

Introdução à Análise de Algoritmos

Aula 24-05-2021

Divisão e Conquista

Prof: Glauber Cintra

glauberfcintra@gmail.com

REGRAS GERAIS DE CONDUTA EM AULAS REMOTAS

A sala de aula virtual é uma extensão da sala de aula presencial e, portanto, o Regulamento da Organização Didática (ROD) é o documento que rege a sua dinâmica. Ao acessar a sala de aula virtual, você estará ciente de que a violação dessas regras é passível de medidas disciplinares, tanto no âmbito do IFCE como no âmbito civil e criminal. Para que possamos manter o ambiente harmônico, respeitoso e seguro entre todos, é necessário observar algumas regras de conduta, a saber:

Não compartilhe a gravação das aulas

Você não deve copiar, distribuir, modificar, reproduzir, republicar, transmitir ou comercializar qualquer informação, texto e/ou documentos contidos nas aulas em qualquer meio eletrônico, nem criar qualquer trabalho utilizando imagens, textos ou documentos dessas aulas sem ter por escrito o prévio consentimento dos envolvidos na exposição.

Tenha tolerância e paciência com possíveis falhas tecnológicas e eventuais limitações pessoais

Falhas técnicas poderão acontecer, seja com o professor, com colegas ou com você mesmo. Tenha paciência, procure manter a calma e contornar o problema com discrição e gentileza.

Prepare-se para a aula virtual

Vista-se adequadamente e escolha na sua casa o local mais apropriado (se possível, separado de outras pessoas e das atividades que estiverem sendo realizadas por elas), para que haja o máximo de atenção na aula.

Desative o microfone

Ao acionar seu aparelho, desative o microfone. Essa ação impedirá que, num momento de distração, você compartilhe uma fala ou ruídos indesejados. Seu celular deve ficar no silencioso. Evite também interromper a fala dos demais participantes e, pelo *chat*, peça a palavra ao professor quando quiser fazer algum comentário ou esclarecer alguma dúvida.

Divisão e Conquista

A técnica de divisão e conquista consiste basicamente em dividir a instância a ser resolvida em instâncias menores do mesmo tipo de problema, resolvê-las e depois usar as soluções das instâncias menores para obter uma solução da instância original.

Para que um problema possa ser resolvido por divisão e conquista ele precisa ter duas propriedades:

- Decomponibilidade, ou seja, deve ser possível decompor qualquer instância não trivial do problema em instâncias menores do mesmo tipo de problema;
- A partir das soluções das instâncias obtidas com a decomposição deve ser sempre possível obter uma solução da instância original

INSTITUTO FEDERAL Ceará

Exemplo:

```
Algoritmo Pot5

Entrada: x \in \mathbb{N}
Saída: 2^x
se x = 0
devolva 1
se não
aux = Pot5(\lfloor x/2 \rfloor)
se x for par
devolva aux * aux
se não
devolva aux * aux * 2
```


Algoritmo de Karatsuba-Ofman

Considere o problema de multiplicar dois números de *n* dígitos. O algoritmo clássico de multiplicação requer n² multiplicações dígito a dígito.

Ex:

324
635
1620
972
L944
205740

INSTITUTO FEDERAL Ceará

O Algoritmo de Karatsuba-Ofman, baseado em divisão e conquista, permite multiplicar números com mais eficiência.

Sejam u e v números de n dígitos (vamos supor n par). Vamos decompor u nos números p e q de modo que p é constituído dos primeiros n/2 dígitos de u e q é constituído dos últimos n/2 dígitos de u. De forma análoga, vamos decompor v nos números r e s de modo que r é constituído dos primeiros n/2 dígitos de v e s é constituído dos últimos n/2 dígitos de v. Note que:

$$u = p.10^{n/2} + q$$

$$v = r.10^{n/2} + s$$

Assim:

$$u.v = (p.10^{n/2} + q).(r.10^{n/2} + s)$$

$$u.v = p.r.10^n + p.s.10^{n/2} + q. r.10^{n/2} + q.s$$

$$u.v = p.r.10^n + (p.s + q. r).10^{n/2} + q.s$$

INSTITUTO FEDERAL Ceará

$$u.v = p.r.10^n + (p.s + q. r).10^{n/2} + q.s$$

Usando essa fórmula, precisaremos de quatro multiplicações de números de *n*/2 dígitos. O tempo requerido é dado por:

$$T(n) = 4T(n/2) + cn$$
$$T(1) = c$$

Vamos supor $n = 2^k$

Eq. 0
$$T(n) = 4T(n/2) + cn$$

Eq. 1
$$4T(n/2) = 16T(n/4) + 2cn$$

Eq. 2
$$16T(n/4) = 64T(n/8) + 4cn$$

. . .

Eq.
$$k-1$$
 $4^{k-1}T(n/2^{k-1}) = 4^kT(n/2^k) + 2^{k-1}cn$

Eq.
$$k 4^k T(n/2^k) = 4^k c$$

._____

$$T(n) = cn + 2cn + ... + 2^{k-1}cn + cn^2 = cn(1 + 2 + ... + 2^{k-1}) + cn^2 = cn(2^k - 1) + cn^2 = 2cn^2 - cn$$

Resolvendo essa fórmula, concluímos que o tempo requerido é $\Theta(n^2)$

No entanto, observe que:

$$(p+q).(r+s) = p.r + p.s + q.r + q.s$$

 $p.s + q.r = (p+q).(r+s) - p.r - q.s$

Assim:

$$u.v = p.r.10^{n} + (p.s + q. r).10^{n/2} + q.s$$

$$u.v = p.r.10^{n} + ((p + q).(r + s) - p.r - q.s).10^{n/2} + q.s$$

Precisaremos então apenas 3 multiplicações de números de n/2 dígitos 👄

Ex:
$$u = 4815$$
, $v = 2952$
 $n = 4$, $p = 48$, $q = 15$, $r = 29$, $s = 52$
 $4815 \times 2952 = 48 \times 29 \times 10^4 + ((48 + 15) \times (29 + 52) - 48 \times 29 - 15 \times 52) \times 10^2 + 15 \times 52$
 $4815 \times 2952 = 13920000 + (63 \times 81 - 1392 - 780) \times 10^2 + 780$
 $4815 \times 2952 = 13920000 + 293100 + 780$
 $4815 \times 2952 = 14213880$

■ INSTITUTO FEDERAL Ceará

A complexidade temporal do Algoritmo de Karatsuba-Ofman é dada por:

$$T(n) = 3T(n/2) + cn$$
$$T(1) = c$$

Vamos supor $n = 2^k \Rightarrow k = \log_2 n$

Eq. 0
$$T(n) = 3T(n/2) + cn$$

Eq. 1
$$3T(n/2) = 9T(n/4) + 3/2 cn$$

Eq. 2
$$9T(n/4) = 27T(n/8) + 9/4 cn$$

. . .

