Priv.-Doz. Dr. S.-J. Kimmerle

WiSe 2021/22

Thursday, 25.11.2021

Exercise 8: functions III

Exercise 24

Let

$$z_1 = 1 + i$$
, $z_2 = 2 + i$, $z_3 = 3 + 4i$, $z_4 = 4 - 3i$, $z_5 = i$.

- a) Express $z_1 + z_3$, z_1z_2 , z_1/z_2 , z_1^2 , and z_4/z_3 in cartesian coordinates and calculate their modulus.
- b) Plot z_1 , z_4/z_3 , and z_5 and express these complex numbers in polar coordinates.

$$\frac{1}{1+1} \cdot \exp(i \cdot \operatorname{arctan}(\frac{1}{4})) = 12 e^{i\frac{\pi}{4}}$$
Exercise 25
$$\frac{2}{1} \cdot 45^{\circ}$$
Solve for $x \in \mathbb{R}^{+}$

$$1 \exp(i \cdot 270^{\circ}) = e^{i\frac{\pi}{4}}$$

Exercise 25

Solve for $x \in \mathbb{R}^+$

$$1exp(i \cdot 270^{\circ}) = e^{i\frac{\pi}{2}}$$

a)
$$\ln(\sqrt{x}) + \frac{3}{2}\ln(x) = \ln(21x)$$

$$b) \exp(x^2 - 2x) = 2$$

c)
$$\ln^2(x) - \ln(x) = 2 + \frac{1}{4}\ln(x^2)$$

Exercise 26

Show for all $x \in \mathbb{R}$

a)
$$\cosh(-x) = \cosh(x)$$
, $\sinh(-x) = -\sinh(x)$

b)
$$\cosh^2(x) - \sinh^2(x) = 1$$

- c) $\cosh : \mathbb{R} \to \mathbb{R}$ and $\sinh : \mathbb{R} \to \mathbb{R}$ are continuous on \mathbb{R} .
- d) Addition theorems of cosh and sinh: For all $x, y \in \mathbb{R}$ there holds:

$$\cosh(x+y) = \cosh(x)\cosh(y) + \sinh(x)\sinh(y),$$

$$\sinh(x+y) = \sinh(x)\cosh(y) + \cosh(x)\sinh(y).$$