

Monte-Carlo Simulation of Light-Tissue Interaction

Biophotonics - Exercise II

Alexander Woyczyk

18/12/2024

Agenda

1 Interaction of Light

2 Monte Carlo Simulation

3 Exercise

Light-Tissue Interaction

- Important mechanisms
 - Reflection (n)
 - Absorption (μ_a)
 - Scattering (μ_s, g)
 - Refraction
- Effects vary, depending on wavelength and tissue properties

Basics

- Simulate systems through random sampling
- Uniform distribution of inputs
 - Normalised probability density function p(x)

$$\int_{\Omega} p(x) \, dx = 1$$

- And probability distribution function F(x)

$$F(x) = \int_0^x p(x')dx'$$

Draw random number r and solve r = F(x) for x

Basics

- Simulate systems through random sampling
- Uniform distribution of inputs
 - Normalised probability density function p(x)

$$\int_{\Omega} p(x) \, dx = 1$$

- And probability distribution function F(x)

$$F(x) = \int_0^x p(x')dx'$$

- Draw random number r and solve r = F(x) for x
- I.e. r = 0.6, $x = \frac{-\ln(1-r)}{3} = 0.305$

- onnulate systems intough random sampling
- Uniform distribution of inputs
- Normalised probability density function p(x)

$$\int_{\Omega} p(x) \, dx = 1$$

– And probability distribution function F(x)

$$F(x) = \int_0^x p(x')dx'$$

- Draw random number r and solve r = F(x) for x

- l.e.
$$r = 0.6$$
, $x = \frac{-\ln(1-r)}{3} = 0.305$

Basics

- Simulate systems through random sampling
- Uniform distribution of inputs
 - Normalised probability density function p(x)

$$\int_{\Omega} p(x) \, dx = 1$$

- And probability distribution function F(x)

$$F(x) = \int_0^x p(x')dx'$$

- Draw random number RND and solve RND = F(x) for x
- I.e. RND = 0.6, $x = \frac{-\ln(1-\text{RND})}{3} = 0.305$

Light-Tissue Interaction

- Simulate the propagation of photons through tissue objects
- Launches single photons and calculates their path and energy loss
- Combination of multiple Monte Carlo simulations
 - Absorption
 - Reflection
 - Scattering
- Lost energy is stored in the corresponding voxel of the environment

Light-Tissue Interaction

Absorption

- Intensity after distance $d: I(d) = I_0 e^{-\mu_a d}$

Scattering

- Step size until scatter event: $s = \frac{-\ln(\text{RND})}{\mu_s}$
- Direction: Henyey-Greenstein scattering

$$p(\cos(\theta)) = \frac{1}{2} \frac{1 - g^2}{(1 + g^2 - 2g\cos(\theta))^{3/2}}$$

Reflection

- In case of changing material: Fresnel coefficient r if RND < r: reflect, else transmit

Termination

If Photon weight < threshold: increase weight (10%) or terminate (90%)

Due date: Sunday 08/12/2023, 23:59

Alexander Woyczyk

Professur für Diagnostische Sensorik

Universität Augsburg

alexander.woyczyk@uni-a.de

www.uni-augsburg.de/de/fakultaet/fai/informatik/prof/dsens

