Machines de Turing

variantes

Plusieurs bandes (k), une tête :

$$T: Q \times V^k \to V^k \times \{ \lhd, \triangledown, \rhd \} \times Q$$

- Mot à reconnaître sur bande 1
- Entrée/sortie de fonction sur bande 1

Simulation par MT à 1 bande : contenu des k bandes sur k cases...

k lectures : $(q, \alpha) \mapsto (\alpha, \triangleright, q_{\alpha})$

$$(q_w, \alpha) \mapsto (\alpha, \triangleright, q_{w\alpha})$$

In fine : q_v où $v = \alpha_1 \cdots \alpha_k$: mot sur k symboles des k bandes

- $T(q, \alpha_1 \cdots \alpha_k)$ non défini : Retour sur k cases et arrêt
- $T(q, \alpha_1 \cdots \alpha_k) = (\beta_1 \cdots \beta_k, \blacktriangle, q')$
 - 1. Retour sur k cases avec écriture des β_i (de droite à gauche)
 - 2. Déplacement de k cases selon \blacktriangle 3. Passage à q'

XU - UCBL1 - M1if09 2020/2021

UN JEU DE SLIDES N'EST PAS UN POLY DE RÉFÉRENCE 23

Machines de Turing

variantes

Plusieurs bandes (k), plusieurs têtes (k):

$$T:Q\times V^k\to V^k\times \{\lhd,\triangledown,\rhd\}^k\times Q$$

- Mot à reconnaître sur bande 1
- Entrée/sortie de fonction sur bande 1

Simulation par MT à k bandes et 1 tête : case présence + case contenu... Lecture de la totalité des bandes par transition (marqueur à gauche)

- Lecture complète, mémorisation dans état
- Si arrêt : remettre tête à la bonne place (position tête 1)
- Sinon : parcours droite-gauche complet avec écritures idoines
- Passage dans l'état adéquat

XU - UCBL1 - M1if09 2020/2021

Un jeu de slides n'est pas un poly de référence 24

Machines de Turing

clôtures

Proposition.

Si L_1 et L_2 récursifs alors :

- $L_1 \cup L_2$ récursif
- $L_1 \cap L_2$ récursif
- $\overline{L_1}$ récursif

Proposition.

Si L_1 et L_2 r.é. :

- $L_1 \cup L_2$ r.é.
- $L_1 \cap L_2$ r.é.

Proposition.

Si L et \overline{L} r.é. alors L récursif

Machines de Turing

machine universelle

Question : \exists ? MT répondant à $w, L \mapsto w \in L$?

Description de MT : avec langage sur $\{q_i \ldots, \triangleright, \lhd, 0, 1 \ldots\}$ \leadsto mot $\langle \mathcal{M} \rangle$

Considérer $\langle \mathcal{M} \rangle$ comme une entrée pour une MT \rightsquigarrow calculer et décider propriétés sur MT simples...

 \mathcal{M}_u : 3 bandes

- b_1 : $\langle \mathscr{M} \rangle$ puis w
- b_2 : bande de travail de ${\mathscr M}$
- b_3 : état courant de \mathcal{M}

Machines de Turing

machine universelle

Exécution de \mathcal{M}_u :

- 1. Copie de q_0 sur b_3
- 2. Copie de $w \sin b_2$
- 3. Boucle:
 - (a) Recherche dans $\langle \mathcal{M} \rangle$ de transitions pour état en b_3
 - (b) Recherche de la transition pour mot en b_2 (évt sortir)
 - (c) Écriture sur b_2 , écriture état sur b_3
- 4. Copie de b_2 sur b_1 (pour fonction)
- 5. Test état b_3 acceptant (pour décision)

XU - UCBL1 - M1if09 2020/2021

UN JEU DE SLIDES N'EST PAS UN POLY DE RÉFÉRENCE 27

Machines de Turing

machine universelle

Proposition.

Appartenance à un langage défini par MT est semi-décidable

XU - UCBL1 - M1if09 2020/2021

Un jeu de slides n'est pas un poly de référence 28

Machines de Turing

énumérateur

Machine à 2 bandes

1. Bande de sortie tête vers droite uniquement

2. Bande de travail

Exécution $\leadsto \cdots \mathtt{BB} w_1 \mathtt{B} w_2 \mathtt{B} w_3 \cdots$ pas canonique

Proposition.

