

Faculty of Electrical Engineering and Information Technology Chair of Power Electronics

Temperature Distribution of an IGBT Chip during Repetitive Switching Events under Consideration of Front-Side Ageing

Name Bo Zhang

Course of Study Electro-Mobility

Supervising Professor Univ.-Prof. Dr.-Ing. Thomas Basler

Supervisor | M.Sc. Christian Bäumler

Date | 01.06.2022

Outline

- Motivation
- 2 Test bench
- 3 Switching principle
- Temperature determination
- 6 Results
- 6 Summary and outlook

Motivation

01 | Operation of device

- repetitive switching
- /_{C(nom)}
- frequency

03 | Front-side ageing

bond-wire-loop cut-off

02 | Temperature determination

- case $\rightarrow T_c$
- junction $\rightarrow T_j$
- surface $\rightarrow T_{\text{surface}}$

Goal | Dependency of temperature

- ageing state
- f (500 | 1000 Hz)

Outline

- Motivation
- 2 Test bench
- 3 Switching principle
- 4 Temperature determination
- 5 Results
- 6 Summary and outlook

Circuit and DUT

Operation condition

- $R_G = 0 \rightarrow \text{fast switching}$
- *I*_{c(nom)} @ turn-off (100 A)
- 20 min operation \rightarrow steady T

Test circuit

- V_{CE(on)} measured by clamping circuit
- I_C measured @ DC+

DUT | Adapter

- removed gel & dyed surface → IRcamera
- Emitter contact of DUT → bondwire included

Outline

- Motivation
- 2 Test bench
- 3 Switching principle
- 4 Temperature determination
- 5 Results
- 6 Summary and outlook

Pulse pattern | t₁

Circuit

- HS & DUT both on
 - *≻I*_C ramps-up
 - $>V_{CE(on)}$ increases with I_C

Pulse pattern | t₂

Circuit

- HS off & DUT on

 - $>I_{C(rep)}$ in LS free-wheeling $>V_{CE(on)}$ decreases with I_{C}

Pulse pattern | t₃

t ₁	t ₂	t ₃	t ₄
on	on	on	on
on	off	on	on
on	on	on	off
	on on	on on off	on on on on on on

Circuit

- HS & DUT on

 - $>I_{C(rep)}$ ramps-up $>V_{CE(on)}$ increases with I_C

Pulse pattern | t₄

GDU	<i>t</i> ₁	t ₂	t ₃	t ₄
PIGBT	on	on	on	on
HS	on	off	on	on
LS/DUT	on	on	on	off

Circuit

- HS on & DUT off
 - $\succ I_{C(rep)}$ in HS free-wheeling \succ DUT → 50% duty cycle

Development of I_C | initial & ramp-up phase

Development of I_c | balancing phase

Derive of $I_{\rm C}$

$$V_{\text{DC-link}} - \sum V_{\text{CE(on)}} - i_{\text{C}} \cdot R_{\text{par}} = L_{\text{Load}} \cdot di_{\text{C}} / dt$$

- $V_{\text{DC-link}}$, L_{Load} & dt = const.
- $P \uparrow \to T \uparrow \to V_{CE(on)} \uparrow$ $P \downarrow I_{C(rep)} \downarrow$

Development of I_c | measurement results

Development of $I_{C} \mid I_{C(rep-mean)}$

Mean value of $I_{\rm C}$ at steady state

Performance of pulse pattern

- DUT switches off at 95% · I_{C(nom)}
- P_{loss} more like an real inverter approached:
 - $\blacksquare R_{par}$
 - conductive loss of switches $(V_{CE(on)} \cdot I_C)$

Outline

- Motivation
- 2 Test bench
- 3 Switching principle
- 4 Temperature determination
- 5 Results
- 6 Summary and outlook

Overview

Note

- unsynchronisation of IR-camera & thermocouple with pulse pattern
 - $>T_c$, T_{surface} & T_i should be traded individually

T_i | TSEP | selection

Criteria

 $max. T_i$ within each cycle

→TSEPs on conductive state or switching-off transition

TSEP	ageing state?	self- heating?	interruption during operation?	external circuit needed?	linearity	calibration effort
V _{CE(on-sense)}	no	no	yes	yes	good	medium
V _{CE(on-load)}	yes	yes	no	yes	good	medium
V _{Miller}	yes	yes	no	yes	medium	high
_di/dt_max	no	yes	yes	no	low	high

$T_{\rm j}$ | determination

$T_{\rm j}$ | TSEP | dependency of $V_{\rm CE(on)}$

T_{surface}

Segmentation | Cut chronology

IR-image (no cut | f = 500 Hz)

T_{segment}

$$T_{\text{segment}} = (T_{\text{left}} + T_{\text{right}})/2$$

Outline

- Motivation
- 2 Test bench
- 3 Switching principle
- 4 Temperature determination
- 6 Results
- 6 Summary and outlook

T_{surface} | with f = 500 Hz

T_{segment} | overview with f = 500 Hz

Outline

- Motivation
- 2 Test bench
- 3 Switching principle
- 4 Temperature determination
- 5 Results
- 6 Summary and outlook

Summary & Outlook

Summary

- Repetitive operation
 - ➤ a specified pulse pattern which is more like an inverter in the application approached
- Junction temperature determination
 - > an investigation with respect to various TSEP
- T_c
 - no obvious variation could be extracted
- $T_{\rm j}$ & $T_{\rm segment}$
 - > significantly affected by ageing & f
 - ➤ ageing → inhomogeneity of temperature distribution ↑

Outlook

- DCB chip as DUT
 - > Kelvin contact available
- dynamic pulse pattern
 - ► I_{C(rep-mean)} ↑
- synchronization of thermocouple & IR-camera with pulse pattern
 - \triangleright comparable T_j , T_c & T_{segment}
- $V_{CE(on-load)} \rightarrow mean value of T_j$?
 - > FEM simulation
- bond-wire cut → power cycling
 - > reconstruction of metallization

Thank you for your attention

DUT | Layout

T_{seg(mean)} & T_j

Emitter surface of IGBT after power cycling test

Aluminum reconstruction of the chip surface for different areas [1]:

- a) edge area with 200 mm zoom
- b) edge area with 1000 mm zoom
- c) center area with 200 mm zoom
- d) center area with 1000 mm zoom

[1] Bäumler, C., Hernes, M., Kowalsky, J., & Lutz, J. Short Circuit Robustness of an Aged High Power IGBT-Module. *In 2019 21st European Conference on Power Electronics and Applications (EPE'19 ECCE Europe)* (pp. P-1). September 2019. IEEE.

Modelling of segment | all bond-wire intact

Modelling of segment | bond-wire 3 intact, 1 & 2 defect

Dependency of $V_{CE(on)}$ on ageing | DCB chip

Bond-wire	e state	no cut	2cut	4 cut
Sensitivty [mv/K]	Kelvin	2.5	2.6	2.9
	Load	2.8	3.0	3.2
Offset [V]	Kelvin	1.71	1.73	1.83
	Load	1.76	1.78	1.89

- ightharpoonup fixed $T \& I_C \rightarrow V_{CE(on)} \uparrow \rightarrow offset \uparrow$
- \succ fixed Δ*T* & I_C → more $V_{CE(on)}$ ↑ → sensitivity ↑
- offset @ Load > Kelvin
 - \triangleright voltage drop over R_{bw}
- sensitivity @ Load > Kelvin
 - $ightharpoonup R_{bw}$ is also temperature dependent