Cognitive (Neuro) Psychology IV. Psychophysics

Marianne Maertens

Technische Universität Berlin

July 2016

Layout

Definition

Classification of Experiments

Psychophysics

- subdiscipline of psychology
- addresses the relationship between physical stimuli, x, and their subjective correlates (percepts), $\Psi(x)$

Components of a psychophysics experiment

- stimuli
- task
- method
- analysis
- measure

Measure: contrast sensitivity

Stimulus

Task

Method of adjustment

Task

Method of adjustment

 2-alternative forced-coice (2-AFC)

Method & Analysis

Adaptive procedure

Method & Analysis

Adaptive procedure

 Method of constant stimuli

Layout

Definition

Classification of Experiments

Dichotomies

 all understanding begins with making comparisons and those comparisons, in turn, lead to the construction of categories

Dichotomies

- all understanding begins with making comparisons and those comparisons, in turn, lead to the construction of categories
- simplify and make explicit design choices
- which method is appropriate for studying which aspect of visual functioning

nature of measurement e.g. Muller-Lyer illusion

• nature of measurement e.g. Muller-Lyer illusion

nature of measurement e.g. Muller-Lyer illusion

- PSE: point of subjective equality
- objective: correct vs. incorrect

method of data collection

```
method of adjustment = subjective
method of constant stimuli = objective
```

Performance vs. appearance

- How good is an observer in a particular task? e.g. orientation discrimination in the fovea vs. the periphery
- Performance can not be meaningfully considered as 'better' e.g. apparent lightness of targets

Performance vs. appearance

 How good is an observer in a particular task? e.g. orientation discrimination in the fovea vs. the periphery

 Performance can not be meaningfully considered as 'better' e.g. apparent lightness of targets

Performance vs. appearance

 How good is an observer in a particular task? e.g. orientation discrimination in the fovea vs. the periphery

- accuracy
- threshold

 Performance can not be meaningfully considered as 'better' e.g. apparent lightness of targets

- PSE
- scales

Forced-choice vs. non-forced

• criterion-free vs. criterion-dependent

Detection vs. Discrimination

is there a / where is the single stimulus? which of two stimuli is more 'x'?

Detection vs. Discrimination

is there a / where is the single stimulus?

which of two stimuli is more 'x'?

Detection vs. Discrimination

is there a / where is the single stimulus?

which of two stimuli is more 'x'?

contrast discrimination - detection of an increment on a pedestal

Psychophysics Summary

Thinking

The two checks indicated by arrows have the same retinal luminance but differ in apparent lightness. Design an experiment to quantify the perceived difference between the two checks!

- 2-IFC: S signal and N noise
- · Which of the two intervals contained the stimulus?
- sensory evidence fluctuates from trial to trial $n \sim N(0,1)$

- according to high-threshold theory the sensory mechanism will detect the stimulus when the amount of sensory evidence exceeds a fixed internal criterion
- F(x): probability that the threshold will be exceeded by a stimulus of intensity x

- according to high-threshold theory the sensory mechanism will detect the stimulus when the amount of sensory evidence exceeds a fixed internal criterion
- F(x): probability that the threshold will be exceeded by a stimulus of intensity x

- according to high-threshold theory the sensory mechanism will detect the stimulus when the amount of sensory evidence exceeds a fixed internal criterion
- F(x): probability that the threshold will be exceeded by a stimulus of intensity x

- according to high-threshold theory the sensory mechanism will detect the stimulus when the amount of sensory evidence exceeds a fixed internal criterion
- F(x): probability that the threshold will be exceeded by a stimulus of intensity x

High threshold theory - decision process

- relation between observable behavior $\Psi(x)$ and unobservable decision mechanism F(x)
- λ : lapse rate
- γ : guess rate

High threshold theory - assumptions

- amount of sensory evidence accumulated is unavailable to the decision process
- probability that the threshold is exceeded when x=0, i.e. by noise is effectively zero, no false alarms

References

- Kingdom & Prins, Psychophysics. A practical introduction.
- •