МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский ядерный университет «МИФИ» (НИЯУ МИФИ)

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №6

Основы фильтрации сигналов Вариант 2

> Выполнил: Корнилов А. Н. Группа: M21-502

Ход работы

Прочитаем файл sample2.wav

В итоге получаем массив с сигналом и частоту дискретизации 48 кГц Применим к сигналу БПФ и получим график спектра

Рис. 1. График спектра сигнала

Нам необходим участок низких частот, значит необходим низкочастотный фильтр 25000 Гц – всего

48000 Гц – частота дискретизации

Необходим фильтр до 5000 Γ ц: $\frac{25000}{\frac{25000}{48000} \cdot 5000} \approx 0.1$

Широкая полоса от 8448 Гц до 9928 Гц (см. рис. 2)

Рис. 2. График спектра сигнала с уточнением ширины полосы шума

Рис. 3. График спектра отфильтрованного сигнала

Были отфильтрованы все лишние шумы

По графику видно, что полезные частоты находятся до 2200 Гц

Последовательность чисел: 84399

Частоты паразитных гармоник (см. рис. 4): 6239 Γ ц, 6249 Γ ц и 6259 Γ ц

Рис. 4. График паразитных гармоник

Вывод

В ходе работы была произведена фильтрация сигнала от шумов. Полезный сигнал находится в области низких частот. Был составлен низкочастотный фильтр, с помощью которого удалось убрать высокочастотные сигналы.