I1	а	$\frac{2}{3}$	12	а	12	13	P	8	I4	n	9	15	a	6
	b	0		b	36		Q	12		b	3		b	30
	c	3		c	12		R	4		c	8		c	4
	d	-6		d	5		S	70		d	62		d	4

Group Events

G1	a	180	G2	a	1	G3	m	-3	G4	а	99999919	G5	a	10	Group Spare	a	4
	b	7		b	2		b	1		b	1		b	9		k	2
	c	9		c	1		c	1.6		c	2		c	55		d	8.944
	d	4		d	120		d	2		d	1891		d	16		r	$\frac{25}{24}$

Individual Event 1 (1998 Sample Individual Event)

II.1 Given that $\frac{3}{a} + \frac{1}{u} = \frac{7}{2}$ and $\frac{2}{a} - \frac{3}{u} = 6$ are simultaneous equations in a and u. Solve for a.

$$3(1) + (2)$$
: $\frac{11}{a} = \frac{33}{2}$

$$a = \frac{2}{3}$$

I1.2 Three solutions of the equation px + qy + bz = 1 are (0, 3a, 1), (9a, -1, 2) and (0, 3a, 0). Find the value of the coefficient b.

$$\begin{cases} 3aq+b=1\cdots\cdots(1) \\ 9ap-q+2b=1\cdots\cdots(2) \\ 3aq=1\cdots\cdots(3) \end{cases}$$

Sub. (3) into (1):
$$1 + b = 1$$

$$\Rightarrow b = 0$$

I1.3 Find the value of c so that the graph of y = mx + c passes through the two points (b + 4, 5) and (-2, 2).

The 2 points are: (4, 5) and (-2, 2). The slope is $\frac{5-2}{4-(-2)} = \frac{1}{2}$.

The line $y = \frac{1}{2}x + c$ passes through (-2, 2): 2 = -1 + c

$$\Rightarrow c = 3$$

I1.4 The solution of the inequality $x^2 + 5x - 2c \le 0$ is $d \le x \le 1$. Find the value of d.

$$x^2 + 5x - 6 \le 0$$

$$\Rightarrow$$
 $(x + 6)(x - 1) \le 0$

$$-6 \le x \le 1$$

$$d = -6$$

I2.1 By considering: $\frac{1^2}{1} = 1$, $\frac{1^2 + 2^2}{1 + 2} = \frac{5}{3}$, $\frac{1^2 + 2^2 + 3^2}{1 + 2 + 3} = \frac{7}{3}$, $\frac{1^2 + 2^2 + 3^2 + 4^2}{1 + 2 + 3 + 4} = 3$, find the value of a such that $\frac{1^2 + 2^2 + \dots + a^2}{1 + 2 + \dots + a} = \frac{25}{3}$.

The given is equivalent to: $\frac{1^2}{1} = \frac{3}{3}$, $\frac{1^2 + 2^2}{1 + 2} = \frac{5}{3}$, $\frac{1^2 + 2^2 + 3^2}{1 + 2 + 3} = \frac{7}{3}$, $\frac{1^2 + 2^2 + 3^2 + 4^2}{1 + 2 + 3 + 4} = \frac{9}{3}$ and $2 \times 1 + 1 = 3$, $2 \times 2 + 1 = 5$, $2 \times 3 + 1 = 7$, $2 \times 4 + 1 = 9$; so 2a + 1 = 25

- $\Rightarrow a = 12$
- **12.2** A triangular pyramid is cut from a corner of a cube with side length a cm as the figure shown. If the volume of the pyramid is b cm³, find the value of b.

$$b = \frac{1}{3} \text{ base area} \times \text{height} = \frac{1}{3} \left(\frac{\frac{1}{2} a \times \frac{1}{2} a}{2} \right) \times \frac{1}{2} a$$
$$= \frac{1}{48} a^3 = \frac{1}{48} \cdot 12^3 = 36$$

12.3 If the value of $x^2 + cx + b$ is not less than 0 for all real number x, find the maximum value of c

$$x^2 + cx + 36 \ge 0$$

$$\Delta = c^2 - 4(36) \le 0$$

$$\Rightarrow c \le 12$$

The maximum value of c = 12.

