# SPEC-00-STR-SYS-WORMHOLE-SAFETY-0002 — Polar Approach & Full Hazard Hardening (EVOL-00/01) — v0.1.0 DRAFT

**Scope:** Konstruktive "Safety-by-Design"-Maßnahmen für **DECK 000** / **Wormhole** inkl. **Polar-Einflug (Nord/Süd)** sowie ein **vollständiger Hazard-Katalog** für die axialen Systeme (Explosion, Brand, Kollision, Strahlung, MMOD quer/längs, **unkontrollierter Anflug/Impact** u. v. m.). **Bezug:** Stationen **Earth ONE** (Ø 127 m) und **Earth TWO** (Ø 254 m, inkl. Long-Capsule-Varianten).

## 0) Executive Summary

- Neuer Top-Hazard: Unkontrollierter Anflug/Impact auf die Polar-Einflugborde. → Gegenmaßnahmen: POL-GUARD (mehrlagiger Polar-Prallschutz), POL-KOS/Kep-Out-Volumes mit Autopilot-Geofencing, Polar-Shutter (≤0,5 s), Deflektions-Jets, Jettison/Abort-Prozeduren, konsequent radiale Entlastung.
- Safety-Architektur insgesamt: Mehrfach-Kompartimentierung in 2D (radial + axial/LAT), inertisierte Technikzonen, nicht-brennbare Materialien, VENT/BOP nur radial, fail-safe geschlossene Schotts/Türen, kein Single Point of Failure.
- Härtung gegen Kaskaden: Explosions-/Brand-Energie lokal binden, Impuls aufnehmen/ableiten, Druck & Rauch in Sekunden ins All abführen, Scheiben/Ringe schließen bevor das Nächste kippt.

## 1) Designziele (Safety Envelope)

- 1. **Containment:** Jedes Ereignis bleibt bauabschnittsweise beherrscht (Ring-zu-Ring, Sektorzu-Sektor).
- 2. Energy-&-Mass-Management: Druck, Rauch, Partikel radial zur Hülle; keine tangentiale Relief-Führung.
- 3. **Fail-Safe:** Türen/Schotts **schließen stromlos**; Aktor-USV ≥ 30 min; Doppelte Sensorik.
- 4. **Human Factors:** klare Flucht-/Sammelzonen (Safe-Hold-Nodes), Gegenstrom-Trennung, visuelle/akustische Guidance.
- 5. **Testbarkeit:** Alle Schutzfunktionen mit **Zeit- und Kapazitäts-Targets** (Schließzeiten, Vent-A, Inert-Setpoint) verifizierbar.

# 2) Neuer Unfalltyp: Polar-Impact (unkontrollierter Anflug/Einschlag)

#### 2.1 Szenario & Klassen

- **PI-Light:**  $\leq 10 \text{ t} @ \leq 2 \text{ m/s}$  (Klein-Tender/Roboter)
- PI-Medium: 10-40 t @ 2-10 m/s (Crew/Cargo-Module)
- PI-Heavy: 40-120 t @ 5-20 m/s (Großschiff-Anflugfehler)
- **PI-Extreme:** > 120 t oder > 20 m/s (hoffentlich nur "design to survive, not to save vehicle")

**Parameter:** Impuls  $J=m\Delta v$ , Energie  $E=\frac{1}{2}mv^2$ . Auslegung erfolgt parametriert, nicht fahrzeugspezifisch.

#### 2.2 POL-GUARD - Mehrlagiger Polar-Prallschutz (konstruktiv)

- 1. **Sensor-Vorhang (Lidar/Radar/Optik):** 3D-Track, Health-Monitoring, Autopilot-Geofencing.
- 2. **Deploy-Net & Tether-Dämpfer:** ausfahrbares Fangnetz mit vielen **Shock-Absorber-Tethers** (Reißnadeln + viskoelastische Dämpfer). *Energieaufnahme* ~  $\sum \frac{1}{2}k_ix_i^2$ ; *Tether-Hub begrenzt Relativ-* $\Delta v$ .
- 3. Crush-Bumper-Kragen: Ringsegmente aus Al-Honeycomb/Metal-Foam; spezifische Energieaufnahme (SEA) 20-60 kJ/kg. Erforderliche Masse  $m_{bumper} \approx E/SEA$ .
- 4. **Deflection-Cone:** harte, geneigte Prallfläche → **Ablenkung out-of-axis**, Fragmente werden **aus dem Wormhole heraus** gelenkt.
- 5. **Polar-Shutter (0,5 s):** gepanzerte, **guillotine-artige** Innenschotten (Mehrsektor-Lamellen) schließt die Achse.
- 6. VENT/BOP-Kranz: Sollbruch/Blow-Out-Paneele hull-nah; Druck/Partikel direkt ins All.

