Zilog Z80 CPU Specifications

by Sean Young (syoung@cs.vu.nl)

Last update: September 21, 1997

Opcode Prefixes

There are four different opcode prefixes: CB, DD, ED and FD. If an opcode begins the DD prefix, the IX register is used in stead of the HL register and likewise the FD prefix results in use of the IY register in stead of the HL register. If HL refers to memory address, (e.g. LD A, (HL)), an offset d is added to the opcode (e.g. LD A, (IX + d)). If the instruction uses the H or L register, the high order byte or the low order byte of the IX or IY register is used. There are two exceptions to this rule, though: the EXX and EX DE, HL instructions. These instructions cannot be changed with a DD or FD prefix. If the instruction does not use the HL, H or L register, the instruction is executed as without the DD or FD prefix (except for the DDCB and FDCB opcode prefixes). Multiple DDs or FDs after each other operate like NOPs. If a instruction is preceded by an ED, a new set of instructions is used (see Opcode list). If the opcode is not listed, it will operate as two NOPs. Similarly the CB, FDCB and the DDCB select a new instruction set, though every possible instruction has a function and is listed.

The IM 0/1 and RETI/N instructions

The opcode list shows these two strange instructions. They are unofficial, and because both possibilities operate exactly the same way on a MSX, I can not determine which one they are. It is not important on a MSX though, but if anyone knows which one they are, please let me know.

Registers

The Z80 has the following (accessible) registers: I, R, A, F, BC, DE, HL, IX, IY, SP, PC, AF', BC', DE' and HL'.

The R register is for memory refresh. It is increased by 1 after every instruction, whereby the CB, DD, DDCB, ED, FD and FDCB prefixes are viewed as separate instructions. Bit 7 is never modified, but it can be changed with LD A,R.

The F register is the flag register. It has the following structure:

- Bit 7: The S flag: if the result of the operation is negative, this flag is high. This is a copy of the MSB of the result of the operation.
- Bit 6: The Z flag: if the result is zero, this flag is high.
- Bit 5: This bit has no official name. Throughout this document it is referred to as 'b5'. It is a copy of bit 5 of the result of the operation.
- Bit 4: The H flag. This is the carry from bit 3 to bit 4 of the operation. Used with DAA instruction.
- Bit 3: This bit has no official name. Throughout this document it is referred to as 'b3'. It is a copy of bit 3 of the result of the operation.
- Bit 2: The P/V flag. It contains the overflow (high if two's complements result does not fit in register) or the parity (parity of number of high bits in result of operation). See description of instructions for which one.
- Bit 1: The N flag. It is high if the last operation was an subtraction, otherwise it was an addition. Used with DAA instruction.
- Bit 0: The C flag. If the result of the operation does not fit in the register, this bit is high.

Sometimes the flags have other meanings. See descriptions of instructions for details.

Interrupts

There are two types of interrupts: mask-able and non mask-able, and the are two flip-flops associated with interrupts: IFF₁ and IFF₂. DI resets both and EI sets both. If IFF₁ is set then mask-able interrupts are accepted. When an non mask-able interrupt occurs, the IFF₁ is reset, so disabling mask-able interrupts. When the CPU returns from a non mask-able interrupt (with RETN) the IFF₂ is copied into IFF₁ (and thus restored). Only IFF₂ can be read (with LD A, I and LD A, R IFF₂ is copied into the P/V flag).

MSX Specific: non mask-able interrupts never occur in a MSX, so the two interrupt flip-flops are always identical. Viewing the CPU as though it has one Interrupt flip-flop is not incorrect.

Interrupt Modes

Interrupt modes can be set with the IM x instructions. They only affect mask-able interrupts. When a mask-able interrupt occurs, the interrupting device must supply a value. Interrupt Mode 0:

The value the interrupting device supplies is interpreted as an 8 bit opcode which is executed (usually RST p instructions).

Interrupt Mode 1:

A call is made to address 38h. The value the interrupting device supplies is ignored. Interrupt Mode 2:

A call is made to an address read from address (register I \times 256 + value from interrupting device). MSX Specific: The MSX has one interrupting device (the VDP), which always provides value FFh (instruction RST 38h), so the MSX operates the same in Interrupt Mode 0 as in 1. In IM 2 a call is made to an address read from address (register I \times 256 + FFh).

Instructions Descriptions

8 bit Load Group

Mnemonic	Symbolic Operation	S	Z	F5		ags F3	P/V	' N	С	Opcode 76 543 210	Hex	No. of Bytes	No. of M Cycles	No. of T States	Comments
LD r, r'	r ← r'	•	•	•	•	•	•	•	•	01 r r'		1	1	4	r, r' Reg.
LD p, p'*	$p \leftarrow p'$	•	•	•	•	•	•	•	•	11 011 101	DD	2	2	8	000 B
LD ~ ~'*										01 p p'	ED	2	2	0	001 C
LD q, q'*	$q \leftarrow q'$	•	•	•	٠	•	•	•	•	11 111 101 01 q q'	FD	2	2	8	010 D 011 E
LD r, n	$r \leftarrow n$	•	•	•	•	•	•	•	•	00 r 110		2	2	7	100 H
										$\leftarrow n \rightarrow $					101 L
LD p, n*	$p \leftarrow n$	•	•	•	•	•	•	•	•	11 011 101	DD	3	3	11	111 A
										00 p 110 ← n →					p, p' Reg.
LD q, n*	$q \leftarrow n$	•	•	•	•	•	•		•	11 111 101	FD	3	3	11	000 B
	•									00 q 110					001 C
										\leftarrow n \rightarrow			•	_	010 D
LD r, (HL)	$r \leftarrow (HL)$	•	•	•	•	•	•	•	•	01 r 110 11 011 101	DD	1 3	2 5	7 19	011 E 100 IX _H
LD r, (IX + d)	$r \leftarrow (IX + d)$	٠	•	•	•	•	•	•	•	01 r 110	טט	3	3	19	100 IX _H 101 IX _L
										\leftarrow d \rightarrow					111 A
LD r, (IY + d)	$r \leftarrow (IY + d)$	•	•	•	•	•	•	•	•	11 111 101	FD	3	5	19	
										01 r 110					<u>q, q' Req.</u> 000 B
LD (HL), r	$(HL) \leftarrow r$									\leftarrow d \rightarrow 01 110 r		1	2	7	000 B 001 C
LD (IX + d), r	$(IX + d) \leftarrow r$	•	•			•	•			11 011 101	DD	3	5	19	010 D
, ,,	(01 110 r					011 E
LD (IV + -I) =	(D. ()									\leftarrow d \rightarrow	ED	0	_	40	100 IY _H
LD (IY + d), r	$(IY + d) \leftarrow r$	•	•	•	•	•	•	•	•	11 111 101 01 110 r	FD	3	5	19	101 IY∟ 111 A
										← d →					111 A
LD (HL), n	$(HL) \leftarrow n$	•	•	•	•	•	•	•	•	00 110 110	36	2	3	10	
15 (0)										\leftarrow n \rightarrow			_		
LD (IX + d), n	$(IX + d) \leftarrow n$	•	•	•	•	•	•	•	•	11 011 101 00 110 110	DD 36	4	5	19	
										← d →	30				
										← n →					
LD (IY + d), n	$(IY + d) \leftarrow n$	•	•	•	•	•	•	•	•	11 111 101	FD	4	5	19	
										00 110 110	36				
										$\begin{array}{ccc} \leftarrow & d & \rightarrow \\ \leftarrow & n & \rightarrow \end{array}$					
LD A, (BC)	$A \leftarrow (BC)$	•	•			•	•		•	00 001 010	0A	1	2	7	
LD A, (DE)	$A \leftarrow (DE)$	•	•	•	•	•	•	•	•	00 011 010	1A	1	2	7	
LD A, (nn)	$A \leftarrow (nn)$	•	•	•	•	•	•	•	•	00 111 010	3A	3	4	13	
										← n →					
LD (BC), A	$(BC) \leftarrow A$								•	← n → 00 000 010	02	1	2	7	
LD (DE), A	(DE) ← A	•	•	•	•	•	•		•	00 010 010	12	1	2	7	
LD (nn), A	(nn) ← A	•	•	•	•	•	•	•	•	00 110 010	32	3	4	13	
										$\leftarrow n \rightarrow $					
LD A, I	$A \leftarrow I$	ρ	β	β	0	R	IFF	. ^		← n → 11 101 101	ED	2	2	9	
LD A, I	∀ ← 1	þ	ρ	þ	U	ρ	111111	2 0	,	01 010 111	57	_	_	5	
LD A, R	$A \leftarrow R$	β	β	β	0	β	IFF	2 0	•	11 101 101	ED	2	2	9	R is read after it
1014										01 011 111	5F	0	0	0	is increased.
LD I, A	$I \leftarrow A$	•	•	•	•	•	•	•	•	11 101 101 01 000 111	ED 47	2	2	9	
LD R, A	$R \leftarrow A$	•	•	•	•	•	•		•	11 101 101	ED	2	2	9	R is written after it
Notos								_		01 001 111	4F				is increased.

