Notes for MATH 210A

Quin Darcy

California State University, Sacramento

Sep 28, 2019

1 Exam 1

Proposition 1.1. If (a, b) = g, $d \mid a$, and $d \mid b$, then $d \mid g$.

Proof. Assume that (a,b) = g, $d \mid a$, and $d \mid b$. Since (a,b) = g, then there exists $x, y \in \mathbb{Z}$ such that g = ax + by. Moreover, since $d \mid a$ and $d \mid b$, then there exists $k_1, k_2 \in \mathbb{Z}$ such that $a = k_1d$ and $b = k_2d$. Substituting in for the first equation, we get that $g = (k_1d)x + (k_2d)y = d(k_1x + k_2y)$. Hence, there exists $m \in \mathbb{Z}$ such that g = dm, namely $m = (k_1x + k_2y)$. Thus, $d \mid g$.

Proposition 1.2. If (a, c) = 1 and (b, c) = 1, then (ab, c) = 1.

Proof. Assume that (a,c)=1 and that (b,c)=1. Since (a,c)=1 then there exists $x,y\in\mathbb{Z}$ such that 1=ax+cy and since (b,c)=1, then there exists $v,w\in\mathbb{Z}$ such that 1=bv+cw. Thus,

$$(ax + cy)(bv + cw) = ab(xv) + ac(xw) + bc(vy) + c^{2}(yw)$$
$$= ab(xv) + c(axw + bvy + cyw)$$
$$= 1$$

Since $xv \in \mathbb{Z}$ and $axw + bvy + cyw \in \mathbb{Z}$, then (ab, c) = 1.

Proposition 1.3. If (a, n) = 1, then there exists $x \in \mathbb{Z}$ such that $ax \equiv 1 \pmod{n}$, and (x, n) = 1.

Proof. Assume that (a,n)=1. Then it follows that there exists $x,y\in\mathbb{Z}$ such that ax+ny=1. Thus, ax-1=ny. Thus, $n\mid (ax-1)$. Hence, $ax\equiv 1 \pmod{n}$. Additionally, since $a\in\mathbb{Z}$ and ax+ny=1, then (x,n)=1. \square

Proposition 1.4. Assume (G, \star) is a finite group, and |G| = n. If $g \in G$, then o(g) is finite and if $g^t = e$, then $o(g) \mid t$.

Proof. Let G be a finite group with order n. Take $g \in G$ and assume o(g) is not finite. Then there does not exist $k \in \mathbb{Z}$ with k > 0 such that $g^k = e$. Now let $k_1, k_2 \in \mathbb{Z}$ where $k_1, k_2 > 0$ and $k_1 \neq k_2$. Assume $g^{k_1} = g^{k_2}$. Then $g^{k_2-k_1} = e$. Since $k_2 - k_1 \in \mathbb{Z}$, and $o(g) \leq k_2 - k_1$, then o(g) is finite. Since this is a contradiction, then it is the case that for all $k_1, k_2 \in \mathbb{Z}$ where $k_1, k_2 > 0$ and $k_1 \neq k_2$, then $g^{k_1} \neq g^{k_2}$. Thus, there exists a one-to-one and onto correspondence between $\langle g \rangle$ and \mathbb{Z} . However, since $\langle g \rangle \subseteq G$ and |G| = n, then we a contradiction and o(g) must be finite.

Let $t \in \mathbb{Z}$ such that $g^t = e$. Then $g^t = g^{o(g)}$ which implies $g^{t-o(g)} = e$. We now have that either t = o(g), in which case $o(g) \mid t$, or $t \neq o(g)$. If $t \neq o(g)$, then either $o(g) \nmid t$ or $o(g) \mid t$. If $o(g) \nmid t$, then by the division algorithm, there exists $q, r \in \mathbb{Z}$ with $0 \leq r < o(g)$, such that t = q(o(g)) + r. Thus,

$$g^{t} = g^{q(o(g))+r}$$

$$= g^{q(o(g))} \star g^{r}$$

$$= (g^{o(g)})^{q} \star g^{r}$$

$$= e^{q} \star g^{r}$$

$$= g^{r}.$$

However, since $g^t = e$ and $g^r = g^t$, then $g^r = e$. This is a contradiction since r < o(g). Therefore, $o(g) \mid t$.

Proposition 1.5. If (G, \star) is a group, $a \in G$, o(a) = n, $m \in \mathbb{Z}^+$, and d = (m, n), then $o(a^m) = o(a^d)$.

Proof. Assume (G, \star) is a group, $a \in G$, o(a) = n, $m \in \mathbb{Z}^+$, and that d = (m, n). Let $t = o(a^d)$ and $y = o(a^m)$. We want to show that $t \mid y$ and $y \mid t$. Since d = (m, n), then $d \mid m$. Thus, there exists $k \in \mathbb{Z}$ such that m = dk. Thus, $(a^m)^t = (a^{dk})^t = a^{dkt} = e$. Thus, by Proposition 1.4, $y \mid t$.

Since d = (m, n), then there exists $u, v \in \mathbb{Z}$ such that d = um + vn. Thus, $(a^d)^y = a^{dy} = a^{(um+vn)y} = a^{umy} \star a^{vny} = (a^m)^{uy} \star (a^n)^{vy} = e^u \star e^{vy} = e$. Thus, by Proposition 1.4, $t \mid y$. Thus, t = y. Therefore, $o(a^m) = o(a^d)$.

Definition 1.1. A group (G, \star) acts on a set S if and only if there exists $\varphi \colon G \times S \to S$ (called a **group action**) such that for all $g, h \in G$ and $s \in S$

- (i) $\varphi((g \star h, s)) = \varphi((g, \varphi(h, s)))$
- (ii) $\varphi((e,s)) = s$

Definition 1.2. Given a group (G, \star) , a set S, an action φ , and $s \in S$, the set $G_s = \{g \in G : \varphi((g, s)) = s\}$ is called the **stabilizer of** s **in** G, or the **isotropy group of** s.

Definition 1.3. Given $s \in S$, the set $G(s) = \{\varphi((g,s)) : g \in G\}$ is called the *orbit of* s *in* G. We will also sometimes denote the orbit of $s \in S$ as $\operatorname{orb}_{\varphi}(s)$.

Definition 1.4. Given a group (G, \star) and an element $s \in G$, the set $N(s) = \{g \in G : g \star s = s \star g\}$ is called the **centralizer** or **normalizer** of s.

Proposition 1.6. Let (G, \star) be a group, S be a set, φ be a action of G on S, and let $s \in S$, then $G_s \subseteq_q G$.

