

ECEN 758 Data Mining and Analysis: Lecture 9, Expectation Maximization Algorithm

Joshua Peeples, Ph.D.

Assistant Professor

Department of Electrical and Computer Engineering

Announcements

- Assignment #1 grades available
 - Please revise any grade discrepancies within a week (COB, 09/23)
 - Email Dr. Peeples (do not contact Grader) and/or stop by office hours
- Assignment #2 is available now (due 09/27)
 - Please upload submission as single PDF
 - Please share Python code (e.g., Jupyter Notebooks, Google Colab)

Last Lecture

Gaussian Mixture Models

Gif from: D. Sheehan, Clustering with Scikit with GIFs

Today

- Expectation Maximization Algorithm
- Reading: ZM Chapter 13

Clustering Overview

- We will discuss several variants of clustering
 - Representative-based Clustering
 - Hierarchical Clustering
 - Density-Based Clustering

Gaussian Mixture Models Review

Gaussian Mixture Models

- Model clusters as Gaussians
- "Soft" clustering approach
 - Assign probability of belonging to clustering
- Generative model

Mixtures of Gaussians (1D)

- Three parameters to describe clusters:
 - Mean (µ_k)
 - Variance (σ_k^2)
 - Mixture parameters (π_k)
 - Weights, "size", prior probability
- Probability distribution:

$$p(x) = \sum_{i=1}^{k} \pi_i \mathcal{N}(x|\mu_i, \sigma_i)$$

Mixtures of Gaussians (1D)

Probability distribution:

$$p(x) = \sum_{i=1}^{k} \pi_i \mathcal{N}(x|\mu_i, \sigma_i)$$

• Select mixture component with probability π_k

$$p(z=k)=\pi_k$$

Mixtures of Gaussians (1D)

Probability distribution:

$$p(x) = \sum_{i=1}^{k} \pi_i \mathcal{N}(x|\mu_i, \sigma_i)$$

• Select mixture component with probability π_k

$$p(z=k) = \pi_k$$

 Sample from that component's Gaussian

$$p(x|z=k) = \mathcal{N}(x|\mu_k, \sigma_k)$$

Mixtures of Gaussians (Multivariate)

- Three parameters to describe clusters:
 - Mean vector (µ_i)
 - Covariance matrix (Σ_i^2)
 - Mixture parameters $(\pi_i \ or \ P(C_i))$
 - Weights, "size", prior probability
 - Sum to one constraint

$$\sum_{i=1}^k P(C_i) = 1$$

ith Cluster:

$$f_i(x) = f(x|\mu_i, \Sigma_i) = \frac{1}{(2\pi)^{\frac{d}{2}}|\Sigma_i|^{\frac{1}{2}}} \exp\left\{-\frac{(x-\mu_i)^T \Sigma_i^{-1} (x-\mu_i)}{2}\right\}$$

Probability Density function of **x** as GMM:

$$f(x) = \sum_{i=1}^{k} f_i(x) P(C_i) = \sum_{i=1}^{k} f(x|\mu_i, \Sigma_i) P(C_i)$$

Gaussian Mixture Models Algorithm

GMM Algorithm: Objective

 Parameters of model represented as **O**

$$\boldsymbol{\theta} = \{\boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1, P(C_1), \dots, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k, P(C_k)\}$$

- Maximum likelihood estimation (MLE)
- Usually maximize loglikelihood function

Likelihood:

$$P(\mathbf{D}|\boldsymbol{\theta}) = \prod_{j=1}^{n} f(\mathbf{x}_j)$$

MLE:

$$\boldsymbol{\theta}^* = \arg\max_{\boldsymbol{\theta}} \{ \ln P(\boldsymbol{D}|\boldsymbol{\theta}) \}$$

Log-likelihood:

$$\ln P(\mathbf{D}|\boldsymbol{\theta}) = \sum_{j=1}^{n} \ln f(\boldsymbol{x}_{j}) = \sum_{j=1}^{n} \ln \left(\sum_{i=1}^{k} f(\boldsymbol{x}_{j}|\boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i}) P(C_{i}) \right)$$

