전자 회로 분석 참고 자료

반도체 설계_CMOS_Invertor

Vin——Vout

https://www.youtube.com/watch?v=tWwv4Cjz_38

http://www.ktword.co.kr/test/view/view.php?m_temp1=4615 https://m.blog.naver.com/pk4101/221766023913

https://www.youtube.com/watch?v=xHagEkFhJiU

NMOS Max 전류를 고려 하여, Rd 값을 선택

반도체 설계_NOR_NAND_AND

 $F = \overline{X_1 + X_2} = \overline{X_1} \cdot \overline{X_2}$

X ₂	F
0	1
1	0
0	0
1	0
	0

반도체 설계_S-R 래치,/S-/R 래치

NOR Latch(NOR 래치 회로)

S	R	Q(t+1)
0	O	Hold(Q(t))현재 상태를
0	1	Reset(o)
1	О	Set(o)
1	1	Invalid

NAND Latch(NAND 래치 회로)

/S	/R	Q(t+1)
0	0	Invalid
0	1	Set(1)
1	0	Reset(o)
1	1	Hold(Q(t)현재 상태를

반도체 설계_Latch

NOR Latch

진리표

5	R	<i>Q</i> (<i>t</i> +1), 상태
0	0	Q(t), hold
0	1	<i>Q</i> (<i>t</i>), hold 0, reset
1	0	1, set invalid, 금지
1	1	invalid, 금지

S	R	Q(t+1)
0	0	invalid, 금지
0	1	1 , set
1	0	0, reset
1	1	Q(<i>t</i>), hold

반도체 설계_ S-R Flip-Flop(NOR)

Clock S-R NOR latch

클록형 S-R 플립플롭의 진리표

CP	S	R	<i>Q</i> (<i>t</i> +1)
1	0	0	Q(t)
1	0	1	0
1	1	0	1
1	1	1	금지

❖ 클록형 S-R 플립플롭의 동작상태

- CP=0인 경우, S와 R의 입력에 관계없이 앞단의 AND 게이트 G3과 G4의 출력이 항상 0이므로 플립플롭의 출력은 불변.
- CP=1인 경우, S와 R의 입력이 회로 후단의 NOR 게이트 G_1 과 G_2 의 입력으로 전달되어 S-R 래치와 같은 동작 수행.

S-R 플립플롭의 특성표

Q(t)	S	R	Q(t+1)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	금지
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	금지

S-R 플립플롭의 상태도

F/F 특성 방정식 (characteristic equation)

$$Q(t+1) = S + \overline{R}Q, \quad SR = 0$$

반도체 설계_Clock S-R Flip-Flop(NAND)

Clock S-R NAND latch

반도체 설계_Clock S-R Flip-Flop(NAND)

에지 트리거 S-R 플립플롭

- ❖ 클록형 S-R 플립플롭은 궤환(feedback)이 있는 회로이고 클록펄스가 1인 상태 에서 모든 동작이 수행된다.
- ❖ 플립플롭의 동작시간보다도 클록펄스의 지속시간이 길면 플립플롭은 여러 번의 동작이 수행될 수 있다.
- ❖ 이를 방지하기 위하여 에지 트리거(edge trigger) 이용
- ❖ 트리거 종류 레벨(level) 트리거 에지(edge) 트리거

반도체 설계_Clock S-R Flip-Flop(NAND)

□에지트리거 S-R 플립플롭의 논리기호와 특성표

반도체 설계_Master/Slave S/R Flip-Flop

- 에지트리거 동작

CP=1

주 F/F에 외부의 R과 S 입력이 전달됨 종 F/F은 hold 상태로 이전값 유지

CP=0

주 F/F은 CP=0이므로 hold

종 F/F은 동작하여 Q=Y, $\overline{Q}=\overline{Y}$

입력파형을 주종형 S-R 플립플롭에 인가하였을 때, 출력 Q의 파형 단,Q는 0으로 초기화

반도체 설계_D Flip-Flop

- ❖ 입력신호 D가 CP에 동기되어 그대로 출력에 전달
- ❖ D는 데이터(Data)를 전달, 또는 지연(Delay)의 의미

❖ CP=1, D=1 : G₃ 출력은 0, G₄ 출력은 1, 따라서 Q=1

❖ CP=1, D=0 : G₃ 출력은 1, G₄ 출력은 0, 따라서 Q=0

D 플립플롭 특성표

CP		Q(t)	Q(<i>t</i> +1)	동작
0	X	0	0	Hold
0	X	1	1	Hold
1	0	0	0	Reset
1	0	1	0	Reset
1	1	0	1	Set
<u>k</u> 1	1	1	1	Set

$$Q(t+1) = D$$
 특성 방정식 (characteristic equation)

반도체 설계_D Flip-Flop

입력파형을 클록형 D 플립플롭에 인가하였을 때, 출력 Q의 파형을 그려라. 단, Q=1로 초기화되어 있다.

