Linearyzacja modelu w otoczeniu punktu stacjonarnego.

1. Wprowadzenie.

Linearyzację modelu ogólnego przeprowadzimy dla otoczenia wybranego punktu stacjonarnego $\mathbf{X}_{\!\!S}{}^i$. Dla przejrzystości i bez utraty ogólności rozważań, w następujących dalej wzorach, pomińmy indeks górny i, wskazujący konkretny punkt stacjonarny oraz indeks dolny s informujący, że chodzi o punkt stacjonarny jako punkt referencyjny . Zakładamy, że w tym punkcie $\mathbf{u}(0) = \mathbf{0}$. Używany w dalszej części symbol normy oznacza normę Euklidesa

2. Definicja otoczenia.

Przez otoczenie punktu stacjonarnego rozumiemy n-wymiarową hiperkulę o środku w \mathbf{x}_s^i i o małym promieniu ε ($\|\varepsilon\| \ll 1$), oznaczoną $\mathbf{B}_{\mathbf{n}}(\mathbf{x}_s^i, \varepsilon)$.

3. Rozwijanie w szereg wielomianowy.

Rozwijając w szereg Taylora prawą stronę równania stanu układu autonomicznego w otoczeniu punktu stacjonarnego otrzymujemy w zapisie symbolicznym:

$$\dot{z}(t) = f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x)}{n!} (z - x)^n$$
,

gdzie: \mathbf{z} oznacza dowolny wektor o końcu wewnątrz hiperkuli $\mathbf{B_n}(\mathbf{x} \ \mathbf{s}^i, \ \mathbf{\epsilon})$, $a\ (\mathbf{z} - \mathbf{x})$ oznacza odchylenie od punktu stacjonarnego, wiadomo, że $\|(\mathbf{z} - \mathbf{x})\| < \mathbf{\epsilon}$,

 $a f^{(n)}$ reprezentuje dla n=0 wartość *momentum* f(x) w punkcie stacjonarnym x (jak wiadomo z definicji równą zerowemu wektorowi),

- dla n=1 $f^{(1)}(x)$ reprezentuje Jacobian J(x) wektorowego momentum, czyli gradient $\partial f/\partial z^T$ obliczony w punkcie stacjonarnym x;
- dla n=2 $f^{(2)}(\mathbf{x})(\mathbf{z}-\mathbf{x})^2$ symbolizuje formę kwadratową $(\mathbf{z}-\mathbf{x})^T H(\mathbf{x})(\mathbf{z}-\mathbf{x})$, gdzie $H(\mathbf{x})$ oznacza Hessjan $\partial^2 f / \partial \mathbf{z}^T \partial \mathbf{z}$, obliczony w punkcie stacjonarnym \mathbf{x} .
- Dla n>2 są to formy tensorowe wyższych rzędów.

Z założonej analityczności f wynika, że normy tensorów, w tym Jacobianu i Hessjanu (wartości wyznaczników) są skończone. Oznaczmy je odpowiednio przez J i H.

4. Obcięcie rozwinięcia i majoryzacja.

Ograniczmy rozwinięcie w szereg Taylora do trzech pierwszych wyrazów i przejdźmy do obliczenia normy po obu stronach równania:

$$\|\dot{z}(t)\| = \|f(z)\| = \|f(x) + J(x)(z-x) + (z-x)^T H(x)(z-x)\|$$

Z ogólnej własności normy otrzymujemy, że:

$$\| f(x) + J(x)(z - x) + (z - x)^{T}H(x)(z - x) \| \leq \| f(x) \| + J \| (z - x) \| + \| (z - x) \|^{T}H \| (z - x) \|$$

Czyli
$$\|\dot{\mathbf{z}}(\mathbf{t})\| \leq \mathbf{J}\boldsymbol{\varepsilon} + \mathbf{H}\boldsymbol{\varepsilon}^2$$

J i **H** są skończone (podobnie jak tensory wyższych rzędów) i prawdziwe są nierówności:

$$\dots \ll \varepsilon^3 \ll \varepsilon^2 \ll \varepsilon \ll 1$$

 $\| \mathbf{f}(\mathbf{x}) \| = 0$ (w punkcie stacjonarnym jest to wektor zerowy). Na tej podstawie wnioskujemy, że dla oszacowania wartości (długości) wektora *momentum* (prędkości zmian stanu) można się ograniczyć do zlinearyzowanego modelu:

$$\dot{\mathbf{z}}(t) = \mathbf{A}\,\mathbf{z}(t),$$

gdzie: $\mathbf{A} = \mathbf{J}$ (macierz stanu o stałych elementach, macierz modelu zlinearyzowanego równa Jacobianowi funkcji momentum, obliczonemu w punkcie stacjonarnym \mathbf{x} , $\mathbf{z}(t)$ – wektor stanu linearyzowanego układu pozostający w obrębie jego otoczenia ($\mathbf{B}_{\mathbf{n}}(\mathbf{x}_{s}^{i}, \boldsymbol{\varepsilon})$).

