Modelos lineales y modelos lineales generalizados

Rolando Gonzales Martinez, PhD

Fellow postdoctoral Marie Skłodowska-Curie

Universidad de Groningen (Países Bajos)

Investigador (researcher)

Iniciativa de Pobreza y Desarrollo Humano de la Universidad de Oxford (UK)

En esta sesión:

- 1. Conocernos como clase
- 2. Revisar el contenido de la clase
- 3. Discutir el software y hardware de la clase
- 4. Discutir los objetivos de aprendizaje y el método de aprendizaje
- 5. Evaluacion de diagnostico

Bellringer/ice breaker

Doctor en Negocios internacionales por la Universitetet i Agder (Noruega), Máster en Estadística Aplicada por la Universidad de Alcalá (España). Cursando UTQ (Netherlands)

Actualmente: Fellow postdoctoral Marie Skłodowska-Curie (Universidad de Groningen), Investigador (researcher) Iniciativa de Pobreza y Desarrollo Humano (Universidad de Oxford, UK)

Previamente: Investigador postdoctoral en la Real Academia de Ciencias de los Países Bajos. Científico de datos postdoctoral en CASUS (Helmholtz-Zentrum Dresden-Rossendorf, Alemania).

Consultor postdoctoral: Universitat Autònoma de Barcelona, Agencia Italiana de Cooperación al Desarrollo, Fondo de Población de las Naciones Unidas (UNFPA)

Publicaciones seleccionadas:

- Deep Learning Algorithms for the Early Detection of Breast Cancer: A Comparative Study with Traditional Machine Learning. Informatics in Medicine unlocked.
- How good is good? Bayesian machine-learning estimation of probabilistic benchmarks in noisy datasets and an application to nanofinance+. Systems and Soft Computing 4: 200036.
- Bifurcations in business profitability: An agent-based simulation of homophily in self-financing groups.
 Journal of Business Research 129: 495-514.
- Which social program supports sustainable grass-root finance? Machine-learning evidence. International Journal of Sustainable Development & World Ecology 27 (5): 389-395.
- Inflation shocks and income inequality: An analysis with genetic algorithms and Bayesian quantile regressions. African Journal of Economic and Management Studies 10 (2): 226-240.
- Balancing input-output tables with Bayesian slave-raiding ants. Statistical Journal of the IAOS 33 (4): 943-949.

Información de contacto

WhatsApp: +31 6 31171933

Email:

r.m.gonzales.martinez@rug.nl

gonzalesmartinez@gmail.com

GitHub:

https://github.com/rogon666/UMSA

Contenido del curso

(1) Introducción a los Modelos Lineales

- Definición de modelos lineales.
- Regresión lineal simple y múltiple.
- Métodos de ajuste de modelos lineales
- Laboratorio: Ajuste de modelos lineales en R/Python o el programa de preferencia de los estudiantes.

(2) Diagnóstico y Evaluación de Modelos Lineales

- Diagnóstico de residuos.
- Métricas de evaluación de ajuste.
- Laboratorio: Evaluación de modelos lineales

Contenido del curso

(3) Modelos Lineales Generalizados (GLM)

- Concepto de GLM.
- Distribuciones familiares en GLM: normal, binomial, Poisson.
- Funciones de enlace.
- Laboratorio: Implementación de GLM en problemas de regresión y clasificación.

(4) Estimación Bayesiana

- Fundamentos de la inferencia Bayesiana.
- Teorema de Bayes.
- Métodos de MCMC (Markov Chain Monte Carlo) para estimación Bayesiana.
- Laboratorio: Estimación Bayesiana de modelos lineales y modelos lineales generalizados

Contenido del curso

(5) Aplicaciones de Modelos Lineales en Machine Learning

- Integración de modelos lineales en machine learning.
- Regularización en modelos lineales: Ridge, LASSO, Elastic Net.
- Laboratorio: Implementación de algoritmos de regularización en modelos lineales con datos de alta dimensión.

(6) Modelos Lineales Generalizados en Machine Learning

- Uso de GLM en problemas de clasificación y regresión.
- Comparación con otros algoritmos de machine learning.
- Laboratorio: Aplicación de GLM en machine learning.

Evaluación de la clase

- Prácticas en clase: 4 x 15 puntos = 60 puntos
- Examen de preguntas cerradas (respuesta multiple): 20 puntos
- Trabajo práctico individual guiado: 20 puntos

Horarios de clase

- Lunes, miercoles y viernes: 7 PM a 10 PM
- Sábados: 8 AM a 2 PM

4 PM a 8 PM

Lunes y miercoles: presencial, 7PM a 10 PM

Viernes: virtual, 7PM a 10 PM

Sábado: virtual, 8 AM a 12:30 PM - 3 PM a 7 PM

Software y Hardware

Software

Computación en la nube y local

- R
 - R Studio IDE*
 - R analytic flow IDE
 - Posit cloud (R Studio)
 - Stata
- Python
 - Spyder IDE (Anaconda)
 - Anaconda cloud (Jupyter)
 - Google Colab (Jupyter)
- Matlab

Hardware

- CPU
- GPU
- TPU

(*) IDE: integrated development environment

Experience previa con software estadistico

Software(s) que usan más frecuentemente

Objetivos de aprendizaje

Desarrollar habilidades para analizar datos cuantitativos con ML y MLG en la práctica:

- Comprender qué herramientas cuantitativas están disponibles
- Entender cuándo usar esas herramientas
- Saber cómo usar esas herramientas

¿Cuáles son sus objetivos?

