Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Лабораторная работа 4

по дисциплине «Тестирование программного обеспечения»

Выполнил: Бобряков Кирилл, гр. № Р33122 Проверила: Харитонова Анастасия Евгеньевна

Задание:

С помощью программного пакета Apache Jmeter провести нагрузочное и стресс-тестирование веб-приложения в соответствии с вариантом задания.

В ходе нагрузочного тестирования необходимо протестировать 3 конфигурации аппаратного обеспечения и выбрать среди них наиболее дешёвую, удовлетворяющую требованиям по максимальному времени отклика приложения при заданной нагрузке (в соответствии с вариантом).

В ходе стресс-тестирования необходимо определить, при какой нагрузке выбранная на предыдущем шаге конфигурация перестаёт удовлетворять требованиями по максимальному времени отклика. Для этого необходимо построить график зависимости времени отклика приложения от нагрузки.

Параметры тестируемого веб-приложения:

- URL первой конфигурации (\$ 2900) http://aqua:8080?token=466641345&user=2052424079&conf=1;
- URL второй конфигурации (\$ 5500) http://aqua:8080?token=466641345&user=2052424079&conf=2;
- URL третьей конфигурации (\$ 9800) http://aqua:8080?token=466641345&user=2052424079&conf=3;
- Максимальное количество параллельных пользователей 10;
- Средняя нагрузка, формируемая одним пользователем 20 запр. в мин.;
- Максимально допустимое время обработки запроса 830 мс.

Ход выполнения работы:

Нагрузочное тестирование

Конфигурация Jmeter

- ThreadGroup
 - Максимальное количество параллельных пользователей —
 Number of threads (users) 10
 - ∘ Период запуска пользователей Ramp-up period (seconds) 0
 - ∘ Количество итераций Loop count 50
- HTTP Request
 - o Protocol http
 - Server Name or IP aqua
 - **Port Number** 8080
- Constant Throughput Timer Target throughput 20
- Duration Assertion **Duration in milliseconds** 830

Графики пропускной способности приложения

Конфугурация 1

Конфигурация 2

Конфигурация 3

Выводы по выбранной конфигурации

Исходя из результатов тестирования, можно сделать вывод, что все представленные конфигурации достойно справляются и выполняют необходимые задачи. При этом каждая следующая конфигурация позволяет уменьшить среднее время обработки запроса, но так как по заданию нужно выбрать наиболее дешевую и удовлетворяющую требованиям, то это будет первая конфигурация.

Стресс-тестирование

Для проведения стресс-тестирования был построен следующий план

Количество запросов в минуту увеличивается на 60.

Результаты получились такими

Label	# Sam †	Average	Median	90% Line	95% Line	99% Line	Min	Maximum	Error %	Through	Received	Sent KB/sec
HTTP Request20	100	577	571	632	639	642	537	643	0.00%	3.6/sec	1.30	0.55
HTTP Request80	100	627	629	681	714	719	561	719	0.00%	13.5/sec	4.82	2.05
HTTP Request140	100	709	715	768	798	798	618	798	0.00%	14.1/sec	5.04	2.14
HTTP Request200	100	703	692	729	763	782	676	784	0.00%	14.2/sec	5.08	2.16
HTTP Request260	100	767	706	723	1365	1381	665	1381	10.00%	13.0/sec	4.67	1.98
HTTP Request320	100	739	714	820	853	1453	628	1453	10.00%	12.7/sec	4.56	1.94
HTTP Request380	100	1125	644	1198	5065	5724	574	5743	14.00%	8.4/sec	2.99	1.27

Как видно, при количестве запросов в минуту равным 260, максимальный отклик превышает 830 и равен 1381

График изменения времени отклика от нагрузки

Вывод: в ходе выполнения данной лабораторной работы я провел нагрузочное тестирование веб-приложения при различных конфигурациях аппаратного обеспечения. В результате все конфигурации показали себя хорошо и справились с задачей, но для стресс-тестирования была выбрана первая в силу свой низкой стоимости.

Проведение стресс-тестирования позволило определить при какой нагрузке веб-приложение с данным аппаратным обеспечением перестает удовлетворять требованиям.

Нагрузочное- и стресс-тестирование являются очень важными видами тестирования производительности приложений, т. к. они позволяют оценить, как работает приложение при заданной и превышаемой нагрузках.