Llista 2

1 Corbes i llurs longituds

1. Calcula la longitud dels arcs següents del pla:

(a) $r = e^{-\theta}$ (b) $r^2 = \cos 2\theta$ (c) $r = \sin 3\theta$ (d) $r = 1 + \cos \theta$ (e) $r = |\sin 2\theta|$ (f) $r = 1 + \cos \frac{\theta}{2}$

2. Considerem l'arc a l'espai donada per la parametrització $x = \cos t, y = \sin t, z =$ h(t), amb $h:[0,+\infty)\to \mathbf{R}$ creixent. Fes-ne un dibuix i calcula la seva longitud pel cas $h(t) = t, h(t) = t^2$.

3. Dibuixa i calcula la longitud del gràfic $y = -\log(\cos x), 0 \le x \le \frac{\pi}{4}$.

4. Calcula la longitud de la catenària $y = a \cosh \frac{x}{a}, -a \le x \le a$ (la catenària és la forma que té un cable o cadena penjant entre dos punts per acció del propi

5. Si $\gamma:[a,b]\to\mathbf{R}^m$ amb components $\gamma=(\gamma_1,\cdots,\gamma_m)$, definim la integral

$$\int_a^b \gamma(t) dt = \left(\int_a^b \gamma_1(t) dt, \cdots, \int_a^b \gamma_m(t) dt \right).$$

Demostra que

$$\|\int_a^b \gamma(t) dt\| \le \int_a^b \|\gamma(t)\| dt.$$

6. Sense utilitzar la interpretació geomètrica, demostra que si $\gamma:[a,b]\to \mathbf{R}^m$ és un arc simple de classe C^1 llavors

$$\int_{a}^{b} \|\gamma'(t)\| \, dt \ge \|\gamma(b) - \gamma(a)\|.$$

7. Determineu el punt on els dos arcs

$$\alpha(t) = (e^t, 2\cos t, t^2 - 2), \ \beta(s) = (s, 2, s^2 - 3)$$

es tallen i calculeu l'angle d'intersecció.

8. Siguin r(t), v(t) = r'(t), a(t) = r''(t) la posició, velocitat i acceleració d'una partícula a l'espai, on t és el temps. Se sap que a(t) = (0, t, t), v(1) = (0, 5, 0),r(1) = (0,0,0). Determine v(t), r(t) i r(2).

1

- 9. Suposem que l'arc de classe $C^1, \gamma: \mathbf{R} \to \mathbf{R}^3$ descriu el moviment d'una partícula.
 - (a) Demostreu que si la partícula es mou a la superfície d'una esfera de centre (0,0,0), aleshores els vectors de posició, $\gamma(t)$ i de velocitat $\gamma'(t)$ són ortogonals.
 - (b) demostreu que si el mòdul de la velocitat és constant, aleshores l'acceleració i la velocitat són ortogonals.
- 10. Demostra que si γ és un arc simple de longitud finita que uneix dos punts d'un domini U dins U, que no és un segment, aleshores hi ha una poligonal més curta que també els uneix dins U. En particular, si $d_U(P,Q) \neq ||P-Q||, d_U(P,Q)$ no és accessible.
- 11. Calcula explicitament $d_U(P,Q)$ quan U és el semiplà y>0 desprovist del segment que uneix (0,0) amb (0,1).
- 12. Demostra que si γ és un arc de classe C^1 i $\gamma(t_0) \neq 0$, aleshores hi ha $\delta > 0$ tal que γ és un homeomorfisme entre $(t_0 - \delta, t_0 + \delta)$ i la seva imatge.
- 13. Un filferro està donat per

$$x^2 + y^2 + z^2 = 4, x + z = 2.$$

Calcula la seva massa i centre de masses si la densitat de massa és proporcional a la distància a l'eix z.

2 Diferencial i derivades parcials

14. Estudieu la continuïtat, existència i continuïtat de les derivades parcials, i diferenciabilitat de les funcions següents:

(a)
$$f(x,y) = \begin{cases} (x^3 - y^2) \sin(\frac{1}{x^2 + y^2}) & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$
(b)
$$f(x,y) = \begin{cases} \frac{x \sin y^2}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$
(c)
$$f(x,y) = \begin{cases} \frac{x^2 y}{x^4 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$
(d)
$$f(x,y) = x^{\alpha} y^{\beta}$$

$$\begin{cases} x^3 - y^3 & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) \neq (0,0) \end{cases}$$

(e)
$$f(x,y) = \begin{cases} \frac{x^3 - y^3}{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

(f) $f(x,y) = \begin{cases} x^2 + y^2 & \text{si } xy > 0 \\ x - y^2 & \text{si } xy \leq 0 \end{cases}$

(f)
$$f(x,y) = \begin{cases} x^2 + y^2 & \text{si } xy > 0\\ x - y^2 & \text{si } xy \le 0 \end{cases}$$

- 15. Calcula el pla tangent a la superficie $z = x^2y + e^{xy}$ en els punts (1,0,1), (0,1,1).
- 16. Calculeu l'equació del pla tangent i la recta normal a les superfícies i punts donats:

 - (a) $z = 9x^2 + y^2$, (1, 1, 10) (b) $x^2 + y^2 z^2 = 18$, (3, 5, -4) (c) $z = x^2 + y^3$, (3, 1, 10) (d) $\cos \pi x x^2 y + e^{xy} + yz = 4$, (0, 1, 2)
- 17. Sigui $f: \mathbf{R}^2 \longrightarrow \mathbf{R}$ definida per $f(x,y) = \sqrt{\|xy\|}$. Demostreu que f no és derivable a (0,0). Si $g(x) = ||x||, x \in \mathbb{R}^n$, calculeu la diferencial de g en els punts $x \neq 0$. Què passa a l'origen ?
- 18. Sigui $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ amb la propietat $|f(x)| \leq ||x||^2$. Proveu que f és diferenciable a l'origen.
- 19. Doneu un exemple d'una funció contínua al (0,0) amb derivada direccional $D_u f(0,0)$ per a totes les direccions però que $u \to D_u f(0,0)$ no sigui lineal.
- 20. Donada $f: \mathbf{R}^2 \to \mathbf{R}$ diferenciable, sabem que el pla x-2y+z=3 és tangent a la gràfica en el punt (1,1,4). Determineu la diferencial de f en (1,1).
- 21. Sigui $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ definida per

$$f(x,y) \begin{cases} \frac{x^3}{x^2+y^2}, & \text{si } (x,y) \neq (0,0); \\ 0, & \text{si } (x,y) = (0,0). \end{cases}$$

Comproveu que per tota corba diferenciable $\gamma: (-\epsilon, \epsilon) \longrightarrow \mathbf{R}^2$ amb $\gamma(0) = (0, 0)$ l'aplicació $f \circ \gamma$ és diferenciable a 0. Tot i això, veieu que f no és diferenciable a(0,0).

