视频目标检测系统设计与实现

DETR + ByteTrack

田健翔、尹潇逸、张栋梁、王欣雨

功能完		参与人员		
DETR 网络	✓	田健翔		
追踪算法研究	✓	田健翔、尹潇逸、张栋梁		
网络可解释性、数据集选择与格式转化	✓	尹潇逸、张栋梁、王欣雨		
Gradio 界面搭建、PPT、视频 Demo 演示制作	✓	王欣雨		

模型	不足	可拓展之处	
DETR	小目标检测效果仍不好、模型参数量 大	多尺度特征融合、注意力机制优 化、模型量化压缩	
ByteTrack	对遮挡目标的跟踪效果仍然不佳、轨 迹平滑度有待提升	遮挡处理机制 (卡尔曼滤波) 、轨 迹平滑算法	

当下,计算机视觉技术正在成为推动社会进步的重要力量,其中**视频目标检测技术**作为 其重要分支,已经在安防监控、军事侦察、自动驾驶、人机交互等领域展现出巨大的应用价值。所以进一步研究视频目标检测是非常有必要的。

货物计数

军事领域

自动驾驶

相比于较为成熟的基于单帧的目标检测,视频目标检测在实际应用中,仍然面临着诸多挑战,例如目标物体被遮挡、发生形变、出现多个相似目标、运动模糊以及光照变化等问题。为了解决这些挑战,我们团队结合了最先进的目标检测模型与目标追踪技术(DETR 与 ByteTrack)能够有效地应对上述挑战,并在智能交通、车辆与行人检测中取得了显著的效果。

技术方案:

- 1. 对每帧图像进行目标检测 (采用 DETR 目标检测模型)
- 2. 结合上文信息,利用前帧信息得到**预测值**,然后结合下帧**观测值**,在下帧更新目标信息。

DEtection TRansformer (DETR)

论文地址: https://arxiv.org/pdf/2005.12872

BackBone 模块

Encoder 模块

位置编码部分

DETR 依旧是使用正余弦编码的方式进行位置编码,但是是对 x, y 两个方向同时编码,每个方向各编码 128 维向量,这种编码方式更符合**图像**的特点。

x 方向	y方向
$PE(pos_x, 2i) = \sin\left(rac{pos_x}{10000^{rac{2i}{d_{ m model}}}} ight)$	$PE(pos_y, 2i) = \sin\left(rac{pos_y}{10000^{rac{2i}{d_{ m model}}}} ight)$
$PE(pos_x, 2i+1) = \cos\left(rac{pos_x}{10000^{rac{2i}{d_{ m model}}}} ight)$	$PE(pos_y, 2i+1) = \cos\left(rac{pos_y}{10000^{rac{2i}{d_{ m model}}}} ight)$

- $pos_x pos_y$ 分别表示二维空间中的横纵坐标
- ullet i 是编码向量维度索引,取值范围为 0 到 $d_{\mathrm{model}}/2-1$
- d_{model} 是编码向量的维度

解码器部分

注意力机制

YOLO VS DETR

特性	YOLO	DETR
实时 性	高 速度极快,适合实时应用	较低 速度较慢,难以满足实时性要求
精度	中等 整体精度较好,但对小目标检测精度较低	高 对小目标检测精度较高,整体精度也更高
训练 难度	较低 训练过程相对稳定,超参数调整难度较低	较高 Transformer 模型训练难度较大,超参数调整也相对困难
部署成本	低模型结构简单,参数量较少,计算量低,易于部署	高 Transformer 模型计算量大,对硬件性能要求较高,部署成本相对较高

YOLO VS DETR

Item	Value
optimizer	AdamW
base learning rate	1e-4
learning rate of backbone	1e-5
freezing BN	True
linear warm-up start factor	0.001
linear warm-up steps	2000
weight decay	0.0001
clip gradient norm	0.1
ema decay	0.9999
number of AIFI layers	1
number of RepBlocks	3
embedding dim	256
feedforward dim	1024
nheads	8
number of feature scales	3
number of decoder layers	6
number of queries	300
decoder npoints	4
class cost weight	2.0
α in class cost	0.25
γ in class cost	2.0
bbox cost weight	5.0
GIoU cost weight	2.0
class loss weight	1.0
α in class loss	0.75
γ in class loss	2.0
bbox loss weight	5.0

