ZYNQ 开发板系统固化流程

Release Table

Version	Date	Changes
V0.0	Oct 06, 2018	初始版本;
V1.0	Oct 22, 2018	正式版本;

1 文档说明

1.1 文档功能

本手册旨在指导工程师完成 SpacechainOS 在初样/正样 Zynq 板卡上的系统固化工作。

1.2 Zynq 板卡启动流程

本次任务 Zynq 板卡的启动方式为 QFlash 启动,即当板卡上电后,先启动 Qflash 中的 BootLoader (BOOT.bin)。BootLoader 会在对板卡进行前期初始化后, 执行预先存储的命令,即在引导启动固定位置的 BSP 可执行文件 (bspxc7z030.bin)。BSP 可执行文件运行后,操作系统启动完成。

1.3 需要的硬件

Zynq 板卡 Xilinx 下载器 USB 转串口模块

两根网线

交换机或路由器

1.4 需要的软件

Xilinx SDK 2017.2 Real-Evo IDE secureCRT(其他串口软件也可以)

1.5 需要的文件

Bit 工程(**区分正样和初样**) BOOT.bin(**区分正样和初样**) bspxc7z030.bin(**区分正样和初样**) File20.bin(大小为 20M 的空文件)

注意: 所要用到的文件全部都在文档同一目录下的系统固化文件包中。

2 操作步骤

2.1 硬件准备

2.1.1 连接下载器

将 Xilinx 下载器 6 根母头杜邦线一端,按图方向插在 Zynq 板卡的连接器上。 **注意:** 橙色的 **vcc 线**一侧对着板卡上连接器的**三角符号**一侧。 Xilinx 下载器的 USB 一端接在 PC 上。

2.1.2 连接板卡 UART 与 PC

将 USB 转 UART 模块与 PC 相连;

注意: 这里使用 UART1 作为调试信息打印输出串口。

2.1.3 连接板卡网卡与 PC

将第一根网线一端连接板卡的网口转接板,另一端连接在交换机的一个网口上。

将第二根网线一端连接 PC 的网口,另一端连接在交换机的一个网口上。

2.1.4 板卡上电

将白色电源线与稳压电源的正极相连,黑色电源线与稳压电源的负极相连。 设置稳压电源 5V 供电,限流 1A。

启动稳压电源。

硬件准备完成。

2.2 烧写 BootLoader

2.2.1 新建 workspace

在 D 盘新建文件夹,取名为"SdkWorkspace"作为存放 bit 工程的工作空间。

将 bit 工程复制到"SdkWorkspace"目录下,这里以正样为例,初样正样步骤相同,工程文件不同。

注意:区分正样和初样板卡,在对应目录的系统包下找到 BIT 工程。

将"File20.bin"、"BOOT.bin"以及"bspxc7z030.bin"三个文件也复制到"SdkWorkspace"目录下。

2.2.2 打开"Xilinx SDK 2017.2"

Xilinx SDK 是 Xilinx 工具包中的其中一个,在安装 **Vivado** 时一同安装。 **Win10 环境下**,点击桌面左下角的"**Win**"图标。

在首字母为"X"的目录下找到"Xilinx Design Tools" 在"Xilinx Design Tools"中找到"Xilinx SDK 2017.2"图标。 点击"Xilinx SDK 2017.2"图标打开软件。

点击"Browse...."选择刚刚新建的工作空间"SdkWorkSpace"。

点击"OK"进入 SDK

2.2.3 导入 BIT 工程

点击左上角"File"标签,找到并点击"Import..."

在"General"下选择"Existing Projects Into Workspace", 点击"next"

在"Select root directory"栏的右侧点击"Browse..." 选择"D"盘下的"SdkWorkspace"目录,点击"确定"

选择"test_top_wrapper_user_hw_platform_0"工程(使用初样板卡时, 选择初样 BIT 工程), 点击"Finish"

2.2.4 烧写空文件

点击窗口上方的"Xilinx Tools",在下拉菜单中选择"Program Flash"

点击"Image File"栏右侧的"Browse"按钮,选择"SdkWorkspace"目录下的"File20.bin","Offset"一栏填"0",其余项默认即可。

点击"Program"开始烧写空文件,清空 flash。

2.2.5 烧写 Bootloader 可执行文件

点击窗口上方的"Xilinx Tools",在下拉菜单中选择"Program Flash" 点击"Image File"栏右侧的"Browse"按钮,选择"SdkWorkspace"目录下的"BOOT.bin", "Offset"一栏填"0",其余项默认即可。

点击"Program"开始烧写 BootLoader。

在下方 log 窗口信息可以看到烧写完成的打印信息。

2.3 BSP 文件烧写与固化

2.3.1 打开输出串口(UART1)

在桌面上右键单击"我的电脑",在下拉菜单中点击"管理"。

在计算机管理窗口中的"计算机管理(本地)"中选择"系统工具"标签下的"设备管理器"。

在窗口中间的菜单中点开**"端口(COM 和 LPT)"**,可以看到当前 PC 上连接的所有的端口。 找到 USB 转 UART 模块的**端口号**(根据自己的 USB 转 UART 模块的型号选择)。

