PATENT ABSTRACTS OF JAPAN

(11)Publication number:

(43) Date of publication of application: 02.06.1999

(51)Int.CI.

C30B 15/00 C30B 29/06 H01L 21/208 // H01L 21/02

(21)Application number: 09-325428

(22)Date of filing:

(71)Applicant:

SHIN ETSU HANDOTAI CO LTD

11.11.1997

(72)Inventor:

IIDA MAKOTO

IINO EIICHI

KIMURA MASAKI **MURAOKA SHOZO**

(54) SILICON SINGLE CRYSTAL WAFER WITH LOW CONTENT OF CRYSTAL DEFECT AND ITS PRODUCTION

(57) Abstract:

PROBLEM TO BE SOLVED: To produce a silicon single crystal wafer having a wide control width and an ultralow defect density over the whole surface of the crystal in the absence of both a V-rich region and an I-rich region under readily controllable production conditions by specifying the pulling up conditions of the crystal when growing the silicon single crystal according to a Czochralski (CZ) process. SOLUTION: A crystal is pulled up in a region surrounded by a border line between a Vrich region and an N-region and a border line between the N-region and an I-rich region in a defect distribution chart indicating the defect distribution for the distance D (mm) from the crystal center to the periphery of the crystal as the abscissa axis versus a value of F/G (mm2/° C.min) as the ordinate axis when the pulling up speed is F (mm/min) and the average value of the gradient of the temperature in the crystal in the pulling up axis direction in a region of temperatures from the melting point of the silicon to 1,400° C is expressed as G (° C/mm). The value of F/G is preferably regulated to 0.112-0.142 mm2/° C.min at the crystal center to pull up the crystal.

LEGAL STATUS

[Date of request for examination]

22.12.1999

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3460551

[Date of registration]

15.08.2003

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of

rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

BEST AVAILABLE COPY

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-147786

(43)公開日 平成11年(1999)6月2日

(51) Int.Cl. ⁶	識別記号	F I
C30B 15/	00	C 3 0 B 15/00 Z
29/	06 502	29/06 5 0 2 H
H01L 21/	208	H 0 1 L 21/208 P
# HO1L 21/	702	21/02 B
		審査請求 未請求 請求項の数5 FD (全 9 頁)
(21)出願番号	特願平9-325428	(71)出願人 000190149
		信越半導体株式会社
(22)出顧日	平成9年(1997)11月11日	東京都千代田区丸の内1丁目4番2号
		(72)発明者 飯田 誠
	·	群馬県安中市磯部2丁目13番1号 信越半
		導体株式会社半導体磯部研究所内
	•	(72)発明者 飯野 栄一
		群馬県安中市磯部2丁目13番1号 信越半
	•	導体株式会社半導体磯部研究所内
		(72)発明者 木村 雅規
		群馬県安中市磯部2丁目13番1号 信越半
		導体株式会社半導体磯部研究所內
		(74)代理人 弁理士 好宮 幹夫
		最終頁に続く

(54) 【発明の名称】 結晶欠陥の少ないシリコン単結晶ウエーハ及びその製造方法

(57)【要約】 (修正有)

【課題】 C法において制御幅が広く、より制御し易い成長条件下で製造した、熱酸化処理時に OSFリグは発生するが、該リング内外のN領域を最大限拡大した低欠陥密度であるシリコン単結晶ウエーハ並びに OSF核は存在するが、熱酸化処理時に該リングは発生せず、かつ、ウエーハ全面の酸素濃度が24ppma以下で、 FPD及びL/D がウエーハ全面内に存在しない、結晶全面が利用可能な極低欠陥密度であるシリコン単結晶ウエーハを提供する。【解決手段】 CZ法において引上速度をF [mm/min]とし、シリコンの融点から1400℃間の引上軸方向の結晶内温度勾配平均値をG [℃/mm]で表した時、F/Cの値を結晶中心で0.112~0.142mm²/℃·minとする製法、並びに前記F/G 値範囲に制御しかつ結晶中酸素濃度を24ppma以下に抑えて引上げるかまたは結晶中の1050~ 850℃の温度域通過時間を 140分以下に制御する。

【特許請求の範囲】

【請求項1】 チョクラルスキー法により育成されたシリコン単結晶ウェーハにおいて、熱酸化処理をした際にリング状に発生するOSFリングあるいはOSFリングの核が存在し、かつ、FPD及びL/Dがウェーハ全面内に存在しないことを特徴とするシリコン単結晶ウエーハ。

【請求項2】 チョクラルスキー法により育成されたシリコン単結晶ウエーハにおいて、ウエーハ全面の酸素濃度が24ppma未満であり、酸素析出熱処理により〇 10 SFリングの潜在核は存在するが、OSF熱酸化処理をした際にはOSFリングは発生せず、かつ、FPD及びL/Dがウエーハ全面内に存在しないことを特徴とするシリコン単結晶ウエーハ。

