRVKGQRNAP	20
HMBRC	MKPLOMLPIAALVGSI FGNPVFAADEAATETTPVKAEVKAVRVKGORNAP	20
HMBRMS11	MKPLHMLPIAALVGSI FGNPVLAADEAATETTPVKAEIKEVRVKDQLNAP	50
	*** * **** * ***** * ****** * * ***** *	
HMBRA	AAVERVNLNRI KQEMI RDNKDLVRYSTDVGLSDSGRHQKGFAVRGVEGNR	100
HMBRB	AAVERVNLNRIKQEMIRDNKDLVRYSTDVGLSDRSRHQKGFAIRGVEGDR	100
HMBRC	AAVERVNLNRIKQEMIRDNKDLVRYSTDVGLSDSGRHQKGFAVRGVEGNR	100
HMBRMS11	ATVERVNLGRIQQEMIRDNKDLVRYSTDVGLSDSGRHQKGFAVRGVEGNR	100
	* ***** * ****** * *************** * * *	
HMBRA	VGVSIDGVNLPDSEENSLYARYGNFNSSRLSIDPELVRNIEIVKGADSFN	150
HMBRB	VGVSIDGVNLPDSEENSLYARYGNFNSSRLSIDPELVRNIDIVKGADSFN	150
HMBRC	VGVSIDGVNLPDSEENSLYARYGNFNSSRLSIDPELVRNIDIVKGADSFN	150
HMBRMS11	VGVSIDGVSLPDSEENSLYARYGNFNSSRLSIDPELVRNIEIAKGADSFN	150

HMBRA	TGSGALGGGVNYQTLQGRDLLLDDRQFGVMMKNGYSTRNREWTNTLGFGV	200
HMBRB	TGSGALGGGVNYQTLQGRDLLLPERQFGVMMKNGYSTRNREWTNTLGFGV	200
HMBRC	TGSGALGGGVNYQTLQGRDLLLPERQFGVMMKNGYSTRNREWTNTLGFGV	200
HMBRMS11	TGSGALGGGVNYQTLQGHDLLLDDRQFGVMMKNGYSSRNREWTNTLGFGV	200

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	VNKKKNANLFIENTENTENTENTENTENTENTENTENTENTENTENTENTE
348 349 350 349	IANLEYEWMPDSNWLSSLKADE ITNLEYEWTPESDRLSMVKADV ITNLEYEWTPESDRLSMVKADV IANLEYEWTPDSNWLSSLKADE
300 300 300 300	HKYHNFLGKIAYQINDNHRIGASLNGQQGHNYTVEESYNLTASSWREADD HKYHSFLGKIAYQINDNHRIGASLNGQQGHNYTVEESYNLLASYWREADD HKYHSFLGKIAYQINDNHRIGASLNGQQGHNYTVEESYNLLASYWREADD HKYHNFLGKIAYQINDKHRIGPSFNGQQGHNYTIEESYNLTASSWREADD **** *******************************
250 250 250 250	SNDRVDAALLYSQRRGHETESAGNRGYPVEGAGKETNIRGSARGIPDPSK SNDRVDAALLYSQRRGHETESAGKRGYPVEGAGSGANIRGSARGIPDPSQ SNDRVDAALLYSQRRGHETESAGKRGYPVEGAGSGANIRGSARGIPDPSQ SNDRVDAALLYSQRRGHETESAGERGYPVEGAGSGAIIRGSSRGIPDPSK ************************************
15/47	FIG. 11B SHEET 45/47

