greatlearning

Fundamentals of Business Statistics

Probability Distribution Dr. P.K.Viswanathan

What is Probability Distribution? **greatlearning**

In precise terms, a **probability distribution** is a total listing of the various values the random variable can take along with the corresponding probability of each value. A real life example could be the pattern of distribution of the machine breakdowns in a manufacturing unit.

- •The random variable in this example would be the various values the machine breakdowns could assume.
- •The probability corresponding to each value of the breakdown is the relative frequency of occurrence of the breakdown.
- •The probability distribution for this example is constructed by the actual breakdown pattern observed over a period of time. Statisticians use the term "observed distribution" of breakdowns.

Binomial Distribution greatlearning

- •The Binomial Distribution is a widely used probability distribution of a discrete random variable.
- •It plays a major role in quality control and quality assurance function. Manufacturing units do use the binomial distribution for defective analysis.
- •Reducing the number of defectives using the proportion defective control chart (p chart) is an accepted practice in manufacturing organizations.
- •Binomial distribution is also being used in **service organizations** like banks, and insurance corporations to get an idea of the proportion customers who are satisfied with the service quality.

Conditions for Applying Binomial reatlearning Distribution (Bernoulli Process)

- Trials are independent and random.
- There are fixed number of trials (n trials).
- There are only two outcomes of the trial designated as success or failure.
- The probability of success is uniform through out the n trials

Binomial Probability Function

The probability of getting x successes out of n trials is indeed the definition of a Binomial

Distribution. The Binomial Probability Function is given by the following expression

$$P(x) = {n \choose x} \pi^{x} (1-\pi)^{n-x}$$
 x can take values 0, 1, 2,, n

Where P(x) is the probability of getting x successes in n trials

 $\begin{pmatrix} n \\ x \end{pmatrix}$ is the number of ways in which x successes can take place out of n trials

$$=\frac{n!}{x!(n-x)!}$$

 π is the probability of success, which is the same through out the n trials. π is the parameter of the Binomial distribution

5

greatlearningExample for Binomial Distribution

A bank issues credit cards to customers under the scheme of Master Card. Based on the past data, the bank has found out that 60% of all accounts pay on time following the bill. If a sample of 7 accounts is selected at random from the current database, construct the Binomial Probability Distribution of accounts paying on time.

Spreadsheet Showing the Solution ing

А	В	С	D					
1		Example Problem-Master Card						
2								
3	Х	P(x)	Cumulative					
4			Probability					
5	0	0.0016384	0.0016384					
6	1	0.0172032	0.0188416					
7	2	0.0774144	0.0962560					
8	3	0.1935360	0.2897920					
9	4	0.2903040	0.5800960					
10	5	0.2612736	0.8413696					
11	6	0.1306368	0.9720064					
12	7	0.0279936	1.0000000					

Mean and Standard Deviation of the Binomial Distribution

The mean μ of the Binomial Distribution is given by μ = E(x)= $n\pi$

The Standard Deviation σ is given by

$$\sigma = \sqrt{n\pi(1-\pi)}$$

For the example problem in the previous two slides, Mean = 7×0.6 =4.2.

Standard Deviation = = 1.30
$$\sqrt{4.2(1-0.60)}$$

Poisson Distribution

greatlearning

Poisson Distribution is another discrete distribution which also plays a major role in quality control in the context of reducing the number of defects per standard unit.

- •Examples include number of defects per item, number of defects per transformer produced, number of defects per 100 m² of cloth, etc.
- •Other real life examples would include 1) The number of cars arriving at a highway check post per hour; 2) The number of customers visiting a bank per hour during peak business period.

Poisson Process

greatlearning

 The probability of getting exactly one success in a continuous interval such as length, area, time and the like is constant.

- The probability of a success in any one interval is independent of the probability of success occurring in any other interval.
- The probability of getting more than one success in an interval is o.

Poisson Probability Function greatlearning

Poisson Distribution Formula

$$P(x) = \frac{e^{-\lambda} \lambda^x}{x!}$$

where

P(x) = Probability of x successes given an idea of λ

 λ = Average number of successes

= 2.71828(based on natural logarithm)

= successes per unit which can take values $0, 1, 2, 3, \dots \infty$

 λ is the Parameter of the Poisson Distribution.

Mean of the Poisson Distribution is = λ

Standard Deviation of the Poisson Distribution is = $\sqrt{\lambda}$

Example

greatlearning

If on an average, 6 customers arrive every two minutes at a bank during the busy hours of working, a) what is the probability that exactly four customers arrive in a given minute? b) What is the probability that more than three customers will arrive in a given minute?

