Many Body Pertubation Theory

GW approximation RPA energies

F. Bruneval
Service de Recherches de Métallurgie Physique
CEA Saclay

Outline

- I. Introduction: going beyond DFT
- II. Introducing the Green's function
- III. Exact Hedin's equations and the *GW* approximation
- IV. Calculating the *GW* self-energy in practice
- V. RPA total energies
- VI. Some applications

Standard DFT has unfortunately some shortcomings

Defect formation energy, dopant solubility

Optical absorption

FIG. 1. Single-particle Hartree-Fock and local density approximation eigenvalue spectra (eV) for the SiH₄ molecule.

Gap re-normalization by a (metallic) substrate

FIG. 1 (color online). Schematic energy level diagram indicating polarization shifts in the frontier energy levels (ionization and affinity) of a molecule upon adsorption on a metal surface.

Benzene deposited on copper, gold, graphite

Neaton, Hybertsen, Louie PRL (2006)

How do go beyond within the DFT framework?

Not easy to find improvement within DFT framework
There is no such thing as a perturbative expansion
Perdew's Jacob's ladder does not help for the band gap

HEAVEN OF CHEMICAL ACCURACY

FIG. 1. Jacob's ladder of density functional approximations to the exchange-correlation energy.

Need to change the overall framework!

Outline

- I. Introduction: going beyond DFT
- II. Introducing the Green's function
- III. Exact Hedin's equations and the *GW* approximation
- IV. Calculating the *GW* self-energy in practice
- V. RPA total energies
- VI. Some applications

Many-body perturbation theory

Historically older than the DFT (from the 40-50's)! Big names: Feynman, Schwinger, Hubbard, Hedin, Lundqvist

Green's functions = propagator

 $G(\mathbf{r}t,\mathbf{r}'t') \approx \left\{ \begin{array}{c} \left\{ \begin{array}{c} \mathbf{r}\mathbf{r}\mathbf{r}^{2} \\ \mathbf{r}\mathbf{r}^{2} \end{array} \right\} + \left[\begin{array}{c} \mathbf{r}\mathbf{r}^{2} \\ \mathbf{r}\mathbf{r}^{2} \end{array} \right] \right\}$

Exact ground state wavefunction:

$$|N|$$
,0 \rangle

Creation, annihilation operator: $\Psi^{\intercal}(rt)$, $\Psi(rt)$

- $\Psi^{\dagger}(rt)|N,0
 angle$ is a (N+1) electron wavefunction not necessarily in the ground state
- $\Psi^{\dagger}(r't')|N,0
 angle$ is another (N+1) electron wavefunction

Let's compare the two of them!

Green's function definition

$$=iG^{e}(\mathbf{r}t,\mathbf{r}'t')$$
 for $t>t'$

Mesures how an extra electron propagates from (r't') to (rt).

Green's function definition

Mesures how a missing electron (= a hole) propagates from
$$(rt)$$
 to $(r't')$.

Related to photoemission spectroscopy

Energy conservation:

before after
$$h\nu + E(N,0) = E_{kin} + E(N-1,i)$$

Quasiparticle energy:

$$\epsilon_{i} = E(N,0) - E(N-1,i) = E_{kin} - h \nu$$

And inverse photoemission spectroscopy

Energy conservation:

before after
$$E_{kin} + E(N,0) = h\nu + E(N+1,i)$$

Quasiparticle energy:

$$\epsilon_{i} = E(N+1,i) - E(N,0) = E_{kin} - h \nu$$

Other properties of the Green's function

Get the electron density:

$$\rho(\mathbf{r}) = -i G(\mathbf{r}t^{-}, \mathbf{r}, t)$$

Galitskii-Migdal formula for the total energy:

$$E_{total} = \frac{1}{\pi} \int_{-\infty}^{\mu} d\omega \operatorname{Tr} \left[\left(\omega - h_0 \right) \operatorname{Im} G \left(\omega \right) \right]$$

Expectation value of any 1 particle operator (local or non-local)

$$\langle O \rangle = \lim_{t \to t'} Tr[OG]$$

Outline

- I. Introduction: going beyond DFT
- II. Introducing the Green's function
- III. Exact Hedin's equations and the *GW* approximation
- IV. Calculating the *GW* self-energy in practice
- V. RPA total energies
- VI. Some applications

Dyson equation for the exact Green's function

Imagine there exists an operator that generates the exact G

This operator is the famous "self-energy":

