

#### **Chapter 4 Combinational Logic**



**FIGURE 4.1**Block diagram of combinational circuit

#### Combinational Logic

aka. Combinational Circuit

Combination of logic gates on the present inputs  $\rightarrow$  the outputs *at any time*!

A combinational circuit performs an operation that can be specified logically by a set of Boolean functions.



Binary Adder, Binary Subtractor, Binary Multiplier

Binary Comparator (Magnitude Comparator)

n-bit X + n-bit X + ... + n-bit X

m-bit Y times!



$$X \times (11)_2 = X + X + X$$



$$X \times (11)_2 = X + X + X$$
  
If you change Y, you have to change circuit!!



 $X \times Y = X + ... + X \rightarrow When to stop?$ Feedback  $\rightarrow$  Sequential Logic

 $X_4X_3X_2X_1 \\ \times Y_1 \\ M_4M_3M_2M_1$ 

$$\begin{array}{c} X_4 X_3 X_2 X_1 \\ \times & Y_1 \\ \hline M_1 = Y_1 X_1 \end{array}$$

$$\begin{array}{c} X_4 X_3 X_2 X_1 \\ \times & Y_1 \\ \hline M_2 = Y_1 X_2 \end{array}$$

$$\begin{array}{c} X_4 X_3 X_2 X_1 \\ \times & Y_1 \\ \hline M_3 = Y_1 X_3 \end{array}$$

$$X_{4}X_{3}X_{2}X_{1}$$
 $X_{4}X_{3}X_{2}X_{1}$ 
 $X_{1}X_{2}X_{1}$ 
 $X_{1}X_{2}X_{1}$ 
 $X_{2}X_{1}$ 
 $X_{3}X_{2}X_{1}$ 
 $X_{4}X_{3}X_{2}X_{1}$ 



 $X_4X_3X_2X_1$   $X_4X_3X_2X_1$   $X_2Y_1$   $X_2Y_1$   $X_4X_3X_2X_1$   $X_4X_1X_2X_1$   $X_4X_1X_1X_1$   $X_4X_1X_1X_1$   $X_4X_1X_1X_1$   $X_4X_1X_1X_1$   $X_4X_1X_1X_1$   $X_4X_1X_1$   $X_4X_1X_1$   $X_4X_1X_1$   $X_4X_1$   $X_4X$ 

```
X_4 X_3 X_2 X_1
X_5 X_1 X_
```

```
X_4X_3X_2X_1
X
      0 M_4 M_3 M_2 M_1
      N_4 N_3 N_2 N_1 0
  C4 S_4 S_3 S_2 S_1 M_1
```





```
X_4X_3X_2X_1
              Y_3Y_2Y_1
       M_4 M_3 M_2 M_1
   N_4 N_3 N_2 N_1 0
P_4 P_3 P_2 P_1 0 0
```

+  $C_4$   $S_4$   $S_3$   $S_2$   $S_1$   $M_1$   $P_4$   $P_3$   $P_2$   $P_1$  0 0

 $\begin{array}{cccc} X_4 X_3 X_2 X_1 \\ X_4 X_3 X_2 X_1 \\ X_1 X_2 X_2 X_1 \\ X_2 X_1 X_2 X_1 \\ X_3 X_2 X_1 \\ X_4 X_3 X_2 X_1 \\ X_5 X_1 X_2 X_1 \\ X_6 X_1 X_2 X_1 \\ X_7 X_1 X_2 X_1 \\ X_8 X_2 X_1 \\ X_8 X_1 X_2 X_1 \\ X_8 X_2 X_1 \\ X_8 X_1 X_1 X_2 X_1 \\ X_8 X_1 X_$ 

  $\begin{array}{c} X_4 X_3 X_2 X_1 \\ Y_3 Y_2 Y_1 \end{array}$ 



n-bit X × m-bit Y

→ how many output bit?

n-bit X × m-bit Y
→ how many ANDs?

n-bit X × m-bit Y

→ how many k-bit adders?

n-bit X × m-bit Y

→ what is k in k-bit adders?

