The neuron

▶ The sigmoid equation is what is typically used as a transfer function between neurons. It is similar to the step function, but is continuous and differentiable.

The neuron

► The sigmoid equation is what is typically used as a transfer function between neurons. It is similar to the step function, but is continuous and differentiable.

Þ

$$\sigma(x) = \frac{1}{1 + e^{-x}} \tag{1}$$

Figure: The Sigmoid Function

The neuron

The sigmoid equation is what is typically used as a transfer function between neurons. It is similar to the step function, but is continuous and differentiable.

Þ

$$\sigma(x) = \frac{1}{1 + e^{-x}} \tag{1}$$

Figure: The Sigmoid Function

One useful property of this transfer function is the simplicity of computing it's derivative. Let's do that now...

$$\frac{d}{dx}\sigma(x) = \frac{d}{dx}\left(\frac{1}{1+e^{-x}}\right)$$

$$\frac{d}{dx}\sigma(x) = \frac{d}{dx}\left(\frac{1}{1+e^{-x}}\right)$$
$$= \frac{e^{-x}}{(1+e^{-x})^2}$$

$$\frac{d}{dx}\sigma(x) = \frac{d}{dx}\left(\frac{1}{1+e^{-x}}\right)$$
$$= \frac{e^{-x}}{(1+e^{-x})^2}$$
$$= \frac{1+e^{-x}-1}{(1+e^{-x})^2}$$

$$\frac{d}{dx}\sigma(x) = \frac{d}{dx}\left(\frac{1}{1+e^{-x}}\right)$$
$$= \frac{e^{-x}}{(1+e^{-x})^2}$$
$$= \frac{(1+e^{-x})-1}{(1+e^{-x})^2}$$

$$\frac{d}{dx}\sigma(x) = \frac{d}{dx} \left(\frac{1}{1+e^{-x}}\right)
= \frac{e^{-x}}{(1+e^{-x})^2}
= \frac{(1+e^{-x})-1}{(1+e^{-x})^2}
= \frac{1+e^{-x}}{(1+e^{-x})^2} - \frac{1}{(1+e^{-x})^2}$$

$$\frac{d}{dx}\sigma(x) = \frac{d}{dx} \left(\frac{1}{1+e^{-x}}\right)
= \frac{e^{-x}}{(1+e^{-x})^2}
= \frac{(1+e^{-x})-1}{(1+e^{-x})^2}
= \frac{1+e^{-x}}{(1+e^{-x})^2} - \left(\frac{1}{1+e^{-x}}\right)^2$$

$$\frac{d}{dx}\sigma(x) = \frac{d}{dx} \left(\frac{1}{1+e^{-x}}\right)
= \frac{e^{-x}}{(1+e^{-x})^2}
= \frac{(1+e^{-x})-1}{(1+e^{-x})^2}
= \frac{1+e^{-x}}{(1+e^{-x})^2} - \left(\frac{1}{1+e^{-x}}\right)^2
= \sigma(x) - \sigma(x)^2$$

$$\frac{d}{dx}\sigma(x) = \frac{d}{dx}\left(\frac{1}{1+e^{-x}}\right)$$

$$= \frac{e^{-x}}{(1+e^{-x})^2}$$

$$= \frac{(1+e^{-x})-1}{(1+e^{-x})^2}$$

$$= \frac{1+e^{-x}}{(1+e^{-x})^2} - \left(\frac{1}{1+e^{-x}}\right)^2$$

$$= \sigma(x) - \sigma(x)^2$$

$$\sigma' = \sigma(1-\sigma)$$

Single input neuron

Figure: A Single-Input Neuron

In the above figure (2) you can see a diagram representing a single neuron with only a single input. The equation defining the figure is:

$$\mathcal{O} = \sigma(\xi\omega)$$

Single input neuron

Figure: A Single-Input Neuron

In the above figure (2) you can see a diagram representing a single neuron with only a single input. The equation defining the figure is:

$$\mathcal{O} = \sigma(\xi\omega + \theta)$$

Multiple input neuron

Figure: A Multiple Input Neuron

Figure 3 is the diagram representing the following equation:

$$\mathcal{O} = \sigma(\omega_1 \xi_1 + \omega_2 \xi_2 + \omega_3 \xi_3 + \theta)$$

A neural network

Figure: A layer

A neural network

Figure: A neural network

A neural network

Figure: A neural network

Notation

• x_j^ℓ : Input to node j of layer ℓ

- x_i^{ℓ} : Input to node j of layer ℓ
- ▶ W_{ij}^{ℓ} : Weight from layer $\ell-1$ node i to layer ℓ node j

- x_i^{ℓ} : Input to node j of layer ℓ
- $lackbox{W}_{ij}^\ell$: Weight from layer $\ell-1$ node i to layer ℓ node j
- $\sigma(x) = \frac{1}{1+e^{-x}}$: Sigmoid Transfer Function

