Clase 15: Redes Neuronales

Mauricio Castro C. mcastro@mat.uc.cl

Departamento de Estadística, Pontificia Universidad Católica de Chile

TÓPICOS APLICADOS EN ESTADÍSTICA

Segundo Semestre 2022

Redes Neuronales

► Corteza cerebral: parte más grande del cerebro consistente en una red interconectada de células llamadas neuronas.

► Corteza cerebral: parte más grande del cerebro consistente en una red interconectada de células llamadas neuronas.

 Neuronas: células nerviosas elementales que forman bloques del sistema nervioso.

► Corteza cerebral: parte más grande del cerebro consistente en una red interconectada de células llamadas neuronas.

Neuronas: células nerviosas elementales que forman bloques del sistema nervioso.

 Soma: contiene el núcleo dos tipos de proyecciones, dendritas y axones.

► Corteza cerebral: parte más grande del cerebro consistente en una red interconectada de células llamadas neuronas.

 Neuronas: células nerviosas elementales que forman bloques del sistema nervioso.

Soma: contiene el núcleo dos tipos de proyecciones, dendritas y axones.

► Cada neurona tiene un axón, el cual termina en una sinapsis.

Las neuronas envían señales a otras a través de procesos electroquímicos.

Las neuronas envían señales a otras a través de procesos electroquímicos.

▶ Bajo ciertas condiciones la neurona envía un pulso eléctrico llamado spike.

Las neuronas envían señales a otras a través de procesos electroquímicos.

Bajo ciertas condiciones la neurona envía un pulso eléctrico llamado spike.

► Sinapsis inhibitoria: evita que la neurona dispare el impulso.

Las neuronas envían señales a otras a través de procesos electroquímicos.

Bajo ciertas condiciones la neurona envía un pulso eléctrico llamado spike.

► Sinapsis inhibitoria: evita que la neurona dispare el impulso.

Sinapsis excitatoria: empuja a la neurona a que dispare el impulso.

► Modelo propuesto por McCullogh y Pitts (1943).

► Modelo propuesto por McCullogh y Pitts (1943).

► Multiples inputs $X_1, X_2, ..., X_r$ (dendritas) con valores 1 o 0 ("On" o "Off").

► Modelo propuesto por McCullogh y Pitts (1943).

► Multiples inputs $X_1, X_2, ..., X_r$ (dendritas) con valores 1 o 0 ("On" o "Off").

► Un solo output y (axón).

► Modelo propuesto por McCullogh y Pitts (1943).

► Multiples inputs $X_1, X_2, ..., X_r$ (dendritas) con valores 1 o 0 ("On" o "Off").

► Un solo output y (axón).

▶ Idea: Replicar de manera artificial y simplificada el comportamiento de las neuronas en el cerebro.

 \blacktriangleright Excitación total $U = \sum_j X_j.$

▶ Excitación total $U = \sum_{j} X_{j}$.

ightharpoonup Si la sinapsis es no inhibitoria, U es comparado con un valor θ .

Excitación total $U = \sum_{i} X_{i}$.

 \triangleright Si la sinapsis es no inhibitoria, U es comparado con un valor θ .

▶ Si $U \ge \theta$, Y = 1, es decir, la neurona dispara y transmite una nueva señal.

Excitación total $U = \sum_{i} X_{i}$.

 \blacktriangleright Si la sinapsis es no inhibitoria, U es comparado con un valor θ .

▶ Si $U \ge \theta$, Y = 1, es decir, la neurona dispara y transmite una nueva señal.

► Aqui los inputs son binarios por construcción.

ightharpoonup Si $\theta > r$, la neurona nunca se dispara.

- ightharpoonup Si θ > r, la neurona nunca se dispara.
- ► Esto pues si $X_j = 1$, $\forall j = 1, ..., r$, entonces $U = \sum_{j=1}^{r} X_j = r < \theta$.

- ightharpoonup Si $\theta > r$, la neurona nunca se dispara.
- \blacktriangleright Esto pues si $X_j=1, \ \forall j=1,\ldots,r,$ entonces $U=\sum_{j=1}^r X_j=r<\theta.$
- ► Si $\theta = 0$ entonces Y = 1.

- ightharpoonup Si $\theta > r$, la neurona nunca se dispara.
- ▶ Esto pues si $X_j = 1$, $\forall j = 1, ..., r$, entonces $U = \sum_{j=1}^r X_j = r < \theta$.
- ► Si $\theta = 0$ entonces Y = 1.
- ► Geométricamente lo anterior se describe así:

- ightharpoonup Si $\theta > r$, la neurona nunca se dispara.
- ▶ Esto pues si $X_j = 1$, $\forall j = 1, ..., r$, entonces $U = \sum_{i=1}^r X_j = r < \theta$.
- ► Si $\theta = 0$ entonces Y = 1.
- ► Geométricamente lo anterior se describe así:
 - $ightharpoonup X_1, \ldots, X_r$ es un hipercubo de dimensión r.

