東大FSアプリWG 進捗報告

片桐 孝洋, 大島 聡史, 中島 研吾(東大)

米村 崇, 熊洞 宏樹, 樋口 清隆, 橋本 昌人, 高山 恒一(日立情報・通信システム社), 藤堂 眞治, 岩田 潤一, 内田 和之, 佐藤正樹, 羽角博康(東大),

黒木聖夫(海洋研究開発機構)

代理発表: 西澤 誠也(理研)

【将来HPCI調査研究「アプリ分野」第8回全体ミーティング】

日時:8月6日(火) システム設計チーム報告(進行:杉田) 14:10-15:10

場所:TKP大手町ビジネスセンター 7階ホール7A

Feasibility Study on Advanced and Efficient Latency Corebased Architecture for Future HPCI R&D

スケジュール確認

ターゲットアプリケーション群

ALPS/looper

- 新機能を持った強相関・磁性材料の物性予測・解明。虚時間経路積分にもとづく量子モンテカルロ法と厳密対角化
- 総メモリ:10~100PB
- 整数演算、低レイテンシ、高次元のネットワーク
- 利用シナリオ:1ジョブ当たり24時間、生成ファイル:10GB. 同時実行1000ジョブ、合計生成ファイル:10TB.

RSDFT

- Siナノワイヤ等、次世代デバイスの根幹材料の量子力学的第一原理シミュレーション。実空間差分法
- 総メモリ: 1PB
- 演算性能:1EFLOPS(B/F =0.1以上)
- 利用シナリオ:1ジョブ当たり10時間、生成ファイル:500TB. 同時実行10ジョブ、合計生成ファイル5 PB.

NICAM

- 長期天気予報の実現、温暖化時の台風・豪雨等の予測
- 正20面体分割格子非静力学大気モデル。水平格子数kmで全球を覆い、積雲群の挙動までを直接シミュレーション
- 総メモリ: 1PB、メモリ帯域: 300 PB/sec
- 演算性能: 100 PFLOPS (B/F = 3)
- 利用シナリオ: 1ジョブ当たり240時間、生成ファイル: 8PB. 同時実行10ジョブ、合計生成ファイル: 80 PB.

• COCO

- 海況変動予測、水産環境予測
- 外洋から沿岸域までの海洋現象を高精度に再現し、気候変動下での 海洋変動を詳細にシミュレーション
- 総メモリ: 320 TB、メモリ帯域: 150 PB/sec
- 演算性能: 50 PFLOPS (B/F = 3)
- 利用シナリオ:1ジョブ当たり720時間、生成ファイル:10TB. 同時実行100ジョブ、合計生成ファイル:1 PB.

要求性能は 「計算科学 ロードマップ自 書」(2012年3月) の見積値からの 抜粋、 およびによる 開発積値であ

性能モデル化手法

- 1. **ホットスポット同定:富士通社の**基本プロファイラで複数のホットスポット(ループレベル)を同定、全体性能の予測をホットスポットのみで行う
 - ホットスポットの部品化
 - 数理レベル(支配方程式、離散化方法)の処理ブロックとの対応を検討
- 2. カーネル分離: (目視により)計算部分、通信部分、I/O部分の分離
 - 計算部分:演算カーネル
 - 通信部分:通信カーネル
 - I/O部分: I/Oカーネル
- 3. 通信パターン確認
- 4. 詳細プロファイルと分析: 富士通社の詳細プロファイラを用い、ホットスポットごとに ハードウェア性能情報(=性能パラメタ)を取得し分析
 - 演算カーネルの 演算効率/命令発行量/キャッシュ利用効率 など
 - 通信カーネルの 通信回数/量/通信待ち時間 など
 - I/Oカーネルの データ読み書き 量/頻度 など
- 5. ベンチマーク化: ホットスポットのみで動作するようにコードを再構成
 - マシン特化の書き方、および、汎用的な書き方、の2種を区別
 - 演算カーネル、通信カーネル、I/Oカーネルの分類
- **6. 詳細モデル化と予測:ハー**ドウェア因子を用いた数式による実行時間を近似。
 - 富士通社の性能予測ツールにより、概念設計マシンの実行時間を予測

今後の予定

H25年度 理研FS選定ミニアプリ評価

- QCD
 - FX10で評価を開始済み
- Modylas
 - 東大、日立、富士通、九州大、ごとに個別に ライセンス契約を結ぶ
 - 日立と東大は契約済み。理研から、コード受け渡し 済み。
- Front Flow / Blue
 - 理研運営グループと連携。コード引き渡し済み。
- NGS Analyzer(予定)
 - ゲノム系、理研FSでミニアプリ準備中。 (8月中引き渡しを目標)

H25年度予定(1/3)

- H24年度残務作業
 - -RSDFTの通信時間解析と性能予測
 - ・性能予測中(9月中に初期評価終了を目標)
- カーネルベンチの公開
 - NICAMとCOCOについて、カーネルベンチを開発済み。
 - 入力データによらず動くように、ベンチマークを再構築中。

H25年度予定(2/3)

- 超並列向きアルゴリズム採用と性能評価
 - RSDFTの直交化処理
 - 通信回数が少ない新アルゴリズムを適用
 - CAQR (Communication Avoidance QR)
 - ・米澤CREST採択課題の筑波大櫻井グルー プと連携
 - (開発中のコードを利用させてもらう)
 - -CAQRプログラムをRSDFTに組み込み 性能評価を予定

H25年度予定(3/3)

- コード最適化
 - 1. 新規4アプリのコードチューニング を予定
 - 2. 複数の異機種環境での評価
 - FX10上の性能が妥当であるか検証するため
 - Intel、AMD、Power7での性能評価
 - Intel MIC (Xeon Phi)での性能評価
 - ・上記のコードチューニングも、一部実施予定

新規コードの評価状況 >>> QCD

QCDの性能評価: アプリケーションの概要

QCDのプログラム構成とFS向けターゲット性能

- (1) 問題サイズ(FS target)
 - * Class 4: 160x160x160x160 (default MPI config: 20x20x20)
 - * Class 5: 256x256x256x256 (default MPI config: 32x32x32)
- (2)評価対象はcloverとBiCGStab
- (3)要求性能
- BiCGStabの実行時間が3.1[ms]/ステップ以下
- clover部(clover, clover_inv)の実効性能(Flops値)が BiCGstabの20%以上

まず、入手したミニアプリに対して以下を実施

- cloverの一部に OpenMP directive を追加
- default MPI configでは最外側ループ長が8以下になるケースが多く、メニィコアプロセッサ向けSMP化

上記SMP対策を施してからプロファイルを取得

QCDの性能評価: Clover部のSMP化(1)

(1)clover関数のシリアル部へのOMP並列化の適用

【変更前】clover.h255行目

do ix=1,NX

do iy=1,NY

do iz=1,NZ

- 32x32x32の格子を4x4x4MPI分割するため 各MPIプロセスはNX x Ny x Nz = 8 x 8 x 8 を計算
- 160MPの演算負荷均等化のため、ループを 融合してループ長64にしてから分割

【変更後】

!\$OMP PARALLEL DO COLLAPSE(2)

PRIVATE(ix,iy,iz,ieoxyz,ix1,iy1,iz1,ix2,iy2,iz2,ix3,iy3,iz3,&!\$OMP&itb1,itb2,itb3,jc,ic,ve,vo)

do ix=1,NX

do iy=1,NY

do iz=1,NZ

QCDの性能評価: Clover部のSMP化(2)

(2)clover, full2linear_clv関数のOMPプロセスの演算負荷均等化

1.【変更前】clover.h 67行目

!\$OMP PARALLEL DO PRIVATE(ix,iy,iz,ieoxyz,itb,ic,jc,ix2,iy2,iz2,itb2,ix4,iy4,iz4,itb4)

