REPLACEMENT Page 1 of 57

Appln No.: 10/658,834 REPLACEMENT Page 1 of Applicant(s): Rene Gantier, et. al RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC ACID MOLECULES

FEB 1 9 2004

Amino acid sequence of human mature IFNα-2b

TING 7D	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					X I
	51	09	70	08	06	100
	•	•	•	•	•	•
IFN α -2b	VAITE	LHEMIQQIE	NLESTKDSSA	AWDETLLDKE	ETIPVLHEMIQQIFNLESTKDSSAAWDETLLDKFYTELYQQLNDLEACVI	LEACVI
	101	110	120	130	140	150
	•	•	•	•	•	•
IFN α -2b	QGVGV	TETPLMKED	SILAVRKYFC	RITLYLKEKE	QGVGVTETPLMKEDSILAVRKYFQRITLYLKEKKYSPCAWEVVRAEIMRS	AEIMRS
	г г	760				
	101	001				
IFN α -2b	F S L S1	<u>F</u> SLSTNLOESLRSKE	교 I			

REPLACEMENT Page 2 of 57 Appln No.: 10/658,834

Applicant(s): Rene Gantier, et. al
RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER
STABILITY, THE CYTOKINES AND ENCODING NUCLEIC ACID MOLECULES

Three dimensional structure of $INF\alpha-2b$

showing candidate LEADs

FIG.1B

Appln No.: 10/658,834 REPLACEMENT Page 3 of 57 Applicant(s): Rene Gantier, et. al RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABLIST, THE CYTOKINES AND ENCODING NUCLEIC

ACID MOLECULES

The "Percent Accepted Mutation" (PAM250) matrix

				مناسا																
	Α	R	N	D	C	Q	E	G	H	I	L	K	M	F	P	S	T	W	Y	V
Α	海2	-2	0	0	-2	0	0	1	-1	-1	-2	-1	-1	-3	1	1	1	-6	-3	0
R	-2	£6.	0	-1	-4		-1	-3	2	-2	-3	3	0	-4	0	0	-1	2	-4	-2
N	0	0	32	2	-4			0	2	-2	-3		-2	-3	0		0	_4	-2	-2
D	0	-1	2	4.	-5	2	3	1	1	-2	4	0	-3	-6	-1	0	0	-7	-4	-2
C	-2	4	-4	-5	12	-5	-5	-3	-3	-2	-6	-5	-5	-4	-3	0	-2	-8	0	-2
Q	0		1	2	-5	4	2	-1	3	-2	-2		-1	-5	0	-1	-1	-5	-4	-2
E	0	-1	1	3	-5	2	()	0		-2	-3	0	-2	-5	-1	0	0	-7	-4	-2
G	1	-3	0		-3	-1	0	S	-2	-3	4	-2	-3	-5	0	1	0	-7	-5	-1
H	-1	2	2		-3	3		-2	6	-2	-2	0	-2	-2	0	-1	-1	-3	0	-2
I	-1	-2	-2	-2	-2	-2	-2	-3	-2	3	2	-2	2		2	-1	0	-5	-1	4
L	-2	-3	-3	-4	-6	-2	-3	-4	-2	2	.ගි	-3	4	2	-3	-3	2	-2	-1	2
K	-1	3	1	0	-5	1	0	-2	0	-2	-3	45.	0	-5	-1	0	0	-3	-4	-2
M	-1	0	-2	-3	-5	-1	-2	-3	-2	2	4	. 0	ত্ত	0	-2	-2	-1	-4	-2	2_
F	-3	4	-3	-6	-4	-5	-5	-5	-2	1	2	-5	0	\mathfrak{Q}	-5	-3	-3	0	7	-1
P	1	0	0	-1	-3	0	-1	0	0	-2	-3	-1	-2	-5	G	1	0	-6	-5	-1
S	1	0	1	0	0	-1	0	1	-1	-1	-3	0	-2	-3	1	2	1	-2	-3	-1
T	j i	-1	0	0	-2	-1	0	0	-1	0	-2	0	-1	-3	0	1	3	-5	-3	0
W	-6	2	-4	-7	-8	-5	-7	-7	-3	-5	-2	-3	4	0	-6	-2	-5	317	0	-6
Y	-3	4	-2	-4	0	-4	-4	-5	0	1	-1	4	-2	7	-5	-3	-3	0	10	-2
V	0	-2	-2	-2	-2	-2	-2	-1	-2	4	2	-2	2	-1	-1	-1	0	-6	-2	: 4

FIG.2

Appln No.: 10/658,834 REPLACEMENT Page 4 of 57 Applicant(s): Rene Gantier, et. al RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC ACID MOLECULES

Scores from PAM250, given to residue substitutions to protect human INF α-2b against proteolysis

	R	D	Е	L	K	М.	F	P	W	Y
A	-2	0	0	-2	-1	-1	-3		-6	-3
N	0	2	1	-3	1	-2	-3	0	-4	-2
C	-4	-5	-5	-6	-5	-5	-4	-3	-8	0
Q	1	2	2	-2		-1	-5	0	-5	-4
G	-3	1	. 0	-4	-2	-3	-5	0	-7	-5
Н	2	1	1	-2	0	-2	-2	0	-3	0
I	-2	-2	-2	2	-2	2	1	-2	-5	-1
S	0	0	0	-3	0	-2	-3	1	-2	-3
T	-1	0	0	-2	0	-1	-3	0	-5	-3
V	-2	-2	-2	2	-2	2	-1	-1	-6	-2

FIG.3

Appln No.: 10/658,834 REPLACEMENT Page 5 of 57

Applicant(s): Rene Gantier, et. al

RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC

ACID MOLECULES

Protection against proteolysis for interferon α -2b variants

FIG.4A

Appln No.: 10/658,834 **REPLACEMENT Page 6 of 57**

Applicant(s): Rene Gantier, et. al
RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER
STABILITY, THE CYTOKINES AND ENCODING NUCLEIC

ACID MOLECULES

FIG. 4B

Appln No.: 10/658,834 REPLACEMENT Page 7 of 57
Applicant(s): Rene Gantier, et. al
RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER
STABILITY, THE CYTOKINES AND ENCODING NUCLEIC
ACID MOLECULES

