Содержание

1			2
	1.1	ОДУ и его решение	2
	1.2	Сведение ОДУ высокого порядка к первого порядка	2
	1.3	Задача Коши для уравнений первого и высших порядков	2
	1.4	Задача Коши с параметром	2
	1.5	НЕТ Сведение ее к задаче Коши, где параметр входит только в начальное условие	3
2	готово		4
	2.1	Теорема локального существования и единственности задачи Коши (формулировка)	4
	2.2	Сведение к эквивалентному интегральному уравнению	4
	2.3	Примеры уравнений, когда единственность отсутствует	4
3			5
	3.1	Теорема локального существования и единственности задачи Коши (формулировка)	5
	3.2	НЕТ СУЩЕСТВОВАНИЯ Существование и единственность решений соответ-	
		ствующего интегрального уравнения	5
4	готово		7
	4.1	Теорема о локальной непрерывной зависимости решений задачи Коши от пара-	
		метром	7
	4.2	Принцип сжимающих отображений с параметром	10
5			11
	5.1	Глобальная единственность решений ОДУ	11
	5.2	Продолжение решений ОДУ	11
	5.3	(НЕТ) Максимальный интервал продолжимости решения	12
	5.4	Пример уравнения, где решение определено не на всем интервале времени, где	
		определена правая часть	12
6			13
	6.1	Глобальная непрерывная зависимость решений ДУ от параметров	13
	6.2	(надо еще раз переварить) Теорема о продолжении решения до границы компакта	13
7	готово 1		15
	7.1	Оператор коши ДУ и его свойства	15
	7.2	Автономные ДУ	16
	7.3	Сдвиг по времени переводит решения в себя	16
	7.4	Преобразования потока автономного ДУ и их свойства	16

1.1 ОДУ и его решение

Равенство вида $F(y^{(n)},...,y'',y',y,x)=0$, где F — непрерывная по совокупности аргументов функция со значениями в \mathbb{R}^k , y-k-мерная вектор-функция с значениями в \mathbb{R}^k .

Решением ОДУ называется $y \colon I \to \mathbb{R}^k$, дифференцируемая нужное число раз и при подстановке в уравнение дающая тождество.

1.2 Сведение ОДУ высокого порядка к первого порядка

$$\begin{cases} F(y'_{n-1}, y_{n-1}, ..., y_1, y_0, x) = 0, \\ y'_{n-2} = y_{n-1}, \\ \vdots \\ y'_1 = y_2, \\ y'_0 = y_1. \end{cases}$$

 y_0 — решение $F(y^{(n)},...,y',y,x)=0 \Rightarrow (y_0,y_1=y_0',...,y_{n-1}=y_0^{(n-1)})$ — решение системы.

▶ y_0 — решение $F(y^{(n)},...,y',y,x)=0\Rightarrow y=y_0$, тогда $y_1=y_0',...,y_{n-1}=y_0^{(n-1)}$. Значит, $y_{n-1}'=y_0^{(n)}$. Тогда первое уравнение системы имеет вид $F(y_0^{(n)},y_0^{(n-1)},...,y_0',y_0,x)=0$, чьим решением является y_0 . ◀

1.3 Задача Коши для уравнений первого и высших порядков

• Первый порядок: $\begin{cases} y' = f(y,x), & y - \text{ решение уравнения в первой строчке.} \\ y(x_0) = y_0, & \\ y^{(n)} = f(y^{(n-1)},...,y',y,x), & \\ y(x_0) = y_0, & \\ y'(x_0) = y'_0, & y - \text{ решение уравнения в первой строчке.} \\ \vdots & \\ y^{(n-1)}(x_0) = y_0^{(n-1)}, & \end{cases}$

1.4 Задача Коши с параметром

$$\begin{cases} y'(x) = f(y,x,\lambda), \\ y(x_0) = y_0(\lambda), \end{cases}$$
 для высшего порядка аналогично.

1.5 HET Сведение ее к задаче Коши, где параметр входит только в начальное условие

2 ГОТОВО

2.1 Теорема локального существования и единственности задачи Коши (формулировка)

 $F:\Omega\to\mathbb{R}^n$, где $\Omega\subset\mathbb{R}^{n+1}$ открыто, такова, что

- 1) F непрерывна,
- 2) F липшицева по x: $\exists L>0$, т.ч. $\forall x,y\in\mathbb{R}^n$ и $t\in\mathbb{R}$, т.ч. $(x,t),(y,t)\in\Omega$, выполнено $|F(x,t)-F(y,t)|\leq L|x-y|$.

Пусть $t_0 \in \mathbb{R}, x_0 \in \mathbb{R}^n$ таковы, что $(x_0, t_0) \in \Omega$. Тогда

- 1) $\exists I\subset\mathbb{R},t_0\in I,x\colon I\to\mathbb{R}^n$, являющаяся решением задачи Коши $\dot{x}(t)=F(x,t),x(t_0)=x_0,$
- 2) если $\hat{x}\colon J\to\mathbb{R}^n$ решение этой задачи Коши, то $x(t)=\hat{x}(t)\; \forall t\in I\cap J.$

2.2 Сведение к эквивалентному интегральному уравнению

Задача Коши: $\begin{cases} \dot{x} = F(x,t), \\ x(t_0) = x_0 \end{cases}$. Покажем, что x — решение задачи Коши $\Leftrightarrow x$ — решение t

 $x(t)=x_0+\int\limits_{t_0}^t F(x(au), au)d au$ (считаем x непрерывным).

