常微分方程数值解法

内容提要

- 1、引言
- 2、欧拉法、梯形法和改进欧拉法
- 3、龙格一库塔法
- 4、多步法
- 5、Adam法
- 6、Gear法
- 7、数值稳定性

对于一个常微分方程: 自变量、未知函数、未知函数的导数

$$y' = \frac{dy}{dx} = f(x, y) , x \in [a, b]$$

通常会有无穷个解。如:

$$\frac{dy}{dx} = \cos(x) \implies y = \sin(x) + a$$

因此,我们要加入一个限定条件。通常会在端点处给出,如下面的初值问题:

$$\begin{cases} \frac{dy}{dx} = f(x, y) &, x \in [a, b] \\ y(a) = y_0 \end{cases}$$

常微分方程数值解一问题的提出

本课程我们仅仅学习<mark>常微分方程的数值解法</mark>。所研究的常 微分方程的形式为:

$$y'(x) = f(x, y)$$
 $y(x_0) = y_0$ (1)

如果用如下形式表示:

$$\dot{x} = f(x,t) \qquad x(t_0) = x_0$$

a<math> x(t)是随时间而变化的状态变量,依赖于初值 x_0 ,而这种微分方程的求解问题称为常微分方程的初值问题。

数值解的基本做法

对式(1)进行数值求解的过程,就是根据 x_0 时刻的初始值 y_0 ,依次计算 x_1 时刻 $y(x_1)$ 的近似值 y_1 , x_2 时刻 $y(x_2)$ 的近似值 y_2 ...。

其中相邻时间的间隔被称为步长,通常在整个积分区域 $x \in (x_0,x_N)$,步长 $h_{n+1}=x_{n+1}-x_n$ 都被取定值。

基本的算法就是从 x_n 时已知的 y_n 、 y_{n-1} ...和 $f(x_n,y_n)$ 、 $f(x_{n-1},y_{n-1})$... 推出 x_{n+1} 时的值 y_{n+1} 。

$$y'(x) = f(x, y)$$
 $y(x_0) = y_0$ (1)

微分方程数值算法的选择准则

任何实用的数值算法都必须满足以下的标准:

- I.数值计算的精确度
- 2.数值计算的稳定性
- 3.数值计算的效率
- 数值计算的<mark>精确度</mark>是指每一步数值计算的误差都是有界的。 其中整体误差= $|y(x_n)-y_n|$
- 数值计算的<mark>稳定性</mark>是指每一步数值计算产生的误差不至于影响到以后的计算。
- 数值计算的效率则与计算量和步长大小有关。

第2节欧拉法、梯形法和改进欧拉法

函数的泰勒级数展开(1)

8

用表示式(I)的精确解,将在 $x=x_n$ 点泰勒展开,并计算级数在 $x=x_{n+1}$ 时的值,可得下式:

$$y(x_{n+1})$$

$$= y(x_n) + y'(x_n)(x_{n+1} - x_n)$$

$$+ \frac{1}{2}y''(x_n)(x_{n+1} - x_n)^2 + \cdots$$

$$+ \frac{1}{p!}y^{(p)}(x_n)(x_{n+1} - x_n)^p + h.o.t.$$

展开式中更高次项

$$y' = f(x,y)$$
 $y(x_0) = y_0$ (1)
$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$
 函数 f 在点 $x = x_0$ 处的泰勒展开式注意: 此时未知函数为 y

函数的泰勒级数展开

如果时间步长 $h=x_{n+1}-x_n$,则

$$y(x_{n+1}) = y(x_n) + hy'(x_p) + \frac{h^2}{2}y''(x_n) + \dots + \frac{h^p}{p!}y^{(p)}(x_n) + h.o.t.$$

由式(I)可知, $y'(x) = f(x, y)$ 所以

$$y(x_{n+1}) - \underline{h.o.t.} = y(x_n) + \underbrace{hf(x_n, y(x_n))} + \frac{h^2}{2} f'(x_n, y(x_n)) + \dots + \frac{h^p}{p!} f^{(p-1)}(x_n, y(x_n))$$

展开式中更高次项 (2)

如果高次项非常小,则可用由式(2)等式右边计算出来的 y_{n+1} 来 $y(x_{n+1})$ 作为的近似值。

$$_{9}y'(x) = f(x, y)$$
 $y(x_{0}) = y_{0}$ (1)

函数的泰勒级数展开(3)

通常,泰勒级数法可以表示为

$$y_{n+1} = y_n + hT_p(y_n)$$
 (3)

式中

$$T_p(y_n) = f(x_n, y(x_n)) + \frac{h}{2}f'(x_n, y(x_n)) + \dots + \frac{h^{p-1}}{p!}f^{(p-1)}(x_n, y(x_n))$$

其中整数p称为阶。对于较大的p,用泰勒级数法可以非常精确,但计算效率却不高。

欧拉法

当p=l时,泰勒级数法变为:

$$y_{n+1} = y_n + hf(x_n, y_n)$$
 (4)

式(4)称为欧拉法。

欧拉法的几何意义

欧拉法的数值积分推导

$$y(x_{n+1}) = y(x_n) + \int_{x_n}^{x_{n+1}} y'(x) dx$$

根据数值积分的左矩形公式,有

$$\int_{x_n}^{x_{n+1}} y'(x) dx \approx (x_{n+1} - x_n) y'(x_n) = h y_n'$$

因此,有

$$y(x_{n+1}) \approx y(x_n) + hy'_n = y(x_n) + h \cdot f(x_n, y_n)$$

欧拉法的数值微分推导?

欧拉法的误差与精度

 $y(x_{n+1})$ 在点 (x_n,y_n) 处的泰勒展开式

$$y(x_{n+1}) = y(x_n) + hy'(x_n) + \frac{h^2}{2}y''(\xi)$$
 $x_n \le \xi \le x_{n+1}$

利用欧拉法求得的近似值 y_{n+1}

$$y_{n+1} = y_n + hy'(x_n)$$

假定 y_n 没有误差,即 $y_n = y(x_n)$

则误差
$$R = y(x_{n+1}) - y_{n+1} = \frac{h^2}{2}y''(\xi) = O(h^2)$$

如果误差为 $O(h^{p+1})$,则此种算法的精度为p阶。

所以欧拉法的精度为一阶。

用Euler方法求解问题

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}x} = -y + x + 1 & 0 \le x \le 0.5 \\ y(0) = 1 \end{cases}$$

用Euler方法求解问题

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}x} = -y + x + 1 & 0 \le x \le 0.5 \\ y(0) = 1 \end{cases}$$

解 设
$$f(x,y) = -y + x + 1$$
, $x_0 = 0$, $y_0 = 1$, $x_n = x_0 + nh = 0.1n$ ($n = 0,1,...,5$)

Euler 格式为 $y_{n+1} = y_n + hf(x_n, y_n) = y_n + 0.1(-y_n + x_n + 1)$ 由 $y_0 = 1$ 出发,按上面公式的计算结果如表所示

$$y_{n+1} = y_n + 0.1(-y_n + x_n + 1)$$
$$= 0.9y_n + 0.1x_n + 0.1$$

欧拉法算例(1)

试用欧拉法计算下列初值问题。

$$y'(x) = 1 - \frac{2xy}{1 + x^2}, y(0) = 0, 0 \le x \le 2$$

取步长h=0.5, 并与精确值
$$y(x) = \frac{x(3+x^2)}{3(1+x^2)}$$
 比较。

解:由欧拉法得:

有:

$$y_{n+1} = y_n + h(1 - \frac{2x_n y_n}{1 + x_n^2})$$
$$y_0 = 0, n = 0, 1, 2, 3$$

$$y_0 = 0, n = 0, 1, 2, 3$$

n	$x_n=nh=0.5n$	y _n	y(x _n)精确值
0	0	0	0
1	0.5	0.500000	0.433333
2	1.0	0.800000	0.666667
3	1.5	0.900000	0.807692
4	2.0	0.984615	0.933333

后退欧拉法

如果计算 y_{n+1} 时,所取的斜率不是 x_n 点上的导数 $f(x_n,y_n)$,而是 x_{n+1} 点上的导数 $f(x_{n+1},y_{n+1})$,就得到后退欧拉法

$$y_{n+1} = y_n + hf(x_{n+1}, y_{n+1})$$
 (5)

以后会说明,后退欧拉法比欧拉法具有好得多的数值稳定性。

欧粒法
$$y_{n+1} = y_n + hf(x_n, y_n)$$
 (4)

后退欧拉法的数值积分推导

$$y(x_{n+1}) = y(x_n) + \int_{x_n}^{x_{n+1}} y'(x) dx$$

根据数值积分的右矩形公式,有

$$\int_{x_n}^{x_{n+1}} y'(x) dx \approx (x_{n+1} - x_n) y'(x_{n+1}) = hy'(x_{n+1})$$

