Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation

Cho, 2014

발표: 염혜원

1. Introduction

- This paper focuses on a novel neural network architecture that can be used as a part of the conventional phrase-based SMT system; "RNN Encoder—Decoder"
- RNN Encoder—Decoder consists of two recurrent networks
 - Encoder maps a variable-length source sequence to a fixed-length vector
 - Decoder maps the vector representation back to a variablelength target sequence

1. Introduction (cont'd)

- Two networks are trained jointly to maximize the conditional probability of the target sequence given a source sequence; 조건부 확률을 최대화!
- Additional suggestion of hidden unit (GRU)
- The model is then used as a part of a standard phrasebased SMT system by scoring each phrase pair in the phrase table; 기존 번역 시스템을 보조하는 수단으로 활용

2.1 Preliminary: Recurrent Neural Networks

- 구성요소: hidden state h, optional output y
- Input: variable length sequence $x = (x_1, \dots, x_T)$
- t 시점에 hidden state는 이전 state와 현재 input에 의해 업데이트

$$h_t = f(h_{t-1}, x_t)$$
 * f: non-linear activation function

2.1 Preliminary: Recurrent Neural Networks

- RNN은 sequence에 대한 probability distribution을 학습할 수 있음
 (Sequence 내에서 다음에 나올 심볼을 예측하도록 학습됨)
 -> 이를 통해 각 시점 t에서 새로운 sequence를 생성해낼 수 있음
- Output at each time step t: conditional distribution

$$- p(x_t|x_{t-1}, \ldots, x_1)$$

• Probability of the sequence x:

$$-\prod_{t=1}^{t=T} p\left(x_t | x_{t-1}, \dots, x_1\right)$$

2.2 RNN Encoder — Decoder

- hidden state h_t 가 주어졌을 때 다음에 나올 심볼 y_t 를 예측하도록 학습됨
- 이때 vanilla RNN과 달리, y_{t-1} 과 **c**도 고려

$$h_t = f\left(h_{t-1}, \quad y_{t-1}, \quad c\right)$$

- **summary c** (last hidden state of the encoder) of the whole input sequence
- 순차적으로 sequence 를 읽음
- hidden state update
- Encoder—Decoder are jointly trained to maximize the conditional log-likelihood

$$\max_{\theta} \frac{1}{N} \sum_{n=1}^{N} \log p_{\theta}(y_n | x_n)$$

 $\max_{\theta} \frac{1}{N} \sum_{n=1}^{N} \log p_{\theta}(y_n | x_n)$ Minimize Cross Entropy Error for all target words conditions for all target words conditioned on source words

2.2 RNN Encoder — Decoder

- RNN Encoder Decoder 가 학습되면 모델은 두 가지로 활용될수 있음
 - Input sequence 가 주어졌을 때 target sentence 생성
 - (input, output) pair가 주어졌을 때 조건부 확률을 기반으로 점수를 매김

2.3 Hidden Unit that Adaptively Remembers and Forgets

New type of hidden unit: GRU

$$r_{j} = \sigma \left(\left[W_{r} x \right]_{j} + \left[U_{r} h_{t-1} \right]_{j} \right)$$

$z_j = \sigma\left(\left[W_z x\right]_j + \left[U_z h_{t-1}\right]_j\right)$ update gate : 새로운 hidden state \widetilde{h}_j^t 로 업데이트 할 것인지

$$\widetilde{h}_{j}^{t} = \phi \left(\left[Wx \right]_{j} + \left[U(r \bigodot h_{t-1}) \right]_{j} \right)$$

$$h_j^t = z_j h_j^{t-1} + (1 - z_j) \tilde{h}_j^t$$

reset gate

: 이전 hidden 무시할 것인지

: logistic sigmoid \prod_i : j-th element of a vector

2.3 Hidden Unit that Adaptively Remembers and Forgets

New type of hidden unit: GRU

$$r_{j} = \sigma \left(\left[W_{r} x \right]_{j} + \left[U_{r} h_{t-1} \right]_{j} \right)$$

$$z_{j} = \sigma \left(\left[W_{z} x \right]_{j} + \left[U_{z} h_{t-1} \right]_{j} \right)$$

$$\widetilde{h}_{j}^{t} = \phi \left(\left[W x \right]_{j} + \left[U(r \bigodot h_{t-1}) \right]_{j} \right)$$

$$h_{j}^{t} = z_{j} h_{j}^{t-1} + (1 - z_{j}) \widetilde{h}_{j}^{t}$$

* source : CS 224 lecture #9

3. Statistical Machine Translation

- SMT의 목적은 source sentence e가 주어졌을 때 p(f|e)
 를 maximize 하는 translation f를 찾는 것임
- 실제 SMT는 다음의 log-linear model를 활용함

$$\log p(f|e) = \sum_{n=1}^{N} w_n f_n(f, e) + \log Z(e)$$

 W_n, f_n : n-th feature and weight

 $\log Z(e)$: normalization constant

weight는 BLEU score를 maximize 하도록 최적화 됨

^{*} BLEU(bilingual evaluation understudy) :기계 번역의 품질을 측정하는데 사용하는 지표. 실제 사람이 한 번 역과 기계 번역의 유사성을 계산하는 방식으로 구함. 간단하고 쉽게 구할 수 있다는 장점이 있음

