3^η Σειρά Ασκήσεων

Ιωάννης Τσαντήλας 03120883

<u>Άσκηση 1</u>

Ερώτημα 1

Αρχικά θα υπολογίσουμε τον χρόνο μετάδοσης των τριών ρευμάτων:

$$T_{1} = \frac{1000 * 8 \ bits}{50 * 10^{6} bits/sec} = 0.16 \ msec$$

$$T_{2} = \frac{2000 * 8 \ bits}{50 * 10^{6} bits/sec} = 0.32 \ msec$$

$$T_{3} = \frac{1600 * 8 \ bits}{50 * 10^{6} bits/sec} = 0.256 \ msec$$

Δημιουργούμε τον κάτωθι πίνακα με τους χρόνους ολοκλήρωσης $T_{\text{ολ}} = T_{\text{έναρξης}} + T_{\text{i}}$ καθυστέρησης, $T_{\text{ολ}} - T_{\text{άφιξης}}$.

First In First Out

Σειρά	Πακέτο (i,j)	Ολοκλήρωση (msec)	Καθυστέρηση (msec)
Αναχώρησης	(' 2 '	,	,
1.	(3,1) - 0.1	0.356	0.256
2.	(3,2) - 0.2	0.612	0.412
3.	(2,1) - 0.2	0.932	0.732
4.	(3,3) - 0.25	1.188	0.938
5.	(1,1) - 0.3	1.348	1.048
6.	(2,2) - 0.4	1.668	1.268
7.	(2,3) - 0.5	1.988	1.488
8.	(1,2) - 0.6	2.148	1.548
9.	(1,3) - 0.7	2.308	1.608
10.	(1,4) - 1	2.468	1.468
11.	(1,5) - 1.4	2.628	1.228
12.	(2,4) - 2.1	2.948	0.848
13.	(1,6) - 2.1	3.108	1.008
14.	(1,7) - 2.2	3.268	1.068
15.	(2,5) - 2.2	3.588	1.388
16.	(2,6) - 2.3	3.908	1.608
17.	(1,8) - 3	4.068	1.068
18.	(3,4) - 3.1	4.324	1.224
19.	(3,5) - 3.2	4.58	1.38
20.	(3,6) - 3.3	4.836	1.536
21.	(3,7) - 4.1	5.092	0.992
22.	(3,8) - 4.2	5.348	1.148
23.	(3,9) - 4.3	5.604	1.304
24.	(1,9) - 5.1	5.764	0.664
25.	(2,7) - 5.1	6.084	0.984
26.	(2,8) - 5.2	6.404	1.204
27.	(2,9) - 5.3	6.724	1.424
28.	(3,10) - 6	6.98	0.98

29.	(1,10) - 6.2	7.14	0.94
30.	(1,11) - 7	7.3	0.3
31.	(1,12) - 7.1	7.46	0.36
32.	(2,10) - 7.2	7.78	0.58
33.	(2,11) - 7.3	8.1	0.8
34.	(2,12) - 7.4	8.42	1.02
35.	(2,13) - 7.5	8.74	1.24
36.	(1,13) - 8.5	8.9	0.4
37.	(3,11) - 9.1	9.356	0.256
38.	(3,12) - 9.2	9.612	0.412
39.	(3,13) - 9.3	9.868	0.568
40.	(3,14) - 9.5	10.124	0.624

- Η συνολική καθυστέρηση για το ρεύμα 1 είναι 12.708 msec, δηλαδή η μέση καθυστέρηση είναι 0.97753 msec.
- Η συνολική καθυστέρηση για το ρεύμα 2 είναι 14.584 msec, δηλαδή η μέση καθυστέρηση είναι 1.12184 msec.
- Η συνολική καθυστέρηση για το ρεύμα 3 είναι 12.03 msec, δηλαδή η μέση καθυστέρηση είναι 0.85928 msec.
- Η συνολική καθυστέρηση και για τα τρία ρεύματα είναι 39.322 msec, δηλαδή η μέση καθυστέρηση είναι 0.98305 msec.