Proof. First we must show that $G_s \neq \emptyset$. Recall, that by Definition 1.2, $G_s = \{g \in G : \varphi((g,s)) = s\}$. Since φ is an action of G on S, then by (ii) of Definition 1.1, $\varphi((e,s)) = s$, for all $s \in S$. Thus, $e \in G_s$ and therefore $G_s \neq \emptyset$. Next, we want to show that $a \star b^{-1} \in G_s$ whenever $a, b \in G_s$. So let $a, b \in G_s$. It follows that $\varphi((a,s)) = s$ and that $\varphi((b,s)) = s$. Additionally, since $\varphi((e,s)) = s$, then it follows that

$$\begin{split} \varphi((a,s)) &= \varphi((a,\varphi((e,s)))) \\ &= \varphi((a,\varphi((b^{-1} \star b,s)))) \\ &= \varphi((a \star b^{-1} \star b,s)) \\ &= \varphi(((a \star b^{-1}) \star b,s)) \\ &= \varphi((a \star b^{-1},\varphi((b,s)))) \\ &= \varphi((a \star b^{-1},s)) \\ &= s. \end{split}$$

Thus, by the last equality, we have that $\varphi((a \star b^{-1}, s)) = s$. Hence, $a \star b^{-1} \in G_s$. Therefore, $G_s \subseteq_g G$.

Definition 1.5. If $\theta: G \to G$ is an isomorphism, then θ is called an *automorphism* of G.

Proposition 1.7. The set, Aut(G), of automorphisms of G equipped with the operation \circ of composition is a group.

Proof. Since the identity map on G is an automorphism, then $i_G \in \operatorname{Aut}(G)$ and thus, $\operatorname{Aut}(G) \neq \emptyset$. Composition of maps is associative, the composition of two bijective maps is a bijective map, and since each map is bijective, it has an inverse which is also in $\operatorname{Aut}(G)$. Thus, $(\operatorname{Aut}(G), \circ)$ is a group.

Proposition 1.8. Assume that $\varphi \colon G \times S \to S$ is an action of G on S. For each $g \in G$, define $\theta_g \colon S \to S$ by $\theta_g(t) = \varphi((g,t))$. Then σ_g is a permutation of S.

Proof. We want to show that $\sigma_g \colon S \to S$ is bijective (i.e., invertible). Thus, we need to show that for all $g \in G$, σ_g has an inverse, namely $\sigma_{g^{-1}}$. We want $(\sigma_g \circ \sigma_{g^{-1}})(x) = x$, for all $x \in S$. Thus, we let $x \in S$, then

$$(\sigma_g \circ \sigma_{g^{-1}})(x) = \sigma_g(\sigma_{g^{-1}}(x))$$

$$= \sigma_g(\varphi(g^{-1}, x))$$

$$= \varphi(g, \varphi(g^{-1}, x))$$

$$= \varphi(gg^{-1}, x)$$

$$= \varphi(e, x)$$

$$= x.$$

Similarly, $(\sigma_{g^{-1}} \circ \sigma_g)(x) = x$. Thus, σ_g is invertible and therefore is a bijection. Thus, σ_g is a permutation of S.

Proposition 1.9. Recall that A(S) denotes the group of all permutations is S. Define $\theta \colon G \to A(S)$ by $\theta(g) = \sigma_g$. Then θ is a homomorphism.

Proof. θ is a function by definition since, for each $g \in G$. $\theta(g) = \sigma_g \in A(S)$. To show that θ is well defined, let $g, h \in G$ and assume that g = h. Then $\theta(g) = \sigma_g$ and $\theta(h) = \sigma_h$. Let $t \in S$, then $\sigma_g(t) = \varphi(g,t) = \varphi(h,t) = \sigma_h(t)$. Thus, $\sigma_g = \sigma_h$. Thus, $\theta(g) = \theta(h)$ and θ is therefore well defined.

Now we will show that θ is a homomorphism. Let $g, h \in G$. Then $\theta(gh) = \sigma_{gh}$. Thus, for any $x \in S$, we have that

$$\sigma_{gh}(x) = \varphi(gh, x)$$

$$= \varphi(g, \varphi(h, x))$$

$$= \varphi(g, \sigma_h(x))$$

$$= \sigma_g(\sigma_h(x))$$

$$= (\sigma_g \circ \sigma_h)(x).$$

Thus, $\theta(gh) = \theta(g) \circ \theta(h)$. Therefore, θ is a homomorphism. The converse of the above is also true. Assume that $\alpha \colon G \to A(S)$ is a homomorphism, and define $\varphi \colon G \times S \to S$ by $\varphi((g,s)) = (\alpha(g))(s)$. Then φ is a group action. Therefore actions of a group G on a set S and homomorphisms from G into A(S) are essentially the same.

Note that \Box

Proposition 1.10. Assume that $(G.\star)$ is a group, $N \triangleleft G$ and that $\varphi \colon G \times N \to N$ by $\varphi((g,n)) = g \star n \star g^{-1}$. Then φ is an action on N.

Proof. Since $N \triangleleft G$, then for all $g \in G$ and $n \in N$, $\varphi(g,n) = g \star n \star g^{-1} \in N$. Thus, $\varphi \colon GN \to N$. Now let $(g,n), (h,m) \in G \times N$ and assume (g,n) = (h,m). Then since this implies that g = h and n = m, then $\varphi(g,n) = g \star n \star g^{-1} = h \star m \star h^{-1} = \varphi(h,m)$. Thus, φ is well defined.

We want to show that for all $h, g \in G$ and all $n \in N$ that

$$\varphi(h\star g,n)=\varphi(h,\varphi(g,n))\quad\text{and}\quad \varphi(e,n)=n.$$

Let $h, g \in G$ and let $n \in N$. Then

$$\begin{split} \varphi(h\star g,n) &= (h\star g)\star n\star (h\star g)^{-1} \\ &= (h\star g)\star n\star (g^{-1}\star h^{-1}) \\ &= h\star (g\star n\star g^{-1})\star h^{-1} \\ &= \varphi(h,g\star n\star g^{-1}) \\ &= \varphi(h,\varphi(g,n)). \end{split}$$

Note that the fourth equality holds since N is normal which means that for all $g \in G$ and $n \in N$, $g \star n \star g^{-1} \in N$ and so $(h, g \star n \star g^{-1}) \in G \times N$. We have satisfied the first of the two equalities. Now consider

$$\varphi(e,n) = e \star n \star e^{-1} = e \star n \star e = n.$$

Therefore, φ is an action of G on N.

Proposition 1.11. Let G be a group, $N \triangleleft G$, and $\varphi \colon G \times N \to N$. By Proposition 1.10, we know φ is an action. Then let θ be the permutation representation associated with the action φ . Then θ is a homomorphism from G to $\operatorname{Aut}(N)$.

Proof. By Proposition 1.9, we know that $\theta \colon G \to A(N)$ is a homomorphism. We want to show that for each $g \in G$, $\theta(g) = \sigma_g$ is an isomorphism. By definition, we already have that σ_g is bijective, and so we need only that σ_g is a homomorphism. Thus, we let $m, n \in N$. Then $\sigma_g(mn) = \varphi(g, mn) = gmng^{-1} = (gmg^{-1})(gng^{-1}) = \varphi(g, m)\varphi(g, n)$. Thus, σ_g is a homomorphism and thus σ_g is an isomorphism from N to N. Hence, for all $g \in G$, $\theta(g) = \sigma_g \in \operatorname{Aut}(N)$. Therefore, $\theta \colon G \to \operatorname{Aut}(N)$ is a homomorphism.