3 Regla de la cadena

22. Una funció $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ diem que és homogènia de grau m si $f(tx) = t^m f(x)$ per tot $t \in \mathbf{R}$ i per tot $x \in \mathbf{R}^n$. Si f és a més diferenciable proveu que

$$mf(x) = \sum_{i=1}^{n} x_i \frac{\partial f}{\partial x_i}(x).$$

(Indicació: Considereu g(t) = f(tx) i calculeu g'(1).)

- 23. Siguin $g(x,y)=(e^{x+y},\cos x,\sin y)$ i $f(x,y,z)=(\int_0^{xy^2z}(1+t)e^t\,dt,x+y+z)$. Calculeu Dg(0,0),Df(1,1,0) i $D(f\circ g)(0,0)$.
- 24. Feu servir la regla de la cadena per a calcular $\frac{d}{dt}f(\gamma(t))$ als casos següents:

(a)
$$f(x,y) = xe^y + y \sin x$$
, $\gamma(t) = (t, t^2)$

- (b) $f(x, y, z) = (x^2 + y^2 + z^2)^{\frac{1}{2}}$, $\gamma(t) = (e^t \cos t, e^t \sin t, e^t)$
- 25. Si $u = \sqrt{25 5x^2 5y^2}$, calculeu $\frac{\partial u}{\partial r}$ i $\frac{\partial u}{\partial \theta}$ on r, θ són les coordenades polars habituals.
- 26. Siguin $f: \mathbf{R}^2 \to \mathbf{R}^2$, $f(x,y) = (e^{x+y}, e^{x-y})$ i $\alpha: \mathbf{R} \to \mathbf{R}^2$, $\alpha(t) = (t+t^2\cos t + t^4, t+t^2\sin t + t^4)$. La funció f transforma la corba α en una altra corba $\beta(t) = f(\alpha(t))$. Calculeu el vector tangent de β en t = 0.
- 27. Analitza a quins dominis del pla les funcions

$$u = x^2 - xy, v = y^2 + xy$$

formen un sistema de coordenades i calcula x_u, x_v, y_u, y_v només en termes de x, y.

4 Gradients

28. Calculeu, en cada cas, el vector tangent a la corba intersecció de la superfície i el pla donats al punt que s'especifica:

(a)
$$z = e^{-x} \cos y$$
, $x = 0$, $(0, 0, 1)$

(b)
$$z = \sqrt{49 - x^2 - y^2}$$
, $y = 3$, $(2, 3, 6)$

- 29. Sigui $f(x, y, z) = yx^2 + y(\log x)(\arctan(x^2z\sin y + z\cos z))$. Calculeu les derivades parcials de f al punt (1,0,0). En quina direcció la derivada direccional és màxima ?
- 30. Calculeu la derivada direccional de f(x, y, z) = xyz segons la direcció del vector velocitat de la corba $\gamma(t) = (\cos 3t, \sin 3t, 3t)$ a l'instant $t = \frac{\pi}{3}$. És aquesta la màxima derivada direccional de f en aquest punt?
- 31. La temperatura d'una placa metàl·lica és $T(x,y) = 20 4x^2 y^2$. A partir del punt de coordenades (2,-3), determineu la trajectòria segons la qual la temperatura creix el més ràpid possible. (Compareu amb el problema anterior).
- 32. A partir del punt (1,1,1), repetiu el problema anterior amb la següent distribució de temperatura a l'espai: T(x,y,z)=8-3x-y
- 33. Una partícula surt del punt $(1, 1, \sqrt{3})$ de la superfície $z^2 = x^2 + y^2 + 1$ en una direcció normal a la superfície en aquest punt i amb una velocitat de 10 unitats per segon. Quan i on arribarà al pla z = 0?

- 34. Determineu la recta tangent a la corba intersecció de les superfícies $x^3 + 3x^2y^2 + y^3 + 4xy z^2 = 0$, $x^2 + y^2 + z^2 = 11$ al punt (1, 1, 3).
- 35. Demostra que les corbes de nivell de dues funcions f, g diferenciables es tallen perpendicularment en tot punt si i només si $f_x g_x + f_y g_y = 0$.
- 36. Troba la família de corbes g(x,y) = c que talla perpendicularment en tot punt a les corbes de nivell $x^4 + y^2 = c$.
- 37. Sigui $T(x,y) = 20 (x^6 + y^4)$ una distribució de temperatures al pla, de forma que (0,0) és el punt que està a màxima temperatura. Una persona situada al punt $(1,\sqrt{3})$ vol desplaçar-se cap a (0,0) seguint el criteri d'anar en cada moment en la direcció de màxim increment de temperatura. Trobeu la trajectòria que seguirà i la distància que recorrerà.
- 38. Troba, quan sigui possible, totes les funcions f(x,y), f(x,y,z) tals que
 - (a) $\nabla f(x,y) = (1 + y \cos xy, x \cos xy)$.
 - (b) $\nabla f(x,y) = (xy, xy)$
 - (c) $\nabla f(x, y, z) = (y, z, x)$.
 - (d) $\nabla f(x, y, z) = (yze^{xyz}, xze^{xyz} + z\cos yz, xye^{xyz} + y\cos yz).$

5 Dependència funcional

- 39. Doneu un exemple d'un domini U del pla i una funció f diferenciable en U amb $\frac{\partial f}{\partial x}=0$ i que no sigui una funció de y
- 40. Sigui $A = \{(x, y) \in \mathbf{R}^2 : x > 0.$ Sigui $f : A \longrightarrow \mathbf{R}$ diferenciable satisfent:

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = 0.$$

Proveu que existeix $h: \mathbf{R} \longrightarrow \mathbf{R}$ derivable tal que $f(x,y) = h(\frac{y}{x})$.

