Analysis of Variance Single Factor

Dr. Supaporn Erjongmanee

Department of Computer Engineering Kasetsart University fengspe@ku.ac.th

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications

Outline

- Introduction
- Single-Factor ANOVA:
 - Equal sample size
 - F-test
 - Multiple comparison

Supaporn Erjongmanee fengspe@ku.ac.th

 $\begin{array}{c} \textbf{Statistics in Computer Engineering Applications} \\ \textbf{Slide 2} \end{array}$

Introduction: Analysis of Variance

- Analysis of quantitative responses
- In short, ANOVA
- Simplest ANOVA
 - Single-factor or One-way
 - Factorial or Multiple-way
- Examples
 - Study of five brands of gasoline on car efficiency
 - Study of four types of sugar on bacteria growth

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications

Outline

- Introduction
- Single-Factor ANOVA:
 - Equal sample size
 - F-test
 - Multiple comparison

Supaporn Erjongmanee fengspe@ku.ac.th

Single-Factor ANOVA: Equal Sample Size

- Compare two or more populations on one factor
- Let
 - μ_1 = mean of treatment (population) 1
 - μ_2 = mean of treatment (population) 2
 - ..
 - μ_I = mean of treatment (population) I

I = number of compared treatments

- Hypothesis
 - H_0 : $\mu_1 = \mu_2 = ... = \mu_T$
 - H_a : Not all μ_i 's are equal (at least two of the μ_i 's are different)

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications
Slide 5

Notation

- Let
 - X_{ij} = Random variable for measurement j of treatment i
 - x_{ii} = Sample value for measurement j of treatment i
 - J = Number of samples in one treatment
 - I = Number of treatments
- (Treatment) sample mean: $\bar{X}_i = \frac{\sum_{j=1}^J X_{ij}}{J}$

Divided by number of samples in one treatment

• Grand mean: $\bar{X} = \frac{\sum_{i=1}^{I} \bar{X}_i}{I} = \frac{\sum_{i=1}^{I} \sum_{j=1}^{J} X_{ij}}{IJ}$

Divided by number of samples from treatments

• (Treatment) sample variance: $S_i^2 = \frac{\sum_{j=1}^J (X_{ij} - \bar{X}_i)^2}{J-1}$

Supaporn Erjongmanee fengspe@ku.ac.th

Basic Assumption

- Assume
 - Distribution of each population is <u>normal</u> with the <u>same variance</u> = σ^2
- Therefore, each sample X_{ii} comes from normal distribution with
 - $E(X_{ij}) = \mu_i$
 - $V(X_{ij}) = \sigma^2$
 - Hypothesis
 - H_0 : $\mu_1 = \mu_2 = ... = \mu_T$
 - H_a : Not all μ_i 's are equal (at least two of the μ_i 's are different)

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications

Sum of Squares

- When H_0 is true, all sample means $(\bar{x}_1, \bar{x}_2, ..., \bar{x}_I)$ should be the same
- Therefore, test statistics will measured from <u>differences of sample</u> means
- Treatment sum of squares (SST_r) : Difference between different treatments
 - Sum of difference between <u>each sample mean</u> and <u>grand mean</u>
 - $SST_r = J(\bar{X}_1 \bar{X})^2 + J(\bar{X}_2 \bar{X})^2 + \dots + J(\bar{X}_I \bar{X})^2$ = $J\sum_i (\bar{X}_i - \bar{X})^2$
- Error sum of squares (SSE): Difference within the same treatment
 - Sum of differences between <u>samples</u> and <u>sample mean</u>
 - $SSE = \sum_{i} \sum_{j} (X_{ij} \bar{X}_{i})^{2}$

Supaporn Erjongmanee fengspe@ku.ac.th

Review: Sample Variance Distribution

- Let X_1 , X_2 , ..., X_n be random sample from a <u>normal</u> distribution with mean value = μ and standard deviation = σ .
- Then, sample variance S^2 has distribution to be a <u>chi-square</u> distribution with degree of freedom = n-1

$$S^2 \approx \sigma^2 \frac{\chi_{n-1}^2}{(n-1)}$$
 \Longrightarrow $\frac{(n-1)S^2}{\sigma^2} \approx \chi_{(n-1)}^2$

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications

Sum of Squares (cont.)

