6.1 Types of linear operators

Slides: Video 6.1.1 Bilinear expansion of operators

Text reference: Quantum Mechanics for Scientists and Engineers

Section 4.6

We know that we can expand functions in a basis set

as in
$$f(x) = \sum_{n} c_n \psi_n(x)$$
 or $|f(x)\rangle = \sum_{n} c_n |\psi_n(x)\rangle$

What is the equivalent expansion for an operator?

We can deduce this from our matrix representation

Consider an arbitrary function f, written as the ket $|f\rangle$

from which we can calculate a function g written as the ket $\left|g\right>$

by acting with a specific operator \hat{A}

$$|g\rangle = \hat{A}|f\rangle$$

We expand g and f on the basis set ψ_i

$$|g\rangle = \sum_{i} d_{i} |\psi_{i}\rangle \qquad |f\rangle = \sum_{i} c_{j} |\psi_{j}\rangle$$

 $\left|g\right> = \sum_{i} d_{i} \left|\psi_{i}\right> \qquad \left|f\right> = \sum_{j} c_{j} \left|\psi_{j}\right>$ From our matrix representation of $\left|g\right> = \hat{A} \left|f\right>$

we know that
$$d_i = \sum_i A_{ij} c_j$$

and, by definition of the expansion coefficient we know that $c_i = \langle \psi_i | f \rangle$

so
$$d_i = \sum_j A_{ij} \langle \psi_j | f \rangle$$

Substituting
$$d_i = \sum_j A_{ij} \langle \psi_j | f \rangle$$
 back into $|g\rangle = \sum_i d_i |\psi_i\rangle$ gives $|g\rangle = \sum_{i,j} A_{ij} \langle \psi_j | f \rangle |\psi_i\rangle$

Remember that $\langle \psi_j | f \rangle \equiv c_j$ is simply a number so we can move it within the multiplicative expression

Hence we have
$$|g\rangle = \sum_{i,j} A_{ij} |\psi_i\rangle \langle \psi_j| f \rangle = \left[\sum_{i,j} A_{ij} |\psi_i\rangle \langle \psi_j|\right] |f\rangle$$

But $|g\rangle = \hat{A}|f\rangle$ and $|g\rangle$ and $|f\rangle$ are arbitrary, so $\hat{A} \equiv \sum_{i,j} A_{ij} |\psi_i\rangle \langle \psi_j|$

This form

$$\hat{A} \equiv \sum_{i,j} A_{ij} \left| \psi_i \right\rangle \left\langle \psi_j \right|$$

is referred to as

a "bilinear expansion" of the operator \hat{A} on the basis $\left|\psi_{i}\right>$

and is analogous to the linear expansion of a vector on a basis

Any linear operator that operates within the space can be written this way

Though the Dirac notation is more general and elegant

for functions of a simple variable where

$$g(x) = \int \hat{A}f(x_1) dx_1$$

we can analogously write the bilinear expansion in the form

$$\hat{A} \equiv \sum_{i,j} A_{ij} \psi_i(x) \psi_j^*(x_1)$$

Outer product

An expression of the form

$$\hat{A} \equiv \sum_{i,j} A_{ij} \left| \psi_i \right\rangle \left\langle \psi_j \right|$$

contains an *outer* product of two vectors

An inner product expression of the form $\langle g|f\rangle$ results in a single, complex number

An outer product expression of the form $|g\rangle\langle f|$ generates a matrix

Outer product

$$|g\rangle\langle f| = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \\ \vdots \end{bmatrix} \begin{bmatrix} c_1^* & c_2^* & c_3^* & \cdots \end{bmatrix} = \begin{bmatrix} d_1c_1^* & d_1c_2^* & d_1c_3^* & \cdots \\ d_2c_1^* & d_2c_2^* & d_2c_3^* & \cdots \\ d_3c_1^* & d_3c_2^* & d_3c_3^* & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

The specific summation
$$\hat{A} \equiv \sum_{i,j} A_{ij} |\psi_i\rangle \langle \psi_j|$$

is actually, then, a sum of matrices

In the matrix $|\psi_i\rangle\langle\psi_j|$

the element in the *i*th row and the *j*th column is 1 All other elements are zero

