Classification confidence via 2D embeddings

Guillem Pascual Guinovart 03/12/2020

MOTIVATION

TRIPLET LOSS 101

TRIPLET LOSS 101

Minimize d(A, P)Maximize d(A, N)

Minimize $max(d(A, P) - d(A, N) + \alpha, 0)$

TRIPLET LOSS TYPES

Easy & Semi-hard Triplets

$$d(A, N) > d(A, P) [+\alpha]$$

Hard Triplet

TRIPLET LOSS TYPES

TRIPLET LOSS DRAWBACKS

- Margin hyper-parameter
 - Low values might cause worse convergence
 - High values can cause an ever-expanding space

- Batch hard or batch all?
 - Sampling strategy?

Provides no feedback on the embedding

OBJECTIVES

- Create a confidence measure over embeddings
 - Triplet loss
 - Medical Image
 - OOD
 - Etc.

N-CENTROIDS LOSS

NCL: NORMALIZED SPACE

- Problem: High values can cause an ever-expanding space
- Solution: Normalized embedding space

$$E = \frac{E}{\|E\|_2}$$

A
$$(p-1)$$
-sphere in \mathbb{R}^p

NCL: METRICS

- Distance metrices (||u|| = ||v|| = 1)
 - Euclidean distance (A)

$$||u - v||_2 = \sqrt{(u - v)^2}$$

• Cosine similarity (B)

$$u \cdot v$$

• Great-circle distance (C)

$$2\sin^{-1}(\|u-v\|_2)$$

Derived of Haversine formula

NCL: IMPLEMENTATION CONSIDERATIONS

$$sin^{-1}$$
: $[-1,1] \rightarrow [\pi/2,\pi/2]$
 $||u-v||_2$: $([-1,1],[-1,1]) \rightarrow [0,1]$

But, our friend floating point error makes $||u-v||_2$: $([-1,1],[-1,1]) \rightarrow (0-\epsilon,1+\epsilon)$

Thus, our implementation must be

$$2\sin^{-1}(\max(0,\min(1,\|u-v\|_2)))$$

NCL: STUDY CASE

NCL: CENTROID TRIPLETS

- Problem: Batch all or batch hard
- Solution: Triplets using centroids
 - d(A, P): Minimize distance to own centroid
 - d(A, N): Maximize distance to closest "negative" centroid

NCL: CENTROID SETS

- Problem: Batch all or batch hard
- Solution: Sets using centroids
 - d(A, P): Minimize distance to own centroid
 - Hard d(A, N): Maximize distance to closest "negative" centroid
 - Easy d(A, N): Maximize distance to all other centroids

NCL: FORMULATION

- Problem: Batch all or batch hard
- Solution: Sets using centroids

NCL: PLEASE HAVE MERCY

- Problem: Batch all or batch hard
- Solution: Sets using centroids

$$d(A,P) \qquad d(A,N)$$

$$d(\star,\bullet) - \left(d(\star,\bullet) + K^{-1} \sum_{i}^{K} d(\star_{i} \neq \star,\bullet)\right)$$
Hard Easy

NCL: FINDING CENTROIDS (1)

1. Choose any random K centroids

NCL: FINDING CENTROIDS (2)

- 1. Choose any random K centroids
- 2. Forward a batch

NCL: FINDING CENTROIDS (3)

- 1. Choose any random K centroids
- 2. Forward a batch
- 3. Update each centroid as

$$\star' = N^{-1} \sum_{i}^{N} \bullet \text{ (element wise)}$$

$$\star' = \star' / || \star' ||$$

$$\star = \alpha \star' + (\alpha - 1) \star$$

$$\star = \star / || \star ||$$

NCL: FINDING CENTROIDS (4)

- 1. Choose any random K centroids
- 2. Forward a batch
- 3. Update each centroid as

$$\star' = N^{-1} \sum_{i}^{N} \bullet \text{ (element wise)}$$

$$\star' = \star' / || \star' ||$$

$$\star = \alpha \star' + (\alpha - 1) \star$$

$$\star = \star / || \star ||$$

4. Backward and re-iterate from 2

NCL: FINDING CENTROIDS (α)