Eq. k-1
$$3^{k-1}T(n/2^{k-1}) = 3^kT(n/2^k) + (3/2)^{k-1}cn$$

Eq.
$$k 3^k T(n/2^k) = 3^k c$$

$$T(n) = cn + \frac{3}{2}cn + \dots + (\frac{3}{2})^{k-1}cn + \frac{3}{6}c = cn(1 + \frac{3}{2} + \dots + (\frac{3}{2})^{k-1}) + \frac{3}{6}c = 2((\frac{3}{2})^k - 1)cn + \frac{3}{6}c$$

$$T(n) = 2cn(\frac{3}{2})^k - 2cn + \frac{3}{6}c = 2cn(\frac{3}{2})^k - 2cn + \frac{3}{6}c = 2c3^k - 2cn + \frac{3}{6}c = 2c3^{\log_2 n} - 2cn + \frac{3}{6}\log_2 n + \frac{3}{6}c$$

$$T(n) = 2c3^{\log_2 n} - 2cn + 3^{\log_2 n}c$$

Lembre que:

$$a^{\log_c b} = b^{\log_c a}$$

Assim:

$$T(n) = 2cn^{\log_2 3} - 2cn + n^{\log_2 3}c = 3cn^{\log_2 3} - 2cn$$

Concluímos que o tempo requerido é $\Theta(n^{\log_2 3})$

Introdução à Análise de Algoritmos

Aula 28-05-2021

Mergesort e Quicksort

Prof: Glauber Cintra

glauberfcintra@gmail.com

REGRAS GERAIS DE CONDUTA EM AULAS REMOTAS

A sala de aula virtual é uma extensão da sala de aula presencial e, portanto, o Regulamento da Organização Didática (ROD) é o documento que rege a sua dinâmica. Ao acessar a sala de aula virtual, você estará ciente de que a violação dessas regras é passível de medidas disciplinares, tanto no âmbito do IFCE como no âmbito civil e criminal. Para que possamos manter o ambiente harmônico, respeitoso e seguro entre todos, é necessário observar algumas regras de conduta, a saber:

Não compartilhe a gravação das aulas

Você não deve copiar, distribuir, modificar, reproduzir, republicar, transmitir ou comercializar qualquer informação, texto e/ou documentos contidos nas aulas em qualquer meio eletrônico, nem criar qualquer trabalho utilizando imagens, textos ou documentos dessas aulas sem ter por escrito o prévio consentimento dos envolvidos na exposição.

Tenha tolerância e paciência com possíveis falhas tecnológicas e eventuais limitações pessoais

Falhas técnicas poderão acontecer, seja com o professor, com colegas ou com você mesmo. Tenha paciência, procure manter a calma e contornar o problema com discrição e gentileza.

Prepare-se para a aula virtual

Vista-se adequadamente e escolha na sua casa o local mais apropriado (se possível, separado de outras pessoas e das atividades que estiverem sendo realizadas por elas), para que haja o máximo de atenção na aula.

Desative o microfone

Ao acionar seu aparelho, desative o microfone. Essa ação impedirá que, num momento de distração, você compartilhe uma fala ou ruídos indesejados. Seu celular deve ficar no silencioso. Evite também interromper a fala dos demais participantes e, pelo *chat*, peça a palavra ao professor quando quiser fazer algum comentário ou esclarecer alguma dúvida.

Algoritmo Mergesort

O Mergesort é um conhecido algoritmo de ordenação baseado em divisão e conquista. Ele divide a lista a ser ordenada em duas metades, recursivamente ordena as duas metades e depois intercala as duas metades.

```
Algoritmo Mergesort

Entrada: Um vetor L e as posições início e fim

Saída: O vetor L em ordem crescente da posição início até a posição fim

Se início < fim

meio = (início + fim) / 2 // divisão inteira

se início < meio

mergesort(L, inicio, meio)

se meio + 1 < fim

mergesort(L, meio + 1, fim)

merge(L, inicio, meio, fim)
```


Simulação do Mergesort

A complexidade temporal do Mergesort é dada por:

$$T(n) = 2T(n/2) + cn$$
$$T(1) = c$$

Vamos supor $n = 2^k \Rightarrow k = \log_2 n$

Eq. 0
$$T(n) = 2T(n/2) + cn$$

Eq. 1
$$2T(n/2) = 4T(n/4) + cn$$

Eq. 2
$$4T(n/4) = 8T(n/8) + cn$$

...

Eq.
$$k-1 \ 2^{k-1}T(n/2^{k-1}) = 2^kT(n/2^k) + cn$$

Eq.
$$k 2^k T(n/2^k) = 2^k c$$

$$T(n) = cnk + 2^k c = cn\log_2 n + cn$$

Concluímos que o tempo requerido é $\Theta(n \log_2 n)$.

Algoritmo Quicksort

O Quicksort é um algoritmo de ordenação também baseado em divisão e conquista. No quicksort é escolhido um *pivô* e a lista é dividida em duas sublistas, a da esquerda com os elementos menores ou iguais ao pivô e a da direita com os elementos maiores que o pivô. O pivô é colocado entre as duas sublistas. Após isso, cada sublista é ordenada recursivamente.

Algoritmo Quicksort

Simulação do procedimento de partição

INSTITUTO FEDERAL Ceará

O melhor caso do Quicksort ocorre quando todas as escolhas do pivô recaem sobre a mediana do intervalo a ser particionado. Nesse caso, a complexidade temporal do Quicksort é dada por:

$$T(n) = 2T(n/2) + cn$$

$$T(1) = c$$

Concluímos que o tempo requerido no melhor caso é $\Theta(n \log_2 n)$.

O pior caso do Quicksort ocorre quando todas as escolhas do pivô recaem sobre um elemento extremo do intervalo a ser particionado. Nesse caso, a complexidade temporal do Quicksort é dada por:

$$T(n) = T(n-1) + cn$$

$$T(1) = c$$

Concluímos que o tempo requerido no pior caso é $\Theta(n^2)$.

Introdução à Análise de Algoritmos

Aula 31-05-2021

Programação Dinâmica

Prof: Glauber Cintra

glauberfcintra@gmail.com

REGRAS GERAIS DE CONDUTA EM AULAS REMOTAS

A sala de aula virtual é uma extensão da sala de aula presencial e, portanto, o Regulamento da Organização Didática (ROD) é o documento que rege a sua dinâmica. Ao acessar a sala de aula virtual, você estará ciente de que a violação dessas regras é passível de medidas disciplinares, tanto no âmbito do IFCE como no âmbito civil e criminal. Para que possamos manter o ambiente harmônico, respeitoso e seguro entre todos, é necessário observar algumas regras de conduta, a saber:

Não compartilhe a gravação das aulas

Você não deve copiar, distribuir, modificar, reproduzir, republicar, transmitir ou comercializar qualquer informação, texto e/ou documentos contidos nas aulas em qualquer meio eletrônico, nem criar qualquer trabalho utilizando imagens, textos ou documentos dessas aulas sem ter por escrito o prévio consentimento dos envolvidos na exposição.

Tenha tolerância e paciência com possíveis falhas tecnológicas e eventuais limitações pessoais

Falhas técnicas poderão acontecer, seja com o professor, com colegas ou com você mesmo. Tenha paciência, procure manter a calma e contornar o problema com discrição e gentileza.

Prepare-se para a aula virtual

Vista-se adequadamente e escolha na sua casa o local mais apropriado (se possível, separado de outras pessoas e das atividades que estiverem sendo realizadas por elas), para que haja o máximo de atenção na aula.

Desative o microfone

Ao acionar seu aparelho, desative o microfone. Essa ação impedirá que, num momento de distração, você compartilhe uma fala ou ruídos indesejados. Seu celular deve ficar no silencioso. Evite também interromper a fala dos demais participantes e, pelo *chat*, peça a palavra ao professor quando quiser fazer algum comentário ou esclarecer alguma dúvida.

Programação Dinâmica

A programação dinâmica (PD) pode ser vista como uma generalização da técnica de divisão e conquista. A ideia básica da programação dinâmica é decompor a instância a ser resolvida de diversas maneiras, obtendo em instâncias menores **do mesmo tipo de problema**, resolvê-las e depois usar as soluções das instâncias menores para obter uma solução da instância original.

Para evitar que a mesma instância seja resolvida várias vezes, na PD resolvemos as instâncias começando pelas menores até as maiores, armazenando o resultado numa estrutura de dados.

Para que um problema possa ser resolvido por programação dinâmica ele precisa ter duas propriedades:

- Decomponibilidade, ou seja, deve ser possível decompor qualquer instância não trivial do problema em instâncias menores do mesmo tipo de problema;
- Subestrutura ótima, ou seja, deve existir alguma decomposição tal que a partir das soluções das instâncias obtidas com a decomposição deve ser sempre possível obter uma solução da instância original

Subsequência Crescente Máxima

Seja $S = (s_1, s_2, ..., s_n)$ uma sequência de números. Dizemos que S' é uma subsequência de S se é possível obter S' a partir de S removendo alguns dos elementos de S.

Uma subsequência é crescente se os seus elementos estão em ordem crescente.

Ex: (8, 9, 10) Subsequência crescente de S

No *Problema da Subsequência Crescente Máxima* (SCM) é dada uma sequência S e desejamos encontrar o comprimento de uma subsequência crescente de S que tenha a maior quantidade possível de elementos.

Ex: (4, 4, 7, 10) Subsequência crescente máxima de S?

O SCM não possui subestrutura ótima, no entanto um problema correlato tem: o problema da subsequência crescente máxima com término fixo (SCMTF).

No SCMTF é dada uma sequência de números $S = (s_1, s_2, ..., s_n)$ e um elemento da sequência s_i ($1 \le i \le n$). Desejamos encontrar a maior subsequência crescente de S que termine em s_i .

Para resolver o SCMTF vamos denotar por c_i o comprimento da maior subsequência crescente de S que termina em s_i . Note que:

$$c_1 = 1$$

 $c_i = \max(\{c_i + 1 \mid s_i \le s_i, j = 1, 2, ..., i - 1\}, 1)$

Se calcularmos $c_1, c_2, ..., c_n$, o maior desses valores será a solução do SCM.

Algoritmo SCM_PD

Entrada: uma sequência de números $S = (s_1, s_2, ..., s_n)$

Saída: o comprimento de uma SCM de S

para i = 1 até
$$n$$

 c_i = 1
para j = 1 até i – 1
se $s_j \le s_i$ e c_j + 1 > c_i
 c_i = c_j + 1

devolva o maior valor entre $c_1, c_2, ..., c_n$

O Algoritmo SCM_PD requer tempo $\Theta(n^2)$ e espaço $\Theta(n)$.

Ex:
$$S = (8, 4, 9, 3, 4, 7, 5, 10, 3)$$

i	1	2	3	4	5	6	7	8	9
Si	8	4	9	3	4	7	5	10	3
Ci	1	1	2	1	2	3	3	4	2

Diversão para casa

Adaptar o Algoritmo SCM_PD para que ele devolva uma SCM.

