

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
22. Februar 2001 (22.02.2001)

PCT

(10) Internationale Veröffentlichungsnummer
WO 01/12815 A1

(51) Internationale Patentklassifikation:
C12N 15/41.
C07K 14/085, A61K 48/00

Gomaringen (DE). MEYER-FICCA, Mirella [DE/DE]; Goethestrasse 1, D-72810 Gomaringen (DE). KANDOLF, Reinhard [DE/DE]; Untere Dornäcker 49, D-72379 Hechingen (DE).

(21) Internationales Aktenzeichen: PCT/EP00/07768

(22) Internationales Anmeldedatum:
10. August 2000 (10.08.2000)

(74) Anwälte: OTTEN, Hajo usw.; Witte, Weller & Partner, Postfach 10 54 62, D-70047 Stuttgart (DE).

(25) Einreichungssprache: Deutsch

(81) Bestimmungsstaaten (national): AU, CA, JP, US.

(26) Veröffentlichungssprache: Deutsch

(84) Bestimmungsstaaten (regional): europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(30) Angaben zur Priorität:
199 39 095.9 18. August 1999 (18.08.1999) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): EBERHARD-KARLS-UNIVERSITÄT TÜBINGEN UNIVERSITÄTSKLINIKUM [DE/DE]; Geissweg 3, D-72076 Tübingen (DE).

Veröffentlicht:

- Mit internationalem Recherchenbericht.
- Vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen.

(72) Erfinder; und
(75) Erfinder/Anmelder (nur für US): KÜPPER, Jan-Heiner [DE/DE]; Bachstrasse 11, D-72127 Kusterdingen (DE). MEYER, Ralph [DE/DE]; Goethestrasse 1, D-72810

Zur Erklärung der Zweibuchstaben-Codes, und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: COXSACKIE VIRUS-DERIVED VECTOR SYSTEM FOR GENE TRANSFER

(54) Bezeichnung: VON COXSACKIEVIREN ABGELEITETES VEKTORSYSTEM FÜR GENTRANSFER

WO 01/12815 A1

(57) Abstract: The invention relates to a recombinant RNA molecule that can at least partially be translated in a target cell and that contains a non-infectious Coxsackie virus group B virus genome, preferably of the B3 serotype, and at least one foreign gene that induces a desired function in the target cell, for example within the context of a genetic therapy. The RNA molecule can be encoded by a vector plasmid and/or can be packaged as a genome into a virion by which the target cell can then be infected. The invention further relates to methods for producing the RNA molecule, the virions and the vector plasmid, and to corresponding kits.

(57) Zusammenfassung: Ein rekombinantes, in einer Zielzelle zumindest teilweise translatierbares RNA-Molekül weist ein nicht-infektiöses Virusgenom vom Coxsackievirus der Gruppe B, vorzugsweise des Serotyps B3, und zumindest ein Fremdgien auf, das in der Zielzelle eine gewünschte Funktion, z.B. im Rahmen einer Gentherapie, hervorruft. Das RNA-Molekül kann durch ein Vektorplasmid kodiert werden und/oder als Genom in ein Virion verpackt sein, durch das die Zielzelle infizierbar ist. Ferner werden Verfahren beschrieben, um das RNA-Molekül, die Virionen und das Vektorplasmid herzustellen. Entsprechende Kits sind ebenfalls angegeben.

Rec'd PCT/PTO 19 FEB 2002

Von Coxsackieviren abgeleitetes Vektorsystem
für Gentransfer

Die vorliegende Erfindung beschäftigt sich mit einem von Coxsackieviren, insbesondere von Coxsackieviren der Gruppe B (im folgenden: CVB) abgeleiteten Vektorsystemen für Gentransfer, vor allem für Herzmuskel-spezifischen Gentransfer.

Unter Gentransfer wird im Rahmen der vorliegenden Erfindung das Einbringen von hier allgemein mit "Fremdgen" bezeichneter DNA oder RNA in Zielzellen verstanden, in denen die DNA und/oder RNA zusätzliche Funktionen bereitstellt und/oder defekte Funktionen der Zielzelle komplementiert und/oder kompensiert, ohne daß das Fremdgen in das Genom der Zielzelle integriert wird.

Besonderes Augenmerk richtet die vorliegende Erfindung auf die Diagnose, Behandlung und Prävention von kardialen Erkrankungen, die insbesondere in den Industrienationen eine immer größere Bedeutung erlangen. Nachdem bereits verschiedene Gene für kardiale Erkrankungen identifiziert wurden und es allgemein erwartet wird, daß eine Vielzahl von pathologischen Genen, die Herzkrankungen auslösen können, in den nächsten Jahren noch identifiziert werden, ist die Entwicklung von Herzmuskel-spezifischen Gentransfersystemen zur selektiven Modulation der endogenen Genaktivität kardialer Myozyten für die zukünftige Behandlung einer Vielzahl von angeborenen und erworbenen Herzmuskelerkrankungen von großer klinischer Bedeutung. Ideale Vektorsysteme für die kontrollierte Modulation der endogenen Genaktivitäten kardialer Myozyten stehen jedoch bisher nicht zur Verfügung.

Für die Transfektion von Zielzellen des kardiovaskulären Systems wurden zwar bereits verschiedene Techniken beschrieben, diese weisen jedoch alle spezifische Nachteile auf. In prä-klinischen Studien zur somatischen Gentherapie kardiovaskulärer Erkrankungen wurden bislang insbesondere replikationsdefekte rekombinante Adenoviren angesetzt, mit denen eine hinreichende Transfektionseffizienz - nur in vitro - erreicht wird, (Barr et al., Gene Therapy 1, 1994, 51). Im Gegensatz zu rekombinanten Adenoviren ist die Applikation von retroviralen Konstrukten (Nabel EG et al., Science 249, 1990, 1285); sowie von Lipid/DNA/Komplexen (Nabel EG et al., Science 244, 1989, 1342), durch die niedrige Transfektionseffizienz des Gentransfers limitiert. Trotz der Vorteile des Adenovirus-vermittelten Gentransfers bezüglich der hohen Genexpression liegen die Nachteile dieses Verfahrens in der aus der Literatur bekannten Komple-

mentierung replikationsinaktiver Konstrukte, der Multiorganthropie von Adenoviren sowie der möglichen Induktion einer T-Zell-vermittelten Immunantwort.

Insbesondere für den Gentransfer am Herzen weisen die bekannten Lösungen jedoch eine ganze Reihe von Nachteilen auf.

So haben Adenovirus-Vektoren zwar unbestreitbare Vorteile, sie sind jedoch mit dem grundsätzlichen Problem der zu geringen Passage der Virionen durch die Endothelbarriere bei Infusion oder koronarer Perfusion verbunden und weisen ferner das bekannte Problem der Immunogenität auf. Aus diesen Gründen sind Adenovirus-Vektoren für den Gentransfer in das Herz nicht optimal.

Auch bei Retrovirus-Vektoren ist die Gentransferrate in das Herz und damit die Effizienz ähnlich wie bei Adenoviren aller Wahrscheinlichkeit nach unbefriedigend, da das Herz nicht als natürliches Zielorgan einer derartigen Infektion dient. Der größte Nachteil von Retrovieren als Vektoren ist jedoch in der Möglichkeit zu sehen, daß eine Insertionsmutagenese auftritt, was mit der Gefahr der Erzeugung von Krankheiten wie z.B. Krebs verbunden ist.

Demgegenüber ist das Adeno-assoziierte Virus (AAV) als Vektor für die Herzmuskel-spezifische Gentherapie einsetzbar, da es auch ruhende Zellen infizieren kann. Nachteilig bei AAV-Vektoren ist jedoch die geringe Verpackungsdichte von maximal ca. 4,7 kB, so daß wichtige Fremdgene ausgeschlossen bzw. Kombinationen mehrerer Fremdgene nicht möglich sind. Ein weiterer Nachteil ist in einer möglichen Integration zu sehen, die in

vivo im Gegensatz zur in vitro Situation zufällig erfolgt und hierdurch pathologische Effekte auslösen kann.

Die insoweit beschriebenen Vektorsysteme sind weder spezifisch für den Herzmuskel noch erlauben sie eine therapeutisch hinreichende Effizienz. Keines dieser Vektorsysteme erlaubt darüber hinaus eine zytoplasmatische Replikation des Vektor-Backbones. Allen Vektorsystemen gemeinsam ist die Tatsache, daß das zu übertragende Fremdgen von einer DNA aus exprimiert wird, so daß die Gefahr einer stabilen Integration in das Genom der Zielzelle und einer Mutagenese besteht.

Als Alternative beschreiben Felgner et al., PNAS, Band 84, Seiten 7413-7417, 1987 eine Lipofektion genannte Transfektion von DNA in Zellkulturzellen, bei der eine Liposomenformulierung verwendet wird, um rekombinante DNA in Zellen einzuschleusen und dort zu exprimieren. Da die Lipofektion in bezug auf Sicherheit viralen Vektorsystemen überlegen ist, wird zunehmend versucht, diese Technik auch für die Gentherapie von Stoffwechsel- oder Tumorerkrankungen einzusetzen. Die Effizienz ist jedoch bei den meisten Anwendungen gering, insbesondere bei Primärkulturen oder in vivo-Applikationen sind die bekannten Liposomen-Systeme bisher nicht gut geeignet.

