Лабораторная работа 4.3.1 «Изучение дифракции света»

Работу выполнил: Мирошин Г.С. 785 группа

29.03.2019

Цель работы:

◊ І: исследовать явления дифракции Френеля и Фраунгофера на щели;

◊ II: изучить влияние дифракции на разрешающую способность оптических приборов;

Оборудование: оптическая скамья, ртутная лампа, монохроматор, щель с регулируемой шириной, рамка с вертикальной нитью, двойная щель, микроскоп с микрометрическим винтом, зрительная труба.

А: Дифракция Френеля на щели:

Щель S2 освещается параллельным пучком монохроматического света с помощью коллиматора, образованного объективом O1, и щелью S1, находящейся в его фокусе. На щель S1 сфокусировано изображение зелёной спектральной линии, выделенной из спектра ртутной лампы Л при помощи простого монохроматора C, в котором используется призма прямого зрения.

Длина волны зелёной линии ртути $\lambda = 546.1$ нм. Фокусное расстояние $f_1 = 12.5$ см.

Микроскоп ставится непосредственно за щелью, поскольку Френелевская дифракция характеризуется значением волнового параметра р порядка единицы.

В данном случае зоны Френеля - прямоугольные полосы, которые называются зонами Шустера. Координата n-ой зоны определяется выражением:

$$\xi_n = \sqrt{zn\lambda},$$

где z - расстояние от шели до плоскости наблюдения.

Если в поле зрения микроскопа наблюдается N тёмных полос, то число зон Френеля, открытых для такого положения, равно N+1. Используя предыдущую формулу, найдём ширину щели:

$$b = 2\sqrt{z(N+1)\lambda}$$

Установим микроскоп таким образом, чтобы он был сфокусирован на щель. В этом случае z=0. Координату расположения микроскопа определяем по продольной шкале оптической скамьи. $z_0=44.5~{\rm cm}$ начальное положение микроскопа.

Определим нуль шкалы микрометра на щели(его показание в момент открытия щели). Оказалось, что нуль шкалы - 30 дел. на первом обороте (цена деления - 0.001 мм/дел., 1 оборот = 100 дел.). Широко откроем щель, чтобы было легче проводить дальнейшие измерения. Пусть ширина щели b=370 мкм. Будем отодвигать микроскоп от щели и записывать его координату z_m для случаев, когда в поле зрения 1,2,.. тёмных полос. Определим сразу ширину щели b по формуле выше для всех случаев. Результаты занесены в таблицу:

z_m , cm	40.5	41.7	42.3	42.9	43.1
Число тёмных полос	1	2	3	4	5
Z, CM	4.0	2.8	2.2	1.6	1.4
$2\xi_n = b$, mkm	418.0	428.4	438.4	418.0	428.3

Видно, что ширина щели получилось завышенной по сравнению с 370 мкм. Это может быть связано с тем, что:

- 1 1,2,3,... тёмных полос были видны на некотором интервале dz, а не при конкретном значении z.
- 2 сама щель при вращении микрометра откывалась не непрерывно, а рывками.

Качественные наблюдения:

- А: При уменьшении ширины щели b и при неизменном z наблюдается всё то же самое, что и при увеличении z при постоянном b.
- Б: Заменим щель препятствием с вертикально расположенной нитью. В этом случае в поле зрения микроскопа наблюдается светлое пятно Араго-Пуассона, расположенное в центре изображения нити. Число тёмных полос изображения всегда чётно.

В: Дифракция Фраунгофера на щели:

Такая дифракция наблюдается в случае, когда волновой параметр много больше единицы. Добавим к схеме предыдущего опыта линзу с фокусным расстоянием $f_2 = 9.0$ см, расположенную за щелью S2. Картину дифракции Фраунгофера наблюдаем в задней фокальной плоскости линзы.

Поперечная координата т-го минимума в таком случае равна:

$$x_m = m\frac{\lambda}{b}f_2$$

Для проверки справедливости этой формулы измерим с помощью микроскопа координаты нескольких дифракционных минимумов картины(от -m до m). Пусть ширина щели b=440 мкм. Цена деления окулярной шкалы микроскопа - 0.04 мм/дел.

m	-3	-2	-1	0	1	2	3
x_m , MM	0.7	0.79	0.91	1.05	1.19	1.28	1.40

Сдвинем нулевой минимум в ноль отсчёта.

График зависимости $x_m(m)$

Среднее расстояние между минимумами $\triangle X = (0.12 \pm 0.00)$ мм. После дифференцирования по m формулы выше расчитаем ширину щели:

$$b = (409.5)$$
MKM

С: Дифракция Фраунгофера на двух щелях:

Заменим щель S1 щелью S2, а на место щели S2 поставим двойную щель. Остальное оставим как было в предыдущей схеме. Схема установки приведена ниже:(d - расстояние между щелями, D - ширина щелей)

Если входная щель достаточно узка, то дифракционная картина в плоскости Π подобна той, что получалась при дифракции на одной щели, однако теперь вся картина испещрена рядом дополнительных узких полос. Линейное расстояние δx между соседними интерференционными полосами в плоскости Π равно

$$\delta x = f_2 \frac{\lambda}{d}$$

Число светлых полос в пределах центрального максимума (то есть в пределах от угла $-\frac{\lambda}{D}$ до угла $\frac{\lambda}{D}$) определяется из формулы:

$$n = \frac{2d}{D},$$

где D - ширина одной из двух щелей(предположим, они мало различаются), а d - расстояние между щелями. Измерения:

Определим координаты самых удалённых друг от друга и хорошо различимых тёмных полос в изображении дифракции на двух щелях и число промежутков между ними. В нашем случае эти тёмные полосы соответствуют границам центрального максимума, поэтому попутно будет определена его ширина. Результаты - в таблице:

x_{left} , N	x_{right}, MM	число светлых промежутков между крайними тёмными полосами
2.80	3.24	7

Отсюда $\delta x = (62.9 \pm 2.8)$ мкм - расстояние между мелкими максимумами, $\Delta X = (220 \pm 10)$ мкм - ширина центрального максимума.

В пункте **D** были определены параметры двойной щели:

$$d = (2.5 \pm 0.04)$$
 mm, $D_1 = (0.6 \pm 0.04)$ mm, $D_2 = (0.32 \pm 0.04)$ mm

Тогда число полос в центральном максимуме равно:

$$n = \frac{2d}{D_1} = 8,$$

а в опыте оно предполагалось равным 7.

Определим d по измеренному δx :

$$d = f_2 \frac{\lambda}{\delta x} = (0.78 \pm 0.03)$$
MM

Определеним ширины b_0 щели S2, при которой нарушается пространственная когерентность. Расстояние d между щелями не должно превышать радиус пространственной когерентности, то есть должно выполняться условие:

$$d < \frac{\lambda}{h} f_1,$$

откуда ясно, что при достаточно малом размере щели(теоретически) $b_0 = 27$ мкм картина интерференции перестанет быть информативной. Оценим эту ширину щели(экспериментально) $b_0 \approx 191$ мкм.

D: Влияние дифракции на разрешающую способность оптических инструментов: