(19)日本国特許庁(J P)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平9-41213

(43)公開日 平成9年(1997)2月10日

(51) Int.CL ⁶	識別記号	庁内整理番号	FΙ					技術表示箇所
A 4 2 B 3/06			A42	в :	3/06			
B29C 70/06			D 0 4	H :	1/64		A	
DO4H 1/64		7310-4F	B 2 9	C 6	7/14		P	
# B 2 9 K 101:10								
105: 08		審查請求	未請求	請求項	の数2	OL	(全 5 頁)	最終頁に続く
(21)出願番号	特額平7-189447		(71)出	顧人		3160 消費株式	<u> </u>	
(22)出顧日	平成7年(1995) 7	月25日						丁目2番8号
			(72)発	明者			吉身六丁目1	番15-201号
			(74) ft	選人	弁理」			
							·	
			2					

(54) 【発明の名称】 ヘルメット

(57)【要約】

【課題】 十分に軽量であり、かつ、繰返し耐衝撃性に 優れるヘルメットを提供すること。

【解決手段】 ガラス繊維層 2 と、高強度ポリエチレン 繊維を含有する不統布1との積層物に熱硬化性樹脂が含 浸、硬化されてなる材料にて形成された帽体を有するへ ルメットであって、該高強度ポリエチレン繊維を含有す る不織布が、少なくとも繊維長 2 0 mmの高強度ポリエチ レン繊維の短繊維を5 0 体積%以上含有し、該不織布の 目付が 150 g/m² ~400 g/m² で、且つ圧縮荷 重5kg/cm² で測定した崇密度が 0.3 g/cm² 以下で あることを特徴とするものである。

- 1 高強度ポリエチレン繊維を含有する不機布
- 2 ガラス繊維層

PAT-NO: JP409041213A

DOCUMENT-IDENTIFIER: JP 09041213 A

TITLE: HELMET

PUBN-DATE: February 10, 1997

INVENTOR-INFORMATION:

NAME

NOMURA, YUKIHIRO

ASSIGNEE-INFORMATION:

NAME COUNTRY TOYOBO CO LTD N/A

APPL-NO: JP07189447

APPL-DATE: July 25, 1995

INT-CL (IPC): A42B003/06, B29C070/06, D04H001/64

ABSTRACT:

PROBLEM TO BE SOLVED: To provide a sufficiently lightweight helmet excellent in repetitive impact resistance.

SOLUTION: This helmet has a hat body formed of a material prepared by impregnating a laminate of glass fiber layers 2 and a nonwoven fabric 1 containing high-strength polyethylene fibers with a thermosetting resin and curing the resin. The nonwoven fabric containing the high-strength polyethylene fibers contains at least ≥50vol.% staple fibers of the polyethylene fibers having at least 20mm fiber length. The Metsuke (a weight unit, 2-200g/m<SP>2</SP>) of the nonwoven fabric is

150-400g/m<SP>2</SP> and the bulk density measured under 5kg/cm<SP>2</SP> compressive load is ≤0.3g/cm<SP>3</SP>.

COPYRIGHT: (C)1997, JPO

【特許請求の範囲】

【請求項1】 ガラス繊維よりなる層と、高強度ポリエ チレン繊維を含有する不織布よりなる層とを有する積層 物に熱硬化性樹脂を含浸、硬化させてなる材料にて形成 されたヘルメットであって、該不総布を構成する繊維中 に繊維長20~80㎜の高強度ポリエチレン繊維の短繊 継が50体積%以上含有され、該不織布の目付が150 g/m² ~400g/m² で、且つ圧縮荷重5kg/cm² で測定した崇密度が0.3g/cm³以下であることを特 徴とするヘルメット。

【請求項2】 該不織布が、ガラス繊維と該高強度ポリ エチレン繊維とよりなるハイブリッド不織布またはビニ ロン繊維と該高強度ポリエチレン繊維とよりなる混繊不 織布であることを特徴とする請求項1記載のヘルメッ ١.

