Ministerul Educației, Cercetării, Tineretului și Sportului Societatea de Științe Matematice din România

Olimpiada Națională de Matematică

Etapa Județeană și a Municipiului București, 13 Martie 2010

CLASA A XII-A SOLUȚII ȘI BAREME ORIENTATIVE

Problema 1. Fie S suma elementelor inversabile ale unui inel finit. Arătați că $S^2 = S$ sau $S^2 = 0$.

Remarcă. Modele pentru diferitele cazuri sunt

- S = 0, pentru orice inel finit de caracteristică diferită de 2 (vezi mai sus), dar şi pentru corpurile finite \mathbb{F}_{2^n} cu n > 1 (din xS = S pentru orice x inversabil ar rezulta x = 1 dacă S inversabil, deci S = 0);
 - S = 1, pentru inelele Booleene \mathbb{Z}_2^n cu $n \ge 1$ (inclusiv corpul \mathbb{F}_2);
- $S^2 = 0$, dar $S \neq 0$, pentru inelul matricelor pătrate triunghiularsuperioare de ordin 2, cu elemente în \mathbb{F}_2 ;
 - $S^2 = S$, dar $S \neq 0$ și $S \neq 1$, pentru inelele $\mathbb{F}_{2^n} \times \mathbb{F}_2$ cu n > 1.

Problema 2. Fie G un grup cu proprietatea că dacă $a,b \in G$ și $a^2b=ba^2$, atunci ab=ba.

- (i) Dacă G are 2^n elemente, arătați că G este abelian.
- (ii) Dați un exemplu de grup neabelian care are proprietatea din enunț.

Gazeta Matematică

Soluţie.

(i) Pentru $a \in G$, fie $C(a) = \{b : b \in G \text{ si } ab = ba\}$. Din ipoteză rezultă că $C(a^2) \subseteq C(a)$. Întrucât $C(a) \subseteq C(a^2)$, obținem $C(a) = C(a^2)$, oricare ar fi $a \in G$. Prin urmare, $C(a) = C(a^2) = \cdots = C(a^{2^n}) = C(e) = G$, oricare ar fi $a \in G$, adică G este abelian.

...... 4 puncte

(ii) Un exemplu de grup neabelian care are proprietatea din enunţ este grupul multiplicativ (G, \cdot) al matricelor de forma

$$\begin{pmatrix} \hat{1} & a & b \\ \hat{0} & \hat{1} & c \\ \hat{0} & \hat{0} & \hat{1} \end{pmatrix}, \ a, b, c \in \mathbb{Z}_3.$$

Întrucât $A^3=I_3$ oricare ar fi $A\in G$, dacă $A^2B=BA^2$, atunci avem şi $A^{-1}B=BA^{-1}$, deci AB=BA.

...... 3 puncte

Remarcă. Orice grup finit G de ordin impar are proprietatea din enunţ, deoarece $C(a^2) \subseteq C(a^{|G|+1}) = C(a) \subseteq C(a^2)$ (deci $C(a) = C(a^2)$), oricare ar fi $a \in G$. Deci orice astfel de grup neabelian este un exemplu pentru (ii).

Problema 3. Fie a < c < b trei numere reale şi $f : [a,b] \to \mathbb{R}$ o funcție continuă în c. Arătați că dacă f are primitive pe fiecare dintre intervalele [a,c) şi (c,b], atunci f are primitive pe intervalul [a,b].

Soluție. Funcția f are primitive pe intervalul [a,b] dacă și numai dacă funcția g = f + 1 - f(c) are primitive pe [a,b]. Deci putem presupune că f(c) = 1. Întrucât f este continuă în c, există $[\alpha,\beta] \subseteq [a,b]$, astfel încât $c \in (\alpha,\beta)$ și 0 < f(x) < 2, oricare ar fi $x \in [\alpha,\beta]$.

Fie F_a , respectiv F_b , o primitivă a lui f pe intervalul [a,c), respectiv (c,b]. Întrucât F_a şi F_b sunt crescătoare pe intervalele $[\alpha,c)$, respectiv $(c,\beta]$, rezultă că limitele $\lim_{x\to c} F_a(x) = p$ şi $\lim_{x\to c} F_b(x) = q$ există şi sunt finite, căci F_a şi F_b sunt mărginite pe aceste intervale (de exemplu, pentru $x \in (\alpha,c)$, avem $F_a(x) - F_a(\alpha) = f(\xi)$ pentru un anume $\xi \in (\alpha,x)$, dar f este mărginită pe $[\alpha,x] \subset [\alpha,\beta]$).

