Week 1, video 3:

Classifiers, Part 1

Prediction

 Develop a model which can infer a single aspect of the data (predicted variable) from some combination of other aspects of the data (predictor variables)

- Sometimes used to predict the future
- Sometimes used to make inferences about the present

Classification

- There is something you want to predict ("the label")
- The thing you want to predict is categorical
 - The answer is one of a set of categories, not a number
 - CORRECT/WRONG (sometimes expressed as 0,1)
 - We'll talk about this specific problem later in the course within latent knowledge estimation
 - HELP REQUEST/WORKED EXAMPLE REQUEST/ ATTEMPT TO SOLVE
 - WILL DROP OUT/WON'T DROP OUT
 - WILL ENROLL IN MOOC A,B,C,D,E,F, or G

Where do those labels come from?

- □ In-software performance
- School records
- □ Test data
- Survey data
- Field observations or video coding
- Text replays

Classification

 Associated with each label are a set of "features", which maybe you can use to predict the label

Skill	pknow	time	totalactions
right			
ENTERINGGIVEN	0.704	9	1
WRONG			
ENTERINGGIVEN	0.502	10	2
RIGHT			
USEDIFFNUM	0.049	6	1
WRONG			
ENTERINGGIVEN	0.967	7	3
RIGHT			
REMOVECOEFF	0.792	16	1
WRONG			
REMOVECOFFE	0.792	13	2

Classification

The basic idea of a classifier is to determine which features, in which combination, can predict the label

Skill	pknow	time	totalactions
right			
ENTERINGGIVEN	0.704	9	1
WRONG			
ENTERINGGIVEN	0.502	10	2
RIGHT			
USEDIFFNUM	0.049	6	1
WRONG			
ENTERINGGIVEN	0.967	7	3
RIGHT			
REMOVECOEFF	0.792	16	1
WRONG			

Classifiers

There are hundreds of classification algorithms

- A good data mining package will have many implementations
 - RapidMiner
 - SAS Enterprise Miner
 - Weka
 - KEEL

Classification

- Of course, usually there are more than 4 features
- And more than 7 actions/data points

Domain-Specificity

 Specific algorithms work better for specific domains and problems

■ We often have hunches for why that is

But it's more in the realm of "lore" than really "engineering"

Some algorithms I find useful

- Step Regression
- Logistic Regression
- □ J48/C4.5 Decision Trees
- □ JRip Decision Rules
- □ K* Instance-Based Classifiers

There are many others!

Step Regression

□ Not step-wise regression

□ Used for binary classification (0,1)

Step Regression

- □ Fits a linear regression function
 - (as discussed in previous class)
 - with an arbitrary cut-off

- Selects parameters
- Assigns a weight to each parameter
- Computes a numerical value
- Then all values below 0.5 are treated as 0, and all values
 = 0.5 are treated as 1

$$\square$$
 Y= 0.5a + 0.7b - 0.2c + 0.4d + 0.3

a	b	C	d	Y
1	1	1	1	
0	0	0	0	
-1	-1	1	3	

$$\square$$
 Y= 0.5a + 0.7b - 0.2c + 0.4d + 0.3

a	b	C	d	Y
1	1	1	1	1
0	0	0	0	
-1	-1	1	3	

$$\square$$
 Y= 0.5a + 0.7b - 0.2c + 0.4d + 0.3

a	b	C	d	Y
1	1	1	1	1
0	0	0	0	0
-1	-1	1	3	

$$\square$$
 Y= 0.5a + 0.7b - 0.2c + 0.4d + 0.3

C	b	C	d	Y
1	1	1	1	1
0	0	0	0	0
-1	-1	1	3	0

Quiz

$$\square$$
 Y= 0.5a + 0.7b - 0.2c + 0.4d + 0.3

a	b	C	d	Y
2	-1	0	1	

Note

 Step regression is used in RapidMiner by using linear regression with binary data

Other functions in different packages

Step regression: should you use it?

- Step regression is not preferred by statisticians due to lack of closed-form expression
- But often does better in EDM, due to lower overfitting

Another algorithm for binary classification (0,1)

Given a specific set of values of predictor variables

 Fits logistic function to data to find out the frequency/odds of a specific value of the dependent variable

$$m = a0 + a1v1 + a2v2 + a3v3 + a4v4...$$

$$p(m) = \frac{1}{1 + e^{-m}}$$

$$m = 0.2A + 0.3B$$

$$p(m) = \frac{1}{1 + e^{-m}}$$

$$m = 0.2A + 0.3B$$

$$p(m) = \frac{1}{1 + e^{-m}}$$

A	В	C	M	P(M)
0	0	0		

$$m = 0.2A + 0.3B$$

$$p(m) = \frac{1}{1 + e^{-m}}$$

A	В	C	M	P(M)
0	0	0	0	0.5

$$m = 0.2A + 0.3B$$

$$p(m) = \frac{1}{1 + e^{-m}}$$

A	В	C	M	P(M)
1	1	1	1	0.73

$$m = 0.2A + 0.3B$$

$$p(m) = \frac{1}{1 + e^{-m}}$$

A	В	C	M	P(M)
-1	-1	-1	-1	0.27

$$m = 0.2A + 0.3B$$

$$p(m) = \frac{1}{1 + e^{-m}}$$

A	В	C	M	P(M)
2	2	2	2	0.88

$$m = 0.2A + 0.3B$$

$$p(m) = \frac{1}{1 + e^{-m}}$$

A	В	C	M	P(M)
3	3	3	3	0.95

$$m = 0.2A + 0.3B$$

$$p(m) = \frac{1}{1 + e^{-m}}$$

A	В	C	M	P(M)
50	50	50	50	~1

Relatively conservative

- Thanks to simple functional form, is a relatively conservative algorithm
 - I'll explain this in more detail later in the course

Good for

 Cases where changes in value of predictor variables have predictable effects on probability of predicted variable class

$$\Box$$
 m = 0.2A + 0.3B + 0.5C

- Higher A always leads to higher probability
 - But there are some data sets where this isn't true!

What about interaction effects?

$$\Box$$
 A = Bad

$$\square$$
 B = Bad

$$\square$$
 A+B = Good

What about interaction effects?

Ineffective Educational Software = Bad

Off-Task Behavior = Bad

Ineffective Educational Software PLUS
 Off-Task Behavior = Good

Logistic and Step Regression are good when interactions

are not particularly common

- Can be given interaction effects through automated feature distillation
 - We'll discuss this later

But is not particularly optimal for this

What about interaction effects?

- □ Fast Responses + Material Student Already Knows -
 - > Associated with Better Learning

- □ Fast Responses + Material Student Does not Know -
 - > Associated with Worse Learning

Decision Trees

An approach that explicitly deals with interaction effects

Decision Tree

Skill	knowledge		time	
totalacti	ons	right?		
COMPUTESLOPE	0.544		9	1
	?			

Decision Tree

Skill	knowledge		time	
totalact	ions	right?		
COMPUTESLOPE	0.544		9	1
	RIGHT			

Quiz

Skill	knowledge		time	
totalacti	actions right?	right?		
COMPUTESLOPE	0.444		9	1
	?			

Decision Tree Algorithms

There are several

 I usually use J48, which is an open-source reimplementation in Weka/RapidMiner of C4.5 (Quinlan, 1993)

J48/C4.5

- Can handle both numerical and categorical predictor variables
 - Tries to find optimal split in numerical variables
- Repeatedly looks for variable which best splits the data in terms of predictive power for each variable
- Later prunes out branches that turn out to have low predictive power
- Note that different branches can have different features!

Can be adjusted...

□ To split based on more or less evidence

To prune based on more or less predictive power

Relatively conservative

- Thanks to pruning step, is a relatively conservative algorithm
 - We'll discuss conservatism in a later class

Good when data has natural splits

Good when multi-level interactions are common

Good when same construct can be arrived at in multiple ways

- □ A student is likely to drop out of college when he
 - Starts assignments early but lacks prerequisites

- □ OR when he
 - Starts assignments the day they're due

Later Lectures

More classification algorithms

Goodness metrics for comparing classifiers

Validating classifiers

What does it mean for a classifier to be conservative?

Next Lecture

Building regressors and classifiers in RapidMiner