计算机图形学大作业报告

盗墓笔记

517030910206 陈景宇

目录

Α.	环境	竟配置	2
	a)	系统环境	2
	b)	使用的库	2
B.	具体	本工作	2
	a)	第一幕	2
	b)	第二幕	2
	c)	第三幕	
C.	技力	卡方案	2
	a)	整体架构	2
	,	i. Mesh	2
		ii. Model	2
		iii. Shader	2
		iv. Camera	3
		v. Main	
		vi. 一堆着色器	3
	b)	实现细节	3
		i. 导入模型并进行渲染	3
		ii. 添加背景	3
		iii. 灯光变换	3
		iv. 雾化	4
		v. 手电筒	4
		vi. 爆炸	4
		vii. 佛像变化	4
		viii. 按键映射	4
D.	如何操作		5
	a)	如何运行	5
	b)	如何操作	5
E.	反思5		
F.	参考资料		

A. 环境配置

a) 系统环境

i. Windows 10 + Visual Studio 2017

b) 使用的库

i. GLFW

Opengl 的一种 c 语言实现,本次作业使用了核心模式,复杂度上升了很多,但自己也学到了很多新东西,也能更深的体会到核心模式更高的自由度。

ii. Glad

解决 opengl 显卡驱动版本的问题

iii. Glm

glm 已经提供了完善的矩阵、向量计算接口

iv. Stb_image

使用该库读入图片, 用于之后的纹理使用。

v. Assimp

使用该库导入不同格式的模型文件

B. 具体工作

a) 第一幕

有一本在灯光照射下旋转的书,一段时间后场景变暗

b) 第二幕

场景逐渐变亮,按下 space 可以打开手电筒,发现墙角的石头,按下 c 可以关闭手电筒,往左转动镜头可以看到悬浮的 bomb,按下 c 可以看到 bomb 飞向石头并爆炸

c) 第三幕

石头碎裂后会留下一樽旋转的佛像, 打开手电筒会发现模型由粗糙的灰色变为精细的金色。

C. 技术方案

a) 整体架构

i. Mesh

处理并渲染网格,mesh 中储存了模型的顶点信息,及其 VAO、VBO、纹理的 index。定点信息按照位置、法向量、纹理坐标的顺序写入 VBO。

ii. Model

读取模型文件, model 中使用 assimp 导入模型, 并通过 mesh 生成模型网格

iii. Shader

包装着色器代码,使得可以从外部导入着色器,并编译与链接。

iv. Camera

移动镜头并转换视角

v. Main

主函数,包括了创建窗口,创建、绘制场景中的所有物体,接受用户输入等功能。

vi. 一堆着色器

主要实现了光照、雾化、物体爆炸、求法向量等功能

b) 实现细节

i. 导入模型并进行渲染

- 1. 导入
 - a) Assimp 读取模型文件,从生成的树结构中读取并储存顶点及三角形面片的信息
 - b) Stb_image 读取纹理贴图,为纹理贴图生成 ID, bump mapping 用法 线贴图实现

2. 渲染

- a) 将模型顶点数据读到 VBO
- b) opengl 解释 VBO 内数据含义
- c) 调用着色器进行处理
- d) 使用 glDrawElements () 画三角形

ii. 添加背景

- 1. 比较简陋, 搞了个带贴图的墙角
- 2. 墙角模型的.obj、.mtl 是自己手写的(留下了当时没学建模的泪水)

iii. 灯光变换

- 1. 在片段着色器中实现了平行光、点光源、聚光源,参数以 uniform 的形式 传入
- 2. 光源属性
 - a) 平行光
 - i. Direction 光线方向,下同
 - ii. Ambient 环境光, 下同
 - iii. Diffuse 漫反射光, 下同
 - iv. Specular 镜面反射光, 下同
 - b) 点光源
 - i. Position 位置, 下同
 - ii. Constant 衰退常数项, 下同
 - iii. Linear 衰退一次项,下同
 - iv. Quadratic 衰退二次项,下同

- v. Ambient
- vi. Diffuse
- vii. Specular
- c) 聚光源
 - i. Position
 - ii. Direction
 - iii. CutOff 光源聚散程度
 - iv. OuterCutOff 分散光衰减程度
 - v. Constant
 - vi. Quadratic
 - vii. Ambient
 - viii. Diffuse
 - ix. Specular

3. 计算

- a) 最终结果 final = ambient + diffuse + specular
- b) Ambient
 - i. 物体的颜色 * 光源 ambient
- c) Diffuse
 - i. 计算物体法向量与光照方向的夹角 diff
 - ii. 物体颜色 * 光源 diffuse * diff
- d) Specular
 - i. 计算反射方向 spec
 - ii. 物体颜色 * 光源 diffuse * spec

4. 材质属性

- a) Diffuse 漫反射贴图
- b) Specular 镜面反射贴图
- c) shininess 反射率

iv. 雾化

- 1. 计算视点与物体的距离
- 2. 根据距离对物体 fragColor 进行模糊

v. 手电筒

1. 见光照

vi. 爆炸

- 1. 使用变换函数将炸弹移到石头上
- 2. 使用几何着色器让炸弹与石头碎裂

vii. 佛像变化

- 1. 根据时间逐渐变化颜色
- 2. 强硬地调换了模型

viii. 按键映射

1. 使用 glfwSetInputMode()导入按键回调函数

D. 如何操作

a) 如何运行

- i. Release 运行 直接运行 RELEASE/My_first_CG.exe,相关依赖已在同路径下
- ii. VS 工程运行 使用 VS 打开 Code/My_first_CG/My_first_CG.sln

b) 如何操作

- i. 移动鼠标实现镜头移动
- ii. 点击 space 打开手电筒,点击 c 关闭手电筒,点击 b 扔出炸弹

E. 反思

- a) 经过一学期的学习,终于对现代 opengl、着色器的使用方法有所了解,学到了新东西,同时将课上学习过的知识进行了实践,例如光照计算模型、视景体、粒子系统等等
- b) 除了功能的实现,为了达到更好的效果,在调整参数上花费了非常多的时间。虽然最终效果仍然不如人意,但是已经较功能刚实现的时候好了许多。
- c) 在本次项目中, 也切身体会到了不能只着眼于代码, 无论是建模、配色、视觉效果, 都对结果有很大的影响, 希望自己在未来的学习中, 在学习技能的同时可以提高这些方面的技能, 制作出更好的作品。
- d) 意识到了写好文档和笔记的重要性
- e) 期末大作业堆在一起做是真的让人欲哭无泪

F. 参考资料

- a) opengl 教程网站
 - i. https://learnopengl-cn.github.io/
- b) 社区网站
 - i. https://www.csdn.net/
 - ii. https://stackoverflow.com/
 - iii. https://github.com/
- c) 素材网站
 - i. https://www.cgmodel.com/
- d) Opengl API 文档
 - i. http://docs.gl/