Обучение без учителя Кластеризация Статистические алгоритмы кластеризации Иерархическая кластеризация Функционалы качества Другие эвристические алгоритмы

Обучение без учителя. Разделение смеси распределений. Кластеризация.

Федяев И. Понизова В.

Обучение без учителя
Кластеризация
Статистические алгоритмы кластеризация
Иерархическая кластеризация
Функционалы качества
Другие эвристические алгоритмы

Обучение без учителя (Unsupervised learning) — раздел машинного обучения, в котором изучается класс задач обработки данных, в которых известны только описания множества объектов (признаки объектов) из обучающей выборки, и требуется обнаружить внутренние зависимости, существующие между объектами.

Обучение без учителя Кластеризация Статистические алгоритмы кластеризации Иерархическая кластеризация Функционалы качества Другие эвристические алгоритмы

Типы задач обучения без учителя:

- Кластеризация
- Поиск ассоциативных правил
- Заполнение пропущенных значений
- Сокращение размерности
- Визуализация данных

Пусть имеется подмножество $X \subset \mathbb{R}^n$, которое мы будем называть пространством объектов.

Некоторый конечный набор $X^m = \{x_1, \dots, x_m\}$ — обучающая выборка.

 $ho: X \times X \to [0,\infty)$ — функция расстояния между объектами.

Необходимо найти множество кластеров Y и алгоритм кластеризации $a:X\to Y$ такие, что:

- каждый кластер состоит из близких объектов (относительно ρ);
- объекты разных кластеров различались существенно.

Некорректность

Решение задачи кластеризации принципиально неоднозначно:

- точной постановки задачи кластеризации нет;
- существует много критериев качества кластеризации;
- существует много эвристических методов кластеризации;
- число кластеров, как правило, не известно заранее;
- результат кластеризации сильно зависит от метрики ρ , выбор которой также не однозначен.

Цели кластеризации

- Упростить дальнейшую обработку данных
- Сократить объём хранимых данных
- Поиск выбросов
- Построить иерархию множества объектов

Алгоритмы кластеризации

- Статистические методы (model-based)
 - ЕМ-алгоритм
 - k-means
- Эвристические методы
 - Иерархическая агломеративная кластеризация
 - FOREL
 - DBSCAN

Смесь распределений

Гипотеза: выборка X^m — случайна, независима и взята из смеси распределений, плотность которой $p(x) = \sum_{j=1}^k w_j p_j(x;\theta_j), \sum_{j=1}^k w_j = 1.$ $p_j(x;\theta_j)$ — плотность распределения j-го кластера с параметрами θ_j , w_j — априорная вероятность кластера j.

Предлагается, зная число кластеров k и вид плотностей p_j , оценить параметры w_j и θ_j , максимизируя логарифм функции правдоподобия

$$\ln \mathcal{L}(\{x_i\}; \{w_j\}; \{\theta_j\}) = \sum_{i=1}^m \ln \sum_{j=1}^k w_j p_j(x_i; \theta_j) \to \max_{\{w_j\}, \{\theta_j\}}$$

при условии
$$\sum_{j=1}^{k} w_j = 1$$
; $w_j \geqslant 0$.

Шаг E (expectation)

Пусть $p(x, \theta_j)$ — плотность вероятности того, что объект x получен из j-ой компоненты смеси. По формуле условной вероятности:

$$p(x, \theta_j) = p(x)P(\theta_j \mid x) = w_j p_j(x; \theta_j).$$

Обозначим $g_{ij} = P(\theta_j \mid x)$. По формуле Байеса:

$$g_{ij} = \frac{w_j p_j(x_i; \theta_j)}{\sum_{s=1}^k w_s p_s(x_i; \theta_s)}.$$

Шаг M (maximization)

Максимизируем

$$\ln \mathcal{L}(\{x_i\}; \{w_j\}; \{\theta_j\}) = \sum_{i=1}^m \ln \sum_{j=1}^k w_j p_j(x_i; \theta_j) \to \max_{\{w_j\}, \{\theta_j\}}$$

при условии $\sum_{i=1}^{k} w_i = 1$. Лагранжиан:

$$L(\{w_j\}, \{\theta_j\}; \{x_i\}) = \sum_{i=1}^m \ln \sum_{j=1}^k w_j p_j(x_i; \theta_j) - \lambda \left(\sum_{j=1}^k w_j - 1\right).$$

