

深度学习基础知识

第2部分:如何训练神经网络

课程议题

第 1 部分: 深度学习简介

第2部分:神经网络是如何训练的

第3部分:卷积神经网络

第 4 部分:数据增强与模型部署

第5部分: 预训练的模型

第6部分: 更高级的模型结构

议题 - 第 2 部分

- 回顾
- ▶ 一个简单的模型
- ▶ 从神经元到网络
- * 激活函数
- 过拟合
- ▶ 从神经元到分类

练习回顾

刚刚发生了什么?

加载数据并对数据进行了可视化

对数据进行了编辑(重构并进行归一化以供分类)

创建了模型

编译了模型

使用数据训练了模型

数据准备

以数组形式输入

数据准备

目标转换成类别

未训练的模型

更简单的模型

X	у
1	3
2	5

x	у
1	3
2	5

x	у	$\widehat{m{y}}$
1	3	4
2	5	3

X	у	ŷ	err ²
1	3	4	1
2	5	3	4
MSE =		2.5	
RMSE =			1.6

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y - \hat{y})^2$$

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

X	у	ŷ	err ²
1	3	4	1
2	5	3	4
	MSE =		2.5
	RMSE =		1.6


```
data = [(1, 3), (2, 5)]
    m = -1
    b = 5
    def get_rmse(data, m, b):
        """Calculates Mean Square Error"""
        n = len(data)
        squared error = 0
        for x, y in data:
            # Find predicted y
11
12
            v hat = m*x+b
13
            # Square difference between
14
            # prediction and true value
            squared_error += (
15
16
                y - y hat)**2
17
        # Get average squared difference
        mse = squared error / n
18
19
        # Square root for original units
        return mse ** .5
20
```


梯度 哪个方向损失减少最多 λ: 学习率 移动的距离 使用完整数据集进行的一次 训练周期 模型更新 批量 完整数据集的样本 步 对权重参数的一次更新

梯度 哪个方向损失减少最多 λ: 学习率 移动的距离 使用完整数据集进行的一次 训练周期 模型更新 批量 完整数据集的样本 步 对权重参数的一次更新

优化器

- Adam
- Adagrad
- RMSProp
- SGD

构建网络

• 扩充到更多的输入

构建网络

- 扩充到更多的输入
- 能够串联神经元

构建网络

- 扩充到更多的输入
- 能够串联神经元
- 如果所有回归均为线性 回归,输出也将为线性 回归

激活函数

Linear

$$\hat{y} = wx + b$$

- 1 # Multiply each input
 2 # with a weight (w) and
 3 # add intercept (b)
- 4 y_hat = wx+b

ReLU

$$\hat{y} = \begin{cases} wx + b & \text{if } wx + b > 0 \\ 0 & \text{otherwise} \end{cases}$$

- 1 # Only return result
- 2 # if total is positive
- 3 linear = wx+b
- 4 y_hat = linear * (linear > 0)

Sigmoid

$$\hat{y} = \frac{1}{1 + e^{-(wx+b)}}$$

- 1 # Start with line
 2 linear = wx + b
- 3 # Warp to inf to 0
- 4 inf_to_zero = np.exp(-1 * linear)
- 5 # Squish to -1 to 1
- 6 y_hat = 1 / (1 + inf_to_zero)

激活函数

激活函数

3.5 8

-10 -5.5 -1

过拟合

为何不构建一个超大的神经网络呢?

过拟合

哪条趋势线更好?

过拟合

哪条趋势线更好?

训练数据和验证数据对比

避免记忆数据

训练数据

• 模型学习所用的核心数据集

验证数据

新数据,用于验证模型是否已能真正作出理解(可进行泛化)

过拟合

- 模型在训练数据上表现出色,但对于验证数据表现不佳(表明模型只是在记忆数据)
- 理想情况下,模型在这两个数据集上表现出 的准确性和损失应该相似

从回归到分类

MNIST 模型

MNIST 模型

MNIST 模型

将 RMSE 用于概率 ?

将 RMSE 用于概率 ?

多分类交叉熵

多分类交叉熵

p(x) = probability prediction of point x

──若为 False 的损失

多分类交叉熵


```
def cross_entropy(y_hat, y_actual):
    """Infinite error for misplaced confidence."""
    loss = log(y_hat) if y_actual else log(1-y_hat)
    return -1*loss
```


下一个练习

美国手语字母表

附录: 梯度下降

帮助计算机欺骗微积分

从误差中学习

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y - \hat{y})^2 = \frac{1}{n} \sum_{i=1}^{n} (y - (mx + b))^2$$

$$MSE = \frac{1}{2}((3 - (m(1) + b))^2 + (5 - (m(2) + b))^2)$$

$$\frac{\partial MSE}{\partial m} = 5m + 3b - 13$$

$$\frac{\partial MSE}{\partial m} = -7$$

$$\frac{\partial MSE}{\partial b} = 3m + 2b - 8$$

$$\frac{\partial MSE}{\partial b} = -1$$

$$m = -1$$
$$b = 5$$

$$\frac{\partial MSE}{\partial m} = -7 \qquad \frac{\partial MSE}{\partial b} = -3$$

$$\frac{\partial MSE}{\partial m} = -7 \qquad \frac{\partial MSE}{\partial b} = -3$$

$$\mathbf{m} := \mathbf{m} - \lambda \frac{\partial MSE}{\partial m}$$

$$b \coloneqq b - \lambda \frac{\partial MSE}{\partial b}$$

$$\frac{\partial MSE}{\partial m} = -7 \qquad \frac{\partial MSE}{\partial b} = -3$$

 $\lambda = .6$

$$\mathbf{m} := \mathbf{m} - \lambda \; \frac{\partial MSE}{\partial m}$$

$$b \coloneqq b - \lambda \frac{\partial MSE}{\partial b}$$

$$\frac{\partial MSE}{\partial m} = -7 \qquad \frac{\partial MSE}{\partial b} = -3$$

$$\mathbf{m} := \mathbf{m} - \lambda \; \frac{\partial MSE}{\partial m}$$

$$b \coloneqq b - \lambda \frac{\partial MSE}{\partial b}$$

$$\lambda = .1$$

$$m := -1 + 7 \lambda = -0.3$$

$$b := 5 + 3 \lambda = 4.7$$

DEEP LEARNING INSTITUTE

学习更多 DLI 课程,请访问 nvidia.cn/DLI