I2.4 If the units digit of 1997^{1997} is c - d, find the value of d.

$$1997^{1997} \equiv 7^{1997} \equiv 7^{4(499)+1} \equiv 7 \pmod{10}$$

The units digit of 1997¹⁹⁹⁷ is 7

$$12 - d = 7$$

$$d = 5$$

I3.1 The average of a, b c and d is 8. If the average of a, b, c, d and P is P, find the value of P.

$$\frac{a+b+c+d}{4} = 8$$

$$\Rightarrow a + b + c + d = 32$$

$$\frac{a+b+c+d+P}{5} = P$$

$$\Rightarrow$$
 32 + $P = 5P$

$$P = 8$$

I3.2 If the lines 2x + 3y + 2 = 0 and Px + Qy + 3 = 0 are parallel, find the value of Q.

Their slopes are equal:
$$-\frac{2}{3} = -\frac{8}{O}$$

$$Q = 12$$

I3.3 The perimeter and the area of an equilateral triangle are Q cm and $\sqrt{3}R$ cm² respectively. Find the value of R.

Perimeter =
$$12 \text{ cm}$$
, side = 4 cm

Area =
$$\frac{1}{2} \cdot 4^2 \sin 60^\circ = 4\sqrt{3}$$

$$R = 4$$

I3.4 If $(1+2+...+R)^2 = 1^2 + 2^2 + ... + R^2 + S$, find the value of S.

$$(1+2+3+4)^2 = 1^2 + 2^2 + 3^2 + 4^2 + S$$

$$100 = 30 + S$$

$$S = 70$$

I4.1 If each interior angle of a *n*-sided regular polygon is 140° , find the value of *n*.

Reference: 1987 FG6.3

Each exterior angle is 40° (adj. ∠s on st. line)

$$\frac{360^{\circ}}{n} = 40^{\circ}$$

$$n = 9$$

I4.2 If the solution of the inequality $2x^2 - nx + 9 \le 0$ is $k \le x \le b$, find the value of b.

$$2x^2 - 9x + 9 < 0$$

$$(2x-3)(x-3) \le 0$$

$$\frac{3}{2} < x < 3$$

$$\Rightarrow b = 3$$

14.3 If $cx^3 - bx + x - 1$ is divided by x + 1, the remainder is -7, find the value of c.

$$f(x) = cx^3 - 3x + x - 1$$

$$f(-1) = -c + 3 - 1 - 1 = -7$$

$$c = 8$$

14.4 If $x + \frac{1}{x} = c$ and $x^2 + \frac{1}{x^2} = d$, find d.

$$x+\frac{1}{x}=8$$

$$\Rightarrow \left(x + \frac{1}{x}\right)^2 = 64$$

$$x^2 + \frac{1}{x^2} + 2 = 64$$

$$d = 62$$

I5.1 The volume of a hemisphere with diameter a cm is 18π cm³, find the value of a.

$$\frac{1}{2} \cdot 4\pi \left(\frac{a}{2}\right)^2 = 18\pi$$

$$a = 6$$

I5.2 If $\sin 10a^{\circ} = \cos(360^{\circ} - b^{\circ})$ and 0 < b < 90, find the value of b.

$$\sin 60^{\circ} = \cos(360^{\circ} - b^{\circ})$$

$$360^{\circ} - b^{\circ} = 330^{\circ}$$

$$b = 30$$

I5.3 The triangle is formed by the x-axis and y-axis and the line bx + 2by = 120.

If the bounded area of the triangle is c, find the value of c.

$$30x + 60y = 120$$

$$\Rightarrow x + 2y = 4$$

x-intercept = 4, y-intercept = 2

$$c = \frac{1}{2} \cdot 4 \cdot 2 = 4$$

I5.4 If the difference of the two roots of the equation $x^2 - (c+2)x + (c+1) = 0$ is d,

find the value of d.

$$x^2 - 6x + 5 = 0$$

$$\Rightarrow$$
 $(x-1)(x-5) = 0$

$$x = 1 \text{ or } 5$$

$$\Rightarrow d = 5 - 1 = 4$$

G1.1 In the given diagram, $\angle A + \angle B + \angle C + \angle D + \angle E = a^{\circ}$, find the value of a.

In
$$\triangle APQ$$
, $\angle B + \angle D = \angle AQP$ (1) (ext. \angle of \triangle)
 $\angle C + \angle E = \angle APQ$ (2) (ext. \angle of \triangle)
 $\angle A + \angle B + \angle C + \angle D + \angle E = \angle A + \angle AQP + \angle APQ$ (by (1) and (2))
 $= 180^{\circ}$ (\angle s sum of \triangle)

$$\therefore a = 180$$

G1.2 There are x terms in the algebraic expression $x^6 + x^6 + x^6 + \dots + x^6$ and its sum is x^b . Find the value of b.

$$x \cdot x^6 = x^b$$

$$x^7 = x^b$$

$$b = 7$$

G1.3 If $1 + 3 + 3^2 + 3^3 + \dots + 3^8 = \frac{3^c - 1}{2}$, find the value of c.

$$\frac{3^9 - 1}{2} = \frac{3^c - 1}{2}$$

G1.4 16 cards are marked from 1 to 16 and one is drawn at random.

