บทที่ 3.

Linear Algebra

3.1 ระบบสมการเชิงเส้น (System of Linear equation)

3.1.1 สมการเชิงเส้น 1 ตัวแปร

สมการเชิงเส้นคือ สมการที่แต่ละพจน์มีเพียงค่าคงที่ หรือเป็นผลคูณระหว่างค่าคงที่กับตัวแปรยกกำลังหนึ่ง สามารถเขียนให้อยู่ในรูปแบบ

$$y = mx + c$$

โดย m คือค่าคงที่ (constant) ซึ่งแสดงถึงความชั้นของเส้นตรง และ \mathbf{c} คือค่าคงที่ซึ่งแสดงถึงจุดที่เส้นตรงตัดแกน \mathbf{y}

ค่าความชั้นของเส้นตรงสามารถคำนวณได้จากสมการ

$$m=rac{y_1-y_2}{x_1-x_2}$$
 หรือ $m=rac{\Delta y}{\Delta x}$

โดย (x_1,y_1) และ (x_2,y_2) คือตำแหน่งใด ๆ บนเส้นตรง

ตัวอย่าง 3.1 กราฟแสดงเส้นตรง และจุดต่างๆบนเส้นตรง

จากกราฟ ตอบคำถามต่อไปนี้

ค่าความชั้นของเส้นตรง m = _____

กราฟนี้เกิดจากสมการ y = _____

ตัวอย่าง 3.2 วาดกราฟ โดยแสดงจุดตัดแกน y และความชั้นของกราฟ จากสมการที่กำหนดให้

$$y = 2.5x - 2$$

วิธีทำ การวาดกราฟเส้นตรง เราจำเป็นต้องรู้จุด 2 จุดคือ (x_1, y_1) และ (x_2, y_2)

จากสมการทำให้เรารู้ว่า จุดตัดแกน y (หรือเมื่อ x=0) คือ -2 นั่นคือเราได้จุดที่ 1 คือ (0, -2)

หาจุดที่ 2 โดยการแทนค่า \times ใด ๆ ลงในสมการเพื่อหาค่า y เช่น เมื่อ x=5 จะได้ y=10.5 ดังนั้นจุดที่ 2 คือ (5, 10.5)

วาดกราฟได้ดังนี้

** วาดกราฟด้วย python matplotlib และ ทำแบบฝึกหัดข้อ 1.

3.1.2 สมการเชิงเส้นหลายตัวแปร

สมการเชิงเส้นที่มี n ตัวแปร จำนวน m สมการ สามารถเขียนให้อยู่ในรูป

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

โดย $n \in \mathit{N}$, $a_{ij} \in \mathit{R}$, $\ b_i \in \mathit{R}$ และ x_i เป็นตัวแปร เมื่อ i=1 , 2 , 3 , ... , n และ j=1 , 2 , 3 , ... , m

ตัวอย่าง 3.3 สมการเชิงเส้น และสมการที่ไม่ใช่สมการเชิงเส้น

สมการเหล่านี้เป็นสมการเชิงเส้น

$$x_1 + x_2 = x_3 + 7$$

$$\sqrt{5}x_1 + 3x_2 = -27$$

$$\sqrt[3]{20}x_1 + \pi x_2 = \sqrt{7}$$

สมการเหล่านี้ไม่ใช่สมการเชิงเส้น

$$\sqrt{x_1 + x_2} = 7$$

$$x_1 x_2 = -27$$

$$x_1^2 + x_2^2 = 37$$

3.1.3 ผลเฉลยของสมการ (Solution)

ผลเฉลยของระบบสมการ หมายถึงจำนวนจริง n ตัว ซึ่งเมื่อนำไปแทนค่าในสมการ n สมการ แล้วให้สมการเป็น จริงทั้ง n สมการ เซตของผลเฉลย (solution set) คือผลเฉลยทั้งหมดที่เป็นไปได้ของระบบสมการนั้น ซึ่งในระบบ สมการหนึ่งๆอาจมีหรือไม่มีผลเฉลยก็ได้ กรณีที่ไม่มีผลเฉลยก็คือไม่มีจำนวนจริงใด ๆ ที่แทนที่ตัวแปรทุกตัวใน ระบบสมการแล้วทำให้สมการเป็นจริง

<u>ข้อสังเกต</u> ถ้าวาดกราฟของสมการ m สมการ ผลเฉลยของสมการก็คือจุดที่เส้นตรง m เส้นตรงตัดกันนั่นเอง

ตัวอย่าง 3.4 แสดงกราฟที่เกิดจาก 2 สมการ

จากกราฟ ให้ตอบคำถามต่อไปนี้

ตัวอย่าง 3.5 หาเซตผลเฉลยของระบบสมการเชิงเส้นต่อไปนี้

$$x_1 - 7x_2 = -35$$
 _____(1)

$$2x_1 - 14x_2 = 7$$
 _____(2)

วิธีทำ

จาก (1): นำ 2 คูณทั้ง 2 ข้างของสมการ จะได้ $2x_1-\ 14x_2=-70$

จาก (2): จะได้ว่า -70 = 7 ซึ่งไม่เป็นจริง

ดังนั้นสรุป ระบบสมการนี้ไม่มีผลเฉลย

ระบบสมการที่ไม่มีผลเฉลย แสดงว่า สมการ 2 เส้นนี้ไม่มีจุดตัดกัน นั่นคือสมการ 2 เส้นนี้ขนานกัน

3.2 การแก้ระบบสมการเชิงเส้น (Solving system of linear equations)

การแก้ระบบสมการเชิงเส้น ทำได้หลายวิธี เนื้อหาหัวข้อนี้ครอบคลุม 3 วิธี คือ

- 1. การแก้ระบบสมการเชิงเส้นโดยการกำจัดตัวแปร
- 2. การแก้ระบบสมการเชิงเส้นด้วยอินเวอร์สเมทริกซ์
- 3. การแก้ระบบสมการเชิงเส้นด้วยกฎ Gaussian elimination

