```
In [215]: %load_ext sql
          The sql extension is already loaded. To reload it, use:
            %reload ext sql
In [216]: %sql mysql://prod:nerd@52.2.153.189/rental_nerd
Out[216]: u'Connected: prod@rental_nerd'
In [217]: result = %sql (SELECT \
          properties.id as "property_id", \
          property_transaction_logs.id as "transaction_log_id", \
          properties.*, \
          property_transaction_logs.* \
          FROM \
          properties, \
          property_transactions, \
          property_transaction_logs \
          WHERE \
          properties.id = property_transactions.property_id AND \
          property_transactions.property_transaction_log_id = property_transaction_logs.id AND \
          property_transactions.transaction_type = 'rental')
          data = result.DataFrame()
          560 rows affected.
In [218]: result.csv(filename="SQLdump.csv")
Out[218]: CSV results (./files/SQLdump.csv)
In [219]: # imports
          import pandas as pd
          {\tt import\ matplotlib.pyplot\ as\ plt}
          # follow the usual sklearn pattern: import, instantiate, fit
          from sklearn.linear_model import LinearRegression
          import numpy as np
          \# this allows plots to appear directly in the notebook
          %matplotlib inline
          # read data into a DataFrame
          data.head()
```

Out[219]:

٠ [property_id	transaction_log_id	id	address	neighborhood	bedrooms	bathrooms	sqft	source	origin_url	 id	price	tra
•	0	1	1	1	567 Vallejo Street #PH500	San Francisco (North Beach)	3	3	2081	climbsf_renting	http://www.climbsf.com/for- rent/567-vallejo-st	 1	12000	ор
	1	2	2	2	252 Granada Avenue	San Francisco (Ingleside)	2	2	1600	climbsf_renting	http://www.climbsf.com/for- rent/252-granada-ave/	 2	3950	ор
1	2	3	3	3	460 Valley Street	San Francisco (Noe Valley)	2	2	1446	climbsf_renting	http://www.climbsf.com/for- rent/460-valley-st/	 3	5400	ор
;	3	4	4	4	333 Fremont Street #705	San Francisco (South Beach)	1	1	0	climbsf_renting	http://www.climbsf.com/for- rent/333-fremont-st	 4	3600	ор
	4	5	5	5	420 Mission Bay Boulevard North #121	San Francisco (Mission Bay)	1	1	980	climbsf_renting	http://www.climbsf.com/for- rent/420-mission-ba	 5	3975	ор

5 rows × 26 columns

```
In [220]: import datetime

Date_final = [0.1] * len(data)

for x in range(0,len(data)):
    data
    if data["date_closed"][x] is not None :
        # print " row: "+ 'x' + ": using date_rented"
        # data.ix['Date final',x]
        Date_final[x] = data["date_closed"][x]

elif data["date_listed"][x] is not None :
        # print " row: "+ 'x' + ": using date_listed"
        Date_final[x] = data["date_listed"][x]
    else:
        Date_final[x] = data["date_closed"][2]
        print " row: "+ 'x' + ": we are screwed"

data['Date'] = pd.to_datetime(Date_final)
    data.head()
```

Out[220]:

_														
		property_id	transaction_log_id	id	address	neighborhood	bedrooms	bathrooms	sqft	source	origin_url		price	transa
•	0	1	1	1	567 Vallejo Street #PH500	San Francisco (North Beach)	3	3	2081	climbsf_renting	http://www.climbsf.com/for- rent/567-vallejo-st		12000	open
	1	2	2	2	252 Granada Avenue	San Francisco (Ingleside)	2	2	1600	climbsf_renting	http://www.climbsf.com/for- rent/252-granada-ave/		3950	open
	2	3	3	3	460 Valley Street	San Francisco (Noe Valley)	2	2	1446	climbsf_renting	http://www.climbsf.com/for- rent/460-valley-st/		5400	open
;	3	4	4	4	333 Fremont Street #705	San Francisco (South Beach)	1	1	0	climbsf_renting	http://www.climbsf.com/for- rent/333-fremont-st		3600	open
,	4	5	5	5	420 Mission Bay Boulevard North #121	San Francisco (Mission Bay)	1	1	980	climbsf_renting	http://www.climbsf.com/for- rent/420-mission-ba		3975	open

 $5 \text{ rows} \times 27 \text{ columns}$

```
In [221]: # create neighborhoods from lat/long coordinates
    import fiona
    import shapely as shapely
    from shapely.geometry import asShape
```

checking for listings in: Seacliff checking for listings in: Haight Ashbury checking for listings in: Outer Mission checking for listings in: Russian Hill checking for listings in: Noe Valley checking for listings in: Inner Sunset checking for listings in: Downtown/Civic Center checking for listings in: Diamond Heights checking for listings in: Treasure Island/YBI checking for listings in: Lakeshore checking for listings in: Outer Richmond checking for listings in: Crocker Amazon checking for listings in: Excelsior checking for listings in: Parkside checking for listings in: Financial District checking for listings in: Ocean View checking for listings in: Mission checking for listings in: West of Twin Peaks checking for listings in: Inner Richmond checking for listings in: Marina checking for listings in: Bayview checking for listings in: Visitacion Valley checking for listings in: Pacific Heights checking for listings in: Presidio checking for listings in: Nob Hill checking for listings in: Outer Sunset checking for listings in: Western Addition checking for listings in: Golden Gate Park checking for listings in: Presidio Heights checking for listings in: South of Market checking for listings in: Glen Park checking for listings in: Potrero Hill checking for listings in: Castro/Upper Market checking for listings in: Twin Peaks checking for listings in: Bernal Heights checking for listings in: Chinatown checking for listings in: North Beach

Out[227]:

		property_id	transaction_log_id	id	address	neighborhood	bedrooms	bathrooms	sqft	source	origin_url		transaction_s
c)	1	1	1	567 Vallejo Street #PH500	San Francisco (North Beach)	3	3	2081	climbsf_renting	http://www.climbsf.com/for- rent/567-vallejo-st		open
1	ı	2	2	2	252 Granada Avenue	San Francisco (Ingleside)	2	2	1600	climbsf_renting	http://www.climbsf.com/for- rent/252-granada-ave/		open
2	2	3	3	3	460 Valley Street	San Francisco (Noe Valley)	2	2	1446	climbsf_renting	http://www.climbsf.com/for- rent/460-valley-st/		open
3	3	4	4	4	333 Fremont Street #705	San Francisco (South Beach)	1	1	0	climbsf_renting	http://www.climbsf.com/for- rent/333-fremont-st	•••	open
4	1	5	5	5	420 Mission Bay Boulevard North #121	San Francisco (Mission Bay)	1	1	980	climbsf_renting	http://www.climbsf.com/for- rent/420-mission-ba		open

5 rows × 28 columns

In [228]: # filter out any outliers, defined as rent >\$10k or >2,500 sq ft, or not in SF

```
print "Entries before filter: " + `len(data)`
          data = data[(data.shaped_neighborhood != 'None') & (data.sqft <= 2500) & (data.price <= 8000) & (data.price != 0) & (data.
          bedrooms <= 4) & (data.bathrooms <= 3) & (data.sqft != 0)]
          # filter out listings over one month old
          print "Entries after filter: " + `len(data)`
          Entries before filter: 560
          Entries after filter: 304
In [229]: # create year dummy variables (because date isn't very intuitive variable)
          data["Year"] = pd.DatetimeIndex(data["Date"]).to_period('Y')
          # create dummy variables using get_dummies, then exclude the first dummy column
          year_dummies = pd.get_dummies(data.Year, prefix='Year').iloc[:, :-1]
          # print out baseline neighborhood
          base area = pd.get dummies(data.shaped neighborhood, prefix='neighborhood').iloc[:, 0:1].columns[0]
          print('Base neighborhood: %s' % base_area)
          # create dummy variables using get_dummies, then exclude the first dummy column
          area dummies = pd.qet dummies(data.shaped neighborhood, prefix='neighborhood').iloc[:, 1:]
          # concatenate the dummy variable columns onto the original DataFrame (axis=0 means rows, axis=1 means columns)
          data = pd.concat([data, area_dummies, year_dummies], axis=1)
          data.head()
```

Base neighborhood: neighborhood_Bayview

Out[229]:

	property_id	transaction_log_id	id	address	neighborhood	bedrooms	bathrooms	sqft	source	origin_url	 neighborho Hill
1	2	2	2	252 Granada Avenue	San Francisco (Ingleside)	2	2	1600	climbsf_renting	http://www.climbsf.com/for- rent/252-granada-ave/	 0
2	3	3	3	460 Valley Street	San Francisco (Noe Valley)	2	2	1446	climbsf_renting	http://www.climbsf.com/for- rent/460-valley-st/	 0
4	5	5	5	420 Mission Bay Boulevard North #121	San Francisco (Mission Bay)	1	1	980	climbsf_renting	http://www.climbsf.com/for- rent/420-mission-ba	 0
7	8	8	8	1160 Mission Street #1112	San Francisco (SOMA)	1	1	664	climbsf_renting	http://www.climbsf.com/for- rent/1160-mission-s	 0
11	12	12	12	655 26th Avenue	San Francisco (Central Richmond)	2	1	1300	climbsf_renting	http://www.climbsf.com/for- rent/655-26th-ave/	 0

5 rows × 62 columns

```
In [230]: # FACTORING BY YEAR AND NEIGHBORHOOD
           # Thesis: Neighborhoods influence valuations as a multiplier, rather than a constant.
           # a square foot in SOMA is worth more than a square foot in Portrero by X% # New model will look like this:
                   Price = B_1 x (SOMA Coeff * Year Coeff * Sqft) + intercept
           # $3,900 = B_1 \times (1.20\% * 1.15\% * 2,023 \text{ sqft}) + \text{intercept}
# where B_1 represents the price per square foot in base year and base neighborhood
           # I will ignore intercepts for now FIXME
           # calculate the coefficients for the following matrix and save them for later regressions
                                SOMA Mission Portrero Intercept
           # Price/SQFT
                                 $1.23
                                         $0.59
                                                        $0.88
                                                                        $_.__
           # create Price per square foot
           price per foot = data.price / data.sqft
           price_per_foot.name = 'price_per_foot'
           data = pd.concat([data, price_per_foot], axis=1)
           data.head()
```

Out[230]:

:		property_id	transaction_log_id	id	address	neighborhood	bedrooms	bathrooms	sqft	source	origin_url	 neighborho of Market
	1	2	2	2	252 Granada Avenue	San Francisco (Ingleside)	2	2	1600	climbsf_renting	http://www.climbsf.com/for- rent/252-granada-ave/	 0
	2	3	3	3	,	San Francisco (Noe Valley)	2	2	1446	climbsf_renting	http://www.climbsf.com/for- rent/460-valley-st/	 0
	4	5	5	5	420 Mission Bay Boulevard North #121	San Francisco (Mission Bay)	1	1	980	climbsf_renting	http://www.climbsf.com/for- rent/420-mission-ba	 1
	7	8	8	8	1160 Mission Street #1112	San Francisco (SOMA)	1	1	664	climbsf_renting	http://www.climbsf.com/for- rent/1160-mission-s	 1
	11	12	12	12	655 26th Avenue	San Francisco (Central Richmond)	2	1	1300	climbsf_renting	http://www.climbsf.com/for- rent/655-26th-ave/	 0

5 rows × 63 columns

```
In [231]: # visualize the relationship between the features and the response using scatterplots
    data.plot(kind='scatter', x='elevation', y='price_per_foot')
data.plot(kind='scatter', x='elevation', y='price_per_foot')
```

Out[231]: <matplotlib.axes._subplots.AxesSubplot at 0x110e87890>


```
In [233]: feature_cols = area_dummies.columns
          X = data[feature_cols]
          y = data.price_per_foot
          # instantiate, fit
          lm = LinearRegression()
          lm.fit(X, y)
          # print coefficients
          # The mean square error
          print("Residual sum of squares: %.2f"
                % np.mean((lm.predict(X) - y) ** 2))
          # Explained variance score: 1 is perfect prediction
          print('Variance score: %.2f' % lm.score(X, y))
          # print raw results
          print("Base area is %s: $%.2f" % (base_area, lm.intercept_))
          zip(feature_cols,lm.coef_)
          table = ListTable()
          dtype = [('Neighborhood', 'S100'), ('$ per square', float)]
          # round to pennies
          round_coef = map(round,lm.coef_,[2]*len(lm.coef_))
          x = np.array(zip(feature_cols, round_coef),dtype=dtype)
          x.T
          x = np.sort(x,axis=0,order='$ per square')
          table.append(['Neighborhood','$ per square (+/-)'])
          for i in x:
              table.append(i)
          table
```

Residual sum of squares: 1.04 Variance score: 0.29

Base area is neighborhood_Bayview: \$3.15

Out[233]:

\$ per square (+/-)
-0.58
-0.42
-0.36
-0.34
-0.28
-0.21
0.06
0.13
0.14
0.37
0.38
0.4
1.02
1.07
1.12
1.13
1.24
1.26
1.27
1.32
1.52
1.62
1.65
1.68
1.94
2.48
2.53
5.19

Out[234]:

Neighborhood	\$ per sqft
neighborhood_Visitacion Valley	2.56314257913
neighborhood_Glen Park	2.72727272727
neighborhood_Bernal Heights	2.78200061463
neighborhood_Diamond Heights	2.8085106383
neighborhood_Lakeshore	2.8666666667
neighborhood_Excelsior	2.93253968254
neighborhood_Ocean View	3.21056547619
neighborhood_Outer Richmond	3.27613474488
neighborhood_Haight Ashbury	3.28587304169
neighborhood_Parkside	3.51137487636
neighborhood_West of Twin Peaks	3.53093930792
neighborhood_Outer Sunset	3.54200988468
neighborhood_Potrero Hill	4.16518162307
neighborhood_Noe Valley	4.2183338668
neighborhood_Marina	4.27103404056
neighborhood_South of Market	4.27811516862
neighborhood_Inner Richmond	4.38912151969
neighborhood_Downtown/Civic Center	4.40392841058
neighborhood_North Beach	4.42100898552
neighborhood_Nob Hill	4.46503589805
neighborhood_Pacific Heights	4.66270219935
neighborhood_Mission	4.76198374942
neighborhood_Financial District	4.79539277753
neighborhood_Castro/Upper Market	4.8298805149
neighborhood_Inner Sunset	5.08241758242
neighborhood_Russian Hill	5.62111377504
neighborhood_Western Addition	5.67123941357
neighborhood_Chinatown	8.33333333333

```
In [235]: # calculate the multipliers for each neighborhood relative to base area
# SOMA_mult = SOMA_per_foot / Base_per_foot
area_mults = [lm.intercept_] * len(lm.coef_)
area_mults = full_price / area_mults - [1]*len(lm.coef_)

dtype = [('Neighborhood', 'S100'), ('Multiplier', float)]
# round to pennies
round_coef = map(round,area_mults,[2]*len(area_mults))
x = np.array(zip(feature_cols, area_mults),dtype=dtype)
x.T
x = np.sort(x,axis=0,order='Multiplier')
table = ListTable()
table.append(['Neighborhood','Multiplier'])
table.append([base_area,0])
for i in x:
    table.append(i)
```

