WSL-Forschungsprojekt

Produktivitätsmodelle für die Holzernte, erstellt mit Hilfe komponentenbasierter Softwaretechnologie

Grundlagen für die Programmierung

Produktionssystem "Forwarder"

Abteilung Management Waldnutzung Eidg. Forschungsanstalt WSL,2003, 2014

Version	Autoren	Datum	Status	Kommentar
1.0	Lemm. Näf, Thees			
	R. Lemm	17. 2.99		Korrekturen Übersicht, Einfügen Zeitsystem
	R. Lemm	8.4.99		Korrekturen gemäss Umsetzung in COM-Komponenten J. Stückelberger
9.1	R. Lemm	30.6.99		Èbersichtsgrafik neu erstellt
	R. Lemm	17.11.99		Korrektur Berechnung Geschw.auf M,RG, Faktoren für FL und LA wieder vertauscht
	M. Breitenstein	Dez. 2002		Formatierung und Korrekturen gem. V. Erni
2.0	M. Breitenstein	Mai 2003		Stand überprüft und bereinigt
3.0	S. Holm	Dez. 2014		Korrekturen

Inhaltsübersicht

1	Gru	ndlagen	4
	1.1	Entstehung und Verwendung	4
	1.2	Verzeichnis der Quellen	
	1.3	Beurteilung und besondere Schwierigkeiten	
	1.4	Zeitangaben - Gliederung und Bezugsgrössen	
2	Pro	duktionssystem - verbal-bildliche Darstellung	5
	2.1	Produktionsfaktoren	5
	2.2	Produktionsprozess	
		2.2.1 Arbeitsaufgaben	
		2.2.2 Arbeitsabläufe	
	2.3	Input- und Outputzustand	
		2.3.1 Inputzustand	
		2.3.2 Outputzustand	
		2.3.3 Veränderungen	
	2.4	Erforderliche Arbeitsbedingungen	6
		2.4.1 Technik und Personal	
		2.4.2 Gelände und Erschliessung	7
		2.4.3 Waldbestände und waldbauliche Massnahmen	
	2.5	Berechneter Output	7
3	Pro	duktionssystem - Wirkungszusammenhänge	8
	3.1	Übersicht über den Datenfluss	g
	3.2	Die Berechnungen im Einzelnen	
		3.2.1 Das Rohpoltervolumen	
		3.2.2 Die Rohpolterqualität	11
		3.2.3 Lastvolumen pro Rückefahrt	
		3.2.4 Aufteilung der Fahrstrecken auf die Fahrrichtungen	
		3.2.5 Geschwindigkeiten und Fahrzeiten auf Maschinenwegen und Rückegassen	
		3.2.6 Geschwindigkeiten und Fahrzeiten auf der Strasse	
		3.2.7 Gesamte Fahrzeit	
		3.2.8 Laden und Entladen	
		3.2.9 Systemzeit und Zeit pro Rückefahrt	
	3.3	Das vereinfachte Modell	
	3.3	3.3.1 Übersicht	
		3.3.2 Transformationen	
	3.4	Abkürzungen und Definitionen (mit Definitionsbereich und Einheiten)	
	3.5	Berechnungsbeispiel	
4	Vor	reichnie der Abbildungen und Tebellen	24
4	ver	zeichnis der Abbildungen und Tabellen	24
5	Anh	nang	25
	A1:	Vergleiche von Feldaufnahmen und Modell-Versuchen	
	A1: A2:	Beurteilung der Qualität des Modells (im Hinblick auf die Verwendung in Holzernte-	∠⊃
	٨۷.	Komponenten)	26
	A3:	Hindernis- und Gefällsklasseneinteilung	27
	Δ4.	7eitsystem im Komponentenmodell Forwarder"	28

1 Grundlagen

1.1 Entstehung und Verwendung

Das von Bergstrand (1985) unter schwedischen Bedingungen erstellte Kalkulationsmodell für das Forwarderrücken wurde von Lüthy (1997) mittels Erhebungen und Experimenten an die schweizerischen Verhältnisse angepasst.

Insbesondere wurde es im Hinblick auf die Anwendung am stehenden Bestand modifiziert (Informationen, erhoben am liegenden Holz, bilden die Basis der Schätzung beim schwedischen Modell). Für die an die Schweizerischen Verhältnisse angepasste Grundlage wurde von Lüthy und Näf (1997) auch ein PC-Programm für DOS namens "LUNA" erarbeitet. Das Programm bietet eine detaillierte und eine vereinfachte Version der Kalkulationsgrundlage an. Der Entwicklung der COM-Komponente wurde die detaillierte Version zugrunde gelegt.

1.2 Verzeichnis der Quellen

BERGSTRAND, K.-G.; 1985: Underlag för prestationsmal för Skotning. 1. Aufl. Kista, Schweden, Forskningsstiftelsen Skogsarbeten Redogörelse. 35 S.

LÜTHY, C.; 1997: Kalkulationsgrundlage für das Holzrücken mit Forwarder. Interner Bericht, Eidg. Forschungsanstalt für Wald Schnee und Landschaft (WSL).

LÜTHY, C.; NÄF,J.; THEES, O.; LEMM, R.; 1997: Kalkulationsgrundlage für das Holzrücken mit Forwarder - Benutzeranleitung für das PC-Programm LUNA (Diskette mit PC-Programm im Heft enthalten). Eidg. Forschungsanstalt für Wald Schnee und Landschaft (WSL).

1.3 Beurteilung und besondere Schwierigkeiten

Die schwedische Grundlage basiert auf umfangreichem Datenmaterial. Die an schweizerische Verhältnisse angepasste Grundlage (detailliertes Modell) wurde an 18 Holzschlägen in der Praxis getestet. Die Abweichungen zwischen vorkalkulierter und tatsächlicher Rückeleistung lagen meistens unter \pm 10%. Die grösste Abweichung lag bei 19%. Die Resultate des vereinfachten Modells streuen leicht stärker. Das detaillierte Modell rechnet mit wesentlich mehr Einflussgrössen als das vereinfachte und kann damit auf besondere Situationen besser eingehen. Für die hiesigen Verhältnisse ist die Grundlage als treffsicher zu bezeichnen. Das PC-Programm "LUNA" befindet sich auch in Deutschland und in Österreich in verschiedenen Forstbetrieben und Forstunternehmen im Test. Ergebnisse über die Erfahrungen, Treffsicherheiten etc. liegen derzeit noch nicht vor.

Die Grundlage ist ausserdem aktuell und sehr gut dokumentiert. Gesamthaft gesehen handelt es sich um eine Grundlage von guter bis sehr guter Qualität (vgl. Anhang).

