

齿轮齿条式电动助力转向系统(EPS)

目录

1、	EPS 系统概述	1
	1.1、EPS 系统的功能:	
	1.1.1、助力控制功能	1
	1.1.2、回正控制功能	
	1.1.3、阻尼控制功能	1
	1.2、EPS 系统工作原理	
2、	EPS 系统电路原理图	
	2.1、EPS 系统与整车配线电气接口定义	3
3、	维护注意事项	
	3.1、检修注意事项	
	3.1.2、电动助力转向器总成检修注意事项	4
	3.2、故障排除表	
	3.3、一般故障检修信息	
	3.4、转向盘自由行程的检查	8
4、	转向盘及转向管柱的检修	8
	4.1.1、转向盘及转向管柱总成的结构(电动四向调节)	8
	4.1.2、转向盘及转向管柱总成的拆装	
	4.2 转向盘和转向管柱及万向节总成的结构(手动调节)	
	4.2.1 转向盘和转向管柱及万向节总成的拆装	
	4.3、电动助力转向器带横拉杆总成的检修	
	4.3.1、电动助力转向器带横拉杆总成的结构	17
	4.3.2 拆卸	
	4.3.3 检査	19
	4.3.4 安装	
5、	EPS 系统自诊断及故障排除	
	5.1 诊断仪故障排除方法:	
	5.1.1 故障码故障排除方法	
	5.1.2 电源电压低、电源电压正极断路故障检查	
	5.1.3 扭矩、转角信号故障检查	25
	5.1.4 其他信号线束检测	26

BYD tt亚迪汽车 BYD AUTO

1、EPS 系统概述

EPS(Electric Power-assistant Steering,以下简称 EPS)系统,是指利用 EPS 电机提供转向动力,辅助驾驶员进行转向操作的转向系统。该系统和其他控制系统一样,是由传感器(扭矩转角传感器、车速传感器)、控制器(EPS 电子控制单元)、执行器(EPS 电机)以及相关机械部件组成。

1.1、EPS 系统的功能:

EPS 系统是在机械转向系统的基础上,将最新的电子技术和高性能的电机控制技术应用于汽车转向系统。EPS 系统在原有汽车转向系统的基础上,改造并且增加了以下几个部分: EPS 电子控制单元、扭矩及转角传感器、EPS 电机等。系统的传动机构采用电机驱动,取代了传统机械液压机构。它能够在各种环境下给驾驶员提供实时转向盘助力。

EPS 系统通常由以下几部分组成:(a)扭矩及转角传感器、(b)车速传感器、(c)EPS 电子控制单元、(d)EPS 电机、(e)相关机械结构。EPS 系统由 EPS 电机提供助力,助力大小由 EPS电子控制单元 实时调节与控制。根据车速的不同提供不同的助力,改善汽车的转向特性,减轻停车泊位和低速行驶时的操纵力,提高高速行驶时的转向操纵稳定性,进而提高了汽车的主动安全性。

EPS 系统主要有以下几个功能:

1.1.1、助力控制功能

EPS 的助力特性属于车速感应型,即在同一转向盘力矩输入下,电机的目标电流随车速的变化而变化,能较好地兼顾轻便性与路感的要求。

比亚迪 E5 乘用车维修手册

EPS 的助力特性采用分段型助力特性。EPS 电机根据转向盘偏离方向施加助力转矩。以保证低速时转向轻便,高速时操作稳定并获得较好的路感。

1.1.2、回正控制功能

转向时,由于转向轮主销后倾角和主销内倾角的存在,使得转向轮具有自动回正的作用。EPS系统在机械转向机构的基础上,增加了 EPS 电机和减速机构。EPS系统通过 EPS 电子控制单元对 EPS 电机进行转向回正控制,与前轮定位产生的回正力矩一起进行车辆的转向回正动作,使转向盘迅速回正,抑制转向盘振荡,保持路感,提高转向灵敏性和稳定性,优化转向回正特性,缩短了收敛时间。回正控制通过调整回正补偿电流,进而产生回正作用转矩,该转矩沿某一方向使转向轮返回到中间位置。

1.1.3、阻尼控制功能

车辆高速行驶时,通过控制阻尼补偿电流进 行阻尼控制,增强驾驶员路感,改善车辆高速行 驶情况下转向的稳定性。

1.2、EPS 系统工作原理

汽车转向时,扭矩及转角传感器把检测到的 扭矩及角度信号的大小、方向经处理后传给 EPS 电子控制单元,EPS 电子控制单元同时接收车速 传感器检测到的车速信号,然后根据车速传感器 和扭矩及转角传感器的信号决定电机的旋转方向 和助力扭矩的大小。同时电流传感器检测电路的 电流,对驱动电路实施监控,最后由驱动电路驱动电机工作,实施助力转向。其工作原理如图 1-1 所示。

