JEGYZŐKÖNYV KLASSZIKUS FIZIKA LABORATÓRIUM

02. MÉRÉS - RUGALMAS ÁLLANDÓK MÉRÉSE

• Mérést végezte : Brindza Mátyás

 \bullet Mérést végző Neptun-azonosítója: Z2R8XS

• Jegyzőkönyv leadásának időpontja : 2021.06.06.

A mérés célja:

A mérés során különböző anyagból álló és különböző alakú testek rugalmas tulajdonságait vizsgáljuk. A mérés összességében egy statikus és egy dinamikus részre bontható:

- A statikus részben testek Young-moduluszát határozzuk meg úgy, hogy mérjük a behajlásukat terhelés esetén. Hasáb alakú mintán az egyik és a másik éllel párhuzamos terhelés esetén egy-egy s(F) egyenest kapunk. E két egyenes meredekségének arányát összehasonlítjuk a másodrendű nyomatékok fordított arányával.
- A dinamikus részben egy test (torziós szál) torziómoduluszát határozzuk meg úgy, hogy belőle torziós ingát állítunk össze és a periódusidőt mérjük. Meghatározzuk az üres inga tehetetlenségi nyomatékát is.

Mérőeszkzök

- Csavarmikrométer
- Mérőszalag
- Tolómérő
- Analitikai mérleg
- Torziós inga
- Súlyok
- V1 jelzésű minta (hasáb)
- V3 jelzésű minta (henger)
- 71 jelzésű torziós szál
- 5 jelzésű mérőtárcsa
- 8 jelzésű mérőtárcsa

A mérés elméleti háttere

A mérés kezdetekor megmérjük legalább ötször a geometriai paramétereket. A további fejezetekben minden geometriai paraméternél a lemért értékek átlagát használjuk.

Statikus mérés

Testek deformációjakor két kijelölt pont közötti távolság megváltozhat. Lehajlás, illetve behajlás esetén egy test egyes részei megnyúlnak, egyesek összemennek. Különböző keresztmetszetű rudak esetén meghatározhatjuk azt a tartományt, amely nem nyúlik meg és nem megy össze deformáció (behajlás) során, azaz a neutrális zónát. Rá az alábbi összefüggés írható fel:

$$s = \frac{1}{48} \cdot \frac{l^3}{I \cdot E} \cdot F$$

ahol s a behajlás mértéke, l az ékek távolsága, I a rúd másodrendű nyomatéka, F pedig a rúd közepén ható hajlító erő. A Young-moduluszt, azaz E-t keressük.

Mivel I és E "állandóak", s-t úgy is tudjuk mérni, hogy F-et fixáljuk és l-t változtatjuk, illetve fordítva is.

A másodrendű nyomaték előáll, mint

$$I = \int_{F} z^{2} \cdot dF$$

A mérés során téglalap alapú hasáb és henger alakú testeket veszünk szemügyre, így ez az integrál előzetesen kiszámolható mint a testek geometriai paramétereinek függvénye. Legyen I_t a téglalap alapú hasáb, I_k pedig a $k\ddot{o}r$ alapú hasáb másodrendű nyomatéka.

$$I_t = \frac{a \cdot b^3}{12}$$
$$r^4 \cdot \pi$$

$$I_k = \frac{r^4 \cdot \pi}{4}$$

ahol b a télalapnak a terhelő erő irányával párhuzamos oldala (ha lefelé nyomjuk, akkor a függőleges oldal), és r a kör sugara.

Dinamikus mérés

Ha egy torziós szálat elcsavarunk, hosszanti tengely körüli forgást végez, mely periódikus lesz. Ezt nevezzük torziós ingának. Az inga Θ össz tehetetlenségi nyomatéka, az inga T periódusideje és az elcsavarodó torziós szál G torziómodulusza közti összefüggés:

$$G = K \cdot \frac{\Theta}{T^2}$$

melyben K a torziós szál geometriai paramétereinek szerepét összesíti az alábbi módon.

$$K = \frac{8 \cdot \pi \cdot l}{r^4}$$

Rendszerint Θ nem ismert, így a legjobb megoldás a tehetetlenségi nyomatékot ismert mértékben változtatni. Erre megközelítőleg megegyező tömegű és tehetetlenségi nyomatékú tárcsákat használunk. A tárcsák össz tömege legyen M és össz tehetetlenségi nyomatéka legyen Θ_S . A tárcsák az inga középpontjához képest szimmetrikusan, a forgástengelytől a távolságra helyezkednek el. A Steiner-tételt felhasználva:

$$\Theta = \Theta_e + \Theta_S + M \cdot a^2$$

ahol Θ_e az üreg inga tehetetlenségi nyomatéka. Helyettesítsük be ezt a fenti képletbe, és fejezzük ki T^2 -et.

