Notizen zum

Repetitorium Lineare Algebra II

Jendrik Stelzner

8. August 2017

Inhaltsverzeichnis

1	Diagonalisierbarkeit		
	1.1	Eigenwerte und Eigenvektoren	2
	1.2	Das charakterische Polynom	3
	1.3	Das Minimalpolynom	3
	1.4	Diagonalisierbarkeit	4
	1.5	Simultane Diagonalisierbarkeit	5
	1.6	Trigonalisierbarkeit	5
2	Jord	lan-Normalform	7
	2.1	Definition	7
	2.2	Eindeutigkeit	7
	2.3	Existenz	8

1 Diagonalisierbarkeit

Im Folgenden sei K ein Körper. Im Rest des Abschnittes sei, sofern nicht anders angegeben, V ein endlichdimensionaler K-Vektorraum.

1.1 Eigenwerte und Eigenvektoren

Definition 1.1. Es sei $f: V \to V$ ein Endomorphismus. Sind $\lambda \in K$ und $v \in V$ mit $v \neq 0$ und $f(v) = \lambda v$, so ist v ein Eigenvektor von f zum Eigenwert λ . Für alle $\lambda \in K$ ist der Untervektorraum

$$V_{\lambda}(f) := \{ v \in V \mid f(v) = \lambda f \} = \ker(f - \lambda \operatorname{id}_V)$$

der Eigenraum von f zu λ .

Es sei $n \in \mathbb{N}$ und $A \in M_n(K)$. Sind $\lambda \in K$ und $x \in K^n$ mit $x \neq 0$ und $Ax = \lambda x$, so ist x ein Eigenvektor von A zum Eigenvektor λ . Für alle $\lambda \in K$ ist der Untervektorraum

$$(K^n)_{\lambda}(A) := \{x \in K^n \mid Ax = \lambda x\} = \ker(A - \lambda I)$$

der Eigenraum von A zu λ .

Remark 1.2. 1. Ist $A \in M_n(K)$ und $f: K^n \to K^n$, $x \mapsto Ax$ der zu A (bezüglich der Standardbasis) gehörige Endomorphismus, so stimmen die Eigenvektoren, Eigenwerte und Eigenräume von A mit denen von f überein.

Es genügt daher im Folgenden, Definitionen und Aussagen für Endomorphismen zu anzugeben – für Matrizen gelten diese dann ebenfalls.

2. Es sei $f: V \to V$ ein Endomorphismus eines K-Vektorraums $V, \mathcal{B} = (v_1, \ldots, v_n)$ eine Basis von V und $A := M_{f,\mathcal{B},\mathcal{B}}$ die entsprechende darstellende Matrix. Bezüglich des zu \mathcal{B} zugehörigen Isomorphismus

$$\Phi_{\mathcal{B}} \colon V \to K^n, \quad v = \sum_{i=1}^n x_i v_i \mapsto (x_1, \dots, x_n)^T =: [v]_{\mathcal{B}}$$

gilt

$$\Phi_{\mathcal{B}}(V_{\lambda}(f)) = (K^n)_{\lambda}(A).$$

Es ist also $v \in V$ genau dann ein Eigenvektor von f zum Eigenwert $\lambda \in K$, wenn $[v]_{\mathcal{B}}$ ein Eigenvektor von A zum Eigenwert λ ist.

Berechnungen lassen sich deshalb in Matrizenform durchführen.

Für theoretische Aussagen nutzen wir also Endomorphismen, und für konkrete Rechnungen nutzen wir Matrizen.

1.2 Das charakterische Polynom

Es sei $f: V \to V$ ein Endomorphismus, \mathcal{B} eine Basis von V und $A := M_{f,\mathcal{B},\mathcal{B}}$ die entsprechende darstellende Matrix. Dann gilt

 λ ist ein Eigenwert von f $\iff \lambda$ ist ein Eigenwert von A $\iff (K^n)_{\lambda}(A) \neq 0$ $\iff \ker(A - \lambda I) \neq 0$ $\iff A - \lambda I$ ist nicht invertierbar $\iff \det(A - \lambda I) = 0.$

Definition 1.3. Das charakterische Polynom von $A \in M_n(K)$ ist definiert als

$$p_A(t) := \det(A - tI) \in K[t].$$

Das charakteristische Polynom eines Endomorphismus $f \colon V \to V$ ist definiert als $p_f(t) = p_A(t)$, wobei $A \coloneqq M_{f,\mathcal{B},\mathcal{B}}$ die darstellende Matrix von f bezüglich einer Basis \mathcal{B} von V ist.

