Classification Eltecon Data Science Course by Emarsys

János Divényi

October 20, 2021

Goal of the lesson

- introduce decision trees as nonlinear classifiers
- measure the performance of classification models by the ROC curve

Section 1

Classification

Recap: logistic regression to predict Titanic-survival

```
model <- glm(
    Survived ~ Fare,
    data = titanic train,
    family = binomial(link = "logit")
predicted_prob <- predict.glm(</pre>
  model,
  newdata = titanic_train,
  type = "response"
```

Predictive fit

Evaluating binary models - Accuracy

[1] 0.6655443

```
calculateAccuracy <- function(actual, predicted) {
   N <- length(actual)
   accuracy <- sum(actual == predicted) / N

   return(accuracy)
}

predicted_class <- ifelse(predicted_prob > 0.5, 1, 0)
calculateAccuracy(titanic train$Survived, predicted class)
```

János Divényi Classification October 20, 2021

6 / 46

Evaluating binary models - Confusion Matrix

```
table(
  titanic_train$Survived,
  predicted_class,
  dnn = c("actual", "predicted")
)
```

```
## predicted
## actual 0 1
## 0 511 38
## 1 260 82
```

János Divényi Classification October 20, 2021 7 / 46

Non-linear classification: Decision Tree

Visual explanation by r2d3

Quiz

Estimate a decision tree model

```
tree_model <- rpart(</pre>
     Survived ~ Fare, data = titanic train
## n= 891
##
## node), split, n, deviance, yval
        * denotes terminal node
##
##
##
    1) root 891 210.727300 0.3838384
     2) Fare< 10.48125 339 53.758110 0.1976401 *
##
##
     3) Fare>=10.48125 552 137.998200 0.4981884
       6) Fare< 74.375 455 112.206600 0.4417582
##
##
        12) Fare>=69.425 15 1.733333 0.1333333 *
##
        13) Fare< 69.425 440 108.997700 0.4522727
##
          26) Fare< 52.2771 403 98.441690 0.4243176 *
##
          27) Fare>=52.2771 37 6.810811 0.7567568 *
       7) Fare>=74.375 97 17.546390 0.7628866 *
##
```

Visualize

rpart.plot(tree_model)

Evaluate

##

##

0 517 32

1 240 102

```
predicted_prob_tree <- predict(tree_model, newdata = titanic_train)</pre>
calculateAccuracy(titanic_train$Survived, predicted_prob_tree > 0.5
## [1] 0.694725
table(
  titanic train$Survived,
  predicted_prob_tree > 0.5,
  dnn = c("actual", "predicted")
##
         predicted
## actual FALSE TRUE
```

Include other variables

```
extended_tree <- rpart(
    Survived ~ Fare + Sex + Age + Pclass, data = titanic_train
)
rpart.plot(extended_tree)</pre>
```


Including more variable helps

```
calculateAccuracy(
    titanic_train$Survived,
    predict(extended_tree) > 0.5
)
```

[1] 0.8193042

Including more variable helps

```
calculateAccuracy(
    titanic_train$Survived,
    predict(extended_tree) > 0.5
)
## [1] 0.8193042
```

...or does it?

Including more variables helps

```
calculateAccuracy(
    titanic_train$Survived,
    predict(extended_tree) > 0.5
)
```

```
## [1] 0.8193042
...or does it?
```

Recall: we have to evaluate the performance on a **different set of data** to avoid overfitting

János Divényi Classification October 20, 2021 16 / 46

Classify spam by decision trees

```
Recall from week 4
data <- fread("../week4/data/spam_clean.csv")</pre>
# Separate train-test set
train_proportion <- 0.8
n <- nrow(data)
set.seed(20211020)
train_index <- sample(1:n, floor(n * train_proportion))</pre>
data to use <- data[, -c(2, 50:400)] # exclude columns to speed up
data train <- data to use[train index,]
data test <- data to use[-train index,]
```

Estimate logistic regression as benchmark

```
spam_logit <- glm(</pre>
    is_spam ~ .,
    data = data_train,
    family = binomial(link = "logit")
Accuracy evaluated on a test set:
predicted_probs <- predict(spam_logit, newdata = data_test, to</pre>
calculateAccuracy(
    data_test$is_spam,
    predicted_probs > 0.5
## [1] 0.9533632
```

Tree model

Let's try to do this in R!

