

### A Quick Overview of Time Series Analysis and Forecasting

Dr. Goutam Chakraborty

Lecture

## Outline of Session

- Forecasting
  - Introduction of forecasting for decision making
  - Discuss different types of forecasting approaches
  - Discuss methodological issues in forecasting
  - Demonstrate building different time series models using a data set
  - Selecting the best forecasting model

## Forecasting Introduction

- Why is it needed?
- What is a time series database?
- Some background on forecasting
- Limitations of classical univariate forecasting
- What is data mining for forecasting?
- A quick overview of forecasting process

#### What is a Forecast?

- Forecast a statement about the value of a variable of interest at a *future* time.
  - We make forecasts about such things as sales (demand), weather, resource availability, ...
  - Forecasts are an important element in making informed decisions
  - Planning starts with forecasting...

## Why do we need forecasting?

- Almost every aspects of business can leverage good forecasts for business gain. Examples include:
  - Marketing: new product forecasts
  - Sales: planning salesforce deployment and optimization
  - Operations: resource and asset planning
  - Supply chain: right product at right time at right place..
  - Finance: company's financial health for reporting...
  - Strategy: strategic planning
  - Others

#### Time Series Data

- These are set of values for variables that are recorded for specific points in time.
  - Best practice: Have the values for variables recorded in time intervals which are equally spaced such as weekly, monthly, quarterly etc.
- For a company, the time series data are generated from internal operations (sales, production, ..)
- Some examples of publicly available (free) data include for research:
  - All kinds of economic time series data from US government

(<a href="https://api.census.gov/data/timeseries.html">https://api.census.gov/data/timeseries.html</a>)

| 1  | Α    | В         | С  |         |
|----|------|-----------|----|---------|
| 1  | Year | Month     | R  | evenue  |
| 2  | 2013 | October   | 93 | 97,766  |
| 3  | 2013 | November  | \$ | 98,685  |
| 4  | 2013 | December  | 93 | 99,677  |
| 5  | 2014 | January   | 5  | 101,943 |
| 6  | 2014 | February  | ы  | 100,499 |
| 7  | 2014 | March     | 69 | 111,142 |
| 8  | 2014 | April     | 69 | 98,389  |
| 9  | 2014 | May       | 69 | 113,633 |
| 10 | 2014 | June      | ы  | 100,946 |
| 11 | 2014 | July      | 69 | 102,125 |
| 12 | 2014 | August    | 69 | 109,513 |
| 13 | 2014 | September | 69 | 99,813  |
| 14 | 2014 | October   | 5  | 108,047 |
| 15 | 2014 | November  | 59 | 107,090 |
| 16 | 2014 | December  | 5  | 109,764 |
|    |      | l l       | ı  | 1       |

## A Simple Forecasting Taxonomy



## Forecasting Approaches

- Qualitative/Judgmental Forecasting (opinion based)
  - These use subjective inputs such as opinions from managers, executives, and domain experts
    - Delphi method (consensus forecast)
      - Surveys/questionnaires are filled-out individually; then consolidated
- Quantitative Forecasting (data driven)
  - Time-series forecast (univariate) projection of historical data
  - Associative models (multiple time series) development of associative methods that attempt to use causal variables to make a forecast

## Two Approaches of Quantitative Time Series Forecasting

- Univariate Time Series Forecast
  - Only one target (Y) variable over time is modeled
  - Model the historical pattern in Y over time and extend it to future time
  - Generally works well in short term forecasts
  - Examples of models : Naïve, moving average, smoothing, ARMA,...
  - Do not provide "drivers" of forecasts

- Multiple Time Series Forecast
  - Y (target) variable over time is modeled along with many X (independent) variables over time
  - Model the relationship between X's and Y over time and extend it to future time
  - Generally works better for medium/long forecasts
  - Examples of models: VARMAX, UCM, and others
  - Provide insights as to what drives Y

## Features Common to All Forecasts

- 1. Forecasts are not perfect!!
- 2. Techniques assume some underlying patterns that *existed in the past will persist* into the future
- 3. Forecasts for groups of items are generally more accurate than those for individual items
  - Aggregate forecasts are usually more accurate
- 4. Forecast accuracy decreases as the forecasting horizon increases
  - It is easier to forecast the near future

## Steps in the Forecasting Process

- 1. Determine the purpose of the forecast
- 2. Establish a time horizon
- 3. Select a forecasting technique
- 4. Obtain, clean, and analyze appropriate data
- 5. Make the forecast
- 6. Monitor the forecast (for accuracy and reliability...)

## Terms and Metrics Used in Time-Series

- Terms:
  - Equally spaced data over time
  - Components of a time series data
    - Trend, seasonality, cyclicality, random, irregular, error..
- Forecast error indices (metrics)
  - MAD (or, MAE), MSE, RMSE, MAPE, ...