Dass das charakteristische Polynom $p_f(t)$ wohldefiniert ist, also nicht von der Wahl der Basis \mathcal{B} abhängt, folgt aus dem folgenden Lemma:

Lemma 1.4. Ähnliche Matrizen haben das gleiche charakterische Polynom.

Aus unserer anfänglichen Beobachtung erhalten wir den folgenden Zusammenhang zwischen den Eigenwerten und dem charakteristischen Polynom:

Proposition 1.5. Die Eigenwerte von f genau die Nullstellen des charakteristischen Polynoms $p_f(t)$.

1.3 Das Minimalpolynom

Lemma 1.6. Es sei $p \in K[t]$ ein Polynom mit p(f) = 0. Dann ist jeder Eigenwert von f eine Nullstelle von p.

Definition 1.7. Es sei

$$Pol(f) := \{ p \in K[t] \mid p(f) = 0 \}.$$

Das eindeutige normierte, von 0 verschiedene Polynom minimalen Grades aus Pol(f) ist das Minimalpolynom von f, und wird mit $m_f(t) \in K[t]$ notiert.

Remark 1.8. Die Wohldefiniertheit von $\operatorname{Pol}(f)$ nutzt die Endlichdimensionalität von V. Hierdurch wird sichergestellt, dass $\operatorname{Pol}(f) \neq 0$ gilt.

Die Definition des Minimalpolynoms lässt sich bis auf Normiertheit wie folgt umschreiben:

Lemma 1.9. Es gilt

$$Pol(f) = \{ p \cdot m_f \mid p \in K[t] \}.$$

Für $p \in K[t]$ gilt also genau dann p(f) = 0, wenn $m_f \mid p$. Inbesondere gilt $m_f(f) = 0$.

Satz 1.10 (Cayley–Hamilton). Es gilt $p_f(f) = 0$, also $m_f \mid p_f$.

Nach dem Satz von Cayley-Hamilton ist jede Nullstelle von $m_f(t)$ auch eine Nullstelle von $p_f(t)$, also ein Eigenwert von f. Andererseits ist jeder Eigenwert von f nach Lemma 1.9 und Lemma 1.6 auch eine Nullstelle von $m_f(t)$. Somit sind die Nullstelle non $m_f(t)$ genau die Eigenwerte von f. Also haben $p_f(t)$ und $m_f(t)$ die gleichen Nullstellen. Ist K algebraisch abgeschlossen, so zerfallen $p_f(t)$ und $m_f(t)$ somit in die gleichen Linearfaktoren, wobei die Vielfachheit im Minimalpolynom nach dem Satz von Cayley-Hamilton jeweils kleiner ist als die Vielfachheit im charakteristischen Polynom.

1.4 Diagonalisierbarkeit

Lemma 1.11. Es seien $v_1, \ldots, v_n \in V$ Eigenvektoren von $f: V \to V$ zu paarweise verschiedenen Eigenwerten, d.h. es gelte $f(v_i) = \lambda_i v_i$ mit $\lambda_i \neq \lambda_j$ für $i \neq j$. Dann sind v_1, \ldots, v_n linear unabhängig. Inbesondere ist die Summe $\sum_{\lambda \in K} V_{\lambda}(f)$ direkt.

Definition 1.12. Ein Endomorphismus $f: V \to V$ heiß diagonalisierbar falls er die folgenden, äquivalenten Bedingungen erfüllt:

- 1. Es gilt $V = \bigoplus_{\lambda \in K} V_{\lambda}(f)$.
- 2. Es gilt $V = \sum_{\lambda \in K} V_{\lambda}(f)$.
- 3. Es gibt eine Basis von V bestehend aus Eigenvektoren von f.
- 4. Es gibt ein Erzeugendensystem von V bestehend aus Eigenvektoren von f.
- 5. Es gibt eine Basis \mathcal{B} von V, so dass die darstellende Matrix $M_{f,\mathcal{B},\mathcal{B}}$ eine Diagonalmatrix ist.

