Лабораторная работа №14

Модели обработки заказов

Лихтенштейн Алина Алексеевна

Содержание

1	Цел	ь работы	4
2	Зада	ание	5
3	Вып	олнение лабораторной работы	6
	3.1	Модель оформления заказов клиентов одним оператором	6
	3.2	Построение гистограммы распределения заявок в очереди	12
	3.3	Модель обслуживания двух типов заказов от клиентов в интернетмагазине	17
	3.4	Модель оформления заказов несколькими операторами	25
4	Выв	оды	34
5	Спи	сок литературы	35

Список иллюстраций

3.1	Модель оформления заказов клиентов одним оператором	7
3.2	Отчёт по модели оформления заказов в интернет-магазине	8
3.3	Модель оформления заказов клиентов одним оператором, упраж-	
	нение	10
3.4	Отчёт по модели оформления заказов в интернет-магазине, упраж-	
	нение	11
3.5	Построение гистограммы распределения заявок в очереди	13
3.6	Отчёт по модели оформления заказов в интернет-магазине при	
	построении гистограммы распределения заявок в очереди	14
3.7	Отчёт по модели оформления заказов в интернет-магазине при	
	построении гистограммы распределения заявок в очереди	15
3.8	Гистограмма распределения заявок в очереди	15
3.9	Модель обслуживания двух типов заказов от клиентов в интернет-	
	магазине	18
	Отчёт по модели оформления заказов двух типов	19
	Отчёт по модели оформления заказов двух типов	19
3.12	Модель обслуживания двух типов заказов с условием, что число	
	заказов с дополнительным пакетом услуг составляет 30% от общего	
	числа заказов	22
	Отчёт по модели оформления заказов двух типов заказов	23
	Модель оформления заказов несколькими операторами	26
	Отчет по модели оформления заказов несколькими операторами	27
3.16	Модель оформления заказов несколькими операторами с учетом	
	отказов клиентов	30
3.17	Отчет по модели оформления заказов несколькими операторами с	
	учетом отказов клиентов	31

1 Цель работы

Реализовать модели обработки заказов и провести анализ результатов.

2 Задание

Реализовать с помощью gpss:

- модель оформления заказов клиентов одним оператором;
- построение гистограммы распределения заявок в очереди;
- модель обслуживания двух типов заказов от клиентов в интернет-магазине;
- модель оформления заказов несколькими операторами.

3 Выполнение лабораторной работы

3.1 Модель оформления заказов клиентов одним оператором

Порядок блоков в модели соответствует порядку фаз обработки заказа в реальной системе:

- 1) клиент оставляет заявку на заказ в интернет-магазине;
- 2) если необходимо, заявка от клиента ожидает в очереди освобождения оператора для оформления заказа;
- 3) заявка от клиента принимается оператором для оформления заказа;
- 4) оператор оформляет заказ;
- 5) клиент получает подтверждение об оформлении заказа (покидает систему).

Модель будет состоять из двух частей: моделирование обработки заказов в интернет-магазине и задание времени моделирования. Для задания равномерного распределения поступления заказов используем блок GENERATE, для задания равномерного времени обслуживания (задержки в системе) – ADVANCE. Для моделирования ожидания заявок клиентов в очереди используем блоки QUEUE и DEPART, в которых в качестве имени очереди укажем орегаtor_q Для моделирования поступления заявок для оформления заказов к оператору используем блоки SEIZE и RELEASE с параметром орегаtor — имени «устройства обслуживания».

Требуется, чтобы модельное время было 8 часов. Соответственно, параметр блока GENERATE – 480 (8 часов по 60 минут, всего 480 минут). Работа программы

начинается с оператора START с начальным значением счётчика завершений, равным 1; заканчивается – оператором TERMINATE с параметром 1, что задаёт ординарность потока в модели.

