Universit	tat Politècnica	de	Catalunya
Facultat	d'Informàtica	de	Barcelona

							C	90	,11,	on	ıs.	Ν	O.	m									1	,	N.J	L.	
																							Τ	Γ		П	

Titulació: EI/ETIG Curs: Q1 2007-2008 (Recup. 1er Parcial)
Assignatura: Anàlisi i Disseny d'Algorismes Data: 10 de Gener de 2008

Duració: 2 hores

- 1. (2.5 punts) Tenim una taula amb n elements i volem els k elements més petits de la taula en ordre creixent. Tenim dues opcions:
 - (a) Fem un max-heap amb els primers k elements i després per a cadascun dels n-k elements restants, el comparem amb el màxim del heap i si l'element en curs fos més petit, eliminem el màxim del heap i inserim l'element en curs. D'aquesta manera el heap contindrà els k elements més petits visitats fins al moment, en tot moment. En acabar de recórrer la taula, podem extreure, un per un, tots els elements del heap per tenir-los en ordre creixent.
 - (b) Fem un min-heap amb els n elements de la taula i després fem k vegades extreure el mínim, per obtenir els k elements més petits en ordre creixent.

Quin és el cost en cas pitjor de la primera opció en funció de k i n? I el de la segona opció? Per a quins valors de k seria millor la primera opció a la segona? Per a quins valors de k és millor la segona opció que la primera? Quan són els seus costos en cas pitjor asimptòticament equivalents? Justifiqueu la vostra resposta.

							(oş	gn	on	ns.	, I	NO.	m									I	ا.(N.J	L.		
																										П		

(Continueu responent aquí a la Pregunta 1.)

Cognoms, Nom	D.N.I.

2. (3 punts) Dissenyeu un algorisme de cost $O(n \log n)$ que donada una taula amb n elements compti el nombre d'índexos $i, 1 \leq i \leq n$, tals que la taula conté exactament t[i] elements (diferents o iguals) més petits que t[i]. Dit d'altra manera l'algorisme ha de comptar el nombre d'elements del conjunt

$$\{\ i\ :\ 1 \leq i \leq n \wedge |\{j\ :\ t[j] < t[i]\}|\ =\ t[i]\ \}$$

Per exemple si t = [8, 6, 1, 2, 3, 3, 5, 6, 3, 7] la resposta és 3. Els índexos per als quals se satisfà la condició són 2, 7 i 8. Justifiqueu la correctesa del vostre algorisme i que, efectivament, el seu cost és $O(n \log n)$.

							C	og	n	om	ıs,	Ν	m									1	ا.(Ν	L.		

(Continueu responent aquí a la Pregunta 2.)

Cognoms, Nom]	D.	Ν.	I.																							

3. (1.5 punts) Donat el min-heap següent implementat en un taula,

5	6	5	9	7	6	6	9

dibuixeu l'arbre representat per la taula i, a continuació, dibuixeu l'evolució dels continguts del taula i de l'arbre representat, en aplicar successivament les operacions d'inserir l'element 4 i eliminar el mínim.

							C	og	n	om	ıs,	Ν	m									1	ا.(Ν	L.		

(Continueu responent aquí a la Pregunta 3.)

							C	30	on	ıs.	N	loi	m									Ι	ノ.⊥	N.]	[.		

4. (3 punts) Una expressió aritmètica pot respresentar-se com un graf dirigit acíclic. Expliqueu com avaluar-la. L'explicació ha de descriure amb precisió com representarieu l'expressió aritmètica i l'algorisme que cal fer servir per avaluar-la. Justifiqueu la correctesa de la vostra proposta i calculeu el seu cost en funció de la talla del graf que representa l'expressió.

							С	log	gno	on	ıs,	N	O	n									Γ).[V.I	. •		

(Continueu responent aquí a la Pregunta 4.)