

HomeWork Nº3

Сферические гармоники. 3d-графика в MATLAB

s-состояние:
$$Y_{l=0}^{m=0} = \left(\frac{1}{4\pi}\right)^{1/2}$$

р-состояние:
$$Y_{l=1}^{m=0} = \frac{1}{2} \left(\frac{3}{\pi}\right)^{1/2} \cos(\theta)$$

$$Y_{l=1}^{m=1} = -\frac{1}{2} \left(\frac{3}{2\pi}\right)^{1/2} \sin(\theta) e^{+i\phi}$$

Упражнение

Волновая функция, описывающая состояние микрочастицы, движущейся в сферически симметричном силовом поле с расстоянием r до центра имеет вид:

$$\Psi(r,t) = A \exp\left(-\frac{r}{a}\right) \exp\left(-i\frac{E}{\hbar}t\right)$$

здесь:

r - расстояние от силового центра;

a - известная константа $(a_{Bohr} = 0.529\ 177\cdot 10^{-10});$

 ${\it E}$ - полная энергия частицы, независящая от времени.

Определить значение постоянной A. **Построить** графики

(действительной, мнимой частей и модуля) **нормированной сферической гармоники** ВФ для *s*- и *p*-квантовых состояний.

Функции: linspace, meshgrid, sph2cart, surf, xlabel

ВФ для квантовых состояний водородоподобных атомов

$$\boxed{\psi_{nlm}(r,\theta,\varphi) = R_{nl}(r) \cdot Y_l^m(\theta,\varphi)}$$

Нормированная радиальная ВФ

Сферические гармоники

1s	$R_{\substack{n=1\\l=0}}(r) = 2\left(\frac{Z}{a}\right)^{3/2} \exp\left(-\frac{Z}{a}r\right)$	$Y_{l=0}^{m=0}(\theta,\varphi)=\left(\frac{1}{4\pi}\right)^{1/2}$
2s	$R_{\substack{n=2\\l=0}}(r) = 2\left(\frac{Z}{2a}\right)^{3/2} \left(1 - \frac{Z}{2a}r\right) \exp\left(-\frac{Z}{2a}r\right)$	
2p	$R_{\substack{n=2\\l=1}}(r) = \frac{2}{\sqrt{3}} \left(\frac{Z}{2a}\right)^{3/2} \left(\frac{Z}{2a}r\right) \exp\left(-\frac{Z}{2a}r\right)$	$Y_{l=1}^{m=0}(\boldsymbol{\theta},\boldsymbol{\varphi}) = \frac{1}{2} \left(\frac{3}{\pi}\right)^{1/2} \cos(\theta)$
		$Y_{l=1}^{m=1}(\theta,\varphi) = -\frac{1}{2} \left(\frac{3}{2\pi}\right)^{1/2} \sin(\theta) e^{+i\varphi}$

 $[X, Y, Z] = sph2cart(Phi, \frac{\pi}{2} - Theta, r)$

Azimuth = Phi; Elevation = $\frac{\pi}{2}$ - Theta;

 $X = r.* \cos(Elevation).* \cos(Azimuth)$

Y = r.* cos(Elevation).* sin(Azimuth)

 $Z = r.* \sin(Elevation)$

Функции: linspace, meshgrid, sph2cart, surf, xlabel