- • x решение задачи Коши. Значит (или из условия), x непрерывно. Т.к. F непрерывно, $t \mapsto F(x(t),t)$ непрерывно как композиция непрерывных функций. Значит, $\dot{x} = F(x,t)$ непрерывно. Тогда проинтегрируем от t_0 до t обе части: $x(t) x(t_0) = \int_{t_0}^t F(x(\tau),\tau) d\tau$.
- x решение интегрального уравнения. x непрерывно $\Rightarrow F(x(\tau),\tau)$ непрерывно. Тогда продифференцируем по t верхнему пределу интегрирования обе части интегрального уравнения. По теореме Барроу производная определенного интеграла от непрерывной функции по его переменному верхнему пределу существует и равна подынтегральной функции от верхнего предела: $\dot{x} = \frac{dx}{dt} = F(x(t),t)$. Начальное условие тоже выполнено: $x(t_0) = x_0 + \int\limits_{t_0}^{t_0} (...) = x_0$.

2.3 Примеры уравнений, когда единственность отсутствует

1. $\begin{cases} \dot{x}(t)=3x^{\frac{2}{3}},\\ -\text{ задача Коши. Два ее решения: } x_1(t)=t^3, x_2(t)=0. \ \Pi$ ример связан с недифференцируемостью правой части.

2. $x:J\to\mathbb{R}^d$ — решение задачи Коши. $I\subset J$ — интервал, $t_0\in I.$ $x|_I:I\to\mathbb{R}^d$ — также решение задачи Коши.

3.1 Теорема локального существования и единственности задачи Коши (формулировка)

 $F:\Omega\to\mathbb{R}^n$, где $\Omega\subset\mathbb{R}^{n+1}$ открыто, такова, что

- 1) F непрерывна,
- 2) F липшицева по x: $\exists L>0$, т.ч. $\forall x,y\in\mathbb{R}^n$ и $t\in\mathbb{R}$, т.ч. $(x,t),(y,t)\in\Omega$, выполнено $|F(x,t) - F(y,t)| \le L|x - y|.$

Пусть $t_0 \in \mathbb{R}, x_0 \in \mathbb{R}^n$ таковы, что $(x_0, t_0) \in \Omega$. Тогда

- 1) $\exists I \subset \mathbb{R}, t_0 \in I, x \colon I \to \mathbb{R}^n$, являющаяся решением задачи Коши $\dot{x}(t) = F(x,t), x(t_0) = x_0$,
- 2) если $\hat{x}: J \to \mathbb{R}^n$ решение этой задачи Коши, то $x(t) = \hat{x}(t) \ \forall t \in I \cap J$.

НЕТ СУЩЕСТВОВАНИЯ Существование и единственность ре-3.2шений соответствующего интегрального уравнения

Задача Коши: $\begin{cases} y'(t) = f(t,y), \\ y(t_0) = y_0 \end{cases}$. Соответствующее интегральное уравнение: $y(t) = y_0 + y_0 +$

Единственность. Если f(t,y) непрерывна по t и y и удовлетворяет условию Липшица по y: $\exists N>0$, т.ч. $|(f(t,y_1)-f(t,y_2)|\leq N|y_1-y_2|\ \forall y_1,y_2\in\mathbb{R}^n,t\in\mathbb{R}$, т.ч. $(t,y_1),(t,y_2)\in\Omega$, то решение интегрального уравнения единственно.

▶ Пусть интегральное уравнение имеет решения $y_1(t), y_2(t)$. Тогда

$$\begin{cases} U(t) = y_1(t) - y_2(t) = \int_{t_0}^{t} (f(\tau, y_1(\tau)) - f(\tau, y_2(\tau))) d\tau, \\ U(t_0) = 0. \end{cases}$$

$$f(\tau, y_2(\tau)))d\tau| \le \int_{t_0}^t (|f(\tau, y_1(\tau)) - f(\tau, y_2(\tau))|)d\tau.$$

Известно, что модуль интеграла не превосходит интеграл модуля: $|U(\tau)| = |\int_{t_0}^t (f(\tau,y_1(\tau)) - f(\tau,y_2(\tau)))d\tau| \le \int_{t_0}^t (|f(\tau,y_1(\tau)) - f(\tau,y_2(\tau))|)d\tau.$ Из условия Липшица: $|f(\tau,y_1) - f(\tau,y_2)| \le N|y_1(t) - y_2(t)| = N(U(\tau)).$ Тогда $|U(\tau)| \le \int_{t_0}^t (|f(\tau,y_1(\tau)) - f(\tau,y_2(\tau))|)d\tau \le N\int_{t_0}^t |U(\tau)|d\tau.$ Лемма Гронуолла-Беллмана. Если непрерывная функция Z(t) удовлетворяет $0 \le Z(t) \le \int_{t_0}^t |T(\tau)|^2 d\tau + \sigma(t)^2 (t)$

 $k \int_{t_0}^t Z(\tau) d\tau + g(t)(*)$, где $k = const, t \geq t_0$, то $0 \leq Z(t) \leq k \int_{t_0}^t g(t) e^{k(t-\tau)} d\tau d\tau + g(t)$. Докажем

Т.к. N = const, g(t) = 0, по этой лемме у нас $0 \le |U(\tau)| \le 0 \Rightarrow U(\tau) = 0 \Rightarrow y_1(t) = y_2(t)$. Доказано.

Теперь докажем лемму. Пусть $R(t)=\int_{t_0}^t Z(\tau)d\tau, R(t_0)=0, R'=Z(t)$. Подставим в (*), получим $0\leq R'(t)\leq kR(t)+g(t)$.

Тогда $R'(t) - kR(t) \leq g(t)$. Т.к. $(e^{-kt})' = e^{-kt} \cdot -k$, то $(R(t)e^{-kt})' = R'(t)e^{-kt} - kR(t)e^{-kt}$, это неравенство имеет вид $(R(t)e^{-kt})'e^{kt} \leq g(t)$ или $(R(t)e^{-kt})' \leq g(t)e^{-kt}$. Зная, что $g(t_0) = 0$, проинтегрируем неравенство: $R(t)e^{-kt} \leq \int_{t_0}^t g(\tau)e^{-k\tau}d\tau$, т.е. $R(t) \leq \int_{t_0}^t g(\tau)e^{k(t-\tau)}d\tau$.