FIG. 4C

REPLACEMENT Page 8 of 57

Appln No.: 10/658,834 REPLACEMENT Page 8 of Applicant(s): Rene Gantier, et. al RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC

ACID MOLECULES

Treatment with chymotrypsin

Applin No.: 10/658,834 REPLACEMENT Page 9 of 57 Applicant(s): Rene Gantier, et. al

RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC ACID MOLECULES

Treatment with chymotrypsin

FIG.6A

Treatment with protease mixture

FIG.6B

Appln No.: 10/658,834 REPLACEMENT Page 10 of 57

Applicant(s): Rene Gantier, et. al

RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC

ACID MOLECULES

Treatment with blood lysate

FIG.6C

Treatment with serum

FIG.6D

Appln No.: 10/658,834 REPLACEMENT Page 11 of 57 Applicant(s): Rene Gantier, et. al RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABLITY, THE CYTOKINES AND ENCODING NUCLEIC

ACID MOLECULES

residual activity (%) 80 0 wt-IFN α Leads 2 incubation time (hs) O œ 6

12

Appln No.: 10/658,834 REPLACEMENT Page 12 of 57 Applicant(s): Rene Gantier, et. al RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC ACID MOLECULES

Appln No.: 10/658,834 REPLACEMENT Page 13 of Applicant(s): Rene Gantier, et. al RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC ACID MOLECULES REPLACEMENT Page 13 of 57

Potency (antiproliferation) – IFNa leads

(108 U/mg) 1,70

WT Lead 13 Lead 9 Lead 8 Lead 2

Lead 16

Potency

	I V
1,60 1,90 2,05 3,70 0,50 0,50 1,50 1,50 1,60 1,60	<u> </u>

Lead 12 Lead 10

Lead 15 Lead 5 Lead 4

Lead 11

Lead 6 Lead 1 Lead 7 Lead 3

Appln No.: 10/658,834 REPLACEMENT Page 15 of Applicant(s): Rene Gantier, et. al RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC ACID MOLECULES **REPLACEMENT Page 15 of 57**

REPLACEMENT Page 16 of 57 Applicant(s): Rene Gantier, et. al

RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC

ACID MOLECULES

IFN-α LEADS

IFN-α LEAD	SEQ ID N°	Mutation(s)
1	983	K121Q / P109A
2	987	E159H / Y89H
3	124	E159Q
4	90	E58H
5	89	E58Q
6	979	E41H / Y89H / N45D
7	103	L117I
8	986	R125H / M111V
9	96	E107H
10	101	E113H
11	87	E41Q
12	107	R125Q
13	985	L117V / A139G
14	980	E41Q / D94G
15	93	E78H
16	984	K133Q / K121Q / P109A / G102R

FIG. 6J

antiviral activity

antiviral activity

Applicant(s): Rene Gantier, et. al
RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER
STABILITY, THE CYTOKINES AND ENCODING NUCLEIC

ACID MOLECULES

ACID MOLECULES

FIG. 6N

Appln No.: 10/658,834 REPLACEMENT Page 21 of 57 Applicant(s): Rene Gantier, et. al RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC ACID MOLECULES

FIG. 60

Appln No.: 10/658,834 REPLACEMENT Page 22 of 57 Applicant(s): Rene Gantier, et. al RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC ACID MOLECULES

Applicant(s): Rene Gantier, et. al
RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER
STABILITY, THE CYTOKINES AND ENCODING NUCLEIC
ACID MOLECULES

FIG. 6Q

O mutants treated with proteases

mutants

Appln No.: 10/658,834 REPLACEMENT Page 24 of Applicant(s): Rene Gantier, et. al RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC ACID MOLECULES **REPLACEMENT Page 24 of 57**

Appln No.: 10/658,834 REPLACEMENT Page 25 of 57 Applicant(s): Rene Gantier, et. al RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC ACID MOLECULES

Summary – IFN α leads

Lead 14	Lead 3	Lead 7	Lead 1	Lead 6	Lead 11	Lead 12	Lead 10	Lead 15	Lead 5	Lead 4	Lead 16	Lead 2	Lead 8	Lead 9	Lead 13	Pegasys	Pegasys	ΨT	
0,9	1,7	1,7	1,9	1,7	28,5	1,4	5,5	1,7	1,2	4,3	0,8	2,1	1,0	1,2	0,4			1,6	Potency (AV)
nd	2,3	1,6	3,0	1,2	nd	1,5	0,5	3,2	0,7	0,5	1,6	3,7		1,9	1,6			1,7	Potency (AP) (10 ⁸ U/mg)
25,0	54,6	56,5	58,5	64,2	69,0	77,0	85,6	88,0	88,6	100,0	101,6	105,0	107,0	109,0	129,7	77,0	33,0	16,5	AUC (arbitrary units)

REPLACEMENT Page 27 of 57

Appln No.: 10/658,834 REPLACEMENT Page 27 of Applicant(s): Rene Gantier, et. al RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC ACID MOLECULES

IFN
Nα LEADS
Area
Area under the curve (
r the
curve
(AUC
U

	Lead 14	Lead 3	Lead 7	Lead 1	Lead 6	Lead 11	Lead 12	Lead 10	Lead 15	Lead 5	Lead 4	Lead 16	Lead 2	Lead 8	Lead 9	Lead 13	Pegasys	Pegasys	WT		
FIG.	25,0	54,6	56,5	58,5	64,2	69,0	77,0	85,6	88,0	88,6	100,0	101,6	105,0	107,0	109,0	129,7	77,0	33,0	16,5	(arbitrary units)	AUC
3. 6∪	2,0	2,5	2,4	2,1	3,4		3,0	1,0	2,4	3,6	1,0	5,4	2,0	4,2	3, 5	10,3	36,0	18,0	2,5	(µg/ml*)	protein injected
		•	•	2,0	•		2,0	2,0	2,0	2,0	-	2,0	•	•	2,0	2,0			2,0	injected / ml (x106)	IFN units

Interferon α -2b structure in "space filling" representation

FIG.7A

FIG.7B

Appln No.: 10/658,834 REPLACEMENT Page 29 of 57 Applicant(s): Rene Gantier, et. al RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC ACID MOLECULES

Structural super-imposition of interferon α -2b (1RH2) and interferon β (1AU1)

FIG.8B

Structural super-imposition of interferon α -2b (1RH2) and erythropoietin (1BUY)

