4.2.2

(a)

$$\lim_{x \to 2} \sqrt{\frac{2x+1}{x+3}} = \sqrt{\lim_{x \to 2} \frac{2x+1}{x+3}}$$
 (by Exercise 4.2.15)
$$= \sqrt{\frac{\lim_{x \to 2} 2x+1}{\lim_{x \to 2} x+3}}$$
 (by Theorem 4.2.4 (a))
$$= \sqrt{\frac{5}{5}} = 1$$

(b)

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} x + 2 = 4$$

(c)

$$\lim_{x \to 0} \frac{(x+1)^2 - 1}{x} = \lim_{x \to 0} \frac{x^2 + 2x}{x} = \lim_{x \to 0} x + 2 = 2$$

(d)

$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1} = \lim_{x \to 1} \frac{1}{\sqrt{x} + 1}$$

$$= \frac{1}{\sqrt{\lim_{x \to 1} x} + 1}$$
 (by Exercise 4.2.15)
$$= \frac{1}{2}$$

4.2.4 Proof: Let $x_n := 1/n\pi$ for $n \in \mathbb{N}$, then $\lim(x_n) = 0$ and $\cos(x_n) = \cos(n\pi)$ does not converge in \mathbb{R} , so by Divergence Criteria, $\lim \cos(1/x)$ does not exist.

However, since $-1 \le \cos(1/x) \le 1$ for all $x \in \mathbb{R}$, $-|x| \le x \cos(1/x) \le |x|$. Since f(x) = |x| and g(x) = -|x| converges to 0 at x = 0, by Squeeze Theorem,

$$\lim_{x \to 0} x \cos(\frac{1}{x}) = 0$$

4.2.8 **Proof:**

Base case: when n=3, since -1 < x < 1, $0 < x^2 \le |x| < 1$, so $-x^2 \le x^3 = |x|x^2 \le x^2$.

Inductive Hypothesis: Suppose when $n = k \ (k > 3), -x^2 \le x^k < x^2$.

Inductive Step: When n = k + 1, $|x^{k+1}| = |x^k x| = |x^k| |x| \le x^2 |x| \le |x^3| \le x^2$ by base case and inductive hypothesis.

So by Mathematics Induction, $-x^2 \le x^k < x^2$.

Since $\lim_{x\to 0} x^2 = 0 \to \lim_{x\to 0} -x^2 = -\lim_{x\to 0} x^2 = 0$. And by the lemma we just proved and Squeeze Theorem,

$$\lim_{x \to 0} x^n = 0$$

4.2.9

(a) **Proof:** Suppose $\lim_{x\to c} f = L_1$ and $\lim_{x\to c} (f+g) = L_2$. So by definition, given any $\varepsilon > 0$, there is a $\delta_1 > 0$ and $\delta_2 > 0$ such that if $0 < |x-c| < \min\{\delta_1, \delta_2\}$ then $|f(x)-L_1| < \varepsilon$ and $|f(x)+g(x)-L_2| < \varepsilon$. Then we have $|f(x)+g(x)-L_2| \le |f(x)-L_1|+|g(x)-L_2+L_1|$. Suppose g's limit does exist, even when $0 < |x-c| < \min\{\delta_1, \delta_2\}$, there is x that make $|g(x)-L| > \varepsilon$ for all $L \in \mathbb{R}$, which means f+g does not converges and contradicts with the condition given.

As a result, g's limit exists.

(b) No, suppose f(x) = x and g(x) = 1/x, then $\lim_{x\to 0} f(x) = 0$ and $\lim_{x\to 0} f(x)g(x) = 1$, but g(x) does not converge at 0.

4.2.11

- (a) Let $x_n = \frac{1}{\sqrt{n\pi + \pi/2}}$, then (x_n) converges to 0, but $\sin(1/x_n) = \sin(n\pi + \pi/2)$ does not converges, so by Divergence Criteria, $\lim_{x\to 0} \sin(1/x^2)$ does not exist in \mathbb{R} .
- (b) Since $-1 \le \sin(1/x) \le 1$ for all $x \in \mathbb{R}$, $-|x| \le x \sin(1/x) \le |x|$. Since f(x) = |x| and g(x) = -|x| converges to 0 at x = 0, by Squeeze Theorem,

