Response and Amendment under 37 CFR § 1.116 Application No. 09/516,194 Page 5 of 14

III. Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

- 1. (Canceled)
- 2. (Currently Amended) A compound of formula (I) or a pharmaceutically acceptable salt thereof, wherein the compound of formula (I) is:

$$R_1$$
 R_2
 R_3
 R_4
 R_7
 R_7
 R_8
 R_8
 R_9
 R_9

wherein the dotted lines indicate a single or a double bond;

 R_1 is $-OD_1$ or -Cl;

 R_2 and R_8 are a hydrogen; or R_1 and R_2 taken together are =CH₂ or =O;

R₃ and R₄ are each independently a hydrogen, -OD₁ or -CH₃;

R₅ and R₆ are each independently a hydrogen, -OD₁, -CH₃, -OCH₃ or -CH=CH₂;

 R_7 is a hydrogen or -OD₁;

 R_9 is hydrogen or absent when the carbon to which it is attached is the central carbon of an allene functionality; or R_8 and R_9 taken together with the chain to which they are attached form a substituted benzene ring with the proviso that R_1 is an oxygen atom which is attached to the carbon atom at the position of the benzene ring defined by B;

A is -CH=, $-CH_2$, -S-, or -O-;

B is -CH=, $-CH_2$, -S-, or -C(O)-;

X is $-CH_2OR_{11}$, $-C(O)OR_{11}$ or $-C(O)N(D_1)R_{12}$;

 R_{11} is D_1 , a lower alkyl group, or

Response and Amendment under 37 CFR § 1.116 Application No. 09/516,194 Page 6 of 14

 R_{12} is $-S(O)_2CH_3$ or $-C(O)CH_3$;

Z is (a) an ethyl, (b) a butyl, (c) a hexyl, (d) a benzyl,

 R_{13} is a hydrogen or -Cl;

 D_1 is a hydrogen or D; with the proviso that at least one D_1 in formula (I) must be D;

D is Q or K;

Q is -NO or $-NO_2$;

K is $-W_a$ - E_b - $(C(R_e)(R_f))_p$ - E_c - $(C(R_e)(R_f))_x$ - W_d - $(C(R_e)(R_f))_y$ - W_i - E_j - W_g - $(C(R_e)(R_f))_z$ -T-Q; with the proviso that when X is $-C(O)OD_1$ and D_1 is K, then K is not an alkyl, branched alkyl or cycloalkyl mononitrate; a benzoic acid substituted benzyloxy mononitrate; the regioisomeric esters of glycerol dinitrate and oligomers thereof;

a, b, c, d, g, i and j are each independently an integer from 0 to 3;

p, x, y and z are each independently an integer from 0 to 10;

W at each occurrence is independently -C(O)-, -C(S)-, -T-, -(C(R_e)(R_f))_h-, an alkyl group, an aryl group, a heterocyclic ring, an arylheterocyclic ring, or -(CH₂CH₂O)_q-;

E at each occurrence is independently -T-, an alkyl group, an aryl group, $-(C(R_e)(R_f))_{h^-}$, a heterocyclic ring, an arylheterocyclic ring, or $-(CH_2CH_2O)_{0^-}$;

Response and Amendment under 37 CFR § 1.116 Application No. 09/516,194 Page 7 of 14

> h is an integer form 1 to 10; q is an integer from 1 to 5;

 R_e and R_f are each independently a hydrogen, an alkyl, a cycloalkoxy, a halogen, a hydroxy, an hydroxyalkyl, an alkoxyalkyl, an arylheterocyclic ring, an alkylaryl, a cycloalkylalkyl, a heterocyclicalkyl, an alkoxy, a haloalkoxy, an amino, an alkylamino, a dialkylamino, an arylamino, a diarylamino, an alkylarylamino, an alkoxyhaloalkyl, a haloalkoxy, a sulfonic acid, a sulfonic ester, an alkylsulfonic acid, an arylsulfonic acid, an arylalkoxy, an alkylthio, an arylthio, a cycloalkylthio, a cycloalkenyl, a cyano, an aminoalkyl, an aminoaryl, an aryl, an arylalkyl, an alkylaryl, a carboxamido, a alkylcarboxamido, an arylcarboxamido, an amidyl, a carboxyl, a carbamoyl, a carbamate, an alkylcarboxylic acid, an arylcarboxylic acid, an alkylcarbonyl, an arylcarboxylic ester, a haloalkoxy, a sulfonamido, an alkylsulfonamido, an arylsulfonamido, a sulfonic ester, a urea, a phosphoryl, a nitro, -T-Q, or R_e and R_f are -($C(R_e)(R_f))_k$ -T-Q, wherein R_e and R_f are as defined herein, $C(R_e)(R_F)_k$ -T-Q, or R_e and R_f taken together with the carbons to which they are attached form a carbonyl, a methanthial, a heterocyclic ring, a cycloalkyl group or a bridged cycloalkyl group;

 R_{e} and R_{p} are each independently a hydrogen, an alkyl, a cycloalkoxy, a halogen, a hydroxyalkyl, an alkoxyalkyl, an arylheterocyclic ring, an alkylaryl, a cycloalkylalkyl, a heterocyclicalkyl, an alkoxy, a haloalkoxy, an amino, an alkylamino, a diarylamino, an alkylarylamino, an alkoxyhaloalkyl, a haloalkoxy, a sulfonic acid, a sulfonic ester, an alkylsulfonic acid, an arylsulfonic acid, an arylalkoxy, an alkylthio, an arylthio, a cycloalkylthio, a cycloalkenyl, a cyano, an aminoalkyl, an aminoaryl, an aryl, an arylalkyl, an alkylaryl, a carboxamido, a alkylcarboxamido, an arylcarboxylic acid, an arylcarboxylic acid, an arylcarboxylic acid, an alkylcarboxylic ester, an alkylcarboxylic ester, an arylcarbonyl, an ester, a carboxylic ester, an alkylcarboxylic ester, an arylcarboxylic ester, a haloalkoxy, a sulfonamido, an alkylsulfonamido, an arylsulfonamido, a sulfonic ester, a urea, a phosphoryl, a nitro, T Q, or R_{e} and R_{p} taken together with the carbons to which they are attached form a carbonyl, a methanthial, a heterocyclic ring, a cycloalkyl group or a bridged cycloalkyl group;

k is an integer from 1 to 3;

Response and Amendment under 37 CFR § 1.116 Application No. 09/516,194 Page 8 of 14

T at each occurrence is independently a covalent bond, a carbonyl, an oxygen, $-S(O)_o\text{- or -}N(R_a)R_i\text{-};$

o is an integer from 0 to 2;

R_a is a lone pair of electrons, a hydrogen or an alkyl group;

 R_i is a hydrogen, an alkyl, an aryl, an alkylcarboxylic acid, an arylcarboxylic acid, an alkylcarboxylic ester, an arylcarboxylic ester, an alkylcarboxamido, an arylcarboxamido, an alkylaryl, an alkylsulfinyl, an alkylsulfonyl, an arylsulfinyl, an arylsulfonyl, a sulfonamido, a carboxamido, a carboxylic ester, an amino alkyl, an amino aryl, $-CH_2-C(T-Q)(R_e)(R_f)$, or $-(N_2O_2-)^{-\bullet}M^+$, wherein M^+ is an organic or inorganic cation; with the proviso that when R_i is $-CH_2-C(T-Q)(R_e)(R_f)$ or $-(N_2O_2)^{-\bullet}M^+$, or R_e or R_f are T-Q or R_e and R_f are $-(C(R_e)(R_f))_k$ -T-Q, wherein R_e and R_f are as defined herein, $-(C(R_e)(R_p))_k$ T-Q, then the "-T-Q" subgroup can be a hydrogen, an alkyl, an alkoxy, an alkoxyalkyl, an aminoalkyl, a hydroxy, a heterocyclic ring or an aryl group;

with the proviso that the compound of formula (I) has at least one NO group or at least one three NO₂ groups linked through an oxygen atom, a nitrogen atom or a sulfur atom.

3. (Currently amended) The compound of claim 2, wherein the compound of formula (I) is a nitrosated arbaprostil, a nitrosylated arbaprostil, a nitrosated and nitrosylated arbaprostil, a nitrosated alprostadil, a nitrosylated alprostadil, a nitrosated and nitrosylated alprostadil, a nitrosated beraprost, a nitrosylated beraprost, a nitrosated and nitrosylated beraprost, a nitrosated carboprost, a nitrosylated carboprost, a nitrosated and nitrosylated carboprost, a nitrosated cloprostenol, a nitrosylated cloprostenol, a nitrosated and nitrosylated cloprostenol, a nitrosated dimoxaprost, a nitrosylated dimoxaprost, a nitrosated and nitrosylated dimoxaprost, a nitrosated enprostil, a nitrosylated enprostil, a nitrosated and nitrosylated enprostil, a nitrosated enisoprost, a nitrosylated enisoprost, a nitrosated and nitrosylated enisoprost, a nitrosated fluprostenol, a nitrosylated fluprostenol, a nitrosated and nitrosylated fluprostenol, a nitrosated fenprostalene, a nitrosylated fenprostalene, a nitrosated and nitrosylated fenprostalene, a nitrosated gemeprost, a nitrosylated gemeprost, a nitrosated and nitrosylated gemeprost, a nitrosated latanaprost, <u>latanaprost</u>, <u>latanaprost</u>, a nitrosylated latanaprost, <u>latanaprost</u>, a nitrosated and nitrosylated latanaprost, latanoprost, a nitrosated limaprost, a nitrosylated limaprost, a nitrosated and nitrosylated limaprost, a nitrosated meteneprost, a nitrosylated

meteneprost, a nitrosated and nitrosylated meteneprost, a nitrosated mexiprostil, a nitrosylated mexiprostil, a nitrosated and nitrosylated mexiprostil, a nitrosated misoprostol, a nitrosylated misoprostol, a nitrosated and nitrosylated misoprostol, a nitrosated misoprost, a nitrosylated misoprost, a nitrosated and nitrosylated misoprost, a nitrosated misoprostol acid, a nitrosylated misoprostol acid, a nitrosated and nitrosylated misoprostol acid, a nitrosated nocloprost, a nitrosylated nocloprost, a nitrosated and nitrosylated nocloprost, a nitrosated ornoprostil, a nitrosylated ornoprostil, a nitrosated and nitrosylated ornoprostil, a nitrosated prostalene, a nitrosylated prostalene, a nitrosated and nitrosylated prostalene, a nitrosated PGE1, a nitrosylated PGE₁, a nitrosated and nitrosylated PGE₂, a nitrosylated PGE₂, a nitrosylated PGE₂, a nitrosylated and nitrosylated PGE₂, a nitrosated PGF₁, a nitrosylated PGF₁, a nitrosated and nitrosylated PGF_1 , a nitrosated $PGF_{2\alpha}$, a nitrosated $PGF_{2\alpha}$, a nitrosated and nitrosylated $PGF_{2\alpha}$, a nitrosated rioprostil, a nitrosylated rioprostil, a nitrosated and nitrosylated rioprostil, a nitrosated rosaprostol, a nitrosylated rosaprostol, a nitrosated and nitrosylated rosaprostol, a nitrosated remiprostol, a nitrosylated remiprostol, a nitrosated and nitrosylated remiprostol, a nitrosated sulprostone, a nitrosylated sulprostone, a nitrosylated sulprostone, a nitrosylated sulprostone, a nitrosylated trimoprostil, a nitrosylated trimoprostil, a nitrosated and nitrosylated trimoprostil, a nitrosated tiprostanide, a nitrosylated tiprostanide, a nitrosated and nitrosylated tiprostanide, a nitrosated unoprostone, a nitrosylated unoprostone, a nitrosated and nitrosylated unoprostone, a nitrosated viprostol, a nitrosylated viprostol, a nitrosated and nitrosylated viprostol or a mixture thereof.

- 4. (Withdrawn) A composition comprising the compound of claim 2 and a pharmaceutically acceptable carrier.
 - 5 -116. (Canceled)
- 117. (Currently Amended) Arbaprostil, alprostadil, beraprost, carboprost, cloprostenol, dimoxaprost, enprostil, enisoprost, fluprostenol, fenprostalene, gemeprost, latanaprost, latanaprost, meteneprost, mexiprostil, misoprostol, misoprost, misoprostol acid, nocloprost, ornoprostil, prostalene, PGE₁, PGE₂, PGF₁, PGF_{2a}, rioprostil, rosaprostol, remiprostol, sulprostone, trimoprostil, tiprostanide, unoprostone, viprostol, or a pharmaceutically acceptable salt thereof, comprising at least one NO group; wherein the at least one NO group is linked to the arbaprostil, alprostadil, beraprost, carboprost, cloprostenol, dimoxaprost, enprostil, enisoprost, fluprostenol, fenprostalene, gemeprost, latanaprost, latanaprost, limaprost,

Response and Amendment under 37 CFR § 1.116 Application No. 09/516,194 Page 10 of 14

meteneprost, mexiprostil, misoprostol, misoprost, misoprostol acid, nocloprost, ornoprostil, prostalene, PGE_1 , PGE_2 , PGF_1 , $PGF_{2\alpha}$, rioprostil, rosaprostol, remiprostol, sulprostone, trimoprostil, tiprostanide, unoprostone, or viprostol, through an oxygen atom, a nitrogen atom or a sulfur atom.