3. Statistical Machine Translation

3.1 Scoring Phrase Pairs with RNN Encoder—Decoder

 본 논문에서는 RNN Encoder—Decoder를 phrase pair에 대해 학습시키고, 결과 score를 additional feature로 활용

$$\log p\left(f|e\right) = \sum_{n=1}^{N} w_n f_n(f,e) + \log Z(e)$$

 W_n, f_n : n-th feature and weight

 $\log Z(e)$: normalization constant

4.1 Data and Baseline System

- Translation에 있어 가능한 모든 data를 concat하는 것은 optimal 하지 않을 뿐만 아니라 모델을 핸들링하기도 어려움
- 각 task 에 가장 적합한 subset에 focus 해야 함
 - subset of 418M words out of more than 2G words for language modeling
 - subset of 348M out of 850M words for training the RNN Encoder—Decoder
 - for training the neural networks, limit source/target vocal to the most frequent 15,000 words for both English/French
 - out-of-vocabulary words were mapped to [UNK]

4.1.1 RNN Encoder—Decoder

- 1000 hidden units with the proposed gates at the encoder and at the decoder
- activation function used for \tilde{h} : tanh
- from the hidden state in the decoder to output: implemented as a deep neural network w/ single intermediate layer having 500 maxout units each pooling 2 inputs (??)
- Adadelta / sgd to train RNN Encoder—Decoder
- 64 phrase pairs used per each update
- most frequent 15,000 words (both English and French)

(Appendix) RNN Encoder

$$h_j^t = z_j h_j^{t-1} + (1 - z_j) \widetilde{h}_j^t$$
* initial hidden state is fixed to 0
$$\widetilde{h}_j^t = tanh \left(\left[We(x_t) \right]_j + \left[U(r \bigodot h_{t-1}) \right]_j \right)$$

$$z_j = \sigma \left(\left[W_z e(x_t) \right]_j + \left[U_z h_{t-1} \right]_j \right)$$

$$r_j = \sigma \left(\left[W_r e(x_t) \right]_j + \left[U_r h_{t-1} \right]_j \right)$$

$$c = tanh\left(Vh^N\right)$$
 * c: representations of the source phrase

(Appendix) RNN Decoder

$$\begin{split} h'^0 &= tanh(V'c) & \text{* initialization} \\ h'^t_j &= z'_j h'^{t-1}_j + (1 - z'_j) \widetilde{h'}^t_j \\ \widetilde{h'}^t_j &= tanh \left(\left[W'e(y_{t-1}) \right]_j + r_j \left[U'h'_{t-1} + Cc \right] \right) \\ z'_j &= \sigma \left(\left[W'_z e(y_{t-1}) \right]_j + \left[U'_z h'_{t-1} \right]_j + \left[C_z c \right]_j \right) \\ r'_j &= \sigma \left(\left[W'_r e(y_{t-1}) \right]_j + \left[U'_r h'_{t-1} \right]_j + \left[C_r c \right]_j \right) \\ r'_j &= \sigma \left(\left[W'_r e(y_{t-1}) \right]_j + \left[U'_r h'_{t-1} \right]_j + \left[C_r c \right]_j \right) \end{split}$$

• t 시점마다 decoder는 j-th word에 대한 확률을 계산

$$p(y_{t,j} = 1 | y_{t-1}, \dots, y_1, X) = \frac{exp(g_j s_t)}{\sum_{j'=1}^{K} exp(g_{j'} s_t)}$$

* i-elemet of s^t :

$$s_i^t = max(s_{2i-1}^{'t}, s_{2i}^{'}) \longrightarrow maxout \text{ unit}$$

 $s'^t = O_h h'^t + O_h y_{t-1} + O_h c$

4.1.2 Neural Language Model

- CSLM (Continuous Space Language Model)
 traditional approach of using a neural network for learning a target language model (Schwenk, 2007)
 - ▶ RNN과 CSLM 을 같이 사용했을 때와, RNN만 사용했을 때를 비교 해서 RNN과 CSLM의 contribution이 구별됨을 확인하고자 함

4.2 Quantitative Analysis

Models	BLEU	
	dev	test
Baseline	30.64	33.30
RNN	31.20	33.87
CSLM + RNN	31.48	34.64
CSLM + RNN + WP	31.50	34.54

* Word Penalty (??)

4.3 Qualitative Analysis

- 기존의 translation model은 통계량에 기반하므로 자주 나오는 phrase를 덜 나오는 phrase대비 잘 예측 할 것
- RNN Encoder Decoder는 frequency 정보 없이 훈련 되었으므로
 통계 보다는 언어학적 규칙성에 의해 scoring할 것으로 기대
 - ► 대부분의 케이스에서 RNN Encoder—Decoder의 선택이 실제 번역과 유사 했으며, RNN Encoder—Decoder는 짧은 구문을 선호하는 현상 관찰됨
- RNN Encoder Decoder 만으로 generation 결과 phrase table을 참조하지 않고서도 well-formed target phrases 생성함

4.4 Word and Phrase Representations

▶ RNN Encoder — Decoder 는 phrase 의 semantic & syntactic structure 모두 캡처

5. Conclusion

- RNN Encoder Decoder 모델 제시:
 - arbitrary length sequence to another sequence from a different set, of arbitrary length
- 새로운 hidden unit 제시:
 - includes a reset / update gate
- 새로운 모델은 언어학적 규칙성을 찾아낼 수 있고, 말이 되는 target phrases를 제안할 수도 있음
- RNN Encoder Decoder가 scoring에 활용되었을 때 BLEU score 향상

End of Document