A generalization of Itô calculus and large deviations theory

Sudip Sinha

2019-04-05

Advisors

Prof. Hui-Hsiung Kuo

Prof. Padmanabhan Sundar

Outline

1	Introduction and motivation	3
2	A Generalization of Itô calculus	14
3	Large deviations theory	23
4	The way forward	31

Section 1 Introduction and motivation

Quick revision and notations

$$ightharpoonup$$
 Let $T \in (0, \infty)$, and denote $t \in [0, T]$.

- \triangleright Let $(\Omega, \mathcal{F}, \mathcal{F}, \mathbb{P})$ be a filtered probability space.
- \triangleright *B* is a Brownian motion on $(\Omega, \mathcal{F}, \mathcal{F}, \mathcal{F})$.
- \triangleright Properties of B.
 - starts at 0
 - has independent increments
 - $\circ \quad B_t B_s \sim \mathcal{N}(0, t s)$
 - continuous paths (a.s.)
 - is a.s. nowhere differentiable

- has unbounded linear variation ②
- has bounded quadratic variation ©
- $\circ \quad \mathbb{E}(B_t B_s) = s \wedge t$
- martingale

- Naive integration w.r.t. B_t : not possible.
- \triangleright A stochastic process X_{\bullet} is called adapted to \mathcal{F}_{\bullet} if X_t is measurable w.r.t. $\mathcal{F}_t \ \forall t$.

Martingales and Markov processes

Definition 1 Let X_{\bullet} be an integrable \mathcal{F}_{\bullet} -adapted stochastic process and let $0 \le s \le t \le T$. Then X_{\bullet} is called a martingale if $\mathbb{E}(X_t | \mathcal{F}_s) = X_s$.

Remark 2 If (X_n) is a discrete-time martingale and (H_n) is an adapted process, then the process $Y_n = \sum_{j=0}^{n-1} H_j(X_{j+1} - X_j) =: (H \bullet X)_n$ is itself a martingale and called a martingale transform of (X_n) .

Definition 3 A stochastic process X_{\bullet} is called Markov if for any $0 \le s \le t \le T$, we have

$$\mathbb{P}(X_t \in E \mid \mathcal{F}_s) = \mathbb{P}(X_t \in E \mid X_s).$$

Wiener integral for $f \in L^2[0,T]$

- ▶ Definition of the integral:
 - 1. Step functions $f = \sum_{j=0}^{n-1} c_j \mathbb{1}_{[t_j, t_{j+1})}(t)$: Define $\int_0^T f(t) dB_t = \sum_{j=0}^{n-1} c_j \Delta B_j$, where $\Delta B_j = B_{t_{j+1}} B_{t_j}$.
 - 2. $f \in L^2[0,T]$: Use step functions approximating f to extend the integral a.s.
- > Properties of the integral:
 - Linear.
 - Gaussian distribution with mean 0 and variance $||f||_{L^2[0,T]}^2$ (Itô isometry).
 - Agrees with the Riemann–Stieltjes integral for continuous functions of bounded variation.
- \triangleright Properties of the associated process $I_{\bullet} = \int_0^{\bullet} f(t) dB_t$:
 - continuity.
 - martingale.
- > Problem: Cannot integrate stochastic processes.

Trying to integrate stochastic processes

 $ightharpoonup \int_0^T B_t \, \mathrm{d}B_t \stackrel{?}{=}$ Since B_t is continuous, let us try the Riemann–Stieltjes integral. Consider a sequence of partitions Δ_n such that $\|\Delta_n\| \to 0$. Then

$$\int_{0}^{T} B_t dB_t = \lim_{j=0}^{n-1} \sum_{j=0}^{n-1} B_{t_j^*} \Delta B_j.$$

 \triangleright Choosing different endpoints for t_j^* gives us different results.

t_j^*	$\int_0^t B_s \mathrm{d}B_s$	Intuitive?	E	Martingale?	Theory
left	$\frac{1}{2}\left(B_t^2 - t\right)$		0		Itô
mid	$\frac{1}{2}\left(B_t^2\right)$		$\frac{1}{2}t$		Stratonovich
right	$\frac{1}{2}\left(B_t^2 + t\right)$		t		

> Which one do we choose?

