

FCC SAR Measurement and Test Report

For

Shenzhen Inrico Electronics Co.,Ltd

4/F, Building NO.108, High Tech Industrial Park, Guowei Road 72, Luohu

District, Shenzhen, China

FCC ID: 2AIV6-T320

FCC Part 2.1093

ANSI / IEEE C95.1 :2005+A1:2010

ANSI / IEEE C95.3 : 2002(R2008)

Test Standards: IEEE 1528 :2013

Product Description: Intelligent Two Way Radio

Tested Model: T320

Report No.: STR18018288H

Sample Received Date: <u>2018-02-01</u>

Tested Date: 2018-02-01 to 2018-03-23

Issued Date: 2018-03-23

Tested By: Lucy Wei / Engineer

Silin Chen / EMC Manager Reviewed By:

May wei Silim chen Junduso

Jandy So / PSQ Manager Approved & Authorized By:

Prepared By:

Shenzhen SEM Test Technology Co., Ltd.

1/F, Building A, Hongwei Industrial Park, Liuxian 2nd Road,

Bao'an District, Shenzhen, P.R.C. (518101)

Tel.: +86-755-33663308 Fax.: +86-755-33663309 Website: www.semtest.com.cn

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by Shenzhen SEM Test Technology Co., Ltd.

Page 1 of 219 **SAR Report** Report No.: STR18018288H

TABLE OF CONTENTS

1. General Information	
1.1 Product Description for Equipment Under Test (EUT)	
1.2 Test Standards	
1.3 Test Methodology	
1.4 Test Facility	
2. Summary of Test Results	
3. Specific Absorption Rate (SAR)	
3.1 Introduction	
3.2 SAR Definition	
4. SAR Measurement System	
4.1 The Measurement System	
4.2 Probe	
4.4 Phantom	
4.5 Device Holder	
4.6 Test Equipment List	
5. Tissue Simulating Liquids	
5.1 Composition of Tissue Simulating Liquid	
5.2 Tissue Dielectric Parameters for Head and Body Phantoms	
5.3 Tissue Calibration Result	16
6. SAR Measurement Evaluation	18
6.1 Purpose of System Performance Check	18
6.2 System Setup	
6.3 Validation Results	
7. EUT Testing Position	
7.1 Define Two Imaginary Lines on The Handset	
7.2 Cheek Position	
7.3 Tilted Position	
7.4 Body Worn Position	
7.6 EUT Testing Position	
8. SAR Measurement Procedures	
8.1 Measurement Procedures	
8.2 Spatial Peak SAR Evaluation	
8.3 Area & Zoom Scan Procedures	
8.4 Volume Scan Procedures	
8.5 SAR Averaged Methods	
8.6 Power Drift Monitoring	
9. SAR Test Result	
9.1 Conducted RF Output Power	
9.2 Test Results for Standalone SAR Test	
10. Measurement Uncertainty	
•	
10.1 Uncertainty for EUT SAR Test	
Annex A. Plots of System Performance Check	
Annex B. Plots of SAR Measurement	
Annex C. EUT Photos	
Annex D. Test Setup Photos	

1. General Information

1.1 Product Description for Equipment Under Test (EUT)

Client Information

Applicant: Shenzhen Inrico Electronics Co.,Ltd

Address of applicant: 4/F, Building NO.108, High Tech Industrial Park, Guowei

Road 72, Luohu District, Shenzhen, China

Manufacturer: Shenzhen Inrico Electronics Co.,Ltd

Address of manufacturer: 4/F, Building NO.108, High Tech Industrial Park, Guowei

Road 72, Luohu District, Shenzhen, China

General Description of EUT:	
Product Name:	Intelligent Two Way Radio
Brand Name:	Inrico
Model No.:	T320
Adding Model(s):	/
Rated Voltage:	DC 3.8V by battery
Battery Capacity:	3500mAh
Device Category:	Portable Device

The EUT Main board support GSM850/ PCS1900, WCDMA Band 2/5, LTE Band 2/4/5/12/13/17 function. It is intended for speech, Multimedia Message Service (MMS) transmission. It is equipped with GPRS/EDGE class 12 for GSM850/900/DCS1800/PCS1900, GPS, Bluetooth, and Wi-Fi functions. For more information see the following datasheet

Note: The test data is gathered from a production sample provided by the manufacturer.

Report No.: STR18018288H Page 3 of 219 SAR Report

Technical Characteristics of	EUT:			
2G				
Support Networks:	GSM, GPRS, EDGE			
Support Band:	GSM850/PCS1900			
	GSM/GPRS/EDGE 850: 824~849MHz			
Uplink Frequency:	GSM/GPRS/EDGE 1900: 1850~1910MHz			
Daniel Francisco	GSM/GPRS/EDGE 850: 869~894MHz			
Downlink Frequency:	GSM/GPRS/EDGE 1900: 1930~1990MHz			
DE Output Dower	GSM850: 33.03dBm, GSM1900: 29.57dBm			
RF Output Power:	EDGE850: 26.69dBm, EDGE1900: 25.54dBm			
Type of Modulation:	GMSK, 8PSK			
Type of Antenna:	SMA-reverse Antenna			
Antenna Gain:	GSM850: 0.4dBi; GSM1900: 1.5dBi			
GPRS/EDGE Class:	Class 12			
3G				
Support Networks:	WCDMA, HSDPA, HSUPA			
Support Band:	WCDMA Band 2, WCDMA Band 5			
Uplink Frequency:	WCDMA Band 2: 1850~1910MHz			
Opinik Frequency.	WCDMA Band 5: 824~849MHz			
Downlink Frequency:	WCDMA Band 2: 1930~1990MHz			
Downlink Frequency.	WCDMA Band 5: 869~894MHz			
RF Output Power:	WCDMA Band 2: 22.88dBm, WCDMA Band 5: 23.14dBm			
Type of Modulation:	BPSK			
Antenna Type:	SMA-reverse Antenna			
Antenna Gain:	WCDMA Band 2: 1.5dBi, WCDMA Band 5: 0.4dBi			
4G				
Support Networks:	FDD-LTE			
Support Band:	FDD-LTE Band 2, 4, 5,12,13,17			
	FDD-LTE Band 2: Tx: 1850-1910MHz,			
	FDD-LTE Band 4: Tx: 1710-1755MHz,			
Uplink Frequency:	FDD-LTE Band 5: Tx: 824-849MHz,			
Opinik i requericy.	FDD-LTE Band 12: Tx: 699-716MHz,			
	FDD-LTE Band 13: Tx: 777-787MHz,			
	FDD-LTE Band 17: Tx: 704-716MHz,			
	FDD-LTE Band 2: Rx: 1930-1990MHz,			
	FDD-LTE Band 4: Rx: 2110-2155MHz,			
Downlink Frequency:	FDD-LTE Band 5: Rx: 869-894MHz,			
Downlink i requericy.	FDD-LTE Band 12: Tx:729-746MHz,			
	FDD-LTE Band 13: Tx:746-756MHz,			
	FDD-LTE Band 17: Tx: 734-746MHz,			
RF Output Power:	FDD-LTE Band 2: 23.67dBm,			
Oatpat i owor.	FDD-LTE Band 4: 24.51dBm,			

EDD LTE David E. 00 00 dD-					
FDD-LTE Band 5: 23.30dBm,					
FDD-LTE Band 12: 24.26dBm,					
FDD-LTE Band 13: 23.69dBm,					
FDD-LTE Band 17: 25.07dBm					
QPSK, 16QAM					
SMA-reverse Antenna					
FDD-LTE Band 2: 1.5dBi, FDD-LTE Band 4: 0.9dBi,					
FDD-LTE Band 5: 0.4dBi,FDD-LTE Band 12: 0dBi,					
FDD-LTE Band 13: 0dBi,FDD-LTE Band 17: 0dBi					
802.11b, 802.11g, 802.11n					
2412-2462MHz for 11b/g/n(HT20) 2422-2452MHz for 11n(HT40)					
13.08dBm (Conducted)					
CCK, OFDM, QPSK, BPSK, 16QAM, 64QAM					
1-11Mbps, 6-54Mbps, up to 150Mbps					
11 for 802.11b/g/n(HT20)					
7 for 802.11n(HT40)					
5MHz					
Integral Antenna					
1.1dBi					
V4.0					
2402-2480MHz					
3.241dBm (Conducted)					
1Mbps, 2Mbps, 3Mbps					
GFSK, Pi/4 QDPSK, 8DPSK					
79/40					
1MHz/2MHz					
Integral Antenna					
1.1dBi					

Report No.: STR18018288H Page 5 of 219 SAR Report

1.2 Test Standards

The following report is prepared on behalf of the Shenzhen Inrico Electronics Co.,Ltd in accordance with FCC 47 CFR Part 2.1093, ANSI/IEEE C95.1-2005, ANSI / IEEE C95.3:2002, IEEE 1528-2013, KDB 447498 D01 v06, KDB 648474 D04 v01r03, KDB 248227 D01 v02r02, KDB 941225 D01 v03r01, KDB 941225 D05 v02r05, KDB 941225 D06 v02r01, and KDB 865664 D01 v01r04 and KDB 865664 D02 v01r02.

The objective is to determine compliance with FCC Part 2.1093 of the Federal Communication Commissions rules.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product, which result in lowering the emission, should be checked to ensure compliance has been maintained.

1.3 Test Methodology

All measurements contained in this report were conducted with KDB 865664 D01 v01r04 and KDB 865664 D02 v01r02. The public notice KDB 447498 D01 v06 for Mobile and Portable Devices RF Exposure Procedure also.

1.4 Test Facility

FCC – Registration No.: 125990

Shenzhen SEM Test Technology Co., Ltd. Laboratory has been recognized to perform compliance testing on equipment subject to the Commissions Declaration Of Conformity (DOC). The Designation Number is CN5010, and Test Firm Registration Number is 125990.

Industry Canada (IC) Registration No.: 11464A

The 3m Semi-anechoic chamber of Shenzhen SEM.Test Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 11464A.

Report No.: STR18018288H Page 6 of 219 SAR Report

2. Summary of Test Results

The maximum results of Specific Absorption Rate (SAR) have found during testing are as follows:

Eve curement Don'd	Head SAR	Body-worn (10mm Gap)	Hotspot (10mm Gap)	SAR _{1g} Limit
Frequency Band	Maximum SAR _{1g}	Maximum SAR _{1g}	Maximum SAR _{1g}	(W/kg)
	(W/kg)	(W/kg)	(W/kg)	
GSM850	0.995	1.007	1.098	1.6
GSM1900	1.196	0.335	0.459	1.6
WCDMA Band 2	0.978	0.433	0.433	1.6
WCDMA Band 5	1.054	0.666	0.666	1.6
FDD-LTE 2	0.721	0.555	0.555	1.6
FDD-LTE 4	0.644	0.373	0.373	1.6
FDD-LTE 5	0.731	0.499	0.499	1.6
FDD-LTE 12	1.030	0.792	0.792	1.6
FDD-LTE 13	1.156	0.921	0.921	1.6
FDD-LTE 17	0.753	0.794	0.794	1.6
WLAN 2.4G	0.210	0.116	0.116	1.6
Simultaneous Transmission	1.341	1.058	1.149	1.6

Front-of the face SAR (25mm Gap)

	Frequency Band	Maximum SAR _{1g} (W/kg)	SAR _{1g} Limit (W/kg)
-	GSM850	0.470	1.6
	GSM1900	0.156	1.6

Remark:

The highest reported SAR values for head, body-worn accessory, wireless router(hotspot), front-of the face, and simultaneous transmission conditions are 1.196W/kg, 1.007W/kg, 1.098W/kg, 0.470W/kg and 1.341W/kg respectively.

The device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR Part 2.1093 and ANSI/IEEE C95.1-2005, and had been tested in accordance with the measurement methods and procedure specified in IEEE 1528-2013 and KDB 865664 D01 v01r04 and KDB 865664 D02 v01r02

Report No.: STR18018288H Page 7 of 219 SAR Report

3. Specific Absorption Rate (SAR)

3.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techiques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

3.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

Where: C is the specific heat capacity, δ T is the temperature rise and δ t is the exposure duration, or related to the

electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

Report No.: STR18018288H Page 8 of 219 SAR Report

4. SAR Measurement System

4.1 The Measurement System

Comosar is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The Comosar system consists of the following items:

- Main computer to control all the system
- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Phone holder
- Head simulating tissue

The following figure shows the system.

The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The OpenSAR software computes the results to give a SAR value in a 1g or 10g mass.

4.2 Probe

For the measurements the Specific Dosimetric E-Field Probe SSE5 SN 09/13 EP168 with following specifications is used

- Dynamic range: 0.01-100 W/kg

- Probe Length: 330 mm

Length of Individual Dipoles: 4.5 mmMaximum external diameter: 8 mmProbe Tip External Diameter: 5 mm

- Distance between dipoles / probe extremity: 2.7mm

Report No.: STR18018288H Page 9 of 219 SAR Report

- Probe linearity: <0.25 dB
- Axial Isotropy: <0.25 dB
- Spherical Isotropy: <0.50 dB

- Calibration range: 700 to 3000MHz for head & body simulating liquid.

Angle between probe axis (evaluation axis) and suface normal line: 1ess than 30°

Probe calibration is realized, in compliance with EN 62209-1 and IEEE 1528 STD, with CALISAR, Antennessa proprietary calibration system. The calibration is performed with the EN 62209-1 annexe technique using reference guide at the five frequencies.

$$SAR = \frac{4 \left(P_{fw} - P_{bw} \right)}{ab\delta} \cos^2 \left(\pi \frac{y}{a} \right) e^{-(2z/\delta)}$$

Where:

Pfw = Forward Power Pbw = Backward Power

a and b = Waveguide dimensions

I = Skin depth

Keithley configuration:

Rate = Medium; Filter = ON; RDGS = 10; Filter type = Moving Average; Range auto after each calibration, a SAR measurement is performed on a validation dipole and compared with a NPL calibrated probe, to verify it.

Report No.: STR18018288H Page 10 of 219 SAR Report

The calibration factors, CF(N), for the 3 sensors corresponding to dipole 1, dipole 2 and dipole 3 are:

$$CF(N)=SAR(N)/Vlin(N)$$
 (N=1,2,3)

The linearised output voltage Vlin(N) is obtained from the displayed output voltage V(N) using

$$Vlin(N)=V(N)*(1+V(N)/DCP(N))$$
 (N=1,2,3)

where DCP is the diode compression point in mV.

4.3 Probe Calibration Process

Dosimetric Assessment Procedure

Each E-Probe/Probe Amplifier combination has unique calibration parameters. SATIMO Probe calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm2) using an with CALISAR, Antenna proprietary calibration system.

Free Space Assessment Procedure

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and in a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1mW/cm2.

Temperature Assessment Procedure

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated head tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

SAR =
$$C\frac{\Delta T}{\Delta t}$$
 $\Delta t = \text{exposure time (30 seconds)},$ $C = \text{heat capacity of tissue (brain or muscle)},$ $\Delta T = \text{temperature increase due to RF exposure}.$

SAR is proportional to $\Delta T/\Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. The electric field in the simulated tissue can be used to estimate SAR by equating the thermally derived SAR to that with the E- field component.

Report No.: STR18018288H Page 11 of 219 SAR Report

$$SAR = \frac{\left| \mathbf{E} \right|^2 \cdot \sigma}{\rho}$$

Where:

 $\sigma = \text{simulated tissue conductivity},$

 ρ = Tissue density (1.25 g/cm3 for brain tissue)

4.4 Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

4.5 Device Holder

The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is lower than 1 °.

System Material	Permittivity	Loss Tangent
Delrin	3.7	0.005

Report No.: STR18018288H Page 12 of 219 SAR Report

4.6 Test Equipment List

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date
E-Field Probe	MVG	SSE5	SN 09/13 EP168	2017-06-01	2018-05-31
750MHz Dipole	MVG	SID750	SN 47/12 DIP 0G750-203	2017-03-16	2018-03-15
835MHz Dipole	MVG	SID835	SN 47/12 DIP 0G835-204	2017-03-16	2018-03-15
1800MHz Dipole	MVG	SID1800	SN 47/12 DIP 1G800-206	2017-03-16	2018-03-15
1900MHz Dipole	MVG	SID1900	SN 47/12 DIP 1G900-207	2017-03-16	2018-03-15
2450MHz Dipole	MVG	SID2450	SN 13/15 DIP 2G450-364	2017-03-16	2018-03-15
Dielectric Probe Kit	MVG	SCLMP	SN 47/12 OCPG49	2017-03-16	2018-03-15
SAM Phantom	MVG	SAM	SN/ 47/12 SAM95	N/A	N/A
MULTIMETER	KEITHLEY	Keithley 2000	4006367	2017-06-12	2018-06-11
Signal Generator	Rohde & Schwarz	SMR20	100047	2017-06-12	2018-06-11
Universal Tester	Rohde & Schwarz	CMU200	112012	2017-06-12	2018-06-11
Communications Test er	Rohde & Schwarz	CMW500	148650	2017-06-12	2018-06-11
Network Analyzer	HP	8753C	2901A00831	2017-06-12	2018-06-11
Directional Couplers	Agilent	778D	20160	2017-06-12	2018-06-11

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date
750MHz Dipole	MVG	SID750	SN 47/12 DIP 0G750-203	2018-03-20	2019-03-19
835MHz Dipole	MVG	SID835	SN 47/12 DIP 0G835-204	2018-03-20	2019-03-19
1800MHz Dipole	MVG	SID1800	SN 47/12 DIP 1G800-206	2018-03-20	2019-03-19
1900MHz Dipole	MVG	SID1900	SN 47/12 DIP 1G900-207	2018-03-20	2019-03-19
2450MHz Dipole	MVG	SID2450	SN 13/15 DIP 2G450-364	2018-03-20	2019-03-19

Report No.: STR18018288H Page 13 of 219 SAR Report

5. Tissue Simulating Liquids

5.1 Composition of Tissue Simulating Liquid

For the measurement of the field distribution inside the SAM phantom with SMTIMO, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. Please see the following photos for the liquid height.

Liquid Height for Head SAR

Liquid Height for Body SAR

The Composition of Tissue Simulating Liquid

Frequency	Water	Salt	Sugar	HEC	Preventol	DGBE				
(MHz)	(%)	(%)	(%)	(%)	(%)	(%)				
	Head									
750	41.1	1.4	57.0	0.2	0.3	0				
835	40.3	1.4	57.9	0.2	0.2	0				
1700-1900	55.2	0.3	0	0	0	44.5				
2450	55.0	0.1	0	0	0	44.9				
			Body							
750	50.0	0.8	48.8	0.2	0.2	0				
835	50.8	0.9	48.1	0.1	0.1	0				
1700-1900	70.2	0.4	0	0	0	29.4				
2450	68.6	0.1	0	0	0	31.3				

Report No.: STR18018288H Page 14 of 219 SAR Report

5.2 Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

To	Не	ead	Во	ody
Target Frequency	Conductivity	Permittivity	Conductivity	Permittivity
(MHz)	(σ)	(E r)	(σ)	(E r)
150	0.76	52.3	0.80	61.9
300	0.87	45.3	0.92	58.2
450	0.87	43.5	0.94	56.7
750	0.89	41.9	0.96	55.5
835	0.90	41.5	0.97	55.2
900	0.97	41.5	1.05	55.0
915	0.98	41.5	1.06	55.0
1450	1.20	40.5	1.30	54.0
1610	1.29	40.3	1.40	53.8
1750	1.37	40.1	1.49	53.4
1800-2000	1.40	40.0	1.52	53.3
2450	1.80	39.2	1.95	52.7
3000	2.40	38.5	2.73	52.0
5800	5.27	35.3	6.00	48.2

Report No.: STR18018288H Page 15 of 219 SAR Report

5.3 Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using COMOSAR Dielectric Probe Kit and an Agilent Network Analyzer.

Calibration Result for Dielectric Parameters of Tissue Simulating Liquid

	Head Tissue Simulating Liquid									
Ema a	Conductivity]	Permittivity	Limit					
Freq. MHz.	Temp. (°C)	Reading	Target	Delta	Reading	Target	Delta		Date	
WIIIZ.	(0)	(σ)	(σ)	(%)	$(^{\mathcal{E}}\mathbf{r})$	$(\mathcal{E} \mathbf{r})$	(%)	(%)		
750	21.2	0.86	0.89	-3.37	41.32	41.90	-1.38	±5	2018-02-01	
835	21.2	0.87	0.90	-3.33	41.11	41.50	-0.94	±5	2018-02-01	
1750	21.3	1.37	1.37	0.00	39.02	40.1	-2.69	±5	2018-02-02	
1800	21.3	1.37	1.40	-2.14	39.02	40.0	-2.45	±5	2018-02-02	
1900	21.3	1.38	1.40	-1.43	38.56	40.00	-3.60	±5	2018-02-02	
2450	21.3	1.74	1.80	-3.33	38.15	39.20	-2.68	±5	2018-02-05	

	Body Tissue Simulating Liquid								
Emag	Tomn	Conductivity]	Permittivity			
Freq. MHz.	Temp. (°C)	Reading	Target	Delta	Reading	Target	Delta	Limit (%)	Date
WIIIZ.	(0)	(σ)	(σ)	(%)	$(\mathcal{E} \mathbf{r})$	$(\mathcal{E} \mathbf{r})$	(%)	(/0)	
750	21.2	0.93	0.96	-3.12	54.96	55.50	-0.97	±5	2018-02-01
835	21.2	0.95	0.97	-2.06	54.85	55.20	-0.63	±5	2018-02-01
1750	21.3	1.46	1.49	-2.01	51.22	53.40	-4.08	±5	2018-02-02
1800	21.3	1.46	1.52	-3.95	51.22	53.30	-3.90	±5	2018-02-02
1900	21.3	1.50	1.52	-1.32	52.42	53.30	-1.65	±5	2018-02-02
2450	21.3	1.91	1.95	-2.05	52.01	52.70	-1.31	±5	2018-02-05

	Body Tissue Simulating Liquid									
Frag	Tomp	Conductivity]	Permittivity				
Freq. MHz.	Temp. (°C)	Reading	Target	Delta	Reading	Target	Delta	Limit (%)	Date	
WIIIZ.	(0)	(σ)	(σ)	(%)	$(\mathcal{E} \mathbf{r})$	$(\mathcal{E} \mathbf{r})$	(%)	(70)		
750	21.2	0.94	0.96	-2.08	54.98	55.50	-0.94	±5	2018-03-23	
835	21.2	0.94	0.97	-3.09	54.81	55.20	-0.71	±5	2018-03-23	
1750	21.3	1.48	1.49	-0.67	51.32	53.40	-3.90	±5	2018-03-23	
1800	21.3	1.48	1.52	-2.63	51.32	53.30	-3.71	±5	2018-03-23	
1900	21.3	1.46	1.52	-3.95	52.24	53.30	-1.99	±5	2018-03-23	
2450	21.3	1.87	1.95	-4.10	52.21	52.70	-0.93	±5	2018-03-23	

Report No.: STR18018288H Page 16 of 219 SAR Report

	Head Tissue Simulating Liquid								
E		Conductivity			Permittivity			Limit	
Freq. MHz.	Temp.	Reading	Target	Delta	Reading	Target	Delta	(%)	Date
		(σ)	(σ)	(%)	$(\mathcal{E} \mathbf{r})$	$(\mathcal{E} \mathbf{r})$	(%)		
750	21.2	0.85	0.89	-4.49	41.54	41.90	-0.86	±5	2018-03-23
835	21.2	0.88	0.90	-2.22	41.32	41.50	-0.43	±5	2018-03-23

6. SAR Measurement Evaluation

6.1 Purpose of System Performance Check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

6.2 System Setup

In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave which comes from a signal generator at frequency 835 MHz and 1900 MHz. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom.

System Verification Setup Block Diagram

Report No.: STR18018288H Page 18 of 219 SAR Report

Setup Photo of Dipole Antenna

The output power on dipole port must be calibrated to 24 dBm(250 mW) before dipole is connected.

6.3 Validation Results

Comparing to the original SAR value provided by SATIMO, the validation data should be within its specification of 10 %. Table 6.1 shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion.

Frequency	Targeted SAR _{1g}	Measured SAR _{1g}	Normalized SAR _{1g}	Tolerance	Data		
MHz	(W/kg)	(W/kg)	(W/kg)	(%)	Date		
	Head						
750	8.40	2.16	8.64	2.86	2018-02-01		
835	9.65	2.41	9.64	-0.10	2018-02-01		
1800	38.49	9.61	9.61 38.44		2018-02-02		
1900	39.59	9.91	39.64	0.13	2018-02-02		
2450	53.76	13.45	53.8	0.07	2018-02-05		
		Body					
750	8.40	2.12	8.48	0.95	2018-02-01		
835	9.36	2.35	9.4	0.43	2018-02-01		
1800	38.29	9.58	38.32	0.08	2018-02-02		
1900	39.01	9.78	39.12	0.28	2018-02-02		
2450	50.33	12.59	50.36	0.06	2018-02-05		

Frequency	Targeted SAR _{1g}	Measured SAR _{1g}	Normalized SAR _{1g}	Tolerance	Data
MHz	(W/kg)	(W/kg)	(W/kg)	(%)	Date

Report No.: STR18018288H Page 19 of 219 SAR Report

		Body			
750	8.40	2.15	8.6	2.38	2018-03-23
835	9.38	2.33	9.32	-0.64	2018-03-23
1800	38.31	9.58	38.32	0.03	2018-03-23
1900	39.10	9.84	39.36	0.66	2018-03-23
2450	50.41	12.76	51.04	1.25	2018-03-23

Frequency	Targeted SAR _{1g}	Measured SAR _{1g}	Normalized SAR _{1g}	Tolerance	Data	
MHz	(W/kg)	(W/kg)	(W/kg)	(%)	Date	
		Head				
750	8.40	2.16	8.64	2.86	2018-03-23	
835	9.67	2.42	9.68	0.10	2018-03-23	

Remark: Referring to IEEE 1528-2013, Section 8.2, The system check shall be performed at a test frequency that is within $\pm 10\%$ or ± 100 MHz of the compliance test mid-band frequency, so the 1750 MHz system verification is made of 1800MHz Dipole.

Targeted and Measurement SAR

Please refer to Annex A for the plots of system performance check.

