Chapter 2 - Properties of a Pure Substance

Lecture 4 Sections 2.4, 2.6-2.7

MEMS 0051 Introduction to Thermodynamics

Mechanical Engineering and Materials Science Department University of Pittsburgh

Chapter 2 -Properties of a Pure Substance

MEMS 0051

Learning Objectives

2.4 Table of Thermodynamic Properties

2.6 The Liquid and Solid States

2.7 The Superheated Vapor States

ummarv

Student Learning Objectives

At the end of the lecture, students should be able to:

- ► Understand how to use the thermodynamics tables
- ▶ Be able to identify the compressed/subcooled and saturated liquid regions and superheated vapor region on a *T-v* diagram, as well as in the steam tables
- ▶ Be able to interpolate between two published values

Chapter 2 -Properties of a Pure Substance

MEMS 0051

Learning Objectives

Thermodynamic Properties

2.6 The Liquid and Solid States

.7 The uperheated Vapor tates

ımmarv

Thermodynamic Tables

- ▶ A **steam table** has tabulated values of properties based upon temperature and pressure, reflecting the liquid and vapor phases
- ▶ A helpful graph, shown below, shows which table to use if you have a subcooled, compressed or saturated liquid or saturated or superheated vapor

Chapter 2 -Properties of a Pure Substance

MEMS 0051

Learning Objectives

Thermodynamic Properties

2.6 The Liquid and Solid States

.7 The uperheated Vapor tates

Summary

2.4 Table of

Saturated Water

Chapter 2 -Properties of a Pure Substance

► The saturated water temperature-entry table, B.1.1, starts on page 776

MEMS 0051

2.4 Table of Thermodynamic

Properties

776 APPENDIX B SI UNITS: THERMODYNAMIC TABLES

TABLE B.1

Thermodynamic Properties of Water

TABLE B 1.1

Saturated Water

		Specific Volume, m ³ /kg			Internal Energy, kJ/kg			
Temp. (°C)	Press. (kPa)	Sat. Liquid v_f	Evap. v_{fg}	Sat. Vapor v_g	Sat. Liquid u_f	Evap. u_{fg}	Sat. Vapor u_g	
0.01	0.6113	0.001000	206.131	206.132	0	2375.33	2375.33	
5	0.8721	0.001000	147.117	147.118	20.97	2361.27	2382.24	
10	1.2276	0.001000	106.376	106.377	41.99	2347.16	2389.15	

Image taken from Borgnakke & Sonntage, 8e

- \triangleright The saturated liquid values of ν , u, etc. are denoted by a subscript f
- \triangleright The saturated vapor values of ν , u, etc. are denoted by a subscript q
- \triangleright The difference between q and f is the subscript fq

Saturated Water

Chapter 2 -Properties of a Pure Substance

➤ The saturated water, pressure-entry table, B.1.2, starts on page 780

780 APPENDIX B SI UNITS: THERMODYNAMIC TABLES

TABLE B.1.2
Saturated Water Pressure Entry

		Specific Volume, m ³ /kg			Internal Energy, kJ/kg			
Press.	Temp.	Sat. Liquid	Evap.	Sat. Vapor	Sat. Liquid	Evap.	Sat. Vapor	
(kPa)	(°C)	v_f	u_{fg}	v_g	u_f	u_{fg}	u_g	
0.6113	0.01	0.001000	206.131	206.132	0	2375.3	2375.3	
1	6.98	0.001000	129.20702	129.20802	29.29	2355.69	2384.98	
1.5	13.03	0.001001	87.97913	87.98013	54.70	2338.63	2393.32	
2	17.50	0.001001	67.00285	67.00385	73.47	2326.02	2399.48	
2.5	21.08	0.001002	54.25285	54.25385	88.47	2315.93	2404.40	
3	24.08	0.001003	45.66402	45.66502	101.03	2307.48	2408.51	

Image taken from Borgnakke & Sonntage, 8e

▶ Note: you should consult both tables if the substance is given as saturated

MEMS 0051

Learning Objectives

2.4 Table of Thermodynamic Properties

2.6 The Liquid and Solid States

2.7 The Superheated Vapor States

▶ Determine the saturated vapor specific volume v_g of water existing at 225 [kPa] and 124.00 °C.

Chapter 2 -Properties of a Pure Substance

MEMS 0051

Learning Objectives

2.4 Table of Thermodynamic Properties

2.6 The Liquid and Solid States

7.7 The Superheated Vapor States

Solid States

2.6 The Liquid and

▶ It is noted a **compressed liquid** refers both to the compressed liquid state and the subcooled liquid state

