

浙江大学物理化学实验

恒温槽的性能测试 黏度法测定高聚物的相对分子质量

实

验

报

告

参加学生: 叶青杨(3210100360)

指导老师: 方文军

浙江大学化学实验教学中心 2023 年 10 月 19 日

恒温槽的性能测试 黏度法测定高聚物的相对分子质量

叶青杨 (3210100360), 指导教师: 方文军

一、原理

第一个实验:

通过调节电接点水银温度计的顶部调节帽来调节设定温度,基于水银膨胀来控制断路与否,通过精密电子温差测量仪可以测定温度的波动。 第二个实验:

在液体在重力作用下流经毛细管时, 遵守泊肃叶(Poiseuille) 定律

$$\eta = \frac{\pi p r^4 t}{8lV} = \frac{\pi h \rho g r^4 t}{8lV}$$

对于同一黏度计

$$\frac{\eta_1}{\eta_2} = \frac{p_1 t_1}{p_2 t_2} = \frac{\rho_1 t_1}{\rho_2 t_2}$$

浓度不大时,

$$\eta_r = \frac{\eta}{\eta_0} = \frac{t}{t_0}$$

通过一个参考液体的黏度得到待测液体的黏度

1 试剂与仪器

1.1 试剂

8.00% 质量分数的聚乙二醇的水溶液,去离子水

1.2 仪器

玻璃缸,温度调节器(导电表),精密电子温差测量仪,温度计(1/10℃),搅拌器(带调速器),温度控制器(继电器),调压器;恒温槽,乌氏粘度计,洗耳球,砂芯漏斗,5、10、25 mL 移液管,细乳胶管,弹簧夹,吊锤,100 mL 容量瓶,秒表

二、实验

2 实验步骤 [1]

2.1 实验一

(1) 调节旋钮,调节水温为 30℃ 附近

- (2) 测定 220V 加热电压下的恒温槽的温度波动, 15s 读一次数据, 记录 15min
- (3) 测定 110V 加热电压下的恒温槽的温度波动, 15s 读一次数据, 记录 15min
- (4) 测定恒温槽不同位置的温度的最高和最低温

2.2 实验二

- (1) 调节水温为 30℃ 附近, 温度稳定
- (2) 配溶液, 5mL, 10mL, 15mL, 20mL, 25mL 聚乙二醇的水溶液稀释配成 100mL
 - (3) 洗黏度计, 热洗液, 自来水, 蒸馏水
- (4) 润洗,测流出时间。垂直,G 球入水。夹 C,吸 B,G 半,开 C。A 点计时,B 点结束。
 - (5) 溶液同上(稀到浓)
 - (6) 水洗,充满,浸泡 使用 python 处理实验数据和绘图
- 3 实验结果与分析

3.1 实验一

室温: 25.5℃

基准调零温度: 30.47℃ 原始数据如下表:

序号	(220V) 温度差/°C	(110V) 温度差/℃			(110)7) 汨ウギ/90
0	0.000	0.134	序号 (220V) 温度差/℃		(110V) 温度差/℃
1	0.094	0.128	31 0.106		0.142
2	0.197	0.133	32	0.099	0.140
3	0.218	0.145	33	0.105	0.135
4	0.216	0.143	34 0.151		0.128
5	0.210	0.138	35	0.162	0.126
6	0.201	0.133	36	0.159	0.138
7	0.194	0.127	37	0.152	0.14
8	0.186	0.127	38	0.145	0.135
9	0.178	0.142	39	0.139	0.130
10	0.171	0.139	40	0.131	0.124
11	0.164	0.133	41	0.125	0.134
12	0.157	0.133	42	0.118	0.143
13	0.150	0.127	43	0.112	0.143
14	0.130	0.144	44	0.105	0.137
15	0.143	0.142	45	0.098	0.132
16	0.137	0.142	46	0.120	0.125
17	0.129	0.137	47	0.155	0.134
			48	0.159	0.144
18	0.115	0.126	49	0.154	0.142
19	0.108	0.14	50	0.148	0.137
20	0.102	0.145	51	0.141	0.130
21	0.095	0.141	52	0.135	0.125
22	0.136	0.136	53	0.129	0.139
23	0.154	0.131	54	0.122	0.146
24	0.153	0.126	55	0.116	0.142
25	0.148	0.141	56	0.109	0.137
26	0.140	0.142	57	0.102	0.131
27	0.133	0.138	58	0.098	0.126
28	0.126	0.132	59	0.142	0.134
29	0.119	0.127	60	0.160	0.143
30	0.113	0.128		1 0.100	0.115

Table 1: Data table - Part 1

Table 2: Data table - Part 2

对数据进行处理绘图后,如 Figure 1 所示,其中 X 轴的单位为 15s,左 Y 轴为相对温度值,右 Y 轴为对应范围的周期长度(算法为两次谷底间距),单位为 15s,Original Data 表示实验直接测得的数据点,Cubic Interpolation 为线性插值 法拟合出的曲线,Period Estimate 即周期长度分布。

(a) 220V 加热电压下的恒温槽的温度波动

(b) 110V 加热电压下的恒温槽的温度波动

Figure 1: 不同加热电压下的恒温槽的温度波动

220V 稳定后的波幅为 0.032℃, 平均周期为 12.33*15s=185s。

110V 稳定后的波幅为 0.0093°C, 平均周期为 5.73*15s=86s。

这里定义的波幅为数据波动稳定的范围内,测量温度与平均温度的极大绝对 差值的平均值。

在图(a)中,由于第一个周期的波形明显与之后不同,故在计算周期和波幅时已经将其忽略,仅考虑后三个完整的周期。

不难看出,相比于 110V 加热电压,220V 加热电压的情况,周期较长,在已有的数据上分析,周期的波动情况与 110V 是相似的(周期数太少,实际上并不适合分析波动情况)。温度的波幅较大,达到 0.032°C,也就是波峰和波谷的平均差达到 0.064°C。

