Pflichtmodul Informationssysteme (SS 2018)

Prof. Dr. Jens Teubner

Leitung der Übungen: Thomas Lindemann, Tanja Bock

Übungsblatt Nr. 12

Ausgabe: 27.06.2018 Abgabe: 04.07.2018

Aufgabe 1 (Normalformen (normal forms))

Gegeben sei folgendes Relationenschema:

```
sch(Eisdiele\_Venezia) = (Nr, Sorte, Eisfach, Farbe, Kuehlung, Preis)
```

Die Menge der zugehörigen Abhängigkeiten \mathcal{F} ist:

```
\mathcal{F} = \{ \\ Eisfach \rightarrow Farbe, Sorte \\ Sorte \rightarrow Farbe, Preis \\ Eisfach, Sorte \rightarrow Kuehlung \\ Nr \rightarrow Eisfach \}
```

- a) In welcher Normalform (normal form) befindet sich dieses Relationenschema?
- b) Überführt das gegebene Relationenschema in die dritte Normalform (third normal form) (3NF) und kennzeichnet im Relationenschema in der 3NF für jede Relation einen Schlüssel.

Aufgabe 2 (Mehrwertige Abhängigkeiten (multi-valued dependencies))

Gegeben sei die folgende Relation Freizeitparks:

Freizeitparks							
Konzern	Name	Land	Rabatte				
MJC	Everland	USA	Kinder				
Renraw	Bioswereld	NL	Senioren				
Renraw	Filmwelt	D	Kinder				
SpielGut	Jord	D	keine				
Yensid	Country	USA	Kinder				
Yensid	Country	USA	Senioren				
Yensid	Teuro	F	Kinder				

1. Erweitert die Relation *Freizeitparks* um eine minimale Menge zusätzlicher Tupel, so dass die mehrwertige Abhängigkeit (*multi-valued dependency*)

$$Konzern \rightarrow Name, Land$$

erfüllt ist.

2. Was ist die intuitive Aussage hinter der betrachteten mehrwertigen Abhängigkeit vor dem Hintergrund der gegebenen Relation?

Aufgabe 3 (Basis-Operatoren der Relationenalgebra)

Wie aus der Vorlesung bekannt ist, können alle Algebra-Operatoren mit Hilfe der 5 Basis-Operatoren der Algebra (Projektion, Selektion, Kartesisches Produkt, Vereinigung und Differenz) konstruiert werden.

Betrachtet nun die Division $R \div S$ für beliebige Instanzen der Schemata $\operatorname{sch}(R) = (A, B, C)$ und $\operatorname{sch}(S) = (B, C)$.

- 1. Gebt einen Ausdruck der Relationenalgebra an, der sich ausschließlich der Basis-Operatoren bedient und die Divisions-Operation $R \div S$ berechnet.
- 2. Entwickelt für euren Algebra-Ausdruck eine äquivalente SQL-Anfrage.
- 3. Testet eure SQL-Anfrage zur Berechnung der Division auf dem Oracle Datenbanksystem. Legt dazu die oben angegebenen Relationen R und S an.

Zum Testen der SQL-Anfrage könnt ihr beispielsweise die folgenden Instanzen für R und S verwenden:

	R						
A	В	C				1	
1	a	x			S		$R \div S$
1	c	y	÷	B	C	_	A
0	b	a	•	a	x	_	1
2	c	y		c	y		2
1	b	x			'	1	
2	a	x					