Clase 2: Pre-procesamiento de textos

Marcelo Errecalde^{1,2}

¹Universidad Nacional de San Luis, Argentina ²Universidad Nacional de la Patagonia Austral, Argentina ³

Curso: Minería de Textos Facultad de Informática - Universidad Nacional de La Plata 23 al 27 de Septiembre de 2019

Resumen

- Partición del texto
- 2 Filtrado de palabras
- Normalización de palabras
- Etiquetado de palabras

Algunas técnicas de pre-procesamiento

- Partición del texto
- Filtrado ("stop-words", baja frecuencia)
- Normalización (mayúsculas, variaciones de uso)
- Truncado ("stemming") y lematización ("lemmatization")
- Etiquetado de las palabras
 - De Partes de la Oración (Part of Speech (POS) Tagging)
 - Desambiguación del Significado de las Palabras (WSD)
 - Reconocimiento de Entidades Nombradas (NER)

Partición del texto

Constituyen el pre-procesamiento básico en la mayoría de las aplicaciones de TM.

- Partición: proceso que convierte el texto crudo en componentes significativas (de acuerdo al caso):
 - capítulos
 - 2 secciones
 - g párrafos
 - sentencias
 - palabras (e incluso sílabas)

Partición del texto "crudo"

- Partición: proceso que convierte el texto crudo en componentes significativas (de acuerdo al caso):
 - capítulos
 - 2 secciones
 - g párrafos
 - sentencias
 - palabras (e incluso sílabas)
- La forma más común y básica de partición es el proceso que convierte una secuencia de caracteres en una secuencia de palabras (o tokens) usualmente referida como tokenización.

Tokenización

- Tokenización: tarea de separar (cortar/dividir) una cadena de caracteres en las mínimas unidades linguisticas identificables (tokens)
- Ejemplo, dada la siguiente sentencia:

After sleeping for four hours, he decided to sleep for another four.

El proceso de tokenización produciría:

```
{"After" "sleeping" "for" "four" "hours" "he" "decided" "to" "sleep" "for" "another" "four"}.
```

Seste proceso suele requerir conocimiento de dominio substancial sobre el lenguaje específico en cuestión (límites de las palabras ambiguos debido a las particularidades de la puntuación en diferentes idiomas).

Tokens/Palabras

- Token: secuencia de caracteres de un texto que es tratado como una unidad indivisible para su procesamiento.
- Cada mención de la misma palabra en un documento es tratada como un token separado.
- Por lo tanto, la ocurrecia de la misma palabra tres veces creará los correspondientes tres tokens.
- Regla simple de tokenización:

Usar los "espacios en blanco" (caracteres de espacio, tabs y newlines) como separadores una vez que los símbolos de puntuación han sido removidos.

Varias situaciones dificultan este proceso simple de reconocimiento.

Dificultades para reconocer límites de palabras (tokens)

- Falta (olvido) de espacio en blanco luego de puntuación.
- Excepciones al uso de símbolos de puntuación como separadores:
 - El punto (.) y la coma (,) para delimitar decimales.
 - 2 Los dos puntos (:) en notación de horarios (ej. 8:20 PM)
- Similar al separador '/' en fechas (ej. 16/11/2018).
- Puntos en acrónimos y abreviaturas ("Dr.", "e.g.", "p.ej.")
- Guiones (-) en nros. de teléfono, de seguridad social, emoticones (:)), hashtags (#nlproc), etc.
- Direcciones de e-mail, URL's, nros. de patentes, citas bibliográficas, etc

- Expansión de contracciones clíticas marcadas con apóstrofes (')
- clíticas: palabras que sólo ocurren en combinación con otra palabra (ejemplo 'm en l'm.)
 - **1** what're ⇒ se expande a dos tokens what are
 - ② we're ⇒ se expande a dos tokens we are
- Expresiones multi-palabras tratadas como un sólo token (New York, Barack Obama, a priori)
- Estas últimas requieren diccionarios multi-palabras y/o interacción con la detección de entidades nombradas.
- En la práctica (dado que la tokenización debe ejecutarse antes de cualquier otro procesamiento de lenguaje), es importante que sea muy rápido.
- El método estándar es utilizar algoritmos determinísticos basados en expresiones regulares que se compilan en autómatas de estado finito muy eficientes.

