Unified Simplified Grapheme Acoustic Modeling for Medieval Latin LVCSR

Speech data

-G2P model: 567 hours

-GRA and USG models: 112 hours

• Independent medieval charters read by

• Region of test text origin: CZ, HU, PL

• Native language of test speakers: CZ,

• CZ: 76 hours

• PL: 31 hours

• RO: 35 hours

Test data

historians

HU, PL, SK

Acoustic model

• 2000 neurons per layer

• p-norm activation function

• 7000-11000 senones (softmax size)

• 6-hidden-layer DNN

• Kaldi toolkit [1]

• HU:

THINKTech

Lili Szabó, Péter Mihajlik, András Balog, Tibor Fegyó

lili@speechtex.com

Motivation

• Digitizing medieval charters when optical character recognition in not sufficient

Challenges

- Latin is not spoken natively
- There is no available speech database, and it is resource-heavy to create one
- Many variants/dialects exists, and we can only make guesses about the pronunciation
- The pronunciation mainly depends on
 - the **era** of the read text
- the **georaphical region** where the text originates from
- the **native language** of the speaker

Text data

- In-domain (Monasterium): medieval charters (HU)
- -480k/35k token/type
- Background (Latin Library): historical texts
- 1.3M/115k token/type

Spelling variants

jam	iam
judex	iudex
gracia	gratia

Language model

- 3-gram language model
- Kneser-Ney smoothing
- Interpolating the two corpora
- SRILM [2]

Perplexity measures on

Table 1: Perplexity/OOV rate (%)

GRA

G2P

USG

System diagram

CZ

HU

SK

Corpus	CZ	HU	PL	All
Monasterium				
Latin Library				
Interpolated	924/3.9	82/0.9	2288/5.5	672/3.5

Training text

Language

Model

Acoustic

Model

Speaker

Test text

Dimensions of data

- Region of training text: Kingdom of Hungary (HU), mixed
- Region of test text origin: Kingdom of Bohemia (CZ), Kingdom of Hungary (HU), Kingdom of Poland (PL)
- Speech data: Czech (CZ), Hungarian (HU), Polish (PL), Romanian (RO)
- Native language of test speakers: CZ, HU, PL, Slovak (SK)
- Model type: GRA, G2P, USG

GRA: baseline grapheme model **G2P**: grapheme-to-phoneme model **USG**: Unified Simplified Grapheme model

Figure 1: Medieval Latin Speech Recognizer

Medieval

Latin ASR

Evaluate

Baseline Grapheme Model

- All graphemes are trained
- Only those grapheme models are retained that are part of the Latin alphabet, e.g.
- -keeping model of r
- throwing away model of ř

Table 2: Word Error Rate (WER[%]) results for monolingual grapheme-based acoustic models of Czech, Hungarian, Polish and Romanian (CZ, HU, PL, RO).

	Speaker				
AM Language	CZ	HU	PL	SK	\sum
CZ				45.7	
HU	33.7	28.6	47.1	29.1	34.6
PL	65.0	67.6	46.4	51.1	57.5
RO	53.6	69.1	44.7	43.8	52.8

Knowledge-based grapheme-to-phoneme (G2P) mapping

Figure 2: Latin digraph context-insensitive rewrite rules and context-sensitive rewrite rules. V: vowel, VP: palatal vowel, ^VP: everything but a palatal vowel, C: consonant, *: zero or any, ^: beginning of word, $[\hat{s}tx]$: not s, t or x.

Table 3: WER[%] for Czech-Latin sourcetarget G2P model. Acoustic model training set: 76 hours.

	Latin Test Text					
Speaker	CZ	HU	PL	\sum		
CZ			49.1			
HU	48.7	40.0	58.7	49.1		
PL	53.3	18.2	53.2	41.6		
SK	30.3	30.0	44.0	34.8		
\sum	43.9	28.9	50.8	41.2		

Table 4: WER[%] for Hungarian-Latin source-target G2P model. Acoustic model training set: 567 hours.

	Latin Test Text					
Speaker	CZ	HU	PL	\sum		
CZ		6.4				
HU		25.4				
PL		15.4				
SK	20.4	9.1	22.9	17.5		
\sum	22.6	12.5	28.1	21.1		

Unified Simplified Grapheme (USG) Model

• Utilizing many available language resources in the hopes that statistical variations help generalizing over different pronunciations

Table 5: Simplification examples for the unified model.

Language	CZ	HU	PL	RO
Orthographic form	řekl	őz	miś	apă
USG transcription	rekl	ΟZ	mis	apa

Table 6: WER[%] for all the three-language USG models.

	Speaker				
AM Language	CZ	HU	PL	SK	\sum
CZ+HU+PL	28.2	28.2	27.7	22.4	26.6
CZ+HU+RO	23.3	21.4	23.9	19.2	21.9
CZ+PL+RO	24.6	33.1	25.6	19.8	25.8
HU+PL+RO	24.8	21.5	25.7	20.7	23.2

WER[%] for USG model of Czech, Hungarian, Polish and Romanian (CZ+HU+PL+RO).

	Latır			
Speaker	CZ	HU	PL	\sum
CZ	20.4	11.8	30.7	21.0
HU	21.1	14.6	25.7	20.5
PL	23.0	10.0	33.0	22.0
SK	14.5	12.7	24.8	17.3
\sum_{i}	19.9	12.2	29.0	20.4

Conclusions

- Knowledge-based G2P modeling is good, but time consuming and restricted
- Four-language USG modeling is the best
- It is able to generalize over different speaker test sets

References

- [1] Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., Hannemann, M., Motlicek, P., Qian, Y., Schwarz, P., Silovsky, J., Stemmer, G., Vesely, K.: The kaldi speech recognition toolkit. In: IEEE 2011 Workshop on Automatic Speech Recognition and Understanding. IEEE Signal Processing Society (2011)
- [2] Stolcke, A.: Srilm an extensible language modeling toolkit. In: In Proceedings of the 7th International Conference on Spoken Language Processing (ICSLP). pp. 901–904 (2002)