Week 2: Euclidean Domains, P.I.D.s, and U.F.D.s

Let R be a commutative ring with identity.

Practice Problems

1. Consider the ring $\mathbb{Z}[\sqrt{-5}]$. Show that

$$(2, 1 - \sqrt{-5}) (2, 1 + \sqrt{-5}) = (4, 2 + 2\sqrt{-5}, 2 - 2\sqrt{-5}, 6) = (2),$$

$$(3, 1 - \sqrt{-5}) (3, 1 + \sqrt{-5}) = (9, 3 + 3\sqrt{-5}, 3 - 3\sqrt{-5}, 6) = (3),$$

$$(2, 1 + \sqrt{-5}) (3, 1 + \sqrt{-5}) = (6, 2 + 2\sqrt{-5}, 3 + 3\sqrt{-5}, -4 + 2\sqrt{-5}) = (1 + \sqrt{-5}),$$

$$(2, 1 - \sqrt{-5}) (3, 1 - \sqrt{-5}) = (6, 2 - 2\sqrt{-5}, 3 - 3\sqrt{-5}, -4 - 2\sqrt{-5}) = (1 - \sqrt{-5}).$$

Hint: First show that (a,b)(c,d) = (ac,ad,bc,bd)

It turns out that each ideal in $\mathbb{Z}[\sqrt{-5}]$ has a unique factorization as a product of prime ideals. Why doesn't the equality $(6) = (2)(3) = (1 + \sqrt{-5})(1 - \sqrt{-5})$ contradict this?

- 2. (a) Factor 1004913 in \mathbb{Z} and in $\mathbb{Z}[i]$.
 - (b) Factor 1004890 in \mathbb{Z} and in $\mathbb{Z}[i]$.
- 3. (a) Determine all of the ways to write 1004913 as the sum of two squares.
 - (b) Determine all of the ways to write 1004890 as the sum of two squares.

Presentation Problems

- 1. Suppose that R is a P.I.D. and let P be a prime ideal of R. Show that R/P is a P.I.D.
- 2. Let p be a prime.
 - (a) Show that $\mathbb{Z}[i]/(p)$ has p^2 elements.
 - (b) Show that if $p \equiv 3 \pmod{4}$ then $\mathbb{Z}[i]/(p)$ is a field.
 - (c) Show that if $p \equiv 1 \pmod{4}$ then $\mathbb{Z}[i]/(p)$ is a product of two fields.
- 3. Let p be a prime and let $\zeta_p = e^{2\pi i/p}$.
 - (a) Show that $x^p 1 = (x 1)(x \zeta_p)(x \zeta_p^2) \dots (x \zeta_p^{p-1})$
 - (b) Show that $1 + x + \ldots + x^{p-1} = (x \zeta_p)(x \zeta_p^2) \ldots (x \zeta_p^{p-1})$.
 - (c) Show that $p = (1 \zeta_p)(1 \zeta_p^2) \dots (1 \zeta_p^{p-1})$

Now suppose that p is odd and let $p^* = (-1)^{(p-1)/2}p$.

(c) By pairing up the $(1-\zeta_p^k)$ term with the $(1-\zeta_p^{p-k})$ term, show that

$$p^* = \prod_{k=1}^{(p-1)/2} \zeta_p^{-k} (1 - \zeta_p^k)^2.$$

1

(d) Show that $\sqrt{p^*} \in \mathbb{Z}[\zeta_p]$.

4. We call a ring R Noetherian if every ascending chain of ideals of R

$$I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots$$

stabilizes, meaning $I_n = I_{n+1}$ for all sufficiently large n. Note that this implies that every nonempty set of ideals of R contains some maximal element.

Prove that every P.I.D. is Noetherian.

Module Theory Problem

1. Consider the commutative diagram of R-modules with exact rows

$$\begin{array}{cccc} A \stackrel{f}{\longrightarrow} B \stackrel{g}{\longrightarrow} C \stackrel{h}{\longrightarrow} D \\ \downarrow^{\alpha} & \downarrow^{\beta} & \downarrow^{\gamma} & \downarrow^{\delta} \\ A' \stackrel{f'}{\longrightarrow} B' \stackrel{g'}{\longrightarrow} C' \stackrel{h'}{\longrightarrow} D' \end{array}$$

- (a) Show that if β and δ are injective and if α is surjective then γ is injective.
- (b) Show that if α and γ are surjective and δ is injective then β is surjective.
- 2. Consider the commutative diagram of R-modules with exact rows

Suppose that β and δ are bijective, α is surjective, and ε is injective. Show that γ is an isomorphism.

Tricky Problems

1. Define the Dirichlet character $\chi \colon \mathbb{Z} \to \{-1, 0, 1\}$ by

$$\chi(n) = \begin{cases} 0 & n \equiv 0 \pmod{2}, \\ 1 & n \equiv 1 \pmod{4}, \\ -1 & n \equiv 3 \pmod{4}. \end{cases}$$

- (a) Show that $\chi(mn) = \chi(m)\chi(n)$ for all integers m and n.
- (b) Let n be a positive integer and write $n = 2^k p_1^{a_1} \dots p_r^{a_r} q_1^{b_1} \dots q_s^{b_s}$ where p_1, \dots, p_r are distinct odd primes congruent to 1 modulo 4 and where q_1, \dots, q_s are distinct odd primes congruent to 3 modulo 4. Show that

$$\sum_{d|n} \chi(d) = \left(\sum_{d|2^k} \chi(d)\right) \left(\sum_{d|p_1^{a_1}} \chi(d)\right) \dots \left(\sum_{d|p_r^{a_r}} \chi(d)\right) \left(\sum_{d|q_1^{b_1}} \chi(d)\right) \dots \left(\sum_{d|q_s^{b_s}} \chi(d)\right)$$

$$= \begin{cases} (a_1+1) \dots (a_r+1) & \text{every } b_i \text{ is even} \\ 0 & \text{otherwise} \end{cases}$$

$$= \frac{1}{4} |\{(x,y) \in \mathbb{Z}^2 : x^2 + y^2 = n\}|.$$

(c) Show that

$$\frac{|\{(x,y)\in\mathbb{Z}^2\colon 1\leq x^2+y^2\leq n\}|}{4n}=\sum_{d=1}^n\frac{\lfloor n/d\rfloor}{n}\chi(d).$$

(d) Show (rigorously) that

$$\frac{\pi}{4} = \sum_{d=1}^{\infty} \frac{\chi(d)}{d} = \frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots$$

2. We call a ring R Artinian if every descending chain of ideals of R

$$I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots$$

stabilizes, meaning $I_n = I_{n+1}$ for all sufficiently large n. Note that this implies that every nonempty set of ideals of R contains some minimal element.

Let R be an Artinian ring.

- (a) Prove that every prime ideal of *R* is maximal.

 Hint: Reduce to the case where *R* is an integral domain.
- (b) Show that R has finitely many prime ideals.
- (c) Let $\mathfrak{p}_1, \mathfrak{p}_2, \ldots, \mathfrak{p}_n$ be the prime ideals of R. Let $I = \mathfrak{p}_1 \cap \mathfrak{p}_2 \cap \cdots \cap \mathfrak{p}_n$. Show that 1 a is a unit for every $a \in I$.
- (d) Show that $I^k = I^{k+1}$ for some positive integer k.
- (e) Now suppose for contradiction that $I^k \neq 0$. Show that there is an ideal J of R such that $I^k J \neq 0$, and such that for any ideal $J' \subseteq J$, if $I^k J' \neq 0$ then J = J'.
- (f) Show that the ideal J from part (d) satisfies IJ = J and J = (r) for some $r \in R$.
- (g) Deduce from (f) that r = ij for some $i \in I$ and $j \in J = (r)$. Apply part (c) to prove r = 0. Obtain a contradiction and conclude that $I^k = 0$.
- (h) Show that $R \cong R/\mathfrak{p}_1^k \times \cdots \times R/\mathfrak{p}_n^k$.
- (i) Show that each ring R/\mathfrak{p}_i^k is an Artinian ring with a unique maximal ideal \mathfrak{m} satisfying $\mathfrak{m}^k=0$.