20. Juli 2023

Technische Universität Berlin Fakultät II – Institut für Mathematik

Doz.: G. Penn-Karras, P. Winkert Ass.: F. Borer, J. Halbey, F. Jochmann

Probeklausur "Analysis II für Ingenieurwissenschaften"

Name:						Vorna	Vorname:					
						Studiengang:						
 Erklär	rung:											
Füllen	Sie bitt	e zuerst	das D	eckblatt	vollstä	indig ur	nd leser	lich aus	s. Damit	t erklär	en Sie, dass	
k F II V II I	annt sin Prüfung hnen be orausse hnen be	nd. Ihne führen kannt is tzt, and ekannt i en gesu	en ist au kann (§ st, dass lernfalls st, dass	ıßerden 63 Abs die Teil die Pr s eine I	n bewus . 2 Satz nahme : üfung n Prüfung	sst, dass 3 AllgS an der I icht gül , die un	s ihre N StuPO); Prüfung Itig ist nter bel	ichterfi ; ; eine or (§61 Ak kannten	illung z dnungs, os. 1 All und b	ur Ung gemäße gStuPC ewusst	r StuPO be- jültigkeit der e Anmeldung D); in Kauf ge- zlich Gültig-	
Hinwe	eise:											
• S • N • In	eren Hil Ichreibe Mit Blei In Aufga Aussage Punkt.	Ifsmitte n Sie au stift ode abe 1 is richtig.	l zugela uf jedes er Rotst et jewei Bei Ar	ssen. Blatt I ift geso ls die r kreuzer	hren Na hrieben ichtige n mehre	amen un le Klaus Aussag erer Aus	nd Ihre suren w e anzuk ssagen i	Matrik erden r kreuzen n einer	elnumm nicht gev . Es ist Teilauf	ner. wertet. immer gabe gi	r genau eine ibt es keinen chenwege an.	
Die Be	arbeitu:	ngszeit	der Kla	usur be	eträgt 90	0 Minut	ten.					
In der l	Klausur	sind ma	aximal (60 Punk	te errei	chbar. I	Die Klaı	ısur ist	mit 30 l	Punkte:	n bestanden.	
Punkt	ie e											
1	2	3	4	5	6	7	8	9	10	Σ		
											-	

1. Aufgabe (Single Choice)

(11 Punkte)

Für jede richtige Antwort gibt es einen Punkt. In jeder Teilaufgabe ist **genau eine** Antwortmöglichkeit korrekt. Markieren Sie richtige Antworten so: (\boxtimes oder \boxtimes). Bei Ankreuzen mehrerer Antworten zu einer Teilaufgabe gibt es keinen Punkt. Im Falle einer Korrektur füllen Sie bitte Kästchen, die nicht berücksichtigt werden sollen, vollständig aus (\blacksquare).

(a) Gegeben sei die Menge

$$M = \{(x, y, z) \in \mathbb{R}^3 \mid 0 \le z \le x^2 + y^2\}.$$

Welche Aussage ist wahr?

- \square Die Menge M ist offen.
- \square Die Menge M ist abgeschlossen.
- \Box Die Menge M ist weder offen noch abgeschlossen.
- \square Die Menge M ist offen und abgeschlossen.

Welche Aussage ist wahr?

- \boxtimes Die Menge M ist beschränkt.
- \boxtimes Die Menge M ist unbeschränkt.
- (b) Gegeben sei die Folge $(\vec{a}_n)_{n\in\mathbb{N}}\subseteq\mathbb{R}^2$ mit

$$\vec{a}_n = \begin{pmatrix} \frac{3n^2}{n^3 + 7n} \\ \cos(\pi n) \end{pmatrix}.$$

Welche Aussage ist wahr?

- \square Die Folge $(\vec{a}_n)_{n\in\mathbb{N}}$ konvergiert.
- lacktriangleq Die Folge $(\vec{a}_n)_{n\in\mathbb{N}}$ divergiert, besitzt aber eine konvergente Teilfolge.
- \square Die Folge $(\vec{a}_n)_{n\in\mathbb{N}}$ divergiert und besitzt keine konvergente Teilfolge.
- (c) Gegeben ist die Funktion

$$f: \mathbb{R}^2 \to \mathbb{R}; \quad f(x,y) = \begin{cases} \frac{y^3}{e^{x^2}}, & \text{für } x \neq 0; \\ 1, & \text{für } x = 0. \end{cases}$$

Ist f im Punkt (0,0) stetig?

