Université Abdelmalek Essaadi Ecole Nationale des Sciences Appliquées Al Hoceima

Ahmed Moussaid

Deuxième Année Cycle Préparatoire

Semestre: S3

Module: Analyse 3

TD: Espaces Vectoriels Normées

December 1, 2020

Plan

Exercice 4

2 Exercice 5

(Proposition dans le cours).

L'espace vectoriel $\mathbb R$ muni de la norme euclidienne est un espace vectoriel normé complet.

Soit $(u_n)_{n\in\mathbb{N}}$, une suite de Cauchy de \mathbb{R} .

Alors nous avons vu que $(u_n)_{n\in\mathbb{N}}$ est une suite bornée de \mathbb{R} .

D'après la propriété de Bolzano-Weierstrass: (de toute suite bornée de rèels, on peut extraire une sous-suite convergente).

Soit $(u_n)_{n\in\mathbb{N}}$, une suite de Cauchy de \mathbb{R} .

Alors nous avons vu que $(u_n)_{n\in\mathbb{N}}$ est une suite bornée de \mathbb{R} .

D'après la propriété de Bolzano-Weierstrass: (de toute suite bornée de rèels, on peut extraire une sous-suite convergente).

on peut extraire de $(u_n)_{n\in\mathbb{N}}$ une sous-suite convergente dans \mathbb{R} . Par conséquent, $(u_n)_{n\in\mathbb{N}}$ possède une valeur d'adhérence dans \mathbb{R} .

Or, toute suite de Cauchy possédant une valeur d'adhéren converge.

On en déduit que $(u_n)_{n\in\mathbb{N}}$ converge, donc, ℝ est un espace vectoriel normé complet

on peut extraire de $(u_n)_{n\in\mathbb{N}}$ une sous-suite convergente dans \mathbb{R} . Par conséquent, $(u_n)_{n\in\mathbb{N}}$ possède une valeur d'adhérence dans \mathbb{R} . Or, toute suite de Cauchy possédant une valeur d'adhérence converge.

On en déduit que $(u_n)_{n\in\mathbb{N}}$ converge,

donc, R est un espace vectoriel normé complet

on peut extraire de $(u_n)_{n\in\mathbb{N}}$ une sous-suite convergente dans \mathbb{R} . Par conséquent, $(u_n)_{n\in\mathbb{N}}$ possède une valeur d'adhérence dans \mathbb{R} . Or, toute suite de Cauchy possédant une valeur d'adhérence converge.

On en déduit que $(u_n)_{n\in\mathbb{N}}$ converge, donc, \mathbb{R} est un espace vectoriel normé complet.

Soit E l'espace vectoriel des fonctions continues sur [0,1] dans valeurs \mathbb{R} , on définit $f \in E$.

$$||f||_{\infty} = \sup\{|f(x)|, x \in [0, 1]\}$$
 et $||f||_{1} = \int_{0}^{1} |f(x)| dx$

1°) Vèrifier que $||f||_{\infty}$, et $||f||_{1}$ sont deux normes sur E.

Soit E l'espace vectoriel des fonctions continues sur [0,1] dans valeurs \mathbb{R} , on définit $f \in E$.

$$||f||_{\infty} = \sup\{|f(x)|, x \in [0, 1]\}$$
 et $||f||_{1} = \int_{0}^{1} |f(x)| dx$

1°) Vèrifier que $\|f\|_{\infty}$, et $\|f\|_1$ sont deux normes sur E.

- pour $||f||_{\infty} = \sup\{|f(x)|, x \in [0, 1]\}$

Remarquons d'abord qu'une fonction continue sur [0,1] es bornnée, ceci justifie que $||f||_{\infty}$ est bien définie.

Pour tout $f \in E$. De plus, on a toujours $||f||_{\infty} \ge 0$.

D'autre part, Si $||f||_{\infty} = \sup\{|f(x)|, x \in [0, 1]\} = 0$, alors pour tout x dans [0, 1], f(x) = 0, et donc f = 0

- pour $\|f\|_{\infty}=\sup\{|f(x)|,x\in[0,1]\}$ Remarquons d'abord qu'une fonction continue sur [0,1] est bornnée. ceci justifie que $\|f\|_{\infty}$ est bien définie. Pour tout $f\in E$. De plus, on a toujours $\|f\|_{\infty}\geq 0$. D'autre part, Si $\|f\|_{\infty}=\sup\{|f(x)|,x\in[0,1]\}=0$, alors pour tout x dans [0,1], f(x)=0, et donc f=0

```
- pour \|f\|_{\infty}=\sup\{|f(x)|,x\in[0,1]\} Remarquons d'abord qu'une fonction continue sur [0,1] est bornnée. ceci justifie que \|f\|_{\infty} est bien définie. Pour tout f\in E. De plus, on a toujours \|f\|_{\infty}\geq 0. D'autre part, Si \|f\|_{\infty}=\sup\{|f(x)|,x\in[0,1]\}=0, alors pour tout x dans [0,1], f(x)=0, et donc f=0
```

ullet Pour $\lambda \in \mathbb{R}$ et f dans E. Pour tout x de [0,1], on a

$$|\lambda f(x)| = |\lambda||f(x)|$$

et passant au max,

$$\|\lambda f(x)\|_{\infty} = |\lambda| \|f(x)\|_{\infty}$$

• Etudions l'inégalité triangulaire.

