## 특화 프로젝트

# 

맛집 추천 시스템

A405

구영지 이용석 이재욱 한우석 홍지희

# 목차

01 프로젝트 리마인드

**02** 유사도 계산

코사인 유사도 피어슨 유사도 03 컨텐츠 기반 필터링

TF-IDF

 04

 협업 필터링

메모리 기반 방식 모델 기반 방식

# 

# 프로젝트 김마인드

- 빅데이터란?
- 프로젝트 소개
- 프로젝트 개요

## 빅데이터 이해하기



: 대규모의 데이터. 데이터로부터 가치를 추출하고 결과를 분석하는 기술



경쟁 업체 분석 / 이익 창출



상권 분석 / 입점 위치 탐색

## 프로젝트 주제



# 사용자 리뷰 기반의 맛집 추천 서비스

## 프로젝트 개요







## 데이터 분석 및 정리

데이터 가공 및 저장 사용자-아이템 행렬 생성

## 기본 추천 시스템 구축

협업 필터링 컨텐츠 기반 필터링

## 서비스 고도화

하이브리드 추천 시스템 구축 성능측정 모니터링 시스템



# 잠시 다음 챕터 들어가기 전에...

# (**位**) 유사도 계산

- 추천시스템 유사도 계산
- 코사인 유사도
- 피어슨 유사도

## 프로젝트 개요

## 유사도(Similarity) 계산

: 두 데이터가 얼마나 같을지 나타내는 척도

ex) 표절 검사

## 추천 시스템에서 유사도 계산

: 사용자에게 무언가를 추천하기 위한 아이템을 찾기 위해서는 유사도 계산이 필수적

## 추천시스템 유사도 계산





코사인 유사도

## 코사인 유사도

$$ext{cosine\_sim}(u,v) = rac{\sum\limits_{i \in I_{uv}} r_{ui} \cdot r_{vi}}{\sqrt{\sum\limits_{i \in I_{uv}} r_{ui}^2} \cdot \sqrt{\sum\limits_{i \in I_{uv}} r_{vi}^2}}$$

$$|a-b|^2 = |a|^2 + |b|^2 - 2a \cdot b$$

제2코사인법칙

$$|a-b|^2 = |a|^2 + |b|^2 - 2|a||b|\cos\theta$$

$$\overrightarrow{\Rightarrow} \overrightarrow{a} \cdot \overrightarrow{b} = |a||b| \cos \theta$$

$$\cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}}$$

- 코사인 값의 범위 : -1 ~ 1
- 코사인 유사도 값이 가지는 의미

-1: 반대 성향이다

0: 서로 독립적이다

1: 완전히 같다

-> 즉, 1에 가까울수록 유사하다.

#### 02. 유사도 계산

## 코사인 유사도



< x,y,z 좌표 >



< x에 대한 y,z의 각도 >

```
In [8]: import math
         import numpy as np
         def cosine_sim(a, b):
            sum_a = 0
            sum_b = 0
            sum_ab = 0
            |length = len(a)
            for i in range(length):
                sum_a += pow(a[i], 2)
                sum_b += pow(b[i], 2)
                sum_a_b += a[i]*b[i]
            return sum_a_b / (math.sqrt(sum_a)*math.sqrt(sum_b))
In [9]: x = np.array([2,0])
        y = np.array([2,3])
         z = np.array([4,4])
In [12]: cos_x_y = cosine_sim(x,y)
        cos_x_z = cosine_sim(x,z)
         print('x,y의 코사인 유사도 : ' + str(cos_x_y))
         print('x,z의 코사인 유사도 : ' + str(cos_x_z))
        x,y의 코사인 유사도 : 0.5547001962252291
        x,z의 코사인 유사도 : 0.7071067811865475
```