Expresiones regulares

- Se pueden usar para tokenizar texto y tener mucho más control sobre el proceso.
- Una expresión regular (ER) es una notación algebraica (un lenguaje) para caracterizar un conjunto de cadenas.
- Permiten buscar un patrón en un texto o colección de textos (corpus).
- Una función de búsqueda de ERs buscará a través del corpus y devolverá todos los textos que coincidan con el patrón.
- Ejemplo, el comando grep de Unix toma una ER y devuelve cada línea del documento de entrada que coincide con la expresión.

Operator	Behavior			
	Wildcard, matches any character			
^abc	Matches some pattern abc at the start of a string			
abc\$	Matches some pattern abc at the end of a string			
[abc]	Matches one of a set of characters			
[A-Z0-9]	Matches one of a range of characters			
ed ing s	Matches one of the specified strings (disjunction)			
*	Zero or more of previous item, e.g. a*, [a-z]* (also known as Kleene			
	Closure)			
+	One or more of previous item, e.g. a+, [a-z]+			
?	Zero or one of the previous item (i.e. optional), e.g. a?, [a-z]?			
{n}	Exactly <i>n</i> repeats where n is a non-negative integer			
{n,}	At least n repeats			
{,n}	No more than <i>n</i> repeats			
{m,n}	At least m and no more than n repeats			
a(b c)+	Parentheses that indicate the scope of the operators			

Symbol	Function		
\b	Word boundary (zero width)		
\d	Any decimal digit (equivalent to [0-9])		
\D	Any non-digit character (equivalent to [^0-9])		
\s	Any whitespace character (equivalent to [\t\n\r\f\v])		
\\$	Any non-whitespace character (equivalent to [^ \t\n\r\f\v])		
\w	Any alphanumeric character (equivalent to [a-zA-Z0-9_])		
\W	Any non-alphanumeric character (equivalent to [^a-zA-Z0-9_])		
\t	The tab character		
\n	The newline character		

Separando tokens usando espacios en blanco

print(raw.split()) #usando split como herramienta

In [1]:

import re

raw = """'When I'M a Duchess,' she said to herself, (not in a very hopeful tone though), 'I won't have any pepper in my kitchen AT ALL. Soup does very well without--Maybe it's always pepper that makes people hot-tempered,'"""

... mejorando la ER que separa tokens...

```
In [1]:
print(re.split(r'[ \t\n]+', raw))

["'When", "I'M", 'a', "Duchess,'", 'she', 'said', 'to', 'herself,',
'(not', 'in', 'a', 'very', 'hopeful', 'tone', 'though),', "'I",
"won't", 'have', 'any', 'pepper', 'in', 'my', 'kitchen', 'AT',
'ALL.', 'Soup', 'does', 'very', 'well', 'without--Maybe', "it's",
'always', 'pepper', 'that', 'makes', 'people', "hot-tempered,'"]
```

o usando la abreviatura \s (cualquier caracter de espacio en blanco)

```
In [1]:
```

```
print(re.split(r'\s+', raw))

["'When", "I'M", 'a', "Duchess,'", 'she', 'said', 'to', 'herself,',
'(not', 'in', 'a', 'very', 'hopeful', 'tone', 'though),', "'I",
"won't", 'have', 'any', 'pepper', 'in', 'my', 'kitchen', 'AT',
'ALL.', 'Soup', 'does', 'very', 'well', 'without--Maybe', "it's",
'always', 'pepper', 'that', 'makes', 'people', "hot-tempered,'"]
```

... otras variantes de separación ...