Out[235]:

table	
Neighborhood	Multiplier
neighborhood_Bayview	0
neighborhood_Visitacion Valley	-0.185286214946
neighborhood_Glen Park	-0.133116236059
neighborhood_Bernal Heights	-0.115720573165
neighborhood_Diamond Heights	-0.107294166495
neighborhood_Lakeshore	-0.08880884368
neighborhood_Excelsior	-0.0678706194346
neighborhood_Ocean View	0.0205019309387
neighborhood_Outer Richmond	0.0413436069017
neighborhood_Haight Ashbury	0.04443899641
neighborhood_Parkside	0.11611641879
neighborhood_West of Twin Peaks	0.122335117748
neighborhood_Outer Sunset	0.125853982273
neighborhood_Potrero Hill	0.323933718397
neighborhood_Noe Valley	0.340828551337
neighborhood_Marina	0.357579690501
neighborhood_South of Market	0.359830479313
neighborhood_Inner Richmond	0.395114667242
neighborhood_Downtown/Civic Center	0.399821146787
neighborhood_North Beach	0.405250333588
neighborhood_Nob Hill	0.419244612659
neighborhood_Pacific Heights	0.482074305325
neighborhood_Mission	0.513631678725
neighborhood_Financial District	0.524250984873
neighborhood_Castro/Upper Market	0.535213166719
neighborhood_Inner Sunset	0.61548393738
neighborhood_Russian Hill	0.786712497844
neighborhood_Western Addition	0.802645301983
neighborhood_Chinatown	1.64881150093

```
In [236]: # calculate the adjusted Sqft (Sqft * Area_mult) for the dataset and add it as a new column to data

# for each property, multiplier is sum of array [area_dummies] x [area_mults]

t = data[area_dummies.columns] * area_mults

t = t.T.sum()

t.name = 'area_multiplier'

t = t + 1

data = pd.concat([data, t], axis=1)

adj_sqft = data.sqft * t
 adj_sqft.name = 'area_adj_sqft'
data = pd.concat([data, adj_sqft], axis=1)

data.head()
```

Out[236]:

	property_id	transaction_log_id	id	address	neighborhood	bedrooms	bathrooms	sqft	source	origin_url		neighborho of Twin Pea
1	2	2	2	252 Granada Avenue	San Francisco (Ingleside)	2	2	1600	climbsf_renting	http://www.climbsf.com/for- rent/252-granada-ave/		0
2	3	3	3	460 Valley Street	San Francisco (Noe Valley)	2	2	1446	climbsf_renting	http://www.climbsf.com/for- rent/460-valley-st/	:	0
4	5	5	5	420 Mission Bay Boulevard North #121	San Francisco (Mission Bay)	1	1	980	climbsf_renting	http://www.climbsf.com/for- rent/420-mission-ba		0
7	8	8	8	1160 Mission Street #1112	San Francisco (SOMA)	1	1	664	climbsf_renting	http://www.climbsf.com/for- rent/1160-mission-s		0
11	12	12	12	655 26th Avenue	San Francisco (Central Richmond)	2	1	1300	climbsf_renting	http://www.climbsf.com/for- rent/655-26th-ave/		0

5 rows × 65 columns

```
In [237]: # run the regression based on area_adj_sqft rather than sqft
          # create X and y
          feature_cols = [data.area_adj_sqft.name]
          X = data[feature_cols]
          y = data.price
          # instantiate, fit
          lm = LinearRegression()
          lm.fit(X, y)
          # print coefficients
          print("Intercept: %.2f" % lm.intercept_)
          # The mean square error
          print("Residual sum of squares: %.2f"
                % np.mean((lm.predict(X) - y) ** 2))
          # Explained variance score: 1 is perfect prediction
          print('Variance score: %.2f' % lm.score(X, y))
          zip(feature_cols, lm.coef_)
          \# calculate predictions for the data set and plot errors
          predictions = lm.predict(X)
          errors = predictions-y
          errors.name = 'Error'
          # visualize the relationship between the features and the response using scatterplots
          errors.sort()
          errors.plot(kind='bar').get_xaxis().set_ticks([])
```

Intercept: 1616.99
Residual sum of squares: 611848.95
Variance score: 0.66

Out[237]: []


```
In [238]: feature_cols = year_dummies.columns
           X = data[feature cols]
           y = data.price_per_foot
            # instantiate, fit
           lm = LinearRegression()
           lm.fit(X, y)
            # print coefficients
            # The mean square error
           print("Residual sum of squares: %.2f"
                  % np.mean((lm.predict(X) - y) ** 2))
            # Explained variance score: 1 is perfect prediction
           print('Variance score: %.2f' % lm.score(X, y))
            # print raw results
           print lm.intercept_
           zip(feature_cols,lm.coef_)
           Residual sum of squares: 1.32
           Variance score: 0.11
           4.79633313103
Out[238]: [(u'Year_1969', -1.9410031817959141),
            (u'Year_2011', -0.62577229712902971),
            (u'Year_2012', -1.3700383103173595),
            (u'Year_2013', -0.98855679368271021),
(u'Year_2014', -0.60179239513716498)]
In [239]: full_price = [lm.intercept_] * len(lm.coef_)
           full_price += lm.coef_
           year_price_per_foot = dict(zip(feature_cols,full_price))
           year_price_per_foot[base_area] = lm.intercept_
           print year_price_per_foot
            {u'Year 1969': 2.8553299492385782, u'Year 2012': 3.4262948207171329, u'Year 2013': 3.8077763373517821, u'neighborhood Bayv
            iew': 4.7963331310344923, u'Year_2011': 4.1705608339054629, u'Year_2014': 4.194540735897327}
In [240]: # calculate the multipliers for each year relative to base year
            # 2014_mult = 2014_per_foot / 2015_per_foot
           year mults = [lm.intercept ] * len(lm.coef )
           year_mults = full_price / year_mults - [1]*len(lm.coef_)
           zip(feature_cols, year_mults)
Out[240]: [(u'Year_1969', -0.40468481416287083), (u'Year_2011', -0.13046889780861826),
            (u'Year_2012', -0.28564285942787804),
(u'Year_2013', -0.2061067833854765),
(u'Year_2014', -0.12546926551937987)]
```

```
In [241]: # calculate the adjusted Sqft (Sqft * Year_mult) for the dataset and add it as a new column to data

# for each property, multiplier is sum of array [year_dummies] x [year_mults]

t = data[year_dummies.columns] * year_mults

t = t.T.sum()

t.name = 'year_multiplier'

t = t + 1

data = pd.concat([data, t], axis=1)

year_adj_sqft = data.area_adj_sqft * t
 year_adj_sqft.name = 'adj_sqft'
data = pd.concat([data, year_adj_sqft], axis=1)

data.head()
```