▶ What you notice is that the specific volume is strongly dependent on temperature and weakly dependent on pressure, such that if you are looking for ν at an elevated pressure and know the temperature, you can use the saturated water temperature-entry table using T:

$$\nu \approx \nu(T) = \nu_f$$

► This is because water is an incompressible substance:

$$\nu \not\approx \nu(P)$$

Compressed Liquid

Chapter 2 -Properties of a Pure Substance

The compressed liquid water table, B.1.4, starts on page 790

MEMS 0051

2.6 The Liquid and Solid States

APPENDIX B SI UNITS: THERMODYNAMIC TABLES

TARIFR 14 Compressed Liquid Water

Temp. (°C)	<i>v</i> (m³/kg)	u (kJ/kg)	h (kJ/kg)	s (kJ/kg-K)	v (m³/kg)	u (kJ/kg)	h (kJ/kg)	s (kJ/kg-K)
		500 kPa	(151.86°C)			2000 kPa	(212.42°C)	
Sat.	0.001093	639.66	640.21	1.8606	0.001177	906.42	908.77	2.4473
0.01	0.000999	0.01	0.51	0.0000	0.000999	0.03	2.03	0.0001
20	0.001002	83.91	84.41	0.2965	0.001001	83.82	85.82	.2962
40	0.001008	167.47	167.98	0.5722	0.001007	167.29	169.30	.5716
60	0.001017	251.00	251.51	0.8308	0.001016	250.73	252.77	.8300
80	0.001029	334.73	335.24	1.0749	0.001028	334.38	336.44	1.0739

Image taken from Borgnakke & Sonntage, 8e

- ▶ Note the sub-pressure entry tables
- Note there are no saturated states, i.e. f or q

▶ Determine the specific volume v of water existing at 10,000 [kPa] and 60 °C using the compressed liquid water table B.1.4.

▶ How does this compare to the value of $v_f(60 \, ^{\circ}\text{C})$ published on the saturated water temperature-entry table B.1.1.?

Chapter 2 -Properties of a Pure Substance

MEMS 0051

Learning Objectives

2.4 Table of Thermodynamic Properties

2.6 The Liquid and Solid States

2.7 The Superheated Vapor States

ımmarv

Superheated Vapor

- Chapter 2 Properties of a Pure
 Substance
 - MEMS 0051
 - Learning Objectives
 - Thermodynamic Properties
 - 2.6 The Liquid and Solid States
 - Superheated Vapor States

Summary

2.7 The

- ▶ A superheated vapor state is when T is greater than T_{sat} for a given P_{sat}
- Alternatively, a superheated vapor occurs when P is less than P_{sat} for a given T_{sat}
- ▶ The superheated vapor water table, B.1.3, starts on page 784

784 APPENDIX B SI UNITS: THERMODYNAMIC TABLES

TABLE B.1.3
Superheated Vapor Water

эиренневи	cu vapoi vvaici							
Temp. (°C)	v (m³/kg)	u (kJ/kg)	h (kJ/kg)	s (kJ/kg-K)	v (m³/kg)	u (kJ/kg)	h (kJ/kg)	s (kJ/kg-K)
		P = 10 kP	a (45.81°C)			P = 50 kP	'a (81.33°C)	
Sat.	14.67355	2437.89	2584.63	8.1501	3.24034	2483.85	2645.87	7.5939
50	14.86920	2443.87	2592.56	8.1749	_	_	_	_
100	17.19561	2515.50	2687.46	8.4479	3.41833	2511.61	2682.52	7.6947
150	19.51251	2587.86	2782.99	8.6881	3.88937	2585.61	2780.08	7.9400
200	21.82507	2661.27	2879.52	8.9037	4.35595	2659.85	2877.64	8.1579
250	24.13559	2735.95	2977.31	9.1002	4.82045	2734.97	2975.99	8.3555
250	24.13559	2735.95	2977.31	9.1002	4.82045	2734.97	2975.99	8.355

Image taken from Borgnakke & Sonntage, 8e

▶ Suppose you are looking for the specific volume of water at 400 °C and a pressure of 22,089 [kPa]. Is this possible?

Chapter 2 -Properties of a Pure Substance

MEMS 0051

Learning Objectives

Thermodynamic
Properties

2.6 The Liquid and Solid States

2.7 The Superheated Vapor States

ımmary

Logic

 $\begin{array}{c} {\rm Chapter}\ 2\ -\\ {\rm Properties}\ {\rm of}\ {\rm a}\ {\rm Pure}\\ {\rm Substance} \end{array}$

MEMS 0051

Learning Objective

Properties Properties

2.6 The Liquid and Solid States

2.7 The Superheated Vapor States

ummary

A helpful interpretation of the T - v diagram in
terms of $T_{\rm sat}$ and $P_{\rm sat}$ helps direct which table you
should consult:

T	P	State	Table	
$T=T_{\rm sat}$	$P=P_{\text{sat}}$	Saturated Water	B.1.1-B.1.2	
$T < T_{\rm sat}$	$P=P_{\text{sat}}$	Subcooled Liquid	B.1.4, B.1.1	
$T=T_{\rm sat}$	$P>P_{\rm sat}$	Compressed Liquid	B.1.4, B.1.1	
$T>T_{\rm sat}$	$P=P_{\text{sat}}$	Superheated Vapor	B.1.3	
$T=T_{\rm sat}$	$P < P_{\text{sat}}$	buperneated vapor	D.1.0	

► IF THE VALUE IS NOT ON THE TABLE, YOU ARE DOING SOMETHING

WRONG - these tables are the backbone of all thermodynamics cycles - if they were wrong, modern civilization would not exist

Chapter 2 Properties of a Pure
Substance

MEMS 0051

Learning Objectives

Thermodynamic
Properties

2.6 The Liquid and Solid States

2.7 The Superheated Vapor States

mmary

▶ What happens when we are interested in a value between published values?