**Dimensionierungshilfe (Honeycomb-Bumper):** Volumspezifische Absorption  $W=\sigma_{\rm crush}\cdot \varepsilon$ . Bei  $\sigma\approx 2$  MPa,  $\varepsilon=0.5 \to W\approx 1$  MJ/m³. *Beispiel:* E=50 MJ (z. B. 50 t @ 14 m/s)  $\Rightarrow$  ~50 m³ Crush-Material (auf Sektoren verteilbar).

#### 2.3 POL-KOS/Kep-Out-Volumes & Autopilot-Logik

- Approach Ellipsoid + Keep-Out Sphere polar; Single-Vehicle-Between-Rings (keine Doppelbelegung).
- Hard Interlocks: Bei KOS-Verletzung → Station schließt Polar-Shutter, zündet Deflection-Jets, aktiviert Deploy-Net.

## 3) Komplett-Hazard-Katalog (DECK 000 / axial)

#### Mechanisch/Kinetisch

- H-E1: Explosion am Docking-Ring (anliegendes Schiff)
- H-E2: Brand/Flashover an angedocktem Schiff
- H-E3: Fahrzeug-Kollision im Wormhole (axial)
- H-E4: Polar-Impact (unkontrollierter Anflug/Einschlag)
- H-E5: Strukturelles Versagen eines Ring-Adapters / Quick-Release
- H-E6: Trümmer/"Runaway" nach Jettison im Näherungsbereich

#### **Umwelt/Exogen**

- H-U1: **Sonnenwind/SPE/CME** (Strahlungs-Spike)
- H-U2: **MMOD guer** (seitlicher Durchschlag Tubus/Ring)
- H-U3: **MMOD längs** (axial entlang der Achse)
- H-U4: Weltraumschrott-Schwarm (Kollisionskaskaden-Risiko)

#### Prozess/Medien

- H-P1: O<sub>2</sub>-Anreicherung / Inertgas-Fehlfunktion
- H-P2: Kryo-Leck (H<sub>2</sub>/O<sub>2</sub>/N<sub>2</sub>/Ar) → Kälte/EX-Risiken
- H-P3: Batterie-Thermal-Runaway (Carrier/Andock-Vehikel)
- H-P4: Giftige Medien (NH<sub>3</sub>/Monosilan etc.) aus Nutzlast

#### Systemisch/OPS/IT

- H-S1: Stromausfall/USV-Versagen der Aktoren
- H-S2: Sensorik-Blindheit (Radar/Lidar/Optik)
- H-S3: **Cyber/Spoofing** (GN&C/Transponder/Beacons)

- H-S4: Human-Factor (Fehlerhafte Freigabe/Prozedur)
- H-S5: Software-Regression (Update bricht Interlocks)

Für jeden Hazard führen wir S (Severity 1-5), L (Likelihood A-E), R = S×L, Mitigation (Design/OPS), V&V in einer Tabellen-SSOT (CSV) – bereit zum Risikoreview.

## 4) Design-Maßnahmen (Layered Hardening)

#### 4.1 Kompartimentierung & Schotts

- Ring-zu-Ring: PT-A (Haupt), PT-B (Service), AL-C (Airlock) fail-safe zu, kaskadierbar;
  Δp-Rating ≥ 1 atm sektorweise.
- LAT-Scheiben (axial): schließen S40/EQ/N40 (EVOL-01) → Rauch/Heißgas-Kappen, kein Voll-Δp (Equalizer).

#### 4.2 VENT/BOP

• Nur radial zur Hülle; dimensioniert auf choked flow.  $\dot{m} = C_d A P_0 \sqrt{\frac{\gamma}{RT}} (\frac{2}{\gamma+1})^{\frac{\gamma+1}{2(\gamma-1)}} \rightarrow$  A\_VENT je Ring so, dass  $p \rightarrow p_{\rm safe}$  in  $\Delta t_{\rm max}$  (Stationsziel, z. B.  $\leq$  3-5 s).

#### 4.3 Feuer & Inertisierung

Ar/N<sub>2</sub>-Flutung ringweise; O<sub>2</sub>-Setpoint ≤ 12-15 Vol-% in ≤ N s; nicht-brennbare Auskleidung, EX-Zonierung.

#### 4.4 Fenster/MDPS/Shutter

Multilayer-Stacks, Shutter ≤ 0,5 s für E4/E5/E6 (SPE/MMOD), außen MDPS-Shades.

