

Curso de Engenharia de Computação ECM253 – Linguagens Formais, Autômatos e Compiladores

Modelos de computação - Máquinas de Turing

Slides da disciplina ECM253 – Linguagens Formais, Autômatos e Compiladores
Curso de Engenharia de Computação
Instituto Mauá de Tecnologia – Escola de Engenharia Mauá
Prof. Marco Antonio Furlan de Souza
<marco.furlan@maua.br>

MAUÁ

Agenda

- Máquinas de Turing
- Aceitação de linguagens

MAUÁ

Agenda

- Máquinas de Turing
- Aceitação de linguagens

Conceitos

Definição. Uma **máquina de Turing**¹ é uma quíntupla $M = \{Q, \Sigma, \Gamma, \delta, q_0\}$ onde:

- Q é um conjunto finito de **estados**;
- Γ é um conjunto finito denominado alfabeto da fita, contendo um símbolo especial, #, que representa "branco";
- Σ é um subconjunto de Γ {#} denominado **alfabeto de entrada**;
- $-\delta$ é uma função parcial de $Q \times \Gamma$ para $Q \times \Gamma \times \{L,R\}$ denominada função de transição;
- $-q_0$ ∈ Q é o estado inicial.

¹Ou máquina de Turing padrão

Conceitos

 Uma máquina de Turing é uma máquina de estados finitos na qual uma transição imprime um símbolo sobre uma fita contendo infinitas células:

 A cabeça da fita pode se mover tanto para a direita (R) quanto para a esquerda (L) permitindo a máquina ler/gravar sobre a fita quantas vezes for necessário.

Computação

- Para iniciar uma computação, uma cadeia de entrada é escrita a partir da extremidade esquerda da fita e seu restante é preenchido por brancos;
- A cabeça de leitura/gravação é posicionada sobre o símbolo mais à esquerda da cadeia;
- Sempre que a máquina **ler um símbolo** b sobre a cadeia de entrada, enquanto no estado q, sua lógica interna produz a tripla $\delta(q,b) = (p,c,D)$, de modo que o há uma **mudança de estado** para o estado p com a **substituição do símbolo** b por c e a **movimentação da cabeça** de leitura/gravação para uma **célula** na direção D, $D \in \{L,R\}$, sobre a qual estará **pronta** para ler o **próximo símbolo**;
- Uma computação para quando se encontra um par de estado e símbolo de entrada para o qual não há uma transição definida;
- Uma transição da célula zero para esquerda leva à uma terminação anormal.

Representação tabular

- Uma máquina de Turing com m estados e n símbolos é denominada de **máquina de Turing** $m \times n$;
- Assim uma máquina de Turing $m \times n$ pode ser representada por uma **tabela** contendo m **linhas**, que são seus **estados**, e n **colunas**, que são os símbolos de entrada (Γ);
- A entrada em uma linha q e coluna b é o valor da função $\delta(q,b)$, (p,c,D), ou um estado de parada h (alguns autores deixam esta entrada simplesmente indefinida);

Representação tabular

- Exemplo

δ	#	a	b
q_0	$q_1,\#,R$		
q_1	$\begin{array}{c c} q_1,\#,R \\ q_2,\#,L \end{array}$	q_1,b,R	q_1,a,R
q_2		q_2,a,L	q_2,b,L

- Simular com a entrada a seguir: #abab#:

q_0	$\underline{\#}abab\#$		q_2	#bab <u>a</u> #
q_1	$\#\underline{a}bab\#$		q_2	#baba#
q_1	#b <u>b</u> ab#		a-	- #baba#
q_1	$\#ba\underline{a}b\#$	•	q_2	#0 <u>u</u> 0u#
q_1	$\#bab\underline{b}\#$	•	q_2	# <u>b</u> aba#
q_1	#baba#	,	q_2	$\underline{\#}baba\#$

- Representação por diagrama de estados
 - O **diagrama de estados** representativo de uma máquina de Turing é assim definido:
 - Vértices são rotulados com nomes de estados, com destaque do estado inicial;
 - Um arco orientado é desenhado do vértice q_i para o vértice q_j e rotulado com x/y d se houver uma transição $\delta(q_i,x)=(q_j,y,s)$.
 - Exemplo

Configuração de máquina

- Uma configuração de máquina consiste em um estado, a fita e posição da cabeça de leitura/gravação;
- Em qualquer passo de uma computação em uma máquina de Turing, somente um segmento finito da fita é não branco;
- Uma **configuração** é **escrita** como uq_iv # onde todas as posições à direita de # são brancas e uv é a cadeia não branca escrita na fita (possivelmente com brancos em seu interior);
- A notação uq_iv # indica que a máquina está no **estado** q_i e está **lendo** o **primeiro símbolo** de v e a **fita** inteira à **direita** de uv é #;
- A utilização de configuração facilita acompanhar as computações de uma máquina de Turing.