1.4 Zeitangaben - Gliederung und Bezugsgrössen

Das Modell von Lüthy (1997) liefert Zeitangaben auf der Basis von Betriebsstunden (Bstd.). Eine Überprüfung anhand von 20 Holzschlägen ergab keine Unterschiede zwischen Betriebsstunden und Maschinenarbeitsstunden (MAS). Die Zeitangaben beziehen sich auf ein Arbeitssystem bestehend aus Forwarder und Maschinist.

2 Produktionssystem - verbal-bildliche Darstellung

Anmerkung

In diesem Grundlagenbericht wird der Masseinheit m3 für die Holzvolumina (z. B. Holzmenge, Volumenmittelstamm) häufig der Zusatz i.R. (in Rinde) oder o.R. (ohne Rinde) angefügt.

Bei der Umsetzung der Grundlagen in EDV-Modelle wurde nicht unterschieden zwischen Holz in Rinde und ohne Rinde. Es gilt folgender Grundsatz: Die Einheit der Eingangsgrössen entspricht der Einheit im Ergebnis. Wichtig ist, dass die Einheit aller Eingangsgrössen (z. B. Holzmenge, Volumenmittelstamm) gleich gewählt wird ("was hinein geht, kommt wieder heraus").

2.1 Produktionsfaktoren

Das Produktionssystem "Forwarder" für den Transport von Rundholzabschnitten besteht aus:

- 1 Forwarder (klein oder mittel)
- 1 Fahrer (Maschinist).

2.2 Produktionsprozess

2.2.1 Arbeitsaufgaben

Die Arbeitsaufgabe besteht darin, Rundholzabschnitte aus Waldbeständen auf lastwagenerreichbare Lagerplätze zu transportieren (= Geländetransport).

2.2.2 Arbeitsabläufe

Das Modell bildet folgende Aktivitäten/ Einzelprozesse eines Transportprozesses (Rückezyklus) ab: Leerfahrt, Laden, Fahren beim Laden, Lastfahrt, Abladen (vgl. Abbildung 1). Das Modell bildet keine Informationsprozesse ab (z.B. keine Vermessung des Holzes).

Abbildung 1: Prozess Forwarderrücken - Schnittstellen und abgebildete Aktivitäten.

2.3 Input- und Outputzustand

2.3.1 Inputzustand

Holzsortimente:

Das zu transportierende Holz muss folgenden Zustand aufweisen: Kranlängen, d.h. Rundholzabschnitte von 2 bis 8 m Länge, in Kranreichweite des Forwarders vorgeliefert (mittels Vollernter, Seilwinde, Pferd etc.).

Die Holzmenge pro Laufmeter Erschliessungslinie sollte 0.6 m3 und der mittlere BHD des Aushiebes 30 cm nicht übersteigen (Überschreitungen nicht überprüft).

Informationen:

Im Falle der Sortentrennung beim Abladen müssen die Sorten für den Maschinisten erkennbar sein.

2.3.2 Outputzustand

Holzsortimente:

Die zu transportierenden Holzabschnitte lagern am Abladeort in Form von krangesetzten Holzhaufen (Poltern).

Informationen:

In der Regel sortengetrennte Polter, also nur indirekte Information; keine Vermessung.

2.3.3 Veränderungen

Rundholzabschnitte, meist an den Rand von Rückegassen oder Maschinenwegen vorgeliefert, wechseln ihre Position zum Lagerplatz. Dieser befindet sich in der Regel am Rand von lastwagenfahrbaren Waldstrassen, wo das Holz, meist nach Sorten getrennt, in Form von krangesetzten Poltern zwischengelagert wird.

Abbildung 2: Die einzelnen Fahrzyklen.

2.4 Erforderliche Arbeitsbedingungen

2.4.1 Technik und Personal

- Herkömmliche Forwarder (6- oder 8-Radfahrgestell, Rahmen-Knicklenkung, Hydraulikkran mit Holzgreifer, Rungenkorb).
- Grössenkategorien: kleine Forwarder (7-10t Nutzlast) und mittlere Forwarder (10-12t Nutzlast).

- Hydraulikkran, Reichweite ca. 5-8m, grössere Reichweiten möglich (nicht überprüft).
- Die Anwendung auf den Einsatz von Forsttraktoren mit Rückeanhängern macht eine Reduktion der errechneten Leistung notwendig.
- Der Maschinist muss auf der eingesetzten Maschine und bezüglich der übrigen Bedingungen des Auftrages geübt sein.

2.4.2 Gelände und Erschliessung

- Befahrbares Gelände für Forwarder mit Radfahrgestellen mit einem Gesamtgewicht bis ca. 20 Tonnen.
- Rückegassennetze, auch Erschliessungen mit Maschinenwegen (Breite mindestens 2.5 m) sowie Einsatz von der Waldstrasse aus.
- Einsatz grundsätzlich auch ohne Feinerschliessungsnetz möglich, sofern es die Bodenverhältnisse und die Baumabstände erlauben.

2.4.3 Waldbestände und waldbauliche Massnahmen

- Nur wenige Einschränkungen: Nadel- und Laubholzbestände, Mischbestände aus Nadelund Laubholz; Stangen- und eher schwache Baumhölzer.
- Durchforstungen, grundsätzlich auch Endnutzungen (nicht überprüft).
- Weitere Einschränkungen oder sinnvolle Einsatzbereiche sind bei den Eingangsvariablen des Modells angegeben.

2.5 Berechneter Output

Das Modell berechnet folgende Ergebnisse:

- Zeitbedarf des Produktionssystems pro Kubikmeter (Effizienz) oder Kubikmeter pro Zeiteinheit (technische Arbeitsproduktivität).
- Arbeitszeit der Produktionsfaktoren (Personal, Maschinen) pro m³.
- Die Angaben der Holzmasse in m³ beziehen sich falls nicht anders vermerkt auf das Holz in Rinde.

3 Produktionssystem - Wirkungszusammenhänge

Anmerkung

In diesem Grundlagenbericht wird der Masseinheit m3 für die Holzvolumina (z. B. Holzmenge, Volumenmittelstamm) häufig der Zusatz i.R. (in Rinde) oder o.R. (ohne Rinde) angefügt.

Bei der Umsetzung der Grundlagen in EDV-Modelle wurde nicht unterschieden zwischen Holz in Rinde und ohne Rinde. Es gilt folgender Grundsatz: Die Einheit der Eingangsgrössen entspricht der Einheit im Ergebnis. Wichtig ist, dass die Einheit aller Eingangsgrössen (z. B. Holzmenge, Volumenmittelstamm) gleich gewählt wird ("was hinein geht, kommt wieder heraus").