Einen weiteren Ansatz beschreiben Kern et al., in "Coxsackievirus-verstärkter endosomolytischer Gentransfer in kontraktile Kardiomyozyten", Verh. Dtsch. Ges. Path. Band 81, Seite 611, 1997. Ausgehend von der Erkenntnis, daß das Coxsackievirus einen bisher unverstandenen Tropismus in das Herz aufweist, setzen sie bei der Lipofektion durch UV-Strahlung replikationsinkompetente CVB3-Partikel für den Gentransfer in Kardio-

myozyten ein. Bei CVB3 handelt es sich um ein Picornavirus mit einem einzelsträngigen RNA-Genom positiver Polarität und einer Genomgröße von nur 7,4 kb. Zum Vergleich, Adenoviren haben eine Genomgröße von 48 kb.

Kandolf und Hofsneider, PNAS, Band 82, Seiten 4818/4822, 1985, beschreiben eine CVB3-Variante mit ausgeprägtem Tropismus für das Herz. Die vollständige Nukleotidsequenz der cDNA dieser infektiösen CBV3-Variante ist beschrieben bei Klump et al., Journal of Virology, 1990, Seiten 1573-1783. Es wird berichtet, daß das cDNA-abgeleitete Virus denselben Tropismus und dieselbe Plaque-Morphologie aufweist wie der Wildtyp.

Ein weiterer, jedoch nicht Herz-spezifischer Ansatz wurde für den Poliovirus-Typ-1-Stamm Sabin beschrieben. Die vollständige Kapsidregion (P1) des Poliovirus wurde gegen ein Fremdgen, hier ein HIV-Gen, ausgetauscht. Eine Transfektion des rekombinierten Poliovirus-Genoms in Zellen und eine gleichzeitige Infektion dieser Zellen mit einem rekombinanten Vakziniavirus, das die deletierte P1-Region in trans zur Verfügung stellt, führte zur Erzeugung rekombinanter, infektiöser Poliovirus-Partikel. Eine Infektion lediglich mit dem rekombinanten Poliovirus-Genom führte zu der Expression des Fremdgenes; Porter, J. Virol. 69, 1995, 1548 und Porter et al., J. Virol. 70, 1996, 2643.

Abgesehen von der Tatsache, daß das von Porter beschriebene Vektorsystem nicht Herz-spezifisch ist, weist es wie das AAV den Nachteil auf, daß nur kurze Sequenzen, hier 1,5 kB, als Fremdgen eingesetzt werden können. Ferner beschreiben Porter et al., die Tatsache, daß Polioviren starke Veränderungen in der

Physiologie der infizierten Zellen hervorrufen und daß parenteral applizierte, rekombinante Genome immunogen sind.

Vor diesem Hintergrund ist ein auf dem Poliovirus basierendes Vektorsystem nicht nur für Herz-spezifischen Gentransfer ungeeignet, es weist auch allgemein Nachteile und Risiken auf, die den von Porter et al., beschriebenen Ansatz als nicht vielversprechend und erfolgreich erscheinen lassen.

Vor diesem Hintergrund ist es Aufgabe der vorliegenden Erfindung, ein Vektorsystem bereitzustellen, das die obengenannten Nachteile vermeidet, insbesondere einen effektiven, immunologisch unbedenklichen und möglichst von unerwünschten Nebenwirkungen freien Gentransfer in Zielzellen, insbesondere in kardiale Myozyten, ermöglicht.

Erfindungsgemäß wird diese Aufgabe gelöst durch ein rekombinantes, in einer Zielzelle zumindest teilweise translatierbares RNA-Molekül, das ein nicht-infektiöses Virusgenom vom Coxackievirus der Gruppe B, vorzugsweise des Serotyps B3 (im folgenden CVB3), und zumindest ein Fremdgen aufweist, das in der Zielzelle eine gewünschte Funktion, z.B. im Rahmen einer Gentherapie, hervorruft, wobei das RNA-Molekül vorzugsweise in der Zielzelle replikationskompetent ist.

Die der Erfindung zugrunde liegende Aufgabe wird auf diese Weise vollkommen gelöst.

Die Erfinder der vorliegenden Anmeldung haben nämlich erkannt, daß ein rekombinantes RNA-Molekül auf der Basis des Virusgenoms von CVB, vorzugsweise CVB3, oder vergleichbaren Serotypen die

Konstruktion eines wirksamen Vektorsystems insbesondere für den Gentransfer in kardiale Myozyten ermöglicht.

Unter "nicht-infektiös" wird im Rahmen dieser Anmeldung verstanden, daß das Virusgenom für sich allein nicht in der Lage ist, einen vollständigen Infektionszyklus durchzuführen, weil z.B. Gensequenzen fehlen oder so mutiert sind, daß sie ihre Funktion für die Bildung infektiöser Viruspartikel nicht erfüllen können.

Unter "translatierbar" wird hier verstanden, daß das RNA-Molekül, wenn es in die Zielzelle infiziert wurde, zumindest teilweise unmittelbar in eine Aminosäureabfolge übersetzt wird, wobei bestimmte Sequenzen des RNA-Moleküles für eine Translationsinitiation sorgen.

Der Vorteil der Verwendung von CVB bzw. CVB3-Genom liegt in dem Tropismus dieses Virus für das Herz und der Tatsache, daß während des Lebenszyklus von CVB keine DNA gebildet wird, die Replikation erfolgt über eine RNA-abhängige RNA-Polymerase, für die das Virusgenom selbst kodiert. Somit besteht kein Risiko einer Integration des transfizierten Fremdgenes in das Genom der Zielzelle.

Eine höhere Effizienz der Translation wird erreicht, wenn das RNA-Genom replikationskompetent ist, denn dann erfolgt eine zytoplasmatische Replikation der RNA-Moleküle, so daß auch bei einer Transfizierung bzw. Infektion mit nur wenigen rekombinanten RNA-Molekülen im Laufe der Zeit eine große Anzahl von derartigen sogenannten Replikons zur Verfügung steht, so daß hinreichend Fremdgen translatiert werden kann. Auf diese Weise

wird ein sehr effizientes Vektorsystem bereitgestellt, durch das Fremdgene auf einfache und sichere Weise in Zielzellen exprimiert werden können, ohne daß die Integration der Fremdgene in das Genom der Zielzelle zu befürchten ist.

Dabei ist es besonders bevorzugt, wenn bei dem Virusgenom Anteile seiner kodierenden Sequenz durch das zumindest eine Fremdgen ausgetauscht sind.

Auf diese Weise wird effizient und sicher verhindert, daß CVB einen vollständigen Infektionszyklus durchläuft, denn eine Komplementierung der fehlenden Sequenzen in der Zielzelle ist nicht möglich. Durch den Austausch von kodierenden Sequenzen durch ein oder mehrere Fremdgene ist ferner die Transduktion auch großer Fremdgene möglich.

In diesem Zusammenhang ist es bevorzugt, wenn bei dem Virusgenom die Sequenzen seiner Kapsidproteine (VP1-VP4), und/oder seiner Protease 2A und/oder 3C und/oder seiner Helikase 2C und/oder seines Proteins 2B ausgetauscht sind, wobei zusätzlich/alternativ die Sequenzen der Protease 2A und/oder 3C so verändert sind, daß für die Zielzelle keine Zytotoxizität besteht.

Durch den Austausch eines oder mehrerer der obengenannten Sequenzen ergibt sich die Möglichkeit, bei Beibehaltung der ursprünglichen Virusgenomgröße längere Fremdgen-Sequenzen zu transduzieren. Die Beibehaltung der ursprünglichen Länge des Virusgenoms sowie der Replikationsfähigkeit ermöglicht es aufgrund der Spezifität für kardiale Myozyten, daß das rekombinante RNA-Molekül in der Zielzelle nicht nur effizient repliziert

sondern auch mit großer Ausbeute translatiert wird, so daß auch bei einer Infektion mit wenigen RNA-Molekülen eine wirksame Expression des Fremdgenes in den Zielzellen möglich wird. Durch die Reduzierung des Virusgenom-Anteiles im wesentlichen auf die für die Polymerase kodierende Sequenz 3D sowie die für das Virusprotein Vpg kodierende Sequenz 3B ist ferner sichergestellt, daß das Risiko einer Zytotoxizität sehr gering ist. Auch bei Vektoren, die zusätzlich noch die virale Protease 3C enthalten, ist sichergestellt, daß es zu keiner Zytotoxizität kommt.

Vor diesem Hintergrund betrifft die Erfindung auch die Verwendung eines derartigen RNA-Moleküles zur Erzeugung eines Vektors für Gentherapie.

Der CVB3-Vektor kann dabei z.B. mittels der eingangs erwähnten Lipofektion in die Zielzellen transfiziert werden. Bevorzugt ist jedoch die Transduktion durch Infektion mittels eines Virions. Eine dritte Möglichkeit besteht in der Übertragung des CVB3-Vektors durch einen anderen viralen Vektor, bspw. Adenovirus.