Introdução à Análise de Algoritmos

Aula 07-06-2021

Problema da Mochila

Prof: Glauber Cintra

glauberfcintra@gmail.com

REGRAS GERAIS DE CONDUTA EM AULAS REMOTAS

A sala de aula virtual é uma extensão da sala de aula presencial e, portanto, o Regulamento da Organização Didática (ROD) é o documento que rege a sua dinâmica. Ao acessar a sala de aula virtual, você estará ciente de que a violação dessas regras é passível de medidas disciplinares, tanto no âmbito do IFCE como no âmbito civil e criminal. Para que possamos manter o ambiente harmônico, respeitoso e seguro entre todos, é necessário observar algumas regras de conduta, a saber:

Não compartilhe a gravação das aulas

Você não deve copiar, distribuir, modificar, reproduzir, republicar, transmitir ou comercializar qualquer informação, texto e/ou documentos contidos nas aulas em qualquer meio eletrônico, nem criar qualquer trabalho utilizando imagens, textos ou documentos dessas aulas sem ter por escrito o prévio consentimento dos envolvidos na exposição.

Tenha tolerância e paciência com possíveis falhas tecnológicas e eventuais limitações pessoais

Falhas técnicas poderão acontecer, seja com o professor, com colegas ou com você mesmo. Tenha paciência, procure manter a calma e contornar o problema com discrição e gentileza.

Prepare-se para a aula virtual

Vista-se adequadamente e escolha na sua casa o local mais apropriado (se possível, separado de outras pessoas e das atividades que estiverem sendo realizadas por elas), para que haja o máximo de atenção na aula.

Desative o microfone

Ao acionar seu aparelho, desative o microfone. Essa ação impedirá que, num momento de distração, você compartilhe uma fala ou ruídos indesejados. Seu celular deve ficar no silencioso. Evite também interromper a fala dos demais participantes e, pelo *chat*, peça a palavra ao professor quando quiser fazer algum comentário ou esclarecer alguma dúvida.

Problema da Mochila

A *Problema da Mochila* é um problema que aparece em diversas situações práticas e possui diversas variantes.

Uma dessas variantes é chamada de *Problema da Mochila Binária* (PMB). No PMB temos uma mochila de capacidade C e n itens. Cada item i possui peso p_i e valor v_i .

Precisamos decidir quais itens devem ser colocados na mochila de modo que a soma dos pesos dos itens colocados na mochila não exceda sua capacidade e que a soma dos valores desses itens seja a maior possível.

Se a capacidade da mochila e os pesos dos itens forem todos inteiros, podemos resolver o PMB usando programação dinâmica.

Para isso, vamos denotar por v(i, j) o maior valor que pode ser obtido numa mochila de capacidade i se podemos colocar nela os itens de 1 a j. Note que:

$$v(0, j) = 0$$

 $v(i, 0) = 0$
 $v(i, j) = \max(v_j + v(i - p_j, j - 1), v(i, j - 1))$

Podemos usar PD para calcular v(C, n)

Algoritmo PMB_PD

```
Entrada: C, p_1, p_2, ..., p_n, v_1, v_2, ..., v_n

Saída: v(C, n)

para i = 0 até C

v(i, 0) = 0

para j = 1 até n

para i = 0 até C

se p_j \le i e v_j + v(i - p_j, j - 1) > v(i, j - 1)

v(i, j) = v_j + v(i - p_j, j - 1)

se não

v(i, j) = v(i, j - 1)
```

O Algoritmo PMB_PD requer tempo e espaço $\Theta(nC)$.

Ele é pseudo-polinomial.

Ex: C = 10, n = 4

i	<i>i</i> 1		3	4	
p_i	5	3	7	4	
V _i	52	28	66	43	

V	0	1	2	3	4
0	0	0	0	0	0
1	0	0	0	0	0
2	0	0	0	0	0
3	0	0	28	28	28
4	0	0	28	28	43
5	0	52	52	52	52
6	0	52	52	52	52
7	0	52	52	66	71
8	0	52	80	80	80
9	0	52	80	80	95
10	0	52	80	94	95

Diversão para casa

Adaptar o Algoritmo PBM_PD para que ele indique quais itens devem ser colocados na mochila.

Introdução à Análise de Algoritmos

Aula 11-06-2021

Enumeração Explícita

Prof: Glauber Cintra

glauberfcintra@gmail.com

REGRAS GERAIS DE CONDUTA EM AULAS REMOTAS

A sala de aula virtual é uma extensão da sala de aula presencial e, portanto, o Regulamento da Organização Didática (ROD) é o documento que rege a sua dinâmica. Ao acessar a sala de aula virtual, você estará ciente de que a violação dessas regras é passível de medidas disciplinares, tanto no âmbito do IFCE como no âmbito civil e criminal. Para que possamos manter o ambiente harmônico, respeitoso e seguro entre todos, é necessário observar algumas regras de conduta, a saber:

Não compartilhe a gravação das aulas

Você não deve copiar, distribuir, modificar, reproduzir, republicar, transmitir ou comercializar qualquer informação, texto e/ou documentos contidos nas aulas em qualquer meio eletrônico, nem criar qualquer trabalho utilizando imagens, textos ou documentos dessas aulas sem ter por escrito o prévio consentimento dos envolvidos na exposição.

Tenha tolerância e paciência com possíveis falhas tecnológicas e eventuais limitações pessoais

Falhas técnicas poderão acontecer, seja com o professor, com colegas ou com você mesmo. Tenha paciência, procure manter a calma e contornar o problema com discrição e gentileza.

Prepare-se para a aula virtual

Vista-se adequadamente e escolha na sua casa o local mais apropriado (se possível, separado de outras pessoas e das atividades que estiverem sendo realizadas por elas), para que haja o máximo de atenção na aula.

Desative o microfone

Ao acionar seu aparelho, desative o microfone. Essa ação impedirá que, num momento de distração, você compartilhe uma fala ou ruídos indesejados. Seu celular deve ficar no silencioso. Evite também interromper a fala dos demais participantes e, pelo *chat*, peça a palavra ao professor quando quiser fazer algum comentário ou esclarecer alguma dúvida.

Enumeração Explícita

A técnica de *enumeração explícita* (EE), às vezes chamada de *força bruta*, consiste basicamente em enumerar todos os candidatos a solução e dentre eles encontrar uma solução para a instância a ser resolvida.

Um problema cuja solução pode ser adaptada para resolver vários outros problemas por EE é, dado um conjunto $C = \{e_1, e_2, ..., e_n\}$, enumerar todos os subconjuntos de C.

Observe que cada um dos subconjuntos de *C* pode ser representado por um conjunto de *n* bits no qual um bit 1 significa que o elemento correspondente a esse bit pertence ao subconjunto e 0 significa que não pertence.

Por exemplo, seja $C = \{4, 8, 5\}$. A sequência de bits 101 representa o subconjunto $\{4, 5\}$.

Note que o próprio C é representado pela sequência de n bits todos iguais a 1, que equivale ao número decimal $2^n - 1$. Já o conjunto vazio é representado pela sequência de n bits todos iguais a 0. Assim, as representações binárias dos números de 0 a $2^n - 1$ codificam todos os subconjuntos de C.

Algoritmo imprime_subconjuntos

Entrada: $C = \{e_1, e_2, ..., e_n\}$ **Saída**: imprime todos os subconjuntos de C

para i = 0 até $2^n - 1$ imprime_subconjunto(C, i)

Procedimento imprime_subconjunto

Entrada: $C = \{e_1, e_2, ..., e_n\}$ e um valor i

Saída: imprime o subconjunto de C codificado pelos bits de i

para j = 1 até nSe i % 2 = 1imprima e_j i = i / 2 // divisão inteira

O procedimento imprime_subconjunto requer tempo $\Theta(n)$.

O algoritmo imprime_subconjuntos requer tempo $\Theta(n2^n)$

Apesar de ineficiente, este algoritmo é de cota inferior este algoritmo este algoritmo este cota inferior este algoritmo este algoritm

INSTITUTO FEDERAL Ceará

Procedimento imprime_subconjunto

```
Entrada: C = \{e_1, e_2, ..., e_n\} e um valor i

Saída: imprime o subconjunto de C codificado pelos bits de i

para j = 1 até n

Se i \% 2 = 1

imprima e_j

i = i/2 // divisão inteira
```

Ex:
$$C = \{4, 8, 5\}, i = 5$$

$$j = 1, i = 5, i \% \ 2 = 1 \rightarrow \text{imprime } e_1 = 4$$

$$j = 2, i = 2, i \% \ 2 = 0 \rightarrow \text{não imprime } e_2 = 8$$

$$j = 3, i = 1, i \% \ 2 = 1 \rightarrow \text{imprime } e_3 = 5$$

$$Cube a rejunta incurs a con (4, 5)$$

Subconjunto impresso: {4, 5}

Algoritmo imprime_subconjuntos

Entrada: $C = \{e_1, e_2, ..., e_n\}$

Saída: imprime todos os subconjuntos de C

para i = 0 até $2^{n} - 1$

imprime_subconjunto(*C*, *i*)

Ex: $C = \{4, 8, 5\}, n = 3$

i	binário	subconjunto		
0	000	{}		
1	001	{4}		
2	010	{8}		
3	011	{4, 8}		
4	100	{5}		
5	101	{4, 5}		
6	110	{8, 5}		
7	111	{4, 8, 5}		

Diversão para casa

Adapte o Algoritmo imprime_subconjuntos para resolver o problema da subsequência crescente máxima.

Introdução à Análise de Algoritmos

Aula 14-06-2021

Exemplos de Algoritmos de Enumeração Explícita

Prof: Glauber Cintra

glauberfcintra@gmail.com

REGRAS GERAIS DE CONDUTA EM AULAS REMOTAS

A sala de aula virtual é uma extensão da sala de aula presencial e, portanto, o Regulamento da Organização Didática (ROD) é o documento que rege a sua dinâmica. Ao acessar a sala de aula virtual, você estará ciente de que a violação dessas regras é passível de medidas disciplinares, tanto no âmbito do IFCE como no âmbito civil e criminal. Para que possamos manter o ambiente harmônico, respeitoso e seguro entre todos, é necessário observar algumas regras de conduta, a saber:

Não compartilhe a gravação das aulas

Você não deve copiar, distribuir, modificar, reproduzir, republicar, transmitir ou comercializar qualquer informação, texto e/ou documentos contidos nas aulas em qualquer meio eletrônico, nem criar qualquer trabalho utilizando imagens, textos ou documentos dessas aulas sem ter por escrito o prévio consentimento dos envolvidos na exposição.

Tenha tolerância e paciência com possíveis falhas tecnológicas e eventuais limitações pessoais

Falhas técnicas poderão acontecer, seja com o professor, com colegas ou com você mesmo. Tenha paciência, procure manter a calma e contornar o problema com discrição e gentileza.

Prepare-se para a aula virtual

Vista-se adequadamente e escolha na sua casa o local mais apropriado (se possível, separado de outras pessoas e das atividades que estiverem sendo realizadas por elas), para que haja o máximo de atenção na aula.

Desative o microfone

Ao acionar seu aparelho, desative o microfone. Essa ação impedirá que, num momento de distração, você compartilhe uma fala ou ruídos indesejados. Seu celular deve ficar no silencioso. Evite também interromper a fala dos demais participantes e, pelo *chat*, peça a palavra ao professor quando quiser fazer algum comentário ou esclarecer alguma dúvida.

INSTITUTO FEDERAL Ceará

```
Algoritmo SCM_EE
         Entrada: S = (s_1, s_2, ..., s_n)
          Saída: uma SCM de S e o seu tamanho
         maximo = -1
         para i = 0 até 2^{n} - 1
                   tamanho = tamanho subsequencia(S, i)
                   se tamanho > maximo
                             maximo = tamanho, scm = i
                                       // o bits de scm codificam uma SCM de S
         devolva scm e maximo
Procedimento tamanho subsequencia
         Entrada: S = (s_1, s_2, ..., s_n) e um valor i
                   se a subsequência de S codificada pelos bits de i for crescente devolve o tamanho dessa
          Saída:
                   subsequência; caso contrário, devolve -1
         tamanho = 0
         para j = 1 até n
                   se i \% 2 = 1
                             se tamanho > 0 e s_i < anterior
                                       devolva -1 e pare
                             tamanho++, anterior = s_i
```

O procedimento tamanho_subsequencia requer tempo $\Theta(n)$.

// divisão inteira

O algoritmo SCM_EE requer tempo $\Theta(n2^n)$

devolva tamanho

i = i / 2

INSTITUTO FEDERAL Ceará

Algoritmo PMB_EE

```
Entrada: C, p_1, p_2, ..., p_n, v_1, v_2, ..., v_n

Saída: uma solução ótima para a instância e o valor dessa solução maximo = 0, sol = 0 para i = 1 até 2^n – 1 valor = valor_mochila(C, p_1, p_2, ..., p_n, v_1, v_2, ..., v_n, i) se valor > maximo maximo = valor, sol = i devolva sol e maximo // o bits de sol codificam uma solução da instância
```

Procedimento valor_mochila

```
Entrada: C, p_1, p_2, ..., p_n, v_1, v_2, ..., v_n e um valor i

Saída: se a forma de preencher a mochila codificada pelos bits de i não exceder a capacidade da mochila devolve o valor obtido com essa solução; caso contrário, devolve -1

valor = 0, peso = 0

para j = 1 até n

se i % 2 = 1

se p_j + peso > C

devolva -1 e pare

peso = peso + p_j, valor = valor + v_j

i = i / 2 // divisão inteira

devolva valor
```

O procedimento valor_mochila requer tempo O(n).

O algoritmo PMB EE requer tempo $\Theta(n2^n)$

Diversões para casa

- 1) Implemente e teste os algoritmos abordados na aula de hoje.
- 2) Escreva um algoritmo baseado em enumeração explícita que receba uma coleção de números e devolva uma partição dessa coleção em duas subcoleções tais que a soma dos números em cada subcoleção seja a mesma (*problema da 2-partição*). Informe a complexidade temporal do seu algoritmo.

Ex:
$$C = (9, 3, 2, 5, 1, 2, 3, 7)$$

Uma solução: (9, 3, 1, 3) e (2, 5, 2, 7)

Outra solução: (9, 7) e (3, 2, 5, 1, 2, 3)

Introdução à Análise de Algoritmos

Aula 18-06-2021

Enumeração Implícita para o Problema da Mochila

Prof: Glauber Cintra

glauberfcintra@gmail.com

REGRAS GERAIS DE CONDUTA EM AULAS REMOTAS

A sala de aula virtual é uma extensão da sala de aula presencial e, portanto, o Regulamento da Organização Didática (ROD) é o documento que rege a sua dinâmica. Ao acessar a sala de aula virtual, você estará ciente de que a violação dessas regras é passível de medidas disciplinares, tanto no âmbito do IFCE como no âmbito civil e criminal. Para que possamos manter o ambiente harmônico, respeitoso e seguro entre todos, é necessário observar algumas regras de conduta, a saber:

Não compartilhe a gravação das aulas

Você não deve copiar, distribuir, modificar, reproduzir, republicar, transmitir ou comercializar qualquer informação, texto e/ou documentos contidos nas aulas em qualquer meio eletrônico, nem criar qualquer trabalho utilizando imagens, textos ou documentos dessas aulas sem ter por escrito o prévio consentimento dos envolvidos na exposição.

Tenha tolerância e paciência com possíveis falhas tecnológicas e eventuais limitações pessoais

Falhas técnicas poderão acontecer, seja com o professor, com colegas ou com você mesmo. Tenha paciência, procure manter a calma e contornar o problema com discrição e gentileza.

Prepare-se para a aula virtual

Vista-se adequadamente e escolha na sua casa o local mais apropriado (se possível, separado de outras pessoas e das atividades que estiverem sendo realizadas por elas), para que haja o máximo de atenção na aula.

Desative o microfone

Ao acionar seu aparelho, desative o microfone. Essa ação impedirá que, num momento de distração, você compartilhe uma fala ou ruídos indesejados. Seu celular deve ficar no silencioso. Evite também interromper a fala dos demais participantes e, pelo *chat*, peça a palavra ao professor quando quiser fazer algum comentário ou esclarecer alguma dúvida.

Enumeração Implícita

Na enumeração implícita em vez de enumerarmos todos os candidatos a solução, enumeramos apenas os candidatos promissores, aqueles que têm chance de ser solução. Se o conjunto de candidatos promissores for bem menor que o conjunto de todos os candidatos, a enumeração implícita será muito mais eficiente do que a enumeração explícita.

Existem diversas técnicas de enumeração implícita: *branch-and-bound, branch-and-cut, branch-and-price, branch-and-cut-and-price* etc. Tais técnicas costumam ser bem sofisticadas. Veremos um exemplo de algoritmo de branch-and-bound (BB) para o PMB.

Seja X uma solução viável (que não excede a capacidade da mochila) para uma instância do PMB. Se a capacidade remanescente na mochila ao aplicar a solução X for maior do que o peso de algum dos itens que não foram colocados na mochila, dizemos que X é uma solução *insensata*, pois não pode ser uma solução ótima.

O algoritmo de BB que iremos apresentar enumera apenas soluções viáveis procurando evitar soluções insensatas. Além disso, se já enumeramos uma solução de valor *V*, devemos evitar enumerar soluções que tenham valor menor ou igual a *V*.

Ex: C = 10, n = 3

i	1	2	3
p_i	5	3	7
V _i	12	7	16

Essa árvore enumera todas as possíveis formas de preencher uma mochila para a instância descrita acima. Na árvore, após o nível da raiz, temos um nível para cada item. A ramificação à esquerda indica que o item não deve ser colocado mochila e a ramificação à direita indica que o item deve ser colocado. Cada ramo da árvore, desde a raiz até uma folha, representa uma forma de preencher a mochila. O ramo destacado de azul representa a solução em que apenas itens 2 e 3 são colocados na mochila. Note que essa solução é ótima e tem valor 23. Observe ainda que os nós amarelos correspondem a solução *insensatas* e os nós vermelhos correspondem a soluções *inviáveis*.

