Spotify Song Recommendations

Daniel Wang, Yan Wang, Kate Yee, Xinyang Zhou

Table of contents

- 01 Business Objective & Methodology
- **02** Data Overview and EDA
- 03 Dimensionality Reduction
- **04** Clustering
- **05** Recommendation System

Business Objective

How can Spotify leverage the commonalities among songs to optimize song recommendations to users'?

Data Mining Methodology

Dimensionality Reduction

Clustering

Recommendation Systems

- tSNE for visualization
- PCA

- K-Prototype
- K-means
- DBScan

Recommendation Systems

- Filter by song similarity
- Sort by popularity

Overview and EDA

Dataset Overview

- Most Streamed Spotify Songs in 2023
 - o 954 rows, 24 columns
- Columns Kept
 - Categorical: track_name, artist(s)_name, key, mode
 - Numerical: in_spotify_playlists, in_spotify_charts, bpm, danceability_%, valence_%, energy_%, acousticness_%, instrumentalness_%, liveness_%, speechiness_%, released_year

Feature Explanations

- track_name: Name of the song
- artist(s)_name: Name of the artist(s) of the song
- > in_spotify_playlists: Number of Spotify playlists the song is included in
- > in_spotify_charts: Presence and rank of the song on Spotify charts
- > **bpm**: Beats per minute, a measure of song tempo
- > **key**: Key of the song
- **mode**: Mode of the song (major or minor)
- danceability_%: Percentage indicating how suitable the song is for dancing
- > **valence_%**: Positivity of the song's musical content
- > energy_%: Perceived energy level of the song
- > acousticness_%: Amount of acoustic sound in the song
- > instrumentalness_%: Amount of instrumental content in the song
- > liveness_%: Presence of live performance elements
- speechiness_%: Amount of spoken words in the song

Data Preprocessing

- Removed nulls
- Handled data types
- Removed redundant columns
 - Chose in_spotify_charts as the preferred popularity metric
 - 1 is more popular
 - 148 is not appearing in charts

Top Artists on Spotify in 2023

- The rank is based on the number of tracks, from highest to lowest
- Do you see your favorite on the list ??

29	Taylor Swift
17	The Weeknd
17	SZA
16	Bad Bunny
13	Harry Styles
12	Kendrick Lamar
9	Ed Sheeran
9	Morgan Wallen
8	BTS
8	Feid
7	Olivia Rodrigo
7	Drake, 21 Savage

Interactive Scatterplot

Interactive Scatter Plot of Speechiness % vs Energy %

Correlation Matrix

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

-0.2

 Some correlation between numerical columns, but not an overwhelming amount

Violin Distribution Plots

Categorical Variables Plots

- C# is the most common key
- There are more songs in major than minor

Dimensionality . Reduction

tSNE for Visualization

- 2 Components
- KL Divergence: 1.02486
- Number of iterations: 999
- Effective for released year

tSNE for Visualization

- Not as effective for other categorical variables

PCA

released_year
in_spotify_playlists
in_spotify_charts
bpm
danceability_%
valence_%
energy_%
acousticness_%
instrumentalness_%
liveness_%
speechiness %

Component 1	Component 2
-0.260289	-0.523572
0.107906	0.599054
0.108565	-0.137120
0.034223	0.059526
-0.463341	-0.190716
-0.407372	0.143267
-0.508831	0.315087
0.463723	-0.218230
0.172079	-0.039959
-0.038403	0.088803
-0.148249	-0.362459

- Chose 2 Components
- Loadings Interpretation:
 - PC1: Mostly composed of 4 song quality attributes
 - Lower value: darker more acoustic music
 - Higher value: happier poppier music
 - PC2: Mostly composed of release year and playlist frequency
 - Lower value: More recent songs
 - Higher value: Classic hits

PCA - Released Year

PCA - Mode and Key

Mode and key are spread across the PC mapping

Clustering

K-Prototype

- Inputs: PC1, PC2, Mode, Key
- Best number of clusters: 3
- Best Silhouette Score: 0.4469

- Cluster interpretation
 - O: Moody Modern Tracks
 - 1: Pop Bops
 - 2: Classic Hits

K-Means

- Inputs: PC1, PC2
- Best number of clusters: 3
- Maximum Silhouette Score: 0.4495
- Similar cluster interpretation

DBSCAN

- Inputs: PC1, PC2
- Best eps: 1
- Best min_samples: 10,
- Best silhouette score: 0.5719

- Cluster interpretation
 - O: Modern Bops
 - -1: Classic Hits

Best Choice

- K-Prototypes
 - Pros: numerical and categorical data, interpretable
 - Cons: parameter choice complexity, computationally expensive than K-Means
- K-Means
 - Pros: simple, efficient, scalable, interpretable
 - Cons: sensitive to initial centroids, spherical cluster assumption
- DBscan
 - Pros: highest silhouette score, automatic cluster number, flexible shape
 - Cons: sensitive to eps and minPts, difficult to interpret
- Final Decision: **K-Prototypes**
 - Interpretable for Spotify insights
 - Contains numerical and categorical data

Recommendation System

Clustering Recommendation Strategy

Given a song a user likes follow these steps to return recommended songs:

- Find what cluster that original song belongs to from our previous
 K-Prototype clusters
- 2. Filter the songs in that cluster (not including input song) by the same key and mode
- 3. Sort the remaining songs by popularity
- 4. Return as many of the top songs in the sorted list as requested
- 5. If the sorted list is shorter than the number of requested recommendations, return the remaining overall most popular songs from the cluster.

User Experience

- Enter a track name
- 2. Enter numbers of recommendations

Enter "quit" to exit the system

Welcome to Spotify Recommender System.

Enter "quit" at any time to exit the system.
Please enter a track name.
LALA
Please enter numbers of recommendations you want.
4

Start recommending ... Please wait...

Based on your favorite song style and popularity: Recommendation 730:

Track Name: TUS L��GR Artist Name: Sech, Mora

Spotify Chart Rank: -1.122594647370691

Recommendation 699: Track Name: Dos Mil 16 Artist Name: Bad Bunny Spotify Chart Rank: -1.1071967254893416

Recommendation 388: Track Name: KICK BACK Artist Name: Kenshi Yonezu Spotify Chart Rank: -1.091798803607992

Recommendation 563: Track Name: Bar Artist Name: Tini, L-Gante Spotify Chart Rank: -1.091798803607992

Spotify Insights

Clustering System

- Can be used for song categorization
 - O: Moody Modern Tracks
 - 1: Pop Bops
 - 2: Classic Hits

Recommendation System

- Filter by song similarity
- Sort by popularity

Thanks!

