

Assertions and Tokens + Path tracing

SPIFFE/SPIRE Nov/2022

Introduction

Main needs:

 A system that allow a subject to make arbitrary authenticated statements

 A token scheme that supports distributed signing, aggregate/concatenate signatures, and/or attenuations

Nested model

Original + Assertion + Assertion

Token path tracing

Provide the path of workloads that a request has passed

■ID mode:

Uses SVID private key to sign, sending necessary certificates to identify the workload and validate the signature and iss/aud link

Anonymous mode:

- No ID associated to keys
- Uses concatenated Schnorr signatures that results in smaller tokens and faster validation

ECDSA — SVID (ID mode)

Sign with SVID private key. Send SVID certificates with token

- Pros:
 - Certificates allow off-line validation and identification
 - Anonymous mode also available
- Cons:
 - OID mode requires more bandwidth
- Possibilities:
 - Use lightweight SVID

EdDSA – Schnorr Concatenated

Biscuits-based solution. Each hop uses part of previous signature as private key

- Pros:
 - Smaller token size (compared to standard model and ECDSA)
 - Faster validation (using Galindo-Garcia) than sequencial model
 - Cryptographic-linked signatures
- Cons:
 - Only anonymous mode available
- Possibilities:
 - Study aggregated signatures state-of-art and ECDSA-Schnorr

SchCo-Biscuits

(using concatenated Schnorr-based signatures: Galindo-Garcia-style)

Selector-based Assertion

Contain selectors used by SPIRE-Agent during workload attestation process

Generated and signed by SPIRE-Agent using its SVID

Return the assertion and SPIRE-Agent certificate bundle

Selectors-based Assertion

Selector-based Assertion

```
"iat": 1670470473,
"sel": [
 { "type": "unix", "value": "uid:1000" },
 { "type": "unix", "value": "user:spire" },
 { "type": "unix", "value": "gid:1000" },
 { "type": "unix", "value": "group:spire" },
 { "type": "unix", "value": "supplementary_group:spire" },
 { "type": "unix", "value": "path:/opt/spire/bin/spire-agent" },
   "type": "unix",
    "value": "sha256:ff9270b6c985fa1ad3476e5f1cf83648033cd1ec02b"
```

ECDSA – Dillithium

Sign with SVID private key adding, optionally, a post-quantum signature algorithm.

- Pros:
 - Improved security using post-quantum algorithm (ECDSA+Crystals)
- Cons:
 - Bigger keys/signatures
- Possibilities:
 - Optional to specific use cases
 - Follow-up state-of-art

Demo 1: ECDSA – SVID (ID mode)

Demo 2: EdDSA – Schnorr (Anonymous mode)

Future Work

- Specify and implement lightweight SVID
- Identity-based SVID: lightweight SVID with Galindo-Garcia
- Use SchCo biscuits model in selectors assertion
- Post-Quantum algorithms (e.g. Crystals) analysis
- Protobuf / JSON analysis