图 1-1 EPS 系统工作原理

2、EPS 系统电路原理图

图 2-1 EPS 系统电路原理图

2.1、EPS 系统与整车配线电气接口定义

图 2-2 EPS 线束端引脚定义(测试端视图) 表 2-1 EPS 电子控制单元板端引脚定义

测试端子	配线颜色	端子说明	测试条件	标准值
D1-车身	G	接地	ON 档电	和车身之间阻抗小于 1Ω
D2-车身	B/G	接地	ON 档电	和车身之间阻抗小于 1Ω
D3-车身	W	扭矩主信号	ON 档电	PWM 占空比: 12.5%-87.5%
D4-车身	B/R	电源正	ON 档电	5V
D5-车身	R	电源正	ON 档电	5V
D6-车身	V	转角 S 信号	ON 档电	PWM 占空比: 12.5%-87.5%
D7-车身	BL	转角 P 信号	ON 档电	PWM 占空比: 12.5%-87.5%
D8-车身	В	扭矩辅信号	ON 档电	PWM 占空比: 12.5%-87.5%
C4-车身	R/G	IG1 电源	ON 档电	9-16V
C5-车身	R/G	IG1 电源	ON 档电	9-16V
C7-车身	P	CAN_H	ON 档电	1.5V 或 3.5V
C8-车身	V	CAN_L	ON 档电	2.5V 或 3.5V
C (其余)				预留
A1-车身	В	接地	始终	和车身之间阻抗小于1Ω
A2-车身	R	电源正极	始终	9-16V

3、维护注意事项

3.1、检修注意事项

3.1.1、无钥匙启动按钮如右图所示。其灯光颜色 定义如表3-1所示。

图3-1 点火开关档位示意图

表3-1 点火开关状态

按钮状态说明	车辆状态	
按	批示灯颜色	车辆状态
车内检测到智能钥匙,可以启动车辆	绿色	OFF
车内检测不到智能钥匙, 无法启动车辆	无灯光,熄灭	OFF
ACC档/ON档	橙色	OFF
车辆起动	无灯光, 熄灭	起动

3.1.2、电动助力转向器总成检修

注意事项

(1) SRS气囊系统操作注意事项

本车配备有空气囊(SRS),包括前排双空气囊、侧空气囊和侧安全气帘。如果不按正确的次序操作,可能会引起空气囊在维修过程中意外打开,并导致严重的事故。故维修之前(包括零件的拆卸或安装、检查或更换),一定要阅读空气囊系统的注意事项。

比亚迪 HA 乘用车维修手册

(2)本车电动助力转向系统带有主动回正控制功能及遥控驾驶功能,转向系统(齿轮齿条式电动助力转向器总成等)经过拆换后,需重新进行车辆四轮定位,并标定扭矩转角信号,同时标定ESP转角信号。标定扭矩、转角以后,车辆重新上ON档电源清除残留故障码(标定流程如图3-2、3-3、3-4所示)。

注意:

转角信号标定前,禁止进行遥控驾驶操作, 否则可能会引起严重损坏故障;

用诊断仪进行标定操作时,把手离开转向盘,转向盘不能受外在力的影响,否则可能会引起严重损坏故障。

图3-2、扭矩信号标定流程

图3-3、转向盘转角信号标定流程

BYD tt亚迪汽车 BYD AUTO

比亚迪 HA 乘用车维修手册

图3-4、故障码消除流程

- (3) 拆卸或重新安装动助力转向器总成时:
- ①避免撞击电动助力转向器总成,特别是传感器,EPS电子控制单元,EPS电机和减速机构。如果电动助力转向器总成跌落或遭受严重冲击,需要更换一个新的总成。
 - ②移动动助力转向器总成时,请勿拉拽线束。
- ③在从转向器上断开转向管柱或者中间轴之前,车轮应该保持在正前方向,车辆处于断电状态,否则,会导致转向管柱上的时钟弹簧偏离中心位置,从而损坏时钟弹簧。
- ④断开转向管柱或者中间轴之前,车辆处于 断电状态。断开上述部件后,不要移动车轮。不 遵循这些程序会使某些部件在安装过程中定位不 表3-2 转向系统故障排查表

准

⑤转向盘打到极限位置的持续时间不要超过 5秒钟,否则可能会损坏助力电机。

3.2、故障排除表

故障排除表有助于找到故障的原因,表中数字表明了引起故障的可能顺序,请按顺序检查每一个零件。必要时,请修理或更换有故障的零件或进行调整。

转向系统故障排除如表3-2所示。

症状	可能原因	症状	可能原因
症状	可能原因	症状	可能原因
转向沉重	1) 轮胎(充气不当) 2) 前轮定位(不正确) 3) 转向节(磨损) 5) 转向管柱总成(有故障)	游隙过大	1)转向节(磨损) 2)中间轴、滑动节叉(磨损) 3)转向器(有故障)
	6) 电动助力转向器总成(有故障)	异常噪声	1)减速机构(磨损) 2)转向节(磨损) 3)电动助力转向器总成(有故障)
回位不足	个足 2\ 株白笠针 (恋曲)	转向盘抖动	1) 电动助力转向器总成(有故障) 2) 转向管柱总成(有故障)

