SWIFT: Scalable Wasserstein Factorization for Sparse Nonnegative Tensors

Ardavan Afshar¹

Kejing Yin²

Sherry Yan³

Cheng Qian⁴ Joyce C. Ho⁵

Haesun Park¹

Jimeng Sun⁶

¹ Georgia Institute of Technology

² Hong Kong Baptist University

³ Sutter Health

⁴ IQVIA ⁵ Emory University

⁶ University of Illinois at Urbana-Champaign

Contributions

- **1. Defining Wasserstein Tensor Distance.**The first work that defines Wasserstein distance for tensors.
- 2.Formulating Wasserstein Tensor Factorization.

 SWIFT model minimizes the Wasserstein distance
 between the input and its CP reconstructions.
- 3. Efficiently Solving Wasserstein TF.

 It achieves 921x speed up over a naive implementation.

Motivations & Preliminaries

Existing tensor factorization models assume certain distributions of input, e.g.,

Gaussian distribution:
$$\min_{\widehat{\mathcal{X}}} \ ||\mathcal{X} - \widehat{\mathcal{X}}||_F^2 \ \leftarrow \textit{MSE loss}$$

Poisson distribution: $\min_{\widehat{\mathcal{X}}} \ \widehat{\mathcal{X}} - \mathcal{X} * \log(\widehat{\mathcal{X}}) \ \leftarrow \textit{KL divergence}$
Bernoulli distribution: $\min_{\widehat{\mathcal{X}}} \ \log(1 + e^{\widehat{\mathcal{X}}}) - \mathcal{X} * \widehat{\mathcal{X}} \ \leftarrow \textit{logit loss}$

However, the distribution of input tensor is often **complex and unknown**.

Wasserstein distance is a potentially better metric:

Definition (Entropy regularized OT problem)

The entropy regularized OT problem is defined as:

$$W_V(\mathbf{a}, \mathbf{b}) = \min_{\mathbf{T} \in U(\mathbf{a}, \mathbf{b})} \quad \langle \mathbf{C}, \mathbf{T} \rangle - \frac{1}{\rho} E(\mathbf{T}),$$

where $E(\mathbf{T}) = -\sum_{i,j=1}^{M,N} t_{ij} \log(t_{ij})$ is the entropy of \mathbf{T} .

- Not directly applicable to tensor factorization:
 - 1) It is not defined for tensor input;
 - 2) It requires solving expensive OT problems for many times.

Wasserstein Matrix and Tensor Distances

Wasserstein Matrix Distance: sum W_V over their vectors:

Definition (Wasserstein Matrix Distance)

Given a cost matrix $\mathbf{C} \in \mathbb{R}_+^{M \times M}$, the Wasserstein distance between two matrices $\mathbf{A} = [\mathbf{a}_1,...,\mathbf{a}_P] \in \mathbb{R}_+^{M \times P}$ and $\mathbf{B} = [\mathbf{b}_1,...,\mathbf{b}_P] \in \mathbb{R}_+^{M \times P}$ is denoted by $W_M(\mathbf{A},\mathbf{B})$, and given by:

$$W_{M}(\mathbf{A}, \mathbf{B}) = \sum_{p=1}^{P} W_{V}(\mathbf{a}_{p}, \mathbf{b}_{p}) = \underset{\overline{\mathbf{T}} \in U(\mathbf{A}, \mathbf{B})}{\operatorname{minimize}} \langle \overline{\mathbf{C}}, \overline{\mathbf{T}} \rangle - \frac{1}{\rho} E(\overline{\mathbf{T}}),$$
(3)

where
$$\overline{\mathbf{C}} = [\mathbf{C},....,\mathbf{C}]$$
 and $\overline{\mathbf{T}} = [\mathbf{T}_1,...\mathbf{T}_P,...,\mathbf{T}_P]$. $U(\mathbf{A},\mathbf{B}) = \{\overline{\mathbf{T}} \in \mathbb{R}_+^{M \times MP} \mid \Delta(\overline{\mathbf{T}}) = \mathbf{A}, \Psi(\overline{\mathbf{T}}) = \mathbf{B}\}$, $\Delta(\overline{\mathbf{T}}) = [\mathbf{T}_1\mathbf{1}_M,...,\mathbf{T}_P\mathbf{1}_M] = \overline{\mathbf{T}}(\mathbf{I}_P \otimes \mathbf{1}_M)$, and $\Psi(\overline{\mathbf{T}}) = [\mathbf{T}_1^T\mathbf{1}_M,...,\mathbf{T}_P^T\mathbf{1}_M]$.

