

Understanding Clustering Algorithm Applied to Planetary Nebulae

Lizette Rodriguez¹, Rodolfo Montez Jr.²

¹Department of Physics and Astronomy, The University of Texas at San Antonio

²Center for Astrophysics and Harvard I Smithsonian

What are Planetary Nebulae?

Planetary nebulae (PNe) are shells of ionized gas with white dwarfs at the center. How do PN form?

- Planetary nebulae form from intermediate-mass stars
- After a star expands into the red giant phase it will enter the AGB phase
- From the AGB phase, the star loses material that ends up in space
- After the star's core collapses the star dies and leaves ionized gas in space

Figure 1: An image by Britannica Encyclopedia et al. showing the stellar evaluation of a main-sequence star that specifically becomes a planetary nebula with a white dwarf remnant

What are some important characteristics of PNe?

PNe can be either symmetric or asymmetric. Types of PNe shapes include but aren't limited to: Elliptical, Spherical, Bipolar, and Irregular.

NGC 6543, also known as the Cats eye nebula, is elliptical and symmetric

X-ray Observations using Chandra

PNe are observed by Chandra in x-rays (≥0.5 keV)

The x-ray emission we can observe in planetary nebulae:

- Diffuse x-rays
- Point like x-rays

Hot Bubbles and Point-Like Sources

Hot bubbles are formed through shocked winds and gas that collide with each other.

· Hot bubbles emit soft X-rays from 0.3 to 1 keV

Point-like sources refer to the compact X-ray emission near the white dwarf at the center of the planetary nebula

Point-like sources emit harder X-rays than hot bubbles

Figure 2: An image by Ch with an x-ray overlay at the center of the PNe by Chandra x-ray telescope

The DBSCAN Algorithm

What are clusters?

- Clusters are groups of points with different population sizes
- In our case, our clusters consist of photons

Core, Non-core, and Noise Points Demo

Figure 3: A Demo of how DBSCAN categorizes clusters using DBSCAN parameters such as epsilon (radius) and min samples (number of nearest neighbors)

DBSCAN User Parameters

User parameters such as epsilon (or eps) and minimum sample value (or min samples) are user parameters that define the distance away from a chosen data point in correlation to the minimum number of points it takes to make a cluster.

DBSCAN Parameter Results

Figure 4: A full distribution graph of eps values (5-40) and a graph showing selected eps values (1-3) that highlight key behaviors in the number of clusters, core, and non-core points for \text{min samples} = 10

DBSCAN Parameter Results Cont'd

Figure 5: A DBSCAN visualization of cluster candidates of eps values (1.28, 1.3 and 1.32) all with the same min sample value

Figure 6: A DRSCAN visualization

The DBSCAN Parameter Study and What's Next!

- Across the smaller selected ranges of eps, the best parameter fitting the data for NGC 6543 is eps = 1.5 and min samples = 10
- This shows that you can use DBSCAN to cluster different sources of X-ray emission to further represent the hot bubble and the central source of NGC 6543
- In the future, a study could focus on what user parameters would best fit differing kinds of X-ray objects (ie: shape size, and brightness)

References

- [1] R. Montez Jr. et al 2015 ApJ 800 8
- [2] J. H. Kastner et al 2012 AJ 144 58
- [3] M. Freeman et al 2014 ApJ 794 99
- [4] Rodolfo Montez Jr. et al 2010 ApJ 721 1820 [5] L. Decin, M. Montargès et al. 2020 Science 369, pp. 1443-1444.