512 Rec'd PCT/PTO 1 1 "SEP" 2001

PATECONTO DISCLOSURE STATEMENT PATENT DOCUMENTS U.S. PATENT DOCUMENTS U.S. PATENT DOCUMENTS Filing Date Concurrently herewith U.S. PATENT DOCUMENTS Filing Date Applicable Agreement of the properties of th	FORM PTO	-1449				ATTORNEY D	KET NO.	SERIAL NO.		
Patent Saud Pate Concurrently herewith GROUP			DISCLOSURE ST	ATEMENT						
Examiner Initials								0010	7760	
### TRUNG DATE CONCERNENTS U.S. PATENT DOCUMENTS								64/2	ナンロラリ	
Examiner Initials Patent Issue Date Name Class Subclass Filiog Date Number Initials Paper Population Patent Initials Name Class Subclass Paper Population Patent Initials Paper Population Patent Initials Paper Population P										
U.S. PATENT DOCUMENTS Patent Issue Date Name Class Subclass Filing Date If Appropriate If If Appropriate If If Appropriate If If Appropriate If							rewith	0001		
Examiner Initials Patent Number Sube Name Class Subclass Filing Date If Appropriate				U.S. 1	PATENT D				······ - 	
Examiner Initials Patent Issue Date Name Class Subclass Appropriate		I		T					Filing Date	
Initials Number	Examiner		Patent	Issue Date	Name		Class	Subclass	Īſ	
Continue on page FOREIGN PATENT DOCUMENTS Document Publication Document	Initials					•			Appropriate	
Continue on page FOREIGN PATENT DOCUMENTS Document Poblication	21	1.	5.659.122 A	08/19/1997	†				 	
Politication Number Number Publication Number Date Country Class Subclass Translation Yes No Number Number Date Country Class Subclass Translation Yes No Number Number Country Class Subclass Yes No Number Number Country Class Subclass Yes No Number Number Number Country Class Subclass Yes No Number Number Number Country Class Subclass Yes No Number Number Number Country Country Class Subclass Yes No Number Numbe		-	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		 					
Politication Number Number Publication Number Date Country Class Subclass Translation Yes No Number Number Date Country Class Subclass Translation Yes No Number Number Country Class Subclass Yes No Number Number Country Class Subclass Yes No Number Number Number Country Class Subclass Yes No Number Number Number Country Class Subclass Yes No Number Number Number Country Country Class Subclass Yes No Number Numbe					 		-			
Policiation Number Number Publication Number Country Class Subclass Translation Yes No Number Number Date Country Class Subclass Translation Yes No Number Number Country Class Subclass Yes No Number Number Country Class Subclass Yes No Number Number Number Number Number Country Continue on page OTHER DOCUMENTS (Including Author, Title, Journal-Date, Page Number, Etc.) Hess et al., "Sequence and structure determinants of Drosophila Hsp70 mRNA translation: 5'-UTR secondary structure specifically inhibits heat shock protein mRNA translation", Nucleic Acids Research 24:12 2441-2449 (1996). Hunt et al., "Inducible expression of cDNAs in a vector based upon the mouse HSP70 heat-shock promoter", J. Cell. Biochem, Suppl. 12D, 260, XP000933846 abstract (1988). Hunt et al., "Imman heat shock protein (hsp 70) gene, complete cds", Accession M11717 (July 1988). Hunt et al., "Tonserved features of eukaryotic hsp-70 genes revealed by comparison with the nucleotide sequence of human hsp-70", Proc. Natl. Acad. Sci. USA 82:19 6455-6459 (1985): Sobit et al., "Suppl. 12D, Cell. Natle Acids Research 23:4 51-4594 (1995). Nucleic Acids Research 23:4 51-4594		 	<u> </u>		 			-		
Policiation Number Number Publication Number Country Class Subclass Translation Yes No Number Number Date Country Class Subclass Translation Yes No Number Number Country Class Subclass Yes No Number Number Country Class Subclass Yes No Number Number Number Number Number Country Continue on page OTHER DOCUMENTS (Including Author, Title, Journal-Date, Page Number, Etc.) Hess et al., "Sequence and structure determinants of Drosophila Hsp70 mRNA translation: 5'-UTR secondary structure specifically inhibits heat shock protein mRNA translation", Nucleic Acids Research 24:12 2441-2449 (1996). Hunt et al., "Inducible expression of cDNAs in a vector based upon the mouse HSP70 heat-shock promoter", J. Cell. Biochem, Suppl. 12D, 260, XP000933846 abstract (1988). Hunt et al., "Imman heat shock protein (hsp 70) gene, complete cds", Accession M11717 (July 1988). Hunt et al., "Tonserved features of eukaryotic hsp-70 genes revealed by comparison with the nucleotide sequence of human hsp-70", Proc. Natl. Acad. Sci. USA 82:19 6455-6459 (1985): Sobit et al., "Suppl. 12D, Cell. Natle Acids Research 23:4 51-4594 (1995). Nucleic Acids Research 23:4 51-4594			·	 	+			- 	-	