3.1 Übersicht über den Datenfluss

Abbildung 3: Übersicht über den Datenfluss im Forwardermodell.

Eingangsvariablen		Bezeichnung	Einheit
BHD des Aushiebs		dBHD	[cm]
Erschliessung mit	- einseitige Erschliessung:		
vorgeliefertem Holz	- auf Maschinenweg	MWe	[m]
	- auf Rückegasse	RGe	[m]
	- auf Strasse	STe	[m]
	- beidseitige Erschliessung:		
	- auf Maschinenweg	MWb	[m]
	- auf Rückegasse	RGb	[m]
	- auf Strasse	STb	[m]
Nutzungsmengen	- Nadelholz	NH	[m ³]
	- Laubholz	LH	[m ³]
	- Anteil krummes Holz	K	[%]
Sortimente	- Sortimentslänge und Anteile	SO	
	- durchschn. Anz. transp. Sort. pro Rückezyklus	dSR	[-]
	- Länge der Sortimente	dHL	[m]
Forwarder-Typ	- Forwardertyp 'klein','mittel'	k,m	_
	- Ladequerschnitt	LQ	$[m^2]$
Fahrdistanzen auf	- Last aufwärts	SRMLAaf	[m]
- Rückegasse	- Last abwärts	SRMLAab	[m]
 Maschinenweg 	- Last eben	SRMLAeb	[m]
	- Leer aufwärts	SRMLEaf	[m]
	- Leer abwärts	SRMLEab	[m]
	- Leer eben	SRMLEeb	[m]
Fahrdistanzen auf	- Last aufwärts	SStLAaf	[m]
- Strasse	- Last abwärts	SStLAab	[m]
	- Last eben	SStLAeb	[m]
	- Leer aufwärts	SStLEaf	[m]
	- Leer abwärts	SStLEab	[m]
	- Leer eben	SStLEeb	[m]
Hindernisklasse		HK	[1-4]
Gefällsklasse		GK	[1-3]

Tabelle 1: Verwendete Eingangsvariablen.

Die Eingabe der Erschliessung mit vorgeliefertem Holz, der Sortimentsmengen und der Fahrdistanzen gemäss Tabelle 1 ist sehr aufwändig. Möchte man die Gesamterschliessungslänge mit Holz, die Nutzungsmenge oder die gesamte Fahrstrecke für Berechnungen ändern, müssen stets auch alle Detailangaben (MWe..Stb; SRMLA_{af}..SStLE_{eb}) angepasst werden.

Dies lässt sich vereinfachen, indem nur noch die Gesamtwerte absolut eingegeben und diese dann nach prozentualen Anteilen auf einzelne Sortimente, Erschliessungslängen oder Fahrdistanzen aufgeteilt werden.

Bei der EDV-Umsetzung werden deshalb mit Vorteil die folgenden Eingangsvariablen verwendet:

Eingangsvariablen		Bezeichnung	Einheit
Erschliessung mit Holz	einseitig	E _e	[m]
	beidseitig	E _b	[m]
Anteile Rückegasse, Maschinenweg u "beidseitig"		[%]	
Fahrstrecken	auf Strasse	SSt	[m]
	auf Feinerschliessung	SRM	[m]
Anteile aufwärts, abwärts und eben für	Lastfahrten		[%]
	Leerfahrten		[%]
	Fahren beim Laden		[%]
Nutzungsmenge			[m ³]
Anteile je Sortimentslänge			[%]
Anteile Nadelholz und Laubholz			[%]

Tabelle 2: Verwendete Eingangsvariablen bei der EDV-Umsetzung.

3.2 Die Berechnungen im Einzelnen

3.2.1 Das Rohpoltervolumen

Die Berechnung des Rohpoltervolumens im Voraus (nicht Ableitung aus den Aufnahmen nach der Holzhauerei) bildet einen zentralen Aspekt dieses Modells.

Abbildung 4: Berechnung des Rohpoltervolumens.

3.2.2 Die Rohpolterqualität

Schlecht erstellte Rohpolter beim Vorliefern oder bei der Holzhauerei haben einen negativen Einfluss auf die Teilarbeit "Laden".

Abbildung 5: Berechnung der Rohpolterqualität.

3.2.3 Lastvolumen pro Rückefahrt

Das durchschnittliche Lastvolumen des Forwarders hat Einfluss auf sämtliche Teilarbeiten. Es wird nicht geschätzt sondern berechnet.

Abbildung 6: Berechnung des Lastvolumens pro Rückefahrt.

3.2.4 Aufteilung der Fahrstrecken auf die Fahrrichtungen

Fahrstrecke pro Rohpolter

Das Teilmodell "Fahrstrecke pro Rohpolter" berechnet, in welchen Abständen durchschnittlich ein Rohpolter an den Erschliessungslinien liegt.

Abbildung 7: Berechnung der Fahrstrecke pro Rohpolter.

Fahrstrecke beim Laden

Im Teilmodell "Fahrstrecke beim Laden" wird die Fahrstrecke des Forwarders während des Ladens im mittleren Rückezyklus getrennt nach Strasse und Rückegasse inkl. Maschinenweg berechnet.

Abbildung 8: Berechnung der Fahrstrecke beim Laden.

Leerfahrt und Lastfahrt

Die Strecken für die Leer- und Lastfahrten auf Strasse und Feinerschliessung (Rückegasse, Maschinenweg) können wie folgt ermittelt werden:

Aufteilung der Fahrstrecken auf die Fahrrichtungen

wobei der Index i für die Fahrrichtungen aufwärts, abwärts und eben steht.

3.2.5 Geschwindigkeiten und Fahrzeiten auf Maschinenwegen und Rückegassen

Diese Teilmodelle berechnen die Fahrgeschwindigkeiten und Fahrzeiten auf Maschinenwegen, Rückegassen und Strassen für schweizerische Bedingungen (siehe Anhang 3).

Abbildung 9: Berechnung der Geschwindigkeiten und Fahrzeiten auf Maschinenwegen und Rückegassen.

3.2.6 Geschwindigkeiten und Fahrzeiten auf der Strasse

Abbildung 10: Berechnung der Geschwindigkeiten und Fahrzeiten auf der Strasse.

3.2.7 Gesamte Fahrzeit

Dieses Teilmodell berechnet den gesamten mittleren Zeitbedarf (Strasse, Rückegasse, Maschinenweg) für Fahren beim Laden, für Leerfahrten und für Lastfahrten in Minuten pro Rückezyklus.

Abbildung 11: Berechnung des Zeitbedarfs für das Fahren beim Laden und für Leer- und Lastfahrt auf Strasse, Maschinenwegen und Rückegassen.