双击"secureCRT"软件的图标,打开"secureCRT"串口软件。 在左上角单击"File",在下拉菜单中选择"Quick Connect...",软件会弹出配置窗口。

点击"Protocol"右侧的下拉菜单,选择"Serial",转换到串口配置模式。

点击"Port"右侧的下拉菜单,选择 USB 转 UART 模块对应的**端口号**。 点击"Baud rate"右侧的下拉菜单,选择"115200",设置串口的**波特率**。 点击"Data bits"右侧的下拉菜单,选择"8",设置数据位为 8。 点击"Parity"右侧的下拉菜单,选择"None",设置为无校验位。 点击"Stop bits"右侧的下拉菜单,选择"1",设置为 1 位停止位。 右侧的"Flow Control"标签的三个选项都不勾选。 下方勾选"Save session"和"Open in a tab"两个选项。

点击"Connect"按钮,可以看到软件自动新建了一个标签页, Zyng 板卡的 UART1 的打印信

息将在其中打印。

将 Zynq 板卡的电源线断开,静置 3s 后再接上,如果 BootLoader 烧写成功,窗口将收到 BootLoader 打印的信息,进入 uboot 终端命令行。

```
U-Boot 2015.07 (Aug 03 2018 - 20:56:41 -0700)

DRAM: ECC disabled 1 GiB
MMC: zynq_sdhci: 0

SF: Detected N25Q512 with page size 256 Bytes, erase size 4 KiB, total 64 MiB
In: serial
Out: serial
Cout: serial
Err: serial
Net: Gem.e000b000
Hit any key to stop autoboot: 0
U-Boot-PetaLinux>
```

注意:

如果屏幕没有打印信息:

- 1. 查看串口的硬件连接是否正确:杜邦线有无连接,GND、RX、TX 三线是否按上文图中正确连接,连接的串口是否为UART1。
- 2. 串口软件设置是否正确, "Flow Control"标签下的三个选项一定不要勾选, 端口号、 波特率、数据位、校验位、停止位是否按上文配置。
- 3. 若以上几点都可以确定没问题,则可以尝试重新按照步骤烧写 BootLoader。

2.3.2 设置启动命令

进入 uboot 终端命令行后,通过"setenv"命令设置启动命令。

设置启动延时

在 uboot 终端输入:

setenv bootdelay 1

敲击"enter"键执行命令,将启动延时设置为1s。

设置 Zynq 板卡的 IP 地址

在 uboot 终端输入:

setenv ipaddr 10.4.0.81

setenv gatewayip 10.4.0.1

setenv serverip 10.4.0.253

敲击"enter"键执行命令,设置 Zyng 板卡的 IP 地址的相关设置。

注意: gatewayip 为网关 IP 地址, serverip 为用户自己 PC 的 IP 地址, 与 ipaddr (即板卡的 IP 地址) 必须在同一网段 (如本例, 同为 10.4.0.x 网段。), 修改时需要三者一同修改。

```
U-Boot-PetaLinux> setenv bootdelay 1
U-Boot-PetaLinux> setenv ipaddr 10.4.0.81
U-Boot-PetaLinux> setenv gatewayip 10.4.0.1
U-Boot-PetaLinux> setenv serverip 10.4.0.253
U-Boot-PetaLinux>
```

设置 boot 文件和 boot 命令

在 uboot 终端输入:

setenv bootfile bspxc7z030.bin

setenv filesize 0x500000

setenv loadaddr 0x00200000

setenv boot_sylixos_spi "mw 0xE000A204 200 && mw 0xE000A208 200 && mw 0xE000A040 200 && mw 0xE000A040 0 && sf probe && mw 0xE000A040 200 && sf read \${loadaddr} 0xa00000 \${filesize} && mw 0xE000A040 0 && go \${loadaddr}" setenv bootcmd "run boot_sylixos_spi"

敲击"enter"键执行命令。

U-Boot-PetaLinux> setenv boot_sylixos_spi "mw 0xE000A204 200 && mw 0xE000A208 200 && mw 0xE000A040 200 && mw 0xE000A040 0 && sf probe && mw 0xE000A040 200 && sf read \${loadaddr} 0xa00000 \${filesize} && mw 0xE000A040 0 && sf probe && mw 0xE000A040 200 && sf read \${loadaddr} 0xa00000 \${filesize} && mw 0xE000A040 0 && sf probe && mw 0xE000A040 200 && sf read \${loadaddr} 0xa00000 \${filesize} && mw 0xE000A040 0 && sf probe && mw 0xE000A040 200 && sf read \${loadaddr} 0xa00000 \${filesize} && mw 0xE000A040 0 && sf probe && mw 0xE000A040 200 && sf read \${loadaddr} 0xa00000 \${filesize} && mw 0xE000A040 0 && sf probe && mw 0xE000A040 200 && sf read \${loadaddr} 0xa00000 \${filesize} && mw 0xE000A040 0 && sf probe && mw 0xE000A040 200 && sf read \${loadaddr} 0xa00000 \${filesize} && mw 0xE000A040 0 && sf probe && mw 0xE000A040 200 && sf read \${loadaddr} 0xa00000 \${filesize} && mw 0xE000A040 0 && sf probe && mw 0xE000A040 200 && sf read \${loadaddr} 0xa00000 \${filesize} && mw 0xE000A040 0 && sf probe && mw 0xE000A040 200 && sf read \${loadaddr} 0xa00000 \${filesize} && mw 0xE000A040 0 && sf probe && mw 0xE000A040 200 && sf read \${loadaddr} 0xa00000 \${filesize} && mw 0xE000A040 0 && sf probe && mw 0xE000A040 200 && sf read \${loadaddr} 0xa00000 \${filesize} && mw 0xE000A040 0 && sf probe && mw 0xE000A040 200 && sf probe && mw 0xE00A040 200

