# Discussion 7

EE599: Deep Learning
Olaoluwa Adigun
Spring 2020



#### Training MLP with Backpropagation

Find the best parameter  $\Theta^*$  that minimizes the cost function



Backpropagation uses a variant of stochastic gradient descent to updates the weights

#### Model Architecture



- Input Layer *x*: *L* neurons with *identity* activation
- Hidden Layer  $h_1$ : I neurons with *sigmoid* activation
- Hidden Layer  $h_2$ : J neurons with sigmoid activation
- Output Layer t: J neurons with softmax activation

#### Forward Pass over MLP Model (Inference)



- $b_l^{h_1}$ : Bias to the  $l^{th}$  neuron at the hidden layer  $h_1$
- $oldsymbol{v}_{li}$  : Weight connecting the  $l^{th}$  neuron of the hidden layer  $h_1$  to the  $i^{th}$  input neuron
- $b_i^{h_2}$ : Bias to the  $j^{th}$  neuron at the hidden layer  $h_2$
- $w_{il}$ : Weight connecting the  $l^{th}$  neuron of layer  $h_1$  to the  $l^{th}$  neuron of layer  $h_2$
- $b_k^t$ : Bias to the  $k^{th}$  output neuron
- $u_{kj}$ : Weight connecting the  $j^{th}$  neuron of the hidden layer  $h_1$  to the  $k^{th}$  output neuron

$$o_l^{h_1} = \sum_{i=1}^{I} v_{li} \ a_i^x + b_l^{h_1}$$

$$a_l^{h_1} = \frac{1}{1 + \exp^{-o_l^{h_1}}}$$

$$o_j^{h_2} = \sum_{l=1}^{L} w_{jl} \ a_l^{h_1} + b_j^{h_2}$$

$$a_j^{h_2} = \frac{1}{1 + \exp^{-o_j^{h_2}}}$$

$$o_k^t = \sum_{j=1}^{J} u_{kj} a_j^{h_2} + b_k^t$$

$$a_k^t = \frac{\exp(o_k^t)}{\sum_{r=1}^{K} \exp(o_r^t)}$$

# Forward Pass over MLP Model (Inference)



- $m{b}^{h_1}$ : Bias vector to the hidden layer  $h_1$
- $oldsymbol{V}$  : Weight connecting the input layer to hidden layer  $h_1$
- $oldsymbol{b}^{h_2}$ : Bias vector to the hidden layer  $h_2$
- $\pmb{W}$ : Weight connecting the hidden layer  $h_1$  to hidden layer  $h_2$
- $b^t$ : Bias vector to the output layer
- $extbf{ extit{ extit{ extbf{ extit{ extit{\extit{ extit{ extit{ extit{ extit{ extit{ extit{ extit{ extit{\extit{\extit{\extit{\extit{\extit{\extit{ extit{ extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\extit{\exti$

$$\mathbf{o}^{h_1} = (\mathbf{V} \times \mathbf{a}^x) + \mathbf{b}^{h_1}$$
 $\mathbf{a}^{h_1} = \sigma(\mathbf{o}^{h_1})$ 
 $\mathbf{o}^{h_2} = (\mathbf{W} \times \mathbf{a}^{h_1}) + \mathbf{b}^{h_2}$ 
 $\mathbf{a}^{h_2} = \sigma(\mathbf{o}^{h_2})$ 
 $\mathbf{o}^t = (\mathbf{U} \times \mathbf{a}^{h_2}) + \mathbf{b}^t$ 
 $\mathbf{a}^t = \operatorname{Softmax}(\mathbf{o}^t)$ 

## Error Function and Backpropagation



Cross entropy

$$E(\Theta) = -\sum_{k=1}^{K} y_k \log a_k^t = -\mathbf{y}^T \log \mathbf{a}^t$$

Update rule

$$\Theta^{(n+1)} = \Theta^{(n)} - \eta \nabla E(\Theta) \Big|_{\Theta = \Theta^{(n)}}$$

$$\mathbf{o}^{h_1} = (\mathbf{V} \times \mathbf{a}^x) + \mathbf{b}^{h_1}$$
 $\mathbf{a}^{h_1} = \sigma(\mathbf{o}^{h_1})$ 
 $\mathbf{o}^{h_2} = (\mathbf{W} \times \mathbf{a}^{h_1}) + \mathbf{b}^{h_2}$ 
 $\mathbf{a}^{h_2} = \sigma(\mathbf{o}^{h_2})$ 
 $\mathbf{o}^t = (\mathbf{U} \times \mathbf{a}^{h_2}) + \mathbf{b}^t$ 
 $\mathbf{a}^t = \operatorname{Softmax}(\mathbf{o}^t)$ 