Из равенства нулю производной по w_i следует

$$w_j = \frac{1}{m} \sum_{i=1}^m g_{ij}, \quad j = 1, \ldots, k.$$

Из равенства нулю производной по $heta_i$ следует

$$heta_j = rg \max_{ heta} \sum_{i=1}^m g_{ij} \ln p(x_i; heta), \quad j = 1, \dots, k.$$

Случай нормальных плотностей

Пусть компоненты смеси имеют нормальные многомерные распределения со средними μ_j и матрицами ковариаций Σ_i , тогда имеем следующие оценки параметров

$$\mu_j = \frac{1}{mw_j} \sum_{i=1}^m g_{ij} x_i,$$

$$\Sigma_{j} = \frac{1}{mw_{j}} \sum_{i=1}^{m} g_{ij} (x_{i} - \mu_{j}) (x_{i} - \mu_{j})^{\mathrm{T}}.$$

ЕМ-алгоритм

- **1** Вычислить начальное приближение w_y, θ_y
- Повторять
- ${f G}$ Е-шаг: $g_{ij}^0 = g_{ij}; \quad g_{ij} = rac{w_j p_j (x_i; heta_j)}{\sum_{s=1}^k w_s p_s (x_i; heta_s)}.$
- M-шаг: $\theta_j = \arg\max_{\theta} \sum_{i=1}^m g_{ij} \ln p(x_i; \theta);$ $w_i = \frac{1}{m} \sum_{i=1}^m g_{ii}.$
- **5** Пока $\max_{i,j} |g_{ij} g_{ij}^0| > \delta$.

Плюсы и минусы

Достоинства:

- Для этого алгоритма есть более-менее чётко поставленная задача;
- Нет необходимости масштабировать признаки.

Недостатки

- Алгоритм неустойчив по начальным данным (то есть тем, которые инициализируют вектора параметров w и θ на первой итерации);
- не позволяет определять количество k компонент смеси. Эта величина является структурным параметром алгоритма.

Алгоритм k-means

- Сформировать начальное приближение центров кластеров;
- Повторять
- Отнести каждый объект к ближайшему центру (аналог Е-шага);
- Усреднить объекты в кластерах и получаем новое положение центров (аналог М-шага);
- **ОПОКА** состав кластеров не перестанет изменяться.

Алгоритм k-means можно получить из EM-алгоритма, если

- заменить подсчёт вероятностей g_{ij} принадлежности i-го объекта j-ому кластеру на жёсткое приписывание объекта к этому кластеру,
- ковариационные матрицы в нормальной модели ограничить только диагональными.

Рис.: Результат работы k-means

Достоинства:

- Алгоритм очень гибкий
- Простой

Недостатки:

- Кластеризация очень сильно зависит от начального приближения
- Кластеризация может быть неадекватной, если изначально было выбрано неверное число кластеров.
- Необходимость самостоятельно задавать число кластеров;
- Форма кластеров только сферическая.

Алгоритм Ланса-Уильямса

Другие эвристические алгоритмы

- f O Инициализировать множество кластеров C_1 : $t=1; \quad C_t=\{\{x_1\},\dots\{x_m\}\}; R(\{x_i\},\{x_j\})=
 ho(x_i,x_j);$
- ② Для всех t = 2, ..., m
- ullet найти в C_{t-1} два ближайших кластера: $(U,V)= {
 m arg\ min}_{U
 eq V}\, R(U,V); R_t=R(U,V);$
- отить их в один кластер: $W = U \cup V$; $C_t = C_{t-1} \setminus \{U, V\} \cup \{W\}$;
- \bullet для всех $S \in C_t$
- \bullet вычислить расстояние R(W,S) по формуле Ланса-Уильямса.

Формула Ланса-Уильямса

Другие эвристические алгоритмы

$$R(W,S) = \alpha_U R(U,S) + \alpha_V R(V,S) + \beta R(U,V) + \gamma |R(U,S) - R(V,S)|,$$

где $\alpha_U, \alpha_V, \beta, \gamma$ — числовые параметры.

