

System-on-Chip Applications

Introduction to Cellular Communication System

Outline

- **Cellular Communication Systems**
- **Mobile Phone Generations**
- Bandwidth for Mobile Phone Generations
- Multiple Access
 - FDMA
 - TDMA
 - CDMA
 - OFDM
 - OFDMA

Smartphones for daily life

Smartphone functions

- Wireless communication for transmitting between TX and RX
 - Voice
 - Text
 - Image
 - video
- Camera/Video recording
- Audio Playback: AAC-LC, HE-AAC, MP3
- Video Playback: HEVC, H.264, MPEG-4
- Sensors
 - Barometer
 - Three-axis gyro
 - Accelerometer
 - Proximity sensor

Wireless Communication A Signal Processing System

- Modern communication = digital communication
 - Analog RF front end, ADC/DAC, Algorithm, Protocol
 - Transmitter, Channel, Receiver

Multiple Access- Wireless Communication System

Multiple access schemes are used to allow many mobile users to share simultaneously a finite amount of radio spectrum

Mobile phone: a portable cordless phone originally for voice communication in a cellular system

	Definition	Standard	Multiple Access
1G	Analog Voice	AMPS	FDMA
2G	Digital Voice	GSM	TDMA/CDMA
3G	Digital Data	3GPP	WCDMA
4G	Digital/Real-time multimedia	LTE/WiMAX	OFDMA
5G	Enhanced mobile	5GNR(New Radio) with LTE	OFDMA/MIMO/Beamforming

- AMPS-Advanced Mobile Phone System
- GSM-Global System for Mobile Communications
- 3GPP-3rd Generation Partnership Project
- LTE-long term evolution.
- CDMA-1.25Mhz bandwidth, WCDMA(wideband)-5MHz bandwidth

5G Applications

A unifying connectivity fabric

Always-available, secure cloud access

Enhanced mobile

Mission-critical

Massive Internet

1 ms Latency

10 Gbps Peak data rate

100 Mbps Anywhere, anytime

1000 Gbps Per square km capacity

10000x Capacity vs. 2010 Capacity vs. 2010

100000x Connected devices Per square km

1000000 IoT Device density Per square km

Cellular Revolution and Evolution

- 1st generation: analog technology (for voice)
 - Analog signal, AMPS system -Frequency Division Multiple Access (FDMA)
- 2nd generation: digital architecture (voice & data)
 - Time Division Multiple Access (TDMA)
 - Spread spectrum signal
 - Frequency hopping GSM architecture
 - In Europe
 - Spread-spectrum CDMA technology
 - In US, parts of Asia
- 3nd generation: digital architecture (Multimedia)
 - WCDMA
- 4th generation: digital architecture (faster Multimedia)
 - OFDMA

Cellular Revolution and Evolution

- 5th generation: digital architecture (Enhanced Mobile Broadband)
 - OFDMA
 - MIMO
 - Beamforming
 - Advanced Antenna Systems (AAS)

Signal Frequency Range

Table 6.1. Frequency Ranges of Selected Signals

Electrocardiogram 0.05 to 100 Hz

Audible sounds 20 Hz to 15 kHz

AM radio broadcasting 540 to 1600 kHz

HD component video signals

Dc to 25 MHz

FM radio broadcasting 88 to 108 MHz

Cellular phone 824 to 894 MHz and 1850 to 1990 MHz

Satellite television downlinks (C-band) 3.7 to 4.2 GHz

Digital satellite television 12.2 to 12.7 GHz

Copyright ©2014 Pearson Education, publishing as Prentice Hall

Bandwidth(BW)

Def: diff between max and min frequency of a signal.

•BW of a voice signal: 3KHz a voice signal – min freq 0.3KHz (Hz) max freq 3.3KHz

2G/3G Spectrum(freq band)

- •USA (MHz)
 - 2G (GSM) --824-849(BW2-5MHz), 869-894(35MHz)
 - 3G --1710-1755
- Europe (MHz)
 - 3G-1900-1980(80MHz), 2110-2170 (60MHz)
- Paired BW: "2x15MHz"
 - Lower band– 15 MHz
 - Upper band 15 MHz

Uplink

FDD - Frequency Division Duplex

4G Spectrum Paired Bandwidth(BW)

- •4G—2496MHz-2690MHz (USA) (194MHz)
- Paired BW: "2x15MHz"
 - Lower band

 15 MHz
 - Upper band 15 MHz
- •TDD LTE Time Division Duplex
- •FDD LTE Frequency Division Duplex

5G Spectrum

•USA

- 5G----
- Low Band <1GHz</p>
- Mid Band ~6GHz
- High Band
 - > frequency above 24GHz is called mmWAVE

5G Low and Mid Band

5GNR

- 5GHz DFS (Dynamic frequency selection), Wi-Fi detects Military radar signal needs to select other frequency
- 6GHz LPI (low probability intercept)
 - by frequency hopping
 - DSSS (Direct Sequence Spread Spectrum)
- AFC (Automated Frequency Coordination (AFC) enables unlicensed access to the 6 GHz band by coordinating shared spectrum between Standard Power Access Points and current Point-to-Point microwave licensees

6 GHz brings new unlicensed bandwidth for Wi-Fi and 5G

Standardized for 5G NR-U in the United States

A massive amount of new unlicensed spectrum is now available in the U.S. for Wi-Fi 6E and 5G

Multiple Access

- Multiple users want to communicate in a common geographic area
- Cellular example: Many people want to talk on their cell phones.
- Problem:

How should we share our resources so that as many users as possible can communicate simultaneously?

FDMA (Frequency Division Multiple Access) Review

- Spectrum is subdivided into narrow band channels
- Each narrow band is allocated to a single user

TDMA(Time Division Multiple Access)

Each user is allocated to a small time slot

■ TDMA/FDMA hybrid

TDMA / FDMA hybrid, showing that the bandwidth is split into frequency channels and time slots

Code-Division Multiple Access (CDMA)

- Spread Spectrum and special coding
- Use the whole frequency band and whole time slot

Direct Sequence Spread Spectrum(DSSS)

- DSSS: the signal is coded over very high bandwidth to transmit the information below the noise level
- Bit sequence modulated by chip sequence

- Spreads bandwidth by large factor (K)
- **Despread by multiplying by s_c(t) again (s_c(t)=1)**
- Reduce ISI and narrowband in

Spread Spectrum

- Transmission bandwidth is much larger than information bandwidth
- Bandwidth does not depend on the informational signal
- Processing gain = transmitted bandwidth / information bandwidth
- Classification
 - Direct sequence: data is scrambled by user specific pseudo noise code at the transmitter side
 - Frequency hopping: signal is spread by changing the frequency over the transmitted time of the signal

Spreading

At receiver: data is descrambled by the same key (specific pseudo noise code) at the transmitter side

$$s(t) = d(t)c(t)$$

Example

To transmit a 0 the station use a unique "chip sequence":

10110

To transmit a 1 the station use the one's complement of its chip sequence:

01001

Therefore if data is 1010 it will transmit:

Spread in Frequency Domain

Despreading in Spectrum Domain

Processing Gain (Spreading Factor)

CDMA Example

- User A code = <1, -1, -1, 1, -1, 1>
 - To send a 1 bit = <1, -1, -1, 1, -1, 1>
 - To send a 0 bit = <-1, 1, 1, -1, 1, -1>
- User B code = <1, 1, -1, -1, 1, 1>
 - To send a 1 bit = <1, 1, -1, -1, 1, 1>
- Receiver receiving with A's code
 - (A's code) x (received chip pattern)
 - User A '1' bit: 6 -> 1
 - User A '0' bit: -6 -> 0
 - User B '1' bit: 0 -> unwanted signal ignored

Advantages of CDMA

- Low power spectral density
- Interference limited operation
- Privacy due to unknown random codes
- Reduction of multi-path effects
- Random access possibilities

Frequency Hopping

Frequency hopping: signal is spread by changing the frequency over the transmitted time of the signal under psudo random code

Multicarrier System (1)

Single carrier system

 Single representing each bit uses all of the available spectrum

Multicarrier system

- Available spectrum divided into many narrow bands
- Data is divided into parallel data streams each transmitted on a separate band

Multicarrier System (2)

Multicarrier system

Multicarrier System (3)

Data are transmited over only one carrier

Drawbacks

- Selective Fading
- Very short pulses
- ISI is compartively long
- EQs are then very long
- Poor spectral efficiency because of band guards

Pulse length ~ N/B

 Data are shared among several carriers and simultaneously transmitted

Advantages

- Flat Fading per carrier
- N long pulses
- ISI is comparatively short
- N short EQs needed
- Poor spectral efficiency because of band guards

Furthermore

Similar to

FDM technique

- It is easy to exploitFrequency diversity
- It allows to deploy2D coding techniques
- Dynamic signalling

So, the idea of Multicarrier Approach

- The basic concept here...
 - to transmit the serial data stream on different carriers after breaking it into a group of low rate parallel streams.
- Thus, increasing the time period of the symbols.
- This is FDM

The Implementation of FDM

FDM Spectra

- Bandwidth efficiency ?
- Guard Band essential!

