Facets of the Union-Closed Polytope

Dan Gallagher

July 28, 2023

Outline

1 The conjecture and background

2 The union-closed polytope

3 Facets of the union-closed polytope

$$\mathcal{P}([n]) := \text{power set of } [n] := \{1, \dots, n\}$$

 $\mathcal{P}([n]) := \text{power set of } [n] := \{1, \dots, n\}$

 $\mathcal{F} \subseteq \mathcal{P}([n])$ is a union-closed family if for all $S, T \in \mathcal{F}$, we also have $S \cup T \in \mathcal{F}$.

```
\mathcal{P}([n]) := \text{power set of } [n] := \{1, \dots, n\}
```

 $\mathcal{F} \subseteq \mathcal{P}([n])$ is a union-closed family if for all $S, T \in \mathcal{F}$, we also have $S \cup T \in \mathcal{F}$.

Conjecture (Frankl, 1979)

Let $\mathcal{F} \subseteq \mathcal{P}([n])$ be a non-empty union-closed family. Then there exists an element in [n] present in at least half of the sets in \mathcal{F} .

$$\mathcal{P}([n]) := \text{power set of } [n] := \{1, \dots, n\}$$

 $\mathcal{F} \subseteq \mathcal{P}([n])$ is a union-closed family if for all $S, T \in \mathcal{F}$, we also have $S \cup T \in \mathcal{F}$.

Conjecture (Frankl, 1979)

Let $\mathcal{F} \subseteq \mathcal{P}([n])$ be a non-empty union-closed family. Then there exists an element in [n] present in at least half of the sets in \mathcal{F} .

Example

$$\mathcal{F} = \{\{1\}, \{2\}, \{1,2\}, \{2,3\}, \{3,4\}, \{1,2,3\}, \{1,3,4\}, \{2,3,4\}, \{1,2,3,4\}\}$$

- ullet $\mathcal F$ is union-closed
- 1,2,3 are present in at least half of the sets in \mathcal{F}

Theorem (Vučković-Živković, 2017)

The Frankl conjecture holds for any union-closed family $\mathcal{F} \subseteq \mathcal{P}([n])$ with n < 12.

Theorem (Vučković-Živković, 2017)

The Frankl conjecture holds for any union-closed family $\mathcal{F} \subseteq \mathcal{P}([n])$ with $n \leq 12$.

Theorem (Knill, 1994)

In any union-closed family \mathcal{F} , there exists an element in at least $\frac{|\mathcal{F}|-1}{\log_2 |\mathcal{F}|}$ sets.

Theorem (Vučković-Živković, 2017)

The Frankl conjecture holds for any union-closed family $\mathcal{F} \subseteq \mathcal{P}([n])$ with $n \leq 12$.

Theorem (Knill, 1994)

In any union-closed family \mathcal{F} , there exists an element in at least $\frac{|\mathcal{F}|-1}{\log_2 |\mathcal{F}|}$ sets.

Theorem (Gilmer, 2022)

Let $\mathcal{F} \subseteq \mathcal{P}([n])$ be a union-closed family with $\mathcal{F} \neq \emptyset$, then there exists an element that appears in at least $0.01|\mathcal{F}|$ sets in \mathcal{F} .

Theorem (Vučković-Živković, 2017)

The Frankl conjecture holds for any union-closed family $\mathcal{F} \subseteq \mathcal{P}([n])$ with $n \leq 12$.

Theorem (Knill, 1994)

In any union-closed family \mathcal{F} , there exists an element in at least $\frac{|\mathcal{F}|-1}{\log_2 |\mathcal{F}|}$ sets.

Theorem (Gilmer, 2022)

Let $\mathcal{F} \subseteq \mathcal{P}([n])$ be a union-closed family with $\mathcal{F} \neq \emptyset$, then there exists an element that appears in at least $0.01|\mathcal{F}|$ sets in \mathcal{F} .

Theorem (Sawin, 2022)

Let $\mathcal{F} \subseteq \mathcal{P}([n])$ be a union-closed family with $\mathcal{F} \neq \emptyset$. Then there exists an element contained in at least $\frac{3-\sqrt{5}}{2}|\mathcal{F}| \approx 0.382|\mathcal{F}|$ sets.

An equivalent conjecture

For a union-closed family $\mathcal{F} \subseteq \mathcal{P}([n])$ and $i \in [n]$, let $\mathcal{F}_i := \{S \in \mathcal{F} | i \in S\}$.

Conjecture (Maximization Conjecture)

For any positive integers a and n, let

$$\mathfrak{F}(a,n)=\{\mathcal{F}\subseteq\mathcal{P}([n])\ | \mathcal{F} \ \text{is a non-empty union-closed family}$$
 and $\max_{i\in[n]}|\mathcal{F}_i|\leq a\}.$

Then $\max_{\mathcal{F} \in \mathfrak{F}(a,n)} |\mathcal{F}| \leq 2a$ for all $a, n \in \mathbb{Z}_{>0}$.

The Maximization Conjecture as an integer program

$$f(n,a) := \max \sum_{S \in \mathcal{P}([n])} x_S$$
 such that $x_S + x_T \le 1 + x_{S \cup T}$ for all $S, T \in \mathcal{P}([n])$
$$\sum_{\substack{S \in \mathcal{P}([n]): i \in S}} x_S \le a \qquad \qquad \text{for all } i \in [n]$$
 for all $S \in \mathcal{P}([n])$

The Maximization Conjecture as an integer program

$$\begin{split} f(n,a) := & \max \sum_{S \in \mathcal{P}([n])} x_S \\ & \text{such that } x_S + x_T \leq 1 + x_{S \cup T} \\ & \sum_{\substack{S \in \mathcal{P}([n]): \\ i \in S}} x_S \leq a \\ & \text{for all } i \in [n] \end{split}$$

Conjecture (Maximization Conjecture)

For any positive integers a and n, $f(n, a) \leq 2a$.

The Maximization Conjecture as an integer program

$$\begin{split} f(n,a) := & \max \sum_{S \in \mathcal{P}([n])} x_S \\ & \text{such that } x_S + x_T \leq 1 + x_{S \cup T} \\ & \sum_{S \in \mathcal{P}([n]): \\ & i \in S} x_S \leq a \\ & x_S \in \{0,1\} \end{split} \qquad \text{for all } S, T \in \mathcal{P}([n])$$

Conjecture (Maximization Conjecture)

For any positive integers a and n, $f(n, a) \le 2a$.

Let P(n, a) denote the polytope defined by the convex hull of the feasible region of the integer program. We call P(n, a) the union-closed polytope.

f-conjecture

Conjecture (f-conjecture, Pulaj-Raymond-Theis, 2016)

Fix $a \in \mathbb{N}$. Then f(n, a) = f(n + 1, a) for every $n \in \mathbb{N}$ such that $n \ge \lceil \log_2 a \rceil + 1$.

f-conjecture

Conjecture (f-conjecture, Pulaj-Raymond-Theis, 2016)

Fix $a \in \mathbb{N}$. Then f(n, a) = f(n + 1, a) for every $n \in \mathbb{N}$ such that $n \ge \lceil \log_2 a \rceil + 1$.

Theorem (Pulaj-Raymond-Theis, 2016)

Fix $a \in \mathbb{N}$. Then f(n, a) = f(n + 1, a) for every $n \in \mathbb{N}$ such that $n \ge a$.

f-conjecture

Conjecture (f-conjecture, Pulaj-Raymond-Theis, 2016)

Fix $a \in \mathbb{N}$. Then f(n, a) = f(n + 1, a) for every $n \in \mathbb{N}$ such that $n \ge \lceil \log_2 a \rceil + 1$.

Theorem (Pulaj-Raymond-Theis, 2016)

Fix $a \in \mathbb{N}$. Then f(n, a) = f(n + 1, a) for every $n \in \mathbb{N}$ such that $n \ge a$.

We will focus on understanding P(n, n).

P(3,3)

It was already known that P(3,3) had the following facets (up to symmetry):

- Union-closed inequalities
- Frequency inequalities

$$x_{\{1,2\}} + x_{\{1,3\}} + 2x_{\{2,3\}} - 2x_{\{1,2,3\}} \le 1$$

$$2x_{\{1\}} + x_{\{2\}} + x_{\{3\}} + x_{\{1,3\}} \le 3$$

P(3,3)

It was already known that P(3,3) had the following facets (up to symmetry):

- Union-closed inequalities
- Prequency inequalities

$$2x_{\{1\}} + x_{\{2\}} + x_{\{3\}} + x_{\{1,3\}} \le 3$$

P(n, n) for $n \ge 4$ was unknown.

Ideas to compute P(n, n)

A polytope P can be described by either its facets or its vertices.

Ideas to compute P(n, n)

A polytope P can be described by either its facets or its vertices.

Definition

The polar of a polytope $P \subset \mathbb{R}^n$ is given by

$$P^{\Delta} = \{ \mathbf{c} \in (\mathbb{R}^n)^* : \mathbf{c}\mathbf{x} \le 1 \text{ for all } \mathbf{x} \in P \}.$$

Facets of P correspond to vertices of P^{Δ} and vice-versa if the origin is in the interior of P. In our case, we need to first translate P(n, n) to achieve this.

Computational results [G., 2023]

Up to symmetry, we found

- 2001 classes of facet-defining inequalities for P(4,4) (corresponding to 38011 facets)
- 26862 classes of facet-defining inequalities for P(5,5) (corresponding to 2742316 facets)
- 2566 classes of facet-defining inequalities for P(6,6) (corresponding to 1492991 facets)

Computational results [G., 2023]

Up to symmetry, we found

- 2001 classes of facet-defining inequalities for P(4,4) (corresponding to 38011 facets)
- 26862 classes of facet-defining inequalities for P(5,5) (corresponding to 2742316 facets)
- 2566 classes of facet-defining inequalities for P(6,6) (corresponding to 1492991 facets)

Facets get wild!

$$\begin{array}{l} 14x_{\{1\}} + 20x_{\{2\}} + x_{\{3\}} + 14x_{\{4\}} - 14x_{\{1,2\}} + 9x_{\{1,3\}} + 4x_{\{1,4\}} + 15x_{\{2,3\}} - \\ 14x_{\{2,4\}} + 14x_{\{3,4\}} + 20x_{\{1,2,3\}} + 33x_{\{1,2,4\}} + 9x_{\{1,3,4\}} + 15x_{\{2,3,4\}} - \\ 17x_{\{1,2,3,4\}} \leq 65 \text{ is a facet for } P(4,4). \end{array}$$

Standard methods and Chvátal rank of P(n, n)

Let P^I be the convex hull of the feasible region of an integer program, and let $P:=\{\mathbf{x}\in\mathbb{R}^n|A\mathbf{x}\leq\mathbf{b}\}$ be the feasible region of its linear relaxation.

Standard methods and Chvátal rank of P(n, n)

Let P^I be the convex hull of the feasible region of an integer program, and let $P:=\{\mathbf{x}\in\mathbb{R}^n|A\mathbf{x}\leq\mathbf{b}\}$ be the feasible region of its linear relaxation.

Many cut procedures exist; we looked at the Chvátal-Gomory procedure to better understand the complexity of P(n, n).

Standard methods and Chvátal rank of P(n, n)

Let P^I be the convex hull of the feasible region of an integer program, and let $P:=\{\mathbf{x}\in\mathbb{R}^n|A\mathbf{x}\leq\mathbf{b}\}$ be the feasible region of its linear relaxation.

Many cut procedures exist; we looked at the Chvátal-Gomory procedure to better understand the complexity of P(n, n).

Chvátal rank seems to grow: 3 for P(3,3) and 6 for P(4,4).

Theorem (G., 2023)

Let $A, B, C \in \mathcal{P}([n])$ be distinct sets such that $A \cup B$, $A \cup C$ and $B \cup C$ are distinct from one another and from A, B, C. Then the inequality

$$x_A + x_B + x_C \le 1 + x_{A \cup B} + x_{A \cup C} + x_{B \cup C}$$

is valid and facet-defining for P(n, a) for $a \ge 3$.