FIG.8C

Structural super-imposition of interferon α-2b (1RH2) and granulocyte-colony stimulating factor (1CD9)

FIG.8D

MSYNLLGFLQRSSNFQCQKLLWQLNGRLEYCLKDRMNF**DIPEEIKQLQQFQK**EDAALTI**YEMLQNIFAIFRQDSSSTGWNET**IVENLLANVYHQINHLKTVLEEK

Cytokine regions susceptible to protease attack identified by structural alignment with Lead mutants

of IFN α -2b

CDLPQTHSLGSRRTLMLLAQMRKISLFSCLKDRHDF**GFPQEEFGNQFQK**AETIPVL**HEMIQQIFNLFSTKDSSAAWDE**TLLDKFYTELYQQLNDLEACVIQG

VGVTETPIMKEDSILAVRKYFQRITLYLKEKKYSPCAWEVVRAEIMRSFSLSTNL**QESLRSKE**

IFN- α 2b

LEKEDFTRGKLMSSLHLKRYYGRILHYLKAKE YSHCAWTIVRVEILRNFYFINRLTGYLRN

Exemplary protein of the interferons/interleukin-10 family

IFN-B

Exemplary protein of the short-chain cytokines family

APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLN**ENITVPDIKVNFYAWKRMEV**GQQAVEVWQG**LALLSEAVIRGQALLVNSSQ**PWEPLQLHVDKAVSGLRSL

TTLLRALGAQKEA**ISNSDAASAAPLRTIT**ADTFRKLFRVYSNFLRGKLKLYTGEA**CRTGDR**

protein of the long-chain cytokines family Exemplary

G-CSF

GPASSLPQSFLLKCLEQVRKIQGDGAALQEKLCATYKLCHPEELVLLGHSLGI**PWAPLSSCPSQALQ**LAGCLSQL<mark>HSGLFLYQGLLQALEGISPELG</mark>PTLDTLQL

DVADFATTIWQQMEEL**GWAPALQPTQGAMPAFASAF**QRRAGGVLVASHLQSFLEVSY<mark>RVLRHLAQP</mark>

Appln No.: 10/658,834 REPLACEMENT Page 34 of 57 Applicant(s): Rene Gantier, et. al RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC ACID MOLECULES

FIG.10A

Appln No.: 10/658,834 REPLACEMENT Page 35 of 57 Applicant(s): Rene Gantier, et. al RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC ACID MOLECULES

Cell proliferation assay for alanine scanning of interferon α-2b

FIG.10B

Correlation between antiviral and cell proliferation activities for alanine scanning of interferon α -2b

IG. 10C

Appln No.: 10/658,834 **REPLACEMENT Page 37 of 57**

Applicant(s): Rene Gantier, et. al
RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER
STABILITY, THE CYTOKINES AND ENCODING NUCLEIC
ACID MOLECULES

Glycosylation of interferon α -2b

FIG. 11

Appln No.: 10/658,834 RI Applicant(s): Rene Gantier, et. al REPLACEMENT Page 38 of 57

RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC ACID MOLECULES

Interferon-beta

ist proteolysis
ľ

Sequence:

MSYNLLGFLQRSSNFQCQKLLWQLNGRLEYCLKDRMNFDIPEEIKQLQQFQKEDAALTI YEMLQNIFAIFRQDSSSTGWNETIVENLLANVYHQINHLKTVLEEKLEKEDFTRGKLMS SLHLKRYYGRILHYLKAKEYSHCAWTIVRVEILRNFYFINRLTGYLRN

Exposed residues:

	DEKQLQQ-QK
QFARQD-SS-G-NET	EKEDF-RL
SI.H-KRGR-I.HKAKE	Y-RN

Proteases:

'Chymotrypsin', 'Proline endopeptidase', 'Endoproteinase Asp-N', ['Trypsin', 'Staphylococcal P.']

Exclusion list:

['B', 'Z', 'X', '*', 'K', 'R', 'D', 'F', 'W', 'Y', 'M', 'L', 'P', 'E']

1.	D39Q	16.	D73Q	31.	F111I	46.	L130I
2.	D39N	17.	D73N	32.	F111V	47.	K134Q
3.	E42Q	18.	E81Q	33.	R113H	48.	K134N
4.	E42N	19.	E81N	34.	R113Q	49.	K136Q
5.	E42H	20.	E81H	35.	L116V	50.	K136N
6.	K45Q	21.	E107Q	36.	L116I	51.	E137Q
7.	K45N	22.	E107N	37.	L120V	52.	E137N
8.	L47V	23.	E107H	38.	L120I	53.	E137H
9.	L47I	24.	K108Q	39.	K123Q	54.	Y163H
10.	K52Q	25.	K108N	40.	K123N	55.	Y163I
11.	K52N	26.	E109Q	41.	R124H	56.	R165H
12.	F67I	27.	E109N	42.	R124Q	57.	R165Q
13.	F67V	28.	E109H	43.	R128H		
14.	R71H	29.	D110Q	44.	R128Q		
15.	R710	30.	D110N	45.	L130V		

FIG. 12A

REPLACEMENT Page 39 of 57 Appln No.: 10/658,834

Applicant(s): Rene Gantier, et. al
RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER
STABILITY, THE CYTOKINES AND ENCODING NUCLEIC

ACID MOLECULES

Interferon-gamma

Protection against proteolysis

11.

E42N

11010	etion against proteorysis				
Sequ	ence:				
CYCÇ	QDPYVKEAENLKKYFNAG	GHSDVADN	GTLFLGIL	KNWKEESDRKIN	MQSQIVSFYFKL
FKNI	FKDDQSIQKSVETIKEDM	INVKFFNS	NKKKRDDF	EKLTN	
Expo	sed residues:				
			-TL	KN-KEE	K-
-KN-	-KDDQS				
Prote	ases:				
['Try	psin', 'Endoproteinase	Asp-N',	'Chymotry	psin', 'Proline	endopeptidase',
'Stapl	hylococcal P.']				
Exclı	usion list:				
['B', '	Z', 'X', '*', 'K', 'R', 'D', 'F',	'W', 'Y', 'M	', 'L', 'P', 'E']		
Subs	titutions:				
1. 2. 3. 4. 5.	L33V L33I K37Q K37N K40Q		12. 13. 14. 15.	K58N	
6. 7. 8. 9.	K40N E41Q E41N E41H		17. 18. 19. 20.	K64Q K64N	
10	E420		21	D660	

Appln No.: 10/658,834 REPLACEMENT Page 40 of 57 Applicant(s): Rene Gantier, et. al RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC ACID MOLECULES

Interleukin-10

Protection against proteolysis

Sequence:

SPGQGTQSENSCTHFPGNLPNMLRDLRDAFSRVKTFFQMKDQLDNLLLKESLLEDFKGY

LGCQALSEMIQFYLEEVMPQAENQDPDIKAHVNSLGENLKT

Exposed residues:

_____KESLLEDFKGY

L----EM-QFY-EEV-PQ-ENQDPD----K-

Proteases:

['Trypsin', 'Endoproteinase Asp-N', 'Chymotrypsin', 'Proline endopeptidase',

'Staphylococcal P.']

