Математический анализ

Модуль 3

2021 год

«Интеграл функции одной переменной»

Иванов Сергей, Иванов Алексей, Титов Даниил ${\bf M3104}$

Май 2021

ИТМО

Содержание

1	Интегральная сумма		3
	1.1	Исследуйте интегральную сумму функции $f(x)$, заданной на отрезке $[a,b]$	3
2	Несобственный интеграл		4
	2.1	Исследуйте несобственный интеграл на сходимость при всех	
		значениях параметра α	4
3	Приложения определенного интеграла		8
	3.1	Найти давление воды на поверхность цилиндра диаметром 4м	
		и высотой 6м, если его верхнее основание находится на уровне	
		свободной поверхности воды.	8
4	Приближенные вычисления определенного интеграла		9
	4.1	Вычислить значения интеграла $I_0^2 = \int\limits_0^2 f(x) dx$ по формулам	
		трапеций и парабол при $h=1$, сравнить полученные резуль-	
		TOTLL C TOTTLEM SUBTROM	Q

1 Интегральная сумма

1.1 Исследуйте интегральную сумму функции f(x), заданной на отрезке [a,b]

$$f(x) = \sin x$$
$$[a, b] = [0; 3\pi/2]$$

Что мы сделали:

- Изобразили график функции
- Изобразили криволинейную трапецию, ограниченную графиком функции, вертикальными прямыми, проходящими через концы отрезка, и осью $\mathbf{O}x$
- Разбили отрезок на n элементарных отрезков, точками отметьте их концы на рисунке
- Выбрали по точке внутри каждого элементарного отрезка, отметили их на рисунке
- Вычислили значения функции в выбранных точках, отметили их на рисунке
- Изобразили ступенчатую фигуру на основе выбранного разбиения и точек внутри элементарных отрезков

https://clck.ru/UjTMB

2 Несобственный интеграл

2.1 Исследуйте несобственный интеграл на сходимость при всех значениях параметра α

$$\int\limits_{1}^{+\infty} \frac{\ln x}{x^{\alpha}} dx$$

План:

- 1. Определите особую точку несобственного интеграла. Есть ли другие особые точки? К какому типу относится данный несобственный интеграл? Является ли подынтегральная функция неотрицательной на промежутке интегрирования?
- 2. Постройте графики подынтегральной функции при нескольких значениях параметра
- 3. Есть ли значение параметра, при котором легко находится первообразная? Если есть, то найдите её и сделайте вывод о сходимости интеграла
- 4. Сформулируйте признаки сравнения для определения сходимости несобственных интегралов
- 5. Оцените сверху и снизу трансцендентную функцию (логарифм или арктангенс) для сравнения исходного интеграла с интегралом вида $\int\limits_a^b \frac{1}{x^\beta} dx$.

Установите, при каких значениях параметра это сравнение позволяет сделать вывод о сходимости интеграла

- 6. Вспомните, как ведёт себя интеграл при значении параметра α , при котором легко находится первообразная. Используйте этот интеграл как эталон для сравнения с интегралом при другом параметре α
- 7. Запишите ответ

1. Особая точка: x=1, так как значение функции в ней всегда равно 0 Подынтегральная функция не является неотрицательной на промежутке интегрирования

Ещё особая точка: x = 0, но она не входит в предел интегрирования

$$\begin{array}{l} D:x>0\\ \lim_{x\to 1^+}\frac{\ln x}{x^a}=\frac{0}{1}=0 \end{array}$$

Тип интеграла:

1) Первого рода, так как пределы интегрирования от $% \left(1\right) =\left(1\right) +\left(1\right) =\left(1\right) +\left(1\right)$

1) Первого рода, так как предел 2)
$$\int_{1}^{+\infty} \frac{\ln x}{x^a} dx = \lim_{A \to +\infty} \int_{1}^{A} \frac{\ln x}{x^a} dx$$
 $a = 0$

$$a = 0$$

$$\lim_{A \to +\infty} \int_{1}^{A} \ln x dx = \lim_{A \to +\infty} (\ln x x - x|_{1}^{A}) = \lim_{A \to +\infty} (A(\ln A - 1)) + \lim_{A \to +\infty} A \lim_{A \to +\infty} (\ln A - 1) + 1 = +\infty$$

