第8章 聚类

刘家锋

哈尔滨工业大学

8.1 聚类的概念

- 1 8.1 聚类的概念
- 2 8.2 原型聚类
- 3 8.3 密度聚类
- 4 8.4 层次聚类

8.1 聚类的概念

8.1 聚类的概念

00000

无监督学习

- o 训练样本的标记信息是未知的:
- 。 学习的目标是要揭示训练数据的内在性质和规律:

聚类仟条

- o 聚类是无监督学习中研究最多,应用最广的一类任务:
- o 聚类试图将数据集中的样本划分为若干个不相交的子集, 称 为簇(cluster);
- o 每个簇对应一些潜在的概念,而这些概念对聚类算法来说也 是未知的,是在聚类过程中自动形成的:

聚类任务

• 形式化描述

- o 给定样本集 $D = \{\mathbf{x}_1, \dots, \mathbf{x}_m\}$, 均为无标记样本;
- 。 将D划分为k个不相交的簇 $\{C_l|l=1,\cdots,k\}$, 其中:

$$C_{l'} \bigcap_{l' \neq l} C_l = \varnothing, \qquad D = \bigcup_{l=1}^k C_l$$

- o 聚类结果可以表示为: $\lambda_1, \dots, \lambda_m$;
- o $\lambda_j \in \{1, \dots, k\}$, 表示样本 \mathbf{x}_j 的簇标记;

8.1 聚类的概念 ○○●○○

• 如何评价聚类结果的优劣?

- o 外部指标:将聚类结果与参考模型(答案)比较,包括Jaccard系数,FM指数,Rand指数等;
- o 内部指标:直接考察聚类结果,不需要参考模型,包括如DB指数,Dunn指数等;

• 聚类的原则

- o "物以类聚",同一簇的样本尽可能相似,不同簇的样本尽可能不同;
- o "簇内相似度"越大越好, "簇间相似度"越小越好;

• 距离度量

o 满足下列性质的函数dist(·,·)称为距离:

非负性: $dist(\mathbf{x}_i, \mathbf{x}_j) \geq 0$

同一性: $dist(\mathbf{x}_i, \mathbf{x}_j) = 0$, 当且仅当 $\mathbf{x}_i = \mathbf{x}_j$

对称性: $dist(\mathbf{x}_i, \mathbf{x}_j) = dist(\mathbf{x}_j, \mathbf{x}_i)$

直递性: $dist(\mathbf{x}_i, \mathbf{x}_j) \leq dist(\mathbf{x}_i, \mathbf{x}_k) + dist(\mathbf{x}_i, \mathbf{x}_k)$

• 距离与相似度

- o 距离可以用来度量样本之间的相似度;
- o 距离越小,相似度越大; 距离越大,相似度越小;

连续属性距离度量

给定样本有d个连续属性, $\mathbf{x}_i = (x_{i1}, \dots, x_{id})^t$, $\mathbf{x}_j = (x_{j1}, \dots, x_{jd})^t$

闵可夫斯基距离(Minkowski distance)

$$dist_{mk}(\mathbf{x}_i, \mathbf{x}_j) = \left(\sum_{u=1}^d |x_{iu} - x_{ju}|^p\right)^{\frac{1}{p}}$$

欧几里得距离(Euclidean distance), p=2

$$dist_{od}(\mathbf{x}_i, \mathbf{x}_j) = \|\mathbf{x}_i - \mathbf{x}_j\|_2 = \sqrt{\sum_{u=1}^{d} (x_{iu} - x_{ju})^2}$$

曼哈顿距离(Manhattan distance), p=1

$$dist_{man}(\mathbf{x}_i, \mathbf{x}_j) = \|\mathbf{x}_i - \mathbf{x}_j\|_1 = \sum_{u=1}^d |x_{iu} - x_{ju}|$$

8.2 原型聚类

• 基干原型的聚类

- o 假设: 聚类结构能够通过一组原型刻画;
- o 首先随机地初始化一组原型;
- o 然后根据原型划分样本集;
- o 根据样本集的划分,更新原型;
- o 迭代更新原型和划分样本集的过程,直到收敛;
- o 代表算法: k均值算法,学习矢量量化,高斯混合聚类;

k均值算法

• k-means算法的目标

- o 给定聚类样本集 $D = \{\mathbf{x}_1, \cdots, \mathbf{x}_m\};$
- o 将样本集划分为k个簇 $\mathcal{C} = \{C_1, \dots, C_k\};$
- o 聚类的目标是使得,用每个簇的均值 μ_i 代替簇内样本的平方误差最小:

$$\min_{\mathcal{C}} \sum_{i=1}^{k} \sum_{\mathbf{x} \in C_i} \|\mathbf{x} - \boldsymbol{\mu}_i\|_2^2$$