3.2.8 Laden und Entladen

Diese Teilmodelle berechnen den Zeitaufwand für das Laden und das Entladen in Minuten pro Rückezyklus.

Abbildung 12: Berechnung des Zeitbedarfs für Laden und Entladen.

3.2.9 Systemzeit und Zeit pro Rückefahrt

Mit den Teilmodellen können die Zeitbedarfe für den mittleren Rückezyklus berechnet werden. Durch Division des gesamten Zeitbedarfes durch das mittlere Lastvolumen pro Rückefahrt ergibt sich die Arbeitseffizienz des Produktionssystems in PSH₁₅/m³.

Abbildung 13: Berechnung der Arbeitseffizienz (Zeit in PSH15 pro m3) für Leerfahrt, Fahren beim Laden, Laden, Entladen und Lastfahrt.

Ein Vergleich der Modellergebnisse mit den Feldversuchen hat gezeigt, dass das Modell zu tiefe Zeitbedarfe liefert. Um diese systematische Unterschätzung der Zeitbedarfe zu korrigieren wurde der Zeitbedarf mit einem Korrekturfaktor KF multipliziert. Der Faktor KF wurde so berechnet, dass die quadratischen Abweichungen von unkorrigierten Modellwerten und Feldversuchen minimal wurden. Folgende Korrekturfaktoren wurden ermittelt (Berechnung siehe Anhang):

Forwardertyp	KF
klein	1.178
mittel	1.418

Abbildung 14: Vergleich der Modellergebnisse mit den Feldversuchen.

3.2.10 Zeitbedarf pro m3 (Personal und Maschinen)

Berechnung der Zeiten pro m³ für forstliche Betriebsmittel

$$WPPH = Anz_Pers * PSH_{15} * F_{indir} * F_{Weg} * F_{Pausen} * F_{St\"{o}r} \left[\frac{Std}{m^3 i.R.} \right]$$

$$PSH_0 = \frac{PSH_{15}}{FM_{0-15}}$$

$$PMH_{15} = PSH_{15} * Forwarder_Laufzeitanteil \left[\frac{Std}{m^3 i.R.} \right]$$

$$Faktoren:$$

$$Anz_Pers = 1$$

$$F_{0-15} = 1.3$$

$$F_{indir} = 1.2$$

$$F_{Weg} = individuell, z. B. 60 Min. auf 540 Min = \frac{540}{480} = 1.125$$

$$F_{Pausen} = individuell, z. B. 30 Min. auf 540 Min = \frac{540}{510} \approx 1.06$$

$$F_{St\"{o}r} = individuell, z. B. 1.10$$

$$Forwarder_Laufzeitanteil = 1.0$$

3.3 Das vereinfachte Modell

3.3.1 Übersicht

Damit im Modell mit möglichst wenigen Eingangsvariablen gearbeitet werden kann, wurden für verschiedene Variablen Mittelwerte aus den Feldversuchen in das Programm eingebaut, so dass im vereinfachten Modell lediglich noch 7 Variablen einzugeben sind.

Abbildung 15: Übersicht über das 'vereinfachte Modell' mit den Transformationen.

3.3.2 Transformationen

Eingangsvariable	Transformation	Bezeichnung	Berechnung	Einheit
BHD Aushieb		BHD		[cm]
Erschliessung mit	1 Erschliessung			
vorgeliefertem	- einseitige Erschliessung:			
Holz E _{tot}	- auf Maschinenweg	MWe	E _{tot} *0.05	[m]
	- auf Rückegasse	RGe	E _{tot} *0.05	[m]
	- auf Strasse	STe	E _{tot} *0.20	[m]
	 beidseitige Erschliessung: 			
	- auf Maschinenweg	MWb	E _{tot} *0.30	[m]
	- auf Rückegasse	Rgb	E _{tot} *0.30	[m]
	- auf Strasse	STb	E _{tot} *0.10	[m]
Nutzungsmenge	2 Nutzungsmenge	NT		[m ³]
total NT	- Nadelholz	NH	NT*0.70	[m ³]
	- Laubholz	LH	NT*0.30	[m ³]
	- Anteil krumm	K	25	[%]
Sortimente	3. Sortimentslänge und Anteile			
	- durchschn. Anz. transp. Sortim.	dSR	1.6	[-]
	 Länge der Sortimente 	NAV[2]	NT*0.01	[m ³]
		NAV[3]	NT*0.05	[m ³]
		NAV[4]	NT*0.25	[m ³]
		NAV[5]	NT*0.63	[m ³]
		NAV[6]	NT*0.04	[m ³]
		NAV[7]	NT*0.01	[m ³]
		NAV[8]	NT*0.01	[m ³]
Forwarder-Typ	4. Forwardertyp 'klein','mittel'	k,m		2
	- Ladequerschnitt: klein,	LQ	3.3,	$[m_2^2]$
	mittel	LQ	4.1	[m ²]
Fahrdistanz auf	5. Fahrdistanz auf		SRMLELA	
- Rückegasse	- Rückegasse, Maschinenweg	SRMLEaf	*1/6	[m]
- Maschinen-	auf, ab, eben	SRMLEab	*1/6	[m]
weg (ohne FL)		SRMLEeb	*1/6	[m]
SRMLELA		SRMLAaf	*1/6	[m]
		SRMLAab	*1/6	[m]
		SRMLAeb	*1/6	[m]
Fahrdistanz auf	6. Fahrdistanz auf Strasse auf ab		SStLELA	
Strasse SStLELA	eben	SStLEaf	*1/6	[m]
(ohne FL)		SStLEab	*1/6	[m]
		SStLEeb	*1/6	[m]
		SStLAaf	*1/6	[m]
		SStLAab	*1/6	[m]
		SStLAeb	*1/6	[m]

Tabelle 3: Berechnung der Systemzeit und der Rückeleistung pro Kalkulationsobjekt. Eingangsvariablen mit den Transformationen für das 'vereinfachte Modell'.

