ML Presentation

Kenneth Hansen Mads Helt Mike Chuang Ilyas Shomayev

Summary:

- EDA
- Pre-processing
 - Imputing Missing Values
 - Encoding Categorical Features
 - Skewness
 - Feature Engineering
- Modeling
 - Model Performance
 - Model Tuning
 - Model Ensembling
- Results
- RMSLE score using CV on training set
- Kaggle score

Pre-Processing: Missing Values

There is a substantial amount of missing data. We differentiate columns on a categorical/numeric basis.

Pre-Processing: Missing Values

- Categorical Features:
 - Impute Missing with "None"
 - Imputed with mode of feature
 - MSZoning, Functional, Exterior1st

Categorical features

- Numeric Features:
 - Impute Missing with "0"
 - Impute with Median of feature
 - LotFrontage

Nuneric features

Pre-Processing: Encoding

Ordinal Categorical Features: Converted to numeric based on scale:

```
qual_dict = ["None": 0, "Fe": 1, "Fa": 2, "TA": 3, "Cd": 4, "Ex": 5)
df_all["ExterCond"] = df_all["ExterCond"].map(qual_dict).astype(int)
df_all["ExterQual"] = df_all["ExterQual"].map(qual_dict).astype(int)
df_all["BastCond"] = df_all["EartCond"].map(qual_dict).astype(int)
df_all["BastCond"] = df_all["BastCond"].map(qual_dict).astype(int)
df_all["EastingCC"] = df_all["EastingCC"].map(qual_dict).astype(int)
df_all["KitchenCual"] = df_all["EitchenQual"].map(qual_dict).astype(int)
df_all["GarageQual"] = df_all["GarageQual"].map(qual_dict).astype(int)
df_all["GarageCond"] = df_all["GarageCond"].map(qual_dict).astype(int)
df_all["FireplaceQual"] = df_all["FireplaceQu"].map(qual_dict).astype(int)
```

9 other variables received this treatment but had different scales.

Inspecting the boxplot distribution for 'FireplaceQu' shows that retaining ordinality is important.

Pre-Processing: Encoding

Non-ordinal Categorical Features: :

MSSubClass, MoSold, and YrSold were initially numeric features but actually hold categorical data

```
# Label encoding non-order categorical features
from sklearn.preprocessing import LabelEncoder
columns = ('PavedDrive', 'Alley', 'Street', 'CentralAir', 'MSSubClass'
for column is columns:
    lbl = LabelEncoder()
    lbl.fit(list)df_all[column].values))
    df_all[column] = lbl.transform(list(df_all[column].values))
print(df_all.shape)
(2917, 80)
```

```
df_all = pd.get_dummies(df_all, drop_first = True)
print(df_all.shape)
(2917, 239)
```

The LabelEncoder function performs one-hot encoding within the listed columns

Performing one-hot encoding on the remaining dataset then yields additional columns, resulting in 237 total columns.

Pre-Processing: Skewness

We discovered the Target Variable (SalePrice) was skewed, so we perform a log transformation to normalize its distribution. We then investigated the skewness of the predictor variables to understand if further transformation was necessary.

Pre-Processing: Skewness

Variable Name	Positive Skewness	Vai Na
Fireplaces	0.725277917	Str
TotRmsAbvGrd	0.74923209	Lai
ExterGrade	0.782428205	Fu
ExterQual	0.783456143	Ga
2ndFlrSF	0.861555523	Bsi
BsmtUnfSF	0.919688213	Ce
AvgRoomSize	0.931703531	Ga
BsmtFinSF1	0.980644589	Ga
TotLivArea	1.009156621	Pa
GrLivArea	1.06875039	Bsi
LotFrontage	1.103038596	lust
BsmtExposure	1.119066336	, in
1stFirSF	1.257285977	
ExterCond	1.315069293	
Fence	1.753731433	
WoodDeckSF	1.844791628	t
Overallscore	1.907677233	
AllPorchSF	2.244499743	
OpenPorchSF	2.529358203	
MasVnrArea	2.621719301	
BsmtFinType2	3.150951371	
BsmtHalfBath	3.929995969	
ScreenPorch	3.945101226	
EnclosedPorch	4.002344092	
BsmtFinSF2	4.14450336	
	4.300550114	

 Variable Name
 Negative Skewness

 Street
 -15.49475602

 LandSlope
 4.973225814

 Functional
 4.961674871

 GarageYf8lt
 -3.904632328

 BemiCond
 -3.602661074

 CentralAir
 -3.45755483

 GarageCond
 -3.381673401

 GarageQual
 -3.262259668

 PavedDrive
 -2.977741053

 BemtQual
 -1.271610943

We found 43 features to exhibit skewness > 0.7. Therefore, we performed a boxcox transformation to normalize each of them.

We also found 6 features with skewness <0.3.
However, upon further inspection we found that only dropping the "Lilities" variable would result in a minimal loss of predictive power.

