

Jurusan Teknologi Informasi Politeknik Negeri Malang **Mata Kuliah Data Warehouse Kuis 1**

Nama : Aqueena Regita Hapsari

Nomor Urut : 03

NIM : 2341760096

1. Tuliskan perbandingan star schema dan snowflake schema pada tabel berikut:

Aspek	Star Schema	Snowflake Schema
Normalisasi	Denormalisasi (lebih banyak	Ternormalisasi (mengurangi
	redundansi)	redundansi)
Kompleksitas	Lebih sederhana, karena tabel	Lebih kompleks, karena tabel
desain/skema	dimensi langsung terhubung	dimensi dapat memiliki sub-
	ke tabel fakta	dimensi
Kompleksitas query	Lebih sederhana dan mudah dimengerti karena jumlah join lebih sedikit.	Lebih kompleks karena membutuhkan lebih banyak join antar tabel dimensi dan sub-tabelnya
Performa query	Lebih cepat karena lebih sedikit join	Lebih lambat karena lebih banyak join antara tabel
Storage	Membutuhkan lebih banyak ruang penyimpanan karena adanya redundansi data	Lebih hemat penyimpanan karena data lebih terstruktur dan tidak redundan
Integritas data	Kurang baik, karena data bisa jadi duplikat dalam dimensi	Lebih baik karena data lebih terstruktur dan mengurangi duplikasi
Maintenance (ETL dari OLTP)	Lebih mudah diisi dari OLTP karena struktur yang sederhana	Lebih sulit karena ada banyak hubungan antar tabel yang dapat memengaruhi tabel lainnya.

2. Gambar berikut menunjukkan skema OLTP database dari sebuah sistem informasi ekspedisi. Buatlah data warehouse dalam star schema yang digunakan sebagai dasar analisis performa ekspedisi.

Jawaban:

Penjelasan:

1. Struktur Model Data

Diagram ini merepresentasikan model Star Schema yang dirancang untuk menganalisis performa pengiriman ekspedisi. Model ini terdiri dari satu tabel fakta (Fakta_Pengiriman) yang terhubung dengan beberapa tabel dimensi untuk mendukung analisis data secara lebih terstruktur.

2. Tabel Fakta - Fakta_Pengiriman

Tabel Fakta_Pengiriman mencatat informasi utama terkait proses pengiriman, meliputi:

Foreign Key (FK):

- Id_KecamatanAsal dan Id_KecamatanTujuan → Menunjukkan lokasi asal dan tujuan pengiriman.
- Id_Kurir → Mengidentifikasi kurir yang bertugas mengantarkan barang.
- Id_StatusPengiriman → Menunjukkan status terkini dari pengiriman.
- Id_Pembayaran → Menyimpan informasi terkait metode dan status pembayaran.

Atribut Fakta:

- Nama_Pelanggan → Informasi pelanggan yang menerima atau mengirim barang.
- AlamatAsal dan AlamatTujuan → Detail alamat pengirim dan penerima.
- Berat → Bobot paket yang dikirim.
- TanggalPengiriman, TanggalSampaiPerkiraan, dan TanggalSampaiAktual → Merekam waktu pengiriman, estimasi kedatangan, serta waktu aktual barang sampai.

3. Tabel Dimensi

a. Dimensi_Kurir

Menyimpan informasi mengenai kurir, termasuk:

- Nama (Identitas kurir)
- Tipe Kendaraan (Jenis kendaraan yang digunakan)
- No HP (Kontak kurir)

b. Dimensi_Alamat

Berisi informasi lokasi geografis yang mendukung analisis rute pengiriman berdasarkan wilayah:

- Id_Kecamatan, Nama_Kecamatan
- Id_Kota, Nama_Kota
- Id_Provinsi, Nama_Provinsi

c. Dimensi_Status_Pengiriman

Digunakan untuk melacak status pengiriman pada berbagai tahapan, mencakup:

- Id_Status_Pengiriman
- Nama_Status (Misalnya: Sedang Dikirim, Tertunda, atau Selesai)

d. Dimensi_Pembayaran

Menyimpan informasi terkait transaksi pembayaran, berguna untuk analisis keuangan dan metode pembayaran yang digunakan:

Total (Jumlah biaya yang dibayarkan)

- Status Pembayaran (Lunas, Belum Lunas, atau Ditolak)
- Tipe Pembayaran (Dikaitkan dengan tabel **Dimensi_Tipe_Pembayaran**)

e. Dimensi_Status_Pembayaran

Menyimpan detail mengenai status pembayaran, seperti:

- Id_Status_Pembayaran
- Nama_StatusPembayaran (Lunas, Belum Lunas, atau Ditolak)

f. Dimensi_Tipe_Pembayaran

Digunakan untuk mencatat metode pembayaran yang tersedia, mencakup:

- Id_Tipe_Pembayaran
- Nama_Tipe (Misalnya: Transfer Bank, COD, atau Kartu Kredit)