Для некоторого a:

$$\lim_{A \to +\infty} \left(\frac{-\ln x}{(a-1)x^{(a-1)}} - \frac{1}{(a-1)^2x^{a-1}} \Big|_1^A \right) = \lim_{A \to +\infty} \left(\frac{\ln A}{(a-1)A^{a-1}} - \frac{1}{(a-1)^2A^{a-1}} - \left(\frac{-\ln 1}{(a-1)^2*1} - \frac{1}{(a-1)^2*1} \right) \right) = \frac{1}{(a-1)^2}$$
 В зависимости от a , может быть и сходящимся и расходящимся

2.

 $\alpha = 0$

 $\alpha = 3$

 $\alpha = -3$

 $\alpha = 10$

 $\alpha = -10$

3. При
$$\alpha=0$$
:
$$\int \frac{\ln x}{x^\alpha} dx = \int \frac{\ln x}{x^0} dx = \int \ln x dx = uv - \int u dv = x \ln x - \int x \frac{1}{x} dx =$$

$$x\ln x - x + C = x(\ln x - 1) + C$$
 $f(x) = \lim_{x \to \infty} f(x) = \infty = >$ расходится

При
$$\alpha=1$$
:
$$\int \frac{\ln x}{x} dx = \int u du = \frac{u^2}{2} + C = \frac{\ln^2 x}{2} + C$$
 При $\alpha \in Z$: берётся по частям

4. Признаки сравнения:

Первый признак сравнения:

Если на промежутке $[a;+\infty)$ непрерывные f(x) и g(x) удовлетворяют условию:

 $0 \le f(x) \le g(x)$, то из сходимости интеграла $\int\limits_a^{+\infty} g(x) dx$ следует сходимость интеграла $\int\limits_a^{+\infty} f(x) dx$, а из расходимости интеграла $\int\limits_a^{+\infty} f(x) dx$ следует рас-

ходимость интеграла $\int_{a}^{+\infty} g(x)dx$

Второй признак сравнения:

Если существует предел $\lim_{x\to\infty}\frac{f(x)}{g(x)}=k$:

 $(0 < k < \infty, f(x) > 0$ и g(x) > 0), то интегралы $\int\limits_a^{+\infty} f(x) dx$ и $\int\limits_a^{+\infty} g(x) dx$ одновременно оба сходятся или оба расходятся

5. temporarily empty

6.
$$a=0$$
 $f_1=\ln x$ - расходящаяся $a=1$
 $f_2=\frac{\ln x}{x}$

$$\int\limits_1^{+\infty}\frac{\ln x}{x}dx=\lim_{A\to+\infty}\int\limits_1^A\frac{\ln x}{x}dx=\lim_{A\to+\infty}\int\limits_1^A\ln xd(\ln x)=\lim_{A\to+\infty}(\frac{\ln^2 x}{2}|_1^A)=\lim_{A\to+\infty}\frac{\ln^2 A}{2}=\infty$$
 - расходящаяся $f_2\leq f_1$
 $0\leq \frac{\ln x}{x}\leq \ln x$
 $\lim_{x\to+\infty}\frac{f_2}{f_1}=\frac{\ln x}{x\ln x}=0$
 $\lim_{x\to+\infty}\frac{f_1}{f_2}=+\infty$

3 Приложения определенного интеграла

3.1 Найти давление воды на поверхность цилиндра диаметром 4м и высотой 6м, если его верхнее основание находится на уровне свободной поверхности воды.