▶ Linear interpolation assumes the slope between two known points is linear, and therefore any point on that line in reference to a published value will create a line of the same slope of the two published values

- Let us consider a representative example. Say we want to determine the saturated liquid specific volume at a pressure of 5,328 [kPa].
- ▶ We see this pressure is bounded between 5,000 and 6,000 [kPa], which have corresponding ν_f of 0.001 286 and 0.001 319 [m³/kg], respectively

 $\begin{array}{c} {\rm Chapter}\ 2\ -\\ {\rm Properties}\ {\rm of}\ {\rm a}\ {\rm Pure}\\ {\rm Substance} \end{array}$

MEMS 0051

earning Objectives

Thermodynamic Properties

2.6 The Liquid and Solid States

2.7 The Superheated Vapor States

► The slope m is the rise per run:

$$m = \frac{(6,000 - 5,000) [kPa]}{(0.001319 - 0.001286) [m^3/kg]}$$

Chapter 2 -Properties of a Pure Substance

MEMS 0051

Learning Objectives

Thermodynamic
Properties

Solid States

2.7 The Superheated Vapor States

► To find the specific volume at a pressure of 5,328 [kPa], we will plot the pressure value on the line existing between 5,000 and 6,000 [kPa], recognizing m' is equal to m

$$m' = \frac{(5,328 - 5,000) [kPa]}{(\nu - 0.001286) [m^3/kg]}$$

Chapter 2 -Properties of a Pure Substance

MEMS 0051

2.7 The Superheated Vapor States

Chapter 2 -Properties of a Pure Substance

MEMS 0051

Learning Objectives

Thermodynamic Properties

2.6 The Liquid and Solid States

2.7 The Superheated Vapor States

ummary

▶ Setting the RHS of the expression of m and m' equal:

equal:

$$\frac{(6,000 - 5,000) [\text{kPa}]}{(0.001319 - 0.001286) [\text{m}^3/\text{kg}]} = \frac{(5,328 - 5,000) [\text{kPa}]}{(\nu - 0.001286) [\text{m}^3/\text{kg}]}$$

▶ Or in terms of ratios of rises and runs:

$$\underbrace{\frac{(5,328-5,000)\,[\text{kPa}]}{(6,000-5,000)\,[\text{kPa}]}}_{0.328\,[]} = \frac{(\nu-0.001\,286)\,[\text{m}^3/\text{kg}]}{(0.001\,319-0.001\,286)\,[\text{m}^3/\text{kg}]}$$

► Therefore:

$$\begin{split} \nu &= 0.328 (0.001\,319 - 0.001\,286)\,[\text{m}^3/\text{kg}] + 0.001\,286\,[\text{m}^3/\text{kg}] \\ &= 0.001\,297\,[\text{m}^3/\text{kg}] \end{split}$$

► Check you answer is between the upper and lower bounds of the value on the x-axis

▶ Find $\nu_g(T=32.5 \text{ °C})$ from the saturated water table.

Chapter 2 -Properties of a Pure Substance

MEMS 0051

Learning Objectives

Thermodynamic Properties

Solid States

2.7 The Superheated Vapor States

► Find $\nu(T=400 \, ^{\circ}\text{C}, P=350 \, [\text{kPa}])$ from the superheated vapor water table.

Chapter 2 -Properties of a Pure Substance

MEMS 0051

Learning Objectives

Thermodynamic Properties

Solid States

2.7 The Superheated Vapor States

MEMS 0051

Learning Objectives

Properties

2.6 The Liquid and Solid States

7.7 The Superheated Vapor States

- At the end of the lecture, students should be able to:
 - ▶ Understand how to use the thermodynamics tables
 - ► The thermodynamics tables are structured such that if you have two independent properties (temperature and pressure), you can pull pertinent values, such as specific volume, from the tables.
 - ▶ Be able to identify the compressed/subcooled and saturated liquid regions and superheated vapor region on a *T-v* diagram, as well as in the steam tables
 - ▶ Tables B.1.1 and B.1.2 are used for saturated water, B.1.3 for superheated vapor, and B.1.4 for compressed/subcooled liquids.

Student Learning Objectives

- ▶ Be able to interpolate between two published values
 - Given two published points, we can construct an equation describing the slope. If we have an intermediate value, i.e. between the two published points, we will assume the slope created by the intermediate point and either of the published points is equal to the slope of the two published points.

Chapter 2 -Properties of a Pure Substance

MEMS 0051

Learning Objectives

2.4 Table of Thermodynamic Properties

2.6 The Liquid and Solid States

2.7 The Superheated Vapor States

Suggested Problems

▶ Our text does not have problems focusing purely on interpolation.

Chapter 2 -Properties of a Pure Substance

MEMS 0051

Learning Objectives

Thermodynamic Properties

Solid States

2.7 The Superheated Vapor States

