$_{ m QCM}^{ m Algo}$

- 1. Un arbre dont les noeuds contiennent des valeurs est?
 - (a) valué
 - (b) étiqueté
 - (c) valorisé
 - (d) évalué
- 2. Dans un arbre binaire, un noeud possédant juste 1 fils gauche est appelé?
 - (a) une racine
 - (b) noeud interne
 - (c) noeud externe à gauche
 - (d) point simple à gauche
- 3. Un arbre binaire réduit à un noeud racine est un arbre de taille?
 - (a) -1
 - (b) 0
 - (c) 1
- 4. Un arbre binaire complet est un arbre binaire dont?
 - (a) tous les niveaux sont remplis
 - (b) tous les niveaux sont remplis sauf le dernier rempli de gauche à droite
 - (c) tous les niveaux sont remplis sauf le dernier rempli de droite à gauche
 - (d) tous les niveaux sont remplis sauf le dernier rempli aléatoirement
- 5. Un peigne gauche est un arbre binaire?
 - (a) parfait
 - (b) complet
 - complet
 - (d) filiforme
- 6. Si LCE(B) et LCI(B) définissent respectivement les longueurs de cheminement externe et interne de B (un arbre binaire), alors LC(B) la longueur de cheminement de B est égale à?
 - (a) LCE(B) / LCI(B)
 - (b) LCE(B) + LCI(B)
 - (c) LCE(B) LCI(B)
 - (d) LCE(B) * LCI(B)

- 7. L'arbre défini par B= $\{E,0,1,00,01,10,11,000,001,010,011\}$ est?
 - (a) dégénéré
 - (b) parfait
 - (c) complet
 - (d) quelconque
- 8. Un arbre binaire est par nature?
 - (a) Itératif
 - (b) récursif
 - (c) étiqueté
 - (d) symétrique
- 9. Les noeuds d'un arbre binaire parfait peuvent être?
 - (a) des points simples
 - (b) des points doubles
 - (c) des feuilles
- 10. Un arbre binaire dont la hauteur et la profondeur moyenne externe sont égales peut être un arbre binaire?
 - (a) parfait
 - (b) complet
 - (C) localement complet
 - (d) filiforme

$QCM N^{\circ}15$

lundi 4 février 2013

Question 11

Soit (u_n) une suite réelle. La définition de « (u_n) converge vers 0 » est

a.
$$\exists \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \in \mathbb{N} \ n \geqslant N \Longrightarrow |u_n| < \varepsilon$$

b.
$$\forall \varepsilon > 0 \ \forall n \in \mathbb{N} \ \exists N \in \mathbb{N} \ n \geqslant N \Longrightarrow |u_n| < \varepsilon$$

c.
$$\exists N \in \mathbb{N} \ \exists \varepsilon > 0 \ \forall n \in \mathbb{N} \ n \geqslant N \Longrightarrow |u_n| < \varepsilon$$

e. rien de ce qui précède

Question 12

Soit (u_n) une suite réelle convergeant vers -1. Alors

a.
$$u_n - 1 \xrightarrow[n \to +\infty]{} 0$$

b.
$$|u_n-1| \xrightarrow[n\to+\infty]{} 0$$

$$\bigcirc$$
 $|u_n| \xrightarrow[n \to +\infty]{} 1$

 (u_n) est bornée

e. rien de ce qui précède

Question 13

Soit (u_n) convergeant vers 1. Alors il existe $N \in \mathbb{N}$ tel que pour tout $n \in \mathbb{N}$, $n \geqslant N \Longrightarrow u_n \neq 0$.

(a.) vrai

b. faux

Question 14

Soient $\ell \in \mathbb{R}$ et (u_n) une suite réelle vérifiant :

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n \in \mathbb{N} \quad n \geqslant N \Longrightarrow |u_n - \ell| < \varepsilon$$

Alors

- (a) (u_n) converge vers ℓ .
- (b) $\exists K \in \mathbb{R} \quad \forall n \in \mathbb{N} \quad |u_n| \leqslant K$
- $\bigcirc \exists K \in \mathbb{R} \quad \forall n \in \mathbb{N} \quad n \geqslant N \Longrightarrow |u_n| \leqslant K$
- d. rien de ce qui précède

Question 15

Soit (u_n) une suite réelle. (u_n) bornée signifie

- a. $\exists n \in \mathbb{N} \quad \forall K \in \mathbb{R} \quad |u_n| \leqslant K$
- b. $\forall K \in \mathbb{R} \quad \exists n \in \mathbb{N} \quad |u_n| \leqslant K$
- c. $\forall K \in \mathbb{R} \quad \forall n \in \mathbb{N} \quad |u_n| \leqslant K$
- d. $\exists n \in \mathbb{N} \quad \exists K \in \mathbb{R} \quad |u_n| \leqslant K$
- e. rien de ce qui précède

Question 16

Soit (u_n) une suite géométrique de raison $q \neq 1$. Alors $\sum_{k=0}^{n} u_k$ est égale à

- a. $u_9 \frac{1 q^{n-9}}{1 q}$
- b. $u_9 \frac{1 q^{n-7}}{1 q}$
- c. $u_9 \frac{1 q^n}{1 q}$
- d rien de ce qui précède

Question 17

Soit (u_n) une suite arithmétique. Alors $u_4 + ... + u_n$ est égal à

a.
$$\frac{(n-4)(u_4+u_n)}{2}$$

b.
$$\frac{(n-5)(u_4+u_n)}{2}$$

$$\bigcirc \frac{(n-3)(u_4+u_n)}{2}$$

d.
$$\frac{u_4 + u_n}{2}$$

e. rien de ce qui précède

Question 18

Soit (u_n) la suite réelle définie par $u_0=1$ et $u_{n+1}=u_n+n$. Alors

a.
$$(u_n)$$
 est géométrique

b.
$$(u_n)$$
 est arithmétique

c.
$$(u_n)$$
 est arithmético-géométrique

Question 19

Soit (u_n) la suite définie par la donnée de u_0 et

$$u_n = 2u_{n-1} + 1$$

Alors

$$(u_n) = (u_n + 1)$$
 est géométrique

b.
$$(v_n) = (u_n - 1)$$
 est géométrique

c.
$$(v_n) = (u_n - \frac{1}{2})$$
 est géométrique

d.
$$(v_n) = (u_n + \frac{1}{2})$$
 est géométrique

e. rien de ce qui précède

Question 20

Soit (u_n) une suite géométrique à termes positifs telle que $u_0 = 1$ et $u_2 = 16$.

- a. Alors la raison de (u_n) est 16
- \bigcirc Alors la raison de (u_n) est 4
- c. Alors la raison de (u_n) est 8
- d. Aucune suite géométrique ne vérifie ces conditions

Q.C.M n°9 de Physique

- 21- Le moment d'inertie I_{Δ} pour une tige de longueur L est :
 - (a) $I_{\Delta} = \int_{I} \lambda \, d^2 dl$
 - b) $I_{\Delta} = \iiint_{\tau} \rho . d^2 d\tau$
 - c) $I_{\Delta} = \iint_{S} \rho_{s} . d^{2} dS$
- 22- La force électrostatique \vec{F}_e vérifie :
 - a) Toujours attractive
 - (b) Prépondérante à l'échelle atomique
 - c) Prépondérante à l'échelle astronomique
- 23- La norme de la force électrostatique \vec{F}_e entre 2 charges ponctuelles vérifie :
 - a Dépend du produit des charges des particules
 - b) Dépend des masses des particules chargées
 - c) Proportionnelle à la distance r entre les particules chargées
- 24) La norme de la force électrostatique \vec{F}_e entre 2 charges ponctuelles vérifie :
 - a) Indépendante de la distance r entre les 2 charges
 - b) Proportionnelle à la distance r entre les 2 charges
 - © Inversement proportionnelle au carré de la distance entre les 2 charges.
- 25- Un champ électrostatique \vec{E} est dit convergent lorsqu'il est créé par :
 - a) Un proton
 - b) Une particule neutre
 - © Une charge négative
- 26) Les lignes de champ \vec{E} , créé par une seule charge ponctuelle sont :
 - a) Des ellipses
 - b) Des droites
 - c) Des cercles

- 27- Le champ électrostatique \vec{E} créé au point M par une charge placée au même point M est :
 - a) Nul
 - (b) Non défini
 - c) Divergent
- 28- Le champ électrostatique \vec{E} créé par une charge q placée point O en un point M situé à l'infini est :
 - (a) Nul
 - b) Non défini
 - c) Convergent
- 29- Le champ électrostatique créé en un point M de la médiatrice du dipôle (-Q, +Q) est :
 - a) Nul
 - b) Parallèle à la médiatrice
 - © Perpendiculaire à la médiatrice
- 30- En utilisant la notion de champ électrostatique divergent et convergent, on peut affirmer que le champ \vec{E} créé entre les armatures d'un condensateur plan vérifie :
 - a) \vec{E} est dirigé de la plaque négative vers la plaque positive
 - b) \vec{E} est de direction parallèle aux deux plaques
 - \vec{E} est dirigé de la plaque positive vers la plaque négative

