Viviane CADENAT Enseignant – chercheur à l'UPS LAAS – CNRS cadenat@laas.fr

UPSSITECH - 1e Année Systèmes Robotiques & Interactifs

UPSSITECH - 1e Année Systèmes Robotiques & Interactifs

Réponse temporelle

- Généralités
 - Définition : Sortie y(t) délivrée par le système
 sous l'action de la commande envoyée u(t)
 - Réponses usuelles
 - Réponse *impulsionnelle* : $u(t) = \delta(t)$ (impulsion de Dirac)
 - ◆ Réponse indicielle : u(t) = u₀ = constante
 - Mais aussi : réponse à une rampe (u(t) = u₀ t), ...

Introduction

- Hypothèses
 - > Système linéaire invariant mono-entrée/mono-sortie
 - Trois types de modèles

UPSSITECH - 1e Année Systèmes Robotiques & Interactifs

Réponse temporelle

- Détermination
 - ➤ A partir de l'équation différentielle → résoudre
 - A partir de la représentation d'état

$$X(t) = e^{At}X(0) + \int_{0}^{t} e^{A(t-\tau)}BU(\tau)d\tau$$
Régime libre Régime forcé

$$Y(t) = CX(t) + DU(t)$$

► Exemple : TD1 → Réponse indicielle des bacs d'eau

Réponse temporelle

Détermination

A partir de la fonction de transfert

- Décomposer en éléments simples (si nécessaire)
- Déterminer y(t) directement à partir des tables des transformées de Laplace
- ► Exemple : TD1 → Réponse indicielle des bacs d'eau

$$G(p) = \frac{8}{p^2 + 8p + 7}$$
 \longrightarrow $Y(p) = G(p)U(p), U(p) = \frac{u_0}{p}$

$$Y(p) = (\frac{8/7}{p} - \frac{4/3}{p+1} + \frac{4/21}{p+7}) u_0$$

$$y(t) = \frac{4}{7} e^{0t} - \frac{2}{3} e^{-t} + \frac{2}{21} e^{-7t}$$

Mode lié à la commande Modes liés au système

UPSSITECH - 1e Année Systèmes Robotiques & Interactifs

Focus sur la réponse indicielle

$$v_{RP} = \lim v(t)$$

$$y_{RP} = \lim_{t \to \infty} y(t)$$

Focus sur la réponse indicielle

Caractéristiques de la réponse indicielle

Temps de montée

- ◆ Temps que met la réponse indicielle pour passer de 10 à 90% de sa valeur finale
- Évalue la rapidité de « démarrage du système »
- Temps de réponse à n%
 - Temps nécessaire à la réponse indicielle pour atteindre sa valeur finale à ±n % près (n=5 dans la plupart des cas)
 - Évalue la rapidité du système à se stabiliser

Premier dépassement

- Se mesure lorsque la réponse indicielle dépasse sa valeur finale
- Évalue si le système est oscillatoire
- Valeur au régime permanent
 - Valeur y_{RP} de y(t) lorsque le système est stabilisé
 - Nécessite que le système soit stable

Caractérise le régime transitoire

Caractérise le régime permanent

UPSSITECH - 1e Année Systèmes Robotiques & Interactifs

Réponse fréquentielle

- Hypothèses
 - La réponse fréquentielle suppose que :
 - Le système est stable
 - Le système modélisé par une fonction de transfert G(p)
 - Le système est excité par une entrée sinusoïdale
 - On attend le régime permanent

Réponse fréquentielle

Excitation d'un système stable avec une entrée sinusoïdale

Au régime permanent, la sortie est sinusoïdale de même pulsation que l'entrée, mais elle est 'modifiée':

- en amplitude
- en phase → décalage

UPSSITECH - 1e Année Systèmes Robotiques & Interactifs

LAAS I Sabatier CNRS

UPSSITECH - 1e Année Systèmes Robotiques & Interactifs

Réponse fréquentielle

- Excitation d'un système stable avec une entrée sinusoïdale : conclusion
 - > On montre (cf. slide 15) qu'au régime permanent la sortie y(t) s'écrit :

$$y(t) = y_0(\omega) \sin(\omega t + \varphi(\omega))$$

avec : $y_0(\omega) = |G(j\omega)| u_0$ et $\varphi(\omega) = Arg(G(j\omega))$

- \triangleright Donc l'amplitude y_0 et le décalage φ (appelé **phase**) dépendent de la pulsation du signal d'entrée et des caractéristiques du système définies par la fonction $G(p = j\omega) = |G(j\omega)| \exp(j \varphi(\omega))$
- <u>Définition</u>: On appelle réponse fréquentielle ou harmonique du système la fonction G(jω) que l'on caractérisera souvent à travers son module et son argument.

