

Erratum: Jahn–Teller effect in tetrahedral d 1 metal complexes [J. Chem. Phys. 81, 1861 (1984)]

A. Agresti, J. H. Ammeter, and M. Bacci

Citation: The Journal of Chemical Physics 82, 5299 (1985); doi: 10.1063/1.448988

View online: http://dx.doi.org/10.1063/1.448988

View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/82/11?ver=pdfcov

Published by the AIP Publishing

Articles you may be interested in

Erratum: "The dynamic Jahn-Teller effect in Cu(II) doped MgO" [J. Chem. Phys.130, 104708 (2009)]

J. Chem. Phys. 130, 199901 (2009); 10.1063/1.3137184

Relativistic E × T Jahn–Teller effect in tetrahedral systems

J. Chem. Phys. 129, 224102 (2008); 10.1063/1.3035189

Erratum: Theoretical calculation of the absorption and magnetic circular dichroism spectrum of a Jahn–Teller distorted excited state: The 1E' excited state of cyclopropane [J. Chem. Phys. 7 9, 2951 (1983)]

J. Chem. Phys. **84**, 544 (1986); 10.1063/1.450866

Jahn–Teller effect in tetrahedral d 1 metal complexes

J. Chem. Phys. 81, 1861 (1984); 10.1063/1.447859

Erratum: Experimental confirmation of the Jahn–Teller distortion of CH4 + [J. Chem. Phys. 7 2, 1402 (1980)]

J. Chem. Phys. 72, 6818 (1980); 10.1063/1.439182

collide essentially only with solid surfaces. Let $p(l_s)$ be the probability that Knudsen limit trajectories exceed l_s from random starting positions in the pore space. The probability for no Knudsen limit surface collisions occurring between distances l_s and $l_s + dl_s$ is $1 - Kdl_s$, where K is a positive constant. Since averaging for $P(l_s)$ is taken over a macroscopically homogeneous and isotropic volume, the probability $P(l_s + dl_s)$ is equal to the product of the independent probabilities $P(l_s)$ and $P(dl_s)$. This gives

$$\frac{d}{dl_s}P(l_s) = -KP(l_s) \tag{5}$$

which upon integration results in $P(l_s) = \exp(-Kl_s)$. The distribution of interest is

$$p(l_s) = \frac{-d}{dl_s} P(l_s) = \frac{1}{r_0} e^{-l_s/r_0},$$
 (6)

where r_0 , equal to the mean value of l_s , replaces 1/K.

The porous media mean free path l_e results from the integration of the product of Eqs. (4b) and (6) over all possible l_s ,

$$l_e = \frac{l_0}{r_0} \int_0^\infty \left\{ \exp\left(\frac{-l_s}{r_0}\right) - \exp\left[-l_s\left(\frac{l_0 + r_0}{l_0 r_0}\right)\right] \right\} dl_s \qquad (7a)$$

$$=\frac{l_0 r_0}{l_0 + r_0} \,. \tag{7b}$$

rearranging Eq. (7b) shows $l_e^{-1} = l_0^{-1} + r_0^{-1}$. This form of l_e^{-1} is analogous to those of free path models for electron and phonon diffusion in solids. In each case additivity of the inverses of interparticle effects and particle-medium effects result.

Combining Eqs. (1) and (7b) provide the final expressions

$$D_e = \frac{1}{3} f(\epsilon) \overline{v} \frac{l_0 r_0}{l_0 + r_0} = \frac{f(\epsilon) D_0}{1 + \text{Kn}}$$
 (8a)

and

$$D_{e}^{-1} = [f(\epsilon)D_{0}]^{-1} + \left[\frac{1}{3}f(\epsilon)\overline{v}r_{0}\right]^{-1}.$$
 (8b)

The Knudsen number Kn in Eq. (8a) is the ratio l_0/r_0 . By equating the last term in Eq. (8b) to D_K^{-1} , the inverse of the Knudsen diffusivity, the Bosanquet result is obtained. The Bosanquet formula, $D_e^{-1} = [f(\epsilon)D_0]^{-1} + D_K^{-1}$, is applicable in the Knudsen limit (Kn \gg 1), the continuum limit (Kn \ll 1), as well as intermediate ranges of Kn. The derivation presented here demonstrates that the Bosanquet result arises through the influence of pore surface collisions on the free path distribution.

I thank Professor T. N. Narasimhan and Professor L. J. Waldron for helpful comments. This work was supported by the Department of Energy under Contract No. DE-AC03-76SF00098.

¹W. G. Pollard and R. D. Present, Phys. Rev. 73, 762 (1948).

²W. Strieder, J. Chem. Phys. 54, 4050 (1971).

³F. G. Ho and W. Strieder, J. Chem. Phys. 70, 5635 (1979).

⁴F. G. Ho and W. Strieder, J. Chem. Phys. 73, 6296 (1980).

⁵R. B. Evans, G. M. Watson, and E. A. Mason, J. Chem. Phys. 35, 2076 (1961).

⁶K. S. Spiegler, Ind. Eng. Chem. Fundamentals 5, 529 (1966).

⁷J. Jeans, An Introduction to the Kinetic Theory of Gases (Cambridge University, Cambridge, 1940), pp. 142-145.

⁸C. A. Wert and R. M. Thomas, *Physics of Solids* (McGraw-Hill, New York, 1964), pp. 211-214.

ERRATUM

Erratum: Jahn-Teller effect in tetrahedral d 1 metal complexes [J. Chem. Phys. 81, 1861 (1984)]

A. Agresti, J. H. Ammeter, and M. Bacci Istituto di Ricerca sulle Onde Elettromagnetiche del CNR, Via Panciatichi 64, 50127 Firenze, Italy

The relationships (10) were erroneously evaluated. The right expressions are

$$A_2 = \frac{1}{R^2} (e_\sigma - e_\pi), \tag{10a}$$

$$b_{\epsilon\epsilon} = -\frac{\sqrt{3}}{R^2} \left(e_{\sigma} - \frac{5}{3} e_{\pi} \right), \tag{10b}$$

$$b_{\tau\tau} = \frac{3}{2R^2} \left(e_{\sigma} - \frac{5}{3} e_{\pi} \right), \tag{10c}$$

$$c_{\tau\tau} = \frac{7}{6R^2} \left(e_{\sigma} - \frac{1}{3} e_{\pi} \right).$$

Accordingly column I of Table I should read

$$e_{\alpha} = 6655 \text{ cm}^{-1}$$

$$e_{\pi} = 520 \text{ cm}^{-1}$$

$$A_1 = 458 \text{ cm}^{-1}/\text{Å},$$

$$A_2 = 1340 \text{ cm}^{-1}/\text{Å}^2$$

$$E_{\rm JT} = 37 {\rm cm}^{-1}$$

$$b = -4946 \,\mathrm{cm}^{-1}/\mathrm{\AA}$$

$$c = -2397 \,\mathrm{cm}^{-1}/\mathrm{Å}$$

$$c_1 = -4814 \,\mathrm{cm}^{-1}/\mathrm{Å}.$$

$$c_1 = -4614 \, \mathrm{cm} / \mathrm{A}.$$

All conclusions of the paper remain still valid.

(10d)