Policiation Number Number Publication Number Country Class Subclass Translation Yes No Number Number Date Country Class Subclass Translation Yes No Number Number Country Class Subclass Yes No Number Number Country Class Subclass Yes No Number Number Number Number Number Country Continue on page OTHER DOCUMENTS (Including Author, Title, Journal-Date, Page Number, Etc.) Hess et al., "Sequence and structure determinants of Drosophila Hsp70 mRNA translation: 5'-UTR secondary structure specifically inhibits heat shock protein mRNA translation", Nucleic Acids Research 24:12 2441-2449 (1996). Hunt et al., "Inducible expression of cDNAs in a vector based upon the mouse HSP70 heat-shock promoter", J. Cell. Biochem, Suppl. 12D, 260, XP000933846 abstract (1988). Hunt et al., "Imman heat shock protein (hsp 70) gene, complete cds", Accession M11717 (July 1988). Hunt et al., "Tonserved features of eukaryotic hsp-70 genes revealed by comparison with the nucleotide sequence of human hsp-70", Proc. Natl. Acad. Sci. USA 82:19 6455-6459 (1985): Sobit et al., "Suppl. 12D, Cell. Natle Acids Research 23:4 51-4594 (1995). Nucleic Acids Research 23:4 51-4594					 			 		
Policiation Number Number Publication Number Country Class Subclass Translation Yes No Number Number Date Country Class Subclass Translation Yes No Number Number Country Class Subclass Yes No Number Number Country Class Subclass Yes No Number Number Number Number Number Country Continue on page OTHER DOCUMENTS (Including Author, Title, Journal-Date, Page Number, Etc.) Hess et al., "Sequence and structure determinants of Drosophila Hsp70 mRNA translation: 5'-UTR secondary structure specifically inhibits heat shock protein mRNA translation", Nucleic Acids Research 24:12 2441-2449 (1996). Hunt et al., "Inducible expression of cDNAs in a vector based upon the mouse HSP70 heat-shock promoter", J. Cell. Biochem, Suppl. 12D, 260, XP000933846 abstract (1988). Hunt et al., "Imman heat shock protein (hsp 70) gene, complete cds", Accession M11717 (July 1988). Hunt et al., "Tonserved features of eukaryotic hsp-70 genes revealed by comparison with the nucleotide sequence of human hsp-70", Proc. Natl. Acad. Sci. USA 82:19 6455-6459 (1985): Sobit et al., "Suppl. 12D, Cell. Natle Acids Research 23:4 51-4594 (1995). Nucleic Acids Research 23:4 51-4594					 			- 		
Policiation Number Number Publication Number Country Class Subclass Translation Yes No Number Number Date Country Class Subclass Translation Yes No Number Number Country Class Subclass Yes No Number Number Country Class Subclass Yes No Number Number Number Number Number Country Continue on page OTHER DOCUMENTS (Including Author, Title, Journal-Date, Page Number, Etc.) Hess et al., "Sequence and structure determinants of Drosophila Hsp70 mRNA translation: 5'-UTR secondary structure specifically inhibits heat shock protein mRNA translation", Nucleic Acids Research 24:12 2441-2449 (1996). Hunt et al., "Inducible expression of cDNAs in a vector based upon the mouse HSP70 heat-shock promoter", J. Cell. Biochem, Suppl. 12D, 260, XP000933846 abstract (1988). Hunt et al., "Imman heat shock protein (hsp 70) gene, complete cds", Accession M11717 (July 1988). Hunt et al., "Tonserved features of eukaryotic hsp-70 genes revealed by comparison with the nucleotide sequence of human hsp-70", Proc. Natl. Acad. Sci. USA 82:19 6455-6459 (1985): Sobit et al., "Suppl. 12D, Cell. Natle Acids Research 23:4 51-4594 (1995). Nucleic Acids Research 23:4 51-4594		L	<u> </u>		Continue on	nage		<u>l</u>		
Document Number Country Class Subclass Translation Number Country Class Subclass Ves No.										
Number Date Country Class Subclass Ves 1 No. 22. WO8700861 A 02/12/1987 WIPO 3. WO9411521 A 05/26/1994 WIPO Continue on page OTHER DOCUMENTS (Including Author, Title, Journal-Date, Page Number, Etc.) Hess et al., "Sequence and structure determinants of Drosophila Hsp70 mRNA translation: 5'-UTR secondary structure specifically inhibits heat shock protein mRNA translation", Nucleic Acids Research 24:12 2441-2449 (1995). Hunt et al., "Inducible expression of cDNAs in a vector based upon the mouse HSP70 heat-shock promoter", J. Cell. Biochem, Suppl. 12D, 260, XP000933846 abstract (1988). M. 6. Hunt et al., "Human heat shock protein (hsp 70) gene, complete cds", Accession M11717 (July 1988). Hunt et al., "Conserved features of eukaryotic hsp-70 genes revealed by comparison with the nucleotide sequence of human hsp-70", Proc. Natl. Acad. Sci. USA 82:19 6455-6459 (1985): S. Joshi et al., "S' untranslated leader sequences of eukaryotic mRNAs encoding heat shock induced proteins", Nucleic Acids Research 23:431-549 (1995). S. Joshi et al., "The translation efficiency of ovalbumin mRNA is determined in part by a 5' -end hairpin structure", Archives of Biochemistry and Biophysics 315:154-9(1994). M. 10. Mosely et al., "The translation efficiency of ovalbumin mRNA is determined in part by a 5' -end hairpin structure", Archives of Biochemistry and Biophysics 315:154-9(1994). M. 11. Pitto et al., "Role of the leader sequence during thermal repression of translation in maize, tobacco, and carrot protoplasts", Plant Physiology (Rockville) 100:4 1827-1833 (1992). Continue on page EXAMINER Continue on page DATE CONSIDERED 1 2/2 8 0 5		r	Document	· · · · · · · · · · · · · · · · · · ·	T	DOCUMENTS		· Y · · · · · · · · · · · · · · · · · ·	Translation	
