

The 46th International ACM SIGIR Conference on Research and Development in Information Retrieval

Collaborative Residual Metric Learning

Tianjun Wei, Jianghong Ma, Tommy W.S. Chow

July 26, 2023 Taipei

Collaborative Filtering

- Utilize **user** historical **interactions** with **items** to produce recommendations
- Consider the **implicit** feedback (Clicking and Purchasing)
 - User: $u \in U$
 - Item: $i \in I$
 - Interactions: $(u, i) \in T$
- Top-*K* recommendation:
 - Recommend *K* items from the item set *I* that user *u* has not interacted with before.

Interaction Matrix

• $R \in \mathbb{R}^{|U| \times |I|}$

$$R_{ui} = \begin{cases} 1, & (u,i) \in T \\ 0, & Otherwise \end{cases}$$

Background

Metric Learning in Collaborative Filtering

Metric Learning

- Learn a valid distance metric to:
 - Decrease the distance between similar points
 - Increase the distance between dissimilar points
- A valid distance metric satisfies triangle inequality:

$$d(\mathbf{x}_i, \mathbf{x}_j) \leq d(\mathbf{x}_i, \mathbf{x}_k) + d(\mathbf{x}_k, \mathbf{x}_j).$$

Collaborative Metric Learning (CML)

- Consider interacted items for a user as similar points
- Use Euclidean distance as the metric
- Update the latent representations of users and items other than distance metric

After
Margin

Signalbased Models

Generalized Mahalanobis Distance

$$d(x_i, x_j) = \sqrt{(x_i - x_j)^T W(x_i - x_j)}$$

- W must be symmetric positive semi-definite to satisfy triangle inequality
- Generalized Mahalanobis distance is equivalent to Euclidean distance when W = I

Representing User-item Interactions as Signals

- Defines the space with the same number of dimensions as |I|: $P = D_I^{-t}R^T$, $Q = D_I^t$
- Calculate a preference score by weight matrix $\mathbf{C} \in \mathbb{R}^{|I| \times |I|}$: $y_{ui} = \mathbf{p}_u^T \mathbf{C} \mathbf{q}_i$

Different variants by specifying t

• Linear autoencoder (t = 0):

$$\min_{\mathbf{C}} \frac{1}{2} ||\mathbf{R} - \mathbf{R}\mathbf{C}||_{F'}^{2} \qquad s.t.diag(\mathbf{C}) = 0$$

• Graph signal model (t = 0.5):

$$Y = RD_I^{-\frac{1}{2}}(VV^T)D_I^{\frac{1}{2}} \quad (C = VV^T)$$

Incorporate Signal-based Models with ML

Ensuring the PSD property of weight matrix

- Graph filtering model: Always satisfied ($C = VV^T$)
- Linear autoencoder: Almost impossible to satisfy because of the **diagonal zero** constraint, $diag(\mathbf{C}) = 0$

Focus instead on the difference of distances

• Recommendation task focuses on the relative relationship of preference scores (distance)

$$\Delta d^{2} = d^{2}(\boldsymbol{p}_{u}, \boldsymbol{q}_{i}) - d^{2}(\boldsymbol{p}_{u}, \boldsymbol{q}_{j})$$

$$= \boldsymbol{q}_{i}^{T} \boldsymbol{W} \boldsymbol{q}_{j} - \boldsymbol{q}_{j}^{T} \boldsymbol{W} \boldsymbol{q}_{j} - 2 \boldsymbol{p}_{u}^{T} \boldsymbol{W} (\boldsymbol{q}_{i} - \boldsymbol{q}_{j}) + (\boldsymbol{p}_{u}^{T} \boldsymbol{W} \boldsymbol{p}_{u} - \boldsymbol{p}_{u}^{T} \boldsymbol{W} \boldsymbol{p}_{u})$$

$$= \boldsymbol{W}_{ii} (d_{i}^{2t} - 2\boldsymbol{R}_{ui}) - \boldsymbol{W}_{jj} (d_{j}^{2t} - 2\boldsymbol{R}_{uj}) - 2 \boldsymbol{p}_{u}^{T} \boldsymbol{H} (\boldsymbol{q}_{i} - \boldsymbol{q}_{j})$$

where $\mathbf{H} = \mathbf{W} - diag(\mathbf{W})$ is called the *Hollow matrix*.

 y_{ui} in linear autoencoder

- Eliminate redundant terms in the distances
- Separate diagonal and non-diagonal entries

Incorporate Signal-based Models with ML

After separating diagonal and non-diagonal values of W, we have proved the following theorem:

Suppose the *i*-th row sum of absolute value in H is $h_i = \sum_{1 \le i \le n} |H_{ij}|$, for any \boldsymbol{H} , there exists an $\omega = \max_{1 \le i \le n} \frac{h_i}{d_i^{-2t}}$, such that $\boldsymbol{W} = \boldsymbol{H} + \omega \boldsymbol{D}_I^{-2t}$ is PSD.

Then, we can find the relationships between the distances and the preference scores derived by H.

$$\Delta d^2 = W_{ii} \left(d_i^{2t} - 2R_{ui} \right) - W_{jj} \left(d_j^{2t} - 2R_{uj} \right) - 2 \boldsymbol{p}_u^T \boldsymbol{H} (\boldsymbol{q}_i - \boldsymbol{q}_j)$$

$$\frac{1}{2} \Delta d^2 = -\omega (d_i^{-2t} R_{ui} - d_j^{-2t} R_{uj}) - \boldsymbol{p}_u^T \boldsymbol{H} (\boldsymbol{q}_i - \boldsymbol{q}_j)$$

When $R_{ui} = R_{uj} = 0$ (both items are uninteracted)

- $\sim ilde{y}_{ui\,i}$ preference residual
- $\Delta d^2 \cong -\tilde{y}_{uij}$, the distance relationship of uninteracted items is reflected by \tilde{y}_{uij}
- Critical to the model **prediction** process
- II. When $R_{ui} = 1$, $R_{uj} = 0$ (only i is interacted)
 - $\Delta d^2 + \omega d_i^{-2t} \cong -\tilde{y}_{uij} \Rightarrow$ when $y_{ui} = y_{uj}$, $d(p_u, q_i)$ is smaller than $d(p_u, q_j)$ by a positive margin
 - Useful in the model training process

How does t affect the recommendations?

$$\frac{1}{2}\Delta d^2 = -\omega(d_i^{-2t}R_{ui} - d_i^{-2t}R_{uj}) - \boldsymbol{p}_u^T\boldsymbol{H}(\boldsymbol{q}_i - \boldsymbol{q}_j)$$

III. When $R_{ui} = R_{uj} = 1$ (both items are uninteracted) $\Delta d^2 \cong -\tilde{y}_{uij}$, only when t=0 When $t\neq 0$, preference score will introduce bias when representing the distance relationship of interacted items

Normalization strength t

$$y_{ui} = \boldsymbol{p}_u^T (d_i^t \cdot \boldsymbol{c}_i)$$

- Larger t will increase the chance of popular items to be recommended when regularization (i. e. l_2) is acted on ${\it C}$
- Improve the **novelty** of the recommendations of signal-based models by decreasing *C*

Collaborative Residual Metric Learning (CoRML)

Triplet Residual Margin Loss

Triplet Margin Loss:

$$L = \sum_{(u,i^+,i^-)} (d_{ui^+} - d_{ui^-} + \zeta)_+$$

- Replace $d_{ui^+} d_{ui^-}$ with $-\tilde{y}_{ui^+i^-} + \omega d_{i^+}^{-2t}$
- Set ζ to ωd_{i}^{-2t} as an active margin

$$L_{TRM} = \sum_{(u,i^+,i^-)} (-\tilde{y}_{ui^+i^-})_+$$

$$= \sum_{u} \sum_{i^{+}} \alpha_{ui^{+}} y_{ui^{+}} + \sum_{i^{-}} \beta_{ui^{-}} y_{ui^{-}}$$

 α and β are coefficients determined by the ranking of the value of y_{ui} for a user u.

Approximated Ranking Weights

- α and β are dynamically updated during model training
- Use y_{ui} to approximate α and β $\tilde{\alpha}_{ui^+} = \phi_u y_{ui^+} 1, \tilde{\beta}_{ui^-} = \phi_u y_{ui^-}$
- Scaling factor

$$\phi_u = \epsilon \left(\frac{d_u}{\max_u d_u}\right)^{-t_u}$$

- Global scaling: scale y_{ui} + to obtain a negative $\tilde{\alpha}_{ui}$ +
- User-degree scaling: reduce the effects of different number of non-zero entries in p_u of each user

Loss Function

$$L_{CORML} = \sum_{u} \sum_{i} y_{ui} (\phi_{u} y_{ui} - R_{ui}) = tr((\mathbf{Y}^{T} (\mathbf{\Phi} \mathbf{Y} - \mathbf{R})))$$

Hybrid Preference Score

$$Y = R(\lambda D_I^{-t} H D_I^{-t} + (1 - \lambda) D_I^{-\frac{1}{2}} G D_I^{\frac{1}{2}})$$

Extension from linear autoencoder Extension from graph signal model with adjustable t $\mathbf{G} = \begin{pmatrix} \mathbf{V}\mathbf{V}^{\mathrm{T}} - \mathrm{diag}(\mathbf{V}\mathbf{V}^{\mathrm{T}}) \end{pmatrix}_{\cdot}$

Optimization Problem

$$\min_{\mathbf{H}} tr(\mathbf{Y}^{T}(\mathbf{\Phi}\mathbf{Y} - \mathbf{R})),$$
s.t. $diag(\mathbf{H}) = 0, \mathbf{H} \ge 0, \mathbf{H} = \mathbf{H}^{T}$

Optimized through Alternating Directions Method of Multipliers (ADMM)

CoRML

Experiments

Performance Comparison

Dataset

• 4 real-world public datasets

Evaluation Metrics

- NDCG@K
- MRR@*K*

Baselines

- CML models
- Signal-based Models
- GCN models

Dataset	Metric	CML	L-CML	DPCML	SLIM	EASE	RecVAE	GFCF	UltraGCN	SimGCL	CoRML
Pinterest	NDCG@5 NDCG@10 NDCG@20 MRR@5 MRR@10 MRR@20	0.0509 0.0665 0.0897 0.1018 0.1164 0.1261	0.0594 0.0766 0.1021 0.1186 0.1343 0.1444	0.0563 0.0724 0.0965 0.1133 0.1283 0.1381	0.0488 0.0630 0.0841 0.0957 0.1084 0.1171	0.0558 0.0704 0.0921 0.1125 0.1262 0.1353	0.0516 0.0668 0.0895 0.1024 0.1164 0.1258	$\begin{array}{c} \underline{0.0620} \\ \underline{0.0785} \\ \underline{0.1031} \\ \underline{0.1239} \\ \underline{0.1390} \\ \underline{0.1488} \end{array}$	0.0572 0.0729 0.0962 0.1146 0.1292 0.1387	0.0616 0.0783 <u>0.1031</u> 0.1237 <u>0.1390</u> 0.1488	*0.0655 *0.0824 *0.1076 *0.1306 *0.1458 *0.1556
Gowalla	NDCG@5 NDCG@10 NDCG@20 MRR@5 MRR@10 MRR@20	0.0853 0.0953 0.1125 0.1533 0.1682 0.1768	0.0985 0.1093 0.1281 0.1743 0.1899 0.1984	0.0999 0.1087 0.1261 0.1811 0.1957 0.2040	0.1100 0.1156 0.1302 0.1912 0.2043 0.2118	0.1211 0.1268 0.1412 0.2186 0.2323 0.2393	0.0890 0.0978 0.1140 0.1613 0.1752 0.1832	0.1174 0.1257 0.1440 0.2121 0.2269 0.2352	0.1108 0.1181 0.1348 0.2001 0.2144 0.2225	0.1229 0.1295 0.1460 0.2235 0.2377 0.2454	*0.1317 *0.1383 *0.1554 *0.2334 *0.2479 *0.2558
Yelp2018	NDCG@5 NDCG@10 NDCG@20 MRR@5 MRR@10 MRR@20	0.0483 0.0521 0.0629 0.1007 0.1149 0.1241	0.0574 0.0617 0.0742 0.1188 0.1345 0.1443	0.0556 0.0592 0.0709 0.1156 0.1304 0.1399	0.0535 0.0554 0.0644 0.1117 0.1245 0.1327	0.0611 0.0628 0.0722 0.1277 0.1413 0.1496	0.0525 0.0558 0.0663 0.1106 0.1247 0.1336	0.0587 0.0617 0.0731 0.1236 0.1380 0.1472	0.0585 0.0621 0.0737 0.1234 0.1385 0.1478	$\begin{array}{c} \underline{0.0646} \\ \underline{0.0676} \\ \underline{0.0795} \\ \underline{0.1349} \\ \underline{0.1499} \\ \underline{0.1594} \end{array}$	*0.0690 *0.0716 *0.0832 *0.1435 *0.1586 *0.1679
ML-20M	NDCG@5 NDCG@10 NDCG@20 MRR@5 MRR@10 MRR@20	0.2319 0.2326 0.2486 0.3761 0.3932 0.4002	0.2731 0.2689 0.2832 0.4341 0.4494 0.4554	0.2620 0.2588 0.2725 0.4190 0.4347 0.4409	0.2785 0.2710 0.2813 0.4478 0.4621 0.4677	$\begin{array}{c} 0.3025 \\ 0.2934 \\ 0.3036 \\ \underline{0.4829} \\ \underline{0.4963} \\ \underline{0.5014} \end{array}$	$\begin{array}{c} \underline{0.3045} \\ \underline{0.3033} \\ \underline{0.3204} \\ 0.4777 \\ 0.4923 \\ 0.4976 \end{array}$	0.2718 0.2671 0.2799 0.4356 0.4506 0.4566	0.2365 0.2280 0.2369 0.3919 0.4063 0.4124	0.2675 0.2644 0.2794 0.4310 0.4466 0.4527	*0.3189 *0.3103 *0.3212 *0.4967 *0.5098 *0.5149

Detailed Analysis

Mitigating Popularity Bias

Novelty

Measure the popularity of top-K items recommended

$$Nov@K = \frac{1}{|U|K} \sum_{i}^{|U|} \sum_{i}^{K} -\frac{1}{\log_2 |U|} \log_2 \frac{d_i}{|U|}$$

- Smaller *t* increases the novelty of recommendation
- Accuracy and novelty are not just tradeoff

Detailed Analysis

Thank you!

The code is available at GitHub: Joinn99/CoRML

Presenter:

Tianjun Wei

City University of Hong Kong

tjwei2-c@my.cityu.edu.hk

