Should Neural Network Architecture Reflect Linguistic Structure?

Chris Dyer (CMU → Google/DeepMind)

Joint work with:

Miguel Ballesteros (UPF)
Wang Ling (Google/DeepMind)
Austin Matthews (CMU)
Noah A. Smith (UW)

Learning language ARBITRARINESS (de Saussure, 1916)

ARBITRARINESS (de Saussure, 1916)

$$car-c+b = bar$$

ARBITRARINESS (de Saussure, 1916)

$$cat-c+b=bat$$

ARBITRARINESS (de Saussure, 1916)

$$car-c+b = bar$$

car

ARBITRARINESS (de Saussure, 1916)

$$car-c+b = bar$$

car

Auto oko ayokele voiture koloi

xe hơi sakyanan

ARBITRARINESS (de Saussure, 1916)

$$car-c+b = bar$$

car Auto oko ayokele koloi

voiture xe hơi

sakyanan

ARBITRARINESS (de Saussure, 1916)

$$car-c+b = bar$$

car Auto oko ayokele koloi

voiture xe hơi

sakyanan

COMPOSITIONALITY (Frege, 1892)

John dances - John + Mary = Mary dances

DANCE(JOHN)

DANCE(MARY)

ARBITRARINESS (de Saussure, 1916)

$$car-c+b = bar$$

Auto oko ayokele koloi

voiture xe hơi

sakyanan

COMPOSITIONALITY (Frege, 1892)

John dances - John + Mary = Mary dances DANCE(JOHN) DANCE(MARY)

John sings - John + Mary = Mary sings

SING(JOHN) SING(MARY)

ARBITRARINESS (de Saussure, 1916)

$$car-c+b = bar$$

car

Auto oko ayokele voiture koloi

xe hơi sakyanan

COMPOSITIONALITY (Frege, 1892)

John dances - John + Mary = Mary dances

DANCE(JOHN)

DANCE(MARY)

John sings - John + Mary = Mary sings

SING(JOHN)

SING(MARY)

ARBITRARINESS (de Saussure, 1916)

car-c+b = bar

cat-c+b = bat

Memorize

car

oko ayokele koloi

xe hơi sakyanan

COMPOSITIONALITY (Frege, 1892)

John dances - John + Mary = Mary dances Generalize DANCE(JO John sir

SING(JOHN)

SING(MARY)

John gave the book to Mary

John gave the book to Mary

. . .

Memorize

Memorize

Learning language CHALLENGE 1: IDIOMS

CHALLENGE 1: IDIOMS

```
John saw the football
```

John saw the bucket

SEE(JOHN, FOOTBALL)

SEE(JOHN, BUCKET)

CHALLENGE 1: IDIOMS

John saw the football

John saw the bucket

John kicked the football

John kicked the bucket

SEE(JOHN, FOOTBALL)

SEE(JOHN, BUCKET)

KICK(JOHN, FOOTBALL)

DIE(JOHN)

CHALLENGE 1: IDIOMS

John saw the football

John saw the bucket

John kicked the football

John kicked the bucket

SEE(JOHN, FOOTBALL)

SEE(JOHN, BUCKET)

KICK(JOHN, FOOTBALL)

DIE(JOHN)

CHALLENGE 1: IDIOMS

John saw the football

John saw the bucket

John kicked the football

John kicked the bucket

SEE(JOHN, FOOTBALL)

SEE(JOHN, BUCKET)

KICK(JOHN, FOOTBALL)

DIE(JOHN)

CHALLENGE 2: MORPHOLOGY

cool cooooool Si

CHALLENGE 1: IDIOMS

John saw the football

John saw the bucket

John kicked the football

John kicked the bucket

SEE(JOHN, FOOTBALL)

SEE(JOHN, BUCKET)

KICK(JOHN, FOOTBALL)

DIE(JOHN)

CHALLENGE 2: MORPHOLOGY

cool cooooooooool 💟

CHALLENGE 1: IDIOMS

John saw the football

John saw the bucket

John kicked the football

John kicked the bucket

SEE(JOHN, FOOTBALL)