Branch-and-bound para o PMB

Considere uma instância $I = (C, p_1, p_2, ..., p_n, v_1, v_2, ..., v_n)$ do PMB sendo que os itens estão em ordem decrescente de *valor relativo* (valor/peso).

Seja $X = (x_1, x_2, ..., x_n)$ uma solução viável codificada por um vetor de bits onde $x_i = 1$ indica que o item i deve ser colocado na mochila e $x_i = 0$ indica que o item i não deve ser colocado na mochila.

Note que o valor dessa solução X é $\sum_{j=1}^{n} x_j v_j$. Além disso, a capacidade remanescente na mochila é $C - \sum_{j=1}^{n} x_j p_j$.

Suponha que uma solução $X' = (x'_1, x'_2, ..., x'_n)$ tenha $x'_i = x_i$ (i = 1, 2, ..., k - 1) e $x'_k = 0$. Observe que a valor dessa solução X' será no máximo:

$$M = \sum_{j=1}^{k-1} x_j v_j + (C - \sum_{j=1}^{k-1} x_j p_j) \frac{v_{k+1}}{p_{k+1}}$$

Se M for menor ou igual ao valor da melhor solução já encontrada então X não precisa ser enumerada. Isso significa que podemos deixar de enumerar **todas** as soluções que começam com $x_1, x_2, ..., x_{k-1}$ e tenham $x_k = 0$. Temos assim uma *condição de poda*, ou seja, uma condição que pode ser usada para limitar a enumeração. $\stackrel{\smile}{\omega}$

INSTITUTO FEDERAL Ceará

Algoritmo PMB_BB

Entrada: C, $p_1, p_2, ..., p_n$, $v_1, v_2, ..., v_n$ **Saída**: uma solução ótima x* M = 0, k = 0coloque os itens em ordem decrescente de valor relativo faça para i = k + 1 até nse $p_i \leq C - \sum_{j=1}^{i-1} x_j p_j$ $x_i = 1$ se não $x_i = 0$ se $\sum_{i=1}^{n} x_i v_i > M$ $M = \sum_{i=1}^n x_i v_i, x^* = x$ $k = \max(\{i \mid i < n, x_i = 1 \in \sum_{j=1}^{i-1} x_j v_j + (C - \sum_{j=1}^{i-1} x_j p_j) \frac{v_{i+1}}{p_{i+1}} > M\}, \{0\})$

> se k > 0 $x_k = 0$

enquanto k > 0 devolva x*

Ex: C = 20, n = 6

i	1	2	3	4	5	6
p _i	5	3	7	6	10	8
Vi	12	7	16	13	20	14

$$M = 0, 35, 39, 41, 42, 43$$

$$k = 0, 3, 4, 5, 2, 4, 3, 1, 4, 2, 0$$

A melhor solução tem valor 43 e é obtida inserindo os itens 2, 3 e 5 na mochila.

Obs: Os números em vermelho indicam os casos em que a condição de poda foi usada para restringir a enumeração

X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	valor	peso
1	1	1	0	0	0	35	15
1	1	0	1	0	0	32	14
1	1	0	0	1	0	39	18
1	1	0	0	0	1	33	16
1	0	1	1	0	0	41	18
1	0	1	0	0	1	42	20
1	0	0	1	0	1	39	19
0	1	1	1	0	0	36	16
0	1	1	0	1	0	43 x*	20
0	0	1	1	0	0	29	13

Introdução à Análise de Algoritmos

Aula 02-07-2021

Estratégia Gulosa – Parte 1

Prof: Glauber Cintra

glauberfcintra@gmail.com

REGRAS GERAIS DE CONDUTA EM AULAS REMOTAS

A sala de aula virtual é uma extensão da sala de aula presencial e, portanto, o Regulamento da Organização Didática (ROD) é o documento que rege a sua dinâmica. Ao acessar a sala de aula virtual, você estará ciente de que a violação dessas regras é passível de medidas disciplinares, tanto no âmbito do IFCE como no âmbito civil e criminal. Para que possamos manter o ambiente harmônico, respeitoso e seguro entre todos, é necessário observar algumas regras de conduta, a saber:

Não compartilhe a gravação das aulas

Você não deve copiar, distribuir, modificar, reproduzir, republicar, transmitir ou comercializar qualquer informação, texto e/ou documentos contidos nas aulas em qualquer meio eletrônico, nem criar qualquer trabalho utilizando imagens, textos ou documentos dessas aulas sem ter por escrito o prévio consentimento dos envolvidos na exposição.

Tenha tolerância e paciência com possíveis falhas tecnológicas e eventuais limitações pessoais

Falhas técnicas poderão acontecer, seja com o professor, com colegas ou com você mesmo. Tenha paciência, procure manter a calma e contornar o problema com discrição e gentileza.

Prepare-se para a aula virtual

Vista-se adequadamente e escolha na sua casa o local mais apropriado (se possível, separado de outras pessoas e das atividades que estiverem sendo realizadas por elas), para que haja o máximo de atenção na aula.

Desative o microfone

Ao acionar seu aparelho, desative o microfone. Essa ação impedirá que, num momento de distração, você compartilhe uma fala ou ruídos indesejados. Seu celular deve ficar no silencioso. Evite também interromper a fala dos demais participantes e, pelo *chat*, peça a palavra ao professor quando quiser fazer algum comentário ou esclarecer alguma dúvida.

Estratégia Gulosa

Alguns problemas podem ser resolvidos usando a técnica conhecida como estratégia gulosa. Tal estratégia tem algumas características.

A solução da instância a ser resolvida é calculada iterativamente, sendo que a cada iteração é feita uma escolha gulosa, ou seja, entre todas as decisões possíveis é escolhida aquela que é mais apetitosa, segundo algum critério. Tal escolha jamais precisará ser desfeita.

Um algoritmo baseado nessa estratégia é chamado de *algoritmo guloso*. Os algoritmos gulosos costumam ser simples e rápidos, mas a prova de sua corretude costuma ser complicada.