Aufgrund des Vergleiches der Modellergebnisse mit den Ergebnissen aus den Feldversuchen in der Schweiz wurde das vereinfachte Modell mit folgende **K**orrektur-**F**aktoren angepasst:

Forwardertyp	KF
klein	1.256
mittel	1.349

3.4 Abkürzungen und Definitionen (mit Definitionsbereich und Einheiten)

Abkürzung	Definition	Def. Bereich	Einheit
BG	Basis Geschwindigkeit	> 0	[m/Min]
CGx,y,z,	Geschwindigkeitsveränderung bei anderem Fahrtcharakter	7.7 - 22.0	[m/Min]
dBH	durchschnittliche Beladehöhe des Forwarders	0.85- 0.95	
dBHD	durchschnittlicher BHD des Aushiebs	8-100	[cm]
dHL	durchschnittliche Holzlänge im Kalkulationsobjekt	2 - 8	[m]
dLV	durchschnittliches Lastvolumen pro Rückezyklus	4 - 12	[m3]
dRPV	durchschnittliches Rohpoltervolumen	> 0	[m3]
dSR	durchschnittliche Anzahl transportierte Sortimente pro Rückezyklus	1 - 20	
dtRMFL dtRMLA dtRMLE	durchschnittliche Zeiten pro Rückezyklus auf Rückegas und Maschinenwegen: - für Fahren Laden - für Lastfahrten - für Leerfahrten	≥ 0	[Min/RZ]
dtStFL dtStLA dtStLE	durchschnittliche Zeiten pro Rückezyklus auf der Strass - für Fahren Laden - für Lastfahrten - für Leerfahrten	≥ 0	[Min/RZ]
dUF	durchschnittlicher Schichtigkeitskfaktor im Kalkulationsobjekt	0.2-0.8	[]
Ε	Erschliessungslinienlänge total (Ee und Eb)	> 0	[m]
Eb	Erschliessungslinie vorgeliefert beidseitig	≥ 0	[m]
Ee	Erschliessungslinie vorgeliefert einseitig	≥ 0	[m]
E_{tot}	Erschliessungslinienlänge total (Ee,Eb,Ste,Stb)	≥ 0	[m]
EV	Holzanfall pro Laufmeter Erschliessungslinie beidseitig vorgeliefert unabhängige Variable Rohpoltermodell	0.05-1	[m ³ /m]
F _{indir} F _{Weg} F _{pausen} F _{Stör} F ₀₋₁₅	Umrechnungs- oder Zuschlagfaktoren (siehe auch Anhang 4)	2< F _{xx} ≥ 1.0	
FK	Forwarderklasse	klein, mittel	[]
FL	Fahren beim Laden	≥ 0	[m]
Fahrrich- tung i=af,ab,eb	Fahrrichtung des Forwarders aufwärts, abwärts, eben	auf, ab, eben	
GK	Gefällsklasse in Anlehnung an SKOGSARBETEN (1992)	1,2,3	[]
HK	Hindernisklasse in Anlehnung an SKOGSARBETEN (1992)	1,2,3,4	[]
K	Anteil Holz krumm	0 - 1	[-]

KF	Korrekturfaktor zur Anpassung der Modellrech-	0.0 - 2.0	[-]
LH	nung an die Feldversuche	≥ 0	[m ³]
LHG		≥ 0	[m ³]
LHK	Laubholz krumm	≥ 0	[m ³]
LHP	Anteil Laubholz im Kalkulationsobjekt	0-1	[-]
LQ	Ladequerschnitt des Forwarders	2 - 10	[m ²]
MWb	Maschinenweg vorgeliefert beidseitig	≥ 0	[m]
MWe	Maschinenweg vorgeliefert einseitig	≥ 0	[m]
NAV ₂₋₈	Nutzungsmengen Anteil (des Volumens der Längen 2,3,4,5,6,7,8 m)	≥ 0	[m ³]
NH	Nadelholzanteil	≥ 0	[m ³]
NHG	Nadelholz gerade	≥ 0	[m ³]
NHK	Nadelholz krumm	≥ 0	[m ³]
NHP	Anteil Nadelholz im Kalkulationsobjekt	0-1	[-]
NRP	Anzahl Rohpolter pro Kalkulationsobjekt	> 0	[]
NT	Nutzungsmenge im Kaklulationsobjekt	> 10	[m ³]
PMH ₁₅	Produktive Maschinenarbeitsstunde mit Unterbrüchen bis 15 Min., entspricht der MAS	≥ 0	[Std / m³ i.R.]
PSH ₀	Arbeitsleistung als Produktive Systemzeit (ohne Arbeitsunterbrüche) pro m³	> 0	[PSH ₀ /m ³]
PSH ₁₅	Arbeitsleistung als Produktive Systemzeit (mit Arbeitsunterbrüchen < 15 Min pro m³)	> 0	[PSH ₁₅ / m ³]
RGb	Rückegasse vorgeliefert beidseitig	≥ 0	[m]
RGe	Rückegasse vorgeliefert einseitig	≥ 0	[m]
RMPFL	Anteil RG,MW der Strecke Fahren beim Laden	0 - 100	[%]
SRMLELA	Fahrstrecke auf Rü'gasse, Masch'weg mit Leer-, Lastfahrt	>0	[m]
RP	Rohpolter		[]
RPQ	Rohpolterqualität; Anteil schlechte Rohpolter	0-1	[-]
RZ	durchschnittlicher od. mittlerer Rückezyklus		[]
S	alle Leer- und Lastfahrten auf <i>RG, MW</i> und <i>ST</i> pro <i>RZ</i>	≥ 0	[m]
SFL	Fahrstrecke beim Laden	≥ 0	[m]
SO	Anzahl verschieden zu lagernde Sortimente	1 - 4	[]
SRM	Fahrstrecke im mittleren Rückezykl. auf <i>RG</i> und <i>MW</i> ohne <i>SFL</i>	≥ 0	[m]
SRMFL; SRMLE; SRMLA;	Fahrstrecken auf Rückegasse und Maschineweg: - Fahren beim Laden, aufwärts, abwärts, eben - Leerfahrt, aufwärts, abwärts, eben - Lastfahrt, aufwärts, abwärts, eben	≥ 0	[m]
SRP	Fahrstrecke pro Rohpolter	≥ 0	[m/RP]
Stb	Strasse vorgeliefert beidseitig	≥ 0	[m]
Ste	Strasse vorgeliefert einseitig	≥ 0	[m]
StPFL	Anteil ST der Strecke Fahren beim Laden	0-1	[-]
SStFL _i	Fahrstrecke auf der Strasse: - Fahren beim Laden, aufwärts, abwärts, eben	≥ 0	[m]
SStLE _i SStLA _i	- Leerfahrt, aufwärts, abwärts, eben - Lastfahrt, aufwärts, abwärts, eben		

