Homework - 3 COEN 240-Machine Learning

Pujitha Kallu ID: W1653660 pkallu@scu.edu

1. Find the derivative of the function $f(x)=5(x+47)^2$

Sol: $f(x)=5(x+47)^2$

The derivative of f(x) is as below:

$$f'(x)=10(x+47)$$

2. Determine the minimum and maximum of the function $f(x)=3x^3+15x^2$. Then sketch it.

Sol: $f(x)=3x^3+15x^2$

1st derivative : $f'(x) = 9x^2 + 30x = 0$

by solving we get : x(9x+30)=0

from above $\rightarrow x_1=0$; $x_2=-3.33$

2nd derivative $f'(x)=9x^2+30x$

$$f'(x) = 18x + 30$$

 $\rightarrow f''(0) > 0 => Minimum.$

 $\rightarrow f''(-3.33) < 0 => Maximum$

$$f(0) = 0 => Min: (0,0)$$

$$f(-3.33) = 55.56 => \text{Max:} (-3.33, 55.56)$$

Below is the representation on graph:

Find the partial derivative of $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ for the following functions:

3.
$$f(x, y) = 3x + 4y$$

Sol: By deriving as mentioned in the question we get:

$$\frac{\partial f}{\partial x}$$
 = 3 and $\frac{\partial f}{\partial y}$ = 4

4.
$$f(x, y) = xy^3 + x^2y^2$$

$$\frac{\partial f}{\partial x} = y^3 + 2xy^2$$
 and $\frac{\partial f}{\partial y} = 3xy^2 + 2x^2y$

5.
$$f(x, y) = x^3y + e^x$$

Sol:

$$\frac{\partial f}{\partial x}$$
 = 3x²y+ e^x and $\frac{\partial f}{\partial y}$ = x³

6. $f(x, y) = xe^{2x+3y}$

Sol:

$$\frac{\partial f}{\partial x} = e^{2x+3y} + 2xe^{2x+3y}$$
 and $\frac{\partial f}{\partial y} = 3xe^{2x+3y}$

7. Given a function J(w):

Sol:

$$J(w_0, w_1) = \frac{1}{2m} \sum_{i=1}^{m} x(w_0 + w_1 x^{(i)} - y_i)^2$$

Deriving $\frac{\partial J(w)}{\partial w0}$ and $\frac{\partial J(w)}{\partial w1}$ are as below:

$$\frac{\partial J(w)}{\partial w^0} = \frac{1}{m} \sum_{i=1}^{m} (w_0 + w_1 \mathbf{x}^{(i)} - \mathbf{y}_i)$$

$$\frac{\partial J(w)}{\partial w_1} = \frac{1}{m} \sum_{i=1}^{m} (w_0 + w_1 x^{(i)} - y_i) * x^{(i)}$$

8. Find the derivative of the function: $f(x) = \frac{1}{1+e^{-x}}$

Sol: Using Quotient rule: $h(x) = \frac{f(x)}{g(x)}$ then,

$$h'(x) = \frac{f'(x) g(x) - f(x)g'(x)}{g(x)^2}$$

$$f'(x) = \frac{0 - e^{-x}}{(1 + e^{-x})^2} = \frac{e^{-x}}{(1 + e^{-x})^2} = \frac{e^{-x}}{(1 + e^{-x})} \frac{1}{(1 + e^{-x})}$$
$$f'(x) = \frac{1}{(1 + e^{-x})} * \frac{(1 + e^{-x}) - 1}{(1 + e^{-x})} = \frac{1}{(1 + e^{-x})} * \frac{1 + e^{-x}}{1 + e^{-x}} - \frac{1}{1 + e^{-x}}$$

$$f'(x) = \left(\frac{1}{(1+e^{-x})}\right) * \left(1 - \frac{1}{1+e^{-x}}\right) = f(x) * (1-f(x))$$

f(x) = function given to us - represented in blue

g(x) = derivative of f(x) - represented in green

References:

1. Derivatives for machine learning

 $\underline{https://towardsdatascience.com/a-quick-introduction-to-derivatives-for-machine-learning-peo}\\ ple-3cd913c5cf33$

- 2. Quotient rule https://www.geeksforgeeks.org/quotient-rule/
- 3. https://towardsai.net/p/machine-learning/mastering-derivatives-for-machine-learning