Test #2 - BINOMIAL THEOREM

Name	Date	
Answer all questions in the space provided. Steps must be shown for part marks. Non-programmable calculators are permitted.	Mark	/35

1. Evaluate without a calculator. Show your work to justify your solution.

$$\left(\frac{5}{0}\right)\left(\frac{2}{3}\right)^{5} - \left(\frac{5}{1}\right)\left(\frac{2}{3}\right)^{4}\left(\frac{1}{6}\right) + \left(\frac{5}{2}\right)\left(\frac{2}{3}\right)^{3}\left(\frac{1}{6}\right)^{2} - \left(\frac{5}{3}\right)\left(\frac{2}{3}\right)^{2}\left(\frac{1}{6}\right)^{3} + \left(\frac{5}{4}\right)\left(\frac{2}{3}\right)\left(\frac{1}{6}\right)^{4} - \left(\frac{5}{5}\right)\left(\frac{1}{6}\right)^{5}$$

(2)

2. If
$$\binom{n}{0} + \binom{n}{1} + ... + \binom{n}{n} = 8192$$
, Find n.

(2)

3. Starting at the "START" and traveling only in direction of arrows, how many paths lead to the "FINISH"?

(2)

4. A portion of Pascal's Triangle is shown below. Find the missing numbers.

- 5. In a binomial expansion of $(a+b)^n$, a term including a^7b^{11} occurs.
 - a) What is the value of n?
 - (1)
 - b) What is the coefficient of a^7b^{11} ?
 - (1)
 - c) How many terms are there in the expansion of $(a+b)^n$?
 - (1)
- 6. Given $\left(2x^3 \frac{1}{x^2}\right)^5$
 - a) Find the general term, in simplified form.
 - (3)
 - b) Find t_5 .
 - (2)
 - c) Find the coefficient of the term containing x^7 .
 - (2)
 - d) Find the constant term.
 - (3)

7. Given $(3-x)(1+4x)^5$, find the first three terms in the expansion with ascending powers of x.

(4)

8. The first three terms in the expansion of $(1+x)^n$ are $1-9+\frac{297}{8}$. Find the values of x and n.

(4)

9. For $(1-2x)^4(2+x)^5$ Find the coefficient of the term containing x^8 .

(6)