

CD4027BMS

CMOS Dual J-K Master-Slave Flip-Flop

December 1992

Features

- · High Voltage Type (20V Rating)
- · Set Reset Capability
- Static Flip-Flop Operation Retains State Indefinitely with Clock Level Either "High" or "Low"
- Medium Speed Operation 16MHz (typ.) Clock Toggle Rate at 10V
- **Standardized Symmetrical Output Characteristics**
- 100% Tested For Quiescent Current at 20V
- Maximum Input Current of 1µA at 18V Over Full Package-Temperature Range;
 - 100nA at 18V and +25°C
- Noise Margin (Over Full Package Temperature Range):
 - 1V at VDD = 5V
 - 2V at VDD = 10V
 - 2.5V at VDD = 15V
- 5V, 10V and 15V Parametric Ratings
- Meets All Requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

Applications

• Registers, Counters, Control Circuits

Description

CD4027BMS is a single monolithic chip integrated circuit containing two identical complementary-symmetry J-K masterslave flip-flops. Each flip-flop has provisions for individual J, K, Set Reset, and Clock input signals. Buffered Q and \overline{Q} signals are provided as outputs. This input-output arrangement provides for compatible operation with the Intersil CD4013B dual D type flip-flop.

The CD4027BMS is useful in performing control, register, and toggle functions. Logic levels present at the J and K inputs along with internal self-steering control the state of each flipflop; changes in the flip-flop state are synchronous with the positive-going transition of the clock pulse. Set and reset functions are independent of the clock and are initiated when a high level signal is present at either the Set or Reset input.

The CD4027BMS is supplied in these 16-lead outline packages:

Braze Seal DIP H₄T Frit Seal DIP H₁E Ceramic Flatpack H6W

Pinout

Functional Diagram

Reliability Information Absolute Maximum Ratings Thermal Resistance nermal Resistance θ_{ja} Ceramic DIP and FRIT Package 80° C/W DC Supply Voltage Range, (VDD) -0.5V to +20V (Voltage Referenced to VSS Terminals) Flatpack Package 70°C/W Input Voltage Range, All Inputs -0.5V to VDD +0.5V 20°C/W Maximum Package Power Dissipation (PD) at +125°C DC Input Current, Any One Input±10mA Operating Temperature Range.....-55°C to +125°C For TA = -55° C to $+100^{\circ}$ C (Package Type D, F, K).....500mW Package Types D, F, K, H For TA = $+100^{\circ}$ C to $+125^{\circ}$ C (Package Type D, F, K) Derate Storage Temperature Range (TSTG) -65°C to +150°C Linearity at 12mW/°C to 200mW Lead Temperature (During Soldering) +265°C Device Dissipation per Output Transistor 100mW At Distance 1/16 \pm 1/32 Inch (1.59mm \pm 0.79mm) from case for For TA = Full Package Temperature Range (All Package Types) 10s Maximum

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

				GROUP A		LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS (I	NOTE 1)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VD	D or GND	1	+25°C	-	2	μΑ
				2	+125°C	-	200	μΑ
		VDD = 18V, VIN = VD	D or GND	3	-55°C	-	2	μΑ
Input Leakage Current	IIL	VIN = VDD or GND	VDD = 20	1	+25°C	-100	-	nA
				2	+125°C	-1000	-	nA
			VDD = 18V	3	-55°C	-100	-	nA
Input Leakage Current	IIH	VIN = VDD or GND	VDD = 20	1	+25°C	-	100	nA
				2	+125°C	-	1000	nA
			VDD = 18V	3	-55°C	-	100	nA
Output Voltage	VOL15	VDD = 15V, No Load	<u>.</u>	1, 2, 3	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH15	VDD = 15V, No Load	(Note 3)	1, 2, 3	+25°C, +125°C, -55°C	14.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.	.4V	1	+25°C	0.53	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0	VDD = 10V, VOUT = 0.5V		+25°C	1.4	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT =	1.5V	1	+25°C	3.5	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.	VDD = 5V, VOUT = 4.6V		+25°C	-	-0.53	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.	.5V	1	+25°C	-	-1.8	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9	9.5V	1	+25°C	-	-1.4	mA
Output Current (Source)	IOH15	VDD = 15V, VOUT =	13.5V	1	+25°C	-	-3.5	mA
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10)μΑ	1	+25°C	-2.8	-0.7	V
P Threshold Voltage	VPTH	VSS = 0V, IDD = 10μ/	A	1	+25°C	0.7	2.8	V
Functional	F	VDD = 2.8V, VIN = VI	DD or GND	7	+25°C	VOH>	VOL <	V
		VDD = 20V, VIN = VD	D or GND	7	+25°C	VDD/2	VDD/2	
		VDD = 18V, VIN = VD	D or GND	8A	+125°C			
		VDD = 3V, VIN = VDD	or GND	8B	-55°C			
Input Voltage Low (Note 2)	VIL	VDD = 5V, VOH > 4.5	V, VOL < 0.5V	1, 2, 3	+25°C, +125°C, -55°C	-	1.5	V
Input Voltage High (Note 2)	VIH	VDD = 5V, VOH > 4.5	V, VOL < 0.5V	1, 2, 3	+25°C, +125°C, -55°C	3.5	-	V
Input Voltage Low (Note 2)	VIL	VDD = 15V, VOH > 13 VOL < 1.5V	3.5V,	1, 2, 3	+25°C, +125°C, -55°C	-	4	V
Input Voltage High (Note 2)	VIH	VDD = 15V, VOH > 13 VOL < 1.5V	3.5V,	1, 2, 3	+25°C, +125°C, -55°C	11	-	V

