The jackknife+: distribution-free prediction

Rina Foygel Barber (with Emmanuel Candès, Aaditya Ramdas, Ryan Tibshirani)

http://www.stat.uchicago.edu/~rina/

Collaborators

Aaditya Ramdas

Ryan Tibshirani

• Thanks to American Institute of Math (AIM)

The prediction problem

Setting:

- Training data $(X_1, Y_1), \ldots, (X_n, Y_n) \rightsquigarrow \text{fit model } \widehat{\mu}(X_i) \approx Y_i$
- Test point (X_{n+1}, Y_{n+1}) from same distribution
- If $\widehat{\mu}$ overfits to training data,

$$|Y_{n+1} - \widehat{\mu}(X_{n+1})| \gg \frac{1}{n} \sum_{i=1}^{n} |Y_i - \widehat{\mu}(X_i)|$$

The prediction problem

Goal: build prediction band C as a function of the training data, such that $C(X_{n+1})$ is likely to contain Y_{n+1}

- Want to be <u>distribution-free</u> —
 coverage holds w/o assumptions on distrib. of (X, Y)
- Want to be efficient minimize width of interval $C(X_{n+1})$

Defining distribution-free coverage

Definition:

A method satisfies distribution-free coverage at level $1-\alpha$ if

$$\mathbb{P}\left\{Y_{n+1}\in C(X_{n+1})\right\}\geq 1-\alpha$$

w.r.t.
$$(X_1, Y_1), \dots, (X_n, Y_n), (X_{n+1}, Y_{n+1}) \stackrel{\text{iid}}{\sim} P$$
, for any P .

Defining distribution-free coverage

Definition:

A method satisfies distribution-free coverage at level $1-\alpha$ if

$$\mathbb{P}\left\{Y_{n+1} \in C(X_{n+1})\right\} \ge 1 - \alpha$$

w.r.t.
$$(X_1, Y_1), \dots, (X_n, Y_n), (X_{n+1}, Y_{n+1}) \stackrel{\text{iid}}{\sim} P$$
, for any P .

The coverage rate is averaged over training data & over test points

Preliminaries

1. Quantiles of a sample:

$$\mathsf{Q}_{1-lpha}(\mathsf{x}_1,\ldots,\mathsf{x}_n) = \lceil (1-lpha)(n+1)
ceil$$
 -th smallest value of $\mathsf{x}_1,\ldots,\mathsf{x}_n$

Abusing notation...

$$Q_{\alpha}(x_1,\ldots,x_n)=\lfloor \alpha(n+1) \rfloor$$
-th smallest value of x_1,\ldots,x_n

Preliminaries

1. Quantiles of a sample:

$$Q_{1-\alpha}(x_1,\ldots,x_n)=\lceil (1-\alpha)(n+1)\rceil$$
-th smallest value of x_1,\ldots,x_n

Abusing notation...

$$Q_{\alpha}(x_1,\ldots,x_n)=\lfloor\alpha(n+1)\rfloor$$
-th smallest value of x_1,\ldots,x_n

2. Fitted regression function

$$\widehat{\mu} = \underbrace{\mathcal{A}\Big((X_1, Y_1), \dots, (X_n, Y_n)\Big)}$$

invariant to ordering of training points

For any subset $S \subset \{1, \ldots, n\}$,

$$\widehat{\mu}_{-S} = \mathcal{A}\Big((X_i, Y_i) : i \in \{1, \dots, n\} \setminus S\Big)$$

Naive method:

$$C(X_{n+1}) = \widehat{\mu}(X_{n+1}) \pm Q_{1-\alpha}(|Y_i - \widehat{\mu}(X_i)|)$$

- Computational cost: one regression $\widehat{\mu}$
- Poor coverage in practice (overfitting)

Holdout method:

Choose holdout set $S_{\text{hold}} \subset \{1, \ldots, n\}$

$$C(X_{n+1}) = \widehat{\mu}_{-S_{\mathsf{hold}}}(X_{n+1}) \pm Q_{1-\alpha}\Big(|Y_i - \widehat{\mu}_{-S_{\mathsf{hold}}}(X_i)| : i \in S_{\mathsf{hold}}\Big)$$

- Computational cost: one regression $\widehat{\mu}_{-\mathcal{S}_{\mathsf{hold}}}$
- Wider intervals (reduced sample size $n |S_{hold}| < n$)

¹Papadopoulos 2008, Vovk 2012, Lei et al. 2018

Holdout method:

Choose holdout set $S_{hold} \subset \{1, \ldots, n\}$

$$C(X_{n+1}) = \widehat{\mu}_{-S_{\mathsf{hold}}}(X_{n+1}) \pm \mathsf{Q}_{1-\alpha}\Big(|Y_i - \widehat{\mu}_{-S_{\mathsf{hold}}}(X_i)| \ : \ i \in S_{\mathsf{hold}}\Big)$$

- Computational cost: one regression $\widehat{\mu}_{-\mathcal{S}_{\mathsf{hold}}}$
- Wider intervals (reduced sample size $n |S_{hold}| < n$)
- Distribution-free coverage due to exchangeability 0 of $|Y_i \widehat{\mu}_{-S_{\mathsf{hold}}}(X_i)|, i \in S_{\mathsf{hold}} \cup \{n+1\}$

¹Papadopoulos 2008, Vovk 2012, Lei et al. 2018

Cross-validation:

Split data into $S_1 \cup \cdots \cup S_K$ For each $i \in S_k$, $R_i^{\text{CV}} = |Y_i - \widehat{\mu}_{-S_k}(X_i)|$

$$C(X_{n+1}) = \widehat{\mu}(X_{n+1}) \pm Q_{1-\alpha}(R_i^{CV})$$

— Computational cost: K + 1 regressions

Jackknife a.k.a. leave-one-out cross-validation (K = n)Residuals $R_i^{\text{LOO}} = |Y_i - \widehat{\mu}_{-i}(X_i)|$

$$C(X_{n+1}) = \widehat{\mu}(X_{n+1}) \pm Q_{1-\alpha}(R_i^{LOO})$$

²Steinberger & Leeb 2018

Jackknife a.k.a. leave-one-out cross-validation (K = n)Residuals $R_i^{\text{LOO}} = |Y_i - \widehat{\mu}_{-i}(X_i)|$

$$C(X_{n+1}) = \widehat{\mu}(X_{n+1}) \pm Q_{1-\alpha}(R_i^{LOO})$$

— Predictive coverage holds under assumptions² Asymptotic stability: $\widehat{\mu}(X_{n+1}) \approx \widehat{\mu}_{-i}(X_{n+1})$

²Steinberger & Leeb 2018

```
Cross-conformal prediction:<sup>3</sup> Split data into S_1 \cup \cdots \cup S_K, & find all y overlapping \geq n - (1-\alpha)(n+1) of the intervals \widehat{\mu}_{-S_k}(X_{n+1}) \pm R_i^{\mathsf{CV}}
```

- Computational cost: K + 1 regressions
- Distribution-free theory ${\sf Coverage} \geq 1 2\alpha 2K/n$

³Vovk 2015, Vovk et al 2018

Our methods

Jackknife+:

$$C(X_{n+1}) = \left[Q_{\alpha} \left(\widehat{\mu}_{-i}(X_{n+1}) - R_i^{\mathsf{LOO}} \right), \ Q_{1-\alpha} \left(\widehat{\mu}_{-i}(X_{n+1}) + R_i^{\mathsf{LOO}} \right) \right]$$

Compare to jackknife:

$$C(X_{n+1}) = \left[Q_{\alpha} \left(\widehat{\mu}(X_{n+1}) - R_i^{\mathsf{LOO}} \right), \ Q_{1-\alpha} \left(\widehat{\mu}(X_{n+1}) + R_i^{\mathsf{LOO}} \right) \right]$$

Our methods

Our methods

Extension to CV+:

$$C(X_{n+1}) = \left[Q_{\alpha} \left(\widehat{\mu}_{-S_k}(X_{n+1}) - R_i^{CV} \right), \ Q_{1-\alpha} \left(\widehat{\mu}_{-S_k}(X_{n+1}) + R_i^{CV} \right) \right]$$

CV+ interval \supseteq Vovk's cross-conformal prediction set

Distribution-free coverage

Theorem: For any distrib. P and any A, jackknife+ satisfies

$$\mathbb{P}\left\{Y_{n+1}\in C(X_{n+1})\right\}\geq 1-2\alpha.$$

Distribution-free coverage

Theorem: For any distrib. P and any A, jackknife+ satisfies

$$\mathbb{P}\left\{Y_{n+1}\in C(X_{n+1})\right\}\geq 1-2\alpha.$$

Theorem: For any distrib. P and any A, K-fold CV+ satisfies

$$\mathbb{P}\left\{Y_{n+1} \in C(X_{n+1})\right\} \geq \begin{cases} 1 - 2\alpha - 1/K & \text{(new)} \\ 1 - 2\alpha - 2K/n & \text{(Vovk et al)} \end{cases}$$

$$\Rightarrow \quad \geq 1 - 2\alpha - \sqrt{2/n}.$$

Define:

- Regression $\widetilde{\mu}_{-\{i,j\}}$ for each $i,j \in \{1,\ldots,n+1\}$
- Residuals $R_{ij} = |Y_i \widetilde{\mu}_{-\{i,j\}}(X_i)|$
- Comparison matrix for R_{ij} vs R_{ji} :

$$A_{ij} = \mathbf{1}\{R_{ij} > R_{ji}\} \quad (\text{and } A_{ii} = 0)$$

Define:

- Regression $\widetilde{\mu}_{-\{i,j\}}$ for each $i,j \in \{1,\ldots,n+1\}$
- Residuals $R_{ij} = |Y_i \widetilde{\mu}_{-\{i,j\}}(X_i)|$
- Comparison matrix for R_{ij} vs R_{ji} :

$$A_{ij} = \mathbf{1}\{R_{ij} > R_{ji}\} \quad (\text{and } A_{ii} = 0)$$

Verify: if $Y_{n+1} \not\in C(X_{n+1})$ then

$$\sum_{i=1}^{n} \mathbf{1} \Big\{ |Y_{n+1} - \widehat{\mu}_{-i}(X_{n+1})| > |Y_i - \widehat{\mu}_{-i}(X_i)| \Big\} \ge (1 - \alpha)(n+1)$$

Define:

- Regression $\widetilde{\mu}_{-\{i,j\}}$ for each $i,j \in \{1,\ldots,n+1\}$
- Residuals $R_{ij} = |Y_i \widetilde{\mu}_{-\{i,j\}}(X_i)|$
- Comparison matrix for R_{ij} vs R_{ji} :

$$A_{ij} = \mathbf{1}\{R_{ij} > R_{ji}\} \quad (\text{and } A_{ii} = 0)$$

Verify: if $Y_{n+1} \not\in C(X_{n+1})$ then

$$\sum_{i=1}^{n} \mathbf{1} \left\{ \overbrace{|Y_{n+1} - \widehat{\mu}_{-i}(X_{n+1})|}^{R_{n+1,i}} > \overbrace{|Y_{i} - \widehat{\mu}_{-i}(X_{i})|}^{R_{i,n+1}} \right\} \geq (1 - \alpha)(n+1)$$

Define:

- Regression $\widetilde{\mu}_{-\{i,j\}}$ for each $i,j \in \{1,\ldots,n+1\}$
- Residuals $R_{ij} = |Y_i \widetilde{\mu}_{-\{i,j\}}(X_i)|$
- Comparison matrix for R_{ij} vs R_{ji} :

$$A_{ij} = \mathbf{1}\{R_{ij} > R_{ji}\} \quad (\text{and } A_{ii} = 0)$$

Verify: if $Y_{n+1} \notin C(X_{n+1})$ then

$$\sum_{i=1}^{n} \underbrace{1\left\{ \overbrace{|Y_{n+1} - \widehat{\mu}_{-i}(X_{n+1})|}^{R_{n+1,i}} > \overbrace{|Y_{i} - \widehat{\mu}_{-i}(X_{i})|}^{R_{i,n+1}} \right\}}_{A_{n+1},i} \ge (1 - \alpha)(n+1)$$

Summary so far:

$$Y_{n+1} \notin C(X_{n+1}) \quad \Rightarrow \quad \sum_{i} A_{n+1,i} \geq (1-\alpha)(n+1)$$

Summary so far:

$$Y_{n+1} \notin C(X_{n+1}) \quad \Rightarrow \quad \sum_{i} A_{n+1,i} \geq (1-\alpha)(n+1)$$

Data points are exchangeable, so

$$\mathbb{P}\left\{\sum_{i}A_{n+1,i}\geq (1-\alpha)(n+1)\right\} = \frac{\mathbb{E}\left[\#\text{ rows } j\text{ with }\sum_{i}A_{ji}\geq (1-\alpha)(n+1)\right]}{n+1}$$

Summary so far:

$$Y_{n+1} \notin C(X_{n+1}) \quad \Rightarrow \quad \sum_{i} A_{n+1,i} \geq (1-\alpha)(n+1)$$

Data points are exchangeable, so

$$\mathbb{P}\left\{\sum_{i}A_{n+1,i}\geq (1-\alpha)(n+1)\right\} = \frac{\mathbb{E}\left[\# \text{ rows } j \text{ with } \sum_{i}A_{ji}\geq (1-\alpha)(n+1)\right]}{n+1}$$

Deterministically, at most $2\alpha(n+1)$ such rows \Rightarrow $\mathbb{P}\{...\} \leq 2\alpha$

Worst case for # rows j with $\sum_i A_{ji} \ge (1 - \alpha)(n + 1)$:

50% 1's	all 1's	$\left. \left. \left. \right. \right\} 2lpha(n+1) ight.$ rows
all 0's	all 0's	$\left. \left. \left. \right. \right\} (1-2lpha)(n+1) ight.$ rows

Jackknife-minmax

$$\left[\min_{i} \widehat{\mu}_{-i}(X_{n+1}) - \mathsf{Q}_{1-\alpha}\Big(R_{i}^{\mathsf{LOO}}\Big), \ \max_{i} \widehat{\mu}_{-i}(X_{n+1}) + \mathsf{Q}_{1-\alpha}\Big(R_{i}^{\mathsf{LOO}}\Big)\right]$$

Theorem: For any distrib. P and any \mathcal{A} , jackknife-minmax satisfies

$$\mathbb{P}\left\{Y_{n+1}\in C(X_{n+1})\right\}\geq 1-\alpha.$$

Results so far

Method	Assumption-free	Typical empirical	
Wethou	theory	coverage	
Naive	No guarantee	$< 1 - \alpha$	
Jackknife	No guarantee	$\approx 1 - \alpha$	
Jackknife+	1-2lpha coverage	$\approx 1 - \alpha$	
Jackknife-minmax	1-lpha coverage	$> 1 - \alpha$	

Matching lower bound

Theorem: There exists a data distribution P and a regression algorithm $\mathcal A$ s.t.

- 1. For the naive method, coverage = 0
- 2. For jackknife, coverage = 0

Furthermore if $\alpha \leq \frac{1}{2}$, there exist P and A s.t.

