Problem 11.1

What is the change in entropy when $0.7~\mathrm{m}^3$ of CO_2 and $0.3~\mathrm{m}^3$ of N_2 , each at 1 bar and 25 °C blend to form a gas mixture at the same conditions? Assume ideal gases.

Solution:

Label CO_2 and N_2 as (1) and (2) respectively

$$V_1 = 0.7 \text{ m}^3$$
 $V_2 = 0.3 \text{ m}^3$

For ideal gases it follows that:

$$x_1 = 0.7$$
 $x_2 = 0.3$ $P = 1 \text{ bar}$ $T = 298.15 \text{ K}$ $n = \frac{P \sum_i V_i}{RT}$ $n = 40.340 \text{ mol}$ $\Delta S = -nR \sum_i x_i \ln x_i$ $\Delta S = 204.885 \text{ J K}^{-1}$