Nama : Ayu andira etterwan

Nim 09010282327022

Kelas : MI3A

Mata kuliah : praktikum jaringan komputer

Router 1

```
09010282327022_R1(config) #router rip
09010282327022_R1(config-router) #version 2
09010282327022_R1(config-router) #network 192.168.2.0
09010282327022_R1(config-router) #network 10.10.10.0
09010282327022 R1(config-router) #exit
09010282327022_R1(config)#exit
09010282327022_R1#
%SYS-5-CONFIG I: Configured from console by console
09010282327022_Rl#show ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
     10.0.0.0/8 is variably subnetted, 4 subnets, 4 masks
        10.0.0.0/8 is directly connected, GigabitEthernet0/1
        10.10.10.1/32 is directly connected, GigabitEthernet0/1
L
s
        10.20.10.0/24 [1/0] via 10.10.10.2
s
        10.20.10.0/30 [1/0] via 10.10.10.2
     192.168.2.0/24 is variably subnetted, 2 subnets, 2 masks
C
       192.168.2.0/24 is directly connected, GigabitEthernet0/0
        192.168.2.1/32 is directly connected, GigabitEthernet0/0
L
S
     192.168.20.0/24 [1/0] via 10.10.10.2
     192.168.40.0/24 [1/0] via 10.10.10.2
s
09010282327022 R1#
```

Router 2

```
Enter configuration commands, one per line. End with CNTL/Z.
09010182327022_R2(config) #router rip
09010182327022_R2(config-router) #version 2
09010182327022_R2(config-router) #network 192.168.20.0
09010182327022_R2(config-router) #network 10.20.10.0
09010182327022_R2(config-router) #no network 10.20.10.0
09010182327022_R2(config-router) #network 10.10.10.0
09010182327022_R2(config-router) #network 10.20.10.0
09010182327022_R2(config-router) #exit
09010182327022_R2(config)#exit
09010182327022 R2#
%SYS-5-CONFIG I: Configured from console by console
09010182327022 R2#show ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
     10.0.0.0/8 is variably subnetted. 4 subnets. 2 masks
        10.10.10.0/30 is directly connected, GigabitEthernet0/1
        10.10.10.2/32 is directly connected, GigabitEthernetO/1
C
        10.20.10.0/30 is directly connected, GigabitEthernet0/2
L
        10.20.10.1/32 is directly connected, GigabitEthernet0/2
S
     192.168.2.0/24 [1/0] via 10.10.10.1
     192.168.20.0/24 is variably subnetted, 2 subnets, 2 masks
С
        192.168.20.0/24 is directly connected, GigabitEthernet0/0
        192.168.20.1/32 is directly connected, GigabitEthernet0/0
     192.168.40.0/24 [1/0] via 10.20.10.2
09010182327022 R2#
```

Router 3

```
09010282327022_R3(config) #router rip
09010282327022_R3(config-router) #version 2
09010282327022_R3(config-router) #network 192.168.40.0
09010282327022_R3(config-router) #network 10.20.10.0
09010282327022_R3(config-router) #exit
09010282327022_R3(config)#exit
09010282327022 R3#
%SYS-5-CONFIG_I: Configured from console by console
09010282327022_R3#show ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
          candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
     10.0.0.0/8 is variably subnetted, 3 subnets, 2 masks
S
        10.10.10.0/30 [1/0] via 10.20.10.1
C
        10.20.10.0/30 is directly connected, GigabitEthernet0/2
       10.20.10.2/32 is directly connected, GigabitEthernet0/2
L
s
    192.168.2.0/24 [1/0] via 10.20.10.1
s
     192.168.20.0/24 [1/0] via 10.20.10.1
     192.168.40.0/24 is variably subnetted, 2 subnets, 2 masks
C
        192.168.40.0/24 is directly connected, GigabitEthernet0/0
L
        192.168.40.1/32 is directly connected, GigabitEthernet0/0
09010282327022 R3#
```

no	Sumber	Tujuan	Hasil	
			Ya	Tidak
1	PC 1	PC 2	Ya	-
		PC 3	Ya	-
		PC 4	Ya	-
		PC 5	Ya	-
		PC 6	Ya	-
		PC 7	Ya	-
		PC 8	Ya	-
		PC 9	Ya	-