GMM Algorithm: Objective

- Directly maximizing loglikelihood over **\textsquare** is hard
- Alternative approach: Expectation-Maximization (EM)
- Two steps:
 - Expectation: Assignment of points
 - Maximization: Estimation of parameters

MLE Example

Probability vs Likelihood

- Probability: predict unknown outcomes based on known parameters
 - $\circ P(x \mid \theta)$
- **Likelihood:** estimate unknown parameters based on known outcomes:

$$\circ$$
 L($\theta \mid \mathbf{x}$) = $P(\mathbf{x} \mid \theta)$

- Coin-flip example:
 - \circ θ is probability of "heads" (parameter)
 - \circ *x* = HHHTTH is outcome from 6 flips
 - Each observation is iid

Bernoulli Distribution Graph

$$P(X = x) = f(x) = p^{x}(1-p)^{1-x}$$

Bernoulli MLE Formulation

- Parameters of model represented as **O**
 - Bernoulli: probability of success, p
- Maximum likelihood estimation (MLE)
- Usually maximize loglikelihood function

Likelihood:

$$P(D|\theta) = \prod_{i=1}^{n} f(x_i)$$

$$= \prod_{i=1}^{n} p^{X_i} (1-p)^{1-X_i}$$

$$= p^{\sum_{i=1}^{n} X_i} (1-p)^{n-\sum_{i=1}^{n} X_i}$$

Log-likelihood:

$$\begin{aligned} \ln P(\mathbf{D}|\theta) &= \sum_{i=1}^{n} \log p^{X_i} (1-p)^{1-X_i} \\ &= \sum_{i=1}^{n} X_i (\log p) + (1-X_i) log(1-p) \end{aligned}$$

Likelihood for Coin-flip Example

 Probability of outcome given parameter:

$$\circ$$
 P(x = HHHTTH | θ = 0.5) = 0.5⁶ = 0.016

 Likelihood of parameter given outcome:

$$\circ L(\theta = 0.5 \mid x = HHHTTH) = P(x \mid \theta) = 0.016$$

• Likelihood *maximal* when $\theta = 0.6666$

General Θ:

 $L(\Theta|HHHTTH) = \Theta^4(1-\Theta)^2$

Coin Flip MLE Details

- $L(\Theta|HHHTTH) = \Theta^4(1-\Theta)^2$
- $\log L(\Theta) = 4 \log \Theta + 2 \log (1-\Theta)$:

$$(d/d\Theta) \log L(\Theta) = 4/\Theta - 2/(1-\Theta)$$

Stationary point: derivative = 0 when $\Theta = 2/3$

- Stationary point is maximizer
 - Because logarithm is a concave function
 - Second derivative is negative
- Intuitive result:
 - \circ MLE of H probability Θ = fraction of H in samples

General O:

 $L(\Theta|HHHTTH) = \Theta^4(1-\Theta)^2$

Maximum Likelihood Estimation

- Parameterized family of distributions of some r.v. X
- $P(X|\theta)$ for θ in some parameter set
- Likelihood $L(\theta, X) = P(X|\theta)$
- MLE = $\operatorname{argmax}_{\theta} L(\theta, X)$
- Clustering with normal distribution (GMM):
 - ∘ Single point $f(x_i) = \sum_{i=1}^k f(x_i \mid \mu_i, \Sigma_i) P(C_i)$
 - \circ P[X| θ]=Prod_i f(x_i)
 - o Log-LLHD
 - $\circ \log P(X|\theta) = \sum_{i=1}^{n} \log f(x_i) = \sum_{i=1}^{n} \log \sum_{i=1}^{k} f(x_i \mid \mu_i, \Sigma_i) P(C_i)$
- Find max by differentiation?
 - o Difficult due to sum inside logarithms