Dla ułatwienia rozważań można przesunąć równolegle układ współrzędnych stanu w taki sposób, by początek przesuniętego układu przypadał w wybranym punkcie stacjonarnym \boldsymbol{x} , Wówczas odchylenia od punktu stacjonarnego ($\boldsymbol{z}-\boldsymbol{x}$) można uznać za współrzędne stanu wyrażone w nowym układzie współrzędnych, co upraszcza powyższe wzory rozwinięcia w szereg.

5. Rozszerzenie na obiekt sterowany - lokalny model zlinearyzowany.

Analogiczne rozumowanie można przeprowadzić przy uwzględnieniu sterowań, a więc dla układu nieautonomicznego:

$$\dot{x}(t) = f(x(t), u(t)),$$

Zakładając, że sterowania nie wyprowadzają układu z niewielkiego otoczenia wybranego punktu stacjonarnego ($\|\boldsymbol{u}(t)\| < \epsilon_1 \ll 1$ dla t>0), wyznaczniki tensorów uzyskanych z różniczkowania funkcji wektorowej \boldsymbol{f} są skonczone, a \boldsymbol{x} oznacza wektor stanu wyrażony w nowym – przeniesionym – układzie współrzędnych) otrzymujemy zlinearyzowany lokalnie model dynamiki obiektu sterowania:

$$\dot{x}(t) = A x(t) + B u(t)$$

Zabiegu polegającego na przeniesieniu układu współrzędnych można dokonać również w przestrzeni wyjść $(y(t) \in Y_t^p$ – jest elementem p-wymiarowej przestrzeni wyjściowej której elementami są funkcje czasu – poszczególne odpowiedzi układu) przenosząc równolegle układ, w którym pierwotnie opisano równania wyjścia do punktu:

$$y_s^i = h(x_s^i, 0).$$

Wówczas zlinearyzowane lokalnie w y_{s^i} równanie wyjścia w nowym układzie współrzędnych (w którym $h(x_{s^i}, 0) = 0$), wyraża się wzorem:

$$v(t) = C x(t) + D u(t)$$

gdzie macierz wyjścia $\mathbf{C} = \partial \mathbf{h}/\partial \mathbf{x}^{\mathrm{T}}$, $\mathbf{D} = \partial \mathbf{h}/\partial \mathbf{u}^{\mathrm{T}}$, obliczone w $[\mathbf{x}_{\mathrm{s}}^{i}, \mathbf{0}]$.

Macierze **<A,B,C,D>** zwane są liniową realizacją modelu wielowymiarowego obiektu dynamicznego w wybranym układzie współrzędnych stanu, przyporządkowaną konkretnemu, wybranemu punktowi stacjonarnemu ogólnego nieliniowego modelu dynamiki obiektu sterowania.

6. Niejednoznaczność modelu lokalnego.

Ponieważ wybór zmiennych stanu dla danego obiektu nie jest jednoznaczny, to możliwe jest uzyskanie wielu różniących się od siebie liniowych realizacji modelu w tym samym punkcie stacjonarnym, gdyż:

- zmienne stanu umieszczane są w wektorze stanu w różnej kolejności,
- mogą być wyrażone w różnych jednostkach, czy skalach,
- mogą pochodzić z bezpośredniego opisu elementów fizycznych połączonych w schemat blokowy,
- albo z analizy równań we/wy zdefiniowane np. jako zmienne fazowe,
- albo reprezentować warunki początkowe arbitralnie uszeregowanych równań we/wy.

7. Związek z macierzową transmitancją.

Łatwo wyprowadzić zależność wiążącą każdą poprawnie obliczoną realizację liniową z unikatową, niezależną od wyboru wektora stanu, charakterystyką we/wy wielowymiarowego obiektu sterowania w postaci macierzowej transmitancji operatorowej (a co za tym idzie macierzowej charakterystyki widmowej).