SEE(JOHN, BUCKET)

KICK(JOHN, FOOTBALL)

DIE(JOHN)

CHALLENGE 2: MORPHOLOGY

cool cooooooooool

$$bat + s = bats$$

CHALLENGE 1: IDIOMS

John saw the football

John saw the bucket

John kicked the football

John kicked the bucket

SEE(JOHN, FOOTBALL)

SEE(JOHN, BUCKET)

KICK(JOHN, FOOTBALL)

DIE(JOHN)

CHALLENGE 2: MORPHOLOGY

cool coooooooooool

$$bat + s = bats$$

cats

Memorize

Generalize

Memorize

Generalize

Memorize

Generalize

Compositional words

Compositional words

Memorize

Generalize

Compositional words Questions

- Does a "compositional" model have the capacity to learn the "arbitrariness" that is required?
 - We might think so—RNNs/LSTMs can definitely overfit!
- Will we see better improvements in languages with more going on in the morphology?

Example Dependency parsing

I saw her duck

Dependency parsing

saw her duck

Dependency parsing

Dependency parsing

Dependency parsing

Word embedding models:

Word Chars Δ

English 91.2 91.5 +0.3

Word Chars Δ

English 91.2 91.5 +0.3

In English parsing, the character LSTM is roughly equivalent to the lookup approach.

Word Chars Δ

English 91.2 91.5 +0.3

In English parsing, the character LSTM is roughly equivalent to the lookup approach.

What about languages with richer lexicons?

Turkish: Muvaffakiyetsizleştiricileştiriveremeyebileceklerimizdenmişsinizcesine

Hungarian: Megszentségteleníthetetlenségeskedéseitekért

Word Chars Δ

English 91.2 91.5 +0.3

	Word	Chars	Δ
English	91.2	91.5	+0.3
Turkish	71.7	76.3	+4.6
Hungarian	72.8	80.4	+7.6
Basque	77.1	85.2	+8.1
Korean	78.7	88.4	+9.7

In agglutinative languages,

	Word	Chars	Δ
English	91.2	91.5	+0.3
Turkish	71.7	76.3	+4.6
Hungarian	72.8	80.4	+7.6
Basque	77.1	85.2	+8.1
Korean	78.7	88.4	+9.7
Swedish	76.4	79.2	+3.2
Swedish	76.4	79.2	+2.8
Arabic	85.2	86.1	+0.9

In agglutinative languages,

In fusional/templatic languages,

	Word	Chars	Δ
English	91.2	91.5	+0.3
Turkish	71.7	76.3	+4.6
Hungarian	72.8	80.4	+7.6
Basque	77.1	85.2	+8.1
Korean	78.7	88.4	+9.7
Swedish	76.4	79.2	+3.2
Swedish	76.4	79.2	+2.8
Arabic	85.2	86.1	+0.9
Chinese	79.1	79.9	+0.8

In agglutinative languages,

In fusional/templatic languages,

In **analytic** languages, the models are roughly equivalent.

Language modeling Word similarities

query increased John

Language modeling Word similarities

query	increased	John
5 7	reduced	Richard
nearest	improved	George
	expected	James
neighbors	decreased	Robert
SJOC	targeted	Edward

Language modeling Word similarities

query	increased	John	Noahshire	phding
5	reduced	Richard	Nottinghamshire	mixing
nearest	improved	George	Bucharest	modelling
	expected	James	Saxony	styling
neighbors	decreased	Robert	Johannesburg	blaming
SJOC	targeted	Edward	Gloucestershire	christening

Character vs. word modeling **Summary**

- Lots of exciting work from a variety of places
 - Google Brain: language models
 - Harvard/NYU (Kim, Rush, Sontag): language models
 - NYU/FB: document representation "from scratch"
 - CMU (me, Cohen, Salakhutdinov): Twitter, morphologically rich languages, translation
- Now for something a bit more controversial...

Structure-aware words

Structure-aware words

Open Vocabulary LMs

• Rather than assuming a fixed vocabulary, model any sequence in Σ^* where Σ is the inventory of characters.

Open Vocabulary LMs **Turkish**

Kosova

tekrar

eden

şikayetler

ışığında

özelleştirme

sürecini

incelemeye

alıyor

Kosova	Kosova+Noun+Prop+A3sg+Pnon+Nom		
,	,+Punc		
tekrar	tekrar+Adverb	tekrar+Noun+A3sg+Pnon+Nom	
eden	et+Verb+Pos^DB+Adj+PresPart	ede+Noun+A3sg+P2sg+Nom	
şikayetler	şikayet+Noun+A3pl+Pnon+Nom		
ışığında	ışık+Noun+A3sg+P3sg+Loc	ışık+Noun+A3sg+P2sg+Loc	
özelleştirme	özel+Adj^DB+Verb+Become^DB+Verb+Caus+Pos^DB+Noun+Inf2+A3sg+Pnon+Nom	özel+Adj^DB+Verb+Become^DB+Verb+Caus+Neg+Imp+A2sg	
sürecini	süreç+Noun+A3sg+P3sg+Acc	süreç+Noun+A3sg+P2sg+Acc	
incelemeye	incele+Verb+Pos^DB+Noun+Inf2+A3sg+Pnon+Dat	incel+Verb^DB+Verb+Able+Neg+Opt+A3sg	
alıyor	al+Verb+Pos+Prog1+A3sg		
	.+Punc		

Kosova	Kosova+Noun+Prop+A3sg+Pnon+Nom	
,	,+Punc	
tekrar	tekrar+Adverb	tekrar+Noun+A3sg+Pnon+Nom
eden	et+Verb+Pos^DB+Adj+PresPart	ede+Noun+A3sg+P2sg+Nom
şikayetler	şikayet+Noun+A3pl+Pnon+Nom	
ışığında	ışık+Noun+A3sg+P3sg+Loc	ışık+Noun+A3sg+P2sg+Loc
özellestirme	özel+Adi^DB+Verb+Become^DB+Verb+Caus+Pos^DB+Noun+Inf2+A3sa+Pnon+Nom	özel+Adi^DB+Verb+Become^DB+Verb+Caus+Neg+Imp+A2sg
sürecini	süreç+Noun+A3sg+P3sg+Acc	süreç+Noun+A3sg+P2sg+Acc
ınceiemeye	Incele+verb+Pos^DB+Noun+IntZ+A3sg+Pnon+Dat	incer+verb*DB+verb+Able+Neg+Opt+A3sg
alıyor	al+Verb+Pos+Prog1+A3sg	
	.+Punc	

Kosova	Kosova+Noun+Prop+A3sg+Pnon+Nom	
,	,+Punc	
tekrar	tekrar+Adverb	tekrar+Noun+A3sg+Pnon+Nom
eden	et+Verb+Pos^DB+Adj+PresPart	ede+Noun+A3sg+P2sg+Nom
şikayetler	şikayet+Noun+A3pI+Pnon+Nom	
ışığında	ışık+Noun+A3sg+P3sg+Loc	ışık+Noun+A3sg+P2sg+Loc
özellestirme	özel+Adi^DB+Verb+Become^DB+Verb+Caus+Pos^DB+Noun+Inf2+A3sa+Pnon+Nom	özel+Adi^DB+Verb+Become^DB+Verb+Caus+Neg+Imp+A2sg
sürecini	süreç+Noun+A3sg+P3sg+Acc	süreç+Noun+A3sg+P2sg+Acc
ınceiemeye	Incele+verb+Pos^DB+Noun+IntZ+A3sg+Pnon+Dat	incer+verb~bb+verb+Abre+rveg+Opt+A3sg
alıyor	al+Verb+Pos+Prog1+A3sg	
	.+Punc	

Kosova	Kosova+Noun+Prop+A3sg+Pnon+Nom		
,	,+Punc		
tekrar	tekrar+Adverb	tekrar+Noun+A3sg+Pnon+Nom	
eden	et+Verb+Pos^DB+Adj+PresPart	ede+Noun+A3sg+P2sg+Nom	
şikayetler	şikayet+Noun+A3pI+Pnon+Nom		
ışığında	ışık+Noun+A3sg+P3sg+Loc	ışık+Noun+A3sg+P2sg+Loc	
özellestirme	özel+Adi^DB+Verb+Become^DB+Verb+Caus+Pos^DB+Noun+Inf2+A3sa+Pnon+Nom	özel+Adi^DB+Verb+Become^DB+Verb+Caus+Neg+Imp+A2sg	
sürecini	süreç+Noun+A3sg+P3sg+Acc	süreç+Noun+A3sg+P2sg+Acc	
ınceiemeye	Incele+verb+Pos^DB+Noun+IntZ+A3sg+Pnon+Dat	incer+verb*be+verb+Abie+Neg+Opt+A3sg	
alıyor	al+Verb+Pos+Prog1+A3sg		
	.+Punc		

Open Vocabulary LM

	perplexity per word
Characters	18600
Characters +Morphs	8165
Characters +Words	5021
Characters +Words +Morphs	4116

Character vs. word modeling **Summary**

- Model performance is essentially equivalent in morphologically simple languages (e.g., Chinese, English)
- In morphologically rich languages (e.g., Hungarian, Turkish, Finnish), performance improvements are most pronounced
- We need far fewer parameters to represent words as "compositions" of characters
- Word and morpheme level information adds additional value
- Where else could we add linguistic structural knowledge?

(1) a. The talk I gave did not appeal to anybody.

- (1) a. The talk I gave did not appeal to anybody.
 - b. *The talk I gave appealed to anybody.

- (1) a. The talk I gave did not appeal to anybody.
 - b. *The talk I gave appealed to anybody.

- (1) a. The talk I gave did not appeal to anybody.
 - b. *The talk I gave appealed to anybody.

Generalization hypothesis: not must come before anybody

- (1) a. The talk I gave did not appeal to anybody.
 - b. *The talk I gave appealed to anybody.

Generalization hypothesis: not must come before anybody

(2) *The talk I did **not** give appealed to **anybody**.

Language is hierarchical

Examples adapted from Everaert et al. (TICS 2015)

Language is hierarchical

Generalization: not must "structurally precede" anybody

Examples adapted from Everaert et al. (TICS 2015)

Language is hierarchical

Generalization: not must "structurally precede" anybody

- many theories of the details of structure
- the psychological reality of structural sensitivty is not empirically controversial
- much more than NPIs follow such constraints

Examples adapted from Everaert et al. (TICS 2015)

One theory of hierarchy

• Generate symbols sequentially using an RNN

One theory of hierarchy

- Generate symbols sequentially using an RNN
- Add some "control symbols" to rewrite the history periodically
 - Periodically "compress" a sequence into a single "constituent"
 - Augment RNN with an operation to compress recent history into a single vector (-> "reduce")
 - RNN predicts next symbol based on the history of compressed elements and non-compressed terminals ("shift" or "generate")
 - RNN must also predict "control symbols" that decide how big constituents are

One theory of hierarchy

- Generate symbols sequentially using an RNN
- Add some "control symbols" to rewrite the history periodically
 - Periodically "compress" a sequence into a single "constituent"
 - Augment RNN with an operation to compress recent history into a single vector (-> "reduce")
 - RNN predicts next symbol based on the history of compressed elements and non-compressed terminals ("shift" or "generate")
 - RNN must also predict "control symbols" that decide how big constituents are
- We call such models recurrent neural network grammars.