Notes:

Flag Notation:

r, r' means any of the registers A, B, C, D, E, H, L.
p, p' means any of the registers A, B, C, D, E, IX_H, IX_L.
q, q' means any of the registers A, B, C, D, E, IX_H, IX_L.
dd_L, dd_H refer to high order and low order eight bits of the register respectively.
* means unofficial instruction.
• = flag is not affected, 0 = flag is reset, 1 = flag is set,

 $[\]beta$ = flag is set according to the result of the operation, IFF₂ = the interrupt flip-flop 2 is copied.

16 bit Load Group

Mnemonic	Symbolic Operation	S Z F		Fla H		P/V	N	С	Opcode 76 543 210	Hex	No. of Bytes	No. of M Cycles	No. of T States	Con	nments
LD dd, nn	dd ← nn	• •	•	•	•	•	•	•	00 dd0 001		3	3	10	dd	<u>Pair</u>
									$\begin{array}{ccc} \leftarrow & n & \rightarrow \\ \leftarrow & n & \rightarrow \end{array}$					00 01	BC DE
LD IX, nn	$IX \leftarrow nn$	• •	•	•	•	•	•	•	11 011 101 00 110 001	DD 21	4	4	14	02 03	HL SP
									$\begin{array}{ccc} \leftarrow & n & \rightarrow \\ \leftarrow & n & \rightarrow \end{array}$						
LD IY, nn	IY ← nn	• •	•	•	•	•	•	•	11 111 101 00 110 001 ← n →	FD 21	4	4	14		
1 D 1 II ()									$\leftarrow n \rightarrow $	2.4	2	F	10		
LD HL, (nn)	$L \leftarrow (nn) \\ H \leftarrow (nn+1)$	• •	•	•	•	•	•	•	00 101 010 ← n → ← n →	2A	3	5	16		
LD dd, (nn)	$\begin{array}{l} dd_L \leftarrow (nn) \\ dd_H \leftarrow \end{array}$	• •	•	•	•	•	•	•	11 101 101 01 dd1 011	ED	4	6	20		
	(nn+1)								$\begin{array}{ccc} \leftarrow & n & \rightarrow \\ \leftarrow & n & \rightarrow \end{array}$						
LD IX, (nn)	$IX_L \leftarrow (nn)$	• •	•	•	•	•	•	•	11 011 101 00 101 010	DD 2A	4	6	20		
	$IX_H \leftarrow (nn+1)$								$\leftarrow n \rightarrow $	2/1					
LD IY, (nn)	$IY_L \leftarrow (nn)$		•						← n → 11 111 101	FD	4	6	20		
	$IY_H \leftarrow (nn+1)$								00 101 010 ← n →	2A					
LD (nn), HL	(nn) ← L								← n → 00 100 010	22	3	5	16		
LD (IIII), TIL	(nn+1) ← L (nn+1) ← H		•	•	•	•	•	•	$\leftarrow n \rightarrow $	22	3	3	10		
LD (nn), dd	$(nn) \leftarrow dd_L$		•	•					← n → 11 101 101	DD	4	6	20		
	$(nn+1) \leftarrow dd_H$								01 dd0 011 ← n →						
LD (nn), IX	$(nn) \leftarrow IX_L$		•						← n → 11 011 101	DD	4	6	20		
25 (111), 17	$(nn+1) \leftarrow IX_H$								00 100 010	22		J	20		
									$\begin{array}{ccc} \leftarrow & n & \rightarrow \\ \leftarrow & n & \rightarrow \end{array}$						
LD (nn), IY	$(nn) \leftarrow IY_L$ $(nn+1) \leftarrow IY_H$	• •	•	•	•	•	•	•	11 111 101 00 100 010	FD 22	4	6	20		
	, ,								$\begin{array}{cccc} \leftarrow & n & \rightarrow \\ \leftarrow & n & \rightarrow \end{array}$						
LD SP, HL	SP ← HL	• •	•	•	•	•	•	•	11 111 001	F9	1	1	6		
LD SP, IX	$SP \leftarrow IX$	• •	•	•	•	•	•	•	11 011 101 11 111 001	DD F9	2	2	10		
LD SP, IY	$SP \leftarrow IY$	• •	•	•	•	•	•	•	11 111 101 11 111 001	FD F9	2	2	10		
PUSH qq	$\begin{array}{c} SP \leftarrow SP \text{ - 1} \\ (SP) \leftarrow qq_{H} \end{array}$	• •	•	•	•	•	•	•	11 qq0 101		1	3	11	<u>qq</u> 00	<u>Pair</u> BC
	$SP \leftarrow SP - 1$													01 10	DE HL
PUSH IX	$(SP) \leftarrow qq_{\perp}$ $SP \leftarrow SP - 1$		•	•					11 011 101	DD	2	4	15	11	AF
	$(SP) \leftarrow IX_H$ $SP \leftarrow SP - 1$								11 100 101	E5					
PUSH IY	$(SP) \leftarrow IX_L$				_	_			11 111 101	FD	2	4	15		
PUSHII	$SP \leftarrow SP - 1$ (SP) $\leftarrow IY_H$		•		•	•	•	•	11 100 101	E5	2	4	15		
	$SP \leftarrow SP - 1$ (SP) $\leftarrow IY_{\perp}$														
POP qq	$(SP) \leftarrow qq_{\perp}$ $SP \leftarrow SP +$	• •	•	•	•	•	•	•	11 qq0 001		1	3	10		
	1														
	$(SP) \leftarrow qq_H$ $SP \leftarrow SP +$														
POP IX	$1 \\ (SP) \leftarrow IX_L$		•						11 011 101	DD	2	4	14		
	SP ← SP + 1								11 100 001	E1					
	$(SP) \leftarrow IX_H$														
	SP ← SP + 1														

POP IY 11 111 101 FD 2 $(SP) \leftarrow IY_L$ 4 14 11 100 001 E1 SP ← SP + $\begin{array}{l} (SP) \leftarrow IY_{H} \\ SP \leftarrow SP \ + \end{array}$

dd is any of the register pair BC, DE, HL, SP. qq is any of the register pair BC, DE, HL, AF. Notes:

Flag Notation: • = flag is not affected, 0 = flag is reset, 1 = flag is set, β = flag is set according to the result of the operation.

Exchange, Block Transfer and Search Groups

Manager	Symbolic	_	_		Fla	ags	D. / /		_	Opcode	Han	No.of	No.of M	No.of T	0
Mnemonic	Operation	S		F5	Н	F3	P/V	N	C	76 543 210	Hex	Bytes	Cycles	States	Comments
EX DE, HL	$DE \leftrightarrow HL$	•	•	•	•	•	•	•	•	11 101 011	EB	1	1	4	
EX AF, AF'	$AF \leftrightarrow AF'$	•	•	•	•	•	•	•	•	00 001 000	80	1	1	4	
EXX	$BC \leftrightarrow BC'$	•	•	•	•	•	•	•	•	11 011 001	D9	1	1	4	
	$DE \leftrightarrow DE'$														
E) ((OD) III	$HL \leftrightarrow HL'$												_	4.0	
EX (SP), HL	$(SP+1) \leftrightarrow H$	•	•	•	•	•	•	•	•	11 100 011	E3	1	5	19	
EV (0D) IV	$(SP) \leftrightarrow L$									11 011 101	55		•	00	
EX (SP), IX	(SP+1) ↔	•	•	•	•	•	•	•	•	11 011 101	DD	2	6	23	
	IX _H									11 100 011	E3				
=\(\(\alpha\) =\(\alpha\)	$(SP) \leftrightarrow IX_{L}$												•		
EX (SP), IY	(SP+1) ↔	•	•	•	•	•	•	•	•	11 111 101	FD	2	6	23	
	IY _H									11 100 011	E3				
	$(SP) \leftrightarrow IY_L$			- 4		- 0	- 0								
LDI	$(DE) \leftarrow (HL)$	•	•	β^1	0	β²	β^3	0	•	11 101 101	ED	2	4	16	
	DE ← DE +									10 100 000	A0				
	1														
	HL ← HL + 1														
LDID	BC ← BC - 1			0.1	_	0.2	_	_		11 101 101	-	•	_	0.4	15.00
LDIR	$(DE) \leftarrow (HL)$	•	•	β^1	0	$\beta^{\scriptscriptstyle 2}$	0	0	•	11 101 101	ED	2	5	21	if BC ≠ 0
	DE ← DE +									10 110 000	B0	2	4	16	if BC = 0
	1														
	HL ← HL + 1														
	BC ← BC - 1														
	repeat until:														
LDD	BC = 0			0.1	^	0.2	0.3	_		11 101 101	ED	0	4	10	
LDD	$(DE) \leftarrow (HL)$	•	•	β^1	0	β²	β^3	U	•	11 101 101 10 101 000	ED A8	2	4	16	
	DE ← DE - 1									10 10 1 000	Ao				
	HL ← HL - 1														
	BC ← BC - 1			0.1	_	0.2	_	_		11 101 101	-	•	_	0.4	15.00
LDDR	$(DE) \leftarrow (HL)$	•	•	β^1	0	β^2	0	0	•	11 101 101	ED	2 2	5	21	if BC ≠ 0
	DE ← DE - 1									10 111 000	B8	2	4	16	if BC = 0
	HL ← HL - 1														
	BC ← BC - 1														
	repeat until:														
CDI	BC = 0	0.4	04	0.5	0.4	06	0.3			11 101 101	ED	2	4	16	
CPI	A - (HL)	b.	β^4	β^5	þ.	β°	β^3	1	•	10 100 001	ED A1	2	4	10	
	HL ← HL + 1									10 100 001	AI				
CPIR	BC ← BC -1	0.4	0.4	0.5	0.4	β^6	β^3	4		11 101 101	ED	2	5	21	:f DC
CFIR	A - (HL)	β^4	þ.	β^5	β^4	þ.	p.	1	•	10 110 001	B1	2	5	21	if BC ≠ 0 and
	$HL \leftarrow HL + 1$ BC \leftarrow BC -1									10 110 001	ы	2	4	16	A ≠ (HL).
												2	7	10	if BC = 0 or
	Repeat until: A = (HL) or														A = (HL)
	BC = 0														
CPD	A - (HL)	R4	β4	β ⁵	R 4	R6	β^3	1		11 101 101	ED	2	4	16	
O. D	HL ← HL - 1	Ь	h	þ	þ	þ	Ь	'	-	10 101 001	A9	_	7	10	
	BC ← BC -1									.0 .0 .001	,				
CPDR	A - (HL)	R ⁴	R ⁴	ß5	ρ4	β 6	β^3	1		11 101 101	ED	2	5	21	if BC ≠ 0 and
OI DIX	HL ← HL - 1	þ	h	þ	þ	þ	þ	'	-	10 111 001	B9	_	3	<u>- 1</u>	A \neq (HL).
	BC ← BC -1									.0 111 001	50	2	4	16	if BC = 0 or
	Repeat until:											_	-	. •	A = (HL)
	A = (HL) or														A = (IIL)
	BC = 0														
Notes:		0000	, of	L:4 .	1 - 5	۸ .	14	4		rred byte, thus	/A . /I II	· · · · · · · · · · · · · · · · · · ·			