no	Sumber	Tujuan	Hasil	
			Ya	Tidak
2	PC 4	PC 1	Ya	-
		PC 2	Ya	-
		PC 3	Ya	-
		PC 5	Ya	-
		PC 6	Ya	-
		PC 7	Ya	-
		PC 8	Ya	-
		PC 9	Ya	-

no	Sumber	Tujuan	Hasil	
			Ya	Tidak
3	PC 7	PC 1	Ya	-
		PC 2	Ya	-
		PC 3	Ya	-
		PC 4	Ya	-
		PC 5	Ya	-
		PC 7	Ya	-
		PC 8	Ya	-
		PC 9	Ya	-

Hasil Ping pada cmd PC:

PC1 -> PC5

PC1 -> PC7

PC4 -> PC2

PC4 -> PC8

PC7 -> PC3

PC7 -> PC9


```
C:\>ping 192.168.40.11

Pinging 192.168.40.11 with 32 bytes of data:

Reply from 192.168.40.11: bytes=32 time<1ms TTL=126

Ping statistics for 192.168.40.11:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms

C:\>
```


Hasil Praktikum

1. Konfigurasi IP Address:

- 1) Router 1:
 - Interface gigaEthernet/0/0: IP 192.168.2.1 / Subnet Mask 255.255.255.0
 - Interface gigaEthernet0/1: IP 10.10.10.1 / Subnet Mask 255.255.255.252
- 2) Router 2:
 - Interface gigaEthernet0/0: IP 192.168.20.1 / Subnet Mask 255.255.255.0
 - Interface gigaEthernet0/1: IP 10.10.10.2 / Subnet Mask 255.255.255.252
 - Interface gigaEthernet0/2: IP 10.20.10.1 / Subnet Mask 255.255.255.252
- 3) Router 3:
 - Interface gigaEthernet0/0: IP 192.168.40.1 / Subnet Mask 255.255.255.0
 - Interface gigaEthernet0/2: IP 10.20.10.2 / Subnet Mask 255.255.255.252

2. Routing Dinamis:

1) Konfigurasi Protokol Routing:

 Router 1: network 192.168.2.0 network 10.10.10.0

 Router 2: network 192.168.40.0 network 192.168.20.0 network 10.10.10.0

Router 3:
 network 192.168.40.0
 network 10.20.10.0

3. Tes Koneksi ping pada cmd PC:

- 1) Ping dari PC 1 ke PC 5 Sukses
- 2) Ping dari PC 1 ke PC 7 Sukses
- 3) Ping dari PC 4 ke PC 2 Sukses
- 4) Ping dari PC 4 ke PC 8 Sukses
- 5) Ping dari PC 7 ke PC 3 Sukses
- 6) ping dari PC 7 ke PC 9 Sukses

Kesimpulan

Dari praktikum ini dapat disimpulkan bahwa:

1. Konfigurasi IP Address dan Routing Dinamis yang Tepat

Konfigurasi IP dan protokol routing yang dilakukan dengan benar memungkinkan komunikasi yang stabil antar-router. Pengaturan RIP sebagai protokol routing

2. dinamis berhasil mendistribusikan informasi rute sehingga setiap router dapat mengenali jaringan lain dengan baik.

3. Pengujian Koneksi ICMP sebagai Verifikasi Konektivitas

Pengujian koneksi menggunakan ICMP (ping) membuktikan bahwa koneksi antar- router berfungsi dengan optimal, tanpa packet loss, yang menandakan bahwa konektivitas dan tabel routing bekerja dengan benar.

4. Efektivitas Protokol RIP untuk Jaringan Sederhana

- 5. RIP adalah protokol yang efektif untuk jaringan sederhana seperti dalam praktikum ini. Namun, untuk jaringan yang lebih kompleks, protokol lain yang lebih efisien mungkin lebih cocok.
- 6. Secara keseluruhan, praktikum ini menunjukkan bahwa dengan konfigurasi IP dan routing yang tepat, jaringan antar-router dapat berfungsi secara optimal dan mendukung komunikasi data yang stabil dan andal