Abel summation theorem

Theorem (26.6)

Let $f(x) = \sum_{n=0}^{\infty} a_n x^n$, with radius of convergence R > 0. If the series converges at R(-R), then f is continuous at R (resp. -R).

Example:
$$1 - \frac{1}{2} + \frac{1}{3} - \ldots = \ln 2$$
.

Indeed: consider $g(t) = \frac{1}{1+t} = \sum_{n=0}^{\infty} (-1)^n t^n$ (rad. of conv. = 1). Let

$$f(x) = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} x^k$$
 ("formal" term by term integral;

rad. of conv. = 1). The series diverges at -1, but converges at 1 (see Lecture 16).

For
$$|x| < 1$$
, $\int_0^x g(t) dt = \ln(1+x)$
= $\sum_{n=0}^{\infty} \int_0^x (-1)^n t^n dt = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} x^k = f(x)$.

f is continuous at 1, hence

$$f(1) = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} = \lim_{x \to 1} f(x) = \lim_{x \to 1} \ln(1+x) = \ln 2.$$

Abel Theorem: another example

Proposition (Alternating series)

Suppose $a_1 \ge a_2 \ge ... \ge 0$. Then $\sum_{k=1}^{\infty} (-1)^{k-1} a_k = a_1 - a_2 + a_3 - ...$ converges iff $\lim_k a_k = 0$.

Sketch of a proof. To show that $\sum_{k=1}^{\infty} (-1)^{k-1} a_k$ converges if $\lim_k a_k = 0$, emulate Lecture 16 (where we had $a_k = \frac{1}{k}$).

Example:
$$1 - \frac{1}{3} + \frac{1}{5} - \ldots = \frac{\pi}{4}$$
.

Let $f(x) = \arctan x$. We know: $f'(x) = \frac{1}{1+x^2}$ $(x \in \mathbb{R})$. For |x| < 1, $f'(x) = 1 - x^2 + x^4 - \ldots = \sum_{n=0}^{\infty} (-1)^n x^{2n}$ (radius of convergence = 1). For |x| < 1, $f(x) = \int_0^x f'(t) \, dt = \sum_{n=0}^{\infty} (-1)^n \int_0^x t^{2n} \, dt = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1} = \frac{x}{1} - \frac{x^3}{3} + \frac{x^5}{5} - \ldots$

Series converges when x=1 (it's alternating). f is cont. at 1, so $\frac{\pi}{4}=\arctan 1=\lim_{x\to 1}\arctan x=1-\frac{1}{3}+\frac{1}{5}-\ldots$

Proof of Abel's Theorem

Theorem (26.6)

Let $f(x) = \sum_{n=0}^{\infty} a_n x^n$, with radius of convergence R > 0. If the series converges at R(-R), then f is continuous at R (resp. -R).

Lemma

If the radius of convergence of $g(x) = \sum_{n=0}^{\infty} a_n x^n$ is 1, and $\sum_{n=0}^{\infty} a_n$ converges, then g is continuous at 1.

Lemma \Rightarrow **Theorem.** Suppose $f(R) = \sum_n a_n R^n$ converges. Consider $g(t) = f(Rt) = \sum_{n=0}^{\infty} a_n R^n t^n - \text{so } f(x) = g(\frac{x}{R})$. The series for g has rad. of conv. 1, g(1) exists.

By Lemma, g is continuous at 1, hence f is continuous at R.

For -R, consider g(t) = f(-Rt), with the same effect.

Proof of Lemma

Lemma. If the radius of convergence of $g(x) = \sum_{n=0}^{\infty} a_n x^n$ is 1, and $\sum_{n=0}^{\infty} a_n$ converges, then g is continuous at 1.

Replacing a_0 with $-\sum_{n=1}^{\infty}a_n$ if necessary, we can assume $g(1)=\sum_{n=0}^{\infty}a_n=0$.

Consider the partial sums $g_i(x) = \sum_{n=0}^i a_n x^n$, $s_i = g_i(1) = \sum_{n=0}^i a_n$. Know: $s_i \to 0$. Shall show: the sequence (g_i) is uniformly Cauchy on [0,1] – that is, $\forall \varepsilon > 0 \; \exists N \in \mathbb{N} \; \text{s.t.} \; \sup_{x \in [0,1]} \left| g_j(x) - g_{i-1}(x) \right| \leqslant \varepsilon \; \text{whenever} \; j \geqslant i > N$. Any uniformly Cauchy sequence must converge uniformly. $g_i \to g$ pointwise on [0,1], hence uniformly.

$$g_{j}(x) - g_{i-1}(x) = \sum_{n=i}^{j} a_{n} x^{n} = \sum_{n=i}^{j} (s_{n} - s_{n-1}) x^{n}$$

= $(s_{j} x^{j} - s_{i-1} x^{i}) + \sum_{k=i}^{j-1} s_{k} (x^{k} - x^{k+1})$
= $(s_{j} x^{j} - s_{i-1} x^{i}) + (1 - x) \sum_{k=i}^{j-1} s_{k} x^{k}$.

