

Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Méréstechnika és Információs Rendszerek Tanszék

Digitális technika VIMIAA01

Fehér Béla BME MIT

Digitális Technika

Elméleti alapok

- Boole algebra
- Logikai függvények
- Kombinációs hálózatok
- Specifikáció, reprezentáció, konverzió
 - Alapelemek, kapuk, kétszintű hálózatok
 - A szorzatösszeg (SOP, Sum of Product) realizáció
 - Nem teljesen specifikált hálózatok
 - Minimalizálási eljárások
 - Többszintű hálózatok, a globális optimalizáció

A Boole algebra

- A {B, +, *, ¯} négyes a Boole algebra, ahol
 - B az elemek (konstansok, változók) halmaza
 - a +, *, és pedig műveletek a B elemei között, additív, multiplikatív és ellentett képzés jelentéssel
- Az algebra különböző alkalmazási területeken is megjelenik
 - Logikai algebra ÉS, VAGY, INV
 - Halmazalgebra ∩, U, ¯
 - Kapcsolási algebra: soros, párhuzamos, megszakító
- A műveletek jelölései adott környezetekben eltérőek lehetnek

Axiómák

- B elemeire
 - A1: B=0, ha B \neq 1 A1d: B=1, ha B \neq 0 Kétértékű
 - A2: $\overline{0} = 1$ A2d: $\overline{1} = 0$ NOT, invertálás
- A konstansműveletekre
 - A3: 0 * 0 = 0 A3d: $1 + 1 = 1 \pm S / VAGY$
 - A4: 1 * 1 = 1 A4d: $0 + 0 = 0 \pm S / VAGY$
 - A5: 0*1=1*0=0 A5d: 1+0=0+1=1 ÉS / VAGY
- Dualitás elve: Ha a Boole kifejezésekben a 0 és 1 szimbólumokat és a * és + műveleteket felcseréljük, az állítások érvényesek maradnak (Fentiekben Aid jelöli az egyes axiómák duálisát)
- Műveletvégzési sorrend: () → ¬ → * → +

Egyetlen változóra vonatkozó tételek

• T1: B * 1 = B

$$\frac{B}{1}$$
 $= B$

T1d:
$$B + 0 = B$$

$$B = B$$

•
$$T2: B * 0 = 0$$

$$0 = 0$$

T2: B * 0 = 0
$$\frac{B}{0} = 0$$
T2d: B + 1 = 1
$$\frac{B}{1} = 1$$

• T3: B * B = B
$$\frac{B}{B} = B$$

T3d:
$$B + B = B$$

$$B = B$$

• T4:
$$\overline{B} = B$$

Involúció

• T5: B *
$$\overline{B} = 0$$

$$\frac{B}{/B} = 0$$

T5d: B +
$$\overline{B}$$
 = 1

Komplementer

Két (vagy több) változóra vonatkozó tételek

T6: B*C=C*B

T6d: B+C=C+B

Kommutativitás

T7: (B*C)*D=B*(C*D) T7d: (B+C)+D=B+(C+D) Asszociativitás

T8: (B*C)+(B*D)=B*(C+D)

Disztributivitás

T8d:
$$(B+C)*(B+D)=B+(C*D)$$

T9: B*(B+C)=B

T9d: B+(B*D)=B Elnyelés

T10: $(B*C)+(B*\overline{C})=B$ T10d: $(B+C)*(B+\overline{C})=B$ Összevonás

• T11:
$$(B*C)+(\overline{B}*D)+(C*D) = B*C+(\overline{B}*D)$$

Konszenzus

T11d: $(B+C)*(\overline{B} +D)*(C+D) = (B+C)*(\overline{B}+D)$

T12:
$$\overline{B_0 * B_1 * B2 \dots} = \overline{B_0} + \overline{B_1} + \overline{B_2} \dots$$

De-Morgan tétel

T12d:
$$\overline{B_0 + B_1 + B2 \dots} = \overline{B_0} * \overline{B_1} * \overline{B_2} \dots$$

Boole Algebra: De Morgan tétel

- A De Morgan tétel 2 változóra, részletesebben
 - $F = \overline{A} + \overline{B} = \overline{A * B}$

$$F = \overline{A} * \overline{B} = \overline{A + B}$$

- Más formában felírva, kifejezőbb:
- $A*B=\overline{A}+\overline{B}$

$$A + B = \overline{A} * \overline{B}$$

Logikai függvények

• A logikai függvények: Boole változók között Boole algebra szabályai szerint értelmezett leképezések, pl.

$$Y = A + B*C + /A*/B*C + A*C$$

- Logikai függvények leírásakor előforduló fontosabb kifejezések
 - Változók: Az elsődleges logikai változók A,B,C
 - Literálok: A fenti változók előfordulásai ponált vagy negált értelemben, azaz A, /A, B, /B, C
 - Szorzat (Product Term, PT): Önálló literálok és ÉS kapcsolatú kifejezéseik, azaz A, B*C, /A*/B*C, A*C
 - Szorzatösszeg (Sum-of-Product, SOP): A kifejezések azon formája, ami szorzatok VAGY kapcsolatából áll.

Logikai függvények

• Általános esetben a logikai függvényeket, mint bemenet-kimenet típusú memória mentes (emlékezet nélküli) leképezéseket tekintjük

- Logikai függvények a bemeneti változók értékének minden lehetséges kombinációjához a kimeneti változók 0 vagy 1 értékét rendelik
- A logikai függvényeket kombinációs hálózatokkal realizálhatjuk, mert a kimeneteik értéke egy adott pillanatban csak és kizárólag a bemeneti változók aktuális értékétől függ

Elemi logikai függvények

- Konstans logikai függvények

 O bemenet 2²⁰ = 2 különböző függvényelen

		— / KIII//III//////				
U	bemenet, Z	2 Kulolioozo	ruggverry		F0	F1
•	$(F_0=0, F_1=1)$	- 2 Kulolibozo		nincs	0	1
	(0) 1)					

- Egyetlen bemenet
 - 1 bemenet, $2^{2^1} = 4$ különböző függvény
 - $(F_0=0, F_1=A, F_2=/A, F_3=1)$

BEM	KIM					
Α	F0	F1	F2	F3		
0	0	0	1	1		
1	0	1	0	1		

- Kettő bemenet
 - 2 bemenet, $2^{2^2} = 16$ különböző függvény
 - $(F_0=0, F_1=A*B, F_3=A, F_C=/A, F_7=A+B, F_F=1)$

BE	:M								KI	IM							
Α	В	F0	F1	F2	F3	F4	F5	F6	F7	F8	F9	FA	FB	FC	FD	FE	FF
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
		0	A*B	A*/B	Α	/A*B	В	A^B	A+B	/(A+B)	/(A^B)	/B	A+/B	/A	/A+B	/(A*B)	1

Elemi logikai függvények

Az elemi logikai függvények részletes specifikációja

AND

BE	KIM	
Α	A*B	
0	0	0
0	1	0
1	0	0
1	1	1

NAND

BE	KIM	
A B		/(A*B)
0	0	1
0	1	1
1	0	1
1	1	0

XOR

ВЕ	KIM	
Α	A^B	
0	0	0
0	1	1
1	0	1
1	1	0

OR

BE	KIM	
Α	A B	
0	0	0
0	1	1
1	0	1
1	1	1

XNOR

ВЕ	KIM		
Α	А В		
0	0	1	
0	1	0	
1	0	0	
1	1	1	

NOR

BE	KIM	
A B		/(A+B)
0	0	1
0	1	0
1	0	0
1	1	0

Elemi logikai függvények

- Több bemenetű logikai függvények
 - 3 bemenet, $2^{2^3} = 256$ különböző függvény
 - 4 bemenet, $2^{2^4} = 65536$ különböző függvény
 - Hamar kezelhetetlennek tűnő komplexitás
 - Ezek persze nagyrészben hasonló jellegű függvények, azaz
 - akár a bemenetek felcserélgetésével,
 - akár a bemenetek/kimenet invertálásával azonos formára hozhatók
 - Tehát pl. egy 4 bemenetű ÉS kapu a 4 bemeneti változó minden lehetséges ÉS kifejezését realizálni tudja, legfeljebb az F=C*D és F=A*B 2 bemenetű függvények esetén a nem használt bemenetekre "1" szintet kell adni.