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はヘルメット、例えば外部 よりの衝撃に対して頭部を保護するためのヘルメット、 者の頭部を保護するために装着するヘルメットに関す る。

[0002]

【従来技術・発明が解決しようとする課題】ヘルメッ ト、特に車両乗車時に装着する乗車用ヘルメットとして は、従来よりガラス繊維強化樹脂複合材料が使用されて きた。また、軽量化のためガラス繊維とビニロンなど有 機繊維を組み合わせたものが提案され、さらに最近では 特開平4-25445号公報に記載されているようなガ ラス繊維と高強度有機繊維を組合わせたヘルメットが提 30 案されている。

【0003】しかしながら、軽量化のために有機繊維を 用いたヘルメットの材料としては、当初は汎用有機繊維 が用いられていたため、ガラス繊維の使用量を減らすこ とができたが、強度不足を補うために有機繊維の使用量 が増え結果的に帽体の厚みが増してしまい軽量化を図る ことは困難であった。かかる状況下、高強度有機繊維を 用いることが検討され、汎用繊維布帛と高強度繊維布帛 とを積層したヘルメットも開発されたが、軽量化のレベ ルは十分ではなかった。その後、汎用繊維をすべて高強 40 度繊維に置き換えることで著しい軽量化がなされ、耐衝 撃性、耐貫通性にも優れたヘルメットが提案されたが、 該ヘルメットは衝撃回数が増すにつれ衝撃吸収性が低下 しやすくなり、ヘルメットとして十分満足できるもので はなかった。

【0004】本発明の目的は、上記従来のヘルメットが 有する問題点を解決し、十分に軽量であり、且つ、繰返 し衝撃性に対して衝撃吸収性の低下の抑制されたヘルメ ットを提供することである。

[0005]

【課題を解決するための手段】本発明は、つぎに示す特 徴を有するヘルメットである。

(1) ガラス繊維よりなる層と、高強度ポリエチレン繊 維を含有する不織布よりなる層とを有する積層物に熱硬 化性樹脂を含浸、硬化させてなる材料にて形成されたへ ルメットであって、該不織布を構成する繊維中に繊維長 20~80㎜の高強度ポリエチレン繊維の短繊維が50 体積%以上含有され、該不織布の目付が150g/m² ~400g/m² で、且つ圧縮荷重5kg/cm² で測定し 10 た崇密度が 0.3 g/cm³以下であることを特徴とする

ヘルメット。 (2) 該不織布が、ガラス繊維と該高強度ポリエチレン 繊維とよりなるハイブリッド不統布またはビニロン繊維 と該高強度ポリエチレン繊維とよりなる混繊不織布であ

る上記(1)記載のヘルメット。

【0006】本発明においては、「高強度ポリエチレン 繊維」としては、好ましくは、引張強度が25g/d以 上、より好ましくは30g/d以上であるポリエチレン 繊維があげられる。該引張強度はJIS L 1017 特に車両事故等で加わる衝撃より車両運転者および同乗 20 にて測定したものである。かかる高強度ポリエチレン繊 維としては、例えば、特公昭64-8732号公報ある いは特公平1-24887号公報などに記載された方法 等によって得られたものが例示される。また、「高強度 ポリエチレン繊維」としては、好ましくは弾性率が、8 00g/d以上、より好ましくは1000g/d以上で ある。引張弾性率は、JIS L 1017にて測定し たものである。

> 【0007】また、「高強度ポリエチレン繊維」として は、好ましくは比重が0.92~0.98、0.96~ 0.98、0.97付近のものが使用される。かくし て、不織布の崇密度を下げることができ、ひいてはヘル メットを軽量化できる。

【0008】本発明においては、繊維長が20~80m m、好ましくは30~60mmの高強度ポリエチレン繊維 からなる不識布が使用されていることが重要である。繊 雑長が20m以下の場合十分な耐貫通効果がえられなく なりヘルメットとして用をなさず、繊維長が80㎜以上 の場合には衝撃伝播を止める効果に薄れ採返し耐衝撃性 が悪くなる。また、本発明においては、不織布を用いる ことも重要である。織物を用いた場合は、衝撃を広い面 積に伝達し易いため耐衝撃性にも優れるが逆に衝撃が広 がると同時に剥離も広がってしまい衝撃回数を重ねるご とに衝撃吸収性能が大きく低下し易くなってしまい本発 明の目的を達成できない。

【0009】本発明にて使用される不織布としては、高 強度ポリエチレン繊維の単独よりなるものでもよいが、 他の繊維を配合したものでもよい。他の繊維を配合した 不織布は、該高強度ポリエチレン繊維の短繊維が50体 積%以上、好ましくは60体積%以上含有されたもので 50 ある。該高強度ポリエチレン繊維の短繊維の含有量が5

0体積%未満であると、ヘルメットの帽体の絶対的な強 度が不足し、耐貫通性を維持するために不織布の目付を 大きくする必要があり、ヘルメットを軽量化することが 非常に困難である。

