$\begin{array}{c} {\rm Amik~St\text{-}Cyr} \\ {\bf On~Optimized~Schwarz~Preconditioning~for~High\text{-}Order} \\ {\bf Spectral~Element~Methods} \end{array}$

National Center for Atmospheric Research
1850 Table Mesa Drive
Boulder
CO 80305.
amik@ucar.edu
Martin. J. Gander
Stephen J. Thomas

On Optimized Schwarz Preconditioning for High-Order Spectral Element Methods

A. St-Cyr 1 , M.J. Gander 2 and S. J. Thomas 3

February 2, 2004

 $^{^1}$ amik@ucar.edu, NCAR 1850 Table Mesa Drive Boulder, CO 80305, USA. 2 mgander@math.mcgill.ca, McGill 805 Sherbrooke W. Montreal QC,Canada

H3A2K6

³thomas@ucar.edu, NCAR 1850 Table Mesa Drive Boulder, CO 80305, USA.

Abstract

Optimized Schwarz preconditioning is applied to a spectral element method for the modified Helmholtz equation and pseudo-Laplacian arising in incompressible flow solvers. The preconditioning is performed on an element-by-element basis. The method enables one to use non-overlapping elements, yielding an effective algorithm in terms of communication between elements and implementation. Two approaches are tested. The first consists of constructing a P_1 finite element problem on each overlapping element. In the second, the preconditioner is applied directly on a non-overlapping spectral element. Numerical results demonstrate an improvement in the iteration count over the classical Schwarz algorithm.