	<u> -</u>	46/47
HMBRA HMBRB HMBRC HMBRMS11	RRDFENLNRDDYYFSGRVVRTTSSIQHPVKTTNYGFSLSDQIQWNDVFSS QRDFENLNRDDYYFSGRVVRTTNSIQHPVKTTNYGFSLSDQIQWNDVFSS RRDFENLNRDDYYFSGRVVRTTSSIQHPVKTTNYGFSLSDQIQWNDVFSS RREFENLNRDDYYFSERVSRTTSSIQHPVKTTNYGFSLSDQIQWNDVFSS *.**********************************	448 449 448
HMBRA HMBRB HMBRC HMBRMS11	RAGIRYDHTKMTPQELNAECHACDKTPPAANTYKGWSGFVGLAAQLNQAW RAGIRYDHTKMTPQELNADCHACDKTPPAANTYKGWSGFVGLAAQLSQTW RAGIRYDHTKMTPQELNAECHACDKTPPAANTYKGWSGFVGLAAQLNQAW RADIRYDHTKMTPQELNADCHACDKTPPAANTYKGWSGFVGLAAQLNQAW **.**********************************	4 4 9 8 4 9 8 4 9 8 8 9 8 8 9 8 9 8 9 8
HMBRA HMBRB HMBRC HMBRMS11	RVGYDITSGYRVPNASEVYFTYNHGSGNWLPNPNLKAERSTTHTLSLQGR RVGYDVTSGFRVPNASEVYFTYNHGSGTWKPNPNLKAERSTTHTLSLQGR RVGYDITSGYRVPNASEVYFTYNHGSGNWLPNPNLKAERTTTHTLSLQGR HVGYDITSGYRVPNASEVYFTYNHGSGNWLPNPNLKAERSTTHTLSLQGR .***.********************************	548 550 548
HMBRA HMBRB HMBRC HMBRMS11	SEKGMLDANLYQSNYRNFLSEEQKLTTSGTPGCTEENAYYSICSDPYKEK GDKGTLDANLYQSNYRNFLSEEQNLTVSGTPGCTEEDAYYYRCSDPYKEK SEKGTLDANLYQSNYRNFLSEEQKLTTSGDVSCTQMNYYYGMCSNPYSEK SEKGTLDANLYQNNYRNFLSEEQNLTTSGDVGCTQMNYYYGMCSNPYSEK ** ****** ***************************	598 599 598 598

SHEET 47/47

792	TWDSLRGLYSYSTINAVDRDGRGLDRYRAPSRNYAVSLEWKF TWDSLRGLYSYSTINAVDRDGRGLDRYRAPSRNYAVSLEWKF TWDSLRGLYSYSTINAVDRDGRGLDRYRASGRNYAVSLDWKF ************************************	HMBRB HMBRC HMBRMS11
790	TWDSLRGLYSYSTTNAVDRDGKGLDRYRAPGRNYAVSLEWKF	HMBRA
748	GWGTPLOKKVKDYPWLNKSAYVFDMYGFYKPVKNLTLRAGVYNV£NKKYT GRGTPLOKKVKDYPWLNKSAYVFDMYGFYKLAKNLTLRAGVYNVFNRKYT *.***********************************	HMBRC HMBRMS11
748	GWGTPLQKKVKDYPWLNKSAYVFDMYGFYKPVKNLTLRAGVYNLFNRKYT GWGTPLQKKVKDYPWLNKSAYVFDMYGFYKPAKNLTLRAGVYNLFNRKYT	HMBRA HMBRB
698		hmbrc Hmbrms11
699 700	DNSLLSTQPLKVIAGIDYESPSEKWGVFSRLTYLGAKKVKDAQYTVYENK DNSLLSTQPLKVIAGIDYESPSEKWGVFSRLTYLGAKKVKDAQYTVYENK DNSLLSTOPI,KVIAGIDYESPSEKWGVFSRLTYLGAKKVKDAQYTVYENK	HMBRA HMBRB
648	PEWOMONIDKARIRGLELTGRINVTKVASFVPEGWKLFGSLGYAKSKLSG.************************************	HMBRMS11
648 649	LDWQMKNIDKARIRGIELTGRLNVDKVASFVPEGWKLFGSLGYAKSKLSG	HMBRA
14/14	FIG. 11D	

DECLARATION AND POWER OF ATTORNEY (Case No. 94,784-A)

As below-named inventors, we hereby declare that:

Our residences, post office addresses and citizenship are as stated below next to our names.

We believe we are the original, first and joint inventors of the subject matter which is claimed and for which a patent is sought on the invention entitled:

NOVEL BACTERIAL HEMOGLOBIN RECEPTOR GENES AND USES

which specification was filed on October 2, 1995 and given Serial No. 08/537,361

We hereby state that we have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above.

We acknowledge the duty to disclose information which is material to the examination of this application in accordance with Title 37, Code of Federal Regulations, Sec. 1.56(a).

We further acknowledge the duty to disclose such material information which occurred between the filing date of the prior application, U.S. Serial No. 08/326,670, filed October 18, 1994 and the filing of this continuation-in-part application.

