WE CLAIM

1. A compound of Formula I:

$$A \xrightarrow{R_3} R_2 \times X \times W - R_1$$

in which:

n is 0, 1 or 2;

 R_1 is chosen from C_{6-10} aryl and C_{5-10} heteroaryl; wherein any aryl or heteroaryl of R_1 is optionally substituted by a radical chosen from C_{6-10} aryl C_{0-4} alkyl, C_{5-6} heteroaryl C_{0-4} alkyl, C_{3-8} cycloalkyl C_{0-4} alkyl, C_{3-8} heterocycloalkyl C_{0-4} alkyl or C_{1-10} alkyl; wherein any aryl, heteroaryl, cycloalkyl or heterocycloalkyl group of R_1 can be optionally substituted by one to five radicals selected from the group consisting of halo, C_{1-10} alkyl, C_{1-10} alkoxy, halosubstituted- C_{1-10} alkyl and halo-substituted- C_{1-10} alkoxy; and any alkyl group of R_1 can optionally have a methylene replaced by an atom or group chosen from -S-, -S(O)-, $-S(O)_{2-}$, $-NR_4-$ and -O-; wherein R_4 is chosen from hydrogen or C_{1-6} alkyl;

 R_2 and R_3 are independently chosen from hydrogen, C_{1-6} alkyl, halo, hydroxy, C_{1-6} alkoxy, halo-substituted C_{1-6} alkyl and halo-substituted C_{1-6} alkoxy;

A is chosen from $-X_1C(O)OR_4$, $-X_1OP(O)(OR_4)_2$, $-X_1P(O)(OR_4)_2$, $-X_1P(O)OR_4$, $-X_1S(O)_2OR_4$, $-X_1P(O)(R_4)OR_4$ and 1H-tetrazol-5-yl; wherein X_1 is a bond or C_{1-6} alkylene and R_4 is chosen from hydrogen and C_{1-6} alkyl;

W is chosen from a bond, C₁₋₆alkylene and C₂₋₆alkenylene;

X is chosen from C_{2-4} alkylene and C_{2-4} alkenylene; wherein one methylene group of X can be replaced with an atom or group chosen from $-O_-$, $-S_-$, $-S(O)_-$, $-S(O)_2$ and $-NR_5$; wherein R_5 is hydrogen, C_{1-6} alkyl and $-C(O)R_6$; wherein R_6 is chosen from hydrogen and C_{1-6} alkyl; wherein any alkylene or alkenylene of X can further be substituted by 1 to 3 radicals selected from the group consisting of halo, hydroxy, C_{1-6} alkyl, C_{1-6} alkoxy, halo-substituted C_{1-10} alkyl and halo-substituted C_{1-10} alkoxy;

Y is chosen from C_{6-10} aryl and C_{5-10} heteroaryl, wherein any aryl or heteroaryl of Y can be optionally substituted with 1 to 3 radicals chosen from halo, hydoxy, nitro, C_{1-10} alkyl, C_{1-10} alkoxy, halo-substituted C_{1-10} alkyl and halo-substituted C_{1-10} alkoxy;

is C_{1-6} alkylene; wherein up to two methylene groups of Z can be replaced with divalent radicals chosen from $-NR_7$ —. C_{3-8} cycloalkylene, C_{3-8} heterocycloalkylene and phenylene; wherein R_7 is chosen from hydrogen, C_{1-6} alkyl and $(CH_2)_{1-2}COOH$; wherein Z may further be substituted by 1 to 3 radicals chosen from halo, hydroxy, C_{1-6} alkyl, C_{1-6} alkoxy, halo-substitued- C_{1-6} alkyl and halo-substitued- C_{1-6} alkoxy; or when a $-NR_7$ — replaces at least one methylene group of Z, R_7 and Y together with the nitrogen atom to which R_7 is attached, forms C_{8-14} heteroarylene; and the pharmaceutically acceptable salts, hydrates, solvates, isomers and prodrugs thereof.

2. The compound of claim 2 in which n is 0 or 1 and Z is chosen from:

wherein the left and right asterisks of Z indicate the point of attachment between the – $[C(R_2)(R_3)]_n$ – group and A of Formula I, respectively; R_7 is chosen from hydrogen and C_1 . 6alkyl; and J_1 , J_2 and J_3 are independently methylene or a heteroatom selected from the group

consisting of S, O and NR_4 ; wherein R_4 is hydrogen or C_{1-6} alkyl; with the proviso that the number of heteroatoms are 2 or less.