Theorem (G., 2023)

Let $A, B, C \in \mathcal{P}([n])$ be distinct sets such that $A \cup B$, $A \cup C$ and $B \cup C$ are distinct from one another and from A, B, C. Then the inequality

$$x_A + x_B + x_C \le 1 + x_{A \cup B} + x_{A \cup C} + x_{B \cup C}$$

is valid and facet-defining for P(n, a) for $a \ge 3$.

Example

• $A = \{1\}, B = \{2\}, C = \{3\}$:

Theorem (G., 2023)

Let $A, B, C \in \mathcal{P}([n])$ be distinct sets such that $A \cup B$, $A \cup C$ and $B \cup C$ are distinct from one another and from A, B, C. Then the inequality

$$x_A + x_B + x_C \le 1 + x_{A \cup B} + x_{A \cup C} + x_{B \cup C}$$

is valid and facet-defining for P(n, a) for $a \ge 3$.

Example

• $A = \{1\}$, $B = \{2\}$, $C = \{3\}$: $x_{\{1\}} + x_{\{2\}} + x_{\{3\}} - x_{\{1,2\}} - x_{\{1,3\}} - x_{\{2,3\}} \le 1$ is facet-defining for P(n, a) for $n, a \ge 3$

Theorem (G., 2023)

Let $A, B, C \in \mathcal{P}([n])$ be distinct sets such that $A \cup B$, $A \cup C$ and $B \cup C$ are distinct from one another and from A, B, C. Then the inequality

$$x_A + x_B + x_C \le 1 + x_{A \cup B} + x_{A \cup C} + x_{B \cup C}$$

is valid and facet-defining for P(n, a) for $a \ge 3$.

Example

- $A = \{1\}$, $B = \{2\}$, $C = \{3\}$: $x_{\{1\}} + x_{\{2\}} + x_{\{3\}} - x_{\{1,2\}} - x_{\{1,3\}} - x_{\{2,3\}} \le 1$ is facet-defining for P(n, a) for $n, a \ge 3$
- $A = \{1\}, B = \{2,4\}, C = \{3,4\}$:

Theorem (G., 2023)

Let $A, B, C \in \mathcal{P}([n])$ be distinct sets such that $A \cup B$, $A \cup C$ and $B \cup C$ are distinct from one another and from A, B, C. Then the inequality

$$x_A + x_B + x_C \le 1 + x_{A \cup B} + x_{A \cup C} + x_{B \cup C}$$

is valid and facet-defining for P(n, a) for $a \ge 3$.

Example

- $A = \{1\}$, $B = \{2\}$, $C = \{3\}$: $x_{\{1\}} + x_{\{2\}} + x_{\{3\}} - x_{\{1,2\}} - x_{\{1,3\}} - x_{\{2,3\}} \le 1$ is facet-defining for P(n, a) for $n, a \ge 3$
- $A = \{1\}$, $B = \{2,4\}$, $C = \{3,4\}$: $x_{\{1\}} + x_{\{2,4\}} + x_{\{3,4\}} - x_{\{1,2,4\}} - x_{\{1,3,4\}} - x_{\{2,3,4\}} \le 1$ is facet-defining for P(n,a) for n > 4, a > 3

Theorem (G., 2023)

Let $A, B, C \in \mathcal{P}([n])$ be distinct sets such that

 $D := A \cup B = A \cup C = B \cup C$ and such that D is distinct from A, B, C.

Then the inequality

$$x_A + x_B + x_C \le 1 + 2x_D$$

is valid and facet-defining for P(n, a) for $a \ge 3$.

Theorem (G., 2023)

Let $A, B, C \in \mathcal{P}([n])$ be distinct sets such that

 $D := A \cup B = A \cup C = B \cup C$ and such that D is distinct from A, B, C.

Then the inequality

$$x_A + x_B + x_C \le 1 + 2x_D$$

is valid and facet-defining for P(n, a) for $a \ge 3$.

Example

•
$$A = \{1, 2, 4\}, B = \{1, 3, 4\}, C = \{2, 3, 4\}, D = \{1, 2, 3, 4\}$$
:

Theorem (G., 2023)

Let $A, B, C \in \mathcal{P}([n])$ be distinct sets such that

 $D := A \cup B = A \cup C = B \cup C$ and such that D is distinct from A, B, C. Then the inequality

$$x_A + x_B + x_C \le 1 + 2x_D$$

is valid and facet-defining for P(n, a) for $a \ge 3$.

