Outils Calculatoires Feuille d'exercice 1

Institut Villebon-Charpak

Année 20017 - 2018

1 Forme algébrique, conjugaison

1. Mettre chacun des nombres complexes suivants sous la forme a+ib avec $a,b\in\mathbb{R}$:

$$z_1 = -\frac{2}{1 - i\sqrt{3}} \qquad z_2 = \frac{1}{(1 + 2i)(3 - i)} \qquad z_3 = \frac{1 + 3i}{1 - 3i}$$
$$z_4 = \left(\frac{1 + 2i}{1 + i}\right)^2 \qquad z_5 = \left(\frac{-1 + i\sqrt{3}}{2}\right)^3 \qquad z_6 = \left(\sqrt{2 + \sqrt{2}} + i\sqrt{2 - \sqrt{2}}\right)^2$$

2. A quelle condition sur $z = x + iy \in \mathbb{C}$ le nombre $u = z^2 + z + 1$ est-il réel?

2 Réprésentation de l'axe imaginaire

Montre que pour tout $z \neq 1$ de module 1, la quantité $\frac{z+1}{z-1}$ est imaginaire pure.

3 Descriptions géométriques

Décrire géométriquement les ensembles suivants

$$\{z \in \mathbb{C}, |z - 3 + 4i| = 5\}$$
 $\{z \in \mathbb{C}, z + \overline{z} = 6\}$ $\{z \in \mathbb{C}, |z - 1| = |z - i|\}$

4 Une formule de trigonométrie

- 1. Pour $\gamma \in \mathbb{R}$, déterminer le module et l'argument de $e^{i\gamma} + 1$ et $e^{i\gamma} 1$.
- 2. Montrer que pour tout $z \in \mathbb{C} \setminus \{1\}$ et tout $n \in \mathbb{N}$, on a

$$\sum_{k=0}^{n} z^{k} = 1 + z + \dots z^{n} = \frac{z^{n+1} - 1}{z - 1}$$

3. Soit $\theta \in]0,1[$. En considérant la somme précédente pour $z=e^{i\theta}$, donner une expression de

$$\sum_{k=0}^{n} \cos(k\theta) \qquad \text{et} \qquad \sum_{k=0}^{n} \sin(k\theta)$$

5 Angle triple

Soit $\theta \in \mathbb{R}$, on pose $z = \cos \theta + i \sin \theta = e^{i\theta}$.

- 1. Exprimer z^3 sous forme algébrique et géométrique.
- 2. En déduire une expression de $\cos(3\theta)$ et $\sin(3\theta)$ en fonction de $\sin\theta$ et $\cos\theta$.