If the chance of it being a perfect square number is $\frac{1}{d}$, find the value of d.

Reference: 1995 HI4

Perfect square numbers are 1, 4, 9, 16.

Probability =
$$\frac{4}{16} = \frac{1}{d}$$

$$d = 4$$
.

G2.1 If the sequence 1, 6 + 2a, 10 + 5a, ... forms an A.P., find the value of a.

$$6 + 2a = \frac{1+10+5a}{2}$$
$$12 + 4a = 11 + 5a$$

$$\Rightarrow a = 1$$

G2.2 If $(0.0025\times40)^b = \frac{1}{100}$, find the value of b.

$$\left(\frac{1}{400}\times40\right)^b = \frac{1}{100}$$

$$\Rightarrow \frac{1}{10^b} = \frac{1}{10^2}$$

$$b = 2$$

G2.3 If c is an integer and $c^3 + 3c + \frac{3}{c} + \frac{1}{c^3} = 8$, find the value of c.

$$\left(c + \frac{1}{c}\right)^3 = 2^3$$

$$\Rightarrow \left(c + \frac{1}{c} - 2\right) \left[\left(c + \frac{1}{c}\right)^2 + 2\left(c + \frac{1}{c}\right) + 4\right] = 0$$

$$c^2 - 2c + 1 = 0$$
 or $\left(c + \frac{1}{c}\right)^2 + 2\left(c + \frac{1}{c}\right) + 4 = 0$

 \Rightarrow c = 1 or no real solution (:: $\Delta = 2^2 - 4(2)(4) < 0$)

$$\therefore c = 1$$

G2.4 There are d different ways for arranging 5 girls in a row. Find the value of d.

First position has 5 choices; 2nd position has 4 choices, ..., the last position has 1 choice.

$$d = 5 \times 4 \times 3 \times 2 \times 1 = 120$$

G3.1 Let m be an integer satisfying the inequality $14x - 7(3x - 8) \le 4(25 + x)$.

Find the least value of
$$m$$
.

$$14x - 21x + 56 \le 100 + 4x$$

$$-44 < 11x$$

$$\Rightarrow$$
 -4 < x

$$m = -3$$

G3.2 It is given that $f(x) = \frac{1}{3}x^3 - 2x^2 + \frac{2}{3}x^3 + 3x^2 + 5x + 7 - 4x$. If f(-2) = b, find the value of b.

$$f(x) = x^3 + x^2 + x + 7$$

$$f(x) = x^3 + x^2 + x + 7$$

b = f(-2) = -8 + 4 - 2 + 7 = 1

G3.3 It is given that $\log \frac{x}{2} = 0.5$ and $\log \frac{y}{5} = 0.1$. If $\log xy = c$, find the value of c.

$$\log \frac{x}{2} + \log \frac{y}{5} = 0.5 + 0.1$$

$$\log xy - 1 = 0.6$$

$$\Rightarrow c = \log xy = 1.6$$

- **G3.4** Three prime numbers d, e and f which are all less than 10, satisfy the two conditions d + e = fand $d \le e$. Find the value of d.
 - Possible prime numbers are 2, 3, 5, 7.

$$2 + 3 = 5$$
 or $2 + 5 = 7$

$$\therefore d = 2$$

G4.1 It is given that $a = 103 \times 97 \times 10009$, find the value of a.

$$a = (100 + 3)(100 - 3) \times 10009$$
$$= (10000 - 9) \times (10000 + 9)$$
$$= 100000000 - 81$$
$$a = 99999919$$

G4.2 It is given that $1 + x + x^2 + x^3 + x^4 = 0$. If $b = 2 + x + x^2 + x^3 + x^4 + \dots + x^{1989}$, find the value of b.

Reference: 2014 HI7

$$b = 1 + (1 + x + x^{2} + x^{3} + x^{4}) + x^{5}(1 + x + x^{2} + x^{3} + x^{4}) + \dots + x^{1985}(1 + x + x^{2} + x^{3} + x^{4}) = 1$$

G4.3 It is given that m and n are two natural numbers and both are not greater than 10.