3.2.2 การแก้ระบบสมการเชิงเส้นโดยการกำจัดตัวแปร

ควรใช้วิธีแก้ระบบสมการด้วยการกำจัดตัวแปรเมื่อในระบบมีตัวแปร 2 ตัว เพราะทำได้ง่าย ไม่ยุ่งยาก วิธีการคือ แทนค่าตัวแปรให้เหลือเพียง 1 ตัว เพื่อนำไปแทนค่าในสมการ

ตัวอย่าง 3.6 แก้ระบบสมการโดยการกำจัดตัวแปร

$$x - 2y = 8$$
(1)

$$2x + 5y = -11$$
(2)

วิธีทำ เราต้องกำจัดตัวแปร \times หรือ y ออกจากระบบสมการ กรณีนี้ตัวแปรที่กำจัดง่ายกว่าคือ \times

นำ (1) × 2 จะได้

$$2x - 4y = 16$$
(3)

นำ (2) - (3) จำได้

$$9y = -27$$
(4)

จาก (4) จะได้ y = -3

แทนค่า y ใน (1) จะได้ x = 2

ดังนั้นคำตอบของระบบสมการนี้คือ x = 2, y = -3

3.2.3 การแก้สมการด้วยอินเวอร์สเมทริกซ์

การแก้สมการโดยใช้อินเวอร์สเมทริกซ์ โดยการใช้คุณสมบัติของเมทริกซ์เข้ามาช่วย โดยต้องแปลงระบบสมการให้ อยู่ในรูป

$$Ax = b$$

เราต้องการหาค่าของ x ดังนั้นเราต้องพยายามทำให้ด้านซ้ายของสมการเหลือเพียง x เราเคยรู้เรื่องการย้ายข้าง สมการเพื่อหาค่าของตัวแปรมาแล้ว แต่เพราะเมทริกซ์ไม่มีคุณสมบัติการสลับด้านของการคูณดังนั้นเราต้องระวัง เราอาจไม่สามารถย้ายข้างเมทริกซ์ได้เลยทันที ขั้นตอนคือเราต้องทำให้ A หายไปโดยคูณกับ A^{-1} จะได้

$$Ax = b$$
 $A^{-1}Ax = A^{-1}b$ (คูณ A^{-1} ทั้งสองด้านของสมการ)
$$Ix = A^{-1}b$$
 (เพราะ $A^{-1}A$ ได้ Identity matrix I) $x = A^{-1}b$ (เพราะ Identity matrix I คูณกับเมทริกซ์ x จะได้ x)

กรณีเมทริกซ์ขนาด 2x2 ถ้า $A = \begin{bmatrix} a & b \\ \mathbf{c} & d \end{bmatrix}$

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

หมายเหตุ เนื่องจากการคำนวณ A^{-1} ของเมทริกซ์ขนาด 3×3 ยุ่งยากพอสมควร ดังนั้นเราจะดูตัวอย่างการแก้ สมการด้วยอินเวอร์สเมทริกซ์โดยใช้ python ส่วนการแก้สมการด้วยการคำนวณเอง เราจะทำให้ดูกรณีเมทริกซ์ ขนาด 2×2 เท่านั้น

ข้อสังเกต ถ้า A^{-1} ไม่สามารถหาค่าได้ ($\det(A)=0$) แสดงว่าระบบสมการนี้ไม่มีคำตอบ

ตัวอย่าง 3.7 แก้ระบบสมการโดยใช้อินเวอร์สเมทริกซ์

$$x - 2y = 8$$
$$2x + 5y = -11$$

วิธีทำ จากระบบสมการ สามารถเขียนในรูปของเมทริกซ์ได้ดังนี้

$$\begin{bmatrix} 1 & -2 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 8 \\ -11 \end{bmatrix}$$

ดังนั้น

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ 2 & 5 \end{bmatrix}^{-1} \begin{bmatrix} 8 \\ -11 \end{bmatrix}$$

หาอินเวอร์สเมทริกซ์จะได้

$$A^{-1} = \frac{1}{(1)(5) - (-2)(2)} \begin{bmatrix} 5 & 2 \\ -2 & 1 \end{bmatrix}$$
$$A^{-1} = \frac{1}{9} \begin{bmatrix} 5 & 2 \\ -2 & 1 \end{bmatrix}$$

ดังนั้น

$$\begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 5 & 2 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 8 \\ -11 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} (40 - 22)/9 \\ (-16 - 11)/9 \end{bmatrix}$$
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$$

ดังนั้น ระบบสมการนี้มีคำตอบคือ x = 2 และ y = -3

ตัวอย่าง 3.8 การใช้อินเวอร์สเมทริกซ์แก้ปัญหาโจทย์ในชีวิตประจำวัน

นักท่องเที่ยวซื้อตั๋วรถไฟไปเที่ยวโดยราคาตั๋วกำหนดดังนี้

ราคาตั๋ว	เด็ก	ผู้ใหญ่	ราคารวม
ขาไป	4	4.5	163.5
ขากลับ	4.2	5.2	182.6

ถามว่านักท่องเที่ยวกลุ่มนี้มีเด็กกี่คนและผู้ใหญ่กี่คน

วิธีทำ เราเริ่มจากการสร้างเมทริกซ์จากข้อมูลที่มีคือ

$$\begin{bmatrix} 4 & 4.5 \\ 4.2 & 5.2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 163.5 \\ 182.6 \end{bmatrix}$$

$$A \qquad X \qquad b$$

โดยเมทริกซ์ A คือราคาตั๋ว เมทริกซ์ X คือ x_1 เป็นจำนวนเด็ก, x_2 เป็นจำนวนผู้ใหญ่ เมทริกซ์ b คือราคาตั๋วรวม ดังนั้น การจะหาค่าของเมทริกซ์ x เราต้องคำนวณ x_1

$$A^{-1} = \frac{1}{4(5.2) - 4.5(4.2)} \begin{bmatrix} 5.2 & -4.5 \\ -4.2 & 4 \end{bmatrix}$$

$$A^{-1} = \frac{1}{1.9} \begin{bmatrix} 5.2 & -4.5 \\ -4.2 & 4 \end{bmatrix}$$

$$A^{-1}B = \begin{bmatrix} 5.2/_{1.9} & -4.5/_{1.9} \\ -4.2/_{1.9} & 4/_{1.9} \end{bmatrix} \begin{bmatrix} 163.5 \\ 182.6 \end{bmatrix}$$

$$A^{-1}B = \begin{bmatrix} \frac{5.2 \times 163.5}{1.9} + \frac{(-4.5) \times 182.6}{1.9} \\ \frac{(-4.2) \times 163.5}{1.9} + \frac{4 \times 182.6}{1.9} \end{bmatrix}$$

$$A^{-1}B = X = \begin{bmatrix} 15 \\ 23 \end{bmatrix}$$

ดังนั้น นักท่องเที่ยวกลุ่มนี้มีเด็ก 15 คน และ ผู้ใหญ่ 23 คน

- ** ทำแบบฝึกหัดข้อ 2. , 3., 4.
- ** lab ให้ทำแบบฝึกหัดข้อ 2. , 3., 4. ด้วย python

3.2.4 การแก้สมการด้วยกฎ Gaussian elimination

Gaussian elimination เป็นการใช้เมทริกซ์ช่วยในการหาผลเฉลยของสมการ เราต้องสร้างสมการในรูปเมทริกร์

$$Ax = b$$

โดย A คือเมทริกซ์สัมประสิทธิ์ (coefficient matrix) เขียนอยู่ในรูป

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

สร้างเมทริกซ์แต่งเติม (augmented matrix) ที่เกิดจาก A และ b เขียนอยู่ในรูป

$$[A \mid b^{\rightarrow}] = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{bmatrix}$$

การหาผลเฉลยของระบบสมการ คือการหาค่าของเมทริกซ์ x ซึ่งใช้การดำเนินการแถวเบื้องต้น (elementary row operation) โดยการทำให้เมทริกซ์ยังคงเป็นเมทริกซ์ที่สมมูลกัน (equivalent matrix) ซึ่งประกอบด้วยการกระทำ ดังต่อไปนี้

- 1. การสลับแถวที่ i และ j แทนด้วยสัญลักษณ์ R_{ij}
- 2. การคูณค่าคงที่ k ในแถวที่ i เมื่อ k \neq 0 แทนด้วยสัญลักษณ์ kR_i
- 3. การคูณค่าคงที่ k ในแถวที่ i เมื่อ k \neq 0 แล้วนำไปบวกกับแถวที่ j แทนด้วยสัญลักษณ์ kR_i+R_j

โดยการกระทำต่างๆต้องลดรูปของเมทริกซ์ A (ซึ่งอยู่ภายใน augmented matrix) ให้อยู่ในรูปเมทริกซ์ทแยง มุม (diagonal matrix) และเซตคำตอบคือเมทริกซ์ b (ซึ่งอยู่ภายใน augmented matrix)

โดย Gaussian elimination สามารถทำได้ตามขั้นตอนดังนี้

ขั้นตอน	วิธี	ตัวอย่าง matrix
0	สร้าง augmented matrix	$\begin{bmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ a_{21} & a_{22} & a_{23} & b_2 \\ a_{31} & a_{32} & a_{33} & b_3 \end{bmatrix}$
1.	ทำสมาชิกมุมบนซ้าย (a ₁₁) เป็นเลข 1	$\begin{bmatrix} 1 & a_{12} & a_{13} & b_1 \\ a_{21} & a_{22} & a_{23} & b_2 \\ a_{31} & a_{32} & a_{33} & b_3 \end{bmatrix}$
2.	ทำสมาชิกในคอลัมน์ที่ 1 แถวที่ 2, 3 (a _{21 ,} a ₃₁) เป็นเลข 0 (กรณี มี n แถว ให้ทำต่อไปให้ครบทุกแถว)	$\begin{bmatrix} 1 & a_{12} & a_{13} & b_1 \\ 0 & a_{22} & a_{23} & b_2 \\ 0 & a_{32} & a_{33} & b_3 \end{bmatrix}$
3.	ทำสมาชิกในคอลัมน์ที่ 2 แถวที่ 2 (a _{22)} เป็นเลข 1	$\begin{bmatrix} 1 & a_{12} & a_{13} & b_1 \\ 0 & \boxed{1} & a_{23} & b_2 \\ 0 & a_{32} & a_{33} & b_3 \end{bmatrix}$
4.	ทำให้สมาชิกในคอลัมน์ที่ 2 แถวที่ 3 (a ₃₂) เป็นเลข 0 (กรณี มี n แถว ให้ทำต่อไปให้ครบทุกแถว)	$\begin{bmatrix} 1 & a_{12} & a_{13} & b_1 \\ 0 & 1 & a_{23} & b_2 \\ 0 & 0 & a_{33} & b_3 \end{bmatrix}$
5.	ทำสมาชิกในคอลัมน์ที่ 3 แถวที่ 3 (a_{33})เป็นเลข 1 เมื่อถึงขั้นตอนนี้เมทริกซ์อยู่ในรูปเมทริกซ์สามเหลี่ยมบน ซึ่ง แถวสุดท้ายคือรูปแบบของสมการ $0x_1+0x_2+x_3=b_3$ นั่นคือ $x_3=b_3$ ขั้นตอนหลังจากนี้คือการทำ back substitution เพื่อหาค่า ของตัวแปรที่เหลือ(x_1 และ x_2) โดยการทำให้สมาชิกตัวอื่น ๆที่ เหลือเป็น 0	$\begin{bmatrix} 1 & a_{12} & a_{13} & b_1 \\ 0 & 1 & a_{23} & b_2 \\ 0 & 0 & 1 & b_3 \end{bmatrix}$
6.	ทำสมาชิกคอลัมน์ที่ 3 แถวที่ 2 (a_{23}) เป็นเลข 0 โดยใช้สูตร $kR_3+R_2 \longrightarrow R_2$ โดย $k=-a_{23}$	$\begin{bmatrix} 1 & a_{12} & a_{13} b_1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 b_2 \\ b_3 \end{bmatrix}$

