(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 26.08.1998 Bulletin 1998/35

- (51) Int CI.6: G02B 27/22, H04N 13/00
- (21) Application number: 98301174.3
- (22) Date of filing: 18.02.1998
- (84) Designated Contracting States: AT BE CH DE DK ES FI FF GB GR IE IT LI LU MC NL PT SE Designated Extension States AL LT LV MK R DS 31
- (30) Priority: 20,02,1997 JP 36328/97
- (71) Applicant: CANON KABUSHIKI KAISHA Tokyo (JP)
- (72) Inventor. Sudo, Toshiyuki Ohta-ku, Tokyo (JP)
- (74) Representative:
 Beresford, Keith Denis Lewis et al
 BERESFORD & Co.
 2-5 Warwick Court
 High Holborn
 London WC1R 5DJ (GB)
- (54) Image display system, information processing apparatus, and method of controlling the same
- (67) A stereoscopic image display apparatus for displaying a stereoscopic image, which is obtained by alternately arranging stripe paraliax images f and L corresponding to the right and left eyes, in a window includes a parallax barrier for a stereoscopic vision. When the display position of a window including a stereoscopic

image which is set after the window is opened or moved and the positions of the right-eye and left-eye stripes of a parallax barrier have a relationship which does not allow a proper stereoscopic vision, the display position of the window is moved by one stripe in the horizontal direction.

FIG.8

Printed by Jouve, 75001 PARIS (FR)

Description

BACKGROUND OF THE INVENTION

FIELD OF THE INVENTION

The present invention relates to a stereoscopic displey apparatius which allows an observer to observe a stereoscopic image by using the parallax between the right and left eyes, an information processing apparatius, a host computer for controlling the display apparatius, and a method therefor, thereby providing an operation environment for compridable stereoscopic display.

BELATED BACKGROUND ART

In general, a stereoscopic image display apparatus of the parallax barrier scheme is known well as an apparatus for displaying a stereoscopic image. The parallax barrier scheme is disclosed in S. H. Kaplan, "Theory 20 of Parallax Barriers, *, J. SMPTE, Vol. 59, No. 7, pp. 11 - 21 (1952). According to this scheme, a striped image obtained by alternately arranging at least right and left images of a plurality of parallax images from a plurality of viewpoints into a vertically striped pattern is observed 25 through a slit pattern (called a parallax barrier) having predetermined opening portions placed at a predetermined distance from this image. With this operation, the observer observes images corresponding to the respective eyes with the corresponding eyes. Japanese Patent 30 Laid-Open Nos. 3-119889 and 5-122733 disclose stereoscopic display apparatuses in which a parallax barrier is electronically generated by a transmission type liquid crystal display device and the like, and the shape and position of each stripe are variably controlled to improve 36 the compatibility with conventional 2D image display apnaratusas

Fig. 19 shows the basic arrangement of the storocopic image felipley apparatus (sclosed in Japanese Patent Laid-Open No. 3-116889. This stereoscopic image display apparatus includes a transmission type liquid crystal display apparatus to 101 for displaying images and an electronic paraliax barrier 103 constituted by a transmission type liquid crystal display placed on the liquid crystal display apparatus 101 sandwiching a spacer 102 having a thickness of

The transmission type liquid crystal display appears to 10 displays a vertically stribed image consisting of parallax images sensed from two or more directions. A parallax barrier pattern is formed at an arbitrary position on the barrier surface of the electronic parallax barrier 103 upon designation of X and Y addresses by a control means such as a microcompute; thereby allowing a stereoscopic vision based on the principle of the above parallax barrier is made colorless and transparent throughout the entire image display area, a 2D image can be displayed, thus realizing the compatibility be-

tween the 2D display and 3D display.

An apparatus capable of performing mixed display of SD and 2D images within a single frame is disclosed in Japanese Patent Laid-Open No. 5-12273. In this apparatus, as shown in Figs. 20A and 20B, a striped barrier pattern can be generated only in a partial area of the electronic parallex barrier 103.

The lenticular scheme is also known widely as a means for displaying a stereoscopic image by using the parallax between the right and left eyes of an observer as in the parallax barrier scheme. In the lenticular scheme, a lenticular lens constituted by an array of many semicylindrical lenses is placed on the front surface of a display to patallay leoparate an image len in images for the right and left eyes, thereby allowing the observer to observe a testreoscopic image. In the display of the lenticular scheme as well, an image displayed on the screen is a vertically striped image obtained by alternately arranging right and left images.

As a stereoscopic display using a horizontally striped image obtained by alternately arranging right and left images, Cyberbook (trademark) is available from Vrex Inc. In this display, as shown in Fig. 21, a striped polarizing plate 202 obtained by alternately arranging two types of polarizing plates, whose polarization axis directions are perpendicular to each other, in units of horizontal lines is placed on the front surface of the liquid crystal display of a notebook personal computer 201. A displayed image is observed through polarization glasses 203 having the two types of polarizing plates corresponding to those used for the striped polarizing plate 202 arranged for the right and left eyes. (In Fig. 21, the arrows indicate polarizing direction of the polarizing direction of the polarizing plates.) With this arrangement, of the displayed image, lines to be seen with the right and left eyes of the observer can be separated/selected. For example, the odd lines of the liquid crystal display are used a right-eye image display lines, and the even lines are used as left-eye image display lines to allow the observer to separately observe images formed by the respective lines with the corresponding

eves. Various environments in which 3D displays are used can be conceived. Assume that an entire screen is occupied by a single type of image as in the case of a television set. In this case, the relative positional relationship between a displayed image and each constituent element of the apparatus always remains the same. Once, therefore, the observer sets his/her eves at an optimal observation position, he/she can continuously obtain a proper stereoscopic vision. Assume that a plurality of windows are opened on one screen, and images are to be displayed in the respective windows like images handled in a computer. In this case, as the positions of the windows change, the relationship between each image and each constituent element of the apparatus changes. As a result, the optimal observation position changes, and hence the observer cannot always obtain a proper stereoscopic vision.