7. EUT Testing Position

7.1 Define Two Imaginary Lines on The Handset

- (a) The vertical centerline passes through two points on the front side of the handset the midpoint of the width w_t of the handset at the level of the acoustic output, and the midpoint of the width w_b of the bottom of the handset.
- (b) The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output. The horizontal line is also tangential to the face of the handset at point A.
- (c) The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset, especially for clamshell handsets, handsets with flip covers, and other irregularly shaped handsets.

Illustration for Handset Vertical and Horizontal Reference Lines

Report No.: STR18018288H Page 21 of 219 SAR Report

7.2 Cheek Position

(a) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center piece in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the three ear and mouth reference point (M: Mouth, RE: Right Ear, and LE: Left Ear) and align the center of the ear piece with the line RE-LE. (b) To move the device towards the phantom with the ear piece aligned with the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost (see Fig. 7.2).

Illustration for Cheek Position

7.3 Tilted Position

- (a) To position the device in the "cheek" position described above.
- (b) While maintaining the device the reference plane described above and pivoting against the ear, moves it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost (see Fig. 7.3).

Illustration for Tilted Position

7.4 Body Worn Position

- (a) To position the device parallel to the phantom surface with either keypad up or down.
- (b) To adjust the device parallel to the flat phantom.
- (c) To adjust the distance between the device surface and the flat phantom to 10mm.

Illustration for Body Worn Position

7.5 EUT Antenna Position

Block Diagram for EUT Antenna Position

Report No.: STR18018288H Page 23 of 219 SAR Report

7.6 EUT Testing Position

Head/Body-worn/Hotspot mode SAR assessments are required for this device. This EUT was tested in different positions for different SAR test modes, more information as below:

Head SAR tests							
Antennas	Right Cheek	Left Cheek	Right Tilted	Left Tilted			
WWAN	Yes	Yes	Yes	Yes			
WLAN	Yes	Yes	Yes	Yes			

Hotspot SAR tests, Test distance: 10mm								
Antennas Front Back Right Side Left Side Top Side Bottom Sid								
WWAN	Yes	Yes	No	Yes	Yes	No		
WLAN	Yes	Yes	Yes	No	No	No		

Body-worn SAR tests							
Antennas	Front	Back					
WWAN	Yes	Yes					
WLAN	Yes	Yes					

Front-of the face SAR tests					
Antennas	Front				
WWAN	Yes				

Remark:

- Referring to KDB 941225 D06, when the overall device length and width are >= 9cm*5cm, the test separation distances is 10 mm. SAR must be measured for all sides and surfaces with a transmitting antenna located within 25mm from that surface or edge.
- 2. Referring to KDB 447498 D01 v06, PTT two-way radios that support held-to-ear operating mode must also be tested according to the exposure configurations required for handsets in KDB Publication 648474 D04. This generally does not apply to cellphones with PTT options that have already been tested in more conservative configurations in applicable wireless modes for SAR compliance at 100% duty factor. This generally does not apply to cellphones with PTT options that have already been tested in more conservative configurations in applicable wireless modes for SAR compliance at 100% duty factor.
- 3. The EUT supports PTT function only through GPRS/EDGE network function. With PTT mode, a test separation distance of 25 mm is used for in-front-of the face SAR.

Please refer to Annex D for the EUT test setup photos.

Report No.: STR18018288H Page 24 of 219 SAR Report

8. SAR Measurement Procedures

8.1 Measurement Procedures

The measurement procedures are as follows:

- (a) Use base station simulator (if applicable) or engineering software to transmit RF power continuously (continuous Tx) in the highest power channel.
- (b) Keep EUT to radiate maximum output power or 100% factor (if applicable)
- (c) Measure output power through RF cable and power meter.
- (d) Place the EUT in the positions as Annex D demonstrates.
- (e) Set scan area, grid size and other setting on the SATIMO software.
- (f) Measure SAR results for the highest power channel on each testing position.
- (g) Find out the largest SAR result on these testing positions of each band
- (h) Measure SAR results for other channels in worst SAR testing position if the SAR of highest power channel is larger than 0.8 W/kg

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

8.2 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The SATIMO software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine. The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

8.3 Area & Zoom Scan Procedures

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan measures 5x5x7 points with step size 8, 8 and 5 mm for 300 MHz to 3 GHz, and 8x8x8 points with step size 4, 4 and 2.5 mm for 3 GHz to 6 GHz. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g.

8.4 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing (step-size is 4, 4 and 2.5 mm). When all volume scan were completed, the software can combine and subsequently superpose these measurement data to calculating the multiband SAR.

8.5 SAR Averaged Methods

The local SAR inside the phantom is measured using small dipole sensing elements inside a probe body. The probe tip must not be in contact with the phantom surface in order to minimize measurements errors, but the highest local SAR will occur at the surface of the phantom.

An extrapolation is using to determinate this highest local SAR values. The extrapolation is based on a fourth-order least-square polynomial fit of measured data. The local SAR value is then extrapolated from the liquid surface with a 1mm step.

The measurements have to be performed over a limited time (due to the duration of the battery) so the step of measurement is high. It could vary between 5 and 8 mm. To obtain an accurate assessment of the maximum SAR averaged over 10g and 1 g requires a very fine resolution in the three dimensional scanned data array.

8.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In SATIMO measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested.

9. SAR Test Result

9.1 Conducted RF Output Power

		GS	SM - Burst	Average Pov	wer (dBm)			
Band		GSM85	0	Tune-up	Tune-up PCS1900			Tune-up
Channel	128	190	251	power	512	661	810	power
Frequency (MHz)	824.2	836.6	848.8	(dBm)	1850.2	1880	1909.8	(dBm)
GSM	33.03	32.99	32.96	33.5	29.55	28.81	28.23	30.0
GPRS (1 slot)	32.99	33.00	32.95	33.5	29.57	28.75	28.21	30.0
GPRS (2 slots)	32.18	32.08	32.02	32.5	28.75	28.15	27.64	29.0
GPRS (3 slots)	30.04	29.88	29.72	30.5	26.89	26.54	26.11	27.0
GPRS (4 slots)	28.88	28.70	28.48	29.0	25.81	25.46	25.06	26.0
EDGE (1 slot)	26.69	26.63	26.46	27.0	25.14	25.54	24.96	26.0
EDGE (2 slots)	25.72	25.69	25.53	26.0	24.27	24.39	24.22	24.5
EDGE (3 slots)	23.87	23.78	23.65	24.0	22.59	22.83	22.62	23.0
EDGE (4 slots)	22.99	22.89	22.65	23.5	21.42	21.65	21.5	22.0

	GSM - Source-Based Time-Average Power (dBm)									
Band	Band GSM850			Tune-up	PCS1900			Tune-up		
Channel	128	190	251	power	512	661	810	power		
Frequency (MHz)	824.2	836.6	848.8	(dBm)	1850.2	1880	1909.8	(dBm)		
GSM	24.03	23.99	23.96	24.5	20.55	19.81	19.23	21.0		
GPRS (1 slot)	23.99	24.00	23.95	24.5	20.57	19.75	19.21	21.0		
GPRS (2 slots)	26.18	26.08	26.02	26.5	22.75	22.15	21.64	23.0		
GPRS (3 slots)	25.79	25.63	25.47	26.0	22.64	22.29	21.86	23.0		
GPRS (4 slots)	25.88	25.70	25.48	26.0	22.81	22.46	22.06	23.0		
EDGE (1 slot)	17.69	17.63	17.46	18.0	16.14	16.54	15.96	17.0		
EDGE (2 slots)	19.72	19.69	19.53	20.0	18.27	18.39	18.22	18.5		
EDGE (3 slots)	19.62	19.53	19.40	20.0	18.34	18.58	18.37	19.0		
EDGE (4 slots)	19.99	19.89	19.65	20.5	18.42	18.65	18.50	19.0		

Note: The source-based time-averaged power is linearly scaled the maximum burst averaged power based on time slots. The calculated method are shown as below:

Source based time-average power = Burst averaged power - Duty cycle factor in dB

Duty cycle factor = 9 dB for 1 Tx slot, 6 dB for 2 Tx slots, 4.25 dB for 3 Tx slots, 3 dB for 4 Tx slots

Remark:

- 1. For Head SAR testing, GSM GPRS (2TX slots) and GPRS (4TX slots) should be evaluated, therefore the EUT was set in GSM and GPRS (2TX slots) for GSM850 and GPRS (4TX slots) for GSM1900 due to its highest source-based time-average power.
- 2. For Body SAR testing, GPRS should be evaluated, therefore the EUT was set in GPRS (2TX slots) for GSM850 and

Report No.: STR18018288H Page 27 of 219 SAR Report

GPRS (4TX slots) for GSM1900 due to its highest source-based time-average power.

- 3. Per KDB 447498 D01 v06, the maximum output power channel is used for SAR testing and for further SAR test reduction.
- 4. The DUT do not support DTM function.
- 5. This device supports VOIP capability through 3rd party apps software.

WCDMA - Average Power (dBm)										
Band		WCDMA Band II				WCDMA Band V				
Channel	9262	9400	9538	Tune-up	4132	4182	4233	Tune-up		
Engguenay (MHz)	1852.4	1880.0	1907.6	power	826.4	826.4	836.6	846.6	power	
Frequency (MHz)	1052.4	1000.0	1907.0	(dBm)	820.4	830.0	040.0	(dBm)		
RMC 12.2k	22.88	22.09	22.31	23.0	23.14	22.92	23.06	23.5		
HSDPA Subtest-1	21.99	21.19	21.48	22.5	22.27	21.87	22.17	22.5		
HSDPA Subtest-2	21.82	21.05	21.36	22.5	22.11	21.75	21.99	22.5		
HSDPA Subtest-3	21.83	21.08	21.38	22.5	22.14	21.73	22.06	22.5		
HSDPA Subtest-4	21.88	21.00	21.33	22.5	22.16	21.66	22.07	22.5		
HSUPA Subtest-1	22.02	21.20	21.52	22.5	22.30	22.01	22.25	22.5		
HSUPA Subtest-2	21.89	21.10	21.32	22.5	22.16	21.84	22.03	22.5		
HSUPA Subtest-3	21.82	20.99	21.31	22.5	22.09	21.86	22.03	22.5		
HSUPA Subtest-4	21.86	21.02	21.31	22.5	22.12	21.86	22.07	22.5		
HSUPA Subtest-5	21.86	21.09	21.39	22.5	22.16	21.80	22.13	22.5		

Remark:

- 1. For Head SAR, per KDB 941225 D01 v03, RMC 12.2kbps setting is used to evaluate SAR. If AMR 12.2kbps power is < 1/4 dB higher than RMC, SAR tests with AMR 12.2kbps can be excluded.
- 2. For Body SAR, per KDB 941225 D01 v03, RMC 12.2kbps setting is used to evaluate SAR. If HSDPA subset-1 output power is < 1/4 dB higher than RMC, and SAR with RMC 12.2kbps setting is \leq 1.2W/kg, HSDPA SAR evaluation can be excluded

Report No.: STR18018288H Page 28 of 219 SAR Report

FDD-LTE Band 2:

		1	nel Bandwidth: 1.4	4 MHz	
Modulation	Channel		nfiguration	Average Power [dBm]	MPR (dB)
		Size	Offset		
		1	0	23.10	0
		1	3	23.11	0
		1	5	23.08	0
	LCH	3	0	22.44	0
		3	2	22.35	0
		3	3	22.23	0
		6	0	21.23	1
		1	0	23.27	0
		1	3	23.21	0
		1	5	23.26	0
QPSK	MCH	3	0	22.42	0
		3	2	22.31	0
		3	3	22.63	0
		6	0	22.80	1
	НСН	1	0	23.48	0
		1	3	23.19	0
		1	5	23.14	0
		3	0	22.13	0
		3	2	22.17	0
		3	3	22.20	0
		6	0	22.07	1
		1	0	22.14	1
		1	3	22.25	1
		1	5	22.12	1
	LCH	3	0	22.07	1
		3	2	22.03	1
		3	3	22.02	1
		6	0	21.06	2
		1	0	22.43	1
16QAM		1	3	22.42	1
		1	5	22.39	1
	MCH	3	0	22.08	1
		3	2	22.06	1
		3	3	22.04	1
		6	0	21.17	2
		1	0	22.64	1
	HCH	1	3	22.69	1

1	5	22.62	1
3	0	22.70	1
3	2	22.54	1
3	3	22.51	1
6	0	21.11	2

		Chai	nnel Bandwidth: 3	3 MHz	
Madulation	Channel	RB Co	nfiguration	Average Dower [dDm]	MPR (dB)
Modulation	Channel	Size	Offset	Average Power [dBm]	WIT IX (GB)
		1	0	22.90	0
		1	7	22.47	0
		1	14	22.08	0
	LCH	8	0	21.93	1
		8	4	21.62	1
		8	7	21.35	1
		15	0	21.65	1
		1	0	22.74	0
		1	7	22.73	0
		1	14	22.03	0
QPSK	MCH	8	0	22.11	1
		8	4	22.10	1
		8	7	21.88	1
		15	0	22.03	1
		1	0	22.90	0
		1	7	22.47	0
	НСН	1	14	22.08	0
		8	0	21.93	1
		8	4	21.62	1
		8	7	21.35	1
		15	0	21.65	1
		1	0	22.17	1
		1	7	22.16	1
		1	14	22.12	1
	LCH	8	0	21.10	2
		8	4	21.12	2
		8	7	21.07	2
16QAM		15	0	21.00	2
		1	0	22.31	1
		1	7	22.35	1
	MCH	1	14	22.31	1
	MCH	8	0	21.28	2
		8	4	21.30	2
		8	7	21.28	2

		15	0	21.17	2
		1	0	22.46	1
		1	7	22.77	1
	HCH	1	14	22.42	1
		8	0	21.40	2
		8	4	21.88	2
		8	7	21.88	2
		15	0	21.80	2

		Chanr	nel Bandwidth: 5	MHz	
Modulation	Channel	RB Con	figuration	Average Power [dBm]	MPR (dB)
Wodulation	Charmer	Size	Offset	Average Fower [ubin]	Wil IX (GD)
		1	0	23.20	0
		1	12	23.03	0
		1	24	23.09	0
	LCH	12	0	22.17	1
		12	6	22.14	1
		12	13	22.12	1
		25	0	22.09	1
		1	0	23.36	0
		1	12	23.07	0
		1	24	23.38	0
QPSK	MCH	12	0	22.33	1
		12	6	22.33	1
		12	13	22.36	1
		25	0	22.27	1
		1	0	23.67	0
		1	12	23.08	0
		1	24	22.74	0
	HCH	12	0	22.70	1
		12	6	22.48	1
		12	13	22.27	1
		25	0	22.53	1
		1	0	22.32	1
		1	12	22.27	1
		1	24	22.26	1
	LCH	12	0	21.18	2
400 444		12	6	21.15	2
16QAM		12	13	21.17	2
		25	0	21.03	2
		1	0	22.50	1
	MCH	1	12	22.48	1
		1	24	22.48	1

		12	0	21.35	2
		12	6	21.34	2
		12	13	21.34	2
		25	0	21.22	2
		1	0	22.72	1
	НСН	1	12	22.22	1
		1	24	21.93	1
		12	0	21.81	2
		12	6	21.69	2
		12	13	21.54	2
		25	0	21.69	2

		Chann	el Bandwidth: 10) MHz	
Modulation	Channel	RB Con	figuration	Average Power [dBm]	MPR (dB)
Modulation	Grianner	Size	Offset	Average Fower [ubin]	WEK (db)
		1	0	22.87	0
		1	24	22.75	0
		1	49	22.32	0
	LCH	25	0	22.10	1
		25	12	22.06	1
		25	25	21.98	1
		50	0	22.07	1
		1	0	22.96	0
		1	24	22.87	0
		1	49	22.54	0
QPSK	MCH	25	0	22.26	1
		25	12	22.29	1
		25	25	22.32	1
		50	0	22.27	1
		1	0	22.21	0
		1	24	22.92	0
		1	49	22.11	0
	HCH	25	0	21.96	1
		25	12	22.29	1
		25	25	22.28	1
		50	0	22.19	1
		1	0	22.27	1
		1	24	22.17	1
		1	49	21.75	1
16QAM	LCH	25	0	21.06	2
		25	12	21.00	2
		25	25	21.02	2
		50	0	21.04	2

		1	0	22.37	1
		1	24	22.31	1
		1	49	22.02	1
	MCH	25	0	21.20	2
		25	12	21.22	2
		25	25	21.22	2
		50	0	21.22	2
		1	0	21.72	1
		1	24	22.40	1
		1	49	21.68	1
	HCH	25	0	21.07	2
		25	12	21.40	2
		25	25	21.44	2
		50	0	21.35	2

Channel Bandwidth: 15 MHz							
Modulation	Channel	RB Conf	iguration	Average Power [dBm]	MPR (dB)		
Woddiation	Onamici	Size	Offset	7.vorage i ower [abin]			
		1	0	22.90	0		
		1	37	22.47	0		
		1	74	22.20	0		
	LCH	37	0	22.09	1		
		37	18	21.86	1		
		37	38	21.63	1		
		75	0	21.86	1		
		1	0	22.86	0		
		1	37	22.68	0		
	MCH	1	74	22.22	0		
QPSK		37	0	22.25	1		
		37	18	22.22	1		
		37	38	22.07	1		
		75	0	22.17	1		
		1	0	22.11	0		
		1	37	22.44	0		
		1	74	22.21	0		
	HCH	37	0	21.46	1		
		37	18	21.73	1		
		37	38	22.08	1		
		75	0	21.80	1		
		1	0	22.33	1		
40000	1.011	1	37	21.87	1		
16QAM	LCH	1	74	21.63	1		
		37	0	21.19	2		

			37	18	20.99	2
			37	38	20.77	2
			75	0	21.00	2
			1	0	22.25	1
			1	37	22.11	1
			1	74	21.73	1
		MCH	37	0	21.32	2
			37	18	21.35	2
			37	38	21.26	2
			75	0	21.30	2
			1	0	21.54	1
			1	37	21.88	1
			1	74	21.69	1
		HCH	37	0	20.67	2
			37	18	20.93	2
			37	38	21.25	2
			75	0	20.97	2

Channel Bandwidth: 20 MHz					
Modulation	Channel	RB Configuration		Average Power [dBm]	MPR (dB)
		Size	Offset	Average Fower [ubili]	WIFK (UD)
		1	0	23.67	0
		1	49	23.25	0
		1	99	22.86	0
	LCH	50	0	22.94	1
		50	25	22.17	1
		50	50	22.18	1
		100	0	22.35	1
	МСН	1	0	23.04	0
		1	49	23.04	0
		1	99	23.01	0
QPSK		50	0	22.15	1
		50	25	22.16	1
		50	50	22.14	1
		100	0	22.11	1
	НСН	1	0	23.21	0
		1	49	23.24	0
		1	99	23.25	0
		50	0	22.33	0.5
		50	25	22.33	0.5
		50	50	22.36	0.5
		100	0	22.27	0.5
16QAM	LCH	1	0	22.28	1

		1	49	21.76	1
		1	99	21.37	1
		50	0	21.05	2
		50	25	20.74	2
		50	50	20.49	2
		100	0	20.77	2
		1	0	22.02	1
	мсн	1	49	22.07	1
		1	99	21.40	1
		50	0	21.18	2
		50	25	21.23	2
		50	50	21.06	2
		100	0	21.17	2
		1	0	21.71	1
		1	49	21.64	1
		1	99	21.69	1
	НСН	50	0	20.57	2
		50	25	20.64	2
		50	50	20.97	2
		100	0	20.71	2

FDD-LTE Band 4:

	Channel Bandwidth: 1.4 MHz					
Modulation	Channel	RB Configuration		Average Power [dBm]	MPR (dB)	
		Size	Offset	Average Fower [dbill]	IVII IX (GD)	
	LCH	1	0	24.11	0	
		1	3	24.09	0	
		1	5	24.27	0	
		3	0	23.81	0	
		3	2	23.92	0	
		3	3	23.98	0	
		6	0	23.07	1	
ODOK	мсн	1	0	23.88	0	
QPSK		1	3	23.83	0	
		1	5	23.96	0	
		3	0	23.88	0	
		3	2	23.85	0	
		3	3	23.90	0	
		6	0	22.15	1	
	НСН	1	0	24.18	0	
		1	3	24.06	0	

		1	5	24.22	0
		3	0	23.19	0
		3	2	23.43	0
		3	3	23.42	0
		6	0	22.71	1
		1	0	22.21	1
		1	3	22.33	1
		1	5	22.49	1
	LCH	3	0	22.02	1
		3	2	22.08	1
		3	3	22.19	1
		6	0	21.11	2
		1	0	22.36	1
	мсн	1	3	22.36	1
		1	5	22.44	1
16QAM		3	0	22.19	1
		3	2	22.02	1
		3	3	22.05	1
		6	0	21.29	2
		1	0	22.84	1
		1	3	22.77	1
		1	5	22.81	1
	HCH	3	0	22.66	1
		3	2	22.61	1
		3	3	22.63	1
		6	0	21.97	2

	Channel Bandwidth: 3 MHz						
Modulation	Channel	RB Configuration		Average Power [dBm]	MDD (dB)		
Woddiation		Size	Offset	Average i ower [ubin]	Wil IX (GB)		
	LCH	1	0	23.75	0		
		1	7	24.04	0		
		1	14	23.42	0		
		8	0	22.07	1		
		8	4	22.27	1		
		8	7	22.47	1		
QPSK		15	0	22.30	1		
		1	0	23.10	0		
		1	7	23.17	0 0 1 1 1 1		
	MOLL	1	14	23.30	0		
	MCH	8	0	22.49	1		
		8	4	22.55	1		
		8	7	22.61	1		

		15	0	22.60	1
		1	0	24.21	0
		1	7	24.24	0
		1	14	24.37	0
	HCH	8	0	23.16	1
		8	4	23.14	1
		8	7	23.28	1
		15	0	22.86	1
		1	0	22.13	1
		1	7	22.42	1
		1	14	22.80	1
	LCH	8	0	21.22	2
		8	4	21.46	2
		8	7	21.61	2
		15	0	21.37	2
		1	0	22.55	1
		1	7	22.60	1
		1	14	22.76	1
16QAM	MCH	8	0	21.70	2
		8	4	21.77	2
		8	7	21.81	2
		15	0	21.70	2
		1	0	23.25	1
		1	7	23.00	1
		1	14	22.85	1
	HCH	8	0	22.04	2
		8	4	21.94	2
		8	7	21.90	2
		15	0	21.89	2

		Chann	nel Bandwidth: 5	MHz	
Modulation	Channel	RB Conf	figuration	Average Power [dBm]	MPR (dB)
Modulation	Onamici	Size	Offset	/werage rower [abin]	WII TY (GB)
		1	0	23.85	0
		1	12	23.08	0
		1	24	23.84	0
	LCH	12	0	22.94	1
QPSK		12	6	22.17	1
QFSK		12	13	22.65	1
		25	0	22.29	1
	МСН	1	0	23.11	0
		1	12	23.12	0
		1	24	23.39	0

		12	0	22.24	1
		12	6	22.21	1
		12	13	22.41	1
		25	0	22.31	1
		1	0	24.09	0
		1	12	23.45	0
		1	24	23.39	0
	НСН	12	0	23.26	1
		12	6	23.16	1
		12	13	23.17	1
		25	0	22.26	1
		1	0	22.31	1
		1	12	22.50	1
		1	24	22.10	1
	LCH	12	0	21.16	2
		12	6	21.40	2
		12	13	21.87	2
		25	0	21.41	2
		1	0	22.62	1
		1	12	22.42	1
		1	24	22.94	1
16QAM	MCH	12	0	21.50	2
		12	6	21.50	2
		12	13	21.68	2
		25	0	21.43	2
		1	0	23.27	1
		1	12	22.53	1
		1	24	22.48	1
	HCH	12	0	22.24	2
		12	6	22.26	2
		12	13	22.28	2
		25	0	22.24	2

		Chann	el Bandwidth: 10) MHz	
Modulation	Channel	RB Con	figuration	Average Power [dBm]	MPR (dB)
Modulation	Gridinici	Size	Offset		
		1	0	23.29	0
		1	24	23.25	0
		1	49	23.14	0
	LCH	25	0	22.14	1
		25	12	22.52	1
		25	25	22.64	1
		50	0	22.50	1
		1	0	23.58	0
		1	24	23.54	0
		1	49	23.42	0
QPSK	MCH	25	0	22.94	1
		25	12	22.90	1
		25	25	22.87	1
		50	0	22.94	1
		1	0	24.03	0
		1	24	24.10	0
		1	49	24.11	0
	HCH	25	0	23.36	1
		25	12	23.03	1
		25	25	23.08	1
		50	0	22.97	1
		1	0	22.65	1
		1	24	22.66	1
		1	49	22.56	1
	LCH	25	0	21.20	2
		25	12	21.49	2
		25	25	21.60	2
		50	0	21.53	2
		1	0	22.02	1
400444		1	24	22.98	1
16QAM		1	49	22.87	1
	MCH	25	0	21.10	2
		25	12	21.06	2
		25	25	21.03	2
		50	0	21.09	2
		1	0	22.55	1
		1	24	22.27	1
	HCH	1	49	22.92	1
		25	0	22.38	2

	25	12	22.12	2
	25	25	22.22	2
	50	0	22.11	2

		Chann	el Bandwidth: 15	5 MHz	
Modulation	Channel	RB Con	figuration	Average Power [dBm]	MPR (dB)
Modulation	Channel	Size	Offset	Average Power [dbm]	IVIPR (UB)
		1	0	23.56	0
		1	37	23.38	0
		1	74	23.78	0
	LCH	37	0	22.41	1
		37	18	22.68	1
		37	38	22.60	1
		75	0	22.56	1
		1	0	23.89	0
		1	37	23.53	0
		1	74	23.76	0
QPSK	MCH	37	0	23.03	1
		37	18	22.87	1
		37	38	22.88	1
		75	0	22.94	1
		1	0	23.30	0
		1	37	24.45	0
		1	74	24.47	0
	HCH	37	0	23.02	1
		37	18	23.58	1
		37	38	23.33	1
		75	0	22.55	1
		1	0	22.92	1
		1	37	22.77	1
		1	74	22.24	1
	LCH	37	0	21.51	2
		37	18	21.66	2
		37	38	21.82	2
		75	0	21.71	2
16QAM		1	0	22.32	1
		1	37	22.25	1
		1	74	22.22	1
	MCH	37	0	21.17	2
		37	18	21.02	2
		37	38	21.03	2
		75	0	21.10	2
	HCH	1	0	22.75	1