 \square Ja, fist im Punkt (0,0)stetig. Für alle Nullfolgen $\left(\frac{1}{n^k},\frac{1}{n^k}\right)_{n\in\mathbb{N}}, k\in\{1,2,\dots\},$ gilt

$$\lim_{n\to\infty} f\left(\frac{1}{n^k},\frac{1}{n^k}\right) = \lim_{n\to\infty} \mathrm{e}^{\frac{1}{n}} = \mathrm{e}^0 = 1,$$

also existiert der Grenzwert $\lim_{(x,y)\to(0,0)} f(x,y)$ und ist gleich dem Funktionswert f(0,0).

Nein, f ist im Punkt (0,0) nicht stetig. Es gilt zum Beispiel für die Nullfolge $\left(\frac{1}{n^3},\frac{1}{n}\right)_{n\in\mathbb{N}}$, dass

$$f\left(\frac{1}{n^3}, \frac{1}{n}\right) = e^{n^3}$$

ist, somit kann der Grenzwert $\lim_{(x,y)\to(0,0)}f(x,y)$ nicht existieren.

 \square Nein, f ist im Punkt (0,0) nicht stetig. Der Grenzwert $\lim_{(x,y)\to(0,0)} f(x,y)$ existiert zwar, da nach mehrfacher Anwendung der Regel von de L'Hospital gilt, dass

$$\lim_{(x,y)\to(0,0)} e^{\frac{y^3}{x^2}} = \lim_{(x,y)\to(0,0)} e^{\frac{3\cdot 2\cdot 1}{2\cdot 1}} = e^3$$

ist, dies entspricht aber nicht dem im Nullpunkt definierten Funktionswert.

- (d) Es sei K ein Kreiskegel mit Kegelspitze (0,2,0), dessen Grundfläche durch einen in der Ebene y=0 befindlichen Kreis mit Radius 4 und Mittelpunkt (0,0,0) gegeben ist. Welche Menge ist eine Beschreibung von K?

 - $K = \{(r\cos(\varphi), y, r\sin(\varphi)) \in \mathbb{R}^3 \mid \varphi \in [0, 2\pi], y \in [0, 2], 0 \le r \le 4 2y\};$
 - $\Box \ K \ = \ \{ (r\cos(\varphi), y, r\sin(\varphi)) \in \mathbb{R}^3 \mid \varphi \in [0, 2\pi], \ y \in [0, 2], \ r \in [0, 4] \}.$
- (e) Gegeben seien die Menge

$$M = \{(x, y) \in \mathbb{R}^2 \mid 2 \le x^2 + y^2 \le 5\}$$

und eine Funktion $f \colon M \to \mathbb{R}$, die stetig ist auf M und im Inneren von M zweimal stetig partiell differenzierbar ist. Welche der folgenden Aussagen ist dann im Allgemeinen wahr?

- lacktriangle Die Funktion f nimmt im Inneren von M mindestens ein globales Minimum und Maximum an.
- \Box Die Funktion f nimmt im Inneren von M mindestens ein lokales Minimum und Maximum an.
- \square Die Funktion f nimmt in M kein lokales Minimum oder Maximum an.
- \boxtimes Die Funktion hat nicht notwendigerweise globale Extrema in M.
- (f) Seien $f,g:\mathbb{R}^3\to\mathbb{R}$ zwei differenzierbare Funktionen. Stellen wir das Gleichungssystem der Lagrange-Multiplikatoren unter der Nebenbedingung g(x,y,z)=0 auf, so erhalten wir

$$\operatorname{grad}_{(x,y,z)} f = \lambda \cdot \operatorname{grad}_{(x,y,z)} g$$
 mit $g(x,y,z) = 0$.

Welche Aussage ist wahr?

- $\mbox{\footnotemum}$ Auch jede andere Funktion $\tilde{f}=f+c$ mit $c\in\mathbb{R}$ würde auf das gleiche Gleichungssystem führen.
- \square Auch jede andere Funktion $\tilde{f}(x,y,z)=f(x,y,z)+C(x)$ mit $C:\mathbb{R}\to\mathbb{R}$ stetig würde auf das gleiche Gleichungssystem führen.
- \Box Auch jede andere Nebenbedingung $\tilde{g}(x,y,z)=g(x,y,z)+c=0$ würde auf das gleiche Gleichungssystem führen.
- (g) Es sei $\vec{x}_0 \in \mathbb{R}^2$ ein fester Punkt und es sei $f : \mathbb{R}^2 \to \mathbb{R}$ eine zweimal stetig partiell differenzierbare Funktion mit $\operatorname{grad}_{\vec{x}_0} f = \vec{0}$. Sei ferner

$$\operatorname{Hess}_{\vec{x}_0} f = \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix}.$$
 Let $= -1$

Welche der folgenden Aussagen ist wahr?

