Identifying runoff sources across scales in Amazon watersheds: an LBA synthesis effort.

Joaquín Chaves¹, Christopher Neill¹, Mark Johnson², Helmut Elsenbeer³, Sonja Germer³, Alex Krusche⁴, Trent Biggs⁵, Ricardo Figueiredo⁶, Johannes Lehman⁷, Linda Deegan¹.

¹The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA 02543

²Department of Geography, University of British Columbia, Canada

³ Universität Potsdam, Institut für Geoökologie, Potsdam, Germany

⁴Laboratório de Ecologia Isotópica, CENA –USP, Piracicaba, SP, Brasil

⁵Department of Geography, San Diego State University

⁶Embrapa Amazônia Oriental, Belem, Para

⁷Department of Crop and Soil Sciences, Cornell University

Potential Sources of Streamflow:

End-Member Mixing Analysis (EMMA)

End-Member Mixing Analysis (EMMA)

❖ Principal Component Analysis (PCA)...in a nutshell

Fazenda Rancho Grande, Rondônia

☆

Rondônia

Pasture

0

Water yields

Mixing Diagrams:

Forest

Mixing Diagrams:

Pasture

Overall Results:

Entire rainy season

Groundwater

Soil water

Overland flow

Table 1. Locations used for the EMMA analysis.

Location	Landcover type	Site	Area, ha	Flow type, soil	References
	Forest	Station "4"	17400	Perennial, Ultisol	
Fazenda Nova	Forest	Station "8"	250	66	(Naill at al. 2001)
Vida, Rondônia	Pasture	Station "7"	130	66	(Neill et al., 2001)
	Pasture	Station "12"	720	44	
Fazenda Rancho		Forest	1.4	Ephemeral, Ultisol	(Chaves et al., 2007)
Grande, Rondônia		Pasture	0.7	44	
Fazenda Vitoria, Pará	Mixed	Igarape 54	14000	Perennial, Oxisol	(Markewitz et al., 2004)
Juruena, Mato Grosso	Forest	"B2"	1.9	Perennial, Ultisol	(Johnson et al., 2006)
La Cuenca, Peru	Forest		0.7	Ephemeral, Ultisol	(Elsenbeer and Lack 1996)
Fazenda Nossa Senhora	Pasture		3.9	Ephemeral, Ultisol	(Biggs et al., 2006)

Mixing Diagrams: Amazon Sites

Mixing Diagrams: Amazon Sites

Mixing Diagrams: Amazon Sites

Mixing Diagrams: Amazon Sites (Large catchments)

Total Flow Proportions by Source (small catchments)

Total Flow Proportions by Source (large catchments)

Total Flow Proportions by Source Across Scale

Proportion vs. Flow Relationships (small catchments)

Some (transient) conclusions...and thoughts:

- •A consistent pattern across sites in which groundwater and soil solution end members emerged as the main sources to stream flow on most sites
- •"Fast" flowpaths dominated small watersheds
- •"Slow" flowpaths increase predominance in large watersheds

Figure 4. Effects of land cover change on river flow. Here we illustrate the observed changes in river discharge in the Tocantins river basin that resulted from land-cover change and agricultural clearing in the mid-20th century. The solid line is the mean monthly discharge for the period 1950–60s, when crops and pasture covered about 30% of the land area of the 176 000 km² basin. The dotted line is the river discharge during the 1980s and 1990s, when crops and pasture had increased to cover more than 50% of the basin (adapted from Costa et al. 2003).

Costa et al 2003, adapted by Foley et al. 2007

•Can this approach help us understand the links between the changes in water yields at the <1 ha and the changes (or lack of) at the river basin scale?

Figure 4. Effects of land cover change on river flow. Here we illustrate the observed changes in river discharge in the Tocantins river basin that resulted from land-cover change and agricultural clearing in the mid-20th century. The solid line is the mean monthly discharge for the period 1950–60s, when crops and pasture covered about 30% of the land area of the 176 000 km² basin. The dotted line is the river discharge during the 1980s and 1990s, when crops and pasture had increased to cover more than 50% of the basin (adapted from Costa et al. 2003).