	ECC – Eletrônica para a ciências da	
UNIVERSIDADE DO ESTADO DE SANTA CATARINA	computação	
	Laboratório 3 – Circuitos	
	equivalentes de Thévenin e de	
	Norton	
Professor: Dr. Eng. Anelize Z. salvi	2022/1	
Estudantes:		
Anna Paula Meneghelli de Oliveira		
Débora Lawall Langner		

Equivalente de Thévenin e Corrente de Norton

Nesta experiência iremos determinar a equivalente de Thévenin de um circuito e determinar a corrente de Norton.

Parte teórica:

1. Determinar algebricamente o circuito equivalente de Thévenin para a parte hachurada do circuito.

2. No item 1 da parte teórica você determinou a equivalente de Thévenin para um R genérico. Na experiência do Tinkercad $R=3k\Omega$, calcule a equivalente para essa resistência.

3. Calcular, utilizando a equivalente de Thévenin do item 2, a corrente no resistor de 560Ω .

4. Para $R=3k\Omega$ determine algebricamente a I_{sc} , corrente de curto-circuito entre "c" e "d".

Atividades no Tinkercad:

O código da turma no Tinkercad é ULNLEN9CYAVB.

Vá ao laboratório 3, tem-se quatro exercícios, dois obrigatórios e dois opcionais. Apenas os obrigatórios devem ser entregues no laboratório, os opcionais são para estudo individual para a prova e não devem ser entregues.

1 - Thévenin - Obrigatório

5. Meça a corrente no resistor de 560Ω , compare com a corrente calculada no item 3. **Apresente a imagem dessa medição.**

A corrente medida é a mesma que a calculada no item 3:

- 6. Retire o resistor $R = 560\Omega$.
- 7. Como voltímetro em DC, meça a tensão E_{TH} em aberto para o circuito restante (entre "c" e "d", ou seja, os pontos 14 e 18 na protoboard). **Apresente a imagem dessa medição.**

8. Retire a fonte de tensão e entre os terminais "a" e "b" coloque um curto-circuito ("Jumper"). Meça a resistência de entre os pontos "c" e "d" R_{TH} . Apresente a imagem dessa medição.

O circuito equivalente de Thévenin será:

1.1 Thévenin/Norton – Obrigatório

- 9. Retire o resistor $R = 560\Omega$.
- 10. Como amperímetro em DC, meça a corrente de curto-circuito I_{sc} circuito restante (entre "c" e "d", ou seja, os pontos 14 e 18 na protoboard). Essa corrente é a fonte de corrente do circuito equivalente de Norton. **Apresente a imagem dessa medição.**

11. Determine $R_{TH}=\frac{E_{TH}}{I_{sc}}$ utilizando E_{TH} da experiência 1 e I_{sc} da experiência 1.1 e compare o resultado assim obtido com aquele medido na experiência 1. Quais as vantagens e desvantagens de cada método?

Rth =
$$6/0,004 = 1,5k\Omega$$

O resultado foi o mesmo para os dois métodos usados. Em questão de vantagens e desvantagens, o método do equivalente de Thévenin torna mais fácil o cálculo algébrico, já o método da corrente de Norton facilita as medidas experimentais, já que a configuração utilizada para a medida da corrente de curto é a mesma utilizada para a tensão em aberto.

Parte experimental

MATERIAIS UTILIZADOS

- Fonte de tensão de 12V da bancada de testes
- Resistores: Dois resistores de iguais valores e um resistor de 560Ω .
- Multímetro (Voltímetro, Amperímetro e ohmímetro).
- Protoboard da bancada de testes.

Tabela 1: Resistores utilizados no experimento

	R_1	$R_2 = R_1$	$R_3 = 560\Omega$
Valor nominal	1k Ω	1k Ω	560 Ω
Valor Medido	987 Ω	991 Ω	549 Ω

- 11 Monte o circuito como na figura 1, utilizando as resistências adequadas.
- 12 Retire o resistor $R = 560\Omega$.
- 13 Como voltímetro em DC, meça a tensão E_{TH} em aberto para o circuito restante (entre "c" e "d", ou seja, os pontos 14 e 18 na protoboard).
- 14 Como amperímetro em DC, meça a corrente de curto-circuito I_{sc} circuito restante (entre "c" e "d", ou seja, os pontos 14 e 18 na protoboard). Essa corrente é a fonte de corrente do circuito equivalente de Norton.
- 15 Retire a fonte de tensão e entre os terminais "a" e "b" coloque um curto-circuito ("Jumper"). Meça a resistência de entre os pontos "c" e "d" R_{TH} .
- 16 Apresente foto da montagem do circuito.

Tabela 2: Medições realizadas

	E_{TH}	I_{SC}	R_{TH}
Valor calculado	6,125 V	12,32	497
anteriormente			
Valor Medido	6,11 V	12,16 mA	495k Ω

Obs.: Os cálculos dos valores foram feitos com os valores medidos de resistência e de tensão. A tensão medida da fonte foi de 12,25V.S