Instalação do React Native

Ivaney Vieira de Sales

08/11/2023

Sumário

1	Introdução	1		
2	Atualização do Ubuntu			
3	Instalando dependências 3.1 Dependências essenciais	4		
4	Configurando o Emulador Android 4.1 Instalando o Node.js	8 11		
5	Instalado o React Native CLI	12		
6	Primeiro aplicativo React Native	12		

1 Introdução

O React destaca-se como um renomado framework JavaScript, especialmente relevante para os estudantes de especialização em programação de aplicativos móveis. Sua proeminência reside na aplicação de paradigmas de programação intuitivos, os quais unem o JavaScript de forma coesa a um sistema assemelhado ao HTML denominado JSX. Esta integração possibilita que os desenvolvedores acelerem o processo de desenvolvimento de aplicativos.

O React Native, por sua vez, é um framework que delineia uma hierarquia de código JavaScript composta por componentes de interface do usuário. Ele dispõe de um conjunto específico de componentes para a construção de aplicativos móveis com uma aparência autêntica e funcionalidade adequada tanto para plataformas iOS quanto Android. A despeito das variações de interface, React Native e ReactJS compartilham princípios de design comuns, ambos concebidos pelo Facebook.

A relevância do React Native para estudantes dessa especialização é notável pelos seguintes aspectos:

- Possibilidade de criar interfaces de usuário para plataformas iOS e Android.
- Componentes do React Native têm direitos equivalentes, permitindo a reutilização em aplicativos tanto para Android quanto iOS.
- Desenvolvimento com React Native é notadamente simplificado, rápido e eficiente.

Este guia fornecerá instruções passo a passo, apresentando os requisitos e procedimentos necessários para garantir uma instalação bem-sucedida. Siga cuidadosamente as etapas delineadas abaixo para configurar seu ambiente de programação, permitindo que você comece a desenvolver aplicativos móveis poderosos utilizando a versatilidade e eficácia do React Native no ambiente Linux com Ubuntu.

2 Atualização do Ubuntu

Para abrir o terminal do Ubuntu 21.10, pressione Ctrl + Alt + T no teclado. Você também pode clicar no ícone do terminal na barra lateral do Ubuntu.

É uma boa pratica atualizar a lista de pacotes disponíveis no sistema antes de instalar novos pacotes. Para fazer isso, execute o seguinte comando:

```
sudo apt update -y
sudo apt upgrade -y
```

O comando sudo apt update -y atualiza a lista de pacotes disponíveis no sistema de forma automatizada, sem exigir intervenção do usuário para confirmar a atualização.

O sudo é usado para executar o comando com privilégios de superusuário (root), e será possivelmente solicitado que o usuário digite a senha de super usuário. Ele será usado vários comando usado neste tutorial com a mesma finalidade.

O -y no final do comando indica que o usuário não será solicitado a confirmar a instalação. Isso é útil ao automatizar a instalação de pacotes, pois não exige que o usuário digite "y" ou "yes" para confirmar a instalação.

Se tudo der certo será produzido a seguinte saída no terminal:

```
Hit:1 http://archive.ubuntu.com/ubuntu jammy InRelease
Hit:2 http://archive.ubuntu.com/ubuntu jammy-updates InRelease
Hit:3 http://security.ubuntu.com/ubuntu jammy-security InRelease
Hit:4 http://archive.ubuntu.com/ubuntu jammy-backports InRelease
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
9 packages can be upgraded. Run 'apt list --upgradable' to see them.
```

O comando sudo apt upgrade -y, por sua vez, instala as versões mais recentes dos pacotes instalados no sistema.

Para testar se o sistema está atualizado, execute o seguinte comando:

```
sudo apt list --upgradable
```

Este comando deverá listar os pacotes que podem ser atualizados, se houver algum.

3 Instalando dependências

Agora que o seu sistema está atualizado, você pode instalar as dependências necessárias para o React Native.