< 예시에 대해 코사인 유사도 계산한 코드 >

## 피어슨 유사도

$$\operatorname{pearson\_sim}(i,j) = \frac{\sum\limits_{u \in U_{ij}} (r_{ui} - \mu_i) \cdot (r_{uj} - \mu_j)}{\sqrt{\sum\limits_{u \in U_{ij}} (r_{ui} - \mu_i)^2} \cdot \sqrt{\sum\limits_{u \in U_{ij}} (r_{uj} - \mu_j)^2}}$$

|       | user1 | user2 | user3   | user4 | user5 |
|-------|-------|-------|---------|-------|-------|
| item1 | 1     | 2.4   | 1.3333  | -1.25 | -1    |
| item2 | 0     | -1.6  |         | 1.75  |       |
| item3 | 1     | 0.4   |         | -2.25 | 1     |
| item4 |       | 0.4   | 0.3333  |       | -1    |
| itme5 |       |       | -1.6667 | 1.75  | 1     |
| item6 | -2    | -1.6  |         |       | 0     |

$$ext{cosine\_sim}(u,v) = rac{\sum\limits_{i \in I_{uv}} r_{ui} \cdot r_{vi}}{\sqrt{\sum\limits_{i \in I_{uv}} r_{ui}^2} \cdot \sqrt{\sum\limits_{i \in I_{uv}} r_{vi}^2}}$$

|        | user1 | user2 | user3  | user4 | user5 |
|--------|-------|-------|--------|-------|-------|
| item1  | 4     | 4     | 4      | 1     | 1     |
| item2  | 3     | 0     |        | 4     |       |
| item3  | 4     | 2     |        | 0     | 3     |
| item4  |       | 2     | 3      |       | 1     |
| itme5  |       |       | 1      | 4     | 3     |
| item6  | 1     | 0     |        |       | 2     |
| 유저별 평균 | 3     | 1.6   | 2.6667 | 2.25  | 2     |

# 03 컨텐츠 기반 필터링

- TF-IDF

|      | 특징1 | 특징2 | 특징3 | 특징4 | 특징5 | 특징6 |
|------|-----|-----|-----|-----|-----|-----|
| 아이템1 |     |     |     |     |     |     |
| 아이템2 |     |     |     |     |     |     |
| 아이템3 |     |     |     |     |     |     |
| 아이템4 |     |     |     |     |     |     |
| 아이템5 |     |     |     |     |     |     |
| 아이템6 |     |     |     |     |     |     |

컨텐츠에 대한 특징을 어떻게 정할 것 인가?

# [아이템 x 특징]으로 구성된 행렬에서 유사도 계산을 이용하여 유사한 아이템을 선택하여 추천해주는 방식

## 콘텐츠 특징 선정

# 기존 데이터에서 특징 선정

| 가거  | 가게 store |            |            |          |  |  |  |  |  |  |
|-----|----------|------------|------------|----------|--|--|--|--|--|--|
| ©-7 | 가게식별자    | id         | BIGINT     | NOT NULL |  |  |  |  |  |  |
|     | 주소       | address    | VCHAR(255) | NOT NULL |  |  |  |  |  |  |
|     | 동네       | area       | VCHAR(255) | NOT NULL |  |  |  |  |  |  |
|     | 지점       | branch     | VCHAR(255) | NULL     |  |  |  |  |  |  |
|     | 업종       | category   | VCHAR(255) | NULL     |  |  |  |  |  |  |
|     | 가게사진     | image      | VCHAR(255) | NULL     |  |  |  |  |  |  |
|     | 위도       | latitude   | BIGINT     | NOT NULL |  |  |  |  |  |  |
|     | 경도       | longitude  | BIGINT     | NOT NULL |  |  |  |  |  |  |
|     | 가게명      | store_name | VCHAR(255) | NOT NULL |  |  |  |  |  |  |
|     | 전화번호     | tel        | VCHAR(255) | NULL     |  |  |  |  |  |  |

| 리뷰  | <u> </u> | Review       |            |          |
|-----|----------|--------------|------------|----------|
| O-r | 리뷰식별자    | id           | BIGINT     | NOT NULL |
|     | 점수       | score        | INT        | NOT NULL |
|     | 리뷰사진     | review_image | VCHAR(255) | NULL     |
|     | 내용       | content      | TEXT       | NOT NULL |
|     | 작성날짜     | reg_time     | DATETIME   | NOT NULL |
| ©⊽  | 가게식별자    | id2          | BIGINT     | NOT NULL |
| ©7  | 사용자식별자   | id3          | BIGINT     | NOT NULL |

| 사용         | 자      | User      |            |          |
|------------|--------|-----------|------------|----------|
| <b>©</b> 7 | 사용자식별자 | id        | BIGINT     | NOT NULL |
|            | 나이     | born_year | INT        | NOT NULL |
|            | 이메일    | email     | VCHAR(255) | NOT NULL |
|            | 성별     | gender    | VCHAR(255) | NOT NULL |
|            | 닉네임    | nickname  | VCHAR(255) | NOT NULL |

## 콘텐츠 특징 선정

## 알고리즘을 이용한 콘텐츠 특징 추출

=> 사용자 리뷰를 기반 으로 가게의 특징을 뽑아낸다.