- Treatment sum of squares (SST_r):
 - $SST_r = J \sum_i (\overline{X}_i \overline{X})^2$ $= J \sum_i (\underline{Y}_i - \overline{Y})^2$ $= J (I-1) \frac{\sum_i (\underline{Y}_i - \overline{Y})^2}{(I-1)}$

$$X_i \sim N(\mu, \sigma^2) \rightarrow Y_i = \bar{X}_i \sim N(\mu, \frac{\sigma^2}{J})$$

 $= (I-1)J S_Y^2$

$$s^{2} = \frac{\sum_{i=1}^{n} (x - \bar{x})^{2}}{n - 1}$$

$$\frac{(I-1)S_{Y}^{2}}{\sigma^{2}} = \frac{(I-1)S_{Y}^{2}}{\sigma^{2}/J}$$

$$= \frac{(I-1)}{(\sigma^{2}/J)} \cdot \frac{\sigma_{Y}^{2} \chi_{I-1}^{2}}{I-1}$$

$$S_X^2 \approx \sigma_X^2 \frac{\chi_{n-1}^2}{(n-1)}$$

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications
Slide 14

Department of Computer Engineering
Kasetsart University

Sum of Squares (cont.)

Error sum of squares (SSE)

•
$$SSE = \sum_{i} \sum_{j} (X_{ij} - \bar{X}_{i})^{2}$$

$$= \sum_{j} (X_{1j} - \bar{X}_{1})^{2} + \sum_{j} (X_{2j} - \bar{X}_{2})^{2} + ... + \sum_{j} (X_{Ij} - \bar{X}_{I})^{2}$$

$$= (J - 1)S_{1}^{2} + (J - 1)S_{2}^{2} + ... + (J - 1)S_{I}^{2}$$

$$= (J - 1)[S_{1}^{2} + S_{2}^{2} + ... + S_{I}^{2}]$$
Each X_{i} has the same variance $X_{i} \sim N(\mu, s^{2})$

$$= I(J - 1)S^{2}$$

 $\boxed{\frac{(n-1)S^2}{\sigma^2} \approx \chi^2_{(n-1)}}$

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications
Slide 15

F distribution

 Let X₁ and X₂ be <u>independent</u> chi-squared random variables with v₁ and v₂ degrees of freedom

$$F_{v1, v2} = \frac{X_1/v_1}{X_2/v_2}$$

 Generally, sample variance has sampling distribution in term of chi-squared distribution with degree of freedom = n -1

$$S^2 \approx \sigma^2 \frac{\chi_{n-1}^2}{(n-1)}$$

• Let S_1^2 and S_2^2 be sample variances with chi-squared distribution

$$\begin{split} &\frac{(m-1)S_1^{\ 2}}{\sigma_1^{\ 2}} \approx \chi^2_{(m-1)} \quad \text{and} \quad \frac{(n-1)S_2^{\ 2}}{\sigma_2^{\ 2}} \approx \chi^2_{(n-1)} \\ &F_{m-1,n-1} = \frac{\frac{(m-1)S_1^2/\sigma_1^2}{m-1}}{\frac{(n-1)S_2^2/\sigma_2^2}{\sigma_2^2}} = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \end{split}$$

Supaporn Erjongmanee fengspe@ku.ac.th

F distribution (cont.)

• Let X_1 and X_2 be independent chi-squared random variables with v_1 and v_2 degrees of freedom

$$F_{v1, v2} = \frac{X_1/v_1}{X_2/v_2}$$

Image source: http://en.wikipedia.org/wiki/F-distribution

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications

Department of Computer Engineering Kasetsart University

Sum of Squares (cont.)