To improve the spectral efficiency:

Eliminate band guards between carriers

To use orthogonal carriers (allowing overlapping)

OFDM Spectra

- No guard band between the different narrowbands is needed
- A very flexible scheme (frequency and time dimension)
 - Can be easily adapted to the multipath fading channel

Orthogonality, The Best Way

- Sub carriers overlap
- But the peaks of sub carriers at the nulls of the adjacent ones.
- Received signal sampled at these peaks-so no inter carrier interference

■ This is OFDM

OFDM Spectra

Orthogonal?

■ Note that the symbol is just sampling at *f=k/T*

$$X\left(\frac{k}{T}, nT\right) = s_k(n), \quad k = 0, 1, \dots, N-1$$

Orthogonal Frequency Division Modulation (OFDM)

in time, all added up.

Multi-carrier Modulation Systems

Fraction Spaced Multicarrier Modulation

OFDM with rectangular pulses

OFDM Features

Features

- No intercarrier guard bands
- Controlled overlapping of bands
- Maximum spectral efficiency (Nyquist rate)
- Easy implementation using IFFTs
- Very sensitive to freq. synchronization

Intercarrier Separation = 1/(symbol duration)

OFDM(Orthogonal Frequency Division Multiplexing)

802.11a Spectrum and Allocation(wireless local area network)

802.11a OFDM Physical Parameters

OFDM System

- Multicarrier, or multitone modulation
- On the wired side, it is used for variant digital subscriber line (DSL) systems.
- On the wireless side, it is the basis for several television and radio broadcast applications, as well as digital local area network

OFDM Modulation

- Different data per tone
- Multipath just scales tones
- Tones remain orthogonal even with multipath

OFDM Implementation

An OFDM Modem

QAM(Quadrature amplitude modulation)

Data mapping (Digital QAM)

Data mapping (Digital QAM)

- The number of points corresponding to the number of bits per symbol.
- QAM constellations consist of points arranged in a square such as 16QAM, 64QAM, 256 QAM
- Higher-order constellation, it is possible to transmit more bits per symbol
- Higher-order constellation, points are closer, less reliable to noise

FFT, Key Function in OFDM

Interleaving

Interleaving is used on OFDM is to spread the errors out in the bit-stream that is presented to the error correction decoder

	b1	b4	b7	b10	Read out
Fill:	b2	b5	b8	b11	b1 b4 b7 b10 b2 b5 b8 b11 b3 b6 b9 b12
lin	b3	b6	b9	b12	

Frequency Response of the **Subcarriers in 5-tone OFDM signal**

Adversarial frequency selective channel

Single carrier system

channel response is wide

OFDM system

Channel response is narrow. OFDM equalizers are usually easier design.

Equalizer

Zero forcing (ZF equalizer): ZF function = inverse of channel response

Propagation Characteristics

- Path Loss (includes average shadowing)
- Shadowing (due to obstructions)
- Multipath Fading

Wireless Channel: Multipath Effects

Inter-Symbol Interference (ISI)

MULTIPATH

MULTIPATH

Solutions

- Lower data rate
- Equalization
 - Complexity, performance (TDMA or CDMA)
- Code as multiple low-rate streams
 - Each stream at different frequency OFDM

Guard Interval

- Inter Symbol Interference (ISI)
- Inter Carrier Interference (ICI)
- Inter Cyclic Prefix (Guard interval) (GI)-is to introduce immunity to propagation delays, echoes and reflections.

