Magmatische Gesteine

1. Mineralogie (Habitus, Härte, Farbe, Bruch, Spaltbarkeit, Glanz, etc.)

2. Chemismus

Gesteins, sauer/basisch, Differenezierungsgrad

3. Struktur (Äussere Gestalt, Grösse und wechselseitige Beziehungen der Mineralkörner)

Wichtigste Elemente der Mineralien, Si-Gehalt des

a.) Grad der Kristallinität

- *holokristallin* (vollständig kristallisiert → Plutonite)
- hemikristallin (z.T. kristallisiert, z.T. glasige Grundmasse → Vulkanite
- holohyalin (vollständig glasig, amorph)

 phanerokristallin (Gemengenteile sind von Auge oder mit der Lupe erkennbar)

 anhanistisch (Minerelien sind von Auge oder mit der

aphanistisch (Mineralien sind von Auge oder mit der Lupe nicht erkennbar)

b.) Absolute Korngrösse

 $sehr\ grobk\"{o}rnig\ (K\"{o}rner>3\ cm),\ grobk\"{o}rnig\ (3-5\ mm),$ $mittelk\"{o}rnig\ (1-5\ mm),\ feink\"{o}rnig\ bis\ dicht\ (<1\ mm)$

c.) Relative Korngrösse

- gleichkörnig (eine Generation von Mineralien)
- *porphyrisch* (idiomorphe Kristalle und kleinere, im Wachstum gestoppte Kristalle)
- porphyartig (zwei Mineralgenerationen sind nicht scharf getrennt, es bestehen Übergänge zwischen Einsprenglingen und Grundmasse)

d.) Kornform

- *idiomorph* (Gemengenteile zeigen Eigenform, Phänokristalle (früh ausgeschiedene Mineralien))
- *xenomorph* (Gemengenteile zeigen keine geometrische Kristallformen, z.B. bei schneller Abkühlung)
- 4. Textur (räumliches Gefüge/Anordnung)

a.) Raumerfüllung

kompakt, massig, richtungslos; fluidal, gebändert; porös; schlackig; schaumig; blasig; amygdaloid; miarolithisch, etc.

<u>b.)</u> <u>Gefüge im Grossbereich</u> (nach Korngrösse, Mineralbestand, Anordnung der Gemengenteile) Homogen, inhomogen

| Metamorphe Gesteine

1. Mineralogie (Habitus, Härte, Ausbildung (idioblastisch, xenoblastisch), Farbe, Bruch, Reaktion mit HCl, etc.)

2. Chemismus

Wichtigste Elemente hängen stark vom Protolithen ab **3. Struktur** (Äussere Gestalt, Grösse und wechselseitige

Beziehungen der Mineralkörner)

a.) Gleichkörnig

- granoblastisch (körnige, isometrische Gemengenteile)
- lebidoblastisch (schuppige, blättrige Mineralien)
- nematoblastisch (strahlige/faserige Aggregate)

b.) Ungleichkörnig

- *porphyroblastisch* (feine Grundmasse mit einzlenen grösseren Mineralien)
- **4. Textur** (räumliches Gefüge/Anordnung) massig, richtungslos; linear, gestreckt, stängelig; paralleltexturiert; geschiefert, faserig; gefältelt; lagig, gebändert; geadert; Augenstruktur, etc.

5. Gefüge

- *Phyllit*_(geringer Abstand der einzelnen Schieferungsflächen, < mm-Bereich)
- Schiefer (mm-Bereich Abständ, viel Glimmer)
- Gneis (cm-Bereich; hauptächlich Quarz & Feldspat)
- Fels (massig)

6. Entstehung (Genese)

- *Metagranitoid* (Si-reich; Protolith: Granit, Tonalit, Sandsteine, felsisch)
- *Metaultrabasika* (Mg-reich, Si-arm; Protolith: Peridotit)
- *Metabasika* (Fe-, Mg-, Al-, Ca-reich; Protolith; Gabbro/Basalt)
- *Metakarbonate* (Ca-, Mg-, CO₃-reich; Protolith: Karbonat)
- *Metapelite* (Al-, Si-reich; Protolith: tonreiches Sedimentgestein, z.B. pelagische Sedimente)

Metamorphe Fazies

Entsprechen bestimmten Druck- und Temperaturbereichen. P-T-Faziesdiagramm skizzieren mit den verschiedenen Pfaden für Subduktion.

Sedimentgesteine

Klastische Sedimente

1. Mineralogie

Quarz (sehr stabil an Erdoberfläche), Feldspat (häufig chemische Verwitterung während Transport), andere (z.B. Glimmer, Schwermineralien, lithische Fragmente), Reaktion mit HCl testen!

