# Portfolio Sold-Out Problem in Numbers for DeFi Lending Protocols

Student: Waralak Pariwatphan Research Advisor: Yury Yanovich

# Background: DeFi Meets Classic Finance



#### **Problem**



How to construct as many packages as possible for a given token set under the specific risk?





Portfolio sold-out problem

## **Objectives**

01

To design and develop optimization methods for obtaining the optimal portfolio sold-out in the following cases:

- continuous independent.
- continuous general.
- discrete independent.
- discrete general.

02

To apply optimization methods to the MakerDAO dataset



#### **Main Contributions**



## Portfolio sold-out problem: An overview



- One of subproblem is related to SOCP → optimal solution
- One of subproblem is related to Subset Sum Problem → NP-hard

# Methodology

The portfolio is characterized by the number of assets  $N \geq 1$  and a set of random variables

 $A_1 \cdot \xi_1, \dots, A_N \cdot \xi_N$ , where

- $A_1 \leq \cdots \leq A_N$  are deterministic positive numbers equal to the expected returns of each asset
- ullet random variables  $\xi_1,\ldots,\xi_N$ , describing the uncertainty per unit of return

$$\bullet$$
  $\mathbf{E}\xi_n=1, n\in\overline{N}$ 

- $\circ \; \operatorname{covariance} \operatorname{cov} \left( \xi_i, \xi_j 
  ight) = K_{ij}, \quad i,j \in N$
- $\circ~$  covariance matrix  $\mathbf{K} = (K_{ij})_{i,j \in \overline{N}}$

A  $\mathbf{package}$  composed of the portfolio  $(ec{A}, ec{\xi})$  is a vector  $ec{c} \in \mathbb{R}^N$  such that

- ullet  $0 \leq ec{c} \leq ec{A}$  and
- $\mathbf{E}\vec{c}^T\vec{\xi} = 1$ .

## Methodology

The variance of the package  $\vec{c}$  equals to  $V(\vec{c}) = Var \vec{c}^T \vec{\xi} = \vec{c}^T \mathbf{K} \vec{c}$ .

A set of M packages  $\mathbf{C}_M=(ec{c}_1|\dots|ec{c}_M)\in\mathbb{R}^{N imes M}$  is the tokenization of portfolio  $(ec{A},ec{\xi})$ 

if 
$$\sum_{m=1}^{M} \vec{c}_m \leq \vec{A}$$
.

The variance V of tokenization  $C_M$  is the maximum variance of its packages:

$$\mathrm{V}\left(\mathbf{C}_{M}\right)=\max_{m\in\overline{M}}\mathrm{V}\left(\overrightarrow{c}_{m}\right).$$

**Problem.** For a given portfolio  $(\vec{A}, \vec{\xi})$  and a variance threshold  $\sigma^2 > 0$ , the portfolio

sold-out problem is

$$M o \max_{M, \mathbf{C}_M : \mathrm{V}(\mathbf{C}_M) \leq \sigma^2}$$

# skoltech

# Methodology: Portfolio sold-out special cases

#### By assets:

| Categories  | Covariance matrix types                |
|-------------|----------------------------------------|
| Homogeneous | $\mathbf{K} = \sigma_0^2 \mathbb{I}^N$ |
| Independent | $\mathrm{K}_{ij}=0 	ext{ for } i eq j$ |
| General     | any ${f K}$ is allowed                 |

|             | Discrete         | Continuous         |
|-------------|------------------|--------------------|
| Homogeneous | optimal solution | optimal solution   |
| Independent | to be solved     | to be solved       |
| General     | to be solved     | numerical solution |

#### By packages:

| Categories | Package types                    |  |
|------------|----------------------------------|--|
| Discrete   | $\mathbf{C}_M$ is boolean matrix |  |
| Continuous | $\mathbf{C}_M$ is real matrix    |  |

The proportion of tokenized asset into the packages defines as

$$\label{eq:Tokenized fraction} Tokenized \ fraction = \frac{\text{the total amount of tokenized asset}}{\text{the total amount of initial asset}}$$

# Methodology: Dataset



#### **Daily data**

- *A* is borrowers with debt amounts.
- **K** is a covariance for their defaults.

### Results: Portfolio sold-out problem

|             | Discrete                  | Continuous                 |
|-------------|---------------------------|----------------------------|
| Homogeneous | optimal explicit solution | optimal explicit solution  |
| Independent | NPH                       | optimal numerical solution |
| General     | NPH                       | optimal numerical solution |

Solutions for portfolio sold-out special cases

### Result: Continuous General Case

**Theorem 2.** Portfolio sold-out problem is polynomial reducible to second order cone programming.

→ optimal numerical solution.