3.1 Dependências essenciais

```
sudo apt install -y build-essential libssl-dev libcurl4-openssl-dev /
libexpat1-dev gettext unzip nano git libpulse-dev
```

Esse comando é usado para instalar um conjunto de pacotes essenciais e dependências no sistema. Aqui está uma explicação do que cada parte do comando faz:

- build-essential: Este pacote inclui ferramentas fundamentais para compilar software no sistema, como gcc (Compilador GNU para C), g++ (Compilador GNU para C++), e outras ferramentas e bibliotecas relacionadas.
- libssl-dev: Fornece os desenvolvedores com as bibliotecas e cabeçalhos necessários para desenvolver aplicativos que utilizam a biblioteca OpenSSL, que é comumente usada para segurança e criptografia.
- libcurl4-openssl-dev: Contém os arquivos de desenvolvimento para a biblioteca libcurl, que é utilizada para realizar operações de transferência de dados através de vários protocolos, como HTTP e FTP.
- libexpat1-dev: Oferece os cabeçalhos e arquivos de desenvolvimento para a biblioteca Expat, que é uma biblioteca para análise de XML.
- gettext: Fornece ferramentas e bibliotecas para internacionalização (i18n) e localização (I10n) de aplicativos, permitindo que eles sejam adaptados para diferentes idiomas e regiões.
- unzip: Um utilitário para descompactar arquivos zip.
- nano: Um editor de texto simples na linha de comando. É mais amigável para iniciantes do que alguns editores mais avançados, como o Vim ou o Emacs.
- git: Um sistema de controle de versão distribuído amplamente utilizado. É utilizado para rastrear as alterações no código-fonte durante o desenvolvimento de software.
- libpulse-dev: Fornece os cabeçalhos de desenvolvimento para a biblioteca PulseAudio, que é usada para lidar com áudio em sistemas Linux.

3.2 Kit de desenvolvimento Java

Apesar do site do React Native atualmente recomenda a versão 11 do Java SE Development Kit (JDK). Essa versão se mostrou imcompatível com a ferramenta de linha de comando do Android SDK. Por isso, recomenda-se a instalação da versão 17 do OpenJDK.

O seguinte comando instala o OpenJDK 17 no sistema:

```
sudo apt install -y openjdk-17-jdk
```

Para saber se a instalação foi bem sucedida, execute o seguinte comando:

```
java -version
```

A saída do comando java -version é mostrada abaixo:

```
openjdk version "17.0.8.1" 2023-08-24
OpenJDK Runtime Environment (build 17.0.8.1+1-Ubuntu-Oubuntu122.04)
OpenJDK 64-Bit Server VM (build 17.0.8.1+1-Ubuntu-Oubuntu122.04, mixed mode, sharing)
```

Aqui, identificamos que a versão do OpenJDK instalada é a 17. No entanto, se uma versão diferente da desejada for exibida, pode indicar a presença de mais de uma versão no sistema. Para confirmar isso, utilize o seguinte comando:

```
sudo update-alternatives --config java
```

A saída do comando sudo update-alternatives --config java é mostrada abaixo:

There are 2 choices for the alternative java (providing /usr/bin/java).

Selection	Path	Priority	Status
0 * 1 2	/usr/lib/jvm/java-17-openjdk-amd64/bin/java/usr/lib/jvm/java-11-openjdk-amd64/bin/java/usr/lib/jvm/java-17-openjdk-amd64/bin/java	1711 1111 1711	auto mode manual mode manual mode

Press <enter> to keep the current choice[*], or type selection number:

Este comando indica que a versão atual do Java é a 11, enquanto a versão 17 também está instalada no sistema. Para escolher a versão 17, digite o número 0 e pressione "Enter".

3.3 Instalando o Android SDK

Para obter o Android SDK, o Android Studio é necessário por padrão. Porém, o Android Studio tem 772 MB e ainda faz o download das demais ferramentas necessárias.

Para aqueles que desejam ter apenas o Visual Studio Code como IDE de desenvolvimento móvel, podem obter apenas as ferramentas de comando do Android.

No endereço https://developer.android.com/studio#command-tools, baixe o arquivo ZIP das ferramentas de comando do Android para o sistema operacional Linux.

Somente ferramentas de linha de comando

Plataforma	Pacote de ferramentas do SDK	Tamanho	Soma de verificação SHA-256
Windows	command line to ols-win-10406996_latest.zip	148,8 MB	9b782a54d246ba5d207110fddd1a35a91087a8aaf4057e9df697b1cbc0ef60fc
Mac	commandlinetools-mac-10406996_latest.zip	148,8 MB	6821609e885d4b68f4066751949a9211f4196ab36df9d63f7a5f9037ca64e2d6
Linux	commandline to ols-linux-1040 6996_latest.zip	148,8 MB	8919e8752979db73d8321e9babe2caedcc393750817c1a5f56c128ec442fb540

As ferramentas de linha de comando estão incluídas no Android Studio. Se você não precisa do Android Studio, pode fazer o download das ferramentas básicas de linha de comando do Android acima. Você pode usar o sdkmanager incluído para fazer o download de outros pacotes do SDK.