【請求項3】 チョクラルスキー法によってシリコン単結晶を育成する際に、引上げ速度をF [mm/min] とし、シリコンの融点から1400℃の間の引上げ軸方向の結晶内温度勾配の平均値をG [℃/mm]で表した時、結晶中心から結晶周辺までの距離D [mm]を横軸とし、F/G [mm²/℃・min]の値を縦軸として 20欠陥分布を示した欠陥分布図において、Vーリッチ領域とNー領域の境界線ならびにNー領域とIーリッチ領域の境界線で囲繞された領域内で結晶を引上げることを特徴とする、シリコン単結晶ウエーハの製造方法。

【請求項4】 前記F/Gの値を結晶中心で、0.11 $2\sim0.142 \,\mathrm{mm}^3/\mathbb{C}\cdot\mathrm{min}$ として結晶を引上げることを特徴とする、請求項3 に記載したシリコン単結晶ウエーハの製造方法。

【請求項5】 前記結晶中の1050℃から850℃までの温度域を通過する時間が140分以下となるように 30制御することを特徴とする、請求項3または請求項4に記載したシリコン単結晶ウエーハの製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、結晶欠陥が少ない シリコン単結晶ウエーハ及びその製造方法に関するもの である。

[0002]

【従来の技術】近年は、半導体回路の高集積化に伴う素子の微細化に伴い、その基板となるチョクラルスキー法 40 (以下、CZ法と略記する)で作製されたシリコン単結晶に対する品質要求が高まってきている。特に、FPD、LSTD、COP等のグローンイン(Grownーin)欠陥と呼ばれる酸化膜耐圧特性やデバイスの特性を悪化させる、単結晶成長起因の欠陥が存在しその密度とサイズの低減が重要視されている。

【0003】 これらの欠陥を説明するに当たって、先ず、シリコン単結晶に取り込まれるベイカンシイ(Vacancy、以下Vと略記することがある)と呼ばれる空孔型の点欠陥と、インタースティシアルーシリコン

(Interstitial-Si、以下Iと略記する ことがある)と呼ばれる格子間型シリコン点欠陥のそれ ぞれの取り込まれる濃度を決定する因子について、一般 的に知られていることを説明する。

【0004】シリコン単結晶において、V領域とは、Vacancy、つまりシリコン原子の不足から発生する凹部、穴のようなものが多い領域であり、I領域とは、シリコン原子が余分に存在することにより発生する転位や余分なシリコン原子の塊が多い領域のことであり、そしてV領域とI領域の間には、原子の不足や余分が無い(少ない)ニュートラル(Neutral、以下Nと略記することがある)領域が存在していることになる。そして、前記グローンイン欠陥(FPD、LSTD、COP等)というのは、あくまでもVやIが過飽和な状態の時に発生するものであり、多少の原子の偏りがあっても、飽和以下であれば、欠陥としては存在しないことが判ってきた。

【0005】との両点欠陥の濃度は、CZ法における結晶の引上げ速度(成長速度)と結晶中の固液界面近傍の温度勾配Gとの関係から決まり、V領域とI領域との境界近辺にはOSF(酸化誘起積層欠陥、Oxidation Indused Stacking Fault)と呼ばれるリング状の欠陥の存在が確認されている。

【0006】これら結晶成長起因の欠陥を分類すると、 成長速度が0.6mm/min前後以上と比較的高速の 場合には、空孔タイプの点欠陥が集合したボイド起因と されているFPD、LSTD、COP等のグローンイン 欠陥が結晶径方向全域に高密度に存在し、これら欠陥が 存在する領域はVーリッチ領域と呼ばれている(図4 (a) 参照)。 また、成長速度が0.6mm/min 以下の場合は、成長速度の低下に伴い、上記したOSF リングが結晶の周辺から発生し、このリングの外側に転 位ループ起因と考えられているL/D(Large D islocation:格子間転位ループの略号、LS EPD、LFPD等)の欠陥が低密度に存在し、これら 欠陥が存在する領域は I - リッチ領域と呼ばれている (図4(b)参照)。さらに、成長速度を0.4mm/ min前後と低速にすると、OSFリングがウエーハの 中心に凝集して消滅し、全面がI-リッチ領域となる (図4 (c))。

【0007】また、最近V-リッチ領域とI-リッチ領域の中間でOSFリングの外側に、N領域と呼ばれる、空孔起因のFPD、LSTD、COPも、転位ループ起因のLSEPD、LFPDも存在しない領域の存在が発見されている(特開平8-330316号参照)。この領域はOSFリングの外側にあり、そして、酸素析出熱処理を施し、X-ray観察等で析出のコントラストを確認した場合に、酸素析出がほとんどなく、かつ、LS EPD、LFPDが形成されるほどリッチではない1-