Vor diesem Hintergrund betrifft die Erfindung ferner ein rekombinantes, infektiöses, von CVB, vorzugsweise CVB3, abgeleitetes Virion, das als Genom das erfindungsgemäße RNA-Molekül enthält.

Bei dieser Maßnahme ist von Vorteil, daß nicht nur für die Replikation und Translation sondern auch noch für die Infektion der Tropismus von CVB in das Herz ausgenutzt wird. Es ist bekannt, daß schon zwei Tage nach einer oralen oder parenteralen Infektion bei Mäusen CVB im Herzmuskel nachweisbar ist.

Ein weiterer Vorteil ist in der Tatsache zu sehen, daß das RNA-Molekül wegen des in ihm vorhandenen Virusgenomanteiles leicht in Kapsidproteine von CVB verpackbar ist, so daß ein einfach herzustellendes und sicher infizierendes Vektorsystem zur Verfügung steht.

Dabei ist es bevorzugt, wenn das Virion in seinen Strukturproteinen einem CVB, vorzugsweise CVB3 entspricht.

Dies hat den bereits erwähnten Vorteil, daß der Tropismus von CVB in bestimmte Zielzellen, insbesondere das Herz, sowohl bei der Infektion als auch beim Verpacken des RNA-Moleküles ausgenutzt wird.

Vor diesem Hintergrund betrifft die Erfindung ferner ein Verfahren zum Transduzieren eines Fremdgenes in eine Zielzelle, mit den Schritten:

- Bereitstellen eines RNA-Moleküls oder eines Virions der obengenannten Art, und
- Infizieren der Zielzelle mit dem Virion bzw. Übertragung des RNA-Moleküls durch Transfektion.

Die Erfindung beschäftigt sich ferner mit der Bereitstellung der erfindungsgemäßen RNA-Moleküle, die beispielsweise in stabil transfizierten Wirtszellen erzeugt werden können.

Vor diesem Hintergrund betrifft die Erfindung ein Vektorplasmid, mit zumindest einer DNA-Sequenz, die für das erfin-

dungsgemäße RNA-Molekül kodiert, und mit einem der DNA-Sequenz vorgeschalteten Promotor.

Auf diese Weise kann das neue RNA-Molekül in großen Mengen erzeugt und dann entweder unmittelbar in die Zielzellen übertragen oder aber zunächst in dem neuen Virion verpackt und dann über dieses in die Zielzelle transduziert werden.

Alternativ ist es jedoch auch möglich, ein DNA-Konstrukt in die Zielzelle einzubringen, das dort im Zellkern persistiert und das neue RNA-Molekül erzeugt, das dann entweder selbst im Zytoplasma repliziert oder lediglich translatiert wird. Dieses DNA-Konstrukt kann auch durch einen anderen viralen Vektor bereitgestellt werden.

Vor diesem Hintergrund betrifft die Erfindung ferner ein DNA-Konstrukt, das für ein erfindungsgemäßes RNA-Molekül kodiert und in einer Zielzelle persistiert und transkribiert, vorzugsweise jedoch nicht repliziert, sowie ein rekombinantes Virus, vorzugsweise Adeno- oder Retrovirus, das für das neue RNA-Molekül kodiert und nach Infektion in einer Zielzelle exprimiert, wobei ein zytoplasmatisches Replikon entsteht, das ständig nachgeliefert wird.

Bei dieser Maßnahme ist von Vorteil, daß das DNA-Konstrukt oder das rekombinante Virus in der Zielzelle ständig translatierbare RNA-Moleküle nachliefert, wodurch für eine längerfristige und/oder starke Expression des Fremdgenes gesorgt werden kann. Die Expression wird hier nicht nur über die RNA-Replikation und Translation sondern (vor allem auch) über die Transkription gesteuert. Selbst bei einem schwachen Promotor, einer nur kurz-

fristig aufrechthaltenden zytoplasmatischen Replikation sowie einer ineffizienten Translation kann auf diese Weise das Fremdgen dennoch wirksam exprimiert werden. Dabei kann selbst auf die RNA-Replikation im Zytoplasma verzichtet werden.

Im Falle des rekombinanten Virus wird das neue RNA-Molekül (z.B. das CVB3-Replikon) unter der Kontrolle eines eukaryontischen Promotors gebildet. Dabei wird ein in vielen Geweben aktiver bzw. ein induzierbarer oder gewebespezifischer Promotor verwendet, wie bspw. der Myosin-Leichte-Kette 2 Promotor mit Spezifität für den Herzmuskel. Dabei kann auch der im Zellkern vorhandene Vektor selbst replizieren, um eine noch höhere Ausbeute zu erzielen.

Ferner ist es nicht erforderlich, daß das Virusgenom von CVB stammt, auch andere, organspezifische Viren oder polytrope Viren sind denkbar.

Sofern das erfindungsgemäße RNA-Molekül jedoch über die erfindungsgemäßen Virionen übertragen werden soll, müssen Maßnahmen ergriffen werden, um für die Erzeugung der Virionen die ausgetauschten kodierenden Sequenzen bereitzustellen.

Vor diesem Hintergrund betrifft die Erfindung ferner ein Helfer-Konstrukt zum Komplementieren der bei dem erfindungsgemäßen RNA-Molekül ausgetauschten kodierenden Sequenzen, wobei das Helfer-Konstrukt vorzugsweise ein Helfer-Plasmid oder ein viraler Vektor ist, das bzw. der für mindestens eine der ausgetauschten Sequenzen in translatierbarer Weise kodiert. Alternativ kann das Helfer-Konstrukt auch eine Helferzelle sein, die

stabil mit für mindestens eine der ausgetauschten Sequenzen kodierender Helfer-DNA transfiziert ist.

Entsprechend betrifft die Erfindung auch ein Verfahren zur Erzeugung des erfindungsgemäßen Virions, mit den Schritten:

- Transfizieren von Wirtszellen mit dem erfindungsgemäßen Vektorplasmid, und
- Komplementieren der ausgetauschten Sequenzen in der Wirtszelle durch das erfindungsgemäße Helfer-Konstrukt.

Wenn das Helfer-Konstrukt ein Plasmid oder ein viraler Vektor ist, wird die Wirtszelle mit dem Vektorplasmid sowie dem Helfer-Konstrukt co-transfiziert, wobei sich in der Wirtszelle dann Virionen bilden, die aus den Strukturproteinen von CVB gebildet sind und das erfindungsgemäße RNA-Molekül verpacken, so daß die entstehenden Virionen selbst zwar Zielzellen infizieren können, jedoch keinen kompletten Infektionszyklus durchlaufen.

Wenn die Wirtszelle die Helferzelle ist, muß lediglich die Helferzelle mit dem Vektorplasmid transfiziert werden, die Wirtszelle stellt die fehlenden Sequenzen in trans zur Verfügung.

Neben dem Einsatz im wissenschaftlichen Bereich ist ein großes Anwendungsgebiet der vorliegenden Erfindung in der Gentherapie zu sehen, wobei gerade für die Endanwendung durch Mediziner und kleinere Krankenhäuser das neue Vektorsystem bereits mit bestimmten Fremdgenen angeboten wird, die für die jeweilige Therapie benötigt werden. Durch Bereitstellung geprüfter Amplifi-

kate von CVB3, die mit der zu übertragenden cDNA ligiert wurden, lässt sich dabei eine gute Qualitätssicherung erreichen.

Vor diesem Hintergrund betrifft die Erfindung ferner ein Kit mit dem neuen Vektorplasmid und dem neuen Helfer-Konstrukt, sowie eine therapeutische Zusammensetzung mit dem neuen Vektorplasmid und/oder mit den neuen Virionen und/oder mit dem neuen RNA-Molekül.

Auf diese Weise kann dem Anwender die Möglichkeit gegeben werden, das Vektorplasmid und/oder die Virionen unmittelbar zu applizieren, oder aber mit Hilfe des Helfer-Konstrukttes und/oder der RNA-Moleküle entsprechende, Zielzellen-gängige Applikationen herzustellen. In dem Kit sind dabei neben den erwähnten Materialien auch noch solche nicht-gängigen Materialien enthalten, die eine problemlose Anwendung in der üblichen Weise ermöglichen.

Andererseits ist es auch beabsichtigt, größeren Kliniken die Möglichkeit zu geben, spezielle Fremdgene in das neue Vektor-system zu klonieren. Vor diesem Hintergrund betrifft die Erfindung ferner ein Verfahren zum Erzeugen des neuen Vektor-plasmides, mit den Schritten:

- a) Bereitstellen einer für infektiöse CVB, vorzugsweise CVB3, kodierenden cDNA,
- b) Klonieren der cDNA auf transkribierbare Weise in ein Plasmid,

c) Verstärken von Sequenzabschnitten des Plasmides mit Hilfe von Primern, die zu einem Amplifikat führen, das für das nicht-infektiöse Virusgenom kodiert, und

d) Ligieren des Amplifikates mit einer DNA-Sequenz für das Fremdgen.

Pl.
so...
Av...
C1.19
p. 27

Die Amplifikate können in fertiger Form in einem Kit vorliegen, oder es werden spezielle Primer zur Erzeugung der Amplifikate bereitgestellt.

