

Title: Classification, diagnosis and prognosis of acute myeloid leukemia by gene expression profiling.

TECHNICAL FIELD

The present invention is in the field of medicine. The invention relates in particular to methods of genetic analysis for the classification, diagnosis and prognosis of acute myeloid leukemia. Also, the invention relates 5 to nucleic acid expression profiles as obtained from cells of AML patients, which profiles by similarity group into a plurality of distinct and defined clusters that characterize different classes of AML. The invention relates to the use of such expression profiles and compositions in diagnosis and therapy of AML and specifically in the prediction of prognostically important AML 10 classes.

The invention further relates to methods for the diagnosis of AML and for the determination of the prognosis of a subject affected by AML and to kits of parts comprising sets of nucleic acid probes suitable for performing methods of the invention either by means of genomics or proteomics.

15

BACKGROUND OF THE INVENTION

Acute myeloid leukemia (AML) is a collection of neoplasms with heterogeneous pathophysiology, genetics and prognosis. Based on cytogenetics and molecular analysis, AML patients are presently classified into groups or 20 subsets of AML with markedly contrasting prognosis. For instance, the genetic translocations inv(16), t(8;21) and t(15;17) characterize AML with a relatively favourable prognosis, whereas the cytogenetically bad-risk leukemia's include patients with abnormalities involving 11q23, loss of 5(q) or 7(q), t(6;9) and t(9;22) (Löwenberg *et al.*, 1999).

25

The most common molecular abnormality in AML is the internal tandem duplication (ITD) in the fms-like tyrosine kinase-3 gene (*FLT3*), a hematopoietic growth factor receptor (Levis & Small, 2003). *FLT3* ITD

mutations confer a bad prognosis to AML patients (Levis & Small, 2003). AML patients with mutations in the transcription factor cEBP α have been associated with good outcome (Preudhomme *et al.*, 2002; van Waalwijk van Doorn-Khosrovani *et al.*, 2003), while elevated expression of the transcription factor EVI1 predicts for notoriously poor survival (van Waalwijk van Doorn-Khosrovani *et al.*, 2003). These examples of novel molecular prognostic markers underscore the importance of an extension of molecular analyses in AML.

Approximately thirty percent of all patients with acute myeloid leukemia (AML) are currently classified based on specific abnormal karyotypes in groups with either good or bad prognosis. The remaining seventy percent of patients, however, are not classifiable because of the lack of cytogenetic markers.

One of the aims of the present invention is to provide more accurate risk assessment tools for the diagnosis of AML. It is another aim to classify AML patients in which specific abnormal karyotypes have not been found and to distinguish these groups not only from the molecularly well-defined AML classes, but also to define prognostic subgroups within these unclassified AML types. The presence of additional prognostic classes in AML, not recognizable with currently available methods, may provide important insights into their pathophysiology. Therefore, it is an aim of the present invention to provide a more complete way of prognostication to patients with AML.

SUMMARY OF THE INVENTION

The present invention is based on the discovery that unique correlations within gene expression profiles and also with cytogenetic aberrations can be recognized with high accuracy within a representative cohort of AML patients. It has for instance been found that gene expression profiles obtained from a large number of AML patients can be clustered according to similarity. This enables the recognition of distinct classes of AML

with similar expression profiles characterising such a class. It was thus found that AML could be classified into distinct subclasses, each subclass being characterised by a specific clustering of gene expression profiles. Further it was found that truly discriminative genes for most of these classes or clusters 5 could be identified, a cluster for instance being characterized therein that the expression of multiple genes is up-regulated or down-regulated in that cluster whereas their expression in another cluster is unaffected.

Based on these findings, the present invention now provides in a first aspect a method for producing a classification scheme for AML comprising 10 the steps of:

- a) providing a plurality of reference samples, said reference samples comprising cell samples from a plurality of reference subjects affected by AML;
- b) providing reference profiles by establishing a gene expression profile for 15 each of said reference samples individually;
- c) clustering said individual reference profiles according to similarity, and
- d) assigning an AML class to each cluster.

In a preferred embodiment of such a method, the clustering of reference profiles is performed based on the information of genes that are 20 differentially-expressed between profiles, and in an even more preferred embodiment of such a method, the clustering of said reference profiles is performed on the basis of the information of the genes of table 1, still more preferably of the genes of table 2, which tables are provided hereinbelow. In a further aspect, the present invention provides a method for classifying the 25 AML of an AML affected subject, comprising the steps of:

- a) providing a classification scheme for AML by producing such a scheme according to the method of any one of claims 1-3;
- b) providing a subject profile by establishing a gene expression profile for 30 said subject;
- c) clustering the subject profile together with the reference profiles;

- d) determining in said scheme the clustered position of said subject profile among the reference profiles, and
- e) assigning to said AML of said subject the AML class that corresponds to said clustered position in case said subject profile is within any cluster of reference profiles, or assigning to said AML of said subject a new AML class.

5 In yet a further aspect, the present invention provides a method for diagnosing AML in an AML affected subject comprising:

- a) producing a classification scheme for AML according to a method of the invention;
- b) defining cluster-specific genes for each cluster by selecting those genes of which the expression level characterizes the clustered position of the corresponding AML class among the various AML classes within said scheme;
- c) determining the level of expression of a sufficient number of said cluster-specific genes in an AML affected subject;
- d) establishing whether the level of expression of said cluster-specific genes in said subject shares sufficient similarity to the level of expression that characterizes an individual AML class to thereby determine the presence of AML corresponding to said class in said subject.

10 15 20 25 In one embodiment of such a method for diagnosing AML, said cluster-specific genes may comprise all genes comprised in said gene expression profile. In a preferred embodiment of such a method, said cluster-specific genes comprise a set of 1 to 3000 genes of the genes of table 1, more preferably 1 to 600 genes of the genes of table 1, still more preferably 1 to 50 genes of the genes of table 1. In an even more preferred embodiment said cluster-specific genes comprise a set of 1 to 600 genes of the genes of table 2, still more preferably 1 to 50 genes of the genes of table 2, and even more preferably 1 to 25 genes of the genes of table 2. Most preferred in such a

method is the use of the differentially-expressed genes as shown in Table 3 for the diagnosis of a specific AML class in a subject.

In yet another aspect, the present invention provides a method of determining the prognosis for an AML affected subject, said method comprising the steps of:

- 5 a) providing a classification scheme for AML by producing such a scheme according to a method of the invention;
- b) determining the prognosis for each AML class in said scheme based on clinical records for the AML subjects comprised in said class;
- 10 c) establishing the AML class of an AML affected subject by diagnosing and/or classifying AML in said subject according to a method of the invention, and
- d) assigning to said subject the prognosis corresponding to the established AML class of said AML affected subject.

15 The present invention further provides a classification scheme for AML, said scheme comprising a plurality of distinct AML classes that are differentiated on the basis of similarity clustering of gene expression profiles obtained from a plurality of reference subjects affected by AML.

Said classification scheme is for instance obtainable by a method of
20 the invention for producing such a scheme. Preferably, said classification scheme is obtained by a method involving K-means clustering of gene expression profiles based on, for instance, gene chip array-acquired values for hybridization intensities for each gene, such as for instance those obtainable by using an Affymetrix gene chip.

25 Analysis of gene expression profiles obtained by using such gene chips preferably involves log 2 transformation of all intensity values in order to detect subtle modulations between the various genes. For each gene the geometric mean (i.e. the mean expression value determined for all individual genes in all profiles to be analysed) is calculated. Deviation from this geometric
30 mean is termed differential expression. Genes that are expressed at values

allowing assignment of being differentially-expressed are used for hierarchical clustering. Subsequently the gene signatures (characteristic expression profiles) of all samples/patients are compared with each other by means of a Pearson correlation coefficient analysis showing the (pathway) resemblance 5 within clinical distinct groups of the total patient population.

The present invention further provides genes that are modulated (up- and down-regulated) in AML compared to the geometric mean calculated from all patients. Such genes and the proteins they encode are useful for diagnostic and prognostic purposes, and may also be used as targets for 10 screening therapeutic compounds that modulate AML, such as antibodies. The methods of detecting nucleic acids of the invention or their encoded proteins can be used for a number of purposes. Examples include early detection of AML, monitoring and early detection of relapse following treatment of AML, monitoring response to therapy of AML, determining prognosis of AML, 15 directing therapy of AML, selecting patients for postoperative chemotherapy or radiation therapy, selecting therapy, determining tumor prognosis, treatment, or response to treatment, and early detection of precancerous condition. Other aspects of the invention will become apparent to the skilled artisan by the following description of the invention.

20 In one aspect, the present invention provides a method of detecting an AML-associated transcript in one or more cells from a patient, the method comprising contacting a biological sample from the patient with a polynucleotide, such as an oligonucleotide, that selectively hybridizes to a sequence at least 80% identical to a sequence of a gene as shown in Tables 1 or 25 2. In one embodiment, the polynucleotide selectively hybridizes to a sequence at least 95% identical to a sequence of a gene as shown in Tables 1 or 2. In another embodiment, the polynucleotide comprises a sequence of a gene as shown in Tables 1 or 2.

In one embodiment, the biological sample used in such methods of 30 detection is a tissue sample. In another embodiment, the biological sample

comprises isolated nucleic acids, e.g., mRNA. In one embodiment, the polynucleotide is labeled, e.g., with a fluorescent label. In one embodiment, the polynucleotide is immobilized on a solid surface.

5

DESCRIPTION OF THE DRAWINGS

Figure 1 shows, in panel (A), a Correlation View of 286 AML patients. The Correlation Visualization tool displays pair-wise correlations between the samples. The patient samples in the visualization are colored by Pearson's correlation coefficient values with deeper colors indicating higher positive (red) or negative (blue) correlations, indicating similarity in the underlying pathway indicative for the subgroups reflecting the heterogeneity within the patient population. The scale bar indicates 100% correlation (red) towards 100% anti correlation (blue). In order to reveal correlation patterns, a matrix ordering method is applied to rearrange the samples. The ordering algorithm starts with the most correlated sample pair and, through an iterative process, sorts all the samples into correlated blocks. Each sample is joined to a block in an ordered manner so that a correlation trend is formed within a block with the most correlated samples at the centre. The blocks are then positioned along the diagonal of the plot in a similar ordered manner.

Panel (B) of Figure 1 shows an adapted Correlation View of 286 AML patients (right panel) and top40 genes defining the 16 individual clusters of patients (left panel). All 16 clusters identified on the basis of the Correlation View are indicated (1 to 16). FAB classification and karyotype based on cytogenetics are depicted in the columns along the original diagonal of the Correlation View (FAB M1-green, M2-purple, M3-orange, M4-yellow, M5-blue, M6-grey; karyotype: normal-green, inv(16)-yellow, t(8;21)-purple, t(15;17)-orange, 11q23 abnormalities-blue, other-grey). *FLT3* ITD, *FLT3* TKD, N-RAS, K-RAS and *cEBPα* mutations and *EVI1* overexpression are depicted in the same set of columns (red bar: positive and green bar: negative). The expression

levels of the top40 genes identified by Significance Analysis of Microarrays (SAM) analyses of each of the 16 clusters are visualized in the left panel. The scale bar indicates 4-fold upregulation (red) towards 4-fold downregulation (green) relative to the geometric mean of all samples.

5 Figure 2 shows the overall survival (panel A), event free survival (panel B) and relapse rate after CR (panel C) of AML patients in cluster #5 (M4/M5), cluster #9 (inv(16)), cluster #10 (*EVI1*/monosomy 7), cluster #12 (t(15;17)) and cluster #13 (t(8;21)), indicating that expression profiles in acute myeloid leukemia associate with diverse genetic aberrations and have
10 prognostic impact.

Figure 3 provides a guideline on how to read the Omniviz Correlation View. The figure shows the Correlation View and FAB classification (right-hand edge of figure) of the cohort of 286 AML patients (2856 probe sets). A total of 16 distinct cluster can be identified on the right edge of the figure. X-axis and Y-axis show the regions of the various clusters 1-16 from top to bottom and from left to right, respectively. An exemplary correlation between cluster #5 and #16 is indicated by rectangle. Both clusters predominantly consist of AML-M5 (not visible) and correlate. However, they do form separate clusters. Anti-correlation for instance between cluster 5 and cluster #13, which merely contains AML-M2, is indicated by the dashed rectangle. Correlation and anti-correlation between every individual (sub)cluster can be extracted from the Correlation View and (sub)clusters can subsequently be assigned, e.g., cluster #6, #7 and #8 (dotted lines). FAB: M0-bright green, M1-green, M2-pink, M3-orange, M4-purple, M5-turquoise, M6-yellow (with number).

Figures 4-10 provide supporting results of the Pearson's correlation coefficient analyses using Omniviz with different probe subsets. In the Correlation View all 286 patients are plotted against all 286 AML patients. FAB classification and karyotype based on cytogenetics are depicted in the
30 columns along the original diagonal (left-hand edge) of the Correlation View

(FAB M0-red, M1-green, M2-purple, M3-orange, M4-yellow, M5-blue, M6-grey; karyotype: normal-green, inv(16)-yellow, t(8;21)-purple, t(15;17)-orange, 11q23 abnormalitiesblue, 7(q) abnormalities-red, +8-pink, complex-black, other-grey). *FLT3* ITD, *FLT3* TKD, N-RAS, K-RAS and *cEBP* α mutations and *EVI1* overexpression are depicted in the same set of columns (red bar: positive and green bar: negative). Figure 4: 147 probe; Figure 5: 293 probe sets; Figure 6: 569 probe sets; Figure 7: 984 probe sets; Figure 8: 1692 probe sets; Figure 9: 2856 probe sets; Figure 10: 5071 probe sets.

Figure 11 shows the Southern blot analyses AML patients with cryptic inv(16). Southern blot analyses was carried out with a myosine heavy chain 11 specific probe (NT 010393, 136753-137404 nt) on material of AML (WT, no inv(16)), AML with known inv(16) breakpoint (type A and E) and three patients that clustered with all known AML and inv(16) patients in the Correlation View (Figure 1).

Figure 12 shows the Expression of *MYH11* as determined by Affymetrix GeneChip analyses in 286 cases of AML and controls. Expression levels of *MYH11* were high in AML patients and inv(16), whereas low levels were detected in the other AML patients, CD34-positive cells and normal bone marrow.

Figure 13 shows a snapshot of Correlation View showing the AML-M3 t(15;17) patients. FAB M2-purple, M3-orange, M4-yellow. Karyotype: normal-green, t(15;17)-orange, other-grey. The AML-M3 t(15;17) patients are divided into two groups, i.e., low white blood cell count (WBC) and *FLT3* ITD negative (green bar) versus high WBC/ *FLT3* ITD positive (red bar). Karyotype is based on cytogenetics and WBC is depicted as 10 (cells/l).

Figure 14 shows the Expression of *ETO* as determined by Affymetrix GeneChip analyses in 286 cases of AML and controls. Expression levels of *ETO* were high in AML patients and t(8;21), whereas low levels were detected in the other AML patients, CD34-positive cells and normal bone marrow.

DETAILED DESCRIPTION OF THE INVENTION

The term "classifying" is used in its art-recognized meaning and thus refers to arranging or ordering items, *i.e.* gene expression profiles, by classes or categories or dividing them into logically hierarchical classes, 5 subclasses, and sub-subclasses based on the characteristics they have in common and/or that distinguish them. In particular "classifying" refers to assigning, to a class or kind, an unclassified item. A "class" then being a grouping of items, based on one or more characteristics, attributes, properties, qualities, effects, parameters, etc., which they have in common, for the purpose 10 of classifying them according to an established system or scheme.

The term "classification scheme" is used in its art-recognized meaning and thus refers to a list of classes arranged according to a set of pre-established principles, for the purpose of organizing items in a collection or into groups based on their similarities and differences.

15 The term "clustering" refers to the activity of collecting, assembling and/or uniting into a cluster or clusters items with the same or similar elements, a "cluster" referring to a group or number of the same or similar items, *i.e.* gene expression profiles, gathered or occurring closely together based on similarity of characteristics. "Clustered" indicates an item has been 20 subjected to clustering.

The term "clustered position" refers to the location of an individual item, *i.e.* a gene expression profile, in amongst a number of clusters, said location being determined by clustering said item with at least a number of items from known clusters.

25 The process of clustering used in a method of to the present invention may be any mathematical process known to compare items for similarity in characteristics, attributes, properties, qualities, effects, parameters, etc.. Statistical analysis, such as for instance multivariate analysis, or other methods of analysis may be used. Preferably methods of 30 analysis such as self-organising maps, hierarchical clustering,

multidimensional scaling, principle component analysis, supervised learning, k-nearest neighbours, support vector machines, discriminant analyse, partial least square methods and/or Pearson's correlation coefficient analysis are used.

In another preferred embodiment of a method of the present invention

- 5 Pearson's correlation coefficient analysis, significance analysis of microarrays (SAM) and/or prediction analysis of microarrays (PAM) are used to cluster gene expression profiles according to similarity. A highly preferred method of clustering comprises similarity clustering of gene expression profiles wherein the expression level of differentially-expressed genes, having markedly lower or higher expression than the geometric mean expression level determined for all genes in all profiles to be clustered, is log(2) transformed, and wherein the transformed expression levels of all differentially-expressed genes in all profiles to be clustered is clustered by using K-means. A numerical query may then be used to select a subset of genes used in the process of hierarchical clustering (Eisen et al., 1998), thus, numerical queries may be run to select differentially expressed genes relative to the calculated geometric mean to select a smaller group of genes for hierarchical clustering.

Unsupervised sample clustering using genes obtained by numerical or threshold filtering is used to identify discrete clusters of samples as well as the gene-signatures associated with these clusters. The term gene signatures is used herein to refer to the set of genes that define the discrete position of the cluster apart from all other clusters, and includes cluster-specific genes. A numerical or threshold filtering is used to select genes for the analysis that are most likely of diagnostic relevance. Hierarchical clustering allows for visualization of large variation in gene expression across samples or present in most samples, and these genes could be used for unsupervised clustering so that clustering results are not affected by the noise from absent or non-changed genes.

Thus, while, K-means clustering may be performed on all genes, the
30 Pearson correlation is preferably calculated based on a subset of genes and

patients. Generally speaking the larger the threshold for accepting a deviation or change from the geometric mean, the smaller the number of genes that is selected by this filtering procedure. Different cut-off or threshold values were used to prepare lists with different numbers of genes. The higher the number 5 of genes selected and included on such lists, the more noise is generally encountered within the dataset, because there will be a relatively large contribution of non-leukemia pathway related genes in such lists. The filtering and selection procedure is preferably optimized such that the analysis is performed on as much genes as possible, while minimizing the noise.

10 All genes with changed expression values higher than or equal to 1.5 times the log(2) transformed expression values and genes with changed expression values lower than or equal to -1.5 times the log(2) transformed expression values are selected for hierarchical clustering.

15 The subset of genes showing a markedly higher or lower expression than the geometric mean may for instance be a value that is more than 1.5 times the geometric mean value, preferably more than 2 times the geometric mean value, even more preferably more than 3 times the geometric mean value. Likewise, a markedly lower expression than the geometric mean expression level may for instance be a value that is less than 0.8 times the 20 geometric mean value, preferably less than 0.6 times the geometric mean value, more preferably less than 0.3 times the geometric mean value.

The same selection of genes that is used for the hierarchical clustering, is used for clustering of the patients by Pearson correlation coefficient analysis.

25 Gene expression profiling has previously been demonstrated to be useful in distinguishing myeloid from lymphoid malignancies as well as subclasses within these diseases (Alizadeh *et al.*, 2000; Armstrong *et al.*, 2002; Debernardi *et al.*, 2003; Ross *et al.*, 2003; Yeoh; Schoch *et al.*, 2002; Golub *et al.*, 1999), but it was hitherto unknown whether suitable distinctions on the basis of gene expression alone could be made between various types of AML,

let alone whether such distinctions could bear any relevance to prognosis of the disease.

The present invention now provides several methods to accurately identify known as well as newly discovered diagnostically, prognostically and 5 therapeutically relevant subgroups of acute myeloid leukemia (AML), herein below also addressed as AML classes, as well as methods that can predict which approaches in treatment are likely to be effective. The basis of these methods resides in the measurement of (AML-specific) gene expression in AML-affected subjects. The methods and compositions of the invention thus 10 provide tools useful in choosing a therapy for AML patients, including methods for assigning an AML patient to an AML class or AML cluster, methods of choosing a therapy for an AML patient, methods of determining the efficacy of a therapy in an AML patient, and methods of determining the prognosis for an AML patient.

15 The methods of the invention comprise in various aspects the steps of establishing a gene expression profile of subject samples, for instance of reference subjects affected by AML or of a subject diagnosed or classified for AML. The expression profiles of the present invention are generated from samples from subjects affected by AML, including subjects having AML, 20 subjects suspected of having AML, subjects having a propensity to develop AML, or subjects who have previously had AML, or subjects undergoing therapy for AML. The samples from the subject used to generate the expression profiles of the present invention can be derived from a variety of sources including, but not limited to, single cells, a collection of cells, tissue, 25 cell culture, bone marrow, blood, or other bodily fluids. The tissue or cell source may include a tissue biopsy sample, a cell sorted population, cell culture, or a single cell. Sources for the sample of the present invention include cells from peripheral blood or bone marrow, such as blast cells from peripheral blood or bone marrow.

In selecting a sample, the percentage of the sample that constitutes cells having differential gene expression in AML classes should be considered. Samples may comprise at least 20%, at least 30%, at least 40%, at least 50%, at least 55%, at least 60%, at least 70%, at least 75%, at least 80%, at least 5
10 85%, at least 90%, or at least 95% cells having differential expression in AML classes, with a preference for samples having a high percentage of such cells. In some embodiments, these cells are blast cells, such as leukemic cells. The percentage of a sample that constitutes blast cells may be determined by methods well known in the art; see, for example, the methods described in WO 10 03/083140.

"Gene expression profiling" or "expression profiling" is used herein in its art-recognised meaning and refers to a method for measuring the transcriptional state (mRNA) or the translational state (protein) of a plurality of genes in a cell. Depending on the method used, such measurements may 15 involve the genome-wide assessment of gene expression, but also the measurement of the expression level of selected genes, resulting in the establishment of a "gene expression profile" or "expression profile", which terms are used in that meaning hereinbelow. As used herein, an "expression profile" comprises one or more values corresponding to a measurement of the 20 relative abundance of a gene expression product. Such values may include measurements of RNA levels or protein abundance. Thus, the expression profile can comprise values representing the measurement of the transcriptional state or the translational state of the gene. In relation thereto, reference is made to U.S. Pat. Nos. 6,040,138, 5,800,992, 6,020,135, 6,344,316, 25 and 6,033,860.

The transcriptional state of a sample includes the identities and relative abundance of the RNA species, especially mRNAs present in the sample. Preferably, a substantial fraction of all constituent RNA species in the sample are measured, but at least a sufficient fraction to characterize the 30 transcriptional state of the sample is measured. The transcriptional state can

be conveniently determined by measuring transcript abundance by any of several existing gene expression technologies.

Translational state includes the identities and relative abundance of the constituent protein species in the sample. As is known to those of skill in 5 the art, the transcriptional state and translational state are related.

Each value in the expression profiles as determined and embodied in the present invention is a measurement representing the absolute or the relative expression level of a differentially-expressed gene. The expression levels of these genes may be determined by any method known in the art for 10 assessing the expression level of an RNA or protein molecule in a sample. For example, expression levels of RNA may be monitored using a membrane blot (such as used in hybridization analysis such as Northern, Southern, dot, and the like), or microwells, sample tubes, gels, beads or fibers (or any solid support comprising bound nucleic acids). See U.S. Patent Nos. 5,770,722, 15 5,874,219, 5,744,305, 5,677,195 and 5,445,934, to which explicit reference is made. The gene expression monitoring system may also comprise nucleic acid probes in solution.

In one embodiment of the invention, microarrays are used to measure the values to be included in the expression profiles. Microarrays are 20 particularly well suited for this purpose because of the reproducibility between different experiments. DNA microarrays provide one method for the simultaneous measurement of the expression levels of large numbers of genes. Each array consists of a reproducible pattern of capture probes attached to a solid support. Labeled RNA or DNA is hybridized to complementary probes on 25 the array and then detected by laser scanning. Hybridization intensities for each probe on the array are determined and converted to a quantitative value representing relative gene expression levels. See, the Experimental section. See also, U.S. Pat. Nos. 6,040,138, 5,800,992 and 6,020,135, 6,033,860, and 6,344,316, to which explicit reference is made. High-density oligonucleotide

arrays are particularly useful for determining the gene expression profile for a large number of RNA's in a sample.

In one approach, total mRNA isolated from the sample is converted to labeled cRNA and then hybridized to an oligonucleotide array. Each sample 5 is hybridized to a separate array. Relative transcript levels are calculated by reference to appropriate controls present on the array and in the sample. See, for example, the Experimental section.

In another embodiment, the values in the expression profile are obtained by measuring the abundance of the protein products of the 10 differentially-expressed genes. The abundance of these protein products can be determined, for example, using antibodies specific for the protein products of the differentially-expressed genes. The term "antibody" as used herein refers to an immunoglobulin molecule or immunologically active portion thereof, i.e., an antigen-binding portion. Examples of immunologically active portions of 15 immunoglobulin molecules include F(ab) and F(ab')2 fragments which can be generated by treating the antibody with an enzyme such as pepsin. The antibody can be a polyclonal, monoclonal, recombinant, e.g., a chimeric or humanized, fully human, non-human, e.g., murine, or single chain antibody. In a preferred embodiment it has effector function and can fix complement. The 20 antibody can be coupled to a toxin or imaging agent. A full-length protein product from a differentially-expressed gene, or an antigenic peptide fragment of the protein product can be used as an immunogen. Preferred epitopes encompassed by the antigenic peptide are regions of the protein product of the differentially-expressed gene that are located on the surface of the protein, 25 e.g., hydrophilic regions, as well as regions with high antigenicity. The antibody can be used to detect the protein product of the differentially-expressed gene in order to evaluate the abundance and pattern of expression of the protein. These antibodies can also be used diagnostically to monitor protein levels in tissue as part of a clinical testing procedure, e.g., to, for 30 example, determine the efficacy of a given therapy. Detection can be facilitated

by coupling (i.e., physically linking) the antibody to a detectable substance (i.e., antibody labeling). Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, (3-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferon, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin, and examples of suitable radioactive material include ^{125}I , ^{131}I , ^{35}S or ^3H .

Once the values comprised in the subject expression profile and the reference expression profile or expression profiles are established, the subject profile is compared to the reference profile to determine whether the subject expression profile is sufficiently similar to the reference profile. Alternatively, the subject expression profile is compared to a plurality of reference expression profiles to select the reference expression profile that is most similar to the subject expression profile. Any method known in the art for comparing two or more data sets to detect similarity between them may be used to compare the subject expression profile to the reference expression profiles. In some embodiments, the subject expression profile and the reference profile are compared using a supervised learning algorithm such as the support vector machine (SVM) algorithm, prediction by collective likelihood of emerging patterns (PCL) algorithm, the k-nearest neighbour algorithm, or the Artificial Neural Network algorithm. To determine whether a subject expression profile shows "statistically significant similarity" or "sufficient similarity" to a reference profile, statistical tests may be performed to determine whether the similarity between the subject expression profile and the reference expression

profile is likely to have been achieved by a random event. Any statistical test that can calculate the likelihood that the similarity between the subject expression profile and the reference profile results from a random event can be used. The accuracy of assigning a subject to an AML class based on similarity between differentially-expressed genes is affected largely by the heterogeneity within the patient population, as is reflected by the deviation from the geometric mean. Therefore, when more accurate diagnoses are required, the stringency in evaluating the similarity between the subject and the reference profile should be increased by changing the numerical query.

The method used for comparing a subject expression profile to one or more reference profiles is preferably carried out by re-running the subsequent analyses in a (n+1) modus by performing clustering methods as described herein. Also, in order to identify the AML class reference profile that is most similar to the subject expression profile, as performed in the methods for establishing the AML class of an AML affected subject, *i.e.* by diagnosing AML in a subject or by classifying the AML in a subject, profiles are clustered according to similarity and it is determined whether the subject profile corresponds to a known class of reference profiles. In assigning a subject AML to a specific AML class for instance, this method is used wherein the clustered position of the subject profile, obtained after performing the clustering analysis of the present invention, is compared to any known AML class. If the clustered position of the subject profile is within a cluster of reference profiles, *i.e.* forms a cluster therewith after performing the similarity clustering method, it is said that the AML of the subject corresponds to the AML class of reference profiles. If a subject profile is not within a cluster of reference profiles, *i.e.* does not form a cluster therewith after performing the similarity clustering method, then a new AML class may be assigned to that subject profile, one of such classes being subjects not having AML.

In some embodiments of the present invention, the expression profiles comprise values representing the expression levels of genes that are

differentially-expressed in AML classes. The term "differentially-expressed" as used herein means that the measured expression level of a particular gene in the expression profile of one subject differs at least n-fold from the geometric mean calculated from all patient profiles. The expression level may be also be
5 up-regulated or down-regulated in a sample from a subject having a particular form of AML in comparison with a sample from a subject having a different form of AML. For example, in one embodiment, the differentially-expressed genes of the present invention may be expressed at different levels in different AML classes. Examples of genes that are differentially-expressed in the
10 various AML classes are shown in Tables 1 and 2.

It should be noted that many genes will occur, of which the measured expression level differs at least n-fold from the geometric mean expression level for that gene of all reference profiles. This may for instance be due to the different physiological state of the measured cells, to biological
15 variation or to the present of other diseased states. Therefore, the presence of a differentially-expressed gene is not necessarily informative for determining the presence of different AML classes, nor is every differentially-expressed gene suitable for performing diagnostic tests. Moreover, a cluster-specific differential gene expression, as defined herein, is most likely to be informative
20 only in a test among subjects having AML. Therefore, a diagnostic test performed by using cluster-specific gene detection should preferably be performed on a subject in which the presence of AML is confirmed. This confirmation may for instance be obtained by performing the method for classifying an AML in an AML-affected subject according to the present
25 invention, or by any other test.

The present invention provides groups of genes that are differentially-expressed in diagnostic AML samples of patients in different AML classes. Some of these genes were identified based on gene expression levels for 13,000 probes in 286 AML samples. Values representing the
30 expression levels of the nucleic acid molecules detected by the probes were

analyzed as described in the Experimental section using Omnipiz, SAM and PAM analysis tools. Omnipiz software was used to perform all clustering steps such as K-means, Hierarchical and Pearson correlation tests. SAM was used specifically to identify the genes underlying the clinically relevant groups

- 5 identified in the Pearson correlation analysis. PAM is used to decide the minimum number of genes necessary to diagnose all individual patients within the given groups of the Pearson correlation.

In short, expression profiling was carried out on AML blasts from 286 *de novo* AML patients. Unsupervised clustering was used to identify novel 10 (sub)groups within the Pearson correlation following the hierarchical clustering. The Pearson correlation test resulted in the identification of 16 groups or classes of AML patients with distinct molecular signatures. The hierarchical clustering and Pearson correlation allow the detection of the genetic heterogeneity (16 clusters). This may provide for a mechanistic 15 signature of AML. After running the SAM and PAM analysis the diagnostic gene-signatures (incl. cluster-specific genes) were obtained.

While several of the molecularly assigned classes correspond to the well-defined AML subgroups with favourable cytogenetics, such as the well recognised genetic lesions *AML1/ETO*, *PML/RAR α* and *CBF β /MYH11*, we 20 identified several additional distinct classes of patients that were not identified as distinct classes of AML before. For instance, new identified AML clusters comprised genetic lesions such as *CEBP α* mutations, or *FLT3* ITD mutations, or 11q23 aberrations, indicating that these cytogenetic markers alone are not sufficient to determine the prognosis of an AML patient or the 25 most optimal intervention strategy (drug treatment).

Whereas the well-defined AML subgroups *AML1/ETO*, *PML/RAR α* and *CBF β /MYH11*, could be identified based on measurement of the expression level of only one or two genes in a cell sample, many of the newly discovered AML classes were defined on the basis of differential expression of 30 a plurality of genes. Genes that define an AML class are hereinafter also

termed cluster-specific genes or signature genes. Prediction Analysis of Microarrays (PAM) was applied to determine the minimal gene sets that predict these prognostically important clusters with high accuracy. In one of the novel clusters half of the AML patients had unfavourable markers, such as 5 elevated expression of *EVI1* and/or loss of chromosome 7(q). Interestingly, more than 90 percent of patients in this cluster (cluster no. 10, see Example) responded poorly to therapy. The fact that a distinct gene expression signature defines this class of AML patients, suggests the existence of a currently unknown gene- or pathway defect that corresponds with poor treatment 10 outcome.

The present invention thus provides a method of classifying AML. Using this method, a total of 286 AML samples analysed on a DNA microarray consisting of 22283 probe sets, representing approximately 13,000 genes could be classified into at least 16 distinct clusters. These 16 distinct clusters of AML 15 patients were assigned on the basis of strong correlation between their individual differential expression profiles for 2856 probe sets (Table 1; Figure 1). The methods used to analyze the expression level values to identify differentially-expressed genes were employed such that optimal results in clustering, *i.e.* unsupervised ordering, were obtained. This then resulting in 20 the definition of the 16 clusters of reference profiles based on molecular signature. The genes that defined the position or clustering of these 16 individual clusters could be determined and the minimal sets of genes required to accurately predict the prognostically important AML classes corresponding 25 to these clusters could be derived. It should be understood that the method for classifying AML according to the present invention may result in a distinct clustering pattern and therefore in a different classification scheme when other (numbers of) subjects are used as reference, or when other types of oligonucleotide microarrays for establishing gene expression profiles are used.

The present invention thus provides a comprehensive classification 30 of AML covering various previously identified genetically defined classes.

Further analysis of classes by prediction analysis of microarrays (PAM) to determine the minimum number of genes that defined or predicted these prognostically important classes resulted in the establishment of cluster-specific genes or signature genes. The presence of distinct gene expression profiles defining the novel classes suggests the presence of yet unknown common gene defects or pathway defects among AML cases in those classes. Several classes could be distinguished on the basis of the expression level of a single gene, whereas others could only be distinguished on the basis of 20 or more differentially-expressed genes (Table 3).

The methods of the present invention comprise in some aspects the step of defining cluster-specific genes by selecting those genes of which the expression level characterizes the clustered position of the corresponding AML class among the various AML classes within a classification scheme of the present invention. Such cluster-specific genes are selected preferably on the basis of PAM analysis. This method of selection comprises the following.

PAM, or partition round medoids, is one of the k-medoids methods. Different from usual k-means approach, it also accepts a dissimilarity matrix, and it is more robust because it minimizes a sum of dissimilarities instead of a sum of squared Euclidean distances. The PAM-algorithm is based on the search for 'k' representative objects or medoids among the observations of the dataset, which should represent the structure of the data. After finding a set of 'k' medoids, 'k' clusters are constructed by assigning each observation to the nearest medoid. The goal is to find 'k' representative objects which minimize the sum of the dissimilarities of the observations to their closest representative object. The distance metric to be used for calculating dissimilarities between observations are "euclidean" and "manhattan". Euclidean distances are root sum-of-squares of differences, and manhattan distances are the sum of absolute differences. PAM calculates how many genes are necessary to identify all members (patients) belonging to a certain cluster.

The methods of the present invention comprise in some aspects the step of establishing whether the level of expression of cluster-specific genes in a subject shares sufficient similarity to the level of expression that is characteristic for an individual AML class. This step is necessary in

5 determining the presence of that particular AML class in a subject under investigation, in which case the expression of that gene is used as a disease marker. Whether the level of expression of cluster-specific genes in a subject shares sufficient similarity to the level of expression of that particular gene in an individual AML class may for instance be determined by setting a threshold

10 value.

The present invention also reveals genes with a high differential level of expression in specific AML classes compared the geometric mean of all reference subjects. These highly differentially-expressed genes are selected from the genes shown in Table 2. These genes and their expression products

15 are useful as markers to detect the presence of AML in a patient. Antibodies or other reagents or tools may be used to detect the presence of these markers of AML.

The present invention also reveals gene expression profiles comprising values representing the expression levels of genes in the various

20 identified AML classes. In a preferred embodiment, these expression profiles comprise the values representing the differential expression levels. Thus, in one embodiment the expression profiles of the invention comprise one or more values representing the expression level of a gene having differential expression in a defined AML class. Each expression profile contains a

25 sufficient number of values such that the profile can be used to distinguish one AML class from another. In some embodiments, the expression profiles comprise only one value. For example, it can be determined whether a subject affected by AML is in the AML class defined by cluster # 9 (inv(16)) based only on the expression level of MYH11 201497_x_at (see Tables 2 and 31).

30 Similarly, it can be determined whether a subject affected by AML is in the

AML class defined by cluster # 12 (t(15,17)) based only on the expression level of the cDNA of 2 genes FGF13 205110_s_at and HGF 210997_at and 210998_s_at (see Tables 2 and 34). In this case, the expression profile comprises two values corresponding to two differentially-expressed genes. In 5 other embodiments, the expression profile comprises more than one or two values corresponding to a differentially-expressed gene, for example at least 3 values, at least 4 values, at least 5 values, at least 6 values, at least 7 values, at least 8 values, at least 9 values, at least 10 values, at least 11 values, at least 12 values, at least 13 values, at least 14 values, at least 15 values, at 10 least 16 values, at least 17 values, at least 18 values, at least 19 values, at least 20 values, at least 22 values, at least 25 values, at least 27 values, at least 30 values, at least 35 values , at least 40 values, at least 45 values, at least 50 values, at least 75 values, at least 100 values, at least 125 values, at least 150 values, at least 175 values, at least 200 values, at least 250 values, at 15 least 300 values, at least 400 values, at least 500 values, at least 600 values, at least 700 values, at least 800 values, at least 900 values, at least 1000 values, at least 1200 values, at least 1500 values, or at least 2000 or more values.

It is recognized that the diagnostic accuracy of assigning a subject to an AML class will vary based on the number of values contained in the 20 expression profile. Generally, the number of values contained in the expression profile is selected such that the diagnostic accuracy is at least 85%, at least 87%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%, as calculated using methods described elsewhere herein, with an obvious 25 preference for higher percentages of diagnostic accuracy.

It is recognized that the diagnostic accuracy of assigning a subject to an AML class will vary based on the strength of the correlation between the expression levels of the differentially-expressed genes within that specific AML class. When the values in the expression profiles represent the expression 30 levels of genes whose expression is strongly correlated with that specific AML

class, it may be possible to use fewer number of values (genes) in the expression profile and still obtain an acceptable level of diagnostic or prognostic accuracy.

The strength of the correlation between the expression level of a differentially-expressed gene and a specific AML class may be determined by a statistical test of significance. For example, the chi square test used to select genes in some embodiments of the present invention assigns a chi square value to each differentially-expressed gene, indicating the strength of the correlation of the expression of that gene to a specific AML class. Similarly, the T-statistics metric and the Wilkins' metric both provide a value or score indicative of the strength of the correlation between the expression of the gene and its specific AML class. These scores may be used to select the genes of which the expression levels have the greatest correlation with a particular AML class to increase the diagnostic or prognostic accuracy of the methods of the invention, or in order to reduce the number of values contained in the expression profile while maintaining the diagnostic or prognostic accuracy of the expression profile. Preferably, a database is kept wherein the expression profiles of reference subjects are collected and to which database new profiles can be added and clustered with the already existing profiles such as to provide the clustered position of said new profile among the already present reference profiles. Furthermore, the addition of new profiles to the database will improve the diagnostic and prognostic accuracy of the methods of the invention. Preferably, in a method of the present invention SAM or PAM analysis tools are used to determine the strength of such correlations.

The methods of the invention comprise the steps of providing an expression profile from a sample from a subject affected by AML and comparing this subject expression profile to one or more reference profiles that are associated with a particular AML class, a class with a known prognosis, or a class with a favourable response to therapy. By identifying the AML class reference profile that is most similar to the subject expression profile, e.g.

when their clustered positions fall together, the subject can be assigned to an AML class. The AML class assigned is that with which the reference profile(s) are associated. Similarly, the prognosis of a subject affected by AML can be predicted by determining whether the expression profile from the subject is 5 sufficiently similar to a reference profile associated with an established prognosis, such as a good prognosis or a bad prognosis. Whenever a subject's expression profile can be assigned to an established AML class, a preferred intervention strategy, or therapeutic treatment can then be proposed for said subject, and said subject can be treated according to said assigned strategy. As 10 a result, treatment of a subject with AML can be optimized according to the specific class of AML with which the subject is affected. For instance, the AML class belonging to cluster # 12, characterized by the presence of t(15,17), may be treated with retinoic acid. Within one class or cluster, further division may be made according to responders and non-responders to treatment or therapy. 15 Such divisions may provide for further detailed characterisation of AML subjects. In another embodiment, the subject expression profile is from a subject affected by AML who is undergoing a therapy to treat the AML. The subject expression profile is compared to one or more reference expression profiles to monitor the efficacy of the therapy.

20 In some embodiments, the assignment of a subject affected by AML to an AML class is used in a method of choosing a therapy for the subject affected by AML. A therapy, as used herein, refers to a course of treatment intended to reduce or eliminate the affects or symptoms of a disease, in this case AML. A therapy regime will typically comprise, but is not limited to, a 25 prescribed dosage of one or more drugs or hematopoietic stem cell transplantation. Therapies, ideally, will be beneficial and reduce the disease state but in many instances the effect of a therapy will have non-desirable effects as well.

30 In one aspect, the present invention provides a method of determining the prognosis for an AML affected subject, said method

comprising the steps of providing a classification scheme for AML by producing such a scheme according to a method of the invention and determining the prognosis for each AML class in said scheme based on clinical records for the AML subjects comprised in said class. In order to predict the progression of the disease in a subject, one has to rely on clinical records. The present invention provides for the assignment of the various clinical data recorded with reference subjects affected by AML to the various AML classes as defined herein. This assignment preferably occurs in a database. This has the advantage that once a new subject is identified as belonging to a particular AML class, either by performing a specific AML diagnostic method of the invention using the cluster-specific genes as disease markers or by performing a method of classifying an AML in an AML affected subject according to the invention, then the prognosis that is assigned to that class may be assigned to that subject.

The present invention provides compositions that are useful in determining the gene expression profile for a subject affected by AML and selecting a reference profile that is similar to the subject expression profile. These compositions include arrays comprising a substrate having capture probes that can bind specifically to nucleic acid molecules that are differentially-expressed in AML classes. Also provided is a computer-readable medium having digitally encoded reference profiles useful in the methods of the claimed invention.

The present invention provides arrays comprising capture probes for detection of polynucleotides (transcriptional state) or for detection of proteins (translational state) in order to detect differentially-expressed genes of the invention. By "array" is intended a solid support or substrate with peptide or nucleic acid probes attached to said support or substrate. Arrays typically comprise a plurality of different nucleic acid or peptide capture probes that are coupled to a surface of a substrate in different, known locations. These arrays, also described as "microarrays" or colloquially "chips" have been generally

described in the art, and reference is made U.S. Patent Nos. 5,143,854, 5,445,934, 5,744,305, 5,677,195, 6,040,193, 5,424,186, 6,329,143, and 6,309,831 and Fodor *et al.* (1991) *Science* 251:767-77. These arrays may generally be produced using mechanical synthesis methods or light directed synthesis 5 methods which incorporate a combination of photolithographic methods and solid phase synthesis methods. Typically, "oligonucleotide microarrays" will be used for determining the transcriptional state, whereas "peptide microarrays" will be used for determining the translational state of a cell.

"Nucleic acid" or "oligonucleotide" or "polynucleotide" or 10 grammatical equivalents used herein means at least two nucleotides covalently linked together. Oligonucleotides are typically from about 5, 6, 7, 8, 9, 10, 12, 15, 25, 30, 40, 50 or more nucleotides in length, up to about 100 nucleotides in length. Nucleic acids and polynucleotides are polymers of any length, including longer lengths, e.g., 200, 300, 500, 1000, 2000, 3000, 5000, 15 7000, 10,000, etc. A nucleic acid of the present invention will generally contain phosphodiester bonds, although in some cases, nucleic acid analogs are included that may have alternate backbones, comprising, e.g., phosphoramidate, phosphorothioate, phosphorodithioate, or O-methylphosphoroamidite linkages (see Eckstein, *Oligonucleotides and 20 Analogues: A Practical Approach*, Oxford University Press); and peptide nucleic acid backbones and linkages. Other analog nucleic acids include those with positive backbones; non-ionic backbones, and non-ribose backbones, including those described in U.S. Pat. Nos. 5,235,033 and 5,034,506, and Chapters 6 and 7, ASC Symposium Series 580, *Carbohydrate Modifications in 25 Antisense Research*, Sanghui & Cook, eds. Nucleic acids containing one or more carbocyclic sugars are also included within one definition of nucleic acids. Modifications of the ribose-phosphate backbone may be done for a variety of reasons, e.g. to increase the stability and half-life of such molecules in physiological environments or as probes on a biochip. Mixtures of naturally 30 occurring nucleic acids and analogs can be made; alternatively, mixtures of

different nucleic acid analogs, and mixtures of naturally occurring nucleic acids and analogs may be made.

Particularly preferred are peptide nucleic acids (PNA) which includes peptide nucleic acid analogs. These backbones are substantially non-
5 ionic under neutral conditions, in contrast to the highly charged phosphodiester backbone of naturally occurring nucleic acids. This results in two advantages. First, the PNA backbone exhibits improved hybridization kinetics. PNAs have larger changes in the melting temperature (T_m) for mismatched versus perfectly matched basepairs. DNA and RNA typically
10 exhibit a 2-4 °C drop in T_m for an internal mismatch. With the non-ionic PNA backbone, the drop is closer to 7-9°C. Similarly, due to their non-ionic nature, hybridization of the bases attached to these backbones is relatively insensitive to salt concentration. In addition, PNAs are not degraded by cellular enzymes, and thus can be more stable.

15 The nucleic acids may be single stranded or double stranded, as specified, or contain portions of both double stranded or single stranded sequence. As will be appreciated by those in the art, the depiction of a single strand also defines the sequence of the complementary strand; thus the sequences described herein also provide the complement of the sequence. The
20 nucleic acid may be DNA, both genomic and cDNA, RNA or a hybrid, where the nucleic acid may contain combinations of deoxyribo- and ribo-nucleotides, and combinations of bases, including uracil, adenine, thymine, cytosine, guanine, inosine, xanthine hypoxanthine, isocytosine, isoguanine, etc.

"Transcript" typically refers to a naturally occurring RNA, e.g., a
25 pre-mRNA, hnRNA, or mRNA. As used herein, the term "nucleoside" includes nucleotides and nucleoside and nucleotide analogs, and modified nucleosides such as amino modified nucleosides. In addition, "nucleoside" includes non-naturally occurring analog structures. Thus, e.g. the individual units of a peptide nucleic acid, each containing a base, are referred to herein as a
30 nucleoside.

