Causal Inference

Sanghack Lee

Graduate School of Data Science, Seoul National University

LG AI Research, AI Academy

Prerequisite

- Probability, Chain-Rule, Conditional Independence
- Graphs, Graphical Model, and d-separation

Credit

Many slides are inspired from lecture notes by Prof. Elias Bareinboim at Columbia University

Overview

Part 1: Causality

Part 2: Causal Effect Identification Back-door Criterion Do-Calculus

Part 3: Modern Identification

Generalized Identification
Transportability
Recovering from Selection Bias
Recovering from Missing Data

What is Causality?

Definition

"Causality ... is influence by which **one** event, process, state, or object (a cause) **contributes to the production of another** event, process, state, or object (an effect) where the cause is **partly** responsible for the effect, and the effect is **partly** dependent on the cause." (emphasis mine)*

스 필요조건 청보조건일 필요는 없다

- ► (News) Papers: 'increases', 'decreases' vs. linked to, associated with
- ▶ Daily Life: because, hence, thus, due to, ...

^{*} Wikipedia https://en.wikipedia.org/wiki/Causality

What is Causality?

Definition

"Causality ... is influence by which **one** event, process, state, or object (a cause) **contributes to the production of another** event, process, state, or object (an effect) where the cause is **partly** responsible for the effect, and the effect is **partly** dependent on the cause." (emphasis mine)*

- ► (News) Papers: 'increases', 'decreases' vs. linked to, associated with
- ▶ Daily Life: because, hence, thus, due to, ... 상관성

Why Do We Study Causality?

- ▶ Definition of **Science** △
 - "Knowledge or a system of knowledge covering general truths or the operation of general laws especially as obtained and tested through scientific method."*

```
원인과 결과의 배커니즘을 기술하는 것
```

- Causality in various academic disciplines
 - Physics, Chemistry ®, Biology, Climate Science S,
 - ▶ Psychology ①, Social Science, Economics ②,
 - ► Epidemiology, Public Health (COVID-19, mask policy, social distancing, # of vaccination, side effects)

Why Do We Study Causality?

- ▶ Definition of **Science** △
 - "Knowledge or a system of knowledge covering general truths or the operation of general laws especially as obtained and tested through scientific method."*

- Causality in various academic disciplines
 - ▶ Physics, Chemistry ��, Biology, Climate Science ��,
 - ▶ Psychology ①, Social Science, Economics ☑,
 - ► Epidemiology, Public Health (COVID-19, mask policy, social distancing, # of vaccination, side effects)

How is Causality related to & {AI, ML, & DS}?

- Artificial Intelligence
 - a rational agent performing actions to achieve a goal e.g., reinforcement learning $\pi_{\theta}(\text{action} \mid \text{state})$
- Machine Learning Currently focused on learning correlations, e.g., $\hat{P}_{\theta}(y|\mathbf{x}) \approx P(y|\mathbf{x})$
- Data Science To Capture, Process, Analyze (e.g., Stat, ML), Communicate with Data

How is Causality related to & {AI, ML, & DS}?

Artificial Intelligence

a rational agent performing actions to achieve a goal e.g., reinforcement learning $\pi_{\theta}(\text{action} \mid \text{state})$

🥸 Machine Learning

Currently focused on learning correlations, e.g., $\hat{P}_{\theta}(y|\mathbf{x}) \approx P(y|\mathbf{x})$

Ⅲ Data Science **㎡**

Capture, Process, Analyze (e.g., Stat, ML), Communicate with Data

How is Causality related to & {AI, ML, & DS}?

Artificial Intelligence

a rational agent performing actions to achieve a goal e.g., reinforcement learning $\pi_{\theta}(\text{action} \mid \text{state})$

🥸 Machine Learning

Currently focused on learning correlations, e.g., $\hat{P}_{\theta}(y|\mathbf{x}) \approx P(y|\mathbf{x})$

■ Data Science **★**

Capture, Process, Analyze (e.g., Stat, ML), Communicate with Data

Pearl's Causal Hierarchy

- ► Level 1: ◆ Associational or Observational
- ► Level 2: Interventional or Experimental
- ► Level 3: ② Counterfactual

Pearl's Causal Hierarchy

- ► Level 1: Associational or Observational
- ► Level 2: ♦ Interventional or Experimental
- ► Level 3: ② Counterfactual

Pearl's Causal Hierarchy

- Level 1: Associational or Observational
- ► Level 2: ♂ Interventional or Experimental
- ► Level 3: ② Counterfactual ৬৸ৡ (৬세월) ឯ֎)

Correlation (Level 1) vs. Causation (Level 2)

Chocolate Consumption vs. Nobel Laureates

상관관계 (1단계)

Consider the following scenario:

- 1. A Patient with Kidney Stone ദൂറ visits a Hospital 🖺.
- 2. A Doctor examines the Patient and provides a Treatment $\theta \otimes$.
- 3. The Patient's Health Outcome ← is later reported 🗗

Healthcare Database ⊜!

