FINAL EXAM

MATA KULIAH MANAJEMEN DAN ANALISIS DATA DENGAN R

ASTI OKTOVIANTI SUNMAYA ANANDA PUTRI NPM. 131520220005

PROGRAM STUDI EPIDEMIOLOGI

FAKULTAS KEDOKTERAN

UNIVERSITAS PADJADJARAN

2023

- 1. Menganalisis perbedaan dari Functional Ability pada pekan pertama (Bart1) berdasarkan grup intervensi (Group) dengan visualisasi boxplot.
 - # Membuat grafik boxplot dan menginterpretasi dan menyimpulkan hasilnya.

Perbedaan Fungsional Ability Score (Week 1) Berdasarkan Group Intervensi

Interpretasi:

 Median functional ability score week 1 pada group F lebih besar dibandingkan group E maupun group G

F

Group

G

- Nilai minimum terendah berada pada group F dan G yaitu 15

Е

- Terdapat 1 outlier pada group E dengan score 100 (Nilai maksimum tertinggi dari seluruh observasi)
- 2. Mencek normalitas data dari Functional Ability pekan pertama (Bart1) dengan uji statistik yang sesuai dan menginterpretasikannya.

Hasil:

p-value = $0.0007 \rightarrow < 0.05$ = Data tidak terdistribusi normal

3. Menghitung perubahan Functional Ability dari pekan pertama (Bart1)sampai pekan terakhir (Bart8) dan membuatnya menjadi variable baru (Bart_diff).

4. Mencek normalitas data dari perubahan Functional Ability (Bart_diff) dari pekan pertama (Bart1) sampai pekan terakhir (Bart8) dengan uji statistik yang sesuai dan menginterpretasikannya.

Hasil:

Hasil:

p-value = 0.08875 → >0.05 = Data terdistribusi normal

5. Mencek kesamaan variance dari perubahan Functional Ability (Bart_diff) antara grup intervensi (Group) dengan uji statistic yang sesuai dan menginterpretasikannya.

Bartlett test of homogeneity of variances

data: stroke\$Bart diff and stroke\$Group

Bartlett's K-squared = 0.39433, df = 2, p-value = $0.8211 \rightarrow >0.05$ = Varians date adalah sama atau data bersifat homogen.

6. Memplot mean dan 95% Confidence Interval dari nilai perubahan Functional Ability (Bart_diff) b erdasarkan grup intervensi (Group) dalam 1 grafik.

7. Melakukan uji anova untuk membandingkan rata-rata(mean) nilai perubahan Functional Ability (Bart diff) antara 3 grup intervensi (Group) dan menginterpretasikannya.

Hasil:

Group	Df 2	1252	Mean Sq F 626.0	value 1.461	Pr(>F) 0.255
Residuals	21	8997	428.4		

Interpretasi:

p-value > 0.05 → tidak terdapat perbedaan yang signifikan pada nilai functional ability antar group intervensi

8. Melakukan analisis model linear regresi dengan Functional Ability (Bartlet) sebagai outcome(y) dan explanatory variables meliputi: waktu(time/week), grup intervensi (group), dan interaksi waktu dan grup intervensi.

```
call:
lm(formula = ability ~ as.numeric(time) + Group + as.numeric(time) *
    Group, data = stroke_long)
Residuals:
Min 10 Median
5 305
Min 1Q Median 3Q Max
-47.812 -13.560 -5.305 13.337 63.854
Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
                        29.82143 5.77401 5.165 6.16e-07 ***
6.32440 1.14342 5.531 1.07e-07 ***
(Intercept)
as.numeric(time)
                          3.34821
                                     8.16569 -0.003 0.9978
                      -0.02232
GroupG
as.numeric(time):GroupF -1.99405
                                     1.61705 -1.233
signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 20.96 on 186 degrees of freedom
Multiple R-squared: 0.2612, Adjusted R-squared: 0.2413
F-statistic: 13.15 on 5 and 186 DF, p-value: 5.695e-11
```

Interpretasi:

- Variabel yang berhubungan dengan functional ability score dengan hasil yang signifikan (p-value < 0.01) hanya terdapat pada variabel time → Jika jumlah minggu pemeriksaan bertambah, maka nilai functional ability dapat bertambah sebesar 6.32440.
- Nilai F-Statistic = 13.15 dengan p-value <0.05, berarti model ini signifikan secara statistik
- 9. Melakukan ulang Langkah no 8 tanpa variable interaksi di dalam model

```
Call:
lm(formula = ability ~ as.numeric(time) + Group, data = stroke_long)
Residuals:
           1Q Median
                           3Q
   Min
                                   Max
-49.332 -13.907 -4.532 15.043 58.394
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
                          3.9712 9.277 < 2e-16 ***
0.6619 7.198 1.42e-11 ***
(Intercept)
                  36.8415
as.numeric(time) 4.7644
GroupF
                           3.7147 -3.260 0.00132 **
                 -12.1094
GroupG
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 21.01 on 188 degrees of freedom
Multiple R-squared: 0.2494,
                               Adjusted R-squared: 0.2374
F-statistic: 20.82 on 3 and 188 DF, p-value: 1.084e-11
```

