- **Q.** 1 Simulate a discrete-time Geo/Geo/1 queue, i.e., a discrete time queue with Bernoulli arrivals and services. Play with it by changing different the parameters. In particular, study the following scenarios.
 - Pick $\mu = 0.9$. Simulate for $\lambda = 0.1, 0.2, \dots 0.9, 1$. By simulating the queue for T time slots (large $T \gg 1000$), compute $\frac{1}{T} \sum_{t=1}^{T} Q(t)$ in each case, where Q(t) is the number of jobs in the system. Plot against λ .
 - You learned in class about the $\pi P = \pi$. Compare the above quantity with the expectation under the PMF π .
 - Let D_i be the sojourn time of the *i*th job/packet. (Sojourn time is the time from arrival till service completion.) Compute $\frac{1}{N} \sum_{i=1}^{N} D_i$ for large N for all λ in the above list. Plot against λ .
 - Plot the ratio of the two quantities computed in the previous parts against λ . (This relates to an interesting theorem in queuing theory called Little's theorem. Check that out in the textbook.)