As used herein a "nucleic acid probe or oligonucleotide" is defined as a nucleic acid capable of binding to a target nucleic acid of complementary sequence through one or more types of chemical bonds, usually through complementary base pairing, usually through hydrogen bond formation. As used herein, a probe may include natural (i.e., A, G, C, or T) or modified bases (7-deazaguanosine, inosine, etc.). In addition, the bases in a probe may be joined by a linkage other than a phosphodiester bond, so long as it does not functionally interfere with hybridization. Thus, e.g., probes may be peptide nucleic acids in which the constituent bases are joined by peptide bonds rather than phosphodiester linkages. It will be understood by one of skill in the art that probes may bind target sequences lacking complete complementarity with the probe sequence depending upon the stringency of the hybridization conditions. The probes are preferably directly labeled such as with isotopes, chromophores, lumiphores, chromogens, or indirectly labeled such as with biotin to which a streptavidin complex may later bind or with enzymatic labels. By assaying for the hybridization of the probe to its target nucleic acid sequence, one can detect the presence or absence of the select sequence or subsequence. Diagnosis or prognosis may be based at the genomic level, or at the level of RNA or protein expression.

The skilled person is capable of designing oligonucleotide probes that can be used in diagnostic methods of the present invention. Preferably, such probes are immobilised on a solid surface as to form an oligonucleotide microarray of the invention. The oligonucleotide probes useful in methods of the present invention are capable of hybridizing under stringent conditions to AML-associated nucleic acids, such as to one or more of the genes selected from Table 1, preferably to one or more of the genes selected from Table 2, more preferably to one or more of the genes selected from Table 3.

Techniques for the synthesis of arrays using mechanical synthesis methods are described in, e.g., U.S. Patent No. 5,384,261, to which reference is made herein. Although a planar array surface is preferred, the array may be

fabricated on a surface of virtually any shape or even a multiplicity of surfaces. Arrays may be peptides or nucleic acids on beads, gels, polymeric surfaces, fibers such as fiber optics, glass or any other appropriate substrate, for the purpose of which reference is made to U.S. Pat. Nos. 5,770,358, 5,789,162, 5,708,153, 6,040,193 and 5,800,992. Arrays may be packaged in such a manner as to allow for diagnostics or other manipulation of an all-inclusive device. Reference is for example made to U.S. Pat. Nos. 5,856,174 and 5,922,591.

The arrays provided by the present invention comprise capture probes that can specifically bind a nucleic acid molecule that is differentially-expressed in AML classes. These arrays can be used to measure the expression levels of nucleic acid molecules to thereby create an expression profile for use in methods of determining the diagnosis and prognosis for AML patients, and for monitoring the efficacy of a therapy in these patients as described elsewhere herein.

In some embodiments, each capture probe in the array detects a nucleic acid molecule selected from the nucleic acid molecules designated in Tables 1 and 2. The designated nucleic acid molecules include those differentially-expressed in AML classes selected from cluster #1-cluster #16 as depicted in figure 1.

The arrays of the invention comprise a substrate having a plurality of addresses, where each address has a capture probe that can specifically bind a target nucleic acid molecule. The number of addresses on the substrate varies with the purpose for which the array is intended. The arrays may be low-density arrays or high-density arrays and may contain 4 or more, 8 or more, 12 or more, 16 or more, 20 or more, 24 or more, 32 or more, 48 or more, 64 or more, 72 or more 80 or more, 96, or more addresses, or 192 or more, 288 or more, 384 or more, 768 or more, 1536 or more, 3072 or more, 6144 or more, 9216 or more, 12288 or more, 15360 or more, or 18432 or more addresses. In some embodiments, the substrate has no more than 12, 24, 48, 96, or 192, or

384 addresses, no more than 500, 600, 700, 800, or 900 addresses, or no more than 1000, 1200, 1600, 2400, or 3600 addresses.

The invention also provides a computer-readable medium comprising one or more digitally encoded expression profiles, where each 5 profile has one or more values representing the expression of a gene that is differentially-expressed in an AML class. The preparation and use of such profiles is well within the reach of the skilled person (see e.g. WO 03/083140). In some embodiments, the digitally-encoded expression profiles are comprised in a database. See, for example, U.S. Patent No. 6,308,170.

10 The present invention also provides kits useful for diagnosing, treating, and monitoring the disease state in subjects affected by AML. These kits comprise an array and a computer readable medium. The array comprises a substrate having addresses, where each address has a capture probe that can specifically bind a nucleic acid molecule (by using an oligonucleotide array) or 15 a peptide (by using a peptide array) that is differentially-expressed in at least one AML class. The results are converted into a computer-readable medium that has digitally-encoded expression profiles containing values representing the expression level of a nucleic acid molecule detected by the array.

By using the array described above, the amounts of various kinds of 20 nucleic acid molecules contained in a nucleic acid sample can be simultaneously determined. In addition, there is an advantage such that the determination can be carried out even with a small amount of the nucleic acid sample. For instance, mRNA in the sample is labeled, or labeled cDNA is prepared by using mRNA as a template, and the labeled mRNA or cDNA is 25 subjected to hybridization with the array, so that mRNAs being expressed in the sample are simultaneously detected, whereby their expression levels can be determined.

Genes each of which expression is altered due to AML can be found by determining expression levels of various genes in the AML affected cells

and classified into certain types as described above and comparing the expression levels with the expression level in a control tissue.

The method for determining the expression levels of genes is not particularly limited, and any of techniques for confirming alterations of the gene expressions mentioned above can be suitably used. Among all, the method using the array is especially preferable because the expressions of a large number of genes can be simultaneously determined. Suitable arrays are commercially available, e.g., from Affymetrix.

For instance, mRNA is prepared from blast cells, and then reverse transcription is carried out with the resulting mRNA as a template. During this process, labeled cDNA can be obtained by using, for instance, any suitable labeled primers or labeled nucleotides.

As to the labeling substance used for labeling, there can be used substances such as radioisotopes, fluorescent substances, chemiluminescent substances and substances with fluophor, and the like. For instance, the fluorescent substance includes Cy2, FluorX, Cy3, Cy3.5, Cy5, Cy5.5, Cy7, fluorescein isothiocyanate (FITC), Texas Red, Rhodamine and the like. In addition, it is desired that samples to be tested (cancer samples to be tested in the present selection method) and a sample to be used as a control are each 20 labeled with different fluorescent substances, using two or more fluorescent substances, from the viewpoint of enabling simultaneous detection. Here, labeling of the samples is carried out by labeling mRNA in the samples, cDNA derived from the mRNA, or nucleic acids produced by transcription or amplification from cDNA.

Next, the hybridization is carried out between the above-mentioned labeled cDNA and the array to which a nucleic acid corresponding to a suitable gene or its fragment is immobilized. The hybridization may be performed according to any known processes under conditions that are appropriate for the array and the labeled cDNA to be used. For instance, the hybridization can

be performed under the conditions described in Molecular Cloning, A laboratory manual, 2nd ed., 9.52-9.55 (1989).

The hybridization between the nucleic acids derived from the samples and the array is carried out, under the above-mentioned hybridization 5 conditions. When much time is needed for the time period required for procedures from the collection of samples to the determination of expression levels of genes, the degradation of mRNA may take place due to actions of ribonuclease. In order to determine the difference in the gene expressions in the samples to be tested (i.e., cell or tissue samples of AML patients) and the 10 gene expressions in a control sample, it is preferable that the mRNA levels in both of these samples are adjusted using a standard gene with relatively little alterations in expressions.

Thereafter, by comparing the hybridization results of the samples to be tested with those of the control sample, genes exhibiting differential 15 expression levels in both samples can be detected. Concretely, a signal which is appropriate depending upon the method of labeling used is detected for the array which is subjected to hybridization with the nucleic acid sample labeled by the method as described above, whereby the expression levels in the samples to be tested can be compared with the expression level in the control 20 sample for each of the genes on the array.

The genes thus obtained which have a significant difference in signal intensities are genes each of which expression is altered specifically for certain AML classes.

The present invention also provides a computer-readable medium 25 comprising a plurality of digitally-encoded expression profiles wherein each profile of the plurality has a plurality of values, each value representing the expression of a gene that is differentially-expressed in at least one AML class. The invention also provides for the storage and retrieval of a collection of data relating to AML specific gene expression data of the present invention, 30 including sequences and expression levels in a computer data storage

apparatus, which can include magnetic disks, optical disks, magneto-optical disks, DRAM, SRAM, SGRAM, SDRAM, RDRAM, DDR RAM, magnetic bubble memory devices, and other data storage devices, including CPU registers and on-CPU data storage arrays. Typically, the data records are stored as a bit pattern in an array of magnetic domains on a magnetizable medium or as an array of charge states or transistor gate states, such as an array of cells in a DRAM device (e.g., each cell comprised of a transistor and a charge storage area, which may be on the transistor).

For use in diagnostic, research, and therapeutic applications suggested above, kits are also provided by the invention. In the diagnostic and research applications such kits may include any or all of the following: assay reagents, buffers, AML class-specific nucleic acids or antibodies, hybridization probes and/or primers, antisense polynucleotides, ribozymes, dominant negative AML polypeptides or polynucleotides, small molecules inhibitors of AML-associated sequences, arrays, antibodies, Fab fragments, capture peptides etc. In addition, the kits may include instructional materials containing directions (i.e., protocols) for the practice of the methods of this invention. While the instructional materials typically comprise written or printed materials, they are not limited to such. Any medium capable of storing such instructions and communicating them to an end user is contemplated by this invention. Such media include, but are not limited to electronic storage media (e.g., magnetic discs, tapes, cartridges, chips), optical media (e.g., CD ROM), and the like. Such media may include addresses to internet sites that provide such instructional materials. One such internet site may provide a database of AML reference expression profiles useful for performing similarity clustering of a newly determine subject expression profiles with a large set of reference profiles of AML subjects comprised in said database. Preferably the database includes clinically relevant data such as patient prognosis, successful methods of treatment and cytogenetic characteristics for the various AML classes in the database.

The invention encompasses for instance kits comprising an array of the invention and a computer-readable medium having digitally-encoded reference profiles with values representing the expression of nucleic acid molecules detected by the arrays. These kits are useful for assigning a subject affected by AML to an AML class and for diagnosing AML in a subject.

The present invention also provides for kits for screening for modulators of AML-associated sequences. Such kits can be prepared from readily available materials and reagents. For example, such kits can comprise one or more of the following materials: an AML-associated polypeptide or 10 polynucleotide, reaction tubes, and instructions for testing AML-associated activity. Optionally the kit may comprise an array for detecting AML-associated genes, specifically cluster-defining genes according to the invention. A wide variety of kits and components can be prepared according to the present invention, depending upon the intended user of the kit and the 15 particular needs of the user.

Diagnosis would typically involve evaluation of a plurality of genes or products. The genes will be selected based on correlations with important parameters in disease which may be identified in historical or outcome data.

In a preferred embodiment a kit-of-parts according to the invention 20 comprises an oligonucleotide microarray according to the invention and means for comparing a gene expression profile determined by using said microarray with a database of AML reference expression profiles. The present invention also comprises kits of parts suitable for performing a method of the invention as well as the use of the various products of the invention, including databases, 25 microarrays, oligonucleotide probes and classification schemes in diagnostic or prognostic methods of the invention.

The methods and compositions of the invention may be used to screen test compounds to identify therapeutic compounds useful for the treatment of AML. In one embodiment, the test compounds are screened in a 30 sample comprising primary cells or a cell line representative of a particular

AML class. After treatment with the test compound, the expression levels in the sample of one or more of the differentially-expressed genes of the invention are measured using methods described elsewhere herein. Values representing the expression levels of the differentially-expressed genes are used to generate 5 a subject expression profile. This subject expression profile is then compared to a reference profile associated with the AML class represented by the sample to determine the similarity between the subject expression profile and the reference expression profile. Differences between the subject expression profile and the reference expression profile may be used to determine whether the test 10 compound has anti-leukemogenic activity.

The test compounds of the present invention can be obtained using any of the numerous approaches in combinatorial library methods known in the art, including: biological libraries; spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring 15 deconvolution; the 'one-bead one-compound' library method; and synthetic library methods using affinity chromatography selection. The biological library approach is limited to polypeptide libraries, while the other four approaches are applicable to polypeptide, non-peptide oligomer or small molecule libraries of compounds (Lam (1997) *Anticancer Drug Res.* 12:145).

20 Examples of methods for the synthesis of molecular libraries can be found in the art, for example in DeWitt *et al.* (1993) *Proc. Nad. Acad. Sci. USA* 90:6909; Erb *et al.* (1994) *Proc. Natl. Acad. Sci. USA* 91:11422; Zuckermann *et al.* (1994) *J. Med. Chem.* 37:2678; Cho *et al.* (1993) *Science* 261:1303; Carell *et al.* (1994) *Angew. Chem. Int. Ed. Engl.* 33:2059; Carell *et al.* (1994) *Angew. 25 Chem. Int. Ed. Engl.* 33:2061; and in Gallop *et al.* (1994) *J. Med. Chem.* 37:1233. Libraries of compounds may be presented in solution (e.g., Houghten (1992) *Biotechniques* 13:412-421), or on beads (Lam (1991) *Nature* 354:82-84), chips (Fodor (1993) *Nature* 364:555-556), bacteria (U.S. Patent No. 5,223,409), spores (U.S. Patent No. 5,223,409), plasmids (Cull *et al.* (1992) *Proc. Natl. 30 Acad. Sci. USA* 89:1865-1869) or on phage (Scott and Smith (1990) *Science*

249:386-390; Devlin (1990) Science 249:404-406; Cwirla *et al.* (1990) Proc. Nad. Acad. Sci. U.S.A. 97:6378-6382; Felici (1991) J. Mol. Biol. 222:301-310).

Candidate compounds include, for example, 1) peptides such as soluble peptides, including Ig-tailed fusion peptides and members of random peptide libraries (see, e.g., Lam *et al.* (1991) Nature 354:82-84; Houghten *et al.* (1991) Nature 354:84-86) and combinatorial chemistry-derived molecular libraries made of D- and/or L- configuration amino acids; 2) phosphopeptides (e.g., members of random and partially degenerate, directed phosphopeptide libraries, see, e.g., Songyang *et al.* (1993) Cell 72:767-778); 3) antibodies (e.g., 5 polyclonal, monoclonal, humanized, anti-idiotypic, chimeric, and single chain antibodies as well as Fab, F(ab')Z, Fab expression library fragments, and epitope binding fragments of antibodies); 4) small organic and inorganic molecules (e.g., molecules obtained from combinatorial and natural product libraries; 5) zinc analogs; 6) leukotriene A4 and derivatives; 7) classical 10 aminopeptidase inhibitors and derivatives of such inhibitors, such as bestatin and arphamenine A and B and derivatives; 8) and artificial peptide substrates and other substrates, such as those disclosed herein above and derivatives 15 thereof.

The present invention discloses a number of genes that are 20 differentially-expressed in AML classes. These differentially-expressed genes are shown in Tables 1 and 2. Because the expression of these genes is associated with AML risk factors, these genes may play a role in leukemogenesis. Accordingly, these genes and their gene products are potential therapeutic targets that are useful in methods of screening test 25 compounds to identify therapeutic compounds for the treatment of AML. Genes that are common between a number of AML classes are preferred as targets for therapeutic treatment, since a broader working over the patient population can be expected. It is very likely that genes that are present in more than one AML class, as defined in the present invention, are involved in 30 general processes underlying AML. Thus, the expression of these genes is

likely to be associated with AML risk factors and thus play a role in leukemogenesis. Genes that are present in several classes or clusters may thus define superclusters, which superclusters may define the processes that play an important role in leukemogenesis in general, and AML in particular.

5 The differentially-expressed genes of the invention may be used in cell-based screening assays involving recombinant host cells expressing the differentially-expressed gene product. The recombinant host cells are then screened to identify compounds that can activate the product of the differentially-expressed gene (*i.e.* agonists) or inactivate the product of the
10 differentially-expressed gene (*i.e.* antagonists).

Any of the leukemogenic functions mediated by the product of the differentially-expressed gene may be used as an endpoint in the screening assay for identifying therapeutic compounds for the treatment of AML. Such endpoint assays include assays for cell proliferation, assays for modulation of
15 the cell cycle, assays for the expression of markers indicative of AML, and assays for the expression level of genes differentially-expressed in AML classes as described above. Modulators of the activity of a product of a differentially-expressed gene identified according to these drug-screening assays provided above can be used to treat a subject with AML. These methods of treatment
20 include the steps of administering the modulators of the activity of a product of a differentially-expressed gene in a pharmaceutical composition as described herein, to a subject in need of such treatment.

The following examples are offered by way of illustration and not by way of limitation.

25

30

EXAMPLE 1**Methods Used***Patients and cell samples*

5 Patients with a confirmed diagnosis of *de novo* AML were included in this study (Table 4). All patients were treated according to the HOVON (Dutch-Belgian Hematology-Oncology Co-operative group) protocols (<http://www.hovon.nl>). The treatment protocols have been described previously Rombouts *et al.*, 2001). Bone marrow or peripheral blood aspirations of AML 10 patients at diagnosis (n=286) and healthy volunteers (n=5) were taken after informed consent. Blasts and mononuclear cells were purified by Ficoll-Hypaque (Nygaard, Oslo, Norway) centrifugation and cryopreserved. CD34 positive cells of healthy volunteers (n=3) were sorted using the fluorescent activated cell sorter (FACS). According to cytological analysis the AML 15 samples contained 80-100% blast cells after thawing independent of the blast count at diagnosis.

RNA isolation and quality control

20 After thawing, cells were washed once with Hanks balanced salt solution. High quality total RNA was extracted by lyses with guanidinium isothiocyanate followed by cesium chloride gradient purification (Chomczynski & Sacchi, 1987). RNA concentration, quality and purity were examined using the RNA 6000 Nano assay on the Agilent 2100 Bioanalyzer (Agilent, Amstelveen, The Netherlands). None of the samples showed RNA degradation 25 (28S/18S rRNA ratio ≥ 2) or DNA contamination.

Gene profiling and quality control

286 newly diagnosed cases of AML (Table 3) were analyzed by gene profiling using the Affymetrix U133A GeneChip. The U133A GeneChips 30 contain 22283 probe sets representing approximately 13000 distinct genes.

Ten microgram of total RNA was used for the production of antisense biotinylated RNA. Single-stranded cDNA and double-stranded cDNA were synthesized according to the manufactures protocol (Invitrogen Life Technologies, Breda, The Netherlands) using the T7-(dT)24-primer (Genset Corp, Paris France). *In vitro* transcription was performed with biotin-11-CTP and biotin-16-UTP (Perkin Elmer, Hoofddorp, The Netherlands) and the MEGAScript T7 labeling kit (Ambion, Cambridgeshire, UK). Double-stranded cDNA and cRNA were purified and fragmented with the GeneChip Sample Cleanup Module (Affymetrix, Santa Clara, CA). Biotinylated RNA was subsequently hybridized to the Affymetrix U133A GeneChip (45°C for 16 hours). Staining, washing and scanning procedures were carried out as described in the GeneChip Expression Analysis Technical Manual (Affymetrix, Santa Clara, CA). All GeneChips were visually inspected for obvious irregularities. The global method of scaling/normalization was applied and the differences between the scaling/normalization factors of all GeneChips (n=294) were less than 3-fold (0.70, SD 0.26). All additional quality metrics, i.e. percent genes present (50.6, SD 3.8), actin 3' to 5' ratio (1.24, SD 0.19) and GAPDH 3' to 5' ratio (1.05, SD 0.14) indicated high overall sample and assay quality.

20 *Data normalization, analysis and visualization*

The mean intensity values of all probe sets were calculated by the global method of scaling/normalization using MAS5.0. As most genes with values below 30 are absent (83% of all absent calls), these values were classified as unreliable and set to 30. This process resulted also in the exclusion of possibly unreliable present calls (10% of all present calls). The ratios between measured intensity and geometric mean intensity were calculated for each probe set and log2 transformed to be used for further data analyses with Omnipriv®, SAM® and PAM®.

30 *Omniviz®* (Maynard, MA (version 3.6)) – Different numbers of probe sets were selected by filtering for those genes that in one or more samples

differed at least n-fold from the geometric mean expression level of all AML patients. By using various ratios different numbers of differentially-expressed probe sets were selected for the correlation visualization tool (Table 2). For each number of selected probe sets the clustering of the AML patients in 5 specific molecularly recognizable groups was investigated using the Correlation Visualization tool of Omnidiz (Supplemental Data (Figures B to H)).

Table 5 (below) shows the evaluation of the Correlation View results on the basis of the clustering of AML patients with similar molecular 10 abnormalities.). The few AML cases with abnormalities involving chromosome 5 were excluded. Ratio: ratio between measured intensity and geometric mean intensity by which probe sets were selected.

SAM © (version 1.21) Trustees of Leland Stanford Junior University
- All supervised analyses were performed using Significance Analysis of 15 Microarrays (SAM) (Tusher *et al.*, 2001). The criterion to identify the top40 genes for the assigned clusters was: at least a 2-fold difference between selected cluster and the remaining AML samples and a q-value of less than 5%.

PAM © (version 1.12) Trustees of Leland Stanford Junior University
20 - All supervised class prediction analyses were performed by applying Prediction Analysis of Microarrays (PAM) software in R (version 1.7.1) (Tibshirani *et al.*, 2002).
All genes identified by the SAM and PAM methods are available as Supplemental Data (Tables A1 to P1 and Q).

25

RT-PCR and sequence analyses

Reverse transcriptase - polymerase chain reactions (RT-PCR) and sequence analyses for mutations in *FLT3-ITD*, *FLT3-TKD*, N-RAS, K-RAS and *cEBPα*, as well as real-time PCR for *EVI1* were performed as described

previously (van Waalwijk van Doorn-Khosrovani *et al.*, 2003a; van Waalwijk van Doorn-Khosrovani *et al.*, 2003b; Valk *et al.*, 2004; Care *et al.*, 2003).

Statistical analyses of survival

5 Statistical analyses were performed with Stata Statistical Software, Release 7.0 (Stata, College Station, TX). Actuarial probabilities of overall survival (OS, with failure death due to any cause) and event-free survival (EFS, with failure in case of no complete remission at day 1, at relapse or death in first CR) were estimated by the method of Kaplan and Meier.

10

Results

Correlation visualization of de novo AML by gene expression

The best unsupervised ordering by applying the visualization tool of Omniviz of the AML cases in relation to different molecular markers was reached using 2856 probe sets (representing 2008 annotated genes and 146 ESTs) (Figure 1A and Table 5). Sixteen distinct groups of AML patients were assigned on the basis of strong correlation between adjacent AML patients, i.e., within one red square along the diagonal, as well as the correlation and anti-correlation between the different groups, i.e., between the red squares along the diagonal (Figure 1A and Supplemental data (Figure A)). The final Omniviz Correlation View generated with 2856 probe sets was adapted such that cytological, cytogenetic and molecular parameters could be plotted directly adjacent to the original diagonal. This resulted in a unique way of visualization of the groups of patients with high correlation and related parameters (Figure 1B).

Distinct clusters of AML t(8;21), AML inv(16) and AML t(15;17) were apparent (Figure 1B). Although these distinct clusters were readily identified with less probe sets using the correlation tool, clusters of AML patients with mutations in *FLT3* or *cEBP α* , or with overexpression of *EVI1* were only apparent with 2856 probe sets (Table 5 and Figures 4 to 10). When

more genes were used for the correlation visualization this compact clustering vanished (Table 5).

Unique genes characteristic for each of the 16 identified clusters were obtained by supervised analysis using SAM. The expression profiles of 5 the top 40 genes are plotted in Figure 1B alongside the Correlation View. The SAM analyses resulted in only 599 discriminating genes (Tables 23-39) since a distinct gene profile for cluster #14 could not be identified, suggesting tight overlap with genes in clusters #7 and #8.

10 *AML and recurrent translocations*

CBFβ/MYH11 - All inv(16) AML patients clustered within cluster #9 (Figure 1B and Supplemental Data (Table I)). Of note, 4 patients who were previously not known to harbour an inv(16) were included within this cluster. Molecular analysis and Southern blotting revealed the presence of 15 *CBFβ/MYH11* fusion gene in those cases (Figure 11). SAM analysis revealed that *MYH11* was the most prominent discriminating gene for this cluster (Supplemental data (Table I1 and Figure 12). Interestingly, *CBFβ* anti-correlated with this cluster, suggesting that the *CBFβ/MYH11* fusion protein down modulates the expression of the *CBFβ* allele.

20 *PML/RARα* – Cluster #12 contains all cases of acute promyelocytic leukemia (APL) with t(15;17) (Figure 1B and Supplemental Data (Table L)), including two patients previously recognized as APL with *PML/RARα* by RT-PCR only. SAM analyses (Supplemental Data (Table L1)) revealed that genes encoding growth factors such as hepatocyte growth factor (*HGF*), macrophage-25 stimulating 1 (hepatocyte growth factor-like (*MST1*)) and fibroblast growth factor 13 (*FGF13*) were specific for this cluster. In addition, cluster #12 could be separated into two subgroups with either high or low white blood cell count (WBC) (Supplemental data (Figure 13). This subdivision corresponds with *FLT3* ITD mutation status (Figure 1B).

AML1/ETO - All patients with a t(8;21) grouped within cluster #13 (Figure 1B and Supplemental Data (Table M)), including one patient without a t(8;21) (2496). SAM identified ETO as the most discriminative gene for this cluster (Supplemental data (Table M1 and Figure 14)).

5

AML with 11q23 abnormalities

AML patients with 11q23 abnormalities were intermingled within the 286 AML patients, although two subgroups were apparent, i.e., cluster #1 and cluster #16 (Figure 1B and Supplemental Data (Tables A and P)). Cluster 10 #16 contains four cases of t(9;11) and one case of t(11;19) (5/11 cases (45%)). SAM analyses identified a strong signature with a group of genes specifically upregulated in the majority of cases in this cluster (Figure 1B and Supplemental data (Table P1)). Although seven of 14 (50%) cases within cluster #1 have chromosome 11 abnormalities as well, this subgroup appears 15 quite heterogeneous with a less uniform signature (Figure 1B).

AML and cEBP α mutations

Interestingly, two separate clusters (#4 and #15) comprise AML patients with predominantly normal karyotypes and a high frequency of 20 mutations in *cEBP α* (Figure 1B (Clusters #4 (8/15 cases (53%)) and #15 (5/8 cases (62%))). In cluster #4 a set of up- and down regulated genes could be defined (Supplemental data (Table D1)), which appeared to discriminate the AML cases in cluster #4 from cluster #15. The upregulated genes represent certain T-cell genes, such as the CD7 antigen (*CD7*) and the T cell receptor 25 delta locus (*TRD@*), which are known to be expressed on immature subsets of AML as well (Lo Coco *et al.*, 1989; Boeckx *et al.*, 2002). All but one of the top 40 genes of cluster #15 are downregulated (Supplemental data (Table O1)). Interestingly, these genes are similarly downregulated in cluster #4 (Figure 1B). The genes encoding alpha 1-catenin (*CTNNA1*), tubulin beta-5 (*TUBB5*)

and Nedd4 family interacting protein 1 (*NDFIP1*) were the only genes down modulated and among the top40 in both cluster #4 and #15.

AML and EVI1 overexpression

5 A separate cluster (#10) of AML was identified in which 44% (10/22 cases, Supplemental data (Table J)) showed increased expression of *EVI1*. Aberrant expression of *EVI1* in cluster #10 correlated with chromosome 7 abnormalities (6/10 *EVI1*-positive cases). This complete group of patients could be discriminated based on a selection of genes, suggesting that all patients, 10 even the *EVI1* negative cases, carry abnormalities in a common pathway. Cluster # 8 also contains a relatively high number of chromosome 7 aberrations (5/13 cases, Supplemental data (Table H)), but it displays a different molecular signature compared to cluster #10 (Figure 1B). This suggests that high expression of *EVI1* and/or *EVI1*-related proteins determines 15 the molecular profile of cluster #10. Four out of 14 cases within the heterogeneous cluster #1 also demonstrated increased *EVI1* expression. These patients may cluster outside cluster #10 since their molecular signatures are most likely the result of *EVI1* overexpression and an 11q23 abnormality.

20 *AML with FLT3 mutations*

Groups of patients with mutations in the *FLT3* receptor gene were recognized within the Correlation View (Figure 1B). In fact, clusters #2 and #6 merely consist of patients with a *FLT3* ITD. Interestingly, almost all of these patients have a normal karyotype. In addition, the *FLT3* ITD mutation status 25 seems to divide several clusters into two groups, e.g., clusters #3, #5 and AML with t(15;17) (#12). Other individual cases of AML with *FLT3* ITD were more dispersed over the whole group of AML patients. AML patients with mutations in the tyrosine kinase domain (TKD) of *FLT3* did not cluster. Likewise patients with mutations in codons 12, 13 or 61 of the small GTPase RAS (N-

RAS and *K-RAS*) do not have apparent signatures and do not aggregate in the Correlation View (Figure 1B).

Other unique AML clusters

5 AML patients with normal karyotypes clustered in several subgroups within the assigned clusters (Figure 1B). In fact, the majority of patients in cluster #11 have normal karyotypes without any consistent additional abnormality. Other unique clusters, i.e., cluster #3, #5, #7, #8 and #14, were identified which could not be annotated with any known cytogenetic or molecular abnormality. Cluster #5 mainly contains AML patients that belong to the French-American-British (FAB) classification M4 or M5 subtypes (Figure 1B), suggesting that the morphology was the main determinant for classifying these cases within this subgroup. Clusters #3, #7, #8, #11 and #14 contain AML cases, that do not belong to one FAB subtype, but can be 10 discriminated based on distinct gene expression profiles.

15

Class prediction of distinct clusters in AML

All 286 AML cases were randomised and divided into a training-(n=190) and a validation set (n=96). PAM was applied on the dataset to 20 determine the minimal number of genes to predict distinct abnormalities with prognostic value in AML¹, i.e., t(8;21), inv(16), t(15;17), 11q23 (cluster #16), *EVI1*/monosomy 7 (cluster #10), *cEBPα* (clusters #4 and #15) (Table 3). In addition, since *FLT3* ITD mutations are frequent abnormalities in AML and associated with poor outcome², the minimal set of genes to predict *FLT3* ITD 25 mutations in AML were identified.

All patients with favourable cytogenetics within the validation set were predicted with 100% accuracy and with only few genes (Table 3). As expected from the SAM analyses, *ETO* for t(8;21), *MYH11* for inv(16) and *HGF* for t(15;17) were among the most predictive genes (Supplemental Data (Table 30 Q)). Interestingly, cluster #10 (*EVI1*/ monosomy 7) was predicted with high

accuracy, although with a higher 10-fold cross validation error. Cluster #16 (11q23) was predicted with fairly high accuracy. Since cluster #15 (*cEBP α*) consists of few patients only, we combined both *cEBP α* clusters. These two clusters could subsequently be predicted within the validation set with fairly 5 high accuracy. A highly predictive signature for the *FLT3* ITD cluster could not be defined by means of expression profiling within the AML patient cohort investigated.

Table 3 (below) shows the class prediction using PAM (10-fold CV. error: 10-fold cross validation prediction error on training set (n=190), Error 10 validation set: prediction error on validation set (n=96), #Probe sets: Number of probe sets used for prediction, #Genes: number of genes represented by probe sets used for prediction. For identities of the probe sets and genes see Supplemental Data (Table Q). *After randomization none of the AML patients from *cEBP α* cluster #15 were included in the validation set.

15

Survival analyses

Overall survival (OS), event free survival (EFS) and relapse rate (RR) of AML patients from clusters containing >20 cases in the Correlation View, were determined, i.e., clusters #5 (M4/M5), #9 (inv(16)), #10 20 (EVII/monosomy 7), #12 (t(15;17)) and #13 (t(8;21)). Patients with a complete clinical data set were included in the survival analyses (Figure 2). The mean actuarial OS and DFS probabilities at 60 months of the patients with favourable cytogenetics were 62% ($\pm 8.7\%$) and 50% ($\pm 2.4\%$), respectively. AML patients included in cluster #5 had intermediate survival (OS 27% and EFS 25 32%), whereas patients from cluster #10 showed poor treatment response (OS 6% (P=0.001) and EFS 18% (P=0.004)) mainly as a result of increased relapse incidence (Figure 2C).

Discussion

30

The results of the study presented here show profound diagnostic

impact of expression profiling. Among AML with considerable genetic diversity, expression profiling provides an approach to distinguish these highly variable genetic subsets into clusters with distinct signatures. Patients with AML were classified in 16 groups based on their gene expression profiles by 5 unsupervised Pearson's correlation coefficient analyses. The results show that each of the assigned clusters represents true AML subgroups with specific molecular signatures.

Firstly, all cases with t(8;21) (*AML1/ETO*), inv(16) (*CBF β /MYH11*) or t(15;17) (*PML/RAR α*), including patients that could not be recognized by 10 karyotyping, could be clustered in three separate clusters with unique gene expression profiles. Unique correlations between gene expression profiles and favourable cytogenetic aberrations have been shown in the prior art (Debernardi *et al.*, 2003; Schoch *et al.*, 2002), however, here we demonstrate that these patients can even be recognized with high accuracy within a 15 representative cohort of AML patients.

Secondly, Significance Analyses of Microarrays (SAM) and Prediction Analyses of Microarrays (PAM), showed a strong concordance between the specific genes identified for the different assigned clusters, demonstrating that we identified truly discriminative genes for all the clusters 20 that we assigned. For instance, we identified two distinct clusters (#4 and #15) with overlapping signatures, which both included cases with normal karyotypes and mutations in *cEBP α* . Multiple genes appeared to be downregulated in both subclasses but were unaffected in any other AML subgroup.

25 Thirdly, the discriminative genes identified by SAM and PAM may in addition reveal specific functional pathways critical for the pathophysiology of AML. This is suggested by the identification of several functionally important genes implicated in specific subtypes of AML, such as the IL5R α in AML with t(8;21) (Touw *et al.*, 1991) and the bona fide FLT3/STAT5 targets 30 *IL2R α* (Kim *et al.*, 2001) and *PIM1* (Lilly *et al.*, 1992) in AML with *FLT3* ITD

mutations.

Five clusters (#5, #9, #10, #12 and #13) 20 or more cases were evaluated in relation to outcome of therapy. As expected, clusters #9 (*CBFβ/MYH11*), #12 (*PML/RARα*) and #13 (*AML1/ETO*), comprised cases 5 with a favorable response to therapy. However, cases that belong to cluster #10 showed a distinct poor outcome. Patients in this cluster could be predicted with high accuracy in an independent validation set with a minimal set of genes. The high frequency of poor prognostic markers, e.g., -7(q), -5(q), t(9;22) or high *EVI1* is in agreement with the observation that this cluster represents a bad- 10 risk AML group. However, since the cluster contains AML cases with a variety of genetically defined poor risk markers and since a significant portion of the cases did not express any of these lesions, this suggests that a unique pathway represented by the molecular signature of this cluster of AML patients is associated with bad outcome.

15 This hypothesis is further strengthened by the fact that large numbers of cases with the same poor-risk markers were present in other clusters (#1, #2, #8 and #16). Analysis of the genes up- or downregulated in AML cases from cluster #10 may predict the pathway(s) involved the pathophysiology of this subgroup of AML patients. This might also shed light 20 on the findings that the other cases with distinct poor-prognostic markers are grouped in different clusters. Unfortunately, these latter groups were too small for an accurate analysis of treatment outcome.

The 44 AML patients in cluster #5 showed an intermediate survival estimate. Since these cases belong to AML FAB-M4 or -M5 subtype, it is 25 possible that monocyte/macrophage related genes mainly drove clustering of these cases. Unsupervised clustering of larger numbers of only AML FAB-M4 or -M5 cases with a normal karyotype may result in the identification of specific subgroups with unique gene expression profiles and perhaps variable prognosis.

30 Three clusters mainly consisting of patients with normal karyotype

were identified. The majority of patients in two of those clusters (#2 and #6) were also characterized by *FLT3* ITD mutations, whereas patients in cluster #11, with a discriminative molecular signature, did not contain any consistent abnormality.

5 Two clusters (#1 and #16) were recognized, which harbored 11q23 abnormalities, representing defects involving the mixed-lineage leukemia gene. The reason for the separation of these two subgroups is most likely caused by different additional genetic defects in the cases of the distinct clusters, causing different gene expression profiles. In cluster #1 this
10 abnormality may be the frequently observed high expression of *EVI1*, which is not apparent in AML cases from cluster #16. A similar explanation may hold for AML cases in clusters #4 and #15, both comprising *cEBPα* mutant cases, AML patients in clusters #1 and #10 (high *EVI1* expression), or patients in clusters #8 and #10 with frequent monosomy 7. Given the fact that each of
15 these clusters expressed such a distinct molecular signature most probably means that in the cases without the characteristic genetic lesion, other currently unidentified mutations affecting the same pathways are responsible for the genetic profiles.

Internal tandem duplications (ITD) in the *FLT3* gene adversely
20 affect clinical outcome (Levis & Small, 2003). The molecular signature induced by the constitutively activated the *FLT3* receptor appears not strong enough to distinguish *FLT3* ITD carrying AML patients from the other cases. However, the clustering of *FLT3* ITD positive patients within assigned clusters, as is the case in the APL subgroup (cluster #12), demonstrates that the presence of
25 *FLT3* ITD results in different biological entities within one type of disease.

To this end, our study demonstrates that cytogenetically known as well as new clusters of AML with characteristic gene expression signatures can be identified with one single assay. The quality of genome-wide analysis will further advance with the availability of novel whole genome arrays,
30 improved sequence annotation and the development of more sophisticated

protocols and software, allowing analysis of subtle differences in gene expression and comprehensive pathway prediction. These studies, while augmenting our understanding of the pathways involved in pathophysiology of AML, will result in improved diagnostics and possibly lead the way to the 5 development anti-cancer drugs that interfere with disease related pathways.

EXAMPLE 2

Analyses of novel AML patients

10 Patients and cell samples

Eligible patients have a diagnosis of primary AML, confirmed by cytological examination of blood and bone marrow. Blasts and mononuclear cells should be purified by Ficoll-Hypaque (Nygaard, Oslo, Norway) centrifugation. Add 1:1 diluted peripheral blood or bone marrow 1:4 diluted both in PBS up to 20-25 15 ml on to 15 ml Ficoll-Hypaque. Spin 15 minutes at 1880rpm. Collect interphase with mononuclear cells and wash twice with PBS (total volume 50ml, 8 minutes 2000 rpm). The pellet contains the mononuclear cells, including the blast cells. As a result, the AML samples should contain 80-100 percent blast cells, regardless of the blast count at diagnosis. 30.10⁶ cells/ml 20 should be frozen in 1vol PBS/1 vol heat inactivated FCS/0.5 vol DMSO stored in liquid nitrogen.

RNA isolation and quality control

After thawing, cells were washed once with Hanks balanced salt solution. High 25 quality total RNA should be extracted by lysis with guanidinium isothiocyanate followed by cesium chloride gradient purification. RNA concentration, quality and purity should be examined using the RNA 6000 Nano assay on the Agilent 2100 Bioanalyzer (Agilent, Amstelveen, The Netherlands). None of the samples should show RNA degradation (28S/18S rRNA ratio ≥ 2) or 30 contamination by DNA.

Gene profiling and quality control

Ten µg of total RNA should be used to prepare antisense biotinylated RNA. Single-stranded cDNA and double-stranded cDNA should be synthesized
5 according to the manufacturer's protocol (Invitrogen Life Technologies, Breda, The Netherlands) using the T7-(dT)24-primer (Genset Corp, Paris, France). *In vitro* transcription should be performed with biotin-11-CTP and biotin-16-UTP (Perkin Elmer, Hoofddorp, The Netherlands) and the MEGAScript T7 labeling kit (Ambion, Cambridgeshire, UK). Double-stranded cDNA and cRNA should
10 be purified and fragmented with the GeneChip® Sample Cleanup Module (Affymetrix, Santa Clara, CA). Biotinylated RNA should be hybridized to the Affymetrix U133A GeneChip® (45°C for 16 hours). Samples should be analyzed using Affymetrix U133A or U133 Plus2.0 GeneChips®. The U133A GeneChip® contains 22283 probe sets, representing approximately 13000
15 genes. These probe sets can also be selected from the U133 Plus2.0 GeneChip®. Staining, washing and scanning procedures should be carried out as described in the GeneChip® Expression Analysis Technical Manual (Affymetrix, Santa Clara, CA). All GeneChips® should be visually inspected for irregularities. The global method of scaling/normalization should be applied
20 and the differences between the scaling/normalization factors of all GeneChips® up to the Target Gene Intensity of 100 (reference value n=285: scaling factor = 0.70, SD 0.26). All additional measures of quality - percent genes present (reference value n=285: 50.6 ±3.8), actin 3' to 5' ratio (reference value n=285: 1.24 ±0.19) and GAPDH 3' to 5' ratio (reference value n=285: 1.05
25 ±0.14) - should indicate high overall sample and assay quality.

Reference data set

A reference data set (gene expression data and detailed clinical and molecular data) of 285 AML patients should be downloaded from the Gene Expression
30 Omnibus (www.ncbi.nlm.nih.gov/geo, accession number GSE1159).

Data normalization, analysis and visualization

All intensity values (reference set (n=285) and new AML patients to be included) should be scaled to an average value of 100 per GeneChip®

5 according to the method of global scaling/normalization, available in the Affymetrix Microarray Suite (MAS5.0). All other setting should be default according to the manufacturer.

As our methods reliably identify samples with an average intensity value >30 but do not reliably discriminate values from 0 - <30, these values should be set 10 to 30.

For each probe set the geometric mean of the hybridization intensities of all patient samples should calculated. The level of expression of each probe set in every sample was determined relative to this geometric mean and transformed to log₂ to ascribe equal weight to gene-expression levels with similar relative 15 distances to the geometric mean. The transformed expression data should be subsequently imported into Omniviz.

Pearson's Correlation Visualization tool of Omniviz (Maynard, MA (version 3.6)) – The Omniviz package should be used to perform and visualize 20 unsupervised cluster analysis. The clustering of molecularly recognizable specific groups of patients should be investigated with the 2856 probe sets (Table 1) taking the reference set (n=285) and new patients to be analysed into account.

25 **References**

Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000; 403:503-11.

Armstrong SA, Staunton JE, Silverman LB, et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 2002; 30:41-7.

5 Boeckx N, Willemse MJ, Szczepanski T, et al. Fusion gene transcripts and Ig/TCR gene rearrangements are complementary but infrequent targets for PCR-based detection of minimal residual disease in acute myeloid leukemia. Leukemia 2002; 16:368-75.

10 Care RS, Valk PJ, Goodeve AC, et al. Incidence and prognosis of c-KIT and FLT3 mutations in core binding factor (CBF) acute myeloid leukaemias. Br J Haematol 2003; 121:775-7.

15 Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987; 162:156-9.

20 Debernardi S, Lillington DM, Chaplin T, et al. Genome-wide analysis of acute myeloid leukemia with normal karyotype reveals a unique pattern of homeobox gene expression distinct from those with translocation-mediated fusion events. Genes Chromosomes Cancer 2003; 37:149-58.

Eisen MB, Spellman MB, Brown PO, Botstein D. Cluster analysis and display of genomewide expression patterns. Proc. Natl. Acad. Sci. U S A 1998; 95:14863-8.

25

Golub TR, Slonim DK, Tamayo P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999; 286:531-7.

Kim HP, Kelly J, Leonard WJ. The basis for IL-2-induced IL-2 receptor alpha chain gene regulation: importance of two widely separated IL-2 response elements. *Immunity* 2001; 15:159-72.

5 Levis M, Small D. FLT3: ITDoes matter in leukemia. *Leukemia* 2003; 17:1738-52.

10 Lilly M, Le T, Holland P, Hendrickson SL. Sustained expression of the pim-1 kinase is specifically induced in myeloid cells by cytokines whose receptors are structurally related. *Oncogene* 1992; 7:727-32.

Lo Coco F, De Rossi G, Pasqualetti D, et al. CD7 positive acute myeloid leukaemia: a subtype associated with cell immaturity. *Br J Haematol* 1989; 73:480-5.

15 Löwenberg B, Downing JR, Burnett A. Acute myeloid leukemia. *N Engl J Med* 1999; 341:1051-62.

20 Preudhomme C, Sagot C, Boissel N, et al. Favorable prognostic significance of CEBPA mutations in patients with de novo acute myeloid leukemia: a study from the Acute Leukemia French Association (ALFA). *Blood* 2002; 100:2717-23.

25 Rombouts WJ, Lowenberg B, van Putten WL, Ploemacher RE. Improved prognostic significance of cytokine-induced proliferation in vitro in patients with de novo acute myeloid leukemia of intermediate risk: impact of internal tandem duplications in the Flt3 gene. *Leukemia* 2001; 15:1046-53.

30 Ross ME, Zhou X, Song G, et al. Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. *Blood* 2003; 1:1.

Schoch C, Kohlmann A, Schnittger S, et al. Acute myeloid leukemias with reciprocal rearrangements can be distinguished by specific gene expression profiles. Proc Natl Acad Sci U S A 2002; 99:10008-13.

5

Tibshirani R, Hastie T, Narasimhan B, Chu G. Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci U S A 2002; 99:6567-72.

10 Touw I, Donath J, Pouwels K, et al. Acute myeloid leukemias with chromosomal abnormalities involving the 21q22 region are identified by their in vitro responsiveness to interleukin-5. Leukemia 1991; 5:687-92.

15 Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 2001; 98:5116-21.

20 Valk PJM BD, Frew ME, Goodeve AC, Löwenberg B, Reilly JTW. 'Second hit' mutations in the RTK/RAS signalling pathway in acute myeloid leukaemia and inv(16). Haematologica 2004; 89:In press.

Van Waalwijk van Doorn-Khosrovani SB, Erpelinck C, Meijer J, et al. Biallelic mutations in the CEBPA gene and low CEBPA expression levels as prognostic markers in intermediate-risk AML. Hematol J 2003; 4:31-40.

25

Van Waalwijk van Doorn-Khosrovani SB, Erpelinck C, van Putten WL, et al. High EVI1 expression predicts poor survival in acute myeloid leukemia: a study of 319 de novo AML patients. Blood 2003; 101:837-45.

Yeoh EJ, Ross ME, Shurtleff SA, et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. *Cancer Cell* 2002; 1:133-43.

