東大数理 院試過去問解答 専門科目(代数)

nabla *

2024年12月9日

目 次

はじめに	;
2020 年度 (令和 2 年度)	4
2019 年度 (平成 31 年度)	į
2015 年度 (平成 27 年度)	(
2014年度 (平成 26年度)	,
2012 年度 (平成 24 年度)	8
2011 年度 (平成 23 年度)	9
2010 年度 (平成 22 年度)	10
2009 年度 (平成 21 年度)	1
2008 年度 (平成 20 年度)	1;
2007 年度 (平成 19 年度)	14
2006 年度 (平成 18 年度)	18
2005 年度 (平成 17 年度)	18
2004 年度 (平成 16 年度)	19
1999 年度 (平成 11 年度)	22
1997 年度 (平成 9 年度)	2
1996 年度 (平成 8 年度)	2
1995 年度 (平成 7 年度)	28
1994 年度 (平成 6 年度)	30

 $[*]Twitter:@nabla_delta$

美施牛及个明 Ⅰ	31
実施年度不明 2	32
実施年度不明 4	34
1983 年度 (昭和 58 年度)	36
1982 年度 (昭和 57 年度)	37
1981 年度 (昭和 56 年度)	38
1980 年度 (昭和 55 年度)	39
1979 年度 (昭和 54 年度)	41
1978 年度 (昭和 53 年度)	43
1977 年度 (昭和 52 年度)	44
1976 年度 (昭和 51 年度)	46

はじめに

東大数理科学研究科の院試問題の解答です.解答が正しいという保証はありません.また,一部の解答は math.stackexchange.com で見つけたものを参考にしています.別解がある(かもしれない)場合でも解答は一つだけしか書いてありませんし,ここの解答より簡単な解答もあるかもしれません.この文書を使用して何らかの不利益が発生しても,私は責任を負いません.転載は禁止です.

2020年度(令和2年度)

問 2

以下の問に答えよ.

- (1) 体 K 上の 2 変数多項式環 K[X,Y] の極大イデアルは 2 つの元で生成されることを示せ.
- (2) 有理整数環 \mathbb{Z} 上の 2 変数多項式環 $\mathbb{Z}[X,Y]$ の極大イデアルは 3 つの元で生成されることを示せ.

解答. 京大数学系 2005 年度専門問1の解答を参照.

2019年度 (平成31年度)

問 2

a,b,c を 1 以上の整数とする. このとき多項式 $X^a+Y^b+Z^c\in\mathbb{C}[X,Y,Z]$ は既約であることを示せ.

解答. $\mathbb{C}[X,Y,Z]=\mathbb{C}[Y,Z][X]$ で $\mathbb{C}[Y,Z]$ は UFD だから、 $\mathbb{C}[Y,Z]$ の素元 f であって $Y^b+Z^c\in (f),Y^b+Z^c\not\in (f^2)$ となるものが存在すれば、Eisenstein の既約判定法により $X^a+Y^b+Z^c$ は既約となる. よって f の存在を示せば良い.

 $Y^b+Z^c\in\mathbb{C}[Y,Z]=\mathbb{C}[Z][Y]$ は Y についての次数が $b\geq 1$ だから単元ではない.よってある素元 f で割り切れる.今 f^2 で割り切れるとすると Y による偏微分 bY^{b-1} も f で割り切れるから, $(Y^b+Z^c)-\frac{Y}{b}\cdot bY^{b-1}=Z^c$ も f で割り切れる.これより $f=sZ^r$ $(s\in\mathbb{C},r\leq c)$ とおけるが,これは明らかに Y^b+Z^c を割らないから矛盾.従ってこの f が条件を満たすから示された.

2015年度(平成27年度)

問 2

S=k[t] を体 k 上の一変数多項式環,K を S の商体とする.S の部分環 R を次のように定める:

$$R = k[t^4, t^{10}, t^{13}].$$

- (1) $I = \{x \in K; xS \subset R\}$ とおいたとき、I は R と S, 両方のイデアルであることを示せ.
- (2) I の R のイデアルとしての生成系のうち、生成元の個数が最小のものを 1 つ求めよ.

解答. (1) 任意の $x,y \in I, z \in R$ に対し

$$(x+y)S \subset xS + yS \subset R + R \subset R, \qquad zxS \in xS \subset R$$

なので、I は R のイデアルである。S のイデアルであることも同様。

(2) $x \in I$ は $x = x \cdot 1 \in xS \subset R$ を満たすから $I \subset R$ である. また $i \ge 0$ に対し

$$t^{20+4i} = (t^4)^{5+i}, \quad t^{21+4i} = (t^4)^{2+i} \cdot t^{13}, \quad t^{22+4i} = (t^4)^{3+i} \cdot t^{10}, \quad t^{23+4i} = (t^4)^i \cdot t^{10} \cdot t^{13}$$

は全て R の元であるから, $A=\{0,4,8,10,12,13,14,17,18\}$ とおくと $R=\bigoplus_{i\in A} kt^i\oplus t^{20}k[t]$ である.今 $f\in I$ の最低次の項を at^i とすると,任意の $j\geq 0$ に対し $t^jf\in fS\subset R$ となることから $i\geq 20$,すなわち $f\in t^{20}k[t]$ が必要.逆にこの時 $fS\subset t^{20}k[t]\subset R$ である.よって

$$I = t^{20}k[t] = t^{20}k[t^4] + t^{21}k[t^4] + t^{22}k[t^4] + t^{23}k[t^4]$$
$$\subset t^{20}R + t^{21}R + t^{22}R + t^{23}R$$

であり,逆の包含は明らかだから $I=t^{20}R+t^{21}R+t^{22}R+t^{23}R$ である.従って I の R のイデアルとしての生成系として $t^{20},t^{21},t^{22},t^{23}$ が取れる.

生成元が f_1,f_2,f_3 の 3 個であったとする。上の議論から $\deg f_i \geq 20$ であるから,生成系を取り直して f_i の最低次の項を t^{d_i} ($20 \leq d_1 < d_2 < d_3$) として良い。R の定数でない元の次数の最小値は 4 であるから, $t^{20},t^{21},t^{22},t^{23} \in I$ のうち少なくとも一つは I の元ではない.これは矛盾.

2014年度(平成26年度)

問 2

可換環 $A = \mathbb{R}[x,y]/(x^2+y^2)$ の極大イデアルを全て求めよ.

解答、 $I=(x^2+y^2)$ とおく、A の極大イデアルは I を含む $\mathbb{R}[x,y]$ の極大イデアル J を用いて $\mathfrak{m}=J/I$ と書ける、 $A/\mathfrak{m}\cong\mathbb{R}[x,y]/J$ は体であり、しかも有限生成 \mathbb{R} 代数だから、Zariski の補題よりこれは \mathbb{R} の有限次代数拡大である。従って \mathbb{R} または \mathbb{C} に同型・ $\mathbb{R}[x,y]$ 自然な射影 $\mathbb{R}[x,y]\to\mathbb{R}[x,y]/J$ を π 、単射 $\mathbb{R}[x,y]/J\to\mathbb{C}$ を ι とし、 $\varphi=\iota\circ\pi$ とおく・ ι は単射だから $\ker\varphi=J$ ・一方 x,y(の $\mathbb{R}[x,y]/J$ における同値類)の ι による像をそれぞれ a,b とおくと、 φ は $x\mapsto a,y\mapsto b$ なる \mathbb{R} 準同型だから

$$J = \operatorname{Ker} \varphi = ((x - a)\mathbb{C}[x, y] + (y - b)\mathbb{C}[x, y]) \cap \mathbb{R}[x, y]$$

である. また $I \subset J$ より $a^2 + b^2 = 0$ なので $b = \pm ia$.

- a = 0 の時: b = 0 より J = (x, y).
- \bullet $a \in \mathbb{R}, a \neq 0$ の時 : b = ia なら,(y ia) は y = ia で 0 となる元全体だが, $\mathbb{R}[x,y]$ との共通部分では $y = \overline{ia} = -ia$ でも 0 になるから

$$(y - ia)\mathbb{C}[x, y] \cap \mathbb{R}[x, y] = (y - ia)(y + ia)\mathbb{R}[x, y] = (y^2 + a^2)\mathbb{R}[x, y].$$

また $(x-a)\mathbb{C}[x,y] \cap \mathbb{R}[x,y] = (x-a)\mathbb{R}[x,y]$ だから $J = (x-a,y^2+a^2)$. b = -ia についても同様.

- $\bullet a \in i\mathbb{R}, a \neq 0$ の時: $b \in \mathbb{R}, b \neq 0$ だから、上と同様に $J = (x^2 + b^2, y b)$.
- Re a, Im $a \neq 0$ の時:Re $a = \alpha$, Im $a = \beta$ とおくと $b = \pm (-\beta + i\alpha)$ である. 上の議論と同様に

$$(x-a)\mathbb{C}[x,y] \cap \mathbb{R}[x,y] = (x-a)(x-\overline{a})\mathbb{R}[x,y] = ((x-\alpha)^2 + \beta^2)\mathbb{R}[x,y],$$

$$(y-b)\mathbb{C}[x,y] \cap \mathbb{R}[x,y] = (y-b)(y-\overline{b})\mathbb{R}[x,y] = ((y\pm\beta)^2 + \alpha^2)\mathbb{R}[x,y]$$

だから、必要があれば β を $-\beta$ で置き換えて $J=((x-\alpha)^2+\beta^2,(y-\beta)^2+\alpha^2)$. 以上から答えは

$$(x,y)/I$$
, $(x-a,y^2+a^2)/I$, $(x^2+a^2,y-a)/I$,
 $((x-\alpha)^2+\beta^2,(y-\beta)^2+\alpha^2)/I$.

ただし $a, \alpha, \beta \in \mathbb{R} \setminus \{0\}$.

 $^{^1\}mathbb{R}\subset K\subset\mathbb{C}$ なる \mathbb{C} の部分体 K があれば $[\mathbb{C}:\mathbb{R}]=2$ からわかる.

2012年度(平成24年度)

問 2

a を複素数とし、複素数体 C 上の可換代数

$$A = \mathbb{C}[x, y]/(xy, y(y - a))$$

を考える.

- (1) A の極大イデアルを全て求めよ.
- (2) A の各極大イデアル \mathfrak{m} に対して $\dim_{\mathbb{C}}\mathfrak{m}/\mathfrak{m}^2$ を計算せよ.
- (3) Aの0でない冪零元を全て求めよ.

解答。(1) I=(xy,y(y-a)) とおく。A の極大イデアルは,I を含む $\mathbb{C}[x,y]$ の極大イデアル J を用いて J/I と書ける。また Hilbert の零点定理の弱形から J=(x-c,y-d) $(c,d\in\mathbb{C})$ と書ける。 $I\subset J$ より cd=d(d-a)=0 である。 $d\neq 0$ なら c=0,d=a。d=0 なら $xy=(x-c)f+y^2g$ となる $f,g\in\mathbb{C}[x,y]$ が取れる。よって $(x-c)f\in(y)$ より f=yf' とおけて x=(x-c)f'+yg. y=0 として x=(x-c)f'(x,0) だから c=0. 以上から J=(x,y),(x,y-a) なので,答えは

$$\mathfrak{m}_1 = (x, y)/I, \quad \mathfrak{m}_2 = (x, y - a)/I.$$

 $(2) \bullet \mathfrak{m}_1 : \mathfrak{m}_1^2 = (x^2, xy, y^2)/I = (x^2, ay)/I \ \sharp \ \emptyset$

$$\dim_{\mathbb{C}} \mathfrak{m}_{1}/\mathfrak{m}_{1}^{2} = \dim_{\mathbb{C}}(x, y)/(x^{2}, ay) = \begin{cases} \dim_{\mathbb{C}}(x, y)/(x^{2}) = 2 & (a = 0) \\ \dim_{\mathbb{C}}(x)/(x^{2}) = 1 & (a \neq 0). \end{cases}$$

• \mathfrak{m}_2 : a=0 の時は $\dim_{\mathbb{C}}\mathfrak{m}_2/\mathfrak{m}_2^2=2$. $a\neq 0$ の時は

$$\mathfrak{m}_2^2 = (x^2, x(y-a), (y-a)^2)/I = (x^2, -ax, -a(y-a))/I = (x, y-a)/I = \mathfrak{m}_2$$

 $\sharp \mathfrak{b} \dim_{\mathbb{C}} \mathfrak{m}_2/\mathfrak{m}_2^2 = 0.$

(3) A の元は f(x) + cy ($f \in \mathbb{C}[x], c \in \mathbb{C}$) と書ける. これが冪零元であるとする.

$$\sqrt{0}\subset \mathfrak{m}_1\cap \mathfrak{m}_2=\begin{cases} (x,y)/I & (a=0)\\ (x)/I & (a\neq 0) \end{cases}$$

より f(x) = xq(x) とおける.

- a=0 の時: ある $n\geq 2$ に対し $0=(xg+cy)^n=(xg)^n$ だから g=0. よって零でない冪零元は $cy\ (c\in\mathbb{C}^\times)$.
- \bullet $a \neq 0$ の時 : c = 0 であり、この時 xg が冪零元になるのは g = 0 の時のみ.よって零でない冪零元 は存在しない.

2011年度(平成23年度)

問3

次の問に答えよ.

(1) 行列

$$A = \begin{pmatrix} 4 & 6 & 4 \\ 6 & 24 & 18 \\ 16 & 6 & 10 \\ 1 & 3 & 15 \end{pmatrix}$$

によって定められる自由加群の間の準同型 $L_A:\mathbb{Z}^3\to\mathbb{Z}^4$ について、商加群 $\mathbb{Z}^4/\operatorname{Im} L_A$ の構造を決定せよ.

- (2) M,N を有限生成自由加群とし, $M^*=\operatorname{Hom}(M,\mathbb{Z}),N^*=\operatorname{Hom}(N,\mathbb{Z})$ をそれぞれ双対加群とする. 準同型 $f:M\to N$ に対し,準同型 $f^*:N^*\to M^*$ を $(f^*\varphi)(m)=\varphi(f(m))$ ($\varphi\in N^*,m\in M$) に よって定める.f が単射であるとき,次が同値であることを示せ.
 - (i) N/f(M) は自由加群である.
 - (ii) f^* は全射である.

解答. (1) A に基本変形をすると

$$A \to \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 6 \\ 0 & 0 & 0 \end{pmatrix}$$

となるから

$$\mathbb{Z}^4/\operatorname{Im} L_A \cong \mathbb{Z}^4/(\mathbb{Z} \oplus 2\mathbb{Z} \oplus 6\mathbb{Z})$$
$$\cong \mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/6\mathbb{Z}.$$

(2) M の基底を a_1,\ldots,a_m,N の基底を b_1,\ldots,b_n とする. f は単射だから $m\leq n$ である. これらの基底に関する f の表現行列の転置を A とおく. $P\in M_m(\mathbb{Z})^\times,Q\in M_n(\mathbb{Z})^\times$ と $e_1,\ldots,e_m\in\mathbb{Z}_{\geq 0}$ が存在して

$$QAP = \begin{pmatrix} e_1 & & & \\ & \ddots & & \\ & & e_m \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

と書ける. ここで $0_{(n-m)\times m}$ は $(n-m)\times m$ の零行列. また f の単射性から任意の i について $e_i>0$ である. この時

$$N/f(M) \cong \mathbb{Z}^n/(e_1\mathbb{Z} \oplus \cdots \oplus e_m\mathbb{Z}) \cong \mathbb{Z}^{n-m} \oplus \bigoplus_{i=1}^m \mathbb{Z}/e_i\mathbb{Z}$$

だから, (i) は $e_1 = \cdots = e_m = 1$ と同値.

 a_i,b_i の双対基底をそれぞれ a_i^*,b_i^* とおく.これらの基底に関する f^* の表現行列の転置は tA だから,上と同様に $\mathrm{Im}\,f^*\cong e_1\mathbb{Z}\oplus\cdots\oplus e_m\mathbb{Z}$ となる.よって (ii) は $e_1=\cdots=e_m=1$ と同値.

2010年度(平成22年度)

問4

4 次対称群を S_4 と書き,正整数 k に対して $GL_k(\mathbb{C})$ で k 次複素一般線形群を表す.以下の問に答えよ.

- (1) S_4 は $GL_4(\mathbb{C})$ のある部分群と同型であることを示せ.
- (2) S_4 は $GL_3(\mathbb{C})$ のある部分群と同型であることを示せ.
- (3) S_4 と同型になる $GL_2(\mathbb{C})$ の部分群は存在しないことを示せ.

解答. (2) \mathbb{R}^3 に正四面体 ABCD を,その中心が原点 O となるように置く.頂点 A,B,C,D にそれぞれ 1,2,3,4 を割り当てて S_4 を 1,2,3,4 の置換と見る. $(1\ 2)\in S_4$ は,辺 AB の中点と辺 CD を含む 平面に関する反転だから,その表現行列 $\rho((1\ 2))$ は $GL_3(\mathbb{R})$ の元である.同様に任意の互換 $a,b\in S_4$ に対し $\rho(a),\rho(b)\in GL_3(\mathbb{R})$ が定まり, $\rho(ab)=\rho(a)\rho(b)$ が成り立つ. S_4 は互換で生成されるから,単 射準同型 $\rho:S_4\to GL_3(\mathbb{R})$ が得られる.よって S_4 は $GL_3(\mathbb{R})$ $(\subset GL_3(\mathbb{C}))$ の部分群 $\mathrm{Im}\,\rho$ と同型.

- (1) (2) の ρ に対し準同型写像 $\rho': S_4 \to GL_4(\mathbb{C})$ を $\sigma \mapsto \operatorname{diag}(\rho(\sigma), 1)$ と定めれば良い.
- (3) $GL_2(\mathbb{C})$ の部分群 G と同型写像 $\rho: S_4 \to G$ が存在したとする。 $a = (1\ 2), b = (3\ 4) \in S_4$ とおく、 $\rho(a)^2 = \rho(a^2) = \rho(e) = I$ より $\rho(a)$ の固有値は ± 1 で,しかも対角化可能である。よって共役を考えれば $\rho(a)$ は $\pm I$, $\operatorname{diag}(1,-1)$, $\operatorname{diag}(-1,1)$ のいずれかである。 $a \notin Z(S_4)$ より $\rho(a) \notin Z(G)$ なので $\pm I$ は不適。 $\rho(b)$ についても同様。また ab = ba より $\rho(a)\rho(b) = \rho(b)\rho(a)$ なので, $\rho(a)$, $\rho(b)$ は同時対角化可能である。これと $\rho(a) \neq \rho(b)$ より,共役を考えて $\rho(a) = \operatorname{diag}(1,-1)$, $\rho(b) = \operatorname{diag}(-1,1)$ とできる。ところが $\rho(ab) = \rho(a)\rho(b) = -I \in Z(G)$ なので $ab \in Z(S_4)$ となって矛盾。

2009年度(平成21年度)

問 2

k を体,k[x,y,z,w] を k 上の 4 変数多項式環とする. $I=(xz-y^2,yw-z^2,xw-yz)$ を k[x,y,z,w] のイデアルとし,R=k[x,y,z,w]/I とおく.

- (1) R_x および R_w を簡単な形で表わせ、ただし R_f $(f \in R)$ で R の乗法系 $\{f^n\}$ (n は 0 以上の整数)による局所化を表す、
- (2) R は整域であることを示せ.
- (3) R の商体において $R = R_x \cap R_w$ が成り立つことを示せ.

解答. (2) 全射な環準同型 $\varphi: k[x,y,z,w] \to R' := k[s^3,s^2t,st^2,t^3]$ を $x \mapsto s^3, y \mapsto s^2t, z \mapsto st^2, w \mapsto t^3$ で定める. $I \subset \operatorname{Ker} \varphi$ であるから φ は R から R' への準同型とみなせる. 任意の $f \in R$ は $f = g_0(x,z,w) + g_1(x)y$ と書ける. これが $\operatorname{Ker} \varphi$ の元とすると $g_0(s^3,st^2,t^3) + g_1(s^3)s^2t = 0$ である. 左 辺第 1 項は t^1 の項を含まないから $g_1 \equiv 0$. ここで $z^3 - xw^2 = -z(yw - z^2) - w(xw - yz) \in I$ より $g_0(x,z,w) = h_0(x,w) + h_1(x,w)z + h_2(x,w)z^2$ と書けるから

$$0 = g_0(s^3, st^2, t^3) = h_0(s^3, t^3) + h_1(s^3, t^3)st^3 + h_2(s^3, t^3)(st^3)^2.$$

s の次数から $h_0=h_1=h_2\equiv 0$ となるので $g_1\equiv 0$. よって $f\equiv 0$ なので $\operatorname{Ker} \varphi\subset I$. 従って準同型定理 より $R\cong k[s^3,s^2t,st^2,t^3]$ となり,これは整域である.

(1)(2)より

$$R_x \cong k[s^3, s^2t, st^2, t^3]_{s^3} = k[s^3, s^2t, st^2, t^3, s^{-3}] = k[t/s](s^3),$$

 $R_w \cong k[s^3, s^2t, st^2, t^3]_{t^3} = k[s^3, s^2t, st^2, t^3, t^{-3}] = k[s/t](t^3).$

(3)
$$k[s^3, s^2t, st^2, t^3, s^{-3}] \cap k[s^3, s^2t, st^2, t^3, t^{-3}] = k[s^3, s^2t, st^2, t^3]$$

だから、 φ で引き戻して $R_x \cap R_w = R$ を得る.

整数 λ, μ に対して, 連立漸化式

$$\begin{cases} a_{n+1} = \lambda a_n + b_n \\ b_{n+1} = a_n + \mu b_n \\ a_1 = 0, b_1 = 1 \end{cases}$$
 $n = 1, 2, \dots$

を考える. 2 ではない素数 p を固定し、 $(\lambda - \mu)^2 + 4$ は p で割り切れないと仮定する.

(1) 全ての正の整数 n に対して

$$p \mid a_{n+p^2-1} - a_n$$
 かつ $p \mid b_{n+p^2-1} - b_n$

が成り立つことを示せ.

(2) $\lambda = 2, \mu = 1$ とする. 全ての正の整数 n に対して

$$p \mid a_{n+p-1} - a_n$$
 かつ $p \mid b_{n+p-1} - b_n$

が成り立つような 13 以下の奇素数 p を全て求めよ.

解答. (1) 自然な射影 $\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z} = \mathbb{F}_p$ による a_n, b_n の像をそれぞれ c_n, d_n とし、以下 \mathbb{F}_p の代数閉包 $\overline{\mathbb{F}_p}$ 上で考える. $c_{n+p^2-1} = c_n, d_{n+p^2-1} = d_n$ を示せば良い. $A = \begin{pmatrix} \lambda & 1 \\ 1 & \mu \end{pmatrix} \in M_2(\mathbb{F}_p)$ とおくと

$$\begin{pmatrix} c_{n+k} \\ d_{n+k} \end{pmatrix} = A \begin{pmatrix} c_{n+k-1} \\ d_{n+k-1} \end{pmatrix} = \dots = A^k \begin{pmatrix} c_n \\ d_n \end{pmatrix}$$
 (*)

である. A の固有多項式は $t^2-(\lambda+\mu)t+\lambda\mu-1$ で判別式は $D=(\lambda-\mu)^2+4\neq 0$ だから,A は相異なる固有値を持つ.よって A の Jordan 標準形は対角行列である.また固有値は \mathbb{F}_{p^2} の元だから $A^{p^2}=A$.

