Customer Segmentation

Ellen Deng

The Data

The dataset we used includes:

- 373k data points and 18 variables
- · customer address, preferences, marketing channel, first order date and revenue, first 90 days revenue and days to conversion

```
Observations: 373,855
Variables: 18
$ user_id
                            <db1> 11109, 23640, 80970, 110985, 131766, 227328, 228624, 258420, 272187, 277149, 396624, 424749, 439881...
                            <fct> lion, pigeon, lion, l...
$ customer_type
$ first_order_type
                            <fct> one-time, one-time, one-time, one-time, one-time, one-time, one-time, subscription, one-time, subsc...
                            <fct> West, Midwest, Northeast, Midwest, South, West, West, Midwest, South, Midwest, Midwest, Northeast, ...
$ region
                            <fct> Pacific, East North Central, Middle Atlantic, East North Central, South Atlantic, Pacific, Pacific,...
$ subregion
                             <fct> CA, IN, NJ, OH, FL, CA, CA, IL, TX, OH, MI, NJ, MD, PA, NC, AZ, CA, CA, CA, CT, TX, CA, NJ, KS, VT,...
$ state
                            <fct> COLTON, INDIANAPOLIS, BORDENTOWN, SPRINGFIELD, NAPLES, MURRIETA, EMERYVILLE, OAK PARK, EL PASO, LOR...
$ city
$ post_code
                             <int> 92324, 46241, 8505, 45505, 34119, 92562, 94608, 60302, 79924, 44053, 48103, 8035, 20769, 15232, 276...
                             <fct> monitors, not specified, not specified, monitors, earphones, not specified, not specified, monitors...
$ product_preference
$ food_preference
                            <fct> pizza and pasta, not specified, not specified, pizza, pasta, pizza, pizza and pasta, pizza and past...
$ days_to_conversion
                            <dbl> 261, NA, 25, 0, NA, NA, NA, NA, 150, NA, NA, O, O, NA, NA, NA, NA, NA, NA, NA, NA, 416, 47, NA, 226, NA, NA...
$ channel_credit
                            <fct> Paid Social, , Paid Social, Paid Social, , , , Paid Social, , , Other, Non-Paid, , , , , , , Non-...
$ first_order_date
                            <fct> 2018-06-05, 2015-06-12, 2016-03-13, 2015-07-20, 2017-07-17, 2015-07-28, 2016-03-15, 2016-09-20, 201...
$ first_order_total_revenue <dbl> 24.95, 27.47, 24.95, 17.47, 44.90, 24.95, 54.90, 32.90, 29.95, 54.90, 49.90, 19.95, 42.90, 17.48, 0...
                             <dbl> 24.95, 57.42, 69.90, 17.47, 44.90, 24.95, 54.90, 57.85, 29.95, 54.90, 74.85, 44.90, 42.90, 17.48, 0...
$ X90d_total_revenue
                             <fct> Iterable, bing, facebook, facebook, facebook, bronto, www.huffingtonpost.com, facebook, bronto, bin...
$ first_order_source
$ first_order_medium
                             <fct> email, cpc, mobilenf, desktopnf, FB IG AN, email, (not set), desktopnf, email, organic, email, Refe...
$ predicted_total_ltv
                             <db1> 40.87147, 98.58500, 34.95000, 22.52341, 194.74249, 54.90000, 44.92500, 196.60000, 14.97500, 174.650...
```

Customer Segmentation by Purchases

- Using K-means algorithm to conduct Cluster Analysis, we segment the customer into 5 clusters
- Although they take longer to convert, the predicted LTV is much higher
- The first_order_revenue is average among other clusters but first_90d_revenue is high compared to other clusters

# A tibble: 5 x 6										
(Cluster A	Avg_predicted_ltv	Avg_days_to_conversion	Avg_first_order_revenue	Avg_x90d_revenue					
	<int></int>	<db1></db1>	<dbl></dbl>	<db1></db1>	<dbl></dbl>					
1	5	170	41	34.1	48					
2	4	149	27	36	48.1					
3	3	128	34	36.2	46.1					
4	1	125	31	33.1	42.4					
5 .	2	119	33	30.8	40.1					

