All-Pairs Max-Flow Algorithms and Implementations

Dillan Pribak

December 13, 2022

Naive Approach

Run a max flow algorithm on all vertex pairs.

Let G(V, E, c) be a directed graph with integral capacities.

m = |E|

n = |V|

 $f = \max flow in G$

All-Pairs Ford-Fulkerson: $O(fm \cdot n^2) = O(fmn^2)$

All-Pairs Dinitz: $O(mn^2 \cdot n^2) = O(mn^4)$

Implementation Details: Overview

My work:

- Functions for building and updating residuals.
- DFS, BFS, blocking flow algorithms.

Written in Python.

Used networkx package for graph data structure.

Implementations are not fully optimized.

Implementation Details: Ford-Fulkerson

- 1: **procedure** Ford-Fulkerson(s, t, G = (V, E))
- 2: $f \leftarrow 0$
- 3: $G_f \leftarrow G$
- 4: **while** there is a path P from s to t in G_f **do**
- 5: $f' \leftarrow \text{maximum flow along } P$
- 6: Update residual G_f accordingly
- 7: $f \leftarrow f + f'$

Custom DFS:

- Returns list of edges in path from s to t.
- Ignores zero-weight edges.
- ullet Return path if t found, otherwise return "no path found".

Implementation Details: Dinitz

```
1: procedure DINITZ(s,t,G=(V,E))

2: f \leftarrow 0

3: while f is not a max flow do

4: Let G_f be the residual

5: Let E' be edges in all shortest paths from s to t

6: f' \leftarrow any blocking flow in G' = (V,E')

7: f \leftarrow f + f'
```

Blocking Flow

- Find path from s to t (DFS).
- Push maximum flow through that path.
- ullet Continue until no paths to t.

Implementation Details: Dinitz

Custom BFS:

- Each iteration expands search out by one.
- Once t is found, finish that level to check for other paths.
- Maintains a parent list for backtracking where vertices can have multiple parents.
- ullet Returns all edges in shortest paths from s to t.

Figure 1: Node c has two parents in all shortest paths.

Better Approach: Gomory-Hu Tree

Definition

A Gomory-Hu Tree is a tree on the vertices of G where the minimum edge weight in the path between two vertices is the max-flow between those vertices.

Interpretation: A tree where the edges are all the bottlenecks.

Figure 2: Passage from left side to right side bottlenecked by (e, f) edge.

Better Approach: Gomory-Hu Tree

Example:

Figure 3: A flow network (left) and its Gomory-Hu tree (right)

Finding Gomory-Hu Tree

Algorithm [Gomory, Hu 1961]

Start with all vertices in a big pot. Split into smaller pots via min-cuts. Continue until all pots have one node.

Figure 4: Progression of Gomory-Hu algorithm on graph from figure 3

Gomory-Hu Algorithm Analysis

Generating Tree

- Creates (n-1) splits \implies makes (n-1) calls to max-flow.
- Better than naive method! (Makes $O(n^2)$ calls to max-flow).

Accessing Tree

- A flow value can be retrieved efficiently using a shortest path algorithm.
- To get constant access time, convert into a table in $O(n^2)$ time using a good APSP algorithm.

Note: Only works on undirected graphs!

Implementation Details: Gomory-Hu Algorithm