

FINITE SIMPLE LABELED GRAPH C^* -ALGEBRAS OF CANTOR MINIMAL SUBSHIFTS

JA A JEONG[†], EUN JI KANG[†], SUN HO KIM^{†,*}, AND GI HYUN PARK[‡]

ABSTRACT. It is now well known that a simple graph C^* -algebra $C^*(E)$ of a directed graph E is either AF or purely infinite. In this paper, we address the question of whether this is the case for labeled graph C^* -algebras recently introduced by Bates and Pask as one of the generalizations of graph C^* -algebras, and show that there exists a family of simple unital labeled graph C^* -algebras which are neither AF nor purely infinite. Actually these algebras are shown to be isomorphic to crossed products $C(X) \times_T \mathbb{Z}$ where the dynamical systems (X, T) are Cantor minimal subshifts. Then it is an immediate consequence of well known results about this type of crossed products that each labeled graph C^* -algebra in the family obtained here is an AT algebra with real rank zero and has \mathbb{Z} as its K_1 -group.

1. INTRODUCTION

With the motivation to provide a common framework for studying the ultragraph C^* -algebras ([30, 31]) and the shift space C^* -algebras (see [7, 8, 26] among others), Bates and Pask [3] introduced the C^* -algebras associated to labeled graphs (more precisely, labeled spaces). Graph C^* -algebras (see [2, 5, 24, 25, 29] among many others) and Exel-Laca algebras [13] are ultragraph C^* -algebras and all these algebras are defined as universal objects generated by partial isometries and projections satisfying certain relations determined by graphs (for graph C^* -algebras), ultragraphs (for ultragraph C^* -algebras), and infinite matrices (for Exel-Laca algebras). In a similar but more complicated manner, a labeled graph C^* -algebra $C^*(E, \mathcal{L}, \mathcal{B})$ is also defined as a C^* -algebra generated by partial isometries $\{s_a : a \in \mathcal{A}\}$ and projections $\{p_A : A \in \mathcal{B}\}$, where \mathcal{A} is an alphabet onto which a *labeling map* $\mathcal{L} : E^1 \rightarrow \mathcal{A}$ is given from the edge set E^1 of the directed graph E , and \mathcal{B} , an *accommodating set*, is a set of vertex subsets $A \subset E^0$ satisfying certain conditions. The family of these generators is assumed to obey a set of rules regulated by the triple $(E, \mathcal{L}, \mathcal{B})$ called a *labeled space* and moreover it should be universal in the sense that any C^* -algebra generated by a family of partial isometries and projections satisfying the same rules must be a quotient algebra of $C^*(E, \mathcal{L}, \mathcal{B})$. The universal property allows the group \mathbb{T} to act on $C^*(E, \mathcal{L}, \mathcal{B})$ in a canonical way, and this action γ (called the *gauge action*) plays an important role throughout the study of generalizations

2000 *Mathematics Subject Classification.* 46L05, 46L55, 37A55.

Key words and phrases. labeled graph C^* -algebra, finite C^* -algebra, Cantor minimal system.

Research partially supported by NRF-2012R1A1A2008160[†] and NRF-2015R1C1A2A01052516[†].

Research partially supported by Hanshin University[‡].

Research partially supported by BK21 PLUS SNU Mathematical Sciences Division*.

of the Cuntz-Krieger algebras. The Cuntz-Krieger algebras [10] (and the Cuntz algebras [9]) are the C^* -algebras of finite graphs from which many generalizations have emerged in various ways including the C^* -algebras of higher-rank graphs whose study started in [23].

Simplicity and pure infiniteness results for labeled graph C^* -algebras are obtained in [4], and particularly it is shown that there exists a purely infinite simple labeled graph C^* -algebra which is not stably isomorphic to any graph C^* -algebras. Thus we can say that the class of simple labeled graph C^* -algebras is strictly larger than that of simple graph C^* -algebras. As is shown in [31], every simple ultragraph C^* -algebra is either AF or purely infinite, whereas we know from [27] that among higher rank graph C^* -algebras there exist simple C^* -algebras which are neither AF nor purely infinite, more specifically there exist such simple C^* -algebras which are stably isomorphic to irrational rotation algebras or Bunce-Deddens algebras. These examples of finite (but non-AF) simple C^* -algebras associated to higher rank graphs raise a natural question of whether there exist labeled graph C^* -algebras that are simple finite but non-AF. The purpose of this paper is to answer this question positively by providing a family of such simple labeled graph C^* -algebras. The C^* -algebras in this family are AT-algebras (limit circle algebras) with traces that are isomorphic to crossed products $C(X) \times_T \mathbb{Z}$ of Cantor minimal systems (X, T) , where the compact metric spaces X are subshifts over finite alphabets.

A dynamical system (X, T) consists of a compact metrizable space X and a transformation $T : X \rightarrow X$ which is a homeomorphism. This determines a C^* -dynamical system $(C(X), \mathbb{Z}, T)$ where $T(f) := f \circ T^{-1}$, $f \in C(X)$ and thus gives rise to the crossed product $C(X) \times_T \mathbb{Z}$. If two dynamical systems (X_i, T_i) , $i = 1, 2$, are topologically conjugate, namely if there is an homeomorphism $\phi : X_1 \rightarrow X_2$ satisfying $T_2(\phi(x)) = \phi(T_1(x))$ for all $x \in X$, then it is rather obvious that the crossed products are isomorphic. As a consequence of the Markov-Kakutani fixed point theorem, one can show that there exists a Borel probability measure m on X which is T -invariant in the sense that $m \circ T^{-1} = m$ (for example, see [11, Theorem VIII. 3.1]). If there exists a unique T -invariant measure, we call (X, T) *uniquely ergodic*. If X is the only non-empty closed T -invariant subspace of X , the system (X, T) is said to be *minimal*, and as is well known, a dynamical system (X, T) is minimal if and only if each T -orbit $\{T^i x : i \in \mathbb{Z}\}$, $x \in X$, is dense in X . A Cantor space is characterized as a compact metrizable totally disconnected space with no isolated points, and a dynamical system (X, T) on a Cantor space X is called a *Cantor system*. The family of Cantor minimal systems is important for the study of whole minimal dynamical systems in view of the fact that every minimal system is a factor of a Cantor minimal system (see [15, Section 1]).

For a dynamical system (X, T) on an infinite space X , the crossed product $C(X) \times_T \mathbb{Z}$ is well known to be simple exactly when the system (X, T) is minimal. In particular, if (X, T) is a minimal dynamical system on a Cantor space X , this simple crossed product turns out to be an AT-algebra, an inductive limit of finite direct sums of matrix algebras over \mathbb{C} or $C(\mathbb{T})$ (for example, see [11, Chapter VIII]). It should be noted here that these simple crossed products $C(X) \times_T \mathbb{Z}$ of Cantor minimal systems are never AF since their K_1 groups are all equal to \mathbb{Z} , hence nonzero ([16, Theorem 1.4]).

For a finite alphabet \mathcal{A} ($|\mathcal{A}| \geq 2$), the set $\mathcal{A}^{\mathbb{Z}}$ of all two-sided infinite sequences becomes a compact metrizable space in the product topology and forms a dynamical system $(\mathcal{A}^{\mathbb{Z}}, T)$ together with the shift transformation T given by $T(\omega)_i := \omega_{i+1}$, $\omega \in \mathcal{A}^{\mathbb{Z}}$, $i \in \mathbb{Z}$. If $X \subset \mathcal{A}^{\mathbb{Z}}$ is a T -invariant closed subspace, we call the dynamical system (X, T) a *subshift* of $(\mathcal{A}^{\mathbb{Z}}, T)$. For a sequence $\omega \in \mathcal{A}^{\mathbb{Z}}$, let \mathcal{O}_{ω} denote the closure of the T -orbit of ω . Then, as is well known, the subshift $(\mathcal{O}_{\omega}, T)$ becomes a Cantor minimal system whenever ω is an almost periodic and aperiodic sequence.

In order to explain how we form a labeled space from a Cantor minimal subshift $(\mathcal{O}_{\omega}, T)$, let $E_{\mathbb{Z}}$ be the directed graph with the vertex set $\{v_n : n \in \mathbb{Z}\}$ and the edge set $\{e_n : n \in \mathbb{Z}\}$, where each e_n is an arrow from v_n to v_{n+1} , $n \in \mathbb{Z}$. Then we consider a labeling map \mathcal{L}_{ω} on the graph $E_{\mathbb{Z}}$ which assigns to an edge e_n a letter ω_n for each $n \in \mathbb{Z}$. In this way we obtain a labeled graph C^* -algebra $C^*(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})$, where $\overline{\mathcal{E}}_{\mathbb{Z}}$ is the smallest set amongst the normal accommodating sets. Then we first show that these unital labeled graph algebras $C^*(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})$ are all simple and have traces. In the simple crossed product $C(\mathcal{O}_{\omega}) \times_T \mathbb{Z}$, we then find a family of partial isometries and projections satisfying the same relations required for the canonical generators of $C^*(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})$, which proves from universal property of $C^*(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})$ that there exists an isomorphism of $C^*(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})$ to the crossed product $C(\mathcal{O}_{\omega}) \times_T \mathbb{Z}$. Our results can be summarized as follows:

Theorem 1.1. *(Theorem 3.7 and Theorem 3.10) Let \mathcal{A} be a finite alphabet with $|\mathcal{A}| \geq 2$, and let $\omega \in \mathcal{A}^{\mathbb{Z}}$ be a sequence such that the subshift $(\mathcal{O}_{\omega}, T)$ is a Cantor minimal system. If \mathcal{L}_{ω} is a labeling map on the graph $E_{\mathbb{Z}}$ by the sequence ω , the labeled graph C^* -algebra $C^*(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})$ is a non-AF simple unital C^* -algebra. Moreover there is an isomorphism*

$$\pi : C^*(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}}) \rightarrow C(\mathcal{O}_{\omega}) \times_T \mathbb{Z}$$

such that the restriction of π onto the fixed point algebra $C^*(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})^{\gamma}$ of the gauge action γ is an isomorphism onto $C(\mathcal{O}_{\omega})$.

The crossed products $C(X) \times_T \mathbb{Z}$ of Cantor minimal systems have been studied intensively (especially in [15, 16]). Perhaps one important result from the works, in our viewpoint, would be the fact that the crossed products $C(\mathcal{O}_{\omega}) \times_T \mathbb{Z}$ can be completely classified by their ordered K_0 -groups with distinguished order units ([15, Theorem 2.1]). Also from the above theorem and [16, Theorem 1.4] we know that the labeled graph C^* -algebras $C^*(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})$ are AT-algebras with $K_1(C^*(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})) = \mathbb{Z}$, hence they are not AF.

Finally, regarding the question of abundance of those Cantor minimal subshift systems, we notice a well known fact that (X, T) is topologically conjugate to a two-sided subshift if and only if it is expansive, and also from [12, Theorem 1] that this is the case if a Cantor system (X, T) has a finite rank K and $K \geq 2$ while odometer systems are the systems of rank one (we refer the reader to [12] for definitions and properties of this sort of systems).

2. PRELIMINARIES

2.1. Labeled spaces. We will follow notational conventions of [24] for graph C^* -algebras and of [4, 1] for labeled spaces and their C^* -algebras. A *directed graph* $E = (E^0, E^1, r, s)$ consists of a countable vertex set E^0 , a countable edge set E^1 , and the range, source maps $r, s : E^1 \rightarrow E^0$. If $v \in E^0$ emits (receives, respectively) no edges it is called a *sink* (*source*, respectively). Throughout this paper, we assume that *graphs have no sinks and no sources*.

E^n denotes the set of all finite paths $\lambda = \lambda_1 \cdots \lambda_n$ of *length* n ($|\lambda| = n$), ($\lambda_i \in E^1$, $r(\lambda_i) = s(\lambda_{i+1})$, $1 \leq i \leq n-1$). We write $E^{\leq n}$ and $E^{\geq n}$ for the sets $\cup_{i=1}^n E^i$ and $\cup_{i=n}^{\infty} E^i$, respectively. The range and source maps, r and s , naturally extend to all finite paths $E^{\geq 0}$, where $r(v) = s(v) = v$ for $v \in E^0$. If a sequence of edges $\lambda_i \in E^1$ ($i \geq 1$) satisfies $r(\lambda_i) = s(\lambda_{i+1})$, one has an infinite path $\lambda_1 \lambda_2 \lambda_3 \cdots$ with the source vertex $s(\lambda_1 \lambda_2 \lambda_3 \cdots) := s(\lambda_1)$. By E^∞ we denote the set of all infinite paths.

A *labeled graph* (E, \mathcal{L}) over a countable alphabet \mathcal{A} consists of a directed graph E and a *labeling map* $\mathcal{L} : E^1 \rightarrow \mathcal{A}$. For $\lambda = \lambda_1 \cdots \lambda_n \in E^{\geq 1}$, we call $\mathcal{L}(\lambda) := \mathcal{L}(\lambda_1) \cdots \mathcal{L}(\lambda_n)$ a *(labeled) path*. Similarly one can define an infinite labeled path $\mathcal{L}(\lambda)$ for $\lambda \in E^\infty$. A labeled graph (E, \mathcal{L}) is said to have a *repeatable path* β if $\beta^n := \beta \cdots \beta$ (repeated n -times) $\in \mathcal{L}(E^{\geq 1})$ for all $n \geq 1$. The *range* $r(\alpha)$ of a labeled path $\alpha \in \mathcal{L}(E^{\geq 1})$ is defined to be a vertex subset of E^0 :

$$r(\alpha) = \{r(\lambda) : \lambda \in E^{\geq 1}, \mathcal{L}(\lambda) = \alpha\},$$

and the *source* $s(\alpha)$ of α is defined similarly. The *relative range* of $\alpha \in \mathcal{L}(E^{\geq 1})$ with respect to $A \subset 2^{E^0}$ is defined to be

$$r(A, \alpha) = \{r(\lambda) : \lambda \in E^{\geq 1}, \mathcal{L}(\lambda) = \alpha, s(\lambda) \in A\}.$$

For notational convenience, we use a symbol ϵ such that $r(\epsilon) = E^0$, $r(A, \epsilon) = A$ for all $A \subset E^0$, and $\alpha = \epsilon\alpha = \alpha\epsilon$ for all $\alpha \in \mathcal{L}(E^{\geq 1})$, and write

$$\mathcal{L}^\#(E) := \mathcal{L}(E^{\geq 1}) \cup \{\epsilon\}.$$

We denote the subpath $\alpha_i \cdots \alpha_j$ of $\alpha = \alpha_1 \alpha_2 \cdots \alpha_{|\alpha|} \in \mathcal{L}(E^{\geq 1})$ by $\alpha_{[i,j]}$ for $1 \leq i \leq j \leq |\alpha|$. A subpath of the form $\alpha_{[1,j]}$ is called an *initial path* of α . The symbol ϵ is regarded as an initial (and terminal) path of every path.

Let $\mathcal{B} \subset 2^{E^0}$ be a collection of subsets of E^0 . If $r(A, \alpha) \in \mathcal{B}$ for all $A \in \mathcal{B}$ and $\alpha \in \mathcal{L}(E^{\geq 1})$, \mathcal{B} is said to be *closed under relative ranges* for (E, \mathcal{L}) . We call \mathcal{B} an *accommodating set* for (E, \mathcal{L}) if it is closed under relative ranges, finite intersections and unions and contains $r(\alpha)$ for all $\alpha \in \mathcal{L}(E^{\geq 1})$. The triple $(E, \mathcal{L}, \mathcal{B})$ is called a *labeled space* when \mathcal{B} is accommodating for (E, \mathcal{L}) .

For $A, B \in 2^{E^0}$ and $n \geq 1$, let

$$AE^n = \{\lambda \in E^n : s(\lambda) \in A\}, \quad E^n B = \{\lambda \in E^n : r(\lambda) \in B\}.$$

We write $E^n v$ for $E^n \{v\}$ and $v E^n$ for $\{v\} E^n$, and will use notations like $AE^{\geq k}$ and $v E^\infty$ which should have obvious meaning. A labeled space $(E, \mathcal{L}, \mathcal{B})$ is said to be *set-finite* (*receiver set-finite*, respectively) if for every $A \in \mathcal{B}$ and $l \geq 1$ the set $\mathcal{L}(AE^l)$ ($\mathcal{L}(E^l A)$, respectively) is finite. A labeled space $(E, \mathcal{L}, \mathcal{B})$ is *finite* if there are only finitely many labels.

In this paper, we will always assume that labeled spaces $(E, \mathcal{L}, \mathcal{B})$ are *weakly left-resolving*, namely

$$r(A, \alpha) \cap r(B, \alpha) = r(A \cap B, \alpha)$$

for all $A, B \in \mathcal{B}$ and $\alpha \in \mathcal{L}(E^{\geq 1})$. $(E, \mathcal{L}, \mathcal{B})$ is *left-resolving* if $\mathcal{L} : r^{-1}(v) \rightarrow \mathcal{A}$ is injective for each $v \in E^0$. Left-resolving labeled spaces are weakly left-resolving.

For each $l \geq 1$, the following relation on E^0 ,

$$v \sim_l w \text{ if and only if } \mathcal{L}(E^{\leq l} v) = \mathcal{L}(E^{\leq l} w)$$

is actually an equivalence relation, and the equivalence class $[v]_l$ of $v \in E^0$ is called a *generalized vertex*. If $k > l$, $[v]_k \subseteq [v]_l$ is obvious and $[v]_l = \cup_{i=1}^m [v_i]_{l+1}$ for some vertices $v_1, \dots, v_m \in [v]_l$ ([4, Proposition 2.4]).

Notation 2.1. Given a labeled graph (E, \mathcal{L}) , $\bar{\mathcal{E}}$ denotes the smallest *normal* accommodating set, that is the smallest one among the accommodating sets which are closed under relative complements.

Proposition 2.2. ([4, Remark 2.1 and Proposition 2.4.(ii)], [20, Proposition 2.3])
Let (E, \mathcal{L}) be a labeled graph (E has no sinks or sources). Then

$$\bar{\mathcal{E}} = \{\cup_{i=1}^n [v_i]_l : v_i \in E^0, l, n \geq 1\}.$$

2.2. Labeled graph C^* -algebras. Here we review the labeled graph C^* -algebras which are associated to set-finite, receiver set-finite, and weakly left-resolving labeled spaces (whose underlying graphs have no sinks or sources) although our results are concerning only about finite left-resolving spaces.

Let $(E, \mathcal{L}, \mathcal{B})$ be a labeled space such that $\bar{\mathcal{E}} \subset \mathcal{B}$. Recall from [1, Definition 2.1] that a *representation* of $(E, \mathcal{L}, \mathcal{B})$ is a collection of projections $\{p_A : A \in \mathcal{B}\}$ and partial isometries $\{s_a : a \in \mathcal{A}\}$ such that for $A, B \in \mathcal{B}$ and $a, b \in \mathcal{A}$,

- (i) $p_\emptyset = 0$, $p_A p_B = p_{A \cap B}$, and $p_{A \cup B} = p_A + p_B - p_{A \cap B}$,
- (ii) $p_A s_a = s_a p_{r(A, a)}$,
- (iii) $s_a^* s_a = p_{r(a)}$ and $s_a^* s_b = 0$ unless $a = b$,
- (iv) for each $A \in \mathcal{B}$,

$$p_A = \sum_{a \in \mathcal{L}(AE^1)} s_a p_{r(A, a)} s_a^*. \quad (1)$$

It follows from (iv) that $p_A = \sum_{\alpha \in \mathcal{L}(AE^n)} s_\alpha p_{r(A, \alpha)} s_\alpha^*$ for $n \geq 1$. By $C^*(p_A, s_a)$ we denote the C^* -algebra generated by $\{s_a, p_A : a \in \mathcal{A}, A \in \mathcal{B}\}$.

Remark 2.3. Let $(E, \mathcal{L}, \mathcal{B})$ be a labeled space such that $\bar{\mathcal{E}} \subset \mathcal{B}$.

