CPSVerification

By Jonathan

May 8, 2018

Contents

1	\mathbf{VC}	_diffKAD	3
	1.1	Stack Theories Preliminaries: VC_KAD and ODEs	3
	1.2	VC_diffKAD Preliminaries	5
		1.2.1 (primed) dSolve preliminaries	6
		1.2.2 dInv preliminaries	11
	1.3	Phase Space Relational Semantics	14
	1.4	Derivation of Differential Dynamic Logic Rules	16
		1.4.1 "Differential Weakening"	16
		1.4.2 "Differential Cut"	16
		1.4.3 "Solve Differential Equation"	17
		1.4.4 "Differential Invariant."	24
	1.5	Rules Testing	32

1 VC_diffKAD

 $\begin{tabular}{l} \textbf{theory} \ VC\text{-}diffKAD\text{-}auxiliarities\\ \textbf{imports}\\ Main\\ afpModified/VC\text{-}KAD\\ Ordinary\text{-}Differential\text{-}Equations.} IVP/Initial\text{-}Value\text{-}Problem\\ \end{tabular}$

begin

1.1 Stack Theories Preliminaries: VC_KAD and ODEs

To make our notation less code-like and more mathematical we declare:

```
no-notation Archimedean-Field.ceiling ([-])
and Archimedean-Field.floor ([-])
and Set.image ( ')
and Range-Semiring.antirange-semiring-class.ars-r (r)

notation p2r ([-])
and r2p ([-])
```

```
and Product-Type.prod.snd (\pi_2)
     and List.zip (infixl \otimes 63)
     and rel-ad (\Delta^c_1)
This and more notation is explained by the following lemma.
lemma shows [P] = \{(s, s) | s. P s\}
    and |R| = (\lambda x. \ x \in r2s \ R)
    and r2s R = \{x \mid x. \exists y. (x,y) \in R\}
    and \pi_1(x,y) = x \wedge \pi_2(x,y) = y
    and \Delta^{c_1} R = \{(x, x) | x. \not\exists y. (x, y) \in R\}
    and wp R Q = \Delta^{c_1} (R ; \Delta^{c_1} Q)
    and [x1,x2,x3,x4] \otimes [y1,y2] = [(x1,y1),(x2,y2)]
    and \{a..b\} = \{x. \ a \le x \land x \le b\}
    and \{a < ... < b\} = \{x. \ a < x \land x < b\}
    and (x \text{ solves-ode } f) \{0..t\} R = ((x \text{ has-vderiv-on } (\lambda t. f t (x t))) \{0..t\} \land x \in
\{\theta..t\} \to R
    and f \in A \to B = (f \in \{f. \ \forall \ x. \ x \in A \longrightarrow (f \ x) \in B\})
    and (x has-vderiv-on x')\{0..t\} =
      (\forall r \in \{0..t\}. (x \text{ has-vector-derivative } x' r) (at r \text{ within } \{0..t\}))
    and (x \text{ has-vector-derivative } x' r) (at r \text{ within } \{0..t\}) =
      (x \text{ has-derivative } (\lambda x. \ x *_R x' r)) \ (at \ r \ within \ \{0..t\})
\mathbf{apply}(simp\text{-}all\ add\colon p2r\text{-}def\ r2p\text{-}def\ rel\text{-}ad\text{-}def\ rel\text{-}antidomain\text{-}kleene\text{-}algebra.fbox-def\ }
  solves-ode-def has-vderiv-on-def)
apply(blast, fastforce, fastforce)
using has-vector-derivative-def by auto
Observe also, the following consequences and facts:
proposition \pi_1(|R|) = r2s R
by (simp add: fst-eq-Domain)
proposition \Delta^{c_1} R = Id - \{(s, s) \mid s. s \in (\pi_1(R))\}
by(simp add: image-def rel-ad-def, fastforce)
proposition P \subseteq Q \Longrightarrow wp R P \subseteq wp R Q
\mathbf{by}(simp\ add:\ rel-antidomain-kleene-algebra.dka.dom-iso\ rel-antidomain-kleene-algebra.fbox-iso)
proposition boxProgrPred-IsProp: wp R \lceil P \rceil \subseteq Id
\mathbf{by}(simp\ add:\ rel-antidomain-kleene-algebra\ .a-subid'\ rel-antidomain-kleene-algebra\ .addual\ .bbox-def)
proposition rdom-p2r-contents:(a, b) \in rdom \lceil P \rceil = ((a = b) \land P \ a)
proof-
have (a, b) \in rdom \ [P] = ((a = b) \land (a, a) \in rdom \ [P]) using p2r-subid by
fast force
also have ... = ((a = b) \land (a, a) \in [P]) by simp
also have ... = ((a = b) \land P \ a) by (simp \ add: p2r-def)
ultimately show ?thesis by simp
```

and Set.image (-(|-|))

and Product-Type.prod.fst (π_1)

```
proposition rel-ad-rule1: (x,x) \notin \Delta^{c_1} [P] \Longrightarrow P x
by(auto simp: rel-ad-def p2r-subid p2r-def)
proposition rel-ad-rule2: (x,x) \in \Delta^{c_1} [P] \Longrightarrow \neg P x
by (metis ComplD VC-KAD.p2r-neg-hom rel-ad-rule1 empty-iff mem-Collect-eq p2s-neg-hom
rel-antidomain-kleene-algebra.a-one\ rel-antidomain-kleene-algebra.am1\ relcomp.relcompI)
proposition rel-ad-rule3: R \subseteq Id \Longrightarrow (x,x) \notin R \Longrightarrow (x,x) \in \Delta^{c_1} R
by(metis IdI Un-iff d-p2r rel-antidomain-kleene-algebra.addual.ars3
rel-antidomain-kleene-algebra.addual.ars-r-def rpr)
proposition rel-ad-rule4: (x,x) \in R \Longrightarrow (x,x) \notin \Delta^{c_1} R
by (metis empty-iff rel-antidomain-kleene-algebra.addual.ars1 relcomp.relcompI)
proposition boxProgrPred-chrctrztn:(x,x) \in wp \ R \ [P] = (\forall \ y. \ (x,y) \in R \longrightarrow P
y)
by (metis boxProgrPred-IsProp rel-ad-rule1 rel-ad-rule2 rel-ad-rule3
rel-ad-rule4 d-p2r wp-simp wp-trafo)
proposition cons-eq-zipE:
(x, y) \# tail = xList \otimes yList \Longrightarrow \exists xTail \ yTail. \ x \# xTail = xList \wedge y \# yTail
= yList
\mathbf{by}(induction \ xList, \ simp-all, \ induction \ yList, \ simp-all)
proposition set-zip-left-rightD:
(x, y) \in set (xList \otimes yList) \Longrightarrow x \in set xList \wedge y \in set yList
apply(rule\ conjI)
apply(rule-tac\ y=y\ and\ ys=yList\ in\ set-zip-leftD,\ simp)
apply(rule-tac \ x=x \ and \ xs=xList \ in \ set-zip-rightD, \ simp)
done
declare zip-map-fst-snd [simp]
```