Desça até o final da página e encontre a seção chamada "Somente Ferramentas de Linha de Comando".

Procure pelo diretório onde o arquivo foi baixado, normalmente localizado na pasta "Downloads" dentro do diretório principal do usuário.

3.3.1 Estrutura de diretórios

Organize um diretório chamado DevTools no seu diretório inicial, preferencialmente nomeado como "DevTools" ou escolha um nome apropriado:

```
mkdir ~/DevTools
```

Utilize este diretório como espaço para a instalação de diversas ferramentas de desenvolvimento, kits de desenvolvimento de software, e outros recursos.

Dentro do DevTools, crie um subdiretório específico para o Android SDK:

```
mkdir ~/DevTools/Android
```

Este será o diretório principal para o Android SDK.

Em seguida, crie um subdiretório adicional dentro de Android, nomeado cmdline-tools:

```
mkdir ~/DevTools/Android/cmdline-tools
```

Extraia o arquivo ZIP baixado em um diretório específico: ~/DevTools/Android

```
unzip ~/Downloads/commandlinetools-linux-*.zip /
  -d ~/DevTools/Android/cmdline-tools
```

É importante observar que este comando presume que o arquivo foi baixado no diretório ~/Downloads. Caso o nome do arquivo seja diferente, ajuste o comando de acordo.

O próximo passo consiste em renomear o diretório cmdline-tools para 'lasted'. Essa alteração é crucial para que o Android SDK Manager consiga localizar o diretório e instalar novos pacotes:

Dentro do diretório ~/DevTools/Android/, você notará subdiretórios adicionais relacionados ao Android SDK. Esses diretórios são criados durante a instalação de novos pacotes, os quais serão adicionados posteriormente.

Ao concluir este tutorial, a estrutura de diretórios deve se assemelhar à seguinte descrição:

3.3.2 Variáveis de ambiente

Defina o caminho do diretório Android SDK nas variáveis de ambiente do Ubuntu. Edite o seguinte arquivo:

```
nano ~/.bashrc
```

Adicione ao final do arquivo .bashrc:

```
export ANDROID_SDK_ROOT=$HOME/DevTools/Android
export ANDROID_HOME=$ANDROID_SDK_ROOT
export PATH=$PATH:$ANDROID_HOME/emulator
export PATH=$PATH:$ANDROID_HOME/platform-tools
export PATH=$PATH:$ANDROID_HOME/cmdline-tools/lasted/bin
```

Quando você realiza modificações no seu arquivo .bashrc, essas alterações não são aplicadas imediatamente ao terminal em uso. Ao executar o comando a seguir, o Bash é instruído a reler e aplicar novamente as configurações no terminal atual, eliminando a necessidade de fechar e abrir um novo terminal:

```
source ~/.bashrc
```

Esse comando assegura que as atualizações feitas no arquivo .bashrc sejam imediatamente refletidas no ambiente do terminal atual.

Se você estiver usando a shell zsh no lugar do bash, o arquivo de configuração é ~/.zshrc e você pode recarregar o arquivo de configuração com o comando source ~/.zshrc.

3.3.3 Testando a instalação

Verificando a versão do SDK Manager:

```
sdkmanager --version
```

Ao executar esse comando, a saída geralmente incluirá a versão atual do SDK Manager instalada no seu sistema. Isso pode servir para garantir que você esteja usando a versão mais recente ou para fins de referência ao documentar ou depurar problemas relacionados ao ambiente de desenvolvimento Android.

O próximo passo é aceitar as licenças do Android SDK. Para isso, execute o seguinte comando:

```
sdkmanager --licenses
```

A execução deste comando é seguida por uma série de prompts interativos nos quais você pode revisar as licenças e, se concordar com os termos, aceitá-las. Isso é útil em ambientes automatizados ou em scripts de instalação, onde é necessário aceitar as licenças automaticamente para que a instalação prossiga sem intervenção manual.

