Overview: vsing material presented in 03-19-18, introduce two algos for building Minimum Spanning Trees

· One in detail today, one in triday tetorial.

Recall: MST construction theorem (Monday & proof online)

KRUSKAL'S ALGORITHM

7	FICOURTY FLECTION						
	(E) + (D)		AB 1	BD 2	ED4	EC6	
	5 6 2 1	151 1 1 1 1	cb 1	Bc 2	EAS	EB 7	
OYER	steps to the algorithm is as follows:						
HEW !	B 2 0	. 6 1	o build min heap of edges				
4	MIN EDGE MST	POREST 6		· check min weight edge			
		[A] {B] {C] {D} {E}				ets & union/fiel	
	(12)1 YES	54.B3 502 502 5=2				connects diff set.	

(AB)1 $Y \in S$ $\{A,B\}$ $\{C\}$ $\{D\}$ $\{E\}$ (C,D)1 $Y \in S$ $\{A,B\}$ $\{C,D\}$ $\{E\}$ (B,D)2 $Y \in S$ $\{A,B,C,D\}$ $\{E\}$ (B,C)2 NO

- connect it different sets - continue until one set left

· continue until one set let

(ED) 4 YES {A,B,C,D,E}

ALGORITHM CODE;

[G: connected undirected weighted graph G=(V,E), N|=n, |E|=m $V=\{1,2,3,...n\}$ E=anay of edges [(5,4)4,[(0,2)7][...]

· BUILD_MINHEAP(E), FOREST ([1] 823... En]}, MST. EDGES ()

· WHILE (|MST_EDGES | & n-1)

(U,V) (EXERACT_MIN (E)

TU - FIND(V); TU - FIND(V)

11- (TV + TV)

*NION (Ty TV)

MST_EDGES - MST_EDGES U {(u,v)}

· Some notes about implementation:

use tree-based UNION/FIND DS with weighted union & path Compr.

- Upper bound on naming time of KRUSKAL's: · Building min heap e O(m) · initialize mode forest e O(n) · INSIDE WHILE LOOP: (ocars × n-1 times) THE Veu · extract_min(E) & O(m logm) & 1 Review · n-1 unions, 2m finds e O(m log*n) In < n2 : O(m) + O(n) + O(mlogm) + O(mlog*n) = O(mlogm) = O(m lognz) // m < n2 = 0(m logn) = O(1E1 log [V]) Preview of Prims ALGO: s & 4 0 | start w/ single node

2 1 2 1 | take min edge out of node, add

2 B 2 0 | take min edge from component, add · continue until all nodes connected Next week: NP/Problems