Artificial Intelligence and Machine Learning (AIML)

• Last lecture: classification in ML

• This lecture: classification using the perceptron algorithm

Example: health insurance company

Data on whether customers bought the plan

Client	Age (yrs)	Income (k £)	Bought?
1	25	30	No
2	45	60	Yes
3	30	50	Yes
4	22	25	No
5	35	45	Yes
6	55	70	Yes
7	40	55	No
8	60	80	Yes
9	50	40	No
10	28	35	No

- Task: predict whether a new customer is likely to buy or not the plan, given their age and income.
 - Goal: split the data into 2 classes
 (bought/didn't buy) that best match class-labeled training data.

Data on whether customers bought the plan

Client	Age (yrs)	Income (k £)	Bought?
1	25	30	No
2	45	60	Yes
3	30	50	Yes
4	22	25	No
5	35	45	Yes
6	55	70	Yes
7	40	55	No
8	60	80	Yes
9	50	40	No
10	28	35	No

- Task: predict whether a new customer is likely to buy or not the plan, given their age and income.
 - Goal: split the data into 2 classes
 (bought/didn't buy) that best match class-labeled training data.
 - Classification model: linear classifier

$$f(w,x) = \text{sign}(w^T x)$$

 $f: \mathbb{R}^D \to \{-1, +1\}$

Data on whether customers bought the plan

Client	Age (yrs)	Income (k £)	Bought?
1	25	30	No
2	45	60	Yes
3	30	50	Yes
4	22	25	No
5	35	45	Yes
6	55	70	Yes
7	40	55	No
8	60	80	Yes
9	50	40	No
10	28	35	No

- Task: predict whether a new customer is likely to buy or not the plan, given their age and income.
 - Goal: split the data into 2 classes
 (bought/didn't buy) that best match class-labeled training data.
 - Classification model: linear classifier

$$f(w, x) = \text{sign}(w^T x)$$

 $f: \mathbb{R}^D \to \{-1, +1\}$

Initial guess: $w_0 = [-130, 2, 1]^T$

Data on whether customers bought the plan

- Task: predict whether a new customer is likely to buy or not the plan, given their age and income.
 - Goal: split the data into 2 classes
 (bought/didn't buy) that best match class-labeled training data.
 - Classification model: linear classifier

$$f(w, x) = \text{sign}(w^T x)$$

 $f: \mathbb{R}^D \to \{-1, +1\}$

o Initial guess: $w_0 = [-130, 2, 1]^T$

Data on whether customers bought the plan

Misclassification error: number of misclassified data points

$$F(w) = \sum_{i=1}^{N} \mathbb{I}[f(w, x_i) \neq y_i]$$

assigns the same penalty to all incorrect decisions, regardless of how 'bad' they are.

Initial guess: $w_0 = [-130, 2, 1]^T$

Now let's look at y1

Client	Age (<u>vrs</u>)	Income (k £)	Bought?
1	25	30	No

What should be the loss here?

How about y2?

2	45	60	Yes
---	----	----	-----

Initial guess: $w_0 = [-130, 2, 1]^T$

Now let's look at y3

3	30	50	Yes
---	----	----	-----

How about y7?

7 40 55 No	7
------------	---

Initial guess: $w_0 = [-130, 2, 1]^T$

Now let's look at y3

3	30	50	Yes
---	----	----	-----

How about y7?

_	40		No
1	40	55	No

Example: health insurance company

Data on whether customers bought the plan

Misclassification error: number of misclassified data points

$$F(w) = \sum_{i=1}^{N} \mathbb{I}[f(w, x_i) \neq y_i]$$

- assigns the same penalty to all incorrect decisions, regardless of how 'bad' they are.
- Perceptron error: sum of perpendicular distances of every misclassified data point to the decision boundary,

$$F(w) = \sum_{i=1}^{N} \max(0, -y_i w^T x_i)$$

'Penalizes' incorrect decisions by the distance from the decision boundary w^Tx in the direction w (perpendicular distance).

