

NLP Sentiment Analysis

Ching and Chloe

TABLE OF CONTENTS

01 Business Question 04 Models Creation & Evaluation

02 Data Collection

03 Preprocessing

O5 Conclusion, Future Improvements & Next Steps

Business Objectives

Boost Sales by better marketing tatics

By analysing customers' sentiment, company can know the trend and feature particular products

Improve company's products & services

Customers may reviews some issues within the products or certain problems when using the services. Company could address those bugs and provide better one.

Business Objectives

Track sentiments in real-time

Retaining customers could generate more than half of the total revenue.

Hence by tracking real-time, company could quickly identify if sudden changes happened in customers' feeling. They could react promptly to retain the existing customers.

Maintain brand preception

Customers value brand image. Yet, it requires long time to build the reputation. But at the same time,, it could be ruined within a single day. It is important to monitor the customers' feeling towards the products.

Data Collection

kaggle

STANFORD NETWORK ANALYSIS
PROJECT · UPDATED 5 YEARS AGO

New Notebook

:

Amazon Fine Food Reviews

Analyze ~500,000 food reviews from Amazon

https://www.kaggle.com/datasets/snap/amazon-fine-food-reviews

03

Data Preprocessing

Original Dataset

df.	df.head()									
	Id	ProductId	UserId	ProfileName	HelpfulnessNumerator	HelpfulnessDenominator	Score	Time	Summary	Text
0	1	B001E4KFG0	A3SGXH7AUHU8GW	delmartian	1	1	5	1303862400	Good Quality Dog Food	I have bought several of the Vitality canned d
1	2	B00813GRG4	A1D87F6ZCVE5NK	dli pa	0	0	1	1346976000	Not as Advertised	Product arrived labeled as Jumbo Salted Peanut
2	3	B000LQOCH0	ABXLMWJIXXAIN	Natalia Corres "Natalia Corres"	1	1	4	1219017600	"Delight" says it all	This is a confection that has been around a fe
3	4	B000UA0QIQ	A395BORC6FGVXV	Karl	3	3	2	1307923200	Cough Medicine	If you are looking for the secret ingredient i
4	5	B006K2ZZ7K	A1UQRSCLF8GW1T	Michael D. Bigham "M. Wassir"	0	0	5	1350777600	Great taffy	Great taffy at a great price. There was a wid

<class 'pandas.core.frame.DataFrame'> RangeIndex: 568454 entries, 0 to 568453 Data columns (total 10 columns): Column Non-Null Count Dtype 568454 non-null int64 ProductId 568454 non-null object UserId 568454 non-null object 3 ProfileName 568438 non-null object HelpfulnessNumerator 568454 non-null int64 HelpfulnessDenominator 568454 non-null int64 Score 568454 non-null int64 Time 568454 non-null int64 Summary 568427 non-null object Text 568454 non-null object dtypes: int64(5), object(5)

memory usage: 43.4+ MB

1. Create a binary column and define score > 3 is positive, O.W. negative.

```
df['Positive'] = df['Score'].apply(lambda x: 1 if x > 3 else 0)
```

2. Drop duplicate rows by checking "UserID", "ProfileName", "Time" and "Text".

```
clean_df = df.drop_duplicates(subset={"UserId","ProfileName","Time","Text"}, keep='first')
clean_df.shape
(393933, 11)
```

3. Only extract two columns (the comment itself, positive/negative)

```
df_text = clean_df[['Positive','Text']]
```

Text Preprocessing

1. Clean contractions

```
def clean(text):
    text = re.sub(r"n\'t", " not", text)
    text = re.sub(r"\'re", " are", text)
    text = re.sub(r"\'s", " is", text)
    text = re.sub(r"\'d", " would", text)
    text = re.sub(r"\'ll", " will", text)
    text = re.sub(r"\'t", " not", text)
    text = re.sub(r"\'ve", " have", text)
    text = re.sub(r"\'ve", " am", text)
    return text
```

2. Define customized stopword list

```
#customized stopword list
stop_words = set(['br', 'the', 'i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'burselves', 'you', "you're", "you've",
           "you'll", "you'd", 'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his', 'himself',
           'she', "she's", 'her', 'hers', 'herself', 'it', "it's", 'its', 'itself', 'they', 'them', 'their',
           'theirs', 'themselves', 'what', 'which', 'who', 'whom', 'this', 'that', "that'll", 'these', 'those',
           'am', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'having', 'do', 'does',
           'did', 'doing', 'a', 'an', 'the', 'and', 'but', 'if', 'or', 'because', 'as', 'until', 'while', 'of',
           'at', 'bv', 'for', 'with', 'about', 'against', 'between', 'into', 'through', 'during', 'before', 'after',
           'above', 'below', 'to', 'from', 'up', 'down', 'in', 'out', 'on', 'off', 'over', 'under', 'again', 'further',
           'then', 'once', 'here', 'there', 'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more',
           'most', 'other', 'some', 'such', 'only', 'own', 'same', 'so', 'than', 'too', 'very',
           's', 't', 'can', 'will', 'just', 'don', "don't", 'should', "should've", 'now', 'd', 'll', 'm', 'o', 're',
           've', 'y', 'ain', 'aren', "aren't", 'couldn', "couldn't", 'didn', "didn't", 'doesn', "doesn't", 'hadn',
           "hadn't", 'hasn', "hasn't", 'haven', "haven't", 'isn', "isn't", 'ma', 'mightn', "mightn't", 'mustn',
           "mustn't", 'needn', "needn't", 'shan', "shan't", 'shouldn', "shouldn't", 'wasn', "wasn't", 'weren', "weren't",
            'won', "won't", 'wouldn', "wouldn't", "'s", "..."])
```

3. Import SnowballStemmer

```
from nltk.stem.snowball import SnowballStemmer
snow = SnowballStemmer('english')
```

Text Preprocessing

- 1. Use regex to clean:
 - (i) website links; (ii) words with numbers (e.g. 200ounces, 18yo);
 - (iii) words with repeated letters (e.g. yummmmyyyyy, ahhhhh)
- 2. Convert the texts into lower case and tokenize into words
- 3. Exclude stopwords
- 4. Stem the word tokens by Snowball Stemmer

```
def preprocessing(string):
    word_sent = re.sub(r"http\S+", "", string)
    word_sent = clean(word_sent)
    word_sent = re.sub("\S*\d\S*", "", word_sent).strip() #removing words with numerical digits
    word_sent = re.sub('[^A-Za-z]+', ' ', word_sent) # removing non-word characters
    word_sent = re.sub(r'(\w)\1{2,}',r'\1',word_sent) #removing words of repeated letters
    word_sent = word_tokenize(word_sent.lower())
    word_sent = [word for word in word_sent if word not in stop_words]
    word_sent = ' '.join([snow.stem(word) for word in word_sent])
    word_sent = ' '.join([w for w in word_sent.split() if len(w)>1])
    return word_sent

df_text['ProcessedText'] = df_text['Text'].astype(str).apply(preprocessing)
```

Final Dataframe

	Positive	Text	ProcessedText
0	1	I have bought several of the Vitality canned d	bought sever vital can dog food product found
1	0	Product arrived labeled as Jumbo Salted Peanut	product arriv label jumbo salt peanut peanut a
2	1	This is a confection that has been around a fe	confect around centuri light pillowi citrus ge
3	0	If you are looking for the secret ingredient i	look secret ingredi robitussin believ found go
4	1	Great taffy at a great price. There was a wid	great taffi great price wide assort yummi taff
	211		
393928	1	Great for sesame chickenthis is a good if no	great sesam chicken good not better restur eat
393929	0	I'm disappointed with the flavor. The chocolat	disappoint flavor chocol note especi weak milk
393930	1	These stars are small, so you can give 10-15 o	star small give one train session tri train do
393931	1	These are the BEST treats for training and rew	best treat train reward dog good groom lower c
393932	1	I am very satisfied ,product is as advertised,	satisfi product advertis use cereal raw vinega
393933 rc	ows × 3 colu	mns	

Finding the most frequent unigrams and bigrams

generally positive

Visualize the most frequent words using wordcloud

positive reviews (Score 4-5)

negative reviews (Score 1-3)

Stratified K-fold Cross Validation

```
from sklearn.model_selection import StratifiedKFold

skf = StratifiedKFold(n_splits=4, shuffle=True, random_state=1)
lst_accu_stratified = []
```

Create a Naive Bayes model

```
from sklearn import naive_bayes
Naive = naive_bayes.MultinomialNB()

for train_index, test_index in skf.split(X, y):
    X_train_fold, X_test_fold = X[train_index], X[test_index]
    y_train_fold, y_test_fold = y[train_index], y[test_index]

    Tfidf_vect = TfidfVectorizer(stop_words='english', max_df=0.8, dtype= np.float32)
    Tfidf_vect.fit(X_train_fold)

    X_train_Tfidf = Tfidf_vect.transform(X_train_fold)
    X_test_Tfidf = Tfidf_vect.transform(X_test_fold)
    Naive.fit(X_train_Tfidf, y_train_fold)
    y_pred = Naive.predict(X_test_Tfidf)
    lst_accu_stratified.append(f1_score(y_test_fold, y_pred))
```


<u>Create a model of SGDClassifier</u>

(Suitable for large and sparse dataset)

```
from sklearn.linear_model import SGDClassifier
sgd = SGDClassifier()
lst accu stratified sgd = []
for train index, test index in skf.split(X, y):
   X_train_fold, X_test_fold = X[train_index], X[test_index]
   y train fold, y test fold = y[train index], y[test index]
   Tfidf vect = TfidfVectorizer(stop words='english', max df=0.8, dtype= np.float32)
   Tfidf vect.fit(X train fold)
   X train Tfidf = Tfidf vect.transform(X train fold)
   X test Tfidf = Tfidf vect.transform(X test fold)
    sgd.fit(X_train_Tfidf, y_train_fold)
   v pred = sgd.predict(X test Tfidf)
   lst_accu_stratified_sgd.append(f1_score(y_test_fold, y_pred))
```


Models Creation

F1 Score of the Naive Bayes Model after Cross Validation

List of possible F1 score: [0.8914590332213512, 0.8911640381307757, 0.8911468261602047, 0.8909237153781592]

Maximum F1 score That can be obtained from this model is: 89.14590332213513 %

Minimum F1 score: 89.09237153781592 %

Overall F1 score: 89.11734032226228 %

Standard Deviation is: 0.00021963800599970014

Small standard deviation

→ robust models

F1 Score of the SGDClassifier Model after Cross Validation

List of possible F1 score: [0.918450211579385, 0.9183829511325337, 0.9182471484052476, 0.917640304642314]

Maximum F1 score That can be obtained from this model is: 91.8456211579385 %

Minimum F1 score: 91.76403046423141 %

Overall F1 score: 91.81801539398701 %

Standard Deviation is: 0.00036967704485381517

Dimensionality Reduction

Baseline SGDClassifier model: 73780 features; F1 Score: 91.81802%

TruncatedSVD transformer is often used on count/tf-idf matrices, known as latent semantic analysis (LSA).

```
from sklearn.decomposition import TruncatedSVD
svd = TruncatedSVD(n_components = 100) # n_components = 100, as recommended in sklearn documentation

X_train_svd = svd.fit_transform(X_train_Tfidf_svd, y_train)

X_test_svd = svd.transform(X_test_Tfidf_svd)
```

```
100 components:
F1 Score: 89.38094%
```

svd1 = TruncatedSVD(n_components = 500) # try to increase the number of components

X_train_svd1 = svd1.fit_transform(X_train_Tfidf_svd, y_train)

X_test_svd1 = svd1.transform(X_test_Tfidf_svd)

500 components: F1 Score: 90.95921%

Findings (Unigram TD-IDF)

Ĉ	3	Features	Importance
	1	great	3.987900
	2	best	3.344341
	3	love	3.066141
	4	delici	3.026104
	5	perfect	2.716438
	6	excel	2.489259
	7	amaz	2.154049
	8	good	2.134706
	9	awesom	1.851652
	10	favorit	1.830844

