UNIVERSIDAD NACIONAL DEL ALTIPLANO FACULTAD DE ING. ESTADÍSTICA E INFORMÁTICA ESCUELA PROFESIONAL DE ING. ESTADÍSTICA E INFORMÁTICA

PROGRAMACIÓN NUMÉRICA

f DOCENTE:

M.Sc CCAMA ALEJO ROGER

1 ALUMNOS:

- AQUINO SANDOVAL JEAN CARLOS
- INCACUTIPA MUÑUICO RONALD WILDER
- MAMANI APAZA JHON GILMER
- TICONA MIRAMIRA ROBERTO ANGEL

1 SECCIÓN:

"A"

PUNO - PERÚ

2025

Trabajo 4 - Método de Regula Falsi

El **método de regula falsi** (también llamado *falsa posición*) es un **método numérico** para encontrar raíces de una ecuación no lineal de la forma:

$$f(x) = 0$$

Descripción general

- Es un **método cerrado**, ya que trabaja dentro de un intervalo.
- Parte de un intervalo inicial [a, b] tal que:

$$f(a) \cdot f(b) < 0$$

es decir, la función cambia de signo en ese intervalo, lo que garantiza la existencia de al menos una raíz dentro del intervalo (según el teorema del valor intermedio).

■ A diferencia del **método de bisección**, que toma el punto medio del intervalo, la regula falsi busca un mejor punto de aproximación usando interpolación lineal entre los extremos.

Fórmula de interpolación

Dados a_n y b_n con $f(a_n) \cdot f(b_n) < 0$, el nuevo punto se calcula:

$$c_n = b_n - f(b_n) \cdot \frac{b_n - a_n}{f(b_n) - f(a_n)}$$

que también puede escribirse como:

$$c_n = \frac{a_n f(b_n) - b_n f(a_n)}{f(b_n) - f(a_n)}$$

Algoritmo

- 1. Calcular c_n usando la fórmula de interpolación.
- 2. Si $f(a_n) \cdot f(c_n) < 0$, entonces:

$$[a_{n+1}, b_{n+1}] = [a_n, c_n]$$

3. Si $f(c_n) \cdot f(b_n) < 0$, entonces:

$$[a_{n+1}, b_{n+1}] = [c_n, b_n]$$

Ilustración de la idea principal: secante (cuerda) y su intersección con el eje x

Proceso iterativo

- 1. Se calcula x_r con la fórmula.
- 2. Se evalúa $f(x_r)$:
 - Si $f(x_r) = 0$, se encontró la raíz.
 - Si $f(a) \cdot f(x_r) < 0$, la raíz está en $[a, x_r] \implies b = x_r$.
 - Si $f(x_r) \cdot f(b) < 0$, la raíz está en $[x_r, b] \implies a = x_r$.
- 3. Se repite el procedimiento hasta cumplir con una tolerancia de error deseada o un número máximo de iteraciones.

Características

- Es más **rápido que el método de bisección**, porque usa interpolación lineal en lugar de dividir siempre a la mitad.
- Puede **estancarse** si uno de los extremos no se mueve en varias iteraciones (cuando la función es muy curvada en esa zona).
- Es precursor del método de la secante, que ya no requiere un intervalo que encierre la raíz.

Ejemplo

Función y parámetros

Función: $f(x) = x^2 - 4$

Intervalo inicial: $[a_0, b_0] = [1, 3]$

Verificación del intervalo

- $f(1) = 1^2 4 = 1 4 = -3$ (negativo)
- $f(3) = 3^2 4 = 9 4 = 5$ (positivo)

Como f(1) < 0 y f(3) > 0, existe una raíz en el intervalo [1, 3]

Fórmula

$$c_n = \frac{a_n \cdot f(b_n) - b_n \cdot f(a_n)}{f(b_n) - f(a_n)}$$

Tabla de iteraciones

Iteración	$\mathbf{a_n}$	$\mathbf{b_n}$	$f(a_n)$	$f(b_n)$	$\mathbf{c_n}$	$\mathbf{f}(\mathbf{c_n})$
0	1.00000	3.00000	-3.00000	5.00000	-	-
1	1.00000	3.00000	-3.00000	5.00000	1.75000	-0.93750
2	1.75000	3.00000	-0.93750	5.00000	1.94737	-0.20690
3	1.94737	3.00000	-0.20690	5.00000	1.98851	-0.04586
4	1.98851	3.00000	-0.04586	5.00000	1.99746	-0.01017
5	1.99746	3.00000	-0.01017	5.00000	1.99935	-0.00226

Tabla 1: Iteraciones del método Regula Falsi

Desarrollo de iteraciones

Iteración 1

$$c_1 = \frac{1 \cdot 5 - 3 \cdot (-3)}{5 - (-3)} = \frac{5 + 9}{8} = \frac{14}{8} = 1.75000$$
$$f(c_1) = (1.75)^2 - 4 = 3.0625 - 4 = -0.93750$$

Como $f(c_1) < 0$, el nuevo intervalo es [1.75000, 3]

