

Klassifikation von Erkrankungen der Retina anhand von OCT Bildern

18. Juli 2018

TU Dortmund Physik

Aufgabenstellung

Fragestellung

Lässt sich der Zustand einer menschlichen Retina anhand von OCT-Bildern in die 4 Klassen

[NORMAL, CNV, DRUSEN, DME]

einteilen und somit eine Diagnose mit Hilfe von ML stellen? choroidal neovascularization, macular edema, drusen

- CNV: Bildung neuer Blutgefäße im Auge
- DRUSEN: Ablagerung von proteinhaltigem Material, das verkalkt
- DME: Ansammlung extrazellulärer Flüssigkeit im Bereich des menschlichen Auges
- optical coherence tomography: hoch auflösende Bildgebung von Retina Querschnitten lebender Patienten
- Analyse durch erfahrenen Mediziner notwendig
- Idee: Methoden maschinellen Lernens um Krankheiten zu erkennen

Datensatz

■ Inhalt: 84,495 Röntgen Bilder (500 × 500px JPEG) aufgeteilt in 4 Klassen (Erkrankungen + gesund)

Verteilung auf die Klassen

Architektur des Netzes

- 2 (Convolutional 2D layer + MaxPooling2D layer) Pakete (64/32 Filter)
- Kernel sizes: (4, 4) / (3, 3)

Übergang zu Fully connected layern

- Dropout mit rate=0.25
- Dense layer: Aktivierungsfunktion **elu**
- Filter: 1000, 250, 100, 32, 4
- Unterbrochen von einem flatten layer und weiterem Dropout (rate=0.5)
- Output layer: 4 Filter mit Aktivierungsfunktion softmax

Architektur des Netzes

Layer (type)	Output Shape	Anzahl Parameter
Conv 2D	(None, 199, 199, 64)	1088
Max Pooling 2D	(None, 66, 66, 64)	0
Conv 2D	(None, 32, 32, 32)	32800
Max Pooling 2D	(None, 10, 10, 32)	0
Dropout	(None, 10, 10, 32)	0
Dense	(None, 10, 10, 1000)	33000
Dense	(None, 10, 10, 250)	250250
Flatten	(None, 25000)	0
Dense	(None, 100)	2500100
Dropout	(None, 100)	0
Dense	(None, 32)	3232
Dense	(None, 4)	132
Total		2820602

Ergebnisse Convolutional network

Ergebnisse Convolutional network

Ergebnisse Convolutional network

Alternative Methode

- Datenvorbereitung:
 - Gelabelte Bilder (50,100) in hdf5-Format abgespeichert
 - Feinere Krönung bringt keine Verbesserung!
 - Gewichte für jedes Bild ⇒ Ausgleich der Unterschiede der Klassenmenge
- · Drei Ansätze:
 - Füttere Pixel nacheinander ins neuronale Netz (⇒ (zu) viele Inputfeature Bilder größer als (50,100))
 - Berechne sowohl in x- und y-Richtung die Mittelwerte aller Pixel einer Linie ((100,100) Bild \rightarrow 200 Werte)
 - Definiere Fenster und berechne Mittelwerte der im Fenster liegenden Pixel ((50,100) abgerastert mit (2,4) Fenster ⇒ 625 Inputfeature)
- Letzte Methode am vielversprechendsten!
- · Werte eines Bildes werden auf den maximalen Wert eines Bildes normiert

Referenzstruktur des Neuronalen Netzes

- Vollständig vernetztes NN bestehend aus Dense Layer
- Festgelegte Referenzstruktur ⇒
- · Dropoutrates:
 - Nach 1. Layer: 0.5
 - Nach 2. Layer: 0.4
 - Nach 3. Layer: 0.3
 - Nach 4. Laver: 0.2
 - Nach 5. Layer: 0.2
- Aktivierungsfunktionen:
 - Hidden Layer: relu
 - Outputlayer: softmax
- Loss-Funktion: Kategorische Entropie
- Adam mit angepasster Lernrate von 0.0001 als Optimierer

Performance des Referenznetzes

- Trainingsdatensatz: 67.5 % des Datensatzes
- Validierungsdatensatz: $25\,\%$ des Datensatzes
- Testdatensatz: 7.5 % des Datensatzes

- Sättigung ab ca. 80 Epochen auf dem Validierungsdatensatz
- Erreicht ca. $71\,\%$ Genauigkeit beim Validierungsdatensatz

Performance des Referenznetzes

- ⇒ Gute Unterscheidung zwischen kranken und gesunden Augen möglich
- ⇒ Ähnliche Struktur der Verwirrungsmatrix wie bei nomineller Methode

Laufende Grid Search

- · Optimierungsparameter:
 - Batchgröße: 50, 64, 100, 128, 256, 512
 - Aktivierungsfunktion: elu oder relu
 - Outputaktivierungsfunktion: softmax oder sigmoid
 - Layerstruktur (Dropout & Dense)
- ⇒ 120 verschiedene Netwerkkonfigurationen werden getestet
 - Modelle in .json und trainierte Gewichte in .hdf5 Files abgespeichert
 - Erste Prognose: ca. 78 % ist drin