E1 245 - Online Prediction and Learning, Fall 2022

Homework #3

1. Approximation to the exponential

Prove that $\forall x \ge 0 : e^{-x} \le 1 - x + \frac{x^2}{2}$, used in the regret bound for the EXP3 bandit algorithm.

2. Bandit algorithms

Consider the iid¹ stochastic bandit problem with K Bernoulli-reward arms and total time T. Recall that if μ_i denotes the expected reward of the ith arm, then the regret of a bandit algorithm that plays an arm $I_t \in [N]$ at each time $1 \le t \le T$, and observes only the (random) reward from the chosen arm, is defined to be $R(T) := T \cdot \max_i \mu_i - \sum_{t=1}^T \mathbb{E}[\mu_{I_t}]$.

Explain briefly which of the following algorithms will/will not always achieve sublinear (pseudo-) regret with time horizon T (Recall: R(T) is sublinear $\Leftrightarrow \lim_{T\to\infty} \frac{R(T)}{T} = 0$).

- (a) Play all arms exactly once. For each arm i, initialize s_i to be its observed reward and $n_i := 1$. At each time $t \le T$, play $I_t := \arg\max_i s_i/n_i$ (break ties in any fixed manner), get (stochastic) reward R_t and update $s_{I_t} \leftarrow s_{I_t} + R_t$, $n_{I_t} \leftarrow n_{I_t} + 1$.
- (b) Play all arms exactly once. For each arm i, initialize s_i to be its observed reward and $n_i := 1$. At each time $t \le T$, toss an independent coin with probability of heads $p := 1/\sqrt{T}$. Play $I_t := \arg\max_i s_i/n_i$ (break ties in any fixed manner) if the coin lands heads, else play a uniformly random arm, get (stochastic) reward R_t and update $s_{I_t} \leftarrow s_{I_t} + R_t$, $n_{I_t} \leftarrow n_{I_t} + 1$.
- (c) Same as the previous part but with p := 1/T.
- (d) Same as the previous part but with p := 1/K.
- (e) For each arm $i \in [N]$, initialize $u_i = 1, v_i = 1$. At each time $t \le T$, sample independent random variables $\theta_i(t) \sim \text{Beta}(u_i, v_i)$, and play $I_t := \arg\max_i \theta_i(t)$ (break ties in any fixed manner). Get (stochastic) reward R_t and update $u_{I_t} \leftarrow u_{I_t} + R_t$, $v_{I_t} \leftarrow v_{I_t} + (1 R_t)$.
- (f) Play all arms exactly once. For each arm i, initialize s_i to be its observed reward and $n_i := 1$. At each time $t \le T$, let $A_t := \arg\max_i s_i/n_i$ and $B_t := \arg\max_{i \ne A_t} s_i/n_i$ denote the best and second-best arms in terms of sample mean, respectively. Play $I_t \in \{A_t, B_t\}$ chosen uniformly at random, get (stochastic) reward R_t and update $s_{I_t} \leftarrow s_{I_t} + R_t$, $n_{I_t} \leftarrow n_{I_t} + 1$.

3. Lower Confidence Bound for stochastic bandits

Consider the following 'conservative' variant of the upper confidence bound (UCB) algorithm for stochastic multi-armed bandits with rewards in [0,1]. The algorithm plays, at each time t after an initial round-robin phase, the arm with highest *lower* confidence bound on its mean reward:

$$I_t = \arg\max_{i \in [K]} \left(\hat{\mu}_i(t) - \sqrt{\frac{2\log t}{N_i(t)}} \right),$$

where $\hat{\mu}_i(t)$ and $N_i(t)$ denote the observed reward sample mean and number of plays from arm i upto (and not including) time t, respectively. What kind of regret² (in terms of the time horizon T) does this algorithm get and why? (Argue as explicitly as you can.)

¹independent and identically distributed

²expected pseudo-regret, as usual

4. Conjugate priors

If the posterior distributions $\mathbb{P}\left[\theta \mid X\right]$ are in the same probability distribution family as the prior probability distribution $\mathbb{P}\left[\theta\right]$ upon observing $X \sim \mathbb{P}_{\theta}$ (the sample distribution), the prior is called a conjugate prior for the likelihood (sample distribution). We have seen that a Beta prior is a conjugate prior for a Bernoulli likelihood. Show explicitly the following conjugate priors for various likelihoods³ (sample distributions):

- (a) Beta is a conjugate prior for Geometric.
- (b) Gamma is a conjugate prior for Poisson.
- (c) Normal is conjugate prior for Normal (with variance 1).

5. Three point equality for Bregman divergences

Show the following ('law of cosines') for the Bregman divergence $D_R(x,y)$ induced by a differentiable convex function $R: \mathbb{R}^d \to \mathbb{R}$:

$$\forall u, v, w \in \mathbb{R}^d$$
: $D_R(u, v) + D_R(v, w) = D_R(u, w) + \langle u - v, \nabla R(w) - \nabla R(v) \rangle$.

6. Programming exercise

Implement the following algorithms for a 10-armed Bernoulli bandit with the arms' means equally spaced in (0,1): (a) ε -Greedy⁴ with $\varepsilon = 1$ (i.e., just uniform sampling), (b) ε -Greedy, $\varepsilon = 0.1$, (c) UCB, (d) EXP3, (e) Thompson Sampling with a uniform prior.

For each of the algorithms, plot the average cumulative regret vs. # rounds (averaged over suitably many independent trials), along with its standard deviation, for as long a time horizon T as you can. Summarize your findings.

³Look up the definitions of probability distributions on Wikipedia.

⁴Explores in each round independently with probability ε . If exploiting, plays the best arm w.r.t empirical mean from all past exploration rounds.