```
#!usr/bin/python
#-*-encoding:UTF-8-*-
#Date:2021/10/25
##twhor:Dasein
##twhor:D
```

```
1 | df1 = pd.read_csv("E:\\dasein_py\\Data Analysis\\Telecommunication_da\\WA_Fn-UseC_-Telco-Customer-Churn.csv")
```

```
print(df1.info())
print(df1.shape)
```

```
1 | <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 7043 entries, 0 to 7042
     Data columns (total 21 columns):
 3
      # Column Non-Null Count Dtype
 5
     0 customerID 7043 non-null object
1 gender 7043 non-null object
 6
     2 SeniorCitizen 7043 non-null int64
3 Partner 7043 non-null object
 8
 9

      3
      Partner
      7043 non-null
      object

      4
      Dependents
      7043 non-null
      object

      5
      tenure
      7043 non-null
      int64

                                                          object
10
11 5 tenure
12 6 Phoneservice 7043 non-null object
13 7 MultipleLines 7043 non-null object
14 8 InternetService 7043 non-null object
15 9 OnlineSecurity 7043 non-null object
16 10 OnlineBackup 7043 non-null object
17 11 DeviceProtection 7043 non-null object
     12 TechSupport 7043 non-null object
13 StreamingTV 7043 non-null object
18
19
20 14 StreamingMovies 7043 non-null object
21 15 Contract 7043 non-null object
     16 PaperlessBilling 7043 non-null object
     17 PaymentMethod 7043 non-null object
18 MonthlyCharges 7043 non-null float64
23
24
25 19 TotalCharges 7043 non-null object
26 20 Churn
                                   7043 non-null object
27 dtypes: float64(1), int64(2), object(18)
28
     memory usage: 1.1+ MB
29 None
30 (7043, 21)
```

```
quantative = [i for i in df1.columns if df1[i].dtype!=object]
quanlitive = [i for i in df1.columns if df1[i].dtype==object]
print("Quantative counts:{}, Quanlitive counts:{}".format(len(quantative),len(quanlitive)))
```

```
1 | Quantative counts:3, Quanlitive counts:18
```

Data Overall

- Dtype: float64 & string (Quantative:3, Quanlitive:18)
- Case counts: 7043
- Variable counts: 21

```
1 | df1.describe()
```

```
.dataframe tbody tr th {
   vertical-align: top;
}

.dataframe thead th {
   text-align: right;
}
```

	SeniorCitizen	tenure	MonthlyCharges
count	7043.000000	7043.000000	7043.000000
mean	0.162147	32.371149	64.761692
std	0.368612	24.559481	30.090047
min	0.000000	0.000000	18.250000
25%	0.000000	9.000000	35.500000
50%	0.000000	29.000000	70.350000
75%	0.000000	55.000000	89.850000
max	1.000000	72.000000	118.750000

1 df1.columns

```
Index(['customerID', 'gender', 'SeniorCitizen', 'Partner', 'Dependents',
    'tenure', 'PhoneService', 'MultipleLines', 'InternetService',
    'onlineSecurity', 'OnlineBackup', 'DeviceProtection', 'TechSupport',
    'StreamingTV', 'StreamingMovies', 'Contract', 'PaperlessBilling',
    'PaymentMethod', 'MonthlyCharges', 'TotalCharges', 'Churn'],
    dtype='object')
```

Variable Notes

- customerID: ID
- gender
- SeniorCitizen: Whether the customer is a senior citizen or not (1, 0)
- Partner: Whether the customer has a partner or not (Yes, No)
- Dependents: Whether the customer has dependents or not (Yes, No)
- $\bullet \;\;$ tenure: Number of months the customer has stayed with the company
- PhoneService: Whether the customer has a phone service or not (Yes, No)
- MultipleLines: Whether the customer has multiple lines or not (Yes, No, No phone service)
- InternetService: Customer's internet service provider (DSL, Fiber optic, No)
- OnlineSecurity: Whether the customer has online security or not (Yes, No, No internet service)
- OnlineBackup: Whether the customer has online backup or not (Yes, No, No internet service)
- DeviceProtection: Whether the customer has device protection or not (Yes, No, No internet service)
- TechSupport: Whether the customer has tech support or not (Yes, No, No internet service)
- StreamingTV: Whether the customer has streaming TV or not (Yes, No, No internet service)
- StreamingMovies: Whether the customer has streaming movies or not (Yes, No, No internet service)
- Contract: The contract term of the customer (Month-to-month, One year, Two year)
- PaperlessBilling: Whether the customer has paperless billing or not (Yes, No)
- PaymentMethod: The customer's payment method (Electronic check, Mailed check, Bank transfer (automatic), Credit card (automatic))
- MonthlyCharges: The amount charged to the customer monthly
- TotalCharges: The total amount charged to the customer
- Churn: Whether the customer churned or not (Yes or No)

