

Review

- Computer: a collection of different hardware components
- Applications
 - Developed to perform tasks
 - Inflexible if written directly on hardware
- Operating system
 - Offers a set of features, secure, consistent interface for developing applications
 - · Managing hardware resources with concept of virtual machines
- What is the concept of virtual machine?
 - The goal of OS is provide a uniform, **abstract representation** of resources to applications
 - More elaboration later

Eddie Law

Don't mix up the virtual machine concept here with the "monitor" in

VMware or the virtual box VM

early batch system design, and the

Fact Checks on Modes

User Mode

- Application processes run in user mode
- Processes have no direct access to hardware or reference memory; must delegate to system calls to access hardware or memory
- With protection and isolation, crashes in user mode are usually recoverable

Kernel Mode

- Has complete and unrestricted access to the underlying hardware; can execute any CPU instruction and reference any memory address
- Generally reserved for the lowest-level, most trusted functions of the operating system
- · Crashes in kernel mode are catastrophic; will halt the computer

Topics to Cover

- Uniprogramming wastes resources
- Should use processor and I/O devices efficiently
- An application program and running processes
- Process description and control
- Multiprogramming
 - · Resources made available to multiple applications
 - (new idea) Processor runs multiple processes simultaneously how?
- Chapters: 3.1 3.5

Situation: Utilisation of the CPU

- Suppose the context switching time by CPU is negligible and ignored
- Suppose a process consumes CPU 5% of its execution time
 - \Rightarrow 95% of the CPU time is idle \Rightarrow wasted resources
- A trivial design plan:
 - Running 20 similar processes (disregard the switching overhead [discussed later in this set of slides], and the utilization of other needed resources)
 - ⇒ Close to 100% fully utilization of all the CPU time
 - ⇒ Concept of *multiprogramming*

Eddie Law

Process

- "A program in execution", also called task
- An instance of a program running on a computer
- The entity that can be assigned to and executed on a processor
- A unit of activity characterized by the execution of a sequence of instructions, a current state, and an associated set of system instructions
- (sometimes, process, task, job are used interchangeably, should check carefully)

Note the difference between program and process.

Requirements in Process Management

- Interleave the execution of several processes ...
 - To maximize processor utilization
 - While providing reasonable response time
- Allocate resources to processes
- Support inter-process communication, if needed

Eddie Law 11

Examples on Creating Processes

- Submission of a batch job
- User logs on
- Create to provide a service such as printing
- Spawned by an existing process (parent-child processes)

On Terminating Processes (1)

- Batch job issues Halt instruction
- User logs off
- Process executes a service request to terminate
- Child processes terminate so parent may terminate (Or vice-versa? Zombie processes?)

Eddie Law 13

On Terminating Processes (2)

- Operating system intervention
 - E.g. when deadlock occurs (more elaboration on this later)
- · Error and fault conditions
 - E.g. memory unavailable, protection error, arithmetic error, I/O failure, invalid instruction

Dispatcher

- (Recall, the old "monitor" in early batch system design)
- A small program that switches the processor from one process to another
- Prevents a single process from monopolizing processor time
 - Every process should be able to use the processor for a fair amount of time
 - ⇒ Concept of time quantum (or time slots)

Eddie Law 15

Trace of the Process

- The behavior of an individual process is shown by listing the sequence of instructions that are executed
- This list is called a *Trace*

Eddie Law 21

Process is Preempted When... • In the following two cases, a process cannot continue running and must leave the processor, i.e., it is preempted • Timeout • I/O, or wait for other events On process switching later in this chapter.

Eddie Law

Simplest Two-State Process Model A process is either · Running, or Dispatch Not-running Exit Enter Not • Plus *process creation* and Running running termination Pause How to fit this model in a multiprogramming environment? • Put not-running process in queue?