Cosas que no sean caracteres de palabras (CPs):

```
In [1]:
print(re.split(r'\W+', raw))
['', 'When', 'I', 'M', 'a', 'Duchess', 'she', 'said', 'to', 'herself',
'not', 'in', 'a', 'very', 'hopeful', 'tone', 'though', 'I', 'won',
't', 'have', 'any', 'pepper', 'in', 'my', 'kitchen', 'AT', 'ALL',
'Soup', 'does', 'very', 'well', 'without', 'Maybe', 'it', 's', 'always'
'pepper', 'that', 'makes', 'people', 'hot', 'tempered', '']
```

o buscando las palabras en lugar de los separadores:

```
In [1]:
print(re.findall(r'\w+', raw))

['When', 'I', 'M', 'a', 'Duchess', 'she', 'said', 'to', 'herself',
'not', 'in', 'a', 'very', 'hopeful', 'tone', 'though', 'I', 'won',
't', 'have', 'any', 'pepper', 'in', 'my', 'kitchen', 'AT', 'ALL',
'Soup', 'does', 'very', 'well', 'without', 'Maybe', 'it', 's',
'always', 'pepper', 'that', 'makes', 'people', 'hot', 'tempered']
```

... y buscando patrones más complejos ...

'people', 'hot-tempered', ',', "'"]

CPs o algo que no es un espacio en blanco seguido de CPs:

```
print(re.findall(r"\w+(?:[-']\w+)*|'|[-.(]+|\S\w*", raw))

["'", 'When', "I'M", 'a', 'Duchess', ',', "'", 'she', 'said', 'to',
'herself', ',', '(', 'not', 'in', 'a', 'very', 'hopeful', 'tone',
'though', ')', ',', "'", 'I', "won't", 'have', 'any', 'pepper', 'in',
'my', 'kitchen', 'AT', 'ALL', '.', 'Soup', 'does', 'very', 'well',
'without', '--', 'Maybe', "it's", 'always', 'pepper', 'that', 'makes',
```

Filtrado

Se remueven palabras (tokens) de determinado tipo o que no cumplen ciertas condiciones:

- Palabras de paro ("stop-words"): palabras con escasa (o nula) información de contenido (artículos, conjunciones. preposiciones, etc).
 - En ciertas tareas no son eliminadas (ej: se requiere capturar estilo)
 - Existen diccionarios específicos del lenguaje
 - Se puede "aproximar" este efecto con eliminación de palabras demasiado frecuentes o el uso de normalizaciones de pesos que las penalizan (idf)
- Umbrales de frecuencia mínimo (ver métodos de filtrado en teoría de reducción de dimensionalidad).
- Símbolos o elementos especiales (símbolos de puntuación, números, etc)

Normalizaciones (mayúsculas y variaciones de uso)

En este contexto, normalizar es llevar variaciones de tokens a una forma común.

- El uso de la mayúscula puede definir el significado de un término. Bob puede ser un verbo usado al comienzo de una sentencia o el nombre de una persona.
- Regla usual: palabras en el comienzo de sentencias, títulos y encabezados de sección se convierten a minúscula. El resto se mantiene como está.
- Otra casos que suelen normalizarse: pequeñas variaciones del mismo token que refieren a la misma palabra/concepto: colour/color, naive/naïve, US/USA.
- Solución: tablas con posibles variaciones y su forma estandarizada.

Lematización y truncado

- Se pueden ver como otra forma de normalización / standarización
- Buscan reducir las formas infleccionales y derivadas de las palabras, obteniendo las formas bases comunes.

Métodos de lematización

- Mapean palabras a su forma base o de diccionario (lema).
- En formas verbales busca el infinitivo y en sustantivos su forma singular.
- Requieren del uso de rotuladores (p. ej. POS tagger)
- Ejemplo: saw ⇒ see o saw (dependiendo de si es reconocido como sustantivo o verbo)

Lematización y truncado

- Se pueden ver como otra forma de normalización / standarización
- Buscan reducir las formas infleccionales y derivadas de las palabras, obteniendo las formas bases comunes.