<	~	Features	Importance	
	1	disappoint	-4.488774	
	2	worst	-3.522368	
	3	ok	-3.468223	
	4	return	-3.306934	
	5	aw	-3.040941	
	6	unfortun	-2.956783	
	7	terribl	-2.927215	
	8	horribl	-2.865595	
	9	okay	-2.714790	
	10	bland	-2.639161	

S	3	Features	Importance		Features	Importance
	1	high recommend	0.690828	1	wast money	-5.883018
	2	pleasant surpis	0.428914	2	wo buy	-2.909699
	3	tast great	0.350020	3	disappoint product	-1.438679
	4	great product	0.344050	4	threw away	-1.405127
	5	definit buy	0.335500	5	buyer bewar	-1.340235
	6	great tast	0.319084	6	bad batch	-1.300711
	7	love stuff	0.310013	7	wo order	-1.261163
	8	bast tast	0.300389	8	throw away	-1.220730
	9	realli good	0.299654	9	tast bad	-1.210144
	10	far best	0.292919	10	tast ok	-1.192638

distilbert-base-uncased-finetuned-mnli-amazon-query-shopping

This model is a fine-tuned version of <u>nlptown/bert-base-multilingual-uncased-sentiment</u> on an <u>Amazon US Customer Reviews Dataset</u>. The code for the fine-tuning process can be found <u>here</u>. This model is uncased: it does not make a difference between english and English. It achieves the following results on the evaluation set:

Models Creation

```
from transformers import AutoTokenizer, AutoModelForSequenceClassification

tokenizer = AutoTokenizer.from_pretrained("LiYuan/amazon-review-sentiment-analysis")

model = AutoModelForSequenceClassification.from_pretrained("LiYuan/amazon-review-sentiment-analysis")
```

```
for index, entry in enumerate(corpus['text']):
  batch = tokenizer(entry, padding = True, truncation = True, max_length = 512,
  with torch.no_grad():
    outputs = model(**batch)
    predictions = F.softmax(outputs.logits, dim =1 )
    labels = torch.argmax(predictions, dim = 1)
    labels = [model.config.id2label[label_id] for label_id in labels.tolist()]
    corpus.loc[index,'labels'] = labels
```


	label	label_hf	text
0	5	5 stars	have bought several of the Vitality canned dog food products and have found them all to be of good quality. The product looks more like a stew than a processed meat and it smells better. My Labr
1	1	1 star	Product arrived labeled as Jumbo Salted Peanutsthe peanuts were actually small sized unsalted. Not sure if this was an error or if the vendor intended to represent the product as "Jumbo".
2	4	5 stars	This is a confection that has been around a few centuries. It is a light, pillowy citrus gelatin with nuts – in this case Filberts. And it is cut into tiny squares and then liberally coated with
3	2	5 stars	If you are looking for the secret ingredient in Robitussin I believe I have found it. I got this in addition to the Root Beer Extract I ordered (which was good) and made some cherry soda. The fl
4	5	5 stars	Great taffy at a great price. There was a wide assortment of yummy taffy. Delivery was very quick. If your a taffy lover, this is a deal.

Models Creation

```
mean_absolute_error(corpus['label'], corpus['label_hf'])

0.3682

f1_score(corpus['label'], corpus['label_hf'], average = None)

array([0.69375 , 0.38857143, 0.41991925, 0.38023451, 0.88294314])

f1_score(corpus['label'], corpus['label_hf'], average = 'micro')

0.7444
```


Conclusion & Future Improvements

Conclusion & Future Improvements

Limitations

- Dataset is pretty large, requires long time to process
- No real-time tracking as Amazon.com cannot be scrapped directly

Future Improvements

- Apply bagging/ big data techniques
- Look for other data sources which updates regularly for real-time tracking

Next Steps

1

Better Visualization

Using BI tools e.g. Tableau to create a dashboard that make it more user-friendly

2

Compare with Competitors

Conduct similar sentiment analysis on competitors to know the opportunities and threats

THANKS!

