Autonomic Management of Idle HPC Resource Harvesting LIG WAX GLSI

Quentin GUILLOTEAU,* Éric RUTTEN,* Bogdan ROBU,**
Olivier RICHARD*

*Université Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG **Université Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab

2022-06-30

Context: High Performance Computing

Idle HPC Resources ⇒ Lost Computing Power → How to Harvest?

One Solution: CiGri

- bag-of-tasks: many, multi-parametric
- Best-effort Jobs: Lowest priority
- **Objective**: Collect grid idle resources

Problem

 \nearrow Harvesting \implies \nearrow Perturbations (e.g., I/O) \rightsquigarrow **Trade-off**

Quentin GUILLOTEAU | UGA | 2022-06-30 2 / 16

CiGri: Submission Loop (1/2)

Algorithm 1: Current Solution

```
rate = 3:
increase factor = 1.5;
while tasks not executed in b-o-t do
   if no task running then
       submit rate tasks:
       rate = min(rate \times
        increase factor, 100);
   end
   while nb of tasks running > 0
     do
       sleep during 30 sec;
   end
```


end

CiGri: Submission (2/2)

The Issue

Must wait for termination of the previous submission to submit again → reduce overload but introduce **underutilization** of the resources

Degradation of the File System Performances

 \nearrow Jobs $\implies \nearrow I/O \implies \nearrow$ Delay for users \rightsquigarrow **Perturbations**

Processing Time and Fileserver Load for different Submissions (number of jobs and filesize)

Sensor

- loadavg
- linear relation
- shows limits of FS
- estimation of perturbations

Quentin GUILLOTEAU UGA | 2022-06-30 5 / 16

Runtime management

Autonomic Computing and the MAPE-K Loop

Auto-regulating Systems given high-level objectives

Phases: Monitor → Analyse → Plan → Execute (with Knowledge)

Control Theory (Feedback Control Loop)

Regulate the behaviour of dynamical systems

 \hookrightarrow Interpretation of the MAPE-K Loop

Our Global Problem and Objectives

Objective

Harvest Idle Resources in a **non-intrusive** way

- max cluster utilization
- min perturbations

Means

- Instrumentation
 - Actuator: #jobs to submit, ...
 - Sensor: RJMS WQ, FS Load, ...
- Controllers (PID, RST, MFC, ...)
- Experimental Validation

Quentin GUILLOTEAU | UGA | 2022-06-30 7 / 16

1 Introduction & Context

2 Design of a Controller

3 Experimental Validation

4 Conclusion & Perspectives

PI: What are we looking for

First, a Model ... (i.e., how does the system behave (Open-Loop))

$$\mathbf{y}(k+1) = \sum_{i=0}^{k} a_{i}\mathbf{y}(k-i) + \sum_{j=0}^{k} b_{j}\mathbf{u}(k-j)$$

... then a (PID) Controller (i.e., the Closed-Loop behavior)

$$Output = \mathbf{K}_p \times Error_k + \mathbf{K}_i \times \sum_k Error_k + \mathbf{K}_d \times (Error_k - Error_{k-1})$$

Sensors & Actuators

- Actuator: #jobs to sub → u
- Sensor: FS Load → v
- Error: Reference Sensor

Method

- Open-Loop expe (fixed u)
- 2 Model parameters (a_i, b_j)
- \blacksquare Choice controller behavior (\mathbf{K}_*)

PI: Open-Loop and Identification

System Identification and (Linear) Model Fitting

$$y_{ss} = \alpha + \beta_1 f + \beta_2 \mathbf{u} + \gamma f \mathbf{u}$$

Quentin GUILLOTEAU | UGA | 2022-06-30

PI: Closed-Loop Behavior

Open-Loop
$$\Longrightarrow$$
 Model (1st order) \Longrightarrow Controller Gains Experiments \Longrightarrow $\mathbf{y}(k+1) = a\mathbf{y}(k) + b\mathbf{u}(k)$ \Longrightarrow $\mathbf{K}_p, \mathbf{K}_i, \mathbf{K}_d,$

Controller Gains are ...

functions of the model and

- *k_s*: max **time** to steady state
- M_p: max overshoot allowed

Non-Intrusive Harvesting

- no overshoot
- but "fast" response

Quentin GUILLOTEAU | UGA | 2022-06-30 11 / 16

1 Introduction & Context

2 Design of a Controller

3 Experimental Validation

4 Conclusion & Perspectives

Experimental Setup

- Experiments done on Grid'5000
- Emulation of a 100 node cluster
- 2 Intel Xeon E5-2630 v3
- CiGri jobs: sleep + write

Synthetic Load

- Pure step
- Observe the ctlr behavior:
 - response
 - oscillations

Quentin GUILLOTEAU UGA 2022-06-30 13 / 16

Trade-Off: Harvesting vs. Perturbing

 \nearrow Harvesting \implies \nearrow Perturbations \leadsto $\stackrel{\textbf{Trade-off}}{\text{(Reference Value)}}$

1 Introduction & Context

2 Design of a Controller

3 Experimental Validation

4 Conclusion & Perspectives

Conclusion & Perspectives

Reminder of the Objective

Collect max idle resources with min perturbations

Results

- Dynamical harvesting of the resources
- Trade-off between the harvesting and the perturbations

Perspectives

- Coordination with the scheduler for prediction
- Reusability of the controllers?
- Consider other resource harvesting approaches

Quentin GUILLOTEAU | UGA | 2022-06-30 16 / 16