Soient f et g deux éléments de E, Pour tout x de [0,1] On a

$$|f(x) + g(x)| \le |f(x)| + |g(x)|$$

Passant au max, on obtient

$$||f+g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}$$

finallement $\|f\|_{\infty} = \sup\{|f(x)|, x \in [0,1]\}$ est une norme sur E

• Etudions l'inégalité triangulaire.

Soient f et g deux éléments de E, Pour tout x de [0,1] On a

$$|f(x) + g(x)| \le |f(x)| + |g(x)|$$

Passant au max, on obtient

$$||f+g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}$$

finallement $||f||_{\infty} = \sup\{|f(x)|, x \in [0,1]\}$ est une norme sur E

• Etudions l'inégalité triangulaire.

Soient f et g deux éléments de E, Pour tout x de [0,1] On a

$$|f(x) + g(x)| \le |f(x)| + |g(x)|$$

Passant au max, on obtient

$$||f+g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}$$

finallement $||f||_{\infty} = \sup\{|f(x)|, x \in [0,1]\}$ est une norme sur E.

- Pour $||f||_1 = \int_0^1 |f(x)| dx$ on a $||f||_1 \ge 0$.
- Rappelons que l'intégrale d'une fonction continue positive est nulle si et seulement si, il s'agit de la fonction nulle.

Rappelons d'autre part que si f est continue, alors |f| est continue. on a donc démontre que $||f||_1 = 0 \Leftrightarrow f = 0$.

- Pour $||f||_1 = \int_0^1 |f(x)| dx$ on a $||f||_1 \ge 0$.
- Rappelons que l'intégrale d'une fonction continue positive est nulle si et seulement si , il s'agit de la fonction nulle.

Rappelons d'autre part que si f est continue, alors |f| est continue. on a donc démontre que $||f||_1 = 0 \Leftrightarrow f = 0$.

- Pour $||f||_1 = \int_0^1 |f(x)| dx$ on a $||f||_1 \ge 0$.
- Rappelons que l'intégrale d'une fonction continue positive est nulle si et seulement si, il s'agit de la fonction nulle.

Rappelons d'autre part que si f est continue, alors |f| est continue. on a donc démontre que $||f||_1 = 0 \Leftrightarrow f = 0$.

- Pour $||f||_1 = \int_0^1 |f(x)| dx \bullet \text{ on a } ||f||_1 \ge 0.$
- Rappelons que l'intégrale d'une fonction continue positive est nulle si et seulement si , il s'agit de la fonction nulle. Rappelons d'autre part que si f est continue, alors |f| est continue.

on a donc démontre que $\|f\|_1=0\Leftrightarrow f=0$.

ullet D'autre part $\forall x \in [0,1]$

$$\int_0^1 |\lambda f(x)| dx = |\lambda| \int_0^1 |f(x)| dx$$

donc

$$\|\lambda f\|_1 = |\lambda| \|f\|_1$$

• pour tout $x \in [0, 1]$ on a

$$|f(x) + g(x)| \le |f(x)| + |g(x)|$$

d'où

$$\int_0^1 |f(x) + g(x)| dx \le \int_0^1 |f(x)| dx + \int_0^1 |g(x)| dx$$

alors

$$||f+g||_1 \le ||f||_1 + ||g||_1$$
 inégalité triangulaire

Donc $\|.\|_1$ est une norme.

• pour tout $x \in [0, 1]$ on a

$$|f(x) + g(x)| \le |f(x)| + |g(x)|$$

d'où

$$\int_0^1 |f(x) + g(x)| dx \le \int_0^1 |f(x)| dx + \int_0^1 |g(x)| dx$$

alors

$$\|f+g\|_1 \leq \|f\|_1 + \|g\|_1$$
 inégalité triangulaire

Donc $\|.\|_1$ est une norme.

2

°)Montere que pour tout $f \in E$, $||f||_1 \le ||f||_\infty$ En utilisant la suite de fonctions $f_n(x) = x^n$, pouver que ces deux normes ne sont pas équivalentes.

