Turing Machines (3)

Kuliah Teori Bahasa dan Automata Program Studi Ilmu Komputer Fasilkom UI

Prepared by: Suryana Setiawan

Turing Machine Sebagai Recognizer

- Jika sebelumnya Turing Machine dibahas sebagai string processor, sekarang kita akan membahas sebagai recognizer untuk menjawab "apakah $w \in L$?"
- Dalam bab selanjutnya, akan ditunjukkan
 - ada sejumlah L dimana selalu ada mesin M yang bisa menjawab untuk kasus memang $w \in L$ atau $w \notin L$.
 - Ada sejumlah L dimana hanya ada mesin M yang bisa menjawab untuk kasus memang $w \in L$ saja, tapi tidak dapat menjawab untuk $w \notin L$.
 - Ada sejumlah L dimana tidak ada satupun mesin M yang bisa menjawab apakah $w \in L$ atau $w \notin L$.

Menerima/Menolak String

- Jika mesin Turing M memiliki start state s dan dua halting state $\{y, n\}$, untuk string $w \in \Sigma^*$, kita katakan:
 - *M* menerima *w* iff $(s, \underline{\square}w) \vdash_{M}^{*} (y, w')$ untuk suatu string *w'*. (y, w') disebut konfigurasi menerima.
 - *M* menolak *w* iff $(s, \underline{\square}w) \vdash_{M}^{*} (n, w')$ untuk suatu string *w'*. (n, w') disebut konfigurasi menolak.
- Isi tape tidak diperhatikan lagi saat mencapai halt.
- Jika **tidak halt** maka mesin *M* **tidak** menerima maupun menolaknya.

Memutuskan Bahasa

- Jika Σ alfabet dari mesin M, maka M memutuskan bahasa $L \subseteq \Sigma^*$ iff untuk setiap string $w \in \Sigma^*$, benar bahwa:
 - Jika $w \in L$, maka M menerima w, dan
 - Jika $w \notin L$, maka M menolak w.
- Setiap bahasa L disebut **decidable** jika terdapat Mesin Turing M yang dapat memutuskan L.

Contoh Bahasa AⁿBⁿCⁿ

- AⁿBⁿCⁿ adalah kelas D (karena TM berikut ini selalu halt di *y* atau *n*) tetapi juga non-CFL (karena tidak ada PDA yang dapat menerimanya).
 - Jelaskan "algoritma" mesin TM ini!
 - Adakah string yang dapat membuatnya looping?

Contoh Bahasa WcW

- WcW juga bahasa decidable tetapi juga non-CFL.
 - Apa manfaat variabel x dan y?
 - Apakah ada kemungkinan looping?

Semi-deciding Bahasa

- Jika Σ alfabet dari mesin M, untuk suatu bahasa $L \subseteq \Sigma^*$ kita akan mengatakan M semi-deciding L iff untuk setiap string $w \in \Sigma^*$, benar bahwa:
 - Jika $w \in L$, maka M menerima w, dan
 - Jika $w \notin L$, maka M tidak menerima w (dalam hal ini tidak menerima bisa artinya **menolak** atau **mengalami infinite-loop**).
- Bahasa *L* disebut **semidecidable iff** terdapat Mesin Turing yang **semi-deciding** *L*.

Kelas Bahasa D dan SD

- D adalah himpunan seluruh bahasa decidable.
 - Dalam referensi lain disebut bahasa-bahasa recursive (R).
- SD adalah himpunan seluruh bahasa semidecidable.
 - Dalam referensi lain SD disebut recursively enumerable (RE) atau himpunan bahasa Turing-Recognizable.

Contoh Mesin Semimemutuskan

- Untuk bahasa $L = b*a(a \cup b)*$ Mesin yang menerima L akan mencari setidaknya ada satu a.
 - M_1 semi-deciding L.
 - M_2 deciding L.

- M_1 akan looping untuk $w \notin L$ (misalnya w=bb).
- Jadi *L* adalah D tapi juga SD
 - Tetapi, lebih tepat *L* disebut reguler. Why?

Reminder....

- Reguler \subset CFL \subset D \subset SD
- Sementara bisa terjadi $A^nB^nC^n \subseteq A^nB^mC^n \subseteq A^nB^mC^p \text{ dengan } n,m,p \ge 0$
 - \circ AⁿBⁿCⁿ adalah D
 - AⁿB^mCⁿ adalah CFL (berarti juga D) dan
 - AⁿB^mC^p adalah reguler (berarti juga CFL dan D).

Mesin Turing Mengkomputasi Fungsi-fungsi

- Di akhir komputasi isi tape menjadi output.
 - Contoh konversi AⁿB^m menjadi AⁿBⁿ pada contoh awal.
- Agar TM T dengan start state *s* dan halt state *h* selalu menghasilkan output maka untuk setiap input *w*, mesin M harus selalu halt dengan memenuhi:
 - Definisikan M(w) = z iff $(s, \underline{\square}w)$ $\vdash_{\mathbf{M}}^{*} (h, \underline{\square}z)$
- **Konvensi**: head berhenti di posisi di posisi kosong sebelum *z*.
 - Agar z bisa menjadi input untuk fungsi lainnya.

Fungsi $f: \Sigma^* \to \Sigma'^*$

- Mesin Turing M mengkomputasi fungsi f iff, untuk setiap $w \in \Sigma^*$:
 - Jika w input dari domain f, maka M(w) = f(w). Dpl., M halt dengan f(w) sebagai output pada tape.
 - Jika tidak, M(w) tidak halt.

Fungsi Rekursif / Komputabel

- Suatu fungsi f disebut rekursif atau komputabel iff terdapat mesin Turing M yang mengkomputasinya dan selalu halt.
 - Istilah komputasi lebih menggambarkan arti sebenarnya tetapi istilah rekursif merupakan istilah tradisional dalam teori komputasi.

Komputasi Fungsi Duplikasi String

- Fungsi duplicate(w) = ww, dengan w string tanpa \square .
- Mesin Turing untuk mengkomputasinya dapat dibuat dari dua mesin:
 - Mesin copy C dengan operasi: $(s_C, \underline{\square}w\square) \vdash_C^* (h_C, \square w\underline{\square}w\square)$

- Mesin shift left S_{\leftarrow} (pernah dibahas) dengan operasi: $(s_S, u \underline{\square} w) \vdash_S^* (h_S, uw \underline{\square})$
- Komposisi menghasilkan mesin duplicate(w): $> CS \angle L_{\square}$

Komputasi Fungsi Suksesor

- Fungsi $\operatorname{succ}(w_n) = w_{(n+1)}$ dengan wn adalah string representasi biner dari n (tanpa prefix 0, kecuali bilangan n=0).
 - Jadi $w_n \in 0 \cup 1\{0,1\}^*$
 - Mesin Turing M harus melakukan komputasi $(s, \underline{\square} w_n \square) \vdash_M^* (h, \underline{\square} w_{n+1} \square)$
- Coba pahami apa yang dilakukan mesin *M*.

Komputasi Fungsi Penambahan

- Untuk x & y non-negatif, fungsi plus $(w_x, w_y) = w_{x+y}$, dengan w_n adalah string representasi biner dari n (tanpa prefix 0, kecuali n=0).
 - Mesin Turing M harus melakukan komputasi $(s, \underline{\square}w_x; w_y \square) \vdash_M^* (h, \underline{\square}w_{x+y}\square)$, contoh:
 - $(s, \square 101; 1000\square) \vdash_{M}^{*} (h, \square 1101\square)$
- Bagaimana mesinnya? Silakan buat untuk latihan.