1	37	22.85	1
1	74	22.97	1
37	0	22.22	2
37	18	22.77	2
37	38	22.11	2
75	0	22.69	2

		Channe	el Bandwidth: 20	MHz	
Modulation	Channel	RB Conf	iguration	Average Power [dBm]	MPR (dB)
Modulation	Charmer	Size	Offset	Average Fower [ubin]	WIFK (UB)
		1	0	23.75	0
		1	49	23.41	0
		1	99	24.47	0
	LCH	50	0	22.59	1
		50	25	22.66	1
		50	50	22.27	1
		100	0	22.47	1
		1	0	23.23	0
		1	49	23.64	0
		1	99	24.12	0
QPSK	MCH	50	0	22.14	1
		50	25	22.89	1
		50	50	22.95	1
		100	0	22.03	1
		1	0	23.82	0
		1	49	23.99	0
		1	99	24.51	0
	НСН	50	0	22.43	1
		50	25	23.13	1
		50	50	23.70	1
		100	0	23.12	1
		1	0	22.02	1
		1	49	22.75	1
		1	99	22.80	1
	LCH	50	0	21.55	2
		50	25	21.62	2
4004		50	50	21.45	2
16QAM		100	0	21.58	2
		1	0	22.57	1
		1	49	22.95	1
	MCH	1	99	22.43	1
		50	0	21.26	2
		50	25	21.02	2

		50	50	21.07	2
		100	0	21.19	2
		1	0	22.27	1
		1	49	22.41	1
	нсн	1	99	22.95	1
		50	0	21.63	2
		50	25	22.31	2
		50	50	22.39	2
		100	0	22.26	2

FDD-LTE Band 5:

			nel Bandwidth: 1.4	MHz	
Modulation	Channel		nfiguration	Average Power [dBm]	MPR (dB)
.viodaidiioi	Ond.iiioi	Size	Offset	, wordgo i onor [abin]	
	1	0	22.83	0	
	1	3	22.89	0	
		1	5	22.83	0
	LCH	3	0	21.87	0
	_	3	2	21.84	0
	_	3	3	21.87	0
		6	0	21.87	1
		1	0	22.75	0
		1	3	22.82	0
		1	5	22.74	0
QPSK	MCH	3	0	21.77	0
		3	2	21.71	0
	-	3	3	21.76	0
		6	0	21.72	1
-		1	0	22.12	0
		1	3	22.04	0
	-	1	5	22.25	0
	HCH	3	0	21.88	0
		3	2	21.96	0
		3	3	22.02	0
		6	0	21.09	1
		1	0	22.06	1
		1	3	22.18	1
		1	5	22.08	1
	LCH	3	0	21.98	1
		3	2	21.92	1
		3	3	21.94	1
		6	0	20.84	2
-		1	0	22.14	1
16QAM		1	3	22.27	1
		1	5	22.13	1
	MCH	3	0	21.76	1
	-	3	2	21.74	1
	-	3	3	21.76	1
	-	6	0	20.70	2
-		1	0	21.47	1
	НСН	<u>'</u> 1	3	21.51	1
	11011	<u></u> 1	5	21.66	1

3	0	21.24	1
3	2	21.29	1
3	3	21.36	1
6	0	20.54	2

		Chann	el Bandwidth: 3 N	MHz	
Modulation	Channel	RB Conf	figuration	Average Power [dBm]	MPR (dB)
Modulation	Charmer	Size	Offset	Average i ower [ubin]	WII IX (GB)
		1	0	22.79	0
		1	7	22.85	0
		1	14	22.79	0
	LCH	8	0	21.83	1
		8	4	21.84	1
		8	7	21.86	1
		15	0	21.80	1
		1	0	22.70	0
		1	7	22.73	0
		1	14	22.63	0
QPSK	MCH	8	0	21.73	1
		8	4	21.71	1
		8	7	21.69	1
		15	0	21.69	1
		1	0	22.31	0
		1	7	21.92	0
		1	14	22.14	0
	HCH	8	0	21.18	1
		8	4	21.05	1
		8	7	21.06	1
		15	0	21.10	1
		1	0	22.05	1
		1	7	22.10	1
		1	14	22.05	1
	LCH	8	0	20.87	2
		8	4	20.89	2
		8	7	20.88	2
400414		15	0	20.75	2
16QAM		1	0	22.01	1
		1	7	22.02	1
		1	14	21.94	1
	МСН	8	0	20.83	2
		8	4	20.80	2
		8	7	20.77	2
		15	0	20.70	2

		1	0	21.74	1
		1	7	21.37	1
	НСН	1	14	21.56	1
		8	0	20.40	2
		8	4	20.60	2
		8	7	20.58	2
		15	0	20.66	2

		Chanr	nel Bandwidth: 5	MHz	
Modulation	Channel	RB Con	figuration	Average Power [dBm]	MPR (dB)
Woddiation	Oname	Size	Offset	Average i ower [ubin]	WII TY (GD)
		1	0	22.90	0
		1	12	22.89	0
		1	24	22.52	0
	LCH	12	0	21.91	1
		12	6	21.89	1
		12	13	21.81	1
		25	0	21.84	1
		1	0	22.51	0
		1	12	22.64	0
		1	24	22.69	0
QPSK	MCH	12	0	21.45	1
		12	6	21.77	1
		12	13	21.76	1
		25	0	21.75	1
	НСН	1	0	22.62	0
		1	12	21.76	0
		1	24	22.02	0
		12	0	21.21	1
		12	6	20.84	1
		12	13	20.70	1
		25	0	20.91	1
		1	0	22.28	1
		1	12	22.25	1
		1	24	22.11	1
	LCH	12	0	21.02	2
		12	6	20.99	2
16QAM		12	13	21.03	2
		25	0	20.86	2
		1	0	22.02	1
		1	12	22.13	1
	MCH	1	24	22.09	1
		12	0	20.94	2

		12	6	20.95	2
		12	13	20.92	2
		25	0	20.78	2
		1	0	22.06	1
		1	12	21.33	1
		1	24	21.54	1
	HCH	12	0	20.54	2
		12	6	20.59	2
		12	13	20.44	2
		25	0	20.65	2

		Channe	el Bandwidth: 10) MHz	
Modulation	Channel	RB Conf	iguration	Average Power [dBm]	MPR (dB)
Woddiation	Onamici	Size	Offset	Average Fewer [abin]	Wil TC (GB)
		1	0	23.30	0
		1	24	22.28	0
		1	49	21.64	0
	LCH	25	0	22.37	1
		25	12	21.43	1
		25	25	20.86	1
		50	0	22.15	1
		1	0	22.15	0
		1	24	22.62	0
		1	49	22.67	0
QPSK	MCH	25	0	21.29	1
		25	12	21.76	1
		25	25	21.73	1
		50	0	21.77	1
		1	0	22.75	0
		1	24	22.63	0
		1	49	21.69	0
	HCH	25	0	21.70	1
		25	12	21.65	1
		25	25	21.00	1
		50	0	21.75	1
		1	0	22.18	1
		1	24	21.83	1
		1	49	21.12	1
16QAM	LCH	25	0	20.87	2
IOQAIVI		25	12	20.73	2
		25	25	20.65	2
		50	0	20.84	2
	MCH	1	0	21.60	1

		1	24	22.11	1
		1	49	21.97	1
		25	0	20.61	2
		25	12	20.80	2
		25	25	20.74	2
		50	0	20.78	2
		1	0	22.06	1
		1	24	21.94	1
		1	49	21.15	1
	HCH	25	0	20.74	2
		25	12	20.72	2
		25	25	20.51	2
		50	0	20.76	2

FDD-LTE Band 12:

			nel Bandwidth: 1.4	MHz	
Modulation	Channel		nfiguration	Average Power [dBm]	MPR (dB)
		Size	Offset	-	
	_	1	0	24.23	0
	_	1	3	24.18	0
		1	5	24.16	0
	LCH	3	0	23.23	0
	_	3	2	23.17	0
		3	3	23.16	0
		6	0	23.11	1
		1	0	23.85	0
		1	3	23.84	0
		1	5	23.85	0
QPSK	MCH	3	0	23.16	0
	-	3	2	23.27	0
		3	3	23.11	0
		6	0	22.84	1
-		1	0	23.03	0
		1	3	23.06	0
		1	5	23.45	0
	HCH	3	0	22.96	0
		3	2	23.06	0
		3	3	23.19	0
		6	0	22.13	1
		1	0	23.28	1
		1	3	23.19	1
	-	1	5	23.00	1
	LCH	3	0	23.17	1
	-	3	2	23.27	1
		3	3	23.26	1
		6	0	22.24	2
-		1	0	23.23	1
16QAM		1	3	23.24	1
		1	5	23.19	1
	MCH	3	0	22.84	1
		3	2	22.80	1
	-	3	3	22.83	1
	-	6	0	21.81	2
-		1	0	22.38	1
	НСН	<u>'</u> 1	3	22.51	1
	HCH	ı	J	22.01	1

3	0	22.17	1
3	2	22.22	1
3	3	22.36	1
6	0	21.47	2

		Chann	el Bandwidth: 3 N	ИНz		
Modulation Channel RB Configuration Average Power [dBm] MPf						
Modulation Cha	Channel	Size	Offset	Average Power [dBm]	MPR (dB)	
		1	0	24.14	0	
		1	7	24.12	0	
		1	14	24.00	0	
	LCH	8	0	23.24	1	
		8	4	23.19	1	
		8	7	23.17	1	
		15	0	23.07	1	
		1	0	23.83	0	
		1	7	23.87	0	
		1	14	23.80	0	
QPSK	мсн	8	0	22.87	1	
		8	4	22.88	1	
		8	7	22.89	1	
		15	0	22.85	1	
		1	0	23.39	0	
		1	7	22.53	0	
		1	14	23.14	0	
	нсн	8	0	22.09	1	
		8	4	21.73	1	
		8	7	21.80	1	
		15	0	21.85	1	
		1	0	23.23	1	
		1	7	23.11	1	
		1	14	23.27	1	
	LCH	8	0	22.28	2	
		8	4	22.25	2	
		8	7	22.20	2	
		15	0	22.15	2	
16QAM		1	0	23.13	1	
		1	7	23.16	1	
		1	14	23.07	1	
	мсн	8	0	21.92	2	
		8	4	21.94	2	
		8	7	21.92	2	
		15	0	21.84	2	

		1	0	22.90	1
		1	7	22.10	1
	НСН	1	14	22.65	1
		8	0	21.26	2
		8	4	20.97	2
		8	7	21.05	2
		15	0	21.11	2

		Chanr	nel Bandwidth: 5	MHz	
Modulation	Channel	RB Con	figuration	Average Power [dBm]	MPR (dB)
Modulation	Onamici	Size	Offset	7.vorage i ower [ubin]	Wil TC (GB)
		1	0	24.13	0
		1	12	24.12	0
		1	24	23.95	0
	LCH	12	0	23.23	1
		12	6	23.16	1
		12	13	23.10	1
		25	0	23.02	1
		1	0	23.93	0
		1	12	23.90	0
		1	24	23.88	0
QPSK	MCH	12	0	22.94	1
		12	6	22.93	1
		12	13	22.94	1
		25	0	22.88	1
		1	0	23.98	0
		1	12	23.36	0
		1	24	23.70	0
	HCH	12	0	22.71	1
		12	6	21.72	1
		12	13	21.78	1
		25	0	22.11	1
		1	0	23.34	1
		1	12	23.16	1
		1	24	23.34	1
	LCH	12	0	22.35	2
		12	6	22.27	2
16QAM		12	13	22.21	2
		25	0	22.15	2
		1	0	23.33	1
		1	12	23.31	1
	MCH	1	24	23.21	1
		12	0	22.08	2

		12	6	22.07	2
		12	13	22.09	2
		25	0	21.90	2
		1	0	22.88	1
		1	12	21.69	1
		1	24	21.90	1
	HCH	12	0	21.84	2
		12	6	20.99	2
		12	13	20.84	2
		25	0	21.32	2

		Channe	el Bandwidth: 10) MHz	
Modulation	Channel	RB Conf	iguration	Average Power [dBm]	MPR (dB)
Woddiation	Grianner	Size	Offset		Wil It (ub)
		1	0	24.26	0
		1	24	23.92	0
		1	49	23.90	0
	LCH	25	0	23.39	1
		25	12	22.97	1
		25	25	22.92	1
		50	0	23.04	1
		1	0	24.07	0
		1	24	23.87	0
		1	49	23.42	0
QPSK	MCH	25	0	22.90	1
		25	12	22.92	1
		25	25	22.91	1
		50	0	22.90	1
		1	0	23.90	0
		1	24	24.03	0
		1	49	22.09	0
	HCH	25	0	22.91	1
		25	12	22.87	1
		25	25	21.90	1
		50	0	22.83	1
		1	0	23.27	1
		1	24	23.20	1
		1	49	23.18	1
16QAM	LCH	25	0	22.12	2
TOQAIVI		25	12	22.01	2
		25	25	21.94	2
		50	0	22.02	2
	MCH	1	0	23.26	1

		1	24	23.19	1
		1	49	22.92	1
		25	0	21.94	2
		25	12	21.90	2
		25	25	21.87	2
		50	0	21.89	2
	НСН	1	0	23.35	1
		1	24	23.19	1
		1	49	21.66	1
		25	0	21.91	2
		25	12	21.85	2
		25	25	21.19	2
		50	0	21.86	2

FDD-LTE Band 13:

	Channel Bandwidth: 5 MHz						
Modulation	Channel	RB Con	figuration	Average Power [dBm]	MPR (dB)		
Woddiation	Onamici	Size	Offset	Average i ower [dbiii]	Wil IX (GB)		
		1	0	23.61	0		
		1	12	22.59	0		
		1	24	23.55	0		
	LCH	12	0	21.89	1		
		12	6	21.56	1		
		12	13	21.77	1		
		25	0	21.81	1		
		1	0	22.83	0		
		1	12	23.45	0		
		1	24	23.68	0		
QPSK	MCH	12	0	21.83	1		
		12	6	22.46	1		
		12	13	22.70	1		
		25	0	22.60	1		
		1	0	23.68	0		
		1	12	23.32	0		
		1	24	22.75	0		
	НСН	12	0	22.69	1		
		12	6	22.64	1		
		12	13	22.46	1		
		25	0	22.61	1		
		1	0	22.34	1		
		1	12	22.01	1		
		1	24	22.26	1		
	LCH	12	0	21.16	2		
		12	6	20.95	2		
		12	13	21.15	2		
		25	0	21.07	2		
		1	0	22.37	1		
16QAM		1	12	22.62	1		
		1	24	22.35	1		
	MCH	12	0	21.19	2		
		12	6	21.80	2		
		12	13	21.79	2		
		25	0	21.63	2		
		1	0	22.71	1		
	НСН	1	12	22.65	1		
		1	24	21.94	1		

12	0	21.67	2
12	6	21.61	2
12	13	21.62	2
25	0	21.58	2

		Chanr	nel Bandwidth: 10	MHz	
Madridation	Ola a va va a l	RB Con	figuration	A	MDD (-ID)
Modulation	Channel	Size	Offset	Average Power [dBm]	MPR (dB)
		/	/	1	/
		/	/	/	/
		/	/	/	/
	LCH	/	/	/	/
		/	/	/	/
		/	/	/	/
		/	/	/	/
		1	0	23.69	0
		1	24	23.36	0
		1	49	22.52	0
QPSK	MCH	25	0	21.97	1
		25	12	22.53	1
		25	25	22.81	1
		50	0	22.59	1
	нсн	/	/	/	/
		/	/	/	/
		/	/	/	/
		/	/	/	/
		/	/	/	/
		/	/	/	/
		/	/	/	/
		/	/	/	/
		/	/	/	/
		/	/	/	/
	LCH	/	/	/	/
		/	/	/	/
		/	/	/	/
		/	/	/	/
16QAM		1	0	22.81	1
		1	24	22.76	1
		1	49	21.99	1
	MCH	25	0	21.21	2
		25	12	21.61	2
		25	25	21.58	2
		50	0	21.60	2

		/	/	/	/
		/	/	/	/
	НСН	/	/	/	/
		/	/	/	/
		/	/	/	/
		/	/	/	/
		/	1	/	/

FDD-LTE Band 17:

Channel Bandwidth: 5 MHz RB Configuration RB C I B A B A B A B A B A B A B A B A B A B					
Modulation	Channel	Size	Offset	Average Power [dBm]	MPR (dB)
		1	0	24.98	0
		1	12	25.02	0
		1	24	24.89	0
	LCH	12	0	24.05	1
		12	6	23.96	1
		12	13	23.89	1
		25	0	23.91	1
		1	0	24.82	0
		1	12	24.92	0
		1	24	24.97	0
QPSK	MCH	12	0	23.85	1
		12	6	23.84	1
		12	13	23.84	1
		25	0	23.80	1
		1	0	24.81	0
		1	12	24.67	0
		1	24	24.03	0
	НСН	12	0	23.84	1
		12	6	23.81	1
		12	13	23.21	1
		25	0	23.70	1
		1	0	24.13	1
		1	12	24.03	1
		1	24	24.26	1
	LCH	12	0	23.17	2
		12	6	23.09	2
		12	13	23.04	2
		25	0	22.95	2
		1	0	23.93	1
16QAM		1	12	23.94	1
		1	24	23.84	1
	MCH	12	0	22.85	2
		12	6	22.82	2
		12	13	22.81	2
		25	0	22.77	2
		1	0	23.88	1
	нсн	1	12	23.89	1
		1	24	23.38	1

12	0	22.83	2
12	6	22.80	2
12	13	22.38	2
25	0	22.78	2

		Chann	el Bandwidth: 10	MHz	
Modulation Channel RB Configuration Average Power [dBm]					
Woddiation	Onamiei	Size	Offset		MPR (dB)
		1	0	25.07	0
		1	24	24.81	0
		1	49	24.28	0
	LCH	25	0	24.35	1
		25	12	23.81	1
		25	25	23.76	1
		50	0	24.13	1
		1	0	24.93	0
		1	24	24.78	0
		1	49	23.53	0
QPSK	MCH	25	0	23.83	1
		25	12	23.80	1
		25	25	23.74	1
		50	0	23.79	1
		1	0	24.84	0
		1	24	24.79	0
	нсн	1	49	23.18	0
		25	0	23.80	1
		25	12	23.77	1
		25	25	23.57	1
		50	0	23.73	1
		1	0	24.25	1
		1	24	24.08	1
		1	49	23.72	1
	LCH	25	0	22.88	2
		25	12	22.77	2
		25	25	22.75	2
160 114		50	0	22.83	2
16QAM		1	0	24.25	1
		1	24	24.03	1
		1	49	22.95	1
	MCH	25	0	22.81	2
		25	12	22.74	2
		25	25	22.74	2
		50	0	22.76	2

	нсн	1	0	24.27	1
		1	24	24.10	1
		1	49	22.75	1
		25	0	22.78	2
		25	12	22.72	2
		25	25	22.74	2
		50	0	22.75	2

Remark:

- 1. Per KDB941225 D05 v02r05, Start with the largest channel bandwidth then measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle, and lower edge of each required test channel. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1 RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel. 6 When the reported SAR of a required test channel is > 1.45 W/kg, SAR is required for all three RB offset configurations for that required test channel.
- 2. Per KDB941225 D05 v02r05, The procedures required for 1 RB allocation in 5.2.1 are applied to measure the SAR for QPSK with 50% RB allocation.
- 3. Per KDB941225 D05 v02r05, For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations, and the highest reported SAR for 1 RB and 50% RB allocation in 5.2.1 and 5.2.2 are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.
- 4. Per KDB941225 D05 v02r05, For each modulation besides QPSK; e.g., 16-QAM, 64-QAM, apply the QPSK procedures in 5.2.1, 5.2.2, and 5.2.3 to determine the QAM configurations that may need SAR measurement. For each configuration identified as required for testing, SAR is required only when the highest maximum output power for the configuration in the higher order modulation is > ½ dB higher than the same configuration in QPSK or when the reported SAR for the QPSK configuration is > 1.45 W/kg.

Report No.: STR18018288H Page 58 of 219 SAR Report

	WLAN - Maximum Average Power							
Test Mode	Data Rate	Channel	Frequency (MHz)	Average Power (dBm)	Tune-up power (dBm)			
		CH 01	2412	12.91	13.5			
802.11b	1Mbps	CH 06	2437	12.77	13.5			
		CH 11	2462	13.08	13.5			
	54Mbps	CH 01	2412	10.77	11.0			
802.11g		CH 06	2437	10.88	11.0			
		CH 11	2462	10.57	11.0			
		CH 01	2412	10.30	11.5			
802.11n (20MHz)	MCS7	CH 06	2437	10.90	11.5			
		CH 11	2462	10.71	11.5			
		CH 03	2422	10.00	10.5			
802.11n (40MHz)	MCS7	CH 06	2437	9.18	10.5			
		CH 09	2452	9.83	10.5			

Remark:

- 1. Per KDB 248227 D01 v02r02, For 802.11b DSSS SAR measurements, DSSS SAR procedure applies to fixed exposure test position and initial test position procedure applies to multiple exposure test positions.
- 2. Per KDB 248227 D01 v02r02, For 802.11b DSSS SAR measurements ,when the reported SAR of the highest measured maximum output power channel (see 3.1) for the exposure configuration is \leq 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration. When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.
- 3 .For OFDM modes (802.11g/n), SAR is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and it is <= 1.2W/kg.

Bluetooth - Maximum Average Power							
Test Mode	Data Rate	Average Power(dBm)	Tune-up power (dBm)				
GFSK	1Mbps	3.093	3.5				
Pi/4 QDPSK	2Mbps	2.327	3.5				
8DPSK	3Mbps	2.464	3.5				

	Bluetooth - Maximum Average Power							
Test Mode	Data Rate	Channel	Frequency (MHz)	Average Power (dBm)	Tune-up power (dBm)			
		CH 00	2402	2.806	3.5			
BLE	1Mbps	CH 19	2440	2.458	3.5			
		CH 39	2480	3.241	3.5			

Remark:

Bluetooth maximum output power is 3.241dBm, and Maximum Tune-Up output power is 3.5dBm. Per KDB 447498 D01 V06, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, 4.87mW)/(min. test separation distance, mm)] \cdot [$\sqrt{f(GHz)}$] \leq 3.0 for 1-g SAR and \leq 7.5 for 10-g extremity SAR,16 where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation17
- The result is rounded to one decimal place for comparison

Bluetooth:

Tune-Up Power (dBm)	Max. Power (mW)	Distance (mm)	Frequency (GHz)	Result	Limit
3.5	2.24	5	2.480	0.71	3

The exclusion thresholds is 0.71< 3, therefore, the RF exposure evaluation is not required.