When, for example, a barrier 1 of the parallax barrier scheme and a striped image 2 displayed on the image display apparatus mantlain a proper relative positional relationship, as shown in Fig. 22, light forming an image for the left eye propagates to a left eye 3, and light forming an image for the right eye propagates to a right eye 4, As a result, the observer can properly recognize a stereoscopic image.

If, however, the relative positions of the barrier 1 and to striped image 2 displeyed on the image display apparatus are shifted by one pitch in the horizontal direction with respect to the positions in Fig. 2a, se shown in Fig. 2a. light forming an image for the left eye propagates to the right eye 4, and light forming an image for the right eye propagates to the left eye 3. As a result, a "reversed stereoscopic vision" for the observer is produced.

When a plurality of windows are opened, and stereoscopic images are displayed in the respective windows, in particular, stereoscopic visions may be properly produced in some windows, but reversed stereoscopic visions may be produced in other windows.

When windows are opened, and images are displayed in the respective windows in this manner, since the relative positions of the barrier 1 and the striped image 2 are likely to change, the possibility of the occurrence of a reversed stereoscopic display scheme, as well as the parallax barrier scheme, in which the relative positional relationship between a displayed image and other cotical earls is important.

The same applies to Cyberbook available from froe, which uses a frontizonalisy striped 'parallax image as a striped image. In this case, when, tor example, the relative positions of a striped plentiring plate and a striped image displayed on the image display apparatus are shifted by one pitch in the vertical direction, a reversed stereoscopic vision is produced.

SUMMARY OF THE INVENTION

The present invention has been made in consideration of the above problems, and has as its object to provide an image display system and an information processing apparatus which can always allow a proper stereoscopic vision by controlling the airrangement of the stripe parallex images of a stereoscopic image delayed in a window to be sulted to a display apparatus, and a method of controlling the system and the apparatus.

It is another object of the present invention to provide an information processing appearatus and method which can always allow an observer to have a proper stereoscopic vision even with a change in the position of each window when several windows are opened on the screen, and images are displayed in the windows like images handled in a computer. It is still another object of the present invention to allow a stereoscopic vision in units of windows.

It is still another object of the present invention to always allow a proper stereoscopic vision without changing the contents displayed in a window.

It is still another object of the present invention to always allow a proper stereoscopic vision without changing the display position of a window.

It is still another object of the present invention to allow a proper stereoscopic vision while a window is moved.

According to an aspect of the present invention, in ordor to achieve the above objects, there is provided an image display eystem capable of performing stereoscopic display, comprising stereoscopic image having stripe means for displaying a stereoscopic image having stripe parallax images arranged for right and left eyes, stereoscopic vision control means for controlling directivity of the stereoscopic image such that stripe images of the stereoscopic image as with the stripe images of the stereoscopic image are respectively observed with the right and left eyes, and changing means for, when a relative positional relationship between the stereoscopic image are the stereoscopic vision control means is not a proper relationship with which an observer can obtain a proper stereoscopic vision, danging the relative positional relationship to realize a proper stereoscopic vision.

According to another aspect of the present invention, there is provided an information processing apparatus which can be connected to an image display apparatus having stereoscopic vision control means tor controlling directivity of a stereoscopic image to allow an observer to observe stripe images of the stereoscopic image with right and left eyes of the observer, respectively, comprising generation means for generating image data including a window in which stripe parallax images corresponding to the right and left eyes are arranged, determination means for determining whether a relative positional relationship between the window and the stereoscopic vision control means of the image display apparatus is a proper positional relationship which allows a proper stereoscopic vision, and adjustment means for, when the determination means determines that the relationship is not the proper relationship which allows a proper stereoscopic vision, adjusting the relative positional relationship to allow a proper stereoscopic vision.

According to still another aspect of the present invention, there are provided control methods for the above image display system and information processing apparatus.

Other features and advantages of the present invention will be apparent from the following description taken in conjunction with the accompanying drawings, in which like reference characters designate the same or similar parts throughout the figures thereof.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in and constitute a part of the specification, Illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.

- Fig. 1 is a block diagram showing the arrangement of a computer system according to the first embodiment of the present invention:
- Fig. 2 is a view showing an image for the laft eye; Fig. 3 is a view showing an image for the right eye; Fig. 4 is a view showing a vertically striped parallax image obtained by dividing the parallax images in Figs. 2 and 3 into vertical stripes, and alternately arranging them:
- Fig. 5 is a view showing a horizontally striped paratlax image obtained by dividing the parallax images in Figs. 2 and 3 into horizontal stripes, and alternately arranging them;
- Fig. 6 is a view showing a state in which the positions of right and left stripe images defined by a directivity control means in accordance with the display position of a window for displaying a stereoscopic image coincide with the right and left stripes 26 of the stereoscopic image:
- Fig. 7 is a view showing a state in which the positions of right and left stripe images defined by a directivity control means in accordance with the display position of a window for displaying a stereoscopic image do not coincide with the right and left stripes of the stereoscopic image;
- Fig. 8 is a flow chart showing an operation procedure performed by a host computer in the first embodiment:
- Fig. 9 is a view for explaining fins adjustment of a window position for a vertically striped parallax im-
- Fig. 10 is a view for explaining fine adjustment of a window position for a horizontally striped parallax 40 image:
- Fig. 11 is a flow chart showing an operation procedure performed by a host computer in the second embodiment of the present invention;
- Fig. 12 is a view for explaining how the contents of 45 a displayed image in a window are changed in the second embodiment;
- Fig. 13 is a view for explaining how the contents of a displayed image in a window are changed in the second embodiment;
- Fig. 14 is a view for explaining how the contents of a displayed image in a window are changed in the second embodiment;
- Fig. 15 is a view for explaining how the contents of a displayed image in a window are changed in the second embodiment;
- Fig. 16 is a view for explaining how the contents of a displayed image in a window are changed in the

second embodiment;

- Fig. 17 is a flow chart showing a control procedure performed by a host computer in the third embodiment of the present invention;
- Fig. 18 is a flow chart showing a control procedure for preventing a reversed stereoscopic vision during a window dragging operation in the fourth embodiment of the present invention;
- Fig. 19 is a view showing the basic arrangement of the stereoscopic image display apparatus disclosed in Japanese Patent Laid-Open No. 3-119889;
- Figs. 20A and 20B are views for briefly explaining the stereoscopic image display apparatus disclosed in Japanese Patent Laid-Open No. 5-122733:
 - Fig. 21 is a perspective view for briefly explaining a stereoscopic image display apparatus using Cyberbook (trademark).
- Fig. 22 is a view showing a state in which the relative positions of a barrier and a striped image in the parallax barrier scheme have a proper relationship; and
- Fig. 23 is a view showing a state in which the relative positions of the barrier and the striped image in the parallax barrier scheme have an improper relationship.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Preferred embodiments of the present invention will now be described in detail in accordance with the accompanying drawings.

<First Embodiment>

Each of the following embodiments will exemplify a stereoscopic display apparatus for allowing an observer to observe a stereoscopic image by using the parallax between the right and left eyes and a computer system including a host computer for controlling the stereoscopic display apparatus.

Fig. 1 is a block diagram showing the arrangement of a computer system according to the first embodiment. Referrings for jis. 1 reference numeral 10 denotes a host computer, 20, a stereoscopic display appearatus; 11, a CPU for realizing various types of control operations performed by the host computer 10, 12, a ROM storing a tool to program, which is executed when the CPU 11 is started, and various types of data; and 13, a RAM which serves as a main memory (or storing control programs executed by the CPU 11 and provides a work area used when the CPU 11 executes various types of control op-6 reations. Reference numerals 14 and 15 respectively denote a keyboard and a pointing device, which are used to input commands from the user. Reference numeral 16 denotes an external memory such as a hard

disk, which is used to store verious application programs and data. Note that each application program stored in the external memory 16 is loaded into the main memory area of the FAM 13 when it is executed by the CPU 11. Reference numeral 17 denotes a display interface, which is connected to the stereoscopic display apparatus 20 in this embodiment, and 18, a bus for connecting the respective components of the host computer 10 to each other.

The stereoscopic display apparatus 20 includes an interface 21 for receiving a video signal and position information indicating a stereoscopic display position from the host computer 10. Note that the video signal and the position information are respectively supplied to drivers 22 and 23. The driver 22 controls a transmission type liquid crystal display 101 of the stereoscopic display apparatus on the basis of the input video signal to display an image corresponding to the video signal. The driver 23 controls an electronic parallax barrier 103 on the basis of the input position information to display a parallax 20 barrier pattern in the stereoscopic display area indicated by the position information. Note that the transmission type liquid crystal display 101 and the electronic parallax barrier 103 are the same as those described with reference to Fig. 19. When the electronic parallax barrier 103 is driven, the stripes of the parallax barrier pattern are formed at fixed positions. That is, the display area for the barrier pattern is controlled in accordance with position information, but the positions at which the black stripes can be produced are fixed.

The communication unit constituted by the above interfaces 17 and 21 transmits his above video signal and position information. This communication unit may be a combination of a conventional video interface and serial interface (R5232C) or the likely or a dedicated in serial contraction (and interface) and contraction of the contracti

Note that above video signal includes both a general 2D image and a 3D image allowing a steroscopic vision (e.g., the above striped image constituted by two types of parallax images). In this embodiment, 2D and 3D images are displayed in units of windows. In addition, the above position information indicates the size and position of the area in which the above stereoscopic image is present. If, therefore, a parallax barrier pattern is displayed in the area, of the electronic parallax barrier 103, which is indicated by position information, and the image based on a video signal is displayed on the transmission type liquid crystal display 101, the 3D image contained in the video signal can be stereoscopically viewed, and the general 2D image can be properly displayed,

In this embodiment, an apparatus using the parallax barrier scheme will be mainly described. As is obvious, however, the present invention can also be applied to the Cyberbook (trademark) scheme described with reference to Fig. 21. Note that the Cyberbook scheme does not require the above position information because the host computer 10 and the stereoscopic display appara-

tus 20 are integrated.

In a stereoscopic display apparatus designed to allow the observer to observe a stereoscopic image by using the parallax between the right and left eyes, the images to be displayed on the image display screen are roughly classified into two types, i.e., a vertically striped parallax image and a horizontally striped parallax image. These images will be further described below. For example, Fig. 2 shows an image for the left eye: and Fig. 3, an image for the right eve. A vertically striped parallax image is obtained by dividing the images in Figs. 2 and 3 into vertical stripes, and alternately arranging and synthesizing them. A horizontally striped image is obtained by dividing the images in Figs. 2 and 3 into horizontal stripes, and alternately arranging and synthesizing them (referring to Figs. 4 and 5, reference symbols L and R denote images for the left and right eyes, respectively).