Exclusion list:

['B', 'Z', 'X', '*', 'K', 'R', 'D', 'F', 'W', 'Y', 'M', 'L', 'P', 'E']

Substitutions:

	• •	TC COD I	25	EZEO
K49Q				E75Q
K49N	19.	Y59H	36.	E75N
E50Q	20.	Y59I	37.	E75H
E50N	21.	L60V	38.	P78S
E50H	22.	L60I	39.	P78A
L52V	23.	E67Q	40.	E81Q
L52I	24.	E67N	41.	E81N
L53V	25.	E67H	42.	E81H
L53I	26.	M68V	43.	D84Q
E54Q	27.	M68I	44.	D84N
E54N	28.	F71I	45.	P85S
E54H	29.	F71V	46.	P85A
D55Q	30.	Y72H	47.	D86Q
D55N	31.	Y72I	48.	D86N
F56I	32.	E74Q	49.	K88Q
F56V	33.	E74N	50.	K88N
K57Q	34.	E74H		
	E50Q E50N E50H L52V L52I L53V L53I E54Q E54N E54H D55Q D55N F56I F56V	K49N19.E50Q20.E50N21.E50H22.L52V23.L52I24.L53V25.L53I26.E54Q27.E54N28.E54H29.D55Q30.D55N31.F56I32.F56V33.	K49N19.Y59HE50Q20.Y59IE50N21.L60VE50H22.L60IL52V23.E67QL52I24.E67NL53V25.E67HL53I26.M68VE54Q27.M68IE54N28.F71IE54H29.F71VD55Q30.Y72HD55N31.Y72IF56I32.E74QF56V33.E74N	K49N 19. Y59H 36. E50Q 20. Y59I 37. E50N 21. L60V 38. E50H 22. L60I 39. L52V 23. E67Q 40. L52I 24. E67N 41. L53V 25. E67H 42. L53I 26. M68V 43. E54Q 27. M68I 44. E54N 28. F71I 45. E54H 29. F71V 46. D55Q 30. Y72H 47. D55N 31. Y72I 48. F56I 32. E74Q 49. F56V 33. E74N 50.

FIG. 12C

Appln No.: 10/658,834 **REPLACEMENT Page 41 of 57**

Applicant(s): Rene Gantier, et. al

RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC

ACID MOLECULES

Ciliary neurotrophic factor

Protection against proteolysis

13.

14.

15.

R89Q

E92Q

E92N

Sequence: DSADGMPVASTDQWSELTEAERLQENLQAYRTFHVLLARLLEDQQVHFTPTEGDFHQAI HTLLLQVAAFAYQIEELMILLEYKIPRNEADGMPINVGDGGLFEKKLWGLKVLQELSQW TVRSIHDLRFISSHQTGIPA Exposed residues: -----VASTDQWSELT-----Q---T-HVL-AR--E--QVH--PTEGD----------EYKIPRNE-DGMPINVGDG-L----------Proteases: 'Endoproteinase 'Chymotrypsin', 'Proline endopeptidase', ['Trypsin', Asp-N', 'Staphylococcal P.'] Exclusion list: ['B', 'Z', 'X', '*', 'K', 'R', 'D', 'F', 'W', 'Y', 'M', 'L', 'P', 'E'] **Substitutions:** E92H P135S 1. D62Q 16. 31. 2. D₆2N 17. P100S 32. P135A W64S 18. P100A 33. R136H 3. W64H 19. E102Q 34. R136Q 4. 20. 35. 5. E66Q E102N E138Q 21. E102H 36. E138N 6. E66N 37. E138H 7. E66H 22. D104Q 8. L67V 23. D104N 38. D140Q 24. 39. D140N 9. L67I E131Q 10. L86V 25. E131N 40. P143S 41. P143A 11. L86I 26. E131H 42. D148Q 12. R89H 27. Y132H

FIG. 12D

Y132I

K133Q K133N 43.

44.

45.

D148N

L151V

L151I

28.

29.

30.

Appln No.: 10/658,834 REPLACEMENT Page 42 of 57

Applicant(s): Rene Gantier, et. al

RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC

ACID MOLECULES

Granulocyte-colony stimulating factor

Protection against proteolysis

Sequence:

VLLGHSLGIPWAPLSSCPSQALQLAGCLSQLHSGLFLYQGLLQALEGISPELGPTLDTL QLDVADFATTIWQQMEELGMAPALQPTQGAMPAFASAFQRRAGGVLVASHLQSFLEVSY RVLRHLAQP

Exposed residues:

R--RH--QP-

Proteases:

['Trypsin', 'Endoproteinase Asp-N', 'Chymotrypsin', 'Proline endopeptidase',

'Staphylococcal P.']

