

Feedback Control Systems

"Dampening is what dogs do to fire hydrants, damping is what controllers do to oscillatory systems" –ANONYMOUS VT CONTROLS PROFESSOR

ME 2984

Slack

 If you signed up on the sheet and haven't gotten an invite check your spam.

Highly recommended that you sign-up

What Is Control Theory?

- Controlling the inputs to a system in order to achieve a desired output
 - Manual
 - Automated
 - Mechanical
 - Analog
 - Digital

Feedback Control

- Use data to affect your input.
 - Open Loop
 - No output measurement
 - Feedback
 - Use output to affect control signal
 - Feed Forward
 - Predict disturbances to affect controller

Source: Wikipedia

Notation

- Block Diagrams used to represent a system
- Single Input, Single
 Output Systems
 (SISO)
 - Linear time invariant systems

Source: Wikipedia

Standard Control Loop

BLOCK DIAGRAMS

Stability

Source: Adrian Pingstone

Source: NASA

- Stable systems naturally reject disturbances
- Will naturally return to an initial condition
- Unstable systems will deviate to infinity from a small input

Spring Mass

- Simple easy to model system
 - $m\ddot{x} + kx = 0$

Unconstrained Oscillation

•
$$\omega_0 = \sqrt{k/m}$$

Spring Mass Damper

- Damper is optional
 - $m\ddot{x} + c\dot{x} + kx = 0$

 Produces oscillatory response

•
$$\omega_0 = \sqrt{k/m}$$

•
$$\zeta = \frac{c}{2\sqrt{mk}}$$

Source: MIT

Output

The Inverted Pendulum

 Basic System used for testing controllers

$$\ddot{\theta} - \frac{g}{\ell} \sin \theta = 0$$
• Can be used to

 Can be used to model a wide variety of systems

Source: UTPA

Other Inverted Pendulums

Source: NASA

Source: Wikipedia

Source: Logan Wallace

- Impulse Response / Dirac Delta Function
 - Equivalent to a Hammer Blow
 - Can help determine the Transfer Function

Impulse/Dirac Function

Source: Wikipedia

- Step Response
 - Constant input starting at time zero
 - Tests the effect on rapid deviations
 - Generates common design metrics

Step Input Source: U Michigan

- Ramp function
 - Continually increasing function with set slope
 - Used to determine steady state error of certain systems

Ramp Input Source: U Michigan

- Sinusoidal response
 - Used to determine the response of a system without analysis
 - Used in a process called
 System ID

Step Input

Source: Brandeis

Closing The Loop

- Common Design
 Metrics
 - Rise time
 - Settling Time
 - PercentOvershoot

- Proportional
 - Small error means small change in input
 - Can't deal well with rapid changes

Source: Wikipedia

- Integrator
 - Integrates the Error in the system
 - System must be able to get Steady
 State Error

What happens to the error at Tzero?

Known as windup, can overload the capacity of your actuators

- Derivative
 - Counteracts P and I
 - Acts very quickly
 - Can be very sensitive to noise
 - Cannot exist by itself

PID Controllers

- Most common type of controller
- Must be tuned for system performance

What Does A Controls Engineer Do?

- Use analysis to determine the dynamics of a system
- Use a variety of tools to achieve desired system performance
 - Laplace Transforms
 - Pole Zero Plots
 - Bode Plots
 - State Space Analysis

Homework 2

- Homework 2 is due at 11:55 Tonight
 - Written section must be turned in Digitally via Scholar
 - · Code must be submitted via GitHub