MATHS

- The curve $y = ax^3 + bx^2 + cx$ is inclined at 45° to the x-axis at (0, 0) but it touches x-axis 31. at (1,0) then (a,b,c) =
- 1) (1,-2,1) 2) (1,2,2) 3) (-1,2,-1) 4) (1,0,2)
- The abscissa of the point other than origin on the curve $ay^2 = x^3$ the normal at which 32. cuts off equal intercepts on the coordinate axes
 - 1) $\frac{a}{2}$
- 2) $\frac{4a}{9}$
- 3) $\frac{2a}{3}$
- 4) $\frac{a}{3}$
- The value of n for which length of the sub normal of the curve $xy^n = a^{n+1}$ is constant. 33.
 - 1)-1
- 2) -2
- 3) -3
- 4) -4
- If $x = y^2$, xy = k cut orthogonally then $8k^2 =$ 34.
- 2) $\frac{1}{3}$
- 3) $\frac{1}{4}$
- 4) 1

Sr.IPLCO_JEE-MAIN_Q.P

space for rough work

- If two curves $\frac{x^2}{a^2} + \frac{y^2}{4} = 1$ and $y^3 = 16x$. Intersect orthogonally then $3a^2 =$ _____ 35.
 - 1)1
- 2)2
- 3)3
- 4)4
- If at each point of the curve $y = x^3 ax^2 + x + 1$ the tangent is inclined at an acute 36. angle with positive direction of x-axis then range of a is
 - 1) $(1,\infty)$
- $(0,\infty)$
- 3) (-1,4) 4) $(-\sqrt{3},\sqrt{3})$
- If the tangent at (a,b) to the curve $x^3 + y^3 = c^3$ meets the curve again at (a_1,b_1) then 37.

$$\frac{a_1}{a} + \frac{b_1}{b} =$$

- 1) 1
- 2) -1
- 3)2
- 4) -2
- The equation of tangent to the curve $y = (2x-1)e^{2(1-x)}$ at the point of its maximum. 38.
 - 1) x = 1

- 2) y = 1 3) x + y = 1 4) x y = 1

Sr.IPLCO_JEE-MAIN_Q.P

space for rough work

If the tangent to the curve $2y^3 = ax^2 + x^3$ at the point (a,a) cuts off intercepts α, β on 39. the coordinate axes where $\alpha^2 + \beta^2 = 61$ then |a| =____

1) 16

3) 30

If the tangent at (1, 1) on $y^2 = x(2-x)^2$ meets the curve again at P then P = 40.

1) $\left(\frac{9}{4}, \frac{3}{8}\right)$ 2) (2,0) 3) $\left(\frac{9}{8}, \frac{3}{4}\right)$ 4) $\left(\frac{1}{2}, \frac{3}{2}\right)$

41. An electric lamp is at a height of 20ft above the floor. An object falls freely under gravity starting from the rest at the same height as the lamp but at a horizontal distance 5ft from it. The speed of the shadow of the object on the floor when it has fallen through 16 ft.

1) $\frac{-5}{2}$ ft / sec 2) $\frac{-15}{4}$ ft / sec 3) $\frac{-25}{2}$ ft / sec 4) -25 ft / sec

A point P – moves on the curves $y = 2x^2$ at 4 feet per second. At what rate the 42. inclination of tangent to the curve at P changing when P – passes through (1, 2).

1) $\frac{16}{\sqrt{17}}$ rad/sec 2) $\frac{16}{17\sqrt{17}}$ rad/sec 3) $\frac{16}{17}$ rad/sec 4) $\frac{1}{\sqrt{17}}$ rad/sec

Sr.IPLCO_JEE-MAIN_Q.P

space for rough work

An aeroplane flying horizontally at a height of $\frac{2}{3}$ miles with a velocity 15 mph the 43. rate at which it is moving away from a fixed point on the ground when it passed over the fixed point two minutes ago

1)6 mph

2) 9 mph

3) 8 mph

4) 16 mph

A circular disc of area 10 sq.feet is at a distance $2\frac{1}{2}$ feet from a wall and parallel to 44. the wall. A point source of light is moving in a straight line passing through the centre of the disc and perpendicular to it at the rate of 5 ft/sec. The rate of growth of the area of shadow of the disc on the wall when light is at 20 ft from the wall

1) $\frac{320}{343}$ sq. ft / sec 2) $\frac{124}{343}$ sq. ft / sec 3) $\frac{1}{343}$ sq. ft / sec 4) 2 sq. ft / sec