W przypadku liniowego obiektu SISO $G(s) = \frac{Y(s)}{U(s)}$ i można ją obliczyć stosując obustronnie przekształcenie Laplace'a do pojedynczego równania we/wy w dziedzinie czasu (przy założeniu, że warunki początkowe są równe zeru). W przypadku liniowego obiektu MIMO ten sposób definicji nie ma zastosowania, ze względu na nieokreśloność dzielenia przez wektor transformat sygnału wejściowego. Transmitancję macierzową $\underline{G}(s)$ definiuje się zatem w następujący sposób:

$$Y(s) = \underline{G}(s)U(s)$$

gdzie U(s), Y(s) odpowiednio oznaczają wektory transformat Laplace'a wektora sygnałów wejściowych i wektora sygnałów wyjściowych. Macierz zespolona $\underline{G}(s)$ ma p wierszy i m kolumn, a jej elementy są z reguły funkcjami wymiernymi (ilorazami wielomianów) zmiennej zespolonej s.

Zastosujmy obustronnie przekształcenie Laplace'a do równania stanu i równania wyjścia modelu zlinearyzowanego:

$$\dot{\mathbf{x}}(t) = \mathbf{A} \, \mathbf{x}(t) + \mathbf{B} \mathbf{u}(t) \, \Big| \, \mathcal{L}(.),$$

$$\mathbf{y}(t) = \mathbf{C} \, \mathbf{x}(t) + \mathbf{D} \mathbf{u}(t), \, \Big| \, \mathcal{L}(.).$$

Zgodnie z regułami rachunku operatorowego uzyskujemy:

$$\mathbf{s}\mathbf{X}(\mathbf{s}) - \mathbf{x}(0) = \mathbf{A}\,\mathbf{X}(\mathbf{s}) + \mathbf{B}\,\mathbf{U}(\mathbf{s})$$

 $\mathbf{Y}(\mathbf{s}) = \mathbf{C}\,\mathbf{X}(\mathbf{s}) + \mathbf{D}\,\mathbf{U}(\mathbf{s}).$

Z założenia (warunek definicyjny transmitancji) przyjmuje się zerowe warunki początkowe, więc $\mathbf{x}(0) = \mathbf{0}$. Mamy zatem:

$$sX(s) - AX(s) = BU(s).$$

prawostronnie wyłączmy po lewej stronie wektor transformat **X**(s):

$$[sI - A]X(s) = BU(s),$$

gdzie \mathbf{I} oznacza diagonalną macierz $n \times n$, a "s \mathbf{I} " macierz diagonalną z elementami "s" na przekątnej głównej. Mnożąc lewostronnie obie strony powyższego równania wektorowego przez $[s\mathbf{I} - \mathbf{A}]^{-1}$ otrzymujemy transformatę wektora stanu (przy założeniu zerowych warunków początkowych:

$$X(s) = [sI - A]^{-1} BU(s).$$

$$x(t) = \mathcal{L}^{-1}\{ [sI - A]^{-1} BU(s) \}.$$

gdzie symbol $\mathcal{L}^{-1}(.)$ oznacza odwrotne przekształcenia Laplace'a a $\mathbf{x}(t)$ jest częścią wymuszoną (przez sygnały wejściowe $\mathbf{u}(t)$, t>0) rozwiązania równania stanu, czyli jest trajektorią o początku w początku lokalnego układu współrzędnych w przestrzeni stanu (o początku w wybranym punkcie stacjonarnym układu nieliniowego).

Warto zauważyć, że nieosobliwy model liniowy ma w przestrzeni stanu tylko jeden punkt stacjonarny x=0 (początek układu). Warunkiem tego jest pełen rząd (nieosobliwość) macierzy **A**, gdyż równanie **Ax=0**, gdy det **A** \neq **0** ma tylko jedno rozwiązanie: x=0.

Jeżeli macierz stopnia n-tego **A** jest osobliwa (tj. charakteryzuje się tzw. defektem rzędu), to rozwiązaniem powyższego równania może być dowolny niezerowy wektor leżący w jądrze macierzy **A** (Ker **A** – przeciwobraz zera macierzy, czyli pewna podprzestrzeń przestrzeni stanu, rozpinana przez takie wektory $x \neq 0$), że:

$$\forall x \in \text{Ker } \mathbf{A} \Rightarrow \mathbf{A} x = 0.$$

Podstawiając wyrażenie na X(s) do równania wyjścia i wyłączając prawostronnie wektor transformat U(s) otrzymujemy:

$$Y(s) = \{C[sI - A]^{-1}B + D\}U(s).$$

Tak więc, zgodnie z definicją:

$$\underline{G}(s) = C[sI - A]^{-1}B + D.$$

Macierz odpowiedzi impulsowych poszczególnych kanałów łączących wejścia z wyjściami jest równa:

$$[g_{ij}(t)] = \mathcal{L}^{-1}\{\underline{\mathbf{G}}(s)\}$$
 $i=1,\ldots,p; j=1,\ldots,m.$