5 Table 1. About 2856 genes used for classifying AML of 286 patients into defined clusters as identified in Correlation View

	Affymetrix probe set id	gene symbol	unigene ID
10	117_at	HSPA6	Hs.3268
	1405_i_at	CCL5	Hs.241392
	1598_g_at	GAS6	Hs.437710
	200067_x_at	SNX3	Hs.12102
15	200075_s_at	GUK1	Hs.376933
	200099_s_at	---	-- // --
	200602_at	APP	Hs.177486
	200606_at	DSP	Hs.349499
	200612_s_at	AP2B1	Hs.370123
20	200616_s_at	KIAA0152	Hs.181418
	200628_s_at	WARS	Hs.82030
	200629_at	WARS	Hs.82030
	200632_s_at	NDRG1	Hs.318567
	200644_at	MLP	Hs.75061
25	200648_s_at	GLUL	Hs.442669
	200660_at	S100A11	Hs.417004
	200661_at	PPGB	Hs.118126
	200665_s_at	SPARC	Hs.111779
30	200671_s_at	SPTBN1	Hs.205401
	200672_x_at	SPTBN1	Hs.205401
	200675_at	CD81	Hs.54457
	200678_x_at	GRN	Hs.180577
	200696_s_at	GSN	Hs.446537
	200697_at	HK1	Hs.118625
35	200703_at	DNCL1	Hs.5120
	200704_at	LITAF	Hs.76507
	200706_s_at	LITAF	Hs.76507
	200736_s_at	GPX1	Hs.76686
40	200762_at	DPYSL2	Hs.173381
	200765_x_at	CTNNA1	Hs.254321
	200766_at	CTSD	Hs.343475
	200771_at	LAMC1	Hs.432855

Table 1 (continued):

	200780_x_at	GNAS	Hs.157307
5	200782_at	ANXA5	Hs.145741
	200784_s_at	LRP1	Hs.162757
	200785_s_at	LRP1	Hs.162757
	200791_s_at	IQGAP1	Hs.1742
	200795_at	SPARCL1	Hs.75445
10	200796_s_at	MCL1	Hs.86386
	200799_at	HSPA1A	Hs.75452
	200800_s_at	HSPA1A	Hs.75452
	200808_s_at	ZYX	Hs.75873
	200832_s_at	SCD	Hs.119597
15	200838_at	CTSB	Hs.135226
	200839_s_at	CTSB	Hs.135226
	200853_at	H2AFZ	Hs.119192
	200871_s_at	PSAP	Hs.406455
	200872_at	S100A10	Hs.143873
20	200878_at	EPAS1	Hs.8136
	200895_s_at	FKBP4	Hs.848
	200897_s_at	KIAA0992	Hs.194431
	200907_s_at	KIAA0992	Hs.194431
	200921_s_at	BTG1	Hs.255935
25	200923_at	LGALS3BP	Hs.79339
	200931_s_at	VCL	Hs.75350
	200952_s_at	CCND2	Hs.376071
	200953_s_at	CCND2	Hs.376071
	200962_at	RPL31	Hs.375921
30	200965_s_at	ABLIM1	Hs.442540
	200981_x_at	GNAS	Hs.157307
	200982_s_at	ANXA6	Hs.412117
	200983_x_at	CD59	Hs.278573
	200985_s_at	CD59	Hs.278573
35	200986_at	SERPING1	Hs.384598
	200989_at	HIF1A	Hs.412416
	200991_s_at	SNX17	Hs.278569
	200998_s_at	CKAP4	Hs.74368
	200999_s_at	CKAP4	Hs.74368
40	201005_at	CD9	Hs.387579
	201008_s_at	TXNIP	Hs.179526
	201012_at	ANXA1	Hs.287558
	201013_s_at	PAICS	Hs.444439
	201015_s_at	JUP	Hs.2340
45	201024_x_at	IF2	Hs.158688
	201034_at	ADD3	Hs.324470
	201037_at	PFKP	Hs.26010
	201041_s_at	DUSP1	Hs.171695
	201043_s_at	ANP32A	Hs.124977
50	201044_x_at	DUSP1	Hs.171695
	201047_x_at	RAB6A	Hs.5636
	201050_at	PLD3	Hs.74573
	201052_s_at	PSMF1	Hs.437495
	201058_s_at	MYL9	Hs.433814
55	201060_x_at	STOM	Hs.439776
	201061_s_at	STOM	Hs.439776
	201069_at	MMP2	Hs.367877
	201105_at	LGALS1	Hs.407909
	201107_s_at	THBS1	Hs.164226
60	201108_s_at	THBS1	Hs.164226
	201109_s_at	THBS1	Hs.164226
	201110_s_at	THBS1	Hs.164226
	201123_s_at	EIF5A	Hs.310621
	201125_s_at	ITGB5	Hs.149846
65	201131_s_at	CDH1	Hs.194657
	201136_at	PLP2	Hs.77422
	201137_s_at	HLA-DPB1	Hs.368409
	201141_at	GPNMB	Hs.389964

Table 1 (continued):

	201160_s_at	CSDA	Hs.221889
5	201161_s_at	CSDA	Hs.221889
	201162_at	IGFBP7	Hs.435795
	201163_s_at	IGFBP7	Hs.435795
	201169_s_at	BHLHB2	Hs.171825
	201170_s_at	BHLHB2	Hs.171825
	201174_s_at	TERF2IP	Hs.274428
10	201178_at	FBXO7	Hs.5912
	201189_s_at	ITPR3	Hs.77515
	201193_at	IDH1	Hs.11223
	201195_s_at	SLC7A5	Hs.184601
	201201_at	CSTB	Hs.695
15	201218_at	CTBP2	Hs.171391
	201220_x_at	CTBP2	Hs.171391
	201222_s_at	RAD23B	Hs.159087
	201223_s_at	RAD23B	Hs.159087
	201234_at	ILK	Hs.6196
20	201242_s_at	ATP1B1	Hs.78629
	201249_at	SLC2A1	Hs.169902
	201250_s_at	SLC2A1	Hs.169902
	201251_at	PKM2	Hs.198281
	201272_at	AKR1B1	Hs.75313
25	201285_at	MKRN1	Hs.7838
	201291_s_at	TOP2A	Hs.156346
	201294_s_at	WSB1	Hs.315379
	201295_s_at	WSB1	Hs.315379
	201300_s_at	PRNP	Hs.438582
30	201301_s_at	ANXA4	Hs.422986
	201302_at	ANXA4	Hs.422986
	201307_at	FLJ10849	Hs.386784
	201309_x_at	C5orf13	Hs.508742
	201313_at	ENO2	Hs.146580
35	201324_at	EMP1	Hs.306692
	201325_s_at	EMP1	Hs.306692
	201328_at	ETS2	Hs.292477
	201329_s_at	ETS2	Hs.292477
	201333_s_at	ARHGEF12	Hs.413112
40	201334_s_at	ARHGEF12	Hs.413112
	201348_at	GPX3	Hs.386793
	201360_at	CST3	Hs.304682
	201373_at	PLEC1	Hs.79706
	201389_at	ITGA5	Hs.149609
45	201392_s_at	IGF2R	Hs.76473
	201393_s_at	IGF2R	Hs.76473
	201412_at	LRP10	Hs.28368
	201416_at	SOX4	Hs.357901
	201417_at	SOX4	Hs.357901
50	201418_s_at	SOX4	Hs.357901
	201422_at	IFI30	Hs.14623
	201425_at	ALDH2	Hs.436437
	201426_s_at	VIM	Hs.435800
	201427_s_at	SEPP1	Hs.275775
55	201431_s_at	DPYSL3	Hs.150358
	201446_at	CNN3	Hs.194662
	201459_at	RUVBL2	Hs.6455
	201462_at	KIAA0193	Hs.75137
	201464_x_at	JUN	Hs.78465
60	201465_s_at	JUN	Hs.78465
	201466_s_at	JUN	Hs.78465
	201473_at	JUNB	Hs.400124
	201487_at	CTSC	Hs.128065
	201497_x_at	MYH11	Hs.78344
65	201506_at	TGFBI	Hs.421496
	201508_at	IGFBP4	Hs.1516
	201518_at	CBX1	Hs.77254

Table 1 (continued):

	201522_x_at	SNRPN	Hs.48375
5	201531_at	ZFP36	Hs.343586
	201536_at	na	Hs.181046
	201539_s_at	FHL1	Hs.421983
	201540_at	FHL1	Hs.421383
10	201548_s_at	PLU-1	Hs.143323
	201549_x_at	PLU-1	Hs.143323
10	201550_x_at	ACTG1	Hs.14376
	201563_at	SORD	Hs.878
	201564_s_at	FSCN1	Hs.118400
	201565_s_at	ID2	Hs.180919
15	201566_x_at	ID2	Hs.180919
	201579_at	FAT	Hs.166994
	201590_x_at	ANXA2	Hs.437110
	201596_x_at	KRT18	Hs.406013
	201599_at	OAT	Hs.75485
20	201601_x_at	IFITM1	Hs.458414
	201631_s_at	IER3	Hs.76095
	201644_at	TSTA3	Hs.404119
	201655_s_at	HSPG2	Hs.211573
	201656_at	ITGA6	Hs.212296
25	201666_at	TIMP1	Hs.446641
	201667_at	GJA1	Hs.74471
	201668_x_at	MARCKS	Hs.318603
	201669_s_at	MARCKS	Hs.318603
	201670_s_at	MARCKS	Hs.318603
30	201688_s_at	TPD52	Hs.162089
	201689_s_at	TPD52	Hs.162089
	201690_s_at	TPD52	Hs.162089
	201693_s_at	EGR1	Hs.326035
	201694_s_at	EGR1	Hs.326035
35	201695_s_at	NP	Hs.75514
	201700_at	CCND3	Hs.83173
	201711_x_at	RANBP2	Hs.199179
	201714_at	TUBG1	Hs.21635
	201720_s_at	LAPTM5	Hs.436200
40	201734_at	CLCN3	Hs.372528
	201735_s_at	CLCN3	Hs.372528
	201739_at	SGK	Hs.296323
	201743_at	CD14	Hs.75627
	201746_at	TP53	Hs.426890
45	201752_s_at	ADD3	Hs.324470
	201753_s_at	ADD3	Hs.324470
	201790_s_at	DHCR7	Hs.11806
	201791_s_at	DHCR7	Hs.11806
	201792_at	AEBP1	Hs.439463
50	201795_at	LBR	Hs.435166
	201798_s_at	FER1L3	Hs.362731
	201809_s_at	ENG	Hs.76753
	201810_s_at	SH3BP5	Hs.109150
	201811_x_at	SH3BP5	Hs.109150
55	201824_at	RNF14	Hs.170926
	201831_s_at	VDP	Hs.325948
	201839_s_at	TACSTD1	Hs.692
	201841_s_at	HSPB1	Hs.76067
	201842_s_at	EFEMP1	Hs.76224
60	201850_at	CAPG	Hs.82422
	201852_x_at	COL3A1	Hs.443625
	201858_s_at	PRG1	Hs.1908
	201859_at	PRG1	Hs.1908
	201860_s_at	PLAT	Hs.274404
65	201883_s_at	B4GALT1	Hs.396798
	201887_at	IL13RA1	Hs.285115
	201888_s_at	IL13RA1	Hs.285115
	201890_at	RRM2	Hs.226390

Table 1 (continued):

	201893_x_at	DCN	Hs.156316
5	201909_at	RPS4Y	Hs.180911
	201912_s_at	GSPT1	Hs.2707
	201923_at	PRDX4	Hs.83383
	201938_at	CDK2AP1	Hs.433201
	201944_at	HEXB	Hs.69293
	201952_at	ALCAM	Hs.10247
10	201963_at	FACL2	Hs.406678
	201968_s_at	PGM1	Hs.1869
	201995_at	EXT1	Hs.184161
	202007_at	NID	Hs.356624
	202014_at	PPP1R15A	Hs.76556
15	202016_at	MEST	Hs.416498
	202017_at	EPHX1	Hs.89649
	202018_s_at	LTF	Hs.437457
	202059_s_at	KPNA1	Hs.161008
	202068_s_at	LDLR	Hs.213289
20	202071_at	SDC4	Hs.252189
	202073_at	OPTN	Hs.390162
	202074_s_at	OPTN	Hs.390162
	202083_s_at	SEC14L1	Hs.75232
	202085_at	TJP2	Hs.75608
25	202086_at	MX1	Hs.436836
	202087_s_at	CTSL	Hs.418123
	202088_at	LIV-1	Hs.79136
	202096_s_at	BZRP	Hs.202
	202107_s_at	MCM2	Hs.57101
30	202112_at	VWF	Hs.440848
	202119_s_at	CPNE3	Hs.14158
	202124_s_at	ALS2CR3	Hs.154248
	202125_e_at	ALS2CR3	Hs.154248
	202129_s_at	RIOK3	Hs.209061
35	202130_at	RIOK3	Hs.209061
	202131_s_at	RIOK3	Hs.209061
	202145_at	LY6E	Hs.77667
	202153_s_at	NUP62	Hs.437023
	202177_at	GAS6	Hs.437710
40	202191_s_at	GAS7	Hs.226133
	202192_s_at	GAS7	Hs.226133
	202193_at	LIMK2	Hs.278027
	202201_at	BLVRB	Hs.76289
	202203_s_at	AMFR	Hs.295137
45	202204_s_at	AMFR	Hs.295137
	202206_at	ARL7	Hs.111554
	202207_at	ARL7	Hs.111554
	202208_s_at	ARL7	Hs.111554
	202219_at	SLC6A8	Hs.388375
50	202234_s_at	SLC16A1	Hs.75231
	202236_s_at	SLC16A1	Hs.75231
	202237_at	NNMT	Hs.364345
	202238_s_at	NNMT	Hs.364345
	202241_at	C8FW	Hs.444947
55	202242_at	TM4SF2	Hs.439586
	202252_at	RAB13	Hs.151536
	202265_at	BMI1	Hs.380403
	202269_x_at	GBP1	Hs.62661
	202270_at	GBP1	Hs.62661
60	202283_at	SERPINF1	Hs.173594
	202284_s_at	CDKN1A	Hs.370771
	202286_s_at	TACSTD2	Hs.23582
	202291_s_at	MGP	Hs.365706
	202295_s_at	CTSH	Hs.114931
65	202310_s_at	COL1A1	Hs.172928
	202336_s_at	PAM	Hs.352733
	202340_x_at	NR4A1	Hs.1119

Table 1 (continued):

	202345_s_at	FABP5	Hs.408061
	202364_at	MXI1	Hs.118630
5	202379_s_at	NKTR	Hs.369815
	202388_at	RGS2	Hs.78944
	202391_at	BASP1	Hs.79516
	202395_at	NSF	Hs.431279
10	202403_s_at	COL1A2	Hs.232115
	202409_at	na	Hs.251664
	202411_at	IFI27	Hs.278613
	202425_x_at	PPP3CA	Hs.272458
	202426_s_at	RXRA	Hs.20084
15	202429_s_at	PPP3CA	Hs.272458
	202431_s_at	MYC	Hs.202453
	202435_s_at	CYP1B1	Hs.154654
	202436_s_at	CYP1B1	Hs.154654
	202437_s_at	CYP1B1	Hs.154654
20	202443_x_at	NOTCH2	Hs.8121
	202452_at	ZYG	Hs.29285
	202456_s_at	ZYG	Hs.29285
	202457_s_at	PPP3CA	Hs.272458
	202459_s_at	LPIN2	Hs.437425
25	202460_s_at	LPIN2	Hs.437425
	202464_s_at	PFKFB3	Hs.195471
	202478_at	TRB2	Hs.155418
	202479_s_at	TRB2	Hs.155418
	202481_at	SDR1	Hs.17144
30	202492_at	FLJ22169	Hs.323363
	202497_x_at	SLC2A3	Hs.419240
	202498_s_at	SLC2A3	Hs.419240
	202499_s_at	SLC2A3	Hs.419240
	202500_at	DNAJB2	Hs.77768
35	202503_s_at	KIAA0101	Hs.81892
	202510_s_at	TNFAIP2	Hs.101382
	202523_s_at	SPOCK2	Hs.436193
	202524_s_at	SPOCK2	Hs.436193
	202545_at	PRKCD	Hs.155342
40	202546_at	VAMP8	Hs.172684
	202548_s_at	ARHGEF7	Hs.172813
	202551_s_at	CRIM1	Hs.170752
	202554_s_at	GSTM3	Hs.2006
	202555_s_at	MYLK	Hs.386078
45	202565_s_at	SVIL	Hs.163111
	202566_s_at	SVIL	Hs.163111
	202581_at	HSPA1A	Hs.274402
	202587_s_at	AK1	Hs.76240
	202589_at	TYMS	Hs.87491
50	202599_s_at	NRIP1	Hs.155017
	202600_s_at	NRIP1	Hs.155017
	202609_at	EPS8	Hs.2132
	202614_at	C4orf1	Hs.364615
	202624_s_at	CABIN1	Hs.435798
55	202626_s_at	LYN	Hs.80887
	202627_s_at	SERPINE1	Hs.414795
	202628_s_at	SERPINE1	Hs.414795
	202637_s_at	ICAM1	Hs.168383
	202638_s_at	ICAM1	Hs.168383
60	202643_s_at	TNFAIP3	Hs.211600
	202644_s_at	TNFAIP3	Hs.211600
	202660_at	--	Hs.406751
	202671_s_at	MGC15873	Hs.284491
	202672_s_at	ATF3	Hs.460
	202686_s_at	AXL	Hs.83341
65	202687_s_at	TNFSF10	Hs.387871
	202688_at	TNFSF10	Hs.387871
	202704_at	TOB1	Hs.178137

Table 1 (continued):

	202708_s_at	HIST2H2BE	Hs.2178
5	202718_at	IGFBP2	Hs.433326
	202720_at	TES	Hs.129129
	202724_s_at	FOXO1A	Hs.170133
	202728_s_at	LTBP1	Hs.241257
	202729_s_at	LTBP1	Hs.241257
10	202741_at	PRKACB	Hs.156324
	202742_s_at	PRKACB	Hs.156324
	202746_at	ITM2A	Hs.17109
	202747_s_at	ITM2A	Hs.17109
	202748_at	GBP2	Hs.386567
15	202759_s_at	AKAP2	Hs.42322
	202760_s_at	AKAP2	Hs.42322
	202761_s_at	SYNE2	Hs.444069
	202763_at	CASP3	Hs.141125
	202768_at	FOSB	Hs.75678
20	202800_at	SLC1A3	Hs.371369
	202803_s_at	ITGB2	Hs.375957
	202804_at	ABCC1	Hs.391464
	202813_at	TARBP1	Hs.151518
	202820_at	AHR	Hs.170087
25	202833_s_at	SERPIN A1	Hs.297681
	202838_at	FUCA1	Hs.576
	202845_s_at	RALBP1	Hs.75447
	202850_at	ABCD3	Hs.76781
	202855_s_at	SLC16A3	Hs.386678
	202859_x_at	IL8	Hs.624
30	202861_at	PER1	Hs.445534
	202869_at	OAS1	Hs.442936
	202871_at	TRAF4	Hs.8375
	202877_s_at	C1QR1	Hs.97199
	202878_s_at	C1QR1	Hs.97199
35	202887_s_at	RTP801	Hs.111244
	202888_s_at	ANPEP	Hs.1239
	202901_x_at	CTSS	Hs.181301
	202902_s_at	CTSS	Hs.181301
	202906_s_at	NBS1	Hs.25812
40	202908_at	WFS1	Hs.26077
	202912_at	ADM	Hs.441047
	202917_s_at	S100A8	Hs.416073
	202923_s_at	GCLC	Hs.414985
	202926_at	NAG	Hs.413771
45	202944_at	NAGA	Hs.75372
	202947_s_at	GYPC	Hs.81994
	202948_at	IL1R1	Hs.82112
	202949_s_at	FHL2	Hs.8302
	202953_at	C1QB	Hs.8986
50	202974_at	MPP1	Hs.422215
	202988_s_at	RGS1	Hs.75256
	202990_at	PYGL	Hs.771
	203021_at	SLPI	Hs.251754
	203037_s_at	MTSS1	Hs.77694
55	203038_at	PTPRK	Hs.354262
	203040_s_at	HMBS	Hs.82609
	203045_at	NINJ1	Hs.11342
	203052_at	C2	Hs.2253
	203056_s_at	PRDM2	Hs.413375
60	203057_s_at	PRDM2	Hs.413375
	203060_s_at	PAPSS2	Hs.274230
	203063_at	PPM1F	Hs.278441
	203065_s_at	CAV1	Hs.74034
	203066_at	GALNAC4S-6ST	Hs.6079
65	203069_at	SV2A	Hs.7979
	203074_at	ANXA8	Hs.87268
	203088_at	FBLN5	Hs.11494

Table 1 (continued):

	203097_s_at	PDZGEF1	Hs.373588
5	203104_at	CSF1R	Hs.174142
	203115_at	FECH	Hs.443610
	203116_s_at	FECH	Hs.443610
	203126_at	IMPA2	Hs.5753
10	203130_s_at	KIF5C	Hs.6641
	203139_at	DAPK1	Hs.244318
	203140_at	BCL6	Hs.155024
	203146_s_at	GABBR1	Hs.167017
	203151_at	MAP1A	Hs.194301
	203153_at	IFIT1	Hs.20315
15	203180_at	ALDH1A3	Hs.75746
	203184_at	FBN2	Hs.79432
	203186_s_at	S100A4	Hs.81256
	203192_at	ABC6	Hs.107911
	203196_at	ABCC4	Hs.307915
20	203213_at	CDC2	Hs.334562
	203215_s_at	MYO6	Hs.118483
	203216_s_at	MYO6	Hs.118483
	203221_at	TLE1	Hs.406491
	203234_at	UP	Hs.314828
25	203236_s_at	LGALS9	Hs.81337
	203276_at	LMNB1	Hs.89497
	203289_s_at	C16orf35	Hs.19699
	203290_at	HLA-DQA1	Hs.387679
	203299_s_at	AP1S2	Hs.40368
30	203300_x_at	AP1S2	Hs.40368
	203304_at	NMA	Hs.348802
	203305_at	F13A1	Hs.80424
	203308_x_at	HPS1	Hs.404568
	203309_s_at	HPS1	Hs.404568
35	203323_at	CAV2	Hs.139851
	203324_s_at	CAV2	Hs.139851
	203325_s_at	COL5A1	Hs.433695
	203333_at	KIFAP3	Hs.433442
	203349_s_at	ETV5	Hs.43697
40	203372_s_at	SOCS2	Hs.406946
	203373_at	SOCS2	Hs.405946
	203381_s_at	APOE	Hs.169401
	203382_s_at	APOE	Hs.169401
	203387_s_at	TBC1D4	Hs.173802
	203388_at	ARRB2	Hs.435811
45	203397_s_at	GALNT3	Hs.278611
	203402_at	KCNAB2	Hs.440497
	203407_at	PPL	Hs.192233
	203408_s_at	SATB1	Hs.416026
50	203411_s_at	LMNA	Hs.436441
	203413_at	NELL2	Hs.79389
	203430_at	HEBP2	Hs.439081
	203434_s_at	MME	Hs.307734
	203435_s_at	MME	Hs.307734
55	203440_at	CDH2	Hs.334131
	203456_at	JM4	Hs.29595
	203470_s_at	PLEK	Hs.77436
	203471_s_at	PLEK	Hs.77436
	203476_at	TPBG	Hs.82128
60	203485_at	RTN1	Hs.99947
	203502_at	BPGM	Hs.198365
	203504_s_at	ABCA1	Hs.147259
	203505_at	ABCA1	Hs.147259
	203508_at	TNFRSF1B	Hs.256278
65	203509_at	SORL1	Hs.438159
	203513_at	FLJ21439	Hs.431338
	203518_at	CHS1	Hs.130188
	203523_at	LSP1	Hs.56729

Table 1 (continued):

	203524_s_at	MPST	Hs.248267
5	203535_at	S100A9	Hs.112405
	203542_s_at	BTEB1	Hs.150557
	203543_s_at	BTEB1	Hs.150557
	203544_s_at	STAM	Hs.441498
	203547_at	CD4	Hs.17483
	203548_s_at	LPL	Hs.180878
10	203549_s_at	LPL	Hs.180878
	203555_at	PTPN18	Hs.210913
	203556_at	ZHX2	Hs.30209
	203559_s_at	ABP1	Hs.437420
	203561_at	FCGR2A	Hs.352642
15	203562_at	FEZ1	Hs.79226
	203570_at	LOXL1	Hs.65436
	203574_at	NFIL3	Hs.79334
	203585_at	ZNF185	Hs.16622
	203591_s_at	CSF3R	Hs.381027
20	203627_at	IGF1R	Hs.239176
	203628_at	IGF1R	Hs.239176
	203638_s_at	FGFR2	Hs.404081
	203641_s_at	KIAA0977	Hs.300855
	203642_s_at	KIAA0977	Hs.300855
25	203645_s_at	CD163	Hs.74076
	203661_s_at	TMOD1	Hs.374849
	203662_s_at	TMOD1	Hs.374849
	203665_at	HMOX1	Hs.202833
	203666_at	CXCL12	Hs.436042
30	203675_at	NUCB2	Hs.423095
	203676_at	GNS	Hs.334534
	203680_at	PRKAR2B	Hs.77439
	203690_at	TUBGCP3	Hs.9884
	203691_at	PI3	Hs.112341
35	203695_s_at	DFNA5	Hs.304365
	203708_at	PDE4B	Hs.188
	203710_at	ITPR1	Hs.149900
	203716_s_at	DPP4	Hs.44926
	203717_at	DPP4	Hs.44926
40	203725_at	GADD45A	Hs.80409
	203726_s_at	LAMA3	Hs.83450
	203753_at	TCF4	Hs.359289
	203757_s_at	CEACAM6	Hs.436718
	203758_at	CTSO	Hs.75262
45	203760_s_at	SLA	Hs.75367
	203761_at	SLA	Hs.75367
	203764_at	DLG7	Hs.77695
	203767_s_at	STS	Hs.79876
	203768_s_at	STS	Hs.79876
50	203795_s_at	BCL7A	Hs.371758
	203796_s_at	BCL7A	Hs.371758
	203799_at	DCL-1	Hs.2441
	203802_x_at	WBSCR20A	Hs.272820
	203819_s_at	IMP-3	Hs.79440
55	203820_s_at	IMP-3	Hs.79440
	203821_at	DTR	Hs.799
	203828_s_at	NK4	Hs.943
	203836_s_at	MAP3K5	Hs.151988
	203845_at	PCAF	Hs.203475
60	203853_s_at	GAB2	Hs.30687
	203859_s_at	PALM	Hs.78482
	203860_at	PCCA	Hs.80741
	203868_s_at	VCAM1	Hs.109225
	203878_s_at	MMP11	Hs.143751
65	203887_s_at	THBD	Hs.2030
	203888_at	THBD	Hs.2030
	203895_at	PLCB4	Hs.151408

Table 1 (continued):

	203911_at	RAP1GA1	Hs.433797
5	203913_s_at	HPGD	Hs.77348
	203914_x_at	HPGD	Hs.77348
	203915_at	CXCL9	Hs.77367
	203921_at	CHST2	Hs.8786
10	203922_s_at	CYBB	Hs.88974
	203923_s_at	CYBB	Hs.88974
	203925_at	GCLM	Hs.315562
	203932_at	HLA-DMB	Hs.1162
	203933_at	Rab11-FIP3	Hs.119004
	203936_s_at	MMP9	Hs.151738
15	203939_at	NT5E	Hs.153952
	203946_s_at	ARG2	Hs.172851
	203948_s_at	MPO	Hs.458272
	203949_at	MPO	Hs.458272
	203966_s_at	PPM1A	Hs.130036
20	203973_s_at	KIAA0146	Hs.381058
	203979_at	CYP27A1	Hs.82568
	203980_at	FABP4	Hs.391561
	203987_at	FZD6	Hs.114218
	203989_x_at	F2R	Hs.128087
25	204004_at	---	Hs.503876 // est
	204006_s_at	FCGR3A	Hs.372679
	204007_at	FCGR3A	Hs.372679
	204011_at	SPRY2	Hs.18676
	204018_x_at	HBA1	Hs.449630
30	204030_s_at	SCHIP1	Hs.61490
	204035_at	SCG2	Hs.436577
	204039_at	CEBPA	Hs.76171
	204044_at	QPRT	Hs.8935
	204051_s_at	SFRP4	Hs.105700
35	204057_at	ICSBP1	Hs.14453
	204059_s_at	ME1	Hs.14732
	204069_at	MEIS1	Hs.170177
	204070_at	RARRES3	Hs.17466
	204073_s_at	C11orf9	Hs.184640
40	204081_at	NRGN	Hs.232004
	204082_at	PBX3	Hs.294101
	204083_s_at	TPM2	Hs.300772
	204086_at	PRAME	Hs.30743
	204099_at	SMARCD3	Hs.444445
45	204103_at	CCL4	Hs.75703
	204112_s_at	HNMT	Hs.42151
	204116_at	IL2RG	Hs.84
	204118_at	CD48	Hs.901
	204122_at	TYROBP	Hs.9963
50	204131_s_at	FOXO3A	Hs.423523
	204132_s_at	FOXO3A	Hs.423523
	204134_at	PDE2A	Hs.154437
	204141_at	TUBB	Hs.300701
	204147_s_at	TFDP1	Hs.79353
55	204150_at	STAB1	Hs.301989
	204151_x_at	AKR1C1	Hs.295131
	204153_s_at	MFNG	Hs.371768
	204158_s_at	TCIRG1	Hs.46465
	204159_at	CDKN2C	Hs.4854
60	204160_s_at	ENPP4	Hs.54037
	204165_at	WASF1	Hs.75850
	204170_s_at	CKS2	Hs.83758
	204172_at	CPO	Hs.89866
	204174_at	ALOX5AP	Hs.100194
65	204182_s_at	ZNF297B	Hs.355581
	204187_at	GMPR	Hs.1435
	204192_at	CD37	Hs.153053
	204197_s_at	RUNX3	Hs.170019

Table 1 (continued):

	204198_s_at	RUNX3	Hs.170019
5	204203_at	CEBPG	Hs.2227
	204214_s_at	RAB32	Hs.32217
	204222_s_at	GLIPR1	Hs.401813
	204224_s_at	GCH1	Hs.86724
	204232_at	FCER1G	Hs.433300
10	204235_s_at	CED-6	Hs.107056
	204237_at	CED-6	Hs.107056
	204254_s_at	VDR	Hs.2062
	204257_at	FADS3	Hs.21765
	204259_at	MMP7	Hs.2256
	204270_at	SKI	Hs.2969
15	204285_s_at	PMAIP1	Hs.96
	204286_s_at	PMAIP1	Hs.96
	204298_s_at	LOX	Hs.102267
	204301_at	KIAA0711	Hs.5333
20	204304_s_at	PROM1	Hs.370052
	204319_s_at	RGS10	Hs.82280
	204321_at	NEO1	Hs.388613
	204326_x_at	MT1X	Hs.374950
	204341_at	TRIM16	Hs.241305
25	204351_at	S100P	Hs.2962
	204362_at	SCAP2	Hs.410745
	204363_at	F3	Hs.62192
	204379_s_at	FGFR3	Hs.1420
	204381_at	LRP3	Hs.143641
	204385_at	KYNU	Hs.444471
30	204388_s_at	MAOA	Hs.183109
	204392_at	CAMK1	Hs.434875
	204396_s_at	GPRK5	Hs.211569
	204403_x_at	KIAA0738	Hs.406492
	204409_s_at	EIF1AY	Hs.205080
35	204410_at	EIF1AY	Hs.205080
	204415_at	G1P3	Hs.287721
	204416_x_at	APOC1	Hs.268671
	204419_x_at	HBG2	Hs.302145
	204420_at	FOSL1	Hs.283565
40	204429_s_at	SLC2A5	Hs.33084
	204430_s_at	SLC2A5	Hs.33084
	204438_at	MRC1	Hs.75182
	204439_at	C1orf29	Hs.389724
	204440_at	CD83	Hs.79197
45	204445_s_at	ALOX5	Hs.89499
	204446_s_at	ALOX5	Hs.89499
	204447_at	ProSAPiP1	Hs.90232
	204451_at	FZD1	Hs.94234
	204457_s_at	GAS1	Hs.65029
50	204466_s_at	SNCA	Hs.76930
	204467_s_at	SNCA	Hs.76930
	204468_s_at	TIE	Hs.78824
	204470_at	CXCL1	Hs.789
	204490_s_at	CD44	Hs.306278
55	204494_s_at	LOC56905	Hs.306331
	204497_at	ADCY9	Hs.20196
	204498_s_at	ADCY9	Hs.20196
	204501_at	NOV	Hs.235935
60	204502_at	SAMHD1	Hs.371264
	204505_s_at	EPB49	Hs.274122
	204517_at	PPIC	Hs.110364
	204526_s_at	TBC1D8	Hs.442657
	204529_s_at	TOX	Hs.439767
	204533_at	CXCL10	Hs.413924
65	204537_s_at	GABRE	Hs.22785
	204540_at	EEF1A2	Hs.433839
	204547_at	RAB40B	Hs.302498

Table 1 (continued):

	204548_at	STAR	Hs.440760
5	204560_at	FKBP5	Hs.7557
	204561_x_at	APOC2	Hs.75615
	204562_at	IRF4	Hs.127686
	204563_at	SELL	Hs.82848
	204581_at	CD22	Hs.262150
10	204588_s_at	SLC7A7	Hs.194693
	204604_at	PFTK1	Hs.57856
	204611_s_at	PPP2R5B	Hs.75199
	204614_at	SERPINB2	Hs.75716
	204619_s_at	CSPG2	Hs.434488
15	204620_s_at	CSPG2	Hs.434488
	204621_s_at	NR4A2	Hs.82120
	204622_x_at	NR4A2	Hs.82120
	204623_at	TFF3	Hs.82961
	204625_s_at	ITGB3	Hs.87149
20	204626_s_at	ITGB3	Hs.87149
	204627_s_at	ITGB3	Hs.87149
	204628_s_at	ITGB3	Hs.87149
	204638_at	ACP5	Hs.1211
	204639_at	ADA	Hs.407185
25	204647_at	HOMER3	Hs.410683
	204655_at	CCL5	Hs.241392
	204661_at	CDW52	Hs.276770
	204670_x_at	HLA-DRB4	Hs.449633
	204671_s_at	ANKRD6	Hs.30991
30	204677_at	CDH5	Hs.76206
	204679_at	KCNK1	Hs.376874
	204682_at	LTBP2	Hs.83337
	204684_at	NPTX1	Hs.84154
	204698_at	ISG20	Hs.105434
35	204713_s_at	F5	Hs.30054
	204714_s_at	F5	Hs.30054
	204720_s_at	DNAJC6	Hs.44896
	204729_s_at	STX1A	Hs.75671
	204736_s_at	CSPG4	Hs.436301
40	204745_x_at	MT1G	Hs.433391
	204747_at	IFIT4	Hs.181874
	204748_at	PTGS2	Hs.196384
	204749_at	NAP1L3	Hs.21365
	204750_s_at	DSC2	Hs.95612
45	204751_x_at	DSC2	Hs.95612
	204753_s_at	HLF	Hs.250692
	204755_x_at	HLF	Hs.250692
	204774_at	EVI2A	Hs.70499
	204777_s_at	MAL	Hs.80395
50	204787_at	Z39IG	Hs.8904
	204788_s_at	PPOX	Hs.376314
	204789_at	FMNL	Hs.100217
	204790_at	MADH7	Hs.370849
	204793_at	GASP	Hs.113082
55	204794_at	DUSP2	Hs.1183
	204798_at	MYB	Hs.407830
	204806_x_at	HLA-F	Hs.411958
	204808_s_at	TMEM5	Hs.112986
	204811_s_at	CACNA2D2	Hs.389415
60	204820_s_at	BTN3A3	Hs.167741
	204823_at	NAV3	Hs.306322
	204829_s_at	FOLR2	Hs.433159
	204834_at	FGL2	Hs.351808
	204848_x_at	HBG1	Hs.449631
65	204858_s_at	ECGF1	Hs.435067
	204872_at	BCE-1	Hs.99824
	204881_s_at	UGCG	Hs.432605
	204885_s_at	MSLN	Hs.408488

Table 1 (continued):

	204890_s_at	LCK	Hs.1765
	204891_s_at	LCK	Hs.1765
5	204896_s_at	PTGER4	Hs.199248
	204897_at	PTGER4	Hs.199248
	204899_s_at	SAP30	Hs.413835
	204900_x_at	SAP30	Hs.413835
	204908_s_at	BCL3	Hs.31210
10	204912_at	IL10RA	Hs.327
	204914_s_at	SOX11	Hs.432638
	204916_at	RAMP1	Hs.32989
	204917_s_at	MLLT3	Hs.404
15	204923_at	CXorf9	Hs.61469
	204924_at	TLR2	Hs.439608
	204949_at	ICAM3	Hs.353214
	204951_at	ARHH	Hs.109918
	204959_at	MNDA	Hs.153837
20	204961_s_at	NCF1	Hs.1583
	204971_at	CSTA	Hs.412999
	204972_at	OAS2	Hs.414332
	204976_s_at	LOC286505	Hs.433256 // ...
	204984_at	GPC4	Hs.58367
25	204990_s_at	ITGB4	Hs.85266
	204992_s_at	PFN2	Hs.91747
	204998_s_at	ATF5	Hs.9754
	205000_at	DDX3Y	Hs.99120
	205001_s_at	DDX3Y	Hs.99120
30	205012_s_at	HAGH	Hs.155482
	205019_s_at	VIPR1	Hs.348500
	205020_s_at	ARL4	Hs.245540
	205027_s_at	MAP3K8	Hs.432453
	205033_s_at	DEFA1	Hs.274463
35	205035_at	CTDP1	Hs.4076
	205041_s_at	ORM1	Hs.572
	205047_s_at	ASNS	Hs.446546
	205049_s_at	CD79A	Hs.79630
	205051_s_at	KIT	Hs.81665
40	205056_at	ITGAE	Hs.389133
	205067_at	IL1B	Hs.126256
	205076_s_at	CRA	Hs.425144
	205081_at	CRIP1	Hs.423190
	205098_at	CCR1	Hs.301921
45	205099_s_at	CCR1	Hs.301921
	205110_s_at	FGF13	Hs.6540
	205114_s_at	CCL3	Hs.73817
	205118_at	FPR1	Hs.753
	205119_s_at	FPR1	Hs.753
50	205130_at	RAGE	Hs.104119
	205131_x_at	SCGF	Hs.105927
	205157_s_at	KRT17	Hs.2785
	205159_at	CSF2RB	Hs.285401
	205174_s_at	QPCT	Hs.79033
55	205179_s_at	ADAM8	Hs.86947
	205193_at	MAFF	Hs.51305
	205200_at	TNA	Hs.65424
	205205_at	RELB	Hs.307905
	205207_at	IL6	Hs.130210
60	205213_at	CENTB1	Hs.337242
	205214_at	STK17B	Hs.88297
	205220_at	HM74	Hs.458425
	205227_at	IL1RAP	Hs.143527
	205229_s_at	COCH	Hs.21016
65	205230_at	RPH3A	Hs.21239
	205237_at	FCN1	Hs.440898
	205239_at	AREG	Hs.270833
	205240_at	LGN	Hs.278338

Table 1 (continued):

	205241_at	SCO2	Hs.410944
5	205249_at	EGR2	Hs.1895
	205254_x_at	TCF7	Hs.169294
	205255_x_at	TCF7	Hs.169294
	205262_at	KCNH2	Hs.188021
	205266_at	LIF	Hs.2250
10	205267_at	POU2AF1	Hs.2407
	205268_s_at	ADD2	Hs.113614
	205270_s_at	LCP2	Hs.2488
	205278_at	GAD1	Hs.420036
	205281_s_at	PIGA	Hs.51
15	205289_at	BMP2	Hs.73853
	205297_s_at	CD79B	Hs.89575
	205312_at	SPI1	Hs.157441
	205321_at	EIF2S3	Hs.433518
	205328_at	CLDN10	Hs.26126
20	205330_at	MN1	Hs.268515
	205348_s_at	DNCI1	Hs.65248
	205349_at	GNA15	Hs.73797
	205353_s_at	PBP	Hs.433863
	205361_s_at	PFDN4	Hs.91161
25	205366_s_at	HOXB6	Hs.98428
	205382_s_at	DF	Hs.155597
	205389_s_at	ANK1	Hs.443711
	205390_s_at	ANK1	Hs.443711
	205391_x_at	ANK1	Hs.443711
30	205392_s_at	CCL15	Hs.272493
	205400_at	WAS	Hs.2157
	205402_x_at	PRSS2	Hs.367767
	205403_at	IL1R2	Hs.25333
	205409_at	FOSL2	Hs.301612
35	205414_s_at	KIAA0672	Hs.6336
	205419_at	EBI2	Hs.784
	205445_at	PRL	Hs.1905
	205453_at	HOXB2	Hs.290432
	205456_at	CD3E	Hs.3003
40	205463_s_at	PDGFA	Hs.376032
	205466_s_at	HS3ST1	Hs.40968
	205469_s_at	IRF5	Hs.334450
	205471_s_at	DACH	Hs.63931
	205472_s_at	DACH	Hs.63931
45	205476_at	CCL20	Hs.75498
	205479_s_at	PLAU	Hs.77274
	205483_s_at	G1P2	Hs.458485
	205484_at	SIT	Hs.88012
	205488_at	GZMA	Hs.90708
50	205495_s_at	GNLY	Hs.105806
	205513_at	TCN1	Hs.2012
	205528_s_at	CBFA2T1	Hs.90858
	205529_s_at	CBFA2T1	Hs.90858
	205544_s_at	CR2	Hs.78792
55	205547_s_at	TAGLN	Hs.433401
	205550_s_at	BRE	Hs.80426
	205552_s_at	OAS1	Hs.442936
	205557_at	BPI	Hs.303523
	205568_at	AQP9	Hs.104624
60	205570_at	PIP5K2A	Hs.108966
	205572_at	ANGPT2	Hs.115181
	205582_s_at	GGTLA1	Hs.437156
	205590_at	RASGRP1	Hs.189527
	205592_at	SLC4A1	Hs.443948
65	205593_s_at	PDE9A	Hs.389777
	205599_at	TRAF1	Hs.438253
	205608_s_at	ANGPT1	Hs.2463
	205609_at	ANGPT1	Hs.2463

Table 1 (continued):

	205612_at	MMRN	Hs.268107
5	205614_x_at	MST1	Hs.349110
	205624_at	CPA3	Hs.646
	205627_at	CDA	Hs.72924
	205632_s_at	PIP5K1B	Hs.297604
	205633_s_at	ALAS1	Hs.78712
	205653_at	CTSG	Hs.421724
10	205660_at	OASL	Hs.118633
	205668_at	LY75	Hs.163563
	205681_at	BCL2A1	Hs.227817
	205683_x_at	TPSB2	Hs.405479
	205707_at	IL17R	Hs.129751
15	205712_at	PTPRD	Hs.323079
	205715_at	BST1	Hs.169998
	205717_x_at	PCDHGC3	Hs.283794
	205718_at	ITGB7	Hs.1741
	205721_at	---	Hs.441202 // est
20	205739_x_at	ZFD25	Hs.50216
	205743_at	STAC	Hs.56045
	205758_at	CD8A	Hs.85258
	205767_at	EREG	Hs.115263
	205769_at	SLC27A2	Hs.11729
25	205780_at	BIK	Hs.155419
	205786_s_at	ITGAM	Hs.172631
	205789_at	CD1D	Hs.1799
	205790_at	SCAP1	Hs.411942
	205798_at	IL7R	Hs.362807
30	205801_s_at	RASGRP3	Hs.24024
	205819_at	MARCO	Hs.67726
	205821_at	D12S2489E	Hs.387787
	205826_at	MYOM2	Hs.443683
	205831_at	CD2	Hs.89476
35	205837_s_at	GYPA	Hs.34287
	205838_at	GYPA	Hs.34287
	205839_s_at	BZRAP1	Hs.112499
	205844_at	VNN1	Hs.12114
	205848_at	GAS2	Hs.135665
40	205856_at	SLC14A1	Hs.101307
	205857_at	SLC18A2	Hs.50458
	205859_at	LY86	Hs.184018
	205861_at	SPIB	Hs.437905
	205863_at	S100A12	Hs.19413
45	205879_x_at	RET	Hs.350321
	205882_x_at	ADD3	Hs.324470
	205884_at	ITGA4	Hs.145140
	205891_at	ADORA2B	Hs.45743
	205896_at	SLC22A4	Hs.441130
50	205898_at	CX3CR1	Hs.78913
	205899_at	CCNA1	Hs.417050
	205900_at	KRT1	Hs.80828
	205901_at	PNOC	Hs.371809
	205919_at	HBE1	Hs.117848
55	205922_at	VNN2	Hs.293130
	205927_s_at	CTSE	Hs.1355
	205929_at	GPA33	Hs.437229
	205933_at	SETBP1	Hs.201369
	205935_at	FOXF1	Hs.155591
60	205936_s_at	HK3	Hs.411695
	205942_s_at	SAH	Hs.409501
	205944_s_at	CLTCL1	Hs.184916
	205950_s_at	CA1	Hs.23118
	205960_at	PDK4	Hs.8364
65	205983_at	DPEP1	Hs.109
	205984_at	CRHBP	Hs.115617
	205987_at	CD1C	Hs.1311

Table 1 (continued):

	206001_at	NPY	Hs.1832
	206011_at	CASP1	Hs.2490
5	206025_s_at	TNFAIP6	Hs.407546
	206026_s_at	TNFAIP6	Hs.407546
	206034_at	SERPINB8	Hs.368077
	206039_at	RAB33A	Hs.56294
10	206042_x_at	SNRPN	Hs.48375
	206046_at	ADAM23	Hs.492317
	206049_at	SELP	Hs.73800
	206059_at	ZNF91	Hs.8597
	206067_s_at	WT1	Hs.1145
15	206070_s_at	EPHA3	Hs.123642
	206074_s_at	HMGA1	Hs.57301
	206077_at	KEL	Hs.420322
	206093_x_at	TNXB	Hs.411644
	206106_at	MAPK12	Hs.432642
20	206108_s_at	SFRS6	Hs.6891
	206110_at	HIST1H3H	Hs.70937
	206111_at	RNASE2	Hs.728
	206115_at	EGR3	Hs.74088
	206118_at	STAT4	Hs.80642
25	206130_s_at	ASGR2	Hs.1259
	206134_at	ADAMDEC1	Hs.145296
	206135_at	ST18	Hs.151449
	206145_at	RHAG	Hs.368178
	206146_s_at	RHAG	Hs.368178
30	206148_at	IL3RA	Hs.389251
	206150_at	TNFRSF7	Hs.355307
	206157_at	PTX3	Hs.2050
	206159_at	GDF10	Hs.2171
	206167_s_at	ARHGAP6	Hs.250830
35	206169_x_at	RoXaN	Hs.26347
	206177_s_at	ARG1	Hs.440934
	206187_at	PTGIR	Hs.393
	206196_s_at	RPIP8	Hs.6755
	206206_at	LY64	Hs.87205
40	206207_at	CLC	Hs.889
	206222_at	TNFRSF10C	Hs.119684
	206232_s_at	B4GALT6	Hs.369994
	206233_at	B4GALT6	Hs.369994
	206235_at	LIG4	Hs.166091
45	206244_at	CR1	Hs.834019
	206245_s_at	IVNS1ABP	Hs.197298
	206255_at	BLK	Hs.389900
	206277_at	P2RY2	Hs.339
	206279_at	PRKY	Hs.183165
50	206281_at	ADCYAP1	Hs.68137
	206283_s_at	TAL1	Hs.498079
	206298_at	RhoGAP2	Hs.87241
	206302_s_at	NUDT4	Hs.355399
	206303_s_at	NUDT4	Hs.355399
55	206304_at	MYBPH	Hs.927
	206310_at	SPINK2	Hs.98243
	206331_at	CALCR	Hs.152175
	206332_s_at	IFI16	Hs.370873
	206337_at	CCR7	Hs.1652
60	206341_at	IL2RA	Hs.130058
	206342_x_at	IDS	Hs.352304
	206343_s_at	NRG1	Hs.172816
	206359_at	SOCS3	Hs.436943
	206360_s_at	SOCS3	Hs.436943
65	206361_at	GPR44	Hs.299567
	206363_at	MAF	Hs.134859
	206366_x_at	XCL1	Hs.174228
	206367_at	REN	Hs.3210

