Data Structures and Algorithms CS245-2013S-11 Sorting in $\Theta(n \lg n)$

David Galles

Department of Computer Science University of San Francisco

11-0: Merge Sort – Recursive Sorting

- Base Case:
 - A list of length 1 or length 0 is already sorted
- Recursive Case:
 - Split the list in half
 - Recursively sort two halves
 - Merge sorted halves together

Example: 5 1 8 2 6 4 3 7

11-1: Merging

- ullet Merge lists into a new temporary list, T
- Maintain three pointers (indices) i, j, and n
 - i is index of left hand list
 - *j* is index of right hand list
 - ullet n is index of temporary list T
- If A[i] < A[j]
 - T[n] = A[i], increment n and i
- else
 - T[n] = A[j], increment n and j

Example: 1 2 5 8 and 3 4 6 7

11-2: ⊖() for Merge Sort

$$T(0)=c_1$$
 for some constant c_1 $T(1)=c_2$ for some constant c_2 $T(n)=nc_3+2T(n/2)$ for some constant c_3 $T(n)=nc_3+2T(n/2)$

for some constant c_1 for some constant c_2

11-3: Θ () for Merge Sort

$$T(0)=c_1$$
 for some constant c_1 $T(1)=c_2$ for some constant c_2 $T(n)=nc_3+2T(n/2)$ for some constant c_3 $T(n)=nc_3+2T(n/2)$ $=nc_3+2(n/2c_3+2T(n/4))$ $=2nc_3+4T(n/4)$

11-4: ⊖() for Merge Sort

$$T(0) = c_1$$
 for some constant c_1
 $T(1) = c_2$ for some constant c_2
 $T(n) = nc_3 + 2T(n/2)$ for some constant c_3
 $T(n) = nc_3 + 2T(n/2)$
 $= nc_3 + 2(n/2c_3 + 2T(n/4))$
 $= 2nc_3 + 4T(n/4)$
 $= 2nc_3 + 4(n/4c_3 + 2T(n/8))$
 $= 3nc_3 + 8T(n/8)$

11-5: ⊖() for Merge Sort

$$T(0) = c_1 \qquad \text{for some constant } c_1 \\ T(1) = c_2 \qquad \text{for some constant } c_2 \\ T(n) = nc_3 + 2T(n/2) \qquad \text{for some constant } c_3 \\ T(n) = nc_3 + 2T(n/2) \\ = nc_3 + 2(n/2c_3 + 2T(n/4)) \\ = 2nc_3 + 4T(n/4) \\ = 2nc_3 + 4(n/4c_3 + 2T(n/8)) \\ = 3nc_3 + 8T(n/8)) \\ = 3nc_3 + 8(n/8c_3 + 2T(n/16)) \\ = 4nc_3 + 16T(n/16)$$

11-6: ⊖() for Merge Sort

$$\begin{split} T(0) &= c_1 & \text{for some constant } c_1 \\ T(1) &= c_2 & \text{for some constant } c_2 \\ T(n) &= nc_3 + 2T(n/2) & \text{for some constant } c_3 \\ T(n) &= nc_3 + 2T(n/2) \\ &= nc_3 + 2(n/2c_3 + 2T(n/4)) \\ &= 2nc_3 + 4T(n/4) \\ &= 2nc_3 + 4(n/4c_3 + 2T(n/8)) \\ &= 3nc_3 + 8T(n/8) \\ &= 3nc_3 + 8(n/8c_3 + 2T(n/16)) \\ &= 4nc_3 + 16T(n/16) \\ &= 5nc_3 + 32T(n/32) \end{split}$$