- ightharpoonup Si $\theta > r$, la neurona nunca se dispara.
- ▶ Esto pues si $X_j = 1$, $\forall j = 1, ..., r$, entonces $U = \sum_{i=1}^r X_j = r < \theta$.
- ► Si $\theta = 0$ entonces Y = 1.
- ► Geométricamente lo anterior se describe así:
 - $ightharpoonup X_1, \ldots, X_r$ es un hipercubo de dimensión r.
 - Para un valor de θ , el hipercubo se divide de acuerdo al hiperplano $\sum_{j=1}^{r} X_j = \theta$.

- ightharpoonup Si $\theta > r$, la neurona nunca se dispara.
- ▶ Esto pues si $X_j = 1$, $\forall j = 1, ..., r$, entonces $U = \sum_{j=1}^r X_j = r < \theta$.
- ► Si $\theta = 0$ entonces Y = 1.
- ► Geométricamente lo anterior se describe así:
 - $ightharpoonup X_1, \ldots, X_r$ es un hipercubo de dimensión r.
 - Para un valor de θ , el hipercubo se divide de acuerdo al hiperplano $\sum_{j=1}^{r} X_j = \theta$.
 - Los vértices con Y = 1 quedan a un lado del hiperplano mientras que los vértices Y = 0 al otro.

► El modelo de McCulloch-Pitts también es conocido como unidad lógica del umbral.

- ► El modelo de McCulloch-Pitts también es conocido como unidad lógica del umbral.
- ► Es utilizado para calcular funciones lógicas simples, como por ejemplo "Y" o "O".

- ► El modelo de McCulloch-Pitts también es conocido como unidad lógica del umbral.
- ► Es utilizado para calcular funciones lógicas simples, como por ejemplo "Y" o "O".
- Otras funciones lógicas pueden obtenerse a través de más capas de este modelo.

- ► El modelo de McCulloch-Pitts también es conocido como unidad lógica del umbral.
- ► Es utilizado para calcular funciones lógicas simples, como por ejemplo "Y" o "O".
- Otras funciones lógicas pueden obtenerse a través de más capas de este modelo.
- ► El caso "Y" por ejemplo sugiere que la neurona disparará un impulso si todos los inputs toman el valor 1 por ejemplo.

▶ Donald O. Hebb: The Organization of Behaviour (1949).

▶ Donald O. Hebb: The Organization of Behaviour (1949).

► En este libro se resume como el sistema nervioso central afecta nuestro comportamiento y viceversa.

▶ Donald O. Hebb: The Organization of Behaviour (1949).

► En este libro se resume como el sistema nervioso central afecta nuestro comportamiento y viceversa.

► La teoría de Hebb asume que uno nace con todas las neuronas necesarias para vivir, y que las conexiones iniciales de estas se distribuyen aleatoriamente.

▶ Donald O. Hebb: The Organization of Behaviour (1949).

► En este libro se resume como el sistema nervioso central afecta nuestro comportamiento y viceversa.

► La teoría de Hebb asume que uno nace con todas las neuronas necesarias para vivir, y que las conexiones iniciales de estas se distribuyen aleatoriamente.

► A medida que el ser humano crece, las conexiones neuronales se multiplican y se hacen más fuertes.

La teoría de Hebb también establece que la fuerza de la conexión sináptica entre dos neuronas depende de su historia.

Teoría de aprendizaje de Hebb

- La teoría de Hebb también establece que la fuerza de la conexión sináptica entre dos neuronas depende de su historia.
- Mientras más frecuente sea el disparo entre dos neuronas, mas fuerte será su conexión.

Teoría de aprendizaje de Hebb

- La teoría de Hebb también establece que la fuerza de la conexión sináptica entre dos neuronas depende de su historia.
- Mientras más frecuente sea el disparo entre dos neuronas, mas fuerte será su conexión.

► Lo anterior también se debería cumplir desde el punto de vista de la inhibición.

Teoría de aprendizaje de Hebb

- La teoría de Hebb también establece que la fuerza de la conexión sináptica entre dos neuronas depende de su historia.
- Mientras más frecuente sea el disparo entre dos neuronas, mas fuerte será su conexión.

 Lo anterior también se debería cumplir desde el punto de vista de la inhibición.

► Si una neurona A envia repetidamente una señal a la neurona B y esta no dispara, entonces se reduce las chances que en el futuro A haga que B dispare.

► El trabajo de Hebb impulsó el trabajo del psicologo Frank Rosenblatt.