7.	ทำสมาชิกคอลัมน์ที่ 3 แถวที่ 1 (a ₁₃) เป็นเลข 0	$\begin{bmatrix} 1 & a_{12} & 0 \\ 0 & 1 \end{bmatrix}$
	โดยใช้สูตร k $R_3+R_1 o R_1$	$\begin{bmatrix}0&1&0 b_2\\0&0&1 b_3\end{bmatrix}$
	โดย k = -a ₁₃	
8.	ทำสมาชิกคอลัมน์ที่ 3 แถวที่ 2 (a ₁₂) เป็นเลข 0	$\begin{bmatrix} 1 & 0 & 0 b_1 \\ 0 & 1 & 0 b \end{bmatrix}$
	โดยใช้สูตร $kR_2+R_1 o R_1$	$\begin{bmatrix} 0 & \overline{1} & 0 b_2 \\ 0 & 0 & 1 b_3 \end{bmatrix}$
	โดย k = -a ₁₂	_

โดยสรุป วิธีการแก้สมการด้วย Gaussian elimination คือพยายามทำให้เมทริกซ์อยู่ในรูปของ diagonal matrix คือการทำสมาชิกตามแนวทแยงให้เป็นเลข 1 และทำสมาชิกทุกตัวในคอลัมน์นั้น ๆ ที่อยู่ในแถวถัดมาให้เป็นเลข 0 โดยการลดรูปค่าในเมทริกซ์ และทำให้เมทริกซ์ยังคงเป็น equivalent matrix

ตัวอย่าง 3.9 ก่อนจะไปที่ตัวอย่างเรื่องการใช้ Gaussian elimination เพื่อแก้สมการ ให้พิจารณาว่าจาก augmented matrix ที่กำหนดให้ การกระทำใดที่ทำให้ matrix เป็น equivalent matrix และเกิดจากการ กระทำแบบใด

$$[A \mid b^{\rightarrow}] = \begin{bmatrix} 2 & 1 & -3 \mid 2 \\ 1 & 1 & -1 \mid 1 \\ 0 & 1 & -6 \mid 7 \end{bmatrix}$$

เมทริกซ์	การกระทำ / เป็น equivalent matrix
$\begin{bmatrix} 4 & 2 & -6 & & 4 \\ 1 & 1 & -1 & & 1 \\ 0 & 1 & -6 & & 7 \end{bmatrix}$	$2R_1 \rightarrow R_1$ เป็น equivalent matrix
$\begin{bmatrix} 1 & 1/2 & -3/2 & 1 \\ 1 & 1 & -1 & 1 \\ 0 & 1 & -6 & 7 \end{bmatrix}$	$(1/2)R_1 \rightarrow R_1$ เป็น equivalent matrix
$\begin{bmatrix} 2 & 1 & -3 & 2 \\ -1 & 0 & 2 & -1 \\ 0 & 1 & -6 & 7 \end{bmatrix}$	(-1)R ₁ + R ₂ → R ₂ เป็น equivalent matrix
$\begin{bmatrix} 2 & 1 & -3 & 2 \\ 0 & 1 & -6 & 7 \\ 1 & 1 & -1 & 1 \end{bmatrix}$	R ₂₃ เป็น equivalent matrix
$\begin{bmatrix} 2 & 1 & -3 & 2 \\ 1 & 1 & -1 & 1 \\ 2 & 3 & -8 & 9 \end{bmatrix}$	2R ₂ + R ₃ → R ₃ เป็น equivalent matrix
$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 1 & -1 & 1 \\ 0 & 1 & -6 & 7 \end{bmatrix}$	(0)R₁ → R₁ ไม่เป็น equivalent matrix เพราะนำ k = 0 คูณ R₁
$\begin{bmatrix} 2 & 1 & -3 & 2 \\ 1 & 1 & -1 & 1 \\ 0 & 1/2 & -3 & 7 \end{bmatrix}$	(1/2) R_3 → R_3 แต่ไม่ได้กระทำกับ สมาชิก 7 ไม่เป็น equivalent matrix
$\begin{bmatrix} 1 & 2 & -3 & 2 \\ 1 & 1 & -1 & 1 \\ 1 & 0 & -6 & 7 \end{bmatrix}$	สลับ column 1 และ 2 ไม่เป็น equivalent matrix
$ \begin{bmatrix} 12 & 11 & 7 & 12 \\ 1 & 1 & -1 & 1 \\ 0 & 1 & -6 & 7 \end{bmatrix} $	$R_1+10 ightharpoonup R_1$ ไม่เป็น equivalent matrix เพราะ การบวกด้วยค่าคงที่ไม่ใช่คุณสมบัติของ elementary row operation

$\begin{bmatrix} 0 & 1 & 18 & 14 \\ 1 & 1 & -1 & 1 \\ 0 & 1 & -6 & 7 \end{bmatrix}$	$R_1 \times R_3 \longrightarrow R_1$ ไม่เป็น equivalent matrix เพราะ การคูณระหว่างแถวเมทริกซ์ไม่ใช่คุณสมบัติ
	elementary row operation

