

Edgar Gurgel edgargurgel@ic.uff.br

Apresentação baseada nos slides previamente elaborados pelo Prof.

Leonardo Murta

Problema chave: Comunicação

Cliente

Engenheiro de Software

Engenharia de Requisitos

- Concepção
- Elicitação
- Elaboração
- Negociação
- Especificação
- Validação
- Gerenciamento

Concepção

- Objetivo
 - Ter uma visão geral do negócio
 - Conhecer o cliente e suas expectativas
- Resultados esperados
 - Identificação dos interessados (stakeholders)
 - Identificação dos diferentes pontos de vista
 - Visão geral do escopo do sistema

Elicitação

© Scott Adams, Inc./Dist. by UFS, Inc.

Elicitação

- Objetivo
 - Entender o que o cliente espera do software
- Problemas mais comuns
 - Escopo variável (mas contrato fixo)
 - Incertezas do cliente
 - Volatilidade dos requisitos

Elicitação

- Elementos a serem identificados
 - Objetos manipulados pelo sistema
 - Serviços prestados pelo sistema
 - Restrições que devem ser obedecidas (regras de negócio)
 - Critérios de desempenho
- Resultados esperados
 - Narrativa em linguagem natural dos requisitos do sistema
 - Lista de requisitos do sistema

Elicitação (técnicas)

- Entrevistas
- Workshops
- Reuniões de Brainstorming
- Prototipação
- Maquetes
- Análise de documentação existente
- Análise de sistemas existentes
- Observação de pessoas trabalhando
- Etc.

Exercício

- Faça uma pesquisa sobre as Técnicas de Elicitação
 - Reuna-se em grupos;
 - cada grupo deve fazer uma pesquisa das técnicas de elicitação listadas;
 - Faça resumo de três linhas de cada uma das técnicas;
 - Ao final, cada grupo deverá explicar o uso de duas técnicas para a turma.

Elicitação (tipos de requisitos)

- Requisito normal
 - O cliente lembra de falar
 - O cliente espera encontrar esse requisito no sistema
- Requisito esperado
 - Requisito implícito
 - O cliente não lembra de falar
 - O cliente ficará insatisfeito se esse requisito não estiver no sistema
- Requisito excitante
 - O cliente não lembra de falar
 - O cliente não espera encontrar esse requisito no sistema
 - O cliente ficará satisfeito se esse requisito estiver no sistema

Elicitação (cliente x usuário final)

- Nem sempre o cliente é o usuário final
- Cliente
 - Quem contrata e paga pelo serviço
 - Ex.: Administrador de um hospital
- Usuário final
 - Quem usa o software no dia a dia
 - Ex.: Médicos e enfermeiros
- Importante
 - Nunca deixe de elicitar requisitos com os usuários finais, pois sem a colaboração deles, o software não será usado

Elicitação (escolha dos usuários fonte)

- Alguns sistemas serão utilizados por milhares ou milhões de usuários
- Escolha usuários fonte dos requisitos que sejam representativos
- Lembre-se que a regra de Pareto (80-20) aparenta ser válida
 - 20% dos requisitos satisfazem a 80% dos usuários
 - Escolher um usuário muito especialista pode levar a implementação de requisitos que nunca serão utilizados

- Narrativa livre
 - "O sistema deve mostrar uma mensagem de status"
- Lista de requisitos
 - RF-1: Uma mensagem de status deve ser mostrada na área inferior da janela (desenho da Fig.1)
 - RF-2: A mensagem deve ser atualizada a cada 60 segundos, com tolerância de 10 segundos para mais ou para menos
 - RF-3: A mensagem deve estar sempre visível
 - RF-4: Se a mensagem for referente a uma tarefa em andamento, o percentual de andamento deve ser mostrado
 - RF-5: Se a mensagem for referente a uma tarefa já terminada, isso deve ser informado com o texto "Finalizada"

- Sinônimo: atributos de qualidade
- Disponibilidade
 - DS-1: O sistema deve ficar disponível por 99,5% do tempo nos dias úteis, das 6h às 22h, e 99,95% do tempo nos dias úteis, das 16h às 18h
- Eficiência
 - EF-1: Em condições de pico de uso, deve ter uma reserva de 25% de capacidade de processamento e memória
 - EF-2: O cálculo de interferência deve ser finalizado com sucesso em menos de 5 minutos
 - EF-3: O módulo de parser de XML deve processar
 1.000.000 de documentos por segundo

