パターン情報学 プログラミングレポート課題

Jan. 16, 2015

- プログラミング言語は C , C++ , Java , Ruby でも何でもよい. ただし基本的なもの以外の数値計算ライブラリは流用せず (行列演算ライブラリは OK) , 必ず自らコードを書くこと .
- 課題1から4を行え.チャレンジ課題は任意であるが,意欲のある人は取り組んでもらいたい.
- 期日:2月13日(金)17時.成績報告ぎりぎりなのでこれ以降の提出は難しい.
- 提出物: A4 サイズで2,3 枚程度のレポートとソースコード(提出先が異なるので注意!).
- 提出先:レポート:機械系事務室 , ソースコード:harada@mi.t.u-tokyo.ac.jp
- メールタイトル: pattern report2014
- 学科,学籍番号,氏名を必ず書くこと.

課題1

2 クラス (ω_1, ω_2) の識別問題を考える.データは 2 次元とする.配布するデータセットの説明を以下に示す.

- Train1.txt , Train2.txt : ω_1 , ω_2 に属する訓練データ集合 . 各データ数 50 .
- Test1.txt , Test2.txt : ω_1 , ω_2 に属するテストデータ集合 . 各データ数 20 .

2 クラスで,2 次元のデータに対するウィドロー・ホフのアルゴリズムを実装し,訓練データから分離超平面を 学習せよ.また,テストデータの識別率(全テストデータ数に対する正しく識別されたテストデータ数の比率)を 求めよ.さらに,訓練データ,テストデータ,学習された識別面を図示せよ.

課題2

擬似逆行列を計算するプログラムを書き,課題 1 と同じ訓練データから分離超平面を学習せよ.また,テストデータの識別率を求めよ.クラスラベルについて, ω_1 に属するものを 1 , ω_2 に属するものを-1 などとせよ.さらに,学習された識別面を課題 1 と同じ図に示せ.

課題3

本課題も課題1と同じデータセットを利用する.

- 1. テストデータの集合を k 近傍法 (kNN) を用いて識別することを考える. 訓練データに対して一つ抜き法 (LOO: leave-one-out) により k の値を 1 から 10 まで変化させ,最適な k の値を求めよ.また,横軸に k , 縦軸に識別率としてグラフを作成せよ.
- 2. LOO により得られた k の値を用いてテストデータを識別せよ. そして, 識別率を求めよ.

表 1: 課題 4 の訓練データ

		ω_1			ω_2			ω_3	
sample	x_1	x_2	x_3	x_1	x_2	x_3	x_1	x_2	x_3
1	-5.01	-8.12	-3.68	-0.91	-0.18	-0.05	5.35	2.26	8.13
2	-5.43	-3.48	-3.54	1.30	-2.06	-3.53	5.12	3.22	-2.66
3	1.08	-5.52	1.66	-7.75	-4.54	-0.95	-1.34	-5.31	-9.87
4	0.86	-3.78	-4.11	-5.47	0.50	3.92	4.48	3.42	5.19
5	-2.67	0.63	7.39	6.14	5.72	-4.85	7.11	2.39	9.21
6	4.94	3.29	2.08	3.60	1.26	4.36	7.17	4.33	-0.98
7	-2.51	2.09	-2.59	5.37	-4.63	-3.65	5.75	3.97	6.65
8	-2.25	-2.13	-6.94	7.18	1.46	-6.66	0.77	0.27	2.41
9	5.56	2.86	-2.26	-7.39	1.17	6.30	0.90	-0.43	-8.71
10	1.03	-3.33	4.33	-7.50	-6.32	-0.31	3.52	-0.36	6.43

課題4

表にあるデータを利用する.また潜在的な確率密度分布は正規分布であるとする. $P(\omega_i)=1/3$ とする.表にあげた各クラスのデータセットは omega1.txt , omega2.txt , omega3.txt である.このとき次の問いに答えよ.

- 1. テスト点: $(1,2,1)^T$, $(5,3,2)^T$, $(0,0,0)^T$, $(1,0,0)^T$ と各クラスの平均との間のマハラノビス距離を求めよ.
- 2. これらの点を識別せよ.
- 3. 次に $P(\omega_1)=0.8$ かつ $P(\omega_2)=P(\omega_3)=0.1$ と仮定し , テスト点をもう一度識別せよ .

チャレンジ課題1(必須ではない)

主成分分析,多クラスフィッシャー判別分析を実装せよ.また,3 クラス,4 次元の iris データセット iris.txt に主成分分析とフィッシャー判別分析をそれぞれ適応して 1 次元に次元削減し図示せよ.次元削減後のクラス間データの分離の違いを確認せよ.なお iris データセットの各行はデータのインデックス,第 5 列はクラス番号(1 , 2 , 3 クラス)を示している.各クラス 50 サンプル合計 150 サンプルとなる.

チャレンジ課題2(必須ではない)

ロジスティック回帰を実装し,課題1のデータに適用してテストデータの識別率を求めよ.

チャレンジ課題3(必須ではない)

表情認識を行うプログラムを作成せよ.データセットには日本人女性の顔のデータセット(JAFFE データセット)を用いよ.JAFFE データセットには 10 名の被験者から得られた 213 枚の画像が含まれ,7 つの表情(幸福,悲しみ,驚き,怒り,不快,恐れ,無表情)を行っている.

このデータセットで,10 名のうち 9 名の画像を用いて学習を行った後,残りの 1 名に対して表情識別テストを行え.この試行を 10 名に対して繰り返すことで 10 名分の平均識別率を求めよ.画像からの特徴量,表情の識別手法は各自好きなものを用いて良い.もちろん独自に勉強した手法も大歓迎.7 つの表情を全て識別させるのは難しいので,幸福と悲しみの 2 クラスだけでもよい.

- JAFFE ホームページ: http://www.kasrl.org/jaffe.html
- データセット入手先: http://www.kasrl.org/jaffe_download.html
- 文献: Michael J. Lyons, Shigeru Akamatsu, Miyuki Kamachi, and Jiro Gyoba. Coding Facial Expressions with Gabor Wavelets. Proc. of Int. Conf. on Automatic Face and Gesture Recognition, 1998.