Métodos de *truncado* ("stemming")

- Considerados por algunos como una lematización básica.
- Más sencillo y económico que la obtención de lemas.
- Obtiene formas básicas de las palabras a partir de la poda de sufijos ("s" en sustantivos, "ing" en verbos, etc.)
- El "stem" o raíz de la palabra intenta representar palabras con igual (o similar significado).

Ejemplos de truncado

El algoritmo de stemming (para inglés) más conocido es el alg. de Porter. Sitio oficial:

http://tartarus.org/ martin/PorterStemmer/

Ejemplos con Porter

- Ejemplo 1: Porter convierte: operate operating operates operation operative operatives operational en oper.
- Ejemplo 2: Ojo, Porter podría convertir saw ⇒ s.
- Buena comparación de stemming y lemmatization: http://nlp.stanford.edu/IR-book/html/ htmledition/stemming-and-lemmatization-1. html

Ejemplo completo con Porter

This was not the map we found in Billy Bones's chest, but an accurate copy, complete in all things-names and heights and soundings-with the single exception of the red crosses and the written notes.

produce la siguiente salida con palabras truncadas

Thi wa not the map we found in Billi Bone s chest but an accur copi complet in all thing name and height and sound with the singl except of the red cross and the written note

Comparación truncado (nltk) vs lematización(spacy)

```
In [1]:
import spacy
import nltk
# cargar el modelo del lenguaje inglés de spacy
en nlp = spacv.load('en')
doc = u"I saw there some saws to cut the tree"
# instanciar el "stemmer" de Porter de nltk
stemmer = nltk.stem.PorterStemmer()
# tokenizar documento con spacy
doc spacy = en nlp(doc)
# imprimir lemas encontrados por spacy
print("Lematización:")
print([token.lemma_ for token in doc_spacy])
# imprimir tokens obtenidos con el stemmer de Porter
print("Truncado:")
print([stemmer.stem(token.norm_.lower()) for token in doc_spacy])
Lematización:
['-PRON-', 'see', 'there', 'some', 'saw', 'to', 'cut', 'the', 'tree']
Truncado:
['i', 'saw', 'there', 'some', 'saw', 'to', 'cut', 'the', 'tree']
```

Etiquetado de las Categorías Gramaticales (ECG)

Las palabras de una oración pueden ser etiquetadas/categorizadas de acuerdo al rol que tienen en el contexto de una sentencia: sustantivo, verbo, adjetivo, adverbio, etc.

Ejemplo, en:

Si usted tapa la olla azul, necesitará una tapa grande.

El primer uso de *tapa* corresponde a un verbo, y el segundo a un sustantivo.

Estas categorías de una palabra de acuerdo al contexto de uso se las conoce como categorías gramaticales, clases de palabras o partes de la oración (en inglés Part-of-Speech

Etiquetado de las Categorías Gramaticales (ECG) (II)

Definición

El Etiquetado de las Categorías Gramaticales (ECG) (en inglés Part-of-Speech (POS) Tagging) es la tarea de asignar a las palabras distintas categorías gramaticales de acuerdo al rol que tienen en las sentencias en que aparecen.

Ejemplo: las palabras de la sentencia

The grand jury commented on a number of other topics.

podrían ser etiquetadas con las siguientes categorías por un sistema de ECG:

```
The/DT grand/JJ jury/NN commented/VBD on/IN a/DT number/NN of/IN other/JJ topics/NNS ./.
```

Etiquetado de las Categorías Gramaticales (ECG) (III)

```
The/DT grand/JJ jury/NN commented/VBD on/IN a/DT number/NN of/IN other/JJ topics/NNS ./.
```

