

Computer Vision

Vorlesung 0: Einführung

Vorlesungsüberblick – Zeitplan

Dozent:

Dr.-Ing. Xiao Zhao

Büro: STB (EG, IMLA)

Sprechstunde: Nach Absprache

xiao.zhao@hs-offenburg.de

Formal:

- 4 SWS Vorlesung + Labor
- Labor: Aufgaben am Computer

Wichtig: Der Plan kann sich noch ändern!

Regelmäßig auf den Plan schauen!

Woche	Vorlesung & Labor (Freitag)
1	21.03.2025
2	28.03.2025
3	04.04.2025
4	11.04.2025
5	18.04.2025 (Ostern)
6	25.04.2025
7	02.05.2025
8	09.05.2025
9	16.05.2025
10	23.05.2025
11 12	30.05.2025 06.06.2025
12 13	13.06.2025 (vorlesungsfrei)
14	20.06.2025 (voitesungstrei)
15	27.06.2025
15 16	04.07.2025 (optional)
	13 Termine

Überblick

Literatur:

- Burger, Burge, Digitale Bildverarbeitung Eine algorithmische Einführung, 3rd ed. (auch in Englisch), 2015
- Gonzalez, Woods, Digital Image Processing, 4th ed., 2017
- Rick Szeliski, Computer Vision: Algorithms and Applications, 2020
- Bishop, Pattern Recognition and Machine Learning, 2006
- Goodfellow, Deep Learning, 2016
- zitierte Veröffentlichungen am Ende jeder Präsentation

Informationen im Moodle Kurs "Computer Vision SS2025"

moodle-PW: **CV2025**

Vorlesung – Überblick

1. Klassische Methoden (6,5 Termine)

- Bildgewinnung: Kamera und Digitalisierung
- Filter in Ortsraum
- Filter in Frequenzraum
- Segmentierung: Kanten, Linie und Ecken Erkennung

2. Deep Learning (6,5 Termine)

- Bildklassifizierung
- Segmentierung
- Objekterkennung
- Fortgeschrittene Themen

Informationen zum Labor

Labor Termine

- Jeweils Freitag, 4. Stunde, 14:00-15:30 Uhr, B206
- Optional: Freitag, 5. Stunde, 15:45-17:15 Uhr, B206
- Anwesenheitspflicht (Abmeldung im Krankheitsfall per Mail an mich)

Übungsblätter

- Abgabefrist siehe Moodle → STRIKTE DEADLINE!*
- Abgaben in Moodle

* Verschiebung bei längerer Krankheit ggf. möglich, erfordert dann aber ein ärztliches Attest

Bestehen des Praktikums

- Das Praktikum muss separat von der Vorlesung bestanden werden!
- Zum Bestehen müssen im Durchschnitt mindestens 50% der Punkte in den Übungsblättern erreicht. Außerdem müssen in allen Übungsblättern bis auf 1 Übungblatt mind. 20% der Punkte des Übungsblattes erreicht werden.

	A1 (20)	A2 (20)	A3 (20)	A4 (20)	A5 (20)	A6 (20)	Ø	Bestanden?
Klaus	15	18	15	X (0)	18	3	11,5	Nein
Marie	15	18	15	X (0)	18	4	11,6	Ja
Klara	5	5	5	4	4	4	4,3	Nein
Peter	10	8	12	14	6	10	10	Ja

nicht abgegebene Übungsblätter gehen mit 0 Punkten in die Gesamtpunktzahl ein und beeinflussen damit den Durchschnitt!

Info zur Klausur

- Im Prinzip alles aus der Vorlesung und dem Labor (aber nicht mehr!)
- Es wird zwischen 50 70 Punkte geben
 - 100% ergeben eine 1,0
 - 50% ergeben eine 4,0
 - Dazwischen liegt ein linearer Verlauf vor
- Keine Beispielklausur
- Viele Aufgaben sind aus den Übungsblättern abgeleitet