NOTES: 1. All voltages referenced to device GND, 100% testing being implemented.

3. For accuracy, voltage is measured differentially to VDD. Limit is 0.050V max.

2. Go/No Go test with limits applied to inputs.

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

	GROUP A		LIM	ITS			
PARAMETER	SYMBOL	CONDITIONS (NOTE 1, 2)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Propagation Delay	TPHL1	VDD = 5V, VIN = VDD or GND	9	+25°C	-	300	ns
Clock To Q, Q	TPLH1		10, 11	+125°C, -55°C	-	405	ns
Propagation Delay	TPLH2	VDD = 5V, VIN = VDD or GND	9	+25°C	-	300	ns
Set To Q Reset To Q			10, 11	+125°C, -55°C	-	405	ns
Propagation Delay	TPHL3	3 VDD = 5V, VIN = VDD or GND	9	+25°C	-	400	ns
Set To Q, Reset To Q			10, 11	+125°C, -55°C	-	540	ns
Transition Time	TTLH	VDD = 5V, VIN = VDD or GND	9	+25°C	-	200	ns
	TTHL		10, 11	+125°C, -55°C	-	270	ns
Maximum Clock Input	FCL	VDD = 5V, VIN = VDD or GND	9	+25°C	3.5	-	MHz
Frequency			10, 11	+125°C, -55°C	3.5/1.35	-	MHz

NOTES:

- 1. VDD = 5V, CL = 50pF, RL = 200K
- 2. -55°C and +125°C limits guaranteed, 100% testing being implemented.

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 5V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	1	μΑ
				+125°C	-	30	μΑ
		VDD = 10V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	2	μΑ
				+125°C	-	60	μΑ
		VDD = 15V, VIN = VDD or GND	1, 2	-55°C, +25°C	-	2	μΑ
				+125°C	-	120	μΑ
Output Voltage	VOL	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOL	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	-	50	mV
Output Voltage	VOH	VDD = 5V, No Load	1, 2	+25°C, +125°C, -55°C	4.95	-	V
Output Voltage	VOH	VDD = 10V, No Load	1, 2	+25°C, +125°C, -55°C	9.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.4V	1, 2	+125°C	0.36	-	mA
				-55°C	0.64	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0.5V	1, 2	+125°C	0.9	-	mA
				-55°C	1.6	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1.5V	1, 2	+125°C	2.4	-	mA
				-55°C	4.2	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.6V	1, 2	+125°C	-	-0.36	mA
				-55°C	-	-0.64	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.5V	1, 2	+125°C	-	-1.15	mA
				-55°C	-	-2.0	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9.5V	1, 2	+125°C	-	-0.9	mA
				-55°C	-	-1.6	mA

TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

					LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Output Current (Source)	IOH15	VDD =15V, VOUT = 13.5V	1, 2	+125°C	-	-2.4	mA
				-55°C	-	-4.2	mA
Input Voltage Low	VIL	VDD = 10V, VOH > 9V, VOL < 1V	1, 2	+25°C, +125°C, -55°C	-	3	V
Input Voltage High	VIH	VDD = 10V, VOH > 9V, VOL < 1V	VDD = 10V, VOH > 9V, VOL < 1V 1, 2 +25°C, +125°C, -55°C		7	-	V
Propagation Delay	TPHL1	VDD = 10V	1, 2, 3	+25°C	-	130	ns
Clock To Q, Q	TPLH1	VDD = 15V	1, 2, 3	+25°C	-	90	ns
Propagation Delay _	TPLH2	VDD = 10V	1, 2, 3	+25°C	-	130	ns
Set To Q, Reset To Q		VDD = 15V	1, 2, 3	+25°C	-	90	ns
Propagation Delay	TPHL3	VDD = 10V	1, 2, 3	+25°C	-	170	ns
Set To Q, Reset To Q		VDD = 15V	1, 2, 3	+25°C	-	120	ns
Transition Time	TTHL	VDD = 10V	1, 2, 3	+25°C	-	100	ns
	TTLH	VDD = 15V	1, 2, 3	+25°C	-	80	ns
Maximum Clock Input	FCL	VDD = 10V	1, 2, 3	+25°C	8	-	MHz
Frequency Toggle Mode Input TR, TF = 5ns		VDD = 15V	1, 2, 3	+25°C	12	-	MHz
Minimum Data Setup	TS	VDD = 5V	1, 2, 3	+25°C	i	200	ns
Time		VDD = 10V	1, 2, 3	+25°C	-	75	ns
		VDD = 15V	1, 2, 3	+25°C	-	50	ns
Minimum Set or Reset	TW	VDD = 5V	1, 2, 3	+25°C	-	180	ns
Pulse Width		VDD = 10V	1, 2, 3	+25°C	-	80	ns
		VDD = 15V	1, 2, 3	+25°C	-	50	ns
Minimum Clock Pulse	TW	VDD = 5V	1, 2, 3	+25°C	-	140	ns
Width		VDD = 10V	1, 2, 3	+25°C	-	60	ns
		VDD = 15V	1, 2, 3	+25°C	-	40	ns
Clock Input Rise Or Fall	TRCL	VDD = 5V	1, 2, 3, 4	+25°C	-	45	μs
Time (Note 5)	TFCL	VDD = 10V	1, 2, 3, 4	+25°C	-	5	μs
		VDD = 15V	1, 2, 3, 4	+25°C	-	2	μs
Input Capacitance	CIN		1, 2	+25°C	-	7.5	pF

NOTES:

- 1. All voltages referenced to device GND.
- 2. The parameters listed on Table 3 are controlled via design or process and are not directly tested. These parameters are characterized on initial design release and upon design changes which would affect these characteristics.
- 3. CL = 50pF, RL = 200K, Input TR, TF < 20ns.
- 4. If more than one unit is cascaded in a parallel clocked operation, trCL should be made less than or equal to the sum of the fixed propagation delay time at 15pF and the transition time of the output driving stage for the estimated capacitive load.

TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

					LIMITS		
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IDD	VDD = 20V, VIN = VDD or GND	1, 4	+25°C	-	7.5	μΑ

TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS (Continued)

					LIM	IITS	
PARAMETER	SYMBOL	CONDITIONS	CONDITIONS NOTES TEM		MIN	MAX	UNITS
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10μA	1, 4	+25°C	-2.8	-0.2	V
N Threshold Voltage Delta	ΔVTN	VDD = 10V, ISS = -10μA 1, 4 +2		+25°C	-	±1	V
P Threshold Voltage	VTP	VSS = 0V, IDD = 10μA	/SS = 0V, IDD = 10μA 1, 4		0.2	2.8	V
P Threshold Voltage Delta	ΔVΤΡ	VSS = 0V, IDD = 10μA	1, 4	+25°C	-	±1	V
Functional	F	VDD = 18V, VIN = VDD or GND	1	+25°C	VOH >	VOL <	V
		VDD = 3V, VIN = VDD or GND			VDD/2	VDD/2	
Propagation Delay Time	TPHL TPLH	VDD = 5V	1, 2, 3, 4	+25°C	-	1.35 x +25°C Limit	ns

NOTES: 1. All voltages referenced to device GND.

3. See Table 2 for +25°C limit.

2. CL = 50pF, RL = 200K, Input TR, TF < 20ns.

4. Read and Record

TABLE 5. BURN-IN AND LIFE TEST DELTA PARAMETERS +25°C

PARAMETER	SYMBOL	DELTA LIMIT
Supply Current - MSI-1	IDD	± 0.2μΑ
Output Current (Sink)	IOL5	± 20% x Pre-Test Reading
Output Current (Source)	IOH5A	± 20% x Pre-Test Reading