### Time-Series Components

- Trend
  - A long-term up or down movement in data
- Seasonality
  - Regular variation that repeats itself at the same time
- Cycles
  - Wavelike variations lasting *long time*
- Irregular variation
  - Due to unusual circumstances that do not repeat regularly
- Random variation
  - What's left after the four mentioned above



## Forecast Accuracy and Control

- Forecasters want to minimize forecast errors
  - It is nearly impossible to correctly forecast real-world variable values on a regular basis
  - So, it is important to provide an indication of the extent to which the forecast might deviate from the value of the variable that actually occurs
- Forecast accuracy is an important criterion for selection of a forecasting technique
- Forecast errors should be monitored and (if unacceptable) underlying models should be changed (adopted or recreated)
  - Error = Actual Forecast

## Forecast Accuracy Metrics

$$MAD \text{ or } MAE = \frac{\sum |Actual_t - Forecast_t|}{n}$$

Mean Absolute Deviation (MAD) or, Mean Absolute Error (MAE) weights all errors evenly

$$MSE = \frac{\sum (Actual_t - Forecast_t)^2}{n-1}$$

Mean Squared Error (MSE) weights errors according to their squared values, RMSE is square root of MSE

$$MAPE = \frac{\sum \frac{\left|Actual_{t} - Forecast_{t}\right|}{Actual_{t}} \times 100}{n}$$

Mean Absolute Percent Error (MAPE) weights errors according to relative error

# An Example of Forecast Error Calculation

| Period | Actual<br>(A) | Forecast<br>(F) | (A-F)<br>Error | Error        | Error <sup>2</sup> | [ Error /Actual]x100 |
|--------|---------------|-----------------|----------------|--------------|--------------------|----------------------|
| 1      | 107           | 110             | -3             | 3            | 9                  | 2.80%                |
| 2      | 125           | 121             | 4              | 4            | 16                 | 3.20%                |
| 3      | 115           | 112             | 3              | 3            | 9                  | 2.61%                |
| 4      | 118           | 120             | -2             | 2            | 4                  | 1.69%                |
| 5      | 108           | 109             | 1              | 1            | 1                  | 0.93%                |
|        |               |                 | Sum            | 13           | 39                 | 11.23%               |
|        |               |                 |                | <i>n</i> = 5 | n-1 = 4            | n = 5                |
|        |               |                 |                | MAD          | MSE                | MAPE                 |
|        |               |                 |                | = 2.6        | = 9.75             | = 2.25%              |

**RMSE** = 3.12

#### Basic Models in Univariate Time Series Forecasts

- Naïve forecasts
- Averaging forecasts
  - Simple average
  - Moving average
  - Weighted moving average
  - Exponential smoothing
- Adjusting for:
  - Trend
  - Seasonality



#### Naïve Forecast

#### Naïve Forecast

- Uses a single previous value of a time series as the basis for a forecast
  - The forecast for a time period is equal to the previous time period's value
- Can be used when
  - The time series is fairly stable
  - No time or expertise to build other models



## Averaging

- These techniques work best when a series tends to vary about an average
  - Averaging techniques smooth out variations in the data
  - They can handle *step or gradual* changes in the level of a series
  - Techniques include
    - Simple average
    - Moving average
    - Weighted moving average
    - Exponential smoothing

## Moving Average

 Technique that averages a number of the most recent actual values in generating a forecast

$$F_{t} = \mathbf{MA}_{t} = \frac{\sum_{i=1}^{n} A_{t-i}}{n}$$

where

 $F_t$  = Forecast for time period t

 $MA_t = n$  period moving average

 $A_{t-1}$  = Actual value in period t-1

n = Number of periods in the moving average

## Moving Average – Example

Compute a three-period moving average forecast given demand for shopping carts for the last five periods.

| Period | Demand |                           |
|--------|--------|---------------------------|
| 1      | 42     |                           |
| 2      | 40     |                           |
| 3      | 43 ]   |                           |
| 4      | 40 }   | the 3 most recent demands |
| 5      | 41     |                           |

$$F_6 = \frac{43 + 40 + 41}{3} = 41.33$$

If actual demand in period 6 turns out to be 38, the moving average forecast for period 7 would be

$$F_7 = \frac{40 + 41 + 38}{3} = 39.67$$

# Moving Average

- As new data become available, the forecast is updated by adding the newest value and dropping the oldest and then re-computing the average
- The number of data points included in the average determines the model's sensitivity to changes in data pattern
  - Fewer data points used— model is more responsive
  - More data points used—model is less responsive

## Weighted Moving Average

- The most recent values in a time series are given more weight in computing a forecast
  - The choice of weights, w, is somewhat arbitrary (often using expert judgement) and involves some trial and error

$$F_{t} = w_{n}A_{t-n} + w_{n-1}A_{t-(n-1)} + ... + w_{1}A_{t-1}$$

where

 $w_t$  = weight for period t,  $w_{t-1}$  = weight for period t-1, etc.

 $A_t$  = the actual value for period t,  $A_{t-1}$  = the actual value for period t-1, etc.

## Weighted Moving Average - Example

Compute a weighted average forecast using a weight of .40 for the most recent period, .30 for the next most recent, .20 for the next, and .10 for the next.

