Experimental Design as Market Design

Yusuke Narita

September 23, 2016

Golden Age of Randomized Experiments

Randomized Controlled Trials (RCT) or A/B tests = Gold standard of evidence-based decision-making in

- 1. Medicine
- 2. Social Policy

3. Web

- Stake is often high & sometimes life-or-death (especially in 1 & 2; e.g. cancer & malaria treatment, basic income)
- # of subjects is large (especially in 1 & 3)

My agenda: Propose randomized experiment that respects subject welfare

Preview

I propose an experimental design that at once satisfies

- randomly assigning treatment & generating at least as much causal info as usual RCT
- ② as much as possible, assigning treatment to subjects with
 - · better predicted treatment effects or
 - stronger preferences for the treatment

Usual designs fail to satisfy (2)

Setting

 $i_1, ..., i_n$: Experimental subjects

 $t_0, t_1, ..., t_m$: Treatments

 $c_t \in \mathbb{N}$: Treatment t's capacity (with $\Sigma_t c_t \geq n$)

 w_{it} : Subject i's willingness to pay for treatment t with

 $w_{it} \ge w_{it'} \Leftrightarrow i$ weakly prefers t over t'

 e_{ti} : t's predicted treatment effect for subject i with

 $e_{ti} \geq e_{ti'} \Leftrightarrow t$ is predicted weakly more effective for i than for i'

 t_0 : Placebo or control with normalization $e_{t_0i} = w_{it_0} = 0$ for all i

Proposal

Definition (Experiment-as-Market a.k.a. EXaM)

- 1 In computer, distribute common artificial budget b to every subject
- **2** Find "price-discriminated market equilibrium" i.e., feasible treatment assignment prob.s $(p_{it}^*)_{i,t}$ & prices $(\pi_{te}^*)_{t,e}$ with
 - Utility maximization s.t. budget constraint: For all i, $(p_{it}^*)_t \in argmax_{\text{feasible }(p_{it})_t} \Sigma_t p_{it} w_{it}$ s.t. $\Sigma_t p_{it} \pi_{te_{ti}}^* \leq b$ (Ties are broken by uniformly mixing cheapest (p_{it}) 's)
 - Effectiveness-discriminated treatment pricing: $\forall t \; \exists \alpha_t < 0 \; \& \; \beta_t \; \forall e,$

$$\pi_{te}^* = \alpha_t e + \beta_t$$

- Meeting capacity constraint: $\sum_i p_{it}^* \leq c_t$ for all t
- **3** Draw final treatment assignment from $(p_{it}^*)_{i,t}$.

Getting to the Goals

Proposition (Randomized Controlled Welfare Property)

Experiment-as-Market always exists & satisfies:

1 randomly assigning treatments,

i.e.,
$$p_{it}^* = p_{i't}^*$$
 for all t, i, i' with $(w_{it}, e_{ti})_t = (w_{i't}, e_{ti'})_t$ generating at least as much causal info as usual RCT,

i.e., any thing identified by vanilla RCT is also identified by EXaM

- 2 as much as possible, assigning treatment to subjects with
 - · better predicted treatment effects or
 - stronger preferences for the treatment

i.e., $\not\exists$ assignment prob.s (p_{it}) with

- $\sum_{t} p_{it} e_{ti} \geq \sum_{t} p_{it}^* e_{ti}$ (expected predicted effect) &
- $\sum_{t} p_{it} w_{it} \geq \sum_{t} p_{it}^* w_{it}$ (expected willingness to pay)

for all i with at least one strict inequality

Comparison with Existing Designs

Proposition

None of following designs has Randomized Controlled Welfare Property.

Vanilla RCT

Designs respecting preferences:

- "Consent Trial" (Zelen 79, Angrist-Imbens 91, many medical RCT)
- "Selective Trial" (Chassang-Miquel-Snowberg 12)
- "Thompson Sampling" (Thompson 33, many web A/B tests)

Designs respecting predicted treatment effects:

- "Play-the-Winner Trial" (Wei-Durham 78, many medical RCT)
- "Adaptive Biased Coin Design" (Eisele 94, many medical RCT)
- "Empirical Welfare Maximization" (Manski 05, B-Dupas 12)

From Identification to Analyzing Data from EXaM

Recall EXaM makes treatments conditionally randomly assigned

Suggested Analysis Procedure

For simplicity assume only 1 treatment t_1 & control t_0 .

1 Identify t_1 's average effect conditional on $x_i \equiv (w_{it}, e_{ti})_t$ by

$$\underbrace{E(Y_i|i \text{ assigned } t_1,x_i)}_{\text{Observable}} - \underbrace{E(Y_i|i \text{ assigned } t_0,x_i)}_{\text{Observable}} \equiv (CATE)$$

2 Integrate (\$) to get treatment effects of interest e.g. Average Treatment Effect= $\int (CATE)dF((x_i))$

Application in Progress

Setting:

Anti-malarial bed net pricing RCT in Kenya (Cohen-Dupas 10)

Embedding this setting into my theory:

 $t_1 \ \& \ t_0$: Free anti-malarial bed net & control

 w_{it_1} : Subject i's willingness to pay for bed net

ightarrow Estimate it using C-D's randomization of bed net prices

 e_{t_1i} : Bed net's predicted treatment effect for subject i

→ Proxy it by i's pre-RCT hemoglobin level (indicator of malaria)

Plan: Implement & compare Experiment-as-Market vs existing designs

Future Directions

Further econometric comparison of EAaM vs existing designs by...

- Identification (Blackwell-informativeness or identifiable parameters)?
- Estimation (Power or mean squared error)?

Extensions to...

- Dynamic (sequential) design?
- Uncertain & multi-dimensional predicted effects e_{ti}?
- Endogenous sample size *n*?

Using my framework to analyze other key aspects of RCT? (e.g. pre-analysis plan, re-randomization, external validity, attrition)

Stepping Back: The Science Unto Death

Science not only saves us but also kills us:

Atomic bomb Biological weapon Randomized experiment

Y Combinator announces basic income pilot experiment in Oakland

Experiment-as-Market is step toward "best" allocation of lives & deaths created by randomization-driven science