Informe del Trabajo Práctico N°5 y N°6 de Física General <u>Caída Libre y Tiro Oblicuo.</u>

Integrantes:
Día y Turno:
Objetivo 1: Calcular la aceleración gravitacional "g" mediante el método gráfico y su exactitud cor respecto al valor teórico.
Materiales y Métodos: de acuerdo a Guía de Trabajos Prácticos de Física General.
Completar en el espacio asignado:
Escriba la fórmula que describe la posición respecto del tiempo en caída libre.
2. Escriba la fórmula que vincula la altura inicial con el tiempo de caída.

h (Y – Y ₀)	tiempo	t²
±	±	±
±	±	±
±	±	±
±	±	±
±	±	±

Tabla 1. Resultados experimentales de caída libre.

Determinación de la gravedad por método gráfico. Graficar **2H** en función de **t**² con los resultados de la tabla 1. Agregar el punto (0,0). <u>Verificar que los datos estén en los ejes correctos.</u>

3. Escribir la ecuación de la línea de tenden	icia que meior ajusta a los datos
o. Escribir la codacion de la linea de tenden	iola que mejor ajusta a los dates.
Y =	. X +

D	es	1	140	ᅯ	_	
\mathbf{r}		u	110		u	١_

Calcular el Error relativo porcentual con respecto al estándar teórico.

Er%:
$$|g - g_e| * 100 = ____%$$

Objetivo 2: mediante el uso del modelo de tiro oblicuo determinar:

- módulo de la velocidad inicial (por aproximación lineal o mediante fórmula)
- alcance, tiempo de vuelo, Ymax, t max
- comprobar que el mayor alcance se logra con un ángulo de elevación de 45°
- comprobar que el alcance con ángulos de elevación complementarios es el mismo.
- comprobar experimentalmente el problema del artillero.

Materiales y Métodos: de acuerdo a Guía de Trabajos Prácticos de Física General.

4. Escribir las ecuaciones horarias del tiro oblicuo de ángulo de elevación α:
 y (t) =
 x (t) =

Verifique los **SUPUESTOS** utilizados para el análisis de los resultados:

- Se desprecia el rozamiento del aire
- El valor de la gravedad es constante
- El radio de curvatura de la tierra no es relevante dadas las distancias involucradas en la experiencia.

α ($\epsilon\alpha$ = 0.5°)	∆d ±ε _{Δd} (m)	$\Delta t \pm \epsilon_{\Delta t}$ (s)	Vo ±ενο (m/s)
30°	0,1 ± 0,001	±	±
40°	0,1 ± 0,001	±	±
45°	0,1 ± 0,001	±	±
50°	0,1 ± 0,001	±	±
55°	0,1 ± 0,001	±	±
60°	0,1 ± 0,001	±	±

Tabla 2. Resultados para la determinación del módulo de V₀ por aproximación de movimiento uniforme (Vo experimental calculado como el tiempo que tarda en pasar entre los photogates ubicados al inicio del tiro)

angulo de elevación α:
6. Escribir la fórmula de propagación del error absoluto para la velocidad inicial:

Completar con los resultados requeridos para el cálculo:

 $g = 9.8 \pm 0.1 \text{ m/s}2$

α ($\epsilon\alpha$ = 0.5°)	T _L ±ε τ _L (s)	Vo ±ενο (m/s)
30°	±	±
40°	±	±
45°	±	±
50°	±	±
55°	±	±
60°	±	±

Tabla 3. Velocidad inicial calculada a través del tiempo de alcance (T_L) con la fórmula del cuadro 5.

7. Conclusiones con respecto a ambos métodos de cálculo de V _o :	

Determinación de puntos destacados de la parábola de tiro oblicuo:

8. Escribir la fórmula que vincula \mathbf{Y}_{max} con el módulo de la velocidad inicial, g y el ángulo de elevación:

9. Escribir la fórmula de propagación del error absoluto para Y _{max} :
10. Escribir la fórmula que vincula t _{max} con el módulo de la velocidad inicial, g y el ángulo de elevación:
11. Escribir la fórmula de propagación del error absoluto para t _{max} :

α (ϵ_{α} = 0.5°)	y max (m)	ε y más	t máx (s)	ε (t _{máx})	L (m)	E _{L (m)}
30°						
40°						
45°						
50°						
55°						
60°						

Tabla 4. Completar con los puntos destacados de la parábola. Ymax (utilizando la ecuación del cuadro 8), Tmax (utilizando la ecuación del cuadro 10) y L (resultados experimentales). Se debe verificar el mayor alcance (L) para el ángulo 45°, y alcances similares para los ángulos complementarios.

Conclusiones:

12. ¿Qué sucede con el alcance cuando el ángulo de elevación es 45°?
12. Foeribe le equesión que vineule el elegace (L) con el éngule de elevesión (g) y justifique el
13. Escriba la ecuación que vincula el alcance (L) con el ángulo de elevación (α) y justifique el punto anterior:
L (α) =
<u>d L</u> =
dα
Justificación:
14. ¿Qué sucede con el alcance con ángulos de elevación complementarios?
14. ¿Que succue con el alcance con angulos de elevación complementarios:
15. Demuestre la igualdad de los alcances verificando que sen(2x)=sen[2(90-x)]
10. Domicolio la igualdad de los disamose vermodrido que con(2x)=3511[2(00 x)]

Bibliografía: Guía de Trabajos Prácticos de Física General.