Таким образом, имеем (рис. fig. 3.1).

```
; operator
GENERATE 15,4
QUEUE operator_q
SEIZE operator
DEPART operator_q
ADVANCE 10,2
RELEASE operator
TERMINATE 0
; timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 3.1: Модель оформления заказов клиентов одним оператором

После запуска симуляции получаем отчёт (рис. fig. 3.2).

lab14_1.2.1 - F	EPORT								
	четве	рг, мая 01,	2025 12:	11:49					
s	TART TIME	END	TIME BI	LOCKS E	FACILIT	IES :	STORAGE	S	
	0.000	480	.000	9	1		0		
	NAME		VAI	LUE					
	ERATOR		10001.						
OP	ERATOR_Q		10000.	.000					
LABEL	LOC	BLOCK TYPE	ENTE		CURRE				
	1	GENERATE		32		0	C		
	2	QUEUE		32		0	0		
		SEIZE		32		0			
	_	DEPART					0		
		ADVANCE					0		
		RELEASE		31		0			
	7	TERMINATE GENERATE		31		0			
				1		0			
	9	TERMINATE		1		0	C)	
FACILITY	PMTDIFE	IITTI AN	E TIME	AVATI	OMNED	מואשם.	ת משדעת	ימדםע	DELYA
OPERATOR		0.639							
OFERATOR	32	0.039	9.30	, 1	33	0	0	0	· ·
QUEUE	MAX C	ONT. ENTRY E	NTRY(0)	AVE.COM	NT. AVE	.TIME	AVE.	(-0)	RETRY
QUEUE OPERATOR_Q	1	0 32	31	0.001	L	0.021	C	.671	0
FEC XN PRI		10071	CHDDEN	NEVE	מבתבת	משדם	173.7.7	10	
TEC AN PRI		786 33			PARAM	EIEK	VALU	20	
		786 33 081 34							
35 0		000 35							
33 0	960.	000 35	U	٥					

Рис. 3.2: Отчёт по модели оформления заказов в интернет-магазине

Результаты работы модели:

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0. Имена, используемые в программе модели: operator, operator_q.

Далее идёт информация о блоках текущей модели, в частности, ENTRY COUNT – количество транзактов, вошедших в блок с начала процедуры моделирования.

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 33 заказа от клиентов (значение поля OWNER=33), но одну заявку оператор не успел принять в обработку до окончания рабочего времени (значение поля ENTRIES=32). Полезность работы оператора составила 0, 639. При этом среднее время занятости оператора составило 9, 589 мин.

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- МАХ=1 в очереди находилось не более одной ожидающей заявки от клиента;
- CONT=0 на момент завершения моделирования очередь была пуста;
- ENTRIES=32 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=31 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT=0, 001 заявок от клиентов в среднем были в очереди;
- AVE. TIME=0.021 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=0, 671 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

В конце отчёта идёт информация о будущих событиях:

- XN=33 порядковый номер заявки от клиента, ожидающей поступления для оформления заказа у оператора;
- PRI=0 все клиенты (из заявки) равноправны;
- BDT=489, 786 время назначенного события, связанного с данным транзактом;
- ASSEM=33 номер семейства транзактов;
- CURRENT=5 номер блока, в котором находится транзакт;
- NEXT=6 номер блока, в который должен войти транзакт.

Упражнение

Скорректируйте модель в соответствии с изменениями входных данных: интервалы поступления заказов распределены равномерно с интервалом 3.14 ± 1.7 мин; время оформления заказа также распределено равномерно на интервале 6.66 ± 1.7 мин. Проанализируйте отчёт, сравнив результаты с результатами предыдущего моделирования.

Я изменила строки GENERATE и ADVANCE (рис. fig. 3.3).

```
; operator
GENERATE 3.14,1.7
QUEUE operator_q
SEIZE operator
DEPART operator_q
ADVANCE 6.66,1.7
RELEASE operator
TERMINATE 0
; timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 3.3: Модель оформления заказов клиентов одним оператором, упражнение

После запуска симуляции получаем отчёт (рис. fig. 3.4).

lab14_1.	3.1 - REPC	RT									
		четвеј	ог, мая 0	1, 2025 1	2:13:43						
	STAR	T TIME	El	ND TIME	BLOCKS H	FACILITI	ES :	STORAG	ES		
		0.000		180.000	9	1		0			
	N.	AME		V	ALUE						
	OPERA	TOR		1000	1.000						
	OPERA	TOR_Q		1000	0.000						
LABEL		LOC	BLOCK TY	PE EN	TRY COUNT	CURREN	IT CO	UNT RE	TRY		
			GENERATE		152						
			QUEUE		152				0		
			SEIZE		70				0		
			DEPART		70		0		0		
		_	ADVANCE		70		1		0		
		_	RELEASE		69		0		0		
			TERMINATI	_	69				-		
		_	GENERATE		1				0		
		9	TERMINATI	3	1		0		0		
FACTLITY	,	ENTRIES	HTT.	AVE TIM	F AVATT.	OWNED D	FND .	TNTED	DETDV	DELAY	
		70									
QUEUE		MAX CO	ONT. ENTR	Y ENTRY (0) AVE.COM	NT. AVE.	TIME	AVE	. (-0)	RETRY	
OPERATO	OR_Q	82	82 15	2 1	39.096	123	3.461	12	4.279	0	
FEC XN	PRI	BDT	ASSI	EM CURRE	NT NEXT	PARAME	TER	VAL	UE		
71	0	480.4	105 7		6	,					
154	0	483.3	105 7: 330 15	4 0	1						
155	0	960.0	000 15	5 0	8						

