同济大学计算机系

数字逻辑课程实验报告

学	号	2253156
姓	名	闫浩扬
专	业	
授课	老师	豆正喀

一、 实验内容

实验介绍:

在本次实验中,我们将使用 Verilog HDL 语言实现行为级 ALU 的设计和仿真。

实验目标:

深入了解 ALU 的原理

学习使用 Verilog HDL 语言进行行为级 ALU 的设计与仿真。

二、硬件逻辑图

实验原理: ALU 是负责运算的电路。ALU 必须实现以下几个运算: 加(ADD)、减(SUB)、与(AND)、或(OR)、异或(XOR)、置高位立即数(LUI)、逻辑左移与算数左移(SLL)、逻辑右移(SRL)以及算数右移(SRA)、 SLT、SLTU 等操作。输出 32 位计算结果、carry(借位进位标志位)、zero(零标志位)、negative(负数标志位)和overflow(溢出标志位)。本实验实现 ALU 的基本思想是: 在操作数输入之后将所有可能的结果都计算出来,通过操作符 aluc 的输入来判别需要执行的操作来选择需要的结果进行输出。图 6.9.1 所示为本实验的 ALU 参考原理图。表 6.9.1 所示为 aluc 的值所对应的运算。表 6.9.2 所示为 addsub32 标志位规则(仅供参考)。

图 6.9.1 ALU 的原理图供参考

表 6.9.1 aluc 的值所对应的运算

• • •				
	aluc[3]	aluc[2]	aluc[1]	aluc[0]
Addu r=a+b 无符号	0	0	0	0
Add r=a+b 有符号	0	0	1	0
Subu r=a-b 无符号	0	0	0	1
Sub r=a-b 有符号	0	0	1	1
And r=a & b	0	1	0	0
Or r=a b	0	1	0	1
Xor r=a ^ b	0	1	1	0
Nor r=~ (a b)	0	1	1	1
Lui r={b[15:0],16'b0}	1	0	0	X
Slt r=(a <b)?1:0 td="" 有符号<=""><td>1</td><td>0</td><td>1</td><td>1</td></b)?1:0>	1	0	1	1
Sltu r=(a <b)?1:0 td="" 无符号<=""><td>1</td><td>0</td><td>1</td><td>0</td></b)?1:0>	1	0	1	0
Sra r=b>>>a	1	1	0	0
Sll/Slr r=b< <a< td=""><td>1</td><td>1</td><td>1</td><td>Х</td></a<>	1	1	1	Х
Srl r=b>>a	1	1	0	1

表 6.9.2 ALU 标志位规则

	7
zero 标志位	1.Z=1表示运算结果是零,Z=0表示运算结果不是零。
	2.对于 Slt 和 Sltu 运算,如 a-b=0,则 Z=1,表示进行比
	较的两个数大小相等。
	3. 所有运算均影响此标志位。
carry 标志位	1. 无符号数加法运算(Addu)发生上溢出,则该标志位为 1。
	2.无符号数减法运算(Subu)发生下溢出,则该标志位为 1。
	3.无符号数比较运算(Sltu),如 a-b<0,则该标志位为 1。
	4.移位运算,该标志位为最后一次被移出的位的数值(在移位
	模块实现)。
	5.其他运算不影响此标志位。
negative 标志位	1.有符号数运算 Add 和 Sub,操作数和运算结果均采用二进
	制补码的形式表示, N=1表示运算的结果为负数, N=0表示
	结果为正数或零。
	2.有符号数比较运算 (Slt),如果 a-b<0,则 N=1。
	3.其他运算,运算最终结果的最高位 r[31] 为 1,则 N=1。
overflow 标志位	1.对于有符号加减法运算 (Add 和 Sub),操作数和运算结果
	均采用二进制补码的形式表示,有溢出时该标志位 o=1。
	2.只有有符号加减法运算影响此标志位。

三、模块建模

● 接口定义

```
module alu(
input [31:0] a, //32 位输入, 操作数 1
input [31:0] b, //32 位输入, 操作数 2
input [3:0] aluc, //4 位输入, 控制 alu 的操作
output [31:0] r, //32 位输出, 由 a、b 经过 aluc 指定的操作生成
output zero, //0 标志位
output carry, // 进位标志位
output negative, // 负数标志位
output overflow // 溢出标志位
);
```