Ερώτημα 2

Fair Queueing

Σειρά Αναχώρησης	Πακέτο (i,j)	Ολοκλήρωση (msec)	Καθυστέρηση (msec)
1.	(3,1) - 0.1	0.356	0.256
2.	(2,1) - 0.2	0.676	0.476
3.	(1,1) - 0.3	0.836	0.536
4.	(3,2) - 0.2	1.092	0.892
5.	(2,2) - 0.4	1.412	1.012
6.	(1,2) - 0.6	1.572	0.972
7.	(3,3) - 0.25	1.828	1.578
8.	(2,3) - 0.5	2.148	1.648
9.	(1,3) - 0.7	2.308	1.608
10.	(3,4) - 3.1	3.356	0.256
11.	(2,4) - 2.1	3.676	1.576
12.	(1,4) - 1	3.836	2.836
13.	(3,5) - 3.2	4.092	0.892
14.	(2,5) - 2.2	4.412	2.212
15.	(1,5) - 1.4	4.572	3.172
16.	(3,6) - 3.3	4.828	1.528
17.	(2,6) - 2.3	5.148	2.848
18.	(1,6) - 2.1	5.308	3.208
19.	(3,7) - 4.1	5.564	1.464
20.	(2,7) - 5.1	5.884	0.784
21.	(1,7) - 2.2	6.044	3.844
22.	(3,8) - 4.2	6.3	2.1
23.	(2,8) - 5.2	6.62	2.42
24.	(1,8) - 3	6.78	3.78

25.	(3,9) - 4.3	7.036	2.736
26.	(2,9) - 5.3	7.356	2.056
27.	(1,9) - 5.1	7.516	2.416
28.	(3,10) - 6	7.772	1.772
29.	(2,10) - 7.2	8.092	0.892
30.	(1,10) - 6.2	8.252	2.052
31.	(3,11) - 9.1	9.356	0.256
32.	(2,11) - 7.3	9.676	2.376
33.	(1,11) - 7	9.836	2.836
34.	(3,12) - 9.2	10.092	0.892
35.	(2,12) - 7.4	10.412	3.012
36.	(1,12) - 7.1	10.572	3.472
37.	(3,13) - 9.3	10.828	1.528
38.	(2,13) - 7.5	11.148	3.648
39.	(1,13) - 8.5	11.308	2.808
40.	(3,14) - 9.5	11.564	2.064

- Η συνολική καθυστέρηση για το ρεύμα 1 είναι 33.54 msec, δηλαδή η μέση καθυστέρηση είναι
 2.58 msec.
- Η συνολική καθυστέρηση για το ρεύμα 2 είναι 24.96 msec, δηλαδή η μέση καθυστέρηση είναι
 1.92 msec.
- Η συνολική καθυστέρηση για το ρεύμα 3 είναι 18.214 msec, δηλαδή η μέση καθυστέρηση είναι
 1.301 msec.
- Η συνολική καθυστέρηση και για τα τρία ρεύματα είναι 76.714 msec, δηλαδή η μέση καθυστέρηση είναι 1.91785 msec.

Ερώτημα 3

Weighted Fair Queueing

Ο χρόνος ολοκλήρωσης για ένα πακέτο (i,j) είναι:

 $\max\{$ Χρόνος άφιξης πακέτου (i, j), Χρόνος ολοκλήρωσης (i, j -1) $\}$ + Ti/Wi

Πακέτο (i,j)	Ολοκλήρωση (msec)	Σειρά Άφιξης
(3,1) - 0.1	0.228	1
(3,2) - 0.2	0.356	2
(2,1) - 0.2	0.52	5
(3,3) - 0.25	0.484	4
(1,1) - 0.3	0.46	3
(2,2) - 0.4	0.84	7
(2,3) - 0.5	1.16	9
(1,2) - 0.6	0.76	6
(1,3) - 0.7	0.92	8
(1,4) - 1	1.16	10
(1,5) - 1.4	1.56	11
(2,4) - 2.1	2.42	13
(1,6) - 2.1	2.26	12
(1,7) - 2.2	2.42	14
(2,5) - 2.2	2.74	15
(2,6) - 2.3	3.06	16
(1,8) - 3	3.16	17