$$\lim_{x \to 0} x \sin(\frac{1}{x}) = 0$$

- (c) Let $x_n = \frac{1}{2n\pi + \pi/2}$, and $x'_n = \frac{1}{n\pi + 3\pi/2}$, then (x_n) and (x'_n) converges to 0. However, $\lim_{x\to 0} \operatorname{sgn} \sin(1/x_n) = \lim_{x\to 0} \operatorname{sgn} \sin(2n\pi + \pi/2) = 1$ and $\lim_{x\to 0} \operatorname{sgn} \sin(2n\pi + 3\pi/2) = -1$. As a result, the limit does not exist.
- (d) Since $-1 \le \sin(1/x^2) \le 1$ for all $x \in \mathbb{R}$, $-\sqrt{x} \le \sqrt{x}\sin(1/x^2) \le \sqrt{x}$. Since $f(x) = \sqrt{x}$ and $g(x) = -\sqrt{x}$ converges to 0 at x = 0, by Squeeze Theorem,

$$\lim_{x \to 0} \sqrt{x} \sin(\frac{1}{x^2}) = 0$$

5.1.3 Proof: Since both f(x) and g(x) are continuous on their domain, so naturally h(x) is continuous on $[a,b) \cup (b,c]$. Then we need to prove that h(x) is also continuous when x = b.

Also, when x = b, $f(x) \le h(x) \le g(x)$, and $\lim_{x\to b} f(x) = \lim_{x\to b} g(x) = f(b) = g(b)$. So $\lim_{x\to b} h(x) = f(b) = g(b) = h(b)$. Since, x = b is a cluster point in \mathbb{R} , by definition, we see that h(x) is continuous at x = b.

Hence, h(x) is continuous on [a, c].

5.1.4

- (a) $f(x) = [\![x]\!]$ is the ceiling function, which is discontinuous at each integer points $x \in \mathbb{Z}$ and is continuous on the rest points.
- (b) Similarly, $g(x) = x[\![x]\!]$, since ceiling function is not continuous, g(x) is discontinuous at each integer points $x \in \mathbb{Z}$ and is continuous on the rest points.
- (c) Since $\sin(x) \in [-1, 1]$ for all $x \in \mathbb{R}$, when $x \in (2n\pi, 2n\pi + \pi]$, $[\sin(x)] = 1$, but when $x \in (2n\pi + \pi, 2(n+1)\pi]$, $[\sin(x)] = 0$. As a result, when $x = n\pi$, h(x) is discontinuous, and is continuous on the rest points.
- (d) For all $x \in [\frac{1}{n}, \frac{1}{n+1})$, $k(x) = [\frac{1}{x}] = n+1$, and as a result, is continuous and is discontinuous otherwise.
- **5.1.5** Since $\lim_{x\to 2} \frac{x^2+x-6}{x-2} = \lim_{x\to 2} \frac{(x+3)(x-2)}{x-2} = \lim_{x\to 2} x+3=5$. And since x=2 is a cluster point in \mathbb{R} , then if we define $f(x)=\lim_{x\to 2} \frac{x^2+x-6}{x-2}=5$, then f(x) is continuous at this point by definition.

5.1.12 Proof: Suppose when $x = a, a \in \mathbb{R} - \mathbb{Q}$, $f(a) \neq 0$, then since f(x) is continuous on \mathbb{R} , $f(a) = \lim_{x \to a} f(x) \neq 0$ in a small enough neighborhood V that a is the only rational number in V. And thus, this corollary violates the condition given.

Hence, f(x) = 0 for all $x \in \mathbb{R}$.

5.1.13 By density theorem, for all $xy \in \mathbb{R}$ and x < y there is always $r \in \mathbb{Q}$ that x < r < y and there is always $r' \notin \mathbb{Q}$ that x < r' < y. As a result, there is always a rational number between two irrational numbers and there is always an irrational numbers between two rational numbers. Hence, g(x) is never continuous in $\mathbb{R} - \{3\}$ (the intersection of two branches).

Then we need to discuss the continuity at x=3. Since $3 \in \mathbb{Q}$, $g(3)=2\cdot 3=6$. And at this point any subsequences will converge to 6 at this point. Then by Convergence Criteria, $\lim_{x\to 3} g(x)=6$.

As a result, x = 3 is the only point where q(x) is continuous.

5.1.15 Let $x_n := \frac{1}{n}$ and $y_n := \frac{1}{n^2}$, obviously, $\lim(x_n) = \lim(y_n) = 0$. However, $f(x_n) = n$ and $f(y_n) = n^2$, since $x_n, y_n \in (0, 1), n > 1$, so $f(x_n) \neq f(y_n)$ for all $n \in \mathbb{N}$.