3

リッチ領域側であると報告している(図3(a)参照)。そして、従来のCZ引上げ機ではウエーハの極一部にしか存在しないN領域を、引上げ機の炉内温度分布を改良し、引上げ速度を調節して、F/G値(単結晶引上げ速度をF[mm/min]とし、シリコンの融点から1300℃の間の引上げ軸方向の結晶内温度勾配の平均値をG[℃/mm]とするとき、F/Gで表わされる比)を0.20~0.22mm²/℃・minとしてウエーハ全面及び結晶全長に対して制御すれば、N領域をウエーハ全面及び結晶全長に対して制御すれば、N領域をウエーハ全面に広げることが可能であると提案している10(図3(b)参照)。

[8000]

【発明が解決しようとする課題】しかしながら、このような極低欠陥領域を結晶全体に広げて製造しようとすると、この領域がI-リッチ領域側のN領域のみに限定されるため、製造条件の上で制御範囲が極めて狭く、実験機ならともかく生産機では精密制御が難しく、生産性に難点があって実用的でない。さらに、この発明に開示されていた欠陥分布図は、本発明者らが実験・調査して求めたデータや、データを基にした作成した欠陥分布図(図1参照)とは大幅に異なることが判明した。

【0009】本発明は、このような問題点に鑑みなされたもので、制御幅が広く、制御し易い製造条件の下で、 Vーリッチ領域およびIーリッチ領域のいずれも存在しない、結晶全面に亙って極低欠陥密度であるCZ法によるシリコン単結晶ウエーハを、高生産性を維持しながら得ることを目的とする。

[0010]

【課題を解決するための手段】本発明は、前記目的を達成するために為されたもので、本発明の請求項1に記載 30 した発明は、C Z法により育成されたシリコン単結晶ウエーハにおいて、熱酸化処理をした際にリング状に発生するOSFリングあるいはOSFリングの核が存在し、かつ、F P D 及びL/Dがウエーハ全面内に存在しないことを特徴とするシリコン単結晶ウエーハである。

【0011】そして、とのようなシリコン単結晶ウエーハの製造方法としては、本発明の請求項3に記載したように、チョクラルスキー法によってシリコン単結晶を育成する際に、引上げ速度をF[mm/min]とし、シリコンの融点から1400℃の間の引上げ軸方向の結晶内温度勾配の平均値をG[℃/mm]で表した時、結晶中心から結晶周辺までの距離D[mm]を横軸とし、F/G[mm²/℃・min]の値を縦軸として欠陥分布を示した欠陥分布図において、Vーリッチ領域とN−領域の境界線ならびにN−領域とI−リッチ領域の境界線で囲繞された領域内で結晶を引上げることを特徴とする、シリコン単結晶ウエーハの製造方法である。

【0012】このように、実験・調査の結果を解析して 求めた図1の欠陥分布図を基に、V-リッチ領域とN-領域の境界線ならびにN-領域とI-リッチ領域の境界 50 線で囲繞された領域内に収まるように、結晶の引上げ速度Fとシリコンの融点から1400℃の間の引上げ軸方向の結晶内温度勾配の平均値Gを制御して結晶を引上げれば、前記請求項1に記載した、熱酸化処理をした際にリング状に発生するOSFリングあるいはOSFリングの核が存在し、かつ、FPD及びL/Dがウェーハ全面内に存在しないシリコン単結晶ウェーハを作製することができる。

【0013】さらに、具体的には、 前記F/Gの値を 相晶中心で、0.112~0.142mm²/℃・mi nとして結晶を引上げることとした(請求項4)。 【0014】このように、F/Gの値を結晶中心で、 0.112~0.142mm²/℃・minに制御する ことによって、図1に見られるように、熱酸化処理時に OSFリングを発生し得る領域を含んだままではある が、OSFリング内外のN領域を最大限拡大するように して引上げるので、引上げ速度と結晶内温度勾配との制 御範囲が広くなり生産機においても製造条件設定が容易 になり、N領域の多いウェーハを簡単に作製することが できる。

【0015】このように、本発明の請求項3または請求 項4 に記載の製造方法によって得られたシリコン単結晶 ウエーハは、該ウエーハを熱酸化処理をした際に、リン グ状にOSFリングは発生し、あるいはOSFリングの 核は潜在しているが、FPD及びL/D(LSEPD、 LFPD)は、ウエーハ全面内に存在しないというウエ ーハで、図2(b)に示したように、いわゆるウエーハ 全面にV‐リッチ領域とI‐リッチ領域は存在せず、中 性なN領域の面積が非常に大きなものである。このよう なN領域の大きい本発明のシリコンウェーハには、OS Fリングの核は潜在しており、該ウエーハを熱酸化処理 した際にはリング状にOSFが発生し得るOSFリング の内側にもN領域が存在することを利用して、前記OS Fリング外側のN領域とOSFリング内側のN領域を最 大限に拡大した新規な欠陥構造を持ったウエーハであ る。