【0010】上記他の繊維としては、炭素繊維、ガラス 繊維などの無機系繊維、アラミド、全芳香族ポリエステ ル繊維など高強度有機繊維、ポリアミド、ポリエステ ル、ビニロンなどの汎用工業資材用繊維などが挙げられ る。これらの繊維のなかでも、ガラス繊維と該高強度ポ リエチレン繊維とよりなるハイブリッド不織布またはビ 10 ニロン繊維と該高強度ポリエチレン繊維は、耐衝撃性に 優れ、また、含浸、硬化に用いられる熱硬化性樹脂との 接着性において優れるので好ましい。特に比重の小さい ビニロン繊維との混繊不織布は、軽量化においても優れ た効果が得られ好ましい。これら他の繊維の繊維長は、 特に限定されないが、好ましくは30㎜以上であると、 本発明に有効な効果を付与できる。

【0011】本発明で使用する不織布としては、その目 付が通常150~400g/m²、好ましくは200~ $300\,\mathrm{g/m^2}$ であるものが使用される。目付が150-20-10017】ヘルメットの帽体は、熱硬化性樹脂が含 g/m² 未満の場合には不織布が高強度ポリエチレン繊 雑100%であっても強度が不足し耐貫通性が満足され ない傾向がある。また、逆に目付が400g/m²を越 える場合にはポリエチレン繊維の割合が50%であって も十分耐貫通性は満足できるが全体に嵩高になり過ぎ帽 体の厚みが厚くなり軽量化の目標を達成できない傾向が ある。

【0012】また、不織布の嵩密度は、圧縮荷重5kg/ cm² で測定したときの嵩密度を、0.3g/cm³以下、 好ましくは0.2g/c=³以下程度とすることが適当で 30 ある。該嵩密度が0.3g/cm3 を越えるとき、例えば 目付150g/m²の不織布を使用したとき、積層物の 厚みが0.5㎜以下となり、帽体全体の平均厚みが2. 5㎜以下になり、耐衝撃性能が定められた規格を満足で きなくなる傾向がある。

【0013】不織布の厚みとしては、特に限定されるも のではないが、ヘルメットの軽量化やヘルメットの帽体 の耐衝撃性を阻害しない厚みとすることが好ましい。こ の点から、不織布の厚みは、通常4㎜以下、好ましくは 3㎜以下程度の厚みが適当である。

【0014】不織布は、上記所定の繊維長の高強度ポリ エチレン繊維を、必要に応じて所定の割合の他の繊維を 混合して、例えばカードウェブ積層等の既知の方法に て、所望の厚み、大きさに形成されたものである。

【0015】ガラス繊維と不織布との積層物は、上記不 織布の片面または両面にガラス繊維層を形成したもので ある。この積層物は、一般にプリフォームマットと呼ば れるもので、ガラス繊維をヘルメットの型になじむよう に既知の方法によって、所望の厚みに堆積、固定するこ とによって形成されたものである。例えば、図1に示す ヘルメットの帽体の一部分Aの拡大断面図を図2に示 す。

【0016】ガラス繊維層の厚みは、上記不織布の厚み と関連し特に限定されないが、ヘルメットの軽量化が達 成でき、かつ、ヘルメットの帽体に定められる耐衝撃性 の規格を満足できる積層物が得られる範囲内の厚みとす ることが好ましい。この点から、ガラス繊維層の厚み は、通常1.0~3.0m、好ましくは1.5~2.5 **皿程度とされる。**

浸、硬化されてなる積層物にて形成されたものである。 熱硬化性樹脂の含浸は、積層物を熱硬化性樹脂液中に浸 漬する方法、熱硬化性樹脂液を積層物にスプレーする方 法等にてなされる。熱硬化性樹脂としては、例えば、不 飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ 樹脂等が挙げられる。

【0018】ヘルメットは、上記熱硬化性樹脂が含浸、 硬化されてなる積層物を、例えば加圧バック成形法、マ ッチドダイ成形法などの既知の方法で、所定の形状、大 きさの帽体を成形して作製されたものである。

[0019]

【実施例】

実施例1~9・比較例1~10

表1 (実施例) および表2 (比較例) に示すように、加 圧バック成形によりヘルメットを作成し、SNELLM 90に準拠してヘルメットの性能試験を実施した。その 結果を表1、2に示す。

[0020]

