Orientation

Thuerey / Game Physics

Coordinates in 3D

- Cartesian space
- Orthogonal system
 - -Unit vectors
 - -Left-handed
 - -Right-handed

Re-cap Affine Transformations

- Parallel lines stay parallel
- Angles, length, and handed-ness may change
- Examples
 - -Translation
 - -Rotation
 - -Scaling
 - -Mirroring
 - -Shearing

Rotate, mirror, etc. $\begin{pmatrix} x & x & x & x \\ x & x & x & x \\ \hline x & x & x & x \\ \hline 0 & 0 & 0 & 1 \\ \end{pmatrix}$ Translate

Homogenous part

2D Rotation

$$\mathbf{p}' = \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = R_{\phi}\mathbf{p}$$

3D Rotation around Cartesian Axis

$$R_{x,\phi} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\phi) & -\sin(\phi) \\ 0 & \sin(\phi) & \cos(\phi) \end{pmatrix}$$

$$R_{y,\phi} = \begin{pmatrix} \cos(\phi) & 0 & \sin(\phi) \\ 0 & 1 & 0 \\ -\sin(\phi) & 0 & \cos(\phi) \end{pmatrix}$$

$$R_{z,\phi} = \begin{pmatrix} \cos(\phi) & -\sin(\phi) & 0 \\ \sin(\phi) & \cos(\phi) & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Rotation around Arbitrary Axis

Rotate around axis a:

$$R_{a,\phi} = \begin{pmatrix} c + (1-c)a_x^2 & (1-c)a_x a_y - s a_z & (1-c)a_x a_z - s a_y \\ (1-c)a_x a_y - s a_z & c + (1-c)a_y^2 & (1-c)a_y a_z - s a_x \\ (1-c)a_x a_z - s a_y & (1-c)a_y a_z - s a_x & c + (1-c)a_z^2 \end{pmatrix}$$
with $c = \cos(\phi)$, and $s = \sin(\phi)$,

Note - no range check necessary for angle;
 sine and cosine take care of that

Rotation Matrix

$$\mathbf{p}' = R_{\phi}\mathbf{p} = \begin{pmatrix} r_{x_x} & r_{y_x} & r_{z_x} \\ r_{x_y} & r_{y_y} & r_{z_y} \\ r_{x_z} & r_{y_z} & r_{z_z} \end{pmatrix} \begin{pmatrix} p_x \\ p_y \\ p_z \end{pmatrix} = (\mathbf{r}_x \ \mathbf{r}_y \ \mathbf{r}_z) \begin{pmatrix} p_x \\ p_y \\ p_z \end{pmatrix}$$

Rotation Matrix

- Columns are unit vectors, and mutually orthogonal
- Columns are formed by images of coordinate axes
- Inverse == transpose
- Preserves length, angles, handed-ness
- Points on rotation axis won't change

Orientation

Different semantics

Orientation

- Different representations possible:
 - Fixed Angles
 - Euler Angles
 - Quaternions
 - [Rotation Matrices]

Orientation - Fixed Angles

- General rotation from three consecutive rotations about fixed axes
- E.g.: *x,y,z* or *y,z,x*
- Not: *x,x,y* !

$$R_{x,y,z} = R_z R_y R_x$$

Orientation - Euler Angles

 General rotation from three consecutive rotations about axes fixed to the object

• E.g. from aviation: z, x', y"

-Heading / Yaw = rotation z

-Pitch = rotation x

-Roll = rotation y

$$R_{z,x',y''} = R_z R_x R_y$$

Inverse order, compared to fixed angles!

Problem - Both not unique...

Example: Fixed angles, x-y-z

Componentwise linear interpolation $(0^{\circ}, 0^{\circ}, 0^{\circ})$ $\rightarrow (180^{\circ}, 0^{\circ}, 0^{\circ})$

Problem1 - Both not unique...

Example: Fixed angles, x-y-z

Componentwise linear interpolation $(0^{\circ}, 0^{\circ}, 0^{\circ})$ $\rightarrow (180^{\circ}, 0^{\circ}, 0^{\circ})$

Componentwise linear interpolation $(0^{\circ}, 0^{\circ}, 0^{\circ})$ $\rightarrow (0^{\circ}, 180^{\circ}, 180^{\circ})$

Problem2 - Gimbal Lock

"Kardanische Aufhängung"

Rotation Matrices for Orientations

- Over time, numerical errors can add up (e.g. concatenating many rotations)
 - Not a "real" rotation anymore
 - Can deform shape
- Many unnecessary degrees of freedom (9 for 3 unknowns)
- Re-orthonormalization necessary (Gram-Schmidt)

Quaternions

- Hamilton, *Elements of Quaternions*; 1866
- [Shoemake, Animating rotation with quaternion curves; SIGGRAPH 1985]
- Re-cap imaginary numbers: a+bi, with i*i=-1
- Quaternions are an extension: three imaginary numbers

$$\mathbf{q}=(s,\mathbf{v})=(s,x,y,z)=s1+xi+yj+zk$$
 ("real" ,"imaginary")
$$s,x,y,z\in\mathbb{R},v\in\mathbb{R}^3$$

Quaternion Multiplication

Examples:

$$-i*i = -1$$
 $-Also j*j = k*k = -1$
 $-ij = k$
 $-ji = -k ...$

1 i j k 1 1 i j k i i -1 k -j j j -k -1 i k k j -i -1	1	i	j	k
1	1	i	j	k
i	i	-1	k	- j
\overline{j}	j	-k	-1	i
k	k	j	-i	-1

Quaternion multiplication is not commutative!