- 41. (a) Demostra que les funcions $u=x^2+y+z, v=x^2+y^2$ són funcionalment independents en $U=\{(x,y,z): x,y,z>0\}$.
 - (b) Troba una tercera funció w en U tal que (u, v, w) sigui un sistema de coordenades en U.
 - (c) Demostra que una funció diferenciable f en U depen funcionalment de u,v si i només si

$$x\frac{\partial f}{\partial y} - y\frac{\partial f}{\partial x} + x(2y - 1)\frac{\partial f}{\partial z} = 0.$$

42. Demostra que les funcions u = x + 2y - 3z, v = 2x - y + 5z són funcionalment independents en tot l'espai i que una funció diferenciable f en depèn funcionalment si i només si

$$7f_x - 11f_y - 5f_z = 0.$$

6 Derivades d'ordre superior. Fórmula de Taylor

43. Sigui $f \colon \mathbf{R}^2 \longrightarrow \mathbf{R}$ definida per

$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2}, & \text{si } (x,y) \neq (0,0); \\ 0, & \text{si } (x,y) = (0,0). \end{cases}$$

Estudieu la diferenciabilitat de f a (0,0) i comproveu que $D_{1,2}(0,0) \neq D_{2,1}(0,0)$.

- 44. Demostra que la solució general de l'equació d'ona al pla $\frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 f}{\partial y^2}$, és $f(x,y) = \Phi(x+y) + \Psi(x-y)$, amb Φ, Ψ funcions arbitràries a la recta, dues vegades derivables. Indicació: treballa en el sistema de coordenades u = x+y, v = x-y. Fes el mateix amb l'equació $f_{xx} 2f_{xy} + f_{yy} = 0$.
- 45. Demostra que una funció f dues vegades diferenciable a l'obert $U = \{(x,y) : x,y > 0\}$ és de la forma $f(x,y) = \Phi(xy) + \Psi(\frac{y}{x})$, amb Φ, Ψ funcions dues vegades diferenciables a la recta, si i només

$$\frac{\partial^2 f}{\partial y^2} - \frac{x^2}{y^2} \frac{\partial^2 f}{\partial x^2} + \frac{1}{y} \frac{\partial f}{\partial y} - \frac{x}{y^2} \frac{\partial f}{\partial x} = 0.$$

Indicació: demostra prèviament que $u=xy, v=\frac{y}{x}$ és un sistema de coordenades a U.

- 46. Troba la solució general f(x, y), f(x, y, z) de les següents equacions en derivades parcials:
 - (a) $y \frac{\partial f}{\partial y} = f$.
 - (b) $\frac{\partial f}{\partial x} = 2xyf$
 - (c) $\frac{\partial^2 f}{\partial x^2} = 0$.
 - (d) $\frac{\partial^3 f}{\partial x \partial y \partial z} = 0$
- 47. Busca solucions amb variables separades, u(x,y) = X(x)Y(y) de les equacions

$$u_y = yu_x, xu_x = u + yu_y.$$

48. Comprova que en les coordenades

$$u = \frac{1}{2}(x^2 - y^2), v = xy,$$

l'equació de Laplace $u_{xx} + u_{yy} = 0$ es transforma en la mateixa equació.

- 49. Desenvolupeu per la fórmula de Taylor:
 - (a) $f(x,y) = x^2 + y^2 + xy^2$ en potències de (x-1) i (y-2).
 - (b) $f(x,y) = x^y$ en un entorn de (1,1) (fins els termes d'ordre 3).
 - (c) $f(x,y) = \log(x+y)$ en un entorn de (1,1).
 - (d) $f(x, y, z) = e^{a(x+y+z)}, a \in \mathbf{R}$, al voltant de (0, 0, 0).
 - (e) $f(x, y, z) = x^y + z$ en (1, 1, 0) (fins els termes d'ordre 3).
- 50. (a) Sigui $P(x_1,...x_n)$ un polinomi de grau m en les variables $x_1,...x_n$. Demostreu que per a tot $a \in \mathbf{R}^n$, P és el polinomi de Taylor de grau m de P al voltant de a.
 - (b) Expresseu el polinomi $x^3 + 8y^3 6xy + 1$ en potències de (x-1), (y-1/2).
 - (c) El mateix per $x^3 + y^3 + xy^2$ en potències de (x 1), (y 1).
 - (d) Calculeu el polinomi de Taylor de grau n de $f(x, y, z) = e^{x+y+z}$ al voltant de (0, 0, 0).
- 51. Aquest és un problema sobre funcions convexes a \mathbb{R}^n . La definició de funció convexa és la següent. Sigui U un obert convex de \mathbb{R}^n i $f:U\longrightarrow \mathbb{R}$ contínua. Diem que f és convexa a U si

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y)$$

per a tot $x, y \in U$ i $t \in (0, 1)$. Això significa que el segment que uneix dos punts de la gràfica queda per sobre de la gràfica. Diem que f és estrictament convexa si la designaltat precedent és estricta, és a dir, si

$$f(tx + (1-t)y) < tf(x) + (1-t)f(y)$$

per a tot $x, y \in U$ i $t \in (0, 1)$.

(a) Si f és de classe \mathcal{C}^1 a U demostreu que f és convexa si i només si

$$f(x) \ge f(x_0) + (Df)(x_0)(x - x_0), \quad x, x_0 \in U.$$

Demostreu també que f és estrictament convexa si i només si

$$f(x) > f(x_0) + (Df)(x_0)(x - x_0), \quad x, x_0 \in U, \ x \neq x_0.$$

- (b) Si f és de classe C^2 a U demostreu que f és convexa si i només si la forma quadràtica hessiana és semi-definida positiva en tot punt x de U. També f és estrictament convexa si i només si la hessiana és definida positiva en tot punt x de U.
- 52. Demostreu que si U és un domini acotat convex, i f és una funció contínua convexa en el compacte \overline{U} , no constant, aleshores el màxim absolut de f és a la frontera. Demostreu que si K és un polihedre convex de l'espai, i f és una funció convexa contínua en K, no constant, el màxim absolut de f és a un dels vertexs.

