Generalization of stochastic calculus and its applications in large deviations theory

Sudip Sinha

2019-04-05

Advisors
Prof Hui-Hsiung Kuo
Prof Padmanabhan Sundar

Outline

1	Introduction and motivation	
2	Generalization of Itô calculus	12
3	Large deviations theory	19
4	Conclusion	29

§ 1 Introduction and motivation

Quick revision and notations

- Let $T \in (0, \infty)$, and denote $\mathbb{T} = [0, T]$ as the index set for t.
- Let $(\Omega, \mathcal{F}, \mathcal{F}_{\cdot}, \mathbb{P})$ be a filtered probability space.
- B. is a Brownian motion on $(\Omega, \mathcal{F}, \mathcal{F}_{\cdot}, \mathbb{P})$.
- Properties of *B*.
 - starts at 0
 - has independent increments
 - $B_t B_s \sim \mathcal{N}(0, t s)$
 - continuous paths

- has unbounded linear variation ③
- has bounded quadratic variation ©
- $\bullet \quad \mathbb{E}(B_t B_s) = s \wedge t$
- martingale
- Naive stochastic integration w.r.t. B_t : not possible.
- A stochastic process X_t is called (\mathcal{F}_t) -adapted if $\forall t, X_t$ is measurable w.r.t. \mathcal{F}_t .

Wiener integral $(f \in L^2[0,T])$

Definition

- 1. Step functions $f = \sum_{j=0}^{n-1} c_j \mathbb{1}_{[t_j, t_{j+1})}(t)$: Define $\int_0^T f(t) dB_t = \sum_{j=0}^{n-1} c_j \Delta B_j$, where $\Delta B_j = B_{t_{j+1}} B_{t_j}$.
- 2. $f \in L^2[0,T]$: Use step functions approximating f to extend the integral a.s.

Properties

- * Linear
- * Gaussian distribution with mean 0 and variance $||f||_{L^2[0,T]}^2$ (Itô isometry)
- * Corresponds to the Riemann–Stieltjes integral for $f \in C[0, T]$
- The associated process: $I_t = \int_0^t X_t dB_t$
 - * continuous
 - * martingale
- Problem: Cannot integrate stochastic processes.

Itô integral $(X \in L^2_{ad}([0, T] \times \Omega))$

Definition

- 1. Adapted step processes $X_t(\omega) = \sum_{j=0}^{n-1} \xi_j(\omega) \mathbb{1}_{[t_j,t_{j+1})}(t)$: define $\int_0^T X_t dB_t = \sum_{j=0}^{n-1} \xi_j \Delta B_j$.
- 2. $X \in L^2_{ad}([0,T] \times \Omega)$: use step processes approximating X to extend the integral in $L^2(\Omega)$.

Properties

- * Linear
- * Mean 0 and variance $||f||_{L^2[0,T]}^2$ (Itô isometry)
- * For X continuous, $\int_0^T X_t dB_t = \lim_{t \to \infty} \int_0^T X_{\left\lfloor \frac{tn}{n} \right\rfloor} dB_t$, for example $\int_0^t B_s dB_s = \frac{1}{2} \left(B_t^2 t \right)$
- The associated process: $I_t = \int_0^t X_t dB_t$
 - * continuous
 - * martingale
- Example: $\int_0^T B_t dB_t = \frac{1}{2}(B_T T)$.

Itô integral
$$(\int_0^T X_t^2 dt < \infty \text{ a.s.})$$

- Definition: Use sequences of processes in $L^2_{\rm ad}([0,T]\times\Omega)$ approximating X in probability to extend the integral in probability.
- Properties
 - * Linear
 - * Mean 0, but variance?
- The associated process: $I_t = \int_0^t X_t dB_t$
 - * continuous
 - * local martingale
- Example: $\int_0^T e^{B_t^2} dB_t = \int_0^{B_1} e^{t^2} dt \int_0^T B_t e^{B_t^2} dt$.

