

Table of Contents

Who Is Our Targeted Client:

- ★ The Oscars are a highly visible event, gaining mass attention from the media, individuals in the arts and entertainment industries and movie-goers alike.
- ★ Research shows that more than 40 million viewers tune in to watch the Oscars every year.
- ★ The film and entertainment industries are highly profitable and having predictive models such as this will continue to support and promote success in the arts (Gold et al., 2013).
- ★ The Targeted audience for this project could be filmmakers, highly profitable production companies and streaming services or independent movie producers looking to make a return on their investment.

Data Samples:

```
# import dependencies
import numpy as np
import pandas as pd
from imblearn.over sampling import RandomOverSampler
from pathib import Path
from sklearn.metrics import balanced_accuracy_score, confusion_matrix, classification_report
import matplotlib.pyplot as plt

# Read the CSV file from the Resources folder into a Pandas DataFrame
oscars_df = pd.read_csv("Resources/oscars_df.csv")
# Review the DataFrame
pd.set_option('display.max_columns', Nome)
oscars_df
```


Prev	Code Blame 572 lines (572 loc) · 344 KB		Raw 😃 🕹 🕖	
	Film	Film Studio/Producer(s)	Award Y	ear of
	Wings	Famous Players-Lasky	Winner 1	927
	Battleground	Metro-Goldwyn-Mayer	Nominee 1	949
	7th Heaven	Fox	Nominee 1	927
	The Racket	The Caddo Company	Nominee 1	928
	Alibi	Feature Productions	Nominee 1	929
	Hollywood Revue	Metro-Goldwyn-Mayer	Nominee 1	929
	The Patriot	Paramount Famous Lasky	Nominee 1	928
	All Quiet on the Western Front	Universal	Winner 1	930
	Disraeli	Warner Bros.	Nominee 1	929
	The Divorcee	Metro-Goldwyn-Mayer	Nominee 1	930
	The Love Parade	Paramount Famous Lasky	Nominee 1	929
	East Lynne	Fox	Nominee 1	931
	The Front Page	The Caddo Company	Nominee 1	931
	Skippy	Paramount Publix	Nominee 1	931
	Trader Horn	Metro-Goldwyn-Mayer	Nominee 1	931
	Arrowsmith	Samuel Goldwyn Productions	Nominee 1	931

What We Created:

- ★ First we identified our dataset, cleaned, and then preprocessed our target and features variables using python.
- ★ Our target variable is the 'Award' column (a categorical variable indicating either 'Winner' or 'Nominee'), which we one hot encoded with get dummies.
- ★ We dropped the nominee column and were left with a column called 'Winner' indicating either a positive class 1= Winner, or negative class 0= Nominee.
- ★ We then used a number of functions including regex to split and clean our feature variables including IMDB rating, movie time, production studio, genre, and director nominations

Machine Learning Model

- **★** Model used
 - Logistic Regression Model
- **★** Features/Target
 - Target or y is the winner column
 - Features or X is IMDB rating, movie time, production studio, genre, and director nominations columns
- ★ Split the data
 - Used train-test-split to split the data.
- ★ Fit model and make predictions
 - Used Logistic Regression classifier
- **★** Evaluate Model's performance
 - Calculate the accuracy score
 - Generate a confusion matrix
 - Print the classification report
- **★** Optimize the model
 - Random Over Sampler
 - Random Forest Classifier

Top Ten Directors:

Top Ten Movies:

Movie Length:

Production Company:

Genre:

Model Optimization

First attempt: LogisticRegression

Print the classification report for the model
model_classification = classification_report(y_test, test_predictions)
print(model_classification)

₽			precision	recall	f1-score	support	
		0.0	0.86	0.98	0.92	122	
		1.0	0.33	0.05	0.08	21	
	accur	cacy			0.85	143	
	macro	avg	0.60	0.52	0.50	143	
	weighted	avg	0.78	0.85	0.79	143	

Second attempt: RandomOverSampler

Print the classification report for the model model classification = classification report(y test, test predictions resamp) print(model classification) precision recall f1-score support 0.84 0.71 0.77 0.12 0.24 0.16 accuracy 0.64 0.48 0.48 0.47 macro avq 0.74 weighted avg

Final Model and Findings

Third and Final Attempt: RandomForestClassifer

```
[84] # print classification report print(classification_report(y_test, test_pred_rfc))
```

		precision	recall	f1-score	support
	.0	0.93 1.00	1.00 0.49	0.96 0.66	617 97
accura macro a weighted a	vg	0.96 0.94	0.75 0.93	0.93 0.81 0.92	714 714 714

Challenges:

- \star Combining the production companies with the same names.
 - There were multiple production companies who had the same name but slightly different spelling. Using regex we were able to change the names of the production companies to be concise and get rid of any duplications.
- ★ Genres column
 - The genres column had to be changed from a string to an array. We were able to separate all of the genres and combine them so there were no duplications. We also changed some spelling errors in the column to ensure no duplicates were present.

Next Steps:

- ★ We could progress this project further by making it more equitable and having the data analyzed independent films in relationship to independent film awards (Example: Sundance film festival)
- ★ We could also include additional features in our model such as actors, the musical score, budget of the film, or prop-bets by exploring different datasets and websites
- ★ Additionally, we could deploy our machine learning model using a flask app to increase front-facing usability

Citations

Gold, M., McClarren, R., & Gaughan, C. (2013). The lessons Oscar taught us: data science and media & entertainment. Big Data, 1(2), 105-109.

https://www.kaggle.com/datasets/martinmrazo7/oscar-movies