Matem'atica~Discreta1º Semestre de 2015 - 1º Prova - 26 de Maio de 2015

- **1.** (1,0) Use as identidades entre conjuntos, indicando as leis associativas e distributivas, para provar ou refutar a seguinte igualdade: $((A \cap B) (B \cap C)) \overline{(A \cap C)} = \emptyset$
- 2. (1,0) Responda e justifique apropriadamente:
 - a) O conjunto das cadeias de bits de tamanho infinito é enumerável?
 - b) Dê uma definição recursiva para o conjunto dos inteiros não negativos i tal que $i \equiv -14 \pmod{7}$.
 - c) Se f é uma função injetora de A em B e g é uma função de A em f(A), de forma que g(x) = f(x) então podemos afirmar que g é bijetora?
 - d) $\lceil x \rceil \lfloor x \rfloor$ é sempre igual a zero ? Se não diga em que condições o resultado é zero e quais seriam os outros resultados e em que situação.
- **3.** (1,0) Use indução matemática para provar que $1^2 + 3^2 + 5^2 + ... + (2n-1)^2 = {2n+1 \choose 3}$
- 4. (2,0) Responda conforme pedido:
 - a) Aplique o teorema binomial para encontrar o coeficiente de x^5 na expansão de $(1+4x)^9$.
 - b) Use o princípio da Casa dos Pombos para provar que entre 5 pontos num plano, cujas coordenadas são números inteiros, existem dois pares de pontos cujo ponto intermediário também possui coordenadas inteiras. (O ponto intermediário entres os pontos (a,b) e (c,d) \acute{e} o ponto $(\frac{a+c}{2},\frac{b+d}{2})$).
 - c) Aplique o algoritmo de Euclides para provar que os números 2k + 1 e 9k + 4 são primos entre si, onde k > 0.
 - d) Use o pequeno teorema de Fermat para provar que 23 | $a^{154} 1$, sendo mdc(a, 23) = 1 e a um inteiro positivo.
- 5. (1,0) Use o teorema fundamental da artimética na prova de que $\sqrt[3]{5}$ é irracional.
- **6.** (1,0) Suponha que ao usar o teorema chinês do resto para realizar computação em paralelo definimos os pares ($z \mod 25$, $z \mod 6$) para representar inteiros entre 0 e 149. Nesssa representação, x corresponde ao par (10,5) e y corresponde ao par (21,4). Que pares correspondem a x + y e a $x \cdot y$? Qual o valor de x? (Use o T.C.R., conforme estudamos, para calcular o valor de x).

Para quem não fez uma MP:

1. (1,0) Prove a seguinte identidade usando argumento combinatório:

$$\binom{3n}{2} = \binom{2n}{2} + \binom{n}{2} + 2n^2$$

2. (1,0) Use indução matemática para provar que $F_{n-1}F_{n+1} - F_n^2 = (-1)^n$. Onde F_n é um número de Fibonacci