Terminals	Stack	Action

Terminals	Stack	Action
		NT(S)

Terminals	Stack	Action
		NT(S)
	(S	

Terminals	Stack	Action
		NT(S)
	(S	NT(S) NT(NP)

Terminals	Stack	Action
		NT(S)
	(S	NT(S) NT(NP)
	(S (NP	

Terminals	Stack	Action
		NT(S)
	(S	NT(NP) GEN(The)
	(S (NP	GEN(The)

Terminals	Stack	Action
		NT(S)
	(S	NT(NP)
	(S (NP	GEN(The)
The	(S (NP The	

Terminals	Stack	Action
		NT(S)
	(S	NT(NP)
	(S (NP	GEN(The)
The	(S (NP The	GEN(hungry)

Terminals	Stack	Action
		NT(S)
	(S	NT(NP)
	(S (NP	GEN(The)
The	(S (NP The	GEN(hungry)
The hungry	(S (NP The hungry	

Stack	Action
	NT(S)
(S	NT(NP)
(S (NP	GEN(The)
(S (NP The	GEN(hungry)
(S (NP The hungry	GEN(cat)
	(S (NP (S (NP The

Stack	Action
	NT(S)
(S	NT(NP)
(S (NP	GEN(The)
(S (NP The	GEN(hungry)
(S (NP The hungry	GEN(cat)
(S (NP The hungry cat	
	(S (NP The hungry

Terminals	Stack	Action
		NT(S)
	(S	NT(NP)
	(S (NP	GEN(The)
The	(S (NP The	GEN(hungry)
The hungry	(S (NP The hungry	GEN(cat)
The hungry cat	(S (NP The hungry cat	REDUCE

Terminals	Stack	Action
		NT(S)
	(S	NT(NP)
	(S (NP	GEN(The)
The	(S (NP The	GEN(hungry)
The hungry	(S (NP The hungry	GEN(cat)
The hungry cat	(S (NP The hungry cat	REDUCE
The hungry cat	(S (NP The hungry cat)	

Terminals	Stack	Action
		NT(S)
	(S	NT(NP)
	(S (NP	GEN(The)
The	(S (NP The	GEN(hungry)
The hungry	(S (NP The hungry	GEN(cat)
The hungry cat	(S (NP The hungry cat	REDUCE
The hungry cat	(S (NP The hungry cat)	

Terminals	Stack	Action
		NT(S)
	(S	NT(NP)
	(S (NP	GEN(The)
The	(S (NP The	GEN(hungry)
The hungry	(S (NP The hungry	GEN(cat)
The hungry cat	(S (NP The hungry cat	REDUCE
The hungry cat	(S (NP The hungry cat)	NT(VP)

Terminals	Stack	Action
		NT(S)
	(S	NT(NP)
	(S (NP	GEN(The)
The	(S (NP The	GEN(hungry)
The hungry	(S (NP The hungry	GEN(cat)
The hungry cat	(S (NP The hungry cat	REDUCE
The hungry cat	(S (NP The hungry cat)	NT(VP)
The hungry cat	(S (NP The hungry cat) (VP	

Terminals	Stack	Action
		NT(S)
	(S	NT(NP)
	(S (NP	GEN(The)
The	(S (NP The	GEN(hungry)
The hungry	(S (NP The hungry	GEN(cat)
The hungry cat	(S (NP The hungry cat	REDUCE
The hungry cat	(S (NP The hungry cat)	NT(VP)
The hungry cat	(S (NP The hungry cat) (VP	GEN(meows)

Terminals	Stack	Action
		NT(S)
	(S	NT(NP)
	(S (NP	GEN(The)
The	(S (NP The	GEN(hungry)
The hungry	(S (NP The hungry	GEN(cat)
The hungry cat	(S (NP The hungry cat	REDUCE
The hungry cat	(S (NP The hungry cat)	NT(VP)
The hungry cat	(S (NP The hungry cat) (VP	GEN(meows)
The hungry cat meows	(S (NP The hungry cat) (VP meows	REDUCE
The hungry cat meows	(S (NP The hungry cat) (VP meows)	GEN(.)
The hungry cat meows.	(S (NP The hungry cat) (VP meows).	REDUCE
The hungry cat meows.	(S (NP The hungry cat) (VP meows) .)	

ı

Need representation for: (NP The hungry cat)

Need representation for: (NP The hungry cat)

What head type?

