HEMIJSKI FAKULTET- Univerzitet u Beogradu

ISPIT IZ TEORIJE HEMIJSKE VEZE

Ime i prezime:

Broj indeksa:

Datum: 06. februar 2017.

1. (3p) Koji od sledećih izraza su svojstvene funkcije operatora d/dx? Šta su svojstvene vrednosti?

a)
$$x^2$$
 $\Rightarrow \frac{d}{dx}(x^2) = 2x$

b)
$$e^{-4x^2}$$
 $\Rightarrow \frac{d}{dx} \left(e^{-4x^2} \right) = -8xe^{-4x^2}$

c)
$$3\ln(7x) \implies \frac{d}{dx}(3\ln(7x)) = \frac{3}{x}$$

d)
$$e^{-x}$$
 $\Rightarrow \frac{d}{dx}(e^{-x}) = -e^{-x} \Rightarrow \text{svojstvena vrednost je -1}$

e)
$$e^{-ix}$$
 $\Rightarrow \frac{d}{dx} (e^{-ix}) = -ie^{-ix} \Rightarrow \text{svojstvena vrednost je } -i$

f)
$$\sin(ax) \implies \frac{d}{dx}(\sin(ax)) = a\cos(ax)$$

g)
$$\cos(4x) + i\sin(4x) = e^{i4x}$$
 $\Rightarrow \frac{d}{dx} \left(e^{i4x} \right) = 4ie^{i4x} \Rightarrow \text{svojstvena vrednost je } 4i$

2. (2p) a) Objasniti činjenicu da je drugi jonizacioni potencijal kiseonika (35,15 eV) veći od drugog jonizacionog potencijala fluora (34,98 eV).

 F^+ ima elektronsku konfiguraciju $Is^22s^22p^4$ pa se u drugoj jonizacini uklanja electron koji ima jako nepovoljnu kulonovsku interakciju a nema stabilišuće interakcije izmene.

3. (1p) b) Na osnovu znanja o elektronskoj strukturi elemenata poređati sledeće supstance prema porastu oksidacione sposobnosti:

$$He^+$$
, Cl, P, Na, F \Rightarrow Na

$$\Rightarrow$$
 Na +

(1p) c) Poređati sledeće supstance prema porastu redukcione sposobnosti:

4. (1,5p) Slede tri valentne MO za molekul CO. Identifikujte ih kao σ ili π i navedite da li su **vezivne** ili **antivezivne**.

5. (8p) Primeniti Huckelovu teoriju na alilni sistem dat na slici ispod. Naći svojstvene vrednosti i svojstvene vektore(MO). Nacrtati ih. Popuniti dobijene orbitale odgovarajućim elektronima za slučaj alilnog katojna, radikala i anjona. Navesti HOMO I LUMO za svaki od slučajeva.

Dobili ste 4 strane skracenih materijala za Huckela. Detaljno rešenje je na Str 3.

6. (3p) a) Koliko π -elektrona ima u svakom od sledećih neutralnih molekula? Koji od njih su aromatični?

(1p) b) Poređati po aromatičnosti furan, pirol i tiofen. **Kratko** obrazložiti odgovor.

Elektroni sa manje elektronegativnih elemenata više ulaze u delokalizaciju.

7. (2.5p) Napisati Slaterovu determinant za atom He. Razviti je. Pokazati šta se dešava kada dva elektrona zamene mesta.

$$\Psi(He) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1s_{\uparrow}(1) & 1s_{\downarrow}(1) \\ 1s_{\uparrow}(2) & 1s_{\downarrow}(2) \end{pmatrix} = \frac{1}{\sqrt{2}} \left(1s_{\uparrow}(1) \cdot 1s_{\downarrow}(2) - 1s_{\uparrow}(2) 1s_{\downarrow}(1) \right)$$

 $\Psi_{2}\left(\mathbf{1},2\right) = 1s_{\uparrow}(\mathbf{1})1s_{\downarrow}(2) - 1s_{\uparrow}(2)1s_{\downarrow}(\mathbf{1}) \xrightarrow{\text{elektronima 1 i 2}} \Psi_{2}\left(2,\mathbf{1}\right) = 1s_{\uparrow}(2)1s_{\downarrow}(\mathbf{1}) - 1s_{\uparrow}(\mathbf{1})1s_{\downarrow}(2) = -\Psi_{1}\left(\mathbf{1},2\right)$ Talasna funkcija menja znak!

