Quiz, 9 questions

1 point

1.

(Difficulty: \star) Write out the phase of the complex numbers $a_1=1-{f j}$ and $a_2=-1-{f j}.$

Express the phase in degrees and separate the two phases by a single white space. Each phase should be a number in the range [-180,180].

1 point

2.

(Difficulty: \star) Let $W_N^k=e^{-\mathrm{j}\frac{2\pi}{N}k}$ and N>1. Then $W_N^{N/2}$ is equal to...

_1

1

) -:

 $e^{-\mathrm{j}(2\pi/N)+N}$

Quiz, 9 questions

3.

(Difficulty: \star) Which of the following signals (continuous- and discrete-time) are periodic signals?

Note that $t \in \mathbb{R}$ and $n \in \mathbb{Z}$.

$$oxed{ x[n] = e^{-\mathrm{j}2\pi f_0 n}}$$
, where $f_0 = \log(3)$.

$$x[n] = 1.$$

$$x(t) = t - floor(t).$$

2 points

4.

(Difficulty: $\star\star\star$) Choose the correct statements from the choices below.

Consider the length-N signal $x[n] = \cos(rac{2\pi}{N}Ln + \phi),$ where N is even and L = N/2. Then

$$X[k] = egin{cases} rac{N}{2}e^{\mathrm{j}\phi} & ext{ for } k \equiv L \ 0 & ext{ otherwise} \end{cases}.$$

- Consider the length-N signal $x[n]=(-1)^n$ with N even. Then X[k]=0 for all k except k=N/2
- If we apply the DFT twice to a signal x[n], we obtain the signal itself scaled by N, i.e. Nx[n].

Quiz, 9 questions

5.

(Difficulty:
$$\star$$
) Consider the Fourier basis $\{\mathbf w^k\}_{k=0,\dots,N-1}$, where $\mathbf w^k[n]=e^{-j\frac{2\pi}{N}nk}$ for $0\le n\le N-1$.

Select the correct statement below.

The elements of the basis are orthonormal:

$$\langle \mathbf{w}^i, \mathbf{w}^j
angle = egin{cases} 1 & ext{ for } i=j \ 0 & ext{ otherwise.} \end{cases}$$

- The orthogonality of the vectors depends on the length N of the elements of the basis.
- The elements of the basis are orthogonal:

$$\langle \mathbf{w}^i, \mathbf{w}^j
angle = egin{cases} N & ext{for } i=j \ 0 & ext{otherwise.} \end{cases}$$

Quiz, 9 questions

(Difficulty: $\star\star$) Consider the three sinusoids of length N=64 as illustrated in the above figure; note that the signal values are shown from n=0 to n=63.

Call $y_1[n]$ the blue signal, $y_2[n]$ the green and $y_3[n]$ the red. Further, define $x[n]=y_1[n]+y_2[n]+y_3[n]$.

Choose the correct statements from the list below. Note that the capital letters indicate the DFT vectors.

$$Y_2[k] = egin{cases} 16j & ext{for } k=8 \ 16j & ext{for } k=56 \ 0 & ext{otherwise} \end{cases}$$

$$Y_3[k] = egin{cases} 32 & ext{for } k=0 \ 32 & ext{for } k=64 \ 0 & ext{otherwise} \end{cases}$$

$$Y_1[k] = egin{cases} N & ext{ for } k=4,60 \ 0 & ext{ otherwise} \end{cases}$$

Quiz, 9 questions

7.

(Difficulty: $\star\star\star$) Consider the length-N signal

$$x[n] = \cos\left(2\pi \frac{L}{M}n\right)$$

where M and L are integer parameter with $0 < L \leq N-1$, $0 < M \leq N$.

Choose the correct statements among the choices below.

- The DFT X[k] has two elements different from zero if N=M and N
 eq 2L.
- Consider the circularly shifted signal $y[n]=x[(n-D)\mod N].$ In the Fourier domain, the two DFTs related by a modulation factor: $Y[k]=X[k]e^{-j2\pi krac{D}{N}}.$
- In general, it will be easier to compute the norm of the signal $\|\mathbf{x}\|_2$ in the Fourier domain, using the Parseval's Identity.
- If M=N and 2L < N , the signal has exactly L periods for $0 \leq n < N$

Quiz, 9 questions

8.

(Difficulty: \star) Consider an orthogonal basis $\{\phi_i\}_{i=0,\dots,N-1}$ for \mathbb{R}^N . Select the statements that hold for any vector $\mathbf{x}\in\mathbb{R}^N$.

$$\|\mathbf{x}\|_2^2 = rac{1}{P} \sum_{i=0}^{N-1} |\langle x, \phi_i
angle|^2$$
 if and only if $\|\phi_i\|_2^2 = P \ orall i.$

$$\|\mathbf{x}\|_2^2 = \sum_{i=0}^{N-1} |\langle x, \phi_i
angle|^2.$$

$$\|\mathbf{x}\|_2^2 = \sum_{i=0}^{N-1} |\langle x, \phi_i
angle|^2$$
 if and only if $\|\phi_i\|_2 = 1 \ orall i.$

$$\|\mathbf{x}\|_2^2 = rac{1}{P} \sum_{i=0}^{N-1} |\langle x, \phi_i
angle|^2$$

if and only if $\|\phi_i\|_2 = P \ orall i.$

Quiz, 9 questions

9.

(Difficulty: $\star\star$) Pick the correct sentence(s) among the following ones regarding the DFT ${\bf X}$ of a signal ${\bf x}$ of length N, where N is odd.

Remember the following definitions for an arbitrary signal (asterisk denotes conjugation):

hermitian-symmetry: x[0] real and $x[n] = x[N-n]^*$ for $n=1,\ldots,N-1.$

hermitian-antisymmetry: x[0]=0 and $x[n]=-x[N-n]^*$ for $n=1,\dots,N-1.$

- If the signal ${\bf x}$ is hermitian-symmetric, then the DFT ${\bf X}$ is also hermitian-symmetric.
- If the signal \mathbf{x} is hermitian-symmetric, then its DFT is real.
- If the signal ${\bf x}$ is purely real, then the DFT ${\bf X}$ is purely imaginary.
- If the signal ${\bf x}$ is hermitian antisymmetric, then its DFT ${\bf X}$ is purely imaginary.
- I, Mark R. Lytell, understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account.

Learn more about Coursera's Honor Code

Submit Quiz

