Exercice 1:

Les questions 1) et 2) sont indépendantes.

- 1. Soit $P = X^3 + pX^2 + X + q$ où $(p,q) \in \mathbb{R}_+ \times \mathbb{R}$. Déterminer p et q pour que P admette une racine triple puis factoriser P dans $\mathbb{C}[X]$.
- 2. Trouver le ou les polynômes P de $\mathbb{C}_5[X]$ tels que $(X+2)^3$ divise P+256 et $(X-2)^3$ divise P-256.

Exercice 2

Soit
$$A = \begin{pmatrix} 0 & 1 & -1 \\ -3 & 4 & -3 \\ -1 & 1 & 0 \end{pmatrix}$$
 et I_3 la matrice unité de taille 3.

- 1. Calculer A^2 puis trouver $a, b \in \mathbb{R}$ tels que $A^2 = aA + bI_3$.
- 2. Soit $n \in \mathbb{N}$ et $P = X^{n+1} 2X^n X + 2$.
 - (a) Montrer que P admet deux racines évidentes. Si $n \in \mathbb{N}^*$, montrer que ces racines sont simples.
 - (b) En déduire un polynôme de degré 2 qui divise P.
- 3. En déduire que, pour tout entier naturel n, $A^{n+1} 2A^n A + 2I_3 = 0$.
- 4. Pour tout entier naturel n, on pose $G_n = A^n + A 2I_3$. Trouver une relation de récurrence entre G_{n+1} et G_n , puis en déduire A^n en fonction de n.

Exercice 3:

Exercice 3 : On considère la matrice
$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$
.

1. Montrer que, pour tout entier naturel n, il existe des entiers naturels x_n et y_n tels que :

$$A^n = \begin{pmatrix} x_n & y_n & y_n \\ y_n & x_n & y_n \\ y_n & y_n & x_n \end{pmatrix}$$

et que :
$$\forall n \in \mathbb{N}, \begin{cases} x_{n+1} = 2(x_n + y_n) \\ y_{n+1} = x_n + 3y_n \end{cases}$$
.

- 2. Montrer que la suite $(x_n y_n)_{n \in \mathbb{N}}$ est constante et déterminer la valeur de $x_n y_n$ pour tout entier naturel n.
- 3. En déduire une relation entre x_{n+1} et x_n valable pour tout entier naturel n, puis déterminer x_n en fonction de n.
- 4. En déduire l'expression de A^n pour tout entier naturel non nul n.