7 Punts crítics, màxims i mínims relatius i absoluts, lliures o condicionats

- 53. Sigui $f: \mathbb{R}^2 \to \mathbb{R}$ diferenciable. Se sap:
 - (a) $f \ge 0$.
 - (b) f té límit $+\infty$ a l'infinit.
 - (c) f té un únic punt crític (a, b).

Demostreu que (a, b) és el mínim absolut de f.

- 54. Estudieu els punts crítics de $f(x,y) = ax^2 + 2bxy + y^2$.
- 55. Determineu els extrems relatius de les funcions següents:
 - (a) $f(x,y) = 8x^3 24xy + y^3$.
 - (b) $f(x, y, z) = x^2 + y^2 z^2 xy + xz 2z$
 - (c) $f(x, y) = \log(2 + \sin xy)$
 - (d) $f(x,y) = \sin x \cos y$
 - (e) f(x, y, z) = xyz(1-x)(1-y)(1-z).
- 56. Troba els màxims i mínims relatius de $f(x,y,z)=\frac{x}{2}+\frac{y^2}{2x}+\frac{z^2}{y}+\frac{2}{z}$ en $U=\{x,y,z>0\}$. Té f un màxim o un mínim absolut en U?
- 57. Trobeu i classifiqueu els punts crítics de
 - (a) $f(x,y) = 6x^2 2x^3 + 3y^2 + 6xy$
 - (b) $f(x,y) = xy(x^2 + y^2 1)$.
 - (c) $f(x,y) = \sin^2 x + \sin^2 y \cos^2 x \cos^2 y$
 - (d) $f(x,y) = x^3 + x^2 + 2\alpha xy + y^2 + 2\alpha x + 2y, \alpha > 0.$

- 58. Calculeu els extrems relatius i punts de sella de $f(x, y, z) = x^2 + 2y^2 + 2xy + z^2 + 2xyz + 2y^2z$.
- 59. Determineu els extrems absoluts de les funcions següents en els conjunts indicats
 - (a) $f(x,y) = x^2 + y^2$ en la recta 3x + 2y = 6.
 - (b) $f(x,y) = 1 x^2 y^2$ en la recta x + y = 1
 - (c) f(x,y) = x y a la hipèrbola $x^2 y^2 = 2$.
 - (d) f(x, y, z) = x + y + z a la corba donada per $x^2 y^2 = 1, 2x + z = 1$.
 - (e) $f(x,y) = \cos^2 x + \cos^2 y$ a la recta $x + y = \frac{\pi}{4}$.
 - (f) $f(x,y) = x^2y(4-x-y)$ en el triangle limitat per les rectes x=0,y=0,x+y=6.
 - (g) $f(x,y) = x^2 + y^2 + 2x$ en $\{(x,y) : x^2 + y^2 \le 1, y \ge x\}$.
 - (h) $f(x,y) = x^2 + y^2 2x 2y$ en $\{(x,y) : x^2 + y^2 \le 4, y \ge 0\}$
 - (i) $f(x,y) = 5x^2 + 5y^2 8xy$ en $\{(x,y) : x^2 + y^2 xy \le 1\}$
 - (j) $f(x,y) = x^3 + y^3 \frac{3}{2}x^2 3y^2$ en $x^2 + y^2 \le 1$
- 60. Sigui $U \subset \mathbf{R}^n$ un conjunt obert i $f: U \longrightarrow \mathbf{R}$ de classe $\mathcal{C}^2(U)$. Sigui $a \in U$ un punt crític de f tal que el determinant de la matriu hessiana de f al punt a no és zero. Demostreu que existeix una bola B centrada al punt a i continguda a U tal que a és el únic punt crític de f a B.
- 61. (a) Sigui f un funció C^1 a la recta \mathbf{R} . Suposeu que f té exactament un punt crític x_0 que és un mínim local. Demostreu que x_0 també és un mínim absolut.
 - (b) Considereu a \mathbb{R}^2 la funció

$$f(x,y) = -y^4 - e^{-x^2} + 2y^2 \sqrt{e^x + e^{-x^2}}$$

Comproveu que f té un únic punt crític, que és un mínim local, però f no té cap mínim absolut.

- 62. Sigui $f(x,y) = 3x^4 4x^2y + y^2 = (y 3x^2)(y x^2)$. Demostreu que sobre tota recta y = mx la funció té un mínim relatiu a (0,0). Vegeu que f NO té un mínim relatiu a (0,0).
- 63. Sigui $f(x, y, z) = x^2 + 3y^2 + 2z^2 2xy + 2xz$. Proveu que el 0 és el valor mínim de f.
- 64. Donats n punts del pla , trobeu el punt tal que la suma dels quadrats de les distàncies als n punts sigui mínima.

- 65. Calculeu el punt més proper a l'origen de la corba intersecció del paraboloide $z = x^2 + y^2$ amb el pla x + 2y + z = 4.
- 66. Demostrar que l'equació

$$2x^3y^3z^2 - 3x^2y^4z^2 - x^4y^2z^2 + x^2y^2z^3 + 2x^3y^2z^2 - 6x^2y^3z^2 - x^2 - 3y^2 + 2xy + 2x - 6y + z = 0$$

defineix implicitament z com a funció de x, y en l'entorn del punt (0, -1, -3) i que aquesta funció implícita té un extrem relatiu en el punt (0, -1).

67. Calcular el màxim i mínim absolut de la funció

$$11x^2 + 11y^2 + 14z^2 - 2xy - 8xz - 8yz - 24x + 24y$$

en el tetraedre delimitat pels plans x = 0, y = 0, z = 0, x - y + z = 3.

