REVISION EXERCISES

- 1. Solve in IR the following equation $(x+\sqrt{x})^4 (x+\sqrt{x})^2 = 159,600$
- 2. Using a determinate, find the area of a triangle whose vertices are (-3,1); (2,-4); (5,1) are the given points collinear?
- 3. If the position of an object after "t" hours is given by $f(t) = \frac{t}{t+1}$
 - a) Is this object moving to the Left or to the Right at "t'' = 10 hours? Justify Your Answer.
- 4. a) Write (if possible) the Vector $\bar{A}(1,6)$ as a linear combination of vectors $\bar{U}(1,3)$ and V(-1,-2)
 - b) Given $V_1 = 2\bar{e}_1 + \bar{e}_2$

$$V_2 = 3\bar{e}_1 + \bar{e}_2$$

Write \bar{e}_1 and \bar{e}_2 as linear combination of vectors V_1 and V_2

- 5. Consider the sample space S on which the:
 - a. Probability P is defined

Consider also two events A & B, such that $P(AUB) = \frac{5}{6}$, $P(A \cap B) = \frac{1}{4}$ $P(A) = \frac{2}{3}$

Find :
$$P(B), P(\overline{A}), P(\overline{B}), P(\overline{A \cap B}),$$

- b. A fair coin is tossed 3 times, find the probability of obtaining 2 Heads.
- c. A factory has 3 machines A,B & C , producing the large Number of certain items of the total daily production of items, 50% are produced on A , 30% on B and 20% on C. Records show that 2% of items of Produced on A are Defective 3% from B and 4% from C are also defective. The Accurance of Defective items is independent of all other items. One item is chosen Randomly from a daily Total Output
 - i) Show that the probability of bing defective is 0.027
 - ii) Given that it is detective, find the probability that it was produced by Machine
 - a) A
 - b) B
 - c) C

6. a. If the line L which passes through the Point P(1,2,3) and parallel to vector

$$V=-2j+i+3k$$
. find its position

b. given that V=2i + j + 2k and V=-3i - 2j + 6k are vectors equation of two straight line in space determine the angle between two vectors

7. The population P1 and P2 of two cities are given by the following equations

$$P1 = 10,000 e^{kt}$$

$$P2 = 20,000e^{0.01t}$$

Where is constant and t is time in years with t = 0 corresponding to year 2000.

Find the constant k so that the two populations are equal in 2040 and approximate your answer to 3 decimals.

8. Find the slope and y-intercept of the regression line y = ax + b that fits the following data.

X	5	5	7	7	9	11	13	15	14	13	16	17
У	4	8	10	7	10	10	12	13	15	16	17	17

- 9. Find the value of $z = (\frac{1}{2} + \frac{i\sqrt{3}}{2})^{2010}$ and leave your answer in the form z=a+bi
- 10. A)Solve in the set of positive integers $^{n-1}C_{n-5}=3$ $^{n-3}C_{n-7}$
- b)Consider the quadratic equation $z^2 6z + c$ where c is real; for what value of c does this polynomial have real roots?

c) Solve in IR
$$4e^{3x}-3e^{2x}-e^x = 0$$

11. i) Let z1 =-1+i and z2 =
$$-\sqrt{2}-\sqrt{6}i$$

a. Find the trigonometric forms of z_1 and z_2

- **b.** Write the product of $z_1.z_2$ in Cartesian and trigonometric form.
 - ii) a. Express complex number $3e^{\pi i}$ in standard form b. Find all (real or complex) numbers x such that $x^3=-8$
 - c. Solve $\sin x + \cos x > \sqrt{2}$ (Hint: use complex number theory)
- 12. For all natural n, the numerical function Fn is defined by

Fn (x) =
$$\frac{x^n}{1+x^2}$$
, x belongs to the set IR

Given that $\operatorname{Ln} = \int_0^1 \operatorname{Fn}(x) dx$

- a. Calculate L₁
- b. Calculate $L_1 + L_3$ and deduce L_3
- c. Show that for all natural numbers P, $L_{2p} + L_{2p+2} = \frac{1}{2p+1}$
- d. Calculate L_2 , L_4 and L_6