Besonders vorteilhaft bei diesem Verfahren ist der Einsatz von speziellen Primern, die so gewählt werden, daß sie nicht nur die gewünschten Minimal-Anteile des zukünftigen Virusgenoms sondern auch die für die Plasmid-Vermehrung in Bakterien erforderlichen Anteile, z.B. Ampicillin-Resistenzgen, Replikationsursprung, Transkriptionspromotor, amplifizieren.

Diese Amplifikate müssen dann nur noch mit dem Fremdgen ligiert werden.

Als Primer stehen dabei die nachstehend erwähnten Primer SEQ ID Nr. 1 bis SEQ ID Nr. 4, zur Verfügung.

Auf gleiche Weise kann auch das erfindungsgemäße Helfer-Konstrukt erzeugt werden, wobei das Verfahren die Schritte aufweist:

a) Bereitstellen einer für infektiöse CVB, vorzugsweise CVB3 kodierenden cDNA,

5
Tage

b) Klonieren der cDNA auf transkribierbare Weise in ein Plasmid, und

c) Verstärken von Sequenzabschnitten des Plasmides mit Hilfe von Primern, die zu einem Amplifikat führen, das für die ausgetauschten kodierenden Sequenzen kodiert.

Für die Amplifizierung stehen hier die nachstehend erwähnten Primer SEQ ID Nr. 5 bis SEQ ID Nr. 13 zur Verfügung.

Damit es im Routinebetrieb auf einfache Weise möglich ist, ein erfindungsgemäßes Vektorplasmid mit speziellem Fremdgen und zugeschnittenem minimalen Virusgenom zu erzeugen, betrifft die Erfindung ferner ein Kit, mit

- einem Plasmid mit klonierter cDNA für infektiöse CVB, vorzugsweise CVB3, und
- den erforderlichen Primern für die Amplifikation von Sequenzabschnitten zur Erzeugung des Vektorplasmides und/oder des Helfer-Konstruktes, bzw.
- fertigen, geprüften DNA-Amplifikaten.

Das Kit kann ferner die erforderlichen Reagenzien zum Ligieren eines Fremdgenes enthalten.

Die DNA-Amplifikate, die zumindest einen für das neue RNA-Molekül kodierenden Sequenzabschnitt aufweisen und durch PCR

erzeugt werden können, liegen in fertiger und geprüfter Form in dem Kit vor und sind einfacher zu handhaben, als wenn man erst anhand der Primer eine PCR durchführen müßte. Auf diese Weise wird das Problem der Fehlerrate der Polymerasen beseitigt, denn der Endanwender kann mit geprüften und fertig ligierbaren Amplifikaten sicherer zu dem "maßgeschneiderten" Vektorsystem gelangen als mit selbst hergestellten Amplifikaten.

Das Fremdgen in dem neuen RNA-Molekül kann ferner nicht nur unmittelbar für gentherapeutische Zwecke verwendet werden, es kann auch zum Komplementieren eines Vektors eingesetzt werden, dem analog zu dem oben beschriebenen System von Vektorplasmid und Helferkonstrukt Anteile des Genoms fehlen. Dieses Verfahren ist insbesondere vorteilhaft für Vektorsysteme, die auf DNA-Viren wie bspw. Adenoviren beruhen. Würde man bei einem rekombinanten Adenovirus die fehlenden Anteile des Genoms in trans in Helferzellen zur Verfügung stellen, so bestünde die Gefahr der Rekombination des Vektors mit den supplementierenden Genfunktionen aus der Helferzelle, so daß ein Wildtyp-Virus mit den sofort ersichtlichen Gefahren und Nachteilen entstehen würde.

Die Erfindung betrifft daher auch die Verwendung des neuen RNA-Moleküls zur Erzeugung rekombinanter Viren oder Virionen, vorzugsweise mit DNA Genom, wobei das Fremdgen für dem DNA-Genom fehlende Genfunktionen kodiert.

Dabei ist von Vorteil, daß das rekombinante CVB3-Genom immer als RNA in der Zelle vorliegt, so daß eine Rekombination des DNA-Genoms der rekombinanten Viren oder Virionen nicht möglich ist.

Die RNA wird in der Zelle in Protein übersetzt, das für die Replikation oder Verpackung des DNA-Genoms verwendet wird. Dabei kann auch ein beliebiges RNA-Vektorsystem eingesetzt werden, bevorzugt wird jedoch das CVB3-Vektorsystem verwendet. Die Vorteile dieses Verfahrens liegen in der mit Sicherheit auszuschließenden Rekombination des DNA-Genoms.

Vor diesem Hintergrund betrifft die Erfindung auch ein Verfahren zur Erzeugung rekombinanter DNA-Viren oder DNA-Virionen, deren DNA-Genom bestimmte Genfunktionen fehlen, bei dem die fehlenden Genfunktionen über ein rekombinantes Vektorsystem mit RNA-Genom bereitgestellt wird.

Die Erfindung betrifft folglich ein universelles, vorzugsweise jedoch für kardiale Myozyten einsetzbares Vektorsystem, bei dem translatierbare RNA-Moleküle, die ein Fremdgen sowie ein "defektes" Virusgenom enthalten, in eine Zielzelle transduziert werden, wo das Fremdgen effizient exprimiert wird, um gewünschte, z.B. therapeutische Zwecke zu erreichen. Die Erfindung stellt ferner Verfahren und Kits bereit, mit denen der Anwender die für den jeweiligen Anwendungsfall geeigneten RNA-Moleküle, Vektorplasmide und/oder Virionen herstellen kann.

Es versteht sich, daß die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in den jeweils angegebenen Kombinationen, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.

Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele.

Die nachstehenden Beispiele werden anhand der beigefügten Zeichnung erläutert, in der:

Fig. 1 schematisch genomische CVB-RNA und translatiertes Polyprotein zeigt,

Fig. 2 schematisch ein CVB3-Plasmid zeigt;

Fig. 3 ein Beispiel für ein rekombinantes RNA-Molekül zeigt;

Fig. 4 schematische Beispiele von Vektorplasmiden zeigt; und

Fig. 5 schematische Beispiele von Helfer-Plasmiden zeigt.

Beispiel 1: CVB3-Genom und -cDNA

Coxsackieviren sind Vertreter des Genus Enteroviren in der Familie der Picornaviren. Unter natürlichen Bedingungen erzeugen Coxsackieviren nur im Menschen Krankheiten, die initiale Isolierung von Coxsackieviren gelingt jedoch am besten in neugeborenen Mäusen, die auch zur Differenzierung der Viren in zwei Gruppen dienen:

Die Gruppe A mit 23 Serotypen und die Gruppe B mit 6 Serotypen.

CVB, vor allen Dingen CVB3, gelten als häufige Erreger von viralen Herzmuskelentzündungen, die sich sowohl in dieser akuten Form wie auch in chronischen Verläufen äußern können. Bei Säuglingen verläuft die Myocarditis oft tödlich.

Wie alle Picornaviren haben auch Coxsackieviren ikosaedrische Nukleokapside, die aus vier Virusproteinen VP1, VP2, VP3 und VP4 bestehen. Während die Proteine VP1, VP2 und VP3 die äußere Hülle bilden, ist VP4 an der Innenseite der Partikel lokalisiert und mit dem einzelsträngigen RNA-Genom assoziiert. Das Genom ist per se infektiös; wird es unter geeigneten Bedingungen in einer Zelle aufgenommen, so kann schon die gereinigte RNA eine Infektion induzieren, denn sie besitzt Plusstrangorientierung, die Virusproteine können also ohne Zwischenstufe von der RNA translatiert werden. Das 3'-Ende der genomischen RNA ist polyadenyliert, an das 5'-Ende ist kovalent ein kleines, viruskodiertes Protein V_{Pg} gebunden.

Ein schematisches Beispiel für das CVB3-Genom ist in Fig. 1 dargestellt. Das Genom enthält einen einzigen, offenen Leserahmen, der für ein Vorläuferprotein kodiert. Dieses Polyprotein wird noch während seiner Synthese proteolytisch in die verschiedenen viralen Komponenten gespalten.

Aus dem Polyprotein gehen die bereits erwähnten Kapsidproteine VP1-VP4 in angegebener Weise aus den Bereichen 1A bis 1D und das V_{Pg} aus dem Bereich 3B hervor. Die Bereiche 2A und 3C kodieren für Proteasen, die das Polyprotein aufspalten. Die aus den Bereichen 2B und 2C hervorgehenden Proteine stehen mit der Wirtspezifität der Viren in Verbindung.

Der Bereich 3D kodiert für eine RNA-abhängige RNA-Polymerase, die in der Wirtszelle die Replikation des RNA-Genomes durchführt.

Am 5'- und 3'-Ende enthält das Genom noch nicht translatierte Bereiche (NTR), wobei der NTR-Bereich am 5'-Ende eine ausgeprägte Sekundärstruktur aufweist und die Bindung von Ribosomen ermöglicht, also die Translation des Genoms in das Polyprotein erlaubt.