Each striped image can be divided into right and left images when combined with a directivity control means such as a barrier, a lenticular lens, or a striped polarizing plate. If, however, the directivity control means and a striped image are not set at proper relative positions, the right and left images are not observed with the corresponding eyes, as described with reference to Figs. 22 and 23. Since the directivity control means is a component incorporated in the stereoscopic display apparatus, the position of the means is basically fixed. In general, when an image is to be handled in a computer, a window which can be moved to an arbitrary position is opened. and the image is displayed in the window. For this reason, the directivity control means and the striped image may not be set at proper relative positions depending on the position of the window.

Assume that in a stereoscopic display apparatus using vertically striped parallax images, right-eye strip images (the areas indicated by "R" and surrounded with the solid lines in a window 6) are superimposed on the right-eye image display areas (the areas indicated by "R" and surrounded with the dotted lines in a screen 7) of the directivity control means (coinciding with the screen 7 when viewed from the front surface side), as shown in Fig. 6. In this case, the observer can obtain a proper stereoscopic vision. In contrast to this, assume that the window 6 for displaying an image is located at the position in Fig. 7 within the screen 7, and the righteye strip images (the areas indicated by "R" and surrounded with the solid lines in the window 6) are superimposed on the left-eye image display areas (the areas indicated by "L" and surrounded with the dotted lines in the screen 7) of the directivity control means. In this case, the observer cannot obtain a proper stereoscopic vision, but has a reversed stereoscopic vision (the lefteve image is seen with the right eye, and the right-eye image is seen with the left eye).

To eliminate this inconvenience, in this embodiment, the following control is performed by the computer. Fig. 8 is a flow chart showing an operation procedure performed by the host computer in the first embodiment. In step S10, the host computer 10 detects that a window for stereoscopic image display is opened or its position is moved. In step S11, the host computer 10 checks the position of the window after it is opened or moved to detect whether the window is at a proper position for a stereoscopic vision. That is, if the right-eye and left-eye image display areas determined with respect to the screen 7 coincide with the display positions of the respective images in the window 6, as shown in Fig. 6, the host computer 10 determines that the window is at the proper position. If the right-eye and left-eye image display areas determined with respect to the screen 7 do not coincide with the display positions of the respective images in the window 6, as shown in Fig. 7, the host computer 10 determines that the window is at an improper position. Upon determining that the window is at the proper position, the host computer 10 continues the display state. Otherwise, the flow advances to step S12 to automatically perform fine adjustment of the window position. Although not shown in the flow chart, if the opened or moved window is not for stereoscopic image display, the flow does not advance to step S11 and the subsequent steps.

A method of detecting the generation or movement 25 of a window and checking its position depends on the OS, the application, or the like used in the computer. Assume that an application which operates on "Windows 3.1" (trademark), which is an OS available from Microsoft Corporation, is to be created by using Visual 30 Basic Ver.2.0 (trademark), which is an application development language available from Microsoft Corporation. In this case, a window is recognized as an object called 'Form'. The generation of a window is defined as an event represented by Form_Load(), and the move- 35 ment of a window is defined as an event represented by Form Paint(), If, therefore, a program is created such that when the execution of each event is confirmed, a function for detecting the position of the window (Form) is called, the current position of the window which is 40 moved or generated can be obtained.

A method of finely adjusting the position of a window will be described next with reference to Figs. 9 and 10. Fig. 9 explains fine adjustment of a window position for a vertically striped parallax image. Fig. 10 explains fine adjustment of a window position for a horizontally striped parallax image.

When a vortically striped parallax image is to be displayed, the window is moved to the right or left the one stripe pitch in the horizontal direction, as shown in Fig. 9. In many cases, the pend of stripe images concides with the minimum pixel pitch of an image display surface. In this case, therefore, it suffices if the window is moved to the right or left by one past. With this operation, the reversed steroscopic vision state is corrected to the proper storoscopic vision state.

When a horizontally striped parallax image is to be displayed, the window is moved up or down by one stripe pitch in the vertical direction within the screen, as shown in Fig. 10. In many cases, the period of stripe images coincides with the minimum pixel pitch tof the image display surface. In this case, therefore, it suffices if the window is moved up or down by one pixel. With this operation, the reversed stereoscopic vision state is corrected to the proper stereoscopic vision state.

Assume that assignment information determined by the relative positional relationship with the electronic parallax barrier 103 as a directivity control means and indicating the assignment of positions, on the transmission type likulout opstal display 101, where images for the right and left eyes are to be displayed are stored in the memory of the host computer 10 in advance. The determination processing in step S11 is performed on the basis of this assignment information may be notified from the seriescoppic display apparatus 20 by communication, or may be held in a driver program added to the steroescopic display apparatus 20.

When a window is automalically moved in this manner, the amount of movement is very small in most cases. For this reason, such movement is hardly recognized by the observer.

As described above, according to the first embodiment, there is provided a stereoscopic display which can automatically maintain a proper stereoscopic vision without attracting observer's attention.

<Second Embodiment>

The second embodiment of the present invention will be described next. In the second embodiment as well, the present invention is applied to a stereoscopic display apparatus 20 which allows an observer to observe a stereoscopic image by using the parallax between the right and left eyes and a computer system including a host computer 10 for controlling the display apparatus.

In the first embodiment, a proper stereoscopic vision state is maintained by automatically moving a window upon detection of the window position. In contrast to this, in the second embodiment, a proper stereoscopic vision is maintained by changing the contents of an image to be displayed after detection of the position of a window.

Fig. 11 is a flow chart showing an operation procedure performed by the host computer in the second embodiment. In atep \$20, the host computer 10 detects that a window for stereoscopic image display is opened its position is moved. Opening or movement of a window is detected in the above manner. In step \$21, the host computer 10 checks the position of the window to detect whether the window is at a position where a proper stereoscopic vision is realized. If the window position is at a proper position, the current state is maintained. If the window position is not at a proper position, the flow advances to set \$220 a utomatically change the contents.

of a displayed image.

