

COSCO VII

Recurrent Neural Network (RNN) Software Implementation using Python

June 29th, 2017

Presenter: Ryunosuke Murakami

Demonstration: Maiko Arakawa

Supporters: Hiroki Yomogita,

Tomohide Fukuchi, Yohei Shimmyo

Outline

- Introduction
- Recurrent architecture
- Learning algorithm
 - Backpropagation in RNN.
 - Long-short term memory.
 - Connectionist Temporal Classification.
- Summary
- Demo
 - machine translation model

What's RNN?

Recurrent Neural Network can handle

- Voice data
- Language data
- Movie data

Sketch-rnn (Google)

DeepFix (Indian Institute of Science)

Machine translation

We can get an idea of the learned feature vectors by displaying.

word	We	can	get	 the	learned	?
input	_x 1	_χ 2	_χ 3	x^t-1	x^t	$x^t + 1$
output		<i>y</i> 1	y 2	y^t -2	$y^t - 1$	y^t

Estimation task for next word from given inputs

 x^t : series of input

 y^t : series of output

Difference of structure

Feed-forward NN

Directed acyclic graph

Directed cycle graph

Why use RNN?

- Learn context and dependence between words
- High accuracy of word expectation

Forward propagation of RNN

- Input of hidden layer
 - $u_j^t = \sum_i w_{ji}^{(in)} x_i^t + \sum_{j} w_{jj} z_{j}^{t-1}$
- Output of hidden layer
 - $z_j^t = f(u_j^t)$
- Input of output layer
 - $v_k^t = \sum_j w_{kj}^{(out)} z_j^t$
- Output of output layer
 - $y_k^t = f(v_k^t)$

where t is time

Forward propagation of RNN

- Input of hidden layer
 - $u_j^t = \sum_i w_{ji}^{(in)} x_i^t + \sum_{j} w_{jj} z_{j}^{t-1}$
- Output of hidden layer

•
$$z_j^t = f(u_j^t)$$

- Input of output layer
 - $v_k^t = \sum_j w_{kj}^{(out)} z_j^t$
- Output of output layer
 - $y_k^t = f(v_k^t)$

where t is time

$$u_{j}^{t} = \sum_{i} w_{ji}^{(in)} x_{i}^{t} + \sum_{j'} w_{jj'} z_{j'}^{t-1}$$
 x_{i}

$$u_j^t = \sum_i w_{ji}^{(in)} x_i^t + \sum_{j'} w_{jj'} z_{j'}^{t-1}$$

$$u_{j}^{t} = \sum_{i} w_{ji}^{(in)} x_{i}^{t} + \sum_{j'} w_{jj'} z_{j'}^{t-1}$$

Forward propagation of RNN

Input of hidden layer

•
$$u_j^t = \sum_i w_{ii}^{(in)} x_i^t + \sum_{j} w_{jj} z_{j}^{t-1}$$

- Output of hidden layer
 - $z_j^t = f(u_j^t)$
- Input of output layer

•
$$v_k^t = \sum_j w_{kj}^{(out)} z_j^t$$

- Output of output layer
 - $y_k^t = f(v_k^t)$

where t is time

$$z_j^t = f(u_j^t)$$

Forward propagation of RNN

- Input of hidden layer
 - $u_j^t = \sum_i w_{ji}^{(in)} x_i^t + \sum_{j} w_{jj} z_{j}^{t-1}$
- Output of hidden layer
 - $z_i^t = f(u_i^t)$
- Input of output layer
 - $v_k^t = \sum_j w_{kj}^{(out)} z_j^t$
- Output of output layer
 - $y_k^t = f(v_k^t)$

where t is time

Detail of input of output layer

Forward propagation of RNN

Input of hidden layer

•
$$u_j^t = \sum_i w_{ji}^{(in)} x_i^t + \sum_j w_{jj} z_{ji}^{t-1}$$

- Output of hidden layer
 - $z_j^t = f(u_j^t)$
- Input of output layer

•
$$v_k^t = \sum_j w_{kj}^{(out)} z_j^t$$

- Output of output layer
 - $y_k^t = f(v_k^t)$

where t is time

Detail of output on output layer

$$y_k^t = f(v_k^t)$$

Forward propagation of RNN

- Input of hidden layer
 - $u_j^t = \sum_i w_{ji}^{(in)} x_i^t + \sum_{j} w_{jj} z_{j'}^{t-1}$
- Output of hidden layer
 - $z_j^t = f(u_j^t)$
- Input of output layer
 - $v_k^t = \sum_j w_{kj}^{(out)} z_j^t$
- Output of output layer
 - $y_k^t = f(v_k^t)$

where t is time

Backpropagation of RNN

Backpropagation of RNN has 2 methods:

- Real time recurrent learning(RTRL)
- Backpropagation through time(BPTT)

RTRL

- memory efficient
- possible to learn real-time
- limited learning capability

BPTT

- fast to calculate
- high performance of learning capability
- Limited learning cycle

Apand network through time direction

RNN network

Expanded network through time

Find δ of output layer.

$$\delta_j^{(l)} = \sum_k w_{kj}^{(l+1)} \, \delta_k^{(l+1)} f'\left(u_j^{(l)}\right)$$

l: number of layers

Find δ of hidden layer.

$$\delta_j^t = \left(\sum_k w_{kj}^{out} \delta_k^{out,t} + \sum_{j'} w_{j'j} \delta_{j'}^{t+1}\right) f'(u_j^t)$$

Calculate gradient of error

$$\Delta w_{ij}(t) = -\eta \sum_{\tau=t_0} \delta_i(r+1) y_j(t)$$

t – 1

t+1

Problem on RNN learning

Length of the series data determines the performance of RNN

The longer data length become, the longer networks become

Numerous layers network causes vanishing gradient problem

What is vanishing gradient?

- vanishing gradient
 - Assume Sigmoid for activation functions
 - The more layers, the slower learning speed
 - The reason of slowing is "gradient vanishment"
- exploding gradient
 - Gradient explode

Why gradient vanishes?

The more layer, more number of sigmoid is applied

Why gradient vanishes?

 The more sigmoid is applied, the more its shape becomes flat -> gradient vanishes

Long-short term memory(LSTM)

- Deeper layer may cause vanishing gradient
 - RNN has deep network when it expand through time
 - It makes difficult to learn for long series data
- LSTM is a solution for vanishing gradient problem
 - memorize series data for long time
- LSTM has only difference unit in hidden layer
 - Just replace the conventional unit with memory-unit

Oblivion gate

Output layer

Input layer

- unit f outputs $g_j^{F,t}$
- s_j^{t-1} is multiplied by $g_j^{F,t}$
- When the output is
 - Close to 0 > reset (oblivion)
 - Close to 1 > keep the state

$$g_j^{F,t} = f(u_j^{F,t})$$

$$= f\left(\sum_i w_{ji}^{F,in} x_i^t + \sum_{j'} w_{jj'} z_{j'}^{t-1} + w_j^F s_j^{t-1}\right)$$

Input layer

Jur

hidden layer

Input gate

Output layer

Input layer

- Unit c outputs $g_i^{I,t}$
- unit b receives input from outside and then multiplied by $g_{j}^{I,t}$
- The value is transmitted into memory cell

$$g_j^{I,t} = f(u_j^{I,t})$$

$$= f\left(\sum_i w_{ji}^{I,in} x_i^t + \sum_{j'} w_{jj'}^I z_{j'}^{t-1} + w_j^I s_j^{t-1}\right)$$

Input layer

Jur

hidden layer

Aizu

Output gate

Output layer

Input layer

- Unit d outputs $g_i^{O,t}$
- When the $g_i^{0,t}$
 - Close to 1 > outputs transmitted into outsides
 - Close to 0 > block

$$z_j^t = g_j^{0,t} f(s_j^t)$$

Aizu

$$g_{j}^{O,t} = f(u_{j}^{O,t})$$

$$= f\left(\sum_{i} w_{ji}^{O,in} x_{i}^{t} + \sum_{j'} w_{jj'}^{O} z_{j'}^{t-1} + w_{j}^{O} s_{j}^{t}\right)$$

Input layer

hidden layer

32

Memory cell a

Output layer

Input layer

- Memory cell (a) contains the state
- Memorization is realized by make its output return 1 time after
- In this time, the value is multiplied by output of unit (f)

$$s_j^t = g_j^{F,t} s_j^{t-1} + g_j^{I,t} f(u_j^t)$$

$$u_{j}^{t} = \sum_{i} w_{ji}^{t} x_{i}^{t} + \sum_{j} w_{jj}, z_{j}^{t-1}$$

Input layer

Jur

hidden layer

Aizu

Weakness of RNN

- RNN is unsuitable in the case: length of sequence data differs between input and output
- Input-length corresponds with output-length
 - RNN has to output y_t from input x_t in each time tEx) input: "abac", ouput: "xxyy" but true answer = "xy"
- Solution for this problem
 - Connectionist Temporal Classification

nnectionist temporal classification

- CTC can solve classification tasks How to solve?
- Add output unit with '_' unit(vacant unit)
 - Expand the label by adding vacant value

