Fraud Detection Within The Hut Group

Thomas Pinder, Nicholas Abad, Julie Sun, Omar Khan, Luke Lorenzi, Mengnan Sun

Data Science Audience

Project Background

- What is The Hut Group?
 - E-commerce company that sells a wide range of products to customers all over the world
- Why is detecting fraud important?
 - Helps limit the amount of money lost through fraudulent behaviour
- How does the fraud process work at The Hut Group?
 - Automated program flags potential fraud
 - Potential fraud referred on for manual investigation

Aims & Objectives

Aims

- Identify key variables associated to fraudulent activity
- Produce a classifier to identify a transaction as fraudulent

Objectives

- Engineer a set of new variables
- Quantify variable importance
- Construct and compare logistic regression and random forest models
 - Aim to maximise precision

Overview of steps taken to detect fraud

- Discuss fraud with The Hut Group
- Explore existing fraud detection methods
- Decide on technologies to use
- Feature engineering & exploratory analysis
- Determine feature importance
- Account for class imbalances
- Model using logistic regression and random forests

Understanding the Data and Current

Fraud Research

First Steps

- 3 primary tables & auxiliary lookup tables
 - 418,000 observations within a 3-month period
 - 0.3% fraud rate
- Not much publicly available literature on current fraud research
- Decided on Git, Python, R and Google Slides

Amount of Frauds and Non-Frauds per Site

Amount of Frauds and Non-Frauds per Site

Type of Shipping

Cleaning Data and

Feature Engineering

- Examples of important new variables created
 - Proportion of cancelled orders
 - Customer status
 - International delivery boolean
 - Priority delivery boolean
 - One-hot encoded product category

- Problems with data:
 - Missing data and received NA for several values
 - Checked if fraudulent
 - If non-fraudulent, observation dropped
 - Class Imbalance
 - Tested random under and over-sampling
 - Found SMOTE with Tomek links best

Modeling

Code for graphs sourced from Sci-Kit Learn - https://tinyurl.com/y8fon3eg

1. For each minority example k compute nearest minority class examples (i, j, l, n, m)

2. Randomly choose an example out of 5 closest points

3. Synthetically generate event k_1 , such that k_1 lies between k and i

4. Dataset after applying SMOTE 3 times

Choice of Classifiers

- Logistic regression
 - Easy to interpret model output
 - Frequently used in fraud literature
- Random Forest
 - Reduces chance of overfitting
 - Allows for key variables to easily be identified

- Stratified on the 5 site keys
- Split data into train and test, 60:40 split
- Applied SMOTE + Tomek links to training split
- Ran classifier on training
- Assess performance using 10-fold cross-validation
- Remove unimportant variables, tune and re-fit
- Tested model on testing split
- Computed model metrics

Results

Results of SMOTE + Tomek Links

	Accuracy	Recall	Precision	F-Score	AUC
Logistic Regression	98.3	0	0	0	76.3
Random Forest	98.8	43.7	73.8	54.8	92.9
Logistic Regression (with SMOTE + Tomek)	89.6	53.5	8.4	14.5	78.3
Random Forest (with SMOTE + Tomek)	98.9	59.2	71.2	64.6	95.0

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN} \qquad F - Score = 2 * \frac{Precision * Recall}{Precision + Recall}$$

$$Recall = \frac{TP}{TP + FN} \qquad Precision = \frac{TP}{TP + FP}$$

Normalised Confusion Matrix

Random Forest

Normalised Confusion Matrix With SMOTE + TOMEK

Logistic Regression

Random Forest

Bias and Validity concerns

Class Imbalances

- Under sampled non-fraudulent & over sampled fraudulent transactions
 - SMOTE + Tomek links
 - Can "cheat" the classifier
 - Only re-sampled training data

- Only received data during a three month period
- Excluded Periods of High Fraud
 - Black Friday, Cyber Monday, Christmas...
- Stratifying on the 6 unique account keys rather than using the entire data set

- Cannot Guarantee All Fraud Is Accounted For
- Variables strongly correlated to fraud may not have been measured
 - User time on site, user behaviour

Conclusions & Further Work

Conclusions

- Key variables
 - Payment method
 - Charge price
 - Proportion of cancelled orders
- Random forest performed best
 - Re-sampling minority class via SMOTE with Tomek links enhanced performance

Further Work

- Test different classifiers
- Introduce new cost function
 - Account for charge price in cost function
- Obtain full year data
 - Test for seasonality and trends across time

Thank You For Listening.

Are There Any Questions?