<u>Last time</u>	(X, x) f	•	π_1(X, x) f_*			
if f is a homeo, then f_* is an iso						

Pf recall the homotopy

$$h(s, t) = (1 - t)*x + t*y(s)$$

is it a path homotopy?

Ex if
$$f = id_X$$
, then $f_* = id_{\pi_1(X, x)}$

Q is the converse true?

Ex R and
$$\{0\}$$
 are not homeomorphic [why?] but $\pi_1(R, 0) = \pi_1(\{0\}, 0)$

Moral convex subspaces of R^n need not be homeomorphic but they are all <u>simply connected</u>: their π 1's are all trivial

 $h(0, t) = (1 - t)^*x + t^*y(0) = (1 - t)^*x + t^*x = x$

 $h(1, t) = (1 - t)^*x + t^*y(1) = (1 - t)^*x + t^*x = x$

Thm if X is a convex subspace of R^n then for any x and loop y based at x, have $y \sim_p e x$ thus $\pi 1(X, x) = \{[e x]\}$

but recall: any nonempty convex X is contractible: there is
$$x_0$$
 in X s.t. $id_X \sim (constant\ map\ at\ x_0)$

(Munkre	es §58)		suppose X is contractible pick x_0 in X s.t. id_X ~ (const ma
<u>Df</u>	a <u>homotopy equivalence</u> btw X and Y is a pair of cts f : X to Y and g : Y to X	$Y = \{x_0\}$	
		f:XtoY	$f(x) = x_0$, the constant map

map at x)

s.t.
$$g \circ f \sim id_X$$
 and $f \circ g \sim id_Y$ $g : Y to X$ $g(x_0) = x_0$, the inclusion

then

here we say X and Y are homotopy equivalent then
$$(g \circ f)(x) = x_0$$
, so $g \circ f \sim id_X$ while $f \circ g = id_X \circ f$

Ex

then
$$f_*: \pi_1(X, x)$$
 to $\pi_1(Y, f(x))$, \underline{Ex} $X = R^2 - \{(0, 0)\}$ and $Y = S^1$ $g_*: \pi_1(Y, y)$ to $\pi_1(X, g(y))$ $r: X$ to Y $r(x, y) = (x, y)/|(x, y)|$ are isomorphisms for any x in X and y in Y $r: Y$ to $r(x, y) = (x, y)$

then
$$(i \circ r)(x, y) = (x, y)/|(x, y)|, \text{ so } i \circ r \sim id_X$$

via $h((x, y), t) = ((1 - t)/|(x, y)| + t)*(x, y)$

 $(r \circ i) = id_Y$

while

so $R^2 - \{(0, 0)\}$ is homotopy equivalent to S^1

Rem these examples are a specific kind of homotopy equivalence called a <u>deformation retract</u>

 $\begin{array}{cc} \underline{\text{Pf of Thm}} & \text{suppose } f: X \text{ to } Y \text{ and } g: Y \text{ to } X \\ \text{s.t. } g \circ f \sim \text{id}_X \text{ and } f \circ g \sim \text{id}_Y \end{array}$

will show that $f_* : \pi_1(X, x)$ to $\pi_1(Y, f(x))$ is an iso for any x in X [argument for g_* is similar]

three lemmas:

- 1) if f : X to Y and g : Y to Z are cts maps then $(g \circ f)_* = g_* \circ f_*$ [from last time]
- 2) if ϕ : G to H and ψ : H to K are maps s.t. $\psi \circ \phi$ is bijective then ϕ is injective and ψ is surjective
- 3) if α is a path in X from x_0 to x_1 then $\check{\alpha}$: $\pi_1(X, x_0)$ to $\pi_1(X, x_1)$ def by

$$\ddot{\alpha}([\gamma]) = [\alpha^- * \gamma * \alpha]$$

is an isomorphism

by 1),
$$g_* \circ f_* = (g \circ f)_*,$$

 $f_* \circ g_* = (f \circ g)_*$

so by 2), just need $(g \circ f)$ * and $(f \circ g)$ * to be isos

can use 3) to show: if f, f': A to X are cts, h a homotopy from f to f', a in A,

then $f'_* = \check{\alpha}_h \circ f_* : \pi_1(A, a) \text{ to } \pi_1(X, f'(a))$

where $\alpha_h(s) = h(a, s)$, a path from f(a) to f'(a)

apply to j and k:

$$(g \circ f)_* = \breve{\alpha}_j \circ id_{X, *} = \breve{\alpha}_j$$

 $(f \circ g)_* = \breve{\alpha}_k \circ id_{Y, *} = \breve{\alpha}_k$

but by 3), $\breve{\alpha}_{j}$ and $\breve{\alpha}_{k}$ are isos