- ► El trabajo de Hebb impulsó el trabajo del psicologo Frank Rosenblatt.
- ▶ Rosenblatt creyó que podía mejorar el trabajo de Hebb construyendo un sistema minimamente restringido llamado perceptrón (1958, 1962).

- ► El trabajo de Hebb impulsó el trabajo del psicologo Frank Rosenblatt.
- ▶ Rosenblatt creyó que podía mejorar el trabajo de Hebb construyendo un sistema minimamente restringido llamado perceptrón (1958, 1962).
- ► El perceptrón mejora el modelo de McCulloch-Pitts introduciendo pesos.

- ► El trabajo de Hebb impulsó el trabajo del psicologo Frank Rosenblatt.
- Rosenblatt creyó que podía mejorar el trabajo de Hebb construyendo un sistema minimamente restringido llamado perceptrón (1958, 1962).
- ► El perceptrón mejora el modelo de McCulloch-Pitts introduciendo pesos.
- Aquí X_j está asociado a un peso de conección β_j , $j=1,\ldots,r$.

- ► El trabajo de Hebb impulsó el trabajo del psicologo Frank Rosenblatt.
- ▶ Rosenblatt creyó que podía mejorar el trabajo de Hebb construyendo un sistema minimamente restringido llamado perceptrón (1958, 1962).
- ► El perceptrón mejora el modelo de McCulloch-Pitts introduciendo pesos.
- Aquí X_j está asociado a un peso de conección $\beta_j, \ j=1,\ldots,r.$
- Pesos positivos ($\beta_j > 0$) reflejan sinapsis excitatorias y pesos negativos ($\beta_j < 0$) inhibitorias.

La magnitud de β_i muestra la fuerza de la conección.

- ightharpoonup La magnitud de $β_i$ muestra la fuerza de la conección.
- ▶ Ahora, $U = \sum_{j=1}^{r} \beta_j X_j$, con X_j binaria o real-valorada.

- La magnitud de β_i muestra la fuerza de la conección.
- ► Ahora, $U = \sum_{j=1}^{r} \beta_j X_j$, con X_j binaria o real-valorada.
- Al igual que en el modelo de McCulloch-Pitts, Y = 1 si $U \ge \theta$, donde θ es un valor determinado (umbral), y Y = 0 en caso contrario.

- La magnitud de β_i muestra la fuerza de la conección.
- ► Ahora, $U = \sum_{j=1}^{r} \beta_j X_j$, con X_j binaria o real-valorada.
- Al igual que en el modelo de McCulloch-Pitts, Y = 1 si $U \ge \theta$, donde θ es un valor determinado (umbral), y Y = 0 en caso contrario.
- Note que, si $\beta_0 = -\theta$, entonces $U = \sum_{j=0}^r \beta_j X_j$ puede ser comparado con 0, donde $X_0 = 1$.

- La magnitud de β_i muestra la fuerza de la conección.
- ► Ahora, $U = \sum_{j=1}^{r} \beta_j X_j$, con X_j binaria o real-valorada.
- Al igual que en el modelo de McCulloch-Pitts, Y=1 si $U\geqslant \theta$, donde θ es un valor determinado (umbral), y Y=0 en caso contrario.
- Note que, si $\beta_0 = -\theta$, entonces $U = \sum_{j=0}^r \beta_j X_j$ puede ser comparado con 0, donde $X_0 = 1$.
- Aquí si $U \geqslant 0$, Y = 1 y Y = 0 en otro caso. β_0 se llama elemento de sesgo.

▶ La función $Y \in \{0, 1\}$ se llama perceptron-calculable.

▶ La función $Y \in \{0, 1\}$ se llama perceptron-calculable.

Para un valor de θ existe un hiperplano que divide el espacio de los inputs en dos, R_0 y R_1 , para los que Y=0 y Y=1.

▶ La función $Y \in \{0, 1\}$ se llama perceptron-calculable.

Para un valor de θ existe un hiperplano que divide el espacio de los inputs en dos, R_0 y R_1 , para los que Y=0 y Y=1.

► Si los puntos en R₀ pueden ser separados de los de R₁ se dice que el conjunto de puntos es linealmente separable.

▶ La función $Y \in \{0, 1\}$ se llama perceptron-calculable.

Para un valor de θ existe un hiperplano que divide el espacio de los inputs en dos, R_0 y R_1 , para los que Y=0 y Y=1.

► Si los puntos en R₀ pueden ser separados de los de R₁ se dice que el conjunto de puntos es linealmente separable.

Esta partición permite al perceptrón predecir una clase dada.

▶ Sea el vector aleatorio $\mathbf{X} = (X_1, \dots, X_r)^{\top}$ de entradas (inputs).

