第四部分 图 论

计算机(软件)学院 林 兰

linlan@scu. edu. cn

主要内容

- 12.1 平面图的基本概念
- 12.2 欧拉公式
- 12.3 平面图的判断
- 12.4 平面图的对偶图
- 12.5 平面的点着色与图的着色

定义1(平面图)

一个无向图G=(V,E),如果能把它的所有结点和边画在平面上,使得任何两边除公共结点外没有其他交叉点,则称G为平面图,否则称G为非平面图。

例1 一工厂有A, B, C三个车间和L, M, N三个仓库, 因为工作需要车间与仓库间设专用车道,为了避免车祸, 车道最好不相交,问可能吗?

根据题意为:完全二部图 K_{3,3}

K_{3.3}不是平面图,有交点。

定义2(面)

设G是一个平面图,由图中的边所包围的其内部不包含图的结点和边的区域,称为G的一个面;

包围该面的诸边所构成的回路称为这个面的边界;

面r的边界的长度(边数)称为该面的度,简称面度,记为deg(r)。

区域面积有限的面称为有限面(内部面),区域面积无限的面称为无限面(外部面)。

显然,平面图有且仅有一个无限面。

例2 在右图中有9个结点,11条边, 把平面分成4个面 r_0 、 r_1 、 r_2 、 r_3 。 其中

- r_0 是外部面(无限面), 边界为abdeheca, $d(r_0) = 7$;
- r₁、r₂、r₃。是内部面(有限面):
 - ✓ r_1 的边界为abca, $d(r_1)=3$;
 - ✓ r_2 的边界为becijikicb, $d(r_2) = 9$;
 - ✓ r_3 的边界为bdeb, $d(r_3)=3$ 。

定理1: 若图G是平面图,则G的任何子图都是平面图。

定理2: 若图G是非平面图,则G的任何母图也是非平面图。

推论: $K_n(n \ge 5)$ 和 $K_{3,n}(n \ge 3)$ 是非平面图。

定理3 在一个平面图中,所有面度之和等于图中边数的 2倍。即

$$\sum_{i=1}^{r} \deg(F_i) = 2m$$

主要内容

- 12.1 平面图的基本概念
- 12.2 欧拉公式
- 12.3 平面图的判断
- 12.4 平面图的对偶图
- 12.5 平面的点着色与图的着色

■ 1750年,欧拉发现,任何一个凸多面体,若有n个顶点、m 条棱和f个面,则有n-m+f=2。这个公式可以推广到平面图 上来,称之为欧拉公式。

n=10, m=15, f=7; n-m+f=2

定理4 设**G**是一个面数为f的(n, m)连通平面图,则恒有n-m+f=2 顶点数-边数+面数=2

证明: ::G是连通图,可构造G的一个生成树T,则T也是平面图,且只有一个面(外部面)。 再对T依次加入树补边,根据树的等价命题,每增加一条树补边,将增加一个圈,即增加一个内部面。

- "树补边共有 m-(n-1)条, 即共m-(n-1)个内部面
- :. 面数=内部面数+外部面数, 即f = m-(n-1)+1整理上式得 n-m+f=2。

推论 对于具有 $k(k \ge 2)$ 个连通分支的平面图G,有n-m+f=k+1

定理5 设**G**是(n, m)<mark>连通简单平面图($n \ge 3$),则有 $m \le 3n - 6$ </mark>

证明: : G是连通的、简单图, $n \geq 3$

则**G**中的面至少有**3**条边围成,即 $\deg(Fi) \geq 3$

 \mathbb{X} : $\sum \deg(Fi) = 2m$

设共有f个面,则 $2m = \sum \deg(Fi) \ge 3f$

代入欧拉公式: $2 = n - m + f \le n - m + \frac{2m}{3}$

整理得: $m \leq 3n - 6$

推论 在任何简单连通平面图中,至少存在一个其度不超过5的结点。

围长:一个图的围长为它包含的最短圈的长度。

一个图若不含圈,则规定其围长为无穷大。

定理6 设G是一个围长g≥3的(n, m)连通平面图,则

$$m \leq \frac{gn-2g}{g-2}$$

证明: 围长 $g \leq$ 图中任何面的度数

设共有f 个面,则 $g \cdot f \leq$ 所有面的度数和= 2m 代入欧拉公式: $2 = n - m + f \leq n - m + \frac{2m}{g}$

