Lecture 15. Hypothesis testing in the linear model

15. Hypothesis testing in the linear model 15.2. Hypothesis testing

Hypothesis testing

- Suppose $X_p = (X_0 X_1 X_1)$ and $\beta = (\beta_0 \beta_1)$, where $\operatorname{rank}(X) = p, \operatorname{rank}(X_0) = p_0.$
- We want to test $H_0: \beta_1 = 0$ against $H_1: \beta_1 \neq 0$.
- Under H_0 , $\mathbf{Y} = X_0 \beta_0 + \varepsilon$.
- Under H_0 , MLEs of β_0 and σ^2 are

$$\hat{\hat{\beta}}_0 = (X_0^T X_0)^{-1} X_0^T \mathbf{Y}$$

$$\hat{\hat{\sigma}}^2 = \frac{\mathsf{RSS}_0}{n} = \frac{1}{n} (\mathbf{Y} - X_0 \hat{\hat{\beta}}_0)^T (\mathbf{Y} - X_0 \hat{\hat{\beta}}_0)$$

and these are independent, by Theorem 13.3.

• So fitted values under H_0 are

$$\hat{\hat{\mathbf{Y}}} = X_0 (X_0^T X_0)^{-1} X_0^T \mathbf{Y} = P_0 \mathbf{Y},$$

where $P_0 = X_0(X_0^T X_0)^{-1} X_0^T$.

Preliminary lemma

Lemma 15.1

Suppose $\mathbf{Z} \sim N_n(\mathbf{0}, \sigma^2 I_n)$ and A_1 and A_2 and symmetric, idempotent $n \times n$ matrices with $A_1A_2 = 0$. Then $\mathbf{Z}^T A_1 \mathbf{Z}$ and $\mathbf{Z}^T A_2 \mathbf{Z}$ are independent.

Proof:

- Let $\mathbf{W}_i = A_i \mathbf{Z}$, i = 1, 2 and $\mathbf{W}_{2n \times 1} = \begin{pmatrix} \mathbf{W}_1 \\ \mathbf{W}_2 \end{pmatrix} = A \mathbf{Z}$, where $A_{2n \times n} = \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}$.
- By Proposition 11.1(i), $\mathbf{W} \sim \mathsf{N}_{2n} \left(\left(\begin{array}{c} \mathbf{0} \\ \mathbf{0} \end{array} \right), \sigma^2 \left(\begin{array}{c} A_1 & 0 \\ 0 & A_2 \end{array} \right) \right)$
- So \mathbf{W}_1 and \mathbf{W}_2 are independent, which implies $\mathbf{W}_1^T \mathbf{W}_1 = \mathbf{Z}^T A_1 \mathbf{Z}$ and $\mathbf{W}_2^T \mathbf{W}_2 = \mathbf{Z}^T A_2 \mathbf{Z}$ are independent. \square .

15. Hypothesis testing in the linear model 15.3. Geometric interpretation

Geometric interpretation

4 (1-14)

Generalised likelihood ratio test

• The generalised likelihood ratio test of H_0 against H_1 is

$$\Lambda_{\mathbf{Y}}(H_0, H_1) = \frac{\left(\frac{1}{\sqrt{2\pi\hat{\sigma}^2}}\right)^n \exp\left(-\frac{1}{2\hat{\sigma}^2}(\mathbf{Y} - X\hat{\beta})^T(\mathbf{Y} - X\hat{\beta})\right)}{\left(\frac{1}{\sqrt{2\pi\hat{\sigma}^2}}\right)^n \exp\left(-\frac{1}{2\hat{\sigma}^2}(\mathbf{Y} - X\hat{\beta}_0)^T(\mathbf{Y} - X\hat{\beta}_0)\right)}$$

$$= \left(\frac{\hat{\sigma}^2}{\hat{\sigma}^2}\right)^{\frac{n}{2}} = \left(\frac{\mathsf{RSS}_0}{\mathsf{RSS}}\right)^{\frac{n}{2}} = \left(1 + \frac{\mathsf{RSS}_0 - \mathsf{RSS}}{\mathsf{RSS}}\right)^{\frac{n}{2}}$$

- We reject H_0 when $2 \log \Lambda$ is large, equivalently when $\frac{(RSS_0 RSS)}{RSS}$ is large.
- Using the results in Lecture 8, under H₀

$$2\log \Lambda = n\log \left(1 + \frac{\mathsf{RSS}_0 - \mathsf{RSS}}{\mathsf{RSS}}\right)$$

is approximately a $\chi^2_{p_1-p_0}$ rv.

• But we can get an exact null distribution.

Lecture 15. Hypothesis testing in the linear model

15. Hypothesis testing in the linear model 15.5. Null distribution of test statistic

• Applying Lemmas 13.2 ($\mathbf{Z}^T A_i \mathbf{Z} \sim \sigma^2 \chi^2$) and 15.1 to $Z = Y - X_0 \beta_0, A_1 = I_n - P, A_2 = P - P_0$ to get that under H_0 .

$$\begin{aligned} \mathsf{RSS} &= \mathbf{Y}^T (I_n - P) \mathbf{Y} &\sim & \chi^2_{n-p} \\ \mathsf{RSS}_0 - \mathsf{RSS} &= \mathbf{Y}^T (P - P_0) \mathbf{Y} &\sim & \chi^2_{p-p_0} \end{aligned}$$

and these rvs are independent.

• So under H_0 ,

$$F = \frac{\mathbf{Y}^T(P - P_0)\mathbf{Y}/(p - p_0)}{\mathbf{Y}^T(I_n - P)\mathbf{Y}/(n - p)} = \frac{(\mathsf{RSS}_0 - \mathsf{RSS})/(p - p_0)}{\mathsf{RSS}/(n - p)} \sim F_{p - p_0, n - p}.$$

- Hence we reject H_0 if $F > F_{p-p_0,n-p}(\alpha)$.
- RSS₀ RSS is the 'reduction in the sum of squares due to fitting β_1 .

15. Hypothesis testing in the linear model 15.5. Null distribution of test statistic

Null distribution of test statistic

• We have RSS = $\mathbf{Y}^T(I_n - P)\mathbf{Y}$ (see proof of Theorem 13.3 (ii)), and so

$$RSS_0 - RSS = \mathbf{Y}^T (I_n - P_0) \mathbf{Y} - \mathbf{Y}^T (I_n - P) \mathbf{Y} = \mathbf{Y}^T (P - P_0) \mathbf{Y}.$$

• Now $I_n - P$ and $P - P_0$ are symmetric and idempotent, and therefore $rank(I_n - P) = n - p$, and

$$rank(P - P_0) = tr(P - P_0) = tr(P) - tr(P_0) = rank(P) - rank(P_0) = p - p_0$$

Also

$$(I_n - P)(P - P_0) = (I_n - P)P - (I_n - P)P_0 = 0$$

Finally,

$$\mathbf{Y}^{T}(I_{n}-P)\mathbf{Y} = (\mathbf{Y}-X_{0}\beta_{0})^{T}(I_{n}-P)(\mathbf{Y}-X_{0}\beta_{0}) \text{ since } (I_{n}-P)X_{0}=0,
\mathbf{Y}^{T}(P-P_{0})\mathbf{Y} = (\mathbf{Y}-X_{0}\beta_{0})^{T}(P-P_{0})(\mathbf{Y}-X_{0}\beta_{0}) \text{ since } (P-P_{0})X_{0}=0,$$

Lecture 15. Hypothesis testing in the linear mode

15. Hypothesis testing in the linear model 15.6. Arrangement as an 'analysis of variance' table

Arrangement as an 'analysis of variance' table

Source of variation	degrees of freedom (df)	sum of squares	mean square	F statistic
Fitted model	$p-p_0$	RSS ₀ - RSS	$\frac{(RSS_0 - RSS)}{(p - p_0)}$	$\frac{(RSS_0 - RSS)/(p - p_0)}{RSS/(n - p)}$
Residual	n-p	RSS	$\frac{RSS}{(n-p)}$	
	$n-p_0$	RSS ₀		

The ratio $\frac{(RSS_0 - RSS)}{RSS_0}$ is sometimes known as the *proportion of variance* explained by β_1 , and denoted R^2 .

Simple linear regression

• We assume that

$$Y_i = a' + b(x_i - \bar{x}) + \varepsilon_i, \quad i = 1, \dots, n,$$

where $\bar{x} = \sum x_i/n$, and ε_i , i = 1, ..., n are iid $N(0, \sigma^2)$.

- Suppose we want to test the hypothesis H_0 : b=0, i.e. no linear relationship. From Lecture 14 we have seen how to construct a confidence interval, and so could simply see if it included 0.
- Alternatively , under H_0 , the model is $Y_i \sim N(a', \sigma^2)$, and so $\hat{a}' = \overline{Y}$, and the fitted values are $\hat{Y}_i = \overline{Y}$.
- The observed RSS₀ is therefore

$$\mathsf{RSS}_0 = \sum_i (y_i - \overline{y})^2 = S_{yy}.$$

• The fitted sum of squares is therefore

$$RSS_0 - RSS = \sum_{i} \left((y_i - \overline{y})^2 - (y_i - \overline{y} - \hat{b}(x_i - \overline{x}))^2 \right) = \hat{b}^2 (x_i - \overline{x})^2 = \hat{b}^2 S_{xx}.$$

Lecture 15. Hypothesis testing in the linear model

9 (1–14

15. Hypothesis testing in the linear model 15.7. Simple linear regression

Example 12.1 continued

As R code

> fit=lm(time~ oxy.s)
> summary.aov(fit)

bignii. codes. V VV 0.001 V 0.01 V 0.00 . 0.1

Note that the F statistic, 41.98, is -6.48^2 , the square of the t statistic on Slide 5 in Lecture 14.

