Multi Heterogeneous Queueing Server System

General Exam Oral Examination
Fall 2012
prepared by
Husnu Saner Narman

Content

- Motivation
- Contribution
- Multi Heterogeneous System First Model
 - Analysis of First Model
- Multi Heterogeneous System Second Model
 - Analysis of Second Model
- Conclusion
- References

Content

- Motivation
- Contribution
- Multi Heterogeneous System First Model
 - Analysis of First Model
- Multi Heterogeneous System Second Model
 - Analysis of Second Model
- Conclusion
- References

Queueing System

Queueing System Problems

(3) If queue is finite, what is drop rate?

1) How much time does a customer wait?

- 1) Average waiting time
- 2) Average queue length
- 3) Drop rate

2) How many customers are In queue?

0

served

Heterogeneous Multi Server Queueing System

- 2) Average queue length
- 3) Drop rate

served

Heterogeneous Multi Server

- 1) SSF = Slowest Server First
- 2) FSF = Fastest Server First
- 3) RCS = Randomly Chosen Server

Heterogeneous Multi Server Multi Class

- 1) Priority = Which type of customer is served first?
- 2) Flexibility = Which type of customer will be served by which server?

Heterogeneous Multi Server Queueing System

- Performance metrics:
 - Average waiting time
 - Average queue length
 - Drop rate (for finite queue)
- Allocation Policies
 - FSF, SSF, RCS ...
- Priority in Multi Class Multi Server System
- Flexibility in Multi Class Multi Server System

Content

- Motivation
- Contribution
- Multi Heterogeneous System First Model
 - Analysis of First Model
- Multi Heterogeneous System Second Model
 - Analysis of Second Model
- Conclusion
- References

Contribution of Works

- Upper and Lower bound <u>average waiting time</u> for Multi Heterogeneous Single Queue System
- Upper and Lower bound <u>average queue length</u> for Multi Heterogeneous Single Queue System
- Lower bound queue <u>drop rate</u> for Multi Heterogeneous Single Finite Queue System
- Developed performance approximations are better than homogeneous approximation

Content

- Motivation
- Contribution
- Multi Heterogeneous System First Model
 - Analysis of First Model
- Multi Heterogeneous System Second Model
 - Analysis of Second Model
- Conclusion
- References

Multi Heterogeneous System First Model (*M/Mi/c*)

Assumption for First Model

- $\mu_1 \leq \mu_2 \leq \dots \leq \mu_c$
- Poisson distribution with rate λ ,
- Exponential distribution with rate μ_i ,
- c number of servers,
- Slowest Server First (SSF) allocation
- Because of SSF, upper bound performance metrics

Content

- Motivation
- Contribution
- Multi Heterogeneous System First Model
 - Analysis of First Model
- Multi Heterogeneous System Second Model
 - Analysis of Second Model
- Conclusion
- References

Notations

- λ Job arrival rate,
- μ_i Service rate of ith server,
- p_i State probability of ith state,

 E_T^u Upper bound average waiting time of the system,

 μ_{ti} Total service rates until ith server, or $\mu_{ti} = \sum_{i=1}^{n} \mu_{ti}$

ρ Utilization of the system, or $ρ = λ/μ_{tc}$

Probability of States

$$\lambda p_0 = \mu_{t1} p_1 \Leftrightarrow p_1 = p_0 \frac{\lambda}{\mu_{t1}}$$

$$\lambda p_1 = \mu_{t2} p_2 \Leftrightarrow p_2 = p_0 \frac{\lambda^2}{\mu_{t1} \mu_{t2}}$$

$$\lambda p_1 = \mu_{t2} p_2 \Leftrightarrow p_2 = p_0 \frac{\lambda^2}{\mu_{t1} \mu_{t2}}$$

$$\lambda p_{c-1} = \mu_{tc} p_c \Leftrightarrow p_c = p_0 \frac{\lambda^c}{\mu_{t1} \mu_{t2} \dots \mu_{tc}}$$