Notes:

¹ F5 is a copy of bit 1 of A + last transferred byte, thus $(A + (HL))_1$ F3 is a copy of bit 3 of A + last transferred byte, thus $(A + (HL))_3$ P/V flag is 0 if the result of BC - 1 = 0, otherwise P/V = 1.

These flags are set as in CP (HL)

The flag is contained and the comparison are set as in CP (HL)

The flag is contained and the comparison are set as in CP (HL)

The flag is contained and the comparison are set as in CP (HL)

The flag is contained and the comparison are set as in CP (HL)

The flag is contained and the comparison are set as in CP (HL)

The flag is contained and the comparison are set as in CP (HL)

The flag is contained and the comparison are set as in CP (HL)

The flag is contained and the comparison are set as in CP (HL)

The flag is contained and the comparison are set as in CP (HL)

The flag is contained and the comparison are set as in CP (HL)

The fl

Flag Notation: • = flag is not affected, 0 = flag is reset, 1 = flag is set, β = flag is set according to the result of the operation.

8 bit Arithmetic and Logical Group

	Symbolic	_		F	lags				Opcode		No.of	No.of M	No.of	
Mnemonic	Operation	S Z	F5			P/V	N	С	76 543 210	Hex	Bytes	Cycles	T States	Comments
ADD A, r	A ← A + r	ββ	β	β	β	V	0	β	10 <u>000</u> r		1	1	4	r Reg. p Reg.
ADD A, p*	$A \leftarrow A + p$	ββ	β		β	V	0	β	11 011 101	DD	2	2	8	000 B 000 B
			-					-	10 <u>000</u> р					001 C 001 C
ADD A, q*	$A \leftarrow A + q$	ββ	β	β	β	V	0	β	11 111 101	FD	2	2	8	010 D 010 D
									10 <u>000</u> q		_	_	_	011 E 011 E
ADD A, n	$A \leftarrow A + n$	ββ	β	β	β	V	0	β	11 <u>000</u> 110		2	2	8	100 H 100 IX _H
ADD A (III.)	A	0 0	0				_	0	← n →		4	0	7	101 L 101 IX _H
ADD A. (HL)	$A \leftarrow A + (HL)$	ββ	β	β	β	V	0	β	10 <u>000</u> 110	DD	1	2	7	111 A 111 A
ADD A, (IX + d)	$A \leftarrow A + (IX + d)$	ββ	β	β	β	V	0	β	11 011 101	DD	3	5	19	
									10 000 110					
ADD A, (IY + d)	A . A . (IV . d)	0 0	ο	o	o	V	0	o	$\leftarrow d \rightarrow \\ 11\ 111\ 101$	FD	3	5	19	
ADD A, (IT + u)	$A \leftarrow A + (IY + d)$	ββ	β	β	β	V	U	β	10 000 110	FD	3	5	19	
									\leftarrow d \rightarrow					
ADC A, s	$A \leftarrow A + s + CY$	ββ	β	β	β	V	0	β	← u → 001					s is any of r, n, (HL),
SUB A, s	A ← A - s	ββ	β	β	β	V	1	β	010					(IX+d), (IY+d), p, q
SBC A, s	$A \leftarrow A - s - CY$	ββ		β	β	٧	1	β	<u>011</u>					as shown for the ADD
AND s	$A \leftarrow A \land AND s$	ββ			β	P	Ö	0	100					instruction. The
OR s	$A \leftarrow A OR s$	ββ		0	β	Р	0	0	<u>110</u>					underlined bits
0.1.0	/(\ /(\o)(\o)	РР	Р	·	Р	•	Ü	Ü	110					replace
XOR s	$A \leftarrow A \; XOR \; s$	ββ	β	0	β	Р	0	0	<u>101</u>					the underlined bits in
CP s	A-s	ββ	β		β¹		1	β	<u>111</u>					the ADD set.
INC r	r ← r + 1	ββ			β	V	0	•	00 r <u>100</u>		1	1	4	
INC p*	p ← p + 1	ββ		β	β	V		•	11 011 101	DD	2	2	8	g Reg.
•	r · r	1- 1-	1-	1					00 p <u>100</u>					000 B
INC q*	$q \leftarrow q + 1$	ββ	β	β	β	V	0	•	11 111 101	FD	2	2	8	001 C
			•						00 q <u>100</u>					010 D
INC (HL)	$(HL) \leftarrow (HL) + 1$	ββ		β	β	V	0	•	00 110 <u>100</u>		1	3	11	011 E
INC (IX + d)	$(IX + d) \leftarrow$	ββ	β	β	β	V	0	•	11 011 101	DD	3	6	23	100 IY _H
	(IX + d) + 1								00 110 <u>100</u>					101 IY _L
									\leftarrow d \rightarrow		_	_		111 A
INC (IY + d)	$(IY + d) \leftarrow$	ββ	β	β	β	V	0	•	11 111 101	FD	3	6	23	
	(IY + d) + 1								00 110 <u>100</u>					
DE0					_				\leftarrow d \rightarrow					
DEC m	m ← m - 1	ββ	β	β	β	V	1	•	<u>101</u>					m is any of r, p, q,
														(HL), (IX+d), (IY+d), as shown for the INC
														instruction. DEC
														same format and
														states as INC.
														Replace 100 with 101
														in opcode.
														opoodo.

Notes:

The V symbol in the P/V flag column indicates that the P/V flags contains the overflow of the operation. Similarly the P symbol indicates parity.

r means any of the registers A, B, C, D, E, H, L. p means any of the registers A, B, C, D, E, IX_H, IX_L. q means any of the registers A, B, C, D, E, IY_H, IY_L.

dd_L, dd_H refer to high order and low order eight bits of the register respectively.

CY means the carry flip-flop.

* means unofficial instruction.

Flag Notation: • = flag

¹ F5 and F3 are copied from the operand (s), not from the result of (A - s).

^{• =} flag is not affected, 0 = flag is reset, 1 = flag is set, β = flag is set according to the result of the operation.