리뷰 예시 ) 진하고 얼큰한 국물에 햄과 소시지가 푸짐하고 맛있는 부대찌개 집

## 특징이 될 만한 키워드 추출 + 수치화

# TF-IDF

Term Frequency 단어 빈도수



Inverse Document Frequency 역문서 빈도

전체 문서들에서 특정 단어가 얼마나 나오는가?

### TF-IDF

## 例人

#### 문서 내용

- 0 먹고 싶은 사과
- 1 먹고 싶은 바나나
- 2 길고 노란 바나나 바나나
- 3 저는 과일이 좋아요

# 자연어 처리를 통해 키워드로 나눔

## TF(Term Frequecy)

#### 과일이 길고 노란 먹고 바나나 사과 싶은 저는 좋아요

| 문서1 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 |  |
|-------|---|---|---|---|---|---|---|---|--|
| 문서2 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 |  |
| 문서3 0 | 1 | 1 | 0 | 2 | 0 | 0 | 0 | 0 |  |
| 문서4 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |  |

## DF(Document Frequecy)

과일이 길고 노란 먹고 바나나 사과 싶은 저는 좋아요

총합1 1 1 2 3 1 2 1 1

## TF-IDF

## 유사도 계산 방식을 사용

| 1     | 과일이    | 길고     | 노란     | 먹고     | 바나나 | 사과     | 싶은     | 저는     | 좋아요    |
|-------|--------|--------|--------|--------|-----|--------|--------|--------|--------|
| 문서1 ( | )      | 0      | 0      | 0.2876 | 0   | 0.6931 | 0.2876 | 0      | 0      |
| 문서2 0 | )      | 0      | 0      | 0.2876 | 0   | 0      | 0.2876 | 0      | 0      |
| 문서3 ( | )      | 0.6931 | 0.6931 | 0      | 0   | 0      | 0      | 0      | 0      |
| 문서4 ( | 0.6931 | 0      | 0      | 0      | 0   | 0      | 0      | 0.6931 | 0.6931 |

## IDF

### 단어 IDF(역 문서 빈도)

과일이 ln(4/(1+1)) = 0.693147 길고 ln(4/(1+1)) = 0.693147 노란 ln(4/(1+1)) = 0.693147 먹고 ln(4/(2+1)) = 0.287682

싶은 ln(4/(2+1)) = 0.287682

ln(4/(1+1)) = 0.693147

저는 ln(4/(1+1)) = 0.693147

좋아요 ln(4/(1+1)) = 0.693147

$$idf(d,t) = log(rac{n}{1+df(t)})$$

idf값이 너무 커지는 것을 막기 위해 log 값을 사용해준다.