Eine Matrix $A \in \mathcal{M}_n(K)$ heißt diagonalisierbar, falls sie eine der folgenden, äquivalenten Bedingungen erfüllt:

- 1. Es gilt $K^n = \bigoplus_{\lambda \in K} (K^n)_{\lambda}(A)$.
- 2. Es gilt $K^n = \sum_{\lambda \in K} (K^n)_{\lambda}(A)$.
- 3. Es gibt eine Basis von K^n bestehend aus Eigenvektoren von A.
- 4. Es gibt ein Erzeugendensystem von K^n bestehend aus Eigenvektoren von A.
- 5. Die Matrix A ist ähnlich zu einer Diagonalmatrix ist, d.h. es gibt $S \in GL_n(K)$, so dass SAS^{-1} eine Diagonalmatrix ist.

Lemma 1.13. Für einen Endomorphismus $f: V \to V$ sind die folgenden Bedingungen äquivalent:

- 1. Der Endomorphismus f ist diagonlisierbar.
- 2. Es gibt eine Basis \mathcal{B} von V gibt, so dass $M_{f,\mathcal{B},\mathcal{B}}$ diagonalisierbar ist.
- 3. Für jede Basis \mathcal{B} von V ist $M_{f,\mathcal{B},\mathcal{B}}$ diagonalisierbar.

Ob ein Endomorphismus $f\colon V\to V$ diagonalisierbar ist, hängt nur vom Minimalpolynom $m_f(t)$ ab:

Proposition 1.14. Der Endomorphismus f ist genau dann diagonalisierbar, falls m_f in paarweise verschiedene Linearfaktoren zerfällt.

1.5 Simultane Diagonalisierbarkeit

Definition 1.15. Eine Familie $(f_i)_{i \in I}$ von Endomorphismen $f_i : V \to V$ heißt simultan diagonalisierbar, falls es eine Basis \mathcal{B} von V gibt, so dass $M_{f,\mathcal{B},\mathcal{B}}$ für jedes $i \in I$ eine Diagonalmatrix ist.

Eine Familie $(A_i)_{i\in I}$ von Matrizen $A_i \in \mathcal{M}_n(K)$ heißt simultan diagonalisierbar, falls es $S \in \mathrm{GL}_n(K)$ gibt, so dass SA_iS^{-1} für jedes $i \in I$ eine Diagonalmatrix ist.

Lemma 1.16. Für eine Familie $(f_i)_{i\in I}$ von Endomorphismen $f_i\colon V\to V$ sind die folgenden Bedingungen äquivalent:

- 1. Die Familie von Endomorphismen $(f_i)_{i\in I}$ ist simultan diagonalisierbar.
- 2. Es gibt eine Basis \mathcal{B} von V, so dass die Familie von Matrizen $(M_{f_i,\mathcal{B},\mathcal{B}})_{i\in I}$ simultan diagonalisierbar ist.
- 3. Für jede Basis \mathcal{B} von V ist die Familie von Matrizen $(M_{f_i,\mathcal{B},\mathcal{B}})_{i\in I}$ simultan diagonalisierbar.

1.6 Trigonalisierbarkeit

Definition 1.17. Ein Endomorphismus $f: V \to V$ heißt trigonalisierbar, falls es eine Basis \mathcal{B} von V gibt, so dass $M_{f,\mathcal{B},\mathcal{B}}$ eine obere Dreiecksmatrix ist.

Eine Matrix $A \in \mathcal{M}_n(K)$ heißt trigonalisierbar, falls A ähnlich zu einer oberen Dreiecksmatrix ist, d.h. falls es $S \in GL_n(K)$ gibt, so dass SAS^{-1} eine obere Dreiecksmatrix ist.

Lemma 1.18. Für einen Endomorphismus $f: V \to V$ sind die folgenden Bedingungen äquivalent:

- 1. Der Endomorphismus f ist trigonalisierbar.
- 2. Es gibt eine Basis \mathcal{B} von V, so dass die darstellende Matrix $M_{f,\mathcal{B},\mathcal{B}}$ trigonalisierbar ist
- 3. Für jede Basis \mathcal{B} von V ist die darstellende Matrix $M_{f,\mathcal{B},\mathcal{B}}$ trigonalisierbar.