The undersigned hereby appoint the following:

George B. Newitt	Reg. No. 16550	Robert H. Resis	Reg. No. 32168
D. Dennis Allegretti	Reg. No. 17374	Grantland G. Drutchas	Reg. No. 32565
Sheldon W. Witcoff	Reg. No. 17399	James C. Gumina	Reg. No. 32898
Seymour Rothstein	Reg. No. 19369	Christopher J. Renk	Reg. No. 33761
James V. Callahan	Reg. No. 20095	David M. Frischkorn	Reg. No. 32833
Jon O. Nelson	Reg. No. 24566	Marc S. Cooperman	Reg. No. 34143
Charles F. Pigott	Reg. No. 19408	Kyle K. Kappes	Reg. No. 34846
Charles G. Call	Reg. No. 20406	Leon R. Yankwich	Reg. No. 30237
Ronald E. Larson	Reg. No. 24478	Barbara A. Heaphy	Reg. No. 34619
Edward W. Remus	Reg. No. 25703	John P. Iwanicki	Reg. No. 34628
Denis A. Berntsen	Reg. No. 26707	A. Blair Hughes	Reg. No. 32901
John J. McDonnell	Reg. No. 26949	Lawrence H. Aaronson	Reg. No. 35818
Charles W. Shifley	Reg. No. 28042	Thomas A. Fairhall	Reg. No. 34591
Daniel A. Boehnen	Reg. No. 28399	Kenneth J. Rudofski	Reg. No. 35997
Jamie S. Smith	Reg. No. 27390	Steven J. Sarussi	Reg. No. 32784
Mark T. Banner	Reg. No. 29888	Sanjay Prasad	Reg. No. 36247
Bradley J. Hulbert	Reg. No. 30130	Michael S. Greenfield	Reg. No. 37142
Paul H. Berghoff	Reg. No. 30243	Thomas K. Pratt	Reg. No. 37210
Peter D. McDermott	Reg. No. 29411	J. Pieter van Es	Reg. No. 37746
Michael H. Shanahan	Reg. No. 24438	Kevin E. Noonan	Reg. No. 35303
Dale A. Malone	Reg. No. 32155	Laura DeMoor	Reg. No. P39654

as our Attorneys and

Mark Chao

Reg. No. 37293

Emily Miao

Reg. No. 35285

as our Registered Patent Agents

the mailing address and telephone number of each of whom is BANNER & ALLEGRETTI, LTD., Ten South Wacker Drive, Chicago, Illinois 60606, and (312) 715-1000, with full power of substitution and revocation to prosecute this application and to transact all business in the Patent and Trademark Office connected therewith.

We hereby declare that all statements made herein of our own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Full	name	of	first	joint	inventor:	Igor	Stojilikovic
------	------	----	-------	-------	-----------	------	--------------

Inventor's signature

- October

Residence: 3223 S.W. 11th Avenue, #3, Portland, Oregon 97201

Citizenship: Croatia

Post Office Address: 3223 S.W. 11th Avenue, #3, Portland, Oregon 97201

Full name of second joint inventor: Magdalene So

Inventor's signature

_ ..

Residence: 777 S.W. 48th Drive, Portland, Oregon 97221

Citizenship: United States

Post Office Address: 777 S.W. 48th Drive, Portland, Oregon 97221

Full name of third joint inventor; Vivian Hwa
Inventor's signature Oliva
Date: 10.19.45
Residence: 7011 S.W. 4th Avenue, Portland, Oregon 97219
Citizenship: Australia
Post Office Address: 7011 S.W. 4th Avenue, Portland, Oregon 97219

Full name of fourth joint inventor: Fred Heffron
Inventor's signature
Date: 0217,1995
Residence: 17887 Hillside Drive, West Linn, Oregon 97068
Citizenship: United States
Post Office Address: 17887 Hillside Drive, West Linn, Oregon 97068

Full name of fifth joint inventor: Xavier Nassif
Inventor's signature
Date:
Residence: 36 Rue Miollis, Paris, FRANCE 75015
Citizenship: France

Post Office Address: 36 Rue Miollis, Paris, FRANCE 75015

Full name of third joint inventor: Vivian Hwa
Inventor's signature
Date:
Residence: 7011 S.W. 4th Avenue, Portland, Oregon 97219
Citizenship: Australia
Post Office Address: 7011 S.W. 4th Avenue, Portland, Oregon 97219

Full name of fourth joint inventor: Fred Heffron
Inventor's signature
Date:
Residence: 17887 Hillside Drive, West Linn, Oregon 97068
Citizenship: United States
Post Office Address: 17887 Hillside Drive, West Linn, Oregon 97068

Full name of fifth joint inventor: Xavier Nassif
Inventor's signature
Date: January 9 ⁴⁹ 1446
Residence: 36 Rue Miollis, Paris, FRANCE 75015
Citizenship: France

Post Office Address: 36 Rue Miollis, Paris, FRANCE 75015