

Lösungen der Fingerübungen

1. Bestimmen Sie die Ableitungen der folgenden Funktionen auf ihren jeweiligen Definitionsbereichen:

a)
$$f(x) = x^4 + \frac{1}{2}x^3 - 5x - \frac{1}{2}x^{-1}$$
 kann als Summe von Potenzen direkt abgeleitet werden: $f'(x) = 4x^3 + \frac{3}{2}x^2 - 5 + \frac{1}{2}x^{-2}$

- b) $f(x) = x^2 \ln x$ Mit Produktregel: $f'(x) = 2x \ln x + x^2 \frac{1}{x} = x(2 \ln x + 1)$
- c) $f(x) = \frac{x^4 x^2}{x^3} = x \frac{1}{x}$ Die Funktion kann in gekürzter Form deutlich einfacher abgeleitet werden als die ursprüngliche Version: $f'(x) = 1 + \frac{1}{x^2}$.
- d) $f(x) = (x^3 2x)^5$ kann mittels der Kettenregel abgeleitet werden. Betrachte dazu: $h(x) = x^5$ und $g(x) := x^3 2x$. Dann ist f(x) = h(g(x)), $h'(x) = 5x^4$ und $g'(x) = 3x^2 2$. Wir können die Kettenregel anwenden und erhalten: $f'(x) = g'(x) \cdot h'(g(x)) = (3x^2 2) \cdot 5(x^3 2x)^4$
- e) $f(x) = e^x x^3 2x^2 e^x = (x^3 2x^2)e^x$ Mit Produktregel: $f'(x) = (3x^2 - 4x)e^x + (x^3 - 2x^2)e^x = (x^3 + x^2 - 4x)e^x$
- f) $f(x)=\sqrt[5]{x}=x^{\frac{1}{5}}$ kann als Potenz direkt abgeleitet werden: $f'(x)=\tfrac{1}{5}x^{\frac{1}{5}-1}=\frac{1}{5\sqrt[5]{x^4}}$
- g) $f(x) = \sin^2 x = \sin x \cdot \sin x$ kann mit $y = u^2$ und $u = \sin x$ mittels Kettenregel abgeleitet werden oder in der Produktform mittels Produktregel.

Mit Kettenregel: $f'(x) = \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = 2u \cdot \cos x = 2\sin x \cos x$ Mit Produktregel: $f'(x) = \cos x \sin x + \sin x \cos x = 2\sin x \cos x$

- h) $f(x) = \frac{x}{1+x^2}$ Mit Quotientenregel: $f'(x) = \frac{1 \cdot (1+x^2) - x \cdot 2x}{(1+x^2)^2} = \frac{1-x^2}{(1+x^2)^2}$
- i) $f(x) = x^{\frac{1}{2}} \cos x$ Mit Produktregel: $f'(x) = \frac{1}{2}x^{\frac{1}{2}-1} \cos x + x^{\frac{1}{2}}(-\sin x) = \frac{\cos x}{2x^{\frac{1}{2}}} - x^{\frac{1}{2}} \sin x$

$$j) f(x) = \frac{\sin x}{\cos x} = \tan x$$

Mit Quotientenregel:
$$f'(x) = \frac{\cos x \cos x - \sin x \cdot (-\sin x)}{(\cos x)^2} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}$$

Die letzte Gleichheit folgt aus Additionstheoremen für Sinus und Cosinus, die in der Vor-

Die letzte Gleichheit folgt aus Additionstheoremen für Sinus und Cosinus, die in der Vorlesung noch nicht vorgekommen sind. Es gilt: $\sin^2 x + \cos^2 x = 1$. Eine andere Form für das Ergebnis erhält man, wenn man den vorletzten Bruch kürzt: $f'(x) = 1 + \tan^2 x$.