- $\lambda \mu \neq 1$ の時: A は正則だから $A^{p^2-1} = I$. よって (*) より $c_{n+p^2-1} = c_n, d_{n+p^2-1} = d_n$ となる.
- $\lambda=\mu=1$ の時:帰納的に $a_n=b_n=2^{n-2}\,(n\geq 2)$ である. $p\neq 2$ だから, $n\geq 2$ に対し $c_{n+p^2-1}=2^{n-2}\cdot(2^{p-1})^{p+1}=2^{n-2}=c_n$ となる. d_n も同様.
- $\lambda=\mu=-1$ の時:帰納的に $a_n=(-1)^n2^{n-2}, b_n=(-1)^{n+1}2^{n-2} \ (n\geq 2)$ となる。 p^2-1 が偶数であることに注意すると, $\lambda=\mu=1$ の時と同様に $n\geq 2$ に対し $c_{n+p^2-1}=c_n, d_{n+p^2-1}=d_n$ となる.
- (2) $\lambda\mu\neq 1$ だから,条件を満たすことは $A^p=A$,すなわち A の全ての固有値が \mathbb{F}_p の元であること と同値.これは D=5 が $\mathrm{mod}p$ の平方剰余であることと同値.仮定から $p\neq 5$ である.また明らかに $p\neq 3$. p>5 の時は Euler の規準と平方剰余の相互法則より

$$\left(\frac{5}{p}\right) = (-1)^{\frac{5-1}{2}\frac{p-1}{2}} \left(\frac{p}{5}\right) = \left(\frac{p}{5}\right) \equiv p^{(5-1)/2} = p^2 \pmod{5}$$

だから、これが 1 となるのは $p \equiv \pm 1 \mod 5$ の時. よって答えは p = 11 のみ.

(補足) $\lambda = \mu = \pm 1$ の時 $a_{p^2} - a_1$ は 2 のべき乗なので p で割り切れない.

2008年度(平成20年度)

問 2

1 変数多項式環 $\mathbb{C}[T]$ の部分環 $\{f\in\mathbb{C}[T]\,|\,f(0)=f(1)\}$ を A とおく、 $S=T^2-T$ で生成される A の部分環 $\mathbb{C}[S]$ を B とおく、

- (1) A は B 加群として自由加群であることを示し、その階数を求めよ、
- (2) \mathbb{C} 上の 2 変数多項式環 $\mathbb{C}[X,Y]$ のイデアル I であって剰余環 $\mathbb{C}[X,Y]/I$ が A と同型となるようなものを 1 つ求め,それを最小個数の生成元を用いて表わせ.
- (3) 商群 $A\left[\frac{1}{S}\right]^{\times}/B\left[\frac{1}{S}\right]^{\times}$ の生成系で、要素の個数が最小のものを 1 組求めよ、ただし可換環 R に対し、 R^{\times} は R の乗法群を表すものとする.

解答. (1)

$$A = \{c + T(T - 1)f(T); c \in \mathbb{C}, f \in \mathbb{C}[T]\} = \{c + Sf(T); c \in \mathbb{C}, f \in \mathbb{C}[T]\}$$

である. ここで任意に $f(T) \in \mathbb{C}[T]$ を取ると, $f(T) = f_1(T) + Sf_2(T) + \cdots + S^k f_{k+1}(T)$ となる $f_j \in \mathbb{C}[T]$, $\deg f_j \leq 1$ が帰納的に (一意に) 定まる. よって

$$A = \{c + Sf_1(T) + S^2 f_2(T) + \dots + S^k f_k(T) ; c \in \mathbb{C}, \deg f_j \le 1\}$$

= $\{g_0(S) + g_1(S)T ; g_0, g_1 \in B\} = B \oplus TB$

は階数 2 の自由 B-加群.

(2) ² 環準同型 $\varphi: \mathbb{C}[X,Y] \to \mathbb{C}[T]$ を $X \mapsto 4T(T-1), Y \mapsto 4T(T-1)(2T-1)$ で定める.明らかに $\operatorname{Im} \varphi \subset A$.また $\varphi(X/4) = S, \varphi((X+Y)/8) = ST$ だから逆の包含も成り立つ.Ker φ を求める.

$$\varphi(X^{2}(X+1)) = (4T(T-1))^{2}(2T-1)^{2} = \varphi(Y^{2})$$

より $I:=(Y^2-X^3-X^2)\subset \operatorname{Ker}\varphi$ である。逆に $f\in \operatorname{Ker}\varphi$ として,f を $Y^2-X^3-X^2$ で割った余りを $f_1(X)Y+f_0(X)$ $(f_0,f_1\in\mathbb{C}[X])$ とおくと

$$f_1(4T(T-1)) \cdot 4T(T-1)(2T-1) + f_0(4T(T-1)) = 0.$$

左辺第 1 項,第 2 項の次数はそれぞれ奇数,偶数だから $f_1=f_0=0$. よって $f\in I$ である.従って準同型定理より $\mathbb{C}[X,Y]/I\cong A$.

(3) 1996 年度問1と同様にして

$$B[1/S]^{\times} = \mathbb{C}[S, 1/S]^{\times} = \{cS^k \; ; \; c \in \mathbb{C}^{\times}, k \in \mathbb{Z}\},$$

$$A[1/S]^{\times} = \{cT^j(T-1)^k \; ; \; c \in \mathbb{C}^{\times}, j, k \in \mathbb{Z}\} = \{cT^jS^k \; ; \; c \in \mathbb{C}^{\times}, j, k \in \mathbb{Z}\}$$

だから、 $A[1/S]^{\times}/B[1/S]^{\times}$ は T の同値類 \overline{T} で生成される.

 $^{^2}$ 京大数理研平成 14 年度専門問 3 と同様.

2007年度(平成19年度)

問 2

R を可換環 $\mathbb{Z}[x,y]/(x^2+y^2)$ とする. 以下の問に答えよ.

- (1) \mathfrak{p} を $\#(R/\mathfrak{p})$ が有限になるような R の素イデアルとする. (ここで $\#(R/\mathfrak{p})$ は環 R/\mathfrak{p} の元の個数 を表す.) このとき $\#(R/\mathfrak{p})$ としてとりうる値を全て求めよ.
- (2) \mathfrak{m} を R の極大イデアルとするとき, R/\mathfrak{m} は有限体であることを示せ.

解答. (1) R/\mathfrak{p} は有限整域だから有限体である.よって位数は p を素数として p^k とおける.k=1 の時は, $x^2+y^2\in(p,x,y)$ であるから $\mathfrak{p}=(p,x,y)/(x^2+y^2)$ とすると

$$R/\mathfrak{p} \cong \mathbb{Z}[x,y]/(p,x,y) \cong \mathbb{F}_p.$$

これは位数 p の整域だから $\mathfrak p$ は条件を満たす。もし $k\geq 2$ なら,定数でない $f\in R/\mathfrak p$ が存在して $f^{p^k}=f$ が成り立つ。ところが両辺の定数でない最低次を比べると $f\equiv 0$ となって矛盾する。以上から答えは任意の素数。

- (2) m は x^2+y^2 を含む $\mathbb{Z}[x,y]$ の極大イデアル I を用いて $\mathfrak{m}=I/(x^2+y^2)$ と書ける. $R/\mathfrak{m}\cong\mathbb{Z}[x,y]/I$ を R' とおく. $I\cap\mathbb{Z}$ は \mathbb{Z} のイデアルだから $\{0\}$ または $p\mathbb{Z}$ (p は素数) である. x,y の R' における剰余類をそれぞれ $\overline{x},\overline{y}$ とおく.
- $I \cap \mathbb{Z} = p\mathbb{Z}$ の時: $R' \cong \mathbb{F}_p[\overline{x}, \overline{y}]$ は体であり、さらに有限生成 \mathbb{F}_p 代数だから、Zariski の補題より \mathbb{F}_p の有限次拡大である.従って R' は有限体.
- $I \cap \mathbb{Z} = \{0\}$ の時: R' は \mathbb{Z} を含む体だから \mathbb{Q} も含む. よって $\mathbb{Q}[\overline{x},\overline{y}] \subset R'$ となるが,逆の包含も成り立つから $R' = \mathbb{Q}[\overline{x},\overline{y}]$ となる. R' は体かつ \mathbb{Q} -代数として有限生成だから,Zariski の補題より \mathbb{Q} の有限次拡大である. 従って $\overline{x},\overline{y}$ の \mathbb{Q} 上 monic な最小多項式が存在する.それらをそれぞれ $f(t),g(t) \in \mathbb{Q}[t]$ とおき,f(t),g(t) の係数の分母の最小公倍数を d>0 とすると,

$$R' = \mathbb{Z}[\overline{x}, \overline{y}] \subset \mathbb{Z}[1/d][\overline{x}, \overline{y}] \subset \mathbb{Q}[\overline{x}, \overline{y}] = R'$$

より $R'=\mathbb{Z}[1/d][\overline{x},\overline{y}]$ である.一方 f(t),g(t) は $\mathbb{Z}[1/d]$ 係数の monic な多項式だから, $\overline{x},\overline{y}$ は $\mathbb{Z}[1/d]$ 上整,すなわち R' は $\mathbb{Z}[1/d]$ 上整となる.これと R' が体であることから $\mathbb{Z}[1/d]$ も体になる.よって $\mathbb{Q}\subset\mathbb{Z}[1/d]$ となるが,d< q なる素数 q に対し $1/q\not\in\mathbb{Z}[1/d]$ だから矛盾.

以上で示された.

2006年度(平成18年度)

問1

 $K=\mathbb{R}(T)$ を実数体上の 1 変数有理関数体とし, $n\geq 3$ を自然数とする.L を K 上の多項式 X^n-T の最小分解体とする.

- (1) 拡大次数 [L:K] を求めよ.
- (2) n=4 とする. 中間体 $K\subset M\subset L$ で,[M:K]=4 であるものを全て求めよ.それぞれの M について,K 上の Galois 拡大であるかどうか判定せよ.

解答・(1) $\zeta=e^{2\pi i/n}$ とおくと X^n-T の根は $\zeta^kT^{1/n}$ $(k=0,1,\ldots,n-1)$ だから $L=K(\zeta,T^{1/n})$. $n\geq 3$ より $\zeta\not\in\mathbb{R}$ なので,

$$[L:K] = [L:K(T^{1/n})][K(T^{1/n}):K] = n\varphi(n).$$

ここで φ は Euler 関数.