$$\lambda p_{i-1} = \mu_{tc} p_i \Leftrightarrow p_i = p_0 \frac{\lambda^i}{\mu_{t1} \mu_{t2} ... \mu_{tc} \mu_{tc}^{i-c}} = \frac{\lambda^i}{\mu_{tc}^{i-c} \prod_{j=1}^c \mu_{tj}}$$

$$\lambda p_{i-1} = \mu_{tc} p_i \Leftrightarrow p_i = p_0 \frac{\lambda^i}{\mu_{t1} \mu_{t2} \dots \mu_{tc} \mu_{tc}^{i-c}} = \frac{\lambda^i}{\mu_{tc}^{i-c} \prod_{j=1}^c \mu_{tj}}$$

$$\sum_{i=0}^{\infty} p_i = 1 \quad \text{and} \quad \rho < 1$$

where
$$i > c$$

Probability of States

$$p_0 = \frac{1}{1 + \sum_{j=1}^{c-1} \left(\frac{\lambda^j}{\prod_{i=1}^j \mu_{ti}}\right) + \left(\frac{\lambda^c}{(1-\rho) \prod_{i=1}^c \mu_{ti}}\right)}$$

$$\rho = \frac{1}{1 + \sum_{j=1}^{c-1} \left(\frac{\lambda^j}{\prod_{i=1}^j \mu_{ti}}\right) + \left(\frac{\lambda^c}{(1-\rho) \prod_{i=1}^c \mu_{ti}}\right)}$$

where
$$\rho = \mu_{tc}/\lambda$$

Average Queue Length and Waiting Time

General formula of average queue length for single server

$$\sum_{n=1}^{\infty} i p_{i}$$

Modified formula of average queue length for multi servers

$$= E_n^u = \sum_{i=c+1}^{\infty} (i-c) p_i$$

Infinite Buffer
$$\lambda \longrightarrow \begin{array}{c} \mu_1 \\ \mu_2 \\ \mu_{c-1} \\ \mu_c \\ \end{array}$$

$$E_{n}^{u} = p_{0} \sum_{i=c+1}^{\infty} \frac{(i-c)\lambda^{i}}{\mu_{tc}^{i-c} \prod_{j=1}^{c} \mu_{tj}}$$

because
$$p_i = \frac{\lambda^i}{\mu_{tc}^{i-c} \prod_{j=1}^c \mu_{tj}}$$

Average Queue Length and Waiting Time

From Little's Law

Result for First Model

- Arrival rate
- Number of servers
- Heterogeneity level of server rates
 - Gini Index:

$$\mu_1 = 1, \mu_2 = 2, \mu_3 = 3$$
(0,0) (1/3,1/6) (2/3,3/6) (3/3,6/6)
(0,0) (1/3,1/6) (2/3,1/2) (1,1)

Waiting Time for First Model

Average waiting time in queue— $\rho = 0.9$

Error Comparison

- Error Rate Formula
- Which M/M/c or developed formula is better

$$error = \frac{\left| x_{simulation} - x_{calculation} \right|}{x_{simulation}}$$

Error Figures of Different Allocations for First Model

Comparative error between approximation and MMc versus simulation of a M/M/c heterogeneous— $\rho = 0.9$

Content

- Motivation
- Contribution
- Multi Heterogeneous System First Model
 - Analysis of First Model
- Multi Heterogeneous System Second Model
 - Analysis of Second Model
- Conclusion
- References

Multi Heterogeneous System Second Model (*M/Mi/3/N*)

Assumption for Second Model

- $\mu_1 \geqslant \mu_2 \geqslant \mu_3$
- Poisson distribution with rate λ ,
- Exponential distribution with rate μ_i ,
- 3 number of servers,
- Fastest Server First (FSF) allocation
- Because of FSF, lower bound performance metrics

Content

- Motivation
- Contribution
- Multi Heterogeneous System First Model
 - Analysis of First Model
- Multi Heterogeneous System Second Model
 - Analysis of Second Model
- Conclusion
- References