Treatment sum of squares (SST_r) :

$$\underbrace{\frac{SST_r}{\sigma^2}} = \frac{(I-1)S_Y^2}{\sigma^2/J} = \frac{(I-1)(\sigma^2/J)\chi_{I-1}^2}{(\sigma^2/J)(I-1)} \underbrace{\chi_{I-1}^2}$$

Error sum of squares (SSE)

$$\frac{SSE}{\sigma^2} = \frac{I(J-1)S^2}{\sigma^2} \approx \chi_{I(J-1)}^2$$
 Use as test statistic

$$\frac{SSTr}{SSE}/(l-1) = \frac{SSTr/(l-1)}{SSE/l(l-1)} = \frac{\chi_{l-1}^2/(l-1)}{\chi_{l(l-1)}^2/l(l-1)} \approx F_{l-1,l(l-1)}$$

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications Slide 18

Department of Computer Engineering Kasetsart University

To Perform F-Test

Mean of chi-square distribution = degree of freedom

· Test statistic:

$$f = F_{I-1,I(J-1)} = \frac{SSTr/(I-1)}{SSE/(I(J-1))}$$

$$E(\frac{SST_r}{\sigma^2}) = I - 1$$

$$E(\frac{SSE}{\sigma^2}) = I(J-1)$$

$$E(\frac{SSTr}{I-1}) = \sigma^2$$

$$E(\frac{SSE}{I(J-1)}) = \sigma^2$$

$$E(MSTr) = \sigma^2$$

$$E(MSE) = \sigma^2$$

- If H_o is true (X̄'_is are about the same),
 MSTr and MSE are unbiased estimates of σ² => test statistic f ~ 1 (f is small)
- If H_o is false ($\bar{X}_i's$ are not the same), E(MSTr) > σ^2 => test statistic f is large.
- · Hence, rejection region covers large test statistic f

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications
Slide 19

F-Test

Test statistic:

$$F_{I-1,I(J-1)} = \frac{\frac{SSTr}{\sigma^2}/(I-1)}{\frac{SSE}{\sigma^2}/(I(J-1))} = \frac{SSTr/(I-1)}{SSE/(I(J-1))} = \frac{MSTr}{MSE}$$

F distribution for v₁ and v₂

If test statistic > $F_{\alpha, v1, v2}$, reject H_0

Image source: http://www.unc.edu/~nielsen/soci708/m16/m2009.gif

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications
Slide 20

Department of Computer Engineering
Kasetsart University

Summary: ANOVA

• Test statistic:

$$F_{I-1,I(J-1)} = \frac{\frac{SSTr}{\sigma^2}/(I-1)}{\frac{SSE}{\sigma^2}/(I(J-1))} = \frac{SSTr/(I-1)}{SSE/(I(J-1))} = \frac{MSTr}{MSE}$$

When f is large, we are about to reject H₀

	df	Sum of Squares (SS)	Mean Square (MS)	f
Treatment	I-1	SSTr	SSTr/(I-1)	MSTr / MSE
Error	I(J-1)	SSE	SSE/(I(J-1))	
Total	IJ-1	SST		

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications
Slide 21

Summary: ANOVA (cont.)

• SST = SSTr + SSE

$$\sum_{i} \sum_{j} (x_{ij} - \bar{x})^2 = \sum_{i} \sum_{j} (x_{ij} - \bar{x}_i + \bar{x}_i - \bar{x})^2$$

$$= \sum_{i} \sum_{j} (x_{ij} - \bar{x}_{i})^{2} + \sum_{i} \sum_{j} (\bar{x}_{i} - \bar{x})^{2} - 2 \sum_{i} \sum_{j} (x_{ij} - \bar{x}_{i}) (\bar{x}_{i} - \bar{x})$$

= SSE + SSTr
$$-2\sum_{i}\sum_{j}(x_{ij} - \bar{x}_i)(\bar{x}_i - \bar{x})$$
 0

Supaporn Erjongmanee fengspe@ku.ac.th

Summary: ANOVA (cont.)