# 

## 협업 필터링

- 메모리 기반 방식
- 모델 기반 방식

# 협업 필터링(Collaborative Filtering)

: <u>대규모의 기존 사용자</u>로부터 모은 데이터(평점, 구매 패턴 등)를 기반으로 사용자와 비슷한 성향의 항목을 추천하는 기술

Memory-based Methods

## 사용자 기반 협업 필터링(User-based Collaborative filtering)

사용자 간의 선호도를 분석하여 나와 유사한 성향의 사용자가 좋아한 상품/콘텐츠를 추천하는 기법

## 아이템 기반 협업 필터링(Item-based Collaborative Filtering)

사용자들의 선호도를 바탕으로 아이템 간의 유사도를 계산하고, 특정 사용자가 어떤 아이템을 구매

하거나 좋다고 평가하면 그와 <mark>유사한</mark> 아이템을 추천해주는 방식 -> <mark>대상이 사람이 아닌 아이템</mark>

Model-based Methods

--- 평점을 **예측**할 수 있는 모델을 만드는 방식

## 일단 협업 필터링을 하기 위해서는 User-Item 행렬이 필요

## User-item 행렬

## User - Store 평점 행렬 생성

| 리뷰              | 리뷰 Review |              |            |          |  |  |  |  |  |  |  |
|-----------------|-----------|--------------|------------|----------|--|--|--|--|--|--|--|
| C <sub>10</sub> | 리뷰식별자     | id           | BIGINT     | NOTNULL  |  |  |  |  |  |  |  |
|                 | 점수        | score        | INT        | NOT NULL |  |  |  |  |  |  |  |
|                 | 리뷰사진      | review_image | VCHAR(255) | NULL     |  |  |  |  |  |  |  |
|                 | 내용        | content      | TEXT       | NOT NULL |  |  |  |  |  |  |  |
|                 | 작성날짜      | reg_time     | DATETIME   | NOT NULL |  |  |  |  |  |  |  |
| ©7              | 가게식별자     | id2          | BIGINT     | NOT NULL |  |  |  |  |  |  |  |
| ©7              | 사용자식별자    | id3          | BIGINT     | NOT NULL |  |  |  |  |  |  |  |

user(약1.9만명) \* store(약46만개) => 약 87억4천만 크기의 평점 matrix 생성 But) 리뷰 개수는 91398개



희소 행렬(sparse matrix)



Python의 경우 Scipy라이브러리에서 희소행렬을 효율적으로 저장하기 위한 방법들(COO, CSR, DOK)을 제공

## 메모리 기반 필터링

# 메모리 기반 필터링(Neighborhood Model)

유사한 것을 추천해준다.

|       | item1 | item2 | item3 | item4 | item5 | itme6 | 평균  | cosine<br>(i,3) | pearson<br>(i,3) |
|-------|-------|-------|-------|-------|-------|-------|-----|-----------------|------------------|
| user1 | 7     | 6     | 7     | 4     | 5     | 4     | 5.5 | 0.956           | 0.894            |
| user2 | 6     | 7     |       | 4     | 3     | 4     | 4.8 | 0.981           | 0.939            |
| user3 |       | 3     | 3     | 1     | 1     |       | 2   | 1.0             | 1.0              |
| user4 | 1     | 2     | 2     | 3     | 3     | 4     | 2.5 | 0.789           | -1.0             |
| user5 | 1     |       | 1     | 2     | 3     | 3     | 2   | 0.645           | -0.817           |

=> KNN 알고리즘을 사용하여 유사한 몇 명을 선택할 지 결정

### 메모리 기반 필터링

# 메모리 기반 필터링(Neighborhood Model)

유사한 것을 추천해준다.

|       | item1 | itme6 | 평균  | pearson<br>(i,3) |
|-------|-------|-------|-----|------------------|
| user1 | 7     | 4     | 5.5 | 0.894            |
| user2 | 6     | 4     | 4.8 | 0.939            |
| user3 |       |       | 2   | 1.0              |
| user4 | 1     | 4     | 2.5 | -1.0             |
| user5 | 1     | 3     | 2   | -0.817           |

유사한 사용자에 대한 값으로만 계산

$$\hat{r}_{31} = \frac{7 * 0.894 + 6 * 0.939}{0.894 + 0.939} \approx 6.49$$

$$\hat{r}_{36} = \frac{4 * 0.894 + 4 * 0.939}{0.894 + 0.939} = 4$$

## 사용자의 평균치를 포함하여 유사한 사용자의 값을 통해 계산

사용자1의 아이템1의 평점 - 사용자1의 평균 평점 
$$\hat{r}_{31} = 2 + \frac{1.5*0.894 + 1.2*0.939}{0.894 + 0.939} \approx 3.35$$
 
$$\hat{r}_{36} = 2 + \frac{-1.5*0.894 - 0.8*0.939}{0.894 + 0.939} \approx 0.86$$
 사용자3의 평균 평점

## 모델 기반 필터링

# 모델 기반 필터링(Latent Factor)

행렬 분해(Matrix Fatorization)





User-Item 예측 Matrix (UxI)

### 모델 기반 필터링

# 최적화(Optimization) 문제

: 실제 값과 예측 값의 오차를 최소화 나가는 방식

## SGD(Stochastic Gradient Descent)

:기본적인 방식은 GD와 같으나 오차를 계산할 때 전체 데이터중 일부만 가지고 계산하여 일반적인 GD 방식 보다 빠름 User latent와 Item Latent를 동시에 최적화

## ALS(Alternating Least Square)

:오차를 줄이기 위해 User latent와 Item Latent중 하나의 값을 고정시키고 나머지 하나만 최적화, 이 과정을 번갈아 가면서 반복하면서 최적화

