MODELLING LAND-USE/COVER CHANGE AND WILDFIRE REGIMES IN A MEDITERRANEAN LANDSCAPE

James D.A. Millington

March 2007

Department of Geography

King's College, London

Submitted in total fulfilment of the requirements of the degree of

Doctor of Philosophy

DECLARATION OF ORIGINAL WORK

This is to certify that:

- (i) the thesis comprises only my original work except where otherwise indicated,
- (ii) due acknowledgment has been made in the text to all other material used,
- (iii) the thesis is less than 100,000 words in length, exclusive of tables, figures, references and appendices

James D.A. Millington

ABSTRACT

This interdisciplinary thesis examines the potential impacts of human land-use/cover change upon wildfire regimes in a Mediterranean landscape using empirical and simulation models that consider both social and ecological processes and phenomena. Such an examination is pertinent given contemporary agricultural land-use decline in some areas of the northern Mediterranean Basin due to social and economic trends, and the ecological uncertainties in the consequent feedbacks between landscape-level patterns and processes of vegetation- and wildfire-dynamics.

The shortcomings of empirical modelling of these processes are highlighted, leading to the development of an integrated socio-ecological simulation model (SESM). A grid-based landscape fire succession model is integrated with an agent-based model of agricultural land-use decision-making. The agent-based component considers non-economic alongside economic influences on actors' land-use decision-making. The explicit representation of human influence on wildfire frequency and ignition in the model is a novel approach and highlights biases in the areas of land-covers burned according to ignition cause. Model results suggest if agricultural change (i.e. abandonment) continues as it has recently, the risk of large wildfires will increase and greater total area will be burned.

The epistemological problems of representation encountered when attempting to simulate 'open', middle numbered systems – as is the case for many 'real world' geographical and ecological systems – are discussed. Consequently, and in light of recent calls for increased engagement between science and the public, a shift in emphasis is suggested for SESMs away from establishing the truth of a model's structure via the mimetic accuracy of its results and toward ensuring trust in a model's results via practical adequacy. A 'stakeholder model evaluation' exercise is undertaken to examine this contention and to evaluate, with the intent of improving, the SESM developed in this thesis. A narrative approach is then adopted to reflect on what has been learnt.

ACKNOWLEDGEMENTS

This thesis would not have been possible without the help, advice and support of many people, to all of whom I am most grateful and indebted. I must start with my original supervisor George Perry who encouraged me to apply for the ESRC/NERC Interdisciplinary Studentship that funded this research. Without George's enthusiastic and often ebullient supervision and example I would not have embarked along this most interesting and inspiring path. Thanks to George for making research and fieldwork fun and for his continuing support and advice after returning to New Zealand. This research and thesis would also not have been possible but for the support, goodwill and hard work of Raul Romero Calcerrada. I owe a large debt of gratitude to Raul for the generous access to his data and accumulated knowledge on SPA 56, his driving and translations skills as we toured the Spanish landscape making interviews, and his hospitality both at Universidad Rey Juan Carlos and in his home. Thanks to everyone else who aided my visits to Madrid, notably Javier. These trips to Spain were in part funded by a University of London Central Research Fund grant. More recently, my supervisors David Demeritt and John Wainwright have offered me invaluable advice, support and direction when I wasn't sure where my research was going or how to clarify my arguments. Thanks also for applying the lopping shears to my tortuous and verbose sentences, and to John for his hospitality in Sheffield.

I'm very grateful to everyone that welcomed me to SGES at the University of Auckland, and made my visit so interesting and enjoyable. Notably, thanks to David O'Sullivan for his advice and thoughts over coffee and to Nicky Perry for putting me up in her home when I needed shelter from the All Blacks fans. Closer to home, I must thank Bruce Malamud for the research opportunities he opened up for me outside, but most complementary to, my thesis and for offering his advice whenever it was requested. At King's thanks also go to Shatish Kundaiker for his technical support and the thesis-saving remote-desktop; to Margaret, Rob, Alison and Isobel for all their King's knowhow; and to the usual suspects for humouring my rants in the pub on Tuesday nights – Andreas, Ben, Chris, Gareth, Isobel, Helen, Nick, Pete, and others...

In the later stages of the thesis I moved out of London and returned to my family home. Thanks therefore to Chris, Mark, Laura, Jamie and Helen who put me up when I needed to be in London to work. Thanks to Olivia for all the Giraffes. Recently also to Erin for listening to my late-night rants on the phone and inspiring me to persevere when the pub, King's, London and everything else felt so far away. Last, but not least, thanks to Mum, Dad, Michael and Mark and for their love, support and for putting up with me over these last nine months at home when I needed to get it all done.

TABLE OF CONTENTS

	Page
	iii
	iv
Abstract Acknowledgements Table of Contents List of Figures List of Tables CHAPTER ONE – INTRODUCTION 1.1 Introduction 1.2 Mediterranean Landscapes 1.3 Landscape Modelling 1.4 Thesis Aims 1.5 Thesis Structure CHAPTER TWO – SPANISH LANDSCAPES AND CHANGE 2.1 Introduction 2.2 Ecological Disturbance 2.3 Human Presence 2.3.1 Introduction 2.3.2 Traditional Land-Use in Spain 2.3.3 Traditional Spanish Land Tenure 2.3.4 Contemporary Spanish LUCC 2.3.5 European Agricultural Policy 2.3 6 Summary 2.4 Potential Consequences of LUCC in Spain 2.4.1 Introduction 2.4.2 Descrification 2.4.3 Biodiversity 2.3.4 Landscape Structure and Natural Hazard Risk 2.3.5 Summary 2.5 EU Special Protection Area 56 2.5.1 Introduction 2.5.2 Habitats 2.5.3 Endangered Species 2.5.4 Human Activity 2.5.5 Data Available for SPA 56 2.5.5.1 Introduction 2.5.2.2 Land-Cover Maps 2.5.5.3 Climatic Variables 2.5.5.4 Topographic Variables 2.5.5.5 Social Data Variables 2.5.5.5 Social Data Variables 2.5.5.5 Summary 2.6 Summary CHAPTER THREE – LUCC MODELLING 3.1 Introduction 3.2 Empirical Modelling	vi
	xi
List of Tables	xiii
CHAPTER ONE - INTRODUCTION	
1.1 Introduction	1
1.2 Mediterranean Landscapes	1
1.3 Landscape Modelling	3
	5
1.5 Thesis Structure	5
CHAPTER TWO – SPANISH LANDSCAPES AND CHANGE	
	8
	9
	11
	11
<u> </u>	12
•	14
	15
	16
·	18
<u>-</u>	18
	18
	18
•	19
-	20
•	22
	22
	22
	23 24
	25
	28
	28
	28
<u>.</u>	29
1 0 1	30
	31 32
	33
	33
•	33
CHAPTED THREE _ LUCC MODELLING	
	36
	37
o.a mipiricai modening	31

	Page
3.2.1 Transition-Based Models	38
3.2.2 Regression-Based Models	39
3.3 Empirical Modelling of SPA 56	40
3.3.1 Introduction	40
3.3.2 Methodology	40
3.3.3 Results	44
3.3.4 Discussion	45
3.3.5 Summary	49
3.4 Simulation Modelling	49
3.4.1 Introduction	49
3.4.2 Integrated Ecological-Economic Simulation Models	51
3.4.3 Summary	54
3.5 Model Approach and Validation	55
3.5.1 Introduction	55
3.5.2 Model Approach	55
3.5.3 Model Validation	56
3.5.4 Summary	57
3.6 Summary	58
CHAPTER FOUR – LANDSCAPE FIRE SUCCESSION MODEL	50
4.1 Introduction	59
4.2 Spatial Ecological Modelling of Vegetation-Dynamics	59
4.2.1 Introduction	59
4.2.2 Individual-Based Models	60
4.2.3 Spatially-Explicit Landscape Models	61
4.2.4 Modelling Tradeoffs in Mediterranean-type Ecosystems	62
4.2.5 Summary	63
4.3 Modelling Mediterranean Basin Vegetation-Dynamics	64
4.3.1 Introduction	64
4.3.2 Conceptual Models	64
4.3.3 Spatial Simulation Models	66
4.3.4 Summary	68
4.4 Landscape Fire Succession Model I: Vegetation-Dynamics 4.4.1 Introduction	69
4.4.1 Introduction 4.4.2 Environmental Conditions	69 74
4.4.2. Elivironmental Conditions 4.4.2.1 Climatic Variability and Change	74 74
4.4.2.2 Water Availability	75
4.4.2.3 Light Availability	76
4.4.3 Succession Attributes	76
4.4.3.1 Successional Pathway	76
4.4.3.2 Seed Sources	78 - 2
4.4.4 Modelling State Transitions	79
4.4.5 Summary	82
4.5 Landscape Fire Succession Model II: Wildfire Regime	84
4.5.1 Introduction	84
4.5.2 Fire Ignition	88
4.5.2.1 Frequency 4.5.2.2 Spatial Location	88 91
4.5.3 Fire Spread	92
4.5.4 Summary	97
4.6 Sensitivity Analysis	97 97
4.6.1 Introduction	97
	<i>,</i> ,