Exclusion list:

['B', 'Z', 'X', '*', 'K', 'R', 'D', 'F', 'W', 'Y', 'M', 'L', 'P', 'E']

1.	W61S	12.	E96N	23.	P135S
2.	W61H	13.	E96H	24.	P135A
3.	P63S	14.	P100S	25.	F147I
4.	P63A	15.	P100A	26.	F147V
5.	P68S	16.	E101Q	27.	R169H
6.	P68A	17.	E101N	28.	R169Q
7.	L72V	18.	E101H	29.	R172H
8.	L72I	19.	P131S	30.	R172Q
9.	F86I	20.	P131A	31.	P177S
10.	F86V	21.	L133V	32.	P177A
11.	E96Q	22.	L133I		

Appln No.: 10/658,834 REPLACEMENT Page 43 of 57

Applicant(s): Rene Gantier, et. al

RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC

ACID MOLECULES

Human growth hormone

Protection against proteolysis

Sequence:

SLCFSESIPTPSNREETQQKSNLELLRISLLLIQSWLEPVQFLRSVFANSLVYGASDSN VYDLLKDLEEGIQTLMGRLEDGSPRTGQIFKQTYSKFDTNSHNDDALLKNYGLLYCFRK DMDKVETFLRIVQCRSVEGSCGF

Expose residues:

----ES-PT-SNREE-----EDG-PRT-Q--KQTY-KFD------

----RS-EGSCG-

Proteases: ['Trypsin', 'Endoproteinase Asp-N', 'Chymotrypsin', 'Proline endopeptidase', 'Staphylococcal P.']

Exclusion list:

['B', 'Z', 'X', '*', 'K', 'R', 'D', 'F', 'W', 'Y', 'M', 'L', 'P', 'E']

1.	E56Q	17.	F92I	33.	K140N
2.	E56N	18.	F92V	34.	Y143H
3.	E56H	19.	R94H	35.	Y143I
4.	P59S	20.	R94Q	36.	K145Q
5.	P59A	21.	L101V	37.	K145N
6.	R64H	22.	L101I	38.	F146I
7.	R64Q	23.	E129Q	39.	F146V
8.	E65Q	24.	E129N	40.	D147Q
9.	E65N	25.	E129H	41.	D147N
10.	E65H	26.	D130Q	42.	R183H
11.	E66Q	27.	D130N	43.	R183Q
12.	E66N	28.	P133S	44.	E186Q
13.	E66H	29.	P133A	45.	E186N
14.	E88Q	30.	R134H	46.	E186H
15.	E88N	31.	R134Q		
16.	E88H	32.	K140Q		

FIG. 12F

Appln No.: 10/658,834 REPLACEMENT Page 44 of 57

Applicant(s): Rene Gantier, et. al

RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC

ACID MOLECULES

Interleukin-12

Protection against proteolysis

Sequence:

DITKDKTSTVEACLPLELTKNESCLNSRETSFITNGSCLASRKTSFMMALCLSSIYEDL

KMYQVEFKTMNAKLLMDPKRQIFLDQNMLAVIDELMQALNFNSETVPQKSSLEEPDFYK

TKIKLCILLHAFRIRAVTIDRVMSYLNAS

Exposed residues:

Proteases:

['Trypsin', 'Endoproteinase Asp-N', 'Chymotrypsin', 'Proline endopeptidase',

'Staphylococcal P.']

Exclusion list:['B', 'Z', 'X', '*', 'K', 'R', 'D', 'F', 'W', 'Y', 'M', 'L', 'P', 'E']

1. 2.	K56Q K56N	15. 16.	E72Q E72N	29. 30.	R92H R92Q	43. 44.	K117Q K117N
3.	E61Q	17.	E72H	31.	K93Q	45.	L124V
4.	E61N	18.	L75V	32.	K93N	46.	L124I
5.	E61H	19.	L75I	33.	E107Q	47.	M125V
6.	L66V	20.	R78H	34.	E107N	48.	M125I
7.	L66I	21.	R78Q	35.	E107H	49.	P127S
8.	E67Q	22.	E79Q	36.	K110Q	50.	P127A
9.	E67N	23.	E79N	37.	K110N	51.	K128Q
10.	E67H	24.	E 7 9H	38.	M111V	52.	K128N
11.	L68V	25.	F82I	39.	M111I	53.	R129H
12.	L68I	26.	F82V	40.	E115Q	54.	R129Q
13.	K70Q	27.	L89V	41.	E115N	55.	R189H
14.	K70N	28.	L89I	42.	E115H	56.	R189Q

FIG. 12G

Appln No.: 10/658,834 REPLACEMENT Page 45 of 57 Applicant(s): Rene Gantier, et. al

RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC

ACID MOLECULES

9.

10.

11.

12.

13.

14.

15.

E68H

K69Q

K69N

F73I

F73V

F77I

F77V

Interleukin-6

Protection against proteolysis Sequence: SSKEALAENNLNLPKMAEKDGCFQSGFNEETCLVKIITGLLEFEVYLEYLQNRFESSEE QARAVQMSTKVLIQFLQKKAKNLDAITTPDPTTNASLLTKLQAQNQWLQDMTTHLILRS FKEFLQSSLRALRQM Exposed residues: -----T---E----EMAEK---FOSGF-----T---E----E--ONR-ES-E------DA-TTPDPTT-AS--TK-QAQNQW----------R--ROM Proteases: ['Trypsin', 'Endoproteinase Asp-N', 'Chymotrypsin', 'Proline endopeptidase', 'Staphylococcal P.'] Exclusion list:['B', 'Z', 'X', '*', 'K', 'R', 'D', 'F', 'W', 'Y', 'M', 'L', 'P', 'E'] Substitutions: P64S 16. E92Q 31. D133N 1. 32. P138S 17. E92N P64A 2. 33. P138A 18. E92H 3. K65Q 19. E98Q 34. D139Q 4. **K65N** 20. 35. D139N 5. M66V E98N P140S 21. E98H 36. 6. M66I 37. P140A 22. R103H 7. E68Q 38. K149Q 23. R103Q 8. E68N

FIG. 12H

E105Q

E105N

E105H

E108Q

E108N

E108H

D133Q

24.

25.

26.

27.

28.

29.

30.

39.

40.

41.

42.

43.

44.

45.

K149N

W156S

W156H

R178H

R178Q

R181H

R181Q

Appln No.: 10/658,834 REPLACEMENT Page 46 of 57 Applicant(s): Rene Gantier, et. al

RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC

ACID MOLECULES

11.

E105Q

Leptin

Protection against proteolysis Sequence: VPIQKVQDDTKTLIKTIVTRINDISHTQSVSSKQKVTGLDFIPGLHPILTLSKMDQTLA VYQQILTSMPSRNVIQISNDLENLRDLLHVLAFSKSCHLPWASGLETLDSLGGVLEASG YSTEVVALSRLQGSLQDMLWQLDLSPGC Exposed residues: ------P-H-IL----------SCH-PW-SGLETLDS--GV---------DLS-GC Proteases: 'Endoproteinase Asp-N', 'Chymotrypsin', 'Proline endopeptidase', ['Trypsin', 'Staphylococcal P.'] **Exclusion list:** ['B', 'Z', 'X', '*', 'K', 'R', 'D', 'F', 'W', 'Y', 'M', 'L', 'P', 'E'] Substitutions: P43S 12. E105N 1. 13. E105H 2. P43A L107V L49V 14. 3. 15. L107I 4. L49I **P99S** 16. D108Q 5. P99A 17. D108N 6. 18. 7. W100S D141Q 19. **D141N** 8. W100H 20. L142V L104V 9. 10. L104I 21. L142I

FIG. 121

REPLACEMENT Page 47 of 57

Appln No.: 10/658,834 REPLACEMENT Page 47 of Applicant(s): Rene Gantier, et. al RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC ACID MOLECULES

Leukemia inhibitory factor

Protection against proteolysis

Seque	ence:						
PFPN	NLDKLCGPNV	rdfppfhangte	KAKLVELY	RIVVYLGT	SLGNI	TRDQKILNP	SAL
SLHS	KLNATADILRO	GLLSNVLCRLCS	KYHVGHVI)VTYGPDTS	GKDVF	QKKKLGCQL:	LGK
YKQI	IAVLAQAF						
Expo	sed residues:						
		- PFHAN-T-		-RТ		-RKIL-P	s-
LS			YH-GHV	DVTYGPD-	SGKDV	F	
	Q						
Prote	ases:						
['Tryp	osin', 'Endoprote	inase Asp-N', 'Cl	nymotrypsin	', 'Proline en	dopepti	dase',	
'Stapl	nylococcal P.']						
Exclu	ision list:						
['B', '	Z', 'X', '*', 'K', 'R	', 'D', 'F', 'W', 'Y'	, 'M', 'L', 'P',	, 'E']			
Subst	itutions:						
1.	P69S	12.	L104I		23.	P148S	
2.	P69A	13.	P106S		24.	P148A	
3.	F70I	14.	P106A		25.	D149Q	
<i>4</i> .	F70V	15.	L109V		26.	D149N	
5.	R85H	16.	L109I		27.	K153Q	
<i>5</i> . 6.	R85Q	17.	Y137H		28.	K153N	
7.	R99H	18.	Y137I		29.	D154Q	
7. 8.	R99Q	19.	D143Q		30.	D154Q D154N	
8. 9.	K99Q K102Q	20.	D143Q D143N		31.	F156I	
9. 10.	K102Q K102N	21.	Y146H		32.	F156V	
10.	L104V	22.	Y146I		<i>J</i> <u>2</u> .	11504	
11.	LIUT V	٠	1 1 701				

REPLACEMENT Page 48 of 57 Appln No.: 10/658,834

Applicant(s): Rene Gantier, et. al RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC

ACID MOLECULES

Oncostatin M

Protection against proteolysis

Sequence:

ERPGAFPSEETLRGLGRRGFLQTLNATLGCVLHRLADLEQRLPKAQDLERSGLNIEDLE

KLQMARPNILGLRNNIYCMAQLLDNSDTAEPTKAGRGASQP

Exposed residues:

----SEET-RGLG-----NA---C-HR-AD-EQR--KAQD-ERSGLNIE---

Proteases:

'Chymotrypsin', endopeptidase', ['Trypsin', 'Endoproteinase Asp-N', 'Proline

'Staphylococcal P.']

Exclusion list:

['B', 'Z', 'X', '*', 'K', 'R', 'D', 'F', 'W', 'Y', 'M', 'L', 'P', 'E']

1.	E59Q	12.	R84Q	23.	D97N
2.	E59N	13.	D87Q	24.	E99Q
3.	E59H	14.	D87N	25.	E99N
4.	E60Q	15.	E89Q	26.	E99H
5.	E60N	16.	E89N	27.	R100H
8.	R63Q	19.	R91Q	30.	L103I
9.	L65V	20.	K94Q	31.	E106Q
10.	L65I	21.	K94N	32.	E106N
11.	R84H	22.	D97Q	33.	E106H

Appln No.: 10/658,834 REPLACEMENT Page 49 of 57 Applicant(s): Rene Gantier, et. al RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC ACID MOLECULES

Erythropoietin

Protection against proteolysis

Sequence:

APPRLICDSRVLERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFYAWKRMEVGQQ
AVEVWQGLALLSEAVLRGQALLVNSSQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEA
ISPPDAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEACRTGDR

Exposed residues:

----N-T--DTKVNFYA-KR-EV---

-----A--SE--LR-QA--VNSSQ------

ISPPDA-SAAPLR-IT-----RTGDR

Proteases:

['Trypsin', 'Endoproteinase Asp-N', 'Chymotrypsin', 'Proline endopeptidase',

'Staphylococcal P.']

Exclusion list:

['B', 'Z', 'X', '*', 'K', 'R', 'D', 'F', 'W', 'Y', 'M', 'L', 'P', 'E']

1.	D43Q	14.	E55N	27.	L130V
2.	D43N	15.	E55H	28.	L130I
3.	K45Q	16.	E72Q	29.	R131H
4.	K45N	17.	E72N	30.	R131Q
5.	F48I	18.	E72H	31.	R162H
6.	F48V	19.	L75V	32.	R162Q
7.	Y49H	20.	L75I	33.	D165Q
8.	Y49I	21.	R76H	34.	D165N
9.	K52Q	22.	R76Q	35.	P121S
10.	K52N	23.	D123Q	36.	P121A
11.	R53H	24.	D123N	37.	P122S
12.	R53Q	25.	P129S	38.	P122A
13.	E55Q	26.	P129A		

FIG. 12L

Appln No.: 10/658,834 REPLACEMENT Page 50 of 57 Applicant(s): Rene Gantier, et. al RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC ACID MOLECULES

Flt3 ligand

Protection against proteolysis

Sequence:

TQDCSFQHSPISSDFAVKIRELSDYLLQDYPVTVASNLQDEELCGGLWRLVLAQRWMER

LKTVAGSKMQGLLERVNTEIHFVTKCAFQPPPSCLRFVQTN

Exposed residues:

TQD-----T-S--QD-EL-----R--ER
-KTV-G-----A-QPPPSC-RFV--

Proteases:

['Trypsin', 'Endoproteinase Asp-N', 'Chymotrypsin', 'Proline endopeptidase',

'Staphylococcal P.']