Out[241]:

:		property_id	transaction_log_id	id	address	neighborhood	bedrooms	bathrooms	sqft	source	origin_url	 Year_1969
	1	2	2	2	252 Granada Avenue	San Francisco (Ingleside)	2	2	1600	climbsf_renting	http://www.climbsf.com/for- rent/252-granada-ave/	 0
	2	3	3	3		San Francisco (Noe Valley)	2	2	1446	climbsf_renting	http://www.climbsf.com/for- rent/460-valley-st/	 0
	4	5	5	5	420 Mission Bay Boulevard North #121	San Francisco (Mission Bay)	1	1	980	climbsf_renting	http://www.climbsf.com/for- rent/420-mission-ba	 0
	7	8	8	8	1160 Mission Street #1112	San Francisco (SOMA)	1	1	664	climbsf_renting	http://www.climbsf.com/for- rent/1160-mission-s	 0
	11	12	12	12	655 26th Avenue	San Francisco (Central Richmond)	2	1	1300	climbsf_renting	http://www.climbsf.com/for- rent/655-26th-ave/	 0

5 rows × 67 columns

```
In [242]: # run the regression based on year_and_area_adj_sqft rather than area_adj_sqft
          # create X and v
          feature_cols = ['adj_sqft']
          X = data[feature_cols]
          y = data.price
          # instantiate, fit
          lm = LinearRegression()
          lm.fit(X, y)
          # print coefficients
          print lm.intercept_
          # The mean square error
          print("Residual sum of squares: %.2f"
                % np.mean((lm.predict(X) - y) ** 2))
          # Explained variance score: 1 is perfect prediction
          print('Variance score: %.2f' % lm.score(X, y))
          print zip(feature_cols, lm.coef_)
          \# calculate predictions for the data set and plot errors
          predictions = lm.predict(X)
          errors = predictions-y
          errors.name = 'Error'
          # visualize the relationship between the features and the response using scatterplots
          errors.sort(inplace=True)
          errors.plot(kind='bar').get_xaxis().set_ticks([])
          errors.tail(10)
          1507.8595447
          Residual sum of squares: 552478.52
          Variance score: 0.69
          [('adj_sqft', 2.1307024315775638)]
                 1384.734919
Out[242]: 202
          194
                 1417.817265
          318
                 1441.690199
                 1457.964199
          313
                 1463.663204
          108
                 1476.202741
          294
          236
                 1481.893854
```


455

60 523 1827.549514 2224.440816

2608.505581

```
In [243]: # create X and y
          feature_cols = ['adj_sqft', 'bedrooms', 'bathrooms']
          X = data[feature_cols]
          y = data.price
          # instantiate, fit
          lm = LinearRegression()
          lm.fit(X, y)
          # print coefficients
          print("Intercept: %.2f" % lm.intercept_)
           # The mean square error
          print("Residual sum of squares: %.2f"
                 % np.mean((lm.predict(X) - y) ** 2))
          # Explained variance score: 1 is perfect prediction
print('Variance score: %.2f' % lm.score(X, y))
          print zip(feature_cols, lm.coef_)
           \# calculate predictions for the data set and plot errors
          predictions = lm.predict(X)
          errors = predictions-y
          errors.name = 'Error'
          \# visualize the relationship between the features and the response using scatterplots
          errors.sort()
          errors.plot(kind='bar').get_xaxis().set_ticks([])
          Intercept: 1269.34
          Residual sum of squares: 509648.11
          Variance score: 0.71
          [('adj_sqft', 1.7729741412548015), ('bedrooms', 155.64516216444514), ('bathrooms', 323.83523244860413)]
```

Out[243]: []


```
In [244]: # show errors by neighborhood to see if there are any neighborhoods with funky differences
          hooderrors = data[['neighborhood']]
          errors = predictions-y
          errors.name = 'Error'
          hooderrors = pd.concat([hooderrors,errors.abs()],axis=1)
          hood group = hooderrors.groupby('neighborhood')
          import numpy
          def median(lst):
              return numpy.median(numpy.array(lst))
          error_avg = hood_group.median()
          error_avg.sort(columns='Error',ascending=False).plot(kind='bar')
          # show errors by year to see if there are any years with funky differences
          yearerrors = data[['Year']]
          yearerrors = pd.concat([yearerrors,errors.abs()],axis=1)
          year_group = yearerrors.groupby('Year')
          error_avg = year_group.mean()
          error_avg.sort(columns='Error',ascending=False).plot(kind='bar')
          # show errors by source to see if there are any sources have noisy data
          srcerrors = data[['source']]
          srcerrors = pd.concat([srcerrors,errors.abs()],axis=1)
          src_group = srcerrors.groupby('source')
          error avg = src group.mean()
          error avg.sort(columns='Error',ascending=False).plot(kind='bar')
```