- 68. Calcula els extrems lliures de $f(x,y) = 2x^3 + y^3 + 3x^2y + 3xy^2 \frac{9}{2}x^2 3y^2 6xy$ en tot el pla. Hi ha màxims i mínims absoluts?
- 69. Es vol construir una habitació en forma de paralelepíped aillada tèrmicament. Els tres parells de cares oposades s'han d'aillar amb materials diferents, de costs A euros/m2, B euros/m2 i C euros/m2. Si es disposa d'un pressupost fixat de D euros, quina és l'habitació de volum màxim que es pot construir?
- 70. (a) Demostreu que la equació $x^2+y^2+z^2=2x+6y+4z-13$ defineix y=f(x,z) com a funció implícita de x,z al voltant del punt (1,4,2).
 - (b) Calculeu les derivades primeres i segones de f i comproveu que (1,2) és un màxim local de f. Quina és la interpretació geomètrica d'aquest resultat?
- 71. Determineu els extrems absoluts de f(x, y, z) = xy + yz + zx sobre el conjunt

$$A = \{(x, y, z) \in \mathbf{R}^3; \ x^2 + y^2 + z^2 \le 1\}.$$

72. Trobeu la distància de (0,0,0) a la corba

$$C = \{(x, y, z) \in \mathbf{R}^3; \ \frac{x^2}{4} + y^2 + \frac{z^2}{4} = 1, \ x + y + z = 1\}$$

- 73. Trobeu el paralelepípede que determina el volum més gran entre aquells que tenen superfície fixada S.
- 74. Un producte es fabrica en dues fàbriques diferents. Si x_1 , x_2 són les unitats produïdes en cada fàbrica, la funció de cost és

$$C(x_1, x_2) = 0.25 x_1^2 + 10x_1 + 0.15 x_2^2 + 12 x_2$$

Un fabricant rep un encàrrec de 1000 unitats de producte. Calculeu quantes unitats s'han de produir en cada fàbrica.

- 75. Trobeu la mínima distància entre la circumferència $x^2 + y^2 = 1$ i la recta x + y = 4.
- 76. Es vol muntar un radiotelescopi en un punt de la superfície d'un planeta on la interferència del camp magnètic sigui mínima. Si el radi del planeta és de 6 unitats i la força del camp magnètic ve donada per $F(x, y, z) = 6x y^2 + xz + 200$, basat en un sistema de coordenades amb el centre del planeta com a origen, determineu on s'ha de posar el radiotelescopi.
- 77. Un magatzem de $1000m^3$ de volum té forma de paral·lelepípede. El sostre, el terra i les parets laterals estan fabricats amb diferents materials. En el cas del sostre, la pèrdua de calor per unitat d'àrea és igual a 5 vegades la que es produeix al terra i en el cas de les parets laterals és igual a 3 vegades la del terra. Calculeu les dimensions del magatzem que minimitzen la pèrdua de calor.
- 78. La funció de temperatura en un cert sistema de coordenades és $T(x, y, z) = 20 + 2x + 2y + z^2$. Determineu les temperatures extremes a la corba intersecció de l'esfera $x^2 + y^2 + z^2 = 11$ i el pla x + y + z = 3.
- 79. Entre tots els prismes amb arestes paraleles als eixos inscrits en un elipsoide d'eixos a, b, c calcula el de volum màxim.

8 Teorema de la funció inversa. Funcions definides implícitament

80. Donat el sistema

$$\begin{cases} e^x + \alpha y^2 z - z &= \beta \\ x^2 + \alpha y^2 \ln z - xy &= 0 \end{cases}$$

- (a) Determineu els valors de $\alpha, \beta \in \mathbf{R}$ pels quals aquest sistema defineix y i z com a funcions implícites de x, de classe \mathcal{C}^{∞} , localment a (0, 1, 1).
- (b) Per quins valors de $\alpha, \beta \in \mathbf{R}$ es té y'(0) = -1/2 i z'(0) = 1.?
- 81. Proveu que el sistema

$$\begin{cases} \sin \frac{\pi}{w} &= 0\\ e^{x+u} - 1 &= 0\\ 2x - u + v - w + 1 &= 0, \end{cases}$$

defineix implícitament tres funcions u = u(x), v = v(x) y w = w(x) en un entorn del punt (0,0,0,1). Trobeu el desenvolupament de Taylor de v(x) en un entorn del punt 0 fins els termes d'ordre 2.

- 82. Una recta que passa per l'origen forma en el primer octant angles α , β , γ respectivament amb els semieixos coordinats positius. Trobeu una relació de dependència entre α , β , γ i considereu γ com a funció de α i β . Calculeu $\frac{\partial \gamma}{\partial \alpha}$ quan $\alpha = \pi/4$, $\beta = \pi/3$, $\gamma = \pi/3$.
- 83. Sigui $F(x,y) = e^{x^2+2y^2+2}$ Quines corbes de nivell són localment gràfiques de funcions d'una variable? La mateixa qüestió per G(x,y) = xy.
- 84. Donat un polinomi $p(x) = x^n + a_{n-1}x^{n-1} + ... + a_1x + a_0$ amb coeficients reals, volem expressar les arrels de p en funció dels coeficients.
 - (a) Suposant que p té n arrels reals, α_i , i=1,...,n, expresseu els a_i explícitament en funció de les α_i .
 - (b) Doneu una condició sota la qual és possible expressar localment les α_i com a funcions de classe C^{∞} dels a_i .
- 85. Trobeu el pla tangent a la varietat

$$\left(\frac{x^2 + y^2 + z^2 - 25}{24}\right)^2 = 1 - \frac{z^2}{9}$$

en el punt $(\sqrt{2}, \sqrt{2}, \sqrt{5})$.

86. Proveu que la corba de nivell

$$x^2y^3 + 2xy + x^3y^2 + x + y = 5,$$

és un gràfic de y = y(x) en un petit quadrat $(1 - \varepsilon, 1 + \varepsilon) \times (1 - \varepsilon, 1 + \varepsilon)$ (és a dir, talla a cada recta vertical x = c en un sol punt, també podeu comprovar-ho gràficament amb MÂXIMA). Calcula les derivades y'(1), y''(1).

