Universidad de El Salvador. 12.12.2018 Álgebra II. Examen parcial 2 (repetido)

Problema 1 (2 puntos). Encuentre el polinomio mínimo de $\sqrt{2} + \sqrt[3]{2}$ sobre Q.

Problema 2 (2 puntos). Consideremos el polinomio $f := X^2 + X + 2 \in \mathbb{F}_p[X]$.

- a) ¿Para cuáles primos p el polinomio es irreducible? [1 punto]
- b) ¿Para cuáles primos p el polinomio es separable? [1 punto]

Problema 3 (2 puntos). Sean p un número primo y $n=1,2,3,\ldots$ Para $\alpha\in\mathbb{F}_{p^n}$ definamos

$$N(\alpha) := \alpha \alpha^p \alpha^{p^2} \cdots \alpha^{p^{n-1}}.$$

- a) Demuestre que $N(\alpha) \in \mathbb{F}_p$ para todo $\alpha \in \mathbb{F}_{p^n}$. [$\frac{1}{2}$ punto]
- b) Demuestre que

$$N(\alpha\beta) = N(\alpha) N(\beta), \quad N(a\alpha) = a^n N(\alpha)$$

para cualesquiera $a \in \mathbb{F}_p$, $\alpha, \beta \in \mathbb{F}_{p^n}$. $[\frac{1}{2} \ punto]$

c) Demuestre que el homomorfismo de grupos multiplicativos $N \colon \mathbb{F}_{p^n}^{\times} \to \mathbb{F}_p^{\times}$ es sobreyectivo. [1 punto] Indicación: demuestre que $|\ker N| = \frac{p^n-1}{p-1}$ e use el primer teorema de isomorfía.

Problema 4 (2 puntos). Sean p un número primo y $n=1,2,3,\ldots$ Consideremos el endomorfismo de Frobenius $F\colon x\mapsto x^p$ sobre \mathbb{F}_{p^n} . Hemos probado en clase que es una aplicación \mathbb{F}_p -lineal. Encuentre su polinomio característico.