Itô integral [Itô44] for $X \in L^2_{ad}([0, T] \times \Omega)$

▶ Definition of the integral:

- 1. Adapted step processes $X_t(\omega) = \sum_{j=0}^{n-1} \xi_j(\omega) \mathbb{1}_{[t_j,t_{j+1})}(t)$: define $\int_0^T X_t dB_t = \sum_{j=0}^{n-1} \xi_j \Delta B_j$.
- 2. $X \in L^2_{ad}([0,T] \times \Omega)$: use step processes approximating X to extend the integral in $L^2(\Omega)$.

> Properties of the integral:

- Linear.
- Mean 0 and variance $||f||_{L^2[0,T]}^2$ (Itô isometry).
- For X_{\bullet} continuous, $\int_{0}^{T} X_{t} dB_{t} = \lim \int_{0}^{T} X_{\lfloor \frac{tn}{n} \rfloor} dB_{t} = \lim \sum_{j=0}^{n-1} X_{t_{j}} \Delta B_{j}$.
- > Properties of the associated process $I_{\bullet} = \int_0^{\bullet} X_t dB_t$:
 - o continuity.
 - martingale.
- \triangleright Example: $\int_0^t B_u dB_u = \frac{1}{2}(B_t^2 t) \quad \forall t.$

Itô integral for X, such that $\int_0^T X_t^2 dt < \infty$ a.s.

- ▷ Definition: Use sequences of processes in $L^2_{ad}([0,T] \times \Omega)$ approximating X in probability to extend the integral in probability.
- > Properties of the integral:
 - Linear.
 - Mean and variance? ②
- \triangleright Properties of the associated process $I_{\bullet} = \int_0^{\bullet} X_t dB_t$:
 - o continuity.
 - local martingale.
- > Example: $\int_0^T e^{B_t^2} dB_t = \int_0^{B_T} e^{t^2} dt \int_0^T B_t e^{B_t^2} dt$.

The Itô formula

- An Itô process is a process of the form $X_{\bullet} = X_0 + \int_0^{\bullet} m_t \, dt + \int_0^{\bullet} \sigma_t \, dB_t$. Equivalently expressed as $dX_t = m_t \, dt + \sigma_t \, dB_t$.
- **Theorem 4 ([Itô44])** Let X_t be a d-dimensional Itô process, and assume $f \in C^{1,2}(\mathbb{R} \times \mathbb{R})$. Then $f(t, X_t)$ is also a d-dimensional Itô process given by

$$df(t,X_t) = \frac{\partial f}{\partial t}(t,X_t)\,dt + \left\langle (Df)(t,X_t),\,dX_t\right\rangle + \frac{1}{2}\left\langle\,dX_t,(D^2f)(t,X_t)\,\,dX_t\right\rangle,$$

where we use the rule $dB_t \otimes dB_t = I_d dt$.

 $> \text{ Example: For } \sigma \text{ constant, } \mathcal{E}_t = \exp\left(\sigma B_t - \frac{1}{2}\sigma^2 t\right), \ \mathrm{d}\mathcal{E}_t = -\frac{1}{2}\sigma^2 \mathcal{E}_t \, \mathrm{d}t + \sigma \mathcal{E}_t \, \mathrm{d}B_t + \frac{1}{2}\sigma^2 \mathcal{E}_t (\,\mathrm{d}B_t)^2.$

Exponential processes and the Girsanov theorem

 \triangleright Let h_{\bullet} be an adapted stochastic process. The associated exponential process is defined as

$$\mathcal{E}_{\bullet}^{(h)} = \exp\left(\int_{0}^{\bullet} h_{t} dB_{t} - \frac{1}{2} \int_{0}^{\bullet} h_{t}^{2} dt\right).$$