Itô formula

• An Itô process is a process of the form $X_t = X_0 + \int_0^t m(s, X_s) \, ds + \int_0^t \sigma(s, X_s) \, dB_s$, equivalently expressed as $dX_t = m(t, X_t) \, dt + \sigma(t, X_t) \, dB_t$. [Only makes sense when $\int_0^T \left(|m(s, X_s)| + |\sigma(s, X_s)|^2 \right) \, ds < \infty$ a.s.]

Theorem ([Itô44]) Let X_t be a d-dimensional Itô process, and let $Y_t = f(X_t)$, where $f \in C^2(\mathbb{R})$. Then $f(X_t)$ is also a d-dimensional Itô process, and

$$\mathrm{d}f(X_t) = \left\langle (\mathrm{D}f)(X_t), \, \mathrm{d}X_t \right\rangle + \frac{1}{2} \left\langle \, \mathrm{d}X_t, (D^2 f)(X_t) \, \, \mathrm{d}X_t \right\rangle,$$

where we use the rule $dB_t \otimes dB_t = I_d dt$.

• Example: For σ constant, $\mathcal{E}_t = \exp\left(\sigma B_t - \frac{1}{2}\sigma^2 t\right)$, $d\mathcal{E}_t = -\frac{1}{2}\sigma^2 \mathcal{E}_t dt + \sigma \mathcal{E}_t dB_t + \frac{1}{2}\sigma^2 \mathcal{E}_t (dB_t)^2$.

Exponential processes and Girsanov theorem

TODO

Let $h \in L^2[0,T]$. Then the translated stochastic process $W_t = B_t - \int_0^t h(s) \, ds$ is a Brownian motion under the probability measure $\tilde{\mathbb{P}}$ defined by the Radon-Nikodym derivative $\frac{d\tilde{\mathbb{P}}}{d\mathbb{P}} = \exp\left(\sigma B_T - \frac{1}{2}\sigma^2 T\right) =: \mathcal{E}_T^h$.

Then $\tilde{\mathbb{P}} \sim \mathbb{P}$ and the process $Z_t \coloneqq \mathbb{E}\left(\frac{\mathrm{d}\tilde{\mathbb{P}}}{\mathrm{d}\mathbb{P}} \mid \mathcal{F}_t\right)$ is a martingale.

Stochastic differential equations

- Let $\xi \in L^2(\Omega)$ be independent of B, and $m, \sigma : [0, T] \times \mathbb{R} \times \Omega \to \mathbb{R}$ be $\mathcal{B}[0, T] \times \mathcal{B}(\mathbb{R}) \times \mathcal{F}$ measurable such that $m(t, \cdot, \cdot)$ and $\sigma(t, \cdot, \cdot)$ are $\mathcal{B}(\mathbb{R}) \times \mathcal{F}_t$ measurable $\forall t$.

 Then a \mathcal{F}_t -adapted stochastic process X_t is called a solution of the stochastic *integral* equation $X_t = \xi + \int_0^t m(s, X_s) \, \mathrm{d}s + \int_0^t \sigma(s, X_s) \, \mathrm{d}B_s$ if for each t, the X_t satisfies the integral equation a.s.
- The stochastic differential equation $dX_t = m(t, X_t) dt + \sigma(t, X_t) dB_t$, $X_0 = \xi$ is a symbolic representation of the stochastic integral equation.

Theorem (Existence and uniqueness, Markov property) The stochastic differential equation above has a unique solution if there exists an M > 0 such that the following two conditions are satisfied:

- * (Lipschitz condition) $|m(t,x) m(t,y)|^2 + |\sigma(t,x) \sigma(t,y)|^2 \le M|x y|^2$ a.s.
- * (growth condition) $|m(t,x)|^2 + |\sigma(t,y)|^2 \le M(1+|x|^2)$ a.s.