Out[244]: <matplotlib.axes._subplots.AxesSubplot at 0x111d8ac50>

source

```
In [245]: import csv
          table = ListTable()
          dtype = [('Effect', 'S100'), ('Coefficient', float)]
          \# round to pennies
          round_coef = map(round,lm.coef_,[6]*len(lm.coef_))
          x = np.array(zip(feature_cols, round_coef),dtype=dtype)
          print zip(feature_cols, lm.coef_)
          #x = np.sort(x,axis=0,order='Coefficient')
          with open('model_features_v1.csv', 'wb') as csvfile:
              modelwriter = csv.writer(csvfile, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL)
              header = ['Effect','Coefficient']
              table.append(header)
              modelwriter.writerow(header)
              for i in x:
                  table.append(i)
                  modelwriter.writerow(i)
              table.append(['base_rent', lm.intercept_])
              modelwriter.writerow(['base_rent',lm.intercept_])
          table
```

[('adj_sqft', 1.7729741412548015), ('bedrooms', 155.64516216444514), ('bathrooms', 323.83523244860413)]

Out[245]:

Effect	Coefficient
adj_sqft	1.772974
bedrooms	155.645162
bathrooms	323.835232
base_rent	1269.34366491

```
In [246]: table = ListTable()
           dtype = [('Effect', 'S100'), ('Coefficient', float)]
           # round to pennies
           round_coef = map(round,(area_mults + [1]*len(area_mults)),[6]*len(area_mults))
           x = np.array(zip(area_dummies.columns, round_coef),dtype=dtype)
           x.T
           x = np.sort(x,axis=0,order='Coefficient')
           with open('model_hoods_v1.csv', 'wb') as csvfile:
   hoodwriter = csv.writer(csvfile, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL)
               header = ['Neighborhood','Multiplier']
               table.append(header)
               hoodwriter.writerow(header)
               for i in x:
                   table.append(i)
                   hoodwriter.writerow(i)
               lastrow = [base_area, 1]
               table.append(lastrow)
               hoodwriter.writerow(lastrow)
           table
```

Out[246]:

table	
Neighborhood	Multiplier
neighborhood_Visitacion Valley	0.814714
neighborhood_Glen Park	0.866884
neighborhood_Bernal Heights	0.884279
neighborhood_Diamond Heights	0.892706
neighborhood_Lakeshore	0.911191
neighborhood_Excelsior	0.932129
neighborhood_Ocean View	1.020502
neighborhood_Outer Richmond	1.041344
neighborhood_Haight Ashbury	1.044439
neighborhood_Parkside	1.116116
neighborhood_West of Twin Peaks	1.122335
neighborhood_Outer Sunset	1.125854
neighborhood_Potrero Hill	1.323934
neighborhood_Noe Valley	1.340829
neighborhood_Marina	1.35758
neighborhood_South of Market	1.35983
neighborhood_Inner Richmond	1.395115
neighborhood_Downtown/Civic Center	1.399821
neighborhood_North Beach	1.40525
neighborhood_Nob Hill	1.419245
neighborhood_Pacific Heights	1.482074
neighborhood_Mission	1.513632
neighborhood_Financial District	1.524251
neighborhood_Castro/Upper Market	1.535213
neighborhood_Inner Sunset	1.615484
neighborhood_Russian Hill	1.786712
neighborhood_Western Addition	1.802645
neighborhood_Chinatown	2.648812
neighborhood_Bayview	1

Out[247]:

		property_id	transaction_log_id	id	address	neighborhood	bedrooms	bathrooms	sqft	source	origin_url		Year_201
C)	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN		NaN
1	1	2	2	2	252 Granada Avenue	San Francisco (Ingleside)	2	2	1600	climbsf_renting	http://www.climbsf.com/for- rent/252-granada-ave/		0
2	2	3	3	3	460 Valley Street	San Francisco (Noe Valley)	2	2	1446	climbsf_renting	http://www.climbsf.com/for- rent/460-valley-st/		0
3	3	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN		NaN
4	1	5	5	5	420 Mission Bay Boulevard North #121	San Francisco (Mission Bay)	1	1	980	climbsf_renting	http://www.climbsf.com/for- rent/420-mission-ba		0

5 rows × 69 columns

```
In [248]: # filter out overshoot error
    overshoot = data[(data.error <= -500)]
    columns = data.columns - ['error','latitude', 'longitude', 'address', 'origin_url','price','neighborhood']
    overshoot = data.drop(columns,1)
    overshoot.sort('error',ascending=True,inplace=True)
    overshoot.head(30)</pre>
```