- 3. The compound of claim 1 in which R_1 is chosen from phenyl, naphthyl and thiophenyl optionally substituted by $C_{6\cdot10}$ aryl $C_{0\cdot4}$ alkyl, $C_{5\cdot6}$ heteroaryl $C_{0\cdot4}$ alkyl, $C_{3\cdot8}$ heterocycloalkyl $C_{0\cdot4}$ alkyl or $C_{1\cdot10}$ alkyl; wherein any aryl, heteroaryl, cycloalkyl or heterocycloalkyl group of R_1 can be optionally substituted by 1 to 5 radicals chosen from halo, $C_{1\cdot10}$ alkyl, $C_{1\cdot10}$ alkoxy, halo-substituted- $C_{1\cdot10}$ alkyl and halo-substituted- $C_{1\cdot10}$ alkoxy; and any alkyl group of R_1 can optionally have a methylene replaced by an atom or group chosen from -S-, -S(O)-, $-S(O)_2-$, $-NR_4-$ and -O-; wherein R_4 is hydrogen or $C_{1\cdot6}$ alkyl.
- 4. The compound of claim 1 in which Y is chosen from phenyl, pyridine, pyrimidine, thiophene, furan, thiazole and oxazole; each of which can be optionally substituted with 1 to 3 radicals chosen from halo, hydoxy, nitro, C_{1-10} alkyl, C_{1-10} alkoxy, halo-substituted C_{1-10} alkyl and halo-substituted C_{1-10} alkoxy.
- 5. The compound of claim 1 in which R₂ and R₃ are both hydrogen and A is chosen from -C(O)OR₄ and 1*H*-tetrazol-5-yl; wherein R₄ is chosen from hydrogen and C₁. 6alkyl.
 - 6. The compound of claim 1 in which R₁ is chosen from:

$$R_9$$
 and R_{10} R_{9} ;

wherein the asterisk is the point of attachment of R_1 with W; R_9 is C_{6-10} aryl C_{0-4} alkyl, C_{5-6} heteroaryl C_{0-4} alkyl, C_{3-8} cycloalkyl C_{0-4} alkyl, C_{3-8} heterocycloalkyl C_{0-4} alkyl or C_{1-10} alkyl; wherein any aryl, heteroaryl, cycloalkyl or heterocycloalkyl group of R_9 can be optionally substituted by 1 to 3 radicals chosen from halo, C_{1-10} alkyl, C_{1-10} alkoxy, halo-

substituted- C_{1-10} alkyl and halo-substituted- C_{1-10} alkoxy; and any alkyl group of R_9 can optionally have a methylene replaced by an atom or group chosen from $-S_-$, $-S(O)_-$, $-S(O)_2$, $-NR_4$ and $-O_-$; wherein R_4 is hydrogen or C_{1-6} alkyl; and R_{10} is selected from halo, C_{1-10} alkyl, C_{1-10} alkoxy, halo-substituted- C_{1-10} alkyl and halo-substituted- C_{1-10} alkoxy.