Тогда из $0 \le R'(t) \le kR(t) + g(t)$ и того, что $R(t) = \int_{t_0}^t Z(t) d\tau$, получим $0 \le Z(t) \le k \int_{t_0}^t g(\tau) e^{k(t-\tau)} d\tau + g(t)$. \blacktriangleleft

Существование. Если f(t,y) непрерывна по t,y и удовлетворяет условию Липшица по y, то решение уравнения существует в интервале $t_0 - M < t < t_0 + M, \ |f| < M.$

4 ГОТОВО

4.1 Теорема о локальной непрерывной зависимости решений задачи Коши от параметром

^{*}см следующую стр*

Теорема 2.1.4. Пусть функция $F: \Omega \to \mathbb{R}^n$, где $\Omega \subset \mathbb{R}^{n+1+m}$ открыто (координаты в этом \mathbb{R}^{n+1+m} мы будем обозначать $(x_1, \ldots, x_n, t, \lambda_1, \ldots, \lambda_m)$), удовлетворяет следующим условиям:

- F непрерывна,
- F липшицева по x: существует L > 0, такое что для любых $x, y \in \mathbb{R}^n$, $t \in \mathbb{R}$ $u \lambda \in \mathbb{R}^m$, для которых $(x, t, \lambda), (y, t, \lambda) \in \Omega$, выполнено $|F(x, t, \lambda) F(y, t, \lambda)| \le L|x y|$.

Пусть также дана непрерывная функция $x_0: \Lambda \to \mathbb{R}^n$, где $\Lambda \subset \mathbb{R}^m$ открыто. Пусть $t_0 \in \mathbb{R}$ и $\lambda_0 \in \Lambda$, таковы, что $(x_0(\lambda), t_0, \lambda) \in \Omega$. Тогда

• существует интервал $I \subset \mathbb{R}$, $t_0 \in I$, открытое множество $V \subset \Lambda$, $\lambda_0 \in \Lambda$, и функция $x \colon I \times V \to \mathbb{R}^n$, являющаяся решением задачи Коши

$$\dot{x}(t, \lambda) = F(x, t, \lambda), \quad x(t_0) = x_0(\lambda);$$

• если $\hat{x}: J \to \mathbb{R}^n$ — решение этой задачи Коши при некотором $\hat{\lambda} \in V$, то $x(t, \hat{\lambda}) = \hat{x}(t)$ при всех $t \in I \cap J$.

Доказательство. 1. Как уже говорилось, рассмотрим отображение Φ_{λ} , определённое формулой (2.1.4). В качестве пространства, где «живут» функции x, рассмотрим

$$E_{I,\varepsilon} = \{x \colon \overline{I} \to B_{\varepsilon}(x_0(\lambda_0)) \mid x \text{ непрерывна}\};$$

параметр $\varepsilon > 0$ и интервал $I \ni t_0$ мы выберем ниже. По известной теореме из курса анализа пространство $C(\overline{I} \to \mathbb{R}^n)$ с нормой $\|x\| = \sup_{t \in \overline{I}} |x(t)|$ будет полно; тогда полно и $E_{I,\varepsilon}$ как его замкнутое подмножество.

2. Перейдём к доказательству того, что к $\Phi_{\lambda} \colon E_{I,\varepsilon} \to E_{I,\varepsilon}$ применима параметрическая версия принципа сжимающих отображений. По ходу дела мы сформулируем некоторые условия на ε и I, а также $V \ni \lambda_0$, их совместность мы проверим далее.

2а. Нам нужно, чтобы Φ_{λ} было корректно определено. Для этого выберем такие $\varepsilon_0 > 0$, $I_0 \ni t_0$, $V_0 \subset \lambda$, что $\overline{B}_{\varepsilon_0}(x_0(\lambda_0)) \times \overline{I_0} \times \overline{V_0} \subset \Omega$. Тогда при

$$\varepsilon \leq \varepsilon_0, \quad I \subset I_0, \quad V \subset V_0$$

для любого $\lambda \in V$ и любой $x \in E_{I,\varepsilon}$ выражение $F(x(\tau), \tau, \lambda), \tau \in I$, будет корректно определено, то есть Φ_{λ} будет определено.

26. Проверим, что $\Phi \colon E_{I,\varepsilon} \times V \to C(\overline{I} \to \mathbb{R}^n)$ будет непрерывно. Действительно, F непрерывна на компакте $\overline{B}_{\varepsilon_0}(x_0(\lambda_0)) \times \overline{I_0} \times \overline{V_0}$, а значит, равномерно непрерывна на нём. В частности, для любого γ существует $\delta_1(\gamma)$, что если $|\lambda - \hat{\lambda}| < \delta_1$ и $|y - \hat{y}| \le \delta_1$, то $|F(y,t,\lambda) - F(\hat{y},t,\hat{\lambda})| < \gamma$. Аналогично, (равномерная) непрерывность x_0 на \overline{V}_0 даёт, что для любого γ существует $\delta_2(\gamma)$, что если $|\lambda - \hat{\lambda}| < \delta_2$, то $|x_0(\lambda) - x_0(\hat{\lambda})| < \gamma$. Наконец, положим $\delta(\gamma) = \min(\delta_1(\gamma), \delta_2(\gamma))$.

