חשבון אינפיניטסימלי חורף 2016־2017

תרגיל בית מס' 6

הערה - בתרגיל להלן נשתפש בסיפונים הבאים:

(העושרה מהפרעטריזציה) ייצג הנורעל הטבעי לעשטח $ar{n}$

 $\nabla \times = curl$ $\nabla \cdot = div$

. אינטגרל פסלולי באורינטציה חיובית. ϕ אינטגרל פשטחי על S

.M אינטגרל נפחי על \iiint_M

חובת ההגשה היא על 4 שאלות מתוך התרגיל: שאלות 3,4,5 + אחת נוספת לבחירתכם.

 $x^3 + y^3 = 3xy$ מצאו שטח התחום החסום על ידי החסום התחום מצאו

$$0 < t < \infty$$
 $y(t) = \frac{3t^2}{1+t^3} x(t) = \frac{3t}{1+t^3}$

x-y=0געקט איז איז איז איז איז איז איז פרמטריזציה לעקום: y=tx איז איז איז איז איז פרמטריזציה לעקום: $0< t<\infty$ $y(t)=\frac{3t^2}{1+t^3}$ $x(t)=\frac{3t}{1+t^3},$ בדי לחשב השטח השתמשו בתבנית $\frac{1}{2}x^2(y/x)'dt$ במקרה הנוכחי y/x=t, והתבנית שווה $\frac{1}{2}x^2dt$

שאלה 2

נניח ϕ ו־A,B פונקציה ושדות וקטורים חלקים בהתאמה. הוכיחו הזהויות:

$$abla \cdot (\phi A) = (\nabla \phi) \cdot A + \phi (\nabla \cdot A)$$
 (x

$$\nabla \times (\phi A) = (\nabla \phi) \times A + \phi(\nabla \times A)$$
 (2

$$abla imes (
abla \phi) = 0$$
 (a

$$\nabla \cdot (\nabla \times A) = 0$$
 (7

$$\nabla \cdot (A \times B) = B \cdot (\nabla \times A)$$
 (n

להלן בשרטוט המשולש הינו הינו המשר $\oint_C (y-\sin(x)) dx + \cos(x) dy$ חשבו

א) בחישוב ישיר.

ב) על ידי משפט גרין.

(זאת משטח) נסמן ב־ $x^2+y^2+z^2=1$ נסמירה של העליון את החצי העליון את ב־ $\oint_C ar F\cdot dar x=\iint_S (\nabla imes F)\cdot ar n dA$ וב־Tוודאו כי השוויון הנ"ל אכן מתקיים בחישוב ישיר עבור השדה:

 $.\bar{F} = (2x - y, -yz^2, -y^2z)$

שאלה 5

. (צילינדר) $x^2+y^2=4,\,z=0,\,z=3$ (צילינדר) התחום הכלוא בין המשטחים

יהא (שיר את משפט הדיברגנץ: דה וקטורי. וודאו באופן שיר $ar{F}=(4x,-2y^2,z^2)$ יהא

$$\iiint_{M} \nabla \cdot \bar{F} dV = \iint_{\partial M} (F \cdot \bar{n}) dA$$

שאלה 6

M תהא ϕ פונקציה סקלרית חלקה על 3° יריעה M תהא M הוכיחו הזהות M חלקה על 3M הוכיחו הזהות או הוכיחו הזהות M הוכיחו הזהות M הוכיחו במשפט הדיברגנץ עם שדה \bar{C} כאשר \bar{C} וקטור קבוע, יחד עם זהות (א) בשאלה 2. M = M ב) הוכיחו הזהות M בשאלה M הוכיחו הזהות M במשפט הדיברגנץ עם שדה M כאשר M וקטור קבוע, רמז : השתמשו במשפט הדיברגנץ עם שדה M באלה M הות (ה) בשאלה 2.

שאלה 7

הוכיחו משפט הדיברגנץ במישור: $\textstyle\int_D (M_x+N_y) dx dy = \int_{\partial M} (M,N) \cdot n ds$