- \square Die Funktion f nimmt ein lokales Maximum in \vec{x}_0 an.
- \square Die Funktion f nimmt ein lokales Minimum in \vec{x}_0 an.
- \boxtimes Die Funktion f hat einen Sattelpunkt in \vec{x}_0 .
- ☐ Wir können keine der obigen Aussagen treffen.
- (h) Im Folgenden bezeichnet $\vec{v}: \mathbb{R}^3 \to \mathbb{R}^3$ ein Vektorfeld mit stetigen zweiten partiellen Ableitungen. Geben Sie an, welcher der Ausdrücke nicht definiert ist:
 - \triangleright rot(grad(\vec{v}));
 - \square grad(div(\vec{v}));
 - \square div(rot(\vec{v}));
 - \square rot(rot(\vec{v})).

(i) Bestimmen Sie alle Funktionen $f:\mathbb{R}^3 \to \mathbb{R}$, für die das Vektorfeld

$$\vec{v}: \mathbb{R}^3 \to \mathbb{R}^3; \quad \vec{v}(x, y, z) = \begin{pmatrix} f(x, y, z) \\ x^2 + z \\ y + z \end{pmatrix}$$

ein Potential $u_f: \mathbb{R}^3 \to \mathbb{R}$ besitzt.

Das Vektorfeld v hat ein Potential genau dann, wenn f die folgende Form hat:

(j) Wir betrachten die Kurve

$$\vec{\gamma}: [0,1] \to \mathbb{R}^2; \quad \vec{\gamma}(t) = \begin{pmatrix} t \\ t \end{pmatrix}.$$

Kreuzen Sie an, welche der folgenden Parametrisierungen $\vec{\eta}_i$, $i \in \{1, 2, 3, 4\}$, dieselbe Kurve wie $\vec{\gamma}$ beschreibt:

$$\Box \vec{\eta}_1: \left[0, \frac{1}{2}\right] \to \mathbb{R}^2; \quad \vec{\eta}_1(t) = \begin{pmatrix} t \\ 2t \end{pmatrix};$$

$$\Box \vec{\eta}_2: \left[0, 2\right] \to \mathbb{R}^2; \quad \vec{\eta}_2(t) = \begin{pmatrix} \frac{1}{2}t \\ t \end{pmatrix};$$

$$\boxtimes \vec{\eta}_3: \left[0, \frac{1}{2}\right] \to \mathbb{R}^2; \quad \vec{\eta}_3(t) = \begin{pmatrix} 2t \\ 2t \end{pmatrix};$$

$$\square \ \vec{\eta}_4: [0,2] \to \mathbb{R}^2; \quad \vec{\eta}_4(t) = \binom{2t}{t};$$

 \square Keine der Parametrisierungen $\vec{\eta}_i$, $i \in \{1, 2, 3, 4\}$, beschreibt dieselbe Kurve wie

2. Aufgabe (Topologie und Folgen)

(2 Punkte)

Es gilt

$$\lim_{n \to \infty} \begin{pmatrix} e^{-n} + 2 \cdot 3^{\frac{1}{n}} \\ \sin(2\pi n - \frac{\pi}{2}) \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}.$$

Bestimmen Sie $a, b \in \mathbb{R}$.

Es gilt
$$a = \begin{bmatrix} \mathbf{z} & \mathbf{z} & \mathbf{z} \end{bmatrix}$$
 und $b = \begin{bmatrix} \mathbf{z} & \mathbf{z} & \mathbf{z} \end{bmatrix}$.

3. Aufgabe (Stetigkeit)

(2 Punkte)

Wir betrachten die Abbildung

$$\vec{f}: \mathbb{R}^2 \to \mathbb{R}^2; \quad \vec{f}(x,y) = \begin{cases} \left(\frac{x^3y}{x^2 + y^2} + 1\right), & \text{für } (x,y) \neq (0,0); \\ x^4y^2 \sin(2y^2) \end{pmatrix}, & \text{für } (x,y) \neq (0,0); \\ \left(\frac{a}{b}\right), & \text{für } (x,y) = (0,0). \end{cases}$$

Bestimmen Sie $a \in \mathbb{R}$ und $b \in \mathbb{R}$ so, dass \vec{f} auf \mathbb{R}^2 stetig ist.