Note that

$$\begin{aligned} \ker \theta &= \{g \in G \mid \theta(g) = i_G\} \\ &= \{g \in G \mid \sigma_g = i_G\} \\ &= \{g \in G \mid \forall n \in N \colon \sigma_g(n) = n\} \\ &= \{g \in G \mid \forall n \in N \colon \varphi(g, n) = n\} \\ &= \{g \in G \mid \forall n \in N \colon gng^{-1} = n\} \\ &= \{g \in G \mid \forall n \in N \colon gn = ng\} \\ &= C_G(N). \end{aligned}$$

Proposition 1.12. Assume that G is a group, that $H \triangleleft G$, $N \triangleleft G$, and that $N \cap H = \{e\}$. Then

- (i) For all $n \in N$ and for all $h \in H$, nh = hn.
- (ii) $N \times H \cong NH$.

Proof.

- (i) Let $n \in N$ and let $h \in H$. Then since N is normal in G, then $hnh^{-1} \in N$. By closure of N, it follows that $(hnh^{-1})n^{-1} \in N$. Similarly, since $h \in H$, then $h^{-1} \in H$. Additionally, since H is normal in G, then $nh^{-1}n^{-1} \in H$. By closure, it follows that $h(nh^{-1}n^{-1}) \in H$. Thus, $hnh^{-1}n^{-1} \in N \cap H$. However, since $N \cap H = \{e\}$, then it follows that $hnh^{-1}n^{-1} = e$. Thus, hn = nh.
- (ii) Let $f: N \times H \to NH$ be defined by f((n,h)) = nh. We want to show that f is an isomorphism. First we will show that f is well defined. Let (a,b) = (c,d). Then f((a,b)) = ab and f((c,d)) = cd. Since a = c and b = d, by assumption, then ab = cd. Thus, f((a,b)) = f((c,d)). Thus, f is a function.

Now we will show that f is a homomorphism. Let $(a,b), (c,d) \in N \times H$. Then $f((a,b) \odot (c,d)) = f((ac,bd)) = (ac)(bd)$. However, since cb = bc by (a), then (ac)(bd) = (ab)(cd) = f((a,b))f((c,d)). Thus, f is a homomorphism.

Now we will show that f is onto. Let $nh \in NH$, then f((n,h)) = nh. Thus, f is onto.

Assume f((a,b)) = f((c,d)). Then ab = cd. Thus, $c^{-1}a = db^{-1}$. Since $a,c \in N$, then $c^{-1}a \in N$ and since $b,d \in H$, then $db^{-1} \in H$. Thus, $c^{-1}a \in N \cap H$ and $db^{-1} \in N \cap H$. Thus, $c^{-1}a = e$ and so a = c. Similarly, $db^{-1} = e$ and so d = b. Thus, (a,b) = (c,d). Thus, f is 1-1. Therefore, f is an isomorphism and so $N \times H \cong NH$.

Proposition 1.13. Let G be a group, $M \subseteq G$, $N \triangleleft G$, and $N \subseteq M$. Then $M/N \cong G/N$ iff $M \triangleleft G$.

Proof.

Proposition 1.14. Assume that G is a group, $N \triangleleft G$, and that $M \triangleleft G$. Then $NM/M \cong N/N \cap M$.

Proof.

Proposition 1.15. Let G be a group, S be a set, and let $\varphi \colon G \times S \to S$ be an action of the group G on S. Then the set of orbits of φ partition S.

Proof. Let $O = \{G(s) \mid s \in S\}$. Since $s = \varphi(e,s)$, then $s \in G(s)$ and $G(s) \subseteq \bigcup O$. Thus, $s \in \bigcup O$ and $\bigcup O \neq \varnothing$. Let $s \in S$. Then it follows that $s = \varphi(e,s) \in G(s)$. Since $G(s) \subseteq \bigcup O$, then $s \in \bigcup O$. Let $\varphi(g,s) \in \bigcup O$. Then by Definition 1.1, $\varphi \colon G \times S \to S$, then $\varphi(g,s) \in S$. Thus, $\bigcup O \subseteq S$. Hence, $\bigcup O = S$.

Assume $G(s) \cap G(t) \neq \emptyset$. Then there exists $g,h \in G$ such that $\varphi(g,s) = \varphi(h,t)$. By (ii) of Definition 1.1, $\varphi(e,s) = s$. Thus, $\varphi(g^{-1},\varphi(g,s)) = \varphi(g^{-1},\varphi(h,t))$. Thus, $\varphi(g^{-1}h,t) = s$. Now let $x \in G(s)$, then there exists $f \in G$, such that $x = \varphi(f,s)$. Thus, $x = \varphi(f,s) = \varphi(f,\varphi(g^{-1}h,t)) = \varphi(fg^{-1}h,t) \in G(t)$. Thus, $G(s) \subseteq G(t)$. Similarly, $G(t) \subseteq G(s)$. Thus, G(s) = G(t). Therefore, G(s) = G(t). Therefore, G(s) = G(t). Therefore, G(s) = G(t).

Theorem 1.1 (Orbit-Stabilizer Theorem). Let $\varphi \colon G \times S \to S$ be an action of the group G on the set S. Then for all $s \in S$,

$$\left|G(s)\right| = \frac{|G|}{|G_s|}.$$

Proof. Define $\theta: G/G_s \to G(s)$ by $\theta(G_s a) = \varphi(a^{-1}, s)$. Let $G_s a, G_s b \in G/G_s$ and assume that $G_s a = G_s b$. Then $\theta(G_s a) = \varphi(a^{-1}, s)$ and $\theta(G_s b) = \varphi(b^{-1}, s)$. Recall that, by (??), $G_s a = G_s b$ iff $ab^{-1} \in G_s$. Thus, $\varphi(ab^{-1}, s) = s$. Substituting in for s, we get that $\varphi(a^{-1}, s) = \varphi(a^{-1}, \varphi(ab^{-1}, s))$. Since φ is an action, then $\varphi(a^{-1}, s) = \varphi(a^{-1}ab^{-1}, s) = \varphi(b^{-1}, s)$. Thus, $\varphi(a^{-1}, S) = \varphi(b^{-1}, s)$. Thus, $\theta(G_s a) = \theta(G_s b)$. Hence, θ is well-defined.

Now assume that $\theta(G_s a) = \theta(G_s b)$. Then $\varphi(a^{-1}, s) = \varphi(b^{-1}, s)$. Since φ is an action, then $\varphi(e, s) = s$. Thus, $\varphi(aa^{-1}, s) = s = \varphi(bb^{-1}, s)$. Thus, we have that $\varphi(a, \varphi(a^{-1}, s)) = \varphi(b, \varphi((b^{-1}, s))$. Thus, $\varphi(a, \varphi(b^{-1}, s)) = \varphi(ab^{-1}, s) = s$. Thus, $ab^{-1} \in G_s$. Thus, $G_s a = G_s b$. Hence, θ is 1-1.

Let $\varphi(g,s) \in G(s)$. Then $\theta(G_sg^{-1}) = \varphi((g^{-1})^{-1},s) = \varphi(g,s)$. Thus, θ is onto. Thus, θ is a well-defined bijection from G/G_s to G(s). Therefore,

$$\left| G(s) \right| = \frac{|G|}{|G_s|}.$$

Proposition 1.16. If $\varphi \colon G \times S \to S$ is an action of a group G on a set S. Then $G_s \subseteq_q G$.

Proof. It follows from the (ii) of Definition 1.1 that $\varphi(e,s)=s$ and so $e\in G_s$. Thus, $G_s\neq\varnothing$. Now let $a,b\in G_s$. Then we have that $\varphi(a,s)=s=\varphi(b,s)$. Thus, $\varphi(e,s)=s$ and so $\varphi(b^{-1}b,s)=\varphi(b^{-1},\varphi(b,s))=\varphi(b^{-1},\varphi(a,s))=\varphi(b^{-1}a,s)=s$. Thus, $\varphi(a,s)=\varphi(a,\varphi(b^{-1}a,s))=\varphi(ab^{-1},\varphi(a,s))=\varphi(ab^{-1},s)=s$. Thus, $ab^{-1}\in G_s$. Therefore, $G_s\subseteq_g G$.

Proposition 1.17. Let G be a group of order p^n and let $\varphi \colon G \times S \to S$ be an action of the group G on the set S. Then given the set

$$S_0 = \{ s \in S \mid \forall g \in G \colon \varphi(g, s) = s \},\$$

the following holds

$$|S| \equiv |S_0| \pmod{p}$$
.

Proof. Consider the orbit of some $s \in S$. We have that $G(s) = \{\varphi(g, s) \mid g \in G\}$. Suppose that this set has one element. Then since φ is an action, we know that $\varphi(e, s) = s \in G(s)$. Thus, it follows that for all $g \in G$, $\varphi(g, s) = s$. Thus, $s \in S_0$. Similarly, if $s \in S_0$, then |G(s)| = 1. Thus, |G(s)| = 1 iff $s \in S_0$.

Now by Theorem 1.1 we can write S as the disjoint union of all of the orbits of φ . Thus, $S = S_0 \cup G(s_1) \cup \cdots \cup G(s_n)$. With $|G(s_i)| > 1$ for all i. Hence $|S| = |S_0| + |G(s_1)| + \cdots + |G(s_n)|$. Note that by Theorem 1.1, $|G(s_i)|$ divides |G|. Consequently, $p \mid |G(s_i)|$ for each i. Therefore, $|S| \equiv |S_0| \pmod{p}$.

Theorem 1.2 (Cauchy's Theorem). If G is a finite group whose order is divisible by a prime p, then G contains an element of order p.

Proof. Let X be the set of p-tuples of groups elements

$$X = \{(a_1, \dots, a_p) \in G^p \mid a_1 \cdots a_p = e\}.$$

It follows that a_p is uniquely determined as $(a_1 \cdots a_{p-1})^{-1}$. Thus, $|X| = n^{p-1}$, where |G| = n. Since $p \mid n$, then $|X| \equiv 0 \pmod{p}$.

Let σ be the cycle $(12 \cdots p)$ in S_p . We can let σ act on X by

$$\varphi(\sigma, (a_1, \dots, a_p)) = (a_{\sigma(1)}, \dots, a_{\sigma(p)}) = (a_2, a_3, \dots, a_p, a_1).$$

Note that $(a_2, \ldots, a_p, a_1) \in X$, for $a_1(a_2 \cdots a_p) = e$ implies that $a_1 = (a_2 \cdots a_p)^{-1}$, so $(a_2 \cdots a_p)a_1 = e$ also. Thus, σ acts on X, and we consider the subgroup $\langle \sigma \rangle$ of S_p to act on X by iteration in the natural way.

Now $(a_1, a_2, \ldots, a_p) \in S_0$ iff $a_1 = \cdots = a_p$; clearly, $(e, e, \ldots, e) \in S_0$. Thus, $|S_0| \neq 0$. By Proposition 1.17, $|X| \equiv |S_0| \pmod{p}$. However, $|X| \equiv 0 \pmod{p}$. Thus, $|S_0| \equiv 0 \pmod{p}$. Thus, $p \mid |S_0|$. Thus, there exists $a \neq e$ such that $(a, a, \ldots, a) \in S_0$. Hence, $a^p = e$. Thus, o(a) = p.

Definition 1.6. A group in which every element has order a power (≥ 0) of some fixed prime p is called a p-group. If H is a subgroup of a group G and H is a p-group, H is said to be a p-subgroup of G.

Corollary 1.2.1. A finite group G is a p-group if and only if |G| is a power of p.

Proof. If G is a p-group and q is a prime which divides |G|, then G contains an element of order q by Theorem 1.2. Since every element of G has order a power of p, then for the element of order q, it must be the case that $q = p^{\alpha}$. However, for any $1 \leq \alpha$, it would follow that q is not prime. Thus, q = p. Hence, |G| is a power of p.

Assume |G| is a power of p. Then take any $a \in G$ and consider the subgroup generated by a, $\langle a \rangle$. By Langrange's Theorem, it follows that $|\langle a \rangle| \mid |G|$. Thus, if we denote $|G| = p^n$, then $|\langle a \rangle| \mid p^n$. Thus, $|\langle a \rangle| = p^m$, for some $0 \le m \le n$. Therefore, every element of G has order (≥ 0) of p and G is thereby a p-group.

Lemma 1.2.1. If H is a p-subgroup of a finite group G, then

$$[N_G(H)\colon H] = [G\colon H] (mod\ p).$$

Proof. Let S be the set of left cosets of H in G and define $\varphi \colon H \times S \to S$ by $\varphi(h, aH) = haH$. It is easily shown that φ is an action. Then $|S| = [G \colon H]$. Also, note that $xH \in S_0$ iff hxH = xH for all $h \in H$. This is equivalent to $x^{-1}hxH = H$ for all $h \in H$. Moreover, this is equivalent to $x^{-1}hx \in H$ for all $h \in H$. Thus, $x^{-1}Hx = H$. Thus, $xHx^{-1} = H$. Hence, $x \in N_G(H)$. Therefore, $|S_0|$ is the number of cosets xH with $x \in N_G(H)$. That is, $|S_0| = [N_G(H) \colon H]$. By Proposition 1.17, $|N_G(H) \colon H| = |S_0| \equiv |S| = [G \colon H] \pmod{p}$.

Corollary 1.2.2. If H is a p-subgroup of a finite group G such that p divides [G: H], then $N_G(H) \neq H$.

Proof. Since $p \mid [G \colon H]$ then $[G \colon H] \equiv 0 \pmod{p}$. Additionally, by Lemma 1.2.1, we have that $[N_G(H) \colon H] \equiv [G \colon H] \pmod{p}$. Thus, $[N_G(H) \colon H] \equiv 0 \pmod{p}$. Hence, $p \mid [N_G(H) \colon H]$ and it is always the case that $[N_G(H) \colon H] \ge 1$ since $H \subseteq_g N_G(H)$. Thus, there are at least p many cosets of H in $N_G(H)$. Therefore, $N_G(H) \ne H$.

Corollary 1.2.3. If H is a p-subgroup of a finite group G such that $p \mid [G: H]$, then $N_G(H) \neq H$.