Wasserstein Tensor Distance: sum W_M over their matricizations:

Definition (Wasserstein Tensor Distance)

The Wasserstein distance between *N*-th order tensor $\mathcal{X} \in \mathbb{R}_+^{l_1 \times ... \times l_N}$ and its reconstruction $\hat{\mathcal{X}} \in \mathbb{R}_+^{l_1 \times ... \times l_N}$ is denoted by $W_T(\hat{\mathcal{X}}, \mathcal{X})$:

$$W_{T}(\hat{\mathcal{X}}, \mathcal{X}) = \sum_{n=1}^{N} W_{M}(\widehat{\mathbf{X}}_{(n)}, \mathbf{X}_{(n)}) = \sum_{n=1}^{N} \left\{ \min_{\overline{\mathbf{T}}_{n} \in U(\widehat{\mathbf{X}}_{(n)}, \mathbf{X}_{(n)})} \langle \overline{\mathbf{C}}_{n}, \overline{\mathbf{T}}_{n} \rangle - \frac{1}{\rho} E(\overline{\mathbf{T}}_{n}) \right\}, \quad (4)$$

where $\mathbf{X}_{(n)} \in \mathbb{R}_{+}^{I_n \times I_{(-n)}}$ is the *n*-th mode matricization of \mathcal{X} , $\overline{\mathbf{C}}_n = [\mathbf{C}_n, \mathbf{C}_n, ..., \mathbf{C}_n] \in \mathbb{R}_{+}^{I_n \times I_n I_{(-n)}}$, and $\overline{\mathbf{T}}_n = [\mathbf{T}_{n1}, ..., \mathbf{T}_{nj}, ..., \mathbf{T}_{nl_{(-n)}}] \in \mathbb{R}_{+}^{I_n \times I_n I_{(-n)}}$. $\mathbf{T}_{nj} \in \mathbb{R}_{+}^{I_n \times I_n}$ is the transport matrix between the columns $\widehat{\mathbf{X}}_{(n)}(:,j) \in \mathbb{R}_{+}^{I_n}$ and $\mathbf{X}_{(n)}(:,j) \in \mathbb{R}_{+}^{I_n}$.

Wasserstein Tensor Factorization

Optimization problem:

SWIFT Learning Algorithm

1. We avoid computing OT by $\mathbf{T}_{ni}^* \mathbf{1} = \operatorname{diag}(\mathbf{u}_j) \mathbf{K}_n \mathbf{v}_j = \mathbf{u}_j * (\mathbf{K}_n \mathbf{v}_j)$

Proposition 2 $\Delta(\overline{\mathbf{T}}_n) = [\mathbf{T}_{n1}\mathbf{1}, ..., \mathbf{T}_{nj}\mathbf{1}, ..., \mathbf{T}_{nl_{(-n)}}\mathbf{1}] = \mathbf{U}_n * (\mathbf{K}_n\mathbf{V}_n)$ (6) minimizes (5), where $\mathbf{K}_n = e^{(-\rho\mathbf{C}_n-1)} \in \mathbb{R}^{l_n \times l_n}_+$, $\mathbf{U}_n = (\widehat{\mathbf{X}}_{(n)})^{\Phi} \oslash (\mathbf{K}_n(\mathbf{X}_{(n)} \oslash (\mathbf{K}_n^T\mathbf{U}_n))^{\Phi})^{\Phi}, \ \mathbf{V}_n = (\mathbf{X}_{(n)} \oslash (\mathbf{K}_n^T\mathbf{U}_n))^{\Phi}, \ \Phi = \frac{\lambda \rho}{\lambda \rho + 1}, \ \text{and}$ \oslash indicates element-wise division.

2. We explore sparsity structure of input: All-zero columns in $\mathbf{X}_{(n)}$ are ignored.

3. We introduce efficient rearrangement for updating factor matrices to decouple $A_{(n)}$ and Khatri-Rao product.

Datasets and Baselines

- 1. **BBC New**: 400 article x 100 words x 100 words task: article category classification, evaluate by accuracy.
- 2. **Sutter**: 1000 patients x 100 diagnoses x 100 medications task: heart failure onset, evaluate by PR-AUC.

Baselines:

- 1. MSE Loss (*Gaussian*): CP-ALS; CP-NMU; Supervised CP; Similarity based CP;
- 2. Gamma Loss (Gamma distribution): CP-Continuous;
- 3. Log Loss (Bernoulli distribution): CP-Binary;
- 4. KL Loss (Poisson distribution): CP-APR.

