Tarea 8 Mecánica Analítica

Cerritos Lira Carlos 6 de Mayo del 2020

Problemas

1.-

6.7)

En un espectrómetro de masas, se acelera un ion posotivo de una sola carga $(q=1.602 \times 10^{-19} coloumbs)$ por medio de una diferencia de potencial de 1000 voltios. Luego pasa por un campo magnético uniforme en el que $B=0.1 weber/m^2$, y se desvía en una trayectoria circular de 0.182m de radio. Determinar:

- a) La velocidad del ion.
- b) La masa del ion en kilogramos y unidades de masa atómica.
- c) El número de masa del ion.

a)
$$v_0 = \frac{2\phi}{qB} = 1.1 \times 10^5 m/seg$$
 b)
$$m = \frac{2T}{v_0^2} = 2.45 \times 10^{-23} g = 14.7 uma$$
 c)
$$A = 15$$

2.-

6.9

En la posición x=0,y=0, un cañón tiene un alcance máximo l_m . Determinar los dos ángulos de elevación para hacer blanco en el punto:

$$x = l_m/2, \quad y = l_m/4$$

$$\theta = 45,75$$

3.-

8.13

Una cuerda de masa 3m puede deslizarse horizontalmente sin rozamiento por un alambre como se indica en la figura 8-14. Unido a la cuerda hay un péndulo doble. Si, en una posición cercana a la de su equilibrio, se deja el sistema en libertad, a partir del reposo, las masas oscilan en el plano de la figura a un lado y al otro de la vertical.

- a) Escriba las ecuaciones de Lagrange del movimiento del sistema.
- b) Hállese las aceleraciones cuando los desplazamientos y las aceleraciones son pequeñas.

$$\mathbf{a})$$

$$T = \frac{3}{2}m\dot{x}^{2} + \frac{1}{2}ml_{1}^{2}\dot{\theta}_{1}^{2}sin^{2}\theta_{1} + \frac{1}{2}m(l_{1}\dot{\theta}_{1}cos\theta_{1} + \dot{x})^{2}$$
$$+ \frac{1}{2}m(l_{1}\dot{\theta}_{1}sin\theta_{1} + l_{2}\dot{\theta}_{2}sin\theta_{2})^{2}$$
$$+ \frac{1}{2}m(l_{1}\dot{\theta}_{1}cos\theta_{1} + l_{2}\dot{\theta}_{2}cos\theta_{2} + \dot{x})^{2}$$

$$U = mgl_1\theta_1^2 + \frac{1}{2}mgl_2\theta_2^2$$

b)

$$T = \frac{3}{2}m\dot{x}^2 + \frac{1}{2}m(l_1\dot{\theta}_1 + \dot{x})^2 + \frac{1}{2}m(l_1\dot{\theta}_1 + l_2\dot{\theta}_2 + \dot{x})^2$$

$$U = mgl_1\theta_1^2 + \frac{1}{2}mgl_2\theta_2^2$$

4.-

Demostración 8.15

$$[x_i, l_j] = \sum_k e_{ijk} x_k$$

5.-

Demostración 8.18

$$\frac{\partial}{\partial x}[X,Y] = [\frac{\partial X}{\partial x},Y] + [X,\frac{\partial Y}{\partial x}]$$