Die Trigonalisierbarkeit eines Endomorphismus $f\colon V\to V$ hängt nur von dem charakterischen Polynom $p_f(t)$ ab:

Proposition 1.19. Ein Endomorphismus $f: V \to V$ ist genau dann trigonalisierbar, wenn das charakteristische Polynom $p_f(t)$ in Linearfaktoren zerfällt.

Insbesondere ist jeder Endomorphismus $f\colon V\to V$ trigonalisierbar, falls Kalgebraisch abgeschlossen ist.

2 Jordan-Normalform

Im Folgenden sei $f \colon V \to V$ ein Endomorphismus eines endlichdimensionalen K-Vektorraums V.

2.1 Definition

Definition 2.1. Für alle $n \in \mathbb{N}$ und $\lambda \in K$ ist

$$J_n(\lambda) := \begin{pmatrix} \lambda & & & \\ 1 & \ddots & & \\ & \ddots & \ddots & \\ & & 1 & \lambda \end{pmatrix} \in \mathcal{M}_n(K)$$

der Jordanblock zu λ von Größe n.

Definition 2.2. Eine Matrix J der Form

$$J = \begin{pmatrix} J_{n_1}(\lambda_1) & & \\ & \ddots & \\ & & J_{n_t}(\lambda_t) \end{pmatrix}$$

ist in Jordan-Normalform.

Definition 2.3. Eine *Jordan-Normalform* einer Matrix $A \in M_n(K)$ ist eine zu A ähnliche Matrix $J \in M_n(K)$, so dass J in Jordan-Normalform ist.

Eine Jordan-Normalform von f ist eine Jordan-Normalform der darstellenden Matrix $M_{f,\mathcal{B},\mathcal{B}}$ bezüglich einer Basis \mathcal{B} von V.

Der Endomorphismus f besitzt genau dann eine Jordan-Normalform $J \in \mathcal{M}_n(K)$, falls es eine Basis \mathcal{B} von V gibt, so dass $M_{f,\mathcal{B},\mathcal{B}} = J$ gilt. Wir bezeichnen eine solche Basis als Jordanbasis von f.

Eine Jordanbasis $\mathcal{B}=(v_1,\ldots,v_n)$ einer Matrix $A\in \mathrm{M}_n(K)$ ist eine Jordanbasis der zu A (bezüglich der Standardbasis) gehörigen linearen Abbildung $f_A\colon K^n\to K^n$, $x\mapsto Ax$. Dies ist äquivalent dazu, dass für die Matrix $C=(v_1|\cdots|v_n)\in \mathrm{GL}_n(K)$ die Matrix $S^{-1}AS=M_{f_A,\mathcal{B},\mathcal{B}}$ in Jordan-Normalform ist.

2.2 Eindeutigkeit

Es sei J eine Matrix in Jordan-Normalform, also

$$J = \begin{pmatrix} J_{n_1}(\lambda_1) & & \\ & \ddots & \\ & & J_{n_t}(\lambda_t) \end{pmatrix}.$$

Für alle $\lambda \in K$ gilt dann

$$\dim \ker (J-\lambda I)^k = \sum_{k'=1}^k \text{Anzahl der Jordanblöcke zu } \lambda$$
 von Größe $\geq k'.$

Für die Zahlen $d_k(\lambda) := \dim \ker (J - \lambda I)^k$ gilt deshalb

$$d_k(\lambda) - d_{k-1}(\lambda) =$$
 Anzahl der Jordanblöcke zu λ von Größe $\geq k$

und somit

Anzahl der Jordanblöcke zu λ von Größe k $= \text{Anzahl der Jordanblöcke zu } \lambda \text{ von Größe } \geq k$ $- \text{Anzahl der Jordanblöcke zu } \lambda \text{ von Größe } \geq (k+1)$ $= (d_k(\lambda) - d_{k-1}(\lambda)) - (d_{k+1}(\lambda) - d_k(\lambda))$ $= 2d_k(\lambda) - d_{k-1}(\lambda) - d_{k+1}(\lambda).$

Ist $A \in \mathcal{M}_n(K)$ und $\lambda \in K$ eine Jordan-Normalform von A, so sind A und J ähnlich, we shalb für alle $\lambda \in K$ und $k \geq 0$ auch $(A - \lambda I)^k$ und $(J - \lambda I)^k$ ähnlich sind. Für alle $\lambda \in K$ und $k \geq 0$ gilt deshalb dim $\ker(A - \lambda)^k = \dim \ker(J - \lambda)^k$. Aus der obigen Berechnung ergibt sich deshalb für die Zahlen $d_k(\lambda) := \ker(A - \lambda I)^k$, dass

Anzahl der Jordanblöcke zu λ von Größe k in $J = 2d_k(\lambda) - d_{k-1}(\lambda) - d_{k+1}(\lambda)$.