1 df1.head(3)

```
1   .dataframe tbody tr th {
2     vertical-align: top;
3   }
4   
5   .dataframe thead th {
6     text-align: right;
7  }
```

	customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetService	OnlineSecurity	
0	7590-VHVEG	Female	0	Yes	No	1	No	No phone service	DSL	No	
1	5575- GNVDE	Male	0	No	No	34	Yes	No	DSL	Yes	
2	3668-QPYBK	Male	0	No	No	2	Yes	No	DSL	Yes	

3 rows × 21 columns

Insights

- customerID可以drop
- Quantative中SeniorCitizen是0-1变量
- Quanlitive数据需要重编码

```
1 df1.drop('customerID',axis=1,inplace=True) #drop colName: CustomerID
```

```
1 df1.head(3) #double check data after drop
```

```
1   .dataframe tbody tr th {
2    vertical-align: top;
3  }
4
5   .dataframe thead th {
6    text-align: right;
7  }
```

	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetService	OnlineSecurity	OnlineBackup	De
0	Female	0	Yes	No	1	No	No phone service	DSL	No	Yes	No
1	Male	0	No	No	34	Yes	No	DSL	Yes	No	Ye
2	Male	0	No	No	2	Yes	No	DSL	Yes	Yes	No

```
total = df1.isnull().sum()
null_percentage = total/df1.isnull().count()
null_percentage
```

```
      1
      gender
      0.0

      2
      SeniorCitizen
      0.0

      3
      Partner
      0.0

      4
      Dependents
      0.0

      5
      tenure
      0.0

      6
      Phoneservice
      0.0

      7
      MultipleLines
      0.0

      8
      InternetService
      0.0

      9
      OnlineSecurity
      0.0

      10
      OnlineBackup
      0.0

      11
      DeviceProtection
      0.0

      12
      TechSupport
      0.0

      13
      StreamingTV
      0.0

      14
      StreamingMovies
      0.0
```

• Hypothesis: probable duplicates.

```
print(df1.duplicated().sum())
df1=df1.drop_duplicates(subset=None, keep='first',inplace=False)

1 22
```

```
1 #double check去重之后data
2 print(df1.duplicated().sum())
```

```
1 | 0
```

```
1 # TotalCharges应该是数值型,需要强制类型转换
2 # df1['TotalCharges']=df1['TotalCharges'].astype('float64')
3 df1['TotalCharges'] = df1['TotalCharges'].apply(pd.to_numeric, errors='coerce')
```

```
1 df1['TotalCharges'].dtype
```

```
1 dtype('float64')
```

```
1 df1['TotalCharges'].isnull().sum() #有缺失值
```

```
1 | 11
```

```
1 | print('TotalCharges数据分布')
2
   plt.figure(figsize=(14,5))
3
   plt.plot(color='#00338D')
4 #1
5 plt.subplot(1,3,1)
6 plt.title("TotalCharges distplot")
7 sns.distplot(df1.TotalCharges)
8 #2
9 plt.subplot(1,3,2)
10 plt.title("Churn Distplot")
sns.distplot(df1[df1.Churn=='No']['TotalCharges'])
12 #2
13 plt.subplot(1,3,3)
plt.title("Churn + TotalCharges Distplot")
sns.distplot(df1[df1['Churn']=='Yes']['TotalCharges'])
16 plt.show()
```

```
1 | TotalCharges数据分布
```


- TotalCharges偏态分布,需要用中值填充缺失值。
- 1 | df1.fillna({'TotalCharges':df1.TotalCharges.median()},inplace=True)
- 1 df1.TotalCharges.isnull().sum() #已经没有缺失值

1 0

```
1#重編码 'Churn', 定性转定量的哑变量2#df1.Churn.map({'Yes':1,'No':0})3df1.Churn.replace(to_replace='Yes',value=1,inplace=True)4df1.Churn.replace(to_replace='No',value=0,inplace=True)5df1.Churn.isnull().sum()
```

1 df1.Churn.describe()

```
7021.000000
1 count
              0.264492
   mean
3
              0.441094
   std
4
   min
              0.000000
   25%
              0.000000
   50%
              0.000000
6
   75%
              1.000000
8
              1.000000
   max
9 Name: Churn, dtype: float64
```

Insights

• 平均流失率 26.45%。


```
plt.figure(figsize=(4,6))
plt.plot(color='#00338D')
fig = sns.boxplot(x="Churn",y="tenure",data=df1)
plt.title("tenure - Churn Boxplot")
fig.axis(ymin=0,ymax=80)
plt.show()
```


• tenure越小流失率越显著

```
1 df2 = df1.apply(lambda x:pd.factorize(x)[0]) #转换成因子
2 df2.head(5)
```

```
.dataframe tbody tr th {
   vertical-align: top;
}

.dataframe thead th {
   text-align: right;
}
```

