Сходимость функциональных последовательностей

1. Найти предельную функцию f(x) последовательности $\{f_n(x)\}$ на множестве E

a)
$$f_n(x) = \frac{nx^2}{x + 3n + 2}$$
, $E = [0; +\infty)$, b) $f_n(x) = \sqrt[n]{1 + x^n}$, $E = [0; 2]$
c) $f_n(x) = n(x^{1/n} - 1)$, $E = [1; 3]$.

2. Доказать, что последовательность $\{f_n(x)\}$ сходится равномерно на множестве E

a)
$$f_n(x) = \frac{\arctan x}{\sqrt{n+x}}$$
, $E = [0; +\infty)$, b) $f_n(x) = n \sin \frac{1}{nx}$, $E = [1; +\infty)$.

3. Доказать, что последовательность $\{f_n(x)\}$ сходится НЕравномерно на множестве E

a)
$$f_n(x) = \frac{nx}{1 + n^2 x^2}$$
, $E = [0; 1]$,
b) $f_n(x) = \ln\left(3 + \frac{n^2 e^x}{n^4 + e^{2x}}\right)$, $E = [0; +\infty)$.

Домашнее задание

- 1. Доказать, что если последовательности $\{f_n(x)\}$ и $\{g_n(x)\}$ равномерно сходятся на множестве E соответственно к f(x) и g(x), то при любых $\alpha, \beta \in \mathbb{R}$ последовательность $\{\alpha f_n(x) + \beta g_n(x)\}$ равномерно сходится к $\alpha f(x) + \beta g(x)$ на E.
- 2. Доказать, что если последовательность $\{f_n(x)\}$ равномерно сходятся на множестве E к f(x) и g(x) ограниченная на E функция, то последовательность $\{f_n(x)\cdot g(x)\}$ равномерно сходится к $f(x)\cdot g(x)$ на E.
- 3. Найти предельную функцию f(x) последовательности $\{f_n(x)\}$ на множестве E

a)
$$f_n(x) = (x - 1) \arctan x^n$$
, $E = (0; +\infty)$,

b)
$$f_n(x) = \sqrt[n]{1 + x^n + (x^2/2)^n}$$
, $E = [0; +\infty)$.

4. Исследовать на сходимость и равномерную сходимость последовательность $\{f_n(x)\}$ на множествах E, E_1, E_2 .

a)
$$f_n(x) = \frac{4n\sqrt{nx}}{3 + 4n^2x}$$
, $E = [\delta, +\infty), \ \delta > 0$,

b)
$$f_n(x) = \arctan \frac{n}{x}$$
, $E_1 = (0; a], a > 0$, $E_2 = (0; +\infty)$.

Задачи для самостоятельного решения

Том 2, гл.5, §17

1. Исследовать на сходимость и равномерную сходимость последовательность $\{f_n(x)\}$ на множествах E, E_1, E_2 .

a)
$$f_n(x) = \frac{nx^2}{1+2n+x}$$
 $E_1 = [0;1], \quad E_2 = [1;+\infty), \quad \mathbb{N}^{9}8(2)$
b) $f_n(x) = n\left(\frac{x}{\sqrt{n}} - \arctan\frac{x}{\sqrt{n}}\right)$ $E_1 = [0;1], \quad E_2 = (1;+\infty), \quad \mathbb{N}^{9}8(5)$
c) $f_n(x) = \frac{(n+x)^2}{x^2+n^2-nx}$ $E_1 = [0;2), \quad E_2 = (2;+\infty), \quad \mathbb{N}^{9}8(6)$
d) $f_n(x) = \sqrt[n]{x^2+nx+1}$ $E_1 = (0;1), \quad E_2 = (1;+\infty), \quad \mathbb{N}^{9}9(1)$
e) $f_n(x) = e^{-x^2-nx}$ $E_1 = (0;1), \quad E_2 = (1;+\infty), \quad \mathbb{N}^{9}9(2)$
f) $f_n(x) = \frac{x}{n} \ln \frac{x}{n}$ $E_1 = (0;2), \quad E_2 = (0;+\infty), \quad \mathbb{N}^{9}9(4)$
g) $f_n(x) = \frac{1}{x^3} \cos \frac{x}{n}$ $E_1 = (0;1), \quad E_2 = (1;+\infty), \quad \mathbb{N}^{9}9(6)$