9.2 Test Results for Standalone SAR Test

Head SAR

	GSM850 – Head SAR Test											
Plot		Test Position	Frequ	Frequency		Rated	Scaling	SAR1g	Scaled			
No.	Mode	Head	сн.	MHz	Power	Limit	Factor	(W/kg)	SAR1g			
110.		Heau	CII.	WIIIZ	(dBm)	(dBm)	ractor	(W/Kg)	(W/kg)			
1.	GSM	Right Cheek	128	824.2	33.03	33.5	1.114	0.820	0.914			
2.	GSM	Right Cheek	190	836.6	32.99	33.5	1.125	0.737	0.829			
3.	GSM	Right Cheek	251	848.8	32.96	33.5	1.132	0.725	0.821			
4.	GSM	Right Tilted	128	824.2	33.03	33.5	1.114	0.339	0.378			
5.	GSM	Left Cheek	128	824.2	33.03	33.5	1.114	0.679	0.757			
6.	GSM	Left Tilted	128	824.2	33.03	33.5	1.114	0.242	0.270			

	GSM1900 – Head SAR Test											
Plot		Test Position	Frequency		Output Rated		Scaling	SAD1a	Scaled			
No.	Mode	Head	СН. М Нг	Power	Limit	Factor	SAR1g (W/kg)	SAR1g				
110.		Heau	CII.	CH. M HZ	(dBm)	(dBm)	ractor	(W/Kg)	(W/kg)			
7.	GSM	Right Cheek	512	1850.2	29.55	30.0	1.109	0.487	0.540			
8.	GSM	Right Tilted	512	1850.2	29.55	30.0	1.109	0.232	0.257			
9.	GSM	Left Cheek	512	1850.2	29.55	30.0	1.109	0.36	0.399			
10.	GSM	Left Tilted	512	1850.2	29.55	30.0	1.109	0.122	0.135			

			GPRS8	50 – Head	SAR Test				
Plot		Test Position	Frequency		Output	Rated	Scaling	SAR1g	Scaled
No.	Mode	Head	CH. MHz P	MHz	Power	Limit	Factor	(W/kg)	SAR1g
110.		Ticau		(dBm)	(dBm)	ractor	(W/Kg)	(W/kg)	
11.	GPRS_2TX	Right Cheek	128	824.2	32.18	32.5	1.076	0.924	0.995
12.	GPRS_2TX	Right Cheek	190	836.6	32.08	32.5	1.102	0.829	0.913
13.	GPRS_2TX	Right Cheek	251	848.8	32.02	32.5	1.117	0.654	0.730
14.	GPRS_2TX	Right Tilted	128	824.2	32.18	32.5	1.076	0.476	0.512
15.	GPRS_2TX	Left Cheek	128	824.2	32.18	32.5	1.076	0.635	0.684
16.	GPRS_2TX	Left Tilted	128	824.2	32.18	32.5	1.076	0.384	0.413

Report No.: STR18018288H Page 61 of 219 SAR Report

			GPRS19	000 – Head	SAR Test	,			
Plot		Test Position	Freq	uency	Output	Rated	Scaling	SAR1g	Scaled
No.	Mode	Head	CH.	M Hz	Power	Limit	Factor	(W/kg)	SAR1g
140.		Heau	CII.	I. WI HZ	(dBm)	(dBm)	ractor	(W/Kg)	(W/kg)
17.	GPRS_4TX	Right Cheek	512	1850.2	25.81	26.0	1.045	0.948	0.990
18.	GPRS_4TX	Right Cheek	661	1880.0	25.46	26.0	1.132	0.928	1.051
19.	GPRS_4TX	Right Cheek	810	1909.8	25.06	26.0	1.242	0.963	1.196
20.	GPRS_4TX	Right Tilted	512	1850.2	25.81	26.0	1.045	0.365	0.381
21.	GPRS_4TX	Left Cheek	512	1850.2	25.81	26.0	1.045	0.700	0.731
22.	GPRS_4TX	Left Tilted	512	1850.2	25.81	26.0	1.045	0.234	0.244

		W	CDMA B	Band 2 – H	ead SAR T	Test			
Plot		Test Position	Freq	uency	Output	Rated	Scaling	SAR1g	Scaled
No.	Mode	Head	CH. MHz	Power	Limit	Factor	(W/kg)	SAR1g	
110.		IIcau	CII.	WIIIZ	(dBm)	(dBm)	ractor	(W/Kg)	(W/kg)
23.	RMC	Right Cheek	9262	1852.4	22.88	23.0	1.028	0.852	0.876
24.	RMC	Right Cheek	9400	1880.0	22.09	23.0	1.233	0.731	0.901
25.	RMC	Right Cheek	9538	1907.6	22.31	23.0	1.172	0.834	0.978
26.	RMC	Right Tilted	9262	1852.4	22.88	23.0	1.028	0.334	0.343
27.	RMC	Left Cheek	9262	1852.4	22.88	23.0	1.028	0.665	0.684
28.	RMC	Left Tilted	9262	1852.4	22.88	23.0	1.028	0.231	0.237

	WCDMA Band 5 – Head SAR Test											
Plot		Test Position	Freq	uency	Output	Rated	Scaling	SAR1g	Scaled			
No.	Mode	Head	СН.	H. MHz Power Limit	Limit	Factor	(W/kg)	SAR1g				
110.		Head	CII.	WIIIZ	(dBm)	(dBm)		(W/Kg)	(W/kg)			
29.	RMC	Right Cheek	4132	826.4	23.14	23.5	1.086	0.862	0.936			
30.	RMC	Right Cheek	4182	836.6	22.92	23.5	1.143	0.82	0.937			
31.	RMC	Right Cheek	4233	846.6	23.06	23.5	1.107	0.952	1.054			
32.	RMC	Right Tilted	4132	826.4	23.14	23.5	1.086	0.348	0.378			
33.	RMC	Left Cheek	4132	826.4	23.14	23.5	1.086	0.886	0.963			
34.	RMC	Left Cheek	4182	836.6	22.92	23.5	1.143	0.876	1.001			
35.	RMC	Left Cheek	4233	846.6	23.06	23.5	1.107	0.875	0.968			
36.	RMC	Left Tilted	4132	826.4	23.14	23.5	1.086	0.228	0.248			

		LTE Band	2– Head S	SAR Test				
Plot No.	Mode	Test Position	Freque ncy	Output Power	Rated Limit	Scaling	SAR1g	Scaled SAR1g
190.	Modulation, Bandwidth, RB	Head	MHz	(dBm)	(dBm)	Factor	(W/kg)	(W/kg)
37.	RMC QPSK 20MHz 1RB	Right Cheek	1860.0	23.67	24.0	1.079	0.668	0.721
38.	RMC QPSK 20MHz 1RB	Right Tilted	1860.0	23.67	24.0	1.079	0.325	0.351
39.	RMC QPSK 20MHz 1RB	Left Cheek	1860.0	23.67	24.0	1.079	0.559	0.603
40.	RMC QPSK 20MHz 1RB	Left Tilted	1860.0	23.67	24.0	1.079	0.278	0.300
41.	RMC QPSK 20MHz 50%RB	Right Cheek	1860.0	22.94	23.0	1.014	0.565	0.573
42.	RMC QPSK 20MHz 50%RB	Right Tilted	1860.0	22.94	23.0	1.014	0.221	0.224
43.	RMC QPSK 20MHz 50%RB	Left Cheek	1860.0	22.94	23.0	1.014	0.469	0.476
44.	RMC QPSK 20MHz 50%RB	Left Tilted	1860.0	22.94	23.0	1.014	0.158	0.160

	LTE Band 4– Head SAR Test										
Plot No.	Mode	Test Position	Freque ncy	Output Power	Rated Limit	Scaling Factor	SAR1g (W/kg)	Scaled SAR1g			
110.	Modulation, Bandwidth, RB	Head	MHz	(dBm)	(dBm)	ractor	(W/Kg)	(W/kg)			
45.	RMC QPSK 20MHz 1RB	Right Cheek	1745.0	24.51	25.0	1.119	0.575	0.644			
46.	RMC QPSK 20MHz 1RB	Right Tilted	1745.0	24.51	25.0	1.119	0.367	0.411			
47.	RMC QPSK 20MHz 1RB	Left Cheek	1745.0	24.51	25.0	1.119	0.559	0.626			
48.	RMC QPSK 20MHz 1RB	Left Tilted	1745.0	24.51	25.0	1.119	0.252	0.282			
49.	RMC QPSK 20MHz 50%RB	Right Cheek	1745.0	23.70	24.0	1.072	0.494	0.529			
50.	RMC QPSK 20MHz 50%RB	Right Tilted	1745.0	23.70	24.0	1.072	0.264	0.283			
51.	RMC QPSK 20MHz 50%RB	Left Cheek	1745.0	23.70	24.0	1.072	0.482	0.516			
52.	RMC QPSK 20MHz 50%RB	Left Tilted	1745.0	23.70	24.0	1.072	0.257	0.275			

		LTE Band	5– Head S	SAR Test				
Plot No.	Mode	Test Position	Freque ncy	Output Power	Rated Limit	Scaling Factor	SAR1g (W/kg)	Scaled SAR1g
110.	Modulation, Bandwidth	Head	MHz	(dBm)	(dBm)	ractor	(vv/kg)	(W/kg)
53.	RMC QPSK 10MHz 1RB	Right Cheek	829.0	23.30	23.5	1.047	0.682	0.714
54.	RMC QPSK 10MHz 1RB	Right Tilted	829.0	23.30	23.5	1.047	0.261	0.273
55.	RMC QPSK 10MHz 1RB	Left Cheek	829.0	23.30	23.5	1.047	0.698	0.731
56.	RMC QPSK 10MHz 1RB	Left Tilted	829.0	23.30	23.5	1.047	0.352	0.369
57.	RMC QPSK 10MHz 50%RB	Right Cheek	829.0	22.37	22.5	1.030	0.582	0.600
58.	RMC QPSK 10MHz 50%RB	Right Tilted	829.0	22.37	22.5	1.030	0.211	0.217
59.	RMC QPSK 10MHz 50%RB	Left Cheek	829.0	22.37	22.5	1.030	0.591	0.609
60.	RMC QPSK 10MHz 50%RB	Left Tilted	829.0	22.37	22.5	1.030	0.272	0.280

	LTE Band 12– Head SAR Test											
Plot No.	Mode	Test Position Head	Freq uenc y	Output Power (dBm)	Rated Limit (dBm)	Scaling Factor	SAR1g (W/kg)	Scaled SAR1g (W/kg)				
	Modulation, Bandwidth	licau	MHz	(ubiii)	(ubiii)			(W/Kg)				
61.	RMC QPSK 10MHz 1RB	Right Cheek	704.0	24.26	24.5	1.057	0.947	1.001				
62.	RMC QPSK 10MHz 1RB	Right Cheek	707.5	24.07	24.5	1.104	0.899	0.993				
63.	RMC QPSK 10MHz 1RB	Right Cheek	711.0	24.03	24.5	1.114	0.924	1.030				
64.	RMC QPSK 10MHz 1RB	Right Tilted	704.0	24.26	24.5	1.057	0.461	0.487				
65.	RMC QPSK 10MHz 1RB	Left Cheek	704.0	24.26	24.5	1.057	0.721	0.762				
66.	RMC QPSK 10MHz 1RB	Left Tilted	704.0	24.26	24.5	1.057	0.352	0.372				
67.	RMC QPSK 10MHz 50%RB	Right Cheek	704.0	23.39	23.5	1.026	0.742	0.761				
68.	RMC QPSK 10MHz 50%RB	Right Tilted	704.0	23.39	23.5	1.026	0.211	0.216				
69.	RMC QPSK 10MHz 50%RB	Left Cheek	704.0	23.39	23.5	1.026	0.591	0.606				
70.	RMC QPSK 10MHz 50%RB	Left Tilted	704.0	23.39	23.5	1.026	0.272	0.279				
71.	RMC QPSK 10MHz 100%RB	Right Cheek	704.0	23.04	23.5	1.112	0.721	0.802				

	LTE Band 13– Head SAR Test										
Pl ot	Mode	Test Position	Freque ncy	Output Power	Rated Limit	Scaling	SAR1g	Scaled SAR1g			
No ·	Modulation, Bandwidth	Head	MHz	(dBm)	(dBm)	Factor	(W/kg)	(W/kg)			
72.	RMC QPSK 10MHz 1RB	Right Cheek	782.0	23.69	24.0	1.074	0.724	0.778			
73.	RMC QPSK 10MHz 1RB	Right Tilted	782.0	23.69	24.0	1.074	0.312	0.335			
74.	RMC QPSK 10MHz 1RB	Left Cheek	782.0	23.69	24.0	1.074	1.076	1.156			
75.	RMC QPSK 10MHz 1RB	Left Tilted	782.0	23.69	24.0	1.074	0.432	0.464			
76.	RMC QPSK 10MHz 50%RB	Right Cheek	782.0	22.81	23.0	1.045	0.512	0.535			
77.	RMC QPSK 10MHz 50%RB	Right Tilted	782.0	22.81	23.0	1.045	0.228	0.238			
78.	RMC QPSK 10MHz 50%RB	Left Cheek	782.0	22.81	23.0	1.045	0.711	0.743			
79.	RMC QPSK 10MHz 50%RB	Left Tilted	782.0	22.81	23.0	1.045	0.329	0.344			
80.	RMC QPSK 10MHz 100%RB	Left Cheek	782.0	22.59	23.0	1.099	0.701	0.770			

		LTE Band 1	7– Head S	SAR Test				
Plot No.	Mode	Test Position	Freque ncy	Output Power	Rated Limit	Scaling Factor	SAR1g (W/kg)	Scaled SAR1g
110.	Modulation, Bandwidth	Head	MHz	(dBm)	(dBm)	ractor	(W/Kg)	(W/kg)
81.	RMC QPSK 10MHz 1RB	Right Cheek	709.0	25.07	25.5	1.104	0.682	0.753
82.	RMC QPSK 10MHz 1RB	Right Tilted	709.0	25.07	25.5	1.104	0.278	0.307
83.	RMC QPSK 10MHz 1RB	Left Cheek	709.0	25.07	25.5	1.104	0.541	0.597
84.	RMC QPSK 10MHz 1RB	Left Tilted	709.0	25.07	25.5	1.104	0.141	0.156
85.	RMC QPSK 10MHz 50%RB	Right Cheek	709.0	24.35	24.5	1.035	0.507	0.525
86.	RMC QPSK 10MHz 50%RB	Right Tilted	709.0	24.35	24.5	1.035	0.246	0.255

87.	RMC QPSK 10MHz 50%RB	Left Cheek	709.0	24.35	24.5	1.035	0.418	0.433
88.	RMC QPSK 10MHz 50%RB	Left Tilted	709.0	24.35	24.5	1.035	0.137	0.142

			WL	AN 2.4GI	Hz – Head S	AR Test			
Plot		Test	Freq	uency	Output	Rated	Scaling	SAR1g	Scaled
No.	Mode	Position	СН.	MHz	Power	Limit	Factor	(W/kg)	SAR1g
140.		Head	CII.	WILLE	(dBm) (dBm)		ractor	(W/Kg)	(W/kg)
89.	802.11b	Right Cheek	11	2462	13.08	13.5	1.102	0.132	0.145
90.	802.11b	Right Tilted	11	2462	13.08	13.5	1.102	0.021	0.023
91.	802.11b	Left Cheek	11	2462	13.08	13.5	1.102	0.191	0.210
92.	802.11b	Left Tilted	11	2462	13.08	13.5	1.102	0.037	0.041

Remark: Per KDB 447498 D01 v06, if the highest output channel SAR for each exposure position \leq 0.8 W/kg other channels SAR tests are not necessary.

Report No.: STR18018288H Page 65 of 219 SAR Report

Body-worn SAR

	GSM850 – Body SAR Test (Gap: 10mm)											
Plot		Test Position	Freq	uency	Output	Rated	Scaling	SAR1g	Scaled			
No.	Mode	Body	СП	МЦа	Power	Limit	Factor		SAR1g			
140.		Bouy	CH. MHz	(dBm)	(dBm)	ractor	(W/Kg)	(W/kg)				
93.	GSM	Back	128	824.2	33.03	33.5	1.114	0.513	0.572			
94.	GSM	Front	128	824.2	33.03	33.5	1.114	0.881	0.982			
95.	GSM	Front	190	836.6	32.99	33.5	1.125	0.895	1.007			
96.	GSM	Front	251	848.8	32.96	33.5	1.132	0.86	0.974			

	GSM1900 – Body SAR Test (Gap: 10mm)											
Plot		Test Position	Freq	uency	Output Rated		Scaling	SAR1g	Scaled			
No.	Mode		СН	MHz	Power	Limit	Factor	(W/kg)	SAR1g			
110.		Body CH. MH	IVIIIZ	(dBm)	(dBm)	ractor	(W/Kg)	(W/kg)				
97.	GSM	Back	512	1850.2	29.55	30.0	1.109	0.162	0.180			
98.	GSM	Front	512	1850.2	29.55	30.0	1.109	0.302	0.335			

	WCDMA Band 2 – Body SAR Test (Gap: 10mm)											
Plot		Test Position	Freq	uency	Output	Rated	Caslina	SAR1g	Scaled			
	Mode		СН.	MII	Power	Limit	Scaling Factor		SAR1g			
No.		Body	CH.	MHz	(dBm)	(dBm)	Factor	(W/kg)	(W/kg)			
109	RMC 12.2k	Back Side	9262	1852.4	22.88	23.0	1.028	0.236	0.243			
110	RMC 12.2k	Front Side	9262	1852.4	22.88	23.0	1.028	0.421	0.433			

	WCDMA Band 5 – Body SAR Test (Gap: 10mm)											
Plot		Test Position	Freq	uency	Output	Rated	Saaling	SAR1g	Scaled			
No.	Mode	Body	СН.	MHz	Power	Limit	Scaling Factor	(W/kg)	SAR1g			
110.		Douy	CII.	WIIIZ	(dBm)	(dBm)	ractor	(W/Kg)	(W/kg)			
113	RMC 12.2k	Back Side	4132	826.4	23.14	23.5	1.086	0.373	0.405			
114	RMC 12.2k	Front Side	4132	826.4	23.14	23.5	1.086	0.613	0.666			

	LTE Band 2–Body SAR Test (Gap: 10mm)										
Plot No.	Mode	Test Position	Freque ncy	Output Power	Rated Limit	Scaling Factor	SAR1g (W/kg)	Scaled SAR1g			
INO.	Modulation, Bandwidth, RB	Body	MHz	(dBm)	(dBm)	ractor	(vv/kg)	(W/kg)			
117	RMC QPSK 20MHz 1RB	Back Side	1860.0	23.67	24.0	1.079	0.305	0.329			
118	RMC QPSK 20MHz 1RB	Front Side	1860.0	23.67	24.0	1.079	0.514	0.555			
121	RMC QPSK 20MHz 50%RB	Back Side	1860.0	22.94	23.0	1.014	0.261	0.265			
122	RMC QPSK 20MHz 50%RB	Front Side	1860.0	22.94	23.0	1.014	0.474	0.481			

Report No.: STR18018288H Page 66 of 219 SAR Report

	LTE Band 4–Body SAR Test (Gap: 10mm)										
Plot	Mode	Test Position	Freque ncy	Output Power	Rated Limit	Scaling	SAR1g	Scaled SAR1g			
No.	Modulation, Bandwidth, RB	Body	MHz	(dBm)	(dBm)	Factor	(W/kg)	(W/kg)			
125	RMC QPSK 20MHz 1RB	Back Side	1745.0	24.51	25.0	1.119	0.162	0.181			
126	RMC QPSK 20MHz 1RB	Front Side	1745.0	24.51	25.0	1.119	0.333	0.373			
129	RMC QPSK 20MHz 50%RB	Back Side	1745.0	23.70	24.0	1.072	0.102	0.109			
130	RMC QPSK 20MHz 50%RB	Front Side	1745.0	23.70	24.0	1.072	0.271	0.290			

	LTE Band 5–Body SAR Test (Gap: 10mm)										
Plot No.	Mode	Test Position	Freque ncy	Output Power	Rated Limit	Scaling	SAR1g	Scaled SAR1g			
NO.	Modulation, Bandwidth, RB	Body	MHz	(dBm)	(dBm)	Factor	(W/kg)	(W/kg)			
133	RMC QPSK 10MHz 1RB	Back Side	829.0	23.30	23.5	1.047	0.263	0.275			
134	RMC QPSK 10MHz 1RB	Front Side	829.0	23.30	23.5	1.047	0.477	0.499			
137	RMC QPSK 10MHz 50%RB	Back Side	829.0	22.37	22.5	1.030	0.236	0.243			
138	RMC QPSK 10MHz 50%RB	Front Side	829.0	22.37	22.5	1.030	0.447	0.461			

	LTE Band 12–Body SAR Test (Gap: 10mm)										
Plot No.	Mode	Test Position	Freque ncy	Output Power	Rated Limit	Scaling Factor	SAR1g (W/kg)	Scaled SAR1g			
110.	Modulation, Bandwidth, RB	Body	MHz	(dBm)	(dBm)	Factor	(VV/Kg)	(W/kg)			
141	RMC QPSK 10MHz 1RB	Back Side	704.0	24.26	24.5	1.057	0.688	0.727			
142	RMC QPSK 10MHz 1RB	Front Side	704.0	24.26	24.5	1.057	0.749	0.792			
145	RMC QPSK 10MHz 50%RB	Back Side	704.0	23.39	23.5	1.026	0.502	0.515			
146	RMC QPSK 10MHz 50%RB	Front Side	704.0	23.39	23.5	1.026	0.625	0.641			

	LTE Band 13–Body SAR Test (Gap: 10mm)										
Plot	Mode	Test Position	Freque ncy	Output Power	Rated Limit	Scaling	SAR1g	Scaled SAR1g			
No.	Modulation, Bandwidth, RB	Body	MHz	(dBm)	(dBm)	Factor	(W/kg)	(W/kg)			
149	RMC QPSK 10MHz 1RB	Back Side	782.0	23.69	24.0	1.074	0.48	0.516			
150	RMC QPSK 10MHz 1RB	Front Side	782.0	23.69	24.0	1.074	0.858	0.921			
153	RMC QPSK 10MHz 50%RB	Back Side	782.0	22.81	23.0	1.045	0.351	0.367			
154	RMC QPSK 10MHz 50%RB	Front Side	782.0	22.81	23.0	1.045	0.668	0.698			
157	RMC QPSK 10MHz 100%RB	Front Side	782.0	22.59	23.0	1.099	0.680	0.747			

	LTE Band 17–Body SAR Test (Gap: 10mm)										
Plot	Mode	Test Position	Freque ncy	Output Power	Rated Limit	Scaling	SAR1g	Scaled SAR1g			
No.	Modulation, Bandwidth, RB	Body	MHz	(dBm)	(dBm)	Factor	(W/kg)	(W/kg)			
158	RMC QPSK 10MHz 1RB	Back Side	709.0	25.07	25.5	1.104	0.537	0.593			
159	RMC QPSK 10MHz 1RB	Front Side	709.0	25.07	25.5	1.104	0.719	0.794			
162	RMC QPSK 10MHz 50%RB	Back Side	709.0	24.35	24.5	1.035	0.414	0.429			
163	RMC QPSK 10MHz 50%RB	Front Side	709.0	24.35	24.5	1.035	0.629	0.651			

	WLAN 2.4GHz –Body SAR Test										
Plot		Test	Frequency		Output	Rated	Scaling	SAR1g	Scaled		
No.	Mode	Position	СН.	MHz	Power	Limit	Factor	(W/kg)	SAR1g		
140.		Body	CII.	WIIIZ	(dBm)	(dBm)	Factor	(vv/kg)	(W/kg)		
166	802.11b	Back Side	11	2462	13.08	13.5	1.102	0.105	0.116		
167	802.11b	Front Side	11	2462	13.08	13.5	1.102	0.046	0.051		

Remark: Per KDB 447498 D01 v06, if the highest output channel SAR for each exposure position \leq 0.8 W/kg other channels SAR tests are not necessary.

Report No.: STR18018288H Page 68 of 219 SAR Report

Hotspot SAR

		GSM	1850 – Bo	dy SAR To	est (Gap: 1	0mm)			
Plot		Test Position	Freq	uency	Output	Rated	Scaling	SAR1g	Scaled
No.	Mode	Body	СН.	MHz	Power	Limit	Factor	(W/kg)	SAR1g
110.		Douy		(dBm)	(dBm)	ractor	(W/Kg)	(W/kg)	
99.	GPRS_2TX	Back Side	128	824.2	32.18	32.5	1.076	0.738	0.794
100.	GPRS_2TX	Front Side	128	824.2	32.18	32.5	1.076	1.020	1.098
101.	GPRS_2TX	Front Side	190	836.6	32.08	32.5	1.102	0.995	1.096
102.	GPRS_2TX	Front Side	251	848.8	32.02	32.5	1.117	0.81	0.905
103.	GPRS_2TX	Top side	128	824.2	32.18	32.5	1.076	0.105	0.113
104.	GPRS_2TX	Left side	128	824.2	32.18	32.5	1.076	0.221	0.238

	GSM1900 – Body SAR Test (Gap: 10mm)											
Plot		Test Position	Freq	uency	Output	Rated	Scaling	SAR1g	Scaled			
No.	Mode	Body		МПа	Power	Limit	Factor	(W/kg)	SAR1g			
110.		Body		WIIIZ	(dBm)	(dBm)	ractor	(W/Kg)	(W/kg)			
105.	GPRS_4TX	Back Side	512	1850.2	25.81	26.0	1.045	0.259	0.271			
106.	GPRS_4TX	Front Side	512	1850.2	25.81	26.0	1.045	0.439	0.459			
107.	GPRS_4TX	Top side	512	1850.2	25.81	26.0	1.045	0.021	0.022			
108.	GPRS_4TX	Left side	512	1850.2	25.81	26.0	1.045	0.011	0.011			

	WCDMA Band 2 – Body SAR Test (Gap: 10mm)											
Plot		Test Position	Freq	uency	Output	Rated	Scaling	SAR1g	Scaled			
No.	Mode	Body	СН.	MHz	Power	Limit	Factor	(W/kg)	SAR1g			
		Dody	CII.	WIIIZ	(dBm)	(dBm)	Factor		(W/kg)			
109.	RMC 12.2k	Back Side	9262	1852.4	22.88	23.0	1.028	0.236	0.243			
110.	RMC 12.2k	Front Side	9262	1852.4	22.88	23.0	1.028	0.421	0.433			
111.	RMC 12.2k	Top side	9262	1852.4	22.88	23.0	1.028	0.018	0.019			
112.	RMC 12.2k	Left side	9262	1852.4	22.88	23.0	1.028	0.01	0.010			

	WCDMA Band 5 – Body SAR Test (Gap: 10mm)											
Plot		Test Position	Freq	uency	Output Rated		Scaling	SAR1g	Scaled			
No.	Mode	Body	CH. MHz	МИа	Power	Limit	Factor	(W/kg)	SAR1g			
140.		Dody		WIIIZ	(dBm)	(dBm)	ractor	(W/Kg)	(W/kg)			
113.	RMC 12.2k	Back Side	4132	826.4	23.14	23.5	1.086	0.373	0.405			
114.	RMC 12.2k	Front Side	4132	826.4	23.14	23.5	1.086	0.613	0.666			
115.	RMC 12.2k	Top side	4132	826.4	23.14	23.5	1.086	0.021	0.023			
116.	RMC 12.2k	Left side	4132	826.4	23.14	23.5	1.086	0.02	0.022			

	LTE 1	Band 2–Body	SAR Test	(Gap: 10r	nm)			
Plot	Mode	Test Position	Freque ncy	Output Power	Rated Limit	Scali ng	SAR1g	Scaled SAR1g
No.	Modulation, Bandwidth, RB	Body	MHz	(dBm)	(dBm)	Facto r	(W/kg)	(W/kg)
117.	RMC QPSK 20MHz 1RB	Back Side	1860.0	23.67	24.0	1.079	0.305	0.329
118.	RMC QPSK 20MHz 1RB	Front Side	1860.0	23.67	24.0	1.079	0.514	0.555
119.	RMC QPSK 20MHz 1RB	Top side	1860.0	23.67	24.0	1.079	0.022	0.024
120.	RMC QPSK 20MHz 1RB	Left side	1860.0	23.67	24.0	1.079	0.014	0.015
121.	RMC QPSK 20MHz 50%RB	Back Side	1860.0	22.94	23.0	1.014	0.261	0.265
122.	RMC QPSK 20MHz 50%RB	Front Side	1860.0	22.94	23.0	1.014	0.474	0.481
123.	RMC QPSK 20MHz 50%RB	Top side	1860.0	22.94	23.0	1.014	0.012	0.012
124.	RMC QPSK 20MHz 50%RB	Left side	1860.0	22.94	23.0	1.014	0.011	0.011

	LTE :	Band 4–Body	SAR Test	(Gap: 10	Omm)			
	Mode	Tort	Freque ncy	Outp ut	Datad			Cooled
Plot No.	Modulation, Bandwidth, RB	Test Position Body	MHz	Powe r (dBm	Rated Limit (dBm)	Scaling Factor	SAR1g (W/kg)	Scaled SAR1g (W/kg)
125.	RMC QPSK 20MHz 1RB	Back Side	1745.0	24.51	25.0	1.119	0.162	0.181
126.	RMC QPSK 20MHz 1RB	Front Side	1745.0	24.51	25.0	1.119	0.333	0.373
127.	RMC QPSK 20MHz 1RB	Top side	1745.0	24.51	25.0	1.119	0.019	0.021
128.	RMC QPSK 20MHz 1RB	Left side	1745.0	24.51	25.0	1.119	0.01	0.011
129.	RMC QPSK 20MHz 50%RB	Back Side	1745.0	23.70	24.0	1.072	0.102	0.109
130.	RMC QPSK 20MHz 50%RB	Front Side	1745.0	23.70	24.0	1.072	0.271	0.290
131.	RMC QPSK 20MHz 50%RB	Top side	1745.0	23.70	24.0	1.072	0.011	0.012
132.	RMC QPSK 20MHz 50%RB	Left side	1745.0	23.70	24.0	1.072	0.007	0.008