Problema 4. Fie $f:[0,1] \to \mathbb{R}$ o funcție derivabilă, astfel încât $f(0) = f(1), \int_0^1 f(x) dx = 0$ și $f'(x) \neq 1$, oricare ar fi $x \in [0,1]$.

- (i) Demonstrați că funcția $g:[0,1]\to\mathbb{R}$ dată prin g(x)=f(x)-x este strict descrescătoare.
- (ii) Arătați că pentru orice număr întreg $n \ge 1$ avem

$$\left| \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right) \right| < \frac{1}{2}.$$

Soluţia 1. (i) Deoarece f' (ca funcție derivată) are proprietatea valorii intermediare (Darboux), rezultă că f'(x) < 1, oricare ar fi $x \in [0,1]$, sau f'(x) > 1, oricare ar fi $x \in [0,1]$. Conform teoremei lui Rolle, există însă un punct $c \in (0,1)$, astfel încât f'(c) = 0. Deci f'(x) < 1, oricare ar fi $x \in [0,1]$. Fie $g: [0,1] \to \mathbb{R}$, g(x) = f(x) - x. Cum g'(x) = f'(x) - 1 < 0, oricare ar fi $x \in [0,1]$, rezultă că g este strict descrescătoare.

(ii) Cum

$$s_{\Delta}(g) < \int_0^1 g(x) \, \mathrm{d}x < S_{\Delta}(g),$$

unde $s_{\Delta}(g)$ și $S_{\Delta}(g)$ sunt sumele Darboux inferioară, respectiv superioară ale lui g pentru diviziunea $\Delta = \{0, 1/n, \dots, (n-1)/n, 1\}$, rezultă

$$\frac{1}{n} \sum_{k=0}^{n-1} \left(f\left(\frac{k+1}{n}\right) - \frac{k+1}{n} \right) < \int_0^1 (f(x) - x) \, \mathrm{d}x < \frac{1}{n} \sum_{k=0}^{n-1} \left(f\left(\frac{k}{n}\right) - \frac{k}{n} \right).$$

...... 4 puncte

Cum
$$f(0) = f(1)$$
 și $\int_0^1 f(x) dx = 0$, obținem

$$\sum_{k=0}^{n-1} f\left(\frac{k}{n}\right) - \frac{n+1}{2} < -\frac{n}{2} < \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right) - \frac{n-1}{2},$$

de unde rezultă inegalitatea din enunț.

Soluția 2. Aceeași demonstrație pentru (i) ca în Soluția 1.

(ii) Fie $G: [0,1] \to \mathbb{R}$, $G(x) = F(x) - \frac{x^2}{2}$, unde F este o primitivă a lui f. Funcția G'(x) = f(x) - x este strict descrescătoare, deoarece derivata sa G''(x) = f'(x) - 1 < 0, oricare ar fi $x \in [0,1]$.

Din teorema lui Lagrange, aplicată funcției G pe intervalul $\left[\frac{k}{n}, \frac{k+1}{n}\right]$, $k = 0, \ldots, n-1$, rezultă că

$$f\left(\frac{k+1}{n}\right) - \frac{k+1}{n} < n\left(F\left(\frac{k+1}{n}\right) - F\left(\frac{k}{n}\right) - \frac{2k+1}{2n^2}\right)$$
$$< f\left(\frac{k}{n}\right) - \frac{k}{n}$$

Prin sumarea acestor inegalități obținem

$$\sum_{k=0}^{n-1} f\left(\frac{k+1}{n}\right) - \frac{n+1}{2} < n\left(F(1) - F(0) - \frac{1}{2}\right) < \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right) - \frac{n-1}{2}.$$

Cum $F(1)-F(0)=\int_0^1 f(x)\,\mathrm{d}x=0$ și f(0)=f(1), rezultă inegalitatea cerută.

...... 2 puncte

Remarcă. Concluzia rămâne adevărată, atât pentru $f(0) \leq f(1)$, cât şi atunci când condițiile f(0) = f(1) şi $f'(x) \neq 1$, oricare ar fi $x \in [0, 1]$, sunt înlocuite prin condiția |f'(x)| < 1, oricare ar fi $x \in [0, 1]$.