# Section 4.3 – Conservative Vector Fields

### **Line Integrals of Vector Fields**

Assume the vector field  $\vec{F}(x,y,z) = M(x,y,z)\hat{i} + N(x,y,z)\hat{j} + P(x,y,z)\hat{k}$  has a continuous components, and the curve C has a smooth parametrization  $\vec{r}(t) = f(t)\hat{i} + g(t)\hat{j} + h(t)\hat{k}$ ,  $a \le t \le b$ .  $\vec{r}(t)$  defines along the path C which we call the *forward direction*. At each point along the path C, the tangent vector  $\vec{T} = \frac{d\vec{r}}{ds} = \frac{\vec{v}}{|\vec{v}|}$  is a unit vector tangent to the path and pointing is this forward direction. The tangential component is given by the dot product

$$\vec{F} \cdot \vec{T} = \vec{F} \cdot \frac{d\vec{r}}{ds}$$

#### **Definition**

Let  $\vec{F}$  be a vector field with continuous components defined along a smooth curve C parametrized by  $\vec{r}(t)$ ,  $a \le t \le b$ . Then the line integral of  $\vec{F}$  along C is

$$\int_{C} \vec{F} \cdot \vec{T} \, ds = \int_{C} \left( \vec{F} \cdot \frac{d\vec{r}}{ds} \right) \, ds = \int_{C} \vec{F} \cdot d\vec{r}$$

# **Evaluating the Line Integral of** $\vec{F} = M\hat{i} + N\hat{j} + P\hat{k}$ **along** C: $\vec{r}(t) = g(t)\hat{i} + h(t)\hat{j} + k(t)\hat{k}$

- **1.** Express the vector field  $\vec{F}$  in terms of the parametrized curve C as  $\vec{F}(\vec{r}(t))$  by substituting the components x = g(t), y = h(t), z = k(t) of  $\vec{r}$  into the scalar components M(x, y, z), N(x, y, z), P(x, y, z) of  $\vec{F}$ .
- 2. Find the derivative (velocity) vector  $\frac{d\mathbf{r}}{dt}$ .
- **3.** Evaluate the line integral with respect to the parameter t,  $a \le t \le b$ , to obtain

$$\int_{C} \vec{F} \cdot d\vec{r} = \int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \frac{d\vec{r}}{dt} dt$$

Evaluate  $\int_C \vec{F} \cdot d\vec{r}$ , where  $\vec{F} = z\hat{i} + xy\hat{j} - y^2\hat{k}$  along the curve C given by  $\vec{r}(t) = t^2\hat{i} + t\hat{j} + \sqrt{t}\,\hat{k}$   $0 \le t \le 1$ .

$$\vec{F}(\vec{r}(t)) = \sqrt{t} \,\hat{i} + t^3 \,\hat{j} - t^2 \hat{k}$$

$$\frac{d\vec{r}}{dt} = 2t \,\hat{i} + \hat{j} + \frac{1}{2\sqrt{t}} \,\hat{k}$$

$$\vec{F}(\vec{r}(t)) \cdot \frac{d\vec{r}}{dt} = \left(\sqrt{t} \hat{i} + t^3 \,\hat{j} - t^2 \hat{k}\right) \cdot \left(2t \hat{i} + \hat{j} + \frac{1}{2\sqrt{t}} \,\hat{k}\right)$$

$$= 2t \sqrt{t} + t^3 - \frac{t^2}{2\sqrt{t}}$$

$$= 2t^{3/2} + t^3 - \frac{1}{2}t^{3/2}$$

$$= \frac{3}{2}t^{3/2} + t^3$$

$$\vec{F} \cdot d\vec{r} = \int_0^1 \vec{F}(\vec{r}(t)) \cdot \frac{d\vec{r}}{dt} dt$$

$$= \int_0^1 \left(\frac{3}{2}t^{3/2} + t^3\right) dt$$

$$= \frac{3}{5}t^{5/2} + \frac{1}{4}t^4 \Big|_0^1$$

$$= \frac{3}{5} + \frac{1}{4}$$

$$= \frac{17}{20} \Big|_0^{1/2}$$

## Work Done by a Force over a Curve in Space



# **Definition**

Let C be a smooth curve parametrized by r(t),  $a \le t \le b$ , and F be a continuous force field over a region containing C. Then the **work** done in moving an object from point A = r(a) to the point B = r(b) along C is

$$W = \int_{C} \mathbf{F} \cdot \mathbf{T} ds = \int_{a}^{b} \mathbf{F} (\mathbf{r}(t)) \cdot \frac{d\mathbf{r}}{dt} dt$$



| Different ways to write the work integral for $\vec{F} = M\hat{i} + N\hat{j} + P\hat{k}$ over the curve $C$ : $\vec{r}(t) = g(t)\hat{i} + h(t)\hat{j} + k(t)\hat{k}$ |                              |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|
| $W = \int_{C} \vec{F} \cdot \vec{T}  ds$                                                                                                                             | The definition               |  |
| $= \int_{C} \vec{F} \cdot d\vec{r}$                                                                                                                                  | Vector differential form     |  |
| $= \int_{a}^{b} \overrightarrow{F} \cdot \frac{d\overrightarrow{r}}{dt} dt$                                                                                          | Parametric vector evaluation |  |
| $= \int_{a}^{b} \left( M \frac{dx}{dt} + N \frac{dy}{dt} + P \frac{dz}{dt} \right) dt$                                                                               | Parametric scalar evaluation |  |
| $= \int_{C} Mdx + Ndy + Pdz$                                                                                                                                         | Scalar differential form     |  |

Find the work done by the force field  $\vec{F} = (y - x^2)\hat{i} + (z - y^2)\hat{j} + (x - z^2)\hat{k}$  along the curve  $\vec{r}(t) = t\hat{i} + t^2\hat{j} + t^3\hat{k}$   $0 \le t \le 1$ , form (0, 0, 0) to (1, 1, 1).

$$\begin{aligned} \overrightarrow{F} &= \left(y - x^2\right)\hat{i} + \left(z - y^2\right)\hat{j} + \left(x - z^2\right)\hat{k} \\ &= \left(t^2 - t^2\right)\hat{i} + \left(t^3 - t^4\right)\hat{j} + \left(t - t^6\right)\hat{k} \\ &= \left(t^3 - t^4\right)\hat{i} + \left(t - t^6\right)\hat{k} \\ &= \hat{i} + 2t\hat{j} + 3t^2\hat{k} \end{aligned}$$

$$\overrightarrow{F} \cdot \frac{d\overrightarrow{r}}{dt} &= \frac{d}{dt}\left(t\hat{i} + t^2\hat{j} + t^3\hat{k}\right) \\ &= \hat{i} + 2t\hat{j} + 3t^2\hat{k}$$

$$\overrightarrow{F} \cdot \frac{d\overrightarrow{r}}{dt} &= \left[\left(t^3 - t^4\right)\hat{j} + \left(t - t^6\right)\hat{k}\right] \cdot \left(\hat{i} + 2t\hat{j} + 3t^2\hat{k}\right) \\ &= 2t\left(t^3 - t^4\right) + 3t^2\left(t - t^6\right) \\ &= 2t^4 - 2t^5 + 3t^3 - 3t^8 \end{aligned}$$

$$W = \int_0^1 \overrightarrow{F} \cdot \frac{d\overrightarrow{r}}{dt} dt$$

$$= \int_0^1 \left(2t^4 - 2t^5 + 3t^3 - 3t^8\right) dt$$

$$= \left[\frac{2}{5}t^5 - \frac{1}{3}t^6 + \frac{3}{4}t^4 - \frac{1}{3}t^9\right]_0^1$$

$$= \frac{2}{5} - \frac{1}{3} + \frac{3}{4} - \frac{1}{3}$$

$$= \frac{29}{60} \end{aligned}$$



Find the work done by the force field  $\vec{F} = x\hat{i} + y\hat{j} + z\hat{k}$  in moving an object along the curve C parametrized by  $r(t) = \cos(\pi t)i + t^2j + \sin(\pi t)k$   $0 \le t \le 1$ .