8. Rozwiązywanie równań stanu.

Metoda operatorowa może być efektywnie zastosowana do rozwiązania układu liniowych równań stanu. Po przekształceniu Laplace'a układu równań stanu układu:

$$\dot{\mathbf{x}}(t) = \mathbf{A} \, \mathbf{x}(t) + \mathbf{B} \mathbf{u}(t) \, \big|_{\mathcal{L}(.)},$$

otrzymujemy: sX(s) - x(0) = AX(s) + BU(s)

po przekształceniach: $\mathbf{X}(s) = [s\mathbf{I} - \mathbf{A}]^{-1} \mathbf{X}(0) + [s\mathbf{I} - \mathbf{A}]^{-1} \mathbf{B} \mathbf{U}(s)$, skąd

$$\mathbf{x}(t) = \mathcal{L}^{-1}\{ [sI - A]^{-1}\mathbf{x}(0)\} + \mathcal{L}^{-1}\{ [sI - A]^{-1} BU(s) \}$$

Pierwszy składnik ma oryginał transformaty równy e^{At} x(0) i przedstawia przebieg trajektorii stanu układu autonomicznego, wynikający z niezerowego stanu początkowego (z obecności energii wewnętrznej w układzie). Reprezentuje procesy przejściowe. Druga transformata odwrotna wymaga obliczenia oryginału iloczynu dwóch macierzowych funkcji zespolonych: [s**I** – **A**]⁻¹ oraz **B**U(s). Iloczynowi odpowiada oryginał w postaci całki splotowej:

$$\mathcal{L}^{-1}\{[sI - A]^{-1}BU(s)\} = e^{At} \circledast Bu(t) = \int_0^\infty e^{A(t-\tau)}Bu(\tau)d\tau.$$

Jest to ta część rozwiązania równania stanu, która jest rezultatem forsowania przez sygnały wejściowe $u_1(t)$, $u_2(t)$, ..., $u_m(t)$. Jeżeli znane są przebiegi tych sygnałów w czasie to można obliczyć trajektorię stanu w jawnej postaci:

$$\mathbf{x}(t) = e^{At} \mathbf{x}(0) + \int_0^t e^{A(t-\tau)} \mathbf{B} \mathbf{u}(\tau) d\tau.$$

t – oznacza chwilę bieżącą, τ – oznacza chwilę w przeszłości, $e^{A(t-\tau)}$ – funkcja wagowa ("pamięć obiektu" albo lepiej, funkcja "zapominania" efektów sterowania uzyskanych wskutek wcześniejszych w czasie wartości sygnałów sterujących (w chwilach $\tau \in [0,t)$). Funkcję e^{At} nazywamy macierzą tranzycji stanu liniowego stacjonarnego układu o macierzy stanu \mathbf{A} .

9. Jak należy rozumieć macierzową funkcję wykładniczą?

Skalarna funkcja wykładnicza e^x m.in. jest definiowana jako granica szeregu nieskończonego:

$$e^{x} = \sum_{n=0}^{\infty} \frac{1}{n!} x^{n}.$$

Macierzowa funkcja wykładnicza e^{At} może być określona jako oryginał macierzowej funkcji zespolonej, ale także analogicznie tak jak skalarna, poprzez szereg:

$$e^{At} = \sum_{k=0}^{n-1} \frac{1}{k!} (At)^k = I + \frac{At}{1!} + \frac{(At)^2}{2!} + \frac{(At)^3}{3!} + \dots + \frac{(At)^{n-1}}{(n-1)!},$$

jednak w odróżnieniu od przypadku skalarnego, na mocy Twierdzenia Cayleya-Hamiltona, rozwinięcie to jest skończone, n – oznacza tu stopień i rząd macierzy A. Przez $(\mathbf{A}\mathbf{t})^i$ należy rozumieć i-krotny iloczyn macierzy $(\mathbf{A}\times\mathbf{A}\times\dots\mathbf{A})\mathbf{t}^i$.

Dla czasów niewiele (o ułamek jednostki czasu) późniejszych niż chwila początkowa, dobrym przybliżeniem macierzowej funkcji wykładniczej jest jej aproksymacja pierwszego rzędu: $\mathbf{I} + \mathbf{A} \, \Delta t$.