因此,有

$$y(x_{n+1}) \approx y(x_n) + hy'(x_{n+1}) = y(x_n) + h \cdot f(x_{n+1}, y_{n+1})$$

后退欧拉法的误差与精度

误差
$$R = y(x_{n+1}) - y_{n+1} = -\frac{h^2}{2}y''(\xi) = O(h^2)$$

所以后退欧拉法的精度为一阶。

欧拉法和后退欧拉法的局部截断误差在数值上是相等的,但 方向相反。

后退欧拉法算例

试用后退欧拉法计算下列初值问题

$$y'(x) = 1 - \frac{2xy}{1 + x^2}, y(0) = 0, 0 \le x \le 2$$

取步长h=0.5, 并与精确值
$$y(x) = \frac{x(3+x^2)}{3(1+x^2)}$$
 比较。

$$y_{n+1} = y_n + h(1 - \frac{2x_{n+1}y_{n+1}}{1 + x_{n+1}^2})$$

$$y_{n+1} = \frac{y_n + h}{1 + \frac{2hx_{n+1}}{1 + x_{n+1}^2}} \qquad y_0 = 0, n = 0, 1, 2, 3, 4$$

n	$x_n=nh=0.5n$	y _n	y(x _n)精确值
0	0	0	0
1	0.5	0.357142	0.433333
2	1.0	0.571428	0.666667
3	1.5	0.733082	0.807692
4	2.0	0.880773	0.933333

梯形法

如果计算 y_{n+1} 时,所取的斜率不是 x_n 点上的导数 $f(x_n,y_n)$,而是 x_n 点上的导数 $f(x_n,y_n)$ 和 x_{n+1} 点上的导数 $f(x_{n+1},y_{n+1})$ 的平均值,就得到梯形法

$$y_{n+1} = y_n + h \frac{y'(x_n) + y'(x_{n+1})}{2} = y_n + h \frac{f(x_n, y_n) + f(x_{n+1}, y_{n+1})}{2}$$

梯形法

作用シズ

梯形法的数值积分推导

根据数值积分的梯形公式,有
$$y(x_{n+1}) = y(x_n) + \int_{x_n}^{x_{n+1}} y'(x) dx$$

$$\int_{x_n}^{x_{n+1}} y'(x)dx \approx (x_{n+1} - x_n) \frac{y'(x_n) + y'(x_{n+1})}{2}$$

$$= h \frac{f(x_n, y_n) + f(x_{n+1}, y_{n+1})}{2}$$

因此

$$y_{n+1} = y_n + h \frac{f(x_n, y_n) + f(x_{n+1}, y_{n+1})}{2}$$

梯形法算例

试用梯形法计算下列初值问题。

$$y'(x) = 1 - \frac{2xy}{1 + x^2}, y(0) = 0, 0 \le x \le 2$$

取步长h=0.5, 并与精确值
$$y(x) = \frac{x(3+x^2)}{3(1+x^2)}$$

比较。

$$y_{n+1} = y_n + h \frac{f(x_n, y_n) + f(x_{n+1}, y_{n+1})}{2}$$
 $y'(x) = 1 - \frac{2xy}{1 + x^2}$

解: 由梯形法得

$$y_{n+1} = \frac{y_n + h - \frac{hx_n y_n}{1 + x_n^2}}{1 + \frac{hx_{n+1}}{1 + x_{n+1}^2}}$$

$$y_0 = 0, n = 0, 1, 2, 3, 4$$

n	$x_n=nh=0.5n$	y _n	y(x _n)精确值
0	0	0	0
1	0.5	0.416667	0.433333
2	1.0	0.666667	0.666667
3	1.5	0.812500	0.807692
4	2.0	0.937500	0.933333

改进欧拉公式

在梯形公式

$$y_{n+1} = y_n + h \frac{f(x_n, y_n) + f(x_{n+1}, y_{n+1})}{2}$$

的右端中包含有未知的y_{n+1},这类数值方法称为<mark>隐式方法</mark>,一般情况下不能直接求解上述方程,而需要采用迭代的方法来求解。

改进欧拉公式(2)

一种简单的做法是先用欧拉法计算出y_{n+1}的近似值,然后将这个近似值再代入到梯形公式中,即采用如下的格式:

$$y_{n+1}^{0} = y_n + h \cdot f(x_n, y_n)$$

$$y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1}^{0})]$$

这种格式就称为改进的欧拉公式,也叫预报一校正格式。

改进的欧拉公式算例(1)