- > The exponential process is a martingale if and only if $\mathbb{E}\mathcal{E}_t^{(h)} = 1 \ \forall t$.
- ▶ The Novikov condition: The exponential process is a martingale if $\mathbb{E} \exp\left(\frac{1}{2}\int_0^T h_t^2 dt\right) < \infty$.
- ► The Girsanov theorem [Gir60]: The process $W_{\bullet} = B_{\bullet} \int_{0}^{\bullet} h_{t} \, dt$ is a Brownian motion under the probability measure $\widetilde{\mathbb{P}}$ defined by the Radon-Nikodym derivative $\frac{d\widetilde{\mathbb{P}}}{d\mathbb{P}} = \mathcal{E}_{T}^{(h)}$.

Stochastic differential equations

- ▷ Let $\xi \in L^2(\Omega)$ be independent of B_{\bullet} , and $m, \sigma : [0, T] \times \mathbb{R} \to \mathbb{R}$ have 'nice' measurability. Then a \mathcal{F}_t -adapted stochastic process X_t is called a solution of the stochastic *integral* equation $X_t = \xi + \int_0^t m(s, X_s) \, \mathrm{d}s + \int_0^t \sigma(s, X_s) \, \mathrm{d}B_s$ if for each t, the X_t satisfies the integral equation a.s.
- Stochastic differential equation $dX_t = m(t, X_t) dt + \sigma(t, X_t) dB_t$, $X_0 = \xi$ is a formal representation.
- **Theorem 5** (Existence and uniqueness, Markov property) The SDE above has a unique solution if m and σ are Lipschitz and satisfy the linear growth condition.
 - The solution is a Markov process.
 - Moreover if $\xi \in \mathbb{R}$ and m, σ are functions of only x, then the solution is also stationary.
- Example: For σ constant, $d\mathcal{E}_t = \sigma \mathcal{E}_t dB_t$, $\mathcal{E}_0 = 1$ is solved by $\mathcal{E}_t = \exp\left(\sigma B_t \frac{1}{2}\sigma^2 t\right)$.

Multiple Wiener-Itô integrals

- ➤ How do we define the double integral?
- Naive idea: $\int_0^t \int_0^t dB_u dB_v = \int_0^t dB_u \int_0^t dB_v = B_t^2$. But $\mathbb{E}B_t^2 = t \neq 0$, so no martingale property. \odot
- ▷ Itô's idea: remove the diagonal to get

$$\int_{0}^{t} \int_{0}^{t} dB_{u} dB_{v} = 2 \int_{0}^{t} \int_{0}^{v} dB_{u} dB_{v} = 2 \int_{0}^{t} B_{v} dB_{v} = B_{t}^{2} - t.$$

Theorem 6 ([Itô51]) Let $f \in L^2([0,T]^n)$ and \hat{f} be its symmetrization. Then

$$\int_{[0,T]^n} f(t_1,...,t_n) dB_{t_1} \cdots dB_{t_n} = n! \int_0^T \cdots \int_0^{t_{n-2}} \left(\int_0^{t_{n-1}} \hat{f}(t_1,...,t_n) dB_{t_n} \right) dB_{t_{n-1}} \cdots dB_{t_1}.$$

Section 2 A Generalization of Itô calculus

Motivation

- ▷ Iterated integrals: Consider the iterated integral $\int_0^t \int_0^t dB_u dB_v = \int_0^t B_t dB_v \stackrel{?}{=} B_t^2$.
- Note that $\mathbb{E}(B_t^2) = t \neq 0$, so no martingale property \odot .
- > Stochastic differential equations with anticipation:

$$\begin{cases} dX_t = X_t dB_t \\ X_0 = B_T \end{cases}$$
 or
$$\begin{cases} dY_t = B_T dB_t \\ Y_0 = 1 \end{cases} .$$