11-7: ⊖() for Merge Sort

$$T(0) = c_1 \qquad \text{for some constant } c_1$$

$$T(1) = c_2 \qquad \text{for some constant } c_2$$

$$T(n) = nc_3 + 2T(n/2) \qquad \text{for some constant } c_3$$

$$T(n) = nc_3 + 2T(n/2)$$

$$= nc_3 + 2(n/2c_3 + 2T(n/4))$$

$$= 2nc_3 + 4T(n/4)$$

$$= 2nc_3 + 4(n/4c_3 + 2T(n/8))$$

$$= 3nc_3 + 8T(n/8)$$

$$= 3nc_3 + 8(n/8c_3 + 2T(n/16))$$

$$= 4nc_3 + 16T(n/16)$$

$$= 5nc_3 + 32T(n/32)$$

$$= knc_3 + 2^kT(n/2^k)$$

11-8: Θ () for Merge Sort

```
T(0) = c_1
T(1) = c_2
T(n) = knc_3 + 2^k T(n/2^k)
Pick a value for k such that n/2^k = 1:
n/2^k = 1
n = 2^k
\lg n = k
T(n) = (\lg n)nc_3 + 2^{\lg n}T(n/2^{\lg n})
        = c_3 n \lg n + nT(n/n)
        = c_3 n \lg n + nT(1)
        = c_3 n \lg n + c_2 n
        \in O(n \lg n)
```

11-9: ⊖() for Merge Sort

T(n)

11-10: $\Theta()$ for Merge Sort

11-11: Θ () for Merge Sort

11-12: $\Theta()$ for Merge Sort

11-13: $\Theta()$ for Merge Sort

11-14: Θ () for Merge Sort

Total time = c*n lg n $\Theta(n lg n)$

11-15: $\Theta()$ for Merge Sort

$$T(0)=c_1$$
 for some constant c_1 $T(1)=c_2$ for some constant c_2 $T(n)=nc_3+2T(n/2)$ for some constant c_3 $T(n)=aT(n/b)+f(n)$

$$a = 2, b = 2, f(n) = n$$
 $n^{\log_b a} = n^{\log_2 2} = n \in \Theta(n)$

By second case of the Master Method, $T(n) \in \Theta(n \lg n)$

11-16: Divide & Conquer

Merge Sort:

- Divide the list two parts
 - No work required just calculate midpoint
- Recursively sort two parts
- Combine sorted lists into one list
 - Some work required need to merge lists

11-17: Divide & Conquer

Quick Sort:

- Divide the list two parts
 - Some work required Small elements in left sublist, large elements in right sublist
- Recursively sort two parts
- Combine sorted lists into one list
 - No work required!

11-18: Quick Sort

- Pick a pivot element
- Reorder the list:
 - All elements < pivot
 - Pivot element
 - All elements > pivot
- Recursively sort elements < pivot
- Recursively sort elements > pivot

Example: 3 7 2 8 1 4 6

11-19: Quick Sort - Partitioning

Basic Idea:

- Swap pivot element out of the way (we'll swap it back later)
- Maintain two pointers, i and j
 - i points to the beginning of the list
 - j points to the end of the list
- Move i and j in to the middle of the list ensuring that all elements to the left of i are < the pivot, and all elements to the right of j are greater than the pivot
- Swap pivot element back to middle of list

11-20: Quick Sort - Partitioning

Pseudocode:

- Pick a pivot index
- Swap A[pivotindex] and A[high]
- Set $i \leftarrow low$, $j \leftarrow high-1$
- while (i <= j)
 - while A[i] < A[pivot], increment i
 - while A[j] > A[pivot], decrement i
 - swap A[i] and A[j]
 - increment i, decrement j
- swap A[i] and A[pivot]

11-21: ⊖() for Quick Sort

- Coming up with a recurrence relation for quicksort is harder than mergesort
- How the problem is divided depends upon the data
 - Break list into:

```
size 0, size n-1
size 1, size n-2
...
size \lfloor (n-1)/2 \rfloor, size \lceil (n-1)/2 \rceil
...
size n-2, size 1
size n-1, size 0
```