	LTI	E Band 5–Body	SAR Tes	st (Gap: 10	Omm)			
Plot	Mode	Test Position	Freque ncy	Output Power	Rated Limit	Scaling	SAR1g	Scaled SAR1g
No.	Modulation, Bandwidth, RB	Body	MHz	(dBm)	(dBm)	Factor	(W/kg)	(W/kg)
133.	RMC QPSK 10MHz 1RB	Back Side	829.0	23.30	23.5	1.047	0.263	0.275
134.	RMC QPSK 10MHz 1RB	Front Side	829.0	23.30	23.5	1.047	0.477	0.499
135.	RMC QPSK 10MHz 1RB	Top side	829.0	23.30	23.5	1.047	0.013	0.014
136.	RMC QPSK 10MHz 1RB	Left side	829.0	23.30	23.5	1.047	0.011	0.012
137.	RMC QPSK 10MHz 50%RB	Back Side	829.0	22.37	22.5	1.030	0.236	0.243
138.	RMC QPSK 10MHz 50%RB	Front Side	829.0	22.37	22.5	1.030	0.447	0.461
139.	RMC QPSK 10MHz 50%RB	Top side	829.0	22.37	22.5	1.030	0.011	0.011
140.	RMC QPSK 10MHz 50%RB	Left side	829.0	22.37	22.5	1.030	0.01	0.010

	LTE I	Band 12–Body	SAR Test	(Gap: 1	.0mm)			
	Mode	Test	Freque ncy	Outp ut	Rated			Scaled
Plot No.	Modulation, Bandwidth, RB	Position Body	MHz	Powe r (dBm	Limit (dBm)	Scaling Factor	SAR1g (W/kg)	SAR1g (W/kg)
141.	RMC QPSK 10MHz 1RB	Back Side	704.0	24.26	24.5	1.057	0.688	0.727
142.	RMC QPSK 10MHz 1RB	Front Side	704.0	24.26	24.5	1.057	0.749	0.792
143.	RMC QPSK 10MHz 1RB	Top side	704.0	24.26	24.5	1.057	0.018	0.019
144.	RMC QPSK 10MHz 1RB	Left side	704.0	24.26	24.5	1.057	0.015	0.016
145.	RMC QPSK 10MHz 50%RB	Back Side	704.0	23.39	23.5	1.026	0.502	0.515
146.	RMC QPSK 10MHz 50%RB	Front Side	704.0	23.39	23.5	1.026	0.625	0.641
147.	RMC QPSK 10MHz 50%RB	Top side	704.0	23.39	23.5	1.026	0.039	0.040
148.	RMC QPSK 10MHz 50%RB	Left side	704.0	23.39	23.5	1.026	0.043	0.044

	LTE I	Band 13-Body	SAR Test	(Gap: 1	0mm)			
	Mode	Test	Freque ncy	Outp ut	Rated			Scaled
Plot No.	. Modulation, Bandwidth, RB	Position Body	MHz	Powe r (dBm	Limit (dBm)	Scaling Factor	SAR1g (W/kg)	SAR1g (W/kg)
149.	RMC QPSK 10MHz 1RB	Back Side	782.0	23.69	24.0	1.074	0.48	0.516
150.	RMC QPSK 10MHz 1RB	Front Side	782.0	23.69	24.0	1.074	0.858	0.921
151.	RMC QPSK 10MHz 1RB	Top side	782.0	23.69	24.0	1.074	0.02	0.021
152.	RMC QPSK 10MHz 1RB	Left side	782.0	23.69	24.0	1.074	0.018	0.019
153.	RMC QPSK 10MHz 50%RB	Back Side	782.0	22.81	23.0	1.045	0.351	0.367
154.	RMC QPSK 10MHz 50%RB	Front Side	782.0	22.81	23.0	1.045	0.668	0.698
155.	RMC QPSK 10MHz 50%RB	Top side	782.0	22.81	23.0	1.045	0.012	0.013
156.	RMC QPSK 10MHz 50%RB	Left side	782.0	22.81	23.0	1.045	0.011	0.011
157.	RMC QPSK 10MHz 100%RB	Front Side	782.0	22.59	23.0	1.099	0.680	0.747

	LTE I	Band 17–Body	SAR Test	(Gap: 1	.0mm)			
	Mode	Test	Freque ncy	Outp ut	Rated			Scaled
Plot No.	Modulation, Bandwidth, RB	Position Body	MHz	Powe r (dBm	Limit (dBm)	Scaling Factor	SAR1g (W/kg)	SAR1g (W/kg)
158.	RMC QPSK 10MHz 1RB	Back Side	709.0	25.07	25.5	1.104	0.537	0.593
159.	RMC QPSK 10MHz 1RB	Front Side	709.0	25.07	25.5	1.104	0.719	0.794
160.	RMC QPSK 10MHz 1RB	Top side	709.0	25.07	25.5	1.104	0.022	0.024
161.	RMC QPSK 10MHz 1RB	Left side	709.0	25.07	25.5	1.104	0.017	0.019
162.	RMC QPSK 10MHz 50%RB	Back Side	709.0	24.35	24.5	1.035	0.414	0.429
163.	RMC QPSK 10MHz 50%RB	Front Side	709.0	24.35	24.5	1.035	0.629	0.651
164.	RMC QPSK 10MHz 50%RB	Top side	709.0	24.35	24.5	1.035	0.017	0.018
165.	RMC QPSK 10MHz 50%RB	Left side	709.0	24.35	24.5	1.035	0.018	0.019

WLAN 2.4GHz –Body SAR Test										
Plot	Mode	Test	Frequency		Output	Rated	Scaling	SAR1g	Scaled	
No.		Position	СН.	MHz	Power	Limit	Factor	(W/kg)	SAR1g	
110.		Body	CH.		(dBm)	(dBm)		(W/Kg)	(W/kg)	
166.	802.11b	Back Side	11	2462	13.08	13.5	1.102	0.105	0.116	
167.	802.11b	Front Side	11	2462	13.08	13.5	1.102	0.046	0.051	
168.	802.11b	Right side	11	2462	13.08	13.5	1.102	0.043	0.047	

Front-of the face SAR

	GSM850 – Head SAR Test (Gap: 25mm)										
Plot No.	Mode	Test Position	Frequency		Output	Rated	Caalina	CAD1=	Scaled		
			CII	MHz	Power	Limit	Scaling Factor	SAR1g	SAR1g		
110.		Body	СН.	MHZ	(dBm)	(dBm)	Factor	(W/kg)	(W/kg)		
169.	GPRS_2TX	Front	128	824.2	32.18	32.5	1.076	0.437	0.470		

	GSM1900 –Head SAR Test (Gap: 25mm)										
Plot	Mode	Test Position Body	Frequency		Output	Rated	Caalina	SAR1g	Scaled		
			СН.	MHz	Power	Limit	Scaling Factor	(W/kg)	SAR1g		
No.					(dBm)	(dBm)			(W/kg)		
170.	GPRS_4TX	Front	512	1850.2	25.81	26.0	1.045	0.149	0.156		

Body-worn SAR (with belt-clip)

	GSM850 – Body SAR Test (Gap: 0mm)											
Plot		Test Position	Freq	uency	Output	Rated	Scaling	SAR1g	Scaled			
No.	Mode		CII	MII-	Power	Limit			SAR1g			
110.		Body	CH.	CH. MHz		(dBm)	Factor	(W/kg)	(W/kg)			
171.	GSM	Back	128	824.2	33.03	33.5	1.114	0.358	0.399			

	GSM1900 – Body SAR Test (Gap: 0mm)											
Dlot	Plot Test Position		Freq	Frequency		Rated	Scaling	SAR1g	Scaled			
Plot No.	Mode		CII	MII-	Power	Limit	Factor	Ü	SAR1g			
110.		Body	CH.	CH. MHz		(dBm)	Factor	(W/kg)	(W/kg)			
172.	GSM	Back	512	1850.2	29.55	30.0	1.109	0.068	0.075			

	WCDMA Band 2 – Body SAR Test (Gap: 0mm)											
Dlat		Took Dogition	Freq	Frequency		Output Rated		CAD1a	Scaled			
Plot No.	Mode Test Position		CII	MII	Power	Limit	Scaling	SAR1g	SAR1g			
140.		Body	CH. MHz		(dBm)	(dBm)	Factor	(W/kg)	(W/kg)			
173.	RMC 12.2k	Back Side	9262	1852.4	22.88	23.0	1.028	0.123	0.126			

	WCDMA Band 5 – Body SAR Test (Gap: 0mm)											
Dlat		Toot Dogition	Freq	uency	Output	Rated	Caalina	SAR1g	Scaled			
Plot No.	Mode	Test Position	CII	MII	Power Limit		Scaling Factor	U	SAR1g			
110.		Body	CH.	CH. MHz		(dBm)	Factor	(W/kg)	(W/kg)			
174.	RMC 12.2k	Back Side	4132	826.4	23.14	23.5	1.086	0.331	0.360			

	LTE Band 2–Body SAR Test (Gap: 0mm)										
Plot	Mode	Test Position	1		Rated Limit	Limit Scaling		Scaled SAR1g			
No.	Modulation, Bandwidth, RB	Body	MHz	(dBm)	(dBm)	Factor	(W/kg)	(W/kg)			
175.	RMC QPSK 20MHz 1RB	Back Side	1860.0	23.67	24.0	1.079	0.111	0.120			
176.	RMC QPSK 20MHz 50%RB	Back Side	1860.0	22.94	23.0	1.014	0.062	0.063			

	LTE Band 4–Body SAR Test (Gap: 0mm)										
Plot	Mode	Test Position	Freque ncy	Output Power	Rated Limit	Scaling	SAR1g	Scaled SAR1g			
No.	Modulation, Bandwidth, RB	Body	MHz	(dBm)	(dBm)	Factor	(W/kg)	(W/kg)			
177.	RMC QPSK 20MHz 1RB	Back Side	1745.0	24.51	25.0	1.119	0.045	0.050			
178.	RMC QPSK 20MHz 50%RB	Back Side	1745.0	23.70	24.0	1.072	0.021	0.023			

Report No.: STR18018288H Page 73 of 219 SAR Report

	LTE Band 5-Body SAR Test (Gap: 0mm)										
Plot	Mode	Test Position	Freque Output ncy Power		Rated Limit	Scaling	SAR1g (W/kg)	Scaled SAR1g			
No.	Modulation, Bandwidth, RB	Body	MHz	(dBm)	(dBm)	Factor	(W/Kg)	(W/kg)			
179.	RMC QPSK 10MHz 1RB	Back Side	829.0	23.30	23.5	1.047	0.208	0.218			
180.	RMC QPSK 10MHz 50%RB	Back Side	829.0	22.37	22.5	1.030	0.176	0.181			

	LTE Band 12–Body SAR Test (Gap: 0mm)										
Plot No.	Mode	Test Position	Freque ncy	Output Power	Rated Limit	Scaling	SAR1g (W/kg)	Scaled SAR1g			
No.	Modulation, Bandwidth, RB	Body	MHz	(dBm)	(dBm)	Factor	(W/Kg)	(W/kg)			
181.	RMC QPSK 10MHz 1RB	Back Side	704.0	24.26	24.5	1.057	0.453	0.479			
182.	RMC QPSK 10MHz 50%RB	Back Side	704.0	23.39	23.5	1.026	0.321	0.329			

	LTE Band 13-Body SAR Test (Gap: 0mm)										
Plot	Mode	Test Position	Freque Output ncy Power		Rated Limit	Scaling Factor	SAR1g (W/kg)	Scaled SAR1g			
110.	Modulation, Bandwidth, RB	Body	MHz	(dBm)	(dBm)	ractor	(W/Kg)	(W/kg)			
183.	RMC QPSK 10MHz 1RB	Back Side	782.0	23.69	24.0	1.074	0.291	0.313			
184.	RMC QPSK 10MHz 50%RB	Back Side	782.0	22.81	23.0	1.045	0.186	0.194			

	LTE Band 17–Body SAR Test (Gap: 0mm)											
Plot No.	Mode	Test Position	Freque ncy	Output Power	•		SAR1g	Scaled SAR1g				
NO.	Modulation, Bandwidth, RB	Body	MHz	(dBm)	(dBm)	Factor	(W/kg)	(W/kg)				
185.	RMC QPSK 10MHz 1RB	Back Side	709.0	25.07	25.5	1.104	0.481	0.531				
186.	RMC QPSK 10MHz 50%RB	Back Side	709.0	24.35	24.5	1.035	0.386	0.400				

	WLAN 2.4GHz –Body SAR Test											
Plot		Test	Frequency		Output	Output Rated		SAR1g	Scaled			
No.	Mode	le Position	СН.	MHz	Power	Limit	Scaling Factor	(W/kg)	SAR1g			
140.		Body	CII.	MILIZ	(dBm)	(dBm)	ractor	(vv/kg)	(W/kg)			
187.	802.11b	Back Side	11	2462	13.08	13.5	1.102	0.061	0.067			

Hotspot SAR(with belt-clip)

TTOUS	Hospot Bill (with self clip)											
		GSM	1850 – Bo	dy SAR Te	est (Gap: 1	0mm)						
Plot		Test Position	Frequency		Output	Rated	Scaling	CAD1a	Scaled			
	Mode		СН.	MHz	Power	Limit		SAR1g	SAR1g			
No.		Body			(dBm)	(dBm)	Factor	(W/kg)	(W/kg)			
188.	GPRS_2TX	Front Side	128	824.2	32.18	32.5	1.076	0.993	1.069			
189.	GPRS_2TX	Front Side	190	836.6	32.08	32.5	1.102	0.921	1.015			
190.	GPRS_2TX	Front Side	251	848.8	32.02	32.5	1.117	0.801	0.895			

Head SAR(with belt-clip)

	LTE Band 13– Head SAR Test									
Pl ot	Mode	Test Position	Freque ncy	Output Power	Rated Limit	Scaling	SAR1g	Scaled SAR1g		
No .	Modulation, Bandwidth	Head	MHz	(dBm) (dBm)		Factor	(W/kg)	(W/kg)		
191.	RMC QPSK 10MHz 1RB	Left Cheek	782.0	23.69	24.0	1.074	1.048	1.126		
192.	RMC QPSK 10MHz 100%RB	Left Cheek	782.0	22.59	23.0	1.099	0.658	0.723		

Front-of the face $SAR(with\ belt-clip)$

	GSM850 – Head SAR Test (Gap: 25mm)								
Plot		Test Position	Freq	uency	Output	Rated	Scaling	SAR1g	Scaled
No.	Mode		СН.	MHz	Power	Limit	Factor	(W/kg)	SAR1g
110.		Body	CH.	MITIZ	(dBm)	(dBm)	Factor	(W/Kg)	(W/kg)
193.	GPRS_2TX	Front	128	824.2	32.18	32.5	1.076	0.315	0.339

Report No.: STR18018288H Page 75 of 219 SAR Report

9.3 Simultaneous Multi-band Transmission SAR Analysis

List of Mode for Simultaneous Multi-band Transmission

No.	Configurations	Head SAR	Body-worn SAR	Hotspot SAR
1	GSM(Voice) + WLAN(Data)	Yes	Yes	-
2	GPRS/ EDGE(Data) + WLAN(Data)	Yes	-	Yes
3	WCDMA (Voice)+ WLAN(Data)	Yes	Yes	-
4	HSDPA(Data) + WLAN(Data)	1	-	Yes
5	HSUPA(Data) + WLAN(Data)	1	-	Yes
6	LTE(Data) + WLAN(Data)	1	-	Yes
7	GSM(Voice) + Bluetooth(Data)	Yes	Yes	-
8	GPRS/ EDGE(Data) + Bluetooth(Data)	Yes	-	Yes
9	WCDMA(Voice) + Bluetooth(Data)	Yes	Yes	-
10	HSDPA(Data)+ Bluetooth(Data)	1	-	Yes
11	HSUPA(Data) + Bluetooth(Data)	-	-	Yes
12	LTE(Data) + Bluetooth(Data)	-	-	Yes

Remark:

- 1. GSM ,WCDMA and LTE share the same antenna, and cannot transmit simultaneously.
- 2. WLAN and Bluetooth share the same antenna, and cannot transmit simultaneously.
- 3. According to the KDB 447498 D01 v06, when standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm;

where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

For simultaneous transmission analysis, Bluetooth SAR is estimated per KDB 447498 D01 v06 as below:

Bluetooth:

Tune-Up	Max. Power	Distance (mm)	Frequency	×	SAR(1g)	SAR(1g)
Power (dBm)	(mW)	Distance (min)	(GHz)		5mm	10mm
3.5	2.24	5/10	2.480	7.5	0.094	0.047

4. The maximum SAR summation is calculated based on the same configuration and test position.

Report No.: STR18018288H Page 76 of 219 SAR Report

Head SAR WWAN and WLAN

	WWA	AN	WLAN	Summed SAR
Position	Band	Scaled SAR	Scaled SAR	(W/kg)
Position	Dana	(W/kg)	(W/kg)	(W/Kg)
Right Cheek	GSM850	0.914	0.145	1.059
Right Tilted	GSM850	0.378	0.023	0.401
Left Cheek	GSM850	0.757	0.210	0.967
Left Tilted	GSM850	0.270	0.041	0.311
Right Cheek	GSM1900	0.540	0.145	0.685
Right Tilted	GSM1900	0.257	0.023	0.28
Left Cheek	GSM1900	0.399	0.210	0.609
Left Tilted	GSM1900	0.135	0.041	0.176
Right Cheek	GPRS850	0.995	0.145	1.14
Right Tilted	GPRS850	0.512	0.023	0.535
Left Cheek	GPRS850	0.684	0.210	0.894
Left Tilted	GPRS850	0.413	0.041	0.454
Right Cheek	GPRS1900	1.196	0.145	1.341
Right Tilted	GPRS1900	0.381	0.023	0.404
Left Cheek	GPRS1900	0.731	0.210	0.941
Left Tilted	GPRS1900	0.244	0.041	0.285
Right Cheek	WCDMA Band 2	0.978	0.145	1.123
Right Tilted	WCDMA Band 2	0.343	0.023	0.366
Left Cheek	WCDMA Band 2	0.684	0.210	0.894
Left Tilted	WCDMA Band 2	0.237	0.041	0.278
Right Cheek	WCDMA Band 5	1.054	0.145	1.199
Right Tilted	WCDMA Band 5	0.378	0.023	0.401
Left Cheek	WCDMA Band 5	1.001	0.210	1.211
Left Tilted	WCDMA Band 5	0.248	0.041	0.289
Right Cheek	LTE Band 2	0.721	0.145	0.866
Right Tilted	LTE Band 2	0.351	0.023	0.374
Left Cheek	LTE Band 2	0.603	0.210	0.813
Left Tilted	LTE Band 2	0.300	0.041	0.341
Right Cheek	LTE Band 4	0.644	0.145	0.789
Right Tilted	LTE Band 4	0.411	0.023	0.434
Left Cheek	LTE Band 4	0.626	0.210	0.836
Left Tilted	LTE Band 4	0.282	0.041	0.323
Right Cheek	LTE Band 5	0.714	0.145	0.859
Right Tilted	LTE Band 5	0.273	0.023	0.296
Left Cheek	LTE Band 5	0.731	0.210	0.941
Left Tilted	LTE Band 5	0.369	0.041	0.41
Right Cheek	LTE Band 12	1.030	0.145	1.175

Right Tilted	LTE Band 12	0.487	0.023	0.51
Left Cheek	LTE Band 12	0.762	0.210	0.972
Left Tilted	LTE Band 12	0.372	0.041	0.413
Right Cheek	LTE Band 13	1.156	0.145	1.301
Right Tilted	LTE Band 13	0.464	0.023	0.487
Left Cheek	LTE Band 13	0.535	0.210	0.745
Left Tilted	LTE Band 13	0.238	0.041	0.279
Right Cheek	LTE Band 17	0.753	0.145	0.898
Right Tilted	LTE Band 17	0.307	0.023	0.33
Left Cheek	LTE Band 17	0.597	0.210	0.807
Left Tilted	LTE Band 17	0.156	0.041	0.197

WWAN and Bluetooth

	WW	AN	Bluetooth	Summed SAR	
Position	Band	Scaled SAR (W/kg)	Scaled SAR (W/kg)	(W/kg)	
Right Cheek	GSM850	0.914	0.094	1.008	
Right Tilted	GSM850	0.378	0.094	0.472	
Left Cheek	GSM850	0.757	0.094	0.851	
Left Tilted	GSM850	0.270	0.094	0.364	
Right Cheek	GSM1900	0.540	0.094	0.634	
Right Tilted	GSM1900	0.257	0.094	0.351	
Left Cheek	GSM1900	0.399	0.094	0.493	
Left Tilted	GSM1900	0.135	0.094	0.229	
Right Cheek	GPRS850	0.995	0.094	1.089	
Right Tilted	GPRS850	0.512	0.094	0.606	
Left Cheek	GPRS850	0.684	0.094	0.778	
Left Tilted	GPRS850	0.413	0.094	0.507	
Right Cheek	GPRS1900	1.196	0.094	1.290	
Right Tilted	GPRS1900	0.381	0.094	0.475	
Left Cheek	GPRS1900	0.731	0.094	0.825	
Left Tilted	GPRS1900	0.244	0.094	0.338	
Right Cheek	WCDMA Band 2	0.978	0.094	1.072	
Right Tilted	WCDMA Band 2	0.343	0.094	0.437	
Left Cheek	WCDMA Band 2	0.684	0.094	0.778	
Left Tilted	WCDMA Band 2	0.237	0.094	0.331	
Right Cheek	WCDMA Band 5	1.054	0.094	1.148	
Right Tilted	WCDMA Band 5	0.378	0.094	0.472	
Left Cheek	WCDMA Band 5	1.001	0.094	1.095	
Left Tilted	WCDMA Band 5	0.248	0.094	0.342	
Right Cheek	LTE Band 2	0.721	0.094	0.815	
Right Tilted	LTE Band 2	0.351	0.094	0.445	
Left Cheek	LTE Band 2	0.603	0.094	0.697	
Left Tilted	LTE Band 2	0.300	0.094	0.394	
Right Cheek	LTE Band 4	0.644	0.094	0.738	
Right Tilted	LTE Band 4	0.411	0.094	0.505	
Left Cheek	LTE Band 4	0.626	0.094	0.72	
Left Tilted	LTE Band 4	0.282	0.094	0.376	
Right Cheek	LTE Band 5	0.714	0.094	0.808	
Right Tilted	LTE Band 5	0.273	0.094	0.367	
Left Cheek	LTE Band 5	0.731	0.094	0.825	
Left Tilted	LTE Band 5	0.369	0.094	0.463	
Right Cheek	LTE Band 12	1.030	0.094	1.124	
Right Tilted	LTE Band 12	0.487	0.094	0.581	

Left Cheek	LTE Band 12	0.762	0.094	0.856
Left Tilted	LTE Band 12	0.372	0.094	0.466
Right Cheek	LTE Band 13	1.156	0.094	1.25
Right Tilted	LTE Band 13	0.464	0.094	0.558
Left Cheek	LTE Band 13	0.535	0.094	0.629
Left Tilted	LTE Band 13	0.238	0.094	0.332
Right Cheek	LTE Band 17	0.753	0.094	0.847
Right Tilted	LTE Band 17	0.307	0.094	0.401
Left Cheek	LTE Band 17	0.597	0.094	0.691
Left Tilted	LTE Band 17	0.156	0.094	0.25

Body-worn SAR WWAN and WLAN

	WWA	N	WLAN	C J CAD
Position	Band	Scaled SAR (W/kg)	Scaled SAR (W/kg)	Summed SAR (W/kg)
Back	GSM850	0.572	0.116	0.688
Front	GSM850	1.007	0.051	1.058
Back	GSM1900	0.180	0.116	0.296
Front	GSM1900	0.335	0.051	0.386
Back	WCDMA Band 2	0.243	0.116	0.359
Front	WCDMA Band 2	0.433	0.051	0.484
Back	WCDMA Band 5	0.405	0.116	0.521
Front	WCDMA Band 5	0.666	0.051	0.717
Back	LTE Band 2	0.329	0.116	0.445
Front	LTE Band 2	0.555	0.051	0.606
Back	LTE Band 4	0.181	0.116	0.297
Front	LTE Band 4	0.373	0.051	0.424
Back	LTE Band 5	0.275	0.116	0.391
Front	LTE Band 5	0.499	0.051	0.55
Back	LTE Band 12	0.727	0.116	0.843
Front	LTE Band 12	0.792	0.051	0.843
Back	LTE Band 13	0.516	0.116	0.632
Front	LTE Band 13	0.921	0.051	0.972
Back	LTE Band 17	0.593	0.116	0.709
Front	LTE Band 17	0.794	0.051	0.845

WWAN and Bluetooth

	WWAI	N	Bluetooth	Crommod CAD
Position	Band	Scaled SAR (W/kg)	Scaled SAR (W/kg)	Summed SAR (W/kg)
Back	GSM850	0.572	0.047	0.619
Front	GSM850	1.007	0.047	1.054
Back	GSM1900	0.180	0.047	0.227
Front	GSM1900	0.335	0.047	0.382
Back	WCDMA Band 2	0.243	0.047	0.29
Front	WCDMA Band 2	0.433	0.047	0.48
Back	WCDMA Band 5	0.405	0.047	0.452
Front	WCDMA Band 5	0.666	0.047	0.713
Back	LTE Band 2	0.329	0.047	0.376
Front	LTE Band 2	0.555	0.047	0.602
Back	LTE Band 4	0.181	0.047	0.228
Front	LTE Band 4	0.373	0.047	0.42

Report No.: STR18018288H Page 81 of 219 SAR Report

Back	LTE Band 5	0.275	0.047	0.322
Front	LTE Band 5	0.499	0.047	0.546
Back	LTE Band 12	0.727	0.047	0.774
Front	LTE Band 12	0.792	0.047	0.839
Back	LTE Band 13	0.516	0.047	0.563
Front	LTE Band 13	0.921	0.047	0.968
Back	LTE Band 17	0.593	0.047	0.64
Front	LTE Band 17	0.794	0.047	0.841

