Latent Variable Modeling using R

A. Alexander Beaujean

2015 Summer Quantitative Methods Series

June 2015

Topic: R Exercise: Data Entry

R Exercise: Data Entry

Data Entry Exercises

- Exercise 1
- Exercise 2
- Exercise 3
- Exercise 4

Data Entry Exercises

Exercise 1

Exercise 2

Exercise 3

Exercise 1

• In R, create a dataset called prac1 with the following data

10 25 63 54 78 41 33

```
prac1 <- c(10,25, 63, 54, 78, 41, 33)
prac1
## [1] 10 25 63 54 78 41 33
```

Exercise 1

• In prac1, change the 4th observation from 54 to 45

```
prac1[4] <- 45
prac1
## [1] 10 25 63 45 78 41 33
```

Data Entry Exercises

Exercise 1

Exercise 2

Exercise 3

Exercise 2

• In R, create a data frame called prac2 with the following data

Last Name	Salary (in \$10,000)
Franklin	8.0
Kahn	6.0
Redding	7.8
Cooke	4.1
Pickett	6.3

```
lname <- c("Franklin", "Kahn", "Redding", "Cooke", "Pickett")
salary <- c(8.0, 6.0, 7.8, 4.1, 6.3)
prac2 <- data.frame(lname, salary)
prac2

## lname salary
## 1 Franklin 8.0
## 2 Kahn 6.0
## 3 Redding 7.8
## 4 Cooke 4.1
## 5 Pickett 6.3</pre>
```

Exercise 2

• Convert *Salary* to \$1 units (e.g. $3.2 \rightarrow 32000$)

```
# remember to save the transformed variable in the dataset
prac2$salary10 <- prac2$salary*10000
prac2
       lname salary salary10
##
## 1 Franklin
               8.0
                      80000
        Kahn 6.0 60000
## 2
## 3
     Redding 7.8 78000
## 4
       Cooke 4.1 41000
## 5
     Pickett 6.3 63000
```

Data Entry Exercises

Exercise 1

Exercise 2

Exercise 3

- On website, there is a dataset named SampleData.txt. (http://blogs.baylor.edu/rlatentvariable/sample-page/courses/)
 - Download the file to your computer
- Import the data into R and print out the first 2 observation values on the console

```
x <- read.table(file="SampleData.txt",header=TRUE)
head(x, 2)
## Age IQ Height Sex
## 1 18 100 65 F
## 2 21 110 68 M</pre>
```

Data Entry Exercises

Exercise 1

Exercise 2

Exercise 3

Exercise 4

 The psych package for R has a dataset named peas, which has the diameter of parent and child for 700 sweet peas

```
## parent child
## 4 21 15
## 150 20 18
## 300 19 22
```

- 1. Download the psych package (if it is not already downloaded)
- 2. Load the psych package
- 3. Load the peas dataset

```
install.packages("psych", dependencies=TRUE)
library(psych)
data(peas)
```

Exercise 4

- In the peas dataset
 - 1. Find mean parent diameter

```
mean(peas$parent)
## [1] 18
```

2. Find the correlation (cor()) between parent and child diameter

```
cor(peas$parent,peas$child)
## [1] 0.35
```

Topic: R Exercise: Path Models

R Exercise: Path Models

- From Page and Keith (1981)
- \bullet n = 18,058 from High School and Beyond 1980 data
- Question of Interest: Relationship between school type and school academic achievement

	Race	SES	CogAbil	PrivSch	AcadAch	Homework
Race	1.00	0.18	0.23	0.11	0.20	-0.00
SES	0.18	1.00	0.33	0.24	0.36	0.23
CogAbil	0.23	0.33	1.00	0.18	0.72	0.28
PrivSch	0.11	0.24	0.18	1.00	0.18	0.21
AcadAch	0.20	0.36	0.72	0.18	1.00	0.30
Homework	-0.00	0.23	0.28	0.21	0.30	1.00

Race: White/Hispanic=1, Black=0

CogAbil: composite of verbal and nonverbal subtests

 $\label{eq:privSch:Private} \begin{picture}(100,0) \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){$