Out[248]:

	address	neighborhood	origin_url	latitude	longitude	price	error	
546	301 Main St UNIT 35A, San Francisco, CA 94105	South Beach	http://www.zillow.com/homedetails/301- Main-St	37.7894	-122.391	7950	-2664.618204	
233	338 Spear Street #39E	San Francisco (South Beach)	http://www.climbsf.com/for-rent/338-spear-st-39e/	37.7894	-122.391	7975	-2255.490601	
517	20th St San Francisco, CA 94110	None	http://www.zillow.com/homedetails/20th-St-San	37.7588	-122.416	6200	-2035.909097	
158	338 Spear Street #39A	San Francisco (South Beach)	http://www.climbsf.com/for-rent/338-spear-st-39a/	37.7894	-122.391	6700	-1983.453547	
273	301 Mission Street #29F	San Francisco (South Beach)	http://www.climbsf.com/for-rent/301-mission-st	37.7905	-122.396	7975	-1962.920623	
89	88 King Street #904	San Francisco (South Beach)	http://www.climbsf.com/for-rent/88-king-st- 904/	37.7807	-122.389	6250	-1895.205653	
434	748 Bay St, San Francisco, CA 94109	Russian Hill	http://www.zillow.com/homedetails/748-Bay-St-S	37.8049	-122.419	7500	-1771.282008	
299	401 Harrison Street #3803	San Francisco (Rincon Hill)	http://www.climbsf.com/for-rent/401-harrison-s	37.7864	-122.392	7225	-1768.441160	
232	2560 Vallejo Street	San Francisco (Pacific Heights)	http://www.climbsf.com/for-rent/2560-vallejo-st/	37.7950	-122.439	7050	-1678.668048	
381	301 Main Street #35F	San Francisco (South Beach)	http://www.climbsf.com/for-rent/301-main-st-35f/	37.7894	-122.391	7000	-1582.016268	
525	20th St San Francisco, CA 94114	None	http://www.zillow.com/homedetails/20th-St-San	37.7578	-122.432	5700	-1481.921519	
382	480 Mission Bay Boulevard North #PH1606	San Francisco (Mission Bay)	http://www.climbsf.com/for-rent/480-mission-ba	37.7731	-122.393	7500	-1472.047366	
283	234 Grand View Avenue	San Francisco (Noe Valley)	http://www.climbsf.com/for-rent/234-grand-view	37.7545	-122.441	7300	-1419.202673	
411	Vallejo St San Francisco, CA 94133	None	http://www.zillow.com/homedetails/Vallejo-	37.7985	-122.410	4000	-1229.429094	

ĺ			St-S				
293	San Francisco (F Hill)		http://www.climbsf.com/for-rent/425-1st-st-3402/	37.7858	-122.392	6600	-1215.769488
203	461 2nd St. #557T	San Francisco (South Beach)	http://www.climbsf.com/for-rent/461-2nd-st-557t/	37.7838	-122.394	6750	-1180.673838
459	Tehama St San Francisco, CA 94103	None	http://www.zillow.com/homedetails/Tehama-St-Sa	37.7793	-122.407	6000	-1167.299698
457	Lombard St San Francisco, CA 94133	None	http://www.zillow.com/homedetails/Lombard-St-S	37.8021	-122.419	6700	-1152.566463
119	1837 Jefferson Street	San Francisco (Marina)	http://www.climbsf.com/for-rent/1837-jefferson	37.8045	-122.443	6200	-1140.531105
357	296 Francisco Street	San Francisco (Telegraph Hill)	http://www.climbsf.com/for-rent/296-francisco-st/	37.8053	-122.410	5475	-1111.447417
316	35 Dolores Street #410	San Francisco (Mission Dolores)	http://www.climbsf.com/for-rent/35-dolores-st	37.7686	-122.427	6050	-1099.802300
204	1839 Jefferson Street	San Francisco (Marina)	http://www.climbsf.com/for-rent/1839- jefferson	37.8048	-122.443	6400	-1098.461283
134	301 Main Street #25E	San Francisco (South Beach)	http://www.climbsf.com/for-rent/301-main-st-25e/	37.7894	-122.391	5800	-1083.730601
282	301 Main Street #5C	San Francisco (South Beach)	http://www.climbsf.com/for-rent/301-main-st-5c/	37.7894	-122.391	7000	-1018.663679
405	Vallejo St San Francisco, CA 94123	None	http://www.zillow.com/homedetails/Vallejo- St-S	37.7952	-122.435	4200	-998.230614
109	229 Brannan Street #12J	San Francisco (South Beach)	http://www.climbsf.com/for-rent/229-brannan-st	37.7826	-122.390	5950	-994.199509
113	301 Mission Street #701	San Francisco (SOMA)	http://www.climbsf.com/for-rent/301-mission-st	37.7905	-122.396	7400	-977.315886
430	501 Beale St, San Francisco, CA 94105	South Beach	http://www.zillow.com/homedetails/501-Beale-St	37.7863	-122.389	6000	-975.000185
174	301 Main Street #14F	San Francisco (South Beach)	http://www.climbsf.com/for-rent/301-main-st-14f/	37.7894	-122.391	5950	-965.958102
72	235 Berry Street #107	San Francisco (Mission Bay)	http://www.climbsf.com/for-rent/235-berry-st-1	37.7749	-122.394	7500	-964.150538

```
In [249]: data = data[(data.sqft <= 2500) & (data.price <= 8000) & (data.price != 0) & (data.bedrooms <= 4) & (data.bathrooms <= 3)
          & (data.sqft != 0)]
          # add squared square footage to the table
          squared = data.adj_sqft ** 2
          squared.name = 'sqft_squared'
          squared beds = data.bedrooms ** 2
          squared_beds.name = 'beds_squared'
          data = pd.concat([data, squared, squared_beds], axis=1)
          #data = pd.concat([data, squared_beds], axis=1)
          # create X and y
          feature cols = ['adj sqft', 'bedrooms', 'bathrooms', 'sqft squared', 'beds squared']
          X = data[feature_cols]
          y = data.price
          # instantiate, fit
          lm = LinearRegression()
          lm.fit(X, y)
          # print coefficients
          print("Intercept: %.2f" % lm.intercept_)
          # The mean square error
          print("Residual sum of squares: %.2f"
                % np.mean((lm.predict(X) - y) ** 2))
          # Explained variance score: 1 is perfect prediction
          print('Variance score: %.2f' % lm.score(X, y))
          print zip(feature_cols, lm.coef_)
          # calculate predictions for the data set and plot errors
          predictions = lm.predict(X)
          errors = predictions-y
          errors.name = 'Error'
          # visualize the relationship between the features and the response using scatterplots
          errors.sort()
          errors.plot(kind='bar').get_xaxis().set_ticks([])
          Intercept: 247.37
          Residual sum of squares: 474109.65
          Variance score: 0.73
          [('adj_sqft', 3.6996192523678673), ('bedrooms', -157.61331809822042), ('bathrooms', 316.48288907402383), ('sqft squared',
          -0.00059060553655249949), ('beds_squared', 53.514005384693448)]
Out[249]: []
            2000
            1000
           -1000
```

