函数的特性及恒等式

方晨程

2022年9月5日

目录

1	函数	3
	1.1	$y = kx + b \dots \dots$
	1.2	$y = a^x (a > 0 \ a \neq 0)$
		1.2.1 性质
	1.3	$y = \log_a x (a > 0 \ a \neq 1) \dots $
		1.3.1 性质
	1.4	$y = x^u (u \in N_+) \dots \dots$
	1.5	三角函数 5
		1.5.1 $y = sinx$
		1.5.2 $y = arcsinx \dots 5$
		1.5.3 $y = cosx$
		1.5.4 $y = \arccos x \dots \dots$
		1.5.5 $y = tanx$
		1.5.6 $y = arctanx$
		1.5.7 $y = cscx$
		1.5.8 $y = arccscx$
		1.5.9 $y = secx$
		1.5.10 $y = arcsecx$
		1.5.11 $y = cotx$
		1.5.12 $y = arccotx$
		1.5.13 诱导公式 5
		1.5.14 和差化积公式
		1.5.15 积化和差公式 6
		1.5.16 诱导公式 6
		1.5.17 两角和差公式 6

1.5.18	升幂公式												6
1.5.19	降幂公式												6
1.5.20	二倍角公式	J.											6
1 5 91	半角小式												6

Chapter 1

函数

1.1
$$y = kx + b$$

1.2
$$y = a^x (a > 0 \ a \neq 0)$$

1.2.1 性质

条件:
$$m, n \in N_+$$

$$①a^m * a^n = a^{m+n}$$
理解: $a*a...a* a*a*a...a = a*a...a$

$$②(a^m)^n = a^{nm}$$
理解: $a*a...a* a*a...a* a*a...a* a*a...a ... a*a...a ... a*a...a = a*a...a$

$$③(ab)^n = a^nb^n$$
理解: $(ab)*(ab)...(ab) = a*a...a*b*b*b...b$

$$②a^m = a^{m-n}$$
理解: $a*a...a* a*a...a* a*a...a*a*b*b*b...b$

1.3
$$y = \log_a x (a > 0 \ a \neq 1)$$

1.3.1 性质

①
$$log_aM + log_aN = log_aMN$$
理解: 设 $a*a \dots a = M, a*a \dots a = N$
则 $a*a \dots a*a*a \dots a = MN = a*a \dots a$
已知 $log_aM = m, log_aN = n, log_aMN = m + n$
 $log_aM + log_aN = (m) + (n) = (m + n) = log_aMN$
② $log_aM - log_aN = log_a\frac{M}{N}$
理解: 设 $a*a \dots a = M, a*a \dots a = N$
则: $\underbrace{a*a \dots a}_{n} = \underbrace{M}_{N} = \underbrace{a*a \dots a}_{n} = N$
可以 $\underbrace{a*a \dots a}_{n} = \underbrace{M}_{N} = \underbrace{a*a \dots a}_{n} = N$
可以 $\underbrace{a*a \dots a}_{n} = \underbrace{M}_{N} = \underbrace{a*a \dots a}_{n} = N$
可以 $\underbrace{a*a \dots a}_{n} = \underbrace{M}_{N} = \underbrace{a*a \dots a}_{n} = N$
可以 $\underbrace{a*a \dots a}_{n} = \underbrace{M}_{N} = \underbrace{a*a \dots a}_{n} = N$
可以 $\underbrace{a*a \dots a}_{n} = \underbrace{M}_{N} = \underbrace{a*a \dots a}_{n} = N$
可以 $\underbrace{a*a \dots a}_{n} = \underbrace{M}_{N} = \underbrace{a*a \dots a}_{n} = N$
可以 $\underbrace{a*a \dots a}_{n} = \underbrace{M}_{N} = \underbrace{a*a \dots a}_{n} = N$
可以 $\underbrace{a*a \dots a}_{n} = \underbrace{M}_{N} = \underbrace{a*a \dots a}_{n} = N$
 $\underbrace{a*a \dots a}_{n} = \underbrace{M}_{N} = \underbrace{a*a \dots a}_{n} = N$
 $\underbrace{a*a \dots a}_{n} = \underbrace{M}_{N} = \underbrace{a*a \dots a}_{n} = N$
 $\underbrace{a*a \dots a}_{n} = \underbrace{M}_{N} = \underbrace{a*a \dots a}_{n} = N$
 $\underbrace{a*a \dots a}_{n} = \underbrace{M}_{N} = \underbrace{a*a \dots a}_{n} = N$
 $\underbrace{a*a \dots a}_{n} = \underbrace{M}_{N} = \underbrace{a*a \dots a}_{n} = N$
 $\underbrace{a*a \dots a}_{n} = \underbrace{M}_{N} = \underbrace{a*a \dots a}_{n} = N$
 $\underbrace{a*a \dots a}_{n} = \underbrace{M}_{N} = \underbrace{a*a \dots a}_{n} = N$
 $\underbrace{a*a \dots a}_{n} = \underbrace{M}_{N} = \underbrace{a*a \dots a}_{n} = N$
 $\underbrace{a*a \dots a}_{n} = \underbrace{M}_{N} = \underbrace{a*a \dots a}_{n} = N$

1.4
$$y = x^u (u \in N_+)$$

三角函数 1.5

- **1.5.1** y = sinx
- **1.5.2** y = arcsinx
- **1.5.3** y = cosx
- **1.5.4** y = arccosx
- **1.5.5** y = tanx
- **1.5.6** y = arctanx
- **1.5.7** y = cscx
- **1.5.8** y = arccscx
- **1.5.9** y = secx
- **1.5.10** y = arcsecx
- **1.5.11** y = cotx
- **1.5.12** $\quad y = arccotx$
- 1.5.13 诱导公式

1.5.14 和差化积公式

$$2\sin\alpha - \sin\beta = 2\sin(\frac{\alpha-\beta}{2}) * \cos(\frac{\alpha+\beta}{2})$$

$$2\sin\alpha - \sin\beta = 2\sin(\frac{\alpha-\beta}{2}) * \cos(\frac{\alpha+\beta}{2})$$
$$3\cos\alpha + \cos\beta = 2\cos(\frac{\alpha+\beta}{2}) * \cos(\frac{\alpha-\beta}{2})$$

$$(4)\cos\alpha - \cos\beta = -2\sin(\frac{\alpha+\beta}{2}) * \sin(\frac{\alpha-\beta}{2})$$

- 1.5.15 积化和差公式
- 1.5.16 诱导公式
- 1.5.17 两角和差公式
- 1.5.18 升幂公式
- 1.5.19 降幂公式
- 1.5.20 二倍角公式
- 1.5.21 半角公式