(2) $[L:K]=4\varphi(4)=8, \zeta=i$ である. $S=T^{1/4}$ とおく. $\sigma, \tau \in \mathrm{Gal}(L/K)$ を

$$\sigma: (S, i) \mapsto (-iS, i), \qquad \tau: (S, i) \mapsto (S, -i)$$

で定める。この時 $\sigma^4=\tau^2=\mathrm{id}_L$ であり,また $\sigma\tau:(S,i)\mapsto (-iS,-i)$ より $(\sigma\tau)^2=\mathrm{id}_L$ なので $\langle\sigma,\tau\rangle\cong D_4$ である。位数の比較から,これが $\mathrm{Gal}(L/K)$ である。M に対応する $\mathrm{Gal}(L/K)$ の部分群の位数は [M:K]=2 である。京大数学系 1993 年度専門問 1 と同様に, D_4 の位数 2 の部分群は $H:=\langle\sigma^2\rangle$, $H_i:=\langle\sigma^j\tau\rangle$ (j=0,1,2,3) の 5 個。 $\sigma^2:(S,i)\mapsto (-S,i)$, $\sigma^j\tau:(S,i)\mapsto ((-i)^jS,-i)$ より

$$K(S) \subset L^{H_0}, \quad K((1-i)S) \subset L^{H_1},$$

$$K(iS) \subset L^{H_2}, \quad K((1+i)S) \subset L^{H_3}, \quad K(S^2,i) \subset L^H$$

である。左辺の部分体を順に M_j $(j=0,1,\ldots,4)$ とおく。[L:K] の計算と同様に $[M_4:K]=4$ なので $L^H=K(S^2,i)$ 。また K 上既約な X^4+T は $\frac{1\pm i}{\sqrt{2}}S$ を根に持つから $[M_1:K]=[M_3:K]=4$. よって $L^{H_1}=K((1-i)S)$ 、 $L^{H_3}=K((1+i)S)$. 同様に $L^{H_0}=K(S)$ 、 $L^{H_2}=K(iS)$.

$$(\sigma^{j})^{-1}\sigma^{2}\sigma^{j} = \sigma^{2}, \quad (\sigma^{j}\tau)^{-1}\sigma^{2}(\sigma^{j}\tau) = \tau\sigma^{2}\tau = (\tau\sigma\tau)^{2} = \sigma^{-2} = \sigma^{2}$$

より $H \triangleleft D_4$ である。また $\sigma^{-1}(\sigma^j\tau)\sigma = \sigma^{j-1}\sigma^{-1}\tau = \sigma^{j-2}\tau \not\in \langle \sigma^j\tau \rangle$ より H_j は D_4 の正規部分群ではない。以上から K の 4 次拡大体は M_0,M_1,\ldots,M_4 の 5 個で,そのうち K 上 Galois 拡大のものは M_4 のみ。

体 K 上の 1 変数多項式環 K[X] を考える。K[X] の部分環 R が K を含むとき,R は K[X] の有限 個の元 f_1, f_2, \ldots, f_n によって K 上生成される部分環であること,すなわち $R = K[f_1, f_2, \ldots, f_n]$ であることを示せ。

解答、 $K \subset R \subset K[X]$ である。任意の monic な $f \in R \setminus K$ に対し, $f(T) - f(X) \in R[T]$ は monic で T = X を零点に持つから,X は R 上整である。よって K[X] は K 代数として有限生成かつ R 上整である。K は Noether 環なので,R も K 代数として有限生成となる。

 $GL_2(\mathbb{C})$ を可逆な 2×2 複素行列全体のなす群とする. \mathbb{C} 上の 2 変数多項式環 $\mathbb{C}[x,y]$ への $X=\begin{pmatrix} a & b \\ c & d \end{pmatrix}\in GL_2(\mathbb{C})$ の作用を

$$(R_X f)(x, y) = f(ax + by, cx + dy) \qquad (f(x, y) \in \mathbb{C}[x, y])$$

によって定義する. 2×2 行列 A, B を

$$A = \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

とするとき,以下の問に答えよ.

- (1) A,B によって生成される $GL_2(\mathbb{C})$ の部分群の位数を求めよ.
- (2) 3 次斉次多項式全体 $P_3 \subset \mathbb{C}[x,y]$ を, R_A,R_B の作用についての不変かつ既約な部分空間の直和として表わせ.

ここで不変な部分空間 W とは

$$R_AW \subset W$$
, $R_BW \subset W$

をみたす部分空間である. さらに不変な部分空間 W が既約であるとは, $W \neq \{0\}$ であり, W に含まれる不変な部分空間が $\{0\}$ と W に限られることをいう.

解答. (1) A,B は \mathbb{R}^2 (xy 平面)に自然に左から作用する. A による作用は原点を中心とした $2\pi/3$ 回転,B による作用は x 軸に関する対称移動だから,A,B で生成される群は 2 面体群 D_3 に同型. よって答えは 6.

(2) P_3 の基底は $\{x^3, x^2y, xy^2, y^3\}$ であり,

$$\begin{pmatrix} R_A(x^3) \\ R_A(xy^2) \\ R_A(y^3) \\ R_A(x^2y) \end{pmatrix} = \frac{1}{8} \underbrace{\begin{pmatrix} -1 & -9 & -3\sqrt{3} & -3\sqrt{3} \\ -3 & 5 & -\sqrt{3} & -\sqrt{3} \\ 3\sqrt{3} & 3\sqrt{3} & -1 & -9 \\ \sqrt{3} & \sqrt{3} & -3 & 5 \end{pmatrix}}_{=:X} \begin{pmatrix} x^3 \\ xy^2 \\ y^3 \\ x^2y \end{pmatrix}$$

である. 3 X の左上の 2×2 行列を Y, 左下の 2×2 行列を Z とおくと

$$|X - \lambda I| = \begin{vmatrix} Y - \lambda I & -Z \\ Z & Y - \lambda I \end{vmatrix} = |(Y - \lambda I) + iZ||(Y - \lambda I) - iZ|$$

$$= (\lambda^2 - (4 - 4\sqrt{3}i)\lambda + (-32 - 32\sqrt{3}i))(\lambda^2 - (4 + 4\sqrt{3}i)\lambda + (-32 + 32\sqrt{3}i))$$

$$= (\lambda - 8)^2(\lambda - (-4 + 4\sqrt{3}i))(\lambda - (-4 - 4\sqrt{3}i))$$

だから、 $\frac{1}{8}X$ の固有値は $1,1,(-1\pm\sqrt{3}i)/2$, 対応する固有ベクトルはそれぞれ

$${}^{t}(1,-1,0,0), {}^{t}(0,0,1,-1), {}^{t}(3i,i,3,1), {}^{t}(-3i,-i,3,1).$$

すなわち R_A の固有ベクトルは

 $f_1=x^3-xy^2$, $f_2=y^3-x^2y$, $f_3=(3x^3+xy^2)i+(3y^3+x^2y)$, $f_4=-(3x^3+xy^2)i+(3y^3+x^2y)$ である。 $\langle f_1 \rangle$, $\langle f_2 \rangle$ はそれぞれ R_B でも不変で 1 次元だから,不変かつ既約な部分空間である。 $\langle f_3 \rangle$, $\langle f_4 \rangle$ はそれぞれ R_B で不変ではないが, $\langle f_3, f_4 \rangle$ は R_B で不変で既約である。よって

$$P_3 = \langle f_1 \rangle \oplus \langle f_2 \rangle \oplus \langle f_3, f_4 \rangle$$

= $\langle x(x^2 - y^2) \rangle \oplus \langle y(x^2 - y^2) \rangle \oplus \langle x(3x^2 + y^2), y(3y^2 + x^2) \rangle$.

³固有多項式の計算のため、基底の並べ方を変えてある.

2005年度(平成17年度)

問1

p を奇素数とし, $GL_2(\mathbb{F}_p)$ を p 元体 \mathbb{F}_p の元を成分に持つ可逆な 2×2 行列全体のなす群とする. $M\in GL_2(\mathbb{F}_p)$ について,行列式 $\det M$ が乗法群 \mathbb{F}_p^{\times} の生成元ならば,M の位数は p と素であることを示せ.

解答. 対偶を示す。M の位数が p の倍数であるとする。M の Jordan 標準形は $\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$, $\begin{pmatrix} \alpha & 1 \\ 0 & \alpha \end{pmatrix}$ のいずれかである。M の固有多項式は \mathbb{F}_p 係数 2 次多項式なので $\alpha, \beta \in \mathbb{F}_{p^2} \setminus \{0\}$ である。 $\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}$ とすると $\alpha + \beta = \operatorname{tr} M \in \mathbb{F}_p$ なので, $\alpha, \beta \in \mathbb{F}_p$ であるか $\alpha, \beta \in \mathbb{F}_{p^2} \setminus \mathbb{F}_p$ である。前者の場合は M の位数は p-1 の約数となり矛盾。後者の場合も M の位数は p^2-1 の約数となり矛盾。よって M の Jordan 標準形は $\begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix}$ である。 $2\alpha = \operatorname{tr} M \in \mathbb{F}_p$ と p が奇数であることから $\alpha \in \mathbb{F}_p$ なので,

$$(\det M)^{(p-1)/2} = (\alpha^2)^{(p-1)/2} = \alpha^{p-1} = 1.$$

従って $\det M$ は $\mathbb{F}_p^{\times} \cong \mathbb{Z}/(p-1)\mathbb{Z}$ の生成元ではない.

2004年度(平成16年度)

問1

有限次元線形空間 A,B,C,D の次元をそれぞれ a,b,c,d とし、線形写像 $g:B\to C$ の階数を r とする. 線形写像

$$F: \operatorname{Hom}(A, B) \otimes \operatorname{Hom}(C, D) \to \operatorname{Hom}(A, D)$$

を $F(f \otimes h) = hgf$ で定めたとき、F の階数を求めよ.

解答. A,B,C,D は K 上のベクトル空間とし、基底を適当に取る. これらの基底について、 $\operatorname{Hom}(A,B)$ の元を $b\times a$ の行列とみなす。他も同様. 仮定から $p\in GL_c(K), q\in GL_b(K)$ が存在して $p^{-1}gq^{-1}=\widetilde{g}:=\operatorname{diag}(I_r,0_{(c-r)\times(b-r)})$ となる. ここで F の定義において g を \widetilde{g} で置き換えた線形写像を \widetilde{F} とし、 $\operatorname{Hom}(A,B)\otimes\operatorname{Hom}(C,D)$ の同型写像 G を $G(f\otimes h)=qf\otimes hp$ で定める. この時

$$(\widetilde{F} \circ G)(f \otimes h) = \widetilde{F}(qf \otimes hp) = hp\widetilde{g}qf = hgf = F(f \otimes h)$$

より $F=\widetilde{F}\circ G$ だから、rank $F=\mathrm{rank}(\widetilde{F}\circ G)=\mathrm{rank}\,\widetilde{F}$ である.よって $g=\widetilde{g}$ として良い.r=0 の時は F は零写像である. $r\geq 1$ の時は,M(b,a),M(d,c),M(d,a) の行列単位をそれぞれ E_{ij},E'_{ij},E''_{ij} とすると

$$F(E_{1j} \otimes E'_{i1}) = E'_{i1} \begin{pmatrix} I_r & \\ & 0_{(c-r) \times (b-r)} \end{pmatrix} E_{1j} = E''_{ij}$$

だからFは全射.

以上から

$$\operatorname{rank} F = \begin{cases} 0 & (r=0), \\ ad & (r>0). \end{cases}$$

n を自然数とし, $L=\mathbb{C}(T_1,\ldots,T_n)$ を n 変数有理関数体とする. \mathbb{C} 上の L の自己同型 σ を

$$\sigma(T_i) = T_{i+1} \quad (i = 1, \dots, n-1),$$

 $\sigma(T_n) = T_1$

で定める. $K = \{f \in L; \sigma(f) = f\}$ を不変部分体とする.

- (1) 拡大次数 [L:K] を求めよ.
- (2) L の線形部分空間 $\bigoplus_{i=1}^n \mathbb{C}T_i$ を σ の作用に関する固有空間に分解せよ.
- (3) 多項式 $f_1,\ldots,f_n\in\mathbb{C}[T_1,\ldots,T_n]$ で $K=\mathbb{C}(f_1,\ldots,f_n)$ となるようなものを一組与えよ.
- (4) n=6 のとき L と K の中間体を全て求めよ.

解答. (1) $\#\langle\sigma\rangle = n$ であるから Artin の定理より [L:K] = n.

(2) $\{T_1,\ldots,T_n\}$ に関する σ の表現行列は

$$\begin{pmatrix} & 1 \\ I_{n-1} & \end{pmatrix}$$

である.この行列の固有多項式は λ^n-1 だから, $\zeta=e^{2\pi i/n}$ とおくと固有値は ζ^k $(k=1,2,\ldots,n)$. 固有ベクトルは $(1,\zeta^{-k},\zeta^{-2k},\ldots,\zeta^{-(n-1)k})$ だから,

$$X_k = T_1 + \zeta^{-k} T_2 + \zeta^{-2k} T_3 + \dots + \zeta^{-(n-1)k} T_n$$

とおけば固有空間への分解は $\bigoplus_{k=1}^{n} \mathbb{C}T_k = \bigoplus_{k=1}^{n} \mathbb{C}X_k$.

(3) $(X_1,\ldots,X_n)=(T_1,\ldots,T_n)A$ $(A\in GL_n(\mathbb{C}))$ と書けるから $L=\mathbb{C}(X_1,\ldots,X_n)$ である。(2) より $\sigma(X_k)=\zeta^kX_k$ なので $\sigma(X_1^{n-k}X_k)=X_1^{n-k}X_k$. よって

$$f_k = X_1^{n-k} X_k \in \mathbb{C}[X_1, \dots, X_n] = \mathbb{C}[T_1, \dots, T_n] \quad (k = 1, \dots, n)$$

とおけば $K':=\mathbb{C}(f_1,\ldots,f_n)\subset K$ である。また $K'(X_1)=\mathbb{C}(X_1,\ldots,X_n)=L$ であり, $g(x):=x^n-f_1\in K'[x]$ は $x=X_1$ を根に持つから

$$[L:K'] \le n = [L:K] \le [L:K'].$$

よって K = K' なので、上の f_k たちが求めるものである.

(4) Artin の定理より L/K は Galois 拡大で $G:=\mathrm{Gal}(L/K)=\langle\sigma\rangle\cong\mathbb{Z}/6\mathbb{Z}$ である。[L:K]=n より X_1 の K 上最小多項式は g であるから, X_1 の K-共役元は ζ^jX_1 ($j=0,1,\ldots,5$). G の生成元は $\sigma:X_1\mapsto \zeta X_1$ で,部分群は $\langle\sigma^2\rangle$, $\langle\sigma^3\rangle$ の 2 つである。よって L/K の中間体は

$$L^{\langle \sigma^2 \rangle} = K(X_1^3), \qquad L^{\langle \sigma^3 \rangle} = K(X_1^2)$$

 \bigcirc 2 \bigcirc .

p を 3 以上の素数とする. 単位元をもつ可換環 A の可逆元のなす群 A^{\times} は,位数 p^2 の巡回群にはならないことを証明せよ.

解答. $A^{\times}\cong \mathbb{Z}/p^2\mathbb{Z}$ となる A が存在したとする. $|A^{\times}|=p^2$ は奇数だから $-1\in A^{\times}$ の位数も奇数. よって -1=1 だから A の標数は 2 である. A^{\times} の生成元を g とし,環準同型 $\varphi:\mathbb{F}_2[x]\to A$ を $x\mapsto g$ で定める. $\ker\varphi$ は $\mathbb{F}_2[x]$ のイデアルなので,一つの $f\in\mathbb{F}_2[x]$ で生成される. $f_0(x)=x^{p^2}-1$ とおくと $(f_0)\subset \ker\varphi$ であるから f_0 は f で割り切れる. また $f'_0(x)=p^2x^{p^2-1}\neq 0$ $(x\in A\setminus\{0\})$ だから f_0 は重根を持たない.よって f も重根を持たないから, \mathbb{F}_2 上で既約かつどの二つも互いに素な多項式 f_1,\ldots,f_n があって $f=f_1\cdots f_n$ とおける.従って準同型定理と中国剰余定理から

$$\operatorname{Im} \varphi \cong \mathbb{F}_{2}[x]/(f_{1}\cdots f_{n})$$

$$\cong \mathbb{F}_{2}[x]/(f_{1}) \times \cdots \times \mathbb{F}_{2}[x]/(f_{n})$$

$$\cong \mathbb{F}_{2^{d_{1}}} \times \cdots \times \mathbb{F}_{2^{d_{n}}}.$$

ただし $d_i = \deg f_i$ とおいた. $x \notin \operatorname{Ker} \varphi$ であること,また g の位数は $p^2 > 1$ だから $x - 1 \notin \operatorname{Ker} \varphi$ であることから $d_i > 2$ である.

ここで $(\operatorname{Im} \varphi)^{\times} = A^{\times}$ を示す、 $\operatorname{Im} \varphi \subset A$ より $(\operatorname{Im} \varphi)^{\times} \subset A^{\times}$ である、逆に $u \in A^{\times}$ なら $v \in A^{\times}$ が存在して uv = 1 となる、 $\varphi|_{R^{\times}} : R^{\times} \to A^{\times}$ は全射だから、 $u', v' \in R^{\times}$ であって $\varphi(u') = u, \varphi(v') = v$ となるものが存在する。この時 $1 = uv = \varphi(u')\varphi(v')$ だから $u = \varphi(u') \in (\operatorname{Im} \varphi)^{\times}$. よって $A^{\times} \subset (\operatorname{Im} \varphi)^{\times}$ となるから示された。

以上から

$$A^{\times} \cong (\mathbb{F}_{2^{d_1}} \times \dots \times \mathbb{F}_{2^{d_n}})^{\times} \cong \mathbb{F}_{2^{d_1}}^{\times} \times \dots \times \mathbb{F}_{2^{d_n}}^{\times}$$
$$\cong \mathbb{Z}/(2^{d_1} - 1)\mathbb{Z} \times \dots \times \mathbb{Z}/(2^{d_n} - 1)\mathbb{Z}$$

だから、位数を比較して $p^2=(2^{d_1}-1)\cdots(2^{d_n}-1)$. これより $n\leq 2$ である。 $\operatorname{mod} 4$ で見ると、 $d_i\geq 2$ より $1\equiv (-1)^n$ なので n=2. この時 $2^{d_i}-1>1$ より $2^{d_1}-1=2^{d_2}-1=p$ であるが、 $A^\times\cong (\mathbb{Z}/p\mathbb{Z})^2\not\cong \mathbb{Z}/p^2\mathbb{Z}$ となって矛盾.

(補足) 単位元を持つ可換環 R の乗法群 R^{\times} の位数としてありうるものは全て決定されているらしい.4

⁴https://www.jstor.org/stable/10.4169/amer.math.monthly.124.10.960

1999年度(平成11年度)

問 2

 $A=\mathbb{Z}[X]$ を有理整数環上の 1 変数多項式環とする. A の異なる素イデアル $\mathfrak{p}_1,\mathfrak{p}_2,\mathfrak{p}_3$ で

$$\{0\} \neq \mathfrak{p}_1 \subset \mathfrak{p}_2 \subset \mathfrak{p}_3$$

を満たすものは存在しない(すなわち, Aのクルル次元は2以下である)ことを証明せよ.

解答. \mathfrak{p}_1 を A の零でない素イデアルとする. \mathfrak{p}_1 の次数が最小の既約元 f を取る.

- $\deg f=0$ の時:f は素数であるから,それを p とする. $\mathfrak{p}_1\subset\mathfrak{p}_2$ なる A の素イデアル \mathfrak{p}_2 を取ると, $\mathfrak{p}_2/\mathfrak{p}_1$ は $A/\mathfrak{p}_1\cong \mathbb{F}_p[X]$ の素イデアルである. \mathbb{F}_p は体ゆえ $\mathbb{F}_p[X]$ は PID なので, \mathbb{F}_p 上の既約多項式 $\overline{g}(X)\in \mathbb{F}_p[X]$ が存在して $\mathfrak{p}_2/\mathfrak{p}_1=(\overline{g})$ となる.自然な射影 $\mathbb{Z}[X]\to \mathbb{F}_p[X]$ を π とおくと, $\pi(g)=\overline{g}$ となる $g\in A$ が取れる.この時 $\mathfrak{p}_2=(p,g)$ である. $A/\mathfrak{p}_2\cong \mathbb{F}_p[X]/(\overline{g})$ は体だから, A/\mathfrak{p}_2 の真の素イデアル $\mathfrak{p}_3/\mathfrak{p}_2$ (すなわち $\mathfrak{p}_2\subset\mathfrak{p}_3$ なる A の素イデアル \mathfrak{p}_3)は存在しない.
- $\deg f \geq 1$ の時:f は \mathbb{Z} 上既約. \mathfrak{p}_2 を $\mathfrak{p}_1 \subset \mathfrak{p}_2$ なる A の素イデアルとする. $\mathfrak{p}_2 \setminus \mathfrak{p}_1$ の次数が最小の既約元 g を取る. $\deg g > 0$ であったとすると,割り算して $f = ag + b (\deg b < \deg g)$ となる $a,b \in \mathbb{Q}[X]$ が取れる.適当に整数倍すれば $cf = ag + b (\deg b < \deg g)$ となる $c \in \mathbb{Z}, a,b \in \mathbb{Z}[X]$ が取れる.この時 $b \in (f,g) \subset \mathfrak{p}_2$ だから, $b = b_1^{r_1} \cdots b_k^{r_k}$ と既約元の積で書いた時, $b_i \in \mathfrak{p}_2$ となる i が少なくとも一つ存在する.もし $b_i \in \mathfrak{p}_1$ なら, $ag = cf b \in \mathfrak{p}_1$ より a の素因数で \mathfrak{p}_1 の元となるものが存在する.これは $\deg f$ の最小性に反するから $b_i \in \mathfrak{p}_2 \setminus \mathfrak{p}_1$ である.ところが $\deg b_i \leq \deg b < \deg g$ なので, $\deg g$ の最小性に反する.よって $\deg g = 0$,すなわち g は素数.それを g とおくと g = (f,p) である.あとは g = 0 の場合と同様.

 \mathbb{Z} を有理整数環, $\mathbb{Z}[X]$ を \mathbb{Z} 係数一変数多項式環とし, $\mathbb{Z}[X]$ の単項イデアル (X^n) (ただし n は 2 以上の整数)による剰余環 $\mathbb{Z}[X]/(X^n)$ を考える.

- (1) この剰余環の単数群(可逆元全体が乗法に関してなす群)は、有限生成アーベル群であることを示せ、
- (2) その群の不変系を求めよ. つまり上の群を標準形

$$\mathbb{Z}^{\oplus r} \oplus \mathbb{Z}/e_1\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/e_s\mathbb{Z}$$
 $(e_1 \mid e_2, e_2 \mid e_3, \dots)$

と同型であるとしたとき、階数 r とねじれの不変量 e_1, e_2, \ldots, e_s を求めよ.

解答. X の $R := \mathbb{Z}[X]/(X^n)$ における同値類を x とおく.

(1) R^{\times} が有限生成であることを示せば良い。 $a_0+a_1x+\cdots+a_{n-1}x^{n-1}\in R$ の逆元が $b_0+b_1x+\cdots+b_{n-1}x^{n-1}$ とすると,積の定数項から $a_0=\pm 1$ が必要。逆にこの時 x^i の係数から $a_0b_i+a_1b_{i-1}+\cdots+a_ib_0=1$ なので, $b_0,b_1,\ldots,b_{n-1}\in\mathbb{Z}$ が帰納的に一意に定まる。よって

$$R^{\times} = \{ \pm 1 + x f(x) ; f \in \mathbb{Z}[x] \}$$

である. ここで $f_i(x) = 1 - x^i$ (i = 1, 2, ..., n - 1) とおく. $(k - 1)i < n \le ki$ なる $k \in \mathbb{Z}$ を取ると

$$(1 + x^{i} + x^{2i} + \dots + x^{(k-1)i})f_{i}(x) = 1 - x^{ki} = 1$$

だから $f_i \in R^{\times}$, $f_i^{-1} = 1 + x^i + x^{2i} + \dots + x^{(k-1)i}$ である。今任意に $f(x) = 1 + a_1 x + \dots + a_{n-1} x^{n-1} \in R^{\times}$ を取る。 $a_1 > 0$ の時は $f_1^{a_1} f = 1 \bmod x^2$, $a_1 < 0$ の時は $f_1^{-|a_1|} f = 1 \bmod x^2$ となる。以下同様に続けると, $f_1^{c_1} \cdots f_{n-1}^{c_{n-1}} f = 1$ となる $c_1, \dots, c_{n-1} \in \mathbb{Z}$ が存在する。定数項が -1 の場合は $-1 \in R^{\times}$ をかければ上の議論がそのまま成り立つから, $-1, f_1, \dots, f_{n-1}$ は R^{\times} の生成元である。

(2) $f_i^j = 1 + j(-x)^i \mod x^{i+1}$ だから f_i は無限位数である。また $f_{i_1}^{c_{i_1}} \cdots f_{i_k}^{c_{i_k}} = 1$ となる $1 \leq i_1 < \cdots < i_k < n$ と $c_{i_j} > 0$ が存在したとすると, $1 + c_1(-x)^{i_1} \equiv 1 \mod x^{i_1+1}$ となって矛盾。よって $-1, f_1, \ldots, f_{n-1}$ たちの間には(群としての)関係式は存在しない。従って

$$R^{\times} = \langle -1, f_1, \dots, f_{n-1} \rangle \cong \mathbb{Z}^{n-1} \times \mathbb{Z}/2\mathbb{Z}$$

なので $r = n - 1, s = 1, e_1 = 2$.

1997年度(平成9年度)

問4

p を素数, L を p 元体 \mathbb{F}_p 上の一変数有理関数体 $\mathbb{F}_p(T)$ とする. $S \in L$ を

$$S = \sum_{k=1}^{p} T^{k(p-1)} = T^{p-1} + T^{2(p-1)} + \dots + T^{p(p-1)}$$

とし, K を L の部分体 $\mathbb{F}_p(S)$ とする.

- (1) L の K 上の拡大次数 [L:K] を求めよ.
- (2) L は K のガロア拡大であることを示せ.
- (3) ガロア群 $\operatorname{Gal}(L/K)$ の位数 p の部分群はただ一つであることを示し、その部分群に対応する中間体を求めよ、

解答. (1)

$$S = \frac{T^{p-1}(T^{p(p-1)} - 1)}{T^{p-1} - 1} = \frac{T^{p-1}(T^{p-1} - 1)^p}{T^{p-1} - 1}$$
$$= T^{p-1}(T^{p-1} - 1)^{p-1} = (T^p - T)^{p-1}$$

より $f(X)=(X^p-X)^{p-1}-S$ は T を根に持つ、f は S の 1 次式だから $K[X]=\mathbb{F}_p[X](S)$ において 既約、よって f は T の K 上の最小多項式だから、 $[L:K]=\deg f=p(p-1)$.

(2) 任意の $a \in \mathbb{F}_p^{\times}, b \in \mathbb{F}_p$ に対し

$$((aT+b)^p - (aT+b))^{p-1} = (aT^p + b - (aT+b))^{p-1} = (T^p - T)^{p-1} = S$$

だから f(aT+b)=0. これと $|\mathbb{F}_p^{\times}\times\mathbb{F}_p|=(p-1)p=\deg f$ より f(X) の根(すなわち T の L-共役元)は aT+b で,これらは全て L の元だから L/K は正規かつ分離的.従って L/K は Galois 拡大.

(3) $G=\operatorname{Gal}(L/K)$ とおくと $|G|=\deg f=p(p-1)$ である. G の p-Sylow 部分群の個数を n とおくと, Sylow の定理より $n\equiv 1 \bmod p$ かつ $n\mid p(p-1)$. 第 1 式より (n,p)=1 だから $n\mid (p-1)$. よって n< p なので n=1 である. その部分群を H とおく. $\{\sigma_b(T)=T+b\,;\,b\in\mathbb{F}_p\}$ は G の部分群で位数は p だから,これが H である. (2) の計算から $T^p-T\in L^H$ なので $\mathbb{F}_p(T^p-T)\subset L^H$. 一方 $S=(T^p-T)^{p-1}$ より

$$[L^H:K] = \frac{[L:K]}{[L:L^H]} = \frac{|G|}{|H|} = p - 1 = [\mathbb{F}_p(T^p - T):K]$$

だから, $L^H = \mathbb{F}_p(T^p - T)$.

1996年度(平成8年度)

問1

単位元を持つ可換環の可逆元全体は積に関して群をなす.これをその環の単数群という.次の環の単数群を求めよ.

- (1) $\mathbb{Z}[X]$
- (2) $\mathbb{Z}\left[X, \frac{1}{X}, \frac{1}{1-X}\right]$

ただし、 \mathbb{Z} は有理整数環、X は不定元とする.

解答. (1) $f \in \mathbb{Z}[X]^{\times}$ とすると $g \in \mathbb{Z}[X]$ が存在して fg = 1 となる. 両辺の次数を比較して $\deg f + \deg g = 0$ だから $\deg f = \deg g = 0$. よって $\mathbb{Z}[X]^{\times} = \{\pm 1\} \cong \mathbb{Z}/2\mathbb{Z}$.

(2) 環を R とおく、 $f \in R^{\times}$ を $\frac{p(X)}{X^{n}(1-X)^{m}}$ ($p \in \mathbb{Z}[X], n, m \in \mathbb{Z}_{\geq 0}$) と既約分数で書く、p(X) の最高次係数を a とすると, $\frac{X^{n}(1-X)^{m}}{p(X)} \in R$ より $a=\pm 1$ が必要、またこの分母の根としてあり得るのは X=0,1 のみだから, $f(X)=\pm X^{i}(1-X)^{j}$ ($i,j\in\mathbb{Z}$) と書けることが必要、逆にこの形の元が R^{\times} の元であることは明らか、よって

$$R^{\times} = \{ \pm X^i (1 - X)^j ; i, j \in \mathbb{Z} \} \cong \mathbb{Z}^2 \times \mathbb{Z}/2\mathbb{Z}.$$

整数 λ, μ に対し数列 $\{a_n\}$ を帰納的に

$$\begin{cases} a_1 = 1, a_2 = 1, \\ a_{n+2} = \lambda a_{n+1} + \mu a_n \end{cases}$$

と定める.

- (1) 素数 p が $\lambda^2+4\mu$ の約数でないとき、任意の整数 $n\geq 1$ に対し p は $a_{n+p^2-1}-a_n$ の約数であることを示せ、
- (2) $\lambda = 2, \mu = -4$ とする. 5 以上の素数 p が、任意の整数 $n \ge 1$ に対し $a_{n+p-1} a_n$ の約数である ための必要十分条件を求めよ. (p に対する合同式で表わせ.)

解答. (1) 自然な射影 $\mathbb{Z} \to \mathbb{Z}/p\mathbb{Z} = \mathbb{F}_p$ による a_n の像を b_n とし、以下 \mathbb{F}_p の代数閉包 $\overline{\mathbb{F}_p}$ 上で考える. $b_{n+p^2-1} = b_n$ を示せば良い. $A = \begin{pmatrix} \lambda & \mu \\ 1 & 0 \end{pmatrix} \in M_2(\mathbb{F}_p)$ とおく. この時

$$\begin{pmatrix} b_{n+k} \\ b_{n+k-1} \end{pmatrix} = A \begin{pmatrix} b_{n+k-1} \\ b_{n+k-2} \end{pmatrix} = \dots = A^k \begin{pmatrix} b_n \\ b_{n-1} \end{pmatrix}$$
 (*)

である. A の固有多項式は $t^2-\lambda t-\mu$ で判別式は $D=\lambda^2+4\mu\neq 0$ だから、相異なる固有値を持つ. よって A の Jordan 標準形は対角行列である. また固有値は \mathbb{F}_{p^2} の元だから $A^{p^2}=A$ である.

- $\mu \neq 0$ の時: A は正則だから $A^{p^2-1} = I$. よって (*) より $b_{n+p^2-1} = b_n$ となる.
- $\mu=0$ の時:帰納的に $a_n=\lambda^{n-2}\,(n\geq 2)$ である.また仮定から $\lambda\neq 0$ だから, $n\geq 2$ に対し $b_{n+n^2-1}=\lambda^{n-2}\cdot(\lambda^{p-1})^{p+1}=\lambda^{n-2}=b_n$ となる.
- (2) $\mu \neq 0$ だから,条件を満たすことは $A^p = A$ と同値.Jordan 標準形を考えれば,これは A の全ての固有値が \mathbb{F}_p の元であること,すなわち D = -12 が $\mathrm{mod}p$ の平方剰余であることと同値である.Euler の規準,平方剰余の相互法則より

$$\left(\frac{-12}{p}\right) = \left(\frac{-1}{p}\right) \left(\frac{2^2}{p}\right) \left(\frac{3}{p}\right) = (-1)^{(p-1)/2} \cdot 1 \cdot (-1)^{\frac{3-1}{2}\frac{p-1}{2}} \left(\frac{p}{3}\right)$$
$$= \left(\frac{p}{3}\right) \equiv p^{(3-1)/2} = p \pmod{3}$$

だから、答えは $p \equiv 1 \mod 3$.

(補足) 2009 年度問 3 と同様に、 $\mu = 0$ の時は n = 1 で成り立たない.

X を変数とする多項式

$$f(X) = X^4 + 4X^3 + 3X^2 - 2X + 23$$

を考える.

- (1) f(X) の有理数体 $\mathbb Q$ 上の最小分解体を F とし、ガロア群 $\mathrm{Gal}(F/\mathbb Q)$ の構造を求めよ.
- (2) 任意の素数 p について、 $f(X) \mod p$ は体 $\mathbb{Z}/p\mathbb{Z}$ 上可約であることを示せ.

解答. (1)

$$f(X-1) = (X^4 - 4X^3 + 6X^2 - 4X + 1) + 4(X^3 - 3X^2 + 3X - 1)$$

$$+ 3(X^2 - 2X + 1) - 2(X - 1) + 23$$

$$= X^4 - 3X^2 + 25 = (X^2 + 5)^2 - 13X^2$$

$$= (X^2 + 5 + \sqrt{13}X)(X^2 + 5 - \sqrt{13}X)$$

だから, f(X) = 0 の根は

$$1 + \frac{\pm\sqrt{13}\pm\sqrt{-7}}{2}$$

である. よって $F = \mathbb{Q}(\sqrt{13}, \sqrt{-7})$. また

$$[F:\mathbb{Q}] = [F:\mathbb{Q}(\sqrt{13})][\mathbb{Q}(\sqrt{13}):\mathbb{Q}] = 2^2$$

である. ここで $\sigma, \tau \in \operatorname{Gal}(F/\mathbb{Q})$ を

$$\sigma: \sqrt{13} \mapsto -\sqrt{13}, \sqrt{-7} \mapsto \sqrt{-7}, \qquad \tau: \sqrt{13} \mapsto \sqrt{13}, \sqrt{-7} \mapsto -\sqrt{-7}$$

で定めると、 $\sigma^2 = \tau^2 = \mathrm{id}_F$, $\sigma\tau = \tau\sigma$ だから # $\langle \sigma, \tau \rangle = 2^2 = \#\mathrm{Gal}(F/\mathbb{Q})$. よって $\mathrm{Gal}(F/\mathbb{Q}) = \langle \sigma, \tau \rangle \cong (\mathbb{Z}/2\mathbb{Z})^2$.