87. Proveu que la superficie de nivell

$$xy^2z^3 + x^3yz + x^2y^2z^2 = 3,$$

és un gràfic z = f(x, y) en un petit cub centrat en (1, 1, 1). Calcula les derivades parcials $f_x, f_y, f_{xx}, f_{xy}, f_{yy}$ en (1, 1).

88. Proveu que la intersecció de les superficies de nivell

$$yz + xz + xy = 5, xyz = 2,$$

és una corba y = y(x), z = z(x) en un petit cub centrat en el punt (1, 2, 1). Calculeu y'(1), z'(1), y''(1), z''(1).

89. Proveu que hi ha funcions diferenciables x = x(s,t), y = y(s,t) definides al voltant de (2,-1) que compleixen

$$xs^2 + yt^2 = 1, x^2s + y^2t = xy - 4.$$

Quantes n'hi ha? Per a cadascuna calcula les derivades parcials x_s, x_t, y_s, y_t .

90. Demostra que el sistema d'equacions

$$x^{2}y + xz^{2} - y^{2}z + 1 = 0, xy^{2} - x^{2}z + yz^{2} - 1 = 0,$$

defineix implícitament y = y(x), z = z(x) amb y(0) = 1, z(0) = 1 en un entorn de (0, 1, 1). Calcula el desenvolupament de Taylor d'ordre 2 de y(x), z(x) en x = 0.

- 91. Sigui $f: \mathbf{R}^3 \to \mathbf{R}^3$, $f(x, y, z) = (e^x, \sin(x+y), e^z)$. Demostreu que f té inversa local diferenciable al voltant de (0, 0, 0) però f no té inversa global en \mathbf{R}^3 .
- 92. Proveu que $f(u,v) = (e^u + e^v, e^u e^v)$ és localment inversible en tot punt de \mathbb{R}^2 . Proveu que la inversa local és global i trobeu-la.
- 93. Demostreu que $f(x,y) = (x^2 y^2, 2xy)$ té inversa local a tot punt excepte a (0,0) però la funció no és injectiva a \mathbb{R}^2 . Calculeu el jacobià de la funció inversa a $(x,y) \neq (0,0)$.
- 94. (a) A \mathbf{R}^3 definim $f(x, y, z) = (e^y \cos x, e^y \sin x, z^3)$. Trobeu el punts de \mathbf{R}^3 on el teorema de la funció inversa sigui vàlid.
 - (b) Sigui $U = \{(x, y, z) \in \mathbf{R}^3 : -\pi < x < \pi\}$. Determineu f(U) i comproveu que $f: U \to f(U)$ és invertible. Doneu la diferencial de f^{-1} en (1, 0, 0) i en (1, 0, 1).
- 95. Sigui $f: \mathbf{R} \longrightarrow \mathbf{R}$ de classe \mathcal{C}^k $(k \ge 1)$ tal que

$$|f'(t)| \le k < 1$$

per tot $t \in \mathbf{R}$. Demostreu que l'aplicació $F: \mathbf{R}^2 \longrightarrow \mathbf{R}^2$ definida per

$$F(x,y) = (x + f(y), y + f(x))$$

és un difeomorfisme de classe C^k de \mathbf{R}^2 .

96. Sigui B_a la bola centrada a l'origen i de radi a de \mathbb{R}^n . Demostreu que l'aplicació $f: B_a \longrightarrow \mathbb{R}^n$ definida per

$$f(x) = \frac{ax}{\sqrt{a^2 - ||x||^2}}$$

és un difeomorfisme de B_a en \mathbb{R}^n .

- 97. (a) Demostreu que si l'equació f(x,y) = 0 defineix x = x(y) al voltant del punt (x_0, y_0) , i y_0 és un extrem local de x(y), llavors y no es pot aïllar com a funció de x en cap entorn de x_0 .
 - (b) Sigui $f: \mathbf{R}^2 \to \mathbf{R}$ definida per $f(x,y) = 2x^3 3x^2 2y^3 3y^2$ i $S = \{(x,y) \in \mathbf{R}^2; f(x,y) = 0\}$. Comproveu que (0,0) és un punt aïllat de S i que y no es pot resoldre en funció de x al voltant del punt (3/2,0).
- 98. Demostreu que l'equació $x^3z z^3yx = 0$ defineix z = z(x, y) com a funció C^{∞} al voltant de (1, 1, 1) però no al voltant de (0, 0, 0). Calculeu les primeres derivades de z al punt (1, 1).
- 99. Donat el sistema

$$e^{x} + \alpha y^{2}z - z = \beta, x^{2} + \alpha y^{2} \ln z - xy = 0,$$

determineu els valors de $\alpha, \beta \in \mathbf{R}$ pels quals aquest sistema defineix y i z com a funcions implícites de x, de classe \mathcal{C}^{∞} , localment a (0, 1, 1). Per quins valors de $\alpha, \beta \in \mathbf{R}$ es té y'(0) = -1/2 i z'(0) = 1.

- 100. Una recta que passa per l'origen forma en el primer octant angles α , β , γ respectivament amb els semieixos coordinats positius. Trobeu una relació de dependència entre α , β , γ i considereu γ com a funció de α i β . Calculeu $\frac{\partial \gamma}{\partial \alpha}$ quan $\alpha = \pi/4$, $\beta = \pi/3$, $\gamma = \pi/3$.
- 101. Sigui $F(x,y) = e^{x^2+2y^2+2}$ Quines corbes de nivell són localment gràfiques de funcions d'una variable? La mateixa qüestió per G(x,y) = xy.

9 Exercicis complementaris

102. Dibuixa l'arc en el quadrant x, y > 0 donat per

$$x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}, a > 0.$$

Troba una parametrització i calcula la longitud.