QCM d'Anglais Technique numéros 5:

Questions based on "a Smarter, Stealthier Botnet" and "TED: The Future Race Car" articles

- 31. What is a Botnet?
 - a. An infected computer
 - b. A spam software
 - c. A virus
 - d) A network of infected computers
- 32. What is a TDL-4?
 - A malware
 - b. A botnet
 - c. A virus
 - d. An infected PC
- 33. What is a server-less Botnet?
 - a. A decentralized Software
 - b. A malware infected software
 - c. A malware infected PC
 - An autonomous botnet
- 34. What is to lurk?
 - a. Observer
 - b. Espionner
 - . Roder
 - d. Attacker
- 35. What is to thrive?
 - a. To supervise
 - (b) To make steady progress
 - c. To enter a new age
 - d. To be at the top
- 36. What is the synonym of wipe-out?
 - a. To explode
 - b. To cut off
 - 7 To eradicate
 - d. To clean
- 37. What is to overhear
 - a. The top ear of someone
 - b. The upper hearing
 - (c) To hear someone's conversation
 - d. To hear too much noise
- 38. What is the dashboard?
 - (a) the instrument panel in a car
 - b. a board at the side of a carriage or boat
 - c. The fast part of the car technology
 - d. The clean part of the engine of a car
- 39. What is the buffer
 - a) A device or area used to store data temporarily
 - b. A device used to download secured content
 - c. A device used to defend the car from attacks
 - d. A device used to control the car
- 40. What is to overflow
 - a. To drive too fast
 - To run over the top
 - c. To be unsecured
 - d. To be on top of things

Quelle est la bonne phrase :

- a Les garçons se sont encore battu; ils se sont frappés à coups de poing.
 - b- Les garçons se sont encore battus ; ils se sont frappés à coups de poing.
 - c Les garçons se sont encore battus ; ils se sont frappé à coups de poing.
 - d Les garçons se sont encore battu ; ils se sont frappé à coups de poing.
- a Elle s'est blessée en tombant de l'escalier : elle s'est cassée le bras.
 - b Elle s'est blessé en tombant de l'escalier : elle s'est cassée le bras.
 - c Elle s'est blessé en tombant de l'escalier : elle s'est cassée le bras.
 - (d)- Elle s'est blessée en tombant de l'escalier : elle s'est cassé le bras.
- a Elles se sont rencontrées par hasard et se sont promises de se revoir.
 - b Elles se sont rencontré par hasard et se sont promises de se revoir.
 - @- Elles se sont rencontrées par hasard et se sont promis de se revoir.
 - d Elles se sont rencontré par hasard et se sont promis de se revoir.
- a Elles se sont permis de venir sans avoir été invité.
 - b Elles se sont permises de venir sans avoir été invitées.
 - c Elles se sont permises de venir sans avoir été invité.
 - (d) Elles se sont permis de venir sans avoir été invitées.

Quel est le radical grec qui porte le sens proposé :

- 45- la main
 - a déma, démo
 - b hélio
 - @- chir(o)
 - d céphal(o)
- 46- le crane
 - a déma, démo
 - b hélio
 - c chir(o)
 - (d)- céphal(o)
- 47- le peuple
 - @- déma, démo
 - b hélio
 - c chir(o)
 - d céphal(o)

Quel est le sens du radical grec proposé :

- 48- phage
 - a qui conduit, qui mène
 - 🕠 qui mange
 - c qui aime
 - d qui déteste
- 49- phile
 - a qui conduit, qui mène
 - b qui mange
 - ©- qui aime
 - d qui déteste
- 50- mis(o)
 - a qui conduit, qui mène
 - b qui mange
 - c qui aime
 - **O** qui déteste

QCM - Electronique

Pensez à bien lire les questions ET les réponses proposées

Soit un signal sinusoïdal variant entre 8 et 12V.