Возьмём $x, \hat{x} \in E_{I,\varepsilon}, \|x - \hat{x}\| < \delta = \delta(\gamma)$ и $\lambda, \hat{\lambda} \in \overline{V}_0, |\lambda - \hat{\lambda}| < \delta$, тогда

$$|\Phi(x,\lambda)(t) - \Phi(\hat{x},\hat{\lambda})(t)| \le |x_0(\lambda) - x_0(\hat{\lambda})| + \int_{t_0}^t |F(x(\tau),\tau,\lambda) - F(\hat{x}(\tau),\tau,\lambda)| d\tau \le \gamma + |t - t_0| \cdot \gamma.$$

Итак, $\|\Phi(x,\lambda) - \Phi(\hat{x},\hat{\lambda})\|_{C(\overline{I} \to \mathbb{R}^n)} \le (1+\mu)\gamma$, где $\mu = \max_{t \in \overline{I}} |t-t_0|$ — максимальное отклонение точек I от t_0 . Значит, отображение Φ непрерывно.

2в. Далее, нам нужно, чтобы $\Phi(E_{I,\varepsilon} \times V) \subset E_{I,\varepsilon}$. Мы потребуем даже больше: $\Phi(E_{I,\varepsilon} \times V) \subset E_{I,5\varepsilon/6}$, причины для этого станут ясны ниже (см. п. 4). Оценим $\Phi(x,\lambda)$ следующим образом:

$$|\Phi(x,\lambda)(t) - x_0(\lambda_0)| \le |x_0(\lambda) - x_0(\lambda_0)| + \int_{t_0}^t |F(x(\tau),\tau,\lambda)| d\tau.$$

Первое слагаемое будет меньше $\varepsilon/2$, если $\lambda \in V_1(\varepsilon)$, где $V_1(\varepsilon) = V_0 \cap B_{\delta_2(\varepsilon/2)}(\lambda_0)$. Для оценки второго слагаемого положим

$$M = \max\{|F(x,t,\lambda)|, (x,t,\lambda) \in \overline{B}_{\varepsilon_0}(x_0(\lambda_0)) \times \overline{I_0} \times \overline{V_0}\}.$$

Тогда второе слагаемое не превосходит μM и будет меньше $\varepsilon/3$ при $\mu M < \varepsilon/3$. Итак, мы требуем

$$V \subset V_1(\varepsilon), \quad I \subset \left(t_0 - \frac{\varepsilon}{3M}, t_0 + \frac{\varepsilon}{3M}\right).$$

2
г. Наконец, требуется, чтобы Φ_{λ} сжимало, например, с коэффициентом q=1/2. Возьмём $x,\hat{x}\in E_{I,\varepsilon},\,\lambda\in V.$ Тогда

$$|\Phi_{\lambda}(x) - \Phi_{\lambda}(\hat{x})| \leq \int_{t_0}^t |F(x(\tau), \tau, \lambda) - F(\hat{x}(\tau), \tau, \lambda)| d\tau \leq \int_{t_0}^t L|x(\tau) - \hat{x}(\tau)| d\tau \leq L|t_0 - t| \cdot ||x - \hat{x}||.$$

Следовательно, Φ_{λ} сжимает с коэффициентом $L\mu \leq L\varepsilon/3M$ и мы требуем, что

$$\frac{L\varepsilon}{3M} < \frac{1}{2}.$$

3. Выбор ε , I и V осуществляется теперь в таком порядке: сначала выберем $\varepsilon = \min(\varepsilon_0, 3M/2L)$, затем выберем $V = V_0 \cap V_1(\varepsilon)$ и $I \subset I_0 \cap (t_0 - \varepsilon/3M, t_0 + \varepsilon/3M)$.

Применяя принцип сжимающих отрезков с параметром, мы заключаем, что при $\lambda \in V$ существует решение $x(t,\lambda) = x_{\lambda}(t)$ задачи Коши, определённое на отрезке \overline{I} . При этом отображение $\lambda \mapsto x_{\lambda}$ из V в $E_{I,\varepsilon} \subset C(\overline{I} \to \mathbb{R}^n)$ непрерывно. Но это значит, что $x \colon \overline{I} \times V \to \mathbb{R}^n$ непрерывно, \overline{I} и первый пункт теоремы доказан.

 1 Приведём доказательство этого факта. Пусть $(t,\lambda)\in \overline{I}\times V$. Для $\varepsilon>0$ найдём такую окрестность $V_\varepsilon\ni\lambda$, что при $\hat{\lambda}\in V_\varepsilon$ верно $\|x_\lambda-x_{\hat{\lambda}}\|<\varepsilon/2$ (это непрерывность $\lambda\mapsto x_\lambda$). С другой стороны, из непрерывности x_λ следует, что при $\hat{t}\in B_\delta(t)$ верно $|x_\lambda(t)-x_\lambda(\hat{t})|<\varepsilon/2$. Тогда при $(\hat{t},\hat{\lambda})\in B_\delta(t)\times V_\varepsilon$ получаем

$$|x(t,\lambda) - x(\hat{t},\hat{\lambda})| \le |x(t,\lambda) - x(\hat{t},\lambda)| + |x(\hat{t},\lambda) - x(\hat{t},\hat{\lambda})| \le \varepsilon/2 + ||x_{\lambda} - x_{\xi}|| \le \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

4. Для доказательства единственности заметим, что, как видно из описанной в п. 3 процедуры выбора параметров, интервал I всегда можно укорачивать, не нарушая требования, перечисленные в пп. 2а-г. В частности, можно было бы воспользоваться единственностью неподвижной точки у сжимающего отображения Φ_{λ} на $E_{I\cap J,\varepsilon}$ (или, точнее, $E_{I\cap J',\varepsilon}$, где $J' \in J$ — нам нужно, чтобы \hat{x} было определено на замыкании рассматриваемого интервала). Однако мы не знаем, что $\hat{x}|_{\overline{I\cap J'}}$ лежит в $E_{I\cap J',\varepsilon}$. Поэтому это рассуждение требует следующей доработки.

