

The Idea...

Presentation Journey

- 1. R Shiny Application Haitie
- 2. ETL Mai
- 3. Azure Database Lijo
- 4. Azure Machine Learning Todd Guided by Lani

Azure Rhythm R Shiny Application Haitie Liu

Azure Rhythm

R Shiny Application

Extract Transform Load

Extract

Extract

Roadblocks

 Spotify API limits: rate limit, token limit, etc.

- Duplicated IDs
- Inconsistent artist names in 2 datasets

Solutions

- Client Credential authentication
 Break between loops
 Response Counter.
- Check and remove duplicates.
- Remove symbols and characters before normalizing the artist names.

Extract Transform Load

Transform

Extract Transform Load

Azure Setup & Data Migration to Azure

- Setup Azure student account for each team member.
- Created resources under one of our subscriptions and assigned "Contributor" role to each team member.
- Setup a storage account and created a container
- Data stored in csv files were migrated to Azure data lake storage.

■ Microsoft Azure	
Home > dbprojectstorage01 Container	
∠ Search	« ↑ Upload + Add Directory ひ Refresh
Overview	Authentication method: Access key (Switch to Azure AD User Account)
Diagnose and solve problems	Location: azurerhythm01
Access Control (IAM)	Search blobs by prefix (case-sensitive)
Settings	Name
Shared access tokens	album
A Manage ACL	album_info
Access policy	artist
III Properties	audio_feature
Metadata	chart
	countrycode
	release
	SptfyWWDSongRanking
	track

Data Ingestion to Azure SQL

Data stored Azure data lake storage is ingested into
 Azure SQL using Azure Data Factory
 Data Factory
 Data Factory

Azure SQL Setup

- Created a sql server and sql database
- Setup firewall rules to allow our machines to access the sql server using Azure data studio and R.

Relational Database Tables Courses SQLE

- For data ingested using Azure Data Factory, the landing tables are named as "init_<file_name>.
- Relational tables are created with key constraints and appropriate data types as per the ER Diagram.

Relational Table Creation and Data Insertion

CREATE TABLE [dbo].[audio_feature](

- Table are created with Primary Keys and Foreign keys using create table statements.
- Data is inserted into the table from corresponding landing table with appropriate foreign key table lookup.

```
[af_track_id] [nvarchar](50) PRIMARY KEY NOT NULL,
[Danceability] [float] NOT NULL,
[Energy] [float] NOT NULL,
[Audio_key] [tinyint] NOT NULL,
[Loudness] [float] NOT NULL,
[Mode] [tinyint] NOT NULL,
[Speechiness] [float] NOT NULL,
[Acousticness] [float] NOT NULL,
[Instrumentalness] [float] NOT NULL,
[Liveness] [float] NOT NULL,
[Valence] [float] NOT NULL,
[Tempo] [float] NOT NULL,
[Uri] [nvarchar](150) NOT NULL,
[Track_herf] [nvarchar](150) NOT NULL,
[Duration_ms] [int] NOT NULL,
[Time_signature] [tinyint] NOT NULL,
FOREIGN KEY (af_track_id) REFERENCES [dbo].[track] (track_id)
```


insert into dbo.audio_feature select * from dbo.init_audio_feature where af_track_id in (select track_id from dbo.track);

Why Azure Machine Learning?

Introduction and Problem Statement

• 11 independent variables from Spotify, one response variable (popularity).

