

AMENDMENT TO THE CLAIMS:

The following claim set replaces all prior versions, and listings, of claims in the application:

1-24. (canceled)

25. (previously presented) A cosmetic composition comprising a conjugate comprising a hyperbranched polymer covalently bonded to at least three UV absorbing chromophores having an UV absorption maximum $\lambda_{\max} \geq 270$ nm selected from the group consisting of the moieties represented by general formulae:

(V-A)

(V-B)

(V-C)

(V-D)

(V-E)

(V-F)

wherein

Y is O or NR³ wherein R³ is H, C₁-C₆-alkyl or C₂-C₆-alkenyl;

R⁴ and R⁵ are independently H, C₁-C₆-alkyl, C₂-C₆-alkenyl, CO₂H, CO₂-C₁-C₆-alkyl, or R⁴ and R⁵ together with the carbon atom to which they are attached form a 6-camphenyl ring;

R⁹ and R¹⁰ are independently H or C₁-C₆-alkyl;

R¹¹ and R¹² are independently H, C₁-C₆-alkyl, NO₂, CO₂-C₁-C₆-alkyl or CN;

Z is C₁-C₆-alkylene, optionally interrupted by 1 to 3 oxygen atoms;

R¹³ and R¹⁴ are independently H, OR¹⁵, NR¹⁶R¹⁷ or C₁-C₆-alkyl; and

R¹⁵, R¹⁶ and R¹⁷ are independently selected from H and C₁-C₆-alkyl; and

wherein R' is H, OH, straight or branched chain C₁-C₂₀-alkyl, C₁-C₂₀-alkoxy or C₂-C₂₀-alkenyl;

and wherein in the above definition the symbol "—" denotes the linkage to the hyperbranched polymer;

or a moiety of benzophenone-3, benzophenone-4, 2,2',4,4'-tetrahydroxy-benzophenone and 2,2'-dihydroxy-4,4'dimethoxybenzophenone;

and a cosmetically acceptable carrier, and wherein

the hyperbranched polymer is the polycondensation or polyaddition reaction product of building blocks AB₂, which building block AB₂ is glycidol.

26. (currently amended) The composition Compositions according to claim 25, wherein the hyperbranched polymer exhibits an average degree of branching ≥ 25%.

27. (currently amended) The composition Compositions according to claim 25, wherein the hyperbranched polymer has an average molecular weight M_w within the range of from 500 to 50,000 g mol⁻¹.
28. (currently amended) The composition Compositions according to claim 25, wherein the hyperbranched polymer comprises an average number of 2 to 600 dendritic building blocks.
29. (currently amended) The composition Compositions according to claim 25, wherein the hyperbranched polymer comprises a structure represented by general formula (I)

wherein

Y^1 and Y^2 independently represent UV absorbing chromophores;

$\{[Q] (Y^1)_g\}$ represents the hyperbranched polymer covalently bonded to g UV absorbing chromophores Y^1 ;

$(LX)_p$ represents p linker units LX, wherein independently the distal end of each linker unit LX bears a functional group X either being

- covalently bonded to an UV absorbing chromophore Y^2 , or
- covalently bonded to a capping group, or
- in its free reactive form,

and wherein the proximal end of each linker unit LX is covalently bonded to the hyperbranched polymer; and

wherein

index g is an integer, wherein $0 \leq g \leq 100$;

index h is an integer, wherein $0 \leq h \leq p$; and

index p is an integer, wherein $0 \leq p \leq 100$;

with the proviso that $g + h \geq 3$.

30. (currently amended) Compositions according to claim 29, A cosmetic composition comprising a conjugate comprising a hyperbranched polymer covalently bonded to at least three UV absorbing chromophores having an UV absorption maximum $\lambda_{\text{max}} \geq 270$ nm selected from the group consisting of the moieties represented by general formulae:

wherein

Y is O or NR³ wherein R³ is H, C₁-C₆-alkyl or C₂-C₆-alkenyl;

R⁴ and R⁵ are independently H, C₁-C₆-alkyl, C₂-C₆-alkenyl, CO₂H, CO₂-C₁-C₆-alkyl, or R⁴ and R⁵ together with the carbon atom to which they are attached form a 6-camphenyl ring;

R⁹ and R¹⁰ are independently H or C₁-C₆-alkyl;

R¹¹ and R¹² are independently H, C₁-C₆-alkyl, NO₂, CO₂-C₁-C₆-alkyl or CN;

Z is C₁-C₆-alkylene, optionally interrupted by 1 to 3 oxygen atoms;

R¹³ and R¹⁴ are independently H, OR¹⁵, NR¹⁶R¹⁷ or C₁-C₆-alkyl; and

R¹⁵, R¹⁶ and R¹⁷ are independently selected from H and C₁-C₆-alkyl; and

wherein R' is H, OH, straight or branched chain C₁-C₂₀-alkyl, C₁-C₂₀-alkoxy or C₂-C₂₀-alkenyl;

and wherein in the above definition the symbol "—" denotes the linkage to the hyperbranched polymer;

or a moiety of benzophenone-3, benzophenone-4, 2,2',4,4'-tetrahydroxybenzophenone and 2,2'-dihydroxy-4,4'dimethoxybenzophenone;

and a cosmetically acceptable carrier, wherein

the hyperbranched polymer comprises a structure represented by general formula (II)

$$\{[(B_k)(AB_2)_n](Y^1)_g\}(LX)_p(Y^2)_h \quad (II),$$

wherein

Y¹ and Y² independently represent UV absorbing chromophores; are as defined previously;