Likelihood:

$$P(\mathbf{D}|\boldsymbol{\theta}) = \prod_{j=1}^{n} f(\mathbf{x}_{j})$$

MLE:

$$\boldsymbol{\theta}^* = \arg\max_{\boldsymbol{\theta}} \{ \ln P(\boldsymbol{D}|\boldsymbol{\theta}) \}$$

Log-likelihood:

$$\ln P(\mathbf{D}|\boldsymbol{\theta}) = \sum_{j=1}^{n} \ln f(\boldsymbol{x}_{j}) = \sum_{j=1}^{n} \ln \left(\sum_{i=1}^{k} f(\boldsymbol{x}_{j}|\boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i}) P(C_{i}) \right)$$

Bayes' Theorem

Bayes' Theorem

Bayes' Theorem

"Posterior" "Likelihood" "Prior"
$$P(y|x) = \frac{P(x|y)}{P(x)} P(y)$$
 "Evidence"

EM Algorithm and Bayes' Theorem

- Use Bayes' theorem to compute cluster posterior probabilities
- Use posterior probabilities to estimate parameters of model

"Posterior"
$$P(x|x) = \frac{P(x|y)}{P(x)} P(y)$$
"Evidence"

$$P(C_i|\mathbf{x}_j) = \frac{P(C_i \text{ and } \mathbf{x}_j)}{P(\mathbf{x}_j)} = \frac{P(\mathbf{x}_j|C_i)P(C_i)}{\sum_{a=1}^k P(\mathbf{x}_j|C_a)P(C_a)} = \frac{f_i(\mathbf{x}_j) \cdot P(C_i)}{\sum_{a=1}^k f_a(\mathbf{x}_j) \cdot P(C_a)}$$

GMM Expectation-Maximization (1D)

26

- Initialize cluster parameters
- Expectation (E-Step)
 - For each data point, x_i
 - Compute cluster posterior probability
 - Compute probability with respect to C_i
 - Normalize to sum to one over clusters

For each cluster:

$$f_i(x) = f(x|\mu_i, \sigma_i^2) = \frac{1}{\sqrt{2\pi}\sigma_i} \exp\left\{-\frac{(x-\mu_i)^2}{2\sigma_i^2}\right\}$$

- Initialize cluster parameters
- Expectation (E-Step)
 - For each data point, x_i
 - Compute cluster posterior probability
 - Compute probability with respect to C_i
 - Normalize to sum to one over clusters

$$w_{ij} = P(C_i|x_j) = \frac{f(x_j|\mu_i, \sigma_i^2) \cdot P(C_i)}{\sum_{a=1}^{k} f(x_j|\mu_a, \sigma_a^2) \cdot P(C_a)}$$

- Expectation (E-Step)
 - For each data point, x_i
 - Compute cluster posterior probability
 - Compute probability with respect to C_i
 - Normalize to sum to one over clusters

$$w_{ij} = P(C_i|x_j) = \frac{f(x_j|\mu_i, \sigma_i^2) \cdot P(C_i)}{\sum_{a=1}^{k} f(x_j|\mu_a, \sigma_a^2) \cdot P(C_a)}$$

- Expectation (E-Step)
 - For each data point, x_i
 - Compute cluster posterior probability
 - Compute probability with respect to C_i
 - Normalize to sum to one over clusters
- Higher probability will be assigned to Gaussian that is more likely

$$w_{ij} = P(C_i|x_j) = \frac{f(x_j|\mu_i, \sigma_i^2) \cdot P(C_i)}{\sum_{a=1}^{k} f(x_j|\mu_a, \sigma_a^2) \cdot P(C_a)}$$

- Maximization (M-Step)
 - Update parameters using (weighted) data points

$$w_{ij} = P(C_i|x_j) = \frac{f(x_j|\mu_i, \sigma_i^2) \cdot P(C_i)}{\sum_{a=1}^{k} f(x_j|\mu_a, \sigma_a^2) \cdot P(C_a)}$$