If c is the number of pairs of m and n satisfying the equation mx = n, where $\frac{1}{4} < x < \frac{1}{3}$,

find the value of c.

$$\frac{1}{4} < \frac{m}{n} < \frac{1}{3} \implies \frac{n}{4} < m < \frac{n}{3}$$

$$\begin{cases} 4m - n > 0 \\ 3m - n < 0 \end{cases}$$

$$1 \le m \Rightarrow 3 \le 3m \le n \le 4m \le 4 \times 10 = 40$$

Possible
$$n = 4, 5, 6, ..., 10$$

when
$$n = 4$$
, $\frac{4}{4} < m < \frac{4}{3}$ no solution

when
$$n = 5$$
, $\frac{5}{4} < m < \frac{5}{3}$ no solution

when
$$n = 6$$
, $\frac{6}{4} < m < \frac{6}{3}$ no solution

when
$$n = 7$$
, $\frac{7}{4} < m < \frac{7}{3} \Rightarrow m = 2$, $x = \frac{2}{7}$

when
$$n = 8$$
, $\frac{8}{4} < m < \frac{8}{3}$ no solution

when
$$n = 9$$
, $\frac{9}{4} < m < \frac{9}{3}$ no solution

when
$$n = 10$$
, $\frac{10}{4} < m < \frac{10}{3} \Rightarrow m = 3$, $x = \frac{3}{10}$

$$c = 2$$
 (There are 2 solutions.)

G4.4 Let x and y be real numbers and define the operation * as $x*y = px^y + q + 1$.

It is given that 1*2 = 869 and 2*3 = 883. If 2*9 = d, find the value of d.

$$\begin{cases} p+q+1=869\\ 8p+q+1=883 \end{cases}$$
(2) - (1): 7p = 14
$$p=2, q=866$$

$$\Rightarrow d=2\times 2^9 + 866 + 1 = 1891$$

G5.1 If *a* is a positive multiple of 5, which gives remainder 1 when divided by 3, find the smallest possible value of *a* . (**Reference: 1998 FSG.1**)

$$a = 5k = 3m + 1$$

$$5 \times 2 = 3 \times 3 + 1$$

The smallest possible a = 10.

G5.2 If $x^3 + 6x^2 + 12x + 17 = (x + 2)^3 + b$, find the value of b.

Reference: 1998 FG1.4

$$(x + 2)^3 + b = x^3 + 6x^2 + 12x + 8 + b$$

 $b = 9$

G5.3 If c is a 2 digit positive integer such that sum of its digits is 10 and product of its digit is 25, find the value of c. (**Reference: 1998 FSG.3**)

$$c = 10x + y$$
, where $0 \le x \le 10$, $0 \le y \le 10$.

$$x + y = 10$$

$$xy = 25$$

Solving these two equations gives x = y = 5; c = 55

G5.4 Let $S_1, S_2, ..., S_{10}$ be the first ten terms of an A.P., which consists of positive integers.

If
$$S_1 + S_2 + ... + S_{10} = 55$$
 and $(S_{10} - S_8) + (S_9 - S_7) + ... + (S_3 - S_1) = d$, find the value of d.

Reference: 1998 FSG.4

Let the general term be $S_n = a + (n-1)t$

$$\frac{10}{2}[2a+(10-1)t]=55$$

$$\Rightarrow 2a + 9t = 11$$

 \therefore a, t are positive integers, a = 1, t = 1

$$d = (S_{10} - S_8) + (S_9 - S_7) + \cdots + (S_3 - S_1)$$

$$= [a + 9t - (a + 7t)] + [a + 8t - (a + 6t)] + \dots + (a + 2t - a)$$

Group Spare

GS.1 ABCD is a parallelogram and E is the midpoint of CD. If the ratio of the area of the triangle ADE to the area of the parallelogram ABCD is 1:a, find the value of a.

$$1: a = 1: 4$$

 $a = 4$

GS.2 ABCD is a parallelogram and E is the midpoint of CD. AE

and BD meet at M. If DM : MB = 1 : k,

find the value of k.

It is easy to show that $\triangle ABM \sim \triangle EDM$ (equiangular)

$$DM: MB = DE: AB = 1:2$$

k = 2

GS.3 If the square root of 5 is approximately 2.236, the square root of 80 with the same precision is d. Find the value of d.

$$\sqrt{80} = \sqrt{16 \times 5} = 4\sqrt{5} = 4 \times 2.236 = 8.944$$

GS.4 A square is changed into a rectangle by increasing its length by 20% and decreasing its width by 20%.

If the ratio of the area of the rectangle to the area of the square is 1:r, find the value of r.

Let the side of the square be x.

Ratio of areas =
$$1.2x \cdot 0.8x : x^2$$

$$= 0.96: 1 = 1: \frac{25}{24}$$

$$r = \frac{25}{24}$$