Zsigmondy's Theorem

Lola Thompson

Dartmouth College

August 11, 2009

Definition

 $o(a \mod p) := \text{the multiplicative order of } a \pmod{p}$.

Recall: The multiplicative order of $a \pmod{p}$ is the smallest integer k such that $a^k \equiv 1 \pmod{p}$.

Example $o(2 \mod 5) = 4 \text{ since } 2^1 \equiv 2 \pmod 5, \ 2^2 \equiv 4 \pmod 5, \ 2^3 \equiv 3 \pmod 5$ and $2^4 \equiv 1 \pmod 5$.

Theorem (Zsigmondy)

For every pair of positive integers (a, n), except n = 1 and (2,6), there exists a prime p such that $n = o(a \mod p)$.

Let's see why the exceptional cases might not work:

Theorem (Zsigmondy)

For every pair of positive integers (a, n), except n = 1 and (2,6), there exists a prime p such that $n = o(a \mod p)$.

- Let's see why the exceptional cases might not work:
- If n = 1, then $1 = o(a \mod p) \Rightarrow a^1 \equiv 1 \pmod p$. But this is only true when a = 1.

Theorem (Zsigmondy)

For every pair of positive integers (a, n), except n = 1 and (2,6), there exists a prime p such that n = o (amod p).

• (2,6) is an exception means that there are no primes p such that $6 = o(2 \mod p)$, i.e. for any prime p such that $2^6 \equiv 1 \pmod p$, it must be the case that $2^3 \equiv 1 \pmod p$ or $2^2 \equiv 1 \pmod p$ also.

Theorem (Zsigmondy)

For every pair of positive integers (a, n), except n = 1 and (2,6), there exists a prime p such that n = o (amod p).

- (2,6) is an exception means that there are no primes p such that $6 = o(2 \mod p)$, i.e. for any prime p such that $2^6 \equiv 1 \pmod p$, it must be the case that $2^3 \equiv 1 \pmod p$ or $2^2 \equiv 1 \pmod p$ also.
- The fact that (2,6) is an exception can be proven through elementary means, but we'll get it for free in the process of proving Zsigmondy's Theorem.

Outline

Definition

We define n^{th} cyclotomic polynomial as follows:

$$\Phi_n(x) = \prod_{\substack{\zeta \text{ primitive} \\ n^{th} \text{ root of } 1}} (x - \zeta).$$

 $\Phi_n(x)$ has degree $\varphi(n)$ since there are $\varphi(n)$ primitive n^{th} roots of unity. (Recall: If ζ is primitive then ζ^k is primitive if and only if (k, n) = 1)

Some Other Properties:

Monic

Definition

We define n^{th} cyclotomic polynomial as follows:

$$\Phi_n(x) = \prod_{\substack{\zeta \text{ primitive} \\ n^{th} \text{ root of } 1}} (x - \zeta).$$

 $\Phi_n(x)$ has degree $\varphi(n)$ since there are $\varphi(n)$ primitive n^{th} roots of unity. (Recall: If ζ is primitive then ζ^k is primitive if and only if (k, n) = 1)

Some Other Properties:

- Monic
- Irreducible

Definition

We define n^{th} cyclotomic polynomial as follows:

$$\Phi_n(x) = \prod_{\substack{\zeta \text{ primitive} \\ n^{th} \text{ root of } 1}} (x - \zeta).$$

 $\Phi_n(x)$ has degree $\varphi(n)$ since there are $\varphi(n)$ primitive n^{th} roots of unity. (Recall: If ζ is primitive then ζ^k is primitive if and only if (k, n) = 1)

Some Other Properties:

- Monic
- Irreducible
- In $\mathbb{Z}[x]$ (In fact, $\Phi_n(x)$ is the minimal polynomial for ζ over \mathbb{Q})

Theorem

$$x^n - 1 = \prod_{d|n} \Phi_d(x)$$

(True since
$$x^n - 1 = \prod_{\substack{\zeta \text{ nth root of } 1}} (x - \zeta) = \prod_{\substack{d \mid n \\ d^{th} \text{ root of } 1}} \prod_{\substack{\zeta \text{ primitive} \\ d^{th} \text{ root of } 1}} (x - \zeta)$$
).