- Prefer fast modifications at first
- Decay to 0 but allow modifications

$$\alpha = 0.25 \cdot 0.65^{iter/_{1000}}$$

NCL: BACK TO THE SPHERE

- Consider the following cases
 - Problem: Opposing terms in the loss
 - Solution: We ignore it

NCL: REASON 1

d(A, P) > d(A, N)

It will move to its centroid

d(A, P), d(A, N) "same direction" N-d might be a problem

NCL: REASON 2

• I lied, the loss is $d(\star, \bullet) - (\alpha > 0) \cdot \left(d(\star, \bullet) + K^{-1} \sum_{i=0}^{K} d(\star \neq \star, \bullet) \right)$

When α is 0, we don't have a negative term

NCL: STUDY CASE

NCL: STUDY CASE

CONFIDENCE ESTIMATE

CE: BACK TO NCL

- Both (A) and (B) are eval/test
- How good is their embedding?
 - 1. Look at classification prob.
 - 2. Check proximity to nearest centroid

CE: P(y|x)

- 1. Look at classification probability
 - NNs output probabilities are not well calibrated [1]
 - NNs tend to be overconfident under dataset shifts and out of distribution samples [2]

CE: PROXIMITY

- 2. Check proximity to nearest centroid
 - Naïve!

$$C(A) = 90\%$$

$$C(B) = 60\%$$

 It only works if the embedding is perfect. At which point, why would you need confidence?

CE: $N(\mu, \sigma)$ TO THE RESCUE

CE: 1D SAMPLE CASE

CE: 1D SAMPLE CASE

CE: WHAT THEN?

- During training
 - Place a Normal with diagonal covariance at the sample's centroid
 - Optimize for the σ that gives the highest probability for each sample
 - Negative Log Likelihood (NLL)
- During inference
 - Use σ as a threshold (i.e. valid if > x)

CE: CAN WE DO BETTER?

- Normal distributions work over the whole space
- Switch to a distribution specialized to spheres
 - Von Mises-Fisher
 - $\mu \in \mathbb{R}^p$ mean direction
 - $\kappa \in \mathbb{R}$ concentration

ARCHITECTURE

ARCHITECTURE: VI

Minimize vMF + NCL

ARCHITECTURE: v2

Minimize vMF + NCL + CE

ARCHITECTURE: EMBEDDING CLS

RESULTS (MNIST)

MNIST RESULTS

MNIST 2D EMBEDDING

MNIST CONF AT 2D

MNIST CONF AT 1024D

OOD FASHION MNIST

OOD PROB vs CONF

RESULTS (CIFAR-10)

CIFAR-10 RESULTS

truck

CIFAR-10 BOX-PLOTS

CIFAR-10 RESULTS

RESULTS (CIFAR-100)

CIFAR-100 2D

beaver

CIFAR-100 3D

CIFAR-100 RESULTS

	1024D	2D	3D	4D	5D
TRAIN	85.0%	21.8%	52.8%	62.8%	68.2%
EVAL	71.4 ±0.35	20.2%	47.2%	58.6%	62.6%
EVAL REL.		-	+27.0	+11.2	+4.0

ACC @80%	1024D (@5D)	2D	3D	4D	5D
EVAL	80.2%	22.9%	55.9%	68.4%	73.2%

CIFAR-100 RESULTS

CIFAR-100 RESULTS

CONCLUSIONS

SUM UP

- NCL overperforms TL
 - TL still wins in Deep Metric Learning

- Can be coupled with Cross Entropy and acts as a regularizer
- Provides confidence estimates
 - OOD detection

FUTURE STEPS

- Confidence needs calibration
 - $[0,1000] \rightarrow [0,1]$
 - Compare with OOD papers [ECE + Brier]
- Higher dimensionality
 - Would help with CIFAR-100, TinyImagenet, etc.