College of Industrial Technology King Mongkut's University of Technology North Bangkok

-inal	. Examination	n of Semeste	r 1

Subject: 392151 Chemistry I

Date: 30 November 2017

Section: 15-18

Year: 2017

Time: 10.00-12.00

Name:	ID:	Class:

Instructions:

- 1. The examination has 7 pages (including this page), 2 sections and a total score of 50 points.

- Write all your solutions and answers on this examination.
 This is a closed book examination.
 You are not allowed to leave the example of during the first hour after the beginning of the exam.
 You are not allowed to open the exam papers or start to answer before the proctor's
- permission.
- 6. You are not allowed to use restroom during the exam except in case of an emergency.
- 7. No documents are allowed to be taken out of the examination room.
- 8. Calculators are NOT allowed in the examination.
- 9. Electronic communication devices are NOT allowed in the examination room.

Cheating in the exam is considered an extremely serious offence which will result in expulsion from the University. Given relative atomic mass

$$C = 12$$

$$Cl = 35.5$$

$$Au = 197$$

$$H = 1$$

$$Na = 23$$

$$Ca = 40$$

$$He = 4$$

$$Cr = 52$$

$$K = 39$$

$$Fe = 56$$

	Multiple Choice	Part 2.1	Part 2.2	Part 2.3	Total
score					

Part 1. Multiple Choice (15 pts)

Choose the letter of the choice in the answer table that best completes the statement or answers the question.

a.	b.	C.	d.
			5.6
		n.	6/0/20
	200	267	
E	Allo		
			S. S. Elle A.

Question no.	a.	b.	C.	d.
9				
10				
10 12 12				
12				
13				
14				
15				
Total				

1. What is the average relative atomic mass of silver (Ag) from the following data

Isotope	Natural Relative Abundance (%)	Relative atomic mass
¹⁰⁷ Ag	60	107
¹⁰⁹ Ag	40	109

- a. 107.5
- b. 107.8
- c. 108.0
- d. 108.2
- 2. For Mg which its relative atomic mass of 24.31, which one is correct?
 - a. Mass of 2 moles of it is 48.62 g
- b. 0.5 mole of it consists of 3.01x10²³ atoms
- c. Its molar mass is 24.31 g/mol
- d. a, b, and c are correct
- 3. What is the relative molecular mass of H_2SO_4 ?
 - a. 70
- b. 85.07
- c. 98
- d. 108

4. ∖	What is the percen	itage of Cl to the mass c	of a molecule of calciur	n chloride (CaCl ₂)?
	a. 54 %	b. 64 %	с. 74 %	d. 84 %
5.	2 moles of carbo	n tetrachloride (CCl₄) co	ntain	
	a. 4 moles of	chlorine atoms	b. 8 molecules o	of chlorine atoms
	c. 1 mole of c	carbon atoms	d. 8 moles of ch	lorine atoms
6.	If 24 g of carbon	is measured, how many	atoms of carbon have I	been indirectly counted?
	a. 2	b. 24	c. 6.02×10^{23}	d. 1.20×10^{24}
7.	What can be said	about 1 mol Ag and 1 r	nol Au?	
	a. They are ed	qual in mass.	b. They contain	the same number of atoms.
	c. Their molar	masses are equal.	d. They have the	e same atomic mass.
8.	Which of the follo	owing element contains	the greatest number of	atoms?
	a. 4 g of He	b. 3 g of H	c. 0.4 g of Ca	d. 46 g of Na
9.	How many moles	of CO ₂ are present in a	1.12 dm³ sample at STF	??
	a. 2	b. 1	c. 0.2	d. 0.05
10.	What volume wil	.l 7.00 g of N_2 occupy at	STP?	.
	a. 5.6 dm³	b. 11.2 dm ³	Call Dandm3	d. 44.8 dm³
11.	How many mole	s of O atoms are needed	ha combine with 5 mo	ol of P atoms to make P_2O_5 ?
	a. 5	b. 10 10 16 6.	c. 12.5	d. 0.05 d. 44.8 dm ³ ol of P atoms to make P_2O_5 ? d. 25 $+ H_2 \longrightarrow NH_3$
12.	Ammonia is prod	luced according to the fo	ollowing equation: N ₂	$+$ $H_2 \rightarrow NH_3$
	How many mole	s of N_2 are required to p	roduce 3 mol of NH ₃ ?	
	a. 1	b. 1.5	c. 3	d. 4.5
13.	Calculate the nu	mber of atoms in 4.0 mo	ol H ₂ O.	
	a. 7.2×10^{24} n	nolecules	b. 2.4×10^{24} mo	lecules
	c. 2.4×10^{23} n	nolecules	d. 6.0×10^{23} mo	lecules
14.	When the equati	on below is balanced ar	nd all coefficients reduc	ced to lowest whole-number
	terms, the coeffi			
		$_{}$ La ₂ O ₃ (s) + $_{}$ H ₂	$O(l) \longrightarrow \underline{\qquad} La(OH)_{2}$	₃ (aq)
	a. 4	b. 3	c. 2	d. 1
15.	According to the	reaction in problem 14,	how many grams of La	a(OH) ₃ can be prepared from
	2 mol of La ₂ O ₃ w	vith sufficient H ₂ O ?		
	a. 190 g.	b. 380 g.	c. 760 g.	d. none of above