Réponse fréquentielle

Excitation d'un système stable avec une entrée sinusoïdale

Au régime permanent, la sortie est sinusoïdale de même pulsation que l'entrée, mais elle est 'modifiée':

- en amplitude
- en phase → décalage

Ces « modifications » sont différentes selon la pulsation du signal d'entrée

- → Amplification/réduction de l'amplitude de la sortie / entrée
- → Avance/retard de la sortie par rapport à l'entrée

Réponse fréquentielle

- Représentation graphique
 - > Diagramme de Bode :
 - Principe : tracer le gain G_{dB} (en dB) et la phase φ en fonction de la pulsation ω → 2 tracés :
 - Tracé de G_{dB} = 20 log $|G(j\omega)|$ en fonction de la pulsation ω
 - Tracé de φ en fonction de la pulsation ω
 - NB:
 - Travailler en log permet de construire les diagrammes plus facilement, notamment dans le cas de fonctions de transfert complexes.
 - Le tracé se fait en utilisant une échelle semi-logarithmique (échelle linéaire en ordonnée, échelle logarithmique en abscisse)
 - Ce diagramme est très utilisé pour l'analyse et la commande des systèmes.

UPSSITECH - 1e Année Systèmes Robotiques & Interactifs

Réponse fréquentielle : diagramme de Bode

UPSSITECH - 1e Année Systèmes Robotiques & Interactifs

Réponse fréquentielle

 $u(t) = u_0 \frac{\sin(\omega t)}{\text{Système}}$

Preuve

- \star On écrit la sortie du système : $Y(p) = G(p)U(p), \ U(p) = \frac{u_0\omega}{p^2 + \omega^2} = \mathscr{L}(u_0\sin\omega t)$
- ★ On décompose Y(p) en éléments simples (comme pour la réponse temporelle)

$$Y(p) = \frac{K_1}{p+j\,\omega} + \frac{K_2}{p-j\,\omega} + E_G(p) \quad \text{où E}_{\text{G}}\!(\text{p}) \text{ est la décomposition en éléments simples de G(p)}$$

$$Y(p) = \frac{K_1}{p+j\,\omega} + \frac{K_2}{p-j\,\omega}$$
 Au RP, les modes associés à $E_G(p)$ disparaissent (système stable).

$$\text{avec} \quad K_1 \,=\, (p+j\,\omega)\Upsilon(p)|_{p=-j\,\omega} \,=\, j\,\frac{u_0}{2}G(-j\,\omega) \ \ \text{et} \quad K_2 \,=\, (p-j\,\omega)\Upsilon(p)|_{p=j\,\omega} \,=\, -j\,\frac{u_0}{2}G(j\,\omega)$$

Or $G(j\omega)$ est un nombre complexe \Rightarrow $G(j\omega) = |G(j\omega)| \exp(j \varphi(\omega))$ et $G(-j\omega) = |G(j\omega)| \exp(-j \varphi(\omega))$ où $|G(j\omega)|$ est le module de $G(j\omega)$ et $\varphi(\omega)$ son argument. En remplaçant :

$$Y(p) = \frac{1}{2} j u_0 |G(j\omega)| \left(\frac{e^{-j\varphi(\omega)}}{p+j\omega} - \frac{e^{j\varphi(\omega)}}{p-j\omega}\right)$$

UPSSITECH - 1e Année Systèmes Robotiques & Interactifs

Réponse fréquentielle

- Les caractéristiques : définition précise
 - Gain statique

$$\textit{En dB}: G_{\mathit{dB}}(0) \ = \ \lim_{\omega \to 0} G_{\mathit{dB}}(\omega) \qquad \qquad \textit{En amplitude}: \ |G(j \, 0)| \ = \ \lim_{\omega \to 0} |G(j \, \omega)|$$

- Pulsation de coupure à -x dB
 - Valeur ω_c de ω telle que $G_{dB}(\omega_c) = G_{dB}(0) x$
 - Valeurs usuelles en automatique :

$$\rightarrow$$
 x = -3 (signal de sortie / $\sqrt{2}$) x = -6 (signal de sortie / 2)

- ♦ L'intervalle [0, $ω_c$] définit la **bande passante** à −x dB → une grande bande passante est le signe d'un système rapide.
- ightharpoonup Pulsation de résonance : Valeur ω_r de ω telle que $G_{db}(ω_r)$ est maximum
- Coefficient de surtension

$$Q = G_{dB_{max}} - G_{dB_0} (en dB)$$

Une résonance et un coefficient de surtension sont le signe d'un système oscillant qui comporte donc des pôles complexes conjugués.