Enter your estimated accuracy on the test set into Socrative (up to the second digit).

Tree model

[1] 0.9372197

```
spam_tree <- rpart(</pre>
    is_spam ~ .,
    data = data train
predicted_probs <- predict(spam_tree, newdata = data_test)</pre>
calculateAccuracy(
    data_test$is_spam,
    predicted_probs > 0.5
```

János Divényi Classification October 20, 2021 20 / 46

Performs worse but is easier to interpret

rpart.plot(spam_tree)

Tree "pruning"

Additional leaves always improve the accuracy on the test set.

How to avoid overfitting?

Tree "pruning"

Additional leaves always improve the accuracy on the test set.

How to avoid overfitting? Regularisation

Tree "pruning"

The complexity parameter (cp) controls the penalty for more leaves.

János Divényi Classification October 20, 2021 24 / 46

Overfitting

```
Estimate a "full" tree
spam_full_tree <- rpart(</pre>
    is_spam ~ .,
    data = data train,
    control = rpart.control(
        minsplit = 2, minbucket = 1, cp = 0
calculateAccuracy(
    data_train$is_spam,
    predict(spam_full_tree) > 0.5
   [1] 0.9966345
```

Compare performance on train and test set

```
accuracy_by_params <- map_df(seq(0, 0.1, 0.005), ~{
    pruned_tree <- prune(spam_full_tree, cp = .x)
    data.table(
         cp = .x,
         train = calculateAccuracy(data_train$is_spam, predict(pruned_tree, data_traitest = calculateAccuracy(data_test$is_spam, predict(pruned_tree, data_test))
}</pre>
```

János Divényi Classification October 20, 2021 26 / 46

Compare performance on train and test set

János Divényi Classification October 20, 2021 27 / 46

Section 2

Evaluate binary classification performance

Accuracy might not be that informative

• "PCR-tests have above 95% accuracy". - What does that mean?

János Divényi Classification October 20, 2021 29 / 46

Accuracy might not be that informative

- "PCR-tests have above 95% accuracy". What does that mean?
- I can always deliver a 99%+ accurate model to predict who will buy until the purchase rate remains below 1% as usual (predicting no one will buy)

Accuracy might not be that informative

- "PCR-tests have above 95% accuracy". What does that mean?
- I can always deliver a 99%+ accurate model to predict who will buy until the purchase rate remains below 1% as usual (predicting no one will buy)
- Confusion matrix provides more detailed information by comparing actual and predicted labels

Confusion matrix

Recall the confusion matrix of the Titanic prediction task using the logistic regression model:

```
## predicted
## actual FALSE TRUE
## 0 511 38
## 1 260 82
```

János Divényi Classification October 20, 2021 30 / 46

True Positive and False Positive Rate

True Positive and False Positive Rate

Recall the confusion matrix of the Titanic prediction task using the glm:

```
## predicted
## actual FALSE TRUE
## 0 511 38
## 1 260 82
```

- True Positive Rate: 82/(260 + 82) = 23.98%
- False Positive Rate: 38/(511 + 38) = 6.9%

There is a trade-off between TPR and FPR

- Getting easier* about classifying someone as positive (or as a survivor) would definitely increase TPR - but also the FPR
 - It is easy to reach 100% true positive rate: just predict positive for everyone
- This trade-off is expressed by the ROC curve
- * just decrease the probability cutoff that we defaulted to 0.5

ROC plot

```
## Warning: It is deprecated to specify `guide = FALSE` to rer
## use `guide = "none"` instead.
```

Warning: It is deprecated to specify `guide = FALSE` to rer
use `guide = "none"` instead.

János Divényi

```
## Warning: It is deprecated to specify `guide = FALSE` to rer
## use `guide = "none"` instead.
```

Warning: It is deprecated to specify `guide = FALSE` to rer ## use `guide = "none"` instead.

János Divényi

35/46

Quiz

ROC plot for spam prediction - live coding

Homework

•

Resources

- Gareth J., Witten D., Hastie T. and Tibshirani R.: An Introduction to Statistical Learning Chapter 8.
- Machine Learning meets economics: https://blog.mldb.ai/blog/posts/2016/01/ml-meets-economics/
- FPR, TPR: https://www.youtube.com/watch?v=sunUKFXMHGk (StatQuest)
- ROC curve: https://www.youtube.com/watch?v=4jRBRDbJemM (StatQuest)

Thank you & Feedback