Solucions comentades

1. (a) Dóna una expressió, en termes dels símbols de negació i conjunció, que sigui lògicament equivalent al condicional de dues propietats *P* i *Q*. Demostra aquesta equivalència.

Una expressió de les demanades és $P \to Q \equiv \neg (P \land \neg Q)$. La demostració de l'equivalència és la següent taula de veritat

P	Q	P o Q	$\neg Q$	$P \wedge \neg Q$	$\neg (P \land \neg Q)$
0	0	1	1	0	1
0	1	1	0	0	1
1	0	0	1	1	0
1	1	1	0	0	1

on comprovem que les columnes de $P \to Q$ i de $\neg (P \land \neg Q)$ coincideixen, cosa que vol dir (per definició) que les dues fórmules són equivalents.

(b) Dóna una expressió, en termes dels símbols de negació i disjunció, que sigui lògicament equivalent a la conjunció de dues propietats *P* i *Q*. Demostra aquesta equivalència.

Una expressió de les demanades és $P \wedge Q \equiv \neg(\neg P \vee \neg Q)$. La demostració de l'equivalència és la següent taula de veritat

P	Q	$P \wedge Q$	$\neg P$	$\neg Q$	$\neg P \lor \neg Q$	$\neg(\neg P \lor \neg Q)$
0	0	0	1	1	1 1 1 0	0
0	1	0	1	0	1	0
1	0	0	0	1	1	0
1	1	1	0	0	0	1

on comprovem que les columnes de $P \wedge Q$ i de $\neg(\neg P \vee \neg Q)$ coincideixen, cosa que vol dir (per definició) que les dues fórmules són equivalents.

2. Formalitza la regla d'Inducció Matemàtica. Usa P(0) per a expressar que 0 compleix la propietat P, i usa P(n) per a expressar que n compleix la propietat P.

La resposta es pot posar: $(P(0) \land \forall n \in \mathbb{N}(P(n) \to P(n+1))) \to \forall n \in \mathbb{N}(P(n))$.

També és correcte utilitzar altres lletres en lloc de la n; per exemple, també es pot respondre amb la formalització

$$(P(0) \land \forall k \in \mathbb{N}(P(k) \to P(k+1))) \to \forall n \in \mathbb{N}(P(n)).$$

o amb la formalització

$$(P(0) \land \forall k \in \mathbb{N}(P(k) \to P(k+1))) \to \forall k \in \mathbb{N}(P(k)).$$

Com l'enunciat de la pregunta només demana formalitzar no cal donar cap explicació més.

3. Demostra que si X i Y son conjunts i $X \setminus Y = Y \setminus X$, aleshores X = Y.

A continuació veiem tres maneres diferents de demostrar-ho.

Primera demostració: Demostrem directament la igualtat X = Y. Per a demostrar aquesta igualtat, demostrarem les dues inclusions: $X \subseteq Y$, i $X \supseteq Y$.

Per a demostrar la primera inclusió (és a dir, $X \subseteq Y$), cal demostrar que per a qualsevol a, si $a \in X$ aleshores $a \in Y$. Ho fem per reducció a l'absurd: Sigui $a \in X$, i vegem que si suposem que $a \notin Y$ arribem a una contradicció. Com que $a \in X$ i $a \notin Y$, tenim que $a \in X \setminus Y$, i de la hipòtesi $X \setminus Y = Y \setminus X$ deduïm que $a \in Y \setminus X$, és a dir, que $a \in Y$ i $a \notin X$. Aleshores tenim que, alhora, $a \in X$ i $a \notin X$, i per tant hem obtingut una contradicció (en aquesta ocasió també hem obtingut la contradicció $a \notin Y$ i $a \in Y$). Per tant, és impossible que $a \notin Y$. És a dir, hem demostrat que $a \in Y$ per a tot a tal que $a \in X$. Això demostra que $a \in Y$.

La demostració que $Y \subseteq X$ es fa igual canviant els noms dels conjunts X i Y, ja que la hipòtesi és la mateixa si hi intercanviem X i Y.

