2021-2022 学年线性代数 I (H) 期中

任课老师:吴志祥 考试时长: 120 分钟

一、
$$(10 \, \%) \, A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & -a \\ 1 & -2 & -3 \end{pmatrix}, \, X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \, b = \begin{pmatrix} 3 \\ 9 \\ -6 \end{pmatrix}, \, 且 \, AX = b \, 无解, \, 求 \, a.$$

- 二、(10 分)证明替换定理: 设向量组 $\alpha_1, \ldots, \alpha_s$ 线性无关, $\beta = b_1\alpha_1 + \cdots + b_s\alpha_s$. 如果 $\beta_i \neq 0$, 则 β 可替换 $\alpha_1, \ldots, \alpha_s$ 中的某个向量成为一个新的线性无关向量组.
- 三、 (10 分) 设 $\{\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4, \varepsilon_5\}$ 是欧式空间 V 的一组标准正交基, $W = \operatorname{span}(\alpha_1, \alpha_2, \alpha_3)$, 其中 $\alpha_1 = 2\varepsilon_1 + \varepsilon_2 + \varepsilon_3$, $\alpha_2 = \varepsilon_1 + \varepsilon_2 + \varepsilon_5$, $\alpha_3 = \varepsilon_1 \varepsilon_2 + \varepsilon_4$.
 - (1) 求 α_1, α_2 的夹角;
 - (2) 求 W 的一组标准正交基.
- 四、 $(10 \ \beta)$ 证明: 如果向量组 $\{\alpha_1, \ldots, \alpha_m\}$ 的秩为 r, 那么该向量组中任意 s 个向量组成的子集的秩大于等于 r+s-m.
- 五、(10 分)在 \mathbb{R}^3 中取三个向量

$$\alpha_1 = (1, -2, 0), \alpha_2 = (-3, 0, -2), \alpha_3 = (2, 4, 3),$$

设 σ 是满足 $\sigma(\alpha_i) = e_i (i = 1, 2, 3)$ 的线性变换,其中 $\{e_1, e_2, e_3\}$ 是 \mathbf{R}^3 的自然基.

- (1) 求 σ 关于自然基所对应的矩阵;
- (2) 求向量 $\alpha_1 = (-2, 5, 6)$ 在 σ 下的像.
- 六、 $(10 \ \beta)$ 已知 $\mathbf{R}[x]_n$ 的线性变换 σ 满足 $\sigma(p(x)) = p(x+1) p(x), \ p(x) \in \mathbf{R}[x]_n$.
 - (1) 求 σ 的秩与核;
 - (2) 求所有可能的 $p(x) \in \mathbf{R}[x]_n$ 和 $\lambda \in \mathbf{R}$ 使得 $\sigma(p(x)) = \lambda p(x)$.
- 七、 $(10 \ \beta)$ 设 $B = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$ 是 4 维线性空间 V 的一组基, σ 关于基 B 的矩阵为

$$A = \begin{pmatrix} 1 & 0 & 2 & 1 \\ -1 & 2 & 1 & 3 \\ 1 & 2 & 5 & 5 \\ 2 & -2 & 1 & -2 \end{pmatrix},$$

- 八、(10 分)域 **F** 上所有 $m \times n$ 矩阵组成的集合 $M_{m \times n}(\mathbf{F})$ 是域 **F** 上的线性空间. 定义 $V_i = \{Ae_{ii} \mid A \in M_{m \times n}(\mathbf{F})\}(i=1,2,\ldots,n),$ 其中 e_{ij} 是第 i 行第 j 列元素为 1,其 余元素均为 0 的 n 阶矩阵,证明:
 - (1) V_i 是 $M_{m\times n}(\mathbf{F})$ 的子空间;
 - (2) $M_{m\times n}(\mathbf{F}) = V_1 \oplus V_2 \oplus \cdots \oplus V_n$.
- 九、(20分)判断下列命题的真伪,若它是真命题,请给出简单的证明;若它是伪命题,给出理由或举反例将它否定.
 - (1) 正整数集 ${\bf R}^+$ 对如下定义的加法和数量乘法构成整数 ${\bf Z}$ 上的线性空间:

$$a \oplus b = ab, \ \lambda \circ a = a^{\lambda}, \ \forall a, b \in \mathbf{R}^+, \lambda \in \mathbf{Z};$$

- (2) 设 $\sigma \in \mathcal{L}(V)$, $\{\alpha_1, \ldots, \alpha_n\}$ 是 V 的一组基,则 σ 可逆当且仅当 $\{\sigma(\alpha_1), \ldots, \sigma(\alpha_n)\}$ 是 V 的一组基;
- (3) 对任意实数域 **R** 上线性空间 V,都能找到有限个 V 的非平凡子空间 V_1, \ldots, V_m 使得 $V_1 \cup \cdots \cup V_m$;
- (4) 与所有 n 阶矩阵可交换的矩阵一定是 n 阶数量矩阵.