Tutorial Bioinformatica

Marcel Ferreira

2023-11-20

Table of contents

Ρı	refacio	3
	Autores	3
	Softwares necessários	3
	Opcionais	3
	Dados utilizados	3
1	Introdução	4
	1.1 Primeiros passos	5
2	Dia 1 - Sequenciamento de DNA	6
	2.1 Arquivos	6
	2.2 Métricas	6
	2.3 Atividades	6
3	Dia 2 - Alinhamento de sequências de DNA	8
	3.1 Arquivos	8
4	Dia 3 - Genotipagem	9
5	Dia 4 - Análise de sequenciamento Oxford Nanopore	10
6	Dia 5 - Genotipagem de STRs a partir de dados de NGS	11
Re	References	

Prefacio

Autores

Marcel Rodrigues Ferreira ()

Softwares necessários

- WSL (Windows Subsystem for Linux)
- IGV (site)
- fastqc (github)
- bwa (github)
- minimap2 (github)
- samtools (github)
- freebayes (github)
- gatk (github)
- vcftools (github)
- bcftools (site) (github)
- WhatsHap (github)

Opcionais

- notepad++
- gzip
- HTSlib

Dados utilizados

- fast5/
- fastq/
- genome/
- bam/
- vcf/

1 Introdução

Bem-vindos ao Workshop de Bioinformática Aplicada à Genética Forense: Análise de Dados de Sequenciamento de Segunda e Terceira Geração. Este curso abrangente foi projetado para fornecer a vocês, participantes entusiasmados, uma imersão prática nas técnicas avançadas de análise de dados genômicos, com foco especial na aplicação forense.

A genética forense tornou-se uma ferramenta essencial na resolução de casos criminais, identificação de indivíduos e estabelecimento de relações familiares. Neste workshop de cinco dias, exploraremos os fundamentos e as aplicações práticas do sequenciamento de DNA, abordando desde os conceitos básicos até as técnicas avançadas de genotipagem de STRs (Short Tandem Repeats) a partir de dados de Next-Generation Sequencing (NGS).

- Dia 1 Sequenciamento de DNA: Iniciaremos nossa jornada explorando os princípios fundamentais do sequenciamento de DNA de segunda e terceira geração. Compreenderemos as tecnologias por trás desses métodos e sua importância na geração de dados genômicos de alta qualidade.
- Dia 2 Alinhamento de Sequências de DNA: No segundo dia, mergulharemos na etapa crucial de alinhamento de sequências de DNA. A precisão dessa fase é vital para extrair informações significativas dos dados brutos e identificar variações genéticas relevantes.
- Dia 3 Identificação de Variantes: Aprofundando-nos ainda mais, dedicaremos o terceiro dia à identificação de variantes genéticas. Exploraremos ferramentas e estratégias para detectar mutações, SNPs (Single Nucleotide Polymorphisms) e outras alterações que desempenham um papel crucial na individualidade genômica.
- Dia 4 Análise de Sequenciamento Oxford Nanopore: No quarto dia, abordaremos uma tecnologia revolucionária: o sequenciamento Oxford Nanopore. Compreenderemos suas vantagens, desafios e exploraremos casos de uso específicos na genética forense.
- Dia 5 Genotipagem de STRs a partir de dados de NGS: Encerraremos o workshop com uma exploração prática da genotipagem de STRs, uma ferramenta valiosa para estabelecer perfis genéticos únicos. Aprenderemos a interpretar e analisar esses dados, fornecendo insights fundamentais para investigações forenses.

Ao longo desta semana, vocês serão desafiados a aplicar os conhecimentos adquiridos em exercícios práticos e estudos de caso, preparando-os para enfrentar os desafios reais da genética forense na era da bioinformática avançada. Esteja preparado para uma jornada intensiva de aprendizado e descoberta!

1.1 Primeiros passos

2 Dia 1 - Sequenciamento de DNA

2.1 Arquivos

Dica

Preste atenção nos seus arquivos

2.2 Métricas

$$Read\ Accuracy = \frac{N_{match}}{N_{match} + N_{mis} + N_{del} + N_{ins}} \tag{2.1}$$

$$Mis/Ins/Del = \frac{N_{mis/ins/del}}{N_{match} + N_{mis} + N_{del} + N_{ins}}$$
 (2.2)

$$P = 10^{\frac{-Q_{score}}{10}} \tag{2.3}$$

$$Read\ Qscore = -10\log_{10}\left[\,\frac{1}{N}\sum 10^{\frac{-q_1}{10}}\,\right] \eqno(2.4)$$

2.3 Atividades

O controle de qualidade (QC) dos dados é uma etapa crítica na análise de sequenciamento de nova geração (NGS) para garantir a confiabilidade dos resultados. Abaixo estão as etapas típicas do controle de qualidade:

1. Análise Inicial com FASTQC:

• Execute o FASTQC nas suas leituras brutas para avaliar a qualidade geral. Isso inclui gráficos e estatísticas que indicam a distribuição da qualidade das bases ao longo das reads, a presença de adaptadores, a presença de sequências overrepresented, entre outros.

2. Identificação de Adaptação (Adapter) e Trimagem:

• Com base nos resultados do FASTQC, identifique a presença de adaptadores e sequências indesejadas nas extremidades das reads. Utilize ferramentas como Trimmomatic, Cutadapt ou similar para remover essas sequências, garantindo que apenas dados de alta qualidade sejam mantidos.

3. Remoção de Leituras de Baixa Qualidade:

 Algumas leituras podem conter regiões de baixa qualidade. Considere a remoção dessas leituras ou a trimagem de regiões específicas usando ferramentas adequadas, dependendo da natureza do problema.

4. Filtragem de Leituras Curtas ou Longas:

• Dependendo do seu experimento, você pode querer filtrar leituras muito curtas ou muito longas que possam representar artefatos ou problemas experimentais.

5. Avaliação de Qualidade Pós-Trimagem:

 Após a trimagem e filtragem, execute novamente o FASTQC para avaliar como essas etapas afetaram a qualidade dos dados. Isso ajudará a garantir que você atingiu os padrões de qualidade desejados.

6. Relatório Final de Controle de Qualidade:

 Compile todos os resultados de QC em um relatório final que destaque os principais aspectos da qualidade dos dados. Isso é útil para comunicação interna, bem como para garantir a transparência na publicação de resultados.

3 Dia 2 - Alinhamento de sequências de DNA

3.1 Arquivos

4 Dia 3 - Genotipagem

5 Dia 4 - Análise de sequenciamento Oxford Nanopore

6 Dia 5 - Genotipagem de STRs a partir de dados de NGS

References