3. For jackknife+, coverage $\leq 1 - 2\alpha + o(1)$

Stability

Out-of-sample stability:

$$\mathbb{P}\left\{\left|\widehat{\mu}(X_{n+1}) - \widehat{\mu}_{-i}(X_{n+1})\right| \le \epsilon\right\} \ge 1 - \nu$$

In-sample stability:

$$\mathbb{P}\left\{\left|\widehat{\mu}(X_i) - \widehat{\mu}_{-i}(X_i)\right| \le \epsilon\right\} \ge 1 - \nu$$

Stability \Rightarrow generalization bounds⁴, predictive coverage⁵

⁴Bousquet & Elisseeff 2002

⁵Steinberger & Leeb 2018

Stability

Out-of-sample stability:

$$\mathbb{P}\left\{\left|\widehat{\mu}(X_{n+1}) - \widehat{\mu}_{-i}(X_{n+1})\right| \le \epsilon\right\} \ge 1 - \nu$$

In-sample stability:

$$\mathbb{P}\left\{\left|\widehat{\mu}(X_i) - \widehat{\mu}_{-i}(X_i)\right| \le \epsilon\right\} \ge 1 - \nu$$

Stability \Rightarrow generalization bounds⁴, predictive coverage⁵

• Example: K-nearest-neighbors satisfies out-of-sample stability with $\epsilon=0$ and $\nu=K/n$

⁴Bousquet & Elisseeff 2002

⁵Steinberger & Leeb 2018

Stability

Theorem: With out-of-sample stability, for jackknife,

$$\mathbb{P}\left\{\mathsf{dist}(Y_{n+1},C(X_{n+1}))\leq\epsilon\right\}\geq 1-\alpha-2\sqrt{\nu}$$

For jackknife+,

$$\mathbb{P}\left\{\mathsf{dist}(Y_{n+1},C(X_{n+1})) \leq 2\epsilon\right\} \geq 1 - \alpha - 4\sqrt{\nu}$$

If we also assume in-sample stability, then for the naive method,

$$\mathbb{P}\left\{\mathsf{dist}\big(Y_{n+1}, \mathit{C}\big(X_{n+1}\big)\right) \leq 2\epsilon\right\} \geq 1 - \alpha - 4\sqrt{\nu}$$

Summary of theory

Method	Assumption-free	Out-of-sample	In-sample and
Method	theory	stability	out-of-sample stab.
Naive	No guarantee	No guarantee	$\approx 1 - \alpha$
Jackknife	No guarantee	$\approx 1 - \alpha$	$\approx 1 - \alpha$
Jackknife+	$1-2\alpha$	$\approx 1 - \alpha$	$\approx 1 - \alpha$
Jackknife-mm	$1-\alpha$	$1-\alpha$	$1-\alpha$

Simulation

- $n = 100, d = 5, 10, \dots, 200$
- $X_{ij} \stackrel{\text{iid}}{\sim} \mathcal{N}(0,1)$
- $Y_i = X_i^{\top} \beta + \mathcal{N}(0,1)$
- Regression method A:

Least squares with min ℓ_2 norm (ridge with penalty 0) Stable⁶ if $d \ll n$ or $d \gg n$, unstable if $d \approx n$

⁶Hastie et al 2019, Ridgeless Least Squares Interpolation.

Simulation

Data set	# samples	# features
Communities & crime	1994	99
BlogFeedback	52397	280
Medical Expenditures Panel	33005	107

- Training data size n = 200
- Algorithms: ridge regression, random forests, neural nets

Communities & crime data:

BlogFeedback data:

Medical Expenditure Panel data:

Summary & open questions

- Jackknife can fail to cover if the regression is unstable
- Jackknife+ accounts for instability in $\widehat{\mu}$ to gain assumption-free $1-2\alpha$ coverage
- If $\widehat{\mu}$ is stable, jackknife+ pprox jackknife (both have $1-\alpha$ cov.)

- What algorithms/data sets cause jackknife to fail in practice?
- How to use jackknife+ or CV+ for model selection / tuning?