- DT (determinador), JJ (adjetivo), NN (sustantivo), IN (preposición), VBD (verbo en pasado) y NNS (sustantivo plural) son etiquetas usuales en una sentencia.
- Sin embargo, considerando distintas categorías y subcategorías, se han propuesto distintos tagsets:
 - Penn Treebank (45 etiquetas)
 - Brown corpus (87 etiquetas)
 - 3 C7 tagset (146 etiquetas)

Etiquetas para el inglés (Penn Treebank)

Tag	Description	Example	Tag	Description	Example
CC	Coordin. Conjunction	and, but, or	SYM	Symbol	+,%, &
CD	Cardinal number	one, two, three	TO	"to"	to
DT	Determiner	a, the	UH	Interjection	ah, oops
EX	Existential 'there'	there	VB	Verb, base form	eat
FW	Foreign word	mea culpa	VBD	Verb, past tense	ate
IN	Preposition/sub-conj	of, in, by	VBG	Verb, gerund	eating
JJ	Adjective	yellow	VBN	Verb, past participle	eaten
JJR	Adj., comparative	bigger	VBP	Verb, non-3sg pres	eat
JJS	Adj., superlative	wildest	VBZ	Verb, 3sg pres	eats
LS	List item marker	1, 2, One	WDT	Wh-determiner	which, that
MD	Modal	can, should	WP	Wh-pronoun	what, who
NN	Noun, sing. or mass	llama	WP\$	Possessive wh-	whose
NNS	Noun, plural	llamas	WRB	Wh-adverb	how, where
NNP	Proper noun, singular	IBM	\$	Dollar sign	\$
NNPS	Proper noun, plural	Carolinas	#	Pound sign	#
PDT	Predeterminer	all, both	"	Left quote	" or "
POS	Possessive ending	's	,,	Right quote	, or ,,
PRP	Personal pronoun	I, you, he	(Left parenthesis	[, (, {, <
PRP\$	Possessive pronoun	your, one's)	Right parenthesis],), }, >
RB	Adverb	quickly, never	,	Comma	,
RBR	Adverb, comparative	faster		Sentence-final punc	. ! ?
RBS	Adverb, superlative	fastest	:	Mid-sentence punc	: ;
RP	Particle	up, off			

Ejemplo 1: POS tagging (Python)

```
In [1]:
from nltk import pos_tag, wordpunct_tokenize
text = "The old building was demolished. Tomorrow, they will begin
building a new one"
pos tag(wordpunct tokenize(text))
Out[11:
[('The', 'DT'),
 ('old', 'JJ'),
 ('building', 'NN'),
 ('was', 'VBD'),
 ('demolished', 'VBN'),
 ('.', '.'),
 ('Tomorrow', 'NNP'),
 (',', ','),
 ('thev', 'PRP'),
 ('will', 'MD'),
 ('begin', 'VB'),
 ('building', 'VBG'),
 ('a', 'DT'),
 ('new', 'JJ'),
 ('one', 'CD')]
```

In [1]:

text = "The grand jury commented on a number of other topics."
pos_tag(wordpunct_tokenize(text))

Out[1]:

```
[('The', 'DT'),
  ('grand', 'JJ'),
  ('jury', 'NN'),
  ('commented', 'VBD'),
  ('on', 'IN'),
  ('a', 'DT'),
  ('number', 'NN'),
  ('of', 'IN'),
  ('other', 'JJ'),
  ('topics', 'NNS'),
  ('.', '.')]
```

ECG (POS tagging) - consideraciones finales

Observaciones

- El ECG (POS tagging) también es llamado etiquetado gramatical o desambiguación de la categoría gramatical.
- Determinan estas categorías en base al contexto en que se encuentra la palabra.
- La mayoría de los ECG caen en dos grandes grupos: a) basados en reglas (p.ej. EngCG) y b) enfoques estocásticos (p.ej. HMM taggers)

Material complementario

- Capítulo 8 (Part of Speech Tagging) de [2]
- Capítulo 5 (Categorizing and Tagging Words) de [1]

Desambiguación del Significado de las Palabras

Definición

En inglés Word Sense Disambiguation (WSD) trata de resolver la ambiguedad en el significado de las palabras en base al contexto en que éstas aparecen.