【0016】そして、本発明の請求項2に記載した発明は、CZ法により育成されたシリコン単結晶ウエーハにおいて、ウエーハ全面の酸素濃度が24ppma(ASTM'79値)未満であり、酸素析出熱処理によりOSFリングの潜在核は存在するが、OSF熱酸化処理をした際にはOSFリングは発生せず、かつ、FPD及びL/Dがウエーハ全面内に存在しないことを特徴とするシリコン単結晶ウエーハである。そして、このようなシリコン単結晶ウエーハの製造方法としては、本発明の請求項5に記載したように、請求項3または請求項4に記載した製造方法に加えて、前記結晶中の1050℃から850℃までの温度域を通過する時間が140分以下となるように制御するようにした。

【0017】このように、成長結晶内の酸素濃度を24

ppma未満に抑え、あるいは成長結晶中の1050℃ から850℃までの温度域を通過する時間を140分以 下となるように熱履歴を制御すれば、OSF核の成長を 阻害することができ、実質上、OSFリングあるいはO SFリングの潜在核がウエーハ内に存在してもデバイス に影響を与えることはないので、結局該ウエーハをOS F熱酸化処理をした際に、OSFリングの核は潜在して いるが、OSFリングを発生することはなく、FPD及 びL/D(LSEPD、LFPD)もウエーハ全面内に 存在しないという、いわゆるウエーハ全面がV‐リッチ 10 領域、1-リッチ領域も、害を及ぼすようなOSFリン グも存在しない全面使用可能な結晶全面に亙って極低欠 陥密度なウエーハを得ることができる。しかもこの場 合、F/Gの制御も広い制御範囲とすることが可能であ り、ウエーハを実用上容易に作製することができる。 【0018】以下、本発明につき詳細に説明するが、本 発明はこれらに限定されるものではない。説明に先立ち 各用語につき予め解説しておく。

1) FPD (Flow Pattern Defec t)とは、成長後のシリコン単結晶棒からウェーハを切 20 り出し、表面の歪み層を弗酸と硝酸の混合液でエッチン グして取り除いた後、K、Cr、O、と弗酸と水の混合 液で表面をエッチング(Seccoエッチング)するこ とによりピットおよびさざ波模様が生じる。このさざ波 模様をFPDと称し、ウェーハ面内のFPD密度が高い ほど酸化膜耐圧の不良が増える(特開平4-19234 5号公報参照)。

[0019]2) SEPD (Secco Etch P it Defect)とは、FPDと同一のSecco エッチングを施した時に、流れ模様(flow pat tern)を伴うものをFPDと呼び、流れ模様を伴わ ないものをSEPDと呼ぶ。この中で10μm以上の大 きいSEPD(LSEPD)は転位クラスターに起因す ると考えられ、デバイスに転位クラスターが存在する場 合、この転位を通じて電流がリークし、P-Nジャンク ションとしての機能を果たさなくなる。

[0020]3) LSTD (Laser Scatte ring Tomography Defect)と は、成長後のシリコン単結晶棒からウエーハを切り出 し、表面の歪み層を弗酸と硝酸の混合液でエッチングし て取り除いた後、ウエーハを劈開する。この劈開面より 赤外光を入射し、ウエーハ表面から出た光を検出するこ とでウエーハ内に存在する欠陥による散乱光を検出する ことができる。ことで観察される散乱体については学会 等ですでに報告があり、酸素析出物とみなされている (J. J. A. P. Vol. 32, P3679, 19 93参照)。また、最近の研究では、八面体のボイド (穴) であるという結果も報告されている。

[0021]4) COP (Crystal Origi

部の酸化膜耐圧を劣化させる原因となる欠陥で、Sec coエッチではFPDになる欠陥が、SC-1洗浄(N H. OH: H, O, : H, O=1:1:10の混合液に よる洗浄)では選択エッチング液として働き、COPに なる。このピットの直径は1μm以下で光散乱法で調べ

[0022]5)L/D(Large Disloca tion:格子間転位ループの略号)には、LSEP D、LFPD等があり、転位ループ起因と考えられてい る欠陥である。LSEPDは、上記したようにSEPD の中でも10 µm以上の大きいものをいう。また、LF PDは、上記したFPDの中でも先端ピットの大きさが 10μm以上の大きいものをいい、こちらも転位ループ 起因と考えられている。

【0023】本発明者らは、先に特願平9-19941 5号で提案したように、CZ法によるシリコン単結晶成 長に関し、V領域とI領域の境界近辺について、詳細に 調査したところ、この境界近辺の極く狭い領域にFP D、LSTD、COPの数が著しく少なく、LSEPD も存在しないニュートラルな領域があることを発見し

【0024】そこで、このニュートラルな領域をウエー ハ全面に広げることができれば、点欠陥を大幅に減らせ ると発想し、成長(引上げ)速度と温度勾配の関係の中 で、結晶のウエーハ面内では、引上げ速度はほぼ一定で あるから、面内の点欠陥の濃度分布を決定する主な因子 は温度勾配である。つまり、ウエーハ面内で、軸方向の 温度勾配に差があることが問題で、この差を減らすこと が出来れば、ウエーハ面内の点欠陥の濃度差も減らせる 30 ととを見出し、結晶中心部の温度勾配Gcと結晶周辺部 分の温度勾配Geとの差を△G=(Ge-Gc)≤5℃ /cmとなるように炉内温度を制御して引上げ速度を調 節すれば、ウエーハ全面がN領域からなる欠陥のないウ エーハが得られるようになった。

