

Nome: Bruno Guilherme Shirasawa Pelegrinelli - 6607_______ Data: 19 de junho de 2018

1. Controle de Qualidade. Os dados a seguir foram obtidos em um ensaio R&R. Determine os parâmetros $\%R\&R_{VT}$ e $\%R\&R_{TOL}$ desses processos de medição e indique se eles são adequados ou não e o motivo (Extraído do livro Fundamentos de Metrologia Científica e Industrial de Armando Albertazzi G. Jr. e André R. de Souza, 2^a edição, página 409).

	Peças									
C	peradores	1	2	3	4	5	6	7	8	9
	Medição 1	85.76	85.88	85.9	85.87	85.82	86.09	85.75	85.92	86.05
A	Medição 2	85.96	85.76	85.82	85.77	85.95	86.09	85.77	85.98	85.92
	Medição 3	85.76	86.1	85.91	85.92	86.02	86.07	85.94	85.92	85.84
	Medição 1	86.12	85.98	85.9	85.82	85.89	86.26	85.89	85.92	85.57
В	Medição 2	85.95	86.15	85.86	85.97	85.62	85.73	85.74	85.85	85.79
	Medição 3	86.1	85.71	86	85.93	85.7	86	86.08	85.85	86
	Medição 1	85.7	85.92	85.92	85.98	85.77	86	85.96	85.84	86.05
$\mid C \mid$	Medição 2	85.8	85.9	85.63	86.03	85.93	85.93	85.98	85.75	85.99
	Medição 3	85.82	85.72	85.94	86.08	85.82	85.87	86.02	85.93	85.71

2. Ajuste Linear. Para determinar a constante de elasticidade de uma mola, um estudante pendura várias massas M em uma extremidade da mola e mede a sua correspondente dimensão l. Os resultados obtidos estão apresentados na Tabela 1. Como a força $mg = k(l-l_0)$ é o comprimento da mola sem distensão, esses dados devem se ajustar a uma reta, $l = l_0 + (g/k)m$. Faça um ajuste por mínimos quadrados para essa reta, considerando os dados apresentados, e determine as melhores estimativas para l_0 e para k. Calcule o comprimento l e sua incerteza para o peso de 1kg (Extraído do livro Introdução à análise de erros de John R. Taylor, 2^a edição, página 200).

í	D /	200	000	100	F00	000	700	000	000
	Peso m (gramas)	200	300	400	500	600	700	800	900
Ì	Comprimento l (cm)	4.89	5.2	5.62	5.67	6.47	7.13	7.52	10.28

Tabela 1: Comprimento versus peso para uma mola M.

3. Medidas Correlacionadas. Considere o modelo matemático abaixo para medição de uma resistência com base nos valores simultaneamente observados de corrente e voltagem sob condições ambientais idênticas, utilizando um voltímetro e um amperímetro (ambos os instrumentos estavam com escala selecionada visando a menor incerteza associada ao conjunto de medições em questão, ver Tabelas 3 e 4), considerando a influência de correlação entre as variáveis e tendo ciência de que a temperatura ambiente estava oscilando entre 19°C e 27°C. Determine a incerteza no cálculo de R com 99.73% de confiança de acordo com a quantidade de algarismos significativos de acordo com o Método de Monte Carlo.

$$R = (V_a + V_{resol} + V_{calib} + V_{temp})/(I_a + I_{resol} + I_{calib} + I_{temp})$$
, sendo:

N	1	2	3	4	5	6	7	8
$V_a(V)$	8.69	8.96	9.79	8.93	10.01	9.41	9.71	10.87
$I_a (mA)$	86.455	90.378	98.764	89.703	99.39	93.999	97.252	107.732

Tabela 2: Medições simultâneas de voltagem e corrente

Faixa	Precisão
200mV, 2V, 20V, 200V	$\pm (0.5\% + 3D)$
1000V	$\pm (1.0\% + 5D)$

Tabela 3: Incerteza do voltímetro de 3 1/2 dígitos, segundo o certificado de calibração, válida para temperatura ambiente oscilando entre $-10^{\circ}C$ e $40^{\circ}C$.

Faixa	Incerteza				
20mA	$\pm (0.8\% + 3D)$				
200mA	$\pm (1.2\% + 4D)$				
20A	$\pm (2.0\% + 5D)$				

Tabela 4: Incerteza do amperímetro de 5 1/2 dígitos, segundo o certificado de calibração, válida para temperatura de $23^{\circ}C \pm 5^{\circ}C$ e umidade relativa < 75%.