- 103. La *cicloide* és la trajectòria que segueix un punt fixat de la llanta d'una bicicleta quan aquesta es desplaça en línia recta i sense pendent en el terreny. Troba una parametrització de la cicloide i calcula la longitud que aquest punt recorre entre entre dos instants en que el punt està en contacte amb el terra.
- 104. Una força es diu **central** si és proporcional al vector de posició de la partícula. D'acord amb la llei de Newton, això vol dir : $\mathbf{r}''(t) = \lambda(t)\mathbf{r}(t)$ on λ és una funció escalar i \mathbf{r} és el vector de posició de la partícula.

- (a) Demostreu que, sota l'acció d'una força central, el vector quantitat de moviment $L = \mathbf{r} \times \mathbf{r}'$ és constant.
- (b) Deduïu de l'apartat anterior que una partícula a \mathbb{R}^3 sotmesa a l'acció d'una força central es mou en un pla .
- 105. Un filferro F està donat per les equacions

$$x^{2} + y^{2} + z^{2} = 1, x + y + z = 0, z \ge 0.$$

Troba una parametrització de F. Suposant que el filferro té en el punt (x, y, z) una densitat de massa proporcional a z calcula la massa i el seu centre de masses.

106. Per a cada $\alpha \in \mathbf{R}$, $\alpha > 0$, considerem la funció

$$f_{\alpha}(x,y) = \begin{cases} \frac{xy}{(x^4 + y^4)^{\alpha}} & \text{si } (x,y) \neq (0,0), \\ 0 & \text{si } (x,y) = (0,0). \end{cases}$$

- (a) Determineu per a quins valores de α f_{α} és contínua.
- (b) Determineu per a quins valores de α f_{α} és diferenciable.
- 107. Sigui g una funció contínua a la circumferència unitat amb la propietat de que g(0,1) = g(1,0) = 0 i g(-x) = -g(x). Definim $f: \mathbf{R}^2 \longrightarrow \mathbf{R}$ per

$$f(x) = \begin{cases} \|x\|g\left(\frac{x}{\|x\|}\right), & \text{si } x \neq 0; \\ 0, & \text{si } x = 0. \end{cases}$$

Si $x \in \mathbf{R}^2$ i $h : \mathbf{R} \longrightarrow \mathbf{R}$ està definida per h(t) = f(tx) proveu que h és diferenciable. Proveu també que f no és diferenciable a (0,0) tret del cas en que g és idènticament 0.

- 108. En un mapa amb un sistema de coordenades cartesianes s'identifica el punt (6,4) i se sap que hi ha un possible error de 0.01 en cada coordenada. Amb l'ajut de la diferencial, obtingueu una estimació de l'error de les coordenades polars r, θ en aquest punt.
- 109. Sigui $f: \mathbf{R}^n \longrightarrow \mathbf{R}$ de classe \mathcal{C}^1 amb f(0) = 0. Proveu que existeixen $g_i: \mathbf{R}^n \longrightarrow \mathbf{R}$ contínues tals que

$$f(x) = \sum_{i=1}^{n} x_i g_i(x).$$

(Indicació: Si $h_x(t) = f(tx)$ aleshores $f(x) = \int_0^1 h_x'(t)dt$.)

110. (a) Demostreu que la equació $x^2+y^2+z^2=2x+6y+4z-13$ defineix y=f(x,z) com a funció implícita de x,z al voltant del punt (1,4,2).

- (b) Calculeu les derivades primeres i segones de f i comproveu que (1,2) és un màxim local de f. Quina és la interpretació geomètrica d'aquest resultat?
- 111. Mitjançant la regla de la cadena, calcule
u $\frac{\partial w}{\partial x}$ i $\frac{\partial w}{\partial y}$:
 - (a) $w = u^2 + uv$, $u = ye^x$, $v = xe^y$
 - (b) $w = u \log(u^2 + v^2)$, $u = x^2 y^2$, $v = x^2 + y^2$
- 112. Mitjançant la regla de la cadena, calculeu $\frac{\partial u}{\partial s}$, $\frac{\partial u}{\partial t}$:
 - (a) u = xyz, x = s + t, y = s t, $z = st^2$
 - (b) $u = x \cos(yz)$, $x = s^2$, $y = t^2$, z = s 2t
- 113. Les derivades direccionals d'una funció diferenciable f(x,y) en un determinat punt, segons les direccions dels vectors (1,1) i (0,-2) són , respectivament, $2\sqrt{2}$ i -3. Calculeu ∇f en aquest
- 114. Trobeu el pla tangent a la varietat

$$\left(\frac{x^2 + y^2 + z^2 - 25}{24}\right)^2 = 1 - \frac{z^2}{9}$$

en el punt $(\sqrt{2}, \sqrt{2}, \sqrt{5})$. punt i també la derivada direccional de f segons la direcció del vector (3, 4).

- 115. La temperatura a la superfície d'una nau espacial ve donada per $T(x,y,z) = \exp(-(x^2+y^2+z^2))$ on (x,y,z) són les coordenades de la nau en un sistema de referència amb una estrella propera com a origen. Se sap que la nau es troba al punt (1,1,1).
 - (a) En quina direcció hauria de començar a moure's per tal que la temperatura decreixi el més ràpid possible?
 - (b) Malauradament, el material de la nau no pot resistir variacions de la temperatura superiors a $\sqrt{3}e^{-3}$ unitats de temperatura per unitat de longitud. Com es modifica la resposta a l'apartat anterior en aquesta nova situació?
- 116. Demostreu que la corba $\gamma(t)=(t-2,2-t^{\frac{3}{4}},\ln t)$ i la superfície $z=\ln(\frac{y+2x^2+y^2}{4})$ es tallen ortogonalment al punt (-1,1,0).
- 117. Troba, quan sigui possible totes les funcions f(x, y, z) tals que $\nabla f = (yz^2, xz^2, \alpha xyz)$, segons els valors de $\alpha > 0$.

118. En el semipla U definit per x > 0 considerem la funció $u(x,y) = -y \log x$. Troba una altra funció v(x,y) que amb u formi un sistema de coordenades en U i calcula quina equació del tipus

$$A(x,y)f_x + B(x,y)f_y = 0,$$

caracteritza les funcions de la forma f(x,y) = h(u(x,y)) per a una certa funció h d'una variable.