- non-local in space
- time-dependent
- non-Hermitian

6 coupled equations: $1=(r_1t_1\sigma_1)$ $2=(r_2t_2\sigma_2)$

$$1 = (\boldsymbol{r}_1 t_1 \sigma_1)$$

$$2 = (\boldsymbol{r}_2 t_2 \sigma_2)$$

$$G(1,2) = G_0(1,2) + \int d \, 34 \, G_0(1,3) \, \Sigma(3,4) \, G(4,2) \qquad \text{Dyson equation}$$

$$\Sigma(1,2) = i \int d \, 34 \, G(1,3) \, W(1,4) \, \Gamma(4,2,3) \qquad \text{self-energy}$$

$$\Gamma(1,2,3) = \delta(1,2) \, \delta(1,3) + \int d \, 4567 \frac{\delta \, \Sigma(1,2)}{\delta \, G(4,5)} \, G(4,6) \, G(5,7) \, \Gamma(6,7,3) \qquad \text{vertex}$$

$$\chi_0(1,2) = -i \int d \, 34 \, G(1,3) \, G(4,1) \, \Gamma(3,4,2) \qquad \text{polarizability}$$

$$\varepsilon(1,2) = \delta(1,2) - \int d \, 3 \, v(1,3) \, \chi_0(3,2) \qquad \text{dielectric matrix}$$

$$W(1,2) = \int d \, 3 \, \varepsilon^{-1}(1,3) \, v(3,2) \qquad \text{screened Coulomb interaction}$$

screened Coulomb interaction

Simplest approximation

$$\Sigma(1,2)=iG(1,2)v(1^+,2)$$
 Fock exchange

Not enough: Hartree-Fock is known to perform poorly for solids

Hartree-Fock approximation for band gaps

6 coupled equations:

6 coupled equations:

6 coupled equations:

Here comes the GW approximation

$$\Sigma(1,2) = iG(1,2)W(1,2)$$

GW approximation

$$\chi_0(1,2) = -iG(1,2)G(2,1)$$

RPA approximation

$$\varepsilon(1,2) = \delta(1,2) - \int d3 v(1,3) \chi_0(3,2)$$

$$W(1,2) = \int d3 \, e^{-1}(1,3) \, v(3,2)$$

Let us play with diagrams

$$\chi_0(1,2) = -i G(1,2) G(2,1)$$

$$\Sigma(1,2)=iG(1,2)W(1,2)$$

$$\varepsilon(1,2) = \delta(1,2) - \int d3 v(1,3) \chi_0(3,2)$$

$$W(1,2) = \int d3 \varepsilon^{-1}(1,3) v(3,2)$$

$$W = v + v \chi_0 W$$

= v + v \chi_0 v + v \chi_0 v \chi_0 v + ...

Infinite summation over bubble (or ring) diagrams

What is W?

Interaction between electrons in vacuum:

$$v(\mathbf{r},\mathbf{r}') = \frac{1}{4\pi\varepsilon_0} \frac{e^2}{|\mathbf{r}-\mathbf{r}'|}$$

Interaction between electrons in a homogeneous polarizable medium:

$$W(\mathbf{r},\mathbf{r}') = \frac{1}{4\pi \, \varepsilon_0 \varepsilon_r} \frac{e^2}{|\mathbf{r} - \mathbf{r}'|}$$
Dielectric constant of the medium

Dynamically screened interaction between electrons in a general medium:

$$W(\mathbf{r},\mathbf{r}',\omega) = \frac{e^2}{4\pi\varepsilon_0} \int d\mathbf{r}'' \frac{\varepsilon^{-1}(\mathbf{r},\mathbf{r}'',\omega)}{|\mathbf{r}''-\mathbf{r}'|}$$

W is frequency dependent

W can measured directly by Inelastic X-ray Scattering

Zero below the band gap

H-C Weissker et al. PRB (2010)

GW viewed as a "super" Hartree-Fock

Hartree-Fock Approximation

$$\Sigma_{x}(\mathbf{r_{1,}r_{2}}) = \frac{i}{2\pi} \int_{-\infty}^{\mu} d\omega' G(\mathbf{r_{1,}r_{2,}\omega'}) v(\mathbf{r_{1,}r_{2}})$$

= bare exchange

GW Approximation

$$\Sigma_{xc}(\mathbf{r_{1}},\mathbf{r_{2}}) = \Sigma_{xc}(\mathbf{r_{1}},\mathbf{r_{2}},\omega) = \frac{i}{2\pi} \int_{-\infty}^{\mu} d\omega' G(\mathbf{r_{1}},\mathbf{r_{2}},\omega') v(\mathbf{r_{1}},\mathbf{r_{2}}) \qquad \frac{i}{2\pi} \int d\omega' G(\mathbf{r_{1}},\mathbf{r_{2}},\omega+\omega') W(\mathbf{r_{2}},\mathbf{r_{1}},\omega')$$

+ correlation

GW is nothing else but a "screened" version of Hartree-Fock.

