0,5p

0. din oficiu

- 1. Fie f: [-1, 3] \rightarrow R, f(x) = $x^3 + x^2$. Să se determine valoarea exactă a polinomului minimax de gradul 2 și o valoare aproximativă a polinomului minimax de gradul 1, folosind primul algoritm Remes.
- 2. Se consideră funcția \mathbf{f} : [-1, 1] \rightarrow R, $\mathbf{f}(\mathbf{x}) = \mathbf{x}\sqrt{1-\mathbf{x}^2}$. Calculați coeficienții polinomului Cebâșev de grad 3 de aproximare continuă în sensul cmmp
- 3. Fie formula generală de integrare: $\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{f}(\mathbf{x}) \mathbf{w}(\mathbf{x}) d\mathbf{x} \approx \sum_{i=0}^{n} \mathbf{a}_{i_{in}} \mathbf{f}(\mathbf{x}_{i_{n}})$ a) dacă aceasta reprezintă o formulă de tip Newton Cotes, atunci

$$\mathbf{a}_{in} = \int_{\mathbf{a}}^{\mathbf{b}} \mathbf{w}(\mathbf{x}) \mathbf{1}_{in}(\mathbf{x}) d\mathbf{x}$$

b) dacă aceasta пергеzintă o formulă de tip gaussian, atunci

$$a_{in} = \int_{a}^{b} w(x) L_{in}^{2}(x) dx$$
1p

în care $\mathbf{1}_{\mathtt{in}}(\mathbf{x})$ reprezintă multiplicatorii din formula de interpolare Lagrange

4. Pentru rezolvarea problemei Cauchy se folosește mai întâi metoda Runge-Kutta de ordin 4, iar soluțiile furnizate de aceasta servesc ca valori inițiale pentru o metodă multipas explicită de ordin 2.

a) Scrieți relațiile folosite în ambele situații

b) Scrieți funcții Matlab care implementează aceste metode

5. Fie matricea
$$\mathbf{A} = \begin{bmatrix} -\mathbf{a}_1 & \cdots & -\mathbf{a}_{n-1} & -\mathbf{a}_n \\ & & & 0 \\ & \mathbf{I}_{n-1} & \cdots & 0 \end{bmatrix}$$

a) arătați că polinomul caracteristic al matricei $\bf A$ este $\bf p$ ($\bf \lambda$) = $\bf \lambda^n+a_1\lambda^{n-1}+...+a_n$ 1 $\bf p$

b) presupunınd λ_1 , i=1:n cunoscute, să se calculeze vectoriii proprii ai matricelor A și A^T 1,5p