- Flexibilidade
 - FL-1: Um novo tipo de sensor deve poder ser configurado no sistema em menos de 3 horas
- Integridade
 - IN-1: Transações históricas dos consumidores só poderão ser vistas por usuários com privilégios de "auditor"
- Interoperabilidade
 - IT-1: O sistema deve ser capaz de importar dados tanto do MS Office (versão 2003 ou maior) quanto do OpenOffice (versão 2.4 ou maior)
- Confiabilidade
 - CF-1: Em cada 1.000 execuções, não mais do que 2 podem apresentar falhas de software

Robustez

 RB-1: Se acontecer uma falha antes do usuário salvar, o sistema deve recuperar uma versão não salva com perda de conteúdo menor que 1 minuto de trabalho

Usabilidade

- US-1: Um usuário treinado deve ser capaz de submeter um pedido de compra em menos que 5 minutos
- US-2: Um usuário não treinado deve ser capaz de submeter um pedido de compra em menos que 30 minutos
- US-3: Todos os comandos de menu devem ter teclas de atalho associadas

Manutenibilidade

- MN-1: Todos os métodos devem ser documentados utilizando a notação Javadoc
- MN-2: Modificações corretivas devem ser feitas em menos de 5 horas
- MN-3: Modificações adaptativas devido a instrumentos legais devem ser feitas em menos de 20 horas

Portabilidade

 PR-1: O sistema deve poder ser executado em sistema operacional Windows e Linux, nas arquiteturas i386, AIX e SPARC

Reusabilidade

 RS-1: O controle de usuários deve reutilizar componentes de autenticação já utilizados no sistema PORTMAP

Testabilidade

 TS-1: A complexidade ciclomática máxima de um módulo não pode ser maior que 20

Elaboração

- Objetivo
 - Explicitar o conhecimento obtido na concepção e elicitação
- Transformar narrativas de linguagem natural para UML
- Sinônimo: Análise de requisitos
- Resultados esperados
 - Casos de uso
 - Classes conceituais

Negociação

- Objetivo
 - Priorizar e identificar os riscos dos requisitos
 - Eliminar, combinar ou modificar os requisitos
 - Chegar a um consenso sobre a lista final de requisitos
- Conflitos comuns
 - Entre representantes do cliente
 - Requisitos contraditórios
 - Prioridades
 - Entre o cliente e a equipe de desenvolvimento
 - Prazo
 - Custo

Negociação

- Dimensões principais em negociações
 - Escopo
 - Custo
 - Prazo
 - Qualidade
- As dimensões são interligadas
 - Mudança de posição em uma das dimensões pode gerar consequências nas outras dimensões

Negociação (dicas)

- Identifique o objetivo do interlocutor
- Defina uma estratégia
 - Saiba de antemão o que pode ser cedido e o que é fundamental de ser mantido
- Ceda nos aspectos relevantes para o interlocutor que não são relevantes para você
 - Não é uma competição. Ambos têm que ganhar!
- Escute com cuidado os argumentos do interlocutor
 - Reavalie a sua posição caso necessário
- Caso chegue a uma situação confortável, faça um acordo de imediato
 - Não busque melhorar a sua posição se a posição atual já é adequada para ambos!

Especificação

- Objetivo
 - Produzir a especificação de requisitos
- Especificação de requisito engloba
 - Regras de negócio
 - Requisitos funcionais
 - Requisitos não funcionais
 - Casos de uso
 - Classes conceituais

Validação

- Objetivo
 - Assegurar que a especificação de requisitos está precisa
- Problemas comuns
 - Ambiguidade
 - Inconsistência
 - Omissão
 - Erro

Validação (questões)

- Os requisitos estão claros?
- A fonte dos requisitos está identificada?
- Os requisitos foram mostrados para essa fonte?
- Os requisitos estão descritos de forma quantitativa?
- Os requisitos estão relacionados via referência cruzada?
- Os requisitos violam alguma restrição do domínio?
- O requisito é testável? Os testes foram especificados?
- Os requisitos são rastreáveis para os modelos e o código subsequente?
- Existem requisitos implícitos?

