Compound V2 Wallet Risk Scoring: Detailed Project Report

Data Collection Method

Schema Exploration and Sourcing:

To ensure complete and accurate coverage of all relevant wallet behaviors, the project began with systematic exploration of Compound protocol subgraphs using The Graph's APIs.

- Introspection queries were run (via custom scripts) on several candidate Compound V2 and V3 subgraphs to extract and analyze the full schema of available data structures in JSON format.
- This step was critical for confirming which on-chain data fields (balances, events, market activity, liquidations, etc.) could be reliably queried for the full list of provided wallet addresses.

Subgraph Selection and Query Development:

- Dedicated Python scripts were written to construct and execute GraphQL queries for each wallet, gathering all protocol-relevant on-chain data (e.g., deposits, borrows, repays, withdrawals, market participation).
- Four separate Compound V2 and V3 subgraphs on Arbitrum were evaluated. Only
 one V2 subgraph yielded valid, complete data for the challenge wallet set; no V3
 subgraph yielded matching data for the wallet set at all. Thus, all downstream
 analysis and modeling were V2-based, though the pipeline was designed to flexibly
 accept V3 data in the future.

Raw Dataset Creation:

Queried data for all target wallets was aggregated and stored in a single raw transaction dataset (compound_wallets_raw_data.csv) that formed the backbone for all subsequent feature extraction and modeling.

Feature Selection Rationale

Theory- and Data-Driven Design:

Drawing from extensive literature on DeFi lending risk and practical experience, features were engineered to capture both direct on-chain risk factors and broader behavioral patterns. Key considerations in selection included direct risk explainability, empirical support from EDA, and non-redundancy.

Key Features Used:

- Monetary_flows: total_supplied_usd, total_borrowed_usd, total_withdrawn_usd, tot al_repaid_usd
- Ratios: collateralization_ratio (protocol-level risk margin), repayment_rate (user reliability), withdraw_to_supply_ratio (draining/abandonment signal)
- Engagement: number_markets_used, num_borrow_events, num_deposit_events, to tal_protocol_tx (acts as activity proxy)
- Risk incident flags: liquidations_suffered, has_been_liquidated, high_withdraw_flag
- Non-linear and log features: total_supplied_usd_log, total_withdrawn_usd_log, total_protocol_tx_log c aptured scale while mitigating outlier/whale effects.

Feature Pruning and Robustness:

EDA revealed several features were highly collinear (e.g., protocol event counts and USD totals), so only one representative from each group was retained to avoid double-counting. Features dominated by missing or zeroed values (e.g., V3 specifics, empty fields) were dropped or carefully imputed to preserve variance and modeling stability.

Scoring Method

Heuristic Rule-Based Scoring:

- A domain-informed, expert-weighted heuristic scoring function was implemented first.
- Features were normalized (0=safest, 1=riskiest), clipped to prevent outlierdominance, and combined as a weighted sum.
 - Key weights: collateralization ratio (0.25), repayment rate (0.20), liquidations suffered (0.15), withdraw-to-supply ratio (0.15), diversification (0.10), protocol activity (0.10), borrow risk (0.05).
- The formula generated a composite risk value for each wallet, linearly rescaled to a
 1–1000 range (1 = safest, 1000 = riskiest) for clarity in reporting.
- Upon close EDA review, normalization and scaling choices were tuned to handle the challenge dataset's real skew: most wallets have low activity, while a few "whales" and risky users define the variance.

Machine Learning Enhancement:

- The engineered features and heuristic score together formed the basis for ML training.
- XGBoost, LightGBM, and Random Forest regressors were compared for predictive capability against the heuristic risk score as the target.
- Model efficacy was assessed primarily with RMSE, MAE, and R² on validation splits.
 XGBoost was selected as the winning model for its best RMSE and interpretability.
- The final model, trained on the complete feature set, generated refined, learnable risk predictions for all wallets, output in final_predictions.csv.

Justification of Risk Indicators Used

a. Collateralization Ratio

Strongly predictive of liquidation risk; EDA revealed that most "safe" wallets cluster above 1, with a minority near threshold or below. This indicator was heavily weighted and rigorously normalized.

b. Repayment Rate

Demonstrates user reliability; EDA confirmed near-binary separation between non-repayers (high risk) and consistent repayers (safe).

c. Liquidations Suffered

Historical liquidations, though rare, are a powerful risk signal. EDA showed these events cluster in a small wallet subset, supporting strong penalty calibration.

d. Withdraw-to-Supply Ratio

Observed in EDA as a strong separator between wallets still exposed to protocol risk and those that have "drained" assets—thus, critical for risk of exit behavior or strategic non-participation.

e. Activity & Diversification

Moderate protocol activity and broader asset use both correlated with safety. Extremely low or high activity, or lack of diversification, was associated with edgecase risky behaviors.

f. Handling of Outliers and Redundancy

Deep EDA revealed "whale" outliers and strong feature correlations, driving clipping, log transformation, and careful feature selection to avoid overweighting or spurious model sensitivity.

Conclusion

This project delivered a robust, end-to-end on-chain wallet risk scoring system. The workflow integrated schema introspection, precision subgraph querying, EDA-driven feature engineering, rigorous cleaning, interpretability-focused heuristic scoring, and state-of-the-art ML regression (XGBoost). Each risk signal was empirically vetted, weighted, and validated via both rule-based and machine learning methods, ensuring clarity, scalability, and predictive strength for operational or compliance DeFi risk tools.