$$T^2 = \frac{K}{G} \cdot (\Theta_e + \Theta_S + M \cdot a^2)$$

Így tehát a-t változtatva mérünk T-ket, majd a mérési pontokra egyenest illesztünk (az egyszerűség kedvéért T^2 -re úgy tekintünk, mint a^2 függvénye). Az kapott egyenes meredekségéből kiszámolható a torziós modulusz, majd az inga saját tehetetlenségi nyomatéka is.

$$T^{2}(a^{2}) = \frac{K}{G} \cdot (\Theta_{e} + \Theta_{S}) + \frac{K}{G} \cdot M \cdot a^{2} = b + m \cdot a^{2}$$

innen:

$$G = K \cdot \frac{M}{m}$$
$$\Theta_e = \frac{G}{K} \cdot b - \Theta_S$$

Mérési adatok

Statikus mérés

A behajlásokat mérő eszközzel mérhető legkisebb intervallum 0.01mm. Az abszolút hiba így minden behajlás esetén $\pm 0.005mm$.

V1 minta:

- $a = 11.93mm \pm 0mm$
- $b = 7.082mm \pm 0.008mm$

m _t (kg)	s [lap] (10 ⁻² mm)	s [él] (10 ⁻² mm)
0.5	76.0	16.7
1	90.7	22.1
2	121.0	32.7
3	152.6	43.3
4	181.4	54.1
5	211.6	93.0
6	243.1	75.1
7	-	85.7
8	-	96.5

A behajlás mértéke állandó éktávolság és különböző terhelés mellett

Jelmagyarázat:

- \bullet s : behajlás
- \bullet [lap] : a rövidebb, azaz a b oldallal párhuzamos a hajtító erő
- \bullet $[\acute{e}l]$: a hosszabb, azaz az a oldallal párhuzamos a hajtító erő
- \bullet m_t : ekkora tömeg súlya képviseli a hajtlító erőt

Az éktávolság $l = 400mm \pm 0.5mm$.

V3 minta:

• $d = 10.038mm \pm 0.008mm$

Jelmagyarázat:

- l: éktávolság
- \bullet s_0 : a behajlások 0.5kg-os terhelés esetén
- \bullet s : a behajlások 4.5kg-os terhelés esetén

Adott, hogy $g = 9.81 \frac{m}{s^2}$

l (cm)	s ₀ (10 ⁻⁵ m)	s (10 ⁻⁵ m)
40	44.7	130.7
38	61.3	136.2
36	52.0	116.0
34	55.6	108.6
32	64.1	109.9
26	45.9	71.2

A behajlás mértéke különböző éktávolságok mellett két különböző terhelés esetén

Dinamikus mérés

71-es jelzésű minta

- hossza $l = 591mm \pm 0.5mm$
- \bullet átmérője $d=0.702mm\pm0.08mm$

5-ös mérőtárcsa

- \bullet átmérője $d=45.05mm\pm0.025mm$
- tömege $m = 194.648g \pm 0.0005g$

8-as mérőtárcsa

- átmérője $d=45mm\pm0.025mm$
- tömege $m = 196.362g \pm 0.0005g$

a (cm)	T (sec)
0	2.8976
3	3.5553
4	4.0436
5	4.5871
6	5.1459
7	5.6878
8	6.3299
9	6.9331
10	7.6745

A periódusidő a tárcsák helyzetének függvényében

Jelmagyarázat:

- $\bullet \ a$: a tárcsák távolsága a forgástengelytől
- \bullet T: a lengésidő

Kiértékelés

Statikus mérés

V1 minta

Először számoljuk ki a másodrendű nyomatékokat.

$$I_b = 3.5312378 \cdot 10^{-10} m^4$$

$$I_a = 1.0020653 \cdot 10^{-9} m^4$$

A behajlás terhelésfüggésére $f(x) = a \cdot x + b$ alakú egyenest illesztettem. A b paraméter azt jelenti, hogy mennyire hajlik be a test a saját súlya alatt - ezzel nem igazán foglalkozunk, az egyenes meredekségéből meghatározható a Young-modulusz.

A behajlás terhelésfüggése mindkét pozícióban

A kilógó pont jelentősen ront az illesztés pontosságán, így kidobtam ezt a pontot és újra elvégeztem az illesztést.

V1-es minta - Behajlás a terhelés függvényében

A behajlás terhelésfüggése mindkét pozicióban - javított

Szemmel láthatóan jobban illeszkedik a fittelt egyenes a mérési pontokhoz. Jelöljük s_b -vel s[lap]-ot, és s_a -val s[él]-et. A kapott egyenesek :

$$s_b = 3.0911973 \cdot 10^{-5} \frac{m}{N} \cdot F + 60.6314448 \cdot 10^{-5} m$$

$$s_a = 1.0826876 \cdot 10^{-5} \frac{m}{N} \cdot F + 11.4541596 \cdot 10^{-5} m$$

Az egyenesek meredekségéből kiszámolható a Young modulusz:

$$a_{fit} = \frac{1}{48} \cdot \frac{l^3}{I_b \cdot E}$$
$$E = \frac{1}{48} \cdot \frac{l^3}{I_b \cdot a_{fit}}$$

Tehát

$$E_b = \frac{1}{48} \cdot \frac{l^3}{I_b \cdot 3.0911973 \cdot 10^{-5} \frac{m}{N}} = 122.14762887GPa$$

$$E_a = \frac{1}{48} \cdot \frac{l^3}{I_a \cdot 1.0826876 \cdot 10^{-5} \frac{m}{N}} = 122.89650929GPa$$

A két pozícióban eléggé hasonló Young-moduluszt kaptunk. A hibákra visszatérünk a "Hibaszámítás" fejezetben.

Hasonlítsuk össze a két egyenes meredekségét és a két másodrendű nyomatékot az alábbi módon:

$$\frac{a_{fit,b}}{a_{fit,a}} = \frac{I_a}{I_b}$$

A két arány:

$$\frac{a_{fit,b}}{a_{fit,a}} = 2.73221762 \pm 0.014927844$$

$$\frac{I_a}{I_b} = 2.83771674 \pm 0.017579495$$

A két aránynak névleg meg kellene egyeznie. Az eltérés nagy része feltételezhetően mérési pontatlanságokból származik.

V3 minta

A test másodrendű nyomatéka:

$$I_r = 4.9837777 \cdot 10^{-10} m^4$$

Az előterhelés során fellép bizonyos behajlás, s_0 . Amikor rárakjuk a további 4kg terhelést, egy s behajlás lesz. Úgy járunk le, hogy a 4.5kg terheléshez tartozó behajlásokból levonjuk az előterhelés során keletkezett behajlásokat, azaz $s-s_0$ érték lesz számunkra releváns. Az előbbi eljárásnál annyival volt könnyebb dolgunk, hogy a minta a saját súlya alatt mindig ugyanannyira hajlott be, itt viszont az éktávolság megváltozása miatt változknak az anyag belsejében fellépő forgatónyomatékok, ezért különböző mértékben fog behajlani a test. Előterhelésre azért van szükség, hogy ezt a hatást felnagyítsuk, és a valódi behajlással összemérhető értékekkel tudjunk dolgozni.

Egyenest illesztünk az $s - s_0 = s_r(l^3)$ mennyiségre.

A behajlás éktávolság függése

A kapott egyenes:

$$s_r(l^3) = 1314.2696688 \cdot 10^{-5} \frac{1}{m^2} \cdot l^3 + 2.2716538 \cdot 10^{-5} m$$

Az egyenes merekedkségéből meghatározható a Young-modulusz. A hajlító erőt szolgáltató tömeg az s_r mennyiségnél az előterhelés és a végső tehelés közti különbség, azaz 4kg.

$$a_{fit} = \frac{1}{48} \cdot \frac{g \cdot 4kg}{I_r \cdot E}$$

$$E = \frac{1}{48} \cdot \frac{g \cdot 4kg}{I_r \cdot a_{fit}}$$

Tehát:

$$E_r = \frac{1}{48} \cdot \frac{9.81 \frac{m}{s^2} \cdot 4kg}{4.9837777 \cdot 10^{-10} m^4 \cdot 1314.2696688 \cdot 10^{-5} \frac{1}{m^2}} = 124.8086288GPa$$

Dinamikus mérés

Kezdjük a hamarosan használatos mennyiségek kiszámításával. A számmal indexelt mennyiségek a tárcsákra vonatkoznak. Torziós szál:

$$d = 0.702mm \pm 0.5mm$$

$$r = 3.51 \cdot 10^{-4}m \pm 2.5 \cdot 10^{-4}m$$

$$K = \frac{8 \cdot \pi \cdot l}{r^4} = 9.7858572151 \cdot 10^{14} \frac{1}{m^3}$$

Tárcsák:

$$m_5 = 0.194648kg$$

$$m_8 = 0.196362kg$$

$$r_5 = 2.2525 \cdot 10^{-2}m \pm 1.25 \cdot 10^{-5}m$$

$$r_8 = 2.25 \cdot 10^{-2}m \pm 1.25 \cdot 10^{-5}m$$

$$\Theta_5 = \frac{1}{2} \cdot m_5 \cdot r_5^2 = 4.937982 \cdot 10^{-5}kg \cdot m^2$$

$$\Theta_8 = \frac{1}{2} \cdot m_8 \cdot r_8^2 = 4.970413 \cdot 10^{-5}kg \cdot m^2$$

Egyenest illesztünk a $T^2(a^2)$ összefüggésre.

$$T^{2}(a^{2}) = \frac{K}{G} \cdot (\Theta_{e} + \Theta_{S}) + \frac{K}{G} \cdot M \cdot a^{2} = b_{fit} + a_{fit} \cdot a^{2}$$

A kapott egyenes:

$$T^2(a^2) = 4992.124352 \frac{s^2}{m^2} \cdot a^2 + 8.288058s^2$$

Az egyenes paramétereiből kiszámolható a torziómodulusz és az inga saját tehetetlenségi nyomatéka:

$$G = K \cdot \frac{m_5 + m_8}{a_{fit}} = 76.6480912691GPa$$

$$\Theta_e = \frac{G}{K} \cdot b_{fit} - (\Theta_5 + \Theta_8) = 5.500813 \cdot 10^{-4} kg \cdot m^2$$

A periódusidő és a tárcsák távolsága közti összefüggés

 $a^{2}[m^{2}]$

Hibaszámítás

Az illesztéseket és a számolásokat Python-ban végeztem. A $scipy.curve_fit$ által visszaadott tömbökből expliciten kiszámolható a standard deviation error.

Statikus mérés

V1-es minta

A V1-es minta vizsgálatakor, a||F és b||F esetén is a Young-modulusz relatív hibája:

$$\frac{\Delta E}{E} = \frac{\Delta a_{fit}}{a_{fit}} + \frac{\Delta I}{I} + 3 \cdot \frac{\Delta l}{l}$$

A V1-es minta vizsgálatakor, b||F esetén a másodrendű nyomaték relatív hibája:

$$\frac{\Delta I}{I} = \frac{\Delta a}{a} + 3 \cdot \frac{\Delta b}{b}$$

A V1-es minta esetén a b||F egyenesre kapott paraméterek hibái:

$$\Delta a_{fit} = 1.33330754 \cdot 10^{-7} \frac{m}{N}$$

$$\Delta b_{fit} = 4.72244334 \cdot 10^{-6} m$$

Az a oldal mérésekor ötször ugyanazt az eredményt kaptuk, így a reprodukálhatóságból számolt hiba 0 lenne. Ehelyett használjuk a műszer névleges pontosságát.

Így a Young-modulusz relatív és abszolút hibája:

$$\frac{\Delta E}{E} = 0.011871224$$

$$\Delta E = 1.45004192096GPa$$

A V1-es minta vizsgálatakor, a||F esetén a másodrendű nyomaték relatív hibája:

$$\frac{\Delta I}{I} = 3 \cdot \frac{\Delta a}{a} + \frac{\Delta b}{b}$$

A V1-es minta esetén az a||F egyenesre kapott paraméterek hibái:

$$\Delta a_{fit} = 1.30154449 \cdot 10^{-8} \frac{m}{N}$$

$$\Delta b_{fit} = 6.04383526 \cdot 10^{-7} m$$

Így a Young-modulusz relatív és abszolút hibája:

$$\frac{\Delta E}{E} = 0.0072873554$$

$$\Delta E = 0.8955905428GPa$$

V3-as minta

A V3-as minta vizsgálatakor a Young-modulusz relatív hibája:

$$\frac{\Delta E}{E} = \frac{\Delta a_{fit}}{a_{fit}} + \frac{\Delta I}{I} + \frac{\Delta m}{m}$$

Mivel nem tudni, mivel lettek megmérve a hajlítót erőt szolgáltató tömegek, hagyjuk el az utolsó tagot - tegyük fel, hogy $\Delta m = 0$.