Processing of changing the contents of the displayed image in step S22 will be described in detail next. Figs. 12 to 16 explain how the contents of the displayed image within the window are changed.

11

When the displayed image is a vertically striped parallax image, one of the following changing operations is nerformed

(1) As shown in Fig. 12, the image in the window is moved to the right by one stripe pitch in the horizontal direction within the screen. Obviously, the image in the window may be moved to the left by one stripe pitch.

(2) The image is displayed upon interchange of the L and R areas.

In method (1), since the period of stripe images coincides with the minimum pixel pitch of an image display screen in most cases, the image is moved to the right or left by one pixel. In this case, the position of the window is not changed, but only the image in the window is moved

When only the displayed image filling the window is moved, an area without any image data is inevitably displayed. In such a case, this area may be displayed as a solid black area, as shown in Fig. 13.

Alternatively, as shown in Fig. 14, only an area smaller 25 than the original striped image by one stripe in the horizontal direction is displayed in advance in the window. and the data in the area outside the window, which has not been displayed, is displayed when the image needs to be moved. In the case shown in Fig. 14, the image in 30 the window is moved to the left

In method (2), since the left and right images of the striped image are alternately arranged, the image is displayed upon interchanging the left and right stripes

When, for example, the left-eye image (Fig. 2) and 35 the right-eye image (Fig. 3) are to be synthesized into a striped image, two types of images, i.e., the image in Fig. 4 and the image in Fig. 15, are generated by changing the order of right and left stripes. If, therefore, one of the images is displayed, and a reversed stereoscopic 40 vision state occurs, a proper stereoscopic vision state can be set by interchanging one image and the other image.

When the display image is a horizontally striped parallax image, one of the following changing operations is performed.

(1) As shown in Fig. 16, the image in the window is moved by one stripe pitch in the vertical direction within the screen (up-and-down direction).

(2) The image is displayed upon interchanging the 50 L and R areas.

Since the contents of the changing operations are the same as those in the case of the vertically striped parallax image, a detailed description thereof will be omitted.

in most cases, the contents of such a displayed image can be automatically changed by slightly moving the image. Therefore, the observer hardly recognize this movement.

According to this embodiment as well, therefore, there is provided a stereoscopic display which can automatically maintain a proper stereoscopic vision without attracting observer's attention.

<Third Embodiment>

The third embodiment of the present invention will be described next. In the third embodiment as well, the present invention is applied to a stereoscopic display apparatus 20 which allows an observer to observe a stereoscopic image by using the parallax between the right and left eyes and a computer system including a host computer 10 for controlling the display apparatus.

in the first and second embodiments, a reversed stereoscopic vision is prevented by moving or changing a displayed image. In contrast to this, in the third embodiment, a stereoscopic vision state is maintained by changing the state of a directivity control means upon detection of the position of a window. The stereoscopic display used in the third embodiment is therefore designed to actively change the relative positional relationship between the image display surface and the directivity control means. In the parallax barrier scheme, for example, if the barrier unit has a mechanism for allowing the unit to mechanically move while keeping parallel to the screen, such a state change can be made. Alternatively, the electronic parallax barrier may be designed to change the stripe display positions.

Fig. 17 is a flow chart showing a control procedure performed by the host computer in the third embodiment. When the host computer 10 detects in step S30 that a window is opened or moved, the flow advances to step S31. In step S31, if it is determined on the basis of the position of the window after it is opened or moved that the window is a window to be subjected to stereoscopic image display, the host computer 10 checks the position of the window after it is opened or moved, and determines whether the window is at a position where a proper stereoscopic vision is obtained. If it is determined that the window is at the proper position, the host computer 10 continues the current state. Otherwise, the flow advances to step S32 to automatically change the state of the directivity control means.

The state of this directivity control means is changed as follows.

When the displayed image is a vertically striped parallax image, the directivity control means is moved to the right or left by one pitch of the periodic structure of the directivity control means in the horizontal direction within the screen. Note that the positions of the window and the image are not changed in this case.

When a stereoscopic display which can generate a striped barrier pattern at an arbitrary position on the display, as disclosed in Japanese Patent Laid-Open No. 5-122733, is used, since a directivity control means can be electronically generated at an arbitrary position, the

55

above operation of changing the state of the directivity control means can be performed more easily.

As described above, in the third embodiment, the relative positional relationship between a parallax barrier and a striped parallax image is detected to automatically perform active control on the parallax barrier.

When the displayed Image is a horizontally striped parallax image, the directivity control means is moved up or down by one pitch of the periodic structure of the directivity control means in the vertical direction within the screen. The contents of this chenging operation are the same as those in the case of the vertically striped parallax image.

In most cases, the contents of such a displayed image can be automatically changed by slightly moving the image. Therefore, the observer hardly recognize this movement. According to this embodiment, similar to the inst ain decond embodiments, therefore, there is provided a steroescopic display which can automatically maintain a proper stereoscopic vision without attracting observer's attention.

<Fourth Embodiment>

The fourth embodiment of the present invention will be be described next. In the first to third embodiment, when position of a window, the contents of an image, and the state of the directivity control means are changed in accordance with the static window position in the fourth embodiment, even when the position of a window dynamically changes, a proper steroscopic vision state is maintained by performing the above state changing contentions.

In general, when the cursor pointer of a mouse is placed on the life bar on the upper portion of a window. 38 and moved to a desired position in a clicked state, the window moves together with the cursor pointer set if the window in the state of the movement of the mouse. An operation of moving a window together with the cursor pointer is called dragging. An operation of releasing a 40 window by releasing the button at a proper position after dragging is called dropping.