¿Qué les gustaría discutir y aplicar en la clase?

Visión de enseñanza y aprendizaje en la clase

Discutir y cubrir el material relacionado con técnicas estadísticas básicas, conocidas y comúnmente aplicadas, pero también métodos estadísticos en las fronteras de la ciencia—en el marco del UDL, la pirámide de Miller y la taxonomía de Bloom—mediante el alineamiento constructivo y el aprendizaje activo:

"Learning [...] has to enable us to work at the boundary of what we know or [...] to go beyond those boundaries, or even reconstruct the very framework of our knowledge."

Fear of a Black Universe (p. 6, ch. 1, Escape From the Jungle of No Imagination), Stephon Alexander, 2021

UDL: Diseño universal para el aprendizaje inclusivo

No hay un solo método de enseñanza que sea eficaz para tod@s, por lo que se deben ofrecer múltiples formas de representación, expresión e involucramiento (engagement)

AFFECTIVE NETWORKS:
THE WHY OF LEARNING

RECOGNITION NETWORKS:
THE WHAT OF LEARNING

STRATEGIC NETWORKS:
THE **HOW** OF LEARNING

Engagement

For purposeful, motivated learners, stimulate interest and motivation for learning.

Representation

For resourceful, knowledgeable learners, present information and content in different ways.

Action & Expression

For strategic, goal-directed learners, differentiate the ways that students can express what they know.

Alineamiento constructivo (objetivos SMART)

Aprendizaje activo (active learning)

Pirámide de Miller para para medir el progreso en la adquisición de habilidades y conocimientos

C: Conocimiento conceptual

H: Habilidad

A: Actitudes (valores, comportamientos y enfoques éticos)

La Taxonomía de Bloom para esta clase de maestría

Versión revisada para incluir el conocimiento*:

- Factual
- Conceptual
- Procedural
- Metacognitivo

(*) Anderson, L. W., Krathwohl, D. R., & Bloom, B. S. (2001). A taxonomy for learning, teaching, and assessing: A revision of Bloom's taxonomy of educational objectives. New York: Longman.

Diagnóstico de conocimientos factuales y metacognitivos

Objetivo:

- Evaluar la necesidad de profundizar la información factual para fortalecer los conocimientos conceptuales (sobre las relaciones entre conceptos factuales)
- Diagnosticar la presencia del efecto
 Kruger-Dunning-Sanchez (aka efecto Dunning-Kruger)

Kruger, J., & Dunning, D. (1999). Unskilled and unaware of it: how difficulties in recognizing one's own incompetence lead to inflated self-assessments. Journal of personality and social psychology, 77(6), 1121.4(1), 10.

Sanchez, C., & Dunning, D. (2018). Overconfidence among beginners: Is a little learning a dangerous thing?. Journal of personality and Social Psychology, 11

Kruger-Dunning y Sanchez-Dunning

Alineamiento constructivo

Práctica 1: resolución

```
~~~~~~~~ Practica 1 resuelta ~~~~~~~~~~~~~~~
10 -
11
12
    # Definiendo semilla y numero de observaciones:
      set.seed(123)
13
14
      n <- 100 # numero de observaciones
15
16
    # Ejercicio 1.
17
      beta0 = 2.5
18
      beta1 = 3.5
19
      e = rnorm(n, mean = 0, sd = 1)
20
      x = rnorm(n, mean = 0.5, sd = 1.5)
      y = beta0 + beta1*x + e
21
22
      datos1 \leftarrow data.frame(x = x, y = y)
23
      modelo lineal 1 <- lm(y \sim x, data = datos1)
      summary(modelo lineal 1)
24
```

Práctica 1: resolución

```
# Ejercicio 2:
26
27
      beta0 = 0.5
28
      beta1 = 0.01
29
     e = rnorm(n, mean = 0 , sd = 15)
      x = rnorm(n, mean = 0.5, sd = 1.5)
30
31
      y = beta0 + beta1*x + e
      datos2 \leftarrow data.frame(x = x, y = y)
32
      modelo_lineal_2 \leftarrow lm(y \sim x, data = datos2)
33
      summary(modelo lineal 2)
34
35
    # Ejercicio 3:
36
37
      beta0 = 2.5
38
      beta1 = 0.1
      beta2 = -0.5
39
40
      e = rnorm(n, mean = 0, sd = 10)
      x1 = rnorm(n, mean = 0.5, sd = 1.5)
41
      x2 = rnorm(n, mean = -2.5, sd = 1)
42
43
      y = beta0 + beta1*x1 + beta2*x2 + e
      datos3 <- data.frame(x = x, y = y)
44
      modelo_lineal_3 <- lm(y ~ x1 + x2, data = datos3)
45
      summary(modelo lineal 3)
46
```

Práctica 1: resolución

```
# Ejercicio 4:
48
      url <- "https://raw.githubusercontent.com/rogon666/UMSA/main/MLMLG/datos/ejercicio01.csv"</pre>
49
      download.file(url, destfile = "ejercicio01.csv")
50
      datos4 <- read.csv("ejercicio01.csv")</pre>
51
      datos4$x2 dummy <- ifelse(datos4$x2 == "si", 1, 0)</pre>
52
53
      datos4$x2 <- NULL
      modelo_lineal_4 <- lm(y \sim x1 + x2_dummy, data = datos4)
54
      summary(modelo lineal 4)
55
```