Segona demostració: Demostrem el condicional per reducció a l'absurd; per tant, suposem tant que $X \setminus Y = Y \setminus X$ com que $X \neq Y$, i anem a cercar una contradicció. La condició $X \neq Y$ ens diu que o bé tenim $X \nsubseteq Y$ o bé tenim $Y \nsubseteq X$. Continuem la demostració distingint aquests dos casos.

Cas $X \nsubseteq Y$: Usant que $X \nsubseteq Y$ deduïm que existeix $x \in X$ tal que $x \notin Y$. Per tant, $x \in X \setminus Y$ i $x \notin Y \setminus X$. En conseqüència, obtenim que $X \setminus Y \neq Y \setminus X$; fet que clarament entra en contradicció amb la suposició $X \setminus Y = Y \setminus X$.

Cas $Y \nsubseteq X$: Usant que $Y \nsubseteq X$ deduïm que existeix $y \in Y$ tal que $y \notin X$. Per tant, $y \in Y \setminus X$ i $y \notin X \setminus Y$. En conseqüència, obtenim que $X \setminus Y \neq Y \setminus X$; fet que clarament entra en contradicció amb la suposició $X \setminus Y = Y \setminus X$.

Com en tots dos casos hem arribat a contradicció hem finalitzat la demostració.

Tercera demostració: Demostrem el condicional en dos passos.

En el primer pas demostrem que

si
$$X \setminus Y = Y \setminus X$$
, aleshores $X \setminus Y = \emptyset = Y \setminus X$.

Per la simetria entre la X i la Y és suficient demostrar que si $X \setminus Y = Y \setminus X$, aleshores $X \setminus Y = \emptyset$. I aquest condicional és cert perquè si $X \setminus Y \neq \emptyset$, aleshores existiria un $x \in X$ tal que $x \notin Y$; i per tant $x \in X \setminus Y$ i $x \notin Y \setminus X$, contradient la hipòtesis $X \setminus Y = Y \setminus X$.

I en el segon pas demostrem que

si
$$X \setminus Y = \emptyset = Y \setminus X$$
, aleshores $X = Y$.

Per la simetria entre la X i la Y és suficient demostrar que si $X \setminus Y = \emptyset$, aleshores $X \subseteq Y$. I això és cert perquè si $x \in X$ i $x \notin Y$, aleshores $x \in X \setminus Y$, contradicció.

4. Demostra per inducció que per a tot $n \ge 2$, si a_1, \ldots, a_n són nombres reals arbitraris estrictament entre 0 i 1, aleshores

$$(1-a_1)\cdot (1-a_2)\cdot \ldots \cdot (1-a_n) > 1-a_1-\ldots-a_n$$
.

Justifica i motiva tots els passos de la teva demostració.

Seguint el mètode d'inducció, cal provar primer la propietat per a n = 2 i després provar que si suposem que val per a n = k aleshores també val per a n = k + 1.

Cas n=2: Cal demostrar que per a $a_1,a_2\in\mathbb{R}$ arbitraris tals que $0< a_1,a_2<1$, $(1-a_1)\cdot (1-a_2)>1-a_1-a_2$. Desenvolupem el producte i veiem que

$$(1-a_1)\cdot(1-a_2)=1-a_1-a_2+a_1a_2>1-a_1-a_2.$$

La darrera desigualtat és certa perquè en ser a_1 , $a_2 > 0$ per hipòtesi, també $a_1a_2 > 0$ (el producte de dos reals positius és un real positiu).

Pas d'inducció: Sigui $k \ge 2$, i suposem que per a qualssevol reals a_1, \ldots, a_k tals que $0 < a_1, \ldots, a_k < 1$, val:

$$(1-a_1)\cdot (1-a_2)\cdot \dots \cdot (1-a_k) > 1-a_1-\dots -a_k.$$
 (HI)

Hem de provar que per a qualssevol reals a_1, \ldots, a_{k+1} tals que $0 < a_1, \ldots, a_{k+1} < 1$, val:

$$(1-a_1)\cdot (1-a_2)\cdot \ldots \cdot (1-a_k)\cdot (1-a_{k+1}) > 1-a_1-\ldots-a_k-a_{k+1}.$$
 (?)

