

Measuring Performance

Measure collection and analysis

- The scope of a simulation is to evaluate the system performance
- The performance indexes we are interested in vary according to the situation, but they are typically represented by numeric quantities measured inside the program
- The key activity of our simulation is to collect samples of those numeric quantities to later proceed to the evaluation of our indexes

How to measure averages?

- We need to measure different types of averages, depending on the involved quantities
 - Point averages
 - Time averages
 - Statistical frequencies

4

What do we want to measure?

- Averaged quantities (instances of a r.v.)
 - Point averages: Average of variables that are taken at discrete time instants (average delay in the queue per customer, average service time,...)
 - Time averages: Average of continuous-time variables (average no. of customers, average utilization of the servers, ...)
- Besides averages, we are often interested on a complete statistical characterization
 - e.g. variance, standard deviation, quantiles, ...
- Statistical frequencies
 - How often a given condition is observed/occurs

Measuring averages

- Measuring averages requires a lot of attention
- In our simulator we have two possibilities:
 - collect all the samples of the quantities we are interested in, saving them outside the simulator (in a file) and leaving the statistical analysis of our quantities to an external dedicated program
 - perform inside the program the needed mathematical operations to produce the desired outputs (typically the average quantities)
- Due to the length and complexity of our simulations,
 the latter possibility is the one usually adopted

Point averages

 They are used for quantities that are sampled at discrete time instants; i.e., for which we have a finite number of samples

$$\hat{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Point averages

- In the code
 - We accumulate the samples x_i and the no. of samples total += sample nr_samples++
 - At the end of the simulation we compute mean = total/nr_samples
- In a similar way we can compute the variance using the estimator

$$\hat{\sigma}^2 = \frac{1}{N-1} \left(\sum_{i=1}^N x_i^2 - N \cdot \hat{x}^2 \right)$$

Time averages

- They are used for quantities that take a value in any (continuous) time instant
 - Both the value and the duration of time for which that value holds have to be taken into account

$$\hat{\mu}_x = \lim_{T \to \infty} \frac{1}{T} \int_0^T x(t) dt$$

Time averages

- In the code
 - We accumulate the areas $\Delta T_i \cdot x_{i-1}$

```
delta_time = current_time - last_time % time between events
total_area += old_value*delta_time % update the integral
old_value = current_value % needed at next event
last_time = current_time
```

At the end of the simulation we compute

```
mean = total_area / final_time
```

 The evaluation is slightly more complex since computations are done at the next sample

Time averages

- Time averages can be obtained also exploiting properties of Poisson Point Processes:
 - Sequence $\{T_n\}_n$ forms a PPP iff $X_n = T_{n+1} T_n$ are i.i.d and exponentially distributed
- It can be proved that:

$$\hat{\mu}_{x} = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} x(t) dt = \lim_{T \to \infty} \frac{\sum_{1}^{n} x(T_{i})}{n}$$

provided that {T_n}_n is independent from system dynamics

- We use them to evaluate probabilities of some specific situation to occur
- Again we distinguish between discrete- and continuous-time variables
 - Discrete-time variables: we relate the number of occurrences of the situation of interest with the total number of potential occurrences
 - Continuous-time variables: we relate the duration of time for which a specific situation occurs over the total time the situation could have occurred

Discrete-time variables:

$$\hat{p}_i = \frac{N_i}{N} \longleftarrow \begin{array}{c} \text{Tot. no. of times that a situation} \\ \text{occurred (e.g., a packet was lost)} \\ \text{Tot. no. of times that a situation could} \\ \text{have occurred (e.g., tot no. packet)} \\ \end{array}$$

- In the code
 - We count the favorable samples

At the end of the simulation we compute

- Continuous-time variables:
 - Sum all the periods of time in which the condition is true and divide it by the total time

- In the code
 - We count the "favorable" periods; i.e., we accumulate the areas ΔT_i

```
if (condition):
```

```
delta_time = current_time - last_time # time between events
total_time += delta_time # update the
last_time = current_time
```

At the end of the simulation we compute

```
mean = total_time / final_time
```


Histograms and quantiles

- Histograms and quantiles are derived similarly to probabilities discussed above by defining
 - Number and size of the bins of possible values of the variable to be estimated

Caveat

- Our computations are, at the moment, we get only an unreliable estimates of the quantities we want to measure
- We are not considering
 - the effect of the initial conditions
 - the effect of the transient
 - the fact we are measuring a single specific realization of the stochastic process representing the simulated system
- We will learn later the correct procedures to measure quantities with suitable confidence on their accuracy

