

# **KNAPSACK USING FIFO**











#### 7.5 0/1 Knapsack Problem

#### Problem statement:

The 0/1 Knapsack problem states that - There are 'n' objects given and capacity of Knapsack is 'm'. Then select some objects to fill The Knapsack in such a way that it should not exceed the capacity of Knapsack and maximum profit can be earned. The Knapsack problem is a maximization problem. That means we will always seek for maximum  $P_i x_i$  (where  $P_i$  represents profit of object  $x_i$ ). We can also get  $\sum P_i x_i$  maximum iff  $-\sum P_i x_i$  is minimum.

Minimize profit 
$$-\sum_{i=1}^{n} P_i x_i$$

Subject to 
$$\sum_{i=1}^{n}$$

Such that  $\sum W_i x_i \le m$  and

$$x_i = 0$$
 or 1 where  $1 \le i \le n$ 









#### Example

Consider the knapsack instance: n = 4;

$$(pi, p2, p3, p4) = (10, 10, 12, 18);$$

$$(wi. w2, w 3, w4) = (2, 4, 6, 9)$$
 and  $M = 15$ .













Figure 8.9 LC Branch-and-bound tree for Example 8.2











```
procedure UBOUND (p, w, k, M)
  //p, w, k and M have the same meaning as in Algorithm 7.11//
  //W(i) and P(i) are respectively the weight and profit of the ith object//
    global W(1:n), P(1:n); integer i, k, n
    b-p; c-w
    for i - k + 1 to n do
      if c + W(i) \le M then c - c + W(i); b - b - P(i) endif
    repeat
    return(b)
end UBOUND
             Algorithm 8.5 Function u(\cdot) for knapsack problem
```









#### 7.5.2 FIFO Branch-and-Bound Solution

The space tree with variable tuple size formulation can be drawn and c^(.) and u(.) is computed (We have considered the same Knapsack problem which is discussed in section 7.5.1).



Fig. 7.7 FIFOBB space tree











Initially upper = u(1) = -32. Then children of node 1 are generated. Node 2 becomes E-node and hence children 4 and 5 are generated. Node 4 and 5 are added in the list of live nodes. Next, node 3 becomes E-node and children 6 and 7 are generated. As c^(7) > upper we will kill node 7. Hence node 6 will be added in the list of live nodes. Node 4 is E-node and children 8 and 9 are generated. The upper is updated and it is now upper = u(9) = -38. Nodes 8 and 9 are added in the list of live nodes. Node 5 and 6 becomes the next E-node but as c^(5) > upper and c^(6) > upper, kill nodes 5 and 6. Node 8 becomes next E-node and children 10 and 11 are generated. As node 10 is infeasible do not consider it. c^(11) > upper. Hence kill node 11. Node 9 becomes next E-node and upper = -38. Children 12 and 13 are generated. But c^(13) > upper. So kill node 13. Finally node 12 becomes an answer node. Therefore solution is  $x_1 = 1$ ,  $x_2 = 1$ ,  $x_3 = 0$  and  $x_4 = 1$ .







## FIFO branch and bound solution for knapsack problem is derived as follows:

- I. Derive state space tree.
- 2. Compute lower bound: hatc(.) and upper bound: u(.) for each node.
- 3. If lower bound is greater than upper bound than kill that node.
- 4. Else, both the children of siblings are inserted in list and most promising node is selected as new E node.
- 5. Repeat step 3 and 4 until all nodes are examined.
- 6. The node with minimum lower bound value hatc(.) is the answer node. Trace the path from leaf to root in the backward direction to find the solution tuple.

8









## LC branch and bound solution for knapsack problem is derived as follows:

- I. Derive state space tree.
- 2. Compute lower bound: hatc(.) and upper bound: u(.) for each node.
- 3. If lower bound is greater than upper bound than kill that node.
- 4. Else select node with minimum lower bound as E-node.
- 5. Repeat step 3 and 4 until all nodes are examined.
- 6. The node with minimum lower bound value hatc(.) is the answer node. Trace the path from leaf to root in the backward direction to find the solution tuple.









#### Sample Questions:

- In Branch and Bound, 0/1 Knapsack problem is a minimization problem. Explain?
- With suitable example explain LIFOBB
- Solve 0/1 Knapsack problem using FIFOBB









## **THANK YOU**











As discussed earlier, the goal of knapsack problem is to maximize

 $sum_i p_i x_i$ 

given the constraints

 $sum_i w_i x_i leM$ 

, where M is the size of the knapsack. A maximization problem can be converted to a minimization problem by negating the value of the objective function.









The modified knapsack problem is stated as,

minimize

 $-sum_i p_i x_i$ 

subjected to

 $sum_i w_i x_i leM$ 

Where,

 $x_i in 0, 1, 1 lei len$ 

Node satisfying the constraint

 $sum_i w_i x_i leM$ 

in state space tree is called the answer state, the remaining nodes are infeasible.

13













### LC branch and bound solution for knapsack problem is derived as follows:

- I. Derive state space tree.
- 2. Compute lower bound: hatc(.) and upper bound: u(.) for each node.
- 3. If lower bound is greater than upper bound than kill that node.
- 4. Else select node with minimum lower bound as E-node.
- 5. Repeat step 3 and 4 until all nodes are examined.
- 6. The node with minimum lower bound value hatc(.) is the answer node. Trace the path from leaf to root in the backward direction to find the solution tuple.



14







## FIFO branch and bound solution for knapsack problem is derived as follows:

- I. Derive state space tree.
- 2. Compute lower bound: hatc(.) and upper bound: u(.) for each node.
- 3. If lower bound is greater than upper bound than kill that node.
- 4. Else, both the children of siblings are inserted in list and most promising node is selected as new E node.
- 5. Repeat step 3 and 4 until all nodes are examined.
- 6. The node with minimum lower bound value hatc(.) is the answer node. Trace the path from leaf to root in the backward direction to find the solution tuple.









$$u(1) =$$

 $-sump_i$ 

such that

 $sumw_i leM$ 

hatc(1) = u(1) - fracM - Weight; of; selected; itemsWeight; of; remaining; items \* Profit; of; remaining; of; rem







The bounding function is a heuristic computation. For the same problem, there may be different bounding functions. Apart from the above-discussed bounding function, another very popular bounding function for knapsack is,

$$ub = v + (W - w) * (vi+I / wi+I)$$

where,

v is value/profit associated with selected items from the first i items.

W is the capacity of the knapsack.

w is the weight of selected items from first i items



