1.2 VC_diffKAD Preliminaries

In dL, the set of possible program variables is split in two, the set of variables V and their primed counterparts V'. To implement this, we use Isabelle's string-type and define a function that primes a given string. We then define the set of primed-strings based on it.

```
definition vdiff :: string \Rightarrow string (\partial - [55] 70) where (\partial x) = ''d[''@x@'']''
definition varDiffs :: string set where varDiffs = \{y. \exists x. y = \partial x\}
```

```
proposition vdiff-inj:(\partial x) = (\partial y) \Longrightarrow x = y
by(simp add: vdiff-def)
proposition vdiff-noFixPoints: x \neq (\partial x)
by(simp add: vdiff-def)
lemma varDiffsI: x = (\partial z) \Longrightarrow x \in varDiffs
by(simp add: varDiffs-def vdiff-def)
lemma varDiffsE:
assumes x \in varDiffs
obtains y where x = ''d[''@y@'']''
using assms unfolding varDiffs-def vdiff-def by auto
proposition vdiff-invarDiffs:(\partial x) \in varDiffs
by (simp add: varDiffsI)
          (primed) dSolve preliminaries
1.2.1
This subsubsection is to define a function that takes a system of ODEs
(expressed as a list xfList), a presumed solution uInput = [u_1, \ldots, u_n], a
state s and a time t, and outputs the induced flow sol s[xfList \leftarrow uInput] t.
abbreviation varDiffs-to-zero ::real store \Rightarrow real store (sol) where
sol \ a \equiv (override-on \ a \ (\lambda \ x. \ \theta) \ varDiffs)
proposition varDiffs-to-zero-vdiff[simp]: (sol s) (\partial x) = 0
apply(simp add: override-on-def varDiffs-def)
by auto
proposition varDiffs-to-zero-beginning[simp]: take 2 \ x \neq "d" \Longrightarrow (sol \ s) \ x = s
apply(simp add: varDiffs-def override-on-def vdiff-def)
\mathbf{by}\ \mathit{fastforce}
— Next, for each entry of the input-list, we update the state using said entry.
definition vderiv-of f S = (SOME f'. (f has-vderiv-on f') S)
primrec state-list-upd :: ((real \Rightarrow real \ store \Rightarrow real) \times string \times (real \ store \Rightarrow real) \times string \times (real \ store \Rightarrow real)
real)) list \Rightarrow
real \Rightarrow real \ store \Rightarrow real \ store \ \mathbf{where}
state-list-upd [] t s = s |
state\text{-}list\text{-}upd \ (uxf \ \# \ tail) \ t \ s = (state\text{-}list\text{-}upd \ tail \ t \ s)
     (\pi_1 \ (\pi_2 \ uxf)) := (\pi_1 \ uxf) \ t \ s,
    \partial (\pi_1 (\pi_2 uxf)) := (if t = 0 then (\pi_2 (\pi_2 uxf)) s
else vderiv-of (\lambda \ r. \ (\pi_1 \ uxf) \ r \ s) \ \{0 < .. < (2 *_R t)\} \ t))
```

```
abbreviation state-list-cross-upd ::real store \Rightarrow (string \times (real store \Rightarrow real)) list
(real \Rightarrow real \ store \Rightarrow real) \ list \Rightarrow real \Rightarrow (char \ list \Rightarrow real) \ (-[-\leftarrow -] \ - \ [64,64,64])
63) where
s[xfList \leftarrow uInput] \ t \equiv state-list-upd \ (uInput \otimes xfList) \ t \ s
proposition state-list-cross-upd-empty[simp]: (s[[] \leftarrow list] \ t) = s
\mathbf{by}(induction\ list,\ simp-all)
\mathbf{lemma}\ inductive\text{-}state\text{-}list\text{-}cross\text{-}upd\text{-}its\text{-}vars\text{:}
assumes distHyp:distinct\ (map\ \pi_1\ ((y,\ g)\ \#\ xftail))
and varHyp: \forall xf \in set((y, g) \# xftail). \pi_1 xf \notin varDiffs
and indHyp:(u, x, f) \in set \ (utail \otimes xftail) \Longrightarrow (s[xftail \leftarrow utail] \ t) \ x = u \ t \ s
and disjHyp:(u, x, f) = (v, y, g) \lor (u, x, f) \in set (utail \otimes xftail)
shows (s[(y, g) \# xftail \leftarrow v \# utail] t) x = u t s
using disjHyp proof
  assume (u, x, f) = (v, y, g)
 hence (s[(y, g) \# xftail \leftarrow v \# utail] t) x = ((s[xftail \leftarrow utail] t)(x := u t s,
  \partial x := if \ t = 0 \ then \ f \ s \ else \ vderiv-of \ (\lambda \ r. \ u \ r. s) \ \{0 < .. < (2 *_R t)\} \ t)) \ x \ by
  also have \dots = u \ t \ s by (simp \ add: vdiff-def)
  ultimately show ?thesis by simp
  assume yTailHyp:(u, x, f) \in set (utail \otimes xftail)
  from this and indHyp have 3:(s[xftail \leftarrow utail] \ t) \ x = u \ t \ s \ by \ fastforce
  from yTailHyp and distHyp have 2:y \neq x using set-zip-left-rightD by force
  from yTailHyp and varHyp have 1:x \neq \partial y
  using set-zip-left-rightD vdiff-invarDiffs by fastforce
  from 1 and 2 have (s[(y, g) \# xftail \leftarrow v \# utail] t) x = (s[xftail \leftarrow utail] t) x
by simp
 thus ?thesis using 3 by simp
qed
{\bf theorem}\ state{-list-cross-upd-its-vars}:
assumes distinctHyp:distinct (map \pi_1 xfList)
and lengthHyp:length xfList = length uInput
and varsHyp: \forall xf \in set xfList. \pi_1 xf \notin varDiffs
and its-var: (u,x,f) \in set (uInput \otimes xfList)
shows (s[xfList \leftarrow uInput] \ t) \ x = u \ t \ s
using assms apply(induct xfList uInput arbitrary: x rule: list-induct2', simp,
simp, simp)
by(clarify, rule inductive-state-list-cross-upd-its-vars, simp-all)
lemma override-on-upd: x \in X \Longrightarrow (override-on f g X)(x := z) = (override-on f g X)(x := z)
(g(x := z)) X)
by (rule ext, simp add: override-on-def)
\mathbf{lemma}\ inductive\text{-}state\text{-}list\text{-}cross\text{-}upd\text{-}its\text{-}dvars:
assumes \exists g. (s[xfTail \leftarrow uTail] \ \theta) = override-on \ s \ g \ varDiffs
```

```
and \forall xf \in set (xf \# xfTail). \pi_1 xf \notin varDiffs
and \forall uxf \in set (u \# uTail \otimes xf \# xfTail). \pi_1 uxf 0 s = s (\pi_1 (\pi_2 uxf))
shows \exists g. (s[xf \# xfTail \leftarrow u \# uTail] \theta) = override-on s g varDiffs
proof-
let ?gLHS = (s[(xf \# xfTail) \leftarrow (u \# uTail)] \theta)
have observ: \partial (\pi_1 \ xf) \in varDiffs by (auto simp: varDiffs-def)
from assms(1) obtain g where (s[xfTail \leftarrow uTail] \ \theta) = override-on \ s \ g \ varDiffs
then have ?qLHS = (override-on\ s\ q\ varDiffs)(\pi_1\ xf := u\ 0\ s,\ \partial\ (\pi_1\ xf) := \pi_2
xf s) by simp
also have ... = (\textit{override-on } s \textit{ g } \textit{varDiffs})(\partial (\pi_1 \textit{ xf}) := \pi_2 \textit{ xf } s)
using override-on-def varDiffs-def assms by auto
also have ... = (override-on s (g(\partial (\pi_1 xf) := \pi_2 xf s)) varDiffs)
using observ and override-on-upd by force
ultimately show ?thesis by auto
qed
{\bf theorem}\ state{-}list{-}cross{-}upd{-}its{-}dvars:
assumes lengthHyp:length xfList = length uInput
and varsHyp: \forall xf \in set xfList. \pi_1 xf \notin varDiffs
and solHyp1: \forall uxf \in set (uInput \otimes xfList). (\pi_1 uxf) \ 0 \ s = s \ (\pi_1 \ (\pi_2 \ uxf))
shows \exists g. (s[xfList \leftarrow uInput] \ \theta) = (override-on \ s \ g \ varDiffs)
using assms proof(induct xfList uInput rule: list-induct2')
case 1
  have (s[[]\leftarrow[]] \ \theta) = override-on \ s \ s \ varDiffs
  unfolding override-on-def by simp
  thus ?case by metis
next
  case (2 xf xfTail)
  have (s[(xf \# xfTail) \leftarrow []] \ \theta) = override-on \ s \ varDiffs
  unfolding override-on-def by simp
  thus ?case by metis
next
  case (3 u utail)
 have (s[[]\leftarrow utail] \ \theta) = override-on \ s \ varDiffs
  unfolding override-on-def by simp
  thus ?case by force
next
  case (4 xf xfTail u uTail)
  then have \exists g. (s[xfTail \leftarrow uTail] \ \theta) = override-on \ s \ g \ varDiffs \ by \ simp
  thus ?case using inductive-state-list-cross-upd-its-dvars 4.prems by blast
qed
lemma vderiv-unique-within-open-interval:
assumes (f has-vderiv-on f') \{0 < ... < t\} and t > 0
   and (f has-vderiv-on f'')\{0 < ... < t\} and tauHyp:\tau \in \{0 < ... < t\}
shows f' \tau = f'' \tau
using assms apply(simp add: has-vderiv-on-def has-vector-derivative-def)
using frechet-derivative-unique-within-open-interval by (metis\ box-real(1)\ scaleR-one
```

```
tauHyp)
lemma has-vderiv-on-cong-open-interval:
assumes gHyp: \forall \tau > 0. f \tau = g \tau and tHyp: t>0
and fHyp:(f has-vderiv-on f') \{0 < .. < t\}
shows (g \text{ has-vderiv-on } f') \{0 < .. < t\}
proof-
from gHyp have \land \tau. \tau \in \{0 < ... < t\} \Longrightarrow f \ \tau = g \ \tau  using tHyp by force
hence eqDs:(f has-vderiv-on f') \{0<...< t\} = (g has-vderiv-on f') \{0<...< t\}
apply(rule-tac has-vderiv-on-cong) by auto
thus (g \text{ has-vderiv-on } f') \{0 < ... < t\} \text{ using } eqDs fHyp \text{ by } simp
qed
lemma closed-vderiv-on-cong-to-open-vderiv:
assumes gHyp: \forall \tau > 0. f \tau = g \tau
and fHyp: \forall t > 0. (f has-vderiv-on f') \{0..t\}
and tHyp: t>0 and cHyp: c>1
shows vderiv-of g \{ 0 < ... < (c *_R t) \} t = f' t
proof-
have ctHyp:c \cdot t > 0 using tHyp and cHyp by auto
from fHyp have (f has-vderiv-on f') \{0 < ... < c \cdot t\} using has-vderiv-on-subset
by (metis\ greaterThanLessThan-subseteq-atLeastAtMost-iff\ less-eq-real-def)
then have derivHyp:(g\ has-vderiv-on\ f')\ \{0<...< c\cdot t\}
using gHyp ctHyp and has-vderiv-on-cong-open-interval by blast
hence f'Hyp: \forall f''. (g \text{ has-vderiv-on } f'') \{0 < ... < c \cdot t\} \longrightarrow (\forall \tau \in \{0 < ... < c \cdot t\}.
f' \tau = f'' \tau
using vderiv-unique-within-open-interval ctHyp by blast
also have (g \text{ has-vderiv-on } (v \text{deriv-of } g \{0 < ... < (c *_R t)\})) \{0 < ... < c \cdot t\}
by(simp add: vderiv-of-def, metis derivHyp someI-ex)
ultimately show vderiv-of g \{0 < ... < c *_R t\} t = f' t \text{ using } tHyp \ cHyp \text{ by } force
qed
lemma vderiv-of-to-sol-its-vars:
assumes distinctHyp:distinct (map \pi_1 xfList)
and lengthHyp:length xfList = length uInput
and varsHyp: \forall xf \in set xfList. \pi_1 xf \notin varDiffs
and solHyp2: \forall t \geq 0. ((\lambda \tau. (sol s[xfList \leftarrow uInput] \tau) x)
\textit{has-vderiv-on} \ (\lambda \tau. \ f \ (\textit{sol} \ s[\textit{xfList} \leftarrow \textit{uInput}] \ \tau))) \ \{0..t\}
and tHyp: t>0 and uxfHyp:(u, x, f) \in set (uInput \otimes xfList)
shows vderiv-of (\lambda \tau. \ u \ \tau \ (sol\ s)) \{0 < .. < (2 *_R t)\} \ t = f \ (sol\ s[xfList \leftarrow uInput]
t)
apply(rule-tac\ f = (\lambda \tau.\ (sol\ s[xfList \leftarrow uInput]\ \tau)\ x) in closed\text{-}vderiv\text{-}on\text{-}cong\text{-}to\text{-}open\text{-}vderiv})
subgoal using assms and state-list-cross-upd-its-vars by metis
by(simp-all add: solHyp2 tHyp)
{f lemma}\ inductive-to-sol-zero-its-dvars:
assumes eqFuncs: \forall s. \forall q. \forall xf \in set((x, f) \# xfs). \pi_2 xf(override-on s q varDiffs)
=\pi_2 xf s
and eqLengths:length ((x, f) \# xfs) = length (u \# us)
```

```
and distinct: distinct (map \pi_1 ((x, f) # xfs))
and vars: \forall xf \in set ((x, f) \# xfs). \pi_1 xf \notin varDiffs
and solHyp1: \forall uxf \in set ((u \# us) \otimes ((x, f) \# xfs)). \pi_1 uxf 0 (sol s) = sol s (\pi_1)
and disjHyp:(y, g) = (x, f) \lor (y, g) \in set xfs
and indHyp:(y, g) \in set \ xfs \Longrightarrow (sol \ s[xfs \leftarrow us] \ \theta) \ (\partial \ y) = g \ (sol \ s[xfs \leftarrow us] \ \theta)
shows (sol\ s[(x, f) \# xfs \leftarrow u \# us]\ \theta)\ (\partial\ y) = g\ (sol\ s[(x, f) \# xfs \leftarrow u \# us]\ \theta)
proof-
from assms obtain h1 where h1Def:(sol s[((x, f) # xfs)\leftarrow(u # us)] 0) =
(override-on (sol s) h1 varDiffs) using state-list-cross-upd-its-dvars by blast
from disjHyp show (sol\ s[(x,\ f)\ \#\ xfs\leftarrow u\ \#\ us]\ \theta)\ (\partial\ y)=g\ (sol\ s[(x,\ f)\ \#\ xfs\leftarrow u\ \#\ us])
xfs \leftarrow u \# us \mid \theta
proof
    assume eqHeads:(y, g) = (x, f)
    then have g (sol \ s[(x, f) \# xfs \leftarrow u \# us] \ \theta) = f (sol \ s) using h1Def eqFuncs
    also have ... = (sol\ s[(x, f)\ \#\ xfs \leftarrow u\ \#\ us]\ \theta)\ (\partial\ y) using eqHeads by auto
    ultimately show ?thesis by linarith
    assume tailHyp:(y, g) \in set xfs
    then have y \neq x using distinct set-zip-left-right by force
    hence \partial x \neq \partial y by(simp add: vdiff-def)
    have x \neq \partial y using vars vdiff-invarDiffs by auto
    obtain h2 where h2Def:(sol\ s[xfs\leftarrow us]\ 0) = override-on\ (sol\ s)\ h2\ varDiffs
   using state-list-cross-upd-its-dvars eqLengths distinct vars and solHyp1 by force
    have (sol\ s[(x, f) \# xfs \leftarrow u \# us]\ \theta)\ (\partial\ y) = g\ (sol\ s[xfs \leftarrow us]\ \theta)
    using tailHyp \ indHyp \ \langle x \neq \partial \ y \rangle and \langle \partial \ x \neq \partial \ y \rangle by simp
    also have ... = g (override-on (sol s) h2 varDiffs) using h2Def by simp
    also have \dots = g \ (sol \ s) using eqFuncs and tailHyp by force
    also have ... = g (sol s[(x, f) \# xfs \leftarrow u \# us] \theta)
    using eqFuncs h1Def tailHyp and eq-snd-iff by fastforce
    ultimately show ?thesis by simp
    qed
qed
lemma to-sol-zero-its-dvars:
assumes funcsHyp:\forall s. \forall g. \forall xf \in set xfList. \pi_2 xf (override-on s g varDiffs)
=\pi_2 xf s
and distinctHyp:distinct (map <math>\pi_1 xfList)
and lengthHyp:length xfList = length uInput
and varsHyp: \forall xf \in set xfList. \pi_1 xf \notin varDiffs
and solHyp1: \forall uxf \in set (uInput \otimes xfList). (\pi_1 uxf) \ \theta (sol s) = (sol s) (\pi_1 (\pi_2 \cup sol s)) (\pi_2 (\pi_2 \cup sol s)) (\pi_2 (\pi_2 \cup sol s)) (\pi_2 (\pi_2 \cup sol s)) (\pi_3 (\pi_3 \cup sol s)) (\pi_3 (\pi_
uxf)
and ygHyp:(y, g) \in set xfList
shows (sol\ s[xfList \leftarrow uInput]\ \theta)(\partial\ y) = g\ (sol\ s[xfList \leftarrow uInput]\ \theta)
using assms apply(induct xfList uInput rule: list-induct2', simp, simp, simp, clar-
\mathbf{by}(rule\ inductive-to-sol-zero-its-dvars,\ simp-all)
```

```
{f lemma}\ inductive\mbox{-}to\mbox{-}sol\mbox{-}greater\mbox{-}than\mbox{-}zero\mbox{-}its\mbox{-}dvars:
assumes lengthHyp:length((y, g) \# xfs) = length(v \# vs)
and distHyp:distinct\ (map\ \pi_1\ ((y,\ g)\ \#\ xfs))
and varHyp: \forall xf \in set ((y, g) \# xfs). \pi_1 xf \notin varDiffs
and indHyp:(u,x,f) \in set\ (vs \otimes xfs) \Longrightarrow (s[xfs \leftarrow vs]t)(\partial\ x) = vderiv - of\ (\lambda r.\ u\ r)
s) \{0 < ... < 2 *_R t\} t
and \textit{disjHyp}:(v,\ y,\ g)=(u,\ x,\ f)\ \lor\ (u,\ x,\ f)\in\textit{set}\ (\textit{vs}\ \otimes\textit{xfs}) and \textit{tHyp}:t>0
shows (s[(y, g) \# xfs \leftarrow v \# vs] t) (\partial x) = vderiv-of (\lambda r. u r s) \{0 < ... < 2 *_R t\} t
proof-
let ?lhs = ((s[xfs \leftarrow vs] \ t)(y := v \ t \ s, \ \partial \ y := vderiv - of \ (\lambda \ r. \ v \ r \ s) \ \{0 < .. < (2 \cdot t)\}
t)) (\partial x)
let ?rhs = vderiv-of (\lambda r. u r s) \{0 < .. < (2 \cdot t)\} t
have (s[(y, g) \# xfs \leftarrow v \# vs] t) (\partial x) = ?lhs using tHyp by simp
also have vderiv-of (\lambda r. u r s) \{0 < ... < 2 *_R t\} t = ?rhs by simp
ultimately have obs:?thesis = (?lhs = ?rhs) by simp
from disjHyp have ?lhs = ?rhs
proof
  assume uxfEq:(v, y, g) = (u, x, f)
  then have ?lhs = vderiv - of (\lambda r. u r s) \{0 < .. < (2 \cdot t)\} t by simp
  also have vderiv-of (\lambda r. urs) \{0 < .. < (2 \cdot t)\} t = ?rhs using uxfEq by simp
  ultimately show ?lhs = ?rhs by simp
next
  assume sygTail:(u, x, f) \in set (vs \otimes xfs)
  from this have y \neq x using distHyp set-zip-left-rightD by force
  hence \partial x \neq \partial y by(simp add: vdiff-def)
  have y \neq \partial x using varHyp using vdiff-invarDiffs by auto
  then have ?lhs = (s[xfs \leftarrow vs] \ t) \ (\partial \ x) \ using \ \langle y \neq \partial \ x \rangle \ and \ \langle \partial \ x \neq \partial \ y \rangle \ by \ simp
  also have (s[xfs \leftarrow vs] \ t) \ (\partial \ x) = ?rhs using indHyp \ sygTail by simp
  ultimately show ?lhs = ?rhs by simp
qed
from this and obs show ?thesis by simp
qed
{f lemma}\ to	ext{-}sol	ext{-}greater	ext{-}than	ext{-}zero	ext{-}its	ext{-}dvars:
assumes distinctHyp:distinct (map \pi_1 xfList)
and lengthHyp:length xfList = length uInput
and varsHyp: \forall xf \in set xfList. \ \pi_1 xf \notin varDiffs
and uxfHyp:(u, x, f) \in set (uInput \otimes xfList) and tHyp:t > 0
shows (s[xfList \leftarrow uInput] \ t) \ (\partial \ x) = vderiv \cdot of \ (\lambda \ r. \ u \ r. s) \ \{\theta < ... < (2 *_R t)\} \ t
using assms apply(induct xfList uInput rule: list-induct2', simp, simp, simp, clar-
ify
\mathbf{by}(rule\text{-}tac\ f=f\ \mathbf{in}\ inductive\text{-}to\text{-}sol\text{-}greater\text{-}than\text{-}zero\text{-}its\text{-}dvars,\ auto)
```

1.2.2 dInv preliminaries

Here, we introduce syntactic notation to talk about differential invariants.