LX is as defined previously;

(LX)_p represents p linker units LX, wherein independently the distal end of each linker unit LX bears a functional group X either being covalently bonded to an UV absorbing chromophore Y², or covalently bonded to a capping group, or in its free reactive form,

and wherein the proximal end of each linker unit LX is covalently bonded to the hyperbranched polymer; and

B_k represents a starter unit bearing k functional groups B, wherein independently each functional group B is

- covalently bonded to a functional group A of a building block AB_2 , or
- covalently bonded to the proximal end of a linker unit LX, or
- covalently bonded to an UV absorbing chromophore Y^1 , or
- covalently bonded to a capping group, or
- in its free reactive form;

$(AB_2)_n$ represents n building blocks AB_2 , which building block is glycidol, each bearing a functional group A which is the electrophilic carbon atom of the oxirane and 2 independent functional groups B which are represented by the alcoholate of deprotonated glycidol as well as the alcoholate deliberated upon ring opening, wherein independently each functional group A is

- covalently bonded to a functional group B
- of a further building block AB_2 , which building block is glycidol, or
- of the starter unit B_k , or
- covalently bonded to a capping group, or
- in its free reactive form,

and wherein independently each functional group B is

- covalently bonded to a functional group A of a further building block AB_2 , which building block is glycidol, or
- covalently bonded to the proximal end of a linker unit LX, or
- covalently bonded to an UV absorbing chromophore Y^1 , or
- covalently bonded to a capping group, or
- in its free reactive form;

wherein

index g is an integer, wherein $0 \leq g \leq 100$; as defined previously;

index h is an integer, wherein $0 \leq h \leq p$, with the proviso that $g + h \geq 3$; as defined previously;

index k is an integer of from 1 to 6;
index l is 0 or 1;
index m is an integer of from 2 to 4;
index n is an integer of from 3 to 100; and
index p is an integer wherein $0 \leq p \leq n(m-1)+k$.

31. (currently amended) The composition Compositions according to claim 30, wherein in the hyperbranched polymer index l is 1, the starting unit B_k is trimethylolpropane and the building block AB_2 is glycidol.
32. (currently amended) The composition Compositions according to claim 29, wherein the hyperbranched polymer comprises a structure represented by general formula (III)
$$\{[(B_k)(AB_2)_n(C_q)_l](Y^1)_g\}(LX)_p(Y^2)_h \quad (III),$$
wherein
 Y^1 and Y^2 are as defined previously;
 LX is as defined previously;
 B_k represents a starter unit bearing k functional groups B, wherein independently each functional group B is
 - covalently bonded to a functional group C
 - of a monomer C_2 or
 - of a building block C_q or
 - covalently bonded to the proximal end of a linker unit LX, or
 - covalently bonded to an UV absorbing chromophore Y^1 , or
 - covalently bonded to a capping group, or
 - in its free reactive form; $(AB_2)_n$ represents n building blocks AB_2 , each bearing a functional group A and 2 independent functional groups B, wherein independently each functional group A is

- covalently bonded to a functional group C
- of a monomer C₂ or
- of a building block C_q, or
- covalently bonded to the proximal end of a linker unit LX, or
- covalently bonded to an UV absorbing chromophore Y¹, or
- covalently bonded to a capping group, or
- in its free reactive form;

and wherein independently each functional group B is

- covalently bonded to a functional group C
- of a monomer C₂ or
- of a building block C_q, or
- covalently bonded to the proximal end of a linker unit LX, or
- covalently bonded to an UV absorbing chromophore Y¹, or
- covalently bonded to a capping group, or
- in its free reactive form;

(C_q)_r represents

- when index q = 2: r monomers C₂ or
- when index q > 2: r building blocks C_q

each bearing q functional groups C, wherein independently each functional group

C is

- covalently bonded to a functional group A of a building block AB₂, or
- covalently bonded to a functional group B
- of a building block AB₂, or
- of the starter unit B_k, or
- covalently bonded to the proximal end of a linker unit LX, or
- covalently bonded to an UV absorbing chromophore Y¹, or
- covalently bonded to a capping group, or
- in its free reactive form;

wherein

index g is as defined previously;
index h is as defined previously;
index k is an integer of from 1 to 6;
index l is 0 or 1;
index m is an integer of from 2 to 4;
index n is an integer of from 3 to 100;
index p is an integer wherein $0 \leq p \leq n(m-1) + r(q-1) + k$;
index q is an integer of from 2 to 4; and
index r is an integer wherein $1 \leq r \leq nm/q$.

33. (canceled)
34. (currently amended) The composition according to claim 29 or 30, wherein the linker unit LX in the hyperbranched polymer comprises polyethyleneoxide or polypropyleneoxide.
35. (currently amended) The composition according to claim 29 or 30, wherein the hyperbranched polymer comprises 1 to 20 capping groups.
36. (previously presented) The composition according to claim 35, wherein the capping group is a straight or branched chain ether or ester group with 1 to 20 carbon atoms.