

Dataset and problem

Why does someone decide to buy hearing aids?

	Age	Sex	Hearing test	Reported handicap	Stigma	x = 28	Purchased aids 1/5
Case 1	76	M	65	32	3	• • •	1
Case 2	61	M	45	26	4	• • •	0
Case 3	68	F	50	24	4	• • •	0
n = 753	• • •	• • •	• • •	• • •	• • •	•••	•••

Initial attempt: Logistic regression

> glm (Purchased \sim Age + Sex + Hearing + Handicap..., data = df, family = "binomial")

	Odds ratio	CI lower	CI upper	p-value
Age	1.046	1.024	1.069	<0.001
Handicap	1.047	1.027	1.068	<0.001
Stigma	0.85	0.71	1.01	0.065
Know someone	2.10	1.12	4.30	0.029

	LR
Accuracy	63.5
Sensitivity	59.7
Specificity	64.4

Classification tree (CART)

Complexity Parameter	Number of splits in tree	Overall accuracy	Sensitivity	Specificity	Area Under Curve
0.2	0	0.50	0.000	1.000	0.5000
0.1	1	0.6507	0.46980	0.69536	0.5826
0.05	3	0.672	0.5906	0.6921	0.6413
0.03	3	0.672	0.5906	0.6921	0.6413
0.025	3	0.672	0.5906	0.6921	0.6413
0.02	3	0.672	0.5906	0.6921	0.6413
0.015	5	0.7025	0.5906	0.7301	0.6604
0.013	12	0.6534	0.8188	0.6126	0.7157
0.012	12	0.6534	0.8188	0.6126	0.7157
0.011	15	0.6454	0.8792	0.5877	0.7335
0.01	22	0.7211	0.8725	0.6838	0.7781
0.005	31	0.745	0.9262	0.7003	0.8133
0	41	0.7822	0.9195	0.7483	0.8339

	LR	Tree
Accuracy	63.5	65.3
Sensitivity	59.7	81.2
Specificity	64.4	61.3

Method
Drop out 1 of 5 folds, keeping the proportion of Yes/No the same

Variable importance
How many cases each
predictor switched from a
wrong to correct classification

Pros & cons

LR	Single tree
	Easy to interpret
Interpretation?	Lasy to interpret
	High variance

Classification tree

"aggregating"

	Tree 1	Tree 2	Tree	Majority vote
Case 1	Yes	No	No	No
Case 2	No	No	Yes	No
Case 3	Yes	No	Yes	Yes
•••	No	Yes	No	No
Case 753	No	No	No	No

nt	10	OC	 20	
IIL			 ZU	V

		Predicted	
		No	Yes
Actual	No	604	0
	Yes	100	49

	LR	Tree	Bag
Accuracy	64	65	87
Sensitivity	59	81	33
Specificity	64	61	100

^{*}Unable to correct for imbalanced classes

Pros & cons

LR	Single tree	Bagging	
Interpretation?	Easy to interpret	Less easy to interpret	
	High variance	Less variance	
		All trees look alike less accurate	

ntrees = 20	0
m = 4	

		Predicted		
		No	Yes	
Actual	No	519	85	
	Yes	99	50	

	LR	Tree	Bag	RF
Accuracy	64	65	87	77
Sensitivity	60	81	33	34
Specificity	64	61	100	86

Pros & cons

LR	Single tree	Bagging	Random forest
Interpretation?	Easy to interpret	Less easy to interpret	Less easy to interpret
	High variance	Less variance	Less variance
		All trees look alike less accurate	De-correlated trees; more accurate ???

Over-fitting

Final model = (W1)Tree 1 + (W2)Tree 2 + (W3)Tree 3

Others: Gradient Boosting, XGBoost, LightGBM

Tree Gazillion!

mfinal = 10 trees maxdepth = 12

5-fold CV, stratified sampling

	LR	Tree	Bag	RF	Ada(1)	Ada(cv)
Accuracy	64	65	87	77	98	77
Sensitivity	60	81	33	34	88	13
Specificity	64	61	100	86	100	92

Pros & cons

LR	Single tree	Bagging	Random forest	Boosting
Interpretation?	Easy to interpret	Less easy to interpret	Less easy to interpret	Less easy to interpret
	High variance	Less variance	Less variance	Less variance
		All trees look alike less accurate	De-correlated trees; more accurate	
			Can't overfit	Possible to overfit

Trees, trees, trees

- Ensembles are usually better than a single tree; "wisdom of the crowd"
- Quirks of the data
- How useful are the results from that method?
- How open is the field to that method?
- Each method has parameters to tune; for excruciating details: GitHub