 $n-bit X \times m-bit Y$ 

Binary Adder, Binary Subtractor, Binary Multiplier

**Binary Comparator (Magnitude Comparator)** 

## Binary Comparator Unsigned

$$X > Y$$
  $X = = Y$   $X < Y$ 

Given two unsigned numbers x and y, design a logic circuit to see

 $x \geq ? y$ 

| Y2 | Y1 | X2 | X1 | $F(Y2,Y1,X2,X1)=\Sigma m(0,1,2,3,5,6,7,10,11,15)$ | $F(Y2,Y1,X2,X1)=\Pi M(4,8,9,12,13,14)$ |
|----|----|----|----|---------------------------------------------------|----------------------------------------|
| 0  | 0  | 0  | 0  | 1                                                 | 1                                      |
| 0  | 0  | 0  | 1  | 1                                                 | 1                                      |
| 0  | 0  | 1  | 0  | 1                                                 | 1                                      |
| 0  | 0  | 1  | 1  | 1                                                 | 1                                      |
| 0  | 1  | 0  | 0  | 0                                                 | 0                                      |
| 0  | 1  | 0  | 1  | 1                                                 | 1                                      |
| 0  | 1  | 1  | 0  | 1                                                 | 1                                      |
| 0  | 1  | 1  | 1  | 1                                                 | 1                                      |
| 1  | 0  | 0  | 0  | 0                                                 | 0                                      |
| 1  | 0  | 0  | 1  | 0                                                 | 0                                      |
| 1  | 0  | 1  | 0  | 1                                                 | 1                                      |
| 1  | 0  | 1  | 1  | 1                                                 | 1                                      |
| 1  | 1  | 0  | 0  | 0                                                 | 0                                      |
| 1  | 1  | 0  | 1  | 0                                                 | 0                                      |
| 1  | 1  | 1  | 0  | 0                                                 | 0                                      |
| 1  | 1  | 1  | 1  | 1                                                 | 1                                      |



Given two unsigned numbers x and y, design a logic circuit to see

$$x > y$$
;  $x == y$ ;  $x < y$ 

| Y2 | Y1 | X2 | X1 | $F_1 = (X > Y)$ | $F_2 = (X = = Y)$ | F <sub>3</sub> = (X < Y) |
|----|----|----|----|-----------------|-------------------|--------------------------|
| 0  | 0  | 0  | 0  | 0               | 1                 | 0                        |
| 0  | 0  | 0  | 1  | 1               | 0                 | 0                        |
| 0  | 0  | 1  | 0  | 1               | 0                 | 0                        |
| 0  | 0  | 1  | 1  | 1               | 0                 | 0                        |
| 0  | 1  | 0  | 0  | 0               | 0                 | 1                        |
| 0  | 1  | 0  | 1  | 0               | 1                 | 0                        |
| 0  | 1  | 1  | 0  | 1               | 0                 | 0                        |
| 0  | 1  | 1  | 1  | 1               | 0                 | 0                        |
| 1  | 0  | 0  | 0  | 0               | 0                 | 1                        |
| 1  | 0  | 0  | 1  | 0               | 0                 | 1                        |
| 1  | 0  | 1  | 0  | 0               | 1                 | 0                        |
| 1  | 0  | 1  | 1  | 1               | 0                 | 0                        |
| 1  | 1  | 0  | 0  | 0               | 0                 | 1                        |
| 1  | 1  | 0  | 1  | 0               | 0                 | 1                        |
| 1  | 1  | 1  | 0  | 0               | 0                 | 1                        |
| 1  | 1  | 1  | 1  | 0               | 1                 | 0                        |