	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetService	OnlineSecurity	OnlineBackup	De
0	0	0	0	0	0	0	0	0	0	0	0
1	1	0	1	0	1	1	1	0	1	1	1
2	1	0	1	0	2	1	1	0	1	0	0
3	1	0	1	0	3	0	0	0	1	1	1
4	0	0	1	0	2	1	1	1	0	1	0

```
var = list(df2.columns)
var.remove("Churn")
var.remove("tenure")
var.remove("MonthlyCharges")
var.remove("TotalCharges")
plt.figure(figsize=(30,25))
```

```
7
    a=0
 8
    for item in var:
9
        a+=1
10
        plt.subplot(4,5,a)
        plt.title('Barplot by '+ item)
11
12
        sns.countplot(x=item,data=df2,
                     color="#00338D")
13
14
    #sns.countplot(x=None, y=None,
15
    #hue=None, data=None, order=None,
16
    #hue_order=None, orient=None, color=None,
17
    #palette=None, saturation=0.75, dodge=True, ax=None, **kwargs)
```


• gender对Churn的影响不显著

```
1 df2.drop("gender",axis=1,inplace=True)
```

```
KeyError Traceback (most recent call last)

(ipython-input-28-67322b8776aa> in <module>
    ----> 1 df2.drop("gender",axis=1,inplace=True)
```

```
D:\anaconda\lib\site-packages\pandas\core\frame.py in drop(self, labels, axis, index, columns, level, inplace, errors)

Weight 1.0 0.8

Weight 1.0 0.8

Preturn super().drop(

Japels=labels,

Japels=labels+labels,

Japels=labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labels+labe
```

```
D:\anaconda\lib\site-packages\pandas\core\generic.py in drop(self, labels, axis, index, columns, level, inplace, errors)

3934 for axis, labels in axes.items():

3935 if labels is not None:

-> 3936 obj = obj._drop_axis(labels, axis, level=level, errors=errors)

3937

3938 if inplace:
```

```
2
                        new_axis = axis.drop(labels, level=level, errors=errors)
    3968
3
     3969
   -> 3970
                        new_axis = axis.drop(labels, errors=errors)
4
5
     3971
                      result = self.reindex(**{axis_name: new_axis})
6
     3972
1 \ | \ D:\ anaconda\ lib\ site-packages\ pandas\ core\ indexes\ base.py in drop(self, labels, errors)
2
            if mask.any():
     5016
3
      5017
                     if errors != "ignore":
                         raise KeyError(f"{labels[mask]} not found in axis")
   -> 5018
4
5
      5019
                     indexer = indexer[~mask]
6
      5020
                  return self.delete(indexer)
```

```
1 df2.isnull().sum() #转换成因子之后没有缺失值,不需要fillna(TotalCharges已经填充缺失值)
```

1 | KeyError: "['gender'] not found in axis"

```
1 | SeniorCitizen
 2 Partner
                      0
 3 Dependents
                      0
 4 tenure
                       0
 6 MultipleLines 0
7 Interpet
 7 Internects
8 OnlineSecurity 0
 7 InternetService 0
10 DeviceProtection 0
                   0
11 TechSupport
- StreamingTV 0
13 StreamingMovies 0
14 Contract 0
15 PaperlessBilling 0
16 PaymentMethod
                      0
                       0
17 MonthlyCharges
18 TotalCharges
                      0
19 Churn
                       0
20 dtype: int64
```

```
1 | corr = df2.corr()
2 | corr
```

```
.dataframe tbody tr th {
   vertical-align: top;
}

.dataframe thead th {
   text-align: right;
}
```

