Лабораторная работа №3

Детерминированные вычислительные процессы с управлением по аргументу.

Численное интегрирование.

2. Цель:

3. Используемое оборудование: ПК, Lazarus.

Задание №1

 $\int_{1.2}^{2.0} \frac{\sqrt{2x^2 + 1.6} \, dx}{2x + \sqrt{0.5x^2 + 3}};$

4. Написать программу для вычисления определённого интеграла (

методом прямоугольника левых частей.

$$\int_{a}^{b} f(x)dx \approx h \cdot \sum_{i=0}^{n-1} f(x_i)$$

Имя	Смысл	тип	
a	Нижняя граница	real	
	вычислений (заданное		
	число)		
b	Верхняя граница	integer	
	вычислений (заданное		
	число)		
n	Количество шагов	integer	
	(разбиений)		
h	Размер шага	Real	
X	Переменная цикла	Real	
S	Накопитель суммы	Real	
I	Результирующая	Real	
	переменная		

```
1
      program Project1;
        b,n: integer;
        a,h,S,x,I: real;
   5
     ⊟begin
        write ('vvedite kolichestvo shagov - ');
        readln (n);
        a:=1.2;
        b:=2;
  10
        S:=0;
        h:=(b-a)/n;
        x:=a;
        repeat
          S:=S+(sqrt(2*x*x-1.6)/(2*x+sqrt(0.5*x*x+3)));
  15
          x := x+h;
        until x<=b-h;
        I:=h*S;
        writeln (I:5:8);
        readln;
8. 20
      end.
```

```
vvedite kolichestvo shagov - 10
0.02090906
9.
```

vvedite kolichestvo shagov — 100 0.00209091

```
vvedite kolichestvo shagov — 1000
0.00020909
```

vvedite kolichestvo shagov – 10000 0.00002091

10. Для вычисления определённого интеграла методом прямоугольника левых частей с различной точностью мы брали количество дроблений: 10, 100, 1000 и 10000. Для конечного результата сумма накапливалась в цикле (с границами от а до b-h) и умножалась на шаг (h).

Задание №2

$$\int_{1.2}^{2.0} \frac{\sqrt{2x^2 + 1.6} \, dx}{2x + \sqrt{0.5x^2 + 3}};$$

4. Написать программу для вычисления определённого интеграла (

методом прямоугольника правых частей.

Имя	Смысл	тип	
а	Нижняя граница	real	
	вычислений (заданное		
	число)		
b	Верхняя граница	integer	
	вычислений (заданное		
	число)		
n	Количество шагов	integer	
	(разбиений)		
h	Размер шага	Real	
Х	Переменная цикла	цикла Real	
S	Накопитель суммы	Real	
I	Результирующая	Real	
	переменная		

```
program Project1;
       var
         b,n: integer;
         a,h,S,x,I: real;
   5
      begin
         write ('vvedite kolichestvo shagov - ');
         readln (n);
         a:=1.2;
         b:=2;
   10
         S:=0;
         h:=(b-a)/n;
         x:=a+h;
         repeat
           S:=S+(sqrt(2*x*x-1.6)/(2*x+sqrt(0.5*x*x+3)));
   15
           x := x+h;
         until x<=b;
         I:=h*S;
         writeln (I:5:8);
         readln;
8. 20 end.
```

```
vvedite kolichestvo shagov — 10
0.02294787
```

```
vvedite kolichestvo shagov – 100
0.00211311
```

```
vvedite kolichestvo shagov – 1000
0.00020931
```

10. Для вычисления определённого интеграла методом прямоугольника правых частей с различной точностью мы брали количество дроблений: 10, 100, 1000 и 10000. Для конечного результата сумма накапливалась в цикле (с границами от a+h до b) и умножалась на шаг (h).

Задание №3

$$\int\limits_{1.2}^{2.0} \frac{\sqrt{2x^2+1.6}\,dx}{2x+\sqrt{0.5x^2+3}};$$
 4. Написать программу для вычисления определённого интеграла (

методом трапеций.

