Efeito Avalanche

A ideia do efeito avalanche é mensurar a taxa de bits diferentes entre os textos cifrados e claro.

a. Criando mensagens

Utilizando o comando abaixo, foi gerada uma mensagem aleatória M1.

```
openssl rand --hex 16 | head --bytes=16 > M1
```

A mensagem contém 16 bytes e o seguinte conteúdo: 3e8628940d67fcd2.

b. Criando chave

A seguir, criamos uma chave de 128 bits e salvamos como hexadecimal. Chave K: bef08db60f5411fc4da16655171ae133.

```
openssl rand --hex 16 > K
```

c. Duplicando mensagens

Iremos agora duplicar as chaves M1 e alterar manualmente um único bytes da mensagem. A nova mensagen será salva como M1'.

Em nosso exemplo, o último byte foi alterado de d2 para d3.

M1	M1'
3e8628940d67fcd2	3e8628940d67fcd3

Alguns editores de textos irão inserir um caracter de nova linha no final do arquivo, por isso devemos remover esse útlimo caracter para garantir os 16 bytes.

```
cat M1\' | head --bytes=16 > M1\'.tmp
mv M1\'.tmp M1\'
```

d. Cifrando a mensagem

Agora, iremos cifrar a mensagem M1 através do seguinte comando:

```
CYPHER_KEY=$(cat K)
cat M1 | openssl enc -aes-128-ecb -K ${CYPHER_KEY} -nopad > C1

xxd C1
00000000: 5d4f 6324 2ff6 25e2 82e6 15f1 3f33 8126 ]0c$/.%....?3.&
```

e. Cifrando a mensagem alterada

Vamos fazer o mesmo para a mensagem alterada.

```
CYPHER_KEY=$(cat K)
cat M1\' | openssl enc -aes-128-ecb -K ${CYPHER_KEY} -nopad > C1\'
xxd C1\'
000000000: 137d 01b7 614a 561f d0f5 7903 448a 93bb .}..aJV...y.D...
```

f. Comparando os resultados

Através de um programa auxiliar encrito em python calc-bits.py nós podemos calcular a taxa de bits diferentes.

```
BITS_C1=$(xxd -b C1 | cut -d ' ' -f 2-7 | tr -d ' ' | tr -d '\n')
BITS_C1L=$(xxd -b C1\' | cut -d ' ' -f 2-7 | tr -d ' ' | tr -d '\n')
./calc-bits.py "$BIT_C1" "$BIT_C1L"
0.53125
```

Resultado: $\sim = 53\%$ de diferença.

g. Automatizando o processo

Para comodidade, podemos executar o exercício de forma automatizada usando o script generate.sh.

Para gerar as mensagens, use o seguinte comando:

```
./generate.sh
Preparando diretório data...
~/github/gvicentin/inf0500/inf0570/1-avalanche/data ~/github/gvicentin/inf0500/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf0570/inf
Gerando mensagens...
Gerando chave...
Edite manualmente 1 byte nas mensagens M1', M2'... M10'.
Os arquivos M1', M2'... M10' foram editados? (Enter para continuar)
Cifrando mensagens...
Calculando taxa de bits diferentes...
Mensagem: M1, taxa de bits diferentes: 0.53125
Mensagem: M2, taxa de bits diferentes: 0.578125
Mensagem: M3, taxa de bits diferentes: 0.453125
Mensagem: M4, taxa de bits diferentes: 0.5546875
Mensagem: M5, taxa de bits diferentes: 0.484375
Mensagem: M6, taxa de bits diferentes: 0.5
Mensagem: M7, taxa de bits diferentes: 0.4921875
Mensagem: M8, taxa de bits diferentes: 0.5234375
Mensagem: M9, taxa de bits diferentes: 0.46875
Mensagem: M10, taxa de bits diferentes: 0.4921875
```

h. Alterando a chave

Alterando apenas o último bytes da chave, de 33 para 34 nós obtemos uma diferença de $\sim=40\%$ neste exemplo. Portanto, o efeito avalanche do AES também se aplica a alterações na chave.