k) $f(x) = \ln \ln x$ kann geschrieben werden als f(x) = h(g(x)), wobei $h(x) = \ln x$ und $g(x) = \ln x$. Die Kettenregel liefert dann:

$$f'(x) = g'(x) \cdot h'(g(x)) = \frac{1}{x} \cdot \frac{1}{\ln x}.$$

1) $f(x) = \ln \cos x$ kann mit $y = \ln u$ und $u = \cos x$ mittels der Kettenregel abgeleitet werden:

$$f'(x) = \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \frac{1}{u} \cdot (-\sin x) = -\frac{\sin x}{\cos x} = -\tan x$$

m) $f(x) = \sqrt[3]{x^3 + 2} = (x^3 + 2)^{\frac{1}{3}}$ kann mit $y = u^{\frac{1}{3}}$ und $u = x^3 + 2$ mittels der Kettenregel abgeleitet werden:

$$f'(x) = \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \frac{1}{3u^{\frac{2}{3}}} 3x^2 = \frac{x^2}{\sqrt[3]{(x^3 + 2)^2}}$$

n) $f(x) = \ln\left(\frac{e^x - 1}{e^x}\right) = \ln(1 - \frac{1}{e^x}) = \ln(1 - e^{-x})$ kann mit $h(x) = \ln x$ und $g(x) = 1 - e^{-x}$ mittels Kettenregel abgeleitet werden:

$$f'(x) = g'(x) \cdot h'(g(x)) = e^{-x} \cdot \frac{1}{1 - e^{-x}} = \frac{1}{e^x - 1}.$$

Eine andere Möglichkeit ist, die Funktion mit $y = \ln u$, $u = 1 - e^v$ und v = -x mittels zweifacher Durchführung der Kettenregel abzuleiten:

$$f'(x) = \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \frac{dy}{du} \cdot \frac{du}{dv} \cdot \frac{dv}{dx} = \frac{1}{u} \cdot (-e^v) \cdot (-1) = \frac{e^{-x}}{1 - e^{-x}} = \frac{1}{e^x - 1}$$

o) $f(x) = \sin(2\pi x)$ kann mit $y = \sin u$ und $u = 2\pi x$ mittels der Kettenregel abgeleitet werden:

$$f'(x) = \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \cos u \cdot 2\pi = 2\pi \cos(2\pi x)$$

p) $f(x) = x^{\sqrt{2}}$ kann als Potenz direkt abgeleitet werden:

$$f'(x) = \sqrt{2}x^{\sqrt{2}-1}$$

q) $f(x) = \frac{1}{\ln x} = (\ln x)^{-1}$ kann mittels Quotientenregel oder mit $h(x) = x^{-1}$ und $g(x) = \ln x$ mittels Kettenregel abgeleitet werden:

Mit Quotientenregel:
$$f'(x) = \frac{0 \cdot \ln x - 1 \cdot \frac{1}{x}}{(\ln x)^2} = -\frac{1}{x \ln^2 x}$$

Mit Kettenregel:
$$f'(x) = g'(x) \cdot h'(g(x)) = \frac{1}{x} \cdot \frac{-1}{\ln^2 x} = -\frac{1}{x \ln^2 x}$$

r) $f(x) = \frac{1}{x}e^{x^2}$ kann mittels Produktregel und Anwendung der Kettenregel auf e^{x^2} mit $y = e^u$

und $u = x^2$ abgeleitet werden:

Nebenrechnung:
$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = e^u \cdot 2x = 2xe^{x^2}$$

 $f'(x) = -\frac{1}{x^2}e^{x^2} + \frac{1}{x} \cdot \frac{dy}{dx} = -\frac{1}{x^2}e^{x^2} + \frac{1}{x} \cdot 2xe^{x^2} = (2 - \frac{1}{x^2})e^{x^2}$

- s) $f(x) = \cos(x^2)\cos^2 x$ kann mittels Produktregel und Anwendung der Kettenregel auf $\cos(x^2)$ mit $y = \cos u$ und $u = x^2$ und $\cos^2 x$ mit $z = v^2$ und $v = \cos x$ abgeleitet werden: Nebenrechnungen:
 - $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = -\sin u \cdot 2x = -2x\sin x^2$
 - $\frac{dz}{dx} = \frac{dz}{dv} \cdot \frac{dv}{dx} = 2v \cdot (-\sin x) = -2\cos x \sin x$