- ▷ Problem: We want to define $\int_0^T Z(t) dB_t$, where $Z(\cdot)$ is not (necessarily) adapted.
- > Some approaches:
 - Enlargement of filtration $G_{\bullet} = \mathcal{F}_{\bullet} \vee \sigma(B_T)$, with Itô's decomposition of integrand [Itô78] $B_t = \left(B_t \int_0^t \frac{B_T B_s}{T s} \, \mathrm{d}s\right) + \int_0^t \frac{B_T B_s}{T s} \, \mathrm{d}s$.
 - White noise theory
 - Malliavin calculus

The generalized integral [AK08; AK10]

- \triangleright A process Y and filtration \mathcal{F}_{\bullet} are called instantly independent if Y^t and \mathcal{F}_t are independent $\forall t$. Example: The process $(B_T B_{\bullet})$ is instantly independent of the filtration generated by B_{\bullet} .
- > Idea
 - 1. Decompose the integrand into adapted and instantly independent parts.
 - 2. Evaluate the adapted and the instantly independent parts at the left and right endpoints.
- Consider two continuous stochastic processes, X_t adapted and Y^t instantly independent w.r.t. \mathcal{F}_{\bullet} . Then the integral $\int_0^T X_t Y^t dB_t$ is defined as

$$\int_{0}^{T} X_{t} Y^{t} dB_{t} \triangleq \mathbb{P} \lim_{\|\Delta_{n}\| \to 0} \sum_{j=0}^{n-1} X_{t_{j}} Y^{t_{j+1}} \Delta B_{j},$$

provided that the limit exists in probability.

- Now, for any stochastic process $Z(t) = \sum_{k=1}^{n} X_t^{(k)} Y_{(k)}^t$ we extend the definition by linearity.
- ➤ This is well-defined [HKS+16].

A simple example

$$\begin{split} \int_{0}^{t} B_{T} \, \mathrm{d}B_{t} &= \int_{0}^{t} (B_{t} + (B_{T} - B_{t})) \, \mathrm{d}B_{t} = \int_{0}^{t} B_{t} \, \mathrm{d}B_{t} + \int_{0}^{t} (B_{T} - B_{t}) \, \mathrm{d}B_{t} \\ &= L^{2} \lim_{\|\Delta_{n}\| \to 0} \sum_{j=0}^{n-1} B_{t_{j}} \Delta B_{j} + L^{2} \lim_{\|\Delta_{n}\| \to 0} \sum_{j=0}^{n-1} (B_{T} - B_{t_{j+1}}) \Delta B_{j} \\ &= L^{2} \lim_{\|\Delta_{n}\| \to 0} \sum_{j=0}^{n-1} \left(B_{T} - \Delta B_{j} \right) \Delta B_{j} \\ &= B_{T} \cdot L^{2} \lim_{\|\Delta_{n}\| \to 0} \sum_{j=0}^{n-1} \Delta B_{j} - L^{2} \lim_{\|\Delta_{n}\| \to 0} \sum_{j=0}^{n-1} (\Delta B_{j})^{2} = B_{T} B_{t} - t. \end{split}$$

- \triangleright Note that $\mathbb{E}(B_TB_t t) = 0$.
- ightharpoonup In general, $\mathbb{E} \int_0^t Z(s) dB_s = 0$.

The near-martingale property

- Duestion: What are the analogues of the martingale property and the Markov property?
- Example: $\mathbb{E}(B_T B_t t \mid \mathcal{F}_s) = B_s^2 s \neq B_T B_s s$. But $\mathbb{E}(B_T B_s - s \mid \mathcal{F}_s) = B_s^2 - s$.
- ▶ Let Z(t) be a process such that $\mathbb{E}|Z(t)| < \infty \ \forall t$, and $0 \le s \le t \le T$. Then Z(t) is called a near-martingale if $\mathbb{E}(Z(t) | \mathcal{F}_s) = \mathbb{E}(Z(s) | \mathcal{F}_s)$.
- **Theorem 7 ([KSS12b])** Let f and ϕ be continuous functions on \mathbb{R} . Under integrability conditions, the processes $X_{\bullet} = \int_{0}^{\bullet} f(B_{t})\phi(B_{T} B_{t}) dB_{t}$ and $Y^{\bullet} = \int_{\bullet}^{T} f(B_{t})\phi(B_{T} B_{t}) dB_{t}$ are near-martingales.
- **Theorem 8** ([HKS+17]) Let $Z(\cdot)$ be a stochastic process bounded in L^1 , and $X_{\bullet} = \mathbb{E}(Z(\cdot) \mid \mathcal{F}_{\bullet})$. Then X_{\bullet} is a (sub/super)martingale if and only if $Z(\cdot)$ is a near-(sub/super)martingale.

