Common Machine Learning Algorithms

https://www.vpnsrus.com/

CONTENTS

- 1 Linear Models (LM)
- 2 Linear Support Vector Machines (SVM)
- 3 Nonlinear Support Vector Machines
- 4 k-Nearest Neighbors (k-NN)
- 5 Classification & Regression Trees (CART)
- 6 Random Forests
- 7 Gradient Boosting
- 8 Neural Networks (NN)

LINEAR MODELS (LM)

LINEAR MODELS – METHOD SUMMARY

REGRESSION

CLASSIFICATION

PARAMETRIC

WHITE-BO

General idea Represent target as function of linear predictor $\boldsymbol{\theta}^{\mathsf{T}} \mathbf{x}$

Hypothesis space $\mathcal{H} = \{f : \mathcal{X} \to \mathbb{R} \mid f(\mathbf{x}) = \phi(\boldsymbol{\theta}^{\top}\mathbf{x})\}$, with suitable transformation $\phi(\cdot)$, e.g.,

- Identity $\phi(\theta^{\top} \mathbf{x}) = \theta^{\top} \mathbf{x} \rightarrow \text{linear regression}$
- Logistic sigmoid function $\phi(\theta^T \mathbf{x}) = \frac{1}{1 + \exp(-\theta^T \mathbf{x})} =: \pi(\mathbf{x} \mid \theta) \to \text{(binary) logistic regression}$
 - Probability $\pi(\mathbf{x} \mid \boldsymbol{\theta}) = \mathbb{P}(y = 1 \mid \mathbf{x})$ of belonging to one of two classes
 - Separating hyperplane via decision rule (e.g., $\hat{y} = 1 \Leftrightarrow \pi(\mathbf{x}) > 0.5$)

Linear regression hyperplane

Logistic function for bivariate input and loss-minimal $oldsymbol{ heta}$

Corresponding separating hyperplane

LINEAR MODELS – METHOD SUMMARY

Empirical risk

- Linear regression
 - Typically, based on quadratic loss: $\mathcal{R}_{emp}(\theta) = \sum_{i=1}^{n} \left(y^{(i)} f\left(\mathbf{x}^{(i)} \mid \theta \right) \right)^2$ \Rightarrow corresponding to ordinary-least-squares (OLS) estimation
 - Alternatives: e.g., absolute or Huber loss (both improving robustness)
- Logistic regression: based on Bernoulli/log/cross-entropy loss

$$\Rightarrow \mathcal{R}_{\text{emp}}(\boldsymbol{\theta}) = \sum_{i=1}^{n} -y^{(i)} \log \left(\pi \left(\mathbf{x}^{(i)} \right) \right) - (1-y^{(i)}) \log \left(1 - \pi \left(\mathbf{x}^{(i)} \right) \right)$$

Optimization

- For **OLS**: analytically with $\hat{\theta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$ $(\mathbf{X} \in \mathbb{R}^{n \times p} : \text{matrix of feature vectors})$
- For other loss functions: numerical optimization

Hyperparameters None

LINEAR MODELS - PRO'S & CON'S

Advantages

- + Simple and fast implementation
- $+\,\,$ Analytical solution for quadratic loss
- + **Cheap** computation
- + Applicable for any dataset size, as long as number of observations ≫ number of features
- Flexibility beyond linearity with polynomials, trigonometric transformations etc.
- + Intuitive **interpretability** via feature effects
- + Statistical hypothesis **tests** for effects available

Disadvantages

- Nonlinearity of many real-world problems
- Further restrictive assumptions: linearly independent features, homoskedastic residuals, normality of conditional response
- Sensitivity w.r.t. outliers and noisy data (especially with L2 loss)
- Risk of overfitting in higher dimensions
- Feature interactions must be handcrafted, so higher orders practically infeasible
- No handling of missing data

Simple, highly interpretable method, but with strong assumptions, practical limitations, and risk of overfitting

LINEAR MODELS – REGULARIZATION

Idea

- Unregularized LM: risk of overfitting in high-dimensional space with only few observations
- Goal: find compromise between model fit and generalization by adding penalty term