Table 1 (continued):

	206371_at	FOLR3	Hs.352
5	206372_at	MYF6	Hs.38937
	206374_at	DUSP8	Hs.41688
	206377_at	FOXF2	Hs.44481
	206380_s_at	PFC	Hs.53155
	206381_at	SCN2A2	Hs.435796
10	206390_x_at	PF4	Hs.81564
	206398_s_at	CD19	Hs.96023
	206404_at	FGF9	Hs.111
	206420_at	IGSF6	Hs.135194
	206433_s_at	SPOCK3	Hs.159425
15	206453_s_at	NDRG2	Hs.243960
	206461_x_at	MT1H	Hs.438462
	206464_at	BMX	Hs.27372
	206471_s_at	PLXNC1	Hs.286229
	206472_s_at	TLE3	Hs.287362
	206478_at	KIAA0125	Hs.38365
20	206485_at	CD5	Hs.58685
	206488_s_at	CD36	Hs.443120
	206491_s_at	NAPA	Hs.75932
	206493_at	ITGA2B	Hs.411312
	206494_s_at	ITGA2B	Hs.411312
25	206508_at	TNFSF7	Hs.99899
	206513_at	AIM2	Hs.105115
	206515_at	CYP4F3	Hs.106242
	206519_x_at	SIGLEC6	Hs.397255
30	206520_x_at	SIGLEC6	Hs.397255
	206522_at	MGAM	Hs.122785
	206545_at	CD28	Hs.1987
	206546_at	SYCP2	Hs.202676
	206574_s_at	PTP4A3	Hs.43666
	206580_s_at	EFEMP2	Hs.381870
35	206582_s_at	GPR56	Hs.6527
	206584_at	LY96	Hs.69328
	206589_at	GFI1	Hs.73172
	206591_at	RAG1	Hs.73958
	206618_at	IL18R1	Hs.159301
40	206622_at	TRH	Hs.182231
	206624_at	USP9Y	Hs.371255
	206631_at	PTGER2	Hs.2090
	206632_s_at	APOBEC3B	Hs.226307
	206634_at	SIX3	Hs.227277
45	206637_at	GPR105	Hs.2465
	206643_at	HAL	Hs.190783
	206647_at	HBZ	Hs.272003
	206655_s_at	PNUTL1	Hs.283743
	206660_at	IGLL1	Hs.348935
50	206662_at	GLRX	Hs.28988
	206665_s_at	BCL2L1	Hs.305890
	206666_at	GZMK	Hs.277937
	206674_at	FLT3	Hs.385
	206676_at	CEACAM8	Hs.41
55	206682_at	CLECSF13	Hs.54403
	206697_s_at	HP	Hs.403931
	206698_at	XK	Hs.78919
	206700_s_at	SMCY	Hs.80358
	206707_x_at	C6orf82	Hs.389488
60	206710_s_at	EPB41L3	Hs.103839
	206724_at	CBX4	Hs.5637
	206726_at	PGDS	Hs.128433
	206752_s_at	DFFB	Hs.133089
	206759_at	FCER2	Hs.1416
65	206760_s_at	FCER2	Hs.1416
	206761_at	TACTILE	Hs.142023
	206762_at	KCNA5	Hs.150208

Table 1 (continued):

	206765_at	KCNJ2	Hs.1547
5	206788_s_at	CBFB	Hs.179881
	206793_at	PNMT	Hs.1892
	206804_at	CD3G	Hs.2259
	206834_at	HBD	Hs.36977
	206851_at	RNASE3	Hs.73839
10	206857_s_at	FKBP1B	Hs.306834
	206858_s_at	HOXC6	Hs.820
	206871_at	ELA2	Hs.99863
	206877_at	MAD	Hs.379930
	206881_s_at	LILRA3	Hs.113277
	206918_s_at	RBM12	Hs.166887
15	206924_at	IL11	Hs.1721
	206932_at	CH25H	Hs.47357
	206934_at	SIRPB1	Hs.194784
	206937_at	SPTA1	Hs.418378
	206940_s_at	POU4F1	Hs.458303
20	206950_at	SCN9A	Hs.2319
	206951_at	HIST1H4E	Hs.240135
	206953_s_at	LPHN2	Hs.24212
	206978_at	CCR2	Hs.395
	206991_s_at	CCR5	Hs.54443
25	206999_at	IL12RB2	Hs.413608
	207001_x_at	DSIP1	Hs.420569
	207008_at	IL8RB	Hs.846
	207030_s_at	CSRP2	Hs.10526
	207031_at	BAPX1	Hs.105941
30	207034_s_at	GLI2	Hs.111867
	207038_at	SLC16A6	Hs.42645
	207043_s_at	SLC6A9	Hs.442590
	207067_s_at	HDC	Hs.1481
	207072_at	IL18RAP	Hs.158315
35	207075_at	CIAS1	Hs.159483
	207076_s_at	ASS	Hs.160786
	207085_x_at	CSF2RA	Hs.227835
	207087_x_at	ANK1	Hs.443711
	207090_x_at	ZFP30	Hs.276763
40	207094_at	IL8RA	Hs.194778
	207104_x_at	LILRB1	Hs.149924
	207111_at	EMR1	Hs.2375
	207113_s_at	TNF	Hs.241570
	207117_at	H-plk	Hs.250693
45	207134_x_at	TPSB2	Hs.405479
	207161_at	KIAA0087	Hs.69749
	207172_s_at	CDH11	Hs.443435
	207173_x_at	CDH11	Hs.443435
	207206_s_at	ALOX12	Hs.1200
50	207216_at	TNFSF8	Hs.177136
	207224_s_at	SIGLEC7	Hs.274470
	207237_at	KCNA3	Hs.169948
	207269_at	DEFA4	Hs.2582
	207275_s_at	FACL2	Hs.406678
55	207292_s_at	MAPK7	Hs.150136
	207316_at	HAS1	Hs.57697
	207329_at	MMP8	Hs.390002
	207332_s_at	TFRC	Hs.185726
	207339_s_at	LTB	Hs.376208
60	207341_at	PRTN3	Hs.928
	207357_s_at	GALNT10	Hs.13785
	207358_x_at	MACF1	Hs.372463
	207376_at	VENTX2	Hs.125231
	207384_at	PGLYRP	Hs.137583
65	207387_s_at	GK	Hs.1466
	207389_at	GP1BA	Hs.1472
	207419_s_at	RAC2	Hs.301175

Table 1 (continued):

	207425_s_at	MSF	Hs.288094
	207433_at	IL10	Hs.193717
5	207435_s_at	SRRM2	Hs.433343
	207459_x_at	GYPB	Hs.438658
	207467_x_at	CAST	Hs.440961
	207496_at	MS4A2	Hs.386748
	207509_s_at	LAIR2	Hs.43803
10	207511_s_at	CGI-57	Hs.4973
	207522_s_at	ATP2A3	Hs.5541
	207526_s_at	IL1RL1	Hs.66
	207533_at	CCL1	Hs.72918
	207535_s_at	NFKB2	Hs.73090
15	207540_s_at	SYK	Hs.192182
	207542_s_at	AQP1	Hs.76152
	207550_at	MPL	Hs.84171
	207571_x_at	Clorf38	Hs.10649
	207574_s_at	GADD45B	Hs.110571
20	207605_x_at	H-plk	Hs.250693
	207610_s_at	EMR2	Hs.137354
	207651_at	H963	Hs.159545
	207655_s_at	BLNK	Hs.167746
	207667_s_at	MAP2K3	Hs.180533
25	207674_at	FCAR	Hs.193122
	207675_x_at	ARTN	Hs.194689
	207677_s_at	NCF4	Hs.196352
	207691_x_at	ENTPD1	Hs.205353
	207695_s_at	IGSF1	Hs.22111
30	207697_x_at	LILRB3	Hs.306230
	207705_s_at	KIAA0980	Hs.227743
	207741_x_at	TPSB2	Hs.405479
	207793_s_at	EPB41	Hs.37427
	207794_at	CCR2	Hs.395
35	207795_s_at	KLRD1	Hs.41682
	207801_s_at	RNF10	Hs.387944
	207802_at	SGP28	Hs.404466
	207826_s_at	ID3	Hs.76884
	207827_x_at	SNCA	Hs.76930
40	207836_s_at	RBPMS	Hs.195825
	207838_x_at	PBXIP1	Hs.8068
	207850_at	CXCL3	Hs.89690
	207854_at	GYPE	Hs.395535
	207857_at	LILRB1	Hs.149924
45	207872_s_at	LILRB1	Hs.149924
	207890_s_at	MMP25	Hs.290222
	207911_s_at	TGM5	Hs.129719
	207938_at	PI15	Hs.129732
	207978_s_at	NR4A3	Hs.279522
50	207979_s_at	CD8B1	Hs.405667
	207983_s_at	STAG2	Hs.8217
	208018_s_at	HCK	Hs.89555
	208029_s_at	LAPTM4B	Hs.296398
	208034_s_at	PROZ	Hs.1011
55	208056_s_at	CBFA2T3	Hs.110099
	208067_x_at	UTY	Hs.115277
	208071_s_at	LAIR1	Hs.407964
	208078_s_at	TCF8	Hs.232068
	208091_s_at	DKFZP564K0822	Hs.4750
60	208112_x_at	EHD1	Hs.155119
	208116_s_at	MAN1A1	Hs.255149
	208120_x_at	--	... // ...
	208130_s_at	TBXAS1	Hs.444510
	208131_s_at	PTGIS	Hs.302085
65	208132_x_at	BAT2	Hs.436093
	208146_s_at	CPVL	Hs.95594
	208151_x_at	DDX17	Hs.349121

Table 1 (continued):

	208161_s_at	ABCC3	Hs.90786
	208187_s_at	--	-- // --
5	208248_x_at	APLP2	Hs.279518
	208255_s_at	FKBP8	Hs.179464
	208296_x_at	GG2-1	Hs.17839
	208304_at	CCR3	Hs.506190
	208306_x_at	HLA-DRB4	Hs.449633
10	208335_s_at	FY	Hs.183
	208352_x_at	ANK1	Hs.443711
	208353_x_at	ANK1	Hs.443711
	208370_s_at	DSCR1	Hs.282326
	208416_s_at	SPTB	Hs.438514
15	208436_s_at	IRF7	Hs.166120
	208438_s_at	FGR	Hs.1422
	208443_x_at	SHOX2	Hs.55967
	208450_at	LGALS2	Hs.113987
	208451_s_at	C4A	Hs.150833
20	208459_s_at	XPO7	Hs.172685
	208470_s_at	HP	Hs.403931
	208476_s_at	FLJ10210	Hs.171532
	208488_s_at	CR1	Hs.334019
	208490_x_at	HIST1H2BF	Hs.182137
25	208498_s_at	AMY1A	Hs.274376
	208501_at	GFI1B	Hs.118539
	208502_s_at	PITX1	Hs.84136
	208523_x_at	HIST1H2BI	Hs.182140
	208527_x_at	HIST1H2BE	Hs.182138
30	208534_s_at	POLR2J2	Hs.433879
	208540_x_at	--	-- // --
	208546_x_at	HIST1H4G	Hs.247815
	208553_at	HIST1H1E	Hs.248133
	208579_x_at	H2BFS	Hs.473961
35	208581_x_at	MT1X	Hs.374950
	208592_s_at	CD1E	Hs.249217
	208594_x_at	LILRB3	Hs.306230
	208601_s_at	TUBB1	Hs.303023
	208602_x_at	CD6	Hs.436949
40	208605_s_at	NTRK1	Hs.406293
	208609_s_at	TNXB	Hs.411644
	208613_s_at	FLNB	Hs.81008
	208614_s_at	FLNB	Hs.81008
	208621_s_at	VIL2	Hs.403997
45	208622_s_at	VIL2	Hs.403997
	208623_s_at	VIL2	Hs.403997
	208631_s_at	HADHA	Hs.75860
	208632_at	RNF10	Hs.387944
	208633_s_at	MACF1	Hs.372463
50	208634_s_at	MACF1	Hs.372463
	208636_at	na	Hs.447510 // --
	208646_at	RPS14	Hs.381126
	208650_s_at	CD24	Hs.375108
	208651_x_at	CD24	Hs.375108
55	208653_s_at	CD164	Hs.43910
	208657_s_at	MSF	Hs.288094
	208677_s_at	BSG	Hs.371654
	208683_at	CAPN2	Hs.350899
	208690_s_at	PDLIM1	Hs.75807
60	208691_at	TFRC	Hs.185726
	208702_x_at	APLP2	Hs.279518
	208703_s_at	APLP2	Hs.279518
	208704_x_at	APLP2	Hs.279518
	208711_s_at	CCND1	Hs.371468
65	208712_at	CCND1	Hs.371468
	208719_s_at	DDX17	Hs.349121
	208729_x_at	HLA-B	Hs.77961

Table 1 (continued):

	208744_x_at	HSPH1	Hs.36927
	208747_s_at	C1S	Hs.458355
5	208751_at	NAPA	Hs.75932
	208767_s_at	LAPTM4B	Hs.296398
	208771_s_at	LTA4H	Hs.81118
	208782_at	FSTL1	Hs.433622
10	208789_at	PTRF	Hs.437191
	208791_at	CLU	Hs.436657
	208792_s_at	CLU	Hs.436657
	208797_s_at	GOLGIN-67	Hs.182982
	208798_x_at	GOLGIN-67	Hs.182982
15	208812_x_at	HLA-C	Hs.274485
	208820_at	PTK2	Hs.434281
	208827_at	PSMB6	Hs.77060
	208854_s_at	STK24	Hs.168913
	208855_s_at	STK24	Hs.168913
20	208869_s_at	GABARAPL1	Hs.386429
	208886_at	H1F0	Hs.226117
	208890_s_at	PLXNB2	Hs.3989
	208891_at	DUSP6	Hs.298654
	208892_s_at	DUSP6	Hs.298654
25	208893_s_at	DUSP6	Hs.298654
	208894_at	HLA-DRA	Hs.409805
	208906_at	BSCL2	Hs.438912
	208914_at	GGA2	Hs.183340
	208924_at	RNF11	Hs.96334
30	208928_at	POR	Hs.354056
	208937_s_at	ID1	Hs.410900
	208949_s_at	LGALS3	Hs.411701
	208953_at	KIAA0217	Hs.192881
	208960_s_at	COPEB	Hs.285313
35	208961_s_at	COPEB	Hs.285313
	208962_s_at	FADS1	Hs.132898
	208965_s_at	IFI16	Hs.370873
	208966_x_at	IFI16	Hs.370873
	208970_s_at	UROD	Hs.78601
40	208971_at	UROD	Hs.78601
	208978_at	CRIP2	Hs.70327
	208981_at	PECAM1	Hs.78146
	208982_at	PECAM1	Hs.78146
	208983_s_at	PECAM1	Hs.78146
45	208997_s_at	UCP2	Hs.80658
	209007_s_at	DJ465N24.2.1	Hs.259412
	209018_s_at	PINK1	Hs.439600
	209022_at	STAG2	Hs.8217
	209023_s_at	STAG2	Hs.8217
50	209030_s_at	IGSF4	Hs.156682
	209031_at	IGSF4	Hs.156682
	209032_s_at	IGSF4	Hs.156682
	209035_at	MDK	Hs.82045
	209037_s_at	EHD1	Hs.155119
55	209039_x_at	EHD1	Hs.155119
	209040_s_at	PSMB8	Hs.180062
	209046_s_at	GABARAPL2	Hs.6518
	209047_at	AQP1	Hs.76152
	209079_x_at	PCDHGC3	Hs.283794
60	209081_s_at	COL18A1	Hs.413175
	209083_at	CORO1A	Hs.415067
	209086_x_at	MCAM	Hs.211579
	209087_x_at	MCAM	Hs.211579
	209094_at	DDAH1	Hs.380870
65	209098_s_at	JAG1	Hs.409202
	209099_x_at	JAG1	Hs.409202
	209101_at	CTGF	Hs.410037
	209116_x_at	HBB	Hs.155376

Table 1 (continued):

	209117_at	WBP2	Hs.231840
	209118_s_at	TUBA3	Hs.433394
5	209122_at	ADFP	Hs.3416
	209129_at	TRIP6	Hs.380230
	209138_x_at	--	Hs.505407
	209140_x_at	HLA-B	Hs.77961
10	209152_s_at	TCF3	Hs.371282
	209153_s_at	TCF3	Hs.371282
	209156_s_at	COL6A2	Hs.420269
	209160_at	AKR1C3	Hs.78183
	209167_at	GPM6B	Hs.5422
15	209168_at	GPM6B	Hs.5422
	209170_s_at	GPM6B	Hs.5422
	209173_at	AGR2	Hs.226391
	209182_s_at	DEPP	Hs.93675
	209183_s_at	DEPP	Hs.93675
20	209184_s_at	IRS2	Hs.143648
	209185_s_at	IRS2	Hs.143648
	209189_at	FOS	Hs.25647
	209191_at	TUBB-5	Hs.274398
	209193_at	PIM1	Hs.81170
25	209199_s_at	MEF2C	Hs.368950
	209200_at	MEF2C	Hs.368950
	209201_x_at	CXCR4	Hs.421986
	209205_s_at	LMO4	Hs.8844
	209208_at	MPDU1	Hs.6710
30	209216_at	JM5	Hs.21753
	209217_s_at	JM5	Hs.21753
	209239_at	NFKB1	Hs.160557
	209250_at	DEGS	Hs.299878
	209264_s_at	TM4SF7	Hs.26518
35	209267_s_at	BIGM103	Hs.284205
	209273_s_at	MGC4276	Hs.270013
	209274_s_at	MGC4276	Hs.270013
	209276_s_at	GLRX	Hs.28988
	209281_s_at	ATP2B1	Hs.20952
40	209282_at	PRKD2	Hs.205431
	209285_s_at	RAP140	Hs.23440
	209286_at	CDC42EP3	Hs.352554
	209287_s_at	CDC42EP3	Hs.352554
	209288_s_at	CDC42EP3	Hs.352554
45	209297_at	ITSN1	Hs.66392
	209301_at	CA2	Hs.155097
	209304_x_at	GADD45B	Hs.110571
	209305_s_at	GADD45B	Hs.110571
	209312_x_at	HLA-DRB3	Hs.308026
50	209318_x_at	PLAGL1	Hs.132911
	209325_s_at	RGS16	Hs.413297
	209339_at	SIAH2	Hs.20191
	209340_at	UAP1	Hs.21293
	209344_at	TPM4	Hs.250641
55	209348_s_at	MAF	Hs.134859
	209357_at	CITED2	Hs.82071
	209360_s_at	RUNX1	Hs.410774
	209367_at	STXBP2	Hs.379204
	209369_at	ANXA3	Hs.442733
60	209374_s_at	IGHM	Hs.153261
	209377_s_at	HMGN3	Hs.77558
	209383_at	DDIT3	Hs.392171
	209386_at	TM4SF1	Hs.351316
	209387_s_at	TM4SF1	Hs.351316
65	209392_at	ENPP2	Hs.23719
	209394_at	ASMTL	Hs.458420
	209395_at	CHI3L1	Hs.382202
	209396_s_at	CHI3L1	Hs.382202

Table 1 (continued):

	209398_at	HIST1H1C	Hs.7644
5	209436_at	SPON1	Hs.5378
	209437_s_at	SPON1	Hs.5378
	209452_s_at	VTI1B	Hs.419995
	209457_at	DUSP5	Hs.2128
	209458_x_at	HBA1	Hs.449630
10	209473_at	ENTPD1	Hs.205353
	209474_s_at	ENTPD1	Hs.205353
	209480_at	HLA-DQB1	Hs.409934
	209487_at	RBPMS	Hs.195825
	209488_s_at	RBPMS	Hs.195825
15	209498_at	CEACAM1	Hs.434918
	209499_x_at	TNFSF13	Hs.54673
	209500_x_at	TNFSF13	Hs.54673
	209514_s_at	RAB27A	Hs.298530
	209515_s_at	RAB27A	Hs.298530
20	209524_at	HDGFRP3	Hs.127842
	209526_s_at	HDGFRP3	Hs.127842
	209536_s_at	EHD4	Hs.55058
	209540_at	IGF1	Hs.308053
	209541_at	IGF1	Hs.308053
25	209542_x_at	IGF1	Hs.308053
	209543_s_at	CD34	Hs.374990
	209545_s_at	RIPK2	Hs.103755
	209555_s_at	CD36	Hs.448120
	209560_s_at	DLK1	Hs.169228
30	209561_at	THBS3	Hs.169875
	209568_s_at	RGL	Hs.79219
	209576_at	GNAI1	Hs.208862
	209581_at	HRASLS3	Hs.417630
	209582_s_at	MOX2	Hs.79015
35	209583_s_at	MOX2	Hs.79015
	209585_s_at	MINPP1	Hs.95907
	209587_at	PITX1	Hs.84136
	209598_at	PNMA2	Hs.7782
	209604_s_at	GATA3	Hs.169946
40	209606_at	PSCD8P	Hs.270
	209615_s_at	PAK1	Hs.64056
	209616_s_at	CES1	Hs.278997
	209619_at	CD74	Hs.446471
	209627_s_at	OSBPL3	Hs.197955
45	209628_at	NXT2	Hs.25010
	209629_s_at	NXT2	Hs.25010
	209636_at	NFKB2	Hs.78090
	209651_at	TGFB1II1	Hs.25511
	209652_s_at	PGF	Hs.252820
50	209670_at	TRA@	Hs.74647
	209671_x_at	TRA@	Hs.74647
	209676_at	TFPI	Hs.102301
	209679_s_at	LOC57228	Hs.206501
	209686_at	S100B	Hs.422181
55	209687_at	CXCL12	Hs.436042
	209695_at	PTP4A3	Hs.43666
	209696_at	FBP1	Hs.360509
	209699_x_at	AKR1C2	Hs.201967
	209702_at	FTO	Hs.284741
60	209706_at	NKX3-1	Hs.55999
	209710_at	GATA2	Hs.367725
	209716_at	CSF1	Hs.173894
	209717_at	--	Hs.387251
	209727_at	GM2A	Hs.387156
65	209728_at	HLA-DRB4	Hs.449633
	209732_at	CLECSF2	Hs.85201
	209735_at	ABCG2	Hs.194720
	209757_s_at	MYCN	Hs.25960

Table 1 (continued):

	209763_at	NRLN1	Hs.440324
	209771_x_at	--	Hs.376280 // --
5	209772_s_at	CD24	Hs.375108
	209773_s_at	RRM2	Hs.226390
	209774_x_at	CXCL2	Hs.75765
	209790_s_at	CASP6	Hs.3280
	209791_at	PADI2	Hs.33455
10	209795_at	CD69	Hs.82401
	209803_s_at	TSSC3	Hs.154036
	209806_at	HIST1H2BK	Hs.247817
	209813_x_at	--	Hs.407442
	209815_at	na	Hs.454253 // --
15	209822_s_at	VLDLR	Hs.370422
	209823_x_at	HLA-DQB1	Hs.409934
	209829_at	C6orf32	Hs.389488
	209835_x_at	CD44	Hs.306278
	209845_at	MKRN1	Hs.7888
20	209863_s_at	TP73L	Hs.137569
	209870_s_at	APBA2	Hs.26468
	209875_s_at	SPP1	Hs.313
	209879_at	SELPLG	Hs.423077
	209881_s_at	LAT	Hs.437775
25	209884_s_at	SLC4A7	Hs.250072
	209890_at	TM4SF9	Hs.8037
	209892_at	FUT4	Hs.390420
	209893_s_at	FUT4	Hs.390420
	209894_at	LEPR	Hs.23581
30	209900_s_at	SLC16A1	Hs.75231
	209901_x_at	AIF1	Hs.76364
	209905_at	HOXA9	Hs.127428
	209906_at	C3AR1	Hs.155935
	209911_x_at	HIST1H2BD	Hs.180779
35	209921_at	SLC7A11	Hs.6682
	209930_s_at	NFE2	Hs.75643
	209949_at	NCF2	Hs.949
	209950_s_at	VILL	Hs.103665
	209959_at	NR4A3	Hs.279522
40	209960_at	HGF	Hs.396530
	209961_s_at	HGF	Hs.396530
	209962_at	EPOR	Hs.127826
	209963_s_at	EPOR	Hs.127826
	209967_s_at	CREM	Hs.231975
45	209968_s_at	NCAM1	Hs.78792
	209969_s_at	STAT1	Hs.21486
	209982_s_at	NRXN2	Hs.124085
	209993_at	ABCB1	Hs.21330
	209994_s_at	ABCB1	Hs.21330
50	209995_s_at	TCL1A	Hs.2484
	210001_s_at	SOCS1	Hs.50640
	210004_at	OLR1	Hs.445299
	210016_at	MYT1L	Hs.434418
	210024_s_at	UBE2E3	Hs.4890
55	210031_at	CD3Z	Hs.97087
	210032_s_at	SPAG6	Hs.158213
	210033_s_at	SPAG6	Hs.158213
	210036_s_at	KCNH2	Hs.188021
	210038_at	PRKCQ	Hs.408049
60	210042_s_at	CTSZ	Hs.252549
	210074_at	CTSL2	Hs.87417
	210075_at	LOC51257	Hs.331308
	210084_x_at	TPSB2	Hs.405479
	210088_x_at	MYL4	Hs.356717
65	210095_s_at	IGFBP3	Hs.440409
	210102_at	LOH11CR2A	Hs.152944
	210105_s_at	FYN	Hs.390567

Table 1 (continued):

	210107_at	CLCA1	Hs.194659
5	210113_s_at	DEFCAP	Hs.104305
	210116_at	SH2D1A	Hs.151544
	210118_s_at	IL1A	Hs.1722
	210123_s_at	CHRNA7	Hs.2540
	210134_x_at	SHOX2	Hs.55967
10	210135_s_at	SHOX2	Hs.55967
	210139_s_at	PMP22	Hs.372031
	210140_at	CST7	Hs.143212
	210142_x_at	FLOT1	Hs.179986
	210146_x_at	LILRB3	Hs.306230
15	210151_s_at	DYRK3	Hs.164267
	210152_at	LILRB4	Hs.67846
	210164_at	GZMB	Hs.1051
	210166_at	TLR5	Hs.114408
	210172_at	SF1	Hs.440835
20	210190_at	STX11	Hs.118958
	210215_at	TFR2	Hs.63758
	210222_s_at	RTN1	Hs.99947
	210225_x_at	LILRB3	Hs.306230
	210230_at	---	--- // ---
25	210237_at	ARTN	Hs.194689
	210239_at	IRX5	Hs.25351
	210244_at	CAMP	Hs.51120
	210247_at	SYN2	Hs.445503
	210254_at	MS4A3	Hs.99960
30	210260_s_at	GG2-1	Hs.17839
	210262_at	TPX1	Hs.2042
	210264_at	GPR35	Hs.239891
	210269_s_at	DXYS155E	Hs.21595
	210279_at	GPR18	Hs.88269
35	210298_x_at	FHL1	Hs.421383
	210299_s_at	FHL1	Hs.421383
	210318_at	LIR9	Hs.406708
	210314_x_at	TNFSF13	Hs.54673
	210321_at	GZMH	Hs.348264
40	210340_s_at	CSF2RA	Hs.227835
	210356_x_at	MS4A1	Hs.438040
	210357_s_at	C20orf16	Hs.433337
	210368_at	PCDHGC3	Hs.283794
	210387_at	HIST1H2BG	Hs.352109
45	210395_x_at	MYL4	Hs.356717
	210397_at	DEFB1	Hs.32949
	210422_x_at	SLC11A1	Hs.135163
	210423_s_at	SLC11A1	Hs.135163
	210425_x_at	GOLGIN-67	Hs.356225
50	210426_x_at	RORA	Hs.388617
	210427_x_at	ANXA2	Hs.437110
	210429_at	RHD	Hs.458333
	210430_x_at	RHD	Hs.283822
	210432_s_at	SCN3A	Hs.300717
55	210446_at	GATA1	Hs.765
	210448_s_at	P2RX5	Hs.408615
	210461_s_at	ABLIM1	Hs.442540
	210473_s_at	GPR125	Hs.356876
	210479_s_at	RORA	Hs.388617
60	210487_at	DNTT	Hs.397294
	210495_x_at	FN1	Hs.418138
	210504_at	KLF1	Hs.37860
	210508_s_at	KCNQ2	Hs.4975
	210512_s_at	VEGF	Hs.73793
	210514_x_at	HLA-A	Hs.181244
65	210517_s_at	AKAP12	Hs.197081
	210524_x_at	MT1F	Hs.438737
	210538_s_at	BIRC3	Hs.127799

Table 1 (continued):

	210546_x_at	CTAG1	Hs.167379
5	210548_at	CCL23	Hs.169191
	210549_s_at	CCL23	Hs.169191
	210554_s_at	CTBP2	Hs.171391
	210561_s_at	WSB1	Hs.315379
	210582_s_at	LIMK2	Hs.278027
	210586_x_at	RHD	Hs.458333
10	210605_s_at	MFGE8	Hs.3745
	210606_x_at	KLRD1	Hs.41682
	210612_s_at	SYNJ2	Hs.434494
	210638_s_at	FBXO9	Hs.388387
	210640_s_at	GPR30	Hs.113207
15	210649_s_at	SMARCF1	Hs.170333
	210655_s_at	FOXO3A	Hs.14845
	210660_at	LILRB1	Hs.149924
	210663_s_at	KYNU	Hs.444471
	210664_s_at	TFPI	Hs.102301
20	210665_at	TFPI	Hs.102301
	210666_at	IDS	Hs.352304
	210681_s_at	USP15	Hs.339425
	210693_at	SPPL2B	Hs.284161
	210724_at	EMR3	Hs.438468
25	210744_s_at	IL6RA	Hs.68876
	210746_s_at	EPB42	Hs.368642
	210755_at	HGF	Hs.396530
	210756_s_at	NOTCH2	Hs.8121
	210762_s_at	DLC1	Hs.8700
30	210772_at	FPRL1	Hs.99855
	210773_s_at	FPRL1	Hs.99855
	210783_x_at	SCGF	Hs.105927
	210784_x_at	LILRB3	Hs.306230
	210785_s_at	Clorf38	Hs.10649
35	210786_s_at	FLI1	Hs.257049
	210794_s_at	MEG3	Hs.418271
	210796_x_at	SIGLEC6	Hs.397255
	210815_s_at	CALCRL	Hs.152175
	210825_s_at	STOM	Hs.439776
40	210835_s_at	CTBP2	Hs.171391
	210839_s_at	ENPP2	Hs.23719
	210840_s_at	IQGAP1	Hs.1742
	210844_x_at	CTNNA1	Hs.254321
	210845_s_at	PLAUR	Hs.179657
45	210854_x_at	SLC6A8	Hs.388375
	210869_s_at	MCAM	Hs.211579
	210873_x_at	APOBEC3A	Hs.348983
	210889_s_at	FCGR2B	Hs.126384
	210895_s_at	CD86	Hs.27954
50	210904_s_at	IL13RA1	Hs.285115
	210915_x_at	TRB@	Hs.419777
	210916_s_at	CD44	Hs.306278
	210948_s_at	LEF1	Hs.44865
	210951_x_at	RAB27A	Hs.298530
55	210972_x_at	TRA@	Hs.74647
	210973_s_at	FGFR1	Hs.748
	210976_s_at	PFKM	Hs.75160
	210982_s_at	HLA-DRA	Hs.409805
	210986_s_at	TPM1	Hs.133892
60	210987_x_at	---	--- // ---
	210992_x_at	FCGR2B	Hs.126384
	210993_s_at	MADH1	Hs.388294
	210997_at	HGF	Hs.396530
	210998_s_at	HGF	Hs.396530
65	210999_s_at	GRB10	Hs.81875
	211005_at	LAT	Hs.437775
	211024_s_at	TTTF1	Hs.197764

Table 1 (continued):

	211025_x_at	COX5B	Hs.1342
	211031_s_at	CYLN2	Hs.104717
5	211052_s_at	TBCD	Hs.12570
	211066_x_at	PCDHGC3	Hs.283794
	211071_s_at	AF1Q	Hs.75828
	211100_x_at	LILRB1	Hs.149924
10	211101_x_at	LILRB1	Hs.149924
	211102_s_at	LILRB1	Hs.149924
	211126_s_at	CSRP2	Hs.10526
	211133_x_at	LILRB3	Hs.306230
	211135_x_at	LILRB3	Hs.306230
15	211143_x_at	NR4A1	Hs.1119
	211144_x_at	TRGC2	Hs.385086
	211148_s_at	ANGPT2	Hs.115181
	211163_s_at	TNFRSF10C	Hs.119684
	211202_s_at	PLU-1	Hs.143323
20	211207_s_at	FACL6	Hs.14945
	211210_x_at	SH2D1A	Hs.151544
	211264_x_at	RHAG	Hs.368178
	211269_s_at	IL2RA	Hs.130058
	211284_s_at	GRN	Hs.180577
25	211286_x_at	CSF2RA	Hs.227835
	211302_s_at	PDE4B	Hs.188
	211307_s_at	FCAR	Hs.193122
	211336_x_at	LILRB1	Hs.149924
	211339_s_at	ITK	Hs.211576
30	211340_s_at	MCAM	Hs.211579
	211341_at	POU4F1	Hs.458303
	211354_s_at	LEPR	Hs.23581
	211355_x_at	LEPR	Hs.23581
	211356_x_at	LEPR	Hs.23581
35	211367_s_at	CASP1	Hs.2490
	211368_s_at	CASP1	Hs.2490
	211372_s_at	IL1R2	Hs.25333
	211395_x_at	FCGR2B	Hs.126384
	211404_s_at	APLP2	Hs.279518
40	211413_s_at	PADI4	Hs.397050
	211421_s_at	RET	Hs.350321
	211423_s_at	SC5DL	Hs.434074
	211429_s_at	SERPINA1	Hs.297681
	211430_s_at	IGHG3	Hs.413826
45	211434_s_at	CCRL2	Hs.302043
	211450_s_at	MSH6	Hs.445052
	211456_x_at	na	Hs.456549
	211458_s_at	GABARAPL3	Hs.334497
	211464_x_at	CASP6	Hs.3280
50	211474_s_at	SERPINB6	Hs.41072
	211478_s_at	DPP4	Hs.44926
	211495_x_at	TNFSF13	Hs.54673
	211506_s_at	--	-- // --
	211517_s_at	IL5RA	Hs.68876
55	211521_s_at	PSCD4	Hs.7189
	211527_x_at	VEGF	Hs.73793
	211529_x_at	HLA-A	Hs.181244
	211535_s_at	FGFR1	Hs.748
	211546_x_at	SNCA	Hs.76930
60	211548_s_at	HPGD	Hs.77348
	211560_s_at	ALAS2	Hs.440455
	211566_x_at	BRE	Hs.80426
	211571_s_at	CSPG2	Hs.434488
	211597_s_at	HOP	Hs.13775
65	211633_x_at	--	Hs.406615
	211634_x_at	--	Hs.449011
	211635_x_at	--	Hs.449011
	211637_x_at	--	Hs.383169

Table 1 (continued):

	211639_x_at	---	Hs.383438
5	211641_x_at	---	Hs.64568 // ---
	211643_x_at	na	Hs.377975
	211644_x_at	na	Hs.377975
	211645_x_at	na	Hs.377975
	211649_x_at	---	Hs.449057
	211650_x_at	---	Hs.448957
10	211653_x_at	AKR1C2	Hs.201967
	211654_x_at	HLA-DQB1	Hs.409934
	211656_x_at	HLA-DQB1	Hs.409934
	211657_at	CEACAM6	Hs.436718
	211658_at	PRDX2	Hs.432121
15	211661_x_at	---	--- // ---
	211663_x_at	PTGDS	Hs.446429
	211668_s_at	PLAU	Hs.77274
	211674_x_at	CTAG1	Hs.167379
	211675_s_at	HIC	Hs.132739
20	211682_x_at	UGT2B28	Hs.137585
	211696_x_at	HBB	Hs.155376
	211699_x_at	HBA1	Hs.449630
	211709_s_at	SCGF	Hs.105927
	211719_x_at	FN1	Hs.418138
25	211726_s_at	FMO2	Hs.361155
	211732_x_at	HNMT	Hs.42151
	211734_s_at	FCER1A	Hs.897
	211742_s_at	EVI2B	Hs.5509
	211743_s_at	PRG2	Hs.99962
30	211745_x_at	HBA1	Hs.449630
	211748_x_at	PTGDS	Hs.446429
	211764_s_at	UBE2D1	Hs.129683
	211776_s_at	EPB41L3	Hs.103839
	211781_x_at	---	--- // ---
35	211796_s_at	---	--- // ---
	211798_x_at	IGLJ3	Hs.102950
	211799_x_at	HLA-C	Hs.274485
	211813_x_at	DCN	Hs.156316
	211816_x_at	FCAR	Hs.193122
40	211820_x_at	GYPA	Hs.34287
	211821_x_at	GYPA	Hs.34287
	211858_x_at	GNAS	Hs.157307
	211864_s_at	FER1L3	Hs.362731
	211868_x_at	---	--- // ---
45	211876_x_at	PCDHGC3	Hs.283794
	211881_x_at	IGLJ3	Hs.102950
	211883_x_at	CEACAM1	Hs.434918
	211893_x_at	CD6	Hs.436949
	211896_s_at	DCN	Hs.156316
50	211900_x_at	CD6	Hs.436949
	211902_x_at	TRA@	Hs.74647
	211911_x_at	HLA-B	Hs.77961
	211919_s_at	CXCR4	Hs.421986
	211922_s_at	CAT	Hs.395771
55	211924_s_at	PLAUR	Hs.179657
	211941_s_at	PBP	Hs.433863
	211959_at	IGFBP5	Hs.380833
	211962_s_at	ZFP3GL1	Hs.85155
	211964_at	COL4A2	Hs.407912
60	211965_at	ZFP36L1	Hs.85155
	211966_at	COL4A2	Hs.407912
	211970_x_at	ACTG1	Hs.14376
	211983_x_at	ACTG1	Hs.14376
	211986_at	MGC5395	Hs.378738
65	211990_at	HLA-DPA1	Hs.914
	211991_s_at	HLA-DPA1	Hs.914
	211992_at	PRKWNK1	Hs.43129

Table 1 (continued):

	211993_at	PRKWNK1	Hs.43129
5	211994_at	PRKWNK1	Hs.43129
	211995_x_at	ACTG1	Hs.14376
	211996_s_at	na	Hs.406494 // --
	212012_at	D2S448	Hs.118893 // --
	212013_at	D2S448	Hs.118893 // --
10	212014_x_at	CD44	Hs.306278
	212046_x_at	MAPK3	Hs.861
	212055_at	DKFZP586M1523	Hs.22981
	212056_at	KIAA0182	Hs.222171
	212057_at	KIAA0182	Hs.222171
15	212062_at	ATP9A	Hs.406434 // --
	212067_s_at	C1R	Hs.376414 // --
	212069_s_at	MGC10526	Hs.389588
	212070_at	GPR56	Hs.6527
	212077_at	CALD1	Hs.443811
20	212086_x_at	LMNA	Hs.436441
	212089_at	LMNA	Hs.436441
	212090_at	GRINA	Hs.339697
	212091_s_at	COL6A1	Hs.415997
	212097_at	CAV1	Hs.74034
	212099_at	ARHB	Hs.406064
25	212143_s_at	...	Hs.450230 // --
	212148_at	PBX1	Hs.408222
	212151_at	PBX1	Hs.408222
	212154_at	SDC2	Hs.1501
30	212157_at	SDC2	Hs.1501
	212158_at	SDC2	Hs.1501
	212166_at	XPO7	Hs.172685
	212172_at	AK2	Hs.294008
	212173_at	AK2	Hs.294008
35	212181_s_at	NUDT4	Hs.355399
	212183_at	NUDT4	Hs.355399
	212185_x_at	MT2A	Hs.118786
	212187_x_at	PTGDS	Hs.446429
	212188_at	LOC115207	Hs.109438
40	212190_at	SERPINE2	Hs.21858
	212192_at	LOC115207	Hs.109438
	212203_x_at	IFITM3	Hs.374650
	212221_x_at	na	Hs.303154 // --
	212223_at	na	Hs.303154 // --
45	212224_at	ALDH1A1	Hs.76392
	212225_at	SUI1	Hs.150580
	212236_x_at	KRT17	Hs.2785
	212242_at	TUBA1	Hs.75318
	212254_s_at	BPAG1	Hs.443518
50	212263_at	QKI	Hs.22248
	212265_at	QKI	Hs.22248
	212273_x_at	GNAS	Hs.157307
	212285_s_at	AGRN	Hs.273330 // --
	212311_at	KIAA0746	Hs.49500 // --
55	212312_at	BCL2L1	Hs.305890
	212314_at	KIAA0746	Hs.49500 // --
	212330_at	TFDP1	Hs.79353
	212334_at	GNS	Hs.334534
	212340_at	MGC21416	Hs.82719
60	212341_at	MGC21416	Hs.82719
	212355_at	KIAA0323	Hs.7911
	212358_at	CLIPR-59	Hs.7357
	212363_x_at	ACTG1	Hs.14376
	212372_at	MYH10	Hs.280311 // --
65	212377_s_at	NOTCH2	Hs.8121
	212382_at	TCF4	Hs.359289
	212385_at	TCF4	Hs.359289
	212386_at	TCF4	Hs.359289

Table 1 (continued):

	212387_at	TCF4	Hs.359289
5	212390_at	PDE4DIP	Hs.265848
	212414_s_at	38961	Hs.90998
	212428_at	KIAA0368	Hs.445255
	212430_at	RNPC1	Hs.236361
	212464_s_at	FN1	Hs.418138
10	212467_at	KIAA0678	Hs.12707 // ---
	212472_at	MICAL2	Hs.309674
	212473_s_at	MICAL2	Hs.309674
	212479_s_at	FLJ13910	Hs.75277
	212488_at	COL5A1	Hs.433695
15	212489_at	COL5A1	Hs.433695
	212492_s_at	KIAA0876	Hs.301011 // ---
	212501_at	CEBPB	Hs.99029
	212509_s_at	--	Hs.356623 // est
	212512_s_at	CARM1	Hs.371416 // ---
20	212526_at	SPG20	Hs.205088
	212531_at	LCN2	Hs.204238
	212535_at	MEF2A	Hs.415033
	212540_at	CDC34	Hs.423615
	212543_at	AIM1	Hs.422550 // ---
25	212558_at	GDAP1L1	Hs.20977
	212560_at	SORL1	Hs.438159
	212570_at	KIAA0830	Hs.167115
	212586_at	CAST	Hs.440961
	212589_at	RRAS2	Hs.206097
30	212592_at	IGJ	Hs.381568
	212599_at	AUTS2	Hs.296720
	212602_at	WDFY3	Hs.105340
	212611_at	MPEG1	Hs.62264 // ---
	212614_at	MRF2	Hs.12702 // ---
35	212624_s_at	CHN1	Hs.380138
	212636_at	QKI	Hs.22248
	212645_x_at	BRE	Hs.80426
	212646_at	RAFTLIN	Hs.436432 // ---
	212647_at	RRAS	Hs.9651
40	212657_s_at	IL1RN	Hs.81134
	212659_s_at	IL1RN	Hs.81134
	212670_at	ELN	Hs.252418
	212671_s_at	HLA-DQA1	Hs.387679
	212680_x_at	PPP1R14B	Hs.120197
45	212681_at	EPB41L3	Hs.103839
	212686_at	KIAA1157	Hs.21894 // ---
	212692_s_at	LRBA	Hs.209846
	212699_at	SCAMP5	Hs.7934
	212713_at	MFAP4	Hs.296049
50	212719_at	PLEKHE1	Hs.38176 // ---
	212724_at	ARHE	Hs.6838
	212732_at	MEG3	Hs.418271
	212741_at	MAOA	Hs.183109
	212750_at	PPP1R16B	Hs.45719
55	212758_s_at	TCF8	Hs.232068
	212761_at	TCF7L2	Hs.214039
	212762_s_at	TCF7L2	Hs.214039
	212764_at	TCF8	Hs.232068
	212768_s_at	GW112	Hs.273321
60	212769_at	TLE3	Hs.287362
	212771_at	LOC221061	Hs.66762 // ---
	212776_s_at	KIAA0657	Hs.6654 // ---
	212812_at	na	Hs.288232 // ---
	212820_at	RC3	Hs.200828
65	212827_at	IGHM	Hs.153261
	212828_at	SYNJ2	Hs.434494
	212829_at	---	Hs.57079 // ---
	212830_at	EGFL5	Hs.5599 // ---

Table 1 (continued):