16 bit Arithmetic Group

	Symbolic	Flags	Opcode	No.of No.o	of M No.of T	
Mnemonic	Operation	S Z F5 H F3 P/V N C	76 543 210 Hex	Bytes Cyc	les States	Comments
ADD HL, ss	HL ← HL + ss	• • β^2 β^2 β^2 • 0 β^1	00 ss1 001	1 3	11	ss Reg.
ADC HL, ss	$HL \leftarrow HL + ss +$	β^1 β^1 β^2 β^2 β^2 V^1 0 β^1	11 101 101 ED	2 4	15	00 BC
	CY		01 ss1 010			01 DE
SBC HL, ss	$HL \leftarrow HL$ - ss - CY	β^1 β^1 β^2 β^2 β^2 V^1 1 β^1	11 101 101 ED	2 4	15	10 HL
			01 ss0 010			11 SP
ADD IX, pp	$IX \leftarrow IX + pp$	• • β^2 β^2 β^2 • 0 β^1	11 011 101 DD	2 4	15	
			00 pp1 001			pp Reg.
ADD IY, rr	$IY \leftarrow IY + rr$	• • β^2 β^2 β^2 • 0 β^1	11 111 101 FD	2 4	15	00 BC
			00 rr1 001			01 DE
INC ss	ss ← ss + 1		00 ss0 011	1 1	6	10 IX
INC IX	$IX \leftarrow IX + 1$		11 011 101 DD	2 2	10	11 SP
			00 100 011 23			
INC IY	$IY \leftarrow IY + 1$		11 111 101 FD	2 2	10	<u>rr Reg.</u>
			00 100 011 23			00 BC
DEC ss	ss ← ss - 1		00 ss1 011	1 1	6	01 DE
DEC IX	IX ← IX - 1		11 011 101 DD	2 2	10	10 IY
			00 101 011 2B			11 SP
DEC IY	IY ← IY - 1		11 111 101 FD	2 2	10	
			00 101 011 2B			

Notes:

The V symbol in the P/V flag column indicates that the P/V flags contains the overflow of the operation.

ss means any of the registers BC, DE, HL, SP. pp means any of the registers BC, DE, IX, SP. rr means any of the registers BC, DE, IY, SP.

16 bit additions are performed by first adding the two low order eight bits, and then the two high order eight bits.

Indicates the flag is affected by the 16 bit result of the operation.

² Indicates the flag is affected by the 8 bit addition of the high order eight bits.

CY means the carry flip-flop.

Flag Notation:

• = flag is not affected, 0 = flag is reset, 1 = flag is set, β = flag is set according to the result of the operation.

General Purpose Arithmetic and CPU Control Groups

Manananis	Symbolic		7			lags		/ N:		Opcode	Herr	No.of	No.of	No.of T	Commonto
Mnemonic	Operation	5		F5	Н	F3	РΛ	/ N	C	76 543 210	Hex	Bytes	M Cycles	States	Comments
DAA	Converts A into packed BCD following add or subtract with BCD operands.	β	β	β	β	β	Р	•	β	00 100 111	27	1	1	4	
CPL	$A \leftarrow \overline{A}$	•		β^1	1	β^1		1		00 101 111	2F	1	1	4	One's complement.
NEG⁴	A ← 0 - A	β	β	β	β	β	٧	1	β	11 101 101 01 000 100	ED 44	2	2	8	Two's complement.
CCF	$CY \leftarrow \overline{CY}$	•	•	β^1	β^2	β^1	•	0	β	00 111 111	3F	1	1	4	Complement carry flag.
SCF	CY ← 1	•	•	β^1	0	β^1	•	0	1	00 110 111	37	1	1	4	· ·
NOP	No operations	•	•	•	•	•	•	•	•	00 000 000	00	1	1	4	
HALT	CPU halted	•	•	•	•	•	•	•	•	01 110 110	76	1	1	4	
DI ³	$\begin{array}{c} IFF_1 \leftarrow 0 \\ IFF_2 \leftarrow 0 \end{array}$	•	•	•	•	•	•	•	•	11 110 011	F3	1	1	4	
El ³	$ \begin{array}{c} IFF_1 \leftarrow 1 \\ IFF_2 \leftarrow 1 \end{array} $	•	•	•	•	•	•	•	•	11 111 011	FB	1	1	4	
IM 0 ⁴	Set interrupt mode 0	•	•	•	•	•	•	•	•	11 101 101 01 000 110	ED 46	2	2	8	
IM 1 ⁴	Set interrupt mode 1	•	•	•	•	•	•	•	•	11 101 101 01 010 110	ED 56	2	2	8	
IM 2 ⁴	Set interrupt mode 2	•	•	•	•	•	•	•	•	11 101 101 01 011 110	ED 5E	2	2	8	

Notes:

The V symbol in the P/V flag column indicates that the P/V flags contains the overflow of the operation. Similarly the P symbol indicates parity.

¹ F5 and F3 are a copy of bit 5 and 3 of register A

 $^2~$ H contains the previous carry state (after instruction H \leftrightarrow C)

³ No interrupts are issued directly after a DI or EI.

⁴ This instruction has other unofficial opcodes, see Opcodes list.

CY means the carry flip-flop.

Flag Notation:

• = flag is not affected, 0 = flag is reset, 1 = flag is set, β = flag is set according to the result of the operation.

Rotate and Shift Group

Mnemonic	Symbolic Operation	S	Z	F5		lags F3		/ N	С	Opcode 76 543 210	Hex	No. of Bytes	No. of M Cycles	No. of T States	Comments
RLCA	CY + 7 ← 0+	•	•	β	0	β	•	0	β	00 000	07	1	1	4	
RLA	<u>CY+7←0</u> +	•	•	β	0	β	•	0	β	111 00 010 111	17	1	1	4	
RRCA	√7→0 →CY	•	•	β	0	β	•	0	β	00 001	0F	1	1	4	
RRA	<u>+7→0+CY</u>	•	•	β	0	β	•	0	β	111 00 011	1F	1	1	4	
RLC r	<u>CY</u> + <u>7←0</u> +	β	β	β	0	β	Р	0	β	111 11 001 011	СВ	2	2	8	<u>r Reg.</u> 000 B
RLC (HL)	CY+17+0+	β	β	β	0	β	Р	0	β	00 <u>000</u> r 11 001 011 00 <u>000</u>	СВ	2	4	15	001 C 010 D
RLC (IX + d)	CY √7 ← 0 →	β	β	β	0	β	Р	0	β	110 11 011 101 11 001 011 ← d → 00 000	DD CB	4	6	23	011 E 100 H 101 L 111 A
RLC (IY + d)	<u>C</u> Y <u>√7</u> —0√	β	β	β	0	β	Р	0	β	110 11 111 101 11 001 011	FD CB	4	6	23	
LD r,RLC (IX + d)*	$r \leftarrow (IX + d)$ RLC r $(IX + d) \leftarrow r$	β	β	β	0	β	Ρ	0	β	← d → 00 000 110 11 011 101 11 001 011 ← d →	DD CB	4	6	23	
LD r,RLC (IY + d)*	$r \leftarrow (IY + d)$ RLC r $(IY + d) \leftarrow r$	β	β	β	0	β	Ρ	0	β	00 <u>000</u> r 11 111 101 11 001 011	FD CB	4	6	23	
RL m RRC m RR m SLA m SLL m* SRA m SRL m	(CY+7←0+ 47→0+CY 47→0+CY CY+7←0+0 CY+7←0+1 47→0+CY 0+7→0+CY	β β β β β	β β β	β β β β β	0 0 0 0 0	β β β β β	P P P P P	0 0 0 0 0	β β β β β	$\begin{array}{ccc} \leftarrow & d & \rightarrow \\ 00 & 000 & r \\ \hline & 010 \\ \hline & 001 \\ \hline & 011 \\ \hline & 100 \\ \hline & 110 \\ \hline & 101 \\ \hline & 111 \\ \end{array}$					Instruction format and states are the same as RLC. Replace 000 with new number.
RLD	0347 0347 A (HL)		β	β	0	β	P	0	•	11 101 101 01 101 111	ED 6F	2	5	18	
RRD	03147 0347 A (HL)	β	β	β	0	β	Р	0	•	111 11 101 101 01 100 111	ED 67	2	5	18	

r means any of the registers A, B, C, D, E, H, L.

* means unofficial instruction.

CY means the carry flip-flop.

• = flag is not affected, 0 = flag is reset, 1 = flag is set, β = flag is set according to the result of the operation. Flag Notation:

Bit Manipulation Group

Mnemonic	Symbolic Operation	Flags S Z F5 H F3 P/V N C	Opcode 76 543 210 Hex	Bytes I	No. of No. of T M States Cycles	Comments
BIT b, r	$Z \leftarrow r_b$	$\beta^1 \beta \beta^2 1 \beta^3 \beta^4 0 \bullet$	11 001 011 CB 01 b r		2 8	<u>r Reg.</u> 000 B
BIT b, (HL)		β^1 β β^2 1 β^3 β^4 0 •	11 001 011 CB	2	3 12	001 C
BIT b, (IX + d) ⁵	$Z \leftarrow \overline{(HL)_b}$ $Z \leftarrow \overline{(IX + d)_b}$	β^1 β β^2 1 β^3 β^4 0 •	01 b 110 11 011 101 DD 11 001 011 CB ← d →	4	5 20	010 D 011 E 100 H 101 L 111 A
BIT b, (IY + d)⁵	$Z \leftarrow \overline{(IY+d)_b}$	β^1 β β^2 1 β^3 β^4 0 •	01 b 110 11 111 101 FD 11 001 011 CB ← d →	4	5 20	
SET b, r	$r_{\text{b}} \leftarrow 1$		01 b 110 11 001 011 CB 11 b r	2	2 8	<u>b Bit.</u> 000 0 001 1
SET b, (HL)	$(HL)_b \leftarrow 1$		11 001 011 CB	2	4 15	010 2
SET b, (IX + d)	$(IX+d)_b \leftarrow 1$		<u>11</u> b 110 11 011 101 DD 11 001 011 CB ← d	4	6 23	011 3 100 4 101 5 110 6
SET b, (IY + d)	$(IY+d)_b \leftarrow 1$		→ 11 b 110 11 111 101 FD 11 001 011 CB ← d	4	6 23	111 7
LD r,SET b, (IX + d)*	$\begin{aligned} r &\leftarrow (IX + d) \\ r_b &\leftarrow 1 \\ (IX + d) &\leftarrow r \end{aligned}$		→ 11 b 110 11 011 101 DD 11 001 011 CB ← d →	4	6 23	
LD r,SET b, (IY + d)*	$\begin{aligned} r &\leftarrow (IY + d) \\ r_b &\leftarrow 1 \\ (IY + d) &\leftarrow r \end{aligned}$		11 b r 11 111 101 FD 11 001 011 CB ← d	4	6 23	
RES b, m	$\begin{split} m_b &\leftarrow 0 \\ m &\equiv r, (HL), (IX+d), \\ & (IY+d) \end{split}$		11 b r 10			To form new opcode replace 11 of SET b, s with 10. Flags and states are the same.