에지 트리거 D 플립플롭

❖ 클록형 D 플립플롭의 클록펄스 입력에 펄스 전이 검출기를 추가하여 구성

상승 에지 트리거 D 플립플롭

레벨 트리거, 상승에지 트리거 및 하강에지 트리거를 하는 각 D 플립플롭에 주어진 파형이 입력될 때, 출력 파형을 그려라. 단, 출력 Q= 0으로, 초기화되어 있다.

반도체 설계_Master/Slave D Flip-Flop

CP=1: 외부 D 입력이 Master FF에 전달, Slave FF은 CP=0이 되어 hold

 $\mathsf{CP} = \mathsf{0} : \mathsf{Slave} \; \mathsf{FF} \in \mathsf{S}$ 동작하여 $\mathcal{Q} = Y$, Master $\mathsf{FF} \in \mathsf{CP} = \mathsf{0} \mathsf{0}$ 미모로 hold

□ 7474(Dual 상승에지 트리거 D 플립플롭)

- ❖ \overline{PR} 과 \overline{CLR} 은 active low, 비동기 입력
- � 비동기프리셋 : \overline{PR} =0, 입력D나 CP에 관계없이 Q=1
- ❖ 비동기리셋 : <u>CLR</u> =0이면 D나 CP에 관계없이 Q=0

반도체 설계_Master/Slave D Flip-Flop

JK Flip-Flop

- ❖ JK FF의 J는 S(set)에, K는 R(reset)에 대응하는 입력
- ❖ J=1, K=1인 경우 F/F의 출력은 이전 출력의 반전, toggle

상태도

					_	- 1		- 1	_
1-1	<i>(</i>		리	ㅗ	도	OI	ᄉ	21	莊
<i>)</i>	•		\mathbf{H}		\mathbf{H}		100		ш.

CP	J K	Q(t+1)
1	0 0	<i>Q</i> (<i>t</i>), hold
1	0 1	0, reset
1	1 0	1, set
1	1 1	$\overline{Q}(t)$, toggle

특성표

<i>Q(t)</i> J K	Q(t+1)
0 0 0	0
0 0 1	0
0 1 0	1
0 1 1	1
100	1
101	0
1 1 0	1
111	0

반도체 설계_J-K Flip-Flop

➤ 에지 트리거 JK 플립플롭의 논리기호와 특성표

상승 에지 트리거 JK FF

J	J K	СР	<i>Q</i> (<i>t</i> +1)
	0 0	\rightarrow	Q(t)
CP — >	0 1	\downarrow	0
$-K$ \overline{Q}	1 0	\downarrow	1
	11	\downarrow	$\overline{Q}(t)$

하강 에지 트리거 JK FF

입력 파형을 상승에지 JK FF에 인가하였을 때, 출력 Q의 파형 Q= 1로 초기화

반도체 설계_J-K Flip-Flop

Master/Slave J-K Flip-Flop

CP=1: J와 K 입력이 Master에 전달, Slave는 hold

CP=0: Slave 는 동작하여 Q= Y, Master 는 hold

□ 7476 Dual 하강에지 트리거 주종형 JK 플립플롭)

- ❖ JK FF은 카운터에서 많이 사용된다.
- \bullet 비동기 입력인 \overline{PR} 과 \overline{CLR} 단자가 있다.

반도체 설계_T Flip-Flop

- ❖ JK FF의 J와 K 입력을 묶어서 하나의 입력신호 T로 사용
- ❖ T 플립플롭의 입력 T=0이면, J=0, K=0와 같으므로, Q는 hold,

T=1이면, J=1, K=1과 같으므로, Q는 toggle 상태

CP	T	Q(t+1)
1	0	Q(t)
1	1	$\overline{\overline{Q}}(t)$

T 플립플롭 특성표

Q(t)	T	Q(t+1)
0	0	0
0	1	1
1	0	1
1	1	0

특성표

CP

T

Q

 t_1

상태도

반도체 설계_T Flip-Flop

- □ 에지 트리거 T 플립플롭
 - ❖ 클록형 T 플립플롭의 클록펄스 입력에 펄스 전이 검출기를 추가하여 구성

❖ 에지트리거 T FF은 T 입력은 논리 1 상태로 고정하고 CP에 클록펄스를 트리거 입력으로 사용하기도 한다. 이 경우 T FF은 펄스가 들어올 때마다 상태가 토글된다. ← binary 카운터 회로에 사용

반도체 설계_T Flip-Flop

T 플립플롭 회로 구성

JK 플립플롭 이용

입력파형을 클록형 T 플립플롭에 인가하였을 때, 출력 Q의 파형 Q는 0으로 초기화

반도체 설계_비동기 입력

❖ 대부분의 플립플롭은 클록펄스에 의해서 플립플롭의 상태를 변화시킬 수 있는 동기 입력이 있고, 클록펄스와 관계없이 비동기적으로 변화시킬 수 있는 비동기 입력인 preset(\overline{PR}) 입력과 clear(\overline{CLR}) 입력이 있다.

❖ 비동기 입력들은 플립플롭의 초기조건 결정 등에 사용

\overline{PR}	\overline{CLR}	СР	J	K	Q	\overline{Q}
0	1	×	×	×	1	0
1	0	×	×	×	0	1
1	1	→	0	0	hold	
1	1	↓	0	1	0	1
1	1	→	1	0	1	0
1	1	\downarrow	1	1	toggle	

하강에지 JK FF의 J와 K 입력을 논리 1로 하고, \overline{PR} 과 \overline{CLR} 입력에 그림의 파형을 인가하였을 때, 출력 Q의 파형을 그려라. 단, Q는 0으로 초기화되어 있다.

반도체 설계_멀티바이브레이터

- ❖ 멀티바이브레이터(Multivibrator, MV)는 디지털 시스템에서 2진수를 저장하고, 펄스수를 세며, 연산 동기화, 클럭 생성 등의 기능 수행
- ❖ 구성에 따른 멀티바이브레이터의 종류
 - 무안정 멀티바이브레이터(astable MV, 구형파 발진기)
 - 단안정 멀티바이브레이터(monostable MV, 혹은 one-shot MV)
 - 쌍안정 멀티바이브레이터(bistable MV, 플립플롭과 같음)

1. 무안정 멀티바이브레이터

- ❖ 무안정(또는 비안정, 불안정) MV는 불안정한 두 가지 상태인 High 또는 Low 상태를 가지며, 한쪽 상태에 머무르지 못하고 두 상태를 교대로 변화하는 일종의 발진기(oscillator, free running)
- ❖ 외부 입력 없이 스스로 주기적인 구형파 발생
- NOT 게이트를 이용한 무안정 MV 회로

발진 주파수 :
$$f = \frac{0.455}{RC}$$

반도체 설계_슈미트 트리거

- □ 슈미트 트리거를 이용한 무안정 MV 회로
 - ❖ 슈미트 트리거(Schmitt trigger)는 단안정 MV로 사용 가능
 - ❖ 입출력 특성곡선의 Hysteresis에 의한 발진 생성
 - ❖ 구형파가 아닌 입력이 들어오더라도 구형파 출력을 얻을 수 있음.

V₊, 상승 임계전압, UTL

 V_{T-} 하강 임계전압, LTL

슈미트 트리거의 입출력 파형

반도체 설계_타이머 555

□ 무안정 MV로 동작하는 타이머 555

❖ 타이머 555는 구형파 발생 및 단안정 MV로서 널리 사용

$$t_1 = 0.693(R_A + R_B)C$$
, $t_2 = 0.693R_BC$

주파수:
$$f = \frac{1}{T} = \frac{1.43}{(R_A + 2R_B)C}$$

duty
$$cycle = \frac{t_1}{T} = \frac{t_1}{t_1 + t_2} = \frac{R_A + R_B}{R_A + 2R_B} \times 100\%$$

타이머 555를 이용한 구형파 발생기

555 타이머가 위 그림과 같이 무안정 MV로 동작하는 경우 출력파형의 주파수와 듀티 사이클을 구하여라.

단,
$$R_A=2.2\mathrm{k}\Omega$$
, $R_B=100\mathrm{k}\Omega$, $C=0.001\mu\mathrm{F}$ 라고 가정한다.

$$f = \frac{1.43}{(R_A + 2R_B)C} = \frac{1.43}{(2.2 \times 10^3 + 2 \times 100 \times 10^3) \times 0.001 \times 10^{-6}} = 7.07 \text{kHz}$$

Duty Cycle =
$$\frac{R_A + R_B}{R_A + 2R_B} \times 100\% = \frac{2.2 \times 10^3 + 100 \times 10^3}{2.2 \times 10^3 + 2 \times 100 \times 10^3} \times 100\% = 50.5\%$$

 $R_B >> R_A$ 이므로 듀티 사이클은 약 50%이다.

반도체 설계_타이머 555

□ 단안정 MV로 동작하는 타이머 555

❖ 타이머 555는 non-retriggerable 단안정 MV 사용 가능

출력 펄스의 폭 : $t_w \cong 1.1 R_A C$

위회로에서 2번 핀인 트리거 단자로 $10 {\rm KHz}$ 클럭이 입력된다고 가정한다. 이 경우 출력파형을 그려라. 여기서 $R_{\scriptscriptstyle A}=4.7 {\rm k}\Omega$, $C=0.002 \mu {\rm F}$ 이다.

