

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.01 Информатика и вычислительная техника

ОТЧЕТ

по лабораторной работе № <u>2</u>

Дисциплина: МЗЯиОК

Студент	ИУ6-43Б		Re	В.К. Залыгин
	(Группа)		(Подпись, дата)	(И.О. Фамилия)
Преподаватель				
		·	(Подпись, дата)	(И.О. Фамилия)

Цель работы

Изучение форматов машинных команд, команд целочисленной арифметики ассемблера и программирование целочисленных вычислений.

Задание

Вычислить целочисленное выражение, представленное на рисунке 1.

$$d = a * x - 3 * (b + \frac{3}{k})$$

Рисунок 1 – Выражение

Код программы

Ниже приведен листинг программы.

section .data

REQ A db "Введите A:",10

REQ A LEN equ \$-REQ A

REQ_X db "Введите X:",10

REQ_X_LEN equ \$-REQ_X

REQ B db "Введите В:",10

REQ_B_LEN equ \$-REQ_B

REQ K db "Введите К:",10

REQ_K_LEN equ \$-REQ_K

RES db "Результат вычисления выражения d = a * x - 3 * (b + 3 / k):",10

RES LEN equ \$-RES

ERR db "Введены некорректные данные. Завершение работы.",10

ERR_LEN equ \$-ERR

THREE dd 3

section .bss

BUFFER resb 10

BUFFER LEN equ \$-BUFFER

```
A resd 1
B resd 1
D resd 1
K resd 1
X resd 1
section .text
global _start ; d = a * x - 3 * (b + 3 / k)
start:
 ; input the number A
 mov rax, 1
       rdi,
           1
 mov
 mov rsi,
           REQ_A
 mov rdx, REQ A LEN
 syscall
 mov rax, 0
 mov rdi,
           0
 mov rsi, BUFFER
 mov rdx, BUFFER LEN
 syscall
 call StrToInt64
 cmp rbx, 0
 jne .err
 mov [A], eax
 ; input the number X
           1
 mov
       rax,
       rdi,
           1
  mov
           REQ X
       rsi,
  mov
       rdx, REQ X LEN
  mov
```

```
syscall
mov rax, 0
mov rdi,
         0
    rsi, BUFFER
mov
mov rdx, BUFFER_LEN
syscall
call StrToInt64
cmp rbx, 0
ine .err
mov [X], eax
; input the number B
     rax,
          1
mov
     rdi,
         1
mov
     rsi, REQ B
mov
mov rdx, REQ_B_LEN
syscall
mov rax, 0
mov rdi,
          0
mov rsi, BUFFER
mov rdx, BUFFER_LEN
syscall
call StrToInt64
cmp rbx, 0
ine .err
mov [B], eax
; input the number K
     rax,
         1
mov
mov rdi,
         1
```

```
mov rsi, REQ_K
mov rdx, REQ_K_LEN
syscall
mov rax, 0
mov rdi,
         0
mov rsi, BUFFER
mov rdx, BUFFER_LEN
syscall
call StrToInt64
cmp rbx, 0
jne .err
cmp eax, 0
je .err
mov [K], eax
; compute d = a * x - 3 * (b + 3 / k)
xor rdx, rdx
mov eax, [A]
imul dword[X]
mov [A], eax
xor rdx, rdx
mov eax, 3
idiv dword[K]
add eax, [B]
imul dword[THREE]
    [B], eax
mov
mov eax, [A]
sub eax, [B]
mov [D], eax
```

```
; output
 mov rax, 1
      rdi,
           1
 mov
           RES
 mov
      rsi,
 mov rdx, RES_LEN
 syscall
 xor rax, rax
 mov eax, [D]
 mov rsi, BUFFER
 call IntToStr64
 mov rdx, rax
      rax, 1
 mov
 mov rdi,
           1
 syscall
 ; exit
 mov rdi, 0
.exit mov rax, 60
 syscall
.err: mov rax, 1
 mov rdi,
           1
 mov rsi, ERR
 mov rdx, ERR_LEN
 syscall
 mov rdi, 1
 jmp .exit
%include "../lib.asm"
```

Покомандное выполнение вычислений представлено на рисунках 2–13.