Damit ergibt sich inbesondere die folgende Eindeutigkeit der Jordannormalform:

Proposition 2.4. Je zwei Jordannormalformen einer Matrix, bzw. eines Endomorphismus stimmen bis auf Permutation der Jordanblöcke überein.

Es ergibt daher Sinn, von der Jordannormalform einer Matrix, bzw. eines Endomorphismus zu sprechen.

2.3 Existenz

Definition 2.5. Für alle $\lambda \in K$ und $k \geq 0$ sei

$$V_{\lambda}^{k}(f) = \{ v \in V \mid (f - \lambda \operatorname{id}_{V})^{k}(v) = 0 \} = \ker(f - \operatorname{id}_{V})^{k}.$$

Der Untervektorraum

$$V_{\lambda}^{\infty}(f) \coloneqq \bigcup_{k=0}^{\infty} V_{\lambda}^{k}(f) = \left\{ v \in V \mid \text{es gibt } k \ge 0 \text{ mit } (f - \lambda \operatorname{id}_{V})^{k}(v) = 0 \right\}$$

ist der verallgemeinerte Eigenraum von f zu λ . Für $A \in \mathcal{M}_n(K)$ und alle $\lambda \in K$ und $k \geq 0$ sei

$$(K^n)_{\lambda}^k(A) = \{x \in K^n \mid (A - \lambda I)^k x = 0\} = \ker(A - I)^k.$$

Der Untervektorraum

$$(K^n)^{\infty}_{\lambda}(A) \coloneqq \bigcup_{k=0}^{\infty} (K^n)^k_{\lambda}(A) = \left\{ x \in K^n \mid \text{es gibt } k \ge 0 \text{ mit } (A - \lambda I)^k x = 0 \right\}$$

ist der verallgemeinerte Eigenraum von A zu λ .

Lemma 2.6. 1. Es gilt genau dann $V_{\lambda}^{\infty}(f) \neq 0$, wenn λ ein Eigenwert von f ist.

2. Die Summe $\sum_{\lambda \in K} V_{\lambda}^{\infty}(f)$ ist direkt.

Mithilfe der verallgemeinerten Eigenräume ergibt sich eine Charakterisierung der Existenz der Jordan-Normalform:

Satz 2.7. Die folgenden Bedingungen äquivalent:

- 1. Das charakteristische Polynom $p_f(t)$ zerfällt in Linearfaktoren.
- 2. Es gilt $V = \bigoplus_{\lambda \in K} V_{\lambda}^{\infty}(f)$.
- 3. Die Jordan-Normalform von f existiert.

Ist $A \in M_n(K)$, so dass das charakteristische Polynom $p_A(t)$ in Linearfaktoren zerfällt, so lässt sich die Jordan-Normalform von A sowie eine zugehörige Jordanbasis wie folgt berechnen:

- Man bestimme die Eigenwerte von A, etwa indem man $p_A(t)$ berechnet und anschließend die Nullstellen herausfindet.
- Für jeden Eigenwert λ von A führe man die folgenden Schritte durch:
 - Man berechne die iterierten Kerne $\ker(A-\lambda I)$, $\ker(A-\lambda I)^2$, ..., $\ker(A-\lambda I)^m$ bis zu dem Punkt, an dem eine der folgenden äquivalenten Bedingungen erfüllt sind:
 - * Die Dimension dim $\ker(A \lambda I)^m$ ist die algebraische Vielfachheit von λ in $p_A(t)$.
 - * Es gilt $ker(A \lambda I)^m = ker(A \lambda I)^{m+1}$.
 - Man bestimme Anhand der Zahlen $d_k(\lambda) := \dim \ker (A \lambda I)^k$ die Anzahl der auftretenden Jordanblöcke zu λ von Größe k als

$$b_k(\lambda) := 2d_k(\lambda) - d_{k-1}(\lambda) - d_{k+1}(\lambda).$$

Aus den Eigenwerten $\lambda_1, \lambda_2, \ldots$ von A und den Zahlen $b_k(\lambda_i)$ erhalten wir bereits, wieviele Blöcke es zu welchen Eigenwert von welcher Größe gibt, d.h. wie die Jordannormalform von A (bis auf Permutation der Blöcke) aussehen wird. Inbesondere ist $d_1(\lambda)$ die Gesamtzahl der Jordanblöcke zu λ und die entsprechende Potenz m die maximal auftretende Blöckgröße zu λ .