Итак, пусть $J' \in J$ и $\hat{x}|_{\overline{I \cap J'}} \notin E_{I \cap J', \varepsilon}$. С другой стороны, $|\hat{x}(t_0) - x_0(\lambda_0)| = |x_0(\hat{\lambda}) - x_0(\lambda_0)| \le \varepsilon/2$ (поскольку $V \subset V_1(\varepsilon)$). Значит, существует интервал $K \subset I \cap J'$, $t_0 \in K$, такой что $\hat{x}|_{\overline{K}} \in E_{K,\varepsilon} \setminus E_{K,5\varepsilon/6}$ (проверьте!). Тогда $\hat{x}|_{\overline{K}}$ — неподвижная точка $\Phi_{\lambda} \colon E_{K,\varepsilon} \to E_{K,\varepsilon}$, однако $\Phi_{\lambda}(E_{K,\varepsilon}) \subset E_{K,5\varepsilon/6}$ (см. п. 2в), т. е. $\hat{x}|_{\overline{K}} = \Phi_{\lambda}(\hat{x}|_{\overline{K}}) \in E_{K,5\varepsilon/6}$.

Таким образом, $|\hat{x}(t) - x_0(\lambda_0)| \le \varepsilon$ при $t \in \overline{I \cap J'}$. Как уже говорилось, в этом случае $x|_{\overline{I \cap J'}}$ и $\hat{x}|_{\overline{I \cap J'}}$ будут неподвижными точками $\Phi_{\lambda} \colon E_{I \cap J', \varepsilon} \to E_{I \cap J', \varepsilon}$, а значит, совпадут. Поскольку $J' \in J$ произвольно, $x(t) = \hat{x}(t)$ при всех $t \in I \cap J$.

Замечание. Пусть F в этих теоремах — C^1 -гладкая функция на Ω (или хотя бы F'_x непрерывна на Ω) и $\Omega' \in \Omega$. Тогда, как следует из доказательства теоремы, длину отрезка I можно взять одной и той же для всех $(x_0(\lambda), t_0, \lambda) \in \Omega'$.

Действительно, $\overline{\Omega}'$ — компакт, поэтому непрерывная функция $\rho(x,\mathbb{R}^N\setminus\Omega)$ достигает на нём минимума β . Пусть $\Omega'' - \beta/2$ -окрестность Ω' . Тогда $\Omega'' \in \Omega$. Множество $\overline{B}_{\varepsilon_0}(x_0(\lambda_0)) \times \overline{I_0} \times \overline{V_0}$ в п. 2а будем выбирать так, чтобы оно лежало не только в Ω , но и в $\overline{\Omega''}$, при этом его размеры отделены снизу от нуля (нужно вырезать «кубик» в шарике радиуса $\beta/2$). В последующих пунктах для определения L и M нужны значения $\sup |F|$ и $\sup \|F_x'\|$ по этому «кубику», но их можно заменить теми же супремумами по всему компакту $\overline{\Omega''}$.

Это замечание понадобится нам далее, при обсуждении продолжимости решений.

Теорема. (Принцип сжимающих отображений с параметром) Пусть $\Phi: X \times \Lambda \to X$ — непрерывное отображение, где X, Λ — метрические пространства, причём X полно. Пусть существует такое q < 1, что при всех $x, y \in X$ и всех $\lambda \in \Lambda$ верно (каждая фундаментальная последовательность

$$\rho(\Phi(x,\lambda),\Phi(y,\lambda)) \le q\rho(x,y).$$
 сходится)

Будем обозначать $\Phi_{\lambda}(x) = \Phi(x, \lambda)$. Тогда если $z(\lambda)$ – неподвижная точка отображения Φ_{λ} , то $z: \Lambda \to X$ непрерывна.

Доказательство. Напомним схему доказательства обычного принципа сжимающих отображений. Если $\Psi: X \to X$ сжимает с коэффициентом q, то возьмём любую точку y_0 и положим $y_n = \Psi^n(y_0)$. Тогда $\rho(y_n, y_{n+1}) \le q^n \rho(y_0, \Psi(y_0))$, откуда $= p(\Psi \cap (y_0), \Psi \cap (\Psi(y_0))) <= qp(\Psi \cap (n-1)(y_0), \Psi \cap (n-1)(y_0)) <= \dots$

$$\rho\left(y_n,y_m\right)\leq\sum_{k=\min(n,m)}^{\infty}q^n\rho\left(y_0,\Psi\left(y_0\right)\right)=q^{\min(m,n)}\frac{\rho\left(y_0,\Psi\left(y_0\right)\right)}{1-q}.\overset{<=}{\text{ q^n}}\text{ p (y0,}}$$
 по нер-ву треуг $\sum_{k=\min(n,m)}^{\infty}q^n\rho\left(y_0,\Psi\left(y_0\right)\right)=q^{\min(m,n)}\frac{\rho\left(y_0,\Psi\left(y_0\right)\right)}{1-q}.\overset{<=}{\text{ q^n}}\text{ p (y0,}}$ т.к. $q<1$, при достаточно большом м или п эта величина сколь угодно мала

Поэтому y_n фундаментальна, а значит, имеет предел y.

Заметим, что если в последней оценке мы перейдём к пределу при $n \to \infty$ и положим m=0, то получим

$$\rho\left(y_{0},y\right) \leq \frac{\rho\left(y_{0},\Psi\left(y_{0}\right)\right)}{1-q}.$$

Неформально говоря, это неравенство означает, что если y_0 «почти неподвижна» (мало смещается под действием Ψ), то она достаточно близка к «настоящей» неподвижной точке v.