Guard Interval and Cyclic Prefix

- GI solve ISI problem
 - Subcarrier lost orthogonal property and cause Inter Carrier Interference, ICI)
 - To solve this issue, waveform inside GI must be continuous with the signal waveform
 - Copy the same OFDM signal waveform inside GI
 - Copy end of the signal to the front of the transmitted signal, the copy signal is called Cyclic Prefix, CP.
 - Cyclic Extension OFDM signal -Periodic discrete signal

Guard Interval and Cyclic Prefix

Advantage of OFDM

- Compared with traditional FDM, it has more bandwidth benefits.
- It can resist the influence of delay spread and multi-path effect, and does not require a complicated time domain equalizer, which can reduce complexity.
- It can reduce the impact on frequency selective channels and can be solved with a simple equalizer.

Disadvantage of OFDM

- The transmitter and receiver need to be synchronized accurately, otherwise it will cause ISI and ICI.
- Excessively high PAPR (Peak-to-Average Power Ratio)
 - It may be that the linear region of the power amplifier is exceeded, causing non-linear distortion. A power amplifier with a higher backoff factor is required, which increases the cost.
 - Because the signal range is too large when doing analogy and digital quantization,, causing quantization errors and increasing the complexity and cost of ADC/DAC.

OFDM application in cell phone

What's OFDMA

- Use the OFDM not only as a modulation scheme but also as part of the multiple access technique.
- By applying a spreading code in frequency domain, multiple access in OFDMA is realized by providing each user with a fraction of the available number of sub-carriers.
- OFDMA avoids the relatively large guard bands that are necessary in FDMA to separate different users.

OFDMA Example

The time-frequency plot of seven OFDMA users, which all have a fixed set of sub-carriers every four time slots.

frequency ——

Α		D		Α		D		Α		D	
Α		D		Α		D		Α		D	
Α	С	E		Α	С	E		Α	С	E	
Α	С	E		Α	С	E		Α	С	E	
В		E	G	В		E	G	В		E	G
В		E	G	В		E	G	В		E	G
В		F	G	В		F	G	В		F	G
В		F	G	В		F	G	В		F	G

time _____

OFDM v.s. OFDMA

Multiple Input Multiple Output (MIMO)

MIMO systems have multiple (r) transmit and receiver antennas

- With perfect channel estimates at TX and RX, decomposes into *r* independent channels
 - r-fold capacity increase over SISO system
 - Demodulation complexity reduction
 - Can also use antennas for diversity (beamforming)
 - Leads to capacity versus diversity tradeoff in MIMO

OFDM and MIMO Systems

- Increase channel capacity
 - Between the MIMO access point and the MIMO client, multiple spatial streams can be sent and received at the same time.
 - The channel capacity can increase linearly with the number of antennas.
 - Increase the channel capacity without increasing the bandwidth and antenna transmission power, the spectrum utilization rate can be increased.
- Improve channel reliability
 - Using the spatial multiplexing gain and spatial diversity gain
 - Multiple antennas can be used to suppress channel fading and reduce bit error rate.

- Sensor arrays cause signals at particular angles with constructive interference while others not
- space division multiple access

A Unified Wireless Platform

Single Chip Approach

iPhone 12 System

SKY58242 FEM

Intel Baseband Processor-Modem

Intel PMB9960 (XMM7660)

- 3GPP Release 14, LTE Modem •
- Downlink (Cat 19) supports 1.6 Gbps data rate ,
- Uplink supports 150 Mbps data rate

Technical Specifications				
Baseband	Intel® X-GOLD™ 766 baseband			
Transceiver	Intel® SMARTi™ 8 RF transceiver			
Standards & Performance	3GPP Release 14 LTE FDD/TDD 1.6Gbps/150Mbps LAA Support TD-SCDMA 2.8/2.2 Mbps DC-HSPA+ Cat 24, 42Mbps GNSS – 4 Mode			
Transceiver Capabilities	LTE-FDD LTE-TDD UMTS/WCDMA TD-SCDMA CDMA/EVDO GSM/EDGE			
Carrier Aggregation	LTE FDD/TDD/Hybrid DL 7CA UL 2CA 4x4 MIMO			
Modulation	LTE UL-64QAM; DL-256QAM			
RF Bands	More than 45 LTE bands simultaneous; including 3.5GHz/5GHz			
SIM Support LTE/LTE Dual SIM Dual Standby (DSDS)				

ala ra	Diagram	$\begin{array}{c c} S_n \\ \hline \end{array}$	$ \begin{array}{c} $
	_	Stage 3 Stage 2 Sta	age 1 AWGN
<binary dat</binary 	rsink De-	SD/ML Detector Linear/IC Detector Detector	S P A/D
	Ĺ	BYPASS	
品牌	Intel	Quallcomm	Quallcomm
處理器	XMM 7560 LTE	Snapdragon X20 LTE	Snapdragon X16 LTE

