CALCULUS I	Dept. or School		Year	proctor	
2013 Spring Midterm Exam	Student ID		Name	'	
** Your answer must be provided with descriptions how to get the answer. $(-1/x + -1/x)^{2}$			$\rho \sqrt{r}$	1	
1. (4 points) For a positive number a , find $\lim_{x \to \infty} \left(\frac{a^{1/x} + a^{-1/x}}{2} \right)^x$.	2.(4 points)	Evaluate $\int_{1}^{3} \sqrt{s}$	$\overline{c} \int_0^{\infty} \frac{1}{1}$	$\frac{1}{t^2}dt dx.$	

3.(5 points) Find an equation of the tangent line to the curve $ysin2x = x\cos 2y$ at the point $(\pi/2, \pi/4)$.	4.(5 points) Evaluate $\int_{\ln(\sqrt{6}+1)}^{\ln(2\sqrt{2}+1)} \frac{e^{4t} - 3e^{3t} + 3e^{2t} - e^t}{\sqrt{e^{2t} - 2e^t - 3}} dt$

CALCULUS I 2013 Spring Midterm Exam	Dept. or School		Year	proctor
	Student ID		Name	
5 (1)(3 points) Express the following limit as a form of definite integral. $\lim_{n\to\infty} \left[\frac{1}{n} cos(\ln(1+\frac{1}{n})) + \frac{1}{n} cos(\ln(1+\frac{2}{n})) + \dots + \frac{1}{n} cos(\ln(1+\frac{n}{n}))\right]$		$f(x) = x\sqrt{4 - x^2} + 4s$ points) Differentiate		and $g(x) = \cos^{-1}\left(\frac{x}{2}\right)$.
(2)(3 points) Use (1) to find the limit $\lim_{n\to\infty} \left[\frac{1}{n} cos \left(\ln\left(1+\frac{1}{n}\right) \right) + \frac{1}{n} cos \left(\ln\left(1+\frac{2}{n}\right) \right) + \dots + \frac{1}{n} cos \left(\ln\left(1+\frac{n}{n}\right) \right) \right]$		pints) Solve the equ	ation $\frac{d^2}{dx^2}$	$f(x) + \frac{d}{dx}g(x) = 0.$

7. If $n \ge 2$ is a positive integer and $x > 0$, (1) (3 points) Find the maximum value of x^{1/x^n} over the interval $1 \le x \le e$.	(3)(4 points) For what values of a is the following equation true? $\lim_{x\to\infty}\left[x^{1/x^n}\left(\frac{x+a}{x-a}\right)^x\right]=e.$
(2) (3 points) Find $\lim_{x\to\infty} x^{1/x^n}$ for every integer n .	
$x{ ightarrow}\infty$	