	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetService	OnlineSecurity	OnlineBac
SeniorCitizen	1.000000	-0.015553	-0.212115	0.009452	0.008909	0.113409	-0.031221	-0.210370	-0.143900
Partner	-0.015553	1.000000	-0.451659	-0.098113	-0.018728	-0.115992	-0.003667	-0.084330	0.087952
Dependents	-0.212115	-0.451659	1.000000	0.045761	-0.001092	-0.020715	0.046608	0.192658	0.065093
tenure	0.009452	-0.098113	0.045761	1.000000	-0.017391	0.061467	-0.007970	0.020317	-0.060309
PhoneService	0.008909	-0.018728	-0.001092	-0.017391	1.000000	0.675973	0.387549	0.125042	0.129032
MultipleLines	0.113409	-0.115992	-0.020715	0.061467	0.675973	1.000000	0.188826	-0.065972	-0.129333
InternetService	-0.031221	-0.003667	0.046608	-0.007970	0.387549	0.188826	1.000000	0.606107	0.649514
OnlineSecurity	-0.210370	-0.084330	0.192658	0.020317	0.125042	-0.065972	0.606107	1.000000	0.620365
OnlineBackup	-0.143900	0.087952	0.065093	-0.060309	0.129032	-0.129333	0.649514	0.620365	1.000000
DeviceProtection	-0.156410	-0.096813	0.158328	0.040275	0.138544	-0.012102	0.661669	0.747520	0.600141
TechSupport	-0.223293	-0.071483	0.182923	0.036426	0.123035	-0.065817	0.608130	0.789952	0.615611
StreamingTV	-0.129375	-0.082304	0.142145	0.029948	0.171477	0.031247	0.711946	0.700176	0.602861
StreamingMovies	-0.120015	-0.077925	0.127508	0.034361	0.165127	0.029227	0.708061	0.703203	0.605631
Contract	-0.143624	-0.293042	0.241912	0.119246	0.003101	0.082152	0.102456	0.393394	0.038225
PaperlessBilling	-0.156196	-0.015776	0.112220	-0.009923	-0.016824	-0.133094	0.137056	0.332537	0.259546
PaymentMethod	-0.094091	-0.131842	0.122957	0.073367	-0.003547	0.024891	0.008899	0.214518	0.004219
MonthlyCharges	0.048736	-0.034681	-0.030433	0.039656	-0.141515	0.023609	-0.289498	-0.220075	-0.283567
TotalCharges	0.022996	-0.040026	0.004450	0.104648	-0.028946	0.013971	-0.035305	-0.023596	-0.051101
Churn	0.151619	0.149135	-0.163459	-0.142337	0.011323	0.037429	-0.047366	-0.333144	-0.075052

- 极强相关变量
- MultipleLines PhoneService之间有很强共线性。
- 相关系数矩阵中心的变量之间具有极强的相关性 (共线性)
 - $\circ \quad \textit{OnlineSecurity / InternetService / OnlineBackup / DeviceProtection / TechSupport / StreamingTV / StreamingMovies}$
- 没有与Churn具有极强相关性的变量。
 - 。 TotalCharges / MonthlyCharges / OnlineBackup / InternetService / MultipleLines / PhoneService 与Churn相关系数极小。
 - 。 TotalCharges与其他变量相关系数均很小。

热力图效果不是很显著。

```
#独热编码
df_onehot = pd.get_dummies(df1.iloc[:,:])
df_onehot
```

```
definition of the control of th
```

	SeniorCitizen	tenure	MonthlyCharges	TotalCharges	Churn	gender_Female	gender_Male	Partner_No	Partner_Yes	Dependents_N
0	0	1	29.85	29.85	0	1	0	0	1	1
1	0	34	56.95	1889.50	0	0	1	1	0	1
2	0	2	53.85	108.15	1	0	1	1	0	1
3	0	45	42.30	1840.75	0	0	1	1	0	1
4	0	2	70.70	151.65	1	1	0	1	0	1
7038	0	24	84.80	1990.50	0	0	1	0	1	0
7039	0	72	103.20	7362.90	0	1	0	0	1	0
7040	0	11	29.60	346.45	0	1	0	0	1	0
7041	1	4	74.40	306.60	1	0	1	0	1	1
7042	0	66	105.65	6844.50	0	0	1	1	0	1

