模拟与数模混合集成电路

赵梦恋 谭志超 2022年12月

习题8

Table 8.1

		Typical Parameter Value		
Parameter	Parameter Description	n-Channel	p-Channel	Units
V_{T0}	Threshold voltage(V _{BS} =0)	0.7	-0.7	V
K	Transconductance parameter(in saturation)	110	50	μA/V ²
γ	Bulk threshold parameter	0.4	0.57	$V^{1/2}$
λ	Channel length modulation parameter	0.01	0.01	V^{-1}
$2 \phi_F $	Surface potential at strong inversion	0.7	0.8	V

- 8.1 In the op amp of Fig 8.1, (W/L)₁₋₈=100/0.5, I_{SS}=1mA, and V_{b1}=1.7V. Assume that γ = λ =0. V_{DD}=3V.
- (a) What is the maximum allowable input CM level?
- (b) What is V_X ?
- (c) What is the maximum allowable output swing if the gate of M_2 is connected to the output? (make sure that M2 and M4 work in saturation region)
- (d) What is the acceptable range of V_{b2}?

Fig 8.1

$$V_{in,CM,max} = V_Y + V_{TH1} = V_{b1} - V_{GS3} + V_{TH1}$$

= $V_{b1} - V_{OD3} - V_{TH3} + V_{TH1} = V_{b1} - V_{OD3}$

$$V_{OD3} = V_{GS3} - V_{TH} = \left(\frac{2I_{D3}}{K_n \left(\frac{W}{L}\right)_3}\right)^{\frac{1}{2}} = 0.213 \text{ V}$$

$$V_{in,CM,max} = 1.7 - 0.213 = 1.487V$$

(b)

$$\frac{1}{2}I_{SS} = \frac{1}{2}K_p \left(\frac{W}{L}\right)_7 \left(V_{DD} - V_X - |V_{TH7}|\right)^2$$

解得 V_X=1.984V

(c)

M2 和 M4 均工作在饱和区,所以

$$V_{out} - V_{TH} \le V_N$$

$$V_{out} \ge V_{b1} - V_{TH}$$

且有
$$V_N = V_{b1} - V_{GS4}$$

整理得
$$V_{b1}-V_{TH} \leq V_{out} \leq V_{b1}-(V_{GS4}-V_{TH})$$

所以
$$\Delta V_{swing} = 2V_{TH} - V_{GS4} = 2V_{TH} - V_{GS3} = 1.4 - 0.913 = 0.487V$$

(d)

$$V_Z < V_X + V_{TH}$$
, 且 $V_{b2} = V_Z - |V_{GSS}|$, 所以

$$V_{b2} < V_X + V_{TH} - |V_{GS5}| = 1.984 + 0.7 - 1.016 = 1.668V$$

$$\perp V_{h2} > V_X - V_{TH} = 1.984 - 0.7 = 1.284V$$

- 8.2 Suppose the circuit of Fig 8.2 is designed with I_{SS} equal to 1mA, I_{D9} - I_{D12} equal to 0.5mA, and $(W/L)_{9-12}$ =100/0.5. V_{DD} =3V, λ =0.
- (a) What CM level is required at X and Y?
- (b) If I_{SS} requires a minimum voltage of 400mV, choose the minimum dimensions of M_1 - M_8 to allow a peak-to-peak swing of 200mV at X and at Y, assume that M_1 - M_4 are of the same size and M_5 - M_8 are of the same size.
- (c) Give the expression of the overall voltage gain.

Fig 8.2

解:

(a)

$$|V_{GS9}| = |V_{TH}| + \left[\frac{2I_{D9}}{K_p \left(\frac{W}{L}\right)_9}\right]^{\frac{1}{2}} = 1.016V$$

$$V_{XY,CM} = V_{DD} - \left| V_{GS9} \right| = 1.984V$$

(b)

 V_X 摆幅为200mV,所以 V_{Xmax} =2.084V, V_{Xmin} =1.884V

$$V_{OD7} = V_{OD5} = \frac{V_{DD} - V_{X \text{max}}}{2} = 0.458V$$

$$V_{OD1} = V_{OD3} = \frac{V_{X \min} - V_{ISS}}{2} = 0.742V$$

$$\left(\frac{W}{L}\right)_{5-8} = \frac{I_{SS}}{K_p V_{OD5,7}^2} = 95.35$$

$$\left(\frac{W}{L}\right)_{1-4} = \frac{I_{SS}}{K_n V_{OD1.3}^2} = 16.51$$

(c)

$$A_{V} = g_{m1} (g_{m3}r_{o3}r_{o1} / / g_{m5}r_{o5}r_{o7}) g_{m9} (r_{o9} / / r_{o11})$$

