Prerequisites

- sets (notation)
- strings (basic notation)

Formal definition and proof of the normal form theorem

The previous two sections introduced negative n-gram grammars at great length and showed a basic normal form theorem: for every grammar with n-grams of mixed length, there is an equivalent grammar where all n-grams have the same length. The presentation was deliberately informal to focus on intuitions rather than mathematical rigor. This unit is very different. It gives the definitions in a mathematical format, rigorously states the normal form theorem, and states the proof of the theorem in a more standard mathematical style.

I admit that this might be a lot to take in for the newbie, but it is important for you to learn how to read mathematical notation. It really makes things a lot easier in the long run. Once you feel more comfortable with mathematical notation, I suggest that you come back to this unit and contrast it to the two preceding ones. Which one gives you more information in a short amount of time?

If you're suffering an acute case of symbol shock, don't worry. We will continue at a leisurely pace, with optional formal sections sprinkled in to give a succinct summary of the more informal sections.

Formal definition of negative grammars

An alphabet is a finite set of symbols.

Definition 1. Let Σ be some alphabet, and Σ_E its extension with a edge marker symbols $\rtimes, \ltimes \notin \Sigma$. An n-gram over Σ_E is an element of Σ_E^n ($n \ge 1$). A **negative** n-gram grammar G over alphabet Σ is a finite set of n-grams over Σ_E . A string s over Σ is well-formed with respect to G iff there are no u, v over Σ_E and no $g \in G$ such that $\rtimes^{n-1} \cdot s \cdot \ltimes^{n-1} = u \cdot g \cdot v$. The **language of** G, denoted L(G), contains all strings that are well-formed with respect to G, and only those.

Example

Definition 2. A mixed negative n-gram grammar G is a finite set of strings over Σ such that n is the length of the longest string in G. A negative n-gram grammar that is not mixed is called **strict**.

Normal form theorem

Theorem 3. For every mixed negative n-gram grammar G, there is a strict negative n-gram grammar G' such that L(G) = L(G').

Proof. Let $G' := \{u \cdot g \cdot v \mid g \in G, u, v \in \Sigma^*, \text{ and the length of } u \cdot g \cdot v \text{ is } n\}$. Suppose $s \notin L(G)$. Then there must be some $g \in G$ and $u = u_1 \cdot u_2$ and $v = v_1 \cdot v_2$ over Σ such that $\bowtie^{n-1} \cdot s \cdot \bowtie^{n-1} = u \cdot g \cdot v$. But then $\bowtie^{n-1} \cdot s \cdot \bowtie^{n-1} = u_1 \cdot u_2 \cdot g \cdot v_1 \cdot v_2$. As the length of $\bowtie^{n-1} \cdot s \cdot \bowtie^{n-1}$ exceeds n, it holds that $u_2 \cdot g \cdot v_1 \in G'$ for some choice of u_2 and v_1 . But then $s \notin L(G')$.

In the other direction, suppose $s \notin L(G')$. Then there is some $g \in G'$ such that $\bowtie^{n-1} \cdot s \cdot \bowtie^{n-1} = u \cdot g \cdot v$. But then there must u', g' and v' over Σ such that $g = u' \cdot g' \cdot v'$ and $g' \in G$. It follows that $s \notin L(G)$.

And there you have it. All the ground we've covered in dozens of pages so far, condensed into less than one page. That's the power of math.