Birla Institute of Technology & Science, Pilani, Hyderabad Campus First Semester 2021-2022 Course Handout: Part-II

16/08/2021

In addition to Part-I (General Handout for all courses appended to the Time-Table) this document provides specific details regarding the course.

Course No.: BITS G553

Course Title: REAL TIME SYSTEMS

Instructor-In-Charge: SOUMYA J

1. Description of the course: Real time software, Real time operating systems-scheduling, virtual memory issues and file systems, real time data bases, fault tolerance and exception handling techniques, reliability evaluation, data structures and algorithms for real time/embedded systems, programming languages, compilers and run time environment for real time/embedded systems, real time system design, real time communication and security, real time constraints and multi processing and distributed systems.

2. Scope:

The course focuses on the basic theory of Real-Time systems, tools, and real time operating systems. Specifically, we discuss Real-Time Scheduling and validation, Real-Time communication, Real-Time Operating Systems, and Performance analysis and Optimization.

3. Objective:

Real-time systems need deterministic upper time-bound for the execution of a job. The objective of the course is to expose the students in characterization, design and validation issues of Real-time systems. After the completion of the course, students should be able to design complex real time systems using formal methods.

4. Text Books:

[T1] Jane Liu W. S.: Real-Time Systems, Pearson Education, India 2003

5. Reference books:

- [R1] Laplante Phillip A.: Real-Time System Design and Analysis. Third Edition PHI 2005.
- [R2] Krishna C.M. & Shin K.G.: Real-Time Systems, McGraw-Hill 1997

6. Course Plan and Learning Objectives

Module	Title	No of	Reference	Learning Objectives	
		classes			
1	Typical real-time applications	2	Ch2-T1	Understand several representative classes of real-time applications, the characteristics of the workloads generated by the applications and the relation between their timing and functional requirements	
2	Reference model of Real-Time Systems	4	Ch3-T1	Understand a reference model characterizing 1)a workload model ,2) a resource model and (3) algorithms that define how the application uses the resources at all times.	
3	Approaches to Real-Time	4	Ch4-T1	Understand commonly used approaches	

	Scheduling			for scheduling realtime systems		
4	Clock-driven Scheduling	4	Ch5-T1	Understand details of clock-driven scheduling its merits and de-merits.		
5	Priority-driven Scheduling of periodic tasks	4	Ch6-T1	Understand priority-driven algorithms for scheduling periodic tasks on a processor and examine the merits and de-merits.		
6	Scheduling Aperiodic and Sporadic jobs	4	Ch7-T1	Understand algorithms for scheduling aperiodic and sporadic jobs in a priority-driven system.		
7	Resource Management	4	Ch8-T1	Study resource contention affects on the execution behavior and schedulability of jobs and study various resource access-control protocols .		
8	Real time communications	5	Ch11-T1	Study networking protocols with deterministic responses .		
9	Real-Time Operating Systems (RTOS)	5	Ch12-T1	Study operating systems supporting real-time scheduling and resource management policies. POSIX is taken as example standard.		
10	Advanced Topics	4	_	Research papers in the area of RTS.		

7. Evaluation Scheme:

EC No.	Evaluation Component	Туре	Duration	Weight	Date
110.	Mile	O D 1	00 : .	250/ (75.14)	m 1
1	Mid Semester Test	Open Book	90 minutes	25% (75 M)	To be announced
2	Assignments+	Open Book	-	35% (105 M)	To be announced
	Lab+Project+Presentations				
3	Comprehensive Exam	Open Book	2 hours	40% (120 M)	To be announced

8. Make-up Policy:

Prior Permission of the Instructor-in-Charge is required to take a make-up for any component. A make-up test shall be granted only in **genuine** cases. There will be no make-up for the project /term paper presentations.

9. Chamber Consultation Hours: To be announced in the class.

10. Notices: All notices will be posted on CMS.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and any mode of academic dishonesty will not be acceptable.

Instructor-in-Charge-BITS G553