Санкт-Петербургский государственный университет Математико-механический факультет

Литвинов Степан Сергеевич

Метод простой итерации. Метод Зейделя

Практическая работа

Оглавление

1.	Постановка задачи	•
2.	Теорминимум	4
	2.1. Метод простой итерации	. 4
	2.2. Метод Зейделя	
	2.3. Метод Релаксации	
3.	Тесты	(
	3.1. Тест для метода релаксации на больших разреженных	
	матрицах	
4.	Кол	5

1. Постановка задачи

Необходимо решить СЛАУ двумя методами – методом простой итерации и методом Зейделя. Сравнить погрешности решений и количество итераций в методе простой итерации и в методе Зейделя.

2. Теорминимум

2.1. Метод простой итерации

Приведем СЛАУ к итерационной форме

$$x = \alpha x + \beta$$

$$\alpha = \begin{bmatrix} \alpha_{11} & \dots & \alpha_{1n} \\ \vdots & \ddots & \vdots \\ \alpha_{n1} & \dots & \alpha_{nn} \end{bmatrix}$$

$$\beta = \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_n \end{bmatrix}$$

Обозначим:

$$\beta_i = \frac{b_i}{a_{ii}};$$

$$\alpha_{ij} = -\frac{a_{ij}}{a_{ii}}, i \neq j;$$

$$\alpha_{ii} = 0.$$

За начальное приближение возьмем столбец сводных членов.

$$x^{(k)} = \alpha x^{(k+1)} + \beta$$

Итерационный процесс идет до тех пор, пока вектор приближений не достигнет заданной точности ε , т. е. когда

$$|x^{(k+1)} - x^{(k)}| < \varepsilon$$

2.2. Метод Зейделя

Метод Зейделя можно рассматривать как модификацию метода Якоби. Модификация заключается в том, что новые значения $x^{(i)}$ используются сразу же по мере получения.

$$\begin{cases} x_1^{(k+1)} = c_{12}x_2^{(k)} + c_{13}x_3^{(k)} + \dots + c_{1n}x_n^{(k)} + d_1 \\ x_2^{(k+1)} = c_{21}x_1^{(k+1)} + c_{23}x_3^{(k)} + \dots + c_{2n}x_n^{(k)} + d_2 \\ \dots & \dots & \dots \\ x_n^{(k+1)} = c_{n1}x_1^{(k+1)} + c_{n2}x_2^{(k+1)} + \dots + c_{n(n-1)}x_{n-1}^{(k+1)} + d_n \end{cases}$$

Обозначим

$$d_{i} = \frac{b_{i}}{a_{ii}};$$

$$c_{ij} = -\frac{a_{ij}}{a_{ii}}, i \neq j;$$

$$c_{ii} = 0.$$

Итерационный процесс идет до тех пор, пока вектор приближений не достигнет заданной точности ε , т. е. когда

$$|x^{(k+1)} - x^{(k)}| < \varepsilon$$

2.3. Метод Релаксации

- Выбирают начальное приближение $\mathbf{x}^{(0)}$.
- ullet Вычисляют невязки $\delta_i = \sum_{j=1}^n a_{ij} x_j^{(0)} b_i$.
- Находят $x_1^{(1)}$, удовлетворяющее равенству $a_{i1}x_1^{(1)}+\sum_{j=2}^n a_{ij}x_j^{(0)}=b_i$, где i номер уравнения с максимальной по модулю невязкой.
- ullet Затем подсчитываем невязки $\delta_j = a_{j1} x_1^{(1)} + \sum_{l=2}^n a_{jl} x_j^{(0)} b_j$, j
 eq i
- и подбираем $x_2^{(1)}$, удовлетворяющее равенству $a_{j1}x_1^{(1)}+a_{j2}x_2^{(1)}+\sum_{l=3}^n a_{jl}x_l^{(0)}$, где j номер уравнения с наибольшей по модулю невязкой.
- ullet И т.д., пока не используем все n уравнений. \Leftrightarrow Найдем все $x_i^{(1)}$.
- ullet Тогда начинаем второй цикл, аналогично, но вместо ${f x}^{(0)}$ используется ${f x}^{(1)}$.
- Повторение циклов продолжают до тех пор, пока не достигнут требуемой точности.

3. Тесты

	1	2
1	-401.52000000	200.16000000
2	1200.96000000	-601.68000000

Приближение	n_iter м. простых итераций	n_iter м. Зейделя	x - x_sim	x - x_seid
0.0001	5663	1624	7.868875420336846e-05	0.019953217023340516
1e-07	8431	3009	7.886347970936201e-08	1.9898673261481005e-05
1e-10	11199	4393	7.654086267596506e-11	1.993938385168084e-08
1e-13	12629	5760	1.6335066880840797e-12	1.7515176775418828e-11

Рис. 1: Метод простой итерации и метод Зейделя для плохо обусловленной матрицы из методички А.Н.Пакулиной

	1	2
1	-403.15000000	200.95000000
2	1205.70000000	-604.10000000

Приближение	n_iter м. простых итераций	n_iter м. Зейделя	x - x_sim	x - x_seid
0.0001	5239	1645	0.0001484510563130723	0.01917289180989704
1e-07	7907	2979	1.4874495539679205e-07	1.921103868789505e-05
1e-10	10575	4313	1.47703150991286e-10	1.9246727682406012e-08
1e-13	11887	5630	6.101158685597755e-12	1.8455764551503746e-11

Рис. 2: Метод простой итерации и метод Зейделя для плохо обусловленной матрицы из методички А.Н.Пакулиной

1	2						
1.00000000 0.50	0000000						
2 0.50000000 0.33333333							
		T	I				
Приближение	n_iter м. простых итераций	n_iter м. Зейделя	x - x_sim	x - x_seid			
0.0001	101	45	3.874501200301462e-05	0.00023462513472999615			
1e-07	149	69	3.887635460969505e-08	2.3542080912929293e-07			
1e-10	197	93	3.897097284112373e-11	2.362227857710748e-10			
1e-13	244	117	8.556067554929069e-14	2.404323753877496e-13			

Рис. 3: Метод простой итерации и метод Зейделя для матрицы Гильберта 2 порядка

	1	2	3	4	5
1	6	-1	0	0	0
2	-1	6	-1	0	0
3	0	-1	6	-1	0
4	0	0	-1	6	-1
5	0	0	0	-1	6

Приближение	n_iter м. простых итераций	n_iter м. Зейделя	x - x_sim	x - x_seid
0.0001	12	8	1.0514450570319884e-05	6.211373377866592e-06
1e-07	18	11	6.084757265850861e-09	3.6040805168533608e-09
1e-10	24	14	3.5305363662987126e-12	2.089993095218002e-12
1e-13	29	17	1.9539925233402755e-14	0.0

Рис. 4: Метод простой итерации и метод Зейделя для матрицы с диагональным преобладанием

Метод Зейделя более эффективно (за меньшее количество итераций) достигает выбранного приближения. По последней табличке можно предположить, что одно и тоже улучшение точности требует увеличение количества итераций на приблизительно одно и тоже значение (для обоих методов).

3.1. Тест для метода релаксации на больших разреженных матрицах

Тест проводился на матрице размерностью 201. При неусточйчивости матрицы мы варьировали стартовый x и матрицу для метода релаксации. Норма погрешности = 7.53982713e-07

4. Код

можно посмотреть здесь