no-notation Antidomain-Semiring.antidomain-left-monoid-class.am-add-op (infixl \oplus 65)

no-notation Dioid.times-class.opp-mult (infixl \odot 70)

```
no-notation Lattices.inf-class.inf (infixl \sqcap 70)
no-notation Lattices.sup-class.sup (infixl \sqcup 65)
datatype trms = Const \ real \ (t_C - [54] \ 70) \ | \ Var \ string \ (t_V - [54] \ 70) \ |
                          Mns \ trms \ (\ominus - [54] \ 65) \mid Sum \ trms \ trms \ (\mathbf{infixl} \oplus 65) \mid
                          Mult trms trms (infixl ⊙ 68)
primrec tval :: trms \Rightarrow (real \ store \Rightarrow real) (\llbracket - \rrbracket_t \ [55] \ 60) where
[\![t_C \ r]\!]_t = (\lambda \ s. \ r)|
[\![t_V \ x]\!]_t = (\lambda \ s. \ s \ x)|
\llbracket \ominus \vartheta \rrbracket_t = (\lambda \ s. - (\llbracket \vartheta \rrbracket_t) \ s) |
\llbracket \vartheta \oplus \eta \rrbracket_t = (\lambda \ s. \ (\llbracket \vartheta \rrbracket_t) \ s + (\llbracket \eta \rrbracket_t) \ s) |
\llbracket \vartheta \odot \eta \rrbracket_t = (\lambda \ s. \ (\llbracket \vartheta \rrbracket_t) \ s \cdot (\llbracket \eta \rrbracket_t) \ s)
datatype props = Eq \ trms \ trms \ (infixr = 60) \mid Less \ trms \ trms \ (infixr < 62) \mid
                            Leg trms trms (infixr \leq 61) | And props props (infixl \sqcap 63) |
                            Or props props (infixl \sqcup 64)
primrec pval :: props \Rightarrow (real \ store \Rightarrow bool) (\llbracket - \rrbracket_P \ [55] \ 60) where
\llbracket \vartheta \doteq \eta \rrbracket_P = (\lambda \ s. \ (\llbracket \vartheta \rrbracket_t) \ s = (\llbracket \eta \rrbracket_t) \ s) |
\llbracket \vartheta \prec \eta \rrbracket_P = (\lambda \ s. \ (\llbracket \vartheta \rrbracket_t) \ s < (\llbracket \eta \rrbracket_t) \ s)|
\llbracket \vartheta \preceq \eta \rrbracket_P = (\lambda \ s. \ (\llbracket \vartheta \rrbracket_t) \ s \le (\llbracket \eta \rrbracket_t) \ s) |
\llbracket \varphi \sqcap \psi \rrbracket_P = (\lambda \ s. \ (\llbracket \varphi \rrbracket_P) \ s \wedge (\llbracket \psi \rrbracket_P) \ s) |
\llbracket \varphi \sqcup \psi \rrbracket_P = (\lambda \ s. \ (\llbracket \varphi \rrbracket_P) \ s \lor (\llbracket \psi \rrbracket_P) \ s)
primrec tdiff :: trms \Rightarrow trms (\partial_t - [54] 70) where
(\partial_t t_C r) = t_C \theta
(\partial_t t_V x) = t_V (\partial x)
(\partial_t \ominus \vartheta) = \ominus (\partial_t \vartheta)
(\partial_t \ (\vartheta \oplus \eta)) = (\partial_t \ \vartheta) \oplus (\partial_t \ \eta)
(\partial_t (\vartheta \odot \eta)) = ((\partial_t \vartheta) \odot \eta) \oplus (\vartheta \odot (\partial_t \eta))
primrec pdiff :: props \Rightarrow props (\partial_P - [54] 70) where
(\partial_P (\vartheta \doteq \eta)) = ((\partial_t \vartheta) \doteq (\partial_t \eta))|
(\partial_P (\vartheta \prec \eta)) = ((\partial_t \vartheta) \preceq (\partial_t \eta))|
(\partial_P (\vartheta \leq \eta)) = ((\partial_t \vartheta) \leq (\partial_t \eta))|
(\partial_P (\varphi \sqcap \psi)) = (\partial_P \varphi) \sqcap (\partial_P \psi)|
(\partial_P (\varphi \sqcup \psi)) = (\partial_P \varphi) \sqcap (\partial_P \psi)
primrec trmVars :: trms \Rightarrow string set where
trmVars\ (t_C\ r) = \{\}|
trm Vars (t_V x) = \{x\}
trm Vars \ (\ominus \ \vartheta) = trm Vars \ \vartheta
trm Vars (\vartheta \oplus \eta) = trm Vars \vartheta \cup trm Vars \eta
trm Vars (\vartheta \odot \eta) = trm Vars \vartheta \cup trm Vars \eta
fun substList :: (string \times trms) \ list \Rightarrow trms \Rightarrow trms \ (-\langle - \rangle \ [54] \ 80) where
xtList\langle t_C \ r \rangle = t_C \ r |
[]\langle t_V | x \rangle = t_V | x |
```

```
((y,\xi) \# xtTail)\langle Var x\rangle = (if x = y then \xi else xtTail\langle Var x\rangle)
xtList\langle \ominus \vartheta \rangle = \ominus (xtList\langle \vartheta \rangle)
xtList\langle\vartheta\oplus\eta\rangle = (xtList\langle\vartheta\rangle) \oplus (xtList\langle\eta\rangle)|
xtList\langle\vartheta\odot\eta\rangle = (xtList\langle\vartheta\rangle)\odot(xtList\langle\eta\rangle)
proposition substList-on-compl-of-varDiffs:
assumes trmVars \ \eta \subseteq (UNIV - varDiffs)
assumes set (map \ \pi_1 \ xtList) \subseteq varDiffs
shows xtList\langle \eta \rangle = \eta
using assms apply(induction \eta, simp-all add: varDiffs-def)
\mathbf{by}(induction\ xtList,\ auto)
lemma substList-help1:set \ (map \ \pi_1 \ ((map \ (vdiff \circ \pi_1) \ xfList) \otimes uInput)) \subseteq
apply(induct xfList uInput rule: list-induct2', simp-all add: varDiffs-def)
by auto
lemma substList-help2:
assumes trmVars \eta \subseteq (UNIV - varDiffs)
shows ((map\ (vdiff\ \circ\ \pi_1)\ xfList)\otimes uInput)\langle\eta\rangle=\eta
using assms substList-help1 substList-on-compl-of-varDiffs by blast
\mathbf{lemma}\ \mathit{substList-cross-vdiff-on-non-ocurring-var}:
assumes x \notin set \ list1
shows ((map\ vdiff\ list1)\otimes list2)\langle t_V\ (\partial\ x)\rangle = t_V\ (\partial\ x)
using assms apply(induct list1 list2 rule: list-induct2', simp, simp, clarsimp)
\mathbf{by}(simp\ add:\ vdiff\text{-}def)
primrec prop Vars :: props \Rightarrow string set where
prop Vars \ (\vartheta \doteq \eta) = trm Vars \ \vartheta \cup trm Vars \ \eta
prop Vars (\vartheta \prec \eta) = trm Vars \vartheta \cup trm Vars \eta
prop Vars (\vartheta \leq \eta) = trm Vars \vartheta \cup trm Vars \eta
prop Vars \ (\varphi \sqcap \psi) = prop Vars \ \varphi \cup prop Vars \ \psi
prop Vars \ (\varphi \sqcup \psi) = prop Vars \ \varphi \cup prop Vars \ \psi
primrec subspList :: (string \times trms) \ list \Rightarrow props \Rightarrow props (-\uparrow-\uparrow [54] \ 80) where
xtList \upharpoonright \vartheta \doteq \eta \upharpoonright = ((xtList \langle \vartheta \rangle) \doteq (xtList \langle \eta \rangle))
xtList \upharpoonright \vartheta \prec \eta \upharpoonright = ((xtList \langle \vartheta \rangle) \prec (xtList \langle \eta \rangle))|
xtList \upharpoonright \vartheta \leq \eta \upharpoonright = ((xtList \langle \vartheta \rangle) \leq (xtList \langle \eta \rangle))
xtList \! \upharpoonright \! \varphi \sqcap \psi \! \upharpoonright = ((xtList \! \upharpoonright \! \varphi \! \upharpoonright) \sqcap (xtList \! \upharpoonright \! \psi \! \upharpoonright))|
xtList \upharpoonright \varphi \sqcup \psi \upharpoonright = ((xtList \upharpoonright \varphi \upharpoonright) \sqcup (xtList \upharpoonright \psi \upharpoonright))
end
theory VC-diffKAD
\mathbf{imports}\ \mathit{VC-diffKAD-auxiliarities}
begin
```

1.3 Phase Space Relational Semantics

```
definition solvesStoreIVP :: (real \Rightarrow real store) \Rightarrow (string \times (real store \Rightarrow real))
list \Rightarrow
real\ store \Rightarrow (real\ store\ pred) \Rightarrow bool
((- solvesTheStoreIVP - withInitState - andGuard -) [70, 70, 70, 70, 70] 68) where
solvesStoreIVP \ \varphi_S \ xfList \ s \ G \equiv
(*F preserves the guard statement and F sends vdiffs-in-list to derivs. *)
(\forall \ t \geq 0. \ G \ (\varphi_S \ t) \ \land \ (\forall \ \textit{xf} \in \textit{set xfList.} \ \varphi_S \ t \ (\partial \ (\pi_1 \ \textit{xf})) = \pi_2 \ \textit{xf} \ (\varphi_S \ t)) \ \land
(* F preserves the rest of the variables and F sends derives of constants to 0.*)
(\forall y. (y \notin (\pi_1(set xfList)) \cup varDiffs \longrightarrow \varphi_S \ t \ y = s \ y) \land 
       (y \notin (\pi_1(set xfList)) \longrightarrow \varphi_S \ t \ (\partial \ y) = 0)) \land
(* F solves the induced IVP. *)
(\forall xf \in set xfList. ((\lambda t. \varphi_S t (\pi_1 xf)) solves-ode (\lambda t.\lambda r.(\pi_2 xf) (\varphi_S t))) \{0..t\}
UNIV \wedge
\varphi_S \ \theta \ (\pi_1 \ xf) = s(\pi_1 \ xf))
\mathbf{lemma}\ solves\text{-}store\text{-}ivpI:
assumes \forall t \geq 0. G(\varphi_S t)
  and \forall t \geq 0. \forall xf \in set xfList. (\varphi_S t (\partial (\pi_1 xf))) = (\pi_2 xf) (\varphi_S t)
  and \forall t \geq 0. \forall y. y \notin (\pi_1(set xfList)) \cup varDiffs \longrightarrow \varphi_S \ t \ y = s \ y
  and \forall t \geq 0. \forall y. y \notin (\pi_1(set xfList)) \longrightarrow \varphi_S t (\partial y) = 0
  and \forall t \geq 0. \ \forall xf \in set \ xfList. \ ((\lambda t. \varphi_S t (\pi_1 xf)) \ solves ode \ (\lambda t.\lambda r.(\pi_2 xf))
(\varphi_S t))) \{\theta..t\} UNIV
  and \forall xf \in set xfList. \varphi_S \ \theta \ (\pi_1 xf) = s(\pi_1 xf)
shows \varphi_S solvesTheStoreIVP xfList withInitState s andGuard G
apply(simp add: solvesStoreIVP-def, safe)
using assms apply simp-all
by(force,force,force)
named-theorems solves-store-ivpE elimination rules for solvesStoreIVP
lemma [solves-store-ivpE]:
assumes \varphi_S solvesTheStoreIVP xfList withInitState s andGuard G
shows \forall t \geq 0. G(\varphi_S t)
  and \forall t \geq 0. \forall y. y \notin (\pi_1(set xfList)) \cup varDiffs \longrightarrow \varphi_S \ t \ y = s \ y
  and \forall t \geq 0. \forall y. y \notin (\pi_1(set xfList)) \longrightarrow \varphi_S t (\partial y) = 0
  and \forall t \geq 0. \forall xf \in set xfList. (\varphi_S t (\partial (\pi_1 xf))) = (\pi_2 xf) (\varphi_S t)
  and \forall t \geq 0. \ \forall xf \in set \ xfList. \ ((\lambda t. \varphi_S \ t \ (\pi_1 \ xf)) \ solves-ode \ (\lambda t.\lambda \ r.(\pi_2 \ xf))
(\varphi_S t))) \{\theta..t\} UNIV
  and \forall xf \in set xfList. \varphi_S \ \theta \ (\pi_1 xf) = s(\pi_1 xf)
using assms solvesStoreIVP-def by auto
lemma [solves-store-ivpE]:
assumes \varphi_S solvesTheStoreIVP xfList withInitState s andGuard G
shows \forall y. y \notin varDiffs \longrightarrow \varphi_S \ \theta \ y = s \ y
\mathbf{proof}(clarify, rename\text{-}tac\ x)
fix x assume x \notin varDiffs
from assms and solves-store-ivpE(6) have x \in (\pi_1(set xfList)) \Longrightarrow \varphi_S \ 0 \ x = s
x by fastforce
```

```
also have x \notin (\pi_1(set xfList)) \cup varDiffs \Longrightarrow \varphi_S \ 0 \ x = s \ x
using assms and solves-store-ivpE(2) by simp
ultimately show \varphi_S \theta x = s x using \langle x \notin varDiffs \rangle by auto
named-theorems solves-store-ivpD computation rules for solvesStoreIVP
lemma [solves-store-ivpD]:
assumes \varphi_S solvesTheStoreIVP xfList withInitState s andGuard G
 and t \geq \theta
shows G(\varphi_S t)
using assms solves-store-ivpE(1) by blast
lemma [solves-store-ivpD]:
assumes \varphi_S solvesTheStoreIVP xfList withInitState s andGuard G
 and t > \theta
 and y \notin (\pi_1(set xfList)) \cup varDiffs
shows \varphi_S t y = s y
using assms solves-store-ivpE(2) by simp
lemma [solves-store-ivpD]:
assumes \varphi_S solvesTheStoreIVP xfList withInitState s andGuard G
 and t \geq \theta
 and y \notin (\pi_1(set xfList))
shows \varphi_S t (\partial y) = 0
using assms solves-store-ivpE(3) by simp
lemma [solves-store-ivpD]:
assumes \varphi_S solvesTheStoreIVP xfList withInitState s andGuard G
 and t \geq \theta
 and xf \in set xfList
shows (\varphi_S \ t \ (\partial \ (\pi_1 \ xf))) = (\pi_2 \ xf) \ (\varphi_S \ t)
using assms solves-store-ivpE(4) by simp
lemma [solves-store-ivpD]:
assumes \varphi_S solves The Store IVP xfList with InitState s and Guard G
 and t > \theta
 and xf \in set xfList
shows ((\lambda \ t. \ \varphi_S \ t \ (\pi_1 \ xf)) \ solves-ode \ (\lambda \ t.\lambda \ r.(\pi_2 \ xf) \ (\varphi_S \ t))) \ \{0..t\} \ UNIV
using assms solves-store-ivpE(5) by simp
lemma [solves-store-ivpD]:
assumes \varphi_S solvesTheStoreIVP xfList withInitState s andGuard G
 and (x,f) \in set xfList
shows \varphi_S \ \theta \ x = s \ x
using assms solves-store-ivpE(6) by fastforce
lemma [solves-store-ivpD]:
assumes \varphi_S solvesTheStoreIVP xfList withInitState s andGuard G
```

```
and y \notin varDiffs

shows \varphi_S 0 y = s y

using assms solves-store-ivpE(7) by simp

definition guarDiffEqtn :: (string \times (real \ store \Rightarrow real)) \ list \Rightarrow (real \ store \ pred)

\Rightarrow

real \ store \ rel \ (ODEsystem - with - [70, 70] \ 61) where

ODEsystem \ xfList \ with \ G = \{(s,\varphi_S \ t) \ | s \ t \ \varphi_S. \ t \geq 0 \ \land \ solvesStoreIVP \ \varphi_S \ xfList \ s \ G\}
```

1.4 Derivation of Differential Dynamic Logic Rules

1.4.1 "Differential Weakening"

```
lemma wlp\text{-}evol\text{-}guard\text{:}Id \subseteq wp \ (ODEsystem \ xfList \ with \ G) \ \lceil G \rceil apply (simp \ add: rel\text{-}antidomain\text{-}kleene\text{-}algebra\text{.}fbox\text{-}def \ rel\text{-}ad\text{-}def \ guarDiffEqtn\text{-}def \ p2r\text{-}def)} using solves\text{-}store\text{-}ivpD(1) by force theorem dWeakening: assumes guardImpliesPost: \ \lceil G \rceil \subseteq \lceil Q \rceil shows PRE \ P \ (ODEsystem \ xfList \ with \ G) \ POST \ Q using assms and wlp\text{-}evol\text{-}guard by (metis \ (no\text{-}types, \ hide\text{-}lams) \ d\text{-}p2r \ order\text{-}trans \ p2r\text{-}subid \ rel\text{-}antidomain\text{-}kleene\text{-}algebra\text{.}fbox\text{-}iso})
```