Iteración 2

$$c_2 = \frac{1.75 \cdot 5 - 3 \cdot (-0.9375)}{5 - (-0.9375)} = \frac{8.75 + 2.8125}{5.9375} = \frac{11.5625}{5.9375} = 1.94737$$
$$f(c_2) = (1.94737)^2 - 4 = 3.79310 - 4 = -0.20690$$

Como $f(c_2) < 0$, el nuevo intervalo es [1.94737, 3]

Iteración 3

$$c_3 = \frac{1.94737 \cdot 5 - 3 \cdot (-0.20690)}{5 - (-0.20690)} = \frac{9.73685 + 0.62070}{5.20690} = 1.98851$$
$$f(c_3) = (1.98851)^2 - 4 = -0.04586$$

Nuevo intervalo: [1.98851, 3]

Iteración 4

$$c_4 = \frac{1.98851 \cdot 5 - 3 \cdot (-0.04586)}{5 - (-0.04586)} = \frac{9.94255 + 0.13758}{5.04586} = 1.99746$$
$$f(c_4) = (1.99746)^2 - 4 = -0.01017$$

Nuevo intervalo: [1.99746, 3]

Iteración 5

$$c_5 = \frac{1.99746 \cdot 5 - 3 \cdot (-0.01017)}{5 - (-0.01017)} = \frac{9.98730 + 0.03051}{5.01017} = 1.99935$$
$$f(c_5) = (1.99935)^2 - 4 = -0.00226$$

Nuevo intervalo: [1.99935, 3]

Conclusión

La raíz aproximada de la ecuación $x^2-4=0$ después de 5 iteraciones es $x\approx 1.99935$ El valor exacto de la raíz positiva es x=2

Ejemplo gráfico

En esta sección se muestra la representación gráfica del método aplicado.

Figura 1: Gráfica del método Regula Falsi aplicado a la función dada.

Función y parámetros

Función: $f(x) = x^3 - 2x - 5$

Intervalo inicial: $[a_0, b_0] = [2, 3]$

Verificación del intervalo

$$f(2) = 2^3 - 2(2) - 5 = 8 - 4 - 5 = -1$$
 (negativo)

•
$$f(3) = 3^3 - 2(3) - 5 = 27 - 6 - 5 = 16$$
 (positivo)

Como f(2) < 0 y f(3) > 0, existe una raíz en el intervalo [2, 3].

Fórmula

$$c_n = \frac{a_n \cdot f(b_n) - b_n \cdot f(a_n)}{f(b_n) - f(a_n)}$$

Tabla de iteraciones

Iteración	$\mathbf{a_n}$	$\mathbf{b_n}$	$f(a_n)$	$f(b_n)$	$\mathbf{c_n}$	$f(c_n)$
0	2.00000	3.00000	-1.00000	16.00000	-	-
1	2.00000	3.00000	-1.00000	16.00000	2.05882	-0.39054
2	2.05882	3.00000	-0.39054	16.00000	2.08285	-0.14407
3	2.08285	3.00000	-0.14407	16.00000	2.09171	-0.05333
4	2.09171	3.00000	-0.05333	16.00000	2.09499	-0.01973
5	2.09499	3.00000	-0.01973	16.00000	2.09621	-0.00730

Tabla 2: Iteraciones del método Regula Falsi

Desarrollo de iteraciones

Iteración 1:

$$c_1 = \frac{2 \cdot 16 - 3 \cdot (-1)}{16 - (-1)} = \frac{32 + 3}{17} = \frac{35}{17} = 2.05882$$
$$f(c_1) = (2.05882)^3 - 2(2.05882) - 5 = -0.39054$$

Como $f(c_1) < 0$, el nuevo intervalo es [2.05882, 3].

Iteración 2:

$$c_2 = \frac{2.05882 \cdot 16 - 3 \cdot (-0.39054)}{16 - (-0.39054)} = \frac{32.94112 + 1.17162}{16.39054} = 2.08285$$
$$f(c_2) = (2.08285)^3 - 2(2.08285) - 5 = -0.14407$$

Como $f(c_2) < 0$, el nuevo intervalo es [2.08285, 3].

Iteración 3:

$$c_3 = \frac{2.08285 \cdot 16 - 3 \cdot (-0.14407)}{16 - (-0.14407)} = 2.09171$$
$$f(c_3) = -0.05333$$

Nuevo intervalo: [2.09171, 3].

Iteración 4:

$$c_4 = \frac{2.09171 \cdot 16 - 3 \cdot (-0.05333)}{16 - (-0.05333)} = 2.09499$$
$$f(c_4) = -0.01973$$

Nuevo intervalo: [2.09499, 3].

Iteración 5:

$$c_5 = \frac{2.09499 \cdot 16 - 3 \cdot (-0.01973)}{16 - (-0.01973)} = 2.09621$$
$$f(c_5) = -0.00730$$

Nuevo intervalo: [2.09621, 3].

Conclusión

La raíz aproximada de la ecuación $x^3 - 2x - 5 = 0$ después de 5 iteraciones es:

$$x\approx 2.09621$$

Ejemplo gráfico

En esta sección se muestra la representación gráfica del método aplicado.

Figura 2: Gráfica del método Regula Falsi aplicado a la función dada.