7. The compound of claim 1 chosen from: 3-{[5-(4-cyclohexyl-3-trifluoromethylbenzyloxyimino)-5,6,7,8-tetrahydro-naphthalen-2-ylmethyl]-amino}-propionic acid; 1-[5-(4cyclohexyl-3-trifluoromethyl-benzyloxyimino)-5,6,7,8-tetrahydro-naphthalen-2-ylmethyl]azetidine-3-carboxylic acid; 3-{[6-chloro-4-(4-cyclohexyl-3-trifluoromethylbenzyloxyimino)-chroman-7-ylmethyl]-amino}-propionic acid; 3-{[3-chloro-5-(4cyclohexyl-3-trifluoromethyl-benzyloxyimino)-5,6,7,8-tetrahydro-naphthalen-2-ylmethyl]amino}-propionic acid; 1-[3-Chloro-5-(4-cyclohexyl-3-trifluoromethyl-benzyloxyimino)-5,6,7,8-tetrahydro-naphthalen-2-ylmethyl]-azetidine-3-carboxylic acid; 1-[5-(4-cyclohexyl-3-trifluoromethyl-benzyloxyimino)-3-methoxy-5,6,7,8-tetrahydro-naphthalen-2-ylmethyl]azetidine-3-carboxylic acid; 3-{[5-(4-cyclohexyl-3-trifluoromethyl-benzyloxyimino)-3methoxy-5,6,7,8-tetrahydro-naphthalen-2-ylmethyl]-amino}-propionic acid; 3-{[8-(4cyclohexyl-3-trifluoromethyl-benzyloxyimino)-5,6,7,8-tetrahydro-quinolin-3-ylmethyl]amino}-propionic acid; 1-[8-(4-cyclohexyl-3-trifluoromethyl-benzyloxyimino)-5,6,7,8tetrahydro-quinolin-3-ylmethyl]-azetidine-3-carboxylic acid; 3-{4-[5-(4-cyclohexyl-3trifluoromethyl-benzyloxyimino)-5,6,7,8-tetrahydro-naphthalen-2-yl]-piperazin-1-yl}propionic acid; 3-{[1-(4-cyclohexyl-3-trifluoromethyl-benzyloxyimino)-indan-5-ylmethyl]amino}-propionic acid; 1-[8-(4-cyclohexyl-3-trifluoromethyl-benzyloxyimino)-5,6,7,8tetrahydro-naphthalen-2-ylmethyl]-azetidine-3-carboxylic acid; 3-{[8-(4-cyclohexyl-3trifluoromethyl-benzyloxyimino)-5,6,7,8-tetrahydro-naphthalen-2-ylmethyl]-amino}propionic acid; 3-{[5-(4-cyclohexyl-3-trifluoromethyl-benzyloxyimino)-3-ethyl-5,6,7,8tetrahydro-naphthalen-2-ylmethyl]-amino}-propionic acid; 3-{[4-(4-cyclohexyl-3trifluoromethyl-benzyloxyimino)-chroman-6-ylmethyl]-amino}-propionic acid; 3-{[4-(4cyclohexyl-3-trifluoromethyl-benzyloxyimino)-chroman-7-ylmethyl]-amino}-propionic acid; 1-[4-(4-cyclohexyl-3-trifluoromethyl-benzyloxyimino)-chroman-7-ylmethyl]azetidine-3-carboxylic acid; 3-{[4-(4-cyclohexyl-3-trifluoromethyl-benzyloxyimino)-3,4dihydro-2H-pyrano[2,3-b]pyridin-7-ylmethyl]-amino}-propionic acid; 1-[4-(4-cyclohexyl-3-

trifluoromethyl-benzyloxyimino)-3,4-dihydro-2H-pyrano[2,3-b]pyridin-7-ylmethyl]-azetidine-3-carboxylic acid; 1-[4-(4-cyclohexyl-3-methyl-benzyloxyimino)-chroman-7-ylmethyl]-azetidine-3-carboxylic acid; and 3-{[4-(4-cyclohexyl-3-methyl-benzyloxyimino)-chroman-7-ylmethyl]-amino}-propionic acid.

- 8. A pharmaceutical composition comprising a therapeutically effective amount of a compound of Claim 1 in combination with a pharmaceutically acceptable excipient.
- 9. A method for treating a disease in an animal in which alteration of EDG/S1P receptor mediated signal transduction can prevent, inhibit or ameliorate the pathology and/or symptomology of the disease, which method comprises administering to the animal a therapeutically effective amount of a compound of Claim 1.
- lymphocytes, for treating acute or chronic transplant rejection or T-cell mediated inflammatory or autoimmune diseases, for inhibiting or controlling deregulated angiogenesis, or for treating diseases mediated by a neo-angiogenesis process or associated with deregulated angiogenesis in a subject comprising administering to the subject in need thereof an effective amount of a compound of claim 1, or a pharmaceutically acceptable salt thereof.
- 11. The use of a compound of claim 1 in the manufacture of a medicament for treating a disease in an animal in which alteration of EDG/S1P receptor mediated signal transduction contributes to the pathology and/or symptomology of the disease.
 - 12. A process for preparing a compound of Formula I:

in which:

- n is 0, 1 or 2;
- R_1 is chosen from C_{6-10} aryl and C_{5-10} heteroaryl; wherein any aryl or heteroaryl of R_1 is optionally substituted by a radical chosen from C_{6-10} aryl C_{0-4} alkyl, C_{5-6} heteroaryl C_{0-4} alkyl, C_{3-8} cycloalkyl C_{0-4} alkyl, C_{3-8} heterocycloalkyl C_{0-4} alkyl or C_{1-10} alkyl; wherein any aryl, heteroaryl, cycloalkyl or heterocycloalkyl group of R_1 can be optionally substituted by one to five radicals selected from the group consisting of halo, C_{1-10} alkyl, C_{1-10} alkoxy, halosubstituted- C_{1-10} alkyl and halo-substituted- C_{1-10} alkoxy; and any alkyl group of R_1 can optionally have a methylene replaced by a member of the group consisting of -S-, -S(O)-, -S(O)-, $-NR_4$ and -O-; wherein R_4 is chosen from hydrogen or C_{1-6} alkyl;
- R_2 and R_3 are independently chosen from hydrogen, C_{1-6} alkyl, halo, hydroxy, C_{1-6} alkoxy, halo-substituted C_{1-6} alkyl and halo-substituted C_{1-6} alkoxy;
- A is chosen from $-X_1C(O)OR_4$, $-X_1OP(O)(OR_4)_2$, $-X_1P(O)(OR_4)_2$, $-X_1P(O)OR_4$, $-X_1S(O)_2OR_4$, $-X_1P(O)(R_4)OR_4$ and 1H-tetrazol-5-yl; wherein X_1 is a bond or C_{1-6} alkylene and R_4 is chosen from hydrogen and C_{1-6} alkyl;
 - W is chosen from a bond, C₁₋₆alkylene and C₂₋₆alkenylene;
- X is chosen from $C_{2\text{-4}}$ alkylene and $C_{2\text{-4}}$ alkenylene; wherein one methylene group of X can be replaced with an atom or group chosen from -O–, -S–, -S(O)–, $-S(O)_2$ and $-NR_5$ –; wherein R_5 is hydrogen, $C_{1\text{-6}}$ alkyl and $-C(O)R_6$; wherein R_6 is chosen from hydrogen and $C_{1\text{-6}}$ alkyl; wherein any alkylene or alkenylene of X can further be substituted by 1 to 3 radicals selected from the group consisting of halo, hydroxy, $C_{1\text{-6}}$ alkoxy, halo-substituted $C_{1\text{-10}}$ alkyl and halo-substituted $C_{1\text{-10}}$ alkoxy;
- Y is chosen from C_{6-10} aryl and C_{5-10} heteroaryl, wherein any aryl or heteroaryl of Y can be optionally substituted with 1 to 3 radicals chosen from halo, hydoxy, nitro, C_{1-10} alkyl, C_{1-10} alkoxy, halo-substituted C_{1-10} alkyl and halo-substituted C_{1-10} alkoxy;
- Z is C_{1-6} alkylene; wherein up to two methylene groups of Z can be replaced with divalent radicals chosen from $-NR_7$. C_{3-8} cycloalkylene, C_{3-8} heterocycloalkylene and phenylene; wherein R_7 is chosen from hydrogen, C_{1-6} alkyl and $(CH_2)_{1-2}COOH$; wherein Z may further be substituted by 1 to 3 radicals chosen from halo, hydroxy, C_{1-6} alkyl, C_{1-6} alkoxy, halo-substitued- C_{1-6} alkyl and halo-substitued- C_{1-6} alkoxy; or when a $-NR_7$ replaces

at least one methylene group of Z, R_7 and Y together with the nitrogen atom to which R_7 is attached, forms C_{8-14} heteroarylene; which process comprises:

(a) reacting a compound of formula 2:

with a compound of formula 3:

$$W-R_1$$

 H_2N-O
(3)

in which A, W, X, Y, Z, R₁, R₂, R₃ and n are as defined for Formula I above; and

- (b) optionally converting a compound of the invention into a pharmaceutically acceptable salt;
- (c) optionally converting a salt form of a compound of the invention to a non-salt form;
- (d) optionally converting an unoxidized form of a compound of the invention into a pharmaceutically acceptable N-oxide;
- (e) optionally converting an N-oxide form of a compound of the invention to its unoxidized form;
- (f) optionally resolving an individual isomer of a compound of the invention from a mixture of isomers;
- (g) optionally converting a non-derivatized compound of the invention into a pharmaceutically acceptable prodrug derivative; and
- (h) optionally converting a prodrug derivative of a compound of the invention to its non-derivatized form.