Université de Mons Faculté des Sciences Département des mathématiques

Analyse Numérique : Rapport TP 1

Professeurs: Christophe Troestler Quentin Lambotte Auteurs:
Loïc Dupont
Maximilien Vanhaverbeke
Paulo Marcelis

Contents

1	Exe	ercice 1:	2
	1.1	Preuve de la majoration	2
	1.2	Preuve de la suite convergente	2
2	Exe	ercice 2:	3
	2.1	Partie a:	3
	2.2	Partie B:	4
	2.3	Partie C:	5
3		ercice 3:	6
	3.1	Partie a:	6
		Partie b:	
		3.2.1 Existance de la racine	7
		3 2 2 Unicité de la racine	7

1 Exercice 1:

Soit I un intervalle. Soit $f \in \mathcal{C}^2(I,\mathbb{R})$. Supposons que $\inf\{|\partial f(x)||x \in I\} > 0$. On doit montrer que

$$\frac{\sup\{|\partial^2 f(x)||x\in I\}}{2\inf\{|\partial f(x)||x\in I\}} = \sup\left\{ \left| \frac{\partial^2 f(\xi)}{2\partial f(\eta)} \right| \middle| \xi, \eta \in I \text{ et } \partial f(\eta) \neq 0 \right\}$$

càd

$$\frac{\sup\{|\partial^2 f(x)||x\in I\}}{2\inf\{|\partial f(x)||x\in I\}} \text{ est un majorant de } \left\{ \left| \frac{\partial^2 f(\xi)}{2\partial f(\eta)} \right| \middle| \xi, \eta \in I \text{ et } \partial f(\eta) \neq 0 \right\}$$
 (1)

et

$$\exists (z_n) \subset \left\{ \left| \frac{\partial^2 f(\xi)}{2\partial f(\eta)} \right| \middle| \xi, \eta \in I \text{ et } \partial f(\eta) \neq 0 \right\} \text{ tq } z_n \to \frac{\sup\{|\partial^2 f(x)| | x \in I\}}{2\inf\{|\partial f(x)| | x \in I\}}$$
 (2)

1.1 Preuve de la majoration

Comme un supremum est en particulier un majorant, on sait que

$$\forall \xi \in I, \ \sup\{|\partial^2 f(x)| | x \in I\} \ge |\partial^2 f(\xi)| \tag{3}$$

De même, un infimum étant en particulier un minorant, on sait que

$$\forall \eta \in I \text{ tq } \partial f(\eta) \neq 0, \text{ inf} \{|\partial f(x)||x \in I\} \leq |\partial f(\eta)|$$

Comme $\inf\{|\partial f(x)||x\in I\}>0$ par hypothèse, $\inf\{|\partial f(x)||x\in I\}\in\mathbb{R}^{>0}$. On sait aussi que $\forall \eta\in I$ tq $\partial f(\eta)\neq 0,\ |\partial f(\eta)|\in\mathbb{R}^{>0}$. Donc, par décroissance de la fonction $x\mapsto 1/x$ sur $\mathbb{R}^{>0}$, on a

$$\forall \eta \in I \text{ tq } \partial f(\eta) \neq 0, \ \frac{1}{\inf\{|\partial f(x)||x \in I\}} \geq \frac{1}{|\partial f(\eta)|}$$
 (4)

Finalement, par (3) et (4), on a

$$\forall \xi, \eta \in I \text{ tq } \partial f(\eta) \neq 0, \ \frac{\sup\{|\partial^2 f(x)||x \in I\}}{2\inf\{|\partial f(x)||x \in I\}} \geq \frac{|\partial^2 f(\xi)|}{2|\partial f(\eta)|} = \left|\frac{\partial^2 f(\xi)}{2\partial f(\eta)}\right|$$

On a donc bien montré la propriété (1).

1.2 Preuve de la suite convergente

Par les propriétés du supremum, on sait que

$$\exists (x_n) \subset \{|\partial^2 f(x)| | x \in I\} \text{ tq } x_n \to \sup\{|\partial^2 f(x)| | x \in I\}$$

De même, par les propriétés de l'infimum, on sait que

$$\exists (y_n) \subset \{|\partial f(x)||x \in I\} \text{ tq } y_n \to \inf\{|\partial f(x)||x \in I\}$$

Prenons $(z_n) = (x_n/(2y_n))$. Alors, on a bien

$$(z_n) \subset \left\{ \left| \frac{\partial^2 f(\xi)}{\partial f(\eta)} \right| \middle| \xi, \eta \in I \text{ et } \partial f(\eta) \neq 0 \right\}$$

Enfin, par les propriétés des limites

$$\lim_{n \to +\infty} z_n = \frac{\lim_{n \to +\infty} x_n}{2 \lim_{n \to +\infty} y_n} = \frac{\sup\{|\partial^2 f(x)| | x \in I\}}{2 \inf\{|\partial f(x)| | x \in I\}}$$

On a donc bien montré la propriété (2), ce qui termine la preuve de l'exercice 1.