其中,每个簇的均值:

$$\mu_i = \frac{1}{|C_i|} \sum_{\mathbf{x} \in C_i} \mathbf{x}$$

o k-means的优化目标是要使得每个簇内样本的相似度最大;

k均值算法

• k-means算法的过程

- 。 找到优化目标的最优解,是一个NP难问题,需要遍历所有 将m个样本到k个簇的划分;
- o k-means采用贪心算法,寻求一个优化目标的次优解;
- o 给定各个簇的均值 μ_i ,可以很容易地优化平方误差函数:

$$E(\mathcal{C}) = \sum_{i=1}^{k} \sum_{\mathbf{x} \in C_i} \|\mathbf{x} - \boldsymbol{\mu}_i\|_2^2$$

只要将 $\mathbf{x} \in D$ 划分到距离最近的 $\boldsymbol{\mu}_i$ 代表的簇,即可;

o 给定样本集的划分C, 也可以得到最优的 $\{\mu_i\}$ (试证明):

$$\boldsymbol{\mu}_i = \frac{1}{|C_i|} \sum\nolimits_{\mathbf{x} \in C_i} \mathbf{x}$$

Algorithm 1 k均值聚类算法

Input: 数据集 $D = \{\mathbf{x}_1, \dots, \mathbf{x}_m\}$, 聚类数k

Output: 簇划分 $\mathcal{C} = \{C_1, \cdots, C_k\}$

1: MD中随机选择k个样本作为 μ_1, \dots, μ_k ;

2: repeat

 $C_i = \emptyset, \quad i = 1, \cdots, k;$ 3:

for $j=1,\cdots,m$ do 4.

5: 标记样本 \mathbf{x}_i : $\lambda_i = \arg\min_{1 \leq i \leq k} \|\mathbf{x}_i - \boldsymbol{\mu}_i\|_2$

6: 划入相应的簇: $C_{\lambda_i} \leftarrow C_{\lambda_i} \cup \{\mathbf{x}_i\}$

7: end for

8: for $i=1,\cdots,k$ do

更新均值: $\mu_i = \frac{1}{|C_i|} \sum_{\mathbf{x} \in C_i} \mathbf{x}$ 9:

10: end for

11: until 均值向量未改变

无标记西瓜数据集

编号	密度	含糖量	编号	密度	含糖量	编号	密度	含糖量
1	0.697	0.460	11	0.245	0.057	21	0.748	0.232
2	0.774	0.376	12	0.343	0.099	22	0.714	0.346
3	0.634	0.264	13	0.639	0.161	23	0.483	0.312
4	0.608	0.318	14	0.657	0.198	24	0.478	0.437
5	0.556	0.215	15	0.360	0.370	25	0.525	0.369
6	0.403	0.237	16	0.593	0.042	26	0.751	0.489
7	0.481	0.149	17	0.719	0.103	27	0.532	0.472
8	0.437	0.211	18	0.359	0.188	28	0.473	0.376
9	0.666	0.091	19	0.339	0.241	29	0.725	0.445
10	0.243	0.267	20	0.282	0.257	30	0.446	0.459

将"无标记西瓜数据集"聚类为3个簇;

随机选择 $\mathbf{x}_6, \mathbf{x}_{12}, \mathbf{x}_{24}$ 作为初始均值:

$$\boldsymbol{\mu}_1 = (0.403, 0.237)^t, \quad \boldsymbol{\mu}_2 = (0.343, 0.099)^t, \quad \boldsymbol{\mu}_3 = (0.478, 0.437)^t$$

第一轮:

计算 x_1 与均值之间的距离:

$$\|\mathbf{x}_1 - \boldsymbol{\mu}_1\|_2 = 0.369, \quad \|\mathbf{x}_1 - \boldsymbol{\mu}_2\|_2 = 0.506, \quad \|\mathbf{x}_1 - \boldsymbol{\mu}_3\|_2 = 0.220$$