#### **Solution**

$$\vec{F}(\vec{r}(t)) = \cos(\pi t)\hat{i} + t^2\hat{j} + \sin(\pi t)\hat{k}$$

$$\frac{d\vec{r}}{dt} = -\pi \sin(\pi t)\hat{i} + 2t\hat{j} + \pi \cos(\pi t)\hat{k}$$

$$\vec{F}(\vec{r}(t)) \cdot \frac{d\vec{r}}{dt} = \left(\cos(\pi t)\hat{i} + t^2\hat{j} + \sin(\pi t)\hat{k}\right) \cdot \left(-\pi \sin(\pi t)\hat{i} + 2t\hat{j} + \pi \cos(\pi t)\hat{k}\right)$$

$$= -\pi \cos(\pi t)\sin(\pi t) + 2t^3 + \pi \cos(\pi t)\sin(\pi t)$$

$$= 2t^3$$

The work done is the line integral

$$W = \int_0^1 2t^3 dt$$
$$= \frac{1}{2}t^4 \Big|_0^1$$
$$= \frac{1}{2} \Big|_0^4$$

### Flow integrals and Circulation for Velocity Fields

# **Definitions**

If  $\vec{r}(t)$  parametrizes a smooth curve C in the domain of a continuous velocity field  $\vec{F}$ , the *flow* along the curve point  $A = \vec{r}(a)$  to  $B = \vec{r}(b)$  is

$$Flow = \int_{C} \vec{F} \cdot \vec{T} \ ds$$

The integral in this case is called a *flow integral*. If the curve starts and ends at the same point, so that A = B, the flow is called the *circulation* around the curve.

A fluid's velocity field is  $\vec{F} = x\hat{i} + z\hat{j} + y\hat{k}$ . Find the flow along the helix

$$\vec{r}(t) = (\cos t)\hat{i} + (\sin t)\hat{j} + t\hat{k}, \quad 0 \le t \le \frac{\pi}{2}$$

$$\vec{F} = x\hat{i} + z\hat{j} + y\hat{k}$$

$$= (\cos t)\hat{i} + t\hat{j} + (\sin t)\hat{k}$$

$$\frac{d\vec{r}}{dt} = (-\sin t)\hat{i} + (\cos t)\hat{j} + \hat{k}$$

$$\vec{F} \cdot \frac{d\vec{r}}{dt} = ((\cos t)\hat{i} + t\hat{j} + (\sin t)\hat{k}) \cdot ((-\sin t)\hat{i} + (\cos t)\hat{j} + \hat{k})$$

$$= -\cos t \sin t + t \cos t + \sin t$$

$$Flow = \int_0^{\pi/2} (-\cos t \sin t + t \cos t + \sin t) dt$$

$$\int_{-\cos t} \sin t dt = \int_{-\cos t} \cot t d(\cos t) = \frac{1}{2} \cos^2 t$$

$$= \left[ \frac{1}{2} \cos^2 t + t \sin t + \cos t - \cos t \right]_0^{\pi/2}$$

$$= \left[ \frac{1}{2} \cos^2 t + t \sin t \right]_0^{\pi/2}$$

$$= \frac{\pi}{2} - \frac{1}{2}$$

|   |            | $\cos t$                |
|---|------------|-------------------------|
| + | t <b>-</b> | $\rightarrow \sin t$    |
| _ | 1 -        | $\rightarrow$ $-\cos t$ |