2 Exercice 2:

2.1 Partie a:

Objectif: Trouver les racines de f: $\mathbb{R} \to \mathbb{R}$: $x \mapsto x^4 - 8x^2 - 4$. Autrement dit, nous devons trouver les solutions de $P \equiv x^4 - 8x^2 - 4 = 0$. Tout d'abord, posons $y = x^2$. On obtient :

$$Q \equiv y^{2} - 8y - 4 = 0$$
$$\Delta = (-8)^{2} - 4 * 1 * 4$$
$$= 64 + 16$$
$$= 80$$

$$x_{1,2} = \frac{-(-8) \pm \sqrt{80}}{2}$$

$$\Rightarrow y_1 = \frac{8 + \sqrt{80}}{2} \text{ et } y_2 = \frac{8 - \sqrt{80}}{2}$$

$$\Leftrightarrow y_1 = \frac{8 + \sqrt{16 * 5}}{2} \text{ et } y_2 = \frac{8 - \sqrt{16 * 5}}{2}$$

$$\Leftrightarrow y_1 = \frac{8 + 4 * \sqrt{5}}{2} \text{ et } y_2 = \frac{8 - 4 * \sqrt{5}}{2}$$

$$\Leftrightarrow y_1 = 4 + 2 * \sqrt{5} \text{ et } y_2 = 4 - 2\sqrt{5}$$

Donc, les racines de Q sont $y_1 = 4 + 2 * \sqrt{5}$ et $y_2 = 4 - 2 * \sqrt{5}$ mais nous voulons les racines de P. Donc, on obtient : (on sait que $y = x^2$)

$$y_{1} = 4 + 2 * \sqrt{5} \text{ et } y_{2} = 4 - 2 * \sqrt{5}$$

$$(x_{1})^{2} = 4 + 2 * \sqrt{5} \text{ et } (x_{2})^{2} = 4 - 2 * \sqrt{5}$$
Cependant, $(x_{2})^{2} = 4 - 2 * \sqrt{5} \text{ est impossible car on } a :$

$$2 = \sqrt{4} \le \sqrt{5} \le \sqrt{9} = 3 \text{ car } \sqrt{\text{ est croissante}}$$

$$Donc \ 4 - 2 * \sqrt{5} \le 4 - 2 * \sqrt{4} = 4 - 2 * 2 = 0$$

$$i.e. \ (x_{2})^{2} = 4 - 2 * \sqrt{5} \le 0$$
Finalement, les racines de P sont :
$$(x_{1})^{2} = 4 + 2 * \sqrt{5}$$

$$\Leftrightarrow x_{1} = \pm \sqrt{4 + 2 * \sqrt{5}}$$

2.2 Partie B:

- [1] Montrons que f est paire.
- [2] Montrons que f est croissante sur $[\sqrt{4+2*\sqrt{5}}; +\infty]$
- [3] Montrons que f est décroissante sur] $-\infty$; $-\sqrt{4+2*\sqrt{5}}$
- [4] Montrer que f est positive sur $[\sqrt{4+2*\sqrt{5}}; +\infty[$ et sur $]-\infty; \sqrt{4+2*\sqrt{5}}]$
- [5] Montrer que f est négative sur $[-\sqrt{4+2*\sqrt{5}};\sqrt{4+2*\sqrt{5}}]$

Preuve:

- [1] trivial car une somme de fonction paire est paire.
- [2] Montrons que $\forall x, y \in [\sqrt{4+2*\sqrt{5}}; +\infty[, x \leq y \Rightarrow f(x) \leq f(y)]$. Soient $x, y \in [\sqrt{4+2*\sqrt{5}}; +\infty[, \text{ supposons } x \leq y]$. Montrons que $f(x) \leq f(y)$. On a :

$$f(x) \le f(y) \Leftrightarrow x^4 - 8x^2 - 4 \le y^4 - 8y^2 - 4$$

$$\Leftrightarrow x^4 - 8x^2 \le y^4 - 8y^2$$

$$\Leftrightarrow 0 \le (y^4 - x^4) - (8y^2 - 8x^2)$$

$$\Leftrightarrow 0 \le (y^4 - x^4) - 8(y^2 - x^2)$$

ok car la fonction x^2 et x^4 sont croissantes sur \mathbb{R}^+ et par hypothèse, $x \leq y$.

- [3] trivial car, par le fait que la fontion f est paire et croissante sur $[\sqrt{4+2*\sqrt{5}}; +\infty[$, on a que f est décroissante sur $]-\infty; -\sqrt{4+2*\sqrt{5}}]$.
- $[4] \text{ par la croissance sur } [\sqrt{4+2*\sqrt{5}}; +\infty[\text{ ainsi que sa décroissance sur }]-\infty; -\sqrt{4+2*\sqrt{5}}], \\ \text{ on sait que } \forall x \in]-\infty; -\sqrt{4+2*\sqrt{5}}] \cup [\sqrt{4+2*\sqrt{5}}; +\infty[, f\left(\sqrt{4+2*\sqrt{5}}\right) \leq f\left(x\right)]. \\ \text{ Mais } f\left(\sqrt{4+2*\sqrt{5}}\right) = 0 \text{ car c'est une racine de f (pareil pour } f\left(-\sqrt{4+2*\sqrt{5}}\right) = 0 \right). \\ \text{ Donc } 0 = f\left(\sqrt{4+2*\sqrt{5}}\right) \leq f\left(x\right) \text{ càd } 0 \leq f\left(x\right). \text{ Donc f est positive sur }]-\infty; -\sqrt{4+2*\sqrt{5}}] \cup [\sqrt{4+2*\sqrt{5}}; +\infty[$
- [5] Vu que la fonction est pair et que l'intervalle est de la forme]-a; a[, alors on peut se restreindre à regarder l'intervalle $[0; \sqrt{4+2*\sqrt{5}}]$. **TODO**