Hotspot SAR WWAN and WLAN

	WW	AN	WLAN	Summed SAR	
Position	Band	Scaled SAR	Scaled SAR	(W/kg)	
rosition	Danu	(W/kg)	(W/kg)	(W/kg)	
Back	GSM850	0.794	0.116	0.91	
Front	GSM850	1.098	0.051	1.149	
Top side	GSM850	0.113		0.113	
Bottom side	GSM850				
Right side	GSM850		0.047	0.047	
Left side	GSM850	0.238		0.238	
Back	GSM1900	0.271	0.116	0.387	
Front	GSM1900	0.459	0.051	0.51	
Top side	GSM1900	0.022		0.022	
Bottom side	GSM1900				
Right side	GSM1900		0.047	0.047	
Left side	GSM1900	0.011		0.011	
Back	WCDMA Band 2	0.243	0.116	0.359	
Front	WCDMA Band 2	0.433	0.051	0.484	
Top side	WCDMA Band 2	0.019		0.019	
Bottom side	WCDMA Band 2				
Right side	WCDMA Band 2		0.047	0.047	
Left side	WCDMA Band 2	0.010		0.010	
Back	WCDMA Band 5	0.405	0.116	0.521	
Front	WCDMA Band 5	0.666	0.051	0.717	
Top side	WCDMA Band 5	0.023		0.023	
Bottom side	WCDMA Band 5				
Right side	WCDMA Band 5		0.047	0.047	
Left side	WCDMA Band 5	0.022		0.022	
Back	LTE Band 2	0.329	0.116	0.445	
Front	LTE Band 2	0.555	0.051	0.606	
Top side	LTE Band 2	0.024		0.024	
Bottom side	LTE Band 2				
Right side	LTE Band 2		0.047	0.047	
Left side	LTE Band 2	0.015		0.015	
Back	LTE Band 4	0.181	0.116	0.297	
Front	LTE Band 4	0.373	0.051	0.424	
Top side	LTE Band 4	0.021		0.021	
Bottom side	LTE Band 4				
Right side	LTE Band 4		0.047	0.047	
Left side	LTE Band 4	0.109		0.109	
Back	LTE Band 5	0.275	0.116	0.391	

Front	LTE Band 5	0.499	0.051	0.55
Top side	LTE Band 5	0.014		0.014
Bottom side	LTE Band 5			
Right side	LTE Band 5		0.047	0.047
Left side	LTE Band 5	0.012		0.012
Back	LTE Band 12	0.727	0.116	0.843
Front	LTE Band 12	0.792	0.051	0.843
Top side	LTE Band 12	0.019		0.019
Bottom side	LTE Band 12			
Right side	LTE Band 12		0.047	0.047
Left side	LTE Band 12	0.016		0.016
Back	LTE Band 13	0.516	0.116	0.632
Front	LTE Band 13	0.921	0.051	0.972
Top side	LTE Band 13	0.021		0.021
Bottom side	LTE Band 13			
Right side	LTE Band 13		0.047	0.047
Left side	LTE Band 13	0.019		0.019
Back	LTE Band 17	0.593	0.116	0.709
Front	LTE Band 17	0.794	0.051	0.845
Top side	LTE Band 17	0.024		0.024
Bottom side	LTE Band 17			
Right side	LTE Band 17		0.047	0.047
Left side	LTE Band 17	0.019		0.019

WWAN and Bluetooth

	WW	/AN	Bluetooth	C
Position	Band	Scaled SAR (W/kg)	Scaled SAR (W/kg)	Summed SAR (W/kg)
Back	GSM850	0.794	0.047	0.841
Front	GSM850	1.098	0.047	1.145
Top side	GSM850	0.113		0.113
Bottom side	GSM850			
Right side	GSM850		0.047	0.047
Left side	GSM850	0.238		0.238
Back	GSM1900	0.271	0.047	0.318
Front	GSM1900	0.459	0.047	0.506
Top side	GSM1900	0.022		0.022
Bottom side	GSM1900			
Right side	GSM1900		0.047	0.047
Left side	GSM1900	0.011		0.011
Back	WCDMA Band 2	0.243	0.047	0.29
Front	WCDMA Band 2	0.433	0.047	0.48

Top side	WCDMA Band 2	0.019		0.019
Bottom side	WCDMA Band 2			
Right side	WCDMA Band 2		0.047	0.047
Left side	WCDMA Band 2	0.010		0.010
Back	WCDMA Band 5	0.405	0.047	0.452
Front	WCDMA Band 5	0.666	0.047	0.713
Top side	WCDMA Band 5	0.023		0.023
Bottom side	WCDMA Band 5			
Right side	WCDMA Band 5		0.047	0.047
Left side	WCDMA Band 5	0.022		0.022
Back	LTE Band 2	0.329	0.047	0.376
Front	LTE Band 2	0.555	0.047	0.602
Top side	LTE Band 2	0.024		0.024
Bottom side	LTE Band 2			
Right side	LTE Band 2		0.047	0.047
Left side	LTE Band 2	0.015		0.015
Back	LTE Band 4	0.181	0.047	0.228
Front	LTE Band 4	0.373	0.047	0.42
Top side	LTE Band 4	0.021		0.021
Bottom side	LTE Band 4			
Right side	LTE Band 4		0.047	0.047
Left side	LTE Band 4	0.109		0.109
Back	LTE Band 5	0.275	0.047	0.322
Front	LTE Band 5	0.499	0.047	0.546
Top side	LTE Band 5	0.014		0.014
Bottom side	LTE Band 5			
Right side	LTE Band 5		0.047	0.047
Left side	LTE Band 5	0.012		0.012
Back	LTE Band 12	0.727	0.047	0.774
Front	LTE Band 12	0.792	0.047	0.839
Top side	LTE Band 12	0.019		0.019
Bottom side	LTE Band 12			
Right side	LTE Band 12		0.047	0.047
Left side	LTE Band 12	0.016		0.016
Back	LTE Band 13	0.516	0.047	0.563
Front	LTE Band 13	0.921	0.047	0.968
Top side	LTE Band 13	0.021		0.021
Bottom side	LTE Band 13			
Right side	LTE Band 13		0.047	0.047
Left side	LTE Band 13	0.019		0.019
Back	LTE Band 17	0.593	0.047	0.64
Front	LTE Band 17	0.794	0.047	0.841
Top side	LTE Band 17	0.024		0.024

Bottom side	LTE Band 17			
Right side	LTE Band 17		0.047	0.047
Left side	LTE Band 17	0.019		0.019

10. Measurement Uncertainty

10.1 Uncertainty for EUT SAR Test

a	b	с	d	e= f(d,k)	f	g	h= c*f/e	i= c*g/e	k
Uncertainty Component	Sec.	Tol	Prob.	Div.	Ci (1g)	Ci (10g)	1g Ui	10g Ui	Vi
		(+- %)	Dist.				(+-%)	(+-%)	
Measurement System									
Probe calibration	E.2.1	7.0	N	1	1	1	7.00	7.00	8
Axial Isotropy	E.2.2	2.5	R	√3	(1_Cp)^1/2	(1_Cp)^1/2	1.02	1.02	8
Hemispherical Isotropy	E.2.2	4.0	R	√3	(Cp)^1/2	(Cp)^1/2	1.63	1.63	×
Boundary effect	E.2.3	1.0	R	√3	1	1	0.58	0.58	8
Linearity	E.2.4	5.0	R	√3	1	1	2.89	2.89	×
System detection limits	E.2.5	1.0	R	√3	1	1	0.58	0.58	×
Readout Electronics	E.2.6	0.02	N	1	1	1	0.02	0.02	œ
Reponse Time	E.2.7	3.0	R	√3	1	1	1.73	1.73	œ
Integration Time	E.2.8	2.0	R	√3	1	1	1.15	1.15	œ
RF ambient Conditions – Noise	E.6.1	3.0	R	√3	1	1	1.73	1.73	œ
RF ambient Conditions -	E.6.1	3.0	R	√3	1	1	1.73	1.73	œ
Reflections									
Probe positioner Mechanical	E.6.2	2.0	R	√3	1	1	1.15	1.15	8
Tolerance				,					
Probe positioning with respect to Phantom Shell	E.6.3	0.05	R	√3	1	1	0.03	0.03	œ
Extrapolation, interpolation and	E.5	5.0	R	√3	1	1	2.89	2.89	œ
integration Algoritms for Max.	2.3	3.0		13	1	1	2.09	2.07	30
SAR Evaluation									
Test Sample Related									
Test sample positioning	E.4.2	0.03	N	1	1	1	0.03	0.03	N-1
Device Holder Uncertainty	E.4.1	5.00	N	1	1	1	5.00	5.00	1, 1
Output power Variation - SAR	E.2.9	12.02	R	√3	1	1	6.94	6.94	œ
drift measurement									
SAR scaling	E6.5	0.0	R	√3	1	1	0.0	0.0	8
Phantom and Tissue Parameters									
Phantom Uncertainty (Shape and	E.3.1	0.05	R	√3	1	1	0.03	0.03	œ
thickness tolerances)									
Uncertainty in SAR correction for	E3.2	1.9	R	√3	1	0.84	1.10	0.90	×
deviations in permittivity and									
conductivity									
Liquid conductivity - deviation	E.3.2	5.00	R	√3	0.64	0.43	1.85	1.24	×

Report No.: STR18018288H Page 87 of 219 SAR Report

from target value									
Liquid conductivity -	E.3.3	5.00	N	1	0.64	0.43	3.20	2.15	~
measurement uncertainty									
Liquid permittivity - deviation	E.3.2	0.37	R	$\sqrt{3}$	0.6	0.49	0.13	0.10	∞
from target value									
Liquid permittivity -	E.3.3	10.00	N	1	0.6	0.49	6.00	4.90	∞
measurement uncertainty									
Combined Standard Uncertainty			RSS				12.98	12.53	
Expanded Uncertainty			K=2				25.32	24.43	
(95% Confidence interval)									

10.2 Uncertainty for System Performance Check

a	b	c	d	e= f(d,k)	f	g	h= c*f/e	i= c*g/e	k
Uncertainty Component	Sec.	Tol	Prob.	Div.	Ci (1g)	Ci (10g)	1g Ui	10g Ui	Vi
		(+- %)	Dist.				(+-%)	(+-%)	
Measurement System	Measurement System								
Probe calibration	E.2.1	7.0	N	1	1	1	7.00	7.00	∞
Axial Isotropy	E.2.2	2.5	R	√3	(1_Cp)^1/2	(1_Cp)^1/2	1.02	1.02	œ
Hemispherical Isotropy	E.2.2	4.0	R	√3	(Cp)^1/2	(Cp)^1/2	1.63	1.63	∞
Boundary effect	E.2.3	1.0	R	√3	1	1	0.58	0.58	œ
Linearity	E.2.4	5.0	R	√3	1	1	2.89	2.89	œ
System detection limits	E.2.5	1.0	R	√3	1	1	0.58	0.58	œ
Modulation response	E.2.5	0	R	√3	0	0	0.0	0.0	œ
Readout Electronics	E.2.6	0.02	N	1	1	1	0.02	0.02	∞
Reponse Time	E.2.7	3.0	R	√3	1	1	1.73	1.73	×
Integration Time	E.2.8	2.0	R	√3	1	1	1.15	1.15	œ
RF ambient Conditions – Noise	E.6.1	3.0	R	√3	1	1	1.73	1.73	œ
RF ambient Conditions - Reflections	E.6.1	3.0	R	√3	1	1	1.73	1.73	œ
Probe positioner Mechanical	E.6.2	2.0	R	√3	1	1	1.15	1.15	œ
Tolerance									
Probe positioning with respect to	E.6.3	0.05	R	$\sqrt{3}$	1	1	0.03	0.03	∞
Phantom Shell									
Extrapolation, interpolation and integration Algoritms for Max.	E.5.2	5.0	R	√3	1	1	2.89	2.89	∞

Report No.: STR18018288H Page 88 of 219 SAR Report

GAR E. I:									
SAR Evaluation									
Dipole			ı		1	T	1	T	
Dipole axis to liquid Distance	8,E.4.2	1.00	N	$\sqrt{3}$	1	1	0.58	0.58	N-1
Input power and SAR drift	8,6.6.2	12.02	R	$\sqrt{3}$	1	1	6.94	6.94	× ×
measurement									
Deviation of experimental dipole	E.6.4	5.5	R	$\sqrt{3}$	1	1	3.20	3.20	× ×
from numerical dipole									
Phantom and Tissue Parameters									
Phantom Uncertainty (Shape and	E.3.1	0.05	R	√3	1	1	0.03	0.03	œ
thickness tolerances)									
Uncertainty in SAR correction for	E3.2	2.0	R	√3	1	0.84	1.10	1.10	∝
deviations in permittivity and									
conductivity									
Liquid conductivity - deviation	E.3.2	5.00	R	$\sqrt{3}$	0.64	0.43	1.85	1.24	
from target value									
Liquid conductivity -	E.3.3	5.00	N	1	0.64	0.43	3.20	2.15	
measurement uncertainty									
Liquid permittivity - deviation	E.3.2	0.37	R	√3	0.6	0.49	0.13	0.10	
from target value									
Liquid permittivity -	E.3.3	10.00	N	1	0.6	0.49	6.00	4.90	M
measurement uncertainty									
Combined Standard Uncertainty			RSS				12.00	11.50	
Expanded Uncertainty			K=2				23.39	22.43	
(95% Confidence interval)									

Annex A. Plots of System Performance Check

MEASUREMENT 1

For Head Liquid

Type: Validation measurement (Fast, 75.00 %)

Date of measurement: 02/01/2018

Measurement duration: 7 minutes 21 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.99; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	dx=8mm dy=8mm			
Phantom	Validation plane			
Device Position	Dipole			
Band	CW750			
Signal	Duty Cycle 1:1			

Frequency (MHz)	750.000000
Relative Permittivity (real part)	41.320574
Conductivity (S/m)	0.862373
Power Variation (%)	0.038363
Ambient Temperature	21.1
Liquid Temperature	21.3

SAR 10g (W/Kg)	1.042744
SAR 1g (W/Kg)	2.164534

Z Axis Scan

				Socan	1	I	1						
Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00						
SAR	0.0000	2.3634	1.8023	1.4523	1.2514	1.1005	1.0245						
(W/Kg)													
	2.500-												
1	2.3	75-				+							
	_ 2.1	50-	$\overline{}$			+							
	2	25-	+			+							
	¥ 1.50	00-				_							
		75-											
		50-											
	1.0	30- 0.0 2.5 5.0	7.5 10.0 12.515	5.0 17.520.0 22.5	525.0 27.530.0 3	2.535.0							
				Z (mm)									

For Head Liquid

Type: Validation measurement (Fast, 75.00 %)

Date of measurement: 02/01/2018

Measurement duration: 7 minutes 21 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.93; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	dx=8mm dy=8mm		
Phantom	Validation plane		
Device Position	Dipole		
Band	CW835		
Signal	Duty Cycle 1:1		

Frequency (MHz)	835.000000		
Relative Permittivity (real part)	41.110245		
Conductivity (S/m)	0.871245		
Power Variation (%)	0.038437		
Ambient Temperature	21.1		
Liquid Temperature	21.3		

SAR 10g (W/Kg)	1.519489
SAR 1g (W/Kg)	2.411253

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	2.4900	1.8942	1.4811	1.3541	1.1123	1.0539
(W/Kg)							
	2.5	00-					
	2.3	75-					
	2.1	50-	\longrightarrow				
	RS 1.83 W 1.50 W 1.50	25-	+				
	≥ ₩ 1.5(++				
	ිති 1.3			\mathbb{N}			
		50-					
		30-					
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0							
Z (mm)							

For Head Liquid

Type: Validation measurement (Fast, 75.00 %)

Date of measurement: 02/02/2018

Measurement duration: 12 minutes 21 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 5.84; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	dx=8mm dy=8mm		
Phantom Validation plane			
Device Position	Dipole		
Band	CW1800		
Signal	CW (Crest factor: 1.0)		

Frequency (MHz)	1800.000000		
Relative Permittivity (real part)	39.024890		
Conductivity (S/m)	1.371250		
Power Variation (%)	1.401232		
Ambient Temperature	21.1		
Liquid Temperature	21.2		

Maximum location: X=0.00, Y=0.00

SAR 10g (W/Kg)	5.171252		
SAR 1g (W/Kg)	9.611250		

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	10.3455	7.1125	5.1026	3.425	3.0242	2.1125
(W/Kg)							
	11.27	1					
	10.25						
	7.60	-	\longrightarrow				
	ZAR (WIKg. 1	.	$ \setminus $				
	≥ 6.17 ¥						
	ى 4.50	-		+			
	2.05						
	3.05 2.03	- !!!					
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0							
Z (mm)							

For Head Liquid

Type: Validation measurement (Fast, 75.00 %)

Date of measurement: 02/02/2018

Measurement duration: 12 minutes 21 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.35; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	dx=8mm dy=8mm		
Phantom	Validation plane		
Device Position	Dipole		
Band	CW1900		
Signal	Duty Cycle 1:1		

Frequency (MHz)	1900.000000		
Relative Permittivity (real part)	38.560124		
Conductivity (S/m)	1.380369		
Power Variation (%)	1.022540		
Ambient Temperature	21.1		
Liquid Temperature	21.3		

Maximum location: X=0.00, Y=0.00

SAR 10g (W/Kg)	5.174526		
SAR 1g (W/Kg)	9.913214		

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	10.2354	6.8400	5.0121	4.1189	3.0522	2.8424
(W/Kg)							
	10.30 9.00 7.00 WK BY 5.00 3.00 2.5	0-	7.5 10.0 12.5 15.	0 17.520.0 22.5 Z (mm)	25.0 27.5 30.0 3	2.5 35.0	

For Head Liquid

Type: Validation measurement (Fast, 75.00 %)

Date of measurement: 02/05/2018

Measurement duration: 12 minutes 21 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 5.64; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	dx=8mm dy=8mm		
Phantom	Validation plane		
Device Position	Dipole		
Band	CW2450		
Signal	Duty Cycle 1:1		

Frequency (MHz)	2450.000000		
Relative Permittivity (real part)	38.153660		
Conductivity (S/m)	1.740236		
Power Variation (%)	1.141452		
Ambient Temperature	21.1		
Liquid Temperature	21.2		

SAR 10g (W/Kg)	8.020427
SAR 1g (W/Kg)	13.452457

Z Axis Scan

r	Z Axis Stan								
Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00		
SAR	0.0000	14.1034	12.0012	10.2624	7.4715	5.9022	4.5114		
(W/Kg)									
	14.27 13.25 10.60 WW 7.77 BY 6.50 4.05 3.03	7	7.5 10.0 12.5 15.	0 17.520.0 22.5 Z (mm)	25.0 27.5 30.0 3	2.5 35.0			

For Body Liquid

Type: Validation measurement (Fast, 75.00 %)

Date of measurement: 02/01/2018

Measurement duration: 12 minutes 21 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 7.28; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	dx=8mm dy=8mm		
Phantom	Validation plane		
Device Position	Dipole		
Band	CW750		
Signal	Duty Cycle 1:1		

Frequency (MHz)	750.000000		
Relative Permittivity (real part)	54.964739		
Conductivity (S/m)	0.931048		
Power Variation (%)	0.034745		
Ambient Temperature	21.1		
Liquid Temperature	21.3		

SAR 10g (W/Kg)	1.000865		
SAR 1g (W/Kg)	2.124211		

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	0.0000	2.5132	1.1087	0.8214	0.5160	0.4875	0.4864
	2.60 1.45 1.20 0.95 0.70 0.55 0.40	j		0 17.520.0 22.5: Z (mm)	25.0 27.5 30.0 32	.5 35.0	

For Body Liquid

Type: Validation measurement (Fast, 75.00 %)

Date of measurement: 02/01/2018

Measurement duration: 12 minutes 21 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 7.13; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	dx=8mm dy=8mm		
Phantom	Validation plane		
Device Position	Dipole		
Band	CW835		
Signal	Duty Cycle 1:1		

Frequency (MHz)	835.000000		
Relative Permittivity (real part)	54.851214		
Conductivity (S/m)	0.951454		
Power Variation (%)	0.901472		
Ambient Temperature	21.1		
Liquid Temperature	21.3		

SAR 10g (W/Kg)	1.028956		
SAR 1g (W/Kg)	2.354211		

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	2.5789	1.1300	0.8795	0.5940	0.5011	0.5100
(W/Kg)							
	2.60 1.45 1.20 WW 0.95 0.70 0.55 0.40			0 17.520.0 22.52 Z (mm)	25.0 27.5 30.0 32	.5 35.0	

For Body Liquid

Type: Validation measurement (Fast, 75.00 %)

Date of measurement: 02/02/2018

Measurement duration: 12 minutes 21 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.06; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	dx=8mm dy=8mm			
Phantom	Validation plane			
Device Position	Dipole			
Band	CW1800			
Signal	CW (Crest factor: 1.0)			

Frequency (MHz)	1800.000000
Relative Permittivity (real part)	51.224510
Conductivity (S/m)	1.461261
Power Variation (%)	0.845690
Ambient Temperature	21.1
Liquid Temperature	21.2

SAR 10g (W/Kg)	5.221202
SAR 1g (W/Kg)	9.582560

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	11.2425	9.4123	8.0345	6.9125	6.3092	3.9460
(W/Kg)							
	11.27 10.25 — 7.60 WW 6.17 4.50 3.05 2.03			0 17.520.0 22.5 Z (mm)	25.0 27.5 30.0 32	2.5 35.0	

For Body Liquid

Type: Validation measurement (Fast, 75.00 %)

Date of measurement: 02/02/2018

Measurement duration: 12 minutes 21 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.55; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	dx=8mm dy=8mm			
Phantom	Validation plane			
Device Position	Dipole			
Band	CW1900			
Signal	Duty Cycle 1:1			

Frequency (MHz)	1900.000000
Relative Permittivity (real part)	52.420415
Conductivity (S/m)	1.501966
Power Variation (%)	0.541872
Ambient Temperature	21.1
Liquid Temperature	21.3

SAR 10g (W/Kg)	5.134651
SAR 1g (W/Kg)	9.781550

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	10.2031	6.43001	4.9011	4.5325	3.1201	2.5024
(W/Kg)							
	10.30 9.25 7.60 WW 6.2 4.70 3.00 2.00	0-	7.5 10.0 12.5 15	.0 17.520.0 22.5 Z (mm)	525.0 27.5 30.0 3	2.5 35.0	

For Body Liquid

Type: Validation measurement (Fast, 75.00 %)

Date of measurement: 02/05/2018

Measurement duration: 12 minutes 21 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 5.80; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	dx=8mm dy=8mm			
Phantom	Validation plane			
Device Position	Dipole			
Band	CW2450			
Signal	Duty Cycle 1:1			

Frequency (MHz)	2450.000000
Relative Permittivity (real part)	52.010212
Conductivity (S/m)	1.910255
Power Variation (%)	1.369745
Ambient Temperature	21.1
Liquid Temperature	21.2

Maximum location: X=0.00, Y=0.00

SAR 10g (W/Kg)	7.119522
SAR 1g (W/Kg)	12.592360

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	13.1911	11.7951	9.2945	8.5400	6.3712	4.6225
(W/Kg)							
	13.27 12.25 — 7.60 WW 6.17 W S	7-					
	3.05 2.03	3-	7.5 10.0 12.5 15.	0 17.520.0 22.5 Z (mm)	25.0 27.5 30.0 3	2.5 35.0	

For Body Liquid

Type: Validation measurement (Fast, 75.00 %)

Date of measurement: 03/23/2018

Measurement duration: 12 minutes 21 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 7.28; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	dx=8mm dy=8mm		
Phantom	Validation plane		
Device Position	Dipole		
Band	CW750		
Signal	Duty Cycle 1:1		

Frequency (MHz)	750.000000
Relative Permittivity (real part)	54.983247
Conductivity (S/m)	0.940134
Power Variation (%)	0.108393
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=0.00, Y=0.00

SAR 10g (W/Kg)	1.001948
SAR 1g (W/Kg)	2.153723

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	0.0000	2.5012	1.0972	0.8132	0.5176	0.4887	0.4843
	2.60 1.45 1.20 0.95 0.70 0.55 0.40	j		0 17.520.0 22.5: Z (mm)	25.0 27.5 30.0 32	.5 35.0	

For Body Liquid

Type: Validation measurement (Fast, 75.00 %)

Date of measurement: 03/23/2018

Measurement duration: 12 minutes 21 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 7.13; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	dx=8mm dy=8mm		
Phantom	Validation plane		
Device Position	Dipole		
Band	CW835		
Signal	Duty Cycle 1:1		

Frequency (MHz)	835.000000
Relative Permittivity (real part)	54.810765
Conductivity (S/m)	0.940651
Power Variation (%)	0.984783
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=0.00, Y=0.00

SAR 10g (W/Kg)	1.010391
SAR 1g (W/Kg)	2.330483

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	0.0000	2.5672	1.1200	0.8683	0.5839	0.5210	0.5082
	2.60 1.45 1.20 WW 0.95 0.70 0.55 0.40			0 17.520.0 22.5: Z (mm)	25.0 27.5 30.0 32	2.5 35.0	

For Body Liquid

Type: Validation measurement (Fast, 75.00 %)

Date of measurement: 03/23/2018

Measurement duration: 12 minutes 21 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.06; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	dx=8mm dy=8mm		
Phantom	Validation plane		
Device Position	Dipole		
Band	CW1800		
Signal	CW (Crest factor: 1.0)		

Frequency (MHz)	1800.000000
Relative Permittivity (real part)	51.320431
Conductivity (S/m)	1.485442
Power Variation (%)	0.926718
Ambient Temperature	21.1
Liquid Temperature	21.2

Maximum location: X=0.00, Y=0.00

SAR 10g (W/Kg)	5.221202
SAR 1g (W/Kg)	9.580191

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	11.2255	9.4043	8.0211	6.9121	6.3078	3.9456
(W/Kg)							
	11.27 10.25 — 7.60 WW 6.17 4.50 3.05 2.03			0 17.520.0 22.5 Z (mm)	25.0 27.5 30.0 32	2.5 35.0	

For Body Liquid

Type: Validation measurement (Fast, 75.00 %)

Date of measurement: 03/23/2018

Measurement duration: 12 minutes 21 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.55; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	dx=8mm dy=8mm		
Phantom	Validation plane		
Device Position	Dipole		
Band	CW1900		
Signal	Duty Cycle 1:1		

Frequency (MHz)	1900.000000
Relative Permittivity (real part)	52.240433
Conductivity (S/m)	1.463255
Power Variation (%)	0.596513
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=0.00, Y=0.00