#### Proof.

Denote  $\overline{M}=\{1,\ldots,M\}$  and  $M\in\mathbb{I}^+.$ 

If the matrix  $\mathbf{C}_M \in \mathbb{R}^{N imes M}$  is the optimal solution to the continuous general problem,

then the matrix 
$$\overline{\mathbf{C}}_M=\left(ar{ec{c}}|\dots|ar{ec{c}}
ight)$$
 , where  $ar{ec{c}}=rac{1}{M}\sum_{m\in\overline{M}}ec{c}_m$  .

Consider  $\vec{a} = M \cdot \bar{\vec{c}}$ . The continuous general problem is equivalent to

$$\|ec{a}\|_1 
ightarrow \max_{ec{a}:} \left\{ egin{aligned} ec{a}^{\mathrm{T}} \mathbf{K} ec{a} \leq \sigma^2 \|ec{a}\|_1^2 \ ec{0} \leq ec{a} \leq ec{A} \end{aligned} 
ight.$$

CP

SDP

SOCF

LP

LP: linear program,

CP: cone program.

QP: quadratic program,

SDP: semidefinite program,

SOCP second-order cone program,

### Result: Continuous Independent and General Cases





|             | Discrete                  | Continuous                 |  |
|-------------|---------------------------|----------------------------|--|
| Homogeneous | optimal explicit solution | optimal explicit solution  |  |
| Independent | to be solved              | optimal numerical solution |  |
| General     | to be solved              | optimal numerical solution |  |

# **Results: Discrete Case Algorithm**

Subset Sum Problem



Generate all possible vectors of assets allocated into portfolio

Given the number of chosen assets (k) = 2



Keep only vectors that variance  $\leq \sigma^2$ 



Integer Programming



## Results: Discrete Independent Case

**Theorem 3.** Discrete independent optimal portfolio sold-out problem is **NP-Hard**. Proof.

The partition problem is NP-complete.

Given a set of positive integers  $a_1, \ldots, a_N$ , find out whether there is a subset of indexes  $I\subset\{1,\ldots,N\}$  such that

$$\sum_{n\in I} a_n = rac{S}{2}; \quad S \equiv \sum_{n=1}^N a_n.$$

We construct a tuple  $(\vec{A}, k, K, \sigma^2)$  as the input:

- $\vec{A} = (1, \cdots, 1)^T$  where  $\dim \left( \vec{A} \right) = 2N$
- k=N
- K is diagonal matrix with  $(a_1,\ldots,a_N,0,\ldots,0)$  on the diagonal
- $\sigma^2 = \frac{S}{2}$ .

The original problem can be reduces to

$$(M, D_M) = \operatorname{arg\,max}_{M, D_M} M,$$

## Results: Discrete Independent Case

$$\mathrm{D}_M = \left(ec{d}_{\,1} | \ldots | ec{d}_{\,M} 
ight) \in \{0,1\}^{2N imes M} \quad ext{and the number of packages } M \in \{0,1,2\}$$
 ,

The constraint is  $\sum_{m=1}^{M} \vec{d}_m \leq \vec{A}$  :

$$\sum_{i=1}^{N} d_{m,i}^2 \cdot a_i = \sum_{i=1}^{N} d_{m,i} \cdot a_i \le \frac{S}{2}, \quad [1]$$

If M=2, then  $\vec{A}$  is divided into 2 groups,  $\vec{d}_1$  and  $\vec{d}_2$ :

- $\vec{d}_1$  and  $\vec{d}_2$  meet the constraint [1]
- $\vec{A} = \vec{d}_1 + \vec{d}_2$
- $\vec{d}_1, \vec{d}_2 \in \{0,1\}^{2N}$ .

$$\sum_{i=1}^{N} d_{1,i} \cdot a_i + \sum_{i=1}^{N} d_{2,i} \cdot a_i = \sum_{i=1}^{N} a_i = S.$$

## Results: Discrete Independent Case

For example, given a solution subset of indexes  $I \subset \{1, \ldots, N\}$ , we can construct

$$\vec{d}_{1} = ([1 \in I], \dots, [N \in I], \underbrace{0, \dots, 0}_{|I|}, \underbrace{1, \dots, 1}_{N-|I|})^{T}$$

$$\vec{d}_{2} = ([1 \notin I], \dots, [N \notin I], \underbrace{1, \dots, 1}_{N-|I|}, \underbrace{0, \dots, 0}_{N-|I|})^{T},$$

For solution M=2,

as the solution:

$$\left\{ egin{aligned} \sum_{i=1}^{N} d_{1,i} \cdot a_i &= S/2 \ \sum_{i=1}^{N} d_{2,i} \cdot a_i &= S/2. \end{aligned} 
ight.$$

$$ec{d}_1 + ec{d}_2 = (1, \cdots, 1)^T = ec{A}$$
  $ec{d}_1, ec{d}_2 \in \{0, 1\}^{2N}.$ 

$$ullet \; ec{d}_{\,1}, ec{d}_{\,2} \in \{0,1\}^{2N}.$$

### **Result:** Discrete Independent and General Cases





|             | Discrete                  | Continuous                 |
|-------------|---------------------------|----------------------------|
| Homogeneous | optimal explicit solution | optimal explicit solution  |
| Independent | NPH                       | optimal numerical solution |
| General     | NPH                       | optimal numerical solution |

#### Results: MakerDAO dataset



Probability and level of default

#### **Daily data**

 $ec{A}$  is borrowers with debt amounts.