11-22: ⊖() for Quick Sort

Worst case performance occurs when break list into size n-1 and size 0

$$T(0)=c_1$$
 for some constant c_1 $T(1)=c_2$ for some constant c_2 $T(n)=nc_3+T(n-1)+T(0)$ for some constant c_3 $T(n)=nc_3+T(n-1)+T(0)$ $=T(n-1)+nc_3+c_2$

for some constant c_1 for some constant c_2

11-23: $\Theta()$ for Quick Sort

Worst case:
$$T(n) = T(n-1) + nc_3 + c_2$$

$$T(n)$$

$$= T(n-1) + nc_3 + c_2$$

11-24: ⊖() for Quick Sort

Worst case: $T(n) = T(n-1) + nc_3 + c_2$ T(n)

$$= T(n-1) + nc_3 + c_2$$

$$= [T(n-2) + (n-1)c_3 + c_2] + nc_3 + c_2$$

$$= T(n-2) + (n+(n-1))c_3 + 2c_2$$

11-25: ⊖() for Quick Sort

Worst case: $T(n) = T(n-1) + nc_3 + c_2$ T(n) $= T(n-1) + nc_3 + c_2$ $= [T(n-2) + (n-1)c_3 + c_2] + nc_3 + c_2$ $= T(n-2) + (n+(n-1))c_3 + 2c_2$ $= [T(n-3) + (n-2)c_3 + c_2] + (n+(n-1))c_3 + 2c_2$ $= T(n-3) + (n+(n-1)+(n-2))c_3 + 3c_2$

11-26: ⊖() for Quick Sort

Worst case: $T(n) = T(n-1) + nc_3 + c_2$

$$T(n)$$

$$= T(n-1) + nc_3 + c_2$$

$$= [T(n-2) + (n-1)c_3 + c_2] + nc_3 + c_2$$

$$= T(n-2) + (n+(n-1))c_3 + 2c_2$$

$$= [T(n-3) + (n-2)c_3 + c_2] + (n+(n-1))c_3 + 2c_2$$

$$= T(n-3) + (n+(n-1) + (n-2))c_3 + 3c_2$$

$$= T(n-4) + (n+(n-1) + (n-2) + (n-3))c_3 + 4c_2$$

11-27: ⊖() for Quick Sort

Worst case: $T(n) = T(n-1) + nc_3 + c_2$ T(n) $= T(n-1) + nc_3 + c_2$ $= [T(n-2) + (n-1)c_3 + c_2] + nc_3 + c_2$ $= T(n-2) + (n+(n-1))c_3 + 2c_2$ $= [T(n-3) + (n-2)c_3 + c_2] + (n + (n-1))c_3 + 2c_2$ $T = T(n-3) + (n+(n-1)+(n-2))c_3 + 3c_2$ $= T(n-4) + (n+(n-1) + (n-2) + (n-3))c_3 + 4c_2$ $= T(n-k) + (\sum_{i=0}^{k-1} (n-i)c_3) + kc_2$

11-28: ⊖() for Quick Sort

Worst case:

$$\begin{split} T(n) &= T(n-k) + (\sum_{i=0}^{k-1}(n-i)c_3) + kc_2 \\ \text{Set } k &= n \text{:} \\ T(n) &= T(n-k) + (\sum_{i=0}^{k-1}(n-i)c_3) + kc_2 \\ &= T(n-n) + (\sum_{i=0}^{n-1}(n-i)c_3) + kc_2 \\ &= T(0) + (\sum_{i=0}^{n-1}(n-i)c_3) + kc_2 \\ &= T(0) + (\sum_{i=0}^{n-1}ic_3) + kc_2 \\ &= c_1 + c_3n(n+1)/2 + kc_2 \\ &\in \Theta(n^2) \end{split}$$

11-29: $\Theta()$ for Quick Sort

T(n)

11-30: Θ () for Quick Sort

11-31: Θ () for Quick Sort

11-32: $\Theta()$ for Quick Sort

11-33: $\Theta()$ for Quick Sort

11-34: $\Theta()$ for Quick Sort

11-35: ⊖() for Quick Sort

Best case performance occurs when break list into size

$$\lfloor (n-1)/2
floor$$
 and size $\lceil (n-1)/2
ceil$ for some constant c_1 $T(1)=c_2$ for some constant c_2 $T(n)=nc_3+2T(n/2)$ for some constant c_3

This is the same as Merge Sort: $\Theta(n \lg n)$

11-36: Quick Sort?