8. (3p) Upisati nedostajuće karaktere u tablicu karaktera za C_{2h} grupu koristeći osnovne funkcije date u desnim kolonama tablice. Kako se u C_{2h} grupi simetrije obeležava f_{xyz} orbitala?

C_{2h}	Е	\mathbb{C}_2	i	$\sigma_{\rm h}$		
$\begin{array}{c} A_g \\ B_g \\ A_u \\ B_u \end{array}$	1 1 1 1	1 -1 1 -1	1 1 -1	1 -1 -1 1	$\begin{array}{c} R_z \\ R_x, R_y \\ z \\ x, y \end{array}$	xy, x ² , y ² , z ² xz, yz

$$C_2 x = -x$$
 $i z = -z$ $i x = -x$

$$\sigma_h z = -z$$
 $\sigma_h x = x$ $\sigma_h (x \cdot z) = x \cdot (-z) = -xz$

xyz se može dobiti na više načina (x·y·z, xy·z, xz·y, x·yz) i svi, naravno, daju isti rezultat: xy·z=Ag·Au=Au

9. (1,5p) Poređati sledeće molekule po porastu tačke ključanja:

10. (1,5p) Da li u sledećim rastvorima dolazi do građenja vodoničnih veza:

A) hloroform (CHCl₃) DA NE B) aceton ((CH₃)₂C=O) DA NE B) njihova smeša DA NE

11. (4p) Napisati da li su sledeći ligandi π-donori, π-akceptori ili samo σ-donori (CO, SCN⁻, NH₃, H₂O, PF₃, 2,2'-bipiridin). Poređati Cl⁻, O₂²⁻, CO i NH₃ po jačini cepanja ligandnog polja (spektrohemijski niz liganada).

π-donori: SCN⁻, H₂O

 π -akceptori: CO, PF₃, 2,2'-bipiridin

samo σ-donori: NH₃

$$O_2^{2-} < Cl^- < NH_3 < CO$$

12. (3p) Odrediti osnovni term za sledeće elektronske konfiguracije: d³ (V), p² (C), f⁴ (Nd).

$$d^{3} \xrightarrow{\uparrow_{2}} \xrightarrow{\uparrow_{1}} \xrightarrow{\uparrow_{0}} \xrightarrow{-1} \xrightarrow{-2} M_{L} = 3(L = 3), \quad M_{S} = 3/2 \text{ (S} = 3/2)} \xrightarrow{4} F$$

$$p^{2} \xrightarrow{\uparrow_{1}} \xrightarrow{\uparrow_{0}} \xrightarrow{-1} M_{L} = 1(L = 1), \quad M_{S} = 1 \text{ (S} = 1)} \xrightarrow{3} P$$

$$f^{4} \xrightarrow{\uparrow_{3}} \xrightarrow{\uparrow_{2}} \xrightarrow{\uparrow_{1}} \xrightarrow{\uparrow_{0}} \xrightarrow{-1} \xrightarrow{-2} \xrightarrow{-3} M_{L} = 6 \text{ (L} = 6)}, \quad M_{S} = 2 \text{ (S} = 2)} \xrightarrow{5} I$$

13. (2p) Nacrtati MO dijagram koji pruža objasnjenje o tome kako π -donorski ligandi uticu na cepanje u oktaedarskom polju.

- 14. (2p) Koji od navedenih molekula spadaju u C_{2v} grupu simetrije?
 - 1. Piridin ;
- 2. H₂CCl₂;
- 3. eten;

- 4. $H_2C=O$; 5. $(CH_3)_2NH$
- 6. etin
- A) 1, 2, 4, 6; B) 1, 3, 5; C) 1, 2, 4; D) 2, 3, 4; E) 2, 4, 6; F) 2, 4, 5, 6; G) 1, 2, 4, 6
 - 15. (4.5p) Napisati elektronsku konfiguraciju centralnog metalnog jona za sledeće komplekse:

 $[MnCl_6]^{3-}$ [FeBr₄]⁻, $[Fe(CN)_6]^{3-}$, $[Fe(CN)_6]^{4-}$, $[Cr(H_2O)_6]^{3+}$, $[Co(H_2O)_6]^{3+}$

16. (2.5p) Eelektrociklične reakcije mogu teći i u *obrnutom* smeru. Predvideti proizvod sledećeg procesa(dopisati dvostruke veze i relativnu orjentaciju grupa) i objasniti stereospecifičnost pomoću odgovarajućih orbitala:

Pošto je reakcija pod termičkim uslovima, veza u ciklobutenu se raskida tako da se dobije HOMO diena(sa različito usmerenim orbitalama na krajevima).

17. (2p) Ciklobutadien je egzotični molekul čija elektronska struktura je i danas zanjimljiva za proučavanje. U kontekstu jednostavne Huckelove teorije predvidite da li bi se za njega moglo očekivati singletno ili tripletno osnovno stanje. Da li su ova stanja Jahn-Teller aktivna?

U kontekstu jednostavne Huckelove teorije tripletno stanje bi trebalo da im nižu energijiu. Singletno stanje je degenerisano (može se napisati na aviše načina, pokušajte), i usled toga je Jahn-Teller aktivno. Ozbiljniji proračuni pokazuju da singletono i tripleto stanje imaju blisku energiju (ovo nije bilo deo pitanja ©)

18. (3p) Data je tablica mikrostanja za f² konfiguraciju. Naći sve termove i odrediti najstabilniji.

miji.			
f ²	1	0	-1
6		F	
5		<i>\$</i>	<i>•</i>
4	*	<i>f f</i>	<i>*</i>
3	* *	p p p	<i>þ þ</i>
2	ø ø	<i>f f f f</i>	ph ph
1	* *	p p p p p	ph ph ph
0	<i>f f</i>	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	ph ph ph
-1	<i>∳ ∲</i>	\$ \$ \$ \$ \$	<i>∳ ∳</i>
-2	<i>þ</i>	p p p p	* *
-3	<i>þ</i>	p p p	* *
-4	*	<i>þ þ þ</i>	<i>p</i>
-5	<i>•</i>	<i>þ</i>	<i>,</i>
-6		*	

 ${}^{1}I$, ${}^{3}H$, ${}^{1}G$, ${}^{3}F$, ${}^{1}D$, ${}^{3}P$, ${}^{1}S$. Osnovno stanje je ${}^{3}H$.

19. (2.5p) Data je gornja polovina tablice za mikrostanja koja pripadaju d² konfiguraciji. Popuniti je. (Ne traže se termovi već da u svako polje ubacite odgovarajući broj mikrostanja)

d^2	1	0	-1
4		•	
3	•	• •	•
2	•	• • •	•
1	• •	• • • •	• •
0	• •		• •

20. (5p) Kojim grupama simetrije pripadaju sledeći moleluli?

Pronaći osu najvišeg reda, C_n . Da li molekul ima n C_2 koje su normalne na C_n ? (ako je glavna osa C_2 , treba da ima 2 C_2 koje su normalne, ako je glavna osa C_3 , treba da ima 3 C_2 , ...)

21. (3p) Na osnovu Tanabe-Šugano-vog dijagrama odrediti koji je osnovni term slobodnog metalnog jona, kao i u oktaedarskom okruženju za [FeCl₆]³⁻ . Nabrojati dozvoljene i zabranjene prelaze.

Osnovno stanje atoma: ⁶S

[FeF₆]³⁻⇒slabo polje, Osnovno stanje kompleksa: ⁶A_{1g}

Dozvoljeni prelazi: ⁶A_{1g} je jedini sekstet, **nema dozvoljenih prelaza**.

Zabranjeni prelazi: svi

22. (4p) Na osnovu Tanabe-Sugano-vog dijagrama(iz prethodnog zadatka) odrediti koji je osnovni term slobodnog metalnog jona, kao i u oktaedarskom okruženju za [Fe(CN)₆]³⁻. Nabrojati dozvoljene i zabranjene prelaze.

Osnovno stanje atoma: ⁶S

 $[Fe(CN)_6]^{3-}$ ⇒ jako polje, Osnovno stanje kompleksa: $^2T_{2g}$

Zabranjeni prelazi: svi ostali

Dodatni zadaci:

1. (7p) Predstaviti sve π -orbitale oktatetraena (na slici ispod imate skelet sa cvornim ravnima, koji treba da obojite da bi se video znak talasne funkcije) i na osnovu onih koje su odgovorne za reaktivnost pretpostaviti proizvode i objasniti selektivnost prikazanih reakcija(dopisati dvostruke veze i relativnu orjentaciju grupa):

2. (3p)Naći komutator sledećih matrica.
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 1 & -1 \\ -1 & -1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} A,B \end{bmatrix} = A \cdot B - B \cdot A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & -1 \\ 1 & 1 & -1 \\ -1 & -1 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 1 & -1 \\ 1 & 1 & -1 \\ -1 & -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

3. (6p)Naći svojstvene vrednosti za ciklobutadien Huckelovom metodom.

$$H = \begin{bmatrix} x & 1 & 0 & 1 \\ 1 & x & 1 & 0 \\ 0 & 1 & x & 1 \\ 1 & 0 & 1 & x \end{bmatrix} \Rightarrow \det \begin{bmatrix} x & 1 & 0 & 1 \\ 1 & x & 1 & 0 \\ 0 & 1 & x & 1 \\ 1 & 0 & 1 & x \end{bmatrix} = 0 = x \begin{bmatrix} x & 1 & 0 \\ 1 & x & 1 \\ 0 & 1 & x \end{bmatrix} - 1 \begin{bmatrix} 1 & 0 & 1 \\ 1 & x & 1 \\ 0 & 1 & x \end{bmatrix} - 1 \begin{bmatrix} 1 & 0 & 1 \\ 1 & x & 1 \\ 0 & 1 & x \end{bmatrix} = x \begin{bmatrix} x & 1 & 0 \\ 1 & x & 1 \\ 1 & 0 & 1 \end{bmatrix} = x \begin{bmatrix} x & 1 & 0 \\ 1 & x & 1 \\ 1 & 0 & 1 \end{bmatrix} = x \begin{bmatrix} x & 1 & 0 \\ 1 & x & 1 \end{bmatrix} = x \begin{bmatrix} x &$$

Svojstvene vrednosti su $x = 0, 0, \pm 2$, odnosno

$$E=\alpha-2\beta$$

$$E=\alpha$$

$$E=\alpha$$

$$E=\alpha+2\beta$$

4. (10p) Koje simetrijske reprezentacije obrazuju ligandi koji grade σ-vezu sa metalom u TBP okruženju? Sa kojim orbitalama sa metala će oni intereagovati? Pomoć: aksijalne i ekvatorijalne ligande posmatrajte odvojeno(jer ne prelaze jedni u druge primenom operacija simetrije). Karakter vaše reprezentacije dobijate tako što posmatrate koliko orbitala ostaje na mestu nakon primene operacija simetrije.

 Γ eq (A'₁ se može preklapati sa d_z² i s orbitalama metala a E' sa parovima (p_x, p_{y)} i (d_x²-y², d_{xy})) Γ ax (A'₁ se može preklapati sa d_z² i s orbitalama metala a A''₂ sa p_z)

- 5. (3p) Hamiltonijan linearnog molekula komutira sa L_z , $[H, L_z] = 0$, i na osnovu njegove svojstvene vrednosti se obeležavaju stanja $\Rightarrow \frac{M_L}{stanje} \stackrel{\cdot}{\Sigma} \stackrel{\cdot}{\Pi} \stackrel{\cdot}{\Delta} \stackrel{\cdot}{\Gamma} \dots$ Takođe, $[H, \sigma_v] = 0^{-1}$. Međutim, $[L_z, \sigma_v] \propto M_L$ i osim ako je $M_L = 0$ oni ne komutiraju. Koja od sledećih tvrdnji je tačna:
- a) Stanja se mogu obeležavati samo sa M_L
- b) Stanja se mogu obeležavati samo sa ±
- c) Stanja se mogu obeležavati samo sa M_L , osim ako je $M_L=0$, tada se mogu obeležiti i sa \pm
- d) Stanja se mogu obeležavati samo sa \pm , osim ako je $M_L=0$, tada se mogu obeležiti i sa M_L
- e) Stanja se mogu obeležavati sa M_L ili \pm , ne sa oba, osim ako je $M_L=0$, kada mogu sa oba
- f) Stanja se uvek mogu obeležavati sa M_L ili \pm , ne sa oba
- g) Stanja se uvek mogu obeležavati sa M_L i \pm

Stanja linearnih molekula se obeležavaju apsolutnom vrednošću M_L , osim Σ stanja kod koga je $M_L=0$, i kod koga se koristi i $\pm (\Sigma^+$ i Σ^-). *Kada postoji centar inverzije, dodaje se (g,u)*.

6. **Izvsti** sve termove za p⁴ konfiguraciju. Naći osnovni term.

p⁴ ima iste termove kao p². Materijali sa vežbi(vezbe_THV_4_i_5.pdf, str 22-23)

¹σ_v je ravan koja sadrži osu molekula(svojstvene vrednosti su + i -, prema toma da li ψ menja znak pri refleksiji)