Lecture 5 Polyhedron Theory

Can Li

ChE 597: Computational Optimization Purdue University

Geometric intuition

Recall from the last lecture the farmer planning problem.

The optimal solution is obtained at a vertex.

Polyhedron theory

In this lecture, we will provide the mathematical treatment as well as the geometric intuition of "vertices", "faces", "rays", of the polyhedron set $Ax \geq b$.

These concepts are key to the development of the simplex algorithm for solving linear programs

Polyheron Definition

Definition A polyhedron is a set that can be described in the form $\{x \in \mathbb{R}^n \mid Ax \geq b\}$, where A is an $m \times n$ matrix and b is a vector in \mathbb{R}^m .

Remark Note that sets in the form $\{x \in \mathbb{R}^n \mid Ax \leq b\}$, $\{x \in \mathbb{R}^n \mid Ax = b, x \geq 0\}$ are also polyhedra.

A polyhedron can be bounded or unbounded.

Hyperplane and halfspace

Definition Let a be a nonzero vector in \mathbb{R}^n and let b be a scalar.

- (a) The set $\{x \in \mathbb{R}^n \mid a^T x = b\}$ is called a hyperplane.
- (b) The set $\{x \in \mathbb{R}^n \mid a^T x \ge b\}$ is called a halfspace.

Extreme point

Definition Let P be a polyhedron. A vector $x \in P$ is an extreme point of P if we cannot find two vectors $y,z \in P$, both different from x, and a scalar $\lambda \in [0,1]$, such that $x = \lambda y + (1-\lambda)z$. In other words, x cannot be expressed as the convex combination of two other points in P.

A,B,C,D,E are the extreme points of *P*. F is not an extreme point because it is a convex combination of H and G.

Vertex

Definition Let P be a polyhedron. A point $x^* \in P$ is a vertex of P if there exists some c such that $c^Tx^* < c^Tx$ for all x satisfying $x \in P$ and $x \neq x^*$.

In other words, x^* is a vertex of P if and only if P is on one side of a hyperplane (the hyperplane $\{x \mid c^Tx = c^Tx^*\}$) which meets P only at the point x^* ;

Vertex

Definition Let P be a polyhedron. A point $x^* \in P$ is a vertex of P if there exists some c such that $c^Tx^* < c^Tx$ for all x satisfying $x \in P$ and $x \neq x^*$.

In other words, x^* is a vertex of P if and only if P is on one side of a hyperplane (the hyperplane $\{x \mid c^Tx = c^Tx^*\}$) which meets P only at the point x^* ;

Remark 1: Intuitively, vertex is equivalent to extreme point.

Remark 2: It is hard to verify whether a point is an extreme point/vertex just by using their definitions. Another definition called "basic feasible solution" is much easier to verify.

Active constraints

Before defining a basic feasible solution, we need to define active constraints.

Definition Consider a polyhedron $P \subset \mathbb{R}^n$ defined in terms of the constraints $Ax \geq b$ where A is an $m \times n$ matrix and b is a vector in \mathbb{R}^m . We say that the corresponding constraint $a_i^T x \geq b_i$ is **active** or **binding** at x^* iff $a_i^T x^* = b_i$.

Illustrative example of active constraints

The figure shows the two active constraints at extreme point A. $a_1^T x \ge b_1$ and $a_2^T x \ge b_2$

Remark For $x \in \mathbb{R}^n$, n linearly independent constraints uniquely defines a point. The solution to n linearly independent linear equations $a_i = b_i$ are unique.

Basic feasible solution

Definition Consider a polyhedron P defined by linear equality and inequality constraints, and let x^* be an element of \mathbb{R}^n .

- 1. The vector x^* is a **basic solution** if: $a_i^T x = b_i$ $i = 1 \dots n$

 - All equality constraints are active;
 - Out of the constraints that are active at x^* , there are n of them that are linearly independent.
- 2. If x^* is a basic solution that satisfies all of the constraints, we say that it is a basic feasible solution.

Illustrative example of basic solution and basic feasible solution

The points A, B, C, D, E, F are all basic solutions because at each one of them, there are two linearly independent constraints that are active. Points C, D, E, F are basic feasible solutions.

Equivalence of extreme point, vertex, basic feasible solution

Theorem Let P be a nonempty polyhedron and let $x^* \in P$. Then, the following are equivalent:

- (a) x^* is a vertex;
- (b) x^* is an extreme point;
- (c) x^* is a basic feasible solution.

$Vertex \Rightarrow Extreme point$

Suppose that $x^* \in P$ is a vertex. Then, by definition, there exists some $c \in \mathbb{R}^n$ such that $c^Tx^* < c^Ty$ for every y satisfying $y \in P$ and $y \neq x^*$. If $y \in P, z \in P, y \neq x^*, z \neq x^*$, and $0 \leq \lambda \leq 1$, then $c^Tx^* < c^Ty$ and $c^Tx^* < c^Tz$, which implies that $c^Tx^* < c^T(\lambda y + (1-\lambda)z)$ and, therefore, $x^* \neq \lambda y + (1-\lambda)z$. Thus, x^* cannot be expressed as a convex combination of two other elements of P and is, therefore, an extreme point

Extreme point \Rightarrow Basic feasible solution

Suppose that $x^* \in P$ is not a basic feasible solution. We will show that x^* is not an extreme point of P. Let $I = \{i \mid a_i^T x^* = b_i\}$. Since x^* is not a basic feasible solution, there do not exist n linearly independent vectors in the family $a_i, i \in I$. Thus, the vectors $a_i, i \in I$, lie in a proper subspace of \mathbb{R}^n , and there exists some nonzero vector $d \in \mathbb{R}^n$ such that $a_i^T d = 0$, for all $i \in I$. Let ϵ be a small positive number and consider the vectors $y = x^* + \epsilon d$ and $z = x^* - \epsilon d$. Notice that $a_i^T y = a_i^T x^* = b_i$, for $i \in I$. Furthermore, for $i \notin I$, we have $a_i^T x^* > b_i$ and, provided that ϵ is small, we will also have $a_i^T y > b_i$. (It suffices to choose ϵ so that $\epsilon |a_i^T d| < a_i^T x^* - b_i$ for all $i \notin I$.) Thus, when ϵ is small enough, $y \in P$ and, by a similar argument, $z \in P$. We finally notice that $x^* = (y + z)/2$, which implies that x^* is not an extreme point.

Basic feasible solution \Rightarrow Vertex

Let x^* be a basic feasible solution and let $I = \{i \mid a_i^T x^* = b_i\}$. Let $c = \sum_{i \in I} a_i$. We then have

$$c^T x^* = \sum_{i \in I} a_i^T x^* = \sum_{i \in I} b_i.$$

Furthermore, for any $x \in P$ and any i, we have $a_i^T x \ge b_i$, and

$$c^T x = \sum_{i \in I} a_i^T x \ge \sum_{i \in I} b_i \quad (**)$$

This shows that x^* is an optimal solution to the problem of minimizing c^Tx over the set P. Furthermore, equality holds in (**) if and only if $a_i^Tx=b_i$ for all $i\in I$. Since x^* is a basic feasible solution, there are n linearly independent constraints that are active at x^* , and x^* is the unique solution to the system of equations $a_i^Tx=b_i, i\in I$. It follows that x^* is the unique minimizer of c^Tx over the set P and, therefore, x^* is a vertex of P.

Some Corollaries

Corollary 1 The number of extreme points/vertex/BFS in P is upper bounded by $\binom{m}{n}$. We have at most $\binom{m}{n}$ ways of choosing n linearly independent constraints among the m constraints. **Corollary 2** A nonempty polyhedron $Ax \geq b$ has at least one extreme point if and only if there exist n linearly independent vectors out of the m constraint coefficients a_1, \ldots, a_m .

Degeneracy

A basic solution $x \in \mathbb{R}^n$ is said to be degenerate if more than n of the constraints are active at x.

The points A and C are degenerate basic feasible solutions. The points B and E are nondegenerate basic feasible solutions. The point D is a degenerate basic solution.

Degeneracy in standard form polyhedra

Consider the standard form polyhedron $P = \{x \in \mathbb{R}^n \mid Ax = b, x \geq 0\}$ and let x be a basic solution. Let m be the number of rows of A. The vector x is a degenerate basic solution iff more than n-m of the components of x are zero, i.e., there are more than n active constraints.

Faces

Definition A face of the nonempty polyhedral set P is a nonempty subset of P where a subset of the inequalities are active.

Examples of faces

- The set *P* itself is a face (no inequalities are active).
- An extreme point is a face (n linearly independent inequalities are active).
- Edges AB, BC, CD, DE, and EA in the figure are faces (1 inequality is active).

Polyhedral cone

Definition A set $C \subset \mathbb{R}^n$ is a cone if $\lambda x \in C$ for all $\lambda \geq 0$ and all $x \in C$.

Definition A polyhedron of the form $P = \{x \in \mathbb{R}^n \mid Ax \ge 0\}$ is easily seen to be a nonempty cone and is called a **polyhedral cone**.

A simple example of a polyhedral cone:

Ax st. Ax so

Rays and recession cones

Definition Consider a nonempty polyhedron

$$P = \{x \in \mathbb{R}^n \mid Ax \ge b\},\,$$

and let us fix some $y \in P$. We define the **recession cone** at y as the set of all directions d along which we can move indefinitely away from y, without leaving the set P. More formally, the recession cone is defined as the set

$$\{d \in \mathbb{R}^n \mid A(y + \lambda d) \ge b, \text{ for all } \lambda \ge 0\}.$$

Rays and recession cones

Definition Consider a nonempty polyhedron

$$P = \{x \in \mathbb{R}^n \mid Ax \ge b\},\,$$

and let us fix some $y \in P$. We define the **recession cone** at y as the set of all directions d along which we can move indefinitely away from y, without leaving the set P. More formally, the recession cone is defined as the set

$$\{d \in \mathbb{R}^n \mid A(y + \lambda d) \ge b, \text{ for all } \lambda \ge 0\}.$$

 $\{d \in \mathbb{R}^n \mid Ad > 0\},\$

at A < 0

It is easily seen that this set is the same as

and is a polyhedral cone.

This shows that the recession cone is independent of the starting point y. The nonzero elements of the recession cone are called the rays of the polyhedron P.

Extreme rays

Definition Let $C \subseteq \mathbb{R}^n$ be a polyhedral cone. A nonzero $d \in C$ is an extreme ray of C if there do not exist linearly independent $u, v \in C$ and positive scalars λ and γ such that $d = \lambda u + \gamma v$.

Extreme rays

Theorem Let $C \subseteq \mathbb{R}^n$ be given by $\{x \in \mathbb{R}^n : Ax \ge 0\}$ for some $A \in \mathbb{R}^{m \times n}$. Let $d \in C$ be nonzero. Let $A^=x = 0$ denote the subsystem of $Ax \ge 0$ consisting of all the inequalities active at d. Then d is an extreme ray of C if and only if $\operatorname{rank}(A^=) = n - 1$.

$$(x_1, x_2) = (0, 1)$$

Extreme rays

Theorem Let $C \subseteq \mathbb{R}^n$ be given by $\{x \in \mathbb{R}^n : Ax > 0\}$ for some $A \in \mathbb{R}^{m \times n}$. Let $d \in C$ be nonzero. Let $A^{=}x = 0$ denote the subsystem of Ax > 0 consisting of all the inequalities active at d. Then d is an extreme ray of C if and only if rank $(A^{=}) = n - 1$. **Proof Necessity** Suppose that rank $(A^{=}) < n-1$. There exists a nonzero vector y in the nullspace of A^{-} such that d and y are linearly independent. For a sufficiently small $\epsilon > 0$, $d \pm \epsilon y \in C$. Note that $d - \epsilon y$ and $d + \epsilon y$ are linearly independent and $d = \frac{1}{2}(d - \epsilon y) + \frac{1}{2}(d + \epsilon y)$, implying that d is not an extreme ray. **Sufficiency** Suppose that $d = \lambda u + \gamma v$ for some linearly independent $u, v \in C$ and scalars $\lambda, \gamma > 0$. Then

$$0 = A^{=}d = \lambda A^{=}u + \gamma A^{=}v \ge 0$$

Hence, equality holds throughout. Since $\lambda, \gamma > 0$, we must have $A^=u = A^=v = 0$. Hence, u and v are linearly independent vectors in the nullspace of $A^=$, implying that rank $(A^=) < n-1$.

Minkowski-Weyl Theorem

Theorem (Representation of polyhedra) A polyhedron P can be represented as

$$P = \left\{ x \in \mathbb{R}^n : x = \sum_{k \in K} \lambda_k v^k + \sum_{j \in J} \mu_j r^j \right\}$$

with
$$\sum_{k \in K} \lambda_k = 1$$
, $\lambda_k \ge 0 \ \forall k \in K, \mu_j \ge 0 \ \forall j \in J$,

where $\{v^k\}_{k\in\mathcal{K}}$ is the set of extreme points of P and $\{r^j\}_{j\in J}$ is the set of extreme rays of P.

In words, a polyhedron can be represented as the **Minkowski sum** of the convex hull of its extreme points and the conic hull of its extreme rays.

Definition Minkowski sum of two sets A and B is $A + B = \{a + b \mid a \in A, b \in B\}$

Representation of bounded polyhedra

Corollary A bounded polyhedron can be represented as the convex hull of its extreme points.

When will the optimal objective value be $-\infty$

Corollary Consider the problem of minimizing c^Tx over a pointed polyhedral cone $C = \{x \in \mathbb{R}^n \mid a_i^Tx \geq 0, i = 1, \dots, m\}$. The optimal cost is equal to $-\infty$ if and only if some extreme ray d of C satisfies $c^Td < 0$. $C^T \left(\sum \mathcal{M}_j \ \mathbf{r}^j \right) \longrightarrow -\infty$ $\mathcal{M}_j \geqslant \mathbf{r}$

Existence of an optimal extreme point

Corollary Suppose we are minimizing. When P is nonempty and the optimal objective value is not $-\infty$, the optimal solution can always be obtained at an extreme point.

Proof. Using the Minkowski theorem

Using the Minkowski theorem
$$C^{\mathsf{T}}\left(\Sigma \lambda_{\mathbf{k}} \mathcal{V}^{\mathbf{k}}\right)$$

$$P = \left\{x \in \mathbb{R}^n : x = \sum_{k \in \mathcal{K}} \lambda_k v^k + \sum_{j \in J} \mu_j r^j \right.$$

$$C^{\mathsf{T}} \mathcal{V}^{\mathbf{k}}$$
 is Mainimized with
$$\sum_{k \in \mathcal{K}} \lambda_k = 1, \quad \lambda_k \geq 0 \ \forall k \in \mathcal{K}, \mu_j \geq 0 \ \forall j \in J\right\}, \quad C^{\mathsf{T}} \mathcal{V}^{\mathbf{k}}.$$

$$\lambda_{\mathsf{p}}^{\mathsf{T}} = 1$$

If the optimal cost is not $-\infty$, we must have $c^T r^j \geq 0$ for all the $\lambda_{k} = 0$ extreme rays. We can pick one extreme point that minimizes $c^T v^k$. This extreme point is an optimal solution.

Remark This is the basis of the simplex algorithm for solving linear programs.

Reference

 Chapter 2. Bertsimas, D., & Tsitsiklis, J. N. (1997). Introduction to linear optimization (Vol. 6, pp. 479-530). Belmont, MA: Athena scientific.