1.4.2 "Differential Cut"

```
\mathbf{lemma}\ condAfter Evol\text{-}remains Along Evol\text{:}
assumes boxDiffC:(s, s) \in wp \ (ODEsystem \ xfList \ with \ G) \ [C]
and FisSol:solvesStoreIVP \varphi_S xfList s G
and tHyp: 0 \leq t
shows G(\varphi_S t) \wedge C(\varphi_S t)
proof-
from boxDiffC have \forall c. (s,c) \in (ODEsystem xfList with G) \longrightarrow Cc
by (simp add: boxProgrPred-chrctrztn)
also from tHyp have (s, \varphi_S \ t) \in (ODEsystem \ xfList \ with \ G)
using FisSol guarDiffEqtn-def by auto
ultimately show G(\varphi_S t) \wedge C(\varphi_S t)
using solves-store-ivpD(1) tHyp FisSol by blast
qed
\mathbf{lemma}\ condA \textit{fterEvol-isGuard}\colon
assumes boxDiffC:(s, s) \in wp \ (ODEsystem \ xfList \ with \ G) \ [C]
assumes FisSol:solvesStoreIVP \ \varphi_S \ xfList \ s \ G
shows solvesStoreIVP \varphi_S xfList s (\lambda s. G s \wedge C s)
apply(rule\ solves-store-ivpI)
using assms condAfterEvol-remainsAlongEvol apply(fastforce)
using FisSol solvesStoreIVP-def by auto
```

