МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Лабораторная работа 4.3.2

Дифракция света на ультразвуковых волнах

Б03-102 Куланов Александр

- **Цель работы:** измерить координаты дифракционных полос, образующихся при дифракции света на акустической решетке, определить период этой решетки методом темного поля, рассчитать скорость ультразвука в воде
- В работе используются: оптическая скамья, осветитель, светофильтры, конденсор, щель, два длиннофокусных объектива, кювета с водой, кварцевый излучатель с микрометрическим винтом, генератор УЗ-частоты, частотомер, линза, отсчетное устройство, микроскоп.

1 Экспериментальная установка

Рис. 1: Схема установки

Источник света Л через светофильтр Φ и конденсор K освещает щель S, которая расположена в фокусе объектива O_1 . Выходящий из объектива параллельный пучок света проходит через кювету C перпендикулярно направлению распространения УЗ-волн. Эти волны возбуждаются в жидкости пьезокварцевой пластинкой Q, шрикреплённой к стенке кюветы. На кварцевую пластинку подаётся синусоидальное напряжение ультразвуковой частоты от генератора (на рис. 2 не показан). В результате взаимодействия света с ультразвуковой волной в фокальной плоскости второго объектива O_2 образуется дифракционная картина, наблодаемая при помощи микроскопа M. При этом обязательно применяют монохроматическое излучение (красный светофильтр).

Дифракционные полосы ориентированы вертикально. Расстояние между ними можно измерить с помощью специального отсчётного устройства с микрометрическим винтом В. Этот винт передвигает размещённые на стекле отсчётного устройства тонкую реперную линию Рл, перекрестие Π и толстую проволоку Π р, которая используется в методе тёмного поля. Все измерительные линии должны быть расположены в плоскости F резкого изображения щели.

Чёткость дифракционных полос зависит от ряда факторов, например, от ширины щели S, от её наклона по отношению к вертикали, от угла наклона кюветы к падающему лучу и т. д. Длина Λ ультразвуковой волны определяется по формуле

$$\Lambda \sin \Theta_m = m\lambda \tag{1}$$

в силу малости углов Θ_m окончательное выражение может быть представлено в виде

$$l_m = mf \frac{\lambda}{\Lambda} \tag{2}$$

где l_m- измеренное на опыте линейное расстояние между m-м и нулевым максимумами, а f - фокусное расстояние объектива O_2 .

Скорость ν распространения звука в воде можно рассчитать, если известна частота ν кварцевого излучателя:

$$v = \Lambda \nu \tag{3}$$