The Mobius Function

The Mobius function $\mu(n)$ is an arithmetic function satisfying $\mu(1)=1$ and $\sum_{d\mid n}\mu(d)=0$ for every n>1.

Example:
$$\sum_{d|2} \mu(d) = \mu(1) + \mu(2) = 0.$$

Since $\mu(1)=1$ then it must be the case that $\mu(2)=-1$.

Example:
$$\sum_{d|4} \mu(d) = \mu(1) + \mu(2) + \mu(4) = 0.$$

Since we know that $\mu(1) + \mu(2) = 0$ then $\mu(4) = 0$.

In general:
$$\mu(n) = \begin{cases} 0, & n = m \cdot p^r, r > 1 \\ -1^k, & n = p_1 p_2 \cdots p_k \end{cases}$$

Theorem (Mobius Inversion Formula)

If
$$f(n) = \sum_{d|n} g(d)$$
 then $g(n) = \sum_{d|n} f(d) \cdot \mu(n/d)$.

Since
$$x^n - 1 = \prod_{d|n} \Phi_d(x)$$
 then $\Phi_n(x) = \prod_{d|n} (x^d - 1)^{\mu(n/d)}$

(take log of both sides, apply Mobius inversion, then undo the logs).

Example:

$$\Phi_2(x) = (x^1 - 1)^{\mu(2/1)} \cdot (x^2 - 1)^{\mu(2/2)} = (x - 1)^{-1} \cdot (x^2 - 1) = x + 1.$$

Some Examples:

$$\Phi_{1}(x) = x - 1
\Phi_{2}(x) = x + 1
\Phi_{3}(x) = x^{2} + x + 1
\Phi_{4}(x) = x^{2} + 1
\Phi_{5}(x) = x^{4} + x^{3} + x^{2} + x + 1
\Phi_{6}(x) = x^{2} - x + 1
\Phi_{7}(x) = x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1
\Phi_{8}(x) = x^{4} + 1$$

In general,
$$\Phi_p(x) = x^{p-1} + x^{p-2} + \dots + x + 1$$
.

For $k \ge 1$, $\Phi_{p^k}(x) = \Phi_p(x^{p^{k-1}})$. So $\Phi_{p^k}(x)$ has the same number of nonzero terms as $\Phi_p(x)$.

Values of Cyclotomic Polynomials

Theorem

Suppose n > 1. Then:

(1)
$$\Phi_n(0) = 1$$

(2) $\Phi_n(1) = \begin{cases} p, & n = p^m, m > 0 \\ 1, & otherwise \end{cases}$

To prove (2): Evaluate $\frac{x^n-1}{x-1}$ at x=1 in 2 different ways to find $n=\prod_{\substack{d\mid n\\d>1}}\Phi_d(1)$. We know that $\Phi_p(x)=x^{p-1}+\cdots+x+1$, so $\Phi_p(1)=p$.

Moreover, $\Phi_{p^k}(1) = p$. By unique factorization, $n = p_1^{e_1} \cdots p_g^{e_g}$. Since there are e_i divisors of n that are powers of p_i for each prime p_i dividing n then, from our formula above, $\Phi_d(1) = 1$ when d is composite.

Values of Cyclotomic Polynomials

Theorem

Suppose n > 1. Then:

- (3) If a > 1 then $(a-1)^{\varphi(n)} < \Phi_n(a) < (a+1)^{\varphi(n)}$.
- (4) If $a \ge 3$ and $p \mid n$ is a prime factor, then $\Phi_n(a) > p$.

Proof of (3)

If a>1 then geometry implies that $a-1<|a-\zeta|< a+1$ for every point $\zeta \neq 1$ on the unit circle. The inequalities stated above follow from the fact that $\mid \Phi_n(a) \mid = \prod \mid a-\zeta \mid$.

Proof of (4)

Since $\varphi(n) \ge p-1$ then when $a \ge 3$, we have $\Phi_n(a) > 2^{\varphi(n)} \ge 2^{p-1}$ (by (3)). But $2^{p-1} \ge p$ since $p \ge 2$.

Lemma

Suppose that n > 2 and a > 1 are integers and $\Phi_n(a)$ is prime. If $\Phi_n(a) \mid n$ then n = 6 and a = 2.

Proof

• Let $p = \Phi_n(a)$, where $p \mid n$.

