Miscellaneous Problems on A.P., G.P. and H.P. Problems 181-190

Shiv Shankar Dayal

January 18, 2022

181. If
$$\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...\infty=\frac{\pi^2}{6},$$
 then find $1-\frac{1}{2^2}+\frac{1}{3^2}-\frac{1}{4^2}+...\infty$

Solution: In problem 180 we have proved that $\frac{1}{2^2} + \frac{1}{4^2} + \frac{1}{6^2} + ... \infty = \frac{\pi^2}{24}$ and $\frac{1}{1^2} + \frac{1}{3^3} + \frac{1}{5^2} + ... \infty = \frac{\pi^2}{8}$

182. If
$$H_n=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n},$$
 then prove that $H_n=n-\left(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{n-1}{n}\right)$

Solution:

$$\begin{split} H_n &= 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} \\ &= n - n + 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} \\ &= n - (1 - 1) - \left(1 - \frac{1}{2}\right) - \left(1 - \frac{1}{3}\right) + \ldots + \left(1 - \frac{1}{n}\right) \\ &= n - \left(\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \ldots + \frac{n - 1}{n}\right) \end{split}$$

183. Show that
$$\frac{1}{x+1} + \frac{2}{x^2+1} + \frac{4}{x^4+1} + \dots + \frac{2^n}{x^{2^n}+1} = \frac{1}{x+1} - \frac{2^{n+1}}{x^{2^{n+1}}-1}$$

Solution: We can rewrite the question like $\frac{1}{x+1} - \frac{1}{x+1} - \frac{2}{x^2+1} - \frac{4}{x^4+1} - \dots - \frac{2^n}{x^{2^n}+1} = \frac{2^{n+1}}{x^{2^{n+1}}-1}$

$$\begin{split} L.H.S. &= \left(\frac{1}{x+1} - \frac{1}{x+1}\right) - \frac{2}{x^2+1} - \frac{4}{x^4+1} - \dots - \frac{2^n}{x^{2^n}+1} \\ &= \left(\frac{2}{x^2-1} - \frac{2}{x^2+1}\right) - \frac{4}{x^4+1} - \dots - \frac{2^n}{x^{2^n}+1} \\ &= \left(\frac{4}{x^4-1} - \frac{4}{x^4+1}\right) - \dots - \frac{2^n}{x^{2^n}+1} \end{split}$$

Processing similarly we obtain R.H.S.

184. Show that
$$\left(1+\frac{1}{3}\right)\left(1+\frac{1}{3^2}\right)\left(1+\frac{1}{3^4}\right)...\left(1+\frac{1}{3^{2^n}}\right)=\frac{3}{2}\left(1-\frac{1}{3^{2^{n+1}}}\right)$$

Solution: Multiplying and dividing by $1 - \frac{1}{3}$, we get

$$L.H.S. = \frac{\left(1 - \frac{1}{3}\right)}{\left(1 - \frac{1}{3}\right)} \left(1 + \frac{1}{3}\right) \left(1 + \frac{1}{3^2}\right) \left(1 + \frac{1}{3^4}\right) \dots \left(1 + \frac{1}{3^{2^n}}\right)$$

$$= \frac{1}{\left(1 - \frac{1}{3}\right)} \left(1 - \frac{1}{3^2}\right) \left(1 + \frac{1}{3^2}\right) \left(1 + \frac{1}{3^4}\right) \dots \left(1 + \frac{1}{3^{2^n}}\right)$$

$$= \frac{1}{\left(1 - \frac{1}{3}\right)} \left(1 - \frac{1}{3^4}\right) \left(1 + \frac{1}{3^4}\right) \dots \left(1 + \frac{1}{3^{2^n}}\right)$$

Proceeding similarly we obtain the R.H.S.

185. If x+y+z=1 and x,y,z are positive numbers show that $(1-x)(1-y)(1-z) \geq 8xyz$

Solution: Since $A.M \ge G.M$.

$$\begin{split} & \therefore \frac{x+y}{2} \geq \sqrt{xy}, \frac{y+z}{2} \geq \sqrt{yz}, \frac{x+z}{2} \geq \sqrt{zx} \\ & \frac{(x+y)(y+z)(z+x)}{8} \geq xyz \Rightarrow (1-x)(1-y)(1-z) \geq 8xyz \end{split}$$

186. If a>0, b>0 and c>0, prove that $\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\geq 9$

Solution: Since A.M geq H.M.

187. If a+b+c=3 and a>0, b>0, c>0, find the greatest value of $a^2b^3c^2$.

Solution: Taking A.M. and G.M of 7 numbers $\frac{a}{2}$, $\frac{a}{2}$, $\frac{b}{3}$, $\frac{b}{3}$, $\frac{b}{3}$, $\frac{c}{2}$, $\frac{c}{2}$, we get

$$\frac{2 \cdot \frac{a}{2} + 3 \cdot \frac{b}{3} + 2 \cdot \frac{c}{2}}{7} \ge \left[\left(\frac{a}{2} \right)^2 \left(\frac{b}{3} \right)^3 \left(\frac{c}{2} \right)^2 \right]^{\frac{1}{7}}$$

$$\frac{3}{7} \ge \left(\frac{a^2 b^3 c^2}{2^2 3^3 2^2} \right)^{\frac{1}{7}} \Rightarrow \frac{3^7}{7^7} \ge \frac{a^2 b^3 c^2}{2^2 3^3 2^2}$$

$$a^2 b^3 c^2 \le \frac{3^{10} 2^4}{7^7}$$

188. Let $a_i+b_i=1 (i=1,2,\dots,n)$ and $a=\frac{1}{n}(a_1+a_2+\dots+a_n), b=\frac{1}{n}(b_1+b_2+\dots+b_n),$ show that $a_1b_1+a_2b_2+\dots+a_nb_n=nab-(a_1-a)^2-(a_2-a)^2-\dots-(a_n-a)^2$

Solution:

$$\begin{split} \sum_{i=1}^n a_i b_i &= \sum_{i=1}^n a_i (1-a_i) = \sum_{i=1}^n a) i - \sum_{i=1}^n a_i^2 = na - \sum_{i=1}^n (a_i - a + a)^2 \\ &= na - \sum_{i=1}^n [(a_i - a)^2 + a^2 + 2a(ai - a)] = na - \sum_{i=1}^n (ai - a)^2 - na^2 + 2a \sum_{i=1}^n (a_i - na) \\ &= na(1-a) - \sum_{i=1}^n (a_i - a)^2 = nab - \sum_{i=1}^n (a_i - a)^2 \\ &\because na + nb = \sum_{i=1}^n (a_i + b_i) = n \therefore a + b = 1 \end{split}$$

190. A sequence a_1,a_2,a_3,\dots,a_n of real numbers is such that $a_1=0,|a_2|=|a_1+1|,|a_3|=|a_2+1|,\dots,|a_n|=|a_{n-1}+1|$. Prove that the arithmetic mean $(a_1+a_2+\dots+a_n)/n$ of these numbers cannot be less than -1/2.

Solution: Let a_{n+1} be a number such that $|a_{n+1}| = |a_n + 1|$

Squaring all the numbers, we get

$$a_1^2 = 0$$

$$a_2^2 = a_1^2 + 2a_1 + 1$$

$$a_3^2 = a_2^2 + 2a_2 + 1$$
...
$$a_n^2 = a_{n-1}^2 + 2a_{n-1} + 1$$

$$a_{n+1}^2 = a_n^2 + 2a_n + 1$$

Adding, we get

$$\begin{split} &a_1^2+a_2^2+\ldots+a_n^2+a_{n+1}^2=a_1^2+a_2^2+\ldots+a_n^2+2(a_1+a_2+\ldots+a_n)+n\\ \Rightarrow &2(a_1+a_2+\ldots+a_n)=-n+a_{n+1}^2\geq -n\Rightarrow (a_1+a_2+\ldots+a_n)/n\geq -1/2 \end{split}$$