Lycée Leconte de Lisle MPI

TD 1 : Langages et expressions régulières

Exercice 1

Dire si les affirmations suivantes sont vraies ou fausses en justifiant (L, L₁ et L₂ sont des langages).

- 1. Si L est fini alors L est régulier.
- 2. Si *L* est infini alors *L* n'est pas régulier.
- 3. Si L est régulier alors il est stable par concaténation, c'est-à-dire que $\forall u \in L, \ \forall v \in L, \ u.v \in L$.
- 4. Si L_1 est un langage régulier et si $L_2 \subset L_1$ alors L_2 est aussi régulier.
- 5. Si L_1 est un langage non régulier et si $L_1 \subset L_2$ alors L_2 n'est pas régulier.
- 6. Si L_1 est un langage régulier et $L_1 \cap L_2$ est un langage non régulier alors L_2 est un langage non régulier.

Exercice 2

Soit $\Sigma = \{a, b\}$. On note L_1 le langage des mots commençant par ab, c'est-à-dire les mots ayant pour préfixe ab. On note L_2 le langage des mots finissant par ba, c'est-à-dire les mots ayant pour suffixe ba.

- 1. Justifier que L_1 est régulier :
 - a. en donnant une construction ensembliste;
 - b. en le dénotant par une expression régulière.
- 2. De même, justifier que L_2 est régulier de deux manières différentes.
- 3. Donner 3 justifications que $L_1 \cap L_2$ est régulier.

Exercice 3

Soit $\Sigma = \{a, b\}$. Soit *L* le langage des mots dans lesquels toute lettre *a* est suivie d'une lettre *b*.

- 1. Donner $L \cap \Sigma^5$.
- 2. Démontrer que l'expression régulière $e = (ab \mid b) *$ dénote le langage L.

Exercice 4

Soit $\Sigma = \{a, b\}$. Justifier que les langages suivants sont rationnels en donnant une expression régulière.

- 1. Mots contenant le facteur aaa.
- 2. Mots ne contenant pas le facteur aaa.
- 3. Mots de longueur impaire.
- 4. Mots dont la longueur est un multiple de 3.
- 5. Mots où tout *a* est précédé d'un *b*.
- 6. Mots dans lesquels toute série de *a* est de longueur paire.
- 7. Mots contenant un nombre pair de *a*.

Exercice 5

Racine carrée d'un langage

Soit Σ un alphabet. Soit L un langage sur Σ , on appelle *racine de* L le langage défini par :

$$\sqrt{L} = \{ u \in \Sigma^* / u.u \in L \}$$

- 1. Comparer L et $\sqrt{L^2}$
- 2. Comparer L et \sqrt{L}^2

Exercice 6

- 1. Soit $u, v \in \Sigma^*$ deux préfixes d'un mot $w \in \Sigma^*$. Montrer que u est préfixe de v ou v est préfixe de u.
- 2. Soit a, b deux lettres d'un alphabet Σ et $u \in \Sigma^*$ un mot tel que au = ub. Démontrer que a = b et que $u \in \{a\}^*$.

Lycée Leconte de Lisle MPI

Exercice 7

Symbole Ø dans une expression régulière

Soit L un langage dénoté par une expression régulière e tel que $L \neq \emptyset$. Démontrer qu'il existe une expression régulière e' ne contenant pas le symbole \emptyset et équivalente à e (c'est-à-dire que $\mu(e) = \mu(e')$).

***Exercice 8**

Mots qui commutent

Soit $u, v \in \Sigma^*$.

- 1. Montrer que s'il existe $t \in \Sigma^*$ tel que $u \in \{t\}^*$ et $v \in \{t\}^*$ alors uv = vu.
- 2. Réciproquement, démontrer que si uv = vu alors il existe $t \in \Sigma^*$ tel que u et v sont des puissances de t.
- 3. Un compositeur écrit deux chansons *A* et *B*. Il demande à un interprète de chanter *A* puis *B* sans aucune interruption. L'intérprète réalise alors un premier spectacle, puis un second où il se mélange les pinceaux et chante *B* avant *A*. Un spectateur ayant assisté aux deux spectacles affirme n'avoir entendu aucune différence. Que dire de ces deux chansons ?

*Exercice 9

Mots ayant des puissances égales

Soit u et v deux mots de Σ^* . On suppose qu'il existe deux entiers naturels non nuls p et q tels que $u^p = v^q$. Montrer qu'il existe deux entiers m et n et un mot $w \in \Sigma^*$ tels que $u = w^m$ et $v = w^n$. La réciproque est-elle vraie ? **Indication :** Utiliser le résultat de la question 2 de l'exercice précédent.

***Exercice 10**

Existence de langages non réguliers

Soit Σ un alphabet non vide. On rappelle qu'un ensemble E est dénombrable s'il est en bijection avec \mathbb{N} .

- 1. Justifier que Σ^* est dénombrable.
- 2. Soit X un ensemble. Démontrer qu'il n'existe pas de surjection $j: X \to \mathfrak{P}(X)$. **Indication :** si une telle application existe on pourra considérer la partie $A = \{x \in X \mid x \notin j(x)\}$
- 3. Démontrer que l'ensemble des langages sur l'alphabet Σ est infini mais non dénombrable.
- 4. Démontrer que REGEXP(Σ) est infini dénombrable.
- 5. En déduire qu'il existe des langages non réguliers.