不大于30mm。如果自由行程超过最大值,需检查转向系统。

3.3、一般故障检修信息

EPS指示灯

当启动发动机后,EPS指示灯会点亮,并保持2~3秒后熄灭,此时说明EPS指示灯及系统运行正常。

发动机起动后,如果系统有任何问题,则故障报警灯应立即显示,同时以灯光闪烁的频率判断相应故障原因。

3.4、转向盘自由行程的检查

检查转向盘自由行程的方法如下:

- 1) 停车且轮胎朝向正前方;
- 2) 向左或向右轻轻转动转向盘,检查转向盘 的自由行程。如图3-5所示,转向盘最大自由行程

图3-5 转向盘自由行程示意图

4、转向盘及转向管柱的检修

4.1.1、转向盘及转向管柱总成的结构(电动四向调节)

如图4-1所示。

图4-1 转向盘及转向管柱总成结构图

比亚迪芝车 BYD AUTO

4.1.2、转向盘及转向管柱总成的

拆装

1) 拆卸

部分维修操作会影响SRS气囊系统。维修转向 管柱前,请阅读SRS气囊系统的注意事项。

- 1、确认前轮朝向正前方;
- 2、断开蓄电池的负极端子;
- 3、拆下DAB模块(主驾空气囊模块)。 注意: 当空气囊电子控制单元监控到任何一个气 囊部件和气囊系统电路上的问题时,它将故障代
- 码存储在它的存储器中,并将信息送到组合仪表, 以点亮气囊故障指示灯。如果在点火开关处于ON 档状态时断开空气囊接插件, 故障代码将会被记 录。
- ①通过转向盘两侧的小圆孔用工具松开两个 内六角螺钉。如图 4-2 所示。

- ②从转向盘中取出 DAB 模块总成。
- ③使用拨片松开空气囊接头的卡扣,拔下空 气囊接头。
- 注意: 当拆下 DAB 模块总成时,不要拉扯空 气囊线束, 当放置 DAB 模块总成时, 保证其上表 面向上;请勿分解 DAB 模块总成。
 - 4、拆下转向盘总成。
 - ①拔出其余线束接插件:
- ②松开固定转向盘的六角法兰面螺栓。如图 4-3所示。

图4-3

- ③在转向盘总成和转向管柱总成的转向轴上 做好配合标记,如图4-4所示。
 - ④使用专用工具,拆下转向盘总成。

- 5、拆下组合开关护罩。
- ①用十字起松开下护罩的三个安装螺钉,然 后分离上下护罩。如图 4-5 所示。
- 注意:上下组合开关护罩由塑料卡扣配合, 由下往上将上护罩拉开并取下。

- 6、拆下时钟弹簧与组合开关。
- ①拔下所有连接在时钟弹簧、组合开关上的接插件。
- ②用十字起松开组合开关的三个安装螺钉 (两个位于正面、一个位于背面),如图 4-6 所示,取下组合开关。

- 7、拔下转向轴锁上的接插件。
- 8、拆下万向节防尘罩总成I

拧下两个螺母型塑料卡扣,如图 4-7 所示,取下万向节防尘罩总成 I。

松开两个螺母型塑料卡扣

图 4-7

- 9、脱开中间轴总成与转向器输入轴的连接。
- ①在中间轴下端与转向器输入轴配合处做好配合标记,如图 4-8 所示。
- ②此时可以套上转向盘转动,使螺栓处于方便操作的位置,松开螺栓,拔出中间轴。

- 10、拆下转向管柱及万向节总成。
 - ① 从电动转向管柱上脱开接插件和线束卡扣。
- ② 拆下 1个安装螺栓和2个安装螺母,取下转向管柱及万向节。如图4-9所示。

图 4-9

- 11、拆下转向管柱上转向轴锁。
 - ① 使用中心冲子 , 在两个防盗螺栓上做中心标记。
 - ② 使用 $3^{\sim}4mm$ 的钻头 ,钻入这 2 个螺栓。
 - ③ 使用螺丝刀 , 拆下 2 个螺栓和转向管柱 上轴锁总成。如图4-10所示。

