Wstęp do Kombinatoryki Analitycznej Lista zadań

Jacek Cichoń WIT, PWr, 2023/24

1 Wstęp

Zadanie 1 — Wyprowadź ze wzoru dwumianowego $(x+y)^n = \sum_k \binom{n}{k} x^k y^{n-k}$ wzór

$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1} .$$

Wskazówka: Skorzystaj z operatora $[x^k]$ do uproszenia obliczeń.

Zadanie 2 — Wyprowadź ze wzoru

$$(x_1 + x_2 + \dots + x_k)^n = \sum_{\substack{a_1 + \dots + a_k = n \\ a_1 \geqslant 0, \dots, a_k \geqslant 0}} {n \choose a_1 a_2 \dots a_k} x_1^{a_1} \cdots x_k^{a_k}$$

wzór

$$\binom{n+1}{a_1 \dots a_k} = \sum_{i=1}^k \binom{n}{a_1 \dots (a_i-1) \dots a_k}.$$

dla $a_1 + ... + a_k = n + 1, a_1 \ge 0, ..., a_k \ge 0$

Zadanie 3 — Ile składników występuje w sumie

$$\sum_{\substack{a_1+\ldots+a_k=n\\a_1\geqslant 0,\ldots,a_k\geqslant 0}} \binom{n}{a_1a_2\ldots a_k} x_1^{a_1}\cdots x_k^{a_k} ?$$

Zadanie 4 — Niech $(x_{i,j})_{i=1,...n,j=1,...m}$ będą elementami dowolnego pierścienia.

1. Pokaż, że

$$\prod_{i=1}^{n} \sum_{j=1}^{m} x_{i,j} = \sum_{f \in [m]^{[n]}} \prod_{i=1}^{n} x_{i,f(i)} .$$

2. Zapisz udowodnioną tożsamość dla n=2 w bardziej czytelnej postaci.

Zadanie 5 — Niech $\{A_1,\ldots,A_n\}$ będzie rodziną podzbiorów zbioru Ω . Niech $d(x)=|\{i\in[n]:x\in A_i\}|$. Pokaż, że

$$\sum_{i,j=1}^{n} |A_i \cap A_j| = \sum_{x \in \Omega} d^2(x) .$$

Wskazówka: Oto propozycja początku dowodu:

$$\sum_{i,j=1}^{n} |A_i \cap A_j| = \sum_{i,j=1}^{n} \sum_{\omega \in \Omega} \|\omega \in A_i \cap A_j\| = \dots$$

Zadanie 6 — Niech $N = p_1^{e_1} p_2^{e_2} \cdots p_n^{e_n}$, gdzie p_i są parami różnymi liczbami pierwszymi oraz $e_i \ge 1$. Skorzystaj z Zasady Włączania - Wyłączania do pokazanie, że

$$\phi(N) = N \prod_{i=1}^{n} \left(1 - \frac{1}{p_i} \right) ,$$

gdzie ϕ oznacza funkcję phi Eulera.

Wskazówka: Zauważ, że dla $x \in \{1, ..., N\}$ mamy $NDW(x, N) > 1 \longleftrightarrow (\exists i \in \{1, ..., n\}(p_i|x)$. Skorzystać pewnie będziesz musiał ze wzoru

$$\prod_{i=1}^{n} (1+x_i) = \sum_{k=0}^{n} \sum_{T \in [n]^k} \prod_{i \in T} x_i ,$$

gdzie przyjmujemy, że $\prod_{i \in \emptyset} x_i = 1$.

Zadanie 7 — Niech $e_k^{(n)}$ oznacza liczbę permutacji zbioru $\{1,\dots,n\}$ o dokładnie k punktach stałych.

- 1. Korzystając z symbolicznej wersji Zasady Włączania Wyłączania $\mathcal{E}(x) = \mathcal{N}(x-1)$ wyznacz liczby $e_k^{(n)}$.
- 2. Dla ustalonego k oblicz

$$\lim_{n\to\infty}\frac{e_k^{(n)}}{n!} .$$

Zadanie 8 — ("Nierówności Bonferroniego") Niech $\{A_1, \ldots, A_n\}$ będzie rodziną podzbiorów zbioru Ω . Dla $1 \le l \le n$ definiujemy

$$S_l = \sum_{k=1}^l (-1)^{k+1} \sum_{T \in [n]^k} |A_T|,$$

gdzie $A_T = \bigcap_{i \in T} A_i$.

- 1. Pokaż, że jeśli $2l+1 \leq n$, to $|A_1 \cup \ldots \cup A_n| \leq S_{2l+1}$.
- 2. Pokaż, że jeśli $2l \leqslant n$, to $S_{2n} \leqslant |A_1 \cup \ldots \cup A_n|$.