Test statistic:

$$F_{I-1,I(J-1)} = \frac{\frac{SSTr}{\sigma^2}/(I-1)}{\frac{SSE}{\sigma^2}/(I(J-1))} = \frac{SSTr/(I-1)}{SSE/(I(J-1))} = \frac{MSTr}{MSE}$$

$$\text{df} \qquad \text{Sum of Squares}$$

$$\text{(SS)}$$

Another option: Sample-based computation

	df	Sum of Squares	ean	f
		(SS)	Square	
			(MS)	
Treatment	I-1	$\left[\frac{1}{J}\sum_{i=1}^{J}(\sum_{j=1}^{J}x_{ij})^{2} - \frac{1}{IJ}(\sum_{i=1}^{J}\sum_{j=1}^{J}x_{ij})^{2}\right]$	SSTr/(I-1)	MSTr / MSE
Error	I(J-1)	SST - SSTr	SSE/(I(J-1))	
Total	IJ-1	$\left[\sum_{i=1}^{I}\sum_{j=1}^{J}x_{ij}^{2}-\frac{1}{IJ}\left(\sum_{i=1}^{I}\sum_{j=1}^{J}x_{ij}\right)^{2}\right]$		

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications
Slide 23

Example 1

- Experiment degree of soiling on 3 mixtures of fabric and polymer
- Prove whether 3 mixture means are the same at α = 0.01

Mixture	Degree of soiling					
1:	0.56	1.12	0.90	1.07	0.94	
2:	0.72	0.69	0.87	0.78	0.91	
3:	0.62	1.08	1.07	0.99	0.93	

- Let
 - μ_1 = mean of mixture 1
 - μ_2 = mean of mixture 2
 - μ_3 = mean of mixture 3
 - I = 3, J = 5
- Hypothesis
 - H_0 : $\mu_1 = \mu_2 = \mu_3$
 - H_a : Not all μ_i 's are equal (at least two of the μ_i 's are different)

Supaporn Erjongmanee fengspe@ku.ac.th

 Experimental 	riment de	gree of soil	ing on 3	mixtures			
Mixture		[Degree of s	oiling		$\bar{x_i}$	
1:	0.56	1.12	0.90	1.07	0.94	0.918	
2:	0.72	0.69	0.87	0.78	0.91	0.794	
3:	0.62	1.08	1.07	0.99	0.93	0.938	
• Fill A	NOVA tab	le				\bar{x} = 0.883	
	df	Sum of (SS)	Squares	5	Mean Square (MS)	f	
Treatme	ent 2	0.0608			0.0304	0.99	
Error	12	0.3701	= 0.430	9 - 0.0608	0.0308		
Total	14	0.4309					

	df	Sum of Squares (SS)	Mean Square (MS)	f	
Treatment	2	0.0608	0.0304	0.99	
Error	12	0.3701 = 0.4309 - 0.0608	0.0308		
Total	14	0.4309			
• F _{0.01, 2}	, ₁₂ = 6.9 ejectec				

Outline

- Introduction
- Single-Factor ANOVA:
 - Equal sample size
 - F-test
 - Multiple comparison

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications
Slide 27

Multiple Comparisons

- Question:
 - When H₀ for ANOVA is rejected, how many means are different from each other?
- · Procedures:
 - Find confidence interval of pairwise difference $\mu_i \mu_j$
 - If confidence interval for any pairwise difference $\mu_i \mu_j$ does <u>not include</u> <u>zero</u>, we determine that μ_i, μ_j are significantly different from each other

