a) Kodierung & Komprimierung

Mittwoch, 8. Februar 2023 00:49

I	Information(en)	= Abstrakte Bedeutung von Ausdrücken, Grafiken, unabhängig von ihrer Repräsentation/Darstellung = Wissen über die Realwelt (?)
ſ	Daten	 Kodierung von Information, die Speicherung und Verarbeitung durch Computer ermöglicht. eine Form der Repräsentation von Informationen. Wird interpretiert, um Bedeutung zu ermitteln.

- Signale können sein: --> analog (= Kodierung für kontinuierliche Daten)
 -> digital (= Kodierung für diskrete Daten)
 Computer können mit digitalen Signalen umgehen
- Bit (binary digit) (Kleinste "Dateneinheit"): -> Kann zu jedem Zeitpunkt genau einen von zwei Werten annehmen: > AN oder AUS

> 1 oder 0

• Repräsentation umfangreicherer Daten durch Kombination von Bits zu Bitstrings.

Wie viele Bits braucht man, um wie viele verschiedene Zustände darstellen zu können?

- N bits können 2^N Zustände darstellen

- 1 Byte = Bitstring der Länge 8 (kann also jeweils einen von 256 verschiedenen Zuständen speichern)

Megabyte: 106 Byte Gigabyte: 109 Byte Terabyte: 1012 Byte Petabyte: 1015 Byte

Kilobyte: 103 Byte

KODIERUNG VON ZAHLEN

Stellenwertsystem	Basis: -Gibt an, wie viele unterschiedliche Zeichen es gibt.						
	Dezimalsystem: -Basis 10						
	$-1234 = 1 \cdot 10^3 + 2 \cdot 10_2 + 3 \cdot 10_1 + 4 \cdot 10_0$						
	Binärsystem: -Basis 2						
	-1001 = $1 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 9_{10}$						
Binärsystem für	Im Prinzip wie eben beschrieben						
ganze Zahlen	Unterschiedliche Varianten zur Darstellung von Vorzeichen: -Betrags-Vorzeichendarstellung						
	(Wert und Vorzeichen werden getrennt abgelegt)						
	-Komplementdarstellung						
	Maximale Bitstringlänge beschränkt Zahlenbereich: -Häufige mehrere Integerdatentypen in Programmiersprachen						
	-Überlauf kann zu Fehlern führen						
	Berechnungen liefern exakte Ergebnisse ohne Rundungsfehler						
Binärsystem für	• Wie kann man 1,625 binär codieren?> 1,101 ₂ = 1*2 ⁰ + 1*2 ⁻¹ + 0*2 ⁻² + 1*2 ⁻³						
Reelle Zahlen	Was ist mit 1/3?> Begrenzte Länge des Bitstrings						
	Genaue Darstellung nicht möglich						
	Approximation durch Gleitkommazahlen: Berechnungen liefern ungenaue Ergebnisse!						

KODIERUNG VON TEXTEN

Text	-Textdateien werden üblicherweise im Computer im ASCII-Code oder Unicode gespeichertIm ASCII-Code wird jedem Zeichen einer Nachricht eine 7 Bit-Folge zugewiesen.												
		,											
	-Anmerkung: Damit können wir den Text kodieren, aber nicht z.B. sein Layout, die Schriftart,												
ASCII-Code	ode • Problem: -7 Bit ausreichend für 128 Zeichen												
	Lösung: -ISO 8859-x Standard,												
	-8-Bit ASCII-Kodierung mit nationalen Erweiterungen (Umlaute)												
	-0-12												
		159 seltene											
	-160-												
	Problem: -8 Bit sind ausreichend für 256 Zeichen												
	-Ch	-Chinesische, japanische, koreanische oder indische Schriftzeichen lassen sich damit nur schwer repräsentieren											
Unicode	-ursprünglich 1	6-Bit, dann	21 (32)-Bit k	Codierung									
	-ermöglicht mu	ıltilinguale T	extverarbei	tung									
	-potenziell sind	2.147.483.	648 = 221 Ze	eichen mögl	ich								
	-genutzt werden nur 17 Ebenen (planes) mit je 65.536 Zeichen												
	Grundidee: Jedem potenziellen Zeichen wird ein so genannter Codepoint zugeordnet anstelle einer Glyphe												
	-> Zeichen (character) = abstrakte Idee eines Buchstabens												
	-> Glyphe = konkrete grafische Darstellung eines Zeichens												
	Codepoints: -> Identische Zeichen kommen in unterschiedlichen Alphabeten vor												
	-> Daher können in Unicode einem Zeichen verschiedene Codepoints zugeordnet werden												
	2 Butter Rothler III officede citical Zeletici Verschiederie Codepoints Zageordiet Werden												
	Unicode Transformation Formate (UTF):												
	-> Allgemein werden Unicode Codepoints in der folgenden Form dargestellt: U+xxxxxxxx16												
	-> Da aber meist nur Codepoints aus dem BMP benutzt werden, wurden effizientere Kodierungen entwickelt, z.B UTF-8												
	-> UTF-8 kodiert Codepoints mit 1 - 4 Bytes Länge												
	1 Byte	0xxxxxxx		(7 Bit)									
	2 Byte	110xxxxx	10xxxxxx			(11 Bit)							
	3 Byte 1110xxxx 10xxxxxx 10xxxxxx (16 Bit)												
4 Byte 1111xxxx 10xxxxxx 10xxxxxx 10xxxxxx (21 Bit)													
-> Wähle für Codepoint stets die kürzeste Kodierungsvariante							•						
	-> 1 Byte UTF-8 ist kompatibel mit 7-Bit ASCII												
	-> 1 byte	O 11 -O ISUKU	mpatibel II	ii. /-bit A3Cl	'								