应该将 \mathbf{x}_1 划入簇 C_3 ; 遍历所有样本,可以得到簇划分:

$$C_1 = \{\mathbf{x}_3, \mathbf{x}_5, \mathbf{x}_6, \mathbf{x}_7, \mathbf{x}_8, \mathbf{x}_9, \mathbf{x}_{10}, \mathbf{x}_{13}, \mathbf{x}_{14}, \mathbf{x}_{17}, \mathbf{x}_{18}, \mathbf{x}_{19}, \mathbf{x}_{20}, \mathbf{x}_{23}\}$$

$$C_2 = \{\mathbf{x}_{11}, \mathbf{x}_{12}, \mathbf{x}_{16}\}$$

$$C_3 = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_4, \mathbf{x}_{15}, \mathbf{x}_{21}, \mathbf{x}_{22}, \mathbf{x}_{24}, \mathbf{x}_{25}, \mathbf{x}_{26}, \mathbf{x}_{27}, \mathbf{x}_{28}, \mathbf{x}_{29}, \mathbf{x}_{30}\}$$

重新计算 C_1, C_2, C_3 的均值向量:

$$\boldsymbol{\mu}_1 = (0.493, 0.207)^t, \quad \boldsymbol{\mu}_2 = (0.394, 0.066)^t, \quad \boldsymbol{\mu}_3 = (0.602, 0.396)^t$$

... ...

第五轮:均值计算结果与第四轮相同,得到最终的簇划分。

将下列样本聚类为2个簇:

编号	属性1	属性2	编号	属性1	属性2
\mathbf{x}_1	0	0	\mathbf{x}_{11}	8	6
\mathbf{x}_2	1	0	\mathbf{x}_{12}	7	7
\mathbf{x}_3	0	1	\mathbf{x}_{13}	8	7
\mathbf{x}_4	1	1	\mathbf{x}_{14}	9	7
\mathbf{x}_5	2	1	\mathbf{x}_{15}	7	8
\mathbf{x}_6	1	2	\mathbf{x}_{16}	8	8
\mathbf{x}_7	2	2	\mathbf{x}_{17}	9	8
\mathbf{x}_8	3	2	\mathbf{x}_{18}	8	9
\mathbf{x}_9	6	6	\mathbf{x}_{19}	9	9
\mathbf{x}_{10}	7	6			

k均值算法

• k均值算法的特点

- o k均值算法的收敛性是由保证的;
- o k均值是一种贪心算法,得到的是优化目标的次优解;
- o 初始均值的选择对聚类结果的影响很大;
- o 算法初始化时,也可以先随机地将样本集划分为*k*个簇,然 后计算初始均值;
- o 实际使用中,一般需要多次初始化,在多个聚类结果中选择 最优的;

8.1 聚类的概念

• k均值与GMM

- o k均值聚类可以看作是包含k个高斯的特殊GMM学习过程;
 - 假设高斯的组合系数相同: $\alpha_1 = \cdots = \alpha_k = 1/k$
 - 假设每个高斯的协方差矩阵均为单位阵: $\Sigma_1 = \cdots = \Sigma_k = I$
 - 需要估计每个高斯的均值向量: μ_1, \cdots, μ_k
- o 每个簇的样本服从特殊GMM中的某个高斯分布;

• 高斯混合聚类

- o 如果假设每个簇的样本服从一般的高斯分布,并且每个簇的 先验概率是不同的;
- \circ 可以用数据集D来估计GMM的参数;
- o 然后依据每个样本由各个高斯产生的概率来划分簇;

Algorithm 2 高斯混合聚类算法

Input: 数据集 $D = \{\mathbf{x}_1, \cdots, \mathbf{x}_m\}$,聚类数k

Output: 簇划分 $\mathcal{C} = \{C_1, \cdots, C_k\}$

1: 用数据集D及EM算法学习GMM的参数: $\{(\alpha_i, \mu_i, \Sigma_i)\}_{i=1,\dots,k}$

2: $C_i = \emptyset, \quad i = 1, \dots, k;$

3: for $j=1,\cdots,m$ do

4: 计算样本 \mathbf{x}_j 由各个高斯生成的后验概率:

$$\gamma_{ji} = P(z_j = i | \mathbf{x}_j) = \frac{\alpha_i \cdot p(\mathbf{x}_j | \boldsymbol{\mu}_i, \Sigma_i)}{\sum_{l=1}^k \alpha_l \cdot p(\mathbf{x}_j | \boldsymbol{\mu}_l, \Sigma_l)}$$

5: 标记 \mathbf{x}_j ,并划入相应的簇:

$$\lambda_j = \arg\max_{1 \le i \le k} \gamma_{ji}, \quad C_{\lambda_j} \leftarrow C_{\lambda_j} \cup \{\mathbf{x}_j\}$$

