Formale Grundlagen der Informatik II 6. Übungsblatt

Fachbereich Mathematik Prof. Dr. Martin Otto SoSe 2015 8. Juli 2015

Julian Bitterlich, Felix Canavoi, Kord Eickmeyer, Daniel Günzel

Aufgabe G1 (Quiz)

(i) Gegeben seien die folgenden ungerichteten Graphen G = (V, E):

In welchen der obigen Graphen gelten welche der nachfolgenden FO-Sätze?

- (a) $\forall x \forall y (\neg (x = y) \leftrightarrow Exy)$
- (b) $\exists x \exists y \exists z (\neg(x=y) \land \neg(y=z) \land \neg(x=z) \land Exy \land Eyz \land \neg Ezx)$
- (c) $\exists x \exists y \neg (x = y) \land \forall x \forall y (\neg (x = y) \rightarrow \neg Exy)$
- (d) $\exists x \forall y (x = y)$
- (ii) Welche der folgenden Aussagen sind richtig?
 - (a) Für jede im Sequenzkalkül \mathcal{SK} ableitbare Sequenz $\Gamma \vdash \Delta$ gilt $\Gamma \models \delta$ für jedes $\delta \in \Delta$.
 - (b) Für jede im Sequenzkalkül \mathcal{SK} ableitbare Sequenz $\Gamma \vdash \Delta$ gilt $\Gamma \models \delta$ für ein $\delta \in \Delta$.
 - (c) Für jede im Sequenzkalkül \mathcal{SK} ableitbare Sequenz $\Gamma \vdash \Delta$ gilt $\Gamma \models \bigvee \Delta$.
 - (d) Falls $\Phi \models \varphi$ für eine Satzmenge $\Phi \subseteq FO_0(S)$ und eine Formel $\varphi \in FO_0(S)$ gilt, dann ist die Sequenz $\Gamma \vdash \varphi$ für jedes endliche $\Gamma \subseteq \Phi$ in \mathcal{SK} ableitbar.
 - (e) Falls $\Phi \vdash \varphi$ in \mathcal{SK} für eine Satzmenge $\Phi \subseteq FO_0(S)$ und einen Satz $\varphi \in FO_0(S)$ ableitbar ist, dann gilt $\Phi \models \varphi$.

Lösung:

- (i) Jeder der Sätze gilt in genau einem der Graphen. In Klammern ist jeweils die intuitive Bedeutung der Sätze angegeben.
 - (a) G3 (Je zwei verschiedene Knoten sind miteinander verbunden und es gibt keine Schlaufen.)
 - (b) G2 (Es gibt drei Knoten, die einen induzierten Pfad der Länge zwei bilden.)
 - (c) G4 (Der Graph enthält keine Kante, aber mindestens zwei Knoten.)
 - (d) G1 (Der Graph besteht aus nur einem Knoten.)
- (ii) (a) falsch
 - (b) falsch (jedes Modell von Γ muss ein $\delta \in \Delta$ erfüllen, aber nicht alle das gleiche!)
 - (c) richtio
 - (d) falsch, die Sequenz $\Gamma \vdash \varphi$ muss nur für ein endliches $\Gamma \subseteq \Phi$ ableitbar sein.
 - (e) richtig

Aufgabe G2 (Resolutionskalkül)

Im Folgenden seien Q, R und S Relationssymbole und f ein Funktionssymbol passender Stelligkeit.

(i) Wir betrachten die Formelmenge $\Phi_1 := \{\varphi_1, \varphi_2, \varphi_3, \varphi_4\}$, wobei

$$\begin{split} \varphi_1 &:= \forall x \forall y \forall z (Rxy \vee Rxz \vee Ryz), \\ \varphi_2 &:= \forall x \forall y \forall z ((Rxy \wedge Ryz) \to Rxz), \\ \varphi_3 &:= \forall x \forall y (Rxy \to Rfxfy) \text{ und} \\ \varphi_4 &:= \forall x \neg Rxf fx. \end{split}$$

Machen Sie sich klar, dass und warum Φ_1 unerfüllbar ist. Weisen Sie dann ausgehend von Ihren Überlegungen mittels Grundinstanzen-Resolution formal nach, dass Φ_1 unerfüllbar ist.