Lemma

Suppose that n > 2 and a > 1 are integers and $\Phi_n(a)$ is prime. If $\Phi_n(a) \mid n$ then n = 6 and a = 2.

- Let $p = \Phi_n(a)$, where $p \mid n$.
- If $a \ge 3$ then $\Phi_n(a) > p$ by (4), which is obviously false.

Lemma

Suppose that n > 2 and a > 1 are integers and $\Phi_n(a)$ is prime. If $\Phi_n(a) \mid n$ then n = 6 and a = 2.

- Let $p = \Phi_n(a)$, where $p \mid n$.
- If $a \ge 3$ then $\Phi_n(a) > p$ by (4), which is obviously false.
- Thus, a = 2 and $\Phi_n(2) = p$.

Lemma

Suppose that n > 2 and a > 1 are integers and $\Phi_n(a)$ is prime. If $\Phi_n(a) \mid n$ then n = 6 and a = 2.

- Let $p = \Phi_n(a)$, where $p \mid n$.
- If $a \ge 3$ then $\Phi_n(a) > p$ by (4), which is obviously false.
- Thus, a = 2 and $\Phi_n(2) = p$.
- Since $\Phi_n(2) = p$ then $p \mid (2^n 1)$ (since $\Phi_n(x)$ always divides $x^n 1$), i.e. $2^n \equiv 1 \pmod{p}$.

Lemma

Suppose that n > 2 and a > 1 are integers and $\Phi_n(a)$ is prime. If $\Phi_n(a) \mid n$ then n = 6 and a = 2.

- Let $p = \Phi_n(a)$, where $p \mid n$.
- If $a \ge 3$ then $\Phi_n(a) > p$ by (4), which is obviously false.
- Thus, a = 2 and $\Phi_n(2) = p$.
- Since $\Phi_n(2) = p$ then $p \mid (2^n 1)$ (since $\Phi_n(x)$ always divides $x^n 1$), i.e. $2^n \equiv 1 \pmod{p}$.
- So, p must be odd.

• So far, we have: $p = \Phi_n(2)$, $p \mid n$, p odd.

- So far, we have: $p = \Phi_n(2)$, $p \mid n$, p odd.
- Factor $n = p^e \cdot m$ where $p \nmid m$.

- So far, we have: $p = \Phi_n(2)$, $p \mid n$, p odd.
- Factor $n = p^e \cdot m$ where $p \nmid m$.
- It's a well-known fact from abstract algebra that if n is as above and if α is a root of $\Phi_n(x)$ over F_p then $m = o(\alpha)$.

- So far, we have: $p = \Phi_n(2)$, $p \mid n$, p odd.
- Factor $n = p^e \cdot m$ where $p \nmid m$.
- It's a well-known fact from abstract algebra that if n is as above and if α is a root of $\Phi_n(x)$ over F_p then $m = o(\alpha)$.
- As a result, since we know that $\Phi_n(2) \equiv 0 \pmod{p}$, then $m = o(2 \mod p)$.

- So far, we have: $p = \Phi_n(2)$, $p \mid n$, p odd.
- Factor $n = p^e \cdot m$ where $p \nmid m$.
- It's a well-known fact from abstract algebra that if n is as above and if α is a root of $\Phi_n(x)$ over F_p then $m = o(\alpha)$.
- As a result, since we know that $\Phi_n(2) \equiv 0 \pmod{p}$, then $m = o(2 \mod p)$.
- If e > 1 then $p = \Phi_n(2) = \Phi_{p^e \cdot m}(2) = \Phi_m(2^{p^e}) = \Phi_{pm}(2^{p^{e-1}})$.

- So far, we have: $p = \Phi_n(2)$, $p \mid n$, p odd.
- Factor $n = p^e \cdot m$ where $p \nmid m$.
- It's a well-known fact from abstract algebra that if n is as above and if α is a root of $\Phi_n(x)$ over F_p then $m = o(\alpha)$.
- As a result, since we know that $\Phi_n(2) \equiv 0 \pmod{p}$, then $m = o(2 \mod p)$.
- If e > 1 then $p = \Phi_n(2) = \Phi_{p^e \cdot m}(2) = \Phi_m(2^{p^e}) = \Phi_{pm}(2^{p^{e-1}})$.
- This contradicts (4), since $2^{p^{e-1}} \ge 2^p > 4$.