- ▶ Sea el vector aleatorio $\mathbf{X} = (X_1, ..., X_r)^T$ de entradas (inputs).
- ▶ Dado X, para la l-ésima neurona, se tiene la l-ésima función de activación lineal

- ▶ Sea el vector aleatorio $\mathbf{X} = (X_1, \dots, X_r)^T$ de entradas (inputs).
- ▶ Dado X, para la l-ésima neurona, se tiene la l-ésima función de activación lineal

$$U_{\ell} = \beta_{0\ell} + \mathbf{X}^{\mathsf{T}} \mathbf{\beta}_{\ell}, \quad \ell = 1, \dots, s,$$

donde $\beta_{0\ell}$ es la constante o sesgo relacionado al umbral para que la neurona dispare y $\boldsymbol{\beta}_{\ell} = (\beta_{1\ell}, \cdots, \beta_{r\ell})^{\top}$ es el vector r-dimensional de pesos.

- ▶ Sea el vector aleatorio $\mathbf{X} = (X_1, \dots, X_r)^T$ de entradas (inputs).
- ightharpoonup Dado X, para la ℓ -ésima neurona, se tiene la ℓ -ésima función de activación lineal

$$U_{\ell} = \beta_{0\ell} + \mathbf{X}^{\top} \boldsymbol{\beta}_{\ell}, \quad \ell = 1, \dots, s,$$

donde $\beta_{0\ell}$ es la constante o sesgo relacionado al umbral para que la neurona dispare y $\boldsymbol{\beta}_{\ell} = (\beta_{1\ell}, \cdots, \beta_{r\ell})^{\top}$ es el vector r-dimensional de pesos.

De forma matricial, se tiene $\mathbf{U} = \beta_0 + \mathbf{B}\mathbf{X}$, con $\mathbf{U} = (\mathbf{U}_1, \cdots, \mathbf{U}_s)^\top$, $\beta_0 = (\beta_{01}, \cdots, \beta_{0s})^\top$ un vector s-dimensional de sesgos y $\mathbf{B} = (\beta_1, \cdots, \beta_s)^\top$ una matrix de conexiones de dimensión $(\mathbf{s} \times \mathbf{r})$.

La función de activación no lineal será $f(U) = f(\beta_0 + BX)$, donde $f = (f, \dots, f)^{\top}$ es un vector s-dimensional de funciones cuyos elementos son la función f y $f(U) = (f(U_1), \dots, f(U_s))^{\top}$.

La función de activación no lineal será $f(U) = f(\beta_0 + BX)$, donde $f = (f, \dots, f)^{\top}$ es un vector s-dimensional de funciones cuyos elementos son la función f y $f(U) = (f(U_1), \dots, f(U_s))^{\top}$.

La función más simple es la función identidad.

La función de activación no lineal será $f(U) = f(\beta_0 + BX)$, donde $f = (f, \dots, f)^{\top}$ es un vector s-dimensional de funciones cuyos elementos son la función f y $f(U) = (f(U_1), \dots, f(U_s))^{\top}$.

La función más simple es la función identidad.

► Sin embargo, otras funciones pueden ser consideradas dependiendo del caso al cual nos enfrentemos.

La función de activación no lineal será $f(U) = f(\beta_0 + BX)$, donde $f = (f, \dots, f)^{\top}$ es un vector s-dimensional de funciones cuyos elementos son la función $f y f(U) = (f(U_1), \dots, f(U_s))^{\top}$.

La función más simple es la función identidad.

➤ Sin embargo, otras funciones pueden ser consideradas dependiendo del caso al cual nos enfrentemos.

Existe evidencia empírica de que la función hiperbólica tangente converge más rápidamente que la función logística.

Activation Function	f(u)	Range of Values
Identity, linear	u	R
Hard-limiter	sign(u)	$\{-1,+1\}$
Heaviside, step, threshold	$I_{[u \ge 0]}$	$\{0,1\}$
Gaussian radial basis function	$(2\pi)^{-1/2}e^{-u^2/2}$	\Re
Cumulative Gaussian (sigmoid)	$\sqrt{2/\pi} \int_0^u e^{-z^2/2} dz$	(0,1)
Logistic (sigmoid)	$(1+e^{-u})^{-1}$	(0,1)
Hyperbolic tangent (sigmoid)	$(e^u - e^{-u})/(e^u + e^{-u})$	(-1, +1)

▶ En clasificación, la idea es usar $X_1, ..., X_n$ n vectores de entrada, o copias independientes de X.

▶ En clasificación, la idea es usar $X_1, ..., X_n$ n vectores de entrada, o copias independientes de X.

▶ Clasifica cada vector en dos clases Π_1 y Π_2 .