theorem dCut:

```
assumes pBoxDiffCut:(PRE\ P\ (ODEsystem\ xfList\ with\ G)\ POST\ C)
assumes pBoxCutQ:(PRE\ P\ (ODEsystem\ xfList\ with\ (\lambda\ s.\ G\ s \land C\ s))\ POST\ Q)
shows PRE P (ODEsystem xfList with G) POST Q
proof(clarify)
fix a b::real store assume abHyp:(a,b) \in rdom \lceil P \rceil {hence a = b by (metis
rdom-p2r-contents)
then have (a,a) \in wp (ODEsystem xfList with G) [C] using abHyp and pBoxD-
iffCut by blast
moreover have \forall c. (a,c) \in (ODEsystem \ xfList \ with \ (\lambda s. \ G \ s \land C \ s)) \longrightarrow Q \ c
using pBoxCutQ by (metis\ (no-types,\ lifting)\ (a=b)\ abHyp\ boxProgrPred-chrctrztn
subsetCE)
ultimately have \forall c. (a,c) \in (ODEsystem \ xfList \ with \ G) \longrightarrow Q \ c
using guarDiffEqtn-def condAfterEvol-isGuard by fastforce
thus (a,b) \in wp \ (ODEsystem \ xfList \ with \ G) \ [Q]
using (a = b) by (simp \ add: \ boxProgrPred-chrctrztn)
qed
          "Solve Differential Equation"
1.4.3
lemma prelim-dSolve:
assumes solHyp:(\lambda t. sol s[xfList \leftarrow uInput] t) solvesTheStoreIVP xfList withInit-
State\ s\ and Guard\ G
and uniqHyp: \forall X. solvesStoreIVP X xfList s G \longrightarrow (\forall t \geq 0. (sol s[xfList \leftarrow uInput]))
t) = X t
and diffAssgn: \forall t \geq 0. G(sol\ s[xfList \leftarrow uInput]\ t) \longrightarrow Q(sol\ s[xfList \leftarrow uInput]\ t)
shows \forall c. (s,c) \in (ODEsystem \ xfList \ with \ G) \longrightarrow Q \ c
proof(clarify)
fix c assume (s,c) \in (ODEsystem \ xfList \ with \ G)
from this obtain t::real and \varphi_S::real \Rightarrow real store
where FHyp:t\geq 0 \land \varphi_S t=c \land solvesStoreIVP \varphi_S xfList s G using quarDiffEqtn-def
by auto
from this and uniqHyp have (sol s[xfList\leftarrowuInput] t) = \varphi_S t by blast
then have cHyp:c = (sol\ s[xfList \leftarrow uInput]\ t) using FHyp\ by simp
from solHyp have G (sol s[xfList \leftarrow uInput] t) by (simp add: solvesStoreIVP-def
FHyp)
then show Q c using diffAssgn FHyp cHyp by auto
qed
theorem wlp-quard-inv:
assumes solHyp:solvesStoreIVP (\lambda t. sol s[xfList \leftarrow uInput] t) xfList s G
and uniqHyp: \forall X. solvesStoreIVP \ X \ xfList \ s \ G \longrightarrow (\forall t \geq 0. \ (sol\ s[xfList \leftarrow uInput])
\textbf{and} \ \textit{diffAssgn} \colon \forall \, t \geq 0 \, . \ \textit{G} \ (\textit{sol} \ \textit{s}[\textit{xfList} \leftarrow \textit{uInput}] \ t) \, \longrightarrow \, \textit{Q} \ (\textit{sol} \ \textit{s}[\textit{xfList} \leftarrow \textit{uInput}] \ t)
shows | wp (ODEsystem xfList with G) [Q] | s
apply(simp \ add: \ r2p-def \ Domain-iff)
apply(rule exI, subst boxProgrPred-chrctrztn)
apply(rule-tac uInput=uInput in prelim-dSolve)
by (simp-all add: r2p-def Domain-unfold assms)
```

```
theorem dSolve:
assumes solHyp: \forall s.\ solvesStoreIVP\ (\lambda t.\ sol\ s[xfList\leftarrow uInput]\ t)\ xfList\ s\ G
and uniqHyp: \forall s. \forall X. solvesStoreIVP \ X xfList \ s \ G \longrightarrow (\forall t \geq 0.(sol\ s[xfList \leftarrow uInput]))
and diffAssgn: \forall s. \ Ps \longrightarrow (\forall t \geq 0. \ G(sols[xfList \leftarrow uInput]\ t) \longrightarrow Q(sols[xfList \leftarrow uInput]
t))
shows PRE P (ODEsystem xfList with G) POST Q
apply(clarsimp, subgoal-tac\ a=b)
apply(clarify, subst boxProgrPred-chrctrztn)
apply(simp-all add: p2r-def)
apply(rule-tac uInput=uInput in prelim-dSolve)
apply(simp add: solHyp, simp add: uniqHyp)
by (metis (no-types, lifting) diffAssgn)
lemma conds4vdiffs-prelim:
assumes funcsHyp:\forall s \ g. \ \forall xf \in set \ xfList. \ \pi_2 \ xf \ (override-on \ s \ g \ varDiffs) = \pi_2 \ xf
and distinctHyp:distinct\ (map\ \pi_1\ xfList)
and varsHyp: \forall xf \in set xfList. \pi_1 xf \notin varDiffs
and lengthHyp:length xfList = length uInput
and solHyp1: \forall uxf \in set (uInput \otimes xfList). (\pi_1 uxf) \ \theta (sol s) = (sol s) (\pi_1 (\pi_2 uxf)) = (sol s) (\pi_2 uxf) = (sol s
uxf)
and solHyp2: \forall t \geq 0. ((\lambda \tau. (sol s[xfList \leftarrow uInput] \tau) x)
has-vderiv-on (\lambda \tau. f (sol s[xfList \leftarrow uInput] \tau))) \{0..t\}
and xfHyp:(x, f) \in set xfList and tHyp:t \geq 0
shows (sol s[xfList\leftarrowuInput] t) (\partial x) = f (sol s[xfList\leftarrowuInput] t)
proof-
from xfHyp obtain u where xfuHyp: (u,x,f) \in set (uInput \otimes xfList)
by (metis in-set-impl-in-set-zip2 lengthHyp)
show (sol s[xfList\leftarrowuInput] t) (\partial x) = f (sol s[xfList\leftarrowuInput] t)
    \mathbf{proof}(cases\ t=0)
    case True
       have (sol\ s[xfList \leftarrow uInput]\ \theta)\ (\partial\ x) = f\ (sol\ s[xfList \leftarrow uInput]\ \theta)
       using assms and to-sol-zero-its-dvars by blast
       then show ?thesis using True by blast
   \mathbf{next}
       case False
       from this have t > 0 using tHyp by simp
       hence (sol\ s[xfList \leftarrow uInput]\ t)\ (\partial\ x) = vderiv-of\ (\lambda\ r.\ u\ r\ (sol\ s))\ \{0<..<(2a)\}
*_R t)} t
       using xfuHyp assms to-sol-greater-than-zero-its-dvars by blast
     also have vderiv-of (\lambda r.\ u\ r\ (sol\ s)) \{0<..<(2*_Rt)\}\ t=f\ (sol\ s[xfList\leftarrow uInput]
t)
       using assms xfuHyp \langle t > 0 \rangle and vderiv-of-to-sol-its-vars by blast
       ultimately show ?thesis by simp
    ged
qed
```

```
lemma conds4vdiffs:
assumes funcsHyp:\forall s \ g. \ \forall xf \in set \ xfList. \ \pi_2 \ xf \ (override-on \ s \ g \ varDiffs) = \pi_2 \ xf
and distinctHyp:distinct\ (map\ \pi_1\ xfList)
and varsHyp: \forall xf \in set xfList. \pi_1 xf \notin varDiffs
and lengthHyp:length xfList = length uInput
and solHyp1: \forall uxf \in set (uInput \otimes xfList). (\pi_1 uxf) \ 0 \ (sol \ s) = (sol \ s) \ (\pi_1 \ (\pi_2 \cup sol \ s))
and solHyp2: \forall t \geq 0. \ \forall \ xf \in set \ xfList. \ ((\lambda \tau. \ (sol \ s[xfList \leftarrow uInput] \ \tau) \ (\pi_1 \ xf))
has-vderiv-on (\lambda \tau. (\pi_2 \ xf) \ (sol\ s[xfList \leftarrow uInput]\ \tau))) \ \{0..t\}
shows \forall t \geq 0. \ \forall xf \in set \ xfList. \ (sol \ s[xfList \leftarrow uInput] \ t) \ (\partial \ (\pi_1 \ xf)) = (\pi_2 \ xf)
(sol\ s[xfList\leftarrow uInput]\ t)
apply(rule allI, rule impI, rule ballI, rule conds4vdiffs-prelim)
using assms by simp-all
lemma conds4Consts:
assumes varsHyp: \forall xf \in set xfList. \pi_1 xf \notin varDiffs
shows \forall x. x \notin (\pi_1(set xfList)) \longrightarrow (sol s[xfList \leftarrow uInput] t) (\partial x) = 0
using varsHyp apply(induct xfList uInput rule: list-induct2')
apply(simp-all add: override-on-def varDiffs-def vdiff-def)
by clarsimp
lemma conds4InitState:
assumes distinctHyp:distinct (map <math>\pi_1 xfList)
and lengthHyp:length xfList = length uInput
and varsHyp: \forall xf \in set xfList. \pi_1 xf \notin varDiffs
and solHyp1: \forall uxf \in set \ (uInput \otimes xfList). \ (\pi_1 \ uxf) \ \theta \ (sol \ s) = (sol \ s) \ (\pi_1 \ (\pi_2 \ uxf)) \ \theta \ (sol \ s) = (sol \ s) \ (\pi_1 \ uxf) \ \theta \ (sol \ s) = (sol \ s) \ (\pi_1 \ uxf) \ \theta \ (sol \ s) = (sol \ s) \ (\pi_1 \ uxf) \ \theta \ (sol \ s) = (sol \ s) \ (\pi_1 \ uxf) \ \theta \ (sol \ s) = (sol \ s) \ (\pi_1 \ uxf) \ \theta \ (sol \ s) = (sol \ s) \ (\pi_1 \ uxf) \ \theta \ (sol \ s) = (sol \ s) \ (\pi_1 \ uxf) \ \theta \ (sol \ s) = (sol \ s) \ (\pi_1 \ uxf) \ \theta \ (sol \ s) = (sol \ s) \ (\pi_1 \ uxf) \ \theta \ (sol \ s) = (sol \ s) \ (\pi_1 \ uxf) \ \theta \ (sol \ s) = (sol \ s) \ (\pi_1 \ uxf) \ \theta \ (sol \ s) = (sol \ s) \ (\pi_1 \ uxf) \ \theta \ (sol \ s) = (sol \ s) \ (\pi_1 \ uxf) \ \theta \ (sol \ s) = (sol \ s) \ (\pi_1 \ uxf) \ \theta \ (sol \ s) = (sol \ s) \ (\pi_1 \ uxf) \ \theta \ (sol \ s) = (sol \ s) \ (\pi_1 \ uxf) \ \theta \ (sol \ s) = (sol \ s) \ (\pi_1 \ uxf) \ \theta \ (sol \ s) = (sol \ s) \ (\pi_1 \ uxf) \ \theta \ (sol \ s) = (sol \ s) \ (\pi_1 \ uxf) \ \theta \ (sol \ s) = (sol \ s) \ (\pi_1 \ uxf) \ \theta \ (sol \ s) = (sol \ s) \ (\pi_1 \ uxf) \ \theta \ (sol \ s) = (sol \ s) \ (\pi_1 \ uxf) \ \theta \ (sol \ s) = (sol \ s) \ (\pi_1 \ uxf) \ \theta \ (sol \ s) = (sol \ s) \ (\pi_1 \ uxf) \ \theta \ (sol \ s) = (sol \ s) \ (\pi_1 \ uxf) \ \theta \ (sol \ s) = (sol \ s) \ (\pi_1 \ uxf) \ \theta \ (sol \ s) = (sol \ s) \ (\pi_1 \ uxf) \ \theta \ (sol \ s) = (sol \ s) \ (\pi_1 \ uxf) \ \theta \ (sol \ s) = (sol \ s) \ (\pi_1 \ uxf) \ \theta \ (sol \ s) = (sol \ s) \ (\pi_1 \ uxf) \ \theta \ (sol \ s) = (sol \ s) \ (\pi_1 \ uxf) \ \theta \ (sol \ s) = (sol \ s) \ (\pi_1 \ uxf) \ (sol \ s) = (sol \ s) \ (\pi_1 \ uxf) \ (sol \ s) = (sol \ s) \ (\pi_1 \ uxf) \ (sol \ s) = (sol \ s) \ (\pi_1 \ uxf) \ (sol \ s) \ (\pi_1 \ uxf) \ (sol \ s) = (sol \ s) \ (\pi_1 \ uxf) \ (sol \ s) = (sol \ s) \ (\pi_1 \ uxf) \ (sol \ s) = (sol \ s) \ (sol \ s) \ (sol \ s) = (sol \ s) \ (sol \ s) \ (sol \ s) \ (sol \ s) \ (sol \ s) = (sol \ s) \ (sol \ s) \ (sol \ s) = (sol \ s) \ (sol \ s) \ (sol \ s) \ (sol \ s) \ (sol \ s) = (sol \ s) \ (sol \ s) \ (sol \ s) \ (sol \ s) = (sol \ s) \ (sol \ s) \ (sol \ s) \ (sol \ s) \ (sol \ s) = (sol \ s) \ (sol \ s) \ (sol \ s) = (sol \ s) \ (sol \ s) \ 
uxf)
and xfHyp:(x, f) \in set xfList
shows (sol s[xfList\leftarrowuInput] 0) x = s x
proof-
from xfHyp obtain u where uxfHyp:(u, x, f) \in set (uInput \otimes xfList)
by (metis in-set-impl-in-set-zip2 lengthHyp)
from varsHyp have toZeroHyp:(sol\ s)\ x=s\ x using override-on-def\ xfHyp by
auto
from uxfHyp and solHyp1 have u \ 0 \ (sol \ s) = (sol \ s) \ x by fastforce
also have (sol\ s[xfList \leftarrow uInput]\ \theta)\ x = u\ \theta\ (sol\ s)
using state-list-cross-upd-its-vars uxfHyp and assms by blast
ultimately show (sol s[xfList\leftarrowuInput] 0) x = s x using toZeroHyp by simp
qed
lemma conds4RestOfStrings:
assumes x \notin (\pi_1(set xfList)) \cup varDiffs
shows (sol s[xfList\leftarrowuInput] t) x = s x
using assms apply(induct xfList uInput rule: list-induct2')
\mathbf{by}(auto\ simp:\ varDiffs-def)
lemma conds4storeIVP-on-toSol:
assumes funcsHyp:\forall s \ g. \ \forall xf \in set \ xfList. \ \pi_2 \ xf \ (override-on \ s \ g \ varDiffs) = \pi_2 \ xf
```

```
and distinctHyp:distinct (map <math>\pi_1 xfList)
and lengthHyp:length xfList = length uInput
and varsHyp: \forall xf \in set xfList. \pi_1 xf \notin varDiffs
and guardHyp: \forall t \geq 0. G(sol\ s[xfList \leftarrow uInput]\ t)
and solHyp1: \forall uxf \in set \ (uInput \otimes xfList). \ (\pi_1 \ uxf) \ 0 \ (sol \ s) = (sol \ s) \ (\pi_1 \ (\pi_2 \ uxf)) \ (sol \ s) = (sol \ s) = (sol \ s) \ (sol \ s) = (sol \ s) = (sol \ s) \ (sol \ s) = 
uxf)
and solHyp2: \forall t \geq 0. \ \forall xf \in set xfList.
((\lambda t. (sol\ s[xfList \leftarrow uInput]\ t) (\pi_1\ xf))\ has-vderiv-on\ (\lambda t.\ \pi_2\ xf\ (sol\ s[xfList \leftarrow uInput]
t))) \{0..t\}
shows solvesStoreIVP (\lambda t. (sol s[xfList\leftarrowuInput] t)) xfList s G
apply(rule\ solves-store-ivpI)
subgoal using guardHyp by simp
{f subgoal\ using\ } conds4vdiffs\ assms\ {f by\ } blast
subgoal using conds4RestOfStrings by blast
subgoal using conds4Consts varsHyp by blast
subgoal apply(rule allI, rule impI, rule ballI, rule solves-odeI)
    using solHyp2 by simp-all
subgoal using conds4InitState and assms by force
done
theorem dSolve-toSolve:
assumes funcsHyp:\forall s \ g. \ \forall xf \in set \ xfList. \ \pi_2 \ xf \ (override-on \ s \ g \ varDiffs) = \pi_2 \ xf
s
and distinctHyp:distinct (map <math>\pi_1 xfList)
and lengthHyp:length xfList = length uInput
and varsHyp: \forall xf \in set xfList. \pi_1 xf \notin varDiffs
and guardHyp: \forall s. \forall t \geq 0. G(sol s[xfList \leftarrow uInput] t)
and solHyp1: \forall s. \forall uxf \in set (uInput \otimes xfList). (\pi_1 uxf) \ 0 \ (sol s) = (sol s) \ (\pi_1 \ (\pi_2 \cup s)) \ (sol s) = (sol s) \
uxf)
and solHyp2: \forall s. \forall t \geq 0. \forall xf \in set xfList.
((\lambda t. (sol s[xfList \leftarrow uInput] t) (\pi_1 xf)) has-vderiv-on (\lambda t. \pi_2 xf (sol s[xfList \leftarrow uInput] t)))
t))) \{0..t\}
and uniqHyp: \forall s. \forall X. solvesStoreIVP \ XsfLists \ G \longrightarrow (\forall t \geq 0. (sols[xfList \leftarrow uInput]
t) = X t
and postCondHyp: \forall s. \ P \ s \longrightarrow (\forall t > 0. \ Q \ (sol \ s[xfList \leftarrow uInput] \ t))
shows PRE P (ODEsystem xfList with G) POST Q
apply(rule-tac uInput=uInput in dSolve)
subgoal using assms and conds4storeIVP-on-toSol by simp
subgoal by (simp add: uniqHyp)
using postCondHyp guardHyp postCondHyp by simp
lemma conds4UniqSol:
fixes f::real store \Rightarrow real
assumes tHyp:t > 0
and contHyp:continuous-on (\{0..t\} \times UNIV) (\lambda(t, (r::real))). f(\varphi_s t))
shows unique-on-bounded-closed 0 \{0..t\} \tau (\lambda t \ r. \ f \ (\varphi_s \ t)) UNIV (if \ t = 0 \ then
```

```
1 else 1/(t+1)
\mathbf{apply}(simp\ add: unique-on\ -bounded\ -closed\ -def\ unique-on\ -bounded\ -closed\ -axioms\ -def
unique-on-closed-def compact-interval-def compact-interval-axioms-def nonempty-set-def
interval-def self-mapping-def self-mapping-axioms-def closed-domain-def global-lipschitz-def
lipschitz-def, rule\ conjI)
subgoal using contHyp continuous-rhs-def by fastforce
subgoal using assms continuous-rhs-def by fastforce
done
{f lemma}\ solves-store-ivp-at-beginning-overrides:
assumes solvesStoreIVP \varphi_s xfList a G
shows \varphi_s \ \theta = override-on a \ (\varphi_s \ \theta) \ varDiffs
apply(rule\ ext,\ subgoal-tac\ x\notin varDiffs\longrightarrow \varphi_s\ \theta\ x=a\ x)
subgoal by (simp add: override-on-def)
using assms and solves-store-ivpD(7) by simp
lemma ubcStoreUniqueSol:
assumes tHyp:t \geq 0
assumes contHyp: \forall xf \in set xfList. continuous-on ({0..t} \times UNIV)
(\lambda(t, (r::real)). (\pi_2 xf) (sol s[xfList \leftarrow uInput] t))
and eqDerivs: \forall xf \in set xfList. \ \forall \tau \in \{0..t\}. \ (\pi_2 xf) \ (\varphi_s \tau) = (\pi_2 xf) \ (sol
s[xfList \leftarrow uInput] \tau)
and Fsolves:solvesStoreIVP \varphi_s xfList s G
and solHyp:solvesStoreIVP\ (\lambda\ \tau.\ (sol\ s[xfList\leftarrow uInput]\ \tau))\ xfList\ s\ G
shows (sol\ s[xfList \leftarrow uInput]\ t) = \varphi_s\ t
proof
  fix x::string show (sol s[xfList\leftarrowuInput] t) x = \varphi_s t x
  \mathbf{proof}(cases\ x \in (\pi_1(set\ xfList)) \cup varDiffs)
  {f case} False
   then have notInVars:x \notin (\pi_1(set xfList)) \cup varDiffs by simp
   from solHyp have (sol s[xfList\leftarrowuInput] t) x = s x
   using tHyp \ notInVars \ solves-store-ivpD(2) by blast
   also from Fsolves have \varphi_s t x = s x using tHyp notInVars solves-store-ivpD(2)
by blast
   ultimately show (sol s[xfList\leftarrowuInput] t) x = \varphi_s t x by simp
  next case True
   then have x \in (\pi_1(set xfList)) \lor x \in varDiffs by simp
   from this show ?thesis
   proof
      assume x \in (\pi_1(set xfList))
      from this obtain f where xfHyp:(x, f) \in set xfList by fastforce
      then have expand1: \forall xf \in set xfList.((\lambda \tau. \varphi_s \tau (\pi_1 xf)) solves-ode)
      (\lambda \tau \ r. \ (\pi_2 \ xf) \ (\varphi_s \ \tau)))\{0..t\} \ UNIV \land \varphi_s \ 0 \ (\pi_1 \ xf) = s \ (\pi_1 \ xf)
      using Fsolves tHyp by (simp add:solvesStoreIVP-def)
      hence expand2: \forall xf \in set xfList. \ \forall \tau \in \{0..t\}. \ ((\lambda r. \varphi_s \ r \ (\pi_1 \ xf)))
```

```
has-vector-derivative (\lambda r. (\pi_2 \ xf) (sol \ s[xfList \leftarrow uInput] \ \tau)) \ \tau) (at \ \tau \ within
\{\theta..t\}
      using eqDerivs by (simp add: solves-ode-def has-vderiv-on-def)
      then have \forall xf \in set xfList. ((\lambda \tau. \varphi_s \tau (\pi_1 xf)) solves-ode
      (\lambda \tau \ r. \ (\pi_2 \ xf) \ (sol \ s[xfList \leftarrow uInput] \ \tau)))\{\theta...t\} \ UNIV \land \varphi_s \ \theta \ (\pi_1 \ xf) = s
(\pi_1 xf)
     by (simp add: has-vderiv-on-def solves-ode-def expand1 expand2)
     then have 1:((\lambda \tau. \varphi_s \tau x) \text{ solves-ode } (\lambda \tau r. f (\text{sol s}[xfList \leftarrow uInput] \tau))) \{0..t\}
UNIV \wedge
      \varphi_s \ \theta \ x = s \ x \ \text{using} \ xfHyp \ \text{by} \ fastforce
     from solHyp and xfHyp have 2:((\lambda \tau. (sol s[xfList \leftarrow uInput] \tau) x) solves-ode
      (\lambda \tau \ r. \ f \ (sol \ s[xfList \leftarrow uInput] \ \tau))) \ \{\theta..t\} \ UNIV \land (sol \ s[xfList \leftarrow uInput] \ \theta)
x = s x
      using solvesStoreIVP-def tHyp by fastforce
     from tHyp and contHyp have \forall xf \in set xfList. unique-on-bounded-closed 0
\{0..t\}\ (s\ (\pi_1\ xf))
     (\lambda \tau \ r. \ (\pi_2 \ xf) \ (sol\ s[xfList \leftarrow uInput]\ \tau))\ UNIV\ (if\ t=0\ then\ 1\ else\ 1/(t+1))
      apply(clarify) apply(rule conds4UniqSol) by(auto)
        from this have 3:unique-on-bounded-closed 0 \{0..t\} (s \ x) (\lambda \tau \ r. \ f \ (sol
s[xfList \leftarrow uInput] \tau)
      UNIV (if t = 0 then 1 else 1/(t+1)) using xfHyp by fastforce
      from 1.2 and 3 show (sol s[xfList \leftarrow uInput] t) x = \varphi_s t x
     using unique-on-bounded-closed.unique-solution using real-Icc-closed-segment
tHyp by blast
    next
      assume x \in varDiffs
      then obtain y where xDef: x = \partial y by (auto simp: varDiffs-def)
      show (sol s[xfList\leftarrowuInput] t) x = \varphi_s t x
      \mathbf{proof}(cases\ y \in set\ (map\ \pi_1\ xfList))
      {f case} True
        then obtain f where xfHyp:(y, f) \in set xfList by fastforce
        from tHyp and Fsolves have \varphi_s t x = f(\varphi_s t)
        using solves-store-ivpD(4) xfHyp xDef by force
        also have (sol\ s[xfList \leftarrow uInput]\ t)\ x = f\ (sol\ s[xfList \leftarrow uInput]\ t)
        using solves-store-ivpD(4) xfHyp xDef solHyp tHyp by force
        ultimately show ?thesis using eqDerivs xfHyp tHyp by auto
      next case False
        then have \varphi_s t x = \theta
        using xDef solves-store-ivpD(3) Fsolves tHyp by simp
        also have (sol\ s[xfList \leftarrow uInput]\ t)\ x = 0
        using False solHyp tHyp solves-store-ivpD(3) xDef by fastforce
        ultimately show ?thesis by simp
      qed
    qed
```

```
qed
qed
theorem dSolveUBC:
assumes contHyp:\forall s. \forall t \geq 0. \forall xf \in set xfList. continuous-on (\{0..t\} \times UNIV)
(\lambda(t, (r::real)). (\pi_2 xf) (sol s[xfList \leftarrow uInput] t))
and solHyp: \forall s. solvesStoreIVP (\lambda t. (sol s[xfList \leftarrow uInput] t)) xfList s G
and uniqHyp: \forall s. \ \forall \varphi_s. \ \varphi_s \ solvesTheStoreIVP \ xfList \ withInitState \ s \ andGuard \ G
(\forall t \geq 0. \forall xf \in set xfList. \forall r \in \{0..t\}. (\pi_2 xf) (\varphi_s r) = (\pi_2 xf) (sol s[xfList \leftarrow uInput])
and diffAssgn: \forall s. \ Ps \longrightarrow (\forall t \geq 0. \ G(sols[xfList \leftarrow uInput] \ t) \longrightarrow Q(sols[xfList \leftarrow uInput])
shows PRE P (ODEsystem xfList with G) POST Q
apply(rule-tac uInput=uInput in dSolve)
prefer 2 subgoal proof(clarify)
fix s::real store and \varphi_s::real \Rightarrow real store and t::real
assume isSol:solvesStoreIVP \varphi_s \ xfList \ s \ G \ and \ sHyp:0 \le t
from this and uniqHyp have \forall xf \in set xfList. \forall t \in \{0..t\}.
(\pi_2 \ xf) \ (\varphi_s \ t) = (\pi_2 \ xf) \ (sol \ s[xfList \leftarrow uInput] \ t) \ \mathbf{by} \ auto
also have \forall xf \in set xfList. continuous-on ({0..t} \times UNIV)
(\lambda(t, (r::real)), (\pi_2 \ xf) \ (sol\ s[xfList \leftarrow uInput]\ t)) using contHyp\ sHyp\ by\ blast
ultimately show (sol s[xfList\leftarrow uInput] t) = \varphi_s t
using sHyp isSol ubcStoreUniqueSol solHyp by simp
qed using assms by simp-all
theorem dSolve-toSolveUBC:
assumes funcsHyp:\forall s \ g. \ \forall xf \in set \ xfList. \ \pi_2 \ xf \ (override-on \ s \ g \ varDiffs) = \pi_2 \ xf
and distinctHyp:distinct (map \pi_1 xfList)
and lengthHyp:length xfList = length uInput
and varsHyp: \forall xf \in set xfList. \pi_1 xf \notin varDiffs
and guardHyp: \forall s. \ \forall t \geq 0. \ G \ (sol \ s[xfList \leftarrow uInput] \ t)
and solHyp1: \forall s. \ \forall uxf \in set \ (uInput \otimes xfList). \ \pi_1 \ uxf \ 0 \ (sol \ s) = sol \ s \ (\pi_1 \ (\pi_2 \ uxf))
uxf)
and solHyp2: \forall s. \ \forall t \geq 0. \ \forall xf \in set \ xfList. \ ((\lambda t. \ (sol \ s[xfList \leftarrow uInput] \ t) \ (\pi_1 \ xf))
has-vderiv-on
(\lambda t. \ \pi_2 \ xf \ (sol \ s[xfList \leftarrow uInput] \ t))) \ \{0..t\}
and contHyp: \forall s. \ \forall t \geq 0. \ \forall xf \in set \ xfList. \ continuous-on (\{0..t\} \times UNIV)
(\lambda(t,\,(r::real)).\,\,(\pi_2\,\,\mathit{xf})\,\,(sol\,\,s[\mathit{xfList}{\leftarrow}\mathit{uInput}]\,\,t))
and uniqHyp: \forall s. \ \forall \varphi_s. \ \varphi_s \ solvesTheStoreIVP \ xfList \ withInitState \ s \ andGuard \ G
(\forall t \geq 0. \forall xf \in set xfList. \forall r \in \{0..t\}. (\pi_2 xf) (\varphi_s r) = (\pi_2 xf) (sol s[xfList \leftarrow uInput])
r))
and postCondHyp: \forall s. \ P \ s \longrightarrow (\forall \ t \ge 0. \ Q \ (sol \ s[xfList \leftarrow uInput] \ t))
shows PRE P (ODEsystem xfList with G) POST Q
apply(rule-tac uInput=uInput in dSolveUBC)
using contHyp apply simp
```

```
apply(rule\ allI,\ rule-tac\ uInput=uInput\ in\ conds4storeIVP-on-toSol) using assms\ by\ auto
```

