NLP Final Project - team17

- NLP Final Project team17
 - Method
 - Preprocess
 - Model
 - Training
 - Ensemble
 - Experiment
 - Future Works
 - Reference
 - Workload Distribution

Method

Preprocess

Augmentation

augmentation的方法為基本的字詞替換(https://neptune.ai/blog/data-augmentation-nlp),如'一個'→'兩個','很'→'非常'...等,總共使用12種替換方法,隨機性的選取包含上述字詞的句子隨機的進行替換,其中需要特別注意的是如果依照上述方法可以產生20000+~40000+新的句子,但由於在無法實際確定該augentation的效果多大,因此保守替換8000+句train dataset中的句子,以避免實際效用較小造成時間浪費、過多相似的資料反而導致augentation效果不佳等風險;id部分使用49800~80000 random pick,以避免與原始資料有相同id重複;accept則維持原句accept確保不會有錯誤評估的風險;同時過程中有考慮使用[mask]、Translate的方法進行augmentation,但由於有論文提到錯誤的使用[mask]、Translation可能會反而下降訓練成效,因此僅使用最為單純的字詞替換作為Augmentation。

Prepare Dataset

為了方便訓練,將原本的資料拆成許多(review, aspect, polarity) 的 pair,當成 dataset 中的一筆訓練 資料。亦即原本 csv 檔案中的一個 row 會產生 18 筆訓練資料。

Balance Dataloader

觀察我們所準備的 dataset 過後,會發現 polarity 欄位是 "not mention" 的比例極高,data 並不平衡,這有可能造成 model 偏好選擇 "not mention" 作為輸出。因此我們選擇做一些預處理,讓 model 看到的資料更平衡。以下是兩種我們嘗試過的方式。 (皆在 batch size 為 4 的倍數的情況下)

- 在一個 batch 中,放同樣多個的 polarity 為 "not mentation", "negative", "neutral" 和 "positive" 的 review
- 在一個 batch 中,放 **對於同一個 aspect** 同樣多個的 polarity 為 "not mentation", "negative", "neutral" 和 "positive" 的 review 實驗發現,實作data balancing後,效果會比較好。

Model

Pretrained Model

○ "hfl/chinese-macbert-base"
因為GPU及記憶體資源限制,採用macbert-large會 造成out of memory,所以改採用macbert-base。

• Model Architecture

我們嘗試以二種不同的方式,來處理這個任務。

○ 第一種方式,參考Mohammed等人 [1] 的做法,input 除了review之外,還加上要預測的aspect,二者皆以 文字token形式,搭配[CLS]、[SEP]、[PAD]串在一起,形成[aspect, review]的pair;model採用 BertForSequenceClassification;output有4個類別,除了3個polarity外,再加上1個,代表此aspect未出 現在review中,形成[not mention, negative, neutral, positive]的結果。

藉由這種設計方式,我們期待aspect做為額外input, 能引導model注意review對應到特定aspect的區域, 同時文字形式的aspect,能將不同aspect之間 coarse-grained的階層關係納入考慮。

- 第二種方式,參考Jiahao等人 [2] 的做法,inpput只有review;model包含2個部分,第1部分採用BertModel,作為feature extractor,第2部分設計18個branch,分別對應18種aspect,每個branch包含attention pooling以及classifier,attention pooling用於引導model注意review對應到特定aspect的區域,classifier的output有4個類別,除了3個polarity外,再加上1個類別,代表此aspect未出現在review中,形成[not mention, negative, neutral, positive]的結果。review先通過feature extractor,得到的hiddenstates,再分別通過18個branch,預測出18個aspect的4種類別;計算predict或loss時,則分別取用對應aspect的output。
- 實驗發現,第二種方式會比第一種方式好 (如Figure 1、Figure2及Table 1所示),推測model設計時,每個環節的學習目標若越明確,效果就會越好。如果要進一步改善,設計第三種方式,將not mention提出去,額外準備aspect detector,跟aspect polarity classifier分開,結果可能會更好,不過由於對此領域不夠熟練,程式實作時,花了較長時間摸索,因此來不及在deadline前,確認第三種方式的效果如何。

Figure 1 二種方式training過程F1-score趨勢比較

Figure 2 第二種方式validation的confusion matrix

Table 1 二種方式training結果比較

Training Result	第一種方式	第二種方式
Accuracy	0.249	0.273
Mean F1-score	0.249	0.271
F1-score not mentioned	0.252	0.313
F1-score not negative	0.249	0.265
F1-score not nertral	0.252	0.269
F1-score not positive	0.244	0.238

Training

• Optimizer Scheduler

- get_cosine_with_hard_restarts_schedule_with _warmup from transformer
- \circ warmup 的 step 數量為 total step 數量的 $\dfrac{1}{10}$

• Gradient Accumulation

- 經過 4 個 step 再更新一次 optimizer
- 由於記憶體的限制,batch size 只有 4 ,因此採用 Gradient Accumulation 的方式,期望能達到大 batch size的效果

Ensemble

使用Ensemble average的方式進行Ensemble,方法為簡單的將複數model的變數取平均,來達到融合model的目的;有許多不同的ensemble方法可以選擇,如Voting、Bagging、Boosting、...etc.;但考慮到由於Ensemble的使用時機為model訓練完後,可能沒有時間調整參數、嘗試不同方法等原因,使用了最為單純、變因較少的Averaging方法作為本次project的Ensemble方法,其中averaging也因前述原因,以最為單純的simple averaging進行實作(將所有model的變數一視同仁,權重皆為1),而非Weighting averaging(每個model有各自的權重占比)。

Experiment

(environment setting, hyperparameters, result, etc.)

Enviroment

google colab with GPU Tesla PCIE P100

Hyperparameters

○ batch_size: 4

 \circ learning_rate: 1e-5

 \circ total epoch number: 20

 \circ epoch number to early stop: 20

 \circ maximum length of sequence: 512

o doc_stride: 45

Result

 \circ task1: 0.42150

 \circ task2: 0.20055

Future Works

由於此次成績不盡理想,所以這裡討論一些可能會提高訓練結果的想法

- 1. 分開訓練 task1 及 task2
 - 本次的想法是將 task1 與 task2 同時 training ,並且 將 "not_mention" 視為一種 label
 - 若先訓練 task1 之後,再將其結果應用在 task2 訓練

上,也許可以縮小 "not_mention" 這個類別對 model 的影響

2. Two Stage Classifier

○ 第一個 stage 的 classifier 先 detect 該 aspect 是否有被提及,若有被提及的話,再由第二個 stage 的 classfier 去分辨是 "positive"、"negative" 還是 "neutral"

3. 單獨訓練 classifier

○ bert 部分有 pretrain 的基礎,如果想要在其上套用自己比較複雜的 classifier 的話,可能必須單獨訓練 classfier

Reference

[1] Arabic aspect based sentiment classification using BERT https://aclanthology.org/W19-6120.pdf (https://aclanthology.org/W19-

6120.pdf)

[2] ASAP: A Chinese Review Dataset Towards Aspect Category Sentiment Analysis and Rating Prediction https://arxiv.org/abs/2103.06605)

Workload Distribution

學號姓名	
p09922002 黃寅	程式實作, report
r10525104 周宇玄	Augmentation & Ensemble, report
b07902067 郭宗頴	Balancing Dataset & Scheduler, Gradient Accumulation, report
b07902045 呂紹齊	眼睛受傷