ДЗ по дискретной математике 9 Смирнов Тимофей 236 ПМИ

Д10.1 Существует ли граф на 10 вершинах, степени которых равны 1, 1, 1, 1, 1, 1, 3, 5, 5, 5?

Решение:

Да существует, вот пример:

Вершина 1 связана с 2, 3, 4, 5, 6 (5 ребер)

Вершина 2 связана с 1, 3, 4, 7, 8 (5 ребер)

Вершина 3 связана с 1, 2, 4, 9, 10 (5 ребер)

Вершины 4 связана с 1, 2, 3 (3 ребра)

Вершины 7, 8 связаны с 2. (1 ребро)

Верщины 9, 10 связаны с 3. (1 ребро)

Д10.2 Найдите наименьшее количество вершин в графе, сумма степеней вершин в котором равна 26.

Решение: Сумма степеней вершин в графе равна удвоенной сумме ребер этого графа, следовательно данный граф имеет 13 ребер.

Если бы у нас в графе было 5 вершин, то даже если бы он был полный, то там не могло

бы быть больше 10 ребер (логично, что если вершин меньше 5, то максиммально ребер в них было бы еще меньше, чем 10). Но нам необходимо ровно 13 ребер, следовательно в данном графе как минимум 6 вершин.

Приведем пример графа с 6ю вершинами и 13ю ребрами:

Мы построили граф с 13ю ребрами и 6ю вершинами.

Д10.3 Вершины графа G — слова длины 2 в алфавите $\{0,1,2,3,4,5,6,7,8,9\}$, то есть последовательности десятичных цифр длины 2. Две вершины (два слова длины 2) соединены ребром в G, если в каждой из позиций цифры различаются ровно на 1. Найдите количество компонент связности графа G.

Решение: Заметим, что на каждом переходе между двемя вершинами мы либо увеличиваем разность между цифрыми в вершинах на 2 (к большей цифре прибавляем 1, а из меньшей вычитаем), либо не изменяем разность (увеличиваем или уменьшаем на 1 обе цифры), либо уменьшаем разноть на 2 (уменьшаем на 1 большую цифру и увеличиваем на 1 меньшую цифру).

Из этого следует, что из вершин с нечетной разностью цифр мы сможем прийти только в вершины с нечетной разностью. При этом из вершины с нечетной разностью можно прийти в любую вершину с нечетной разностью, просто придя сначала, например, в вершину (0, 1), а потом придя из нее в любую другую. В вершину (0, 1) мы можем прийти всегда: сначала нужно уменьшить разность между цифрами в вершине до 1 (уменьшаем на 1 большее и увеличиваем

на 1 меньшее на каждом шаге), потом сделать так, чтобы первая цифры была меньше 2й на 1 (если этого не было сделано ранее), а затем просто вычитать из обеих цицфр 1, пока мы не окажемся в вершине (0, 1). Обратная последовательность действий приведет нас из вершины (0, 1) в любую вершину с нечетной разностью цифр.

Из вершины с четной разностью мы можем прийти сначала в (0, 0): просто уменьшим разность между цифрами вершины до 0 (по алгоритму из предыдущего абзаца), а затем на каждом шаге будем уменьшать обе цифры на 1. Обратной последовательностью действий мы сможем прийти из (0, 0) в любую вершину с четной разностью цифр.

Алгоритмы выше показали, что через вершину (0,1) мы сможем добраться от любой вершины с нечетной разностью до любой другой вершины с нечетной разностью. Аналогично при помощи вершины (0,0) мы доберемся до любой вершины с четной разностью.

При этем из вершин с четной разностью мы никак не сможем попасть в вершины с нечетной разностью и наоборот

Следовательно наш граф поделится на 2 компоненты связности.

Ответ: 2.

Д10.4 Пусть A — непустое множество, E1 и E2 — такие отношения эквивалентности на A, что $E_1 \cup E_2$ также является отношением эквивалентности, C_1 — класс эквивалентности отношения E_1, C_2 — класс эквивалентности отношения E_2 . Докажите, что $C_1 \cap C_2 = \emptyset$, или $C_1 \subseteq C_2$, или $C_2 \subseteq C_1$.

Решение:

$$C_1 = \{x : \forall y \in A \hookrightarrow xE_1y\}, C_2 = \{x : \forall y \in A \hookrightarrow xE_2y\}$$

Пусть $E_1 \cup E_2$ является отношением эквивалентности. Рассмотрим варианты, того, как могут вести себя C_1 и C_2 :

1). Пусть $C_1 \cup C_2 = \varnothing$. Тогда, так как любая пара элементов из C_1 лежит в отношении эквивалентности E_1 на множестве A и любая пара из C_2 лежит в отношении эквиввалентности E_2 на множестве A, то есть любая пара элементов из C_1 или пара элементов из C_2 лежат в

отношении эквивалентности $E_1 \cup E_2$ При этом они не пересекаются, то есть они являются классами эквивалентности $E_1 \cup E_2$.

- 2). Пусть $C_1 \subseteq C_2$ (или $C_2 \subseteq C_1$, доказательство точно такое же, так что его я опущу). Для любой пары из $C_1 \cup C_2$ будут выполняться свойства отношения жквивалентности, так как все элементы C_1 лежат в множестве C_2 , а для этого множества все эти свойства выполняются.
- 3). Пусть $C_1 \cup C_2 \neq \varnothing$. Тогда $\exists z \in C_1 \cap C_2$. Тогда, так как $E_1 \cup E_2$ является отношением эквивалентности, то для него выполняется свойство транзитивности. Пусть $x \in C_1$ и $y \in C_2$, тогда так как xE_1z и zE_2y верны, то xRy верно по некоторому отношению эквивалентности. Но xE_1z и zE_2y у нас верны по разным отношениям эквивалентности и у нас не существует свойства, по которому будут эквиваленты x и y. Получаем противоречие: в этом случае $E_1 \cup E_2$ не будет отношением эквивалентности.