PAC

Docket No.:

AVSI-0027 (108328.00161)

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants:

Ruxandra Draghia-Akli, et al.

Serial No.:

10/699,597

Filed:

October 30, 2003

Group:

1645

For:

SYNTHETIC MUSCLE PROMOTERS WITH ACTIVITIES EXCEEDING

NATURALLY OCCURRING REGULATORY SEQUENCES IN CARDIAC CELLS

Mail Stop: Petition Commissioner for Patents P. O. Box 1450 Alexandria, VA 22313-1450

Sir:

RESPONSE TO NOTICE OF ABANDONMENT UNDER 37 CFR 1.53 (F) OR (G)

In response to the Notice of Abandonment Under 37 CRF 1.53 (F) or (G) mailed March 14, 2007, enclosed please find the following documents:

- 1. Petition to Withdraw a Holding of Abandonment Based on Failure to Receive an Office Action under 37 CRF §1.181(a);
- 2. Copy of Notice of Abandonment under 37 CFR 1.53(f) or (g) [Exhibit A];
- 3. Copy of Withdrawal of Previously Sent Notice/ Notice to Comply with Requirements for Patent Applications Containing Nucleotide Sequence and/or Amino Acid Sequence Disclosures retrieved from the USPTO PAIR System [Exhibit B];
- 4. Statement from Practitioner in Support of Petition to Withdraw Holding of Abandonment Based on Failure to Receive Office Action;
- 5. Copy of docket record for Docket No. 108328.00161 [Exhibit C];
- 6. Amendment under 37 CFR §1.111;
- 7. Sequence Listing Statement Under 37 CFR §1.821(f);
- 8. Revised Sequence Listing on paper; and
- 9. Revised Sequence Listing on CD.

The commissioner is hereby authorized to charge any additional fees which may be required, or credit any overpayment, to Deposit Account No. 10-0096.

1

4646102v.2

Respectfully Submitted,

T. Ling Chwang Reg. No. 33,590

Jackson Walker L.L.P.

901 Main Street, Suite 6000

my May 21, 2007

Dallas, Texas 75202

Tel: (214) 953-5959 Fax: (214) 661-6870

4646102v.2

2

PATENT

Attorney Docket No.: AV61-2027 (108328.00161)

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of:

Ruxandra Draghia-Akli, et al.

Serial No.:

10/699,597

Filed:

October 30, 2003

For:

SYNTHETIC MUSCLE PROMOTERS WITH ACTIVITIES EXCEEDING NATURALLY OCCURRING REGULATORY

SEQUENCES IN CARDIAC CELLS

Group No.:

1645

Examiner:

Kaushal, Sumesh

Mail Stop: Petition Commissioner for Patents P. O. Box 1450 Alexandria, VA 22313-1450

Sir:

CERTIFICATE OF MAILING: I hereby certify that this correspondence is being deposited with the United States Postal Service as First Class Mail in an envelope addressed to: Mail Stop Petition, Commissioner for Patents, P. O. Box 1450, Alexandria, VA 22313-1450, on 5-21-01

(Printed or typed name of person signing the certificate)

(Signature of the person signing the certificate)

AMENDMENT UNDER 37 C.F.R. § 1.111

In response to the Notice to Comply with Requirements for Patent Applications Containing Nucleotide Sequences and/or Amino Acid Sequence Disclosures dated July 6, 2006, please enter the enclosed Sequence Listing. In addition, please amend the above-identified patent application as follows. No new matter has been added.

4650453v.1 -1-

Attorney Docket No.: AVSI-0027 (108328.00161)

In the Sequence Listing:

Please replace the original Sequence Listing in the Specification with the replacement Sequence Listing as indicated on the Sequence Listing sheets (pages 1-24) that are part of the Statement under 37 C.F.R. §1.821(f) having the heading SEQUENCE LISTING:

In the Specification, please replace paragraphs [0005] and [0051] as follows:

Please amend Paragraph [0005] and Paragraph [0051] as follows. Certain original text contains underlining in the nucleotide sequence and this amendment simply adds of sequence identifiers. No new matter has been added.

Paragraph [0005]

[0005] The molecular mechanisms controlling cardiac-specific gene transcription requires the dissection of the cis-elements that govern the complex spatio-temporal expression of these genes. The vertebrate heart is formed during fetal development following a series of complex morphogenetic events that require the functional presence of different proteins, tightly regulated by combinatorial interactions of several transcription factors and their cofactors (Nemer and Nemer, 2001; Wang et al., 2001). First, the proximal serum response element (SRE) ('5-CC[A/T]6GG-3'), SEQ ID NO:23, of the skeletal α-actin promoter was incorporated. Multiple SREs are found in the cardiac, skeletal and smooth muscle α-actin promoters (Chang et al., 2001), and in the promoters of myosin light chain and dystrophin (Bergsma et al., 1986; Carroll et al., 1986). This cis-element is recognized by the trans-acting serum response factor (SRF), and by the competitive inhibitor YY1 (Chow and Schwartz, 1990; Lee et al., 1992; Minty and Kedes, 1986). Serum response factor (SRF) is a key regulator of a number of extracellular signal-regulated genes important for cell growth and differentiation (Zhang et al., 2001). Mutations in the proximal SRE that block SRF binding abolish skeletal α-actin promoter (SK) activity, indicating a fundamental role for this promoter element. Second, MEF-2 sites ('5-[C/T]TAAAAATAAC[C/T]3-3'), SEQ ID NO: 24, that have been found in

4650453v.1 -2-

the promoter/enhancer regions of the myosin light-chain 3 gene were selected. A single MEF-2 site lacks enhancer activity, but has multiple copies that exhibit strong enhancer activity (Gossett et al., 1989). Mutation of the MEF2 site severely reduced promoter activity in embryos, underlining the importance of MEF2 in controlling differentiation in all muscle lineages (Kelly et al., 2002). Third, the MEF-1 sites ('5-CANNTG-3'), or E-boxes that are found in the upstream regulatory region of most, if not all, muscle-specific genes were included (Olson et al., 1991; Weintraub et al., 1990). MEF-1 sites are recognized by the basic helix-loop-helix (bHLH) family of proteins. Multiple MEF-1 sites placed upstream of basal non-muscle promoters are sufficient to direct muscle-specific expression and MyoD-mediated trans-activation in transient assays (Lassar et al., 1991; Weintraub et al., 1990). Finally, the highly conserved muscle-CAT motif, or TEF-1 binding site ('5-CATTCCT-3') was selected. TEF-1 mediates both muscle-specific (SK, cardiac troponin T, cardiac α- and β-myosin heavy chain) and non-muscle specific transcription (simian virus 40 promoter) (Larkin et al., 1996; Stewart et al., 1994).

Paragraph [0051]

[0051] Different combination of SRE, MEF-1, MEF-2 and TEF-1 were then ligated in a total volume of 100μl using different molar ratio (Figure 1), maintaining a constant total amount of oligonucleotide of 200 pmoles. The core motif of each regulatory element (underlined) was flanked by adjacent sequence so that the binding sites of the regulatory elements would face the same side of the DNA helix when assembled together. The ligation reaction was completed with T4 ligase in 150μl. After ligation, the combination of elements was run on a 6% acrylamide gel. The 75-300-bp region was cut and eluted in 2 volumes of diffusion buffer at 37 °C overnight. The DNA was extracted using Qiaex II Gel Extraction Kit (Qiagen Inc., Chatsworth, CA, USA) and incubated in 150μl with phosphorylated and annealed Sp1 element (2.5 nmoles) and 10U of T4 ligase at 16 °C overnight. Since each of the Sp1 elements ('5-CCGTCCGCCCTCGG-3'), SEQ ID NO: 25, contains EagI half at both ends, an intact EagI restriction site was generated wherever two Sp1 elements were ligated together. The reaction was cleaned up (Qiaquick Nucleotide Removal Kit), digested with EagI and cloned into the EagI site of SK144GL-2 luciferase reporter construct, which resulted in a

4650453v.1 -3-

Attorney Docket No.: AVSI-0027 (108328.00161)

PATENT

library of randomized synthetic-promoter-recombinants that were operatively linked to a reporter gene. The clones that gave the best results in the transfection studies were sequenced automatically.

REMARKS

Applicants have amended the Sequence Listing to contain sequence identifiers for each of the sequences disclosed on page 4, lines 3 and 12, and page 18, line 17, of the Specification. Additionally, Applicants have enclosed replacement copies of the Sequence Listing in both paper and electronic format. The replacement copies contain a Statement under 37 C.F.R. §1.821 indicating that the paper and electronic copies are identical.

If the Examiner has any other matters which pertain to this Application, the Examiner is encouraged to contact the undersigned to resolve these matters by Examiner's Amendment where possible.

Respectfully submitted,

T. Ling Chwang

Registration No. 33,590

JACKSON WALKER L.L.P.

901 Main Street, Suite 6000

Dallas, Texas 75202

Tel: (214) 953-5959

Fax: (214) 661-6870

May 21, 2007

Date

Docket No. AVSI-0027 (108328.00161)

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant:

Ruxandra Draghia-Akli, et al.

Serial No.:

10/699,597

Filing Date:

October 30, 2003

For:

SYNTHETIC MUSCLE PROMOTERS WITH ACTIVITIES EXCEEDING NATURALLY OCCURRING REGULATORY SEQUENCES IN CARDIAC

CELLS

<u>PETITION TO WITHDRAW HOLDING OF ABANDONMENT BASED ON FAILURE TO</u> <u>RECEIVE OFFICE ACTION UNDER 37 CFR 1.181(A)</u>

Mail Stop: Petition Commissioner for Patents P. O. Box 1450 Alexandria, Virginia 22313-1450 CERTIFICATE OF MAILING UNDER 37 C.F.R. 1.8: I hereby certify that this correspondence is being deposited with the United States Postal Service with sufficient postage as First Class Mail in an envelope addressed to: Mail Stop Petition, Commissioner for Patents P. O. Box 1450, Alexandria, VA 22313-1450 on

(Printed or typed name of person signing the certificate)

(Signature of the person signing the certificate)

Dear Sir:

Applicants, through their undersigned attorney, the Practitioner, hereby petition the U.S. Patent and Trademark Office ("USPTO") to withdraw the holding of abandonment in this application. A Notice of Abandonment, mailed March 14, 2007 [Exhibit A], was received by the Practitioner on March 16, 2007. A subsequent review of the file history in the USPTO Patent Application Information Retrieval System revealed a Withdrawal of Previously Sent Notice/Notice to Comply With Requirements for Patent Applications Containing Nucleotide Sequence And/Or Amino Acid Sequence Disclosures ("Withdrawal of Previously Sent Notice") was supposedly mailed on July 6, 2006 [Exhibit B]. This Withdrawal of Previously Sent Notice had never been received by the Practitioner. Applicants respectfully request that, since the Withdrawal of Previously Sent Notice was not received by the Practitioner, the Notice of Abandonment be withdrawn.

Docket No. AVSI-0027 (108328.00161)

The following documents are attached in support of this petition:

- 1. Statement From Practitioner in Support of Petition to Withdraw Holding of Abandonment Based on Failure to Receive Office Action; and
- Copy of docket record for Docket No. 108328.00161 [Exhibit C] showing no evidence of a
 Withdrawal of Previously Sent Notice being received by the Practitioner or a Response having
 been docketed at any time surrounding the deadline for response of August 6, 2006.

Applicants respectfully request that this Petition be granted.

The Commissioner is hereby authorized to charge any fees which may be required, or credit any overpayment to Deposit Account No. 10-0096.

Any inquiries regarding this correspondence may be directed to the undersigned at the address or telephone number shown below.