	Page
4.6.2 Parameter Testing	98
4.6.3 Summary	101
4.7 Summary	101
CHAPTER FIVE – AGENT-BASED MODEL OF LAND-USE/COVE	CR C
CHANGE	
5.1 Introduction	103
5.2 Agricultural Location Theory	104
5.3 Agent-Based Modelling	107
5.3.1 Introduction	107
5.3.2 Recent Agent-Based Modelling of Human-Environment	108
Interactions	
5.3.3 Current ABM/MAS Issues	110
5.3.3.1 Introduction 5.3.3.2 Model Data	110 110
5.3.3.3 Agent Representation	111
5.3.3.4 Model Validation	113
5.3.3.5 Summary	114
5.3.4 Implications for Modelling Mediterranean Human-	114
Environment Interactions	116
5.3.5 Summary	116
5.4 ABM/LUCC Structure 5.4.1 Introduction	117 117
5.4.2 Rationale for Farmer Types	117
5.4.3 Agent Attributes	121
5.4.3.1 Commercial Agents	121
5.4.3.1 Traditional Agents	127
5.4.4 Integration with Landscape Fire Succession Model	129
5.4.5 Summary	130
5.5 Sensitivity Analysis and Testing	131
5.5.1 Introduction	131
5.5.2 Universal Parameters	132
5.5.3 Land Tenure and Land-Cover	133
5.5.4 Agent Properties	138
5.5.5 Markets and Landscape Profitability	141
5.5.6 Summary	141
5.6 Summary	142
CHAPTER SIX – SOCIO-ECOLOGICAL SIMULATION MODEL:	
INTERACTION BETWEEN LUCC AND WILDFIRE	
6.1 Introduction	144
6.2 Characterising Wildfire Regimes	146
6.3 Human Activity, LUCC and Wildfire Regimes	148
6.3.1 Human-Activity Scenarios	148
6.3.2 Human-Related Wildfire-Behaviour Parameters	156
6.3.3 Ignition Cause	157
6.4 Climate Change and Wildfire Regimes	161
6.5 Landscape Fire Succession Model Dynamics	163
6.5.1 Total Land-Cover Flammability	163 165
6.5.2 Range of Land-Cover Flammability6.5.3 Land-Cover Configuration	165 169
6.6 Discussion	109 170
OVO 2- AD-CHUDIOII	1/0

CC1 Harris Astinites and Wildfins	Page
6.6.1 Human Activity and Wildfire	171 174
6.6.2 Wildfire Frequency-Area Scaling 6.7 Summary	174
0.7 Summary	170
CHAPTER SEVEN – VALIDATING SOCIO-ECOLOGICAL	
SIMULATION MODELS	
7.1 Introduction	178
7.2 Validating Models of Open Systems	179
7.2.1 The Nature of 'Open' Systems	180
7.2.2 Epistemological Problems Presented by a Critical Realist Ontology	181
7.2.3 A Potential Relativist Response	184
7.3 Post-Normal Science and Public Engagement	186
7.3.1 Evaluation Criteria for Simulation Modelling in the 'Risk	188
Society'	101
7.3.2 Stakeholder Participation and Expertise	191
7.4 Summary	195
CHAPTER EIGHT – STAKEHOLDER MODEL EVALUATION	
8.1 Introduction	197
8.2 Stakeholder Engagement in the Modelling Process	197
8.3 Stakeholder Assessment of SPASIMv1	200
8.3.1 Introduction	200
8.3.2 Drivers of Change	201
8.3.3 Model Results	205
8.3.4 Model Assumptions	208
8.3.5 Model Modification	212
8.3.6 Changes in Understanding	215
8.3.7 Summary	216
8.4 Discussion	216
8.4.1 Model Validation Criteria	216
8.4.2 Engaging Non-Modellers with Models	219
8.5 Summary	222
CHAPTER NINE – DISCUSSION AND CONCLUSIONS	
9.1 Introduction	224
9.2 Narrative Approaches to Reflect on the Modelling Process	224
9.3 SPASIMv1 Modelling Narrative	226
9.3.1 Research Proposal	226
9.3.2 Initial Exploratory Research	227
9.3.3 Model Conceptualisation and Initial Construction	230
9.3.4 Model Construction, Testing and Sensitivity Analysis	232
9.3.5 Stakeholder Evaluation and Model Use	236
9.3.6 Self-Reflection	241
9.4 Summary	242
REFERENCES	245

		Page
APPE	NDICES	
I	Look-up table of pixel physical attributes to define DD and	260
	TD in the rule-based community-level model of	
	Mediterranean vegetation-dynamics	
II	Curve numbers used in Equation 4.3	273
III	Stakeholder Model Evaluation Interview Translations	274
IV	Enclosed Compact Disc	277

LIST OF FIGURES

		Page
Снарті	ER TWO	
2.1	Pinus with Quercus understory	9
2.2	Example <i>dehesa</i> found in SAP 56	13
2.3	Land abandonment in SPA 56	16
2.4	Vegetation species richness over time following fire	20
2.5	Recent trends in Spanish wildfire occurrence	21
2.6	Location of SPA 56	23
2.7	Predominant vegetation in SPA 56	24
2.8	\mathcal{E}	26
2.9	C	27
2.10	•	29
2.11	1	30
2.12		31
2.13	1 7 1	32
2.14	Example SPA 56 maps of social variables	33
Снарті	ER THREE	
3.1	1 1	46
3.2	Example of the influence of municipality-aggregated data on model output	47
Снарті	ER FOUR	
4.1	Schematic diagram of the LSFM	71
4.2	Succession pathways used in the LFSM	81
4.3	Example of the traditional conceptualisation of succession in	82
	Mediterranean-type vegetation	
4.4	Spatial representation of landscape change from the LFSM	83
4.5	1 1	84
4.6	Illustration of the Forest Fire Cellular Automata Model	88
4.7	Schematic diagram of the cellular automata-based fire behaviour model	93
4.8	Schematic diagram of fire shells as used in the fire-behaviour model	94
4.9	Fire ignition weights as a function of wind speed and direction	96
Снарті	ER FIVE	
5.1	von Thünen's classical model of agricultural location	105
5.2	The fragmented and heterogeneous nature of SPA 56	115
5.3	Procedure of the agent-based of land-use/cover change	118
5.4	Procedure of the integrated socio-ecological simulation model	129
5.5	Land-cover and use time-series for the baseline 'business as usual' model scenario	130
5.6	Examples of random maps generated with varying percolation probability parameter <i>p</i>	134
5.7	Landscape land-cover proportions and mean land-cover patch area for random land-tenure maps	135
5.8	Time-series of agent perspective and mean pixel profit	140