Mean:

$$\mu_i = \frac{\sum_{j=1}^{n} w_{ij} \cdot x_j}{\sum_{j=1}^{n} w_{ij}}$$

Variance:

$$\sigma_i^2 = \frac{\sum_{j=1}^n w_{ij} (x_j - \mu_i)^2}{\sum_{j=1}^n w_{ij}}$$

Mixture Weight/Prior Probability:

$$P(C_i) = \frac{\sum_{j=1}^n w_{ij}}{n}$$

GMM EM 1D Example

GMM EM 1D Example

GMM EM 1D Example

GMM Expectation-Maximization (d-dimensions)

EM in d Dimensions

- Each cluster will have d x d covariance matrix
- Expensive to calculate and may be unreliable estimation
- Can use diagonal covariance
 - Assumes dimensions are independent

Full Covariance:

$$\Sigma_{i} = \begin{pmatrix} (\sigma_{1}^{i})^{2} & \sigma_{12}^{i} & \dots & \sigma_{1d}^{i} \\ \sigma_{21}^{i} & (\sigma_{2}^{i})^{2} & \dots & \sigma_{2d}^{i} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{d1}^{i} & \sigma_{d2}^{i} & \dots & (\sigma_{d}^{i})^{2} \end{pmatrix}$$

Diagonal Covariance:

$$\Sigma_{i} = \begin{pmatrix} (\sigma_{1}^{i})^{2} & 0 & \dots & 0 \\ 0 & (\sigma_{2}^{i})^{2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & (\sigma_{d}^{i})^{2} \end{pmatrix}$$

Full vs Diagonal

GMM in Sklearn

- Additional options for covariance matrices include:
 - Spherical: Each cluster has a single variance (isotropic covariance)
 - Tied: All clusters share same covariance matrix

EM in d Dimensions

Expectation step:

$$w_{ij} = P(C_i|\mathbf{x}_j) = \frac{f_i(\mathbf{x}_j) \cdot P(C_i)}{\sum_{a=1}^k f_a(\mathbf{x}_j) \cdot P(C_a)}$$

Maximization step:

$$\mu_{i} = \frac{\sum_{j=1}^{n} w_{ij} \cdot \mathbf{x}_{j}}{\sum_{j=1}^{n} w_{ij}} \qquad \Sigma_{i} = \frac{\sum_{j=1}^{n} w_{ij} (\mathbf{x}_{j} - \mu_{i}) (\mathbf{x}_{j} - \mu_{i})^{T}}{\sum_{i=1}^{n} w_{ij}} \qquad P(C_{i}) = \frac{\sum_{j=1}^{n} w_{ij}}{n}$$

GMM EM Algorithm

- Each step maximizes loglikelihood
- Iterate until convergence
 - Set maximum iterations or set threshold for changes in parameters
 - May converge to local optima

MLE:

$$\boldsymbol{\theta}^* = \arg\max_{\boldsymbol{\theta}} \{ \ln P(\boldsymbol{D}|\boldsymbol{\theta}) \}$$

Log-likelihood:

$$\ln P(\mathbf{D}|\boldsymbol{\theta}) = \sum_{j=1}^{n} \ln f(\boldsymbol{x}_{j}) = \sum_{j=1}^{n} \ln \left(\sum_{i=1}^{k} f(\boldsymbol{x}_{j}|\boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i}) P(C_{i}) \right)$$