	212831_at	EGFL6	Hs.5599 // ---
5	212842_x_at	---	Hs.452310 // est
	212843_at	NCAM1	Hs.78792
	212859_x_at	MT1E	Hs.418241
	212865_s_at	COL14A1	Hs.403836
	212873_at	na	Hs.165728 // ---
10	212884_x_at	APOC4	Hs.110675
	212895_s_at	ABR	Hs.434004
	212906_at	na	Hs.347534 // ---
	212907_at	SLC30A1	Hs.55610
	212912_at	RPS6KA2	Hs.301664
15	212915_at	SEMACAP3	Hs.177635
	212930_at	ATP2B1	Hs.20952
	212937_s_at	COL6A1	Hs.415997
	212942_s_at	KIAA1199	Hs.212584
	212956_at	KIAA0882	Hs.411317 // ---
20	212958_x_at	PAM	Hs.352733
	212973_at	RPIA	Hs.79886
	212977_at	RDC1	Hs.231853
	212987_at	FBXO9	Hs.388387
	212988_x_at	ACTG1	Hs.14376
	212989_at	MOB	Hs.153716
25	212993_at	na	Hs.349356 // ---
	212998_x_at	HLA-DQB2	Hs.375115
	212999_x_at	HLA-DQB1	Hs.409934
	213002_at	MARCKS	Hs.318603
	213005_s_at	KANK	Hs.77546
30	213006_at	KIAA0146	Hs.381058
	213015_at	na	Hs.171553 // ---
	213035_at	KIAA0379	Hs.273104 // ---
	213036_x_at	ATP2A3	Hs.5541
	213038_at	FLJ90005	Hs.128366
35	213060_s_at	CHI3L2	Hs.154138
	213061_s_at	LOC123803	Hs.351573
	213075_at	LOC169611	Hs.357004
	213089_at	na	Hs.166361 // ---
	213094_at	GPR126	Hs.419170
40	213095_x_at	AIF1	Hs.76364
	213096_at	HUCEP11	Hs.6360
	213110_s_at	COL4A5	Hs.169825
	213122_at	KIAA1750	Hs.173094
45	213125_at	DKFZP586L151	Hs.43658
	213135_at	TIAM1	Hs.115176
	213146_at	KIAA0346	Hs.103915 // ---
	213147_at	HOXA10	Hs.110637
	213150_at	HOXA10	Hs.110637
50	213182_x_at	CDKN1C	Hs.106070
	213193_x_at	TRB@	Hs.419777
	213194_at	ROBO1	Hs.301198
	213201_s_at	TNNT1	Hs.73980
	213212_x_at	---	Hs.459128 // est
	213214_x_at	ACTG1	Hs.14376
55	213217_at	ADCY2	Hs.414591
	213236_at	SASH1	Hs.166311
	213241_at	PLXNC1	Hs.286229
	213258_at	TFPI	Hs.102301
	213260_at	FOXC1	Hs.348883
60	213274_s_at	CTSB	Hs.135226
	213275_x_at	CTSB	Hs.135226
	213288_at	LOC129642	Hs.90797
	213309_at	PLCL2	Hs.54886
	213317_at	na	Hs.21103
65	213338_at	RIS1	Hs.35861
	213348_at	CDKN1C	Hs.106070
	213350_at	RPS11	Hs.433529

Table 1 (continued):

	213361_at	PCTAIRE2BP	Hs.416543
	213362_at	PTPRD	Hs.323079
5	213375_s_at	CG018	Hs.277888
	213394_at	MAPKBP1	Hs.376657 // ---
	213395_at	MLC1	Hs.74518
	213413_at	SBLF	Hs.54961
10	213415_at	CLIC2	Hs.54570
	213418_at	HSPA6	Hs.3268
	213428_s_at	COL6A1	Hs.415997
	213435_at	SATB2	Hs.412327 // ---
	213437_at	RIPX	Hs.7972
15	213439_x_at	--	Hs.500197 // est
	213446_s_at	IQGAP1	Hs.1742
	213451_x_at	TNXB	Hs.411644
	213478_at	KIAA1026	Hs.368823
	213479_at	NPTX2	Hs.3281
20	213482_at	DOCK3	Hs.7022
	213484_at	na	Hs.66187 // ---
	213488_at	FLJ00133	Hs.7949
	213492_at	COL2A1	Hs.408182
	213502_x_at	LOC91316	Hs.435211 // ---
25	213503_x_at	ANXA2	Hs.437110
	213506_at	F2RL1	Hs.154299
	213515_x_at	HBG2	Hs.302145
	213521_at	PTPN18	Hs.210913
	213524_s_at	G0S2	Hs.432132
30	213537_at	HLA-DPA1	Hs.914
	213539_at	CD3D	Hs.95327
	213541_s_at	ERG	Hs.45514
	213545_x_at	SNX3	Hs.12102
	213549_at	SLC18A2	Hs.50458
35	213563_x_at	APOC1	Hs.268571
	213566_at	RNASE6	Hs.23262
	213572_s_at	SERPINB1	Hs.381167
	213605_s_at	na	Hs.166361 // ---
	213608_s_at	TFIP11	Hs.20225
40	213618_at	CENTD1	Hs.427719
	213624_at	ASM3A	Hs.277962
	213629_x_at	MT1F	Hs.438737
	213666_at	38961	Hs.90998
	213668_s_at	SOX4	Hs.357901
45	213674_x_at	--	Hs.439852
	213716_s_at	SECTM1	Hs.95655
	213737_x_at	--	Hs.50787 // est
	213757_at	EIF5A	Hs.310621
	213791_at	PENK	Hs.339831
50	213797_at	cig5	Hs.17518
	213808_at	na	Hs.12514 // ---
	213817_at	na	Hs.170056 // ---
	213823_at	HOXA11	Hs.249171
	213825_at	OLIG2	Hs.176977
55	213830_at	TRD@	Hs.2014
	213831_at	HLA-DQA1	Hs.387679
	213841_at	na	Hs.301281 // ---
	213842_x_at	WBSCR20C	Hs.436034
	213843_x_at	SLC6A8	Hs.388375
60	213844_at	HOXA5	Hs.37034
	213848_at	DUSP7	Hs.3843
	213857_s_at	CD47	Hs.446414
	213888_s_at	DJ434O14.3	Hs.147434
	213891_s_at	TCF4	Hs.359289
65	213894_at	LOC221981	Hs.23799 // ---
	213906_at	MYBL1	Hs.300592 // ---
	213908_at	LOC339005	Hs.212670 // ---
	213915_at	NKG7	Hs.10306

Table 1 (continued):

	213931_at	---	Hs.502810 // est
5	213943_at	TWIST1	Hs.66744
	213958_at	CD6	Hs.436949
	213960_at	na	Hs.185701 // ---
	213975_s_at	LYZ	Hs.234734
10	213988_s_at	SAT	Hs.28491
	213994_s_at	SPON1	Hs.5378
	214016_s_at	SFPQ	Hs.180610
	214020_x_at	ITGB5	Hs.149846
	214022_s_at	IFITM1	Hs.458414
	214032_at	ZAP70	Hs.234569
15	214039_s_at	LAPTM4B	Hs.296398
	214040_s_at	GSN	Hs.446537
	214041_x_at	RPL37A	Hs.433701
	214043_at	PTPRD	Hs.323079
	214049_x_at	CD7	Hs.36972
	214054_at	DOK2	Hs.71215
20	214058_at	MYCL1	Hs.437922
	214059_at	IFI44	Hs.82316
	214061_at	MGC21654	Hs.95631
	214063_s_at	TF	Hs.433923
	214084_x_at	na	Hs.448231 // ---
25	214085_x_at	HRB2	Hs.269857
	214093_s_at	FUBP1	Hs.118962
	214100_x_at	WBSCR20C	Hs.436034
	214121_x_at	ENIGMA	Hs.436339
	214131_at	CYorf15B	Hs.145010
30	214146_s_at	PPBP	Hs.2164
	214153_at	ELOVL5	Hs.343667
	214183_s_at	TKTL1	Hs.102866
	214203_s_at	PRODH	Hs.343874
	214211_at	FTH1	Hs.418650
35	214218_s_at	LOC139202	Hs.83623 // ---
	214228_x_at	TNFRSF4	Hs.129780
	214230_at	CDC42	Hs.355832
	214235_at	CYP3A5	Hs.150276
	214255_at	ATP10A	Hs.125595
40	214273_x_at	C16orf35	Hs.19699
	214290_s_at	HIST2H2AA	Hs.417332
	214295_at	KIAA0485	Hs.89121 // ---
	214297_at	CSPG4	Hs.436301
	214321_at	NOV	Hs.235935
45	214329_x_at	TNFSF10	Hs.387871
	214349_at	---	Hs.464403 // est
	214366_s_at	ALOX5	Hs.89499
	214370_at	S100A8	Hs.416073
50	214407_x_at	GYPB	Hs.438658
	214414_x_at	HBA1	Hs.449630
	214421_x_at	CYP2C9	Hs.418127
	214428_x_at	C4A	Hs.150833
	214433_s_at	SELENBP1	Hs.334841
55	214446_at	ELL2	Hs.192221
	214450_at	CTSW	Hs.416848
	214453_s_at	IFI44	Hs.82316
	214455_at	HIST1H2BC	Hs.356901
	214459_x_at	HLA-C	Hs.274485
60	214464_at	CDC42BPA	Hs.18586
	214467_at	GPR65	Hs.131924
	214469_at	HIST1H2AE	Hs.121017
	214470_at	KLRB1	Hs.169824
	214472_at	HIST1H3D	Hs.289458
	214481_at	HIST1H2AM	Hs.134999
65	214500_at	H2AFY	Hs.75258
	214505_s_at	FHL1	Hs.421383
	214511_x_at	FCGR1A	Hs.77424

Table 1 (continued):

	214522_x_at	HIST1H3D	Hs.239458
	214528_at	CEBPE	Hs.426867
5	214530_x_at	EPB41	Hs.37427
	214535_s_at	ADAMTS2	Hs.120330
	214539_at	SERPINB10	Hs.158339
	214548_x_at	GNAS	Hs.157307
	214551_s_at	CD7	Hs.36972
10	214564_s_at	PCDHGC3	Hs.283794
	214574_x_at	LST1	Hs.410065
	214575_s_at	AZU1	Hs.72885
	214581_x_at	TNFRSF21	Hs.159651
	214590_s_at	UBE2D1	Hs.129683
15	214614_at	HLXB9	Hs.37035
	214617_at	PRF1	Hs.2200
	214620_x_at	PAM	Hs.352733
	214627_at	EPX	Hs.46295
	214637_at	OSM	Hs.248166
20	214651_s_at	HOXA9	Hs.127428
	214657_s_at	TncRNA	Hs.433324 // --
	214667_s_at	TP53I11	Hs.433813 // --
	214669_x_at	na	Hs.377975
	214677_x_at	IGLJ3	Hs.449601
25	214682_at	PKD1	Hs.75813
	214696_at	MGC14376	Hs.417157
	214721_x_at	CDC42EP4	Hs.3903
	214722_at	FLJ21272	Hs.218829
	214743_at	CUTL1	Hs.438974
30	214761_at	OAZ	Hs.158593
	214768_x_at	na	Hs.377975
	214770_at	MSR1	Hs.436887
	214777_at	na	Hs.377975
	214789_x_at	SRP46	Hs.155160
35	214790_at	SUSP1	Hs.435628
	214805_at	EIF4A1	Hs.129673
	214836_x_at	na	Hs.377975
	214867_at	NDST2	Hs.225129
	214870_x_at	---	--- // ---
40	214875_x_at	APLP2	Hs.279518
	214903_at	na	Hs.25422 // ---
	214909_s_at	DDAH2	Hs.247362
	214916_x_at	---	Hs.448957
	214920_at	LOC221981	Hs.23799 // --
45	214950_at	---	Hs.459588 // est
	214953_s_at	APP	Hs.177486
	214973_x_at	---	Hs.448982 // --
	214983_at	na	Hs.433656 // --
	214989_x_at	PEPP2	Hs.242537
50	215012_at	ZNF451	Hs.188662
	215016_x_at	BPAG1	Hs.443518
	215032_at	---	Hs.300934 // ---
	215034_s_at	TM4SF1	Hs.351316
	215037_s_at	BCL2L1	Hs.305890
55	215047_at	BIA2	Hs.923858
	215049_x_at	CD163	Hs.74076
	215051_x_at	AIF1	Hs.76364
	215054_at	EPOR	Hs.127826
	215071_s_at	---	Hs.28777 // ---
60	215076_s_at	COL3A1	Hs.443625
	215078_at	SOD2	Hs.384944
	215089_s_at	RBM10	Hs.348276
	215111_s_at	TSC22	Hs.114360
	215116_s_at	DNM1	Hs.436132
65	215118_s_at	MGC27165	Hs.366
	215121_x_at	---	Hs.356861
	215123_at	---	Hs.375005 // --

Table 1 (continued):

	215137_at	---	Hs.467531 // est
5	215143_at	FLJ36166	Hs.351178 // ---
	215146_s_at	KIAA1043	Hs.387856
	215150_at	DKFZp451J1719	Hs.391944 // ---
	215163_at	---	Hs.203349 // ---
	215176_x_at	---	Hs.503443 // ---
10	215177_s_at	ITGA6	Hs.212296
	215193_x_at	HLA-DRB1	Hs.411726
	215200_x_at	na	Hs.456817 // ---
	215204_at	---	Hs.288675 // ---
	215214_at	---	Hs.449579 // ---
15	215222_x_at	MACF1	Hs.372463
	215223_s_at	SOD2	Hs.384944
	215224_at	RPL23	Hs.406300
	215242_at	PIGC	Hs.386487
	215248_at	GRB10	Hs.81875
	215284_at	---	Hs.12432 // ---
20	215288_at	TRPC2	Hs.131910 // ---
	215306_at	---	Hs.161283 // ---
	215311_at	na	Hs.185701 // ---
	215320_at	DKFZP434M131	Hs.189296 // ---
25	215338_s_at	NKTR	Hs.369815
	215342_s_at	KIAA0471	Hs.242271
	215375_x_at	---	Hs.438377 // ---
	215379_x_at	IGLJ3	Hs.449601
	215382_x_at	TPSB2	Hs.405479
	215388_s_at	HFL1	Hs.296941
30	215401_at	---	Hs.507633 // ---
	215411_s_at	C6orf4	Hs.437508
	215415_s_at	CHS1	Hs.130188
	215438_x_at	GSPT1	Hs.2707
	215446_s_at	---	--- // ---
35	215447_at	TFPI	Hs.102301
	215449_at	na	Hs.357392 // ---
	215485_s_at	ICAM1	Hs.168383
	215489_x_at	HOMER3	Hs.410683
40	215498_s_at	MAP2K3	Hs.180533
	215499_at	MAP2K3	Hs.180533
	215501_s_at	DUSP10	Hs.177534
	215504_x_at	---	Hs.337534 // ---
	215537_x_at	DDAH2	Hs.247362
	215571_at	---	Hs.287415 // ---
45	215592_at	---	Hs.464205 // ---
	215594_at	na	Hs.296832 // ---
	215599_at	SMA3	Hs.440958
	215602_at	FGD2	Hs.376059
	215621_s_at	---	Hs.448957
50	215623_x_at	SMC4L1	Hs.50758
	215630_at	---	Hs.475611 // ---
	215640_at	KIAA1055	Hs.438702
	215646_s_at	CSPG2	Hs.484488
55	215663_at	MBNL1	Hs.28578
	215666_at	HLA-DRB4	Hs.449633
	215684_s_at	FLJ21688	Hs.436407
	215692_s_at	C11orf8	Hs.432000
	215716_s_at	ATP2B1	Hs.20952
	215733_x_at	CTAG2	Hs.87225
60	215761_at	RC3	Hs.200828
	215771_x_at	RET	Hs.350321
	215775_at	THBS1	Hs.164226
	215777_at	IGLV@	Hs.381262
	215779_s_at	HIST1H2BG	Hs.352109
65	215783_s_at	ALPL	Hs.250769
	215784_at	CD1E	Hs.249217
	215806_x_at	TRGC2	Hs.385086

Table 1 (continued):

	215807_s_at	PLXNB1	Hs.278311
	215811_at	--	Hs.275706 // --
5	215812_s_at	--	Hs.499113 // est
	215819_s_at	RHCE	Hs.278994
	215836_s_at	PCDHGC3	Hs.283794
	215838_at	LIR9	Hs.406708
10	215861_at	EVI1	Hs.496019
	215863_at	--	Hs.287427 // --
	215874_at	--	Hs.287730 // --
	215891_s_at	GM2A	Hs.387156
	215913_s_at	CED-6	Hs.107056
15	215925_s_at	CD72	Hs.116481
	215933_s_at	HHEX	Hs.118651
	215946_x_at	LOC91316	Hs.435211 // --
	215949_x_at	--	-- // --
	215967_s_at	LY9	Hs.403857
	215990_s_at	BCL6	Hs.155024
20	216012_at	--	Hs.159901 // --
	216015_s_at	CIAS1	Hs.159483
	216016_at	CIAS1	Hs.159483
	216022_at	--	Hs.16074 // --
	216026_x_at	CYP2C9	Hs.418127
25	216033_s_at	FYN	Hs.390567
	216036_x_at	KIAA1037	Hs.172825
	216041_x_at	GRN	Hs.180577
	216052_x_at	ARTN	Hs.194689
	216054_x_at	MYL4	Hs.356717
30	216056_at	CD44	Hs.306278
	216063_at	--	Hs.470084 // est
	216080_s_at	FADS3	Hs.21765
	216109_at	KIAA1025	Hs.435249 // --
35	216129_at	ATP9A	Hs.406434 // --
	216147_at	--	Hs.306504 // --
	216180_s_at	SYNJ2	Hs.434494
	216191_s_at	TRD@	Hs.2014
	216197_at	--	Hs.434491 // --
	216207_x_at	IGKV1D-13	Hs.390427
40	216218_s_at	PLCL2	Hs.54886
	216236_s_at	SLC2A14	Hs.401274
	216243_s_at	IL1RN	Hs.81134
	216248_s_at	NR4A2	Hs.82120
	216268_s_at	JAG1	Hs.409202
45	216286_at	--	Hs.306324 // --
	216317_x_at	RHCE	Hs.278994
	216320_x_at	MST1	Hs.349110
	216331_at	ITGA7	Hs.74369
50	216333_x_at	TNXB	Hs.411644
	216336_x_at	--	-- // --
	216356_x_at	BAIAP3	Hs.458427
	216370_s_at	TKTL1	Hs.102866
	216379_x_at	--	-- // --
55	216380_x_at	--	-- // --
	216401_x_at	--	-- // --
	216417_x_at	HOXB9	Hs.321142
	216442_x_at	na	Hs.287820 // --
	216449_x_at	TRA1	Hs.192374
	216474_x_at	TPSB2	Hs.405479
60	216491_x_at	--	-- // --
	216510_x_at	--	-- // --
	216511_s_at	--	-- // --
	216522_at	--	-- // --
	216526_x_at	HLA-C	Hs.274485
65	216541_x_at	--	-- // --
	216557_x_at	--	-- // --
	216560_x_at	--	-- // --

Table 1 (continued):

	216565_x_at	---	---
5	216576_x_at	na	Hs.377975
	216598_s_at	CCL2	Hs.303649
	216602_s_at	FARSL	Hs.23111
	216614_at	---	---
	216620_s_at	ARHGEF10	Hs.496196
	216667_at	---	---
10	216693_x_at	HDGFRP3	Hs.127842
	216705_s_at	ADA	Hs.407135
	216733_s_at	GATM	Hs.75335
	216766_at	---	---
	216813_at	---	---
15	216832_at	CBFA2T1	Hs.90858
	216833_x_at	GYPE	Hs.395535
	216834_at	RGS1	Hs.76256
	216841_s_at	SOD2	Hs.384944
	216858_x_at	---	---
20	216860_s_at	GDF11	Hs.432439
	216894_x_at	CDKN1C	Hs.106070
	216913_s_at	KIAA0690	Hs.434251
	216920_s_at	TRGC2	Hs.385086
	216925_s_at	TAL1	Hs.73828
25	216950_s_at	FCGR1A	Hs.77424
	216956_s_at	ITGA2B	Hs.411312
	216984_x_at	---	Hs.449592 // ---
	217022_s_at	MGC27165	Hs.366
	217023_x_at	---	---
30	217025_s_at	DBN1	Hs.89434
	217028_at	CXCR4	Hs.421986
	217118_s_at	KIAA0930	Hs.13255
	217143_s_at	TRD@	Hs.2014
	217147_s_at	TRIM	Hs.138701
35	217148_x_at	---	Hs.449592 // ---
	217157_x_at	---	Hs.449620 // ---
	217165_x_at	MT1F	Hs.438737
	217179_x_at	---	Hs.440830
	217192_s_at	PRDM1	Hs.381140
40	217227_x_at	---	Hs.449598 // ---
	217232_x_at	---	---
	217234_s_at	VIL2	Hs.403997
	217235_x_at	---	Hs.449593 // ---
	217258_x_at	---	Hs.449599 // ---
45	217274_x_at	---	---
	217276_x_at	dJ222E13.1	Hs.301947
	217281_x_at	---	Hs.448987 // ---
	217284_x_at	dJ222E13.1	Hs.301947
	217286_s_at	NDRG3	Hs.437338
50	217354_s_at	---	---
	217378_x_at	---	---
	217388_s_at	KYNU	Hs.444471
	217404_s_at	COL2A1	Hs.408182
	217414_x_at	---	---
55	217418_x_at	MS4A1	Hs.438040
	217419_x_at	AGRN	Hs.273330 // ---
	217422_s_at	CD22	Hs.262150
	217478_s_at	HLA-DMA	Hs.351279
	217480_x_at	---	---
60	217502_at	IFIT2	Hs.169274
	217507_at	SLC11A1	Hs.135163
	217520_x_at	na	Hs.374397 // ---
	217521_at	HAL	Hs.190783
	217523_at	CD44	Hs.306278
65	217526_at	---	Hs.502482 // est
	217552_x_at	CR1	Hs.334019
	217572_at	---	---

Table 1 (continued):

	217591_at	SKIL	Hs.272108
	217593_at	SNX11	Hs.16827
5	217610_at	---	Hs.506223 // est
	217649_at	ZNF216	Hs.406096
	217653_x_at	---	Hs.499531 // est
	217655_at	---	Hs.407053 // ---
	217671_at	---	Hs.279706 // est
10	217673_x_at	GNAS	Hs.157307
	217678_at	---	Hs.499751 // est
	217712_at	---	Hs.369545 // est
	217715_x_at	---	Hs.417310 // est
	217728_at	S100A6	Hs.275243
15	217729_s_at	AES	Hs.446610
	217735_s_at	HRI	Hs.434986
	217736_s_at	HRI	Hs.434986
	217738_at	PBEF	Hs.293464
	217739_s_at	PBEF	Hs.293464
20	217748_at	ADIPOR1	Hs.5298
	217752_s_at	CN2	Hs.149185
	217757_at	A2M	Hs.74561
	217762_s_at	RAB31	Hs.223025
	217763_s_at	RAB31	Hs.223025
25	217764_s_at	RAB31	Hs.229025
	217771_at	GOLPH2	Hs.352662
	217799_x_at	UBE2H	Hs.372758
	217800_s_at	NDFIP1	Hs.9788
	217817_at	ARPC4	Hs.323342
30	217818_s_at	ARPC4	Hs.323342
	217838_s_at	EVL	Hs.241471
	217848_s_at	PP	Hs.380830
	217867_x_at	BACE2	Hs.496490
	217868_s_at	DREV1	Hs.279583
35	217901_at	DSG2	Hs.412597
	217911_s_at	BAG3	Hs.15259
	217941_s_at	ERBB2IP	Hs.8117
	217963_s_at	NGFRAP1	Hs.448588
	217966_s_at	C1orf24	Hs.48778
40	217967_s_at	C1orf24	Hs.48778
	217977_at	SEPX1	Hs.279623
	217979_at	TM4SF13	Hs.364544
	217983_s_at	RNASE6PL	Hs.388130
	217985_s_at	BAZ1A	Hs.436488
45	217986_s_at	BAZ1A	Hs.436488
	217988_at	HEI10	Hs.107003
	217995_at	SQRDL	Hs.435468
	217996_at	PHLDA1	Hs.82101
	217997_at	PHLDA1	Hs.82101
50	217999_s_at	PHLDA1	Hs.82101
	218000_s_at	PHLDA1	Hs.82101
	218012_at	SE20-4	Hs.136164
	218034_at	TTC11	Hs.423968
	218035_s_at	FLJ20273	Hs.95549
55	218039_at	ANKT	Hs.279905
	218051_s_at	FLJ12442	Hs.84753
	218066_at	SLC12A7	Hs.172613
	218084_x_at	FXYD5	Hs.333418
	218086_at	NPDC1	Hs.105547
60	218091_at	HRB	Hs.371589
	218094_s_at	C20orf35	Hs.256086
	218113_at	TMEM2	Hs.160417
	218116_at	LOC51759	Hs.278429
	218136_s_at	MSCP	Hs.283716
65	218141_at	E2-230K	Hs.16130
	218145_at	C20orf97	Hs.344378
	218205_s_at	MKNK2	Hs.75056

Table 1 (continued):

	218211_s_at	MLPH	Hs.297405
5	218217_at	RISC	Hs.431107
	218224_at	PNMA1	Hs.194709
	218231_at	NAGK	Hs.7036
	218232_at	C1QA	Hs.9641
10	218237_s_at	SLC38A1	Hs.132246
	218243_at	RUFY1	Hs.306769
	218273_s_at	PPM2C	Hs.22265
	218280_x_at	HIST2H2AA	Hs.417332
	218284_at	DKFZP586N0721	Hs.99843
	218298_s_at	FLJ20950	Hs.285673
15	218319_at	PELI1	Hs.7886
	218332_at	BEX1	Hs.834370
	218345_at	HCA112	Hs.12126
	218346_s_at	PA26	Hs.14125
	218352_at	RCBTB1	Hs.58452
	218376_s_at	NICAL	Hs.33476
20	218394_at	FLJ22386	Hs.22795
	218400_at	OAS3	Hs.56009
	218404_at	SNX10	Hs.418132
	218417_s_at	FLJ20489	Hs.438867
	218418_s_at	KIAA1518	Hs.284208
25	218454_at	FLJ22662	Hs.178470
	218456_at	C1QDC1	Hs.234355
	218468_s_at	CKTSF1B1	Hs.40098
	218469_at	CKTSF1B1	Hs.40098
	218487_at	ALAD	Hs.1227
30	218523_at	LHPP	Hs.20950
	218532_s_at	FLJ20152	Hs.82273
	218559_s_at	MAFB	Hs.169487
	218589_at	P2RY5	Hs.123464
	218596_at	FLJ10743	Hs.3376
35	218608_at	HSA9947	Hs.128866
	218614_at	FLJ20696	Hs.236844
	218618_s_at	FAD104	Hs.299883
	218625_at	NRN1	Hs.103291
	218644_at	PLEK2	Hs.170473
40	218660_at	DYSF	Hs.408679
	218676_s_at	PCTP	Hs.285218
	218686_s_at	RHBDF1	Hs.57988
	218710_at	FLJ20272	Hs.26090
	218711_s_at	SDPR	Hs.26530
45	218718_at	PDGFC	Hs.43080
	218723_s_at	RGC32	Hs.76640
	218729_at	LXN	Hs.124491
	218742_at	HPRN	Hs.22158
	218781_at	SMC6L1	Hs.424559
50	218786_at	---	Hs.374350
	218788_s_at	SMYD3	Hs.8109
	218793_s_at	SCML1	Hs.109655
	218803_at	CHFR	Hs.23794
	218805_at	IAN4L1	Hs.412331
55	218810_at	FLJ23231	Hs.288300
	218824_at	FLJ10781	Hs.8395
	218825_at	EGFL7	Hs.91481
	218828_at	PLSCR3	Hs.433154
	218831_s_at	FCGRT	Hs.111903
60	218847_at	IMP-2	Hs.30299
	218853_s_at	DJ473B4	Hs.57549
	218854_at	SART2	Hs.388014
	218856_at	TNFRSF21	Hs.159651
	218858_at	FLJ12428	Hs.87729
65	218864_at	TNS	Hs.439442
	218865_at	FLJ22390	Hs.195345
	218872_at	TSC	Hs.345908

Table 1. (continued):

	218876_at	CGI-38	Hs.412685
	218880_at	FOSL2	Hs.301612
5	218881_s_at	FLJ23306	Hs.5890
	218899_s_at	BAALC	Hs.169395
	218902_at	NOTCH1	Hs.311559
	218927_s_at	CHST12	Hs.25204
	218935_at	EHD3	Hs.368808
10	218952_at	PCSK1N	Hs.429437
	218963_s_at	KRT23	Hs.9029
	218964_at	DRIL2	Hs.10431
	218974_at	FLJ10159	Hs.346203
	218978_s_at	MSCP	Hs.288716
15	218986_s_at	FLJ20035	Hs.109309
	218988_at	SLC35E3	Hs.445043
	219019_at	LRDD	Hs.438986
	219032_x_at	OPN3	Hs.170129
	219033_at	FLJ21308	Hs.310185
20	219036_at	BITE	Hs.127217
	219049_at	ChGn	Hs.341073
	219054_at	FLJ14054	Hs.13528
	219059_s_at	XLKD1	Hs.179917
	219090_at	SLC24A3	Hs.439909
25	219093_at	FLJ20701	Hs.424598
	219123_at	ZNF232	Hs.279914
	219183_s_at	PSCD4	Hs.7189
	219191_s_at	BIN2	Hs.14770
	219218_at	FLJ23058	Hs.415799
30	219228_at	ZNF463	Hs.147644
	219243_at	HIMAP4	Hs.30822
	219247_s_at	ZDHHC14	Hs.292541
	219255_x_at	IL17RB	Hs.5470
	219256_s_at	FLJ20356	Hs.61053
35	219259_at	FLJ12287	Hs.408846
	219277_s_at	FLJ10851	Hs.17860
	219288_at	HT021	Hs.47166
	219295_s_at	PCOLCE2	Hs.8944
	219304_s_at	SCDGF-B	Hs.112885
40	219308_s_at	AK5	Hs.18268
	219316_s_at	C14orf58	Hs.267566
	219332_at	FLJ23471	Hs.376617
	219339_s_at	Eu-HMTase1	Hs.416692
	219358_s_at	CENTA2	Hs.416471
45	219359_at	FLJ22635	Hs.353181
	219360_s_at	TRPM4	Hs.31608
	219371_s_at	KLF2	Hs.107740
	219373_at	DPM3	Hs.110477
	219383_at	FLJ14213	Hs.183506
50	219396_s_at	NEIL1	Hs.197423
	219403_s_at	HPSE	Hs.44227
	219414_at	CLSTN2	Hs.12079
	219434_at	TREM1	Hs.283022
	219443_at	C20orf18	Hs.88367
55	219457_s_at	RIN3	Hs.413374
	219463_at	C20orf103	Hs.22920
	219471_at	C13orf18	Hs.413071
	219478_at	WFDC1	Hs.36688
	219480_at	SNAI1	Hs.48029
60	219489_s_at	RHBDL2	Hs.133999
	219497_s_at	BCL11A	Hs.314623
	219505_at	CECR1	Hs.170310
	219506_at	FLJ23221	Hs.91283
	219511_s_at	SNCAIP	Hs.24948
65	219519_s_at	SN	Hs.31869
	219520_s_at	KIAA1280	Hs.12913
	219528_s_at	BCL11B	Hs.57987

Table 1 (continued):

	219534_x_at	CDKN1C	Hs.106070
5	219541_at	FLJ20406	Hs.149227
	219546_at	BMP2K	Hs.20137
	219559_at	C20orf59	Hs.353013
	219563_at	C14orf139	Hs.41502
	219569_s_at	MGC3295	Hs.101257
	219593_at	PHT2	Hs.237856
10	219602_s_at	FLJ23403	Hs.293907
	219607_s_at	MS4A4A	Hs.325960
	219622_at	RAB20	Hs.179791
	219628_at	WIG1	Hs.252406
	219629_at	FLJ20635	Hs.265018
15	219630_at	MAP17	Hs.431099
	219654_at	PTPLA	Hs.114062
	219666_at	MS4A6A	Hs.371612
	219667_s_at	BANK	Hs.193736
	219669_at	PRV1	Hs.232165
20	219672_at	ERAF	Hs.274309
	219681_s_at	RCP	Hs.96125
	219686_st	HSA250839	Hs.58241
	219695_at	FLJ10640	Hs.91753
	219714_s_at	CACNA2D3	Hs.435112
25	219737_s_at	---	Hs.458282 // est
	219738_s_at	PCDH9	Hs.404723
	219740_at	FLJ12505	Hs.96885
	219747_at	FLJ23191	Hs.16026
	219753_at	STAG3	Hs.323634
30	219759_at	LRAP	Hs.374490
	219777_at	hIAN2	Hs.105468
	219788_at	PILRA	Hs.122591
	219789_at	NPR3	Hs.237028
	219790_s_at	NPR3	Hs.237028
35	219799_s_at	RDHL	Hs.179608
	219806_s_at	FN5	Hs.416456
	219812_at	STAG3	Hs.323634
	219814_at	MBNL3	Hs.105134
	219837_s_at	C17	Hs.13872
40	219859_at	CLECSF9	Hs.236616
	219870_at	ATF7IP2	Hs.189813
	219871_at	FLJ13197	Hs.29725
	219872_at	DKFZp434L142	Hs.323583
	219884_at	LHX6	Hs.103137
45	219890_at	CLECSF5	Hs.126355
	219892_at	TM6SF1	Hs.151155
	219895_at	FLJ20716	Hs.437563
	219905_at	ERMAP	Hs.427672
	219918_s_at	ASPM	Hs.121028
50	219919_s_at	SSH-3	Hs.29173
	219922_s_at	LTBP3	Hs.289019
	219932_at	VLCs-H1	Hs.49765
	219947_at	CLECSF6	Hs.115515
	219952_s_at	MCOLN1	Hs.372029
55	219978_s_at	ANKT	Hs.279905
	219992_at	TAC3	Hs.9730
	220001_at	PADI4	Hs.397050
	220005_at	GPR86	Hs.13040
	220006_at	FLJ12057	Hs.134807
60	220010_at	KCNE1L	Hs.146972
	220014_at	LOC51334	Hs.157461
	220017_x_at	CYP2C9	Hs.418127
	220037_s_at	XLKD1	Hs.17917
	220051_at	PRSS21	Hs.72026
65	220057_at	GAGED2	Hs.112208
	220059_at	BRDG1	Hs.121128
	220066_at	CARD15	Hs.135201

Table 1 (continued):

	220068_at	VPREB3	Hs.136713
	220088_at	C5R1	Hs.2161
5	220091_at	SLC2A6	Hs.244378
	220110_s_at	NXF3	Hs.60386
	220122_at	FLJ22344	Hs.107716
	220173_at	C14orf45	Hs.260555
	220179_at	LOC64180	Hs.302028
10	220220_at	FLJ10120	Hs.378860
	220266_s_at	KLF4	Hs.376206
	220306_at	FLJ20202	Hs.356216
	220319_s_at	MIR	Hs.443793
	220330_s_at	SAMSN1	Hs.221851
15	220335_x_at	FLJ21736	Hs.268700
	220359_s_at	ARPP-21	Hs.412268
	220370_s_at	KIAA1453	Hs.11387
	220377_at	C14orf110	Hs.395486
	220404_at	GPR97	Hs.383403
20	220416_at	ATP8B4	Hs.313841
	220448_at	KCNK12	Hs.252617
	220485_s_at	SIRPB2	Hs.50716
	220496_at	CLEC2	Hs.409794
	220507_s_at	UPB1	Hs.285512
25	220532_s_at	LR8	Hs.190161
	220560_at	C11orf21	Hs.272100
	220570_at	RETN	Hs.283091
	220591_s_at	FLJ22843	Hs.301143
	220595_at	DKFZp434B0417	Hs.380044
30	220617_s_at	FLJ10697	Hs.368756
	220646_s_at	KLRF1	Hs.183125
	220668_s_at	DNMT3B	Hs.251673
	220684_at	TBX21	Hs.272409
	220704_at	ZNFN1A1	Hs.435949
35	220720_x_at	FLJ14846	Hs.287640
	220727_at	KCNK10	Hs.365690
	220751_s_at	C5orf4	Hs.10235
	220757_s_at	UBXD1	Hs.435255
	220793_at	SAGE	Hs.195292
40	220807_at	HBQ1	Hs.247921
	220811_at	PRG3	Hs.251986
	220832_at	TLR8	Hs.272410
	220864_s_at	GRIM19	Hs.279574
	220898_at	---	--- // ---
45	220911_s_at	KIAA1305	Hs.496280
	220918_at	RUNX1	Hs.410774
	220937_s_at	SIAT7D	Hs.3972
	220940_at	KIAA1641	Hs.503503
	220941_s_at	C21orf91	Hs.293811
50	220945_x_at	FLJ10298	Hs.5999
	220954_s_at	PILRB	Hs.349256
	221004_s_at	ITM2C	Hs.111577
	221011_s_at	LBH	Hs.57209
	221012_s_at	TRIM8	Hs.54580
55	221019_s_at	COLEC12	Hs.29423
	221059_s_at	CHST6	Hs.157439
	221060_s_at	TLR4	Hs.174312
	221063_x_at	RNF123	Hs.406364
	221075_s_at	NCR2	Hs.194721
60	221140_s_at	G2A	Hs.441131
	221205_at	---	--- // ---
	221210_s_at	C1orf13	Hs.64896
	221223_x_at	CISH	Hs.8257
	221234_s_at	BACH2	Hs.88414
65	221237_s_at	OSBP2	Hs.7740
	221245_s_at	DKFZP434E2135	Hs.17631
	221246_x_at	TNS	Hs.489442

Table 1 (continued):

	221261_x_at	MAGED4	Hs.376347
5	221269_s_at	SH3BGRL3	Hs.109051
	221286_s_at	PACAP	Hs.409563
	221345_at	GPR43	Hs.248056
	221349_at	VPREB1	Hs.247979
	221363_x_at	GPR25	Hs.248123
10	221425_s_at	MGC4276	Hs.270013
	221477_s_at	SOD2	Hs.384944
	221478_at	BNIP3L	Hs.132955
	221479_s_at	BNIP3L	Hs.132955
	221484_at	B4GALT5	Hs.107526
15	221491_x_at	HLA-DRB3	Hs.308026
	221520_s_at	CDCA8	Hs.48855
	221529_s_at	PLVAP	Hs.107125
	221530_s_at	BHLHB3	Hs.437282
	221541_at	DKFZP434B044	Hs.262958
20	221551_x_at	SIAT7D	Hs.3972
	221558_s_at	LEF1	Hs.44865
	221563_at	DUSP10	Hs.177534
	221577_x_at	PLAB	Hs.296638
	221578_at	RASSF4	Hs.319124
25	221581_s_at	WBSCR5	Hs.56607
	221584_s_at	KCNMA1	Hs.354740
	221601_s_at	TOSO	Hs.58831
	221602_s_at	TOSO	Hs.58831
	221607_x_at	ACTG1	Hs.14376
	221627_at	TRIM10	Hs.274295
30	221646_s_at	ZDHHC11	Hs.50754
	221651_x_at	na	Hs.377975
	221658_s_at	IL21R	Hs.210546
	221666_s_at	ASC	Hs.197875
	221671_x_at	na	Hs.377975
35	221675_s_at	CHPT1	Hs.225567
	221690_s_at	NALP2	Hs.369279
	221698_s_at	CLECSF12	Hs.161786
	221704_s_at	FLJ12750	Hs.77870
	221724_s_at	CLECSF6	Hs.115515
40	221728_x_at	LOC139202	Hs.85623 // ---
	221731_x_at	CSPG2	Hs.434488
	221747_at	TNS	Hs.439442
	221748_s_at	TNS	Hs.439442
	221756_at	MGC17330	Hs.26670
45	221757_at	MGC17330	Hs.26670
	221760_at	MAN1A1	Hs.255149
	221764_at	MGC16353	Hs.388956
	221765_at	UGCG	Hs.432605
50	221766_s_at	C6orf37	Hs.10784
	221768_at	SFPQ	Hs.180610
	221779_at	MIRAB13	Hs.8535
	221802_s_at	KIAA1598	Hs.98002
	221807_s_at	PP2447	Hs.33026
55	221809_at	KIAA1464	Hs.441888 // ---
	221814_at	GPR124	Hs.17270
	221824_s_at	c-MIR	Hs.288156
	221840_at	PTPRE	Hs.437980
	221841_s_at	KLF4	Hs.376206
	221861_at	---	Hs.12853 // ---
60	221870_at	EHD2	Hs.325650
	221875_x_at	HLA-F	Hs.411958
	221884_at	EVI1	Hs.436019
	221902_at	na	Hs.7967 // ---
	221920_s_at	MSCP	Hs.283716
65	221932_s_at	C14orf87	Hs.294083
	221942_s_at	GUCY1A3	Hs.433488
	221950_at	EMX2	Hs.202095

Table 1 (continued):

	221962_s_at	UBE2H	Hs.37275-8
	221969_at	--	Hs.22030 // est
5	221978_at	HLA-F	Hs.41195-8
	221983_at	MGC3085	Hs.22412
	222001_x_at	--	Hs.50358 5 // est
	222040_at	HNRPAA1	Hs.35672 1
	222067_x_at	HIST1H2BD	Hs.18077 9
10	222068_s_at	LOC123872	Hs.31016 4
	222074_at	UROD	Hs.78601
	222087_at	--	Hs.32458 // est
	222088_s_at	SLC2A14	Hs.40127 4
	222108_at	AMIGO2	Hs.12152 0
15	222125_s_at	PH-4	Hs.27122 4
	222142_at	CYLD	Hs.38695 2
	222144_at	KIF17	Hs.13041 1 // ---
	222145_at	na	Hs.40649 4 // ---
	222146_s_at	TCF4	Hs.35928 9
20	222154_s_at	DKFZP564A2416	Hs.23076 7
	222162_s_at	ADAMTS1	Hs.8230
	222186_at	--	Hs.30632 9 // ---
	222218_s_at	PILRA	Hs.12259 1
	222221_x_at	EHD1	Hs.15511 9
25	222222_s_at	--	--- // ---
	222258_s_at	SH3BP4	Hs.17667
	222281_s_at	--	Hs.37049 4 // est
	222284_at	--	Hs.37356 5 // est
	222288_at	--	Hs.13052 6 // est
30	222294_s_at	RAB27A	Hs.29853 0
	222303_at	ETS2	Hs.29247 7
	222313_at	--	Hs.29333 4 // est
	222315_at	--	Hs.29285 3 // est
	222316_at	--	Hs.29268 9 // est
35	222326_at	--	Hs.43253 4 // est
	222330_at	--	Hs.44571 1 // est
	222363_at	--	Hs.13267 0 // est
	222375_at	--	Hs.37214 6 // est
	266_s_at	CD24	Hs.37510 8
40	31874_at	GAS2L1	Hs.32285 2
	33304_at	ISG20	Hs.10543 4
	336_at	--	--- // ---
	33646_g_at	GM2A	Hs.38715 6
	34210_at	CDW52	Hs.27677 0
45	35626_at	SGSH	Hs.31074
	35666_at	SEMA3F	Hs.32981
	35820_at	GM2A	Hs.38715 6
	36553_at	--	Hs.46105 6 // est
	36554_at	ASMTL	Hs.45842 0
50	36564_at	FLJ90005	Hs.12836 6
	36711_at	MAFF	Hs.51305
	37028_at	PPP1R15A	Hs.76556
	37145_at	GNLY	Hs.10580 6
	37986_at	EPOR	Hs.12782 6
55	38037_at	DTR	Hs.799
	38487_at	STAB1	Hs.30198 9
	38521_at	CD22	Hs.26215 0
	39248_at	AQP3	Hs.23464 2
	39318_at	TCL1A	Hs.2484
60	39402_at	IL1B	Hs.12625 6
	396_f_at	EPOR	Hs.12782 6
	39729_at	PRDX2	Hs.43212 1
	40020_at	CELSR3	Hs.55173
	40093_at	LU	Hs.15504 8
65	40850_at	FKBP8	Hs.17346 4
	41386_i_at	KIAA0346	Hs.10391 5 // ---
	41469_at	PI3	Hs.11234 1

Table 1 (continued):

	41577_at	PPP1R16B	Hs.45719
5	41644_at	SASH1	Hs.166311
	44673_at	SN	Hs.31869
	45297_at	EHD2	Hs.325650
	46665_at	SEMA4C	Hs.7188
	48031_r_at	C5orf4	Hs.10235
10	48106_at	FLJ20489	Hs.438867
	48808_at	DHFR	Hs.83765
	49306_at	RASSF4	Hs.319124
	51158_at	---	Hs.27373 // ---
	53987_at	na	Hs.6343 // ---
15	54037_at	HPS4	Hs.441481
	55081_at	MIRAB13	Hs.8535
	55705_at	---	Hs.498224 // est
	57540_at	RBSK	Hs.11916
	57588_at	SLC24A3	Hs.439909
20	64064_at	IAN4L1	Hs.412331
	64942_at	na	Hs.7967 // ---
	AFFX-HUMISGF3A/M97935_5_at	---	--- // ---
	AFFX-HUMRGE/M10098_3_at	---	--- // ---
	AFFX-HUMRGE/M10098_5_at	---	--- // ---
25	AFFX-HUMRGE/M10098_M_at	---	--- // ---
	AFFX-M27830_5_at	---	--- // ---
	AFFX-M27830_M_at	---	--- // ---
	AFFX-r2-Hs18SrRNA-3_s_at	---	--- // ---
	AFFX-r2-Hs18SrRNA-5_at	---	--- // ---
30	AFFX-r2-Hs18SrRNA-M_x_at	---	--- // ---
	AFFX-r2-Hs28SrRNA-3_at	---	--- // ---
	AFFX-r2-Hs28SrRNA-M_at	---	--- // ---

Table 2 About 599 genes defining assigned clusters of AML as identified by

35 SAM.

	Affymetrix probe set id	Gene symbol	Cluster defined	Unigene ID
40	202672_s_at	ATF3	cluster1	Hs.460
	201464_x_at	JUN	cluster1	Hs.78465
	202497_x_at	SLC2A3	cluster1	Hs.419240
	204622_x_at	NR4A2	cluster1	Hs.82120
	216236_s_at	SLC2A14	cluster1	Hs.401274
	216248_s_at	NR4A2	cluster1	Hs.82120
45	204621_s_at	NR4A2	cluster1	Hs.82120
	222088_s_at	SLC2A14	cluster1	Hs.401274
	220014_at	LOC51834	cluster1	Hs.157461
	206762_at	KCNA5	cluster1	Hs.150208
	213094_at	GPR126	cluster1	Hs.419170
50	218502_s_at	TRPS1	cluster1	Hs.26102
	221530_s_at	BHLHB3	cluster1	Hs.437282
	221884_at	EVI1	cluster1	Hs.436019
	203642_s_at	KIAA0977	cluster1	Hs.300855
	212827_at	IGHM	cluster1	Hs.153261
55	205612_at	MMRN	cluster1	Hs.268107
	209200_at	MEF2C	cluster1	Hs.368950
	214255_at	ATP10A	cluster1	Hs.125595
	201539_s_at	FHL1	cluster1	Hs.421383
	205717_x_at	PCDHGC3	cluster1	Hs.283794
60	222144_at	KIF17	cluster1	Hs.130411 // ---
	219922_s_at	LTBP3	cluster1	Hs.289019
	216836_s_at	PCDHGC3	cluster1	Hs.283794
	205861_at	SPIB	cluster1	Hs.437905
	203372_s_at	SOCS2	cluster1	Hs.405946

