Cyclistic Case Study: How Does a Bike-Share Navigate Speedy Success?

♦ 1. Business Task

The objective of this case study is to analyze how **casual riders** and **annual members** use Cyclistic bikes differently. Based on insights from user behavior, the marketing team aims to design effective strategies to **convert casual riders into annual members**, there by increasing customer lifetime value.

	cyclic tripdata ☆ 🖭 🛆 File Edit View Insert Format	Data Tools E	xtensions Help					¹ □		合 Share ▼	+
C	२ 5 2 高 号 100% ▼ £	% .0 .00	123 Defaul ▼ - 10 +	B I ≎ .	<u>A</u> <u>&</u> ⊞	53 → 畫 → .	<u>↓</u> + ÷ + A	• () (. 7 = -	Σ	^
NN - fx = 032-C32											
	E	F	G	н	1	J	К	L	М	N	0
1	start_station_name =	start_station_ =	end_station_name =	end_station =	start_lat =	start_Ing =	end_lat =	end_Ing =	member_ca: =	ride_length =	day_of_weel =
2	Wacker Dr & Washington St	KA1503000072	McClurg Ct & Ohio St	TA1306000029	41.88314336	-87.63724208	41.89259212	-87.61728913	member	0:13:57	3
3	Halsted St & Wrightwood Ave	TA1309000061	Racine Ave & Belmont Ave	TA1308000019	41.92914748	-87.64915276	41.939743	-87.658865	member	0:05:04	7
4	Southport Ave & Waveland Ave	13235	Broadway & Cornelia Ave	13278	41.948226	-87.6640712	41.945529	-87.646439	member	0:11:36	5
5	Southport Ave & Waveland Ave	13235	Southport Ave & Roscoe St	13071	41.948226	-87.6640712	41.943739	-87.66402	member	0:03:34	5
6	Southport Ave & Waveland Ave	13235	Southport Ave & Roscoe St	13071	41.948226	-87.6640712	41.943739	-87.66402	member	0:02:34	5
7	Halsted St & 21st St	13162	Halsted St & 18th St	13099	41.85377981	-87.64660299	41.85750568	-87.64599144	member	0:01:49	5
8	Halsted St & Wrightwood Ave	TA1309000061	Southport Ave & Wrightwood Ave	TA1307000113	41.929143	-87.649077	41.928773	-87.663913	member	0:03:55	1
9	Stave St & Armitage Ave	13266	Canal St & Madison St	13341	41.917741	-87.691392	41.882409	-87.639767	member	0:18:10	6
10	Larrabee St & Kingsbury St	TA1306000009	Ogden Ave & Race Ave	13194	41.897764	-87.642884	41.891795	-87.658751	member	0:04:56	2
11	Albany Ave & Bloomingdale Ave	15655	Campbell Ave & Fullerton Ave	15648	41.91402671	-87.70512646	41.92463247	-87.68930701	member	0:06:50	4
12	DuSable Lake Shore Dr & Wellington Ave	TA1307000041	Broadway & Barry Ave	13137	41.93668845	-87.63682902	41.93758232	-87.64409781	member	0:31:18	2
13	Clark St & Drummond PI	TA1307000142	Clark St & Newport St	632	41.931248	-87.644336	41.94454	-87.654678	member	0:07:00	
14	Larrabee St & Kingsbury St	TA1306000009	Ogden Ave & Chicago Ave	TA1305000020	41.897764	-87.642884	41.89636246	-87.65406127	member	0:05:34	6
15	Larrabee St & Kingsbury St	TA1306000009	State St & Pearson St	TA1307000061	41.897764	-87.642884	41.897448	-87.628722	member	0:08:06	4
16	Calumet Ave & 18th St	13102	Calumet Ave & 18th St	13102	41.85761755	-87.61941075	41.85761755	-87.61941075	member	0:01:49	2
17	Sheffield Ave & Webster Ave	TA1309000033	Halsted St & Clybourn Ave	331	41.92154	-87.653818	41.909668	-87.648128	member	0:05:01	6
18	Canal St & Jackson Blvd	13138	Halsted St & Polk St	TA1307000121	41.878125	-87.639968	41.87184	-87.64664	member	0:03:27	5
19	California Ave & Fletcher St	15642	Kosciuszko Park	15643	41.93842879	-87.69800776	41.93058537	-87.72377736	member	0:15:55	7
20	Hermitage Ave & Polk St	13080	Wood St & Taylor St (Temp)	13285	41.871514	-87.669886	41.86926522	-87.67373085	member	0:02:30	6
21	Racine Ave & 15th St	13304	Stetson Ave & South Water St	TA1308000029	41.861267	-87.656625	41.886835	-87.62232	casual	0:20:13	5
22	Central Park Ave & Elbridge Ave	15644	Kimball Ave & Belmont Ave	KA150400009X	41.93533728	-87.71688929	41.93939395	-87.71206766	member	0:28:19	2
23	Morgan St & Polk St	TA1307000130	Desplaines St & Jackson Blvd	15539	41.871737	-87.65103	41.8781189	-87.6439476	member	0:06:38	2
24	Ritchie Ct & Banks St	KA1504000134	Stetson Ave & South Water St	TA1308000029	41.906866	-87.626217	41.886835	-87.62232	member	0:16:44	5
25	Aberdeen St & Jackson Blvd	13157	Desplaines St & Jackson Blvd	15539	41.87787306	-87.65477872	41.8781189	-87.6439476	member	0:03:44	6
26	Clinton St & Roosevelt Rd	WL-008	Desplaines St & Jackson Blvd	15539	41.86711778	-87.64108796	41.8781189	-87.6439476	member	0:07:10	5
27	Shedd Aquarium	15544	DuSable Lake Shore Dr & North Blvd	LF-005	41.86722596	-87.61535539	41.911722	-87.626804	member	0:39:29	5
28	Sheffield Ave & Willow St	TA1306000032	Sheffield Ave & Willow St	TA1306000032	41.913688	-87.652855	41.913688	-87.652855	member	0:03:28	4

Fig 1 - Cyclistic Trip Dataset with Created Columns
This is the cleaned Cyclistic bike-share dataset. Two new columns —
ride_length and day_of_week — were created to calculate ride duration (in
hh:mm: ss) and identify the day each ride started (1 = Sunday, 7 = Saturday).

♦ 2. Data Source

The dataset cyclic tripdata.csv contains 12 months of bike trip data, including:

- Ride timestamps
- Station information
- Ride types
- User types (casual or member)

To protect user privacy, no personally identifiable information is included.

♦ 3. Data Cleaning & Preparation

Using Google Sheets:

- Created a ride_length column to calculate ride duration in minutes
 (ended_at started_at) * 24 * 60
- Added day of week using the WEEKDAY () function
- Removed trips with missing data or non-positive durations
- Used Pivot Tables to aggregate metrics for deeper analysis

♦ 4. Data Analysis & Visualizations

W Key Metrics:

• Average ride length:

• Casual: ~14.7 minutes

∘ Member: ~10.0 minutes

• Total Rides by Day of Week:

- Casual riders are more active on weekends
- Members ride more on weekdays likely commuting

Average Ride Duration by Day:

- Casuals ride longest on Saturday(~17.7 mins)
- Members' ride time is consistent across all days

Figure 5: Pivot Table Showing Average Ride Length for Casual and Member Riders

This pivot table displays the **overall** average ride time for both rider categories.

Fig 2 – Pivot table showing the average ride duration for casual and member riders across all days of the week.

Fig 3 -Total Number of Rides Taken per Day by Casual and Member Riders This pivot table and bar chart show the ride count distribution across the week.

Visuals Included:

- Bar chart: Total rides by day of week (casual vs member)
- Bar chart: Average ride length by rider type
- Line chart: Avg ride length by day (casual vs member)

5. Key Insights

- 1. Casual riders ride **longer** and mostly on **weekends**.
- 2. Members ride shorter distances, mostly on weekdays.
- 3. Casual usage shows a **leisure pattern**(Free time, enjoyment), while members ride for **commute**(Daily travel to work/school).
- 4. This pivot table displays the **overall average ride time** for both rider categories.

♦ 6. Recommendations(important)

- 1. Offer weekend discounts to casual riders to promote membership during peak usage times.
- 2. Promote membership plans, highlighting commute benefits like cost savings and faster access.
- 3. Run targeted digital ad campaigns on social media or navigation apps promoting member-only perks.

♦ 7. Tools Used

- Google Sheets
- Pivot Tables
- Charts (Bar, Line)
- Basic Excel functions (WEEKDAY (), math, filter)
- \checkmark This case study demonstrates the power of data to drive strategic marketing decisions.