Non Hermitian dynamic

Summary: DFT vs *GW*

Electronic density

$$\rho(\mathbf{r})$$

Green's function

$$G(\mathbf{r}t,\mathbf{r}'t')$$

Non-local, dynamic Depends onto empty states

exchange-correlation operator

Local and static

exchange-correlation potential

= self-energy

$$\Sigma_{xc}(rt,r't')$$

 $v_{xc}(\mathbf{r})$

GW approximation

 $\Sigma_{GW}(\mathbf{r}t,\mathbf{r}'t')=iG(\mathbf{r}t,\mathbf{r}',t')W(\mathbf{r}t,\mathbf{r}'t')$

Approximations:

LDA, GGA, hybrids

GW approximation gets good band gap

after van Schilfgaarde et al PRL 96 226402 (2008)

No more a band gap problem!

Outline

- I. Introduction: going beyond DFT
- II. Introducing the Green's function
- III. Exact Hedin's equations and the *GW* approximation
- IV. Calculating the *GW* self-energy in practice
- V. RPA total energies
- VI. Some applications

Historical recap of *GW* calculations

- 1965: Hedin's calculations for the homogeneous electron gas Phys Rev **2201 citations**
- 1967: Lundqvist's calculations for the homogeneous electron gas Physik der Kondensierte Materie **299 citations**
- 1982: Strinati, Mattausch, Hanke for real semiconductors but based on tightbinding

PRB 154 citations

- 1985: Hybertsen, Louie for real semiconductors with ab initio LDA PRL **711 citations** & PRB **1737 citations**
- 1986: Godby, Sham, Schlüter for real semiconductors to get accurate local potential

PRL 544 citations & PRB 803 citations

- ~2001: First publicly available *GW* code in ABINIT
- 2003: Arnaud, Alouani for extension to Projector Augmented Wave PRB **102 citations**
- 2006: Shishkin, Kresse for extension to Projector Augmented Wave (again)
 PRB 256 citations

GW approximation in practice

• For periodic solids: Abinit, BerkeleyGW, VASP, Yambo

based on plane-waves (with pseudo or PAW)

For finite systems: MolGW, Fiesta, FHI-AIMS
 based on localized orbitals (gaussians or slater or other)

Work flow of a typical GW calculation

How to get *G*?

From Kohn-Sham DFT

Remember

$$\left[\omega - h_{\text{KS}}\right]G_{\text{KS}} = 1$$

which means

$$G^{KS}(\mathbf{r}_{1},\mathbf{r}_{2},\omega) = \sum_{i} \frac{\phi_{i}^{KS}(\mathbf{r}_{1})\phi_{i}^{KS*}(\mathbf{r}_{2})}{\omega - \epsilon_{i}^{KS} \pm i \eta}$$

This expression will be used to get $\,W\,$ and

How to get *W*?

From the RPA equation

$$\chi_0(1,2) = -iG(1,2)G(2,1)$$

which translates into

$$\chi_{0}(\mathbf{r_{1}},\mathbf{r_{2}},\omega) = \sum_{\substack{i \text{ occ} \\ j \text{ virt}}} \phi_{i}(\mathbf{r_{1}}) \phi_{i}^{*}(\mathbf{r_{2}}) \phi_{j}(\mathbf{r_{2}}) \phi_{j}^{*}(\mathbf{r_{1}})$$

$$\times \left[\frac{1}{\omega - (\epsilon_{j} - \epsilon_{i}) - i \eta} - \frac{1}{\omega - (\epsilon_{i} - \epsilon_{j}) + i \eta} \right]$$

This is the Alder-Wiser formula or the SOS formula

It involves empty states!