【表1】

40

					•	•							
		5									6		
		不	数	布				^	ルメッ	ŀ	SNE	LL M90≱	袋結果
武装香号 不福布索材		ポリエチレン繊維内容			圧縮厚み (5kg/cm²)			不識			耐衡擊性(314G未満合格)		耐黄通性
	素材	福維長(m)	体積率(%)	g/m²	=1	g/cm²	g	枚		g	1回目G値	2回目G値	
実施例1	初叶初	25	100	255	1. 56	0.16	308	i	3.0	603	141	1 4 4	合格
実施例2	利可切	51	100	253	1. 62	0.16	286	1	3.0	610	136	145	合格
実施例3	利耳17	78	100	249	1. 60	0.16	299	1	3.0	606	130	147	合格
実施例 4	科理心	51	100	186	1. 35	0.14	292	1	2.9	580	178	205	合格
実施例5	FJIFby	51	100	369	2. 02	0. 18	308	1	3.2	645	127	130	合格
実施例6	\$JIFVY+E-07	5.1	80	267	1. 68	0.16	287	1	3.1	617	147	152	合格
実施例7	#JIIFV7+EII7	51	60	287	1. 94	0.15	286	1	3.2	639	151	142	合格
実施例8	利ITV 分析X機能	51	75	351	2. 11	0.17	298	1	3.3	657	158	162	合格
実施例9	利エチレフ+ガス機能	51	5 5	380	2. 72	0.14	286	1	3.6	721	166	149	合格

注)本表中、ポリエチレン器盤とは「高強度ポリエチレン機能」をいう。

[0021]

* *【表2】

002	1 1					<u>1</u>	3441						
		不	織	布		ヘルメット					SNELL M90試験結果		
試験番号	不識布素材 (比 較例7は機物)	ボリニ	エチレン	且付	圧縮厚み (5kg/cm²)	嵩密度	おなか 量	不識布数	平均 厚み	帽体 重さ	耐衡學性(314	G未満合格)	耐食適性
	素材	線推長(mn)	体積率 (%)	g/m²	,500	g/cm²	g	枚	1	2	1回目の値	2回目G値	
比較例1	\$JIFW7	15	100	248	1. 22	0.20	294	1	2.8	617	149	126	不合格
比較例2	DJLF107	100	100	255	1.40	Q. 18	297	1	2.9	634	138	194	合格
比較例3	\$J1\$b7	5 1	100	420	2. 50	0.17	297	1	1.5	752	122	115	合格
比較例4	\$91 11 7	5 1	100	126	0. 51	0.25	298	1	2.5	540	243	389	不合格
比較例5	利利力	51	100	239	0.71	0.34	301	2	29	638	201	324	合格
比較例 6	FILTHY ETTY	51	10	290	1, 77	0.16	286	1	4.0	867	169	153	不合格
比較例7	EPIENT EIN	51	40	271	1. 48	0.18	292	1	3.8	825	153	170	不合格
比較例8	EJIIHVY+EZDY	51	. 9 0	254	1, 32	0.19	286	1	3.6	774	153	198	合格
比較例 9	印エルン操物		100	252	9. 78	0.31	296	1	3.0	664	141	192	合格
比較例10				-	_	-	460		24	758	249	3 2 2	不合格

注)本表中、ポリエチレン繊維とは「高強度ポリエチレン繊維」をいう。

【0022】表3に上記実験例で使用した繊維素材の物 ※【0023】

性を示す。

※ 【表3】

$\overline{}$

,					8	
* 11	比重	強	度	弾性 率		
素材	儿 無	GPa	g/d	GPa	g/d	
ポリエチレン	0. 97	2. 84	3 3	98	1150	
ビニロン	1. 28	1. 38	1 2	2 8	250	
ガラス繊維	2. 54	2. 45	1 1	6 9	306	

[0024]

【発明の効果】上記実験結果からも明らかなように、本 発明のヘルメットは、十分に軽量でありながら繰返し耐 衝撃性に優れ、さらには耐貫通性、耐衝撃性に優れる。 したがって、本発明のヘルメットを着用することによっ て、着用者の頭部の負担が軽減されるとともに、車両事 故等で加わる衝撃より頭部を強固に保護でき人命の保護 20 2 ガラス繊維層 に大きく貢献できる。

*【図面の簡単な説明】

【図1】本発明のヘルメットの帽体

【図2】本発明のヘルメットの帽体の部分拡大断面図で ある。

【符号の説明】

- 1 高強度ポリエチレン繊維を含有する不織布

【図1】

【図2】

- 高強度ポリエチレン機能を含有する不識布

フロントページの続き

(51) Int. Cl. 6

識別記号 庁内整理番号 FΙ

技術表示箇所

B29L 31:48