A generalized Itô formula [HKS+16]

Process	Definition	Representation
Itô	$X_{\bullet} = X_0 + \int_0^{\bullet} m_t \mathrm{d}t + \int_0^{\bullet} \sigma_t \mathrm{d}B_t$	$dX_t = m_t dt + \sigma_t dB_t$
instantly independent	$Y^{\bullet} = Y^{0} + \int_{\bullet}^{T} \eta^{t} dt + \int_{\bullet}^{T} \zeta^{t} dB_{t}$	$dY^t = -\eta^t dt - \varsigma^t dB_t$

Here η^t and ζ^t are instantly independent such that Y^t is also instantly independent.

Theorem 9 ([HKS+16]) Let $dX_t = m_t dt + \sigma_t dB_t$ be an d-dimensional Itô process, and $dY^t = -\eta^t dt - \varsigma^t dB_t$ be a k-dimensional instantly independent process. If $f(t, x, y) \in C^{1,2,2}(\mathbb{R} \times \mathbb{R}^d \times \mathbb{R}^k)$, then

$$\begin{split} df(t,X_t,Y^t) &= \frac{\partial f}{\partial t}(t,X_t,Y^t)\,dt + \left\langle (D_x f)(t,X_t,Y^t),\,dX_t\right\rangle + \frac{1}{2}\left\langle \,dX_t,(D_x^2 f)(t,X_t,Y^t)\,\,dX_t\right\rangle \\ &+ \left\langle (D_y f)(t,X_t,Y^t),\,dY^t\right\rangle - \frac{1}{2}\left\langle \,dY^t,(D_y^2 f)(t,X_t,Y^t)\,\,dY^t\right\rangle, \end{split}$$

where we use the rules $dB_t \otimes dB_t = I dt$, where I is the identity matrix.

Iterated integrals

Theorem 10 ([Itô51]) Let $f \in L^2([0,T]^n)$ and \hat{f} be its symmetrization. Then

$$\int_{[0,T]^n} f(t_1,...,t_n) dB_{t_1}...dB_{t_n} = n! \int_0^T ... \int_0^{t_{n-2}} \left(\int_0^{t_{n-1}} \hat{f}(t_1,...,t_n) dB_{t_n} \right) dB_{t_{n-1}}...dB_{t_1}.$$

Theorem 11 ([AK10]) *Let* $f \in L^2([0,T]^n)$. *Then*

$$\int_{[0,T]^n} f(t_1,...,t_n) dB_{t_1}...dB_{t_n} = \int_0^T \cdots \int_0^T f(t_1,...,t_n) dB_{t_n}...dB_{t_1}.$$

Example[HKS+16]: For the new integral, $\int_0^T \left(\int_0^T B_u du \right) dB_v = \int_0^T \left(\int_0^T B_u dB_v \right) du$.