Ex. phoneme estimation

- $L = \{a, b\}$... The set of labels to be recognized
- $L' = \{a, b, \}$... Label: L with vacant label '

There are countless numbers of redundant expression

 $l(Series\ data\ without\ redundancy)\ and\ \pi(with\ redundancy)\ have\ following\ "many-to-one"\ relation$

$$l = B(\pi)$$
 $l = B(a_b_) = B(aaa_b)$

Ex. phoneme estimation

The case: input length is 6

Adjust the length of the data

- Assume vacant label _
- Complement label with sequential vacant or same label

•
$$l = "ab"$$

Combination of estimates π

Estimation

$$p(l|X) = \sum_{\pi \in B^{-1}(l)} p(\pi|X)$$
 sum of probability for total path

$$p(\pi|X) = \prod_{t=1}^{I} y_{\pi t}^{t}$$

Probability that the path π is true (input is X)

p(l|X) computation

$$p_{l}(a,b,_,_,_|X) = \begin{vmatrix} y_{a}^{1} \cdot y_{b}^{2} \cdot y_{_}^{3} \cdot y_{_}^{4} \cdot y_{_}^{5} \cdot y_{_}^{6} \\ + y_{l}(a,a,b,_,_,_|X) \\ + p_{l}(a,_,_,_,_|X) \end{vmatrix} = \begin{vmatrix} y_{a}^{1} \cdot y_{a}^{2} \cdot y_{b}^{3} \cdot y_{_}^{4} \cdot y_{_}^{5} \cdot y_{_}^{6} \\ + y_{a}^{1} \cdot y_{a}^{2} \cdot y_{b}^{3} \cdot y_{_}^{4} \cdot y_{_}^{5} \cdot y_{_}^{6} \\ + y_{a}^{1} \cdot y_{_}^{2} \cdot y_{_}^{3} \cdot y_{_}^{4} \cdot y_{_}^{5} \cdot y_{b}^{6} \end{vmatrix}$$

$$p_{l}(a,a,a,b,b,b|X) \qquad y_{a}^{1} \cdot y_{a}^{2} \cdot y_{a}^{3} \cdot y_{b}^{4} \cdot y_{b}^{5} \cdot y_{b}^{6}$$

 $p(\pi|X)$: each line of probability

Highest value is estimated as correct l

p(l|X) computation

• $p(l|X) = \sum_{\pi \in B^{-1}(l)} p(\pi|X)$, ex. l = ab

$$p_l(a,b,_,_,_,_|X)$$
 $y_a^1 \cdot y_b^2 \cdot y__^3 \cdot y__^4 \cdot y__^5 \cdot y__^6$

 $p_l(ab|X)$ needs huge amount of computation!

• Highest value is the estimation of correct l

Forward backward method

- Assume the set of path in time=t and sth label
 - Former part of path to t $\pi_{1:t} = (\pi_1, ..., \pi_t)$
 - Latter part of path from t $\pi_{t:T} = (\pi_t, ..., \pi_T)$

- Sum of probabilities
 - Former part of path $p(\pi_{1:t})$ $\alpha_{s,t}$
 - Latter part of path $p(\pi_{t:T})$ $\beta_{s,t}$
- α and β could be calculated recurrently

To calculate p(l|X)

 $t \rightarrow$

p(l|X) = sum of total path probability

path a

path c

path d

Forward backward method

 $t \rightarrow$

p(l|X) = path a + path b + ... path d

50

Forward backward method

Sum of former part of path: $\alpha_{s,t}$

Latter part of path $p(\pi_{t:T})$: $\beta_{s,t}$

$$p(l|X) = \sum \alpha_{s,t} + \beta_{s,t}$$

Why forward backward is fast?

$\alpha_{s,t}$ is calculated by recurrence relation

$$\alpha(s-1,t-1)$$

$$\alpha(s,t-1)$$

$$\alpha(s,t-1)$$

$$\alpha(s,t) = y_{l'(s)}^t \alpha(s,t) + y_{l'(s)}^t \alpha(s,t)$$

$$(pattern: s = '_')$$

Why forward backward is fast?