Lembre-se de que a aceitação de licenças é uma etapa importante no processo de configuração do ambiente de desenvolvimento Android e é necessária para garantir conformidade com os termos de uso associados aos componentes do SDK.

Não esqueça de atualizar o SDK Manager para a versão mais recente:

```
sdkmanager --update
```

Ao executar esse comando, você está garantindo que o seu ambiente de desenvolvimento Android está atualizado com as versões mais recentes dos componentes do SDK, o que é importante para garantir a compatibilidade com as versões mais recentes do Android, receber correções de bugs e obter as últimas funcionalidades.

Agora vamos instalar os pacotes necessários para o desenvolvimento de aplicativos Android.

Cada versão do Android possui um nível de API (API Level) que é um número inteiro que identifica a versão do Android. Por exemplo, a versão 11 do Android possui o nível de API 30. A versão 12 do Android possui o nível de API 31 e 32. A versão 13 do Android possui o nível de API 33. E assim por diante.

Você encontrará mais informações sobre os níveis de API em: https://developer.android.co m/guide/topics/manifest/uses-sdk-element#ApiLevels

Os comando abaixo instalam os pacotes necessários para o desenvolvimento de aplicativos Android na versão 14 (nível 34). Mas você pode escolher outra versão do Android.

```
sdkmanager 'platform-tools'
sdkmanager 'emulator'
sdkmanager 'build-tools;34.0.0'
sdkmanager 'platforms;android-34'
sdkmanager 'system-images;android-34;google_apis;x86_64'
```

- sdkmanager 'platform-tools': Este comando instala as ferramentas de plataforma do Android, que incluem utilitários como adb (Android Debug Bridge) e fastboot. Essas ferramentas são essenciais para depurar e interagir com dispositivos Android durante o desenvolvimento.
- sdkmanager 'emulator': Este comando instala o Android Emulator, que é um emulador de dispositivo Android. Ele permite testar seu aplicativo em diferentes versões do Android e em diferentes tamanhos de tela sem a necessidade de um dispositivo físico.
- sdkmanager 'build-tools; 34.0.0': Este comando instala a versão específica 34.0.0 das ferramentas de compilação do Android. As ferramentas de compilação (build tools) são usadas para compilar o código-fonte do seu aplicativo Android em um formato que pode ser executado em dispositivos Android.
- sdkmanager 'platforms; android-34': Este comando instala a plataforma Android 34, que é uma versão específica do Android. O número após o hífen representa a versão do Android. Isso é necessário para que você possa compilar e testar seu aplicativo em dispositivos que executam essa versão do sistema operacional.
- sdkmanager 'system-images; android-34; google_apis; x86_64': Este comando instala uma imagem do sistema para o emulador. A imagem do sistema contém os arquivos necessários para emular um dispositivo Android com uma versão específica do Android e uma configuração específica (nesse caso, "google_apis;x86_64"). Isso é usado pelo emulador para simular um ambiente Android específico.

4 Configurando o Emulador Android

Agora vamos criar um dispositivo virtual Android (AVD) para testar nossos aplicativos. AVD é uma configuração que permite emular dispositivos Android em um ambiente de desenvolvimento. Desenvolvedores usam AVDs para testar aplicativos em diferentes versões do Android, resoluções de tela e outros aspectos, sem a necessidade de ter dispositivos físicos para cada configuração.

O comando avdmanager é usado para criar e gerenciar AVDs. Ele é instalado com o Android SDK Manager.

Então vamos criar o AVD com o comando abaixo:

```
avdmanager create avd\
-n celular\
-k "system-images;android-34;google_apis;x86_64" \
--device "Nexus 5"\
```

O comando fornecido é uma linha de comando para criar um Android Virtual Device (AVD) usando o avdmanager. Vamos dividir cada parte do comando para entender melhor:

- avdmanager create avd: Inicia o processo de criação de um Android Virtual Device.
- -n celular: Define o nome do AVD como "celular".
- -k "system-images; android-34; google_apis; x86_64": Especifica a imagem do sistema que será usada para o AVD. Neste caso, está usando a imagem do sistema Android 34 (Android 14) com suporte a APIs do Google e arquitetura x86 64.
- --device "Nexus 5": Indica o dispositivo a ser emulado, neste caso, um Nexus
 5. Podemos usar o comando avdmanager list device para listar os dispositivos disponíveis.
- --sdcard 100M: Define o tamanho do cartão SD para 100 megabytes.