▶ En clasificación, la idea es usar $X_1, ..., X_n$ n vectores de entrada, o copias independientes de X.

▶ Clasifica cada vector en dos clases Π_1 y Π_2 .

lacktriangle Solo se considera un output (s=1)

 \blacktriangleright En clasificación, la idea es usar X_1, \ldots, X_n n vectores de entrada, o copias independientes de X.

► Clasifica cada vector en dos clases Π_1 y Π_2 .

ightharpoonup Solo se considera un output (s = 1)

► En la versión lineal, se tiene que sign $\{\beta_0 + X^{\top}\beta\}$. Es la es la función hard-limiter.

► El output es conocido como unidad de umbral lineal.

► El output es conocido como unidad de umbral lineal.

► El perceptron de Rosenblatt es básicamente el de McCullog y Pitts (1943) pero con pesos.

▶ El output es conocido como unidad de umbral lineal.

► El perceptron de Rosenblatt es básicamente el de McCullog y Pitts (1943) pero con pesos.

▶ Una versión más general está dada por $f(\beta_0 + X^T\beta)$, donde $f(\cdot)$ es una función de activación.

► El output es conocido como unidad de umbral lineal.

► El perceptron de Rosenblatt es básicamente el de McCullog y Pitts (1943) pero con pesos.

▶ Una versión más general está dada por $f(\beta_0 + X^T\beta)$, donde $f(\cdot)$ es una función de activación.

 \triangleright En clasificación, generalmente se considera $f(\cdot)$ como la sigmoidea.

▶ Sea Y = +1 si $X \in \Pi_1$ y Y = -1 si $X \in \Pi_2$.

- ▶ Sea Y = +1 si $X \in \Pi_1$ y Y = -1 si $X \in \Pi_2$.
- $\blacktriangleright \ \mathsf{Aqui}, \ X^{\top} \beta \geqslant 0 \ \mathsf{y} \ X^{\top} \beta < 0.$

- ► Sea Y = +1 si $X \in \Pi_1$ y Y = -1 si $X \in \Pi_2$.
- ► Aquí, $X^{T}\beta \ge 0$ y $X^{T}\beta < 0$.

► Las clases se asumen linealmente separables.

- ▶ Sea Y = +1 si $X \in \Pi_1$ y Y = -1 si $X \in \Pi_2$.
- ightharpoonup Aquí, $X^{\top}\beta \geqslant 0$ y $X^{\top}\beta < 0$.

Las clases se asumen linealmente separables.

► El algoritmo utilizado es el algoritmo de aprendizaje on-line.

- ▶ Sea Y = +1 si $X \in \Pi_1$ y Y = -1 si $X \in \Pi_2$.
- ► Aquí, $X^{T}\beta \ge 0$ y $X^{T}\beta < 0$.

► Las clases se asumen linealmente separables.

► El algoritmo utilizado es el algoritmo de aprendizaje on-line.

lacktriangle Este algoritmo re-etiqueta $\{X_i\}$ uno a la vez.

Perceptron de Rosenblatt Unidad Simple

▶ En la iteración h, consideramos X_h , h = 1, 2, ...

- ▶ En la iteración h, consideramos X_h , h = 1, 2, ...
- ▶ El algoritmo calcula una secuencia $\{\beta_h\}$ de pesos usando un valor inicial $\beta_0=0$.

- ► En la iteración h, consideramos X_h , h = 1, 2, ...
- ▶ El algoritmo calcula una secuencia $\{\beta_h\}$ de pesos usando un valor inicial $\beta_0=0$.
- ▶ Si en la h-ésima iteración, la versión actual de β_h clasifica X_h correctamente, entonces $\beta_{h+1} = \beta_h$. Note que si $X_h^\top \beta_h \geqslant 0$ entonces $X_h \in \Pi_1$ y $X_h^\top \beta_h < 0$ entonces $X_h \in \Pi_2$.

- ▶ En la iteración h, consideramos X_h , h = 1, 2, ...
- ▶ El algoritmo calcula una secuencia $\{\beta_h\}$ de pesos usando un valor inicial $\beta_0=0$.
- Si en la h-ésima iteración, la versión actual de β_h clasifica X_h correctamente, entonces $\beta_{h+1} = \beta_h$. Note que si $X_h^\top \beta_h \geqslant 0$ entonces $X_h \in \Pi_1$ y $X_h^\top \beta_h < 0$ entonces $X_h \in \Pi_2$.
- ▶ Si β_h no clasifica bien X_h , entonces se actualiza el peso: si $X_h^\top \beta_h \geqslant 0$ pero $X_h \in \Pi_2$, entonces $\beta_{h+1} = \beta_h \eta X_h$. Por el contravio, si $X_h^\top \beta_h < 0$ pero $X_h \in \Pi_1$, entonces $\beta_{h+1} = \beta_h + \eta X_h$.

► Las reglas anteriores pueden escribirse como:

Las reglas anteriores pueden escribirse como:

$$\beta_h=\beta_{h-1}+\eta Y_h X_h \ \psi(-Y_h X_h^\top \beta_{h-1}),$$
 donde $\psi(z)=0$, si $z<0$ y $\psi(z)=1$, si $z>0$ (función step).

η se conoce como el parámetro de aprendizaje.

► Las reglas anteriores pueden escribirse como:

$$\beta_h=\beta_{h-1}+\eta Y_h X_h \ \psi(-Y_h X_h^\top \beta_{h-1}),$$
 donde $\psi(z)=0$, si $z<0$ y $\psi(z)=1$, si $z>0$ (función step).

η se conoce como el parámetro de aprendizaje.

► Generalmente se asume $\eta = 1$.

► Las reglas anteriores pueden escribirse como:

$$\beta_h=\beta_{h-1}+\eta Y_h X_h \ \psi(-Y_h X_h^\top \beta_{h-1}),$$
 donde $\psi(z)=0$, si $z<0$ y $\psi(z)=1$, si $z>0$ (función step).

η se conoce como el parámetro de aprendizaje.

► Generalmente se asume $\eta = 1$.

▶ Notar que producto del procedimiento anterior, $\beta_{h+1} = \sum_{i=1}^h X_i$.

► Supongamos que existe β^* tal que

► Supongamos que existe β^* tal que

$$A = \min_{\mathbf{X}_i \in \Pi_{\mathbf{1}}} \mathbf{X}_i^{\top} \boldsymbol{\beta}^*, \quad B = \max_{\mathbf{X}_i \in \Pi_{\mathbf{1}}} \left\| \mathbf{X}_i \right\|^2.$$

► Supongamos que existe β^* tal que

$$A = \min_{\mathbf{X}_i \in \Pi_{\mathbf{1}}} \mathbf{X}_i^{\top} \boldsymbol{\beta}^*, \quad B = \max_{\mathbf{X}_i \in \Pi_{\mathbf{1}}} \left\| \mathbf{X}_i \right\|^2.$$

► Tenemos que, $\beta_{h+1}^{\top}\beta^* = \sum_{i=1}^h X_i^{\top}\beta^*$. Lo anterior, es siempre mayor o igual que h veces A, es decir, $\beta_{h+1}^{\top}\beta^* \geqslant hA$.

► Supongamos que existe β^* tal que

$$A = \min_{\mathbf{X}_i \in \Pi_{\mathbf{1}}} \mathbf{X}_i^{\top} \boldsymbol{\beta}^*, \quad B = \max_{\mathbf{X}_i \in \Pi_{\mathbf{1}}} \left\| \mathbf{X}_i \right\|^2.$$

- ► Tenemos que, $\beta_{h+1}^{\top}\beta^* = \sum_{i=1}^h X_i^{\top}\beta^*$. Lo anterior, es siempre mayor o igual que h veces A, es decir, $\beta_{h+1}^{\top}\beta^* \geqslant hA$.
- ▶ Usando la desigualdad de Cauchy-Schwarz ($||xy||^2 \le ||x||^2 ||y||^2$), se tiene que

► Supongamos que existe β^* tal que

$$A = \min_{\mathbf{X}_i \in \Pi_{\mathbf{1}}} \mathbf{X}_i^{\top} \boldsymbol{\beta}^*, \quad B = \max_{\mathbf{X}_i \in \Pi_{\mathbf{1}}} \left\| \mathbf{X}_i \right\|^2.$$

- ► Tenemos que, $\beta_{h+1}^{\top}\beta^* = \sum_{i=1}^{h} X_i^{\top}\beta^*$. Lo anterior, es siempre mayor o igual que h veces A, es decir, $\beta_{h+1}^{\top}\beta^* \geqslant hA$.
- ▶ Usando la desigualdad de Cauchy-Schwarz ($||xy||^2 \le ||x||^2 ||y||^2$), se tiene que

$$\left(\boldsymbol{\beta}_{h+1}^{\top}\boldsymbol{\beta}^{*}\right)^{2} \leqslant \left\|\boldsymbol{\beta}_{h+1}^{\top}\right\|^{2} \left\|\boldsymbol{\beta}^{*}\right\|^{2}$$

► Dado lo anterior, se puede concluir que

► Dado lo anterior, se puede concluir que

$$\left\|oldsymbol{eta}_{h+1}
ight\|^2\geqslant rac{h^2A^2}{\left\|oldsymbol{eta}^*
ight\|^2}$$

► Dado lo anterior, se puede concluir que

$$\|\boldsymbol{\beta}_{h+1}\|^2 \geqslant \frac{h^2 A^2}{\|\boldsymbol{\beta}^*\|^2}$$

ightharpoonup ¿Qué significa lo anterior?: la norma al cuadrado de β crece al menos cuadráticamente con el número de iteraciones.