Variables with <0.3 skewness	
Condition2	
Heating	
PoolQC	
RoofMatl	
Street	
Utilities	

Pre-Processing: Feature Engineering

Feature Engineering: Created 11 new variables based off of feature interactions

```
# Is Total square fort
df all('TotLivArea') = df all.TotalBentSF + df all('lstFlrSF') + df all('2ndFlrSF')
# 2: # Total number of bathrooms
df all; "totalBath"; - df all; "BestFallBath"; + (0.5 * df all; "BestFalfBath"); + \
df_all['FullEath'] + (0.5 * df_all['HalfBath'])
# 3: BamtUnFinRatio
df all( 'BentinFirRatio') = df all.BentUnfSF / df all.TotalBentSF |
df all('BentUnFirRatio') = df all('BentUnFirRatio') fillna())
# 4: AreaPercar
df all['AreaFerCar'] = df all.GarageArea / df all.GarageCare
d! all['AreaFerCar'] = d! all['AreaFerCar'].filina(*)
# 5: AvgSoomSize
d: all[ WcRcomSize = 6f all.GrLivAres / 6f all.TetRmsAbv3rd
# 6: GarageScore
df all['GarageSocre'] = df all.GarageCond * df all.GarageType
# 7: OverallGrade
df all["OverallGrade"] = df_all["OverallQual"] * df_all["OverallCord"]
# 8: Overallscore
df all["Overallscore"] = df all["OverallGrade"] * df all["@rLivArea"]
#9: Exterior Grae
df_all["ExterGrade"] = df_all["ExterQual"] * df_all|"ExterCond"]
#10: All Porch ST
df all("AllPorchEF") = df all("GoenPorchEF") + 4f all("EnclosedPorch") + \
df all["35snForch"] + df all["ScreenPorch"]
#11: Age
df all('Age') = 2010 - df all('YearBuilt')
```

Age is the only variable that can be considered as a feature representation rather than an interaction. Room to explore creating further indicator/categorical features.

Model Feature Importance:

Lasso Coefficients (most important variables)

Xgboost – most important features

Parameter Tuning:

- Grid Search
- Bayesian Optimization

Modeling: Parameter Tuning

Linear Models: After running 5000 fits through GridSearchCV, optimal parameters are below:

```
Results for ridge:
Best parameters: {'alpha': 5.7745151523598144, 'random_state': 42}
Fitted MSE: 0.0126834105009
Fitted RMSE: 0.112620648644

Results for lasso:
Best parameters: {'alpha': 0.00020923834803969769, 'random_state': 42}
Fitted MSE: 0.0123602338342
Fitted RMSE: 0.111176586516

Results for elastic net:
Best parameters: {'alpha': 0.0043178797273320212, 'll_ratio': 0, 'random_state': 42}
Fitted MSE: 0.0126836348432
Fitted RMSE: 0.112621644646
```

With an Elastic Net I1_ratio of 0, this means that that the ridge regression may yield the best results over a Lasso. The Lasso's near 0 alpha result also shows that a straightforward linear regression may also produce positive results.

Model Evaluation:

Y_hat VS. actual SalePrice (lasso model):

We observe a strong linear trend in the results

Residual Plot (lasso) Y_hat vs. Residuals

We do not observe any significant outliers.

Tuned Model Performances:

Ridge:

Mean RMSLE: 0.111579632589
Min RMSLE: 0.0956569591734

Max RMSLE: 0.137629970056

Std RMSLE: 0.0134479803353

Lasso:

Mean RMSLE: 0.110223352332

Min RMSLE: 0.0960129858893

Max RMSLE: 0.13684855486

Std RMSLE: 0.0133668504869

Xgboost:

Mean RMSLE: 0.115406681482

Min RMSLE: 0.100213833837

Max RMSLE: 0.135809223636

Std RMSLE: 0.0137285687266

Xgboost Alternative:

Mean RMSLE: 0.121502812757

Min RMSLE: 0.101831128608

Max RMSLE: 0.142983312984

Std RMSLE: 0.0155486014157

Random Forest Aggressive:

Mean RMSLE: 0.113899715187

Min RMSLE: 0.096376429415

Max RMSLE: 0.133121484438

Std RMSLE: 0.0143629567948

Random Forest Conservative:

Mean RMSLE: 0.132577372561

Min RMSLE: 0.111758666571

Max RMSLE: 0.158920830563

Std RMSLE: 0.014566172841

RESULTS

ridge, model_xgb, RForest: 0.1151

ENet, lasso, ridge, model_xgb: 0.1086

lasso, ridge, model_xgb: 0.1082

lasso ridge, model_xgb, RForest: 0.1115

ENet, lasso, rdige, model_xgb (all new features): 0.1087

ENet, lasso, ridge, model_xgb (excluded last new variables): 0.1088

ENet, lasso, ridge, model_xgb (exluded PoolQC and Street): 0.1089

lasso, model_xgb (exluded PoolQC and Street): 0.1089

lasso, model_xgb (all new features): 0.1085

lasso, model_xgb (exluded low variance variables): 0.1087

lasso, model_xgb (lower lambda for box-cox): 0.1086

lasso, model_xgb (with two new derived features): 0.1084

lasso, model_xgb (ex. levels not in test set): 0.1086 - best on Kaggle leaderbord (0.11763)

lasso, model_xgb (ex. levels not in test set and "Age"): 0.1088

lasso, model_xgb, RForest_agg (ex. levels not in test set): 0.1117

lasso, model_xgb, RForest_agg, RForest_con (ex. levels not in test set): 0.1155

lasso, model_xgb, model_lgb: 0.1086

lasso, model_lgb: 0.1076

lasso, model_xgb_al (gridsearchCV parameters): 0.1108

lasso, model_xgb (with new variable "SoldYr"): 0.1085

Results:

0.11774 RMSLE ON PUBLIC TEST

Thank You!