Then
$$\chi_0(1,2)$$
 $W(1,2)$

W in plane-waves

Non-interacting susceptibility

$$\chi_{0}(\boldsymbol{r}_{1},\boldsymbol{r}_{2},\omega) = \sum_{\substack{i \text{ occ} \\ i \text{ yirt}}} \phi_{i}(\boldsymbol{r}_{1}) \phi_{i}^{*}(\boldsymbol{r}_{2}) \phi_{j}(\boldsymbol{r}_{2}) \phi_{j}^{*}(\boldsymbol{r}_{1}) \left[\frac{1}{\omega - (\epsilon_{j} - \epsilon_{i}) - i \eta} - \frac{1}{\omega - (\epsilon_{i} - \epsilon_{j}) + i \eta} \right]$$

Double Fourier transform into reciprocal space:

$$\chi_0(q+G_1,q+G_2,\omega) = \int dr_1 dr_2 e^{-i(q+G_1).r_1} \chi_0(r_1,r_2,\omega) e^{i(q+G_2).r_2} = \chi_{0G_1G_2}(q,\omega)$$

One needs to calculate the "matrix elements":

$$M_{ji}(\boldsymbol{q}+\boldsymbol{G}) = \int d\boldsymbol{r_1} \phi_i(\boldsymbol{r_1}) \phi_j^*(\boldsymbol{r_1}) e^{-i(\boldsymbol{q}+\boldsymbol{G}).\boldsymbol{r_1}}$$

Then the dielectric matrix is inverted

$$\varepsilon_{G_1G_2}(\boldsymbol{q},\omega) = \delta_{G_1G_2} - v_{G_1}(\boldsymbol{q}) \chi_{0G_1G_2}(\boldsymbol{q},\omega)$$

to calculate W

$$W_{G_1G_2}(\boldsymbol{q},\omega) = \varepsilon_{G_1G_2}^{-1}(\boldsymbol{q},\omega) v_{G_2}(\boldsymbol{q})$$

Self energy evaluation in *GW*

Correlation part of the GW self energy requires a convolution in frequency:

How to deal with the frequency dependence in W?

How do we perform the convolution? How do we treat the frequency dependence in *W*?

Plasmon-Pole Models in GW

Correlation part of the GW self energy requires a convolution in frequency:

$$\Sigma_{c}(\omega) = \frac{i}{2\pi} \int_{-\infty}^{+\infty} d\omega' \frac{G(\omega + \omega')}{W_{p}(\omega')}$$

Generalized Plasmon-Pole Model:

2 parameters need two constraints:

- Hybertsen-Louie (HL):
$$\ \epsilon^{-1}(0)$$
 and f sum rule $\int\limits_0^\infty \omega \, \mathrm{Im} \, \epsilon^{-1}(\omega) = -\, \frac{\pi}{2} \, \omega_p^2$ - Godby-Needs (GN): $\ \epsilon^{-1}(0)$ and $\ \epsilon^{-1}(i\,\omega)$ Aussois, ISTPC 2015

GW obtained as a first-order perturbation

$$G = G_0 + G_0 \Sigma G$$

$$G_{KS} = G_0 + G_0 V_{xc} G_{KS}$$

$$G^{-1} = G_{KS}^{-1} - (\Sigma - V_{xc})$$

Approximation: $\phi_i^{GW} \approx \phi_i^{KS}$

$$G^{-1} = \sum_{i} |\phi_{i}\rangle (\omega - \epsilon_{i}^{GW}) \langle \phi_{i}|$$

$$G_{KS}^{-1} = \sum_{i} |\phi_{i}\rangle (\omega - \epsilon_{i}^{KS}) \langle \phi_{i}|$$

$$\epsilon_{i}^{GW} = \epsilon_{i}^{KS} + \langle \phi_{i} | \Sigma(\epsilon_{i}^{GW}) - v_{xc} | \phi_{i} \rangle$$

Linearization of the energy dependance

$$\epsilon_{i}^{GW} - \epsilon_{i}^{KS} = \langle \phi_{i}^{KS} | [\Sigma(\epsilon_{i}^{GW}) - v_{xc}] | \phi_{i}^{KS} \rangle$$

Not yet known

Taylor expansion:

$$\sum (\epsilon_i^{GW}) = \sum (\epsilon_i^{KS}) + (\epsilon_i^{GW} - \epsilon_i^{KS}) \frac{\partial \sum}{\partial \epsilon} + \dots$$

Final result:

$$\epsilon_{i}^{GW} = \epsilon_{i}^{KS} + Z_{i} \langle \phi_{i}^{KS} | [\Sigma(\epsilon_{i}^{KS}) - v_{xc}] | \phi_{i}^{KS} \rangle$$

where
$$Z_i = 1/\left(1 - \left\langle i | \frac{\partial \Sigma}{\partial \epsilon} | i \right\rangle\right)$$