A generalization of Itô isometry

Theorem 12 ([KSS12b]) Let ϕ be an analytic function on \mathbb{R} . Then under integrability conditions and for each t,

$$\mathbb{E}\left[\left(\int_{0}^{t} \phi(B_T - B_s) dB_s\right)^2\right] = \int_{0}^{t} \mathbb{E}\left[\left(\phi(B_T - B_s)\right)^2\right] ds$$

Theorem 13 ([KSS13]) Let f and ϕ be C^1 functions on \mathbb{R} . Then

$$\mathbb{E}\left[\left(\int_0^T f(B_t)\phi(B_T - B_t) dB_t\right)^2\right] = \int_0^T \mathbb{E}\left[\left(f(B_t)\phi(B_T - B_t)\right)^2\right] dt$$

$$+2\int_0^T \int_0^t \mathbb{E}\left[f(B_s)\phi'(B_T - B_s)f'(B_s)\phi(B_T - B_s)\right] ds dt.$$

A generalization of Girsanov theorem

Theorem 14 ([KPS13]) Let X_{\bullet} and Y^{\bullet} be continuous square-integrable stochastic processes such that X_{\bullet} is adapted and Y^{\bullet} is instantly independent.

Then the translated stochastic process $W_{\bullet} = B_{\bullet} - \int_0^{\bullet} (X_t + Y^t) dt$ is a near-martingale under the probability measure $\widetilde{\mathbb{P}}$ defined by the Radon-Nikodym derivative $\frac{d\widetilde{\mathbb{P}}}{d\mathbb{P}} = \mathcal{E}_T^{(X+Y)}$.

Section 3 Large deviations theory

What is it about?

- ➤ A theory to find probabilities of rare events that decay exponentially.
- > Started by Swedish actuarials Fredrik Esscher, Harald Cramér, Filip Lundberg.
- ➤ Unified by Varadhan in his 1966 paper [Var66].
- ▷ Example: A problem faced by the insurance industry.
 - Value of claims received on the nth day: X_n \$.
 - Steady income from premium: x\$/day.
 - Planning period: *n* days.
 - Average expenditure: $\overline{X}_n = \frac{1}{n} \sum_{j=1}^n X_j \$/\text{day}$.
 - Question: How should the company decide on the premium?
 - *Idea*: Determine x such that $\mathbb{P}\left\{\overline{X}_n > x\right\} < \varepsilon$, where ε is specified.

Insurance problem: setup

1. Let the following hold:

- \circ $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space.
- (X_n) is a sequence of i.i.d. random variables on $(\Omega, \mathcal{F}, \mathbb{P})$ with finite moment generating function M.
- $\circ \quad \mathbb{E}X_1 = m, \ \mathbb{V}X_1 = \sigma^2, \text{ and } X_1 \sim \mu.$
- $\circ \quad \overline{X}_n = \frac{1}{n} \sum_{j=1}^n X_j.$

2. Asymptotic behavior of \overline{X}_n :

- Weak law of large numbers: $\overline{X}_n \stackrel{\mathbb{P}}{\to} m$.
- Central limit theorem: $\sqrt{n}(\overline{X}_n m) \stackrel{\mathcal{D}}{\to} \mathcal{N}(0, \sigma^2)$.

3. What is the rate for LLN?

Insurance problem: large deviation bounds

1. For x > m and an arbitrary $\theta > 0$, we get

$$\mathbb{P}\left\{\overline{X}_n \geq x\right\} = \mathbb{P}\left\{e^{\theta n \overline{X}_n} \geq e^{\theta n x}\right\} \leq e^{-\theta n x} \mathbb{E}\left(e^{\theta n \overline{X}_n}\right) = e^{-\theta n x} M(\theta)^n = e^{-n(\theta x - \log M(\theta))}.$$

2. Since θ was arbitrary, we have

$$\mathbb{P}\left\{\overline{X}_n \geq x\right\} \leq \inf_{\theta} e^{-n(\theta x - \log M(\theta))} = e^{-n\sup_{\theta} (\theta x - \log M(\theta))} =: e^{-nI(x)}.$$

3. Generalizing, we get the large deviation upper bound

$$\overline{\lim}_{n} \frac{1}{n} \log \mathbb{P} \left\{ \overline{X}_{n} \in F \right\} \le -\inf_{F} I \qquad \forall F \text{ closed.}$$

4. We can also obtain a large deviation lower bound using an exponential change of measure

$$\underline{\lim}_{n} \frac{1}{n} \log \mathbb{P} \left\{ \overline{X}_{n} \in G \right\} \ge -\inf_{G} I \qquad \forall G \text{ open.}$$

5. We informally write $\mathbb{P}\left\{\overline{X}_n \in dx\right\} = e^{-nI(x)} dx$ for $x \in \mathbb{R}$.

Definition of large deviation principle

- \triangleright The setup: (X_n) is a stochastic process on $(\Omega, \mathcal{F}, \mathbb{P})$ taking values in a Polish space (\mathcal{X}, d) .
- \triangleright A function $I: \mathcal{X} \to [0, \infty]$ is called a rate function if it has compact lower level sets.

Definition 15 (X_n) is said to satisfy the large deviation principle on X with rate function I if the large deviation upper and lower bounds hold.

Example

Theorem 16 ([Cra38]) Let (X_n) be a sequence of i.i.d. real random variables with finite moment generating function M. Then (\overline{X}_n) follows the large deviation principle with rate function $I(x) = \sup_{\theta} (\theta x - \log M(\theta))$.

Applications of the Cramér theorem

Rate functions for some common distributions

Distribution	, ,	I(x)
Bernoulli(p)	$1-p+pe^{\theta}$	$\left(x \log x + (1-x) \log(1-x) - \left(x \log \frac{1-p}{p} + \log p\right)\right) \mathbb{1}_{[0,1]}(x) + \infty \mathbb{1}_{[0,1]^{\mathbb{C}}}(x)$
$Poisson(\lambda)$	$e^{\lambda(e^{\theta}-1)}$	$\left(\lambda - x + x \log \frac{x}{\lambda}\right) \mathbb{1}_{[0,\infty)}(x) + \infty \mathbb{1}_{(-\infty,0)}(x)$
		$(\lambda x - 1 + x \log(\lambda x)) \mathbb{1}_{[0,\infty)}(x) + \infty \mathbb{1}_{(-\infty,0)}(x)$
$\mathcal{N}(m,\sigma^2)$	$e^{m\theta+\frac{1}{2}\sigma^2\theta^2}$	$\frac{(x-m)^2}{2\sigma^2}$

The Schilder theorem

- ➤ Aim: Estimate the probability that a scaled-down sample path of a Brownian motion will stray far from the mean path.
- Let C_x denote the set of continuous functions from [0, T] to \mathbb{R}^d starting at x, and let $CM_x = \{\omega \in C_x : \omega \text{ is absolutely continuous and } \omega'_t \in L^2[0, T]\}.$
- ▶ Let *B* be a *d*-dimensional Brownian motion, so $B \in C_0 = C_0([0, T]; \mathbb{R}^d)$
- ightharpoonup Let $\frac{1}{\sqrt{n}}B_t \sim W^{(n)}$. Then $W^{(n)} = \mathcal{N}\left(0, \frac{t}{n}\right) \Longrightarrow \delta_0$ as $n \to \infty$.
- **Theorem 17 ([Sch66])** On the Banach space $(C_0, \|\cdot\|_{\infty})$, the sequence of probability measures $(W^{(n)})$ satisfies LDP with the rate function $I: C_0 \to \overline{\mathbb{R}}$ given by

$$I(\omega) = \left(\frac{1}{2} \int_{0}^{T} |\omega_t'|^2 dt\right) \mathbb{1}_{CM_0}(\omega) + \infty \mathbb{1}_{CM_0^{\mathbb{C}}}(\omega)$$