Ejemplo, la palabra "banco"						
Frase		Significado				
Perdí la mañana en el banco pagando	\Rightarrow	Institución				
impuestos.		Financiera				
Desde el barco vi el banco de peces.	\Rightarrow	Cardumen				
Sentado en un banco suspiraba.	\Rightarrow	Mueble				
Las donaciones se están recibiendo	\Rightarrow	Establecimiento				
en el <mark>banco</mark> de sangre.		Médico				

La Ambigüedad en el PLN

- El lenguaje natural se distingue de los lenguajes artificiales por su riqueza y flexibilidad.
- Sin embargo, si bien es bueno para la comunicación humana introduce problemas como la ambigüedad.
- Como se ha expresado en otros trabajos:
 - "Lo que son ventajas para la comunicación humana se convierten en problemas a la hora de un tratamiento computacional, ya que implican conocimiento y procesos de razonamiento que son difíciles de formalizar."
- Entre esos problemas, la ambigüedad es uno de los principales en el PLN y se da a distintos niveles (palabras polisémicas, oraciones con ≠ interpretaciones), etc.

Algunos tipos de ambigüedad

- Ambigüedad léxica: una palabra ⇒ ≠ categorías gramaticales. Ejemplo: "para" (¿preposición o verbo?).
- Ambigüedad sintáctica (o estructural): una oración ⇒ ≠ interpretaciones. Ejemplo: "Juan vio a su hermana con unos prismáticos".
- Ambigüedad semántica: incluye
 - Ambigüedad debido a palabras polisémicas: Ejemplo: "banco"
 - Ambigüedad referencial: Ejemplo: "El jamón está en el armario. Sácalo. Ciérralo".

En cierto sentido, distintas tareas de PLN (POS tagging, ENR, categorización) podrían ser consideradas ≠ formas de desambigüación

Word Sense Disambiguation (WSD)

Desambigüación (Word Sense Disambiguation (WSD)

Procedimiento utilizado para decidir los significados de las palabras a partir del contexto que las rodea.

WSD en PLN

- Traducción Automática: "I'm in bed because I have a cold"
 - "Estoy en cama porque estoy resfriado"
 - "Estoy en cama porque tengo un frío", No!!!!!.
- Recuperación de la Información: Encontrar todas las páginas Web que hablen del "pato". (¿El deporte o el ave?)
- Búsqueda de respuestas: ¿Qué opina George Miller sobre el control de armas?. (¿El psicólogo o el congresista?)
- Adquisición de Conocimiento: Añadir a la KB: Herb Bergson es el alcalde de Duluth (¿Minnesota o Georgia?)

Clasificación de Sistemas de WSD

(de acuerdo a la principal fuente de conocimiento utilizada)

- Métodos basados en Conocimiento (o en Diccionario): utilizan diccionarios, tesauros y KB léxicas (como Wordnet)
 - solapamiento contextual entre definiciones de un diccionario (Algoritmo Lesk)
 - Similitud Semántica
 - Preferencias de selección
 - Métodos heurísticos (MFS, 1SXD)
- Métodos basados en Corpus
 - No supervisados: trabajan con corpus sin etiquetar.
 - Supervisados: trabajan con corpus etiquetados semánticamente.
- Métodos Híbridos

La ontología Wordnet

- Concebido como un diccionario electrónico.
- El contenido se organiza mediante una base de datos léxica. donde se agrupan conjuntos de palabras (nombres, verbos, adjetivos y adverbios) en grupos de sinónimos llamados synsets.
- Por lo tanto, un synset es un conjunto de todas las palabras que expresan un mismo concepto.
- Dentro de WN, cada synset se codifica con un número único que representa un concepto distinto.
- Entre los synsets existen conexiones que expresan relaciones semánticas, conceptuales o léxicas.