popularity	followers	Danceability	Energy	Loudness	Mode	Speechiness	Acousticness	Instrumentalness	Liveness	Valence	Tempo
100	78485332	0.519	0.527	-7.673	1	0.0274	0.075	0	0.132	0.267	78.915
100	78485332	0.354	0.267	-13.69	1	0.0281	0.731	0.000402	0.0858	0.113	94.219
100	78485332	0.602	0.736	-5.778	1	0.0338	0.00196	4.57E-05	0.105	0.471	96.969
100	78485332	0.624	0.757	-2.94	1	0.0296	0.00265	1.87E-06	0.189	0.658	121.07
100	78485332	0.777	0.357	-6.942	1	0.0522	0.757	7.28E-06	0.108	0.172	139.883
100	78485332	0.472	0.701	-3.72	1	0.0279	0.091	0	0.23	0.304	147.854
100	78485332	0.392	0.574	-9.195	1	0.17	0.833	0.00179	0.145	0.529	81.112
100	78485332	0.636	0.402	-7.855	1	0.031	0.0494	0	0.107	0.208	125.952
100	78485332	0.58	0.491	-6.462	1	0.0251	0.575	0	0.121	0.425	76.009

Methodology and Solution

Derived Linear Regression Equation

Popularity = 61.3331 + (3.93X10⁻⁷)×Followers + (11.5315)×Danceability – (0.0847)×Loudness – (1.5251)×Mode + (12.5477)×Speechiness – (2.2467)×Acousticness + (0.1258)×Liveness – (6.2922)×Valence + (0.0101)×Tempo

Data Component

95 🖰 🕂

- Sample data (16)
- Data Transformation (19)
- Computer Vision (6)
- ▶ Model Scoring & Evaluation (6)
- Machine Learning Algorithms (19)
- Text Analytics (7)
- Python Language (2)
- Data Input and Output (3)
- Recommendation (5)
- R Language (1)
- Feature Selection (2)
- Anomaly Detection (2)
- Statistical Functions (1)
- Model Training (4)
- ▶ Web Service (2)

Finally, I used VS Code and wrote a Python script and obtained a solution

Results and Application

Popularity Equation parameter weights

Popularity							
3.93E-07	Followers						
11.5315	Dancability						
-0.0847	Loudness						
-1.5251	Mode						
12.5477	Speechiness						
-2.2467	Acousticness						
0.1258	Liveness						
6.2922	Valence						
0.0101	Tempo						

Introduction and Problem Statement

• 9 independent variables from Spotify, one response variable (popularity), plus predicted popularity.

popularity	followers	Danceability	Loudness	Mode	Speechiness	Acousticness	Liveness	Valence	Tempo	popularity_predicted
100	78485332	0.519	-7.673	1	0.0274	0.075	0.132	0.267	78.915	96.14035357
100	78485332	0.354	-13.69	1	0.0281	0.731	0.0858	0.113	94.219	93.93886203
100	78485332	0.602	-5.778	1	0.0338	0.00196	0.105	0.471	96.969	95.61447613
100	78485332	0.624	-2.94	1	0.0296	0.00265	0.189	0.658	121.07	93.42389564
100	78485332	0.777	-6.942	1	0.0522	0.757	0.108	0.172	139.883	97.63948834
100	78485332	0.472	-3.72	1	0.0279	0.091	0.23	0.304	147.854	93.72877677
100	78485332	0.392	-9.195	1	0.17	0.833	0.145	0.529	81.112	93.50487737
100	78485332	0.636	-7.855	1	0.031	0.0494	0.107	0.208	125.952	97.27862442
100	78485332	0.58	-6.462	1	0.0251	0.575	0.121	0.425	76.009	94.87370596
100	78485332	0.316	-10.381	1	0.0488	0.878	0.0797	0.221	74.952	92.77302428
100	78485332	0.71	-6.965	1	0.0366	0.00164	0.0785	0.673	135.012	94.12101318

Phase 2: Enhancements

Limitations

Is there a different way to load your data to the database?

Yes! We can use
ODBC Driver 17 for
Sql Server.

Contacts

Haitie Liu - haitiel@mail.smu.edu

Mai Dang - maid@mail.smu.edu

Lijo Jacob - <u>lijoj@mail.smu.edu</u>

Todd Garner - toddg@mail.smu.edu

Lani Lewis - lanil@mail.smu.edu

