Introduzione ai grafi

Grafi

Un grafo G è costituito da una coppia di insiemi (V, A) dove V è detto insieme dei *nodi* e A è detto insieme di *archi* ed è un sottinsieme di tutte le possibili coppie di nodi in V. Se le coppie di nodi sono ordinate, il grafo è detto *orientato*, se non sono ordinate è detto *non orientato*.

Continua

I grafi sono oggetti matematici attraverso cui è possibile dare una rappresentazione astratta di relazioni tra "entità".

Le "entità" vengono rappresentate con i nodi, mentre un arco congiunge due nodi se le "entità" corrispondenti a tali nodi sono in relazione tra loro.

Se la relazione è simmetrica (cioè "i è in relazione con j" se e solo se "j è in relazione con i"), gli archi utilizzati saranno privi di verso ($grafo\ non\ orientato$), altrimenti all'arco dovrà essere assegnato un verso ($grafo\ orientato$).

Per esempio, se pensiamo alle relazioni parentali, la relazione "è fratello di" è chiaramente simmetrica, mentre non lo è la relazione "è padre di".

Un esempio

Grafo G con insieme di nodi

$$V = \{a, b, c, d, e\},\$$

insieme di archi

$$A = \{(a,b); (a,c); (b,c); (b,e); (c,d); (d,b)\}$$

G grafo orientato: coppie ordinate e quindi, ad esempio, la coppia (a,b) è diversa dalla coppia (b,a)

G non orientato: coppie non ordinate e quindi, ad esempio, la coppia (a,b) e la coppia (b,a) sono equivalenti tra loro.

Definizione

Dato un grafo orientato G = (V, A) e un arco $(i, j) \in A$ diremo che il nodo i è *predecessore* del nodo j e che il nodo j è *successore* del nodo i. Nel caso di un grafo non orientato G = (V, A), dato un arco $(i, j) \in A$ diremo che il nodo i e il nodo j sono tra loro *adiacenti*.

Rappresentazione grafica

Nodi → punti nel piano

Archi → linee che congiungono i punti/nodi dell'arco (con una freccia dal primo nodo verso il secondo nel caso di grafo orientato)

Liste di adiacenza

A ogni nodo del grafo è associata la lista dei suoi successori (se il grafo è orientato) o dei suoi adiacenti (se il grafo è non orientato).

Grafo orientato

$$a: (b,c) \ b: (c,e) \ c: (d) \ d: (b) \ e: \emptyset$$

Grafo non orientato

$$a: (b,c)$$
 $b: (a,c,d,e)$ $c: (a,b,d)$ $d: (b,c)$ $e: (b)$

Matrice di incidenza nodo-arco

Matrice con tante righe quanti sono i nodi e tante colonne quanti sono gli archi. Nella colonna relativa ad un arco (i,j) avremo tutte le componenti 0 tranne quelle che si trovano nella riga i e nella riga j. Se il grafo è non orientato queste due componenti sono entrambe pari a +1, se è orientato la componente relativa al nodo predecessore i è pari a +1, quella relativa al nodo successore è -1.

Nell'esempio

Grafo orientato

	(a,b)	(a, c)	(b, c)	(b, e)	(c,d)	(d,b)
a	1	1	0	0	0	0
b	-1	0	1	1	0	-1
c	0	-1	-1	0	1	0
d	0	0	0	0	-1	1
e	0	0	0	-1	0	0

Continua

Grafo non orientato

	(a,b)	(a,c)	(b,c)	(b, e)	(c,d)	(d,b)
a	1	1	0	0	0	0
b	1	0	1	1	0	1
c	0	1	1	0	1	0
d	0	0	0	0	1	1
e	0	0	0	1	0	0

Archi adiacenti e cammini

Due archi che hanno un nodo in comune sono detti adiacenti. Nell'esempio (a,b) e (a,c) sono adiacenti.

Dato un grafo G=(V,A), una sequenza di m+1 nodi

$$s_0 \to s_1 \to s_2 \to \cdots \to s_m$$

tali che per ogni $i = 1, \dots, m$ si ha:

$$(s_{i-1}, s_i) \in A$$
 oppure $(s_i, s_{i-1}) \in A$

(l'alternativa è superflua nel caso non orientato) è detto cammino nel grafo. Possiamo vedere anche un cammino di lunghezza m come una sequenza di archi a due a due adiacenti.