6: end for

采用高斯混合聚类,将无标记西瓜数据集划分为3个簇:

8.3 密度聚类

• 基于密度的聚类

- o 假设: 聚类结构能通过样本分布的紧密程度确定;
- o 从样本密度的角度来考察样本之间的可连接性,基于可连接 样本不断扩展聚类簇;
- o 代表算法: DBSCAN, OPTICS, DENCLUE

定义名词

• 点的密度

- o 给定数据集 $D = \{\mathbf{x}_1, \dots, \mathbf{x}_m\}$,算法参数 $(\epsilon, MinPts)$;
- ο ϵ -邻域: 与 $\mathbf{x}_j \in D$ 距离小于 ϵ 的样本集合

$$N_{\epsilon}(\mathbf{x}_j) = {\mathbf{x}_i \in D | dist(\mathbf{x}_i, \mathbf{x}_j) \le \epsilon}$$

- o 核心点: 如果 $|N_{\epsilon}(\mathbf{x}_j)| \geq MinPts$, 则 \mathbf{x}_j 是核心点;
- o 边界点: 如果 \mathbf{x}_i 不是核心点,但在某个核心点的 ϵ -邻域内,则 \mathbf{x}_i 为边界点;
- o 噪声点: 既不是核心点,又不是边界点的样本是噪声点;

定义名词

• 点的密度

- o 核心点对应高密度区域的样本;边界点对应高密度区域边缘的样本;噪声点对应高密度区域之外的样本;
- o 例如: MinPts = 5,下图中A是核心点,B是边界点,C是噪声点;

• 密度直达

- ο 若 \mathbf{x}_i 位于核心点 \mathbf{x}_i 的 ϵ -邻域内,则称 \mathbf{x}_i 由 \mathbf{x}_i 密度直达;
- o 核心点 ϵ -邻域内的点可以由核心点密度直达,包括边界点和 邻域内的其它核心点;
- o 噪声点不可能有核心点密度直达;

• 密度可达

- o 如果存在样本序列 $\mathbf{p}_1, \mathbf{p}_2, \cdots, \mathbf{p}_n$,其中 $\mathbf{p}_1 = \mathbf{x}_i, \mathbf{p}_n = \mathbf{x}_j$,并且 \mathbf{p}_{i+1} 由 \mathbf{p}_i 密度直达,则称 \mathbf{x}_i 由 \mathbf{x}_i 密度可达;
- o \mathbf{x}_{j} 可以是边界点或核心点,其它的都是核心点;

• 密度相连

- o 若存在 \mathbf{x}_k 使得 \mathbf{x}_i 和 \mathbf{x}_j 均由 \mathbf{x}_k 密度可达,称 \mathbf{x}_i 与 \mathbf{x}_j 密度相连;
- o \mathbf{x}_k 必须是核心点, \mathbf{x}_i 和 \mathbf{x}_j 可以是核心点,也可以是边界点;
- o 例如下图中MinPts = 3, \mathbf{x}_1 是核心点, \mathbf{x}_1 可密度直达 \mathbf{x}_2 , 密度可达 \mathbf{x}_3 ;
- o x_3 和 x_4 之间是密度相连的;

• 簇的定义

- 。 簇是由密度可达关系导出的最大的密度相连样本集, 簇 $C \subset D$ 满足:
 - a. 连接性: $\mathbf{x}_i \in C, \mathbf{x}_j \in C \Rightarrow \mathbf{x}_i = \mathbf{x}_j$ 密度相连
 - b. 最大性: $\mathbf{x}_i \in C, \mathbf{x}_j \oplus \mathbf{x}_i$ 密度可达 \Rightarrow $\mathbf{x}_j \in C$

聚类过程

- 1. 从D中任意选择一个数据对象点 \mathbf{p} ;
- 2. 如果**p**是核心点,则找出所有从**p**密度可达的数据对象点,形成一个新的簇;
- 3. 如果p不是核心点,则处理下一个数据对象;
- 4. 重复,直到所数据都被处理;剩余的数据对象为噪声点;

DBSCAN算法

8.1 聚类的概念

Algorithm 3 DBSCAN算法

Input: 数据集 $D = \{\mathbf{x}_1, \dots, \mathbf{x}_m\}$,参数 $(\epsilon, MinPts)$

Output: 簇划分 $\mathcal{C} = \{C_1, \cdots, C_k\}$

1: 根据参数(ϵ , MinPts)形成数据集D的核心点集合 Ω ;

2: 初始化聚类数k = 1,未访问数据集 $\Gamma = D$:

3: while $\Omega \neq \emptyset$ do

随机选择 $\mathbf{o} \in \Omega$, $C_k = \emptyset$, 队列 $Q = \langle \mathbf{o} \rangle$; 4:

while $Q \neq \emptyset$ do 5:

6: 取出Q中的首个样本 \mathbf{q} , $C_k \leftarrow C_k \cup (N_{\epsilon}(\mathbf{q}) \cap \Gamma)$;

7: $将\Omega \cap N_{\epsilon}(\mathbf{q})$ 添加到队列Q的尾部, $\Omega \leftarrow \Omega \setminus N_{\epsilon}(\mathbf{q})$

8: end while

 $\Gamma \leftarrow \Gamma \setminus C_k, \ k \leftarrow k+1;$ 9:

10: end while

DBSCAN算法

优点

- o 可以对任意形状的稠密数据集进行聚类;
 - o 无需设定聚类数k;
 - o 对数据集中的异常点不敏感,也可以用于发现异常点;
 - o 聚类结果稳定, 受初始值影响小;

缺点

- 1. 受参数 $(\epsilon, MinPts)$ 的影响大,特别是当数据集中存在不同密度的簇时,很难选择一组适合的参数;
- 2. 数据集大时,样本的 ϵ -近邻计算量大;

使用DBSCAN算法聚类下列数据: $(\epsilon = 3, MinPts = 3)$

编号	属性1	属性2	编号	属性1	属性2
\mathbf{x}_1	1	2	\mathbf{x}_8	7	9
\mathbf{x}_2	2	1	\mathbf{x}_9	9	5
\mathbf{x}_3	2	4	\mathbf{x}_{10}	1	12
\mathbf{x}_4	4	3	\mathbf{x}_{11}	3	12
\mathbf{x}_5	5	8	\mathbf{x}_{12}	5	12
\mathbf{x}_6	6	7	\mathbf{x}_{13}	3	3
\mathbf{x}_7	6	9			

Step 1: 扫描x₁

计算 \mathbf{x}_1 的 ϵ -邻域:

$$N_{\epsilon}(\mathbf{x}_1) = {\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_{13}} \quad |N_{\epsilon}(\mathbf{x}_1)| = 4 > MinPts$$

 x_1 是核心点,建立一个新簇:

$$C_1 = N_{\epsilon}(\mathbf{x}_1) = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_{13}\}$$

簇 C_1 中 \mathbf{x}_2 是核心点, $N_{\epsilon}(\mathbf{x}_2) = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_{13}\}$, \mathbf{x}_4 可达,加入 C_1 :

$$C_1 = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_{13}\}$$

簇 C_1 中 \mathbf{x}_3 是核心点, $N_{\epsilon}(\mathbf{x}_3) = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_{13}\}$,已在 C_1 中; 簇 C_1 中 \mathbf{x}_{13} 是核心点, $N_{\epsilon}(\mathbf{x}_{13}) = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_{13}\}$,已在 C_1 中; 簇 C_1 中 \mathbf{x}_4 是核心点, $N_{\epsilon}(\mathbf{x}_4) = \{\mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_{13}\}$,已在 C_1 中;

得到簇 $C_1 = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_{13}\}$

Step 2: 扫描x₅

计算 \mathbf{x}_5 的 ϵ -邻域:

$$N_{\epsilon}(\mathbf{x}_5) = {\mathbf{x}_5, \mathbf{x}_6, \mathbf{x}_7, \mathbf{x}_8} \quad |N_{\epsilon}(\mathbf{x}_5)| = 4 > MinPts$$

 x_5 是核心点,建立一个新簇:

$$C_2 = N_{\epsilon}(\mathbf{x}_5) = \{\mathbf{x}_5, \mathbf{x}_6, \mathbf{x}_7, \mathbf{x}_8\}$$

 $\mathbf{x}_6, \mathbf{x}_7, \mathbf{x}_8$ 都是核心点,邻域均为 $\{\mathbf{x}_5, \mathbf{x}_6, \mathbf{x}_7, \mathbf{x}_8\}$,已在簇 C_2 中;

Step 3: 扫描**x**₉

计算 \mathbf{x}_9 的 ϵ -邻域: $N_{\epsilon}(\mathbf{x}_9) = {\mathbf{x}_9}$, 非核心点;

Step 4: 扫描**x**10

计算 \mathbf{x}_{10} 的 ϵ -邻域: $N_{\epsilon}(\mathbf{x}_{10}) = \{\mathbf{x}_{10}, \mathbf{x}_{11}\}$, 非核心点;

Step 5: 扫描x₁₁

计算 \mathbf{x}_{11} 的 ϵ -邻域:

$$N_{\epsilon}(\mathbf{x}_{11}) = {\mathbf{x}_{10}, \mathbf{x}_{11}, \mathbf{x}_{12}} \quad |N_{\epsilon}(\mathbf{x}_{11})| = 3 = MinPts$$

 \mathbf{x}_{11} 是核心点,建立一个新簇:

$$C_3 = N_{\epsilon}(\mathbf{x}_{11}) = {\mathbf{x}_{10}, \mathbf{x}_{11}, \mathbf{x}_{12}}$$

 \mathbf{x}_{10} 处理过, \mathbf{x}_{12} 的邻域 $N_{\epsilon}(\mathbf{x}_{12}) = \{\mathbf{x}_{11}, \mathbf{x}_{12}\}$,非核心点,得到簇 C_3 ;

Step 6:

 \mathbf{x}_{12} 和 \mathbf{x}_{13} 均已处理过,算法结束;

输出簇划分:

$$C_1 = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_{13}\},$$
 $C_2 = \{\mathbf{x}_5, \mathbf{x}_6, \mathbf{x}_7, \mathbf{x}_8\},$ $C_3 = \{\mathbf{x}_{10}, \mathbf{x}_{11}, \mathbf{x}_{12}\},$ \mathbf{x}_9 是噪声

8.4 层次聚类

Hierarchical clustering

- o 层次聚类在不同层次对数据划分,形成树形的聚类结构;
- o 数据集的划分可以采用"自底向上"的聚合策略,也可以采用"自顶向下"的分拆策略;

AGNES(AGglomerative NESting)

- o AGNES算法采用的是"自底向上"的聚合策略:
- o 初始时,将数据集中的每一个样本作为一个簇;
- o 每一轮迭代,选择距离最近的两个簇合并;
- o 直到达到预设的聚类簇个数为止;

AGNES算法

Algorithm 4 AGNES算法

Input: 数据集 $D = \{\mathbf{x}_1, \dots, \mathbf{x}_m\}$, 簇距离度量函数d,聚类簇数k

Output: 簇划分 $\mathcal{C} = \{C_1, \cdots, C_k\}$

1: 初始化簇: $C_j = \{\mathbf{x}_j\}, j = 1, \dots, m;$ 簇个数: q = m;

2: 计算簇距离矩阵: $M(i,j) = M(j,i) = d(C_i, C_j), i, j = 1, \dots, m$

3: while q > k do

4: 找出距离最近的两个聚类簇 C_{i*} 和 C_{j*} ;

5: 合并 C_{i*} 和 C_{j*} : $C_{i*} \leftarrow C_{i*} \cup C_{j*}$

6: 删除M的第j*行和列,重编号j*之后的聚类簇;

7: 重新计算M的第 i^* 行和列:

$$M(i^*, j) = M(j, i^*) = d(C_{i^*}, C_j), \quad j = 1, \dots, q - 1$$

8: $q \leftarrow q - 1$

9: end while

簇的距离度量函数

- 最小距离(single-linkage)
 - o 以两个簇中距离最近的两个样本的距离作为簇之间的距离:

$$d_{min}(C_i, C_j) = \min_{\mathbf{x} \in C_i, \mathbf{z} \in C_j} dist(\mathbf{x}, \mathbf{z})$$

- 最大距离(complet-linkage)
 - 。 以两个簇中距离最远的两个样本的距离作为簇之间的距离:

$$d_{min}(C_i, C_j) = \max_{\mathbf{x} \in C_i, \mathbf{z} \in C_j} dist(\mathbf{x}, \mathbf{z})$$

- 平均距离(average-linkage)
 - o 以两个簇之间样本对距离的平均值作为簇之间的距离:

$$d_{min}(C_i, C_j) = \frac{1}{|C_i||C_j|} \sum_{\mathbf{x} \in C_i} \sum_{\mathbf{z} \in C_j} dist(\mathbf{x}, \mathbf{z})$$

层次聚类

例8.1数据集采用AGNES算法聚类的过程,最大距离度量,聚类数设置k=7;