Wskazówka: Zapisz S_l w postaci

$$S_l = \sum_{\omega \in \Omega} \sum_{k=1}^l \sum_{T \in [n]^k} \|\omega \in A_T\| (-1)^{k+1}$$

Wprowadź oznaczenie $I(\omega) = |\{i \in [n] : \omega \in A_i\}|$ i rozważ oddzielnie przypadek $I(\omega) = 0$ oraz $I(\omega) > 0$. Przydać Ci się może tożsamość $\sum_{k=0}^{l} (-1)^k \binom{n}{k} = (-1)^l \binom{n-1}{l}$.

Zadanie 9 — (lab) Zaimplementuj algorytm Fisher-Yates generowania losowych permutacji (zgodnie z rozkładem jednostajnym).

- 1. Zbadaj średnią liczbę permutacji bez stałych punktów
- 2. Zbadaj średnią liczbę permutacji z jednym punktem stałym
- 3. Zbadaj średnią liczbę cykli na które rozkłada się losowa permutacja zbioru $\{1,\ldots,n\}$

Zadanie 10 — (lab) Zaimplementuj metodę generowania losowych ciągów elementów ze zbioru $\{a, b\}$ oraz metodę sprawdzania czy dany ciąg $p = x_1 \dots x_k$ jest podciągiem ciągu σ (czyli, czy istnieją ciągi α, β takie, że $\sigma = \alpha \|p\|\beta$, gdzie β 0 oznacza konkatenację ciągów). Niech β 1 będzie liczbą naturalną β 2 oznacza konkatenację ciągów).

- 1. Ile jest ciągów długości n zawierających wzór aaa?
- 2. Ile jest ciągów długości n zawierających wzór abb?
- 3. Jaka jest średnia liczba wystąpień wzorca aaa?

2 Szeregi potęgowe

Zadanie 11 — Niech q>0 i $f_q(x)=\sum_{n=0}^\infty q^nx^n$. Wyznacz promień zbieżności szeregu potęgowego f_q oraz znajdź formułę analityczną na f_q w jego obszarze zbieżności.

Zadanie 12 — Niech q > 0 i $g_q(x) = \sum_{n=0}^{\infty} nq^n x^n$. Wyznacz promień zbieżności szeregu potęgowego q_q oraz znajdź formułę analityczną na g_q w jego obszarze zbieżności.

Zadanie 13 — Niech $f(x) = \frac{1}{1-x}$ oraz niech $c \in \mathbb{R} \setminus \{1\}$.

- 1. Rozwiń funkcję f w szereg potęgowy o środku w punkcie c
- 2. Wyznacz odcinek zbieżności otrzymanego rozwinięcia.

Zadanie 14 — Rozważmy szereg potęgowy $f(x) = \sum_{n \ge 0} a_n x^n$ o promieniu zbieżności $0 < R < \infty$. Rozważmy funkcję g zadaną wzorem g(x) = f(Rx).

- 1. Dla jaki x funkcja g jest określona.
- 2. Rozwiń funkcję g w szereg potęgowy i wyznacz jego promień zbieżności.

Zadanie 15 — Załóżmy, że $a \neq 0$, $b \neq 0$ oraz $a \neq b$. Niech

$$f(x) = \frac{1}{(x-a)(x-b)} .$$

- 1. Rozłóż funkcję f na ułamki proste.
- 2. Przedstaw funkcję f za pomocą otrzymanego rozłożenia jako szereg potęgowy $\sum_{n\geqslant 0} c_n x^n$ i znajdź jawną formułę na współczynniki c_n .
- 3. Załóż, że |a|<|b|. Wyznacz promień zbieżności szeregu $\sum_{n\geqslant 0}c_nx^n.$
- 4. Załóż, że a > 0 i b = -a. Uprość otrzymany wzór na współczynnik c_n i wyznacz promień zbieżności szeregu $\sum_{n\geqslant 0} c_n x^n$ w tym przypadku. Czy wzór na c_n w tym przypadku można było prościej wyprowadzić?

Zadanie 16 — Załóżmy, że szereg potęgowy $f(x) = \sum_{n\geqslant 0} a_n x^n$ ma promień zbieżności większy od zera oraz, że $a_0 \neq 0$. Niech $g(x) = \sum_{n\geqslant 0} b_n x^n$ będzie formalną odwrotnością f (czyli f(x)g(x) = 1). Pokaż, że g ma dodatni promień zbieżności.