- x_i^{ℓ} : Input to node j of layer ℓ
- $ightharpoonup W_{ij}^\ell$: Weight from layer $\ell-1$ node i to layer ℓ node j
- $\sigma(x) = \frac{1}{1+e^{-x}}$: Sigmoid Transfer Function
- $lackbox{0.5}{m{ heta}}_{j}^{\ell}: ext{ Bias of node } j ext{ of layer } \ell$

- $\triangleright x_i^{\ell}$: Input to node j of layer ℓ
- $lackbox{W}_{ij}^\ell$: Weight from layer $\ell-1$ node i to layer ℓ node j
- $\sigma(x) = \frac{1}{1+e^{-x}}$: Sigmoid Transfer Function
- $lackbox{ iny}{ heta}_j^\ell$: Bias of node j of layer ℓ
- $lackbox{} \mathcal{O}_j^\ell$: Output of node j in layer ℓ

- x_i^{ℓ} : Input to node j of layer ℓ
- $lackbox{W}_{ij}^\ell$: Weight from layer $\ell-1$ node i to layer ℓ node j
- $\sigma(x) = \frac{1}{1+e^{-x}}$: Sigmoid Transfer Function
- $ightharpoonup \mathcal{O}_i^\ell$: Output of node j in layer ℓ
- $ightharpoonup t_j$: Target value of node j of the output layer

The error calculation

Given a set of training data points t_k and output layer output \mathcal{O}_k we can write the error as

$$E = \frac{1}{2} \sum_{k \in K} (\mathcal{O}_k - t_k)^2$$

We let the error of the network for a single training iteration be denoted by E. We want to calculate $\frac{\partial E}{\partial W_{jk}^\ell}$, the rate of change of the error with respect to the given connective weight, so we can minimize it.

Now we consider two cases: The node is an output node, or it is in a hidden layer...

$$\frac{\partial E}{\partial W_{ik}} =$$

$$\frac{\partial E}{\partial W_{jk}} = \frac{\partial}{\partial W_{jk}} \frac{1}{2} \sum_{k \in K} (\mathcal{O}_k - t_k)^2$$

$$\frac{\partial E}{\partial W_{jk}} = (\mathcal{O}_k - t_k) \frac{\partial}{\partial W_{jk}} \mathcal{O}_k$$

$$\frac{\partial E}{\partial W_{jk}} = (\mathcal{O}_k - t_k) \frac{\partial}{\partial W_{jk}} \sigma(x_k)$$

$$\frac{\partial E}{\partial W_{jk}} = (\mathcal{O}_k - t_k)\sigma(x_k)(1 - \sigma(x_k))\frac{\partial}{\partial W_{jk}}x_k$$

$$\frac{\partial E}{\partial W_{jk}} = (\mathcal{O}_k - t_k)\mathcal{O}_k(1 - \mathcal{O}_k)\mathcal{O}_j$$

$$\frac{\partial E}{\partial W_{ik}} = (\mathcal{O}_k - t_k)\mathcal{O}_k(1 - \mathcal{O}_k)\mathcal{O}_j$$

For notation purposes I will define δ_k to be the expression $(\mathcal{O}_k - t_k)\mathcal{O}_k(1 - \mathcal{O}_k)$, so we can rewrite the equation above as

$$\frac{\partial E}{\partial W_{jk}} = \mathcal{O}_j \delta_k$$

where

$$\delta_k = \mathcal{O}_k(1 - \mathcal{O}_k)(\mathcal{O}_k - t_k)$$

$$\frac{\partial E}{\partial W_{ii}} =$$

$$\frac{\partial E}{\partial W_{ij}} = \frac{\partial}{\partial W_{ij}} \frac{1}{2} \sum_{k \in K} (\mathcal{O}_k - t_k)^2$$

$$\frac{\partial E}{\partial W_{ij}} = \sum_{k \in K} (\mathcal{O}_k - t_k) \frac{\partial}{\partial W_{ij}} \mathcal{O}_k$$

$$\frac{\partial E}{\partial W_{ij}} = \sum_{k \in K} (\mathcal{O}_k - t_k) \frac{\partial}{\partial W_{ij}} \sigma(x_k)$$

$$\frac{\partial E}{\partial W_{ij}} = \sum_{k \in K} (\mathcal{O}_k - t_k) \sigma(x_k) (1 - \sigma(x_k)) \frac{\partial x_k}{\partial W_{ij}}$$

$$\frac{\partial E}{\partial W_{ij}} = \sum_{k \in K} (\mathcal{O}_k - t_k) \mathcal{O}_k (1 - \mathcal{O}_k) \frac{\partial x_k}{\partial \mathcal{O}_j} \cdot \frac{\partial \mathcal{O}_j}{\partial W_{ij}}$$