GMM EM Algorithm Pseudocode

Expectation-Maximization (D, k, ϵ) :

```
1 t \leftarrow 0
  2 Randomly initialize \mu_1^t, \dots, \mu_k^t
 3 \Sigma_i^t \leftarrow I, \forall i = 1, \dots, k
 4 repeat
  5 t \leftarrow t+1
  6 | for i = 1, ..., k and j = 1, ..., n do
 P^{t}(C_{i}|\mathbf{x}_{i})
        for i = 1, \dots, k do
 9 \mu_i^t \leftarrow \frac{\sum_{j=1}^n w_{ij} \cdot \mathbf{x}_j}{\sum_{j=1}^n w_{ii}} // re-estimate mean
10 \sum_{i}^{t} \leftarrow \frac{\sum_{j=1}^{n} w_{ij} (\mathbf{x}_{j} - \boldsymbol{\mu}_{i}) (\mathbf{x}_{j} - \boldsymbol{\mu}_{i})^{T}}{\sum_{i=1}^{n} w_{ii}} \text{ // re-estimate covariance}
                 matrix
     P^{t}(C_{i}) \leftarrow \frac{\sum_{j=1}^{n} w_{ij}}{n} // \text{ re-estimate priors}
12 until \sum_{i=1}^{k} \left\| \boldsymbol{\mu}_{i}^{t} - \boldsymbol{\mu}_{i}^{t-1} \right\|^{2} \leq \epsilon
```


Unsupervised: No labels, d

- Unsupervised: No labels, d
- Mapper:
 - GMM algorithm
 - Takes input data and groups into k clusters

- Unsupervised: No labels, d
- Mapper:
 - GMM algorithm
 - Takes input data and groups into k clusters
- Cost function:
 - Log-likelihood

$$\ln P(\mathbf{D}|\boldsymbol{\theta}) = \sum_{j=1}^{n} \ln f(\mathbf{x}_{j}) = \sum_{j=1}^{n} \ln \left(\sum_{i=1}^{k} f(\mathbf{x}_{j}|\boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i}) P(C_{i}) \right)$$

- Unsupervised: No labels, d
- Mapper:
 - GMM algorithm
 - Takes input data and groups into k clusters
- Cost function:
 - Sum of squared errors (SSE)
- Learning algorithm
 - MLE via EM approach

$$\boldsymbol{\theta}^* = \arg\max_{\boldsymbol{\theta}} \{ \ln P(\boldsymbol{D}|\boldsymbol{\theta}) \}$$

Gif from: Gaussian Mixture Models Em Method Math GIF

k-Means and EM Algorithm

k-Means and EM Algorithm

- Special case of EM algorithm
- What is the covariance matrix in the case of kmeans?

$$P(\mathbf{x}_{j}|C_{i}) = \begin{cases} 1 & \text{if } C_{i} = \arg\min_{C_{a}} \left\{ \|\mathbf{x}_{j} - \boldsymbol{\mu}_{a}\|^{2} \right\} \\ 0 & \text{otherwise} \end{cases}$$

$$P(C_i|\mathbf{x}_j) = \frac{P(\mathbf{x}_j|C_i)P(C_i)}{\sum_{a=1}^k P(\mathbf{x}_j|C_a)P(C_a)}$$

$$P(C_i|\mathbf{x}_j) = \begin{cases} 1 & \text{if } \mathbf{x}_j \in C_i, \text{i.e., if } C_i = \arg\min_{C_a} \left\{ \|\mathbf{x}_j - \boldsymbol{\mu}_a\|^2 \right\} \\ 0 & \text{otherwise} \end{cases}$$

How to choose number of clusters for GMM?

Choosing Number of Clusters/Components for **GMMs**

- > Two metrics:
 - Akaike Information Criterion (AIC)
 - Bayesian Information Criterion (BIC)
- Find balance between model complexity and goodness-of-fit
- > Aim to minimize metrics

Choosing Number of Clusters/Components for GMMs

- > Two metrics:
 - Akaike Information Criterion (AIC)
 - Bayesian Information Criterion (BIC)
- p is number of estimated parameters
- \triangleright \hat{L} is the maximized value of the likelihood function
- n is the number of samples

$$AIC = 2p - 2\ln(\hat{L})$$

$$\mathrm{BIC} = extstyle{m{
ho}} \ln(n) - 2 \ln(\widehat{L})$$

Next class

Hierarchical Clustering

Supplemental Slides

Useful Links

- Gaussian Mixture Models and EM
- Gaussian Mixture Models Google Colab
- Bayes Theorem Clearly Explained
- Maximum Likelihood Clearly Explained
- Maximum Likelihood Estimation of a Coin Flip
- Parameter Estimation (MLE)