TABLE 15.10 Estimation Results for Exercise 15.6

		Department and Services of the product of the control of the contr													
	(1) OLS 1987	(2) OLS 1988	(3) FE	(4) FE Robust	(5) RE										
C	0.9348	0.8993	1.5468	1.5468	1.1497										
	(0.2010)	(0.2407)	(0.2522)	(0.2688)	(0.1597)										
EXPER	0.1270	0.1265	0.0575	0.0575	0.0986										
	(0.0295)	(0.0323)	(0.0330)	(0.0328)	(0.0220)										
EXPER ²	-0.0033	-0.0031	-0.0012	-0.0012	-0.0023										
	(0.0011)	(0.0011)	(0.0011)	(0.0011)	(0.0007)										
SOUTH	-0.2128	-0.2384	-0.3261	-0.3261	-0.2326										
	(0.0338)	(0.0344)	(0.1258)	(0.2495)	(0.0317)										
UNION	0.1445	0.1102	0.0822	0.0822	0.1027										
	(0.0382)	(0.0387)	(0.0312)	(0.0367)	(0.0245)										
N	716	716	1432	1432	1432										

(standard errors in parentheses)

- a. The OLS estimates of the ln(WAGE) model for each of the years 1987 and 1988 are reported in columns (1) and (2). How do the results compare? For these individual year estimations, what are you assuming about the regression parameter values across individuals (heterogeneity)?
 b. The ln(WAGE) equation specified as a panel data regression model is

					-														
		ln(V	$VAGE_{it}$) =		$EXPER_{it} + \beta$ $VION_{it} + (u_i - \beta)$	J II	+ β ₄ SOU	TH_{it}	(VP	(15.6)									
	Evnlain anu	difference	e in accum			,	the model	e in part (113.0)									
c.	Explain any differences in assumptions between this model and the models in part (a). c. Column (3) contains the estimated fixed effects model specified in part (b). Compare these estimated fixed effects model specified in part (b).																		
	mates with the OLS estimates. Which coefficients, apart from the intercepts, show the most difference?																		
d. The F-statistic for the null hypothesis that there are no individual differences, equation (15.20), is 11.68. What are the degrees of freedom of the F-distribution if the null hypothesis (15.19) is																			
true? What is the 1% level of significance critical value for the test? What do you conclude about the null hypothesis.																			
e.	Column (4)		ne fixed eff	fects esti	mates with c	luster-robu	st standar	d errors.	In the co	ontext									
					amptions you compare the														
		are substa	ntially dif	ferent? A	re the robust	ones large	er or small	ler?											
1.	show the me	ost differen	ce from th	ne fixed e	effects estima	ites? Use th	ne Hausm	an test sta	atistic (1	5.36)									
					erences betw y that one?).														
	estimation i	n this mode	el appropr	iate?															
-		2 ,	.a.1	023		.g /													
5	EXPER	差	- V. V	2017	=1.92倍	東多	7												
		,	y.v			^													
		Va C	4.	4.	P FE	- BRE													
	Hansmar	165	V	L) =	J Var (B	E) - Var(β,	Æ)												
		0.0515 -	2.984																
	texper =	0023	0.072	- = 1	. 0'7														
	Esouth =	- 0-326	- (- D.)	2326)	= - 0.77														
	020000	0.129	582-0.03	172															
		- 12 01	112 - (12.0	023)															
	texpex"	1 4 00	112 - 11.00	٠٦٠	= 1.29}														
). (J	1822 -	0.1027															
	TEXPER	= [0.	03122 - 0	1.1724c2	_ = _ (.D	1													
		J		13															
1	(a) = 1.96	比台	不顯	箬	random	effect	is esti	mation	īs a	pprop	wate.								
(10.432)		, ,		,,															

15.17 The data file *liquor* contains observations on annual expenditure on liquor (*LIQUOR*) and annual income (*INCOME*) (both in thousands of dollars) for 40 randomly selected households for three consecutive years.

- a. Create the first-differenced observations on LIQUOR and INCOME. Call these new variables LIQUORD and INCOMED. Using OLS regress LIQUORD on INCOMED without a constant term. Construct a 95% interval estimate of the coefficient.
- b. Estimate the model $LIQUOR_{ii} = \beta_1 + \beta_2 INCOME_{ii} + u_i + e_{ii}$ using random effects. Construct a 95% interval estimate of the coefficient on *INCOME*. How does it compare to the interval in part (a)?
- c. Test for the presence of random effects using the LM statistic in equation (15.35). Use the 5% level of significance.
- **d.** For each individual, compute the time averages for the variable *INCOME*. Call this variable *INCOMEM*. Estimate the model $LIQUOR_{ii} = \beta_1 + \beta_2 INCOME_{ii} + \gamma INCOMEM_i + c_i + e_{ii}$ using the random effects estimator. Test the significance of the coefficient γ at the 5% level. Based on this test, what can we conclude about the correlation between the random effect u_i and *INCOME*? Is it OK to use the random effects estimator for the model in (b)?