Die vollständige Nukleotidsequenz einer cDNA einer infektiösen CVB3-Variante mit ausgeprägtem Tropismus für das Herz ist beschrieben bei Klump et al. (a.a.O.). Diese infektiöse cDNA von CVB3 steht in dem Konstrukt PCB3/T7 zur Verfügung, sie ist schematisch in Fig. 2 angegeben. Vor dem 5'-Ende befindet sich ein Promotor (Prom), der die Transkription der cDNA in das RNA-Genom ermöglicht.

Beispiel 2:

Rekombinante RNA-Moleküle

Bei dem CVB3-Genom aus Fig. 1 lassen sich bestimmte Sequenzbereiche gegen Fremdgene austauschen, ohne daß die Translatierbarkeit des so entstandenen rekombinanten RNA-Moleküls in der Zielzelle verlorengeht. Die prinzipielle Struktur ist in Fig. 3 dargestellt, sie besteht aus dem NTR-Bereich am 5'-Ende, einem eingefügten Fremdgen sowie einem nicht-infektiösen Rest des Virusgenoms.

Dieser nicht-infektiöse Rest des Virusgenoms weist z.B. die Sequenzbereiche 2B-3D auf, so daß die Kapsidproteine VP1-VP4 und die Protease 2A fehlen.

Dieses rekombinante RNA-Molekül kann in der Wirtszelle wegen des noch vorhandenen NTR-Bereiches nach wie vor translatiert werden, so daß das Fremdgen in der Zielzelle exprimiert wird. Als Fremdgen kann zu Versuchszwecken ein Reportergen oder aber auch ein Effektorgen vorgesehen sein, das im Rahmen einer genetherapeutischen Anwendung fehlende Funktionen der Zielzelle komplementiert und/oder defekte Funktionen ersetzt, komplementiert bzw. behindert.

Als Minimalkonstrukt müssen in dem nicht-infektiösen Virusgenom die Bereiche 3B und 3D bzw. 3CD vorhanden sein, also die Bereiche, die für die Replikation des rekombinanten RNA-Moleküles sorgen. Ein derartiges RNA-Molekül erfährt also eine zyttoplasmatische Replikation und gleichzeitig eine Translation, so daß in der Zielzelle effektiv das Fremdgen exprimiert wird.

Da sich die Replikation auf RNA-Ebene abspielt, besteht nicht die Gefahr einer Integration des Fremdgenes in das Genom der Wirtszelle. Da im übrigen das restliche Virusgenom in dem RNA-Molekül nicht-infektiös ist, durchläuft das CVB3 auch keinen vollständigen Infektionszyklus, die Gefahr einer zusätzlichen Schädigung der Wirtszelle wird also vermieden. Aufgrund der Tatsache, daß nur noch ein minimaler Anteil an Nichtstruktur-Proteinen auf dem restlichen Virusgenom kodiert sein muß, folgt ferner, daß dieses rekombinante RNA-Molekül nicht zytotoxisch für die Zielzelle ist.

Wenn in bestimmten Anwendungen die starke Expression des Fremdgenes nicht oder nicht über längere Zeit gewünscht wird, kann der Bereich, der für das restliche Virusgenom vorgesehen ist, auch durch eine Puffer-Sequenz aufgefüllt werden, die lediglich

dazu dient, das rekombinante RNA-Molekül auf die ursprüngliche Länge des RNA-Genoms von CVB3 zu bringen. Ein derartiges RNA-Molekül würde in der Zielzelle noch translatiert, jedoch nicht repliziert, so daß die zytoplasmatische Translation aufgrund des erfolgenden Abbaus des RNA-Moleküles nach einer gewissen Zeit wieder eingestellt wird.

Wie das rekombinante RNA-Molekül in die Zielzelle gelangt, wird im Beispiel 6 beschrieben, zuvor soll jedoch die Erzeugung des rekombinanten RNA-Moleküls mit Hilfe eines Vektorplasmides erörtert werden, dessen Herstellung im nächsten Beispiel beschrieben wird.

Beispiel 3:Herstellung von Vektorplasmiden

Die rekombinanten RNA-Moleküle können grundsätzlich auf beliebige gentechnologische Weise erzeugt werden, die Verwendung von Vektorplasmiden, die für die RNA-Moleküle kodieren und in diese transkribiert werden können, bietet jedoch eine vielfältige Anwendungsmöglichkeit, so daß dieser Weg bevorzugt wurde.

Die infektiöse cDNA von CVB3 aus dem Konstrukt pCB3/T7, (siehe Beispiel 1) wurde in die EcoR I, Schnittstelle des Basis-Vektors pCR-Script™ von Stratagene kloniert. Damit die cDNA in eine RNA transkribiert werden kann, wurde zusätzlich der Promotor des humanen Zytomegalovirus aus dem Plasmid pCMVβ, von Clonetech in die Sal I, Schnittstelle von pCR-Script™, kloniert. Dadurch entstand ein pCMV-CVB3 genanntes Plasmid.

Dieses Plasmid ist der Ausgangspunkt für die Herstellung der in Fig. 4 gezeigten Vektorplasmide.

Die Erzeugung der Vektorplasmide erfolgt über Polymerase-Kettenreaktion (PCR) mit Hilfe von Primern, die so gewählt sind, daß sie nicht nur die gewünschten Minimal-Anteile des zukünftigen CVB3-Vektors, sondern auch die für die Plasmid-Vermehrung in Bakterien erforderlichen Anteile des bakteriellen PCR-Script-Vektorbackbones amplifizieren, z.B. das Ampicillin-Resistenzgen, den Replikationsursprung, den Promotor etc.

In Fig. 2 sind mit arabischen Ziffern die Startpunkte für die PCR-Reaktion beschrieben, die zu den entsprechenden Vektorplasmiden 1, 2 bzw. 3 führen.

Als universeller Reverse-Primer ab 5'-NTR gilt die Sequenz SEQ ID Nr. 1:

5'-TTT GCT GTA TTC AAC TTA ACA ATG AAT TGT AAT GTT TTA ACC-3'

Für den Forward-Primer ab 2C wird SEQ ID Nr. 2 eingesetzt:

5'-ATG GCT GAA CGC CAA AAC AAT AGC TGG C-3'

Als Forward-Primer ab 2B wird SEQ ID Nr. 3 eingesetzt:

5'-GAT GCA ATG GAA CAG GGA GTG AAG GAC TAT G-3'

Als Forward-Primer ab 3'-NTR gilt SEQ ID Nr. 4:

5'-TAG ATT AGA GAC AAT TTG AAA TAA TTT AGA TTG GC-3'

Durch Einsatz der Primer SEQ ID Nr. 1 und SEQ ID Nr. 2 ergibt sich ein Vektorplasmid, wie es in Fig. 4 unter 1 gezeigt ist, bei dem nämlich die Sequenzbereiche 2C-3D sowie die NTR-Bereiche am 3'- und 5'-Ende vorhanden sind. Ferner ist der Promotor für die Transkription in RNA vorhanden.

In entsprechender Weise führen die Primer SEQ ID Nr. 1 und SEQ ID Nr. 3 zu dem Vektorplasmid Nr. 2, bei dem von dem Virusgenom noch der Bereich 2B-3D sowie 3'- und 5'-NTR und der Promotor übriggeblieben sind.

Entsprechend führt SEQ ID Nr. 1 zusammen mit SEQ ID Nr. 4 zu dem Plasmid Nr. 3 aus Fig. 4, hier sind weder Struktur- noch Nichtstruktur-Gene des RNA-Genoms übriggeblieben, lediglich 3'-NTR und 5'-NTR sowie Promotor sind vorhanden, um die Transkription sowie die Translation in der Zielzelle zu ermöglichen; replizierbar ist eine aus diesem Plasmid hervorgegangene RNA nicht mehr, da die Polymerase 3D fehlt. Um dennoch die ursprüngliche Länge des Virusgenoms zum Verpacken in einem Virion zu erhalten, ist eine Stuffer genannte Füllsequenz vorgesehen.

Die soeben beschriebenen Amplifikate müssen dann an ihren Enden nur noch mit dem Fremdgen ligiert werden. Das so entstandene Vektorplasmid kann dann direkt in E.coli transformiert werden.

Die Vektorplasmide können auf diese Weise hochverstärkt und schließlich in RNA transkribiert werden, wobei nach entsprechender Aufreinigung die RNA-Moleküle aus Beispiel 2 entstehen.

Eine bevorzugte Strategie besteht jedoch darin, eine Co-Transfizierung dieser Vektorplasmide mit Helfer-Konstrukten in

Wirtszellen durchzuführen, um infektiöse Virionen zu erzeugen, deren Genom jedoch das rekombinante RNA-Molekül aus Beispiel 2 ist.

Damit diese Co-Transfizierung zum Erfolg führt, müssen die Helfer-Konstrukte die durch das Fremdgen ausgetauschten Sequenzen des Virusgenoms komplementieren.

Beispiel 4 Herstellung von Helfer-Konstrukten

Ausgehend von dem Plasmid pCMV-CVB3 aus Beispiel 3 werden mit spezifischen PCR-Primern die jeweils den Vektorplasmiden aus Fig. 4 fehlenden Sequenzbereiche amplifiziert. Diese Amplifikate enthalten keine Anteile des bakteriellen Vektors.