Es ist
$$a =$$
 und $b =$
$$\frac{1}{2}$$

$$\frac{1}{k^2} + 1 = \frac{1}{2k^2} + 1$$

$$\frac{1}{2k^2} + 1 = \frac{1}{2k^2} + 1$$

$$\frac{1}{2k^2} + 1 = \frac{1}{2k^2} + 1$$

$$\frac{1}{2k^2} + 1 = \frac{1}{2k^2} + 1$$

4. Aufgabe (Differenzierbarkeit)

(8 Punkte)

(a) Sei

$$f: \mathbb{R}^2 \to \mathbb{R}; \quad f(x,y) = e^{x^2} \cos(3y+1).$$

Bestimmen Sie die Konstanten $A, B \in \mathbb{R}$ des Gradienten

$$\operatorname{grad}_{(x,y)} f = egin{pmatrix} \operatorname{Axe}^{x^2} \cos(3y+1) \\ \operatorname{Be}^{x^2} \sin(3y+1) \end{pmatrix}$$

sowie die Konstanten $a,b,c,d\in\mathbb{R}$ der Hessematrix

$$\operatorname{Hess}_{(x,y)} f = \begin{pmatrix} a e^{x^2} \cos(3y+1) + b x^2 e^{x^2} \cos(3y+1) & c x e^{x^2} \sin(3y+1) \\ -6 x e^{x^2} \sin(3y+1) & d e^{x^2} \cos(3y+1) \end{pmatrix}.$$
gilt
$$\left(2 e^{x^2} + 4 x^2 e^{x^2} \right) \cos(3y+1)$$

Es gilt

$$(2e^{x^2} + 4x^2e^{x^2}) \cos(3y+1)$$

$$A = \begin{bmatrix} & \mathbf{z} & & \\ & \mathbf{z} & & \end{bmatrix}; \quad B = \begin{bmatrix} & -\mathbf{3} & \\ & & \end{bmatrix}$$

$$a = \begin{bmatrix} & \mathbf{2} & & \\ & & \end{bmatrix}; \quad b & = \begin{bmatrix} & \mathbf{4} & \\ & & \end{bmatrix}; \quad c = \begin{bmatrix} & \mathbf{1} & \\ & & \end{bmatrix}$$

(b) Sei

$$f: \mathbb{R}^2 \to \mathbb{R}; \quad f(x,y) = x^2 + y.$$

i. Berechnen Sie die Richtungsableitung $\frac{\partial f}{\partial \vec{r}}(\vec{a})$ von f in Richtung von

$$\vec{v} = \frac{1}{\sqrt{5}} \begin{pmatrix} 1\\2 \end{pmatrix} \quad \text{im Punkt} \quad \vec{a} = \begin{pmatrix} 2\\3 \end{pmatrix}.$$
Es gilt $\frac{\partial f}{\partial \vec{v}}(\vec{a}) = \boxed{\frac{b}{\sqrt{5}}}$.

ii. Berechnen Sie die erste partielle Ableitung $\frac{\partial f}{\partial x}(\vec{a})$ von f, wobei \vec{a} wie oben gegeben ist, also $\vec{a} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$

5. Aufgabe (Taylor, Fehlerschranken, Koordinatensysteme) (4 Punkte)

(a) Wir betrachten eine zweimal stetig partiell differenzierbare Funktion $f \colon \mathbb{R}^2 \to \mathbb{R}$ mit

$$f(1,0) = 3$$
, $\operatorname{grad}_{(1,0)} f = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$, $\operatorname{Hess}_{(1,0)} f = \begin{pmatrix} -6 & 3 \\ 3 & 2 \end{pmatrix}$.

Das Taylorpolynom 2. Ordnung $T_2(f)$ von f im Entwicklungspunkt (1,0) kann in der Form

$$(T_2 f)(x, y) = 3 + 3(x - 1) - 2y + a(x - 1)^2 + b(x - 1)y + y^2$$

dargestellt werden. Bestimmen Sie $a, b \in \mathbb{R}$. Es gilt:

$$a = \begin{bmatrix} & \boldsymbol{\gamma} & & \\ & & \boldsymbol{\zeta} & & \end{bmatrix}, \quad b = \begin{bmatrix} & \boldsymbol{\zeta} & & \\ & & \boldsymbol{\zeta} & & \end{bmatrix}.$$

$$\left\langle \left(\frac{3}{2}\right), \left(\frac{x\cdot 1}{y}\right) \right\rangle = 3(x-1)-2y$$

(b) Gegeben sei eine Funktion $f:\{(x,y)\in\mathbb{R}^2\mid 2\leq x\leq 3,\; -1\leq y\leq 3\}\to\mathbb{R}$ mit Gradienten

$$\operatorname{grad}_{\vec{x}} f = \begin{pmatrix} x^3 \\ -y \end{pmatrix}. \qquad \begin{pmatrix} x^3 \\ x \end{pmatrix} \xi \land = 2$$

Bestimmen Sie $a, b \in \mathbb{R}$ möglichst klein, sodass $\left| \frac{\partial f}{\partial x}(\vec{p}) \right| \leq a$ und $\left| \frac{\partial f}{\partial y}(\vec{p}) \right| \leq b$ für

alle $\vec{p} \in \{(x,y) \in \mathbb{R}^2 \mid 2 \le x \le 3, \ -1 \le y \le 3\}$ gilt.

