1^{ere} Master mathématique appliquée et statistique

Correction de l'examen de Rattrapage (Programmation Linéaire 1)

Exercice 1 Variables de décision :

- $-x_1$: le nombres des unités à produire du produit 1 chaque jours.
- $-x_2$: le nombres des unités à produire du produit 2 chaque jours.

Fonction objectif:

$$Z = 900x_1 + 800x_2 - (120x_1 + 90x_2)$$

= $780x_1 + 710x_2$.

Contraintes:

$$\frac{1}{4}x_1 + \frac{1}{3}x_2 \leq 90$$

$$\frac{1}{8}x_1 + \frac{1}{3}x_2 \leq 80$$

$$x_1 \leq 200$$

$$x_1, x_2 \geq 0$$

La première contrainte représente les limites d'heures de montage par jour. La deuxième contrainte est la disponibilité d'heures pour les tâches de contrôle qualité (également quotidiennes). La troisième établit une limite supérieure pour la production et les ventes quotidiennes du produit 1. De plus, les conditions de non-négativité pour les variables de décision sont incluses.

Le domaine des solutions réalisables a 5 sommets qui correspondent aux candidats optimaux du problème. En particulier, le sommet optimal est D pour que la solution optimale soit $x_1 = 200$ et $x_2 = 120$ avec une valeur optimale $V(P) = Z_D = 780 \times (200) + 710 \times (120) = 241200$ Dinars qui correspond au profit maximum

Exercice 2 Réécrivons le problème en forme standard en ajoutant des variables d'écart x_4, x_5, x_6 correspondant aux trois inégalités des contraintes

$$\max Z = 2x_1 + x_2 + 3x_3$$

$$s.c \begin{cases} -x_1 + 2x_2 + x_3 + x_4 = 6, \\ x_1 + x_2 + x_5 = 24, \\ x_1 - x_2 + x_3 + x_6 = 9, \\ x_1, x_2, x_3 \ge 0. \end{cases}$$

	x_1	x_2	\downarrow x_3	x_4	x_5	x_6	b	
$\leftarrow x_4$	-1	2	1	1	0	0	6	6
x_5	1	1	0	0	1	0	24	_
x_6	1	-1	1	0	0	1	9	9
-z	2	1	3	0	0	0	0	

 x_3 entre et x_4 sort

	$\begin{vmatrix} x_1 \\ \downarrow \end{vmatrix}$	x_2	x_3	x_4	x_5	x_6	$\mid b \mid$	
x_3	-1	2	1	1	0	0	6	_
x_5	1	1	0	0	1	0	24	24
$\leftarrow x_6$	2	-3	0	-1	0	1	3	$\frac{3}{2}$
-z	5	-5	0	-3	0	0	18	

 x_1 entre et x_6 sor

	x_1	\downarrow x_2	x_3	x_4	x_5	x_6	b	
x_3	0	1/2	1	1/2	0	1/2	15/2	15
$\leftarrow x_5$	0	5/2	0	1/2	1	-1/2	45/2	9
x_1	1	-3/2	0	-1/2	0	1/2	3/2	_
-z	0	5/2	0	-1/2	0	-5/2	-51/2	

 x_2 entre et x_5 sort

	x_1	\downarrow x_2	x_3	x_4	x_5	x_6	b
x_3	0	0	1	2/5	-1/5	3/5	3
$\leftarrow x_2$	0	1	0	1/5	2/5	-1/5	9
x_1	1	0	0	-1/5	3/5	1/5	15
-z	0	0	0	-1	-1	-2	-48

Solution de Base Réalisable optimale (ligne
$$\leq 0$$
), $x_B = \begin{pmatrix} x_3 \\ x_2 \\ x_1 \end{pmatrix} = \begin{pmatrix} 3 \\ 9 \\ 15 \end{pmatrix}$, $x_L = \begin{pmatrix} x_4 \\ x_5 \\ x_6 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ et $z^* = 48$.

Exercice 3 1. La forme standard

$$(PS) \begin{cases} z(\max) = 5x_1 + 4x_2 + 3x_3 \\ 3x_1 + 4x_2 + 2x_3 + x_4 = 90 \\ 2x_1 + x_2 + x_3 + x_5 = 40 \\ x_1 + 3x_2 + 2x_3 + x_6 = 80 \\ x_i \ge 0, \ i = 1, ..., 6 \end{cases}$$

\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4	\mathbf{x}_5	\mathbf{x}_6	\mathbf{b}_i	V.b
3	4	2	1	0	0	90	\mathbf{x}_4
2*	1	1	0	1	0	40	\mathbf{x}_5
1	3	2	0	0	1	80	\mathbf{x}_6
5	4	3	0	0	0	0	$-\mathbf{z}$
0	5 2 1 2 5 2 3 2	$\frac{1}{2}$	1	$\frac{\frac{3}{2}}{\frac{1}{2}}$	0	30	\mathbf{x}_4
1	$\frac{\overline{1}}{2}$	1 2 1 2 3 2 1 2 1 5 2 1 5	0	$\frac{\overline{1}}{2}$	0	20	\mathbf{x}_1
0	$\frac{5}{2}$	$\frac{\overline{3}}{2}$	0		1	60	\mathbf{x}_6
0	$\frac{\overline{3}}{2}$	$\frac{\overline{1}}{2}$	0	$-\frac{1}{2}$ $-\frac{5}{2}$ $-\frac{3}{5}$	0	-100	-z
0	1	$\frac{\overline{1}}{5}$	$\frac{2}{5}$	$-\frac{\bar{3}}{5}$	0	12	\mathbf{x}_2
1	0	$\frac{2}{5}$	$-\frac{1}{5}$	$\frac{4}{5}$	0	14	\mathbf{x}_1
0	0	1*	-1	1	1	30	\mathbf{x}_6
0	0	$\frac{1}{5}$	$-\frac{3}{5}$	$-\frac{8}{5}$	0	-118	-z
0	1	0	$\frac{3}{5}$	$-\frac{8}{5}$ $-\frac{4}{5}$	$-\frac{1}{5}$	6	\mathbf{x}_2
1	0	0	3 5 1 5	$\frac{2}{5}$	$-\frac{1}{5} \\ -\frac{2}{5}$	2	\mathbf{x}_1
0	0	1	-1	1	1	30	\mathbf{x}_3
0	0	0	$-\frac{2}{5}$	$-\frac{9}{5}$	$-\frac{1}{5}$	-124	-z

La base $B=\{1,2,3\}$ est optimale. La solution correspondante est : $x_1=2, x_2=6, x_3=30$ et z=124.

2.

$$A^{-1} = \begin{pmatrix} \frac{3}{5} & -\frac{4}{5} & -\frac{1}{5} \\ \frac{1}{5} & \frac{2}{5} & -\frac{2}{5} \\ -1 & 1 & 1 \end{pmatrix}$$