Quaternions for Rotation

Unit-length quaternion of the form

quaternion of the form
$$\mathbf{q} = (\cos(\phi/2), \mathbf{n} \sin(\phi/2)) = \begin{pmatrix} \cos(\phi/2) \\ n_x \sin(\phi/2)i \\ n_y \sin(\phi/2)j \\ n_z \sin(\phi/2)k \end{pmatrix}$$

with angle
$$\phi$$
, axis $\mathbf{n} = (x, y, z)^T$, $|\mathbf{n}| = 1$

Rotate a 3D point p with:

$$\mathbf{q}(0,\mathbf{p})\tilde{\mathbf{q}} = \mathbf{p}'$$

• Using conjugate $\tilde{\mathbf{q}} = (s, \mathbf{v}) = (s, -\mathbf{v})$

Quaternions for Rotations

- Consecutive rotations:
 - -Euler theorem: two consecutive rotations can be expressed as a single one
 - -Product of two unit quaternions also again a unit quaternion (group property)

$$\mathbf{q}_2(\mathbf{q}_1(0,\mathbf{p})\mathbf{q}_1^{-1})\mathbf{q}_2^{-1} = (\mathbf{q}_2\mathbf{q}_1)(0,\mathbf{p})(\mathbf{q}_2\mathbf{q}_1)^{-1}$$

Discussion

Euler / Fixed

- Advantages
 - 3 degrees of freedom 3 variables in representation
 - Simple...
- Disadvantages
 - Not a unique representation: infinitely many!
 - Gimbal lock
 - Singularities in general: it can be shown that 3 free variables are not enough! We need more...

Discussion

Matrices

- Advantages
 - Efficient concatenation
 - Fit into graphics frameworks (matrix code usually exists)
 - No gimbal lock
- Disadvantages
 - 9 variables need to be stored!
 - Re-orthonormalization necessary
 - Also not unique...

Discussion

Quaternions

- Advantages
 - "Almost" unique representation of orientation (only q and -q describe same orientation)
 - No gimbal lock
 - Efficient concatenation of multiple rotations
- Disadvantages
 - Re-normalization necessary
 - Not very intuitive...

Working with Quaternions

- Unusable for manually specifying orientations...
- Thus:
 - -Manually specify (e.g. Euler or Matrices)
 - -Convert rotation matrix to quaternion
 - -Perform work (concatenate/integrate orientations)
 - -Convert quaternion back to rotation matrix, e.g., apply to a set of points

Quaternions supported in DirectXMath

- Standard XMVECTOR data type
- Warning, order is different: (x,y,z,w) instead of commonly used (w,x,y,z)
- Set of tool functions, e.g.:
 - -XMVECTOR XMQuaternionNormalize(XMVECTOR Q);
- Conversion functions, e.g.:
 - -XMMatrixRotationQuaternion (quaternion to matrix)
 - -XMQuaternionRotationMatrix (vice versa)

Addendum - Quaternion Operations

Addition:

$$q_1 + q_2 = (s_1, v_1) + (s_2, v_2) = (s_1 + s_2, v_1 + v_2)$$

Multiplication:

$$q_1q_2 = (s_1, v_1)(s_2, v_2) = (s_1s_2 - v_1 \cdot v_2, s_1v_2 + s_2v_1 + v_1 \times v_2)$$

Conjugate:

$$\overline{q} = \overline{(s,v)} = (s,-v)$$

Scalar product:

$$q_1 \cdot q_2 = (s_1, v_1) \cdot (s_2, v_2) = s_1 s_2 + v_1 \cdot v_2$$

= $s_1 s_2 + x_1 x_2 + y_1 y_2 + z_1 z_2$

Addendum - Quaternion Operations

• Norm:

$$|q| = \sqrt{q \cdot q} = \sqrt{s^2 + x^2 + y^2 + z^2}$$

Norm under multiplication:

$$|q_1q_2| = |q_1||q_2|$$

Inverse of a quaternion:

$$qq^{-1} = 1 \Leftrightarrow q^{-1} = \frac{1}{|q|^2}\bar{q}$$

• Unit quaternion q (|q| = 1) can always be written as

$$q = (s, v) = \left(\cos\left(\frac{\theta}{2}\right), \sin\left(\frac{\theta}{2}\right)n\right) \text{ with } |n| = 1$$

Unit quaternion to rotation matrix:

$$R = \begin{pmatrix} 1 - 2y^2 - 2z^2 & 2xy - 2sz & 2xz + 2sy \\ 2xy + 2sz & 1 - 2x^2 - 2z^2 & 2yz - 2sx \\ 2xz - 2sy & 2yz + 2sx & 1 - 2x^2 - 2y^2 \end{pmatrix}$$

• Vice versa:
$$R = \begin{pmatrix} R_{11} & R_{12} & R_{13} \\ R_{21} & R_{22} & R_{23} \\ R_{31} & R_{32} & R_{33} \end{pmatrix}$$

$$s = 1/2\sqrt{1 + R_{11} + R_{22} + R_{33}}$$
, $x = \frac{R_{32} - R_{23}}{4s}$, $y = \frac{R_{13} - R_{31}}{4s}$, $z = \frac{R_{21} - R_{12}}{4s}$