The position of a window dynamically changes in accordance with the movement of the cursor pointer while the window is drapged. This window and the image in the window may be kept displayed during this dragging operation. When, therefore, the image in the window is a striped parallax image, a reversed stereospic vision must also be prevented during dragging of the window by some means. Fig. 18 is allow chart showing a control procedure for preventing a reversed stereoscopic vision during dragging of a window. When the start of the movement of a window by oranging is cottected in step S41, file schecked in step S42 whether the current position of the window is a position where a proper stereoscopic vision can be realized. If YES in step S42, the flow advances to steps S42, the flow advances to steps.

If it is determined that the window is at a position

where a reversed stereoscopic vision occurs the flow advances to test p841 to exceed a corresponding state changing operation. In this case, the "corresponding state changing operation in their stereoscopic who changing the window position (tilts embodiment), changing the contents of the image in the window (second embodiment) or changing the state of the stereoscopic (third embodiment) which is described in the corresponding embodiment.

The flow then advances to step S44 to check whether the dragging operation is continued. If YES in step S44, the flow returns to step S42. If NO in step S44, this processing is terminated.

Although the basic policy of the above processing does not greatly differ from that in the first to third embodiment, it should be noted that detection of the position of a window, verification of the window position, and a corresponding state changing operation are performed at very high speed. This is because, the position of a window incessantly changes from proper stereoscopic vision position to improper positions while the window position dynamically changes owing to dragging, and the observer cannot continuously obtain a proper stereoscopic vision unless a corresponding state changing operation is performed to prevent a reversed stereoscopic vision every-time the window position is set at an improper position. In this embodiment, therefore, the window detection period during dragging is set to be very short to complete verification of the window position and a corresponding state changing operation within a period of time shorter than the above period.

As described above, according to the fourth embodiment, there is provided a stereoscopic display which can automatically maintain a proper stereoscopic vision even while the observer is moving a window.

As described above, in the computer system indusing the steroescopic displey apparatus which allows the observer to observe a steroescopic image by using the observer to observe a steroescopic image by using the parallax between the right and left yeas, and the host computer for controlling the display apparatus, when several windows are opened on the screen, and steroscopic images are displayed in the windows, the observer can always have a proper steroescopic vision in a given window even if the position of the window chang-

In both the parallax barrier scheme and the lenticular scheme, position pixel unit width on the image display surface corresponds to the eye width of the observer. Since an image having a size of several jurn is enlarged into an image having a size of several jurn is enlarged into an image having a size of several ern, a conplicth shift of the displayed image as in the above embodiments greatly influences the optimal observation position. That is, adjustment by such a one-pitch shift is very effective.

Note that the present invention may be applied to either a system constituted by a plurality of equipments (e.g., a host computer, an interface device, a reader, a

printer, and the like), or an apparatus consisting of a single equipment (e.g., a copying machine, a facsimile apparatus, or the like).

The objects of the present invention are also achieved by supplying a lorage mellum, which records a program code of a software program that can realize the functions of the above-mentioned entrodiments to the system or apparatus, and reading out and executing the program code stored in the storage medium by a computer for a CPU or MPU) of the system or apparatus.

In this case, the program code itself read out from the storage medium realizes the functions of the abovementioned embodiments, and the storage medium which stores the program code constitutes the present ¹⁵ invention.

As the storage medium for supplying the program code, for example, a floppy diek, hard diek, optical diek, magneto-optical diek. CD-ROM, CD-R, magnetic tape, nonvolatille memory card, ROM, and the like may be 20 used.

The functions of the above-mentioned embodiments may be realized not only by executing the readout program code by the computer but also by some or all of actual processing operations executed by an OS (operating system) running on the computer on the basis of an instruction of the program code.

Furthermore, the fundione of the above-mentioned embodiments may be realized by some or all of actual processing operations executed by a CPU or the like arranged in a function extension unit, which is inserted in or connected to the computer, after the program code read out from the storage medium is written in a memory of the extension board or unit.

As has been described above, according to the present invention, the position of a striped parallax image as a stereoscopic image displayed in a window can be set at a position suited to the display apparatus.

According to the present invention, therefore, when several windows are opened on the screen, and images are displayed in the windows as in the case of images handled in the computer, the observer can always have a proper stereoscopic vision in a given window even if the position of the window changes.

As many apparently widely different embodiments of the present invention can be made without departing from the spirit and scope thereof, it is to be understood that the invention is not limited to the specific embodiments thereof except as defined in the claims.

Claims

 An image display system capable of performing stereoscopic display, characterized by comprising:

stereoscopic image display means (10, 21, 22,

101) for displaying a stereoscopic image having stripe parallax images arranged for right and left eyes.

stereoscopic vision control means (10, 21, 23, 103) for controlling directivity of the stereoscopic image such that stripe images of the stereoscopic image are respectively observed with the right and left eyes, and

changing means (S11, S12, S21, S22, S31, S32, S42, S43) for, when a relative positional relationship between the stereoscopic image and said attereoscopic vision control means is not a proper relationship with which an observer can obtain a proper stereoscopic vision, changing the relative positional relationship to realize a proper stereoscopic vision.

- The system according to claim 1, wherein said stereoscopic image display displays a stereoscopic image in a window opened at a desired position within a display screen.
- The system according to claim 2, wherein said changing means moves the window by a distance corresponding to a stripe pitch of the stripe image in a direction of stripe width of the stripe image (S12).
- The system according to claim 3, wherein an amount of movement of the window is equal to a minimum pixel pitch of said stereoscopic image display means.
- 5. The system according to claim 3, wherein the stripe image is constituted by a horizontal stripe image in the screen, and a direction in which the window is moved is a vertical direction in the screen.
- 6. The system according to claim 3, wherein the striped image is constituted by vertical stripe images in the screen, and a direction in which the window is moved is a horizontal direction in the screen.
- 7. The system according to claim 2, wherein said changing means moves the stereoscopic image in the window by a distance corresponding to length of a short side of each of the stripe images constituting the stereoscopic image in a direction perallel to a short side of the stripe image (S22).
- The system according to claim 7, wherein an amount of movement of the stereoscopic image in the window is equal to a minimum pixel pitch of said stereoscopic image display means.
- The system according to claim 7, wherein the stripe image is constituted by a horizontal stripe image in the screen, and a direction in which the stereoscop-

ic image in the window is moved is a vertical direction in the screen.