입력클럭 주기:
$$T_{CLK} = \frac{1}{f} = \frac{1}{10 \times 10^3} = 100 \mu s$$

출력펄스 폭:
$$t_W \approx 1.1 R_A C$$

= $1.1 \times 4.7 \times 10^3 \times 0.002 \times 10^{-6}$
= $10.34 \mu s$

,출력파형 : 트리거 입력의 하강에지에서 동작

5. 디지털 논리회로 설계 및 실습

277 / 360

D Flipflop

D_Flipflop의 D는Delay의 의미이며 입력 Data가 클릭 신호의 천이(Transition)에 동기되어 지연 출력되는 논리기능을 가진다. 즉 이러한 지연은 입력되는 클릭 신호의 주기에 관계함으로 주기가 길면 Delay도 커지 며 주기가 짧으면 Delay도 짧아진다.

특히 클릭 주기가 너무 길면 출력신호가 입력신호와 의 차이가 많이 날 수 있다.

반도체 설계_디지털 page277

5. 디지털 논리회로 설계 및 실습

278 / 360

T Flipflop

T는 Toggle의 의미이며 입력 클릭 신호(Transition)에 동기 되어 Toggle형태의 출력이 되는 논리기능을 가진다. 이러한 T_FlipFlop기능은 D_FlipFlop의 반전출력을 D 입력으로 Feedback을 구성하여 Toggle기능을 수행한다. Toggle기능은 전자기기에서 Tact Switch를 이용한 On/Off Switch기능으로 사용된다.

F/F회로 해석 시에는 Simulation Setting창의 Options 에서 Gate-level Simulation을 선택하여 F/F의 초기화 Initialize all flip-flops to → 0 or 1 로 해야 한다.

T FF

0

3

CK

HI

U1A

7474

6

D PREI

반도체 설계_디지털_page278

OFFTIME = .5uS
ONTIME = .5uS
DELAY =
STARTVAL = 0
OPPVAL = 1

5. 디지털 논리회로 설계 및 실습

279 / 360

- Counter
- 1. Step Up Counter(8-Step)

JK_FlipFlop를 이용한 Up Counter로서

000(0) → 001(1) ... 111(7) → 000(0) →

001(1) ..형태로 8 Step으로 증가하는 형식의

Counter이다. F/F를 4개 사용하면 16 Step이
된다. 즉 Gate의 수와 Step과의 관계는 아래와
같다.

F/F회로 해석 시에는 Simulation Setting창의 Options 에서 Gate-level Simulation을 선택하여 F/F의 초기화 Initialize all flip-flops to → 0 or 1 로 해야 한다.

반도체 설계_디지털_page279

1us

2us

3us

4us

5us

Time

6us

7us

8us

9us

10us

5. 디지털 논리회로 설계 및 실습

280 / 360

2. Step Down Counter(8-Step)

JK_FlipFlop를 이용한 Down Counter로서

111(7) → 110(6) ... 000(0) → 111(7) →

110(6) ..형태로 8 Step으로 감소 하는 형식의

Counter이다. F/F를 4개 사용하면 16 Step이
된다. 즉 Gate의 수와 Step과의 관계는 아래와
같다.

F/F회로 해석 시에는 Simulation Setting창의 Options 에서 Gate-level Simulation을 선택하여 F/F의 초기화 Initialize all flip-flops to → 0 or 1 로 해야 한다.

반도체 설계_디지털_page280

5. 디지털 논리회로 설계 및 실습

281 / 360

3. Step Up Counter(10-Step)

7490을 이용한 Up Counter로서
0 → 9 형태로 10 Step으로 증가 하는 형식의 Counter이다.
7490은 4개의 F/F가 내장되어 있으며 10진 Counter전용의 Counter이다.

F/F회로 해석 시에는 Simulation Setting창의 Options 에서 Gate-level Simulation을 선택하여 F/F의 초기화 Initialize all flip-flops to → 0 or 1 로 해야 한다.

반도체 설계_디지털_page281

5. 디지털 논리회로 설계 및 실습

282 / 360

4. Step Up Counter(16-Step)

74393을 이용한 Up Counter로서
0 → 15 형태로 16 Step으로 증가
하는 형식의 Counter이다.
74393은 4개의 F/F가 내장되어 있
으며 7490과 마찬가지로 비 동기
(Asynchronous) type Counter이다.

F/F회로 해석 시에는 Simulation Setting창의 Options 에서 Gate-level Simulation을 선택하여 F/F의 초기화 Initialize all flip-flops to → 0 or 1 로 해야 한다.

20us

18us

반도체 설계_디지털_page282

2us

12us

14us

16us

10us

Time