Com que sabem que $a_{k+1} < 1$, també sabem que $1 - a_{k+1} > 0$ i per tant podem multiplicar els dos termes de (HI) per $1 - a_{k+1}$ i es consevarà la desigualtat; és a dir, sabem que

$$(1-a_1)\cdot (1-a_2)\cdot \ldots \cdot (1-a_k)\cdot (1-a_{k+1}) > (1-a_1-\ldots-a_k)\cdot (1-a_{k+1}). \tag{1}$$

Ara, per a provar (?) a partir de (1) només ens cal demostrar

$$(1 - a_1 - \dots - a_k) \cdot (1 - a_{k+1}) > 1 - a_1 - \dots - a_k - a_{k+1}. \tag{??}$$

Desenvolupem el producte del terme esquerre i veiem que:

$$(1 - a_1 - \dots - a_k) \cdot (1 - a_{k+1}) = 1 - a_1 - \dots - a_k - a_{k+1} (1 - a_1 - \dots - a_k)$$

= 1 - a_1 - \dots - a_k - a_{k+1} + a_{k+1} (a_1 + \dots + a_k)
> 1 - a_1 - \dots - a_k - a_{k+1}.

La darrera designaltat és veritat perquè $a_{k+1}(a_1 + ... + a_k) > 0$ ja que tots els a_i són estrictament positius. Per tant, efectivament hem demostrat (??), i per tant hem demostrat (?), c.v.d.

Principals errors detectats en aquest problema: A més d'errors (molt greus) d'aritmètica elemental, destaquem:

- Creure que de (HI) ja es dedueix (?) només demostrant que $1 a_{k+1} > -a_{k+1}$. Aquest fet és cert (i trivial, perquè $0 < a_{k+1} < 1$), però això no demostra el que volem: cal observar que el terme de l'esquerra està multiplicant, i el de la dreta està sumant, per tant la deducció és incorrecta.
- Comprovar el cas n = 2 només per a dos valors concrets de a_1 i a_2 , per exemple 0,3 i 0,5. Cal demostrar-ho per a *tots* els valors possibles entre 0 i 1; això és el que es vol dir quan es diu que cal provar quelcom per a valors *arbitraris*.
- Comprovar només els valors 0 i 1. Per una banda, no són "estrictament entre 0 i 1", per tant no estan entre els valors considerats en aquesta propietat. Per altra banda, com abans, comprovar dos valors no demostra res, ja que cal demostrar-ho per a *tots* els valors possibles entre 0 i 1.
- No argumentar correctament, especialment no posar correctament el sentit de les implicacions, no justificar-les i posar equivalències quan només son implicacions.
- **5.** Sigui *z* un nombre enter. Considera les següents propietats de *z*, expressades amb símbols:

P1:
$$\forall p \in \mathbb{Z}(z \neq 6p + 2) \land \forall q \in \mathbb{Z}(z \neq 6q - 1)$$

P2:
$$\neg \exists s (s \in \mathbb{Z} \land z = 3s + 2)$$

(a) Expressa amb símbols les negacions de P1 i de P2, sense que apareguin les expressions $\neg \forall$ i $\neg \exists$. Recorda que cal justificar tots els passos.

$$\neg \mathbf{P1}: \quad \neg \Big(\forall p \in \mathbb{Z} \big(z \neq 6p + 2 \big) \land \forall q \in \mathbb{Z} \big(z \neq 6q - 1 \big) \Big) \equiv \qquad \text{usant } \neg (P \land Q) \equiv \neg P \lor \neg Q :$$

$$\neg \forall p \in \mathbb{Z} \big(z \neq 6p + 2 \big) \lor \neg \forall q \in \mathbb{Z} \big(z \neq 6q - 1 \big) \equiv \qquad \text{usant } \neg \forall \equiv \exists \neg :$$

$$\exists p \in \mathbb{Z} \neg (z \neq 6p + 2) \lor \exists q \in \mathbb{Z} \neg (z \neq 6q - 1) \equiv \qquad \text{i com que "} \neg \neq \text{" és "} = \text{"} :$$

$$\exists p \in \mathbb{Z} (z = 6p + 2) \lor \exists q \in \mathbb{Z} (z = 6q - 1)$$

$$\neg \mathbf{P2}: \quad \neg \Big(\neg \exists s \big(s \in \mathbb{Z} \land z = 3s + 2 \big) \Big) \equiv$$
 usant $\neg \neg P \equiv P :$
$$\exists s \big(s \in \mathbb{Z} \land z = 3s + 2 \big)$$

(b) Expressa les negacions obtingudes a l'apartat anterior en llenguatge informal, de la forma més entenedora possible.

Observem que ¬P1 expressa que

z és un múltiple de 6 més 2 o z és un múltiple de 6 menys 1.

Sense utilitzar cap símbol el que estem dient és que un nombre compleix la propietat $\neg P1$ si i només si el nombre compleix que o bé és un múltiple de 6 més 2 o bé és un múltiple de 6 menys 1. En altres paraules, si o bé el nombre menys 2 és un múltiple de 6 o bé el nombre més 1 és un múltiple de 6.

Observem que ¬P2 expressa que

z és un múltiple de 3 més 2.

Sense utilitzar cap símbol el que estem dient és que un nombre compleix la propietat $\neg P2$ si i només si el nombre compleix que és un múltiple de 3 més 2. En altres paraules, si el nombre menys 2 és un múltiple de 3.

(c) Demostra per contrarecíproc que si *z* compleix P1, aleshores *z* compleix P2.

Demostrar per contrarecíproc que

si z compleix P1, aleshores z compleix P2,

és demostrar que

si *z* no compleix P2, aleshores *z* no compleix P1.

És a dir, hem de demostrar que

si "z és un múltiple de 3 més 2", aleshores "z és un múltiple de 6 més 2 o z és un múltiple de 6 menys 1".

A continuació donem una demostració directa d'aquest darrer condicional. Sigui z un mútiple de 3 més 2, és a dir, z = 3s + 2 per algun $s \in \mathbb{Z}$. Seguidament distingim casos segons la paritat de s.

Cas s **és parell:** Si s és parell, aleshores s=2p per algun $p\in\mathbb{Z}$. Substituint en la hipòtesi obtenim que z=3s+2=3(2p)+2=6p+2 i com que $p\in\mathbb{Z}$, tenim que z és múltiple de 6 més 2. En particular, també és compleix la disjunció "z és un múltiple de 6 més 2 o z és un múltiple de 6 menys 1".

Cas s és senar: Si s és senar, aleshores s=2q+1 per algun $q\in\mathbb{Z}$. Substituint en la hipòtesi obtenim z=3s+2=3(2q+1)+2=6q+5=6(q+1)-1 i com que $q+1\in\mathbb{Z}$, tenim que z és múltiple de 6 menys 1. En particular, també és compleix la disjunció "z és un múltiple de 6 més 2 o z és un múltiple de 6 menys 1".

Això finalitza la demostració ja que en ambdós casos hem demostrat que "z és un múltiple de 6 més 2 o z és un múltiple de 6 menys 1".

Principals errors detectats en aquest problema: Destaquem els comentaris següents:

- Recordem que expressions com $\neg((\forall p \in \mathbb{Z})...)$ són lògicament equivalents a $(\exists p \in \mathbb{Z})\neg...$; que no és el mateix que dir $(\exists p \notin \mathbb{Z})\neg...$;
- Les quatre propietats considerares (P1, P2, ¬P1 i ¬P2) són dependents d'un paràmetre, el qual ha estàt anomenat z a l'enunciat.
- En el tercer apartat no es poden distingir els casos "z és un múltiple de 6 més 2" i "z és un múltiple de 6 menys 1" ja que formen part de la conclusió que hem de demostrar.