Stochastické optimalizačné metódy (2-PMS-129) Úlohy na skúšku

Radoslav Harman, KAMŠ, FMFI UK 19. novembra 2022

Poznámky ku skúške

Každý z Vás si vyberie jednu úlohu z prvej pätice a jednu úlohu z druhej pätice (pozri zadania uvedené nižšie). Jednu z daných úloh je možné nahradiť Vašou vlastnou optimalizačnou úlohou (niekedy majú študenti vlastný zaujímavý optimalizačný problém), pokiaľ Vám ju schválim. Za riešenie úlohy budem považovať optimalizačný/é program/y. Používať môžete R, MATLAB, Python, Julia, C++, ale pokiaľ nepoužijete R, prineste si vlastný notebook s funkčnou inštaláciou zvoleného prostredia. Vaše programy budete demonštrovať počas skúšky. Pokiaľ budete chcieť použiť môj počítač na demonštrovanie programov pre R, pošlite mi ich pred skúškou na radoslav.harman@fmph.uniba.sk. Použiť môžete akúkoľvek metódu, čiže aj takú, ktorú sme na prednáške nespomínali, samozrejme pokiaľ je vhodná a veľmi dobre jej rozumiete. Môžete tiež akýmkoľvek spôsobom využívať kódy programov, ktoré sme používali na prednáške. Úlohy riešte samostatne. Programový kód zapisujte prehľadne, napríklad v štýle tidyverse. Vypracovaný program si dôkladne prekontrolujte na viacerých čo najodlišnejších vstupoch. Využite pochopenie problému, teoretické vedomosti a nadhľad na overenie správnosti výstupu. Ku kontrole som Vám pri každej úlohe pripísal nejaké poznámky (viď Test).

Organizačné informácie ku skúške nájdete na stránke k predmetu: http://www.iam.fmph.uniba.sk/ospm/Harman/teaching.htm.

Pri hodnotení programov budem zohľadňovať nasledovné kritériá: vhodnosť použitej metódy, správnosť, úplnosť a efektívnosť riešenia, presnosť výsledkov (0b-25b), kvalita prezentácie, presnosť vyjadrovania v súlade so zaužívanou terminológiou, schopnosť reagovať na otázky a schopnosť modifikovať program podľa požiadaviek (0b-15b), originalita prístupu, tvorivé nápady týkajúce sa možností vylepšenia a rozšírenia riešenia (0b-10b)¹.

Hodnotenie: $F_x[0,40)$, E[40,50), D[50,60), C[60,70), B[70,80), $A[80,\infty)$.

Poznámka: Ak v zadaniach nájdete nejaké chyby (alebo iné námety na vylepšenie), oznámte mi to prosím; prvému z Vás, ktorý ma chybu upozorní, udelím prémiové body.

¹Keďže hodnotím aj originalitu vzhľadom k už prezentovaným riešeniam ostatných študentov, môžu mať výhodu tí študenti, ktorí sa prihlásia na skorší termín a tiež tí študenti, ktorí si zvolia pre ostatných menej atraktívne úlohy.

1 Turbína

Na obvod kruhovej turbíny chceme do n evidištantných pozícií umiestniť lopatky so známymi hmotnosťami m_1, \ldots, m_n , a to tak, aby ich ťažisko bolo čo najbližšie stredu turbíny. Napíšte dva programy implementujúce dve principálne rôzne optimalizačné metódy;² vstupom každého z týchto programov bude vektor hmotností lopatiek a výstupom bude poradie, v ktorom je vhodné tieto lopatky umiestniť. Môžete využiť to, že táto úloha má blízko úlohe travelling salesman problem.

Test: Pre n = 10 a $m_i = i$, i = 1, ..., 10, je možné umiestniť lopatky do evidištantných pozícií na obvode turbíny tak, že ich ťažisko je v úplne presnom strede kruhu turbíny, napríklad v poradí 6, 3, 2, 7, 10, 5, 4, 1, 8, 9. Váš program by mal byť schopný nachádzať pre tento prípad optimálne riešenie v rozmedzí maximálne niekoľkých sekúnd.

2 Drony

Roj M dronov sa nachádza vo formácii určenej pozíciami $(x_1^b, y_1^b), \ldots, (x_M^b, y_M^b)$. (Pre jednoduchosť uvažujeme len rovinnú situáciu, nie priestorovú.) Cieľom je, aby sa tento roj preskupil do novej formácie, ktorá pozostáva z pozícií $\{(x_1^f, y_1^f), \ldots, (x_M^f, y_M^f)\}$. Každý dron letí rovnako rýchlo. Tiež predpokladáme, že si drony navzájom neprekážajú, čiže všetky drony budú letieť k svojej určenej pozícii po priamke. Napíšte program, ktorého vstupom bude postupnosť $B = (x_1^b, y_1^b), \ldots, (x_M^b, y_M^b)$ a množina pozícií $F = \{(x_1^f, y_1^f), \ldots, (x_M^f, y_M^f)\}$ požadovanej formácie a výstupom bude priradenie, ktorý z dronov má letieť ku ktorému bodu z F. Chceme pritom minimalizovať L_p -normu $(\sum_{i=1}^M t_i^p)^{1/p}$, kde t_1, \ldots, t_M sú časy letov dronov do dosiahnutia ich určenej pozície v F a $p \in [1, \infty)$ je ďalší vstupný parameter. Táto úloha má blízko k úlohám označovaným ako assignment problems.

Test: Pre $M \leq 10$ by mal Váš program na bežnom počítači nachádzať (takmer) optimálne riešenia do niekoľkých sekúnd. Vyskúšajte viacero vstupov, ale aj také, v ktorých je optimálne riešenie "evidentné". Výsledky sa dajú pekne zobraziť (ako množina šípok určujúcich trasy dronov z východzích pozícií do cieľových pozícií).

3 Batoh

Do batohu s nosnosťou M kilogramov chceme povyberať predmety tak, aby sme maximalizovali ich celkovú cenu. Vyberať môžeme z n predmetov so známymi hmotnosťami m_1, \ldots, m_n kilogramov a známymi cenami c_1, \ldots, c_n . Napíšte dva programy implementujúce dve principálne rôzne optimalizačné metódy; vstupom každého z týchto programov bude vektor hmot-

 $^{^2}$ Maximálne jeden z týchto programov môže používať už hotovú optimalizačnú procedúru, ktorú ste nepísali Vy.

 $^{^3}$ Všimnite si, že ak p=1, tak minimalizujeme celkovú preletenú trasu, čiže cca celkovú spotrebu energie a pre $p\to\infty$ minimalizujeme čas, za ktorý roj nadobudne F. Iné hodnoty parametra p môžu reprezentovať kompromis medzi "ekonomickosťou" a "rýchlosťou" dosiahnutia F.

⁴Maximálne jeden z týchto programov môže používať už hotovú optimalizačnú procedúru, ktorú ste nepísali Vy.

ností všetkých predmetov, ktoré sú k dispozícii, vektor ich cien, nosnosť batoha a výstupom bude zoznam (podmnožina) predmetov, ktoré je vhodné vybrať. Táto úloha sa v angličtine nazýva 0-1 knapsack problem. Berte na vedomie, že hmotnosti aj ceny môžu byť necelé čísla.

Test: Pre $n \leq 20$ by mal Váš program na bežnom počítači nachádzať optimálne, alebo takmer optimálne riešenia do niekoľkých sekúnd. Úlohy na testovanie by mali byť rozmanité, ale majte na pamäti, že ťažšie, a teda zaujímavejšie prípady tejto úlohy sú také, v ktorých sú ceny približne úmerné hmotnostiam. (Pre celočíselné vstupy môžete program otestovať v prostredí R napríklad pomocou funkcie knapsack z knižnice adagio.)

4 Vrtuľníky

V dvoch zadaných bodoch (x^A, y^A) a (x^B, y^B) v rovine máme k dispozícii dva vojenské vrtuľníky A, resp. B. Cieľom je, aby A a B ako tandem zlikvidovali n cieľov v bodoch so známymi pozíciami $(x_1, y_1), \ldots, (x_n, y_n)$ a vrátili sa do východzej pozície. (Na zlikvidovanie cieľa v istej pozícii sa musí vrtuľník do tejto pozície dostať.) Napíšte optimalizačný program, ktorého vstupom budú súradnice stanovíšť $(x^A, y^A), (x^B, y^B)$ a pozície cieľov $(x_1, y_1), \ldots, (x_n, y_n)$. Výstupom programu bude zoznam cieľov určených pre vrtuľník A (usporiadaný podľa poradia likvidácie príslušných cieľov vrtuľníkom A) a zoznam cieľov určených pre vrtuľník B (usporiadaný taktiež podľa poradia likvidácie príslušných cieľov vrtuľníkom B). Výstupný plán pre vrtuľníky by mal byť čo najefektívnejší v tom zmysle, že celková trasa preletená vrtuľníkmi by mala byť minimálna možná.

Test: Túto úlohu nemám otestovanú; ak si ju vyberiete, idete do neznámeho terénu. Taktiež neviem o tom, že by toto zovšeobecnenie problému obchodného cestujúceho malo svoj názov. Odhadom by ale mal byť Váš program schopný spoľahlivo počítať optimálne trasy pre niekoľko desiatok cieľov.

5 Korelácia

Máme výberovú korelačnú maticu M náhodných premenných. Premenné, ktoré majú vysokú koreláciu, považujeme za redundantné, preto sme sa rozhodli postupovať nasledovne: Z daných M premenných vybrieme len m premenných (m < M), a to tak, aby maximálna absolútna hodnota korelácie medzi akokukoľvek dvojicou vybraných premenných bola čo najmenšia. Čiže hľadáme takú m-prvkovú podmnožinu A množiny všetkých premenných, aby sme dosiahli minimálnu hodnotu účelovej funkcie

$$\max_{i,j\in A,\,i\neq j}|r(X_i,X_j)|,$$

kde $r(X_i, X_j)$ je korelačný koeficient *i*-tej a *j*-tej náhodnej premennej.

⁵Táto úloha (ako približne polovica zadaní úloh v tomto pdf-ku) je výsledkom mojej vlastnej fantázie, druhá polovica sú známe problémy. Aj pri úlohách, ktoré som vymyslel ja, je však pravdepodobné, že už taký istý, alebo podobný problém niekto niekde riešil.

Test programu: Funkčnosť programu si môžete otestovať napríklad na korelačnej matici veľkosti 4096×4096 , získanej z dátového súboru olivetti_X.csv. Tieto dáta reprezentujú hodnoty úrovní šedej pre 400 fotografií tvárí veľkosti 64×64 pixlov. Zvoľte m v rádoch desiatok, maximálne stoviek, vypočítajte (v zmysle zadania úlohy) optimálny výber m premenných a zobrazte príslušné indexy v rámci obrázku rozmerov 64×64 . Zobrazené dvojice bodov by nemali byť príliš blízko vedľa seba, pretože blízke pixle zodpovedajú silne korelovaným premenným.

6 Štvoruholník

Uvažujme konvexný štvoruholník ABCD. Napíšte programy implementujúce dve rôzne metódy, ktorých vstupom sú súradnice bodov A, B, C, D a výstupom sú také súradnice bodu E vo vnútri štvoruholníka ABCD, aby plochy trojuholníkov ABE, BCE, CDE, DAE boli "čo najpodobnejšie". Rozumné kritérium podobnosti plôch všetkých štyroch trojuhoníkov zvoľte samostatne, určite však tak, aby optimálne riešenie bolo v bode E, pre ktorý sú všetky štyri plochy rovnaké, pokiaľ taký bod E existuje. Ak sa Vám toto zadanie bude zdať ľahké, môžete sa pokúsiť riešiť analogickú úlohu pre všeobecný konvexný n-uholník. Tento problém je trochu príbuzný skupine problémov označovaných pojmom $fair\ division\ problem$.

Test: Program musí nachádzať očividné správne riešenie pre jednoduché štvoruholníky, napríklad pre kosodĺžnik, a to na bežnom počítači v priebehu maximálne niekoľkých sekúnd.

7 Cesty

Máme n miest v rovine, ktoré reprezentujeme bodmi so súradnicami $(x_1, y_1), \ldots, (x_n, y_n)$. Napíšte program, ktorého vstupom budú tieto súradnice miest a výstupom bude mapa najkratšej cestnej komunikácie, ktorá spája každé mesto s každým. Na výpočet najlacnejšej euklidovskej kostry (angl. minimum spanning tree) spájajúcej $m \geq n$ uzlových bodov môžete použiť už existujúci program napísaný pre Vaše prostredie. Napríklad pre prostredie $\mathbb R$ môžete použiť funkciu mst z knižnice ape. Pomôcka: Tento problém je známy pod názvom "problém Steinerovho stromu" (angl. Steiner tree problem).

Test: Pre n=4 a $(x_1,y_1)=(0,0)$, $(x_2,y_2)=(0,1)$, $(x_3,y_3)=(1,1)$, $(x_4,y_4)=(1,0)$ je najkratšia cestná komunikácia spájajúca všetky štyri body zobrazená na druhom obrázku na stránke http://en.wikipedia.org/wiki/Steiner_tree_problem. Celková dĺžka prepojení je v tomto prípade $1+\sqrt{3}$. Váš program by mal byť schopný na bežnom počítači nachádzať toto optimálne riešenie v rozmedzí maximálne niekoľkých sekúnd.

8 Kaviareň

Máme obdĺžnikovú kaviareň rozmerov $L_x \times L_y$ metrov, do ktorej chceme umiestniť n okrúhlych stolov s polomerom r. Napíšte program, ktorého vstupom bude L_x, L_y, r, n a výstupom bude

 $^{^6}$ Maximálne jeden z týchto programov môže používať už hotovú optimalizačnú procedúru, ktorú ste nepísali Vy.

zoznam súradníc stredov stolov, tak, aby vzdialenosť dvoch najbližších stolov bola maximálna možná. Pomôcka: Táto úloha je veľmi príbuzná úlohe, ktorá je známa pod anglickým názvom circle packing problem.

Test: Výsledky programu je možné otestovať pomocou hodnôt (a obrázkov) uvedených na stránkach http://en.wikipedia.org/wiki/Circle_packing_in_a_square. Pre $n \leq 4$ by Váš program mal byť schopný na bežnom počítači nachádzať optimálne riešenia v rozmedzí maximálne niekoľkých sekúnd. Výborný výsledok je, ak program nájde do minúty optimálne rozloženie stolov pre štvorec a n=8 (a dostatočne malé r).

9 Kružnice

Napíšte dva programy implementujúce dve principálne rôzne optimalizačné metódy na riešenie nasledovného problému. Vstupom programu sú tri body v rovine (x_i^C, y_i^C) , i = 1, 2, 3 a tri kladné čísla r_1, r_2, r_3 . Výstupom sú tri body $(x_i^*, y_i^*), i = 1, 2, 3$, pričom pre každé i leží bod (x_i^*, y_i^*) na kružnici⁸ so stredom v (x_i^C, y_i^C) a polomerom r_i , avšak tak, aby sa minimalizoval obvod trojuholníka s vrcholmi $(x_i^*, y_i^*), i = 1, 2, 3.$

Test: Ide o výrazne nekonvexný problém. Existuje však veľa špeciálnych situácií, kde je riešenie geometricky jasné. Pokúste sa vymyslieť niekoľko takých prípadov a otestovať, či ich Vaše programy nachádzajú. Ak by Vás úloha zaujala, môžete sa pokúsiť ju zovšeobecniť na viacej kružníc; môže ísť o relatívne ťažký mnohorozmerný benchmark pre optimalizačné algoritmy. Výsledok (aj priebežné riešenia) sa dajú pekne zakresliť do obrázka.

10 exGauss

Napíšte dva programy¹⁰ využívajúce dve principálne rôzne optimalizačné metódy na riešenie nasledovného problému. Vstupom je realizácia x_1,\dots,x_n jednorozmerného náhodného výberu. Výstupom je odhad metódou maximálnej vierohodnosti pre parametre μ, σ^2, λ takzvaného "exponenciálne modifikovaného gaussovského rozdelenia", pozri https://en.wikipedia.org/ wiki/Exponentially_modified_Gaussian_distribution. 11

Test: Bolo by pekné nájsť reálne dáta, ktoré sa dajú dobre fitovať týmto rozdelením, avšak na otestovanie Vašich procedúr je ideálna simulačná metóda: Rozdelenie exGauss totiž zodpovedá súčtu normálneho a exponenciálneho rozdelenia, takže si z tohto rozdelenia veľmi ľahko nagenerujete umelú sadu dát (s parametrami μ, σ^2, λ , ktoré si zadáte, pričom tieto pramatere by mal Váš program približne lokalizovať len z nasimulovaných dát.) Výsledok sa dá pekne zakresliť do obrázka, napríklad ako hustota určená odhadnutými parametrami preložená cez histogram dát.

⁷Ide vlastne o ešte stále aktuálny covidový problém :)

⁸Pozor, nie v kruhu, ale na kružnici.

⁹Zaujímavé je ale, že limitný prípad, čiže hľadanie troch bodov A, B, C na priamkach a, b, c, aby bol minimálny obvod trojuholníka ABC, je konvexná úloha.

¹⁰Maximálne jeden z týchto programov môže používať už hotovú optimalizačnú procedúru, ktorú ste nepísali Vy. $^{11}{\rm V \ddot{s}imnite}$ si, že funkcia erfc sa dá počítať pomocou distribučnej funkcie rozdelenia N(0,1).