BYD 比亚迪汽车 BYD AUTO

图 4-10

12、拆下转向轴锁总成。

2) 安装

1、检查轴锁是否存在故障

将拆下的轴锁连接上接插件,按下启动按钮 上电时,转向轴锁解锁;按下启动按钮断电时, 转向轴锁上锁。

轴向轴锁正常动作,拔下接插件装到转向管柱上:转向轴锁异常则需更换轴锁。

- 2、按拆卸的相反顺序安装轴锁总成。
- ①使用两个新的防盗螺栓安装转向轴锁。
- (②拧紧螺栓直至其螺母头部断掉。
- 3、安装转向管柱总成
- ①用2个螺母和 1个螺栓安装转向管柱总成, 拧紧力矩都为:30N•m。
 - ②连接接插件和线束卡扣。
 - 4、连接中间轴总成与转向器输入轴
- ①将中间轴套到转向器输入轴上,对齐之前 所做的标记,并确认中间轴上的螺栓孔与转向器 输入轴上的凹槽对齐,此时已装配到位。
- ① 紧螺栓,力矩为30N·m。

注意:螺栓请务必从无螺纹的一侧拧进,如果从另一侧拧进则起不到拧紧的效果甚至导致事故。在无螺纹的万向节节叉一侧有一经过铣削的平面,请将螺栓从此侧拧进。如图 4-11 所示。

比亚迪 HA 乘用车维修手册

图 4-11

- 5、安装万向节防尘罩总成 I 将防尘罩安装到位,并扣紧塑料卡扣。
- 6、安装组合开关与时钟弹簧 对准组合开关位置, 拧紧三个安装。

对准组合开关位置, 拧紧三个安装螺栓, 连接接插件。

- 7、安装组合开关护罩
- ①安装下护罩,并拧紧三个固定螺栓。
- ②装上护罩,将其扣紧在下护罩上。
- 8、对中时钟弹簧

注意:不正确地安装时钟弹簧会将其损坏, 因此请务必将其对中。对中时请先将时钟弹簧转 至左极限,然后往右旋转至右极限并数其完整圈 数,再往左旋转一半的圈数(如总圈数是8圈则 往回转4圈),使时钟弹簧有接插件接口的一端朝 上。如图4-12所示。

有接口的一端朝上

9、安装转向盘总成

对齐之前在转向盘与管柱上所做的标记,固定螺母拧紧力矩为 40Nm。

- 10、安装 DAB 模块总成
- 11、安装 DAB 模块总成
- ①连接接插件。
- ②对齐DAB模块位置,拧紧两侧的固定螺栓, 力矩为8.8Nm。

BYD AUTO

注意:

- ①不要使用另一辆汽车上拆下的空气囊零件。更换时,必须使用新零件。
- ②确保DAB模块总成是以规定力矩进行安装的。
- ③若 DAB 模块总成掉地,或者在壳体、接头上有裂纹、凹坑或等其他缺陷,更换新总成。
- ④当安装 DAB 模块总成时,电线不要和其他 部件有干扰,并且不要被夹住。
 - 12、接上蓄电池的负极端子。
 - 13、检查 SRS 警报灯。
- **4.2** 转向盘和转向管柱及万向节总成的结构 (手动调节)

