Introduction to Machine Learning

Extending Linear Regression

Varun Chandola

Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu

Outline

Shortcomings of Linear Models

Bayesian Linear Regression

Handling Non-linear Relationships Handling Overfitting via Regularization Elastic Net Regularization

Handling Outliers in Regression

Issues with Linear Regression

- 1. Not truly Bayesian
- 2. Susceptible to outliers
- 3. Too simplistic Underfitting
- 4. No way to control overfitting
- 5. Unstable in presence of correlated input attributes
- 6. Gets "confused" by unnecessary attributes

Biggest Issue with Linear Models

- ► They are linear!!
- ► Real-world is usually non-linear
- ▶ How do learn non-linear fits or non-linear decision boundaries?
 - Basis function expansion
 - Kernel methods (will discuss this later)

Chandola@UB

Handling Non-linear Relationships

Proof Replace **x** with non-linear functions $\phi(\mathbf{x})$

$$p(y|\mathbf{x}, \boldsymbol{\theta}) \sim \mathcal{N}(\mathbf{w}^{\top} \phi(\mathbf{x}))$$

- ► Model is still linear in w
- Also known as basis function expansion

Example

$$\phi(x) = [1, x, x^2, \dots, x^p]$$

► Increasing *p* results in more complex fits

How to Control Overfitting?

- ▶ Use simpler models (linear instead of polynomial)
 - ► Might have poor results (underfitting)
- Use regularized complex models

$$\widehat{\boldsymbol{\Theta}} = \operatorname*{arg\,min}_{\boldsymbol{\Theta}} J(\boldsymbol{\Theta}) + \lambda R(\boldsymbol{\Theta})$$

ightharpoonup R() corresponds to the penalty paid for complexity of the model

$\overline{l_2}$ Regularization

Ridge Regression

$$\widehat{\mathbf{w}} = \operatorname*{arg\,min}_{\mathbf{w}} J(\mathbf{w}) + \lambda \|\mathbf{w}\|_2^2$$

▶ Helps in reducing impact of correlated inputs

Parameter Estimation for Ridge Regression

Exact Loss Function

$$J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} (y_i - \mathbf{w}^{\top} \mathbf{x}_i)^2 + \frac{1}{2} \lambda ||\mathbf{w}||_2^2$$

Ridge Estimate of w

$$\widehat{\mathbf{w}}_{\mathit{Ridge}} = (\lambda \mathbf{I}_D + \mathbf{X}^{ op} \mathbf{X})^{-1} \mathbf{X}^{ op} \mathbf{y}$$

Using Gradient Descent with Ridge Regression

- Very similar to OLE
- ▶ Minimize the squared loss using *Gradient Descent*

$$J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} (y_i - \mathbf{w}^{\top} \mathbf{x}_i)^2 + \frac{1}{2} \lambda ||\mathbf{w}||_2^2$$

$$\frac{\partial J(\mathbf{w})}{\partial w_j} = \frac{1}{2} \frac{\partial}{\partial w_j} \sum_{i=1}^{N} (y_i - \mathbf{w}^\top \mathbf{x}_i)^2 + \frac{1}{2} \lambda \frac{\partial \|\mathbf{w}\|_2^2}{\partial w_j}$$
$$= \sum_{i=1}^{N} (\mathbf{w}^\top \mathbf{x}_i - y_i) x_{ij} + \lambda w_j$$

Using the above result, one can perform repeated updates of the weights:

$$w_j := w_j - \eta \frac{\partial J(\mathbf{w})}{\partial w_i}$$

I_1 Regularization

Least Absolute Shrinkage and Selection Operator - LASSO

$$\widehat{\mathbf{w}} = \operatorname*{arg\,min}_{\mathbf{w}} J(\mathbf{w}) + \lambda |\mathbf{w}|$$

- ► Helps in feature selection favors sparse solutions
- Optimization is not as straightforward as in Ridge regression
 - ▶ Gradient not defined for $w_i = 0, \forall i$

LASSO vs. Ridge

- ▶ Both control overfitting
- ▶ Ridge helps reduce impact of correlated inputs, LASSO helps in feature selection

Elastic Net Regularization

$$\widehat{\mathbf{w}} = \operatorname*{arg\,min} J(\mathbf{w}) + \lambda |\mathbf{w}| + (1 - \lambda) \|\mathbf{w}\|_2^2$$

- ► The best of both worlds
- ► Again, optimizing for w is not straightforward

Chandola@UB

Impact of outliers on regression

- Linear regression training gets impacted by the presence of outliers
- ▶ The square term in the exponent of the Gaussian pdf is the culprit
 - Equivalent to the square term in the loss
- ► How to handle this (*Robust Regression*)?
 - Least absolute deviations instead of least squares

$$J(\mathbf{w}) = \sum_{i=1}^{N} |y_i - \mathbf{w}^{\top} \mathbf{x}|$$

References