BIT instructions are performed by an bitwise AND.

S is set if b = 7 and Z = 0

Flag Notation:

• = flag is not affected, 0 = flag is reset, 1 = flag is set, β = flag is set according to the result of the operation.

² F5 is set if b = 7 and Z = 0

² F5 is set if b = 5 and Z = 0

³ F3 is set if b = 3 and Z = 0

⁴ P/V is set like the Z flag

⁵ This instruction has other unofficial opcodes

* means unofficial instruction.

Input and Output Groups

Mnemonic	Symbolic Operation	s z	F5		lags		/ NI	C	Opcode 76 543 210	Hex	No.of Bytes	No.of M Cycles	No.of T States	Comments
N A, (n)	A ← (n)	• •	•	•	•	•	•	•	11 011 011	DB	Bytes2	3	11	r Reg.
·, (··/	, , , , , , , , , , , , , , , , , , ,								← n →		_	-	• •	000 B
IN r, (C)	$r \leftarrow (C)$	ββ	β	0	β	Р	0	•	11 101 101	ED	2	3	12	001 C
						_			01 r 000		_			010 D
IN (C)* or	Just affects flags,	ββ	β	0	β	Р	0	•	11 101 101	ED 70	2	3	12	011 E
IN F, (C)* INI	value is lost. (HL) ← (C)	$\beta^1 \beta^1$	ß¹	B ³	β¹	Х	Ω2	β^3	01 110 000 11 101 101	70 ED	2	4	16	100 H 101 L
IIVI	(HL) ← (G) HL ← HL + 1	рр	þ	þ	þ	^	р	р	10 100 010	A2	2	7	10	111 A
	B ← B - 1								.0 .00 0.0	<i>,</i> .=				
INIR	(HL) ← (C)	0 1	0	β^3	0	Х	β^2	β^3	11 101 101	ED	2	5	21	if B ≠ 0
	HL ← HL + 1		-	r	•		Р	Р	10 110 010	B2	2	4	16	if B = 0
	B ← B - 1													
	Repeat until													
INID	B = 0	01.01	0.1	0.4	0.1	.,	0.2	0.4	44 404 404	ED	0	4	40	
IND	(HL) ← (C)	$\beta^1 \beta^1$	β^1	β⁴	β^1	Х	β^2	β^4	11 101 101	ED	2	4	16	
	HL ← HL - 1 B ← B - 1								10 101 010	AA				
INDR	$(HL) \leftarrow (C)$	0 1	0	ρ4	0	Х	β^2	β^4	11 101 101	ED	2	5	21	if B ≠ 0
IIIDIX	(HL) ← (C) HL ← HL - 1	UI	U	þ	U	^	þ	h	10 111 010	BA	2	4	16	if B = 0
	B ← B - 1									•	_	-		0
	Repeat until													
	B = 0													
OUT (n), A	$(n) \leftarrow A$	• •	•	•	•	•	•	•	11 010 011	D3	2	3	11	
OUT (O)	(2)								\leftarrow n \rightarrow		0	•	40	
OUT (C), r	$(C) \leftarrow r$	• •	•	•	•	•	•	•	11 101 101	ED	2	3	12	
OUT (C), 0*	(C) ← 0								01 r 001 11 101 101	ED	2	3	12	
O (O), O	(∪) ← ∪								01 110 001	71	_	J	12	
OUTI	$(C) \leftarrow (HL)$	$\beta^1 \beta^1$	β^1	Χ	β^1	Χ	Χ	Х	11 101 101	ED	2	4	16	
	HL ← HL + 1		•		•				10 100 011	A3				
	B ← B - 1													
OTIR	$(C) \leftarrow (HL)$	0 1	0	Χ	0	Χ	Χ	Χ	11 101 101	ED	2	5	21	if $B \neq 0$
	$HL \leftarrow HL + 1$								10 110 011	B3	2	4	16	if $B = 0$
	B ← B - 1													
	Repeat until B = 0													
OUTD	$B = 0$ (C) \leftarrow (HL)	β¹ β¹	R1	Y	R1	Y	Y	Y	11 101 101	ED	2	4	16	
0010	(C) ← (nL) HL ← HL - 1	h h	b.	^	þ	^	^	^	10 101 101	AB	4	7	10	
	B ← B - 1													
OTDR	(C) ← (HL)	0 1	0	Χ	0	Х	Х	Х	11 101 101	ED	2	5	21	if $B \neq 0$
	HL ← HL - 1								10 111 011	BB	2	4	16	if B = 0
	$B \leftarrow B - 1$													
	Repeat until													
	B = 0								=				·	
Notes:	The V symbol in the	ne P/V t	lag	colu	mn	indi	cate	s tha	t the P/V flags	contains	the overflo	w of the ope	eration. Sim	nilarly the P sy
	indicates parity. r means any of th	o regio	tore	Λ -	2 ^	Р	E L	4 1						
	¹ flag is affected l	-							DEC B					
	² N is a copy bit 7													
	3 this flag contain													
	4 this flag contain													

Flag Notation:

this flag contains the carry of ((C+1) AND 255) + (C))
 this flag contains the carry of ((C-1) AND 255) + (C))
 means unofficial instruction.
 = flag is not affected, 0 = flag is reset, 1 = flag is set, X = flag is unknown, β = flag is set according to the result of the operation.

Jump Group

	Symbolic		Flags	Opcode	No.of No.of M	No.of T	
Mnemonic	Operation	S Z F	5 H F3 P/V N C	76 543 210 Hex	Bytes Cycles	States	Comments
JP nn	$PC \leftarrow nn$		• • • •	11 000 011 C3	3 3	10	
				\leftarrow n \rightarrow			
				\leftarrow n \rightarrow			
JP cc, nn	if cc is true,			11 ccc 010	3 3	10	ccc Condition
	$PC \leftarrow nn$			\leftarrow n \rightarrow			000 NZ
				\leftarrow n \rightarrow			001 Z
							010 NC
							011 C 100 PO
							100 PE
							110 P
JR e	$PC \leftarrow PC +$			00 011 000 18	2 3	12	111 M
	е			\leftarrow e -2 \rightarrow			
JR ss, e	if ss is true			00 ss 000	2 3 2 2	12	if ss is true
	$PC \leftarrow PC +$			\leftarrow e -2 \rightarrow	2 2	7	if ss is false
	е						
JP HL	$PC \leftarrow HL$		• • • • •	11 101 001 E9	1 1	4	
JP IX	$PC \leftarrow IX$		• • • • •	11 011 101 DD	2 2	8	ss Condition
				11 101 001 E9			111 C
				==			110 NC
JP IY	$PC \leftarrow IY$	• • •	• • • • •	11 111 101 FD	2 2	8	101 Z
D INT a	D D 4			11 101 001 E9	0 0	0	100 NZ
DJNZ e	B ← B - 1	• • •	• • • • •	00 010 000 10	2 2 2 3	8 13	if B = 0
	if B ≠ 0			\leftarrow e -2 \rightarrow	۷ 3	13	if B ≠ 0
	PC ← PC +						
Notos:	e			the range < 126, 120>			

Notes:

e is a signed two-complement number in the range <-126, 129> e - 2 in the opcode provides an effective number of PC + e as PC incremented by 2 prior to the addition of e. • = flag is not affected, 0 = flag is reset, 1 = flag is set, β = flag is set according to the result of the operation.