- A logikai függvények különböző módokon specifikálhatók
 - Egyértelmű, teljes specifikáció:
 - Igazságtábla
 - Algebrai normál alak
 - Diszjunktív normál alak, DNF, tehát SOP azaz Sum-of-Products
 - Konjuktív normál alak, CNF, tehát POS azaz Product-of-Sums
 - Karnaugh tábla, grafikus forma
 - Több formában is megadható, logikailag ekvivalens specifikációk
 - Szöveges specifikáció
 - Általános algebrai alak
 - Kapcsolási rajz
- A specifikációk egymásba alakíthatók, konvertálhatók

- A továbbiakban két egyszerű, 3 változós logikai függvényt fogunk példaként alkalmazni az alaptulajdonságok bemutatására
- Szöveges specifikációk
 - F1: A függvény a bemeneti változók paritását jelzi. A kimenet jel értéke 1, ha a bemeneten páratlan számú aktív jel van, egyébként 0.
 - F2: A függvény egy többségi szavazást jelző áramkör. A kimenet jel értéke 1, ha bemenetei között több az aktív jel, mint az inaktív, egyébként 0.

• Egyértelmű, teljes specifikációk:

 Minden esetben explicit módon definiálják a bemeneti változók minden kombinációjához tartozó kimeneti értékeket, tehát az adott (igazságtáblázatos, grafikus K-tábla vagy kanonikus DNF/CNF algebrai) formában nem létezhet más, eltérő értelmű specifikáció

В	KIM			
INDX	Α	В	C	F1
0	0	0	0	0
1	0	0	1	1
2	0	1	0	1
3	0	1	1	0
4	1	0	0	1
5	1	0	1	0
6	1	1	0	0
7	1	1	1	1

A\BC	00	01	11	10
0	0	1	0	1
1	1	0	1	0

В	BEMENETEK							
INDX	Α	В	С	F2				
0	0	0	0	0				
1	0	0	1	0				
2	0	1	0	0				
3	0	1	1	1				
4	1	0	0	0				
5	1	0	1	1				
6	1	1	0	1				
7	1	1	1	1				

A \ B C	00	01	11	10
0	0	0	1	0
1	0	1	1	1

• $F1 = \frac{A*}{B*C} + \frac{A*B*}{C} + \frac{A*}{B*}/C + \frac{A*}{B*}/C + \frac{A*B*}{C} = SOP(1,2,4,7)$

Több formában is megadható, logikailag ekvivalens specifikációk

• Mindegyik ugyanazt a függvényt írja le, csak különböző formákban, értelmezésben

Szöveges specifikációk

- F1: A függvény a bemeneti változók paritását jelzi. Ha a bemeneten páratlan számú aktív jel van, a kimenet jel értéke 1, egyébként 0.
- F1 alternatív: A függvény egy bináris 1 bites teljes összeadó (ai,bi,ci) összeg kimenete. Az összeadás művelet szabályai szerint, az összeg kimenet értéke: 0+0+0=0, 0+0+1=1, 0+1+1=0, és van átvitel, végül 1+1+1=1 és van átvitel.
- F2: A függvény egy többségi szavazást jelző áramkör. Ha bemenetei között több az aktív jel, mint az inaktív, akkor a kimenet 1, különben 0.
- F2 alternatív: A függvény egy bináris összeadó átvitel kimenete. Az összeadás művelet szerint akkor van átvitel, ha az (ai,bi,ci) bemenetek állapota a 0+1+1 vagy 1+1+1 feltételeknek felel meg.