Table 2 (continued):

	209079_x_at	PCDHGC3	cluster1	Hs.283794
	215811_at	--	cluster1	Hs.275706 // ---
5	209199_s_at	MEF2C	cluster1	Hs.368950
	207655_s_at	BLNK	cluster1	Hs.167746
	203716_s_at	DPP4	cluster1	Hs.44926
	219737_s_at	---	cluster1	Hs.458282 // est
10	204304_s_at	PROM1	cluster1	Hs.370052
	203373_at	SOCSS2	cluster1	Hs.405946
	218237_s_at	SLC38A1	cluster1	Hs.132246
	202265_at	BMI1	cluster1	Hs.380403
	210298_x_at	FHL1	cluster1	Hs.421383
15	208436_s_at	IRF7	cluster1	Hs.166120
	210032_s_at	SPAG6	cluster1	Hs.158213
	206571_s_at	MAP4K4	cluster2	Hs.3628
	213152_s_at	--	cluster2	Hs.476680 // est
	214582_at	PDE3B	cluster2	Hs.387616
	209458_x_at	HBA1	cluster2	Hs.449630
20	208623_s_at	VIL2	cluster2	Hs.403997
	204018_x_at	HBA1	cluster2	Hs.449630
	211745_x_at	HBA1	cluster2	Hs.449630
	211696_x_at	HBB	cluster2	Hs.155376
25	214414_x_at	HBA1	cluster2	Hs.449630
	209116_x_at	HBB	cluster2	Hs.155376
	217232_x_at	--	cluster2	--- // ---
	211699_x_at	HBA1	cluster2	Hs.449630
	217414_x_at	--	cluster2	--- // ---
30	208792_s_at	CLU	cluster2	Hs.436657
	216268_s_at	JAG1	cluster2	Hs.409202
	208798_x_at	GOLGIN-67	cluster2	Hs.182982
	213844_at	HOXA5	cluster2	Hs.37034
	204030_s_at	SCHIP1	cluster2	Hs.61490
35	209193_at	PIM1	cluster2	Hs.81170
	221942_s_at	GUCY1A3	cluster2	Hs.433488
	208767_s_at	LAPTM4B	cluster2	Hs.296398
	210425_x_at	GOLGIN-67	cluster2	Hs.356225
	209409_at	GRB10	cluster2	Hs.81875
40	212070_at	GPR56	cluster2	Hs.6527
	205453_at	HOXB2	cluster2	Hs.290432
	208797_s_at	GOLGIN-67	cluster2	Hs.182982
	206582_s_at	GPR56	cluster2	Hs.6527
	207533_at	CCL1	cluster2	Hs.72918
45	206298_at	RhoGAP2	cluster2	Hs.87241
	212276_at	LPIN1	cluster2	Hs.81412
	219615_s_at	KCNK5	cluster2	Hs.444448
	203187_at	DOCK1	cluster2	Hs.437620
	206574_s_at	PTP4A3	cluster2	Hs.43666
50	204341_at	TRIM16	cluster2	Hs.241305
	210145_at	PLA2G4A	cluster2	Hs.211587
	205190_at	PLS1	cluster2	Hs.203637
	215288_at	TRPC2	cluster2	Hs.131910 // ---
	211269_s_at	IL2RA	cluster2	Hs.130058
55	206341_at	IL2RA	cluster2	Hs.130058
	207034_s_at	GLI2	cluster2	Hs.111867
	212543_at	AIM1	cluster3	Hs.422550 // ---
	204500_s_at	AGTPBP1	cluster3	Hs.21542
	211729_x_at	BLVRA	cluster3	Hs.435726
	218831_s_at	FCGRT	cluster3	Hs.111903
60	221830_at	RAP2A	cluster3	Hs.48554
	203773_x_at	BLVRA	cluster3	Hs.435726
	206034_at	SERPINB8	cluster3	Hs.368077
	212195_at	IL6ST	cluster3	Hs.71968
	205707_at	IL17R	cluster3	Hs.129751
65	203973_s_at	KIAA0146	cluster3	Hs.381058
	220377_at	C14orf110	cluster3	Hs.395486
	201829_at	NET1	cluster3	Hs.25155

Table 2 (continued):

	207838_x_at	PBXIP1	cluster3	Hs.8068
	201427_s_at	SEPP1	cluster3	Hs.275775
5	214228_x_at	TNFRSF4	cluster3	Hs.129780
	201663_s_at	SMC4L1	cluster3	Hs.50758
	215388_s_at	HFL1	cluster3	Hs.296941
	203187_at	DOCK1	cluster3	Hs.497620
	219304_s_at	SCDGF-B	cluster3	Hs.112885
10	219602_s_at	FLJ23403	cluster3	Hs.293907
	215471_s_at	MAP7	cluster3	Hs.254605
	202890_at	MAP7	cluster3	Hs.254605
	206582_s_at	GPR56	cluster3	Hs.6527
	214039_s_at	LAPTM4B	cluster3	Hs.296398
15	204941_at	TRIM16	cluster3	Hs.241305
	204160_s_at	ENPP4	cluster3	Hs.54037
	213217_at	ADCY2	cluster3	Hs.414591
	210116_at	SH2D1A	cluster3	Hs.151544
	201664_at	SMC4L1	cluster3	Hs.50758
20	217975_at	LOC51186	cluster3	Hs.15984
	202889_x_at	ANPEP	cluster3	Hs.254605
	204044_at	QPR7	cluster3	Hs.8935
	208029_s_at	LAPTM4B	cluster3	Hs.296398
	206298_at	RhoGAP2	cluster3	Hs.87241
25	208767_s_at	LAPTM4B	cluster3	Hs.296398
	213110_s_at	COL4A5	cluster3	Hs.169825
	205190_at	PLS1	cluster3	Hs.203637
	207533_at	CCL1	cluster3	Hs.72918
	205848_at	GAS2	cluster3	Hs.135665
30	206950_at	SCN9A	cluster3	Hs.2319
	210844_x_at	CTNNA1	cluster4	Hs.254321
	200764_s_at	CTNNA1	cluster4	Hs.254321
	200765_x_at	CTNNA1	cluster4	Hs.254321
	209191_at	TUBB-5	cluster4	Hs.274398
35	202241_at	C8FW	cluster4	Hs.444947
	217800_s_at	NDFIP1	cluster4	Hs.9788
	202252_at	RAB13	cluster4	Hs.161536
	201412_at	LRP10	cluster4	Hs.28368
	201160_s_at	CSDA	cluster4	Hs.221889
40	208683_at	CAPN2	cluster4	Hs.350899
	205382_s_at	DF	cluster4	Hs.155597
	203233_at	IL4R	cluster4	Hs.75545
	219371_s_at	KLF2	cluster4	Hs.107740
	208923_at	CYFIP1	cluster4	Hs.26704
45	218627_at	FLJ11269	cluster4	Hs.416393
	213416_at	ITGA4	cluster4	Hs.145140
	205884_at	ITGA4	cluster4	Hs.145140
	214757_at	---	cluster4	Hs.488749 // est
	203987_at	FZD6	cluster4	Hs.114218
50	202242_at	TM4SF2	cluster4	Hs.439586
	206726_at	PGDS	cluster4	Hs.128433
	54037_at	HPS4	cluster4	Hs.441481
	216625_x_at	PMS2L9	cluster4	Hs.278467
	210448_s_at	P2RX5	cluster4	Hs.408615
55	209993_at	ABCB1	cluster4	Hs.21330
	217147_s_at	TRIM	cluster4	Hs.138701
	206238_at	B4GALT6	cluster4	Hs.369994
	209994_s_at	ABCB1	cluster4	Hs.21330
	220567_at	ZNFN1A2	cluster4	Hs.278963
60	207996_s_at	C18orf1	cluster4	Hs.285091
	213910_at	IGFBP7	cluster4	Hs.435795
	214049_x_at	CD7	cluster4	Hs.36972
	214551_s_at	CD7	cluster4	Hs.36972
	217143_s_at	TRD@	cluster4	Hs.2014
65	219383_at	FLJ14213	cluster4	Hs.183506
	211682_x_at	UGT2B28	cluster4	Hs.137585
	213830_at	TRD@	cluster4	Hs.2014

Table 2 (continued):

	206232_s_at	B4GALT6	cluster4	Hs.369994
	216191_s_at	TRD@	cluster4	Hs.2014
5	216286_at	---	cluster4	Hs.306324 // ---
	50221_at	TFEB	cluster5	Hs.23391
	202895_s_at	EPHB4	cluster5	Hs.156114
	205099_s_at	CCR1	cluster5	Hs.301921
	200866_s_at	PSAP	cluster5	Hs.406455
10	208594_x_at	LILRB3	cluster5	Hs.306230
	211135_x_at	LILRB3	cluster5	Hs.306230
	213624_at	ASM3A	cluster5	Hs.277962
	218559_s_at	MAFB	cluster5	Hs.169487
	221578_at	RASSF4	cluster5	Hs.319124
15	212334_at	GNS	cluster5	Hs.334534
	203769_s_at	STS	cluster5	Hs.79876
	205686_s_at	CD86	cluster5	Hs.27954
	205685_at	CD86	cluster5	Hs.27954
	207104_x_at	LILRB1	cluster5	Hs.149924
20	220066_at	CARD15	cluster5	Hs.135201
	201642_at	IFNGR2	cluster5	Hs.409200
	204487_s_at	KCNQ1	cluster5	Hs.367809
	217992_s_at	MGC4342	cluster5	Hs.301342
	211732_x_at	HNMT	cluster5	Hs.42151
25	210660_at	LILRB1	cluster5	Hs.149924
	204858_s_at	ECGF1	cluster5	Hs.435067
	203768_s_at	STS	cluster5	Hs.79876
	222218_s_at	PILRA	cluster5	Hs.122591
	210146_x_at	LILRB3	cluster5	Hs.306230
30	220832_at	TLR8	cluster5	Hs.272410
	219593_at	PHT2	cluster5	Hs.237856
	204619_s_at	CSPG2	cluster5	Hs.434488
	206278_at	PTAFR	cluster5	Hs.46
	207224_s_at	SIGLEC7	cluster5	Hs.274470
35	203767_s_at	STS	cluster5	Hs.79876
	204254_s_at	VDR	cluster5	Hs.2062
	214590_s_at	UBE2D1	cluster5	Hs.129683
	212681_at	EPB41L3	cluster5	Hs.103839
	219872_at	DKFZp434L142	cluster5	Hs.323583
40	204392_at	CAMK1	cluster5	Hs.434875
	219788_at	PILRA	cluster5	Hs.122591
	206934_at	SIRPB1	cluster5	Hs.194784
	211776_s_at	EPB41L3	cluster5	Hs.103839
	207872_s_at	LILRB1	cluster5	Hs.149924
45	206710_s_at	EPB41L3	cluster5	Hs.103839
	209083_at	CORO1A	cluster6	Hs.415067
	204319_s_at	RGS10	cluster6	Hs.82280
	217845_x_at	HIG1	cluster6	Hs.7917
	205672_at	XPA	cluster6	Hs.288867
50	217118_s_at	KIAA0930	cluster6	Hs.13255
	211990_at	HLA-DPA1	cluster6	Hs.914
	210982_s_at	HLA-DRA	cluster6	Hs.409805
	208982_at	PECAM1	cluster6	Hs.78146
	209619_at	CD74	cluster6	Hs.446471
55	215193_x_at	HLA-DRB1	cluster6	Hs.411726
	201641_at	BST2	cluster6	Hs.118110
	213266_at	---	cluster6	Hs.497941 // est
	202729_s_at	LTBP1	cluster6	Hs.241257
	204751_x_at	DSC2	cluster6	Hs.95612
60	215573_at	CAT	cluster6	Hs.395771
	220898_at	---	cluster6	--- // ---
	215888_s_at	HFL1	cluster6	Hs.296941
	219036_at	BITE	cluster6	Hs.127217
	204750_s_at	DSC2	cluster6	Hs.95612
65	218786_at	---	cluster6	Hs.374350
	208414_s_at	HOXB4	cluster6	Hs.147465
	201491_s_at	DPYSL3	cluster6	Hs.150358

Table 2 (continued):

	215623_x_at	SMC4L1	cluster6	Hs.50758
5	213260_at	FOXC1	cluster6	Hs.348883
	219932_at	VLCS-H1	cluster6	Hs.49765
	206377_at	FOXF2	cluster6	Hs.44481
	202728_s_at	LTBP1	cluster6	Hs.241257
	219651_at	FLJ10713	cluster6	Hs.317659
	213217_at	ADCY2	cluster6	Hs.414591
10	218710_at	FLJ20272	cluster6	Hs.26090
	219602_s_at	FLJ23403	cluster6	Hs.293907
	215807_s_at	PLXNB1	cluster6	Hs.278311
	212019_at	DKFZP564M182	cluster6	Hs.158995
15	204983_s_at	GPC4	cluster6	Hs.58367
	204984_at	GPC4	cluster6	Hs.58367
	221959_at	MGC39325	cluster6	Hs.34054
	209702_at	FTO	cluster6	Hs.284741
	219511_s_at	SNCAIP	cluster6	Hs.24948
	51158_at	---	cluster6	Hs.27373 // ---
20	221880_s_at	---	cluster6	Hs.27373 // ---
	201733_at	CLCN3	cluster7	Hs.372528
	218978_s_at	MSCP	cluster7	Hs.283716
	214433_s_at	SELENBP1	cluster7	Hs.334841
	201249_at	SLC2A1	cluster7	Hs.169902
25	205389_s_at	ANK1	cluster7	Hs.443711
	207793_s_at	EPB41	cluster7	Hs.37427
	212804_s_at	DKFZP434C212	cluster7	Hs.287266
	221237_s_at	OSBP2	cluster7	Hs.7740
	216925_s_at	TAL1	cluster7	Hs.73828
30	206077_at	KEL	cluster7	Hs.420322
	213843_x_at	SLC6A8	cluster7	Hs.388375
	206145_at	RHAG	cluster7	Hs.368178
	217274_x_at	---	cluster7	--- // ---
	216063_at	---	cluster7	Hs.470084 // est
35	220751_s_at	C5orf4	cluster7	Hs.10235
	210854_x_at	SLC6A8	cluster7	Hs.988375
	210586_x_at	RHD	cluster7	Hs.458333
	210395_x_at	MYL4	cluster7	Hs.356717
	205262_at	KCNH2	cluster7	Hs.188021
40	208353_x_at	ANK1	cluster7	Hs.443711
	208416_s_at	SPTB	cluster7	Hs.438514
	219630_at	MAP17	cluster7	Hs.431099
	208352_x_at	ANK1	cluster7	Hs.443711
	207087_x_at	ANK1	cluster7	Hs.443711
45	211254_x_at	RHAG	cluster7	Hs.368178
	206647_at	HBZ	cluster7	Hs.272003
	214530_x_at	EPB41	cluster7	Hs.37427
	203911_at	RAP1GA1	cluster7	Hs.433797
	218864_at	TNS	cluster7	Hs.439442
50	207043_s_at	SLC6A9	cluster7	Hs.442590
	205391_x_at	ANK1	cluster7	Hs.443711
	210088_x_at	MYL4	cluster7	Hs.356717
	216054_x_at	MYL4	cluster7	Hs.356717
	206146_s_at	RHAG	cluster7	Hs.368178
55	204720_s_at	DNAJC6	cluster7	Hs.44896
	205390_s_at	ANK1	cluster7	Hs.443711
	56748_at	TRIM10	cluster7	Hs.274295
	221577_x_at	PLAB	cluster7	Hs.296638
	207854_at	GYPE	cluster7	Hs.395535
60	206116_s_at	TPM1	cluster7	Hs.133892
	203115_at	FECH	cluster8	Hs.443610
	208352_x_at	ANK1	cluster8	Hs.443711
	48031_x_at	C5orf4	cluster8	Hs.10235
	214433_s_at	SELENBP1	cluster8	Hs.334841
65	218853_s_at	DJ473B4	cluster8	Hs.57549
	209890_at	TM4SF9	cluster8	Hs.8037
	210586_x_at	RHD	cluster8	Hs.458333

Table 2 (continued):

	213843_x_at	SLC6A8	cluster8	Hs.388375
5	207087_x_at	ANK1	cluster8	Hs.443711
	204467_s_at	SNCA	cluster8	Hs.76930
	216317_x_at	RHCE	cluster8	Hs.278994
	202124_s_at	ALS2CR3	cluster8	Hs.154248
	216833_x_at	GYPE	cluster8	Hs.395535
	201886_at	WDR23	cluster8	Hs.283976
10	202074_s_at	OPTN	cluster8	Hs.390162
	215812_s_at	--	cluster8	Hs.499113 // est
	218864_at	TNS	cluster8	Hs.439442
	211820_x_at	GYPA	cluster8	Hs.34287
	203794_at	CDC42BPA	cluster8	Hs.18586
15	216925_s_at	TAL1	cluster8	Hs.73828
	202219_at	SLC6A8	cluster8	Hs.388375
	205838_at	GYPA	cluster8	Hs.34287
	211649_x_at	---	cluster8	Hs.449057
	217572_at	--	cluster8	... // --
20	202125_s_at	ALS2CR3	cluster8	Hs.154248
	208353_x_at	ANK1	cluster8	Hs.443711
	205837_s_at	GYPA	cluster8	Hs.34287
	202364_at	MXI1	cluster8	Hs.118630
	220751_s_at	C5orf4	cluster8	Hs.10235
25	214464_at	CDC42BPA	cluster8	Hs.18586
	221237_s_at	OSBP2	cluster8	Hs.7740
	205391_x_at	ANK1	cluster8	Hs.443711
	210430_x_at	RHD	cluster8	Hs.283822
	201333_s_at	ARHGEF12	cluster8	Hs.413112
30	212151_at	PBX1	cluster8	Hs.408222
	40093_at	LU	cluster8	Hs.155048
	202073_at	OPTN	cluster8	Hs.390162
	209735_at	ABCG2	cluster8	Hs.194720
	201131_s_at	CDH1	cluster8	Hs.194657
35	213338_at	RIS1	cluster8	Hs.35861
	200675_at	CD81	cluster9	Hs.54457
	202370_s_at	CBFB	cluster9	Hs.179881
	211031_s_at	CYLN2	cluster9	Hs.104717
	218927_s_at	CHST12	cluster9	Hs.25204
40	206788_s_at	CBFB	cluster9	Hs.179881
	219218_at	FLJ23058	cluster9	Hs.415799
	211026_s_at	MGLL	cluster9	Hs.409826
	204198_s_at	RUNX3	cluster9	Hs.170019
	213779_at	EMU1	cluster9	Hs.289106
45	218414_s_at	NDE1	cluster9	Hs.263925
	200984_s_at	CD59	cluster9	Hs.278573
	204197_s_at	RUNX3	cluster9	Hs.170019
	203329_at	PTPRM	cluster9	Hs.154151
	218876_at	CGI-38	cluster9	Hs.412685
50	210889_s_at	FCGR2B	cluster9	Hs.126384
	212771_at	LOC221061	cluster9	Hs.66762 // ---
	202481_at	SDR1	cluster9	Hs.17144
	205830_at	MN1	cluster9	Hs.268515
	203939_at	NT5E	cluster9	Hs.153952
55	212912_at	RPS6KA2	cluster9	Hs.301664
	201506_at	TGFBI	cluster9	Hs.421496
	200665_s_at	SPARC	cluster9	Hs.111779
	204787_at	Z39IG	cluster9	Hs.8904
	207194_s_at	ICAM4	cluster9	Hs.435625
60	219308_s_at	AK5	cluster9	Hs.18268
	209395_at	CHI3L1	cluster9	Hs.382202
	205076_s_at	CRA	cluster9	Hs.425144
	219694_at	FLJ11127	cluster9	Hs.91165
	209396_s_at	CHI3L1	cluster9	Hs.382202
65	204885_s_at	MSLN	cluster9	Hs.408488
	221019_s_at	COLEC12	cluster9	Hs.29423
	205987_at	CD1C	cluster9	Hs.1311

Table 2 (continued):

	203058_s_at	PAPSS2	cluster9	Hs.274230
	203060_s_at	PAPSS2	cluster9	Hs.274230
5	206682_at	CLECSF13	cluster9	Hs.54403
	212298_at	NRP1	cluster9	Hs.173548
	206135_at	ST18	cluster9	Hs.151449
	212358_at	CLIPR-59	cluster9	Hs.7357
	207961_x_at	MYH11	cluster9	Hs.78344
10	201497_x_at	MYH11	cluster9	Hs.78344
	214575_s_at	AZU1	cluster10	Hs.72885
	205382_s_at	DF	cluster10	Hs.155597
	209906_at	C3AR1	cluster10	Hs.155935
	206111_at	RNASE2	cluster10	Hs.728
15	212071_s_at	SPTBN1	cluster10	Hs.205401
	203796_s_at	BCL7A	cluster10	Hs.371758
	218899_s_at	BAALC	cluster10	Hs.169395
	209488_s_at	RBPMS	cluster10	Hs.195825
	218086_at	NPDC1	cluster10	Hs.105547
20	204581_at	CD22	cluster10	Hs.262150
	208614_s_at	FLNB	cluster10	Hs.81008
	204540_at	EEF1A2	cluster10	Hs.433839
	204917_s_at	MLLT3	cluster10	Hs.404
	209437_s_at	SPON1	cluster10	Hs.5378
25	212827_at	IGHM	cluster10	Hs.153261
	200672_x_at	SPTBN1	cluster10	Hs.205401
	203756_at	P164RHOGEF	cluster10	Hs.45180
	220877_at	C14orf110	cluster10	Hs.395486
	209576_at	GNAI1	cluster10	Hs.203862
30	205330_at	MN1	cluster10	Hs.268615
	212750_at	PPP1R16B	cluster10	Hs.45719
	204484_at	PIK3C2B	cluster10	Hs.343329
	209436_at	SPON1	cluster10	Hs.5378
	209282_at	PRKD2	cluster10	Hs.205431
35	207836_s_at	RBPMS	cluster10	Hs.195825
	209487_at	RBPMS	cluster10	Hs.195825
	204083_s_at	TPM2	cluster10	Hs.300772
	207788_s_at	SCAM-1	cluster10	Hs.301302
	212568_at	GDAP1L1	cluster10	Hs.20977
40	209679_s_at	LOC57228	cluster10	Hs.206501
	41577_at	PPP1R16B	cluster10	Hs.45719
	213506_at	F2RL1	cluster10	Hs.154299
	205933_at	SETBP1	cluster10	Hs.201369
	204004_at	—	cluster10	Hs.503576 // est
45	213488_at	FLJ00133	cluster10	Hs.7949
	200671_s_at	SPTBN1	cluster10	Hs.205401
	209763_at	NRLN1	cluster10	Hs.440324
	47560_at	FLJ11939	cluster10	Hs.94229
	202551_s_at	CRIM1	cluster10	Hs.170762
50	219145_at	FLJ11939	cluster10	Hs.94229
	201560_at	CLIC4	cluster11	Hs.25035
	204401_at	KCNN4	cluster11	Hs.10082
	212658_at	LHFPL2	cluster11	Hs.79299
	221223_x_at	CISH	cluster11	Hs.8257
55	201559_s_at	CLIC4	cluster11	Hs.25035
	201425_at	ALDH2	cluster11	Hs.436437
	209543_s_at	CD34	cluster11	Hs.374990
	203217_s_at	SIAT9	cluster11	Hs.415117
	215116_s_at	DNM1	cluster11	Hs.436132
60	213848_at	DUSP7	cluster11	Hs.3843
	200665_s_at	SPARC	cluster11	Hs.111779
	211675_s_at	HIC	cluster11	Hs.132739
	208873_s_at	DP1	cluster11	Hs.173119
	205101_at	MHC2TA	cluster11	Hs.126714
65	209723_at	SERPINB9	cluster11	Hs.104879
	200762_at	DPYSL2	cluster11	Hs.173381
	201279_s_at	DAB2	cluster11	Hs.81988

Table 2 (continued):

	217838_s_at	EVL	cluster11	Hs.241471
5	218589_at	P2RY5	cluster11	Hs.123464
	216033_s_at	FYN	cluster11	Hs.390567
	218966_at	MYO5C	cluster11	Hs.111782
	31874_at	GAS2L1	cluster11	Hs.322852
	203139_at	DAPK1	cluster11	Hs.244818
	208886_at	H1F0	cluster11	Hs.226117
10	201656_at	ITGA6	cluster11	Hs.212296
	219777_at	IAN2	cluster11	Hs.105468
	218237_s_at	SLC38A1	cluster11	Hs.132246
	212171_x_at	VEGF	cluster11	Hs.73793
	203542_s_at	BTEB1	cluster11	Hs.150557
15	203859_s_at	PALM	cluster11	Hs.78482
	214953_s_at	APP	cluster11	Hs.177486
	218805_at	IAN4L1	cluster11	Hs.412331
	204385_at	KYNU	cluster11	Hs.444471
	209583_s_at	MOX2	cluster11	Hs.79015
20	206042_x_at	SNRPN	cluster11	Hs.48375
	201601_x_at	IFTM1	cluster11	Hs.458414
	201522_x_at	SNRPN	cluster11	Hs.48375
	218825_at	EGFL7	cluster11	Hs.91481
	207076_s_at	ASS	cluster11	Hs.160786
25	209079_x_at	PCDHGC3	cluster11	Hs.283794
	204426_at	ARHGAP4	cluster12	Hs.3109
	203236_s_at	LGALS9	cluster12	Hs.81337
	204152_s_at	MFNG	cluster12	Hs.371768
	202600_s_at	NRIP1	cluster12	Hs.155017
30	204362_at	SCAP2	cluster12	Hs.410745
	200931_s_at	VCL	cluster12	Hs.75350
	202599_s_at	NRIP1	cluster12	Hs.155017
	204153_s_at	MFNG	cluster12	Hs.371768
	200935_at	CALR	cluster12	Hs.353170
35	210140_at	CST7	cluster12	Hs.143212
	200656_s_at	P4HB	cluster12	Hs.410578
	200654_at	P4HB	cluster12	Hs.410578
	214203_s_at	PRODH	cluster12	Hs.343874
	206105_at	FMR2	cluster12	Hs.54472
40	211663_x_at	PTGDS	cluster12	Hs.446429
	207031_at	BAPX1	cluster12	Hs.105941
	212204_at	DKFZP564G2022	cluster12	Hs.200692
	200770_s_at	LAMC1	cluster12	Hs.432855
	209960_at	HGF	cluster12	Hs.396530
45	207650_x_at	PTGER1	cluster12	Hs.159360
	212509_s_at	---	cluster12	Hs.356623 // est
	201276_at	RAB5B	cluster12	Hs.77690
	209815_at	na	cluster12	Hs.454253 // ---
	209961_s_at	HGF	cluster12	Hs.396530
50	218043_s_at	AZ2	cluster12	Hs.437336
	207895_at	NAALADASEL	cluster12	Hs.13967
	212732_at	MEG3	cluster12	Hs.418271
	203397_s_at	GALNT3	cluster12	Hs.278611
	210755_at	HGF	cluster12	Hs.396530
55	206634_at	SIX3	cluster12	Hs.227277
	203074_at	ANXA8	cluster12	Hs.87268
	216320_x_at	MST1	cluster12	Hs.349110
	202260_s_at	STXBP1	cluster12	Hs.325862
	205663_at	PCBP3	cluster12	Hs.121241
60	205614_x_at	MST1	cluster12	Hs.349110
	204537_s_at	GABRE	cluster12	Hs.22785
	210794_s_at	MEG3	cluster12	Hs.418271
	205110_s_at	FGF13	cluster12	Hs.6540
	210998_s_at	HGF	cluster12	Hs.396530
65	210997_at	HGF	cluster12	Hs.396530
	221581_s_at	WBSCR5	cluster13	Hs.56607
	220560_at	C11orf21	cluster13	Hs.272100

Table 2 (continued):

	208091_s_at	DKFZP564K0822	cluster13	Hs.4750
5	204494_s_at	LOC56905	cluster13	Hs.306331
	208885_at	LCP1	cluster13	Hs.381099
	203741_s_at	ADCY7	cluster13	Hs.172199
	210010_s_at	SLC25A1	cluster13	Hs.111024
	214946_x_at	FLJ10824	cluster13	Hs.375174 // ---
	211685_s_at	NCALD	cluster13	Hs.90063
10	206793_at	PNMT	cluster13	Hs.1892
	209822_s_at	VLDLR	cluster13	Hs.370422
	204073_s_at	C11orf9	cluster13	Hs.184640
	219686_at	HSA250839	cluster13	Hs.58241
	214920_at	LOC221981	cluster13	Hs.23799 // ---
15	218742_at	HPRN	cluster13	Hs.22158
	201655_s_at	HSPG2	cluster13	Hs.211573
	204396_s_at	GPRK5	cluster13	Hs.211569
	203088_at	FBLN5	cluster13	Hs.11494
	213894_at	LOC221981	cluster13	Hs.23799 // ---
20	201621_at	NBL1	cluster13	Hs.439671
	216356_x_at	BAIAP3	cluster13	Hs.458427
	206622_at	TRH	cluster13	Hs.182231
	218613_at	DKFZp761K1423	cluster13	Hs.236438
	212492_s_at	KIAA0876	cluster13	Hs.301011 // ---
25	212496_s_at	KIAA0876	cluster13	Hs.301011 // ---
	203065_s_at	CAV1	cluster13	Hs.74034
	204874_x_at	BAIAP3	cluster13	Hs.458427
	206128_at	ADRA2C	cluster13	Hs.123022
	216832_at	CBFA2T1	cluster13	Hs.90858
30	212097_at	CAV1	cluster13	Hs.74034
	204990_s_at	ITGB4	cluster13	Hs.85266
	211341_at	POU4F1	cluster13	Hs.458303
	211617_s_at	IL5RA	cluster13	Hs.68876
	210744_s_at	IL5RA	cluster13	Hs.68876
35	206940_s_at	POU4F1	cluster13	Hs.458303
	204811_s_at	CACNA2D2	cluster13	Hs.389415
	213194_at	ROBO1	cluster13	Hs.301198
	216831_s_at	CBFA2T1	cluster13	Hs.90858
	205528_s_at	CBFA2T1	cluster13	Hs.90858
40	205529_s_at	CBFA2T1	cluster13	Hs.90858
	221737_at	GNA12	cluster15	Hs.182874
	40489_at	DRPLA	cluster15	Hs.169488
	218501_at	ARHGEF3	cluster15	Hs.25951
	217853_at	TEM6	cluster15	Hs.12210
45	220974_x_at	BA108L7.2	cluster15	Hs.283844
	209191_at	TUBB-5	cluster15	Hs.274398
	212459_x_at	SUCLG2	cluster15	Hs.446476
	212311_at	KIAA0746	cluster15	Hs.49500 // ---
	218847_at	IMP-2	cluster15	Hs.30299
50	215772_x_at	SUCLG2	cluster15	Hs.247309 // ---
	212314_at	KIAA0746	cluster15	Hs.49500 // ---
	202236_s_at	SLC16A1	cluster15	Hs.75231
	201841_s_at	HSPB1	cluster15	Hs.76067
	217800_s_at	NDFIP1	cluster15	Hs.9788
55	217226_s_at	PMX1	cluster15	Hs.443452
	202391_at	BASP1	cluster15	Hs.79516
	200765_x_at	CTNNA1	cluster15	Hs.254321
	213400_s_at	TBL1X	cluster15	Hs.76536
	213147_at	HOXA10	cluster15	Hs.110637
60	212906_at	na	cluster15	Hs.347534 // ---
	218652_at	FLJ10948	cluster15	Hs.170915
	214651_s_at	HOXA9	cluster15	Hs.127428
	210365_at	RUNX1	cluster15	Hs.410774
	209374_s_at	IGHM	cluster15	Hs.153261
65	213150_at	HOXA10	cluster15	Hs.110637
	201719_s_at	EPB41L2	cluster15	Hs.440387
	218627_at	FLJ11259	cluster15	Hs.416393

Table 2 (continued):

	219256_s_at	FLJ20956	cluster15	Hs.61053
5	205453_at	HOXB2	cluster15	Hs.290432
	208962_s_at	FADS1	cluster15	Hs.132898
	205600_x_at	HOXB5	cluster15	Hs.149548
	204069_at	MEIS1	cluster15	Hs.170177
10	201867_s_at	TBL1X	cluster15	Hs.76536
	209905_at	HOXA9	cluster15	Hs.127428
	214835_s_at	SUCLG2	cluster15	Hs.446476
	203542_s_at	BTEB1	cluster15	Hs.150557
	212827_at	IGHM	cluster15	Hs.158261
	211182_x_at	RUNX1	cluster15	Hs.410774
15	204661_at	CDW52	cluster15	Hs.276770
	206676_at	CEACAM8	cluster15	Hs.41
	220057_at	GAGED2	cluster16	Hs.112208
	219360_s_at	TRPM4	cluster16	Hs.31608
	219414_at	CLSTN2	cluster16	Hs.12079
20	220116_at	KCNN2	cluster16	Hs.98280
	216370_s_at	TKTL1	cluster16	Hs.102866
	205550_s_at	BRE	cluster16	Hs.80426
	211566_x_at	BRE	cluster16	Hs.80426
	214183_s_at	TKTL1	cluster16	Hs.102866
25	209031_at	IGSF4	cluster16	Hs.156682
	212645_x_at	BRE	cluster16	Hs.80426
	209030_s_at	IGSF4	cluster16	Hs.156682
	213791_at	PENK	cluster16	Hs.339831
	206508_at	TNFSF7	cluster16	Hs.99899
	219506_at	FLJ23221	cluster16	Hs.91283
30	211421_s_at	RET	cluster16	Hs.350321
	203241_at	UVRAG	cluster16	Hs.13137
	213908_at	LOC339005	cluster16	Hs.212670 // ---
	207911_s_at	TGM5	cluster16	Hs.129719
	214190_x_at	GGA2	cluster16	Hs.133340
35	204561_x_at	APOC2	cluster16	Hs.75615
	209663_s_at	ITGA7	cluster16	Hs.74369
	214259_s_at	AKR7A2	cluster16	Hs.6980
	205472_s_at	DACH	cluster16	Hs.63931
	216331_at	ITGA7	cluster16	Hs.74369
40	220010_at	KCNE1L	cluster16	Hs.146372
	213484_at	na	cluster16	Hs.66187 // ---
	204497_at	ADCY9	cluster16	Hs.20196
	215771_x_at	RET	cluster16	Hs.350321
	209032_s_at	IGSF4	cluster16	Hs.156682
45	219714_s_at	CACNA2D3	cluster16	Hs.435112
	219463_at	C20orf103	cluster16	Hs.22920
	202139_at	AKR7A2	cluster16	Hs.6980
	219143_s_at	FLJ20374	cluster16	Hs.8562
	205996_s_at	AK2	cluster16	Hs.294008
50	219288_at	HT021	cluster16	Hs.47166
	215663_at	MBNL1	cluster16	Hs.28578
	213361_at	PCTAIRE2BP	cluster16	Hs.416543
	210658_s_at	GGA2	cluster16	Hs.133340
	213772_s_at	GGA2	cluster16	Hs.133340
55	212174_at	AK2	cluster16	Hs.294008

Table 3

	Abnormality	10-fold CV error	Error validation set	#Probe sets	#Genes
5	t(8;21) - <i>AML1/ETO</i>	0/190	0/96	3	2
	t(15;17) - <i>PML/RARα</i>	1/190	0/96	3	2
	inv(16) - <i>CBFβ/MYH11</i>	0/190	0/96	1	1
	11q23 (cluster #16)	3/190	3/96	31	25
	<i>EVI1</i> (cluster #10)	16/190	0/96	28	25
	<i>cEBPα</i> (cluster #4)	8/190	2/96	13	8
10	<i>cEBPα</i> (cluster #15)	17/190	6/96*	36	32
	<i>cEBPα</i> (cluster #4 and #15)	5/190	2/96	9	5
	<i>FLT3</i> ITD	27/190	21/96	56	41

Table 4. Clinical and molecular characteristics of the 286 patients with *de novo* AML.

	Gender	#	%
5	Male	138	49
	Female	148	51
	Age groups		
10	Younger than 35	77	27
	35-60	177	62
15	60 and older	32	11
	Age (median (range))	45.1 (15.2-77.6)	
20	White blood cell (WBC) count (10 ⁹ /l, median (range))	75.5 (0.3-263)	
	Blast count (%), median (range))	70 (0-98)	
25	Platelet count (10 ⁹ /l, median (range))	57 (3-931)	
	FAB		
30	M0	6	2
	M1	64	22
	M2	66	23
35	M3	19	7
	M4	53	18
	M5	65	23
	M6	3	1
	Mixed	8	3
40	Unclassified	2	1
	Cytogenetic risk groups		
45	Favourable	58	20
	t(8;21)	22	8
	inv(16)	19	7
	t(15;17)	17	6
50	Unfavourable	39	14
	11q23 abnormalities	17	6
	-5/7(q) abnormalities	22	8
	Normal Cytogenetics	118	41
	Molecular abnormalities		
	Mutation		
55	<i>FLT3</i> ITD	78	27
	<i>FLT3</i> TKD	33	12
	<i>N-RAS</i>	26	9
	<i>K-RAS</i>	9	3
	<i>cEBPα</i>	17	6
60	Overexpression		
	<i>EVI1</i>	24	8

Table 5.

	#Probe sets: Ratio:	147 >32	293 >22.6	569 >16	984 >11.3	1692 >8	2856 >5.6	5071 >4
5	chromosomal abnormalities							
	t(8;21)	+/-	+	+	+	++	++	+
	inv(16)	+/-	+/-	+/-	+	++	++	++
	t(15;17)	+/-	+	++	++	++	++	+
10	11q23	+/-	+/-	+/-	+/-	+	+	+/-
	-7(q)	+/-	+/-	+/-	+/-	+	+	+/-
15	mutation							
	<i>FLT3</i> ITD	+/-	+/-	+/-	+/-	+/-	+/-	+/-
	<i>FLT3</i> TKD	-	-	-	-	-	-	-
	<i>N-RAS</i>	-	-	-	-	-	-	-
	<i>K-RAS</i>	-	-	-	-	-	-	-
	<i>cEBPα</i>	-	+/-	+/-	+	+	+	+
20	overexpression							
	<i>EVI1</i>	-	-	-	-	+/-	+	+/-

(++: 100% clustering, +: clustering in ≤ 2 recognizable clusters,
+/-: clustering in ≥ 2 recognizable clusters, - : no clustering)

25

Table 6: Characteristics of cluster #1 (Patient: patient number, Cluster: cluster number (2856 probe sets); FAB: FAB subtype of AML; Karyotype: t(15;17), t(8;21), inv(16)/t(16;16), +8,+11,+21,-5(q), -7(q), t(9;22), 3q abnormalities, 11q23 abnormalities (translocation/self fusion (sMLL)), complex(abnormalities involved) (>3abnormalities) and normal karyotype (NN) are indicated, RT: real-time PCR; *FLT3* ITD: internal tandem duplication in *FLT3*; *FLT3* TKD: tyrosine kinase domain mutation in *FLT3*; N- or K-RAS: mutation in codon 12,13 or 61 of N- or KRAS; *EVI1*: *EVI1* overexpression; *CEBPA*: mutation in *CEBPA*, ND: not determined).

	Patient	Cluster	FAB	Karyotype	<i>FLT3</i> ITD	<i>FLT3</i> TKD	N-RAS	K-RAS	<i>EVI1</i>	<i>CEBPA</i>
10	1595	#1	M1	NN	+	-	-	-	-	-
	2187	#1	M1	NN	-	-	-	-	-	-
	3488	#1	M1	Complex	-	-	-	-	-	-
	1401	#1	M1	NN	-	-	-	-	-	-
15	2255	#1	M1	11q23 (t(4;11)) +11/11q23(sMLL)	-	-	-	-	-	-
	2302	#1	M1	+11/+11/Other	-	-	-	-	-	-
	2765	#1	M1	NN	-	-	-	-	-	-
	2280	#1	M2	NN	-	-	-	-	-	-
20	3304	#1	M5	NN	+	-	-	-	+	-
	3328	#1	M5	11q23 (t(11;19)) Other/11q23 (t(2;9;11))	-	-	-	-	+	-
	2682	#1	M4	11q23 (t(6;11))	-	-	-	-	+	-
	2207	#1	M1	11q23 (t(6;11))	-	-	-	-	+	-
2196	2772	#1	M6	NN	-	-	-	-	+	-
		#1	M5	NN	-	-	-	-	+	-

Table 7: Characteristics of cluster #2 (Patient: patient number, Cluster: cluster number (2856 probe sets); FAB: FAB subtype of AML; Karyotype: t(15;17), t(8;21), inv(16)/t(16;16), +8,+11,+21,-5(q),-7(q),t(9;22),3q abnormalities, 11q23 abnormalities (translocation/self fusion (sMLL)), complex(abnormalities involved) (>3abnormalities) and normal karyotype (NN) are indicated, RT: real-time PCR; *FLT3* ITD: internal tandem duplication in *FLT3*; *FLT3* TKD: tyrosine kinase domain mutation in *FLT3*; N- or K-RAS: mutation in codon 12,13 or 61 of N- or KRAS; *EVI1*: *EVI1* overexpression; *CEBPA*: mutation in *CEBPA*, ND: not determined).

Patient	Cluster	FAB	Karyotype	<i>FLT3</i> ITD	<i>FLT3</i> TKD	N-RAS	K-RAS	<i>EVI1</i>	<i>CEBPA</i>
10	3330	#2	M4 +8	-	-	-	-	-	-
	2681	#2	M1 NN	+	-	-	-	-	-
	2688	#2	ND NN	+	-	-	-	-	-
	2685	#2	M4 -9q	-	+	-	-	-	-
15	2689	#2	M4 NN	-	-	-	-	-	-
	2498	#2	M4 <i>t</i> (6;9)	+	-	-	-	-	-
	2183	#2	M4 NN	+	-	-	-	-	-
	2214	#2	M5 NN	+	-	-	-	-	-
20	2201	#2	M5 NN	+	-	-	-	-	-
	3100	#2	M1 NN	+	-	-	-	-	-
	2672	#2	M5 NN	+	-	-	-	-	-
	2195	#2	M4 NN	+	-	-	-	-	-
25	1747	#2	M2 NN	-	-	-	-	-	-
	2774	#2	M4 NN	-	-	-	-	-	-
	1551	#2	M1 NN	+	-	-	-	-	-
	2194	#2	M4 NN	+	-	-	-	-	-
25	2182	#2	M5 +8	-	-	-	-	-	-

Table 8: Characteristics of cluster #3 (Patient: patient number, Cluster: cluster number (2856 probe sets); FAB: FAB subtype of AML; Karyotype: t(15;17), t(8;21), inv(16)/t(16;16), +8,+11,+21,-5(q), -7(q), t(9;22), 3q abnormalities, 11q23 abnormalities (translocation/self fusion (sMLL)), complex(abnormalities involved) (>3abnormalities) and normal karyotype (NN) are indicated, RT: real-time PCR; *FLT3* ITD: internal tandem duplication in *FLT3*; *FLT3* TKD: tyrosine kinase domain mutation in *FLT3*; N- or K-RAS: mutation in codon 12,13 or 61 of N- or KRAS; *EVI1*: *EVI1* overexpression; *CEBPA*: mutation in *CEBPA*, ND: not determined).

Patient	Cluster	FAB	Karyotype	<i>FLT3</i> ITD	<i>FLT3</i> TKD	N-RAS	K-RAS	<i>EVI1</i>	<i>CEBPA</i>
2480	#3	M1	NN	+	-	-	-	-	-
10	3099	#3	M2	+	-	-	-	-	-
	2236	#3	M1	NN	+	-	-	-	-
	3331	#3	M2	NN	+	-	-	-	-
5	2177	#3	M2	NN	+	-	-	-	-
	2306	#3	M1	NN	-	-	-	-	-
	2286	#3	M1	NN	+	-	-	-	-
	2754	#3	M1	NN	+	-	-	-	-
	3320	#3	M1	NN	+	-	-	-	-
	2326	#3	M2	t(9;22)	-	-	-	-	-
	2270	#3	M1	+8/Other	-	-	-	-	-
	2241	#3	M4	NN	-	-	-	-	-
20	2288	#3	M4	-7/11q23	-	-	-	-	-
	2205	#3	M2	t(6;9)/Other	-	-	-	-	-
	2665	#3	M5	t(6;9)	+	-	-	-	-
	2257	#3	M1	NN	-	-	-	-	-
25	2271	#3	M2	NN	-	-	-	-	-
	2299	#3	M2	+21	-	-	-	-	-
	2676	#3	M2	ND	-	-	-	-	-

Table 9: Characteristics of cluster #4 (Patient: patient number, Cluster: cluster number (2856 probe sets); FAB: FAB subtype of AML; Karyotype: t(15;17), t(8;21), inv(16)/t(16;16), +8,+11,+21,-5(q), -7(q), t(9;22), 3q abnormalities, 11q23 abnormalities (translocation/self fusion (sMLL)), complex(abnormalities involved) (>3abnormalities) and normal karyotype (NN) are indicated, RT: real-time PCR; *FLT3* ITD: internal tandem duplication in *FLT3*; *FLT3* TKD: tyrosine kinase 5 domain mutation in *FLT3*; N- or K-RAS: mutation in codon 12,13 or 61 of N- or KRAS; *EVI1*: *EVI1* overexpression; *CEPBA*: mutation in *CEPBA*, ND: not determined).

	Patient	Cluster	FAB	Karyotype	<i>FLT3</i> ITD	<i>FLT3</i> TKD	N-RAS	K-RAS	<i>EVI1</i>	<i>CEPBA</i>
10	3327	#4	M1	NN	-	-	-	-	-	-
	2242	#4	M1	-9q	-	-	-	-	-	+
	2668	#4	M0	Complex	-	-	-	-	-	-
	2238	#4	M1	NN	-	-	-	-	-	-
15	3314	#4	ND	Complex (+8, +11)	-	-	-	-	-	-
	2686	#4	M1	NN	-	-	-	-	-	-
	3483	#4	M1	Other	-	-	-	-	-	-
	3491	#4	M1	NN	NN/11q23 (sMLL)	-	-	-	-	-
20	2218	#4	M1	NN	-	-	-	-	-	-
	1316	#4	M1	NN	+	-	-	-	-	-
	2273	#4	M1	NN	-	-	-	-	-	-
	2545	#4	M1	NN	-	-	-	-	-	-
21	2169	#4	M1	NN	-	-	-	-	-	-
	2753	#4	M1	-9q	-	-	-	-	-	-
	2192	#4	M1	NN	-	-	-	-	-	-

Table 10: Characteristics of cluster #5 (Patient: patient number, Cluster: cluster number (2856 probe sets); FAB: FAB subtype of AML; Karyotype: t(15;17), t(8;21), inv(16)/t(16;16), +8,+11,+21,-5(q), -7(q), t(9;22), 3q abnormalities, 11q23 abnormalities (translocation/self fusion (sMLL)), complex(abnormalities involved) (>3abnormalities) and normal karyotype (NN) are indicated, RT: real-time PCR; *FLT3* ITD: internal tandem duplication in *FLT3*; *FLT3* TKD: tyrosine kinase 5 domain mutation in *FLT3*; N- or K-RAS: mutation in codon 12,13 or 61 of N- or KRAS; *EVI1*: *EVI1* overexpression; *CEPBA*: mutation in *CEPBA*, ND: not determined).

