CoolingGen

Eine Software zur Erstellung von Kühlungsgeometrien

Julian Lüken 22. März 2023

Problemstellung / Kühlung

- Effizienz der Turbine kann theoretisch durch großen Temperaturgradienten erhöht werden
 - \rightarrow Praktisch strebt man darum hohe Temperaturen in der Brennkammer an
- Aber: Hohe thermische Last der Turbinenschaufeln führt zu starker Abnutzung
 - → Kühlung wird benötigt
- ▶ Aber: Die Kühlung wiederum nutzt Luftstrom, der nicht für den Antrieb benutzt werden kann
 - → Negativer Einfluss auf Wirkungsgrad
- → Kühlungsdesign ist Filigranarbeit!

Problemstellung / Kühlung

Kühlungsdesign setzt sich u.a. aus den folgenden Aspekten zusammen:

- Auswahl/Konditionierung der Kühlluft
- Auswahl der verwendeten Werkstoffe
- Gestaltung der Kühlstrukturen

Diese Kühlstrukturen beinhalten

- ► Kühlkanäle ("cooling channels"),
- ► Prallkühlung ("impingement cooling"),
- Rippen ("rib turbulators"),
- ► Filmkühlung ("film cooling"),
- Pin-fins,
- und Ausblasungsschlitze ("trailing edge slots").

(a) Rotor.

(b) Stator im Profil.

Problemstellung / Geometrieerzeugung

Mit CAD-Software lassen sich solche Strukturen erstellen. Leider ist der Prozess zeitaufwendig und schwierig.

- Parametrische Werkzeuge innerhalb herkömmlicher CAD Software bieten meistens nur eine semantische Schnittstelle für einfache Strukturen (z.B. Zylinder, Quader, Kegel), die sich allerdings beliebig miteinander kombinieren lassen (z.B. Verschneiden, Vereinen).
- Durch die Erstellung von Freiformkörpern gibt es gar keine parametrische Schnittstelle zur "mechanischen Realität". Dies beeinträchtigt die Möglichkeit zur einfachen Modifikation.
- → In beiden Fällen entsteht ein Modell, welches schwierig zu erstellen/modifizieren ist

Unser Lösungsansatz: Wir erstellen uns eine eigene CAD-Software, die für uns die speziellen Kühlstrukturen mithilfe von bedeutungsträchtigen Parametern erstellt. Damit geht die Erstellung und Modifikation von Kühlungsgeometrien einfacher und schneller.

- Kühlkanäle
- Filmkühlung
- Prallkühlung
- Ausblasungsschlitze
- O Pin-fins

- → Kühlkanäle
- Filmkühlung
- Prallkühlung
- Ausblasungsschlitze
- O Pin-fins

Bei der Erstellung von Kühlkanälen unterscheiden wir in CoolingGen zwischen zwei Teilstrukturen:

1. Kammern

DLR.de • Folie 7

Kammern ermöglichen dem Fluid, die Schaufel in radialer Richtung zu durchqueren (orange)

2. Umkehrungen

Umkehrungen ermöglichen den Transport des Fluids von einer Kammer in die nächste (blau)

Zum Erstellen der Kammern begeben wir uns vom Standardkoordinatensystem (x, y, z) in das $(m, r\theta)$ Stromlinien-Koordinatensystem. Hier sind die isoradialen Profilkurven der Schaufeln auf kanonische Weise 2D, was viele Operationen vereinfacht.

(a) Partitionierung des Profils.

Entlang der Skelettlinie kann man nun Wand-positionen und -winkel festlegen, um mehrere Kammern zu erhalten.

(b) Eine resultierende Partition.

Wie vorhin:

So erhalten wir ein Kammerprofil.