如图 4-13 所示。

图 4-13

4.2.1 转向盘和转向管柱及万向

节总成的拆装

1)拆卸

1、应遵守转向系统检修注意事项。

比亚迪 HA 乘用车维修手册

- 2、脱开蓄电池的负极端子。
- 3、确认前轮朝向正前方。
- 4、拆下 DAB 模块总成。

①对齐转向盘两侧的小圆孔,用 TX30#套筒 松开两个内六花螺钉。如图 4-14 所示。

图 4-14

- ②从转向盘中取出 DAB 模块总成。
- ③使用拨片松开空气囊接头的卡扣,拔下空气囊接头。

注意: 当拆下 DAB 模块总成时,不要拉扯空气囊线束,当放置 DAB 模块总成时,保证其上表面向上;请勿分解 DAB 模块总成。

- 5、拆下转向盘总成。
 - ①脱开线束接头。
- ②使用 14#套筒拆下转向盘固定螺栓,如图 4-15 所示。

图 4-15

② 在转向盘总成和转向管柱及万向节总成上做好配合标记。如图4-16所示。

BYD tt亚迪汽车 BYD AUTO

图 4-16

③ 使用专用工具,拆下转向盘总成。

注意:取下转向盘时应避免时钟弹簧线束缠在转向盘上而损坏时钟弹簧。

6、拆下组合开关护罩。

①上下组合开关护罩由六对塑料卡扣配合, 由下往上将上护罩拉开并取下。

②用十字起松开下护罩的三个安装螺钉,并 往下松开转向管柱角度调节手柄,取下下护罩。 如图 4-17 所示。

7、拆下时钟弹簧。

拔下连接在时钟弹簧上的接插件;时钟弹簧 通过两对塑料卡扣与组合开关配合,如图 4-18 所示,请务必小心取出避免损坏。

比亚迪 HA 乘用车维修手册

8、拆下组合开关。

①拔下连接在组合开关上的接插件。

②用十字起松开组合开关的三个安装螺钉 (两个位于正面、一个位于背面),如图 4-19 所示, 取下组合开关。

9、拔下转向轴锁上的接插件。

10、拆下万向节防尘罩 I 总成。

松开两个螺母型塑料卡扣,如图 4-20 所示,取下防尘罩。

松开两个螺母型塑料卡扣 图 4-20

11、脱开中间轴与转向器输入轴连接点。

①在中间轴下端与转向器输入轴配合处做好配合标记,如图 4-21 所示。

②此时可以套上转向盘转动, 使螺栓处于方

BYD AUTO

便操作的位置,松开螺栓,拔出中间轴。

- 12、拆下转向管柱及万向节总成
 - ①确认所有与管柱连接的线束均已脱开。
 - ②松开管柱上安装点的螺母与下安装点的螺
- 栓,如图 4-22 所示,取下转向管柱及万向节。

图 4-22

13、拆下转向轴锁

松开如图 4-23 所示的两个防盗螺栓,取下转向轴锁。

2) 安装

1、检查轴锁是否存在故障 将拆下的轴锁连接上接插件,按下启动按钮

比亚迪 HA 乘用车维修手册

上电时,转向轴锁解锁;按下启动按钮断电时,转向轴锁解锁。

轴向轴锁正常动作,拔下接插件;转向轴锁 异常则需更换轴锁。

2、安装转向轴锁

将轴锁凸台与管柱上的锁孔对准,使用两个 新的防盗螺栓将轴锁支架与轴锁固定在管柱上, 拧紧螺栓直至螺栓头部被拧断。

- 3、安装转向管柱及万向节总成
 - ①对准下安装孔,插入下安装螺栓。
- ②松开转向管柱角度调节手柄,对齐上安装 支架的两个安装孔,拧上两个螺母。
- ③上安装点螺母拧紧力矩为 30Nm,下安装点螺栓拧紧为 30Nm。
 - ④连接转向轴锁接插件。
- 4、连接中间轴与转向器输入轴

①将中间轴套到转向器输入轴上,对齐之前 所做的标记,并确认中间轴上的螺栓孔与转向器 输入轴上的凹槽对齐,此时已装配到位。

②拧紧螺栓,力矩为30Nm。

注意:螺栓请务必从无螺纹的一侧拧进,如果从另一侧拧进则起不到拧紧的效果甚至导致事故。在无螺纹的万向节节叉一侧有一经过铣削的平面,请将螺栓从此侧拧进。

图 4-24

- 5、安装万向节防尘罩 I 总成 将防尘罩安装到位,并扣紧塑料卡扣。
- 6、安装组合开关

对准组合开关位置, 拧紧三个安装螺栓, 连接接插件。

7、安装时钟弹簧

确认前轮朝向正前方,安装时钟弹簧,扣紧 卡扣,连接接插件。

8、安装组合开关护罩

①安装下护罩,并拧紧三个固定螺栓。

②安装上护罩,将其扣紧在下护罩上。

9、对中时钟弹簧

注意:不正确地安装时钟弹簧会将其损坏,因此请务必将其对中。对中时请先将时钟弹簧转至左极限,然后往右旋转至右极限并数其完整圈数,再往左旋转一半的圈数(如总圈数是8圈则往回转4圈),使时钟弹簧有接插件接口的一端朝上。如图4-25所示。

10、安装转向盘总成

比亚迪 HA 乘用车维修手册

对齐之前在转向盘与管柱上所做的标记,固定螺母拧紧力矩为40Nm。

- 11、安装 DAB 模块总成
 - ①连接接插件。
- ②对齐DAB模块位置,拧紧两侧的固定螺栓, 力矩为8.8Nm。

注意:

- ①不要使用另一辆汽车上拆下的空气囊零件。更换时,必须使用新零件。
- ②确保DAB模块总成是以规定力矩进行安装的。
- ③若 DAB 模块总成掉地,或者在壳体、接头上有裂纹、凹坑或等其他缺陷,更换新总成。
- ④当安装 DAB 模块总成时,电线不要和其他部件有干扰,并且不要被夹住。
- 12、接上蓄电池的负极端子。
- 13、检查 SRS 警报灯。

4.3、电动助力转向器带横拉杆总成的检修

4.3.1、电动助力转向器带横拉杆总成的结构

如图4-26、4-27、4-28 所示。

图4-26

4.3.2 拆卸

拆卸过程中,请注意以下事项:

断开万向节前,必须拆除转向盘。否则,可能会 损坏时钟弹簧。

- 1、 拆转向盘。
- 2、 拆卸万向节防尘罩总成 I。
- 3、 分离中间轴总成。
- 4、 分离万向节防尘罩总成Ⅱ。
- (a) 分离万向节防尘罩总成Ⅱ骨架卡子A和B与车身的连接。