SStLELA	Fahrstrecke auf Strasse für Leer- und Lastfahrten	>0	[m]
T	Gesamt - Zeit	> 0	[Min]
<i>tF</i>	Zeitbedarf im mittleren Rückezyklus auf Rücke-		
	gasse, Maschinenweg, Strasse aller Fahrbewe-		
	gungen		
	Zeitbedarf im mittleren Rückezyklus auf Rücke-		
	gasse, Maschinenweg:	≥ 0	[Min/RZ]
tRM	- aller Fahrbewegungen		
tRMFL	- Fahren beim Laden		
tRMLE	- Leerfahrt		
tRMLA	- Lastfahrt		
tR	Zeitbedarf für die Arbeitsausführung pro mittleren	≥ 0	[Min/RZ]
	Rückezyklus für kleine und mittlere Forwarder		
	Zeitbedarf im mittleren Rückezyklus auf Wald-	≥ 0	[Min/RZ]
tSt	strasse:		
tStFL	- aller Fahrbewegungen		
tStLA	- Fahren beim Laden		
tStLE	- aufwärts		
	- abwärts und eben		
tTE	Zeitbedarf Entladen	> 0	[Min/RZ]
tTL	Zeitbedarf Laden	> 0	[Min/RZ]
	Geschwindigkeiten auf Rückegasse, Maschinen-		
	weg und Strasse		
VRM_i	Teilformel der Berechnungen		
$VRMFL_i$	- für Fahren, Laden		
$VRMLE_i$	- für Leerfahrten	15-200	[m/Min]
$VRMLA_i$	- für Lastfahrten	13-200	[[[]]]
	Geschwindigkeiten auf der Strasse:		
$VStFL_i$	- für Fahren, Laden		
$VStLE_i$	- für Leerfahrten		
VStLA _i	- für Lastfahrten	 	
WPPH	Arbeitsplatzzeit des Fahrers pro m3 in Rinde (sie-	 ≥ 0	[Std /
	he auch Grundlagen)		m³ i.R.]

Tabelle 4: Abkürzungen und Definitionen (mit Definitionsbereichen und Einheiten).

3.5 Berechnungsbeispiel

Berechnet mit dem Programm LUNA von Lüthy und Näf (1997) (detaillierte Version)

Eingangs		Ergebnis	sse	
Nutzungsmenge	(NT)	100 m3	Leistung	20.7 m ³ /Std
durchschnittl. BHD	(dBHD)	20 cm	Zeit/Rückezyklus	0.3 Std
Laubholzanteil (NH=100-LH)	(LH)	25 %	Zeit/Objekt	4.8 Std
Anteil krumm		20 %	Rückezyklus/Objekt	11.8
Anzahl Sortimente		4		
durchschnittl. Holzlänge		4 m		
Hinderniss-/ Gefällsklasse		1		
Erschliessung ein-/ beidseitig (S	SteRGb)	je 100 m		
Forwarderklasse		mittel		
Ladequerschnitt	(LQ)	4.1 m3		
durchschnittliche Anzahl transportierte		1.6		
Sortimente pro Rückezyklus (dSR)				
Fahrstrecke Rückegasse Leer auf (LEauf)		100 m		
Fahrstrecke Rückegasse Last ab (LAab)		100 m		
Fahrstrecke Strasse Leer auf (StLEauf)		100 m		
Fahrstrecke Strasse Last ab	(StLAab)	100 m		

Tabelle 5: Berechnung der Systemzeit und der Rückeleistung pro Kalkulationsobjekt.

4 Verzeichnis der Abbildungen und Tabellen

Abbildungen

Abbildung 1:	Prozess Forwarderrücken - Schnittstellen und abgebildete Aktivitäten	5
Abbildung 2:	Die einzelnen Fahrzyklen	
Abbildung 3:	Übersicht über den Datenfluss im Forwardermodell	9
Abbildung 4:	Berechnung des Rohpoltervolumens	.11
Abbildung 5:	Berechnungs der Rohpolterqualität	
Abbildung 6:	Berechnung des Lastvolumens pro Rückefahrt	.12
Abbildung 7:	Berechnung der Fahrstrecke pro Rohpolter.	.12
Abbildung 8:	Berechnung der Fahrstrecke beim Laden	
Abbildung 9:	Berechnung der Geschwindigkeiten und Fahrzeiten auf Maschinenweger und Rückegassen	
Abbildung 10:	Berechnung der Geschwindigkeiten und Fahrzeiten auf der Strasse	
Abbildung 11:	Berechnung des Zeitbedarfs für das Fahren beim Laden und für Leer- un	
9	Lastfahrt auf Strasse, Maschinenwegen und Rückegassen	
Abbildung 12:	Berechnung des Zeitbedarfs für Laden und Entladen	
Abbildung 13:	Berechnung der Arbeitseffizienz (Zeit in PSH15 pro m3) für Leerfahrt,	
_	Fahren beim Laden, Laden, Entladen und Lastfahrt	.16
Abbildung 14:	Vergleich der Modellergebnisse mit den Feldversuchen	.17
Abbildung 15:	Übersicht über das 'vereinfachte Modell' mit den Transformationen	.18
Tabellen		
Tabelle 1: Verv	vendete Eingangsvariablen	. 10
Tabelle 2: Verv	vendete Eingangsvariablen bei der EDV-Umsetzung	.11
	echnung der Systemzeit und der Rückeleistung pro Kalkulationsobjekt.	
	angsvariablen mit den Transformationen für das 'vereinfachte Modell'	. 19
_	ürzungen und Definitionen (mit Definitionsbereichen und Einheiten)	
	echnung der Systemzeit und der Rückeleistung pro Kalkulationsobjekt	

