Google Analytics Customer Purchase Prediction

Yuji Mori

Stats 404 Winter 2021

Introduction - Google Analytics

Google Analytics is a web analytics service that tracks/reports website traffic data. Commonly tracked metrics include:

- **Demographics** (Age, Gender) and **Geographic data** (Language, Location)
- Web Engagement (time spent on site, # of pages clicked, etc.)
- **Acquisition** (how did visitors find the website? Did they click on an ad?)
- **Conversions** (a success event defined by the business, such as a store purchase)

These metrics are used to strategically improve marketing/advertising!

All accounts > UA - Google Merchandi...

(screenshot of Google Analytics Dashboard, using Demo Account)

The Business Problem

- Suppose an online store/business uses Google Analytics ...
 - They have general idea of their audience and sales trends.
 - Example: 25-35 year old males from U.S. are their top purchasers
 - Most visitors in this group buy nothing!

Key Business Question:

Can we leverage all the features of a given web visitor to better predict whether they will make a purchase?

The Data - Google Merchandise Store

- From Kaggle competition: <u>Google Analytics Customer Revenue Prediction</u>
 - The challenge: analyze a Google Merchandise Store customer dataset to predict revenue per customer
 - Adapted to predict event of purchase (classification problem)
- Mainly Geographic and Acquisition data (no personal info)
- Data is in a standardized structure (via <u>BigQuery</u>, Google Cloud big data platform),
 - ANY business using Google Analytics can leverage predictive models!

Business Impact of Work

- Provide an "out-of-box" solution for businesses to leverage ML on their Google Analytics data
 - Determine whether any given web visitor will make purchase
 - Automatically output top model predictors for revenue
 - No need to struggle with Google Analytics web platform
- Allow business to focus marketing/advertising efforts based on these predictions

Business Impact of Work

Example:

Suppose model insights lead to **20% increase** in conversion rate $(1.5\% \rightarrow 1.8\%)$

Monthly Revenue *: \$52,500 → \$63,000

+ \$10,500/mo. → Over \$125,000 additional revenue generated per year!

* Assuming: (\$50) average revenue per sale, (70,000) monthly visits

Formula: (AVG \$ per sale) x (monthly visits) x (% of visits with sale) = Monthly Revenue

Methodology

- Implemented a Random Forest Classification Model to predict event of purchase for each web visitor
 - The algorithm creates decision rules on a visitor's features
 - Example:
 - (Country = "U.S.") && (Age > 25) → Purchase!
 - (Country = "Germany") && (Age > 60) → No Purchase!
- Model also identifies the top predictors for revenue

Model Performance

Baseline: Targeting only U.S. visitors

• ~2.9% of visitors make a purchase

If 10,000 visitors clicked on ad:

- \$1 Cost-Per-Click \rightarrow ~ \$9,700 spent
- \$50 Avg. Sale \rightarrow ~ \$15,000 revenue

Random Forest Model:

• ~4.5% of visitors make a purchase

! If 10,000 visitors clicked on ad:

- +20% Conversion w/ new strategy
- \$1 Cost-Per-Click $\rightarrow \sim$ \$9,500 spent
- \$50 Avg. Sale $\rightarrow \sim$ \$27,000 revenue

Overall Benefit:

+ \$12,500 per 10,000 visitors!

Model Applications

- Use top model features to select target audience in future marketing + advertising campaigns
 - Google Analytics links to Google Ads service!
 - Value added by conversion %, budget savings, etc.
- Visitor ID can be placed directly into targeted lists
- Potential to stream data directly from Google
 Cloud for live predictions and dynamic advertising strategies

	Top Features from GStore Model
1	Continent (North America)
2	Country (United States)
3	Referral Source (mall.googleplex.com)
4	Referral Source (youtube.com)
5	Referral Channel ("Social")

Thank you for your Questions/Feedback!