How to solve MDPs?	
One way is Pynamic Programming	
La policy evaluation	
Lapolicy iteration	
La Value iteration	
PP - break problem into Supproblem	n .
Solve them & concatenate	
Bellman equation gives	
recursive decomposition	
Dynamic Programming assumes full knowledge	
of MDP, used for planning	
for prediction MPP (\$, A, P, R, Y > +) V	on)
for control (S,A,P,R,Y) NDP value function	
& optimal Policy Tx	

Policy Evaluation method: Herative application of Bellman expectation using synchronous backups: at each iteration k+1: for all states s & S': uplate V_{R+1}(s) from V_K(Ś) Where s' is the successor state $\sqrt{\frac{(s)}{R+1}} = \frac{\sum \pi(a|s)(R^a_s + \delta \sum P^a_{s'} v_{\kappa}(s'))}{s' \in A}$ VK+1 R7 + x R7 vk [gridword example great] policy evaluationiestimate Vy, iterative policy evaluation

Policy Iteration				
·				
given applicy				
given applicy policy 7 [v,(s)=1E[R+xR+ St=S]]				
Japrove the policy by acting gracelly with Vn Ti = greedy (Nn)				
71 = greedy (Vy)				
Policy improvement: Generate 7/77				
avent. Online is another only				
greedy policy improvement				
2 - 17				
γ_{n}				
improvement improvement				
improvement improvement				
Convergence				

Convergence?

considering a deterministic policy a= T(5)

we can improve the policy by acting greedily Ti(s):agmin q(s,n)

which improves the value from any steps over one step $q_{\pi}(s, \pi'(s)) = \max q_{\pi}(s, a) \tau_{\pi} q_{\pi}(s, \pi(s)) = V_{\pi}(s)$ and therefore improves the value function $V_{\pi}(s) \tau_{\pi} V_{\pi}(s)$

 $\gamma_{n}(s) \in \mathcal{A}_{n}(s, \pi'(s)) = \mathbb{E}_{\pi'}(R_{t+1} + \chi_{n}(s_{t+1}) | s_{t} = s)$ $(= \sum_{\pi'}(R_{t+1} + \chi_{n}(s_{t+1}, \pi'(s_{t+1})) | s_{t} = s)$ $(= \sum_{\pi'}(R_{t+1} + \chi_{n}(s_{t+2} + \dots + s_{t} = s) = \gamma_{\pi'}(s)$

If improvement stops,

9 (5, 7/(5) = max 9, (5,0)= 4, (5,7(5))= V, (5)

AEA

then Bellman oftinality equation becomes satisfied

V(S)= max 9 (S,a)

Principle of Optimality
a policy 7 (a15) achieves optimal value from State 5 Vy(5) = V*(5) iff
for any s' readable from s,
71 achieves the optimal value from s', Vy(s') = Vx(s')
, at each state, the optimal policy includes
taking the best action +
following the optimal policy from the next state
Value Iteration (1)
if we know the solution to subproblem 1 (s')
then $V_{*}(S) = \max_{\alpha \in A} R_{s}^{\alpha} + \sqrt{\sum_{s' \in S}} P_{ss'}^{\alpha} V_{*}(S')$
(one - Step look ahead)
Basically start with final rewords and work backwards
③··· ~ ← ⑥
in practice goal state way not be obvious, but
if works by State Sweep over entire st space

Value Iteration (2)

at each iteration k+1for all states $s \in S'$

update VK+1 (S) from VK(S')

A intermediate value function may not correspond to any policy

$$V_{K+1}(S) = \max_{\alpha \in A} \left(\underset{s \in S}{\mathbb{R}^{\alpha}} + \sqrt{\underset{s \in S}{\mathbb{R}^{\alpha}}} \right)$$

V = max Ra , y Payk
asA

Problem	equation	erlystithm
prediction	Bellman Expectation	iter policy eval
control	BE + Greedy policy impr	policy iteration
control	Bell man optimality	Value iteration