Supaporn Erjongmanee fengspe@ku.ac.th

Studentized Range Distribution

- Let $Z_1, Z_2, ..., Z_m$ be m independent standard normal random variables
- Let W be a chi-squared random variable with degree of freedom = v, and independent of the Z_i's
- Then, Q distribution, called studentized range distribution is defined as

$$Q = \frac{\max |Z_i - Z_j|}{\sqrt{\frac{W}{v}}} \quad \text{where } W = \frac{SSE}{\sigma^2} = \chi_{I(J-1)}^2 = \frac{I(J-1)MSE}{\sigma^2}$$

- This Q distribution has 2 parameters: m and v
 - Hence, it is denoted by $Q_{\alpha,m,\nu}$

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications

Studentized Range Distribution (cont.)

$$X_i \sim N(\mu, \sigma^2) \to \bar{X}_i \sim N(\mu, \frac{\sigma^2}{J})$$

From

$$Z_i = \frac{\bar{X}_i - \mu_i}{\sigma/\sqrt{J}} \sim N(0,1)$$

$$Z_i = \frac{\bar{X}_i - \mu_i}{\sigma/\sqrt{J}}, \qquad W = \frac{SSE}{\sigma^2} = \chi_{I(J-1)}^2 = \frac{I(J-1)MSE}{\sigma^2}, \qquad m = I, \qquad v = I(J-1)$$

$$Q = \frac{\max |Z_i - Z_j|}{\sqrt{\frac{W}{v}}} = \frac{\max |\frac{\bar{X}_i - \mu_i}{\sigma/\sqrt{J}} - \frac{\bar{X}_j - \mu_j}{\sigma/\sqrt{J}}|}{\sqrt{\frac{I(J-1)MSE}{\sigma^2}}} = \frac{\max |\bar{X}_i - \bar{X}_j| - (\mu_i - \mu_j)|}{\sqrt{MSE/J}}$$

$$1 - \alpha = P\left(\frac{\max |\bar{X}_i - \bar{X}_j - (\mu_i - \mu_j)|}{\sqrt{MSE/J}} \le Q_{\alpha,l,I(J-1)}\right)$$
Probability that maximum different sample mean difference $(\bar{X}_i - \bar{X}_j)$ true mean difference $(\mu_i - \mu_j)$ is less than $Q_{\alpha,l,I(J-1)} \sqrt{MSE/J}$

Probability that maximum difference between

Supaporn Erjongmanee fengspe@ku.ac.th

Studentized Range Distribution (cont.)

$$\begin{aligned} 1 - \alpha &= P\left(\frac{|\bar{X}_i - \bar{X}_j - (\mu_i - \mu_j)|}{\sqrt{MSE/J}} \leq Q_{\alpha,I,I(J-1)} \ for \ all \ i,j\right) \\ &= P\left(-Q_{\alpha,I,I(J-1)} \sqrt{\frac{MSE}{J}} \leq \bar{X}_i - \bar{X}_j - (\mu_i - \mu_j) \leq Q_{\alpha,I,I(J-1)} \sqrt{\frac{MSE}{J}} \ for \ all \ i,j\right) \\ &= P\left(\bar{X}_i - \bar{X}_j - Q_{\alpha,I,I(J-1)} \sqrt{\frac{MSE}{J}} \leq \mu_i - \mu_j \leq \bar{X}_i - \bar{X}_j + Q_{\alpha,I,I(J-1)} \sqrt{\frac{MSE}{J}} \ for \ all \ i,j\right) \end{aligned}$$

Confidence intervals between one pair of true mean difference $\mu_i - \mu_j$

• There are $\binom{I}{2} = \frac{I(I-1)}{2}$ confidence intervals of $\mu_i - \mu_j$

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications
Slide 31

Studentized Range Distribution (cont.)

$$1 - \alpha = P\left(\overline{X}_i - \overline{X}_j - Q_{\alpha,I,I(J-1)} \sqrt{\frac{MSE}{J}}\right) \leq \mu_i - \mu_j \leq \overline{X}_i - \overline{X}_j + Q_{\alpha,I,I(J-1)} \sqrt{\frac{MSE}{J}} for \ all \ i, j$$

