12. Das Schwarzsche Lemma

 $\mathbb{D}:=\{z\in\mathbb{C}:|z|<1\}.$

Satz 12.1 (Schwarzsches Lemma)

Es sei $f \in H(\mathbb{D}), f(\mathbb{D}) \subseteq \mathbb{D}$ und f(0) = 0.

Dann:

$$|f(z)| \le |z| \forall z \in \mathbb{D} \text{ und } |f'(0)| \le 1 \text{ (*)}.$$

Ist |f'(0)| = 1 oder $|f(z_0)| = |z_0|$ für ein $z_0 \in \mathbb{D} \setminus \{0\}$, so ex. ein $\lambda \in \partial \mathbb{D}$ mit: $f(z) = \lambda z$.

Beweis

O.b.d.A.: $f \not\equiv 0$. 11.8 $\Rightarrow \exists g \in H(\mathbb{D}) : f(z) = zg(z)$. Sei $z \in \mathbb{D}$. Wähle r > 0 so, dass r < 1 und |z| < r. Dann: $|g(z)| \stackrel{\text{11.7}}{\leq} \max_{|w| = r} |g(w)| = \max_{|w| = r} \frac{|f(w)|}{|w|} \leq \frac{1}{r} \stackrel{r \to}{\Rightarrow} |g(z)| \leq 1$. Also $|g(z)| \leq 1 \forall z \in \mathbb{D}$. $f'(z) = g(z) + zg'(z) \Rightarrow f'(0) = g(0)$ Also gilt (*). Es sei |f'(0)| = 1 oder $|f(z_0)| = |z_0|$ für ein $z_0 \in \mathbb{D} \setminus \{0\} \Rightarrow |g(0)| = 1$ oder $|g(z_0)| = 1 \Rightarrow |g|$ hat ein Maximum in \mathbb{D} . 11.6 \Rightarrow g konstant $\Rightarrow \exists \lambda \in \mathbb{C} : g(z) = \lambda \ \forall z \in \mathbb{D}$. Dann: $f(z) = \lambda z$. Es ist $|\lambda| = |g(0)| = 1$ oder $|\lambda| = |g(z_0)| = 1 \Rightarrow \lambda \in \partial \mathbb{D}$.

Definition

Sei $a \in \mathbb{D}$ und $S_a \in H(\mathbb{C} \setminus \{\frac{1}{\overline{a}}\})$ def. durch $S_a(z) := \frac{z-a}{1-\overline{a}z}$

Beachte 1

 $\left|\frac{1}{\overline{a}}\right| = \frac{1}{|a|} > 1$, also $\frac{1}{\overline{a}} \notin \overline{\mathbb{D}}$. $S_a(a) = 0$, $S_a(0) = -a$.

Satz 12.2

Sei $a \in \mathbb{D}$. Dann:

- (1) S_a ist auf $\mathbb{C}\setminus\{\frac{1}{\overline{a}}\}$ injektiv.
- $(2) S_a^{-1} = S_{-a} \text{ auf } \overline{\mathbb{D}}$
- (3) $S_a(\partial \mathbb{D}) = \partial \mathbb{D}$
- (4) $S_a(\mathbb{D}) = \mathbb{D}$
- (5) Ist $\lambda \in \partial \mathbb{D}$, so ist $\lambda S_a \in \operatorname{Aut}(\mathbb{D})$.

Beweis

(1) Nachrechnen.

12. Das Schwarzsche Lemma

- (2) $w = S_a(z) = \frac{z-a}{1-\overline{a}z} \iff z-a = w-\overline{a}zw \iff z(1+\overline{a}w) = w+a \iff z = \frac{w+a}{1+\overline{a}w} = S_{-a}(w)$
- (3) Sei |z| = 1, also $z = e^{it}(t \in \mathbb{R}).|S_a(z)| = |\frac{e^{it} a}{1 \overline{a}e^{it}}| = |\frac{e^{it} a}{e^{it}(e^{-it} \overline{a})}| = \frac{|e^{it} a|}{|e^{it}||e^{it} a|} = 1$. Also: $S_a(\partial \mathbb{D}) \subseteq \partial \mathbb{D}, \ \partial \mathbb{D} \stackrel{\text{(2)}}{=} S_a(\underbrace{S_{-a}(\partial \mathbb{D})}) \subseteq S_a(\partial \mathbb{D}).$
- (4) Sei $z \in \mathbb{D}$. $|S_a(z)| \stackrel{11.7}{\leq} \max_{|w|=1} |S_a(w)| \stackrel{(3)}{=} 1 \Rightarrow S_a(\mathbb{D}) \subseteq \overline{\mathbb{D}}$ Sei $z \in \mathbb{D}$, $w := S_a(z)$. Annahme: $|w| = 1 \stackrel{(3)}{\Rightarrow} |z| = |S_{-a}(w)| = 1$ Wid. Also $S_a(\mathbb{D}) \subseteq \mathbb{D}$. Genauso $S_{-a}(\mathbb{D}) \subseteq \mathbb{D}$. Dann $\mathbb{D} \stackrel{(2)}{=} S_a(S_{-a}(\mathbb{D})) \subseteq S_a(\mathbb{D})$
- (5) folgt aus (1) und (4).

Satz 12.3

Sei $f \in H(\mathbb{D})$

 $f \in Aut(\mathbb{D}) \text{ und } f(0) = 0 \iff \exists \lambda \in \partial \mathbb{D} : f(z) = \lambda z.$

Beweis

"**⇐**": Klar

" \Rightarrow ": Dann $f^{-1} \in Aut(\mathbb{D}), f^{-1}(0) = 0$. Sei $z \in \mathbb{D}, w := f(z)$; dann:

$$z = f^{-1}(w), |z| = |f^{-1}(w)| \stackrel{12.1}{\leq} |w| = |f(z)| \stackrel{12.1}{\leq} |z| \text{ Also } |f(z)| = |z| \ \forall z \in \mathbb{D}. \ 12.1 \Rightarrow \exists \lambda \in \partial \mathbb{D}: f(z) = \lambda z \ \forall z \in \partial \mathbb{D}$$

Satz 12.4

$$\operatorname{Aut}(\mathbb{D}) = \{ \lambda S_a : \lambda \in \partial \mathbb{D}, a \in \mathbb{D} \}$$

Beweis

" \supseteq ": 12.2 (5)

" \subseteq ": Sei $f \in Aut(\mathbb{D})$, $a := f^{-1}(0) \in \mathbb{D}$. $g := f \circ S_a$; $g \in Aut(\mathbb{D})$ und $g(0) = f(S_a(0)) = f(a) = 0$. 12.3 $\Rightarrow \exists \lambda \in \partial \mathbb{D} : g(z) = \lambda z$. Es ist $f = g \circ S_a = \lambda S_a$