

测控技术与仪器专业 上机实验报告

姓名:		字	号:	
年级班级:		_课程名称:	MATLAB 程序设	计与实践
上机日期:	2020/10/7		指导教师:	周怡然
1,				
>> syms y x				
>> y=dsolve	e(D2y+y=cos(2*	x)','Dy(0)=0',	'y(0)=1','x')	
L				
y =				
(5*cos(y))/3	$+ \sin(\mathbf{v})*(\sin(3*$	$(\mathbf{v})/6 + \sin(\mathbf{v})$	/2) - (2*cos(v)*(6*	$\tan(x/2)^2 - 3 \tan(x/2)^4$
	$\sin(x)^{-1}(\sin(3)^{-1})$	$X_{j}/O + SIII(X_{j})$	(2) - (2 COS(X) (0	tan(X/Z)/Z = 3/tan(X/Z)/4
-)). (2 (****	-())			
>> y1=simp	lify(y)			
y1 =				
1 (0% : ()	20.44.72			
$1 - (8*\sin(x/$	2)^4)/3			

2,

```
>> syms x y
>> syms a b c
>> [x1,y2]=solve(a*x^2+b*y+c,x+y,x,y)

x1 =

(b - (b^2 - 4*a*c)^(1/2))/(2*a)
(b + (b^2 - 4*a*c)^(1/2))/(2*a)

y2 =

-(b - (b^2 - 4*a*c)^(1/2))/(2*a)
-(b + (b^2 - 4*a*c)^(1/2))/(2*a)
```

3、

```
>> syms x y c
>> x3=solve(5*x+c-y,x)
x3 =
y/5 - c/5
```

4、

5、

(1)

>> x=-5:0.5:5>> $y=x.^3+x+1$

>> plot(x,y,'.-k','MarkerSize',16);

图 1 y=x³+x+1 函数曲线(.标记)

通过鼠标双击图 1 中曲线,在弹出窗口中修改标记和 x 轴坐标范围

图 2 y=x³+x+1 函数曲线标记更改过程

图 3 y=x³+x+1 函数曲线(☆标记)

(2)

>> funtool

图 4 通过 funtool 绘制的 y=x³+x+1 函数曲线

图 5 通过 funtool 绘制的 y=x3+x+1 二阶导数函数曲线

6,

>> syms t

>> t=0:0.8:8;

>> y=1-2.*exp(-t).*sin(t)

y =

	1.000	00 ().3553	0.5964	0.8774	1.0048	1.0277	1.0164
1	.0047	0.9996	0.99	0.9	993			

>> plot(t,y,'-ob');

>> xlabel('时间')

ylabel('振幅')

title('指数')

图 6 函数 y=1-2e^{-t}sint 图形绘制