【0025】本発明では、上記のような温度勾配の差△ Gが小さいCZ法による結晶引上げ装置を使用し、引上 げ速度を変えて結晶面内を調査した結果、新たに次のよ うな知見を得た。Vーリッチ領域とIーリッチ領域の間 に存在するN領域は、従来はOSFリング(核)の外側 のみと考えられていたが、OSFリングの内側にも、N 領域が存在するととを確認した(図2(a)参照)。す なわち、上記特願平9-199415号の場合、OSF リングは、V-リッチ領域とN領域の境界領域となって いた(図3(a)参照)が、この二つは必ずしも一致し ないことがわかった。このことは従来の△Gの大きい結 晶引上げ装置で実験した場合には発見されず、今回上記 の△Gの小さい結晶引上げ装置を使用した結晶を調査し た結果、発見したものである。

【0026】との調査における引上げ装置の炉内温度 nated Particle)とは、ウエーハの中心 50 を、総合伝熱解析ソフトFEMAG(F.Dupre

t, P. Nicodeme, Y. Ryckmans, P. Wouters, and M. J. Croche t, Int. J. Heat MassTransfer, 33, 1849 (1990))を使用して鋭意解析を行った。その結果、引上げ速度をF [mm/min]とし、シリコンの融点から1400℃の間の引上げ軸方向の結晶内温度勾配の平均値をG [℃/mm]で表した時、F/Gの値を結晶中心で、0.112~0.142mm²/℃・minの範囲内となるように引上げ速度Fと温度勾配平均値Gとを制御すれば、OSF熱酸化処理 10をした際にリング状に発生するOSFリングあるいはOSFリングの核が存在するものの、FPD及びL/Dがウエーハ全面内に存在しないシリコン単結晶ウエーハが得られることが判った。

【0027】図1は、直径6インチのシリコン単結晶を 例とした場合であるが、結晶の径方向位置を横軸とし、 F/G値を縦軸とした場合の諸欠陥分布を表している。 図lから明らかなように、V-リッチ領域/N領域の境 界は、結晶中心位置と中心から約50mmまでの位置と の間では0.142mm²/℃·minから緩やかに上 20 昇し、この位置から外周にかけては急激にF/G値を増 大した線上にある。OSFリング領域の中心は、約0. 125mm¹/℃·minで、結晶外周にかけてはV-リッチ領域/N領域の境界線とほぼ平行して急激にF/ G値を増大した線上にある。さらにN領域/I-リッチ 領域との境界は、結晶中心位置と中心から約70mmま での位置との間で0.112mm¹/℃·minとな り、その後、結晶外周に向って急激に落ち込んでいる。 従って、OSFリングを含むそのウエーハ内のN領域を 最大限に利用するには、結晶中心位置で0.112~ 0. 142mm'/C·minとなるようにすればよ 67

【0028】 これをウエーハの面で説明すると、従来は、図3(a)に示したように、通常の引上げ速度と結晶引上げ装置におけるOSFリングの外側に存在するN領域を結晶全面に拡大すべく(図3(b)参照)、特別な結晶引上げ装置を用いて引上げ速度と△Gを制御し、無欠陥結晶を製造しようとしていたが、引上げ速度、温度勾配等製造条件の制御幅が極めて狭く、制御が困難で生産性に難点があり、実用的でなかった。

【0029】本発明では、OSFリングの外側のN領域だけに限定せず、今回発見したOSFリングの内側にも存在するN領域(図2(a)参照)をも使用してN領域を最大限拡大することにした。すなわち、図2(b)に示したようにOSFリングを含んだままN領域を最大限ウエーハ全面に拡大することができる引上げ速度と△G及び結晶引上げ装置を選択して引上げた。その結果、上記したようなF/G値の範囲内に収まるように引上げ速度と結晶内温度勾配を調整して引上げれば、従来よりも拡大された制御幅をもつ製造条件下で容易に低欠陥のウ50

エーハを製造することができる。

【0030】一方、OSFリングについては、最近の研究からウェーハ全面内で低酸素濃度の場合には、OSFリングの核が存在しても熱酸化処理によりOSFリングを発生することはなく、デバイスに影響を与えないということが判ってきている。この酸素濃度の限界値は、同一の結晶引上げ装置を使用して、数種類の酸素濃度レベルの結晶を引上げた結果、ウエーハ全面内の酸素濃度が24ppma未満であれば、ウェーハの熱酸化処理を行った時にOSFリングが発生しないことが確認されている。

【0031】すなわち、図5は、一本の結晶を引上げ中に徐々に酸素濃度を下げていった時に、結晶全長にわたってOSFとなる核は存在するが、ウエーハの熱酸化処理を行った時にOSFリングが観察されるのは24ppmaまでで、24ppma未満ではOSFリング核は存在するが、熱酸化処理によるOSFリングは発生していないことを表している。