Find the circulation of the field  $\vec{F} = (x - y)\hat{i} + x\hat{j}$  around the circle  $\vec{r}(t) = (\cos t)\hat{i} + (\sin t)\hat{j}$ ,  $0 \le t \le 2\pi$ 



$$\vec{F} = (x - y)\hat{i} + x\hat{j}$$

$$= (\cos t - \sin t)\hat{i} + (\cos t)\hat{j}$$

$$\frac{d\vec{r}}{dt} = (-\sin t)\hat{i} + (\cos t)\hat{j}$$

$$\vec{F} \cdot \frac{d\vec{r}}{dt} = ((\cos t - \sin t)\hat{i} + (\cos t)\hat{j}) \cdot ((-\sin t)\hat{i} + (\cos t)\hat{j})$$

$$= -\cos t \sin t + \sin^2 t + \cos^2 t$$

$$= 1 - \cos t \sin t$$

Circulation = 
$$\int_{0}^{2\pi} (1 - \cos t \sin t) dt$$
$$= \left[ t + \frac{1}{2} \cos^{2} t \right]_{0}^{2\pi}$$
$$= 2\pi + \frac{1}{2} - \frac{1}{2}$$
$$= 2\pi$$

### Flux across a Simple Plane Curve

A curve in the *xy*-plane is simple if it does not cross itself. When a curve starts and ends at the same point, it is a *closed curve* or *loop*.



### **Definition**

If *C* is a smooth simple closed curve in the domain of a continuous velocity field in  $\vec{F} = M(x, y)\hat{i} + N(x, y)\hat{j}$  in the plane, and if  $\vec{n}$  is the outward-pointing unit normal vector on *C*, the flux of  $\vec{F}$  across *C* is

Flux of 
$$\vec{F}$$
 across  $C = \int_{C} \vec{F} \cdot \vec{n} \, ds$ 



$$\mathbf{n} = \mathbf{T} \times \mathbf{k}$$

$$= \left(\frac{dx}{ds}\hat{i} + \frac{dy}{ds}\hat{j}\right) \times \hat{k}$$

$$= \frac{dy}{ds}\hat{i} - \frac{dx}{ds}\hat{j}$$

$$\vec{F} \cdot \vec{n} = M(x, y) \frac{dy}{ds} - N(x, y) \frac{dx}{ds}$$

### **Calculating Flux Across a Smooth Closed Plane Curve**

$$(Flux \ of \ \mathbf{F} = M\mathbf{i} + N\mathbf{j} \ across \ C) = \oint_C Mdy - Ndx$$

The integral can be evaluated from any smooth parametrization x = g(t), y = h(t),  $a \le t \le b$ , that traces C counterclockwise exactly once.

### Example

Find the flux of  $\vec{F} = (x - y)\hat{i} + x\hat{j}$  across the circle  $x^2 + y^2 = 1$  in the xy-plane. (The vector field and curve)

#### **Solution**

The parametrization  $\vec{r}(t) = (\cos t)\hat{i} + (\sin t)\hat{j}$ ,  $0 \le t \le 2\pi$  traces the circle counterclockwise exactly once.

$$M = x - y = \cos t - \sin t$$
,  $dy = d(\sin t) = \cos t dt$   
 $N = x = \cos t$ ,  $dx = d(\cos t) = -\sin t dt$ 

$$Flux = \int_{C} Mdy - Ndx$$

$$= \int_{0}^{2\pi} \left(\cos^{2}t - \sin t \cos t + \cos t \sin t\right) dt$$

$$= \int_{0}^{2\pi} \cos^{2}t \ dt$$

$$= \int_{0}^{2\pi} \left(\frac{1}{2} + \frac{1}{2}\cos 2t\right) dt$$

$$= \left[\frac{1}{2}t + \frac{1}{4}\sin 2t\right]_{0}^{2\pi}$$

$$= \pi$$



# **Exercises** Section 4.3 – Conservative Vector Fields

- 1. Find the gradient field of the function  $f(x, y, z) = (x^2 + y^2 + z^2)^{-1/2}$
- **2.** Find the gradient field of the function  $f(x, y, z) = \ln \sqrt{x^2 + y^2 + z^2}$
- 3. Find the gradient field of the function  $f(x, y, z) = e^z \ln(x^2 + y^2)$
- **4.** Find the line integral of  $\int_C (x-y) dx$  where C: x=t, y=2t+1, for  $0 \le t \le 3$
- 5. Find the line integral of  $\int_C (x^2 + y^2) dy$  where C is



**6.** Find the line integral of  $\int_C \sqrt{x+y} \ dx$  where C is



7. Find the work done by the force field  $\vec{F} = xy\hat{i} + y\hat{j} - yz\hat{k}$  over the curve  $\vec{r}(t) = t\hat{i} + t^2\hat{j} + t\hat{k}$ ,  $0 \le t \le 1$ .

- 8. Find the work done by the force field  $\mathbf{F} = 2y\mathbf{i} + 3x\mathbf{j} + (x+y)\mathbf{k}$  over the curve  $\mathbf{r}(t) = (\cos t)\mathbf{i} + (\sin t)\mathbf{j} + \frac{t}{6}\mathbf{k}$ ,  $0 \le t \le 2\pi$
- 9. Find the work done by the force field  $\mathbf{F} = z\mathbf{i} + x\mathbf{j} + y\mathbf{k}$  over the curve  $\mathbf{r}(t) = (\sin t)\mathbf{i} + (\cos t)\mathbf{j} + t\mathbf{k}$ ,  $0 \le t \le 2\pi$ .
- 10. Find the work required to move an object with given force field  $\vec{F} = \langle -y, z, x \rangle$  on the path consisting of the line segments from (0, 0, 0) to (0, 1, 0) followed by the line segment from (0, 1, 0) to (0, 1, 4)
- 11. Find the work required to move an object with given force field  $\vec{F} = \frac{\langle x, y, z \rangle}{\left(x^2 + y^2 + z^2\right)^{3/2}}$  on the path  $r(t) = \langle t^2, 3t^2, -t^2 \rangle$  for  $1 \le t \le 2$
- 12. Evaluate  $\int_C \mathbf{F} \cdot \mathbf{T} ds$  for the vector field  $\mathbf{F} = x^2 \mathbf{i} y \mathbf{j}$  along the curve  $x = y^2$  from (4, 2) to (1, -1)
- 13. Find the circulation and flux of the fields  $F_1 = x\mathbf{i} + y\mathbf{j}$  and  $F_2 = -y\mathbf{i} + x\mathbf{j}$  around and across each of the following curves.
  - a) The circle  $r(t) = (\cos t)i + (\sin t)j$ ,  $0 \le t \le 2\pi$
  - b) The ellipse  $r(t) = (\cos t)i + (4\sin t)j$ ,  $0 \le t \le 2\pi$
- 14. Find the circulation and flux of the fields  $\mathbf{F}_1 = 2x\mathbf{i} 3y\mathbf{j}$  and  $\mathbf{F}_2 = 2x\mathbf{i} + (x y)\mathbf{j}$  across the circle  $\mathbf{r}(t) = (a\cos t)\mathbf{i} + (a\sin t)\mathbf{j}$ ,  $0 \le t \le 2\pi$
- **15.** Find a field  $\mathbf{F} = M(x, y)\mathbf{i} + N(x, y)\mathbf{j}$  in the *xy*-plane with the property that at each point  $(x, y) \neq (0, 0)$ ,  $\mathbf{F}$  points toward the origin and  $|\mathbf{F}|$  is
  - a) The distance from (x, y) to the origin
  - b) Inversely proportional to the distance from (x, y) to the origin. (The field is undefined at (0, 0).)
- 16. A fluid's velocity field is  $\mathbf{F} = -4xy\mathbf{i} + 8y\mathbf{j} + 2\mathbf{k}$ . Find the flow along the curve  $\mathbf{r}(t) = t\mathbf{i} + t^2\mathbf{j} + \mathbf{k}$ ,  $0 \le t \le 2$

- 17. A fluid's velocity field is  $\mathbf{F} = x^2 \mathbf{i} + yz \mathbf{j} + y^2 \mathbf{k}$ . Find the flow along the curve  $\mathbf{r}(t) = 3t\mathbf{j} + 4t\mathbf{k}$ ,  $0 \le t \le 1$
- **18.** Find the circulation of  $\vec{F} = 2x\hat{j} + 2z\hat{j} + 2y\hat{k}$  around the closed path consisting of the following three curves traversed in the direction of increasing t.



$$C_1: \vec{r}(t) = (\cos t)\hat{i} + (\sin t)\hat{j} + t\hat{k}, \quad 0 \le t \le \frac{\pi}{2}$$

$$C_2: \vec{r}(t) = \hat{j} + \frac{\pi}{2}(1-t)\hat{k}, \quad 0 \le t \le 1$$

$$C_3: \vec{r}(t) = t\hat{i} + (1-t)\hat{j}, \quad 0 \le t \le 1$$

19. The field  $F = xy\mathbf{i} + y\mathbf{j} - yz\mathbf{k}$  is the velocity field of a flow in space. Find the flow from (0, 0, 0) to (1, 1, 1) along the curve of intersection of the cylinder  $y = x^2$  and the plane z = x. (*Hint*: Use t = x as the parameter.)



**20.** Find the work required to move an object with given force field  $\vec{F} = \langle -y, z, x \rangle$  on the path consisting of the line segments from (0, 0, 0) to (0, 1, 0) followed by the line segment from (0, 1, 0) to (0, 1, 4)

- 21. Find the work required to move an object with given force field  $\vec{F} = \frac{\langle x, y, z \rangle}{\left(x^2 + y^2 + z^2\right)^{3/2}}$  on the path  $r(t) = \langle t^2, 3t^2, -t^2 \rangle$  for  $1 \le t \le 2$
- **22.** Evaluate  $\int_C (x-y)dx + (x+y)dy$  counterclockwise around the triangle with vertices (0,0), (1,0) and (0,1)
- (23–28) Evaluate the line integral  $\int_C \vec{F} \cdot d\vec{r}$  for the vector fields  $\vec{F}$  and curves C.
- **23.**  $\vec{F} = \nabla \left(x^2 y\right)$ ;  $C: \vec{r}(t) = \left\langle 9 t^2, t \right\rangle$ , for  $0 \le t \le 3$
- **24.**  $\vec{F} = \nabla (xyz)$ ;  $C: \vec{r}(t) = \langle \cos t, \sin t, \frac{t}{\pi} \rangle$ , for  $0 \le t \le \pi$
- **25.**  $\vec{F} = \langle x, -y \rangle$ ; C is the square with vertices  $(\pm 1, \pm 1)$  with counterclockwise orientation.
- **26.**  $\vec{F} = \langle y, z, -x \rangle$ ;  $C: \vec{r}(t) = \langle \cos t, \sin t, 4 \rangle$ , for  $0 \le t \le 2\pi$
- **27.**  $\vec{F} = \langle y^2, x \rangle$ ; where *C* is the arc of the parabola  $x = 4 y^2$  from (-5, -3) to (0, 2)
- **28.**  $\vec{F} = \langle x^2 + y^2, 4x + y^2 \rangle$ ; where *C* is the straight line segment from (6, 3) to (6, 0)
- (29–34) Evaluate the line integral  $\int_C \vec{F} \cdot \vec{T} ds$  for the vector fields  $\vec{F}$  and curves C.
- **29.**  $\vec{F} = \langle x, y \rangle$  on the parabola  $\vec{r}(t) = \langle 4t, t^2 \rangle$   $0 \le t \le 1$
- **30.**  $\vec{F} = \langle -y, x \rangle$  on the semicircle  $\vec{r}(t) = \langle 4\cos t, 4\sin t \rangle$   $0 \le t \le \pi$
- **31.**  $\overrightarrow{F} = \langle y, x \rangle$  on the line segment from (1, 1) to (5, 10)
- **32.**  $\overrightarrow{F} = \langle -y, x \rangle$  on the parabola  $y = x^2$  from (0, 0) to (1, 1)
- 33.  $\vec{F} = \frac{\langle x, y \rangle}{\left(x^2 + y^2\right)^{3/2}}$  on the curve  $\vec{r}(t) = \left\langle t^2, 3t^2 \right\rangle$   $1 \le t \le 2$
- **34.**  $\vec{F} = \frac{\langle x, y \rangle}{x^2 + y^2}$  on the line  $\vec{r}(t) = \langle t, 4t \rangle$   $1 \le t \le 10$

- (35–45) Find the work required to move an object on the given oriented curve
- **35.**  $\vec{F} = \langle y, -x \rangle$  on the path consisting of the line segment from (1, 2) to (0, 0) followed by the line segment from (0, 0) to (0, 4)
- **36.**  $\vec{F} = \langle x, y \rangle$  on the path consisting of the line segment from (-1, 0) to (0, 8) followed by the line segment from (0, 8) to (2, 8)
- **37.**  $\vec{F} = \langle x^2, -xy \rangle$  on runs from (1, 0) to (0, 1) along the unit circle and then from (0, 1) to (0, 0) along the y-axis.
- **38.**  $\overrightarrow{F} = \langle y, x \rangle$  on the parabola  $y = 2x^2$  from (0, 0) to (2, 8)
- **39.**  $\vec{F} = \langle y, -x \rangle$  on the line y = 10 2x from (1, 8) to (3, 4)
- **40.**  $\vec{F} = \langle x, y, z \rangle$  on the tilted ellipse  $\vec{r}(t) = \langle 4\cos t, 4\sin t, 4\cos t \rangle$   $0 \le t \le 2\pi$
- **41.**  $\vec{F} = \langle -y, x, z \rangle$  on the helix  $\vec{r}(t) = \langle 2\cos t, 2\sin t, \frac{t}{2\pi} \rangle$   $0 \le t \le 2\pi$
- **42.**  $\vec{F} = \frac{\langle x, y, z \rangle}{\left(x^2 + y^2 + z^2\right)^{3/2}}$  on the line segment from (1, 1, 1) to (10, 10, 10)
- **43.**  $\vec{F} = \frac{\langle x, y, z \rangle}{\left(x^2 + y^2 + z^2\right)^{3/2}}$  on the path  $\vec{r}(t) = \left\langle t^2, 3t^2, -t^2 \right\rangle$ ,  $1 \le t \le 2$
- **44.**  $\vec{F} = \frac{\langle x, y \rangle}{\left(x^2 + y^2\right)^{3/2}}$  over the plane curve  $\vec{r}(t) = \langle e^t \cos t, e^t \sin t \rangle$  from the point (1, 0) to the point  $\left(e^{2\pi}, 0\right)$  by using the parametrization of the curve to evaluate the work integral
- **45.**  $\vec{F} = \frac{\langle x, y, z \rangle}{x^2 + y^2 + z^2}$  on the line segment from (1, 1, 1) to (8, 4, 2)
- **46.** Let *C* be the circle of radius 2 centered at the origin with counterclockwise orientation
  - a) Give the unit outward vector at any point (x, y) on C.
  - b) Find the normal component of the vector field  $\vec{F} = 2\langle y, -x \rangle$  at any point on C.
  - c) Find the normal component of the vector field  $\vec{F} = \frac{\langle x, y \rangle}{x^2 + y^2}$  at any point on C.

- **47.** Find the flow of the field  $\vec{F} = \nabla \left( x^2 z e^y \right)$ 
  - a) Once around the ellipse C in which the plane x + y + z = 1 intersects the cylinder  $x^2 + z^2 = 25$ , clockwise as viewed from the positive y-axis.
  - b) Along the curved boundary of the helicoid  $\vec{r}(r, \theta) = (r\cos\theta)\hat{i} + (r\sin\theta)\hat{j} + \theta\hat{k}$  from (1, 0, 0) to (1, 0,  $2\pi$ )