Patient	Cluster	FAB	Karyotype	<i>FLT3</i> ITD	<i>FLT3</i> TKD	N-RAS	K-RAS	<i>EVI1</i>	<i>CEPBA</i>
10	3301	#5	M5 -5/7(q)	-	+	-	-	+	-
	2228	#5	M4 NN	-	-	+	-	+	-
	2272	#5	M5 +8/Other	+	-	-	-	-	-
25	2525	#5	M5 NN	-	-	ND	ND	-	-
26	2655	#5	M4 ND	-	-	-	-	-	-
15	2278	#5	M5 NN	-	-	-	-	-	-
	2283	#5	M4 +8/Other	-	-	-	-	-	-
	2279	#5	M4 NN	-	-	-	-	-	-
20	2259	#5	M4 Complex	-	-	-	-	-	-
	2220	#5	M5 +11	-	-	-	-	-	-
	3490	#5	M5 Other	-	-	-	-	-	-
25	2217	#5	M5 +8/Other	-	-	-	-	-	-
	3486	#5	M4 NN	-	-	-	-	-	-
	3097	#5	M4 +8/Other	-	-	-	-	-	-
25	2687	#5	M5 NN	-	-	-	-	-	-
	3325	#5	M4 NN	-	-	-	-	-	-
	2467	#5	M5 ND	-	-	-	-	-	-
25	2244	#5	M5 +8/3q/Other	-	-	-	-	-	-
	2282	#5	M4 NN	-	-	-	-	-	-
27	2771	#5	M5 NN	-	-	-	-	-	-

Table 10 (continued):

Patient	Cluster	FAB	Karyotype	<i>FLT3</i> ITD	<i>FLT3</i> TKD	N-RAS	K-RAS	<i>EVI1</i>	<i>CEBPA</i>
2186	#5	M5	NN	-	-	-	-	-	-
5 3484	#5	M4	NN	-	-	-	-	-	-
2191	#5	ND	NN	-	-	-	-	-	-
3321	#5	M5	+8	-	-	-	-	-	-
3493	#5	M5	Other	-	-	-	-	-	-
2296	#5	M5	NN	-	-	-	-	-	-
10 2231	#5	M4	NN	-	-	-	-	-	-
2227	#5	M5	NN/11q23 (sMLL)	-	-	-	-	-	-
2275	#5	M5	NN	-	-	-	-	-	-
2692	#5	M5	NN	-	-	-	-	-	-
2174	#5	M5	NN	-	-	-	-	-	-
15 2669	#5	M5	NN	-	-	-	-	-	-
2175	#5	M5	NN	-	-	-	-	-	-
2291	#5	M5	+8	-	-	-	-	-	-
2670	#5	M5	t(6;9)	-	-	-	-	-	-
2289	#5	M5	NN	-	-	-	-	-	-
20 2181	#5	M5	NN	-	-	-	-	-	-
2198	#5	M5	NN	-	-	-	-	-	-
3482	#5	M5	NN	-	-	-	-	-	-
1482	#5	M4	NN	-	-	-	-	-	-
2176	#5	M4	NN	-	-	-	-	-	-
25 2305	#5	M5	NN	-	-	-	-	-	-
2534	#5	M2	Complex	-	-	-	-	-	-
1197	#5	M0	Complex	-	-	-	-	-	-

Table 11: Characteristics of cluster #6 (Patient: patient number, Cluster: cluster number (2856 probe sets); FAB: FAB subtype of AML; Karyotype: t(15;17), t(8;21), inv(16)/t(16;16), +8,+11,+21,-5(q), -7(q), t(9;22), 3q abnormalities, 11q23 abnormalities (translocation/self fusion (sMLL)), complex(abnormalities involved) (>3abnormalities) and normal karyotype (NN) are indicated, RT: real-time PCR; *FLT3* ITD: internal tandem duplication in *FLT3*; *FLT3* TKD: tyrosine kinase 5 domain mutation in *FLT3*; N- or K-RAS: mutation in codon 12,13 or 61 of N- or KRAS; *EVI1*: *EVI1* overexpression; *CEBPA*: mutation in *CEBPA*, ND: not determined).

Patient	Cluster	FAB	Karyotype	<i>FLT3</i> ITD	<i>FLT3</i> TKD	N-RAS	K-RAS	<i>EVI1</i>	<i>CEBPA</i>
10	2683	#6	M2 NN	+	-	-	-	-	-
	1063	#6	M1 NN	+	-	-	+	-	-
	3333	#6	M2 NN	+	-	-	+	-	-
	2248	#6	M1 NN	+	-	-	-	-	-
15	2203	#6	M1 NN	+	-	-	-	-	-
	2679	#6	M2 NN	+	-	-	-	-	-
	2644	#6	M1 NN	+	-	-	-	-	-
	2173	#6	M1 ND	+	+	-	-	-	-

Table 12: Characteristics of cluster #7 (Patient: patient number, Cluster: cluster number (2856 probe sets); FAB: FAB subtype of AML; Karyotype: t(15;17), t(8;21), inv(16)/t(16;16), +8,+11,+21,-5(q), -7(q), t(9;22), 3q abnormalities, 11q23 abnormalities (translocation/self fusion (sMLL)), complex(abnormalities involved) (>3abnormalities) and normal karyotype (NN) are indicated, RT: real-time PCR; *FLT3* ITD: internal tandem duplication in *FLT3*; *FLT3* TKD: tyrosine kinase 5 domain mutation in *FLT3*; N- or K-RAS: mutation in codon 12,13 or 61 of N- or KRAS; *EVI1*: *EVI1* overexpression; *CEBPA*: mutation in *CEBPA*, ND: not determined).

Patient	Cluster	FAB	Karyotype	<i>FLT3</i> ITD	<i>FLT3</i> TKD	N-RAS	KRAS	<i>EVI1</i>	<i>CEBPA</i>
3310	#7	M2	NN	-	-	-	-	-	-
10	3098	#7	M3	NN	-	-	-	-	-
	2199	#7	M1	NN	+	-	-	-	-
	2769	#7	M1	NN	-	-	-	-	-
	2268	#7	M1	NN	+	-	-	-	-
	2507	#7	M2	NN	+	-	-	-	-
15	3489	#7	M2	Other	-	-	-	-	-
	2284	#7	M6	NN	-	-	-	-	-
	2246	#7	M1	NN	-	-	-	-	-
	2224	#7	M6	Other	-	-	-	-	-
	2490	#7	M6	NN	+	-	-	-	-
20	3319	#7	M5	NN	-	-	-	-	-
	3334	#7	ND	Other	-	-	-	-	-
	2544	#7	M2	+8/Other	-	-	-	-	-
	2251	#7	M2	Complex(3q/+8)	-	-	-	-	-
	2222	#7	M1	NN	-	-	-	-	-
25	2252	#7	M2	NN	-	-	-	-	-
	3293	#7	M3	ND	-	-	-	-	-

Table 13: Characteristics of cluster #8 (Patient: patient number, Cluster: cluster number (2856 probe sets); FAB: FAB subtype of AML; Karyotype: t(15;17), t(8;21), inv(16)/t(16;16), +8,+11,+21,-5(q), -7(q), t(9;22), 3q abnormalities, 11q23 abnormalities (translocation/self fusion (sMLL)), complex(abnormalities involved) (>3abnormalities) and normal karyotype (NN) are indicated, RT: real-time PCR; *FLT3* ITD: internal tandem duplication in *FLT3*; *FLT3* TKD: tyrosine kinase 5 domain mutation in *FLT3*; N- or K-RAS: mutation in codon 12,13 or 61 of N- or KRAS; *EVI1*: *EVI1* overexpression; *CEBPA*: mutation in *CEBPA*, ND: not determined).

	Patient	Cluster	FAB	Karyotype	<i>FLT3</i> ITD	<i>FLT3</i> TKD	N-RAS	K-RAS	<i>EVI1</i>	<i>CEBPA</i>
10	2223	#8	M2 +21	-	-	-	-	-	-	-
	2514	#8	M5	Complex (-7(q)+8)	-	-	-	-	-	-
	3318	#8	M2	Complex (11q23 (t(8;11)), -5, 3q)	-	-	-	-	-	-
	3481	#8	ND	+11/Other	-	-	-	-	-	-
	3485	#8	M2	NN	-	-	-	-	-	-
15	3315	#8	ND	+8,-7(q)	-	-	-	-	-	-
	2256	#8	M2	NN	-	-	-	-	-	-
	3326	#8	M2	inv7(q)/other	-	-	-	-	-	-
	2656	#8	M2	-7	-	-	-	-	-	-
	2543	#8	M2	NN	-	-	-	-	-	-
20	2290	#8	M2	Other	-	-	-	-	-	-
	2304	#8	M0	Other	-	-	-	-	-	-
	2756	#8	M2	NN	-	-	-	-	-	-

Table 14: Characteristics of cluster #9 (Patient: patient number, Cluster: cluster number (2856 probe sets); FAB: FAB subtype of AML; Karyotype: t(15;17), t(8;21), inv(16)/t(16;16), +8,+11,+21,-5(q), -7(q), t(9;22), 3q abnormalities, 11q23 abnormalities (translocation/self fusion (sMLL)), complex(abnormalities involved) (>3abnormalities) and normal karyotype (NN) are indicated, BP:inv(16) breakpoint, RT: real-time PCR for CBF β -MYH11 (Primer CBF β 5'-AGGACTGGATGGTATGGGCTGT-3' (sense), Primer 126REV 5'-CAGGGCCCGCTTGGGA-3' (antisense), Probe CBF β 6-FAM 5'-TGGAGTTGATGAGGAGGCC-3' TAMRA); FLT3 ITD: internal tandem duplication in *FLT3*; *FLT3* TKD: tyrosine kinase domain mutation in *FLT3*; N- or K-RAS: mutation in codon 12,13 or 61 of N- or K-RAS; EVII: EVII overexpression; CEPBA: mutation in *CEPBA*, ND: not determined).

	Patient	Cluster	FAB	Karyotype	BP	RT	<i>FLT3</i> ITD	<i>FLT3</i> TKD	N-RAS	K-RAS	EVII	<i>CEPBA</i>
10	3277	#9	M1	idt(16)	A	+	-	-	-	-	-	-
	3286	#9	M4	idt(16)	A	+	-	-	-	-	-	-
	3309	#9	M4	idt(16)/-7(q)	A	+	-	-	-	-	-	-
	3115	#9	M5	idt(16)	A	+	-	-	-	-	-	-
	2235	#9	M4	idt(16)	A	+	-	-	-	-	-	-
	2293	#9	M4	idt(16)	A	+	-	-	-	-	-	-
15	2696	#9	M4	NN	A	+	-	-	-	-	-	-
	3324	#9	M5	idt(16)	A	+	-	-	-	-	-	-
	2647	#9	M4	idt(16)	A	+	-	-	-	-	-	-
	2172	#9	M4	NN	A	+	-	-	-	-	-	-
	2254	#9	M4	idt(16)	A	+	-	-	-	-	-	-
	2287	#9	M4	idt(16)	D	+	-	-	-	-	-	-
20	2189	#9	M4	idt(16)	A	+	-	-	-	-	-	-
	2766	#9	M4	idt(16)	A	+	-	-	-	-	-	-
	2249	#9	M5	-7(q)	A	+	-	-	-	-	-	-
	2215	#9	M4	idt(16)/+8	A	+	-	-	-	-	-	-

Table 14: (continued)

Patient	Cluster	FAB	Karyotype	BP	RT	<i>FLT3</i> ITD	<i>FLT3</i> TKD	N-RAS	K-RAS	<i>EVI1</i>	<i>CEBPA</i>
5	2678 #9	M4	idt(16)	A	+	-	-	-	ND	-	-
	2202 #9	M4	idt(16)	A	+	-	-	-	-	-	-
	3487 #9	ND	idt(16)	A	+	-	-	-	-	-	-
	3329 #9	M4	idt(16)	A	+	-	-	-	-	-	-
	2274 #9	M4	NN	A	+	-	-	-	-	-	-
	2750 #9	M2	idt(16)/+8	A	+	-	-	-	-	-	-
10	3285 #9	M4	idt(16)	A	+	-	-	-	-	-	-

Table 15: Characteristics of cluster #10 (Patient: patient number, Cluster: cluster number (2856 probe sets); FAB: FAB subtype of AML; Karyotype: t(15;17), t(8;21), inv(16)/t(16;16), +8,+11,+21,-5(q), -7(q), t(9;22), 3q abnormalities, 11q23 abnormalities (translocation/self fusion (sMLL)), complex(abnormalities involved) (>3abnormalities) and normal karyotype (NN) are indicated, RT: real-time PCR; *FLT3* ITD: internal tandem duplication in *FLT3*; *FLT3* TKD: tyrosine kinase 5 domain mutation in *FLT3*; N- or K-RAS: mutation in codon 12,13 or 61 of N- or KRAS; *EVI1*: *EVI1* overexpression; *CEBPA*: mutation in *CEBPA*, ND: not determined).

Patient	Cluster	FAB	Karyotype	<i>FLT3</i> ITD	<i>FLT3</i> TKD	N-RAS	K-RAS	<i>EVI1</i>	<i>CEBPA</i>
10	2661	#10	M4	-	-	-	-	+	-
	3102	#10	M2	-7	-	-	-	+	-
	2747	#10	M5	-7/3q	-	-	-	+	-
	2327	#10	M2	-7(q)	+	-	-	+	-
	2551	#10	M5	Other	-	-	-	+	-
15	2276	#10	M0	Other	-	-	-	-	-
	2226	#10	M1	+11	-	-	-	-	-
	3308	#10	M1	t(9;22)	-	-	-	-	-
	2546	#10	M1	+8	-	-	-	-	-
	2757	#10	M5	-5	-	-	-	-	-
20	3313	#10	M0	Other	-	-	-	-	-
	2664	#10	M0	-7/3q	-	-	-	-	-
	2666	#10	M5	ND	-	-	-	-	-
	1188	#10	M1	-7(q)	-	-	-	-	-
	2550	#10	M1	Other	-	-	-	-	-
25	2539	#10	ND	ND	-	-	-	-	-
	2250	#10	M1	.7	NN	-	-	-	-
	2773	#10	M2	.7	NN	-	-	-	-
	2186	#10	M5	.7	NN	-	-	-	-
	2301	#10	M1	NN	-	-	-	-	-

Table 15: (continued)

Patient	Cluster	FAB	Karyotype	<i>FLT3</i> ITD	<i>FLT3</i> TKD	N-RAS	K-RAS	<i>EVI1</i>	<i>CEBPA</i>
2497	#10	M1	Other	+	-	-	-	-	-
5 2247	#10	M1	Other	-	-	-	-	-	-

Table 16: Characteristics of cluster #11 (Patient: patient number, Cluster: cluster number (2856 probe sets); FAB: FAB subtype of AML; Karyotype: t(15;17), t(8;21), inv(16)/t(16;16), +8,+11,+21,-5(q), -7(q), t(9;22), 3q abnormalities, 11q23 abnormalities (translocation/self fusion (sMLL)), complex(abnormalities involved) (>3abnormalities) and normal karyotype (NN) are indicated, RT: real-time PCR; *FLT3* ITD: internal tandem duplication in *FLT3*; *FLT3* TKD: tyrosine kinase 5 domain mutation in *FLT3*; N- or K-RAS: mutation in codon 12,13 or 61 of N- or KRAS; *EVI1*: *EVI1* overexpression; *CEBPA*: mutation in *CEBPA*, ND: not determined).

Patient	Cluster	FAB	Karyotype	<i>FLT3</i> ITD	<i>FLT3</i> TKD	N-RAS	K-RAS	<i>EVI1</i>	<i>CEBPA</i>
10	2209	#11	M4 Other	-	-	-	-	-	-
	3096	#11	M4 NN	-	+	-	-	-	-
	2239	#11	M5 Other	-	+	-	-	-	-
	2261	#11	M5 NN	-	+	-	-	-	-
	1299	#11	M2 NN	+	-	-	-	-	-
15	1432	#11	M1 NN	-	-	-	-	-	-
	3311	#11	M5 NN	-	-	-	-	-	-
	1766	#11	ND NN	-	-	-	-	+	-
	2206	#11	M5 NN	-	-	-	-	+	-

Table 17: Characteristics of cluster #12 (Patient: patient number, Cluster: cluster number (2856 probe sets); FAB: FAB subtype of AML; Karyotype: t(15;17), t(8;21), inv(16)/t(16;16), +8,+11,+21,-5(q),-7(q),t(9;22),3q abnormalities, 11q23 abnormalities (translocation/self fusion (sMLL)), complex(abnormalities involved) (>3abnormalities) and normal karyotype (NN) are indicated, RT: real-time PCR for PML-RARA (Primer PML3-for 5'-CCCCCAGGAGCCCCGT-3' (sense), Primer PML-5 kbr 5'-CCTGCAGGACCTCAGCTCTT-3'(sense), Primer RAR4-rev 5'- AAAGCAAAGGCTTGTAGATGCG-3'(antisense), Probe RARA 6-FAM 5'-AGTGCCCCAGCCCTCCCTCGC-3' TAMRA); *FLT3* ITD: internal tandem duplication in *FLT3*; *FLT3* TKD: tyrosine kinase domain mutation in *FLT3*; N- or K-RAS: mutation in codon 12,13 or 61 of N- or K-RAS; EVII: EVII overexpression; CEPBA: mutation in CEBPA, ND: not determined).

	Patient	Cluster	FAB	Karyotype	RT	<i>FLT3</i> ITD	<i>FLT3</i> TKD	N-RAS	K-RAS	EVII	CEBPA
10	2466	#12	M3	t(15;17)	+	-	-	-	-	-	-
	2509	#12	M3	t(15;17)	+	-	-	-	-	-	-
	2219	#12	M3	t(15;17)	+	-	-	-	-	-	-
	2263	#12	M3	t(15;17)	+	-	-	-	-	-	-
15	2307	#12	M3	t(15;17)	+	-	-	-	-	-	-
	2510	#12	M3	t(15;17)	+	-	-	-	-	-	-
	2297	#12	M3	t(15;17)	+	-	-	-	-	-	-
	2265	#12	M3	t(15;17)/Other	+	-	-	-	-	-	-
	2266	#12	M3	t(15;17)/Other	+	-	-	-	-	-	-
20	3279	#12	M3	t(15;17)	+	-	-	-	-	-	-
	2170	#12	M3	t(15;17)/Other	+	-	-	-	-	-	-
	2680	#12	M2	t(15;17)	+	-	-	-	-	-	-
	2671	#12	M3	t(15;17)	+	-	-	-	-	-	-
	2516	#12	M3	t(15;17)	+	-	-	-	-	-	-
25	2468	#12	M3	t(15;17)	+	-	-	-	-	-	-
	3278	#12	M3	t(15;17)	+	-	-	-	-	-	-

Table 17: (continued)

Patient	Cluster	FAB	Karyotype	RT	<i>FLT3</i> ITD	<i>FLT3</i> TKD	N-RAS	K-RAS	<i>EVI1</i>	<i>CEBPA</i>
322	#12	M3	Other*	+	+	-	-	-	-	-
5 2179	#12	M4	t(15;17)/Other	+	+	-	-	-	-	-
1448	#12	M3	t(15;17)/+8	+	+	-	-	-	-	-

*Full karyotype of patient 322: 46,XX, add(12)(p17q).

Table 18: Characteristics of cluster #13 (Patient: patient number, Cluster: cluster number (2856 probe sets); FAB: FAB subtype of AML; Karyotype: t(15;17), t(8;21), inv(16)/t(16;16), +8,+11,+21,-5(q), -7(q), t(9;22), 3q abnormalities, 11q23 abnormalities (translocation/self fusion (sMLL)), complex(abnormalities involved) (>3abnormalities) and normal karyotype (NN) are indicated, RT: real-time PCR for *AML1-ETO* (Primer 821 For 5'-TCACTCTGACCATCACTGTCTTCA-3' (sense),
 5 Primer 821 Rev 5'-ATTGTTGGAGTCAGTACCGAT -3'(antisense), Probe ETO 6- FAM 5'-
 ACCCACCGCAAGTGGCCACCT -3' TAMRA); *FLT3* ITD: internal tandem duplication in *FLT3*; *FLT3* TKD: tyrosine kinase domain mutation in *FLT3*; N- or K-RAS: mutation in codon 12,13 or 61 of N- or K-RAS; *EVI1*: *EVI1* overexpression; *CEPBA*: mutation in *CEPBA*, ND: not determined).

	Patient	Cluster	FAB	Karyotype	RT	<i>FLT3</i> ITD	<i>FLT3</i> TKD	N-RAS	K-RAS	<i>EVI1</i>	<i>CEPBA</i>
10	2243	#13	M2	t(+8;21)/Other	+	-	-	-	-	-	+
	2658	#13	M4	t(+8;21)	+	-	-	-	-	-	-
15	2752	#13	M2	t(+8;21)	+	-	-	-	-	-	-
	2197	#13	M2	t(+8;21)/Other	+	-	-	-	-	-	-
20	2245	#13	M2	t(+8;21)/Other	+	-	-	-	-	-	-
	3332	#13	M2	t(+8;21)	+	-	-	-	-	-	-
25	2262	#13	M2	t(+8;21)/Other	+	-	-	-	-	-	-
	2178	#13	M2	t(+8;21)/Other	+	-	-	-	-	-	-
20	2511	#13	M2	t(+8;21)/+8/Other	+	-	-	-	-	-	-
	2200	#13	M2	t(+8;21)/Other	+	-	-	-	-	-	-
25	2208	#13	M2	t(+8;21)	+	-	-	-	-	-	-
	3295	#13	M2	t(+8;21)	+	-	-	-	-	-	-
25	2204	#13	M2	t(+8;21)/Other	+	-	-	-	-	-	-
	3292	#13	M2	t(+8;21)	+	-	-	-	-	-	-
25	2549	#13	M2	t(+8;21)/Other	+	-	-	-	-	-	-
	2267	#13	M2	t(+8;21)/Other	+	-	-	-	-	-	-
2695	2695	#13	M1	t(+8;21)	+	-	-	-	-	-	-

Table 18: (continued)

Patient	Cluster	FAB	Karyotype	RT	<i>FLT3</i> ITD	<i>FLT3</i> TKD	N-RAS	K-RAS	<i>EVI1</i>	<i>CEBPA</i>
2751	#13	M2	t(+8;21)/Other	+	-	-	-	+	-	-
5 2211	#13	M2	t(+8;21)/Other	+	-	-	-	-	-	-
2764	#13	M2	t(+8;21)/Other	+	-	-	-	-	-	-
2210	#13	M2	t(+8;21)/Other	+	-	-	-	-	-	-
2762	#13	M2	t(+8;21)/Other	+	-	-	-	-	-	-

Table 19: Characteristics of cluster #14 (Patient: patient number, Cluster: cluster number (2856 probe sets); FAB: FAB subtype of AML; Karyotype: t(15;17), t(8;21), inv(16)/t(16;16), +8,+11,+21,-5(q), -7(q), t(9;22), 3q abnormalities, 11q23 abnormalities (translocation/self fusion (sMLL)), complex(abnormalities involved) (>3abnormalities) and normal karyotype (NN) are indicated, RT: real-time PCR; *FLT3* ITD: internal tandem duplication in *FLT3*; *FLT3* TKD: tyrosine kinase 5 domain mutation in *FLT3*; N- or K-RAS: mutation in codon 12,13 or 61 of N- or KRAS; *EVI1*: *EVI1* overexpression; *CEBPA*: mutation in *CEBPA*, ND: not determined).

Patient	Cluster	FAB	Karyotype	<i>FLT3</i> ITD	<i>FLT3</i> TKD	N-RAS	K-RAS	<i>EVI1</i>	<i>CEBPA</i>
10	2536 #14	ND	ND	-	-	-	-	-	-
	2704 #14	M2	ND	+	-	-	-	-	-
	2690 #14	M2	+8/Other	-	-	-	-	-	-
	3289 #14	M2	11q23 (ND)	+	-	-	-	-	-
	2212 #14	M2	-5(q)	-	-	-	-	-	-
15	2233 #14	M1	Complex(-5/-7/+8)	-	-	-	-	-	-
	1201 #14	M4	Complex	-	+	-	-	-	-
	2188 #14	M2	+8	-	-	-	-	-	-
	3492 #14	M2	NN	+	-	-	-	-	-
	2260 #14	M5	NN	-	-	-	-	-	-

Table 20: Characteristics of cluster #15 (Patient: patient number, Cluster: cluster number (2856 probe sets); FAB: FAB subtype of AML; Karyotype: t(15;17), t(8;21), inv(16)/t(16;16), +8,+11,+21,-5(q), -7(q), t(9;22), 3q abnormalities, 11q23 abnormalities (translocation/self fusion (sMLL)), complex(abnormalities involved) (>3abnormalities) and normal karyotype (NN) are indicated, RT: real-time PCR; *FLT3* ITD: internal tandem duplication in *FLT3*; *FLT3* TKD: tyrosine kinase 5 domain mutation in *FLT3*; N- or K-RAS: mutation in codon 12,13 or 61 of N- or KRAS; *EVI1*: *EVI1* overexpression; *CEBPA*: mutation in *CEBPA*, ND: not determined).

	Patient	Cluster	FAB	Karyotype	<i>FLT3</i> ITD	<i>FLT3</i> TKD	N-RAS	K-RAS	<i>EVI1</i>	<i>CEBPA</i>
10	2767	#15	M1	ND	-	+	-	-	-	-
	2748	#15	M4	NN	-	-	-	-	-	+
	2240	#15	M1	NN	-	-	-	-	-	+
	3101	#15	M2	NN	+	-	-	-	-	+
	2234	#15	M2	Other	-	-	-	-	-	-
	2230	#15	M2	NN	+	-	-	-	-	+
15	2253	#15	M2	NN	-	-	-	-	-	-
	2237	#15	M1	-7/Other	-	-	-	-	-	-

Table 21: Characteristics of cluster #16 (Patient: patient number, Cluster: cluster number (2856 probe sets); FAB: FAB subtype of AML; Karyotype: t(15;17), t(8;21), inv(16)/t(16;16), +8,+11,+21,-5(q,-7(q),t(9;22),3q abnormalities, 11q23 abnormalities (translocation/self fusion (sMLL)), complex(abnormalities involved) (>3abnormalities) and normal karyotype (NN) are indicated, RT: real-time PCR; *FLT3* ITD: internal tandem duplication in *FLT3*; *FLT3* TKD: tyrosine kinase 5 domain mutation in *FLT3*; N- or K-RAS: mutation in codon 12,13 or 61 of N- or KRAS; EVII: EVII overexpression; CEPBA: mutation in *CEBPA*, ND: not determined).

Patient	Cluster	FAB	Karyotype	<i>FLT3</i> ITD	<i>FLT3</i> TKD	N-RAS	K-RAS	EVII	<i>CEBPA</i>
10	2225	#16	M4	NN	-	-	-	-	-
	2184	#16	M5	Other	-	-	-	-	-
	2535	#16	M5	Other	-	-	-	-	-
15	3322	#16	M5	+8/11q23 (t(11;19)	-	-	-	-	-
	2285	#16	M5	11q23 (t(9;11))	-	-	-	-	-
	3316	#16	M5	Other/11q23 (t(9;11))	-	-	-	-	-
15	2694	#16	M5	11q23 (t(9;11))	-	-	-	-	-
	3317	#16	M5	Other	-	-	-	-	-
	2749	#16	M5	NN	-	-	-	-	-
5	2281	#16	M1	NN	-	-	-	-	-
	2541	#16	M5	11q23 (t(9;11))/-7	-	-	-	-	-

Table 22: Frequency and percentage of cytogenetic and molecular abnormalities of all AML patients within each of the assigned clusters. All patients with a specific abnormality were considered, irrespective of the presence of additional abnormalities (NC: patients not assigned to any of the 16 clusters).

	Cluster	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#13	#14	#15	#16	NC	total
5	Patients in cluster	14	17	19	15	44	8	18	13	23	22	9	19	22	10	8	11	13	285
Cytogenetics																			
10	t(15;17) t(8;21) inv(16)/t(16;16)									19 (83)					1 (9)	2 (16)		18 (6)	
+8		2 (14)	2 (12)	1 (6)	1 (7)	7 (16)		2 (11)	2 (16)	2 (9)	1 (5)		1 (5)	1 (5)	3 (30)		1 (8)	22 (8)	
+11			1 (7)	1 (2)					1 (8)	1 (5)								19 (7)	
+21			1 (5)						1 (8)									2 (2)	
-5(q)										1 (5)								2 (1)	
-7		1 (5)		1 (2)					1 (8)									3 (1)	
-7(q)									3 (23)	2 (9)	2 (9)							1 (<1)	
20	3q			1 (2)				1 (6)	1 (8)									1 (10)	
	t(6;9)	1 (6)	2 (11)	1 (2)						1 (5)								1 (10)	
	t(9;22)	1 (5)		2 (13)	1 (2)													4 (1)	
	t(11q23)	6 (43)	1 (5)	2 (13)	1 (2)				1 (8)									4 (1)	
	complex (>3 abn.)	1 (7)		2 (13)	3 (7)			1 (6)	2 (16)									2 (1)	
25	other non-complex	2 (14)	1 (6)	2 (11)	3 (20)	7 (16)		4 (22)	4 (31)	6 (27)	2 (22)	4 (21)	15 (68)	1 (10)	2 (26)	4 (36)	3 (23)	60 (21)	
	normal	6 (43)	13 (76)	13 (68)	10 (67)	27 (61)	7 (88)	12 (67)	4 (31)	3 (13)	2 (9)	7 (78)			2 (20)	5 (63)	3 (27)	5 (38)	119 (42)
	ND					2 (6)	1 (13)	1 (6)		3 (14)					2 (20)	1 (13)		10 (4)	
30	Cluster	#1	#2	#3	#4	#5	#6	#7	#8	#9	#10	#11	#12	#13	#14	#15	#16	NC	total
	Patients in cluster	14	17	19	15	44	8	18	13	23	22	9	19	22	10	8	11	13	285
Molecular markers																			
35	FLT3-ITD	2 (14)	14 (82)	10 (53)	1 (7)	14 (32)	8 (100)	4 (22)			4 (18)	1 (11)	6 (32)	1 (5)	3 (30)	2 (25)		8 (62)	78 (27)
	FLT3-TKD	3 (18)	3 (16)	6 (14)	1 (13)					6 (26)	1 (5)	3 (33)	5 (26)	1 (5)	2 (20)	1 (13)	1 (9)		33 (12)
	N-RAS		1 (7)	4 (9)					1 (8)	8 (35)	3 (14)	2 (22)		3 (14)	1 (10)	1 (13)		2 (15)	26 (9)
	K-RAS	1 (7)	4 (9)	2 (25)					1 (4)						1 (5)			9 (3)	
40	EVI1	5 (36)	2 (11)	2 (6)		2 (11)			10 (45)								2 (15)	23 (8)	
	CEBPA	1 (6)	8 (53)	1 (2)					1 (5)						1 (5)	5 (63)		17 (6)	

Table 23: Top40 genes of cluster #1

Probe Set ID	Gene symbol	Locus Link number	Accession number	Score SAM	q-value SAM (%)
5	220014_at	LOC51334	51334	NM_016644.1	7,09 1,96
	206762_at	KCNA5	3741	NM_002234.1	6,68 1,96
	213094_at	GPR126	57211	AL038377	6,18 1,96
	218502_s_at	TRPS1	7227	NM_014112.1	5,95 1,96
	221530_s_at	BHLHB3	79365	AB044088.1	5,63 1,96
10	221884_at	EVI1	2122	BE466525	5,40 1,96
	203642_s_at	KIAA0977	22837	NM_014900.1	4,96 1,96
	212827_at	IGHM	3507	X17115.1	4,85 1,96
	205612_at	MMRN	22915	NM_007351.1	4,72 1,96
	209200_at	MEF2C	4208	N22468	4,59 1,96
15	214255_at	ATP10A	57194	AB011138.1	4,41 1,96
	201539_s_at	FHL1	2273	U29538.1	4,37 1,96
	205717_x_at	PCDHGC3	5098	NM_002588.1	4,29 1,96
	222144_at	KIF17	57576	AA909345	4,25 1,96
	219922_s_at	LTBP3	4054	NM_021070.1	4,21 1,96
20	215836_s_at	PCDHGC3	5098	AK026188.1	4,20 1,96
	205861_at	SPIB	6689	NM_003121.1	4,15 1,96
	203372_s_at	SOCS2	8835	AB004903.1	4,12 1,96
	209079_x_at	PCDHGC3	5098	AF152318.1	4,11 1,96
	215811_at	---	---	AF238870.1	4,09 1,96
25	209199_s_at	MEF2C	4208	N22468	4,08 1,96
	207655_s_at	BLNK	29760	NM_013314.1	4,05 1,96
	203716_s_at	DPP4	1803	M80536.1	4,03 1,96
	219737_s_at	---	---	AI524125	4,01 1,96
	204304_s_at	PROM1	8842	NM_006017.1	3,97 1,96
30	203373_at	SOCS2	8835	NM_003877.1	3,95 1,96
	218237_s_at	SLC38A1	81539	NM_030674.1	3,87 1,96
	202265_at	BMI1	648	NM_005180.1	3,86 1,96
	210298_x_at	FHL1	2273	AF098518.1	3,83 1,96
	208436_s_at	IRF7	3665	NM_004030.1	3,77 1,96
35	210032_s_at	SPAG6	9576	AI651156	3,77 1,96
	222088_s_at	SLC2A14	144195	AA778684	-3,76 1,96
	204621_s_at	NR4A2	4929	AI935096	-3,80 1,96
	216248_s_at	NR4A2	4929	S77154.1	-3,84 1,96
	216236_s_at	SLC2A14	144195	AL110298.1	-3,85 1,96
40	204622_x_at	NR4A2	4929	NM_006186.1	-3,85 1,96
	202497_x_at	SLC2A3	6515	NM_006931.1	-3,91 1,96
	201464_x_at	JUN	3725	BG491844	-3,92 1,96
	202672_s_at	ATF3	467	NM_001674.1	-4,11 1,96

Table 24: Top40 genes of cluster #2

	Probe Set ID	Gene symbol	Locus Link number	Accession number	Score SAM	q-value SAM (%)
5	207034_s_at	GLI2	2736	NM_030379.1	10,30	1,04
	206341_at	IL2RA	3559	NM_000417.1	9,15	1,04
	211269_s_at	IL2RA	3559	K03122.1	8,24	1,04
	215288_at	TRPC2	7221	AI769824	7,44	1,04
	205190_at	PLS1	5357	NM_002670.1	7,34	1,04
10	210145_at	PLA2G4A	5321	M68874.1	7,31	1,04
	204341_at	TRIM16	10626	NM_006470.1	7,23	1,04
	206574_s_at	PTP4A3	11156	NM_007079.1	7,01	1,04
	203187_at	DOCK1	1793	NM_001380.1	6,48	1,04
	219615_s_at	KCNK5	8645	NM_003740.1	6,29	1,04
15	212276_at	LPIN1	23175	D80010.1	6,05	1,04
	206298_at	RhoGAP2	58504	NM_021226.1	5,82	1,04
	207533_at	CCL1	6346	NM_002981.1	5,69	1,04
	206582_s_at	GPR56	9289	NM_005682.1	5,41	1,04
	208797_s_at	GOLGIN-67	23015	AI829170	5,37	1,04
20	205453_at	HOXB2	3212	NM_002145.1	5,12	1,04
	212070_at	GPR56	9289	AL554008	5,01	1,04
	209409_at	GRB10	2887	D86962.1	4,99	1,04
	210425_x_at	GOLGIN-67	23015	AF164622.1	4,97	1,04
	208767_s_at	LAPTM4B	55353	AW149681	4,95	1,04
25	221942_s_at	GUCY1A3	2982	AI719730	4,95	1,04
	209193_at	PIM1	5292	M24779.1	4,94	1,04
	204030_s_at	SCHIP1	29970	NM_014575.1	4,89	1,04
	213844_at	HOXA5	3202	NM_019102.1	4,74	1,04
	208798_x_at	GOLGIN-67	23015	AF204231.1	4,70	1,04
30	216268_s_at	JAG1	182	U77914.1	4,68	1,04
	208792_s_at	CLU	1191	M25915.1	4,60	1,04
	217414_x_at	---	---	V00489	-4,62	1,04
	211699_x_at	HBA1	3039	AF349571.1	-4,67	1,04
	217232_x_at	---	---	AF059180	-4,71	1,04
35	209116_x_at	HBB	3043	M25079.1	-4,71	1,04
	214414_x_at	HBA1	3039	T50399	-4,72	1,04
	211696_x_at	HBB	3043	AF349114.1	-4,72	1,04
	211745_x_at	HBA1	3039	BC005931.1	-4,75	1,04
	204018_x_at	HBA1	3039	NM_000558.2	-4,83	1,04
40	208623_s_at	VIL2	7430	J05021.1	-4,91	1,04
	209458_x_at	HBA1	3039	AF105974.1	-4,96	1,04
	214582_at	PDE3B	5140	NM_000753.1	-5,29	1,04
	213152_s_at	---	---	AI343248	-5,39	1,04
	206571_s_at	MAP4K4	9448	NM_004834.1	-6,87	1,04

Table 25: Top40 genes of cluster #3

	Probe Set ID	Gene symbol	Locus Link number	Accession number	Score SAM	q-value SAM (%)
5	206950_at	SCN9A	6335	NM_002977.1	10,09	0,21
	205848_at	GAS2	2620	NM_005256.1	8,63	0,21
	207533_at	CCL1	6346	NM_002981.1	8,56	0,21
	205190_at	PLS1	5357	NM_002670.1	7,94	0,21
	213110_s_at	COL4A5	1287	AW052179	7,51	0,21
10	208767_s_at	LAPTM4B	55353	AW149681	7,09	0,21
	206298_at	RhoGAP2	58504	NM_021226.1	7,07	0,21
	208029_s_at	LAPTM4B	55353	NM_018407.1	7,05	0,21
	204044_at	QPRT	23475	NM_014298.2	7,04	0,21
	202889_x_at	ANPEP	9053	T62571	6,84	0,21
15	217975_at	LOC51186	51186	NM_016303.1	6,81	0,21
	201664_at	SMC4L1	10051	AL136877.1	6,81	0,21
	210116_at	SH2D1A	4068	AF072930.1	6,74	0,21
	213217_at	ADCY2	108	AU149572	6,53	0,21
	204160_s_at	ENPP4	22875	AW194947	6,48	0,21
20	204341_at	TRIM16	10626	NM_006470.1	6,42	0,21
	214039_s_at	LAPTM4B	55353	T15777	6,41	0,21
	206582_s_at	GPR56	9289	NM_005682.1	6,28	0,21
	202890_at	MAP7	9053	T62571	6,28	0,21
	215471_s_at	MAP7	9053	AJ242502.1	6,23	0,21
25	219602_s_at	FLJ23403	63895	NM_022068.1	6,20	0,21
	219304_s_at	SCDGF-B	80310	NM_025208.1	6,05	0,21
	203187_at	DOCK1	1793	NM_001380.1	6,03	0,21
	215388_s_at	HFL1	3078	X56210.1	6,00	0,21
	201663_s_at	SMC4L1	10051	NM_005496.1	6,00	0,21
30	214228_x_at	TNFRSF4	7293	AJ277151	5,96	0,21
	201427_s_at	SEPP1	6414	NM_005410.1	5,94	0,21
	207838_x_at	PBXIP1	57326	NM_020524.1	5,92	0,21
	201829_at	NET1	10276	AW263232	5,85	0,21
	220377_at	C14orf110	29064	NM_014151.1	5,85	0,21
35	203973_s_at	KIAA0146	23514	NM_005195.1	-5,88	0,21
	205707_at	IL17R	23765	NM_014339.1	-5,95	0,21
	212195_at	IL6ST	3572	AL049265.1	-6,03	0,21
	206034_at	SERPINB8	5271	NM_002640.1	-6,11	0,21
	203773_x_at	BLVRA	644	NM_000712.1	-6,71	0,21
40	221830_at	RAP2A	5911	AI302106	-6,94	0,21
	218831_s_at	FCGRT	2217	NM_004107.1	-7,10	0,21
	211729_x_at	BLVRA	644	BC005902.1	-7,18	0,21
	204500_s_at	AGTPBP1	23287	NM_015239.1	-8,15	0,21
	212543_at	AIM1	202	U83115.1	-8,19	0,21

Table 26: Top40 genes of cluster #4

	Probe Set ID	Gene symbol	Locus Link number	Accession number	Score SAM	q-value SAM (%)
5	216286_at	---	---	AV760769	13,34	0,11
	216191_s_at	TRD@	6964	X72501.1	13,01	0,11
	206232_s_at	B4GALT6	9331	NM_004775.1	12,59	0,11
	213830_at	TRD@	6964	AW007751	11,85	0,11
	211682_x_at	UGT2B28	54490	AF177272.1	11,60	0,11
10	219383_at	FLJ14213	79899	NM_024841.1	11,57	0,11
	217143_s_at	TRD@	6964	X06557.1	11,55	0,11
	214551_s_at	CD7	924	NM_006137.2	11,22	0,11
	214049_x_at	CD7	924	AI829961	11,04	0,11
	213910_at	IGFBP7	3490	AW770896	10,85	0,11
15	207996_s_at	C18orf1	753	NM_004338.1	10,65	0,11
	220567_at	ZNFN1A2	22807	NM_016260.1	10,27	0,11
	209994_s_at	ABCB1	5243	AF016535.1	9,90	0,11
	206233_at	B4GALT6	9331	AF097159.1	9,66	0,11
	217147_s_at	TRIM	50852	AJ240085.1	9,44	0,11
20	209993_at	ABCB1	5243	AF016535.1	9,40	0,11
	210448_s_at	P2RX5	5026	U49396.1	9,36	0,11
	216525_x_at	PMS2L9	5387	D38437.1	9,20	0,11
	54037_at	HPS4	89781	AL041451	9,16	0,11
	206726_at	PGDS	27306	NM_014485.1	8,79	0,11
25	202242_at	TM4SF2	7102	NM_004615.1	8,79	0,11
	203987_at	FZD6	8323	NM_003506.1	8,63	0,11
	214757_at	---	---	BG178274	8,50	0,11
	205884_at	ITGA4	3676	NM_000885.2	8,49	0,11
	213416_at	ITGA4	3676	BG532690	8,37	0,11
30	218627_at	FLJ11259	55332	NM_018370.1	-8,51	0,11
	208923_at	CYFIP1	23191	BC005097.1	-8,75	0,11
	219371_s_at	KLF2	10365	NM_016270.1	-8,95	0,11
	203233_at	IL4R	3566	NM_000418.1	-8,96	0,11
	205382_s_at	DF	1675	NM_001928.1	-8,98	0,11
35	208683_at	CAPN2	824	M23254.1	-9,08	0,11
	201160_s_at	CSDA	8531	AL556190	-9,13	0,11
	201412_at	LRP10	26020	NM_014045.1	-9,19	0,11
	202252_at	RAB13	5872	NM_002870.1	-9,25	0,11
	217800_s_at	NDFIP1	80762	NM_030571.1	-9,98	0,11
40	202241_at	C8FW	10221	NM_025195.1	-10,41	0,11
	209191_at	TUBB-5	84617	BC002654.1	-10,60	0,11
	200765_x_at	CTNNA1	1495	NM_001903.1	-14,35	0,11
	200764_s_at	CTNNA1	1495	AI826881	-15,70	0,11
	210844_x_at	CTNNA1	1495	D14705.1	-15,91	0,11

Table 27: Top40 genes of cluster #5

	Probe Set ID	Gene symbol	Locus Link number	Accession number	Score SAM	q-value SAM (%)
5	206710_s_at	EPB41L3	23136	NM_012307.1	21,03	0,05
	207872_s_at	LILRB1	10859	NM_006863.1	19,91	0,05
	211776_s_at	EPB41L3	23136	BC006141.1	19,65	0,05
	206934_at	SIRPB1	10326	NM_006065.1	19,55	0,05
	219788_at	PILRA	29992	NM_013439.1	17,93	0,05
10	204392_at	CAMK1	8536	NM_003656.2	17,41	0,05
	219872_at	DKFZp434L142	51313	NM_016613.1	17,11	0,05
	212681_at	EPB41L3	23136	AI770004	17,04	0,05
	214590_s_at	UBE2D1	7321	AL545760	15,87	0,05
	204254_s_at	VDR	7421	NM_000376.1	15,69	0,05
15	203767_s_at	STS	412	AU138166	15,64	0,05
	207224_s_at	SIGLEC7	27036	NM_016543.1	15,61	0,05
	206278_at	PTAFR	5724	D10202.1	15,55	0,05
	204619_s_at	CSPG2	1462	BF590263	15,07	0,05
	219593_at	PHT2	51296	NM_016582.1	15,04	0,05
20	220832_at	TLR8	51311	NM_016610.1	14,94	0,05
	210146_x_at	LILRB3	11025	AF004231.1	14,91	0,05
	222218_s_at	PILRA	29992	AJ400843.1	14,71	0,05
	203768_s_at	STS	412	AU138166	14,70	0,05
	204858_s_at	ECGF1	1890	NM_001953.2	14,70	0,05
25	210660_at	LILRB1	10859	AF025529.1	14,70	0,05
	211732_x_at	HNMT	3176	BC005907.1	14,69	0,05
	217992_s_at	MGC4342	79180	NM_024329.1	14,67	0,05
	204487_s_at	KCNQ1	3784	NM_000218.1	14,66	0,05
	201642_at	IFNGR2	3460	NM_005534.1	14,58	0,05
30	220066_at	CARD15	64127	NM_022162.1	14,53	0,05
	207104_x_at	LILRB1	10859	NM_006669.1	14,46	0,05
	205685_at	CD86	942	BG236280	14,21	0,05
	205686_s_at	CD86	942	NM_006889.1	14,15	0,05
	203769_s_at	STS	412	NM_000351.2	14,05	0,05
35	212334_at	GNS	2799	AW167793	14,03	0,05
	221578_at	RASSF4	83937	AF260335.1	14,00	0,05
	218559_s_at	MAFB	9935	NM_005461.1	13,99	0,05
	213624_at	ASM3A	10924	AA873600	13,96	0,05
	211135_x_at	LILRB3	11025	AF009644.1	13,91	0,05
40	208594_x_at	LILRB3	11025	NM_024318.1	13,90	0,05
	200866_s_at	PSAP	5660	M32221.1	13,89	0,05
	205099_s_at	CCR1	1230	NM_001295.1	13,87	0,05
	202895_s_at	EPHB4	140885	D86043.1	13,85	0,05
	50221_at	TFEB	7942	AI524138	13,81	0,05