Results

		R=5	R=10	R=20	R=30	R=40
BBC News Dataset	CP-ALS	$.521 \pm .033$	$.571 \pm .072$	$.675 \pm .063$	$.671 \pm .028$	$.671 \pm .040$
	CP-NMU	$.484 \pm .039$	$.493 \pm .048$	$.581 \pm .064$	$.600 \pm .050$	$.650 \pm .03$
	Supervised CP	$.506 \pm .051$	$.625 \pm .073$	$.631 \pm .050$	$.665 \pm .024$	$.662 \pm .012$
	Similarity Based CP	$.518 \pm .032$	$.648 \pm .043$	$.638 \pm .021$	$.662 \pm .034$	$.673 \pm .043$
	CP-Continuous	$.403 \pm .051$	$.481 \pm .056$	$.528 \pm .022$	$.559 \pm .024$	$.543 \pm .043$
	CP-Binary	$.746 \pm .058$	$.743 \pm .027$	$.737 \pm .008$	$.756 \pm .062$	$.743 \pm .044$
	CP-APR	$.675 \pm .059$	$.768 \pm .033$	$.753 \pm .035$	$.743 \pm .033$	$.746 \pm .043$
	SWIFT	$\textbf{.759} \pm \textbf{.013}$	$\textbf{.781} \pm \textbf{.013}$	$\textbf{.803} \pm \textbf{.010}$	$\textbf{.815} \pm \textbf{.005}$	$.818\pm.02$
Sutter Data	CP-ALS	$.327 \pm .072$	$.333 \pm .064$	$.311 \pm .068$	$.306 \pm .065$	$.332 \pm .098$
	CP-NMU	$.300 \pm .054$	$.294 \pm .064$	$.325 \pm .085$	$.344 \pm .068$	$.302 \pm .07$
	Supervised CP	$.301 \pm .044$	$.305 \pm .036$	$.309 \pm .054$	$.291 \pm .037$	$.293 \pm .05$
	Similarity Based CP	$.304 \pm .042$	$.315 \pm .041$	$.319 \pm .063$	$.296 \pm .041$	$.303 \pm .03$
	CP-Continuous	$.252 \pm .059$	$.237 \pm .043$	$.263 \pm .065$	$.244 \pm .053$	$.256 \pm .07$
	CP-Binary	$.301 \pm .061$	$.325 \pm .079$	$.328 \pm .080$	$.267 \pm .074$	$.296 \pm .063$
	CP-APR	$.305 \pm .075$	$.301\pm.068$	$.290\pm.052$	$.313 \pm .082$	$.304 \pm .086$
	SWIFT	$\textbf{.364} \pm \textbf{.063}$	$\textbf{.350} \pm \textbf{.031}$	$\textbf{.350} \pm \textbf{.040}$	$\textbf{.369} \pm \textbf{.066}$	$.374\pm.04$

Classification Performance

Atrial Fibrillation (Weight= 21.93) Dx-Essential hypertension [98.] Dx-Disorders of lipid metabolism [53.] Dx-Cardiac dysrhythmias [106.] Rx-Calcium Channel Blockers Rx-Alpha-Beta Blockers Rx-Angiotensin II Receptor Antagonists

Cardiometablic Disease (Weight= 19.58)

Dx-Diabetes mellitus without complication [Dx-Essential hypertension [98.]

- Dx-Essential hypertension [98.]
 Dx-Disorders of lipid metabolism [53.]
 Rx-Diagnostic Tests
- Rx-Digualides
 Rx-Diabetic Supplies
 - Mental Disorder (Weight= -16.22)

 Dx-Anxiety disorders [651]
 - Dx-Menopausal disorders [173.]
 Dx-Depressive disorders [6572]
- Rx-Benzodiazepines
 Rx-Selective Serotonin Reuptake Inhibitors (SSRIs)
 Rx-Serotonin Modulators

References

- Tamara G Kolda and Brett W Bader. "Tensor decompositions and applications". In: SIAM Review (2009).
 J Carroll and J Chang. "Analysis of individual differences in multidimensional scaling via an N-way generalization of "Eckart-Young" decomposition". In:Psychometrika (1970).
- 3. E Chi and T Kolda. "On tensors, sparsity, and nonnegative factorizations". In: SIAM Journal on Matrix Analysis and Applications (2012).
- 4. D Hong, T Kolda, and J Duersch. "Generalized canonical polyadic tensor decomposition". In: SIAM
- 5. Gabriel Peyr e, Marco Cuturi, et al. "Computational optimal transport". In: Foundations and Trends[®] in Machine Learning (2019).
- 6. Marco Cuturi. "Sinkhorn distances: Lightspeed computation of optimal transport". In: Advances in Neural Information Processing Systems. 2013.
- 7. Richard Sinkhorn and Paul Knopp. "Concerning nonnegative matrices and doubly stochastic matrices". In: Pacific Journal of Mathematics (1967).
- 8. Daniel D Lee and H Sebastian Seung. "Algorithms for non-negative matrix factorization". In: Advances in Neural Information Processing Systems. 2001.
- 9. erek Greene and P' adraig Cunningham. "Practical Solutions to the Problem of Diagonal Dominance in Kernel Document Clustering". In: InternationalConference on Machine learning. 2006.