Teoria dos Grafos

Aula 3

Cadeia, caminho, ciclo, subgrafo, subdigrafo, Representação de grafos e digrafos.

Cadeia

- Uma cadeia é uma sequência qualquer de arestas adjacentes que ligam dois vértices.
- Uma cadeia é dita ser elementar se não passa duas vezes pelo mesmo vértice.
- É dita ser **simples** se não passa duas vezes pela mesma aresta (arco).
- O comprimento de uma cadeia é o número de arestas (arcos) que a compõe.

Caminho

• Um caminho é qualquer grafo da forma:

$$(\{v_1, v_2, ..., n\}, \{v_i v_{i+1} : 1 \le i \le n\}).$$

- Semelhante a uma cadeia, porém aplicado para grafos direcionados.
- Um caminho trivial de v para v consiste apenas do vértice v.
- Se existir um caminho c de v para w então w é alcançável a partir de v via c.

Caminho

- Um caminho fechado é aquele que começa e termina no mesmo vértice.
- Um caminho fechado com pelo menos uma aresta é chamado de ciclo.

Trajeto

- Um **trajeto** é um caminho de *v* para *w* sem arestas repetidas.
- Um **trajeto simples:**Caminho de *v* para *w* sem arestas e vértices repetidos.

Circuito

• Um circuito é um grafo da forma:

```
\{\{v_1, v_2, \dots, v_n\}, \{v_i v_{i+1} : 1 \le i \le n\} \cup \{v_n v_1\}\}, 
com n \ge 3.
```

- Um circuito é um trajeto fechado. Ou seja, um caminho onde não há aresta repetida e os vértices inicial e final são idênticos.
- Um circuito é **simples** quando o único vértice repetido é o inicial.

Revisão

- Quais caminhamentos podem:
 - ter aresta repetida?
 - ter vétice repetido?
 - começar e terminar no vértice inicial?

Comparativo

Tipo	Aresta repetida?	Vértice repetido?	Começa e termina no mesmo vértice?
Cadeia elementar	Sim	Não	Não necessariamente.
Cadeia simples	Não	Sim	Não necessariamente.
Caminho	Sim	Sim	Não necessariamente.
Caminho fechado	Sim	Sim	Sim
Trajeto	Não	Sim	Não necessariamente.
Trajeto simples	Não	Não	Não
Circuito	Não	Sim	Sim
Circuito simples	Não	Somente a origem.	Sim

Comprimento de um caminho/circuito

- O comprimento de um caminho ou circuito é o número de arestas do grafo.
- Um caminho de comprimento k tem k+1 vértices.
- Um circuito de comprimento k tem k vértices.

Comprimento de um caminho/circuito

O que as figuras abaixo têm em comum?

Comprimento de um camimho/circuito

 Todas são circuitos de comprimento 3,4,5 e 6, respectivamente.

- Faça uma figura de um caminho de comprimento 0, de um caminho de comprimento 1 e de um caminho de comprimento 2.
- Faça uma figura de um circuito de comprimento 3 e de um circuito de comprimento 4. Por que a definição de circuito tem a restrição " $n \geq 3$ "?

• Seja V o conjunto $\{a, b, c, d, e\}$ e E o conjunto $\{de, bc, ca, be\}$. Verifique que o grafo (V,E) é um caminho.

Agora suponha que F é o conjunto
 {bc,bd,ea,ed,ac} e verifique que o grafo (V
 F) é um circuito.

 Verifique que a cadeia u v w x y z também pode ser denotado por z y xw v u. Verifique que essas duas expressões representam a mesma cadeia.

Subgrafo

- Um grafo H = (V', E') é dito ser um subgrafo de G = (V, E) se e somente se:
 - Cada vértice de H é também um vértice de G, ou seja, $V' \subseteq V$;
 - Cada aresta de H é também uma aresta de G, ou seja, $E' \subseteq E$;
 - Cada aresta de H tem os mesmos nós terminais de G, ou seja, se $(u, v) \in E'$ então $(u, v) \in E$.

Subgrafo

• Exemplo: Todos os subgrafos do grafo G:

Subdigrafo

- Um digrafo H = (V', E') é dito ser um subdigrafo de D = (V, E) se e somente se:
 - Cada vértice de H é também um vértice de D, ou seja, $V' \subseteq V$;
 - Cada aresta de H é também uma aresta de D, ou seja, $E' \subseteq E$;
 - Cada aresta de H tem os mesmos nós terminais de D, ou seja, se $(u, v) \in E'$ então $(u, v) \in E$.

Subdigrafo

- Se um subdigrafo de um digrafo D contém todos os vértices, ele é chamado de gerador.
- O menor subdigrafo é a árvore geradora mínima;)

- Dado um grafo (G = V, E):
 - V = conjunto de vértices.
 - E = conjunto de arestas.
- O tamanho da entrada de dados é medido em termos do:
 - Número de vértices |V|.
 - Número de arestas |E|.
- Se G é conexo então |E| ≥ |V| 1.

- Matriz de adjacência:
 - Forma preferida de representar grafos densos $(E \approx V^2)$.
 - Indica rapidamente (O(1)) se existe uma aresta conectando dois vértices.
- Lista de adjacência:
 - Representação normalmente preferida.
 - Provê uma forma compacta de representar grafos esparsos ($E \ll V^2$).

- Matriz de incidência:
 - Representação que inclui vértice e aresta.

 As duas primeiras formas de representar um grafo são as mais comuns.

• Seja o grafo dirigido abaixo:

A matriz de adjacência do grafo é a seguinte:

$$A = \begin{bmatrix} v_1 & v_2 & v_3 \\ v_1 & \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 2 \\ v_3 & \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \end{bmatrix}$$

• A matriz de adjacência armazena em cada posição a_{ij} o número de arestas que vão de v_i para v_i .

- Caso a matriz de adjacência tenha:
 - Valor diferente de zero na diagonal principal: temos um laço.
 - Valor igual a 1 na entrada (a_{ij}) : temos uma única aresta de v_i para v_j .
 - Valores maiores que 1 na entrada (a_{ij}) : arestas paralelas de v_i para v_j .
 - Espaço:
 - $O(V^2)$.

 A matriz de adjacência pode ser utilizada para representar componentes de um grafo.

Análise:

- Deve ser utilizada para grafos densos, onde |E| é próximo de $|V|^2$ ($E \approx V^2$).
- O tempo necessário para acessar um elemento é independente de |V | ou |E|.
- É muito útil para algoritmos em que necessitamos saber com rapidez se existe uma aresta ligando dois vértices.
- A maior desvantagem é que a matriz necessita $O(V^2)$ de espaço.
- Ler ou examinar a matriz tem complexidade de tempo $O(V^2)$.

• A matriz de incidência de um grafo G é a matriz $M = (m_{ij})$ de tamanho $n \times m$ de maneira que:

•
$$m_{ij} = \begin{cases} 1 \text{ quando a aresta } e_j \text{ \'e incidente a } v_i \\ 0, \text{ caso contr\'ario.} \end{cases}$$

Dado o grafo:

A matriz de incidência é:

- A lista de adjacências utiliza um vetor com |V| posições.
- Para cada vértice $v \in V$ a lista de adjacência contém uma lista encadeada apontando para cada vértice adjacente.
- Espaço:
 - -O(V+E).

Grafo e₃ v₂ e₄ e₅ v₃

Lista de adjacência

 Exiba as matrizes de adjacências e incidências de um caminho de comprimento 4.

 Exiba as matrizes de adjacências e incidências de um circuito de comprimento 5.