Interpretasi:

- Variabel yang berhubungan dengan functional ability score dengan hasil yang signifikan (p-value < 0.05) terdapat pada variabel time dan group G.
- Nilai F-Statistic = 20.82 dengan p-value <0.05, berarti model ini signifikan secara statistik

10. Menghitung AIC model no 8 dan 9, serta menginterpretasikan perbandingan nilai AIC nya.

Hasil:

```
Model selection based on AICC:

K AICC Delta_AICC AICCWt Cum.Wt LL
ability.time.group 5 1720.50 0.00 0.65 0.65 -855.09 → No.9
ability.time.group.timegroup 7 1721.74 1.24 0.35 1.00 -853.56 → No.8
```

Interpretasi:

Nilai AIC pada model no 9 (1720.50) lebih kecil dibandingkan nilai AIC pada model no 8 (1721.74)

11. Model no 8 dan 9, manakah yang terbaik? Pilih salah satu kemudian interpretasikan hasil dari analisisnya dari model yang dipilih (hubungan antara variable explanatory dengan outcome) Model yang terbaik adalah model no 9.

```
call:
lm(formula = ability ~ as.numeric(time) + Group, data = stroke_long)
Residuals:
              1Q Median
                                   3Q
                                            Max
    Min
-49.332 -13.907 -4.532 15.043 58.394
Coefficients:
                 Estimate Std. Error t value Pr(>|t|)

    (Intercept)
    36.8415
    3.9712
    9.277
    < 2e-16 ***</td>

    as.numeric(time)
    4.7644
    0.6619
    7.198 1.42e-11 ***

    GroupF
    -5.6250
    3.7147
    -1.514
    0.13164

                     -12.1094
                                     3.7147 -3.260 0.00132 **
GroupG
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 21.01 on 188 degrees of freedom
Multiple R-squared: 0.2494,
                                      Adjusted R-squared: 0.2374
F-statistic: 20.82 on 3 and 188 DF, p-value: 1.084e-11
```

Berdasarkan hasil diatas, terdapat dua variabel explanatory (time and group G) dengan p-value yang signifikan (<0.05) terhadap outcome functional ability.

12. Melakukan analisis mixed model (random intercept) menggunakan package nlme. Functional Ability (Bartlet) sebagai outcome(y) dan explanatory variables meliputi: waktu(time/week), grup intervensi (group), dan Random intercept

```
Linear mixed-effects model fit by REML
  Data: stroke_long
       AIC
                 BIC
  1467.559 1486.978 -727.7796
Random effects:
 Formula: ~1 | Subject
        (Intercept) Residual
StdDev: 20.1068 8.960882
Fixed effects: ability ~ as.numeric(time) + as.factor(Group)
\text{Value Std.Error DF t-value p-value} (Intercept) 36.84152 7.307749 167 5.041432 0.0000 as.numeric(time) 4.76438 0.282241 167 16.880541 0.0000 as.factor(Group)F -5.62500 10.177433 21 -0.552693 0.5863
as.factor(Group)G -12.10937 10.177433 21 -1.189826 0.2474
Correlation:
                     (Intr) as.n() a.(G)F
as.numeric(time) -0.174
as.factor(Group)F -0.696 0.000
as.factor(Group)G -0.696 0.000 0.500
Standardized Within-Group Residuals:
                      Q1 .
                                                      Q3
-2.17717122 -0.62871793 0.02125076 0.65225196 3.00241837
Number of Observations: 192
Number of Groups: 24
```

13. Melakukan ulang analisis dengan Functional Ability (Bartlet) sebagai outcome(y) dan explanatory variables meliputi: waktu(time/week), grup intervensi (group) dengan General Estimating Equation (GEE) dengan correlation structure:

Exchangeable

```
Generalized least squares fit by REML
 Model: ability ~ as.factor(Group) + as.numeric(time) + as.factor(Group) * as.numeric(time)

Data: stroke_long

AIC BIC logLik
 AIC BIC logLik
1452.715 1478.521 -718.3573
Correlation Structure: Compound symmetry
 Formula: ~1 | Subject
 Parameter estimate(s):
0.84671
coefficients:
                                    Value Std.Error t-value p-value
                                29.821429 7.497378 3.977581 0.0001
3.348214 10.602894 0.315783 0.7525
(Intercept)
as.factor(Group)F
Correlation:
                                 (Intr) as.(G)F as.(G)G as.n() a.(G)F:
as.factor(Group)F
                                 -0.707
-0.707 0.500
as.factor(Group)G
Standardized residuals:
Min Q1 Med Q3 Max
-2.1857469 -0.6199072 -0.2425206 0.6097030 2.9190912
Residual standard error: 21.87467
Degrees of freedom: 192 total; 186 residual
```

