1 Example: autocatalysis kinetics

We consider the kinetics of an autocatalytic reaction [1]. The structure of the reactions is

$$A \xrightarrow{k_1} B$$

$$B + B \xrightarrow{k_2} C + B$$

$$B + C \xrightarrow{k_3} C + A,$$

where k_1 , k_2 , k_3 are the rate constants and A, B and C are the chemical species involved. The corresponding ODEs are

$$x'_{1} = -k_{1}x_{1} + k_{3}x_{2}x_{3}$$

$$x'_{2} = k_{1}x_{1} - k_{2}y_{2}^{2} - k_{3}x_{2}x_{3}$$

$$x'_{3} = k_{2}y_{2}^{2}$$

Given $k_1 = 0.04, k_2 = 1.0e4, k_3 = 3.0e7$, we seek the initial condition for $x_1(t=0)$, combined with initial condition $x_2(t=0) = 0.0$ and $x_3(t=0) = 0.0$.

References

[1] H. H. Robertson. Numerical analysis, an introduction, chapitre The solution of a set of reaction rate equations. Academic Press, 1966.