Overview
Basic Theory
Examples
Two Lemmas and Theorema
Pseudo Algorithm
Summary

Using Theorema in the Formalization of Theoretical Economics

Manfred Kerber¹ Colin Rowat²
University of Birmingham
Computer Science Economics

Wolfgang Windsteiger³ Universität Linz RISC Hagenberg

1www.cs.bham.ac.uk/~mmk
2www.socscistaff.bham.ac.uk/rowat
3www.risc.jku.at/home/wwindste

Overview

Motivation:

- Proofs in economics use typically undergraduate level proofs
- Proofs in economics are error prone (just as in other theoretical fields)
- Formalization should be achievable
- Automation (or minimization of user interactions) as goal

Overview

Motivation:

- Proofs in economics use typically undergraduate level proofs
- Proofs in economics are error prone (just as in other theoretical fields)
- Formalization should be achievable
- Automation (or minimization of user interactions) as goal

Outline

- Basic Theory
- Examples
- Two Lemmas and Theorema
- Demo
- Pseudo Algorithm
- Summary

Power Function

 $X \equiv \{\{x_i\}_{i \in I} | x_i \ge 0, \sum_{i \in I} x_i = 1\}.$, the following axioms can be defined. A power function satisfies

WC if
$$C \subset C' \subseteq I$$
 then $\pi(C, \mathbf{x}) \leq \pi(C', \mathbf{x}) \forall \mathbf{x} \in \mathcal{X}$;

Power Function

 $X \equiv \{\{x_i\}_{i \in I} | x_i \ge 0, \sum_{i \in I} x_i = 1\}.$, the following axioms can be defined. A power function satisfies

WC if
$$C \subset C' \subseteq I$$
 then $\pi(C, \mathbf{x}) \leq \pi(C', \mathbf{x}) \forall \mathbf{x} \in \mathcal{X}$;

WR if
$$y_i \ge x_i \forall i \in C \subseteq I$$
 then $\pi(C, \mathbf{y}) \ge \pi(C, \mathbf{x})$;

Power Function

 $X \equiv \{\{x_i\}_{i \in I} | x_i \ge 0, \sum_{i \in I} x_i = 1\}.$, the following axioms can be defined. A power function satisfies

WC if
$$C \subset C' \subseteq I$$
 then $\pi(C, \mathbf{x}) \leq \pi(C', \mathbf{x}) \forall \mathbf{x} \in \mathcal{X}$;

WR if
$$y_i \ge x_i \forall i \in C \subseteq I$$
 then $\pi(C, \mathbf{y}) \ge \pi(C, \mathbf{x})$; and

SR if
$$\emptyset \neq C \subseteq I$$
 and $y_i > x_i \forall i \in C$ then $\pi(C, \mathbf{y}) > \pi(C, \mathbf{x})$.

The Same in Theorema (WC)

WC if
$$C \subset C' \subseteq I$$
 then $\pi(C, \mathbf{x}) \leq \pi(C', \mathbf{x}) \forall \mathbf{x} \in X$

```
Definition["WC", any[\pi, n], bound[allocation_n[x]],
WC[\pi, n] :\Leftrightarrow n \in \mathbb{N} \land \bigvee_{\begin{subarray}{c} C1,C2\\ C1 \subset C2 \land C2 \subseteq I[n] \end{subarray}} \forall \begin{subarray}{c} \pi[C2,x] \geq \pi[C1,x] \end{subarray}]
```

The Same in Theorema (WR)

WR if
$$y_i \ge x_i \forall i \in C \subseteq I$$
 then $\pi(C, \mathbf{y}) \ge \pi(C, \mathbf{x})$

Definition["WR", any[π , n], bound[allocation_n[x], allocation_n[y]],

$$\mathsf{WR}[\pi, n] :\Leftrightarrow n \in \mathbb{N} \land \big(\bigvee_{\substack{C \\ C \subseteq I[n]}} \bigvee_{x,y} \Big(\big(\bigvee_{i \in C} y_i \ge x_i \big) \implies \pi[C, y] \ge \pi[C, x] \Big) \big)$$

The Same in Theorema (SR)

SR if
$$\emptyset \neq C \subseteq I$$
 and $y_i > x_i \forall i \in C$ then $\pi(C, \mathbf{y}) > \pi(C, \mathbf{x})$.

Definition["SR", any[π , n], bound[allocation_n[x], allocation_n[y]],

$$\mathsf{SR}[\pi,n] :\Leftrightarrow n \in \mathbb{N} \land \big(\bigvee_{\substack{C \\ C \subseteq I[n] \land C \neq \emptyset}} \bigvee_{x,y} \Big(\big(\bigvee_{i \in C} y_i > x_i \big) \Longrightarrow \pi[C,y] > \pi[C,x] \Big) \big)$$

Properties

Other important properties that power functions may have:

AN if
$$\sigma: I \to I$$
 is a 1:1 onto function permuting the agent set, $i \in C \Leftrightarrow \sigma(i) \in C'$, and $x_i = x'_{\sigma(i)}$ then $\pi(C, \mathbf{x}) = \pi(C', \mathbf{x}')$.