Proof. By Lemma 1.2.1, $[N_G(H): H] \equiv [G: H] \pmod{p}$. However, $p \mid [G: H]$ and thus $[G: H] \equiv 0 \pmod{p}$. Hence, $[N_G(H): H] \equiv 0 \pmod{p}$. Thus, $p \mid [N_G(H): H]$. Since $H \subseteq_g N_G(H)$, then $H \in N_G(H)/H$ and $[N_G(H): H] \ge 1$. Since $p \mid [N_G(H): H]$, then $[N_G(H): H] > 1$ and thus, $N_G(H) \ne H$, otherwise $[N_G(H): H] = 1$.

Proposition 1.18. If N is a normal subgroup of a group G, then every subgroup of G/N is of the form K/N, where K is a subgroup of G that contains N. Furthermore, K/N is normal in G/N if and only if K is normal in G.

Proof.

Proposition 1.19. Let G be a group and H be a subgroup of G. Then $N_G(H) \subseteq_g G$.

Proof. Let $\varphi \colon G \times S \to S$, where S is the set of all subgroups of G, be the group action defined by conjugation, then for any $H \subseteq_g G$, $G_H = \{g \in G \colon gH = Hg\} = N_G(H)$. Then by Proposition 1.6, $G_H \subseteq_g G$. Therefore, $N_G(H) \subseteq_g G$.

Proposition 1.20. If G is a group and H is a subgroup of G. Then H is normal in $N_G(H)$.

Proof. Let $h \in H$. Then since hH = H = Hh, it follows that $H \subseteq N_G(H)$. Thus, since H is a subgroup of G, and by Proposition 1.19 $N_G(H)$ is a subgroup of G, then $H \subseteq N_G(H)$ implies that $H \subseteq_g N_G(H)$. Now let $g \in N_G(H)$. Then gH = Hg, Thus, H is normal in $N_G(H)$.

Theorem 1.3 (First Sylow Theorem). Let G be a group of order $p^n m$, with $n \geq 1$, p prime, and (p,m) = 1. Then G contains a subgroup of order p^i for each $1 \leq i \leq n$ and every subgroup of G of order p^i (i < n) is normal in some subgroup of order p^{i+1} .

Proof. Since $p \mid |G|$, then by Theorem 1.2, there exists $a \in G$ such that o(a) = p. Thus, we have that $\langle a \rangle \subseteq_g G$ and $o(\langle a \rangle) = p$. Proceeding by induction assume H is a subgroup of G of order p^i $(1 \leq i < n)$. Then since G is finite, by Lagrange's Theorem , $[G \colon H] = |G|/|H| = p^{n-i}$, where 0 < p-i and so $p \mid [G \colon H]$. Thus, by Lemma 1.2.1, $[N_G(H) \colon H] \equiv [G \colon H] \equiv 0 \pmod{p}$. Moreover, by Corollary 1.2.2, $N_G(H) \neq H$. Thus, $[N_G(H) \colon H] > 1$. Hence, $[N_G(H) \colon H] \equiv 0 \pmod{p}$ implies that $p \mid [N_G(H) \colon H]$. Also note that by Proposition 1.20, $H \triangleleft N_G(H)$. Thus, $N_G(H)/H$ is a group by Proposition ??. Since p divides the order of this group, then by Theorem 1.2, there exists an element and hence a subgroup (generated by that element) of order p. By Proposition 1.18, this subgroup is of the form H_1/H where H_1 is a subgroup of $N_G(H)$ containing H. Since H is normal in $N_G(H)$, then it follows that H is normal in H_1 . Finally, $|H_1| = |H| |H_1/H| = p^i p = p^{i+1}$.

Definition 1.7. A subgroup P of a group G is said to be a **Sylow p-subgroup** (p prime) if P is a maximal p subgroup of G. That is, if $P \subseteq_g H \subseteq_g G$, then if H is a p-subgroup, then P = H.

Corollary 1.3.1. Let G be a group of order $p^n m$ with p prime, $n \ge 1$ and (m,p) = 1. Let H be a p-subgroup of G.

- (i) H is a Sylow p-subgroup of G if and only if $|H| = p^n$.
- (ii) Every conjugate of a Sylow p-subgroup is a Sylow p.
- (iii) If there is only one Sylow p-subgroup P, then P is normal in G.

Proof.

- (i) Assume that H is a Sylow p-subgroup of G. Then by Definition 1.7, H is a p-subgroup of G. Thus, by Definition 1.6, $|H| = p^i$ for some $i \geq 0$. Now assume that P is a subgroup of G of order p^n such that $H \subseteq_g P$. The subgroup P exists by Theorem 1.3. However, since H is a Sylow p-subgroup, then H = P. Thus, $|H| = p^n$. Now assume that $|H| = p^n$. Then by Langrange's Theorem, $|H| \mid |G|$ and |G|/|H| = m. Since (m, p) = 1, then H is a maximal p-subgroup of G. Thus, H is a Sylow p-subgroup of G.
- (ii) Let P be a Sylow p-subgroup of G and let $g \in G$. Then the set $gPg^{-1} \neq \emptyset$ since $e \in P$ and thus $geg^{-1} = e \in gPg^{-1}$. Now let $a,b \in G$ and assume that $a,b \in gPg^{-1}$. Then $a = gh_1g^{-1}$ and $b = gh_2g^{-1}$ for some $h_1,h_2 \in P$. Thus, $b^{-1} = gh_2^{-1}g^{-1}$. Thus, $ab^{-1} = (gh_1g^{-1})(gh_2^{-1}g^{-1}) = g(h_1h_2^{-1})g^{-1}$. Since $h_1h_2^{-1} \in P$, then $ab^{-1} \in gPg^{-1}$. Thus, $gPg^{-1} \subseteq_g G$.

Now let $f: P \to gPg^{-1}$ be defined by $f(h) = ghg^{-1}$. Let $h, t \in P$ and assume h = t. Then $f(h) = ghg^{-1} = gtg^{-1} = f(t)$. Thus, f is well defined. Now assume that f(h) = f(t). Then $ghg^{-1} = gtg^{-1}$. Thus, gh = gt and so h = t. Hence, f is 1-1. Now let $ghg^{-1} \in gPg^{-1}$. Then $f(g) = ghg^{-1}$ and thus f is onto. Hence, f is a bijection. Therefore, $|P| = |gPg^{-1}|$. Thus, given any Sylow p-subgroup, then for any $g \in G$, the conjugate gPg^{-1} is also a Sylow p-subgroup.

(iii) Assume that there is only one Sylow p-subgroup P. Then by (ii), for all $g \in G$, gPg^{-1} is another Sylow p-subgroup. However, since there is only one, then it follows that $gPg^{-1} = P$. Thus, P is normal in G.

Theorem 1.4 (Sylow 1, Version 2). Let G be a group of order $n = p^{\alpha}m$, where $1 \leq \alpha$, and (p, m) = 1. Then there exists $H \subseteq_g G$ such that $o(H) = p^{\alpha}$.

Proof. Let $\mathscr{C} = \{C \subseteq G \mid |C| = p^{\alpha}\}$. It follows from this definition that $|\mathscr{C}| = \binom{n}{p^{\alpha}}$. Expanding this out, we see that

$$|\mathscr{C}| = \frac{n!}{(n-p^{\alpha})!(p^{\alpha})!}.$$

After cancelling out the appropriate terms, we obtain

$$|\mathscr{C}| = \frac{n(n-1)\cdots(n-p^{\alpha}+1)}{p^{\alpha}(p^{\alpha}-1)\cdots(p^{\alpha}-p^{\alpha}+1)} = \prod_{k=0}^{p^{\alpha}-1} \frac{(n-k)}{(p^{\alpha}-k)}.$$

We will replace n with $p^{\alpha}m$ and we note that for each $0 \leq k \leq p^{\alpha} - 1$, we can write $k = p^{i}L$, where $0 \leq i < \alpha$ is the highest power of p that occurs in the prime factorization of k. It also follows that $p \nmid L$. Using these substitutions, the above equality becomes

$$|\mathscr{C}| = \prod_{k=0}^{p^{\alpha}-1} \frac{(p^{\alpha}m - p^{i}L)}{(p^{\alpha} - p^{i}L)} = \prod_{k=0}^{p^{\alpha}-1} \frac{(p^{\alpha-i}m - L)}{(p^{\alpha-i} - L)} = \frac{\prod\limits_{k=0}^{p^{\alpha}-1} (p^{\alpha-i}m - L)}{\prod\limits_{k=0}^{p^{\alpha}-1} (p^{\alpha-i} - L)}.$$

Now let $p^{\alpha-i}m-L$ be any single term in the product $\prod_{k=0}^{p^{\alpha}-1}(p^{\alpha-i}m-L)$. Since $i<\alpha$ and $1<\alpha$, then $1\leq \alpha-i$ and thus, $p\mid (p^{\alpha-i}m)$. However, as stated earlier, $p\nmid L$. Thus, $p\nmid (p^{\alpha-i}m-L)$. Since $p^{\alpha-i}m-L$) was arbitrary, then it follows that

$$p \nmid \left(\prod_{k=0}^{p^{\alpha}-1} (p^{\alpha-i}m - L)\right).$$

Thus,

$$p \nmid \left(\frac{\prod\limits_{k=0}^{p^{\alpha}-1} (p^{\alpha-i}m - L)}{\prod\limits_{k=0}^{p^{\alpha}-1} (p^{\alpha-i} - L)}\right).$$

Therefore, $p \nmid |\mathscr{C}|$.

Now define the group action (prove) $\varphi \colon G \times \mathscr{C} \to \mathscr{C}$ by $\varphi(g,C) = gC$. By Proposition 1.15, we can partition \mathscr{C} by the collection of orbits of φ . Thus, it follows that

$$|\mathscr{C}| = \sum_{C \in \mathscr{L}} \left| G(\hat{C}) \right|.$$

Since $p \nmid |\mathscr{C}|$, then there exists $\hat{C} \in \mathscr{C}$ such that $p \nmid |G(\hat{C})|$. By Theorem 1.1,

$$\left|G(\hat{C})\right| = \frac{|G|}{|G_{\hat{C}}|} = \frac{p^{\alpha}m}{|G_{\hat{C}}|}.$$

Thus, $\left|G(\hat{C})\right|\left|G_{\hat{C}}\right|=p^{\alpha}m$. However, since $p\nmid \left|G(\hat{C})\right|$, then it follows that $p^{\alpha}\nmid \left|G(\hat{C})\right|$. Thus, $p^{\alpha}\mid \left|G_{\hat{C}}\right|$. Now let $x\in \hat{C}$, then it follows that $G_{\hat{C}}x\subseteq C$. Recall that $\left|\hat{C}\right|=p^{\alpha}$. Thus, $\left|G_{\hat{C}}x\right|=\left|G_{\hat{C}}\right|\leq \left|\hat{C}\right|=p^{\alpha}$. Thus, if $p^{\alpha}\mid \left|G_{\hat{C}}\right|$ and $\left|G_{\hat{C}}\right|\leq p^{\alpha}$, then it follows that $\left|G_{\hat{C}}\right|=p^{\alpha}$. By Proposition 1.16, $G_{\hat{C}}\subseteq g$ G. Therefore, there exists a subgroup, namely $G_{\hat{C}}$ of G with order $G_{\hat{C}}$.

Theorem 1.5 (Second Sylow Theorem). If H is a p-subgroup of a finite group G, and P is any Sylow p-subgroup of G, then there exists $x \in G$ such that $H \subseteq xPx^{-1}$. In particular, any two Sylow p-subgroups are conjugate.

Proof. Let S be the set of left cosets of P in G and let $\varphi \colon H \times S \to S$ be an action defined by $\varphi(h,aP) = haP$. Then by Proposition 1.17, $|S| \equiv |S_0| \pmod{p}$. Since $|S| = [G \colon P]$, then $|S_0| \equiv [G \colon P] \pmod{p}$. But since P is a Sylow p-subgroup of G, then $|P| = p^n$, where p^n is the highest power of p that occurs in the prime factorization of |G|. Thus, $p \nmid [G \colon P]$. Hence, $p \nmid |S_0|$. Thus, $|S_0| \neq \varnothing$ and there exists $xP \in S_0$. Thus, by definition of S_0 , $xP \in S$ and for all $h \in H$, hxP = xP. Thus, $x^{-1}hxP = P$ for all $h \in H$. Thus, since $x^{-1}hx \in x^{-1}Hx$, then $x^{-1}Hx \subseteq P$. Moreover, since $x^{-1}Hx \subseteq_g G$, then $x^{-1}Hx \subseteq_g P$. Thus, $H \subseteq_g xPx^{-1}$. Hence, if H is a Sylow p-subgroup, $|H| = |P| = |xPx^{-1}|$. Thus, $H = xPx^{-1}$.

Theorem 1.6 (Third Sylow Theorem). If G is a finite group and p is a prime, then the number of Sylow p-subgroups of G divides |G| and is of the form kp+1 for some $k \geq 0$.

Proof. By Theorem 1.5, the number of Sylow p-subgroups is the number of conjugates of any one of them, say P. But this number is $[G:N_G(P)]$. Since, $|G| = (|G|/|N_G(P)|)|N_G(P)|$. Hence, $[G:N_G(P)]$ is a divisor of |G|. Thus, the number of Sylow p-subgroups is a divisor of G. Now let $\gamma \colon P \times \operatorname{Syl}_P(G) \to \operatorname{Syl}_P(G)$ be the action of conjugation. Then assume $Q \in S_0$. Then $Q \in \operatorname{Syl}_P(G)$ and for all $g \in P$, $gQg^{-1} = Q$. Now consider $N_G(Q) = \{g \in G \mid gQg^{-1} = Q\}$. It follows that $P \subseteq_g N_G(Q)$. Since both P and Q are Sylow p-subgroups of G and hence of $N_G(Q)$ and are therefore conjugate in $N_G(Q)$. But since by Proposition 1.20, Q is normal in $N_G(Q)$. Thus, for all $g \in N_G(Q)$, $gQg^{-1} = Q$. Thus, P = Q. Hence, $S_0 = \{P\}$. By Proposition 1.17, $|\operatorname{Syl}_P(G)| \equiv |S_0| = 1 \pmod{p}$. Thus, $|\operatorname{Syl}_P(G)| = kp + 1$.