Notations

Job arrival rate,

 μ_1, μ_2, μ_3 Service rate of 1st, 2nd, and 3rd servers,

 $\pi_{i,j,k}$ State probability of servers, idle:0, busy:1

 $\pi_{n,3}$ State probability of nth state when servers are busy

 μ_t Total service rates

Finite Buffer = N

Probability of States

$$\lambda \pi_{0,3} + \mu_t \pi_{0,3} = \lambda \pi_{0,1,1} + \lambda \pi_{1,0,1} + \lambda \pi_{1,1,0} + \mu_t \pi_{1,3}$$

$$\lambda \pi_{n,3} = \mu_t \pi_{n+1,3} \quad \text{where} \quad 0 \leq n < N$$

$$\pi_{n,3} = \pi_{0,3} \left(\frac{\lambda}{\mu_t}\right)^n \quad \text{or} \quad \pi_{n,3} = \pi_{N,3} \left(\frac{\lambda}{\mu_t}\right)^{n-N}$$

where $0 \le n \le N$

Probability of States

$$\lambda \pi_{0,1,0} + \mu_2 \pi_{0,1,0} = \mu_1 \pi_{1,1,0} + \mu_3 \pi_{0,1,1}$$

$$\lambda \pi_{0,0,1} + \mu_3 \pi_{0,0,1} = \mu_1 \pi_{1,0,1} + \mu_2 \pi_{0,1,1}$$

$$\lambda \pi_{1,1,0} + \mu_1 \pi_{1,1,0} + \mu_2 \pi_{1,1,0} = \lambda \pi_{1,0,0} + \lambda \pi_{0,1,0} + \mu_3 \pi_{1,1,1}$$

$$\lambda \pi_{0,1,1} + \mu_2 \pi_{0,1,1} + \mu_3 \pi_{0,1,1} = \mu_1 \pi_{1,1,1}$$

$$\lambda \pi_{1,0,1} + \mu_1 \pi_{1,0,1} + \mu_3 \pi_{1,0,1} = \mu_2 \pi_{1,1,1}$$

$$\lambda \pi_{1,0,1} + \mu_1 \pi_{1,0,1} + \mu_3 \pi_{1,0,1} = \mu_2 \pi_{1,1,1} + \lambda \pi_{0,0,1}$$

Different Approach

- Hard to develop approximations after correction
- Similar methodology with first model
- Only Job states (no server states)
- Can be expendable <u>n</u> number of servers

Notations

Job arrival rate, λ μ_1, μ_2, μ_3 Service rate of 1st, 2nd, and 3rd servers, p_i State probability of jobs in queue E_n^l Lower bound average queue length of the system, E_T^l Lower bound average waiting time of the system, P_B^l Lower bound queue drop rate Upper bound throughput of queue Utilization of the system, or $\rho = \lambda/\mu_{t3}$ ρ $\mu_{t2} = \mu_1 + \mu_2$ $\mu_{t3} = \mu_1 + \mu_2 + \mu_3$ $\mu_{t1} = \mu_1$

Probability of States Finite Buffer = N

$$\lambda p_0 = \mu_{t1} p_1 \Leftrightarrow p_1 = p_0 \frac{\lambda}{\mu_{t1}}$$

$$\lambda p_1 = \mu_{t2} p_2 \Leftrightarrow p_2 = p_0 \frac{\lambda^2}{\mu_{t1} \mu_{t2}}$$

$$\lambda p_{i-1} = \mu_{t3} p_i \Leftrightarrow p_i = p_0 \frac{\lambda^i}{\mu_{t1} \mu_{t2} \mu_{t3}^{i-2}} = p_0 \frac{\mu_{t3}^2 \rho^i}{\mu_{t1} \mu_{t2}} \quad \text{where } 3 \leq i \leq N+3 \qquad \rho = \lambda/\mu_{t3}$$