Рис. 3.4: Отчёт по модели оформления заказов в интернет-магазине, упражнение

Проанализируем отчёт:

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0. Имена, используемые в программе модели: operator, operator_q.

Далее идёт информация о блоках текущей модели, в частности, ENTRY COUNT – количество транзактов, вошедших в блок с начала процедуры моделирования =

152.

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 71 заказа от клиентов (значение поля OWNER=71), но одну заявку оператор не успел принять в обработку до окончания рабочего времени (значение поля ENTRIES=70). Полезность работы оператора составила 0,991. При этом среднее время занятости оператора составило 6,796 мин.

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- МАХ= 82 в очереди находилось 82 ожидающих заявки от клиента;
- CONT= 82 на момент завершения моделирования очередь была полна (82 заявки);
- ENTRIES= 152 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)= 1 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT= 39,096 заявок от клиентов в среднем были в очереди;
- AVE.TIME = 123,461 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=124,279 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

В конце отчёта идёт информация о будущих событиях.

3.2 Построение гистограммы распределения заявок в очереди

Требуется построить гистограмму распределения заявок, ожидающих обработки в очереди в примере из предыдущего упражнения. Для построения гисто-

граммы необходимо сформировать таблицу значений заявок в очереди, записываемых в неё с определённой частотой.

Команда описания такой таблицы QTABLE имеет следующий формат: Name QTABLE A, B, C, D Здесь Name — метка, определяющая имя таблицы. Далее должны быть заданы операнды: А задается элемент данных, чьё частотное распределение будет заноситься в таблицу (может быть именем, выражением в скобках или системным числовым атрибутом (СЧА)); В задается верхний предел первого частотного интервала; С задает ширину частотного интервала — разницу между верхней и нижней границей каждого частотного класса; D задаёт число частотных интервалов.

Код программы будет следующим(рис. fig. 3.5).

```
Waittime QTABLE operator_q,0,2,15
GENERATE 3.34,1.7
TEST LE Q$operator_q,1,Fin
SAVEVALUE Custnum+,1
ASSIGN Custnum,X$Custnum
QUEUE operator_q
SEIZE operator
DEPART operator_q
ADVANCE 6.66,1.7
RELEASE operator
Fin TERMINATE 1
```

Рис. 3.5: Построение гистограммы распределения заявок в очереди

Здесь Waittime — метка оператора таблицы очередей QTABLE, в данном случае название таблицы очереди заявок на заказы. Строка с оператором TEST по смыслу аналогично действиям оператора IF и означает, что если в очереди 0 или 1 заявка, то осуществляется переход к следующему оператору, в данном случае к оператору SAVEVALUE, в противном случае (в очереди более одной заявки) происходит переход к оператору с меткой Fin, то есть заявка удаляется из системы,

не попадая на обслуживание. Строка с оператором SAVEVALUE с помощью операнда Custnum подсчитывает число заявок на заказ, попавших в очередь. Далее оператору ASSIGN присваивается значение CYA оператора Custnum.

Получим отчет симуляции (рис. fig. 3.6, fig. 3.7).

lab14_2.1.1	- REPORT					
	GPSS World	Simulation Repo	ort - lable	1_2.1.1		
	четве	рг, мая 01, 202	12:34:30			
	START TIME	END TIME	BLOCKS	FACILITIES	STORAGES	
	0.000	353.89	10	1	0	
	NAME		VALUE			
	CUSTNUM	10	0002.000			
	FIN OPERATOR		10.000			
			0003.000			
	OPERATOR_Q		0001.000			
	WAITTIME	10	000.000			
LABEL	TOC	BLOCK TYPE	FNTRY COUN	IT CHERFNT C	OUNT RETRY	
	1	BLOCK TYPE GENERATE TEST	102	0	0	
	2	TEST	102	0	0	
	3	SAVEVALUE	55	0	0	
	4	ASSIGN	5.5	0	0	
	5	QUEUE	55	1	. 0	
				1 0	. 0	
	7	DEPART	53	0	0	
	8	ADVANCE	53	0	0	
	9	RELEASE	53	0	0	
FIN	10	TERMINATE	100	0	0	
FACTITTY	FNTDIFS	UTIL. AVE. 3	TIME AWATE	OWNED DEND	TMTED DETDV	DELYA
		0.987 AVE.				
OFERMION	31	0.507	2. 1/V I	50 0		-
QUEUE	MAX C	ONT. ENTRY ENTRY	(0) AVE.CO	NT. AVE.TIM	E AVE.(-0)	RETRY
OPERATOR	0 2	ONT. ENTRY ENTRY 2 55	1 1.65	2 10.62	8 10.824	0

Рис. 3.6: Отчёт по модели оформления заказов в интернет-магазине при построении гистограммы распределения заявок в очереди

lab14_2.1.1 - REPC							
	8 ADV			53	0	0	
FIN	9 RELE			53		0	
I TIM	10 TERM	IINAIL	1	.00	U	U	
FACILITY							
OPERATOR	54 0.	987	6.470	1	98 0	0 0	1
QUEUE OPERATOR_Q	MAX CONT.	ENTRY EN	TRY(0) A	VE.CONT	. AVE.TIME	AVE.(-0)	RETRY
OPERATOR_Q	2 2	55	1	1.652	10.628	10.824	0
TABLE	MEAN SI	D.DEV.	RAN	IGE	RETRY	FREQUENCY	CUM.%
WAITTIME	10.709 2	.702			0		
					.000	1	1.89
			000 -		.000	0	1.89
			000 -		.000		3.77
			000 -				3.77
		6.	000 -	8	3.000		11.32
		8.	000 -	10	.000	12	33.96
			000 -		2.000	17	66.04
			000 -		.000		92.45
		14.	000 -	16	5.000	4	100.00
SAVEVALUE	RETRY		ALUE				
CUSTNUM	0	5	5.000				
CEC XN PRI					PARAMETER	VALUE	
98 0	341.236	98	6	7			
					CUSTNUM	54.000	
FEC XN PRI					PARAMETER	VALUE	
103 0	356.553	103	0	1			

Рис. 3.7: Отчёт по модели оформления заказов в интернет-магазине при построении гистограммы распределения заявок в очереди

И гистограмму(рис. fig. 3.8):

Рис. 3.8: Гистограмма распределения заявок в очереди

Упражнение

Требуется проанализировать отчёт и гистограмму по результатам моделирования.

Проанализируем отчёт:

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=353.895;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=10;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: custnum, fin, operator, operator_q, waittime.

• количество транзактов, вошедших в блок с начала процедуры моделирования ENTRY COUNT = 102;

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 98 заказов от клиентов (значение поля OWNER=98), но оператор успел принять в обработку до окончания рабочего времени только 54 (значение поля ENTRIES=54). Полезность работы оператора составила 0,987. При этом среднее время занятости оператора составило 6,470 мин.

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- MAX=2 в очереди находилось не более двух ожидающих заявок от клиента;
- CONT=2 на момент завершения моделирования в очереди было два клиента;
- ENTRIES=55 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=1 число заявок от клиентов, попавших к оператору без ожидания в очереди;

- AVE. CONT=1,652 заявок от клиентов в среднем были в очереди;
- AVE. TIME=10,628 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=10,824 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

Также появилась таблица с информацией для гистограммы: частотность разделена на 15 частотных интервалов с шагом 2 и началом в 0, а также в таблице указана частота, количество обрабатываемых заявок.

В конце отчёта идёт информация о будущих событиях.

Проанализируем гистограмму:

Частотное распределение времени обработки заявок было сформировано на основе 15 равных интервалов шириной 2 минуты, начиная с нуля, в соответствии с заданными параметрами.

- Максимальное количество заявок (17) обрабатывалось в интервале 10–12 минут.
- Второй по частоте интервал 12–14 минут, в котором обрабатывалось 14 заявок.
- Третий по частоте 8–10 минут с 12 заявками.
- Во всех остальных интервалах количество заявок варьировалось от 0 до 4, что свидетельствует о низкой вероятности соответствующего времени обработки.

3.3 Модель обслуживания двух типов заказов от клиентов в интернет-магазине

Необходимо реализовать отличие в оформлении обычных заказов и заказов с дополнительным пакетом услуг. Такую систему можно промоделировать с

помощью двух сегментов. Один из них моделирует оформление обычных заказов, а второй – заказов с дополнительным пакетом услуг. В каждом из сегментов пара QUEUE-DEPART должна описывать одну и ту же очередь, а пара блоков SEIZE-RELEASE должна описывать в каждом из двух сегментов одно и то же устройство и моделировать работу оператора. Код и отчет результатов моделирования следующие (рис. fig. 3.9, fig. 3.10, fig. 3.11).

```
order
GENERATE 15,4
QUEUE operator q
SEIZE operator
DEPART operator q
ADVANCE 10,2
RELEASE operator
TERMINATE 0
; order and service package
GENERATE 30,8
QUEUE operator q
SEIZE operator
DEPART operator q
ADVANCE 5,2
ADVANCE 10,2
RELEASE operator
TERMINATE 0
;timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 3.9: Модель обслуживания двух типов заказов от клиентов в интернетмагазине

Рис. 3.10: Отчёт по модели оформления заказов двух типов

	OPERATO)R			10001.0	000					
	OPERATO	R_Q			10000.	000					
		_									
LABEL		LOC	BLOC	K TYPE	ENTR	Y COUNT	CURRENT	COU	NT RE	TRY	
		1	GENE	RATE		32		0	()	
		2	QUEU	ΙE		32		4	()	
		3	SEIZ	E		28		0	()	
		4	DEPA	RT		28		0	()	
		5	ADVA	NCE		28		1	()	
		6	RELE	ASE		27		0	(
		7	TERM	INATE		27		0	(
		8	GENE	RATE		15		0	(
		9	OUEU	E		15		3	()	
		10	SEIZ	E		12		0	()	
		11	DEPA	RT		12		0	()	
		12	ADVA	NCE		12		0	(
		13	ADVA	NCE		12		0	(
				ASE		12		0	(
		15	TERM	INATE		12		0	(
		16	GENE	RATE		1		0	()	
		17	TERM	INATE		1		0	()	
ACILITY	7	ENTRIES	UTI	L. AV	E. TIME	AVAIL.	OWNER PE	ND I	NTER I	RETRY	DELAY
OPERATO)R	40	0.	947	11.365	1	42	0	0	0	7
UEUE		MAX C	ONT	FNTRY F	NTRY(0)	AVE CON	T AVF T	TMF	AVE	(-0)	DETRY
OPERATO		8	7	47	2	3 355	34	261	31	784	0
OI DIGIT	e		,		-	0.000	01.			,,,,,	•
EC XN					CURRENT		PARAMET	ER	VAL	JE	
42	0	487.			5	6					
50	0	493.			0	1					
49	0	499.		49	0	8					
51	0	960.	000	51	0	16					

Рис. 3.11: Отчёт по модели оформления заказов двух типов

Задание: проанализировать отчёт.

Результаты работы модели:

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=17;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator_q.

- количество транзактов, вошедших в блок:
 - первого типа заказов с начала процедуры моделирования ENTRY COUNT
 = 32;
 - второго типа(с дополнительными услугами) ENTRY COUNT = 15;
 - обработано 39 (потому что 12+27 = 39);

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 42 заказ от клиентов (значение поля OWNER=42), но оператор успел принять в обработку до окончания рабочего времени только 40 (значение поля ENTRIES=40). Полезность работы оператора составила 0,947. При этом среднее время занятости оператора составило 11,365 мин.

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- MAX=8 в очереди находилось не более восьми ожидающих заявок от клиента;
- CONT=7 на момент завершения моделирования в очереди было 7 клиентов;

- ENTRIES=47 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=2 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT=3,355 заявок от клиентов в среднем были в очереди;
- AVE.TIME=34,261 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=35,784 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

В конце отчёта идёт информация о будущих событиях.

Упражнение

Нужно было скорректировать модель так, чтобы учитывалось условие, что число заказов с дополнительным пакетом услуг составляет 30% от общего числа заказов.

Из теории мы знаем, что:

Блок TRANSFER изменяет маршрут движения транзактов:

• TRANSFER [A],B,[C],[D]

3десь A — режим перехода; B — метка первого альтернативного блока; C — метка второго альтернативного блока; D — константа, используемая для относительной переадресации транзактов.

Будем использовать один блок order, а разделим типы заявок с помощью переходов оператором TRANSFER. Каждый заказ обрабатывается 10 ± 2 минуты, после этого зададим оператор TRANSFER, в котором укажем, что с вероятностью 0.7 происходит обработка заявки (переход к блоку dst2 Release operator), а с вероятностью 0.3 дополнительно заказ обрабатывается еще 5 ± 2 минуты (переход к блоку dst1 ADVANCE 5,2) и только после этого является обработанным (рис. fig. 3.12).

```
; order
GENERATE 15,4
QUEUE operator_q
SEIZE operator
DEPART operator_q
ADVANCE 10,2
TRANSFER 0.3,dst2,dst1
dst1 ADVANCE 5,2
dst2 RELEASE operator
TERMINATE 0
; timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 3.12: Модель обслуживания двух типов заказов с условием, что число заказов с дополнительным пакетом услуг составляет 30% от общего числа заказов

Проанализируем результаты моделирования (рис. fig. 3.13).

	REPORT						
	GPSS World	Simulation	Report -	lab14_	3.3.1		
	четве	рг, мая 01,	2025 13:0	00:17			
S		END					
	0.000	480	.000 1	11	1	0	
	NAME		VALU	IE.			
DS	T1		7.0	-			
	T2		8.0				
	ERATOR		10001.0				
OP	ERATOR_Q		10000.0	000			
LABEL	100	BLOCK TYPE	FNTDS	COUNT	CUDDENT C	OUNT DETRY	
PWDEP		GENERATE				OUNI KEIRI	
		QUEUE		33		0	
		SEIZE		33		0	
		DEPART		33	0	0	
		ADVANCE		33	0	0	
	6	TRANSFER		33	0	0	
DST1	7	ADVANCE		8	1	. 0	
DST2	8	RELEASE		32	0	0	
	9	TERMINATE		32	0	0	
		GENERATE		1	0	0	
	11	TERMINATE		1	0	0	
FACILITY	PNTDIPO	HTTI N	E TIME 1	172 TT	OWNED DEND	THIPP DETRY	DELYA
OPERATOR						O 0	
OLLMION		0.700	11.110	-	01 0		
QUEUE OPERATOR_Q	MAX C	ONT. ENTRY E	NTRY(0) A	AVE.CON	T. AVE.TIM	E AVE.(-0)	RETRY
OPERATOR_Q	1	0 33	25	0.054	0.78	1 3.220	0
FEC VN DDI		100FM	CHDDENT	NEVT	DADAMETER	WATTE	
FEC XN PRI		925 34		8 8	FARAPILIER	VALUE	
		726 35 000 36					
35 0			•	-			

Рис. 3.13: Отчёт по модели оформления заказов двух типов заказов

Результаты работы модели:

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=11;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=1;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=0.

Имена, используемые в программе модели: operator, operator_q.

- количество транзактов, вошедших в блок заказов с начала процедуры моделирования ENTRY COUNT = 33;
- второго типа (с дополнительными услугами) ENTRY COUNT = 8;
- обработано 32 заказа;

Затем идёт информация об одноканальном устройстве FACILITY (оператор, оформляющий заказ), откуда видим, что к оператору попало 34 заказа от клиентов (значение поля OWNER=34), но оператор успел принять в обработку до окончания рабочего времени только 33 (значение поля ENTRIES=33). Полезность работы оператора составила 0,766. При этом среднее время занятости оператора составило 11,146 мин.

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- МАХ=1 в очереди находилось не более одной ожидающей заявки от клиента;
- CONT=0 на момент завершения моделирования в очереди было ноль клиентов;
- ENTRIES=33 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=25 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT=0,054 заявок от клиентов в среднем были в очереди;
- AVE. TIME=0.781 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=3,220 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

В конце отчёта идёт информация о будущих событиях.

3.4 Модель оформления заказов несколькими операторами

В интернет-магазине заказы принимают 4 оператора. Интервалы поступления заказов распределены равномерно с интервалом 5 ± 2 мин. Время оформления заказа каждым оператором также распределено равномерно на интервале 10 ± 2 мин. обработка поступивших заказов происходит в порядке очереди (FIFO). Требуется определить характеристики очереди заявок на оформление заказов при условии, что заявка может обрабатываться одним из 4-х операторов в течение восьмичасового рабочего дня

Для задания количества доступных операторов в системе используется команда STORAGE operator 4, где operator — имя ресурса, а число 4 указывает на то, что одновременно могут работать четыре оператора.

На этапе обработки каждой заявки добавляется команда ENTER operator,1, обозначающая, что для начала обслуживания необходимо зарезервировать одного оператора (рис. fig. 3.14).

```
operator STORAGE 4
GENERATE 5,2
QUEUE operator_q
ENTER operator,1
DEPART operator_q
ADVANCE 10,2
LEAVE operator,1
TERMINATE 0
;timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 3.14: Модель оформления заказов несколькими операторами

Упражнение

1. Проанализируем отчет (рис. fig. 3.15).

Рис. 3.15: Отчет по модели оформления заказов несколькими операторами

Результаты работы модели:

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=9;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=0;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=1.

Имена, используемые в программе модели: operator, operator_q.

• количество транзактов, вошедших в блок заказов с начала процедуры моделирования ENTRY COUNT = 93; обработан 91 заказ;

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- МАХ=1 в очереди находилось не более одной ожидающей заявки от клиента;
- CONT=0 на момент завершения моделирования в очереди было ноль клиентов;
- ENTRIES=93 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=93 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT=0,000 заявок от клиентов в среднем были в очереди;
- AVE. TIME=0,000 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=0,000 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

Далее идет информация про многоканальное устройство STORAGE (представляющее операторов, оформляющих заказы), и мы можем сделать такие выводы:

- Общее число заявок, направленных к операторам, составило 93.
- Значение коэффициента полезности (или загрузки) STORAGE составило 0,482.
- Среднее время, в течение которого один оператор был занят одной заявкой, составило 1,926 минуты.
- САР. = 4, что означает возможность одновременной работы до четырёх операторов.
- Максимальное число одновременно задействованных операторов: 4 то есть в некоторые моменты все операторы находились в работе.

• Минимальное число задействованных операторов: 0 — были периоды, когда ни один оператор не был занят.

В конце отчёта идёт информация о будущих событиях.

2. Изменим модель: требуется учесть в ней возможные отказы клиентов от заказа – когда при подаче заявки на заказ клиент видит в очереди более двух других заявок, он отказывается от подачи заявки, то есть отказывается от обслуживания (используем блок TEST и стандартный числовой атрибут Qj текущей длины очереди j).

Прочитаем информацию про TEST:

Блок TEST определяет направление движения транзакта в зависимости от выполнения условия, заданного алгебраическим соотношением:

TEST XX A,B,[C]

Здесь XX — знак логической операции: L — меньше, G — больше, E — равно, LE — меньше или равно, GE — больше или равно, NE — не равно; A, B — сравниваемые значения; C — метка блока, куда перемещается транзакт в случае невыполнения заданного условия.

В модель я добавила строчку TEST LE Q\$operator_q, 2, которая проверяет, сколько человек стоит в очереди к операторам. Если в очереди не больше двух клиентов, заявка идёт дальше на обработку. Если клиентов больше двух — заявка уходит из системы, имитируя отказ пользователя из-за слишком долгого ожидания.

Ранее в отчёте было видно, что длина очереди ни разу не превышала двух человек. Это связано с тем, что заявки поступали довольно редко, и операторы успевали справляться с потоком. Чтобы проверить, как система поведёт себя при большей нагрузке, я изменила параметры модели:

• Вместо GENERATE 5,2 теперь используется GENERATE 2,1, то есть заявки приходят чаще — примерно раз в 2 минуты с небольшим разбросом.

• Команда ADVANCE 10,2 заменена на ADVANCE 20,2, чтобы одна заявка обрабатывалась дольше — в среднем 20 минут.

Таким образом, модель теперь работает в условиях, когда операторов может не хватать, и появляется шанс, что очередь превысит допустимый предел в два человека. Это позволяет проверить, как сработает фильтрация через TEST, и насколько сильно это повлияет на общий поток заявок (рис. fig:015).

```
operator STORAGE 4
GENERATE 2,1
TEST LE Q$operator_q,2
QUEUE operator_q
ENTER operator_1
DEPART operator_q
ADVANCE 20,2
LEAVE operator,1
TERMINATE 0
; timer
GENERATE 480
TERMINATE 1
START 1
```

Рис. 3.16: Модель оформления заказов несколькими операторами с учетом отказов клиентов

3. Проанализируем полученный отчет (рис. fig. 3.17).

GP	SS World Si	mulation	Report -	lab14_	1.4.1		
	четверг,	мая 01,	2025 13:4	2:04			
START	TIME	END	TIME BLO	CKS F	CILITIES		
	0.000	480	.000 1	.0	0	1	
NAI	ME		VALU	E			
OPERAT			10000.0				
OPERAT	OR_Q		10001.0	00			
ABEL	LOC BL						
		NERATE			138		
	2 TE	ST EUE		01	0	-	
	4 EN			98	0	0	
		PART		98	0	0	
	6 AD	6 ADVANCE		98	4	0	
		AVE		94	0	0	
	8 TE	RMINATE		94	0	0	
	9 GE			1	0		
	10 TE	RMINATE		1	0	0	
JEUE	MAX CONT	. ENTRY E	NTRY(0) A	VE.CON	. AVE.TIM	E AVE.(-0)	RETRY
JEUE DPERATOR_Q	3 3	101	4	2.915	13.85	4 14.42	5 138
ORAGE	CAP. REM	. MIN. MA	X. ENTRI	ES AVL	AVE.C.	UTIL. RETRY	DELAY
PERATOR							
C XN PRI	BDT	ASSEM	CURRENT	NEXT	PARAMETER	VALUE	
241 0	481.105	241	0	1			
96 0	486.885			7			
97 0	494.918	97	6	7			
98 0 99 0	496.712	98	6	7			
242 0	960.000	242	0	9			
	300.000	2.2	•				

Рис. 3.17: Отчет по модели оформления заказов несколькими операторами с учетом отказов клиентов

Результаты работы модели:

- модельное время в начале моделирования: START TIME=0.0;
- абсолютное время или момент, когда счетчик завершений принял значение 0: END TIME=480.0;
- количество блоков, использованных в текущей модели, к моменту завершения моделирования: BLOCKS=10;
- количество одноканальных устройств, использованных в модели к моменту завершения моделирования: FACILITIES=0;
- количество многоканальных устройств, использованных в текущей модели к моменту завершения моделирования: STORAGES=1.

Имена, используемые в программе модели: operator, operator_q.

- количество транзактов, вошедших в блок заказов с начала процедуры моделирования ENTRY COUNT = 239;
- обработано 94 заказа;
- 138 человек отказались оставлять заявки, поскольку очередь была более двух заявок.

Далее информация об очереди:

- QUEUE=operator_q имя объекта типа «очередь»;
- MAX = 3 в очереди находилось не более трех ожидающих заявок от клиента(как и было указано);
- CONT = 3 на момент завершения моделирования в очереди было три клиента;
- ENTRIES=101 общее число заявок от клиентов, прошедших через очередь в течение периода моделирования;
- ENTRIES(0)=4 число заявок от клиентов, попавших к оператору без ожидания в очереди;
- AVE. CONT=2,915 заявок от клиентов в среднем были в очереди;
- AVE. TIME=13,854 минут в среднем заявки от клиентов провели в очереди (с учётом всех входов в очередь);
- AVE. (-0)=14,425 минут в среднем заявки от клиентов провели в очереди (без учета «нулевых» входов в очередь).

Далее в отчёте представлена статистика по многоканальному устройству STORAGE, которое моделирует операторов, занимающихся оформлением заказов. Из данных видно следующее:

- К операторам было направлено 98 заявок от клиентов.
- Полезность работы (utilization) составила 0,988, то есть операторы были заняты почти всё время моделирования 98,8 % времени.

- В среднем один оператор тратил 3,953 минуты на обработку одной заявки.
- САР. = 4, что означает возможность одновременной работы до четырёх операторов.
- Максимальное число одновременно занятых операторов: 4.
- Минимальное число занятых операторов: 0 (были периоды простоя, хотя и редкие).

В конце отчёта идёт информация о будущих событиях.

4 Выводы

В ходе данной лабораторной работы было реализовано следующее:

- модель оформления заказов клиентов одним оператором;
- построение гистограммы распределения заявок в очереди;
- модель обслуживания двух типов заказов от клиентов в интернет-магазине;
- модель оформления заказов несколькими операторами.

5 Список литературы

Королькова А.В., Кулябов Д.С. Моделирование информационных процессов