The solution is a Markov process. Moreover if $\xi \in \mathbb{R}$, then the solution is also stationary.

• Example: For σ constant, $d\mathcal{E}_t = \sigma \mathcal{E}_t dB_t$, $\mathcal{E}_0 = 1$ is solved by $\mathcal{E}_t = \exp\left(\sigma B_t - \frac{1}{2}\sigma^2 t\right)$.

Multiple Wiener-Itô integrals

§ 2 Generalization of Itô calculus

Motivation

- Iterated integrals: Consider the iterated integral $\int_0^T \int_0^T dB_s dB_t = \int_0^T B_T dB_t \stackrel{?}{=} B_T B_t$.
- Note that $\mathbb{E}(B_T B_t) = T \wedge t = t \neq 0$, so no martingale property \odot .
- Stochastic differential equations with anticipation

$$dX_t = X_t dB_t$$

$$X_0 = B_1$$

$$Y_0 = 1$$

- Problem: We want to define $\int_0^T X_t dB_t$, where X_t is not adapted (anticipating).
- Some approaches
 - * Itô's decomposition of integrand $B_t = \left(B_t \int_0^t \frac{B_T B_s}{T s} ds\right) + \int_0^t \frac{B_T B_s}{T s} ds$
 - * Enlargement of filtration
 - * White noise theory

* ...

The new integral [AK08; AK10]: Idea

- A process Y and filtration \mathcal{F}_t are called instantly independent if Y^t and \mathcal{F}_t are independent $\forall t$.
- Ideas
 - 1. Decompose the integrand into adapted and instantly independent parts.
 - 2. Evaluate the adapted and the instantly independent parts at the left and right endpoints.
- Consider two continuous stochastic processes, X_t adapted and Y^t instantly independent w.r.t. \mathcal{F}_t . Then the integral $\int_0^T X_t Y^t dB_t$ is defined as

$$\int_{0}^{T} X_{t} Y^{t} dB_{t} \triangleq \lim_{\|\Delta_{n}\| \to 0} \sum_{j=0}^{n-1} X_{t_{j}} Y^{t_{j+1}} \Delta B_{j},$$

provided that the limit exists in probability.

- Now, for any stochastic process $Z(t) = \sum_{k=1}^{n} X_t^{(k)} Y_{(k)}^t$ we extend the definition by linearity.
- This is well-defined [HKS+16].

A simple example

• In the following, denote $\Delta B_j = B_{t_{j+1}} - B_{t_j}$ and \lim is the \lim in L^2 .

$$\int_{0}^{t} B_{T} dB_{t} = \int_{0}^{t} (B_{t} + (B_{T} - B_{t})) dB_{t} = \int_{0}^{t} B_{t} dB_{t} + \int_{0}^{t} (B_{T} - B_{t}) dB_{t}$$

$$= \lim_{t \to 0} \sum_{j=0}^{n-1} B_{t_{j}} \Delta B_{j} + \lim_{t \to 0} \sum_{j=0}^{n-1} (B_{T} - B_{t_{j+1}}) \Delta B_{j}$$

$$= \lim_{t \to 0} \sum_{j=0}^{n-1} (B_{T} - \Delta B_{j}) \Delta B_{j}$$

$$= B_{T} \lim_{t \to 0} \sum_{j=0}^{n-1} \Delta B_{j} - \lim_{t \to 0} \sum_{j=0}^{n-1} (\Delta B_{j})^{2} = B_{T} B_{t} - t$$

- Note that $\mathbb{E}(B_T B_t t) = 0$.
- In general, $\mathbb{E} \int_0^t Z(t) dB_t = 0$.