- 8.3 Consider the amplifier of Fig 8.3, where $(W/L)_{1-4}$ =50/0.5 and I_{SS} = I_{I} =0.5mA. λp =0.2 and λn =0.1.
- (a) Estimate the poles at nodes X and Y by multiplying the small-signal resistance and capacitance to ground. Assume that $C_X=C_Y=0.5$ pF. What is the phase margin for unity-gain feedback?
- (b) If CX=0.5pF, what is the maximum tolerable value of CY that yields a phase margin for 60° for unity-gain feedback?

Fig 8.3

解:

$$r_{o3} = \frac{1}{\lambda_p I_{D3}} = 20k\Omega$$
, $r_{o2} = \frac{1}{\lambda_n I_{D2}} = 40k\Omega$

$$\omega_{px} = \frac{1}{C_X(r_{o2} / / r_{o3})} = 150 \times 10^6 \, rad / s$$

$$g_{m4} = \sqrt{2I_1K_n\left(\frac{W}{L}\right)_4} = 3.3 \times 10^{-3}$$

$$\omega_{py} = \frac{1}{C_Y(g_{m4})^{-1}} = 6.6 \times 10^9 \, rad \, / \, s$$

$$g_{m2} = \sqrt{I_{SS} K_n \left(\frac{W}{L}\right)_4} = 2.35 \times 10^{-3}$$

低频增益为: $g_{m2} \left(r_{o2} \, / \, / r_{o3} \right) = 31.33 \rightarrow 29.9 dB$ (增益转换为 dB 模式)

所以增益交点对应频率为: $20\log\frac{\omega_{\rm l}}{\omega_{\rm px}}=29.9$, $\omega_{\rm l}=4.69\times10^9 rad/s$

$$PM = 180^{\circ} - \tan^{-1} \frac{\omega_1}{\omega_{px}} - \tan^{-1} \frac{\omega_1}{\omega_{py}} = 56.43^{\circ}$$

(b)

$$PM = 180^{\circ} - \tan^{-1} \frac{\omega_1}{\omega_{px}} - \tan^{-1} \frac{\omega_1}{\omega_{py}} = 60^{\circ}$$

设
$$\omega_{px}$$
不变,解得 $\omega_{py} = 8.43 \times 10^9 \, rad \, / \, s = \frac{1}{C_Y \left(g_{m4}\right)^{-1}}$

解得
$$C_y = 391 fF$$

8.4 In the circuit of Fig.8.4, assume that $(W/L)_{1-4} = 100/1$, $C_1 = C_2 = 0.5$ pF, and $I_{SS} = 1$ mA. Calculate the small-signal time constant(τ) of the circuit (tips: the transfer function of the amp can be expressed by $\frac{A}{1+\tau S}$)

Fig 8.4

解:

$$\begin{split} A_v &= g_{m1}(r_{o2}//r_{o4}) = 73.7 \\ R_{out} &= r_{o2}//r_{o4} = 22.2 \text{k} \\ V_{in} &= V_1 + V_x \\ V_x &= V_{out} \frac{C_1}{C_1 + C_2} \\ V_{out} &= A_v V_1 [\frac{1}{C_1//C_2 \cdot S}] = A_v V_1 [\frac{1}{C_1//C_2 \cdot R_{out} \cdot S + 1}] \\ &= \frac{A_v}{C_1//C_2 \cdot R_{out} \cdot S + 1} (V_{in} - V_{out} \frac{C_1}{C_1 + C_2}) \\ \frac{V_{out}}{V_{in}} &= \frac{\frac{A_v}{1 + A_v} \frac{C_1}{C_1 + C_2}}{1 + \frac{(C_1//C_2)R_{out}S}{C_1 + C_2}} \\ \tau &= \frac{\frac{C_1C_2}{C_1 + C_2}R_{out}}{1 + A_v \frac{C_1}{C_1 + C_2}} = 1.466 \times 10^{-10} \end{split}$$