KODIERUNG VON FARBEN

Farbe	-Farben sind die Grundbestandteile des weißen Lichts	
	-Prisma zerlegt weißes Licht in seine spektralen Bestandteile	
	-Lichtstrahlen besitzen keine Farbe sondern eine spektrale Energieverteilung	
	-Menschen können drei Grundfarben wahrnehmen, Rest entsteht durch Mischung	
	-Farben werden aus Farbanteilen der Grundfarben (Rot, Grün, Blau) gemischt und in ein 2-dimensionales Koordinatensystem projiziert	
		1

RGB-Farbmodell -additive Farbmischung

-Mischung selbstleuchtender Grundfarben (rot, grün, blau)

-Farbe wird als Tripel (r,g,b) aus den jeweiligen Farbanteilen angegeben

-z.B. bei 8 Bit pro Farbkanal: gelb = (255,255,0)

-Zahl darstellbarer Farben hängt von zur Verfügung stehender Bitanzahl ab

CMY(K)-Farbmodell

-cyan, magenta, yellow -subtraktive Farbmischung

-Farbe entsteht durch Reflektion/Absorbtion an unterschiedlichen Oberflächen

YUV-Modell •Zerlegung der Farben in: -Helligkeitsanteil (Luminanz) – Y-Komponente

-Farbanteil (Chrominanz) - U und V Komponente

- Historisch in Verbindung mit dem Farbfernsehens entstanden
 - -> Rückwärtskompatibilität mit Schwarzweiß-Empfängern daher separater Helligkeitskanal
 - -> Ausnutzung der unterschiedlichen Empfindlichkeit des menschlichen Auges für Helligkeits- und Farbunterschiede

HSI- / HSL-Farhmodell •Zerlegung der Farben in: -Farbton (Hue)

-Sättigung (Saturation)

- -Intensität (Intensity)
- •Modell hinter den meisten Color-Pickern
- •In der Bildanalyse sehr nützlich: -> Getrennte Farbinformation für bspw. Segmentierung

KODIERUNG VON BILDERN

Vektorgrafik

-Codierung von Linien, Polygonen und Kurven

-Zusätzliche Information wie Farbe, Linienstärke etc.

-Ohne Qualitätsverlust beliebig skalierbar

-Farbverläufe schwierig

-z.B. pdf, svg

Rastergrafik

-Grafik wird in Matrix aus einzelnen Bildpunkten (Pixel) aufgerastert (Rastergrafik).

-Als Pixel bezeichnet man das kleinste, auf einem Computerbildschirm darstellbare Element.