Generalized Itô formula [HKS+16]

• Let $dX_t = m(t) dt + \sigma(t) dB_t$ be an d-dimensional Itô process, $Y^t = \tilde{m}(t) dt + \tilde{\sigma}(t) dB_t$ be a \tilde{d} -dimensional instantly independent process, $f(x,y) \in C^2(\mathbb{R}^2)$. Then

$$\begin{split} \mathrm{d}f(X_t,Y^t) &= \left\langle (\,\mathrm{D}_x f)(X_t,Y^t),\,\mathrm{d}X_t \right\rangle + \frac{1}{2} \left\langle \,\mathrm{d}X_t,(D_x^2 f)(X_t,Y^t)\,\,\mathrm{d}X_t \right\rangle \\ &+ \left\langle (\,\mathrm{D}_y f)(X_t,Y^t),\,\mathrm{d}Y^t \right\rangle - \frac{1}{2} \left\langle \,\mathrm{d}Y^t,(D_y^2 f)(X_t,Y^t)\,\,\mathrm{d}Y^t \right\rangle, \end{split}$$

where we use the rule $dB_t \otimes dB_t = I_d dt$.

• Example: TODO

Iterated integrals

Theorem ([Itô51]) Let $f \in L^2([0,T]^n)$ and \hat{f} be its symmetrization. Then

$$\int_{[0,T]^n} f(t_1,...,t_n) dB_{t_1}...dB_{t_n} = n! \int_0^T ... \int_0^{t_{n-1}} \hat{f}(t_1,...,t_n) dB_{t_n}...dB_{t_1},$$

Theorem ([AK10]) Let $f \in L^2([0,T]^n)$. Then

$$\int_{[0,T]^n} f(t_1,...,t_n) \, \mathrm{d}B_{t_1}... \, \mathrm{d}B_{t_n} = \int_0^T \cdots \int_0^T f(t_1,...,t_n) \, \mathrm{d}B_{t_n}... \, \mathrm{d}B_{t_1}.$$

Near-martingale property [HKS+17]

- Question: What are the analogues of the martingale property and the Markov property?
- Partial answer: near-martingales
- Let Z(t) be a stochastic process such that $\mathbb{E}|Z(t)| < \infty \ \forall t$, and $0 \le s \le t \le T$. Then, with respect to \mathcal{F}_{\cdot} , the process Z(t) is called a
 - * near-martingale if $\mathbb{E}(Z(t) Z(s) \mid \mathcal{F}_s) = 0$,
 - * near-submartingale if $\mathbb{E}(Z(t) Z(s) \mid \mathcal{F}_s) \geq 0$, and
 - * near-supermartingale if $\mathbb{E}(Z(t) Z(s) \mid \mathcal{F}_s) \leq 0$.

§ 3 Large deviations theory

Motivation: an example

- 1. Setup. Let the following hold:
 - $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space.
 - (X_n) is a sequence of i.i.d. random variables on $(\Omega, \mathcal{F}, \mathbb{P})$ with finite moment generating function M.
 - $\mathbb{E}X_1 = m$, $\mathbb{V}X_1 = \sigma^2$, and $X_1 \sim \mu$.
 - $\bullet \quad \bar{X}_n = \frac{1}{n} \sum_{j=1}^n X_j.$
- 2. Asymptotic behavior of \bar{X}_n :
 - Weak law of large numbers: $\bar{X}_n \stackrel{\mathbb{P}}{\to} m$.
 - Central limit theorem: $\sqrt{n}\bar{X}_n \stackrel{w^*}{\to} \sqrt{n}m + \mathcal{N}(0, \sigma^2)$.
- 3. But at what speed?
- 4. We want to control large deviations from the mean.