Regularized empirical risk

- Empirical risk function **plus complexity penalty** $J(\theta)$, controlled by shrinkage parameter $\lambda > 0$: $\mathcal{R}_{\text{reg}}(\theta) := \mathcal{R}_{\text{emp}}(\theta) + \lambda \cdot J(\theta)$.
- Popular regularizers
 - ullet Ridge regression: L2 penalty $J(oldsymbol{ heta}) = \|oldsymbol{ heta}\|_2^2$
 - ullet LASSO regression: L1 penalty $J(oldsymbol{ heta}) = \|oldsymbol{ heta}\|_1$

Optimization under regularization

- ullet Ridge: analytically with $\hat{m{ heta}}_{
 m Ridge} = (\mathbf{X}^{ op}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{ op}\mathbf{y}$
- LASSO: numerically with, e.g., (sub-)gradient descent

LINEAR MODELS – REGULARIZATION

Choice of regularization parameter

- Standard hyperparameter optimization problem
- E.g., choose λ with minimum mean cross-validated error (default in R package glmnet)

Ridge vs. LASSO

Ridge

- ullet Overall smaller, but still dense eta
- Applicable with large number of influential features, handling correlated variables by shrinking their coefficients to equal degree

LASSO

- Actual variable selection
- Suitable for sparse problems, ineffective with correlated features (randomly selecting one)
- Neither overall better → compromise: elastic net = weighted combination of Ridge and LASSO

LINEAR MODELS – PRACTICAL HINTS

Implementation

- R:
 - Unregularized: mlr3 learner LearnerRegrLM, calling stats::lm() / mlr3 learner
 LearnerClassifLogReg, calling stats::glm()
 - Regularized: mlr3 learners LearnerClassifGlmnet / LearnerRegrGlmnet, calling glmnet::glmnet()
- Python: LinearRegression from package sklearn.linear_model, package for advanced statistical parameters statsmodels.api

LINEAR SUPPORT VECTOR MACHINES (SVM)

LINEAR SVM - METHOD SUMMARY

CLASSIFICATION

PARAMETRIC

BLACK-BOX

General idea

- Find linear decision boundary (separating hyperplane) that best discriminates classes
 - Hard-margin SVM: maximize distance (margin $\gamma > 0$) to closest points (support vectors, SVs) on each side of decision boundary
 - Soft-margin SVM: relax separation to allow for margin violations → maximize margin while minimizing violations
- 3 types of training points
 - non-SVs with no impact on decision boundary
 - SVs located exactly on decision boundary
 - margin violators

Hypothesis space $\mathcal{H} = \{ f : \mathcal{X} \to \mathbb{R} \mid f(\mathbf{x}) = \boldsymbol{\theta}^{\top} \mathbf{x} + \theta_0 \}$ separater intercept notwendig?

was ist mit regression, auch in nonlinear svm?

LINEAR SVM – METHOD SUMMARY

Hard-margin SVM: margin is maximized by boundary on the right

Dual problem

$$\begin{split} \max_{\boldsymbol{\alpha} \in \mathbb{R}^n} \quad & \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j \mathbf{y}^{(i)} \mathbf{y}^{(j)} \left\langle \mathbf{x}^{(i)}, \mathbf{x}^{(j)} \right\rangle \\ \text{s.t.} \quad & 0 \leq \alpha_i \leq C \ \, \forall i \in \{1, \dots, n\} \ \, (\textit{C} = \infty \text{ for hard-margin SVM}), \\ & \sum_{i=1}^n \alpha_i \mathbf{y}^{(i)} = 0 \end{split}$$

LINEAR SVM – METHOD SUMMARY

Empirical risk

Soft-margin SVM also interpretable as **L2-regularized ERM**:

$$\frac{1}{2}\|\boldsymbol{\theta}\|_{2}^{2}+C\sum_{i=1}^{n}L\left(y^{(i)},f\left(\mathbf{x}^{(i)}\right)\right)$$

with

- $\bullet \|\boldsymbol{\theta}\| = 1/\gamma,$
- C > 0: penalization for missclassified data points
- L(y, f) = max(1 yf, 0): hinge loss
 → other loss functions applicable (e.g., Huber loss)

Optimization

- Typically, tackling dual problem (though feasible in corresponding primal) via quadratic programming
- Popular: sequential minimal optimization → iterative algorithm based on breaking down objective into bivariate quadratic problems with analytical solutions

Hyperparameters Cost parameter C

LINEAR SVM - PRO'S & CON'S

Advantages

- + Often **sparse** solution
- Robust against overfitting (regularized);
 especially in high-dimensional space
- + **Stable** solutions, as non-SV do not influence decision boundary

Disadvantages

- Costly implementation; long training times
- Limited scalability to larger data sets ??
- Confined to linear separation
- Poor interpretability
- No handling of missing data

Very accurate solution for high-dimensional data that is linearly separable

LINEAR SVM - PRACTICAL HINTS

Preprocessing Features must be rescaled before applying SVMs.

Tuning Cost parameter C must be tuned and has strong influence on resulting separating hyperplane.

Implementation

- R: mlr3 learners LearnerClassifSVM / LearnerRegrSVM, calling e1071::svm() (interface to libSVM), with linear kernel
- Python: sklearn.svm.SVC from package scikit-learn/package libSVM

NONLINEAR SUPPORT VECTOR MACHINES

NONLINEAR SVM – METHOD SUMMARY

CLASSIFICATION

NONPARAMETRIC

BLACK-BOX

General idea

- Move beyond linearity by mapping data to transformed space where they are linearly separable
- Kernel trick (based on Mercer's theorem, existence of reproducing kernel Hilbert space):
 - Replace two-step operation feature map $\phi \leadsto$ inner product by **kernel** $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$, s.t. $\langle \phi(\mathbf{x}), \phi(\tilde{\mathbf{x}}) \rangle = k(\mathbf{x}, \tilde{\mathbf{x}})$
 - No need for explicit construction of feature maps; very fast and flexible

Hypothesis space
$$\mathcal{H} = \left\{ f(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i y^{(i)} k(\mathbf{x}^{(i)}, \mathbf{x}) + \theta_0 | \theta_0, \alpha_i \in \mathbb{R} \right\}$$

Nonlinear problem in original space

Mapping to 3D space and subsequent linear separation - implicitly handled by kernel in nonlinear SVM

NONLINEAR SVM – METHOD SUMMARY

Dual problem Kernelize dual (soft-margin) SVM problem, replacing all inner products by kernels:

$$\max_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} k(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}), \text{ s.t. } 0 \leq \alpha_{i} \leq C, \sum_{i=1}^{n} \alpha_{i} y^{(i)} = 0.$$

Hyperparameters Cost C of margin violations, kernel hyperparameters (e.g., width of RBF kernel)

Interpretation as basis function approach

- Representer theorem: dual soft-margin SVM problem expressible through $\theta = \sum_{j=1}^{n} \beta_{j} \phi \left(\mathbf{x}^{(j)}\right)$
- Sparse, weighted sum of **basis functions** with $\beta_j = 0$ for non-SVs
- Result: local model with smoothness depending on kernel properties

RBF kernel as mixture of Gaussian basis functions, forming bumpy, nonlinear decision surface to discern red and green points

NONLINEAR SVM - PRO'S & CON'S

Advantages

- + high accuaracy
- + can learn nonlinear decision boundaries
- often sparse solution
- robust against overfitting (regularized); especially in high-dimensional space
- stable solutions, as the non-SV do not influence the separating hyperplane

Disadvantages

- costly implementation; long training times
- does not scale well to larger data sets ??
- $-\$ only **linear separation** \rightarrow possible with nonlinear SVMs which are explained in the following slides.
- poor interpretability
- not easy tunable as it is highly important to choose the right kernel
- No handling of missing data

nonlinear SVMs perform very well for nonlinear separable data, but are hard to interpret and need a lot of tuning.

NONLINEAR SVM – PRACTICAL HINTS

Common kernels

- Linear kernel: dot product of given observations $\to k(\mathbf{x}, \tilde{\mathbf{x}}) = \mathbf{x}^{\top} \tilde{\mathbf{x}} \quad \Rightarrow \text{linear SVM}$
- **Polynomial** kernel of degree $d \in \mathbb{N}$: monomials (i.e., feature interactions) up to d-th order $\rightarrow k(\mathbf{x}, \tilde{\mathbf{x}}) = (\mathbf{x}^{\top} \tilde{\mathbf{x}} + b)^d$, $b \ge 0$
- Radial basis function (RBF) kernel: infinite-dimensional feature space, allowing for perfect separation of all finite datasets $\rightarrow k(\mathbf{x}, \tilde{\mathbf{x}}) = \exp\left(-\gamma \|\mathbf{x} \tilde{\mathbf{x}}\|_2^2\right)$ with bandwidth parameter $\gamma > 0$

Tuning

- ullet High sensitivity w.r.t. hyperparameters, especially those of kernel o tuning very important
- For RBF kernels, use **RBF sigma heuristic** to determine bandwidth

Implementation

- R: mlr3 learners LearnerClassifSVM / LearnerRegrSVM, calling e1071::svm() (interface to libSVM), with nonlinear kernel
- Python: sklearn.svm.SVC from package scikit-learn/package libSVM

K-NEAREST NEIGHBORS (K-NN)

K-NN – METHOD SUMMARY

REGRESSION

CLASSIFICATION

NONPARAMETRIC

WHITE-BOX

General idea

- Rationale: similarity in feature space → similarity in target space w.r.t. certain metric
- Prediction for x: construct k-neighborhood $N_k(\mathbf{x})$ from k points closest to x in \mathcal{X} , then predict
 - (weighted) mean target for **regression**: $\hat{y} = 1/(\sum_{i:\mathbf{x}^{(i)} \in N_k(\mathbf{x})} w_i) \sum_{i:\mathbf{x}^{(i)} \in N_k(\mathbf{x})} w_i y^{(i)}$
 - most frequent class for classification: $\hat{y} = \arg\max_{\ell \in \{1,...,g\}} \sum_{i:\mathbf{x}^{(\ell)} \in N_k(\mathbf{x})} \mathbb{I}(y^{(\ell)} = \ell)$
- No distributional or functional assumptions
- **Nonparametric** behavior: parameters = training data; no compression of information

Hyperparameters Neighborhood size *k* (locality), distance measure

 $\begin{array}{l} \textit{Left: Neighborhood for exemplary} \\ \textit{observation in iris, } k = 50 \\ \textit{Right: Prediction surfaces for} \\ k \in \left\{1,50\right\} \end{array}$

K-NN – PRO'S & CON'S

Advantages

- + Easy to explain and implement
- No functional assumptions therefore (in theory) able to model data situations of arbitrary complexity
- + No training period
- No optimization required
- + Constant evolvement with **new data**
- Ability to learn **nonlinear** decision boundaries
- + Easy to **tune**

Disadvantages

- Sensitivity w.r.t. noisy or irrelevant features and outliers due to utter reliance on distances
- Bad performance when feature scales not consistent with importance
- Heavily afflicted by curse of dimensionality
- No handling of missing data
- Poor handling of data **imbalances** (worse for more global model, i.e., large k)
- High **memory** consumption of distance computation

Easy and intuitive for small, well-behaved datasets with meaningful feature space distances

K-NN - PRACTICAL HINTS

Popular distance measures

- Numerical features: typically, **Minkowski** distances $d(\mathbf{x}, \tilde{\mathbf{x}}) = \|\mathbf{x} \tilde{\mathbf{x}}\|_q = \left(\sum_j |x_j \tilde{x}_j|^q\right)^{\frac{1}{q}}$
 - $ullet \ q=$ 1: Manhattan distance $o d(\mathbf{x}, ilde{\mathbf{x}}) = \sum_{j} |x_j ilde{x}_j|$
 - $ullet \ q=2$: Euclidean distance $o d(\mathbf{x}, ilde{\mathbf{x}}) = \sqrt{\sum_j (x_j ilde{x_j})^2}$
- In presence of categorical features: Gower distance
- Custom distance measures applicable
- Optional weighting to account for beliefs about varying feature importance

Implementation

- R: mlr3 learners LearnerClassifKKNN / LearnerRegrKKNN, calling kknn::kknn()
- Python: KNeighborsClassifier / KNeighborsRegressor from package scikit-learn

CART – METHOD SUMMARY

REGRESSION

CLASSIFICATION

NONPARAMETRIC

WHITE-BOX

Iris Data

000000 0

Petal.Width

FEATURE SELECTION

General idea

- Starting from root node containing all data, perform repeated binary splits, subsequently dividing input space into rectangular partitions Q_t
 - ullet In each step, find **optimal split** (feature-threshold combination) o greedy search
 - ullet Assign same response c_t to all observations in terminal region Q_t
- Splits based on node impurity, equivalently interpretable as ERM

Hypothesis space
$$\mathcal{H} = \{ f(\mathbf{x}) : f(\mathbf{x}) = \sum_{t=1}^{T} c_t \mathbb{I}(\mathbf{x} \in Q_t) \}$$

2 4 6
PetalLength

Corresponding prediction surface with axis-aligned boundaries

Response

CART – METHOD SUMMARY

Empirical risk

- Calculated for each potential terminal node \mathcal{N}_t of a split
- In general, compatible with arbitrary losses typical choices:
 - *g*-way classification:

• Brier score
$$\mathcal{R}(\mathcal{N}_t) = \sum\limits_{(\mathbf{x}, \mathbf{y}) \in \mathcal{N}_t} \sum\limits_{k=1}^g \hat{\pi_k}^{(\mathcal{N}_t)} \left(1 - \hat{\pi_k}^{(\mathcal{N}_t)}\right) \rightarrow$$
 Gini impurity

• Bernoulli loss
$$\mathcal{R}(\mathcal{N}_t) = \sum\limits_{(\mathbf{x}, \mathbf{y}) \in \mathcal{N}_t} - \sum\limits_{k=1}^g \hat{\pi_k}^{(\mathcal{N}_t)} \log \hat{\pi_k}^{(\mathcal{N}_t)} \rightarrow \text{entropy}$$
 impurity

• Regression: quadratic loss
$$\mathcal{R}(\mathcal{N}_t) = \sum_{(\mathbf{x}, y) \in \mathcal{N}_t} (y - c_t)^2$$

Optimization

- Exhaustive search over all split candidates, choice of risk-minimal split
- In practice: limit number of candidates, use tricks to avoid combinatorial explosion

Hyperparameters Complexity, i.e., number of leaves T (controlled indirectly, see Implementation)

CART – PRO'S & CON'S

Advantages

- + **Easy** to understand & visualize
- + Highly interpretable
- + Built-in **feature selection**
- + Applicable to **non-numerical** features
- Automatic handling of missings
- Interaction effects between features naturally included, even of higher orders
- + Fast computation and good scalability
- High flexibility (custom split criteria or leaf-node prediction rules)

Disadvantages

- Rather poor generalization when used stand-alone
- High variance/instability: strong dependence on training data
- Substantial risk of overfitting
- Not well-suited for modeling linear relationships
- Bias toward features with many categories

Simple, good with feature selection and highly interpretable, but not the most performant learner

CART – PRACTICAL HINTS

Complexity control

- Unless interrupted, splitting continues until we have one observation per leaf node (costly + overfitting)
- Limit tree growth via
 - Early stopping: stop growth prematurely
 - ightarrow hard to determine good stopping point before actually trying all combinations
 - **Pruning:** grow to large size and cut back in risk-optimal manner

Bagging / boosting As CART are highly **instable** predictors on their own, they are typically used as base learners in bagging (random forest) or boosting ensembles.

Implementation

- R: mlr3 learners LearnerClassifRpart / LearnerRegrRpart, calling rpart::rpart()
- Python: DecisionTreeClassifier / DecisionTreeRegressor from package scikit-learn
- Complexity controlled via tree depth, minimum number of observations per node, maximum number of leaves, minimum risk reduction per split, ...

RANDOM FORESTS

RANDOM FORESTS – METHOD SUMMARY

REGRESSION

CLASSIFICATION

NONPARAMETRIC

BLACK-BOX

FEATURE SELECTION

General idea

- Combine M tree base learners into bagging ensemble, fitting same learner on bootstrap data samples
 - $\bullet~$ Use unstable, high-variance base learners \rightarrow let trees grow to full size
 - Mitigate invididual trees' bias by promoting decorrelation → use random subset of candidate features for each split
- Predict via averaging (regression) or majority vote (classification)

Hypothesis space
$$\mathcal{H} = \left\{ f(\mathbf{x}) : f(\mathbf{x}) = \frac{1}{M} \sum_{m=1}^{M} \sum_{t=1}^{T^{[m]}} \mathbf{c}_t^{[m]} \mathbb{I}(\mathbf{x} \in Q_t^{[m]}) \right\}$$