Expect difference between sample mean difference $(\bar{X}_i - \bar{X}_j)$ and true mean difference $(\mu_i - \mu_j)$ is not more than this value $Q_{\alpha,I,I(J-1)}\sqrt{\frac{MSE}{J}}$

• The value w = $Q_{\alpha,I,I(J-1)}\sqrt{\frac{MSE}{J}}$ is called Tukey's honestly significantly difference (HSD)

Supaporn Erjongmanee fengspe@ku.ac.th

Multiple Comparisons: Equal Sample Size

- When some means are not all equal, how to specify which mean is different from others
- Procedure
 - 1. Find Tukey's Honestly Significant Difference (HSD)

$$HSD_{\alpha} = q_{\alpha,I,I(J-1)} \sqrt{\frac{MSE}{J}}$$

- $q_{\alpha, I, I(J-1)} = q$ -value from studentized range distribution with 2 degrees of freedom I, I(J-1)
- 2. Sort sample means in increasing order
- 3. Underline pairs that differ less than HSD_{α}
- 4. Any pair without underline are considered as significantly different.

Supaporn Erjongmanee fengspe@ku.ac.th

Examp	ole 1					df	Sum of Squares (SS)	Mean Square (MS)	f
				Treatment	2	. 0.0608	0.0304	0.9	
 Experii 	ment degi	ree of soili	ng on 3 mi	Error	12	0.3701 = 0.4309 - 0.060	0.0308		
 Group 	mixture n	neans at o	= 0.01		Total	14	0.4309		
Mixture			Degree of so	iling			$\bar{x_i}$		
1:	0.56	1.12	0.90	1.07	0.94		0.918		
2:	0.72	0.69	0.87	0.78	0.91		0.794		
3:	0.62	1.08	1.07	0.99	0.93		0.938		
	$q_{lpha,I,I(J-1)}$ nple mea	\bar{x}_2	\bar{x}_1 , 0.918, 0.	\bar{x}_3 938 > qt	ukey(0.01,		= 0.396 ans=anovaResult\$r esult\$df.residual		il=F
• One g	roup of n	nixture m	eans 👍	Note t	hat H ₀ is r	ot re	ejected.		
upaporn Erjongma	anee	Stati	stics in Computer Eng		ns		Department of Computer Kasetsart University	Engineering	

Example 2

- Test on 5 brands of automobile oil filters
 - Use 9 samples for each brands
- \bar{x}_1 = 14.5, \bar{x}_2 = 13.8, \bar{x}_3 = 13.3, \bar{x}_4 = 14.3, \bar{x}_5 = 13.1

	df	Sum of Squares (SS)	Mean Square (MS)	f
Treatment	4	13.32	3.33	37.84
Error	40	3.53	0.088	
Total	44	16.85		

- Rejection region:
 - F _{0.05, 4, 40} = 2.61
- H₀ is rejected
- Find Tukey's HSD to see mean differences

Supaporn Erjongmanee fengspe@ku.ac.th

Example 2 (cont.)

• \bar{x}_1 = 14.5, \bar{x}_2 = 13.8, \bar{x}_3 = 13.3, \bar{x}_4 = 14.3, \bar{x}_5 = 13.1

	df	Sum of Squares (SS)	Mean Square (MS)	f
Treatment	4	13.32	3.33	37.84
Error	40	3.53	0.088	
Total	44	16.85		

$$HSD_{\alpha} = q_{\alpha,I,I(J-1)} \sqrt{\frac{MSE}{J}} = q_{0.05,5,40} \sqrt{\frac{0.088}{9}} = 4.04 \sqrt{\frac{0.088}{9}} = 0.399$$

$$\bar{X}_{5} \qquad \bar{X}_{3} \qquad \bar{X}_{2} \qquad \bar{X}_{4} \qquad \bar{X}_{1}$$

- Sort sample means: 13.1, 13.3, 13.8, 14.3, 14.5
- 3 groups of means:
 - \bar{x}_5 , \bar{x}_3 are not significantly different from each other
 - \bar{x}_4 , \bar{x}_1 are not significantly different from each other
 - ullet $ar{x}_2$ is significantly different from $ar{x}_5$, $ar{x}_3$ and $ar{x}_4$, $ar{x}_1$

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications
Slide 37

Example 2 (cont.)