- Auto regressive

```
Generalized least squares fit by REML
  eneralized react squares ift by kent
Model: ability ~ as.factor(Group) *
Data: stroke_long
AIC BIC logLik
1320.321 1346.127 -652.1607
                                                                                                                              as.numeric(time)
Correlation Structure: AR(1)
 Formula: ~1 | Subject
Parameter estimate(s):
0.9495754
Coefficients:
                                                        Value Std.Error t-value p-value
33.39312 7.937178 4.207178 0.0000
-0.11518 11.224865 -0.010262 0.9918
-6.22568 11.224865 -0.554632 0.5798
(Intercept)
as.factor(Group)F
as.factor(Group)G
as.numeric(time) 6.07484 0.843600 7.201091 0.0000 as.factor(Group)F:as.numeric(time) -2.14085 1.193030 -1.794467 0.0744 as.factor(Group)G:as.numeric(time) -2.23826 1.193030 -1.876112 0.0622
 Correlation:
                                                         (Intr) as.(G)F as.(G)G as.n() a.(G)F:
as.factor(Group)E
                                                         -0.707
-0.707 0.500
as.factor(Group)G
                                                         -0.478 0.338 0.338
as.numeric(time)
as.factor(Group)F.as.numeric(time) 0.338 -0.478 -0.239 -0.707
as.factor(Group)G.as.numeric(time) 0.338 -0.239 -0.478 -0.707 0.500
Standardized residuals:
Min Q1 Med Q3 Max
-2.1430431 -0.5861291 -0.2259572 0.6532219 2.8251592
Residual standard error: 21.42606
Degrees of freedom: 192 total; 186 residual
```

Unstructure

```
Generalized least squares fit by REML
Model: ability ~ as.factor(Group) + as.numeric(time) + as.factor(Group) *
Data: stroke_long
AIC BIC logLik
                                                                                                                 as.numeric(time)
   1338.118 1451.019 -634.0591
Correlation Structure: General
 Formula: ~1 | Subject
Parameter estimate(s):
 Correlation:
1 2
2 0.931
                   3
3 0.868 0.931
4 0.789 0.875 0.952
5 0.708 0.819 0.892 0.913
6 0.576 0.731 0.815 0.855 0.965
7 0.426 0.606 0.693 0.782 0.886 0.945
8 0.319 0.522 0.609 0.707 0.840 0.908 0.975
Coefficients:
                                                  Value Std.Error t-value p-value
35.71491 7.944761 4.495404 0.0000
-5.51048 11.235588 -0.490449 0.6244
(Intercept)
as.factor(Group)F
as.factor(Group)6 -11.30440 11.235588 -0.430449 0.0244

as.factor(Group)6 -11.30440 11.235588 -1.006124 0.3157

as.numeric(time) 6.69319 1.166119 5.739713 0.0000

as.factor(Group)F:as.numeric(time) -3.23684 1.649141 -1.962742 0.0512

as.factor(Group)6:as.numeric(time) -3.85733 1.649141 -2.338991 0.0204
 Correlation:
                                                 (Intr) as.(G)F as.(G)G as.n() a.(G)F:
as.factor(Group)F
                                                 -0.707
-0.707 0.500
as.factor(Group)G
Standardized residuals:
           Min
                              01
                                             Med
                                                                 03
Residual standard error: 21.27331
Degrees of freedom: 192 total; 186 residual
```

14. Mengingat GEE tidak dapat mengeluarkan AIC, dengan menggunakan statement gls, menghitung AIC dari model GLS dengan ketiga struktur korelasi di atas (Exchangeable, Auto regressive, dan Unstructure).

	df	AIC
gls.exch	8	1452.715
gls.ar1	8	1320.321
gls.un	35	1338.118

15. Membuat tabel untuk Membandingkan AIC dari model dengan korelasi struktur Exchangeable, Auto regressive, dan Unstructure, dengan AIC linear regresi model (Model dari instruksi no 9). Interpretasikan dan simpulkan.

	df	AIC
gls.exch	8	1452.715
gls.ar1	8	1320.321
gls.un	35	1338.118
Model no.9	188	1720.50

Berdasarkan hasil diatas, nilai AIC yang terkecil adalah pada auto regresive (gls.ar1) dengan nilai AIC 1320.321. Maka ini merupakan yang paling optimal untuk digunakan/dipilih.