(ii) Zeigen Sie, dass die folgende Formelmenge unerfüllbar ist:

$$\Phi_2 := \{ \forall x \forall y ((Qy \land Rxy) \to Sy), \forall x \forall y ((Sx \land Rxy) \to \neg Qy), \forall x \exists y (Rxy \land Qy) \}$$

Lösung:

(i) Wir betrachten die Terme c, fc und ffc. Wegen φ_1 muss mindestens eins der Paare (c, fc), (fc, ffc) und (c, ffc) in $R^{\mathcal{H}}$ sein. Wegen φ_4 is (c, ffc) nicht in $R^{\mathcal{H}}$. Mit φ_3 folgt, dass $(fc, ffc) \in R^{\mathcal{H}}$, und (wieder mit φ_3) auch $(ffc, fffc) \in R^{\mathcal{H}}$. Mit φ_2 folgt nun $(fc, fffc) \in R^{\mathcal{H}}$, im Widerspruch zu φ_4 . Als GI-Resolution ergibt sich:

(ii) Wir führen eine Zeugenfunktion f für den Existenzquantor in der dritten Formel ein und erhalten $\forall x \, (Rxfx \land Qfx)$. Damit erhalten wir folgende Klauseln:

$$\{\neg Qy, \neg Rxy, Sy\}, \{\neg Sx, \neg Rxy, \neg Qy\}, \{Rxfx\}, \{Qfx\}$$

Als GI-Resolution ergibt sich nun:

Aufgabe G3 (Sequenzenkalkül)

Leiten Sie die folgenden Sequenzen in \mathcal{SK}^+ ab.

- (a) $\forall x \forall y f x = f y \vdash \exists x f x = x$
- (b) $\forall x \forall y \forall z ((Rxy \land Ryz) \rightarrow Rxz) \land \forall x \neg Rxx \vdash \forall x \forall y (Rxy \rightarrow \neg Ryx)$

Lösung:

(a)

(b)

In den beiden letzten Schritten wurde die \forall R-Regel angewandt, daher ist zu beachten, dass die ersetzte Konstante c bzw. d (zu diesem Zeitpunkt!) weder in der Prämisse noch an anderer Stelle in der Konklusion vorkommt!

Aufgabe G4 (Horn-Sätze)

Ein (gleichheitsfreier) nicht negativer universeller Horn-Satz ist ein Satz der Form

$$\forall x_1 \cdots \forall x_n [(\alpha_1 \wedge \cdots \wedge \alpha_m) \rightarrow \beta],$$

wobei $\alpha_1, \ldots, \alpha_m, \beta$ (gleichheitsfreie) atomare Formeln sind. Dabei ist m = 0, also ein Satz der Form $\forall x_1 \cdots \forall x_n \beta$, auch erlaubt; β muss jedoch vorkommen. Ein (gleichheitsfreier) *negativer universeller Horn-Satz* hat die Gestalt

$$\forall x_1 \cdots \forall x_n \neg (\alpha_1 \wedge \cdots \wedge \alpha_m)$$

mit (gleichheitsfreien) Atomen $\alpha_1, \ldots, \alpha_m$.

- (i) Wir betrachten eine Datenbank mit genealogischen Daten. Diese modellieren wir als Struktur $\mathcal{D}=(P,V,M)$, wobei der Träger P die Menge aller gespeicherten Personen ist und wir binäre Relationen V und M haben für die Beziehungen "ist Vater von" und "ist Mutter von". Erstellen Sie eine Menge Φ von nicht negativen universellen Horn-Sätzen über der Signatur $S=\{V,M,G\}$, so dass in der Erweiterung (\mathcal{D},G) von \mathcal{D} , welche minimal für Φ ist, die Relation G die Bedeutung "haben einen gemeinsamen Vorfahren" hat.
- (ii) Beweisen Sie, dass jede Menge Φ von nicht negativen universellen Horn-Sätzen ein Herbrand-Modell $\mathcal{H}=(\mathcal{T}_0(S),(R)_{R\in S})$ besitzt, welches minimal für Φ in dem Sinne ist, dass für jedes Modell $\mathcal{H}'=(\mathcal{T}_0(S),(R')_{R\in S})$ gilt

$$R_1 \subseteq R'_1, \ldots, R_n \subseteq R'_n$$
.