● Verilog 代码描述

提示:本次实验允许使用行为级建模方式实现 ALU,可以使用"+""-""<>"等运 算符号实现 ALU 中的计算模块

```
module alu(
    input [31:0] a,
    input [31:0] b,
   input [3:0] aluc,
   output reg [31:0] r,
   output reg zero,
   output reg carry,
   output reg negative,
   output reg overflow
   );
   parameter Addu = 4'b0000; //r=a+b unsigned
   parameter Add = 4'b0010; //r=a+b signed
   parameter Subu = 4'b0001; //r=a-b unsigned
    parameter Sub = 4'b0011; //r=a-b signed
    parameter And = 4'b0100; //r=a&b
    parameter Or = 4'b0101; //r=a|b
    parameter Xor = 4'b0110; //r=a^b
    parameter Nor = 4'b0111; //r=\sim(a|b)
    parameter Lui1 = 4'b1000; //r=\{b[15:0], 16'b0\}
    parameter Lui2 = 4'b1001; //r=\{b[15:0], 16'b0\}
    parameter Slt = 4'b1011; //r=(a-b<0)?1:0 signed
    parameter Sltu = 4'b1010; //r=(a-b<0)?1:0 unsigned
    parameter Sra = 4'b1100; //r=b>>>a
    parameter Sll = 4'b1110; //r=b<<a
   parameter Slr = 4'b1111; //r=b<<a
parameter Srl = 4'b1101; //r=b>>a
   reg [32 : 0] temp;
   reg signed [31:0] temp_b;
   always @(*)
       casex (aluc)
           Addu: begin
               r = a + b;
               temp = \{1'b0, a\} + \{1'b0, b\};
               zero = (r == 0) ? 1 : 0;
               carry = temp[32];
               negative = r[31];
               overflow = 0;
           end
           Add: begin
               r = a + b;
               zero = (r == 0) ? 1 : 0;
               carry = 0;
               negative = r[31];
               overflow = ((a[31] == b[31]) \&\& (r[31] !=
a[31])) ? 1 : 0;
           end
           Subu: begin
               r = a - b;
               zero = (r == 0) ? 1 : 0;
               carry = (a < b) ? 1 : 0;
               negative = r[31];
               overflow = 0;
           end
```

```
Sub: begin
               r = a - b;
               zero = (r == 0) ? 1 : 0;
               carry = 0;
               negative = r[31];
          overflow = ((a[31] != b[31]) \&\& (r[31] != a[31])) ? 1 : 0;
           And: begin
               r = a \& b;
               zero = (r == 0) ? 1 : 0;
               carry = 0;
               negative = r[31];
               overflow = 0;
           end
           Or: begin
               r = a \mid b;
               zero = (r == 0) ? 1 : 0;
               carry = 0;
               negative = r[31];
               overflow = 0;
           end
           Xor: begin
               r = a \wedge b;
               zero = (r == 0) ? 1 : 0;
               carry = 0;
               negative = r[31];
               overflow = 0;
           end
           Nor: begin
               r = \sim (a \mid b);
               zero = (r == 0) ? 1 : 0;
               carry = 0;
               negative = r[31];
               overflow = 0;
           end
           Lui1, Lui2: begin
               r = \{b[15:0], 16'b0\};
               zero = (r == 0) ? 1 : 0;
               carry = 0;
               negative = r[31];
               overflow = 0;
           end
           Slt: begin
               r = a - b;
               zero = (r == 0) ? 1 : 0;
               carry = 0;
               negative = r[31];
          overflow = ((a[31] != b[31]) && (r[31] != a[31])) ? 1 : 0;
               r = (overflow == 1 || (r[31] == 1)) ? 1 : 0;
           end
```

```
Sltu: begin
              r = (a < b) ? 1 : 0;
              negative = r[31];
              r = a - b;
              zero = (r == 0) ? 1 : 0;
              carry = (a < b) ? 1 : 0;
              overflow = 0;
              r = carry;
           end
           Sra: begin
              temp_b = b;
              r = temp_b >>> a;
              zero = (r == 0) ? 1 : 0;
              carry = (a >= 32) ? b[31] : b[a];
              negative = r[31];
              overflow = 0;
           end
            Sll,Slr: begin
              r = b \ll a;
              zero = (r == 0) ? 1 : 0;
              carry = (a >= 32) ? 0 : b[31-a];
              negative = r[31];
              overflow = 0;
           end
           Srl: begin
              r = b \gg a;
              zero = (r == 0) ? 1 : 0;
              carry = (a >= 32) ? 0 : b[a];
              negative = r[31];
              overflow = 0;
           default: begin
              r = 1'bz; zero = 1'bz; carry = 1'bz; negative = 1'bz;
overflow = 1'bz;
           end
       endcase
endmodule
```

这个模块使用行为型描述,实现了一个算数逻辑单元 ALU,根据指定的操作码aluc 执行不同的操作。具有两个输入(a 和 b)、一个操作码(aluc)和五个输出(r、zero、carry、negative、overflow)。ALU 根据操作码执行不同的操作,包括加法(有符号和无符号)、减法(有符号和无符号)、位运算(与、或、异或、非)、左右位移、以及比较操作(有符号和无符号),并根据结果更新输出信号以反映运算结果的状态(零、进位、负数、溢出)。

