History of viruses

Louis Pasteur speculated about a pathogen "smaller than bacteria"

Chamberland developed a filter to remove bacteria

Dmitri Ivanovsky (1892) isolated an extract from tobacco plants which could infect

other plants

Wendell Stanley (1935) visualized and crystallized "Tobacco Mosaic Virus"

Source: ICTVdB

History of viruses

Freidrich Loeffler and Paul Frosch (1898): Foot-and-mouth disease in cattle caused by virus

What are viruses?

Infectious, obligate intracellular parasite

Very small, diameter 20 - 300 nm Exceptions, pandoravirus

Genome size 2 kb - 2 Mb

Infectious unit "virion"
Components: Nucleic acid, proteins,
lipids (sometimes)

What are viruses?

Viruses are everywhere (literally)

Biomass of bacteriophages more than the biomass of elephants!

More viruses in 1 liter of ocean water than people on earth

Not all viruses are disease-causing agents

ICTV classification of viruses

Order (-virales)

Family (-viridae)

Subfamily (-virinae)

Genus (-virus)

Species (-virus)

Seven orders - Caudovirales, Herpesvirales, Ligamenvirales, Mononegavirales, Nidovirales, Picornavirales, and Tymovirales

103 families, 22 subfamilies, 455 genera, 2827 species

Virus Types - Broad Classification

1) Host-specificity based

Animal viruses, e.g. poliovirus

Plant viruses, e.g. cucumber mosaic virus

Bacteriophages, e.g. P22

Insect viruses, e.g. Cricket paralysis virus

Sources: VIPERdb

Lander laboratory, TSRI

2) Shape-based

Icosahedral

Prolate

Complex structures

3) Lipid content based

Enveloped

Sourses: CDC

Linda M. Stannard, University of Cape Town

Pearson Education Inc

Non-enveloped

Sources: VIPERdb

4) Genome content based

RNA viruses DNA viruses

Single stranded (positive or negative sense), double stranded, segmented

RNA viruses accumulate more mutations

DNA viruses have larger genomes

Symmetry of an icosahedron

5-fold axis of symmetry

12 5-folds, 20 3-folds and 30 2-folds

Construction of complex viruses

What if we want to build a bigger virus?

How to regularly arrange > 60 subunits??

The basic triangular facet of the icosahedron has to be first enlarged and then subdivided into smaller triangles.

Triangulation dictated by the equation:

$$T=h^2+hk+k^2$$

where T is **the triangulation number**, and h and k are 0 or positive integers

Construction of complex viruses

T=3 (180 subunits)

Herpes Simplex T=16

HK-97 prohead

HK-97 head II T=7

т	No. of subunits (60T)	Example
I	60	Satellite tobacco necrosis virus
3	180	picornavirus
4	240	Sindbis Virus
9	540	Reovirus
16	960	Herpesvirus
25	1500	Adenovirus

Quasi-equivalence in virus structures

Casper and Klug

The Icosahedral Server

Main | Paradigm | Paper Template | Icos. Gallery | Swelling of CCMV

Paper Model Templates

Download the original postscript files

Paper hexagonal template sheet

$$T=1$$
 (h,k) = (1,0)

$$T=7 (h,k) = (2,1) / (h,k) = (1,2)$$

$$T=13 (h,k) = (3,1) / (h,k) = (1,3)$$

$$T=16 (h,k) = (4,0)$$

$$T=19 (h,k) = (3,2) / (h,k) = (2,3)$$

$$T=21 (h,k) = (4,1) / (h,k) = (1,4)$$

$$T=25 (h,k) = (5,0)$$

$$T=27 (h,k) = (3,3)$$

$$T=28 (h,k) = (4,2) / (h,k) = (2,4)$$

$$T=31 (h,k) = (5,1) / (h,k) = (1,5)$$

Overview of infection cycle

Overview of infection cycle

- I. Receptor binding and internalization
- II. Membrane breaching
- III. Uncoating/disassembly
- IV. Replication
- V. Translation
- VI. Assembly
- VII. Egress

Receptor binding and internalization

A receptor is an attachment point on the cell surface

Usually a protein molecule. Exception - sialic acid for Influenza Virus

Some viruses need a receptor and a co-receptor. E.g. HIV needs CD4 and CXCR5

Cellular tropism/ species specificity

Receptor binding allows internalization of virus through endosomal pathway/direct membrane breaching

Hemagglutinin of influenza virus binds to sialic acid

Receptor binding dictates host adaptation

Hemagglutinin (HA) of human flu virus binds to sialic acid attached to galactose with a 2,6 linkage ($SA\alpha2,6GAL$)

Bird flu HA binds to sialic acid attached to galactose with a 2,3 linkage ($SA\alpha 2,3GAL$)

1918 pandemic strain of flu was of avian origin

Contained a mutated HA with a E190 \rightarrow D190 mutation that allowed binding to SA α 2,6GAL

Receptor binding by SARS-CoV-2

S1/S2 subunits cleavage by furin and SARS-CoV-2 genomes penetrate into the host cell

Spike protein contains 2 domains - S1 and S2

Receptor binding domain (RBD) of S1 binds to the Angiotensin converting enzyme (ACE2)

Receptor binding by SARS-CoV-2

Notable features of SARS-CoV-2:

Mutations in receptor-binding region of Spike:

Amino acids from SARS-CoV that bind ACE2: Y442, L472, N479, D480, T487, Y491 Amino acids from SARS-CoV-2 that bind ACE2: L455, F486, Q493, S494, N501, Y505

Introduction of a polybasic cleavage site (RRAR) between S1 and S2
Presence of a proline "bend" allows attachment of glycans
Protection from the immune system
Also present in Influenza Hemaggluttinin

Theories for origin

1. Natural selection in an animal host before zoonotic transfer

Bat virus RaTG13 96% identical to SARS-CoV-2, RBD differs Pangolin coronaviruses contain all 6 key RBD residues of SARS-CoV-2

II. Natural selection in humans following zoonotic transfer

Acquisition of the polybasic cleavage site

Origin and emergence of SARS-CoV-2

Rabi et al., Pathogens, 2020

Membrane breaching

Uncoating/Disassembly

Separation of nucleic acid from structural proteins (capsid proteins, ribonucleoproteins etc)

Trafficking to the site of replication

Replication scheme

Requirements for replication/transcription

Polymerases - DNA dependent DNA polymerase, RNA dependent RNA polymerase, RNA dependent RNA polymerase, DNA dependent RNA polymerase

Other associated enzymes, packaging proteins

Borrowed from the host cell, or carried/coded by the virus

Requirement for host factors higher for viruses with smaller genomes

Replication sites may be cytosol, organelles, nucleus

Suppression of host functions - Influenza polymerase "steals" mRNA caps

Translation of viral proteins

Viruses may or may not utilize host machinery for replication and transcription

Host machinery is always utilized for viral protein synthesis

Viral genome size is limited, translation machinery contains upto ~ 30 factors

Viruses have several mechanisms to promote synthesis of their proteins, and prevent synthesis of host proteins "Host shutoff"

Diverting ribosomes through formation of specific structures in viral RNA Disrupting host mRNA

Virus assembly

Viral proteins and nucleic acid are generated separately, sometimes in separate compartments

Must be brought together, in correct manner, to form infectious particles

One long, helically wound molecule of RNA

2130 molecules of coat protein arranged helically

Complex assembly process

415 copies of gp5

250 copies of gp8

Virus egress

"Budding out" of enveloped viruses

Lipids incorporated from host cell membranes

Non-enveloped viruses

Excess virus load causes membrane rupture

Attachment and entry of bacteriophages

Source: Zhilenkov *et al.*, Virology J, 2006 textbookofbacteriology.net

Plant Viruses

Tomato Bushy Stunt Virus

Tobacco Mosaic Virus

Cucumber Mosaic Virus

Source: www.dpvweb.net, www.apsnet.org/

Entry of Plant Viruses

Modes of "active" entry:

Interaction with plasmodesmata machinery to

increase pore size

Enzymes to destroy plant cell walls

Modes of "passive" entry:

Mechanical injury to breach plant cell walls

Similar injuries due to the actions of arthropods or nematodes

Transfer through fungal parasites

Transmission through infected seed/pollen

Viruses in biomedical applications

Gene therapy: Introduction of functioning genes

Treatment of individuals with genetic disorders (Cystic Fibrosis, SCID)

Treatment of cancer

Viruses being tried: Adenovirus, adeno-associated virus, poliovirus, poxvirus, lentivirus Side-effects, mutagenesis

Viral vaccines:

Prophylactic vaccine, therapeutic vaccine, enhanced killing of cancer cells Viruses being tried: Adenovirus, papillomavirus Side-effects, mutagenesis

Biological pest control: Baculovirus insecticides, bacteriophages