Flag Notation:

Call and Return Group

	Symbolic		Flags		Opcode		No.of	No.of M	No.of T	
Mnemonic	Operation	S Z F5	H F3 P/V N	С	76 543 210	Hex	Bytes	Cycles	States	Comments
CALL nn	$\begin{array}{c} SP \leftarrow SP - 1 \\ (SP) \leftarrow PC_H \\ SP \leftarrow SP - 1 \\ (SP) \leftarrow PC_L \\ PC \leftarrow nn \end{array}$	• • •		•	11 001 101 ← n → ← n →	CD	3	5	17	
CALL cc, nn	if cc is true, $SP \leftarrow SP - 1$ $(SP) \leftarrow PC_H$ $SP \leftarrow SP - 1$ $(SP) \leftarrow PC_L$ $PC \leftarrow nn$			•	11 ccc 100 ← n → ← n →		3	3 5	10 17	if cc is false if cc is true
RET	$PC_{L} \leftarrow (SP)$ $SP \leftarrow SP +$ 1 $PC_{H} \leftarrow (SP)$ $SP \leftarrow SP +$ 1			•	11 001 001	C9	1	3	10	
RET cc	if cc is true, $PC_L \leftarrow (SP)$ $SP \leftarrow SP + 1$ $PC_H \leftarrow (SP)$ $SP \leftarrow SP + 1$			•	11 ccc 000		1	1 3	5 11	if cc is false if cc is true
RETI ²	$\begin{array}{c} PC_L \leftarrow (SP) \\ SP \leftarrow SP + \\ 1 \\ PC_H \leftarrow (SP) \\ SP \leftarrow SP + \\ 1 \end{array}$	• • •		•	11 101 101 01 001 101	ED 4D	2	4	14	cc Condition 000 NZ 001 Z 010 NC 011 C
RETN ^{1,2}	$\begin{array}{c} PC_L \leftarrow (SP) \\ SP \leftarrow SP + \\ 1 \\ PC_H \leftarrow (SP) \\ SP \leftarrow SP + \\ 1 \\ IFF_1 \leftarrow IFF_2 \end{array}$	• • •		•	11 101 101 01 000 101	ED 45	2	4	14	100 PO 101 PE 110 P 111 M
RST p	$SP \leftarrow SP - 1$ $(SP) \leftarrow PC_{H}$	• • •		•	11 t 111		1	3	11	<u>t</u> <u>p</u> 000 0h

	$SP \leftarrow SP - 1$	8h
	$(SP) \leftarrow PC_{L}$	10h
		18h
		20h
	101	28h
	110	30h
	111	38h
Notes:	¹ This instruction has other unofficial opcodes, see Opcode list.	
	² Instruction also IFF ₁ ← IFF ₂	
Flag Notation:	• = flag is not affected, 0 = flag is reset, 1 = flag is set, β = flag is set according to the result of the operation	١.

Instructions sorted by opcode

If an EDxx instruction is not listed, it should operate as two NOPs. If a DDxx or FDxx instruction is not listed, it should operate as without the DD or FD prefix.

An asterisk (*) after a instruction means it is unofficial.

00 01 n n 02	NOP LD BC, nn LD (BC), A	45 46 47	LD B, L LD B, (HL) LD B, A	8A 8B 8C	ADC A, D ADC A, E ADC A, H
03	INC BC	48	LD C, B	8D	ADC A, L
04 05	INC B DEC B	49 4A	LD C, C LD C, D	8E 8F	ADC A, (HL) ADC A, A
06 n	LD B, n	4B	LD C, E	90	SUB B
07	RLCA	4C	LD C, H	91	SUB C
08 09	EX AF, AF' ADD HL, BC	4D 4E	LD C, L LD C, (HL)	92 93	SUB D SUB E
0A	LD A, (BC)	4F	LD C, A	94	SUB H
0B	DEC BC	50	LD D, B	95	SUB L
0C 0D	INC C DEC C	51 52	LD D, C LD D, D	96 97	SUB (HL) SUB A
0E n	LD C, n	53	LD D, E	98	SBC A, B
0F	RRCA	54	LD D, H	99	SBC A, C
10 n 11 n n	DJNZ PC + n LD DE, nn	55 56	LD D, L LD D, (HL)	9A 9B	SBC A, D SBC A, E
12	LD (DE), A	57	LD D, A	9C	SBC A, H
13	INC DE	58	LD E, B	9D	SBC A, L
14 15	INC D DEC D	59 5A	LD E, C LD E, D	9E 9F	SBC A, (HL) SBC A, A
16 n	LD D, n	5B	LD E, E	A0	AND B
17	RLA	5C	LD E, H	A1	AND C
18 n 19	JR PC + n ADD HL, DE	5D 5E	LD E, L LD E, (HL)	A2 A3	AND D AND E
1A	LD A, (DE)	5F	LD E, A	A4	AND H
1B	DEC DE	60	LD H, B	A5	AND L
1C 1D	INC E DEC E	61 62	LD H, C LD H, D	A6 A7	AND (HL) AND A
1E n	LD E, n	63	LD H, E	A8	XOR B
1F	RRA	64	LD H, H	A9	XOR C
20 n 21 n n	JR NZ, PC + n LD HL, nn	65 66	LD H, L LD H, (HL)	AA AB	XOR D XOR E
22 n n	LD (nn), HL	67	LD H, A	AC	XOR H
23	INC HL	68	LD L, B	AD	XOR L
24 25	INC H DEC H	69 6A	LD L, C LD L, D	AE AF	XOR (HL) XOR A
26 n	LD H, n	6B	LD L, E	B0	OR B
27	DAA	6C	LD L, H	B1	OR C
28 n 29	JR Z, PC + n ADD HL, HL	6D 6E	LD L, L	B2 B3	OR D OR E
29 2A n n	LD HL, (nn)	6F	LD L, (HL) LD L, A	B4	OR H
2B	DEC HL	70	LD (HL), B	B5	OR L
2C 2D	INC L DEC L	71 72	LD (HL), C LD (HL), D	B6 B7	OR (HL) OR A
2E n	LD L, n	73	LD (HL), E	B8	CP B
2F	CPL	74	LD (HL), H	B9	CP C
30 n 31 n n	JR NC, PC + n LD SP, nn	75 76	LD (HL), L HALT	BA BB	CP D CP E
32 n n	LD (nn), A	77 77	LD (HL), A	BC	CP H
33	INC SP	78	LD À, B	BD	CP L
34 35	INC (HL) DEC (HL)	79 7A	LD A, C LD A, D	BE BF	CP (HL) CP A
36 n	LD (HL), n	7B	LD A, E	C0	RET NZ
37	SCF	7C	LD A, H	C1	POP BC
38 n 39	JR C, PC + n ADD HL, SP	7D 7E	LD A, L LD A, (HL)	C2 n n C3 n n	JP NZ, nn JP nn
3A n n	LD A, (nn)	7E 7F	LD A, A	C4 n n	CALL NZ, nn
3B	DEC SP	80	ADD A, B	C5	PUSH BC
3C 3D	INC A DEC A	81 82	ADD A, C ADD A, D	C6 n C7	ADD A, n RST 0h
3E n	LD A, n	83	ADD A, E	C8	RET Z
3F	CCF	84	ADD A, H	C9	RET
40 41	LD B, B LD B, C	85 86	ADD A, L ADD A, (HL)	CA n n CB00	JP Z, nn RLC B
42	LD B, D	87	ADD A, (TIL)	CB01	RLC C
43	LD B, E	88	ADC A, B	CB02	RLC D
44	LD B, H	89	ADC A, C	CB03	RLC E