Initialization

- Before starting the simulation (entering the Event Loop) we must
 - initialize all the variables used to store our measures
 - initialize the data structures needed for the simulation
 - assign a value to all the simulation parameters, possibly through user inputs
 - bootstrap the simulation, scheduling the first few events

Termination

- At the end of the Event Loop, before exiting the program, we must inform the users of the simulation results
- If the simulation ended regularly, we print (on the screen and/or on a file) all the measures collected and any information it is important to report
- If the simulation ended anomalously, we will explicitly report this fact, to avoid the possible usage of meaningless data

```
****************
# To take the measurements
# ***************
class Measure:
  def ___init___(self,Narr,Ndep,NAveraegUser,OldTimeEvent,AverageDelay):
    self.arr = Narr # count the no. of clients that have arrived
    self.dep = Ndep # count the no. of clients that have left the queue
    self.ut = NAveraegUser # count the time average of no. of clients
    self.oldT = OldTimeEvent
    self.delay = AverageDelay
# ***************
# Initialization
data = Measure(0,0,0,0,0) \# variables for the measures
time = 0 \# the simulation time
users = 0 \# state variable
FES = PriorityQueue() # the list of events in the form: (time, type)
FES.put((0, "arrival")) # schedule the first arrival
```



```
def arrival(time, FES, queue):
  global users
                                       Time average
  # cumulate statistics
  data.arr += 1
  data.ut += users*(time-data.oldT)
  data.oldT = time
   # sample the time until the next event
  inter_arrival = random.expovariate(1.0/ARRIVAL)
   # schedule the next arrival
  FES.put((time + inter_arrival, "arrival"))
  users +=1
  # create a record for the client
  client = Client(TYPE1,time)
```


4

```
CONTINUE ---
   # insert the record in the queue
  queue.append(client)
  # if the server is idle start the service
  if users==1:
     # sample the service time
     service_time = random.expovariate(1.0/SERVICE)
     # schedule when the client will finish the server
     FES.put((time + service_time, "departure"))
```



```
def departure(time, FES, queue):
  global users
  # cumulate statistics
  data.dep += 1
  data.ut += users*(time-data.oldT)
  data.oldT = time
  # get the first element from the queue
  client = queue.pop()
  data.delay += (time-client.arrival_time)
  users -= 1
                                          Point average
  --- CONTINUE
```



```
# see whether there are more clients to in the line
if users >0:
    # sample the service time
    service_time = random.expovariate(1.0/SERVICE)

# schedule when the client will finish the server
FES.put((time + service_time, "departure"))
```



```
# At the end of the simulation
```

```
# Compute the average time in the queue average_delay = data.delay/data.dep
```

Compute the average no. of customers in the queue average_no_cust = data.ut/time

Simulation!

- A run of the program corresponds to a single realization of the stochastic process representing the simulated system, i.e., to a single point in the space of the possible results
- This is not enough: to characterize and study the system we want to explore a large portion of the results' space
- We plan a simulation campaign!

Si

Simulation!

- To execute a simulation campaign we should:
 - distinguish the input parameters between:
 - fixed parameters, whose influence is not a subject of interest in the specific campaign
 - varying parameters, whose effect on the system performance indexes is the subject of simulation
 - identify the output parameters whose variation we are interested in
 - execute simulation runs for each meaningful combination of the varying input parameters
 - aggregate and represent the output data in a way that explicates their dependence on the varying input parameters

Simulation!

- Varying input parameters
 - For each parameter we must define a variation range and the number of values in such a range
 - Simulation runs for each combination of values of the parameters
 - For each combination, several independent runs to reduce the effect of starting conditions and the pseudo-random sequences
 - Complexity increases exponentially with the number of parameters: don't exaggerate!
- Representation of the output results
 - We need to select the best way to present our results -> families of parametric plots
 - Possibly use a specific tool for the graphs

Wrap-up

- Results of a simulation are statistical measures of the performance of the system, obtained through the stochastic processes represented by the simulation model
- Measuring performance requires to collect statistics about the values taken by state variables
- The way we collect statistics depends on the kind of variables
 - Discrete-time variables: sampled at discrete time instants
 - Continuous-time variables: that take a values in any instant
 - Frequencies of particular conditions/situations