(3,4) - 3.1	3.228	18	
(3,5) - 3.2	3.356	19	
(3,6) - 3.3	3.484	20	
(3,7) - 4.1	4.228	21	
(3,8) - 4.2	4.356	22	
(3,9) - 4.3	4.484	23	
(1,9) - 5.1	5.26	24	
(2,7) - 5.1	5.42	25	
(2,8) - 5.2	5.74	26	
(2,9) - 5.3	6.06	27	
(3,10) – 6	6.128	28	
(1,10) - 6.2	6.328	29	
(1,11) - 7	7.16	30	
(1,12) - 7.1	7.32	31	
(2,10) - 7.2	7.52	32	
(2,11) - 7.3	7.84	33	
(2,12) - 7.4	8.16	34	
(2,13) - 7.5	8.48	35	
(1,13) – 8.5	8.66	36	
(3,11) – 9.1	9.228	37	
(3,12) - 9.2	9.356	38	
(3,13) - 9.3	9.484	39	
(3,14) – 9.5	9.628	40	

Δημιουργούμε τον νέο πίνακα με τη νέα σειρά αναχώρησης:

Σειρά Αναχώρησης	Πακέτο (i,j)	Ολοκλήρωση (msec)	Καθυστέρηση (msec)
1.	(3,1) - 0.1	0.356	0.256
2.	(3,2) - 0.2	0.612	0.412
3.	(1,1) - 0.3	0.772	0.372
4.	(3,3) - 0.25	1.028	0.778
5.	(2,1) - 0.2	1.348	1.248
6.	(1,2) - 0.6	1.508	1.108
7.	(2,2) - 0.4	1.828	1.428
8.	(1,3) - 0.7	1.988	1.288
9.	(2,3) - 0.5	2.308	1.808
10.	(1,4) - 1	2.468	1.468
11.	(1,5) - 1.4	2.628	1.228
12.	(1,6) - 2.1	2.788	0.688
13.	(2,4) - 2.1	3.108	1.008
14.	(1,7) - 2.2	3.268	1.068
15.	(2,5) - 2.2	3.588	1.388
16.	(2,6) - 2.3	3.908	1.608
17.	(1,8) - 3	4.068	1.068
18.	(3,4) - 3.1	4.324	1.224
19.	(3,5) - 3.2	4.58	1.38
20.	(3,6) - 3.3	4.836	1.536
21.	(3,7) - 4.1	5.092	0.992
22.	(3,8) - 4.2	5.348	1.148
23.	(3,9) - 4.3	5.604	1.304
24.	(1,9) - 5.1	5.764	0.664

25.	(2,7) - 5.1	6.084	0.984
26.	(2,8) - 5.2	6.404	1.204
27.	(2,9) - 5.3	6.724	1.424
28.	(3,10) - 6	6.98	0.98
29.	(1,10) - 6.2	7.14	0.94
30.	(1,11) - 7	7.3	0.3
31.	(1,12) - 7.1	7.46	0.36
32.	(2,10) - 7.2	7.78	0.58
33.	(2,11) - 7.3	8.1	0.8
34.	(2,12) - 7.4	8.42	1.02
35.	(2,13) - 7.5	8.74	1.24
36.	(1,13) - 8.5	8.9	0.4
37.	(3,11) - 9.1	9.356	0.256
38.	(3,12) - 9.2	9.612	0.412
39.	(3,13) - 9.3	9.868	0.568
40.	(3,14) - 9.5	10.124	0.624