Example

• $A = \{1, 2, 4\}$, $B = \{1, 3, 4\}$, $C = \{2, 3, 4\}$, $D = \{1, 2, 3, 4\}$: $x_{\{1, 2, 4\}} + x_{\{1, 3, 4\}} + x_{\{2, 3, 4\}} - 2x_{\{1, 2, 3, 4\}} \le 1$ is facet-defining for P(n, a) for $n \ge 4$, $a \ge 3$

Theorem (G., 2023)

Let $A, B, C \in \mathcal{P}([n])$ be distinct sets such that

 $D := A \cup B = A \cup C = B \cup C$ and such that D is distinct from A, B, C. Then the inequality

$$x_A + x_B + x_C \le 1 + 2x_D$$

is valid and facet-defining for P(n, a) for $a \ge 3$.

Example

- $A = \{1, 2, 4\}$, $B = \{1, 3, 4\}$, $C = \{2, 3, 4\}$, $D = \{1, 2, 3, 4\}$: $x_{\{1, 2, 4\}} + x_{\{1, 3, 4\}} + x_{\{2, 3, 4\}} 2x_{\{1, 2, 3, 4\}} \le 1$ is facet-defining for P(n, a) for $n \ge 4$, $a \ge 3$
- $A = \{3,4\}, B = \{1,2,3\}, C = \{1,2,4\}, D = \{1,2,3,4\}$:

Theorem (G., 2023)

Let $A, B, C \in \mathcal{P}([n])$ be distinct sets such that $D := A \cup B = A \cup C = B \cup C$ and such that D is distinct from A, B, C. Then the inequality

$$x_A + x_B + x_C \le 1 + 2x_D$$

is valid and facet-defining for P(n, a) for $a \ge 3$.

Example

- $A = \{1,2,4\}$, $B = \{1,3,4\}$, $C = \{2,3,4\}$, $D = \{1,2,3,4\}$: $x_{\{1,2,4\}} + x_{\{1,3,4\}} + x_{\{2,3,4\}} 2x_{\{1,2,3,4\}} \le 1$ is facet-defining for P(n,a) for $n \ge 4$, $a \ge 3$
- $A = \{3,4\}$, $B = \{1,2,3\}$, $C = \{1,2,4\}$, $D = \{1,2,3,4\}$: $x_{\{3,4\}} + x_{\{1,2,3\}} + x_{\{1,2,4\}} 2x_{\{1,2,3,4\}} \le 1$ is facet-defining for P(n,a) for $n \ge 4$, $a \ge 3$

A third class of facet-defining inequalities

Theorem (G., 2023)

The inequality

$$x_{A\setminus S} + x_{B_1} + x_{B_2} \le 1 + x_A + x_{B_1 \cup B_2}$$

is facet-defining for P(n, a) for $a \ge 4$ where $B_1, B_2 \subset A \in \mathcal{P}([n])$, $S \subset B_1, B_2$, and $A \setminus S, B_1, B_2, B_1 \cup B_2$, A are distinct.

A third class of facet-defining inequalities

Theorem (G., 2023)

The inequality

$$x_{A \setminus S} + x_{B_1} + x_{B_2} \le 1 + x_A + x_{B_1 \cup B_2}$$

is facet-defining for P(n, a) for $a \ge 4$ where $B_1, B_2 \subset A \in \mathcal{P}([n])$, $S \subset B_1, B_2$, and $A \setminus S, B_1, B_2, B_1 \cup B_2$, A are distinct.

Example

$$A = \{1, 2, 3, 4, 5\}, S = \{4, 5\}, B_1 = \{1, 4, 5\} \text{ and } B_2 = \{3, 4, 5\}:$$

A third class of facet-defining inequalities

Theorem (G., 2023)

The inequality

$$x_{A \setminus S} + x_{B_1} + x_{B_2} \le 1 + x_A + x_{B_1 \cup B_2}$$

is facet-defining for P(n, a) for $a \ge 4$ where $B_1, B_2 \subset A \in \mathcal{P}([n])$, $S \subset B_1, B_2$, and $A \setminus S, B_1, B_2, B_1 \cup B_2$, A are distinct.