SGD: algorithm (Section 9 Lecture Notes)

- **Step 1**. *Initialization*: Select an initial guess for w_0 , a convergence tolerance $\varepsilon > 0$, step size (learning rate) parameter $\alpha > 0$, set iteration number n=0
- Step 2. Gradient descent step: Compute new model parameters,

$$W_{n+1} = W_n - \alpha F_w(W_n)$$

- **Step 3**. Convergence test: Compute new loss function value $F(w_{n+1})$, and loss function improvement, $\Delta F = |F(w_{n+1}) F(w_n)|$ and if $\Delta F < \varepsilon$, exit with solution $w^* = w_{n+1}$
- **Step 4**. *Iteration*: update n=n+1 and go to step 2.

Perceptron classification

• Classification model (*D*-dimensional):

$$f(w, x) = \text{sign}(w_1 x^1 + w_2 x^2 + \dots + w_D x^D) = \text{sign}(w^T x)$$

Perceptron classification

• Classification model (*D*-dimensional):

$$f(w,x) = \text{sign}(w_1 x^1 + w_2 x^2 + \dots + w_D x^D) = \text{sign}(w^T x)$$

Perceptron error function:

$$F(w) = \sum_{i=1}^{N} \max(0, -y_i w^T x_i)$$

Perceptron classification

Classification model (D-dimensional):

$$f(w, x) = \text{sign}(w_1 x^1 + w_2 x^2 + \dots + w_D x^D) = \text{sign}(w^T x)$$

Perceptron error function:

$$F(w) = \sum_{i=1}^{N} \max(0, -y_i w^T x_i)$$

Gradient with respect to w:

$$F_w(w) = -\sum_{i=1}^N y_i \ x_i \ \mathbb{I}[-y_i w^T x_i \ge 0]$$

 Intuitively, gradient is just sum of -y_ix_i over incorrectly classified points

Perceptron training: algorithm

- **Step 1**. *Initialization*: Select a starting candidate classification model w_0 , set iteration number n=0, choose maximum number of iterations R and learning rate $\alpha > 0$
- **Step 2**. Gradient descent step: Compute new model parameters: taking each $i=1,2,\ldots,N$ in turn, if $\mathrm{sign}(w_n^Tx_i)\neq y_i$, then $w_{n+1}=w_n+\alpha y_ix_i$

• **Step 3**. *Iteration*: If n < R, update n = n + 1, go to step 2, otherwise exit with solution $w^* = w_n$.

Perceptron training: algorithm

- **Step 1**. *Initialization*: Select a starting candidate classification model w_0 , set iteration number n=0, choose maximum number of iterations R and learning rate $\alpha>0$
- **Step 2**. Gradient descent step: Compute new model parameters: taking each $i=1,2,\ldots,N$ in turn, if $\mathrm{sign}(w_n^Tx_i)\neq y_i$, then $w_{n+1}=w_n+\alpha y_ix_i$
- **Step 3**. *Iteration*: If n < R, update n = n + 1, go to step 2, otherwise exit with solution $w^* = w_n$.

Example: health insurance company

Perceptron algorithm in action

Client	Age (yrs)	Income (k £)	Bought?
1	25	30	No
2	45	60	Yes
3	30	50	Yes
4	22	25	No
5	35	45	Yes
6	55	70	Yes
7	40	55	No
8	60	80	Yes
9	50	40	No
10	28	35	No

Perceptron algorithm in action

$$n = 0$$
, $w_0 = [-130, 2, 1]^T$, $R = 10$, $\alpha = 0.1$:

$$i = 3, w_1 = w_0 + 0.1 \times (+1) \times \begin{bmatrix} 1 \\ 30 \\ 50 \end{bmatrix} = [-129.9, 5, 6]^T$$

Example: health insurance company

Perceptron algorithm in action

$$n = 0$$
, $w_0 = [-130, 2, 1]^T$, $R = 10$, $\alpha = 0.1$:

$$i = 3, w_1 = w_0 + 0.1 \times (+1) \times \begin{bmatrix} 1 \\ 30 \\ 50 \end{bmatrix} = [-129.9, 5, 6]^T$$

$$i = 4, w_1 = [-129.9, 5, 6]^T + 0.1 \times (-1) \times \begin{bmatrix} 1 \\ 22 \\ 25 \end{bmatrix} = [-130, 2.8, 3.5]^T$$

Example: health insurance company

Perceptron algorithm in action

$$n = 0$$
, $w_0 = [-130, 2, 1]^T$, $R = 1000$, $\alpha = 0.1$:

$$i = 3, w_1 = w_0 + 0.1 \times (+1) \times \begin{bmatrix} 1 \\ 30 \\ 50 \end{bmatrix} = [-129.9, 5, 6]^T$$

$$i = 4, w_1 = [-129.9, 5, 6]^T + 0.1 \times (-1) \times \begin{bmatrix} 1 \\ 22 \\ 25 \end{bmatrix} = [-130, 2.8, 3.5]^T$$

$$i = 7, w_1 = [-130, 2.8, 3.5]^T + 0.1 \times (+1) \times \begin{bmatrix} 1 \\ 40 \\ 55 \end{bmatrix} = [-130.1, -1.2, -2]^T$$

••••

Example: health insurance company

Perceptron algorithm in action

$$n = 0$$
, $w_0 = [-130, 2, 1]^T$, $R = 1000$, $\alpha = 0.1$:

$$i = 3, w_1 = w_0 + 0.1 \times (+1) \times \begin{bmatrix} 1 \\ 30 \\ 50 \end{bmatrix} = [-129.9, 5, 6]^T$$

$$i = 4, w_1 = [-129.9, 5, 6]^T + 0.1 \times (-1) \times \begin{bmatrix} 1 \\ 22 \\ 25 \end{bmatrix} = [-130, 2.8, 3.5]^T$$

$$i = 7, w_1 = [-130, 2.8, 3.5]^T + 0.1 \times (+1) \times \begin{bmatrix} 1 \\ 40 \\ 55 \end{bmatrix} = [-130.1, -1.2, -2]^T$$

$$n = 1, \ w_1 = [-130, -0.2, 2]^T$$
:

Update weights, and so on... until n = R

Example: health insurance company

Perceptron algorithm in action

$$n = 0$$
, $w_0 = [-130, 2, 1]^T$, $R = 1000$, $\alpha = 0.1$:

$$i = 3, w_1 = w_0 + 0.1 \times (+1) \times \begin{bmatrix} 1 \\ 30 \\ 50 \end{bmatrix} = [-129.9, 5, 6]^T$$

$$i = 4, w_1 = [-129.9, 5, 6]^T + 0.1 \times (-1) \times \begin{bmatrix} 1 \\ 22 \\ 25 \end{bmatrix} = [-130, 2.8, 3.5]^T$$

$$i = 7, w_1 = [-130, 2.8, 3.5]^T + 0.1 \times (+1) \times \begin{bmatrix} 1 \\ 40 \\ 55 \end{bmatrix} = [-130.1, -1.2, -2]^T$$

 $n = 1, w_1 = [-130, -0.2, 2]^T$:

Update weights, and so on... until n = R

$$n = 999, \ w^* = [-128.98, -1.85, 3.55]^T$$
:

Perceptron algorithm: analysis

- If the data is linearly separable, perceptron algorithm always converges on a decision boundary with zero error but no guarantee on the number of iterations required to reach fixed point
- If data is not linearly separable, no convergence guarantee can cycle between local optima of the perceptron error function, so we need to stop after some number of iterations R

Some remarks about the perceptron

- Simple linear classifier based on the perceptron error function rather than the misclassification error function
- Very important classic algorithm in the history of ML, direct precursor to modern deep learning algorithms
- Extremely simple; there are mathematically better "linear single-layer" algorithms (e.g. support vector machines) so the perceptron is rarely used in practice today
- Understanding the perceptron critical to understanding most of the main principles of modern ML classification

To recap

- We learned the perceptron algorithm for classifying data.
 - It only converges if training data is linearly separable (and solution may not be unique)
- Question: how would you generalize the algorithm to K > 2 classes?
- Next: Neural networks (we will answer the question above)

Further Reading

- PRML, Section 4.1.7
- **R&N**, Section 18.6.3
- H&T, Section 4.5.1