LEAD SCORING CASE STUDY

PHAM LAM PHONG

1. Problem Statement

- Problem Statement: Although X Education gets a lot of leads, its lead conversion rate is very poor. To make the process more efficient, the lead conversion rate should go up as the sales team will now be focusing more on communicating with the potential leads rather than making calls to everyone.
- Data science problem: build a model wherein you need to assign a lead score to each of the leads such that the customers with higher lead score have a higher conversion chance and the customers with lower lead score have a lower conversion chance.

Lead Source

Inference:

- Although the main source of customers come from API and Landing Page Submissions, the conversion rate of 'Lead Add Form' is the highest over 90%.
- Quick add form' has only 1 observation, therefore it has no statistical significance.

Lead Origin

Inference:

- Welingak website' and 'Reference' are two lead sources that have significantly higher conversion rates than the other lead sources

Do not email

Inference:

- We can easily observe that customers who don't send email ad have a significantly lower conversion rate

Last Activity

Inference:

- Customers who were last contacted via phone consultation or text message tend to have a higher conversion rate than other types of activities.
- Although 'others' activities also have high conversion rates, they have a small number of observations and many activities are grouped together, so they are not statistically significant

Occupation

Inference:

- Professional workers typically have a significantly higher course enrollment rate than other types of occupations

Numerical Attributes Analysis

Inference:

- Based on the graph, we can only predict that customers who are converted to lead tend to have higher total visit numbers

Numerical Attributes Analysis

Inference:

- We can see that Total Time spend on website seems to have high correctlation than others features

Model Building

Generalized Linear Model Regression Results							
Dep. Variable:	Converte	ed No.	No. Observations:		6409		
Model:	GL	М	Df Residuals:		6398		
Model Family:	Binomi	al	Df Model:		10		
Link Function:	Log	jit	Scale:		1.0000		
Method:	IRI	LS Lo	Log-Likelihood:		-2877.1		
Date:	Tue, 07 Mar 202	23	Deviance:		5754.2		
Time:	23:30:2	29	Pearson chi2:		7.37e+03		
No. Iterations:		7 Pseud	Pseudo R-squ. (CS):		0.3540		
Covariance Type:	nonrobu	st					
		coef	std err		z P> z	[0.025	0.975]
	const	0.5052	0.890	0.56	7 0.570	-1.240	2.250
	Do Not Email	-0.3252	0.042	-7.76	3 0.000	-0.407	-0.243
Total Time Spent on Website		1.1343	0.039	29.07	9 0.000	1.058	1.211
Lead Origin_Lead Add Form		3.6918	0.198	18.65	0.000	3.304	4.080
Lead Source_Google		0.3091	0.076	4.07	9 0.000	0.161	0.458
Lead Source_Olark Chat		1.2831	0.101	12.72	7 0.000	1.086	1.481
Lead Source_Welingak Website		2.0024	0.743	2.69	4 0.007	0.546	3.459
Occupation_Other		-2.8474	0.892	-3.19	1 0.001	-4.597	-1.098
Occupation_Student		-1.8400	0.912	-2.01	8 0.044	-3.627	-0.053
Occupation_Unemployed		-1.4604	0.890	-1.64	1 0.101	-3.205	0.284
Occupation_Working Professional		0.8887	0.905	0.98	2 0.326	-0.885	2.663

Using RFE technique to remove attributes and build a model for the remaining attributes.

Making the model stable by using StatsModels library

Model Building

- Performing is quite well with above model. The ROC curve has a value of 0,86 which is good.
- From the curve above, 0.2 is the optimum point to take it as a cutoff probability.
- Accuracy: 76.38%○ Sensitivity:83.06%○ Specificity: 72.28%