(1973) (1977) Gibbard-Satterwaite Therem

Lecture 9.4

For any player $i \in [n]$ and any type $\theta_i \in \Theta_i$, we get a partial order R_i on the set X of outcomes. $x,y \in X$, $x \in \mathbb{R}$: $y \stackrel{\theta_i}{=} u_i(x,\theta_i) \geqslant u_i(y,\theta_i)$ $R_i^{\theta_i}$ is called the rational preference relation $R_i^{\theta_i}$ is called the rational preference relation of player i when $i \nmid t s$ type is θ_i^{ϵ} .

We call a preference relation to be strict if that rational preference relation is a linear order/complete order. We denote the set of all possible strict rational preference relations on x by L(x). Recul:

 $f: X \xrightarrow{\epsilon(x)} X$

Social choice function (G.S Theorem) $f: \mathcal{L}(x) \longrightarrow x$

Unanimity: A social choice function $f: \mathcal{L}(x) \xrightarrow{n} x$ is called $\forall P_1, \dots, P_n \in \mathcal{L}(x)$ such that the best outcomes in all Pinn, Pn are the same, say x. we have $f(P_1,...,P_n) = x$ Ex-post efficiency => unanimits.

Theorem: Let $f: \mathcal{L}(\chi)^n \to \chi$ be a social choice function Such that

(i) We have at least 3 outcomes. That is $|\chi| \geqslant 3$.

- (ii) fin unanimous.
- (iii) Every player has a strict rational preference relation.

Then f in dominant strategy incentive compatible if and only if f is a dictatorship.

Way-Outs from GS Impossibility

- (1) Assume "more structure" on outcomes and "more structure" on the ntility functions of the players.

 Quesilinear setting.
 - (2) Be satisfies with Bayesian incentive compt. 6:45.
 - (3) "Computational barrier" com the manipulation problem be NP-hard?

