ECOLE NATIONALE DE STATISTIQUE ET D'ANALYSE ECONOMIQUE (ENSAE), DAKAR

Travaux dirigés d'Analyse 3 ISEP 2- 2023-2024

TD 2 - Fonctions de plusieurs variables

Exercice 1 Les fonctions suivantes ont-elles une limite en l'origine?

1.
$$f(x,y) = (x+y)\sin\left(\frac{1}{x^2+y^2}\right)$$
,

2.
$$f(x,y) = \frac{1-\cos(xy)}{xy^2}$$
,

3.
$$f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$$
,

4.
$$f(x,y) = \frac{|x+y|}{x^2 + y^2}$$

5.
$$f(x,y,z) = \frac{xy + yz}{x^2 + 2y^2 + 3z^2}$$
.

Exercice 2 Étudier la continuité sur \mathbb{R}^2 des fonctions définies par :

1.
$$f(x,y) = \frac{x^2y}{x^2+y^2}$$
 si $(x,y) \neq (0,0)$ et $f(0,0) = 0$;

2.
$$f(x,y) = \frac{x^3 - y^3}{x^2 + y^2}$$
 si $(x,y) \neq (0,0)$ et $f(0,0) = 0$.

Exercice 3 Soit $\alpha \in \mathbb{R}$. On considère la fonction $f : \mathbb{R}^2 \to \mathbb{R}$ définie par

$$f(x,y) = \begin{cases} \frac{x^2 + xy + y^2}{(x^2 + y^2)^{\alpha}} & \text{si} \quad (x,y) \neq (0,0) \\ 0 & \text{si} \quad (x,y) = (0,0) \end{cases}$$

- 1. Montrer que f est continue sur \mathbb{R}^2 si et seulement si $\alpha < 1$.
- 2. Montrer que f est différentiable sur \mathbb{R}^2 si et seulement si $\alpha < \frac{1}{2}$.

Exercice 4 Montrer d'après la definition que la fonction $f(x,y) = x^2 + y^2$ est différentiable dans \mathbb{R}^2 . Calculer la différentielle.

Exercice 5 Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x,y) = xe^{xy}$. Est-elle différentiable au point (1,0)?

Exercice 6 Déterminer l'ensemble de continuité de l'application f définie de \mathbb{R}^2 dans \mathbb{R} par :

$$f(x,y) = x \sin \frac{1}{y} + y \sin \frac{1}{x} \text{ si } xy \neq 0 \text{ et } f(x,y) = 0 \text{ si } xy = 0.$$

Exercice 7 On considére la fonction f définie de \mathbb{R}^2 dans \mathbb{R} par :

$$f(x,y) = \frac{x^3}{x^2 + y^2}$$
 si $(x,y) \neq (0,0)$ et $f(0,0) = 0$.

Étudier la continuité de f, l'existence et la continuité des dérivées partielles premières de f.

Deuxième année Prépa EUA 2019-2020

Exercice 8 On considére la fonction f définie de \mathbb{R}^2 dans \mathbb{R} par :

$$f(x,y) = \frac{y^3}{\sqrt{x^2 + y^4}}$$
 si $(x,y) \neq (0,0)$ et $f(0,0) = 0$.

- a) Montrer que f est continue en (0,0).
- b) Établir que, pour tout v de $\mathbb{R}^2 (0,0)$, f admet une dérivée première en (0,0) suivant v.
- c) Monter que f n'est pas différentiable en (0,0).

Exercice 9 On considére la fonction f définie de \mathbb{R}^2 dans \mathbb{R}^2 par :

$$f(x,y) = (e^x - e^y, x + y).$$

Montrer que f est un C^1 -difféomorphisme de \mathbb{R}^2 sur \mathbb{R}^2 .

Exercice 10 On considére la fonction f définie sur $\mathbb{R}^2 - (0,0)$ dans \mathbb{R} par :

$$f(x,y) = xy\ln(x^2 + y^2).$$

- a) Montrer que f admet un prolongement continu à \mathbb{R}^2 , noté encore f.
- b) Etudier l'existence et la continuité des dérivées partielles premères de f.
- c) Etudier l'existence et la continuité des dérivées partielles secondes de f.

Exercice 11 On considére la fonction f définie sur \mathbb{R}^2 dans \mathbb{R} par :

$$f(x,y) = xy - xy^2 + yx^2.$$

Déterminer les extrémums locaux et globaux de f.

Exercice 12 Déterminer les extrémums locaux de f dans chacun des cas suivants :

- 1. $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x, y) = 3xy x^3 y^3$,
- 2. $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = (x-y)(y-1)e^{x+y} + (x-1)e^x + (y-1)e^y$,
- 3. $f: \mathbb{R}^3 \to \mathbb{R}$, $f(x, y, z) = \frac{1}{2}(x^2 + y^2 + z^2) xyz$.