C_8 cycloalkyl or phenyl; or R^3 is a C-linked, 5- to 7-membered ring monocyclic heterocycle having either from 1 to 4 ring nitrogen atom(s) or 1 or 2 nitrogen and 1 oxygen or 1 sulphur ring atoms, optionally C-substituted by oxo, C_1 - C_6 alkoxy(C_1 - C_6)alkyl, $R^6R^6N(C_1$ - C_6)alkyl, halo(C_1 - C_6)alkyl, fluoro(C_1 - C_6)alkoxy, fluoro(C_2 - C_5)alkanoyl, halo, eyane, OR^6 , R^7 , COR^6 , $-NR^6R^6$, $-COOR^6$, $-S(O)_{III}R^7$, $-SO_2NR^6R^6$, -CONR $^6R^6$, $-NR^6SO_2R^7$ or $-NR^6COR^7$ and optionally N-substituted by C_1 - C_6 alkoxy(C_1 - C_6)alkyl, $R^6R^6N(C_2$ - C_6)alkyl, halo(C_1 - C_6)alkyl, fluoro(C_2 - C_5)alkanoyl, R^7 , $-COR^6$, -COOR 7 , $-SO_2R^7$, $-SO_2NR^6R^6$ or $-CONR^6R^6$; or, when A is C_2 - C_6 alkylene, R^3 is N-linked pyrrolidinyl, piperidinyl or morpholinyl, each being optionally C-substituted by C_1 - C_6 alkyl, phenyl, C_1 - C_6 alkoxy(C_1 - C_6)alkyl, $R^4R^4N(C_1$ - C_6)alkyl, halo(C_1 - C_6)alkyl, fluoro(C_1 - C_6)alkoxy, C_2 - C_5 alkanoyl, halo, $-OR^4$, cyano, $-COOR^4$, C_3 - C_8 cycloalkyl, - $S(O)_mR^5$, $-NR^4R^4$, $-SO_2NR^4R^4$, $-CONR^4R^4$, $-NR^4COR^5$ or $-NR^4SO_2R^5$.

- 9. (Amended) A compound as claimed in claim 8 wherein R^3 is phenyl; or, when A is C_2 - C_6 alkylene, R^3 is -NR⁴R⁴ wherein R⁴ is C_1 - C_6 alkyl; or, R^3 is a C-linked, 5- or 6-membered ring monocyclic aromatic heterocycle having from 1 to 4 ring nitrogen atom(s), optionally C-substituted by oxo, C_1 - C_6 alkoxy(C_1 - C_6)alkyl, R^6 R⁶N(C_1 - C_6)alkyl, halo(C_1 - C_6)alkyl, fluoro(C_1 - C_6)alkoxy, fluoro(C_2 - C_5)alkanoyl, halo, cyano, -OR⁶, R⁷, -COR⁶, -NR⁶R⁶, -COOR⁶, -S(O)_mR⁷, -SO₂NR⁶R⁶, -CONR⁶R⁶, -NR⁶SO₂R⁷ or -NR⁶COR⁷ and optionally N-substituted by C_1 - C_6 alkoxy(C_1 - C_6)alkyl, R^6 R⁶N(C_2 - C_6)alkyl, halo(C_1 - C_6)alkyl, fluoro(C_2 - C_5)alkanoyl, R^7 , -COR⁶, -COOR⁷, -SO₂R⁷, -SO₂NR⁶R⁶ or -CONR⁶R⁶; or, when A is C_2 - C_6 alkylene, R^3 is N-linked pyrrolidinyl, piperidinyl or morpholinyl, each being optionally C-substituted by C_1 - C_6 alkyl or -OR⁴ wherein R^4 is H, C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl or phenyl.
- 10. (Amended) A compound as claimed in claim 9 wherein R^3 is phenyl; or, when A is C_2 - C_6 alkylene, R^3 is $-N(CH_3)_2$; or R^3 is C-linked pyridinyl optionally substituted by $-OR^6$, R^7 , C_1 - C_6 alkoxy(C_1 - C_6)alkyl, $R^6R^6N(C_1$ - C_6)alkyl or $-NR^6R^6$ wherein R^6 is H, C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, phenyl, naphthyl or het and R^7 is C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, phenyl, naphthyl or het; or when A is C_2 - C_6 alkylene, R^3 is pyrrolidin-1-yl, piperidin-1-yl, 4-isopropylpiperidin-1-yl or morpholin-4-yl.

13. (Amended) A compound as claimed in claim 1 wherein -A-R³ is phenethyl, 2-(dimethylamino)ethyl, 2-pyridinylmethyl, 2-(2-pyridinyl)ethyl, 3-(1-pyrrolidinyl)propyl, 2-(1-piperidinyl)ethyl, 2-(4-isopropyl-1-piperidinyl)ethyl or 2-(4-morpholinyl)ethyl.

18. (Amended) A pharmaceutical composition comprising a compound of claim 1 or a pharmaceutically acceptable salt thereof together with a pharmaceutically acceptable excipient, diluent or carrier.

25. (Amended) A method of agonising an A2a receptor in a mammal comprising administering to said mammal in need of such treatment an effective amount of a compound of claim 1 or a pharmaceutically acceptable salt thereof.

- 26. (Amended) A method of treating an inflammatory disease in a mammal comprising administering to said mammal an effective amount of a compound of claim 1 or a pharmaceutically acceptable salt thereof.
- 27. (Amended) A method of treating a respiratory disease in a mammal comprising administering to said mammal an effective amount of a compound of claim 1 or a pharmaceutically acceptable salt thereof.

29. (Amended) A method of treating septic shock, male erectile dysfunction, hypertension, stroke, epitersy, cerebral ischaemia, peripheral vascular disease, post-ischaemic reperfusion injury diabetes, rheumatoid arthritis, multiple sclerosis, psoriasis, dermatitis, attergic dermatitis, eczema, ulcerative colitis, Crohns disease, inflammatory bowel disease, *Hetiobacter pylori* gastritis, non-*Heliobacter pylori* gastritis, non-steroidal anti-inflammatory drog-induced damage to the gastro-intestinal tract or a psychotic disorder, or for wound healing in a mammal comprising administering to said mammal in need of such treatment an effective amount of a compound of claim 1 or a pharmaceutically acceptable salt thereof.

31. (Amended) A compound of the formula:

wherein X is a leaving group such as bromo, iodo, $-Sn(C_1-C_{12} \text{ alkyl})_3$ or $CF_3SO_2O_7$, with the proviso that when X is bromo priodo, R^1 is not H; or

wherein R⁸ and R⁹, when taken separately, are protecting groups, or, when taken together, are a protecting group; or

$$R^{10}O$$
 $R^{10}O$
 $R^{10}O$

Conte

wherein R⁸ and R⁹, when taken separately, are protecting groups, or, when taken together, are a protecting group, and R¹⁰ is a protecting group; or

wherein R⁸ and R⁹, when taken separately, are protecting groups, or, when taken together, are a protecting group, and R¹⁰ is a protecting group, with the proviso when R¹ is H, that R⁸, R⁹ and R¹⁰ are not each t-butyldimetrylsilyl or acetyl; or

wherein R¹¹, R¹² and R¹³, taken separately, are protecting groups, or R¹¹ is a protecting group and R¹² and R¹³, taken together, are a protecting group; or

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

; or

$$R^{1}$$
 R^{1}
 R^{2}
 R^{14}
 R^{14}

wherein R14 is a protecting group; or

wherein R¹⁴ is a protecting group,

 R^1 is hydrogen or C_1 - C_6 alkyl optionally substituted by 1 or 2 substituents each independently selected from phenyl and naphthyl, said phenyl and naphthyl being optionally substituted by C_1 - C_6 alkyl, C_1 - C_6 alkoxy, halo or cyano;

R² is H or C₁-C₆ alkyl;

A is C₁-C₆ alkylene;

 R^3 is $\;$ (i) hydrogen, $C_1\text{-}C_6$ alkyl, $\text{-}COOR^4$, -CN, $\text{-}CONR^4R^4$, $\text{-}Q_3\text{-}C_8$ cycloalkyl, phenyl or naphthyl, said $C_3\text{-}C_8$ cycloalkyl, phenyl and naphthyl being optionally substituted by $C_1\text{-}C_6$ alkyl, phenyl, $C_1\text{-}C_6$ alkoxy($C_1\text{-}C_6$)alkyl, $R^4R^4N(C_1C_6)$ alkyl, halo($C_1\text{-}C_6$)alkyl, fluoro($C_1\text{-}C_6$)alkoxy, $C_2\text{-}C_5$ alkanoyl, halo, $\text{-}OR^4$, cyano, $\text{-}COOR^4$, $C_3\text{-}C_8$ cycloalkyl, $\text{-}S(O)_mR^5$, $\text{-}NR^4R^4$, $\text{-}SO_2NR^4R^4$, $\text{-}CONR^4R^4$, $\text{-}NR^4COR^5$ or $\text{-}NR^4SO_2R^5$,

or (ii) when A is C_2 - C_6 alkylene, -NR⁴R⁴, -OR⁴, -OCOR⁵, -SO₂R⁵, -SO₂NR⁴R⁴ or -NR⁴COR⁵,

or (iii) a C-linked, 4- to 11-membered ring, mono- of bicyclic, heterocycle having either from 1 to 4 ring nitrogen atom(s), or 1 or 2 nitrogen and 1 oxygen or 1 sulphur ring atoms, being optionally C-substituted by oxo, C_1 - C_6 alkoxy(C_1 - C_6)alkyl, $R^6R^6N(C_1$ - C_6)alkyl, halo(C_1 - C_6)alkyl, fluoro(C_1 - C_6)alkoxy, fluoro(C_2 - C_5)alkanoyl, halo, cyano, - OR^6 , R^7 , - COR^6 , - NR^6R^6 , - $COOR^6$, - $S(O)_mR^7$,

