Alex Jun (885103481)

CPSC 375

Due May 5, 2024

Final Report

1. Data Wrangling Steps

- Imported covid data which is "owid-covid-data.csv" two excel data from databank which are 2022 and 2023 data.
- Had two data with joining the table with 2022 to training data and 2023 to testing data. (Approved by Professor)
- Filtering the COVID dataset for valid ISO codes
- Selecting and removing certain columns from population data.
- Pivoting wider for both population training and validation datasets to organize data by 'Series Code'.
- Coercing population counts to numeric and handling NAs.
- Filtering for populations greater than 1 million.

2. Variables chose from webpages

I chose the following 6 variables, because there is so many NA values for other variables so that I would not really use those data.

- Urban population
- Population, total
- Population, male
- Population, female
- Population ages 80 and above, female
- Population ages 80 and above, male

3. Scatter Plot (News cases vs Future New Deaths)

Scatterplot of New Cases vs. Future New Deaths

4. Scatter Plot (Population Over 80 vs New Deaths)

Scatterplot of Population Over 80 vs. New Deaths

5. Variable Transformations

- Cardiovasc deaths = (cardiovasc_death_rate * population)
- Population percentage elder than 80s = ((SP.POP.80UP.FE + SP.POP.80UP.MA) / SP.POP.TOTL) * 100)
- Urban Population Percentage = (SP.URB.TOTL / SP.POP.TOTL) * 100)

6. Different 4 Models and Why I chose

- model_1: new_cases_smoothed ,total_cases ,icu_patients ,
 total_vaccinations ,people_fully_vaccinated , gdp_per_capita ,
 urban_population_percentage, life_expectancy, elderly_population_percentage
 Reason: This is Comprehensive model, I was trying to put all the predictors which
 logically think that it is relevant to covid and these are the most make sense
 variables as a general.
- model_2: gdp_per_capita, extreme_poverty, population_density, urban_population_percentage, human_development_index
 Reason: This is the model with social and economic variables that I chose. All the variables are relating with economics.
- model_3: total_vaccinations, people_vaccinated, people_fully_vaccinated, total_boosters, new_vaccinations_smoothed
 Reason: I thought that putting the predictors regarding the vaccination is make sense. These are the all variables regarding to vaccination and boosters.
- model_4 <- lm(new_deaths_smoothed_2wk ~ population +
 hospital_beds_per_thousand + icu_patients + hosp_patients +
 handwashing_facilities, data = final_train)
 Reason: This is about the hosipital infrastructure. Preventing and fighting back to
 covid might be based on the infrastructure.

7. RMSE of the Best Model for 20 Most Populous Countries

Model	RMSE	R2
Model 1	41.98729	0.77929413
Model 2	132.93775	0.06417167
Model 3	154.73974	0.26101830
Model 4	39.03720	0.58560758

Based on the table, Model 1 has the highest the R squared values and the relatively the lowest RMSE, little bit larger than RMSE. Therefore, we choose the Model 1 as the best Model.

8. Top 20 Countries with RMSE

iso_code	location	population	RMSE	
CHN	China	1425887360	NAN	
IND	India	1417173120	NAN	
USA	United States	338289856	81.77700	
IDN	Indonesia	275501344	NAN	
PAK	Pakistan	235824864	NAN	
NG	Nigeria	218541216	NAN	
BRA	Brazil	215313504	NAN	
BGD	Bangladesh	171186368	NAN	
RUS	Russia	144713312	NAN	
MEX	Mexico	127504120	NAN	
JPN	Japan	123951696	200.55290	
ETH	Ethiopia	123379928	NAN	
PHL	Philippines	115559008	NAN	
EGY	Egypt	110990096	NAN	
COD	Democratic	99010216	NAN	
	Republic of Congo			
VNM	Vietnam	98186856	NAN	
IRN	Iran	88550568	NAN	
TUR	Turkey	85341248	NAN	
DEU	Germany	83369840	25.23073	
THA	Thailand	71697024	NAN	

9. Conclusion

The model 1 identifies ICU patient counts, vaccination rates, economic factors (GDP per capita), urbanization, and life expectancy as significant determinants of COVID-19 death rates. Total Cases and Elderly Population Percentage showed no significant impact on new deaths smoothed over 2 weeks in this model. Additionally, the strategy to prevent could be focus on enhancing critical care capacity, accelerating vaccination efforts, and leveraging economic and urban planning to mitigate the pandemic's impact, especially in vulnerable populations.