Desafio de lógica - Gabarito

1) Na lógica proposicional, definem-se regras para determinar o valor-verdade (verdadeiro ou falso) de sentenças em relação a um determinado problema. Essas regras permitem representar raciocínios lógicos comuns das linguagens naturais.

Nesse contexto, considere a sentença e as proposições lógicas a seguir.

"Um veículo que é elétrico (E) pode ser um robô (R) se for autônomo (A), caso contrário não é um robô (R) ".

$$P1 = (E A R) \leftrightarrow A$$
; $P1 = (E e R)$ se e somente se for A

$$P2 = E \rightarrow (R \leftrightarrow A);$$
 Se E então (R se e somente se A)

$$P3 = E \rightarrow ((A \rightarrow R) \lor \neg R)$$
. Se E então ((Se A então R) ou não R

A sentença pode ser representada pela(s) expressão(ões) lógica(s)

- a) P2, apenas.
- b) P3, apenas.
- c) P1 e P2, apenas.
- d) P1 e P3, apenas.
- e) P1, P2 e P3.
- 2) Uma empresa de Recursos Humanos está recrutando um estagiário de Sistema de Informação. Para tal vaga, o RH formulou três sentenças proposicionais, para determinara escolha no processo de seleção.

As variáveis proposicionais são p,q e r.

Sejam:

p: o candidato tem experiência com linguagem Python;

q: o candidato tem experiência com análise de sistemas;

r: o candidato é pouco experiente como programador.

A seleção tem a proposição composta S que determina a avaliação do candidato:

$$S = (p \vee q) \wedge (q \wedge \neg r)$$
 (p ou q) e (q e não r)

SÃO PAULO TECH SCHOOL

p	q	r	(p v q)	(q∧¬r)	S
V	٧	٧	V	V	٧
V	٧	F	V	V	٧
V	F	٧	V	F	F
V	F	F	V	V	V
F	٧	٧	V	V	٧
F	٧	F	V	F	F
F	F	V	F	F	F
F	F	F	F	V	F

a)

p	q	r	(p v q)	$(q {\scriptstyle \bigwedge} \neg r)$	S
V	٧	٧	V	V	٧
V	٧	F	V	F	F
V	F	V	V	F	F
V	F	F	V	F	F
F	٧	٧	V	V	٧
F	٧	F	V	F	F
F	F	V	F	F	F
F	F	F	F	F	F

b)

-						
	p	q	r	(p v q)	(q∧¬r)	S
	٧	V	V	V	V	V
	V	V	F	V	V	V
	V	F	V	F	F	F
	V	F	F	F	V	V
	F	V	V	F	V	V
	F	V	F	F	V	V
	F	F	V	F	F	F
	F	F	F	F	V	V

c)

p	q	r	(p v q)	(q∧¬r)	S
V	V	٧	٧	F	٧
V	V	F	V	V	V
V	F	٧	V	F	V
V	F	F	V	F	V
F	V	٧	٧	F	٧
F	V	F	V	V	٧
F	F	٧	F	F	F
F	F	F	F	F	F

d)

p	q	Ε;	(p v q)	(q∧¬r)	S
٧	V	V	V	F	F
٧	٧	F	V	V	٧
V	F	٧	V	F	F
٧	F	F	V	F	F
F	٧	٧	V	F	F
F	٧	F	V	V	٧
F	F	V	F	F	F
F	F	F	F	F	F

3) Florestas tropicais são cada vez mais suscetíveis à incêndios florestais hoje devido à degradação da exploração madeireira seletiva, a fragmentação, e as atividades agrícolas. Os analista_dados estão preocupados que uma grande parte da Amazônia esteja em risco de combustão, e que no futuro possamos ver incêndios semelhantesaos que danificaram o *el Niño* da Indonésia nos últimos anos. Uma IA – Inteligência Artificial precisa ser ensinada para inferir em um caso de incêndio nas Floretas tropicais do Brasil.

Considere os seguintes argumentos proposicionais:

- I. se existe fogo, então existe oxigênio P --> q
- II. Não há oxigênio. ¬ q
- III. Então não há fogo. ¬p

A regra que justifica a validade dos argumentos pode ser expressão com qual sentença lógica? Escolha a alternativa para treinar a IA.

a)
$$\frac{P \to Q, \neg P}{\neg Q}$$

b)
$$\frac{P \to Q, \neg Q}{\neg P}$$

c)
$$P \rightarrow Q, Q$$

$$\begin{array}{c}
P \to Q, \neg Q \\
\neg \neg P
\end{array}$$

$$\begin{array}{c}
 & P \to Q, P \\
\hline
Q
\end{array}$$

- 4) Considere as proposições lógicas simples P,Q e R, para alocação em projeto de Data Science na Empresa Athenas.
 - P: o analista dados modela com matemática
 - Q: o analista_dados conhece python
 - R: o analista_dados alocado em projeto

Validade das premissas do projeto serão selecionadas a partir de uma Machine Learning (ML) supervisionada por você, analise as premissas e determina a resposta da ML.

- I. Se o analista dados modela com matemática, então ele conhece python. P-->Q
- II. Se o analista_dados conhece python, então ele está alocado no projetoQ-->R
- III. O analista dados não foi alocado no projeto ou ele modela com matemática ¬R v P
- IV. O analista_dados modela com matemática se e somente se conhece python P<-->Q
- V. As premissas da ML podem ser expressas: $P \rightarrow Q$, $Q \rightarrow R$ e $\neg R$ V P
- VI. A conclusão do argumento pode ser expressa na forma de bicondicional: $P \leftarrow \rightarrow Q$, para que R seja verdadeiro.

Premissas corretas para a ML são,

- a) lelll
- b) I, II, VI
- c) Somente V
- d) Somente VI
- e) III e V
- 5) Analise as seguintes sentenças interpretadas da simbologia lógica proposicional, com relação as premissas a seguir
- E = Patolino está comendo
- H = Patolino está com fome

 $E \Rightarrow \neg H$

Resposta: Se Patolino está comendo, então Patolino está com fome

(verdadeiro) (falso)

Justificativa:

Resposta: Se Patolino está comendo, então Patolino não está com fome

- 6) Analise as seguintes sentenças interpretadas da simbologia lógica proposicional, com relação as premissas a seguir
- E = Pernalonga está comendo
- H = Pernalonga está com fome

E ^¬H

Resposta: Pernalonga está comendo e não está com fome

(verdadeiro) (falso)

Justificativa:

Resposta: Pernalonga está comendo e não está com fome

- 7) Analise as seguintes sentenças interpretadas da simbologia lógica proposicional, com relação as premissas a seguir
- E = Rick está comendo
- H = Rick está com fome
- ¬ (H ^ ¬E)

Resposta: Rick está com fome e está comendo

(verdadeiro) (falso)

Justificativa:

Resposta: Rick não está com fome e está comendo

- 8) Quais das seguintes são sentenças proposicionais bem formuladas?
- 1. Vpq

2.
$$(\neg (p \rightarrow (q \land p)))$$
 não(se pe ntão(q e p)) ok

3.
$$(\neg (p \rightarrow (q = p)))$$
 atrobuição não é um conectivo

5.
$$(p \land \neg q) \lor (q \rightarrow r)$$
 (pe não q) ou (se q então r) ok

6. p¬r p sem conectivo lógico para a negação r

Solução.

Fórmulas bem formadas: 2. e 5

São Paulo Tech School - SPTECH

- 9) Vamos considerar a interpretação z, seja
- z(p) = False,
- z(q) = True,
- z(r) = True.

Analise se z satisfaz as seguintes sentenças proposicionais?

- 1. $(p \rightarrow \neg q) \lor \neg (r \land q)$ (se p então não q) ou não(r e q) -- (se False então não True) ou não(True e Tue)
- 2. (¬p V ¬q) → (p V ¬r) Se (não False ou não True) então (False ou não True) === Se (Tou F) então (F ou F)
- 3. $\neg (\neg p \rightarrow \neg q) \land r$ não(se não p então não q) e r ==== não (se não F então não T) e T)
- 4. $\neg (\neg p \rightarrow q \land \neg r)$ não (se não false então true e não true)

Aponte satifaz (s) ou não satisfaz (ns) para cada sentença, escolha a alternativa que mostra isso.

- a) 1.s, 2.ns, 3.s, 4.s
- b) 1.s, 2.s, 3.s, 4.s
- c) 1.s, 2.ns, 3.ns, 4.s
- d) 1.s, 2.s, 3.ns, 4.s

Solução.

z satisfaz 1., 3. e 4.

z não satisfaz 2.

- 10) Se Rick possui uma bicicleta, então Morty possui uma bicicleta. Se Morty possui uma bicicleta, então Summer possui uma bicicleta. Se Rick possui uma bicicleta, qual das afirmações a seguir deve ser verdadeira?
- I. Morty possui uma bicicleta.
- II. Summer tem uma bicicleta.
- III. Summer não possui uma bicicleta.
- A) I apenas
- B) II apenas
- C) III apenas
- D) I e II apenas

11) Sempre que uma aspirante a autora escreve em seu blog, ela escreve todos os dias por 3 dias consecutivos e depois descansa no dia seguinte.

Durante uma determinada semana, ela escreveu na quinta, sexta e sábado.

Ela escreveu em seu blog na quarta-feira dessa mesma semana?

(sim) (não) (sem informações suficientes)

- 12) Se Loki foi à peça da escola, Mobius também foi à peça da escola. Se Mobius foi à peça da escola, então Ravonna também foi à peça da escola. Se Mobius não foi à peça da escola, qual das afirmações a seguir deve ser verdadeira?
- I. Loki foi à peça da escola.
- II. Ravonna foi à peça da escola.
- III. Loki não foi à peça da escola.
- A) I apenas
- B) III apenas
- C) I e II apenas
- D) II e III apenas
- E) Nenhuma das afirmações

Explicação

Resposta correta: B

É possível que Loki não tenha ido à peça da escola, Mobius não tenha ido à peça da escola e Ravonna não tenha ido à peça da escola. Portanto, I e II podem não ser verdadeiros.

Por outro lado, se Loki foi à peça da escola, Mobius também foi à peça da escola. Portanto, III deve ser verdade, já que sabemos que Mobius não foi à peça da escola.