7021 rows × 46 columns

1 | ValueError: list.remove(x): x not in list

- 独热编码的相关系数细分将变量数值拆分成子变量,研究自变量和Churn之间的相关性大小,进一步研究变量与Churn的相关性。
- gender和phoneservice不相关,所以继续drop phoneservice,用drop之后的var进行卡方检验频数比较。

```
1 kf_var与Churn的进行交叉分析
2
 3 -----Churn by SeniorCitizen-----
4 SeniorCitizen 0 1
5 Churn
6 0 0.871030 0.128970
7 1 0.744211 0.255789
9 -----Churn by Partner-----
10 Partner 0 1
11 Churn
12 0 0.529241 0.470759
13 1 0.360258 0.639742
15 -----Churn by Dependents-----
16 Dependents 0 1
17 Churn

    18
    0
    0.654531
    0.345469

    19
    1
    0.824448
    0.175552

20
21 -----Churn by MultipleLines-----
22 MultipleLines 0 1 2
23 Churn
24 0 0.099148 0.490124 0.410728
25 1 0.091546 0.450727 0.457728
```

```
26
27 -----Churn by InternetService-----
28 InternetService 0 1
30 0
              0.379938 0.348373 0.271689
               0.246096 0.695207 0.058697
31 1
32
33 -----Churn by OnlineSecurity-----
34 OnlineSecurity 0 1 2
35 Churn
36 0
             0.394462 0.333850 0.271689
             0.782445 0.158858 0.058697
37 1
39 -----Churn by OnlineBackup-----
40 OnlineBackup 0 1
41 Churn
           0.369094 0.359218 0.271689
42 0
43 1
           0.281637 0.659666 0.058697
44
  -----Churn by DeviceProtection-----
45
46 DeviceProtection 0 1 2
47 Churn
              0.364833 0.363478 0.271689
48 0
49 1
               0.647819 0.293484 0.058697
50
51 -----Churn by TechSupport-----
52 TechSupport 0 1 2
53 Churn
            0.392525 0.335786 0.271689
54 0
           0.774367 0.166936 0.058697
55 1
56
57 -----Churn by StreamingTV-----
58 StreamingTV 0 1
59 Churn
60 0
           0.361735 0.366576 0.271689
          0.502962 0.438341 0.058697
61 1
62
63 -----Churn by StreamingMovies-----
                       1 2
64 StreamingMovies 0
65 Churn
             0.357668 0.370643 0.271689
66 0
67 1
             0.500808 0.440495 0.058697
68
69 -----Churn by Contract-----
70 Contract 0 1
71 Churn
72 0
         0.427963 0.253098 0.318939
         0.884760 0.089391 0.025848
73 1
74
75 -----Churn by PaperlessBilling-----
76 PaperlessBilling 0 1
77 Churn
78 0
               0.536406 0.463594
              0.749058 0.250942
79 1
81 -----Churn by PaymentMethod-----
82 PaymentMethod 0 1 2
83 Churn
84 0
            0.250581 0.250581 0.249032 0.249806
85 1
            0.573506 0.162628 0.138934 0.124933
```

• Crosstab中若变量取值对应的Churn - Yes的百分比差异越大,说明该变量对Churn - Yes的影响越显著。

o SeniorCitizen: 在年轻用户流失、留存的占比都很高。

o Partner: 单身越流失。

o Dependents: 经济不独立越流失。

。 StreamingMovies/StreamTvs/Multiplelines: 不显著。

○ InternetService: Fiber Optic更易流失。

。 OnlineSecurity/OnlineBackup/DeviceProtection/TechSupport: 没开通容易流失。

Contract:逐月订阅易流失。Check:电子支票易流失。

```
from scipy import stats
def ANOVA(x):
    index_list = list(df2['churn'].value_counts().keys())
    args=[]
for i in index_list:
```

```
args.append(df2[df2['Churn']==i][x])
6
7
       w,p=stats.levene(*args) #齐性检验
8
      if p < 0.05:
9
         print('Churn By {}, p值是{:.2f}, 小于0.05, 表明方差齐性检验不通过, 不可做方差分析。'.format(x,p),'\n')
10
     else:
11
          f,p_value = stats.f_oneway(*args)#方差检验
          print('Churn By {},f值是{:.2f}, p值是{:.2f}。'.format(x,f,p_value),'\n')
12
          if p_value <0.05:
13
             print("Churn by {}有显著性差异,可进行均值比较。".format(x),'\n')
14
15
          else:
16
              print("Churn by {}没有显著性差异,不可进行均值比较。".format(x),'\n')
17
```

```
      1
      print("MonthlyCharges和TotalCharges齐性检验和方差分析,如下:",'\n')

      2
      ANOVA('MonthlyCharges')

      3
      ANOVA('TotalCharges')
```

```
MonthlyCharges和TotalCharges齐性检验和方差分析,如下:

Churn By MonthlyCharges,f值是3.34,p值是0.07。

Churn by MonthlyCharges没有显著性差异,不可进行均值比较。

Churn By TotalCharges,f值是5.13,p值是0.02。

Churn by TotalCharges有显著性差异,可进行均值比较。
```

```
1 df1[["MonthlyCharges","TotalCharges"]]
```

```
1   .dataframe tbody tr th {
2    vertical-align: top;
3  }
4    .dataframe thead th {
5    cdataframe thead th {
6     text-align: right;
7  }
```

	MonthlyCharges	TotalCharges
0	29.85	29.85
1	56.95	1889.50
2	53.85	108.15
3	42.30	1840.75
4	70.70	151.65
7038	84.80	1990.50
7039	103.20	7362.90
7040	29.60	346.45
7041	74.40	306.60
7042	105.65	6844.50

7021 rows × 2 columns

- MonthlyCharges & TotalCharges 量纲差异大。
- gender, id, PhoneService对Churn影响不显著,应该drop。

```
#标准化
from sklearn.preprocessing import StandardScaler

#sklearn.preprocessing.StandardScaler(copy=True, with_mean=True, with_std=True)

scaler = StandardScaler(copy=False)

scaler.fit_transform(df1[['MonthlyCharges','TotalCharges']]) #拟合数据

df1[['MonthlyCharges','TotalCharges']]=scaler.transform(df1[['MonthlyCharges','TotalCharges']]) #数据标准化

df1[['MonthlyCharges','TotalCharges']].head()
```

```
definition of the control of th
```