Q1. La valeur moyenne de ce signal vaut :

a. 0

b. 8

12

d. 10

Q2. La valeur efficace de ce signal vaut :

a. 0

b. $6.\sqrt{2}$

c. 12

(d. $\sqrt{102}$

Q3. Soit le circuit ci-contre, où $v_e(t) = V_E \sin(\omega t)$:

L'amplitude complexe de la tension v aux bornes de la $v_e(t)$ résistance est donnée par :

a.
$$\underline{V} = \frac{R}{R+C} V_E$$

b.
$$\underline{V} = \frac{R.V_E \sin(\omega t)}{1 + iRC\omega}$$

$$\underline{C} \quad \underline{V} = \frac{jRC\omega V_E}{1 + jRC\omega}$$

d.
$$\underline{V} = \frac{R.V_E}{R+jC\omega}$$

- Q4. Soit un dipôle d'impédance complexe $Z = \sqrt{3} + j3$. La tension entre ses bornes est :
 - a. en retard de 60° par rapport au courant qui le traverse
 - en avance de 60° par rapport au courant qui le traverse
 - c. en retard de 30° par rapport au courant qui le traverse
 - d. en avance de 30° par rapport au courant qui le traverse
- Q5. On mesure la tension aux bornes d'un dipôle quelconque, soit $u(t)=10\,\cos(\omega t)$ et le courant qui le traverse, soit $i(t) = 5.10^{-3}$. $\cos\left(\omega t + \frac{\pi}{2}\right)$ avec $\omega = 1000$ rd/s. Ce dipôle
 - a. Une bobine d'inductance L = 2 H
 - b. Une bobine d'inductance L = 0.5 H
- (c.) Un condensateur de capacité $C = 0.5 \mu F^{\frac{7}{2}}$ d. Un condensateur de capacité $C = 2 \mu F$

 $\mathsf{Q6}$. Une bobine L et un condensateur C sont en parallèle. L'impédance équivalente à ces 2 composants vaut :

a.
$$Z = -\frac{LC\omega^2}{jL\omega + 1/jC\omega}$$

b.
$$Z = -\frac{LC\omega^2}{jL\omega + jC\omega}$$

$$C. Z = \frac{jL\omega}{1-LC\omega^2}$$

d.
$$Z = \frac{1/jC\omega}{1-LC\omega^2}$$

Q7. Ce dipole est équivalent à : (2 réponses)

- a. une bobine quand la fréquence tend vers l'infini
- b) une bobine quand la fréquence tend vers 0
- un condensateur quand la fréquence vers l'infini
 - d. un condensateur quand la fréquence tend vers 0

Q8. Soit l'association ci-contre. Quel est le déphasage du courant par rapport à la tension ?

a.
$$+\frac{\pi}{2}$$

b.
$$-\frac{\pi}{2}$$

(d)
$$\pm \frac{\pi}{2}$$
 selon la fréquence

Q9. Le produit $L\omega$ est homogène à :

- a. Ω
- b. S

c. *s*

Q10. Si la fréquence d'un signal tend vers 0, sa pulsation tend vers :

(a) 0

b. +∞

QCM - Architecture

Soit le nombre suivant : $(1065473829)_{10}$.

Q11. Ce nombre est écrit en base :

- a- 7
- b- 1065473829 (c) 10
- d- 9

Q12. Quel est le rang du chiffre 5?

a- 4

- b- 7
- 6

d- 5

Q13. Quel est le chiffre de poids le plus fort ?

a- 9

b- 0

⁰ 1

 $d-10^9$

a- Base 16

b- Base 10

d- Aucune de ces réponses

Variations autour du 42.... Pour les questions suivantes, choisir l'égalité correcte :

Q15.
$$(42)_{10} =$$

- a- %010101
- (b) %101010
- c- %1000010
- d- %42

(a-) $(52)_8$

- - b- (42)₈
- $c-(25)_8$
- $d-(66)_8$

$$Q17. (42)_5 =$$

- a- $(42)_{10}$ b- $(101010)_{10}$ c- $(110)_{10}$
- $(22)_{10}$

Q18. 42₈ =

a- \$42

b- \$2*A*

6 \$22

d- \$102

Q19. Choisir la réponse correcte : 2^{13} =

a- 1024

b- 2048

c- 4096

d 8192

Q20. Choisir la réponse correcte :

(a) %1101 0100 = 212

b- %11010100 = 211

 $c- \%1101\ 0100 = 4246$

d-%11010100 = 422