ตัวอย่าง 3.10 ใช้ coefficient matrix และ augmented matrix เพื่อหาเซตผลเฉลยของระบบเชิงเส้นนี้

$$2x_1 + x_2 - 3x_3 = 2$$
$$x_1 + x_2 - x_3 = 1$$
$$x_2 - 6x_3 = 7$$

วิธีทำ เขียน coefficient matrix และ augmented matrix ได้ดังนี้

$$A = \begin{bmatrix} 2 & 1 & -3 \\ 1 & 1 & -1 \\ 0 & 1 & -6 \end{bmatrix}$$
 และ $\begin{bmatrix} A \mid b^{\rightarrow} \end{bmatrix} = \begin{bmatrix} 2 & 1 & -3 \mid 2 \\ 1 & 1 & -1 \mid 1 \\ 0 & 1 & -6 \mid 7 \end{bmatrix}$

เราทำการดำเนินการแถวกับเมทริกซ์ได้เรื่อย ๆ ได้เป็น

ขั้นตอน	เป้าหมาย และการกระทำ	เมทริกซ์ผลลัพธ์
0.	Augmented matrix	$\begin{bmatrix} 2 & 1 & -3 & 2 \\ 1 & 1 & -1 & 1 \\ 0 & 1 & -6 & 7 \end{bmatrix}$
1	R ₁₂ สลับแถว 1 และ 2 เพราะต้องการทำให้ a ₁₁ เป็น 1	$\begin{bmatrix} 1 & 1 & -1 & 1 \\ 2 & 1 & -3 & 2 \\ 0 & 1 & -6 & 7 \end{bmatrix}$
2.	-2R ₁ + R ₂ → R ₂ เพราะต้องการทำให้ a ₂₁ เป็น 0 และตอนนี้ a ₃₁ เป็น 0 อยู่แล้ว	$\begin{bmatrix} 1 & 1 & -1 & 1 \\ 0 & -1 & -1 & 0 \\ 0 & 1 & -6 & 7 \end{bmatrix}$
3.	R ₂₃ สลับแถว 2 และ 3 เพราะต้องการทำให้ a ₂₂ เป็น 1 * ขั้นตอนนี้อาจใช้วิธี R ₂ = (-1)R ₂ ก็ได้	$\begin{bmatrix} 1 & 1 & -1 & & 1 \\ 0 & 1 & -6 & & 7 \\ 0 & -1 & -1 & & 0 \end{bmatrix}$
4.	$R_2 + R_3 \rightarrow R_3$ เพราะต้องการทำให้ a_{32} เป็น 0	$\begin{bmatrix} 1 & 1 & -1 & & 1 \\ 0 & 1 & -6 & & 7 \\ 0 & 0 & -7 & & 7 \end{bmatrix}$

5.	$(-1/_7)R_3 \longrightarrow R_3$ เพราะต้องการทำให้ a_{33} เป็น 1	$\begin{bmatrix} 1 & 1 & -1 & 1 \\ 0 & 1 & -6 & 7 \\ 0 & 0 & 1 & -1 \end{bmatrix}$
6.	(6) $R_3 + R_2 \rightarrow R_2$ เพราะต้องการทำให้ a_{23} เป็น 0 *สูตรคือ -k $R_3 + R_2$ โดย k คือค่าของ a_{23} กรณีนี้คือ $a_{23} = -6$ ดังนั้นคือ $6R_3 + R_2$	$\begin{bmatrix} 1 & 1 & -1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$
7.	$R_3 + R_1 \longrightarrow R_1$ เพราะต้องการทำให้ a_{13} เป็น 0 *สูตรคือ ใช้ (-k $R_3 + R_1$ โดย k คือค่าของ a_{13} กรณี นี้ $a_{13} = -1$ ดังนั้นคือ $R_3 + R_1$)	$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$
8.	(-1) $R_2 + R_1 \rightarrow R_1$ เพราะต้องการทำให้ a_{12} เป็น 0 *สูตรคือ ใช้ (- $kR_2 + R_1$ โดย k คือค่าของ a_{12} กรณี นี้ $a_{12} = 1$ ดังนั้นคือ (-1) $R_2 + R_1$)	$\begin{bmatrix} 1 & 0 & 0 & & -1 \\ 0 & 1 & 0 & & 1 \\ 0 & 0 & 1 & & -1 \end{bmatrix}$

เมื่อลดรูปเมทริกซ์จนทำให้เมทริกซ์อยู่ในรูปเมทริกซ์ทแยงมุม (diagonal matrix) นั่นคือค่าของ

$$x_1 = -1$$
$$x_2 = 1$$

$$x_3 = -1$$

ตรวจสอบคำตอบ ลองแทนค่า x_1, x_2 และ x_3 ในสมการทำให้เป็นจริงทั้ง 3 สมการ

$$2(-1) + 1 - 3(-1) = 2$$

 $-1 + 1 - (-1) = 1$
 $1 - 6(-1) = 7$

ตัวอย่าง 3.11 ใช้ coefficient matrix และ augmented matrix เพื่อหาเซตผลเฉลยของระบบเชิงเส้นนี้

$$2x_1 + 3x_2 + x_3 = 12$$
$$x_1 - x_3 = 3$$
$$3x_1 + 3x_2 + x_3 = 11$$

วิธีทำ เขียน coefficient matrix และ augmented matrix ได้ดังนี้

$$A = \begin{bmatrix} 2 & 3 & 1 \\ 1 & 0 & -1 \\ 3 & 3 & 1 \end{bmatrix} \text{ was } [A \mid b^{\rightarrow}] = \begin{bmatrix} 2 & 3 & 1 \\ 1 & 0 & -1 \\ 3 & 3 & 1 \end{bmatrix} \begin{bmatrix} 12 \\ 3 \\ 11 \end{bmatrix}$$