Table 28: Top40 genes of cluster #6

Probe Set ID	Gene symbol	Locus Link number	Accession number	Score SAM	q-value SAM (%)
5 221880_s_at 51158_at 219511_s_at 209702_at 221959_at	---	---	AI279819	12,39	0,85
	---	---	AI801973	10,99	0,85
	SNCAIP	9627	NM_005460.1	8,81	0,85
	FTO	79068	U79260.1	8,51	0,85
	MGC39325	90362	AK026141.1	8,40	0,85
10 204984_at 204983_s_at 212019_at 215807_s_at 219602_s_at	GPC4	2239	NM_001448.1	8,34	0,85
	GPC4	2239	AF064826.1	8,25	0,85
	DKFZP564M182	26156	AK025446.1	7,56	0,85
	PLXNB1	5364	AV693216	7,42	0,85
	FLJ23403	63895	NM_022068.1	6,93	0,85
15 218710_at 213217_at 219651_at 202728_s_at 206377_at	FLJ20272	55622	NM_017735.1	6,80	0,85
	ADCY2	108	AU149572	6,78	0,85
	FLJ10713	55211	NM_018189.1	6,78	0,85
	LTBP1	4052	AI986120	6,64	0,85
	FOXF2	2295	NM_001452.1	6,60	0,85
20 219932_at 213260_at 215623_x_at 201431_s_at 208414_s_at	VLCS-H1	28965	NM_014031.1	6,31	0,85
	FOXC1	2296	AU145890	6,23	0,85
	SMC4L1	10051	AK002200.1	6,19	0,85
	DPYSL3	1809	NM_001387.1	6,18	0,85
	HOXB4	3214	NM_002146.1	6,17	0,85
25 218786_at 204750_s_at 219036_at 215388_s_at 220898_at	---	---	NM_016575.1	6,16	0,85
	DSC2	1824	BF196457	6,16	0,85
	BITE	80321	NM_024491.1	6,13	0,85
	HFL1	3078	X56210.1	6,12	0,85
	---	---	NM_024972.1	6,08	0,85
30 215573_at 204751_x_at 202729_s_at 213266_at 201641_at	CAT	847	AU147084	6,04	0,85
	DSC2	1824	NM_004949.1	6,01	0,85
	LTBP1	4052	NM_000627.1	5,97	0,85
	---	---	BF592982	5,61	0,85
	BST2	684	NM_004335.2	-5,55	0,85
35 215193_x_at 209619_at 208982_at 210982_s_at 211990_at	HLA-DRB1	3123	AJ297586.1	-5,56	0,85
	CD74	972	K01144.1	-5,58	0,85
	PECAM1	5175	AW574504	-5,62	0,85
	HLA-DRA	3122	M60338.1	-5,68	0,85
	HLA-DPA1	3113	M27487.1	-5,84	0,85
40 217118_s_at 205672_at 217845_x_at 204319_s_at 209083_at	KIAA0930	23313	AK025608.1	-5,87	0,85
	XPA	7507	NM_000380.1	-6,10	0,85
	HIG1	25994	NM_014056.1	-6,41	0,85
	RGS10	6001	NM_002925.2	-6,69	0,85
	CORO1A	11151	U34690.1	-6,97	0,85

Table 29: Top40 genes of cluster #7

	Probe Set ID	Gene symbol	Locus Link number	Accession number	Score SAM	q-value SAM (%)
5	206116_s_at	TPM1	7168	NM_000366.1	15,29	0,11
	207854_at	GYPE	2996	NM_002102.1	13,28	0,11
	221577_x_at	PLAB	9518	AF003934.1	12,76	0,11
	56748_at	TRIM10	10107	X90539	12,56	0,11
	205390_s_at	ANK1	286	NM_000037.2	11,78	0,11
10	204720_s_at	DNAJC6	9829	AV729634	11,68	0,11
	206146_s_at	RHAG	6005	AF178841.1	11,40	0,11
	216054_x_at	MYL4	4635	X58851	11,18	0,11
	210088_x_at	MYL4	4635	M36172.1	11,16	0,11
	205391_x_at	ANK1	286	M28880.1	11,09	0,11
15	207043_s_at	SLC6A9	6536	NM_006934.1	11,08	0,11
	218864_at	TNS	7145	AF116610.1	10,98	0,11
	203911_at	RAP1GA1	5909	NM_002885.1	10,94	0,11
	214530_x_at	EPB41	2035	AF156225.1	10,93	0,11
	206647_at	HBZ	3050	NM_005332.2	10,90	0,11
20	211254_x_at	RHAG	6005	AF031549.1	10,88	0,11
	207087_x_at	ANK1	286	NM_020478.1	10,84	0,11
	208352_x_at	ANK1	286	NM_020479.1	10,83	0,11
	219630_at	MAP17	10158	NM_005764.1	10,71	0,11
	208416_s_at	SPTB	6710	NM_000347.2	10,70	0,11
25	208353_x_at	ANK1	286	NM_020480.1	10,70	0,11
	205262_at	KCNH2	3757	NM_000238.1	10,67	0,11
	210995_x_at	MYL4	4635	AF116676.1	10,65	0,11
	210586_x_at	RHD	6007	AF312679.1	10,64	0,11
	210854_x_at	SLC6A8	6535	U17986.1	10,61	0,11
30	220751_s_at	C5orf4	10826	NM_016348.1	10,60	0,11
	216063_at	---	---	N55205	10,60	0,11
	217274_x_at	---	---	X52005.1	10,53	0,11
	206145_at	RHAG	6005	NM_000324.1	10,51	0,11
	213843_x_at	SLC6A8	6535	AW276522	10,48	0,11
35	206077_at	KEL	3792	NM_000420.1	10,47	0,11
	216925_s_at	TAL1	6886	X51990.1	10,42	0,11
	221237_s_at	OSBP2	23762	NM_030758.1	10,37	0,11
	212804_s_at	DKFZP434C212	26130	AK023841.1	10,27	0,11
	207793_s_at	EPB41	2035	NM_004437.1	10,24	0,11
40	205389_s_at	ANK1	286	AI659683	10,21	0,11
	201249_at	SLC2A1	6513	NM_006516.1	10,20	0,11
	214433_s_at	SELENBP1	8991	NM_003944.1	10,18	0,11
	218978_s_at	MSCP	51312	NM_018586.1	10,13	0,11
	201733_at	CLCN3	1182	NM_001829.1	10,12	0,11

Table 30: Top40 genes of cluster #8

	Probe Set ID	Gene symbol	Locus Link number	Accession number	Score SAM	q-value SAM (%)
5	213338_at	RIS1	25907	BF062629	12,86	0,17
	201131_s_at	CDH1	999	NM_004360.1	12,12	0,17
	209735_at	ABCG2	9429	AF098951.2	11,01	0,17
	202073_at	OPTN	10133	AV757675	10,88	0,17
	40093_at	LU	4059	X83425	10,45	0,17
10	212151_at	PBX1	5087	BF967998	10,14	0,17
	201333_s_at	ARHGEF12	23365	NM_015313.1	9,95	0,17
	210430_x_at	RHD	6007	L08429.1	9,72	0,17
	205391_x_at	ANK1	286	M28880.1	9,53	0,17
	221237_s_at	OSBP2	23762	NM_030758.1	9,53	0,17
15	214464_at	CDC42BPA	8476	NM_003607.1	9,44	0,17
	220751_s_at	C5orf4	10826	NM_016348.1	9,42	0,17
	202364_at	MXI1	4601	NM_005962.1	9,29	0,17
	205837_s_at	GYPA	2993	BC005319.1	9,22	0,17
	208353_x_at	ANK1	286	NM_020480.1	9,20	0,17
20	202125_s_at	ALS2CR3	66008	NM_015049.1	9,10	0,17
	217572_at	---	---	AA654586	9,06	0,17
	211649_x_at	---	---	L14456.1	9,04	0,17
	205838_at	GYPA	2993	NM_002099.2	9,04	0,17
	202219_at	SLC6A8	6535	NM_005629.1	9,03	0,17
25	216925_s_at	TAL1	6886	X51990.1	8,98	0,17
	203794_at	CDC42BPA	8476	NM_014826.1	8,96	0,17
	211820_x_at	GYPA	2993	U00179.1	8,95	0,17
	218864_at	TNS	7145	AF116610.1	8,94	0,17
	215812_s_at	---	---	U41163	8,90	0,17
30	202074_s_at	OPTN	10133	NM_021980.1	8,89	0,17
	201886_at	WDR23	80344	NM_025230.1	8,86	0,17
	216833_x_at	GYPE	2996	U05255.1	8,84	0,17
	202124_s_at	ALS2CR3	66008	AV705253	8,84	0,17
	216317_x_at	RHCE	6006	X63095.1	8,81	0,17
35	204467_s_at	SNCA	6622	NM_000345.2	8,80	0,17
	207087_x_at	ANK1	286	NM_020478.1	8,78	0,17
	213843_x_at	SLC6A8	6535	AW276522	8,78	0,17
	210586_x_at	RHD	6007	AF312679.1	8,77	0,17
	209890_at	TM4SF9	10098	AF065389.1	8,75	0,17
40	218853_s_at	DJ473B4	56180	NM_019556.1	8,74	0,17
	214433_s_at	SELENBP1	8991	NM_003944.1	8,70	0,17
	48031_r_at	C5orf4	10826	H93077	8,70	0,17
	208352_x_at	ANK1	286	NM_020479.1	8,69	0,17
	203115_at	FECH	2235	AU152635	8,66	0,17

Table 31: Top40 genes of cluster #9

Probe Set ID	Gene symbol	Locus Link number	Accession number	Score SAM	q-value SAM (%)
5	201497_x_at	MYH11	4629	NM_022844.1	89,02 0,18
	207961_x_at	MYH11	4629	NM_022870.1	26,72 0,18
	212358_at	CLIPR-59	25999	AL117468.1	20,92 0,18
	206135_at	ST18	9705	NM_014682.1	19,69 0,18
	212298_at	NRP1	8829	BE620457	18,71 0,18
10	206682_at	CLECSF13	10462	NM_006344.1	15,32 0,18
	203060_s_at	PAPSS2	9060	AF074331.1	15,04 0,18
	203058_s_at	PAPSS2	9060	AW299958	14,73 0,18
	205987_at	CD1C	911	NM_001765.1	12,82 0,18
	221019_s_at	COLEC12	81035	NM_030781.1	12,69 0,18
15	204885_s_at	MSLN	10232	NM_005823.2	12,36 0,18
	209396_s_at	CHI3L1	1116	M80927.1	12,06 0,18
	219694_at	FLJ11127	54491	NM_019018.1	11,59 0,18
	205076_s_at	CRA	10903	NM_006697.1	11,49 0,18
	209395_at	CHI3L1	1116	M80927.1	11,07 0,18
20	219308_s_at	AK5	26289	NM_012093.1	10,88 0,18
	207194_s_at	ICAM4	3386	NM_001544.2	10,76 0,18
	204787_at	Z39IG	11326	NM_007268.1	10,23 0,18
	200665_s_at	SPARC	6678	NM_003118.1	10,18 0,18
	201506_at	TGFBI	7045	NM_000358.1	9,99 0,18
25	212912_at	RPS6KA2	6196	AI992251	9,82 0,18
	203939_at	NT5E	4907	NM_002526.1	9,67 0,18
	205330_at	MN1	4330	NM_002430.1	9,24 0,18
	202481_at	SDR1	9249	NM_004753.1	8,92 0,18
	212771_at	LOC221061	221061	AU150943	8,85 0,18
30	210889_s_at	FCGR2B	2213	M31983.1	8,82 0,18
	218876_at	CGI-38	51673	NM_016140.1	8,45 0,18
	203329_at	PTPRM	5797	NM_002845.1	8,25 0,18
	204197_s_at	RUNX3	864	NM_004350.1	-8,25 0,18
	200984_s_at	CD59	966	NM_000611.1	-8,33 0,18
35	218414_s_at	NDE1	54820	NM_017668.1	-8,42 0,18
	213779_at	EMU1	129080	AL031186	-8,56 0,18
	204198_s_at	RUNX3	864	AA541630	-8,85 0,18
	211026_s_at	MGLL	11343	BC006230.1	-9,01 0,18
	219218_at	FLJ23058	79749	NM_024696.1	-9,61 0,18
40	206788_s_at	CBFB	865	AF294326.1	-9,73 0,18
	218927_s_at	CHST12	55501	NM_018641.1	-9,82 0,18
	211031_s_at	CYLN2	7461	BC006259.1	-10,24 0,18
	202370_s_at	CBFB	865	NM_001755.1	-13,01 0,18
	200675_at	CD81	975	NM_004356.1	-14,28 0,18

Table 32: Top40 genes of cluster #10

	Probe Set ID	Gene symbol	Locus Link number	Accession number	Score SAM	q-value (%)
5	219145_at	FLJ11939	79732	NM_024679.1	12,59	0,21
	202551_s_at	CRIM1	51232	BG546884	11,82	0,21
	47560_at	FLJ11939	79732	AI525402	11,75	0,21
	209763_at	NRLN1	91851	AL049176	8,99	0,21
	200671_s_at	SPTBN1	6711	NM_003128.1	8,75	0,21
10	213488_at	FLJ00133	25992	AL050143.1	8,75	0,21
	204004_at	---	---	AI336206	8,74	0,21
	205933_at	SETBP1	26040	NM_015559.1	8,63	0,21
	213506_at	F2RL1	2150	BE965369	8,53	0,21
	41577_at	PPP1R16B	26051	AB020630	8,52	0,21
15	209679_s_at	LOC57228	57228	BC003379.1	8,51	0,21
	212558_at	GDAP1L1	78997	BF508662	8,43	0,21
	207788_s_at	SCAM-1	10174	NM_005775.1	8,42	0,21
	204083_s_at	TPM2	7169	NM_003289.1	8,21	0,21
	209487_at	RBPMS	11030	D84109.1	8,19	0,21
20	207836_s_at	RBPMS	11030	NM_006867.1	8,14	0,21
	209282_at	PRKD2	25865	AF309082.1	8,14	0,21
	209436_at	SPON1	10418	AB018305.1	8,12	0,21
	204484_at	PIK3C2B	5287	NM_002646.1	8,11	0,21
	212750_at	PPP1R16B	26051	AB020630.1	8,09	0,21
25	205330_at	MN1	4330	NM_002430.1	8,03	0,21
	209576_at	GNAI1	2770	AL049933.1	8,02	0,21
	220377_at	C14orf110	29064	NM_014151.1	7,91	0,21
	203756_at	P164RHOGEF	9828	NM_014786.1	7,89	0,21
	200672_x_at	SPTBN1	6711	NM_003128.1	7,88	0,21
30	212827_at	IGHM	3507	X17115.1	7,86	0,21
	209437_s_at	SPON1	10418	AB051390.1	7,74	0,21
	204917_s_at	MLLT3	4300	AV756536	7,59	0,21
	204540_at	EEF1A2	1917	NM_001958.1	7,57	0,21
	208614_s_at	FLNB	2317	M62994.1	7,40	0,21
35	204581_at	CD22	933	NM_001771.1	7,29	0,21
	218086_at	NPDC1	56654	NM_015392.1	7,25	0,21
	209488_s_at	RBPMS	11030	D84109.1	7,21	0,21
	218899_s_at	BAALC	79870	NM_024812.1	7,11	0,21
	203796_s_at	BCL7A	605	AI950380	7,05	0,21
40	212071_s_at	SPTBN1	6711	BE968833	6,93	0,21
	206111_at	RNASE2	6036	NM_002934.1	-7,00	0,21
	209906_at	C3AR1	719	U62027.1	-7,34	0,21
	205382_s_at	DF	1675	NM_001928.1	-7,63	0,21
	214575_s_at	AZU1	566	NM_001700.1	-7,95	0,21

Table 33: Top40 genes of cluster #11

	Probe Set ID	Gene symbol	Locus Link number	Accession number	Score SAM	q-value SAM (%)
5	209079_x_at	PCDHGC3	5098	AF152318.1	-2,72	1,48
	207076_s_at	ASS	445	NM_000050.1	-2,74	1,48
	218825_at	EGFL7	51162	NM_016215.1	-2,74	1,48
	201522_x_at	SNRPN	6638	NM_003097.2	-2,74	1,48
	201601_x_at	IFITM1	8519	NM_003641.1	-2,75	1,48
10	206042_x_at	SNRPN	6638	NM_022804.1	-2,80	1,48
	209583_s_at	MOX2	4345	AF063591.1	-2,81	1,48
	204385_at	KYNU	8942	NM_003937.1	-2,84	1,48
	218805_at	IAN4L1	55340	NM_018384.1	-2,90	1,48
	214953_s_at	APP	351	X06989.1	-2,90	1,48
15	203859_s_at	PALM	5064	NM_002579.1	-2,97	1,48
	203542_s_at	BTEB1	687	BF438302	-2,97	1,48
	212171_x_at	VEGF	7422	H95344	-3,03	1,48
	218237_s_at	SLC38A1	81539	NM_030674.1	-3,05	1,48
	219777_at	hIAN2	79765	NM_024711.1	-3,07	1,48
20	201656_at	ITGA6	3655	NM_000210.1	-3,13	1,48
	208886_at	H1F0	3005	BC000145.1	-3,17	1,48
	203139_at	DAPK1	1612	NM_004938.1	-3,18	1,48
	31874_at	GAS2L1	10634	Y07846	-3,21	1,48
	218966_at	MYO5C	55930	NM_018728.1	-3,22	1,48
25	216033_s_at	FYN	2534	S74774.1	-3,23	1,48
	218589_at	P2RY5	10161	NM_005767.1	-3,24	1,48
	217838_s_at	EVL	51466	NM_016337.1	-3,25	1,48
	201279_s_at	DAB2	1601	BC003064.1	-3,26	1,48
	200762_at	DPYSL2	1808	NM_001386.1	-3,29	1,48
30	209723_at	SERPINB9	5272	BC002538.1	-3,34	1,48
	205101_at	MHC2TA	4261	NM_000246.1	-3,37	1,48
	208873_s_at	DP1	7905	BC000232.1	-3,43	1,48
	211675_s_at	HIC	29969	AF054589.1	-3,49	1,48
	200665_s_at	SPARC	6678	NM_003118.1	-3,50	1,48
35	213848_at	DUSP7	1849	AI655015	-3,54	1,48
	215116_s_at	DNM1	1759	AF035321.1	-3,56	1,48
	203217_s_at	SIAT9	8869	NM_003896.1	-3,56	1,48
	209543_s_at	CD34	947	M81104.1	-3,57	1,48
	201425_at	ALDH2	217	NM_000690.1	-3,63	1,48
40	201559_s_at	CLIC4	25932	AF109196.1	-4,00	1,48
	221223_x_at	CISH	1154	NM_013324.2	-4,36	1,48
	212658_at	LHFPL2	10184	N66633	-4,43	1,48
	204401_at	KCNN4	3783	NM_002250.1	-4,70	1,48
	201560_at	CLIC4	25932	NM_013943.1	-4,95	1,48

Table 34: Top40 genes of cluster #12

	Probe Set ID	Gene symbol	Locus Link number	Accession number	Score SAM	q-value (%)	SAM
5	210997_at	HGF	3082	M77227.1	25,95	0,13	
	210998_s_at	HGF	3082	M77227.1	24,77	0,13	
	205110_s_at	FGF13	2258	NM_004114.1	24,76	0,13	
	210794_s_at	MEG3	55384	AF119863.1	23,54	0,13	
	204537_s_at	GABRE	2564	NM_004961.2	22,89	0,13	
10	205614_x_at	MST1	4485	NM_020998.1	20,74	0,13	
	205663_at	PCBP3	54039	NM_020528.1	20,42	0,13	
	202260_s_at	STXBP1	6812	NM_003165.1	19,36	0,13	
	216320_x_at	MST1	4485	U37055	18,72	0,13	
	203074_at	ANXA8	244	NM_001630.1	18,42	0,13	
15	206634_at	SIX3	6496	NM_005413.1	16,41	0,13	
	210755_at	HGF	3082	U46010.1	16,11	0,13	
	203397_s_at	GALNT3	2591	BF063271	15,29	0,13	
	212732_at	MEG3	55384	AI950273	15,24	0,13	
	207895_at	NAALADASEL	10004	NM_005468.1	14,64	0,13	
20	218043_s_at	AZ2	64343	NM_022461.1	14,17	0,13	
	209961_s_at	HGF	3082	M60718.1	13,51	0,13	
	209815_at	na	349352	U43148.1	12,71	0,13	
	201276_at	RAB5B	5869	AF267863.1	12,44	0,13	
	212509_s_at	---	---	BF968134	12,27	0,13	
25	207650_x_at	PTGER1	5731	NM_000955.1	11,92	0,13	
	209960_at	HGF	3082	X16323.1	11,88	0,13	
	200770_s_at	LAMC1	3915	J03202.1	11,57	0,13	
	212204_at	DKFZP564G2022	25963	AF132733.1	11,55	0,13	
	207031_at	BAPX1	579	NM_001189.1	11,44	0,13	
30	211663_x_at	PTGDS	5730	M61900.1	11,33	0,13	
	206105_at	FMR2	2334	NM_002025.1	11,28	0,13	
	214203_s_at	PRODH	5625	AA074145	11,27	0,13	
	200654_at	P4HB	5034	J02783.1	11,24	0,13	
	200656_s_at	P4HB	5034	NM_000918.1	11,23	0,13	
35	210140_at	CST7	8530	AF031824.1	11,16	0,13	
	200935_at	CALR	811	NM_004343.2	11,12	0,13	
	204153_s_at	MFNG	4242	NM_002405.1	-11,33	0,13	
	202599_s_at	NRIP1	8204	NM_003489.1	-11,33	0,13	
	200931_s_at	VCL	7414	NM_014000.1	-11,57	0,13	
40	204362_at	SCAP2	8935	NM_003930.1	-11,76	0,13	
	202600_s_at	NRIP1	8204	AI824012	-11,86	0,13	
	204152_s_at	MFNG	4242	AI738965	-12,02	0,13	
	203236_s_at	LGALS9	3965	NM_009587.1	-18,14	0,13	
	204425_at	ARHGAP4	393	NM_001666.1	-21,49	0,13	

Table 35: Top40 genes of cluster #13

	Probe Set ID	Gene symbol	Locus Link number	Accession number	Score SAM	q-value (%)	SAM
5	205529_s_at	CBFA2T1 (ETO)	862	NM_004349.1	60,36	0,14	
	205528_s_at	CBFA2T1 (ETO)	862	X79990.1	56,08	0,14	
	216831_s_at	CBFA2T1 (ETO)	862	AF018283.1	26,62	0,14	
	213194_at	ROBO1	6091	BF059159	24,74	0,14	
	204811_s_at	CACNA2D2	9254	NM_006030.1	23,53	0,14	
10	206940_s_at	POU4F1	5457	NM_006237.1	21,42	0,14	
	210744_s_at	IL5RA	3568	M75914.1	21,09	0,14	
	211517_s_at	IL5RA	3568	M96651.1	20,92	0,14	
	211341_at	POU4F1	5457	L20433.1	20,66	0,14	
	204990_s_at	ITGB4	3691	NM_000213.1	20,55	0,14	
15	212097_at	CAV1	857	AU147399	20,47	0,14	
	216832_at	CBFA2T1	862	AF018283.1	17,51	0,14	
	206128_at	ADRA2C	152	AI264306	16,87	0,14	
	204874_x_at	BAIAP3	8938	NM_003933.2	16,41	0,14	
	203065_s_at	CAV1	857	NM_001753.2	16,07	0,14	
20	212496_s_at	KIAA0876	23030	AW237172	15,75	0,14	
	212492_s_at	KIAA0876	23030	AW237172	15,66	0,14	
	218613_at	DKFZp761K1423	55358	NM_018422.1	14,20	0,14	
	206622_at	TRH	7200	NM_007117.1	13,63	0,14	
	216356_x_at	BAIAP3	8938	AB018277.1	13,48	0,14	
25	201621_at	NBL1	4681	NM_005380.1	13,45	0,14	
	213894_at	LOC221981	221981	BF447246	13,05	0,14	
	203088_at	FBLN5	10516	NM_006329.1	12,93	0,14	
	204396_s_at	GPRK5	2869	NM_005308.1	12,66	0,14	
	201655_s_at	HSPG2	3339	M85289.1	12,62	0,14	
30	218742_at	HPRN	64428	NM_022493.1	12,59	0,14	
	214920_at	LOC221981	221981	R33964	12,55	0,14	
	219686_at	HSA250839	55351	NM_018401.1	12,44	0,14	
	204073_s_at	C11orf9	745	NM_013279.1	12,35	0,14	
	209822_s_at	VLDLR	7436	L22431.1	12,29	0,14	
35	206793_at	PNMT	5409	NM_002686.1	12,27	0,14	
	211685_s_at	NCALD	83988	AF251061.1	12,16	0,14	
	214946_x_at	FLJ10824	55747	AV728658	12,03	0,14	
	210010_s_at	SLC25A1	6576	U25147.1	11,84	0,14	
	203741_s_at	ADCY7	113	NM_001114.1	-11,89	0,14	
40	208885_at	LCP1	3936	J02923.1	-12,03	0,14	
	204494_s_at	LOC56905	56905	AW516789	-12,21	0,14	
	208091_s_at	DKFZP564K0822	81552	NM_030796.1	-13,52	0,14	
	220560_at	C11orf21	29125	NM_014144.1	-14,30	0,14	
	221581_s_at	WBSCR5	7462	AF257135.1	-17,67	0,14	

Table 36: Top40 genes of cluster #14
 (No significant genes identified.)

Table 37: Top40 genes of cluster #15

	Probe Set ID	Gene symbol	Locus Link number	Accession number	Score SAM	q-value (%)	SAM
5	206676_at	CEACAM8	1088	M33326.1	7,20	1,66	
	204661_at	CDW52	1043	NM_001803.1	-3,44	1,07	
	211182_x_at	RUNX1	861	AF312387.1	-3,46	1,07	
10	212827_at	IGHM	3507	X17115.1	-3,47	1,07	
	203542_s_at	BTEB1	687	BF438302	-3,49	1,07	
	214835_s_at	SUCLG2	8801	AF131748.1	-3,51	1,07	
	209905_at	HOXA9	3205	AI246769	-3,56	1,07	
	201867_s_at	TBL1X	6907	NM_005647.1	-3,59	1,07	
15	204069_at	MEIS1	4211	NM_002398.1	-3,61	1,07	
	205600_x_at	HOXB5	3215	AI052747	-3,62	1,07	
	208962_s_at	FADS1	3992	BE540552	-3,63	1,07	
	205453_at	HOXB2	3212	NM_002145.1	-3,69	1,07	
	219256_s_at	FLJ20356	54436	NM_018986.1	-3,74	1,07	
20	218627_at	FLJ11259	55332	NM_018370.1	-3,76	1,07	
	201719_s_at	EPB41L2	2037	NM_001431.1	-3,77	1,07	
	213150_at	HOXA10	3206	NM_018951.1	-3,77	1,07	
	209374_s_at	IGHM	3507	BC001872.1	-3,89	1,07	
	210365_at	RUNX1	861	D43967.1	-3,90	1,07	
25	214651_s_at	HOXA9	3205	U41813.1	-3,92	1,07	
	218552_at	FLJ10948	55268	NM_018281.1	-3,94	1,07	
	212906_at	na	283158	BE044440	-3,97	1,07	
	213147_at	HOXA10	3206	NM_018951.1	-3,98	1,07	
	213400_s_at	TBL1X	6907	AV753028	-4,01	1,07	
30	200765_x_at	CTNNA1	1495	NM_001903.1	-4,02	1,07	
	202391_at	BASP1	10409	NM_006317.1	-4,07	1,07	
	217226_s_at	PMX1	5396	M95929.1	-4,09	1,07	
	217800_s_at	NDFIP1	80762	NM_030571.1	-4,26	1,07	
	201841_s_at	HSPB1	3315	NM_001540.2	-4,34	1,07	
35	202236_s_at	SLC16A1	6566	NM_003051.1	-4,34	1,07	
	212314_at	KIAA0746	23231	AB018289.1	-4,43	1,07	
	215772_x_at	SUCLG2	8801	AL050226.1	-4,44	1,07	
	218847_at	IMP-2	10644	NM_006548.1	-4,46	1,07	
	212311_at	KIAA0746	23231	AB018289.1	-4,56	1,07	
40	212459_x_at	SUCLG2	8801	BF593940	-4,63	1,07	
	209191_at	TUBB-5	84617	BC002654.1	-4,63	1,07	
	220974_x_at	BA108L7.2	81855	NM_030971.1	-4,75	1,07	
	217853_at	TEM6	64759	NM_022748.1	-5,09	1,07	
	218501_at	ARHGEF3	50650	NM_019555.1	-5,11	1,07	
45	40489_at	DRPLA	1822	D31840	-5,57	1,07	
	221737_at	GNA12	2768	NM_007353.1	-5,84	1,07	

Table 38: Top40 genes of cluster #16

	Probe Set ID	Gene symbol	Locus Link number	Accession number	Score SAM	q-value (%)	SAM
5	220057_at	GAGED2	9503	NM_020411.1	22,48	0,27	
	219360_s_at	TRPM4	54795	NM_017636.1	21,22	0,27	
	219414_at	CLSTN2	64084	NM_022131.1	16,98	0,27	
	220116_at	KCNN2	3781	NM_021614.1	16,31	0,27	
	216370_s_at	TKTL1	8277	Z49258	15,76	0,27	
10	205550_s_at	BRE	9577	NM_004899.1	15,55	0,27	
	211566_x_at	BRE	9577	U19178.1	15,11	0,27	
	214183_s_at	TKTL1	8277	X91817.1	14,70	0,27	
	209031_at	IGSF4	23705	NM_014333.1	13,62	0,27	
	212645_x_at	BRE	9577	AL566299	13,32	0,27	
15	209030_s_at	IGSF4	23705	NM_014333.1	13,30	0,27	
	213791_at	PENK	5179	NM_006211.1	13,25	0,27	
	206508_at	TNFSF7	970	NM_001252.1	12,46	0,27	
	219506_at	FLJ23221	79630	NM_024579.1	12,31	0,27	
	211421_s_at	RET	5979	M31213.1	12,03	0,27	
20	203241_at	UVRAG	7405	NM_003369.1	11,99	0,27	
	213908_at	LOC339005	339005	AI824078	11,94	0,27	
	207911_s_at	TGM5	9333	NM_004245.1	11,78	0,27	
	214190_x_at	GGA2	23062	AI799984	11,49	0,27	
	204561_x_at	APOC2	344	NM_000483.2	11,38	0,27	
25	209663_s_at	ITGA7	3679	AF072132.1	11,27	0,27	
	214259_s_at	AKR7A2	8574	AW074911	11,14	0,27	
	205472_s_at	DACH	1602	NM_004392.1	10,91	0,27	
	216331_at	ITGA7	3679	AK022548.1	10,89	0,27	
	220010_at	KCNE1L	23630	NM_012282.1	10,78	0,27	
30	213484_at	na	151521	AI097640	10,73	0,27	
	204497_at	ADCY9	115	AB011092.1	10,48	0,27	
	215771_x_at	RET	5979	X15786.1	10,33	0,27	
	209032_s_at	IGSF4	23705	AF132811.1	10,32	0,27	
	219714_s_at	CACNA2D3	55799	NM_018398.1	10,21	0,27	
35	219463_at	C20orf103	24141	NM_012261.1	10,21	0,27	
	202139_at	AKR7A2	8574	NM_003689.1	9,87	0,27	
	219143_s_at	FLJ20374	54913	NM_017793.1	9,66	0,27	
	205996_s_at	AK2	204	NM_013411.1	9,60	0,27	
	219288_at	HT021	57415	NM_020685.1	9,57	0,27	
40	215663_at	MBNL1	4154	BC005296.1	9,42	0,27	
	213361_at	PCTAIRE2BP	23424	AW129593	9,23	0,27	
	210658_s_at	GGA2	23062	BC000284.1	8,73	0,27	
	213772_s_at	GGA2	23062	BF196572	8,59	0,27	
	212174_at	AK2	204	AK023758.1	8,59	0,27	

Table 39: PAM genes of prognostically important clusters (#13, #12, #9, #16, #10, #4, #15, #4 and #15, and FLT3ITD)

	Probe Set ID	Gene symbol	Locus Link number	Accession number	Abnormality
5	205529_s_at	CBFA2T1 (ETO)	862	NM_004349.1	AML and t(8;21)
10	205528_s_at	CBFA2T1 (ETO)	862	X79990.1	AML and t(8;21)
213194_at	ROBO1	6091	BF059159	AML and t(8;21)	
210997_at	HGF	3082	M77227.1	AML and t(15;17)	
210998_s_at	HGF	3082	M77227.1	AML and t(15;17)	
205110_s_at	FGF13	2258	NM_004114.1	AML and t(15;17)	
201497_x_at	MYH11	4629	NM_022844.1	AML and inv(16)	
15	214183_s_at	TKTL1	8277	X91817.1	11q23 (cluster 16)
216370_s_at	TKTL1	8277	Z49258	11q23 (cluster 16)	
220057_at	GAGED2	9503	NM_020411.1	11q23 (cluster 16)	
209031_at	IGSF4	23705	NM_014333.1	11q23 (cluster 16)	
209030_s_at	IGSF4	23705	NM_014333.1	11q23 (cluster 16)	
20	219360_s_at	TRPM4	54795	NM_017636.1	11q23 (cluster 16)
216331_at	ITGA7	3679	AK022548.1	11q23 (cluster 16)	
206508_at	TNFSF7	970	NM_001252.1	11q23 (cluster 16)	
204561_x_at	APOC2	344	NM_000483.2	11q23 (cluster 16)	
200989_at	HIF1A	3091	NM_001530.1	11q23 (cluster 16)	
25	219506_at	FLJ23221	79630	NM_024579.1	11q23 (cluster 16)
213791_at	PENK	5179	NM_006211.1	11q23 (cluster 16)	
205472_s_at	DACH	1602	NM_004392.1	11q23 (cluster 16)	
209629_s_at	NXT2	55916	AF201942.1	11q23 (cluster 16)	
219288_at	HT021	57415	NM_020685.1	11q23 (cluster 16)	
30	205471_s_at	DACH	1602	AW772082	11q23 (cluster 16)
219463_at	C20orf103	24141	NM_012261.1	11q23 (cluster 16)	
209628_at	NXT2	55916	AK023289.1	11q23 (cluster 16)	
215571_at	---	---	AK021495.1	11q23 (cluster 16)	
209663_s_at	ITGA7	3679	AF072132.1	11q23 (cluster 16)	
35	220010_at	KCNE1L	23630	NM_012282.1	11q23 (cluster 16)
204885_s_at	MSLN	10232	NM_005823.2	11q23 (cluster 16)	
207911_s_at	TGM5	9333	NM_004245.1	11q23 (cluster 16)	
209032_s_at	IGSF4	23705	AF132811.1	11q23 (cluster 16)	
40	206277_at	P2RY2	5029	NM_002564.1	11q23 (cluster 16)
211421_s_at	RET	5979	M31213.1	11q23 (cluster 16)	
203241_at	UVRAG	7405	NM_003369.1	11q23 (cluster 16)	
209616_s_at	CES1	1066	S73751.1	11q23 (cluster 16)	
219714_s_at	CACNA2D3	55799	NM_018398.1	11q23 (cluster 16)	
45	213908_at	LOC339005	339005	AI824078	11q23 (cluster 16)
217520_x_at	na	219392	BG396614	11q23 (cluster 16)	
202551_s_at	CRIM1	51232	BG546884	EVI (cluster 10)	
213506_at	F2RL1	2150	BE965369	EVI (cluster 10)	
206111_at	RNASE2	6036	NM_002984.1	EVI (cluster 10)	
214575_s_at	AZU1	566	NM_001700.1	EVI (cluster 10)	
50	209679_s_at	LOC57228	57228	BC003379.1	EVI (cluster 10)
41577_at	PPP1R16B	26051	AB020630	EVI (cluster 10)	
212750_at	PPP1R16B	26051	AB020630.1	EVI (cluster 10)	

Table 39: (continued)

Probe Set ID	Gene symbol	Locus Link number	Accession number	Abnormality
5	204540_at	EEF1A2	1917	NM_001958.1
	205330_at	MN1	4330	NM_002430.1
	200671_s_at	SPTBN1	6711	NM_003128.1
	207788_s_at	SCAM-1	10174	NM_005775.1
	209576_at	GNAI1	2770	AL049933.1
10	218086_at	NPDC1	56654	NM_015392.1
	204484_at	PIK3C2B	5287	NM_002646.1
	219145_at	FLJ11939	79732	NM_024679.1
	212820_at	RC3	23312	AB020663.1
	204004_at	---	---	AI336206
15	209487_at	RBPMS	11030	D84109.1
	209543_s_at	CD34	947	M81104.1
	205382_s_at	DF	1675	NM_001928.1
	47560_at	FLJ11939	79732	AI525402
	212827_at	IGHM	3507	X17115.1
20	217977_at	SEPX1	51734	NM_016332.1
	212558_at	GDAP1L1	78997	BF508662
	206429_at	F2RL1	2150	NM_005242.2
	220377_at	C14orf110	29064	NM_014151.1
	206851_at	RNASE3	6037	NM_002935.1
25	212012_at	D2S448	7837	AF200348.1
	210844_x_at	CTNNA1	1495	D14705.1
	200765_x_at	CTNNA1	1495	NM_001903.1
	200764_s_at	CTNNA1	1495	AI826881
	214551_s_at	CD7	924	NM_006137.2
30	214049_x_at	CD7	924	AI829961
	216191_s_at	TRD@	6964	X72501.1
	217143_s_at	TRD@	6964	X06557.1
	216286_at	---	---	AV760769
	206232_s_at	B4GALT6	9331	NM_004775.1
35	202241_at	C8FW	10221	NM_025195.1
	219383_at	FLJ14213	79899	NM_024841.1
	209191_at	TUBB-5	84617	BC002654.1
	213830_at	TRD@	6964	AW007751
	206676_at	CEACAM8	1088	M33326.1
40	210244_at	CAMP	820	U19970.1
	202018_s_at	LTF	4057	NM_002343.1
	217853_at	TEM6	64759	NM_022748.1
	204417_at	GALC	2581	NM_000153.1
	204039_at	CEBPA	1050	NM_004364.1
45	211810_s_at	GALC	2581	D25284.1
	210762_s_at	DLC1	10395	AF026219.1
	217800_s_at	NDFIP1	80762	NM_030571.1
	206726_at	PGDS	27306	NM_014485.1
	202236_s_at	SLC16A1	6566	NM_003051.1
50	202016_at	MEST	4232	NM_002402.1
	212531_at	LCN2	3934	NM_005564.1
	218847_at	IMP-2	10644	NM_006548.1

Table 39: (continued)

	Probe Set ID	Gene symbol	Locus Link number	Accession number	Abnormality
5	205692_s_at	CD38	952	NM_001775.1	cEBPalpha (cluster 15)
	212459_x_at	SUCLG2	8801	BF593940	cEBPalpha (cluster 15)
	201841_s_at	HSPB1	3315	NM_001540.2	cEBPalpha (cluster 15)
	207329_at	MMP8	4317	NM_002424.1	cEBPalpha (cluster 15)
	220974_x_at	BA108L7.2	81855	NM_030971.1	cEBPalpha (cluster 15)
10	207384_at	PGLYRP	8993	NM_005091.1	cEBPalpha (cluster 15)
	209191_at	TUBB-5	84617	BC002654.1	cEBPalpha (cluster 15)
	202391_at	BASP1	10409	NM_006317.1	cEBPalpha (cluster 15)
	215772_x_at	SUCLG2	8801	AL050226.1	cEBPalpha (cluster 15)
	212314_at	KIAA0746	23231	AB018289.1	cEBPalpha (cluster 15)
15	221737_at	GNA12	2768	NM_007353.1	cEBPalpha (cluster 15)
	214651_s_at	HOXA9	3205	U41813.1	cEBPalpha (cluster 15)
	218501_at	ARHGEF3	50650	NM_019555.1	cEBPalpha (cluster 15)
	202747_s_at	ITM2A	9452	NM_004867.1	cEBPalpha (cluster 15)
	213400_s_at	TBL1X	6907	AV753028	cEBPalpha (cluster 15)
20	214049_x_at	CD7	924	AI829961	cEBPalpha (cluster 15)
	209374_s_at	IGHM	3507	BC001872.1	cEBPalpha (cluster 15)
	212311_at	KIAA0746	23231	AB018289.1	cEBPalpha (cluster 15)
	40489_at	DRPLA	1822	D31840	cEBPalpha (cluster 15)
	205453_at	HOXB2	3212	NM_002145.1	cEBPalpha (cluster 15)
25	214551_s_at	CD7	924	NM_006137.2	cEBPalpha (cluster 15)
	206660_at	IGLL1	3543	NM_020070.1	cEBPalpha (cluster 15)
	210844_x_at	CTNNA1	1495	D14705.1	CEBPalpha (cluster 4 and 15)
	200765_x_at	CTNNA1	1495	NM_001903.1	CEBPalpha (cluster 4 and 15)
	200764_s_at	CTNNA1	1495	AI826881	CEBPalpha (cluster 4 and 15)
30	214551_s_at	CD7	924	NM_006137.2	CEBPalpha (cluster 4 and 15)
	214049_x_at	CD7	924	AI829961	CEBPalpha (cluster 4 and 15)
	209191_at	TUBB-5	84617	BC002654.1	CEBPalpha (cluster 4 and 15)
	217800_s_at	NDFIP1	80762	NM_030571.1	CEBPalpha (cluster 4 and 15)
	217143_s_at	TRD@	6964	X06557.1	CEBPalpha (cluster 4 and 15)
35	216191_s_at	TRD@	6964	X72501.1	CEBPalpha (cluster 4 and 15)
	219615_s_at	KCNK5	8645	NM_003740.1	FLT3 ITD
	204341_at	TRIM16	10626	NM_006470.1	FLT3 ITD
	201664_at	SMC4L1	10051	AL136877.1	FLT3 ITD
	201663_s_at	SMC4L1	10051	NM_005496.1	FLT3 ITD
40	213110_s_at	COL4A5	1287	AW052179	FLT3 ITD
	213844_at	HOXA5	3202	NM_019102.1	FLT3 ITD
	204082_at	PBX3	5090	NM_006195.1	FLT3 ITD
	203151_at	MAP1A	4130	AW296788	FLT3 ITD
	211269_s_at	IL2RA	3559	K03122.1	FLT3 ITD
45	203708_at	PDE4B	5142	NM_002600.1	FLT3 ITD
	210425_x_at	GOLGIN-67	23015	AF164622.1	FLT3 ITD
	212070_at	GPR56	9289	AL554008	FLT3 ITD
	205366_s_at	HOXB6	3216	NM_018952.1	FLT3 ITD
	214039_s_at	LAPTM4B	55353	T15777	FLT3 ITD
50	203897_at	LOC57149	57149	BE963444	FLT3 ITD
	215806_x_at	TRGC2	6967	M13231.1	FLT3 ITD
	209813_x_at	---	---	M16768.1	FLT3 ITD

Table 39: (continued)

	Probe Set ID	Gene symbol	Locus Link number	Accession number	Abnormality
5	216920_s_at	TRGC2	6967	M27331.1	FLT3 ITD
	206945_at	LCT	3938	NM_002299.1	FLT3 ITD
	208029_s_at	LAPTM4B	55353	NM_018407.1	FLT3 ITD
	215288_at	TRPC2	7221	AI769824	FLT3 ITD
10	203373_at	SOCS2	8835	NM_003877.1	FLT3 ITD
	209905_at	HOXA9	3205	AI246769	FLT3 ITD
	215623_x_at	SMC4L1	10051	AK002200.1	FLT3 ITD
	211144_x_at	TRGC2	6967	M30894.1	FLT3 ITD
	220813_at	CYSLTR2	57105	NM_020377.1	FLT3 ITD
15	208767_s_at	LAPTM4B	55353	AW149681	FLT3 ITD
	205227_at	IL1RAP	3556	NM_002182.1	FLT3 ITD
	209014_at	MAGED1	9500	AF217963.1	FLT3 ITD
	206341_at	IL2RA	3559	NM_000417.1	FLT3 ITD
	205453_at	HOXB2	3212	NM_002145.1	FLT3 ITD
20	209392_at	ENPP2	5168	L35594.1	FLT3 ITD
	219304_s_at	SCDGF-B	80310	NM_025208.1	FLT3 ITD
	208798_x_at	GOLGIN-67	23015	AF204231.1	FLT3 ITD
	211302_s_at	PDE4B	5142	L20966.1	FLT3 ITD
	210839_s_at	ENPP2	5168	D45421.1	FLT3 ITD
25	205600_x_at	HOXB5	3215	AI052747	FLT3 ITD
	208414_s_at	HOXB4	3214	NM_002146.1	FLT3 ITD
	208797_s_at	GOLGIN-67	23015	AI829170	FLT3 ITD
	210123_s_at	CHRNA7	1139	U62436.1	FLT3 ITD
	206289_at	HOXA4	3201	NM_002141.1	FLT3 ITD
30	201069_at	MMP2	4313	NM_004530.1	FLT3 ITD
	213217_at	ADCY2	108	AU149572	FLT3 ITD
	214651_s_at	HOXA9	3205	U41813.1	FLT3 ITD
	211402_x_at	NR6A1	2649	AF004291.1	FLT3 ITD
	204044_at	QPRT	23475	NM_014298.2	FLT3 ITD
35	204438_at	MRC1	4360	NM_002438.1	FLT3 ITD
	206042_x_at	SNRPN	6638	NM_022804.1	FLT3 ITD
	214953_s_at	APP	351	X06989.1	FLT3 ITD
	201427_s_at	SEPP1	6414	NM_005410.1	FLT3 ITD
	209193_at	PIM1	5292	M24779.1	FLT3 ITD
40	219218_at	FLJ23058	79749	NM_024696.1	FLT3 ITD
	200923_at	LGALS3BP	3959	NM_005567.2	FLT3 ITD
	210424_s_at	GOLGIN-67	23015	AF163441.1	FLT3 ITD
	219602_s_at	FLJ23403	63895	NM_022068.1	FLT3 ITD
	201522_x_at	SNRPN	6638	NM_003097.2	FLT3 ITD

45