Zur Berechnung einer Jordanbasis von A geht man weiter wie folgt vor:

- Für jeden Eigenwert λ von A gehe man weiterhin wie folgt vor:
 - Man wähle linear unabhängige Vektoren $v_1, \ldots, v_{b_m} \in \ker A^m$ mit

$$\ker A^m = \ker A^{m-1} \oplus \langle v_1, \dots, v_{b_m} \rangle.$$

(Ergänzt man eine Basis von $\ker A^{m-1}$ zu einer Basis von $\ker A^m$, so sind v_1, \ldots, v_{b_m} die neu hinzugekommenen Basisvektoren.)

- Hierdurch ergeben sich für ${\mathcal B}$ die ersten paar Basisvektoren

$$v_1, Av_1, \dots, A^{m-1}v_1,$$

 $v_2, Av_2, \dots, A^{m-1}v_2,$
 $\dots,$
 $v_{b_m}, Av_{b_m}, \dots, A^{m-1}v_{b_m}.$

– Man wählt nun linear unabhängige Vektoren $v_1',\dots,v_{b_{m-1}}'\in\ker A^{m-1},$ so dass

$$\ker A^{m-1} = \ker A^{m-2} \oplus \langle Av_1, \dots, Av_{b_m} \rangle \oplus \langle v'_1, \dots, v'_{b_{m-1}} \rangle$$

gilt.

- Hierdurch erhält man für \mathcal{B} die weiteren Basisvektoren

$$v'_1, Av'_1, \dots, A^{m-2}v'_1,$$

$$v'_2, Av'_2, \dots, A^{m-2}v'_2,$$

$$\dots,$$

$$v'_{b_{m-1}}, Av'_{b_{m-1}}, \dots, A^{m-2}v'_{b_{m-1}}.$$

– Man wähle nun $v_1'',\dots,v_{b_{m-2}}''\in\ker A^{m-2},$ so dass

$$\ker A^{m-1} = \ker A^{m-2} \oplus \left\langle A^2 v_1, \dots, A^2 v_{b_m} \right\rangle \oplus \left\langle A v_1', \dots, A v_{b_{m-1}}' \right\rangle \oplus \left\langle v_1'', \dots, v_{b_{m-2}}'' \right\rangle$$
gilt.

– Hiermit ergeben sich für $\mathcal B$ die Basisvektoren

$$v_1'', Av_1'', \dots, A^{m-2}v_1'',$$

$$v_2'', Av_2'', \dots, A^{m-2}v_2'',$$

$$\dots,$$

$$v_{b_{m-2}}'', Av_{b_{m-2}}'', \dots, A^{m-2}v_{b_{m-2}}''.$$

Durch Weiterführen der obigen Schritte erhält man schließlich eine Basis \mathcal{B}_{λ} von $(K^n)^{\infty}_{\lambda}(A)$.

- Sind $\lambda_1, \ldots, \lambda_n$ die paarweise verschiedenen Eigenwerte von K^n , so ergibt sich Zusammenfügen der Basen $\mathcal{B}_{\lambda_1}, \ldots, \mathcal{B}_{\lambda_t}$ eine Basis \mathcal{B} von K^n .
- Die Basis \mathcal{B} ist eine Jordanbasis von A: Indem man die (in der obigen Reihenfolge entstandenen) Basisvektoren als Spalten in eine Matrix C einträgt, erhält man schließlich $C \in GL_n(K)$, so dass $C^{-1}AC$ in Jordan-Normalform ist. Dabei sind die Blöcke zunächst nach den Eigenwerten $\lambda_1, \ldots, \lambda_t$ (in dieser Reihenfolge) sortiert; die Blöcke zum gleichen Eigenwert sind nach absteigender Größe sortiert.