2. Korngrösse

Ton ($< 2 \mu m$), Silt (2-63 μm), Sand (0.063-2 mm), Kies (2-63 mm), Stein (63-200 mm), Block (> 200 mm) **3. Grundmasse** (Beziehung Komponenten-Grundmasse)

a.) primär: Matrix (sedimentär, feinkörniger, detritischer Teil, gleichzeitige Ablagerung mit Komponenten)
b.) sekundär: Zement (Ausfällung während Diagnese, entsteht erst nach der Ablagerung der Komponenten,

4. Textur

a.) Form der Klasten

eine Art Bindemittel)

Rundung (eckig-gerundet) & Spherizität (=Kugeligkeit; isometrisch, länglich, stängeligm plattig, tafelig) b.) Sortierungsgrad

- schlecht sortiert (viele unterschiedliche Korngrössen, z.B. Gletschersedimente)
- *moderat sortiert* (z.B. Fluss- und Strandsedimente)
- *gut sortiert* (z.B. Windsedimente, Korngrössen fast nur in Tonfraktion)
- c.) Grundmasse-Klasten-Verhältnis
- klastengestützt (Klasten berühren einander)
- matrixgestützt (Klasten sind von Matrix umgeben)
- <u>d.) Reife</u> (chemische und physikalische Reife; umgekehrte Bowensreihe)
- reif (viel Quarz, gut gerundet, gut sortiert)
- *unreif* (viel Feldspat, Glimmer, Olivin, schlecht gerundet, schlecht sortiert)

5. Zusammensetzung Klasten (für Konglomerate)

- monomikt (1 Lithologie)
- *oligomikt* (2-3 Lithologien)
- *polymikt* (>3 Lithologien)

6. Sedimentstrukturen

Stratigraphische Schichtung, Lamination, Kreuzschichtung, Rippeln, gradierte Schichtung, Trockenrisse, Bioturbation, Abdrücke, etc.

5. Entstehung

- aus saurer oder basischer / differenzierten oder undifferenzierter Schmelze, Differenzierung erläutern (z.B. Granite aus stark differenzierten Schmelzen, z.B. bei Intrusion oder Subduktionszone; Basalte aus primitiven Schmelzen, z.B. am MOR)
- Minerale in Bowen'sche Reaktionsreieh einordnen
- Vulkanit: entsteht nahe der Oberfläche, schnelle Abkühlung; Plutonit: langsames Abkühlen und langsame Kristallisation
- Evt. mit Skizze von MOR oder Magmenkammer

6. Namensgebung

Zusammen-

- · Washington-Adams Diagramm
- Streckeisendiagramm (für Namensgebung verwenden!)
- Streckeisendiagramm aufzeichnen und Gestein eintragen (ungefähr)!

Regionalmetamorphose, Kontakmetamorphose.

Versuchen das Gestein in einen der drei

Metamorphoseprozesse einordnen.

- Grünschieferfazies (P = 0.1-0.7 GPa; T = 300-550°C)
- *Amphibolit fazies* (P = <1.5/1.7 GPa; $T = 550-750^{\circ}\text{C}$)
- *Granulitfazies* (P = <2.2 GPa; $T = >750^{\circ}\text{C}$)
- Blauschieferfazies (P = 0.6-2.2 GPa; $T = <600^{\circ}\text{C}$)
- Eklogitfazies (P = >2.2 GPa)

Entstehungsort & Geschichte

- Subduktion (P = hoch; T = tief)
- Regional metamorphose (P = hoch; T = hoch)
- Kontaktmetamorphose (P = tief; T = hoch)

7. Namensgebung

Spezialnamen: Grünschiefer, Amphibolit, Granulit, Blauschiefer, Eklogit, Serpentinit, Granat-Peridotit

Minerale-Gefüge, Protolith + Fazies

Bsp: Granat-Staurolith-2-Glimmer-Schiefer, Metapelit in Amphibolit Fazies

Wichtig: Quarz und Felspäte werden nicht im Namen erwähnt!

7. Ablagerungsmilieu/Interpretation

Klima, Transportprozesse, geographischer Bereich (z.B. Festland, Küste, Flachwasserbereich, offener Ozean, See), Erosion und Transportenergie, Transportweg, Diagenese (Zement vs. Matrix)

8. Namensgebung

Nach der Korngrösse:

grob → fein Konglomerat/Brekzie, Sandstein, Siltstein, Tonstein Sandsteine:

- Arkose (reichlich Feldspat; Schwemmfächer)
- Litharenit (reichlich Gesteinsbruchstücke; Delta)
- Quarzarenit (ausschliesslich Quarz; Strand)
- Grauwacke (reichlich Tonmatrix; Tiefseefächer)

Biochemische Sedimente

Beschreibung der Komponenten, Korngrösse, Grundmasse, Textur, ect. analog zu klastische Sedimente Namensgebung: nach Dunham (oder Folk)

Entstehung

- *Evaporite*: Evaporationsausfällungsreihe aufzeichnen, arides Klima, Lagune
- Biogene Schlämme: auf Organsimen eingehen, CCD erklären
- Oolith: Hochenergiemilieu, Lagune, Flachwasser, periodische Richtungsänderung, z.B. Gezeitenkanäle

nach Dunham 1962 (modifiziert, aus Bosellini1996 nicht sichtb Ablagerungsgefüge sichtbar Zusammengeschwemmte biodetritische Komponenten detritus durch Weniger als 10% der Körner mit Korngrößen > 2 mm Kalk verkittet (z.B. Korallen. keine Matrix Kalkmatrix (Korndurchmesser < 0,03 mm) Matrixgestützt < 10% Körner > 10% Körner Wackestone Packstone Grainstone Boundstone Mudstone