Exclusion list:

['B', 'Z', 'X', '*', 'K', 'R', 'D', 'F', 'W', 'Y', 'M', 'L', 'P', 'E']

Substitutions:

1.	D3Q	15.	R59H
2.	D3N	16.	R59Q
3.	D40Q	17.	K61Q
4.	D40N	18.	K61N
5.	E42Q	19.	P89S
6.	E42N	20.	P89A
7.	E42H	21.	P90S
8.	L43V	22.	P90A
9.	L43I	23.	P91S
10.	R55H	24.	P91A
11.	R55Q	25.	R95H
12.	E58Q	26.	R95Q
13.	E58N	27.	F96I
14.	E58H	28.	F96V

FIG. 12M

Appln No.: 10/658,834 REPLACEMENT Page 51 of 57 Applicant(s): Rene Gantier, et. al RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC ACID MOLECULES

Granulocyte-macrophage colony-stimulating factor

Protection against proteolysis

Sequence:

APARSPSPSTQPWEHVNAIQEARRLLNLSRDTAAEMNETVEVISEMFDLQEPTCLQTRL ELYKQGLRGSLTKLKGPLTMMASHYKQHCPPTPETSCATQIITFESFKENLKDFLLVIP FDCWEPVQE

Exposed residues:

-----ET-E--SEM-DLQE-----

E--KQ--R------PETSCATQI-T-----

FD--EP---

Proteases:

['Trypsin', 'Endoproteinase Asp-N', 'Chymotrypsin', 'Proline endopeptidase',

'Staphylococcal P.']

Exclusion list:

['B', 'Z', 'X', '*', 'K', 'R', 'D', 'F', 'W', 'Y', 'M', 'L', 'P', 'E']

Substitutions:

1.	E38Q	14.	L49V	27.	P92A
2.	E38N	15.	L49I	28.	E93Q
3.	E38H	16.	E51Q	29.	E93N
4.	E41Q	17.	E51N	30.	E93H
5.	E41N	18.	E51H	31.	F119I
6.	E41H	19.	E60Q	32.	F119V
7.	E45Q	20.	E60N	33.	D120Q
8.	E45N	21.	E60H	34.	D120N
9.	E45H	22.	K63Q	35.	E123Q
10.	M46V	23.	K63N	36.	E123N
11.	M46I	24.	R67H	37.	E123H
12.	D48Q	25.	R67Q	38.	P124S
13.	D48N	26.	P92S	39.	P124A

FIG. 12N

Appln No.: 10/658,834 REPLACEMENT Page 52 of 57 Applicant(s): Rene Gantier, et. al
RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER
STABILITY, THE CYTOKINES AND ENCODING NUCLEIC

ACID MOLECULES

Interleukin-13

Protection against proteolysis						
Sequence:						
GPVPPSTALRELIEELVNITQNQKAPLCNGSMVWSINLTAGMYCAALESLINVSGCSAI						
EKTQRMLSGFCPHKVSAGQFSSLHVRDTKIEVAQFVKDLLLHLKKLFREGRFN						
Exposed residues:						
M-WS-NLTAGEINVSG						
REGRFN						
Proteases:						
['Trypsin', 'Endoproteinase Asp-N', 'Chymotrypsin', 'Proline endopeptidase',						
'Staphylococcal P.']						
Exclusion list:['B', 'Z', 'X', '*', 'K', 'R', 'D', 'F', 'W', 'Y', 'M', 'L', 'P', 'E']						
Substitutions:						
1. M32V 11. F79V 21. R107Q						
2. M32I 12. L82V 22. E108Q						
3. W34S 13. L82I 23. E108N						
4. W34H 14. R85H 24. E108H						
5. L38V 15. R85Q 25. R110H						
6. L38I 16. D86Q 26. R110Q						
7. E48Q 17. D86N 27. F111I						
0 E40V 10 V000 20 E111V						

FIG. 120

18.

19. 20.

8.

9.

10.

E48N

E48H

F79I

K88Q

K88N

R107H

28.

F111V

Appln No.: 10/658,834 REPLACEMENT Page 53 of 57

Applicant(s): Rene Gantier, et. al

RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC

ACID MOLECULES

Interleukin-2

Protection against proteolysis Sequence: APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCL EEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFL NRWITFCQSIISTLT Exposed residues: ------K-Y--KKATEL---O--EE--KP-EE--NL--------ETTFM-EYADET-T--------STLT Proteases: 'Chymotrypsin', 'Proline endopeptidase', 'Endoproteinase Asp-N', ['Trypsin', 'Staphylococcal P.'] Exclusion list: ['B', 'Z', 'X', '*', 'K', 'R', 'D', 'F', 'W', 'Y', 'M', 'L', 'P', 'E'] Substitutions: L53I 25. E68Q 37. E106Q 1. K43Q 13. 26. E68N 38. E106N 14. **E60Q** 2. K43N 39. E106H Y45H 15. **E60N** 27. E68H 3. 28. L72V 40. Y107H 4. Y45I 16. E60H 29. L72I 41. Y107I 5. K48Q 17. E61Q

30.

31.

32.

33.

34.

35.

36.

E100Q

E100N

E100H

F103I

F103V

M104V

M104I

E61N

E61H

P65S

P65A E67Q

E67N

E67H

18.

19.

20.

21.

22.

23.

24.

K48N

K49Q

K49N

E52Q

E52N

E52H

L53V

6.

7.

8.

9.

10.

11.

12.

D109Q

D109N

E110Q

E110N

E110H

L132V

L132I

42.

43.

44.

45.

46.

47.

48.