- So far, we have: $p = \Phi_n(2)$, $p \mid n$, p odd.
- Factor $n = p^e \cdot m$ where $p \nmid m$.
- It's a well-known fact from abstract algebra that if n is as above and if α is a root of $\Phi_n(x)$ over F_p then $m = o(\alpha)$.
- As a result, since we know that $\Phi_n(2) \equiv 0 \pmod{p}$, then $m = o(2 \mod p)$.
- If e > 1 then $p = \Phi_n(2) = \Phi_{p^e \cdot m}(2) = \Phi_m(2^{p^e}) = \Phi_{pm}(2^{p^{e-1}})$.
- This contradicts (4), since $2^{p^{e-1}} \ge 2^p > 4$.
- Thus, n = pm.

• At this point, we have deduced: $p = \Phi_n(2)$, $p \mid n$, p odd, n = pm where $p \nmid m$.

- At this point, we have deduced: $p = \Phi_n(2)$, $p \mid n$, p odd, n = pm where $p \nmid m$.
- We're trying to show that n = 6.

- At this point, we have deduced: $p = \Phi_n(2)$, $p \mid n$, p odd, n = pm where $p \nmid m$.
- We're trying to show that n = 6.
- Now, $p = \Phi_{pm}(2) = \frac{\Phi_m(2^p)}{\Phi_m(2)} > \frac{(2^p 1)^{\varphi(m)}}{(2 + 1)^{\varphi(m)}} \ge \frac{2^p 1}{3}$ (from (3)).

- At this point, we have deduced: $p = \Phi_n(2)$, $p \mid n$, p odd, n = pm where $p \nmid m$.
- We're trying to show that n = 6.
- Now, $p = \Phi_{pm}(2) = \frac{\Phi_m(2^p)}{\Phi_m(2)} > \frac{(2^p 1)^{\varphi(m)}}{(2 + 1)^{\varphi(m)}} \ge \frac{2^p 1}{3}$ (from (3)).
- But then $3p + 1 > 2^p$, which is impossible if p > 3.

- At this point, we have deduced: $p = \Phi_n(2)$, $p \mid n$, p odd, n = pm where $p \nmid m$.
- We're trying to show that n = 6.
- Now, $p = \Phi_{pm}(2) = \frac{\Phi_m(2^p)}{\Phi_m(2)} > \frac{(2^p 1)^{\varphi(m)}}{(2 + 1)^{\varphi(m)}} \ge \frac{2^p 1}{3}$ (from (3)).
- But then $3p + 1 > 2^p$, which is impossible if p > 3.
- Therefore, p = 3 and $m = o(2 \mod 3) = 2$, so $n = 2 \cdot 3 = 6$.

Recap and Extensions

We have proven the following Key Lemma:

Lemma

Suppose that n > 2 and a > 1 are integers and $\Phi_n(a)$ is **prime**. If $\Phi_n(a) \mid n$ then n = 6 and a = 2.

We can extend the Key Lemma to show that if $\Phi_n(a)$ is a **divisor** of n for some n > 2 and a > 1, then n = 6 and a = 2.

Good Pairs, Bad Pairs

Definition

Let $a, n \in \mathbb{Z}^+$, a > 1. The pair (a, n) is **good** if $n = o(a \mod p)$ for some prime p.

Lemma (Good Pairs Condition)

(a, n) is good if and only if there is a prime p such that $p \mid (a^n - 1)$ but $p \nmid (a^{n/q} - 1)$ for every prime factor $q \mid n$.

Example $3^2 - 1$ uses the same primes as $3^1 - 1$, so (3,2) is bad.

Good Pairs, Bad Pairs

Lemma

(a,1) is bad when a=2.

(a,2) is bad when $a=2^m-1$ for some m>1.

All other pairs $(a, 2^k)$ are good.

Example $2^2 - 1 = 3$, $2^3 - 1 = 7$, $2^6 - 1 = 63 = 3^2 \cdot 7$. Thus, (2,6) is bad.

Zsigmondy's Theorem

Theorem (Zsigmondy)

If $n \ge 2$, the only bad pair (a, n) is (2, 6).