L semi-décidable si et seulement s'il existe énumérateur

Machines de Turing

Codage en binaire → ordre « canonique »

 \leadsto Ordonner les w

 \rightsquigarrow Ordonner les MT (en fonction de $\langle \mathcal{M} \rangle$)

 $\underline{L_d} = \{ w_i \mid w_i \not\in \mathcal{L}(\mathcal{M}_i) \}$

Proposition.

 L_d non récursivement énumérable.

langage diagonal

(codes vus comme entiers)

 w_i

 \mathcal{M}_i si $\langle \mathcal{M}_i \rangle_{10} = i$

XU - UCBL1 - M1if09 2020/2021

Machines de Turing

arrêt

Données : MT simple \mathcal{M} , mot w, question : arrêt de \mathcal{M} sur w ?

Proposition.

Arrêt: semi-décidable.

Proposition.

Arrêt: non décidable. (Turing 1936)

XU - UCBL1 - M1if09 2020/2021

Problèmes de décision

réduction

 P_1 réduit à P_2 si méthode de décision de P_1 à partir de méthode de décision de P_2 .

 L_1, L_2 langages, réduction de L_1 à L_2 : fonction Turing-calc. totale f t. q.

 $w \in L_1$ ssi $f(w) \in L_2$

Proposition.

 $L_1 \rightsquigarrow L_2$ et L_2 réc. alors L_1 réc.

Proposition.

 $P_1 \rightsquigarrow P_2$ et P_1 indécidable alors P_2 indécidable.

UN JEU DE SLIDES N'EST PAS UN POLY DE RÉFÉRENCE 31

XU - UCBL1 - M1if09 2020/2021

UN JEU DE SLIDES N'EST PAS UN POLY DE RÉFÉRENCE 32

Problèmes de décision

vacuité

Données : MT simple \mathcal{M} , question : $\mathcal{L}(\mathcal{M}) = \emptyset$?

Proposition.

Problème de vacuité : indécidable.

Preuve : par réduction du problème de l'arrêt.

Et même: non semi-décidable.

Problèmes de décision

égalité de r.é.

Données : MT simples \mathcal{M}_1 et \mathcal{M}_2 , question : $\mathcal{L}(\mathcal{M}_1) = \mathcal{L}(\mathcal{M}_2)$?

Proposition.

Problème de l'égalité de langages r.é. : indécidable.

Preuve : par réduction du problème de la vacuité.

Et même: non semi-décidable.

Problèmes de décision égalité de fonctions T.-c.

Données : fonctions T-calculables f et g, question : $\forall x, f(x) = g(x)$?

Proposition.

Problème de l'égalité de fonctions Turing-calculables : indécidable.

Preuve : par réduction du problème de l'égalité de langages r.é.

Et même : non semi-décidable.

XU - UCBL1 - M1if09 2020/2021

Un jeu de slides n'est pas un poly de référence 35

Problèmes de décision

Rice

Propriété P triviale (pour E) si

- $\forall x \in E, P(x)$ ou bien
- $\forall x \in E, \neg P(x)$.

Théorème (Rice, 1951)

(H. G. Rice, 1920 - 2003)

P non triviale sur langages r.é., alors P indécidable.

Données : machine \mathscr{M} , question : $P(\mathcal{L}(\mathscr{M}))$?

Preuve : par réduction du problème de l'arrêt.

XU - UCBL1 - M1if09 2020/2021

Un jeu de slides n'est pas un poly de référence 36

Problèmes de décision

 $P \subseteq \mathscr{RE}$ non trivial : $P \neq \mathscr{RE}$ $P \neq \emptyset$

- $\emptyset \notin P$ \leadsto $L \neq \emptyset \in P$ et réduction de $L_u \ldots$ indéc.
- $\emptyset \in P \implies \overline{P}$ indéc. mais $\overline{L_p} = L_{\overline{p}}$ et $\overline{L_p}$ non réc. donc $L_{\overline{p}}$ non rec, donc L_p non réc.

Rice

XU - UCBL1 - M1if09 2020/2021

Un jeu de slides n'est pas un poly de référence 37

XU - UCBL1 - M1if09 2020/2021

Un jeu de slides n'est pas un poly de référence 37