(iii) Finden Sie das minimale Herbrand-Modell der Sätze

$$Pc$$
, $\forall x(Px \rightarrow Pfxx)$.

(iv) (Extra:) Sei Φ_+ eine Menge nicht negativer universeller Horn-Sätze und Φ_- eine Menge negativer universeller Horn-Sätze. Zeigen Sie, dass die Vereinigung $\Phi_+ \cup \Phi_-$ genau dann erfüllbar ist, wenn jede Formel aus Φ_- im minimalen Herbrand-Modell von Φ_+ gilt.

Lösung:

(i)

$$\forall x Gxx$$

$$\forall x \forall y (Gxy \to Gyx)$$

$$\forall x \forall y \forall z ((Vxy \land Gxz) \to Gyz)$$

$$\forall x \forall y \forall z ((Mxy \land Gxz) \to Gyz)$$

(ii) Sei $\mathcal M$ die Menge aller Herbrand-Modelle von Φ . Für jedes Relationssymbol $R\in S$ definieren wir die Relation

$$R_0 := \bigcap \left\{ R^{\mathcal{H}} \mid \mathcal{H} \in \mathcal{M} \right\}$$
.

Wir behaupten, dass $\mathcal{H}_0 := (\mathcal{T}_0(S), (R_0)_{R \in S})$ das minimale Herbrand-Modell von Φ ist.

Für ein beliebiges Herbrand-Modell $\mathcal{H} \in \mathcal{M}$ gilt $R_0 \subseteq R^{\mathcal{H}}$ nach Definition von R_0 . Es reicht also zu zeigen, dass \mathcal{H}_0 tatächlich ein Modell von Φ ist.

Sei $\varphi := \forall x_1 \cdots \forall x_n [(\alpha_1 \wedge \cdots \wedge \alpha_m) \to \beta]$ eine Formel aus Φ . Um zu zeigen, dass $\mathcal{H}_0 \models \varphi$ betrachten wir ein beliebiges Tupel $\bar{a} \in T_0(S)^n$. Wenn ein Index i existiert mit $\mathcal{H}_0 \not\models \alpha_i[\bar{a}]$, dann ist die Implikation erfüllt. Nehmen wir also an, dass $\mathcal{H}_0 \models \alpha_i[\bar{a}]$, für alle i. Nach Definition von \mathcal{H}_0 folgt daraus, dass $\mathcal{H} \models \alpha_i[\bar{a}]$, für alle $\mathcal{H} \in \mathcal{M}$. Da die Elemente von \mathcal{M} Modelle von φ sind, gilt also $\mathcal{H} \models \beta[\bar{a}]$ für alle $\mathcal{H} \in \mathcal{M}$. Somit gilt auch $\mathcal{H}_0 \models \beta[\bar{a}]$. Dies impliziert, dass $\mathcal{H}_0 \models \varphi$.

(iii) $\mathcal{H}_0 := (\mathcal{T}_0(S), P)$, wobei P die Menge aller "balancierten" Terme ist:

$$P = \{c, fcc, ffccfcc, fffccfccffccfcc, \dots\}$$

- (iv) (\Leftarrow) Wenn das minimale Herbrand-Modell von Φ_+ auch Modell von Φ_- ist, dann ist offensichtlich $\Phi_+ \cup \Phi_-$ erfüllbar.
 - (\Rightarrow) Angenommen, die Menge $\Phi_+ \cup \Phi_-$ ist erfüllbar. Dann hat diese Menge eine Herbrand-Modell $\mathcal{H} = (\mathcal{T}_0(S), (R^{\mathcal{H}})_{R \in S})$. Sei $\mathcal{H}_0 = (\mathcal{T}_0(S), (R_0)_{R \in S})$ das minimale Herbrand-Modell von Φ_+ . Dann gilt $R_0 \subseteq R^{\mathcal{H}}$ für jedes Relationssymbol R. Für jede Formel $\varphi = \forall x_1 \cdots \forall x_n \neg (\alpha_1 \land \cdots \land \alpha_m)$ in Φ_- folgt deshalb aus $\mathcal{H} \models \varphi$, dass $\mathcal{H}_0 \models \varphi$. Also ist \mathcal{H}_0 Modell von Φ_- .