Thermal Testing

Reference

Leia notes and powerpoint

Thermal Tests Setup

Notes

Setup

Good thermal image

Reference

Getting Started: http://support.flir.com/DocDownload/Assets/dl/t810200-en-us.pdf
User's Manual: http://support.flir.com/DocDownload/Assets/dl/t810252-en-us_usl.pdf

Tools: http://support.flir.com/tools

http://flir.custhelp.com/app/answers/detail/a_id/1568/kw/flir%20tools

http://support.flir.com/answers/A1568/FLIR%20Tools%20User%20Guide%20v2.1.1.pdf

Leia notes and powerpoint

Google Drive / LEIA_Engineering_Shared / Android Stuff / Thermal

Thermal Tests Setup

- 1. Hydrogen Phone setup
 - a. Airplane Mode
 - b. Set sleep to longest (30minutes)
 - i. Settings / Display / Sleep / After 30minutes
 - c. Turn off thermal engine

- i. First need to download thermal-engine.conf to your computer
 - https://drive.google.com/open?id=1fnNjhBp3iTi90Vh5tSPm8vid-S pwlMAL
 - This comments out algo_type in GPU_management, LCD_management, LCD_3D_management
- ii. In Terminal
 - 1. adb root
 - 2. adb remount #if failed, please run adb disable-verity, adb reboot
 - 3. adb push your_path/thermal-engine.conf /vendor/etc/thermal-engine.conf
 - 4. adb reboot
 - 5. adb root
- d. Optional: Turn off USB charging (1 = off, 0 = on). Do this if you need to connect the USB between the phone and the PC to continue communication, but don't want additional heat from USB charging.
 - i. In Terminal
 - 1. adb shell
 - 2. echo 1 > /sys/class/power_supply/battery/input_suspend
- e. Optional: Change GPU frequency (for gaming)
 - i. In Terminal
 - 1. adb shell
 - 2. cd /sys/class/kgsl/kgsl-3d0
 - 3. echo ___ > max_gpuclk
 - a. 180000000 = min
 - b. 710000000 = max
- 2. Collect temperature data over time
 - a. FLIR camera
 - i. Turn on FLIR camera
 - ii. Start FLIR Tools on PC
 - iii. Click Instruments
 - iv. Click 'lightning bolt' to connect to the FLIR Camera
 - v. Create different spots, using "Set measurement spot" icon
 - vi. Right click each spot and click Plot
 - 1. Column creation depends on click order, so click Plot in the correct order
 - vii. Right click plot / Plotting Method / Points
 - viii. Right click plot / Options
 - 1. Change Number of Points from 1000 (default) to 10000
 - a. 10,000 points + 3.7fps can give you about ~25min of data before the data is overwritten
 - ix. Change Frame rate from 15fps (default) to 3.7fps
 - x. Data is automatically recorded. You can pause by pushing the pause button. You can clear the plot by right clicking on the plot / Clear
 - xi. When ready to obtain data
 - 1. Right Click plot / Copy / Data

- 2. Paste into Google Sheets
- 3. Rename Google Sheet with the test number and name (i.e. 05_DungeonHighGPU).
- xii. For heat map
 - 1. Click the camera icon
 - 2. Save image into Documents / FLIR / Images / Date
 - 3. Save with similar name (i.e. 05_DungeonHighGPU).
- b. Collect internal zone temperature on Hydrogen Phone
 - i. Connect Hydrogen phone over USB to Mac or Linux
 - ii. Download 'thermaltesting' Repo from Github
 - 1. https://github.com/LeiaInc/thermaltesting
 - iii. Run "./readtemp.sh testname"
 - 1. This needs to be run on Mac or Linux. Currently "xargs" command doesn't work in PowerShell on Windows
 - iv. 2 files are created (outputData.csv and outputFinal.csv)
 - v. Open up outputFinal.csv and pull out your specific tests into its own CSV, rename this CSV with your testname
 - vi. Copy "testname.csv" into Python variable "filename_zone".
- 3. Make thermal graphs over time
 - i. Download Google sheets CSV (20180426 05 DungeonHighGPU.csv)
 - ii. Open up Python, EVT2_1_Thermals2.py
 - iii. Copy the title of this CSV into filename flir variable.
 - iv. Run this will obtain a graph
 - v. Paste graph into Power Point
- 4. Make heat map images
 - a. In FLIR Tools, go to Library
 - b. Open up the .jpg image
 - c. Right click image / Export to CSV
 - d. Export
 - e. Save to Documents / FLIR / Images / Date
 - f. Save to Google Drive / Leia_Engineering_Shared / Android Stuff / Thermal / FLIR ETS320 / Data / Heatmap / Date
 - g. On Mac
 - i. Download this CSV
 - ii. Save into thermaltesting/Date/heatmap
 - h. Open up heatmap.py
 - i. Copy this .csv filename in data0 or data1
 - j. Datadifference subtracts out the data0 from data1 to get a temperature change.
 - k. Run this will obtain a graph

Notes

Setup

License key: na45X-1CW91-72FcC-5ZbvN-mL950-3r9Dn

Good thermal image

1. Ensure camera is saving radiometric images

- 2. Choose appropriate temperature range. Need to be in manual mode, not automatic mode
- 3. Change temperature intervals to adjust contrast and brightness
- 4. Focus
 - a. Change distance from object
- 5. Temperature Range
 - a. Choose the lowest possible temp range available on the camera, but must include the highest temp in the image.
 - b. Must choose appropriate temp range to match the amount of incident radiation
 - i. Because "exposure" is preset by the image frame rate. Can't choose how much radiation hits the camera detector
 - ii. Higher temps emit more IR than colder objects.
 - c. Range too high \rightarrow image is underexposed
 - d. Range too low \rightarrow image is oversaturated
- 6. Image detail and distance from object
 - a. Area of interest should take up the whole thermal image.
 - i. Spot tool must be completely filled by the object for correct temperature measurements

7. Changeables

- a. Adjust contrast and brightness. Helps ID the area of interest
- b. Palettes and isotherms
 - i. Palettes
 - 1. Gray resolve small geometric details. Not good for small differences in temperature
 - 2. Iron very intuitive. Good balance between geometric and thermal resolution.
 - 3. Rainbow greater contrast, but noisy image
 - ii. Isotherm
 - Displays a given interval of the same apparent temperature in a color that is different from the palette. This lets you emphasize temp patterns in the image