Diese Amplifikate können jetzt mit einem viralen Vektor in Wirtszellen eingebracht werden, andererseits kann auch eine Helferzelle stabil mit diesen Amplifikaten transfiziert werden, so daß die Helferzellen bei der Transfizierung mit Vektorplasmid als Wirtszellen dienen und in trans die fehlenden Sequenzen des Virusgenoms zur Verfügung stellen.

Bevorzugt ist es, wenn die Helfer-Konstrukte ebenfalls Plasmide sind, die stabil oder transient in Wirtszellen transfiziert werden, um dann in RNA transkribiert werden zu können, die wiederum translatierbar ist, um die Struktur- und Nichtstruktur-Proteine zu erzeugen, für die das Vektorplasmid selbst nicht kodiert.

Zu diesem Zweck ist es erforderlich, in z.B. das pCR-Script™ Plasmid einen Promotor, z.B. den CMV-Promotor, und eine IRES

(internal ribosomal entry site) zu klonieren. Dahinter werden die Amplifikate mit den Helferanteilen von CVB3 kloniert. Durch die IRES wird die Translationseffizienz der Helferanteile erhöht, es kann z.B. die IRES von EMVC (Enzephalomyokarditis-Virus), die EMCV-IRES von Clonetech verwendet werden.

In Fig. 5 sind Helfer-Plasmide dargestellt, durch die die Vektorplasmide aus Fig. 4 komplementiert werden können.

Für die Sequenzbereiche 1A-1D werden die Primer SEQ ID Nr. 5

5'-A GAC TCT AGA CAG CAA AAT GGG AGC TCA AGT ATC AAC GC-3'

sowie SEQ ID Nr. 6 verwendet:

5'-A TAT GCG GCC GCC TAA AAT GCG CCC GTC TTT GTC ATT GTA GTG ATG C-3'

Für den Bereich 2A werden die Primer SEQ ID Nr. 7

5'-A TAT GCG GCC GCC AGC AAA ATG GGA CAA CAA TCA GGG GCA GTG TAT GTG G-3'

oder SEQ ID Nr. 8

5'-CTT AAG ATG GGA CAA CAA TCA GGG GCA GTG TAT-3'

als Forward-Primer und als Reverse-Primer SEQ ID Nr. 9 eingesetzt:

5'-A TAT GGG CCC CTA CTG TTC CAT TGC ATC ATC TTC CAG C-3'

Für den Sequenzbereich 2B wird der Primer SEQ ID Nr. 10

5'-A TAT GCG GCC GCC AGC AAA ATG GGA GTG AAG GAC TAT GTG GAA CAG C-3'

sowie der Primer SEQ ID Nr. 11 eingesetzt:

5'-A TAT GGG CCC CTA TTG GCG TTC AGC CAT AGG GAT TCC G-3'

Für den Bereich 2B-3D werden als Primer SEQ ID Nr. 12

5'-A TAT GCG GCC GCC AGC AAA ATG GGA GTG AAG GAC TAT GTG GAA CAG C-3'

sowie der Primer SEQ ID Nr. 13 eingesetzt:

5'-A TAT GGG CCC CTA AAA GGA GTC CAA CCA CTT CCT GCG-3'.

Auf diese Weise werden Helfer-Plasmide erzeugt, die in Bakterien verstärkbar und in RNA transkribierbar sind, die wiederum translatiert werden kann, um die Translationsprodukte der Vektorplasmide derart zu komplementieren, daß Virionen gebildet werden können, wie dies jetzt in Beispiel 5 beschrieben wird.

Beispiel 5:

Herstellung von Infektiösen Virionen

Während es prinzipiell möglich ist, die RNA-Moleküle aus Beispiel 2 auf beliebigem Wege herzustellen und diese dann in Virusprotein zu infektiösen Virionen zu verpacken, besteht ein effizienter Weg darin, die in Beispiel 4 erwähnten Helferzellen, die stabil mit dem Vektorplasmid fehlenden Sequenzen transfiziert sind, mit entsprechendem Vektorplasmid zu

transfizieren, das durch die Wirtszelle in trans komplementiert wird. Auf diese Weise entstehen Virionen, die nach entsprechender Aufräumung verwendet werden können.

Ein Weg, der eine größere Variabilität ermöglicht, besteht darin, Wirtszellen mit dem Vektorplasmid aus Beispiel 3 und dem entsprechenden, komplementierenden Helfer-Plasmid aus Beispiel 4 zu co-transformieren, wodurch infektiöse Virionen entstehen, die die RNA-Moleküle aus Beispiel 2 verpacken.

Beispiel 6: Gentherapeutische Anwendung

Ziel der gentherapeutischen Anwendung ist es, die RNA-Moleküle aus Beispiel 2 in Zielzellen zu transduzieren und dort für eine Expression des Fremdgenes zu sorgen. Zur Verstärkung der Expression ist es vorteilhaft, wenn die RNA-Moleküle in den Zielzellen nicht nur translatiert sondern auch repliziert werden. Eine reine Translation ist mit dem Vektorplasmid 3 aus Fig. 4 möglich, während die Vektorplasmide 1 und 2 auf die oben beschriebene Weise zu RNA-Molekülen führen, die auch replizieren, was zu einer stärkeren Expression führt.

Zum einen ist es jetzt möglich, die RNA-Moleküle in Wirtszellen zu erzeugen und diese dann z.B. über eine Lipofektion in die Zielzellen zu transfizieren.

Eine effizientere und spezifischere Applikation erfolgt jedoch über eine Infektion der Zielzellen mit den Virionen aus Beispiel 5. Aufgrund ihres Kapsides sind diese Virionen nämlich infektiös, d.h. sie können in die Zielzellen eindringen und dort die von ihnen verpackten RNA-Moleküle zur Translation und

ggf. Replikation freigeben. Da die RNA-Moleküle selbst nicht-infektiös sind, werden in den Zielzellen keine neuen Virionen erzeugt. Zur Erinnerung, das nicht-infektiöse Virusgenom, das Bestandteil der rekombinanten RNA-Moleküle ist, weist Defizite bzw. Veränderungen bezüglich bestimmter Struktur- und möglicherweise Nichtstruktur-Proteine auf. Diese Defizite werden nur zur Herstellung der Virionen z.B. durch die Helfer-Plasmide aus Beispiel 4 komplementiert.

Wenn das insoweit beschriebene Vektorsystem auf der Basis von CVB aufgebaut ist, weisen die Virionen einen besonderen Tropismus für das Herz auf, wobei die Sequenzen und daraus übersetzten Proteine des Virusgenoms besonders gut an diese Wirtszellen angepaßt sind. Dies führt dazu, daß Fremdgene auf diese Weise problemlos in kardiale Myozyten transduziert und dort exprimiert werden können.

Patentansprüche

1. Rekombinantes, in einer Zielzelle zumindest teilweise translatierbares RNA-Molekül, das ein nicht-infektiöses Virusgenom vom Coxsackievirus der Gruppe B, vorzugsweise des Serotyps B3, und zumindest ein Fremdgen aufweist, das in der Zielzelle eine gewünschte Funktion, z.B. im Rahmen einer Gentherapie, hervorruft.
2. RNA-Molekül nach Anspruch 1, dadurch gekennzeichnet, daß es in der Zielzelle replikationskompetent ist.
3. RNA-Molekül nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß bei dem Virusgenom Anteile seiner kodierenden Sequenz durch das zumindest eine Fremdgen ausgetauscht sind.
4. RNA-Molekül nach Anspruch 3, dadurch gekennzeichnet, daß bei dem Virusgenom die Sequenzen seiner Kapsidproteine VP1-VP4 ausgetauscht sind.
5. RNA-Molekül nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß bei dem Virusgenom die Sequenzen seiner Protease 2A und/oder 3C ausgetauscht oder so verändert sind, daß für die Zielzelle keine Zytotoxizität besteht.
6. RNA-Molekül nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, daß bei dem Virusgenom die Sequenzen seiner Helikase 2C ausgetauscht sind.

7. RNA-Molekül nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, daß bei dem Virusgenom die Sequenzen seines Protein 2B ausgetauscht sind.
8. Verwendung des RNA-Moleküls nach einem der Ansprüche 1 bis 7 zur Erzeugung eines Vektors für Gentherapie.
9. Rekombinantes, infektiöses, vom Coxsackievirus der Gruppe B, vorzugsweise des Serotyps B3, abgeleitetes Virion, das als Genom das RNA-Molekül nach einem der Ansprüche 1 bis 7 enthält.
10. Virion nach Anspruch 9, dadurch gekennzeichnet, daß es in seinen Strukturproteinen einem Coxsackievirus der Gruppe B, vorzugsweise des Serotyps B3 entspricht.
11. Verfahren zum Transduzieren eines Fremdgenes in eine Zielzelle, mit den Schritten
 - Bereitstellen eines RNA-Moleküles nach einem der Ansprüche 1 bis 7 oder eines Virions nach Anspruch 9 oder 10, und
 - Infizieren der Zielzelle mit dem Virion bzw. Übertragung des RNA-Moleküls durch Transfektion.
12. Vektorplasmid, mit zumindest einer DNA-Sequenz, die für das RNA-Molekül nach einem der Ansprüche 1 bis 7 kodiert, und mit einem der DNA-Sequenz vorgeschalteten Promotor.