Prediction surface for iris data with 500-tree ensemble

RANDOM FORESTS – METHOD SUMMARY

Empirical risk

- Applicable with any kind of loss function (just like tree base learners)
- Computation of empirical risk for all potential child nodes in all trees

Optimization Exhaustive search over all split candidates in each node of each tree to minimize empirical risk in child nodes (greedy optimization)

Hyperparameters

- Ensemble size, i.e., number of trees
- Complexity of base learners
- Number of split candidates, i.e., number of features to be considered at each split
 - o frequently used heuristics with total of p features: $\lfloor \sqrt{p} \rfloor$ for classification, $\lfloor p/3 \rfloor$ for regression

Out-of-bag (OOB) error

- Compute ensemble prediction for observations outside individual trees' bootstrap training sample

 → unseen test points
- Use resulting loss as unbiased estimate of generalization error

RANDOM FORESTS – PRO'S & CON'S

Advantages

- Translation of most of trees' advantages (e.g., feature selection, feature interactions)
- + Fairly good **good predictors**: mitigating base learners' weakness through bagging
- + Quite stable w.r.t. changes in data
- Good with high-dimensional data, even in presence of noisy covariates
- + Easy to parallelize
- + Rather easy to tune
- + Intuitive measures of **feature importance**

Disadvantages

- Loss of trees' interpretability black-box method
- Hard to visualize
- Often suboptimal for regression
- Bias toward features with many categories
- Often still inferior in **performance** to other methods (e.g., boosting)

Fairly good and stable predictor with built-in feature selection, but black-box method

RANDOM FORESTS – PRACTICAL HINTS

Pre-processing Inherent feature selection, but high **computational cost** for large number of features → upstream feature selection (e.g., via PCA) might be advisable

Feature importance

- Based on improvement in split criterion: aggregate improvements by all splits using j-th feature
- Based on permutation: permute j-th feature in OOB observations and compute impact on OOB error

Tuning Number of split candidates often more impactful than number of trees

Implementation

- R: mlr3 learners LearnerClassifRanger / LearnerRegrRanger, calling ranger::ranger()
- Python: RandomForestClassifier / RandomForestRegressor from package scikit-learn

GRADIENT BOOSTING

GRADIENT BOOSTING – METHOD SUMMARY

REGRESSION

CLASSIFICATION

(NON)PARAMETRIC

BLACK-BOX

FEATURE SELECTION

General idea

- Create ensemble in sequential, stage-wise manner
 - In each iteration, add new model component in risk-minimal fashion
 - Final model: weighted sum of base learners (frequently, CART)
- Fit each base learner to current **point-wise residuals**
 - \rightarrow one boosting iteration $\stackrel{\frown}{=}$ one approximate gradient step in function space

Hypothesis space
$$\mathcal{H} = \left\{ f(\mathbf{x}) : f(\mathbf{x}) = \sum_{m=1}^{M} \beta^{[m]} b(\mathbf{x}, \boldsymbol{\theta}^{[m]}) \right\}$$

Boosting prediction function with GAM base learners for univariate regression problem after 10 iterations

Boosting prediction surface with tree base learners for iris data after 100 iterations (right: contour lines of discriminant functions)

GRADIENT BOOSTING – METHOD SUMMARY

Empirical risk

- Outer loss used to compute pseudo-residuals error of current model fit
 - → arbitrary differentiable loss function
- Inner loss used to fit next base learner component to current pseudo-residuals
 - ightarrow typically, quadratic loss

Optimization Functional gradient descent for outer optimization loop

Hyperparameters

- Ensemble size, i.e., number of base learners
- Complexity of base learners (depending on type used)
- Learning rate, i.e., impact of next base learner

GRADIENT BOOSTING – PRO'S & CON'S

Advantages

- + Powerful **off-the-shelf** method for supercharging weak learners' performance
- High predictive **performance** that is hard to outperform
- + Translation of most of **base learners**' advantages
- High flexibility (custom loss functions, many tuning options)

Disadvantages

- Hard to interpret black-box method
- Hard to visualize
- Prone to overfitting
- Sensitive to outliers
- Hard to tune (high sensitivity to variations in hyperparameter values)
- Rather slow in training
- Hard to parallelize

High-performing and flexible predictor, but rather delicate to handle

GRADIENT BOOSTING – PRACTICAL HINTS

XGBoost (extreme gradient boosting)

- Fast, efficient implementation of gradient-boosted decision trees
- State of the art for many machine learning problems

Stochastic gradient boosting (SGB) Faster, approximate version of GB that performs each iteration only on random data subset

Tuning Tipps??