BME-MI

- Több formában is megadható, logikailag ekvivalens specifikációk
 - Mindegyik ugyanazt a függvényt írja le, csak különböző formákban, értelmezésben
- Általános algebrai alakban
 - $F1 = \frac{A*}{B*C} + \frac{A*B*}{C} + \frac{A*}{B*}/C + \frac{A*}{B*C}$ DNF, SOP
 - F1'=A XOR B XOR C

XOR forma

- F1 = (A+B+C)*(/A+B+/C)*(A+/B+/C)*(/A+/B+/C) CNF, POS
- F2 = /A*B*C + A*/B*C + A*B*/C + A*B*C DNF, SOP
- F2' = A*B + B*C + A*C

SOP, de nem DNF

• F2 = (A+B)*(B+C)*(A+C)

CNF, POS

BME-MI

- Több formában is megadható, logikailag ekvivalens specifikációk
 - Mindegyik ugyanazt a függvényt írja le, csak különböző formákban, értelmezésben
- Kapcsolási rajzok az F1 függvényre

BME-MIT

- Több formában is megadható, logikailag ekvivalens specifikációk
 - Mindegyik ugyanazt a függvényt írja le, csak különböző formákban, értelmezésben
- Kapcsolási rajzok az F2 függvényre

- Nem teljesen specifikált függvények
 - Gyakran a logikai függvények bemenetén nem fordul elő a bemeneti változók minden kombinációja
 - Vagy bizonyos kimeneti értékeket valamilyen okból nem használunk fel (Adatkimeneti bitek érvénytelen jelzés mellett)
- Ezekben az esetekben a kimenetekhez tetszőleges érték rendelhető (akár 0, akár 1). Ezt közömbös, Don't Care (DC) bejegyzésnek nevezzük és x, -,* jelöléssel jelöljük.
- A tervezésnél ezeket a bejegyzéseket egyenként, egyedileg úgy választjuk meg, hogy a realizációnál minél egyszerűbb feltételeket kapjunk. (lásd később)

Logikai függvények realizációja

- A specifikációk alapján a tervező több, egymással logikailag ekvivalens, de egyéb paramétereiben jelentősen eltérő megoldás közül választhat
- Ez lehetőséget ad egyedi szempontok szerinti optimalizálásra. Tipikus optimalizálási szempontok:
 - Legkevesebb alkatrész (jelentése technológia függő)
 - Leggyorsabb működés (legalább a kritikus jelre)
 - Meglévő "raktárkészletből" építkezés
- Mindezek a célok a logikai függvények egyszerűsítésével, a redundanciák kihasználásával érhetők el. Ez a logikai függvények tervezésének tárgya.

Logikai függvények realizációja

- Kétszintű hálózat, SOP realizáció (POS is hasonló...)
- A logikai függvények egyszerűsítése a szorzat kifejezések "szomszédosságán" alapulnak.
 - Ha két szorzat kifejezésben ugyanazon változók vannak és csak egyetlen változó szerepel ponált és negált értelemben, akkor az kiegyszerűsíthető

KIF*/A + KIF *A = KIF * (/A + A) = KIF * 1 = KIF

- A függvény minimalizálása az ilyen (és további "egyszerű" algebrai) átalakításokon alapul.
- Sok esetben átmeneti "bővítés" vezet jelentős redukcióra és az algoritmusok ezt ki is használják

Minimalizálás algebrai úton

- Algebrai minimalizálás
 - $F = \frac{A*}{B*}/C + \frac{A*}{B*}/C + \frac{A*}{B*}C$
 - $F = \frac{B*}{C*}(A+A) + A*/B*C$
 - $F = \frac{B*}{C(1)} + \frac{A*}{B*C}$
 - F = /B*/C + A*/B*C
 - $F = \frac{A*}{B*}/C + \frac{A*}{B*}/C + \frac{A*}{B*}C$
 - $F = \frac{A*}{B*}/C + \frac{A*}{B*}/C + \frac{A*}{B*}/C + \frac{A*}{B*}C$
 - $F = \frac{B*}{C*}(A+A) + A*/B*(C+C)$
 - $F = \frac{B*}{C*}(1) + \frac{A*}{B*}(1)$
 - F = /B*/C + A*/B
- Láthatóan globális keresés szükséges

Minimalizálás Karnaugh táblában

- A Karnaugh tábla egy szemléletes eszköz a mintermek közötti kapcsolatok bemutatására
- Minterm: Olyan szorzat, amelyben minden változó szerepel, ponált vagy negált értelemben,
 - 1 K-tábla cella = 1 Igazságtábla sor