AcadAch: composite of Reading Math subtests Homework: Time spent on homework (not used)

	Race	SES	CogAbil	PrivSch	AcadAch	Homework
Race	1.00	0.18	0.23	0.11	0.20	-0.00
SES	0.18	1.00	0.33	0.24	0.36	0.23
CogAbil	0.23	0.33	1.00	0.18	0.72	0.28
PrivSch	0.11	0.24	0.18	1.00	0.18	0.21
AcadAch	0.20	0.36	0.72	0.18	1.00	0.30
Homework	-0.00	0.23	0.28	0.21	0.30	1.00

- \bullet Enter data into \boldsymbol{R}
- Name variables

Initial Path Model

- ullet Specify simple regression in ${f R}$
- Fit model to data

```
initial.model <- '
AcadAch ~ j*PrivSch
'</pre>
```

- parameterEstimates() is an alternative to using summary()
 - Returns path estimates, standard errors, and 95% confidence intervals

Full Path Model

 \bullet Specify and fit full model in \boldsymbol{R}

```
full.model <- '
AcadAch ~ j*PrivSch + g*SES + d*Race + i*CogAbil
PrivSch ~ f*SES + b*Race + h*CogAbil
CogAbil ~ e*SES + c*Race
SES ~ a*Race

# error variance
AcadAch~~ev*AcadAch
'
full.fit <- sem(full.model, sample.cov=privSchool.cor, sample.nobs=18058)</pre>
```

parameterEstimates(full.fit)

```
##
         lhs op
                     rhs label
                                 est
                                        se
                                               z pvalue ci.lower ci.upper
      AcadAch ~ PrivSch
                             j 0.022 0.005
                                             4.2 0.000
                                                            0.012
## 1
                                                                     0.032
## 2
      AcadAch ~
                     SES
                             q 0.128 0.005
                                            23.3
                                                  0.000
                                                            0.118
                                                                     0.139
      AcadAch
                             d 0.015 0.005
                                                                     0.026
## 3
                    Race
                                             2.9
                                                  0.003
                                                            0.005
      AcadAch ~ CogAbil
                             i 0.671 0.005 122.5
                                                  0.000
                                                            0.661
                                                                     0.682
## 4
## 5
      PrivSch ~
                     SES
                             f 0.202 0.008
                                            26.5
                                                  0.000
                                                            0.187
                                                                     0.217
## 6
      PrivSch ~
                    Race
                             b 0.046 0.007
                                             6.2
                                                  0.000
                                                            0.031
                                                                     0.060
## 7
      PrivSch ~ CogAbil
                             h 0.106 0.008
                                            13.8
                                                  0.000
                                                            0.091
                                                                     0.122
## 8
      CoaAbil ~
                     SES
                             e 0.295 0.007
                                            42.1
                                                  0.000
                                                            0.282
                                                                     0.309
      CogAbil ~
                    Race
                             c 0.177 0.007
                                            25.3
                                                  0.000
                                                            0.164
                                                                     0.191
## 9
## 10
          SES ~
                    Race
                             a 0.178 0.007
                                            24.3
                                                  0.000
                                                            0.164
                                                                     0.192
## 11 AcadAch ~~ AcadAch
                            ev 0.463 0.005
                                            95.0
                                                  0.000
                                                            0.454
                                                                     0.473
## 12 PrivSch ~~ PrivSch
                               0.926 0.010
                                            95.0
                                                  0.000
                                                            0.907
                                                                     0.945
   13 CoaAbil ~~ CoaAbil
                               0.863 0.009
                                            95.0
                                                  0.000
                                                            0.845
                                                                     0.880
## 14
          SES ~~
                     SES
                               0.968 0.010
                                            95.0
                                                  0.000
                                                            0.948
                                                                     0.988
## 15
         Race ~~
                    Race
                               1.000 0.000
                                              NA
                                                     NA
                                                            1.000
                                                                     1.000
```


Full Path Model

Topic: R Exercise: Simple Latent Variable Models

R Exercise: Simple Latent Variable Models

- Example from Little, Slegers, and Card (2006)
- Enter the correlations and standard deviations (n=380)
- Fit the path model using the standardized LV and marker variable methods to scale the the LV
 - For the marker variable method, use indicators 1 and 5 as the marker variables

	l1	12	13	14	15	16
Indicator 1	1.000					
Indicator 2	0.759	1.000				
Indicator 3	0.762	0.787	1.000			
Indicator 4	0.028	0.010	-0.058	1.000		
Indicator 5	-0.061	-0.061	-0.141	0.785	1.000	
Indicator 6	-0.022	-0.052	-0.102	0.816	0.816	1.000
SD	0.668	0.685	0.707	0.714	0.663	0.653


```
# marker variable
little.marker.model <- '
# factor model
F1 =~ a*I1 + b*I2 + c*I3
F2 =~ e*I5 + d*I4 + f*I6

# label latent (co)variances
F1~~n*F1
F2~~0*F2
F1~~p*F2
'
## fit model
little.marker.fit <- cfa(little.marker.model, sample.cov=little.cov, sample.nobs=380)</pre>
```

```
summary(little.marker.fit)
## lavaan (0.5-18) converged normally after 31 iterations
##
    Number of observations
##
                                                   380
##
    Estimator
##
                                                    ML
                                                17.330
##
    Minimum Function Test Statistic
    Degrees of freedom
                                                     8
##
##
    P-value (Chi-square)
                                                 0.027
##
## Parameter estimates:
##
##
    Information
                                              Expected
    Standard Errors
                                              Standard
##
##
##
                    Estimate Std.err Z-value P(>|z|)
## Latent variables:
##
    F1 =~
##
      Ι1
               (a)
                       1.000
                       1.059 0.049 21.688 0.000
##
      T2
                (b)
      13
                                0.050 21.817
##
                (c)
                       1.100
                                                 0.000
##
    F2 =~
##
      I5
                (e)
                       1.000
      Ι4
                (d)
                      1.076 0.044 24.252 0.000
##
##
      16
                (f)
                       1.023
                                0.040
                                       25.698
                                                 0.000
##
```

```
## Covariances:
##
     F1 ~~
##
       F2
                 (p)
                        -0.024
                                  0.019 -1.252
                                                 0.211
##
## Variances:
##
       F1
                 (n)
                         0.326
                                  0.032
##
       F2
                 (o)
                         0.344
                                  0.032
##
      I1
                         0.118
                                  0.012
##
      12
                         0.102
                                  0.012
##
      13
                         0.104
                                  0.013
      I5
##
                         0.094
                                  0.010
##
      14
                         0.110
                                  0.012
       16
                         0.064
                                  0.009
##
```

Simple Latent Variable Model Example

```
# standardized LV
little.standardized.model <- '
# factor model
F1 = NA*T1 + a*T1 + b*T2 + c*T3
F2 = NA*T4 + d*T4 + e*T5 + f*T6
# fix latent variances
F1~~1*F1
F2~~1*F2
# label latent covariance
F1~~p*F2
## fit model
little.standardized.fit <- cfa(little.standardized.model, sample.cov=little.cov,</pre>
        sample.nobs=380)
```

```
summary(little.standardized.fit)
## lavaan (0.5-18) converged normally after 34 iterations
##
    Number of observations
##
                                                  380
##
    Estimator
##
                                                   ML
##
    Minimum Function Test Statistic
                                               17.330
    Degrees of freedom
                                                    8
##
##
    P-value (Chi-square)
                                                0.027
##
## Parameter estimates:
##
##
    Information
                                              Expected
    Standard Errors
                                              Standard
##
##
##
                    Estimate Std.err Z-value P(>|z|)
## Latent variables:
##
    F1 =~
      Ι1
               (a)
                       0.571
                               0.028 20.216
                                                0.000
##
##
      T2
               (b)
                       0.605
                               0.029 21.213 0.000
      13
##
               (c)
                       0.628
                               0.029
                                       21.403
                                                0.000
##
    F2 =~
##
      T4
               (d)
                       0.631
                               0.029
                                       21.542
                                                0.000
      I5
               (e) 0.587
                               0.027 21.582 0.000
##
##
      16
                (f)
                       0.601
                               0.026
                                       22.945
                                                0.000
```