Wskazówka: Możesz założyć, że $a_0=1$. Zdefiniuj pomocniczą funkcję $h(x)=\sum_{n\geqslant 1}|a_n||x|^n$ i pokaż, że jest $\delta>0$ taka, że h(x)<1 dla $|x|<\delta$. Wywnioskuj z tego, że dla $|x|<\delta$ mamy $f(x)\neq 0$. Następnie pokaż indukcyjnie, że $|b_n|<(\frac{1}{\delta})^n$.

Zadanie 17 — Załóżmy, że R > 0, S > 0,

$$f(x) = \sum_{n \ge 0} a_n x^n$$
 dla $|x| < R$, $g(x) = \sum_{n \ge 0} b_n x^n$ dla $|x| < S$

oraz $b_0 \neq 0$. Pokaż, że istnieją ciąg $(c_n)_{n \geqslant 0}$ oraz T > 0 takie, że

$$\frac{f(x)}{g(x)} = \sum_{n \ge 0} c_n x^n \text{ dla } |x| < T.$$

Zadanie 18 — Niech $f(x) = \sum_{n \geqslant 0} a_n x^n$ będzie formalnym szeregiem potęgowym o promieniu zbieżności równym 0 takim, że $a_0 \neq 0$. Niech $g(x) = \sum_{n \geqslant 0} b_n x^n$ będzie formalną odwrotnością f (czyli $f(x) \cdot g(x) = 1$. Pokaż, że promień zbieżności szeregu g jest również równy zeru.

3 Funkcje tworzące

Zadanie 19 — Rozważmy ciąg $(a_n)_{n\geqslant 0}$ określony ze pomocą rekursji $a_0=1, a_1=1, a_{n+2}=a_{n+1}+2a_n$.

- 1. Znajdź zwartą formułę na a_n korzystając z funkcji tworzących.
- 2. Wyznacz promień zbieżności otrzymanego szeregu potęgowego

Rozważmy ciąg $(b_n)_{n\geq 0}$ określony za pomocą rekursji $b_0=\alpha, b_1=\beta, b_{n+1}=b_{n+1}+2b_n$.

- 3. Jaki jest związek funkcji tworzącej ciągu (b_n) z funkcją tworzącą ciągu (a_n) ?
- 4. Wyznacz zwartą formułę na element b_n za pomocą zwartej formuły dla a_n

Zadanie 20 — Wyznacz w pierścieniu liczb zespolonych $Z[i] = \{a + b \cdot i : a, b \in \mathbb{Z}\}$ z działaniami odziedziczonym z liczb zespolonych elementy odwracalne.

Zadanie 21 — Niech K będzie dowolnym ciałem. Pokaż, w pierścieniu szeregów formalnych

$$K[z] = (\{\sum_{n \ge 0} a_n z^n : (\forall n)(a_n \in K)\}, +, \cdot, 0, 1)$$

zbiór elementów odwracalnych to

$$\{\sum_{n\geq 0} a_n z^n \in K[z] : a_0 \neq 0\}$$
.

Zadanie 22 — Niech $A(x) = \sum_{n \geqslant 0} a_n x^n \in \mathbb{R}[x]$ będzie zwykłą funkcją tworzącą. Załóżmy, że funkcja ta potraktowana jako szereg potęgowy ma promień zbieżności R > 0. Niech $f(x) = \sum_{n \geqslant 0} a_n x^n$ dla |x| < R. Jak z funkcji f możesz odtworzyć liczby a_n ?

Zadanie 23 — Niech $A(x) = \sum_{n\geqslant 0} a_n \frac{x^n}{n!} \in \mathbb{R}[x]$ będzie wykładniczą funkcją tworzącą. Załóżmy, że szereg ten potraktowany jako szereg potęgowy w sensie analizy matematycznej ma promień zbieżności R>0. Niech $f(x)=\sum_{n\geqslant 0} a_n \frac{x^n}{n!}$ dla |x|< R. Jak z funkcji f możesz odtworzyć liczby a_n ?

Zadanie 24 — Wyznacz zwarte postacie zwykłych oraz wykładniczych funkcji tworzących dla ciągów $a_n = n$ oraz $b_n = n^2$.

Zadanie 25 — Ustalmy k > 0. Rozważmy przestrzeń liniową $\mathbb{R}_k[x]$ nad ciałem \mathbb{R} wielomianów stopnia co najwyżej k o wyrazach wymiernych .

