K-Nearest Neighbors (KNN)

1. What is KNN?

K-Nearest Neighbors (KNN) is a non-parametric, lazy learning algorithm used for:

- Classification
- Regression

It predicts based on the k closest data points in the training set.

2. Core Idea

- 1. Store all training data.
- 2. For a new point:
 - (a) Compute distance to all training points.
 - (b) Pick the k nearest ones.
 - (c) Classification: majority vote of the neighbors.
 - (d) **Regression:** average (or weighted average) of neighbor values.

13. Math Example (Marriage Dataset)

Problem: Predict whether a new person P has a wife based on their age and salary using k-Nearest Neighbors (k = 3).

Training Data (Features: Age, Salary, Has_Wife)

ID	Age	Salary (K)	${ m Has}_{ m -}{ m Wife} \; ({ m Label})$
A	25	50	0
В	30	60	1
С	28	58	1
D	22	45	0
E	35	65	1

New Person (Test Point)

P: Age = 27, Salary = 55K

Step 1: Convert Salary to Numerical Scale (in thousands)

• All salaries: divide by $1000 \rightarrow \text{use } 50 \text{ instead of } 50 \text{K}, \text{ etc.}$

Step 2: Compute Euclidean Distances

$$d(P,A) = \sqrt{(27-25)^2 + (55-50)^2} = \sqrt{4+25} = \sqrt{29} \approx 5.39$$

$$d(P,B) = \sqrt{(27-30)^2 + (55-60)^2} = \sqrt{9+25} = \sqrt{34} \approx 5.83$$

$$d(P,C) = \sqrt{(27-28)^2 + (55-58)^2} = \sqrt{1+9} = \sqrt{10} \approx 3.16$$

$$d(P,D) = \sqrt{(27-22)^2 + (55-45)^2} = \sqrt{25+100} = \sqrt{125} \approx 11.18$$

$$d(P,E) = \sqrt{(27-35)^2 + (55-65)^2} = \sqrt{64+100} = \sqrt{164} \approx 12.81$$

Step 3: Pick k = 3 Nearest Neighbors

Top 3 nearest:

- C (3.16) Yes
- A (5.39) No
- B (5.83) Yes

Step 4: Majority Vote

Labels: Yes, No, Yes \Rightarrow Majority = **Yes**

Final Prediction:

Person P is predicted to have a wife (Yes)

Note: If you used k = 5, you would include all points, and result might change.

3. Key Parameters

- **k** Number of neighbors to consider.
- Distance metric Common: Euclidean, Manhattan, Minkowski.
- Weights All neighbors equal or closer ones weighted more.
- Algorithm 'auto', 'kd_tree', 'ball_tree', 'brute'.

4. Distance Metrics

• Euclidean Distance:

$$d(p,q) = \sqrt{\sum_{i=1}^{n} (p_i - q_i)^2}$$

• Manhattan Distance:

$$d(p,q) = \sum_{i=1}^{n} |p_i - q_i|$$

• Minkowski Distance:

$$d(p,q) = \left(\sum_{i=1}^{n} |p_i - q_i|^p\right)^{1/p}$$

5. Pros and Cons

Advantages

- Simple and intuitive.
- No explicit training phase.
- Works well for multi-class problems.
- Good with well-separated data.

Disadvantages

- Prediction can be slow for large datasets.
- Sensitive to irrelevant features and unscaled data.
- Poor performance in high dimensions (curse of dimensionality).
- \bullet Choice of k is crucial.

6. Choosing k

- Small k: Sensitive to noise (high variance).
- Large k: Smoother, more stable (but higher bias).
- Best practice: Use cross-validation to choose k.

7. Preprocessing Tips

- Normalize or standardize data.
- Handle missing values.
- Consider dimensionality reduction (e.g., PCA).

8. Python Implementation (Scikit-learn)

Classification Example:

```
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split

# Preprocessing
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

# Train/test split
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2)

# Model
model = KNeighborsClassifier(n_neighbors=5)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)

Regression Example:
```

from sklearn.neighbors import KNeighborsRegressor
model = KNeighborsRegressor(n_neighbors=3)

9. Evaluation Metrics

For Classification:

- Accuracy
- Precision, Recall, F1-score
- Confusion Matrix

For Regression:

- Mean Squared Error (MSE)
- Mean Absolute Error (MAE)
- R^2 Score

10. Variants and Improvements

- Weighted KNN Weights inversely proportional to distance.
- K-d Trees / Ball Trees Fast lookup for neighbors.
- Approximate Nearest Neighbors e.g., FAISS, Annoy.
- Outlier-resistant methods.

11. Applications of KNN

- Recommender systems
- Image classification
- Text categorization
- Anomaly detection
- Imputation of missing data

12. Summary Table

Term	Explanation
Lazy Learner	No explicit training, just memory-based
Instance-based	Uses all data to make prediction
Non-parametric	No assumption on data distribution
Curse of Dimensionality	Distance loses meaning in high dimensions