Es ist $a = \begin{bmatrix} \mathbf{2} \mathbf{3} \\ \end{bmatrix}$ und $b = \begin{bmatrix} \mathbf{3} \\ \end{bmatrix}$. 1-4/86

6. Aufgabe (Extrema)

(4 Punkte)

(a) Gegeben sei die Funktion

$$f: \mathbb{R}^2 \to \mathbb{R}; \quad f(x,y) = (x+1)^3 + 3(y^2+1)^2$$

und der kritische Punkt $\vec{x}_{\text{krit}} = (-1,0) \in \mathbb{R}^2$ von f, das heisst, es gilt $\operatorname{grad}_{\vec{x}_{\text{krit}}} f = \vec{0}$. Die Hesse-Matrix von f an der Stelle \vec{x}_{krit} sei dargestellt durch

Hess
$$_{\vec{x}_{krit}} f = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$$
.

Hess $_{\vec{x}_{krit}} f = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$.

Bestimmen Sie
$$a$$
 und b .

Es ist $a = \bigcirc$

O

und $b = \bigcirc$
 $a =$

(b) Seien

$$f \colon \mathbb{R}^3 \to \mathbb{R}; \quad f(x, y, z) = Ax^2y + B\cos(y)z,$$

mit $A, B \in \mathbb{R}$, und

$$g: \mathbb{R}^3 \to \mathbb{R}; \quad g(x, y, z) = x^2 + y^2 + z^2 - 1.$$

Stellen wir das Gleichungssystem der Lagrange-Multiplikatoren auf, so erhalten wir

$$(2) 5x^2 - 7\sin(y)z = 2\lambda y;$$

$$7\cos(y) = 2\lambda z,$$

und die Nebenbedingung g(x, y, z) = 0.

Bestimmen Sie A und B.

Es gilt
$$A =$$
 und $B =$.

7. Aufgabe (Potentiale)

(2 Punkte)

Sei

$$\vec{v}: \mathbb{R}^3 \to \mathbb{R}^3; \quad \vec{v}(x, y, z) = \begin{pmatrix} -3xy \\ x^2 e^z - 8x \cos(z) \\ 3yz \end{pmatrix}$$

ein Vektorfeld. Bestimmen Sie $a,b\in\mathbb{R},$ so dass das Vektorfeld

timmen Sie
$$a, b \in \mathbb{R}$$
, so dass das Vektorfeld
$$\vec{w} : \mathbb{R}^3 \to \mathbb{R}^3; \quad \vec{w}(x, y, z) = \begin{pmatrix} x^2 e^z \\ axyz \\ bx^2 \cos(z) + 1 \end{pmatrix}$$
e von \vec{v} ist.

ein Vektorpotential von \vec{v} ist.

Es gilt
$$a = \boxed{}$$
 und $b = \boxed{}$

(10 Punkte)

8. Aufgabe (Kurven- und Oberflächenintegrale)

(a) Seien

$$\vec{v}: \mathbb{R}^2 \to \mathbb{R}^2; \quad \vec{v}(x,y) = \begin{pmatrix} \cos(x) \\ \sin(x+3y) \end{pmatrix}$$

und

$$\vec{\gamma}:[1,2] o \mathbb{R}^2; \quad \vec{\gamma}(t) = \begin{pmatrix} 2t \\ t^3 \end{pmatrix}. \quad \vec{\gamma}$$
 (1) $= \begin{pmatrix} 2 \\ 3t^4 \end{pmatrix}$

Schreiben wir das Kurvenintegral von \vec{v} entlang von $\vec{\gamma}$ hin, so erhalten wir