 $f'(x) = \frac{dy}{dx}\cos^2 x + \cos(x^2)\frac{dz}{dx} = -2x\sin x^2\cos^2 x + \cos(x^2)\cdot(-2\cos x\sin x) = -2(x\sin x^2\cos^2 x + \cos(x^2)\cos x\sin x)$

- t) $f(x) = e^{x^2 \ln 3}$ kann mit $y = e^u$ und $u = x^2 \ln 3$ mittels der Kettenregel abgeleitet werden: $f'(x) = \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = e^u \cdot 2(\log 3)x = 2(\ln 3)xe^{x^2 \ln 3}$
- u) $f(x) = \frac{\ln(x^2 + 1)}{x^2 + 1}$ kann mittels Quotientenregel und Anwendung der Kettenregel auf $\ln(x^2 + 1)$ mit $y = \ln u$ und $u = x^2 + 1$ abgeleitet werden:

Nebenrechnung: $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \frac{1}{u} \cdot 2x = \frac{2x}{x^2 + 1}$

$$f'(x) = \frac{\frac{2x}{x^2 + 1} \cdot (x^2 + 1) - \ln(x^2 + 1) \cdot 2x}{(x^2 + 1)^2} = \frac{2x(1 - \ln(x^2 + 1))}{(x^2 + 1)^2}$$

v) $f(x) = \frac{5}{\sqrt{x+1}} = 5(x+1)^{-\frac{1}{2}}$ kann mittels Kettenregel mit $y = 5u^{-\frac{1}{2}}$ und u = x+1 abgeleitet werden:

$$f'(x) = \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = -\frac{5}{2}u^{-\frac{3}{2}} \cdot 1 = -\frac{5}{2\sqrt{(x+1)^3}}$$

w) $f(x) = \cos(\sin(x))$ kann mit $h(x) = \cos x$ und $g(x) = \sin x$ mittels der Kettenregel abgeleitet werden:

 $f'(x) = g'(x) \cdot h'(g(x)) = \cos x \cdot (-\sin(\sin(x)))$

x) $f(x) = e^{\sqrt{x^2+1}}$ kann mit $y = e^u$, $u = \sqrt{v}$ und $v = x^2+1$ durch Hintereinanderausführung der Kettenregel abgeleitet werden:

$$f'(x) = \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \frac{dy}{du} \cdot \frac{du}{dv} \cdot \frac{dv}{dx} = e^u \cdot \frac{1}{2\sqrt{v}} \cdot 2x = e^{\sqrt{x^2 + 1}} \cdot \frac{2x}{2\sqrt{x^2 + 1}} = \frac{xe^{\sqrt{x^2 + 1}}}{\sqrt{x^2 + 1}}$$

$\begin{array}{ll} Analysis \ I - wintersemester \ 2019/20 \\ Lösungen \ der \ Fingerübungen \ 11 \end{array}$

y) Herausforderung: $f(x) = x^{(x^x)}$ für x > 0.

 $f(x)=x^{(x^x)}=e^{x^x\ln x}=e^{e^{x\ln x}\ln x}$ kann mit $y=e^u,\,u=z\ln x,\,z=e^v(=x^x)$ und $v=x\ln x$ mittels zweifacher Anwendung der Kettenregel und der Produktregel abgeleitet werden:

Nebenrechnung:
$$\frac{dz}{dx} = \frac{dz}{dv} \cdot \frac{dv}{dx} = e^v(\ln x + x \cdot \frac{1}{x}) = (1 + \ln x)e^{x \ln x} = (1 + \ln x)x^x$$

$$f'(x) = \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = e^u(\frac{dz}{dx} \ln x + z\frac{1}{x}) = e^{x^x \ln x}((1 + \ln x)x^x \ln x + x^x \frac{1}{x}) = ((\ln x + \ln^2 x)x^x + x^{x-1})x^{x^x}$$