5.9	Relationship between threshold mean pixel profit values and ratio of farmer types	Page 140
Снарті	ZD Siv	
6.1	Example LFSM wildfire frequency-area distribution	147
6.2	Relationship between mean total burned area and agricultural land-cover for scenarios of human activity	149
6.3	Mean land-cover landscape proportions for scenarios of human activity	150
6.4	Maps of landscape land-cover in the year 2026 for human-activity scenarios	151
6.5	Time-series of mean total landscape flammability for human- activity scenarios	152
6.6	Time-series of mean number of patches for human-activity scenarios	153
6.7	Time-series of mean number of patches by land-cover for scenario M2	154
6.8	Time-series of landscape fractal dimension for human-activity scenarios	154
6.9	Time-series of landscape contagion for human-activity scenarios	155
6.10	Mean R_i for lightning, human-caused and randomly located fires	160
6.11	Mean R_b for lightning, human-caused and randomly located fires	160
6.12	Land-cover landscape proportions for scenarios of climate change	162
6.13	Relationship between β and total land-cover flammability	164
6.14	Land-cover landscape proportions for varying total land-cover flammability	165
6.15	Land-cover landscape proportions for varying range of land-cover flammability	167
6.16	Land-cover landscape proportions for varying initial land-cover configurations	170
Снарті	ER SEVEN	
7.1	Public participation in the scientific research process	193
	ER EIGHT	
8.1	Public participation in the socio-ecological modelling process	198
8.2	Sketch maps of two interviewees' expectations of LUCC in Villa del Prado by 2026	205
8.3	Villa del Prado Land-cover for 2026 under scenario M1	206

LIST OF TABLES

		Page
CHAP	TER ONE	
1.1	Structure of Thesis	6
Снарт	CER THREE	
3.1	Predictor variables (maps) used for empirical modelling	43
3.2		43
3.3	Empirical models' prediction accuracy for individual pixel	44
	locations	
Снарт	ER FOUR	
	Land-cover classes represented in the model	70
4.2	<u> </u>	76
4.3	Maturity age for three main forest land-cover types	78
4.4		79
4.5	e i	92
4.6		95
4.7	ε	96
4.8	5 5	99
4.9	LFSM sensitivity analysis results for land-cover composition	100
Снарт	TER FIVE	
5.1	Summary comparison of 'traditional' and 'commercial' agents'	120
5.2	attributes Resometers for baseline model configuration	123
	Parameters for baseline model configuration Parameter values for ABM/LUCC testing	132
5.4		132
3.4	composition	133
5.5		136
5.6	maps	127
5.6	1	137 138
5.7 5.8	Spatial metrics of land-cover pattern for land-cover scenarios Agent types for <i>personal_choice</i> and agent perspective scenarios	139
5.0	Agent types for personal_choice and agent perspective scenarios	139
Снарт	TER SIX	
6.1		145
	land-cover	
	Wildfire summary statistics for scenarios of human activity	149
6.3	ϵ	152
6.1	scenarios of human activity Wildfire statistics for yearing 'recent humand years' yelves	156
6.4	Wildfire statistics for varying 'recent burned years' values Wildfire statistics for 'maximum fire shell' scenarios	156 157
6.6		157
0.0	scenarios	130
6.7	Wildfire statistics as a function of cause for human activity	158
	scenarios with modified fire ignition	
6.8	ϵ	161
6.9	Wildfire statistics for scenarios of climate change	162

		Pag€
6.10	Land-cover flammability probabilities used to examine effect of	163
	total landscape flammability on model wildfire regime	
6.11	Wildfire statistics for varying total land-cover flammability	164
6.12	Land-cover flammability probabilities used to examine effect of	166
	range of flammability probabilities on model wildfire regime	
6.13	Wildfire statistics for varying range of land-cover flammability	166
6.14	Modified land-cover flammability probabilities used to examine the	168
	effect of maximum flammability probability on wildfire regime	
6.15	Wildfire statistics for modified land-cover flammability	168
	probabilities	
6.16	Wildfire statistics for varying initial landscape configuration	169
∼нарт	TER SEVEN	
_	Sources of relativistic operator dependencies	185
7.1	Sources of relativistic operator dependencies	103
Снарт	TER EIGHT	
8.1	Comparison of profitability and costs of land-use types	208
8.2	Model assumptions regarding agents' age	208