- 119. Sigui $f: \mathbf{R}^2 \longrightarrow \mathbf{R}$ de classe C^1 . Sabem que $|f(x,y)| \le \exp(-x^2 y^2)$, si $x^2 + y^2 \ge 1$, que f(1/2,0) = 1 i f(0,1/2) = -1. Quants punts crítics, com a mínim, ha de tenir f?
- 120. (El mètode de quadrats mínims) Suposem que es vol estudiar la relació entre dues variables X,Y associades a un experiment a partir dels valors concrets $(x_1,y_1),...,(x_n,y_n)$ observats en n mesuraments. El mètode de quadrats mínims consisteix en buscar una recta y=ax+b de manera que l'error quadràtic

$$E(a,b) = \sum_{1}^{n} (ax_i + b - y_i)^2$$

sigui mínim. Considerem

$$\sigma_x^2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \mu_x^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu_x)^2$$

$$\sigma_y^2 = \frac{1}{n} \sum_{1}^{n} y_i^2 - \mu_y^2$$

$$cov_{x,y} = \frac{1}{n} \sum_{i=1}^{n} x_i y_i - \mu_x \mu_y$$

on μ_x , σ_x^2 (resp μ_y , σ_y^2) són la mitjana i la variància de les dades $x_1,...,x_n$ (resp. de $y_1,...,y_n$) i $cov_{x,y}$ és la covariància conjunta de $(x_1,y_1),...,(x_n,y_n)$. Demostreu:

- (a) E té un únic punt crític (a_0, b_0) donat per $a_0 = \frac{cov_{x,y}}{\sigma_x^2}$, $b_0 = \mu_y a_0\mu_x$.
- (b) (a_0, b_0) és el mínim absolut de la funció E.

La recta $y = a_0 x + b_0$ es diu "recta de regressió de Y sobre X corresponent a les dades $(x_1, y_1), ..., (x_n, y_n)$ ".

121. Calculeu i classifiqueu els punts crítics de les següents funcions:

- (a) $f(x,y) = x^3 + 8y^3 6xy + 1$.
- (b) $f(x,y) = xy + \frac{1}{x} + \frac{8}{y}$
- (c) $f(x,y) = \sin x + \sin y + \sin(x+y)$. Quins són els valors màxim i mínim de f al quadrat $[0, \frac{\pi}{2}] \times [0, \frac{\pi}{2}]$?
- (d) $f(x,y) = x^3 3xy + y^3$
- (e) f(x,y) = xy(x-1)
- (f) $f(x,y) = \cos(x)\cosh(y)$
- (g) $f(x,y) = 3x^2 + 2xy + 2x + y^2 + y + 4$
- (h) $f(x,y,z) = x^2 + 3y^2 + 2z^2 2xy + 2xz$. Comproveu que 0 és el valor mínim de f.
- 122. En cada apartat, estudieu si existeix el màxim i el mínim absolut en la regió A, i calculeu-los quan sigui possible :
 - (a) $f(x,y) = 2x^2 4x + y^2 4y + 1$, A és el triangle tancat limitat per les rectes x = 0, y = 2, y = 2x
 - (b) $f(x,y) = (x^2 4x)\cos y$, $A = \{(x,y): 1 \le x \le 3, -\pi/4 \le y \le \pi/4\}$
 - (c) $f(x,y) = xy + 2x \ln(x^2y)$, A és el primer quadrant obert.
 - (d) $f(x,y) = 3x^2 + 2y^2 4y$, A és la regió limitada per la corba $y = x^2$ i la recta y = 4.
- 123. Comproveu, en cada cas, que la funció donada satisfà l'equació en derivades parcials corresponent:
 - (a) $f(x,y) = e^x \sin y$, $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$ (Equació de Laplace)
 - (b) $f(x,t) = \sin(x-ct)$, $\frac{\partial^2 f}{\partial t^2} = c^2 \frac{\partial^2 f}{\partial x^2}$ (Equació d'ones)
 - (c) $f(x,t) = \frac{1}{2c\sqrt{\pi t}}e^{-\frac{x^2}{4c^2t}}, \quad \frac{\partial f}{\partial t} = c^2\frac{\partial^2 f}{\partial x^2}$ (Equació de la calor)
- 124. Fent el canvi de variables

$$u = y + 2x, v = y + 3x,$$

troba la solució general de

$$f_{xx} - 5f_{xy} + 6f_{yy} = 0.$$

125. Feu el desenvolupament de Taylor de les següents funcions:

- (a) $f(x,y) = x^3 + y^3 + xy^2$ en (1,1).
- (b) $f(x, y, z) = e^{x+y+z}$ en (0, 0, 0), fins el terme d'ordre n.
- (c) $f(x, y, z) = x^y + z$ en (1, 1, 0) fins el terme d'ordre 3.
- 126. Suposem que x=x(s,t),y=y(s,t),z=z(s,t) són funcions diferenciables que compleixen

$$z = x^{2} + xy, x^{2} + y^{2} = st + 5, x^{2} - y^{2} = s^{2} + t^{2}.$$

Calcula z_s, z_t

- 127. Considerem la funció $f(x,y,z)=\log x+\log y+3\log z$ i el conjunt $S=\{(x,y,z)\in \mathbf{R}^3: x^2+y^2+z^2=5a^2\ x>0, y>0, z>0\},$ on a> està fixat.
 - (a) Raoneu l'existència de màxim absolut de f sobre S i que $\inf_S f = -\infty$.
 - (b) Trobeu el valor màxim de f sobre S.
 - (c) Useu l'apartat anterior i demostreu que per a qualsevols tres nombres positius A, B, C es compleix

$$ABC^3 \le 27 \left(\frac{A+B+C}{5}\right)^5.$$

128. Trobeu el màxim de la funció $f(x_1, ..., x_n) = (x_1 x_2 x_n)^2$ sobre els punts de la esfera unitat de \mathbf{R}^n . Deduïu la següent designaltat per nombres positius

$$(a_1 a_2 \dots a_n)^{\frac{1}{n}} \le \frac{a_1 + \dots + a_n}{n}.$$