$$\int_{\vec{\gamma}} \vec{v} \cdot \vec{ds} = \int_{1}^{2} (a\cos(2t) + 3t^{2}\sin(b(t)))dt. \left. \left. \left\langle \left(\begin{array}{c} \cos(2t) \\ \sin(2t + 3t^{3}) \end{array} \right) \right\rangle \left(\begin{array}{c} \mathbf{R} \\ \mathbf{Sin}(2t + 3t^{3}) \end{array} \right) \right\rangle \left(\begin{array}{c} \mathbf{R} \\ \mathbf{Sin}(2t + 3t^{3}) \end{array} \right) \right\rangle \left(\begin{array}{c} \mathbf{R} \\ \mathbf{Sin}(2t + 3t^{3}) \end{array} \right) \left(\begin{array}{c} \mathbf{R} \\ \mathbf{Sin}(2t + 3t^{3}) \end{array} \right) \left(\begin{array}{c} \mathbf{R} \\ \mathbf{Sin}(2t + 3t^{3}) \end{array} \right) \left(\begin{array}{c} \mathbf{R} \\ \mathbf{Sin}(2t + 3t^{3}) \end{array} \right) \left(\begin{array}{c} \mathbf{R} \\ \mathbf{Sin}(2t + 3t^{3}) \end{array} \right) \left(\begin{array}{c} \mathbf{R} \\ \mathbf{Sin}(2t + 3t^{3}) \end{array} \right) \left(\begin{array}{c} \mathbf{R} \\ \mathbf{Sin}(2t + 3t^{3}) \end{array} \right) \left(\begin{array}{c} \mathbf{R} \\ \mathbf{Sin}(2t + 3t^{3}) \end{array} \right) \left(\begin{array}{c} \mathbf{R} \\ \mathbf{Sin}(2t + 3t^{3}) \end{array} \right) \left(\begin{array}{c} \mathbf{R} \\ \mathbf{Sin}(2t + 3t^{3}) \end{array} \right) \left(\begin{array}{c} \mathbf{R} \\ \mathbf{Sin}(2t + 3t^{3}) \end{array} \right) \left(\begin{array}{c} \mathbf{R} \\ \mathbf{Sin}(2t + 3t^{3}) \end{array} \right) \left(\begin{array}{c} \mathbf{R} \\ \mathbf{Sin}(2t + 3t^{3}) \end{array} \right) \left(\begin{array}{c} \mathbf{R} \\ \mathbf{Sin}(2t + 3t^{3}) \end{array} \right) \left(\begin{array}{c} \mathbf{R} \\ \mathbf{Sin}(2t + 3t^{3}) \end{array} \right) \left(\begin{array}{c} \mathbf{R} \\ \mathbf{Sin}(2t + 3t^{3}) \end{array} \right) \left(\begin{array}{c} \mathbf{R} \\ \mathbf{Sin}(2t + 3t^{3}) \end{array} \right) \left(\begin{array}{c} \mathbf{R} \\ \mathbf{Sin}(2t + 3t^{3}) \end{array} \right) \left(\begin{array}{c} \mathbf{R} \\ \mathbf{Sin}(2t + 3t^{3}) \end{array} \right) \left(\begin{array}{c} \mathbf{R} \\ \mathbf{Sin}(2t + 3t^{3}) \end{array} \right) \left(\begin{array}{c} \mathbf{R} \\ \mathbf{Sin}(2t + 3t^{3}) \end{array} \right) \left(\begin{array}{c} \mathbf{R} \\ \mathbf{Sin}(2t + 3t^{3}) \end{array} \right) \left(\begin{array}{c} \mathbf{R} \\ \mathbf{Sin}(2t + 3t^{3}) \end{array} \right) \left(\begin{array}{c} \mathbf{R} \\ \mathbf{Sin}(2t + 3t^{3}) \end{array} \right) \left(\begin{array}{c} \mathbf{R} \\ \mathbf{Sin}(2t + 3t^{3}) \end{array} \right) \left(\begin{array}{c} \mathbf{R} \\ \mathbf{Sin}(2t + 3t^{3}) \end{array} \right) \left(\begin{array}{c} \mathbf{R} \\ \mathbf{Sin}(2t + 3t^{3}) \end{array} \right) \left(\begin{array}{c} \mathbf{R} \\ \mathbf{Sin}(2t + 3t^{3}) \end{array} \right) \left(\begin{array}{c} \mathbf{R} \\ \mathbf{Sin}(2t + 3t^{3}) \end{array} \right) \left(\begin{array}{c} \mathbf{R} \\ \mathbf{Sin}(2t + 3t^{3}) \end{array} \right) \left(\begin{array}{c} \mathbf{R} \\ \mathbf{Sin}(2t + 3t^{3}) \end{array} \right) \left(\begin{array}{c} \mathbf{R} \\ \mathbf{Sin}(2t + 3t^{3}) \end{array} \right) \left(\begin{array}{c} \mathbf{R} \\ \mathbf{Sin}(2t + 3t^{3}) \end{array} \right) \left(\begin{array}{c} \mathbf{R} \\ \mathbf{Sin}(2t + 3t^{3}) \end{array} \right) \left(\begin{array}{c} \mathbf{R} \\ \mathbf{Sin}(2t + 3t^{3}) \end{array} \right) \left(\begin{array}{c} \mathbf{R} \\ \mathbf{Sin}(2t + 3t^{3}) \end{array} \right) \left(\begin{array}{c} \mathbf{R} \\ \mathbf{Sin}(2t + 3t^{3}) \end{array} \right) \left(\begin{array}{c} \mathbf{R} \\ \mathbf{Sin}(2t + 3t^{3}) \end{array} \right) \left(\begin{array}{c} \mathbf{R} \\ \mathbf{Sin}(2t + 3t^{3}) \end{array} \right) \left(\begin{array}{c} \mathbf{R} \\ \mathbf{Sin}(2t + 3t^{3}) \end{array} \right) \left(\begin{array}{c} \mathbf{R} \\ \mathbf{Sin}(2t + 3t^{3}) \end{array} \right) \left(\begin{array}{c} \mathbf{R} \\ \mathbf{Sin}(2t + 3t^{3}) \end{array} \right) \left(\begin{array}{c} \mathbf{R} \\ \mathbf{Sin}(2t + 3t^{3}) \end{array} \right) \left(\begin{array}{c} \mathbf{R} \\ \mathbf{Sin}(2t + 3t^{3}) \end{array} \right) \left(\begin{array}{c} \mathbf{R} \\ \mathbf{Sin}(2t + 3t^{3}) \end{array} \right) \left(\begin{array}{c} \mathbf{R} \\ \mathbf{Sin}(2t + 3t^{3}) \end{array} \right) \left(\begin{array}{c}$$