Segmentation by Region and Marketing Channel

- Different marketing channels show different results in different regions
- For cluster 1 in West region, direct mail has the highest predicted LTV
- For cluster 2 in Northeast region,
 SEM has the highest predicted LTV
- Target different cluster in different region with the best performing channels can acquire customers with highest predicted LTV

Segmentation by Marketing Channel and First Order Month

- For Cluster 5, the marketing channel performance varies throughout the year
- TV seems to work better in October, online display seems to works better in January and SEM works the best in April
- Direct Mail and Mail seem to have high LTV but not been used very frequently
- Prioritize different channels in different months could optimize and increase predicted LTV for cluster 5 but CAC per channel should be considered as well

Segmentation by Food and Product Preference

- For Cluster 5, people who prefer headphones and pizza or pizza and pasta have higher predicted LTV
- People who prefer pasta and headphones or keyboard & pizza and pasta have low predicted LTV
- Target people with specific preference on food an product could increase predicted LTV

Data Science Team

LTV Predictors

- Using liner regression model to fit the data
- first_order_total_revenue,
 X90d_total_revenue,
 first_order_type(subscription) and
 food_preference(pizza, pizza and pasta
 are the most important predictors for LTV
- Marketing channels and region are not good predictors

Call:

Residuals:

Min 1Q Median 3Q Max -666.09 -90.23 -44.85 48.82 1277.93

Coefficients:

	Estimate	Std. Error	t value	Pr(>ltl)	
(Intercept)	65.47592	29.40132	2.227	0.025971	*
days_to_conversion	0.01759	0.01794	0.981	0.326838	
first_order_total_revenue	-2.55824	0.12444	-20.558	< 2e-16	***
X90d_total_revenue	3.38013	0.07968	42.421	< 2e-16	***
first_order_typesubscription	52.99644	3.49724	15.154	< 2e-16	***
regionNortheast	4.17862	5.62819	0.742	0.457835	
regionOther	-35.55682	28.35497	-1.254	0.209875	
regionSouth	-8.72481	4.90127	-1.780	0.075088	
regionWest	5.09143	5.17254	0.984	0.324983	
product_preferenceheadphones	22.22608	11.05952	2.010	0.044492	*
product_preferencekeyboards	-15.34976	7.47643	-2.053	0.040090	*
product_preferencemonitors	3.06351	5.80714	0.528	0.597829	
product_preferencenot specified	-20.28729	7.72224	-2.627	0.008624	**
food_preferencepasta	7.79528	5.81246	1.341	0.179908	
food_preferencepizza	46.28841	5.38195	8.601	< 2e-16	***
food_preferencepizza and pasta	20.75528	6.16960	3.364	0.000771	***
channel_creditMail	-38.37108	88.71914	-0.433	0.665387	
channel_creditNon-Paid	-35.73797	28.39595	-1.259	0.208219	
channel_creditOnline Display	-39.21637	29.29832	-1.339	0.180758	
channel_creditOther	-20.52288	29.24375	-0.702	0.482828	
channel_creditPaid Social	-38.92782	28.16944	-1.382	0.167028	
channel_creditRadio	-23.03768	28.37472	-0.812	0.416864	
channel_creditSEM	-26.47359	28.76260	-0.920	0.357377	
channel_creditTV	-35.73770	28.73135	-1.244	0.213581	
C: : C 0 (+++1 0 004 (-	*** 0 04 (4				

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 168.2 on 9976 degrees of freedom Multiple R-squared: 0.2265, Adjusted R-squared: 0.2247 F-statistic: 127 on 23 and 9976 DF, p-value: < 2.2e-16

Data Science Team

Model Fit and Selection

- From the residual plot and the QQ plot, it shows non-linearity of the data.
- It indicates linear model might not be a good fit for LTV prediction
- Due to the high dimensionality and mix data type, it might be better to use polynomial regression or tree-based method to predict LTV
- To evaluate if the model is a good fit, I will split dataset to train and test set. Then I will use cross validation to train and choose the best model. Then I will fit the model with test data and calculate MSE to evaluate the result