Part 2 Write your answer in the space provided for each question (35 pts)

11 1110 000111	ent rhenium consists of two isotopes	Re and Re. The percent ab	undance of
¹⁸⁵ Re is 40). Calculate the relative atomic mass	of rhenium.	(1 pt)
mass of 3	naturally occurring isotopes of chloring 7 amu. The atomic mass of elementa the percent abundance of each of the	e are ³⁵ Cl with a mass of 35 amu al chlorine on earth is found to b	u and ³⁷ Cl with a pe 35.5 amu. (2 pts)
	รูพยาลัยเร		
	2140	Walgren	
	2481 gar		••••••
3. Calculate	relative molecular mass and %Cr in t	he following molecules listed in	the table. (6 pts
	Relative molecular mass	% Cr	
CrO ₂			
K ₂ Cr ₂ O ₇			
Fe ₂ (Cr ₂ O ₇) ₃			

Fill in the answer or show your short calculations for each of the following.	(10 pts)
4.1 What is the molar mass of CaCO ₃ ?	
	••••••
	••••••
4.2 What is the mass in grams of 0.05 mol Co?	
	•••••
.3 What is the number of moles of oxygen atoms do 1.5 mol of C ₉ H ₈ O ₄ contain?	
	•••••
4.4 What is the number of molecules in 36 g of H ₂ O?	
La La Balana	•••••
NA BULMANE	***************************************
2410	
4.5 What is the total number of atoms in 0.250 mol of glucose, $C_6H_{12}O_6$?	
	•••••
4.6 What is the volume of 2.0 mol of He occupy at STP?	
4.7 What is the number of N atoms are in 5.00 mol of N_2O_5 ?	

5.	What is the mass (grams) and the number of molecules present in 4.48 L CH ₄ at STP?	(3 pts)
		•••••
		•••••
		••••••
6.	6.1 How many moles of O atoms are in 125 g of SO ₃ ?	(4 pts)
	6.2 If 80 g of unknown element (X) are needed to combine with 4 mol of Cl to make X	⟨Cl₂,
	what is the molar mass of XCl ₂ compound?	
	Sales Legisles Land Legisles L	
		•••••
	E Trafica	•••••
	" LEGITAL ET.	
	246	
		•••••

		•••••••

7.	Balance the follow	wing reactions:					(4 pts)
	7.1	NaBr +	$_$ Cl $_2$ \longrightarrow	•	_ NaCl +	Br ₂	
	7.2	_Fe +	_Cl₂ →		FeCl ₃		
	7.3	_C ₆ H ₅ COOH + _	O ₂	· -	CO ₂ +	H ₂ O	
	7.4	Fe ₂ O ₃ +	C ·	→	Fe +	CO ₂	
8.	Given the equatic	on: Fe ₂ O ₃ + 3CO	→ 2Fe +	- 3CO ₂ Cal	culate the follow	wing:	
	8.1 How many	grams of Fe are	e produced	d from 1.80) mol of CO?		
	8.2 How many	moles of Fe ₂ O ₃	are need	ed to prod	uce 66 g of CO ₂ :	?	(5 pts)
			•••••	••••••			
	••••••	•••••••••••••••••••••••••••••••••••••••	••••••				
		••••••	•••••	••••••	•••••••••••••••••••••••••••••••••••••••		
		•••••••••••••••••••••••••••••••••••••••	••••••	••••••		•••••	••••••
				••••••		,	
			••••••			<i></i>	
	•••••••••••••••••••••••••••••••••••••••	•••••	•••••	••••••	REPORT NAVE SE		
	••••••		•••••••	5.5	ું જા _ઈ છે જો કે.	•••••	
		••••••	b	STANGISTS.			
	•••••••••••••••••••••••••••••••••••••••		ENE TO	30		•••••	•••••
				••••••		••••••	••••••
	••••••			•••••••			•••••
			•••••••	••••••			
				••••••			
			••••••	•••••		••••••	•••••
			••••••	•••••			

Monrudee Phongaksorn
Parinya Khongprom
Sunanta Chuayprakong