	MonthlyCharges	TotalCharges
0	-1.164135	-0.997334
1	-0.262811	-0.176352
2	-0.365914	-0.962766
3	-0.750058	-0.197874
4	0.194503	-0.943562

```
1 # 将分类数据转化成整数编码
2 # 获取分类变量的标签值
3 def Labs(x):
4 print(x,"--",df1[x].unique())
5 df_obj = df1.select_dtypes(['object'])
6 print(list(map(Labs,df_obj)))
```

```
1 gender -- ['Female' 'Male']
2 Partner -- ['Yes' 'No']
3 Dependents -- ['No' 'Yes']
4 MultipleLines -- ['No phone service' 'No' 'Yes']
5 InternetService -- ['DSL' 'Fiber optic' 'No']
6 OnlineSecurity -- ['No' 'Yes' 'No internet service']
7 OnlineBackup -- ['Yes' 'No' 'No internet service']
8 DeviceProtection -- ['No' 'Yes' 'No internet service']
9 TechSupport -- ['No' 'Yes' 'No internet service']
10 | StreamingTV -- ['No' 'Yes' 'No internet service']
11 | StreamingMovies -- ['No' 'Yes' 'No internet service']
12 | Contract -- ['Month-to-month' 'One year' 'Two year']
13 PaperlessBilling -- ['Yes' 'No']
14 PaymentMethod -- ['Electronic check' 'Mailed check' 'Bank transfer (automatic)'
15
    'Credit card (automatic)'l
[None, None, None]
```

• 将No xxx serice合并进No

```
df1.replace(to_replace='No internet service',value = 'No',inplace=True)
df1.replace(to_replace='No phone service',value='No',inplace=True)
df_obj = df1.select_dtypes(['object'])
print(list(map(Labs,df_obj)))
```

```
1 gender -- ['Female' 'Male']
2 Partner -- ['Yes' 'No']
3 Dependents -- ['No' 'Yes']
4 MultipleLines -- ['No' 'Yes']
5 InternetService -- ['DSL' 'Fiber optic' 'No']
6 OnlineSecurity -- ['No' 'Yes']
7 OnlineBackup -- ['Yes' 'No']
8 DeviceProtection -- ['No' 'Yes']
9 TechSupport -- ['No' 'Yes']
10 | StreamingTV -- ['No' 'Yes']
11 StreamingMovies -- ['No' 'Yes']
12 | Contract -- ['Month-to-month' 'One year' 'Two year']
13 PaperlessBilling -- ['Yes' 'No']
14 PaymentMethod -- ['Electronic check' 'Mailed check' 'Bank transfer (automatic)'
15
    'Credit card (automatic)']
[None, None, None]
```

```
import sklearn #特征工程
from sklearn import preprocessing #数据预处理
from sklearn.preprocessing import LabelEncoder #編码转换

def labelencoder(x):
    df1[x]=LabelEncoder().fit_transform(df1[x])
for i in range (len(df_obj.columns)):
    labelencoder(df_obj.columns[i])
print(list(map(Labs,df_obj.columns)))
```

```
gender -- [0 1]
partner -- [1 0]
pependents -- [0 1]

MultipleLines -- [0 1]

InternetService -- [0 1 2]
onlineSecurity -- [0 1]

peviceProtection -- [0 1]

prechsupport -- [0 1]

streamingTv -- [0 1]

streamingTv -- [0 1]

contract -- [0 1 2]

paperlessBilling -- [1 0]

paymentMethod -- [2 3 0 1]

[None, None, None]
```

1 list(map(Labs,df1.columns))

```
1 gender -- [0 1]
2 SeniorCitizen -- [0 1]
   Partner -- [1 0]
4 Dependents -- [0 1]
5 tenure -- [ 1 34  2 45  8 22 10 28 62 13 16 58 49 25 69 52 71 21 12 30 47 72 17 27
    5 46 11 70 63 43 15 60 18 66 9 3 31 50 64 56 7 42 35 48 29 65 38 68
6
    32 55 37 36 41 6 4 33 67 23 57 61 14 20 53 40 59 24 44 19 54 51 26 0
8
    391
9 MultipleLines -- [0 1]
10 InternetService -- [0 1 2]
11 OnlineSecurity -- [0 1]
12 OnlineBackup -- [1 0]
13 DeviceProtection -- [0 1]
14 TechSupport -- [0 1]
15 | StreamingTV -- [0 1]
16 StreamingMovies -- [0 1]
17 | Contract -- [0 1 2]
18 PaperlessBilling -- [1 0]
19 PaymentMethod -- [2 3 0 1]
20 MonthlyCharges -- [-1.16413536 -0.26281076 -0.36591432 ... -0.05826662 -0.68686569
21
     0.46057706]
22 TotalCharges -- [-0.99733366 -0.17635202 -0.96276648 ... -0.85756393 -0.87515655
23
    2.01113704]
24 | Churn -- [0 1]
```

```
1 \mid [None,
 3
    None.
    None,
     None,
 6
     None.
8
    None.
9
10
    None,
11
     None,
12
     None,
13
    None,
14
    None,
15
    None.
16
     None,
17
    None.
18
     None,
19
    None]
```

```
# df1.drop("PhoneService",axis=1,inplace=True)

x=df1[var]
y=df1['Churn'].values
x
```

```
1   .dataframe tbody tr th {
2     vertical-align: top;
3  }
4     .dataframe thead th {
6     text-align: right;
7  }
```

