Problem Sheet 4

1. Prove the q-Pascal recurrences

$$\begin{pmatrix} n \\ k \end{pmatrix}_q = q^k \binom{n-1}{k}_q + \binom{n-1}{k-1}_q \text{ and }$$

$$\begin{pmatrix} n \\ k \end{pmatrix}_q = \binom{n-1}{k}_q + q^{n-k} \binom{n-1}{k-1}_q.$$

2. If y = f(x) and Dy = p(y) for some polynomial p, then show that $D^n y$ is a polynomial of y. If $D^n y = p_n(y)$ for each n, then prove that

$$p_n(y) = \begin{cases} y & n = 0\\ p_{n-1}(y) \cdot p(y) & n \ge 1. \end{cases}$$

- 3. Setting $y = \tan x$ and $z = \sec x$, show that
 - (a) $D^n y$ is a homogeneous polynomial in y, z of degree (n + 1), and
 - (b) $D^n y$ has only terms with even exponents of z.
- 4. Recall that $W_{n,k}$ is the coefficient of $z^{2k+2}y^{n-2k-1}$ in D^ny , where $y=\tan x$ and $z=\sec x$. Prove or disprove that

$$\sum_{k} W_{n,k} = n!.$$

5. Show that

$$W_{n,k} = (2k+2)W_{n-1,k} + (n-2k)W_{n-1,k-1}.$$

- 6. Show that
 - (a) $m_k(C_n) = n/(n-k)\binom{n-k}{k}$.
 - (b) $m_k(K_n) = \binom{n}{2k} \cdot (2k)!/(2^k k!).$
 - (c) $m_k(K_{n,n}) = \binom{n}{k} k!$.
- 7. Given a graph G and edge $e = \{u, v\}$ in G, express Match_G in terms of $\operatorname{Match}_{G-e}$ and $\operatorname{Match}_{G-\{u,v\}}$.
- 8. Show that for a fixed n, $\binom{n}{k}$ as k varies is log-concave.
- 9. Prove that if $A(x) = \sum_{i=0}^{n} a_i x^i$ is a polynomial with all real roots, then the sequence of coefficients of A is log-concave.