Examination Statistics Prof. Dr. Falkenberg

Course of Study: Computer Sciences 22.6.2021

Part: Descriptive Statistics Editing Time: 30 Minutes

	Problems	1	2	3	4	5	6	7	Sum
ı	Max. scores	2	12	4	7	7	9	9	50

Further instructions:

- 1. Submit all you want to be assessed (derivations, answers, interpretations, commands, diagrams, etc.).
- 2. You are allowed to submit totally ONE (1) computer file in every part of the exam. The file with the last time stamp will be corrected, other files NOT!!!
- 3. The computer file should be a .pdf-document.
- 4. Please notice, not only the solution but the derivation of the solution has to be given.

Good Luck! Dr. Falkenberg Consider the data file testing_covid.csvfrom the European Centre for Disease Prevention and Control (ECDC). It contains information about testing volume for COVID-19 by week and country and subnational region (where available).

Variable	Defintion					
country						
country_code	2-letter ISO country code					
year_week						
level	Whether national or subnational (regional) level data					
region	2-letter ISO country code where level is national.					
region_name	Country name where level is national or name of region					
	where level is subnational					
new_cases	Number of new confirmed cases					
$tests_done$	Number of tests done					
population						
testing_rate	Testing rate per 100 000 population					
positivity_rate	Weekly test positivity					
testing_data_source	Country API, Country GitHub, Country website, Ma-					
	nual webscraping, Other, Survey, TESSy:data provided					
	directly by Member States to ECDC via TESSy					

- 1. Import the file testing_covid.csv into a tibble called raw_data.
- 2. Determine the scales (nominal, ordinal, interval, ratio or absolute) of all variables
- 3. Determine the number of tests in Germany per week and visualize it by a lineplot.
- 4. Determine the sum of tests and new cases in Germany, Austria, France and Italy in december 2020. Visualize the ratio of positive tests by a pieplot.
 - Note that in some countries the values are given countrywide and regionally.
- 5. Determine minimum, maximum and the three quartiles of the variable testing_rate for the countries Germany and France. Visualize it by a side-by-side boxplot.

- 6. Perform a linear regression of tests_done over the time in Germany.
 - Determine the regression coefficients tests_done = a + b * time.
 - Make a prediction of tests_done in Germany in week 20 in 2021.
 - What can you say about the goodness of the linear regression?

Hint: Sort the data tests_done in Germany by year and week and use row number as time variable. Apply row_number() to get the row number a data frame.

- 7. Tidy and messy data
 - (a) What is a tidy data set? Is the imported dataset raw_data tidy?
 - (b) Consider only the national values of tests_done per year_week, apply the spread command to generate a table containing the values of tests_done for a country and the consecutive weeks in every row.
 - (c) Is the generated dataset still tidy?