-2000

-3000

```
In [250]: import statsmodels.formula.api as sm
         result = sm.ols(formula="price ~ adj_sqft + bedrooms + bathrooms + elevation", data=data).fit()
         print result.params
         print result.summary()
         Intercept 1355.629789
         adj_sqft 1.756130
bedrooms 223.018916
         bathrooms 277.936411
         elevation
                       -3.520630
         dtype: float64
                                    OLS Regression Results
         ______
         Dep. Variable:
                                      price R-squared:
                   Least Squares F-statistic:
Sun, 16 Aug 2015 Prob (F-statistic):
13:17:50 Log-Likelihood:
303 AIC:
                             OLS Adj. R-squared:
Least Squares F-statistic:
                                                                               0.717
         Model:
         Method:
                                                                               192.5
         Date:
                                                                           2.69e-81
         No. Observations:
                                                                               4844.
         Df Residuals:
                                          298 BIC:
                                                                               4862.
         Df Model:
         Covariance Type: nonrobust
          ______
                     coef std err t P>|t| [95.0% Conf. Int.]
          ______
         Intercept 1355.6298 131.263 10.328 0.000 1097.309 1613.950 adj_sqft 1.7561 0.109 16.059 0.000 1.541 1.971 bedrooms 223.0189 75.983 2.935 0.004 73.488 372.550 bathrooms 277.9364 99.297 2.799 0.005 82.524 473.349 elevation -3.5206 1.182 -2.979 0.003 -5.846 -1.195
```

1.769

22.344

1.41e-05

Warnings:

Skew:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

0.000 Jarque-Bera (JB):
0.532 Prob(JB):

[2] The condition number is large, 5.15e+03. This might indicate that there are strong multicollinearity or other numerical problems.

3.800 Cond. No. ______

Omnibus: 18.909 Durbin-Watson:
Prob(Omnibus): 0.000 Jarque-Bera (TB):

In [251]: from mpl_toolkits.basemap import Basemap import fiona

```
In [252]: plt.figure(figsize=(12,12))
          # Create the Basemap
          event_map = Basemap(projection='merc',
                              resolution='h', epsg=2227,
                              lat_0 = 37.7, lon_0=-122.4, # Map center
                              llcrnrlon=-122.55, llcrnrlat=37.7, # Lower left corner
                              urcrnrlon=-122.35, urcrnrlat=37.85) # Upper right corner
          # Draw important features
          event_map.arcgisimage(service='World_Shaded_Relief', xpixels = 1500, verbose= True)
          event_map.readshapefile(
              'data/Realtor_Neighborhoods_4326/hoods_4326', 'SF', color='black', zorder=2)
          # create array storing lats and longs
          listing_coords = zip(data.latitude,data.longitude)
          # Draw the points on the map:
          for longitude, latitude in listing_coords:
              x, y = event_map(latitude, longitude) # Convert lat, long to y,x
              event_map.plot(x,y, 'ro', alpha=0.3)
```

http://server.arcgisonline.com/ArcGIS/rest/services/World_Shaded_Relief/MapServer/export?bbox=5968621.97922,2083843.65958,6027551.68158,2137245.61137&bboxSR=2227&imaqeSR=2227&size=1500,1359&dpi=96&format=png32&f=imaqe


```
In [253]: price_per_adj_foot = data['price'] / data['adj_sqft']
    price_per_adj_foot.name = 'price_per_adj_foot'
    adj_price = data['price'] * data['area_multiplier']
    adj_price.name = 'adj_price'
    data = pd.concat([data, price_per_adj_foot, adj_price], axis=1)

# visualize the relationship between the features and the response using scatterplots
    data.plot(kind='scatter', x='elevation', y='adj_price')
    data.plot(kind='scatter', x='elevation', y='price_per_adj_foot')
```

Out[253]: <matplotlib.axes._subplots.AxesSubplot at 0x10d822b90>

In []: