Multiplier for Positive Unsigned Nos | 1 0 1 (13) Multiplicand(M) | 0 1 1 (11) Multiplier (a) | 1 0 1 0 1 | 1 0 1 | 0 0 0 | 0 0 0

(143) Product

Bit of outgoing partial broduct
PP(i+1)

COMBINATIONAL ARRA MULTIPLIER

$Q_{i} = 1$
Add multiplicand
Delay Computation
First row: Sinu all incoming PP bits, PPo = 0,
only AND gates needed: -> 1 tpd> 1. Rous 2e3: Cus 1 e 2 contribute to longest
Signal path
h-2 rows Each row: 4 Hpd. $\longrightarrow 2 \times 2 = H tpd$ in each
(h-2) \downarrow aloy. No of rows = 2. Total \Rightarrow 2 x 4 = 8 tpd. L \Rightarrow (B)
Last Row RCA: 8 thd -> 3)
$n \text{ bit}: 2n \text{ tpd.} \longrightarrow \mathbb{C}$

Total dulay =
$$D + 23 + 8$$

 $1 + 8 + 8$
= 17 tpd

Total alloy:
$$A + B + C$$

= $1 + (n-2) + 2n$
= $1 + 4n - 8 + 2n$
= $6n - 7$
= $6n - 6 - 1$
= $6(n-1) - 1$

Observation

- Easy to undirestand

- Many gates

Mixture of combinational array technique
and sequential technique

L>1655 combinational logic

Combinational logic

Gequential logic