Um problema pode ser corretamente resolvido usando-se a estratégia gulosa se ele possui a *propriedade gulosa*. Em essência, essa propriedade estabelece que as escolhas gulosas levam necessariamente a uma solução correta, qualquer que seja a instância do problema.

Infelizmente, poucos problemas têm a propriedade gulosa. 😔

INSTITUTO FEDERAL Ceará

Vejamos um exemplo de problema que possui a propriedade gulosa: dada uma coleção de números $C = (c_1, c_2, ..., c_n)$ e um número k, encontrar a maior subcoleção de C cuja soma dos elementos seja menor ou igual a k.

Ex:
$$C = (6, 8, 10, 2, 4, 5, 7, 2, 8), k = 15$$

Solução: (6, 2, 4, 2)

Podemos resolver esse problema usando uma estratégia gulosa:

A cada iteração escolha o menor elemento de *C* que ainda não tiver sido escolhido. Repita esse procedimento até que não seja possível escolher mais nenhum elemento. Devolva a subcoleção formada pelos elementos escolhidos.

Seguindo essa estratégia para o exemplo acima chegaríamos à seguinte solução:

Vejamos mais um exemplo: precisamos passar um troco de valor *t* usando a menor quantidade possível de moedas.

Podemos resolver esse problema usando a seguinte estratégia: use as moedas de maior valor.

Ex: Troco de R\$ 3,71

3 moedas de 1 real

1 moeda de 50 centavos

2 moedas de 10 centavos

1 moeda de 1 centavo

Obs: se tivéssemos moedas de 20 centavos a estratégia gulosa acima não funcionaria 🥯

INSTITUTO FEDERAL Ceará

Em alguns casos, quando um problema não possui a propriedade gulosa, podemos usar a estratégia gulosa para encontrar uma "boa" solução do problema, mas não necessariamente a melhor solução.

Por exemplo, podemos aplicar a seguinte estratégia gulosa para o PMB: 😂

Coloque na mochila os itens em ordem decrescente de valor relativo, até que não seja possível colocar mais nenhum item.

Ex: C = 20, n = 6

i	1	2	3	4	5	6
p_i	5	3	7	6	10	8
V _i	12	7	16	13	20	14
valor relativo	2,4	2,333	2,286	2,167	2	1,75

Solução gulosa: colocar na mochila os itens 1, 2 e 3. Valor: 35

Solução ótima: colocar na mochila os itens 2, 3 e 5. Valor: 43

Introdução à Análise de Algoritmos

Aula 05-07-2021

Estratégia Gulosa – Parte 2

Prof: Glauber Cintra

glauberfcintra@gmail.com

REGRAS GERAIS DE CONDUTA EM AULAS REMOTAS

A sala de aula virtual é uma extensão da sala de aula presencial e, portanto, o Regulamento da Organização Didática (ROD) é o documento que rege a sua dinâmica. Ao acessar a sala de aula virtual, você estará ciente de que a violação dessas regras é passível de medidas disciplinares, tanto no âmbito do IFCE como no âmbito civil e criminal. Para que possamos manter o ambiente harmônico, respeitoso e seguro entre todos, é necessário observar algumas regras de conduta, a saber:

Não compartilhe a gravação das aulas

Você não deve copiar, distribuir, modificar, reproduzir, republicar, transmitir ou comercializar qualquer informação, texto e/ou documentos contidos nas aulas em qualquer meio eletrônico, nem criar qualquer trabalho utilizando imagens, textos ou documentos dessas aulas sem ter por escrito o prévio consentimento dos envolvidos na exposição.

Tenha tolerância e paciência com possíveis falhas tecnológicas e eventuais limitações pessoais

Falhas técnicas poderão acontecer, seja com o professor, com colegas ou com você mesmo. Tenha paciência, procure manter a calma e contornar o problema com discrição e gentileza.

Prepare-se para a aula virtual

Vista-se adequadamente e escolha na sua casa o local mais apropriado (se possível, separado de outras pessoas e das atividades que estiverem sendo realizadas por elas), para que haja o máximo de atenção na aula.

Desative o microfone

Ao acionar seu aparelho, desative o microfone. Essa ação impedirá que, num momento de distração, você compartilhe uma fala ou ruídos indesejados. Seu celular deve ficar no silencioso. Evite também interromper a fala dos demais participantes e, pelo *chat*, peça a palavra ao professor quando quiser fazer algum comentário ou esclarecer alguma dúvida.

Árvore Geradora Mínima

Seja G um grafo conexo no qual cada aresta tem um custo. Uma árvore geradora de G é um subgrafo de G que é conexo, acíclico e contém todos os vértices de G.

O custo de uma árvore geradora é a soma dos custos das arestas que a compõem. O Problema da Árvore Geradora Mínima (AGM) consiste em, dado um grafo conexo no qual cada aresta tem um custo, encontrar uma AGM do grafo.

Esse problema possui a propriedade gulosa e portanto podemos resolvê-lo usando algoritmos gulosos.

Algoritmo de Kruskal

O Algoritmo de Kruskal utiliza a seguinte estratégia gulosa: construa a AGM escolhendo as arestas em ordem crescente de custo, sem permitir a formação de ciclos.

Ex:

Custo: 37

Algoritmo de Prim

Podemos resolver o problema da AGM usando o *Algoritmo de Prim*. Tal algoritmo também é guloso, simples e rápido. Antes de descrevê-lo, precisamos de uma definição.

Seja Z um conjunto de vértices. Dizemos que uma aresta uv está na fronteira de Z se $u \in Z$ e $v \notin Z$ ou $v \in Z$ e $u \notin Z$.

Ex:

Iniciamos o Algoritmo de Prim com um conjunto Z de vértices contendo um único vértice. A cada iteração escolhemos uma aresta da fronteira de Z que possua o menor custo para fazer parte da AGM. Seja uv a aresta escolhida, com $u \in Z$ e $v \notin Z$. Incluímos o vértice v em Z e iniciamos uma nova iteração.

Ex:

