CS771 Assignment 1

Savants Group 10

- Aastha Punjabi 210017
- Divya Krupa 210274
- Prapti Dagli 210748
- Priya Gangwar 210772
- Siddheshwari Madavi 211036

Part 1

CAR-PUF Derivation

The equation for the response is:

$$\frac{1 + \operatorname{sign}(|\Delta w - \Delta r| - \tau)}{2} \tag{2}$$

We have (\mathbf{u}, p) and (\mathbf{v}, q) as the two linear models that can exactly predict the outputs of the two arbiter PUFs sitting inside the CAR-PUF.

$$\frac{1 + \operatorname{sign}(|(\mathbf{u}^{\top} - \mathbf{v}^{\top})\mathbf{x} + p - q| - \tau)}{2}$$
 (3)

This can be written as

$$\frac{1 + \operatorname{sign}[((\mathbf{u}^{\top} - \mathbf{v}^{\top})\mathbf{x} + p - q)^{2} - \tau^{2}]}{2}$$
 (4)

Thus we have

$$\frac{1 + \operatorname{sign}(\mathbf{w}^{\top} \phi(\mathbf{c}) + b)}{2} \tag{5}$$

As we know \mathbf{x} for a each challenge \mathbf{c} :

$$x_i = \prod_{j=i}^{31} d_j, \quad \text{for } i = 0, 1, 2, \dots, 31$$
 (6)

where,

$$d_i = 1 - 2c_i, \quad \text{for } i = 0, 1, 2, \dots, 31$$
 (7)

Thus from (4) we get:

$$\phi(\mathbf{c}) = [x_0 x_1, x_0 x_2, \dots, x_{30} x_{31}, x_0, x_1, \dots, x_{31}, 1]$$
(8)

Preprint. Under review.

$$\mathbf{w} = [(u_0 - v_0)(u_1 - v_1), (u_1 - v_1)(u_2 - v_2), \dots, (u_{30} - v_{30})(u_{32} - v_{31}), (u_0 - v_0)(p - q), (u_1 - v_1)(p - q), \dots, (u_{31} - v_{31})(p - q), b]$$
(9)

where

$$b = (u_0 - v_0)^2 + (u_1 - v_1)^2 + \ldots + (u_{31} - v_{31})^2 + (p - q)^2 - \tau^2$$
(10)

Part 3

Ans. 3

Mathad	II. mannananatana		Test Assumacy(i= 01)
Method	Hyperparameters	Training Time(in sec)	Test Accuracy(in %)
LinearSVC	Loss: hinge	9.94	89.79
	Loss: squared hinge	6.52	89.87
	C: 1000	80.82	90.02
	C: 500	64.43	90.03
	C: 100	25.92	90.04
	C: 10	6.18	90.03
	C: 5	6.25	90.02
	C: 1	6.24	90.00
	C: 0.1	5.96	89.87
	C: 0.05	6.05	89.87
	C: 0.01	5.68	89.69
LogisticRegression	C: 1000	29.36	90.07
	C: 500	28.55	90.09
	C: 100	22.00	90.02
	C: 10	15.04	90.00
	C: 5	14.94	89.96
	C: 1	12.19	89.84
	C: 0.1	8.99	89.58
	C: 0.05	8.09	89.38
	C: 0.01	6.73	88.47