CB04	RLC H	CB57	BIT 2, A	CBAA	RES 5, D
CB05	RLC L	CB58	BIT 3, B	CBAB	RES 5, E
CB06	RLC (HL)	CB59	BIT 3, C	CBAC	RES 5, H
CB07	RLC A	CB5A	BIT 3, D	CBAD	RES 5, L
CB08	RRC B	CB5B	BIT 3, E	CBAE	RES 5, (HL)
CB09	RRC C	CB5C	BIT 3, H	CBAF	RES 5, A
CB0A	RRC D	CB5D	BIT 3, L	CBB0	RES 6, B
CB0B	RRC E	CB5E	BIT 3, (HL)	CBB1	RES 6, C
CB0C	RRC H	CB5F	BIT 3, A	CBB2	RES 6, D
CB0D	RRC L	CB60	BIT 4, B	CBB3	RES 6, E
CB0E	RRC (HL)	CB61	BIT 4, C	CBB4	RES 6, H
CB0F	RRC A	CB62	BIT 4, D	CBB5	RES 6, L
CB10	RL B	CB63	BIT 4, E	CBB6	RES 6, (HL)
CB11	RL C	CB64	BIT 4, H	CBB7	RES 6, A
CB12	RL D	CB65	BIT 4, L	CBB8	RES 7, B
CB13	RL E	CB66	BIT 4, (HL)	CBB9	RES 7, C
CB14	RL H	CB67	BIT 4, A	CBBA	RES 7, D
CB15	RL L	CB68	BIT 5, B	CBBB	RES 7, E
CB16	RL (HL)	CB69	BIT 5, C	CBBC	RES 7, H
CB17	RL A	CB6A	BIT 5, D	CBBD	RES 7, L
CB18	RR B	CB6B	BIT 5, E	CBBE	RES 7, (HL)
CB19	RR C	CB6C	BIT 5, H	CBBF	RES 7, A
CB1A	RR D	CB6D	BIT 5, L	CBC0	SET 0, B
CB1B	RR E	CB6E	BIT 5, (HL)	CBC1	SET 0, C
CB1C	RR H	CB6F	BIT 5, A	CBC2	SET 0, D
CB1D	RR L	CB70	BIT 6, B	CBC3	SET 0, E
CB1E	RR (HL)	CB71	BIT 6, C	CBC4	SET 0, H
CB1F	RR A	CB72	BIT 6, D	CBC5	SET 0, L
CB20	SLA B SLA C	CB73 CB74	BIT 6, E BIT 6, H	CBC6	SET 0, (HL) SET 0, A
CB21 CB22	SLA D	CB75	BIT 6, L	CBC7 CBC8	SET 1, B
CB23	SLA E	CB76	BIT 6, (HL)	CBC9	SET 1, C
CB24	SLA H	CB77	BIT 6, A	CBCA	SET 1, D
CB25	SLA L	CB78	BIT 7, B	CBCB	SET 1, E
CB26	SLA (HL)	CB79	BIT 7, C	CBCC	SET 1, H
CB27	SLA A	CB7A	BIT 7, D	CBCD	SET 1, L
CB28	SRA B	CB7B	BIT 7, E	CBCE	SET 1, (HL)
CB29	SRA C	CB7C	BIT 7, H	CBCF	SET 1, A
CB2A	SRA D	CB7D	BIT 7, L	CBD0	SET 2, B
CB2B	SRA E	CB7E	BIT 7, (HL)	CBD1	SET 2, C
CB2C	SRA H	CB7F	BIT 7, A	CBD2	SET 2, D
CB2D	SRA L	CB80	RES 0, B	CBD3	SET 2, E
CB2E	SRA (HL)	CB81	RES 0, C	CBD4	SET 2, H
CB2F	SRA A	CB82	RES 0, D	CBD5	SET 2, L
CB30	SLL B*	CB83	RES 0, E	CBD6	SET 2, (HL)
CB31	SLL C*	CB84	RES 0, H	CBD7	SET 2, A
CB32	SLL D* SLL E*	CB85 CB86	RES 0, L	CBD8	SET 3, B
CB33 CB34	SLL H*	CB87	RES 0, (HL) RES 0, A	CBD9 CBDA	SET 3, C SET 3, D
CB35	SLL L*	CB88	RES 1, B	CBDB	SET 3, E
CB36	SLL (HL)*	CB89	RES 1, C	CBDC	SET 3, H
CB37	SLL A*	CB8A	RES 1, D	CBDD	SET 3, L
CB38	SRL B	CB8B	RES 1, E	CBDE	SET 3, (HL)
CB39	SRL C	CB8C	RES 1, H	CBDF	SET 3, A
CB3A	SRL D	CB8D	RES 1, L	CBE0	SET 4, B
CB3B	SRL E	CB8E	RES 1, (HL)	CBE1	SET 4, C
CB3C	SRL H	CB8F	RES 1, A	CBE2	SET 4, D
CB3D	SRL L	CB90	RES 2, B	CBE3	SET 4, E
CB3E	SRL (HL)	CB91	RES 2, C	CBE4	SET 4, H
CB3F	SRL A	CB92	RES 2, D	CBE5	SET 4, L
CB40	BIT 0, B	CB93	RES 2, E	CBE6	SET 4, (HL)
CB41	BIT 0, C	CB94	RES 2, H	CBE7	SET 4, A
CB42	BIT 0, D	CB95	RES 2, L	CBE8	SET 5, B
CB43	BIT 0, E	CB96	RES 2, (HL)	CBE9	SET 5, C
CB44	BIT 0, H	CB97	RES 2, A	CBEA	SET 5, D
CB45	BIT 0, L	CB98	RES 3, B	CBEB	SET 5, E
CB46	BIT 0, (HL)	CB99	RES 3, C	CBEC	SET 5, H
CB47	BIT 0, A	CB9A	RES 3, D	CBED	SET 5, L
CB48	BIT 1, B	CB9B	RES 3, E	CBEE	SET 5, (HL)
CB49	BIT 1, C	CB9C	RES 3, H	CBEF	SET 5, A
CB4A	BIT 1, D	CB9D	RES 3, L	CBF0	SET 6, B
CB4B	BIT 1, E	CB9E	RES 3, (HL)	CBF1	SET 6, C
CB4C	BIT 1, H	CB9F	RES 3, A	CBF2	SET 6, D
CB4D	BIT 1, L	CBA0	RES 4, B	CBF3	SET 6, E
CB4E	BIT 1, (HL)	CBA1	RES 4, C	CBF4	SET 6, H
CB4F	BIT 1, A	CBA2	RES 4, D	CBF5	SET 6, L
CB50	BIT 2, B	CBA3	RES 4, E	CBF6	SET 6, (HL)
CB51	BIT 2, C	CBA4	RES 4, H	CBF7	SET 6, A
CB52	BIT 2, D	CBA5	RES 4, L	CBF8	SET 7, B
CB53	BIT 2, E	CBA6	RES 4, (HL)	CBF9	SET 7, C
CB54	BIT 2, H	CBA7	RES 4, A	CBFA	SET 7, D
CB55	BIT 2, L	CBA8	RES 5, B	CBFB	SET 7, E
CB56	BIT 2, (HL)	CBA9	RES 5, C	CBFC	SET 7, H

DDCB d 95 DDCB d 96 DDCB d 97 DDCB d 98 DDCB d 99 DDCB d 9A DDCB d 9B DDCB d 9C DDCB d 9C DDCB d 9C DDCB d 9F DDCB d AA DDCB d AB DDCB d BA DDCB d BB DDCB d BC DDCB d CD DDCB d DDCB	LD L, RES 2, (IX + d)* RES 2, (IX + d) LD A, RES 3, (IX + d)* LD B, RES 3, (IX + d)* LD C, RES 3, (IX + d)* LD LD RES 3, (IX + d)* LD L, RES 3, (IX + d)* LD L, RES 3, (IX + d)* LD L, RES 3, (IX + d)* LD B, RES 4, (IX + d)* LD D, RES 4, (IX + d)* LD D, RES 4, (IX + d)* LD H, RES 4, (IX + d)* LD L, RES 5, (IX + d)* LD L, RES 6, (IX + d)* LD L, RES 7, (IX + d)* LD L, SET 0, (IX + d)* LD L, SET 0, (IX + d)* LD L, SET 0, (IX + d)* LD L, SET 1, (IX + d)* LD L, SET 1, (IX + d)* LD L, SET 1, (IX + d)* LD L, SET 2, (IX + d)* LD L, SET 3, (IX + d)* LD L,	DDCB d E8 DDCB d E9 DDCB d EA DDCB d EB DDCB d EC DDCB d EC DDCB d EF DDCB d FF DDCB d FF DDCB d F7 DDCB d	LD B, SET 5, (IX + d)* LD C, SET 5, (IX + d)* LD D, SET 5, (IX + d)* LD D, SET 5, (IX + d)* LD H, SET 5, (IX + d)* LD L, SET 5, (IX + d)* LD L, SET 5, (IX + d)* LD B, SET 6, (IX + d)* LD D, SET 6, (IX + d)* LD L, SET 6, (IX + d)* LD D, SET 7, (IX + d) LD D, SET 7, (IX + d) LD D, SET 7, (IX + d) LD H, DE LD (IN), DE NEG* RETN* IM 1 LD A, I IN E, (C) OUT (C), E ADD HL, DE LD (IN), DE NEG* RETN* IM 2 IN E, (C) OUT (C), E ADD HL, IND IN E, (C) OUT (C), E ADD H, IND IN E, (C) IN E, C IN E, C IN	ED67 ED68 ED69 ED6A ED6B n n ED6C ED6B ED6F ED70 ED71 ED72 ED73 n n ED74 ED75 ED76 ED77 ED78 ED79 ED7A ED7B n n ED7C ED7D ED7B ED7B ED7B ED7B ED7B ED7B ED7B	RRD IN L, (C) OUT (C), L ADC HL, HL LD HL, (nn) NEG* RETN* IM 0/1* RLD IN (C)* / IN F, (C)* OUT (C), 0* SBC HL, SP LD (nn), SP NEG* RETN* IM 1* IN A, (C) OUT (C), A ADC HL, SP LD SP, (nn) NEG* RETN* IM 2* LDI CPI INI OUTI LDD CPD IND OUTD LDIR CPIR INIR OTDR XOR n RST 28h RET P POP AF JP P, nn DI CALL P, nn PUSH AF OR n RST 30h RET M LD SP, HL JP M, nn EI CALL M, nn ADD IY, BC ADD IY, DE LD IY, nn LD (nn), IY INC IX IN
DDCB d DA	LD D, SET 3, (IX + d)*	ED59	OUT (C), E	FD35 d	DEC (IY + \acute{d})
DDCB d DB	LD E, SET 3, (IX + d)*	ED5A	ADC HL, DE	FD36 d n	LD (IY + \acute{d}), n
DDCB d DC	LD H, SET 3, (IX + d)*	ED5B n n	LD DE, (nn)	FD39	ADD IY, SP
DDCB d DD	LD L, SET 3, (IX + d)*	ED5C	NEG*	FD44	LD B, IY _H *
DDCB d DE	SET 3, (IX + d)	ED5D	RETN*	FD45	LD B, IY _L *

