Лекция 9 <u>Решающи</u>е деревья. Ансамбли моделей

Габдуллин Р.А., Макаренко В.А.

МГУ им. М.В. Ломоносова

15 марта 2021

Решающее дерево

Пусть X – выборка объектов, которые описываются p признаками:

$$X = (X_1, \ldots, X_\ell), \quad X_k \in \mathbb{R}^p.$$

Решающее дерево – бинарное дерево, в котором

- ullet каждой внутренней вершине v приписана функция (предикат) $eta_v:\mathbb{R}^p o\{0,1\}.$
- каждой листовой вершине приписан прогноз.

Получение предсказания для объекта $x = (x_1, \dots, x_p)$:

- Стартуем обход дерева с корня v_0 .
- Если $\beta_{v_0}(x_1,\ldots,x_p)=1$, то продолжаем обход левого поддерева, иначе правого.
- Процесс обхода продолжается до тех пор, пока не будет достигнута листовая вершина.
- Прогноз значение в листовой вершине.

Решающее дерево

Рис.: Источник: mygreatlearning.com

Вид решающего правила

- Дерево разбивает признаковое пространство на конечное число областей $\{R_m, \ 1 \leqslant m \leqslant M\}$.
- ullet В области R_m выдается константное предсказание c_m :

$$a(x) = \sum_{m=1}^{M} c_m[x \in R_m].$$

Решающее правило – линейная модель с M признаками
 [x ∈ R_m] и коэффициентами c_m.

Построение решающего дерева

Вид предикатов:

$$\beta_{j,s}(x) = [x_j \leqslant s], \quad 1 \leqslant j \leqslant p, \quad s \in \mathbb{R}.$$

Жадный алгоритм построения дерева:

• Находим наилучшее разбиение выборки на две части

$$R_1(j,s) = \{x \in X \mid x_j \le s\}, \quad R_2(j,s) = \{x \in X \mid x_j > s\}$$

с точки зрения заданного функционала качества разбиения Q(X,j,s).

- Создадим корневую вершину с предикатом $[x_j \leqslant s]$, где j,s лучшие параметры, найденные на предыдущем шаге.
- Объекты с помощью предиката разобьются на две части.
- Рекурсивно строим левое и правое поддеревья.
- Выходим из рекурсии, если выборка пуста или выполнено условие останова.

Функционал качества разбиения

Пусть

- R_{ν} объекты, попавшие в вершину, разбиваемую на данном шаге.
- $R_I(j,s)$ объекты, попадающие в левое поддерево при разбиении.
- $R_r(j,s)$ объекты, попадающие в правое поддерево при разбиении.

Функционал качества разбиения:

$$Q(R_{v},j,s)=H(R_{v})-rac{|R_{l}|}{|R_{v}|}\cdot H(R_{l})-rac{|R_{r}|}{|R_{v}|}\cdot H(R_{r})
ightarrow ext{max}$$

где H(R) – критерий информативности (impurity criterion):

$$H(R) = \min_{c} \frac{1}{|R|} \sum_{(x_i, y_i) \in R} L(y_i, c),$$

L(y,c) – заданная функция потерь.

Критерии информативности в задаче регрессии

• Выборочная дисперсия:

$$H(R) = \min_{c} \frac{1}{|R|} \sum_{(x_i, y_i) \in R} (y_i - c)^2 = \frac{1}{|R|} \sum_{(x_i, y_i) \in R} (y_i - \overline{y})^2.$$

• Среднее абсолютное отклонение от медианы:

$$H(R) = \min_{c} \frac{1}{|R|} \sum_{(x_i, y_i) \in R} |y_i - c| = \frac{1}{|R|} \sum_{(x_i, y_i) \in R} |y_i - \mathsf{median}(y)|.$$

Критерии информативности в задаче классификации

• Доля неверно классифицированных объектов:

$$H(R)=\min_c rac{1}{|R|} \sum_{(x_i,y_i)\in R} [y_i
eq c] =rac{1}{R} \sum_{(x_i,y_i)\in R} [y_i
eq y^*] =1-p_{y^*},$$
где $p_k=rac{1}{|R|} \sum_{(x_i,y_i)} [y_i=k], \ y^*= argmax \, p_k.$