A V3-as minta vizsgálatakor a másodrendű nyomaték relatív hibája:

$$\frac{\Delta I}{I} = 4 \cdot \frac{\Delta r}{r}$$

A V3-as minta esetén kapott paraméterek hibái:

$$\Delta a_{fit} = 1.33330754 \cdot 10^{-7} \frac{1}{m^2}$$

$$\Delta b_{fit} = 4.72244334 \cdot 10^{-6} m$$

Így a Young-modulusz relatív és abszolút hibája:

$$\frac{\Delta E}{E} = 0.0164753385$$

$$\Delta E = 2.05626440GPa$$

Dinamikus mérés

$$G = K \cdot \frac{M}{a_{fit}}$$

$$\Theta_e = \frac{G}{K} \cdot b_{fit} - \Theta_S = \frac{M}{a_{fit}} \cdot b_{fit} - \Theta_S$$

A torzió modulusz relatív hibája:

$$\frac{\Delta G}{G} = \frac{\Delta a_{fit}}{a_{fit}} + \frac{\Delta K}{K} + \frac{\Delta m_5 + \Delta m_8}{m_5 + m_8}$$

Az inga saját tehetetlenségi nyomatékának relatív hibája:

$$\frac{\Delta\Theta_e}{\Theta_e} = \frac{\Delta b_{fit}}{b_{fit}} + \frac{\Delta a_{fit}}{a_{fit}} + \frac{\Delta M}{M} + 2 \cdot \frac{\Delta r_5 + \Delta r_8}{r_5 + r_8}$$

A K állandó relatív hibája:

$$\frac{\Delta K}{K} = 4 \cdot \frac{\Delta r}{r} + \frac{\Delta l}{l}$$

A tácsák tehetetlenségi nyomatékainak relatív hibája:

$$\frac{\Delta\Theta_i}{\Theta_i} = \frac{\Delta m_i}{m_i} + 2 \cdot \frac{\Delta r_i}{r_i}$$

Az illesztés által kapott paraméterek hibái:

$$\Delta a_{fit} = 43.94113269 \frac{s^2}{m^2}$$
$$\Delta b_{fit} = 0.23304916s^2$$

Így a torzió modulusz relatív és abszolút hibája:

$$\frac{\Delta G}{G} = 0.0088046485$$

$$\Delta G = 0.674859498GPa$$

Valamint az inga saját tehetetlenségi nyomatékának relatív és abszolút hibája:

$$\frac{\Delta\Theta_e}{\Theta_e} = 0.03692076$$

$$\Delta\Theta_e = 2.0309418 \cdot 10^{-5} kg \cdot m^2$$

Eredmények

Statikus mérés

V1-es minta

A Young-modulusz, ha a hajlító erő a rövidebb oldallal párhuzamos:

$$E_b = 122.14762887GPa \pm 1.45004192096GPa$$

A Young-modulusz, ha a hajlító erő a hosszabb oldallal párhuzamos:

$$E_a = 122.89650929GPa \pm 0.8955905428GPa$$

Az s(F) egyenesek meredekségeinek aránya és a másodrendű nyomatékok aránya:

$$\frac{a_{fit,b}}{a_{fit,a}} = 2.73221762 \pm 0.014927844$$

$$\frac{I_a}{I_b} = 2.83771674 \pm 0.017579495$$

V3-as minta

A henger alakú test Young-modulusza:

$$E_r = 124.8086288GPa \pm 2.056264404GPa$$

Dinamikus mérés

A torziós szál torzió modulusza:

$$G = 76.6480912691GPa \pm 0.674859498GPa$$

Az üres inga tehetetlenségi nyomatéka:

$$\Theta_e = 5.500813 \cdot 10^{-4} kq \cdot m^2 \pm 2.0309418 \cdot 10^{-5} kq \cdot m^2$$

Diszkusszió

Meghatároztuk a V1-es minta Young-moduluszát b||F és a||F esetben is. Az értékek benne vannak egymás konfidencia tartományában, így sikeresnek tekinthető a mérés. A két s(F) egyenes meredekségének aránya nem egyezik olyan jól a másodrendű nyomatékok arányával. Bár végzetes eltérés nincs, nem esnek bele egymás konfidencia tartományába - feltehetőleg mérési pontatlanságnak tudható be.

A V3-as minta Young moduluszát is meghatároztuk, az 1.6%
os hiba elfogadhatónak tekinthető.

A dinamikus mérés során meghatároztuk a torziós szál torziós moduluszát kevesebb, mint 1%-os hibával. Az üres inga tehetetlenségi nyomatékánál nagyjából 3.6%-os hiba jelentkezett. Mivel itt mindkét illesztett paraméter hibája megjelent, gyanítható lenne, hogy ez a felelős az előbbieknél jóval nagyobb hibaért. Esetünkben a relatív hibába a legnagyobb járulékot az egyenes b paraméterének hibája adja.

Felhasznált irodalom

[1] Böhönyey - Havancsák - Huhn: Mérések a klasszikus fizika laboratóriumban, szerkesztette: Havancsák Károly, ELTE Eötvös Kiadó, Budapest, 2003.