FD5E d FD60 FD61 FD62 FD63 FD64 FD65 FD66 d FD67 FD68 FD66 FD67 FD68 FD60 FD6E d FD71 d FD71 d FD72 d FD73 d FD71 d FD75 d FD70 d FD71 d FD75 d FD75 d FD76 FD70 d FD78 d FD85 FD86 d FD8C FD8D FD8E d FD8E	LD E, (IY + d) LD IYH, B* LD IYH, C* LD IYH, D* LD IYH, E* LD IYH, YH* LD IYH, IYL* LD IYH, IYL* LD IYH, IYL* LD IYH, IYL* LD IYL, B* LD IYL, B* LD IYL, E* LD IYL, IYL* LD IYL, IYL* LD L, (IY + d), D LD (IY + d), B LD (IY + d), B LD (IY + d), A LD A, IYH* ADD A, IYH* ADC A	FDCB d 20 FDCB d 21 FDCB d 22 FDCB d 23 FDCB d 25 FDCB d 26 FDCB d 27 FDCB d 28 FDCB d 29 FDCB d 29 FDCB d 20 FDCB d 30 FDCB d 30 FDCB d 31 FDCB d 32 FDCB d 35 FDCB d 35 FDCB d 35 FDCB d 35 FDCB d 36 FDCB d 37 FDCB d 37 FDCB d 38 FDCB d 37 FDCB d 38 FDCB d 37 FDCB d 47 FDCB d 57 FDCB d 67 FDCB d	LD B, SLA (IY + d)* LD C, SLA (IY + d)* LD D, SLA (IY + d)* LD H, SLA (IY + d)* LD L, SLA (IY + d)* LD L, SLA (IY + d)* LD L, SLA (IY + d)* LD B, SRA (IY + d)* LD D, SRA (IY + d)* LD D, SRA (IY + d)* LD D, SRA (IY + d)* LD E, SRA (IY + d)* LD L, SRA (IY + d)* LD D, SRA (IY + d)* LD D, SLL (IY + d)* LD L, SLL (IY + d)* LD D, SRL (IY + d)* BT O, (IY + d)* BIT 0, (IY + d)* BIT 1, (IY + d)* BIT 2, (IY + d)* BIT 3, (IY + d)* BIT 4, (IY + d)* BIT 3, (IY + d)* BIT 4, (IY + d)* BIT 4, (IY + d)* BIT 4, (IY + d)* BIT 5, (IY + d)* BIT 4, (IY + d)* BIT 4, (IY + d)* BIT 5, (IY + d)*	FDCB d 73 FDCB d 74 FDCB d 75 FDCB d 76 FDCB d 77 FDCB d 78 FDCB d 79 FDCB d 77 FDCB d 80 FDCB d 81 FDCB d 82 FDCB d 83 FDCB d 84 FDCB d 85 FDCB d 88 FDCB d 89 FDCB d 90 FDCB d 91 FDCB d 92 FDCB d 93 FDCB d 94 FDCB d 95 FDCB d 97 FDCB d 97 FDCB d 98 FDCB d 99 FDCB d 97 FDCB d 98 FDCB d A4 FDCB d A5 FDCB d A5 FDCB d A6 FDCB d A7 FDCB d A7 FDCB d A8 FDCB d A7 FDCB d A8 FDCB d A7 FDCB d A8 FDCB d A7 FDCB d A7 FDCB d A8 FDCB d A7 FDCB d A8 FDCB d A7 FDCB d A8 FDCB d A8 FDCB d A7 FDCB d A8 FDCB d A8 FDCB d B7 FDCB d B8 FDCB d FDCB d B8 FDCB d FD	BIT 6, (IY + d)* BIT 7, (IY + d)* LD B, RES 0, (IY + d)* LD D, RES 0, (IY + d)* LD D, RES 0, (IY + d)* LD L, RES 0, (IY + d)* LD L, RES 0, (IY + d)* LD D, RES 1, (IY + d)* LD D, RES 2, (IY + d)* LD D, RES 3, (IY + d)* LD D, RES 4, (IY + d)* LD D, RES 5, (IY + d)* LD D, RES 5, (IY + d)* LD D, RES 5, (IY + d)* LD D, RES 6, (IY + d)* LD D, RES 5, (IY + d)* LD D, RES 5, (IY + d)* LD D, RES 6, (IY + d)* LD D, RES 5, (IY + d)* LD D, RES 6, (IY + d)* LD D, RES 7, (IY + d)* LD D, RES 6, (IY + d)* LD D, RES 7, (IY + d)* LD
FDCB d 12	LD D, RL (IY + d)*	FDCB d 65	BIT 4, (IY + d)* BIT 4, (IY + d) BIT 4, (IY + d)* BIT 5, (IY + d)*	FDCB d B8	LD B, RES 7, (IY + d)*
FDCB d 13	LD E, RL (IY + d)*	FDCB d 66		FDCB d B9	LD C, RES 7, (IY + d)*
FDCB d 14	LD H, RL (IY + d)*	FDCB d 67		FDCB d BA	LD D, RES 7, (IY + d)*
FDCB d 15	LD L, RL (IY + d)*	FDCB d 68		FDCB d BB	LD E, RES 7, (IY + d)*
FDCB d 16	RL (IY + d)	FDCB d 69		FDCB d BC	LD H, RES 7, (IY + d)*
FDCB d 17	LD A, RL (IY + d)*	FDCB d 6A		FDCB d BD	LD L, RES 7, (IY + d)*

```
FDCB d C6
                SET 0, (IY + d)
                LD A, SET 0, (IY + d)*
FDCB d C7
FDCB d C8
                LD B, SET 1, (IY + d)*
                LD C, SET 1, (IY + d)*
FDCB d C9
FDCB d CA
                LD D, SET 1, (IY + d)*
FDCB d CB
                LD E, SET 1, (IY + d)*
FDCB d CC
                LD H, SET 1, (IY + d)*
FDCB d CD
                LD L, SET 1, (IY + d)*
FDCB d CE
                SET 1, (IY + d)
                LD A, SET 1, (IY + d)*
FDCB d CF
                LD B, SET 2, (IY + d)*
FDCB d D0
                LD C, SET 2, (IY + d)*
FDCB d D1
FDCB d D2
                LD D, SET 2, (IY + d)*
FDCB d D3
                LD E, SET 2, (IY + d)*
                LD H, SET 2, (IY + d)*
FDCB d D4
FDCB d D5
                LD L, SET 2, (IY + d)*
FDCB d D6
                SET 2, (IY + d)
FDCB d D7
                LD A, SET 2, (IY + d)*
FDCB d D8
                LD B, SET 3, (IY + d)*
                LD C, SET 3, (IY + d)*
FDCB d D9
                LD D, SET 3, (IY + d)*
FDCB d DA
                LD E, SET 3, (IY + d)*
FDCB d DB
FDCB d DC
                LD H, SET 3, (IY + d)*
                LD L, SET 3, (IY + d)*
FDCB d DD
                SET 3, (IY + d)
FDCB d DE
FDCB d DF
                LD A, SET 3, (IY + d)*
FDCB d E0
                LD B, SET 4, (IY + d)*
                LD C, SET 4, (IY + d)*
FDCB d E1
FDCB d E2
                LD D, SET 4, (IY + d)*
FDCB d E3
                LD E, SET 4, (IY + d)*
FDCB d E4
                LD H, SET 4, (IY + d)*
FDCB d E5
                LD L, SET 4, (IY + d)*
FDCB d E6
                SET 4, (IY + d)
                LD A, SET 4, (IY + d)*
FDCB d E7
FDCB d E8
                LD B, SET 5, (IY + d)*
FDCB d E9
                LD C, SET 5, (IY + d)*
                LD D, SET 5, (IY + d)*
FDCB d EA
FDCB d EB
                LD E, SET 5, (IY + d)*
FDCB d EC
                LD H, SET 5, (IY + d)*
FDCB d ED
                LD L, SET 5, (IY + d)*
FDCB d EE
                SET 5, (IY + d)
FDCB d EF
                LD A, SET 5, (IY + d)*
FDCB d F0
                LD B, SET 6, (IY + d)*
FDCB d F1
                LD C, SET 6, (IY + d)*
FDCB d F2
                LD D, SET 6, (IY + d)*
FDCB dF3
                LD E, SET 6, (IY + d)*
FDCB d F4
                LD H, SET 6, (IY + d)*
FDCB d F5
                LD L, SET 6, (IY + d)*
FDCB d F6
                SET 6, (IY + d)
FDCB d F7
                LD A, SET 6, (IY + d)*
                LD B, SET 7, (IY + d)*
FDCB d F8
                LD C, SET 7, (IY + d)*
FDCB d F9
FDCB d FA
                LD D, SET 7, (IY + d)*
                LD E, SET 7, (IY + d)*
FDCB d FB
                LD H, SET 7, (IY + d)*
FDCB d FC
FDCB d FD
                LD L, SET 7, (IY + d)*
FDCB d FE
                SET 7, (IY + d)
FDCB d FF
                LD A, SET 7, (IY + d)*
                POP IY
FDE1
FDE3
                EX (SP), IY
                PUSH IY
FDE5
FDE9
                JP (IY)
FDF9
                LD SP, IY
                CP n
FE<sub>n</sub>
                RST 38h
FF
```