## Group 7 - Environment Combo Module

Names: -Janson -Kevin -Mucyo

-Marc

Date: On 26th September 2025

## **Project Purpose**

The Group 7 "Environment Combo" module is a plug-in PCB designed to enhance an ESP32-D0WDQ6 (LCSC #C967020) base board by monitoring environmental conditions. The primary purpose is to measure atmospheric pressure and temperature using a sensor, detect ambient light levels, and provide visual feedback through LED indicators. The module triggers a yellow LED when light levels drop below a threshold (indicating low light) and a red LED when pressure exceeds a threshold (indicating high pressure), aiding in environmental awareness for applications such as weather monitoring or smart home automation. The design is compact, cost-effective, and integrates seamlessly with the ESP32 via a 2x19 female header system.

#### **Sensors Used**

- <u>BMP280 (LCSC #C83291)</u>: A precision sensor for measuring pressure (range: 300-1100 hPa) and temperature (-40°C to +85°C) via I2C communication. It is configured with a 0.1µF decoupling capacitor (C14663) for stability.
- LDR (Light-Dependent Resistor, LCSC #C125631): A photoresistor with a resistance range of  $5-20k\Omega$ , used with a  $10k\Omega$  resistor (C21190) in a voltage divider to provide an analog signal proportional to light intensity.

### **ESP32 Pins Used**

The module connects to the ESP32 through female headers (FH1 left, FH2 right) that align with the male headers (H3 and H2). The following ESP32 pins are utilized:

- Power and Ground:
  - FH6-1 (H3-1): 3V3 (VCC for BMP280 and LDR divider).
  - FH6-19 (H3-19) and FH2-1 (H2-1): GND (common ground).
- BMP280 I2C:
  - FH7-4 (H2-4): GPIO21 (D4, SDA).
  - FH7-3 (H2-3): GPIO22 (D5, SCL).
- LDR Analog:
  - FH6-5 (H3-5): GPIO34 (A1, analog input for LDR output).
- LED Indicators:
  - FH4-16 (H3-16): GPIO2 (D1, yellow LED for low light).
  - FH4-18 (H3-18): GPIO4 (D2, red LED for high pressure).

#### **Screenshot**

## Schematic:



# PCBs:



# 3Ds:









Conclusion: