DS-HCHO 系列数据手册

DS-HCHO 是一款高度集成、高精度、高稳定性的数字输出式甲醛传感器,采用电化学方法实时检测各应用场景下的甲醛含量,具有测量精准、体积小、使用方便等特点,家居和工业均可使用,并可应用于汽车、空调、电视等多种载体。

DS-HCHO 采用独特的电解质封装技术,内置高性能模拟电路和数据处理单元,集成大量的经验算法,直接输出数字浓度信息,出厂均已进行零点和标准气浓度标定,用户无需再对电化学传感器复杂的模拟电路进行信号调理,也不再需要专业的设备来进行校准标定,使用简单、方便、快捷。

基本参数

<u> </u>		
参数	值	单位
有效量程	0-1	mg/m^3
最大量程	2.5	mg/m^3
分辨率	0. 01	mg/m^3
精度	<±5	FS
响应时间(T90)	<30	S
使用年限	3	年
工作温度	0~55	${\mathbb C}$
工作湿度	0~95	% 相对湿度
工作电压	$3.3\pm10\%$	V

接口定义

1	VCC	电压输入
2	GND	3.3V
3	RESET	低电平复位
4	NC	悬空
5	NC	悬空
6	TX	串口发送管脚
7	RX	串口接收管脚

通讯协议

DS-HCHO 采用 P2P 呼叫应答式机制

主机发送命令格式 一共 7 个字节

起始符 1	起始符 2	命令符	数据 H	数据 L	校验 H	校验 L
0x42	0x4d	CMD	DHH	DLL	LRCH	LRCL

格式说明:

起始符 12 为固定字符 0x42 0x4d

命令符 CMD 位主机发送至设备命令参数

数据 HL 分别为主机发送至设备数据高低字节

校验 HL 分别为数据包和检验高低字节

命令说明:

序号	命令说明	标识字
1	查询检测值	0x01
2	清零	
3	SPAN 标定	
4	恢复出厂初始值	
5		

示例:

主机发送查询监测数据指令

0x42 0x4d 0x01 0x00 0x00 0x00 0x90

模块返回数据包

起始	起始	后续	气体	监测	数据	监测	监测	和检	和校
符 1	符 2	发送	种类	数据	当量	数据	数据	验 高	验 低
		字节		单位		高字	低字	字节	字节
		数				节	节		
0x42	0x4d	0x08	ID	UNIT	VH	DHH	DLL	LRCH	LRCL

气体种类标识定义

	数据定义				
数据内容	气体名称/	数据内容	气体名称	数据内容	气体名称/
0x00	无传感器	0x0b	NO	0x16	VOC
0x01	CO	0x0c	NO ₂	0x17	ЕТО
0x02	H ₂ S	0x0d	O ₃	0x18	C2H4
0x03	CH4	0x0e	O ₂	0x19	C2H2
0x04	CL ₂	0x0f	SO ₂	0x1a	SF ₆
0x05	HCL	0x10	CLO2	0x1b	AsH ₃
0x06	F ₂	0x11	COCL2	0x1c	H ₂
0x07	HF	0x12	PH ₃	0x1d	TOX1
0x08	NH ₃	0x13	SiH4	0x1e	TOX2
0x09	HCN	0x14	НСНО	0x1f	气体流量 L/M
0x0a	PH ₃	0x15	CO ₂	0x20	电池电量/%

监测单位定义:

数据内容	单位
0x01	ppm
0x02	VOL
0x03	LEL
0x04	Ppb
0x05	Mg/m3

数据当量定义

数据内容	数据当量定义
0x01	1
0x02	10
0x03	100
0x04	1000

实际数据等于监测数据除于数据当量

通讯示例:

主机发送查询监测数据指令

0x42 0x4d 0x01 0x00 0x00 0x00 0x90

模块返回数据:

0x42 0x4d 0x08 0x14 0x05 0x03 0x00 0x0a 0x00 0xbd

即 监测气体位甲醛 浓度为 0.10mg/m3

详细说明

- 0x42 0x4d 固定表示符号
- 0x08 后续发送 8 个字节数(包括自身)
- 0x14 监测类型表示 甲醛
- 0x05 数据单位标识 mg/m3
- 0x03 数据当量表示 100
- 0x00 0x0a 返回数据 0x000a = 10

实际数据=返回数据/数据当量=10/100=0.10

0x00 0xbd 数据校验高低字节

注意事项:

- 1. 传感器通电极化时间不应低于 48 小时。
- 2. 除甲醛外,其他多种活性气体会对电化学甲醛传感器产生影响, 主要有甲醇、乙醇、甲苯、二甲苯、一氧化碳、硫化氢等。
- 3. 长期在高浓度醛类、醇类等高浓度敏感气体中贮存或使用,会影响传感器使用寿命。特别是长时间在超出最大量程的饱和气体浓度下使用,会使得传感器短期失效,或一定几率下长期失效。
- 4. 腐蚀性气体环境也会令传感器使用寿命降低或失效。

传输协议

串口默认波特率: 9600Kbps 校验位: 无 停止位: 1位