【0032】ちなみに、成長結晶中の酸素濃度を24 p p m a 未満にするには、従来から一般に用いられている方法で行えばよく、例えば、ルツボの回転数あるいは融液内温度分布等を調整して融液の対流を制御する等の手段により簡単に行うことができる。

【0033】なお、OSFリングは発生しなくても、その核の存在するところでは酸素析出が少なくなるという傾向があるが、デバイスの低温下プロセスにおいては、強いゲッタリングも要求されないので、OSF領域での酸素析出の少なさは問題にならない。

【0034】次いでOSFリング核の成長を阻害する条件を検討した。炉内温度分布の異なる結晶引上げ装置(炉内構成を変更したもの)を数種類使用して、OSF熱酸化処理時にOSFリングが発生するように、引上げ速度を制御して結晶を引上げた結果、1050~850℃の温度帯域を140分以下で通過する熱履歴を与えた結晶には、その後OSFリング発生の有無を確認するOSF熱酸化処理を施してもOSFリングは確認されなかった(I. Yamashita and Y. Shimanuki: The Electrochemical SocietyExtended Abstrac

t, Los Angels, Carifornia, M ay7-12, 1989, P. 346参照)。

【0035】そこで、F/G値制御に加えて、結晶中酸素濃度を24ppma未満に抑え、あるいは、成長結晶の1050℃から850℃までの温度域を通過する熱履歴を140分以下となるように制御してOSFリング核の成長を阻害すれば、OSF熱酸化処理をした際にはOSFリングの発生はなく、かつ、FPD及びL/Dが存在せず、結晶全面が使用可能な領域で占められ、無欠陥の結晶を広い条件範囲で作製することができる。

0 【0036】すなわち、CZ法によってシリコン単結晶

を育成する際に、引上げ速度をF [mm/min]と し、シリコンの融点から1400℃の間の引上げ軸方向 の結晶内温度勾配の平均値をG [℃/mm]で表した 時、F/Gの値を結晶中心で、0.112~0.142 mm¹ / ℃·minに制御し、結晶中酸素濃度を24p pma未満に抑え、あるいは、前記結晶中の1050℃ から850℃までの温度域を通過する時間が140分以 下となるように制御することによって、広いN領域を持 つと共に熱酸化処理をしてもOSFリングが発生しな い、全面使用可能な無欠陥ウエーハを制御幅の広い条件 10 れに上部より冷却ガスを吹きつけて結晶を冷却できるも 下で容易に製造するととができる。

[0037]

【発明の実施の形態】以下、本発明の実施の形態につい て、図面を参照しながら詳細に説明する。まず、本発明 で使用するCZ法による単結晶引上げ装置の構成例を図 6により説明する。図6に示すように、この単結晶引上 げ装置30は、引上げ室31と、引上げ室31中に設け られたルツボ32と、ルツボ32の周囲に配置されたヒ ータ34と、ルツボ32を回転させるルツボ保持軸33 及びその回転機構(図示せず)と、シリコンの種子結晶 20 5を保持するシードチャック6と、シードチャック6を 引上げるケーブル7と、ケーブル7を回転又は巻き取る 巻取機構(図示せず)を備えて構成されている。ルツボ 32は、その内側のシリコン融液(湯)2を収容する側 には石英ルツボが設けられ、その外側には黒鉛ルツボが 設けられている。また、ヒータ34の外側周囲には断熱 材35が配置されている。

【0038】また、本発明の製造方法に関わる製造条件 を設定するために、結晶の固液界面の外周に環状の固液 界面断熱材8を設け、その上に上部囲繞断熱材9が配置 されている。この固液界面断熱材8は、その下端とシリ コン融液2の湯面との間に3~5cmの隙間10を設け て設置されている。上部囲繞断熱材9は条件によっては 使用しないこともある。さらに、冷却ガスを吹き付けた り、輻射熱を遮って単結晶を冷却する筒状の冷却装置3 6を設けている。別に、最近では引上げ室31の水平方 向の外側に、図示しない磁石を設置し、シリコン融液2 に水平方向あるいは垂直方向等の磁場を印加することに よって、融液の対流を抑制し、単結晶の安定成長をはか る、いわゆるMCZ法が用いられることも多い。

【0039】次に、上記の単結晶引上げ装置30による 単結晶育成方法について説明する。まず、ルツボ32内 でシリコンの高純度多結晶原料を融点(約1420° C)以上に加熱して融解する。次に、ケーブル7を巻き 出すことにより融液2の表面略中心部に種子結晶5の先 端を接触又は浸漬させる。その後、ルツボ保持軸33を 適宜の方向に回転させるとともに、ケーブル7を回転さ せながら巻き取り種子結晶5を引上げることにより、単 結晶育成が開始される。以後、引上げ速度と温度を適切 とができる。

【0040】この場合、本発明では、本発明の目的を達 成するために特に重要であるのは、図6に示したよう に、引上げ室31の湯面上の単結晶棒1中の液状部分の 外周空間において、湯面近傍の結晶の温度が1420℃ から1400℃までの温度域に環状の固液界面断熱材8 を設けたことと、その上に上部囲繞断熱材9を配置した ことである。さらに、必要に応じてこの断熱材の上部に 結晶を冷却する装置、例えば冷却装置36を設けて、こ のとし、筒下部に輻射熱反射板を取り付けた構造として もよい。

【0041】このように液面の直上の位置に所定の隙間 を設けて断熱材を配置し、さらにこの断熱材の上部に結 晶を冷却する装置を設けた構造とすることによって、結 晶成長界面近傍では輻射熱により保温効果が得られ、結 晶の上部ではヒータ等からの輻射熱をカットできるの で、本発明の製造条件を満足させることができる。この 結晶の冷却装置としては、前記筒状の冷却装置36とは 別に、結晶の周囲を囲繞する空冷ダクトや水冷蛇管等を 設けて所望の温度勾配を確保するようにしても良い。 【0042】本発明で使用した単結晶引上げ装置と比較 のために従来の装置を図7に示した。 基本的な構造に ついては、本発明で使用した引上げ装置と同じである が、固液界面断熱材8、上部囲繞断熱材9や冷却装置3 6は装備していない。

[0043]

【実施例】以下、本発明の具体的な実施の形態を実施例 を挙げて説明するが、本発明はこれらに限定されるもの ではない。

(実施例1)図6に示した引上げ装置30で、20イン チ石英ルツボに原料多結晶シリコンを60Kgチャージ し、直径6インチ、方位<100>のシリコン単結晶棒 を平均引上げ速度を0.88~0.50mm/minに 下げながら引上げを行った(単結晶棒の直胴長さ約85 cm)。シリコン融液の湯温は約1420℃、湯面から 環状の固液界面断熱材の下端までは、4cmの空間と し、その上に10cm高さの環状固液界面断熱材を配置 し、湯面から引上げ室天井までの高さをルツボ保持軸を 調整して30cmに設定し、上部囲繞断熱材を配備し た。そして、結晶中心部でのF/G値を0.22~0. 10mm²·℃/minに変化させて引上げた。 【0044】ここで得られた単結晶棒から、ウエーハを 切り出し、鏡面加工を施してシリコン単結晶の鏡面ウエ ーハを作製し、グローンイン欠陥の測定を行った。ま た、熱酸化処理を施してOSFリング発生の有無を確認 した。その結果、F/G値が0. 112~0. 142m m²/℃·minの範囲内において、ウエーハ外周部よ り約15mm位置に熱酸化処理時に発生するOSFリン に調節することにより略円柱形状の単結晶棒1を得るこ 50 グ領域は存在するが、該リング内外のグローンイン欠陥

*モード良品率100%となった。なお、C-モード測定

の存在しないN領域を最大限拡大した極低欠陥ウエーハ を得た。なお、このウエーハの酸化膜耐圧特性は、C-* 条件は、次の通りである。

- 1)酸化膜厚:25nm、
- 2) 測定電極:リンドーブ・ポリシリコン、
- 3)電極面積:8mm²、
- 4) 判定電流: l m A / c m²、
- 5) 良品判定:絶縁破壊電界が8MV/cm以上のものを良品と判定した。

【0045】(実施例2)単結晶引上げ中に徐々に酸素 濃度を下げて行った以外は実施例1と同一条件で引上 げ、得られた単結晶棒から、ウエーハを切り出し、鏡面 加工を施してシリコン単結晶の鏡面ウエーハを作製し、 施してOSFリング発生の有無を確認した。

【0046】その結果、F/G値が0.112~0.1 42 mm²/℃·minの範囲内において、ウエーハ面 内酸素濃度が24ppma以上のウエーハは全面グロー ンイン欠陥の存在しない N 領域でウエーハ中心から約1 5mm位置にOSFリングを有する極低欠陥ウエーハで あった。これに対してウエーハ面内酸素濃度が24pp ma未満のウエーハは全面グローンイン欠陥の存在しな いN領域で、OSF核は存在するが熱酸化処理によって OSFリングを発生しない無欠陥ウエーハであった。な 20 Fリングも発生せず、グローイン欠陥も極低レベルのウ お、このウエーハの酸化膜耐圧特性は、C-モード良品 率100%となった。

【0047】(実施例3)単結晶引上げ中に、結晶中の 1050~850℃までの温度域を通過する時間を14 0分以下とした熱履歴を与えた以外は実施例1と同一条 件で引上げ、得られた単結晶棒から、ウエーハを切り出 し、鏡面加工を施してシリコン単結晶の鏡面ウエーハを 作製し、グローンイン欠陥の測定を行った。また、熱酸 化処理を施してOSFリング発生の有無を確認した。