整理得: $m \leq \frac{gn-2g}{g-2}$

说明:

定理5和定理6本身可能用处不大,但它的逆否命题 却非常有用,可以用它们来判定某些图是非平面图。即 一个简单连通图,若不满足

$$m \leq 3n - 6 \quad \overline{\mathbb{R}} \quad m \leq \frac{gn - 2g}{g - 2}$$

则一定是非平面图。

但需要注意,满足上面不等式的简单连通图未必是平面图。

例3 用以上定理证明K₅和K_{3.3}是非平面图。

(1)因为 K_5 是简单连通图,n=5,m=10,因此 $m>3n-6=3\times5-6=9$,不满足 $m\le3n-6$ 。故 K_5 是非平面图。

(2)图 $K_{3,3}$, n=6, m=9, 围长 g=4,

但9≤(4×6-2×4)/(4-2)=8,不满足第二个必要条件,

所以它也是一个非平面图。

而 $K_{3,3}$,满足不等式 $m \leq 3n-6$ 。

主要内容

- 12.1 平面图的基本概念
- 12.2 欧拉公式
- 12.3 平面图的判断
- 12.4 平面图的对偶图
- 12.5 平面的点着色与图的着色

12.3 平面图的判断

若一个图是可平面的,则通过删除一条边 {u, v} 并添加一个新的顶点w和两条边 {u, w} 与 {w, v} ,所获得的任何图也是可平面的。这样的操作称为初等细分。

例如:

12.3 平面图的判断

定义 若可以从相同的图通过一系列的细分来获得图G1和G2,则称G1和G2是同胚的(2度结点内同构)。

定义 K₅和K_{3.3}称为库拉托夫斯基图。

定理8(库拉托夫斯基定理):一个图是平面图,当且仅当它不包含任何在2度结点内和库拉托夫斯基图同构的子图。

例4 证明下图a所示的彼得森图是一个非平面图。

作业

✓ 习题十二

2(b)、4、5

主要内容

- 12.1 平面图的基本概念
- 12.2 欧拉公式
- 12.3 平面图的判断
- 12.4 平面图的对偶图
- 12.5 平面的点着色与图的着色

定义 (对偶图)

将平面图G嵌入平面后,通过以下过程:

- ① 对图G的每个面F_i内部作一个且仅一个结点v_i*;
- ② 经过每两个面 F_i 和 F_j 的每一共同边界 e_k 作一条边 e_k *= (v_i^*, v_i^*) 与 e_k 相交;
- ③ 当 e_k 只是一个面的 F_i 的边界时, v_i *恰存在一自回路与 e_k 相交。

所得的图称为图G的对偶图,记为G*。

■ 对偶图的画法

虚线和兰圈分别是 G*的边和结点,实线和 红圈分别是G的边和点; G*的每条边只与G中分隔 面F_u和F_v的边交叉一次。

从对偶图的定义,特别是从其表示方法中可以清楚地 看到:

- 每个平面图都有对偶图.
- 若G*是连通图G的对偶图,则G也是G*的对偶图;
- 若G是连通的平面图,则G**≅G。
- 事实上,存在着对偶图是一个图为平面图的充分必要条件,对偶图的平面性是显而易见的。

定理9 设G*是连通平面图G的对偶图, n*, m*, f*和n, m, f 分别为G*和G的顶点数, 边数和面数, 则:

- ① **n*=f**
- ② **m***=**m**
- ③ f*=n
- ④ 设G*的顶点u_i*位于G的面R_i中,则d(u_i*)=deg(R_i)。