Certifique-se de que o SDK Android esteja configurado corretamente e que você tenha a imagem do sistema especificada (Android 14 neste caso) baixada e disponível no seu ambiente de desenvolvimento antes de executar este comando. Este comando criará um AVD chamado "celular" com as configurações fornecidas.

Para executar o AVD, execute o seguinte comando:

```
emulator\
  -avd celular\
  -memory 4096\
  -accel on\
  -gpu on
```

Vamos analisar cada parte do comando:

- emulator: Inicia o emulador Android.
- -avd celular: Especifica o nome do AVD a ser iniciado, que neste caso é "celular".
- -memory 4096: Define a quantidade de memória RAM alocada para o emulador. Neste caso, são alocados 4096 megabytes (4 GB) de RAM.
- -accel on: Ativa a aceleração de hardware para o emulador. Isso geralmente melhora o desempenho do emulador.
- -gpu on: Ativa a emulação de GPU para o emulador. Isso permite que o emulador use a GPU do sistema para renderização gráfica, melhorando o desempenho gráfico.

Certifique-se de que o emulador esteja configurado corretamente, que o AVD "celular" tenha sido criado com sucesso e que o sistema tenha suporte à virtualização (se estiver usando aceleração de hardware). Esses são fatores importantes para garantir um funcionamento

adequado do emulador Android.

4.1 Instalando o Node.js

O Node.js é uma plataforma de software de código aberto que permite aos desenvolvedores criar aplicativos de rede e executar JavaScript fora do navegador. É compatível com diversos sistemas operacionais, incluindo Linux, macOS e Windows. O Node.js oferece um ambiente de tempo de execução JavaScript que capacita os desenvolvedores a criar aplicativos de rede escaláveis, além de disponibilizar um conjunto robusto de bibliotecas JavaScript para simplificar o desenvolvimento de aplicativos web e móveis.

Baixe e importe a chave GPG (Pretty Good Privacy) da Nodesource

```
sudo mkdir -p /etc/apt/keyrings
curl -fsSL https://deb.nodesource.com/gpgkey/nodesource-repo.gpg.key |
    sudo gpg --dearmor -o /etc/apt/keyrings/nodesource.gpg
```

Este passo cria um diretório para armazenar chaves e importa a chave GPG da Nodesource para garantir a integridade dos pacotes Node.js.

Crie um repositório DEB para o Node.js, Utilizando os seguintes comandos para configurar o repositório DEB para o Node.js, ajustando a variável NODE_MAJOR conforme a versão desejada:

```
NODE_MAJOR=20
echo "deb [signed-by=/etc/apt/keyrings/nodesource.gpg] /
   https://deb.nodesource.com/node_$NODE_MAJOR.x nodistro main" |
   sudo tee /etc/apt/sources.list.d/nodesource.list
```

A variável NODE_MAJOR pode ser mudada dependendo da versão do Node.js que você deseja instalar.

NODE_MAJOR	Observação
16	Versão atualmente não suportada
18	Versão atualmente não suportada
20	Versão LTS (Recomendada)
21	Ultima atualização

Onde a versão 20 é atualmente a versão LTS (Long Term Support) do Node.js, ou seja, a versão com suporte a longo prazo.

Execute os seguintes comandos para atualizar os pacotes e instalar o Node.js:

```
sudo apt-get update
sudo apt-get install nodejs -y
```

Para testar se o Node.js foi instalado corretamente, execute o seguinte comando:

```
node -v
```

Ao digitar node -v e pressionar Enter, você receberá a versão específica do Node.js instalada em seu computador, permitindo uma rápida verificação em projetos que possam ter requisitos específicos de versão.

5 Instalado o React Native CLI

A próxima etapa é instalar o React Native. Deve-se observar que você precisa usar sudo para ter o React Native instalado como root, já que iremos instalá-lo globalmente. Este é o código que você deve usar:

```
sudo npm install -g react-native-cli
```

Após a instalação, você pode verificar se o React Native foi instalado corretamente, executando o seguinte comando:

```
react-native --version
```

6 Primeiro aplicativo React Native

npm install -g expo-cli

npx create-expo-app myreact

https://www.educative.io/answers/how-to-create-a-new-react-native-project