1.4.4 "Differential Invariant."

```
{\bf lemma}\ solves Store IVP\text{-}could Be Modified:
fixes F::real \Rightarrow real \ store
assumes vars: \forall t \geq 0. \ \forall xf \in set \ xfList. \ ((\lambda t. \ F \ t \ (\pi_1 \ xf)) \ solves-ode \ (\lambda t \ r. \ \pi_2 \ xf \ (F \ t))
t))) \{0..t\} UNIV
and dvars: \forall t \geq 0. \forall xf \in set xfList. (F t (\partial (\pi_1 xf))) = (\pi_2 xf) (F t)
shows \forall t \geq 0. \ \forall r \in \{0..t\}. \ \forall xf \in set xfList.
((\lambda \ t. \ F \ t \ (\pi_1 \ xf)) \ has-vector-derivative \ F \ r \ (\partial \ (\pi_1 \ xf))) \ (at \ r \ within \ \{0..t\})
\mathbf{proof}(\mathit{clarify}, \mathit{rename-tac}\ t\ r\ x\ f)
fix x f and t r :: real
assume tHyp:0 \le t and xfHyp:(x, f) \in set xfList and rHyp:r \in \{0..t\}
from this and vars have ((\lambda t. F t x) solves-ode (\lambda t r. f (F t))) \{0..t\} UNIV
using tHyp by fastforce
hence *:\forall r \in \{0..t\}. ((\lambda t. Ftx) has-vector-derivative (\lambda t. f(Ft)) r) (at r within
\{0..t\}
by (simp add: solves-ode-def has-vderiv-on-def tHyp)
have \forall t \geq 0. \ \forall r \in \{0..t\}. \ \forall xf \in set xfList. (F r (\partial (\pi_1 xf))) = (\pi_2 xf) (F r)
using assms by auto
from this rHyp and xfHyp have (F r (\partial x)) = f (F r) by force
then show ((\lambda t. \ F \ t \ (\pi_1 \ (x, f))) \ has-vector-derivative \ F \ r \ (\partial \ (\pi_1 \ (x, f)))) \ (at \ r
within \{0..t\})
using * rHyp by auto
qed
\mathbf{lemma}\ derivation Lemma-base Case:
fixes F::real \Rightarrow real \ store
assumes solves:solvesStoreIVP F xfList a G
shows \forall x \in (UNIV - varDiffs). \forall t \geq 0. \forall r \in \{0..t\}.
((\lambda \ t. \ F \ t \ x) \ has-vector-derivative \ F \ r \ (\partial \ x)) \ (at \ r \ within \ \{0..t\})
proof
\mathbf{fix} \ x
\mathbf{assume}\ x \in \mathit{UNIV}\ -\ \mathit{varDiffs}
then have notVarDiff: \forall z. x \neq \partial z  using varDiffs-def by fastforce
 show \forall t \geq 0. \forall r \in \{0..t\}. ((\lambda t. F t x) has-vector-derivative F r <math>(\partial x)) (at r within x)
\{0..t\}
  \mathbf{proof}(cases \ x \in set \ (map \ \pi_1 \ xfList))
    case True
    from this and solves have \forall t \geq 0. \forall r \in \{0..t\}. \forall xf \in set xfList.
    ((\lambda \ t. \ F \ t \ (\pi_1 \ xf)) \ has-vector-derivative \ F \ r \ (\partial \ (\pi_1 \ xf))) \ (at \ r \ within \ \{0..t\})
   apply(rule-tac\ solvesStoreIVP-couldBeModified)\ using\ solves\ solves-store-ivpD
by auto
    from this show ?thesis using True by auto
  next
    {f case} False
    from this not VarDiff and solves have const: \forall t \geq 0. F t x = a x
```

```
using solves-store-ivpD(2) by (simp\ add:\ varDiffs-def)
    have constD: \forall t \geq 0. \ \forall r \in \{0..t\}. \ ((\lambda r. \ a \ x) \ has-vector-derivative \ 0) \ (at \ r. \ a \ x)
within \{0..t\})
    by (auto intro: derivative-eq-intros)
    \{fix t r:: real \}
      assume t \ge \theta and r \in \{\theta..t\}
      hence ((\lambda \ s. \ a \ x) \ has-vector-derivative \ \theta) (at r within \{\theta..t\}) by (simp add:
      moreover have \bigwedge s. \ s \in \{0..t\} \Longrightarrow (\lambda \ r. \ F \ r \ x) \ s = (\lambda \ r. \ a \ x) \ s
      using const by (simp add: \langle \theta \leq t \rangle)
      ultimately have ((\lambda \ s. \ F \ s \ x) \ has-vector-derivative \ \theta) \ (at \ r \ within \ \{\theta..t\})
      using has-vector-derivative-imp by (metis \langle r \in \{0..t\}\rangle)
    hence isZero: \forall t \geq 0. \forall r \in \{0..t\}. ((\lambda t. F t x) has-vector-derivative 0)(at r within
\{\theta..t\})by blast
    from False solves and notVarDiff have \forall t \geq 0. F t (\partial x) = 0
    using solves-store-ivpD(3) by simp
    then show ?thesis using isZero by simp
  qed
qed
lemma derivationLemma:
assumes solvesStoreIVP \ F \ xfList \ a \ G
and tHyp:t \geq \theta
and termVarsHyp: \forall x \in trmVars \ \eta. \ x \in (UNIV - varDiffs)
shows \forall r \in \{0..t\}. ((\lambda \ s. (\llbracket \eta \rrbracket_t) \ (F \ s)) has-vector-derivative (<math>\llbracket \partial_t \ \eta \rrbracket_t) \ (F \ r)) (at r
within \{0..t\})
using termVarsHyp proof(induction \eta)
  case (Const r)
  then show ?case by simp
\mathbf{next}
  case (Var y)
  then have yHyp:y \in UNIV - varDiffs by auto
  from this tHyp and assms(1) show ?case
  using derivationLemma-baseCase by auto
next
  case (Mns \eta)
  then show ?case
  apply(clarsimp)
  \mathbf{by}(rule\ derivative\text{-}intros,\ simp)
next
  case (Sum \eta 1 \ \eta 2)
  then show ?case
  apply(clarsimp)
  \mathbf{by}(rule\ derivative\text{-}intros,\ simp\text{-}all)
\mathbf{next}
  case (Mult \eta 1 \ \eta 2)
  then show ?case
  apply(clarsimp)
  apply(subgoal-tac ((\lambda s. (\llbracket \eta 1 \rrbracket_t) (F s) *_R (\llbracket \eta 2 \rrbracket_t) (F s)) has-vector-derivative
```

```
(\llbracket \partial_t \ \eta 1 \rrbracket_t) \ (F \ r) \cdot (\llbracket \eta 2 \rrbracket_t) \ (F \ r) + (\llbracket \eta 1 \rrbracket_t) \ (F \ r) \cdot (\llbracket \partial_t \ \eta 2 \rrbracket_t) \ (F \ r)) \ (at \ r \ within
\{0..t\}, simp
 apply(rule-tac f'1 = (\llbracket \partial_t \eta 1 \rrbracket_t) (Fr) and g'1 = (\llbracket \partial_t \eta 2 \rrbracket_t) (Fr) in derivative-eq-intros(25))
  by (simp-all add: has-field-derivative-iff-has-vector-derivative)
ged
lemma diff-subst-prprty-4terms:
assumes solves: \forall xf \in set xfList. F t (\partial (\pi_1 xf)) = \pi_2 xf (F t)
and tHyp:(t::real) \geq 0
and listsHyp:map \pi_2 xfList = map tval uInput
and termVarsHyp:trmVars \eta \subseteq (UNIV - varDiffs)
shows (\llbracket \partial_t \ \eta \rrbracket_t) (F \ t) = (\llbracket ((map \ (vdiff \circ \pi_1) \ xfList) \otimes uInput) \langle \partial_t \ \eta \rangle \rrbracket_t) (F \ t)
using term VarsHyp apply(induction \eta) apply(simp-all \ add: substList-help2)
using listsHyp and solves apply(induct xfList uInput rule: list-induct2', simp,
simp, simp)
\mathbf{proof}(clarify, rename\text{-}tac\ y\ q\ xfTail\ \vartheta\ trmTail\ x)
fix x y::string and \vartheta::trms and q and xfTail::((string \times (real \ store \Rightarrow real)) \ list)
and trm Tail
assume IH: \Lambda x. \ x \notin varDiffs \Longrightarrow map \ \pi_2 \ xfTail = map \ tval \ trmTail \Longrightarrow
\forall xf \in set \ xfTail. \ F \ t \ (\partial \ (\pi_1 \ xf)) = \pi_2 \ xf \ (F \ t) \Longrightarrow
F \ t \ (\partial \ x) = (\llbracket (map \ (vdiff \circ \pi_1) \ xfTail \otimes trmTail) \langle t_V \ (\partial \ x) \rangle \rrbracket_t) \ (F \ t)
and 1:x \notin varDiffs and 2:map \ \pi_2 \ ((y, g) \# xfTail) = map \ tval \ (\vartheta \# trmTail)
and 3: \forall xf \in set ((y, g) \# xfTail). F t (\partial (\pi_1 xf)) = \pi_2 xf (F t)
hence *:(\llbracket (map\ (vdiff\ \circ\ \pi_1)\ xfTail\ \otimes\ trmTail) \langle Var\ (\partial\ x) \rangle \rrbracket_t)\ (F\ t) = F\ t\ (\partial\ x)
using tHyp by auto
show F t (\partial x) = ( \llbracket ((map \ (vdiff \circ \pi_1) \ ((y, g) \# xfTail)) \otimes (\vartheta \# trmTail)) \langle t_V \rangle )
(\partial x) \rangle |_t (F t)
  \operatorname{\mathbf{proof}}(cases\ x\in set\ (map\ \pi_1\ ((y,\ g)\ \#\ xfTail)))
    case True
    then have x = y \lor (x \neq y \land x \in set (map \pi_1 xfTail)) by auto
    moreover
     {assume x = y
       from this have ((map\ (vdiff\ \circ\ \pi_1)\ ((y,\ g)\ \#\ xfTail))\otimes (\vartheta\ \#\ trmTail))\langle t_V
(\partial x)\rangle = \vartheta  by simp
       also from 3 tHyp have F t (\partial y) = g (F t) by simp
       moreover from 2 have (\llbracket \vartheta \rrbracket_t) (F t) = q (F t) by simp
       ultimately have ?thesis by (simp \ add: \langle x = y \rangle)}
    moreover
     {assume x \neq y \land x \in set (map \ \pi_1 \ xfTail)}
       then have \partial x \neq \partial y using vdiff-inj by auto
       from this have ((map\ (vdiff \circ \pi_1)\ ((y, g) \# xfTail)) \otimes (\vartheta \# trmTail)) \langle t_V \rangle
(\partial x) =
       ((map\ (vdiff\ \circ \pi_1)\ xfTail)\otimes trmTail)\langle t_V\ (\partial\ x)\rangle by simp
       hence ?thesis using * by simp}
     ultimately show ?thesis by blast
  next
    case False
    then have ((map\ (vdiff\ \circ \pi_1)\ ((y,\ g)\ \#\ xfTail))\otimes (\vartheta\ \#\ trmTail))\ \langle t_V\ (\partial\ x)\rangle
= t_V (\partial x)
```

```
using substList-cross-vdiff-on-non-ocurring-var by (metis(no-types, lifting) \ List.map.compositionality)
    thus ?thesis by simp
  qed
qed
\mathbf{lemma}\ eqInVars-impl-eqInTrms:
assumes termVarsHyp:trmVars \eta \subseteq (UNIV - varDiffs)
and initHyp: \forall x. \ x \notin varDiffs \longrightarrow b \ x = a \ x
shows ([\![\eta]\!]_t) a = ([\![\eta]\!]_t) b
using assms by (induction \eta, simp-all)
lemma non-empty-funList-implies-non-empty-trmList:
shows \forall list.(x,f) \in set list \land map \ \pi_2 \ list = map \ tval \ tList \longrightarrow (\exists \ \vartheta.(\llbracket \vartheta \rrbracket_t) = f
\wedge \vartheta \in set \ tList)
\mathbf{by}(induction\ tList,\ auto)
lemma dInvForTrms-prelim:
assumes substHyp:
\forall st. \ G \ st \longrightarrow (\forall str. \ str \notin (\pi_1(set \ xfList)) \longrightarrow st \ (\partial \ str) = 0) \longrightarrow
(\llbracket ((map\ (vdiff\ \circ \pi_1)\ xfList) \otimes uInput)\ \langle \partial_t\ \eta \rangle \rrbracket_t)\ st = 0
and termVarsHyp:trmVars \eta \subseteq (UNIV - varDiffs)
and listsHyp:map \pi_2 xfList = map tval uInput
shows (\llbracket \eta \rrbracket_t) a = 0 \longrightarrow (\forall c. (a,c) \in (ODEsystem \ xfList \ with \ G) \longrightarrow (\llbracket \eta \rrbracket_t) \ c =
\theta
proof(clarify)
fix c assume aHyp:(\llbracket \eta \rrbracket_t) a = 0 and cHyp:(a, c) \in ODEsystem xfList with G
from this obtain t::real and F::real \Rightarrow real store
where tcHyp:t\geq 0 \land F t=c \land solvesStoreIVP F xfList a G using quarDiffEqtn-def
then have \forall x. \ x \notin varDiffs \longrightarrow F \ 0 \ x = a \ x \ using \ solves-store-ivpD(7) by blast
from this have (\llbracket \eta \rrbracket_t) a = (\llbracket \eta \rrbracket_t) (F \theta) using term Vars Hyp \ eqIn Vars-impl-eqIn Trms
hence obs1:(\llbracket \eta \rrbracket_t) \ (F \ \theta) = \theta using aHyp \ tcHyp by simp
from tcHyp have obs2: \forall r \in \{0..t\}. ((\lambda s. (\llbracket \eta \rrbracket_t) (F s)) has-vector-derivative
([\partial_t \eta]_t)(Fr) (at r within \{0..t\}) using derivationLemma termVarsHyp by blast
have \forall r \in \{0..t\}. \forall xf \in set xfList. F r (\partial (\pi_1 xf)) = \pi_2 xf (F r)
using tcHyp solves-store-ivpD(4) by fastforce
hence \forall r \in \{0..t\}. (\llbracket \partial_t \ \eta \rrbracket_t) (F \ r) = (\llbracket ((map \ (vdiff \circ \pi_1) \ xfList) \otimes uInput) \ \langle \partial_t \ \eta \rrbracket_t)
\eta \rangle |_t) (F r)
using tcHyp diff-subst-prprty-4terms termVarsHyp listsHyp by fastforce
also from substHyp have \forall r \in \{0..t\}. ([(map\ (vdiff \circ \pi_1)\ xfList) \otimes uInput) \langle \partial_t \rangle
\eta \rangle ||_t \rangle (F r) = 0
using solves-store-ivpD(1) solves-store-ivpD(3) tcHyp by fastforce
ultimately have \forall r \in \{0..t\}. ((\lambda s. (\llbracket \eta \rrbracket_t) (F s)) has-vector-derivative 0) (at r)
within \{0..t\})
using obs2 by auto
from this and tcHyp have \forall s \in \{0..t\}. ((\lambda x. (\llbracket \eta \rrbracket_t) (F x)) has-derivative (\lambda x. x)
*_R \theta))
(at s within \{0..t\}) by (metis has-vector-derivative-def)
```

```
hence ([\![\eta]\!]_t) (F\ t) - ([\![\eta]\!]_t) (F\ \theta) = (\lambda x.\ x *_R\ \theta) (t\ -\ \theta)
using mvt-very-simple and tcHyp by fastforce
then show ([\![\eta]\!]_t) c = \theta using obs1 tcHyp by auto
theorem dInvForTrms:
assumes \forall st. \ G \ st \longrightarrow (\forall str. \ str \notin (\pi_1(set \ xfList)) \longrightarrow st \ (\partial \ str) = 0) \longrightarrow
(\llbracket ((map\ (vdiff\ \circ\ \pi_1)\ xfList)\otimes uInput)\ \langle \partial_t\ \eta \rangle \rrbracket_t)\ st=0
and termVarsHyp:trmVars \ \eta \subseteq (UNIV - varDiffs)
and listsHyp:map \pi_2 xfList = map tval uInput
and eta-f:f = (\llbracket \eta \rrbracket_t)
shows PRE (\lambda s. fs = 0) (ODEsystem xfList with G) POST (\lambda s. fs = 0)
using eta-f proof(clarsimp)
\mathbf{fix} \ a \ b
assume (a, b) \in [\lambda s. (\llbracket \eta \rrbracket_t) \ s = \theta] and f = (\llbracket \eta \rrbracket_t)
from this have aHyp: a = b \land (\llbracket \eta \rrbracket_t) \ a = 0 by (metis\ (full-types)\ d-p2r\ rdom-p2r-contents)
have (\llbracket \eta \rrbracket_t) a = 0 \longrightarrow (\forall c. (a,c) \in (ODEsystem \ xfList \ with \ G) \longrightarrow (\llbracket \eta \rrbracket_t) \ c =
using assms dInvForTrms-prelim by metis
from this and a Hyp have \forall c. (a,c) \in (ODEsystem \ xfList \ with \ G) \longrightarrow (\llbracket \eta \rrbracket_t) \ c
= \theta by blast
thus (a, b) \in wp \ (ODEsystem \ xfList \ with \ G \ ) \ [\lambda s. ([\![\eta]\!]_t) \ s = 0]
using aHyp by (simp add: boxProgrPred-chrctrztn)
qed
lemma diff-subst-prprty-4props:
assumes solves: \forall xf \in set xfList. F t (\partial (\pi_1 xf)) = \pi_2 xf (F t)
and tHyp:t > 0
and listsHyp:map \pi_2 xfList = map tval uInput
and prop VarsHyp:prop Vars \varphi \subseteq (UNIV - varDiffs)
shows (\llbracket \partial_P \varphi \rrbracket_P) (F t) = (\llbracket ((map \ (vdiff \circ \pi_1) \ xfList) \otimes uInput) \lceil \partial_P \varphi \rceil \rrbracket_P) (F t)
using prop VarsHyp apply(induction \varphi, simp-all)
using assms diff-subst-prprty-4terms apply fastforce
using assms diff-subst-prprty-4terms apply fastforce
using assms diff-subst-prprty-4terms by fastforce
lemma dInvForProps-prelim:
assumes substHyp:
\forall st. \ G \ st \longrightarrow (\forall str. \ str \notin (\pi_1(set \ xfList)) \longrightarrow st \ (\partial \ str) = 0) \longrightarrow
(\llbracket ((\mathit{map}\ (\mathit{vdiff}\ \circ\ \pi_1)\ \mathit{xfList}) \otimes \mathit{uInput})\ \langle \partial_t\ \eta \rangle \rrbracket_t)\ \mathit{st} \geq 0
and termVarsHyp:trmVars \eta \subseteq (UNIV - varDiffs)
and listsHyp:map \pi_2 xfList = map tval uInput