2 Results To Be Proven and Applications

Proposition 2.1. If G is a finite group, $H \subseteq_g G$, $H \neq G$, and $o(G) \nmid [G:H]!$, then H contains a nontrivial normal subgroup of G.

Proof.

Proposition 2.2. If G is a finite group, $H \subseteq_g G$, [G:G] = p, p is prime, and p is the smallest prime factor of o(G), then $H \triangleleft G$.

Proof.

Proposition 2.3. If $H \subseteq_g G$ and $N \triangleleft G$, then HN = NH is a subgroup of G, and $o(HN) = o(H)o(N)/o(H \cap N)$. Therefore, if $H \cap N = \{e\}$, then o(HN) = o(H)o(N).

Proof.

Proposition 2.4. If $N \triangleleft G$ and $M \triangleleft G$ and $N \cap M = \{e\}$, then $NM \cong N \times M$.

Proof.

Proposition 2.5. Assume that $G = \langle a \rangle$, and o(G) = n. Prove that $\operatorname{Aut}(G) \cong (\mathbb{Z}_{(n)}, \odot)$.

Proof. Let $f: \operatorname{Aut}(G) \to \mathbb{Z}_{(n)}$ be defined as $f(\theta) = [k]$ where $\theta(a) = a^k$, where $k \in \mathbb{Z}$ such that (n,k) = 1. By definition, f is defined over $\operatorname{Aut}(G)$. Next, we will check if f is well defined. Let $\theta, \gamma \in \operatorname{Aut}(G)$ and assume $\theta = \gamma$. Then we want to show that $f(\theta) = f(\gamma)$. We have that $\theta(a) = a^i$ and $\gamma(a) = a^j$. Thus, $f(\theta) = [i]$ and $f(\gamma) = [j]$. Since $\theta = \gamma$, then $a^i = a^j$. Thus, $\theta(a) = a^j$. Hence, $f(\theta) = [j] = f(\gamma)$. So f is well defined.

Now assume that $f(\theta) = f(\gamma)$. Then [i] = [j]. Thus, $i \in [j]$ and so there exists some $m \in \mathbb{Z}$ such that i = mn + j. Thus, $a^i = a^{mn+j} = a^{mn}a^j = a^j$. It follows that $\theta(a) = \gamma(a)$, and since a generates G, then $\theta = \gamma$. Hence, f is 1-1.

Now let $[k] \in \mathbb{Z}_{(n)}$. Now consider some φ whose domain is G, where $\varphi(a) = a^k$. Then we want to show that $\varphi \in \operatorname{Aut}(G)$. By definition, $\operatorname{ran}(\varphi) \subseteq G$ and so $\varphi \colon G \to G$. Now assume that $x,y \in G$ and that x=y. Then since $G = \langle a \rangle$, then $x=a^s$ and $y=a^t$, for some $s,t \in \mathbb{Z}$. Thus, $\varphi(x)=\varphi(a^s)=(a^s)^k$, and $\varphi(y)=\varphi(a^t)=(a^t)^k$. But since $a^s=a^t$, then $(a^s)^k=(a^t)^k$. Thus, $\varphi(x)=\varphi(y)$. Thus, φ is well defined. Now let $a^i,a^j \in G$. Then $\varphi(a^ia^j)=\varphi(a^{i+j})=(a^{i+j})^k=a^{ik}a^{jk}=\varphi(a^i)\varphi(a^j)$. Thus, φ is a homomorphism. Now assume $\varphi(x)=\varphi(y)$. Thus, $(a^s)^k=(a^t)^k$, for some $s,t \in \mathbb{Z}$. Thus, $a^{k(s-t)}=e$. Then $n \mid k(s-t)$, Since (n,k)=1, then $n \mid (s-t)$. Thus, s=qn+t, for some $g \in \mathbb{Z}$. Thus, $s=a^{qn+t}=a^{qn}a^t=a^t$. Hence, s=qn+t, for some s=q0. Thus, s=q1, then s=q2. Thus, s=q3 and s=q3. Thus, s=q4 is onto. Therefore, s=q5. Thus, s=q5. Thus, s=q5. Thus, s=q6. Thus, s=q6. Thus, s=q8. Thus, s=q8. Thus, s=q8. Thus, s=q9. Thus, s=q8. Thus, s=q9. Thus, s=q9.

Now we want to show that f is a homomorphism. Let $\theta, \gamma \in \operatorname{Aut}(G)$ and suppose $\theta(a) = a^i$ and $\gamma(a) = a^j$. Then we have that $(\theta \circ \gamma)(a) = \theta(\gamma(a)) = 0$

 $\theta(a^j) = (a^j)^i = a^{ji}$. Then $f(\theta \circ \gamma) = [ji] = [j] \odot [i] = f(\gamma) \odot f(\theta) = f(\theta) \odot f(\gamma)$. Thus, f is a homomorphism. Therefore, f is an isomorphism. Hence, $\operatorname{Aut}(G) \cong (\mathbb{Z}_{(n)}, \odot)$.

Proposition 2.6. If $H \subseteq_g G$, $N \triangleleft G$, $H \cap N = \{e\}$, and G = HN, then for every $x \in G$, there exist unique elements $h \in H$ and $n \in N$ such that x = hn.

Proof.

Remark. By Proposition 2.6, if there exist $h' \in H$, $n' \in N$ such that x = h'n', then hn = h'n'. Thus, $h'^{-1}h = n'n^{-1}$. Since $h'^{-1}h \in H$ and $n'n^{-1} \in N$, then $h'^{-1}h \in H \cap N$ and $n'n^{-1} \in H \cap N$. But $H \cap N = \{e\}$. Thus, $h'^{-1}h = e$ and $n'n^{-1} = e$. Thus, h = h' and n = n'.

Thus, if $x, y \in G$, then there exist unique elements $g, h \in H$ and $m, n \in N$ such that x = gm and y = hn, and $xy = gmhn = gh(h^{-1}mh)n$. Now define $\sigma_h \colon N \to N$ by $\sigma(h) = hnh^{-1}$, then by Proposition 1.11, $\sigma_h \in \operatorname{Aut}(N)$. Note that xy can be written as $xy = gh(\sigma_{h^{-1}}(m))n$. Now define $\alpha \colon H \to \operatorname{Aut}(N)$ by $\alpha(h) = \sigma_h$, then by Proposition 1.11, α is a homomorphism. Conversely, given any homomorphism $\theta \colon H \to \operatorname{Aut}(N)$, we can determine the structure of HN by determining the possible values of $\theta(h)$.

Assume that o(a) = n. Recall that by Proposition 2.5, $\operatorname{Aut}(\langle a \rangle) \cong \mathbb{Z}_{(n)}$. Thus, $\operatorname{Aut}(\langle a \rangle) = \{\varphi_k : (n,k) = 1\}$, where $\varphi_k : \langle a \rangle \to \langle a \rangle$ is defined by $\varphi_k(x) = x^k$.