► Dado lo anterior, se puede concluir que

$$\|\boldsymbol{\beta}_{h+1}\|^2 \geqslant \frac{h^2 A^2}{\|\boldsymbol{\beta}^*\|^2}$$

► ¿Qué significa lo anterior?: la norma al cuadrado de β crece al menos cuadráticamente con el número de iteraciones.

Pensemos ahora en la regla de actualización, dada por $\beta_{k+1} = \beta_k + X_k$, donde $X_k \in \Pi_1, \ k = 1, \dots, h$.

▶ De lo anterior, se tiene que $\|\beta_{k+1}\|^2 = \|\beta_k\|^2 + \|\mathbf{X}_k\|^2 + 2\mathbf{X}_k^\top \beta_k$.

- ▶ De lo anterior, se tiene que $\|\beta_{k+1}\|^2 = \|\beta_k\|^2 + \|\mathbf{X}_k\|^2 + 2\mathbf{X}_k^\top \beta_k$.
- \blacktriangleright Cuando X_k es clasificado incorrectamente, $X_k^\top \beta_k < 0.$ Entonces,

$$\|\beta_{k+1}\|^2 - \|\beta_k\|^2 \leqslant \|X_k\|^2.$$

- ▶ De lo anterior, se tiene que $\|\beta_{k+1}\|^2 = \|\beta_k\|^2 + \|\mathbf{X}_k\|^2 + 2\mathbf{X}_k^\top \beta_k$.
- \blacktriangleright Cuando X_k es clasificado incorrectamente, $X_k^\top \beta_k < 0.$ Entonces,

$$\|\beta_{k+1}\|^2 - \|\beta_k\|^2 \leqslant \|X_k\|^2.$$

▶ Observemos que $\|\beta_{h+1}\|^2 \leqslant \sum_{k=1}^h \|\mathbf{X}_k\|^2 \leqslant hB$.

- ▶ De lo anterior, se tiene que $\|\beta_{k+1}\|^2 = \|\beta_k\|^2 + \|\mathbf{X}_k\|^2 + 2\mathbf{X}_k^\top \beta_k$.
- \blacktriangleright Cuando X_k es clasificado incorrectamente, $X_k^\top \beta_k < 0.$ Entonces,

$$\|\beta_{k+1}\|^2 - \|\beta_k\|^2 \leqslant \|X_k\|^2.$$

- ▶ Observemos que $\|\beta_{h+1}\|^2 \leqslant \sum_{k=1}^h \|X_k\|^2 \leqslant hB$.
- ightharpoonup ¿Qué significa lo anterior?: la norma al cuadrado de β crece a lo mas linealmente con número de iteraciones.

▶ Si h crece, lo anterior parece ser contradictorio pues por un lado $\|\beta_{k+1}\|^2\|$ crece al menos cuadráticamente con h pero a lo más linealmente con h.

- ▶ Si h crece, lo anterior parece ser contradictorio pues por un lado $\|\beta_{k+1}\|^2\|$ crece al menos cuadráticamente con h pero a lo más linealmente con h.
- ► Entonces, h no puede crecer sin tener una cota.

- ▶ Si h crece, lo anterior parece ser contradictorio pues por un lado $\|\beta_{k+1}\|^2\|$ crece al menos cuadráticamente con h pero a lo más linealmente con h.
- ► Entonces, h no puede crecer sin tener una cota.
- ► Lo ideal es encontrar un h_{max}.

- ▶ Si h crece, lo anterior parece ser contradictorio pues por un lado $\|\beta_{k+1}\|^2\|$ crece al menos cuadráticamente con h pero a lo más linealmente con h.
- ► Entonces, h no puede crecer sin tener una cota.
- ► Lo ideal es encontrar un h_{max}.
- $\blacktriangleright \ \, \text{En este caso, } h_{\text{max}} = \frac{B || \boldsymbol{\beta}^* ||^2}{A^2}.$

- ▶ Si h crece, lo anterior parece ser contradictorio pues por un lado $\|\beta_{k+1}\|^2\|$ crece al menos cuadráticamente con h pero a lo más linealmente con h.
- ► Entonces, h no puede crecer sin tener una cota.
- ► Lo ideal es encontrar un h_{max}.
- $\blacktriangleright \text{ En este caso, } h_{\text{max}} = \frac{B ||\beta^*||^2}{A^2}.$
- Por lo tanto, se establece que el algoritmo encontrará una solución en un número finito de iteraciones.

ightharpoonup Existe muchos problemas para los cuales ho^* no existe.

ightharpoonup Existe muchos problemas para los cuales ho^* no existe.