- 1. Jaki jest wymiar przestrzeni $\mathbb{R}_k[x]$?
- 2. Rozważmy ciąg wielomianów: $f_0(x)=1,\ f_a(x)=\prod_{j=0}^{a-1}(x-j)$ dla $a\geqslant 1$. Pokaż, że zbiór $\{f_0,\ldots,f_k\}$ jest bazą $\mathbb{R}_k[x]$.
- 3. Wyznacz k-tą pochodną funkcji $f(x) = \frac{1}{1-x}$.
- 4. Pokaż, że $\sum_{n\geqslant k}n^{\underline{k}}x^n=\frac{x^k}{(1-x)^{k+1}}$ dla |x|<1,gdzie $n^{\underline{k}}=\prod_{a=0}^{k-1}(n-a).$
- 5. Niech P(x) będzie dowolnym wielomianem. Jak możesz wyznaczyć zwartą formułę na

$$\sum_{n \ge 0} P(n) x^n$$

dla |x| < 1?. Wskazówka: Skorzystaj z poprzednich punktów tego zadania.

6. Poradź sobie teraz z podobnym zadaniem dla wykładniczej funkcji tworzącej

$$\sum_{n \ge 0} P(n) \frac{x^n}{n!}$$

Zadanie 26 — Niech f będzie zwykła funkcją tworzącą ciągu $(a_n)_{n\geqslant 0}$. Zapisz możliwie prosto za pomocą funkcj f funkcje tworzące następujących ciągów:

- 1. $(na_n)_{n\geqslant 0}$
- 2. $0, a_1, a_2, a_3, \ldots$
- 3. $0, 0, 1, a_3, a_4, \ldots$
- 4. $a_0, 0, a_2, 0, a_4, 0, \dots$
- 5. a_1, a_2, a_3, \ldots
- 6. $(a_{n+k})_{n\geqslant o}$ dla ustalonego całkowitego k>0

Zadanie 27 — Powtórz poprzednie zadanie dla wykładniczej funkcji tworzącej.

Zadanie 28 — Ustalmy liczbę γ . Rozważmy ciąg $(c_n)_{n\geqslant 0}$ zdefiniowany rekurencyjnie wzorami: $c_0=\gamma$, $c_{n+1}=\gamma\cdot c_n+n$. Zastosuj metodę funkcji tworzących do wyznaczenia zwartego wzoru na c_n .

Zadanie 29 — Niech f(x) będzie szeregiem potęgowym. Pokaż, że

$$[x^k]x^n f(x) = \begin{cases} 0: & 0 \le k < n \\ [x^{k-n}]f(x): & k \ge n \end{cases}$$

Zadanie 30 — Załóżmy, że $(a_n) \bowtie (\rho^n)$ oraz $(b_n) \bowtie (\eta^n)$, gdzie $\rho > 0$ i $\eta > 0$.

- 1. Pokaż, że jeśli $\rho = \eta$ to $(a_n + b_n) \bowtie \rho^n$.
- 2. Pokaż, że $(a_n + b_n) \bowtie \max(\rho, \eta)^n$.

Zadanie 31 — Załóżmy, że $(a_n)\bowtie(\rho^n)$ dla pewnego $\rho>0$. Pokaż, że istnieje ciąg (Θ_n) taki, że $a_n=\Theta_n\cdot\rho^n$ oraz $(\Theta_n)\bowtie(1^n)$.

Zadanie 32 — (lab) Napisz procedurę, która dla danej funkcji $f: \mathbb{N} \to \mathbb{R}$ takiej, że $f(0) \neq 0$ oraz danego n zwraca n pierwszych elementów formalnej odwrotności szeregu formalnego $\sum_{n \geqslant 0} f(n) x^n$. Zastosuj ją do wyznaczania 10 pierwszych elementów formalnej odwrotności dla następujących funkcji f:

- 1. f(n) = 1
- 2. $f(n) = 2^n$
- 3. f(n) = n!
- 4. f(n) = 1/n!.

4 Konstrukcje kombinatoryczne

4.1 Klasy kombinatoryczne

Zadanie 33 — Niech $\mathcal{Z}_{\bullet} = (\{\bullet\}, |\cdot|), |\bullet| = 1$. Rozważmy klasę kombinatoryczną $\mathcal{C} = SEQ(SEQ_{+}(\mathcal{Z}_{\bullet}))$.

- 1. Podaj interpretację kombinatoryczną klasy $\mathcal{C}.$
- 2. Wyznacz funkcję tworzącą klasy kombinatorycznej $\mathcal{C}(x)$ oraz znajdź zwartą formułę na liczbę elementów klasy $\mathcal C$ rozmiaru n.

Zadanie 34 — Niech \mathcal{A} będzie dowolną klasą kombinatoryczną oraz niech $\mathcal{N} = (\mathbb{N}, |.|)$, gdzie |n| = n. Niech $\mathcal{C} = \mathcal{A} \times \mathcal{N}$.

- 1. Wyznacz funkcję tworzącą klasy $\mathcal C$
- 2. Jak z funkcji C(x) możesz odtworzyć funkcje A(x)?