Bo

-SO₂NR⁶R⁶, -CONR⁶R⁶, -NR⁶SO₂R⁷ or -NR⁶COR⁷ and optionally N-substituted by C₁- C_6 alkoxy(C_1 , C_6)alkyl, $R^6R^6N(C_2$ - C_6)alkyl, halo(C_1 - C_6)alkyl, fluoro(C_2 - C_5)alkanoyl, R^7 , -COR⁶, -COOR^X\-SO₂R⁷, -SO₂NR⁶R⁶ or -CONR⁶R⁶,

(iv) when Ais C2-C6 alkylene, N-linked azetidinyl, pyrrolidinyl, piperidinyl, or piperazinyl, homopiparazinyl or morpholinyl, each being optionally C-substituted by C- C_6 alkyl, phenyl, C_1 - C_6 alkoxy(C_1 - C_6)alkyl, $R^4R^4N(C_1$ - C_6)alkyl, halo(C_1 - C_6)alkyl, fluoro(C_1 - C_6)alkoxy, C_2 - C_5 alkanoyl, halo, -OR 4 , cyano, -COOR 4 , C_3 - C_8 cycloalkyl, -S(O)_mR⁵, -NR⁴R⁴, -SO₂NR⁴R⁴, -CONR⁴R⁴, -NR⁴COR⁵ or -NR⁴SO₂R⁵, and said piperazinyl and homopiperazinyl being optionally N-substituted by C₁-C₆ alkyl, phenyl, $C_1 - C_6 \text{ alkoxy}(C_2 - C_6) \text{alkyl}, \ \mathsf{R}^4 \mathsf{R}^4 \mathsf{N} / (\overset{\bullet}{\mathsf{C}}_{\underline{\mathsf{X}}} - C_6) \text{alkyl}, \ \mathsf{fluoro}(C_1 - C_6) \text{alkyl}, \ C_2 - C_5 \text{ alkanoyl}, \ - C_6 - C_6) \text{alkyl}, \ \mathsf{R}^4 \mathsf{R}^4 \mathsf{N} / (\overset{\bullet}{\mathsf{C}}_{\underline{\mathsf{X}}} - C_6) \text{alkyl}, \ \mathsf{R}^4 \mathsf{R}^4 \mathsf{N} / (\overset{\bullet}{\mathsf{C}}_{\underline{\mathsf{X}}} - C_6) \text{alkyl}, \ \mathsf{R}^4 \mathsf{R}^4 \mathsf{N} / (\overset{\bullet}{\mathsf{C}}_{\underline{\mathsf{X}}} - C_6) \text{alkyl}, \ \mathsf{R}^4 \mathsf{R}^4 \mathsf{N} / (\overset{\bullet}{\mathsf{C}}_{\underline{\mathsf{X}}} - C_6) \text{alkyl}, \ \mathsf{R}^4 \mathsf{R}^4 \mathsf{N} / (\overset{\bullet}{\mathsf{C}}_{\underline{\mathsf{X}}} - C_6) \text{alkyl}, \ \mathsf{R}^4 \mathsf{N} / (\overset{\mathsf{R}^4 \mathsf{N} / (\overset$ COOR⁵, C₃-C₈ cycloalkyl, -SO₂/R⁵, -SO₂NR⁴R⁴ or -CONR⁴R⁴:

R⁴ is H, C₁-C₆ alkyl, C₃-C₈ cydloalkyl or phenyl;

R⁵ is C₁-C₆ alkyl, C₃-C₈ cycloalkyl or phenyl;

R⁶ is H, C₁-C₆ alkyl, C₃-C₈ cycloalkyl, phenyl haphthyl or het;

R⁷ is C₁-C₆ alkyl, C₃-C₈ cycloalkyl, phenyl, naphthyl or het;

m is 0, 1 or 2; and

"het", used in the definitions of R⁶ and R⁷, means C-linked pyrrolyl, imidazolyl, triazolyl, thienyl, furyl, thiazolyl, oxazolyl, thiadiazolyl, oxadiazolyl, pyridinyl, pyrimidinyl, pyridazinyl, pyrazinyl, indolyl, isoindolyl, quinolinyl, isoquinolinyl, benzimidazolyl, quinazolinyl, phthalazinyl, benzoxazolyl or quinoxalinyl, each being optionally substituted by C₁-C₆ alkyl, C₁-C₆ alkoxy, cyano or halo.

(Amended) A compound as claimed in claim 31 and 32 wherein R¹ is 2,2-diphenylethyl, R² is H and/or -A\R³ is 2/(1-piperidinyl)ethyl.

Cancel claims 19 - 24, without waiver or prejudice.

Add the following new claims:

(New) A method of any one of claims 25 - 29 wherein said mammal is a human.

(New) A compound as claimed in claim 32 wherein R¹ is 2,2-42. diphenylethyl, R² is H and/or -A-R³ is $\frac{1}{2}$ -(1-piperidinyl) ethyl.

-Remarks-

The claims were amended to cancel claims 19 - 24 as being directed to non-statutory claim types in the United States. Claims 4, 5, 8 - 10, 13, 18, 25 - 27, 29, 31 and 33 were amended primarily to remove claims which were multiply dependent upon