第10回 反応速度

- 10.1 反応速度式
 - 反応速度
 - 1次反応
 - 2次反応

- アレニウスの式
- 統計力学の基礎

10.3 化学反応の分類

- 逐次反応
- 競争反応
- 連鎖反応
- 触媒反応

10.1 反応速度式 (reaction rate equation)

●反応速度

一定温度で次の反応が進行する場合を考える

$$aA + bB + \dots \rightarrow pP + qQ + \dots$$

反応速度

$$r = -\frac{1}{a} \frac{d[A]}{dt} = -\frac{1}{b} \frac{d[B]}{dt} = \cdots = \frac{1}{p} \frac{d[P]}{dt} = \frac{1}{q} \frac{d[Q]}{dt} = \cdots$$

素反応である時 (1つの過程でおこる)
$$-\frac{1}{a}\frac{d[A]}{dt}=k[A]^a[B]^b$$
 …

反応速度定数 rate constant

·気体反応

濃度は分圧に置き換えることができる

濃度
$$\frac{n}{V} = \frac{p}{RT}$$

$$-\frac{1}{a} \frac{dp_A}{dt} = k' p_A^{\ a} p_B^{\ b} \cdots$$

●1次反応 (first order reaction)

•分解反応

$$SO_2Cl_2 \rightarrow SO_2 + Cl_2$$

•放射性崩壊

$$^{14}C \rightarrow ^{14}N + \beta$$

濃度が初濃度C₀の半分になる時間を半減期という

1次反応の半減期 $t_{1/2} = \ln 2 / k$ ← $\ln (C_0/C) = k t$

¹⁴Cの半減期 5730年

$$^{14}C \rightarrow ^{14}N + \beta$$

●2次反応 (second order reaction)

化学C-10-8

2A→B

t=0 のとき[A]を[A]₀とすると

$$\int_{[A]_0}^{[A]} \left(-\frac{dx}{x^2} \right) = \int_0^t k dt$$

$$\frac{1}{[A]} - \frac{1}{[A]_0} = k't$$

$$[A] = \frac{[A]_0}{[A]_0 k' t + 1}$$

$$[A] = \frac{[A]_0}{[A]_0 k' t + 1}$$

$$[A] = \frac{[A]_0}{2}$$
 のとき $t = t_{1/2}$ とすると

$$\frac{1}{2} = \frac{1}{[A]_0 k' t_{1/2} + 1}$$

$$\therefore [A]_0 k' t_{1/2} = 1 \longrightarrow t_{1/2} = \frac{1}{[A]_0 k'}$$

$$(2) A + B \rightarrow AB$$

$$-\frac{d[A]}{dt} = -\frac{d[B]}{dt} = k[A][B]$$

時間 t までに反応した物質の濃度を x とすると、

$$\frac{dx}{dt} = k([A]_0 - x)([B]_0 - x)$$

$$\frac{dx}{([A]_0 - x)([B]_0 - x)} = kdt$$

$$\frac{\ln([A]_0 - x) - \ln([B]_0 - x)}{[A]_0 - [B]_0} = kt + C$$

$$t = 0$$
 のとき $x = 0$ だから $C = \ln([A]_0/[B]_0)/([A]_0 - [B]_0)$

$$\frac{1}{[A]_0 - [B]_0} \left[\ln\{ [A]_0 ([B]_0 - x) \} - \ln\{ [B]_0 ([A]_0 - x) \} \right] = kt$$

10.2 反応速度の温度依存性

●アレニウス (Arrhenius) の式

E_a:活性化エネルギー:励起された状態を越えるのに必要なエネルギー

A:頻度因子(前指数項):分子が衝突しても必ずしも反応が起こるとは 限らない

 $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1} = 0.0821 \text{ atm dm}^3 \text{ K}^{-1} \text{ mol}^{-1}$

アレニウスの式

$$\ln k_2 - \ln k_1 = (E_a/R) (1/T_1 - 1/T_2)$$

E_a:活性化エネルギー

励起された状態[活性状態]又は[遷移状態]を越えるのに必要なエネルギー

A:頻度因子(前指数項)

分子が衝突しても必ずしも反応が起こるとは限らない。

この山を越えられるエネルギーをもった分子が単位時間の間に山を越える速さ

気体定数 $R=k \times L(アボガドロ数)=8.314 \, \mathrm{JK^{-1}mol^{-1}}$

1 mol あたりのエネルギー

ボルツマン定数 1.381x10⁻²³ JK⁻¹

1原子・分子あたりのエネルギー

●統計力学の基礎

演習1. A→B の反応について、

(a) 1次反応であるときの反応速度式を示しなさい。

t のときのAの濃度を[A] t = 0のとき [A]₀

(b) 100°C、1 minでAは初濃度の半分に減少する。100°Cにおける反応速度定数を求めなさい。

(c) 10 min 後に何%のAが未反応のまま残っているかを示しなさい。

演習2. 25°C付近での溶液反応では、一般に温度10°C上昇すると 反応速度定数が2倍になる。このような反応の活性化エネルギー を求めなさい。 演習3. ある反応の速度定数は25°Cから40°Cに上昇させると3倍になる。

- (a) この反応の活性化エネルギーを求めなさい。
- (b) 温度を100°Cから120°Cに変化した場合、反応速度定数は何倍となるか示しなさい。

演習4. ある反応 $A \rightarrow B$ において、物質Aの濃度が時間と共に次のように変化した。この反応の反応次数、反応速度定数、半減期を求めなさい。

t / s	0	20	40	60	80	100
[A] / mol dm ⁻³	0.63	0.41	0.30	0.24	0.20	0.17

10.3 化学反応の分類

● 逐次反応 (consecutive reaction)

$$A \xrightarrow{} B \xrightarrow{} C \xrightarrow{} \dots$$

素反応: 1つの過程でおこる $A \rightarrow C$

反応速度は最も遅い反応によって決まる (律速段階 (rate determining step))

● 競争反応 (competing reaction)(並列反応)

$$A + B \rightarrow AB + D \rightarrow AD + B$$

$$A + C \rightarrow AC + D \rightarrow AD + C$$

● 連鎖反応 (chain reaction)

H₂とCl₂の反応

$$Cl \cdot + H_2 \rightarrow HCl + H \cdot$$
 (ii)

$$H \cdot + Cl_2 \rightarrow HCl + Cl \cdot$$
 (iii)

中間に不安定な遊離基 (free radical) Cl・や H・が生成されるので、 反応は爆発的に速く進行する

生成物が

(ii) (iii)の反応が何回も繰り返される

活性化エネルギーは小さい

● 触媒反応 (catalytic reaction)

触媒は活性化エネルギーを低下させ、反応速度を増大させるが、 反応によって消費されない

•燃料電池

$$H_2 + \frac{1}{2}O_2 \xrightarrow{\text{Pt } \text{ le } \text{ if } \text{ le } \text{$$

$$H_2 \xrightarrow{Pt} 2[H]$$
 $1/2O_2 \xrightarrow{Pt} [Pt-O]$ $2[H] + [O] \xrightarrow{Pt} [H_2O]$

すべて活性化エネルギーがほとんどゼロでどんどん進む

•
$$2SO_2 + O_2 \rightarrow 2SO_3$$

この反応は遅いが、NOを加えると速くなる

$$2NO + O_2 \rightarrow 2NO_2$$

$$2SO_2 + 2NO_2 \rightarrow 2SO_3 + 2NO$$

均一触媒

特定の固体表面上でも速くなる

$$2SO_2 + O_2 \rightarrow 2SO_3$$

$$V_2O_5$$
Pt

不均一触媒(接触触媒反応)