گزارش کار آزمایشگاه مدار های الکتریکی قوانین ولتاژ و جریان کیرشهف

آزمایش شماره دو :

وسایل مورد نیاز:

- √ یک باتری جهت منبع تفذیه
- ✓ پنج مقاومت مختلف به اندازه های 3.3 کیلو ، 2.2 کیلو ، 1 کیلو 100 و 470 اهم
 - √ سیم برای اتصال اجزای مدار

اجرای آزمایش:

$V_{\mathcal{S}}$	V_1	V_2	V_3	V_4	V_5
10	6.17	0.81	3.83	5.35	9.19

I_S	I_1	I_2	I_3	I_4	I_5
10.9	2.80	8.14	-8.16	-5.35	-2.78

قانون KCL برای هر چهار نقطه A , B , C , D در مدار صحیح است و در مدار به خوبی مشاهده می شود.

V_R ولت	0	0.5	1	1.5	2	2.5
I_{RMS} میلی آمپر	0	5	10	15	20	25
I_{P-P} میلی آمپر	0	14.1	28.2	42.3	56.4	70.5

نتایج آزمایش 2 همیشه یکسان نیست ؛ این بدین خاطر است که مقاومت دارای تلورانس و خطا در اندازه گیری داریم .

اگر فرکانس را در مدار کاهش دهیم ، ضریب خطا در مدار کاهش میباید ؛ به این دلیل که این ضریب خطا در فرکانس ها بالاتر بیشتر خود را نشان داده و اختلاف آن با میانگین بیشتر می شود .

(2-2)

$$kCL_A = I_1 + I_2 - I_S$$

$$KCL_B = I_4 - I_1 - I_3$$

$$KCL_C = I_4 + I_2 - I_5$$

$$KCL_D = I_3 + I_5 - I_N$$

صحت این قانون با توجه به مشخصات به دست آمده صحیح می باشد و مجموع جریان های ورودی با مجموع جریان های خروجی در نقاط برابر می باشد .

گزارش کار آزمایشگاه مدار های الکتریکی قوانین ولتاژ و جریان کیرشهف

(2-3)

$$KVL_{A=} V_{R_1} + V_{R_3} - V_{S} = 0$$

$$KVL_B = -V_{R_4} - V_{R_5} + V_{R_3} = 0$$

$$KVL_C = -V_{R_2} - V_{R_4} + V_{R_1} = 0$$

$$KVL_P = V_{R_2} + V_{R_5} - V_S$$

صحت این قانون نیز با توجه به اطلاعات به دست آمده در جدول صحیح می باشد .

4-2) بله میتوان با اندازه گیری دو اندازه گیری ولتاژ منابع جریان متصل به آن شاخه در نظر گرفته شده ، مدار را حل نمود ؛ زیرا در این مدار میتوان با داشتن حداقل دو ولتاژ مدار را حل نمود و آن را بررسی کرد.

$$V_S = 10 V$$

$$V_3 = 3.83 V$$

$$V_1 = V_S - V_3 = 10 - 3.83 = 6.17 V$$

$$V_2 = V_1 - V_4 = 6.17 - 5.35 = 0.81 V$$

2-5) بله با اندازه گیری 3 جریان و استفاده از قانون KCL میتوان جریان مدار را حل نمود .

این سه جریان ، جریان هایی هستند که در چهار معادله KCL نوشته شده قرار داشته باشند یا بتوان آن ها را در معادله های دیگر استفاده نمود ، برای مثال جریان های 1 و 2 و 4:

$$I_3 = I_4 - I_1 = -5.35 - 2.80 = -8.16 V$$

$$I_5 = I_4 + I_2 = -5.35 + 8.14 = 2.78 V$$

6-2) اگر به جای منبع ولتاژ ، منبع جریان جریان وجود داشت ، برای اندازه گیری در قسمت چهارم به سه اندازه گیری و در قسمت پنجم به 4 اندازه گیری نیاز است .

گزارش کار آزمایشگاه مدار های الکتریکی قوانین ولتاژ و جریان کیرشهف

م کزارش کار ثاره یک - نوشة شده در تاریخ بیت و دوم مهراه سال یکمزار و سیمد نودونه ، توسط مصطفی فصنلی شهری