Relaciones definidas en Wordnet

- Sinonimia: car ⇒ automobile
- Antonimia: clean ⇒ dirty
- Hiponimia (TIPOS DE): cat ⇒ domestic cat, cat ⇒ wildcat
- Hiperonimia (ES UN TIPO DE): pine ⇒ tree, cat ⇒ feline
 ⇒ carnivore
- Meronimia (PARTES DE): foot ⇒ toe.
- Holonimia: (ES UNA PARTE DE): toe ⇒ foot, eye ⇒ face
- Troponimia: es hiponimia a nivel verbos. swim ⇒ crawl
- Entailment: es la inferencia lógica. snore ⊨ sleep

Algunas estadísticas de Wordnet (3.0)

POS	Words	Synsets
Noun	117798	82115
Verb	11529	13767
Adjective	21479	18156
Adverb	4481	3621
Totals	155287	117659

WSD y Wordnet

- La tarea de WSD es básicamente una de clasificación:
 - Dada una palabra, asignar un sentido unívoco a la misma, de acuerdo a su contexto (palabras que la rodean) en la oración.
- Este sentido unívoco está dado por el identificador (unívoco) de un synset de la ontología Wordnet.
- Un synset (por conjunto de sinónimos) es un conjunto de sentidos/significados de palabras que representan cosas que son sinónimos (o casi).
- Así, un synset representa un concepto, aquel representado como la lista de los significados de palabras que se usan para expresar dicho concepto.

Ejemplo: sentidos en WN de la palabra "bass"

The noun "bass" has 8 senses in WordNet.

- 1. bass¹ (the lowest part of the musical range)
- 2. bass², bass part¹ (the lowest part in polyphonic music)
- 3. bass³, basso¹ (an adult male singer with the lowest voice)
- 4. sea bass¹, bass⁴ (the lean flesh of a saltwater fish of the family Serranidae)
- 5. freshwater bass¹, bass⁵ (any of various North American freshwater fish with lean flesh (especially of the genus Micropterus))
- 6. bass⁶, bass voice¹, basso² (the lowest adult male singing voice)
- 7. bass⁷ (the member with the lowest range of a family of musical instruments)
- 8. bass⁸ (nontechnical name for any of numerous edible marine and freshwater spiny-finned fishes)

The adjective "bass" has 1 sense in WordNet.

- 1. bass¹, deep⁶ (having or denoting a low vocal or instrumental range)
 - "a deep voice"; "a bass voice is lower than a baritone voice"; "a bass clarinet"

Sentidos y synsets

- bass tiene 8 sentidos como sustantivo y 1 como adjetivo
- Aqui se pueden identificar synsets como {bass¹, deep⁶} y {bass⁶, bassvoice¹, basso²}
- Con NLTK se pueden obtener todos los sentidos de una palabra en Wordnet:

```
In [1]:
    from nltk.corpus import wordnet as wn
wn.synsets('bass')
Out[1]:
    [Synset('bass.n.01'),
        Synset('bass.n.02'),
        Synset('bass.n.03'),
        Synset('sea_bass.n.01'),
        Synset('freshwater_bass.n.01'),
        Synset('bass.n.06'),
        Synset('bass.n.07'),
        Synset('bass.n.08'),
        Synset('bass.s.01')]
```

WSD (NLTK)

- Desambiguar el sentido de la palabra (WSD) no es más que dar el lema de la palabra, su rol/categoria gramatical y el contexto en que está usada.
- El resultado es el synset/concepto (unívoco) que corresponde a este uso del lema:
- Ejemplo: usando para WSD el algoritmo de Lesk

Reconocimiento de Entidades Nombradas (REN)

Características

- Subtarea de Extracción de Información.
- Consiste en la ubicación y clasificación de secuencias de palabras dentro de un texto, en categorías tales como nombres de personas, lugares, organizaciones, cantidades, etc.
- El resultado de este proceso es un documento con etiquetas que identifican el comienzo y fin de las entidades nombradas.
- Ejemplo: "Jim bought 300 shares of Acme Corp. in 2006"
 ⇒ <ENAMEX TYPE="PERSON">Jim</ENAMEX> bought
 <NUMEX TYPE="QUANTITY">300</NUMEX> shares of
 <ENAMEX TYPE="ORGANIZATION">Acme Corp.
 </ENAMEX> in <TIMEX TYPE="DATE">2006</TIMEX>.

