데이터베이스시스템 4주차 과제

과제 #2 보고서

<주의사항>

- 개별 과제 입니다. (모든 학생이 보고서를 제출해야 함)
- 각각의 문제 바로 아래에 답을 작성 후 제출해 주세요.
- 제출 기한: 2021. 3. 23 (화요일) ~ 3. 29 (월요일) 23:59 까지
 - 부정행위 적발 시, 원본(보여준 사람)과 복사본(베낀 사람) 모두 0점 처리함
- SmartLEAD 에 아래의 파일을 제출해 주세요
 - 보고서 (PDF 파일로 변환 후 제출)
 - 보고서 파일명에 이름과 학번을 입력 해 주세요.

이름	곽영주			
학번	20175105			
소속 학과/ 대학	빅데이터전공			

- [Q 1] 다음 릴레이션에 대하여 답하시오.
 - (1) 당연하지 않은 (nontrivial) 함수종속을 구하시오. (1점)
 - (2) BCNF 로 분해하시오. (1 점)

ID	пате	salary	dept_name	building	budget
22222	Einstein	95000	Physics	Watson	70000
12121	Wu	90000	Finance	Painter	120000
32343	El Said	60000	History	Painter	50000
45565	Katz	75000	Comp. Sci.	Taylor	100000
98345	Kim	80000	Elec. Eng.	Taylor	85000
76766	Crick	72000	Biology	Watson	90000
10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
58583	Califieri	62000	History	Painter	50000
83821	Brandt	92000	Comp. Sci.	Taylor	100000
15151	Mozart	40000	Music	Packard	80000
33456	Gold	87000	Physics	Watson	70000
76543	Singh	80000	Finance	Painter	120000

답변:

(1): {ID -> name, salary, dept_name}, {dept_name -> building, budget}

(2): (ID, name, salary, dept_name), (dept_name, building, budget)

[Q 2] 다음 릴레이션 스키마에 대하여 답하시오.

R=(A, B, C),

 $\mathsf{F} {=} \{\mathsf{A} {\rightarrow} \mathsf{B} \mathsf{C}, \; \mathsf{B} {\rightarrow} \mathsf{C}, \; \mathsf{A} {\rightarrow} \mathsf{B}, \; \mathsf{A} \mathsf{B} {\rightarrow} \mathsf{C} \}$

 $key = \{A\}$

- (1) 함수 종속 F의 표준커버(canonical cover)를 구하시오. (1점)
- (2) BCNF 으로 분해한 후, 스키마를 보이시오. (1 점)
- (3) 종속성이 보존되는지의 여부를 밝히시오. (yes or no) (1 점)

답변:

- (1): $A \rightarrow B$, $B \rightarrow C$
- (2): (A, B), (B, C)
- (3): Yes

[Q 3]

다음에 사항에 답하시오. (2점)

함수적 종속성을 이용하여 정규화를 수행하는 경우, 다음 3가지 조건이 만족되는 것이 바람직하다. 첫 번때 조건은 분해된 릴레이션을 죠인하면 원래의 릴레이션이 정보 손실 없이 얻어져야한다는 것으로 (①)라고 한다. 두 번째는 중복 없음 조건을 들 수 있으며, 세번째는 (②)으로 이 조건이 만족되지 않으면 함수적 종속 위배에 대한 갱신 검사에 비용이 많이 들게 된다.

답변:

- 1 무손실 죠인 분해
- 2 종속성 보존

[Q 4]

다음 릴레이션 스키마에 대하여 F1, F2의 순서로 FD를 적용한 BCNF 분해 과정을 보이고, 최종 BCNF 릴레이션들의 스키마를 구하시오. (3점)

- Class (<u>course id</u>, title, dept_name, credits, <u>sec id</u>, <u>semester</u>, <u>year</u>, building, room_number,
 capacity, time_slot_id)
- Functional dependencies:
 - F1: building, room_number → capacity
 - F2: course_id → title, dept_name, credits
 - F3: course_id, sec_id, semester, year → building, room_number, time_slot_id
- A candidate key {course_id, sec_id, semester, year}.

답변:

F1: {building, room_number}는 슈퍼키가 아니다. 따라서 class 를 다음과 같이 분해한다.

classroom (building, room_number, capacity)

class-1 (course_id, title, dept_name, credits, sec_id, semester, year, building, room_number, time_slot_id)

F2: (class-1 에서 성립하는 FD) course_id 는 class-1 의 슈퍼키가 되지 못한다. 따라서 class-1 을 다음과 같이 분해한다.

course (course_id, title, dept_name, credits)

section (course_id, sec_id, semester, year, building, room_number, time_slot_id)

F3: (section 에서 성립하는 FD) course_id, sec_id, semester, year 는 슈퍼키이다.

따라서 최종 BCNF 릴레이션들의 스키마는 classroom, course, section 이다.