```
In [1]:
        # import libraries
        import pandas as pd
        import seaborn as sns
        import squarify
        import matplotlib.pyplot as plt
In [2]:
        # Load data
        df ue = pd.read csv(r'C:\GitHub\DSC640\DSC640\unemployment-rate-1948-
        2010.csv')
        df usps = pd.read excel(r'C:\Github\DSC640\DSC640\us-postage.xlsm')
        df_pop = pd.read_excel(r'C:\GitHub\DSC640\DSC640\world-population.xlsm')
In [3]:
        # view data
        print('df_ue: \n', df_ue.head(), '\n')
        print('df ue shape: ', df ue.shape, '\n')
        print('df usps: \n', df usps.head(), '\n')
        print('df_usps shape: ', df_usps.shape, '\n')
        print('df pop: \n', df pop.head(), '\n')
        print('df_pop shape: ', df_pop.shape)
       df ue:
            Series id Year Period Value
       0 LNS14000000 1948 M01
                                3.4
       1 LNS14000000 1948
                            M02
                                  3.8
       2 LNS14000000 1948
                            M03 4.0
                            M04 3.9
       3 LNS14000000 1948
       4 LNS14000000 1948
                            M05 3.5
       df_ue shape: (746, 4)
       df usps:
          Year Price
       0 1991 0.29
       1 1995 0.32
       2 1999 0.33
          2001
               0.34
       4 2002
               0.37
       df usps shape: (10, 2)
       df_pop:
          Year Population
       0 1960 3028654024
       1 1961 3068356747
       2 1962 3121963107
       3 1963 3187471383
       4 1964 3253112403
       df_pop shape: (50, 2)
```



```
# 1 area chart
plt.stackplot(df_usps.Year, df_usps.Price)
plt.title('Python - Area Chart - USPS')
```

```
plt.xlabel('Year')
plt.ylabel('Price ($)')
plt.show()
```


Out[6]: Text(0.5, 0, 'Year')


```
In [7]: # 1 step chart
sns.lineplot(df_usps.Year, df_usps.Price, drawstyle = 'steps-pre')
plt.title('Python - Step Chart - USPS')
plt.show()
```

C:\Users\howla\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pas s the following variables as keyword args: x, y. From version 0.12, the only valid posit ional argument will be `data`, and passing other arguments without an explicit keyword w ill result in an error or misinterpretation.

warnings.warn(

n [] ·		
[] • [
[].		

Howland_DSC640_wk4

Howland_E

2022-07-01

R Markdown

Load libraries and data

```
# import libraries
library(ggplot2)
library(readx1)
library(treemap)

# load files
setwd("c:/GitHub/DSC640/DSC640")
df_usps <- read_excel("us-postage.xlsm")
df_pop <- read_excel("world-population.xlsm")
df_ue <- read.csv("unemployment-rate-1948-2010.csv")</pre>
```

Look at data

```
head(df_usps)
## # A tibble: 6 x 2
     Year Price
##
    <dbl> <dbl>
## 1 1991 0.29
## 2 1995 0.32
## 3 1999 0.33
## 4 2001 0.34
## 5 2002 0.37
## 6 2006 0.39
head(df_pop)
## # A tibble: 6 x 2
##
     Year Population
##
    <dbl>
               <dbl>
## 1 1960 3028654024
## 2 1961 3068356747
## 3 1962 3121963107
## 4 1963 3187471383
## 5 1964 3253112403
## 6 1965 3320396924
```

```
head(df_ue)
##
       Series.id Year Period Value
## 1 LNS14000000 1948
                          M01
                                3.4
## 2 LNS14000000 1948
                          M02
                                3.8
                                4.0
## 3 LNS14000000 1948
                          M03
## 4 LNS14000000 1948
                                3.9
                          M04
## 5 LNS14000000 1948
                          M05
                                3.5
## 6 LNS14000000 1948
                          M06
                                3.6
```

R: Area Chart

```
ggplot(df_usps, aes(x = Year, y = Price)) +
  geom_area() +
  ggtitle("R: Area Chart - USPS") +
  labs(x = "Year", y = "Price ($)")
```

R: Area Chart - USPS

R: Tree Map

```
treemap(df_pop,
    index = c("Year"),
    vSize = "Population",
    title = "R: Treemap - Population"
)
```

R: Treemap - Population

1											
2009	2004	1999	1998	1997	1996	1998	5	1994			
2008	2003	1993	1988	1987	1986	1985		1984			
	2002	1992 1983 1991 1982	1979	1975	1974		1973				
2007			4000	4070	1972	1971	,	1970			
	2001	1991	1982	1978							
2006		1990	1981	1977	1969	1966	196	5 1964			
					1968	4000	T	4004			
0005		1989		1976		1963		1961			
2005			1980		1967	1962		1960			

R: Stacked Area Chart

```
ggplot(df_ue, aes(x = Year, y = Value, fill = Period)) +
geom_area() +
ggtitle("R: Stacked Area Chart - Unemployment") +
labs(x = "Year", y = "Unemployment")
```

R: Stacked Area Chart - Unemployment

R: Step Chart

```
ggplot(df_usps, aes(x = Year, y = Price)) +
  geom_step() +
  ggtitle("R: Step Chart - USPS") +
  labs(x = "Year", y = "Price ($)")
```

R: Step Chart - USPS