SAR 10g (W/Kg)	5.148742
SAR 1g (W/Kg)	9.840292

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	10.2030	6.4312	4.9109	4.5376	3.1221	2.5012
(W/Kg)							
	10.30 9.25 — 7.60 WW 6.21 84.70 3.00 2.01	0-	7.5 10.0 12.5 15	.0 17.520.0 22.5 Z (mm)	525.0 27.5 30.0 3	2.5 35.0	

For Body Liquid

Type: Validation measurement (Fast, 75.00 %)

Date of measurement: 03/23/2018

Measurement duration: 12 minutes 21 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 5.80; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	dx=8mm dy=8mm		
Phantom	Validation plane		
Device Position	Dipole		
Band	CW2450		
Signal	Duty Cycle 1:1		

Frequency (MHz)	2450.000000
Relative Permittivity (real part)	52.210655
Conductivity (S/m)	1.872542
Power Variation (%)	1.301457
Ambient Temperature	21.1
Liquid Temperature	21.2

Maximum location: X=0.00, Y=0.00

SAR 10g (W/Kg)	7.139280
SAR 1g (W/Kg)	12.755381

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	13.5473	11.8441	9.3627	8.5782	6.4357	4.6342
(W/Kg)							
	14.73 13.50 —10.50 WW 7.50 4.50 1.50		7.5 10.0 12.5 15.	0 17.520.0 22.5 Z (mm)	25.0 27.5 30.0 32	2.5 35.0	

For Head Liquid

Type: Validation measurement (Fast, 75.00 %)

Date of measurement: 03/23/2018

Measurement duration: 7 minutes 21 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.99; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	dx=8mm dy=8mm		
Phantom	Validation plane		
Device Position	Dipole		
Band	CW750		
Signal	Duty Cycle 1:1		

Frequency (MHz)	750.000000
Relative Permittivity (real part)	41.540791
Conductivity (S/m)	0.850214
Power Variation (%)	0.103829
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=0.00, Y=0.00

SAR 10g (W/Kg)	1.043921
SAR 1g (W/Kg)	2.162622

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR (W/Kg)	0.0000	2.3354	1.8054	1.4576	1.2532	1.1008	1.0248
	1.8 84 (Wike 1.3 1.1	75	7.5 10.0 12.515	5.0 17.520.0 22.5 Z (mm)	525.0 27.530.0 3	2.535.0	

3D screen shot	Hot spot position

For Head Liquid

Type: Validation measurement (Fast, 75.00 %)

Date of measurement: 03/23/2018

Measurement duration: 7 minutes 21 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.93; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	dx=8mm dy=8mm		
Phantom	Validation plane		
Device Position Dipole			
Band	CW835		
Signal	Duty Cycle 1:1		

Frequency (MHz)	835.000000
Relative Permittivity (real part)	41.320191
Conductivity (S/m)	0.880182
Power Variation (%)	0.217298
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=0.00, Y=0.00

SAR 10g (W/Kg)	1.521922
SAR 1g (W/Kg)	2.420191

Z Axis Scan

Z (mm)	0.00	4.00	9.00	14.00	19.00	24.00	29.00
SAR	0.0000	2.4903	1.8956	1.4824	1.3546	1.1124	1.0541
(W/Kg)							
	2.5	00-				T	
	2.3	75-	+++				
		50-	\longrightarrow				
	SAB (Wike 1.50	25-	+				
	은 뜻 1.5(00-	++				
		75-					
		50-			\bot		
		30-				_	
		0.0 2.5 5.0	7.5 10.0 12.515		25.027.530.03	32.535.0	
				Z (mm)			

Annex B. Plots of SAR Measurement

TYPE	BAND	<u>PARAMETERS</u>
Phone	GSM850	Measurement 1: Right Head with Cheek device position on Low Channel in GSM mode
Phone	GSM1900	Measurement 7: Right Head with Cheek device position on Low Channel in GSM mode
Phone	GPRS850_2TX	Measurement 11: Right Head with Cheek device position on Low Channel in GPRS mode
Phone	GPRS1900_4TX	Measurement 19: Right Head with Cheek device position on High Channel in GPRS mode
Phone	WCDMA1900_RMC	Measurement 23: Right Head with Cheek device position on Low Channel in WCDMA mode
Phone	WCDMA850_RMC	Measurement 31:Right Head with Cheek device position on High Channel in WCDMA mode
Phone	LTE Band 2_RMC	Measurement 37: Right Head with Cheek device position on Low Channel in LTE mode
Phone	LTE Band 4_RMC	Measurement 45: Right Head with Cheek device position on High Channel in LTE mode
Phone	LTE Band 5_RMC	Measurement 55: Left Head with Cheek device position on Low Channel in LTE mode
Phone	LTE Band 12_RMC	Measurement 61: Right Head with Cheek device position on Low Channel in LTE mode
Phone	LTE Band 13_RMC	Measurement 74: Left Head with Cheek device position on Middle Channel in LTE mode
Phone	LTE Band 17_RMC	Measurement 81: Right Head with Cheek device position on Low Channel in LTE mode
Phone	WiFi_802.11b	Measurement 91: Left Head with Cheek device position on High Channel in 802.11b mode
Phone	GSM850	Measurement 95: Flat Plane with Front(Body-worn) device position on Middle Channel in GSM mode
Phone	GSM1900	Measurement 98: Flat Plane with Front(Body-worn) device position on Low Channel in GSM mode
Phone	GPRS850_2TX	Measurement 100: Flat Plane with Front device position on Low Channel in GPRS mode
Phone	GPRS1900_4TX	Measurement 106: Flat Plane with Front device position on Low Channel in GPRS mode
Phone	WCDMA1900_RMC	Measurement 110: Flat Plane with Front side device position on Low Channel in WCDMA mode
Phone	WCDMA850_RMC	Measurement 114: Flat Plane with Front side device position on Low Channel in WCDMA mode

Phone	LTE David 2 DMC	Measurement 118: Flat Plane with Front device position
Phone	LTE Band 2_RMC	on Low Channel in LTE mode
Phone	Diama LTE Daniel A DMC	Measurement 126: Flat Plane with Front device position
Filone	LTE Band 4_RMC	on High Channel in LTE mode
Phone	ITE Dand 5 DMC	Measurement 134: Flat Plane with Front device position
Phone	ne LTE Band 5_RMC	on Low Channel in LTE mode
Phone	LTE Dand 12 DMC	Measurement 142: Flat Plane with Front device position
Phone	Phone LTE Band 12_RMC	on Low Channel in LTE mode
Phone	LTE Band 13_RMC	Measurement 150: Flat Plane with Front device position
Filone	LIE Danu 13_KWIC	on Middle Channel in LTE mode
Dhono	ITE Dand 17 DMC	Measurement 159: Flat Plane with Front device position
Phone	Phone LTE Band 17_RMC	on Low Channel in LTE mode
Phone	DI WYE: 003 111	Measurement 166: Flat Plane with Back side device
rnone	WiFi_802.11b	position on High Channel in 802.11b mode

Remark: SAR plot is showed the highest measured SAR in each exposure configuration, wireless mode and frequency band combination.

TYPE	BAND	PARAMETERS
Phone	GPRS850_2TX	Measurement 169: Flat Plane with Front device position on Low Channel in PTT mode
Phone	GPRS1900_4TX	Measurement 170: Flat Plane with Front device position on Low Channel in PTT mode

SAR test with belt-clip

Dhomo	CCMOEO	Measurement 171: Flat Plane with Back(Body-worn)
Phone	GSM850	device position on Low Channel in GSM mode
Phone	CCN #1000	Measurement 172: Flat Plane with Back(Body-worn)
Phone	GSM1900	device position on Low Channel in GSM mode
Dhomo	WCDMA1000 DMC	Measurement 173: Flat Plane with Back side device
Phone	WCDMA1900_RMC	position on Low Channel in WCDMA mode
DI	WCDMA050 DMC	Measurement 174: Flat Plane with Back side device
Pnone	Phone WCDMA850_RMC	position on Low Channel in WCDMA mode
Dhomo	ITE Dand 2 DMC	Measurement 175: Flat Plane with Back device position
Phone	LTE Band 2_RMC	on Low Channel in LTE mode
Phone	ITE Dand 4 DMC	Measurement 177: Flat Plane with Back device position
Phone	LTE Band 4_RMC	on High Channel in LTE mode
Phone	LTE Band 5_RMC	Measurement 179: Flat Plane with Back device position
rnone	LIE Dand 5_KNIC	on Low Channel in LTE mode
Dhono	Phone LTE Band 12_RMC	Measurement 181: Flat Plane with Back device position
rnone		on Low Channel in LTE mode

Dhone	Phone LTE Band 13_RMC	Measurement 183: Flat Plane with Back device position			
Phone		on Middle Channel in LTE mode			
Dhone	Phone LTE Band 17_RMC	Measurement 185: Flat Plane with Back device position			
riione		on Low Channel in LTE mode			
Phone	W:E: 002 111	Measurement 187: Flat Plane with Back side device			
rnone	WiFi_802.11b	position on High Channel in 802.11b mode			
Dhama	DI CDD COZO ATIV	Measurement 188: Flat Plane with Front device position			
Phone	GPRS850_2TX	on Low Channel in GPRS mode			
	·				
Dhama	LTE Dand 12 DMC	Measurement 191: Left Head with Cheek device position			
Phone	Phone LTE Band 13_RMC	on Middle Channel in LTE mode			
Dhomo	CDDC050 ATV	Measurement 193: Flat Plane with Front device position			
Phone GPRS850_2	GPRS850_2TX	on Low Channel in PTT mode			

Type: Phone measurement (Complete)
Date of measurement: 02/01/2018

Measurement duration: 11 minutes 48 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.93; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt		
Phantom	Right head		
Device Position	Cheek		
Band	GSM850		
Channels	Low		
Signal	TDMA (Crest factor: 8.0)		

Frequency (MHz)	824.200000	
Relative Permittivity (real part)	41.110245	
Conductivity (S/m)	0.871245	
Power Variation (%)	1.144536	
Ambient Temperature	21.1	
Liquid Temperature	21.3	

Maximum location: X=-32.00, Y=-17.00

SAR Peak: 1.01 W/kg

SAR 10g (W/Kg)	0.666699
SAR 1g (W/Kg)	0.820144

0.00	4.00	9.00	14.00	19.00
0.9992	0.8494	0.7161	0.6364	0.5965
1.00- 0.95- 0.90- 0.80- 0.80- 0.75- 0.70- 0.65- 0.58-	4 6 8 10 12	14 16 18 20 22		
	0.9992 1.00- 0.95- 0.90- 0.85- 0.80- 0.70- 0.65- 0.58-	0.9992 0.8494 1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.58 0.58 0.2 4 6 8 10 12	0.9992 0.8494 0.7161 1.00- 0.95- 0.90- 0.85- 0.80- 0.75- 0.70- 0.65- 0.58-	0.9992 0.8494 0.7161 0.6364 1.00 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.58 0.2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Type: Phone measurement (Complete)
Date of measurement: 02/02/2018

Measurement duration: 11 minutes 48 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.35; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt		
Phantom	Right head		
Device Position	Cheek		
Band	GSM1900		
Channels	Low		
Signal	TDMA (Crest factor: 8.0)		

Frequency (MHz)	1850.200000	
Relative Permittivity (real part)	38.560124	
Conductivity (S/m)	1.380369	
Power Variation (%)	1.442440	
Ambient Temperature	21.1	
Liquid Temperature	21.3	

Maximum location: X=-31.00, Y=-7.00

SAR Peak: 0.74 W/kg

SAR 10g (W/Kg)	0.300665	
SAR 1g (W/Kg)	0.486802	

0.6851	0.5128	0.3491	0.2313	0.1470
7			0.2313	0.1478
0.7				
0.6-				
0.5				
	$\langle \cdot \cdot \cdot $			
0.4-				
0.3-				
0.2-	++++	+		
0.1- 0.1- 0.1	6 8 10 12 14	16 18 20 22	24 26 28 30	
	Z			
	0.5-	0.5-0.4-0.3-0.2-0.1-0.2-4 6 8 10 12 14	0.5 - 0.4 - 0.3 - 0.2 - 0.1 - 0	0.5-0.4-0.3-0.2-0.1-0.2-4 6 8 10 12 14 16 18 20 22 24 26 28 30

Type: Phone measurement (Complete)
Date of measurement: 02/01/2018

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.93; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt		
Phantom	Right head		
Device Position	Cheek		
Band	GPRS850_2TX		
Channels	Low		
Signal	Duty Cycle: 1:4		

Frequency (MHz)	824.200000	
Relative Permittivity (real part)	41.110245	
Conductivity (S/m)	0.871245	
Power Variation (%)	1.536272	
Ambient Temperature	21.1	
Liquid Temperature	21.3	

Maximum location: X=-23.00, Y=-6.00

SAR Peak: 1.09 W/kg

SAR 10g (W/Kg)	0.696385
SAR 1g (W/Kg)	0.924408

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	1.0837	0.9446	0.7751	0.6131	0.4634
	1.1-				
	1.0-				
	0.9-	\longrightarrow	++++		
	₹ 0.8-	\rightarrow			
	© 0.8-				
	SAR 0.6-				
	0.5-				
	0.4-				
	0.3-				
	0 2 4		14 16 18 20 22	24 26 28 30	
			Z (mm)		

Type: Phone measurement (Complete)
Date of measurement: 02/02/2018

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.35; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Right head	
Device Position	Cheek	
Band	GPRS1900_4TX	
Channels	High	
Signal	Duty Cycle: 1:2	

Frequency (MHz)	1909.800000		
Relative Permittivity (real part)	38.560124		
Conductivity (S/m)	1.380369		
Power Variation (%)	1.536272		
Ambient Temperature	21.1		
Liquid Temperature	21.3		

Maximum location: X=-31.00, Y=-1.00

SAR Peak: 1.48 W/kg

SAR 10g (W/Kg)	0.573568	
SAR 1g (W/Kg)	0.962646	

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	2.2099	1.0280	0.5544	0.4000	0.2066
	2.21- 2.00- 1.75- (b) 1.50- 1.25- 4 1.00- 0.75- 0.50- 0.14- 0 2	4 6 8 10 12	14 16 18 20 22 Z (mm)	24 26 28 30	

Type: Phone measurement (Complete)
Date of measurement: 02/02/2018

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.35; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Right head	
Device Position	Cheek	
Band	WCDMA1900_RMC	
Channels	Low	
Signal	Duty Cycle 1:1	

Frequency (MHz)	1852.400000		
Relative Permittivity (real part)	38.560124		
Conductivity (S/m)	1.380369		
Power Variation (%)	1.524540		
Ambient Temperature	21.1		
Liquid Temperature	21.3		

Maximum location: X=-29.00, Y=-3.00

SAR Peak: 1.29 W/kg

SAR 10g (W/Kg)	0.512242		
SAR 1g (W/Kg)	0.851600		

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	1.2827	0.9077	0.5803	0.3696	0.2362
	1.3-				
	1.0-		++++		
	§ ,	$\backslash \cdot \cdot $			
	0.8-				
	-9.0 AR	+			
	0.4-				
	···		\mathcal{H}		
	0.1-			- 	
	0 2		14 16 18 20 22	24 26 28 30	
			Z (mm)		

Type: Phone measurement (Complete)
Date of measurement: 02/01/2018

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.93; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt		
Phantom	Right head		
Device Position	Cheek		
Band	WCDMA850_RMC		
Channels	High		
Signal	Duty Cycle 1:1		

Frequency (MHz)	846.600000		
Relative Permittivity (real part)	41.110245		
Conductivity (S/m)	0.871245		
Power Variation (%)	1.342427		
Ambient Temperature	21.1		
Liquid Temperature	21.3		

Maximum location: X=-40.00, Y=-8.00

SAR Peak: 1.17 W/kg

SAR 10g (W/Kg)	0.752980	
SAR 1g (W/Kg)	0.952435	

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	4.4515	0.9801	0.4655	0.7251	0.4057
	4.5-				
	4.0-				
	3.5-		++++		
	⊕ 3.0-				
	© 3.0- ≥ 2.5-				
	₩ 2.0-				
	1.5-				
	1.0-				
	0.4-			-	
	0 2 4		14 16 18 20 22	24 26 28 30	
			Z (mm)		

Type: Phone measurement (Complete)
Date of measurement: 02/02/2018

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.35; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt		
Phantom Right head			
Device Position	Cheek		
Band	LTE Band 2_RMC		
Channels	QPSK, 20MHz, 1RB, Low		
Signal	Duty Cycle 1:1		

Frequency (MHz)	1860.000000		
Relative Permittivity (real part)	38.560124		
Conductivity (S/m)	1.380369		
Power Variation (%)	1.743564		
Ambient Temperature	21.1		
Liquid Temperature	21.3		

Maximum location: X=-7.00, Y=-11.00

SAR Peak: 1.06 W/kg

SAR 10g (W/Kg)	0.402196	
SAR 1g (W/Kg)	0.667585	

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	1.0554	0.7062	0.4191	0.2491	0.1515
	1.1-				
	0.8-				
	/Kg)				
	- 9.0 SAR (W./kg)				
	^{دم} 0.4-				
	0.2-				
	0.1-1			24 26 28 30	
			Z (mm)		

Type: Phone measurement (Complete)
Date of measurement: 02/02/2018

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 5.84; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt		
Phantom	Right head		
Device Position	Cheek		
Band	LTE Band 4_RMC		
Channels	QPSK, 20MHz, 1RB,High		
Signal	Duty Cycle 1:1		

Frequency (MHz)	1745.000000		
Relative Permittivity (real part)	39.024890		
Conductivity (S/m)	1.371250		
Power Variation (%)	1.374628		
Ambient Temperature	21.1		
Liquid Temperature	21.2		

Maximum location: X=-30.00, Y=-8.00

SAR Peak: 0.86 W/kg

SAR 10g (W/Kg)	0.349412	
SAR 1g (W/Kg)	0.574890	

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.8542	0.6071	0.3910	0.2515	0.1629
	0.9-				
	0.7-				
	© 0.6- 0.5-				
	≥ 0.5-				
	8AR 0.4-				
	0.3-				
	0.2-				
	0.1-	6 8 10 12	14 16 18 20 22	24 26 28 30	
	0 2 4		Z (mm)	24 20 28 30	
			- ····,		

Type: Phone measurement (Complete)
Date of measurement: 02/01/2018

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.93; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt		
Phantom	Left head		
Device Position	Cheek		
Band	LTE Band 5_RMC		
Channels	QPSK, 10MHz, 1RB, Low		
Signal	Duty Cycle 1:1		

Frequency (MHz)	829.000000		
Relative Permittivity (real part)	41.110245		
Conductivity (S/m)	0.871245		
Power Variation (%)	0.924535		
Ambient Temperature	21.1		
Liquid Temperature	21.2		

Maximum location: X=-31.00, Y=-12.00

SAR Peak: 0.74 W/kg

SAR 10g (W/Kg)	0.560361	
SAR 1g (W/Kg)	0.698382	

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.7345	0.7262	0.6682	0.5645	0.4334
	0.7-				
	0.7-				
	0.6-	++			
	SAR (W/kg)		\setminus		
	0.5-				
	0.4-				
	0.4		$ \cdot \cdot $		
	0.3-		14 16 18 20 22	24 26 28 30	
	0 2 -		Z (mm)	24 20 20 30	
	0.3-			24 26 28 30	

Type: Phone measurement (Complete)
Date of measurement: 02/01/2018

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.99; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt
Phantom	Right head
Device Position	Cheek
Band	LTE Band 12_RMC
Channels	QPSK, 10MHz, 1RB, Low
Signal	Duty Cycle 1:1

Frequency (MHz)	704.000000
Relative Permittivity (real part)	41.320574
Conductivity (S/m)	0.862373
Power Variation (%)	0.924535
Ambient Temperature	21.1
Liquid Temperature	21.2

Maximum location: X=-22.00, Y=-9.00

SAR Peak: 1.16 W/kg

SAR 10g (W/Kg)	0.705950
SAR 1g (W/Kg)	0.946842

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	1.1534	0.9667	0.7675	0.6020	0.4648
	1.2-				
	1.0-				
	© 0.9-				
	0.9- WW 0.8- 0.7- 0.6-				
	W 0./-				
	0.5-				
	0.3-				
	0 2			24 26 28 30	
			Z (mm)		

Type: Phone measurement (Complete)
Date of measurement: 02/01/2018

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.99; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt
Phantom	Left head
Device Position	Cheek
Band	LTE Band 13_RMC
Channels	QPSK, 10MHz, 1RB, Middle
Signal	Duty Cycle 1:1

Frequency (MHz)	782.000000
Relative Permittivity (real part)	41.320574
Conductivity (S/m)	0.862373
Power Variation (%)	0.924535
Ambient Temperature	21.1
Liquid Temperature	21.2

Maximum location: X=-23.00, Y=-12.00

SAR Peak: 1.13 W/kg

SAR 10g (W/Kg)	0.840234
SAR 1g (W/Kg)	1.076303

0.00	4.00	9.00	14.00	19.00
1.1327	1.0983	0.9823	0.8007	0.5848
1.1-				
1.0-				
Ø 0.8-				
S 0.7		\wedge		
S 0.6-				
	6 8 10 12	14 16 18 20 22	24 26 28 30	
		Z (mm)		
	1.1327 1.1- 1.0- 0.9- 0.8- 0.8- 0.6- 0.5- 0.4-	1.1327 1.0983 1.11 1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.40 0.50 0.40 0.50 0.40 0.50 0.40 0.50 0.40 0.50 0.50 0.40 0.50 0.50 0.40 0.50 0.50 0.40 0.50 0.50 0.40 0.50 0.50 0.40 0.50 0.50 0.40 0.50 0.50 0.40 0.50 0.50 0.40 0.50 0.50 0.40 0.50 0.50 0.40 0.50 0.50 0.40 0.5	1.1327 1.0983 0.9823 1.1- 1.0- 0.9- 0.9- 0.8- 0.7- 0.6- 0.5- 0.4-	1.1327 1.0983 0.9823 0.8007

Type: Phone measurement (Complete)
Date of measurement: 02/01/2018

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.99; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt
Phantom	Right head
Device Position	Cheek
Band	LTE Band 17_RMC
Channels	QPSK, 10MHz, 1RB, Low
Signal	Duty Cycle 1:1

Frequency (MHz)	709.000000
Relative Permittivity (real part)	41.320574
Conductivity (S/m)	0.862373
Power Variation (%)	0.924535
Ambient Temperature	21.1
Liquid Temperature	21.2

Maximum location: X=-31.00, Y=-20.00

SAR Peak: 0.72 W/kg

SAR 10g (W/Kg)	0.563834
SAR 1g (W/Kg)	0.681953

Type: Phone measurement (Complete)
Date of measurement: 02/05/2018

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 5.64; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt
Phantom	Left head
Device Position	Cheek
Band	WiFi_802.11b
Channels	High
Signal	Duty Cycle 1:1

Frequency (MHz)	2462.000000
Relative Permittivity (real part)	38.153660
Conductivity (S/m)	1.740236
Power Variation (%)	3.234772
Ambient Temperature	21.1
Liquid Temperature	21.2

Maximum location: X=-39.00, Y=7.00

SAR Peak: 0.38 W/kg

SAR 10g (W/Kg)	0.088356
SAR 1g (W/Kg)	0.190792

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.3832	0.2086	0.0904	0.0389	0.0192
	0.38- 0.35- 0.30- 0.25- W 0.20- W 0.15- 0.10- 0.05- 0.01- 0 2	4 6 8 10 12	14 16 18 20 22 Z (mm)	24 26 28 30	

Type: Phone measurement (Complete)
Date of measurement: 02/01/2018

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 7.13; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt
Phantom	Flat Plane
Device Position	Front(Body-worn)
Band	GSM850
Channels	Middle
Signal	TDMA (Crest factor: 8.0)

Frequency (MHz)	836.600000
Relative Permittivity (real part)	54.851214
Conductivity (S/m)	0.951454
Power Variation (%)	0.901472
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=15.00, Y=47.00

SAR Peak: 0.93 W/kg

SAR 10g (W/Kg)	0.635102
SAR 1g (W/Kg)	0.894646

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.9309	0.7988	0.6590	0.5442	0.4496
	0.9-				
	-8.0				
	9 07				
	0.6-				
	¥ 0.6-				
	0.5-		\searrow		
	0.5				
	0.4-				
	0 2 4		14 16 18 20 22	24 26 28 30	
			Z (mm)		

Type: Phone measurement (Complete)
Date of measurement: 02/02/2018

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.55; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt
Phantom	Flat Plane
Device Position	Front(Body-worn)
Band	GSM1900
Channels	Low
Signal	TDMA (Crest factor: 8.0)

Frequency (MHz)	1850.200000
Relative Permittivity (real part)	52.420415
Conductivity (S/m)	1.501966
Power Variation (%)	1.474622
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=-9.00, Y=17.00

SAR Peak: 0.49 W/kg

SAR 10g (W/Kg)	0.180598
SAR 1g (W/Kg)	0.301627

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.4894	0.3189	0.1854	0.1122	0.0743
DIM (WING)	0.5- 0.4- 0.4- 0.3- 0.1- 0.1- 0.1- 0.2-4		14 16 18 20 22		0.0745
	U 2 4		Z (mm)	24 20 20 30	

Type: Phone measurement (Complete)
Date of measurement: 02/01/2018

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 7.13; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt
Phantom	Flat plane
Device Position	Front
Band	GPRS850_2TX
Channels	Low
Signal	Duty Cycle: 1:4

Frequency (MHz)	824.200000
Relative Permittivity (real part)	54.851214
Conductivity (S/m)	0.951454
Power Variation (%)	0.901472
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=-9.00, Y=31.00

SAR Peak: 1.17 W/kg

SAR 10g (W/Kg)	0.787083
SAR 1g (W/Kg)	1.019736

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	1.1674	1.0021	0.8236	0.6733	0.5464
	1.2-				
	1.1-				
	1.0-				
	҈9 0.9−				
	© 0.9-				
	S 0.7-				
	0.6-		\longrightarrow		
	0.5-				
	0.4-				
	Ó 2 4			24 26 28 30	
			Z (mm)		

Type: Phone measurement (Complete)
Date of measurement: 02/02/2018

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.55; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Flat plane	
Device Position	Front	
Band	GPRS1900_4TX	
Channels	Low	
Signal	Duty Cycle: 1:2	