Имя	Смысл	тип	
а	Нижняя граница	real	
	вычислений (заданное		
	число)		
b	Верхняя граница	integer	
	вычислений (заданное		
	число)		
n	Количество шагов	integer	
	(разбиений)		
h	Размер шага	Real	
X	Переменная цикла	Real	
S	Накопитель суммы	Real	
I	Результирующая	Real	
	переменная		
Z	Промежуточная	Real	
	переменная (заменяет f(a))		
Υ	Промежуточная	Real	
	переменная (заменяет f(b))		

```
program Project1;
    var
      b,n: integer;
      a,h,S,x,I,z,y: real;
 5
      write ('vvedite kolichestvo shagov - ');
      readln (n);
      a:=1.2;
      b:=2;
10
      S:=0;
      h:=(b-a)/n;
      x:=a+h;
      repeat
        S:=S+(sqrt(2*x*x-1.6)/(2*x+sqrt(0.5*x*x+3)));
15
        x:=x+h;
      until x<=b-h;
      z:=(sqrt(2*a*a-1.6)/(2*a+sqrt(0.5*a*a+3)));
      y:=(sqrt(2*b*b-1.6)/(2*b+sqrt(0.5*b*b+3)));
      I:=h*((z+y)/2+S);
20
      writeln (I:5:8);
      readln;
    end.
```

```
vvedite kolichestvo shagov - 10
0.04962943

9.
vvedite kolichestvo shagov - 100
0.00478127

vvedite kolichestvo shagov - 1000
0.00047613

vvedite kolichestvo shagov - 10000
0.00004759
```

10. Для вычисления определённого интеграла методом трапеций с различной точностью мы брали количество дроблений: 10, 100, 1000 и 10000. Для конечного результата сумма накапливалась в цикле (с границами от a+h до b-h), складывалась (f(a)+f(b))/2 и всё это умножалось на шаг.

Задание №4

$$\int_{1.2}^{2.0} \frac{\sqrt{2x^2 + 1.6} \, dx}{2x + \sqrt{0.5x^2 + 3}};$$

4. Написать программу для вычисления определённого интеграла (

методом парабол.

$$\int_{a}^{b} f(x)dx \approx \frac{h}{3} \left(f(x_0) + 4 \sum_{i=1}^{n} f(x_{2i-1}) + 2 \sum_{i=1}^{n-1} f(x_{2i}) + f(x_{2n}) \right)$$

7.

Имя	Смысл	тип	
a	Нижняя граница	real	
	вычислений (заданное		
	число)		
b	Верхняя граница	integer	
	вычислений (заданное		
	число)		
n	Количество шагов	integer	
	(разбиений)		
h	Размер шага	Real	

Х	Переменная цикла	Real
S1	Накопитель первой суммы	Real
S2	Накопитель второй суммы	Real
I	Результирующая	Real
	переменная	
Z	Промежуточная	Real
	переменная (заменяет f(a))	
Υ	Промежуточная	Real
	переменная (заменяет f(b))	

```
1
      program Project1;
       var
         b,n: integer;
         a,h,S1,S2,x,I,z,y: real;
   5
         write ('vvedite kolichestvo shagov - ');
         readln (n);
         a:=1.2;
         b:=2;
  10
         S1:=0;
         S2:=0;
         h:=(b-a)/n;
         x:=a+h;
         repeat
  15
           S1:=S1+(sqrt(2*x*x-1.6)/(2*x+sqrt(0.5*x*x+3)));
           x := x+h;
         until x<=b-h;
         x:=a+2*h;
         repeat
  20
           S2:=S2+(sqrt(2*x*x-1.6)/(2*x+sqrt(0.5*x*x+3)));
           x := x+h;
         until x \le b-2*h;
         z:=(sqrt(2*a*a-1.6)/(2*a+sqrt(0.5*a*a+3)));
         y:=(sqrt(2*b*b-1.6)/(2*b+sqrt(0.5*b*b+3)));
  25
         I:=h/3*(z+y+S1+S2);
         writeln (I:5:8);
         readln;
8. 28
      end.
```

```
vvedite kolichestvo shagov - 10
0.03365555
```

```
vvedite kolichestvo shagov – 100
0.00319477
```

```
vvedite kolichestvo shagov — 1000
0.00031749
```

vvedite kolichestvo shagov – 10000 0.00003173

10. Для вычисления определённого интеграла методом трапеций с различной точностью мы брали количество дроблений: 10, 100, 1000 и 10000. Для конечного результата первая сумма накапливалась в первом цикле (с границами от a+h до b-h), вторая сумма накапливалась во втором цикле (с границами a+2h и b-2h), они складывались, так же к ним прибавлялись f(a) и f(b) и всё это умножалось на шаг.

11. Вывод:

Кол-во	шаг	Метод левых	Метод правых	Метод	Метод
разбиений		частей	частей	трапеций	парабол
		прямоугольников	прямоугольников		
10	0,08	0,02090906	0,02294787	0,04962943	0,03365555
100	0,008	0,00209091	0,00211311	0,00478127	0,00319477
1000	0,0008	0,00020909	0,00020931	0,00047613	0,00031749
10000	0,00008	0,00002091	0,00002091	0,00004759	0,00003173

- 1) Наиболее точным оказался метод парабол.
- 2) Точность любого метода можно увеличить разбиением графика на более мелкие шаги. Чем мельче шаги тем точнее результат.