WO9411521 A 05/26/1994 WIPO 3. WO9411521 A 05/26/1994 WIPO Continue on page Continue on page OTHER DOCUMENTS (Including Author, Title, Journal-Date, Page Number, Etc.) 4. Hess et al., "Sequence and structure determinants of Drosophila Hsp70 mRNA translation: 5'-UTR secondary structure specifically inhibits heat shock protein mRNA translation", Nucleic Acids Research 24:12 2441-2449 (1996). 5. Hunt et al., "Inducible expression of cDNAs in a vector based upon the mouse HSP70 heat-shock promoter", J. Cell. Biochem., Suppl. 12D, 260, XP000933846 abstract (1988). 7. Hunt et al., "Gonserved features of eukaryotic hsp-70 genes revealed by comparison with the nucleotide sequence of human hsp-70", Proc. Natl. Acad. Sci. USA 82:19 6455-6459 (1985). Joshi et al., "Sturmaslated leader sequences of eukaryotic mRNAs encoding heat shock induced proteins", Nucleic Acids Research 23:4 541-549 (1995). 10. Mosely et al., "The translation efficiency of ovalbumin mRNA is determined in part by a 5' -end hairpin structure", Archives of Biochemistry and Biophysics 315:1 54-59 (1994). 11. Note of al., "Relat stress regulates the human 70-kDa heat-shock gene through the 3' -untranslated region" American Journal of Physiology 264:6 Part 1 L533-L537 (1993). 11. Note of al., "Relat stress regulates the human 70-kDa heat-shock gene through the 3' -untranslated region" American Journal of Physiology (Rockville) 100:4 1827-1833 (1992). Continue on page EXAMINER Continue on page DATE CONSIDERED 1 2/2 8 0 5			1			Country	Class	Subclass		
Continue on page OTHER DOCUMENTS (Including Author, Title, Journal-Date, Page Number, Etc.) 4. Hess et al., "Sequence and structure determinants of Drosophila Hsp70 mRNA translation: 5'-UTR secondary structure specifically inhibits heat shock protein mRNA translation", Nucleic Acids Research 24:12 2441-2449 (1996). 5. Hunt et al., "Inducible expression of cDNAs in a vector based upon the mouse HSP70 heat-shock promoter", J. Cell. Biochem., Suppl. 12D, 260, XP000933846 abstract (1988). 7. Hunt et al., "Gonserved features of eukaryotic hsp-70 genes revealed by comparison with the nucleotide sequence of human hsp-70", Proc. Natl. Acad. Sci. USA 82:19 6455-6459 (1985): 8. Joshi et al., "5' untranslated leader sequences of eukaryotic mRNAs encoding heat shock induced proteins", Nucleic Acids Research 23:4 541-549 (1995). 9. Liarakos et al., "The translation efficiency of ovalbumin mRNA is determined in part by a 5' -end hairpin structure", Archives of Biochemistry and Biophysics 315:1 54-59 (1994). 10. Mosely et al., "Heat stress regulates the human 70-kDa heat-shock gene through the 3' -untranslated region" American Journal of Physiology 264:6 Part 1 L533-L537 (1993). 11. Pitto et al., "Role of the leader sequence during thermal repression of translation in maize, tobacco, and carrot protoplasts", Plant Physiology (Rockville) 100:4 1827-1833 (1992). Continue on page EXAMINER DATE CONSIDERED 1 1 2 8 0	1077	2		<u> </u>	WIPO	Country	Class	Subciass	-	
Continue on page OTHER DOCUMENTS (Including Author, Title, Journal-Date, Page Number, Etc.) 4. Hess et al., "Sequence and structure determinants of Drosophila Hsp70 mRNA translation: 5'.UTR secondary structure specifically inhibits heat shock protein mRNA translation", Nucleic Acids Research 24:12 2441-2449 (1996). 5. Hunt et al., "Inducible expression of cDNAs in a vector based upon the mouse HSP70 heat-shock promoter", J. Cell. Biochem., Suppl. 12D, 260, XP000933846 abstract (1988). 7. Hunt et al., "Human heat shock protein (hsp 70) gene, complete eds", Accession M11717 (July 1988). 8. Hunt et al., "Conserved features of eukaryotic hsp-70 genes revealed by comparison with the nucleotide sequence of human hsp-70", Proc. Natl. Acad. Sci. USA 82:19 6455-6459 (1985): Noteic Acids Research 23:4 541-549 (1995). 9. Liarakos et al., "The translation efficiency of ovalbumin mRNAs encoding heat shock induced proteins", Nucleic Acids Research 23:4 541-549 (1995). 10. Mosely et al., "Heat stress regulates the human 70-kDa heat-shock gene through the 3' -untranslated region" American Journal of Physiology 264:6 Part 1 L533-L537 (1993). 11. Note et al., "Role of the leader sequence during thermal repression of translation in maize, tobacco, and carrot protoplasts", Plant Physiology (Rockville) 100:4 1827-1833 (1992). Continue on page EXAMINER DATE CONSIDERED 1 1 28 0 5	70,0		<u> </u>							
OTHER DOCUMENTS (Including Author, Title, Journal-Date, Page Number, Etc.) 4. Hess et al., "Sequence and structure determinants of Drosophila Hsp70 mRNA translation: 5'-UTR secondary structure specifically inhibits heat shock protein mRNA translation", Nucleic Acids Research 24:12 2441-2449 (1996). 5. Hunt et al., "Inducible expression of cDNAs in a vector based upon the mouse HSP70 heat-shock promoter", J. Cell. Biochem., Suppl. 12D, 260, XP000933846 abstract (1988). 6. Hunt et al., "Human heat shock protein (hsp 70) gene, complete cds", Accession M11717 (July 1988). 7. Hunt et al., "Conserved features of eukaryotic hsp-70 genes revealed by comparison with the nucleotide sequence of human hsp-70", Proc. Natl. Acad. Sci. USA 82:19 6455-6459 (1985): 8. Joshi et al., "5' untranslated leader sequences of eukaryotic mRNAs encoding heat shock induced proteins", Nucleic Acids Research 23:4 541-549 (1995). 9. Liarakos et al., "The translation efficiency of ovalbumin mRNA is determined in part by a 5' —end hairpin structure", Archives of Biochemistry and Biophysics 315:1 54-59 (1994). 10. Mosely et al., "Heat stress regulates the human 70-kDa heat-shock gene through the 3' —untranslated region" American Journal of Physiology 264:6 Part 1 L533-L537 (1993). 11. Pitto et al., "Role of the leader sequence during thermal repression of translation in maize, tobacco, and carrot protoplasts", Plant Physiology (Rockville) 100:4 1827-1833 (1992). Continue on page EXAMINER Continue on page DATE CONSIDERED 12, 28 0	1010	 	W03411321 A	03/20/1994	WHO	·				
OTHER DOCUMENTS (Including Author, Title, Journal-Date, Page Number, Etc.) 4. Hess et al., "Sequence and structure determinants of Drosophila Hsp70 mRNA translation: 5'-UTR secondary structure specifically inhibits heat shock protein mRNA translation", Nucleic Acids Research 24:12 2441-2449 (1996). 5. Hunt et al., "Inducible expression of cDNAs in a vector based upon the mouse HSP70 heat-shock promoter", J. Cell. Biochem., Suppl. 12D, 260, XP000933846 abstract (1988). 6. Hunt et al., "Human heat shock protein (hsp 70) gene, complete cds", Accession M11717 (July 1988). 7. Hunt et al., "Conserved features of eukaryotic hsp-70 genes revealed by comparison with the nucleotide sequence of human hsp-70", Proc. Natl. Acad. Sci. USA 82:19 6455-6459 (1985): 8. Joshi et al., "5' untranslated leader sequences of eukaryotic mRNAs encoding heat shock induced proteins", Nucleic Acids Research 23:4 541-549 (1995). 9. Liarakos et al., "The translation efficiency of ovalbumin mRNA is determined in part by a 5' —end hairpin structure", Archives of Biochemistry and Biophysics 315:1 54-59 (1994). 10. Mosely et al., "Heat stress regulates the human 70-kDa heat-shock gene through the 3' —untranslated region" American Journal of Physiology 264:6 Part 1 L533-L537 (1993). 11. Pitto et al., "Role of the leader sequence during thermal repression of translation in maize, tobacco, and carrot protoplasts", Plant Physiology (Rockville) 100:4 1827-1833 (1992). Continue on page EXAMINER Continue on page DATE CONSIDERED 12, 28 0	·····			<u> </u>	 			 	· .	
OTHER DOCUMENTS (Including Author, Title, Journal-Date, Page Number, Etc.) 4. Hess et al., "Sequence and structure determinants of Drosophila Hsp70 mRNA translation: 5'-UTR secondary structure specifically inhibits heat shock protein mRNA translation", Nucleic Acids Research 24:12 2441-2449 (1996). 5. Hunt et al., "Inducible expression of cDNAs in a vector based upon the mouse HSP70 heat-shock promoter", J. Cell. Biochem., Suppl. 12D, 260, XP000933846 abstract (1988). 6. Hunt et al., "Human heat shock protein (hsp 70) gene, complete cds", Accession M11717 (July 1988). 7. Hunt et al., "Conserved features of eukaryotic hsp-70 genes revealed by comparison with the nucleotide sequence of human hsp-70", Proc. Natl. Acad. Sci. USA 82:19 6455-6459 (1985): 8. Joshi et al., "5' untranslated leader sequences of eukaryotic mRNAs encoding heat shock induced proteins", Nucleic Acids Research 23:4 541-549 (1995). 9. Liarakos et al., "The translation efficiency of ovalbumin mRNA is determined in part by a 5' —end hairpin structure", Archives of Biochemistry and Biophysics 315:1 54-59 (1994). 10. Mosely et al., "Heat stress regulates the human 70-kDa heat-shock gene through the 3' —untranslated region" American Journal of Physiology 264:6 Part 1 L533-L537 (1993). 11. Pitto et al., "Role of the leader sequence during thermal repression of translation in maize, tobacco, and carrot protoplasts", Plant Physiology (Rockville) 100:4 1827-1833 (1992). Continue on page EXAMINER Continue on page DATE CONSIDERED 12, 28 0									 	
OTHER DOCUMENTS (Including Author, Title, Journal-Date, Page Number, Etc.) 4. Hess et al., "Sequence and structure determinants of Drosophila Hsp70 mRNA translation: 5'-UTR secondary structure specifically inhibits heat shock protein mRNA translation", Nucleic Acids Research 24:12 2441-2449 (1996). 5. Hunt et al., "Inducible expression of cDNAs in a vector based upon the mouse HSP70 heat-shock promoter", J. Cell. Biochem., Suppl. 12D, 260, XP000933846 abstract (1988). 6. Hunt et al., "Human heat shock protein (hsp 70) gene, complete cds", Accession M11717 (July 1988). 7. Hunt et al., "Conserved features of eukaryotic hsp-70 genes revealed by comparison with the nucleotide sequence of human hsp-70", Proc. Natl. Acad. Sci. USA 82:19 6455-6459 (1985): 8. Joshi et al., "5' untranslated leader sequences of eukaryotic mRNAs encoding heat shock induced proteins", Nucleic Acids Research 23:4 541-549 (1995). 9. Liarakos et al., "The translation efficiency of ovalbumin mRNA is determined in part by a 5' —end hairpin structure", Archives of Biochemistry and Biophysics 315:1 54-59 (1994). 10. Mosely et al., "Heat stress regulates the human 70-kDa heat-shock gene through the 3' —untranslated region" American Journal of Physiology 264:6 Part 1 L533-L537 (1993). 11. Pitto et al., "Role of the leader sequence during thermal repression of translation in maize, tobacco, and carrot protoplasts", Plant Physiology (Rockville) 100:4 1827-1833 (1992). Continue on page EXAMINER Continue on page DATE CONSIDERED 12, 28 0			 -							
OTHER DOCUMENTS (Including Author, Title, Journal-Date, Page Number, Etc.) 4. Hess et al., "Sequence and structure determinants of Drosophila Hsp70 mRNA translation: 5'-UTR secondary structure specifically inhibits heat shock protein mRNA translation", Nucleic Acids Research 24:12 2441-2449 (1996). 5. Hunt et al., "Inducible expression of cDNAs in a vector based upon the mouse HSP70 heat-shock promoter", J. Cell. Biochem., Suppl. 12D, 260, XP000933846 abstract (1988). 6. Hunt et al., "Human heat shock protein (hsp 70) gene, complete cds", Accession M11717 (July 1988). 7. Hunt et al., "Conserved features of eukaryotic hsp-70 genes revealed by comparison with the nucleotide sequence of human hsp-70", Proc. Natl. Acad. Sci. USA 82:19 6455-6459 (1985): 8. Joshi et al., "5' untranslated leader sequences of eukaryotic mRNAs encoding heat shock induced proteins", Nucleic Acids Research 23:4 541-549 (1995). 9. Liarakos et al., "The translation efficiency of ovalbumin mRNA is determined in part by a 5' —end hairpin structure", Archives of Biochemistry and Biophysics 315:1 54-59 (1994). 10. Mosely et al., "Heat stress regulates the human 70-kDa heat-shock gene through the 3' —untranslated region" American Journal of Physiology 264:6 Part 1 L533-L537 (1993). 11. Pitto et al., "Role of the leader sequence during thermal repression of translation in maize, tobacco, and carrot protoplasts", Plant Physiology (Rockville) 100:4 1827-1833 (1992). Continue on page EXAMINER Continue on page DATE CONSIDERED 12, 28 0		ļ		<u></u>						
OTHER DOCUMENTS (Including Author, Title, Journal-Date, Page Number, Etc.) 4. Hess et al., "Sequence and structure determinants of Drosophila Hsp70 mRNA translation: 5'-UTR secondary structure specifically inhibits heat shock protein mRNA translation", Nucleic Acids Research 24:12 2441-2449 (1996). 5. Hunt et al., "Inducible expression of cDNAs in a vector based upon the mouse HSP70 heat-shock promoter", J. Cell. Biochem., Suppl. 12D, 260, XP000933846 abstract (1988). 6. Hunt et al., "Human heat shock protein (hsp 70) gene, complete cds", Accession M11717 (July 1988). 7. Hunt et al., "Conserved features of eukaryotic hsp-70 genes revealed by comparison with the nucleotide sequence of human hsp-70", Proc. Natl. Acad. Sci. USA 82:19 6455-6459 (1985): 8. Joshi et al., "5' untranslated leader sequences of eukaryotic mRNAs encoding heat shock induced proteins", Nucleic Acids Research 23:4 541-549 (1995). 9. Liarakos et al., "The translation efficiency of ovalbumin mRNA is determined in part by a 5' —end hairpin structure", Archives of Biochemistry and Biophysics 315:1 54-59 (1994). 10. Mosely et al., "Heat stress regulates the human 70-kDa heat-shock gene through the 3' —untranslated region" American Journal of Physiology 264:6 Part 1 L533-L537 (1993). 11. Pitto et al., "Role of the leader sequence during thermal repression of translation in maize, tobacco, and carrot protoplasts", Plant Physiology (Rockville) 100:4 1827-1833 (1992). Continue on page EXAMINER Continue on page DATE CONSIDERED 12, 28 0		 								
OTHER DOCUMENTS (Including Author, Title, Journal-Date, Page Number, Etc.) 4. Hess et al., "Sequence and structure determinants of Drosophila Hsp70 mRNA translation: 5'-UTR secondary structure specifically inhibits heat shock protein mRNA translation", Nucleic Acids Research 24:12 2441-2449 (1996). 5. Hunt et al., "Inducible expression of cDNAs in a vector based upon the mouse HSP70 heat-shock promoter", J. Cell. Biochem., Suppl. 12D, 260, XP000933846 abstract (1988). 6. Hunt et al., "Human heat shock protein (hsp 70) gene, complete cds", Accession M11717 (July 1988). 7. Hunt et al., "Conserved features of eukaryotic hsp-70 genes revealed by comparison with the nucleotide sequence of human hsp-70", Proc. Natl. Acad. Sci. USA 82:19 6455-6459 (1985): 8. Joshi et al., "5' untranslated leader sequences of eukaryotic mRNAs encoding heat shock induced proteins", Nucleic Acids Research 23:4 541-549 (1995). 9. Liarakos et al., "The translation efficiency of ovalbumin mRNA is determined in part by a 5' —end hairpin structure", Archives of Biochemistry and Biophysics 315:1 54-59 (1994). 10. Mosely et al., "Heat stress regulates the human 70-kDa heat-shock gene through the 3' —untranslated region" American Journal of Physiology 264:6 Part 1 L533-L537 (1993). 11. Pitto et al., "Role of the leader sequence during thermal repression of translation in maize, tobacco, and carrot protoplasts", Plant Physiology (Rockville) 100:4 1827-1833 (1992). Continue on page EXAMINER Continue on page DATE CONSIDERED 12, 28 0		 		<u> </u>	 					
OTHER DOCUMENTS (Including Author, Title, Journal-Date, Page Number, Etc.) 4. Hess et al., "Sequence and structure determinants of Drosophila Hsp70 mRNA translation: 5'-UTR secondary structure specifically inhibits heat shock protein mRNA translation", Nucleic Acids Research 24:12 2441-2449 (1996). 5. Hunt et al., "Inducible expression of cDNAs in a vector based upon the mouse HSP70 heat-shock promoter", J. Cell. Biochem., Suppl. 12D, 260, XP000933846 abstract (1988). 6. Hunt et al., "Human heat shock protein (hsp 70) gene, complete cds", Accession M11717 (July 1988). 7. Hunt et al., "Conserved features of eukaryotic hsp-70 genes revealed by comparison with the nucleotide sequence of human hsp-70", Proc. Natl. Acad. Sci. USA 82:19 6455-6459 (1985): 8. Joshi et al., "5' untranslated leader sequences of eukaryotic mRNAs encoding heat shock induced proteins", Nucleic Acids Research 23:4 541-549 (1995). 9. Liarakos et al., "The translation efficiency of ovalbumin mRNA is determined in part by a 5' —end hairpin structure", Archives of Biochemistry and Biophysics 315:1 54-59 (1994). 10. Mosely et al., "Heat stress regulates the human 70-kDa heat-shock gene through the 3' —untranslated region" American Journal of Physiology 264:6 Part 1 L533-L537 (1993). 11. Pitto et al., "Role of the leader sequence during thermal repression of translation in maize, tobacco, and carrot protoplasts", Plant Physiology (Rockville) 100:4 1827-1833 (1992). Continue on page EXAMINER Continue on page DATE CONSIDERED 12, 28 0		L		L	l 'antinua an			1	<u> </u>	
4. Hess et al., "Sequence and structure determinants of Drosophila Hsp70 mRNA translation: 5'-UTR secondary structure specifically inhibits heat shock protein mRNA translation", Nucleic Acids Research 24:12 2441-2449 (1996). 5. Hunt et al., "Inducible expression of cDNAs in a vector based upon the mouse HSP70 heat-shock promoter", J. Cell. Biochem., Suppl. 12D, 260, XP000933846 abstract (1988). 6. Hunt et al., "Human heat shock protein (hsp 70) gene, complete cds", Accession M11717 (July 1988). 7. Hunt et al., "Conserved features of eukaryotic hsp-70 genes revealed by comparison with the nucleotide sequence of human hsp-70", Proc. Natl. Acad. Sci. USA 82:19 6455-6459 (1985): 8. Joshi et al., "5' untranslated leader sequences of eukaryotic mRNAs encoding heat shock induced proteins", Nucleic Acids Research 23:4 541-549 (1995). 9. Liarakos et al., "The translation efficiency of ovalbumin mRNA is determined in part by a 5' —end hairpin structure", Archives of Biochemistry and Biophysics 315:1 54-59 (1994). 10. Mosely et al., "Heat stress regulates the human 70-kDa heat-shock gene through the 3' —untranslated region" American Journal of Physiology 264:6 Part 1 L533-L537 (1993). 11. Pitto et al., "Role of the leader sequence during thermal repression of translation in maize, tobacco, and carrot protoplasts", Plant Physiology (Rockville) 100:4 1827-1833 (1992). Continue on page Continue on page DATE CONSIDERED 12. 12. 8 0			OTUED BOCUS				la Dana Numb	on Etal		
secondary structure specifically inhibits heat shock protein mRNA translation", Nucleic Acids Research 24:12 2441-2449 (1996). Solution So		Г а	Hess et al "Segu	ence and structu	ra datarmin	ents of Drosophile I	Jen 70 m DNA 4	ranalation: 5' I	imp	
24:12 2441-2449 (1996). S. Hunt et al., "Inducible expression of cDNAs in a vector based upon the mouse HSP70 heat-shock promoter", J. Cell. Biochem., Suppl. 12D, 260, XP000933846 abstract (1988). Hunt et al., "Human heat shock protein (hsp 70) gene, complete cds", Accession M11717 (July 1988). Hunt et al., "Conserved features of eukaryotic hsp-70 genes revealed by comparison with the nucleotide sequence of human hsp-70", Proc. Natl. Acad. Sci. USA 82:19 6455-6459 (1985). B. Joshi et al., "5' untranslated leader sequences of eukaryotic mRNAs encoding heat shock induced proteins", Nucleic Acids Research 23:4 541-549 (1995). M. Liarakos et al., "The translation efficiency of ovalbumin mRNA is determined in part by a 5' -end hairpin structure", Archives of Biochemistry and Biophysics 315:1 54-59 (1994). Mosely et al., "Heat stress regulates the human 70-kDa heat-shock gene through the 3' -untranslated region" American Journal of Physiology 264:6 Part 1 L533-L537 (1993). Pitto et al., "Role of the leader sequence during thermal repression of translation in maize, tobacco, and carrot protoplasts", Plant Physiology (Rockville) 100:4 1827-1833 (1992). Continue on page	W	} ~ .								
Hunt et al., "Inducible expression of cDNAs in a vector based upon the mouse HSP70 heat-shock promoter", J. Cell. Biochem., Suppl. 12D, 260, XP000933846 abstract (1988). Hunt et al., "Human heat shock protein (hsp 70) gene, complete cds", Accession M11717 (July 1988). Hunt et al., "Conserved features of eukaryotic hsp-70 genes revealed by comparison with the nucleotide sequence of human hsp-70", Proc. Natl. Acad. Sci. USA 82:19 6455-6459 (1985). Joshi et al., "5' untranslated leader sequences of eukaryotic mRNAs encoding heat shock induced proteins", Nucleic Acids Research 23:4 541-549 (1995). Liarakos et al., "The translation efficiency of ovalbumin mRNA is determined in part by a 5' -end hairpin structure", Archives of Biochemistry and Biophysics 315:1 54-59 (1994). Mosely et al., "Heat stress regulates the human 70-kDa heat-shock gene through the 3' -untranslated region" American Journal of Physiology 264:6 Part 1 L533-L537 (1993). Pitto et al., "Role of the leader sequence during thermal repression of translation in maize, tobacco, and carrot protoplasts", Plant Physiology (Rockville) 100:4 1827-1833 (1992). Continue on page EXAMINER DATE CONSIDERED 12 28 0			24:12 2441-2449 (1996). Hunt et al., "Inducible expression of cDNAs in a vector based upon the mouse HSP70 heat-shock promoter",							
J. Cell. Biochem., Suppl. 12D, 260, XP000933846 abstract (1988). 6. Hunt et al., "Human heat shock protein (hsp 70) gene, complete cds", Accession M11717 (July 1988). 7. Hunt et al., "Conserved features of eukaryotic hsp-70 genes revealed by comparison with the nucleotide sequence of human hsp-70", Proc. Natl. Acad. Sci. USA 82:19 6455-6459 (1985). Joshi et al., "5' untranslated leader sequences of eukaryotic mRNAs encoding heat shock induced proteins", Nucleic Acids Research 23:4 541-549 (1995). 9. Liarakos et al., "The translation efficiency of ovalbumin mRNA is determined in part by a 5' -end hairpin structure", Archives of Biochemistry and Biophysics 315:1 54-59 (1994). Mosely et al., "Heat stress regulates the human 70-kDa heat-shock gene through the 3' -untranslated region" American Journal of Physiology 264:6 Part 1 L533-L537 (1993). Pitto et al., "Role of the leader sequence during thermal repression of translation in maize, tobacco, and carrot protoplasts", Plant Physiology (Rockville) 100:4 1827-1833 (1992). Continue on page EXAMINER DATE CONSIDERED 1228 0		5								
6. Hunt et al., "Human heat shock protein (hsp 70) gene, complete cds", Accession M11717 (July 1988). 7. Hunt et al., "Conserved features of eukaryotic hsp-70 genes revealed by comparison with the nucleotide sequence of human hsp-70", Proc. Natl. Acad. Sci. USA 82:19 6455-6459 (1985): 8. Joshi et al., "5' untranslated leader sequences of eukaryotic mRNAs encoding heat shock induced proteins", Nucleic Acids Research 23:4 541-549 (1995). 9. Liarakos et al., "The translation efficiency of ovalbumin mRNA is determined in part by a 5' –end hairpin structure", Archives of Biochemistry and Biophysics 315:1 54-59 (1994). 10. Mosely et al., "Heat stress regulates the human 70-kDa heat-shock gene through the 3' –untranslated region" American Journal of Physiology 264:6 Part 1 L533-L537 (1993). 11. Pitto et al., "Role of the leader sequence during thermal repression of translation in maize, tobacco, and carrot protoplasts", Plant Physiology (Rockville) 100:4 1827-1833 (1992). Continue on page EXAMINER DATE CONSIDERED 12.28 0	M	١٠.								
7. Hunt et al., "Conserved features of eukaryotic hsp-70 genes revealed by comparison with the nucleotide sequence of human hsp-70", Proc. Natl. Acad. Sci. USA 82:19 6455-6459 (1985). 8. Joshi et al., "5' untranslated leader sequences of eukaryotic mRNAs encoding heat shock induced proteins", Nucleic Acids Research 23:4 541-549 (1995). 9. Liarakos et al., "The translation efficiency of ovalbumin mRNA is determined in part by a 5' —end hairpin structure", Archives of Biochemistry and Biophysics 315:1 54-59 (1994). 10. Mosely et al., "Heat stress regulates the human 70-kDa heat-shock gene through the 3' —untranslated region" American Journal of Physiology 264:6 Part 1 L533-L537 (1993). 11. Pitto et al., "Role of the leader sequence during thermal repression of translation in maize, tobacco, and carrot protoplasts", Plant Physiology (Rockville) 100:4 1827-1833 (1992). Continue on page	100/	6 Hunt et al "Human heat shock protein (hsp 70) gene complete eds" Accession M11717 (July 1099)								
sequence of human hsp-70", Proc. Natl. Acad. Sci. USA 82:19 6455-6459 (1985): Soshi et al., "5' untranslated leader sequences of eukaryotic mRNAs encoding heat shock induced proteins", Nucleic Acids Research 23:4 541-549 (1995). Soshi et al., "The translation efficiency of ovalbumin mRNA is determined in part by a 5' -end hairpin structure", Archives of Biochemistry and Biophysics 315:1 54-59 (1994). Mosely et al., "Heat stress regulates the human 70-kDa heat-shock gene through the 3' -untranslated region" American Journal of Physiology 264:6 Part 1 L533-L537 (1993). Pitto et al., "Role of the leader sequence during thermal repression of translation in maize, tobacco, and carrot protoplasts", Plant Physiology (Rockville) 100:4 1827-1833 (1992). Continue on page	<u> </u>	7 Hunt et al. "Conserved features of eukaryotic hep-70 genes revealed by comparison with the nucleotide								
8. Joshi et al., "5' untranslated leader sequences of eukaryotic mRNAs encoding heat shock induced proteins", Nucleic Acids Research 23:4 541-549 (1995). 9. Liarakos et al., "The translation efficiency of ovalbumin mRNA is determined in part by a 5' —end hairpin structure", Archives of Biochemistry and Biophysics 315:1 54-59 (1994). 10. Mosely et al., "Heat stress regulates the human 70-kDa heat-shock gene through the 3' —untranslated region" American Journal of Physiology 264:6 Part 1 L533-L537 (1993). 11. Pitto et al., "Role of the leader sequence during thermal repression of translation in maize, tobacco, and carrot protoplasts", Plant Physiology (Rockville) 100:4 1827-1833 (1992). Continue on page		l ''	sequence of huma	n hsp-70". Proc	. Natl. Acad	L Sci. USA 82:19 64	55-6459 (1985):	.0.001.00	
Nucleic Acids Research 23:4 541-549 (1995). 9. Liarakos et al., "The translation efficiency of ovalbumin mRNA is determined in part by a 5'—end hairpin structure", Archives of Biochemistry and Biophysics 315:1 54-59 (1994). 10. Mosely et al., "Heat stress regulates the human 70-kDa heat-shock gene through the 3'—untranslated region" American Journal of Physiology 264:6 Part 1 L533-L537 (1993). 11. Pitto et al., "Role of the leader sequence during thermal repression of translation in maize, tobacco, and carrot protoplasts", Plant Physiology (Rockville) 100:4 1827-1833 (1992). Continue on page EXAMINER DATE CONSIDERED 12/28/0	A /	8.						<u> </u>	ed proteins".	
9. Liarakos et al., "The translation efficiency of ovalbumin mRNA is determined in part by a 5' -end hairpin structure", Archives of Biochemistry and Biophysics 315:1 54-59 (1994). 10. Mosely et al., "Heat stress regulates the human 70-kDa heat-shock gene through the 3' -untranslated region" American Journal of Physiology 264:6 Part 1 L533-L537 (1993). 11. Pitto et al., "Role of the leader sequence during thermal repression of translation in maize, tobacco, and carrot protoplasts", Plant Physiology (Rockville) 100:4 1827-1833 (1992). Continue on page EXAMINER			Nucleic Acids Research 23:4 541-549 (1995).							
structure", Archives of Biochemistry and Biophysics 315:1 54-59 (1994). 10. Mosely et al., "Heat stress regulates the human 70-kDa heat-shock gene through the 3' –untranslated region" American Journal of Physiology 264:6 Part 1 L533-L537 (1993). 11. Pitto et al., "Role of the leader sequence during thermal repression of translation in maize, tobacco, and carrot protoplasts", Plant Physiology (Rockville) 100:4 1827-1833 (1992). Continue on page EXAMINER DATE CONSIDERED 12/28 (0)	- 0.0 /	9.	Liarakos et al., "The translation efficiency of ovalbumin mRNA is determined in part by a 5' -end hairpin							
American Journal of Physiology 264:6 Part 1 L533-L537 (1993). Pitto et al., "Role of the leader sequence during thermal repression of translation in maize, tobacco, and carrot protoplasts", Plant Physiology (Rockville) 100:4 1827-1833 (1992). Continue on page EXAMINER DATE CONSIDERED 12/128 (0)	111		•							
11. Pitto et al., "Role of the leader sequence during thermal repression of translation in maize, tobacco, and carrot protoplasts", Plant Physiology (Rockville) 100:4 1827-1833 (1992). Continue on page EXAMINER	0.8	10.						the 3' –untrans	lated region",	
Continue on page EXAMINER AT AM Carrot protoplasts", Plant Physiology (Rockville) 100:4 1827-1833 (1992). DATE CONSIDERED 12/128 (0)									_	
Continue on page EXAMINER DATE CONSIDERED 12/128/05	/	11.	Pitto et al., "Role of the leader sequence during thermal repression of translation in maize, tobacco, and							
EXAMINER DATE CONSIDERED 12/28/0	$\mathcal{N}\mathcal{N}$	<u> </u>	carrot protoplasts", Plant Physiology (Rockville) 100:4 1827-1833 (1992).							
EXAMINER DATE CONSIDERED 12/28/0										
EXAMINER DATE CONSIDERED 12/28/0										
EXAMINER DATE CONSIDERED 12/28/0										
EXAMINER DATE CONSIDERED 12/28/0										
EXAMINER DATE CONSIDERED 12/28/0										
1/2/1/1/				(Continue on	page				
	EXAMINER	N	- 111				DATEC	ONSIDERED		
EVALUATED. 12 Mail 16 - Mail 11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		1/2	1/1//							
EXAMINER: Initial if citation considered, whether or not citation is in conformance with MPEP § 609; Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to the applicant.										