【0048】その結果、酸素濃度が27ppmaのもの 30 であっても、F/G値が0. 112~0. 142mm² /℃·minの範囲内において、全面グローンイン欠陥 の存在しないN領域で、OSF核は存在するが熱酸化処 理によってOSFリングを発生しない無欠陥ウエーハで あった。なお、このウエーハの酸化膜耐圧特性は、C-モード良品率100%となった。

【0049】なお、本発明は、上記実施形態に限定され

るものではない。上記実施形態は、例示であり、本発明 の特許請求の範囲に記載された技術的思想と実質的に同 なるものであっても本発明の技術的範囲に包含される。 【0050】例えば、上記実施形態においては、直径6 インチのシリコン単結晶を育成する場合につき例を挙げ て説明したが、本発明はこれには限定されず、引上げ速 度をF[mm/min]とし、シリコンの融点から14 00℃の間の引上げ軸方向の結晶内温度勾配の平均値を G [℃/mm]で表した時、F/Gの値を結晶中心で、 0. 112~0. 142mm¹ / °C·minとなるよう に制御すれば、直径8~16インチあるいはそれ以上の

コン融液に水平磁場、縦磁場、カスブ磁場等を印加する いわゆるMCZ法にも適用できることは言うまでもな

【0051】さらに、上記実施形態においては、低酸素 グローンイン欠陥の測定を行った。また、熱酸化処理を 10 化と熱履歴制御を別々に説明したが、両者を共に実施し てもよく、より確実にOSFリングを無害化することが できる。

[0052]

【発明の効果】以上説明したように、本発明によれば、 単結晶育成条件の制御幅が広くなり、OSFリング外側 のN領域、OSFリング、あるいはOSF核及びその内 側のN領域も使用することにより最大限N領域を拡大し たウエーハを容易に作製することができる。そして、低 酸素化あるいは低温域の熱履歴の制御を併用すれば〇S エーハ全面が無欠陥のシリコン単結晶ウエーハを製造す ることができる。

【図面の簡単な説明】

【図1】シリコン単結晶ウエーハ面内における、結晶の 径方向位置を横軸とし、F/G値を縦軸とした場合の諸 欠陥分布図である。

【図2】本発明で発見した結晶面内諸欠陥分布を表した 説明図である。

(a) 通常の引上げ条件で引上げた場合、(b) 本発明 の引上げ条件で引上げた場合。

【図3】従来の引上げ方法における結晶面内諸欠陥分布 を表した説明図である。

(a) 通常の引上げ条件で引上げた場合、(b) 引上げ 速度と結晶内温度勾配を精密制御して引上げた場合。

【図4】従来の引上げ方法における引上げ速度と結晶面 内欠陥分布との関係を表した説明図である。

- (a) 高速引上げの場合、(b) 中速引上げの場合、
- (c) 低速引上げの場合。

【図5】本発明において、ウエーハに熱酸化処理を施し 一な構成を有し、同様な作用効果を奏するものは、いか 40 た際のOSFリングの発生領域とOSF核の存在領域と の境界位置が結晶中酸素濃度に影響されていることを表 した説明図である。

> (a) 結晶棒の長さ方向位置と酸素濃度の関係を表した グラフ、(b)結晶縦断面において、OSFリングの発 生領域とOSF核の存在領域との境界位置を示す説明図 である。

> 【図6】 本発明で使用したCZ法による単結晶引上げ 装置の概略説明図である。

【図7】 C Z 法による従来の単結晶引上げ装置の概略説 シリコン単結晶にも適用できる。また、本発明は、シリ 50 明図である。

【符号の説明】

- 1…成長単結晶棒、
- 2…シリコン融液、
- 3…湯面、
- 4…固液界面、
- 5…種子結晶、
- 6…シードチャック、
- 7…ケーブル、
- 8…固液界面断熱材、
- 9 …上部囲繞断熱材、
- 10…湯面と固液界面断熱材下端との隙間、

*30…単結晶引上げ装置、

- 3 1 …引上げ室、
- 32…ルツボ、
- 33…ルツボ保持軸、
- 34…ヒータ、
- 35…断熱材、
- 36…冷却装置。
- V …V-リッチ領域、
- N …N-領域、
- 10 【 … 【 ーリッチ領域、

【図2】

OR…OSFリング。

【図1】

[図4]

[図3]

【図6】

フロントページの続き

(72)発明者 村岡 正三

群馬県安中市磯部2丁目13番1号 信越半 導体株式会社半導体磯部研究所内

This Page is inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

₫	BLACK BORDERS
ø	IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
ø	FADED TEXT OR DRAWING
	BLURED OR ILLEGIBLE TEXT OR DRAWING
	SKEWED/SLANTED IMAGES
	COLORED OR BLACK AND WHITE PHOTOGRAPHS
	GRAY SCALE DOCUMENTS
0	LINES OR MARKS ON ORIGINAL DOCUMENT
	REPERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
	OTHER:

IMAGES ARE BEST AVAILABLE COPY.
As rescanning documents will not correct images problems checked, please do not report the problems to the IFW Image Problem Mailbox