shows (\llbracket \eta \rrbracket_t) a > 0 \longrightarrow (\forall c. (a,c) \in (ODEsystem \ xfList \ with \ G) \longrightarrow (\llbracket \eta \rrbracket_t) \ c >
and (\llbracket \eta \rrbracket_t) a \geq 0 \longrightarrow (\forall c. (a,c) \in (ODEsystem \ xfList \ with \ G) \longrightarrow (\llbracket \eta \rrbracket_t) \ c \geq 0)
\mathbf{proof}(\mathit{clarify})
fix c assume aHyp:(\llbracket \eta \rrbracket_t) a > 0 and cHyp:(a, c) \in ODEsystem xfList with G
from this obtain t::real and F::real \Rightarrow real store
where tcHyp:t \ge 0 \land Ft = c \land solvesStoreIVP FxfList \ a \ G \ using \ guarDiffEqtn-def
```

```
by auto
then have \forall x. \ x \notin varDiffs \longrightarrow F \ 0 \ x = a \ x \ using \ solves-store-ivpD(7) by blast
from this have (\llbracket \eta \rrbracket_t) a = (\llbracket \eta \rrbracket_t) (F \ \theta) using termVarsHyp\ eqInVars-impl-eqInTrms
hence obs1:([\![\eta]\!]_t) (F 0) > 0 using aHyp tcHyp by simp
from tcHyp have obs2: \forall r \in \{0..t\}. ((\lambda s. (\llbracket \eta \rrbracket_t) (F s)) has-vector-derivative
(\llbracket \partial_t \ \eta \rrbracket_t) \ (F \ r)) \ (at \ r \ within \ \{0..t\}) \ using \ derivation Lemma \ term Vars Hyp \ by \ blast
have (\forall t \ge 0. \ \forall \ xf \in set \ xfList. \ F \ t \ (\partial \ (\pi_1 \ xf)) = \pi_2 \ xf \ (F \ t))
using tcHyp solves-store-ivpD(4) by blast
hence \forall r \in \{0..t\}. (\llbracket \partial_t \eta \rrbracket_t) (F r) = (\llbracket ((map \ (vdiff \circ \pi_1) \ xfList) \otimes uInput) \ \langle \partial_t \eta \rrbracket_t)
\eta\rangle]<sub>t</sub>) (F r)
using diff-subst-prprty-4terms term VarsHyp tcHyp listsHyp by fastforce
also from substHyp have \forall r \in \{0..t\}. ([((map\ (vdiff \circ \pi_1)\ xfList) \otimes uInput)\ \langle \partial_t
\eta \rangle |_t  (F r) \geq 0
using solves-store-ivpD(3) to Hyp by (metis at Least At Most-iff)
ultimately have *: \forall r \in \{0..t\}. ([\![\partial_t, \eta]\!]_t) (F, r) > 0 by (simp)
from obs2 and tcHyp have \forall r \in \{0..t\}. ((\lambda s. (\llbracket \eta \rrbracket_t) (F s)) has\text{-}derivative
(\lambda x. \ x *_R ((\llbracket \partial_t \eta \rrbracket_t) (Fr)))) (at \ r \ within \{0..t\}) by (simp \ add: has-vector-derivative-def)
hence \exists r \in \{0..t\}. ([\![\eta]\!]_t) (F t) - ([\![\eta]\!]_t) (F \theta) = t \cdot ([\![(\partial_t \eta)]\!]_t) (F r)
using mvt-very-simple and tcHyp by fastforce
then obtain r where (\llbracket \partial_t \ \eta \rrbracket_t) \ (F \ r) \geq 0 \ \land \ 0 \leq r \land r \leq t \land (\llbracket \partial_t \ \eta \rrbracket_t) \ (F \ t) \geq 0
\wedge (\llbracket \eta \rrbracket_t) (F t) - (\llbracket \eta \rrbracket_t) (F \theta) = t \cdot ((\llbracket \partial_t \eta \rrbracket_t) (F r))  using * tcHyp by fastforce
thus (\llbracket \eta \rrbracket_t) c > \theta
using obs1 tcHyp by (metis cancel-comm-monoid-add-class.diff-cancel diff-qe-0-iff-qe
diff-strict-mono linorder-negE-linordered-idom\ linordered-field-class.sign-simps(45)
not-le)
next
show 0 \leq (\llbracket \eta \rrbracket_t) a \longrightarrow (\forall c. (a, c) \in ODEsystem xfList with <math>G \longrightarrow 0 \leq (\llbracket \eta \rrbracket_t) c)
\mathbf{proof}(clarify)
fix c assume aHyp:(\llbracket \eta \rrbracket_t) a \geq 0 and cHyp:(a, c) \in ODEsystem xfList with G
from this obtain t::real and F::real \Rightarrow real store
where tcHyp:t\geq 0 \land F t=c \land solvesStoreIVP F xfList a G using guarDiffEqtn-def
by auto
then have \forall x. \ x \notin varDiffs \longrightarrow F \ \theta \ x = a \ x \ using \ solves-store-ivpD(7) by blast
from this have (\llbracket \eta \rrbracket_t) a = (\llbracket \eta \rrbracket_t) (F \ \theta) using termVarsHyp\ eqInVars-impl-eqInTrms
hence obs1:(\llbracket \eta \rrbracket_t) (F \theta) \geq \theta using aHyp tcHyp by simp
from tcHyp have obs2: \forall r \in \{0..t\}. ((\lambda s. (\llbracket \eta \rrbracket_t) (F s)) has-vector-derivative
(\llbracket \partial_t \ \eta \rrbracket_t) \ (F \ r)) \ (at \ r \ within \ \{0..t\}) \ using \ derivationLemma \ term VarsHyp \ by \ blast
have (\forall t \ge 0. \ \forall \ xf \in set \ xfList. \ F \ t \ (\partial \ (\pi_1 \ xf)) = \pi_2 \ xf \ (F \ t))
using tcHyp\ solves-store-ivpD(4) by blast
from this and tcHyp have \forall r \in \{0..t\}. ([\![\partial_t \eta]\!]_t) (F r) =
(\llbracket ((map \ (vdiff \circ \pi_1) \ xfList) \otimes uInput) \ \langle \partial_t \ \eta \rangle \rrbracket_t) \ (F \ r)
using diff-subst-prprty-4terms termVarsHyp listsHyp by fastforce
also from substHyp have \forall r \in \{0..t\}. (\mathbb{I}((map\ (vdiff \circ \pi_1)\ xfList) \otimes uInput)\ \langle \partial_t
\eta \rangle ]_t) (F r) \geq 0
using solves-store-ivpD(1) solves-store-ivpD(3) tcHyp by (metis atLeastAtMost-iff)
```

```
ultimately have *: \forall r \in \{0..t\}. ([\![\partial_t \ \eta]\!]_t) (F \ r) \geq 0 by (simp)
from obs2 and tcHyp have \forall r \in \{0..t\}. ((\lambda s. (\llbracket \eta \rrbracket_t) (F s)) has-derivative
(\lambda x. \ x *_R ((\llbracket \partial_t \ \eta \rrbracket_t) \ (F \ r)))) \ (at \ r \ within \ \{0..t\}) \  by (simp \ add: has-vector-derivative-def)
hence \exists r \in \{0..t\}. ([\![\eta]\!]_t) (F t) - ([\![\eta]\!]_t) (F \theta) = t \cdot (([\![\partial_t \eta]\!]_t) (F r))
using mvt-very-simple and tcHyp by fastforce
then obtain r where (\llbracket \partial_t \ \eta \rrbracket_t) \ (F \ r) \geq 0 \ \land \ 0 \leq r \land r \leq t \land (\llbracket \partial_t \ \eta \rrbracket_t) \ (F \ t) \geq 0
\wedge (\llbracket \eta \rrbracket_t) (F t) - (\llbracket \eta \rrbracket_t) (F \theta) = t \cdot ((\llbracket \partial_t \eta \rrbracket_t) (F r)) \text{ using } * tcHyp \text{ by } fastforce
thus (\llbracket \eta \rrbracket_t) c \geq 0
\textbf{using} \ obs1 \ tcHyp \ \textbf{by} \ (met is \ cancel-comm-monoid-add-class.diff-cancel \ diff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff-ge-0-iff
diff-strict-mono linorder-neqE-linordered-idom\ linordered-field-class.sign-simps(45)
not-le)
qed
qed
lemma less-pval-to-tval:
assumes (\llbracket ((map\ (vdiff \circ \pi_1)\ xfList) \otimes uInput) \upharpoonright \partial_P (\vartheta \prec \eta) \upharpoonright \rrbracket_P) st
shows (\llbracket ((map\ (vdiff \circ \pi_1)\ xfList) \otimes uInput) \langle \partial_t\ (\eta \oplus (\ominus \vartheta)) \rangle \rrbracket_t) \ st \geq 0
using assms by (auto)
lemma leq-pval-to-tval:
assumes (\llbracket ((map\ (vdiff \circ \pi_1)\ xfList) \otimes uInput) \upharpoonright \partial_P \ (\vartheta \leq \eta) \upharpoonright \rrbracket_P) \ st
shows (\llbracket ((map\ (vdiff \circ \pi_1)\ xfList) \otimes uInput) \langle \partial_t\ (\eta \oplus (\ominus \vartheta)) \rangle \rrbracket_t) \ st \geq 0
using assms by (auto)
lemma dInv-prelim:
assumes substHyp: \forall st. \ G \ st \longrightarrow (\forall str. \ str \notin (\pi_1(set \ xfList))) \longrightarrow st \ (\partial \ str) =
(\llbracket ((map\ (vdiff \circ \pi_1)\ xfList) \otimes uInput) \upharpoonright \partial_P \varphi \upharpoonright \rrbracket_P) \ st
and prop VarsHyp:prop Vars \varphi \subseteq (UNIV - varDiffs)
and listsHyp:map \pi_2 xfList = map tval uInput
shows (\llbracket \varphi \rrbracket_P) a \longrightarrow (\forall c. (a,c) \in (ODEsystem xfList with <math>G) \longrightarrow (\llbracket \varphi \rrbracket_P) c)
proof(clarify)
fix c assume aHyp:(\llbracket \varphi \rrbracket_P) a and cHyp:(a, c) \in ODEsystem xfList with G
from this obtain t::real and F::real \Rightarrow real store
where tcHyp:t>0 \land Ft=c \land solvesStoreIVP\ FxfList\ a\ G\ using\ quarDiffEqtn-def
by auto
from aHyp prop VarsHyp and substHyp show (\llbracket \varphi \rrbracket_P) c
\mathbf{proof}(induction \ \varphi)
case (Eq \vartheta \eta)
hence hyp: \forall st. \ G \ st \longrightarrow \ (\forall str. \ str \notin (\pi_1(set \ xfList)) \longrightarrow st \ (\partial \ str) = \ \theta) \longrightarrow
(\llbracket ((map\ (vdiff \circ \pi_1)\ xfList) \otimes uInput) \upharpoonright \partial_P\ (\vartheta \doteq \eta) \upharpoonright \rrbracket_P) \ st \ by \ blast
then have \forall st. \ G \ st \longrightarrow (\forall str. \ str \notin (\pi_1(set \ xfList)) \longrightarrow st \ (\partial \ str) = 0) \longrightarrow
(\llbracket ((map\ (vdiff\ \circ \pi_1)\ xfList) \otimes uInput) \langle \partial_t\ (\vartheta \oplus (\ominus \eta)) \rangle \rrbracket_t) \ st = 0 \ by \ simp
also have trmVars\ (\vartheta \oplus (\ominus \eta)) \subseteq UNIV - varDiffs\ using\ Eq.prems(2) by simp
moreover have (\llbracket \vartheta \oplus (\ominus \eta) \rrbracket_t) a = \theta using Eq.prems(1) by simp
ultimately have (\forall c. (a, c) \in ODEsystem \ xfList \ with \ G \longrightarrow (\llbracket \vartheta \oplus (\ominus \eta) \rrbracket_t) \ c
= 0
```

```
using dInvForTrms-prelim listsHyp by blast
hence (\llbracket \vartheta \oplus (\ominus \eta) \rrbracket_t) (F t) = \theta using tcHyp \ cHyp by simp
from this have (\llbracket\vartheta\rrbracket_t) (F\ t)=(\llbracket\eta\rrbracket_t) (F\ t) by simp
also have (\llbracket \vartheta \doteq \eta \rrbracket_P) c = ((\llbracket \vartheta \rrbracket_t) (F t) = (\llbracket \eta \rrbracket_t) (F t)) using tcHyp by simp
ultimately show ?case by simp
next
case (Less \vartheta \eta)
hence \forall st. \ G \ st \longrightarrow (\forall str. \ str \notin (\pi_1(set \ xfList)) \longrightarrow st \ (\partial \ str) = \theta) \longrightarrow
0 \leq (\llbracket (map \ (vdiff \circ \pi_1) \ xfList \otimes uInput) \langle \partial_t \ (\eta \oplus (\ominus \vartheta)) \rangle \rrbracket_t) \ st
\mathbf{using}\ \mathit{less-pval-to-tval}\ \mathbf{by}\ \mathit{metis}
also from Less.prems(2)have trmVars (\eta \oplus (\ominus \vartheta)) \subseteq UNIV - varDiffs by simp
moreover have (\llbracket \eta \oplus (\ominus \vartheta) \rrbracket_t) a > \theta using Less.prems(1) by simp
ultimately have (\forall c. (a, c) \in ODEsystem \ xfList \ with \ G \longrightarrow (\llbracket \eta \oplus (\ominus \vartheta) \rrbracket_t) \ c
using dInvForProps-prelim(1) listsHyp by blast
hence (\llbracket \eta \oplus (\ominus \vartheta) \rrbracket_t) (F t) > \theta using tcHyp \ cHyp by simp
from this have (\llbracket \eta \rrbracket_t) (F t) > (\llbracket \vartheta \rrbracket_t) (F t) by simp
also have (\llbracket \vartheta \prec \eta \rrbracket_P) c = ((\llbracket \vartheta \rrbracket_t) (F t) < (\llbracket \eta \rrbracket_t) (F t)) using tcHyp by simp
ultimately show ?case by simp
\mathbf{next}
case (Leq \vartheta \eta)
hence \forall st. \ G \ st \longrightarrow (\forall str. \ str \notin (\pi_1(set \ xfList)) \longrightarrow st \ (\partial \ str) = 0) \longrightarrow
0 \leq (\llbracket (map \ (vdiff \circ \pi_1) \ xfList \otimes uInput) \langle \partial_t \ (\eta \oplus (\ominus \vartheta)) \rangle \rrbracket_t) \ st \ using \ leq-pval-to-tval
by metis
also from Leq.prems(2) have trmVars\ (\eta \oplus (\ominus \vartheta)) \subseteq UNIV - varDiffs\ by\ simp
moreover have (\llbracket \eta \oplus (\ominus \vartheta) \rrbracket_t) a \geq \theta using Leq.prems(1) by simp
ultimately have (\forall c. (a, c) \in ODEsystem \ xfList \ with \ G \longrightarrow (\llbracket \eta \oplus (\ominus \vartheta) \rrbracket_t) \ c
\geq 0
using dInvForProps-prelim(2) listsHyp by blast
hence (\llbracket \eta \oplus (\ominus \vartheta) \rrbracket_t) (F t) \geq \theta using tcHyp \ cHyp by simp
from this have ((\llbracket \eta \rrbracket_t) (F t) \geq (\llbracket \vartheta \rrbracket_t) (F t)) by simp
also have (\llbracket \vartheta \leq \eta \rrbracket_P) c = ((\llbracket \vartheta \rrbracket_t) (F t) \leq (\llbracket \eta \rrbracket_t) (F t)) using tcHyp by simp
ultimately show ?case by simp
\mathbf{next}
case (And \varphi 1 \varphi 2)
then show ?case by (simp)
next
case (Or \varphi 1 \varphi 2)
from this show ?case by auto
qed
qed
theorem dInv:
assumes \forall st. \ G \ st \longrightarrow (\forall str. \ str \notin (\pi_1(set \ xfList)) \longrightarrow st \ (\partial \ str) = 0) \longrightarrow
(\llbracket ((map\ (vdiff\ \circ \pi_1)\ xfList) \otimes uInput) \upharpoonright \partial_P \varphi \upharpoonright \rrbracket_P)\ st
and term VarsHyp:prop Vars \varphi \subseteq (UNIV - varDiffs)
and listsHyp:map \pi_2 xfList = map tval uInput
and phi-p:P = (\llbracket \varphi \rrbracket_P)
shows PRE P (ODEsystem xfList with G) POST P
```

```
proof(clarsimp)
\mathbf{fix} \ a \ b
assume (a, b) \in [P]
from this have aHyp:a = b \land P a by (metis (full-types) d-p2r rdom-p2r-contents)
have P \ a \longrightarrow (\forall \ c. \ (a,c) \in (ODEsystem \ xfList \ with \ G) \longrightarrow P \ c)
using assms dInv-prelim by metis
from this and a Hyp have \forall c. (a,c) \in (ODEsystem \ xfList \ with \ G) \longrightarrow Pc by
blast
thus (a, b) \in wp \ (ODEsystem \ xfList \ with \ G \ ) \ [P]
using aHyp by (simp add: boxProgrPred-chrctrztn)
qed
theorem dInvFinal:
assumes \forall st. \ G \ st \longrightarrow (\forall str. \ str \notin (\pi_1(set \ xfList)) \longrightarrow st \ (\partial \ str) = 0) \longrightarrow
(\llbracket ((map\ (vdiff \circ \pi_1)\ xfList) \otimes uInput) \upharpoonright \partial_P \varphi \upharpoonright \rrbracket_P) \ st
and termVarsHyp:propVars \varphi \subseteq (UNIV - varDiffs)
\mathbf{and}\ \mathit{listsHyp:map}\ \pi_2\ \mathit{xfList} = \mathit{map}\ \mathit{tval}\ \mathit{uInput}
and impls: \lceil P \rceil \subseteq \lceil F \rceil \land \lceil F \rceil \subseteq \lceil Q \rceil
and phi-f:F = (\llbracket \varphi \rrbracket_P)
shows PRE P (ODEsystem xfList with G) POST Q
\operatorname{apply}(rule\text{-}tac\ C=(\llbracket \varphi \rrbracket_P)\ \mathbf{in}\ dCut)
apply(subgoal-tac [F] \subseteq wp (ODEsystem xfList with G) [F], simp)
using impls and phi-f apply blast
apply(subgoal-tac\ PRE\ F\ (ODEsystem\ xfList\ with\ G)\ POST\ F,\ simp)
apply(rule-tac \varphi = \varphi and uInput = uInput in dInv)
prefer 5 apply(subgoal-tac PRE P (ODEsystem xfList with (\lambda s. G s \wedge F s))
POST Q, simp add: phi-f)
apply(rule dWeakening)
using impls apply simp
using assms by simp-all
end
theory VC-diffKAD-examples
imports VC-diffKAD
```

1.5 Rules Testing

begin

In this section we test the recently developed rules with simple dynamical systems.

```
— Example of hybrid program verified with the rule dSolve. lemma motion-with-constant-velocity:

PRE \ (\lambda \ s. \ s''y'' < s''x'' \ \land s''v'' > 0)
(ODE system \ [("x",(\lambda \ s. \ s''v''))] \ with \ (\lambda \ s. \ True))
POST \ (\lambda \ s. \ (s''y'' < s''x''))
apply(rule-tac uInput=[\lambda \ t \ s. \ s''v'' \ \ t + s''x''] in dSolve-toSolveUBC)
prefer 10 subgoal by(simp add: wp-trafo vdiff-def add-strict-increasing2)
apply(simp-all add: vdiff-def varDiffs-def)
```

```
prefer 2 apply(clarify, rule continuous-intros)
prefer 2 apply(simp add: solvesStoreIVP-def vdiff-def varDiffs-def)
apply(clarify, rule-tac f'1=\lambda x. s''v'' and g'1=\lambda x. \theta in derivative-intros(173))
apply(rule-tac f'1=\lambda x.0 and g'1=\lambda x.1 in derivative-intros(176))
by(auto intro: derivative-intros)
— Example of hybrid program verified with differential weakening.
\mathbf{lemma}\ system\text{-}where\text{-}the\text{-}guard\text{-}implies\text{-}the\text{-}postcondition}:
      PRE (\lambda s. s''x'' = 0)
      (ODEsystem [("x",(\lambda s. s "x" + 1))] with (\lambda s. s "x" \geq 0))
      POST (\lambda s. s''x'' \ge \theta)
using dWeakening by blast
\mathbf{lemma}\ system\text{-}where\text{-}the\text{-}guard\text{-}implies\text{-}the\text{-}postcondition2:}
      PRE (\lambda s. s''x'' = 0)
      (ODEsystem [("x",(\lambda s. s "x" + 1))] with (\lambda s. s "x" \geq 0))
POST (\lambda s. s "x" \geq 0)
apply(clarify, simp add: p2r-def)
apply(simp add: rel-ad-def rel-antidomain-kleene-algebra.addual.ars-r-def)
apply(simp add: rel-antidomain-kleene-algebra.fbox-def)
apply(simp add: relcomp-def rel-ad-def guarDiffEqtn-def solvesStoreIVP-def)
by auto
— Example of system proved with a differential invariant.
lemma circular-motion:
      PRE(\lambda \ s. \ (s \ "x") \cdot (s \ "x") + (s \ "y") \cdot (s \ "y") - (s \ "r") \cdot (s \ "r") = 0)
      (ODE system [("x",(\lambda s. s"y")),("y",(\lambda s. - s"x"))] with G)
      POST (\lambda \ s. \ (s "x") \cdot (s "x") + (s "y") \cdot (s "y") - (s "r") \cdot (s "r") = 0)
\mathbf{apply}(\textit{rule-tac}\ \eta = (t_V \ ''x'') \odot (t_V \ ''x'') \oplus (t_V \ ''y'') \odot (t_V \ ''y'') \oplus (\ominus (t_V \ ''r'') \odot (t_V \ ''y'')))
"r"))
  and uInput=[t_V "y", \ominus (t_V "x")] in dInvForTrms)
apply(simp-all add: vdiff-def varDiffs-def)
apply(clarsimp, erule-tac x="r" in allE)
by simp
— Example of systems proved with differential invariants, cuts and weakenings.
declare d-p2r [simp del]
lemma motion-with-constant-velocity-and-invariants:
      PRE (\lambda s. s "x" > s "y" \wedge s "v" > 0)
      (ODEsystem [("x", \lambda s. s "v")] with (\lambda s. True))
      POST (\lambda s. s "x" > s "y")
\mathbf{apply}(\textit{rule-tac } C = \lambda \textit{ s. } \textit{s "v"} > 0 \textit{ in } \textit{dCut})
apply(rule-tac \varphi = (t_C \ \theta) \prec (t_V \ ''v'') and uInput = [t_V \ ''v'']in dInvFinal)
apply(simp-all add: vdiff-def varDiffs-def, clarify, erule-tac x="v" in all E, simp)
apply(rule-tac C = \lambda \ s. \ s \ ''x'' > s \ ''y'' in dCut)
 \begin{array}{l} \mathbf{apply}(\mathit{rule-tac}\ \varphi = (t_V\ ''y'') \prec (t_V\ ''x'')\ \mathbf{and}\ \mathit{uInput} = [t_V\ ''v'']\ \mathbf{and} \\ F = \lambda\ s.\ s\ ''x'' > s\ ''y''\ \mathbf{in}\ \mathit{dInvFinal}) \end{array} 
apply(simp-all add: vdiff-def varDiffs-def, clarify, erule-tac x="y" in all E, simp)
using dWeakening by simp
```

```
{\bf lemma}\ motion\hbox{-}with\hbox{-}constant\hbox{-}acceleration\hbox{-}and\hbox{-}invariants:
      PRE (\lambda s. s "y" < s "x" \land s "v" \ge 0 \land s "a" > 0)
      (ODE system~[("x",(\lambda~s.~s~"v")),("v",(\lambda~s.~s~"a"))]~with~(\lambda~s.~True))
      POST(\lambda s. (s''y'' < s''x''))
apply(rule-tac C = \lambda \ s. \ s \ ''a'' > 0 \ in \ dCut)
apply(rule-tac \varphi = (t_C \ \theta) \prec (t_V \ ''a'') and uInput = [t_V \ ''v'', t_V \ ''a'']in dInvFinal)
apply(simp-all\ add:\ vdiff-def\ varDiffs-def,\ clarify,\ erule-tac\ x=''a''\ in\ all E,\ simp)
apply(rule-tac C = \lambda s. s "v" \geq 0 in dCut)
apply(rule-tac \varphi = (t_C \ 0) \leq (t_V \ "v") and uInput=[t_V \ "v", t_V \ "a"] in dInvFi-
nal)
apply(simp-all add: vdiff-def varDiffs-def)
apply(rule-tac C = \lambda \ s. \ s \ "x" > s \ "y" \ in \ dCut)
apply(rule-tac \varphi = (t_V "y") \prec (t_V "x") and uInput = [t_V "v", t_V "a"]in dInv-
Final)
apply(simp-all add: varDiffs-def vdiff-def, clarify, erule-tac x=''y'' in allE, simp)
using dWeakening by simp
declare d-p2r [simp]
end
```