$$N+3$$

here
$$3 \le i \le N+3$$
 $\rho = \lambda/\mu_{t3}$

$$\sum_{i=0}^{N+3} p_i = 1 \quad \text{and} \quad \rho > 0$$

$$p_{0} = \begin{cases} \frac{1}{1 + \frac{\lambda}{\mu_{tl}} + \frac{\lambda^{2}}{\mu_{tl}\mu_{t2}} + \frac{\mu_{t3}^{2}}{\mu_{tl}\mu_{t2}} (\frac{\rho^{3} - \rho^{N+4}}{1 - \rho})} & \rho \neq 1 \\ \frac{1}{1 + \frac{\lambda}{\mu_{tl}} + \frac{\lambda^{2}}{\mu_{tl}\mu_{t2}} + \frac{\mu_{t3}^{2}}{\mu_{tl}\mu_{t2}} (N+1)}} & \rho = 1 \end{cases}$$

Queue Drop Rate and Throughput

Average Queue Length and Waiting Time

General formula of average queue length for single server

$$\sum_{n=1}^{N} i p_{i}$$

Modified formula of average queue length for multi servers

$$E_n^l = \sum_{i=4}^{N+3} (i-3) p_i$$

$$E_n^l = p_0 \frac{\mu_{t3}^2}{\mu_{t1}\mu_{t2}} \sum_{i=4}^{N+3} (i-3)\rho^i$$
 because $p_i = p_0 \frac{\mu_{t3}\rho^i}{\mu_{t1}\mu_{t2}}$

Average Queue Length and Waiting Time

$$E_{n}^{l} = \begin{cases} p_{0} \frac{\mu_{t3}^{2}}{\mu_{tI} \mu_{t2}} \rho^{4} \left(\frac{1 - (N+1)\rho^{N} + N\rho^{N+1}}{(1-\rho)^{2}} \right) & \rho \neq 1 \\ p_{0} \frac{\mu_{t3}^{2}}{\mu_{tI} \mu_{t2}} \frac{N(N+1)}{2} & \rho = 1 \end{cases}$$

From Little's Law

Result for Second Model

- Arrival rates
- Average queue length
- Average queue delay
- Drop Probability
- Throughput
- Buffer Size

Queue length and Waiting time (Delay)

Drop rate and Throughput

Drop Rate and Queue Length

Effect of buffer size to drop rate

Effect of utilization to queue length

After N=30, buffer size has no effect

Content

- Motivation
- Contribution
- Multi Heterogeneous System First Model
 - Analysis of First Model
- Multi Heterogeneous System Second Model
 - Analysis of Second Model
- Conclusion
- References

Conclusion

- Approximation formulas developed
 - Queue length
 - Waiting time
 - Drop and Throughput for finite queue
- Verified by simulation
- Tested by different allocations,
 - FSF, SSF, RCS

Future Work

- Different allocation can be used
 - LUF: Low utilization first
- Allocation policies behaviors in in finite queue
- Developing Probabilistic allocation approximation
- Considering multi class system with different class and flexibility level

Questions

References

- [1] T. Heath, B. Diniz, E. V. Carrera, W. M. Jr., and R. Bianchini, "Energy conservation in heterogeneous server clusters," in Principles and Practice of Parallel Programming, Chicago, Illinois, June 2005, pp. 186–195.
- [2] S. Gurumurthi and S. Benjaafar, "Modeling and analysis of flexible queueing systems," Naval Research Logistics, vol. 51, pp. 755–782, June 2004.
- [3] F. S. Q. Alves, H. C. Yehia, L. A. C. Pedrosa, F. R. B. Cruz, and L. Kerbache, "Upper bounds on performance measures of heterogeneous M/M/c queues," Mathematical Problems in Engineering, vol. 2011, p. 18, May 2011.
- [4] C. Misra and P. K. Swain, "Performance analysis of finite buffer queueing system with multiple heterogeneous servers," in 6th international conference on Distributed Computing and Internet Technology, ser. ICDCIT'10, Bhubaneswar, India, Feb 2010, pp. 180–183.
- [5] G. Appenzeller, I. Keslassy, and N. McKeown, "Sizing router buffers," Computer Communication Review, vol. 34, pp. 281–292, Oct 2004.