• Критерий Джини:

$$H(R) = \min_{\sum c_k = 1} \frac{1}{|R|} \sum_{(x_i, y_i) \in R} \sum_{k=1}^K (c_k - [y_i = k])^2 = \sum_{k=1}^K p_k (1 - p_k).$$

• Энтропийный критерий:

$$H(R) = \min_{\sum c_k = 1} \left(-\frac{1}{|R|} \sum_{(x_i, y_i) \in R} \sum_{k=1}^K [y_i = k] \log c_k \right) = -\sum_{k=1}^k p_k \log p_k.$$

Критерии информативности в задаче классификации

Критерии останова

- Ограничение максимальной глубины дерева.
- Ограничение максимального количества листьев в дереве.
- Ограничение максимального числа объектов в дереве.
- Требование, что функионал качества должен увеличиться не некоторое количество процентов.

Стрижка дерева (pruning)

Cost-complexity pruning:

- ullet Строим дерево T_0 максимальной глубины.
- Выбираем поддерево T, минимизирующее следующий функционал:

$$R_{\alpha}(T) = R(T) + \alpha L(T),$$

где R(T) – эмпирический риск, L(T) – количество листьев в дереве, $\alpha\geqslant 0$.

Обработка пропущенных значений

- Удаление объекта с пропущенными значениями.
- Заполнение пропущенных значений (мода, среднее значение, ...).
- Создание отдельного значения для пропуска.
- Суррогатные предикаты:
 - Рассматривая признак для разбиения при построении очередной вершины, используем только те наблюдения, у которых значение признака известно.
 - Для данной вершины вместе с выбранным предикатом формируем список суррогатных предикатов – предикаты по другим признаком, которые дают похожие разбиения с выбранным предикатом.
 - Во время предсказания используем суррогатные предикаты, если значение признака пропущено.

Работа с категориальными признаками

Проблема:

• Признак с q значениями можно разбить на две группы $2^{q-1}-1$ способами (экспоненциальный рост числа вариантов).

Решение для бинарной классификации (критерий Джини или энтропийный критерий):

- Упорядиваем значения признака по доле положительного класса среди объектов с таким значением значением признака.
- Используем обычные пороговые предикаты.

Решение для регрессии (функция потерь MSE):

- Упорядочиваем значение признака по среднему значению целевой переменной среди объектов с таким значением признака.
- Используем обычные пороговые предикаты.

Методы построения деревьев

ID3

- Использует энтропийный критерий.
- Только категориальные признаки.
- Строится до тех пор, пока в каждом листе не окажутся объекты одного класса, либо пока разбиение дает уменьшение критерия.

• C4.5

- Использует нормированный энтропийный критерий.
- Поддержка вещественных признаков.
- Критерий останова ограничение числа объектов в листе.
- Обработка пропущенных значений осуществляется с помощью метода, который игнорирует объекты с пропущенными значениями при вычислении критерия ветвления, а затем переносит такие объекты в оба поддерева с определенными весами.

CART

- Критерий Джини.
- Стрижка cost-complexity pruning.
- Обработка пропусков с помощью суррогатных предикторов.

Достоинста и недостатки деревьев решений

Достоинства:

- Интерпретируемость
- Минимальная предобработка признаков.
- Гибкость.

Недостатки:

- Склонность к переобучению.
- Негладкое решение.
- Сложность построения модели в случае разделяющей полосы, не параллельной осям координат.

Ансамбли моделей

Рис.: Источник: kdnuggets.com

Деревья сильно переобучаются поодиночке. Но можно обучить несколько моделей и усреднить результат.

Композиция алгоритмов. Бэггинг (Bootstrap aggregation)

Пусть $(x_1, y_1), \dots, (x_\ell, y_\ell)$ – обучающая выборка.

- Построим N выборок длины ℓ , выбирая случайно ℓ объектов с возвращением из исходной выборки (bootstrap-подвыборка).
- На каждой выборке обучим модель.
- Прогноз композиции среднее значение прогнозов построенных моделей (самый частый ответ в задаче классификации).

Случайный лес (Random forest)

Строим композицию из N решающих деревьев. Каждое дерево строится следующим образом:

- Генерируем bootstrap-подвыборку.
- При построении очередной вершины дерева, рассматриваем не все признаки, а т случайных.
- Строим дерево до выполнения критерия останова (обычно строят очень глубокие деревья).