เราทำการดำเนินการแถวกับเมทริกซ์ได้เรื่อย ๆ ได้เป็น

0.	การกระทำ	เมทริกซ์ผลลัพธ์
1	Augmented matrix	$\begin{bmatrix} 2 & 3 & 1 & & 12 \\ 1 & 0 & -1 & & 3 \\ 3 & 3 & 1 & & 11 \end{bmatrix}$
2.	R ₁₂ สลับแถว 1 และ 2 เพราะต้องการทำให้ a ₁₁ = 1	$\begin{bmatrix} 1 & 0 & -1 & 3 \\ 2 & 3 & 1 & 12 \\ 3 & 3 & 1 & 11 \end{bmatrix}$
3.	$-2R_1 + R_2 \rightarrow R_2$ เพราะต้องการทำให้ $a_{21} = 0$	$\begin{bmatrix} 1 & 0 & -1 & 3 \\ 0 & 3 & 3 & 6 \\ 3 & 3 & 1 & 11 \end{bmatrix}$
4.	$-3R_1 + R3 \rightarrow R_3$ เพราะต้องการทำให้ $a_{31} = 0$	$\begin{bmatrix} 1 & 0 & -1 & 3 \\ 0 & 3 & 3 & 6 \\ 0 & 3 & 4 & 2 \end{bmatrix}$
5.	$(1/3)$ R2 \rightarrow R ₂ เพราะต้องการทำให้ a_{22} = 1	$\begin{bmatrix} 1 & 0 & -1 & 3 \\ 0 & 1 & 1 & 2 \\ 0 & 3 & 4 & 2 \end{bmatrix}$
6.	$-3R_2 + R_3 \rightarrow R_3$ เพราะต้องการทำให้ $a_{32} = 0$ และขั้นตอนนี้ทำให้ $a_{33} = 1$ ด้วย	$\begin{bmatrix} 1 & 0 & -1 & 3 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 1 & -4 \end{bmatrix}$

7.	-1R ₃ + R ₂ → R ₂ เพราะต้องการทำให้ $a_{23} = 0$	$\begin{bmatrix} 1 & 0 & -1 & 3 \\ 0 & 1 & 0 & 6 \\ 0 & 0 & 1 & -4 \end{bmatrix}$
8.	$R_3 + R_1 \longrightarrow R_1$ เพราะต้องการทำให้ $a_{13} = 0$	$\begin{bmatrix} 1 & 0 & 0 & & -1 \\ 0 & 1 & 0 & & 6 \\ 0 & 0 & 1 & & -4 \end{bmatrix}$

เมื่อลดรูปเมทริกซ์จนทำให้เมทริกซ์อยู่ในรูปเมทริกซ์ทแยงมุม (diagonal matrix) นั่นคือค่าของ

$$x_1 = -1$$

$$x_2 = 6$$

$$x_3 = -4$$

ตรวจสอบคำตอบ ลองแทนค่า x_1, x_2 และ x_3 ในสมการทำให้เป็นจริงทั้ง 3 สมการ

$$2(-1) + 3(6) + (-4) = 12$$

 $-1 - (-4) = 3$
 $3(-1) + 3(6) + (-4) = 11$

ตัวอย่าง 3.12 ใช้ coefficient matrix และ augmented matrix เพื่อหาเซตผลเฉลยของระบบเชิงเส้นนี้

$$2x_1 + 2x_2 - x_3 + 4x_4 = 17$$

$$2x_2 - x_3 + 2x_4 = 11$$

$$2x_1 - 4x_2 + 2x_3 - 4x_4 = -18$$

$$-x_1 - x_2 + 2x_3 - 2x_4 = -10$$

วิธีทำ เขียน coefficient matrix และ augmented matrix ได้ดังนี้

$$A = \begin{bmatrix} 2 & 2 & -1 & 4 \\ 0 & 2 & -1 & 2 \\ 2 & -4 & 2 & -4 \\ -1 & -1 & 2 & -2 \end{bmatrix} \text{ with } [A \mid b^{\rightarrow}] = \begin{bmatrix} 2 & 2 & -1 & 4 & 17 \\ 0 & 2 & -1 & 2 & 11 \\ 2 & -4 & 2 & -4 & -18 \\ -1 & -1 & 2 & -2 & -10 \end{bmatrix}$$

เราทำการดำเนินการแถวกับเมทริกซ์ได้เรื่อย ๆ ได้เป็น

ขั้นตอน	การกระทำ	เมทริกซ์ผลลัพธ์
0.	Augmented matrix	$\begin{bmatrix} 2 & 2 & -1 & 4 & 17 \\ 0 & 2 & -1 & 2 & 11 \\ 2 & -4 & 2 & -4 & -18 \\ -1 & -1 & 2 & -2 & -10 \end{bmatrix}$
1.	(1/2) R ₁ → R ₁ เพื่อทำ a ₁₁ ให้เป็น 1	$\begin{bmatrix} 1 & 1 & -1/2 & 2 & 17/2 \\ 0 & 2 & -1 & 2 & 11 \\ 2 & -4 & 2 & -4 & -18 \\ -1 & -1 & 2 & -2 & -10 \end{bmatrix}$
2.	-2R ₁ + R ₃ \longrightarrow R ₃ เพื่อทำ a ₃₁ ให้เป็น 0 R ₁ + R ₄ \longrightarrow R ₄ เพื่อทำ a ₄₁ ให้เป็น 0	$\begin{bmatrix} 1 & 1 & -1/2 & 2 & & 17/2 \\ 0 & 2 & -1 & 2 & & 11 \\ 0 & -6 & 3 & -8 & & -35 \\ 0 & 0 & 3/2 & 0 & & -3/2 \end{bmatrix}$