 $\pi(C, \mathbf{x})$ is continuous in \mathbf{x} .

RE if
$$i \notin C$$
 and $\pi(\{i\}, \mathbf{x}) > 0$ then $\pi(C \cup \{i\}, \mathbf{x}) > \pi(C, \mathbf{x})$.

Domination

Def_E An allocation y dominates an allocation x, written $y \in x$, iff $\pi(W, x) > \pi(L, x)$; where $W \equiv \{i | y_i > x_i\}$ and $L \equiv \{i | x_i > y_i\}$. W = win set & L lose set.

Def_D For $\mathcal{Y} \subset \mathcal{X}$, let $D(\mathcal{Y}) \equiv \{ \mathbf{x} \in \mathcal{X} | \exists \mathbf{y} \in \mathcal{Y} \text{ s.t. } \mathbf{y} \in \mathbf{x} \}$ be the dominion of \mathcal{Y} . $U(\mathcal{Y}) = \mathcal{X} \setminus D(\mathcal{Y})$, the set of allocations undominated by any allocation in \mathcal{Y} .

Core and stable set

 $\mathsf{Def}_{\mathcal{K}}$ The core, \mathcal{K} , is the set of undominated allocations, $U(X) = X \setminus D(X)$.

Def_S A set of allocations, $S \subseteq X$, is a stable set iff it satisfies

internal stability,
$$S \cap D(S) = \emptyset$$
 (IS)

external stability,
$$S \cup D(S) = X$$
 (ES)

The conditions combine to yield $S = X \setminus D(S)$. The core necessarily belongs to any existing stable set.

Wealth Is Power

$$\mathsf{WIP}\pi[C,x] := \sum_{i \in C} x_i$$

Wealth Is Power

$$\mathsf{WIP}\pi[C,x] := \sum_{i \in C} x_i$$

Wealth Is Power

$$\mathsf{WIP}\pi[C,x] := \sum_{i \in C} x_i$$

Stable Set:
$$S = \{(0,0,1),(0,1,0),(1,0,0),(0,\frac{1}{2},\frac{1}{2}),(\frac{1}{2},0,\frac{1}{2}),(\frac{1}{2},\frac{1}{2},0),(\frac{1}{4},\frac{1}{4},\frac{1}{2}),(\frac{1}{4},\frac{1}{2},\frac{1}{4}),(\frac{1}{2},\frac{1}{4},\frac{1}{4}),(\frac{1}{2},\frac{1}{4},\frac{1}{4}),(\frac{1}{2},\frac{1}{4},\frac{1}{4}),(\frac{1}{2},\frac{1}{4},\frac{1}{4}),(\frac{1}{2},\frac{1}{4},\frac{1}{4}),(\frac{1}{2},\frac{1}{4},\frac{1}{4}),(\frac{1}{2},\frac{1}{4},\frac{1}{4}),(\frac{1}{2},\frac{1}{4},\frac{1}{4}),(\frac{1}{2},\frac{1}{4},\frac{1}{4}),(\frac{1}{2},\frac{1}{4},\frac{1}{4}),(\frac{1}{2},\frac{1}{4},\frac{1}{4}),(\frac{1}{2},\frac{1}{4},\frac{1}{4}),(\frac{1}{2},\frac{1}{4},\frac{1}{4}),(\frac{1}{2},\frac{1}{4},\frac{1}{4}),(\frac{1}{2},\frac{1}{4},\frac{1}{4}),(\frac{1}{2},\frac{1}{4},\frac{1}{4}),(\frac{1}{2},\frac{1}{4},\frac{1}{4}),(\frac{1}{2},\frac{1}{4},\frac{1}{4},\frac{1}{4}),(\frac{1}{2},\frac{1}{4},\frac{1}{4},\frac{1}{4}),(\frac{1}{2},\frac{1}{4},\frac{1}{4},\frac{1}{4}),(\frac{1}{2},\frac{1}{4},\frac{1}{4},\frac{1}{4}),(\frac{1}{2},\frac{1}{4},$$

Strength In Numbers with $\nu > 1$

$$\mathsf{SIN}\pi_{v}[C,x] := \sum_{i \in C} (x_i + v)$$

with v > 1

Strength In Numbers with $\nu > 1$

$$SIN\pi_{\nu}[C, x] := \sum_{i \in C} (x_i + \nu)$$
with $\nu > 1$

Strength In Numbers with $\nu > 1$

$$\mathsf{SIN}\pi_{\scriptscriptstyle{\mathcal{V}}}[\pmb{C},\pmb{x}] := \sum_{i \in \pmb{C}} \left(\pmb{x}_i + \pmb{v}\right)$$

with v > 1

Stable Set:
$$S = \{(0, \frac{1}{2}, \frac{1}{2}), (\frac{1}{2}, 0, \frac{1}{2}), (\frac{1}{2}, \frac{1}{2}, 0)\}$$