Quasiparticle equation

A typical ABINIT ouptput for Silicon at Gamma point

Full quasiparticle solution

F. Bruneval

Spectral function

$$A(\omega) = |\operatorname{Im} G(\omega)| / \pi$$

Excitation lifetime

Hole self-energy:

$$\begin{split} \operatorname{Im}\{\langle i|\Sigma(\epsilon_i)|i\rangle\} &= -\sum_{j \neq \mathbf{G}G'} M_{ij}(\mathbf{q} + \mathbf{G}) M_{ij}^*(\mathbf{q} + \mathbf{G}') \\ &\times \operatorname{Im}(W - v)_{\mathbf{G}G'}(\mathbf{q}, \epsilon_j - \epsilon_i) \\ &\times \theta(\mu - \epsilon_j) \theta(\epsilon_j - \epsilon_i) \end{split}$$

Outline

- I. Introduction: going beyond DFT
- II. Introducing the Green's function
- III. Exact Hedin's equations and the *GW* approximation
- IV. Calculating the *GW* self-energy in practice
- V. RPA total energies
- VI. Some applications

Several expressions for the energy

Galitskii-Migdal expression:

Tr stands for $\int d\omega \int d\mathbf{r}$

$$E_{\rm GM} = \frac{1}{2} \operatorname{Tr} \left[(\omega - h_0) G \right]$$

Klein (=Pines=Nozières=RPA) expression:

$$E_{K}[G] = -\text{Tr}[\ln(-G^{-1})] - E_{H} - \text{Tr}[(G_{KS}^{-1} + v_{xc})G - 1] + E_{x} + \Phi_{GW}$$

$$E_{K}[G_{KS}] = T + E_{ext} + E_{H} + E_{x} + \Phi_{GW}$$

Luttinger-Ward expression:

$$E_{LW}[G] = -\operatorname{Tr}[\ln(h_0 + v_H + \Sigma(\omega) - \omega)] - E_H - \operatorname{Tr}[\Sigma G] + E_x + \Phi_c$$

$$E_{\text{LW}}[G_{\text{KS}}] = T + E_{\text{ext}} + E_H + E_x + \Phi_{\text{GW}} - \text{Tr}[\ln(1 - \Sigma_c \widetilde{G}_{\text{KS}}) + \Sigma_c \widetilde{G}_{\text{KS}}] - \text{Tr}[\Sigma_c (G_{\text{KS}} - \widetilde{G}_{\text{KS}})]$$

Magic:

$$E_{\mathrm{GM}}[G_{\mathrm{SC}}] = E_{\mathrm{K}}[G_{\mathrm{SC}}] = E_{\mathrm{LW}}[G_{\mathrm{SC}}]$$

Energy functionals

What happens with an **approximate** Green's function *G*?

RPA functional = GW total energy

Self-energy:

ergy:
$$\Sigma_{\rm GW} \ = \ \ + \ \ + \ \ + \ \ + \ldots$$

Energy:

$$\Phi_{\rm GW} = -\frac{1}{2} \Theta - \frac{1}{4} \Theta - \frac{1}{6} \Theta + \dots$$

$$\Sigma_{\mathit{GW}}(\boldsymbol{r},\boldsymbol{r}',\omega) = \frac{\delta \Phi_{\mathit{GW}}}{\delta G(\boldsymbol{r}',\boldsymbol{r},-\omega)} \qquad \text{analogous to DFT} \qquad v_{\mathit{xc}}(\boldsymbol{r}) = \frac{\delta E_{\mathit{xc}}}{\delta \rho(\boldsymbol{r})}$$

Calculation of Φ_{GW} is **very demanding**, even for unit cells.

RPA can describe van der Waals bonds

Jahn-Teller distortion of the vacancy

Outline

- I. Introduction: going beyond DFT
- II. Introducing the Green's function
- III. Exact Hedin's equations and the *GW* approximation
- IV. Calculating the *GW* self-energy in practice
- V. RPA total energies
- VI. Some applications

GW approximation gets good band gap

No more a band gap problem!

Clusters de sodium

$$Na_4^+ + e^- \Leftrightarrow Na_4$$

$$E_0(\text{Na}_4) - E_0(\text{Na}_4^+) = \begin{cases} \epsilon(\text{HOMO}, \text{Na}_4) \\ \epsilon(\text{LUMO}, \text{Na}_4^+) \end{cases}$$

What is the best starting point for G_0W_0 ?