-kontinuierliches Bild wird räumlich diskretisiert ->Rasterung

jeder Pixel erhält Farb-/Helligkeitswert -> Quantisierung

KODIERUNG VON TÖNEN

Analog-Digital-Wandlung

- 1. Abtastung des Signals (Sampling)
 - -> das Signal wird periodisch in bestimmten Zeitabständen ta abgetastet
 - -> zeitdiskrete, aber wertkontinuierliche Abtastwerte
- 2. Diskretisierung der Abtastwerte (Quantisierung)
 - -> Rundung der kontinuierlichen Abtastwerte auf diskrete Quantisierungspunkte
 - -> zeitdiskrete und wertdiskrete Abtastwerte
- 3. Kodierung der quantisierten Abtastwerte
- Problem: Wie viele Abtastpunkte? (Samplingrate)
 - -Wie viele Quantisierungsintervalle? (Samplingtiefe)
- •Ziel: -Möglichst exakte Reproduktion des Ursprungssignals bei möglichst geringem Speicheraufwand
- Abtasttheorem nach Shannon/Raabe/Nyquist/Kotelnikow
 - -> Für jede Größe eines Samplingintervalls Δt gibt es eine bestimmte kritische Frequenz f_a (nyquist critical frequency), die die obere Grenze angibt, bis zu der Frequenzen abgetastet werden können.
 - -> Um eine Schwingung rekonstruieren zu können, werden mehr als zwei Abtastpunkte innerhalb einer Periode benötigt.
- •Ist vorab die höchste in einem Signal vorkommende Frequenz (fa) bekannt, kann ein optimales Samplingintervall (Δt) bestimmt werden:

 $f_a < \!\! \frac{\iota}{2\Delta t}$

Daher folgt für die Samplingrate f_s : $f_s \ge 2 \cdot f_a$

KOMPRIMIERUNG

Merke -Verarbeitung ist effizienter, wenn sie im Hauptspeicher stattfinden kann •Gründe, Daten zu komprimieren: -Speicherplatz sparen -Speicher- oder effektiven Netzwerkdurchsatz erhöhen -Netzwerkvolumen verringern

VERLUSTFREIE KOMPRIMIERUNG

Information?

- •Maßgröße für die Ungewissheit des Eintretens von Ereignissen im Sinne der Wahrscheinlichkeitsrechnung
- = beseitigte Ungewissheit (z.B. durch Auskunft, Aufklärung, Mitteilung, Benachrichtigung über Gegenstände)
- Ereignisse = Zeichen (Nachrichtenelemente)
- $\bullet \text{Werden durch Auswahlvorgang aus einem Zeichenvorrat von einer Nachrichtenquelle erzeugt } \\$
- Durch diese Festlegung wird Information zu einem berechenbaren Maß für die Wahrscheinlichkeit zukünftiger Ereignisse in einem technischen System
- •Zeichenkette = Folge von Elementen eines Alphabets

- Nachricht = übermittelte Zeichenkette, die meist nach bestimmten, vorgegebenen Regeln (Syntax) aufgebaut ist.
- •durch Verarbeitung erhält die Nachricht Bedeutung (Semantik)
- •durch die Verarbeitung der Nachricht ändert sich der Zustand des Empfängers der Nachricht (Pragmatik)

Wie messe ich Information?

- •z.B. kürzeste Beschreibung, die eine Nachricht benötigt, welche dieselbe Bedeutung für den Empfänger besitzt, wie die ursprüngliche vorgegebene Information (Beschreibungskomplexität)
- Wie viele Bits benötige ich mindestens, um eine Nachricht mit einem bestimmten Informationsgehalt zu kodieren?

Alphabet = {a,n,s, <leerzeichen> } Kodierung: Blockcode mit 2 Bit

01 n 10 <leerzeichen>

Nachricht: anna an ananas

--> Kodierte Nachricht:

00 01 01 00 11 00 01 11 00 01 00 01 00 10

anna an ananas

- ->Gesamtinformation: 14 x 2 Bit = 28 Bit
- ->Mittlerer Informationsgehalt eines Zeichens: 2 Bit
- ->Tatsächlicher Informationsgehalt einer kompletten Nachricht?
- --> Kodierte Nachricht:

0 1 1 0 10 0 1 10 0 1 0 1 0 01

a n n a a n ananas

- ->Gesamtinformation: 17 Bit
- ->Aber: Dekodierung ist NICHT eindeutig möglich!
- ->Jede Folge von Bits muss eindeutig dekodierbar sein
- --> Kodierte Nachricht:

1 01 01 1 000 1 01 000 1 01 1 01 1 001

anna a n ->Gesamtinformation: 25 Bit

->Code kann auch als Binärbaum dargestellt werden

Binärbaumkodierung

ananas

- Starte mit 1. Bit der Folge an der Wurzel
- des Baums
 0 -> links, 1 --> rechts
 Gelangt man an ein Blatt, hat man das Zeichen dekodiert und startet mit dem nächsten Bit
- wieder an der Wurzel Gelangt man an einen inneren Knoten, fährt man mit dem nächst Bit an diesem

