Entwurfsphasen

Im folgenden der Vollständigkeit halber einige Worte zu allen Entwurfsphasen.

Das hier vorgestellte **Entity-Relationship-Modell** gehört dabei zum konzeptionellen Entwurf.

Anforderungsanalyse

- Informationsanforderungen
 - Welche statischen Informationen wird das DBS benutzen (Daten, Realwelt-Objekte, Typen, Attribute, Wertebereiche, Beziehungen ...)
 - Integritätsbedingungen
- Bearbeitungsanforderungen (Processing Requirements)
 - Datenvolumen
- Typische Aktivitäten während der Anforderungsanalyse
 - Identifikation der wesentlichen Benutzergruppen
 - Sichtung existierender Dokumentation
 - Fragebögen und Interviews mit Kunden

Aufgabe des Designers

- Alle Datenkonstrukte erfassen, die gebraucht werden,
 - z.B. Rechnungsdaten und Materialdaten
- Namenskonflikte, Inkonsistenzen vermeiden / beheben (Preis, Preis zu "Zement.Preis", "Montage.Preis" aufspalten)
- Dabei aber vom Ziel DBS abstrahieren, denn dieses kennt man am Anfang evtl. nicht nicht.

Aufgabe des Designers

Natürliche Sprache des Pflichtenheftes aus der Analysephase in eine formale Beschreibung transformieren

Logischer Entwurf

Übersetzung des abstrakten ER - Schemas in ein konkretes Datenmodell des verwendeten DBS

→ z.B. aus ER in relationales Modell übertragen Dies wird Inhalt der weiterführenden Vorlesung sein.

Physischer Entwurf

In der Regel schwer, da dies Aufgabe des DBMS ist

(Aufgaben wären hier z.B. effiziente Speicherung auf Datenträgern)

Vorteile des ER-Modells

Unabhängig von einem konkreten DBS

Grundkonstrukte: Entity und Relationship

Daten

Beziehungen zwischen Daten

Entities und Attribute

Entities:

- Wohlunterscheidbare Dinge der realen Welt
- Besitzen Eigenschaften, konkrete Ausprägung: Werte
- Beispiele: Personen, Autos, Städte, Firmen

Im Prinzip kann man sich Entities wie Klassen vorstellen:

```
entity Buch {
InvNr,
Autor, Titel,
Name, Ort, Jahr
}
```

InvNr Autor Titel Name Ort Jahr

Buch

Graphische Notation
Entity - Bezeichner in Rechteck
Attribute in Ellipsen

InvNr Autor Titel Name Ort Jahr

Buch

Wichtig:

Attribute von Entities sind zeitinvariant

zusammengesetztes Attribut

Mehrwertiges
Attribut

InvNr Autor Titel Verlag Jahr

Buch

zusammengesetztes Attribut

Mehrwertiges Attribut

Name

Ort

<u>InvNr</u>

Autor

hr

Mehrwertige Attribute: Ein Buch kann z.B. mehrere Autoren haben

zusammengesetztes Attribut

Mehrwertiges Attribut

Name

Ort

Zusammengesetzte Attribute:
Haben Unterattribute
Hier haben wir "Name" und "Ort"
unter "Verlag" zusammengefasst.

Verlag

Jahr

zusammengesetztes Attribut

Mehrwertiges
Attribut

InvNr Autor Titel

Verlag

Jahr

Wie man mehrwertige Attribute und zusammengesetzte Attribute am Ende in Tabellen abbildet, ist Aufgabe des logischen Entwurfs, im ER-Schema ist das noch abstrakt.

Entity-Deklaration nach Lehrbuch

Eine Entity-Deklaration hat die Form E = (X, K).

Sie besteht aus einem Format X und einem **Primärschlüssel** K, welcher aus (einwertigen) Elementen von X zusammengesetzt ist.

