Functional Limits and Continuity

Quasar Chunawala

Abstract

Solution of the Exercise set 4.4.12

Example 0.1 (Abbot, 4.4.12). Review exercise 4.4.11 and then determine which of the following statements is true about a continuous function defined on \mathbf{R} :

- (a) $f^{-1}(B)$ is finite, whenever B is finite.
- (b) $f^{-1}(K)$ is compact whenever K is compact.
- (c) $f^{-1}(A)$ is bounded whenever A is bounded.
- (d) $f^{-1}(F)$ is closed whenever F is closed.

Proof.

- (a) This statement is false. Consider f(x) = 1, for all $x \in \mathbb{R}$. $B = \{1\}$ is finite, but $f^{-1}(B)$ is uncountable.
- (b) This statement is false. Considering the example above, $K = \{1\}$ has no limit points, so it is closed and bounded, hence compact. But, $f^{-1}(K)$ is unbounded and therefore not compact.
- (c) This statement is false.
- (d) This statement is true. Let c be a limit point of $f^{-1}(F)$. There exists a sequence $(x_n) \subseteq f^{-1}(F)$, such that $(x_n) \to c$, with $x_n \neq c$ for all $n \in \mathbb{N}$.

f is continuous at c. Consequently, f preserves limits and $f(x_n) \to f(c)$. But, $f(x_n) \in F$, so f(c) is a limit point of F. Since, F is closed, $f(c) \in F$. Therefore, $c \in f^{-1}(F)$. Thus, $f^{-1}(F)$ is closed.