Proof of Lemma, continued

Lemma. If the radius of convergence of $g(x) = \sum_{n=0}^{\infty} a_n x^n$ is 1, and $\sum_{n=0}^{\infty} a_n$ converges, then g is continuous at 1.

From previous slide: assume $g(1) = \sum_{n=0}^{\infty} a_n = 0$.

Let
$$g_i(x) = \sum_{n=0}^i a_n x^n$$
, $s_i = g_i(1) = \sum_{n=0}^i a_n$, then $s_i \to 0$.

Shall show: $\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \text{s.t.} \ \left| g_j(x) - g_i(x) \right| \leqslant \varepsilon \ \text{whenever} \ j \geqslant i > N, \ x \in [0,1].$

Find N s.t. $|s_k| < \frac{\varepsilon}{3}$ for $k \geqslant N$. We have

$$\begin{aligned} &|g_{j}(x)-g_{i-1}(x)|\leqslant|s_{j}x^{j}|+|s_{i-1}x^{i}|+(1-x)\sum_{k=i}^{j-1}|s_{k}|x^{k}. \text{ For } j\geqslant i>N,\\ &|s_{j}x^{j}|,|s_{i-1}x^{i}|<\frac{\varepsilon}{3}. \text{ Further, } (1-x)\sum_{k=i}^{j-1}x^{k-1}=(1-x)\cdot\frac{x^{i}-x^{j}}{1-x}\leqslant 1,\\ &\text{hence } (1-x)\sum_{k=i}^{j-1}|s_{k}|x^{k-1}<\frac{\varepsilon}{3}. \text{ Thus, } |g_{j}(x)-g_{i-1}(x)|<3\cdot\frac{\varepsilon}{3}=\varepsilon.\end{aligned}$$

Remark. We have actually shown that the power series for g converges uniformly on on [0,1]. Consequently, if $\sum_{n=0}^{\infty} a_n x^n$ converges at R, then the convergence is uniform on [0,R].

Convex functions (not in textbook)

Definition

A continuous function f on an interval I is called **convex** (concave) if $f\left(\frac{x+y}{2}\right)\leqslant \frac{f(x)+f(y)}{2}\left(f\left(\frac{x+y}{2}\right)\geqslant \frac{f(x)+f(y)}{2}\right)\ \forall x,y\in I$.

Convex = concave up; concave = concave down.

Proposition

If f is convex (concave), then, for $x, y \in I$ and $t \in (0,1)$, we have $f((1-t)x+ty) \leq (1-t)f(x)+tf(y)$ (resp. $f((1-t)x+ty) \geq (1-t)f(x)+tf(y)$).

Properties of convex functions (proof is optional)

Proposition

If f is convex, then, for $x, y \in I$ and $t \in (0,1)$, we have $f((1-t)x + ty) \leq (1-t)f(x) + tf(y)$.

Proof (omitted in class). By the continuity of f, enough to show that $f((1-t)x+ty) \leq (1-t)f(x)+tf(y)$ if $t=\frac{m}{2^n}$, $m,n\in\mathbb{N}$, $0\leq m\leq 2^n$.

Notation: $t_{m,n} = \frac{m}{2^n}$, $x_{m,n} = (1 - t_{m,n})x + t_{m,n}y$.

Use induction on *n*.

Base case: n = 1. m = 0: $t_{01} = 0$, $x_{01} = x$, so

$$(1-0)f(x) + 0 \cdot f(y) \leqslant f((1-0)x + 0 \cdot y)$$
 trivially holds.

m = 2: similar situation.

If m=1, then $t_{11}=\frac{1}{2}$, use the definition of convexity.

Inductive step: next slide.

Convex functions: proof continues

Inductive step: suppose we have established that $f(x_{m,n}) \leqslant (1-t_{m,n})f(x) + t_{m,n}f(y)$ for $0 \leqslant m \leqslant 2^n$. Show that $f(x_{m,n+1}) \leqslant (1-t_{m,n+1})f(x) + t_{m,n+1}f(y)$ for $0 \leqslant m \leqslant 2^{n+1}$. If m is even, then $x_{m,n+1} = x_{m/2,n}$ and $t_{m,n+1} = t_{m/2,n}$, and we are done. If m is odd, write m = 2k+1, then $t_{m,n+1} = \frac{t_{k,n}+t_{k,n+1}}{2}$. Convexity of f: $x_{m,n+1} = \frac{x_{k,n}+x_{k+1,n}}{2}$, hence $f(x_{m,n+1}) \leqslant \frac{f(x_{k,n})+f(x_{k+1,n})}{2}$. Induction hypothesis: $f(x_{k,n}) \leqslant (1-t_{k,n})f(x) + t_{k,n}f(y)$, hence $f(x_{m,n+1}) \leqslant (1-t_{k,n}+t_{k+1,n})f(x) + t_{k+1,n}f(y)$, hence $f(x_{m,n+1}) \leqslant (1-t_{k,n}+t_{k+1,n})f(x) + t_{k+1,n}f(y)$.