Frequency (MHz)	1850.200000
Relative Permittivity (real part)	52.420415
Conductivity (S/m)	1.501966
Power Variation (%)	2.483762
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=-7.00, Y=22.00

SAR Peak: 0.67 W/kg

SAR 10g (W/Kg)	0.270136
SAR 1g (W/Kg)	0.439234

0.6685	0.4644	0.2907	0.1829	0.1174
7-				V-11/4
/./				
).6-	++++	++++		
\ <u></u>				
),5-				
).4-				
0.2-				
1	++++		+	
0 2 4 6	8 10 12 14	16 18 20 22 24	26 28 30	
	Z (m	m)		
).5-).4-).3-).2-	0.5-0.4-0.3-0.2-0.1-0.2-4 6 8 10 12 14	0.4-0.3-0.2-0.1-	0.3-0.2-0.1-0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Type: Phone measurement (Complete)
Date of measurement: 02/02/2018

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.55; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Flat Plane	
Device Position	Front	
Band	WCDMA1900_RMC	
Channels	Low	
Signal	Duty Cycle 1:1	

Frequency (MHz)	1852.400000
Relative Permittivity (real part)	52.420415
Conductivity (S/m)	1.501966
Power Variation (%)	1.163283
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=-7.00, Y=25.00

SAR Peak: 0.64 W/kg

SAR 10g (W/Kg)	0.257924
SAR 1g (W/Kg)	0.421250

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.6434	0.4476	0.2806	0.1766	0.1131
	0.6-				
	0.5-				
	0.4- 0.3-				
	₩ 0.3-	+ $+$ $+$ $+$	++++		
	0.2-				
	0.1				
	0.1-	6 8 10 12	14 16 18 20 22	24 26 28 30	
			Z (mm)		

Type: Phone measurement (Complete)
Date of measurement: 02/01/2018

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 7.13; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Flat Plane	
Device Position	Front	
Band	WCDMA850_RMC	
Channels	Low	
Signal	Duty Cycle 1:1	

Frequency (MHz)	826.400000
Relative Permittivity (real part)	54.851214
Conductivity (S/m)	0.951454
Power Variation (%)	2.341234
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=-10.00, Y=56.00

SAR Peak: 0.77 W/kg

SAR 10g (W/Kg)	0.475149
SAR 1g (W/Kg)	0.613178

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.7670	0.6373	0.5126	0.4233	0.3598
	0.8-				
	0.7-				
	₹ 0.6-	$\overline{}$			
	-9.0 SAR (W/kg)				
	SS 0.5-				
	0.4-				
	0.4				
	0.3-	6 8 10 12	14 16 18 20 22	24 26 20 20	
	0 2 4		Z (mm)	24 20 28 30	
			~ v,		

Type: Phone measurement (Complete)
Date of measurement: 02/02/2018

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.55; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt
Phantom	Flat Plane
Device Position	Front
Band	LTE Band 2_RMC
Channels	QPSK, 20MHz, 1RB, Low
Signal	Duty Cycle 1:1

Frequency (MHz)	1860.000000
Relative Permittivity (real part)	52.420415
Conductivity (S/m)	1.501966
Power Variation (%)	1.327810
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=-6.00, Y=17.00

SAR Peak: 0.80 W/kg

SAR 10g (W/Kg)	0.309088	
SAR 1g (W/Kg)	0.513641	

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.8013	0.5442	0.3297	0.2000	0.1237
	0.8-				
	0.7-				
	0.6-				
	0.4- 0.4- 0.3-	\overline{N}			
	≥ 0.4-				
	[∞] 0.3-				
	0.2-				
	0.1-				
				24 26 28 30	
			Z (mm)		

Type: Phone measurement (Complete)
Date of measurement: 02/02/2018

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.06; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt
Phantom	Flat Plane
Device Position	Front
Band	LTE Band 4_RMC
Channels	QPSK, 20MHz, 1RB, High
Signal	Duty Cycle 1:1

Frequency (MHz)	1745.000000
Relative Permittivity (real part)	51.224510
Conductivity (S/m)	1.461261
Power Variation (%)	0.858383
Ambient Temperature	21.1
Liquid Temperature	21.2

Maximum location: X=-10.00, Y=16.00

SAR Peak: 0.51 W/kg

SAR 10g (W/Kg)	0.205555
SAR 1g (W/Kg)	0.333286

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.5077	0.3510	0.2185	0.1370	0.0879
	0.5- 0.4- 0.3- 0.1- 0.1- 0 2 4		14 16 18 20 22 Z (mm)	24 26 28 30	

Type: Phone measurement (Complete)
Date of measurement: 02/01/2018

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 7.13; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt
Phantom	Flat Plane
Device Position	Front
Band	LTE Band 5_RMC
Channels	QPSK, 10MHz, 1RB, Low
Signal	Duty Cycle 1:1

Frequency (MHz)	829.000000
Relative Permittivity (real part)	54.851214
Conductivity (S/m)	0.951454
Power Variation (%)	1.037332
Ambient Temperature	21.1
Liquid Temperature	21.2

Maximum location: X=-16.00, Y=51.00 SAR Peak: 0.57 W/kg

SAR 10g (W/Kg)	0.372184
SAR 1g (W/Kg)	0.476847

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.5718	0.4936	0.4097	0.3396	0.2808
	0.57-				
	0.50- (5 0.45- 0.40- WW 0.35- 0.30-				
	0.23	4 6 8 10 12	14 16 18 20 22	24 26 28 30	
			Z (mm)	2. 25 20 00	

Type: Phone measurement (Complete)
Date of measurement: 02/01/2018

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 7.28; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt
Phantom	Flat Plane
Device Position	Front
Band	LTE Band 12_RMC
Channels	QPSK, 10MHz, 1RB, Low
Signal	Duty Cycle 1:1

Frequency (MHz)	704.000000
Relative Permittivity (real part)	54.964739
Conductivity (S/m)	0.931048
Power Variation (%)	3.672346
Ambient Temperature	21.1
Liquid Temperature	21.2

Maximum location: X=15.00, Y=46.00

SAR Peak: 0.89 W/kg

SAR 10g (W/Kg)	0.597735
SAR 1g (W/Kg)	0.749033

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.8900	0.7539	0.6156	0.5081	0.4240
	0.9-				
	0.8-				
	⊚ 0.7-				
	SAR (W/kg)				
	SAR				
	0.5		$\overline{}$		
	0.4-				
	0.4-			1 1 1	
	0 2		14 16 18 20 22 Z (mm)	24 26 28 30	
			_ (mm)		

Type: Phone measurement (Complete)
Date of measurement: 02/01/2018

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 7.28; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Flat Plane	
Device Position	Front	
Band	LTE Band 13_RMC	
Channels	QPSK, 10MHz, 1RB, Middle	
Signal	Duty Cycle 1:1	

Frequency (MHz)	782.000000
Relative Permittivity (real part)	54.964739
Conductivity (S/m)	0.931048
Power Variation (%)	3.017812
Ambient Temperature	21.1
Liquid Temperature	21.2

 $Maximum\ location:\ X{=}\text{-}15.00,\ Y{=}40.00$

SAR Peak: 0.95 W/kg

SAR 10g (W/Kg)	0.673085
SAR 1g (W/Kg)	0.858495

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.9498	0.8427	0.7147	0.5941	0.4823
	0.9- 0.9-				
	0.8	+			
	0.7- 0.6-	$+\mathcal{N}$			
	0.5-				
	0.4-			24 26 28 30	
			Z (mm)		

Type: Phone measurement (Complete)
Date of measurement: 02/01/2018

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 7.28; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt
Phantom	Flat Plane
Device Position	Front
Band	LTE Band 17_RMC
Channels	QPSK, 10MHz, 1RB, Low
Signal	Duty Cycle 1:1

Frequency (MHz)	709.000000
Relative Permittivity (real part)	54.964739
Conductivity (S/m)	0.931048
Power Variation (%)	3.108329
Ambient Temperature	21.1
Liquid Temperature	21.2

Maximum location: X=15.00, Y=48.00

SAR Peak: 0.82 W/kg

SAR 10g (W/Kg)	0.560015	
SAR 1g (W/Kg)	0.719034	

0.00	4.00	9.00	14.00	19.00
0.8234	0.7052	0.5808	0.4795	0.3964
0.8-				
0.7-				
₹ 0.6-				
A OF				
0, 0.5				
0.4-				
0.3-				
0 2 4	6 8 10 12	14 16 18 20 22	24 26 28 30	
		Z (mm)		
	0.8234 0.8- 0.7- 0.7- 0.6- 0.5- 0.4- 0.3-	0.8234 0.7052 0.8 0.7 0.7 0.6 0.5 0.4 0.3 0.2 4 6 8 10 12	0.8234 0.7052 0.5808 0.8 0.7 0.7 0.6 0.4 0.3	0.8234 0.7052 0.5808 0.4795 0.8 0.7 0.7 0.5 0.6 0.5 0.4 0.3 0.2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Type: Phone measurement (Complete)
Date of measurement: 02/05/2018

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 5.80; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Flat Plane	
Device Position	Back	
Band	WiFi_802.11b	
Channels	High	
Signal	Duty Cycle 1:1	

Frequency (MHz)	2462.000000
Relative Permittivity (real part)	52.010212
Conductivity (S/m)	1.910255
Power Variation (%)	2.492743
Ambient Temperature	21.1
Liquid Temperature	21.2

Maximum location: X=8.00, Y=-6.00 SAR Peak: 0.20 W/kg

SAR 10g (W/Kg)	0.052731	
SAR 1g (W/Kg)	0.104501	

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.1948	0.1121	0.0533	0.0253	0.0132
	0.195-				
	0.175	++++			
	0.150-				
	♀ 0.125-	++++			
	© 0.125- 0.100-				
	W 0.075-				
	0.050-				
	0.035		\downarrow \mid \mid \mid \mid		
	0.023				
	0 2	4 6 8 10 12		24 26 28 30	
			Z (mm)		

Type: Phone measurement (Complete)
Date of measurement: 02/01/2018

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.93; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Flat Plane	
Device Position	Front	
Band	GPRS850_2TX	
Channels	Low	
Signal	Duty Cycle: 1:4	

Frequency (MHz)	824.200000
Relative Permittivity (real part)	41.110245
Conductivity (S/m)	0.871245
Power Variation (%)	1.502922
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=-13.00, Y=42.00

SAR Peak: 0.48 W/kg

SAR 10g (W/Kg)	0.347801	
SAR 1g (W/Kg)	0.436887	

0.00	4.00	9.00	14.00	19.00
0.4780	0.4269	0.3651	0.3058	0.2500
0.48-				
0.45		++++		
0.40				
9 0.40				
₹ 0.35-				
K 0.30-				
0.25				
0.20-				
	4 6 8 10 12	14 16 18 20 22	24 26 28 30	
		Z (mm)		
	0.4780 0.48- 0.45- 0.40- (5y) 0.35- W 0.35- 0.25- 0.20-	0.4780 0.4269 0.48 0.45 0.40 0.35 0.25 0.20 0.20 0.2 4 6 8 10 12	0.4780 0.4269 0.3651 0.48 0.45 0.40 0.40 0.35 0.30 0.25 0.20	0.4780 0.4269 0.3651 0.3058 0.48 0.40 0.40 0.30 0.30 0.25 0.20 0

Type: Phone measurement (Complete)
Date of measurement: 02/02/2018

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.35; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt
Phantom	Flat Plane
Device Position	Front
Band	GPRS1900_4TX
Channels	Low
Signal	Duty Cycle: 1:2

Frequency (MHz)	1850.200000	
Relative Permittivity (real part)	38.560124	
Conductivity (S/m)	1.380369	
Power Variation (%)	1.503921	
Ambient Temperature	21.1	
Liquid Temperature	21.3	

Maximum location: X=-1.00, Y=18.00

SAR 10g (W/Kg)	0.089667
SAR 1g (W/Kg)	0.148770

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.2307	0.1576	0.0958	0.0579	0.0351
	0.231-				
	0.200-				
	0.175-				
		\longrightarrow			
	Ø 0.150- 0.125-	+ $+$ $+$ $+$ $+$			
	K 0.100-	+++++			
	0.075	+++			
	0.050 -				
	0.020	+ + + + + + + + + + + + + + + + + + + +	 	-	
	0 2	4 6 8 10 12		24 26 28 30	
			Z (mm)		

Type: Phone measurement (Complete)
Date of measurement: 03/23/2018

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 7.13; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt		
Phantom	Flat Plane		
Device Position	Back(Body-worn)		
Band	GSM850		
Channels	Low		
Signal	TDMA (Crest factor: 8.0)		

Frequency (MHz)	824.200000
Relative Permittivity (real part)	54.851214
Conductivity (S/m)	0.951454
Power Variation (%)	0.901472
Ambient Temperature	21.1
Liquid Temperature	21.3

 $Maximum\ location:\ X=9.00,\ Y=57.00$

SAR Peak: 0.49 W/kg

SAR 10g (W/Kg)	0.252383
SAR 1g (W/Kg)	0.357853

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.4869	0.3716	0.2673	0.1976	0.1517
, 6/	0.49- 0.45- 0.40- (SW 0.35- 0.30- 0.30- 0.25- 0.20- 0.15- 0.12-		14 16 18 20 22 Z (mm)		

Type: Phone measurement (Complete)
Date of measurement: 03/23/2018

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.55; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt		
Phantom	Flat Plane		
Device Position	Back(Body-worn)		
Band	GSM1900		
Channels	Low		
Signal	TDMA (Crest factor: 8.0)		

Frequency (MHz)	1850.200000
Relative Permittivity (real part)	52.420415
Conductivity (S/m)	1.501966
Power Variation (%)	1.474622
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=14.00, Y=-17.00

SAR Peak: 0.12 W/kg

SAR 10g (W/Kg)	0.037353
SAR 1g (W/Kg)	0.068275

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.1373	0.0708	0.0326	0.0173	0.0088
	0.14- 0.12- 0.10- 0.08- 0.06- 0.04- 0.02- 0.00- 0 2		14 16 18 20 22 Z (mm)	24 26 28 30	

Type: Phone measurement (Complete)
Date of measurement: 03/23/2018

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.55; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Flat Plane	
Device Position	Back	
Band	WCDMA1900_RMC	
Channels	Low	
Signal	Duty Cycle 1:1	

Frequency (MHz)	1852.400000
Relative Permittivity (real part)	52.420415
Conductivity (S/m)	1.501966
Power Variation (%)	1.163283
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=15.00, Y=-14.00

SAR Peak: 0.22 W/kg

SAR 10g (W/Kg)	0.066477	
SAR 1g (W/Kg)	0.123031	

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.2214	0.1298	0.0630	0.0300	0.0150
	0.22- 0.20- 0.15- 0.10- 0.05- 0.01- 0 2		14 16 18 20 22 Z (mm)	24 26 28 30	

Type: Phone measurement (Complete)
Date of measurement: 03/23/2018

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 7.13; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Flat Plane	
Device Position	Back	
Band	WCDMA850_RMC	
Channels	Low	
Signal	Duty Cycle 1:1	

Frequency (MHz)	826.400000
Relative Permittivity (real part)	54.851214
Conductivity (S/m)	0.951454
Power Variation (%)	2.341234
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=16.00, Y=64.00

SAR Peak: 0.44 W/kg

SAR 10g (W/Kg)	0.236466	
SAR 1g (W/Kg)	0.330813	

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.4395	0.3444	0.2551	0.1923	0.1483
	0.44-				
	0.40-				
	0.35	++++	++++		
	0.30	\rightarrow			
	₹ 0.25-				
	S				
	0.20				
	0.15-				
	0.11-	4 6 8 10 12	14 16 18 20 22	24 26 28 30	
			Z (mm)		
			2 (11111)		

Type: Phone measurement (Complete)
Date of measurement: 03/23/2018

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.55; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Flat Plane	
Device Position	Back	
Band	LTE Band 2_RMC	
Channels	QPSK, 20MHz, 1RB, Low	
Signal	Duty Cycle 1:1	

Frequency (MHz)	1860.000000
Relative Permittivity (real part)	52.420415
Conductivity (S/m)	1.501966
Power Variation (%)	1.327810
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=15.00, Y=-16.00

SAR Peak: 0.20 W/kg

SAR 10g (W/Kg)	0.060269
SAR 1g (W/Kg)	0.110860

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.1985	0.1168	0.0572	0.0276	0.0140
	0.198- 0.175- 0.150- 0.150- 0.125- 0.100- WW 0.075- 0.050- 0.025- 0.007- 0 2	4 6 8 10 12	14 16 18 20 22 Z (mm)	24 26 28 30	

Type: Phone measurement (Complete)
Date of measurement: 03/23/2018

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.06; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Flat Plane	
Device Position	Back	
Band	LTE Band 4_RMC	
Channels	QPSK, 20MHz, 1RB, High	
Signal	Duty Cycle 1:1	

Frequency (MHz)	1745.000000
Relative Permittivity (real part)	51.224510
Conductivity (S/m)	1.461261
Power Variation (%)	0.858383
Ambient Temperature	21.1
Liquid Temperature	21.2

Maximum location: X=8.00, Y=-17.00

SAR Peak: 0.08 W/kg

SAR 10g (W/Kg)	0.025191
SAR 1g (W/Kg)	0.045070

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.1393	0.0469	0.0158	0.0125	0.0058
	0.14- 0.12- 0.10- 0.08- 0.06- 0.04- 0.02- 0.01- 0 2	4 6 8 10 12	14 16 18 20 22 Z (mm)	24 26 28 30	

Type: Phone measurement (Complete)
Date of measurement: 03/23/2018

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 7.13; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Flat Plane	
Device Position	Back	
Band	LTE Band 5_RMC	
Channels	QPSK, 10MHz, 1RB, Low	
Signal	Duty Cycle 1:1	

Frequency (MHz)	829.000000
Relative Permittivity (real part)	54.851214
Conductivity (S/m)	0.951454
Power Variation (%)	1.037332
Ambient Temperature	21.1
Liquid Temperature	21.2

Maximum location: X=21.00, Y=64.00

SAR Peak: 0.27 W/kg

SAR 10g (W/Kg)	0.149315
SAR 1g (W/Kg)	0.208074

0.2727			14.00	19.00
0.2736	0.2171	0.1627	0.1229	0.0938
0.274-				
0.250-				
0.225				
0.200-				
	4 6 8 10 12	14 16 18 20 22	24 26 28 30	
		Z (mm)		
	0.250	0.250 - 0.225 - 0.200 - 0.175 - 0.150 - 0.125 - 0.100 - 0.071 -	0.250- 0.225- 0.200- 0.175- 0.150- 0.125- 0.100- 0.071- 0 2 4 6 8 10 12 14 16 18 20 22	0.250- 0.225- 0.200- 0.175- 0.150- 0.125- 0.100- 0.071- 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Type: Phone measurement (Complete)
Date of measurement: 03/23/2018

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 7.28; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Flat Plane	
Device Position	Back	
Band	LTE Band 12_RMC	
Channels	QPSK, 10MHz, 1RB, Low	
Signal	Duty Cycle 1:1	

Frequency (MHz)	704.000000
Relative Permittivity (real part)	54.964739
Conductivity (S/m)	0.931048
Power Variation (%)	3.672346
Ambient Temperature	21.1
Liquid Temperature	21.2

Maximum location: X=18.00, Y=54.00

SAR Peak: 0.55 W/kg

SAR 10g (W/Kg)	0.333255	
SAR 1g (W/Kg)	0.453456	

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.5482	0.4468	0.3458	0.2688	0.2099
	0.55-				
	0.50-		++++		
	0.45-				
	② 0.40- 0.35-				
	S 0.30				
	0.25-		\downarrow		
	0.20-				
	0.16-			-	
	0 2		14 16 18 20 22	24 26 28 30	
			Z (mm)		

Type: Phone measurement (Complete)
Date of measurement: 03/23/2018

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 7.28; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Flat Plane	
Device Position	Back	
Band	LTE Band 13_RMC	
Channels	QPSK, 10MHz, 1RB, Middle	
Signal	Duty Cycle 1:1	

Frequency (MHz)	782.000000
Relative Permittivity (real part)	54.964739
Conductivity (S/m)	0.931048
Power Variation (%)	3.017812
Ambient Temperature	21.1
Liquid Temperature	21.2

Maximum location: X=8.00, Y=56.00 SAR Peak: 0.35 W/kg

SAR 10g (W/Kg)	0.210902	
SAR 1g (W/Kg)	0.290514	

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.3541	0.2868	0.2198	0.1686	0.1295
	0.35-				
	0.30				
	9,025				
	8 0.25				
	0.25- W.VV 0.20-				
			\downarrow		
	0.15-				
	0.10			+++-	
		4 6 8 10 12		24 26 28 30	
			Z (mm)		

Report No.: STR18018288H Page 200 of 219 SAR Report

Type: Phone measurement (Complete)
Date of measurement: 03/23/2018

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 7.28; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Flat Plane	
Device Position	Back	
Band	LTE Band 17_RMC	
Channels	QPSK, 10MHz, 1RB, Low	
Signal	Duty Cycle 1:1	

Frequency (MHz)	709.000000
Relative Permittivity (real part)	54.964739
Conductivity (S/m)	0.931048
Power Variation (%)	3.108329
Ambient Temperature	21.1
Liquid Temperature	21.2

Maximum location: X=8.00, Y=50.00 SAR Peak: 0.58 W/kg

SAR 10g (W/Kg)	0.353086	
SAR 1g (W/Kg)	0.481430	

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.5840	0.4745	0.3659	0.2836	0.2209
	0.58-				
	0.55				
	0.50-		++++		
	0.45				
	0.45-				
	₹ 0.40-				
	W 0.35-				
	o 0.30-		\leftarrow		
	0.25-		$\overline{}$		
	0.17-				
	0 2			24 26 28 30	
			Z (mm)		

Type: Phone measurement (Complete)
Date of measurement: 03/23/2018

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 5.80; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Flat Plane	
Device Position	Back	
Band	WiFi_802.11b	
Channels	High	
Signal	Duty Cycle 1:1	

Frequency (MHz)	2462.000000
Relative Permittivity (real part)	52.010212
Conductivity (S/m)	1.910255
Power Variation (%)	2.492743
Ambient Temperature	21.1
Liquid Temperature	21.2

Maximum location: X=24.00, Y=9.00 SAR Peak: 0.13 W/kg

SAR 10g (W/Kg)	0.028008	
SAR 1g (W/Kg)	0.061405	

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.1337	0.0656	0.0241	0.0092	0.0052
	0.13- 0.12- 0.10- 0.08- 0.06- 0.04- 0.02- 0.00- 0 2	4 6 8 10 12	14 16 18 20 22 Z (mm)	24 26 28 30	

Type: Phone measurement (Complete)
Date of measurement: 03/23/2018

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 7.13; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Flat plane	
Device Position	Front	
Band	GPRS850_2TX	
Channels	Low	
Signal	Duty Cycle: 1:4	

Frequency (MHz)	824.200000
Relative Permittivity (real part)	54.851214
Conductivity (S/m)	0.951454
Power Variation (%)	0.901472
Ambient Temperature	21.1
Liquid Temperature	21.3

Maximum location: X=-10.00, Y=40.00

SAR Peak: 1.46 W/kg

SAR 10g (W/Kg)	0.792748
SAR 1g (W/Kg)	0.993251

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	1.3215	1.1105	0.8311	0.6222	0.4855
	1.3-				
	1.2-				
	g 1.0-				
	SAR (W/kg)				
	AR 0.0				
	0.6-		+		
	0.3-				
	0 2 4		14 16 18 20 22	24 26 28 30	
			Z (mm)		

Type: Phone measurement (Complete)
Date of measurement: 03/23/2018

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.99; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Left head	
Device Position	Cheek	
Band	LTE Band 13_RMC	
Channels	QPSK, 10MHz, 1RB, Middle	
Signal	Duty Cycle 1:1	

Frequency (MHz)	782.000000
Relative Permittivity (real part)	41.540791
Conductivity (S/m)	0.850214
Power Variation (%)	0.978483
Ambient Temperature	21.1
Liquid Temperature	21.2

SAR Peak: 1.04 W/kg

SAR 10g (W/Kg)	0.850302	
SAR 1g (W/Kg)	1.047763	

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	1.0388	1.0625	0.9984	0.8426	0.6305
	1.1-				
	1.0-				
	0.9-	++			
	-8.0 (W/kg)		$ \mathbf{X} $		
	W 0.7-				
	0.6-				
	0.5-		+++		
	0.4-		\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	<u> </u>	
	0 2 4			24 26 28 30	
			Z (mm)		

Type: Phone measurement (Complete)
Date of measurement: 03/23/2018

Measurement duration: 12 minutes 3 seconds

E-field Probe: SSE5 - SN 09/13 EP168; ConvF: 6.93; Calibrated: 06/01/2017

A. Experimental conditions

Area Scan	sam_direct_droit2_surf8mm.txt	
Phantom	Flat Plane	
Device Position	Front	
Band	GPRS850_2TX	
Channels	Low	
Signal	Duty Cycle: 1:4	

Frequency (MHz)	824.200000
Relative Permittivity (real part)	41.320191
Conductivity (S/m)	0.880182
Power Variation (%)	1.483989
Ambient Temperature	21.1
Liquid Temperature	21.3

 $\label{eq:maximum location: X=9.00, Y=-11.00} Maximum location: X=9.00, Y=-11.00$

SAR Peak: 0.53 W/kg

SAR 10g (W/Kg)	0.170965	
SAR 1g (W/Kg)	0.315174	

Z (mm)	0.00	4.00	9.00	14.00	19.00
SAR (W/Kg)	0.5272	0.3250	0.1733	0.0953	0.0579
	0.5-				
	0.4-				
	<u> </u>				
	€ 0.3-	$\overline{}$			
	0.3- 0.2-				
	0.2				
	0.1-	+++			
	0.0-			-	
	0 2 4		14 16 18 20 22	24 26 28 30	
			Z (mm)		

Annex C. EUT Photos

EUT View Front

EUT View Back

Antenna View

Annex D. Test Setup Photos

Head Exposure Conditions

Tilt

Cheek

Tilt

Body-worn mode Exposure Conditions (with belt-clip)

Hotspot mode Exposure Conditions

Body Front

Body Left

Body Right

Body Top

Front-of the face mode Exposure Conditions

Front

Model: T320

Annex E. Calibration Certificate

Please refer to the exhibit for the calibration certificate

***** END OF REPORT *****