13. Helfer-Konstrukt zum Komplementieren der bei dem RNA-Molekül nach einem der Ansprüche 1 bis 7 ausgetauschten kodierenden Sequenzen.
14. Helfer-Konstrukt nach Anspruch 13, dadurch gekennzeichnet, daß es ein Helfer-Plasmid ist, das für zumindest eine der ausgetauschten Sequenzen in translatierbarer Weise kodiert.
15. Helfer-Konstrukt nach Anspruch 13, dadurch gekennzeichnet, daß es ein viraler Vektor ist, der für mindestens eine der ausgetauschten Sequenzen in translatierbarer Weise kodiert.
P...
A...
C 1, 14
16. Helfer-Konstrukt nach Anspruch 13, dadurch gekennzeichnet, daß es eine Helferzelle ist, die stabil mit für mindestens eine der ausgetauschten Sequenzen kodierender Helfer-DNA transfiziert ist.
17. Verfahren zur Erzeugung des Virions nach Anspruch 9 oder 10, mit den Schritten:
 - Transfizieren von Wirtszellen mit dem Vektorplasmid nach Anspruch 12, und
 - Komplementieren der ausgetauschten Sequenzen in der Wirtszelle durch das Helfer-Konstrukt nach einem der Ansprüche 13 bis 15.
18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, daß die Wirtszelle die Helferzelle nach Anspruch 16 ist.

19. Verfahren zur Erzeugung des Vektorplasmides nach Anspruch 12, mit den Schritten

- a) Bereitstellen einer für infektiöse Coxsackieviren der Subgruppe B, vorzugsweise der Subgruppe B3 kodierenden cDNA,
- b) Klonieren der cDNA auf transkribierbare Weise in ein Plasmid,
- c) Verstärken von Sequenzabschnitten des Plasmides mit Hilfe von Primern, die zu einem Amplifikat führen, das für das nicht-infektiöse Virusgenom kodiert, und
- d) Ligieren des Amplifikates mit einer DNA-Sequenz für das Fremdgen.

20. Verfahren zur Erzeugung des Helfer-Konstruktes nach einem der Ansprüche 13 bis 16, mit den Schritten:

- a) Bereitstellen einer für infektiöse Coxsackieviren der Subgruppe B, vorzugsweise B3 kodierenden cDNA,
- b) Klonieren der cDNA auf transkribierbare Weise in ein Plasmid, und
- c) Verstärken von Sequenzabschnitten des Plasmides mit Hilfe von Primern, die zu einem Amplifikat führen, das für die ausgetauschten, kodierenden Sequenzen kodiert.

21. Kit, mit dem Vektorplasmid nach Anspruch 13 und einem Helfer-Konstrukt nach einem der Ansprüche 13 bis 16.
22. DNA-Molekül mit zumindest einem für das RNA-Molekül nach einem der Ansprüche 1 bis 7 kodierenden Sequenzabschnitt.
23. Kit mit einem DNA-Molekül nach Anspruch 22.
24. Kit zur Durchführung des Verfahrens nach Anspruch 19 oder 20, mit
 - einem Plasmid mit klonierter cDNA für infektöse Coxsackieviren der Subgruppe B, vorzugsweise der Subgruppe B3, und
 - den erforderlichen Primern für die Amplifikation.
25. Therapeutische Zusammensetzung mit dem RNA-Molekül nach einem der Ansprüche 1 bis 7.
26. Therapeutische Zusammensetzung mit dem Vektorplasmid nach Anspruch 12.
27. Therapeutische Zusammensetzung mit Virionen nach Anspruch 9 oder Anspruch 10.
28. DNA-Konstrukt, das für ein RNA-Molekül nach einem der Ansprüche 1 bis 7 kodiert und in einer Zielzelle persistiert und transkribiert, vorzugsweise jedoch nicht repliziert.

29. Rekombinantes Virus, vorzugsweise Adeno- oder Retrovirus, das für ein rekombinantes RNA-Molekül nach einem der Ansprüche 1 bis 7 kodiert und nach Infektion in einer Zielzelle exprimiert, wobei ein zytoplasmatisches Replikon entsteht, das ständig nachgeliefert wird.
30. Therapeutische Zusammensetzung mit einem Virus nach Anspruch 29.
31. Verwendung des RNA-Moleküls nach einem der Ansprüche 1 bis 7 oder des Virions nach Anspruch 9 oder 10 zur Erzeugung rekombinanter Viren oder Virionen, vorzugsweise mit einem DNA-Genom, wobei das Fremdgen für dem DNA-Genom fehlende Genfunktionen kodiert.
32. Verfahren zur Erzeugung rekombinanter DNA-Viren oder DNA-Virionen, deren DNA-Genom bestimmte Genfunktionen fehlen, bei dem die fehlenden Genfunktionen über ein rekombinantes Vektorsystem mit RNA-Genom bereitgestellt wird.

CVB3 - Plasmid:

Fig.2

Fig.3

Fremdgen

Rest RNA-Genom

Vektor-Plasmide:
Helfer-Plasmide:

Fig.4

Fig.5

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 00/07768

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 C12N15/41 C07K14/085 A61K48/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC 7 C12N C07K A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	KRAMER, B. ET AL.: "Chinese hamster ovary cells are non-permissive towards infection with coxsackievirus B3 despite functional virus-receptor interactions" VIRUS RES, vol. 48, no. 2, May 1997 (1997-05), pages 149-156, XP000929939 abstract page 153, left-hand column page 155, left-hand column, paragraph 2 ---	1-12, 14-18, 21-23, 25-31
A	WO 98 39426 A (KOLBECK PETER ;UNIV NEBRASKA (US); CHAPMAN NORA M (US); MALONE JAM) 11 September 1998 (1998-09-11) page 5, line 29-33 page 10, line 15-18 ---	1-12, 14-18, 21-23, 25-31

 Further documents are listed in the continuation of box C. Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

11 December 2000

Date of mailing of the international search report

22.12.00

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
 Fax: (+31-70) 340-3016

Authorized officer

Herrmann, K

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 00/07768

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	ZELL R ET AL: "COXSACHIEVIRUS B3 (CVB3) VARIANTS EXPRESSING CYTOKINE GENES AS A TOOL TO INFLUENCE THE LOCAL IMMUNITY IN VIVO" IMMUNOBIOLOGY, DE, STUTTGART, vol. 197, no. 2/04, 1997, page 336 XP002072834 the whole document ---	1-12, 14-18, 21-23, 25-31
A	KERN C ET AL: "COXACKIEVIRUS-VERSTAERKTER ENDOSOMOLYTISCHER GENTRANSFER IN KONTRAKTILE KARDIOMYOZYTEN" VERHANDLUNGEN DER DEUTSCHEN GESELLSCHAFT FUER PATHOLOGIE, GUSTAV FISCHER VERLAG, STUTTGART, DE, vol. 81, 1997, page 611 XP000929840 the whole document -----	1-12, 14-18, 21-23, 25-31

INTERNATIONAL SEARCH REPORT

International application No.

PCT/EP00/07768

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

Remark: Although claim 11 relates to a method for treating the human/animal body, a search was carried out which was based on the indicated effects of the compound/composition.
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

See supplemental sheet ADDITIONAL MATTER PCT/ISA/210
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

ADDITIONAL MATTER PCT/ISA/210

Continuation of box I.2

Claims Nos.: 13, 19, 20, 24, 32 and partially claims 1-12, 14-18, 21-23, 25-31

Claims 13, 19, 20, 24 and 32 clearly contravene the requirements of Article 6 PCT since they do not disclose the essential technical features that are required to characterize the invention in a sufficiently clear manner (cf. PCT Guidelines III-4.4). Therefore, no meaningful search encompassing the subject matter of these claims could be carried out.

Claim No. 13: The invention fails to indicate any of the sequences to be complemented.

Claims Nos. 19, 20 and, consequently, claim 24: The invention fails to indicate the sequence sections that are to be amplified.

Claim No. 32: The missing gene functions (shall result in a non-infectious virus) are not defined in any way.

Claims Nos.: 1-12, 14-18, 21-23, 25-31 (all partially)

Independent claim 1 encompasses all Coxsackie virus group B virus genomes that are non-infectious. However, only a limited number of such non-infectious viruses are completely disclosed (Article 5 PCT) and supported by the description (Article 6 PCT). According to the present invention it is necessary, in order to obtain a non-infectious group B Coxsackie virus, that the genome is devoid of the capsid genes VP1-VP4 (claim 4) and the protease 2A gene (claim 5) (see page 21, lines 25-26 of the description and Fig. 4). Therefore, a meaningful search encompassing the entire scope of protection sought seems impossible. Therefore, the search was carried out based on the assumption that independent claim 1 contains the technical features of claim 4 (VP1-VP4) and partially those of claim 5 (protease 2A) (cf. Article 17(2)(a)(ii) PCT).