##

```
## Covariances:
##
     F1 ~~
##
       F2
                 (p)
                        -0.070
                                  0.056 -1.262
                                                 0.207
##
## Variances:
       F1
##
                         1.000
##
       F2
                         1.000
      I1
                         0.118
##
                                  0.012
##
      12
                         0.102
                                  0.012
##
      13
                         0.104
                                  0.013
                                  0.012
##
      14
                         0.110
##
      I5
                         0.094
                                  0.010
       16
                         0.064
                                  0.009
##
```

Topic: R Exercise: Latent Variable Models with Multiple Groups in R

R Exercise: Latent Variable Models with Multiple Groups in R

Talk Outline

- Example from Little et al. (2006), now with data from two groups
 - Group 1 n= 380; Group 2 n= 379
- Enter the correlations and standard deviations
- Examine configural, metric, and scalar invariance using the marker variable method to scale the the LV
 - For the marker variable method, use indicators 1 and 5 as the marker variables

	l1	12	13	14	15	16
Indicator 1	1.000	0.813	0.850	-0.188	-0.289	-0.293
Indicator 2	0.759	1.000	0.835	-0.155	-0.250	-0.210
Indicator 3	0.762	0.787	1.000	-0.215	-0.338	-0.306
Indicator 4	0.028	0.010	-0.058	1.000	0.784	0.800
Indicator 5	-0.061	-0.061	-0.141	0.785	1.000	0.832
Indicator 6	-0.022	-0.052	-0.102	0.816	0.816	1.000
Group One SD	0.668	0.685	0.707	0.714	0.663	0.653
Group One Mean	3.135	2.991	3.069	1.701	1.527	1.545
Group Two SD	0.703	0.718	0.762	0.650	0.602	0.614
Group Two Mean	3.073	2.847	2.979	1.717	1.580	1.550

Correlations for group one are given in the lower diagonal, and those for group two are given in the upper diagonal.

```
library(lavaan)
# group 1
group1.cor <- c(1.00000, 0.759, 1.000, 0.762, 0.787, 1.000, 0.0278, 0.010, -0.058,
        1.000. -0.061. -0.061. -0.141. 0.785. 1.000. -0.022. -0.052. -0.102. 0.816.
        0.816, 1.000)
group1.cor <- lav_matrix_lower2full(group1.cor)</pre>
rownames(group1.cor) <- colnames(group1.cor) <- paste("I",seg(1,6),sep="")</pre>
group1.sd <- c(0.6678, 0.685, 0.707, 0.714, 0.663, 0.653)
group1.cov <- cor2cov(group1.cor, group1.sd)</pre>
group1.mean \leftarrow c(3.135, 2.991, 3.069, 1.701, 1.527, 1.545)
# aroup 2
qroup2.cor <- c(1.000, 0.813, 1.000, 0.850, 0.835, 1.000, -0.188, -0.155, -0.215,
        1.000, -0.289, -0.250, -0.338, 0.784, 1.000, -0.293, -0.210, -0.306, 0.800,
        0.832.1.000
group2.cor <- lav_matrix_lower2full(group2.cor)</pre>
rownames(group2.cor) <- colnames(group2.cor) <- paste("I",seq(1,6),sep="")</pre>
group2.sd <- c(0.703, 0.718, 0.762, 0.650, 0.602, 0.614)
group2.cov <- cor2cov(group2.cor, group2.sd)</pre>
group2.mean \leftarrow c(3.073, 2.847, 2.979, 1.717, 1.580, 1.550)
# combine the data
little.cov <- list(group1=group1.cov, group2=group2.cov)</pre>
little.mean <- list(group1=group1.mean, group2=group2.mean)</pre>
little.n <- list(group1=380, group2=379)</pre>
```



```
# marker variable
little.marker.model <- '
# factor model
F1 = a*T1 + b*T2 + c*T3
F2 = e*I5 + d*I4 + f*I6
## configural
little.configural.fit <- cfa(little.marker.model, sample.cov=little.cov,
        sample.mean=little.mean. sample.nobs=little.n)
## metric
little.metric.fit <- cfa(little.marker.model, sample.cov=little.cov,</pre>
        sample.mean=little.mean, sample.nobs=little.n,group.equal=c("loadings"))
## scalar
little.scalar.fit <- cfa(little.marker.model, sample.cov=little.cov,</pre>
        sample.mean=little.mean, sample.nobs=little.n,
        group.equal=c("loadings", "intercepts"))
```

```
# examine model fit
# selected fit measures
fit.indices <- c("chisq", "df", "cfi", "rmsea", "srmr", "mfi")</pre>
fitMeasures(little.configural.fit, fit.indices)
## chisa df cfi rmsea srmr mfi
## 46.224 16.000 0.992 0.071 0.033 0.980
fitMeasures(little.metric.fit, fit.indices)
## chisq df cfi rmsea srmr
                                      mfi
## 49.014 20.000 0.992 0.062 0.036 0.981
fitMeasures(little.scalar.fit. fit.indices)
## chisq df cfi rmsea
                                     mfi
                              srmr
## 58.786 24.000 0.990 0.062 0.033 0.977
```

