Embora tenha buscado encontrar algumas formas de representação alternativas, creio que a utilizada pelo autor para os indivíduos (baseada em inteiros) foi a menos complexa e inclusive a que utilizei em minha avaliação. Diferente do caixeiro viajante onde partimos de uma cidade x, em rotas de distribuição os veículos partem sempre de um centro de distribuição, então é necessário contabilizar a distância do centro de distribuição até o primeiro ponto de entrega. A resolução tem semelhanças e adiciona algumas complexidades e restrições, como o limite de capacidade de um veículo. A abordagem utilizada no artigo parece em partes com a resolução do problema da mochila mesclado com o caixeiro viajante para encontrar o menor custo sem repetir pontos de entrega.

Representação dos indivíduos

Cada cromossomo representa uma solução. Uma solução pode e normalmente contém mais de um veículo sendo utilizados, o artigo demonstra ainda o exemplo de uma rota com clientes de 1 até 9 e a utilização de três veículos (pág. 70):

veículo	roteiro
v1	6-5-2
v2	4—1—9—3
v3	7 — 8

Em uma solução sorteada e respeitando os critérios de capacidade serão utilizadas três veículos. Para conseguir identificar quando é utilizado um segundo veículo o autor adiciona um 0 na solução.

$$0-6-5-2-0-3-4-1-9-0-7-8$$

Logo será considerado que cada veículo sai e retorna ao centro de distribuição, ficando as rotas com o 0 na primeira e na última posição.

Existem x pontos de entregas que devem ser visitados, será necessário ter as distâncias de um ponto até o outro, bem como até o centro de distribuição (CD). Incluímos a distância do CD até os demais pontos porque sempre o veículo que fará a entrega necessita se deslocar até o primeiro ponto. Ainda com o exemplo do caixeiro viajante, podemos imaginar que o CD é a cidade de origem.

	Centro de distribuição	Ponto 1	Ponto 2	Ponto 3
Centro de distribuição	0	10	20	30
Ponto 1	10	0	40	50
Ponto 2	20	40	0	60
Ponto 3	30	50	60	0

^{*} Desprezando posição exata das cidades que no artigo baseia-se em coordenadas X e Y

Cada cliente (ponto de entrega) é representado através da utilização de inteiros de 1 até n, logo um gene do cromossomo será um cliente na forma de seu identificador. Cada cliente pode ter um ou mais produtos a receber.

	Cliente	Produto (s)	Espaço total necessário
1	Cliente 1	Produto 1 + Produto 2 + Produto 3	30
2	Cliente 2	Produto 1	7
3	Cliente 3	Produto 1	2
4	Cliente 4	Produto 1	5

^{*} Espaço agnóstico a unidades de medida.

Para a população inicial sorteamos um produto/gene da lista de produtos disponíveis para entrega que ainda não estão incluídos no cromossomo (garantir que não existam repetidos) e que ainda não tenha sido visitado por outro veículo e então adicionamos ao cromossomo.

O espaço necessário no veículo será de 39 por somarmos 30 + 7 + 2. O custo é a distância, calculada conforme a tabela:

$$140 \rightarrow (30 \text{ [Centro} \rightarrow \text{Ponto3}] + 50 \text{ [Ponto3} \rightarrow \text{Ponto1}] + 40 \text{ [Ponto1} \rightarrow \text{Ponto2}] + 20 \text{ [Ponto2} \rightarrow \text{Centro]})$$
.

Cada cromossomo pode ser representado por um veículo:

- veiculo 1 = [3 1 2]
- veiculo 2 = [4]

Ainda seguiria a ideia do autor de adicionar o centro de distribuição no cromossomo. Neste caso com a visita ao CD (representado por 0) temos:

- veiculo 1 = [0 3 1 2 0]
- veiculo 2 = [0 4 0]

Onde, o veículo parte do centro de distribuição 0, visita os pontos de entrega e retorna.

Um centro de distribuição possui *n* veículos disponíveis com diferentes capacidades.

Centro de distribuição 1 (Código 0)		
Veículo	Capacidade	
Carro	50	
Van	100	
Caminhão	500	

Na função de aptidão o autor baseou o cálculo em somar os roteiros e verificar a capacidade do veículo que fará as entregas, o que faz total sentido. Se por algum motivo ao sortear o próximo ponto de entrega for identificado que a capacidade será excedida, automaticamente uma visita ao CD (centro de distribuição) é adicionada, fazendo com o roteiro seja dividido

em subetapas e que o custo aumente, consequentemente as chances de seleção diminuem. Esta abordagem é interessante por garantir que embora não seja a solução ideal, um veículo qualquer possa cumprir com o roteiro planejado, mesmo que seja necessário voltar ao CD para continuar com as entregas. Com este conceito não é necessário armazenar os pontos de entregas não visitados e rodar o algoritmo uma segunda vez apenas com estes dados para tentar enviar um veículo que cumpra o roteiro sobressalente.

Na função de seleção dos indivíduos não foi informado ou não consegui localizar a fórmula utilizada, porém foi especificado que o método da roleta viciada é a base. Por ser o problema do caixeiro viajante onde queremos visitar n pontos sem repetir nenhum e retornar ao de origem (apenas com o ajuste de que partimos sempre do centro de distribuição), utilizaria o mesmo coeficiente que elaborei na avaliação para calcular grandezas inversamente proporcionais, isto quer dizer que quanto maior a distância, menores devem ser as chances de um indivíduo ser selecionado na roleta.

Para distribuir os indivíduos com menor distâncias em maior proporção na roleta podemos utilizar:

Coeficiente = 1 (100%) / distância percorrida Proporção (probabilidade de ser sorteado) = Coeficiente / Soma dos coeficientes

Neste exemplo observamos que o indivíduo que possui um custo (distância) de 60 tem 45% de chances de ser sorteado na roleta.