The Freidlin-Wentzell theorem

- ➤ Aim: Estimate the probability that a scaled-down sample path of an Itô diffusion will stray far from the mean path.
- Let $X_t^{(n)}$ be the solution of the d-dimensional stochastic differential equation $dX_t^{(n)} = m(X_t^{(n)}) dt + \frac{1}{\sqrt{n}} \sigma(X_t^{(n)}) dB_t$, $X_0^{(n)} = x$, where m and σ are sufficiently nice.
- \triangleright Let $W_x^{(n)}$ denote the law of $X_{\bullet}^{(n)}$ starting at x.
- $ightharpoonup As \ n \to \infty$, $W_{\chi}^{(n)} \Longrightarrow \delta_{\xi}$, where ξ solves the ODE $\dot{\xi}(t) = m(\xi(t))$, $\xi(0) = x$.
- **Theorem 18** ([FW12]) For any fixed x, the sequence of probability measures $(W_x^{(n)})$ satisfies LDP with the rate function $I_x: C_0 \to \mathbb{R}$ given by

$$I_{x}(\omega) = \left(\frac{1}{2}\int_{0}^{T} \left\langle \omega_{t}' - m(\omega_{t}), A^{-1}(\omega_{t}) \left(\omega_{t}' - m(\omega_{t})\right) \right\rangle dt \right) \mathbb{1}_{CM_{x}}(\omega) + \infty \mathbb{1}_{CM_{x}^{\mathbb{C}}}(\omega),$$

where $A = \sigma \sigma^*$.

Section 4 The way forward

Possible research directions

- ▶ Identify the class of integrable processes under the new integral.
- ▷ Give a broader generalization of the Itô isometry for the new integral.
- Provide a broader generalization of the Girsanov theorem.
- ➤ Formulate an extension of the new integral to stochastic differential equations with anticipating coefficients.
- ▷ Develop the near-Markov property for the new integral.
- > Prove Freidlin–Wentzell type results for SDEs with anticipating initial conditions.
- > Study LDP results for SDEs with anticipating coefficients involving the new integral.
- ➤ Analyze LDP for linear SPDEs with anticipating initial conditions.

Thank you!

APPENDIX

Laplace principle and equivalence to LDP

Definition 19 (Laplace principle) (X_n) is said to satisfy the Laplace principle on X with rate function I if for all bounded continuous functions h, we have

$$\lim_{n \to \infty} \frac{1}{n} \log \mathbb{E} \exp(-nh(X_n)) = \inf_{\mathcal{X}} (h+I)$$

Theorem 20 (X_n) satisfies LP on X with rate function I if and only if (X_n) satisfies LDP on X with the same rate function I.

Some important results

- Uniqueness of the rate function.
- Continuity principle.
- Superexponential approximation preserves Laplace principle.

Thank you!

Bibliography

- Ayed, W. & Kuo, H. H. (2008). An extension of the Itô integral. *Communications on Stochastic Analysis*, 2(3). doi:10.31390/cosa.2.3.05
- (2010). An extension of the Itô integral: Toward a general theory of stochastic integration. *Theory of Stochastic Processes*, 16(32), 17–28. Retrieved from http://mi.mathnet.ru/thsp56
- Cramér, H. (1938). Sur un nouveau théorème-limite de la théorie des probabilités. *Actualités Scientifiques et Industrielles*, 736, 5–23.
- Freidlin, M. I. & Wentzell, A. D. (2012). Random Perturbations of Dynamical Systems. (3 ed.). Springer-Verlag. doi:10.1007/978-3-642-25847-3
- Girsanov, I. V. (1960). On Transforming a Certain Class of Stochastic Processes by Absolutely Continuous Substitution of Measures. *Theory of Probability & Its Applications*, *5*, 285–301. doi:10.1137/1105027
- Hwang, C. R., Kuo, H. H., Saitô, K., & Zhai, J. (2016). A general Itô formula for adapted and instantly independent stochastic processes. *Communications on Stochastic Analysis*, 10(3). doi:10.31390/cosa.10.3.05

- Schilder, M. (1966). Some Asymptotic Formulas for Wiener Integrals. *Transactions of the American Mathematical Society*, 125(1), 63–85. doi:10.2307/1994588
- Varadhan, S. R. S. (1966). Asymptotic probabilities and differential equations. *Communications on Pure and Applied Mathematics*, 19, 261–286. doi:https://doi.org/10.1002/cpa.3160190303