Continua

Il numero m di archi del cammino è detto *lunghezza del cammino*.

Un cammino è detto semplice se nessun arco è percorso più di una volta, elementare se nessun nodo viene toccato più di una volta.

Esempi di cammini

$$a \rightarrow b \rightarrow d \rightarrow c$$

cammino elementare di lunghezza 3;

$$a \rightarrow b \rightarrow c \rightarrow d \rightarrow b \rightarrow e$$

cammino semplice ma non elementare di lunghezza 5

$$a \rightarrow b \rightarrow c \rightarrow d \rightarrow b \rightarrow a \rightarrow c$$

cammino che non è nè semplice nè elementare di lunghezza 6.

Cicli

Un cammino semplice

$$s_0 \to s_1 \to s_2 \to \cdots \to s_m$$

in cui primo e ultimo nodo coincidono (cioè $s_m = s_0$) viene detto *ciclo* di lunghezza m. Se omettendo l'ultimo nodo s_m si ottiene un cammino elementare, si parla di *ciclo elementare*.

Nell'esempio

$$a \rightarrow b \rightarrow c \rightarrow a$$

è un ciclo elementare di lunghezza 3.

Cammini e cicli orientati

In un grafo orientato un cammino o un ciclo

$$s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \cdots \rightarrow s_m$$

($s_m = s_0$ nel caso di un ciclo) in cui tutti gli archi sono percorsi secondo il loro orientamento, ovvero si ha che per ogni i = 1, ..., m:

$$(s_{i-1}, s_i) \in A$$

viene detto *orientato*, altrimenti si dice *non orientato*.

Nell'esempio

$$a \rightarrow b \rightarrow c$$

cammino orientato

$$b \to a \to c$$

cammino non orientato

Nell'esempio

$$a \rightarrow b \rightarrow c \rightarrow a$$

ciclo non orientato

$$b \to c \to d \to b$$

ciclo orientato.

Circuiti hamiltoniani

Un circuito hamiltoniano è un ciclo elementare (orientato nel caso di grafo orientato) che tocca tutti i nodi del grafo.

Componenti connesse

Dati due nodi i e j di un grafo G, se esiste un cammino da i a j allora si dice che j è *accessibile* da i.

Relazione tra i nodi "è accessibile da" \rightarrow relazione di equivalenza (soddisfa le tre proprietà riflessiva, simmetrica e transitiva).

Classi di equivalenza → *componenti connesse* del grafo.

Un grafo è detto *connesso* se ha un'unica componente connessa (cioè se tutti i nodi sono accessibili tra loro)

Individuazione componenti connesse

- Inizializzazione Poni W=V e r=1.
- Passo 1 Seleziona $i \in W$ e poni $S = \{i\}$ e $T_r = \emptyset$.
- ullet Passo 2 Seleziona $j \in S$. Poni

$$S = (S \setminus \{j\}) \cup \{k \notin T_r : (k,j) \in A \circ (j,k) \in A\}.$$

e
$$T_r = T_r \cup \{j\}$$
.

- **Passo 3** Se $S = \emptyset$, vai al Passo 4. Se $T_r \cup S = W$, poni $T_r = T_r \cup S$ e vai al Passo 4. Altrimenti ritorna al Passo 2.
- Passo 4 Poni $W = W \setminus T_r$. Se $W = \emptyset$, allora T_1, T_2, \ldots, T_r sono gli insiemi di nodi delle componenti connesse del grafo. Altrimenti poni r = r + 1 e ritorna al Passo 1.

Grafo completo

Un grafo si definisce completo se esiste un arco che congiunge ogni coppia di nodi distinti del grafo. Nel caso di grafi orientati, per ogni coppia di nodi $i, j \in V, i \neq j$, devono essere presenti sia l'arco (i, j) che l'arco (j, i).

Sottografi

Dato un grafo G=(V,A) e un sottinsieme $A'\subseteq A$, un grafo G'=(V,A') è detto *grafo parziale* di G. Dati $V''\subseteq V$ e

$$A'' \subseteq A(V'') = \{(i,j) \in A : i \in V'', j \in V''\}$$

il grafo G'' = (V'', A'') viene detto sottografo di G. In particolare, se A'' = A(V'') il sottografo viene detto sottografo indotto da V''.

Nell'esempio

$$G' = (V, A')$$
 con

$$A' = \{(a,b); (b,c); (b,e); (c,d); (d,b)\}$$

grafo parziale di G

$$G'' = (V'', A'') \text{ con } V'' = \{a, b, d\} \text{ e}$$

$$A'' = \{(a,b)\}$$

sottografo di G

$$G'' = (V'', A'') \text{ con } V'' = \{a, b, d\} \text{ e}$$

$$A'' = \{(a,b); (d,b)\}$$

sottografo di G indotto da V''.

Matching

Dato un grafo G=(V,A) non orientato, chiamiamo matching un sottinsieme $M\subseteq A$ dell'insieme di archi con la proprietà che per ogni nodo $i\in V$, esiste al massimo un arco in M avente come estremo il nodo i.

Nell'esempio $M = \{(a,b); (c,d)\}$ è un matching, mentre non lo è $\{(a,b); (b,c)\}$.

Grafi bipartiti

Un grafo G=(V,A) si dice *bipartito* se l'insieme V può essere partizionato in due sottinsieme V_1 e V_2 (quindi $V_1 \cup V_2 = V$ e $V_1 \cap V_2 = \emptyset$) tali che

$$\forall (i,j) \in A: i \in V_1, j \in V_2 \text{ oppure } i \in V_2, j \in V_1.$$

Osservazione Un grafo è bipartito se e solo se non contiene cicli di lunghezza dispari.

Se per ogni coppia $i \in V_1$, $j \in V_2$ si ha che $(i, j) \in A$, allora il grafo viene detto bipartito completo.

Riconoscimento grafi bipartiti

- ullet Passo 0 Poni W=V, $C_1=C_2=\emptyset$.
- ▶ Passo 1 Seleziona $i \in W$ e poni $T_1 = \{i\}$, $C_1 = T_1$.
- Passo 2 Poni

$$T_2 = \{k \in V \setminus C_2 : \exists i \in T_1 \text{ tale che } (i, k) \in A \text{ oppure } (k, i) \in A\}$$

Poni
$$C_2 = C_2 \cup T_2$$
.

Passo 3 Poni

$$T_1 = \{k \in V \setminus C_1 : \exists i \in T_2 \text{ tale che } (i, k) \in A \text{ oppure } (k, i) \in A\}$$

Poni
$$C_1 = C_1 \cup T_1$$
.

Continua

- **Passo 4** Se C_1 ∩ $C_2 \neq \emptyset$, allora il grafo non é bipartito. Altrimenti vai al Passo 5.
- Passo 5 Poni $W = W \setminus (C_1 \cup C_2)$. Se $W = \emptyset$ e $T_1 = \emptyset$, allora il grafo é bipartito con $V_1 = C_1$ e $V_2 = C_2$. Altrimenti, se $T_1 = \emptyset$, ritorna al Passo 1, se $T_1 \neq \emptyset$ ritorna al Passo 2.

Alberi

Sia dato un grafo G = (V, A) con card(V) = n dove card(V) denota la cardinalità (il numero di elementi) dell'insieme V. Si dice che G è un *albero* se soddisfa le seguenti condizioni (equivalenti tra loro)

- 1. G è privo di cicli e connesso;
- 2. G è privo di cicli e card(A) = n 1;
- 3. G è connesso e card(A) = n 1;
- 4. esiste un unico cammino elementare che congiunge ogni coppia di nodi.

Alberi di supporto

Sia dato un grafo generico G = (V, A). Si definisce *albero di* supporto o spanning tree di G un grafo parziale $T = (V, A_T)$ di G (quindi con $A_T \subseteq A$) che è un albero.

Si noti che un albero di supporto di G deve contenere tutti i nodi di G e si dovrà avere $card(A_T) = card(V) - 1$.