If the actual demand for period 6 is 39, forecast demand for period 7 using the same weights as in part a.

| Period | Demand |  |
|--------|--------|--|
| 1      | 42     |  |
| 2      | 40     |  |
| 3      | 43     |  |
| 4      | 40     |  |
| 5      | 41     |  |
|        |        |  |

$$F_6 = .10(40) + .20(43) + .30(40) + .40(41) = 41.0$$

$$F_7 = .10(43) + .20(40) + .30(41) + .40(39) = 40.2$$

## **Exponential Smoothing**

A weighted averaging method that is based on the previous forecast plus a
percentage of the forecast error

$$F_{t} = F_{t-1} + \alpha (A_{t-1} - F_{t-1})$$

where

 $F_t$  = Forecast for period t

 $F_{t-1}$  = Forecast for the previous period

 $\alpha$  = Smoothing constant

 $A_{t-1}$  = Actual demand or sales from the previous period

### Exponential Smoothing (contd.)

- $F_{t+1} = \alpha A_t + (1 \alpha) F_t$
- Similarly,  $F_t = \alpha A_{t-1} + (1-\alpha)F_{t-1}$  substituting this value in the above equation, we get:
- $F_{t+1} = \alpha A_t + (1 \alpha) * \{\alpha A_{t-1} + (1 \alpha) F_{t-1} \}$
- Or,  $F_{t+1} = \alpha A_t + (1 \alpha) \alpha A_{t-1} + (1 \alpha)^2 F_{t-1}$
- Again,  $F_{t-1} = \alpha A_{t-2} + (1 \alpha) F_{t-2}$  Substituting this value in the above equation, we get:
- $F_{t+1} = \alpha A_t + (1-\alpha)\alpha A_{t-1} + (1-\alpha)^2 {}^*{\{\alpha A_{t-2} + (1-\alpha)F_{t-2}\}}$
- Or,  $F_{t+1} = \alpha A_t + (1-\alpha)\alpha A_{t-1} + (1-\alpha)^2 \alpha A_{t-2} + (1-\alpha)^3 F_{t-2}$
- Continuing in this way, we can show that  $F_{t+1}$  is a weighted average of **ALL** past values:
- $F_{t+1} = \alpha A_t + (1-\alpha)\alpha A_{t-1} + (1-\alpha)^2 \alpha A_{t-2} + (1-\alpha)^3 \alpha A_{t-3} + \dots$

## SES (contd.)



#### How do we choose $\alpha$ ?

- The value of  $\alpha$  is between 0 and 1
- A value closer to 0 indicates series is very random, a value closer to 1 indicates forecast depends heavily on changes in recent values
- In practice, α values of 0.05-0.40 works well for most simple smoothing models
- Choose α such that the model minimizes some criterion such as the RMSE, MAPE
  - We will rely on the software to do it for us!
- Advantage of SES requires few data points and simple to implement
- Disadvantage forecast lags original and has no ability to model trend/seasonality

## Techniques for Trend

- Linear trend equation
  - Similar to simple linear regression
- Non-linear trends
  - Parabolic trend equation
  - Exponential trend equation
  - Growth curve trend equation

# Linear Trend

- A simple data plot can reveal the existence and nature of a trend
- Linear trend equation given below
- Slope and intercept may be estimated from historical data

```
F_{t} = a + bt
where
F_{t} = \text{Forecast for period } t
a = \text{Value of } F_{t} \text{ at } t = 0
b = \text{Slope of the line}
t = \text{Specified number of time periods from } t = 0
```

## Holt's Exponential Smoothing for Trend

- The model will have two parameters .
  - $\bullet$  and  $\beta$  are smoothing constants
  - $\bullet$  a same as in simple exponential smoothing model (averaging past observations)
  - $\blacksquare$   $\beta$  parameter captures the trend component
- Choose  $\alpha$ ,  $\beta$  such that the model minimizes some criterion such as the RMSE, MAPE
  - Rely on the software to do it for us!

## Techniques for Seasonality

- Seasonality is expressed in terms of the amount that actual values deviate from the average value of a series
- Models of seasonality

#### Additive

 Seasonality is expressed as a quantity that gets added or subtracted from the time-series average in order to incorporate seasonality

#### Multiplicative

 Seasonality is expressed as a percentage of the average (or trend) amount which is then used to multiply the value of a series in order to incorporate seasonality

**Time Series Models for** 

**Forecasting** 

### Winter's Smoothing Model

- More complicated (3 parameters) model
  - $\alpha$   $\beta$   $\gamma$  are smoothing constants for data stationarity, trend and seasonality
- But, it can handle both seasonality and linear trend in the data
- Need more data points to get estimates for parameters
- Software will choose  $\alpha$   $\beta$   $\gamma$  so as to minimize error indices such as RMSE, MAPE etc.

## Techniques for Cycles

- Cycles are similar to seasonal variations but are of longer duration
- They are generally ignored in univariate TS forecasting models
- If needed, the explanatory (multivariate) approach is often used
  - Search for another variable that relates to, and may be leads, the variable of interest
    - Housing starts precede demand for products and services directly related to construction of new homes
    - If a high correlation can be established with a leading variable, it can develop an equation that describes the relationship, enabling forecasts to be made