Example

$$A = \{1, 2, 3, 4, 5\}, S = \{4, 5\}, B_1 = \{1, 4, 5\} \text{ and } B_2 = \{3, 4, 5\}:$$

$$x_{\{1,2,3\}} + x_{\{1,4,5\}} + x_{\{3,4,5\}} \le 1 + x_{\{1,2,3,4,5\}} + x_{\{1,3,4,5\}}$$

is facet-defining for P(n, a) for any $n, a \ge 5$.

For $B_1, B_2 \subset A \in \mathcal{P}([n])$, $S \subset B_1, B_2$, and $A \setminus S, B_1, B_2, B_1 \cup B_2, A$, show $x_{A \setminus S} + x_{B_1} + x_{B_2} \le 1 + x_A + x_{B_1 \cup B_2}$ is facet-defining.

For $B_1, B_2 \subset A \in \mathcal{P}([n])$, $S \subset B_1, B_2$, and $A \setminus S, B_1, B_2, B_1 \cup B_2, A$, show $x_{A \setminus S} + x_{B_1} + x_{B_2} \le 1 + x_A + x_{B_1 \cup B_2}$ is facet-defining.

- Show the validity of the inequality
- 2 Show that the face induced by this inequality has dimension $2^n 1$

For $B_1, B_2 \subset A \in \mathcal{P}([n])$, $S \subset B_1, B_2$, and $A \setminus S, B_1, B_2, B_1 \cup B_2, A$, show $x_{A \setminus S} + x_{B_1} + x_{B_2} \le 1 + x_A + x_{B_1 \cup B_2}$ is facet-defining.

- Show the validity of the inequality
- ② Show that the face induced by this inequality has dimension $2^n 1$

where $\mathcal{P}([n]) = \mathcal{S}_0 \cup \mathcal{S}_1 \cup \mathcal{S}_2 \cup \mathcal{S}_3 \cup \mathcal{S}_4 \cup \mathcal{S}_5$

For $B_1, B_2 \subset A \in \mathcal{P}([n])$, $S \subset B_1, B_2$, and $A \setminus S, B_1, B_2, B_1 \cup B_2, A$, show $x_{A \setminus S} + x_{B_1} + x_{B_2} \le 1 + x_A + x_{B_1 \cup B_2}$ is facet-defining.

- Show the validity of the inequality
- ② Show that the face induced by this inequality has dimension $2^n 1$

$$J := \begin{pmatrix} A \setminus S & B_1 & B_2 & A & B_1 \cup B_2 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \end{pmatrix} \begin{cases} \{A \setminus S\} \\ \{B_1\} \\ \{B_2\} \\ \{A \setminus S, B_1, A\} \\ \{B_1, B_2, B_1 \cup B_2\} \end{cases}$$

A fourth class of facet-defining inequalities

Theorem (G., 2023)

The inequality

$$\sum_{i=1}^{n} x_{[n]\setminus\{i\}} - (n-1)x_{[n]} \le 1$$

is valid and facet-defining for P(n, n).

A fourth class of facet-defining inequalities

Theorem (G., 2023)

The inequality

$$\sum_{i=1}^{n} x_{[n]\setminus\{i\}} - (n-1)x_{[n]} \le 1$$

is valid and facet-defining for P(n, n).

Example

$$x_{\{1,2,3\}} + x_{\{1,2,4\}} + x_{\{1,3,4\}} + x_{\{2,3,4\}} - 3x_{\{1,2,3,4\}} \le 1$$
 is facet-defining for $P(4,4)$

Conjectured inequalities

Conjecture (G., 2023)

Fix $i \in \mathbb{N}$. If $n = \sum_{k=i-1}^m \binom{m}{k}$ for $m \in \mathbb{N}$ and $n \geq i+1$, then $\sum_{\substack{S \in \mathcal{P}([n]): \\ |S|=i}} x_S \leq \binom{m+1}{i}$ is a tight valid inequality for P(n,n). Furthermore, if $\sum_{k=i-1}^{m-1} \binom{m-1}{k} < n < \sum_{k=i-1}^m \binom{m}{k}$ for $m \in \mathbb{N}$ and $n \geq i+1$, then $\sum_{\substack{S \in \mathcal{P}([n]): \\ |S|=i}} x_S \leq \binom{m+1}{i} - 1$ is a valid inequality for P(n,n) though maybe not tight.