| Y2 | Y1 | X2 | X1 | $F_1 = (X > Y)$ | $F_2 = (X = = Y)$          | F <sub>3</sub> = (X < Y) |
|----|----|----|----|-----------------|----------------------------|--------------------------|
| 0  | 0  | 0  | 0  | 0               | 1                          | 0                        |
| 0  | 0  | 0  | 1  | 1               | 0                          | 0                        |
| 0  | 0  | 1  | 0  | 1               |                            | 0                        |
| 0  | 0  | 1  | 1  | 1               |                            | 0                        |
| 0  | 1  | 0  | 0  | 0               | If X and Y 3, 4, 5, bits?! | 1                        |
| 0  | 1  | 0  | 1  | 0               |                            | 0                        |
| 0  | 1  | 1  | 0  | 1               |                            | 0                        |
| 0  | 1  | 1  | 1  | 1               |                            | 0                        |
| 1  | 0  | 0  | 0  | 0               |                            | 1                        |
| 1  | 0  | 0  | 1  | 0               |                            | 1                        |
| 1  | 0  | 1  | 0  | 0               |                            | 0                        |
| 1  | 0  | 1  | 1  | 1               |                            | 0                        |
| 1  | 1  | 0  | 0  | 0               |                            | 1                        |
| 1  | 1  | 0  | 1  | 0               | 0                          | 1                        |
| 1  | 1  | 1  | 0  | 0               | 0                          | 1                        |
| 1  | 1  | 1  | 1  | 0               | 1                          | 0                        |

### Binary Subtractor

# Binary Subtractor Unsigned by Hossein's Way!

 $\begin{array}{c} C_{3}C_{2}C_{1}C_{0} \\ 0 X_{3}X_{2}X_{1} \\ - 0 Y_{3}Y_{2}Y_{1} \\ \hline C4 S_{4}S_{3}S_{2}S_{1} \end{array}$ 

 $\begin{array}{c} \textbf{C}_{3}\textbf{C}_{2}\textbf{C}_{1}\textbf{C}_{0} \\ \textbf{0} \ \textbf{X}_{3}\textbf{X}_{2}\textbf{X}_{1} \\ \textbf{-} \ \textbf{0} \ \textbf{Y}_{3}\textbf{Y}_{2}\textbf{Y}_{1} \\ \textbf{C4} \ \textbf{S}_{4}\textbf{S}_{3}\textbf{S}_{2}\textbf{S}_{1} \end{array}$ 

$$\begin{array}{c}
C_{3}C_{2}C_{1}C_{0} \\
0 X_{3}X_{2}X_{1} \\
+ 2's-comp(0 Y_{3}Y_{2}Y_{1}) \\
C4 S_{4}S_{3}S_{2}S_{1}
\end{array}$$
If S' then Y > Y

If  $S'_4$  then  $X \ge Y$ If  $S'_4$  AND  $(S_3+S_2+S_1)=1$  then X > Y

If  $S_4$  then X < Y

If 
$$S'_4$$
 AND  $(S_3 + S_2 + S_1)' = 1$  then  $X = Y$ 



# XNOR Equality Gate

#### NOT Exclusive-OR (XNOR)



| Υ | X | $F = F(Y,X) = Y'X'+YX = m_0+m_3$ |
|---|---|----------------------------------|
| 0 | 0 | 1                                |
| 0 | 1 | 0                                |
| 1 | 0 | 0                                |
| 1 | 1 | 1                                |

$$X_4 = 1 X_3 X_2 X_1$$

$$Y_4 = 0 Y_3 Y_2 Y_1$$

$$X_4 Y'_4 \rightarrow X > Y$$

$$X_{4}=0 X_{3}X_{2}X_{1}$$
 $Y_{4}=1 Y_{3}Y_{2}Y_{1}$ 
 $X'_{4}Y_{4} \rightarrow X < Y$ 

$$X_{4} X_{3} X_{2} X_{1}$$
 $Y_{4} Y_{3} Y_{2} Y_{1}$ 
 $X_{4} \bigcirc Y_{4} = 1$ 

$$X_{4} X_{3} = 1 X_{2} X_{1}$$
 $Y_{4} Y_{3} = 0 Y_{2} Y_{1}$ 
 $X_{4} \bigcirc Y_{4} = 1$ 
 $X'_{3} Y_{3} \rightarrow X > Y$ 

$$X_{4} X_{3} = 0 X_{2} X_{1}$$
 $Y_{4} Y_{3} = 1 Y_{2} Y_{1}$ 
 $X_{4} \bigcirc Y_{4} = 1$ 
 $X_{3} Y'_{3} \rightarrow X < Y$ 