Bestimmen Sie $a \in \mathbb{R}$ und die stetige Funktion $b : \mathbb{R} \to \mathbb{R}$.

Es gilt
$$a =$$
 und $b(t) =$ $2t+3t^2$.

(b) Notieren Sie das Integral

$$\int_0^2 \int_0^{x^2} x dy dx$$

in der Form

$$\int_{a}^{b} \int_{c}^{d} x dx dy$$

mit geeigneten Grenzen a, b, c, d, die von x oder y abhängen können.

Es gilt
$$a=egin{pmatrix} oldsymbol{arphi} & oldsymbol{\psi} & oldsymbol{\zeta} & oldsymbol{\zeta}$$

(c) Eine Parametrisierung der Mantelfläche M eines Kegels ist gegeben durch

$$\vec{\eta}: [0,1] \times [0,2\pi] \to \mathbb{R}^3; \quad \vec{\eta}(r,\phi) = \begin{pmatrix} r\cos(\phi) \\ r\sin(\phi) \\ 1-r \end{pmatrix}. \qquad \begin{pmatrix} \text{sin}\, \mathbf{\psi} \\ \text{sin}\, \mathbf{\psi} \end{pmatrix} \mathbf{x} \begin{pmatrix} -\mathbf{\gamma}\sin(\phi) \\ \mathbf{\gamma}\cos(\phi) \\ \mathbf{\psi} \end{pmatrix}$$
Berechnung des Flächenintegrals der Funktion

Der Ansatz zur Berechnung des Flächenintegrals der Funktion

$$f:\mathbb{R}^3 o \mathbb{R}; \quad f(x,y,z) = (x^2+y^2)z^3$$

$$= \begin{pmatrix} \mathbf{r} \cos \mathbf{\phi} & \mathbf{r}$$

führt auf das Integral

$$\iint_{M} f dO = \int_{0}^{2\pi} \int_{0}^{1} (1 - r)^{a} r^{b} \left\| \frac{\partial \vec{\eta}}{\partial r} (r, \phi) \times \frac{\partial \vec{\eta}}{\partial \phi} (r, \phi) \right\| dr d\phi \quad \sqrt{\gamma^{2} \gamma^{3}}$$

$$= A \int_{0}^{2\pi} \int_{0}^{1} (1 - r)^{a} r^{b} r^{c} dr d\phi$$

für $a, b, c, A \in \mathbb{R}$. Bestimmen Sie a, b, c, A.

Es gilt
$$a=$$
 3 , $b=$ 2 , $c=$ 4 , $A=$ 3.

9. Aufgabe (Mehrdimensionale Integration)

(8 Punkte)

Gegeben seien die Menge

$$K = \{(x, y, z) \in \mathbb{R}^3 \mid 1 \le x^2 + y^2 + z^2 \le 9\}$$

und die Funktion

$$f: K \to \mathbb{R}; \quad f(x, y, z) = x^2 + y^2.$$

Unter Verwendung der Kugelkoordinaten

$$\Phi(r,\theta,\varphi) = egin{pmatrix} r\sin(\theta)\cos(\varphi) \\ r\sin(\theta)\sin(\varphi) \\ r\cos(\theta) \end{pmatrix}$$

erhalten wir

$$\iiint\limits_K f(x,y,z) dx dy dz = \int_0^{2\pi} \int_a^b \int_c^d r^j \sin^k(\varphi) \cos^l(\varphi) \sin^m(\theta) dr d\theta d\varphi$$

für $a, b, c, d, j, k, l, m \in \mathbb{R}$.