Zadanie 35 — Niech $a_0 = 0$, $a_1 = 1$ oraz $a_n = a_{n-1} + 6a_{n-2}$ dla $n \ge 2$. Wyznacz zwartą formułę na a_n . Znajdź następnie klasę kombinatoryczną \mathcal{A} taką, że $[x^n]SEQ(\mathcal{A})(x) = a_n$ dla każdego $n \ge 0$.

Zadanie 36 — Załóżmy, że $\sum_{n\geqslant 0} a_n x^n = \frac{1}{1-x-x^2-x^3}$. Wyznacz współczynniki a_0, a_1, a_2 oraz wyznacz liniowe równanie rekurencyjne spełnione przez ciąg $(a_n)_n$.

Zadanie 37 — Niech $\mathcal{B} = SEQ(SEQ_{+}(\mathcal{Z}_{\bullet}))$. Podaj interpretację kombinatoryczną klasy \mathcal{B} oraz wyznacz $[x^{n}]\mathcal{B}(x)$

Wskazówka: Przyjrzyj się najpierw klasom $SEQ(\mathcal{Z}_{\bullet})$ i $SEQ_{+}(\mathcal{Z}_{\bullet})$

Zadanie 38 — Niech $\mathcal{N}=(\mathbb{N},|\cdot|)$ oraz $\mathcal{N}_+=(\mathbb{N}_+,|\cdot|)$, gdzie |n|=n. Wyznacz $[x^n]\mathcal{N}^5(x)$ oraz $[x^n]\mathcal{N}^5_+(x)$.

4.2 Pojęcie Kategorii

Zadanie 39 — ("Jednoznaczność odwrotności") Niech $\mathcal C$ będzie dowolną kategorią. Niech X i Y będą obiektami kategorii $\mathcal C$ oraz niech $f: X \to Y, g_1: Y \to X g_2: Y \to X$ będą morfizmami $\mathcal C$ takimi, że $f \circ g_i = 1_Y$ i $g_i \circ f = 1_X$ dla i = 1, 2. Pokaż, że $g_1 = g_2$.

Zadanie 40 — Niech $\mathcal{C} = (C, \mathcal{M})$ będzie dowolną kategorią. Niech \mathcal{C}^{op} będzie kategorią określoną następująco: obiektami tej kategorii są obiekty kategorii \mathcal{C} ; f jest morfizmem w tej kategorii między X a Y wtedy i tylko wtedy, gdy f jest morfizmem w \mathcal{C} między Y a X.

- 1. Pokaż, że \mathcal{C}^{op} jest kategorią.
- 2. Niech $C = (\{1, 2, 3, 6\}, |)$. Opisz kategorię C^{op} .

Zadanie 41 — Pokaż, że w dowolnej kategorii obiekty początkowe oraz obiekty końcowe są jednoznaczne z dokładnością do izomorfizmu. Spróbuj wykorzystać poprzednie zadanie do uproszenia tego zadania.

Zadanie 42 — Wyznacz obiekty poczatkowe i końcowe w kategorii Monoidów.

Zadanie 43 — Rozważmy częściowy porządek $\mathcal{P} = (P(\{0,1\}), \subseteq)$ traktowany jako skończona kategoria. Opisz funktory z kategorii \mathcal{P} w kategorię SET.

Zadanie 44 — Pokaż, że złożenie funktorów jest funktorem.

Zadanie 45 — Pracujemy w kategorii SET. Rozszerz operację $F(X) = X \times X \times X$ do funktora.

Zadanie 46 — Pracujemy w kategorii SET. Ustalmy zbiór A. Rozważamy operację $H_A(X) = X^A$. Rozszerz H_A do funktora.

Zadanie 47 — Pracujemy w kategorii SET. Niech $F(X) = \mathbb{N}^X$. Pokaż, że F nie można rozszerzyć do funktora.

Zadanie 48 — (lab) Niech sd(n) oznacza sumę cyfr przedstawienia liczby n u układzie dwójkowym. Niech $s(n) = \sum_{k=1}^{n} sd(k)$.

- 1. Napisz program wyliczający funkcję s i wyświetl wykres funkcji s dla $n \in \{1, \dots, 1024\}$
- 2. Spróbuj odgadnąć asymptotykę a(n) funkcji s(n) oraz narysuj wykres funkcji s(n) a(n) dla $n \in \{1, \dots, 1024\}$.
- 3. Spróbuj dobrać współczynnik skalujący i postaw rozsądną hipotezę o zachowaniu się funkcji s.