		Treatment		
		Α	В	
Stone	Small	Group 1 93% (81/ 87)	Group 2 87% (234/270)	
	Large	Group 3 73% (192/263)	Group 4 69% (55/ 80)	

Each cell represents $P(success \mid treatment, stone)$

		Treatment		
		Α	В	
Stone	Small	Group 1 93% (81/ 87)	Group 2 87% (234/270)	
	Large	Group 3 73% (192/263)	Group 4 69% (55/ 80)	
	Aggregated	78% (273/350)	83% (289/350)	

 ${\sf Each\ cell\ represents}\ P({\sf success}\ |\ {\sf treatment}, {\sf stone})$

		Treatment		
		Α	В	
Stone	Small	Group 1 93% (81/ 87)	Group 2 87% (234/270)	
	Large	Group 3 73% (192/263)	Group 4 69% (55/ 80)	
	Aggregated	78% (273/350)	83% (289/350)	

 ${\sf Each\ cell\ represents}\ P({\sf success}\mid {\sf treatment}, {\sf stone})$

Aggregated: P(succ|treatment)

Aggregated: P(succ|treatment)

Aggregated: P(succ|treatment)

		Treatment		
		Α	В	
Stone	Small	Group 1	Group 2	
	· · · · · · · · · · · · · · · · · · ·	$93\% \ (\ 81/\ 87)$	87% (234/270)	\
	Large	Group 3	87% (234/270) Group 4) রুখ
	20180	73% (192/263)		•
	Aggregated	78% (273/350)	83% (289/350)	

What if we administer each treatment randomly?

		Treatment		
		Α	В	
Stone	Small	Group 1 93% (81/ 87)	Group 2 87% (234/270)	
St	Large	Group 3 73% (192/263)	Group 4 69% (55/ 80)	
	Efficacy	83.2%	78.2%	

무작위!

What if we administer each treatment randomly? The causal effect of A

$$P(\operatorname{succ} | A) \neq P(\operatorname{succ} | do(A)) = \sum_{\operatorname{stone}} P(\operatorname{succ} | A, \operatorname{stone}) P(\operatorname{stone})$$

Lesson's Learned from Simpson's Paradox

፠관 vs QIZト

- ► Causal analyses need to be guided by subject-matter knowledge 🖺.
- ▶ Identical data arising from different causal structures need to be analysed differently.
- No purely statistical rules exist to guide causal analyses.

Data & Questions

Data scientists should take care of the types of data and question:

		Question	
		Non-Causal	Causal
ata	Non-Causal	Observational Study, Machine Learning*	Causal Inference
Da	Causal	Causal Inference	Experimental Study, Reinforcement Learning

^{*}ML, in general, does not care about the type of data but the question should match the data type.

Formalizing Causality

Observation & Intervention (Experiments)

unknown

Black Box System

Formalizing Causality

Observation & Intervention (Experiments)

Formalizing Causality

Observation & Intervention (Experiments)

Causal Framework: Structural Causal Model

Structural Causal Model (SCM, Pearl [2000]) is a formal framework to study causality.

Causal Framework: Structural Causal Model

Structural Causal Model (SCM, Pearl [2000]) is a formal framework to study causality.

Causal Framework: Structural Causal Models

Definition (Structural Causal Model)

A structural causal model (SCM) \mathcal{M} is a 4-tuple $\langle \mathbf{V}, \mathbf{U}, \mathbf{F}, P(\mathbf{U}) \rangle$, where

- ► U is a set of exogenous variables; ♣4×
- $ightharpoonup P(\mathbf{U})$ is a distribution over \mathbf{U} ; ይጓይላ
- $\mathbf{V} = \{V_1, \dots, V_n\}$ are **endogenous** variables; **শু**ৰুত / ধুৰ্
- ▶ $\mathbf{F} = \{f_1, \dots f_n\}$ are functions determining \mathbf{V} ,

$$v_i \leftarrow f_i(\mathbf{pa}_i, \mathbf{u}_i)$$

where $\mathbf{Pa}_i \subseteq \mathbf{V} \setminus \{V_i\}$, $\mathbf{U}_i \subseteq \mathbf{U}$.

Causal Diagram ${\mathscr G}$ is a View for Causal Model ${\mathscr M}$

$$\langle \underbrace{\mathbf{V}}_{\text{observed unobserved mechanisms for } \mathbf{V}}, \underbrace{\mathbf{F}}_{\text{observed unobserved mechanisms for } \mathbf{V}}, P(\mathbf{U}) \rangle$$

- $\blacktriangleright \ \ V = \{Smoking, Cancer\}$
- $\mathbf{U} = \{U_S, U_C, U_{Gene}\}$
- ► **F**: $\begin{cases} \mathsf{Smoking} & \leftarrow f_{\mathsf{Smoking}}(U_S, U_{Gene}) \\ \mathsf{Cancer} & \leftarrow f_{\mathsf{Cancer}}(\mathsf{Smoking}, U_C, U_{Gene}) \end{cases}$

Causal Diagram ${\mathscr G}$ is a View for Causal Model ${\mathscr M}$

$$\langle \underbrace{\mathbf{V}}_{\text{observed unobserved mechanisms for } \mathbf{V}}, \underbrace{\mathbf{F}}_{\text{observed unobserved mechanisms for } \mathbf{V}}, P(\mathbf{U}) \rangle$$

- ► **V** = {Smoking, Cancer}
- $ightharpoonup \mathbf{U} = \{U_S, U_C, U_{Gene}\}$
- ► **F**: $\begin{cases} \mathsf{Smoking} & \leftarrow f_{\mathsf{Smoking}}(U_S, U_{Gene}) \\ \mathsf{Cancer} & \leftarrow f_{\mathsf{Cancer}}(\mathsf{Smoking}, U_C, U_{Gene}) \end{cases}$

Intervention — $do(\cdot)$ operator

▶ Given a model \mathcal{M} the action of fixing any observable variable $X \in \mathbf{V}$ to a constant value x is denoted using the $do(\cdot)$ operator as do(X = x).

Intervention $-(do(\cdot))$ operator

- ▶ Given a model M the action of fixing any observable variable $X \in \mathbf{V}$ to a constant value x is denoted using the $do(\cdot)$ operator as do(X = x).
- ▶ This operation gives birth to a <u>submodel</u> \mathcal{M}_x that looks exactly like \mathcal{M} but with functions where f_x has been replaced with a constant x.

Intervention — $do(\cdot)$ operator

- ▶ Given a model \mathcal{M} the action of fixing any observable variable $X \in \mathbf{V}$ to a constant value x is denoted using the $do(\cdot)$ operator as do(X = x).
- ▶ This operation gives birth to a **submodel** \mathcal{M}_x that looks exactly like \mathcal{M} but with functions where f_x has been replaced with a constant x.
- ▶ These two graphs represent the world *before* and *after* an intervention do(X = x).

Causal Graph ${\mathscr G}$

Causal Graph under Intervention $\mathscr{G}_{\overline{X}}$

Intervention — Causal Effects

Definition (Causal Effect)

Given two disjoint sets of variables, X and Y, the causal effect of X on Y, denoted as P(y|do(x)) or $P_X(y)$, is a function from X to the space of probability distributions of Y.

Intervention — Causal Effects

Definition (Causal Effect)

Given two disjoint sets of variables, X and Y, the causal effect of X on Y, denoted as P(y|do(x)) or $P_x(y)$, is a function from X to the space of probability distributions of Y.

Researchers may be interested in

- ▶ Expectation: $\mathbb{E}[Y|do(x)]$
- ▶ Difference: $\mathbb{E}[Y|do(X=1)] \mathbb{E}[Y|do(X=0)]$ (Average Treatment Effect, ATE)
- lacksquare Conditional: $\mathbb{E}[Y|do(X=1),\mathbf{Z}] \mathbb{E}[Y|do(X=0),\mathbf{Z}]$ (Conditional ATE)

Reading Conditional Independence from Causal Diagram

'Separation' in graph \mathscr{G} implies 'Conditional Independence' in distribution P:

$$(X \perp \mathcal{G} Y \mid Z) \Longrightarrow (X \perp PY \mid Z).$$

Reading Conditional Independence from Causal Diagram

'Separation' in graph $\mathscr G$ implies 'Conditional Independence' in distribution P:

Reading Conditional Independence from Causal Diagram

Definition (d-separation)

Two vertices X,Y are said to be d-separated by a set \mathbf{Z} in a directed acyclic graph \mathscr{G} , denoted by $(X \perp \!\!\! \perp_{\mathscr{G}} Y \mid \mathbf{Z})$, if every path \mathbf{p} from X to Y are blocked where blockage occurs when one of the following holds:

1. **p** contains at least one arrow-emitting node that is in **Z**, or

2. p contains at least one collider that is outside Z and has no descendant in Z.

- ▶ Structural Causal Model $\mathcal{M} = \langle \mathbf{U}, \mathbf{V}, \mathbf{F}, P(\mathbf{U}) \rangle$ provides a formal framework.
- ▶ SCM induces observational, interventional, and counterfactual distributions
- SCM induces a causal graph \(\mathscr{G} \), which implies conditional independencies testable via d-separation (blockage).
- ► The underlying model *M* is unknown but the causal graph *G* can be given from *common sense* or *domain expertise*.
- ▶ Intervention $do(\mathbf{X} = \mathbf{x})$ as a submodel $\mathcal{M}_{\mathbf{X}}$, which induces a manipulated causal graph $\mathcal{G}_{\overline{\mathbf{X}}}$.
- ► Causal effect of X = x on Y = y is defined as P(y|do(x)).

- ▶ Structural Causal Model $\mathcal{M} = \langle \mathbf{U}, \mathbf{V}, \mathbf{F}, P(\mathbf{U}) \rangle$ provides a formal framework.
- ▶ SCM induces observational, interventional, and counterfactual distributions.
- SCM induces a causal graph G, which implies conditional independencies testable via d-separation (blockage).
- ► The underlying model *M* is unknown but the causal graph *G* can be given from *common sense* or *domain expertise*.
- ▶ Intervention $do(\mathbf{X} = \mathbf{x})$ as a submodel $\mathcal{M}_{\mathbf{X}}$, which induces a manipulated causal graph $\mathcal{G}_{\overline{\mathbf{X}}}$.
- ► Causal effect of X = x on Y = y is defined as P(y|do(x)).