• If use another value for sample mean and same HSD_{α} :

•
$$\bar{x}_1$$
= 14.5, \bar{x}_2 = 14.15, \bar{x}_3 = 13.3, \bar{x}_4 = 14.3, \bar{x}_5 = 13.1

$$HSD_{\alpha} = q_{0.05,5,40} \sqrt{\frac{0.088}{9}} = 4.04 \sqrt{\frac{0.088}{9}} = 0.399$$

 $\bar{x}_5 \quad \bar{x}_3 \quad \bar{x}_2 \quad \bar{x}_4 \quad \bar{x}_1$

- Sort sample means: 13.1, 13.3, 14.15, 14.3, 14.5
- 2 groups of means
 - \bar{x}_5 , \bar{x}_3 are not significantly different from each other
 - \bar{x}_2 , \bar{x}_4 , \bar{x}_1 are not significantly different from each other

Supaporn Erjongmanee fengspe@ku.ac.th

Example 3

- For another data set:
 - \bar{x}_1 = 79.28, \bar{x}_2 = 61.54, \bar{x}_3 = 47.92, \bar{x}_4 = 32.76

	df	Sum of Squares (SS)	Mean Square (MS)	f
Treatment	3	5882.3575	1960.7858	21.09
Error	16	1487.4000	92.9625	
Total	19	7369.7575		
		•		

they are not different from \bar{x}_3

쓴

• I = 4, J = 5

$$HSD_{\alpha} = q_{\alpha,I,I(J-1)} \sqrt{\frac{MSE}{J}} = q_{0.05,4,16} \sqrt{\frac{92.9625}{5}} = 4.05 \sqrt{\frac{92.9625}{5}} = 17.47$$

- \bar{x}_4 \bar{x}_3 \bar{x}_2 \bar{x}_1 Sort sample means: 32.76, 47.92, 61.54, 79.28
- 2 groups of means
 - \bar{x}_4 , \bar{x}_3 , \bar{x}_2 are not significantly different from each other
 - \bar{x}_1 is significantly different from each other

Supaporn Erjongmanee fengspe@ku.ac.th

Statistics in Computer Engineering Applications
Slide 39

95% family-wise confidence level

Although \bar{x}_4 , \bar{x}_2 are different from each other,

Example 3

- For another data set:
 - \bar{x}_1 = 79.28, \bar{x}_2 = 61.54, \bar{x}_3 = 47.92, \bar{x}_4 = 32.76

$$HSD_{\alpha} = 4.05 \sqrt{\frac{932.9625}{5}} = 17.47$$

Sort sample means:

$$\bar{x}_4$$
 \bar{x}_3 \bar{x}_2 \bar{x}_1 32.76, 47.92, 61.54, 79.28

- 2 groups of means
 - $\bar{x}_4, \bar{x}_3, \bar{x}_2$ are not significantly different from each other
 - \bar{x}_1 is significantly different from each other

Confidence intervals of $(ar X_2-ar X_3)$ and $(ar X_3-ar X_4)$ include zero. This means $ar X_2pprox ar X_3pprox ar X_4$

-60 -50 -40 -30 -20 -10 0

Differences in levels of treat

neering

References

- 1. J.L. Devore and K.N.Berk, Modern Mathematical Statistics with Applications, Springer, 2012.
- 2. S. Few, Now You See It: Simple Visualization Techniques for Quantitative Analysis, Analytics Press, 2009

Supaporn Erjongmanee fengspe@ku.ac.th