- 10. The system according to claim 7, wherein the stripod image is constituted by vertical stripe images in the screen, and a direction in which the stereoscopic image in the window is moved is a horizontal direction in the screen.
- 11. The system according to claim 2, wherein said changing means interchanges odd and even stripe images constituting the stereoscopic image displayed in the window.
- 12. The system according to claim 2, wherein said changing means changes a relative positional relationship between the stereoscopic image and said stereoscopic vision control means by changing said stereoscopic vision control means (S032).
- The system according to claim 12, wherein said changing means physically moves said stereoscopic vision control means.
- 14. The system according to claim 12, wherein said 25 stereoscopic vision control means comprises optical directivity control means constituted by a spatial light modulation element which is electronically controlled, and

said changing means electronically controls said optical directivity control means to shift a state of said control means to a state in which an observer can obtain a proper stereoscopic vision.

- 15. The system according to claim 1, wherein said changing means is executed after the window is opened and a stereoscopic image is displayed therein or the window is moved.
- 16. The system according to claim 1, wherein said changing means is executed at respective positions between movements of the window while the window is moved.
- The system according to claim 16, wherein an execution period of said changing means is shortened while the window is moved.
- 18. An information processing apparatus which can be connected to an image display apparatus having stereoscopic vision control means for controlling directivity of a stereoscopic image to allow an observer to observe stripe images of the stereoscopic image with right and loft eyes of the observer, respectively, characterized by comprising.

generation means (11) for generating image data including a window in which stripe parallax images corresponding to the right and left eyes are arranged;

determination means (11, S11, S21, S31, S42) for determining whether a retailtve positional relationship between the window and said stere-oscopic vision control means of said image display appearatus is a proper positional relationship which allows a proper stereoscopic vision; and

adjustment means (11, S12, S22, S32, S43) for, when said determination means determines that the relationship is not the proper relationship which allows a proper stereoscopic vision, adjusting the relative positional relationship to allow a proper stereoscopic vision.

- 19. The apparatus according to claim 18, wherein said adjustment means moves the window by a distance corresponding to length of a short side of the stripe image in a direction parallel to a short side of the stripe image.
- 25 20. The apparatus according to claim 19, wherein an amount of movement of the window is equal to a minimum pixel pitch of said image display apparatus connected to said information processing apparatus.
- 21. The apparatus according to claim 19, wherein the stripe image is constituted by a horizontal stripe image in the screen, and a direction in which the window is moved is a vertical direction in the screen.
- 22. The apparatus according to claim 19, wherein the striped image is constituted by vertical stripe images in the screen, and a direction in which the window is moved is a horizontal direction in the screen.
- 23. The apparatus according to claim 18, wherein said adjustment means moves the storoaccopic image in the window by a distance corresponding to length of a short side of each of the stripe images constituting the stereoscopic image in a direction parallel to a short side of the stripe image.
- 24. The apparatus according to claim 23, wherein an amount of movement of the stereoscopic image in the window is equal to a minimum pixel pitch of said image display apparatus.
- 25. The apparatus according to claim 23, wherein the stripe image is constituted by a horizontal stripe image in the screen, and a direction in which the stereoscopic image in the window is moved is a vertical direction in the screen.

50

- 26. The apparatus according to claim 23, wherein the striped image is constituted by vertical stripe images in the screen, and a direction in which the stereoscopic image in the window is moved is a horizontal direction in the screen.
- 27. The apparatus according to claim 18, wherein said adjustment means interchanges odd and even stripe images constituting the stereoscopic image displayed in the window.
- 28. The apparatus according to claim 18, wherein said adjustment means changes a relative positional relationship between the stereoscopic image and said stereoscopic vision control means by changing said ¹⁵ stereoscopic vision control means.
- The apparatus according to claim 28, wherein said adjustment means adjusts the relative positional relationship between the stereoscopic image and said 20 stereoscopic vision control means by physically moving eald stereoscopic vision control means.
- The apparatus according to claim 28, wherein said adjustment means adjusts the relative positional relationship between the steroescopic image and said eteroescopic Vision control means by electronically controlling opicial directivity control means included in said steroescopic vision control means and constituted by spatial light modulation element which is selectronically controlled.
- The apparatus according to claim 18, further comprising detection means for detecting that a window in which a stereoscopic image is to be displayed is opened or moved, and

wherein said adjustment means is executed when said detection means detects that the window is opened or moved.

 The apparatus according to claim 18, further comprising detection means for detecting movement of a window in which a stereoscopic image is displayed, and

wherein said adjustment means is executed at respective positions between movements of the window while the window is moved.

