MATH 571: MATHEMATICAL LOGIC HOMEWORK SET 13, DUE AT 8:50 ON MONDAY, DEC. 7

BRING YOUR SOLUTIONS TO CLASS, OR SLIDE THEM UNDER THE DOOR OF VAN VLECK 403

- 1. Let $R \subseteq \mathbb{N}$ be the set of numbers a such that a is the Gödel number of a sentence. Argue that R is decidable, and hence representable in A_E .
- 2. This long problem is worth twice as many points as the other problems. Let $f: \mathbb{N}^k \to \mathbb{N}$ be a function. We say that f is definable in \mathcal{N} if and only if there is a formula ρ with free variables x_1, \ldots, x_{k+1} such that, for all natural numbers a_1, \ldots, a_{k+1} , we have that $\mathcal{N} \models \rho(a_1, \ldots, a_{k+1})$ if and only if $f(a_1, \ldots, a_k) = a_{k+1}$. For this problem, you are **not** allowed to use the theorem which says that decidable relations are definable in \mathcal{N} .
 - a. Show that a function is definable in $\mathcal N$ if and only if its graph

$$\{(a_1,\ldots,a_{k+1})\in\mathcal{N}^{k+1}\mid f(a_1,\ldots,a_k)=a_{k+1}\}$$

is definable in \mathcal{N} .

b. Show that, for every natural number n, the constant function

$$C_n(a_1,\ldots,a_k)=n$$

is definable in \mathcal{N} . Also, show that the successor function

$$S(a_1) = a_1 + 1$$

is definable in \mathcal{N} , and that for all natural numbers k and $i \leq k$ the projection function

$$P_i^k(x_1,\ldots,x_k) = x_i$$

is definable in \mathcal{N} .

c. Show that, if $f: \mathbb{N}^k \to \mathbb{N}$ and $g_1, \dots, g_k : \mathbb{N}^m \to \mathbb{N}$ are definable in \mathcal{N} , then the composition $f \circ (g_1, \dots, g_k)$, where

$$(f \circ (g_1, \dots, g_k))(a_1, \dots, a_m) = f(g_1(a_1, \dots, a_m), \dots, g_k(a_1, \dots, a_m))$$

is definable in \mathcal{N} .

d. Assume that $g: \mathbb{N}^k \to \mathbb{N}$ and $h: \mathbb{N}^{k+2} \to \mathbb{N}$ are definable in \mathcal{N} . Let f be the function given recursively by

$$f(0, a_2, \dots, a_{k+1}) = g(a_2, \dots, a_{k+1})$$

$$f(a_1+1,a_2,\ldots,a_{k+1})=h(f(a_1,\ldots,a_{k+1}),a_1,a_2,\ldots,a_{k+1})$$

(we say that f is defined from g and h by primitive recursion). Show that f is definable in \mathcal{N} . For this, you may use without proof that there is a formula β with three free variables x_1, x_2, x_3 , which satisfies the property that for every finite sequence (b_0, \ldots, b_s) of natural numbers there exists a single natural number d such that for all $0 \le i \le s$ and all u we have that $\mathcal{N} \models \beta[\![d, i, u]\!]$ if and only if $b_i = u$ (we can build such a β using number-theoretic arguments).

1

(Hint: This is the hardest part of this problem. Write down a formula which says "there is a number d such that

- for all u, if $\beta \llbracket d, 0, u \rrbracket$ holds, then $g(a_2, \ldots, a_{k+1}) = u$, and
- for all $0 \le i \le a_1 1$, for all v, w, if $\beta[\![d, i, v]\!]$ and $\beta[\![d, i + 1, w]\!]$ hold, then $h(v, i, a_2, \dots, a_{k+1}) = w$, and
- for all z, if $\beta[\![d, a_1, z]\!]$ holds, then $a_{k+2} = z$.")
- e. Let $g: \mathbb{N}^{k+1} \to \mathbb{N}$ be definable in \mathcal{N} . Also assume that, for all natural numbers a_2, \ldots, a_{k+1} , there exists a number a_1 such that $g(a_1, \ldots, a_{k+1}) = 0$. Let $f(a_2, \ldots, a_{k+1})$ be the least number a_1 such that $g(a_1, \ldots, a_{k+1}) = 0$ (we say that f is defined by *minimization*. Show that f is definable in \mathcal{N} .

Remark: the functions which can be formed using b-e are called the μ -recursive functions. We have just shown that the μ -recursive functions are definable in \mathcal{N} . It is known that the computable functions are exactly the same as the μ -recursive functions, and hence this gives an alternative proof of the fact that all computable functions are definable in \mathcal{N} .

3. A theory T (in a language with 0 and S) is called ω -complete if and only if for any formula φ and variable x, if $\varphi[x:=S^n(0)]$ belongs to T for every natural number n, then $\forall x \varphi$ belongs to T. Show that if T is a consistent ω -complete theory in the language of $\mathcal N$ and if $A_E \subseteq T$, then $T = \operatorname{Th}(\mathcal N)$. (Suggestion: We need to show that, for every sentence σ , we have that $\sigma \in T$ if and only if $\mathcal N \models \sigma$. Write σ in prenex normal form, and use induction on the number of quantifiers.)