

Lec.4. Introduction to Deep Learning

Machine Learning II

Aidos Sarsembayev, IITU, Almaty, 2019

Outline

- 1. Introduction to Deep Learning
 - The idea behind NN
 - Perceptron
 - Debug and tune deep learning models on conventional prediction problems
 - Lay the foundation for progressing towards modern applications
- 2. Forward propagation
- 3. Activation Functions
- 4. Deeper networks
- 5. Representation learning

Introduction to Deep Learning. The idea behind NN

Artificial Neural Networks are the computational models inspired by the human brain.

Biological Neuron

Image Source – cs231n.github.io

https://www.xenonstack.com/blog/artificial-neural-networks-applications-algorithms/

Introduction to Deep Learning. The idea behind NN

Biological Neuron

Function of Dendrite

- It receives signals from other neurons.
- Soma (cell body)
- It sums all the incoming signals to generate input.
 - Axon Structure
- When the sum reaches a threshold value, neuron fires and the signal travels down the axon to the other neurons.
 - Synapses Working
- The point of interconnection of one neuron with other neurons. The amount of signal transmitted depend upon the strength (synaptic weights) of the connections.

Image Source – cs231n.github.io https://www.xenonstack.com/blog/artificial-neural-networks-applications-algorithms/

Initially it all started from perceptron

a. All the inputs **x** are multiplied with their weights **w**. Let's call it **k**.

• b. *Add* all the multiplied values and call them *Weighted Sum*.

• c. *Apply* that weighted sum to the correct *Activation Function*.

Why do we need Weights and Bias?

- Weights shows the strength of the particular node.
- A bias value allows you to shift the activation function curve up or down.

Why do we need Activation Function?

 In short, the activation functions are used to map the input between the required values like (0, 1) or (-1, 1).

Where we use Perceptron?

 Perceptron is usually used to classify the data into two parts. Therefore, it is also known as a <u>Linear Binary</u> <u>Classifier</u>.

Imagine you work for a bank

 You need to predict how many transactions each customer

Example as seen by linear regression

Example as seen by linear regression

Interactions:

- Neural networks account for interactions really well
- Deep learning uses especially powerful neural networks
 - Text
 - Images
 - Videos
 - Audio
 - Source code

Build deep learning models with keras

```
In [1]: import numpy as np
In [2]: from keras.layers import Dense
In [3]: from keras.models import Sequential
In [4]: predictors = np.loadtxt('predictors_data.csv', delimiter=',')
In [5]: n_cols = predictors.shape[1]
In [6]: model = Sequential()
In [7]: model.add(Dense(100, activation='relu', input_shape = (n_cols,)))
In [8]: model.add(Dense(100, activation='relu')
In [9]: model.add(Dense(1))
```


Deep learning models capture interactions

Interactions in neural network

Bank transactions example

- Make predictions based on:
 - Number of children
 - Number of existing accounts

- Multiply add process
- Dot product
- Forward propagation for one data point at a time
- Output is the prediction for that data point


```
In [1]: import numpy as np
                                                             Hidden Layer Output
                                                     Input
In [2]: input_data = np.array([2, 3])
In [3]: weights = { 'node_0': np.array([1, 1]),
                    'node_1': np.array([-1, 1]),
   . . . :
                    'output': np.array([2, -1])}
   . . . :
In [4]: node_0_value = (input_data * weights['node_0']).sum()
In [5]: node_1_value = (input_data * weights['node_1']).sum()
In [6]: hidden_layer_values = np.array([node_0_value, node_1_value])
In [7]: print(hidden_layer_values)
[5, 1]
In [8]: output = (hidden_layer_values * weights['output']).sum()
In [9]: print(output)
```


Linear vs Nonlinear Functions

Improving our neural network w/ activation functions

Improving our neural network w/ activation functions

ReLU (Rectified Linear Activation)

$$RELU(x) = \begin{cases} 0 & \text{if } x < 0 \\ x & \text{if } x > = 0 \end{cases}$$


```
In [1]: import numpy as np
In [2]: input_data = np.array([-1, 2])
In [3]: weights = {'node_0': np.array([3, 3]),
   ...: 'node_1': np.array([1, 5]),
   ...: 'output': np.array([2, -1])}
In [4]: node 0 input = (input data * weights['node 0']).sum()
In [5]: node_0_output = np.tanh(node_0_input)
In [6]: node_1_input = (input_data * weights['node_1']).sum()
In [7]: node_1_output = np.tanh(node_1_input)
In [8]: hidden_layer_outputs = np.array([node_0_output, node_1_output])
In [9]: output = (hidden_layer_output * weights['output']).sum()
In [10]: print(output)
1.2382242525694254
```


Representation learning

- Deep networks internally build representations of patterns in the data
- Partially replace the need for feature engineering
- Subsequent layers build increasingly sophisticated representations of raw data

Representation learning

Deep learning

- Modeler doesn't need to specify the interactions
- When you train the model, the neural network gets weights that find the relevant patterns to make better predictions

To be continued, Thanks!