Example: large deviation bounds

1. Fixing x > m and forcing the exponential with a free parameter $\theta > 0$, we get

$$\mathbb{P}\left\{\bar{X}_n \geq x\right\} = \mathbb{P}\left\{e^{\theta n\bar{X}_n} \geq e^{\theta nx}\right\} \leq e^{-\theta nx} \mathbb{E}\left(e^{\theta n\bar{X}_n}\right) = e^{-\theta nx} M_X(\theta)^n = e^{-n(\theta x - \log M_X(\theta))}$$

2. Since θ was arbitrary, we have

$$\mathbb{P}\left\{\bar{X}_n \geq x\right\} \leq \inf_{\theta} e^{-n(\theta x - \log M_X(\theta))} = e^{-n\sup_{\theta} (\theta x - \log M_X(\theta))} =: e^{-nI(x)}.$$

3. Generalizing, we get the large deviation upper bound

$$\overline{\lim}_{n} \frac{1}{n} \log \mathbb{P} \left\{ \bar{X}_{n} \in E \right\} \le -\inf_{\overline{E}} I \qquad \forall E \in \mathcal{B}.$$

4. We can also obtain a lower bound too using an exponential change of measure

$$\underline{\lim}_{n} \frac{1}{n} \log \mathbb{P} \left\{ \bar{X}_{n} \in E \right\} \ge -\inf_{\mathring{E}} I \qquad \forall E \in \mathcal{B}.$$

5. So informally, we get $\mathbb{P}\left\{\bar{X}_n = x\right\} = e^{-nI(x)}$ for $x \in \mathbb{R}$.

Definitions

- The setup: (X_n) is a stochastic process on $(\Omega, \mathcal{F}, \mathbb{P})$ taking values in a Polish space (\mathcal{X}, d) .
- A function $I: \mathcal{X} \to [0, \infty]$ is called a rate function if it has compact level sets.
- *I* is lower semicontinuous and attains its infimum on a nonempty closed set.
- For any Borel set E, denote $I(E) = \inf_{x \in E} I(x)$.

Definition (X_n) is said to satisfy the large deviation principle on \mathcal{X} with rate function I if the following two conditions hold.

(upper bound)
$$\overline{\lim} \frac{1}{n} \log \mathbb{P} \{ \bar{X}_n \in F \} \le -I(F)$$
 $\forall F \text{ closed}$ (lower bound) $\underline{\lim} \frac{1}{n} \log \mathbb{P} \{ \bar{X}_n \in E \} \ge -I(G)$ $\forall G \text{ open}$

Cramér theorem

Theorem ([Cra38]) Let (X_n) be a sequence of i.i.d. real random variables with finite moment generating function M. Then (X_n) follows large deviation principle with rate function $I(x) = \sup_{\theta} (\theta x - \log M(\theta))$.

Rate function for some common distributions for *X*.

Distribution	$M(\theta)$	I(x)
Bern(p)	$1 - p + pe^{\theta}$	$x \log \frac{x}{1-p} + (x-1) \log \frac{p}{x-1}$
$Pois(\lambda)$	$e^{\lambda(e^{\theta}-1)}$	$\lambda - x + x \log \frac{x}{\lambda}$
$Exp(\lambda)$	$(1 - \theta \lambda^{-1})^{-1}$	$\lambda x - 1 + x \log(\lambda x)$
$\mathcal{N}(m,\sigma^2)$	$e^{m\theta+\frac{1}{2}\sigma^2\theta^2}$	$\frac{(x-m)^2}{2\sigma^2}$
$\chi^2(k)$	$(1-2\theta)^{-\frac{k}{2}}$	$\frac{1}{2}\left(x-k+k\log\frac{k}{x}\right)$

Sanov theorem

LD in ∞-dimensions — Schilder theorem

Aim: Estimate the probability that a scaled-down sample path of a Brownian motion will stray far from the mean path (the 0 function).