试用改进的欧拉公式计算下列初值问题。

$$y'(x) = 1 - \frac{2xy}{1 + x^2}, y(0) = 0, 0 \le x \le 2$$

取步长h=0.5, 并与精确值
$$y(x) = \frac{x(3+x^2)}{3(1+x^2)}$$
 比较。

解:

$$y_{n+1}^{0} = y_n + h \cdot f(x_n, y_n)$$

$$y_{n+1} = y_n + \frac{h}{2} [f(x_n, y_n) + f(x_{n+1}, y_{n+1}^{0})]$$

n	$x_n=nh=0.5n$	Уn	y(x _n)精确值
0	0	0	0
1	0.5	0.400000	0.433333
2	1.0	0.635000	0.666667
3	1.5	0.787596	0.807692
4	2.0	0.921025	0.933333

		欧拉	后退欧拉	梯形	改进欧拉	
n	x _n =nh=0.5n	y _n	Уn	Уn	Уn	y(x _n)精确值
0	0	0	0	0	0	0
1	0.5	0.500000	0.357142	0.416667	0.400000	0.433333
2	1.0	0.800000	0.571428	0.666667	0.635000	0.666667
3	1.5	0.900000	0.733082	0.812500	0.787596	0.807692
4	2.0	0.984615	0.880773	0.937500	0.921025	0.933333
33						

§ 1 欧拉方法 /* Euler's Method */

> 欧拉公式:

向前差商近似导数 →

$$y'(x_0) = \frac{y(x_1) - y(x_0)}{h}$$

$$y(x_1) \approx y(x_0) + hy'(x_0) = y_0 + hf(x_0, y_0)$$

$$y_{i+1} = y_i + h f(x_i, y_i)$$
 $(i = 0, ..., n-1)$

> 欧拉公式的改进:

冷 隐式欧拉法 /* implicit Euler method */

向后差商近似导数
$$\rightarrow$$
 $y'(x_1) = \frac{y(x_1) - y(x_0)}{h}$

$$\rightarrow y(x_1) \approx y_0 + h f(x_1, y(x_1))$$

$$y_{i+1} = y_i + h f(x_{i+1}, y_{i+1}) \quad (i = 0, ..., n-1)$$

- 一般先用显式计算一个初值,再迭代求解。 > 计算量大!
- ☞ 隐式欧拉法的局部截断误差:

$$R_i = y(x_{i+1}) - y_{i+1} = -\frac{h^2}{2} y'(x_i) + O(h^3)$$

即隐式欧拉公式具有 1 阶精度。

🥦 梯形公式 /* trapezoid formula */ — 显、隐式两种算法的平均

$$y_{i+1} = y_i + h f(x_i, y_i)$$
 $(i = 0, ..., n-1)$

$$y_{i+1} = y_i + h f(x_{i+1}, y_{i+1}) \quad (i = 0, ..., n-1)$$

$$y_{i+1} = y_i + \frac{h}{2} [f(x_i, y_i) + f(x_{i+1}, y_{i+1})]$$
 $(i = 0, ..., n-1)$

注:局部截断误差 $R_i = y(x_{i+1}) - y_{i+1} = O(h^3)$ 即梯形公式具有2 阶精度,比欧拉方法有了进步。但注意到该公式是隐式公式,计算时不得不用到 迭代法,其迭代收敛性与欧拉公式相似。

🤌 改进欧拉法 /* modified Euler's method */

预报公式

Step 1: 先用显式欧拉公式作预测,算出 $\overline{y_{i+1}} = y_i + h f(x_i, y_i)$

Step 2: 再将 y₊₁ 代入隐式梯形公式的右边作校正,得到

$$y_{i+1} = y_i + \frac{h}{2} [f(x_i, y_i) + f(x_{i+1}, \overline{y}_{i+1})]$$

注:此法亦称为预测-校正法/* predictor-corrector method */。可以证明该算法具有 2 阶精度,同时可以看到它是个单步递推格式,比隐式公式的迭代求解过程简单。后面将看到,它的稳定性高于显式欧拉法。

	_ \			
	$^{\sim}$			
`				

方 法		F
显式欧拉	简单	精度低
隐式欧拉	稳定性最好	精度低,计算量大
梯形公式	精度提高	计算量大
中点公式	精度提高,显式	多一个初值, 可能影响精度