【変更後】

!\$OMP PARALLEL DO COLLAPSE(2)

PRIVATE(ix,iy,iz,ieoxyz,itb,ic,jc,ix2,iy2,iz2,itb2,ix4,iy4,iz4,itb4)

2.【変更前】clover.h 162行目

!\$OMP PARALLEL DO PRIVATE(ix,iy,iz,ieoxyz,itb,ic,jc,ix5,iy5,iz5,itb5,ix6,iy6,iz6,itb6)

【変更後】

!\$OMP PARALLEL DO COLLAPSE(2) SCHEDULE(STATIC,2)

PRIVATE(ix,iy,iz,ieoxyz,itb,ic,jc,ix5,iy5,iz5,itb5,ix6,iy6,iz6,itb6)

3.【変更前】full2linear_clv.h90 43行目

!\$OMP PARALLEL DO PRIVATE(iy,iz,ieoxyz,itb,itb0)

【変更後】

!\$@MP PARALLEL DO COLLAPSE(2) PRIVATE(iy,iz,ieoxyz,itb,itb0)

QCDの性能評価: Clover部のSMP化(3)

(3)clvinv_ldl関数(clvinv_ldl.h90)のOMPプロセスの負荷均等化

```
【変更前】 clvinv_ldl.h90 31行目
!$OMP PARALLEL PRIVATE(ics,jcs)
!$OMP DO
do jcs=1,CLSP/2
do ics=1,CLSP/2
 zunit(ics,jcs)=(0.0d0,0.0d0)
enddo
enddo
!$OMP END DO
!$OMP DO
do ics=1,CLSP/2
 zunit(ics,ics)=(1.0d0,0.0d0)
enddo
!$OMP END DO
!$OMP END PARALLEL
```

```
【変更後】
!$OMP PARALLEL PRIVATE(ics,jcs)
!$OMP DO COLLAPSE(2)
do jcs=1,CLSP/2
do ics=1,CLSP/2
  if (ics .eq. jcs) then
  zunit(ics, jcs) = (1.0d0, 0.0d0)
  else
  zunit(ics,jcs)=(0.0d0,0.0d0)
 end if
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
```

QCDの性能評価: Clover部の基本プロファイル

32x32x32x160 (4x4x4並列)プロシージャープロファイル

対策前

Cost	%	Operation (S)	Start	End	
1386	61	14. 0	1	345	clover_
276	12	2. 8			brk
154	7	1. 6	119	155	ldlbksbOMP_17_
84	4	0.8	175	203	ldldcmpOMP_18_
69	3	0. 7	162	238	cloverOMP_8_
51	2	0. 5	43	98	full2linear_clvOMP_26_
49	2	0. 5	49	61	clvinv_ldlOMP_14_
44	2	0. 4	67	141	cloverOMP_7_
33	1	0. 3	642	656	comlib.comlib_sumcast_r8_

対策後

						メモリ確保時間が大きい	
Cost	%	Operation (S)	Start	End		原因は現在解析中	
271	24	2.8			_brk	が四は死江州が十	
223	20	2.3	642	656	comlib.co	omlib_sumcast_r8_	
144	13	1.5	118	154	ldlbksb0	OMP_17_	
89	8	0.9	174	202	ldldcmp	OMP_18_	
72	6	0.7	256	339	clover(O	MP化)	
57	5	0.6	162	256	clover0	MP_8_	
52	5	0.5	67	141	clover0	MP_7_	
45	4	0.5	48	60	clvinv_ldl	_OMP_14_	
33	3	0.3	43	98	full2linea	r_clvOMP_26_	
30	3	0.3	99	118	clover_f1	f2OMP_12_	

QCDの性能評価: BiCG部のSMP化

(1)BiCGstab_hmc関数のOMPプロセスの演算負荷均等化

1.【変更前】bicgstab_hmc.h90 138行目 !\$OMP PARALLEL DO PRIVATE(ix,iy,iz,ieoxyz,itb,ic,is) REDUCTION(+:ctmp0)

