

Analysing sub-daily time series data

Rob J Hyndman
Earo Wang
Mitchell O'Hara-Wild

NUMBATS

Non-Uniform Monash Business Analytics Team

NUMBATS

Non-Uniform Monash Business Analytics Team

Pedestrian counts

Pedestrian counts

Call volume

Electricity demand

Visualization

Even plotting a single time series comprising one year of data, it is hard to see the interesting features.

Visualization

Even plotting a single time series comprising one year of data, it is hard to see the interesting features.

R classes

- The ts, zoo, xts and other time series classes do not work well with sub-daily data.
- Newer packages (timetk and tibbletime) do not play nicely with modelling functions.

Earo Wang

Visualization

Even plotting a single time series comprising one year of data, it is hard to see the interesting features.

R classes

- The ts, zoo, xts and other time series classes do not work well with sub-daily data.
- Newer packages (timetk and tibbletime) do not play nicely with modelling functions.

Visualization

Even plotting a single time series comprising one year of data, it is hard to see the interesting features.

R classes

- The ts, zoo, xts and other time series classes do not work well with sub-daily data.
- Newer packages (timetk and tibbletime) do not play nicely with modelling functions.

Forecasting

- Most time series modelling frameworks handle sub-daily data poorly.
- Available models include tbats and prophet, but they have limitations.

TBATS model

TBATS

Trigonometric terms for seasonality

Box-Cox transformations for heterogeneity

ARMA errors for short-term dynamics

Trend (possibly damped)

Seasonal (including multiple and non-integer periods)

- Handles non-integer seasonality, multiple seasonal periods.
- Entirely automated
- Prediction intervals often too wide
- Very slow on long series
- No exogenous predictors

TBATS model

```
library(forecast)
calls %>% tbats %>% forecast %>%
  autoplot(include=2500)
```


prophet

Additive regression model developed at Facebook

$$y_t = g_t + s_t + h_t + \varepsilon_t$$

- y_t = time series.
- g_t = piecewise linear growth function
- s_t = Fourier seasonal terms: daily, weekly and/or yearly
- h_t = holiday effect.
- ε_t = error (can be ARMA errors).
- Estimated as a Bayesian regression using Stan

Daily blog traffic

prophet example

```
library(prophet)
m <- prophet(hyndsight)
future <- make_future_dataframe(m, periods = 365)
forecast <- predict(m, future)</pre>
```

plot(m, forecast)

prophet pros and cons

Pros

- Completely automatic including changepoints
- Handles multiple seasonality and holiday effects

Cons

- Seems to overfit annual seasonality
- Number of Fourier terms is hard-coded

Mitchell O'Hara-Wild

Watch this space

