Last name	
First name	

LARSON—MATH 310—CLASSROOM WORKSHEET 22 Determinants, Eigenvalues and Eigenvectors.

Review

The determinant of a square triangular matrix is the product of its diagonal entries.

Facts about a square matrix A. The following statements are all equivalent!

- RREF of A has a zero row.
- Any triangular matrix derived from A has a 0 on the diagonal.
- The rows of A are linearly dependent.
- A does not have an inverse.
- $\det(A) = 0$.

Determinant Computation Rules

- The determinant of a square matrix A equals the determinant of any matrix formed by a pivot operation.
- The determinant of a square matrix A equals negative the determinant of any matrix formed by switching 2 rows.

Let
$$A = \begin{bmatrix} 0 & 2 \\ 2 & 3 \end{bmatrix}$$
.

If there is a non-zero vector \vec{x} and scalar λ with $A\vec{x} = \lambda \vec{x}$ then λ is an eigenvalue of A and \vec{x} is a corresponding eigenvector.

If
$$A\vec{x} = \lambda \vec{x}$$
, then $A\vec{x} - \lambda \vec{x} = 0$, and $(A - \lambda I)\vec{x} = 0$.

Since \vec{x} is non-zero that means that $(A - \lambda I)$ is not invertible, that the RREF has a 0-row, and that $\det(A) = 0$.

1. Find $(A - \lambda I)$.

- 2. Use the 2×2 determinant formula to find $\det(A \lambda I)$. (λ is a variable—so your answer will have λ s in it).
- 3. Solve $det(A \lambda I) = 0$.

4. For each solution λ , write the equation $(A - \lambda I)\vec{x} = 0$, and solve for \vec{x} .

5. Check that your eigenvalue-eigenvector pairs work!