Respectfully submitted,

T. Ling Chwang Reg. No. 33,590

May 21, 2007

Jackson Walker L.L.P. 901 Main Street, Suite 6000 Dallas, Texas 75202

Tel: (214) 953-5959 Fax: (214) 661-6870

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Ruxandra Draghia-Akli, et al.

Serial No.:

10/699,597

Filed:

October 30, 2003

For:

SYNTHETIC MUSCLE PROMOTERS WITH ACTIVITIES

EXCEEDING NATURALLY OCCURRING REGULATORY

SEQUENCES IN CARDIAC CELLS

Art Unit:

1645

Examiner:

Kaushal, Sumesh

Mail Stop: Petition

Commissioner for Patents

P.O. Box 1450

Alexandria, VA 22313-1450

Dear Sir:

CERTIFICATE OF MAILING UNDER 37 C.F.R. 1.8: I hereby certify that this correspondence is being deposited with the United States Postal Service with sufficient postage as First Class Mail in an envelope addressed to: Mail Stop Petition, Commissioner for Patents, P. O. Box 1450, Alexandria, VA

(Signature of the person signing the certificate)

STATEMENT UNDER 37 C.F.R. § 1.821 (F)

I hereby state that the content of the paper and computer readable copies of the Sequence Listing, submitted in accordance with 37 C.F.R. § 1.821 (e), § 1.821 (f), § 1.821 (g), § 1.825 (b) or § 1.825 (d) respectively, are the same. I also state that the paper and computer readable copies of the Sequence Listing submitted herewith contain no new matter.

Respectfully submitted,

T. Ling Chwang Reg. No. 33,590

Date: May 21, 2007

JACKSON WALKER L.L.P. 901 Main Street, Suite 6000

Dallas, TX 75202 Tel: 214-953-5959 Fax: 214-661-6870

1		
	SEQUENCE LISTING	
	PROPHARICO	
<110>	Advisys	
	Baylor College of Medicine	
<120>	SYNTHETIC MUSCLE PROMOTERS WITH ACTIVITIES EXCEEDING NATURALLY	
	OCCURRING REGULATORY SEQUENCES IN CARDIAC CELLS	
<130>	108328.00161 - AVSI-0027	
.140.	1000007	
	10699597 2003-10-30	
\ 111 /	2003 10 30	
	US 60/423,536	
<151>	2002-11-04	
<160>	25	
<160>	25	
<170>	PatentIn version 3.3	
<210>		
<211> <212>		
	artificial sequence	
12137	artificial bequence	
<220>		
<223>	SRE control elements used in the promoters.	
<400>	1	
	caaa tatggcgacg g	21
540400		
<210>		
<211> <212>		
	artificial sequence	
<220>		
<223>	MEF-1 control element used in the promoters	
<400>	2	
	cetg etgeetgee	19
010		
<210> <211>	3	
<212>		
	artificial sequence	
	·	
<220>	MDD 0 and all allowed and line blooms	
<223>	MEF-2 control element used in the promoters.	
<400>	3	
cgctct	aaaa ataactccc	19
<210>	4	
<211>		
<212>	DNA	
<213>	artificial sequence	

```
<220>
<223> TEF-1 control element used in the promoters.
<400> 4
                                                                      13
caccattcct cac
<210> 5
<211> 335
<212> DNA
<213> artificial sequence
<220>
<223> Nucleic acid sequence of an eukaryotic promoter c5-12.
<400> 5
cggccgtccg ccttcggcac catcctcacg acacccaaat atggcgacgg gtgaggaatg
                                                                      60
gtggggagtt atttttagag cggtgaggaa ggtgggcagg cagcaggtgt tggcgctcta
                                                                     120
aaaataactc ccgggagtta tttttagagc ggaggaatgg tggacaccca aatatggcga
                                                                     180
                                                                     240
eggtteetea eeegtegeea tatttgggtg teegeeeteg geeggggeeg catteetggg
                                                                     300
ggccgggcgg tgctcccgcc cgcctcgata aaaggctccg gggccggcgg cggcccacga
                                                                     335
gctacccgga ggagcgggag gcgccaagct ctaga
<210> 6
<211> 40
<212> PRT
<213> artificial sequence
<220>
<223> This is the artificial sequence for GHRH (1-40)OH.
<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> Xaa at position 1 may be tyrosine, or histidine
<220>
<221> MISC_FEATURE
<222> (2)..(2)
<223> Xaa at position 2 may be alanine, valine, or isoleucine.
<220> -
<221> MISC_FEATURE
<222> (15)..(15)
<223> Xaa at position 15 may be alanine, valine, or isoleucine.
<220>
<221> MISC_FEATURE
<222> (27)..(27)
<223> Xaa at position 27 may be methionine, or leucine.
```

ī - t

<220>

<221> MISC_FEATURE

<222> (28)..(28)

<223> Xaa at position 28 may be serine or asparagine.

<400> 6

Xaa Xaa Asp Ala Ile Phe Thr Asn Ser Tyr Arg Lys Val Leu Xaa Gln 1 5 10 15

Leu Ser Ala Arg Lys Leu Gln Asp Ile Xaa Xaa Arg Gln Gln Gly
20 25 30

Glu Arg Asn Gln Glu Gln Gly Ala 35 40

<210> 7

<211> 3534

<212> DNA

<213> artificial sequence

<220>

<223> Nucleic acid sequence for the HV-GHRH plasmid.

<400> 7 60 qttqtaaaac qacqqccaqt qaattqtaat acqactcact atagggcgaa ttggagctcc 120 accgcggtgg cggccgtccg ccctcggcac catcctcacg acacccaaat atggcgacgg gtgaggaatg gtggggagtt atttttagag cggtgaggaa ggtgggcagg cagcaggtgt 180 240 tggcgctcta aaaataactc ccgggagtta tttttagagc ggaggaatgg tggacaccca 300 aatatggcga cggttcctca cccgtcgcca tatttgggtg tccgccctcg gccggggccg cattectggg ggccgggcgg tgctcccgcc cgcctcgata aaaggctccg gggccggcgg 360 cggcccacga gctacccgga ggagcgggag gcgccaagct ctagaactag tggatcccaa 420 480 ggcccaactc cccgaaccac tcagggtcct gtggacagct cacctagctg ccatggtgct 540 ctgggtgttc ttctttgtga tcctcaccct cagcaacagc tcccactgct ccccacctcc ccctttgacc ctcaggatgc ggcggcacgt agatgccatc ttcaccaaca gctaccggaa 600 ggtgctggcc cagctgtccg cccgcaagct gctccaggac atcctgaaca ggcagcaggg 660 720 agagaggaac caagagcaag gagcataatg actgcaggaa ttcgatatca agcttatcgg 780 ggtggcatcc ctgtgacccc tccccagtgc ctctcctggc cctggaagtt gccactccag tgcccaccag ccttgtccta ataaaattaa gttgcatcat tttgtctgac taggtgtcct 840 900 tctataatat tatggggtgg agggggtgg tatggagcaa ggggcaagtt gggaagacaa cctgtagggc ctgcggggtc tattgggaac caagctggag tgcagtggca caatcttggc 960

1020

teactgeaat eteegeetee tgggtteaag egatteteet geeteageet eeegagttgt

1080 tgggattcca ggcatgcatg accaggctca gctaattttt gtttttttgg tagagacggg 1140 gtttcaccat attggccagg ctggtctcca actcctaatc tcaggtgatc tacccacctt 1200 1260 ttttaaaata actataccag caggaggacg tccagacaca gcataggcta cctggccatg 1320 cccaaccggt gggacatttg agttgcttgc ttggcactgt cctctcatgc gttgggtcca ctcagtagat gcctgttgaa ttcgataccg tcgacctcga gggggggccc ggtaccagct 1380 1440 tttgttccct ttagtgaggg ttaatttcga gcttggcgta atcatggtca tagctgtttc 1500 ctgtgtgaaa ttgttatccg ctcacaattc cacacaacat acgagccgga agcataaagt 1560 gtaaagcctg gggtgcctaa tgagtgagct aactcacatt aattgcgttg cgctcactgc ccgctttcca gtcgggaaac ctgtcgtgcc agctgcatta atgaatcggc caacgcgcgg 1620 ggagaggcgg tttgcgtatt gggcgctctt ccgcttcctc gctcactgac tcgctgcgct 1680 cggtcgttcg gctgcggcga gcggtatcag ctcactcaaa ggcggtaata cggttatcca 1740 1800 cagaatcagg ggataacgca ggaaagaaca tgtgagcaaa aggccagcaa aaggccagga 1860 accgtaaaaa ggccgcgttg ctggcgtttt tccataggct ccgccccct gacgagcatc acaaaaatcg acgctcaagt cagaggtggc gaaacccgac aggactataa agataccagg 1920 cgtttccccc tggaagctcc ctcgtgcgct ctcctgttcc gaccctgccg cttaccggat 1980 2040 acctgtccgc ctttctccct tcgggaagcg tggcgctttc tcatagctca cgctgtaggt 2100 atctcagttc ggtgtaggtc gttcgctcca agctgggctg tgtgcacgaa ccccccgttc agecegaceg etgegeetta teeggtaaet ategtettga gteeaaeeeg gtaagaeaeg 2160 2220 acttatcgcc actggcagca gccactggta acaggattag cagagcgagg tatgtaggcg gtgctacaga gttcttgaag tggtggccta actacggcta cactagaaga acagtatttg 2280 2340 gtatctgcgc tctgctgaag ccagttacct tcggaaaaag agttggtagc tcttgatccg gcaaacaaac caccgctggt agcggtggtt tttttgtttg caagcagcag attacgcgca 2400 gaaaaaaagg atctcaagaa gatcctttga tcttttctac ggggtctgac gctcagaaga 2460 actegteaag aaggegatag aaggegatge getgegaate gggageggeg atacegtaaa 2520 2580 gcacgaggaa gcggtcagcc cattcgccgc caagctcttc agcaatatca cgggtagcca 2640 acgetatgte etgatagegg teegecacae eeageeggee acagtegatg aateeagaaa 2700 agcggccatt ttccaccatg atattcggca agcaggcatc gccatgggtc acgacgagat cetegeegte gggeatgege geettgagee tggegaacag tteggetgge gegageeect 2760 2820 gatgetette gtecagatea teetgatega caagacegge ttecateega gtaegtgete

gctcgatgcg atgtttcgct tggtggtcga atgggcaggt agccggatca agcgtatgca 2880 2940 gccgccgcat tgcatcagcc atgatggata ctttctcggc aggagcaagg tgagatgaca 3000 ggagatectg ecceggeact tegeceaata geagecagte cetteceget teagtgacaa 3060 cgtcgagcac agctgcgcaa ggaacgcccg tcgtggccag ccacgatagc cgcgctgcct cgtcctgcag ttcattcagg gcaccggaca ggtcggtctt gacaaaaaga accgggcgcc 3120 3180 cctgcgctga cagccggaac acggcggcat cagagcagcc gattgtctgt tgtgcccagt 3240 catagoogaa tagoototoo acccaagogg coggagaaco tgogtgcaat coatottgtt caatcatgcg aaacgatcct catcctgtct cttgatcaga tcttgatccc ctgcgccatc 3300 3360 agateettgg eggeaagaaa geeateeagt ttaetttgea gggetteeea acettaeeag agggcgcccc agctggcaat tccggttcgc ttgctgtcca taaaaccgcc cagtctagca 3420 3480 actgttggga agggcgatcg gtgcgggcct cttcgctatt acgccagctg gcgaaagggg 3534 gatgtgctgc aaggcgatta agttgggtaa cgccagggtt ttcccagtca cgac

<210> 8

<211> 3534

<212> DNA

<213> artificial sequence

<220>

<223> Nucleic acid sequence for the TI-GHRH plasmid.

