Segunda Prova de Tópicos em Matemática Aplicada (2009/1) corrigida

Professor Marco Cabral 20 de maio de 2009

QUESTÃO 1: Suppose (the usual setup) that $S_0 = 4$, u = 2, d = 1/2 and r = 1/4 (so $\widetilde{p} = \widetilde{q} = 1/2$ and 1/(1+r) = 4/5 = 0.8) in a two period model (S_0, S_1, S_2) . Consider an American option (can be exercised at any time) that pays off

$$g(S_n) = (4 - S_n)^+$$
.

Determine:

- (a) the price at time zero of this derivative.
- (b) the values of the stopping time τ for each outcome (HH, HT, TH, TT).

QUESTÃO 2: Let Z be a random variable with the property that P(Z>0)=1 and EZ=1. For $w\in\Omega$, define $\widetilde{P}(w)=Z(w)P(w)$. Show that:

- (a) \widetilde{P} is a probability measure, i.e., $\widetilde{P}(\Omega) = 1$;
- (b) if Y is a random variable, then EY = E[ZY];
- (c) If A is an event with $\widetilde{P}(A) = 0$, then P(A) = 0.

QUESTÃO 3: Toss a coin repeatedly. Assume the probability of head on each toss is p. Let $X_j = 2$ if the jth toss results in a head and $X_j = 0$ if the jth toss results in a tail. Define $S_n = \sum_{j=1}^n X_j$. Show that S_n is a Markov process.

QUESTÃO 4: Determine if it is a stopping time or not the following random variables, W in a 2-period binomial model and Z in a 3-period binomial model. If it is not, modify it at the minimum number of points so that it is a stopping time (the answer is not unique!).

- (a) W(HH) = 2, W(HT) = 1, W(TH) = 1, W(TT) = 1.
- (b) Z(HHH) = 2, Z(HHT) = 3, $Z(HTH) = \infty$, Z(HTT) = 3, Z(THH) = 3, Z(THT) = 32, Z(TTH) = 1, Z(TTT) = 2.