Geometrien / Kanäle / Kammern / Fillets

Wie kriegt man **Fillets** mit Radius *r*? Wir finden den Schnittpunkt der *r***-Offset-Kurven**:

Geometrien / Kanäle / Kammern / Offset-Kurven

Dabei ist die r-Offset-Kurve von der Kurve γ definiert als

$$O_r^{\gamma}(t) := \gamma(t) + rN^{\gamma}(t),$$

wobei

$$N^{\gamma}(t) := rac{
abla \gamma(t)^{\perp}}{||
abla \gamma(t)||}$$

der Normalenvektor und

$$\nabla \gamma(t)^{\perp} = \left(\frac{\mathrm{d}x}{\mathrm{d}t}(t), \frac{\mathrm{d}y}{\mathrm{d}t}(t)\right)^{\perp} := \left(-\frac{\mathrm{d}y}{\mathrm{d}t}(t), \frac{\mathrm{d}x}{\mathrm{d}t}(t)\right)$$

die linksseitige Orthogonale von γ an der Stelle t ist.

Dann transformieren wir die $(m, r\theta)$ Kammerprofile ins (x, y, z) System und verbinden sie miteinander.

A)

Geometrien / Kanäle / Umkehrungen

Umkehrungen werden aus den Kammern erstellt:

Geometrien / Kanäle / Umkehrungen

Geometrien / Kanäle

Kammern und Umkehrungen o Kanäle

- Kühlkanäle
- Filmkühlung
- Prallkühlung
- Ausblasungsschlitze
- Pin-fins

- Kühlkanäle
- → Filmkühlung
- Prallkühlung
- Ausblasungsschlitze
- O Pin-fins

Geometrien / Filmkühlung

Geometrien / Filmkühlung

(a) Zylindrisch

(b) Laid back fan-shaped

(c) Begrenzende Kurven

Links: Einbettung der 2D Kurven im 3D Raum entlang einer Strecke zwischen Schaufel *B* und Kanal *C*.

Rechts: Linearkombination der resultierenden Körper. $v_{\text{transition}}$ ist ein Eingabeparameter.

Geometrien / Filmkühlung

$$F([0,1]^2) \subset \bigcup_{v_F \in \{0,1\}} \bigcup_{u_F \in [0,1]} R_{P,Q-P}([0,\infty))$$

Filmkühlungsbohrungen sind per Konstruktion Teilmengen von Halbgeraden (engl. rays). Wir nutzen ray marching, um die einzelnen Rays mit den umgebenden Flächen zu schneiden.

Geometrien / Filmkühlung

- Kühlkanäle
- Filmkühlung
- Prallkühlung
- Ausblasungsschlitze
- O Pin-fins

- Kühlkanäle
- Filmkühlung
- → Prallkühlung
- Ausblasungsschlitze
- O Pin-fins

Geometrien / Prallkühlung

Geometrien / Prallkühlung

Geometrien / Prallkühlung

- Kühlkanäle
- Filmkühlung
- Prallkühlung
- Ausblasungsschlitze
- Pin-fins

- Kühlkanäle
- Filmkühlung
- Prallkühlung
- → Ausblasungsschlitze
- O Pin-fins

Geometrien / Slots

Geometrien / Slots

Geometrien / Slots

- Kühlkanäle
- Filmkühlung
- Prallkühlung
- Ausblasungsschlitze
- O Pin-fins

- Kühlkanäle
- Filmkühlung
- Prallkühlung
- Ausblasungsschlitze
- → Pin-fins

Geometrien / Pin-fins

- Kühlkanäle
- Filmkühlung
- Prallkühlung
- Ausblasungsschlitze
- Pin-fins

Nutzung

- Prozesskette
- Vollkörpererzeugung
- O CFD mit TRACE

Prozesskette

Bisher erzeugte Geometrien liegen nur als Flächen vor. Diese Flächen repräsentieren jedoch Vollkörper, die wir mithilfe von OpenCASCADE Technology SDK aus unseren Flächen erzeugen.

Vollkörper aus Flächen

CFD mit TRACE

Fragen/Anmerkungen

Fragen? Anmerkungen?

Ende

Danke!