Lecture 15. Hypothesis testing in the linear model 11 (1-14) Lecture 15. Hypothesis testing in the linear model

Source of d.f. sum of squares mean square F statistic variation

Fitted model 1 $RSS_0 - RSS = \hat{b}^2 S_{xx}$ $\hat{b}^2 S_{xx}$ $F = \hat{b}^2 S_{xx} / \tilde{\sigma}^2$ Residual n-2 $RSS = \sum_i (y_i - \hat{y})^2$ $\tilde{\sigma}^2$

$$n-1$$
 RSS₀ = $\sum_{i} (y_i - \overline{y})^2$

- Note that the proportion of variance explained is $\hat{b}^2 S_{xx}/S_{yy} = \frac{S_{xy}^2}{S_{xx}S_{yy}} = r^2$, where r is Pearson's Product Moment Correlation coefficient $r = S_{xy}/\sqrt{S_{xx}S_{yy}}$.
- From lecture 14, slide 5, we see that under H_0 , $\frac{\hat{b}}{\text{s.e.}(\hat{b})} \sim t_{n-2}$, where $\text{s.e.}(\hat{b}) = \tilde{\sigma}/\sqrt{S_{\text{xx}}}$. So $\frac{\hat{b}}{\text{s.e.}(\hat{b})} = \frac{\hat{b}\sqrt{S_{\text{xx}}}}{\tilde{\sigma}} = t$.
- Checking whether $|t| > t_{n-2}(\frac{\alpha}{2})$ is precisely the same as checking whether $t^2 = F > F_{1,n-2}(\alpha)$, since a $F_{1,n-2}$ variable is t_{n-2}^2 .
- Hence the same conclusion is reached, whether based on a t-distribution or the F statistic derived from an analysis-of-variance table.

Lecture 15. Hypothesis testing in the linear model

10 (1-14)

12 (1-14)

15. Hypothesis testing in the linear model 15.8. One way analysis of variance with equal numbers in each group

One way analysis of variance with equal numbers in each group

ullet Assume J measurements taken in each of I groups, and that

$$Y_{i,j} = \mu_i + \varepsilon_{i,j},$$

where $\varepsilon_{i,j}$ are independent N(0, σ^2) random variables, and the μ_i 's are unknown constants.

- Fitting this model gives $RSS = \sum_{i=1}^{I} \sum_{j=1}^{J} (Y_{i,j} \hat{\mu}_i)^2 = \sum_{i=1}^{I} \sum_{j=1}^{J} (Y_{i,j} \overline{Y}_{i.})^2 \text{ on } n-I \text{ degrees of freedom.}$
- Suppose we want to test the hypothesis H_0 : $\mu_i = \mu$, i.e. no difference between groups.
- Under H_0 , the model is $Y_{i,j} \sim N(\mu, \sigma^2)$, and so $\hat{\mu} = \overline{Y}_{..}$, and the fitted values are $\hat{Y}_{i,j} = \overline{Y}_{..}$.
- ullet The observed RSS $_0$ is therefore

$$\mathsf{RSS}_0 = \sum_i \sum_j (y_{i,j} - \overline{y}_{..})^2.$$

• The fitted sum of squares is therefore

$$RSS_0 - RSS = \sum_{i} \sum_{j} ((y_{i,j} - \overline{y}_{..})^2 - (y_{i,j} - \overline{y}_{i.})^2) = J \sum_{i} (\overline{y}_{i.} - \overline{y}_{..})^2.$$

Source of d.f. sum of squares mean square F statistic variation

Fitted model I-1 $J\sum_i(\overline{y}_{i.}-\overline{y}_{..})^2$ $\frac{J\sum_i(\overline{y}_{i.}-\overline{y}_{..})^2}{(I-1)}$ $F=\frac{J\sum_i(\overline{y}_{i.}-\overline{y}_{..})^2}{(I-1)\tilde{\sigma}^2}$

Residual n-I $\sum_{i}\sum_{j}(y_{i,j}-\overline{y}_{i,.})^2$ $\tilde{\sigma}^2$

$$n-1$$
 $\sum_{i}\sum_{j}(y_{i,j}-\overline{y}_{..})^2$

Example 13.1

As R code

> summary.aov(fit)

Df Sum Sq Mean Sq F value Pr(>F) x 4 507.9 127.0 1.17 0.354 Residuals 20 2170.1 108.5

The p-value is 0.35, and so there is no evidence for a difference between the instruments.

Lecture 15. Hypothesis testing in the linear model

13 (1–1

Lecture 15. Hypothesis testing in the linear model

14 (1-14)