1) Исследование

Композиционный материал состоит из 2 компонентов — матрицы и армирующего наполнителя. В данном случае в качестве матрицы выступала бумага с водой, а в качестве армирующего наполнителя — клей ПВА, полипропиленовая микрофибра и гипсовый порошок.

2) Ideation

Цель проекта — создать композит из подручных материалов, который будет похожим по механическим свойствам на гипсокартон, чтобы была возможность воспроизвести его в домашних условиях при необходимости.

Обычный гипсокартон – трехслойный материал. 2 крайних слоя – картон, посередине – гипс, иногда с армирующими добавками, в зависимости от необходимых свойств.

3) Fabrication

Для создания композитов использовались следующие материалы:

Бумага – 20 использованных листов А4

Вода – 600 мл кипятка

Клей ПВА – 70 г

Микрофибра – 3 г

 Γ ипс -50 г

Первым делом бумагу порвали на небольшие куски $\approx 4x4$ см, чтобы было легче измельчать ее блендере, и залили кипятком для размягчения.

Далее измельчили все в блендере до получения однородной массы.

Чтобы масса при высыхании не рассыпалась, в качестве связующего добавили клей ПВА 70 г разбавленный 50 мл воды для лучшего распределения по всей массе.

После этого необходимо разделить массу на 3 части для создания композитов с тремя разными наполнителями.

Первый наполнитель остался чистым, в его составе бумага, вода и клей. Перед укладываем его в форму для высыхания необходимо максимально выжать воду. Для этого использовались бинты.

В оставшиеся 2/3 массы была добавлена полипропиленовая микрофибра, которая обеспечивает повышенную морозостойкость, ударную стойкость и огнестойкость, а также снижает усадочные деформации.

Разделяем получившуюся массу на 2 части и одну также укладываем в форму для высыхания.

В оставшуюся часть был добавлен гипсовый порошок для того, чтобы обеспечить материалу теплоизоляционные и гидроизоляционные свойства, так как гипс способен поглощать лишнюю влагу в воздухе и выделять ее при повышенной сухости. Также гипс относится к классу слабогорючих материалов, и способен относительно неплохо поглощать звук.

Его тоже укладываем в форму для высыхания.

После полного высыхания будут проведены механические испытания на изгиб для определения пределов пропорциональности, текучести и прочности.

Образцы после полного высыхания выглядят следующим образом.

4) Тестирование

В течение недели производились замеры массы образцов для построения графика падения масс.

Так как они получились разных размеров, для составления графика необходимо произвести пересчет массы относительно единого размера.

Итоговые результаты приведены в таблице.

t, ч образец	0	19	25	45	72	92	104	116	128	143
a	27	25	25	19	17	16	16	15	15	15
b	63	60	60	53	40	33	25	20	14	14
c	52	47	45	38	30	23	21	20	19	19

Из данных можно сделать вывод, что образцы полностью высохли примерно за 5 дней. Испытания на изгиб проводились на оборудовании кафедры МЦМ.

Для проведения испытания образец установили на 2 опоры и машина давила сверху. Скорость проведения испытания 2 мм/мин.

После того, как на образцах появлялась трещина, испытание останавливалось.

С помощью результатов, полученных на испытательной машине, были построены графики, они представлены ниже.

Для данного композита можно определить предел текучести ($\sigma_{0,2}$), предел пропорциональности ($\sigma_{\text{пп}}$) и предел прочности (σ_b) по формулам:

$$\sigma_{0,2}=rac{P_{0,2}l}{4W}$$
 ; $\sigma_{ ext{nu}}=rac{P_{ ext{nu}}l}{4W}$; $\sigma_{b}=rac{P_{0,2}l}{4W}$.

Поскольку образца имеют прямоугольное сечение момент сопротивления (W) будет равно:

$$W=\frac{bh^2}{6},$$

где b — ширина образца, h — высота.

Размеры образца будут взяты, как среднее арифметическое их замеров. Таким образом $b_{Icp} = 34,01$ мм, $h_{Icp} = 86$ мм; $b_{IIcp} = 35,19$ мм, $h_{IIcp} = 15$ мм; $b_{IIIcp} = 35,19$ мм, $h_{IIIcp} = 19,4$ мм.

Для определения величины нагрузок воспользуемся диаграммами изгибов и полученными данными. Исходя из данных, $P_{I0,2}=1,57$ H, $P_{Imu}=1,58$ H, $P_{Ib}=1,85$ H; $P_{II0,2}=1,58$ H, $P_{IImu}=1,59$ H, $P_{IIb}=2,25$ H; $P_{I0,2}=1,56$ H, $P_{Imu}=1,58$ H, $P_{Ib}=2,56$ H.

Расстояние между опорами $l = l_{II} = l_{III} = 100$ мм.

С учетом всех данных был произведен расчет и результаты занесены в таблицу.

	σ _{0,2} , МПа	σπц, МПа	$σ_b$, ΜΠ a
I образец	43,17	43,01	59,32
II образец	45,23	45,09	52,46
III образец	47,27	47,10	57,29

Таким образом, был создан композиционный материал, сходный по свойствам с гипсокартоном. Были проведены испытания на изгиб.