#### **STAT 5630, Fall 2019**

#### Trees and Random Forests

Xiwei Tang, Ph.D. <xt4yj@virginia.edu>

University of Virginia October 17, 2019

# Classification and regression

Trees (CART)

#### Tree-based methods

- Tree-based methods are nonparametric methods that recursively partition the feature space into hyper-rectangular subsets, and make prediction on each subset.
- · Two main streams of models:
  - Classification and regression Trees (CART): Breiman, Friedman,
    Olshen and Stone (1984)
  - ID3/C4.5: Quinlan, 1986, 1993.
- In statistics, we usually focus on CART.

#### **Titanic Survivals**



#### Classification and regression Trees

- · How tree works in classification?
- Example: independent  $x_1$  and  $x_2$  from uniform [-1,1], 90% to observed class 1 (blue) within the circle  $x_1^2 + x_2^2 < 0.6$ , and 90% to observed class 2 (orange) outside the circle.
- All existing classification methods that we have introduced require either transformation of the space (SVM) or distance measure (kNN, kernel)
- Tree solves this by directly cutting the feature space using a binary splitting rule in the form of  $\mathbf{1}\{x\leq c\}$













- rpart is one of the popular packages that provide CART fitting and plot
- Other choices include tree, party.
- Read the reference manual carefully!!!



#### Why tree-based methods?

- Tree-based methods: non-parametric, flexible model structure
- Can handel high-dimensional data without modifying the algorithm (CART may not work well in this setting)
- Single tree model simple decision rules, interpretable
- Ensemble tree model high prediction accuracy

- · How tree-based methods work?
  - · Initialized the root node: all training data

Root node

- · How tree-based methods work?
  - · Initialized the root node: all training data
  - Find a splitting rule  $\mathbf{1}\{X^{(j)} \leq c\}$  and split the node



- · How tree-based methods work?
  - · Initialized the root node: all training data
  - Find a splitting rule  $\mathbf{1}\{X^{(j)} \leq c\}$  and split the node
  - · Recursively apply the procedure on each daughter node



- · How tree-based methods work?
  - · Initialized the root node: all training data
  - Find a splitting rule  $\mathbf{1}\{X^{(j)} \leq c\}$  and split the node
  - · Recursively apply the procedure on each daughter node



- · How tree-based methods work?
  - Initialized the root node: all training data
  - Find a splitting rule  $\mathbf{1}\{X^{(j)} \leq c\}$  and split the node
  - · Recursively apply the procedure on each daughter node
  - Predict each terminal node using within-node data



#### **Classification and regression Trees**

- · How to construct the splitting rules?
- For classification problems
  - continuous predictors
  - categorical predictors
- · For regression problems
- Tree pruning

#### Splitting rules for continuous predictors

- Splitting of continuous predictors are in the form of  $\mathbf{1}\{X^{(j)} \leq c\}$
- Consider a node T, we want to split this node into two child nodes.
- We first evaluate the overall impurity of T by the Gini index (CART), assuming that there are K different classes of the outcome, 1,..., K,

$$\mathsf{Gini}(\mathcal{T}) = \sum_{k=1}^K \widehat{p}_k (1 - \widehat{p}_k) = 1 - \sum_{k=1}^K \widehat{p}_k^2$$

where  $\widehat{p}_k = \frac{\sum_i \mathbf{1}\{y_i = k\}\mathbf{1}\{x_i \in \mathcal{T}\}}{\sum_i \mathbf{1}\{x_i \in \mathcal{T}\}}$  is the within node frequency of class k.

#### **Impurity Measures**

- Now propose a split:  $\mathbf{1}\{X^{(j)} \leq c\}$ .
- This separates all subjects in the node into two disjoint parts:  $\mathcal{T}_L$  and  $\mathcal{T}_R$
- For each child node, we can again evaluate Impurity( $\mathcal{T}_L$ ) and Impurity( $\mathcal{T}_R$ )
- · The reduction of impurity is measured by

$$\mathsf{score} = \mathsf{Gini}(\mathcal{T}) - \left(\frac{N_{\mathcal{T}_L}}{N_{\mathcal{T}}}\mathsf{Gini}(\mathcal{T}_L) + \frac{N_{\mathcal{T}_R}}{N_{\mathcal{T}}}\mathsf{Gini}(\mathcal{T}_R)\right),$$

where  $N_{\mathcal{T}_L}$ ,  $N_{\mathcal{T}_R}$  and  $N_{\mathcal{T}}$  are the sample size for the corresponding node.

- Go through all variables j and all cutting points c to find the split with the best score
- Using rpart or tree, the magnitude of this score is reflected by the hight of each split (plot in page 13)

#### **Other Measures**

- · Gini index is not the only measurement
- · Shannon entropy

$$\mathsf{Entropy}(\mathcal{T}) = -\sum_{k=1}^K \widehat{p}_k \log(\widehat{p}_k)$$

- Similarly, we can use Shannon entropy to define the reduction of impurity and search for the best splitting rule
- · Misclassification error

$$\mathsf{Error}(\mathcal{T}) = 1 - \max_{k=1,\dots,K} \widehat{p}_k$$

#### **Comparing Measures**



#### **Comparing Measures**

- Gini index and Shannon Entropy are more sensitive to the changes in the node probability
- · They prefer to create more "pure" nodes
- Misclassification error can be used for evaluating a tree, but may not be sensitive enough for building the tree.

#### **Categorical Predictors**

• For categorical predictor  $X^{(j)}$  talking values in  $\{1,\ldots,M\}$ , we search for a subset A of  $\{1,\ldots,M\}$ , and evaluate the child nodes created by the splitting rule

$$\mathbf{1}\{X^{(j)}\in A\}$$

- Maximum of  $2^{M-1} 1$  number of possible splits
- ullet When M is too large, this can be computationally intense.
- Some heuristic methods are used, such as randomly sample a subset of categories to one child node, and compare several random splits.

#### **Tree for Regressions**

- When the outcomes  $y_i$ 's are continuous, all we need is a corresponding impurity measure and score
- · Consider the weighted variance reduction:

$$\mathsf{score}_{\mathsf{Var}} = \mathsf{Var}(\mathcal{T}) - \left(\frac{N_{\mathcal{T}_L}}{N_{\mathcal{T}}}\mathsf{Var}(\mathcal{T}_L) + \frac{N_{\mathcal{T}_R}}{N_{\mathcal{T}}}\mathsf{Var}(\mathcal{T}_R)\right)$$

where for any node  $\mathcal{T}$ ,  $Var(\mathcal{T})$  is just the variance of the node samples:

$$Var(\mathcal{T}) = \frac{1}{N_{\mathcal{T}}} \sum_{i \in \mathcal{T}} (y_i - \overline{y}_{\mathcal{T}})^2$$

#### **Overfitting and Tree Pruning**

- · A large tree (with many splits) can easily overfit the data
- Small tree may not capture important structures
- Tree size is measured by the number of splits
- Balancing tree size and accuracy is the same as the "loss + penalty" framework
- One possible approach is to split tree nodes only if the decrease in the loss exceed certain threshold, however this can be short-sighted
- · A better approach is to grow a large tree, then prune it

#### **Cost-Complexity Pruning**

- Fit the entire tree  $T_{max}$  (possibly one observation per terminal node). Specify a complexity parameter  $\alpha$ .
- For any sub-tree of  $T_{max}$ , denoted as  $T \leq T_{max}$ , calculate

$$\begin{split} C_{\alpha}(T) &= \sum_{\text{all terminal nodes } t \text{ in } T} N_t \cdot \text{Impurity}(t) + \alpha |T| \\ &= C(T) + \alpha |T| \end{split}$$

where  $N_t$  is the number of observations in t, |T| is the size of T, i.e., the number of terminal nodes

- Find T that minimize the  $C_{\alpha}(T)$
- Large  $\alpha$  results in small trees
- Choose  $\alpha$  using CV

#### Remark

- Advantages of tree-based method:
  - handles both categorical and continuous variables in a simple and natural way
  - · Invariant under all monotone transformations of variables
  - · Robust to outliers
  - Flexible model structure, capture iterations, easy to interpret

#### Limitations

- Small changes in the data can result in a very different series of splits
- Non-smooth. Some other techniques such as the multivariate adaptive regression splines (MARS, Friedman 1991) can be used to generate smoothed models.

# Random Forests

#### **Weak and Strong Learners**

- Whether aggregated "weak learners" (unstable, less accurate) can be a "strong learner".
- Bagging, boosting, and random forests are all along this line.
- Bagging and random forests learn individual trees with some random perturbations, and "average" them.
- Boosting progressively learn models with small magnitude, then "add" them.
- In general, Boosting, Random Forests  $\succ$  Bagging  $\succ$  Single Tree.

#### Bootstrapping

· Random Sampling with Replacement



#### **Bagging Predictors**

- · Bagging stands for "Bootstrap aggregating"
- $\bullet$  Draw M bootstrap samples from the training dataset, fit CART to each, then average
- Motivation: CART is unstable as we discussed earlier, however, perturbing and averaging can improve stability and leads to better accuracy

#### **Ensemble of trees**



#### **Bagging Predictors**

- Bootstrap sample with replacement: some observations can be repeated multiple times.  $\sim 63.2\%$  unique samples
- Fit a CART model to each bootstrap sample (may require tuning using CV).
- To combine each learner, for classification problems:

$$\widehat{f}_{\mathrm{bag}}(x) = \mathrm{Majority} \ \mathrm{Vote} \big\{ \widehat{f}_b(x) \big\}_{b=1}^B,$$

and for regression problems:

$$\widehat{f}_{\text{bag}}(x) = \frac{1}{B} \sum_{b=1}^{B} \widehat{f}_b(x),$$

- · Dramatically reduce the variance of individual learners
- CART can be replaced by other weak learners

#### **CART vs. Bagging**



CART vs. Bagging on our previous example, both are pruned

#### **Remarks about Bagging**

- Bagging can dramatically reduce the variance of unstable "weak learners" like trees, leading to improved prediction
- The simple structure of trees will be lost due to bagging, hence it is not easy to interpret
- Different trees have high correlation which makes averaging not very effective

#### **Random Forests**

- "The Random Subspace Method for Constructing Decision Forests" by Ho (1998) greatly influenced Breiman's idea of random forests
- In Ho's method, each tree is constructed using a randomly selected subset of features
- Random forests take a step forward: each splitting rule only consider a random subset

#### Tuning parameters: mtry

- An important tuning parameter of random forests is mtry
- At each split, randomly select mtry variables from the entire set of features  $\{1,\ldots,p\}$
- Search the best variable and splitting point out of these mtry variables
- · Split and proceed to child nodes
- This procedure turns out working remarkably well, even in high-dimensional data

#### Tuning parameters: $n_{min}$

- Another important tuning parameter is  $n_{min}$  (terminal node size)
- Random forests does not perform pruning anymore
- Instead, splitting does not stop until the terminal node size is less or equal to  $n_{min}$ , and the entire tree is used.
- $n_{min}$  controls the trade-off between bias and variance in each tree
- In the most extreme case,  $n_{min}=1$  means exactly fit each observation, but this is not 1-NN!

#### **Tuning parameters**

- A summary of important tuning parameters in Random forests (using R package randomForest)
- ntree: number of trees, set it to be large. Default 500.
- mtry : number of variables considered at each split. Default p/3 for regression,  $\sqrt{p}$  for classification.
- nodesize: terminal node size, same as  $n_{min}$ . Default 5 for regression, 1 for classification
- Overall, tuning is quite crucial in random forests

#### CART vs. Bagging vs. RF



RF: 
$$ntree = 1000$$
,  $mtry = 1$ ,  $nodesize = 25$ 

#### **CART vs. RF in regression**



Model patients' length of stay (LOS) in hospital: Diagnosis (categorical) and Age (continuous)