#### 4.5 Docking-Ringe (Blast/Quick-Release)

• **Opfer-Zonen** (frangible) + **Blast-Cradle** (Sandwich-Kragen), **Jettison** mit Rückzugs-Shutter; integrierte **Deflektoren**.

#### 4.6 Neu: POL-GUARD am Polar-Einflug

• **Deploy-Net** + **Tethers**, **Crush-Bumper**, **Deflection-Cone**, **Polar-Shutter**, **VENT-Kranz** – s. 2.2.

#### 4.7 Traffic-Separation & Interlocks

 Nord = Arrivals, Süd = Departures, Ein-Fahrzeug-Slot zwischen zwei Ringen, GN&C-Beacon-Pflicht, "rogue transponder" → sofortige POL-Shutter-Schließung + Deflection-Jets.

#### 4.8 Cyber-Resilienz

 Out-of-Band-Beacons, AuthN/AuthZ für Freigaben, Air-Gap für Safety-PLC, "last-known good"-Rollback.

## 5) Parametrische Auslegung (Formeln)

#### 5.1 Polar-Bumper (Crush-Energie)

• Eingang:  $m, v \rightarrow E = \frac{1}{2}mv^2$ .

• Bumper-Bedarf:  $V_{\rm crush} \approx E/W \, {\rm mit} \, W \, {\rm (MJ/m^3)}$  aus Materialdaten. • Masse-Daumen:  $m_{\rm bumper} \approx E/{\rm SEA} \, {\rm (SEA=20-60 \, kJ/kg)}.$ 

#### 5.2 Fangnetz + Tethers

- Zielhub x pro Tether; Energie  $E pprox \sum \frac{1}{2} k_i x_i^2$  .
- **Grenzlast**  $\rightarrow F_{\max} = \sum k_i x_i \le$  stationäre Grenzkräfte (Ankerpunkte). *Praktisch:* 8–16 Tethers, je **viskoelastischer Dämpfer** (Hysterese) + Reißelement ("fuse") zur Lastspitzenbegrenzung.

#### 5.3 Polar-Shutter (Impuls)

- Impulsreserve:  $J_{\rm shutter} \geq m \Delta v$  der zu erwartenden Fragmentlast *auf den Schließweg*. Schließzeit:  $t_{\rm shut} \leq 0.5\,{\rm s}$  bei E4/E5/E6-Trigger; Kraft-/Leistungsbudget ergo dimension-

## 6) Prüf- & Abnahmekriterien (V&V)

- PT-A/PT-B/AL-C: Schließzeit lokal  $\leq 3$  s, kaskadiert  $\leq 8$  s; Dichtheit  $\Delta p \geq 1$  atm (Ring-
- **VENT/BOP:** Nachweis  $A_{\text{VENT}} o p \downarrow p_{\text{safe}}$  in  $\Delta t_{\text{max}}$ ; Funktions-Drills (kalte Gas-Runs +
- Shutter: 100 % End-to-End-Tests (SPE/MMOD/Polar-Alarm) mit High-Speed-Log; Ziel ≤ 0,5
- POL-GUARD: Drop-/Schlitten-Versuche (E-Klassen), Netz-Schlusstests, Tether-Dämpfer-Charakteristik, Cone-Deflection-Mapping.
- Cyber: Red-Team-Tests (Spoofing/Replay), Safety-PLC-Failover.

# 7) Risiko-Matrix (Beispiel-Ausschnitt)

| Hazard              | S (1-5) | L (A-E) | R | Primär-Mitigation                         |
|---------------------|---------|---------|---|-------------------------------------------|
| H-E1 Explosion Dock | 5       | C       |   | Ring-Containment, VENT/BOP, Quick-Release |
| H-E4 Polar-Impact   | 5       | B-C     | Н | POL-GUARD, Shutter, KOS, Deflection       |
| H-U3 MMOD längs     | 4       | С       | Η | Shutter-Kaskade, Spall-Liner              |
| H-S3 Cyber/Spoof    | 4       | С       | Н | AuthN/PLC-Air-Gap, OOB-Beacons            |
| H-P2 Kryo-Leck      | 4       | С       | Н | EX-Zonen, Inert, VENT                     |

(Vollständige Matrix als CSV/SSOT führen.)

## 8) Umsetzung & Roadmap

- EVOL-00 (127 m): Polar-Shutter + KOS sofort; POL-GUARD (light) (Crush-Kragen + Net).
- EVOL-01 (254 m Kugel): POL-GUARD (medium) + Deflection-Cone + stärkere VENT/BOP-Kranz.
- EVOL-01 Long Capsule: POL-GUARD (heavy) + 2. Fußring im Core; Dock-Throats auf ≥ 16-20 m, wenn Innendocking.

5