Algebraic Geometry

Aniruddh V.

Fall 2023

1 Introduction

Algebraic Geometry seeks to understand the connections between algebra and geometry - more specifically how algebraic properties of systems of polynomial equations affect the geometry of solutions to these polynomials. For example, the polynomial $x^2 + y^2 = 1$ defines a circle, and is smooth, while the polynomial $y^2 - x^3 = 0$ is not smooth. How can the algebra of these polynomials help us determine these properties?

2 The Main Characters

To do algebraic geometry properly, we need to develop a little bit more algebra. We start by introducing the main characters/objetcs that will be of use to us. Throughout these notes, k will be a field, typically \mathbb{R} or \mathbb{C} .

2.1 Affine Space

Definition 2.1. Affine Space: Fix a field k. The set

$$\mathbb{A}^n = k^n = \{(a_1, a_2, \dots, a_n) : a_i \in k\}$$

is called **n-dimensional affine space**. We denote affine space \mathbb{A}^n

Definition 2.2. Polynomial: A polynomial in $x_1 ldots x_n$ over k is a finite sum

$$f = \sum_{\alpha = (\alpha_1, \dots, \alpha_n)} c_{\alpha} x_1^{\alpha_1} x_2^{\alpha_2} \dots x_n^{\alpha_n}$$

with $\alpha_i \in k$. The **degree** of f is given by $\deg f = \max\{\alpha_1 + \alpha_2 + \ldots + \alpha_n : c_{\alpha} \neq 0\}$

We denote the ring of polynomials over a field k by $k[x_1, x_2, \ldots, x_n]$. Polynomials define a function $f: \mathbb{A}^n \to k$ by evaluating the polynomial at points $P = (a_1, a_2, \ldots, a_n)$ in affine space.

Given a polynomial f, we can define interesting subsets of affine space in the following way:

Definition 2.3. Vanishing of f: Given a polynomial $f \in k[x_1, x_2, ..., x_n]$ define the vanishing set of f as

$$V(f) = \{ P \in \mathbb{A}^n : f(P) = 0 \}$$

V(f) is called a **hypersurface**

The vanihsing of a set of polynomials can be defined in a similar way

Definition 2.4. Vanishing of a set S: Given a set $S \subset k[x_1, x_2, ..., x_n]$, define V(S) by

$$V(S) = \{ P \in \mathbb{A}^n : f(P) = 0 \forall f \in S \}$$

or equivalently

$$V(S) = \bigcap_{f \in S} V(f)$$

Such a set V(S) is called an **affine algebraic set**, and is commonly referred to as an **algebraic set**

Example 2.1. Let
$$S = \{f_1 = y - x^2, f_2 = y - 2\}$$
. Then $V(S) = (-\sqrt{2}, 2), (\sqrt{2}, 2)$

Example 2.2. Let $S = \{f_1 = y - x^2, f_2 = y + 1\}$. Then depending on the field we are working in, V(S) might differ! If our underlying field is \mathbb{R} , then $V(S) = \emptyset$, but if the underlying field is \mathbb{C} , then $V(S) = \{(i, -1), (-i, 1)\}$

The above exmaple highligts the importance of clarifying the field we are working over. $\mathbb C$ feels "nicer" to work over, since we have "more points to work with". The next definition makes this formal

Definition 2.5. Algebraically closed fields: A field k is algebraically closed if every non-constant polynomial in k[x] has a solution in k. Equivalently, every polynomial f can be factored into linear factors such that

$$f = \prod (x - r_1)(x - r_2) \cdots (x - r_n)$$

with $r_i \in k$

This explains why $\mathbb C$ is much nicer to work over than $\mathbb R!$ By the Fundamental Theorem of Algebra, $\mathbb C$ is algebraically closed, while $\mathbb R$ is not algebraically closed since x^2+1 has no roots in $\mathbb R$

Proposition 2.1. If $S \subset \mathbb{A}^1$ is algebraic, then S is finite, $S = \emptyset$, or $S = \mathbb{A}^1$

Proposition 2.2. Here are some nice results about unions and intersections of algebraic sets:

Arbitrary intersections of algebraic sets are algebraic:

$$\bigcap_{i\in\mathcal{I}}V(S_i)=V(\bigcup S_i)$$

Finite unions of algebraic sets are algebraic:

$$\bigcup_{i=1}^{N} S_{i} = V(\{\prod_{i=1}^{N} f_{i} : f_{i} \in S_{i}\})$$

2.2 Ideals

We start by defining ideals.

Definition 2.6. *Ideal:* Let R be a commutative ring. An *ideal* $I \subset R$ is a subset satisfying:

- I is closed under addition for all $f, g \in I, f + g \in I$
- for any $r \in R$ and $i \in I$, $ra \in I$

Example 2.3. Let $S \subset k[x_1, ..., x_n]$. The **ideal generated by** S, denoted $\langle S \rangle$ is the set of all finite sums of the form

$$\langle S \rangle = \sum_{i} h_i s_i$$

where $h_i \in k[x_1, \ldots, x_n]$ and $s_i \in S$.

Proposition 2.3. Let $S \subset k[x_1, ..., x_n]$, and $I = \langle S \rangle$. Then V(S) = V(I)

Proof. Certainly $V(I) \subset V(S)$, since $S \subset I$. Suppose $P \in V(S)$. Then f(P) = 0 for all $f \in I$, so $V(S) \subset V(I)$. Thus V(I) = V(S)

This tells us that every algebraic set is V(I) for some ideal $I \subset k[x_1, \ldots, x_n]$.

So far, we have an operation V(S) that takes a collection of polynomials and defines a subset of affine space. We can also go the other way - starting with a subset of affine space and producing a collection of polynomials.

Definition 2.7. Given a subset $X \subset \mathbb{A}^n$, define

$$I(x) = \{ f \in k[x_1, \dots, x_n] : f(P) = 0 \text{ for all } P \in X \}$$

Lemma 2.1. Let $X \subset \mathbb{A}^n$. Then $I(X) \subset k[x_1, \dots, x_n]$ is an ideal.

Proof. If $f,g \in I(x)$, then for all $P \in \mathbb{A}^n$, (f+g)(P) = f(P) + g(P) = 0 so $f+g \in I(x)$ as well. If $h \in k[x_1, \ldots, x_n]$, then for all $P \in \mathbb{A}^n$, (hf)(P) = h(P)f(P) = 0 so $hf \in I(X)$ as well. Thus, I(X) is an ideal.

Example 2.4. Let $X = \{(1,2)\} \subset \mathbb{A}^2$. Then $I(X) = \langle x - 1, y - 2 \rangle$

Example 2.5. Let $X = \{(a,0) : a \in \mathbb{Z}\} \subset \mathbb{A}^2$. Then $I(X) = \langle y \rangle$

Example 2.6. $I(\emptyset) = k[x_1, ..., x_n]$

Example 2.7. $I(\mathbb{A}^n) = \langle 0 \rangle$

Lemma 2.2. If X is an algebraic set, then V(I(X)) = X

Proof. $X \subset V(I(X))$, since every point in X will vanish in the ideal generated by polynomials vanishing on X. Since X is algebraic, it can be written as V(S) for some $S \subset k[x_1, \ldots, x_n]$. The set S must be a subset of I(X), so $V(I(X)) \subset V(S) = X$, so V(I(X)) = X

This is a neat result! A natural question to ask after this is if we can make a similar statement for I(V(J)), for $J \subset k[x_1, \dots x_n]$ an ideal. Unfortunately,—the answer is no. For example, consider the ideal $J = \langle x^2 \rangle \subset k[x]$. Then $V(J) = \{0\}$, but $I(V(J)) = \langle x \rangle \neq J!$ The issue here was that one polynomial was a power of the other. The **Nullstellensatz** says this is the only possible issue we can come across in this situation. To state the Nullstellensatz, we need a few more definitions.

Definition 2.8. Radical Ideals: An ideal I is radical if $f^r \in I \implies f \in I$

Lemma 2.3. I(X) is radical for $X \subset \mathbb{A}^n$

Proof. Suppose $f^r \in I(X)$. Then $f^r(P) = 0$ for all $P \in X \implies f(P) = 0$ for all $P \in X$. So $f \in I(X)$ as well.

Definition 2.9. Radical of an Ideal: Let $I \subset R$ be an ideal. The radical of I, denoted \sqrt{I} is

$$\sqrt{I} = \{ f \in R : f^n \in I \text{ for some } n \}$$

Lemma 2.4. If $I \subset R$ is an ideal, then \sqrt{I} is also an ideal.

Proof. Let $f, g \in \sqrt{I}$. By the definition of \sqrt{I} , there are n, m such that $f^n \in I$ and $g^m \in I$. We want to show $f + g \in \sqrt{I}$, or equivalently, $(f + g)^r \in I$ for some r. Suppose r = n + m. Then, by the binomial formula:

$$(f+g)^{n+m} = \sum_{k=0}^{n+m} {n+m \choose k} f^{n+m-k} g^k$$

$$= f^{n+m} + (n+m)f^{n+m-1}g + \cdots$$