Convolutional Neural Network

Vlado Menkovski

Eindhoven University of Technology

v.menkovski@tue.nl

March 29, 2018

Convolutional Neural Networks

Overview

- Data with spatial correlation
- 2 Convolutional neural network
- Training
- 4 CNN Architecture

Image data

Image data

Speech data

Spatial data

- High Dimensionality
- Local Correlations
- Convolutional Neural Networks (CNN) utilize the local correlation property

Parameter re-use

Input visualization

Layer architectures

ConvNets operate on tensors

Take tensor of activations and produce tensor of activations

Convolution Dimensionality

- for 1D convolutions the volumes are 2D matrix
- for 2D convolution the volumes of activations are 3D tensor
- for 3D convolutions the volumes are 4D tensor

The depth of the filter is equal to the depth of the image Neuron computes: Afine transformation + non-linearity

Fully convolving the input \rightarrow produces an activation map

Second neuron

Third neuron

Combined representation

Convolutional layer

- Accepts:
 - $W_1 \times H_1 \times D_1$
- Outputs:

•
$$W_2 = (W_1 - F + 2P)/S + 1$$

•
$$H_2 = (H_1 - F + 2P)/S + 1$$

•
$$D_2 = K$$

- Where:
 - *F* is the filter size
 - P is the padding size
 - *S* is the stride
 - K is the layer depth (number of neurons)

CNN Biological inspiration

Training: Gradient Decent

$$\frac{\partial L}{\partial \theta}$$

Back propagation

Convolutional Neuron (Step 1)

Convolutional Neuron (Step 2)

Convolutional Neuron (Step 3)

Convolutional Neuron Forward pass

Convolutional Neuron Forward pass

Convolutional Neuron Forward pass

Convolutional Neuron Backward pass

Backward pass on w_1 (Step 1)

Backward pass on w_1 (Step 2)

Backward pass on w_1 (Step 3)

Backward pass on x_1 (Step 1)

Backward pass on x_1 (Step 2)

Propagating activation forward

Vector form

Propagating activation backward

Vector form

Propagating gradient backward 2D

Vector form 2D

Propagating gradient backward 2D

Backprop through a convolutional layer

- The grad of each parameter is: pre-activations times the grad of the loss wrt to post activations
- $\bullet \sum_{n}^{|x|-|w|+1} \frac{\partial L}{\partial y_n} X_{n+i-1}$
- The gradient flows in blocks back analogously as the activations flow forward
- To achive this the convolutional operation is done backwards.
 Or by transposing the filter
- $\delta_i = \sum_{i=1}^{|w|} \frac{\partial L}{\partial y_{n-i+1}} w_i$
- $\delta = \frac{\partial L}{\partial y} * flip(w)$

Architectural Depiction

Architectural Depiction

Subsampling - maxpooling

12	20	30	0			
8	12	2	0	2 × 2 Max-Pool	20	30
34	70	37	4		112	37
112	100	25	12			

Backpropagation - maxpooling

$$a(x) = max(x), \frac{\partial a(x)}{\partial x_i} \begin{cases} 1, & \text{if } x_i = max(x) \\ 0, & \text{otherwise} \end{cases}$$

Backpropagation - maxpooling

$$a(x) = \frac{1}{m} \sum_{m} (x), \frac{\partial a(x)}{\partial x} = \frac{1}{m}$$

Input Layer 6 x Conv (5x5)

MaxPool (2x2)

ReLU

12 x Conv (5x5)

MaxPool (2x2)

ReLU

12 x Conv (5x5)

MaxPool (2x2)

ReLU

10 x Softmax

256 x Fully Connected

Typical CNN architecture

- Input
- Convolutions
- Flatten
- MLP
- Output

MaxPool (2x2) 6 x Conv (5x5) Input Layer ReLU

12 x Conv (5x5) ReLU

12 x Conv (5x5) MaxPool (2x2)

MaxPool (2x2)

ReLU

Flatten

256 x Fully Connected

10 x Softmax

Input Layer

6 x Conv (5x5)

ReLU

12 x Conv (5x5)

ReLU

MaxPool (2x2)

12 x Conv (5x5)

ReLU

ReLU

Platten

Dropout

Dropout

10 x Softmax

10 x Softmax

10x Fully Connected

Flatten

MaxPool (2x2)

ReLU

16 x Conv (5x5)

MaxPool (2x2)

ReLU

8 x Conv (5x5)

Input Layer