Probability of States of First Model

$$1 = \sum_{j=0}^{\infty} p_j = \sum_{j=0}^{c} p_j + \sum_{j=c+1}^{\infty} p_j \qquad p_0^{-1} = 1 + \sum_{j=1}^{c} \left(\frac{\lambda^j}{\prod_{i=1}^{j} \mu_{ti}} \right) + \sum_{j=c+1}^{\infty} \left(\frac{\lambda^j}{\left(\prod_{i=1}^{c} \mu_{ti}\right) \left(\mu_{tc}^{j-c}\right)} \right)$$

$$p_0^{-1} = 1 + \sum_{j=1}^{c-1} \left(\frac{\lambda^j}{\prod_{i=1}^j \mu_{ti}} \right) + \sum_{j=c}^{\infty} \left(\frac{\lambda^j}{\left(\prod_{i=1}^c \mu_{ti}\right) \left(\mu_{tc}^{j-c}\right)} \right)$$

$$p_0^{-1} = 1 + \sum_{j=1}^{c-1} \left(\frac{\lambda^j}{\prod_{i=1}^j \mu_{ti}} \right) + \left(\frac{\mu_{tc}^c}{\prod_{i=1}^c \mu_{ti}} \right) \sum_{j=c}^{\infty} \rho^j$$

$$\sum_{j=c}^{\infty} \rho^j = \frac{\rho^c}{1-\rho}$$

$$p_0 = \frac{1}{1 + \sum_{j=1}^{c-1} \left(\frac{\lambda^j}{\prod_{i=1}^{j} \mu_{ti}}\right) + \left(\frac{\lambda^c}{(1-\rho) \prod_{i=1}^{c} \mu_{ti}}\right)}$$

Probability of States of Second Model

$$1 = \sum_{j=0}^{N+3} p_j = p_0 + p_0 \frac{\lambda}{\mu_{t1}} + p_0 \frac{\lambda^2}{\mu_{t1}\mu_{t2}} + \sum_{j=3}^{N+3} p_0 \frac{\mu_{t3}^2 \rho^j}{\mu_{t1}\mu_{t2}}$$

$$p_0^{-1} = 1 + \frac{\lambda}{\mu_{t1}} + \frac{\lambda^2}{\mu_{t1}\mu_{t2}} + \frac{\mu_{t3}^2}{\mu_{t1}\mu_{t2}} \sum_{j=3}^{N+3} \rho^j \qquad p_0 = \frac{1}{1 + \frac{\lambda}{\mu_{t1}} + \frac{\lambda^2}{\mu_{t1}\mu_{t2}} + \frac{\mu_{t3}^2}{\mu_{t1}\mu_{t2}}} \sum_{j=3}^{N+3} \rho^j$$

$$p_0 = \frac{1}{1 + \frac{\lambda}{\mu_{t1}} + \frac{\lambda^2}{\mu_{t1}\mu_{t2}} + (N+1) \frac{\mu_{t3}^2}{\mu_{t1}\mu_{t2}}} \qquad \text{if} \qquad \rho = 1$$

$$p_{0} = \begin{cases} \frac{1}{1 + \frac{\lambda}{\mu_{t1}} + \frac{\lambda^{2}}{\mu_{t1}\mu_{t2}} + \frac{\mu_{t3}^{2}}{\mu_{t1}\mu_{t2}} \frac{\rho^{3} - \rho^{N+4}}{1 - \rho}} & \rho \neq 1 \\ \frac{1}{1 + \frac{\lambda}{\mu_{t1}} + \frac{\lambda^{2}}{\mu_{t1}\mu_{t2}} + (N+1)\frac{\mu_{t3}^{2}}{\mu_{t1}\mu_{t2}}} & \rho = 1 \end{cases} \qquad \sum_{j=3}^{N+3} \rho^{j} = \frac{\rho^{3} - \rho^{N+4}}{1 - \rho} \quad \text{if} \qquad \rho \neq 1$$