<400> 8

gttgtaaaac gacggccagt gaattgtaat acgactcact atagggcgaa ttggagctcc 60 120 accgcggtgg cggccgtccg ccctcggcac catcctcacg acacccaaat atggcgacgg 180 gtgaggaatg gtggggagtt atttttagag cggtgaggaa ggtgggcagg cagcaggtgt tggcgctcta aaaataactc ccgggagtta tttttagagc ggaggaatgg tggacaccca 240 aatatggcga cggttcctca cccgtcgcca tatttgggtg tccgccctcg gccggggccg 300 360 cattectggg ggeegggegg tgeteeegee egeetegata aaaggeteeg gggeeggegg 420 cggcccacga gctacccgga ggagcgggag gcgccaagct ctagaactag tggatcccaa ggcccaactc cccgaaccac tcagggtcct gtggacagct cacctagctg ccatggtgct 480 540 ctgggtgttc ttctttgtga tcctcaccct cagcaacagc tcccactgct ccccacctcc 600 ccctttgacc ctcaggatgc ggcggtatat cgatgccatc ttcaccaaca gctaccggaa 660 ggtgctggcc cagctgtccg cccgcaagct gctccaggac atcctgaaca ggcagcaggg 720 agagaggaac caagagcaag gagcataatg actgcaggaa ttcgatatca agcttatcgg 780 ggtggcatcc ctgtgacccc tececagtge cteteetgge cetggaagtt gecaetecag

840 tgcccaccag ccttgtccta ataaaattaa gttgcatcat tttgtctgac taggtgtcct 900 tctataatat tatggggtgg agggggtgg tatggagcaa ggggcaagtt gggaagacaa 960 cctgtagggc ctgcggggtc tattgggaac caagctggag tgcagtggca caatcttggc tcactgcaat ctccgcctcc tgggttcaag cgattctcct gcctcagcct cccgagttgt 1020 tgggattcca ggcatgcatg accaggctca gctaattttt gtttttttgg tagagacggg 1080 1140 gtttcaccat attggccagg ctggtctcca actcctaatc tcaggtgatc tacccacctt 1200 ttttaaaata actataccag caggaggacg tccagacaca gcataggcta cctggccatg 1260 cccaaccggt gggacatttg agttgcttgc ttggcactgt cctctcatgc gttgggtcca 1320 1380 ctcagtagat gcctgttgaa ttcgataccg tcgacctcga gggggggccc ggtaccagct tttgttccct ttagtgaggg ttaatttcga gcttggcgta atcatggtca tagctgtttc 1440 1500 ctgtgtgaaa ttgttatccg ctcacaattc cacacaacat acgagccgga agcataaagt gtaaagcctg gggtgcctaa tgagtgagct aactcacatt aattgcgttg cgctcactgc 1560 1620 ccgctttcca gtcgggaaac ctgtcgtgcc agctgcatta atgaatcggc caacgcgcgg 1680 ggagaggegg tttgegtatt gggegetett cegetteete geteactgae tegetgeget 1740 cggtcgttcg gctgcggcga gcggtatcag ctcactcaaa ggcggtaata cggttatcca 1800 cagaatcagg ggataacgca ggaaagaaca tgtgagcaaa aggccagcaa aaggccagga 1860 accgtaaaaa ggccgcgttg ctggcgtttt tccataggct ccgccccct gacgagcatc 1920 acaaaaatcg acgctcaagt cagaggtggc gaaacccgac aggactataa agataccagg 1980 cgtttccccc tggaagctcc ctcgtgcgct ctcctgttcc gaccctgccg cttaccggat 2040 acctgtccgc ctttctccct tcgggaagcg tggcgctttc tcatagctca cgctgtaggt atctcagttc ggtgtaggtc gttcgctcca agctgggctg tgtgcacgaa ccccccgttc 2100 2160 agcccgaccg ctgcgcctta tccggtaact atcgtcttga gtccaacccg gtaagacacg 2220 acttatcgcc actggcagca gccactggta acaggattag cagagcgagg tatgtaggcg 2280 gtgctacaga gttcttgaag tggtggccta actacggcta cactagaaga acagtatttg gtatctgcgc tctgctgaag ccagttacct tcggaaaaag agttggtagc tcttgatccg 2340 2400 gcaaacaaac caccgctggt agcggtggtt tttttgtttg caagcagcag attacgcgca 2460 gaaaaaaagg atctcaagaa gatcctttga tcttttctac ggggtctgac gctcagaaga 2520 actegteaag aaggegatag aaggegatge getgegaate gggageggeg atacegtaaa 2580 gcacgaggaa gcggtcagcc cattcgccgc caagctcttc agcaatatca cgggtagcca

2640 acgctatgtc ctgatagcgg tccgccacac ccagccggcc acagtcgatg aatccagaaa 2700 ageggeeatt ttecaccatg atatteggea ageaggeate gecatgggte aegaegagat 2760 cctcgccgtc gggcatgcgc gccttgagcc tggcgaacag ttcggctggc gcgagcccct 2820 gatgetette gtecagatea teetgatega caagacegge ttecateega gtaegtgete 2880 gctcgatgcg atgtttcgct tggtggtcga atgggcaggt agccggatca agcgtatgca gccgccgcat tgcatcagcc atgatggata ctttctcggc aggagcaagg tgagatgaca 2940 3000 ggagatectg ecceggeact tegeceaata geagecagte cetteeeget teagtgacaa 3060 cgtcgagcac agctgcgcaa ggaacgcccg tcgtggccag ccacgatagc cgcgctgcct 3120 cgtcctgcag ttcattcagg gcaccggaca ggtcggtctt gacaaaaaga accgggcgcc cctgcgctga cagccggaac acggcggcat cagagcagcc gattgtctgt tgtgcccagt 3180 catagoogaa tagoototoo accoaagogg coggagaaco tgogtgcaat coatottgtt 3240 3300 caatcatgcg aaacgatect catectgtet ettgateaga tettgatece etgegeeate agateettgg eggeaagaaa geeateeagt ttaetttgea gggetteeea aeettaeeag 3360 3420 agggcgcccc agctggcaat tccggttcgc ttgctgtcca taaaaccgcc cagtctagca actgttggga agggcgatcg gtgcgggcct cttcgctatt acgccagctg gcgaaagggg 3480 gatgtgctgc aaggcgatta agttgggtaa cgccagggtt ttcccagtca cgac 3534

<210> 9

<211> 3534

<212> DNA

<213> artificial sequence

<220>

<223> Nucleic acid sequence for the TV-GHRH plasmid.

<400> 9

60 gttgtaaaac gacggccagt gaattgtaat acgactcact atagggcgaa ttggagctcc accgcggtgg cggccgtccg ccctcggcac catcctcacg acacccaaat atggcgacgg 120 180 gtgaggaatg gtggggagtt atttttagag cggtgaggaa ggtgggcagg cagcaggtgt tggcgctcta aaaataactc ccgggagtta tttttagagc ggaggaatgg tggacaccca 240 aatatggcga cggttcctca cccgtcgcca tatttgggtg tccgccctcg gccggggccg 300 360 cattectggg ggccgggcgg tgctcccgcc cgcctcgata aaaggctccg gggccggcgg 420 cggcccacga gctacccgga ggagcgggag gcgccaagct ctagaactag tggatcccaa 480 ggcccaactc cccgaaccac tcagggtcct gtggacagct cacctagctg ccatggtgct etgggtgtte ttetttgtga teetcaeeet cageaacage teecaetget eeceaeetee 540

600 ccctttgacc ctcaggatgc ggcggtatgt agatgccatc ttcaccaaca gctaccggaa ggtgctggcc cagctgtccg cccgcaagct gctccaggac atcctgaaca ggcagcaggg 660 720 agagaggaac caagagcaag gagcataatg actgcaggaa ttcgatatca agcttatcgg 780 ggtggcatcc ctgtgacccc tccccagtgc ctctcctggc cctggaagtt gccactccag 840 tgcccaccag ccttgtccta ataaaattaa gttgcatcat tttgtctgac taggtgtcct 900 tctataatat tatggggtgg aggggggtgg tatggagcaa ggggcaagtt gggaagacaa 960 cctgtagggc ctgcggggtc tattgggaac caagctggag tgcagtggca caatcttggc 1020 tcactgcaat ctccgcctcc tgggttcaag cgattctcct gcctcagcct cccgagttgt 1080 tgggattcca ggcatgcatg accaggctca gctaattttt gtttttttgg tagagacggg gtttcaccat attggccagg ctggtctcca actcctaatc tcaggtgatc tacccacctt 1140 1200 1260 ttttaaaata actataccag caggaggacg tccagacaca gcataggcta cctggccatg 1320 cccaaccggt gggacatttg agttgcttgc ttggcactgt cctctcatgc gttgggtcca 1380 ctcagtagat gcctgttgaa ttcgataccg tcgacctcga gggggggccc ggtaccagct tttgttccct ttagtgaggg ttaatttcga gcttggcgta atcatggtca tagctgtttc 1440 1500 ctgtgtgaaa ttgttatccg ctcacaattc cacacaacat acgagccgga agcataaagt 1560 gtaaageetg gggtgeetaa tgagtgaget aacteacatt aattgegttg egeteactge 1620 ccgctttcca gtcgggaaac ctgtcgtgcc agctgcatta atgaatcggc caacgcgcgg ggagaggegg tttgegtatt gggegetett eegetteete geteactgae tegetgeget 1680 1740 eggtegtteg getgeggega geggtateag etcaeteaaa ggeggtaata eggttateea 1800 cagaatcagg ggataacgca ggaaagaaca tgtgagcaaa aggccagcaa aaggccagga accgtaaaaa ggccgcgttg ctggcgtttt tccataggct ccgccccct gacgagcatc 1860 acaaaaatcg acgctcaagt cagaggtggc gaaacccgac aggactataa agataccagg 1920 cgtttccccc tggaagctcc ctcgtgcgct ctcctgttcc gaccctgccg cttaccggat 1980 2040 acctgtccgc ctttctccct tcgggaagcg tggcgctttc tcatagctca cgctgtaggt 2100 atctcagttc ggtgtaggtc gttcgctcca agctgggctg tgtgcacgaa ccccccgttc 2160 agcccgaccg ctgcgcctta tccggtaact atcgtcttga gtccaacccg gtaagacacg 2220 acttategee actggeagea geeactggta acaggattag cagagegagg tatgtaggeg gtgctacaga gttcttgaag tggtggccta actacggcta cactagaaga acagtatttg 2280 2340 gtatctgcgc tctgctgaag ccagttacct tcggaaaaag agttggtagc tcttgatccg

gcaaacaaac	caccgctggt	agcggtggtt	tttttgtttg	caagcagcag	attacgcgca	2400
gaaaaaaagg	atctcaagaa	gatcctttga	tcttttctac	ggggtctgac	gctcagaaga	2460
actcgtcaag	aaggcgatag	aaggcgatgc	gctgcgaatc	gggagcggcg	ataccgtaaa	2520
gcacgaggaa	gcggtcagcc	cattcgccgc	caagctcttc	agcaatatca	cgggtagcca	2580
acgctatgtc	ctgatagcgg	tccgccacac	ccagccggcc	acagtcgatg	aatccagaaa	2640
agcggccatt	ttccaccatg	atattcggca	agcaggcatc	gccatgggtc	acgacgagat	2700
cctcgccgtc	gggcatgcgc	gccttgagcc	tggcgaacag	ttcggctggc	gcgagcccct	2760
gatgctcttc	gtccagatca	tcctgatcga	caagaccggc	ttccatccga	gtacgtgctc	2820
gctcgatgcg	atgtttcgct	tggtggtcga	atgggcaggt	agccggatca	agcgtatgca	2880
gccgccgcat	tgcatcagcc	atgatggata	ctttctcggc	aggagcaagg	tgagatgaca	2940
ggagatcctg	ccccggcact	tcgcccaata	gcagccagtc	ccttcccgct	tcagtgacaa	3000
cgtcgagcac	agctgcgcaa	ggaacgcccg	tcgtggccag	ccacgatagc	cgcgctgcct	3060
cgtcctgcag	ttcattcagg	gcaccggaca	ggtcggtctt	gacaaaaaga	accgggcgcc	3120
cctgcgctga	cagccggaac	acggcggcat	cagagcagcc	gattgtctgt	tgtgcccagt	3180
catagccgaa	tagcctctcc	acccaagcgg	ccggagaacc	tgcgtgcaat	ccatcttgtt	3240
caatcatgcg	aaacgatcct	catcctgtct	cttgatcaga	tcttgatccc	ctgcgccatc	3300
agatccttgg	cggcaagaaa	gccatccagt	ttactttgca	gggcttccca	accttaccag	3360
agggcgcccc	agctggcaat	tccggttcgc	ttgctgtcca	taaaaccgcc	cagtctagca	3420
actgttggga	agggcgatcg	gtgcgggcct	cttcgctatt	acgccagctg	gcgaaagggg	3480
gatgtgctgc	aaggcgatta	agttgggtaa	cgccagggtt	ttcccagtca	cgac	3534

<210> 10 <211> 3534

<212> DNA

<213> artificial sequence

<220>

<223> Nucleic acid sequence for the 15/27/28 GHRH plasmid.