Другие эвристические алгоритмы
 Расстояние ближнего соседа:

$$R^{6}(W,S) = \min_{w \in W, s \in S} \rho(w,s);$$

$$\alpha_{U} = \alpha_{V} = 1/2, \quad \beta = 0, \quad \gamma = -1/2;$$

• Расстояние дальнего соседа:

$$R^{\mathrm{A}}(W,S) = \max_{w \in W, s \in S} \rho(w,s);$$
 $\alpha_U = \alpha_V = 1/2, \;\; \beta = 0, \;\; \gamma = 1/2;$

• Среднее расстояние:

$$R^{c}(W,S) = \frac{1}{|W||S|} \sum_{w \in W} \sum_{s \in S} \rho(w,s);$$

$$\alpha_{U} = \frac{|U|}{|W|}, \quad \alpha_{V} = \frac{|V|}{|W|}, \quad \beta = \gamma = 0;$$

Функционалы качества

Расстояние между центрами:

$$\begin{split} R^{\mathsf{u}}(W,S) &= \rho^2 \left(\sum_{w \in W} \frac{w}{|W|}, \sum_{s \in S} \frac{s}{|S|} \right); \\ \alpha_U &= \frac{|U|}{|W|}, \ \alpha_V = \frac{|V|}{|W|}, \ \beta = -\alpha_U \alpha_V, \ \gamma = 0; \end{split}$$

• Расстояние Уорда:

$$R^{\mathbf{u}}(W,S) = \frac{|S||W|}{|S|+|W|} \rho^{2} \left(\sum_{w \in W} \frac{w}{|W|}, \sum_{s \in S} \frac{s}{|S|} \right);$$

$$\alpha_{U} = \frac{|S|+|U|}{|S|+|W|}, \quad \alpha_{V} = \frac{|S|+|V|}{|S|+|W|}, \quad \beta = -\frac{-|S|}{|S|+|W|}, \quad \gamma = 0;$$

• Гибкое расстояние:

$$\alpha_U = \alpha_V = \frac{1-\beta}{2}, \ \beta < 1 \ (-0.25), \ \gamma = 0;$$

Другие эвристические алгоритмы

Свойства кластеризаций

- Монотонность: кластеризация монотонна, если при каждом объединении расстояния между объединяемыми кластерами только увеличивается.
- ullet Кластеризация сжимающая, если $R_t \leqslant
 ho(\mu_U,\mu_V), orall t.$
- Кластеризация растягивающая, если $R_t \geqslant \rho(\mu_U, \mu_V), \forall t$.

Другие эвристические алгоритмы

1. Расстояние ближнего соседа:

Диаграмма вложения

2. Расстояние дальнего соседа:

Другие эвристические алгоритмы

Диаграмма вложения

3. Групповое среднее расстояние:

Другие эвристические алгоритмы

Диаграмма вложения

5. Расстояние Уорда:

Диаграмма вложения

Плюсы и минусы

Достоинства:

- В качестве результата можно получить дендрограмму.
- Форма кластеров может быть произвольной.
- Количество кластеров можно определить по дендрограмме.

Недостатки:

- Необходимость подбирать одно из множества различных расстояний.
- Отсутствие модели в задаче не позволяет однозначно предпочесть одно разделение на кластеры другому.

Функционалы качества

Задачу кластеризации можно ставить следующим образом: необходимо приписать номера кластеров объектам так, чтобы значение выбранного функционала качества было минимальным или максимальным.

Некоторые функционалы качества:

- ullet Среднее внутрикластерное расстояние $F_0 = rac{\sum_{i < j} [y_i = y_j]
 ho(x_i, x_j)}{\sum_{i < j} [y_i = y_j]}$
- Среднее межкластерное расстояние $F_1 = rac{\sum_{i < j} [v_i
 eq y_j]
 ho(x_i, x_j)}{\sum_{i < j} [v_i
 eq y_j]}$
- Силуэт
- Индекс Данна и т.д.

Имеет смысл также вычислять отношение пары функционалов, чтобы учесть как внутрикластерные, так и межкластерные расстояния: $F_0/F_1 o min$.

Силуэт

- **1** Принадлежность объекта своему кластеру $c(x_i) = \frac{1}{|K_i|-1} \sum_{x_i \in K_i, i \neq j} \rho(x_i, x_j)$
- ② Принадлежность объекта другому кластеру $b(x_i) = \min_{l \neq i} \frac{1}{|K_i|} \sum_{x_i \in K_l} \rho(x_i, x_l)$
- ullet Определим силуэт объекта как $s(x_i) = rac{b(x_i) c(x_i)}{\max\{c(x_i), b(x_i)\}}$, если $|K_i| > 1$ и $s(x_i) = 0$, если $|K_i| = 1$.
- **4** $S = \frac{1}{m} \sum_{i=1}^{m} s(x_i)$ силуэт кластеризации.

