rOpenSci tools for textmining open source science literature

- Scott Chamberlain*,a
- ^arOpenSci, Museum of Paleontology, University of California, Berkeley, CA, USA
- 4 Abstract
- 5 Corresponding Author:
- 6 Scott Chamberlain
- 7 rOpenSci, Museum of Paleontology, University of California, Berkeley, CA, USA
- 8 Email address: scott@ropensci.org

Email address: scott(at)ropensci.org (Scott Chamberlain)

^{*}Corresponding author

- 9 Background. xxxx.
- 10 Methods. xxxx.
- 11 Results. xxxx.

Discussion. xxxx.

12 Introduction

- 13 There's likely more than 100 million articles published (source: Crossref API), representing an enormous
- ¹⁴ amount of knowledge. In addition to simply reading these articles, they contain a vast trove of
- information of interest to researchers.
- 16 For example, many researchers are interested in statistical outcomes of articles: questions about P-values,
- about effect sizes, and more. With regard to effect sizes, these are of particular interest, as they are
- often combined in meta-analyses to draw broad conclusions about a particular question.
- 19 Text-mining is the broad term associated with pulling information out of articles. Given the importance
- 20 of text-mining, good text-mining tools are needed to make it easier for researchers to do.
- 21 Here, we do an overview of text-mining tools in the R programming language. We do not cover analysis
- 22 tools per se, but rather those tools for searching for, acquiring, and "mashing up" text.

23 Digital articles: technical aspects

- Of digital articles some of which are available digitally, and some of which are not. Those that are
- ²⁵ digital can be split into two groups: easily machine readable and non-machine readable.
- The machine readable articles are those in XML, JSON, or plain text format. The former two, XML
- 27 and JSON, are ideal of the machine readable types because they are structured data, whereas plain
- text has no structure it's simply a long set of characters with line breaks and spaces in between.
- Of the non-machine readable kind, there's PDFs. These can be broken out into two groups: text based
- 30 PDFs and scanned PDFs. The former are converted from digital versions of various kinds (MS Word,
- OpenOffice, markdown, etc.), while the latter are PDFs created by scanning in print articles for which
- there is no digital version.

33 Digital articles: the access landscape

- Acces to full-text is the holy grail in text-mining. Some use cases can get by with article metadata
- 35 (authors, title, etc.), some with abstracts, but many use cases need full-text.
- The landscape of access to full-text is a extremely hetergeous, with the majority of variation along the
- publisher axis. The major hurdle are paywalls. The majority of articles are published by the big three
- publishers Wiley, Springer, Elsever and the majority of their articles are behind paywalls.

39 A promising sign is that there's an increasing number of open access publishers. xxxx.

40 The discovery problem (maybe remove section)

41 XXX

Data sources

- 43 There is increasing open source scientific literature content available online. However, only a small
- 44 proportion of scientific journals provide access to their full content; whereas, most publishers provide
- open access to their metadata only (most often through Crossref; Table 1).
- Table 1. Sources of scientific literature, their content type provided via web services, whether rOpenSci
- 47 has an R packages for the service, and where to find the API documentation.

Data Provider	Content Type	rOpenSci Pkg?	API Documentation
Crossref	Metadata only	rcrossref	1
DataCite	Metadata only	rdatacite	2
Biodiversity Heritage Library	Full content/Metadata	rbhl	3
Public Library of Science (PLoS)	Full text/altmetrics	rplos	4
Scopus (Elsevier)	Full content/Metadata	fulltext	5
arXiv	Full content/Metadata	aRxiv	6
Biomed Central (via Springer)	Full content/Metadata	fulltext	7
bioRxiv	Full content/Metadata	fulltext	8
PMC/Pubmed (via Entrez)	Full content/Metadata	rentrez	9
Microsoft Academic Search	Metadata	fulltext/microdemic	10

¹http://api.crossref.org

²https://support.datacite.org/docs/api

³http://bit.ly/KYQ1Rd

⁴http://api.plos.org/solr

⁵http://bit.ly/J9S616

⁶https://arxiv.org/help/api/index

⁷https://dev.springer.com/

⁸http://www.biorxiv.org/

⁹https://www.ncbi.nlm.nih.gov/books/NBK25500

¹⁰https://azure.microsoft.com/en-us/services/cognitive-services

48	The following is a synopsis of the major data sources and associated R tools.
49	Crossref
50	Crossref is a non-profit that creates (or "mints") Digital Object Identifiers (DOIs). In addition, they
51	maintain metadata associated with each DOI. The metadata ranges from simple (including author, title
52	dates, DOI, type, publisher) to including number of citations to the article, as well as references in the
53	article, and even abstracts.
54	Crossref does have a text-mining opt-in program for publishers. The result of this is that some publishers
55	deposit URLs for full text content of their articles. The majority of these links are pay-walled, while
56	some are open access. Using any of the various tools for working with Crossref data, you can filter your
57	search to get only articles with full text links, and further to get only articles with full text links that
58	are open access.
59	The main interface for Crossref in R is rcrossref. Parallel interfaces are available in Ruby (serrano) and
60	Python (habanero).
61	Pubmed
62	Pubmed is a corpus/website of NIH funded research
63	How to text mine from R: Three case studies
64	Case study 1
65	Case study 2
66	Case study 3
67	Conclusions and future directions
68	xxxx
69	Acknowledgments
70	xxxx

71 Data Accessibility

- All scripts and data used in this paper can be found in the permanent data archive Zenodo under
- the digital object identifier (DOI). This DOI corresponds to a snapshot of the GitHub repository at
- 74 https://github.com/ropensci/textmine. Software can be found at https://github.com/ropensci/xxx,
- 75 xxxx, all under MIT licenses.

76 References