Implementation

- R: mlr3 learners LearnerClassifXgboost / LearnerRegrXgboost, calling xgboost::xgb.train()
- Python: GradientBoostingClassifier / GradientBoostingRegressor from package scikit-learn, XGBClassifier / XGBRegressor from package xgboost

NEURAL NETWORKS (NN)

NEURAL NETWORKS – METHOD SUMMARY

REGRESSION

CLASSIFICATION

(NON)PARAMETRIC

BLACK-BOX

FEATURE SELECTION

General idea

- Learn composite function through series of feature transformations, with components distributed over neurons, organized in layers
 - Basic neuron operation: 1) affine transformation with weights & bias term, 2) (nonlinear) activation
 - Arbitrarily complex combinations of fundamental building blocks
- Optimize through **backpropagation**, performing alternating steps:
 - Forward pass: predict result with current parameters and compute empirical risk
 - ullet Backward pass: update each parameter in proportion to its error contribution o gradients

$$\text{Hypothesis space} \quad \mathcal{H} = \left\{ f(\mathbf{x}) : f(\mathbf{x}) = \tau \circ \phi \circ \sigma^{(h)} \circ \phi^{(h)} \circ \sigma^{(h-1)} \circ \phi^{(h-1)} \circ \dots \circ \sigma^{(1)} \circ \phi^{(1)}(\mathbf{x}) \right\}$$

Feedforward network, 1 hidden layer

Convolutional network architecture

NEURAL NETWORKS – METHOD SUMMARY

Empirical risk Any differentiable loss function

Optimization

- Variety of different optimizers, mostly based on some form of stochastic gradient descent
- Backbone: gradient computation for arbitrary functions via computational graphs

NN types Large variety of architectures for different purposes

- Feedforward NNs / multi-layer perceptrons (MLPs): sequence of fully-connected layers
- Convolutional NNs (CNNs): sequence of feature map extractors with spatial awareness → images
- Recurrent NNs (RNNs): handling of sequential, variable-length information → times series, text, audio
- Unsupervised: autoencoders, generative adversarial networks (GANs), . . .

Hyperparameters

- Regarding architecture
 - Lots of design choices → tuning problem of its own: neural architecture search (NAS)
 - E.g., network depth, layer types, activation functions, . . .
- Regarding optimization & regularization
 - Crucial due to overparameterization and strong nonconvexity
 - E.g., weight initialization, choice of optimizer, learning rate, batch size, number of epochs, ...

NEURAL NETWORKS – PRO'S & CON'S

Advantages

- + Applicable to **complex, nonlinear** problems
- + Very **versatile** w.r.t. architectures
- + Suitable for **unstructured** data (e.g., images)
- + Strong **performance** if done right
- Built-in feature extraction, obtained by intermediate representations
- + Easy handling of **high-dimensional** data
- Parallelizable training

Disadvantages

- Typically, high computational cost
- High demand for training data
- Strong tendency to overfit
- Requiring lots of tuning expertise
- Black-box model hard to interpret or explain

Able to solve extremely complex tasks, but computationally expensive and hard to get right

NEURAL NETWORKS – PRACTICAL HINTS

Some options for regularization

- Control weight magnitude with weight decay (L2 regularization)
- \bullet Interrupt training when validation error starts to pick up $\to \textbf{early stopping}$
- Use dropout to deactivate neurons at random, thus down-sizing network
- Expand training data and enforce invariances via augmentation
- ..

Optimization tricks

- Accelerate training by incorporating momentum
- Control learning rate with schedulers, or keep it adaptive
- Use batch normalization for stability by keeping input distributions fixed throughout transformations
- ..

Implementation

- R: packages reticulate, neuralnet
- Python: libraries PyTorch and PyTorch Lightning, TensorFlow (high-level API: keras)