Применим это соображение к нашей ситуации. Пусть $\lambda_0 \in \Lambda$, $z_0 = z(\lambda_0)$. Тогда при $\lambda \in \Lambda$ будем строить $z(\lambda)$, итерируя точку z_0 . Из оценки на $\rho(y_0,y)$ получим, что

$$\rho(z(\lambda_0), z(\lambda)) = \rho(z_0, z(\lambda)) \le \frac{\rho(z_0, \Phi(z_0, \lambda))}{1 - q} = \frac{\rho(\Phi(z_0, \lambda_0), \Phi(z_0, \lambda))}{1 - q}.$$

В силу непрерывности Φ мы можем для любого ε выбрать такое $\delta = \delta(\varepsilon)$, что $\rho(\Phi(z_0, \lambda_0), \Phi(z_0, \lambda)) < \varepsilon(1-q)$ при $\rho(\lambda, \lambda_0) < \delta$, а тогда при $\rho(\lambda, \lambda_0) < \delta$ будет верно и $\rho(z(\lambda_0), z(\lambda)) < \varepsilon$.

4.2 Принцип сжимающих отображений с параметром

5.1 Глобальная единственность решений ОДУ

Глобальная теорема о единственности. Запишем задачу Коши:

$$\begin{cases} \dot{x} = f(t,x), \\ x(t_0) = x_0. \end{cases}$$
 $f \colon \Omega \to \mathbb{R}^d, \Omega \subset \mathbb{R}^{1+d} - \text{открыто},$ $f, f_x' \in C(\Omega)$

Тогда если

$$x^{(1)}\colon I^{(1)}\to\mathbb{R}^d, x^{(2)}\colon I^{(2)}\to\mathbb{R}^d$$
 — решения задачи Коши, то $x^{(1)}|_{I^{(1)}\cap I^{(2)}}\equiv x^{(2)}|_{I^{(1)}\cap I^{(2)}}$.

- \blacktriangleright Рассмотрим $\{t \geq t_0 : x^{(1)}|_{[t_0,t]} = x^{(2)}|_{[t_0,t]}\} = A$. Считаем, что $x^{(1)}, x^{(2)}$ определены на всем $[t_0,t_1]$. Хотим показать, что $A = I^{(1)} \cap I^{(2)}$.
 - (1) $t_0 \in A$ (помним, что $x(t_0) = x_0$),
- (2) $t \in A \Rightarrow \forall t' \in [t_0, t]$ $t' \in A$ (если решения совпали на каком-то отрезке, то и на его подотрезке тоже).

Из этих наблюдений сделаем вывод, что А может иметь один из следующих видов:

- 1) $A = [t_0, +\infty)$. Значит, решения совпадают от t_0 вправо $\Rightarrow I^{(1)}$ и $I^{(2)}$ имеют вид $I^{(1)} = (..., +\infty)$, $I^{(2)} = (..., +\infty)$. Значит, $x^{(1)}(t) = x^{(2)}(t)$ при $t \in [t_0, +\infty)$.
- 2) $A = [t_0, \tau), \tau \in \mathbb{R}$. Если $\sup I^{(1)} = \tau$ или $\sup I^{(2)} = \tau$, то при $t \geq t_0$ доказали, а при $t < t_0$ аналогично.

Теперь пусть τ — не максимум какого-либо интервала $I^{(1)}$ или $I^{(2)}$. Значит, τ лежит в каждом из интервалов (если бы не лежала, то не было бы ограничений $x^{(1)}$ и $x^{(2)}$ на $[t_0,t]$). Раз каждая функция $x^{(1)}, x^{(2)}$ непрерывна, то $x^{(1)}(\tau) = \lim_{t \to \tau - 0} x^{(1)}(t) = \lim_{t \to \tau - 0} x^{(2)}(t) = x^{(2)}(t)$. Выходит, $\tau \in A$. Но мы сказали, что $\tau \notin A$.

3) $A = [t_0, \tau], \tau \in \mathbb{R}.$ $x^{(1)}, x^{(2)}$ — решения задачи Коши, тогда $x^{(1)}(t) = x^{(2)}(t)$ при $t \in \overline{B}_{\delta}(x)$ по локальной теореме о существовании и единственности $\Rightarrow [t_0, t + \delta) \subset A$. Противоречие. \blacktriangleleft

5.2 Продолжение решений ОДУ

Определение. Решение $x\colon I\to\mathbb{R}^n$ — непродолжимо, если не существует решения $\hat{x}\colon J\to\mathbb{R}^n,\ I\subset J\colon \hat{x}|_I=x.$

Теорема. Всякое решение продолжается до непродолжимого, если верна теорема о существовании и единственности, т.е. $f, f'_x \in C$.

▶ 1) Пусть X — множество всех решений задачи Коши. Рассмотрим $J = \bigcup_{(xI \to \mathbb{R}^n) \in X} I, J$ — открытое множество, интервал.

Если $t \in J$, то $t \in I$ для $(x: I \to \mathbb{R}^n) \in X$. Тогда $[t_0, t] \subset I$, т.е. $[t_0, t_1] \subset J$. Следовательно, $J = (\inf J, \sup J)$.

- 2) Определим $\overline{x}: J \to \mathbb{R}^n$ так: $\overline{x}(t) = x(t)$, если $(x: I \to \mathbb{R}^n) \in X$ (т.е. любое решение, у которого t входит в область определения \overline{x}). Корректность: $x_1: I_1 \to \mathbb{R}^n, x_2: I_2 \to \mathbb{R}^n$ два решения, $t \in I_1 \cap I_2$. Из глобальной теоремы о единственности $x_1|_{I_1 \cap I_2} = x_2|_{I_1 \cap I_2}$ получаем, что $x_1(t) = x_2(t)$.
- 3) $\overline{x} \in X$ покажем, что x решение. Если $t \in J$, то $\exists (x:I \to \mathbb{R}^n) \in X, \ t \in I$. Тогда $B_{\delta}(t) \subset I$ (I открытое множество). Тогда $\overline{x}|_{B_{\delta}(t)} = x|_{B_{\delta}(t)}$. Раз функции совпали в маленькой окрестности, то у них одинаковые производные: $\frac{d\overline{x}}{dt}(t) = \frac{dx}{dt}(t)$. Т.к. x решение, $\frac{dx}{dt}(t) = \dot{x}(t) = f(t, x(t)) = f(t, \overline{x}(t)), \overline{x}(t_0) = x_0$.
- 4) \overline{x} непродолжимо. Пусть нет: тогда $\exists (\tilde{x} \colon \tilde{I} \to \mathbb{R}^n) \in X, \ \tilde{I} \supset I$. Но J это объединение всех областей определения, т.е. $\tilde{I} \subset J$. Противоречие. \blacktriangleleft

5.3 (НЕТ) Максимальный интервал продолжимости решения

5.4 Пример уравнения, где решение определено не на всем интервале времени, где определена правая часть

Решением уравнения $\dot{x} = x^2 + 1$ является x(t) = tg(t). Но тангенс не определен в точках $\frac{\pi}{2} + \pi k, k \in \mathbb{Z}$, а правая часть уравнения определена на всех x.

НЕ ЗАПИСАЛА ДОКАЗАТЕЛЬСТВО Глобальная непрерывная 6.1зависимость решений ДУ от параметров

 $\begin{cases} \dot{x} = F(t, x, \lambda), \\ x(t) = x_0(\lambda), \end{cases}$ (*). x_{λ_0} — решение (* $_{\lambda_0}$) (т.е. при $\lambda = \lambda_0$), $x_{\lambda_0} : I \to \mathbb{R}^n$, где I — отрезок (взяли на решении-интервале отрезок). $F, F_x' \in C(\Omega)$. Тогда $\exists U \ni \lambda_0$,

- (1) $\forall \lambda \in U$ решение $x_{\lambda}(*_{\lambda})$ существует на I (и единственно по глобальной теореме о существовании и единственности)Ю
 - (2) $x(\lambda, t) = x_{\lambda}(t)$, x непрерывно на $U \times I$. доказательство во второй лекции на 17:22

6.2 (надо еще раз переварить) Теорема о продолжении решения до границы компакта

Пусть $f, f'_x \in C(\Omega), K \subset \Omega$ — компакт, $(t_0, x_0) \in \Omega, x \colon J \to \mathbb{R}^n$ — непродолжимое решение задачи Коши $\begin{cases} \dot{x} = f(t, x), \\ x(t) = x \end{cases}$ (#). Тогда существует $t_0 < T < \sup J$, т.ч. $(t, x(t)) \notin K$ при $t \in \mathbb{R}^n$ $(T, \sup J).$

- \blacktriangleright 1) Если $\sup J = \infty$, то $T = \max(t \mid (t,x) \in K)$ (максимум существует, т.к. компакт ограничен, а x(t) непрерывен).
 - 2) Если $\sup J = t_+ \in \mathbb{R}$

Напомним теорему о существовании и единственности. Если $(\tilde{t}, \tilde{x}) \in \Omega$, то решение задачи Коши $\begin{cases} \dot{x}=f(t,x), \\ x(\tilde{t})=\tilde{x}, \end{cases}$ определено на $B_{\tau}(\tilde{t}),\ \tau=\tau(\varepsilon,\delta,M,L),\ \text{где }M$ и L находятся так: $B=\overline{B_{\delta}}(\tilde{t})\times\overline{B_{\varepsilon}}(\tilde{x})\subset\Omega, \sup_{B}\lvert f\rvert\leq M, \sup_{B}\lvert f'_{x}\rvert\leq L.$ Пусть $\rho=\min_{K}(\operatorname{dist}((t,x),\mathbb{R}^{n}\backslash\Omega)).$ Эта функция положительная, т.к. для каждой точки из

компакта мы можем взять шарик положительного радиуса внутри $\Omega,$ значит, расстояние до точки вне Ω будет не меньше этого радиуса.

Рассмотрим $\tilde{K}=\{(t,x)\in\mathbb{R}^{n+1}:\,dist((t,x),K)\leq
ho/2\}$ — множество достаточно близких к компакту точек. Оно замкнуто, т.к. это множество, где непрерывная функция принимает значения из замкнутого множества. $\tilde{K}\subset\Omega$: если точка из $\mathbb{R}^n \backslash \Omega$ находится на расстоянии до K, меньшим rho/2, т.е. расстояние от K до этой точки не больше $\rho/2$, т.е. расстояние между K и $\mathbb{R}^n \setminus \Omega$ не больше $\rho/2$ (т.к. расстояние между множествами — inf расстояний точек множеств, т.е. оно не больше расстояния между нашей точкой и K), т.е. $\rho \leq \rho/2$, что неправда. \tilde{K} ограничено, т.к. $K \subset B_R$ (K компакт в $\mathbb{R}^n \Rightarrow$ ограничен) $\Rightarrow \tilde{K} \subset B_{R+\rho/2}$, т.к. по определению \tilde{K} расстояние от любой его точки до компакта не больше $\rho/2$. Значит, \tilde{K} — компакт.