品牌	Intel	Quallcomm	Quallcomm	
處理器	XMM 7560 LTE	Snapdragon X20 LTE	Snapdragon X16 LTE	
晶圓製程	14nm Intel	10nmLPE	10nm LPE /14nm LPP	
處理器	APPLE A12	Qualcomm S845	Qualcomm S835	
LTE類別	LTE CAT.16 (下行)	LTE CAT.18 (下行)	LTE CAT.16 (下行)	
	LTE CAT.13 (上行)	LTE CAT.13 (上行)	LTE CAT.13 (上行)	
下行功能 -	5*20 MHz CA	5x20 MHz CA	4x20 MHz CA	
	最高256-QAM	最高256-QAM	最高256-QAM	
	4X4 MIMO	4x4 MIMO(3CA)	4x4 MIMO(2CA)+2*2(1CA)	
	最多10個Downlink Streams	最多12個Downlink Streams	最多10個Downlink Streams	
上行功能 -	3x20Mhz	2x20 MHz CA	2x20 MHz CA	
		高達2x 75Mbps LTE流	高達2x 75Mbps LTE流	
	最高64-QAM	最高64-QAM	最高64-QAM	
		上行鏈路數據壓縮	上行鏈路數據壓縮	
峰值下載速度	1 Gpbp	1.2 Gbps	1 Gbps	
峰值上傳速度	225 Mbps	150 Mbps	150 Mbps	
		•	Jan On	

Qualcomm Snapdragon 855

- ■64-bit ARM LTE system
- ■TSMC 7nm process
- ■Kryo 485 CPU architecture
- ■The operating clock is 2.84GHz + 2.42GHz + 1.80GHz
- ■Adreno 640 GPU
- ■Hexagon 690 DSP
- ■Spectra 380 ISP
- ■Snapdragon X24 LTE · Snapdragon X50 5G

- **Modem Name:** Qualcomm[®] SnapdragonTM X60 5G Modem-RF System
- Peak Download Speed: 7.5 Gbps
- Peak Upload Speed: 3 Gbps
- Cellular Modem-RF Specs: 8 carriers (mmWave), 800 MHz bandwidth (mmWave), 200 MHz bandwidth (sub-6 GHz)
- **Cellular Technology:** mmWave-sub6 aggregation, sub-6 carrier aggregation (FDD-TDD, FDD-FDD, TDD-TDD), TDD, 5G FDD, 5G NR,
 - Dynamic Spectrum Sharing (DSS), LAA (Licensed-Assisted Access), SA (standalone), 5G TDD, mmWave, NSA (nonstandalone),
 - FDD, LTE Broadcast, sub-6 GHz, SA, NSA, LTE, WCDMA (DB-DC-HSDPA, DC-HSUPA), LTE FDD, LTE TDD including CBRS support,
 - 5G NR:[27876], TD-SCDMA, CDMA 1x, EV-DO, GSM/EDGE
- Multi SIM: 5G Dual SIM support
- 5nm technology

Qualcomm Snapdragon 8 Gen 2

- ■5G+5G/4G Dual SIM
- ■TSMC 4nm process
- ■Kryo CPU architecture
- ■The operating clock is 3.2GHz
- ■Adreno 640 GPU
- ■Hexagon 690 DSP
- ■WiFi 7
- ■8K HDR at 60fps
- **■ISP**
- ■Qualcomm AI engine

Reference

- file:///C:/Users/user/Downloads/200504-124.pdf
- http://www.galionsys.com/OFDM_ch.htm
- https://read01.com/8zkGGQ.html
- http://technews.tw/2015/10/12/3g%E3%80%814g%E3%80%815g-meaning-part-two/
- http://www.2cm.com.tw/technologyshow_content.asp?sn=1403210010
- http://www.rajar.co.uk/
- https://read01.com/43mo4Q.html
- http://cacafly.com/?p=10230
- http://www.taiwanradio.org.tw/modules/tinyd2/index.php?id=3
- http://b048.hcu.edu.tw/ezcatfiles/b048/img/img/425/CIC0106.pdf

