# Evaluating Model Performance & Hyperparameter Tuning

# Why evaluate Performance?

- To understand how good is our model
- To compare it with other models
- To generalise how good our model will perform on new data

# How to evaluate your Model?



### **CLASSIFICATION ACCURACY**

Most basic metrics to evaluate our model



# Why Accuracy is not a good metric?

#### **Baseline Model**

- 1. Base Model with which we are comparing our performance
- 2. Several ways to consider a Baseline Model
- 3. We are considering a model which classifies all labels as that of majority class



Accuracy = 4/6 \*100 = 66.7

Our model is not better than the baseline model (Which is technically just a nonsense model!)

#### So what to do?

#### **Confusion Matrix:**

For the sake of generalisation, let us call yellow as positive labels, and pink as negative labels.

Break down the data into four categories

- a. Actual =Positive, Predicted = Positive (True Positive)
- b. Actual =Positive, Predicted = Negative(False Negative)
- c. Actual =Negative, Predicted = Negative (True Negative)
- d. Actual = Negative, Predicted = Positive(False Positive)





#### **Confusion Matrix:**

For the sake of generalisation, let us call yellow as positive labels, and pink as negative labels.

Actual Labels:

Predicted Labels:

#### AIM

- Maximise TP, TN
- Minimise FP, FN



#### Sensitivity

Also called as Recall

True Positive Rate

Correctly guessed as positives compared to total number of positives



#### Specificity

Also called as True Negative Rate

Correctly guessed as negatives compared to total number of negatives



#### Precision

Also called as Positive Predictive Value

Correctly guessed as positives compared to total guessed as positives



F1-Score

Harmonic Mean of Precision and Recall

Penalises False negatives and false positives.

Mostly used for uneven class distribution

Precision = 2\*Precision\*Recall

Precision+Recall



$$F1 = \frac{2 \, * \, precision \, * \, recall}{precision + recall}$$

$$F1 = \frac{2 \times 0.3 \times 0.1}{0.3 + 0.1} \quad : F1 = 0.15$$

# ROC-AUC

#### Receiver Operating Characteristics

- Area under the Curve

#### (CLICK HERE TO EXPERIMENT)

> Threshold based evaluation metrics

Also called Precision Recall Curve

Tells the optimal threshold to select, depending on the true and the false positive rate



#### REGRESSION METRICS

#### MEAN SQUARED ERROR

- It is simply the average of the squared difference between the target value and the value predicted by the regression model.
- As it squares the differences, it penalizes even a small error which leads to over-estimation of how bad the model is.
- MSE or Mean Squared Error is one of the most preferred metrics for regression tasks.

$$MSE = \frac{1}{n} \Sigma \left( y - \widehat{y} \right)^2$$

#### REGRESSION METRICS

#### ROOT MEAN SQUARED ERROR

- RMSE is the square root of the averaged squared difference between the target value and the value predicted by the model.
- It is preferred more in some cases because the errors are first squared before averaging which poses a high penalty on large errors.
- This implies that RMSE is useful when large errors are undesired.

RMSE = 
$$\sqrt{\frac{1}{n}} \sum_{i=1}^{n} (y_i - \hat{y})^2$$

#### REGRESSION METRICS

#### **MEAN ABSOLUTE ERROR**

- The MAE is more robust to outliers and does not penalize the errors as extremely as mse
- MAE is the absolute difference between the target value and the value predicted by the model.

$$MAE = \frac{1}{n} \sum_{j=1}^{n} |y_j - y_j|$$

### What Metrics to use When?

#### **Depends on the Dataset**

#### Classification

- Fraud Detection: Every Non-Fraud transaction that gets classified as Fraud does not bear that heavy a cost, at the maximum the person will get one extra phone call to check whether the transaction is fraudulent or not. BUT! Every fraud transaction that goes undetected and unchecked will incur a huge cost!
  - THEREFORE False positives are not as important as False Negatives.
  - SPECIFICITY >> SENSITIVITY

# What Metrics to use When?

#### **Depends on the Dataset**

#### Classification

- ➤ **Disease Detection:** If a healthy person is falsely detected, it is problematic since they may undergo unnecessary surgery/treatment. If a diseased person is falsely detected as healthy, the disease may progress further to an advanced stage.
  - THEREFORE False positives and False Negatives both important
  - SPECIFICITY and SENSITIVITY are both important

# What Metrics to use When?

#### **Depends on the Dataset**

#### Regression

- ➤ **MSE:** When we want to penalize even small errors
- MSE: When we want to penalize outliers
- > MAE: When we do not want of penalise outliers that much
- > RMSE: Useful when large errors are undesired.

# Good Rule of Thumb



If unsure, or in general - Report all of these metrics!

Most of these are provided in sklearn.

### CROSS VALIDATION

- We know how our model performs on seen data, but how do we be sure on how it performs on new data?
- What if less data is available which makes it difficult to separate data for training and testing
- What if our training and testing was sampled in such a way that there is a certain bias which causes the testing dataset to perform better than it would on new and unknown data?

Answer: Cross Validate your data

There are many different types of cross validation that exist, however we will be discussing the two most common types.

# WIDELY USED CROSS VALIDATION METHODS



Divide Data into K Folds Let's take k=3 for example



Leave One Out CV (LOOCV)

All but one sample is chosen as training set



# WIDELY USED CROSS VALIDATION METHODS



➤ Used on larger datasets

Leave One Out CV (LOOCV)

- Used on smaller datasets
- Computationally Expensive
- Best results

LOOCV is a special case of k-Fold CV

When k=size(data)-1, only one row is the testing set, others are training which is nothing but LOOCV!

# HYPERPARAMETER TUNING

For any classifier/regressor that we use, there are a lot of parameters and hyperparameters.

How to find the best values for each of these parameters? Testing out all of these will take a huge amount of time!



#### **Solution:**

GridSearchCV in sklearn

#### **GRID SEARCH CV**

Input all different values you want to check the performance on.

Input the metrics you want to optimize the results on (Accuracy, Sensitivity, Specificity, AUC-ROC)

Cross Validate results however many times required

### **GRID SEARCH CV**



➤ PROBLEM?

- Computationally too expensive!
- A simple dataset with 500 rows can take upto hours to compute the best results (depending on the model).
- Even addition of a single new value of one hyperparameter will increase the computation time by a lot (order of total number of hyper parameter values).
- Solution RandomisedSearchCV

Total iterations to be carried out = 5\*2 = 10 times

Performance of each will be ranked on the basis of what scoring metrics is provided

Return best model hyperparameters

#### RANDOMISED SEARCH CV

- >Input all different values you want to check the performance on.
- ➤Input number of iterations you want (searches the grid only that many number of times)
- ➤ Faster than GridSearch, since it does not search the entire sample space
- ➤ Finds close to optimal solution
- ➤ Works good on larger data sets.
- ➤One can use Randomised Search to find close to optimal solution, and then tune it further on Grid Search CV.