Setup

- Let *B*. be a *d*-dimensional Brownian motion, so *B*. $\in C_0 = C_0([0, T]; \mathbb{R}^d)$
- $\forall \varepsilon > 0$, let W_{ε} denote the law of $\sqrt{\varepsilon}B$.
- Let CM = $\{\omega \in C_0 : \omega \in AC, \text{ and } \dot{\omega}_t \in L^2[0, T\}]$

Theorem On the Banach space $(C_0, \|\cdot\|_{\infty})$, the family of probability measures $\{W_{\varepsilon} : \varepsilon > 0\}$ satisfy the large deviations principle with the rate function $I : C_0 \to \overline{\mathbb{R}}$ given by

$$I(\omega) = \left(\frac{1}{2} \int_{0}^{T} |\dot{\omega}(t)|^{2} dt\right) \mathbb{1}_{AC}(\omega) + \infty \mathbb{1}_{AC^{\mathbb{C}}}(\omega)$$

Freidlin-Wentzell theorem

Aim: Estimate the probability that a scaled-down sample path of an Itô diffusion will stray far from the mean path.

Setup

- Let *B*. be a *d*-dimensional Brownian motion, so *B*. $\in C_0 = C_0([0, T]; \mathbb{R}^d)$
- $\forall \varepsilon > 0$, let $X^{(\varepsilon)}$ be a \mathbb{R}^d -valued Itô diffusion solving an Itô SDE of the form

$$dX_t^{(\varepsilon)} = b(X_t^{(\varepsilon)}) dt + \sigma(X_t^{(\varepsilon)}) \sqrt{\varepsilon} dB_t, \quad X_0^{(\varepsilon)} = 0.$$

• $\forall \varepsilon > 0$, let W_{ε} denote the law of $X_{\cdot}^{(\varepsilon)}$.

Theorem (Freidlin, Wentzell (year?)) On the Banach space $(C_0, \|\cdot\|_{\infty})$, the family of probability measures $\{W_{\varepsilon} : \varepsilon > 0\}$ satisfy the large deviations principle with the rate function $I : C_0 \to \overline{\mathbb{R}}$ given by

$$I(\omega) = \left(\frac{1}{2} \int_{0}^{T} |\dot{\omega}_{t} - b(\omega_{t})|^{2} dt\right) \mathbb{1}_{H^{1}([0,T];\mathbb{R}^{d})}(\omega) + \infty \mathbb{1}_{H^{1}([0,T];\mathbb{R}^{d})^{\mathbb{C}}}(\omega)$$

Applications

§4 Conclusion

Open areas for research

- * Extension to SDEs with anticipating coefficients
- Near-Markov property
- * Girsanov theorem for anticipating integrals
- * Freidlin-Wintzell type result for SDEs with anticipation

The Earth, as a habitat for animal life, is in old age and has a fatal illness. Several, in fact. It would be happening whether humans had ever evolved or not. But our presence is like the effect of an old-age patient who smokes many packs of cigarettes per day—and we humans are the cigarettes.

Bibliography

- Ayed, W. & Kuo, H. H. (2008). An extension of the Itô integral. *Communications on Stochastic Analysis*, 2(3). doi:10.31390/cosa.2.3.05
- _____ (2010). An extension of the Itô integral: Toward a general theory of stochastic integration. *Theory of Stochastic Processes*, 16(32), 17–28. Retrieved from http://mi.mathnet.ru/thsp56
- Cramér, H. (1938). Sur un nouveau théorème-limite de la théorie des probabilités. *Actualités Scientifiques et Industrielles*, 736, 5–23.
- Hwang, C. R., Kuo, H. H., Saitô, K., & Zhai, J. (2016). A general Itô formula for adapted and instantly independent stochastic processes. *Communications on Stochastic Analysis*, 10(3). doi:10.31390/cosa.10.3.05
- _____ (2017). Near-martingale Property of Anticipating Stochastic Integration. Communications on Stochastic Analysis, 11(4). doi:10.31390/cosa.11.4.06
- Itô, K. (1944). Stochastic integral. *Proc. Imp. Acad.*, 20(8), 519–524. doi:10.3792/pia/1195572786

_____ (1951). Multiple Wiener Integral. *J. Math. Soc. Japan*, 3(1), 157–169. doi:10.2969/jmsj/00310157