Aufgabe 1.

Man gebe gebe jeweils die größte Zahl $n \geq 1$ an, so dass die Jordan-Normalform aller $(n \times n)$ -Matrizen durch die folgenden Informationen bis auf Permutation der Jordanblöcke eindeutig bestimmt ist:

- 1. Das charakteristische Polynom $p_A(t)$.
- 2. Das Minimalpolynom $p_A(t)$.
- 3. Die Dimension aller Eigenräume $\dim(\mathbb{C}^n)_{\lambda}(A), \lambda \in \mathbb{C}$.
- 4. Das Minimalpolynom $m_A(t)$ und die Dimension aller Eigenräume $\dim(\mathbb{C}^n)_{\lambda}(A)$.

Aufgabe 2.

Bestimmen Sie für eine Matrix $A \in M_n(\mathbb{C})$ mit den angegebenen Eigenschaften jeweils alle möglichen Jordan-Normalformen bis auf Permutaiton der Jordanblöcke.

- 1. $A \in M_2(\mathbb{C})$ ist nicht diagonalisierbar mit Spur A = 0.
- 2. Es gilt $A^3 = 0$ und alle nicht-trivialen Eigenräume von A sind eindimensional.
- 3. Es gilt $p_A(t) = (t-2)(t+2)^3$ und $(A-2\mathbb{1})(A+2\mathbb{1}) = 0$.
- 4. Es gilt $p_A(t) = t^3 t$.
- 5. Es gilt $p_A(t) = (t^2 5t + 6)^2$, und alle Eigenräume von A sind entweder null- oder eindimensional.
- 6. Es gilt $A^2 = A$ und alle nicht-trivialen Eigenräume von A sind zweidimensional.
- 7. Es gilt $p_A(t) = t^5$ und alle Eigenräume von A sind entweder null- oder zweidimensional.
- 8. Es gilt $p_A(t) = (t+3)^3 t^2$ und A hat keine zweidimensionalen Eigenräume.
- 9. Es gilt $p_A(t) = t^5 2t^4$.
- 10. Es gilt $p_A(t) = (t-3)^4(t-5)^4$ und $(A-31)^2(A-51)^2 = 0$.
- 11. $A \in M_3(\mathbb{C})$ mit Spur $A = \det A = 0$.
- 12. $A \in M_8(\mathbb{C})$ mit $(A 1)(A^5 A^4) = 0$, Spur A = 2 und rg A = 6.

Aufgabe 3.

- 1. Es sei A = D + N mit $D, N \in \mathcal{M}_n(\mathbb{C})$ die Jordan–Chevalley-Zerlegung einer Matrix $A \in \mathcal{M}_n(\mathbb{R})$. Zeigen Sie, dass bereits $D, N \in \mathcal{M}_n(\mathbb{R})$ gilt.
- 2. Über $\mathbb R$ besitzt nicht jede Matrix eine Jordan-Normalform, und somit auch nicht jede Matrix eine Jordan-Chevalley-Zerlegung. Wieso steht dies nicht im Widerspruch zu der obigen Aussage?