Need representation for: (NP The hungry cat)

What head type?___

Need representation for: (NP The hungry cat)

Need representation for: (NP The hungry cat)

Need representation for: (NP The hungry cat)

Recursion

Need representation for: (NP The hungry cat)

(NP The (ADJP very hungry) cat)

Recursion

Need representation for: (NP *The hungry cat*)

(NP The (ADJP very hungry) cat)

- Inspired by Socher et al (2011, 2012 ...)
 - words and constituents embedded in same space
- Composition functions designed to
 - capture linguistic notion of headedness
 (LSTMs know what type of head they are looking for while they traverse children)
 - support any number of children
 - are learned via backpropagation through structure

Implementing RNNGs Parameter Estimation

- RNNGs jointly model sequences of words together with a "tree structure", $p_{\boldsymbol{\theta}}(\boldsymbol{x}, \boldsymbol{y})$
- Any parse tree can be converted to a sequence of actions (depth first traversal) and vice versa (subject to wellformedness constraints)
 - We use trees from the Penn Treebank
- We could treat the non-generation actions as latent variables or learn them with RL, effectively making this a problem of *grammar induction*. Future work...

Implementing RNNGs Inference

- An RNNG is a joint distribution p(x,y) over strings (x) and parse trees (y)
- We are interested in two inference questions:
 - What is $p(\mathbf{x})$ for a given \mathbf{x} ? [language modeling]
 - What is max p(y | x) for a given x? [parsing]
 y
- Unfortunately, the dynamic programming algorithms we often rely on are of no help here
- We can use importance sampling to do both by sampling from a discriminatively trained model

English PTB (Parsing)

	Type	F1
Petrov and Klein (2007)	G	90.1
Shindo et al (2012) Single model	G	91.1
Shindo et al (2012) Ensemble	~G	92.4
Vinyals et al (2015) PTB only	D	90.5
Vinyals et al (2015) Ensemble	S	92.8
Discriminative	D	89.8
Generative (IS)	G	92.4

English PTB (Parsing)

	Type	F1
Petrov and Klein (2007)	G	90.1
Shindo et al (2012) Single model	G	91.1
Shindo et al (2012) Ensemble	~G	92.4
Vinyals et al (2015) PTB only	D	90.5
Vinyals et al (2015) Ensemble	S	92.8
Discriminative	D	89.8
Generative (IS)	G	92.4

English PTB (Parsing)

	Туре	F1
Petrov and Klein (2007)	G	90.1
Shindo et al (2012) Single model	G	91.1
Shindo et al (2012) Ensemble	~G	92.4
Vinyals et al (2015) PTB only	D	90.5
Vinyals et al (2015) Ensemble	S	92.8
Discriminative	D	89.8
Generative (IS)	G	92.4

English PTB (LM)

	Perplexity
5-gram IKN	169.3
LSTM + Dropout	113.4
Generative (IS)	102.4

Chinese CTB (LM)

	Perplexity
5-gram IKN	255.2
LSTM + Dropout	207.3
Generative (IS)	171.9

This Talk, In a Nutshell

- Facts about language:
 - Arbitrariness and compositionality exist at all levels
 - Language is sensitive to hierarchy, not strings
- My work's hypothesis:
 - Models designed with these considerations structure explicit will outperform models that don't

- Augment a sequential RNN with a stack pointer
- Two constant-time operations
 - push read input, add to top of stack, connect to current location of the stack pointer
 - pop move stack pointer to its parent
- A summary of stack contents is obtained by accessing the output of the RNN at location of the stack pointer
- Note: push and pop are discrete actions here
 (cf. Grefenstette et al., 2015)

PUSH

PUSH

Assume we've got a conditional distribution $q(y \mid x)$

- s.t. (i) $p(\boldsymbol{x}, \boldsymbol{y}) > 0 \implies q(\boldsymbol{y} \mid \boldsymbol{x}) > 0$
 - (ii) $\boldsymbol{y} \sim q(\boldsymbol{y} \mid \boldsymbol{x})$ is tractable and
 - (iii) $q(\boldsymbol{y} \mid \boldsymbol{x})$ is tractable