[In other words, there exists a prime p such that $n = o(a \mod p)$ for every pair (a, n) except (2, 6)]

Proof Outline Suppose (a, n) is bad and n > 2. We will translate this into a problem about cyclotomic polynomials and use the Key Lemma to derive a contradiction unless a = 2 and n = 6.

Two More Lemmas

In order to prove Zsigmondy's Theorem, we will need the following two lemmas:

Lemma (1)

If
$$x^n - 1 = \Phi_n(x) \cdot \omega_n(x)$$
 then $\omega_n(x) = \prod_{\substack{d \mid n \\ d < n}} \Phi_d(x)$ and $(x^d - 1) \mid \omega_n(x)$

in $\mathbb{Z}[x]$ whenever $d \mid n, d < n$.

Lemma (2)

Suppose that $d \mid n$ and $a^d \equiv 1 \pmod{p}$. If d < n then $p \mid \frac{n}{d}$. In any case, $p \mid n$.

Theorem (Zsigmondy)

If $n \ge 2$, the only bad pair (a, n) is (2, 6).

Proof

• Pick an odd prime factor $p \mid \Phi_n(a)$.

Theorem (Zsigmondy)

If $n \ge 2$, the only bad pair (a, n) is (2, 6).

- Pick an odd prime factor $p \mid \Phi_n(a)$.
- Suppose that (a, n) is bad, so that $k = o(a \mod p)$ is a proper divisor of n.

Theorem (Zsigmondy)

If $n \ge 2$, the only bad pair (a, n) is (2, 6).

- Pick an odd prime factor $p \mid \Phi_n(a)$.
- Suppose that (a, n) is bad, so that $k = o(a \mod p)$ is a proper divisor of n.
- Let $x^n 1 = \Phi_n(x) \cdot \omega_n(x)$.

Theorem (Zsigmondy)

If $n \ge 2$, the only bad pair (a, n) is (2, 6).

- Pick an odd prime factor $p \mid \Phi_n(a)$.
- Suppose that (a, n) is bad, so that $k = o(a \mod p)$ is a proper divisor of n.
- Let $x^n 1 = \Phi_n(x) \cdot \omega_n(x)$.
- From Lemma (1), $(a^k 1) \mid \omega_n(a)$, so $p \mid (a^n 1)$ also.

Theorem (Zsigmondy)

If $n \ge 2$, the only bad pair (a, n) is (2, 6).

- Pick an odd prime factor $p \mid \Phi_n(a)$.
- Suppose that (a, n) is bad, so that $k = o(a \mod p)$ is a proper divisor of n.
- Let $x^n 1 = \Phi_n(x) \cdot \omega_n(x)$.
- From Lemma (1), $(a^k 1) \mid \omega_n(a)$, so $p \mid (a^n 1)$ also.
- So p^2 is a factor of $\Phi_n(a) \cdot \omega_n(a) = a^n 1$.

Theorem (Zsigmondy)

If $n \ge 2$, the only bad pair (a, n) is (2, 6).

- Pick an odd prime factor $p \mid \Phi_n(a)$.
- Suppose that (a, n) is bad, so that $k = o(a \mod p)$ is a proper divisor of n.
- Let $x^n 1 = \Phi_n(x) \cdot \omega_n(x)$.
- From Lemma (1), $(a^k 1) \mid \omega_n(a)$, so $p \mid (a^n 1)$ also.
- So p^2 is a factor of $\Phi_n(a) \cdot \omega_n(a) = a^n 1$.
- By Fermat's little Theorem, $a^{p-1} \equiv 1 \pmod{p}$, so $k \mid p-1$, hence k < p.

• From Lemma (2), we know that if $k \mid n$ and $a^k \equiv 1 \pmod{p}$, then if k < n, we must have $p \mid \frac{n}{k}$ and $p \mid n$.

- From Lemma (2), we know that if $k \mid n$ and $a^k \equiv 1 \pmod{p}$, then if k < n, we must have $p \mid \frac{n}{k}$ and $p \mid n$.
- It follows that p is the only prime factor of $\frac{n}{k}$, so we can write $n = k \cdot p^u$ for some $u \ge 1$.