45. If in a triangle the side a and angle A remains constant while other elements changed slightly then $\delta b \sec B + \delta c \sec C =$

46. Let $g(x) = 2f(\frac{x}{2}) + f(2-x)$ and f''(x) < 0 for all $x \in (0,2)$ then the interval in which g(x) is decreasing

 $1)\left(0,\frac{4}{3}\right) \qquad \qquad 2)\left(\frac{4}{3},2\right) \qquad \qquad 3)\left(2,\infty\right) \qquad \qquad 4)\left(-\infty,0\right)$

Sr.IPLCO_JEE-MAIN_O.P

space for rough work

- The range of a for which $f(x) = x^3 + (a+2)x^2 + 3ax + 5$ is invertible. 47.
 - 1) $(1, \infty)$
- 2) $(4,\infty)$
- 3) (1,4)
- 4) (0,1)
- $f(x) = x + \cos x a$ then number of positive roots of f(x) = 0 when a > 148.
- 3) 0
- $f(x) = x^{\frac{1}{x}}(x > 0)$ then the interval in which f(x) is decreasing is____ and if 49. $a = e^{\pi}$ $b = \pi^{e}$ then which of the following options are true
- 1) (e, ∞) , a < b 2) (0,e), a < b 3) (e, ∞) , a > b 4) (0,e), a > b
- Number of real roots of the equation $f(x) = (x-a)^3 + (x-b)^3 + (x-c)^3 = 0$ 50.
 - 1)1
- 2)2

- The equation $2\sin x = |x| + a$ has no-solution then range of a is 51.

 - 1) $\left(\frac{3\sqrt{3}-\pi}{3},\infty\right)$ 2) $\left(-\infty,\frac{3\sqrt{3}-\pi}{3}\right)$ 3) $\left(0,1\right)$ 4) $\left(0,\frac{3\sqrt{3}-\pi}{3}\right)$

Sr.IPLCO_JEE-MAIN_Q.P

space for rough work

If $a^2 + b^2 + c^2 = 1$, $x^2 + y^2 + z^2 = 1$ then maximum value of |ax + by + cz| is 52.

1)1

2)2

3)4

4) 6

A cubic polynomial vanishes at x = -2 and has relative minimum and maximum at 53.

x = -1 and $x = \frac{1}{3}$. If $\int_{1}^{+1} f(x) dx = \frac{14}{3}$ then $f(x) = \underline{\hspace{1cm}}$

1) $x^3 - 4x$

2) $x^3 + x^2 - x + 2$ 3) $x^3 - x^2 + x - 2$ 4) $x^3 - x + 1$

Minimum value of (12x + 5y + 6). If $x^2 + y^2 = 4$ 54.

1 -5

2) - 10

3) - 15

4) -20

The semi-vertical angle of cone of maximum volume and given slant height 55.

1) $\frac{\pi}{3}$

2) $\frac{\pi}{4}$ 3) $\tan^{-1} 2$

4) $\tan^{-1} \sqrt{2}$

The sum of hypotenuse and one side of a right angled triangle is given then angle 56. between these sides is _____ So that area of triangle is maximum

1) $\frac{\pi}{2}$

2) $\frac{\pi}{4}$ 3) $\frac{\pi}{3}$

4) $tan^{-1}(2)$

Sr.IPLCO_JEE-MAIN_Q.P

space for rough work

- $f(x) = a \log_e |x| + bx^2 + x$ has extreme values at x = 1 and x = 3 then values of a and b 57.
 - 1) a = -3/4, $b = \frac{-1}{8}$

2) $a = 3/4, b = \frac{1}{8}$

3) $a = \frac{-3}{4}, b = \frac{+1}{8}$

- 4) a = 3/4, b = -1/8
- $f(x) = x^{\alpha} \log_e^{x} \quad \text{If} \quad x > 0$ 58. If x = 0

If Rolle's theorem can be applied on [0, 1] then $\alpha =$

- 1) -1
- 3)0
- 4) $\frac{1}{2}$
- If 2a + 3b + 6c = 0 $(a,b,c \in R)$ then quadratic $ax^2 + bx + c = 0$ has 59.
 - 1)atleast one root in [0, 1]
- 2) at least on root in [2, 3]
- 3)It has no real roots

- 4) None of the above
- A value of c for which lagranges mean value theorem holds good for $g(x) = \log_e x$ in 60. [1, 3]
 - $1)2\log_3 e$
- 2) $\frac{1}{2}\log_e 3$ 3) $\log_e 3$
- $4)\frac{1}{2}$

Sr.IPLCO_JEE-MAIN_Q.P

space for rough work