Example 2.1. Let $N = \langle d \rangle$, o(d) = m, and let $H = \langle a \rangle$, o(a) = 2. Then $\operatorname{Aut}(N) = \{ \varphi_k \colon (k, m) = 1 \}$, where $\varphi_k(x) = x^k$. Assume that $\theta \colon H \to \operatorname{Aut}(N)$ is a homomorphism, and that $\theta(h) = \varphi_k$.

If h=e, then since θ is a homomorphism, it must map identities to identities. Thus, $\theta(h)=i_N$. If h=a, then since o(a)=2, then $o(\theta(a))\mid 2$. Thus, $o(\theta(a))=1$ or $o(\theta(a))=2$. Thus, if $\theta(a)=\varphi_k$, then it follows that $\varphi_k^2=i_N$. But also $(\varphi_k)^2(x)=\varphi_k(\varphi_k(x))=\varphi_k(x^k)=(x^k)^k=x^{k^2}=\varphi_{k^2}(x)$. Thus, $\varphi_{k^2}=i_N$.

If m=3, then $\operatorname{Aut}(N)=\{\varphi_k\colon (3,k)=1\}=\{\varphi_1,\varphi_2\}$. Moreover, $\varphi_{1^2}=\varphi_1=i_N$ and $\varphi_{2^2}=\varphi_4=\varphi_1=i_N$. Thus, both φ_1 and φ_2 work.

If m = 5, then $\operatorname{Aut}(N) = \{\varphi_1, \varphi_2, \varphi_3, \varphi_4\}$. However, $\varphi_{2^2} = \varphi_4 \neq i_N$, and $\varphi_{3^2} = \varphi_9 = \varphi = \varphi_4 \neq i_N$. Thus, only φ_1 and φ_4 work.

Example 2.2. Let G be a group of order 6. Then since $6 = 2 \times 3$, by Theorem 1.6 the number of Sylow 2-subgroups, n_2 is congruent to 1 modulo 2 and the number of Sylow 3-subgroups is congruent to 1 modulo 3. Additionally, the number of Sylow 2-subgroups divides |G| = 6 and the number of Sylow 3-subgroups divides |G| = 6. Thus, $n_2 \equiv 1 \pmod{2}$, $n_2 \mid 6$, $n_3 \equiv 1 \pmod{3}$, and $n_3 \mid 6$. Thus, Since 6 has factors 1, 2, 3, and 6. Then amongst these, 1 and 3 are congruent to 1 modulo 2. Thus, $n_2 = 1$ or $n_2 = 3$. Similarly, amongst the factors 1, 2, 3, and 6, those of which are congruent to 1 modulo 3 is just 1. Thus, $n_3 = 1$. Hence, by (iii) of Corollary 1.3.1, $P_3 \triangleleft G$, where P_3 is the Sylow 3-subgroup.

Assume that $n_2 = 1$, then $P_2 \triangleleft G$, then by Proposition 2.4, $G \cong \mathbb{Z}_2 \times \mathbb{Z}_3 \cong \mathbb{Z}_6$ since any groups whose order is less than or equal to 5 is abelian, and any finite abelian group of order n is isomorphic to \mathbb{Z}_n . Thus, G is cyclic.

Now assume that $n_2=3$. Then since $P_2\cap P_3=\{e\}$ (since P_2 contains the identity and an element of order 2, and P_3 contains the identity and 2 elements of order 3) and $G=P_2P_3$ by Proposition ??. Additionally, $\operatorname{Aut}(P_3)=\{\varphi_1,\varphi_2\}$. Let $P_2=\langle a\rangle$ and $P_3=\langle b\rangle$. Then since $P_3\triangleleft G$, $aba^{-1}\in \langle b\rangle$. Thus, $\varpi_1(aba^{-1})=\varphi_1(a)b\varphi_1(a^{-1})=\varphi_1(a)b(\varphi_1(a))^{-1}$. We have three choices for $\varphi_1(a)$. It can map to e,b, or b^2 . If it maps to e, then that would imply a=e which is not the case since it generates P_2 . It can map to b, but that $\varphi_1(a)=b=\varphi_1(b)$ and since φ_1 is 1-1, then a=b but this too is a contradiction. Thus, $\varphi_1(a)=b^2$. Hence, $\varphi_1(aba^{-1})=b^2bb^{-2}=b$. Thus, $aba^{-1}=b$ which implies that ab=ba. Therefore, G is abelian. Thus, $P_2\triangleleft G$ and $G\cong \mathbb{Z}_6$. φ_2 gives us $aba^{-1}=b^2$ and thus, $ab=b^{-1}a$. Thus, $G\cong D_6$.

Theorem 2.1. For each $n \geq 3$, the dihedral group D_n is a group of order 2n whose generators a and b satisfy:

(i)
$$a^n = (1)$$
; $a^k \neq (1)$ if $0 < k < n$;

(ii)
$$ba = a^{-1}b$$
.

Any group which is generated by element $sa, b \in G$ satisfying (i) and (ii) for some $n \geq 3$ (which $e \in G$ in place of (1)) is isomorphic to D_n .

Proposition 2.7. Let p and q be primes such that p > q. If $q \nmid p - 1$, then every group of order pq is isomoarphic to the cyclic group \mathbb{Z}_{pq} . If $q \nmid p - 1$, then there are (up to isomorphism) exactly two distinct groups of order pq: the cyclic group \mathbb{Z}_{pq} and a non-abelian group K generated by elements c and d such that

$$|c| = p;$$
 $|d| = q;$ $dc = c^s d,$

where $s \not\equiv 1 \pmod{p}$ and $s^q \equiv 1 \pmod{p}$.

Example 2.3. Let G be a group of order 6. Then by Cauchy's Theorem, G contains elements a and b of order 2 and 3 respectively. Thus, G has subgroups $\langle a \rangle$ and $\langle b \rangle$ of orders 2 and 3. It is clear that $\langle a \rangle$ is a 2-Sylow subgroup of G and $\langle b \rangle$ is a 3-Sylow subgroup of G. By Theorem 1.6, $n_2 \equiv 1 \pmod{2}$, $n_2 \mid 3$, $n_3 \equiv 1 \pmod{3}$, and $n_3 \mid 2$. From these relations it follows that $n_2 = 1$ or $n_2 = 3$, and $n_3 = 1$. Thus, letting $\langle a \rangle$ denote a 2-Sylow subgroup and $\langle b \rangle$ denote the 3-Sylow subgroup, from $n_3 = 1$ it follows that $\langle b \rangle \triangleleft G$. Note that for any $x \in \langle a \rangle \cap \langle b \rangle$, the order of x must divide both 2 and 3. Thus, o(x) = 1 and $\langle a \rangle \cap \langle b \rangle = \{e\}$. Hence, by Proposition 2.3, $o(\langle a \rangle \langle b \rangle) = 6$, and since $\langle a \rangle \langle b \rangle \subseteq_g G$, then $G = \langle a \rangle \langle b \rangle$.

Now assume that $\theta: \langle a \rangle \to \operatorname{Aut}(\langle b \rangle)$ is a homomorphism, where $\theta(a^k) = \varphi_k$ and $\varphi_k(b) = a^k b a^{-k}$. TBC ...