3.	$(1/2)R_2 ightharpoonup R_2$ เพื่อทำให้ a_{22} เป็น 1	$\begin{bmatrix} 1 & 1 & -1/2 & 2 & 1/7/2 \\ 0 & 1 & -1/2 & 1 & 1/2 \\ 0 & -6 & 3 & -8 & -35 \\ 0 & 0 & 3/2 & 0 & -3/2 \end{bmatrix}$
4.	$6R_2 + R_3 \rightarrow R_3$ เพื่อทำ a_{32} ให้เป็น 0 a_{42} เป็น 0 อยู่แล้ว	$\begin{bmatrix} 1 & 1 & -1/2 & 2 & & 17/2 \\ 0 & 1 & -1/2 & 1 & & 11/2 \\ 0 & 0 & 0 & -2 & & -2 \\ 0 & 0 & 3/2 & 0 & & -3/2 \end{bmatrix}$
5.	R_{34} สลับแถวที่ 3 และ 4 เพราะตอนนี้ a_{33} เป็น 0 จากนั้น $(2/3)R_3 \rightarrow R_3$ เพื่อให้ a_{33} เป็น 1	$\begin{bmatrix} 1 & 1 & -1/2 & 2 & 17/2 \\ 0 & 1 & -1/2 & 1 & 11/2 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & -2 & -2 \end{bmatrix}$
6.	ให้ทำขั้นตอนที่เหลือ เพื่อให้ได้คำตอบ ตรวจสอบ คำตอบโดยแทนค่าตัวแปรทั้ง 4 ตัวลงใน 4 สมการ ต้องเป็นจริงทั้งหมด	

3.3 Python and Linear algebra

3.3.1 คำสั่งและ function เกี่ยวกับการวาดกราฟ

คำสั่ง เริ่มต้นสำหรับการวาดกราฟ

import matplotlib.pyplot as plt

import numpy as np

function และ sourcecode	อธิบาย และ output
<pre>print(plt.style.available) plt.style.use('seaborn')</pre>	แสดง style ในการวาดกราฟ จากตัวอย่างเลือกใช้แบบ seaborn สามารถเปลี่ยนใช้แบบอื่น ๆได้ ['Solarize_Light2', '_classic_test_patch', 'bmh', 'classic', 'dark_background', 'fast', 'fivethirtyeight', 'ggplot', 'grayscale', 'seaborn', 'seaborn-bright', 'seaborn-colorblind', 'seaborn-dark', 'seaborn-dark-palette', 'seaborn-dark', 'seaborn-dark-palette', 'seaborn-notebook', 'seaborn-deep', 'seaborn-muted', 'seaborn-notebook', 'seaborn-talk', 'seaborn-ricks', 'seaborn-poster', 'seaborn-talk', 'seaborn-ticks', 'seaborn-white', 'seaborn-whitegrid', 'tableau-colorblind10']

```
import matplotlib.pyplot as plt
 2
     import numpy as np
 3
    plt.style.use('seaborn')
                                                   # กำหนดรูปแบบกราฟ
 4
 5
 6
     x = np.linspace(-10,20)
                                                   # กำหนดช่วงแกน x
 7
     y1 = 2*x - 1
                                                   # กำหนดสมการต่างๆ
 8
    y2 = 5*x - 5
9
     y3 = x
10
     plt.plot(x, y1, label='E.1', color ='red') # วาดกราฟจากสมการ
11
     plt.plot(x, y2, label='E.2', color='green')
12
     plt.plot(x, y3, '--b')
13
     plt.axhline(y=2)
                                                   # วาดเส้นขนาดแกน x โดย y =2
14
15
16
     plt.plot(-5,40,'oc')
                                                   # วาดจุด
17
     plt.text(-5,30,'(-5,40)',fontsize=16)
                                                   # วาดข้อความ
18
     plt.xlabel('X-axis')
                                                   # แสดงข้อความบนแกน x
19
     plt.ylabel('Y-axis')
20
                                                   # แสดงข้อความกราฟ
21
     plt.title("Example of drawing graphs")
22
                                                   # แสดงเส้นกราฟที่วาด
23
     plt.legend()
24
25
    plt.show()
                                                   # วาดกราฟ
```


3.3.2 คำสั่งและ function เกี่ยวกับเมทริกซ์แก้สมการ

สามารถใช้ python แก้สมการได้โดยใช้ np.linalg.inv() เพื่อหาอินเวอร์สเมทริกซ์ หรือใช้ np.linalg.solve() เพื่อแก้สมการในรูปของเมทริกซ์ได้เลย

ตัวอย่าง 3.13 จากตัวอย่าง 3.7 แก้สมการโดยใช้อินเวอร์สเมทริกซ์ สามารถเขียน python code ได้

```
x - 2y = 8
2x + 5y = -11
1 import numpy as np
2
3 A = np.array([[1,-2],[2,5]])
4 b = np.array([8,-11])
5
6 x = np.linalg.inv(A).dot(b)
7
8 print(x)
```

output คือ [2. -3.] ซึ่งเป็นคำตอบของระบบสมการ

ตัวอย่าง 3.14 แก้ระบบสมการโดยใช้ np.linalg.solve()

$$2x_1 + 2x_2 - x_3 + 4x_4 = 17$$

$$2x_2 - x_3 + 2x_4 = 11$$

$$2x_1 - 4x_2 + 2x_3 - 4x_4 = -18$$

$$-x_1 - x_2 + 2x_3 - 2x_4 = -10$$

```
import numpy as np

A = np.array([[2,2,-1,4],[0,2,-1,2],[2,-4,2,-4],[-1,-1,2,-2]])
b = np.array([17,11,-18,-10])
x = np.linalg.solve(A,b)
print(x)
```

output คือ [2. 4. -1. 1.] ซึ่งเป็นคำตอบของระบบสมการ

3.4 แบบฝึกหัด

- 1. วาดกราฟของ 2 สมการ และตอบคำถามต่อไปนี้
 - สมการที่ (1): y = 2x 5 วาดเป็นเส้นทึบสีแดง สมการที่ (2): y = x 3 วาดเป็นเส้นทึบสีเขียว