$$p = \rho gxS$$
$$dp = \rho gxdS = p_1$$

$$dS_{1} = dx * dl$$

$$dp_{1} = \rho gk * dx * dl$$

$$p_{1} = \int_{0}^{2*2\pi} \rho gk * dx * dl = \rho gk * dx * dl \int_{0}^{2*2\pi} dl = 4\pi \rho gk * dx$$

$$p = \int_{0}^{6} 4\pi \rho gx * dx = 4\pi \rho g \int_{0}^{6} x * dx = 4\pi \rho g \frac{x^{2}}{2} \Big|_{0}^{6} = 72\pi \rho g$$

$$g = 9.81$$

$$72\pi \rho g \approx 2.21897 * 10^{6}$$

- 4 Приближенные вычисления определенного интеграла
- 4.1 Вычислить значения интеграла $I_0^2 = \int\limits_0^2 f(x) dx$ по формулам трапеций и парабол при h=1, сравнить полученные результаты с точным значением.
- a) f(x) = 1 + x:

```
Метод трапеций: Интервал [a;b]=[0;2], h=1 Интервал длины "h"[0;1],[1;2] x_0=0 x_1=1 x_2=2 f(x_0)=1 f(x_1)=2 f(x_2)=3 1) \int\limits_0^2 f(x) \approx \frac{h}{2}(f(x_0)+f(x_1)+f(x_1)+f(x_2))=\frac{1}{2}(1+4+3)=4 2) Метод парабол: Также разбиваем на отрезки x_{2i-2}=x_0=0 x_{2i-1}=x_1=1 x_{2i}=x_2=2 \int\limits_0^2 f(x) \approx \frac{h}{3}(f(0)+4f(1)+f(2))=\frac{1}{3}(1+8+3)=4
```

Вывод конечной формулы:

Можно переходить к нахождению интеграла
$$\int_{x_{2i-2}}^{x_{2i}} \left(a_i x^2 + b_i x + c_i\right) dx$$
. Видно, что $f(x_{2i-2}) = f(0) = a_i \cdot 0^2 + b_i \cdot 0 + c_i = c_i$ $f(x_{2i-1}) = f(h) = a_i \cdot h^2 + b_i \cdot h + c_i$ $f(x_{2i}) = f(0) = 4a_i \cdot h^2 + 2b_i \cdot h + c_i$ Для осуществления последнего перехода необходимо использовать неравенство вида
$$\int_{x_{2i-2}}^{x_{2i}} \left(a_i x^2 + b_i x + c_i\right) dx = \int_0^{2h} \left(a_i x^2 + b_i x + c_i\right) dx = \left(\frac{a_i x^3}{3} + \frac{b_i x^2}{2} + c_i x\right) \int_0^{2h} = \frac{8a_i h^3}{3} + 2b_i h^2 + 2c_i h = \frac{h}{3} \left(8a_i h^2 + 6b_i h + 6c_i\right) = \frac{h}{3} \left(f(x_{2i-2}) + 4f(2_{2i-1}) + f(x_{2i})\right)$$
 Значит, получаем формулу, используя метод парабол:
$$\int_a^b f\left(x\right) dx \approx \sum_{i=1}^n \int_{x_{2i-2}}^{x_{2i}} \left(a_i x^2 + b_i x + c_i\right) dx = \sum_{i=1}^n \frac{h}{3} \left(f\left(x_{2i-2}\right) + 4f\left(x_{2i-1}\right) + f\left(x_{2i}\right)\right) = \frac{h}{3} \left(f(x_0) + 4f(x_1) + f(x_2) + 4f(x_2) + 4f(x_3) + f(x_4) + \dots + f(x_{2n-2}) + 4f(x_{2n-1}) + f(x_{2n})\right)$$

https://clck.ru/UmPuV

3) Подсчёт интеграла напрямую:

$$\int_{0}^{2} (x+1)dx = \frac{x^{2}}{2} + x|_{0}^{2} = \frac{4}{2} + 2 - 0 = 4$$

b)
$$f(x) = 1 + x^3$$

 $x_0 = 0$
 $x_1 = 1$
 $x_2 = 2$

Аналогично пункту (а):

1)
$$\int\limits_0^2 \approx \frac{h}{2}(f(x_0)+2f(x_1)+f(x_2))=\frac{1}{2}(1+4+9)=7$$
 - большая погрешность, так как много добавленной (добавочной) лишней площади

2)
$$\int_{0}^{2} = \frac{h}{3}(f(0) + 4f(1) + f(2)) = \frac{1}{3}(1 + 8 + 9) = 6$$

3)
$$\int_{0}^{2} = \int_{0}^{2} (x^{3} + 1)dx = \frac{x^{4}}{4} + 4|_{0}^{2} = \frac{16}{4} + 2 = 6$$