2.3 Partie C:

Je te laisse compléter Paolo ;)

3 Exercice 3:

Soit $f:[a,b] \to \mathbb{R}$ une application unimodale càd $\exists m \in [a,b]$ tel que f est strictement croissante sur [a,m] et strictement décroissante sur [m,b].

3.1 Partie a:

Montrons que f possède au plus 2 racines.

Supposons par l'absurde que f possède 3 racines càd $\exists u \neq v \neq w \in [a,b], \ f(u) = f(v) = f(w) = 0.$ Sans perte de généralité, supposons que u < v < w. On a donc 3 cas :

- [1] soit $u \in [a, m[etv, w \in]m, b]$
- [2] soit $u, v \in [a, m[etw \in]m, b]$
- [3] soit u, v ou w est notre m.

Montrons donc que tous les cas sont impossibles.

- [1] on sait que f est strictement décroissante sur [m, b] (et donc strictement décroissante sur [m, b] par inclusion) donc $v < w \Rightarrow f(v) > f(w)$ or ce sont 2 racines de f. Contradiction.
- [2] on sait que f est strictement croissante sur [a, m] (et donc strictement croissante sur [a, m] par inclusion) donc $u < v \Rightarrow f(u) < f(v)$ or ce sont 2 racines de f. Contradiction.

[3]

- [3.1] Si u est m, alors $u, v \ et \ w \in [m, b]$ et par [1], c'est impossible. Contradiction.
- [3.2] Si w est m, alors $u, v \ et \ w \in [a, m]$ et par [2], c'est impossible. Contradiction.
- [3.3] Si v est m, alors $\forall x \in [a, m[, y \in]m, b], f(x) < f(v)$ (par la stricte croissance de f) et f(v) > f(y) (par la stricte décroissance de f). Cependant, en particulier, x = u et y = v et qui sont racines de f. Donc, 0 = f(u) < f(v = 0) et 0 = f(u) > f(w) = 0 qui sont tout 2 impossibles. **Contradiction**.

On suppose maintenant pour le reste de la question 3 que $f \in C^2([a,b],\mathbb{R})$. De plus, on suppose que toutes les racines de la dérivée de f sont simples.

3.2 Partie b:

On doit montrer que la dérivée de f possède une unique racine dans a, b.

3.2.1 Existance de la racine

Montrons d'abord que la dérivée de f a une racine dans]a, b[. Par l'hypothèse $f \in \mathcal{C}^2([a, b], \mathbb{R})$, on sait que ∂f est continue. On sait également par unimodalité que

$$\exists m \in]a, b[, f \text{ est croissante sur }]a, m[\text{ et } f \text{ est décroissante sur }]m, b[$$

Comme la dérivée d'une fonction croissante (resp. décroissante) est positive (resp. négative), et comme $(a+m)/2 \in]a, m[$ et $(m+b)/2 \in]m, b[$, on sait que

$$\partial f((a+m)/2) \ge 0$$
 et $\partial f((m+b)/2) \le 0$

On peut alors séparer en 3 cas exhaustifs :

- Cas 1 : f((a+m)/2) = 0Alors, comme $(a+m)/2 \in]a, m[\subset]a, b[$, on a bien trouvé une racine de ∂f dans]a, b[.
- Cas 2 : f((m+b)/2) = 0Alors, comme $(m+b)/2 \in]m, b[\subset]a, b[$, on a bien trouvé une racine de ∂f dans]a, b[.
- Cas 3: $\partial f((a+m)/2) > 0$ et $\partial f((m+b)/2) < 0$ Comme on sait que ∂f est continue, et comme $\partial f((a+m)/2)\partial f((m+b)/2) < 0$, on peut appliquer le théorème des valeurs intermédiaires et on obtient

$$\exists \xi \in \left[\frac{a+m}{2}, \frac{m+b}{2} \right[, \ \partial f(\xi) = 0$$

Comme $\xi \in](a+m)/2, (m+b)/2[\subset]a, b[$, on a bien trouvé une racine de ∂f dans]a, b[.

Par exhaustivité des cas, on a bien montré l'existance d'une racine de ∂f dans a, b.

3.2.2 Unicité de la racine

Il reste à montrer que cette racine est unique. Supposons par l'absurde que ∂f a au moins 2 racines distinctes càd

$$\exists \xi_1 \neq \xi_2 \in]a, b[, \ \partial f(\xi_1) = \partial f(\xi_2) = 0$$

Supposons sans perte de généralité que $\xi_1 < \xi_2$.