小心:不要损坏骨架上的卡子。

- 5、 拆卸前轮。
- 6、拆掉摆臂与摆臂球头销总成的安装螺栓和螺母。
- 7、分离左侧外拉杆总成与转向节的连接。
- (a) 拆下开口销和六角开槽螺母。

(b) 从转向节上分离左侧外拉杆总成。

- 8、分离右侧外拉杆总成与转向节的连接。提示:执行与左侧相同的操作流程。
- 9、拔下电源接插件及 CAN 信号接插件; 注意:拔接插件前,先用平口起撬开接插件倒扣:

10、用举升设备顶住副车架主体总成,拆掉副车架主体以及前副车架前、后安装支架与车身的八个连接螺栓。(参照前副车架总成拆卸流程)

- 11、降落举升设备,副车架随之落下。
- 12、拆掉稳定杆及拉杆球头总成。
- 13、拆卸万向节下防尘罩总成。
- (a) 从电动助力转向器带横拉杆总成上拆下万向 节下防尘罩总成。
- 14、拆卸电动助力转向器带横拉杆总成。
 - (a) 从前副车架总成拆下4个螺栓、4个螺母 和电动助力转向器带横拉杆总成。

- 15、固定电动助力转向器带横拉杆总成。
- 16、拆卸左侧外拉杆总成。
 - (a) 在左外拉杆总成与内拉杆上做好装配 标记。
 - (b) 拆卸左外拉杆总成与拉杆锁紧螺母。

17、拆卸左侧外拉杆总成。 提示:执行与左侧相同的操作流程。

4.3.3 检查

- 1、检查左侧横拉杆外部接头分总成。
 - (a) 将左侧外拉杆接头分总成固定在台钳上。

小心: 不要过度紧固台钳!

- (b) 将螺母安装至双头螺栓。
- (c) 前后晃动螺栓5次。
- (d) 将扭矩扳手放置螺母上、以3-5秒种一圈 的速度连续转动球节、并检查转动过程中是 否有卡滞等异常现象

提示:如果转动过程中有卡滞等异常现象,换上新的左侧横拉杆外部接头分总。

- 2、检查右侧横拉杆外部接头分总成。 提示:执行与左侧相同的操作程序。
- 3、检查转向器空载力矩。

用扭矩扳手检查转向器空载力矩是否有卡滞等异常现象。

小心: 检查转向器齿条中心位置附近。

提示: 如果转向器空载力矩有卡滞等异常现

- 象,换上新的转向器总成。
- 4、波纹防尘罩的检验。

用专用工具,转动小齿轮,检查左右防尘罩是 否有龟裂或者损伤。

提示:如果齿条波纹防尘罩有龟裂或者损伤, 更换新的齿条波纹防尘罩及卡箍。

5、转向横拉杆球头端防尘罩的检查

用手指用力压防尘罩,检查在防尘罩上是否有 龟裂或者损伤。

提示:如果防尘罩上有龟裂或者损伤,则要更 换转向横拉杆外部接头。

4.3.4 安装

- 1、安装左外拉杆总成。
 - (a) 将拉杆锁紧螺母和左外拉杆总成连接到 电动助力转向器上,直至装配标记对 齐。

提示:

调整前束后拧紧锁紧螺母。

2、安装右外拉杆总成。

提示:

执行与左侧相同的操作流程。

- 3、安装电动助力转向器带横拉杆总成。
 - (a) 用4个螺栓和4个螺母将电动助力转向器 带横拉杆总成安装至前副车架总成上。

- 4、安装万向节下防尘罩。
 - (a) 将万向节下防尘罩上圆孔与转向器壳体 上的凸台对齐,以安装孔盖。

- 5、安装稳定杆及拉杆球头总成。
- 6、安装前副车架总成(参考前副车架总成装配流程)
- 7、安装电源及CAN信号接插件;
- 8、连接左外拉杆总成。
 - (a) 用六角开槽螺母将左外拉杆总成连接支 转向节。

预紧力矩: 49 N·m

小心:如果开口销孔未对齐,将螺母进一步 拧60°。

- (b) 安装新的开口销。
- 9、连接右外拉杆总成。

提示: 执行与左侧相同的操作流程。

- 10、安装摆臂与摆臂球头销总成。
- 11、连接万向节防尘罩总成Ⅱ。
 - (a) 将下防尘罩总成骨架上的卡子与车身前 围板相连。
- 12、连接中间轴总成与加长轴。
- 13、安装万向节防尘罩总成 I。
- 14、安装转向盘总成。
- 15、安装前轮。

预紧力矩: 120 N·m

16、调整四轮定位。

提示: 四轮定位完成后, 拧紧拉杆锁紧螺母。 预紧力矩: 74 N·m

17、进行扭矩信号及转角信号标定。

提示:参考"3.1.2、电动助力转向器总成检修注意事项"步骤进行

5、EPS 系统自诊断及故障排除

5.1 诊断仪故障排除方法:

当 EPS 系统发生故障时,用手持式专用故障诊断仪(ED400)读取故障代码,根据诊断仪读出故障类型。

- 将故障诊断仪连接到汽车故障诊断接口(DLC3)。
- ●按照诊断仪上的提示读出故障代码(DTC)

对故障排查方法如下:

5.1.1 故障码故障排除方法

表 5-2 各故障码故障排除方法

DTC NO.	故障类型	故障分析	故障排除流程
C1B0200	ECU 故障	EPS 电子控制 单元内部故障	更换转向器总成。
C1B0400	扭矩信号故障	扭矩传感器故障、线束开路或短路、EPS电子控制单元内部故障	1.接插件是否松动、脱落。是: 重新固定好; 否: 2 2.线束是否开路或短路。是: 修复线束; 否: 3 3.扭矩传感器是否故障。是: 更换转向器总成; 否: 4 4. EPS 控制单元故障, 更换转向器总成。
C1B0900	扭矩传感器未校 准	没有进行扭矩 传感器出厂校 准	1.接插件是否松动、脱落。是:重新固定好;否:2 2.扭矩信号是否已标定。是:3;否:用诊断仪标定 3 扭矩传感器是否故障。是:更换转向器总成,否:4 4.EPS 控制单元故障,更换转向器总成。
C1B0A00	转角传感器未校 准	没有进行转角 信号标定	1.接插件是否松动、脱落。是: 重新固定好; 否: 2 2.转角信号是否已标定。是: 3; 否: 用诊断仪标定 3 转角传感器是否故障。是: 更换转向器总成, 否: 4 4.EPS 控制单元故障, 更换转向器总成
C1B0B00	转角信号故障	转角传感器故 障、线束开路	1.接插件是否松动、脱落。是: 重新固定好; 否: 2

	SIDAGIO		比亚迪 HA 米用手组
		或短路、EPS 电子控制单元内部故障	2.线束是否开路或短路。是: 修复线束; 否: 3 3.扭矩传感器是否故障。是: 更换转向器总成; 否: 4 4. EPS 控制单元故障, 更换转向器总成。
C1B0D00	电源电压高	EPS 供电异常、EPS 电子控制单元内部故障	1.测试 EPS 电源电压是否异常(>16V)。 是:检查供电系统;否:2 2. EPS 控制单元故障,更换转向器总成
C1B0E00	电源电压低	EPS 供电异常、电源线束常、电源线束连接异常、EPS电子控制单元内部故障	1.测试 EPS 电源电压是否异常(<9V)。 是:检查供电系统;否:2 2.检查 EPS 与蓄电池之间的搭铁片,端 子是否未连接到位。是:修复;否:3 3.EPS 控制单元故障,更换转向器总成。
C1B0F00	电源正极断路	EPS 电源线束连接异常、EPS电源保险烧坏、EPS电控单元故障	1.检查 EPS 与蓄电池之间的搭铁片,线束是否连接异常。是: 修复; 否: 2 2.检查 EPS 保险是否烧坏。是: 更换保险; 否: 3 3.EPS 控制单元故障,更换转向器总成。
C1B1000	车速信号错误	车速传感器故障、EPS 电控单元故障	1.检查动力网中车速信号报文(ID:121) 第 13 位报文值是否为 1: 失效。是: 检查 ESP 系统; 否: 2 2.EPS 控制单元故障,更换转向器总成
C1B1100	发动机转速信号 错误	发动机系统故障、EPS 电控单元故障	1.检查动力网中发送机转速信号报文 (ID:10D)第 3 位是否 1:失效。是: 检查发动机系统;否:2 2.EPS 控制单元故障,更换转向器总成
C1B1200	电机旋变信号错 误	EPS 电控单元 故障	EPS 电机故障,更换转向器总成
C1B1300	电机温度过高	长时间转动转 向盘、EPS 电 机、电控单元 故障	1.停止转动转向盘等待十分钟再检测 当前故障是否消失。是:属于系统正常 的温度保护;否:2 2.EPS 电机信号故障、EPS 电控单元故 障,更换转向器总成
C1B1400	电机过流故障	EPS 电机故 障,EPS 电控	更换转向器总成