Dunn index

$$D = \frac{\min_{1 \leqslant i < j < k} \delta(K_i, K_j)}{\max_{1 \leqslant s \leqslant k} \Delta(K_s)},$$

где $\delta(\mathcal{K}_i,\mathcal{K}_j)$ — расстояние между кластерами, $\Delta(\mathcal{K}_s)$ — диаметр кластера.

Если доступна внешняя информация о разделении на классы априори, то можно воспользоваться следующими метриками:

Rand Index

$$Rand = \frac{TP+FN}{TP+TN+FP+FN}$$

Jaccard Index

$$Jaccard = \frac{TP}{TP + TN + FP}$$

- Minkowski Score
- Folkes and Mallows Index и т.д.

Кратчайший незамкнутый путь (КНП)

- **1** Найти пару вершин $(x_i, x_j) \in X^m$ с наименьшим $\rho(x_i, x_j)$ и соединить их ребром;
- Пока в выборке остаются изолированные точки
- найти изолированную точку, ближайшую к некоторой неизолированной;
- соединить эти две точки ребром;
- **5** удалить k-1 самых длинных рёбер;

FOREL

- **2** Пока есть некластеризованные точки, т.е. $U \neq \emptyset$;
- **3** взять случайную точку $x_0 \in U$;
- Повторять
- образовать кластер с центром в x_0 и радиусом R:

$$K_0 = \{x_i \in U \mid \rho(x_i, x_0) \leq R\};$$

 \bullet переместить центр x_0 в центр масс кластера:

$$x_0 = \frac{1}{|K_0|} \sum_{x_i \in K_0} x_i$$
;

- **О** Пока состав кластера K_0 не стабилизируется;
- $0 \qquad U = U \setminus K_0;$
- 9 применить алгоритм КНП к множеству центров кластеров;
- ullet каждый $x_i \in X^m$ приписать кластеру с ближайшим центром;

Плюсы и минусы

Достоинства:

- Получаем двухуровневую систему кластеров;
- Кластеры могут быть произвольной формы;
- варьируя *R* можно управлять детальностью кластеризации.

Недостатки:

• алгоритм очень чувствителен к R и к начальному выбору точки x_0

Density-Based Spatial Clustering of Aplications with Noise (DBSCAN)

Объект $x\in U$, его ε -окрестность $U_{\varepsilon}(x)=\{u\in U: \rho(x,u)\leqslant \varepsilon\}$ Каждый объект может быть одного из трёх типов:

- ullet корневой: имеет плотную окрестность $|U_{arepsilon}(x)|\geqslant m$
- граничный: не корневой, но находится в окрестности корневого
- выброс: не корневой и не граничный.

1
$$U = X^m$$
, $N = \emptyset$, $z = 0$;

- **②** Пока есть некластеризованные точки, т.е. $U \neq \varnothing$;
- **3** взять случайную точку $x \in U$;
- ullet если $|U_{\varepsilon}(x)| < m$, то
- пометить х как шумовой;
- иначе
- $oldsymbol{\circ}$ создать новый кластер: $K=U_{arepsilon}(x);\ z=z+1;$
- для всех $x' \in K$
- ullet если $|U_{arepsilon}(x')|\geqslant m$ то $K=K\cup U_{arepsilon}(x');$
- lacktriangle иначе пометить x' как граничный элемент K;
- $a(x_i) = z$ для всех $x' \in K$;
- $U = U \setminus K$;

Рис.: Иллюстрация к алгоритму DBSCAN

Рис.: Пример работы DBSCAN (второй столбец справа)

Плюсы и минусы

Достоинства:

- Быстрая кластеризация больших данных (от $O(m \ln m)$ до $O(m^2)$ в зависимости от реализации);
- Кластеры произвольной формы;
- Явная разметка шумовых объектов;
- Хорошо поддаётся модифицированию (существуют реализации, скрещенные с k-means и даже с GMM).

Недостатки:

 Алгоритм может неадекватно обрабатывать сильные вариации плотности данных внутри кластера, проёмы и шумовые мосты между кластерами.