

Autenticação baseada em passwords

ISEL – Instituto Superior de Engenharia de Lisboa Rua Conselheiro Emídio Navarro, 1 | 1959-007 Lisboa

Identificação e Autenticação

- Autenticação é o processo de verificação duma alegada identidade
- Motivação
 - Parâmetro para as decisões de controlo de acessos
 - Parâmetro para as acções de personalização
 - · Informação de auditoria
- Exemplo
 - "user" + "password"
 - "user" identificação
 - "password" autenticação

Informação de autenticação

- "Algo" que se conhece
 - "Passwords" e "passphrases"
- "Algo" que se possui
 - Ex.: "tokens" criptográficos, RSA SecurID
- · "Algo" que se é
 - Ex.: características biométricas
- "Algo" que se faz
 - Ex.: assinatura manual

Autenticação e Controlos de acessos

Vulnerabilidades de passwords textuais

- · Ataques de dicionário à palavra-passe
 - Atacante usa uma lista de palavras-passe conhecidas, ou prováveis, e tenta exaustivamente as entradas da lista, em 1 ou mais utilizadores
 - Estes ataques têm como alvo a interface de autenticação dos sistemas ou o local onde está guardada a informação de validação
 - https://haveibeenpwned.com/Passwords
 - https://nordpass.com/most-common-passwords-list/

Sistema de autenticação

- Formalização
 - Conjunto A de informação de autenticação
 - Conjunto V de informação de validação
 - Função f: A → V
 - Função g: V → A → {true, false}
- Exemplo
 - f(a) = H(a)
 - g(v)(a) = (v = H(a))

Ataques de dicionário

Ataques do tipo 1

- Entrada: informação de validação v
- Saída: informação de autenticação
- Para cada a' pertencente a Dicionário
 - Se f(a') = v retornar a'
- Retornar "falha"

Ataques do tipo 2

- Entrada: função de autenticação g(v)
- Saída: informação de autenticação
- Para cada a' pertencente a Dicionário
 - Se g(v)(a') = true retornar a'
- · Retornar "falha"

Protecção contra ataques de dicionário

- Aumentar a incerteza da "password"
 - Passwords aleatórias
 - Selecção proactiva
 - Verificação offline
- Controlar o acesso à informação de verificação
- Aumentar o tempo de processamento da função f
 - **f** = **H**, onde **H** é uma função de *hash*
 - Solução: f = H^R
- Aumentar o tempo de processamento ou limitar o acesso à função g(v)

Ataques com pré-computação

- Baseia-se no facto da função f ser igual para todos os utilizadores
- Seja D um dicionário de palavras prováveis e M um array associativo
- Pré-computação
 - Para todos a'_i em D, calcular e armazenar o par (f(a'_i), a'_i) em
 M (tal que M[f(a'_i)] = a'_i)
- Ataque
 - Dado v, retornar M[v]
- A pré-computação é usada para obter a "password" de qualquer utilizador

Protecção: "salt"

- Protecção contra os ataques de dicionário descritos anteriormente
- Solução: tornar a função f diferente para cada utilizador
- Exemplo: $f_U(a) = H(salt_U \mid a)$, onde
 - f_u é a função associada ao utilizador U
 - salt_u é uma sequência de "bytes" gerada aleatoriamente para cada utilizador
- Neste cenário, a pré-computação depende de salt
 - é específica de cada utilizador do sistema
 - não pode ser utilizada para atacar todos os utilizadores do sistema

Protecção contra ataques tipo 2

- Limitar o acesso à função de autenticação g(v) após a detecção de tentativas de autenticação erradas
- Técnicas
 - Backoff
 - O tempo de execução de g(v) depende do número anterior de tentativas erradas
 - Terminação da ligação
 - Terminação da ligação em caso de erro
 - Bloqueamento
 - Bloqueamento da função g(v) após um número de tentativas erradas
 - Jailing
 - Acesso ao serviço com funcionalidade limitada
- Problema: garantir a disponibilidade do serviço

Aumentar o custo dos pedidos

- Diminuir o número de pedidos realizados através do aumento do seu custo para o cliente
- Desafio computacional que tem de ser calculado pelo "useragent" cliente antes da realização do pedido
 - Necessita de computação do lado do cliente (ex. Javascript)
- CAPTCHA "Completely Automated Public Turing Test to Tell Computers and Humans Apart" - http://www.captcha.net/
 - Fácil para humanos
 - Difícil para computadores

