A Numerical Study of m-coupled Nonlinear Schrödinger Equation

Weichung Wang

Department of Applied Mathematics National University of Kaohsiung Kaohsiung, Taiwan

April 21, 2007

Outline

Features of the Beamer Class

Normal LaTeX class.

W. Wang (NUK) Short Title Conf Name 3 / 1

Features of the Beamer Class

- Normal LaTeX class.
- Easy overlays.

Features of the Beamer Class

- Normal LaTeX class.
- Easy overlays.
- No external programs needed.

Outline

S. Equation

• When m=1, the solution of NLS can be obtained through the following minimization

$$\inf_{\substack{\phi \geq 0\\ \phi \in H^{1}(\mathbb{R}^{n})}} \frac{\int_{\mathbb{R}^{n}} |\nabla \phi|^{2} + \lambda \int_{\mathbb{R}^{n}} \phi^{2}}{\left(\int_{\mathbb{R}^{n}} \phi^{4}\right)^{1/2}}.$$
 (1)

• An equivalent formulation is the following minimization:

$$\inf_{\phi \in \mathcal{N}_1} E(\phi) \tag{2a}$$

where

$$\mathcal{N}_1 = \left\{ \phi \in H^1(\mathbb{R}^n) | \phi \ge 0, \ \phi \not\equiv 0, \int_{\mathbb{R}^n} |\nabla \phi|^2 + \lambda \int_{\mathbb{R}^n} \phi^2 = \mu \int_{\mathbb{R}^n} \phi^4 \right\}$$
 (2b)

$$E(\phi) = \frac{1}{2} \int_{\mathbb{R}^n} |\nabla \phi|^2 + \frac{\lambda}{2} \int_{\mathbb{R}^n} \phi^2 - \frac{\mu}{4} \int_{\mathbb{R}^n} \phi^4. \tag{2c}$$

• If ϕ satisfies (??) then ϕ is called a ground state solution.

EAM

W. Wang (NUK) Short Title Conf Name 5 / 1