Indoor Spatial Queries: Modeling, Indexing, and Processing

Tiantian Liu, Huan Li, Hua Lu, Muhammad Aamir Cheema, Lidan Shou

An EDBT 2021 Work By
Aalborg University
Roskilde University
Monash University
Zhejiang University

Introduction

 Indoor location-based services (LBS) are becoming increasingly popular.

• To facilitate query processing for indoor LBS, space models, indexes and algorithms have been proposed.

An experimental study on all these proposals is still missing.

We conduct a comprehensive experimental study in this work.

- Indoor Spatial Queries
- Model and Indexes
- Query Processing
- Benchmark
- Results Summary
- Future Work

- Indoor Spatial Queries
 - Range Query (RQ)
 - k Nearest Neighbor Query (kNNQ)
 - Shortest Path Query (SPQ)
 - Shortest Distance Query (SDQ)
- Model and Indexes
- Query Processing
- Benchmark
- Results Summary
- Future Work

Indoor Spatial Queries

Range Query (RQ)

RQ (q, 2m)

RQ (q, 5m)

Indoor Spatial Queries

k Nearest Neighbor Query (kNNQ)

kNNQ (q, 2)

Indoor Spatial Queries

Shortest Path Query (SPQ)/Shortest Distance Query (SDQ)

- Indoor Spatial Queries
- Model and Indexes
 - Indoor Distance-Aware Model (IDModel)
 - Indoor Distance-Aware Index (IDIndex)
 - Composite Indoor Index (CIndex)
 - Indoor Partitioning Tree (IP-Tree)
 - Vivid IP-Tree (VIP-Tree)
- Query Processing
- Benchmark
- Results Summary
- Future Work

Indoor Distance-Aware Model (IDModel)

Door-to-partition distance map						
Key	Value					
(d_0, v_{40})	3.5m					
(d_0, v_{30})	6.1m					
•••						

Door-to-door	distance	map
--------------	----------	-----

Door to door distance map					
Key	Value				
(v_{40}, d_0, d_1)	1m				
(v_{40}, d_0, d_5)	1.2m				

An example of the floorplan

An example of IDModel

^{*} Hua Lu, Xin Cao, and Christian S Jensen. 2012. A foundation for efficient indoor distance-aware query processing. In ICDE. 438–449.

Indoor Distance-Aware Index (IDIndex)*

(a) Distance Matrix $M_{\rm d2d}$

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ d_1 & d_1 & d_{11} & d_{12} & d_{14} & d_{13} & d_{15} \\ d_{11} & d_{11} & d_1 & d_{12} & d_{14} & d_{13} & d_{15} \\ d_{12} & d_{12} & d_{15} & d_{14} & d_{11} & d_{13} & d_1 \\ d_{13} & d_{13} & d_{15} & d_{12} & d_{14} & d_1 & d_{11} \\ d_{14} & d_{14} & d_{13} & d_{12} & d_{15} & d_1 & d_{11} \\ d_{15} & d_{15} & d_{13} & d_{12} & d_{14} & d_{11} & d_1 \end{pmatrix}$$

(b) Distance Index Matrix M_{idx}

An example of the floorplan

An example of IDIndex

^{*} Hua Lu, Xin Cao, and Christian S Jensen. 2012. A foundation for efficient indoor distance-aware query processing. In ICDE. 438–449.

Composite Indoor Index (CIndex)

An example of the floorplan

An example of Clndex

^{*} Xike Xie, Hua Lu, and Torben Bach Pedersen. 2013. Efficient distance-aware query evaluation on indoor moving objects. In ICDE. 434–445.

Indoor Partitioning Tree (IP-Tree) and Vivid IP-Tree(VIP-Tree)*

	d_{θ}	d_1	d_2	d_3
d_{θ}	0	1.4	2	3.9
d_1	1.4	0	3	4
d_2	3.9	4	4.4	0
d_3	2	3	0	4.4

Distance Matrix for N_0 (a non-leaf node)

	d_1	d ₁₁	d ₁₂	d_{13}	d ₁₄	d ₁₅
d_1	0	1.7	2.7	3.2	2.8	4.3, <i>d</i> ₁₂

Distance Matrix for **N**₁ (a leaf node)

An example of the floorplan

An example of IP-Tree

^{*} Zhou Shao, Muhammad Aamir Cheema, David Taniar, and Hua Lu. 2016. Vip-tree: an effective index for indoor spatial queries. PVLDB 10, 4, 325–336.