Die Elemente eines Formates X werden dabei wie folgt notiert:

- Einwertige Attribute: A
- Mehrwertige Attribute: {A}
- Zusammengesetzte Attribute: $A(B_1, ..., B_k)$

Beispiel für Entity-Typ Buch

Wichtig für spätere Füllung der Tabellen

Zu einem Zeitpunkt *t* könnte folgendes vorliegen:

$$Buch^{t} = \{b_{1}, b_{2}, b_{3}\}$$

Im ER-Modell definiert man b₁ als Schlüssel. Das hat später beim Füllen von Tabellen Konsquenzen. Das hier geht:

```
b_1 = (123, {'Vossen', 'Witt'}, 'DB2 Handbuch', ('Addison-Wesley', 'Bonn'), 1990) b_2 = (125, {'Vossen', 'Witt'}, 'SQL/DS Handbuch', ('Addison-Wesley', 'Bonn'), 1988) b_3 = (130, {'Witt'}, 'OO Programmierung', ('Oldenbourg', 'München'), 1992)
```

Nicht vorkommen darf dann aber:

 b_{Δ} = (123, {'Vossen'}, 'Transaktionsverarbeitung', ('Hüthig', 'Heidelberg'), 1990)

(Dies würde den Schlüssel InvNr verletzen)

Zusammenfassung Entities

- Entities
 - Entity-Typen: Zusammenstellung von Attributen

- Entity-Deklarationen sind vollständig graphisch darstellbar
 - Entity-Deklaration als Rechteck mit Namen
 - Attribute als Kreise oder Ellipsen
 - (Primär-) Schlüssel unterstrichen
 - Zusammengesetzte Attribute als Baum
 - Mehrwertige Attribute in Doppelellipsen eingeschlossen

Relationships Nach Lehrbuch

Eine Relationship-Deklaration hat die Form R = (Ent, Y).

Dabei ist R der Name der Deklaration, Ent bezeichnet die Menge der Namen der Entity-Deklarationen, zwischen denen eine Beziehung definiert werden soll, und Y ist eine (möglicherweise leere) Menge von Attributen (der Beziehung).

Realtionships Bsp. Ausleihe

Relationship-Deklaration:

Raute mit dem Namen der Deklaration

Entities (hier Buch und Leser) als Rechtecke und mit Kanten mit der Raute verbunden

Eventuelle Attribute (hier RDat) in Ellipsen und mit Kanten mit der Raute verbunden

Spezielle Relationships Rekursive Beziehung

Eine Entity-Deklaration nimmt **mehrfach** an einem Relationship teil

→ das ist laut Definition zulässig

Eigenschaften von Relationships

- Stelligkeit (grad)
- 1:n und m:n Beziehung

Stelligkeit einer Relationship-Deklaration

1:n Beziehungen (many - one)

Ein Leser kann n Bücher ausleihen.

m:n – Beziehung (many - many)

Keine Restriktionen an die Entity-Paare eines Relationship-Sets

ER - Modell

Spezielle Beziehungen

IS-A Beziehung

IS-A Beziehung

IS-A Beziehung

Spezialisierung Is-A und Part-Of

Spezialisierungshierarchie

Zusammenfassung ER-Modell

- Entity-Deklarationen mit
 - Namen
 - einwertigen, mehrwertigen und zusammengesetzten Attributen und deren Wertebereichen
 - Primärschlüssel
- Relationship-Deklarationen mit
 - Namen
 - beteiligten Entity-Deklarationen
 - ggf. eigenen Attributen
 - Komplexitätsfestlegung

Zusammenfassung ER-Modell

- IS-A Beziehungen als Spezialisierungen von Entity-Deklarationen mit Typ-Festlegung
 - partiell / total
 - disjunkt / nicht disjunkt

Grafische Notation lokaler ER-Konstrukte

Entität (Entity) Person **Vorname** Name Name **Attribut Nachname** Name **Schlüsselattribut** zusammengesetztes **Attribut** mehrwertiges **Autor Attribut**

Grafische Notation lokaler ER-Konstrukte (2)

IS-A Beziehung

p – partiell

t - total

nichtdisjunkt

Beispiel Fluggesellschaft

Folgende Daten sind zu speichern (Anforderungen):

- Personen
 - Passagiere
 - Angestellte
- Flugzeuge
- Flüge

Qualitätsmerkmale ER-Diagramm

- Vollständigkeit
 - Schwierig zu pr
 üfen (nur Vergleich Anforderungsanalyse mit ER Diagramm ist m
 öglich)
- Korrektheit
 - Syntaktische Korrektheit
 - Semantisch korrekt
- Minimalität
- Lesbarkeit
 - Übersichtliche Anordnung / Größen der Symbole
 - Spezialisierunghierachien beginnen mit dem allgemeinsten Typ
 - Symmetrien werden betont
 - Diagramm möglichst kreuzungfrei
- Modifizierbarkeit