使用了"+""-""<>"等运 算符号实现 ALU 中的计算模块

四、测试模块建模

```
`timescale 1ns / 1ps
                                        #10 a=32'hffff_ffff;
module alu_tb();
                                        b=32'h0000_fffff;
reg [31:0] a;
                                        aluc=4'b0000;
reg [31:0] b;
                                        repeat(16) begin
reg [3:0] aluc;
                                                #10 aluc=aluc+1;
wire [31:0] r;
                                        end
wire zero;
                                         #10 a=32'hffff ffff;
wire carry;
                                        b=32'h0000 ffff;
wire negative;
                                        aluc=4'b0000;
wire overflow;
                                        repeat(16) begin
                                                #10 aluc=aluc+1;
alu uut(
                                        end
.a(a),
                                         #10 a=32'hffff ffff;
.b(b),
                                        b=32'h8000_0000;
.aluc(aluc),
                                        aluc=4'b0000;
.r(r),
                                        repeat(16) begin
.zero(zero),
                                                #10 aluc=aluc+1;
.carry(carry),
                                        end
.negative(negative),
                                         #10 a=32'h0000 0000;
.overflow(overflow)
                                        b=32'h0000 0000;
);
                                        aluc=4'b0000;
initial begin
                                        repeat(16) begin
  a <= 32'hffffffff;
                                                #10 aluc=aluc+1;
  b <= 32'hffffffff;
  aluc=4'b0000;
                                        #10 a=32'h0000_0008;
   repeat(16) begin
                                        b=32'hffff_ffff;
          #10 aluc=aluc+1;
                                        aluc=4'b0000;
                                        repeat(16) begin
                                                #10 aluc=aluc+1;
   #10 a=32'h0000_0001;
   b=32'hffff_ffff;
                                        #10 a=32'h0000_fffff;
   aluc=4'b0000;
                                        b=32'h0000 0000;
   repeat(16) begin
                                        aluc=4'b0000;
           #10 aluc=aluc+1;
                                        repeat(16) begin
   end
                                                   #10 aluc=aluc+1;
                                        end
                                    end
                                    endmodule
```

五、实验结果

• 波形图仿真

Name	Value	0 ns			100 n	8		200	ns		300) ns			400 n	s		500 r	ıs		600	ns		70	0 ns			800 ns			900 1	ıs	ĺ
⊌ a[31:0]	fffffff			ffffff	ff		X		000	00001										E							$\equiv \chi$	00000000					
₩ b[31:0]	0000ffff					f	fffffff										00	000£££	f				X			80000	000		X	(0000000		ĺ
■ aluc[3:0]	1010	OOX	∞	XXXC	XXX	XXX)(o)()	ФС	000	000	∞	()(o	$\supset XX$	XXX	XXX	XXX	x = x = x = x = x = x = x = x = x = x =	0	0000	00X	∞	000) \(\(\) \(\)	∞	00X	000	000	000	()(o	000	XXXX	XXX	ı
⊌ r[31:0]	00000000	OOX	(f)	0 (f	0	000	∞	OOC	∞	(f)()		f (∞	XXX	XXX	f XX	00000	(O)	∞	OOXX	f (0000	0 \(\(\)	7££££	$\supset \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	000	00000	000	$\supset \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	00000	0000	000	ĺ
¹₀ zero	0						Π																										ĺ
¹⊌ carry	0																							Щ									ĺ
le negative	0	ПΠ																\Box			\Box										$\perp \!\!\! \perp$		ı
overflow	0	<u> </u>																															ı
Name	Value	0 ns		20 ns		40 ns		60 ns		80 ns		100	ns	120	ns	140	ns	160	ns	180 na		200 n	s	220 :	ns	240	ns	260	ns	280) ns	300 1	ns
> ₩ a[31:0]	fffffff		سبب	—	سبك	1	سبب			ffffff	ff							1				ш.		<u> </u>		00000	001						-
₩ b[31:0]	fffffff	\vdash															ffff	ffff															
₩ aluc[3:0]	0111	0000	V 0001	0010	0011	0100	V 0101	0110	0111	1000	Y 1001	1010) ¥ 101	1 110	00 \ 11	01 11	10 / 1111	Ψ-	0000	0001	0010	0011	V 0100	010	1 / 0110	011	1 100	00 100	10	10 10	011 \(\sqrt{110} \)	0 1101	ŀ
₩ r[31:0]	00000000	fff	000	fff	000	fff	fffff	000	00000	fff	£0000	000	000000	ff	≓⁄≔	0000	0000	fff	V 000	000	000	000	000	fff	fff	000	\rightarrow	fff0000) V 00	0 00	00 \ff1	7ff	К
zero	1		一	1	一	1		\vdash		1		⇈		_	-}-			1	\leftarrow	1	=	1		⇈		⇑				┰		\neg	
la carry	0														_																		
la negative	0														_																		
la overflow	0																																
		J																															
Name	Value		340 ns		360 ns		380 ns		400 ns		420 ns		440 n	s	460 z	s	480 ns		500 ns	52	0 ns	5	40 ns	i	560 ns	1	580 ns		600 ns		620 ns	6	40
₩ a[31:0]	fffffff	000															ff	fffff															
₩ b[31:0]	fffffff	fff	$\overline{}$														00	00£££	E														
■ aluc[3:0]	0111	00	00	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111	0000	0 (001	0010	0011	100	0101	0110	0111	1000	1001	1010	1011	1100	ū
₩ r[31:0]	00000000	000	000	fff	000	fff	000	fff	fff	000	ffff0	0000	000	000	X	000	00000		0000£	ffe f	ff	000	fff (00	fff	fff	000	ffff	0000	000	000	000000	00
¹⊌ zero	1																																
la carry	0																																
le negative	0																																
overflow	0																																