UNIVERSITY OF CALGARY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING ENEL697 DIGITAL IMAGE PROCESSING

TEST NO. 1 WINTER 2005 SESSION 7 March 2005

Instructions:

- 1. This is a closed-book, closed-notes test.
- 2. The use of only a nonprogrammable calculator with no text storage facilities is permitted.
- 3. Answer all five questions.
- 4. Total marks = 20.
- 5. Time permitted = 90 minutes.

Question 1: Give the typical units for the variables (x, y) and (u, v) used in the representation of images in the space and frequency domains. (2 marks)

Question 2: Draw schematic sketches of the histograms of the following types of images:

- (a) A collection of objects of the same uniform gray level placed on a uniform background of a different gray level.
- (b) A collection of relatively dark cells against a relatively bright background, with both having some intrinsic variability of gray levels.
- (c) An under-exposed X-ray image.
- (d) An over-exposed X-ray image.

Annotate the histograms with labels and comments. (4 marks)

Question 3: Define two rectangular functions as

$$f_1(x,y) = 1$$
 if $0 \le x \le X; 0 \le y \le Y$
= 0 otherwise, (1)

and

$$f_2(x,y) = \begin{cases} 1 & \text{if } |x| \le \frac{X}{2}, \ |y| \le \frac{Y}{2} \\ 0 & \text{otherwise.} \end{cases}$$
 (2)

Starting from the definition of the 2D Fourier transform, derive the Fourier transforms $F_1(u, v)$ and $F_2(u, v)$ of the two functions; show all steps.

Explain the differences between the two functions in the spatial and frequency domains. (6 marks)

Question 4: Using the continuous 2D convolution and Fourier transform expressions, prove that convolution in the space domain is equivalent to multiplication of the corresponding functions in the Fourier domain.

(4 marks)

Question 5:

The 5×5 image

is processed by two systems in cascade. The first system produces the output $g_1(m,n) = f(m,n) - f(m-1,n)$. The second system produces the output $g_2(m,n) = g_1(m,n) - g_1(m,n-1)$.

Compute the images g_1 and g_2 .

Does the sequence of application of the two operators affect the result? Why (not)?

Explain the effects of the two operators.

(4 marks)