Jensen's Inequality (not in textbook)

Theorem (Jensen)

If f is a convex function on an interval I, $x_1, \ldots, x_n \in I$, $t_1, \ldots, t_n \geqslant 0$, $\sum_{i=1}^n t_i = 1$, then $f\left(\sum_{i=1}^n t_i x_i\right) \leqslant \sum_{i=1}^n t_i f(x_i)$. For concave functions, the inequality is reversed.

Proof in the convex case. Use induction on n. Base case (n = 2) has been established.

Induction step: suppose $f\left(\sum_{i=1}^{n}t_{i}x_{i}\right)\leqslant\sum_{i=1}^{n}t_{i}f(x_{i})$ (for all appropriate (t_{i}) and (x_{i})), and show that $f\left(\sum_{i=1}^{n+1}t_{i}x_{i}\right)\leqslant\sum_{i=1}^{n+1}t_{i}f(x_{i})$. For $1\leqslant i\leqslant n$ let $s_{i}=\frac{t_{i}}{1-t_{n+1}}$, then $\sum_{i=1}^{n}s_{i}=1$. Also let $x=\sum_{i=1}^{n}s_{i}x_{i}$. $f(x)\leqslant\sum_{i=1}^{n}s_{i}f(x_{i})$. $\sum_{i=1}^{n+1}t_{i}x_{i}=(1-t_{n+1})x+t_{n+1}x_{n+1}$, so $f\left(\sum_{i=1}^{n+1}t_{i}x_{i}\right)\leqslant(1-t_{n+1})f(x)+t_{n+1}f(x_{n+1})\leqslant(1-t_{n+1})\sum_{i=1}^{n}s_{i}f(x_{i})+t_{n+1}f(x_{n+1})=\sum_{i=1}^{n+1}t_{i}f(x_{i})$.

Which functions are convex?

Proposition

If f is differentiable on an interval I, and f' is increasing (decreasing), then f is convex (resp. concave).

Proof in the convex case. Suppose $x_1, x_2 \in I$, $x_1 < x_2$. Let $x = \frac{x_1 + x_2}{2}$, and $y = \frac{x_2 - x_1}{2}$. By MVT, $\exists z_1 \in (x_1, x)$ and $z_2 \in (x, x_2)$ s.t. $f'(z_1) = \frac{f(x) - f(x_1)}{y}$, $f'(z_2) = \frac{f(x_2) - f(x)}{y}$. $z_1 < z_2$, hence $f'(z_1) = \frac{f(x) - f(x_1)}{y} \leqslant f'(z_2) = \frac{f(x_2) - f(x)}{y}$.

 $f(x) - f(x_1) \le f(x_2) - f(x)$, hence $f(x) \le \frac{f(x_1) + f(x_2)}{2}$.

Criteria for convexity and concavity; examples

Proposition

If f is differentiable on an interval I, and f' is increasing (decreasing), then f is convex (resp. concave).

Corollary

If f is twice differentiable on an interval I, and $f'' \geqslant 0$ ($f'' \leqslant 0$), then f is convex (resp. concave).

Proof in the convex case. If $f'' \ge 0$, then f' is increasing, hence f is convex.

Examples. (1) $f(x) = e^x$ is convex on \mathbb{R} . $f'(x) = e^x$ is increasing.

(2) $g(x) = \ln x$ is concave on $(0, \infty)$. $g'(x) = \frac{1}{x}$ is decreasing.

Arithmetic-Geometric Means Inequality

Proposition

If
$$x_1, \ldots, x_n > 0$$
, $t_1, \ldots, t_n > 0$, and $\sum_{i=1}^n t_i = 1$, then $\sum_{i=1}^n t_i x_i \geqslant \prod_{i=1}^n x_i^{t_i}$.

Proof. $g(x) = \ln(x)$ is concave on $(0, \infty)$, hence $\ln\left(\sum_{i=1}^{n} t_i x_i\right) \geqslant \sum_{i=1}^{n} t_i \ln x_i$. Exponentiate both sides.

Corollary (Arithmetic-Geometric Means Inequality)

If
$$x_1, \ldots, x_n > 0$$
, then $\frac{x_1 + \ldots + x_n}{n} \geqslant \sqrt[n]{x_1 \ldots x_n}$.

Proof. Consider
$$t_1 = \ldots = t_n = \frac{1}{n}$$
.