b

```
Effects:
var std.dev share
idiosyncratic 0.9640 0.9819 0.571
individual 0.7251 0.8515 0.429
theta: 0.4459
Residuals:
 Min. 1st Qu. Median 3rd Qu. Max.
-2.263634 -0.697383 0.078697 0.552680 2.225798
Coefficients:
Estimate Std. Error z-value Pr(>|z|)
(Intercept) 0.9690324  0.5210052  1.8599  0.0628957 .
income     0.0265755  0.0070126  3.7897  0.0001508 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Total Sum of Squares: 126.61
Residual Sum of Squares: 112.88
R-Squared: 0.1085
Adj. R-Squared: 0.10095
Chisq: 14.3618 on 1 DF, p-value: 0.00015083
      confint(model_b)
                                         2.5 %
                                                              97.5 %
   (Intercept) -0.05211904 1.99018381
                              0.01283111 0.04031983
(b) income 的區間不包含 0 表示顯著為正,而四並不包含 0
估計結果不顯著
             Lagrange Multiplier Test - (Breusch-Pagan)
 data: liquor ~ income
chisq = 20.68, df = 1, p-value = 5.429e-06
alternative hypothesis: significant effects
   p-value (0.05 > 顯著 表示應採用 random effects 模型
   而非 poled DLS
      plm(formula = liquor ~ income + mean_income, data = pdata, model = "random")
                                                                                                          mean_income p-value - 0.767, Tais 3
       Balanced Panel: n = 40, T = 3, N = 120
       var std.dev share
idiosyncratic 0.9640 0.9819 0.571
individual 0.7251 0.8515 0.429
theta: 0.4459
       Effects:
                                                                                                         表示無統計証據支持 income 與 隨機效果相關
       Residuals:
Min. 1st Qu. Median 3rd Qu. Max.
-2.300955 -0.703840 0.054992 0.560255 2.257325
       Coefficients:

Estimate Std. Error z-value Pr(>|z|)

(Intercept) 0.9163337 0.5524439 1.5687 0.09718
income 0.0207421 0.0209083 0.9921 0.32117
mean_income 0.0065792 0.0222048 0.2963 0.76700
       Total Sum of Squares: 126.61
Residual Sum of Squares: 112.79
R-Squared: 0.10917
Adj. R-Squared: 0.093945
Chisq: 14.3386 on 2 DF, p-value: 0.00076987
```

- ${\bf 15.20} \ \ This \ exercise \ uses \ data \ from \ the \ STAR \ experiment \ introduced \ to \ illustrate \ fixed \ and \ random \ effects$ for grouped data. In the STAR experiment, children were randomly assigned within schools into three types of classes: small classes with 13–17 students, regular-sized classes with 22–25 students, and regular-sized classes with a full-time teacher aide to assist the teacher. Student scores on achievement tests were recorded as well as some information about the students, teachers, and schools. Data for the kindergarten classes are contained in the data file star. a. Estimate a regression equation (with no fixed or random effects) where READSCORE is related to SMALL, AIDE, TCHEXPER, BOY, WHITE_ASIAN, and FREELUNCH. Discuss the results. Do students perform better in reading when they are in small classes? Does a teacher's aide improve scores? Do the students of more experienced teachers score higher on reading tests? Does the student's sex or race make a difference? b. Reestimate the model in part (a) with school fixed effects. Compare the results with those in part (a). Have any of your conclusions changed? [Hint: specify SCHID as the cross-section identifier and ID as the "time" identifier.] Test for the significance of the school fixed effects. Under what conditions would we expect the
 - inclusion of significant fixed effects to have little influence on the coefficient estimates of the remaining variables?
 - d. Reestimate the model in part (a) with school random effects. Compare the results with those from parts (a) and (b). Are there any variables in the equation that might be correlated with the school effects? Use the LM test for the presence of random effects.
 - Using the *t*-test statistic in equation (15.36) and a 5% significance level, test whether there are any significant differences between the fixed effects and random effects estimates of the coefficients on SMALL, AIDE, TCHEXPER, WHITE_ASIAN, and FREELUNCH. What are the implications of the test outcomes? What happens if we apply the test to the fixed and random effects estimates of the coefficient on BOY?
 - f. Create school-averages of the variables and carry out the Mundlak test for correlation between them and the unobserved heterogeneity.

```
var std.dev share
idiosyncratic 751.43 27.41 0.829
individual 155.31 12.46 0.171
theta:
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.6470 0.7225 0.7523 0.7541 0.7831 0.8153
 Residuals:
Min. 1st Qu. Median Mean 3rd Qu. Max.
-97.483 -17.236 -3.282 0.037 12.803 192.346
Coefficients:

Estimate Std. Error z-value Pr(>|z|)

(Intercept) 436.126774 2.064782 211.2217 < 2.2e-16 ***
small 6.458722 0.912548 7.0777 1.466e-12 ***
aide 0.992146 0.881159 1.1260 0.2602
tchexper 0.302679 0.070292 4.3060 1.662e-05 ***
boy -5.512081 0.727639 -7.5753 3.583e-14 ***
white asian 7.350477 1.431376 5.1353 2.818e-07 ***
freelunch -14.584332 0.874676 -16.6740 < 2.2e-16 ***
  Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Total Sum of Squares: 6158000
Residual Sum of Squares: 4332100
R-Squared: 0.29655
Adj. R-Squared: 0.29582
Chisq: 493.205 on 6 DF, p-value: < 2.22e-16
                       Lagrange Multiplier Test - (Breusch-Pagan)
  data: readscore – small + aide + tchexper + boy + white_asian + freelunch chisq = 6677.4, df = 1, p-value < 2.2e-16 alternative hypothesis: significant effects
```

```
data: readscore \sim small + aide + tchexper + boy + white_asian + freelunch chisq = 13.809, df = 6, p-value = 0.03184 alternative hypothesis: one model is inconsistent
```