(2) g(X) = f(X-1) とおく. $g(X) \mod p$ が \mathbb{F}_p 上可約であることを示せば良い.

• 13 が $\operatorname{mod} p$ の平方剰余の時 : $n^2 = 13 \operatorname{mod} p$ となる $n \in \mathbb{F}_p$ が取れるから

$$g(X) = (X^2 + 5)^2 - 13X^2 = (X^2 + 5)^2 - n^2X^2 = (X^2 + 5 + nX)(X^2 + 5 - nX).$$

- \bullet -7 が $\mathrm{mod} p$ の平方剰余の時 : $g(X) = (X^2 5)^2 + 7X^2$ だから上と同様.
- 上記以外の時: $13\cdot (-7)=-91$ は $\mathrm{mod}\, p$ の平方剰余だから, $n^2=-91$ $\mathrm{mod}\, p$ となる $n\in\mathbb{F}_p$ が取れる.また $2\in\mathbb{F}_p^n$ だから

$$g(X) = \left(X^2 - \frac{3}{2}\right)^2 + \frac{91}{4} = \left(X^2 - \frac{3}{2}\right)^2 - \frac{n^2}{4} = \left(X^2 - \frac{3+n}{2}\right)\left(X^2 - \frac{3-n}{2}\right).$$

1995年度(平成7年度)

問3

素体 \mathbb{F}_p に成分をもつ

$$\begin{pmatrix} 1 & a & d & f \\ 0 & 1 & b & e \\ 0 & 0 & 1 & c \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

なる形の行列全てよりなり、行列の積を演算とする群を G とする. G から \mathbb{F}_p の加法群への準同型写像を全て求めよ.

解答.

$$g_1 = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad g_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad g_3 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

とおくと

$$g_1^{-1}g_2^{-1}g_1g_2 = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad g_2^{-1}g_3^{-1}g_2g_3 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$
$$(g_1^{-1}g_2^{-1}g_1g_2)^{-1}g_3^{-1}(g_1^{-1}g_2^{-1}g_1g_2)g_3 = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

である.これら 7 個の行列は 4 次行列に左から掛けると行基本変形に対応する.一方 G の任意の元は,単位行列に行基本変形をすれば得られるから, g_1,g_2,g_3 は G の生成元である. $g_1^p=g_2^p=g_3^p=I$ であり,これ以外に g_i の間に関係式は存在しない(これは g_i が基本変形に対応することからわかる)ので,

$$G = \langle g_1, g_2, g_3 | g_1^p = g_2^p = g_3^p = I \rangle$$

である。準同型 $\varphi: G \to \mathbb{F}_p$ は $\varphi(g_i^p) = p\varphi(g_i) = 0 = \varphi(I)$ を満たすから, $i,j,k \in \mathbb{F}_p$ を任意に取り $g_1 \mapsto i, g_2 \mapsto j, g_3 \mapsto k$ から定まる p^3 個の写像が求めるものである.

有限群 G の体 K 上の群環 K[G] について次の問に答えよ.

(1) K[G] の元 a を

$$a = \sum_{g \in G} a_g g \qquad (a_g \in K)$$

と表し、K[G] の部分集合 A を

$$A = \left\{ a \in K[G]; \sum_{g \in G} a_g = 0 \right\}$$

と定義する. A は K[G] の両側イデアルであることを示せ.

(2) $K[G] = A \oplus B$ なる K[G] の左イデアル B を全て求めよ.

解答. (1) 任意の $a,b \in A$ に対し

$$a + b = \sum_{g \in G} a_g g + \sum_{g \in G} b_g g = \sum_{g \in G} (a_g + b_g) g, \qquad \sum_{g \in G} (a_g + b_g) = 0$$

だから $a+b \in A$. また任意の $x \in G$ に対し

$$xa = \sum_{g \in G} a_g xg = \sum_{x^{-1}h \in G} a_{x^{-1}h}h, \qquad \sum_{x^{-1}h \in G} a_{x^{-1}h} = \sum_{g \in G} a_g = 0$$

だから $xa \in A$. よって任意の $x' \in K[G]$ に対し $x'a \in A$ となるから, A は K[G] の左イデアルである. 右イデアルであることも同様.

(2) B の生成元 $\sum_{g \in G} a_g g$ を任意に取ると,

$$B \ni \left(\sum_{h \in G} h\right) \left(\sum_{g \in G} a_g g\right) = \sum_{g \in G} a_g \left(\sum_{h \in G} h g\right) = \sum_{g \in G} a_g \left(\sum_{h \in G} h\right)$$

である。ただし最後の等号は, $g\in G$ を固定した時写像 $G\to G, h\mapsto hg$ が全単射であることによる。 $A\oplus B=K[G]$ より $\sum_{g\in G}a_g\neq 0$ だから $\sum_{h\in G}h\in B$. よって $I:=(\sum_{g\in G}g)\subset B$ である。一方,任意に $x\in K[G]$ を取ると

$$x = \sum_{g \in G} x_g g = \sum_{g \in G} \left(x_g - \frac{1}{|G|} \sum_{h \in G} x_h \right) g + \sum_{g \in G} \left(\frac{1}{|G|} \sum_{h \in G} x_h \right) g \in A \oplus I$$

だから $K[G] \subset A \oplus I$. 従って

$$A \oplus I \subset A \oplus B = K[G] \subset A \oplus I$$

なので, 答えは

$$B = I = \left(\sum_{g \in G} g\right)$$

のみ.

1994年度(平成6年度)

問3

8個の元からなる有限体 📭 上の方程式

$$y^2 + y = x^7 + x^3$$

の解 (x,y) の個数を求めよ.

解答. x=0 の時は $y^2+y=0$ だから y=0,1. 以下 $x\neq 0$ とする. \mathbb{F}_2 上の既約多項式 $t^3+t+1\in \mathbb{F}_2[t]$ の根の一つを α とすれば $\mathbb{F}_8\cong \mathbb{F}_2[\alpha]/(\alpha^3+\alpha+1)$ である. $x=x_0+x_1\alpha+x_2\alpha^2, y=y_0+y_1\alpha+y_2\alpha^2$ $(x_i,y_i\in \mathbb{F}_2)$ とおくと, $\alpha^4=\alpha\cdot\alpha^3=\alpha(-\alpha-1)=\alpha^2+\alpha$ であることから

$$x^{2} = x_{0}^{2} + x_{1}^{2}\alpha^{2} + x_{2}^{2}\alpha^{4} = x_{0} + x_{2}\alpha + (x_{1} + x_{2})\alpha^{2}.$$

よって

$$y^{2} + y = (y_{0} + y_{2}\alpha + (y_{1} + y_{2})\alpha^{2}) + (y_{0} + y_{1}\alpha + y_{2}\alpha^{2})$$

$$= (y_{1} + y_{2})\alpha + y_{1}\alpha^{2},$$

$$x^{7} + x^{3} = 1 + (x_{0} + x_{2}\alpha + (x_{1} + x_{2})\alpha^{2})(x_{0} + x_{1}\alpha + x_{2}\alpha^{2})$$

$$= 1 + x_{0}^{2} + (x_{0}x_{1} + x_{0}x_{2})\alpha + (x_{0}x_{2} + x_{1}x_{2} + (x_{1} + x_{2})x_{0})\alpha^{2}$$

$$+ (x_{2}^{2} + (x_{1} + x_{2})x_{1})\alpha^{3} + (x_{1} + x_{2})x_{2}\alpha^{4}$$

$$= 1 + x_{0} + x_{2} + (x_{1} + x_{2})x_{1} + (\alpha, \alpha^{2} \mathcal{O}\mathfrak{H}).$$

従って x_1,x_2 を任意に一組決めると,方程式の $\alpha^0,\alpha^1,\alpha^2$ の係数を比較して x_0,y_1,y_2 が一意に定まる. (この時 $(x_0,x_1,x_2)\neq (0,0,0)$ だから $x\neq 0$ である.)また y_0 は任意だから解は $2^3=8$ 個. 以上から答えは 2+8=10.

実施年度不明1

問1

k を可換体とする. 乗法群 $k^{\times}=k-\{0\}$ が有限生成の群なら、k は有限体であることを示せ.

解答. k の標数が 0 であるとすると, k^{\times} は \mathbb{Q}^{\times} を含む. k^{\times} は有限生成だから,その部分群 \mathbb{Q}^{\times} も有限生成となる 5 が, \mathbb{Q}^{\times} は無限個の素数で生成されるから矛盾.よって k の標数は p>0. もし \mathbb{F}_p 上超越的な $x\in k^{\times}$ が存在すれば, k^{\times} の部分群 $\mathbb{F}_p(x)^{\times}$ は有限生成となる.ところが $\mathbb{F}_p[x]$ は既約多項式を無限個含むから,上と同様に矛盾.従って任意の $x\in k^{\times}$ は \mathbb{F}_p 上代数的であるから, k^{\times} の生成元は g_1,\ldots,g_n ($g_i\in\mathbb{F}_{p^{k_i}}$) とおける.この時十分大きい N が存在して $k^{\times}\subset\mathbb{F}_{p^N}$ となるから示された. \square

 $^{^5}$ https://math.stackexchange.com/questions/137287/ を参照.

実施年度不明2

問 2

- (i) ちょうど 4 個の共役類を持つ有限群の同型類は有限個しかないことを示せ.
- (ii) そのような有限群のうち、位数が3の倍数でないものの同型類を全て求めよ。

解答. (i) 群 G の位数を N とし、共役類を O_i $(i=1,\ldots,4)$ とおく. O_i の代表元を x_i (ただし $x_4=1$) と し, $|O_1| \ge |O_2| \ge |O_3|$ としておく. $Z_G(x_i) = \{g \in G : x_i g = gx_i\}$ を x_i の中心化群とし, $|Z_G(x_i)| = n_i$ とおく. $|O_i| = [G: Z_G(x_i)] = N/n_i, n_4 = N$ だから、類等式より

$$\frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_3} + \frac{1}{N} = 1$$

である. $n_1 \leq n_2 \leq n_3 \leq N$ より $1 \leq \frac{4}{n_1}$ なので $n_1 = 2, 3, 4$ である. n_1 を固定すると $1 \leq \frac{1}{n_1} + \frac{3}{n_2}$ よ り $n_2 \leq 3(1-\frac{1}{n_1})^{-1}$. 同様にして $n_3 \leq 2(1-\frac{1}{n_1}-\frac{1}{n_2})^{-1}$ だから N の取りうる範囲は有限. ここで Nを固定した時, 任意に $g \in G$ を取ると全単射 $G \to G, x \mapsto gx$ は N! 通りあり得るから, G に入る積は 高々 $N \cdot N!$ 通り. よって G も有限個である.