0 1 0 0 1 1 2 3		0	00 0	01 1 5	11 3	10	2		
A \ B 0 1	$A \setminus B$	C	0	0	01	l	11	10	
0	0		L						
1	1								

	۰,	٠,	10	
$AB \setminus CD$	00	01	11	10
00				
01				
11				
10				

• A cél szomszédos cellákból 2ⁿ méretű hurkok

keresése, 1,2,3,...bemeneti változóra

Minimalizálás Karnaugh táblában

- A szomszédosság esetei n=4 bemeneti változóra
 - M=1, 2, 4 mintermre F = CD+BD+AB/C+/A/B/C/D

	00	01	11	10
00	1 0	0 1	1 3	0 2
01	0 4	1 5	1 7	0 6
11	1 12	1 13	1 15	0 14
10	0 8	0 9	1 11	0 10

AB\CD	00 0)1 11	10
00 (1	1	0
01	0/1	1	0
11	1 1		0
10	0 0	1	0

•	Speci	ális	szomszéd	losságok
	Speci	ally	SZOIIISZCO	iossagon

- pl. 0-2, 4-6, 12-14, 8-10 sor végi cellák
- pl. 0-8, 1-9, 3-11, 2-10 oszlop cellák
- pl. 0-2-10-8 sarokcellák

	BEMENETEK						
INDX	Α	В	С	D	F		
0	0	0	0	0	1		
1	0	0	0	1	0		
2	0	0	1	0	0		
3	0	0	1	1	1		
4	0	1	0	0	0		
5	0	1	0	1	1		
6	0	1	1	0	0		
7	0	1	1	1	1		
8	1	0	0	0	0		
9	1	0	0	1	0		
Α	1	0	1	0	0		
В	1	0	1	1	1		
С	1	1	0	0	1		
D	1	1	0	1	1		
Е	1	1	1	0	0		
F	1	1	1	1	1		

Minimalizálás Karnaugh táblában

• $F = \frac{A*}{B*}/C + \frac{A*}{B*}/C + \frac{A*}{B*}C$

	00	01	11	10
0	1 0	0 1	0 3	0 2
1	1 4	1 5	0 7	0 6

A \ B C	00	01	11	10
0	1	0	0	0
1	1	1	0	0

- A kiolvasható hurkok a (0,4) és a (4,5) mintermekből álló kettes hurkok.
- Így a minimális realizáció: F = /B*/C + A*/B
- Hatékony módszer n≤ 4 esetre.
- Megjegyzés: Egy cella többszörös lefedése olyan, mintha az algebrai alakba többször beírtuk volna

- Módszerek a logikai függvények minimális SOP realizációjának előállítására
 - Implikáns: Olyan szorzat logikai függvény, amely része az eredeti függvénynek, azaz minden 1-es értéke szerepel abban is.
 - Prímimlikáns: Olyan implikáns, amely maximális méretű.
 - Az implikánsok szorzatok, tehát hurkok a K-táblában
 - Minden szorzat meghatároz egy implikánst, de csak a maximalizált méretű hurkok prímimplikánsok (pl. /ABD és ACD implikánsok)
- Az I₁= CD, I₂=BD I₃=AB/C és I₄=/A/B/C/D szorzatok pedig prímimplikánsok

- Lényeges prímimplikáns: Olyan kifejezés, aminek van olyan "1"-es cellája, amit az eredeti függvényből csak ez tartalmaz. Tehát a teljes függvény a lényeges prímimplikáns nélkül nem realizálható.
 - Ebben a példában mindegyik I_1 = CD, I_2 =BD, I_3 =AB/C, I_4 =/A/B/C/D prímimplikáns lényeges prímimplikáns, tehát $\mathbf{F} = \mathbf{I_1} + \mathbf{I_2} + \mathbf{I_3} + \mathbf{I_4}$
- ABCD
 00
 01
 11
 10

 00
 1
 0
 1
 0

 01
 0
 1
 1
 0

 11
 1
 1
 1
 0

 10
 0
 0
 1
 0

• Általános esetben a realizáció tartalmazza a lényeges prímimplikánsokat és a maradékból egy olyan készletet, hogy minden "1"-es cella legalább 1-szer le legyen fedve.

