15 | Heine-Borel Theorem

15.1 Definition. Let (X, ϱ) be a metric space. A set $A \subseteq X$ is *bounded* if there exists an open ball $B(x_0, r) \subseteq X$ such that $A \subseteq B(x_0, r)$.

15.2 Proposition. Let (X, ϱ) be a metric space and let $A \subseteq X$. The following conditions are equivalent:

- 1) A is bounded.
- 2) For each $x \in X$ there exists $r_x > 0$ such that $A \subseteq B(x, r_x)$.
- 3) There exists R > 0 such that $\varrho(x_1, x_2) < R$ for all $x_1, x_2 \in A$.

Proof. Exercise.

15.3 Heine-Borel Theorem. A set $A \subseteq \mathbb{R}^n$ is compact if and only if A is closed and bounded.

15.5 Theorem. If X, Y are compact spaces then the space $X \times Y$ is also compact.

15.6 Corollary. If X_1, \ldots, X_n are compact spaces spaces then the space $X_1 \times \cdots \times X_n$ is compact.

15.7 Corollary. For $i=1,\ldots,n$ let $[a_i,b_i]\subseteq\mathbb{R}$ be a closed interval. The closed box

$$[a_1, b_1] \times \cdots \times [a_n, b_n] \subseteq \mathbb{R}^n$$

is compact.

Proof of Theorem 15.3. (\Rightarrow) Exercise.

(⇐)