CONTROLLING THE FALSE DISCOVERY RATE:

A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING

By Yoav Benjamini and Yosef Hochberg (1995)

Presented by: Zhiyu Chen

Outline

- Background
- False Discovery Rate
 - Definition
 - Properties
 - Examples
- FDR Controlling Procedure
- Power Comparisons

BACKGROUND

Authors

Authors -- Yoav Benjamini

- Yoav Benjamini (Hebrew: יואב, born 5 January 1949) is an Israeli statistician best known for the development of:
 - The false discovery rate (FDR) criterion
 - The Benjamini-Hochberg (BH)
 - The Benjamini-Yekutieli (BY) procedures
- He is currently The Nathan and Lily Silver Professor of Applied Statistics at Tel Aviv University.

Authors – Yosef Hochberg

- Yosef Hochberg (Hebrew: 1945; Jopen Grand Professor of Statistics at Tel Aviv University. He is best known for the development (with Yoav Benjamini) of:
 - The false discovery rate (FDR) criterion
 - The Benjamini-Hochberg (BH) procedure for controlling the FDR rate
 - Hochberg's step-up procedure for controlling the family-wise error rate.

BACKGROUND

Multiple Testing and Classical MCPs

Multiple Testing

- Multiple Testing/ Multiplicity/ Multiple Comparison:
 - Consider a set of statistical Inference simultaneously
 - Or estimates a subset of parameters selected
- Multiple comparisons problem:
 - Occurs when conducting multiple comparisons
 - The number of erroneous inference is related to the number of inferences

Classical MCPS

- Classical Multiple Comparison Procedures(MCPs):
 - Goal: Control the risk of making false discoveries
 - Common methods:
 - Bonferroni Correction -> controls the FWER
 - Holm's Step-Down Procedure (1979)
 - Hochberg's Step-Up Procedure (1988)

Familywise Error Rate (FWER)

• m null hypothesis: $H_1, H_2, ..., H_m$

	$oldsymbol{H_0}$ is True	H_A is True	Total
Test significant	V	S	R
Test non- significant	U	Т	m-R
Total	m_0	$m-m_0$	m

• FWER is the probability of making at least one Type I error.

• FWER =
$$Pr(V \ge 1) = 1 - Pr(V = 0)$$

- Control: $FWER \leq \alpha$
 - In the weak sense: $m_0 = m$
 - In the strong sense: guarantee for any configuration of true and non-true H_0 .

Issues with Classical MCPs

- Mismatch with real data
 - Assumption of multivariate normality
- Less powerful than per-comparison approaches
- Not all applications need control of the FWER

FALSE DISCOVERY RATE

False Discovery Rate(FDR) —A New Error Metric

- Inspiration:
 - Spjøtvoll (1972)
 - Sorić (1989)
- Proposal: control FDR the expected proportion of false discoveries among the rejected hypothesis.

Definition of False Discovery Rate

• The proportion of falsely rejected null hypothesis:

•
$$Q = V/(V+S)$$

• FDR = expectation of Q = Q_e

•
$$Q_e = E(Q) = E\left\{\frac{V}{V+S}\right\} = E\left(\frac{V}{R}\right)$$

	$oldsymbol{H_0}$ is True	$oldsymbol{H}_A$ is True	Total
Test significant	V	S	R
Test non- significant	U	Т	m-R
Total	m_0	$m-m_0$	m

Properties of FDR

- 1. If all null hypotheses are true $(m_0=m)$, then V=R, and the FDR is equal to FWER.
- 2. If some null hypotheses are false $m_0 < m$, then $V \le R$, so $FDR \le FWER$.

Implication:

- FDR control is less stringent than FWER control.
- Allows for more rejections -> greater statistical power.
- FDR controls balances: the need for scientific discovery & the need to limit false positives.

Evaluating Alternatives to FDR

Option 1. Control Q = V/R in each realization

• Problem: When all hypotheses are true, even one rejection means Q = 1.

Option 2. Control (V/R|R>0)

• Problem: Still equals 1 when all hypotheses are true.

Option 3. Soric's Metric: Q = E[V]/r

• Problem: Not a true expectation or conditional expectation -> not controllable in practice.

Option 4. E[V]/E[R]

• Problem: Equals 1 when all nulls are true -> not controllable.

Examples

1. Clinical Trials with Multiple Endpoints

- Scenario: A new treatment is compared to a standard one.
- Multiple null hypotheses tested on various outcome measures.
- Goal:
 - Make as many discoveries as possible
 - Subject to control of the FDR
- FDR vs. FWER
 - FWER control is too strict even a few false discoveries may not invalidate the overall conclusion.
 - FDR control allows more flexibility by tolerating a small proportion of false discoveries.

Examples

2. Multiple-Subgroup Problem

- Scenario: Compare treatments across different subgroups.
- Goal: Make separate treatment decisions for each subgroup.
- FDR control is ideal when you expect some misses but still need actionable insights.

3. Screening Problem

- Scenario: Screening of various chemicals for potential drug development.
- Goal: Weed out uninteresting effects and highlight promising ones.
- FDR control ensures that not too many false leads are passed to the costly second phase.

THE FDR CONTROLLING PROCEDURE

The FDR Controlling Procedure

Given m hypotheses H_1, \ldots, H_m with corresponding p-values: P_1, \ldots, P_m

- Step 1: Order the p-values: $P_{(1)} \le P_{(2)} \le \cdots \le P_{(m)}$
- Step 2: Choose a desired FDR level q^*
- Step 3: Let k be the largest i for which: $P_{(i)} \le \frac{i}{m} \cdot q^*$, then reject all $H_{(i)}$, $i=1,2,\ldots,k$.

Theoretical Guarantee of the Procedure

• Lemma: For any $0 \le m_0 \le m$ independent p-values corresponding to true null hypotheses, and for any values that the $m_1 = m - m_0$ p-values corresponding to the false null hypotheses can take, the multiple-testing procedure defined by procedure (1) above satisfies the inequality:

$$E(Q|P_{m_0+1} = p_1, \dots, P_m = p_{m_1}) \le \frac{m_0}{m}q^*$$

• Theorem 1. For independent test statistics and for any configuration of false null hypotheses, the above procedure controls the FDR at q^* .

Example of FDR Controlling Procedure

- Case Study: Myocardial Infarction Trial (Neuhaus et al., 1992)
 - Study goal: Compare rt-PA vs. APSAC for acute myocardial infarction
 - 421 patients, 4 families of hypothesis (focus on d) family)
 - d) Cardiac & other events post-treatments (15 hypotheses)

Example of FDR Controlling Procedure

• 15 p-values: 0.0001, 0.0004, 0.0019, 0.0095, 0.0201, 0.0278, 0.0298, 0.0344, 0.0459, 0.3240, 0.4262, 0.5719, 0.6528, 0.7590, 1.0000

FWER Control

- Bonferroni's procedure at alpha = 0.05: only 3 smallest p-values are significant.
- Hochberg's procedure: same result.
- FDR Control ($q^* = 0.05$)
 - Compare each $p_{(i)}$ with 0.05i/15, starting with $p_{(15)}$
 - Found: $p_{(4)} = 0.0095 \le \frac{4}{15} \cdot 0.05 = 0.013$
 - Reject 4 hypotheses with p-values less than or equal to 0.013

Connection to Other Procedures

- Sime's Procedure (1986):
 - Purpose: Test the global null hypothesis that all m null hypotheses are true
 - Steps:
 - Order the p-values: $P_{(1)}, ..., P_{(m)}$
 - Reject the global null if: $\exists i \ such \ that \ P_{(i)} \leq \frac{i\alpha}{m}$
- Hochberg's Procedure (1988):
 - Purpose: Control the FWER in the strong sense
 - Steps:
 - Order the p-values: $P_{(1)}, ..., P_{(m)}$
 - Let k be the largest i for which $P_{(i)} \leq \frac{i\alpha}{m+1-i'}$ then reject all $H_{(i)}$, $i=1,2,\ldots,k$.

Another Look at FDR controlling procedure

- -- View FDR Controlling procedure as a maximization problem:
 - Theorem 2: The FDR controlling procedure given by expression (1) is the solution of the following constrained maximization problem:
 - Choose α that maximizes the number of rejections at this level, $r(\alpha)$, subject to the constraint $\frac{\alpha m}{r(\alpha)} \leq q^*$.
 - Where:
 - $r(\alpha)$: number of hypotheses rejected at level α .
 - m: total number of hypotheses
 - q^* : desired FDR Level

Power Comparisons

- Compare the FDR Controlling procedure with
 - The Bonferroni's Method (FWER control)
 - The Hochberg's Method (FWER control)
- $q^* = \alpha = 0.05$
- Goal: Evaluate how many true effects each method can detect, under various conditions

Power Comparisons

Simulation Design:

- Testing of $m = \{4, 8, 16, 32, 64\}$ hypotheses.
- Proportions of true nulls: 3m/4, m/2, m/4 and 0.
- Non-zero means: grouped at L/4, L/2, 3L/4 and L, with L = 5 and L = 10.
- Configurations of effect size distribution:
 - D: Linearly decreasing number of hypotheses away from 0 in each group.
 - E: Equal number of hypotheses in each group.
 - I: Linearly increasing number of hypotheses away from 0 in each group.

Findings:

- 1. The power of all the methods decreases when the number of hypotheses tested increased.
- 2. The FDR Controlling procedures consistently shows higher average power.
- 3. The advantage increase with:
 - a. The number of non-null hypothesis.
 - b. m.

Fig. 1. Simulation-based estimates of the average power (the proportion of the false null hypotheses which are correctly rejected) for two FWER controlling methods, the Bonferroni (·····) and Hochberg's (1988) (----) methods, and the FDR controlling procedure (——): (a) decreasing; (b) equally spread; (c) increasing

Summary – Controlling the FDR

• Problem:

- Traditional multiple testing methods control Familywise Error Rate(FWER).
- FWER is too conservative in large-scale testing -> low power.

Contribution:

- Introduce a new criterion: False Discovery Rate(FDR) = $E\left[\frac{V}{R}\right]$ = Expected proportion of false discoveries among rejections.
- FDR-controlling has higher power than FWER-controlling methods.
- FDR-controlling is especially effective when many nulls are false.

THANK YOU