Appln No.: 10/658,834 REPLACEMENT Page 54 of 57

Applicant(s): Rene Gantier, et. al

RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC

ACID MOLECULES

Interleukin-3

Protection against proteolysis Sequence: APMTQTTPLKTSWVNCSNMIDEIITHLKQPPLPLLDFNNLNGEDQDILMENNLRRPNLE AFNRAVKSLQNASAIESILKNLLPCLPLATAAPTRHPIHIKDGDWNEFRRKLTFYLKTL ENAQAQQTTLSLAIF Exposed residues: -----F-N-NGE-QD------E Proteases: 'Endoproteinase Asp-N', 'Chymotrypsin', 'Proline endopeptidase', ['Trypsin', 'Staphylococcal P.'] **Exclusion list:** ['B', 'Z', 'X', '*', 'K', 'R', 'D', 'F', 'W', 'Y', 'M', 'L', 'P', 'E'] Substitutions: 12. R63Q 1. F37I 13. K66Q 2. **F37V** E43Q 14. K66N 3. 15. P96S 4. E43N 16. P96A 5. E43H K100Q 17. 6. **D46Q** K100N 7. **D46N** 18. 19. D101Q 8. E59Q 20. **D101N** 9. E59N 10. E59H 21. D103Q 22. D103N R63H 11.

FIG. 12Q

Appln No.: 10/658,834 REPLACEMENT Page 55 of 57 Applicant(s): Rene Gantier, et. al
RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER
STABILITY, THE CYTOKINES AND ENCODING NUCLEIC ACID MOLECULES

Interleukin-4

Protection against proteolysis

13.

R64H

Seque	ence:				
HKCD	ITLQEIIKTLNSLTEQK	TLCTELT	/TDIFAASH	KNTTEKETFCRA <i>I</i>	ATVLRQFYSHH
EKDT	RCLGATAQQFHRHKQLI	RFLKRLDF	RNLWGLAGI	JNSCPVKEANQS:	TLENFLERLKT
IMRE	KYSKCSS				
Expos	sed residues:				
		E-T-	AASI	KNTT	RQSH-
EK-T	R-L			SCPVKEANQ-	
	KCSS				
Protea	ases:				
['Tryp	osin', 'Endoproteinase	Asp-N',	'Chymotry	psin', 'Proline	endopeptidase',
'Staph	nylococcal P.']				
Exclu	sion list:				
['B', '2	Z', 'X', '*', 'K', 'R', 'D', 'F',	'W', 'Y', 'M'	, 'L', 'P', 'E']		
Subst	itutions:				
1.	E26Q		14.	R64Q	
2.	E26N .		15.	L66V	
3.	E26H		16.	L66I	
4.	K37Q		17. 18.	P100S P100A	
5.	K37N		18. 19.	K102Q	
6. 7.	R53H R53Q		20.	K102Q K102N	
7. 8.	E60Q		21.	E103Q	
9.	E60N		22.	E103N	
10.	E60H		23.	E103H	
11.	K61Q			K126Q	
12	K61N			K126N	

FIG. 12R

Appln No.: 10/658,834 REPLACEMENT Page 56 of 57 Applicant(s): Rene Gantier, et. al RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER

RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABILITY, THE CYTOKINES AND ENCODING NUCLEIC ACID MOLECULES

Interleukin-5

Protection against proteolysis

9.

10.

11.

12.

E46H

E47Q

E47N

E47H

Sequence: IPTEIPTSALVKETLALLSTHRTLLIANETLRIPVPVHKNHQLCTEEIFQGIGTLESQT VQGGTVERLFKNLSLIKKYIDGQKKKCGEERRRVNQFLDYLQEFLGVMNTEWIIES Exposed residues: -----R-P--V-K-----EE--Q--GT-ESQ-----KK-GEER------E-----NTEW----Proteases: 'Chymotrypsin', endopeptidase', ['Trypsin', 'Endoproteinase Asp-N', 'Proline 'Staphylococcal P.'] Exclusion list: ['B', 'Z', 'X', '*', 'K', 'R', 'D', 'F', 'W', 'Y', 'M', 'L', 'P', 'E'] Substitutions: 25. E89H 1. R32H 13. **E56Q** R90H E56N 26. 2. **R32Q** 14. P34S 15. E56H 27. R90Q 3. 28. E102Q P34A 16. **K84Q** 4. K84N 29. E102N 5. K39Q 17. 30. E102H K39N 18. K85Q 6. 7. E460 19. K85N 31. E110Q 32. E110N 8. E46N 20. E88Q

E88N

E88H

E89Q E89N

21. 22.

23.

24.

33.

34.

35.

E110H

W111S

W111H

REPLACEMENT Page 57 of 57

Appln No.: 10/658,834 REPLACEMENT Page 57 of Applicant(s): Rene Gantier, et. al RATIONAL EVOLUTION OF CYTOKINES FOR HIGHER STABLEY, THE CYTOKINES AND ENCODING NUCLEIC

ACID MOLÉCULES

Stem cell factor

D61N

K62Q

14.

15.

Prote	ction agair	ist proteolysis				
Seque	ence:					
EGIC	CRNRVTNI	NVKDVTKLVAN	LPKDY	MITLKYVPGMDVLP	SHCWISEM	MVVQLSDSLTDL
LDKE	SNISEGI	CSNYSIIDKLV	NIVDD	LVECVKENSSKDLK	KSFKSPE	PRLFTPEEFFRI
FNRS	SIDAFKDI	TVVASETSDCV	VS			
Expo	sed residu	es:				
				M-T-KPDV		VDTD-
-DKI	SN			SK-LK	KSFKS-E	PRL
	- -	ASETSDCV	VS			
Prote	acec.					
11010	ascs.					
['Try	psin', 'E	ndoproteinase	Asp-N	l', 'Chymotrypsin'	, 'Proline	endopeptidase'
'Stap	hylococcal	P.']				
Excl	usion list:					
['B', '	Z', 'X', '*',	'K', 'R', 'D', 'F', '	W', 'Y',	'M', 'L', 'P', 'E']		
Subs	titutions:					
1.	M27V		16.	K62N	31.	E106Q
2.	M27I		17.	F63I	32.	E106N
3.	K31Q			F63V	33.	E106H
4.	K31N			K96Q	34.	P107S
5.	P34S		20.	K96N	35.	P107A
6.	P34A		21.	L98V	36.	R108H
7.	D37Q		22.	L98I	37.	R108Q
8.	D37N		23.	K99Q	38.	L109V
9.	D54Q		24.	K99N	39.	L109I
10.	D54N		25.	K100Q	40.	E134Q
11.	D58Q		26.	K100N	41.	E134N
12.	D58N		27.	F102I	42.	E134H
13.	D61Q		28.	F102V	43.	D137Q

FIG. 12T

K103Q

K103N

29.

30.

D137N

44.