

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Отчёт по лабораторной работе №2 по курсу «Анализ Алгоритмов»

Студент Паламарчук А.Н.

Группа <u>ИУ7-53Б</u>

Преподаватель Кормановский М.В.

СОДЕРЖАНИЕ

\mathbf{B}	ВЕД	ЕНИЕ	3		
1	Ана	алитическая часть	4		
	1.1	Матрица	4		
	1.2	Стандартный алгоритм умножения матриц	4		
	1.3	Алгоритм Винограда	5		
	1.4	Оптимизированный алгоритм Винограда	5		
2	Конструкторская часть				
	2.1	Описание используемых структур данных	6		
	2.2	Разработка алгоритмов	6		
3	Технологическая часть				
	3.1	Средства реализации	10		
	3.2	Реализация алгоритмов	10		
	3.3	Функциональные тесты	13		
4	Исо	следовательская часть	14		
	4.1	Технические характеристики	14		
	4.2	Сравнительный анализ временных затрат	14		
	4.3	Результаты проведенных исследований	17		
3	4К Л	ЮЧЕНИЕ	18		
\mathbf{C}	пис	ОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	19		

ВВЕДЕНИЕ

Целью данной работы является исследование стандартного алгоритма умножения матриц, алгоритма Винограда, оптимизированного алгоритма Винограда. Для достижения поставленной цели необходимо выполнить следующие задачи:

- разработать алгоритм стандартного умножения матриц, алгоритм Винограда, оптимизированный алгоритм Винограда;
- разработать программное обеспечение, содержащее алгоритм стандартного умножения матриц, алгоритм Винограда, оптимизированный алгоритм Винограда;
- провести функциональное тестирование реализованных алгоритмов;
- провести сравнительный анализ алгоритмов.

1 Аналитическая часть

1.1 Матрица

Матрицей A размера $m \times n$ называется прямоугольная таблица чисел, функций или алгебраических выражений, содержащая m строк и n столбцов. Числа m и n определяют размер матрицы [1].

Умножение матрицы A на матрицу B определено, лишь когда число столбцов первой матрицы в произведении равно числу строк второй. Тогда произведением матриц A B называется матрица C, каждый элемент которой c_{ij} равен сумме попарных произведений элементов i-й строки матрицы A на соответствующие элементы j-го столбца матрицы B [1].

1.2 Стандартный алгоритм умножения матриц

Стандартный алгоритм умножения матриц является одним из базовых методов, используемых для вычисления произведения двух матриц. Пусть даны две матрицы A размером $m \times k$ и B размером $k \times n$. Результатом их умножения будет матрица C размером $m \times n$.

Стандартный алгоритм умножения матриц можно описать следующим образом. Инициализация — создается матрица C размером $m \times n$, и все её элементы инициализируются нулями. Это необходимо для того, чтобы избежать случайных значений в результирующей матрице. Вложенные циклы — для вычисления каждого элемента матрицы C используются три вложенных цикла, внешний цикл проходит по строкам матрицы A (индекс i), средний цикл проходит по столбцам матрицы B (индекс j), внутренний цикл проходит по элементам строки матрицы A и столбца матрицы B (индекс k), вычисляя сумму произведений соответствующих элементов.

$$C[i][j] = \sum_{k=0}^{k-1} A[i][k] \times B[k][j]$$
 (1.1)

1.3 Алгоритм Винограда

Алгоритм Винограда основан на использовании предварительных вычислений для уменьшения количества необходимых операций умножения. В отличие от стандартного алгоритма, который требует $O(m \cdot n \cdot p)$ операций умножения для умножения матриц A размером mp и B размером pn, алгоритм Винограда снижает это количество до $O(m \cdot n + m + n)$, что делает его более эффективным для больших матриц.

Алгоритм начинает с вычисления промежуточных значений, которые позволяют сократить количество операций умножения. Для матриц A и B вычисляются два массива, для строк матрицы A:

$$P[i] = \sum_{k=0}^{k-1} A[i][k] \cdot B[k][j]$$
 (1.2)

Для столбцов матрицы B:

$$Q[j] = \sum_{k=0}^{k-1} A[i][k] \cdot B[k][j]$$
 (1.3)

После вычисления промежуточных значений, алгоритм использует их для вычисления элементов результирующей матрицы C. Каждый элемент C[i][j] вычисляется как:

$$C[i][j] = P[i] + Q[j]$$
 (1.4)

Затем выполняется сложения промежуточных значений, что позволяет избежать повторных вычислений и значительно ускоряет процесс умножения.

1.4 Оптимизированный алгоритм Винограда

Индивидуальный вариант: инкремент счётчика наиболее вложенного цикла на 2; использование инкремента (+=); введение декремента при вычислении вспомогательных массивов;

2 Конструкторская часть

2.1 Описание используемых структур данных

При реализации алгоритмов будут использованы следующие структуры данных:

- матрица тип массив;
- размер матрицы целочисленный тип.

2.2 Разработка алгоритмов

На рисунках 2.1, 2.2 и 2.3 представлены соответственно стандартный алгоритм умножения матриц, алгоритм Винограда, оптимизированный алгоритм Винограда.

Рисунок 2.1 – Схема стандартного алгоритма умножения матриц

Рисунок 2.2 – Схема алгоритма Винограда

Рисунок 2.3 – Схема оптимизированного алгоритма Винограда

3 Технологическая часть

3.1 Средства реализации

В данной работе для реализации был выбран язык программирования Python. Требуется измерить затрачиваемое время и построить графики. Для построения графиков использовалась библиотека mathplotlib.

3.2 Реализация алгоритмов

В листингах 3.1, 3.2 и 3.3 представлены реализации алгоритма стандартного умножения матриц, алгоритма Винограда, оптимизированного алгоритма Винограда.

Листинг 3.1 – Стандартный алгоритм умножения матриц

```
def mul std(a: Matrix, b: Matrix):
2
      if (a.size != b.size):
3
           return ERROR DIFFERENT SIZE
4
      size = a.size
      res = Matrix(size, Gen.ZERO\_MATRIX)
5
6
      for i in range(size):
7
           for j in range(size):
               for k in range(size):
8
9
                   res.data[i][j] += a.data[i][k] * b.data[k][j]
10
      return res
```

Листинг 3.2 – Алгоритм Винограда

```
def mul_grape(a: Matrix, b: Matrix):
      if (a.size != b.size):
2
3
           return ERROR DIFFERENT SIZE
4
5
      size = a.size
      row a = size
6
7
      col a = size
8
      col b = size
      tmp row = [0] * row a
9
      tmp col = [0] * col b
10
11
      for i in range(row a):
12
13
           for j in range (0, col a // 2):
14
               tmp row[i] = tmp row[i] + a.data[i][2 * j] *
                  a. data [i][2 * j + 1]
15
16
      for i in range(col b):
           for j in range (0, col a // 2):
17
18
               tmp col[i] = tmp col[i] + b.data[2 * j][i] * b.data[2 *
                  j + 1][i]
19
20
      res = Matrix(size, Gen.ZERO MATRIX)
      for i in range(row a):
21
22
           for j in range(col_b):
               res.data[i][j] = -tmp_row[i] - tmp_col[i]
23
               for k in range (0, col a // 2):
24
25
                    res.data[i][j] = res.data[i][j] + (a.data[i][2 * k]
                      + 1] + b.data[2 * k][j]) * (a.data[i][2 * k] +
                      b. data [2 * k + 1][j])
26
      if (col a \% 2 == 1):
27
           for i in range(row a):
28
29
               for j in range(col b):
                    res.data[i][j] = res.data[i][j] + a.data[i][col a -
30
                       1] * b.data[col a - 1][j]
31
32
      return res
```

Листинг 3.3 – Оптимизированный алгоритм Винограда

```
def mul grape opt(a: Matrix, b: Matrix):
      if (a.size != b.size):
2
3
           return ERROR DIFFERENT SIZE
4
5
      size = a.size
      row a = size
6
7
      col a = size
8
      col b = size
      tmp row = [0] * row a
9
      tmp col = [0] * col b
10
11
      for i in range(row a):
12
13
           for j in range (0, col a // 2):
14
               tmp row[i] = tmp row[i] + a.data[i][2 * j] *
                  a. data[i][2 * j + 1]
15
16
      for i in range(col b):
           for j in range (0, col a // 2):
17
               tmp\_col[i] = tmp\_col[i] + b.data[2 * j][i] * b.data[2 *
18
                  j + 1][i]
19
      flag = col a \% 2
20
      res = Matrix(size, Gen.ZERO_MATRIX)
21
22
      for i in range(row a):
           for j in range(col b):
23
               res.data[i][j] -= tmp_row[i] + tmp_col[i]
24
25
               for k in range(1, col a, 2):
                   res.data[i][j] += (a.data[i][k - 1] + b.data[k][j])
26
                      * (a.data[i][k] + b.data[k - 1][j])
               if (flag):
27
                    res.data[i][j] += a.data[i][col a - 1] *
28
                      b.data[col a - 1][j]
29
30
      return res
```

3.3 Функциональные тесты

В таблице 3.1 приведены тесты для функций программы. Тесты для всех функций пройдены успешно.

Таблица 3.1 – Функциональные тесты

Матрица А	Матрица <i>В</i>	Ожидание	Результат
$\begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$	$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$	$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$
0 1 0	$\begin{bmatrix} 4 & 5 & 6 \end{bmatrix}$	$\begin{bmatrix} 4 & 5 & 6 \end{bmatrix}$	$\begin{bmatrix} 4 & 5 & 6 \end{bmatrix}$
$\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$	7 8 9	789	(7 8 9)
$\begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$	$(12\ 15\ 18)$	$(12\ 15\ 18)$
	$\begin{bmatrix} 4 & 5 & 6 \end{bmatrix}$	12 15 18	12 15 18
111	7 8 9	$12 \ 15 \ 18$	$12 \ 15 \ 18$
$\begin{pmatrix} 0 & 1 \end{pmatrix}$	$\left(8\ 4\right)$	$\begin{pmatrix} 2 & 4 \end{pmatrix}$	$\begin{pmatrix} 2 & 4 \end{pmatrix}$
$\left(79\right)$	$\begin{pmatrix} 2 & 4 \end{pmatrix}$	$\begin{pmatrix} 74 & 64 \end{pmatrix}$	$\begin{pmatrix} 74 & 64 \end{pmatrix}$
$\begin{bmatrix} -2 & -1 & 0 \end{bmatrix}$	$\begin{pmatrix} 1 & -1 & 1 \end{pmatrix}$	$\begin{pmatrix} -4 & 2 & -5 \end{pmatrix}$	$\begin{pmatrix} -4 & 2 & -5 \end{pmatrix}$
$\begin{bmatrix} 3 & 2 & 1 \end{bmatrix}$	$\begin{bmatrix} 2 & 0 & 3 \end{bmatrix}$	8 -1 9	8 -1 9
$\begin{bmatrix} -1 & 2 & -2 \end{bmatrix}$	$\begin{pmatrix} 1 & 2 & 0 \end{pmatrix}$	$\begin{pmatrix} 1 & -3 & 5 \end{pmatrix}$	$\begin{pmatrix} 1 & -3 & 5 \end{pmatrix}$
$\left(\begin{array}{c ccc} -4 & -1 & -2 \end{array} \right)$	$\begin{pmatrix} 3 & 1 & 2 \end{pmatrix}$	$\begin{pmatrix} -15 & -13 & -16 \end{pmatrix}$	$\begin{pmatrix} -15 & -13 & -16 \end{pmatrix}$
$\begin{bmatrix} -2 & -1 & -3 \end{bmatrix}$	$\begin{bmatrix} 1 & 1 & 2 \end{bmatrix}$	$\begin{bmatrix} -10 & -15 & -15 \end{bmatrix}$	$\begin{bmatrix} -10 & -15 & -15 \end{bmatrix}$
$\left(-2 -3 -1 \right)$	143	$\begin{pmatrix} -10 & -9 & -13 \end{pmatrix}$	$\begin{pmatrix} -10 & -9 & -13 \end{pmatrix}$

4 Исследовательская часть

4.1 Технические характеристики

Технические характеристики устройства:

- операционная система Manjaro Linux x86 64;
- процессор Ryzen 5500U 6 ядер, тактовая частота 2.1 ГГц;
- оперативная память 16 Гбайт.

При тестировании ноутбук был включён в сеть электропитания. Во время тестирования ноутбук был нагружен только системными приложениями окружения, а также системой тестирования.

4.2 Сравнительный анализ временных затрат

Замеры времени для каждой размерности матрицы проводились 100 раз. Результат замера — среднее арифметическое время работы алгоритма, на вход подавались сгенерированные случайным образом матрицы.

На рисунках 4.1, 4.2 и 4.3 представлено сравнение временных затрат для стандартного алгоритма умножения матриц, алгоритма Винограда, оптимизированного алгоритма Винограда (общий случай, размерность чётная, размерность нечётная).

Рисунок 4.1 – Временные затраты, общий случай

Рисунок 4.2 — Временные затраты, размерность чётная

Рисунок 4.3 – Временные затраты, размерность нечётная

4.3 Результаты проведенных исследований

По полученным данным измерений временных затрат был сделан вывод о том, что алгоритм Винограда и оптимизированный алгоритм Винограда, затрачивают меньше времени для обработки по сравнению со стандартным алгоритмом умножения матриц. При увеличении размерности матриц это разрыв становится существеннее.

ЗАКЛЮЧЕНИЕ

В результате исследования было определено, что по временным затратам алгоритм Винограда и оптимизированный алгоритм Винограда эффективнее стандартного алгоритма умножения матриц и с увеличением размерности матриц разрыв во времени работы увеличивается.

Цель достигнута, были исследованы стандартный алгоритм умножения матриц, алгоритм Винограда, оптимизированный алгоритм Винограда, а также в ходе выполнения лабораторной работы были решены следующие задачи:

- разработаны алгоритм стандартного умножения матриц, алгоритм Винограда, оптимизированный алгоритм Винограда;
- разработано программное обеспечение, содержащее алгоритм стандартного умножения матриц, алгоритм Винограда, оптимизированный алгоритм Винограда;
- проведено функциональное тестирование реализованных алгоритмов;
- проведен сравнительный анализ алгоритмов.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

[1] Белоусов И. В. МАТРИЦЫ и ОПРЕДЕЛИТЕЛИ: учебное пособие по линейной алгебре. второе, исправленное и дополненное изд. Кишинев: Институт прикладной физики, Академии наук Республики Молдова, 2006.