一南昌大学考试试卷一

【适用时间: 20<u>18</u>~20<u>19</u>学年<u>春</u>季学期 试卷类型: [<u>A</u>]卷】

	课程编号:	J5510N2001	试卷编号:	
教	 课程名称:		- 高等数学(I)下	•
师	 开课学院 : 	理学院	考试形式:	闭卷
填	 适用班级:	2018 级理工类		120 分钟
写栏	试卷说明:	1、本试卷共 <u>7</u> 页。 2、考试结束后,考生不得将	试卷、答题纸和草稿	纸带出考场。

题号	_	=	三	四	五	六	七	八	九	+	总分	累分人
题分	15	15	16	16	16	16	6				100	签 名
得分												

	_	
	考生姓名:	考生学号:
考	所属学院:	任课老师及序号:
生	所属专业:	考试日期:
填写	考 生 须 知	 1、请考生务必查看试卷中是否有缺页或破损。如有立即举手报告以便更换。 2、严禁代考,违者双方均开除学籍;严禁作弊,违者取消学位授予资格;严禁自备草稿纸、携带手机、携带小抄等入场,违者按考试违规处理。 3、请务必填写"任课老师及序号"如***老师,序号###
栏	考 生 承 诺	本人知道考试违纪、作弊的严重性,将严格遵守考场纪律,如若违反则愿意接受学校按有关规定处分! 考生签名:

一、填空题(每小题 3 分, 共 15 分)

得 分 评阅人

2、由曲线
$$\begin{cases} z = y^2 + 2 \\ x = 0 \end{cases}$$
 绕 z 轴旋转一周生成的旋转曲面为_____。

3、设
$$f(x,y)$$
在点 $(0,0)$ 可微, $g(x,y)=f(x^2,y^2)$,则 $g_x(0,0)=$ _____。

4、
$$L$$
 为平面曲线: $x^2 + y^2 = 1$, 则 $\oint_L x^2 + y^3 ds =$ _______。

5、
$$f(x) = \frac{x}{1 - x - x^2}$$
关于 x 的幂级数展开式中 x^4 系数为_____。

二、单项选择题(每小题 3 分, 共 15 分)

得 分	评阅人

1、设函数
$$f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$
 , 则 () 。

- (A)连续且偏导数存在: (B)连续且偏导数不存在;
- (C) 不连续且偏导数存在; (D) 不连续且偏导数不存在
- 2、二元函数 z = xy(3-x-y) 的极值点为 ()。
- (A) (0,0); (B) (0,3); (C) (3,0); (D) (1,1)

3、曲线
$$\Gamma$$
: $\begin{cases} x^2 + y^2 + z^2 = 6 \\ x + y + z = 0 \end{cases}$ 在点 $M(1,-2,1)$ 的切线一定平行于()。

- (A) xoy 面; (B) yoz 面; (C) zox 面; (D) 平面 x+y-z=0

$$4 \cdot \int_0^1 dx \int_{\sqrt{x}}^1 e^{\frac{x}{y}} dy = ($$
) .

- A) e+1 ; (B) $2e+\frac{1}{2}$; (C) $\frac{1}{2}$; (D) $\frac{3}{2}$

5、下列级数绝对收敛的是()。

(A)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n - \ln n}$$

(B)
$$\sum_{n=1}^{\infty} (-1)^n \frac{2^{n^2}}{n!}$$

(A)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n - \ln n}$$
; (B) $\sum_{n=1}^{\infty} (-1)^n \frac{2^{n^2}}{n!}$; (C) $\sum_{n=1}^{\infty} (-1)^n (\sqrt{n^3 + 1} - \sqrt{n^3})$; (D) $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$

(D)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$

三、计算题(每小题8分,共16分)

得 分	评阅人

1、求曲面 $e^z - z + xy = 3$ 在点(2,1,0)处的切平面及法线方程。

2、设z = z(x,y)是由方程 $z^2y - xz^3 - 1 = 0$ 所确定的隐函数,求dz_(1,0)。

四、计算题(每小题8分,共16分)

得	分	评阅人

1、计算曲线积分 $\oint_L \frac{ydx-xdy}{x^2+y^2}$,其中曲线 L 为圆周 $(x-1)^2+y^2=3$,逆时针。

2、证明曲线积分 $I = \int_{(0,0)}^{(1,1)} (6xy^2 - y^3) dx + (6x^2y - 3xy^2) dy$ 与路径无关,并计算其积分值。

五、计算题(每小题8分,共16分)

1、利用高斯公式计算曲面积分 $I=\iint_{\Sigma}xz^2dydz+x^2ydzdx+(1+y^2z)dxdy$,其中 Σ 是上半球面 $x^2+y^2+z^2=1$ $(z\geq 0)$ 的上侧。

2、求幂级数 $\sum_{n=0}^{\infty} (2n+1)x^{2n+1}$ 的收敛域以及和函数。

六、应用题(每小题8分,共16分)

得 分	评阅人

1、求由曲面 $z = \sqrt{x^2 + y^2}$ 及z = 1所围立体的表面积及体积。

2、用拉格朗日乘数法求曲面 $z=x^2+y^2$ 与平面x+y-2z=2之间的最短距离。

七、证明题(6分)

得 分	评阅人

若 $\sum_{n=1}^{\infty} \frac{u_{n+1} - u_n}{(u_n - 1)(u_{n+1} - 1)}$ 收敛, u_n 非无穷大, $\sum_{n=1}^{\infty} v_n$ 绝对收敛, 证明 $\sum_{n=1}^{\infty} (u_n v_n)$ 绝对收敛。