Entidades Nombradas (EN)

Entidades nombradas

- Secuencia de palabras que refiere a una entidad específica del mundo real mediante un nombre propio: una persona, una ubicación, una organización.
- También incluyes otras cosas que no son estrictamente entidades nombradas (fechas), valores monetarios, etc

Tipos y ejemplos de EN genéricas

Type	Tag	Sample Categories	Example sentences
People	PER	people, characters	Turing is a giant of computer science.
Organization	ORG	companies, sports teams	The IPCC warned about the cyclone.
Location	LOC	regions, mountains, seas	The Mt. Sanitas loop is in Sunshine Canyon.
Geo-Political	GPE	countries, states, provinces	Palo Alto is raising the fees for parking.
Entity			
Facility	FAC	bridges, buildings, airports	Consider the Tappan Zee Bridge.
Vehicles	VEH	planes, trains, automobiles	It was a classic Ford Falcon.

Dificultades para el REN

- Ambigüedad de la segmentación: ¿ Donde empieza y termina la EN?
- Ambigüedad del tipo de EN: ¿JFK refiere al presidente, el aeropuerto o alguna escuela, puente o calle?

Algunas ambigüedades categóricas comunes:

Name	Possible Categories
Washington	Person, Location, Political Entity, Organization, Facility
Downing St.	Location, Organization
IRA	Person, Organization, Monetary Instrument
Louis Vuitton	Person, Organization, Commercial Product

Ejemplos de ambigüedades de tipo con el nombre Washington

[$_{PERS}$ Washington] was born into slavery on the farm of James Burroughs. [$_{ORG}$ Washington] went up 2 games to 1 in the four-game series. Blair arrived in [$_{LOC}$ Washington] for what may well be his last state visit. In June, [$_{GPE}$ Washington] passed a primary seatbelt law. The [$_{EAC}$ Washington] had proved to be a leaky ship, every passage I made...

REN en NLTK-Python

Se puede usar la función nltk.ne_chunk(), que toma como entrada una sentencia con los POS tags.

Usaremos una sentencia del corpus TreeBank In [1]:

```
sent = nltk.corpus.treebank.tagged_sents()[22]
sent

Out[1]:

[('The', 'DT'),
    ('U.S.', 'NNP'),
    ('is', 'VBZ'),
    ('one', 'CD'),
    ('of', 'IN'),
    ('the', 'DT'),
    ('few', 'JJ'),
    ...
]
```

REN en NLTK-Python (II)

```
In [1]:
print(nltk.ne_chunk(sent))
Out[1]:
(S
  The/DT
  (GPE U.S./NNP)
  is/VBZ
  one/CD
  . . . .
  according/VBG
  to/TO
  (PERSON Brooke/NNP T./NNP Mossman/NNP)
  ...)
```

Referencias y material de lectura

- [1] Steven Bird, Ewan Klein, and Edward Loper, 2009 Natural Language Processing with Python Analyzing Text with the Natural Language Toolkit. O'Reilly Media, 2009. http://www.nltk.org/book/.
- [2] Dan Jurafsky and James H. Martin, 2019- Speech and Language Processing. 3rd edition draft. https://web.stanford.edu/~jurafsky/slp3/

Notebook asociada:

https://github.com/merrecalde/curso_la_plata_2019/blob/master/clase_2_pre_procesamiento.ipynb