- Példa 2:
- Ebben a példában a prímimplikánsok a következők: I₁= /A/B, I₂=/AD, I₃=BD, I₄=AB/C

Lényeges prímimplikáns az I₁ (két sarok miatt),

I₃(ABCD) és I₄ (AB/C/D) miatt.

 Tehát a realizáció biztosan tartalmazza I₁, I₃ és I₄ lényeges prímimplikánsokat és az I₂ prímimplikáns már nem szükséges

• $F' = \frac{A}{B} + \frac{AB}{C} + \frac{BD}{BD}$

- Példa 3: Nem teljesen specifikált függvény
- Ebben a példában vannak DC, azaz tetszőlegesen megválasztható függvényértékek (* cellák). Az 5 ilyen cellából 3-at "1"-nek választunk, ezek kedvezően növelik az egyébként is szükséges lefedő hurkokat
- A maradék 2-t nem használjuk és így 0 értéket

reprezentálnak a kimeneten.

- Minden prímimplikáns lényeges, $I_1 = /A/B/C$, $I_2 = /AD$, $I_3 = A/D$
- A DC bejegyzések kihasználásával lényegesen egyszerűbb a realizáció
- $F = \frac{A}{B}C + \frac{AD}{AD} + \frac{A}{D}$
 - XOR függvénnyel F' = /A/B/C + A XOR D

- Sok bemeneti változóra ezek a kézi módszerek (algebrai, K-tábla) már nem megfelelőek
- Léteznek számítógépes algoritmusok
 - Algoritmus
 - Véges számú lépésben megoldja a problémát
 - Véges idő alatt leáll egy valamilyen megoldással
 - Algoritmusok minősítése
 - Optimális: Megtalálja a legjobb megoldást
 - Hatékony: Egy jó megoldást talál gyorsan
 - Kimerítő algoritmus
 - Megtalálja az optimális megoldást
 - Esetleg hosszú időbe telik
 - Heurisztikus algoritmus
 - Hatékony, gyors
 - Jó megoldást talál, de nem feltétlenül az optimálisat

- Quine-McCluskey (50-es évek)
 - Kimerítő teljes algoritmus
 - Az eddig megismert lépéseket ismétli
 - Először generálja az aktív mintermeket
 - Ezek alapján implikánsokat állít elő
 - Megkeresi az összes prímimplikánst
 - Figyelembe veszi a Don't Care jelzéseket is)
 - Kiválasztja a lényeges prímimplikánsokat
 - Összeválogatja a még szükséges prímimlikánsokat, úgy, hogy a legkisebb költségű megoldást adják
 - Sajnos ez a kimerítő teljes keresés a számítógépes végrehajtás mellett is túl hosszú futásidőt igényel
 - Az optimális megoldás költsége túl nagy

Espresso

- Heurisztikus algoritmus
 - Találjunk elfogadható idő alatt egy elegendően jó megoldást (nem kell feltétlenül az optimális megoldás)
 - Lokális keresési algoritmus
 - Nem generáljuk az összes mintermet és prímimplikánst
 - Viszont lépésenként finomítjuk (esetleg visszalépve) az addig elért lefedési készletet
 - Egyértelmű minimumhely esetén biztosan megtalálja, több lokális minimum esetén új feltételekkel újraindulva esetleg javítható a megoldás megbízhatósága

Espresso

- A jelenleg legnépszerűbb algoritmus
- Kiemelkedően hatékony a logikai függvények minimalizálásában
- Három fő lépés
 - Bővítés: a mintermek/implikánsok méretének növelési kísérlete
 - Redukció: A bővítés fordítottja, kisebb hurkok kialakítása, finomabb hurkok, jobb teljes lefedés érdekében
 - Többszörös lefedés kiváltása:
 az implikánsok olyan készlete, ahol
 egy-egy 1-est minél kevesebb hurok fed le
 - Ezek iteratív ismétlése, sokszor visszalépve
- Szinte minden logikai hálózatgeneráló szintézis program ezt használja

Második előadás vége