Ionization of small molecules

Journal of Chemical Theory and Computation

Article

Table 1. G₀W₀ HOMO Energy of the 34 Molecules Employing Different Starting Points with the cc-pVQZ Basis Set^a

	GW@										
starting point	HF	LDA	PBE	PBE0	B3LYP	HSE06	BH&HLYP	CAM-B3LYP	tuned CAM-B3LYP	CCSD(T)	exp
LiH	-8.20	-7.24	-7.07	-7.66	-7.53	-7.47	-7.91	-8.03	-8.07	-7.94	
Li_2	-5.36	-5.13	-5.12	-5.29	-5.23	-5.19	-5.30	-5.32	-5.38	-5.17	
LiF	-11.62	-10.61	-10.37	-10.93	-10.82	-10.89	-11.29	-11.49	-11.45	-11.51	
Na_2	-4.98	-4.91	-4.89	-4.97	-4.96	-4.91	-4.97	-4.98	-5.01	-4.82	
NaCl	-9.36	-8.56	-8.43	-8.82	-8.77	-8.70	-9.06	-9.15	-9.22	-9.13	-9.80
CO	-14.97	-13.63	-13.55	-14.00	-13.92	-13.92	-14.36	-14.26	-14.11	-14.05	
CO_2	-14.38	-13.45	-13.32	-13.68	-13.57	-13.59	-13.91	-13.91	-13.82	-13.78	
CS	-13.08	-10.97	-10.93	-11.43	-11.31	-11.33	-11.79	-11.69	-11.55	-11.45	
C_2H_2	-11.65	-11.10	-11.08	-11.27	-11.23	-11.21	-11.40	-11.41	-11.41	-11.42	-11.49
C_2H_4	-10.85	-10.39	-10.37	-10.53	-10.52	-10.48	-10.65	-10.67	-10.66	-10.69	-10.68
CH_4	-14.86	-14.07	-14.03	-14.30	-14.27	-14.23	-14.52	-14.53	-14.48	-14.40	-14.40^{44}
CH ₃ Cl	-11.74	-11.02	-10.98	-11.21	-11.18	-11.15	-11.41	-11.43	-11.41	-11.41	-11.29
CH ₃ OH	-11.69	-10.70	-10.64	-10.97	-10.89	-10.88	-11.20	-11.22	-11.17	-11.08	-10.96
CH.SH	-981	_9 18	_9 17	-9 36	-935	-9 30	-9 53	-9 55	-9 53	_949	

Hybrids perform better, preferably with a large content of EXX ~ 50 %

F. Bruneval & MAL Marques, JCTC (2013)

Sherbrooke, Quantum Materials 2016

Defect calculation within GW approximation

Up to 215 atoms

Photoluminescence of V_{si}

Al(111): potential

from I.D. White et al, PRL 80, 4265 (1998).

Nickel

from F. Aryasetiawan, PRB 46 13051 (1992).

Band Offset at the interface between two semiconductors

Very important for electronics!

Example: Si/SiO₂ interface for transistors

valence band offset

GW correction with respect to LDA

R. Shaltaf et al. PRL (2008).

Summary

- The GW approximation solves the band gap problem!
- The calculations are extremely heavy, so that we resort to many additional technical approximations: method named G₀W₀
- The complexity comes from
 - Dependence upon empty states
 - Non-local operators
 - Dynamic operators that requires freq. convolutions

Reviews - Links

Reviews:

- L. Hedin, Phys. Rev. 139 A796 (1965).
- L. Hedin and S. Lunqdvist, in Solid State Physics, Vol. **23** (Academic, New York, 1969), p. 1.
- F. Aryasetiawan and O. Gunnarsson, Rep. Prog. Phys. **61** 237 (1998).
- W.G. Aulbur, L. Jonsson, and J.W. Wilkins, Sol. State Phys. 54 1 (2000).
- G. Strinati, Riv. Nuovo Cimento **11** 1 (1988).
- F. Bruneval and M. Gatti, "Quasiparticle Self-Consistent GW Method for the Spectral Properties of Complex Materials", Top. Curr. Chem (2014) 347: 99–136

Codes:

- http://www.abinit.org
- http://www.berkeleygw.org/
- https://github.com/bruneval/molgw

Tutorials ABINIT:

- ~abinit/doc/tutorial/lesson_gw1.html
- ~abinit/doc/tutorial/lesson_gw2.html

Supplemental Information

Final expression for the Green's function

$$iG(rt,r't')= \langle N,0|T[\Psi(rt)\Psi^{\dagger}(r't')]|N,0\rangle$$

time-ordering operator

$$G(rt,r't')=G^{e}(rt,r't')$$

$$-G^{h}(r't',rt)$$

Compact expression that describes both the propagation of an extra electron and an extra hole

Lehman representation

$$iG(r,r',t-t') = \langle N,0 | T[\Psi(rt)\Psi^+(r't')] | N,0 \rangle$$

Closure relation
$$\sum_{M,i} |M,i\rangle \langle M,i|$$

Lehman representation:

$$G(\mathbf{r},\mathbf{r}',\omega) = \sum_{i} \frac{f_{i}(\mathbf{r}) f_{i}^{*}(\mathbf{r}')}{\omega - \epsilon_{i} \pm i \eta}$$

where
$$\epsilon_i = \begin{cases} E\left(N+1,i\right) - E\left(N,0\right) \\ E\left(N,0\right) - E\left(N-1,i\right) \end{cases}$$
 Exact excitation energies!

Equation of motion of Green's functions: Dyson equation

Let us start with a non-interacting Green's function G_0 corresponding to a hamiltonian h_0

$$\int d\mathbf{r}_{2}\delta(\mathbf{r}_{1}-\mathbf{r}_{2})[\omega-h_{0}(\mathbf{r}_{2})]G_{0}(\mathbf{r}_{2},\mathbf{r}_{3},\omega)=\delta(\mathbf{r}_{1}-\mathbf{r}_{3})$$

In short:

$$\left[\omega - h_0\right]G_0 = 1$$
 or $G_0^{-1} = \left[\omega - h_0\right]$

Imagine h_0 is Hartree and h_{KS} is Kohn-Sham

$$\left[\omega - h_{\rm KS}\right]G_{\rm KS} = 1$$

$$\left[\omega - h_0 - v_{xc} \right] G_{KS} = 1$$

$$\left[G_0^{-1} - v_{xc} \right] G_{KS} = 1$$

$$G_{KS} = G_0 + G_0 v_{xc} G_{KS}$$

$$G_{KS} = G_0 + G_0 v_{xc} G_0 + G_0 v_{xc} G_0 v_{xc} G_0 + \dots$$

Aussois, ISTPC 2015

Exercice

A first contact with diagrams

Dyson equation connects the Green's functions arising from different approximations

What about the exact Green's function?

A hierarchy of equations of motion

In fact there is an exact expression for the self-energy as a function of the **two-particle Green's function**

$$\left[G_0^{-1} - \Sigma\right]G = 1$$

$$\left[G_0^{-1}-G_2\right]G=1$$

$$G_2(1,2;3,4) = \langle N,0|T[\Psi(1)\Psi(2)\Psi^{+}(3)\Psi^{+}(4)]|N,0\rangle$$

And try to guess the equation of motion for the two-particle Green's function?

$$G_2$$
 needs G_3

$$G_3$$
 needs G_4

$$G_4$$
 needs G_5

• • • • • • • • • • • •

An expression for the self-energy

Trick due to Schwinger (1951):

- Introduce a small external potential U (that will be made equal to zero at the end)
- Calculate the variations of G with respect to U $G_2(1,3;2,3) = \frac{\delta G(1,2)}{\delta U(3)}$

Obtain a perturbation theory with basic ingredients G and v 1st order is Hartree-Fock 2nd order is MP2

However MP2 diverges for metals!

<u>Trick due to Hubbard+Hedin (late 1950's – early 1960's):</u>

- Introduce the electrostatic response V to U $V(1)=U(1)-i\int d2\,v(1,2)\delta G(2,2)$
- ullet Calculate the variations of G with respect to V

Obtain a new renormalized perturbation theory with basic ingredients G and W

1st order is *GW*

Shifting from *U* to *V*

$$U(1) = \varepsilon \delta(\mathbf{r} - \mathbf{r_1}) \delta(t - t_1)$$

Everything is functional of U

$$U(1) = \varepsilon \delta(\mathbf{r} - \mathbf{r_1}) \delta(t - t_1)$$

$$V(1)=U(1)+\int d\mathbf{r} v(r_1-r)\delta\rho(\mathbf{r})$$

V also includes the electrostatic response

Everything is functional of V G[V]

Exercise 1

Green's function in frequency domain

$$iG(\mathbf{r}_{1}t_{1},\mathbf{r}_{2}t_{2}) = \theta(t_{1}-t_{2})\sum_{i \text{ virt}} \phi_{i}(\mathbf{r}_{1})\phi_{i}^{*}(\mathbf{r}_{2})e^{-i\epsilon_{i}(t_{1}-t_{2})}$$

$$-\theta(t_{2}-t_{1})\sum_{i \text{ occ}} \phi_{i}(\mathbf{r}_{2})\phi_{i}^{*}(\mathbf{r}_{1})e^{-i\epsilon_{i}(t_{2}-t_{1})}$$

$$G(\mathbf{r}_{1},\mathbf{r}_{2},\omega) = \int d(t_{1}-t_{2})e^{i\omega(t_{1}-t_{2})}G(\mathbf{r}_{1}t_{1},\mathbf{r}_{2}t_{2})$$

$$G(\mathbf{r}_{1},\mathbf{r}_{2},\omega) = \sum_{i} \frac{\phi_{i}(\mathbf{r}_{1})\phi_{i}^{*}(\mathbf{r}_{2})}{\omega-\epsilon_{i}\pm i\eta}$$

Exercise 2:

Fock exchange from Green's functions

$$\Sigma_{x}(1,2)=iG(1,2)v(1^{+},2)$$

$$\Sigma_{x}(\boldsymbol{r_{1}},\boldsymbol{r_{2}},\omega)=-\sum_{iocc}\frac{\phi_{i}(\boldsymbol{r_{1}})\phi_{i}^{*}(\boldsymbol{r_{2}})}{|\boldsymbol{r_{1}}-\boldsymbol{r_{2}}|}$$

Exercise 3: let's play with Dyson equations

1) The multiple faces of the Dyson equation

$$[\omega - h_{KS}]G_{KS} = 1$$

$$[\omega - h_0 - v_{xc}]G_{KS} = 1$$

$$[G_0^{-1} - v_{xc}]G_{KS} = 1$$

$$G_{KS} = G_0 + G_0 v_{xc} G_{KS}$$

$$G_{KS} = G_0 + G_0 v_{xc} G_0 + G_0 v_{xc} G_0 v_{xc} G_0 + ...$$

$$G_{KS}^{-1} = G_0^{-1} - v_{xc}$$

2) Combining the Dyson equations

$$G^{-1} = G_{0}^{-1} - \Sigma$$

$$G_{KS}^{-1} = G_{0}^{-1} - v_{xc}$$

$$G^{-1} = G_{KS}^{-1} - (\Sigma - v_{xc})$$

$$1 = [G_{KS}^{-1} - (\Sigma - v_{xc})] G$$

$$1 = [\omega - h_{0} - \Sigma] G$$
Sherbrooke Quantum

Exercise 4

Show the standard Adler-Wiser formula (1963):

$$\chi_0(1,2) = -iG(1,2)G(2,1)$$

$$\chi_0(\mathbf{r}_1,\mathbf{r}_2,\omega) = -\frac{i}{2\pi} \int d\omega' G(\mathbf{r}_1,\mathbf{r}_2,\omega+\omega') G(\mathbf{r}_2,\mathbf{r}_1,\omega')$$

$$\chi_{0}(\mathbf{r}_{1}, \mathbf{r}_{2}, \omega) = \sum_{\substack{i \text{ occ} \\ j \text{ virt}}} \phi_{i}(\mathbf{r}_{1}) \phi_{i}^{*}(\mathbf{r}_{2}) \phi_{j}(\mathbf{r}_{2}) \phi_{j}^{*}(\mathbf{r}_{1})$$

$$\times \left[\frac{1}{\omega - (\epsilon_{j} - \epsilon_{i}) - i \eta} - \frac{1}{\omega - (\epsilon_{i} - \epsilon_{j}) + i \eta} \right]$$

Exercise 5

Show that the product in time becomes a convolution in frequency:

$$\Sigma(\mathbf{r_{1}},\mathbf{r_{2}},t_{1}-t_{2})=iG(\mathbf{r_{1}},\mathbf{r_{2}},t_{1}-t_{2})W(\mathbf{r_{2}},\mathbf{r_{1}},t_{2}-t_{1})$$

$$G(\mathbf{r_{1}},\mathbf{r_{2}},\omega)=\int d(t_{1}-t_{2})e^{i\omega(t_{1}-t_{2})}G(\mathbf{r_{1}},t_{1},\mathbf{r_{2}},t_{2})$$

$$G(\mathbf{r_{1}},\mathbf{r_{2}},t_{1}-t_{2})=\frac{1}{2\pi}\int d\omega e^{-i\omega(t_{1}-t_{2})}G(\mathbf{r_{1}},\mathbf{r_{2}},\omega)$$

$$\Sigma(\mathbf{r_{1}},\mathbf{r_{2}},\omega)=\frac{i}{2\pi}\int d\omega'G(\mathbf{r_{1}},\mathbf{r_{2}},\omega+\omega')W(\mathbf{r_{2}},\mathbf{r_{1}},\omega')$$