<400> 10
gttgtaaaac gacggccagt gaattgtaat acgactcact atagggcgaa ttggagctcc 60
accgcggtgg cggccgtccg ccctcggcac catcctcacg acacccaaat atggcgacgg 120
gtgaggaatg gtggggagtt attttagag cggtgaggaa ggtgggcagg cagcaggtgt 180
tggcgctcta aaaataactc ccgggagtta tttttagagc ggaggaatgg tggacaccca 240
aatatggcga cggttcctca cccgtcgcca tatttgggtg tccgccctcg gccggggccg 300

cattcctggg	ggccgggcgg	tgctcccgcc	cgcctcgata	aaaggctccg	gggccggcgg	360	
cggcccacga	gctacccgga	ggagcgggag	gcgccaagct	ctagaactag	tggatcccaa	420	
ggcccaactc	cccgaaccac	tcagggtcct	gtggacagct	cacctagctg	ccatggtgct	480	
ctgggtgttc	ttctttgtga	tcctcaccct	cagcaacagc	tcccactgct	ccccacctcc	540	
ccctttgacc	ctcaggatgc	ggcggtatat	cgatgccatc	ttcaccaaca	gctaccggaa	600	
ggtgctggcc	cagctgtccg	cccgcaagct	gctccaggac	atcctgaaca	ggcagcaggg	660	
agagaggaac	caagagcaag	gagcataatg	actgcaggaa	ttcgatatca	agcttatcgg	720	
ggtggcatcc	ctgtgacccc	tccccagtgc	ctctcctggc	cctggaagtt	gccactccag	780	
tgcccaccag	ccttgtccta	ataaaattaa	gttgcatcat	tttgtctgac	taggtgtcct	840	
tctataatat	tatggggtgg	aggggggtgg	tatggagcaa	ggggcaagtt	gggaagacaa	900	
cctgtagggc	ctgcggggtc	tattgggaac	caagctggag	tgcagtggca	caatcttggc	960	
tcactgcaat	ctccgcctcc	tgggttcaag	cgattctcct	gcctcagcct	cccgagttgt	1020	
tgggattcca	ggcatgcatg	accaggctca	gctaattttt	gtttttttgg	tagagacggg	1080	
gtttcaccat	attggccagg	ctggtctcca	actcctaatc	tcaggtgatc	tacccacctt	1140	
ggcctcccaa	attgctggga	ttacaggcgt	gaaccactgc	tcccttccct	gtccttctga	1200	
ttttaaaata	actataccag	caggaggacg	tccagacaca	gcataggcta	cctggccatg	1260	
cccaaccggt	gggacatttg	agttgcttgc	ttggcactgt	cctctcatgc	gttgggtcca	1320	
ctcagtagat	gcctgttgaa	ttcgataccg	tcgacctcga	gggggggccc	ggtaccagct	1380	
tttgttccct	ttagtgaggg	ttaatttcga	gcttggcgta	atcatggtca	tagctgtttc	1440	
ctgtgtgaaa	ttgttatccg	ctcacaattc	cacacaacat	acgagccgga	agcataaagt	1500	
gtaaagcctg	gggtgcctaa	tgagtgagct	aactcacatt	aattgcgttg	cgctcactgc	1560	
ccgctttcca	gtcgggaaac	ctgtcgtgcc	agctgcatta	atgaatcggc	caacgcgcgg	1620	
ggagaggcgg	tttgcgtatt	gggcgctctt	ccgcttcctc	gctcactgac	tcgctgcgct	1680	
cggtcgttcg	gctgcggcga	gcggtatcag	ctcactcaaa	ggcggtaata	cggttatcca	1740	
cagaatcagg	ggataacgca	ggaaagaaca	tgtgagcaaa	aggccagcaa	aaggccagga	1800	
accgtaaaaa	ggccgcgttg	ctggcgtttt	tccataggct	ccgccccct	gacgagcatc	1860	
acaaaaatcg	acgctcaagt	cagaggtggc	gaaacccgac	aggactataa	agataccagg	1920	
cgtttccccc	tggaagctcc	ctcgtgcgct	ctcctgttcc	gaccctgccg	cttaccggat	1980	
acctgtccgc	ctttctccct	tcgggaagcg	tggcgctttc	tcatagctca	cgctgtaggt	2040	
atctcagttc	ggtgtaggtc	gttcgctcca	agctgggctg	tgtgcacgaa	cccccgttc	2100	

. . .

agcccgaccg ctgcgcctta tccggtaact atcgtcttga gtccaacccg gtaagacacg 2160 2220 acttatcgcc actggcagca gccactggta acaggattag cagagcgagg tatgtaggcg 2280 gtgctacaga gttcttgaag tggtggccta actacggcta cactagaaga acagtatttg 2340 qtatctgcqc tctgctgaaq ccagttacct tcggaaaaag agttggtagc tcttgatccg 2400 gcaaacaaac caccgctggt agcggtggtt tttttgtttg caagcagcag attacgcgca gaaaaaaagg atctcaagaa gatcctttga tcttttctac ggggtctgac gctcagaaga 2460 2520 actogtoaag aaggogatag aaggogatgo gotgogaato gggagoggog atacogtaaa 2580 gcacgaggaa gcggtcagcc cattcgccgc caagctcttc agcaatatca cgggtagcca 2640 acgctatgtc ctgatagcgg tccgccacac ccagccggcc acagtcgatg aatccagaaa 2700 ageggeeatt ttecaceatg atatteggea ageaggeate geeatgggte aegaegagat cetegeegte gggeatgege geettgagee tggegaacag tteggetgge gegageeeet 2760 2820 gatgctcttc gtccagatca tcctgatcga caagaccggc ttccatccga gtacgtgctc 2880 gctcgatgcg atgtttcgct tggtggtcga atgggcaggt agccggatca agcgtatgca 2940 gccgccgcat tgcatcagcc atgatggata ctttctcggc aggagcaagg tgagatgaca 3000 ggagateetg eeceggeact tegeecaata geageeagte eetteeeget teagtgacaa 3060 cgtcgagcac agctgcgcaa ggaacgcccg tcgtggccag ccacgatagc cgcgctgcct 3120 cgtcctgcag ttcattcagg gcaccggaca ggtcggtctt gacaaaaaga accgggcgcc 3180 cctgcgctga cagccggaac acggcggcat cagagcagcc gattgtctgt tgtgcccagt catagoogaa tagoototoo acccaagogg coggagaaco tgogtgcaat coatottgtt 3240 caatcatgcg aaacgatcct catcctgtct cttgatcaga tcttgatccc ctgcgccatc 3300 agateettgg eggeaagaaa geeateeagt ttaetttgea gggetteeea acettaeeag 3360 3420 agggegeece agetggeaat teeggttege ttgetgteea taaaacegee cagtetagea 3480 actgttggga agggcgatcg gtgcgggcct cttcgctatt acgccagctg gcgaaagggg gatgtgctgc aaggcgatta agttgggtaa cgccagggtt ttcccagtca cgac 3534

60

<210> 11

<211> 2710

<212> DNA

<213> artificial sequence

<220>

<223> Vector with a mouse codon optimized GHRH analog sequence

<400> 11

tgtaatacga ctcactatag ggcgaattgg agctccaccg cggtggcggc cgtccgccct

120 cggcaccatc ctcacgacac ccaaatatgg cgacgggtga ggaatggtgg ggagttattt 180 ttagagcggt gaggaaggtg ggcaggcagc aggtgttggc gctctaaaaa taactcccgg 240 gagttatttt tagagcggag gaatggtgga cacccaaata tggcgacggt tcctcacccg 300 tegecatatt tgggtgteeg eeeteggeeg gggeegeatt eetgggggee gggeggtget 360 ecegecegee tegataaaag geteegggge eggeggege eeaegageta eeeggaggag 420 cgggaggcgc caagcggatc ccaaggccca actccccgaa ccactcaggg tcctgtggac ageteaceta getgecatgg tgetetgggt getetttgtg atecteatee teaceagegg 480 cagccactgc agcctgcctc ccagccctcc cttcaggatg cagaggcacg tggacgccat 540 cttcaccacc aactacagga agctgctgag ccagctgtac gccaggaagg tgatccagga 600 catcatgaac aagcagggcg agaggatcca ggagcagagg gccaggctga gctgataagc 660 ttatcggggt ggcatccctg tgacccctcc ccagtgcctc tcctggccct ggaagttgcc 720 780 actocagtgc ccaccagcct tgtcctaata aaattaagtt gcatcatttt gtctgactag 840 gtgtccttct ataatattat ggggtggagg ggggtggtat ggagcaaggg gcaagttggg aagacaacct gtagggctcg aggggggcc cggtaccagc ttttgttccc tttagtgagg 900 960 gttaattteg agettggtet teegetteet egeteactga etegetgege teggtegtte 1020 ggctgcggcg agcggtatca gctcactcaa aggcggtaat acggttatcc acagaatcag 1080 gggataacgc aggaaagaac atgtgagcaa aaggccagca aaaggccagg aaccgtaaaa aggeogegtt getggegttt ttecatagge teegeeece tgaegageat cacaaaaate 1140 1200 gacgctcaag tcagaggtgg cgaaacccga caggactata aagataccag gcgtttcccc 1260 etggaagete cetegtgege teteetgtte egaceetgee gettacegga tacetgteeg cctttctccc ttcgggaagc gtggcgcttt ctcatagctc acgctgtagg tatctcagtt 1320 cggtgtaggt cgttcgctcc aagctgggct gtgtgcacga acccccgtt cagcccgacc 1380 1440 getgegeett ateeggtaae tategtettg agteeaacee ggtaagaeae gaettatege cactggcagc agccactggt aacaggatta gcagagcgag gtatgtaggc ggtgctacag 1500 1560 agttettgaa gtggtggeet aactaegget acaetagaag aacagtattt ggtatetgeg ctctgctgaa gccagttacc ttcggaaaaa gagttggtag ctcttgatcc ggcaaacaaa 1620 1680 ccaccgctgg tagcggtggt ttttttgttt gcaagcagca gattacgcgc agaaaaaaag 1740 gateteaaga agateetttg atetttteta eggggetage gettagaaga aeteateeag cagacggtag aatgcaatac gttgagagtc tggagctgca ataccataca gaaccaggaa 1800 acggtcagcc cattcaccac ccagttcctc tgcaatgtca cgggtagcca gtgcaatgtc 1860

ctggtaacgg	tctgcaacac	ccagacgacc	acagtcaatg	aaaccagaga	aacgaccatt	1920
ctcaaccatg	atgttcggca	ggcatgcatc	accatgagta	actaccaggt	cctcaccatc	1980
cggcatacga	gctttcagac	gtgcaaacag	ttcagccggt	gccagaccct	gatgttcctc	2040
atccaggtca	tcctggtcaa	ccagacctgc	ttccatacgg	gtacgagcac	gttcaatacg	2100
atgttttgcc	tggtggtcaa	acggacaggt	agctgggtcc	agggtgtgca	gacgacgcat	2160
tgcatcagcc	atgatagaaa	ctttctctgc	cggagccagg	tgagaagaca	gcaggtcctg	2220
acccggaact	tcacccagca	gcagccagtc	acgaccagct	tcagtaacta	catccagaac	2280
tgcagcacac	ggaacaccag	tggttgccag	ccaagacaga	cgagctgctt	catcctgcag	2340
ttcattcaga	gcaccagaca	ggtcagtttt	aacaaacaga	actggacgac	cctgtgcaga	2400
cagacggaaa	acagctgcat	cagagcaacc	aatggtctgc	tgtgcccagt	cataaccaaa	2460
cagacgttca	acccaggctg	ccggagaacc	tgcatgcaga	ccatcctgtt	caatcatgcg	2520
aaacgatcct	catcctgtct	cttgatcaga	tcttgatccc	ctgcgccatc	agatccttgg	2580
cggcaagaaa	gccatccagt	ttactttgca	gggcttccca	accttaccag	agggcgcccc	2640
agctggcaat	tccggttcgc	ttgctgtcca	taaaaccgcc	cagtctagca	actgttggga	2700
agggcgatcg						2710

<210> 12

<211> 2713

<212> DNA

<213> artificial sequence

<220>

<223> Vector with a rat codon optimized GHRH analog sequence

<400> 12

60 tgtaatacga ctcactatag ggcgaattgg agctccaccg cggtggcggc cgtccgccct cggcaccatc ctcacgacac ccaaatatgg cgacgggtga ggaatggtgg ggagttattt 120 ttagageggt gaggaaggtg ggeaggeage aggtgttgge getetaaaaa taacteeegg 180 gagttatttt tagagcggag gaatggtgga cacccaaata tggcgacggt tcctcacccg 240 300 tegecatatt tgggtgteeg ceeteggeeg gggeegeatt eetggggggee gggeggtget 360 cccgcccgcc tcgataaaag gctccggggc cggcggcggc ccacgagcta cccggaggag cgggaggcgc caagcggatc ccaaggccca actccccgaa ccactcaggg tcctgtggac 420 480 ageteaceta getgecatgg ceetgtgggt gttettegtg etgetgacee tgaceagegg aagccactgc agcctgcctc ccagccctcc cttcagggtg cgccggcacg ccgacgccat 540 cttcaccagc agctacagga ggatcctggg ccagctgtac gctaggaagc tcctgcacga 600

660 gatcatgaac aggcagcagg gcgagaggaa ccaggagcag aggagcaggt tcaactgata 720 agettategg ggtggcatec etgtgacece tecceagtge eteteetgge cetggaagtt 780 gccactccag tgcccaccag ccttgtccta ataaaattaa gttgcatcat tttgtctgac 840 taggtgtcct tctataatat tatggggtgg aggggggtgg tatggagcaa ggggcaagtt 900 gggaagacaa cctgtagggc tcgagggggg gcccggtacc agcttttgtt ccctttagtg 960 agggttaatt tegagettgg tetteegett cetegeteae tgaetegetg egeteggteg 1020 ttcggctgcg gcgagcggta tcagctcact caaaggcggt aatacggtta tccacagaat 1080 caggggataa cgcaggaaag aacatgtgag caaaaaggcca gcaaaaggcc aggaaccgta 1140 aaaaggccgc gttgctggcg tttttccata ggctccgccc ccctgacgag catcacaaaa atcgacgctc aagtcagagg tggcgaaacc cgacaggact ataaagatac caggcgtttc 1200 cccctggaag ctccctcgtg cgctctcctg ttccgaccct gccgcttacc ggatacctgt 1260 1320 ccgcctttct cccttcggga agcgtggcgc tttctcatag ctcacgctgt aggtatctca 1380 gtteggtgta ggtegttege tecaagetgg getgtgtgea egaaceeece gtteageeeg 1440 accgctgcgc cttatccggt aactatcgtc ttgagtccaa cccggtaaga cacgacttat cgccactggc agcagccact ggtaacagga ttagcagagc gaggtatgta ggcggtgcta 1500 cagagttett gaagtggtgg cetaactacg getacactag aagaacagta tttggtatet 1560 1620 gegetetget gaageeagtt acetteggaa aaagagttgg tagetettga teeggeaaae 1680 aaaccaccgc tggtagcggt ggtttttttg tttgcaagca gcagattacg cgcagaaaaa 1740 aaggatetea agaagateet ttgatetttt etaegggget agegettaga agaaeteate 1800 cagcagacgg tagaatgcaa tacgttgaga gtctggagct gcaataccat acagaaccag 1860 gaaacggtca gcccattcac cacccagttc ctctgcaatg tcacgggtag ccagtgcaat gtcctggtaa cggtctgcaa cacccagacg accacagtca atgaaaccag agaaacgacc 1920 atteteaace atgatgtteg geaggeatge ateaceatga gtaactacea ggteeteace 1980 2040 atcoggcata cgagctttca gacgtgcaaa cagttcagcc ggtgccagac cctgatgttc 2100 ctcatccagg tcatcctggt caaccagacc tgcttccata cgggtacgag cacgttcaat 2160 acgatgtttt gcctggtggt caaacggaca ggtagctggg tccagggtgt gcagacgacg 2220 cattgcatca gccatgatag aaactttctc tgccggagcc aggtgagaag acagcaggtc 2280 ctgacccgga acttcaccca gcagcagcca gtcacgacca gcttcagtaa ctacatccag aactgcagca cacggaacac cagtggttgc cagccaagac agacgagctg cttcatcctg 2340 cagttcattc agagcaccag acaggtcagt tttaacaaac agaactggac gaccctgtgc 2400

agacagacgg	aaaacagctg	catcagagca	accaatggtc	tgctgtgccc	agtcataacc	2460
aaacagacgt	tcaacccagg	ctgccggaga	acctgcatgc	agaccatcct	gttcaatcat	2520
gcgaaacgat	cctcatcctg	tctcttgatc	agatcttgat	cccctgcgcc	atcagatcct	2580
tggcggcaag	aaagccatcc	agtttacttt	gcagggcttc	ccaaccttac	cagagggcgc	2640
cccagctggc	aattccggtt	cgcttgctgt	ccataaaacc	gcccagtcta	gcaactgttg	2700
ggaagggcga	tcg					2713

<210> 13 <211> 2704

<212> DNA

<213> artificial sequence

<220>

<223> Vector with a bovine codon optimized GHRH analog sequence

<400> 13

60 tgtaatacga ctcactatag ggcgaattgg agctccaccg cggtggcggc cgtccgccct cggcaccatc ctcacgacac ccaaatatgg cgacgggtga ggaatggtgg ggagttattt 120 180 ttagageggt gaggaaggtg ggcaggeage aggtgttgge getetaaaaa taacteeegg 240 gagttatttt tagageggag gaatggtgga caeccaaata tggegaeggt teeteaeeeg 300 tegecatatt tgggtgteeg eecteggeeg gggeegeatt eetgggggee gggeggtget 360 cccgcccgcc tcgataaaag gctccggggc cggcggcggc ccacgagcta cccggaggag cgggaggcgc caagcggatc ccaaggccca actccccgaa ccactcaggg tcctgtggac 420 480 ageteaceta getgecatgg tgetgtgggt gttetteetg gtgaecetga eeetgageag 540 cggctcccac ggctccctgc cctcccagcc tctgcgcatc cctcgctacg ccgacgccat 600 cttcaccaac agctaccgca aggtgctcgg ccagctcagc gcccgcaagc tcctgcagga catcatgaac cggcagcagg gcgagcgcaa ccaggagcag ggagcctgat aagcttatcg 660 720 gggtggcatc cctgtgaccc ctccccagtg cctctcctgg ccctggaagt tgccactcca 780 gtgcccacca gccttgtcct aataaaatta agttgcatca ttttgtctga ctaggtgtcc 840 ttctataata ttatggggtg gagggggtg gtatggagca aggggcaagt tgggaagaca acctgtaggg ctcgaggggg ggcccggtac cagcttttgt tccctttagt gagggttaat 900 960 ttcgagettg gtetteeget teetegetea etgaeteget gegeteggte gtteggetge 1020 ggcgagcggt atcagctcac tcaaaggcgg taatacggtt atccacagaa tcaggggata 1080 acgcaggaaa gaacatgtga gcaaaaggcc agcaaaaggc caggaaccgt aaaaaggccg 1140 cgttgctggc gtttttccat aggctccgcc cccctgacga gcatcacaaa aatcgacgct

caagtcagag	gtggcgaaac	ccgacaggac	tataaagata	ccaggcgttt	cccctggaa	1200
gctccctcgt	gegeteteet	gttccgaccc	tgccgcttac	cggatacctg	tccgcctttc	1260
tecetteggg	aagcgtggcg	ctttctcata	gctcacgctg	taggtatctc	agttcggtgt	1320
aggtcgttcg	ctccaagctg	ggctgtgtgc	acgaaccccc	cgttcagccc	gaccgctgcg	1380
ccttatccgg	taactatcgt	cttgagtcca	acccggtaag	acacgactta	tcgccactgg	1440
cagcagccac	tggtaacagg	attagcagag	cgaggtatgt	aggcggtgct	acagagttct	1500
tgaagtggtg	gcctaactac	ggctacacta	gaagaacagt	atttggtatc	tgcgctctgc	1560
tgaagccagt	taccttcgga	aaaagagttg	gtagctcttg	atccggcaaa	caaaccaccg	1620
ctggtagcgg	tggtttttt	gtttgcaagc	agcagattac	gcgcagaaaa	aaaggatete	1680
aagaagatcc	tttgatcttt	tctacggggc	tagcgcttag	aagaactcat	ccagcagacg	1740
gtagaatgca	atacgttgag	agtctggagc	tgcaatacca	tacagaacca	ggaaacggtc	1800
agcccattca	ccacccagtt	cctctgcaat	gtcacgggta	gccagtgcaa	tgtcctggta	1860
acggtctgca	acacccagac	gaccacagtc	aatgaaacca	gagaaacgac	cattctcaac	1920
catgatgttc	ggcaggcatg	catcaccatg	agtaactacc	aggtcctcac	catccggcat	1980
acgagctttc	agacgtgcaa	acagttcagc	cggtgccaga	ccctgatgtt	cctcatccag	2040
gtcatcctgg	tcaaccagac	ctgcttccat	acgggtacga	gcacgttcaa	tacgatgttt	2100
tgcctggtgg	tcaaacggac	aggtagctgg	gtccagggtg	tgcagacgac	gcattgcatc	2160
agccatgata	gaaactttct	ctgccggagc	caggtgagaa	gacagcaggt	cctgacccgg	2220
aacttcaccc	agcagcagcc	agtcacgacc	agcttcagta	actacatcca	gaactgcagc	2280
acacggaaca	ccagtggttg	ccagccaaga	cagacgagct	gcttcatcct	gcagttcatt	2340
cagagcacca	gacaggtcag	ttttaacaaa	cagaactgga	cgaccctgtg	cagacagacg	2400
gaaaacagct	gcatcagagc	aaccaatggt	ctgctgtgcc	cagtcataac	caaacagacg	2460
ttcaacccag	gctgccggag	aacctgcatg	cagaccatcc	tgttcaatca	tgcgaaacga	2520
tcctcatcct	gtctcttgat	cagatettga	tcccctgcgc	catcagatcc	ttggcggcaa	2580
gaaagccatc	cagtttactt	tgcagggctt	cccaacctta	ccagagggcg	ccccagctgg	2640
caattccggt	tegettgetg	tccataaaac	cgcccagtct	agcaactgtt	gggaagggcg	2700
atcg						2704

<210> 14 <211> 2704 <212> DNA <213> artificial sequence

<220> <223> Vector with a ovine codon optimized GHRH analog sequence	
<400> 14 tgtaatacga ctcactatag ggcgaattgg agctccaccg cggtggcggc cgtccgccct	60
cggcaccatc ctcacgacac ccaaatatgg cgacgggtga ggaatggtgg ggagttattt	120
ttagageggt gaggaaggtg ggeaggeage aggtgttgge getetaaaaa taacteeegg	180
gagttatttt tagageggag gaatggtgga cacccaaata tggegaeggt teetcaceeg	240
tegecatatt tgggtgteeg eeeteggeeg gggeegeatt eetgggggee gggeggtget	300
cccgcccgcc tcgataaaag gctccggggc cggcggcggc ccacgagcta cccggaggag	360
cgggaggcgc caagcggatc ccaaggccca actccccgaa ccactcaggg tcctgtggac	420
ageteaceta getgecatgg tgetgtgggt gttetteetg gtgaceetga eeetgageag	480
cggaagccac ggcagcctgc ccagccagcc cctgaggatc cctaggtacg ccgacgccat	540
cttcaccaac agctacagga agatcctggg ccagctgagc gctaggaagc tcctgcagga	600
catcatgaac aggcagcagg gcgagaggaa ccaggagcag ggcgcctgat aagcttatcg	660
gggtggcatc cctgtgaccc ctccccagtg cctctcctgg ccctggaagt tgccactcca	720
gtgcccacca gccttgtcct aataaaatta agttgcatca ttttgtctga ctaggtgtcc	780
ttctataata ttatggggtg gagggggtg gtatggagca aggggcaagt tgggaagaca	840
acctgtaggg ctcgaggggg ggcccggtac cagcttttgt tccctttagt gagggttaat	900
ttcgagcttg gtcttccgct tcctcgctca ctgactcgct gcgctcggtc gttcggctgc	960
ggcgagcggt atcagctcac tcaaaggcgg taatacggtt atccacagaa tcaggggata	1020
acgcaggaaa gaacatgtga gcaaaaggcc agcaaaaggc caggaaccgt aaaaaggccg	1080
cgttgctggc gtttttccat aggctccgcc cccctgacga gcatcacaaa aatcgacgct	1140
caagtcagag gtggcgaaac ccgacaggac tataaagata ccaggcgttt ccccctggaa	1200
gctccctcgt gcgctctcct gttccgaccc tgccgcttac cggatacctg tccgcctttc	1260
tcccttcggg aagcgtggcg ctttctcata gctcacgctg taggtatctc agttcggtgt	1320
aggtcgttcg ctccaagctg ggctgtgtgc acgaaccccc cgttcagccc gaccgctgcg	1380
ccttatccgg taactatcgt cttgagtcca acceggtaag acacgactta tcgccactgg	1440
cagcagccac tggtaacagg attagcagag cgaggtatgt aggcggtgct acagagttct	1500
tgaagtggtg gcctaactac ggctacacta gaagaacagt atttggtatc tgcgctctgc	1560
tgaagccagt taccttcgga aaaagagttg gtagctcttg atccggcaaa caaaccaccg	1620
ctggtagcgg tggttttttt gtttgcaagc agcagattac gcgcagaaaa aaaggatctc	1680

aagaagatcc tttgatcttt	tctacggggc	tagcgcttag	aagaactcat	ccagcagacg	1740
gtagaatgca atacgttgag	agtctggagc	tgcaatacca	tacagaacca	ggaaacggtc	1800
agcccattca ccacccagtt	cctctgcaat	gtcacgggta	gccagtgcaa	tgtcctggta	1860
acggtctgca acacccagac	gaccacagtc	aatgaaacca	gagaaacgac	cattctcaac	1920
catgatgttc ggcaggcatg	catcaccatg	agtaactacc	aggtcctcac	catccggcat	1980
acgagettte agaegtgeaa	acagttcagc	cggtgccaga	ccctgatgtt	cctcatccag	2040
gtcatcctgg tcaaccagac	ctgcttccat	acgggtacga	gcacgttcaa	tacgatgttt	2100
tgcctggtgg tcaaacggac	aggtagctgg	gtccagggtg	tgcagacgac	gcattgcatc	2160
agccatgata gaaactttct	ctgccggagc	caggtgagaa	gacagcaggt	cctgacccgg	2220
aacttcaccc agcagcagcc	agtcacgacc	agcttcagta	actacatcca	gaactgcagc	2280
acacggaaca ccagtggttg	ccagccaaga	cagacgagct	gcttcatcct	gcagttcatt	2340
cagagcacca gacaggtcag	ttttaacaaa	cagaactgga	cgaccctgtg	cagacagacg	2400
gaaaacagct gcatcagagc	aaccaatggt	ctgctgtgcc	cagtcataac	caaacagacg	2460
ttcaacccag gctgccggag	aacctgcatg	cagaccatcc	tgttcaatca	tgcgaaacga	2520
tcctcatcct gtctcttgat	cagatcttga	teceetgege	catcagatcc	ttggcggcaa	2580
gaaagccatc cagtttactt	tgcagggctt	cccaacctta	ccagagggcg	ccccagctgg	2640
caattccggt tcgcttgctg	tccataaaac	cgcccagtct	agcaactgtt	gggaagggcg	2700
atcg					2704

<210> 15

<211> 2713

<212> DNA

<213> artificial sequence

<220>

<223> Vector with a chicken codon optimized GHRH analog sequence

<400> 15

tgtaatacga ctcactatag ggcgaattgg agctccaccg cggtggcggc cgtccgcct 60
cggcaccatc ctcacgacac ccaaatatgg cgacgggtga ggaatggtgg ggagttattt 120
ttagagcggt gaggaaggtg ggcaggcagc aggtgttggc gctctaaaaa taactcccgg 180
gagttatttt tagagcggag gaatggtgga cacccaaata tggcgacggt tcctcacccg 240
tegccatatt tgggtgtccg ccctcggccg gggccgcatt cctgggggcc gggcggtgct 300
cccgcccgcc tcgataaaag gctccggggc cggcggcgc ccacgagcta cccggaggag 360
cgggaggcgc caagcggatc ccaaggcca actccccgaa ccactcaggg tcctgtggac 420

ageteaceta getgecatgg ceetgtgggt gttetttgtg etgetgaece tgaecteegg 480 540 aagccactgc agcctgccac ccagcccacc cttccgcgtc aggcgccacg ccgacggcat cttcagcaag gcctaccgca agctcctggg ccagctgagc gcacgcaact acctgcacag 600 660 cctgatggcc aagcgcgtgg gcagcggact gggagacgag gccgagcccc tgagctgata 720 agettategg ggtggcatec etgtgacece tecceagtge eteteetgge eetggaagtt 780 gccactccag tgcccaccag ccttgtccta ataaaattaa gttgcatcat tttgtctgac 840 taggtgtcct tctataatat tatggggtgg aggggggtgg tatggagcaa ggggcaagtt gggaagacaa cctgtagggc tcgagggggg gcccggtacc agcttttgtt ccctttagtg 900 960 agggttaatt tegagettgg tetteegett cetegeteae tgaetegetg egeteggteg ttcggctgcg gcgagcggta tcagctcact caaaggcggt aatacggtta tccacagaat 1020 1080 caggggataa cgcaggaaag aacatgtgag caaaaggcca gcaaaaggcc aggaaccgta 1140 aaaaggccgc gttgctggcg tttttccata ggctccgccc ccctgacgag catcacaaaa 1200 atcgacgctc aagtcagagg tggcgaaacc cgacaggact ataaagatac caggcgtttc 1260 cccctggaag ctccctcgtg cgctctcctg ttccgaccct gccgcttacc ggatacctgt 1320 cegeetttet eeetteggga agegtggege ttteteatag etcaegetgt aggtatetea 1380 gttcggtgta ggtcgttcgc tccaagctgg gctgtgtgca cgaacccccc gttcagcccg 1440 accgctgcgc cttatccggt aactatcgtc ttgagtccaa cccggtaaga cacgacttat 1500 cgccactggc agcagccact ggtaacagga ttagcagagc gaggtatgta ggcggtgcta 1560 cagagttctt gaagtggtgg cctaactacg gctacactag aagaacagta tttggtatct 1620 gcgctctgct gaagccagtt accttcggaa aaagagttgg tagctcttga tccggcaaac aaaccaccgc tggtagcggt ggtttttttg tttgcaagca gcagattacg cgcagaaaaa 1680 1740 aaggatetea agaagateet ttgatetttt etaegggget agegettaga agaacteate 1800 cagcagacgg tagaatgcaa tacgttgaga gtctggagct gcaataccat acagaaccag 1860 gaaacggtca gcccattcac cacccagttc ctctgcaatg tcacgggtag ccagtgcaat 1920 gteetggtaa eggtetgeaa cacceagaeg accaeagtea atgaaaceag agaaaegaee 1980 atteteaace atgatgtteg geaggeatge ateaceatga gtaactacea ggteeteace 2040 atcoggcata cgagctttca gacgtgcaaa cagttcagcc ggtgccagac cctgatgttc ctcatccagg tcatcctggt caaccagacc tgcttccata cgggtacgag cacgttcaat 2100 2160 acgatgtttt gcctggtggt caaacggaca ggtagctggg tccagggtgt gcagacgacg cattgcatca gccatgatag aaactttctc tgccggagcc aggtgagaag acagcaggtc 2220

ctgacccgga acttcaccca gcagcagcca gtcacgacca gcttcagtaa ctacatccag	2280							
aactgcagca cacggaacac cagtggttgc cagccaagac agacgagctg cttcatcctg	2340							
cagttcattc agagcaccag acaggtcagt tttaacaaac agaactggac gaccctgtgc	2400							
agacagacgg aaaacagctg catcagagca accaatggtc tgctgtgccc agtcataacc	2460							
aaacagacgt tcaacccagg ctgccggaga acctgcatgc agaccatcct gttcaatcat	2520							
gcgaaacgat cctcatcctg tctcttgatc agatcttgat cccctgcgcc atcagatcct	2580							
tggcggcaag aaagccatcc agtttacttt gcagggcttc ccaaccttac cagagggcgc	2640							
cccagctggc aattccggtt cgcttgctgt ccataaaacc gcccagtcta gcaactgttg	2700							
ggaagggcga tcg	2713							
<pre><210> 16 <211> 382 <212> DNA <213> artificial sequence <220> <223> This is the synthetic promoter c1-26.</pre>								
<400> 16 ggcggccgag ggcggggg caggcagcag gtgttggcac cattecteac cgctctaaaa	60							
ataactcccg tgaggaatgg tgccgtcgcc atatttgggt gtcgacaccc aaatatggcg	120							
acgggtgagg aatggtgggc aggcagcagg tgttgggaca cccaaatatg gcgacggcca	180							
acacctgctg cctgccggga gttattttta gagcggggag ttatttttag agcggtgagg	240							
aatggtggac acccaaatat ggcgacggcc ggggccgcat teetgggggc egggeggtgc	300							
tecegecege etegataaaa ggeteegggg eeggeggegg eecaegaget acceggagga	360							
gcgggaggcg ccaagctcta ga	382							
<pre><210> 17 <211> 218 <212> DNA <213> artificial sequence <220> <223> This is the synthetic promoter sequence for c2-26.</pre>								
<400> 17 cggccgtcgc catatttggg tgtccgctct aaaaataact cccgacaccc aaatatggcg	60							
acggggcagg cagcaggtgt tgggacaccc aaatatggcg acggccgggg ccgcattcct	120							
gggggccggg cggtgctccc gcccgcctcg ataaaaggct ccgggggccgg cggcggccca	180							
cgagctaccc ggaggagcgg gaggcgccaa gctctaga	218							

```
<210> 18
<211> 230
<212> DNA
<213> artificial sequence
<220>
<223> This is the synthetic sequence for c2-27.
<400> 18
cggccgtcgc catatttggg tgtcggcagg cagcaggtgt tggcaccatt cctcacccgt
                                                                      60
cgccatattt gggtgtcggc aggcagcagt gttgggacac ccaaatatgg cgacggccgg
                                                                     120
ggccgcattc ctgggggccg ggcggtgctc ccgcccgcct cgataaaagg ctccggggcc
                                                                     180
ggcggcggcc cacgagctac ccggaggagc gggaggcgcc aagctctaga
                                                                     230
<210> 19
<211> 231
<212> DNA
<213> artificial sequence
<220>
<223> This is the synthetic promoter for c5-5.
<400> 19
cggccgtccg ccctcgggac acccaaatat ggcgacgggt gaggaatggt gcaccattcc
                                                                     60
tcacqqqaqt tatttttaga gcggtgagga atggtggaca cccaaatatg gcgacggccg
                                                                    120
                                                                    180
gggccgcatt cctgggggcc gggcggtgct cccgcccgcc tcgataaaag gctccggggc
cggcggcggc ccacgagcta cccggaggag cgggaggcgc caagctctag a
                                                                     231
<210> 20
<211> 255
<212> DNA
<213> artificial sequence
<220>
<223> This is the synthetic promter for c6-5.
<400> 20
                                                                     60
eggeegtege catatttggg tgteecaaca cetgetgeet geeegtege catatttggt
gtcggcaggc agcaggtgtt ggccaacacc tgctgcctgc cgggagttat ttttagagcg
                                                                     120
                                                                     180
gacacccaaa tatggegacg geeggggeeg catteetggg ggeegggegg tgeteeegee
                                                                    240
cgcctcgata aaaggctccg gggccggcgg cggcccacga gctacccgga ggagcgggag
                                                                     255
gcgccaagct ctaga
<210> 21
```

<211> 283

```
<212> DNA
<213> artificial sequence
<220>
      This is the synthetic promoter for c6-16.
<223>
<400> 21
cggccgtcgc catatttggg tgtccgctct aaaaataact cccccaacac ctgctgcctg
                                                                     60
ccccgtcgcc atatttgggt gtcggcaggc agcaggtgtt ggccaacacc tgctgcctgc
                                                                     120
cccaacact gctgcctgcc ccgtcgccat atttggtgtc cgccctcggc cggggccgca
                                                                    180
ttcctggggg ccgggcggtg ctcccgcccg cctcgataaa aggctccggg gccggcggcg
                                                                    240
gcccacgagc tacccggagg agcgggaggc gccaagctct aga
                                                                    283
<210> 22
<211> 263
<212> DNA
<213> artificial sequence
<220>
<223> This is the synthetic promoter for c6-39.
<400> 22
cggccgtccg ccctcggggg agttattttt agagcgccaa cacctgctgc ctgccccgtc
                                                                     60
                                                                    120
gccatatttg ggtgtcggca ggcagcaggt gttgggggag ttatttttag agcgccgtcg
                                                                    180
ccatatttgg gtgtcccgag ggcggacggc cggggccgca ttcctggggg ccgggcggtg
                                                                    240
ctcccgcccg cctcgataaa aggctccggg gccggcggcg gcccacgagc tacccggagg
agcgggaggc gccaagctct aga
                                                                    263
<210> 23
<211> 10
<212> DNA
<213> artificial sequence
<220>
<223> Proximal SRE - skeletal a-actin
<220>
<221> MISC FEATURE
<222> (3)..(3)
<223> n at position 3 may be adenine or thymine
<220>
<221> MISC_FEATURE
<222> (4)..(4)
<223> n at position 4 may be adenine or thymine
<220>
<221> MISC_FEATURE
<222> (5)..(5)
```

```
<223> n at position 5 may be adenine or thymine
<220>
<221> MISC_FEATURE
<222> (6)..(6)
<223> n at position 6 may be adenine or thymine
<220>
<221> MISC_FEATURE
<222> (7)..(7)
<223> n at position 7 may be adenine or thymine
<220>
<221> MISC_FEATURE
<222> (8)..(8)
<223> n at position 8 may be adenine or thymine
<400> 23
                                                                     10
ccnnnnnngg
<210> 24
<211>
      14
<212> DNA
<213> artificial sequence
<220>
<223> MEF-2 site, skeletal a-actin promoter
<220>
<221> MISC FEATURE
<222> (1)..(1)
<223> n at position 1 may be cytosine or thymine
<220>
<221> MISC_FEATURE
<222> (12)..(12)
<223> n at position 12 may be cytosine or thymine
<220>
<221> MISC_FEATURE
<222> (13)..(13)
<223> n at position 13 may be cytosine or thymine
<220>
<221> MISC FEATURE
<222> (14)..(14)
<223> n at position 14 may be cytosine or thymine
<400> 24
                                                                     14
ntaaaaataa cnnn
<210> 25
<211> 14
<212> DNA
<213> artificial sequence
<220>
```

<223> Sp1 element

<400> 25

ccgtccgccc tcgg

14

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office S: COMMISSIONER FOR PATENTS

P.O. Box 1450 Alexandria, Virginia 22313-1450 www.uspto.gov

APPLICATION NUMBER FILING OR 371(C) DATE FIRST NAMED APPLICANT ATTY. DOCKET NO./TITLE

10/699,597 10/30/2003

Ruxandra Draghia-Akli 108328.00161 (AVSI-0027)

> **CONFIRMATION NO. 7762** ABANDONMENT/TERMINATION LETTER

25555 JACKSON WALKER LLP 901 MAIN STREET **SUITE 6000** DALLAS, TX 75202-3797

Date Mailed: 03/14/2007

NOTICE OF ABANDONMENT UNDER 37 CFR 1.53 (f) OR (g)

The above-identified application is abandoned for failure to timely or properly reply to the Notice to File Missing Parts (Notice) mailed on 07/06/2006.

No reply was received.

If a complete reply to the notice was previously filed by applicant within the time period set forth in the notice, applicant may request for reconsideration of the holding of abandonment within 2 months from the mailing of this notice of abandonment by filing a petition to withdraw the holding of abandonment under 37 CFR 1.181(a). No petition fee is required. The petition must be accompanied by a true copy of the originally filed reply and the item (s) identified in one of the following:

- 1. A properly itemized date-stamped postcard receipt (see MPEP § 503);
- 2. If the originally filed reply included a certificate of mailing or transmission in compliance with 37 CFR 1.8(a), a copy of the certificate of mailing or transmission and a statement in compliance with 37 CFR 1.8(b) (see MPEP § 512); or
- 3. If the reply was filed via Express Mail, a submission satisfying the requirements of 37 CFR 1.10(e) including, for example, a copy of the Express Mail mailing label showing the "date-in" (see MPEP § 513).

Any petition to withdraw the holding of abandonment should be directed to OIPE.

If applicant did not previously file a complete reply within the time period set forth in the notice, applicant may file a petition to revive the application under 37 CFR 1.137.

Under 37 CFR 1.137(a), a petition requesting the application be revived on the grounds of **UNAVOIDABLE DELAY** must be filed promptly after the applicant becomes aware of the abandonment and such petition must be accompanied by: (1) an adequate showing of the cause of unavoidable delay; (2) the required reply to the aboveidentified Notice; (3) the petition fee set forth in 37 CFR 1.17(I); and (4) a terminal disclaimer if required by 37 CFR 1.137(d). See MPEP § 711.03(c) and Form PTO/SB/61.

Under 37 CFR 1.137(b), a petition requesting the application be revived on the grounds of **UNINTENTIONAL** DELAY must be filed promptly after applicant becomes aware of the abandonment and such petition must be accompanied by: (1) a statement that the entire delay was unintentional; (2) the required reply to the above-

MAR 1 6 2007

identified Notice; (3) the petition fee set forth in 37 CFR 1.17(m); and (4) a terminal disclaimer if required by 37 CFR 1.137(d). See MPEP § 711.03(c) and Form PTO/SB/64.

Any questions concerning petitions to revive should be directed to the "Office of Petitions" at (571) 272-3282.

A copy of this notice MUST be returned with the reply.

Office of Initial Patent Examination (571) 272-4000, or 1-800-PTO-9199
PART 1 - ATTORNEY/APPLICANT COPY

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Virginia 22313-1450 www.uspto.gov

APPLICATION NUMBER FILING OR 371(C) DATE FIRST NAMED APPLICANT ATTY. DOCKET NO./TITLE

10/699,597 10/30/2003 Ruxandra Draghia-Akli 108328.00161 (AVSI-0027)

CONFIDMATION NO 776

CONFIRMATION NO. 7762
ABANDONMENT/TERMINATION
LETTER

25555 JACKSON WALKER LLP 901 MAIN STREET SUITE 6000 DALLAS, TX 75202-3797

Date Mailed: 03/14/2007

NOTICE OF ABANDONMENT UNDER 37 CFR 1.53 (f) OR (g)

The above-identified application is abandoned for failure to timely or properly reply to the Notice to File Missing Parts (Notice) mailed on 07/06/2006.

No reply was received.

If a complete reply to the notice was previously filed by applicant within the time period set forth in the notice, applicant may request for reconsideration of the holding of abandonment within 2 months from the mailing of this notice of abandonment by filing a petition to withdraw the holding of abandonment under 37 CFR 1.181(a). No petition fee is required. The petition must be accompanied by a true copy of the originally filed reply and the item (s) identified in one of the following:

- 1. A properly itemized date-stamped postcard receipt (see MPEP § 503);
- 2. If the originally filed reply included a certificate of mailing or transmission in compliance with 37 CFR 1.8(a), a copy of the certificate of mailing or transmission and a statement in compliance with 37 CFR 1.8(b) (see MPEP § 512); or
- 3. If the reply was filed via Express Mail, a submission satisfying the requirements of 37 CFR 1.10(e) including, for example, a copy of the Express Mail mailing label showing the "date-in" (see MPEP § 513).

Any petition to withdraw the holding of abandonment should be directed to OIPE.

If applicant did not previously file a complete reply within the time period set forth in the notice, applicant may file a petition to revive the application under 37 CFR 1.137.

Under 37 CFR 1.137(a), a petition requesting the application be revived on the grounds of **UNAVOIDABLE DELAY** must be filed promptly after the applicant becomes aware of the abandonment and such petition must be accompanied by: (1) an adequate showing of the cause of unavoidable delay; (2) the required reply to the above-identified Notice; (3) the petition fee set forth in 37 CFR 1.17(I); and (4) a terminal disclaimer if required by 37 CFR 1.137(d). See MPEP § 711.03(c) and Form PTO/SB/61.

Under 37 CFR 1.137(b), a petition requesting the application be revived on the grounds of **UNINTENTIONAL DELAY** must be filed promptly after applicant becomes aware of the abandonment and such petition must be accompanied by: (1) a statement that the entire delay was unintentional; (2) the required reply to the above-

identified Notice; (3) the petition fee set forth in 37 CFR 1.17(m); and (4) a terminal disclaimer if required by 37 CFR 1.137(d). See MPEP § 711.03(c) and Form PTO/SB/64.

Any questions concerning petitions to revive should be directed to the "Office of Petitions" at (571) 272-3282.

A copy of this notice <u>MUST</u> be returned with the reply.

Office of Initial Patent Examination (571) 272-4000, or 1-800-PTO-9199

PART 2 - COPY TO BE RETURNED WITH RESPONSE

1Notice of Abandonment

This application is abandoned in view principlicant's failure to timely file a proper reply to the Office notice mailed 07/06/06

Petition to Withdraw the Holding of Abandonment

If a complete reply to the notice was previously filed by applicant within the time period set forth in the notice, applicant may request for reconsideration of the holding of abandonment within 2 months from the mailing of this notice of abandonment by filing a petition to withdraw the holding of abandonment under 37 CFR 1.181(a). No petition fee is required. The petition must be accompanied by a true copy of the originally filed reply and the item(s) identified in one of the following:

- 1. A properly itemized date-stamped postcard receipt (see MPEP § 503);
- 2. If the originally filed reply included a certificate of mailing or transmission in compliance with 37 CFR 1.8(a), a copy of the certificate of mailing or transmission and a statement in compliance with 37 CFR 1.8(b) (see MPEP § 512); or
- 3. If the reply was filed via Express Mail, a submission satisfying the requirements of 37 CFR 1.10(e) including, for example, a copy of the Express Mail mailing label showing the "date-in" (see MPEP § 513).

Any petition to withdraw the holding of abandonment should be transmitted by facsimile directly to OIPE Customer Service at (703) 308-7751.

Petition to Revive an Abandoned Application

If applicant did <u>not</u> previously file a complete reply within the time period set forth in the notice, applicant may file a petition to revive the application under 37 CFR 1.137.

Under 37 CFR 1.137(a), a petition requesting the application be revived on the grounds of UNAVOIDABLE DELAY must be filed promptly after the applicant becomes aware of the abandonment and such petition must be accompanied by:

- 1. an adequate showing of the cause of unavoidable delay;
- 2. the required reply to the above-identified notice;
- 3. the petition fee set forth in 37 CFR 1.17(i); and
- 4. a terminal disclaimer if required by 37 CFR 1.137(d).

See MPEP § 711.03(c) and Form PTO/SB/61.

Under 37 CFR 1.137(b), a petition requesting the application be revived on the grounds of UNINTENTIONAL DELAY must be filed promptly after applicant becomes aware of the abandonment and such petition must be accompanied by:

- 1. a statement that the entire delay was unintentional;
- 2. the required reply to the above-identified notice;
- 3. the petition fee set forth in 37 CFR 1.17(m); and
- 4. a terminal disclaimer if required by 37 CFR 1.137(d).

See MPEP § 711.03(c) and Form PTO/SB/64.

Any questions concerning petitions to revive should be directed to Office of Petitions at (703) 305-9282.

Any questions regarding this notice should be directed to OIPE Customer Service at (703) 308-1202.

Customer Service Center
Initial Patent Examination Division (703) 308-1202

EXHIBIT B

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address COMMISSIONER FOR PATENTS FR. Dat 1450 Alexandra, Viginia 22313-1450 www.mptp.gov

CAPPLICATION NUMBER

FILING OR 371(c) DATE

FIRST NAMED APPLICANT

ATTY. DOCKET NO/TITLE

10/699,597

10/30/2003

Ruxandra Draghia-Akli

108328.00161 (AVSI-0027)

CONFIRMATION NO. 7762 WITHDRAWAL NOTICE

JACKSON WALKER LLP 901 MAIN STREET **SUITE 6000** DALLAS, TX 75202-3797

Date Mailed: 07/06/2006

WITHDRAWAL OF PREVIOUSLY SENT NOTICE

The Notice mailed on 06/01/2004 was sent in error and is hereby withdrawn. A corrected Notice is enclosed. The time period for reply runs from the mail date of the corrected Notice. The Office regrets any inconvenience the error may have caused.

A copy of this notice MUST be returned with the reply.

Customer Service Center

Initial Patent Examination Division (571) 272-4000, or 1-800-PTO-9199, or 1-800-972-6382 **PART 3 - OFFICE COPY**

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Viginia 22313-1450

APPLICATION NUMBER

FILING OR 371 (c) DATE

FIRST NAMED APPLICANT

ATTORNEY DOCKET NUMBER

10/699,597

10/30/2003

Ruxandra Draghia-Akli

108328.00161 (AVSI-0027)

CONFIRMATION NO. 7762
FORMALITIES
LETTER

25555 JACKSON WALKER LLP 901 MAIN STREET SUITE 6000 DALLAS, TX 75202-3797

Date Mailed: 07/06/2006

NOTICE TO COMPLY WITH REQUIREMENTS FOR PATENT APPLICATIONS CONTAINING NUCLEOTIDE SEQUENCE AND/OR AMINO ACID SEQUENCE DISCLOSURES

Filing Date Granted

This application contains sequence disclosures that are encompassed by the definitions for nucleotide and/or amino acid sequences set forth in 37 CFR § 1.821(a)(1) and (a)(2). However, this application fails to comply with the requirements of 37 CFR §§ 1.821-1.825. The application must be in sequence compliance before examination on the merits.

APPLICANT IS GIVEN ONE MONTH FROM THE DATE OF THIS LETTER WITHIN WHICH TO COMPLY WITH THE SEQUENCE RULES, 37 CFR §§ 1.821-1.825. Failure to comply with these requirements will result in ABANDONMENT of the application under 37 CFR § 1.821(g). Extension of time may be obtained by filing a petition accompanied by the extension fee under the provisions of 37 CFR § 1.136. In no case may an applicant extend the period for response beyond the six-month statutory period. Direct the response to: Mail Stop Missing Parts, Commissioner for Patents, P.O. Box 1450, Alexandria VA 22313-1450.

See the attachment.

Applicant Must Provide as part of the response:

- An initial or substitute computer readable form (CRF) copy of the "Sequence Listing".
- An initial or substitute paper copy of the "Sequence Listing", as well as an amendment directing its entry into the specification.
- A statement that the content of the paper and computer readable copies are the same and, where applicable, include no new matter, as required by 37 CFR 1.821(e) or 1.821(f) or 1.821(g) or 1.825(b) or 1.825(d).

To Download Patentin Software, visit http://www.uspto.gov/web/patents/software.htm For questions regarding compliance to these requirements, please contact:

- For Rules Interpretation, call (571) 272-0951
- For Patentin Software Program Help, call Patent EBC at 1-866-217-9197 or directly at 703-305-3028 / 703-308-6845 between the hours of 6 a.m. and 12 midnight, Monday through Friday, EST.
- Send e-mail correspondence for Patentin Software Program Help @ ebc@uspto.gov

Replies should be mailed to:

Mail Stop Missing Parts

Commissioner for Patents

P.Q. Box 1450

Alexandria VA 22313-1450

A copy of this notice MUST be returned with the reply.

Office of Initial Patent Examination (571) 272-4000, or 1-800-PTO-9199, or 1-800-972-6382
PART 3 - OFFICE COPY

OIPE ROUTING SHEET

APPLICATION

IFW DocCode - SEQREQ Index using Current Date

10699597

TO BE DELIVERED TO: Tech Center Scanning

Sequence Rule Compliance Review Item

CRF, paper copy of sequence listing, and statement that both are same missing
CRF contains error(s) according to STIC Report
CRF damaged or unreadable according to STIC Report
CRF transferred from prior application is not compliant

Place an "X" in the appropriate box

DAVETRONG NGUYEN
SUPERVISORY PATENT EXAMPLES

Comment Sheet

APPLICATION SERIAL NUMBER 10/699597

DOES NOT COMPLY WITH THE SEQUENCE RULES. See reasons below.

Page(s) 4, line 3 and 12 and page 18, line 17 contain sequences not found in the CRF.

							EXHIBIT	С						
JW#	•	108328.01	161									PRI	INTED ON:	4/10/2007
COUNTRY US UNITED STATES									TITL	E			PRIOR	11/4/2002
NEW/C	ON	FCA		SERIAL#	10/699,597		(AVSI-0027 WITH ACT						MAIL	10/30/2003
RELATE	D	108328.00	085	PATENT#			OCCURRI	NG REG					FILE PUBL	10/30/2003
TYPE		UTL		STATUS	PENDING		CARDIAC	JELLS					ISSUE	
CLIENT		108328	ADViSY	S, Inc.][1	CREF				1ST	10/30/2003
AGENT								J	AREF				EXP [10/30/2023
ID	0	ACTION			BASE	DUE IN	DUE	EXT	ns	FINAL E	XT I	RESPONSE	CALL UP	1 2 P
l ,		REIGN FIL	ING DUE		11/4/2002	12 M	11/4/200	03	11	/4/2003	0	10/30/2003	3 M	YYY
PC	N PC	ST CARD	CHECK		10/30/2003	1 M	11/30/20	03	11/	30/2003	0	11/17/2003	0 M	YYY
DS	N [INF	FDISCLOS	SURE ST	/ Τ	10/30/2003	3 M	1/30/20	04	1/	30/2004	0	2/11/2004	1 M	YYY
FS	N SC	FILING R	ECEIPT		10/30/2003	3 M	1/30/20	04		30/2004	0	2/9/2004	0 M	YYY
G2	N Mi	SSING PA	RTS (2 M	O)	2/6/2004	2 M	4/6/20	5	1 9	9/6/2004	2	5/6/2004	1 M	YYY
		CERT THI					4							
الياا		E IDS/PC		PER MARSH	1/31/2005	3 M	4/30/20	05	4/	30/2005	0	3/3/2005	0 M	YYY
		ATUS CHE		EK WAKSHI	10/30/2003	18 M	4/30/20	25	4/	30/2005	0	4/19/2005	1 M	YYY
		E IDS/EP			3/13/2006	3 M	6/13/20			13/2006	0	6/2/2006		YYY
SEE	FILE A	VSI-0027\	NO/EP (L	ETTER FROI	M ASSOC. DAT	TED 3/22	2/06 AND EP	O SUP			L			·—
REF	ERENC	CES NOT A	ALREADY	FILED. TO	PTO W/CERT	THIS DA	TE PER TR	ACY.						
INV	ENTOR	RS												
Drag	hia-Ak	li, Ruxandr	а]									
Schw	artz, F	Robert J.												
ppi	OR AP	PLICATION	s											
		ENCE#	CNTRY	•	SERIAL#		FILED			TITLE / I	DESCR	IPTION		TYPE
108328.0085 US 60/423,536 1						11/4	1/2002					MUSCLE P		SAPPL
								occu		EGULAT		G NATURAI SEQUENCE		
		USE	R-DEFINA	BLE FIELDS						PATEN	T FIELD	DS .		
TXT1						SM	ALL ENTITY				ART	UNIT		
TXT2						CIV	AIMS				EXA	MINER		
тхтз						PUI	BLICATION#				CON	NFIRM#		

BY DAP

P02065US01

ENTERED 11/3/2003 MODIFIED 6/2/2006

TLC / CC

ATTORNEYS

/ DAP