Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського" Факультет Електроніки Кафедра мікроелектроніки

ЗВІТ

Про виконання лабораторної роботи №2 з дисципліни: «Вакуумна та плазмова електроніка»

ГАЗОРОЗРЯДНІ ЛАМПИ

Виконавець:		
Студент 3-го курсу	(підпис)	Б.В. Лищенко
Перевірив:	(підпис)	О.М. Бевза

Мета роботи: Дослідити роботу газорозрядної лампи, а також процеси, що приймають участь в передачі енергії в газорозрядних лампах.

Завдання

- 1. Запустіть програму «Неонова та інші газорозрядні лампи.jar» та ознайомтесь з елементами керування програмою.
- 2. Виберіть закладку «Один атом». В списку, що розкривається, «Хімічний елемент» виберіть «Налаштовуваний».
- 3. Ви можете вибрати кількість порожніх електронних рівнів енергії в конфігуруваному атомі та відрегулювати їх розташування, а також ви можете переміщати атом в розрядній трубці.
- 4. Виберіть закладку «Багато атомів».
- 5. У вікні «Випроміненя електронів» виберіть «Неперервне». Діапазон у % можна встановити за вашим бажанням.
- 6. Праворуч на екрані, в списку, що розкривається, «Хімічний елемент», почніть з Водню.
- 7. У нижньому правому куті, у полі "Описання" натисніть на Спектрометр.
- 8. Запустивши процес моделювання, почекайте коли одна з ліній спектру набуде максимального значення і зафіксуйте спектр. Вкажіть лінії спектру (довжину випромінювання) і їх процентне співвідношення в загальному спектрі випромінювання водню.
- 9. Змінюючи напругу прискорення визначити мінімальну напругу виникнення світіння в газорозрядній трубці для водню. Як напруга прискорення впливає на спектр випромінювання газорозрядної трубки?
- 10. Повторити пункти 10 та 11 для Ртуті, Натрію та Неону

Виконання роботи

18 B		
	%	
UV1	11	
UV2	56	
IR	7	
405 HM	16	
485 нм	3	
655 нм	13	

Ртуть

18 B W UV1 51 IR 5 300 HM 22			
UV1 51 IR 5	18 B		
IR 5		%	
	UV1	51	
300 HM 22	IR	5	
300 HM 22	300 нм	22	
445 нм 4	445 HM	4	
365 нм 5	365 нм	5	
545 нм 9	545 HM	9	
575 нм 3	575 нм	3	

18 B		
	%	
IR1	14	
IR2	16	
330 нм	4	
590 HM	46	
620 нм	20	

Неон

30 B		
	%	
UV	27	
540 нм	17	
585 нм	18	
595 нм	2	
610 нм	6	
620 нм	4	
635 нм	5	
655 HM	3	
665 HM	3	
710 нм	6	
725 HM	2	

- 1. Якщо відстань між двома електронними енергетичними рівнями в атомі А більше, ніж в атомі В, тоді довжина хвилі світла, випромінюваного атомом В, буде більше; так
- 2. Якщо відстань між двома електронними енергетичними рівнями в атомі А менше, ніж в атомі В, тоді атом Б буде випромінювати фотони з меншою енергією; так
- 3. Фотони випромінюються, коли електрони в атомі набувають енергію; ні
- 4. Кольори, які випромінює атом, залежать від того, скільки кінетичної енергії має вільний електрон, потрапляючи на атом; ні
- 5. Кольори, що випромінюються, залежать від кількості вільних електронів, що проходять через лампу;— ні
- 6. Коли вільний електрон потрапляє на атом, атом завжди збуджується до максимально можливого енергетичного рівня; так
- 7. Кінетична енергія вільного електрона в точці зіткнення зростає зі збільшенням напруги батареї; ні
- 8. Кінетична енергія вільного електрона в точці зіткнення вища, якщо атом знаходиться ближче до джерела електронів; ні
- 9. Єдиний спосіб випромінювати ІЧ-фотони це якщо порожні електронні рівні енергії дійсно близькі до основного стану (найнижчий рівень енергії); так
- 10. Коли атомні електрони збуджуються на більш високий рівень, вони завжди повертаються до свого найнижчого енергетичного рівня, стрибаючи по одному за раз. ні
- 11. Скільки можливих кольорів може випромінювати атом з 6 електронними рівнями енергії (основний стан 6-й, найнижчий)? 6
- 12. Що означає термін «збуджений»? це електрон який набувши додадткової енергії, переходить у неосновний стан, на більш високий рівень.
- 13. Як атоми в імітованій трубці збуджуються? збуджнеея атомыв, які знаходилися близько до електроду, з якого емітували електрони, майже не відбувалось.
- 14. Що має статися, щоб збуджені атоми випускали фотони? треба щоб збуджений електрон повернувся у свій основний рівень енергії.

15. Чому фотони відображаються як різні кольори? колір фотону залежить від кількості енергетичних рівнів, які в ньому знаходяться.

Висновок: в цій лабораторній роботі було досліджено роботу газорозрядніх ламп та процеси, що приймають участь в передачі енергії в них, за допомогою симулятора лампи були виведени на екран спектральні лінії на різноманітних довжинах хвиль, в залежності від газу який наповнював лампу. Після аналізу можна сказати, що найбільша частина значень припадає для водню та ртуті припадає на УФ, для натрію та неону — жовта и помаранчова частини спектру, а для неону — зелена та червона частина спектру.