\$100.00 α_{-} x + y x = y x < y x : y x, y x@y $100\%y \ x * y \ x/yx\$y$ $x \leftarrow y \ x \forall y \ x - y$ $x \mathbf{x} \mathbf{x} \mathcal{X} \mathbf{x}$ $x \ x \ x \ x$ $\{braces\}$ $\left[\left\lfloor \frac{5}{\frac{(3)}{4}}y\right)\right]$ (\boldsymbol{x}) $\sin(x)$ $x = \frac{x + \frac{5}{2}}{\frac{y+3}{9}}$ $dz/dt = \gamma x^2 + \sin(2\pi y + \phi)$ Foo: $lpha_{i+1}^{j} = \sin(2\pi f_j t_i) e^{-5t_i/ au}$ $\mathcal{R}\prod_{i=\alpha_{i+1}}^{\infty}a_{i}\sin(2\pi fx_{i})$ Variable i is good Δ_i^j $\ddot{o}\acute{e}\grave{e}\^{O}$ ĭ $ec{n}ec{q}$ $\arccos((x^i))$ $W_{\delta_1
ho_1 \sigma_2}^{3eta} \!=\! U_{\delta_1
ho_1}^{3eta} + \! rac{1}{8\pi 2} \! \int_{lpha_2}^{lpha_2} dlpha_2' \left[\! rac{U_{\delta_1
ho_1}^{2eta} \! - \! lpha_2' U_{
ho_1 \sigma_2}^{1eta}}{U_{
ho_1 \sigma_2}^{0eta}}
ight]$ $\mathcal{H} = \int \!\! d\tau (\epsilon E^2 + \mu H^2)$ \widetilde{abcdef} ΓΔΘΛΞΠΣΥΦΨΩ $\alpha \beta \gamma \delta \epsilon \zeta \eta \theta \iota \lambda \mu \nu \xi \pi \kappa
ho \sigma \tau \upsilon \phi \chi \psi$ x^2y^2 $\sum_{i=1}^{p} \sum_{j=1}^{q} \sum_{k=1}^{r} a_{ij} b_{jk} c_{ki}$ $1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + x}}}}}$ $|a_{ij}|^2 = 0$

 $a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{a}}}}$ $a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1$ $\binom{n}{k/2}$ $\binom{p}{2} x^2 y^{p-2} - \frac{1}{1-x} \frac{1}{1-x^2}$

 $x_{y_b^a}^{z_c^d}$

 y_3'''