 - แสดงจุดตัดของสมการเป็นจุดสีน้ำเงิน และ ข้อความ (x, y) โดย (x,y) คือตัวเลขที่แสดงจุดตัดของสมการ
 - สมการที่ 1 ตัดแกน y ที่จุด
 - สมการที่ 2 ตัดแกน y ที่จุด
- 2. Jim, Jack และ Joe ซื้อผลไม้จากร้านเดียวกัน โดย จิมซื้อแอปเปิล 5 กิโล ส้ม 1 และกล้วย 2 กิโล จ่ายเงิน รวม 73 บาท Jack ซื้อแอปเปิล 4 กิโล ส้ม 3 และกล้วย 6 กิโล จ่ายเงินรวม 109 บาท Joe ซื้อแอปเปิล 1 กิโล ส้ม 3 กิโล และ ไม่ได้ซื้อกล้วย จ่ายเงินรวม 31 บาท ให้ใช้อินเวอร์สเมทริกซ์เพื่อหาราคาของแอปเปิล ส้ม และกล้วย ว่ากิโลละกี่บาท
- 3. ร้านค้าขายผลไม้ โดยวันแรกขายมะม่วง 20 ลูก และ ส้ม 10 ลูก ได้เงิน 350 บาท วันที่สองขายมะม่วง 17 ลูก และส้ม 22 ลูก ได้เงิน 500 บาท ราคามะม่วงและส้มลูกละกี่บาท
- 4. คน 3 คน คือ Jim, Jack และ Joe ต้องการซื้อขนมในร้านเบเกอรี่ซึ่งมี 2 ร้านคือร้าน Piece of Cake และ Just baked โดยแต่ละคนต้องการซื้อขนมปริมาณต่างกัน ถามว่า แต่ละคนควรซื้อขนมที่ร้านใดเพื่อจ่ายเงิน น้อยที่สุด

จำนวนขนมที่แต่ละคนต้องการ

	Cake	Bun	Bread	Brownie					
Jim	6	5	3	2					
Jack	2	10	20	2					
Joe	10	-	5	5					

ราคาขนมแต่ละร้าน

	Piece of Cake	Just baked					
Cake	20	15					
Bun	30	40					
Bread	30	40					
Brownie	50	30					

ให้แสดง Demand matrix, Price matrix และวิธีคำนวณ Demand matrix (เมทริกซ์ที่แสดงถึงความต้องการซื้อ) คือ Price matrix (เมทริกซ์ราคา) คือ แก้ปัญหาโจทย์ข้อนี้ได้อย่างไร

5. แก้ปัญหาระบบสมการเหล่านี้โดยใช้ทั้งอินเวอร์สเมทริกซ์ และ/หรือ Gaussian rules

ຍ	
4.1	2x - y = 2
	x + 3y = 8
4.2	x - y = 4
	2x + 3y = 3
	3x - y = 10
4.3	x + y = -3
	-2x + 2y = 14
	-x-y=3

6. เขียน python เพื่อแก้ปัญหาระบบสมการจากข้อ 2. - 5. โดยใช้ function inv() และ solve()

7. โจทย์เสริมเรื่อง encryption – decryption (การเข้ารหัส ถอดรหัส)
ต้องการส่งข้อความหาเพื่อน โดยได้ตกลงกับเพื่อนว่า จะใช้ตัวเลขแทนตัวอักษร 1- 27 แทน A – Z และ space bar และ encrypt ข้อความด้วย matrix C matrix A เป็น Squared Matrix ขนาด 3 * 3 คือข้อความต้นฉบับที่ต้องการส่งให้เพื่อน matrix Z เป็นข้อความที่เข้ารหัสแล้ว (encrypted text) และเราส่ง matrix Z ให้เพื่อน โดยเพื่อนต้อง decrypt matrix Z กลับออกมาเป็นข้อความให้ได้

กำหนดตัวเลข แทนตัวอักษร ดังนี้

а	b	С	d	е	f	g	h	i	j	k	Į	m	n	0	р	q	r	S	t	u	>	W	X	У	Z	_
21	3	10	13	9	18	16	22	4	26	11	7	8	1	6	15	12	19	2	14	17	5	25	24	20	23	27

$$C = \begin{bmatrix} 2 & 0 & 1 \\ -1 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$

ตัวอย่าง ถ้าเราต้องการส่งคำว่า dangerous ให้เพื่อน จะได้

เมทริกซ์ 🗚 หรือข้อความต้นฉบับ

$$A = \begin{bmatrix} 13 & 21 & 1 \\ 16 & 9 & 19 \\ 6 & 17 & 2 \end{bmatrix}$$

เมทริกซ์ Z คือ encrypted text และจะส่งให้เพื่อน

$$Z = \begin{bmatrix} 32 & 59 & 4 \\ -19 & -38 & -3 \\ 16 & 9 & 19 \end{bmatrix}$$

ซึ่งเมื่อเพื่อนได้รับข้อความเป็นเมทริกซ์ Z แล้วจะต้อง decrypt ออกมาเป็นคำว่า dangerous

คำถาม ถ้าเราส่งเมทริกซ์

$$z = \begin{bmatrix} 35 & 11 & 39 \\ -18 & -10 & -26 \\ 9 & 18 & 4 \end{bmatrix}$$

เพื่อนจะ decrypt เมทริกซ์นี้ได้เป็นคำว่าอะไร