Análisis Funcional - 1° cuatrimestre 2017 Final

1. Espacios Vectoriales

1.1. Propiedades Elementales

Definición Si \mathcal{X} es un espacio vectorial sobre un cuerpo \mathbb{F} , un conjunto $\mathcal{B} = \{v_i\}_{i \in I}$ se dice:

- 1. Linealmente independiente si dados $v_{i_1}, \ldots, v_{i_k} \in \mathcal{B}$ y $\lambda_{i_1}, \ldots, \lambda_{i_k} \in \mathcal{F}$ tal que $\sum_i \lambda_{i_i} v_{i_i} = 0$ implica que $\lambda_{i_i} = 0$ para todo $1 \leq i \leq k$.
- 2. Sistema de generadores si dado $v \in \mathcal{X}$ entonces existen $v_{i_1}, \ldots, v_{i_k} \in \mathcal{B}$ y $\lambda_{i_1}, \ldots, \lambda_{i_k} \in \mathcal{F}$ tal que $\sum_i \lambda_{i_i} v_{i_i} = v$.
- 3. Base si es a la vez un sistema de generadores linealmente independiente.

Ejemplo • $X = \mathbb{R}[X]$ es un espacio vectorial, si consideramos $\mathcal{B} = \left\{1, X, X^2, \dots\right\} = \left\{X^j\right\}_{j \in \mathbb{N}}$ es base.

■ $X = \mathcal{C}[a, b]$ es un espacio vectorial, si consideramos $\mathcal{B} = \{e^{\alpha x}, \alpha \in [0, 1]\}$ veamos que es linealmente independiente.

Demostración Sean $\alpha_1, \ldots, \alpha_n \in [0,1]$ y $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ tal que $\sum_i \lambda_i e^{\alpha_i x} = 0$ para todo $x \in [a,b]$; luego si derivamos n-1 veces tenemos el sistema:

$$\begin{pmatrix} e^{\alpha_1 x} & e^{\alpha_2 x} & \dots & e^{\alpha_n x} \end{pmatrix} \begin{pmatrix} 1 & \alpha_1 & \dots & \alpha_1^{n-1} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & \alpha_n & \dots & \alpha_n^{n-1} \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Y como los α_i son distintos entonces la matriz de Vandermonde es inversible y el sistema admite una única solución, $\lambda_1 = \lambda_2 = \cdots = \lambda_n = 0$.

Recordemos:

Proposición 1.1 (Lema de Zorn) $Si(P, \leq)$ es un conjunto parcialmente ordenado, no vacío, tal que todo subconjunto no vacío $S \subseteq P$ totalmente ordenado admite una cota superior; entonces existe un elemento maximal en P.

Proposición 1.2 Si E es un espacio vectorial, entonces E admite una base.

Demostración Consideremos $P = \{S \subseteq E \mid S \text{ es li}\}$ y dotemoslo del orden dado por la inclusión, luego $P \neq \emptyset$ pues si $v \in E$ entonces $\{v\} \in P$.

Sea $\{S_i\}$ una colección de subconjuntos de P totalmente ordenada y sea $T = \bigcup_{i \in I} S_i$, luego es claro que $S_i \leq T$: faltaría ver que $T \in P$.

 $S_i \leq T$; faltaría ver que $T \in P$. Para eso sean $v_{i_1}, \dots, v_{i_k} \in T$ y $\lambda_{i_1}, \dots, \lambda_{i_k}$ $in\mathcal{F}$ tales que $\sum_k \lambda_i v_i = 0$. Como son finitos existe $k_0 \in \mathbb{N}$ tal que $v_i \in S_{k_0}$ para todo i, que al ser un conjunto linealmente independiente resulta que $\lambda_1 = \lambda_2 = \dots = \lambda_n = 0$. Concluímos que $T \in P$, luego por 1.1 existe $M \in P$ elemento maximal.

Finalmente, sea $v \in E \setminus M > (\text{el conjunto generado por combinaciones lineales de } M)$, luego $M \cup \{v\}$ sería un conjunto li lo que contradice la maximalidad de M; por ende no existe tal $v \in M$ resulta base.

Proposición 1.3 Sea E un espacio vectorial y sean $\mathcal{B}_1, \mathcal{B}_2$ dos bases de Hamel de E. Luego $\#B_1 = \#B_2$.

Demostración Sea $x \in \mathcal{B}_1$ y llamemos S(x) al conjunto de los elementos $v \in \mathcal{B}_2$ tal que al escribir a x como combinación lineal de elementos de \mathcal{B}_2 aparece v, por lo que si $x = \sum_k \lambda_{i_k} v_{i_k}$ entonces $S(x) = \{v_{i_1}, \dots, v_{i_n}\}$.

Lema 1.4
$$\bigcup_{x \in \mathcal{B}_1} S(x) = \mathcal{B}_2$$

Demostración Del lema Si $v \in \bigcup_{x \in \mathcal{B}_1} S(x)$ luego existe $x_0 \in \mathcal{B}_1$ tal que $v \in S(x_0)$ por lo que $v \in \mathcal{B}_2$ por definición de S(x). Recíprocamente, si $v \in \mathcal{B}_2$ pero no existe $x \in \mathcal{B}_1$ tal que $v \in S(x)$, entonces $v \notin \mathcal{B}_1 >= E = \mathcal{B}_2 >$.

Por 1.4 tenemos que $\#\mathcal{B}_2 \leq \sum_{x \in \mathcal{B}_1} \#S(x) \leq \#\mathbb{N} \#\mathcal{B}_1 \leq \#B_1$.

Razonando al revés obtenemos la otra desigualdad.

Definición Si E es un espacio vectorial, una norma definida en E es una aplicación $\|.\|: E \mapsto \mathbb{R}$ tal que:

- 1. $||x|| \ge 0$
- 2. $||x|| = 0 \iff x = 0$
- 3. $\|\lambda x\| = |\lambda| \|x\|$
- 4. $||x + y|| \le ||x|| + ||y||$

Observación Todo espacio normado es un espacio métrico pero no viceversa.

Definición Si E es un espacio vectorial, un producto interno definido en E es una aplicación $\langle .,. \rangle : E \times E \mapsto F$ tal que:

- 1. $\langle ., z \rangle$ es lineal
- $2. \langle x, x \rangle = 0 \iff x = 0$
- 3. $\langle x, y \rangle = \overline{\langle y, x \rangle}$

П

Observación Todo espacio con producto interno es un espacio normado pero no viceversa.

Teorema 1.5 (Cauchy-Schwartz) Sea E un espacio vectorial $y \langle . \rangle$ un producto interno definido en E; luego si $x, y \in E$ se tiene que $|\langle x, y \rangle| \leq ||x|| ||y||$.

Demostración Sean $x, y \in E$, $\lambda \in \mathbb{C}$ y sea $z = x - \lambda y$, luego $\langle z, z \rangle = \langle x, x \rangle + \left| \lambda^2 \right| \langle y, y \rangle - 2\Re(\lambda \langle y, x \rangle) \ge 0$. Si $\langle y, x \rangle = re^{i\theta}$ sea $\lambda = e^{-i\theta}t$ con $t \in \mathbb{R}$; luego:

$$0 \ge \langle x, x \rangle + t^2 \langle y, y \rangle - 2bt \cong c - 2bt = at^2$$

Luego como la cuadrática dada es positiva, eso implica que $0 \le 4b^2 - 4ac$ por lo que:

$$0 \le b^2 - ac = |\langle x, y \rangle|^2 - \langle x, x \rangle \langle y, y \rangle$$