- The apparatus according to claim 32, wherein an execution period of said adjustment means is shortened while the window is moved.
- 34. A method of controlling an information display system having stereoscopic vision control means (10, 21, 23, 103) for controlling directivity of a stereoscopic image obtained by arranging stripe parallax

images corresponding to right and left eyes of an observer to allow the observer to observe stripe images of the stereoscopic image with right and left eyes, respectively, characterized by comprising:

the stereoscopic image display step (10, 21, 22, 101) of displaying a stereoscopic image obtained by arranging stripe parallax images corresponding to the right and left eyes;

the detection step of detecting a relative positional relationship between the stereoscopic image and said stereoscopic vision control means; and

means; and the changing step (S11, S12, S21, S22, S31, S32, S42, S43) of, when the relative positional relationship detected in the detection step is not a proper relationship which allows a proper stereoscopic vision, changing the relative positional relationship to a low a proper stereoscopitorial relationship to a low a proper stereoscopi-

35. A method of controlling an information processing apparatus which can be connected to an image display apparatus having eleroscopic vision control means (10, 21, 28, 103) for controlling directivity of a stereoscopic image obtained by arranging stripe parallax images corresponding to right and left eyes of an observer to allow the observer to observe stripe images of the stereoscopic image with right and left eyes, respectively, characterized by comprising.

the generation step (11) of generating image data including a window in which stripe parallax images corresponding to the right and left eyes are arranged;

the determination step (11, S11, S21, S81, S42) of determining whether a relative positional relationship between the window and said stere-oscopic vision control means of said dirage display apparatus is a proper positional relationship which allows a proper stereoscopic vision; and

the adjustment step (11, S12, S22, S32, S43), when it is determined in the determination step that the relationship is not the proper relationship which allows a proper stereoscopic vision, adjusting the relative positional relationship to allow a proper stereoscopic vision.

36. A storage medium storing a computer program for performing image display by using an image display apparatus having stereoscopic vision control means (10, 21, 23, 105) for controlling directivity of a stereoscopic image obtained by arranging rispe parallax images corresponding to right and left eyes of an observer to allow the observer to observe stripe images of the stereoscopic image with right 20

25

30

35

40

45

50

55

and left eyes, respectively, said computer program comprising:

a code of the determination step (11, S11, S21, S21) delearmining whether a relative positional relationship between a window in which stripe parallax images corresponding to the right and left leyes are arranged and said stereoscopic vision control means of said image display apparatus is a proper positional relationship which allows a proper stereoscopic vision; and

a code of the adjustment step (11, S12, S22, S22, S43) of, when it is datermined in the determination step that the relationship is not the proper relationship which allows a proper starescopic vision, adjusting the relative positional relationship to allow a proper stereoscopic vision.

FIG.1

FIG.2

FIG.3

FIG.4

FIG.5

FIG.6

17

FIG.8

* DASHED LINES INDICATE POSITION OF WINDOW AFTER MOVEMENT

FIG.11

FIG.13

FIG.14

FIG.15

25

FIG.20A

FIG.20B

FIG.21

FIG.22

FIG.23

(11) EP 0 860 729 A3

(12)

EUROPEAN PATENT APPLICATION

(88) Date of publication A3: 18.11,1998 Bulletin 1998/47 (51) Int CI.6: G02B 27/22, H04N 13/00

- (43) Date of publication A2: 26.08.1998 Bulletin 1998/35
- (21) Application number: 98301174.3
- (22) Date of filing: 18.02.1998
- (84) Designated Contracting States:
 AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC
 NL PT SE
 Designated Extension States:
 AL LT LV MK RO SI
- (30) Priority: 20.02.1997 JP 36328/97
- (71) Applicant: CANON KABUSHIKI KAISHA Tokyo (JP)
- (72) Inventor: Sudo, Toshiyuki Ohta-ku, Tokyo (JP)
- (74) Representative:
 Beresford, Keith Denis Lewis et al
 BERESFORD & Co.
 2-5 Warwick Court
 High Holborn
 London WC1R SDJ (GB)
- (54) Image display system, information processing apparatus, and method of controlling the same
- (57) A stereoscopic image display apparatus for displaying a stereoscopic image, which is obtained by alternately arranging stripe parallax images R and L corresponding to the right and left eyes, in a window includes a parallax barrier for a stereoscopic vision. When the display position of a window including a stereoscopic

image which is set after the window is opened or moved and the positions of the right-eye and left-eye stripes of a parallax barrier have a relationship which does not allow a proper stereoscopic vision, the display position of the window is moved by one stripe in the horizontal direction.

FIG.8

Printed by Jouve, 75001 PARIS (FR)

EP 0 860 729 A3

EUROPEAN SEARCH REPORT

EP 98 30 1174

ategory	Citation of document with indication of relevant passages	on, where appropriate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.Cl.6)
۲	DE 195 00 699 A (HENTSC DR 1NG) 18 July 1996	A (HENTSCHKE SIEGBERT PROF v 1996		G02B27/22 H04N13/00
4	* column 2, line 39 - column 3, line 65; claim 2 *		18,35	,
(A	EP 0 656 555 A (SHARP KK) 7 June 1995 * abstract * * column 3, line 49 - column 4, line 23; claim 1 *		1,34 18,35	
١	EP 0 721 131 A (SHARF K * column 7, line 39 - c * column 10, line 28 -	olumn 8, 11ne 7 *	1,18,34, 35	
4	ISONO H ET AL: "AUTOSTEREOSCOPIC 3-D DISPLAY USING LCO-GENERATED PARALLAX BARETER" S. COMMUNICATIONS IN JAPAN, ELECTRONICS TO STANDARD, 2017, 100, 100, 100, 100, 100, 100, 100,		1,2,18, 34,35	TECHNICAL FIELDS
				SEARCHED (INLCLS) G02B H04N
*				1
	The present search report has been d	rawn up for all claims		Faconiner
	THE HAGUE	29 September 199	8 Her	vé, D
X : par Y : par doo A : ted	CATEGORY OF CITED DOCUMENTS idealarly relevant if taken stone idealarly relevant if combined with another imment of the same category innological background in-written displacemen	T: theory or princip E: earlier patient de after the filing ds D: document cided L: document cided 8: member of the s	cument, but publi the in the application for other reasons	shed on, or