【変更後】

!\$OMP PARALLEL DO COLLAPSE(2) PRIVATE(ix,iy,iz,ieoxyz,itb,ic,is) REDUCTION(+:ctmp0)

2. bicgstab_hmc.h90 166行目, 221行目, 254行目, 305行目も同様

(2)copy_y関数のOMPプロセスの演算負荷均等化

1.【変更前】copy_y. h90 26行目 !\$OMP PARALLEL DO PRIVATE(ix,iy,iz,ieoxyz,itb0,itb1,ic,is)

!\$OMP PARALLEL DO COLLAPSE(2) PRIVATE(ix,iy,iz,ieoxyz,itb0,itb1,ic,is)

2.【変更前】copy_y.h90 46行目, 61行目, 85行目, 104行目, 118行目, 140行目, 158行目, 172行目, 194行目も同様

QCDの性能評価: BiCG部の基本プロファイル

32x32x32x160 (4x4x4並列)プロシージャープロファイル

対策前

Cost	%	Operation (S)	Start	End	
7901	31	79.2	34	691	mult_eo_tzyxOMP_31_
6770	27	67.8	463	477	comlib.comlib_sendrecv_c16_
1432	6	14.3	254	275	bicgstab_hmcOMP_5_
1199	5	12.0	1	214	copy_y_
986	4	9.9	138	153	bicgstab_hmcOMP_2_
794	3	7.9	166	185	bicgstab_hmcOMP_3_
771	3	7.7	221	238	bicgstab_hmcOMP_4_
648	4	6.5	52	67	mult_mb_preOMP_33_
576	2	5.8	85	118	copy_yOMP_21_

対策後

Cost	%	Operation (S)	Start	End		
7876	35	79.0	34	691	mult_eo_tzyxOMP_31_	←─カーネル
6856	30	68.7	463	477	comlib.comlib_sendrecv_c16_	
810	4	8.1	254	275	bicgstab_hmcOMP_5_]]
799	4	8.0	166	185	bicgstab_hmcOMP_3_]
706	3	7.1	305	321	bicgstab_hmcOMP_6_	- その他
681	3	6.8	52	67	mult_mb_preOMP_33_	
571	3	5.7	138	153	bicgstab_hmcOMP_2_]]
553	2	5.5	528	539	comlib.comlib_barrier_	
529	2	5.3	642	656	comlib.comlib_sumcast_r8_	

QCDの性能評価: チューニング結果(FX10)

QCDの性能評価: 通信分析(1/2)

QCDのデータ分割方法と通信パターン

図中の数字はMPIプロセス 番号を示す

(1)データ分割

•4次元空間の内、xyzの空間3次元を 分割してMPIプロセスにマッピング

(2)通信パターン

- ・隣接空間を担当するMPIプロセス間で 境界データを交換
- *xyz格子の端は周期境界となるように MPIプロセス間で境界データを交換
- 1要素のMPI_allreduce

QCDの性能評価: 通信分析(2/2)

Bicgstab内部の通信の種類、通信長と回数の解析結果

解析条件:格子数32x32x360(4x4x4分割)

反復回数 Iter= 359(=180ステップ * 2-1)

通信関数	実行関数	データ種類	通信長[B]	回数	回数の式
MPI_Allreduce	bicgstab_hmc	real(8)	8	539	1.5*Iter+初期1回
MPI_Allreduce	bicgstab_hmc	complex(8)	16	538	1.5回*Iter
MPI_Barrier	сору_у			718	2回*Iter
MPI_Sendrecv	сору_у	complex(8)	995328	4308	12回*Iter

995328[B]=3(カラー)×4(スピン)×81×8×8×16[B]

81=T方向160の半分の80に 1を追加

8=32要素/4並列

clover部の通信の種類, 通信長と回数の解析結果

通信関数	実行関数	データ種類	通信長[B]	回数
MPI_Allreduce	clvinv_ld	real(8)	8	4