Seminar in AI (Master)

Realistic Evaluation of Deep Semi-Supervised Learning
Algorithms [1]

Pseudo-Label: The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks [2]

Jaechan Park / k11850713

Supervisor - Dr. Andreu Vall

Motivation

- Deep Neural Network supervised learning method
 - highly accurate and trustworthy method
 - sufficient large labeled dataset required
 - most real-world dataset is unlabeled
- Lots of human effort
- Expensive
- beneficial to leverage unlabeled dataset in supervised learning method
- → Semi-Supervised Learning (SSL)

Suggestive Evaluation Methodologies

- Question applicable to "real-world" settings?
- Proposes better approaches to measure applicability
 - A shared implementation (standardized)
 - High-quality fully-supervised baseline
 - Compare to "Transfer" Learning
 - Reflect on class distribution mismatch
 - Different size of labeled and unlabeled data
 - practical small validation set

SSL Methods - Decision Boundary

- "two moons" dataset
- A MLP with three hidden layers / 10 ReLU units
- Omit "Mean Teacher" and "Temporal Ensembling"

- A common image classification model
 - WRN-28-2 (ResNet with depth 28 and width 2, batch normalization and leakyReLU nonlinearities)
 - Adam optimizer
- Dataset
 - SVHN converted floating point values [-1,1]
 - data augmentation random translation by up to 2 pixels
 - 65,932 train / 7,325 validation (64,932 unlabeled images)
 - CIFAR-10 global contrast and Zero component analysis (ZCA) normalization applied
 - data augmentation random horizontal flipping, translation by up to 2 pixels, Gaussian input noise with standard deviation 0.15
 - 45,000 train / 5,000 validation (41,000 unlabeled images)
- Trained all network for 500,000 updates / 100 batch size / no early stopping

- Reproduction CIFAR-10 (4,000 labeled) and SVHN (1,000 labeled)
 - at the lowest validation error

Dataset	# Labels	Supervised	∏-Model	Mean Teacher	VAT	VAT+EntMi n	Pseudo-Lab el
CIFAR-10	4000	20.26±.38%	16.37±.63%	15.87±.28%	13.86±.27%	13.13±.39%	17.78±.57%
SVHN	1000	12.83±.47%	7.19±.27%	5.65±.47%	5.63±.20%	5.35±.19%	7.62±.29%

Change of error rate (fully-supervised → semi-supervised)

Method	CIFAR-10 4000 Labels	SVHN 1000 Labels	
∏-Model[3]	34.85% → 12.36%	19.30% → 4.80%	
∏-Model[4]	13.60% → 11.29%	-	
∏-Model	20.26% → 16.37%	12.83% → 7.19%	
Mean Teacher [5]	20.66% → 12.31%	12.32% → 3.95%	
Mean Teacher	20.26% → 15.87%	12.83% → 5.65%	

[3]Laine, Samuli and Aila, Timo. Temporal ensembling for semi-supervised learning. In Fifth International Conference on Learning Representations, 2017.

semi-supervised deep learning results. Advances in Neural Information Processing Systems, 2017.

- Error rate using SSL and transfer learning
 - pre-trained by ImageNet downsampled to 32x32
 - challenge to achieve a convincing results with SVHN dataset

Method	CIFAR-10 (4000 Labels)		
VAT with Entropy Minimization	13.13%		
ImageNet → CIFAR-10	12.09%		
ImageNet → CIFAR-10 (no overlap)	12.91%		

- Class Distribution Mismatch
 - 6 classes labeled
 - max 4 classes mismatch

Vary number of labeled data samples

- Set varying size of validation sets of SVHN
 - same size (100%) to the size of training set
 - \circ mean and standard deviation difference in validation error (each SSL method and \square -model

SSL Method: Pseudo-Label

- (most) Deep Neural Networks mainly consists of two phases
 - unsupervised pre-training
 - fine-tuning (supervised)
- The two phases can be applied to semi-supervised learning fashion
- "Pseudo-Label" a simpler technique of semi-supervised learning
- Picking up the class based on the maximum predicted probability of every weight update
- Train in using a supervised learning method with labeled and unlabeled data at the same time
- Use Denoising Auto-Encoder (DAE) and Dropout for the sake of performance improvement
- In effect equivalent to Entropy Regularization
- Minimized entropy for unlabeled data → reduce the overlapping of class probability distribution

SSL Method: Pseudo-Label

- Enable to assign the class based on maximum predicted probability for each unlabeled sample
- Assigned "fake" labels of unlabeled samples behavior as "true" labels in supervised learning

$$y_i' = \begin{cases} 1 & if \ i = argmax_{i'}f_{i'}(x) \\ 0 & otherwise \end{cases}$$

- Dataset MNIST
- For comparison, set the same semi-supervised learning setting [5]
- Set different labeled training set to 100,600,1000, and 3000
- 1000 validation set separately for hyperparameter setting
- 1 hidden layer
- rectified linear unit (ReLU) for hidden unit / 5000 units
- sigmoid unit for output unit

Results

600 MNIST labeled data - supervised training

without unlabeled data (dropNN)

with unlabeled data and Pseudo-Label (+PL)

using unsupervised pre-training with DAE (+PL+DAE)

Results

Method	100	600	1000	3000
NN	25.81	11.44	10.7	6.04
SVM	23.44	8.85	7.77	4.21
CNN	22.98	7.68	6.45	3.35
TSVM	16.81	6.16	5.38	3.45
DBN-RNCA	-	8.7	-	3.3
ЕмверNN	16.86	5.97	5.73	3.59
CAE	13.47	6.3	4.77	3.22
MTC	12.03	5.13	3.64	2.57
DROPNN	21.89	8.57	6.59	3.72
+PL	16.15	5.03	4.30	2.80
+PL+DAE	10.49	4.01	3.46	2.69

Discussion

- Realistic Evaluation of Deep Semi-Supervised Learning Algorithm
 - Still, limited ability for direct comparison with the past work
- Pseudo-Label : The Simple and Efficient Semi-Supervised Learning Method for Deep Neural Networks
 - In the conclusion section, there is no discussion about the results between Pseudo-label and Pseudo-Label with DAE

Thank you!