Entropie

-ist das Maß für den Informationsgehalt einer Nachricht

-Informationsgehalt ist abhängig von Kodierung einer Nachricht

-Nach Claude E. Shannon: Entropie H

-Nachricht I, besteht aus unterschiedlichen Symbolen {c1, c2, ..., cn}

-jedes Symbol ci (1 =< i =< n) kommt in Nachricht I mit einer bestimmter Häufigkeit (Wahrscheinlichkeit) p، vor

-Die Entropie H(I) ist der gewichtete Mittelwert der Informationsgehalte aller Zeichen ci

O Nachricht: anna an ananas (14 Zeichen)

Zeichen c	a	n	s	<leerzeichen></leerzeichen>	
Häufigkeit	6	5	1	2	
Relative Häufigkeit p(c _i)	6/14	5/14	1/14	2/14	
Informationsgehalt log, 1/p,	1.222	1,485	3,807	2,807	

$$\sum_{i=1}^{4} p_i \log_2(\frac{1}{p_i}) = \frac{6}{14} \cdot 1,222 + \frac{5}{14} \cdot 1,485 + \frac{1}{14} \cdot 3,807 + \frac{2}{14} \cdot 2,807 = 1,727/bit$$

-Informationsgehalt der gesamten Nachricht: Länge x Entropie = 14 Zeichen x 1,727 bit/Zeichen = 24,183 bit

-Unsere ursprüngliche Kodierung benötigte 25 Bit

O Da [24,183] bit = 25 bit ([]: Zeichen für Aufrundungsfunktion) unsere Kodierung ist eine optimale Kodierung

Redundanz

-Anteile einer Nachricht, die keine zur Nachricht beitragende Information enthalten, also aus dieser entfernt werden können, ohne den eigentlichen Informationsgehalt zu verringern -Bsp.: Whnachtsman = Weihnachtsmann (unsere Sprache enthält bereits Redundanz)

-Information kann selbst bei unvollständiger Übermittlung oder Übertragungsfehlern rekonstruiert werden

-Information ist leichter zu lesen/interpretieren

↑ Fehlertoleranz und Vereinfachung • größere Informationsmenge

-Claude E. Shannon definiert den Informationsgehalt einer Nachricht, die Entropie H

- -> abhängig von statistischer Natur der Nachrichtenquelle
- -> keine weitere verlustfreie Komprimierung (kleiner als H) möglich!

Komprimierungs varianter

-Unter Komprimierung versteht man die Beseitigung oder Verringerung der Redundanz einer Nachricht.

-Ziel der Komprimierung ist es, einen möglichst redundanzfreien Code zu erzeugen, aus dem die ursprüngliche Information eindeutig und möglichst ohne Informationsverlust wieder rekonstruiert werden kann

-Man kann verschiedene Varianten der Komprimierung unterscheiden:

• Logische Komprimierung:

- -> fortlaufende Substitution von Symbolen durch andere Symbole
- -> Nutzung der inhärenten Information der Daten
- -> z.B.: "USA" statt "United States of America"

• Physikalische Komprimierung:

- -> ohne Nutzung inhärenter Information
- -> Austausch einer Kodierung durch eine kompaktere
- -> kann leicht automatisiert werden

• Symmetrische Komprimierung:

-> Verfahren zur Kodierung und Dekodierung besitzen dieselbe Berechnungskomplexität (d.h. sind gleich schwierig)

• Asymmetrische Komprimierung:

- -> Kodierungs- und Dekodierungsverfahren besitzen unterschiedliche Berechnungskomplexität
- -> In der Regel ist Kodierung komplexer ->ist dann sinnvoll, wenn nur selten auszuführen

· Nicht-adaptive Komprimierung:

-> Verwendet statisches Wörterbuch mit vorgegebenen Datenmustern (schnell, aufwändiges Wörterbuch)

-> Für den zu komprimierenden Text wird ein eigenes Wörterbuch erstellt (enthält nur Worte aus dem zu komprimierenden Text)

· Semi-adaptive Komprimierung:

->Mischform aus adaptiver und nicht-adaptiver Komprimierung

-> Nach Kodierung und Dekodierung können die ursprünglichen Daten unverändert und ohne Verlust rekonstruiert werden

· Verlustbehaftete Komprimierung:

-> Beim Komprimieren gehen (unwichtige) Teile der ursprünglichen Information verloren, so dass diese nach dem Dekodieren nicht exakt mit den ursprünglichen Daten übereinstimmt