Configuração de máquina

- A notação $uq_iv \vdash_M xq_jy$ # indica que a configuração xq_jy # é obtida de uq_iv # por uma simples transição da máquina M;
- A notação $uq_iv \vdash_M^* xq_jy$ # indica que a configuração xq_jy # é obtida de uq_iv # por um número finito, possivelmente zero, de transições;

Exemplo

q_0 # $abab$ #	$\vdash \#babq_2a\#$
$\vdash \#q_1abab\#$	\vdash # baq_2ba #
$\vdash \#bq_1bab\#$ $\vdash \#bag_1ab\#$	$\vdash \#bq_2aba\#$
⊢ #babq₁b#	$\vdash \#q_2baba\#$
\vdash # $babaq_1$ #	$\vdash q_2 \# baba \#$

Exemplo

 A máquina descrita a seguir faz uma cópia da cadeia u presente na fita, #u#, terminando com a configuração #u#u#:

MAUÁ

Agenda

- Máquinas de Turing
- Aceitação de linguagens

Conceitos

- Máquinas de Turing podem ser projetadas para aceitar linguagens e computar funções;
- O resultado de uma computação pode ser definido em termos do estado no qual a computação termina ou a configuração da fita no final da computação;
- No caso de aceitação ou rejeição de cadeias, define-se que a computação aceitou ou rejeitou uma cadeia se ela levar a máquina a um **estado final**;
- Neste caso, **estende-se a máquina de Turing** com um conjunto de **estados finais**, F, definindo-a como uma sêxtupla $(Q, \Sigma, \Gamma, \delta, q_0, F)$, onde $F \subseteq Q$.

Definição. Seja $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ uma máquina de Turing. Uma cadeia $u \in \Sigma *$ é **aceita por estado final** se a computação de M com entrada u parar em um estado final. Uma computação que termina diferentemente rejeita a entrada, não importando o estado em que terminar. A linguagem de M, denotada por L(M), é o conjunto de todas as cadeias aceitas por M.

Conceitos

- Uma linguagem aceita por uma máquina de Turing é chamada de linguagem recursivamente enumerável;
- Como a máquina de Turing pode se mover em ambas as direções e processar brancos, é possível que a máquina possa não parar para uma entrada particular;
- Possíveis resultados de uma computação com máquina de Turing:
 - Parar e aceitar a cadeia;
 - Parar e rejeitar a cadeia;
 - Não parar.
- Então, uma máquina M reconhece L se ela aceita L mas não necessariamente para com todas as entradas.

Conceitos

- Uma linguagem aceita por uma máquina de Turing é dita ser recursiva;
- Se as computações param para todas as entradas, então a máquina é também um dispositivo que decide a linguagem;
- A existência de uma máquina de Turing que para em todas as entradas é suficiente para mostrar que a pertinência na linguagem é decidível e que a linguagem é recursiva;
- No entanto, existem linguagens que s\(\tilde{a}\)o reconhecidas por uma m\(\tilde{a}\)quina de Turing mas que n\(\tilde{a}\)o decididas por qualquer m\(\tilde{a}\)quina de Turing.

Exemplo

- A máquina M descrita a seguir aceita a linguagem $(a \cup b)^*aa(a \cup b)^*$:

- Por exemplo, a cadeia aabb é aceita, conforme as derivações a seguir. Esta linguagem é recursiva - as computações de M param para toda cadeia de entrada.

 q_0 #aabb#

 $\vdash #q_1aabb#$

 $\vdash \#aq_2abb\#$

 $\vdash \#aaq_3bb\#$

Exemplo

– A linguagem $L = \{a^i b^i c^i | i \ge 0\}$ é aceita pela máquina de Turing a seguir:

- Variações da Máquina de Turing
 - Pode-se determinar máquinas de Turing padrão para as variações da máquina de Turing a seguir:
 - Máquinas de Turing com múltiplas trilhas: possuem fita com mais de uma trilha em paralelo;
 - Máquinas de Turing de dois caminhos: a cabeça de leitura e gravação não é limitada à esquerda;
 - Máquinas de Turing multi-fita: possuem mais de uma fita;
 - Máquinas de Turing não-determinísticas: permitem não-determinismo na função de próximo estado.

Exercícios

1. Seja *M* a máquina de Turing definida por:

δ		a	b	c
q_0	$q_1,\#,R$	q_1,a,R		
q_1	$q_2,\#,L$	q_1,a,R	q_1, c, R	q1,c,R
q_2		$q_{2},c,\!L$		$_{q_2,b,L}$

Pede-se:

- (a) Traçar a computação para a cadeia de entrada aabca.
- (b) Traçar a computação para a cadeia de entrada bcbc.
- (c) Desenhar o diagrama de estados de M.
- (d) Descrever o resultado de uma computação em M.

Exercícios

- 2. Construir uma máquina de Turing com alfabeto de entrada $\{a,b\}$ para aceitar as linguagens $\{uu^R | u \in \{a,b\}^*\}$.
- 3. Construir uma máquina de Turing com alfabeto de entrada $\{a,b,c\}$ que aceite cadeias nas quais o primeiro c é precedido pela cadeia aaa. Uma cadeia deve conter um c para ser aceita pela máquina.

Referências bibliográficas

- GERSTING, J. Fundamentos Matemáticos para a Ciência da Computação: um Tratamento Moderno de Matemática Discreta. [S.I.]: Livros Técnicos e Científicos. ISBN 9788521614227.
- RICH, E. **Automata, Computability and Complexity: Theory and Applications**. [S.l.]: Pearson Prentice Hall, 2008.
- ROSEN, K. **Discrete Mathematics and Its Applications**. New York: McGraw-Hill, 2003. (McGraw-Hill higher education).
- SUDKAMP, T. Languages and Machines: An Introduction to the Theory of Computer Science. [S.I.]: Pearson Addison-Wesley, 2006.
- TAYLOR, R. G. **Models of computation and formal languages**. New York: Oxford University Press, 1998.