Bestimmen Sie a, b, c, d, j, k, l, m. Es gilt

10. Aufgabe (Integralsätze)

(9 Punkte)

(a) Sei $K=\{(x,y,z)\in\mathbb{R}^3\mid x^2+y^2+z^2\leq 9,\ z\geq 0\}$ die obere Halbkugel mit Radius r=3. Im Folgenden sei ∂K so parametrisiert, dass das Oberflächenelement nach außen zeigt. Sei ferner

$$ec{v}:\mathbb{R}^3 o\mathbb{R}^3;\quad ec{v}(x,y,z)=egin{pmatrix}2x-y\3y\2\end{pmatrix}$$
 . div $ec{v}$ = 2+3 = 5

Bestimmen Sie mit Hilfe des Satzes von Gauss $a \in \mathbb{R}$ so, dass

$$\iint_{\partial K} \vec{v} \cdot d\vec{O} = a \cdot \text{Volumen}(K).$$

ist.

Es gilt
$$a = \begin{bmatrix} & \mathbf{y} & \\ & & \end{bmatrix}$$
.

(b) Seien

$$\{^{\mathbf{2}}$$
 ኗን $\mathbf{\mathcal{Y}}$ $\mathbf{\mathcal{G}}$ $\mathbf{\mathcal{G}}$ 0 ና ኒ ኔ $\mathbf{\mathcal{G}}$ $K = \{(x,y,z) \in \mathbb{R}^3 \mid x^2+y^2 < 2, \ y>0, \ 0 < z < 3\}$

und

$$ec{v}:\mathbb{R}^3 o\mathbb{R}^3;\quad ec{v}(x,y,z)=egin{pmatrix} x^2+y^2\ z\ 0 \end{pmatrix}.$$

Bestimmen Sie unter Verwendung der Zylinderkoordinaten und des Satzes von Gauss die Konstanten $a,b,c\in\mathbb{R},$ wobei

$$\iint_{\partial K} \vec{v} \cdot d\vec{O} = \int_0^a \int_0^\pi \int_0^3 br^c \cos(\varphi) dz d\varphi dr$$

ist. Der Rand ∂K von K sei dabei so parametrisiert, dass die Normale auf ∂K nach aussen zeigt.

Es gilt
$$a = \begin{bmatrix} & & & \\ & & &$$

(c) Betrachten Sie das Vektorfeld $\vec{v} \colon \mathbb{R}^3 \to \mathbb{R}^3$, gegeben durch

$$\vec{v}(x,y,z) = \begin{pmatrix} yz \\ 3xz \\ -2xy \end{pmatrix}. \quad \left\langle \begin{pmatrix} \text{Sln(24)} \\ 3 \cos(24) \\ -2 \cos(24) \end{pmatrix} \right\rangle \begin{pmatrix} -1 \sin(24) \\ 2 \cos(24) \\ 0 \end{pmatrix} \right\rangle$$

Es sei F eine glatte Fläche mit der Randkurve ∂F parametrisiert durch

$$ec{\gamma}(t):[0,\pi] o\mathbb{R}^3; \quad ec{\gamma}(t)=egin{pmatrix}\cos(2t)\\sin(2t)\1\end{pmatrix}.$$
 = -2 Sim(2t) + 6 cos (2t)

Es gilt

$$\int_{\vec{\gamma}} \vec{v} \cdot d\vec{s} = \int_{0}^{\pi} (a \cos^{p}(2t) + b \sin^{p}(2t)) dt$$

$$vot \vec{v} = \begin{pmatrix} 3x + \lambda x \\ -\lambda y - y \\ \frac{\lambda}{2} - 32 \end{pmatrix}$$

$$vot \vec{v} = \begin{pmatrix} 3x + \lambda x \\ -\lambda y - y \\ \frac{\lambda}{2} - 32 \end{pmatrix}$$

mit Konstanten $a, b, p \in \mathbb{R}$. Bestimmen Sie $a, b, p \in \mathbb{R}$.

Andererseits gilt nach dem Satz von Stokes

$$\int_{\vec{\gamma}} \vec{v} \cdot d\vec{s} = \iint_{F} \begin{pmatrix} cx \\ dy \\ 2z \end{pmatrix} \cdot d\vec{O}$$

mit Konstanten $c, d \in \mathbb{R}$

Dann ist
$$c = \begin{bmatrix} -5 \\ \end{bmatrix}, d = \begin{bmatrix} 3 \\ 3 \end{bmatrix}.$$