 $\alpha_{s,t}$ is calculated by recurrence relation

$$\alpha(s,t) = y_{l'(s)}^t \alpha(s-2,t-1) + y_{l'(s)}^t \alpha(s-1,t-1) + y_{l'(s)}^t \alpha(s,t-1)$$
(pattern: s!= '_')

Why forward backward is fast?

$$t = 1$$

$$1$$

$$2$$

$$3$$

$$4$$

$$5$$

$$6$$

$$1$$

$$-\alpha(1,1) = y_{l_{I}(s)}^{1}$$

$$2$$

$$-\alpha(2,1) = y_{l_{I}(s)}^{1}$$

$$3$$

$$4$$

$$4$$

$$-6$$

$$5$$

$$5$$

Accelerate the calculation of α with dynamic programming (as well as β)

Summary

- RNN can memorize past state
- Length of series data determine performance
- Learning is conducted by expanding network through time-direction
- LSTM is solution for longer term memorization
- CTC can estimates likelihood label
 - Forward and backward method is efficient

Demo

- Machine translation
 - Japanese to English
- Encoder decoder model

Encoder-Decoder model

Tips:input sequence of sentence is reversion for better result

Bilingual data

jp.txt

誰が一番に着くか私には分かりません。 十中八九彼は成功するだろう

十中八元1次は成切りるため、

あなたの銀行口座を教えていただけますか。

i can 't tell who will arrive first .
ten to one , he will succeed .
may we know your bank
account ?

We use 10000 sentences for training Word is separated by space

Encoder-Decoder translation model

TRAINING

hplementing Encoder-Decoder model

Read data and make dictionary

jp.txt eng.txt jvocab = {} evocab = {} elines = ilines = open('ip.txt').read().split('\u00e4n') for i in range(len(ilines)): open('eng.txt').read().split('\u00e4n') lt = ilines[i].split() for i in range(len(elines)): for w in It: lt = elines[i].split() for w in It: if w not in jvocab: ivocab[w] = len(ivocab) if w not in evocab: evocab[w] = len(evocab) jvocab['<eos>'] = len(jvocab) jv = len(jvocab) evocab['<eos>'] = len(evocab) ev = len(evocab)

Encoder-Decoder translation model graph

MyMt Class - inithialized-

```
class MyMT(chainer.Chain):

def ___init___(self, jv, ev, k):

super(MyMT, self).___init___(

embedx = L.EmbedID(jv, k),

embedy = L.EmbedID(ev, k),

H = L.LSTM(k, k),

W = L.Linear(k, ev),
```


MyMT Class - Forward -

```
def call (self, iline, eline):
      for i in range(len(jline)):
         wid = jvocab[jline[i]]
         x k = self.embedx(Variable(np.array([wid], dtype=np.int32)))
         h = self.H(x k)
      x_k = self.embedx(Variable(np.array([jvocab['<eos>']], dtype=np.int32)))
      tx = Variable(np.array([evocab[eline[0]]], dtype=np.int32))
       h = self.H(x k)
      accum loss = F.softmax cross entropy(self.W(h), tx)
      for i in range(len(eline)):
         wid = evocab[eline[i]]
         x_k = self.embedy(Variable(np.array([wid], dtype=np.int32)))
         next wid = evocab['<eos>'] if (i == len(eline) - 1) else evocab[eline[i+1]]
         tx = Variable(np.array([next_wid], dtype=np.int32))
         h = self.H(x k)
         loss = F.softmax cross entropy(self.W(h), tx)
         accum loss += loss
       return accum loss
```

eate model and Setup optimizer

demb = 100
model = MyMT(jv, ev, demb)
optimizer = optimizers.Adam()
optimizer.setup(model)

Learning

```
for epoch in range(100):
  for i in range(len(jlines)-1):
    iln = jlines[i].split()
    jlnr = jln[::-1]
    eln = elines[i].split()
    model.H.reset state()
    model.zerograds()
    loss = model(jlnr, eln)
    loss.backward()
    loss.unchain backward() # truncate
    optimizer.update()
    print i, "finished"
  outfile = "mt-" + str(epoch) + ".model"
  serializers.save npz(outfile, model)
```


Encoder-Decoder model

TESTING

Test Data

Test data(100) + Training data(2000)

= 2100 sentences

Result

Accuracy is 0.077

- The number of training data is too small
- The low frequency word is forgotten.

References

References

- 岡谷貴之. (2015) 「深層学習」

Demo

- 「ChainerとRNNと機械翻訳」

http://qiita.com/odashi_t/items/a1be7c4964fbea6a116e

Thank you for your listening!