- Η συνολική καθυστέρηση για το ρεύμα 1 είναι 10.952 msec, δηλαδή η μέση καθυστέρηση είναι 0.84246 msec.
- Η συνολική καθυστέρηση για το ρεύμα 2 είναι 15.74 msec, δηλαδή η μέση καθυστέρηση είναι 1.21076 msec.
- Η συνολική καθυστέρηση για το ρεύμα 3 είναι 11.87 msec, δηλαδή η μέση καθυστέρηση είναι 0.84785 msec.
- Η συνολική καθυστέρηση και για τα τρία ρεύματα είναι 38,562 msec, δηλαδή η μέση καθυστέρηση είναι 0.96405 msec.

Ο συνολικός πίνακας είναι:

	K ₁ (msec)	K ₂ (msec)	K ₃ (msec)	K _{oλ} (msec)
FIFO	0.97753	1.12184	0.85928	0.98305
FQ	2.58	1.92	1.301	1.91785
WFQ	0.84246	1.21076	0.84785	0.96405

Άσκηση 2

<u>Ερώτημα 1</u>

Ο ρυθμός αφίξεων λ:

$$\lambda = \frac{\#\pi\alpha\kappa\acute{\epsilon}\tau\omega\nu}{\chi\rhoονικ\acute{o}} = \frac{40~\pi\alpha\kappa\acute{\epsilon}\tau\alpha}{10~msec} = 4000~\pi\alpha\kappa\acute{\epsilon}\tau\alpha/sec$$

Ο ρυθμός αναχωρήσεων μ:

$$\begin{split} \mu &= \frac{40 \, \pi \alpha \kappa \acute{\epsilon} \tau \alpha}{\# \pi \alpha \kappa \acute{\epsilon} \tau \omega \nu 1 * T_1 + \# \pi \alpha \kappa \acute{\epsilon} \tau \omega \nu 2 * T_2 + \# \pi \alpha \kappa \acute{\epsilon} \tau \omega \nu 3 * T_3} = \\ &= \frac{1}{13 * 0.16 + 13 * 0.32 + 14 * 0.256} \cong 4071.66123 \, \pi \alpha \kappa \acute{\epsilon} \tau \alpha/sec \end{split}$$

Δηλαδή η μέση συνολική καθυστέρηση d:

$$d = \frac{1}{\mu - \lambda} = 13.9545 \ msec/πακέτο$$

Ερώτημα 2

Ο ρυθμός αφίξεων λ είναι ίδιος (4000 πακέτα/sec). Ο ρυθμός αναχωρήσεων μ:

$$\mu = \frac{3}{T_1 + T_2 + T_3} = \frac{3}{0.16 + 0.32 + 0.256} = 4076.086 \, \pi \alpha \kappa \acute{\epsilon} \tau \alpha / sec$$

Επιπλέον:

$$\rho = \frac{\lambda}{\mu} = \frac{4000}{4076.086} = 0.9813333$$

Δηλαδή η μέση συνολική καθυστέρηση d:

$$d = \frac{1}{2\mu} * \frac{2-\rho}{1-\rho} = \frac{1}{8152.172} * \frac{1.01866}{0.018666} = 6.694 \ msec/\pi\alpha\kappa \acute{\epsilon}\tau o$$

Ερώτημα 3

Παραθέτουμε έναν πίνακα με όλες τις μέσες καθυστερήσεις προκειμένου να γίνει η σύγκριση:

	FIFO	WQ	FWQ	M/M/1	M/D/1
Μέση Καθυστέρηση (msec)	0.98305	1.91785	0.96405	13.9545	6.694

Παρατηρούμε πως και τα δύο αποτελέσματα της θεωρίας αναμονής είναι πολύ μεγαλύτερα από αυτά που υπολογίστηκαν με τα διαφορετικά μοντέλα ουράς. Ωστόσο, όπως περιμέναμε, η FWQ είναι πιο γρήγορη (κατά 0.017 msec από την FIFO) από τα τρία μοντέλα ουράς.