6 customers arrive every two minutes. Therefore, 3 customers arrive every minute. That implies my lambda=3

$$P(X=4)=?$$

$$P(X>3)=? Implies 1-P(X<=3)$$

Spreadsheet showing Solution

А	В	С	D	E	F	G	H
1		Poisson D	istribution for	the Examp	le(x rages	from 0 to 10	D)
2					$\lambda = 3$		
3			Cumulative				
4	Х	P(x)	Probability				
5	0	0.049787	0.049787				
6	1	0.149361	0.199148				
7	2	0.224042	0.423190				
8	3	0.224042	0.647232				
9	4	0.168031	0.815263				
10	5	0.100819	0.916082				
11	6	0.050409	0.966491				
12	7	0.021604	0.988095				
13	8	0.008102	0.996197				
14	9	0.002701	0.998898				
15	10	0.000810	0.999708				

Look at the table and you will find that corresponding to x = 4 in column B, the probability P(x=4) is 0.168031 found in column C. You want P(x > 3) = 1- P(x < = 3) = 1-0.647232 = 0.352768 (Please note that P(x < = 3) is found in Column D corresponding to the value of x = 3 in column B. You could see 0.647232 in row 8 and column D.

13

Normal Distribution

greatlearning

Properties of Normal Distribution

The normal distr ooking like a bell. Statisticians use

- It is a beautiful distribution in which the mean, the median, and the mode are all equal to one another.
- It is symmetrical about its mean.
- If the tails of the normal distribution are extended, they will run parallel to the horizontal axis without actually touching it. (asymptotic to the x-axis)
- The normal distribution has two parameters namely the mean μ and the standard deviation σ

greatlearning

Normal Probability Density Function

In the usual notation, the probability density function of the normal distribution is given below:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\left[\frac{(x-\mu)^2}{2\sigma^2}\right]}$$

x is a continuous normal random variable with the property $-\infty < x < \infty$ meaning x can take all real numbers in the interval $-\infty < x < \infty$.

Standard Normal Distribution

greatlearning

The Standard Normal Variable is defined as follows:

$$z = \frac{x - \mu}{1 - \mu}$$

Please note that δ is a pure number independent of the unit of measurement. The random variable Z follows a normal distribution with mean=0 and standard deviation =1.

$$f(Z) = \frac{1}{\sqrt{2\pi}} e^{-\left[\frac{Z^2}{2}\right]}$$

Example Problem greatlearning

The mean weight of a morning breakfast cereal pack is 0.295 kg with a standard deviation of 0.025 kg. The random variable weight of the pack follows a normal distribution.

- a) What is the probability that the pack weighs less than 0.280 kg?
- b) What is the probability that the pack weighs more than 0.350 kg?
- c) What is the probability that the pack weighs between 0.260 kg to 0.340 kg?

Solution-a)

greatlearning

$$z = \frac{x - \mu}{\sigma} = (0.280 - 0.295)/0.025 = -0.6$$
. Click "Paste Function" of Microsoft Excel,

then click the "statistical" option, then click the standard normal distribution option and enter the z value. You get the answer. Excel accepts directly both the negative and positive values of z. Excel always returns the cumulative probability value. When z is negative, the answer is direct. When z is positive, the answer is =1- the probability value returned by Excel. The answer for part a) of the question = 0.2743(Direct from Excel since z is negative). This says that 27.43 % of the packs weigh less than 0.280 kg.

Solution-b)

greatlearning

$$z = \frac{x - \mu}{\sigma} = (0.350 - 0.295)/0.025 = 2.2$$
. Excel returns a value of 0.9861. Since z is positive, the required probability is = 1-0.9861 = 0.0139. This means that 1.39% of the packs weigh more than 0.350 kg.

Solution-c)

greatlearning

For this part, you have to first get the cumulative probability up to 0.340 kg and then subtract the cumulative probability up to 0.260. $z = \frac{x - \mu}{\sigma} = (0.340 - 0.295)/0.025$

=1.8(up to 0.340).
$$z = \frac{x - \mu}{\sigma} = (0.260 - 0.295)/0.025 = -1.4$$
(up to 0.260). These two

probabilities from Excel are 0.9641 and 0.0808 respectively. The answer is = 0.9641-0.0808 = 0.8833. This means that 88.33% of the packs weigh between 0.260 kg and 0.340 kg.

Thinking Problem

 What weight of the pack produced would have been exceeded by 90% of the packs produced?