- ▶ Structural Causal Model $\mathcal{M} = \langle \mathbf{U}, \mathbf{V}, \mathbf{F}, P(\mathbf{U}) \rangle$ provides a formal framework.
- ▶ SCM induces observational, interventional, and counterfactual distributions.
- ► SCM *induces* a **causal graph** \mathscr{G} , which implies **conditional independencies** testable via **d-separation** (blockage).
- ► The underlying model *M* is unknown but the causal graph *G* can be given from *common sense* or *domain expertise*.
- ▶ Intervention $do(\mathbf{X} = \mathbf{x})$ as a submodel $\mathcal{M}_{\mathbf{X}}$, which induces a manipulated causal graph $\mathcal{G}_{\overline{\mathbf{X}}}$.
- ► Causal effect of X = x on Y = y is defined as P(y|do(x)).

- ▶ Structural Causal Model $\mathcal{M} = \langle \mathbf{U}, \mathbf{V}, \mathbf{F}, P(\mathbf{U}) \rangle$ provides a formal framework.
- ▶ SCM induces observational, interventional, and counterfactual distributions.
- ► SCM *induces* a **causal graph** \mathscr{G} , which implies **conditional independencies** testable via **d-separation** (blockage).
- ► The underlying model *M* is unknown but the causal graph *G* can be given from *common sense* or *domain expertise*.
- ▶ Intervention $do(\mathbf{X} = \mathbf{x})$ as a submodel $\mathcal{M}_{\mathbf{X}}$, which induces a manipulated causal graph $\mathcal{G}_{\overline{\mathbf{X}}}$.
- ► Causal effect of X = x on Y = y is defined as P(y|do(x)).

- ▶ Structural Causal Model $\mathcal{M} = \langle \mathbf{U}, \mathbf{V}, \mathbf{F}, P(\mathbf{U}) \rangle$ provides a formal framework.
- ▶ SCM induces observational, interventional, and counterfactual distributions.
- ► SCM *induces* a **causal graph** \mathscr{G} , which implies **conditional independencies** testable via **d-separation** (blockage).
- ► The underlying model *M* is unknown but the causal graph *G* can be given from *common sense* or *domain expertise*.
- ▶ Intervention $do(\mathbf{X} = \mathbf{x})$ as a submodel $\mathcal{M}_{\mathbf{x}}$, which induces a manipulated causal graph $\mathcal{G}_{\overline{\mathbf{X}}}$.
- ► Causal effect of X = x on Y = y is defined as P(y|do(x)).

- ▶ Structural Causal Model $\mathcal{M} = \langle \mathbf{U}, \mathbf{V}, \mathbf{F}, P(\mathbf{U}) \rangle$ provides a formal framework.
- ▶ SCM induces observational, interventional, and counterfactual distributions.
- ► SCM *induces* a **causal graph** \mathscr{G} , which implies **conditional independencies** testable via **d-separation** (blockage).
- ► The underlying model *M* is unknown but the causal graph *G* can be given from *common sense* or *domain expertise*.
- ▶ Intervention $do(\mathbf{X} = \mathbf{x})$ as a submodel $\mathcal{M}_{\mathbf{x}}$, which induces a manipulated causal graph $\mathcal{G}_{\overline{\mathbf{X}}}$.
- ▶ Causal effect of X = x on Y = y is defined as P(y|do(x)).

Next Part ...

* illustrative purposes 21/63

Overview

Part 1: Causality

Part 2: Causal Effect Identification Back-door Criterion Do-Calculus

Generalized Identification Generalized Identification Transportability Recovering from Selection Bias Recovering from Missing Data

Causal Effect Identifiability

1 Query $P_{\mathbf{x}}(\mathbf{y}) = P(\mathbf{y}|do(\mathbf{x}))$

Causal Diagram

 $egin{array}{c} \mathsf{Data} \ P(\mathbf{V}) \end{array}$

Causal Effect Identifiability

Based on the current knowledge about the phenomenon (2) and the available data (3), is the research question (1) identifiable?

Causal Effect Identifiability

Z: age, sexX: actionW: mediatorY: outcome

$$P(\mathbf{v}) = \prod_{\mathbf{v} \in \mathbf{V}} P(\mathbf{v} | \mathbf{f}_{\mathbf{a}}(\mathbf{v})) = P_{x}(\mathbf{v} \setminus \{X\}) = P(z) \times P(x|z) \times P(x|z) \times P(x|z) \times P(x|x) \times$$

This distribution decomposes as

$$P(\mathbf{V}) = P(\mathsf{SI}|W)P(W|\mathsf{Sp},R)P(\mathsf{Sp}|\mathsf{Sn})P(R|\mathsf{Sn})P(\mathsf{Sn})$$

This distribution decomposes as

$$P(\mathbf{V}) = P(\mathsf{SI}|W)P(W|\mathsf{Sp},R)P(\mathsf{Sp}|\mathsf{Sn})P(R|\mathsf{Sn})P(\mathsf{Sn})$$

$$P(W \mid do(\mathsf{Sp} = \mathsf{on}))$$

This distribution decomposes as

$$P(\mathbf{V}) = P(\mathsf{SI}|W)P(W|\mathsf{Sp},R)P(\mathsf{Sp}|\mathsf{Sn})P(R|\mathsf{Sn})P(\mathsf{Sn})$$

$$\begin{split} &P(W \mid do(\mathsf{Sp} = \mathsf{on})) \\ &= \sum_{\mathsf{sn},r,\mathsf{sl}} P(W,\mathsf{sn},r,\mathsf{sl} \mid do(\mathsf{Sp} = \mathsf{on})) \\ &= \sum_{\mathsf{sn},r,\mathsf{sl}} P(\mathsf{sl}|W)P(W|\mathsf{Sp} = on,r)P(r|\mathsf{sn})P(\mathsf{sn}) \end{split}$$

Adjustment by Direct Parents for Singleton Intervention

Theorem

The causal effect $Q = P(\mathbf{y}|do(x))$ is identifiable whenever $X, \mathbf{Y}, \mathbf{Pa}_X \subseteq \mathbf{V}$ (all parents of X) are measured.¹

The expression of Q is then obtained by adjustment for \mathbf{Pa}_X , or

$$P(\mathbf{y}|do(x)) = \sum_{\mathbf{p}\mathbf{a}_X} P(\mathbf{y}|x, \mathbf{p}\mathbf{a}_X) P(\mathbf{p}\mathbf{a}_X).$$

e.g.,

$$\sum_{\mathsf{sn}} P(W|\mathsf{Sp}=on,\mathsf{sn})P(\mathsf{sn})$$

If Season is latent, is the effect still computable?

If Season is latent, is the effect still computable?

$$\begin{split} &P(W \mid do(\mathsf{Sp} = \mathsf{on})) \\ &= \sum_{\mathsf{sn},r} P(W \mid \mathsf{Sp} = \mathsf{on},r) P(\mathsf{sn}) P(r | \mathsf{sn}) \\ &= \sum_r P(W \mid \mathsf{Sp} = \mathsf{on},r) \sum_{\mathsf{sn}} P(r,\mathsf{sn}) \\ &= \sum_r P(W \mid \mathsf{Sp} = \mathsf{on},r) P(r) \end{split}$$

Overview

Part 1: Causality

Part 2: Causal Effect Identification
Back-door Criterion

Part 3: Modern Identification

Generalized Identification Transportability Recovering from Selection Bias Recovering from Missing Data

Back-door Criterion

Definition (Back-door)

Find a set ${\bf Z}$ such that it can sufficiently explain 'confounding' between ${\bf X}$ and ${\bf Y}$.

Then,

$$P(\mathbf{y}|do(\mathbf{x})) = \sum_{\mathbf{z}} P(\mathbf{y}|\mathbf{x}, \mathbf{z}) P(\mathbf{z})$$

Back-door Criterion

Definition (Back-door Criterion)

A set **Z** satisfies the back-door criterion with respect to a pair of variables **X**, **Y** in a causal diagram \mathscr{G} if; $X \to Z$ (x)

- (i) no node in Z is a descendant of X; and
- (ii) **Z** blocks every path between $X \in \mathbf{X}$ and $Y \in \mathbf{Y}$ that contains an arrow into X.
 - $X \rightarrow X$

Back-door sets as substitutes of the direct parents of X

Rain satisfies the back-door criterion relative to Sprinkler and Wet:

- (i) Rain is not a descendant of Sprinkler, and
- (ii) Rain blocks the only back-door path from Sprinkler to Wet.

Adjusting for the direct parents of Sprinkler, we have:

$$\begin{split} P(\mathsf{wt}|do(\mathsf{sp})) &= \sum_{\mathsf{sn}} P(\mathsf{wt}|\mathsf{sp},\mathsf{sn}) P(\mathsf{sn}) \\ &\vdots \\ &= \sum_{\mathsf{rn}} P(\mathsf{wt}|\mathsf{sp},\mathsf{rn}) P(\mathsf{rn}) \end{split}$$

A Graphical Condition for Back-door Admissible Sets

 $P(\mathbf{y}|do(\mathbf{x}))$ is identifiable if (i) & (ii) there is a set that d-sep. \mathbf{X} from \mathbf{Y} in $\mathscr{G}_{\mathbf{X}}$.

$$P(y|do(x)) = \sum_{z_1, z_4} P(y|x, z_1, z_4) P(z_1, z_4)$$

Overview

Part 1: Causality

Part 2: Causal Effect Identification

Back-door Criterion
Do-Calculus
) 또 당 보장 ×

Part 3: Modern Identification

Generalized Identification Transportability Recovering from Selection Bias Recovering from Missing Data

Rules of Do-calculus

- ▶ Backdoor criterion results in a very specific form of identification formula.
- ▶ **Do-Calculus** [Pearl 1995] provides general machinery to manipulate observational and interventional distributions.

Level 1 Associational ⇔ Level 2 Experimental

Rules of Do-calculus

Theorem (Rules of Do-calculus (simplified))

$$P(\mathbf{y}|do(\mathbf{x}),\mathbf{z}) = P(\mathbf{y}|do(\mathbf{x}))$$

if
$$(\mathbf{Z} \perp \!\!\! \perp \mathbf{Y} \mid \mathbf{X})$$
 in $\mathscr{G}_{\overline{\mathbf{X}}}$.

$$P(\mathbf{y}|do(\mathbf{x}), \frac{do(\mathbf{z})}{do(\mathbf{z})}) = P(\mathbf{y}|do(\mathbf{x}), \mathbf{z})$$

if
$$(\mathbf{Z} \perp \mathbf{Y} \mid \mathbf{X})$$
 in $\mathscr{G}_{\overline{\mathbf{X}}\overline{\mathbf{Z}}}$.

Rule 3: Adding/removing Actions

$$P(\mathbf{y}|do(\mathbf{x}), \frac{do(\mathbf{z})}{do(\mathbf{z})}) = P(\mathbf{y}|do(\mathbf{x}))$$

if
$$(\mathbf{Z} \perp \!\!\! \perp \mathbf{Y} \mid \mathbf{X})$$
 in $\mathscr{G}_{\overline{\mathbf{X}}\overline{\mathbf{Z}}}$

Do-calculus in Action

Do-calculus in Action

$$S \longrightarrow T \longrightarrow C$$

$$P(c|do(s))$$

$$= \sum_{t} P(c|do(s),t)P(t|do(s)) \qquad \text{Probability Axioms}$$

$$= \sum_{t} P(c|do(s),do(t))P(t|do(s)) \qquad \text{Rule 2 } (T \perp \!\!\!\perp C \mid S)_{\mathscr{G}_{\overline{S}T}} \qquad \text{S} \rightarrow T \quad \mathbb{C}$$

$$= \sum_{t} P(c|do(t))P(t|do(s)) \qquad \text{Rule 3 } (S \perp \!\!\!\perp C \mid T)_{\mathscr{G}_{\overline{T},S}} \qquad \text{S} \rightarrow T \rightarrow \mathbb{C}$$

$$= \sum_{t} P(c|do(t))P(t|s) \qquad \text{Rule 2 } (T \perp \!\!\!\perp S)_{\mathscr{G}_{\underline{S}}} \qquad \text{S} \rightarrow T \rightarrow \mathbb{C}$$

$$= \sum_{t} P(c|do(t))P(t|s) \qquad \text{Rule 2 } (T \perp \!\!\!\perp S)_{\mathscr{G}_{\underline{S}}} \qquad \text{S} \rightarrow T \rightarrow \mathbb{C}$$

$$= \sum_{t} P(t|s) \sum_{s'} P(c|s',do(t))P(s'|do(t)) \qquad \text{Probability Axioms}$$

$$= \sum_{t} P(t|s) \sum_{s'} P(c|s',t)P(s'|do(t)) \qquad \text{Rule 2 } (T \perp \!\!\!\!\perp C \mid S)_{\mathscr{G}_{\overline{T}}} \qquad \text{S} \rightarrow T \rightarrow \mathbb{C}$$

$$= \sum_{t} P(t|s) \sum_{s'} P(c|s',t)P(s'|do(t)) \qquad \text{Rule 3 } (T \perp \!\!\!\!\perp S)_{\mathscr{G}_{\overline{T}}} \qquad \text{S} \rightarrow T \rightarrow \mathbb{C}$$

Algorithmic Identification

- ▶ **Do-calculus** is sound and complete but it has no algorithmic insight.
- ► A graphical condition and an efficient **algorithmic** procedure have developed for identifiability.

- ▶ Identifiability: Causal Effect may be computable from existing observational data for some causal graphs.
- In a Markovian case and singleton X, a causal effect can be easily derivable by canceling out $P(x|\mathbf{pa}_x)$.
- ► A back-door adjustment formula is simple and widely used but limited.
- ▶ Do-calculus is a set of rules to manipulate observational or interventional probabilities. (Do-calculus is complete)
- ► There exists a polynomial time algorithm to yield a causal effect formula (whenever identifiable) given an arbitrary causal diagram.

Overview

Part 1: Causality

Part 2: Causal Effect Identification Back-door Criterion Do-Calculus

Part 3: Modern Identification

Generalized Identification Transportability Recovering from Selection Bias Recovering from Missing Data

Various Data Sources

Target 0 $Q = P^*(y|do(x))$

Various Data Sources

Dataset 1 ⊜

Dataset 2 🗎

Dataset $n \boxminus$

Various Data Sources

Target 0 $Q = P^*(y|do(x))$

Dataset 1 🗎

Dataset 2 🗎

Dataset $n \bowtie$

d_1	Population	Los Angeles	New York	Seoul
d_2	Obs./Exp.	Experimental	Observational	Experimental
	Treatment Assignment	Randomized Z_1	-	Randomized Z_2
d_3	Sampling	Selection on Age	Selection on SES	-
d_4	Measured	$\{X_1,Z_1,W,M,Y_1\}$	$\{X_1, X_2, Z_1, N, Y_2\}$	${X_2,Z_1,W,L,M,Y_1}$

Modern Identification Tasks

- 1. Experimental conditions

 Generalized Identification
- 2. Environmental conditions **Transportability**
- 3. Sampling conditions

 Recovering from Selection Bias
- 4. Responding conditions

 Recovering from Missingness

Overview

Part 1: Causality

Part 2: Causal Effect Identification Back-door Criterion Do-Calculus

Part 3: Modern Identification Generalized Identification Transportability Recovering from Selection F

Recovering from Missing Data

Generalized Identifiability

Z: % Diet

Y: 🥸 Heart Attack

Measured:

Observational study: P(X,Y,Z)

Needed:
$$Q = P(y|do(x))$$

!

Generalized Identifiability

Z: \aleph Diet

Y: \heartsuit Heart Attack

Measured:

Observational study: P(X,Y,Z)

Experimental Study: P(X,Y|do(Z))

Needed:
$$Q = P(y|do(x)) = \frac{P(x,y|do(z))}{P(x|do(z))} = P(y|do(z), x)$$

$$P(y|do(x,z)) = P(y|do(z))$$
Trule 2

Generalized Identifiability: Drug-Drug Interactions

Y cardiovascular disease; B blood pressure; X_1 taking an antihypertensive drug; and X_2 the use of an anti-diabetic drug.

Goal: assess the effect of prescribing **both** treatments (\bullet) on the risk of cardiovascular diseases from **individual** drug experiments, either \bullet or \bullet .

Generalized Identifiability: Drug-Drug Interactions

Y cardiovascular disease; B blood pressure; X_1 taking an antihypertensive drug; and X_2 the use of an anti-diabetic drug.

Goal: assess the effect of prescribing **both** treatments (\bullet) on the risk of cardiovascular diseases from **individual** drug experiments, either \bullet or \bullet .

General Identifiability reduced to Calculus

$$\begin{split} P(y|do(x)) &= \sum_{w} P(y|do(x), w) P(w|do(x)) \\ &= \sum_{w} P(y|do(x, w)) P(w|do(x)) \\ &= \sum_{w} \underbrace{P(y|do(w))}_{Q[Y]} \underbrace{P(w|do(x))}_{Q[W]} \end{split}$$

Both effects are not identifiable from P(V).

General Identifiability reduced to Calculus

$$Q[Y] = P(y|do(w))$$

$$= P(y|do(w,z))$$

$$= \sum_{x} P(y|do(w,z),x)P(x|do(w,z))$$

$$= \sum_{x} P(y|do(w,z),x)P(x|do(z))$$

$$= \sum_{x} P(y|do(z),w,x)P(x|do(z)).$$

$$Q[W] = P(w|do(x))$$

$$= P(w|do(x,z))$$

$$= P(w|do(z),x).$$

Available from $P(\mathbf{V}|do(z))!$

Summary for General Identifiability HA CHOPE 1945

The identifiability of any expression of the form

$$P(\mathbf{y} \mid do(\mathbf{x}), \mathbf{z})$$

can be determined given any causal graph ${\mathscr G}$ and an arbitrary combination of observational and experimental studies.

If the query is identifiable, then its estimand can be derived in polynomial time.

Overview

Part 1: Causality

Part 2: Causal Effect Identification Back-door Criterion Do-Calculus

일반적인 가정: train = test

Part 3: Modern Identification

Generalized Identification

Transportability: train ≠ test.
Recovering from Selection Bias
Recovering from Missing Data

Transportability

Is it possible to compute the effect of **X** on **Y** in a target environment , using **observational and experimental findings** from different populations?

e.g., applying education policies of U.S. to South Korea.

How is this Problem seen in other Sciences?

- "External Validity asks the question of generalizability: To what populations, settings, treatment variables, and measurement variables can this effect be generalized?" (Shadish, Cook, and Campbell, 2002)
- ► "Extrapolation across studies requires 'some understanding of the reasons for the differences.' " (Cox, 1958)
- "An experiment is said to have "external validity" if the distribution of outcomes realized by a treatment group is the same as the distribution of outcome that would be realized in an actual program." (Manski, 2007)

Everything is assumed to be the same, trivially transportable!

(a) Z represents age

$$P^*(y|do(x)) = \sum_{z} P(y|do(x), z) P^*(z)$$

$$P(y|do(x), target)$$

$$V$$

$$\sum_{z} P(y|do(x), z, target) P(z, target)$$

$$V \int target a|dy|x$$

$$\sum_{z} P(y|do(x), z) p^*(z)$$

(b) Z represents language skill

$$P^*(y|do(x)) = P(y|do(x))$$

(c) Z represents bio-marker

$$P^*(y|do(x)) = \sum_{z} P(y|do(x), z) P^*(z|x)$$

$$(a)$$
 Z represents **age**

$$P^*(y|do(x)) = \sum_{z} P(y|do(x), z) P^*(z)$$

(b) Z represents language skill

$$P^*(y|do(x)) = P(y|do(x))$$

(c) Z represents **bio-marker**

$$P^*(y|do(x)) = \sum_z P(y|do(x), z) P^*(z|x)$$

Is the Gold Standard Golden? (Generalizability from Trials)

Lesson. Even if we have a perfect RCT, one still needs to exercise transportability.

Summary for Transportability

- Non-parametric transportability can be determined provided that the problem instance is encoded in selection diagrams (= $\mathcal{G}+$).
- ▶ When transportability is feasible, the transport formula can be derived in polynomial time.
- ► The causal calculus and the corresponding transportation algorithm are complete.

Overview

Part 1: Causality

Part 2: Causal Effect Identification Back-door Criterion Do-Calculus

Part 3: Modern Identification

Transportability
Recovering from Selection Bias
Recovering from Missing Data

Identification under Selection

Identification under Selection

► Selection bias, caused by preferential inclusion *s* of samples from the data, is a major obstacle to valid **causal** and **statistical** inferences;

Without Selection Bias

With Selection Bias

Selection Bias without External Information

Theorem

Q = P(y|x) is recoverable from selection biased data if and only if

P(y|x) is not recoverable

$$P(y|x)$$
 is recoverable

$$P(x,x) = P(x,x) + P(x,x)$$

Identification under Selection (with External Data)

Theorem

P(y|x) is recoverable if there is a set \mathbb{C} such that $(Y \perp \!\!\! \perp S \mid \mathbb{C}, X)$ holds in \mathscr{G} and $P(\mathbb{C}, X)$ is estimable. Moreover,

$$P(y|x) = \sum_{\mathbf{c}} P(y|x, \mathbf{c}, S = 1) P(\mathbf{c}|x)$$

$$\mathbf{C} = \{W_1, W_2\}$$
? Yes $\mathbf{C} = \{W_1, Z_1, Z_2\}$? No $\mathbf{C} = \{W_2, Z_3\}$? Yes

Identification under Selection (with External Data)

Goal: recover a causal effect P(y|do(x)).

$$P(y|do(x)) = \sum_{w_2} P(y|x, w_2) P(w_2)$$

= $\sum_{w_2} P(y|x, w_2, S = 1) P(w_2).$

$$P(y|do(x)) = P(y|x)$$

$$= \sum_{w} P(y|w,x)P(w|x)$$

$$= \sum_{w} P(y|w,x,S=1)P(w|x).$$

Summary for Selection Bias

- Nonparametric recoverability of selection bias from causal and statistical settings can be determined provided that an augmented causal graph (w/ the selection mechanism (s)) is available.
- ► When recoverability is feasible, the estimand can be derived in **polynomial** time.
- ► The result is complete for pure recoverability, and sufficient for recoverability with external information.

Overview

Part 1: Causality

Part 2: Causal Effect Identification Back-door Criterion Do-Calculus

Part 3: Modern Identification

Generalized Identification Transportability Recovering from Selection Bias Recovering from Missing Data

Identification under Missing Data

Missing data present a challenge in many academic disciplines.

- ▶ **!** Sensors do not always work reliably.
- Respondents do not fill out every question in the questionnaire.
- Medical patients are often unable to recall treatments or outcomes.

#	Age	Gender	Obesity*
1	16	F	Obese
2	15	F	N/A
3	15	M	N/A
4	14	F	Not Obese
5	13	М	Not Obese
6	15	М	Obese
7	14	F	Obese

Identification under Missing Data: Example

Consider a study conducted in a school with Age (A), Gender (G) and Oldsite (O).

- ▶ **Age** and **Gender** are fully observed (obtained from school records).
- ▶ **Obesity** however is corrupted by missing values due to some students not reporting their weight.

Identification under Missing Data: Proxy Variable

Modelling the missingness process using

- ▶ Obesity *O* (true, partly-observed),
- \triangleright a missingness mechanism R_O , and
- ightharpoonup a proxy variable O^* (what's observed)

#	Age	Gender	$Obesity^*$	R_O
1	16	F	Obese	0
2	15	F	m	1
3	15	M	m	1
4	14	F	Not Obese	0
5	13	M	Not Obese	0
6	15	M	Obese	0
7	14	F	Obese	0

$$O^* = \begin{cases} O & \text{if } R_O = 0\\ m & \text{if } R_O = 1 \end{cases}$$

Missingness can be caused by random processes or can depend on other variables.

Missingness can be caused by random processes or can depend on other variables.

► Students *accidentally losing* their questionnaires.

Missingness can be caused by random processes or can depend on other variables.

► Teenagers rebelling and not reporting their weight.

Missingness can be caused by random processes or can depend on other variables.

▶ Obese students who are embarrassed of their obesity and hence reluctant to reveal their weight.

Missingness can be caused by random processes or can depend on other variables.

- ▶ Students *accidentally losing* their questionnaires.
- ► Teenagers rebelling and not reporting their weight.
- ▶ Obese students who are embarrassed of their obesity and hence reluctant to reveal their weight.

Three Categories of Missingness

Identification under Missing Data: Example

Factorization:

$$P(G, O, A) = P(G, O|A)P(A)$$

Transformation into observables:

$$=P(G,O|A, R_O=|)P(A)$$

Conversion

$$= P(G, O^*|A, R_O = |)P(A).$$

Identification under Missing Data: Example

$$P(y|do(z)) = P(y|do(z), r_y)$$

$$= P(y^*|do(z), r_y)$$

$$= \sum_{w} P(y^*|w, do(z), r_y) P(w|do(z), r_y)$$

$$= \sum_{w} P(y^*|w, z, r_y) P(w|r_y).$$

Summary for Part 3

Modern Identification

- General Identification: combining data sets of different experimental conditions
- 2. **Transportability**: combining data sets from different sources
- 3. Identification under **Selection** (s)
- 4. Identification under Missingness Ro

Summary for Causal Inference Lecture

This lecture focused mainly on a basic causal effect identification task (SCM, do-operator, Causal Graph, Conditional Independence ...)

There are many interesting future research directions

- Causal Data Science
- Causal Discovery
- Causal Decision Making
- ► Causality + Machine Learning