The applicant's attention is drawn to the fact that claims, or parts of claims relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). EPO policy, when acting as an International Preliminary Examining Authority, is normally not to carry out a preliminary examination on matter which has not been searched. This is the case, irrespective of whether or not the claims are amended following receipt of the search report (Article 19 PCT) or during any Chapter II procedure whereby the applicant provides new claims.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 00/07768

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9839426 A	11-09-1998	US 6071742 A	AU 726500 B	06-06-2000 09-11-2000

INTERNATIONALER RECHERCHENBERICHT

Internes Aktenzeichen

PCT/EP 00/07768

A. Klassifizierung des Anmeldungsgegenstandes
IPK 7 C12N15/41 C07K14/085 A61K48/00

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 C12N C07K A61K

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

WPI Data, EPO-Internal, PAJ, BIOSIS, MEDLINE

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	KRAMER, B. ET AL.: "Chinese hamster ovary cells are non-permissive towards infection with coxsackievirus B3 despite functional virus-receptor interactions" VIRUS RES, Bd. 48, Nr. 2, Mai 1997 (1997-05), Seiten 149-156, XP000929939 Zusammenfassung Seite 153, linke Spalte Seite 155, linke Spalte, Absatz 2	1-12, 14-18, 21-23, 25-31
A	WO 98 39426 A (KOLBECK PETER ;UNIV NEBRASKA (US); CHAPMAN NORA M (US); MALONE JAM) 11. September 1998 (1998-09-11) Seite 5, Zeile 29-33 Seite 10, Zeile 15-18	1-12, 14-18, 21-23, 25-31
		-/-

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- *A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- *E* älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- *O* Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- *P* Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

- *T* Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- *X* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden
- *Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

11. Dezember 2000

Absendedatum des internationalen Recherchenberichts

22.12.00

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax (+31-70) 340-3016

Bevollmächtigter Bediensteter

Herrmann, K

INTERNATIONALER FORSCHENBERICHT

Int. Aktenzeichen

PCT/EP-00/07768

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	ZELL R ET AL: "COXSACHIEVIRUS B3 (CVB3) VARIANTS EXPRESSING CYTOKINE GENES AS A TOOL TO INFLUENCE THE LOCAL IMMUNITY IN VIVO" IMMUNOBIOLOGY, DE, STUTTGART, Bd. 197, Nr. 2/04, 1997, Seite 336 XP002072834 das ganze Dokument	1-12, 14-18, 21-23, 25-31
A	KERN C ET AL: "COXACKIEVIRUS-VERSTAERKTER ENDOSOMOLYTISCHER GENTRANSFER IN KONTRAKTILE KARDIOMYOZYTEN" VERHANDLUNGEN DER DEUTSCHEN GESELLSCHAFT FUER PATHOLOGIE, GUSTAV FISCHER VERLAG, STUTTGART, DE, Bd. 81, 1997, Seite 611 XP000929840 das ganze Dokument	1-12, 14-18, 21-23, 25-31

INTERNATIONALER RECHERCHENBERICHT

I. nationales Aktenzeichen
PCT/EP 00/07768

Feld I Bemerkungen zu den Ansprüchen, die sich als nicht recherchierbar erwiesen haben (Fortsetzung von Punkt 2 auf Blatt 1)

Gemäß Artikel 17(2)a) wurde aus folgenden Gründen für bestimmte Ansprüche kein Recherchenbericht erstellt:

1. Ansprüche Nr.
weil sie sich auf Gegenstände beziehen, zu deren Recherche die Behörde nicht verpflichtet ist, nämlich
Obwohl sich der Anspruch 11 auf ein Verfahren zur Behandlung des menschlichen/tierischen Körpers bezieht, wurde die Recherche durchgeführt und gründete sich auf die angeführten Wirkungen der Verbindung/Zusammensetzung.
2. Ansprüche Nr.
weil sie sich auf Teile der internationalen Anmeldung beziehen, die den vorgeschriebenen Anforderungen so wenig entsprechen, daß eine sinnvolle internationale Recherche nicht durchgeführt werden kann, nämlich
siehe Zusatzblatt WEITERE ANGABEN PCT/ISA/210
3. Ansprüche Nr.
weil es sich dabei um abhängige Ansprüche handelt, die nicht entsprechend Satz 2 und 3 der Regel 6.4 a) abgefaßt sind.

Feld II Bemerkungen bei mangelnder Einheitlichkeit der Erfindung (Fortsetzung von Punkt 3 auf Blatt 1)

Die internationale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere Erfindungen enthält:

1. Da der Anmelder alle erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht auf alle recherchierbaren Ansprüche.
2. Da für alle recherchierbaren Ansprüche die Recherche ohne einen Arbeitsaufwand durchgeführt werden konnte, der eine zusätzliche Recherchengebühr gerechtfertigt hätte, hat die Behörde nicht zur Zahlung einer solchen Gebühr aufgetragen.
3. Da der Anmelder nur einige der erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht nur auf die Ansprüche, für die Gebühren entrichtet worden sind, nämlich auf die Ansprüche Nr.
4. Der Anmelder hat die erforderlichen zusätzlichen Recherchengebühren nicht rechtzeitig entrichtet. Der internationale Recherchenbericht beschränkt sich daher auf die in den Ansprüchen zuerst erwähnte Erfindung; diese ist in folgenden Ansprüchen erfaßt:

Bemerkungen hinsichtlich eines Widerspruchs

Die zusätzlichen Gebühren wurden vom Anmelder unter Widerspruch gezahlt.
 Die Zahlung zusätzlicher Recherchengebühren erfolgte ohne Widerspruch.

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen PCT/EP 00 07768

WEITERE ANGABEN	PCT/SAV 210
Fortsetzung von Feld I.2	
Ansprüche Nr.: 13, 19, 20, 24, 32 und teilweise Ansprüche 1-12, 14-18, 21-23, 25-31	
<p>Ansprüche 13, 19, 20, 24 und 32 verstößen klar gegen die Erfordernisse von Art. 6 PCT. In besagten Ansprüchen sind die wesentlichen technischen Merkmale, die zur Angabe der Erfindung notwendig sind, nicht deutlich aufgeführt (cf. PCT-Richtlinien III-4.4). Daher konnte für den Gegenstand besagter Ansprüche keine sinnvolle Recherche durchgeführt werden:</p> <p>Anspruch 13: Es werden keine der zu komplementierenden Sequenzen angegeben.</p> <p>Ansprüche 19, 20 und folglich Anspruch 24: Es werden keine Sequenzabschnitte, die zu verstärken sind, angegeben.</p> <p>Anspruch 32: Die fehlenden Genfunktionen (soll zu einem nicht-infektiösen Virus führen) werden in keiner Weise definiert.</p> <p>Ansprüche 1-12, 14-18, 21-23, 25-31 (alle teilweise)</p> <p>Der unabhängige Anspruch 1 umfasst alle Virusgenome vom Coxsackievirus der Gruppe B, welche nicht-infektiös sind. Jedoch ist nur eine begrenzte Anzahl solcher nicht-infektiösen Viren vollständig offenbart (Art. 5 PCT) und durch die Beschreibung gestützt (Art. 6 PCT). Um einen nicht-infektiösen Coxsackievirus der Gruppe B zu erhalten ist es nach vorliegender Anmeldung nötig, daß die Kapsidgene VP1-VP4 (Anspruch 4) und das Gen für Protease 2A (Anspruch 5) fehlen (siehe S. 21, Z. 25-26 der Beschreibung und Fig. 4). Daher ist eine sinnvolle Recherche für den gesamten, beanspruchten Schutzmfang nicht möglich. Folglich wurde die Recherche unter der Annahme durchgeführt, daß der unabhängige Anspruch 1 die technischen Merkmale des Anspruchs 4 (VP1-VP4) und teilweise des Anspruchs 5 (Protease 2A) enthält (cf. Art. 17(2)(a)(ii) PCT).</p> <p>Der Anmelder wird darauf hingewiesen, daß Patentansprüche, oder Teile von Patentansprüchen, auf Erfindungen, für die kein internationaler Recherchenbericht erstellt wurde, normalerweise nicht Gegenstand einer internationalen vorläufigen Prüfung sein können (Regel 66.1(e) PCT). In seiner Eigenschaft als mit der internationalen vorläufigen Prüfung beauftragte Behörde wird das EPA also in der Regel keine vorläufige Prüfung für Gegenstände durchführen, zu denen keine Recherche vorliegt. Dies gilt auch für den Fall, daß die Patentansprüche nach Erhalt des internationalen Recherchenberichtes geändert wurden (Art. 19 PCT), oder für den Fall, daß der Anmelder im Zuge des Verfahrens gemäß Kapitel II PCT neue Patentanprüche vorlegt.</p>	

INTERNATIONALER RECHENBERICHT

Angaben zu Veröffentlichungen, die zur Patentfamilie gehören

Inte als Aktenzeichen

PCT/EP 00/07768

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
WO 9839426 A	11-09-1998	US	6071742 A	06-06-2000
		AU	6346098 A	22-09-1998
		EP	0973879 A	26-01-2000