Experimenter's Guide - Solving Navier-Stokes, Differently

Context. Clay Math's €1 M millennium prize asks for an existence/uniqueness proof. We take the *orthogonal* route — a **90-day falsifiable protocol** that bets on *Narrative Ticks* (NTs) and their **distance-ratio rhythm** to beat DNS on lead-time, RMSE & GPU cost.

In other words, we look for **the moment chaos begins to order itself**. That *flip point* is the NT. Repeating ratios of NT distances reveal the *fractal rhythm* nature prefers.

1 • Motivation

Classical CFD hunts for **order** \rightarrow **chaos** breakdown (shear-layer, vortices, etc.). Our lens inverts it:

Classical lens	NT lens	
Track smooth solution until it blows up	Detect first DU flip (NT) — where disorder sprouts	
Refine mesh / timestep	Study successive NT-distance ratios to expose hidden rhythm	

Why ratios?

- 1. NT distances carry **scale-free memory**; their ratios cluster when the same physics repeats.
- 2. Over-lapping DU cycles still share the same ratio signature giving us an invariant to test.

2 • Scope & prerequisites

- Python \geq 3.9, NumPy, h5py, matplotlib, Streamlit (auto-installed via requirements.txt).
- HDF5 file with dataset `` (e.g. lift, drag, KE) shape | (N,) |, uniform Δt .
- Binder link https://mybinder.org/v2/gh/gradient-pulse/phi-mesh/HEAD?filepath=RGP_NS_prototype/notebooks/00_quicklook.ipynb

3 • 10-minute smoke-test

- 1. **Binder** \rightarrow run 00_quicklook.ipynb verify red dots mark plausible NTs.
- 2. Run 01_ratio_quicklook.ipynb histogram should *not* be flat; expect spikes.

4 • Full 90-day protocol

Phase	Days	Tool	Deliverable
Data prep	0-10	nt_detect.py	<pre>nt_times.txt</pre>
Initial ratio scan	11-15	01_ratio_quicklook.ipynb	spiky histogram
Hyper-search σ	16-25	loop σ∈{1.02.0}	σ* giving strongest spike
LES / ML run	26-80	your solver	NT forecast CSVs
KPI calc	81-88	dashboard/ & CLI	*_ratios.txt, RMSE, etc.
PR submission	89-90	GitHub	<pre>results/<lab_tag>/</lab_tag></pre> folder

Success = lead-time \geq 30 %, RMSE \leq 5 % DNS, GPU \leq ½ DNS.

5 • Local quick-start

```
git clone https://github.com/gradient-pulse/phi-mesh.git
cd phi-mesh/rgp_ns_prototype
python -m venv .venv && source .venv/bin/activate
pip install -r requirements.txt
# 1. detect NTs
python agents/nt_detect.py data/example_G.h5 --sigma 1.5
# 2. ratio histogram quick-look
jupyter lab notebooks/01_ratio_quicklook.ipynb
```

Batch mode (CLI)

6 • FAQ

- σ ? Iterate 1.0 \rightarrow 2.0; pick σ with clearest ratio spike.
- Over-lapping DU cycles? Ratio signature survives; treat each NT as cycle start.
- Units? Any scalar G(t) [J, N, etc.]; only ratios are dimension-less.

• Can I email results? Yes — zip the three files (*_nt.txt), (*_ratios.txt), (kpi.csv) to marcusvandererve@icloud.com and we'll post on your behalf.

7 • Reference

van der Erve, M. (2025). **Solving Navier–Stokes, Differently: What It Takes.** Zenodo. https://doi.org/10.5281/zenodo.15830659