- (i) There exists a C^* -algebra generated by a universal representation $\{s_a, p_A\}$ of $(E, \mathcal{L}, \mathcal{B})$ (see the proof of [3, Theorem 4.5]). If $\{s_a, p_A\}$ is a universal representation of $(E, \mathcal{L}, \mathcal{B})$, we call $C^*(s_a, p_A)$, denoted $C^*(E, \mathcal{L}, \mathcal{B})$, the *labeled graph C^* -algebra* of $(E, \mathcal{L}, \mathcal{B})$. Note that $s_a \neq 0$ and $p_A \neq 0$ for $a \in \mathcal{A}$

and $A \in \mathcal{B}$, $A \neq \emptyset$, and that $s_\alpha p_A s_\beta^* \neq 0$ if and only if $A \cap r(\alpha) \cap r(\beta) \neq \emptyset$. By definition of representation and [3, Lemma 4.4], it follows that

$$C^*(E, \mathcal{L}, \mathcal{B}) = \overline{\text{span}}\{s_\alpha p_A s_\beta^* : \alpha, \beta \in \mathcal{L}^\#(E), A \in \mathcal{B}\}, \quad (2)$$

where s_ϵ is regarded as the unit of the multiplier algebra of $C^*(E, \mathcal{L}, \mathcal{B})$.

- (ii) Universal property of $C^*(E, \mathcal{L}, \mathcal{B}) = C^*(s_a, p_A)$ defines the *gauge action* $\gamma : \mathbb{T} \rightarrow \text{Aut}(C^*(E, \mathcal{L}, \mathcal{B}))$ such that for $a \in \mathcal{L}(E^1)$, $A \in \mathcal{B}$, and $z \in \mathbb{T}$,

$$\gamma_z(s_a) = z s_a \text{ and } \gamma_z(p_A) = p_A.$$

- (iii) The fixed point algebra of γ is an AF algebra such that

$$C^*(E, \mathcal{L}, \mathcal{B})^\gamma = \overline{\text{span}}\{s_\alpha p_A s_\beta^* : |\alpha| = |\beta|, A \in \mathcal{B}\} \quad (3)$$

Moreover, since \mathbb{T} is a compact group, there exists a faithful conditional expectation

$$\Psi : C^*(E, \mathcal{L}, \mathcal{B}) \rightarrow C^*(E, \mathcal{L}, \mathcal{B})^\gamma.$$

Recall [4, 18] that for a labeled space $(E, \mathcal{L}, \overline{\mathcal{E}})$, a path $\alpha \in \mathcal{L}([v]_l E^{\geq 1})$ is *agreeable* for a generalized vertex $[v]_l$ if $\alpha = \beta^k \beta'$ for some $\beta \in \mathcal{L}([v]_l E^{\leq l})$ and its initial path β' , and $k \geq 1$. A labeled space $(E, \mathcal{L}, \overline{\mathcal{E}})$ is said to be *disagreeable* if every $[v]_l$, $l \geq 1$, $v \in E^0$, is disagreeable in the sense that there is an $N \geq 1$ such that for all $n \geq N$ there is a path $\alpha \in \mathcal{L}([v]_l E^{\geq n})$ which is not *agreeable*.

Remark 2.4. If $(E, \mathcal{L}, \overline{\mathcal{E}})$ is disagreeable, every representation $\{s_a, p_A\}$ such that $p_A \neq 0$ for all non-empty set $A \in \overline{\mathcal{E}}$ gives rise to a C^* -algebra $C^*(s_a, p_A)$ isomorphic to $C^*(E, \mathcal{L}, \overline{\mathcal{E}})$ ([4, Theorem 5.5] and [19, Corollary 2.5]). A labeled space $(E, \mathcal{L}, \overline{\mathcal{E}})$ is disagreeable if there is no repeatable paths in (E, \mathcal{L}) ([20, Proposition 4.12]).

K -theory of labeled graph C^* -algebras was obtained in [1]. Let $(E, \mathcal{L}, \mathcal{B})$ be a normal labeled space. Since we assume that E has no sink vertices ($E_{\text{sink}}^0 = \emptyset$), the set \mathcal{B}_J given in (2) of [1] coincides with \mathcal{B} , and by [1, Theorem 4.4] the linear map $(1 - \Phi) : \text{span}_{\mathbb{Z}}\{\chi_A : A \in \mathcal{B}\} \rightarrow \text{span}_{\mathbb{Z}}\{\chi_A : A \in \mathcal{B}\}$ given by

$$(1 - \Phi)(\chi_A) = \chi_A - \sum_{a \in \mathcal{L}(AE^1)} \chi_{r(A, a)}, \quad A \in \mathcal{B} \quad (4)$$

determines the K -groups of $C^*(E, \mathcal{L}, \mathcal{B})$ as follows:

$$K_0(C^*(E, \mathcal{L}, \mathcal{B})) \cong \text{span}_{\mathbb{Z}}\{\chi_A : A \in \mathcal{B}\}/\text{Im}(1 - \Phi) \quad (5)$$

$$K_1(C^*(E, \mathcal{L}, \mathcal{B})) \cong \ker(1 - \Phi). \quad (6)$$

In (5), the isomorphism is given by $[p_A]_0 \mapsto \chi_A + \text{Im}(1 - \Phi)$ for $A \in \mathcal{B}$.

2.3. Cantor minimal systems that are subshifts. A (topological) dynamical system (X, T) consists of a compact metrizable space X and a homeomorphism T on X . By Krylov-Bogolyubov Theorem, a dynamical system (X, T) admits a Borel probability measure m which is T -invariant, that is $m(T^{-1}(E)) = m(E)$ for all Borel sets E . If there exists exactly one T -invariant probability measure, we say that the system (X, T) is *uniquely ergodic*. We will focus on the Cantor systems

(X, T) that are subshifts, and here we briefly review definitions and basic properties of such Cantor systems.

For an alphabet \mathcal{A} ($|\mathcal{A}| \geq 2$), a *word* (or *block*) over \mathcal{A} is a finite sequence $b = b_1 \cdots b_k$ of symbols (or letters) b_i 's in \mathcal{A} of length $|b| := k \geq 1$. By \mathcal{A}^+ , we denote the set of all *words*. Let ϵ be the empty word of length zero and let $\mathcal{A}^* := \mathcal{A}^+ \cup \{\epsilon\}$. The set

$$\mathcal{A}^{\mathbb{Z}} := \{\omega = \cdots \omega_{-1} \omega_0 \omega_1 \cdots : \omega_i \in \mathcal{A}\}$$

of all two-sided infinite sequences on \mathcal{A} , endowed with the product topology of the discrete topology on \mathcal{A} , is a totally disconnected compact metrizable space. Actually the *cylinder sets*

$$t[b] := \{\omega \in \mathcal{A}^{\mathbb{Z}} : \omega_{[t, t+|b|-1]} = b\},$$

$b \in \mathcal{A}^+$, $t \in \mathbb{Z}$, are clopen and form a base for the topology, where $\omega_{[t_1, t_2]}$ denotes the block $\omega_{t_1} \cdots \omega_{t_2}$ ($t_1 \leq t_2$). Thus the characteristic functions $\chi_{t[b]}$ are continuous for all $b \in \mathcal{A}^+$, $t \in \mathbb{Z}$. If $b = \omega_{[t_1, t_2]}$ holds for $b \in \mathcal{A}^+$ and $\omega \in \mathcal{A}^{\mathbb{Z}} \cup \mathcal{A}^+$, b is called a *factor* of ω . For $\omega \in \mathcal{A}^{\mathbb{Z}}$ (or $\mathcal{A}^{\mathbb{N}}$), the set of all factors of ω is denoted by

$$L_{\omega} = \{\omega_{[t_1, t_2]} : t_1 \leq t_2\}.$$

For convenience, we will use the following notation:

$$[.b] := {}_0[b], \quad [b.] := {}_{-|b|}[b], \quad [b.c] := {}_{-|b|}[bc]$$

for words $b, c \in \mathcal{A}^+$.

The *shift* transform $T : \mathcal{A}^{\mathbb{Z}} \rightarrow \mathcal{A}^{\mathbb{Z}}$ given by

$$(Tx)_k = x_{k+1}, \quad k \in \mathbb{Z},$$

is a homeomorphism. A *subshift* on \mathcal{A} is a (topological) dynamical system (X, T) which consists of a T -invariant closed subset $X \subset \mathcal{A}^{\mathbb{Z}}$ and the restriction $T|_X$ which we denote by T again. If we consider the shift transform T on the space $\mathcal{A}^{\mathbb{N}}$ of one-sided infinite sequences, it is a continuous transform (but not a homeomorphism).

For $\omega \in \mathcal{A}^{\mathbb{Z}}$, the closure of the orbit of ω is denoted by

$$\mathcal{O}_{\omega} := \overline{\{T^i(\omega) : i \in \mathbb{Z}\}} \subset \mathcal{A}^{\mathbb{Z}}.$$

A dynamical system (X, T) is *minimal* if every orbit is dense in X , namely $\mathcal{O}_x = X$ for all $x \in X$. It is well known that a subshift $(\mathcal{O}_{\omega}, T)$ is minimal if and only if ω is *almost periodic* (or *uniformly recurrent*) in the sense that each factor of ω occurs with bounded gaps.

We provide examples of subshifts that are Cantor minimal systems:

Example 2.5. (Generalized-Morse sequences) ([21]) Let $\mathcal{A} = \{0, 1\}$. For a one-sided sequence $x \in \mathcal{A}^{\mathbb{N}}$, let $\mathcal{O}_x := \{\omega \in \mathcal{A}^{\mathbb{Z}} : L_{\omega} \subset L_x\}$. Note that each block $b \in \mathcal{A}^+$ defines a block \tilde{b} , called the *mirror image* of b , such that $\tilde{b}_i = b_i + 1 \pmod{2}$. For $c = c_0 \cdots c_n \in \mathcal{A}^+$, the product $b \times c$ of b and c denotes the block (of length $|b| \times |c|$) obtained by putting $n+1$ copies of either b or \tilde{b} next to each other according to the rule of choosing the i th copy as b if $c_i = 0$ and \tilde{b} if $c_i = 1$. For example, if $b = 01$ and $c = 011$, then the product block $b \times c$ is equal to $b\tilde{b}b = 011010$.

Let $\{b^i := b_0^i \cdots b_{|b^i|-1}^i\}_{i \geq 1} \subset \mathcal{A}^+$ be a sequence of blocks with length $|b^i| \geq 2$ such that $b_0^i = 0$ for all $i \geq 0$. Since the product operation \times is associative, one can consider a sequence of the form

$$x = b^0 \times b^1 \times b^2 \times \cdots \in \mathcal{A}^{\mathbb{N}}$$

which is called a (one-sided) *recurrent sequence* (see [21, Definition 7]). We call $x = b^0 \times b^1 \times b^2 \times \cdots \in \mathcal{A}^{\mathbb{N}}$ a (*generalized*) *one-sided Morse sequence* if it is non-periodic and

$$\sum_{i=0}^{\infty} \min(r_0(b^i), r_1(b^i)) = \infty,$$

where $r_a(b)$ is the *relative frequency of occurrence* of $a \in \mathcal{A}$ in $b \in \mathcal{A}^+$ (see [21, p.338]). If $x \in \mathcal{A}^{\mathbb{N}}$ is a non-periodic recurrent sequence, it is almost periodic, and there exists $\omega \in \mathcal{O}_x$ with $x = \omega_{[0, \infty)}$. Moreover, x is a one-sided Morse sequence if and only if \mathcal{O}_ω is minimal and uniquely ergodic, and if this is the case, then $\mathcal{O}_\omega = \mathcal{O}_x$.

By a *generalized Morse sequence*, we mean a two-sided sequence $\omega \in \mathcal{A}^{\mathbb{Z}}$ such that $x := \omega_{[0, \infty)}$ is a one-sided Morse sequence and $L_\omega = L_x$. (Note that the term a *two-sided generalized Morse sequence* used in [21] means a sequence $\omega \in \mathcal{O}_x$ for some one-sided Morse sequence x .)

The subshifts (\mathcal{O}_ω, T) for generalized Morse sequences ω are uniquely ergodic Cantor minimal systems.

Example 2.6. (Substitution subshifts) ([17]) Let \mathcal{A} be a finite alphabet with $|\mathcal{A}| \geq 2$. A *substitution* on \mathcal{A} is a map $\sigma : \mathcal{A} \rightarrow \mathcal{A}^+$. σ can be iterated to define maps $\sigma^k : \mathcal{A} \rightarrow \mathcal{A}^+$ for all positive integer k , and is called *primitive* if there exists $k \geq 1$ such that b appears in $\sigma^k(a)$ for all $a, b \in \mathcal{A}$. By the *language* L_σ of a substitution σ we mean the set of words that are factors of $\sigma^k(a)$ for some $k \geq 1$ and $a \in \mathcal{A}$. The subshift

$$X_\sigma := \{x \in \mathcal{A}^{\mathbb{Z}} \mid L_x \subset L_\sigma\},$$

associated to this language L_σ is called the *substitution subshift* defined by σ . If σ is primitive, it is known that the system (X_σ, T) is minimal and thus a Cantor minimal system.

A sequence $\omega \in \mathcal{A}^{\mathbb{Z}}$ is called a *fixed point* of σ if $\sigma(\omega) = \omega$, and it is known that for any primitive substitution σ , there is an $n \geq 1$ such that σ^n admits a fixed point ω in X_σ . Since σ^n and σ define the same dynamical system, we can only consider primitive substitutions σ with a fixed point $\omega \in X_\sigma$, and in this case, $X_\sigma = \mathcal{O}_\omega$ follows. To avoid the case where X_σ is finite, or equivalently ω is shift periodic, we also assume that σ is an *aperiodic* substitution (giving rise to the infinite system X_σ). Then the substitution subshifts $(X_\sigma, T) = (\mathcal{O}_\omega, T)$ are uniquely ergodic minimal Cantor systems.

Example 2.7. (Thue-Morse sequence) Let $\mathcal{A} = \{0, 1\}$ and $b^i := 01 \in \mathcal{A}^+$ for all $i \geq 0$. Then the recurrent sequence

$$x := b^0 \times b^1 \times b^2 \times \cdots = 01 \times b^1 \times \cdots = 0110 \times b^2 \times \cdots = 01101001 \times b^3 \times \cdots$$

is a one-sided Morse sequence called the *Thue-Morse sequence* and

$$\omega := x^{-1}.x = \dots 10010110.011010011001 \dots \in \mathcal{O}_x$$

is a generalized Morse sequence, where $x^{-1} := \dots x_2x_1x_0$ is the sequence obtained by writing $x = x_0x_1\dots$ in reverse order. In fact, ω is the sequence constructed from x in the proof of [21, Lemma 4], and it is well known [14] that ω is characterized as a sequence with no blocks of the form bbb_0 for any $b = b_0\dots b_{|b|-1} \in \mathcal{A}^+$. By Example 2.5, the subshift (\mathcal{O}_ω, T) is a uniquely ergodic Cantor minimal system.

On the other hand, this Thue Morse sequence ω is the fixed point of the primitive aperiodic substitution $\sigma : \mathcal{A} \rightarrow \mathcal{A}^+$ given by

$$\sigma(0) = 01 \quad \text{and} \quad \sigma(1) = 10,$$

so that the subshift (\mathcal{O}_ω, T) can also be viewed as a substitution subshift (X_σ, T) .

3. MAIN RESULTS

Throughout this section, $E_{\mathbb{Z}}$ will denote the following graph:

Given a two-sided sequence $\omega = \dots \omega_{-1}\omega_0\omega_1 \dots \in \mathcal{A}^{\mathbb{Z}}$, we obtain a labeled graph $(E_{\mathbb{Z}}, \mathcal{L}_\omega)$ shown below

where the labeling map $\mathcal{L}_\omega : E_{\mathbb{Z}}^1 \rightarrow \mathcal{A}$ is given by $\mathcal{L}_\omega(e_n) = \omega_n$ for $e_n \in E_{\mathbb{Z}}^1$. Then we also have a labeled space $(E_{\mathbb{Z}}, \mathcal{L}_\omega, \overline{\mathcal{E}}_{\mathbb{Z}})$ with the smallest accommodating set $\overline{\mathcal{E}}_{\mathbb{Z}}$ which is closed under relative complements.

Assumption. In this section, unless stated otherwise, \mathcal{A} is a finite alphabet with $|\mathcal{A}| \geq 2$ and $\omega \in \mathcal{A}^{\mathbb{Z}}$ denotes an almost periodic sequence such that the subshift (\mathcal{O}_ω, T) is a Cantor minimal system.

3.1. The fixed point algebra $C^*(E_{\mathbb{Z}}, \mathcal{L}_\omega, \overline{\mathcal{E}}_{\mathbb{Z}})^\gamma$ of the gauge action γ . Let $C^*(E_{\mathbb{Z}}, \mathcal{L}_\omega, \overline{\mathcal{E}}_{\mathbb{Z}}) = C^*(s_a, p_A)$ be the labeled graph C^* -algebra associated with the labeled space $(E_{\mathbb{Z}}, \mathcal{L}_\omega, \overline{\mathcal{E}}_{\mathbb{Z}})$. Since the labeled paths $\mathcal{L}_\omega(E_{\mathbb{Z}}^{\geq 1})$ are exactly the factors of the sequence ω , from now on we briefly denote the whole labeled paths by L_ω .

By (7), we know that the fixed point algebra of the gauge action γ is generated by elements of the form $s_\alpha p_A s_\beta^*$ ($|\alpha| = |\beta|$). But, in the case $(E_{\mathbb{Z}}, \mathcal{L}_\omega, \overline{\mathcal{E}}_{\mathbb{Z}})$, it is rather obvious that $s_\alpha p_A s_\beta^* \neq 0$, $|\alpha| = |\beta|$, only if $\alpha = \beta$ and $A \cap r(\alpha) \neq \emptyset$. Since $\mathcal{L}_\omega(E^l v)$ consists of a single path for each vertex v and $l \geq 1$, every generalized vertex $[v]_l$ is equal to the range $r(\alpha)$ for a path α with $\mathcal{L}_\omega(E^l v) = \{\alpha\}$. Hence, by

Proposition 2.2, we have

$$C^*(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})^{\gamma} = \overline{\text{span}}\{s_{\alpha}p_{r(\beta\alpha)}s_{\alpha}^* : \alpha, \beta \in L_{\omega}\}. \quad (7)$$

Moreover $C^*(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})^{\gamma}$ is easily seen to be a commutative C^* -algebra. For each $k \geq 1$, let

$$F_k := \text{span}\{s_{\alpha}p_{r(\alpha'\alpha)}s_{\alpha}^* : \alpha, \alpha' \in L_{\omega}, |\alpha| = |\alpha'| = k\}.$$

The (finitely many) elements $s_{\alpha}p_{r(\alpha'\alpha)}s_{\alpha}^*$ in F_k are linearly independent and actually orthogonal to each other so that F_k is a finite dimensional subalgebra of $C^*(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})^{\gamma}$. Moreover F_k is a subalgebra of F_{k+1} because

$$s_{\alpha}p_{r(\alpha'\alpha)}s_{\alpha}^* = \sum_{b \in \mathcal{A}} s_{\alpha b}p_{r(\alpha'\alpha b)}s_{\alpha b}^* = \sum_{a, b \in \mathcal{A}} s_{\alpha b}p_{r(a\alpha'ab)}s_{\alpha b}^*.$$

This gives rise to an inductive sequence $F_1 \xrightarrow{\iota_1} F_2 \xrightarrow{\iota_2} \dots$ of finite dimensional C^* -algebras, where the connecting maps $\iota_k : F_k \rightarrow F_{k+1}$ are the inclusions for all $k \geq 1$, from which we obtain an AF algebra $\varinjlim F_k$.

Proposition 3.1. *For the labeled space $(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})$, we have*

$$C^*(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})^{\gamma} = \varinjlim F_k.$$

Proof. Since $F_k \subset C^*(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})^{\gamma}$ for all $k \geq 1$ and $\overline{\cup_k F_k} = \varinjlim F_k$, it is clear that $\varinjlim F_k \subset C^*(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})^{\gamma}$. Thus it suffices to know that the algebra $\cup_k F_k$ is dense in $C^*(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})^{\gamma}$ and then by (7) we only need to show that for $y := s_{\alpha}p_{r(\beta\alpha)}s_{\alpha}^*$, there is $k \geq 1$ such that $y \in F_k$. If $|\beta\alpha| = 2|\alpha|$, then $y \in F_k$ for $k = |\alpha|$. If $|\beta\alpha| > 2|\alpha|$, then

$$y = s_{\alpha}p_{r(\beta\alpha)}s_{\alpha}^* = \sum_{\nu \in \mathcal{L}_{\omega}(E^{|\beta|-|\alpha|})} s_{\alpha\nu}p_{r(\beta\alpha\nu)}s_{\alpha\nu}^* \in F_k$$

for $k = |\beta|$. If $|\beta\alpha| < 2|\alpha|$, we also have

$$y = s_{\alpha}p_{r(\beta\alpha)}s_{\alpha}^* = \sum_{\nu \in \mathcal{L}_{\omega}(E^{|\alpha|-|\beta|})} s_{\alpha}p_{r(\nu\beta\alpha)}s_{\alpha}^* \in F_k$$

for $k = |\alpha|$. □

Proposition 3.2. *There is a surjective isomorphism*

$$\rho : C^*(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})^{\gamma} \rightarrow C(\mathcal{O}_{\omega}) \quad (8)$$

such that $\rho(s_{\alpha}p_{r(\alpha'\alpha)}s_{\alpha}^*) = \chi_{[\alpha'.\alpha]}$ for $s_{\alpha}p_{r(\alpha'\alpha)}s_{\alpha}^* \in F_k$, $k \geq 1$.

Proof. Note that for each $k \geq 1$, the map $\rho_k : F_k \rightarrow C(\mathcal{O}_{\omega})$ given by

$$\rho_k(s_{\alpha}p_{r(\alpha'\alpha)}s_{\alpha}^*) = \chi_{[\alpha'.\alpha]}$$

is a *-homomorphism (we omit the proof) such that for $y = s_{\alpha}p_{r(\alpha'\alpha)}s_{\alpha}^* \in F_k$,

$$\rho_k(y) = \rho_{k+1}(\iota_k(y)),$$

where $\iota_k : F_k \rightarrow F_{k+1}$ is the inclusion map. In fact, $\iota_k(y) = \sum_{a,b \in \mathcal{A}} s_{ab} p_{r(a\alpha'ab)} s_{ab}^*$, so that

$$\rho_{k+1}(\iota_k(y)) = \rho_{k+1}\left(\sum_{a,b \in \mathcal{A}} s_{ab} p_{r(a\alpha'ab)} s_{ab}^*\right) = \sum_{a,b \in \mathcal{A}} \chi_{[a\alpha'.ab]}.$$

But $\sum_{a,b \in \mathcal{A}} \chi_{[a\alpha'.ab]} = \chi_{[\alpha'.\alpha]}$ is obvious from $\cup_{a,b \in \mathcal{A}} [a\alpha'.ab] = [\alpha'.\alpha]$. Hence, there exists a $*$ -homomorphism $\rho : \varinjlim F_k \rightarrow C(\mathcal{O}_\omega)$ satisfying $\rho(y) = \rho_k(y)$ for all $y \in F_k$, $k \geq 1$. Since each ρ_k is injective, so is ρ .

Now we show that ρ is surjective to complete the proof. Let $\chi_{t[\beta]} \in C(\mathcal{O}_\omega)$ for $t \in \mathbb{Z}$ and $\beta \in L_\omega$. Assuming $t > 0$, we can write $\chi_{t[\beta]} = \sum_{\alpha,\nu} \chi_{[\alpha.\nu\beta]}$, where the sum is taken over all α, ν with $|\nu| = t$ and $|\alpha| = |\nu\beta|$. Then for $k := |\beta| + t$, we have

$$\chi_{t[\beta]} = \rho_k\left(\sum_{\alpha,\nu} s_\alpha p_{r(\alpha\nu\beta)} s_\alpha^*\right) \in \rho(F_k).$$

In the case $t \leq 0$, a similar argument shows that $\chi_{t[\beta]} \in \rho(F_k)$ for some k . Thus ρ is surjective since $\text{span}\{\chi_{t[\beta]} : t \in \mathbb{Z}, \beta \in L_\omega\}$ is a dense subalgebra of $C(\mathcal{O}_\omega)$. \square

Remark 3.3. It follows from general theory for dynamical systems that the systems (\mathcal{O}_ω, T) considered in this paper have always T -invariant ergodic probability measure (for example, see [11, Chapter VIII]). If m_ω is such a T -invariant ergodic measure, the unital commutative AF algebra $C(\mathcal{O}_\omega)$ of all continuous functions on \mathcal{O}_ω admits a (tracial) state

$$f \mapsto \int_{\mathcal{O}_\omega} f dm_\omega : C(\mathcal{O}_\omega) \rightarrow \mathbb{C}$$

which we also write m_ω . Since m_ω is T -invariant, it easily follows that $m_\omega(\chi_{t[b]}) = m_\omega(\chi_{t[b]} \circ T) = m_\omega(\chi_{t+1[b]})$, and hence

$$m_\omega(\chi_{t[b]}) = m_\omega(\chi_{[.b]}) \tag{9}$$

holds for all $t \in \mathbb{Z}$ and $b \in L_\omega$.

Lemma 3.4. *Let $\rho : C^*(E_\mathbb{Z}, \mathcal{L}_\omega, \overline{\mathcal{E}}_\mathbb{Z})^\gamma \rightarrow C(\mathcal{O}_\omega)$ be the isomorphism given in (8). Then a T -invariant ergodic measure m_ω on \mathcal{O}_ω defines a tracial state*

$$\tau_0 := m_\omega \circ \rho : C^*(E_\mathbb{Z}, \mathcal{L}_\omega, \overline{\mathcal{E}}_\mathbb{Z})^\gamma \rightarrow \mathbb{C}$$

on the fixed point algebra $C^*(E_\mathbb{Z}, \mathcal{L}_\omega, \overline{\mathcal{E}}_\mathbb{Z})^\gamma$ such that for $\alpha, \beta \in L_\omega$,

$$\tau_0(s_\alpha p_{r(\beta\alpha)} s_\alpha^*) = \tau_0(p_{r(\beta\alpha)}).$$

Proof. Note that $p_{r(\beta\alpha)} = \sum_\nu s_\nu p_{r(\beta\alpha\nu)} s_\nu^*$, where the sum is taken over the paths ν with $|\nu| = |\beta\alpha|$. We then have

$$\rho(p_{r(\beta\alpha)}) = \rho\left(\sum_{|\nu|=|\beta\alpha|} s_\nu p_{r(\beta\alpha\nu)} s_\nu^*\right) = \sum_{|\nu|=|\beta\alpha|} \chi_{[\beta\alpha.\nu]} = \chi_{\cup_{\nu} [\beta\alpha.\nu]} = \chi_{[\beta\alpha]}.$$

Thus

$$\tau_0(p_{r(\beta\alpha)}) = m_\omega(\chi_{[\beta\alpha]}).$$

On the other hand, if $|\beta\alpha| > 2|\alpha|$, $s_\alpha p_{r(\beta\alpha)} s_\alpha^* = \sum_{|\nu|=|\beta|-|\alpha|} s_{\alpha\nu} p_{r(\beta\alpha\nu)} s_{\alpha\nu}^*$ so that

$$\tau_0(s_\alpha p_{r(\beta\alpha)} s_\alpha^*) = m_\omega\left(\sum_{|\nu|=|\beta|-|\alpha|} \chi_{[\beta.\alpha\nu]}\right) = m_\omega(\chi_{[\beta.\alpha]}).$$

But the equality $m_\omega(\chi_{[\beta\alpha]}) = m_\omega(\chi_{[\beta.\alpha]})$ follows from the fact that m_ω is T -invariant (see (9)). The case where $|\beta\alpha| \leq 2|\alpha|$ can be done in a similar way. \square

Lemma 3.5. *The labeled graph C^* -algebra $C^*(E_{\mathbb{Z}}, \mathcal{L}_\omega, \overline{\mathcal{E}}_{\mathbb{Z}})$ admits a tracial state*

$$\tau_0 \circ \Psi : C^*(E_{\mathbb{Z}}, \mathcal{L}_\omega, \overline{\mathcal{E}}_{\mathbb{Z}}) \rightarrow \mathbb{C},$$

where $\Psi : C^*(E_{\mathbb{Z}}, \mathcal{L}_\omega, \overline{\mathcal{E}}_{\mathbb{Z}}) \rightarrow C^*(E_{\mathbb{Z}}, \mathcal{L}_\omega, \overline{\mathcal{E}}_{\mathbb{Z}})^\gamma$ is the conditional expectation onto the fixed point algebra of the gauge action.

Proof. To see that $\tau_0 \circ \Psi$ is a trace, we claim

$$\tau_0(\Psi(XY)) = \tau_0(\Psi(YX)) \quad (10)$$

for $X, Y \in \text{span}\{s_\alpha p_A s_\beta^* : \alpha, \beta \in L_\omega, A \in \overline{\mathcal{E}}_{\mathbb{Z}}, A \subset r(\alpha) \cap r(\beta)\}$. Since the map $\tau_0 \circ \Psi$ is linear, we only need to show (10) for $X = s_\alpha p_A s_\beta^*$ and $Y = s_\mu p_B s_\nu^*$. But also by (1), it suffices to consider the case of $|\beta| = |\mu|$, so that $XY = \delta_{\beta,\mu} s_\alpha p_{A \cap B} s_\nu^*$. In this case if $|\alpha| \neq |\nu|$, then $\Psi(XY) = \Psi(YX) = 0$ follows immediately. Hence now let $|\alpha| = |\nu|$. If $\alpha \neq \nu$, it is easy to see that $XY = YX = 0$ and (10) holds. If $\alpha = \nu$, then $YX = s_\beta p_{B \cap A} s_\beta^*$ and $XY = s_\alpha p_{A \cap B} s_\alpha^*$, and by Lemma 3.4 we have

$$\tau_0(\Psi(XY)) = \tau_0(XY) = \tau_0(s_\alpha p_{A \cap B} s_\alpha^*) = \tau_0(p_{A \cap B}) = \tau_0(\Psi(YX)).$$

The fact that $\tau_0 \circ \Psi$ is a state comes from

$$(\tau_0 \circ \Psi)(1) = \tau_0\left(\sum_{a,b \in \mathcal{A}} s_b p_{r(ab)} s_b^*\right) = m_\omega\left(\sum_{a,b \in \mathcal{A}} \chi_{[a.b]}\right) = m_\omega(\chi_{\mathcal{O}_\omega}) = 1.$$

\square

To prove the simplicity of the labeled graph C^* -algebra $C^*(E_{\mathbb{Z}}, \mathcal{L}_\omega, \overline{\mathcal{E}}_{\mathbb{Z}})$, we need the following lemma which might be well known in the theory of dynamical systems, but we provide a proof here for the reader's convenience.

Lemma 3.6. *Let $\omega \in \mathcal{A}^{\mathbb{Z}}$ be a sequence which is almost periodic but not periodic. Then the labeled space $(E_{\mathbb{Z}}, \mathcal{L}_\omega, \overline{\mathcal{E}}_{\mathbb{Z}})$ is disagreeable.*

Proof. It is enough to show that the labeled space has no repeatable paths (see Remark 2.4). For this, suppose there is a repeatable path α . We may assume that α has the smallest length. If $\beta \in L_\omega$, by the assumption that ω is almost periodic, there exists a $d \geq 1$ such that every block $\omega_{[t,t+d]}$, $t \in \mathbb{Z}$, has β as its factor. Thus any path $\alpha^k \in L_\omega$, k large enough, has β as a factor, so that $\alpha^k = \mu\beta\nu$ for some $\mu, \nu \in L_\omega \cup \{\epsilon\}$. In other words, every $\beta \in L_\omega$ must be of the form $\beta = \alpha''\alpha^l\alpha'$ for an initial path α' and terminal path α'' of α and $l \geq 0$.

Now we can apply this fact to the paths $\beta = \omega_{[0,n]}$, $n \geq 1$, to obtain that $\omega_{[0,\infty)}$ is of the form $\alpha''\alpha^\infty$. But then, considering the blocks of the form $\omega_{[-n,n]} \in L_\omega$

($n \rightarrow \infty$) we can easily see that $\omega = (\alpha)^\infty \alpha' \cdot \alpha'' (\alpha)^\infty$, where $\alpha = \alpha' \alpha''$. Thus ω is periodic, which is a contradiction. \square

Since we assume that a Cantor system (\mathcal{O}_ω, T) is minimal, or equivalently ω is almost periodic (and not periodic), the labeled space $(E_{\mathbb{Z}}, \mathcal{L}_\omega, \overline{\mathcal{E}}_{\mathbb{Z}})$ considered in this section is always disagreeable by Lemma 3.6.

The following theorem shows that there exist simple labeled graph C^* -algebras that are not stably isomorphic to simple graph C^* -algebras.

Theorem 3.7. *Let \mathcal{A} be a finite alphabet with $|\mathcal{A}| \geq 2$, and let $\omega \in \mathcal{A}^{\mathbb{Z}}$ be a sequence such that the subshift (\mathcal{O}_ω, T) is a Cantor minimal system. Then the labeled graph C^* -algebra $C^*(E_{\mathbb{Z}}, \mathcal{L}_\omega, \overline{\mathcal{E}}_{\mathbb{Z}})$ is a non-AF simple unital C^* -algebra with a tracial state τ which satisfies*

$$\tau(s_\alpha p_{r(\nu\alpha)} s_\beta^*) = \tau \circ \Psi(s_\alpha p_{r(\nu\alpha)} s_\beta^*) = \delta_{\alpha,\beta} \tau(p_{r(\nu\alpha)})$$

for labeled paths $\alpha, \beta, \nu \in \mathcal{L}_\omega(E_{\mathbb{Z}}^{\geq 1})$. Moreover if the system (\mathcal{O}_ω, T) is uniquely ergodic, $C^*(E_{\mathbb{Z}}, \mathcal{L}_\omega, \overline{\mathcal{E}}_{\mathbb{Z}})$ has a unique tracial state.

Proof. For the simplicity of $C^*(E_{\mathbb{Z}}, \mathcal{L}_\omega, \overline{\mathcal{E}}_{\mathbb{Z}}) = C^*(p_A, s_a)$, we show that any nonzero homomorphism $\pi : C^*(E_{\mathbb{Z}}, \mathcal{L}_\omega, \overline{\mathcal{E}}_{\mathbb{Z}}) \rightarrow C^*(q_A, t_a)$ onto a C^* -algebra generated by $q_A := \pi(p_A)$, $t_a := \pi(s_a)$ for $A \in \overline{\mathcal{E}}_{\mathbb{Z}}$, $a \in \mathcal{A}$, is faithful. Since the labeled space $(E_{\mathbb{Z}}, \mathcal{L}_\omega, \overline{\mathcal{E}}_{\mathbb{Z}})$ is disagreeable by Lemma 3.6, we see from [4, Theorem 5.5] that π is faithful whenever $\pi(p_{[v]_l}) \neq 0$ for all $v \in E^0$ and $l \geq 1$. Suppose on the contrary that

$$q_{[v]_m} = \pi(p_{[v]_m}) = 0$$

for some $[v]_m = r(\alpha)$ with $|\alpha| = m$. Since $\alpha \in L_\omega$ and ω is almost periodic, one finds a $d \geq 1$ such that for all $s \geq 0$,

$$T^{s+j}\omega \in [.a]$$

for some $0 \leq j \leq d$. This means that if $\beta \in L_\omega$ is a block with length $|\beta| \geq d$, it must have α as a factor. Thus β must be of the form $\beta = \beta' \alpha \beta''$ for some $\beta', \beta'' \in \mathcal{L}_\omega^\sharp(E)$ ($= L_\omega \cup \{\epsilon\}$). For β with $|\beta| \geq d$ we have $q_{r(\beta)} = 0$. In fact,

$$\begin{aligned} q_{r(\beta)} &= q_{r(\beta' \alpha \beta'')} = q_{r(r(\beta' \alpha), \beta'')} \\ &= q_{r(r(\beta' \alpha), \beta'')} t_{\beta''}^* t_{\beta''} q_{r(r(\beta' \alpha), \beta'')} \\ &\sim t_{\beta''} q_{r(r(\beta' \alpha), \beta'')} t_{\beta''}^* \\ &\leq q_{r(\beta' \alpha)} \leq q_{r(\alpha)} \\ &= q_{[v]_m} = 0. \end{aligned}$$

On the other hand, since π is a nonzero homomorphism, there exists a $\delta \in L_\omega$ with $q_{r(\delta)} = \pi(p_{r(\delta)}) \neq 0$. But then, with an $n > \max\{|\delta|, d\}$, we have

$$q_{r(\delta)} = \pi(p_{r(\delta)}) = \pi\left(\sum_{|\delta\mu_i|=n} s_{\mu_i} p_{r(\delta\mu_i)} s_{\mu_i}^*\right) = \sum_{|\delta\mu_i|=n} t_{\mu_i} q_{r(\delta\mu_i)} t_{\mu_i}^* = 0,$$

a contradiction, and $C^*(E_{\mathbb{Z}}, \mathcal{L}_\omega, \overline{\mathcal{E}}_{\mathbb{Z}})$ is simple.

With $\overline{\mathcal{E}}_{\mathbb{Z}}$ in place of \mathcal{B} in (6) it is rather obvious that $\mathcal{N} = \emptyset$ and $\hat{\mathcal{B}} = \hat{\mathcal{B}}_J = \overline{\mathcal{E}}_{\mathbb{Z}}$. Since $\chi_A \in \ker(1 - \Phi)$ if and only if $\chi_A = \sum_{a \in \mathcal{A}} \chi_{r(A,a)}$ (see (4)) which actually holds for $A = E_{\mathbb{Z}}^0$, we have $K_1(C^*(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})) = \ker(1 - \Phi) \neq 0$. Thus $C^*(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})$ is not AF. (We will see later from Theorem 3.10 that $K_1(C^*(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})) = \mathbb{Z}$.)

If τ_0 is the tracial state of $C^*(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})^{\gamma}$ induced by an ergodic measure of $(\mathcal{O}_{\omega}, T)$, the tracial state $\tau := \tau_0 \circ \Psi : C^*(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}}) \rightarrow \mathbb{C}$ of Lemma 3.5 satisfies

$$\tau(s_{\alpha} p_{r(\nu\alpha)} s_{\beta}^*) = \delta_{\alpha, \beta} \tau(p_{r(\nu\alpha)}) \quad (11)$$

for $s_{\alpha} p_{r(\nu\alpha)} s_{\beta}^* \in C^*(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})$.

Now let $(\mathcal{O}_{\omega}, T)$ be uniquely ergodic and again let τ_0 be the tracial state on the fixed point algebra $C^*(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})^{\gamma}$ and $\tau := \tau_0 \circ \Psi$ the extension of τ_0 to the whole labeled graph C^* -algebra as before. To show that τ is the unique tracial state on $C^*(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})$, we claim that if τ' is a tracial state on $C^*(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})$, then $\tau' \circ \Psi = \tau'$ holds, and that the state $\tau' \circ \rho^{-1}$ on $C(\mathcal{O}_{\omega})$ is T -invariant. For the first claim, suppose $\tau' \circ \Psi \neq \tau'$. Then there exists an element $s_{\alpha} p_{r(\alpha)} s_{\beta}^*$ ($|\beta| < |\alpha|$) such that $\tau'(s_{\alpha} p_{r(\alpha)} s_{\beta}^*) \neq 0$. Since τ' is tracial, we have $0 \neq \tau'(s_{\alpha} p_{r(\alpha)} s_{\beta}^*) = \tau'(s_{\beta}^* s_{\alpha} p_{r(\alpha)})$. Thus α must be of the form $\alpha = \beta\alpha'$ for some path α' , and then $0 \neq \tau'(s_{\beta}^* s_{\alpha} p_{r(\alpha)}) = \tau'(s_{\alpha'} p_{r(\alpha)})$. Again the tracial property of τ' gives

$$0 \neq \tau'(s_{\alpha'} p_{r(\alpha)}) = \tau'(p_{r(\alpha)} s_{\alpha'}) = \tau'(s_{\alpha'} p_{r(\alpha\alpha')}) = \cdots = \tau'(s_{\alpha'} p_{(r(\alpha), (\alpha')^n)})$$

for all $n \geq 1$. But this means that the generalized vertex $[v]_l := r(\alpha)$, $l = |\alpha|$, is not disagreeable emitting only agreeable paths, which is a contradiction to Lemma 3.6. To see that the state $\tau' \circ \rho^{-1} : C(\mathcal{O}_{\omega}) \rightarrow \mathbb{C}$ is T -invariant, let $\chi_{t[\beta]} \in C(\mathcal{O}_{\omega})$. We assume $t > 0$. Since

$$\rho^{-1}(\chi_{t[\beta]}) = \rho^{-1}\left(\sum_{\substack{\alpha, \beta \\ |\alpha|=|\sigma\beta|=t+|\beta|}} \chi_{[\alpha, \sigma\beta]}\right) = \sum_{\substack{\alpha, \beta \\ |\alpha|=|\sigma\beta|=t+|\beta|}} s_{\sigma\beta} p_{r(\alpha\sigma\beta)} s_{\sigma\beta}^*,$$

we have $\tau'(\rho^{-1}(\chi_{t[\beta]})) = \tau'\left(\sum_{\substack{\alpha, \beta \\ |\alpha|=|\sigma\beta|=t+|\beta|}} p_{r(\alpha\sigma\beta)}\right) = \tau'(p_{r(\beta)})$. This implies that

$$\tau' \circ \rho^{-1}(\chi_{t[\beta]}) = \tau' \circ \rho^{-1}(\chi_{t+1[\beta]}) = \tau' \circ \rho^{-1}(\chi_{t[\beta]} \circ T),$$

which can also be shown for $t \leq 0$ in a similar way. Thus $\tau' \circ \rho^{-1}$ is T -invariant because the span of functions $\chi_{t[\beta]}$ is dense in $C(\mathcal{O}_{\omega})$. \square

Remarks 3.8. (1) Simplicity of $C^*(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})$ can also be shown by analyzing the path structure of the labeled space $(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})$. For a labeled graph (E, \mathcal{L}) , set

$$\overline{\mathcal{L}(E^{\infty})} := \{x \in \mathcal{A}^{\mathbb{N}} \mid x_{[1,n]} \in \mathcal{L}(E^n) \text{ for all } n \geq 1\}.$$

Then $\mathcal{L}(E^{\infty}) \subset \overline{\mathcal{L}(E^{\infty})}$ is obvious, but it is possible to have $\mathcal{L}(E^{\infty}) \subsetneq \overline{\mathcal{L}(E^{\infty})}$. For example, if $\omega = 0^{\infty}.0101^201^301^4 \dots \in \{0, 1\}^{\mathbb{Z}}$, then the path $1^{\infty} \in \overline{\mathcal{L}_{\omega}(E_{\mathbb{Z}})}$ does not appear as an infinite labeled path in $\mathcal{L}_{\omega}(E_{\mathbb{Z}}^{\infty})$. We say that a labeled space $(E, \mathcal{L}, \overline{\mathcal{E}})$

is *strongly cofinal* if for each $x \in \overline{\mathcal{L}(E^\infty)}$ and $[v]_l \in \overline{\mathcal{E}}$, there exist an $N \geq 1$ and a finite number of paths $\lambda_1, \dots, \lambda_m \in \mathcal{L}(E^{\geq 1})$ such that

$$r(x_{[1,N]}) \subset \cup_{i=1}^m r([v]_l, \lambda_i).$$

This definition of strong cofinality is a modification of the definitions given in [4, 18] and the proof of [4, Theorem 6.4] can be slightly modified to prove that if $(E, \mathcal{L}, \overline{\mathcal{E}})$ is strongly cofinal and disagreeable, the C^* -algebra $C^*(E, \mathcal{L}, \overline{\mathcal{E}})$ is simple. If ω is a sequence satisfying the assumption of this section, it is not hard to see that the labeled space $(E_\mathbb{Z}, \mathcal{L}_\omega, \overline{\mathcal{E}}_\mathbb{Z})$ is strongly cofinal. Then by Lemma 3.6, we know that $C^*(E_\mathbb{Z}, \mathcal{L}_\omega, \overline{\mathcal{E}}_\mathbb{Z})$ is simple.

(2) In case ω is the Thue Morse sequence given in Example 2.7, one can directly show that the simple unital C^* -algebra $C^*(E_\mathbb{Z}, \mathcal{L}_\omega, \overline{\mathcal{E}}_\mathbb{Z})$ admits a unique tracial state. Moreover, its exact values on typical elements of the form $s_\alpha p_A s_\beta^*$ can be obtained explicitly, which will be done in [22].

Remark 3.9. If (X, T) is a Cantor minimal system, T induces an automorphism T of $C(X)$,

$$T(f) = f \circ T^{-1}, \quad f \in C(X),$$

and it is well known that the crossed product $C(X) \times_T \mathbb{Z}$ is always simple (for example, see [11]). It is also known [15] that the crossed products $C(X) \times_T \mathbb{Z}$ are not AF because $K_1(C(X) \times_T \mathbb{Z}) = \mathbb{Z}$. But they are all AT algebras, hence finite algebras of stable rank one, and have real rank zero by [6]. Moreover their isomorphism classes are determined by the ordered K_0 -groups

$$(K_0(C(X) \times_T \mathbb{Z}), K_0^+(C(X) \times_T \mathbb{Z}), [1]_0)$$

together with the distinguished order units $[1]_0$, where 1 is the unit projection of the crossed product.

If a Cantor minimal system (\mathcal{O}_ω, T) is uniquely ergodic, the following theorem implies together with Theorem 3.7 that the crossed product $C(\mathcal{O}_\omega) \times_T \mathbb{Z}$ has a unique tracial state, which is well known for uniquely ergodic minimal systems (X, T) of infinite spaces X (see [11, Corollary VIII.3.8]).

Theorem 3.10. *Let \mathcal{A} be a finite alphabet with $|\mathcal{A}| \geq 2$, and let $\omega \in \mathcal{A}^\mathbb{Z}$ be a sequence such that the subshift (\mathcal{O}_ω, T) is a Cantor minimal system. Then there is an isomorphism*

$$\pi : C^*(E_\mathbb{Z}, \mathcal{L}_\omega, \overline{\mathcal{E}}_\mathbb{Z}) \rightarrow C(\mathcal{O}_\omega) \times_T \mathbb{Z}$$

such that the restriction of π onto the fixed point algebra $C^(E_\mathbb{Z}, \mathcal{L}_\omega, \overline{\mathcal{E}}_\mathbb{Z})^\gamma$ of the gauge action γ is an isomorphism onto $C(\mathcal{O}_\omega)$.*

Proof. Proposition 3.2 (and its proof) says that the fixed point algebra $C^*(E_\mathbb{Z}, \mathcal{L}_\omega, \overline{\mathcal{E}}_\mathbb{Z})^\gamma$ is isomorphic to $C(\mathcal{O}_\omega)$ via the map ρ given by

$$\rho(s_\alpha p_{r(\beta\alpha)} s_\beta^*) = \chi_{[\beta.\alpha]}, \quad \alpha, \beta \in \mathcal{L}_\omega^\sharp(E_\mathbb{Z}).$$

We show that there exists an isomorphism of $C^*(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})$ onto the crossed product $C^*(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})^{\gamma} \rtimes_{T'} \mathbb{Z}$, where $T' := \rho^{-1} \circ T \circ \rho$ is the automorphism of $C^*(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})^{\gamma}$.

Note first that T' satisfies the following

$$T'(s_{\alpha} p_{r(\beta\alpha)} s_{\alpha}^*) = s_{\alpha_2 \dots \alpha_n} p_{r(\beta\alpha)} s_{\alpha_2 \dots \alpha_n}^* \quad (12)$$

for $\alpha, \beta \in \mathcal{L}_{\omega}^{\sharp}(E_{\mathbb{Z}})$. In fact, $\rho(T'(s_{\alpha} p_{r(\beta\alpha)} s_{\alpha}^*)) = T(\rho(s_{\alpha} p_{r(\beta\alpha)} s_{\alpha}^*)) = T(\chi_{[\beta\alpha]}) = \chi_{T([\beta\alpha])} = \chi_{[\beta\alpha_1 \alpha_2 \dots \alpha_n]} = \rho(s_{\alpha_2 \dots \alpha_n} p_{r(\beta\alpha)} s_{\alpha_2 \dots \alpha_n}^*)$ where $n := |\alpha|$. With the unitary u implementing the automorphism T' (namely, $T' = Ad u$), this can be written as

$$T'(s_{\alpha} p_{r(\beta\alpha)} s_{\alpha}^*) = u(s_{\alpha} p_{r(\beta\alpha)} s_{\alpha}^*) u^* = s_{\alpha_2 \dots \alpha_n} p_{r(\beta\alpha)} s_{\alpha_2 \dots \alpha_n}^*.$$

Particularly,

$$u p_{r(\beta)} u^* = u \left(\sum_{a \in \mathcal{A}} s_a p_{r(\beta a)} s_a^* \right) u^* = \sum_{a \in \mathcal{A}} p_{r(\beta a)} \quad (13)$$

holds. To find a desired isomorphism, we will find a representation of the labeled space $(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})$ in the crossed product, and then apply the universal property of the C^* -algebra $C^*(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})$. We actually show that the following partial isometries

$$t_a := u^* p_{r(a)}, \quad a \in \mathcal{A}$$

in the crossed products $C^*(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})^{\gamma} \times_{T'} \mathbb{Z}$ form a representation of $(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})$ together with the family of projections $\{p_A : A \in \overline{\mathcal{E}}_{\mathbb{Z}}\}$. By (13), $t_a^* t_a = p_{r(a)}$ and $t_a^* t_b = \delta_{a,b} p_{r(a)}$ are immediate for $a, b \in \mathcal{A}$. We also have

$$\begin{aligned} p_{r(\beta)} t_a &= p_{r(\beta)} u^* p_{r(a)} = u^* \left(\sum_{b \in \mathcal{A}} p_{r(\beta b)} \right) p_{r(a)} \\ &= u^* p_{r(\beta a)} = u^* p_{r(a)} p_{r(\beta a)} = t_a p_{r(\beta a)} \\ &= t_a p_{r(r(\beta), a)}. \end{aligned}$$

Since every $A \in \overline{\mathcal{E}}_{\mathbb{Z}}$ can be written as a finite union of generalized vertices (by Proposition 2.2) and a generalized vertex $[v]_l$ is clearly equal to a range $r(\beta)$ of $\beta \in \mathcal{L}_{\omega}(E^l v)$, we know that the above equalities hold for any $A \in \overline{\mathcal{E}}_{\mathbb{Z}}$. Finally we have to check

$$p_{r(\beta)} = \sum_{a \in \mathcal{A}} t_a p_{r(\beta a)} t_a^*,$$

but this follows directly from the definition of t_a and (13). Thus $\{t_a, p_A\}$ forms a representation of the labeled space $(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})$ in the C^* -algebra $C^*(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})^{\gamma} \rtimes_{T'} \mathbb{Z}$, and hence there exists a homomorphism

$$\pi : C^*(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}}) \rightarrow C^*(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})^{\gamma} \rtimes_{T'} \mathbb{Z}$$

such that $\pi(s_a) = t_a$ and $\pi(p_A) = p_A$ ($a \in \mathcal{A}$, $A \in \overline{\mathcal{E}}_{\mathbb{Z}}$). The homomorphism π is injective since $C^*(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})$ is simple by Theorem 3.7, and is surjective since $u^* = u^*(\sum_{a \in \mathcal{A}} p_{r(a)}) = \sum_{a \in \mathcal{A}} t_a \in \text{Im}(\pi)$ and $s_{\alpha} p_{r(\beta\alpha)} s_{\alpha}^* = (u^*)^{|\alpha|} p_{r(\beta\alpha)} u^{|\alpha|} \in \text{Im}(\pi)$ for all generators $s_{\alpha} p_{r(\beta\alpha)} s_{\alpha}^*$ of $C^*(E_{\mathbb{Z}}, \mathcal{L}_{\omega}, \overline{\mathcal{E}}_{\mathbb{Z}})^{\gamma}$.

For the last assertion, it is enough to see that for $\alpha, \beta \in \mathcal{L}_{\omega}^{\sharp}(E_{\mathbb{Z}})$,

$$\pi(s_{\alpha} p_{r(\beta\alpha)} s_{\alpha}^*) = s_{\alpha} p_{r(\beta\alpha)} s_{\alpha}^*.$$

If $a \in \mathcal{A}$, then $\pi(p_{r(a)}) = \pi(s_a^* s_a) = t_a^* t_a = p_{r(a)} u u^* p_{r(a)} = p_{r(a)}$, and hence $\pi(p_{r(\alpha)}) = p_{r(\alpha)}$ holds for all $\alpha \in \mathcal{L}_\omega^\sharp(E_\mathbb{Z})$. The equality (12) shows that the inverse $(T')^{-1}$ of the automorphism T' on $C^*(E_\mathbb{Z}, \mathcal{L}_\omega, \overline{\mathcal{E}}_\mathbb{Z})^\gamma$ maps a projections $p_{r(\alpha)}$ to the projection $s_a p_{r(\alpha)} s_a^*$, where $a \in \mathcal{A}$ is the last letter of α . (If $\alpha = \epsilon$ is the empty word, $p_{r(\epsilon)} = s_\epsilon$ is the unit of the labeled graph C^* -algebra, hence $(T')^{-1}(p_{r(\epsilon)}) = p_{r(\epsilon)} = s_\epsilon p_{r(\epsilon)} s_\epsilon^*$ also holds.) Then for $\alpha = \alpha' a$ with $\alpha' \in \mathcal{L}_\omega^\sharp(E_\mathbb{Z})$, $a \in \mathcal{A}$, we have

$$\pi(s_a p_{r(\alpha)} s_a^*) = t_a p_{r(\alpha)} t_a^* = u^* p_{r(\alpha)} u = (T')^{-1}(p_{r(\alpha)}) = s_a p_{r(\alpha)} s_a^*$$

as desired. \square

REFERENCES

- [1] T. Bates, T. M. Carlsen, and D. Pask, *C^* -algebras of labeled graphs III - K -theory computations*, Ergod. Th. & Dynam. Sys., available on CJO2015. doi:10.1017/etds.2015.62.
- [2] T. Bates, J. H. Hong, I. Raeburn and W. Szymanski, *The ideal structure of the C^* -algebras of infinite graphs*, Illinois J. Math., **46**(2002), 1159–1176.
- [3] T. Bates and D. Pask, *C^* -algebras of labeled graphs*, J. Operator Theory, **57**(2007), 101–120.
- [4] T. Bates and D. Pask, *C^* -algebras of labeled graphs II - simplicity results*, Math. Scand. **104**(2009), no. 2, 249–274.
- [5] T. Bates, D. Pask, I. Raeburn, and W. Szymanski, *The C^* -algebras of row-finite graphs*, New York J. Math. **6**(2000), 307–324.
- [6] B. Blackadar, O. Bratteli, G. A Elliott, and A. Kumjian, *Reduction of real rank in inductive limits of C^* -algebras*, Math. Ann. **292**(1992), 111–126.
- [7] T. Carlsen, *On C^* -algebras associated with sofic shifts*, J. Operator Theory. **49**(2003), 203–212.
- [8] T. Carlsen and K. Matsumoto, *Some remarks on the C^* -algebras associated with subshifts*, Math. Scand. **95**(2004), 145–160.
- [9] J. Cuntz, *K -theory for certain C^* -algebras*, Ann. Math. **113**(1981), no. 1, 181–197.
- [10] J. Cuntz and W. Krieger, *A class of C^* -algebras and topological Markov chains*, Invent. Math. **56**(1980), 251–268.
- [11] K. R. Davidson, *C^* -algebras by Examples*, Fields Institute Monographs, **6**, Amer. Math. Soc., 1996.
- [12] T. Downarowicz and A. Maass, *Finite-rank Brattelli-Vershik diagrams are expansive*, Ergod. Th. & Dynam. Sys., **28** (2008), 739–747.
- [13] R. Exel and M. Laca, *Cuntz-Krieger algebras for infinite matrices*, J. Reine. Angew. Math. **512**(1999), 119–172.
- [14] W. H. Gottschalk and G. A. Hedlund, *A characterization of the Morse minimal set*, Proc. Amer. Math. Soc., **15** (1964), 70–74.
- [15] T. Giordano, I. F. Putnam, and C. F. Skau, Topological orbit equivalence and C^* -crossed products, J. reine angew. Math. **469**(1995), 51–111.
- [16] R. H. Herman, I. F. Putnam, and C. F. Skau, Ordered Bratteli diagrams, dimension groups and topological dynamics, Intern. J. Math. **3**(1992), 827–864.
- [17] B. Host, Substitution subshifts and Bratteli diagrams, in Topics in Symbolic Dynamics and Applications (Temuco, 1997), LMS Lecture Note Ser. **279**(1995), Cambridge University Press, 2000.
- [18] J. A Jeong and S. H. Kim, *On simple labeled graph C^* -algebras*, J. Math. Anal. Appl. **386**(2012), 631–640.
- [19] J. A Jeong, S. H. Kim and G. H. Park, *The structure of gauge-invariant ideals of labeled graph C^* -algebras*, J. Funct. Anal. **262**(2012), 1759–1780.
- [20] J. A Jeong, E. J. Kang and S. H. Kim, *AF labeled graph C^* -algebras*, J. Funct. Anal. **266**(2014), 2153–2173.

- [21] M. Keane, *Generalized Morse sequences*, Z. Wahrscheinlichkeitstheorie verw. Geb. **10**(1968), 335–353.
- [22] S. H. Kim, *Unique tracial state on the labeled graph C^* -algebra associated to Thue-Morse sequence*, in preparation.
- [23] A. Kumjian and D. Pask, *Higher rank graph C^* -algebras*, New York J. Math. **6**(2000), 1–20.
- [24] A. Kumjian, D. Pask and I. Raeburn, *Cuntz-Krieger algebras of directed graphs*, Pacific J. Math. **184**(1998), 161–174.
- [25] A. Kumjian, D. Pask, I. Raeburn and J. Renault *Graphs, groupoids, and Cuntz-Krieger algebras*, J. Funct. Anal. **144**(1997), 505–541.
- [26] K. Matsumoto, *On C^* -algebras associated with subshifts*, Internat. J. Math. **8**(1997), 357–374.
- [27] D. Pask, I. Raeburn, M. Rørdam, and A. Sims, *Rank-two graphs whose C^* -algebras are direct limits of circle algebras*, J. Funct. Anal. **239**(2006), 137–178.
- [28] M. Queffélec, *Substitution dynamical systems - Spectral analysis*, Lecture Notes in Mathematics, vol. 103, Springer, 2010.
- [29] I. Raeburn, *Graph Algebras*, CBMS Regional Conference Series in Mathematics, vol. 103, Amer. Math. Soc., Providence, RI 2005.
- [30] M. Tomforde, A unified approach to Exel-Laca algebras and C^* -algebras associated to graphs, J. Operator Theory, **50**(2003), 345–368.
- [31] M. Tomforde, Simplicity of ultragraph algebras, Indiana Univ. Math. J. **52**(2003), 901–926.

DEPARTMENT OF MATHEMATICAL SCIENCES AND RESEARCH INSTITUTE OF MATHEMATICS,
SEOUL NATIONAL UNIVERSITY, SEOUL, 151–747, KOREA

E-mail address: jajeong@snu.ac.kr

DEPARTMENT OF MATHEMATICAL SCIENCES AND RESEARCH INSTITUTE OF MATHEMATICS,
SEOUL NATIONAL UNIVERSITY, SEOUL, 151–747, KOREA

E-mail address: kkang33@snu.ac.kr

BK21 PLUS MATHEMATICAL SCIENCES DIVISION, SEOUL NATIONAL UNIVERSITY, SEOUL, 151–747, KOREA

E-mail address: sunho.kim.math@gmail.com

DEPARTMENT OF FINANCIAL MATHEMATICS, HANSHIN UNIVERSITY, OSAN, 447–791, KOREA

E-mail address: ghpark@hs.ac.kr