Pattern Recognition-Project 1

Group Members:

Joan Plepi (3056655)

Manoj Prabhakar (3069835)

Nikhil Acharya (3064518)

Saptarshi Bhattacharya (3034963)

Saurav Ganguli (3062401)

Subbulakshmi Sundaram (3157792)

Tridivraj Bhattacharyya (3035538)

Overview

- 1. Outliers in data
- 2. Fitting a Normal distribution to 1D data
- 3. Fitting a Weibull distribution to 1D data
- 4. Drawing unit circles
- 5. Estimating dimension of fractal objects

Task 1: Plots with outliers removed

Task 2: Fitting a Normal distribution to 1D data

Before handling outliers

Task 2: Fitting a Normal distribution to 1D data

After handling outliers

Task 2: Fitting a Normal distribution to 1D data

Task 3: Fitting a Weibull distribution to 1D data

After 20 iterations the value of k=3.190 and a=243.17

Task 4: Drawing unit circles

Unit circle using L_p norm for p=1/2 in R^2

- Identify finite number of points for (x,y) with range for x, y between -1 and +1
- Calculate distance from origin for those points using lp norm formula for p=0.5
- Identify points at approximately unit distance and plot

Task 4: Drawing unit circles

 L_{p} for p = 0.5 does not define a norm, because it violates the triangle inequality

Task 5: Estimating the dimension of fractal objects in an image

Apply binarization to image.

- Specify a set of scaling factors $S = \left\{ \frac{1}{2^i} \mid i \in \{1, 2, \dots, L-2\} \right\}$
- For each $s_i \in S$, divide the binary image with boxes of size s, w ×s, h
- Count the number n, of boxes which contain at least one foreground pixel.
- Plot log n_i against log (1/s_i)
- Fit a line to the plot $D \cdot \log \frac{1}{s_i} + b = \log n_i$

Fractal Dimension

Image to Binary Image to Square Boxes

Counting square boxes

i=1	s=1/2	A STATE OF THE STA	squares = 4	fg_squares = 4
i = 2	s = 1/4		squares = 16	fg_squares = 14
i = 3	s = 1/8		squares = 64	fg_squares = 45

Counting square boxes

i=4	s=1/16	squares = 256	fg_squares = 147
i = 5	s = 1/25	squares = 1024	fg_squares = 404
i = 6	s = 1/36	squares = 4096	fg_squares = 1064
i = 7	s = 1/49	squares = 16384	fg_squares = 2905

Solving equation using least squares

Equations:

```
S = \{1/s_i; i = 1 \text{ to L-2}\} where L = 9 in this problem (L = \log_2 512)

D \cdot \log 1/s_i + b = \log n_i where n_i = no. of foreground squares for index i, s_i = scaling factor for index i
```

Solution:

$$w = (XX^T)^{-1}Xy$$

where $w = [b, D]$
and $X = \{x_i; i = 1 \text{ to L-2}\}$ where $x_i = [1, \log 1/s_i]^T$
and $y = \{\log n_i; i = 1 \text{ to L-2}\}$

Results of image of lightning

slope D = **1.5776850270780338**

y-intercept b = **0.19530464760481436**

Line fitted using:

 $y_predicted_i = D \cdot x_i + b$ where $x_i = log 1/s_i$

Results for image of tree

Count:

i = 1 : 4/4

i = 2 : **16/16**

i = 3 : **61/64**

i = 4 : 218 / 256

i = 5: 777 / 1024

i = 6 : 2679 / 4096

i = 7:8685/16384

slope D = **1.8463900565472438** y-intercept b = **0.08917195967590175**

Comparison

Lightning:

slope D = **1.5776850270780338** y-intercept b = **0.19530464760481436**

Tree:

slope D = **1.8463900565472438** y-intercept b = **0.08917195967590175**

Conclusion

- 1. Important to handle Missing Values/Outliers as they can skew the statistics.
- 2. Shape parameter has an influence on the weibull distribution steepness.
- 3. For value p=0.5, it does not define a norm(Lp) and unit circle appears further shrunk
- 4. Calculated fractal dimension of 2 imperfect fractals using box counting and least squares. The image of tree had a higher fractal dimension.

Thank 404