✓ 习题十二

主要内容

- 12.1 平面图的基本概念
- 12.2 欧拉公式
- 12.3 平面图的判断
- 12.4 平面图的对偶图
- 12.5 图的着色

引入

1852年英国一个青年盖思里(Guthrie)提出地图四色问题。

考虑在一张平面地图上,是否可以用四种颜色为地图着色,使得相邻国家着有不同的颜色。这个问题成为数学难题,一百多年来,都未能从理论上严格证明这个问题。直到1976年,由美国的K. Appel和W. Haken利用计算机给出了证明。

引入

根据图的对偶图的构造方法,平面里的任何地图都具有可平面的对偶图。

给地图的区域着色的问题等价于这样一个问题:给对偶图的顶点着色,使得在对偶图里没有两个相邻顶点具有相同的颜色。

1. 定义

简单图的着色是对图中的每个顶点都指定一种颜色, 使得没有两个相邻的顶点颜色相同。

若能用k种颜色给图G的顶点着色,就称对G进行了k着色。

着色这个图所需要的最少颜色数称为图的色数。若色数为k,记为 $\chi(G) = k$ 。

- ◆ 证明一个图的色数为n需要做两件事:
 - ① 首先构造出用n种颜色着色这个图;
 - ② 证明用少于n种颜色不能着色这个图。

例6 特殊图的着色(定理)

定理

对于任意的图G(不含环),均有 χ (G) $\leq \Delta$ (G) + 1.

2. 五色定理

定理 任何连通简单平面图都是可以5着色的。

引理:在任何简单平面连通图中,至少存在一个顶点 v_0 ,其度数 $d(v_0) \leq 5$ 。(P159)

证明:对图的顶点数n作归纳。

当n ≤ 5时,定理显然成立。

假设n = k(k > 5)时,结论成立。现证明n = k + 1时也成立。

由引理知:图G至少存在一个顶点 v_0 ,其度数 $d(v_0) \le 5$ 。在图G中删去 v_0 得图G- $\{v_0\}$,由归纳假设知,G- $\{v_0\}$ 可以5着色的。再将加回去,有两种可能:

- (1) $d(v_0) < 5$ 或 $d(v_0) = 5$ 但和邻接的5个顶点着色数小于5,则 v_0 很容易着色,使得图G是5着色的。
- (2) $d(v_0) = 5$ 且和邻接的5个顶点着的5种颜色,如图(a)所示。

 $G-\{v_0\}$ 中所有红黄色顶点称为红黄集;

 $G-\{v_0\}$ 中所有黑白色顶点称为黑白集。

用G_{红黄}表示由红黄集导出的点诱导子图。

图 (a)

v₁和v₃是G_{红黄}中两个结点,根据v₁和v₃是否连通,又有两种可能:

① v₁和v₃在G_{红黄}中不连通,属于两个不同分图中,如图(b)。 将v₁所在分图的红黄色对调,不会影响G-{v₀}的正常着色。 然后将v₀着上红色,即得图G的5着色。

② v₁和v₃在G_{红黄}中连通,属于同一分图中, 必有一条红黄色间隔出现的路径P,加 上v₀可构成回路C。如图(c)。

回路C将黑白集分为两个子集,一个在回路内,一个在回路外,则黑白集导出的子图 $G_{\text{黑白}}$ 至少有两个分图,一个在C内,一个在C外。

于是问题转化为①类型处理。即得图 G的5着色。

图 (c)

3. 图着色的应用

图着色在调度和分配有关的问题中具有多种应用。

例7 某所大学里期末要安排七门课程的考试,假定科目从1到7编号,下列各对科目的考试有学生都要参加:

1和2,1和3,1和4,1和7,2和3,2和4,2和5,2和7,3和4,3和6,3和7,4和5,4和6,5和6,5和7,6和7。

如何安排考试,使得没有学生在同一时间段上考试两门课程?

解:首先建立图模型,用顶点表示科目,若有学生要考两门试,则在表示科目的两个顶点之间有边。用不同的点颜色来表示期末考试的每个时间段。考试安排就是对于的图的着色。

画出图,着色,色数为4。

所以,考试需要四个时间段:

时间段	考试科目
I	1, 6
II	2
III	3, 5
IV	4, 7

作业

✓ 习题十二

11、12