Strength In Numbers with 0 < v < 1

$$\mathsf{SIN}\pi_{v}[C,x] := \sum_{i \in C} (x_i + v)$$

with 0 < v < 1

no stable set exists

Some Explicit Dependencies of Statements

	WR	SR	WC	AN	СХ	RE	Def1	Thm	Lem	Ext
Lem1	×									i
Lem2				×						
Thm1										×
Lem3		×	×	×						
Lem4							×	1		
Lem5			×				×			
Thm2				×				1	4,5	×
Thm3				×					2	
Cor1								3		×
Lem6		×	×	×						
Lem7	×	×								
Cor2									7	

An Example

(One Lemma of 14 lemmas, 12 theorems, and 4 corollaries)

Lemma["powerfunction-independent", any[π , n, C, x, y], with[allocation $_n[x] \land \text{allocation}_n[y] \land C \subseteq I[n] \land \text{powerfunction}[\pi, n]],$ $\bigvee_{i \in C} (x_i = y_i) \implies (\pi[C, x] = \pi[C, y])$

An Example

(One Lemma of 14 lemmas, 12 theorems, and 4 corollaries)

Lemma["powerfunction-independent", any[
$$\pi$$
, n , C , x , y], with[allocation $_n[x] \land \text{allocation}_n[y] \land C \subseteq I[n] \land \text{powerfunction}[\pi, n]$], $\forall \{x_i = y_i\} \implies \{\pi[C, x] = \pi[C, y]\}$

Demo

Another Example

Lemma

When n = 3: 1. $\mathcal{K} = \emptyset$ implies $\mathbf{t}^i \in D(\mathbf{s}^{jk})$ for distinct $i, j, k \in I$.

Proof.

1. As $\mathcal{K} = \emptyset$, no agent can defend its holdings against both others, so that $\pi\left(\left\{i\right\}, \mathbf{t}^{i}\right) < \pi\left(\left\{j, k\right\}, \mathbf{t}^{i}\right)$ for distinct i, j and k. As $\left\{j, k\right\}$ prefers \mathbf{s}^{jk} to \mathbf{t}^{i} , this ensures that $\mathbf{s}^{jk} \in \mathbf{t}^{i}$.

An Example (Cont'd)

Make this proof more formal

- ► AN: use 1, 2, and 3 instead of i,j, and k.
- In t¹, 2 and 3 together are more powerful than 1 on its own:
 K = ∅ means that t¹ ∉ K, that is, there exists an x such that
 x ⊱ t¹. For x = (x₁, x₂, x₃) distinguish 3 cases:
 - Case 1: $x_1, x_2 \neq 0$. Since $\mathbf{t}^1 \notin \mathcal{K}$ we have $\pi(\{2,3\}, \mathbf{t}^1) > \pi(\{1\}, \mathbf{t}^1)$, hence we get $\mathbf{s}^{23} \in \mathbf{t}^1$.
 - Case 2: Without loss of generality $x_2 > x_3 = 0$. With axiom WC we have $\pi(\{2,3\}, \mathbf{t}^1) > \pi(\{2\}, \mathbf{t}^1)$.
 - Case 3: $x_2 = x_3 = 0$. This would mean $\mathbf{x} = \mathbf{t}^1$, which cannot be.

Pseudo Algorithm

```
Algorithm["StableSet2", any[\pi],
  stableSet[\pi] :=
\begin{cases} &\text{``no stable''} &\Leftarrow \text{empty}[M[1,\pi]] \\ &\text{where}[S = \text{dyadicSet}[0,3] \cup \bigcup\limits_{i=1,\dots,3} S[i,\pi], \\ & \begin{cases} S \cup P[\pi] & \Leftarrow \neg \text{fullSet}[S \cup D[S,\pi,3]] \\ S & \Leftarrow \text{fullSet}[S \cup D[S,\pi,3]] \end{cases} &\Leftarrow \neg \text{empty}[M[1,\pi]] &\Leftarrow (*) \\ &\text{``unknown X''} &\Leftarrow \text{otherwise} \\ &\text{``unknown M''} & \Leftarrow \text{otherwise} \\ &\text{dyadicSet}[1,3] \land \text{dyadicSet}[0,3] \end{cases} &\Leftarrow \text{otherwise} \end{cases}

← otherwise
```

with (*) to be replaced by $\pi[\{1\}, t[1,3]] \ge \pi[\{2,3\}, t[1,3]]$.

Overview
Basic Theory
Examples
Two Lemmas and Theorema
Pseudo Algorithm
Summary

Pseudo Algorithm (Cont'd)

Demo

Pseudo Algorithm (Cont'd)

Demo

- Non-computational in several aspects
- Evaluation by a mixture of reasoning and computing. Can compute the stable set of WIP, SIN, assumed the corresponding lemmas are available.
- Plan: Extend the computational part, e.g., represent infinite set in a finite way. Use underlying Mathematica to compute solutions of equations.

Summary

- Formalisation and proof in Theorema possible.
- Axiomatic approach in theoretical economics valuable.
- Good field with non-trivial but not very deep mathematics.
- Automation at least partially possible.
- Theorema offers mixture of reasoning and computation. Very useful for determining stable sets.

