

mmpdb A MMP tool for large ADMET datasets

Christian Kramer

Purpose

Much of **MedChem Knowledge** can be captured by **Matched Molecular Pairs** (MMPs)

$$R1$$
 $R2$
 $R1$
 $R2$

 $\Delta log D = ?$ $\Delta hERG = ?$ Δ Clearance = ?

An integrated MMP database tool shall allow to:

- Mine inhouse databases for MedChem knowledge in terms of **MMP rules**
- **Apply MMP rules** to new compounds
- Browse rules and pairs to study MedChem assumptions
- **Exchange knowledge** without exchanging compounds between companies

MMP – Brief History

Pre 2010: inhouse MMP implementations of various sorts (WiZePairs - AZ, T-ANALYZE - Merck, Lucid - Roche, ...)

2010: Jameed Hussain Ceara Rea: Fragment and Index Algorithm published (JCIM)

2010: Papadatos et al.: Local Environment of MMPs is critical for assembling rules (JCIM)

2012: Open source Fragment and Index implementation available in RDKit

2013 - 2016: MedChemica-led SALT consortium (AZ, Genentech, Roche)

2016: MOEsaic as first commercially available MMP GUI

2016: MMPDB V1.0 (inconsistencies in canonicalization, chirality treatment, no usage of rule statistics)

2017: MMPDB V2.0

MMP Fragment & Index – Basic Concept Fragmentation

Generate 1,2,3 –cut Fragmentations on single, non-ring, non-amide bonds

MMP Fragment & Index – Basic Concept Index

MMP Fragment & Index – Basic Concept Enumerate transformations

ONH ON

Constant

Transformation

mmpdb - Environment Representation

The chemical environment around an exchanged fragment can have strong influence on the effect. We represent the environment by rooted standard circular fingerprints, encoding atoms up to 5 bond distance from the attachment site.

Pair Constant Transformation Environment 1 2 3 4 5 5

mmpdb - Terminology

Compound A
Left Hand Side (LHS)

Compound B
Right Hand Side (RHS)

. . .

MMPDB 2.0 can...

- ... fragment, index, and upload MMP data into a SQLite or Oracle database
- ... consider **environments up to 5 atoms** away from the cut-atom(s) on the constant part
- ... be **highly customized** in terms of fragmentation and MMP matching options
- ... create, filter, and suggest hundreds of thousands of novel compounds for a given input structure within seconds
- ... correctly **handle complicated symmetry** and **chirality** creation cases
- ... be accessed through a **web service**
- ... be extended due to its **modular python architecture**

DB setup - workflow

Stage 0

Identify suitable datasets

Stage 1

Stage 2

Query MMP Database for

(A)

Specific transformations from given pairs

(B)

Compound suggestions with improved properties

Fragmentation

Parallelized and simplified Version of RDKit Hussain & Rea fragmentation implementation

For each fragmentation, six different environment fingerprints (radius 0-5) are generated.

Fragment format, chirality issues, and canonicalization solution will be discussed by Andrew.

Options

```
--max-heavies
                   Maximum number of non-hydrogen atoms, or 'none' (default: 100)
--max-rotatable-bonds
                               Maximum number of rotatable bonds (default: 10)
--rotatable-smarts SMARTS pattern to detect rotatable bonds (default:
                    '[!$([NH]!@C(=O))&!D1&!$(*#*)]-&!@[!$([NH]!@C(=O))&!D1&!$(*#*)]')
--salt-remover
                    File containing RDKit SaltRemover definitions. The default ('<default>') uses
                    RDKit's standard salt remover. Use '<none>' to not remove salts.
                    alternate SMARTS pattern to use for cutting (default:
--cut-smarts
                    [\#6+0; !\$(*=, \#[!\#6])] !@!=!\#[!\#0; !\#1; !\$([CH2]); !\$([CH3][CH2])]'), or use one of:
                    'default', 'cut AlkylChains', 'cut Amides', 'cut all', 'exocyclic',
                    'exocyclic NoMethyl'
                    number of cuts to use (default: 3)
--num-cuts
                    get fragment parameters and previous fragment information from SOURCE
--cache
--num-jobs
                   number of jobs to process in parallel (default: 4)
                    input structure format (one of 'smi', 'smi.qz')
-i
--delimiter
                    SMILES file delimiter style (one of 'whitespace' (default), 'to-eol', 'comma',
                    'tab', or 'space')
--has-header
                    skip the first line, which is the header line
                    save the fragment data to FILENAME (default=stdout)
--output
                    output format. One of 'fragments' or 'fragments.gz'. If not present, guess from
--out
                    the filename, and default to 'fragments'
```