Zadanie 49 — (lab) Niech $P(x) = \prod_{k=1}^{\infty} \frac{1}{1-z^n}$. Różniczkując obie strony wyrażenia

$$\ln P(x) = \sum_{k=1}^{\infty} \ln \frac{1}{1 - z^n}$$

Pokaż, że

$$x\frac{P'(x)}{P(x)} = \sum_{k=1}^{\infty} \frac{z^n}{1 - z^n}$$

Niech $p_n = [x^n]P(x)$. Wywnioskuj z powyższego równania, że

$$np_n = \sum_{i=1}^n \sigma(n) p_{n-j} ,$$

gdzie $\sigma(n)$ jest równa sumie dzielników liczby n (np. $\sigma(5)=1+6=6$, zaś $\sigma(6)=1+2+3+6=12$).

- 1. Korzystając z powyższej równości równości napisz program wyznaczający liczby p_n i oblicz p_n dla $n=1,\ldots,100.$
- 2. Jaka jest złożoność obliczeniowa napisanej procedury?

5 Struktury etykietowane

Oznaczania:

1. $E[U] = \{U\}.$

2.
$$X[U] = \begin{cases} \{U\} & : |U| = 1\\ \emptyset & : |X| \neq 1 \end{cases}$$

3. C[U] = zbiór wszystkich cykli na zbiorze U

4. $\mathcal{L}[U] =$ zbiór liniowych porządków na U

5. S[U] = zbiór permutacji zbioru U

Zadanie 50 — Niech $P(x) = \prod_{k=1}^{\infty} \frac{1}{1-z^n}$. Pokaż, że P(x) jest zbieżne dla każdego $z \in (-1,1)$.

Zadanie 51 — Partycją (rozbiciem) zbioru A nazywamy taki zbiór π , że $\bigcup \pi = A$ oraz

$$(\forall X, Y \in \pi)(X \neq Y \to X \cap Y = \emptyset) .$$

Jakie są partycje zbioru pustego?

Zadanie 52 — Niech F będzie gatunkiem kombinatorycznym. Ustalmy skończony zbiór U. Dla $a,b \in F[U]$ określamy

$$a \sim b \longleftrightarrow (\exists \pi \in \mathcal{S}[U])(F[\pi](a) = b)$$

Pokaż, że \sim jest relacja równoważności na F[U].

Zadanie 53 — Interesujemy się permutacjami składającymi się tylko z cykli parzystej długości.

- 1. Niech $C_{even}[U] = \{\pi \in \mathcal{P}[U] : \pi \text{ jest cyklem o parzystej liczbie elementów}\}$. Uzupełnij tę definicję do definicji funktora (czyli zrób z tego gatunek kombinatoryczny). Wyznacz wykładniczą funkcją tworzącą $CYC_{even}(x)$.
- 2. Definiujemy gatunek $\mathcal{P}_{even} = E \circ \mathcal{C}_{even}$ i wyznacz wykładniczą funkcją tworzącą $\mathcal{P}_{even}(x)$.
- 3. Wyznacz $n![x^n]\mathcal{P}_{even}(x)$. Możesz skorzystać ze wzoru

$$\binom{-\frac{1}{2}}{n} = \frac{(-1)^n}{4^n} \binom{2n}{n} ,$$

ale warto abyś sam umiał ten wzór wyprowadzić.

4. Jakie jest prawdopodobieństwo tego, że cykle losowo wybranej permutacji zbioru $\{1,\ldots,2n\}$ są tylko długości parzystej? Wyznacz asymptotę tego prawdopodobieństwa.

Zadanie 54 — Rozważmy gatunek $CP_2[U] = U \times U$.

- 1. Uzupełnij definicję tego gatunku o działanie $CP_2[f]$ dla $f: X \to Y$.
- 2. Wyznacz $CP_2(x)$
- 3. Wyznacz $\widetilde{CP_2}(x)$

Zadanie 55 — Niech

$$E_k[U] = \begin{cases} \{U\} & : |U| = k \\ \emptyset & : |U| \neq k \end{cases}.$$

Niech $Der[U] = \{ \pi \in S[U] : (\forall u \in U)(\pi(u) \neq u) \}.$

- 1. Podaj interpretację kombinatoryczną gatunku $E_k \cdot Der$.
- 2. Wyznacz $(E_k \circ Der)(x)$.
- 3. Zbadaj asymptotykę liczb $[x^n](E_k \circ Der)(x)$.

Zadanie 56 — Niech E_1 oznacza gatunek singletonów, czyli

$$E_1[U] = \begin{cases} \{U\} & : |U| = 1\\ \emptyset & : |U| \neq 1 \end{cases}$$
.

Pokaż, że dla każdego gatunku kombinatorycznego \mathcal{F} mamy $\mathcal{F} \simeq \mathcal{F}(E_1)$.