Conjectured inequalities

Conjecture (G., 2023)

Fix
$$i \in \mathbb{N}$$
. If $n = \sum_{k=i-1}^m \binom{m}{k}$ for $m \in \mathbb{N}$ and $n \geq i+1$, then $\sum_{\substack{S \in \mathcal{P}([n]): \\ |S|=i}} x_S \leq \binom{m+1}{i}$ is a tight valid inequality for $P(n,n)$. Furthermore, if $\sum_{k=i-1}^{m-1} \binom{m-1}{k} < n < \sum_{k=i-1}^m \binom{m}{k}$ for $m \in \mathbb{N}$ and $n \geq i+1$, then $\sum_{\substack{S \in \mathcal{P}([n]): \\ |S|=i}} x_S \leq \binom{m+1}{i} - 1$ is a valid inequality for $P(n,n)$ though maybe not tight.

n	1	2	3	4	5	6	7	8	9
2	2/2								
3	2/2	3/3							
4	3/3	3/5	4/4						
5	3/3	3/5	4/9	5/5					
6	3/3	4/5	4/9	5/14	6/6				
7	3/3	6/6	4/9	5/14	6/20	7/7			
8	4/4	6/9	5/9	6/14	6/20	7/27	8/8		
9	4/4	6/9	6/9	7/14	6/20	7/27	8/35	9/9	
10	4/4	6/9	8/9	7/14	7/20	8/27	8/35	9/44	10/10
11	4/4	6/9	10/10	8/14	7/20	10/27	8/35	9/44	10/54

Some context for the conjecture

Though not facet-defining, these inequalities help to decrease the integrality gap between f(n, n) and its linear relaxation.

n	f(n,n)	relaxation with cuts	relaxation without cuts		
3	5	6.167	6.5		
4	8	9.25	9.6		
5	9	12	13.558		
6	10	15.25	18.482		
7	12	19.4	24.188		
8	16	23.8	30.636		
9	17	27.8	37.931		
10	18	32.4	46.068		

Some evidence for the conjectured inequalities

Theorem (G., 2023)

The inequality $\sum_{\substack{S \in \mathcal{P}([n]): \\ |S|=n-1}} x_S \leq n$ is a valid and tight for P(n,n).

Theorem (G., 2023)

The inequality $\sum_{\substack{S \in \mathcal{P}([n]) \\ |S|=1}} x_S \leq \binom{\lfloor \log_2 n \rfloor + 1}{1}$ is valid and tight for P(n,n).

Theorem (G., 2023)

The inequality $\sum_{\substack{S \in \mathcal{P}([n]): \\ |S|=n-2}} x_S \leq n-1$ is valid and tight for P(n,n).

Conclusion

Summary:

- We computed many new classes of facets for P(n, n) and some of their Chvátal ranks for $4 \le n \le 6$
- We proved some new classes of facet-defining inequalities for P(n, n) for general n
- We conjectured some new inequalities that are helpful to compute f(n, n) and proved them in certain cases

Conclusion

Summary:

- We computed many new classes of facets for P(n, n) and some of their Chvátal ranks for $4 \le n \le 6$
- We proved some new classes of facet-defining inequalities for P(n, n) for general n
- We conjectured some new inequalities that are helpful to compute f(n, n) and proved them in certain cases

Future work:

- Find a more refined conjecture for the maximum of $\sum_{S \in \mathcal{P}([n]): X_S} |S| = i$
- Find the maximum (or a conjecture) for $\sum_{\substack{S \in \mathcal{P}([n]): X_S \ |S| = i \text{ or } j}} x_S$ for some i,j
- Use the data of P(4,4), P(5,5), P(6,6) to prove more (facet-defining) inequalities that are especially helpful to compute f(n,n)
- Prove some bounds on how fast the Chvátal rank grows for P(n, n)
- Prove some bounds for the Chvátal rank of $\mathbf{1}^{\top}\mathbf{x} \leq f(n,n)$

Thank you!