- Indoor Spatial Queries
- Model and Indexes
- Query Processing
 - Feature Comparison
 - Complexity Analysis
 - Extensibility Analysis
- Benchmark
- Results Summary
- Future Work

Query Processing

Feature Comparison

Table 2: Feature Comparison

Models	Precompute	Structure	Initialization	Expansion	RQ	<i>k</i> NNQ	SPQ	SDQ
IDModel	No	Graph+ Mappings	Sequential scan	Dijkstra	Δ	Δ	✓	√
IDI NDEX	Yes	Matrix	Sequential scan	Loop	\checkmark	\checkmark	Δ	Δ
CINDEX	No	Tree+Links	R*-Tree pruning	Dijkstra	\checkmark	\checkmark	Δ	Δ
IP-TREE	Yes	Tree+Matrix	Sequential scan	LCA	\checkmark	\checkmark	\checkmark	\checkmark
VIP-TREE	Yes	Tree+Matrix	Sequential scan	LCA	\checkmark	\checkmark	\checkmark	\checkmark

Query Processing

Complexity Analysis

Table 4: Complexity Analysis

	Space	RQ	<i>k</i> NNQ	SDQ	SPQ
IDModel	$O(V + D + 2Vd + Vd^2)$	$O(oV\logD)$	$O(oV\logD)$	$O(V \log D)$	$O(V \log D + w)$
IDINDEX	$\mathcal{O}(2D^2)$	O(od log D)	O(od log D)	$\mathcal{O}(d^2)$	$O(d^2 + w)$
CINDEX	O(V + Vd + 0)	$O(oV\logD)$	$O(oV\logD)$	$O(V \log D)$	$O(V \log D + w)$
IP-TREE	$O(ho^2 f^2 L + ho D)$	$O((\rho \log_{f} L)^2(Vo/L + \rho))$	$O((\rho \log_{\mathbf{f}} L)^2(Vo/L + \rho))$	$O(\rho^2 \log_f L)$	$O((\rho^2 + w) \log_f L)$
VIP-TREE	$O(\rho^2 f^2 L + \rho D \log_f L)$	$O(\rho^2 \log_{f} L(Vo/L + \rho))$	$O(\rho^2 \log_{f} L(Vo/L + \rho))$	$\mathcal{O}(ho^2)$	$O(\rho^2 + w)$

Extensibility Analysis

Table 3: Extensibility Analysis

	IDModel	IDINDEX	CINDEX	IP/VIP-TREE
Temporal Variation	✓	Χ	✓	Х
Moving Objects	✓	✓	√	✓
Uncertain Locations	Х	Х	√	Х
Keywords	✓	✓	√	√

- Indoor Spatial Queries
- Model and Indexes
- Query Processing
- Benchmark
- Results Summary
- Future Work

Benchmark

Datasets

Floorplan of Datasets

Benchmark

Performance Evaluation Procedure

- A. Model Construction.
 - (a1) model/index size and (a2) construction time.
- B. Query Processing.
 - (b1) running time, (b2) memory use, and (b3) number of visited doors (NVD) for SPDQ.
- B1. Effect of Floor Number n.
- B2. Effect of Object Number |O|.
- B3. Effect of Range Distance r.
- B4. Effect of k.
- B5. Effect of Source-Target Distance s2t.
- B6. Effect of Topological Change.
- B7. Effect of Hallway's Decomposition Method.

Benchmark

• Performance Evaluation Procedure

Table 6: Evaluation Settings (Default Parameters in Bold)

S	Symbol & Meaning	Task	Metrics	Queries	Dataset	Parameter Setting
n	floor number	A B1	a1, a2 b1, b2, b3 (only for SPDQ)	- RQ, kNNQ, SPDQ	SYN	3, 5, 7, 9
O	object number	B2	b1, b2	RQ, kNNQ	all	500, 1000, 1500 , 2000, 2500
r	range value	В3	b1, b2	RQ	SYN5, HZM, CPH MZB	200, 400, 600 , 800, 1000 20, 40, 60 , 80, 100
k	-	B4	b1, b2	kNNQ	all	1, 5, 10 , 50, 100
s2t	source-target distance	В5	b1, b2, b3	SPDQ	SYN5, HZM, CPH MZB	1100, 1300, 1500 , 1700, 1900 30, 60, 90 , 120, 150
-	topological change	B6	b1, b2, b3 (only for SPDQ)	RQ, kNNQ, SPDQ	SYN	SYN5 ⁻ , SYN5, SYN5 ⁺
-	decomposition method	В7	b1, b2, b3 (only for SPDQ)	RQ, kNNQ, SPDQ	SYN MZB	SYN5 0 , SYN5 MZB 0 , MZB, MZB $^\Delta$

- Indoor Spatial Queries
- Model and Indexes
- Query Processing
- Benchmark
- Results Summary
- Future Work

Results Summary

Table 13: Summary of Findings

Model	Construction Cost		RQ/kNNQ Search		SPQ/SDQ Search	
Model	Model Size	Time	Memory	Time	Memory	Time
IDModel	****	****	****	***	****	*
IDINDEX	IDINDEX ★		*	****	*	****
CINDEX	***	***	****	***	****	*
IP-TREE	***	***	****	*	****	***
VIP-TREE	VIP-TREE ★★		***	**	***	****

- IDIndex is preferred for small-scale spaces.
- VIP-Tree is recommended if routing is the task.
- IDModel is recommended for non-routing queries due to its low construction cost and good balance between storage and query time costs.

- Indoor Spatial Queries
- Model and Indexes
- Query Processing
- Benchmark
- Results Summary
- Future Work

Future Work

- Heuristics algorithms can replace the Dijkstra-based expansion in IDModel and Clndex.
- Strategies to select crucial doors/partitions can be developed to reduce the storage of door-to-door distances in IDIndex and IP-Tree/ VIP-Tree while preserving their search efficiency.
- Indoor Moving objects.

Thanks!

Email: liutt@cs.aau.dk