2.0

200

0.5

1.0

GIoU loss weight

denoising number

label noise ratio

box noise scale

ByteTrack

论文地址: https://arxiv.org/pdf/2110.06864

	教技大	学人工		
· O.			Latt Her	
ngdao	Chiversity (echnolog	
_	versity o	of Science	84	

特性	DeepSORT	ByteTrack
核心思想	深度学习提取特征 + 数据关联	将追踪转化为关联问题,通过关联矩阵匹配目标和检测框
特征提取	使用深度学习模型提取外观特征	无需显式提取特征,直接利用检测框信息
数据 关联	匈牙利算法 + 外观特征 + 运动信息	基于关联矩阵,利用检测框的位置、大小、 置信度等信息
优势	精准: 对目标外观变化鲁棒性强, 追踪精度高	高效 : 速度更快,实现简单,易于部署
劣势	耗时 : 计算量大,速度较慢,依赖高质量检测结果	易混淆: 对目标外观变化鲁棒性稍弱,误检/漏检多时易出现目标 ID 切换

从图中可以看出,ByteTrack 在 MOT17 和 MOT20 数据集上都表现出高 MOTA 和高 IDF1 的特点,这意味着它在目标跟踪方面具有以下优势:

- 1. 高准确度: ByteTrack 在两个数据集上都取得了非常高的 MOTA 分数,表明它能够准确地关联目标轨迹。
- 2. 强鲁棒性: ByteTrack 在 IDF1 指标上也表现出色,这意味着它在处理目标遮挡、运动模糊等复杂场景时具有较强的鲁棒性。

综合考量,ByteTrack 是一款高性能、高效的目标跟踪算法,尤其在处理拥挤场景和复杂遮挡情况下表现出色。

数据集

特性	Objects365	COCO
图像数量	训练集: 600000, 验证集: 30000	训练集: 118000, 验证集: 5000
类别数量	365	80
标注框数量	1000000	1500000
图像场景	日常生活场景	日常生活和复杂场景
标注难度	高	高
主要优势	数据规模大, 类别丰富	数据集成熟,应用广泛
主要劣势	类别数量多, 训练难度大	数据规模相对较小

```
"folder": "string",
"filename": "string",
"source": {
  "database": "string",
 "annotation": "string",
  "image": "string"
"size": {
  "width": "integer",
 "height": "integer",
 "depth": "integer"
"segmented": "integer",
"object": [
    "name": "string",
   "pose": "string",
   "truncated": "integer",
   "difficult": "integer",
   "bndbox": {
      "xmin": "integer",
      "ymin": "integer",
      "xmax": "integer",
      "ymax": "integer"
```

字段	说明	类型
folder	图像所属文件夹	字符串
filename	图像文件名	字符串
source.database	数据集名称	字符串
source.annotation	标注版本	字符串
source.image	图像来源	字符串
size.width	图像宽度	整数
size.height	图像高度	整数
size.depth	图像通道数	整数
segmented	是否用于分割任务 (1: 是, 0: 否)	整数

```
"folder": "string",
"filename": "string",
"source": {
  "database": "string",
 "annotation": "string",
  "image": "string"
"size": {
  "width": "integer",
 "height": "integer",
 "depth": "integer"
"segmented": "integer",
"object": [
    "name": "string",
   "pose": "string",
   "truncated": "integer",
   "difficult": "integer",
   "bndbox": {
      "xmin": "integer",
      "ymin": "integer",
      "xmax": "integer",
      "ymax": "integer"
```

字段	说明	类型
object.name	物体类别名称	字符串
object.pose	拍摄角度	字符串
object.truncated	物体是否被截断 (1: 是, 0: 否)	整数
object.difficult	目标是否难以识别 (1: 是, 0: 否)	整数
object.bndbox.xmin	边界框左上角×坐标	整数
object.bndbox.ymin	边界框左上角y坐标	整数
object.bndbox.xmax	边界框右下角×坐标	整数
object.bndbox.ymax	边界框右下角y坐标	整数

预训练模型

基于 Objects 365 数据集进行实验。

模型	AP	AP 50	AP 75
RT-DETR-R 18	46.5	63.8	50.4
RT-DETR R 50	53.1	71.3	57.7
RT-DETR R 101	54.3	72.7	58.6
RT-DETR-R 18 (Objects 365 预训练)	49.2	66.6	53.5
RT-DETR-R 50 (Objects 365 预训练)	55.3	73.4	60.1
RT-DETR-R 101 (Objects 365 预训练)	56.2	74.6	61.3

开始检测

GPU版本

https://merve-rt-detr-tracking-coco.hf.space/

CPU版本

https://moyanxinxu-video-object-detect-detr-bytetrack.hf.space/

GPU版本

https://merve-rt-detr-tracking-coco.hf.space/

https://moyanxinxu-video-object-detect-detr-bytetrack.hf.space/

谢谢!