F1=(X>Y)= 
$$X_4Y'_4$$
+  
 $(X_4 \odot Y_4)X_3Y'_3$ +  
 $(X_4 \odot Y_4)(X_3 \odot Y_3)X_2Y'_2$ +  
 $(X_4 \odot Y_4)(X_3 \odot Y_3)(X_2 \odot Y_2)X_1Y'_1$ 

F1=(XX'\_{4}Y\_{4}+  

$$(X_{4} \odot Y_{4})X'_{3}Y_{3}$$
+  
 $(X_{4} \odot Y_{4})(X_{3} \odot Y_{3})X'_{2}Y_{2}$ +  
 $(X_{4} \odot Y_{4})(X_{3} \odot Y_{3})(X_{2} \odot Y_{2})X'_{1}Y_{1}$ 

**Chapter 4 Combinational Logic** 



**FIGURE 4.17** Four-bit magnitude comparator

**Chapter 4 Combinational Logic** 



**FIGURE 4.17** Four-bit magnitude comparator

Binary Adder, Binary Subtractor, Binary Multiplier

Binary Comparator (Magnitude Comparator)

Data Transmission **Decoder, Encoder** 

Multiplexer (MUX, MPX), De-Multiplexer (Demux)

Coders

Binary Codes (BCD, Excess-3, Gray)

# Binary Decoder

Binary Code Decoder Display Decoder

# Decoder Decode Binary to 1-hot

1-hot: a vector of bits with a single 1 and all the others 0 [0010000000] [0000000000]

[0010010000]



































 $\begin{array}{c} D_0 = 0 \\ D_1 = 1 \end{array}$ 



| X | $D_0$ | $D_1$ |
|---|-------|-------|
| 0 | 1     | 0     |
| 1 | 0     | 1     |

| X | $D_0 = m_0$ | $D_1=m_1$ |
|---|-------------|-----------|
| 0 | 1           | 0         |
| 1 | 0           | 1         |













| Y | X | $D_0 = m_0$ | $D_1=m_1$ | $D_2=m_2$ | $D_3 = m_3$ |
|---|---|-------------|-----------|-----------|-------------|
| 0 | 0 | 1           | 0         | 0         | 0           |
| 0 | 1 | 0           | 1         | 0         | 0           |
| 1 | 0 | 0           | 0         | 1         | 0           |
| 1 | 1 | 0           | 0         | 0         | 1           |



## Chapter 4 Combinational Logic

**Table 4.6**Truth Table of a Three-to-Eight-Line Decoder

|   | Inputs |   | Outputs        |                       |                |       |       |                |                |                |
|---|--------|---|----------------|-----------------------|----------------|-------|-------|----------------|----------------|----------------|
| X | y      | Z | D <sub>0</sub> | <i>D</i> <sub>1</sub> | D <sub>2</sub> | $D_3$ | $D_4$ | D <sub>5</sub> | D <sub>6</sub> | D <sub>7</sub> |
| 0 | 0      | 0 | 1              | 0                     | 0              | 0     | 0     | 0              | 0              | 0              |
| 0 | 0      | 1 | 0              | 1                     | 0              | 0     | 0     | 0              | 0              | 0              |
| 0 | 1      | 0 | 0              | 0                     | 1              | 0     | 0     | 0              | 0              | 0              |
| 0 | 1      | 1 | 0              | 0                     | 0              | 1     | 0     | 0              | 0              | 0              |
| 1 | 0      | 0 | 0              | 0                     | 0              | 0     | 1     | 0              | 0              | 0              |
| 1 | 0      | 1 | 0              | 0                     | 0              | 0     | 0     | 1              | 0              | 0              |
| 1 | 1      | 0 | 0              | 0                     | 0              | 0     | 0     | 0              | 1              | 0              |
| 1 | 1      | 1 | 0              | 0                     | 0              | 0     | 0     | 0              | 0              | 1              |



FIGURE 4.18 Three-to-eight-line decoder