Topic: R Exercise: Sample Size Determination

R Exercise: Sample Size Determination

Talk Outline

• Is there an interaction between the antisocial behavior and hyperactivity in predicting academic achievement?

- Review the literature and determine that:
 - The main effects should be approximately twice the size of the interaction
 - ullet The correlation between antisocial behavior and hyperactivity is pprox 0.3
 - After controlling for hyperactivity
 - Antisocial behavior is positively related to academic achievement
 - Hyperactivity is negatively related to academic achievement
 - The interaction has a negative relationship to academic achievement

• Say we have the following data

$$b_{YX} = \begin{array}{l} \text{anti} = \\ b_{YX} = \begin{array}{l} \text{hyper} = \\ \text{int} = \end{array} \begin{bmatrix} 0.35 \\ -0.35 \\ -0.17 \end{bmatrix} \text{ and } R_{YX} = V_{YX} = \begin{bmatrix} 1.00 & 0.30 & 0.00 \\ 0.30 & 1.00 & 0.00 \\ 0.00 & 0.00 & 1.00 \end{bmatrix}$$

$$R^2 = 0.2$$

• Specify population and analysis models using lavaan syntax

```
# population model
antiPop.model<-'
academ ~ 0.35*anti + -0.35*hyp + -0.17*int
anti~~0.3*hyp
int ~~ 0*anti + 0*hyp
academ~~0.80*academ
'
# analysis model
antiReg.model <- '
academ ~ anti + hyp + int
int ~~ 0*anti + 0*hyp
'</pre>
```

- Double check your model
 - "Fit" population model in lavaan
 - Hint: Use the fixed.x=FALSE argument in the sem() function
 - Calculate implied correlations
 - Compare implied correlations to hypothesized values

```
library(lavaan)
# fit model with population moments
antiPop.fit <- sem(antiPop.model,fixed.x=FALSE)</pre>
summary(antiPop.fit, std=TRUE, rsquare=TRUE)
## ** WARNING ** lavaan (0.5-18) model has NOT been fitted
## ** WARNING ** Estimates below are simply the starting values
##
    Number of observations
##
                                                         0
##
##
    Fstimator
                                                        MI
##
## Parameter estimates:
##
    Information
##
                                                  Expected
                                                      None
##
    Standard Errors
##
                      Estimate Std.err Z-value P(>|z|) Std.lv Std.nox
##
## Regressions:
##
    academ ~
##
       anti
                         0.350
                                                              0.350
                                                                       0.350
                                                             -0.350 -0.350
##
       hyp
                        -0.350
##
      int
                        -0.170
                                                             -0.170 -0.170
##
## Covariances:
##
     anti ~~
##
       hyp
                         0.300
                                                              0.300
                                                                       0.300
```