5 Anhang

A1: Vergleiche von Feldaufnahmen und Modell-Versuchen

~~~~~	Forward	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					<u> </u>
	Berechn	ungen und Verg	gleiche der R	esultate vo	n Feldaufna	hmen und Mode	ellversucher
	} }						, ,
	ļ	Feldversuch	Modell			Modell korr.	farancean commence
ID	Feldv.	Fi	Mi	Fi * Mi	Mi * Mi	Mikorr	Mi/Mikorr
Nr.	Nr.	[Min/m3]	[Min/m3]			[Min/m3]	<b></b>
1	1	3.164	2.029	6.418	4.115	2.876	90.9%
2	2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2.338	7.482	5.467	3.315	orania de la constanta de la c
3	13		2.431	7.769	5.912	3.447	
4	14	2.894	2.084	6.031	4.342	2.954	102.1%
5	17	3.696	2.816	10.408	7.931	3.993	108.0%
6	19	4.522	2.925	13.227	8.554	4.147	91.7%
7	20	3.706	2.570	9.527	6.607	3.644	98.3%
Sun	nmen	24.377	17.193	60.861	42.928		100.4%
Mitt	elwerte	3.482	2.456				
	3 3	<b>{</b>	8				
	<u> </u>	}					
Kor	rektur Sı	um Fi*Mi/Mi*M	li		1.418		
Korı	rektur Sı	um Fi*Mi/Mi*M	li		1.418		
Kor		um Fi*Mi/Mi*M der 'klein'	li		1.418		
Kor			l		1.418		
Kor			li		1.418		
Kor			i Modell		1.418	Modell korr.	
Korı ID		der 'klein'		Fi * Mi	1.418 Mi * Mi		Mi/Mikorr
	Forward	der 'klein' Feldversuch	Modell	Fi * Mi			Q =
ID	Forward Feldv.	der 'klein' Feldversuch Fi [Min/m3]	<b>Modell</b> Mi [Min/m3]	Fi * Mi 37.26		Mikorr	Mi/Mikorr
ID Nr.	Feldv. Nr.	der 'klein'  Feldversuch  Fi  [Min/m3]  7.10	Modell Mi [Min/m3] 5.25	37.26	Mi * Mi	Mikorr [Min/m3]	Mi/Mikorr 87.1%
ID Nr.	Feldv. Nr. 4	der 'klein' Feldversuch Fi [Min/m3] 7.10 4.00	Modell Mi [Min/m3] 5.25	37.26	Mi * Mi 27.54	Mikorr [Min/m3] 6.183	Mi/Mikorr 87.1% 100.4%
ID Nr. 1 2	Feldv. Nr. 4 5	der 'klein' Feldversuch Fi [Min/m3] 7.10 4.00 6.75	Modell Mi [Min/m3] 5.25 3.41	37.26 13.63	Mi * Mi 27.54 11.62	Mikorr [Min/m3] 6.183 4.016	Mi/Mikorr 87.1% 100.4% 103.4%
ID Nr. 1 2	Feldv. Nr. 4 5 6	Feldversuch Fi [Min/m3] 7.10 4.00 6.75	Modell Mi [Min/m3] 5.25 3.41 5.92	37.26 13.63 39.98	Mi * Mi 27.54 11.62 35.08	Mikorr [Min/m3] 6.183 4.016 6.978	Mi/Mikorr 87.1% 100.4% 103.4% 119.8%
ID Nr. 1 2 3	Feldv. Nr. 4 5 6 7	Feldversuch Fi [Min/m3] 7.10 4.00 6.75 4.70 4.11	Modell Mi [Min/m3] 5.25 3.41 5.92 4.78	37.26 13.63 39.98 22.46	Mi * Mi 27.54 11.62 35.08 22.84	Mikorr [Min/m3] 6.183 4.016 6.978 5.631	87.1% 100.4% 103.4% 119.8% 118.3%
ID Nr. 1 2: 33 4	Feldv. Nr. 4 5 6 7	Feldversuch Fi [Min/m3] 7.10 4.00 6.75 4.70 4.11	Modell Mi [Min/m3] 5.25 3.41 5.92 4.78 4.12	37.26 13.63 39.98 22.46 16.92	Mi * Mi 27.54 11.62 35.08 22.84 16.99	Mikorr [Min/m3] 6.183 4.016 6.978 5.631 4.856 6.725	87.1% 100.4% 103.4% 119.8% 118.3% 101.3%
ID Nr. 1 2 3 4 5 6	Feldv. Nr. 4 5 6 7 8 9	Feldversuch Fi [Min/m3] 7.10 4.00 6.75 4.70 4.11 6.64 3.80	Modell Mi [Min/m3] 5.25 3.41 5.92 4.78 4.12 5.71	37.26 13.63 39.98 22.46 16.92 37.87	Mi * Mi 27.54 11.62 35.08 22.84 16.99 32.58	Mikorr [Min/m3] 6.183 4.016 6.978 5.631 4.856	87.1% 100.4% 103.4% 119.8% 118.3% 101.3%
ID Nr. 1 2 33 4 5 6 6	Feldv. Nr. 4 5 6 7 8 9 11	Feldversuch Fi [Min/m3] 7.10 4.00 6.75 4.70 4.11 6.64 3.80 5.11	Modell Mi [Min/m3] 5.25 3.41 5.92 4.78 4.12 5.71 3.37 4.23	37.26 13.63 39.98 22.46 16.92 37.87 12.81	Mi * Mi 27.54 11.62 35.08 22.84 16.99 32.58 11.35 17.88	Mikorr [Min/m3] 6.183 4.016 6.978 5.631 4.856 6.725 3.970 4.982	87.1% 100.4% 103.4% 119.8% 118.3% 101.3% 104.4% 97.4%
ID Nr. 1 22 3 4 5 6 7 8	Feldv. Nr. 4 5 6 7 8 9 11	Feldversuch Fi [Min/m3] 7.10 4.00 6.75 4.70 4.11 6.64 3.80 5.11	Modell Mi [Min/m3] 5.25 3.41 5.92 4.78 4.12 5.71 3.37	37.26 13.63 39.98 22.46 16.92 37.87 12.81 21.63	Mi * Mi 27.54 11.62 35.08 22.84 16.99 32.58 11.35	Mikorr [Min/m3] 6.183 4.016 6.978 5.631 4.856 6.725 3.970	87.1% 100.4% 103.4% 119.8% 118.3% 101.3% 104.4%
ID Nr. 1 22 33 4 55 6 7 83 9	Feldv. Nr. 4 5 6 7 8 9 11 12	Feldversuch Fi [Min/m3] 7.10 4.00 6.75 4.70 4.11 6.64 3.80 5.11 6.06	Modell Mi [Min/m3] 5.25 3.41 5.92 4.78 4.12 5.71 3.37 4.23 4.20	37.26 13.63 39.98 22.46 16.92 37.87 12.81 21.63 25.48	Mi * Mi 27.54 11.62 35.08 22.84 16.99 32.58 11.35 17.88 17.68	Mikorr [Min/m3] 6.183 4.016 6.978 5.631 4.856 6.725 3.970 4.982	87.1% 100.4% 103.4% 119.8% 118.3% 101.3% 104.4%
ID Nr. 1 22 33 4 55 6 7 83 9	Feldv. Nr. 4 5 6 7 8 9 11	Feldversuch Fi [Min/m3] 7.10 4.00 6.75 4.70 4.11 6.64 3.80 5.11	Modell Mi [Min/m3] 5.25 3.41 5.92 4.78 4.12 5.71 3.37 4.23	37.26 13.63 39.98 22.46 16.92 37.87 12.81 21.63	Mi * Mi 27.54 11.62 35.08 22.84 16.99 32.58 11.35 17.88	Mikorr [Min/m3] 6.183 4.016 6.978 5.631 4.856 6.725 3.970 4.982	87.1% 100.4% 103.4% 119.8% 118.3% 101.3% 104.4%