Пусть $\varepsilon = \delta = \rho/4$. Тогда $\forall (\tilde{t}, \tilde{x}) \in K$ верно, что $B = \overline{B}_{\delta}(\tilde{t}) \times \overline{B}_{\varepsilon}(\tilde{x}) \subset \tilde{K}$, т.к., если возьмем шарик с радиусом $\rho/2$ в центре с (\tilde{t}, \tilde{x}) , все точки внутри шарика будут на расстоянии $\leq \rho/2 \Rightarrow$ их расстояние до K не превосходит $\rho/2 \Rightarrow$ они в \tilde{K} по определению. Поэтому произведение окрестностей радиусов, не превосходящих $\rho/2$, также лежит в \tilde{K} . Значит, $\sup_{B} |f| \leq \sup_{\tilde{K}} |f| := M$, аналогично для $|f_x'|$ назовем L точную грань. Тогда для теоремы о существовании и единственность $\tau = \tau_K$ можно считать одинаковым для всех точек компакта.

Положим $T = t_+ - \tau_K$. Если $\exists t \in (T, t_+)$, т.ч. $(\hat{t}, x(\hat{t})) \in K$, то задача Коши $\begin{cases} \dot{y} = f(t, y), \\ y(\hat{t}) = x(\hat{t}), \end{cases}$ имеет решение $y \colon B_{\tau_K}(\hat{t}) \to \mathbb{R}^n$. С другой стороны, x — тоже решение задачи Коши (*).

Тогда существует непродолжимое решение $(*)-\overline{y},$ т.ч. $\overline{y}(t_0)=x(t_0)=x_0,$ т.к. оно продолжает $x,\Rightarrow \overline{y}$ — решение задачи Коши $\begin{cases} \dot{x}=f(t,x),\\ x(t_0)=x_0 \end{cases}$ для $f\colon\Omega\to\mathbb{R}^n.$ Тогда \overline{x} — непродолжимое для этой задачи Коши — то есть непродолжимое решение $\overline{y}.$

 \overline{y} определено при $t=t_+$ и равно $y(t_+)$, определенное, т.к. $y\colon B_{\tau_K}(\hat{t})\ni t_+$, а \overline{x} — непродолжимое решение задачи Коши на Ω — не определено при $t=t_+$ (потому что $t_+=\sup J,\ J$ — это интервал \Rightarrow не содержит свой $\sup \Rightarrow$ не содержит t_+ , а непродолжимое решение определено на J). Противоречие с тем, что \overline{x} — продолжение \overline{y} . \blacktriangleleft

ГОТОВО

Оператор коши ДУ и его свойства

 $\dot{x} = F(t,x), F, F'_x \in C(\Omega)$. Отображение $x_{t_0t_1}(\xi) = \nu$, если решение задачи Коши $\begin{cases} \dot{x} = F(t,x), \\ x(t_1) = \xi \end{cases}$ равно ν при $t=t_1$.

- (1) $x_{tt} = id$,
- $(2) \ x_{t_2t_3} \circ x_{t_1t_2} = x_{t_1t_3}$ (если t_2 между t_1 и t_3 , то области определения совпадают, иначе на пересечении областей определения).

- (3) $x_{ts}^{-1} = x_{st}$ (из (2): $x_{ts} \circ x_{st} = x_{ss} = \mathrm{id} \Rightarrow x_{ts}^{-1} = x_{st}$.
- (4) $x_{ts}(y)$ непрерывно по (t, s, y),
- $(5) x_{ts}$ гомеоморфизм.

Доказательство (4):
$$\begin{cases} \dot{x} = f(t,x), \\ x(t_0) = y \end{cases}$$
 . Пусть $z(s) = x(t_0+s)$, тогда
$$\begin{cases} \frac{dz}{ds}(s) = \dot{x}(t_0+s) = f(t_0+s,x(t_0+s)), \\ z(0) = y. \end{cases}$$
 Тогда задача Коши переписывается так:
$$\begin{cases} \frac{dz}{ds}f(t_0+s,z), \\ z(0) = y. \end{cases}$$
 Это задача Коши с параметром
$$z(0) = y.$$

 (t_0,y) . Т.к. f непрерывна по совокупности аргументов, тогда и от параметров $\frac{dz}{ds}$ зависит непрерывно (композиция непрерывных функций). То есть $z_{t_0,y}(s)$ непрерывно по совокупности аргументов (решение задачи Коши). Тогда $x_{t_0,t_1}(y)=z_{t_0,y}(t_1-t_0)$ непрерывно.

Доказательство (5): x_{ts} определено на открытом (открытом из глобальной теоремы о непрерывной зависимости) $A_{ts} \subset \mathbb{R}^n$. $B_{ts} = x_{ts}(A_{ts}) = A_{st}$ (было начало в s, перевелось в начало в t, было с концом в t, перевелось с концом в s, стало начало в t и конец в s), $x_{ts}: A_{ts} \to A_{st}, x_{st}: A_{st} \to A_{ts}, x_{ts}, x_{st}$ — непрерывны.

7.2 Автономные ДУ

Нет зависимости от времени: $\dot{x} = f(x)$.

7.3 Сдвиг по времени переводит решения в себя

Если x — решение автономного ДУ, то $\hat{x} = x(t+a)$ — тоже: $\hat{x}(t) = \dot{x}(t+a) = f(x(t+a)) = f(x(t+a)) = f(\hat{x}(t))$.

7.4 Преобразования потока автономного ДУ и их свойства

Преобразования потока автономного ДУ — это $g^t = x_{0,t}$.

- (1) $g^0 = id$,
- (2) $g^{t+s} = g^t \circ g^s = x_{0t} \circ x_{0s} =$ сдвиг x_{0t} на $s = x_{s,t+s} \circ x_{0,s} = x_{0,t+s} = g^{t+s}$,
- (3) $g^{-t} = (g^t)^{-1}$,
- (4) $g^t(x)$ непрерывно по (t,x),
- (5) g^t гомеоморфизм.