##	hyp ~~			
##	int	0.000	0.000	0.000
##				
##	Variances:			
##	academ	0.800	0.800	0.800
##	anti	1.000	1.000	1.000
##	hyp	1.000	1.000	1.000
##	int	1.000	1.000	1.000
##				
##	R-Square:			
##				
##	academ	0.200		

0.000

0.000

0.000

##

int

```
# implied correlations
fitted(antiPop.fit)

## $cov

## academ anti hyp int

## academ 1.00

## anti 0.24 1.00

## hyp -0.24 0.30 1.00

## int -0.17 0.00 0.00 1.00

##

## $mean

## academ anti hyp int
```

0

0

0

0

• Determine if a sample size of 200 is sufficient to find an interaction effect.

```
librarv(simsem)
intReg.sim.n200 <- sim(nRep=1000, model=antiReg.model, n=200,
       generate=antiPop.model, lavaanfun = "sem", multicore=TRUE)
antiPop.pwr.n200 <- summarvParam(intReg.sim.n200)</pre>
antiPop.pwr.n200["academ~int",]
             Estimate.Average Estimate.SD Average.SE Power..Not.equal.0. Std.Est
##
## academ~int
                        -O 17
                                    0.065
                                              0.063
                                                                   0.78 -0.17
             Std.Est.SD Average.Param Average.Bias Coverage Rel.Bias Std.Bias
##
## academ~int
                  0.062
                                -0.17 -0.0035 0.94
                                                              0.021 -0.055
             Rel.SE.Bias Not.Cover.Below Not.Cover.Above Average.CI.Width
##
## academ~int
                  -0.031
                                  0.023
                                                  0.039
                                                                    0.25
##
             SD.CI.Width
## academ~int
                   0.018
```

- Will a sample size of 200 be sufficient to find an interaction effect?
 - From a power perspective, it will not
 - From an AIPE perspective, it might

- Determine the sample size for a power of .80
 - Simulate m=10 data sets from n=200 to n=300 increasing by units of 20

```
# simulate data
antiPop.n <- sim(nRep = NULL, model=antiReq.model, n = rep(seq(200,300,20), 10),
generate=antiPop.model, lavaanfun = "sem", multicore=TRUE)
# find sample size for desire power
antiPop.pwr.n <- getPower(antiPop.n)</pre>
findPower(antiPop.pwr.n. "N". 0.8)
##
      academ~anti
                     academ~hvp academ~int academ~~academ
                                                                  anti~~anti
                            Inf
                                                                         Inf
##
             Inf
                                           233
                                                          Inf
        hyp~~hyp int~~int
##
##
             Tnf
                            Tnf
# plot power curve
plotPower(antiPop.n. powerParam="academ~int")
# line at power = 0.80
abline(h=.8, lwd=2, ltv=2, col="blue4")
```


Advanced

• Equation 1 can estimate \mathbb{R}^2

$$R^{2} = \rho'_{YX} R_{XX}^{-1} \rho_{YX} = \frac{b'_{YX} V_{XX} b_{YX}}{\sigma_{Y}^{2}}$$
 (1)

where

- ρ_{YX} is the population $k \times 1$ column vector of correlations of each of the k predictors with the outcome
- b_{YX} is the population $k \times 1$ column vector of regression coefficients of each of the k predictors with the outcome
- R_{XX} and V_{XX} are the $k \times k$ population correlation and covariance matrixes, respectively, of the predictor variables,
- σ_Y^2 is the variance of the outcome, and
- ' is the transpose

References

- Little, T. D., Slegers, D. W., & Card, N. A. (2006). A non-arbitrary method of identifying and scaling latent variables in SEM and MACS models. *Structural Equation Modeling: A Multidisciplinary Journal*, 13, 59-72. doi: 10.1207/s15328007sem1301_3
- Page, E. B., & Keith, T. Z. (1981). Effects of U.S. private schools: A technical analysis of two recent claims. *Educational Researcher*, *10*, 7-17. doi: 10.2307/1174256