2

°)Montere que pour tout $f \in E$, $||f||_1 \le ||f||_\infty$ En utilisant la suite de fonctions $f_n(x) = x^n$, pouver que ces deux normes ne sont pas équivalentes.

2°)

ullet Remarquons que pour chaque x de [0,1], on a

$$|f(x)| \le ||f(x)||_{\infty}$$

on intégre cette inégalité entre 0 et 1, on trouve

$$||f||_1 \le \int_0^1 ||f||_\infty dx = ||f||_\infty$$

• Pour $f_n(x)=x^n$, on a $\|f_n(x)\|_{\infty}=1$ et $\|f_n(x)\|_1=\frac{1}{n+1}$. si les normes étaient équivalentes, il existe une constante k>0 tel que $\|f\|_{\infty} \leq k\|f\|_1$, pour $f=f_n$ on obtient

$$||f_n||_{\infty} \le k ||f_n||_1 \Leftrightarrow 1 \le \frac{k}{n+1} \to 0 \quad \text{pour } n \mapsto +\infty$$

contrduction

alors les deux normes | 시] et | 시∞ ne sont pas équi∢교⇒n k⁄æ k/호 k 호 k 호 ♡Q

2°)

ullet Remarquons que pour chaque x de [0,1], on a

$$|f(x)| \le ||f(x)||_{\infty}$$

on intégre cette inégalité entre 0 et 1, on trouve

$$||f||_1 \le \int_0^1 ||f||_\infty dx = ||f||_\infty$$

• Pour $f_n(x)=x^n$, on a $\|f_n(x)\|_\infty=1$ et $\|f_n(x)\|_1=\frac{1}{n+1}$. si les normes étaient équivalentes, il existe une constante k>0 te que $\|f\|_\infty \le k\|f\|_1$, pour $f=f_n$ on obtient

$$||f_n||_{\infty} \le k||f_n||_1 \Leftrightarrow 1 \le \frac{k}{n+1} \to 0 \quad \text{pour } n \mapsto +\infty$$

contrduction

2°)

ullet Remarquons que pour chaque x de [0,1], on a

$$|f(x)| \le ||f(x)||_{\infty}$$

on intégre cette inégalité entre 0 et 1, on trouve

$$||f||_1 \le \int_0^1 ||f||_\infty dx = ||f||_\infty$$

• Pour $f_n(x)=x^n$, on a $\|f_n(x)\|_\infty=1$ et $\|f_n(x)\|_1=\frac{1}{n+1}$. si les normes étaient équivalentes, il existe une constante k>0 te que $\|f\|_\infty \le k\|f\|_1$, pour $f=f_n$ on obtient

$$||f_n||_{\infty} \le k||f_n||_1 \Leftrightarrow 1 \le \frac{k}{n+1} \to 0 \quad \text{pour } n \mapsto +\infty$$

contrduction

alors les deux normes ||.||₁ et ||.||∞ ne sont pas équivadented >□ ३ + □ ३ + □ ३

2°)

ullet Remarquons que pour chaque x de [0,1], on a

$$|f(x)| \le ||f(x)||_{\infty}$$

on intégre cette inégalité entre 0 et 1, on trouve

$$||f||_1 \le \int_0^1 ||f||_\infty dx = ||f||_\infty$$

 \bullet Pour $f_n(x)=x^n$, on a $\|f_n(x)\|_\infty=1$ et $\|f_n(x)\|_1=\frac{1}{n+1}.$ si les normes étaient équivalentes, il existe une constante k>0 tel que $\|f\|_\infty \le k\|f\|_1$, pour $f=f_n$ on obtient

$$||f_n||_{\infty} \le k||f_n||_1 \Leftrightarrow 1 \le \frac{k}{n+1} \to 0 \quad \text{pour } n \mapsto +\infty$$

Ahmed Moussaid

contrduction,

alors les deux normes ||.||1 et ||.||∞ ne sont pas équivadentes! → □ ■ → ◆ ■ → ●

2°)

• Remarquons que pour chaque x de [0,1], on a

$$|f(x)| \le ||f(x)||_{\infty}$$

on intégre cette inégalité entre 0 et 1, on trouve

$$||f||_1 \le \int_0^1 ||f||_\infty dx = ||f||_\infty$$

• Pour $f_n(x) = x^n$, on a $||f_n(x)||_{\infty} = 1$ et $||f_n(x)||_1 = \frac{1}{n+1}$. si les normes étaient équivalentes, il existe une constante k > 0 tel que $||f||_{\infty} < k||f||_1$, pour $f = f_n$ on obtient

$$||f_n||_{\infty} \le k||f_n||_1 \Leftrightarrow 1 \le \frac{k}{n+1} \to 0 \quad \text{pour } n \mapsto +\infty$$

contrduction,

14/14