Assume we've got a conditional distribution $q(y \mid x)$

- s.t. (i) $p(\boldsymbol{x}, \boldsymbol{y}) > 0 \implies q(\boldsymbol{y} \mid \boldsymbol{x}) > 0$
 - (ii) $\boldsymbol{y} \sim q(\boldsymbol{y} \mid \boldsymbol{x})$ is tractable and
 - (iii) $q(\boldsymbol{y} \mid \boldsymbol{x})$ is tractable

Let the importance weights $w(\boldsymbol{x}, \boldsymbol{y}) = \frac{p(\boldsymbol{x}, \boldsymbol{y})}{q(\boldsymbol{y} \mid \boldsymbol{x})}$

Assume we've got a conditional distribution $q(y \mid x)$

s.t. (i)
$$p(\boldsymbol{x}, \boldsymbol{y}) > 0 \implies q(\boldsymbol{y} \mid \boldsymbol{x}) > 0$$

- (ii) $\boldsymbol{y} \sim q(\boldsymbol{y} \mid \boldsymbol{x})$ is tractable and
- (iii) $q(\boldsymbol{y} \mid \boldsymbol{x})$ is tractable

Let the importance weights $w(\boldsymbol{x}, \boldsymbol{y}) = \frac{p(\boldsymbol{x}, \boldsymbol{y})}{q(\boldsymbol{y} \mid \boldsymbol{x})}$

$$p(\mathbf{x}) = \sum_{\mathbf{y} \in \mathcal{Y}(\mathbf{x})} p(\mathbf{x}, \mathbf{y}) = \sum_{\mathbf{y} \in \mathcal{Y}(\mathbf{x})} w(\mathbf{x}, \mathbf{y}) q(\mathbf{y} \mid \mathbf{x})$$
$$= \mathbb{E}_{\mathbf{y} \sim q(\mathbf{y} \mid \mathbf{x})} w(\mathbf{x}, \mathbf{y})$$

$$p(\mathbf{x}) = \sum_{\mathbf{y} \in \mathcal{Y}(\mathbf{x})} p(\mathbf{x}, \mathbf{y}) = \sum_{\mathbf{y} \in \mathcal{Y}(\mathbf{x})} w(\mathbf{x}, \mathbf{y}) q(\mathbf{y} \mid \mathbf{x})$$
$$= \mathbb{E}_{\mathbf{y} \sim q(\mathbf{y} \mid \mathbf{x})} w(\mathbf{x}, \mathbf{y})$$

$$p(\mathbf{x}) = \sum_{\mathbf{y} \in \mathcal{Y}(\mathbf{x})} p(\mathbf{x}, \mathbf{y}) = \sum_{\mathbf{y} \in \mathcal{Y}(\mathbf{x})} w(\mathbf{x}, \mathbf{y}) q(\mathbf{y} \mid \mathbf{x})$$
$$= \mathbb{E}_{\mathbf{y} \sim q(\mathbf{y} \mid \mathbf{x})} w(\mathbf{x}, \mathbf{y})$$

Replace this expectation with its Monte Carlo estimate.

$$y^{(i)} \sim q(y \mid x) \text{ for } i \in \{1, 2, \dots, N\}$$

$$p(\mathbf{x}) = \sum_{\mathbf{y} \in \mathcal{Y}(\mathbf{x})} p(\mathbf{x}, \mathbf{y}) = \sum_{\mathbf{y} \in \mathcal{Y}(\mathbf{x})} w(\mathbf{x}, \mathbf{y}) q(\mathbf{y} \mid \mathbf{x})$$
$$= \mathbb{E}_{\mathbf{y} \sim q(\mathbf{y} \mid \mathbf{x})} w(\mathbf{x}, \mathbf{y})$$

Replace this expectation with its Monte Carlo estimate.

$$\mathbf{y}^{(i)} \sim q(\mathbf{y} \mid \mathbf{x}) \quad \text{for } i \in \{1, 2, \dots, N\}$$

$$\mathbb{E}_{q(\mathbf{y} \mid \mathbf{x})} w(\mathbf{x}, \mathbf{y}) \stackrel{\text{MC}}{\approx} \frac{1}{N} \sum_{i=1}^{N} w(\mathbf{x}, \mathbf{y}^{(i)})$$