Joy Ming and Alisa Nguyen (15 March 2013)

1 Problem 1

a. The probability that all of the M dimensions of x-y are between $-\epsilon$ and ϵ is $\rho = (2\epsilon)^M$. For each dimension i of χ , the probability that $|x_i - y_i| \le \epsilon$ is equivalent to

$$P(|x_i - y_i| \le \epsilon) =$$

$$P(-\epsilon \le x_i - y_i \le \epsilon) =$$

$$P(-\epsilon - x_i \le -y_i \le \epsilon - x_i) =$$

$$P(\epsilon + x_i \ge y_i \ge x_i - \epsilon) =$$

$$P(x_i - \epsilon \le y_i \le \epsilon + x_i) =$$

This distribution function is equivalent to $\int_{\epsilon+x_i}^{x_i-\epsilon} f(x)dx$, where f(x) is the PDF of y_i , which we know to have a uniform distribution, so $f(x) = \frac{1}{b-a} = 1$. Thus, we get:

$$\int_{\epsilon+x_i}^{x_i-\epsilon} 1 dx = \epsilon + x_i - (x_i - \epsilon) = 2\epsilon$$

Because we want to know the probability that all of the M dimensions of x-y are between $-\epsilon$ and ϵ , we simply take $\prod_{i=1}^{M} P(|x_i-y_i| \le \epsilon) = (2\epsilon)^M$.

- b. The probability of $\max_m |x_m y_m| \le \epsilon$ is at most ρ because as shown in (a), ρ does not depend on x_i and thus holds for all x_i . In addition, logically, if x is the center point, the average distance from it to any other point y is at most $\frac{1}{2}$ for any one dimension. As x moves farther and farther away from the center, the average distance increases so that it becomes at most 1 in any one dimension. So, if x is not in the center $\max_m |x_m y_m|$ grows and is less likely to be less than ϵ , decreasing that probability so that it is less than ρ .
- c. We will show that $||x y|| \ge max_m |x_m y_m|$.

$$||x - y|| = \sqrt{\sum_{m=1}^{M} (x_m - y_m)^2}$$

$$\sqrt{\sum_{m=1}^{M} (x_m - y_m)^2} \ge \max_{m} |x_m - y_m|$$

$$\sum_{m=1}^{M} (x_m - y_m)^2 \ge (\max_{m} |x_m - y_m|)^2$$

This is true because the left side of the inequality includes the right side in its sum. ||x - y|| is the total Euclidean distance between two points whereas $\max_m |x_m - y_m|$ is only the distance between one dimension of two points. The left side must be larger.

If x is any point in χ , and y is a point in χ drawn randomly from a uniform distribution on χ , then the probabilty that $||x-y|| \le \epsilon$ is also at most p because ||x-y|| is greater than or equal to $\max_m |x_m-y_m|$, making it less likely to be less than ϵ and thus giving it a probability lower than ρ of being less than ϵ .

- d. Lowerbound on number N of points needed to guarantee
- e. We can conclude that the effectiveness of the hierarchical agglomerativ clustering algorithm in high dimensional spaces

2 Problem 2

- a Given a prior distribution $Pr(\theta)$ and likelihood $Pr(D|\theta)$, the predictive distribution Pr(x|D) for a new datum,
 - (a) ML: $Pr(x|D) = Pr(x|\theta) = \underset{\theta}{\operatorname{arg\,max}} (\ln(Pr(D|\theta)))$
 - (b) MAP: $Pr(x|D) = Pr(x|D) = Pr(x|\theta) = \arg\max_{\theta} (\ln(P(D|\theta)P(\theta)))$
 - (c) FB: $Pr(x|D) = \int \theta P(\theta|D) d\theta$
- b MAP can be considered "more Bayesian" than ML because it takes into account the distribution of θ instead of assuming same weight or uniformity.
- c One advantage the MAP method enjoys over the ML method
- d The Beta distribution is the conjugate prior of the Bernoulli.
- e Under the ML approach

3 Problem 3

- a The K -means clustering objective is to minimize the sum of squared distances between prototype and data.
- b PCA relates to K-means

4 Problem 4