Zadanie 57 — Ustalmy $k \ge 1$. Niech $F_k = \underbrace{E \cdot E \cdot \ldots \cdot E}_{k}$ oraz $G_k[X] = \{(A_1, \ldots, A_k) : A_1, \ldots A_k \subseteq U \land \bigvee_{i \le j} (A_i \cap A_j = \emptyset)\}$

- 1. Pokaż, że gatunki F_{k+1} oraz G_k są izomorficzne.
- 2. Wyznacz funkcję tworzącą oraz funkcję tworzącą typy gatunku G_k .

Zadanie 58 — Podaj interpretację kombinatoryczną gatunku C(X+X) oraz wyznacz jego wykładniczą i normalną funkcję tworzącą.

Zadanie 59 — Ustalmy zbiór A. Niech $Fnc_A[U] = U^A$ oraz $Sur_A[U] = \{f \in Fnc_A[U] : f[A] = U\}$.

- 1. Pokaż, że $Fnc_A = Sur_A \cdot E$.
- 2. Wyprowadź z powyższej równości wzór na liczbe surjekcji ze zbioru A na zbiór [n].

Zadanie 60 — Zbadaj liczbę funkcji $f:[n] \to [n]$ takich, że $f \circ f = f$.

Zadanie 61 — Ośmiornicami nazywamy elementy gatunku kombinatorycznego $Oct = \mathcal{C}(\mathcal{L}_+)$.

- 1. Wyznacz wykładniczą funkcję tworzącą Oct(x).
- 2. Pokaż, że Oct(x) = C(2x) C(x).
- 3. Powyższy wzór sugeruje, że $Oct + \mathcal{C} = \mathcal{C}(X+X)$. Spróbuj wskazać izomorfizm między tymi gatunkami.
- 4. Wyznacz zwartą formulę na $[x]^n Oct(x)$.

Zadanie 62 — Ustalmy niepusty, skończony zbiór Σ . Rozważmy następujący gatunek: $S_{\Sigma}[X] = \mathcal{L}[X] \times \Sigma^X$ z działaniem na morfizmach $f: X \to Y$ określonym wzorem

$$S_{\Sigma}[f]((L,\phi)) = (\{(f(x),f(y)): (x,y) \in L\}, \phi \circ f^{-1}),$$

gdzie $\mathcal{L}[U]$ oznacza zbiór wszystkich liniowych porzadków na zbiorze U.

- 1. Zacznij od pokazania, że S_{Σ} jest gatunkiem kombinatorycznym.
- 2. Wyznacz wykładniczą funkcję tworzącą $S_{\Sigma}[z]$.
- 3. Wyznacz funkcję tworzącą $\widetilde{S_{\Sigma}}(x)$.

Zadanie 63 — Załóżmy, że gatunki F i G są naturalnie izomorficzne. Pokaż, że $\widetilde{F}(x) = \widetilde{G}(x)$.

Zadanie 64 — (lab) Niech $f(z) = \frac{1}{(1-z)^z}$ (jest to funkcja tworząca gatunku "children rounds".

- 1. Skorzystaj z jakiegoś narzędzia który umożliwia obliczenia do wyznaczenia współczynników $r_n = [x^n] f(z)$ dla $n=1,\ldots,100$.
- 2. Spróbuj odgadnąć asymptotykę ciągu $(r_n)_{n\geq 0}$.

5.1 Nieklasyczne funkcje tworzące

Zadanie 65 — (lab) Niech $b_0 = 1$ oraz $b_n = n^2 b_{n-1} + 1$ dla n > 0. Chcemy znaleźć możliwie prostą formułę na b_n .

- 1. Spróbuj zastosować normalną oraz wykładniczą funkcję tworzącą ciągu (b_n) . Zobacz gdzie natrafisz na trudności.
- 2. Rozważ funkcję

$$f(z) = \sum_{n=1}^{\infty} b_n \frac{z^n}{(n!)^2}$$

i za jej pomocą wyznacz wzór na b_n

3. Korzystając z otrzymanego wzoru pokaż, że jest stała c taka, że 2.27 < c < 2.28 oraz

$$\lim_{n \to \infty} \frac{b_n}{(n!)^2} = c$$

.

Zadanie 66 — (lab) Niech fix(n) oznacza średnią liczbę punktów stałych permutacji zbioru [n].

- 1. Korzystając z algorytmu Fishera-Yates'a zbadaj eksperymentalnie liczby fix(n) dla $n \leq 100$.
- 2. Postaraj się o postawienie rozsądnej hipotezy na temat liczb fix(n).
- 3. Udowodnij postawiona hipotezę.