ID Nr. 1 22 33 4 55 6 7 83 9	Feldv. Nr. 4 5 6 7 8 9 11 12	Feldversuch Fi [Min/m3] 7.10 4.00 6.75 4.70 4.11 6.64 3.80 5.11 6.06	Modell Mi [Min/m3] 5.25 3.41 5.92 4.78 4.12 5.71 3.37 4.23 4.20	37.26 13.63 39.98 22.46 16.92 37.87 12.81 21.63 25.48	Mi * Mi 27.54 11.62 35.08 22.84 16.99 32.58 11.35 17.88 17.68	Mikorr [Min/m3] 6.183 4.016 6.978 5.631 4.856 6.725 3.970 4.982	87.1% 100.4% 103.4% 119.8% 118.3% 101.3% 104.4% 97.4%

#### A2: Beurteilung der Qualität des Modells (im Hinblick auf die Verwendung in Holzernte-Komponenten)

Grundlage: Transport mit Forwarder nach LÜTHY (1997) / NÄF (1997)

Kriterien	Bewertung / Bemessung	Bemerkungen	Schematis	che Beurteilung
Erstellungsjahr	1997	Aktuell (Unterlagen < 2 Jahren)	+ X	0 –
Technische Aktualität	aktuell / teilw.veraltet / veraltet	< 2 Jahre	+ X	0 –
Umfang der Datenbasis	gross / mittel / klein / unbekannt, Anzahl	26 Versuche	+	X 0 –
Anwendbarkeit auf CH-Verhältnisse	gut / mittel / schlecht / unbekannt	an CH-Verhältnisse angepasst	+ X	0 -
Dokumentation	ausführlich / mittel / rudimentär		+ X	0 -
Treffsicherheit der Prognose	Abweichung ± %		+	0 -
Grundlage verifiziert	ja / nein / unbekannt		+?	0 -
Grundlage validiert	ja / nein /unbekannt		+?	0 -
Messbarkeit der Input-Variablen	messbar / teilw. messbar / nicht messbar		+ X	0 -
Detaillierungsgrad	Anzahl Inputvariablen: .26		+ X	0 -
Output	Zeitbedarf / Leistung / Kosten pro m3 / pro Holzschlag / pro ha	????????????????????	+	0 –

#### Fazit: (kurze verbale Charakterisierung)

Das Modell beruht auf den schwedischen Modellvorstellungen von BERGSTRAND (1985). Die meisten dieser Modellteile wurden in die Berechnungen teilweise übernommen. Andere Teile wurden modifiziert oder ergänzt. Das Modell berücksichtigt sehr viele Eingangsgrössen. Der Einfluss dieser Eingangsgrössen auf das Ergebnis ist sehr verschieden.

Das Modell wurde anhand von 26 aufwendigen Feldversuchen geeicht. Es eignet sich für schweizerische Verhältnisse zur Zeit am besten, um die Produktivität des Forwarders vorauszuberechnen.

Beurteilung durch: J. Näf.

Datum: 11. Nov. 1998

## A3: Hindernis- und Gefällsklasseneinteilung

In Anlehnung an Skogsarbeten 'Terrain Classification System for Forestry Work'

#### Hindernisklassentabelle

Hindernisklasse	H20	H40	H70
1	0	0	0
2	< 15	<2	<2
3	16-150	2-15	<2
4	>150	>16	2-15
H20, Hindernishöhe/Tiefe 10-30 cm	Anzahl Hindernisse pro 100 m Erschliessungslinie		
H40, Hindernishöhe/Tiefe 30-50 cm			
H70, Hindernishöhe/Tiefe 50-90 cm			

#### Gefällsklassentabelle

Gefällsklasse	Prozentuale Steigung oder Gefälle
1	< 10
2	10-20
3	> 20

#### A4: Zeitsystem im Komponentenmodell "Forwarder"



(nach Björheden & Thompson 1995 und Heinimann 1997, verändert Björheden & Thompson 1995: An International Nomenclature For Forest Work Study, Swedish University of Agricultural Sciences, Department of Operational Efficiency, Sweden; Heinimann, H.R. 1997: Skript Forstl. Verfahrenstechnik, ETH Zürich)

Die aufgeführten Zeiten können grundsätzlich für das Produktionssystem als ganzes sowie für die beteiligten Produktionsfaktoren (Maschinen, Personal) ermittelt werden. Je nachdem spricht man zum Beispiel von der System-, von der Maschinen- oder von der Personalarbeitszeit. In Anlehnung an die Originalgrundlagen wurden die Abkürzungen von den englischen Begriffen abgeleitet.

	Arbeitsplatzzeit				
Datasaktatas Ok'alt		Nicht Arbeitszeit	Arbeitszeit (Work time)		
Betrachtetes Objekt		(non work time)			
	workplace	<b>n</b> on <b>w</b> ork	work	indirect	<b>p</b> roductive
System (system hour)	WPSH	NWSH	WSH	ISH	PSH
Maschine (machine hour)	WPMH	NWMH	WMH	IMH	PMH
Personal (personal hour)	WPPH	NWPH	WPH	IPH	PPH

Berechnung der System- und Faktorzeiten	
System:	$F_{o-}$
$PSH_{15} = PSH_0 * F_{0-15}$	_
$WSH = PSH_{15} + ISH = PSH_{15} * F indir$	$F_{\scriptscriptstyle inc}$
WPSH = WSH + NWSH = WSH * FWeg * FPausen * FStör	$F_{\scriptscriptstyle We}$
Personal:	I We
$PPH_0 = Anz_Pers * PSH_0$	
$PPH_{15} = PPH_0 * F_{0-15}$	$F_{\scriptscriptstyle Pa}$
$WPH = PPH_{15} + IPH = PPH_{15} * F_{indir}$	
WPPH = WPH * FWeg * F Pausen * F Stör	$F_{\scriptscriptstyle stcute{st}}$
Maschinen:	<b>1</b> Sic
$PMH_0 = Anz_Masch*PSH_0*Masch_Laufzeitanteil$	
PMH 15 = PMH 0*F0-15	
WMH = PMH 15 + IMH = PMH 15 * F indir	
$WPMH = WMH *_{FSt\"{o}r}$	

$$F_{o-15} = \frac{PSH15}{PSH0}$$

$$F_{indir} = 1 + \frac{ISH}{PSH15}$$

$$F_{weg} = 1 + \frac{bez. \ Wegzeit \ pro \ Tag}{bez. \ WSH \ (Arbeitszeit) \ pro \ Tag}$$

$$F_{Pausen} = 1 + \frac{bez. \ Pausenzeit \ pro \ Tag}{bez. \ WSH \ (Arbeitszeit) \ pro \ Tag}$$

$$F_{stör} = 1 + \frac{Störzeiten > 15Min..}{WSH}$$

Forwarder / 11.12.2014 26