Priority Scheduling (1)

- Each process is assigned a priority
- One ready queue for the ready processes of a certain priority
- When the OS is going to dispatch a process, it chooses a ready process of the highest priority
- When a high priority process becomes ready, it may preempt a running process of lower priority

Note: more scheduling policies in ch. 9

Processes with Limited Resources

- Multiprogramming with multiple blocked queues
- Computing resources are limited
 - For CPU and I/O devices ← different state models
 - For memory??
- Not enough memory for all processes, what can we do?
 - To "suspend" some idle processes
 - What does "suspend" mean?

Eddie Law

What Processes are to Suspend?

- CPU is faster than I/O ⇒ many processes could be waiting for I/O
- Swap these processes to disk to free up more memory
- Blocked state upon swapping to disk is called "suspend" state
- Any implication??
 - Nature of processes: I/O-bound and CPU-bound processes
 - · E.g., different priority settings

Process Suspension: Examples

- Swapping
 - OS releases sufficient main memory to bring in a "ready" process to execute
- Other OS reasons
 - OS suspends 1) a background, or 2) utility process, or 3) a process that is suspected of causing a problem
- Interactive user request
 - User suspends execution of a program 1) for purposes of debugging, or 2) in connection with the use of a resource
- Timing
 - Process is executed periodically (e.g., an accounting or system monitoring process), and is suspended while waiting for the next time interval
- Parent process request
 - Parent process suspends execution of a descendent to examine or modify the suspended process, or coordinates the activity of various descendants

Eddie Law

Six-State Model: In-Transition

Blocked processes could be suspended!

- In fact, ready processes may also be suspended if not enough resources!!
- ⇒ Two new possible states: Blocked/Suspend, Ready/Suspend

Process Identification

- Process ID, a unique numeric identifier
- User identifier
 - · Who is responsible for the job, or who runs the process
 - Used to determine what access rights the process has

Eddie Law 43

Processor State Information

- Processor state: contents of processor registers, incl.
 - User-visible registers
 - Control and status registers, incl. Program Counter, condition codes and status
 - Stack pointers (which point to the top of the stack)
- Used to save and restore the processor state in process switching

Process Control Information

- Additional information needed by the operating system to control and coordinate the various active processes
 - · scheduling and state information, e.g. process state, priority, waiting event, etc.
 - · data structuring, e.g. for keeping the ready queue as linked list, parent-child relationship

Eddie Law 45

Process Control Information (cont'd)

- interprocess communication
- · process privileges
- memory management
- · resource ownership and utilization, e.g. open files, and a history of utilization of the processor or other resources

Mechanisms for Interrupting Process Execution

Mechanism	Cause	Use
Interrupt	External to the execution of the cur- rent instruction	Reaction to an asynchronous external event
Trap	Associated with the execution of the current instruction	Handling of an error or an exception condition
Supervisor call	Explicit request	Call to an operating system function

Eddie Law 47

When to Switch Processes

- Interrupt interruption request from hardware external to the CPU
 - Clock
 - I/O: I/O completion, I/O error
- Traps an error condition or exceptional condition associated with the current instruction
 - Memory fault (details in ch. 7, 8)
- Supervisor call call of some special functions of the OS
 - File open
 - Synchronization primitive (details in ch. 5)

Steps of Process Switching

- Consists of the following steps
 - Save processor state (incl. program counter and other registers) in the PCB: processor state information
 - 2. Update the PCB with the new state and any accounting information
 - 3. Move the PCB to appropriate queue ready, blocked

Eddie Law 53

Steps in Process Switching (cont'd)

- 4. Select another process for execution
- 5. Update the PCB of the process selected (new state and accounting information)
- 6. Update memory-management data structures depends on how address translation is managed
- 7. Restore context of the selected process
 - restore the previous value of the program counter and other registers from the PCB

Associate available resources to all processes Tables are constructed for each entity Memory tables I/O tables File tables Process table

Operating System Control Structures

Conclusion

- What is a process?
- Process state (5 state model, 7 state model)
- Process scheduling (round-robin, priority)
- Process Image and PCB
- Process switching (when, how)

Next Topic • Threads • Read Ch. 4