6 Funkcje zespolone

6.1 Podstawy

Zadanie 67 — Dla liczby zespolonej z = a + bi definiujemy

$$\phi(z) = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$

- 1. Pokaż, że odwzorowanie $\phi(z)$ jest monomorfizmem z pierścienia \mathbb{C} w pierścień macierzy $M_{2\times 2}(R)$.
- 2. Pokaż, że $\det(\phi(z)) = |z|$.
- 3. Pokaż, że jeśli
 $z\neq 0$ to $\phi(z^{-1})=(\phi(z))^{-1}.$

Zadanie 68 — Zbiór $D\subseteq\mathbb{C}$ nazywamy domkniętym, jeśli jego dopełnienie jest otwarte. Pokaż, że dla dowolnego zbioru $D\subseteq\mathbb{C}$ następujące zdania są równoważne

- 1.D jest zbiorem domkniętym
- $2.{\rm dla}$ dowolnego zbieżnego ciągu punktów zbioru Djesgo granica należy do D.

Zadanie 69 — Niech POWER $(z_1, z_2) = \exp(z_2 \ln(z_1))$.

- 1. Niech $a \in \mathbb{R}$. Wyznacz POWER $(a, \frac{1}{2})$.
- 2.Oblicz POWER(i, i).
- 3.Załóżmy, że b jest liczba wymierna. Pokaż, że POWER(z,b) przyjmuje skończenie wiele wartoś

Zadanie 70 — Pokaż, że funkcja f(z) = |z| jest ciągła oraz, że nie jest różniczkowalna w żadnym punkcie.

Zadanie 71 — Pokaż, że funkcja $f(z) = |z|^2$ jest ciągła tylko w punkcie 0.

Zadanie 72 — Pokaż, korzystając bezpośrednio z definicji pochodnej funkcji zespolonej, że

- 1. istnienie pochodnej funkcji f w punkcie z implikuje ciągłość funkcji f w punkcie z
- 2. $(f \cdot g)'(z) = f'(z)g(z) + f(z)g'(z)$

Uwaga: To zadanie służy tylko do sprawdzenia tego, że większość klasycznych rozumowań z analizy matematycznej funkcji jednej zmiennej przenosi się prawie literalnie na funkcje zmiennej zespolonej.

Zadanie 73 — Niech $f(z) = \frac{1}{2-e^z}$

- 1. Wyznacz dziedzinę funkcji f.
- 2. Oblicz $\lim_{z\to \ln 2}\frac{z-\ln 2}{2-e^z}.$ Wskazówka: Zastosuj regulę de'Hospitala.

Zadanie 74 — (lab) Narysuj, za pomocą dowolnego narzędzia, wykresy powierzchni w \mathbb{R}^3 zadanych następującymi równaniami:

$$1.S_r = \{(\Re(re^{it}), \Im(re^{it}), \Re(\sqrt{r}\exp(it/2)) : r \in [0, 1], t \in [0, 4\pi]\}$$

$$2.S_c = \{(\Re(re^{it}), \Im(re^{it}), \Im(\sqrt{r}\exp(it/2)) : r \in [0, 1], t \in [0, 4\pi]\}$$

$$3.L = \{(\Re(re^{\imath t}), \Im(re^{\imath t}), |\ln(r) + \imath t|) : r \in [0.1, 10], t \in [0, 8\pi]\}$$

6.2 Całka krzywoliniowa

Zadanie 75 — Niech $\gamma(t) = t + i \cdot t^2$ dla $t \in [0, 1]$.

- 1. Oblicz długość krzywej $\gamma.$ Wskazówka: Zastosuj podstawienie hiperboliczne, np. $u=a\sinh(t)$
- 2. Oblicz $\int_{\gamma} z dz$
- 3. Oblicz $\int_{\gamma} z^2 dz$

Zadanie 76 — Niech $\gamma:[a,b]\to\mathbb{C}$ będzie krzywą ciągłą. Niech $C=\{\gamma(t):t\in[a,b]\}$. Załóżmy, że $z_0\notin C$.

- 1. Pokaż, że $\inf\{|\xi z_0| : \xi \in C\} > 0$.
- 2. Pokaż, że jest r > 0 takie, że $B(z_0, r) \cap C = \emptyset$.

Zadanie 77 — (Niezależność od parametryzacji) Niech $\alpha:[a,b]\to [c,b]$ będzie gładka oraz $\alpha([a,b])=[c,d]$. Niech $\beta:[c,d]\to\mathbb{C}$ będzie gładka. Pokaż, że

$$\int_{\beta \circ \alpha} f dz = \int_{\beta} f dz \ .$$

c.d.n. Powodzenia, Jacek Cichoń