MIDTERM #1 SOLUTIONS

(b) Let
$$\alpha(s) = (x(s), y(s))$$
 $x^{2}(s) + y^{2}(s) = 1$
 $\Rightarrow x(s) = \cos(\theta(s))$
 $y(s) = \sin(\theta(s))$
 $\alpha'(s) = (x'(s), y'(s))$
 $\alpha'(s) = (-\sin(\theta(s))\theta'(s), \cos(\theta(s))\theta'(s))$
 $|\alpha'(s)| = |\beta|^{2} |y'(s)|$
 $|\alpha'(s)| = |\beta|^{2} |y'(s)|$

©
$$\alpha(s) = f(\Theta(s))$$
 where $f(t) = (\cos t, \sin t)$
 $\Rightarrow \Theta(s) = f^{-1}(\alpha(s))$

Since f is C' (in fact, C^{∞}), and $f(s) = \frac{\partial^{k} f}{\partial t^{k}} \neq (0, 0)$

for any value of t in its domain, and any k , we have that f^{-1} exists and is differentiable. (C^{∞})

Thus Θ is the composition of two differentiable functions, and so is also differentiable.

3.
$$L = \int |a'(t)| dt$$

$$L_{\lambda} = \lambda \int |a'(t)| dt = \lambda L$$

$$A = \int x(t)y'(t) dt = \lambda^{2} \int x(t)y'(t) dt = \lambda^{2} A$$

$$\Rightarrow A_{\lambda}$$

$$\frac{L_{\lambda}^{2}}{A_{\lambda}} = \frac{\lambda^{2}L^{2}}{\lambda^{2}A} = \frac{L^{2}}{A}$$

(b) Suppose
$$\alpha$$
 encloses area A . $\frac{L_{\lambda}^{2}}{A_{\lambda}} = \frac{L^{2}}{A} \ge 4\pi$

Then scale by $\lambda = A^{-1/2}$. $A_{\lambda} = A^{-1} A \ge 4\pi$
 $A_{\lambda} = A^{-1} A = 1$, so that $\alpha_{\lambda}(t)$ will have $\frac{L_{\lambda}^{2}}{A_{\lambda}} \ge 4\pi$, but $\frac{L_{\lambda}^{2}}{A_{\lambda}} = \frac{L^{2}}{A} \ge 4\pi$, so the inequality holds for α .