Worksheet 1

1. State the definition of the follow:	ng.
--	-----

- (a) relation
- (b) equivalence relation
- (c) function
- (d) injective function
- (e) surjective function
- (f) bijective function
- (a) A relation R on a set S is a subset of $S \times S$. If $(s_1, s_2) \in R$ we write $s_1 R s_2$ or $s_1 \sim s_2$.
- (b) An equivalence relation is a relation on a set S with the following properties:
 - (i) $a \sim a$ for all $a \in S$.
 - (ii) If $a \sim b$ then $b \sim a$ for all $a, b \in S$.
 - (iii) If $a \sim b$ and $b \sim c$ then $a \sim c$ for all $a, b, c \in S$.
- (c) A function $f: X \to Y$ is a subset of $X \times Y$ such that for every element $x \in X$ there exists at most one $y \in Y$ such that $(x, y) \in f$. If $(x, y) \in f$ we write f(x) = y.
- (d) An injective function is a function $f: X \to Y$ such that if $f(x_1) = f(x_2)$ then $x_1 = x_2$.
- (e) A surjective function is a function $f: X \to Y$ such that for all $y \in Y$ there is an $x \in X$ such that f(x) = y.
- (f) A bijective function is a function $f: X \to Y$ such that f is a surjection and injection.

Worksheet 1

2. Show that the function $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x is a bijection.

Proof. Suppose that $f(x_1) = f(x_2)$, then

$$2x_1 = 2x_2$$
.

If we divide by 2, we get that

$$x_1 = x_2$$
.

Hence, f is an injection. Now let $y \in \mathbb{R}$ and let $x = \frac{1}{2}y$. We have

$$f(x) = 2 \cdot \frac{1}{2}y = y.$$

Hence f is a surjection.

3. Is the function $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$ a bijection ? Why or why not?

This is not a bijection. There is no $x \in \mathbb{R}$ such that $f(x) = x^2 = -1$.

Worksheet 1

Define the following equivalence relation on \mathbb{R} : $x \sim y$ if and only if $x \cdot y \geq 0$. Is this an equivalence relation?

This is not an equivalence relation. It fails transitivity. Note that $5\sim 0$ and $0\sim (-5)$ but $5\not\sim (-5)$.