	SeniorCitizen	Partner	Dependents	MultipleLines	InternetService	OnlineSecurity	OnlineBackup	DeviceProtection	TechSupport
0	0	1	0	0	0	0	1	0	0 0
1	0	0	0	0	0	1	0	1	0 (
2	0	0	0	0	0	1	1	0	0 0
3	0	0	0	0	0	1	0	1	1 (
4	0	0	0	0	1	0	0	0	0 (
7038	0	1	1	1	0	1	0	1	1 1
7039	0	1	1	1	1	0	1	1	0
7040	0	1	1	0	0	1	0	0	0 (
7041	1	1	0	1	1	0	0	0	0 (
7042	0	0	0	0	1	1	0	1	1 .

7021 rows × 14 columns

1 # #处理样本不平衡,分拆变量

2 # df1.drop("gender",axis=1,inplace=True)

```
from sklearn.model_selection import StratifiedShuffleSplit #分层抽样 from sklearn.model_selection import train_test_split #数据集训练集划分
```

```
    1
    #分层抽样stratified random sampling、过抽样、欠抽样,抽样上面多试错

    2
    sss=StratifiedShuffleSplit(n_splits=5,test_size=.2,random_state=0)

    3
    print(sss)

    4
    print(sss.split(x,y))
```

```
print("训练数据和测试数据被分成的份数: ",sss.get_n_splits(x,y))

#拆分训练集和测试集
for train_index,test_index,in sss.split(x,y):
print("train:",train_index,"test:",test_index)
x_train,x_test=x.iloc[train_index],x.iloc[test_index]
y_train,y_test= y[train_index],y[test_index]
```

```
1 训练数据和测试数据被分成的份数: 5
2 train: [5297 5907 3429 ... 4096 6084 3612] test: [4979 2569 5247 ... 1572 4876 4997]
3 train: [4203 5971 767 ... 1505 230 4637] test: [3201 692 688 ... 4736 3769 5207]
4 train: [5070 2818 1921 ... 4575 6509 1607] test: [1213 3852 1396 ... 1855 2852 1846]
5 train: [1468 2332 1900 ... 6038 5207 943] test: [5733 3682 4429 ... 6390 944 6816]
6 train: [5861 1463 4124 ... 4026 6659 4286] test: [6811 5731 3968 ... 2 4805 6708]
```

```
print("分层抽样数据特征: ",x.shape,"train特征:",x_train_.shape,"test特征: ",x_test_.shape)
print("分层抽样数据特征: ",y.shape,"train特征:",y_train_.shape,"test特征: ",y_test_.shape)
```

```
      1
      分层抽样数据特征: (7021, 14) train特征: (5616, 14) test特征: (1405, 14)

      2
      分层抽样数据特征: (7021,) train特征: (5616,) test特征: (1405,)
```

```
# sklearn.linear_model.RidgeCV(alphas=(0.1, 1.0, 10.0), fit_intercept=True, normalize=False, scoring=None, cv=None, gcv_mode=None, store_cv_values=False)
from sklearn.linear_model import RidgeClassifier, RidgeCV # 岭回归
from sklearn.metrics import accuracy_score
rcv = RidgeClassifier()
rcv.fit(x_train,y_train)
pred = rcv.predict(x_test)
print(accuracy_score(y_test,pred))
```

```
from sklearn.model_selection import train_test_split #数据集训练集划分
z_train,x_test,y_train,y_test=train_test_split(x,y,test_size=.2,random_state=22)
```

```
1 # 训练分类模型
2 from sklearn import metrics
   from sklearn.metrics import recall_score
   from sklearn.metrics import accuracy_score
   from sklearn.metrics import precision score
   from sklearn.metrics import f1_score
   from sklearn.ensemble import RandomForestClassifier #随机森林
   from sklearn.svm import SVC#支持向量机
9
   from sklearn.linear_model import LogisticRegression #逻辑回归
   from sklearn.neighbors import KNeighborsClassifier #k邻近算法
11 from sklearn.naive_bayes import GaussianNB #朴素贝叶斯
12 from sklearn.tree import DecisionTreeClassifier #决策树
13 from sklearn.ensemble import AdaBoostClassifier #分类器算法
14 from sklearn.ensemble import GradientBoostingClassifier #梯度提升
   from xgboost import XGBClassifier
16 | from catboost import CatBoostClassifier
17 from sklearn.linear_model import RidgeClassifier # 岭
18 from sklearn.neural_network import MLPClassifier #神经网络
19
   from sklearn.linear_model import SGDClassifier
20 from sklearn.ensemble import BaggingClassifier
21 from sklearn.ensemble import ExtraTreesClassifier
22 from xgboost import XGBClassifier
23 import time
```

```
1 | Classifiers = [["Random Forest",RandomForestClassifier()],
                 ["Support Vector Machine", SVC()],
3
                 ["LogisticRegression", LogisticRegression()],
 4
                 ["KNeighbor".KNeighborsClassifier(n neighbors=5)].
                  ["Naive Bayes", GaussianNB()],
                 ["Decision Tree",DecisionTreeClassifier()],
 6
                 ["Gradient Boosting Classifier", Gradient Boosting Classifier()],\\
 8
                 ["XGB",XGBClassifier()],
                 ["CatBoost", CatBoostClassifier(logging_level='Silent')],
                  ['RidgeClassifier',RidgeClassifier()],
11
                   ['MLPClassifier', MLPClassifier(solver='lbfgs', activation = 'tanh',
12
                         max_iter = 50, alpha = 0.001,
                        hidden_layer_sizes = (10,30),
13
14
                         random_state = 1,verbose = True)],
                   ['SGDClassifier',SGDClassifier()],
16
                   ['XGBClassifier',XGBClassifier()],
                   ['BaggingClassifier',BaggingClassifier()],
18
                   ['XGBClassifier',XGBClassifier()]
19
```

```
1 import time
2
    Classify_result=[]
    names=[]
4
    prediction=[]
    for name, classifier in Classifiers:
 6
        classifier=classifier
 7
        t1 = time.time()
        {\tt classifier.fit}(x\_{\tt train},y\_{\tt train})
 8
9
        y\_pred=classifier.predict(x\_test)
10
        t2=time.time()
11
        \verb|precision=precision_score(y_test,y_pred)|
12
        f1score = f1_score(y_test, y_pred)
13
        time\_diff = t2 -t1
14
        class_eva=pd.DataFrame([precision,f1score,time_diff])
15
        classify_result.append(class_eva)
16
        name=pd.Series(name)
17
        names.append(name)
```

```
18     y_pred=pd.Series(y_pred)
19     prediction.append(y_pred)
```