TABLE 6. APPLICABLE SUBGROUPS

CONFORMANCE GROUP		MIL-STD-883 METHOD	GROUP A SUBGROUPS	READ AND RECORD
Initial Test (F	Pre Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test	1 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
Interim Test	2 (Post Burn-In)	100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note	e 1)	100% 5004	1, 7, 9, Deltas	
Interim Test 3 (Post Burn-In)		100% 5004	1, 7, 9	IDD, IOL5, IOH5A
PDA (Note	e 1)	100% 5004	1, 7, 9, Deltas	
Final Test		100% 5004	2, 3, 8A, 8B, 10, 11	
Group A		Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11	
Group B	Subgroup B-5	Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas	Subgroups 1, 2, 3, 9, 10, 11
Subgroup B-6		Sample 5005	1, 7, 9	
Group D		Sample 5005	1, 2, 3, 8A, 8B, 9	Subgroups 1, 2 3

NOTE: 1.5% Parameteric, 3% Functional; Cumulative for Static 1 and 2.

TABLE 7. TOTAL DOSE IRRADIATION

	MIL-STD-883	TE	ST	READ AND	RECORD
CONFORMANCE GROUPS	METHOD	PRE-IRRAD POST-IRRAD		PRE-IRRAD	POST-IRRAD
Group E Subgroup 2	5005	1, 7, 9	Table 4	1, 9	Table 4

CD4027BMS

TABLE 8. BURN-IN AND IRRADIATION TEST CONNECTIONS

					OSCIL	LATOR
FUNCTION	OPEN	GROUND	VDD	9V \pm -0.5V	50kHz	25kHz
Static Burn-In 1 Note 1	1, 2, 14, 15	3 - 13	16			
Static Burn-In 2 Note 1	1, 2, 14, 15	8	3 - 7, 9 - 13, 16			
Dynamic Burn- In Note 2	-	4, 7 - 9, 12	5, 6, 10, 11, 16	12, 14, 15	3, 13	
Irradiation Note 3	1, 2, 14, 15	8	3 - 7, 9 - 13, 16			

NOTE:

- 1. Each pin except VDD and GND will have a series resistor of 10K \pm 5%, VDD = 18V \pm 0.5V
- 2. Each pin except VDD and GND will have a series resistor of 4.75K \pm 5%, VDD = 18V \pm 0.5V
- 3. Each pin except VDD and GND will have a series resistor of 47K \pm 5%; Group E, Subgroup 2, sample size is 4 dice/wafer, 0 failures, VDD = $10V \pm 0.5V$

Logic Diagram

 ${\bf LOGIC\ DIAGRAM\ AND\ TRUTH\ TABLE\ FOR\ CD4027BMS\ (ONE\ OF\ TWO\ IDENTICAL\ J-K\ FLIP-FLOPS)}$

TRUTH TABLE

	PF	RESEN	T STA	TE		NEXT STATE		
	INP	UTS		OUTPUT			TPUTS	
J	K	S	R	Q	CL*	Q	Q	
1	Х	0	0	0		1	0	
Х	0	0	0	1	\ 	1	0	
0	Х	0	0	0		0	1	
Х	1	0	0	1		0	1	
Х	Х	0	0	Х	_			No Change
Х	Х	1	0	Х	Х	1	0	
Х	Х	0	1	Х	Х	0	1	
Х	Х	1	1	X	Х	1	1	

Logic 1 = High Level

* = Level change

Logic 0 = Low Level

X = Don't care

Typical Performance Characteristics

FIGURE 1. TYPICAL OUTPUT LOW (SINK) CURRENT **CHARACTERISTICS**

AMBIENT TEMPERATURE (T_A) = +25°C

FIGURE 3. TYPICAL OUTPUT HIGH (SOURCE) CURRENT **CHARACTERISTICS**

FIGURE 4. MINIMUM OUTPUT HIGH (SOURCE) CURRENT **CHARACTERISTICS**

FIGURE 6. TYPICAL PROPAGATION DELAY TIME vs LOAD CAPACITANCE (CLOCK OR SET TO Q, CLOCK OR RESET TO Q)

Typical Performance Characteristics (Continued)

FIGURE 7. TYPICAL PROPAGATION DELAY TIME vs LOAD CAPACITANCE (SET TO $\overline{\mathbf{Q}}$, OR RESET TO \mathbf{Q})

FIGURE 8. TYPICAL MAXIMUM CLOCK FREQUENCY vs SUPPLY VOLTAGE (TOGGLE MODE)

Chip Dimensions and Pad Layout

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10⁻³ inch)

METALLIZATION: Thickness: 11kÅ – 14kÅ, AL.

PASSIVATION: 10.4kÅ - 15.6kÅ, Silane

BOND PADS: 0.004 inches X 0.004 inches MIN

DIE THICKNESS: 0.0198 inches - 0.0218 inches

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com