► Si el algoritmo para, se obtiene una solución.

ightharpoonup Existe muchos problemas para los cuales β^* no existe.

► Si el algoritmo para, se obtiene una solución.

Si el problema no es linealmente separable, el algoritmo iterará por un ciclo indeterminado.

ightharpoonup Existe muchos problemas para los cuales ho^* no existe.

► Si el algoritmo para, se obtiene una solución.

 Si el problema no es linealmente separable, el algoritmo iterará por un ciclo indeterminado.

 \blacktriangleright Si el algoritmo se detiene prematuramente, el vector β obtenido puede que no generalice bien los resultados en el conjunto de test.

► Supongamos que nos interesa minimizar la pérdida entre Y e y (el valor obtenido usando la red neuronal).

► Supongamos que nos interesa minimizar la pérdida entre Y e y (el valor obtenido usando la red neuronal).

► Sea E una función de pérdida.

► Supongamos que nos interesa minimizar la pérdida entre Y e y (el valor obtenido usando la red neuronal).

► Sea E una función de pérdida.

ightharpoonup Entonces, buscamos β^* tal que

► Supongamos que nos interesa minimizar la pérdida entre Y e y (el valor obtenido usando la red neuronal).

► Sea E una función de pérdida.

► Entonces, buscamos β* tal que

$$\beta^* = \operatorname{argmin}_{\beta} E(Y,y).$$

► Considerando la función de activación lineal, tenemos que

► Considerando la función de activación lineal, tenemos que

$$y = \beta_0 + X^{\top} \beta$$

► Considerando la función de activación lineal, tenemos que

$$y = \beta_0 + \mathbf{X}^{\top} \mathbf{\beta}$$

► Sea la función de pérdida (error cuadrático medio):

► Considerando la función de activación lineal, tenemos que

$$y = \beta_0 + X^{T} \beta$$

► Sea la función de pérdida (error cuadrático medio):

$$\mathsf{E}(\boldsymbol{\beta}) = \frac{1}{2} \|\mathbf{Y} - \mathbf{y}\|^2$$

► Entonces, buscamos β^* tal que

► Considerando la función de activación lineal, tenemos que

$$y = \beta_0 + X^{\top} \beta$$

► Sea la función de pérdida (error cuadrático medio):

$$\mathsf{E}(\boldsymbol{\beta}) = \frac{1}{2} \|\mathbf{Y} - \mathbf{y}\|^2$$

ightharpoonup Entonces, buscamos β^* tal que

$$\beta^* = \operatorname{argmin}_{\beta} E(Y, y).$$

► Es posible mostrar que

► Es posible mostrar que

$$\frac{\partial E}{\partial \beta_i} = \sum_{j=1}^n 2(Y_j - y_j)(-X_{ij})$$

y que
$$\Delta \beta_i = -\eta \frac{\partial E}{\partial \beta_i}$$
.

► Es posible mostrar que

$$\frac{\partial E}{\partial \beta_i} = \sum_{j=1}^n 2(Y_j - y_j)(-X_{ij})$$

y que
$$\Delta \beta_i = -\eta \frac{\partial E}{\partial \beta_i}$$
.

► La función gradiente apunta en dirección ascendente y el negativo de la función gradiente, en dirección descendente.

► Es posible mostrar que

$$\frac{\partial E}{\partial \beta_i} = \sum_{j=1}^n 2(Y_j - y_j)(-X_{ij})$$

y que
$$\Delta \beta_i = -\eta \frac{\partial E}{\partial \beta_i}$$
.

- La función gradiente apunta en dirección ascendente y el negativo de la función gradiente, en dirección descendente.
- ► El ir en esta última dirección asegura convergencia el mínimo local de la función de pérdida.

ightharpoonup El algoritmo inicia fijando η en algún valor. Algunos autores señalan η = 1 mientras que otros valores pequeños (0.03 por ejemplo).

► El algoritmo inicia fijando η en algún valor. Algunos autores señalan η = 1 mientras que otros valores pequeños (0.03 por ejemplo).

ightharpoonup Inicializa β al azar (desde alguna distribución) mientras que otros autores señalan 0.

ightharpoonup El algoritmo inicia fijando η en algún valor. Algunos autores señalan η = 1 mientras que otros valores pequeños (0.03 por ejemplo).

ightharpoonup Inicializa β al azar (desde alguna distribución) mientras que otros autores señalan 0.

▶ Luego, se actualiza $\beta_{h+1} = \beta_h - \Delta \beta_i$.