在本次实验中 110V 加热电压的情况,没有出现明显不协调的峰形,但数据的相对波动较大,可能是因为温度的波动太小,更接近仪器的灵敏度,且 15s 的测量间距过大,导致已有数据不能很好的分布在峰的各个位置导致难以拟合。

重新设置的 220V 加热电压下,对不同位置的温差测定结果如下表:

位置	相对温差
中	0.129-0.178
中左	0.126-0.190
中右	0.126-0.191
中前	0.127-0.191
中后	0.127-0.190
中上	0.116-0.170
中下	0.129-0.194

Table 3: 位置与相对温差

不难发现,中和中上的最高温显著低于其他部位,因为其原理加热源,而中和中下的最低温高于其他部位,因为其靠近中心,保温性能好,中上靠近散热的空气表面,故地最低温和最高温都低。

3.2 实验二

测定的不同质量分数的聚乙二醇的流下时间如表所示:

聚乙二醇浓度/ $kg \cdot m^{-3}$	流下时间/s			平均值/s
0	82.40	82.50	82.32	82.41
4.0	94.30	94.41	94.62	94.44
8.0	108.49	108.32	108.57	108.46
12.0	121.50	121.41	121.47	121.46
16.0	137.32	137.38	137.19	137.30
20.0	154.12	154.00	153.84	153.99

Table 4: 流下时间与聚乙二醇质量浓度的关系

根据上述数据我们可以拟合得到结果:

Figure 2: 分别以 $\ln \eta_r/c$ 和 $\ln \eta_{sp}/c$ 分别对 c 绘图, 拟合

得到的截距 $[\eta]$ 分别为 0.03519 和 0.03531, 平均值为 0.03525, 代入公式

$$[\eta] = K \overline{(M_n)}^{\alpha}$$

水浴槽约 30.47°C,取 $K = 12.5 \times 10^6 (m^3 \cdot kq^{-1}), \alpha = 0.78$,得

$$M_{\eta} = 2.65 \times 10^4$$

符合书中数据 $2 \times 10^4 - 500 \times 10^4$ 范围。

拟合的回归率不高,可能是实验设计本身导致的. 本次实验使用的溶液浓度已经超过了 $10kg/m^3$,最高达到 $20kg/m^3$,溶液的密度实际上需要修正,不过那不在本实验的探讨范围内。通过对其他数位同学的 **原始** 实验数据的拟合结果的分析,我们有理由怀疑本实验的浓度设计存在一定的问题,且需要一些额外的实验进行修正,也就是说,我们使用的拟合公式或许在对我们的实验环境并不适用,当然这目前处于一个猜想。本次实验的其他部分均未出现明显误差,流下时间的测量误差很小,因此我判断这个不算良好的拟合结果背后还有着更深的内禀性因素。我们可以从修正密度项开始,或者改用更细的毛细管以及改变水浴槽温度等角度验证我们的猜测。

乌氏粘度计的毛细管中可能粘附有某种难以洗净的物质未曾除去,在实验开始前已经烘干粘附其上,使其一部分孔径变小,测量时间变长,导致实验误差大,测量时间线性程度较高,但处理结果线性程度低。聚乙二醇可能吸附于毛细管内壁,这导致了毛细管管径的变小,使得前后测量的时间标准不一致。测量纯溶剂流过的时间时,也应考虑到高分子的排除体积效应: 当粘在壁上的聚乙二醇遇到大量良性溶剂时,可能会继续扩大支链包含的体积,从而使得管径缩小,使得流过管径的时间变长。对于聚乙二醇,由于其单体乙二醇结构特点,如果无丙三醇等杂质,则不应该有支链结构,但是考虑到其聚合结构中有不同的强极性和弱极性部分,其在纯溶剂中的取向可能有改变,可能也会有类似于排除体积效

应的结果。本实验没有考虑液体在毛细管流动时能量损耗的主要部分——动能消耗的影响(即动能校正项的影响)。这是因为一般都选择纯溶剂流出时间大于100秒的粘度计,动能校正项对相对粘度的影响很小,往往可以忽略。但当液体流速较大(如:纯溶剂的流出时间小于100秒)时,必须作动能校正。而动能校正通常是毛细管粘度计应用时最主要的校正。[3][4]

Cheng 等的研究结果表明,极稀高分子溶液的粘度行为实际上是非常复杂的,对极稀高分子溶液来说,其比浓粘度与浓度之间不再满足线性关系。随着浓度的减小,极稀高分子溶液的比浓粘度呈规律性的变化,或不断增加,或是与此相反^[2],杨海洋等提出了相关的改进措施^[3]

四、参考文献

- [1] 王国平, 张培敏, 王永尧. 中级化学实验 [M]. 北京: 科学出版社, 2017.
- [2] Cheng R S, Yang Y, Yan X. Ploymer, 1999, 40:3773.
- [3] 粘度法研究高分子溶液行为的实验改进(II). 杨海洋, 李浩, 朱平平, 朱清仁, 范成高. 化学通报.2002,3,631-634
 - [4]http://home.ustc.edu.cn/ chenjing640/physics%20chemistry/PB19030917-10.pdf