Indexing & DB creation

Options

Lots of Filters for specifying which pairs to form (and which not)

Output options include .csv (for display and browsing in SpotFire/ Vortex) and .mmpdb, i.e. direct DB creation

Properties can be loaded here or in a separate step

min-variable-heavies	Minimum number of non-hydrogen atoms in the variable fragment. Default ('none')
max-variable-heavies	Maximum number of non-hydrogen atoms in the variable fragment
min-variable-ratio	Minimum ratio of variable fragment heavies to heavies in the (cleaned) structure
max-variable-ratio	Maximum ratio of variable fragment heavies to heavies in the (cleaned) structure
max-heavies-transf	Maximum difference in the number of heavies transferred in a transformation
max-frac-trans	Maximum difference in the number of heavies transferred in a transformation
symmetric	Output symmetrically equivalent MMPs, i.e. output both cmpd1,cmpd2, SMIRKS:A>>B and cmpd2,cmpd1, SMIRKS:B>>A
properties	File containing the identifiers to use and optional physical properties
output	save the fragment data to FILENAME (default=stdout)
out	output format. One of 'mmpdb' (default), 'csv', 'csv.gz', mmpa' or 'mmpa.gz'If not present, guess from the filename, and default to 'mmpdb'
title	a short description of the dataset. If not given, base the title on the filename
memory	report a summary of the memory use

mmpdb Database Format

SQLite

Can handle several properties

Finding the change in a MDO property for a given pair: "Predict Differences"

- 1.) Draw starting molecule or enter RO number
- → click "Next"

- 2.) Draw target molecule
- 3.) Select MDO property
- → click "Fetch Pairs and Rules"

mmpdb – Use Case 1: predict

Looking for transformations applied to your compound + MDO

CADD MDO MMPs - Get Compound Suggestions with modified MDO properties

Please draw starting structure:

changes?

Use hydrogens to indicate cut positions

Or enter RO-Number here:

Next page:

Define Substructure to be kept fix

Select Properties

Next...

1.) Draw starting molecule or enter RO number → click "Next"

- 2.) Define substructure that shall exist in suggested molecules (remove hydrogens and heavy atoms to allow changes)
- 3.) Select MDO properties of interest and pKa if desired
- 4.) Higher Similarity radius: Less suggestions, used rules are based on more similar pairs → click "Get Suggestions"

mmpdb - Use case 2: Transform

mmpdb transform - Rule Selection

What if several rules (different transformations/ environments) lead to the same compound?

Current implementation:

Rule selection is crucial. There might be other scientifically better ways to do it -> ideas?

mmpdb - Timings

Setup:

- Ki, IC50, AC50, CYP3A4 and hERG data from ChEMBL23.
- Remove duplicates:
 - → 14377 compounds for CYP3A4
 - → 6192 compounds for hERG
 - → 302 compounds overlap
 - → 20267 compounds overall (real use needs better data preparation)
- Workstation running RedHat 7 and python 3,
 32 GB of RAM and 10 Intel Xeon CPUs with 2.3 GHZ
- Remove compounds with more than 70 HA, 20 rotatable bonds.

Timing:

Fragmentation: 777 seconds

Indexing & create DB: 80 seconds

Load Properties into DB: 62 seconds

Transform query with Sofosbuvir (+ substructure = Sofosbuvir) against hERG and CYP3A4 (1620 suggested compounds):

Standard call: 51 s Second call: 39 s

On web service: 1.7 s

Predict query with Sofosbuvir (Target: F-Sofosbuvir, green above) against hERG:

Standard call: ~17 s On web service: 1.4 s

Outlook

- GUI
- Support for qualitative data
- Rule pruning (Environment is great, but leads to a crazy number of rules)
- Research on how to best do rule selection
- Research on how to share data with mmpdb
- Other use cases (to come in the future)

Availability

scientific python libraries like scipy and numpy, this is the only required third-party dependency for normal operation, though

several optional third-party packages may be used if available.

Request

Please use mmpdb and feedback, either privately or on the RDKit Mailing List

A lot of extensions to mmpdb are possible. If you want to contribute, do not hesitate to contact us. We might know somebody else already working on your topic...

Acknowledgments

Andrew Dalke

Jerome Hert

Jameed Hussain (mmpa)

RDKit (hosting)

Doing now what patients need next