存储启动命令

在 uboot 终端输入:

saveenv

敲击"enter"键执行命令,。

```
U-Boot-PetaLinux> saveenv
Saving Environment to SPI Flash...
SF: Detected N25Q512 with page size 256 Bytes, erase size 4 KiB, total 64 MiB Erasing SPI flash...Writing to SPI flash...done
U-Boot-PetaLinux>
```

2.3.3 预先擦除 flash 中 BSP 文件的烧写位置

在 uboot 终端输入:

sf probe

敲击"enter"键执行命令。

```
U-Boot-PetaLinux> sf probe
SF: Detected N25Q512 with page size 256 Bytes, erase size 4 KiB, total 64 MiB
U-Boot-PetaLinux> ■
```

在 uboot 终端输入:

sf erase 0xa00000 0x500000

敲击"enter"键执行命令,擦除 flash 中准备烧写 BSP 的位置。

2.3.4 传入并烧写 BSP 可执行文件

设置 tftp server

点击"RealEvo-IDE"图标打开"RealEvo-IDE"软件

Workspace 可以随意选择。

点击上方标签栏中的"Tools",在下拉菜单中选择"TFTP Server",会自动弹出窗口。

点击"Directory: "右侧的"File System"按钮,选择"D"盘目录下的"SdkWorkSpace"目录。 点击"start"。

在 uboot 终端输入"tftp", 敲击"enter"执行命令,将 bsp 可执行文件传入内存。

```
💚 serial-com8 🗶
U-Boot-PetaLinux> tftp
Gem.e000b000:0 is connected to Gem.e000b000. Reconnecting to Gem.e000b000
Gem.e000b000 Waiting for PHY auto negotiation to complete..... done
Using Gem.e000b000 device
TFTP from server 10.4.0.253; our IP address is 10.4.0.81
Filename 'bspxc7z030.bin'.
Load address: 0x200000
Load address: 0x200000
444.3 KiB/s
done
Bytes transferred = 3137120 (2fde60 hex)
U-Boot-PetaLinux>
```

烧写 BSP 到 flash

在 uboot 终端输入"sf write \${loadaddr} 0xa00000 \${filesize} ", 敲击"enter"执行命令, 将 BSP 文件写入 flash 中。

2.4 启动系统

将板卡断电再上电,观察串口打印信息,若板卡自动启动系统,则系统固化成功;否则,系统固化失败,可以重新做一遍。

U-Boot 2015.07 (Aug 03 2018 - 20:56:41 -0700) DRAM: ECC disabled 1 GiB MMC: zynq_sdhci: O SF: Detected N25Q512 with page size 256 Bytes, erase size 4 KiB, total 64 MiB In: serial Out: serial Err: Net: Err: serial Net: Gem.e000b000 Hit any key to stop autoboot: 0 SF: Detected N25Q512 with page size 256 Bytes, erase size 4 KiB, total 64 MiB device 0 offset 0xa00000, size 0x500000 SF: 5242880 bytes @ 0xa00000 Read: 0K ## Starting application at 0x00200000 ... Block device /dev/blk/sdcard-0 part 0 mount to /media/sdcard0 use vfat file system. yaffs: 0 blocks to be sorted... mount sd memory card successfully. envionment variables load from /etc/profile fail, error: No such file or directory [ifparam]No network parameter for [zynq0] from /etc/ifparam.ini, default parameters will be used. Press <n> to NOT execute /etc/startup.sh (timeout: 1 sec(s)) ENET 0: link down can not open /etc/startup.sh: No such file or directory sysname : sylixos nodename : sylixos release : Octopus version : 1.7.1 machine : Zynq7000(Cortex-A9 Max@800MHz Neon)]]]]]] ָנְנָר רְנָ]]]]]]]]]]] בְלַננננְ וֹנננוֹ 11111 11111 KERNEL: LongWing(C) 1.7.1 SylixOS license: Commercial & GPL. SylixOS kernel version: 1.7.1 Code name: Octopus CPU : Zynq7000(Cortex-A9 Max@800MHz Neon) CACHE : 64KBytes L1-Cache (D-32K/I-32K), 512kBytes L2-Cache PACKET : XC7020 MYiD Z-turn Packet ROM SIZE: 0x00000001 Bytes (0x00000000 - 0x00000000) RAM SIZE: 0x3fe00000 Bytes (0x00200000 - 0x3fffffff) BSP : BSP version 0.9.0 [root@sylixos:/root]# ■