1. (9 punti) Considera il linguaggio

$$L = \{1^m 0^n \mid 5m \le 3n\}.$$

Dimostra che L non è regolare.

2. (9 punti) La traslitterazione è un tipo di conversione di un testo da una scrittura a un'altra che prevede la sostituzione di lettere secondo modalità prevedibili. La tabella seguente mostra il sistema di traslitterazione che permette di convertire la scrittura Cherokee nell'alfabeto latino:

D	а	R	е	Т	i	ā	o	O	u	i	v	8	ga	စ	ka	۲	ge	У	gi	Α	go
J	gu	Е	gv	아	ha	Р	he	Э	hi	F	ho	Г	hu	Q-	hv	W	la	δ	le	P	li
G	lo	М	lu	Ą	lv	δ	ma	Ю	me	н	mi	5	mo	Ą	mu	θ	na	ь	hna	G	nah
Λ	ne	h	ni	Z	no	ą	nu	٣	nv	I	qua	۵	que	F	qui	ሌ	quo	മ	quu	8	quv
ಎ	s	H	sa	4	se	Ь	si	+	so	82	su	R	sv	L	da	W	ta	S	de	ъ	te
٨	di	Л	ti	V	do	S	du	69	dv	æ	dla	C	tla	L	tle	C	tli	₩	tlo	T	tlu
P	tlv	C	tsa	7	tse	h	tsi	K	tso	Ь	tsu	C	tsv	G	wa	.09	we	0	wi	ಲ	wo
9	wu	6	wv	ക	ya	ß	ye	ふ	yi	ĥ	yo	G	yu	В	yv						

Dati due alfabeti Σ e Γ , possiamo definire formalmente una traslitterazione come una funzione T: $\Sigma \mapsto \Gamma^*$ che mappa ogni simbolo di Σ in una stringa di simboli in Γ .

Dimostra che se $L \subseteq \Sigma^*$ è un linguaggio context-free e T è una traslitterazione, allora anche il seguente linguaggio è context-free:

$$T(L) = \{ w \in \Gamma^* \mid w = T(a_0)T(a_1)\dots T(a_n) \text{ per qualche } a_0a_1\dots a_n \in L \}.$$

- **3.** (9 punti) Chiamiamo k-PDA un automa a pila dotato di k pile. In particolare, uno 0-PDA è un NFA e un 1-PDA è un PDA convenzionale. Sappiamo già che gli 1-PDA sono più potenti degli 0-PDA (nel senso che riconoscono una classe più ampia di linguaggi). Mostra che i 2-PDA sono equivalenti alle Turing Machine.
- 4. (9 punti) Supponiamo di avere un sistema elettorale composto da n elettori, dove ogni elettore i ha un "peso" W[i], corrispondente al numero di voti che rappresenta. Nel caso di una votazione a maggioranza semplice, una coalizione di elettori ha bisogno di un numero di voti strettamente superiore alla metà della somma dei pesi per vincere. L'elettore n è detto pivot se esiste una situazione in cui il voto dell'elettore "conta", ossia dove l'aggiunta dell'elettore n ai voti "sì" rende il "sì" la maggioranza, ma l'aggiunta ai voti "no" rende il "no" maggioranza. Formalmente, l'elettore n è un pivot se esiste una coalizione di elettori $C \subseteq \{1, \ldots, n-1\}$ tale che

$$\sum_{j \in C} W[j] < \frac{1}{2} \sum_{j=1}^{n} W[j]$$
 (C senza i voti di n è minoranza)

$$\sum_{j \in C} W[j] + W[n] > \frac{1}{2} \sum_{j=1}^{n} W[j]$$
 (C con i voti di n è maggioranza)

e possiamo rappresentare il problema dell'elettore pivot con il linguaggio

$$PIVOT = \{ \langle n, W \rangle \mid \text{l'elettore } n \text{ è un pivot} \}.$$

- (a) Dimostra che PIVOT è un problema NP.
- (b) Sappiamo che il linguaggio SET- $PARTITION = \{\langle S \rangle \mid S \text{ insieme di naturali, ed esistono } S_1, S_2 \subseteq S$ tali che $S_1 \cup S_2 = S, S_1 \cap S_2 = \emptyset, \sum_{x \in S_1} x = \sum_{y \in S_2} y\}$ è NP-completo. Dimostra che PIVOT è NP-hard, usando SET-PARTITION come problema NP-hard di riferimento.

Esempio: Supponiamo di avere 5 elettori, con pesi 4, 3, 3, 2, 1. La somma totale dei pesi è 13, quindi la maggioranza si ottiene con 7 voti. Il quinto elettore, con peso 1, è un pivot in coalizione con gli elettori di peso 4 e 2. La coalizione perde senza l'elettore pivot ma vince con lui.