1 任务说明

图 课程设计轨道示意图

小车一次经过图中标注 1 号点得 5 分、2 号点再得 5 分,3 号点再得 5 分,4 号点再得 5 分,5 号点再得 3 分,6 号点再得 3 分;当小车从开始点出发依次经过各点到达终点(7 号点),若用时小于或者等于 70 秒,再得 2 分;若低于 70 秒,每减 20 秒加 1 分,最多加 2 分。

2 方案一

2.1 论证方案(最终方案)

1.利用 LM1117 稳压芯片将锂电池 8V 的电压降为 5V 电压供给 VCC 接 5V 的芯片使用。接法如图:

2.利用 L298N 实现左右轮的正反转。

3.利用 NE555 产生 PWM,调节小车的行进速度。

- 4.利用数字逻辑给左右轮输入信号。
- 5.利用锁存器保存,加上触发功能,可以控制保存时间。

此方案加大了传感器间的距离。以下方案的真值表中,将四个传感器从左到右依次编号为 A、B、C、D。L298ND的 In1、in2 控制左轮,in3、in4 控制右轮。传感器探测到白线记为 1(高电平),探测到黑线记为 0(低电平)。d 为 do not care 。记 F 为直走(forward),转左为 L,转右为 R。

2.2 调试方案

可能是由于马达的问题,小车直走时左轮速度大于右轮,导致小车在循迹时中间靠左边传感器贴着黑线走,以至转直角时时状态异常。

2.3 电路设计

先完成真值表设计:

76767	以 共	~// •	1	1	1	1	ı	1
A	В	С	D	IN1	IN2	IN3	IN4	STATE
1	1	1	1	1	0	1	0	F
1	1	0	1	1	0	0	0	R
1	0	1	1	0	0	1	0	L
1	0	0	0	1	0	1	0	F
0	0	0	1	0	0	1	0	L
0	0	0	0	1	0	0	0	R
0	0	1	1	0	1	1	0	L
1	1	0	0	1	0	0	1	R
0	1	1	0	0	1	1	0	L
0	0	0	1	1	0	0	0	R
0	1	0	0	0	1	1	0	L

再在此基础上进行 K-map 化简:

In1	CD	C'D	C'D'	CD'
AB	1	0	0	d
AB'	1	d	1	d
A'B'	1	0	0	d
A'B	d	d	0	1
In2	CD	C'D	C'D'	CD'
AB	0	0	0	d
AB'	0	d	0	d
A'B'	1	0	0	d
In3	CD	C'D	C'D'	CD'
AB	1	0	0	d
AB'	1	d	1	d
A'B'	1	0	0	d
A'B	d	d	0	1
In4	CD	C'D	C'D'	CD'
AB	0	0	1	d
AB'	0	d	0	d
A'B'	0	0	0	d
A'B	d	d	0	0

化简得表达式:

In1=AB+C'D' IN2=A'CD IN3=CD+A'B'D+AB' IN4=ABD' 并在电路软件中仿真测试:

3 方案二

3.1 电路设计

采用四个传感器,如图所示放置。此方案为原始方案。

列出真值表:

A	В	С	D	Left	Right	State
1	0	1	1	S	F	Turn left
1	1	0	1	F	S	Turn right
1	1	1	1	F	F	Forward
1	0	0	0	S	F	Turn left
0	0	0	1	F	S	Turn right

LI Sen | 李森

0	0	1	1	S	F	Turn left
1	1	0	0	F	S	Turn right
0	0	0	0	F	S	Turn right
0	0	0	1	S	F	Turn left
0	0	0	1	S	F	Turn left

K-map 化简:

左轮:

	CD	CD'	C'D'	C'D
AB	1	d	1	1
AB'	0	d	0	d
A'B'	0	d	1	0
A'B	d	d	0	d

右轮:

	CD	CD'	C'D'	C'D
AB	1	d	0	0
AB'	1	d	1	d
A'B'	1	d	0	1
A'B	d	d	1	d

化简得:

左轮=AB+A'B'D'

右轮=CD+AB'+A'C'D

电路图为:

3.2 调试方案:

虽然在第一天就能跑完全程,但速度很慢,跑完全程 70+s。一旦加快速度便会冲出跑道,据仔细思考,这可能是因为转直角弯时小车反转速度不够快,加上原来走直线的惯性作用。对于此问题,我们尝试用达林顿管 tip107、运算放大器、三极管放大电压,加大反转速度。

4 方案三

4.1 论证方案

传感器位置

真值表设计:

A	В	С	D	IN1	IN2	IN3	IN4	STATE
1	1	1	1	1	0	1	0	F
1	1	0	1	1	0	0	0	R

1	0	1	1	0	0	1	0	L
1	0	0	0	1	0	1	0	F
0	0	0	1	0	0	1	0	L
0	0	0	0	1	0	0	0	R
0	0	1	1	0	1	1	0	L
1	1	0	0	1	0	0	1	R

K-map 化简:

In1	CD	C'D	C'D'	CD'
AB	1	1	1	d
AB'	0	d	1	d
A'B'	0	d	1	d
A'B	d	d	d	d

In2	CD	C'D	C'D'	CD'
AB	0	0	0	d
AB'	0	d	0	d
A'B'	1	d	0	d
A'B	d	d	d	d

In3	CD	C'D	C'D'	CD'
AB	1	0	0	d
AB'	1	d	1	d
A'B'	1	d	0	d
A'B	d	d	d	d

In4	CD	C'D	C'D'	CD'
AB	0	0	1	d
AB'	0	d	0	d

A'B'	0	d	0	d
A'B	d	d	d	d

化简得到表达式:

IN1=AB+C'D' IN2=A'CD IN3=CD+A'B'D'+AB' IN4=ABD'

电路测试:

4.2 调试结果

在本次试跑中,小车的反转速度明显提高,过直角弯道顺利。小车跑完全程速度提 升。

5 结语

5.1 参考文献

- [1] 数字电子技术基础(第五版).2011-11
- [2] 电路 第五版 邱关源 2015-6
- [3] 模拟电子技术基础(第四版) 童诗白 2006
- [5] 电子技术基础.数字部分.(康华光.第5版) 1998
- [6] 电子技术基础.模拟部分.(康华光.第5版) 2005

5.2 附录: 实验照片

调试我们的小车

赛道上的同学们