## **Backpropagation Update Rule**



$$\mathbf{o}^{h_1} = (\mathbf{V} \times \mathbf{a}^x) + \mathbf{b}^{h_1}$$
 $\mathbf{a}^{h_1} = \sigma(\mathbf{o}^{h_1})$ 
 $\mathbf{o}^{h_2} = (\mathbf{W} \times \mathbf{a}^{h_1}) + \mathbf{b}^{h_2}$ 
 $\mathbf{a}^{h_2} = \sigma(\mathbf{o}^{h_2})$ 
 $\mathbf{o}^t = (\mathbf{U} \times \mathbf{a}^{h_2}) + \mathbf{b}^t$ 
 $\mathbf{a}^t = \operatorname{Softmax}(\mathbf{o}^t)$ 

$$\frac{\partial E}{\partial u_{kj}} = (y_k - a_k^t) a_j^{h_2}$$

$$\nabla_U E(\Theta) = (\mathbf{y} - \mathbf{a}^t)^T \mathbf{a}^{h_2}$$

# **Backpropagation Update Rule**



$$\mathbf{o}^{h_1} = (\mathbf{V} \times \mathbf{a}^x) + \mathbf{b}^{h_1}$$
 $\mathbf{a}^{h_1} = \sigma(\mathbf{o}^{h_1})$ 
 $\mathbf{o}^{h_2} = (\mathbf{W} \times \mathbf{a}^{h_1}) + \mathbf{b}^{h_2}$ 
 $\mathbf{a}^{h_2} = \sigma(\mathbf{o}^{h_2})$ 
 $\mathbf{o}^t = (\mathbf{U} \times \mathbf{a}^{h_2}) + \mathbf{b}^t$ 
 $\mathbf{a}^t = \operatorname{Softmax}(\mathbf{o}^t)$ 

$$\frac{\partial E}{\partial w_{jl}} = \left(\sum_{k=1}^{K} (y_k - a_k^t) u_{kj}\right) a_j^{h_2} (1 - a_j^{h_2}) a_l^{h_1}$$

$$\nabla_W E(\Theta) = \left( \left( \left( \mathbf{y} - \mathbf{a}^t \right)^T \mathbf{U} \right) \odot \mathbf{a}^{h_2} \odot (1 - \mathbf{a}^{h_2}) \right)^T \mathbf{a}^{h_1}$$

## **Backpropagation Update Rule**



$$\mathbf{o}^{h_1} = (\mathbf{V} \times \mathbf{a}^x) + \mathbf{b}^{h_1}$$
 $\mathbf{a}^{h_1} = \sigma(\mathbf{o}^{h_1})$ 
 $\mathbf{o}^{h_2} = (\mathbf{W} \times \mathbf{a}^{h_1}) + \mathbf{b}^{h_2}$ 
 $\mathbf{a}^{h_2} = \sigma(\mathbf{o}^{h_2})$ 
 $\mathbf{o}^t = (\mathbf{U} \times \mathbf{a}^{h_2}) + \mathbf{b}^t$ 
 $\mathbf{a}^t = \operatorname{Softmax}(\mathbf{o}^t)$ 

Update rule

$$\frac{\partial E}{\partial v_{li}} = \left(\sum_{j=1}^{J} \left(\sum_{k=1}^{K} (y_k - a_k^t) u_{kj}\right) a_j^{h_2} (1 - a_j^{h_2}) w_{jl}\right) a_l^{h_1} (1 - a_l^{h_1}) a_i^x$$

$$\nabla_V E(\Theta) = \left( \left( \left( \left( \mathbf{y} - \mathbf{a}^t \right)^T \mathbf{U} \right) \odot \mathbf{a}^{h_2} \odot (1 - \mathbf{a}^{h_2}) \right) \times \mathbf{W}^T \right) \odot \mathbf{a}^{h_1} \odot (1 - \mathbf{a}^{h_1}) \right)^T \mathbf{a}^x$$