**K** is a covariance for their defaults.

General case: Any  ${\bf K}$  is allowed

#### Probability of default

$$\psi \left( {{x_{min}}} 
ight) = \int_0^T {rac{{{\left| {{x_{min}} + fs} 
ight|}^2}}}{{\sqrt {2\pi {s^3}} }}} {e^{ - rac{{{{\left( {{x_{min}} + fs} 
ight)}^2}}}{{2s}}}}ds$$



Sorted tokenized fractions for continuous general case

| Tokenized fraction = | the total amount of tokenized asset |
|----------------------|-------------------------------------|
| Tokemzed fraction —  | the total amount of initial asset   |

| Method                                      | Tokenized<br>Fraction |
|---------------------------------------------|-----------------------|
| Baseline : Metaheuristic Algorithm (MEALPY) | 65.20 %               |
| Second Order Cone Program (CVXPY)           | 65.69 %               |

Tokenized fractions of the continuous general case with different optimization methods

### **Result: Continuous General Case**



Comparing tokenized fractions with different optimization methods



Comparing tokenized fractions with different levels of σ

### Results: Discrete General Case



The proportion of data that have less than or equal to N assets to the total amount of data.



The proportion of the number of allowed vectors to the total number of possible vectors.

#### **Results: Discrete General Case**



| Sorted toke  | onizad fracti | one for died | rete general | 0200 |
|--------------|---------------|--------------|--------------|------|
| Solited toke | enizeu nacii  | ons ioi disc | hete general | Case |

| The number of chosen assets (k) | Tokenized Fraction |
|---------------------------------|--------------------|
| k=2                             | 28.03 %            |
| k=3                             | 20.40 %            |
| k=4                             | 14.93 %            |
| k=5                             | 11.73 %            |
| k=7                             | 7.17 %             |
| k=10                            | 3.45 %             |
| k=15                            | 0.78 %             |
| k=20                            | 0.04 %             |

Tokenized fractions of the discrete general case vary with the amount of chosen assets

### Results: Discrete General Case



Comparing correlation between market concentration and fraction and correlation between Gini coefficient and fraction with different number of chosen assets (k)

#### **Discussion**

|             | Discrete                  | Continuous                 |                                                                    |
|-------------|---------------------------|----------------------------|--------------------------------------------------------------------|
| Homogeneous | optimal explicit solution | optimal explicit solution  | <ul><li>Previous works</li><li>Davydov and Yanovich 2020</li></ul> |
| Independent | NPH                       | optimal numerical solution | <ul> <li>Chaleenutthawut et al. 2021</li> </ul>                    |
| General     | NPH                       | optimal numerical solution | <ul><li>SOCP → upper bound</li><li>Davidsson 2011</li></ul>        |
|             |                           |                            |                                                                    |

computational complexity

Research limitation: Based on single-collateral type

#### **Discussion**

|             | Discrete                  | Continuous                 |
|-------------|---------------------------|----------------------------|
| Homogeneous | optimal explicit solution | optimal explicit solution  |
| Independent | NPH                       | optimal numerical solution |
| General     | NPH                       | optimal numerical solution |



- Davydov and Yanovich 2020
- Chaleenutthawut et al. 2021
- SOCP → upper bound
  - Davidsson 2011



computational complexity

Research limitation: Based on single-collateral type

### **Conclusions**

- Portfolio sold-out problem:
  - continuous independent case
  - continuous general case
  - discrete independent case
  - discrete general case

Solved by SOCP

NP-hard problem

- For continuous cases: SOCP → upper bound comparisons with MA
- For discrete cases:
  - k influences tokenized fractions.
  - market concentration → slightly impact on tokenized fractions.
  - Gini coefficient → significantly affects tokenized fractions for small k.

## Scientific novelty

- Most researchers prioritize primary market portfolio optimization.
- Use blockchain to tokenize loans and create secondary market commodities.
- Blockchain offers new competitive advantages.

#### **Innovation**

- Emerging ventures, with a focus on DeFi lending protocols.
- Financial institutions and banks exploring cutting-edge solutions for loan portfolio management.

#### **Outcomes**

Paper: Currently, we are working on paper for publication.

#### Outlook

- Research on multi-collateral
- Apply tokenization to other datasets
- Cooperate with QuickToken.Ltd to make the software product



## Acknowledgements

I would like to express my heartfelt gratitude to Yury Yanovich for the invaluable support and thoughtful suggestions provided.

# Thank you for your attention

Q&A

