CS141 – Intermediate Algorithms and Data Structures Assignment 2 – All Pairs Shortest Path

Matthew Lauhakamin

November 30, 2016

Abstract

1 Introduction

- What is the problem that you are solving? Given a graph with V vertices and E edges, we are finding the path with the cheapest cost.
- What methods are you going to use to solve the problem?
 - We are using the Floyd-Warshall algorithm along with the Bellman-Ford algorithm in order to solve the problem.
- Why are these good methods to use?

 These are both popular algorithms with real-world applications. They are also very efficient at solving the problem. They can also both handle negative edge weights effectively.
- Why are you going to be using both of them?

 To compare and contrast the differences in run time and efficiency.

2 Bellman-Ford

• What is the Bellman-Ford algorithm? The Bellman-Ford algorithm claims that the longest path in any graph will have at most V-1 edges with V being the number of vertices.

- Why are you using it?
 We can use it to find the minimum distance between a vertex against all other vertices.
- How did you adapt it to work for all-pairs as opposed to single source?
 I added an additional loop to iterate through all the vertices.
- What is the run-time of the algorithm before and after your adaptation?

 Before the adaption the run time is O(|V| * |E|). After the adaption the run time becomes $O(|V|^2 * |E|)$.

3 Floyd-Warshall

- What is the Floyd-Warshall algorithm? The Floyd-Warshall algorithm is able to find the shortest distance between every pair of vertices.
- Why are you using it?

 To compare it to the Bellman-Ford algorithm.
- How is it better than the Bellman-Ford algorithm? It is designed to solve our problem without adapting.
- What is the run-time of the algorithm? The run time is $O(|V|^3)$.

4 Results

• Compare and contrast the two algorithms? What makes one more suited for this problem?

	Bellman-Ford		Floyd-Warshall	
Benchmarks	O(.)	Actual	O(.)	Actual
input1.txt	O(V * E)	i0	$O(V ^3)$	i0
input10.txt	O(V * E)	i 0	$O(V ^3)$	i 0
input100.txt	O(V * E)	2.5	$O(V ^3)$	1.3

The Floyd-Warshall algorithm did not require as many modifications to work. It is faster than the Bellman-Ford algorithm. Bellman-Ford calculates the same thing even if it had been calculated before.

- What are their theoretical run-times (from the previous sections) and how do they compare? Bellman-Ford: O(|V| * |E|), Floyd-Warshall: $O(|V|^3)$.
- What are the actual run-times that you computed? Which method is better? Why? Bellman-Ford: $O(|V|^4)$, Floyd-Warshall: $O(|V|^3)$.

5 Conclusions

- What did you find difficult about the assignment?
- What did you learn?
- What is one real-world problem that you think each of these problems would be good at solving?