$$\frac{\partial E}{\partial W_{ij}} = \sum_{k \in K} (\mathcal{O}_k - t_k) \mathcal{O}_k (1 - \mathcal{O}_k) W_{jk} \frac{\partial \mathcal{O}_j}{\partial W_{ij}}$$

$$\frac{\partial E}{\partial W_{ij}} = \frac{\partial \mathcal{O}_j}{\partial W_{ij}} \sum_{k \in K} (\mathcal{O}_k - t_k) \mathcal{O}_k (1 - \mathcal{O}_k) W_{jk}$$

$$\frac{\partial E}{\partial W_{ij}} = \mathcal{O}_j (1 - \mathcal{O}_j) \frac{\partial x_j}{\partial W_{ij}} \sum_{k \in K} (\mathcal{O}_k - t_k) \mathcal{O}_k (1 - \mathcal{O}_k) W_{jk}$$

$$\frac{\partial E}{\partial W_{ij}} = \mathcal{O}_j(1 - \mathcal{O}_j)\mathcal{O}_i \sum_{k \in K} (\mathcal{O}_k - t_k)\mathcal{O}_k(1 - \mathcal{O}_k)W_{jk}$$

$$\frac{\partial E}{\partial W_{ij}} = \mathcal{O}_j (1 - \mathcal{O}_j) \mathcal{O}_i \sum_{k \in K} (\mathcal{O}_k - t_k) \mathcal{O}_k (1 - \mathcal{O}_k) W_{jk}$$

But, recalling our definition of δ_k we can write this as

$$\frac{\partial E}{\partial W_{ij}} = \mathcal{O}_i \mathcal{O}_j (1 - \mathcal{O}_j) \sum_{k \in K} \delta_k W_{jk}$$

$$\frac{\partial E}{\partial W_{ij}} = \mathcal{O}_j(1 - \mathcal{O}_j)\mathcal{O}_i \sum_{k \in \mathcal{K}} (\mathcal{O}_k - t_k)\mathcal{O}_k(1 - \mathcal{O}_k)W_{jk}$$

But, recalling our definition of δ_k we can write this as

$$\frac{\partial E}{\partial W_{ij}} = \mathcal{O}_i \mathcal{O}_j (1 - \mathcal{O}_j) \sum_{k \in K} \delta_k W_{jk}$$

Similar to before we will now define all terms besides the \mathcal{O}_i to be δ_i , so we have

$$\frac{\partial E}{\partial W_{ii}} = \mathcal{O}_i \delta_j$$

How weights affect errors

For an output layer node $k \in K$

$$\frac{\partial E}{\partial W_{jk}} = \mathcal{O}_j \delta_k$$

where

$$\delta_k = \mathcal{O}_k(1 - \mathcal{O}_k)(\mathcal{O}_k - t_k)$$

For a hidden layer node $j \in J$

$$\frac{\partial E}{\partial W_{ii}} = \mathcal{O}_i \delta_j$$

where

$$\delta_j = \mathcal{O}_j(1 - \mathcal{O}_j) \sum_{k \in K} \delta_k W_{jk}$$

What about the bias?

If we incorporate the bias term $\boldsymbol{\theta}$ into the equation you will find that

$$\frac{\partial \mathcal{O}}{\partial \theta} = \mathcal{O}(1 - \mathcal{O}) \frac{\partial \theta}{\partial \theta}$$

and because $\partial\theta/\partial\theta=1$ we view the bias term as output from a node which is always one.

What about the bias?

If we incorporate the bias term θ into the equation you will find that

$$\frac{\partial \mathcal{O}}{\partial \theta} = \mathcal{O}(1 - \mathcal{O}) \frac{\partial \theta}{\partial \theta}$$

and because $\partial \theta/\partial \theta=1$ we view the bias term as output from a node which is always one.

This holds for any layer ℓ we are concerned with, a substitution into the previous equations gives us that

$$\frac{\partial E}{\partial \theta} = \delta_{\ell}$$

(because the \mathcal{O}_ℓ is replacing the output from the "previous layer")

- Run the network forward with your input data to get the network output
- 2. For each output node compute

$$\delta_k = \mathcal{O}_k (1 - \mathcal{O}_k) (\mathcal{O}_k - t_k)$$

3. For each hidden node calulate

$$\delta_j = \mathcal{O}_j(1 - \mathcal{O}_j) \sum_{k \in K} \delta_k W_{jk}$$

4. Update the weights and biases as follows Given

$$\Delta W = -\eta \delta_{\ell} \mathcal{O}_{\ell-1}$$
$$\Delta \theta = -\eta \delta_{\ell}$$

apply

$$W + \Delta W \rightarrow W$$

 $\theta + \Delta \theta \rightarrow \theta$