[16:03:33] WARNING: D:\Build\xgboost\xgboost-1.4.2.git\src\learner.cc:1095: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior. [16:03:39] WARNING: D:\Build\xgboost\xgboost-1.4.2.git\src\learner.cc:1095: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior. [16:03:39] WARNING: D:\Build\xgboost\xgboost-1.4.2.git\src\learner.cc:1095: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

```
1    names = pd.DataFrame(names)
2    names=names[0].tolist()
3    names
```

```
1 ['Random Forest',
    'Support Vector Machine',
3
    'LogisticRegression',
    'KNeighbor',
5
    'Naive Bayes',
    'Decision Tree',
6
7
    'GradientBoostingClassifier',
8
    'XGB',
9
    'CatBoost',
    'RidgeClassifier',
10
11 'MLPClassifier',
    'SGDClassifier',
12
13
    'XGBClassifier',
    'BaggingClassifier',
14
15 'XGBClassifier']
```

```
1 | result = pd.concat(Classify_result,axis=1)
1 | result.columns = names
```

```
1 result.index = ["precision",'f1score',"time_diff"]
```

1 result.T

```
1  .dataframe tbody tr th {
2    vertical-align: top;
3  }
4    .
5  .dataframe thead th {
6    text-align: right;
7  }
```

	precision	f1score	time_diff
Random Forest	0.546032	0.500728	0.553662
Support Vector Machine	0.624000	0.501608	1.780465
LogisticRegression	0.578544	0.477093	0.029593
KNeighbor	0.506702	0.507383	0.178499
Naive Bayes	0.507937	0.584475	0.005983
Decision Tree	0.476584	0.470748	0.012998
GradientBoostingClassifier	0.596215	0.548621	0.435386
XGB	0.550152	0.516405	0.482712
CatBoost	0.579618	0.530612	4.346667
RidgeClassifier	0.614973	0.411449	0.010227
MLPClassifier	0.612903	0.557185	0.662815
SGDClassifier	0.736842	0.136585	0.026943
XGBClassifier	0.550152	0.516405	0.475735
BaggingClassifier	0.526946	0.498584	0.144153
XGBClassifier	0.550152	0.516405	0.473733