Validação (exemplos de ambiguidade)

- A janela deve abrir rapidamente
- O sistema deve ser flexível
- O cálculo deve ser eficiente
- A interface com o usuário deve ser melhor que a atual
- Não devem ser mostradas muitas mensagens de erro
- A exibição do mapa de navegação deve ser amigável

Gerenciamento

- Objetivo
 - Controlar as mudanças nos requisitos
 - Permitir a análise de impacto das mudanças
- Tipos de rastreabilidade
 - Características do sistema
 - Fonte do requisito
 - Dependências entre requisitos
 - Subsistemas
 - Interfaces

Gerenciamento (matriz de rastreabilidade)

Fonte: http://www.modernanalyst.com

- Primeiro passo para se resolver um problema é entender o problema
 - Não basta comunicar, é necessário entender!
- Princípio 1: Escute
 - Tente prestar a atenção no que o interlocutor fala
 - Evite interromper a linha de raciocínio do interlocutor
 - Peça detalhes de algo que não ficou claro
 - Não desestimule seu interlocutor com gestos ou palavras

- Princípio 2: Se prepare antes da reunião
 - Tente entender o problema antes da reunião
 - Tente compreender qual é o jargão utilizado no domínio
 - Elabore uma agenda para a reunião
- Princípio 3: É importante ter um mediador
 - O mediador é responsável por manter a reunião com foco apropriado
 - O mediador é responsável por resolver conflitos
- Princípio 4: Comunicação face a face é o ideal
 - Na comunicação face a face é possível perceber gestos
 - A dedicação na comunicação face a face é maior

- Princípio 5: Tome nota das decisões
 - Em pouco tempo, não será possível saber por que uma decisão foi tomada
 - É fundamental documentar as razões de cada decisão
- Princípio 6: Estimule colaborações
 - Duas ou mais mentes pensam melhor que uma
 - Colaborações geram cumplicidade na equipe
- Princípio 7: Mantenha o foco
 - Evite que o reunião se desvie muito do seu objetivo
 - Lembre às pessoas o que ainda precisa ser visto

- Princípio 8: Se algo estiver obscuro, desenhe!
 - Representações visuais ajudam a uniformizar idéias
 - Faça uso de papel e quadro branco em abundância
- Princípio 9: Siga em frente!
 - Se concordarem, siga em frente
 - Se discordarem, siga em frente
 - Se estiverem em dúvida e não for possível tirar a dúvida no momento, siga em frente
- Princípio 10: Negociação não é um jogo
 - Busque por soluções boas para ambas as partes
 - Ceda em aspectos que não são fundamentais
 - Brigue somente pelas batalhas que valem a pena

Um possível processo...

- 1. Identifique os interessados no software
- 2. Se reunia com os interessados e faça perguntas genéricas sobre como funciona o sistema
- 3. Faça um diagnóstico de uma página sobre o escopo do projeto
- 4. Revise o diagnóstico com os interessados, visando validar a comunicação anterior
- 5. Faça reuniões técnicas com os interessados para descobrir os cenários de uso do sistema (entradas, saídas, características, funcionalidades e comportamentos)
- 6. Faça um breve relatório desses cenários
- 7. Refina com os interessados esse relatório
- 8. Priorize esses cenários com os interessados
- 9. Revise com os interessados o relatório de cenários
- 10. Inicie o planejamento das etapas de projeto, codificação e testes

De engenharia de requisitos para implantação

- A priorização dos requisitos determina o conteúdo de cada iteração de implantação do software
 - Dependências entre requisitos pode influenciar nessa ordem
- Entregar mais que o prometido pode ser uma faca de dois gumes
 - Alegra o cliente naquela iteração
 - Chateia o cliente em iterações futuras se isso não se repetir
- Requisitos não funcionais podem implicar em custos pós-implantação
 - Ex: SLA determinando 4 horas para correção de defeitos

Exercício

- Se coloquem como clientes que desejam contratar uma software house para desenvolver uma IDE
 - Inicialmente, cada grupo deve fazer uma "reunião interna" de elicitação de requisitos (5-10 minutos)
 - O resultado dessa reunião deve ser uma lista de até 10 requisitos
 - 3 grupos devem apresentar seus requisitos no quadro, e entrar numa fase de conciliação: combinação, divisão ou remoção de requisitos duplicados
 - Ao final, cada grupo deverá distribuir 10 pontos para os requisitos mais prioritários

Bibliografia

- Roger Pressman. 2004. Software Engineering: A Practitioner's Approach. 6th ed. McGraw-Hill.
- Wiegers, Karl E. 2003. Software Requirements, Second Edition. 2nd ed. Microsoft Press.

Edgar Gurgel edgargurgel@ic.uff.br