If Quicksort is $\Theta(n^2)$ on some lists, why is it called *quick*?

- Most lists give running time of $\Theta(n \lg n)$: The average case running time (assuming all permutations are equall likely) is $\Theta(n \lg n)$
 - We could prove this by finding the running time for each permutation of a list of length n, and averaging them
 - Math required to do this is a little beyond the prerequisites for this class
 - Consider what happens when the list is always partitioned into a list of length n/9 and a list of lenth 8n/9 (recursion tree, on whiteboard)

11-37: Quick Sort?

If Quicksort is $\Theta(n^2)$ on some lists, why is it called *quick*?

- Most lists give running time of $\Theta(n \lg n)$
 - Average case running time is $\Theta(n \lg n)$
- Constants are very small
 - Constants don't matter when complexity is different
 - Constants do matter when complexity is the same

What lists will cause Quick Sort to have $\Theta(n^2)$ performance?

11-38: Quick Sort - Worst Case

- Quick Sort has worst-case performance when:
 - The list is sorted (or almost sorted)
 - The list is inverse sorted (or almost inverse sorted)
- Many lists we want to sort are almost sorted!
- How can we fix Quick Sort?

11-39: Better Partitions

- Pick the middle element as the pivot
 - Sorted and reverse sorted lists give good performance
- Pick a random element as the pivot
 - No single list always gives bad performance
- Pick the median of 3 elements
 - First, Middle, Last
 - 3 Random Elements

11-40: Improving Quick Sort

- Insertion Sort runs faster than Quick Sort on small lists
 - Why?
- We can combine Quick Sort & Insertion Sort
 - When lists get small, run Insertion Sort instead of a recursive call to Quick Sort
 - When lists get small, stop! After call to Quick Sort, list will be almost sorted – finish the job with a single call to Insertion Sort

11-41: Heap Sort

- Copy the data into a new array (except leave out element at index 0)
- Build a heap out of the new array
- Repeat:
 - Remove the smallest element from the heap, add it to the original array
- Until all elements have been removed from the heap
- The original array is now sorted

Example: 3 1 7 2 5 4

11-42: Heap Sort

- This requires $\Theta(n)$ extra space
- We can modify heapsort so that it does not use extra space
- Build a heap out of the original array, with two differences:
 - Consider element 0 to be the root of the tree
 - for element i, children are at 2*i +1 and 2*i+2, and parent is at (i-1)/2
 - (examples)
 - Max-heap instead of a standard min-heap
 - For each subtree, element stored at root \geq element stored in that subtree (instead of \leq , as in a standard heap)

11-43: Heap Sort

- Build a heap out of the original array, with two differences:
 - Consider element 0 to be the root of the tree
 - for element i, children are at 2*i +1 and 2*i+2, and parent is at (i-1)/2
 - (examples)
 - Max-heap instead of a standard min-heap
 - For each subtree, element stored at root \geq element stored in that subtree (instead of \leq , as in a standard heap)
- Repeatedly remove the largest element, and insert it in the back of the heap

Example: 3 1 7 2 5 4

11-44: $\Theta()$ for Heap Sort

- Building the heap takes time $\Theta(n)$
- ullet Each of the n RemoveMax calls takes time $O(\lg n)$
- Total time: $(n \lg n)$ (also $\Theta(n \lg n)$)

11-45: Stability

Sorting Algorithm	Stable?
Insertion Sort	
Selection Sort	
Bubble Sort	
Shell Sort	
Merge Sort	
Quick Sort	
Heap Sort	

11-46: Stability

Sorting Algorithm	Stable?
Insertion Sort	Yes
Selection Sort	No
Bubble Sort	Yes
Shell Sort	No
Merge Sort	Yes
Quick Sort	No
Heap Sort	No