Рисунок 2 – Выполнение вычислений

Рисунок 3 – Выполнение вычислений

Рисунок 4 – Выполнение вычислений

Рисунок 5 – Выполнение вычислений

Рисунок 6 – Выполнение вычислений

Рисунок 7 – Выполнение вычислений

Рисунок 8 – Выполнение вычислений

Рисунок 9 – Выполнение вычислений

Рисунок 10 – Выполнение вычислений

Рисунок 11 – Выполнение вычислений

Рисунок 12 – Выполнение вычислений

Рисунок 13 – Выполнение вычислений

Расшифровка кодов мнемоники mov

1) Первый код
4 8 8 9 с 2
1001000 100010 01 11 000 010
префикс1 100010dw mod reg reg
mov rdx, rax

2) Второй код

8 9 0 4 2 5 16 21 40 00

Тестирование

Результаты тестирования приведены в таблице 1.

Таблица 1 – результаты тестирования

No	Поток ввода	Поток вывода	Вердикт
1	2	-10	Верно
	4		
	3		
	1		
2	1	-11	Верно
	1		
	1		
	1		
3	1000	24920	Верно
	2000		
	3000		
	4000		

Вывод

Изучены форматы машинных команд, команд целочисленной арифметики ассемблера, а также выполнено программирование целочисленных вычислений.

Ответы на контрольные вопросы

1) Что такое машинная команда? Какие форматы имеют машинные команды процессора IA32? Чем различаются эти форматы?

Машинная команда представляет собой код, определяющий операцию вычислительной машины и данные, участвующие в операции. Префиксы разделяют на:

- префикс повторения используется только для строковых команд;
- префикс размера адреса (67h) применяется для изменения размера смещения: 16 бит при 32-х разрядной адресации;
- префикс размера операнда (66h) указывается, если вместо 32-х
 разрядного регистра для хранения операнда используется 16-ти разрядный;
- префикс замены сегмента используется при адресации данных любым сегментом кроме DS.
 - d направление обработки, например, пересылки данных: 1 в регистр,
 - 0 из регистра;
- w размер операнда: 1 операнды двойные слова, 0 операнды байты; mod режим:
 - 1) 00 Disp=0 смещение в команде 0 байт;
 - 2) 01 Disp=1 смещение в команде 1 байт;
 - 3) 10 Disp=2 смещение в команде 2 байта;
- 4) 11 операнды-регистры. Регистры кодируются в зависимости от размера операнда:

Регистры кодируются в зависимости от размера операнда:

- 1) для w = 1:
- -000 EAX;
- -001 ECX;

- -010 EDX;
- -011 EBX;
- -100 ESP;
- 101 EBP;
- -110 ESI;
- 111 EDI.
- 2) для w = 0:
- -000 AL;
- -001 CL;
- -010 DL;
- -011 BL;
- -100 AH;
- 101 CH;
- -110 DH;
- 111 BH.
- 2) Назовите мнемоники основных команд целочисленной арифметики. Какие форматы для них можно использовать?

Мнемоники: add, sub, div/idiv, mul/imul. Арифметические операции, такие как сложение, вычитание, деление и умножение можно выполнять над однобайтовыми, двухбайтовыми и четырёхбайтовыми целыми числами.

- 3) Сформулируйте основные правила построения линейной программы вычисления заданного выражения.
 - Объявить инициализированные переменные.
 - Объявить неинициализированные переменные.
 - Написать команды для вычисления выражений арифметических действий и команды перемещения, объявленных ранее переменных как в регистры, так и из них.
 - Написать процедур ввода и вывода, если этого требует условие поставленного выражения.

Арифметические операции, такие как сложение, вычитание, деление и умножение можно выполнять над однобайтовыми, двухбайтовыми и четырёхбайтовыми целыми числа.

4) Почему ввод-вывод на языке ассемблера не программируют с использованием соответствующих машинных команд? Какая библиотека используется для организации ввода вывода в данной лабораторной?

Так как для выполнения арифметических операций числа должны быть представлены в памяти в одном из внутренних форматов, в которых знак, если он предусмотрен, кодируется первым битом, а само число записано в двоичной системе счисления.

Используется библиотека, состоящая из функций, IntToStr, StrToInt.

5) Расскажите, какие операции используют при организации ввода-вывода.

Перевод строки в число и перевод числа в строку. Вызовы системных функция ввода-вывода.