- From Lemma (2), we know that if $k \mid n$ and $a^k \equiv 1 \pmod{p}$, then if k < n, we must have $p \mid \frac{n}{k}$ and $p \mid n$.
- It follows that p is the only prime factor of $\frac{n}{k}$, so we can write $n = k \cdot p^u$ for some $u \ge 1$.
- We can also use Lemma (2) to show that p is the only prime factor of $\Phi_n(a)$. In other words, $\Phi_n(a) = p^t$ for some $t \ge 1$.

• We've already shown that p is odd and $p \mid n$ and $\Phi_n(a) = p^t$.

- We've already shown that p is odd and $p \mid n$ and $\Phi_n(a) = p^t$.
- If t > 2 then p^2 divides $\frac{a^n-1}{a^{n/p}-1}$, since $(a^{n/p}-1) \mid \omega_n(a)$.

- We've already shown that p is odd and $p \mid n$ and $\Phi_n(a) = p^t$.
- If t>2 then p^2 divides $\frac{a^n-1}{a^{n/p}-1}$, since $(a^{n/p}-1)\mid \omega_n(a)$.
- We can use the exponent law to derive a contradiction to the statement that $p^2 \mid \frac{a^n-1}{a^n/p-1}$. Thus, $\Phi_n(a) = p$.

- We've already shown that p is odd and $p \mid n$ and $\Phi_n(a) = p^t$.
- If t>2 then p^2 divides $\frac{a^n-1}{a^{n/p}-1}$, since $(a^{n/p}-1)\mid \omega_n(a)$.
- We can use the exponent law to derive a contradiction to the statement that $p^2 \mid \frac{a^n-1}{a^{n/p}-1}$. Thus, $\Phi_n(a) = p$.
- Now, if $a \ge 3$ then $\Phi_n(a) > p$, which we know is false.

- We've already shown that p is odd and $p \mid n$ and $\Phi_n(a) = p^t$.
- If t>2 then p^2 divides $\frac{a^n-1}{a^{n/p}-1}$, since $(a^{n/p}-1)\mid \omega_n(a)$.
- We can use the exponent law to derive a contradiction to the statement that $p^2 \mid \frac{a^n-1}{a^{n/p}-1}$. Thus, $\Phi_n(a) = p$.
- Now, if $a \ge 3$ then $\Phi_n(a) > p$, which we know is false.
- Hence, we must have a = 2. By the Key Lemma, n = 6.

- We've already shown that p is odd and $p \mid n$ and $\Phi_n(a) = p^t$.
- If t>2 then p^2 divides $\frac{a^n-1}{a^{n/p}-1}$, since $(a^{n/p}-1)\mid \omega_n(a)$.
- We can use the exponent law to derive a contradiction to the statement that $p^2 \mid \frac{a^n-1}{a^{n/p}-1}$. Thus, $\Phi_n(a) = p$.
- Now, if $a \ge 3$ then $\Phi_n(a) > p$, which we know is false.
- Hence, we must have a = 2. By the Key Lemma, n = 6.
- Therefore, (2,6) is the only bad pair.

- We've already shown that p is odd and $p \mid n$ and $\Phi_n(a) = p^t$.
- If t>2 then p^2 divides $\frac{a^n-1}{a^{n/p}-1}$, since $(a^{n/p}-1)\mid \omega_n(a)$.
- We can use the exponent law to derive a contradiction to the statement that $p^2 \mid \frac{a^n-1}{a^{n/p}-1}$. Thus, $\Phi_n(a) = p$.
- Now, if $a \ge 3$ then $\Phi_n(a) > p$, which we know is false.
- Hence, we must have a = 2. By the Key Lemma, n = 6.
- Therefore, (2,6) is the only bad pair.
- We've proven Zsigmondy's Theorem!

A Special Case of Zsigmondy's Theorem

A special case of Zsigmondy's Theorem states the problem in terms of Mersenne numbers:

Consider the k^{th} Mersenne number $M_k=2^k-1$. Then, each of $M_2,M_3,M_4,...$ has a prime factor that does not occur as a factor of an earlier member of the sequence EXCEPT for M_6 .

Acknowledgements

Thanks to Dr. Dan Shapiro, whose expository notes on the subject were invaluable in writing this talk.

Bibliography:

- 1. Introduction to the Theory of Numbers by Harold N. Shapiro
- 2. Abstract Algebra by David S. Dummit and Richard M. Foote