

X3-Class HiPerFET™ **Power MOSFET**

IXFT150N25X3HV IXFH150N25X3

N-Channel Enhancement Mode Avalanche Rated

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	$T_J = 25^{\circ}C \text{ to } 150^{\circ}C$	250	V	
V _{DGR}	$T_{_{ m J}}$ = 25°C to 150°C, $R_{_{ m GS}}$ = 1M Ω	250	V	
V _{GSS}	Continuous	±20	V	
V _{GSM}	Transient	±30	V	
I _{D25}	$T_{c} = 25^{\circ}C$ $T_{c} = 25^{\circ}C$, Pulse Width Limited by T_{JM}	150 300	A A	
I _A	T _C = 25°C	75	Α	
E _{AS}	T _C = 25°C	1.8	J	
dv/dt	$I_{_{\mathrm{S}}} \leq I_{_{\mathrm{DM}}}, V_{_{\mathrm{DD}}} \leq V_{_{\mathrm{DSS}}}, T_{_{\mathrm{J}}} \leq 150^{\circ}\mathrm{C}$	20	V/ns	
P _D	T _C = 25°C	735	W	
T _J		-55 +150	°C	
T _{JM}		150	°C	
T _{stg}		-55 +150	°C	
T,	Maximum Lead Temperature for Soldering	300	°C	
T _{SOLD}	1.6 mm (0.062in.) from Case for 10s	260	°C	
M _d	Mounting Torque (TO-247)	1.13 / 10	Nm/lb.in	
Weight	TO-268HV TO-247	4 6	g g	

SymbolTest ConditionsCharacteristics $(T_J = 25^{\circ}C, Unless Otherwise Specified)$ Min.		teristic Values Typ. Max.			
BV _{DSS}	$V_{GS} = 0V, I_D = 1mA$	250			V
$V_{\rm GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 4mA$	2.5		4.5	V
I _{GSS}	$V_{gs} = \pm 20V, V_{DS} = 0V$			±100	nA
I _{DSS}	$V_{DS} = V_{DSS}$, $V_{GS} = 0V$ $T_{J} = 125^{\circ}C$			1	μA mA
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \bullet I_{D25}, Note 1$		7.7	9.0	mΩ

250V 150A I_{D25} $9.0 m\Omega$ \leq

TO-268HV (IXFT)

G = Gate D = Drain S = SourceTab = Drain

Features

- International Standard Packages
- Low $R_{DS(ON)}$ and Q_G Avalanche Rated
- Low Package Inductance

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode **Power Supplies**
- DC-DC Converters
- PFC Circuits
- AC and DC Motor Drives
- · Robotics and Servo Controls

•		Characteristic Values			
		Min.	Тур.	Max	
g _{fs}		$V_{DS} = 10V, I_{D} = 60A, Note 1$	60	105	S
R _{Gi}		Gate Input Resistance		1.5	Ω
C _{iss}	١			10.4	nF
C _{oss}	}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		1.6	nF
\mathbf{C}_{rss}	J			1.8	pF
		Effective Output Capacitance			
$\mathbf{C}_{o(er)}$		Energy related $\int V_{GS} = 0V$		650	pF
$C_{o(tr)}$		Time related $\int V_{DS}^{GS} = 0.8 \cdot V_{DSS}$		2500	pF
t _{d(on)})	Resistive Switching Times		30	ns
t,		$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		30	ns
$\mathbf{t}_{d(off)}$		20 20 2 22		115	ns
t _f		$n_{\rm G} = 352 (External)$		10	ns
$\mathbf{Q}_{g(on)}$)			154	nC
\mathbf{Q}_{gs}	}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		50	nC
\mathbf{Q}_{gd}	J			40	nC
R _{thJC}					0.17 °C/W
R _{thCS}		TO-247		0.21	°C/W

Source-Drain Diode

SymbolTest ConditionsCh(T _J = 25°C, Unless Otherwise Specified)Mir			cteristic Typ.	Values Max	
I _s	V _{GS} = 0V			150	Α
I _{sm}	Repetitive, pulse Width Limited by $T_{_{JM}}$			600	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.4	V
$\left\{ egin{array}{c} \mathbf{t}_{rr} \\ \mathbf{Q}_{RM} \\ \mathbf{I}_{RM} \end{array} \right\}$	$I_F = 75A$, -di/dt = 100A/ μ s $V_R = 100V$		140 770 11		ns nC A

Note 1. Pulse test, $t \le 300 \mu s$, duty cycle, $d \le 2\%$.

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

 I_D - Amperes

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

0.0001

0.1

0.1 N/X - O(1) 0.01

Pulse Width - Second

0.01

0.001

Fig. 15. Maximum Transient Thermal Impedance

© 2017 IXYS CORPORATION, All Rights Reserved.

0.001

0.00001

SYM	INCF	HES	MILLIN	METER		
STM	MIN	MAX	MIN	MAX		
Α	.193	.201	4.90	5.10		
A1	.106	.114	2.70	2.90		
A2	.001	.010	0.02	0.25		
b	.045	.057	1.15	1.45		
С	.016	.026	0.40	0.65		
C2	.057	.063	1.45	1.60		
D	.543	.551	13.80	14.00		
D1	.465	.476	11.80	12.10		
D2	.295	.307	7.50	7.80		
D3	.114	.126	2.90	3.20		
E	.624	.632	15.85	16.05		
E1	.524	.535	13.30	13.60		
е	.215	BSC	5.45 BSC			
(e2)	.374	.386	9.50	9.80		
Н	.736	.752	18.70	19.10		
L	.067	.079	1.70	2.00		
L2	.039	.045	1.00	1.15		
L3	.010	BSC	0.25 BSC			
L4	.150	.161	3.80	4 .10		