			LL型 IIA 水用干细
		单元故障	
C1B1500	电流偏离过大	EPS 电机故 障,EPS 电控 单元故障	更换转向器总成
C1B1600	电流传感器故障	EPS 电控单元 故障	更换转向器总成
C1B1700	电机温度传感器 故障	EPS 电机故 障,EPS 电控 单元故障	更换转向器总成
C1B1800	电机继电器故障	EPS 电机故 障,EPS 电控 单元故障	更换转向器总成
C1B1900	EUC 温度过高	长时间转动转 向盘、电控单 元故障	1.停止转动转向盘等待十分钟再检测 当前故障是否消失。是:属于系统正常 的温度保护;否:2 2.EPS 电控单元故障,更换转向器总成
C1B1A00	ECU 温度传感器 故障	EPS 电控单元 故障	更换转向器总成
C1B1B00	ECU 继电器故障	EPS 电子控制 单元内部故障	更换转向器总成。
C1B1C00	行驶中ON档电丢 失	接插件松动, 损坏,ON 档电 保险松动	1. 检查 EPS 整车信号接插件是否插接不好。是:连接好接插件:否:22. 检查 EPS ON 档电保险是否松动、损坏。是:更换保险,否:33.更换转向器总成
U029D00	与 ESP 失去通信 故障	CAN 通信系 统,ESP 系统, EPS 电控单元	1. 检查动力网中车速信号报文 (ID:121)是否不存在。是:检查 ESP 系统;否:2 2. EPS 电控单元故障,更换转向器总 成
U011000	与电机控制器失 去通信	CAN 通信系统,电机控制器,EPS 电控单元	1.检查 CAN 网络通讯是否正常。是: 2; 否: 修理 CAN 网络 2.检查动力网中电机控制器报文 (ID:341)是否不存在。是: 检查电机 控制器; 否: 3 3.EPS 电控单元故障,更换转向器总成

5.1.2 电源电压低、电源电压正极断路故障检查

电路图 F5/2 F2/15 R-EPS REPS ECU 100A 10A 10 G2L B44 (C) R/B 0.5 14 GJB04 14 BJG04 15.0 R/B R/B ON档电 ON档电 常电 R-EPS ECU R-EPS电机 ESC网 ESC网 CANO-L CANO-H 1 \ B23 16 BJG05 15 BJG05 15.0 16 ■ GJB05 15 ■ GJB05 P 0. 5 0.5 Еь04 4#搭铁 G08 (D) -12 G08 (D) -2 4#CAN转接头

图 5-2

电源电压	电源电压故障检查					
步骤	诊断动作	标准值	是	否		
1	检查整车电压是否正常	10-16V	至步骤3	进行下步		
2	修复整车电压问题	是否完成	至步骤8			
3	检查 EPS B19-2 电压是否为 10-16V, B11-1 是否和地良好 导通	是否正常	至步骤 7	进行下步		
4	保险 F5/1 是否正常且保险安 装螺钉是否拧紧	是否导通	至步骤 6	进行下步		
5	更换保险, 拧紧螺钉	是否完成	至步骤8			
6	检查 EPS 电源线束是否存在 其它短路或开路	是否正常	检修电源系 统	进行下步		
7	更换转向器总成	是否完成	进行下步			
8	使用诊断仪清理诊断故障代码	故障代码是否依然 存在	至步骤1	系统 OK		

5.1.3 扭矩、转角信号故障检查 电路图

图 5-4

扭矩传感器故障检查						
步骤	诊断动作	标准值	是	否		
1	检查扭矩信号(黑色 8Pin)	是否正常	至步骤3	进行下步		

	接插件和 EPS 电子控制单元			
	连接是否正常			
2	固定好接插件	是否完成	至步骤9	
3	扭矩传感器线束是否开路或 短路	是否正常	至步骤 5	进行下步
4	修复线束故障	是否完成	至步骤 6	
5	更换转向器总成	是否正常	至步骤 6	
6	用诊断仪清理诊断故障代码	故障代码是否复位	至步骤 1	系统 OK

5.1.4 其他信号线束检测

电路图

图 5-5

其它信	其它信号线束检查								
步骤	诊断动作	标准值	是	否					
1	系统自诊断过程	是否完成	进行下步	至步骤 4					
2	1.蓄电池负荷测试	电压是否在	进行下步	至步骤 5					

	2. 充电系统负荷测试	10~16V		
3	1.退电至 OFF	是否正常	至步骤 6	至步骤 4
	2.断开 EPS 电子控制单元上的线束连			
	接器			
	3.检测 EPS 电子控制单元线束端 B32			
	与车身的通断			
4	检修自检电路	是否完成	至步骤 1	检修
5	修复蓄电池或充电系统	是否正常	至步骤 10	
6	车速输入信号线束检查, 测线束阻值	是否正常	进行下步	至步骤 9
7	故障报警信号线束检查	是否正常	进行下步	至步骤 9
8	CAN 线线束检查	是否正常	至步骤 10	至步骤 9
	拔下接插件 B32,测线束端 B32-7、			
	B32-8 端电压			
	1.B32-7 与车身地电压是否始终在			
	2.5-3.5V			
	2.B32-8 与车身地电压是否始终在			
	1.5-2.5V			
9	更换线束	是否正常	进行下步	
10	使用诊断仪清理诊断故障代码	故障代码是	至步骤 1	系统 OK
		否复位		