- (ii) $n_1=4$ の時: $\frac{3}{4}=\frac{1}{n_2}+\frac{1}{n_3}+\frac{1}{N}\leq \frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{3}{4}$ だから $n_2=n_3=N=4$. よって G は位数が 素数の平方だから Abel 群. 従って $G \cong \mathbb{Z}/4\mathbb{Z}, (\mathbb{Z}/2\mathbb{Z})^2$.
- $n_1=3$ の時: $n_2\leq \frac{9}{2}$ だから $n_2=3,4$ である. $n_2=4$ なら $n_3\leq \frac{24}{5}$ より $n_3=4$. この時 N=6だから不適. $n_2=3$ なら $\frac{1}{n_3}+\frac{1}{N}=\frac{1}{3}$ より $(n_3-3)(N-3)=9$ だから $(n_3-3,N-3)=(1,9),(3,3)$. いずれも $3 \mid N$ なので不適
 - $n_1 = 2$ の時: $n_2 \le 6$ である.
- (a) $n_2=6$ の時: $\frac{1}{3}=\frac{1}{n_3}+\frac{1}{N}\leq \frac{1}{6}+\frac{1}{6}=\frac{1}{3}$ より $n_3=N=6$ となり不適. (b) $n_2=5$ の時: $n_3\leq \frac{20}{3}$ より $n_3=5,6$ である. $\frac{1}{2}+\frac{1}{5}+\frac{1}{6}=\frac{13}{15}$ だから $n_3=6$ は不適で $n_3=5$.この 時 N=10 で Sylow の定理より G は位数 5 の正規部分群 $H=\langle x \rangle$ を唯一つ持つ. $y \in G \backslash H$ は位数 2 だ から, $K = \langle y \rangle$ とおくと $H \cap K = \{1\}$, G = HK である. よって $\sigma: K \to \operatorname{Aut}(H)$ があって $G = H \rtimes_{\sigma} K$ となる. $\operatorname{Aut}(H) \cong (\mathbb{Z}/5\mathbb{Z})^{\times} \cong \mathbb{Z}/4\mathbb{Z}$ だから σ は $y \mapsto (x \mapsto x), y \mapsto (x \mapsto x^2)$ の 2 通りあるが、前者 は $G\cong H\times K\cong \mathbb{Z}/10\mathbb{Z}$ で共役類が 10 個なので不適. 後者は $G=\langle x,y\,|\,x^5=y^2=1,yxy=x^2\rangle\cong D_5$
- (c) $n_2=4$ の時: $\frac{1}{n_3}+\frac{1}{N}=\frac{1}{4}$ より $(n_3-4)(N-4)=16$ だから $(n_3,N)=(5,20),(6,12),(8,8)$ であ る. (6,12) は $3\mid N$ なので不適. (8,8) の時は G の既約複素指標 $\chi_i\,(i=1,\ldots,4)$ の次数を d_i とする と $\sum_{i=1}^4 d_i^2 = |G| = 8$ となるが、そのような d_i は存在しないから不適. (5,20) の時は $|Z_G(x_3)| = 5$ だ が、Sylow の定理より G の Sylow-5 部分群は唯一つだから $G \triangleright Z_G(x_3)$. よって $|G/Z_G(x_3)| = 4$ だか ら $G/Z_G(x_3)$ は Abel 群であり、共役類の個数は 4 個. これは G の共役類の個数に等しいから矛盾.
- (d) $n_2=3$ の時: $\frac{1}{n_3}+\frac{1}{N}=\frac{1}{6}$ より $(n_3-6)(N-6)=36$. $3\nmid N$ より $n_3-6=9,18,36$ となるが、 いずれも $n_3 > N$ なので不適.

以上から答えは $\mathbb{Z}/4\mathbb{Z}$, $(\mathbb{Z}/2\mathbb{Z})^2$, D_5 の 3 個.

k を標数が 2 と異なる可換体, a,b を 0 でない k の元とする. X を 3 次元射影空間内の 2 次曲面

$$\{(x:y:z:w)\in\mathbb{P}^3(k); x^2=y^2+az^2+bw^2\}$$

として, 点 (1:1:0:0) におけるこの 2 次曲面の接平面を H を考える.

- (i) $\{p \in X ; p \notin H\}$ から k^2 への全単射で、X の点の座標に関する有理式で表されるものを一つ与えよ.
- (ii) k が位数 q の有限体のとき、集合 X の位数を求めよ.

解答. (i) $p_0=(1:1:0:0)$ とし, $F(x,y,z,w)=x^2-(y^2+az^2+bw^2)$ とおく。 $(F_x,F_y,F_z,F_w)|_{p_0}=(2,-2,0,0)$ で k の標数は 2 でないから $H=\{x-y=0\}$ である。 $f:X\setminus H\to k^2$ を

$$(x:y:z:w) \mapsto \left(\frac{z}{x-y}, \frac{w}{x-y}\right)$$

で定める。任意に $(\alpha,\beta) \in k^2$ を取る。 $(x:y:z:w) \in X \setminus H$ が $f(x:y:z:w) = (\alpha,\beta)$ を満たすとする。 $z=\alpha(x-y), w=\beta(x-y)$ より $x^2-y^2=a\alpha^2(x-y)^2+b\beta^2(x-y)^2$ だから $\frac{x+y}{x-y}=a\alpha^2+b\beta^2$ よって $(a\alpha^2+b\beta^2-1)x=(a\alpha^2+b\beta^2+1)y$ であるが,k の標数が 2 でないから,x,y の係数が共に 0 になることはない。従って $(x:y:z:w) \in X \setminus H$ は一意に決まる。よって f は全単射であるから,これが求めるものである。

(ii) $X_0 = (X \cap H) \cap \{x = 0\}, X_1 = (X \cap H) \cap \{x \neq 0\}$ とおく.

$$X_0 = \{(0:0:z:w) \in \mathbb{P}^3(k); az^2 + bw^2 = 0\}$$
$$= \{(0:0:z:1) \in \mathbb{P}^3(k); (az)^2 + ab = 0\},$$
$$X_1 = \{(1:1:z:w) \in \mathbb{P}^3(k); az^2 + bw^2 = 0\}$$

である.

- ullet -ab が k の平方数でない時: $\#X_0=0$ である。 $(1:1:z:w)\in X_1$ が $z\neq 0$ であれば $(bw/z)^2+ab=0$ となるが,仮定から矛盾. よって z=0 だから, $b\neq 0$ より w=0.従って $X_1=\{(1:1:0:0)\}$ なので $\#X=q^2+0+1=q^2+1$.
- ullet ーab が k の平方数の時 : # $X_0=2$ である. $-ab=c^2\,(c\in k)$ とおくと $a(az^2+bw^2)=(az)^2-(cw)^2=(az+cw)(az-cw)$ だから

$$X_1 = \{(1:1:z:w) \in \mathbb{P}^3(k); az \pm cw = 0\}.$$

k の標数が 2 でないから,az+cw=az-cw=0 となるのは z=w=0 に限る.よって $\#X_1=q+q-1=2q-1$ なので $\#X=q^2+2+(2q-1)=(q+1)^2$.

ここで -ab が k の平方数であること,すなわち $T^2+ab=0$ が k において根を持つことは,k[T] において T^q-T が T^2+ab で割り切れることと同値. $T^q-T=T((T^2)^{(q-1)/2}-1)$ を T^2+ab で割った余りは $((-ab)^{(q-1)/2}-1)T$ だから,

$$#X = \begin{cases} (q+1)^2 & ((-ab)^{(q-1)/2} = 1) \\ q^2 + 1 & ((-ab)^{(q-1)/2} \neq 1). \end{cases}$$

(補足) q が素数なら、最後の議論は Legendre 記号を使うほうが楽.

実施年度不明4

問3

 x^7-1 および x^5-1 を有限体 \mathbb{F}_2 上の多項式環 $\mathbb{F}_2[x]$ の元と考えて既約多項式の積に分解せよ.

解答. • $x^7 - 1$:

$$\frac{x^7 - 1}{x - 1} = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$$
$$= (x^3 + 1)^2 + (x^3 + 1)x^2 + (x^3 + 1)x + x^3$$
$$= (x^3 + 1 + x^2)(x^3 + 1 + x)$$

であり、 $x^3 + x^2 + 1$, $x^3 + x + 1$ は x = 0,1 を根に持たないから \mathbb{F}_2 上既約. 従って

$$x^7 - 1 = (x - 1)(x^3 + x^2 + 1)(x^3 + x + 1).$$

• x^5-1 : $f(x)=x^4+x^3+x^2+x+1$ とおくと $x^5-1=(x-1)f(x)$ である. f は x=0,1 を根に持たないから、可約であるとすると既約な 2 次式 2 つの積になる. ところが \mathbb{F}_2 上既約な 2 次式は x^2+x+1 のみであり $(x^2+x+1)^2=x^4+x^2+1\neq f$ だから、f は \mathbb{F}_2 上既約.従って

$$x^5 - 1 = (x - 1)(x^4 + x^3 + x^2 + x + 1).$$

 $f(x)=x^4+1$ とし、体 K について L を f(x) の K 上の最小分解体とする。次の 2 つの場合に L/K のガロア群の構造を決定せよ。

- (1) $K = \mathbb{F}_p$ (有限体. p は素数)
- (2) $K = \mathbb{Q}$ (有理数体)

解答. (1) p=2 の時は $f(x)=(x+1)^4$ だから L=K. よって $\mathrm{Gal}(L/F)\cong\{1\}$. 以下 $p\geq 3$ とする.

- $8 \mid (p-1)$ の時:f(x) = 0 の根 a は $a^8 = (-1)^2 = 1$ を満たすから $a^{p-1} = 1$. よって $a \in \mathbb{F}_p$ なので L = K となり, $\operatorname{Gal}(L/K) = \{1\}$.
 - $8 \nmid (p-1), 4 \mid (p-1)$ の時 : $(\frac{-1}{p}) = (-1)^{(p-1)/2} = 1$ より $n^2 = -1$ となる $n \in \mathbb{F}_p$ が取れる. この時

$$f(x) = x^4 - n^2 = (x^2 + n)(x^2 - n).$$

よって $x^2-n=0$ の根の一つを a とすれば f(x)=0 の根は $\pm a, \pm an$ なので,L=K(a). ここで p の仮定と $a^4=n^2=-1$ より $a^{p-1}=-1$ となる.これと $a\neq 0$ より $a\not\in \mathbb{F}_p$ である.従って [L:K]=2 なので $\mathrm{Gal}(L/K)\cong \mathbb{Z}/2\mathbb{Z}$.

ullet 4 \nmid (p-1) の時:-1 は $\mathrm{mod} p$ の平方非剰余であるから、 ± 2 のどちらか一方のみが $\mathrm{mod} p$ の平方剰余である. $n^2=2$ となる $n\in\mathbb{F}_p$ が存在したとする. $a^2=-2$ となる a を取る. $2\in\mathbb{F}_p^\times$ だから

$$f(x) = (x^2 + 1)^2 - 2x^2 = (x^2 + 1)^2 - n^2 x^2$$
$$= (x^2 + 1 + nx)(x^2 + 1 - nx)$$
$$= \left(\left(x + \frac{n}{2}\right)^2 - \frac{a^2}{4}\right) \left(\left(x - \frac{n}{2}\right)^2 - \frac{a^2}{4}\right).$$

よって f(x)=0 の根は $(\pm n\pm a)/2$ なので L=K(a). 従って [L:K]=2 なので $\mathrm{Gal}(L/K)\cong \mathbb{Z}/2\mathbb{Z}$. -2 が $\mathrm{mod}p$ の平方剰余の時も, $f(x)=(x^2-1)^2+2x^2$ より同様に $\mathrm{Gal}(L/K)\cong \mathbb{Z}/2\mathbb{Z}$.

以上をまとめると

$$\operatorname{Gal}(L/K)\cong egin{cases} \{1\} & (p=2\ \sharp \, au \, \mathrm{i} \ p\equiv 1\ \mathrm{mod}\ 8) \ \\ \mathbb{Z}/2\mathbb{Z} & (それ以外) \end{cases}$$

(2) f(x) は 1 の原始 8 乗根 $\zeta = e^{2\pi i/8}$ の $\mathbb Q$ 上の最小多項式だから, $L = K(\zeta)$. よって

$$\operatorname{Gal}(L/K) \cong (\mathbb{Z}/8\mathbb{Z})^{\times} = \langle 3 \rangle \times \langle 5 \rangle \cong (\mathbb{Z}/2\mathbb{Z})^{2}.$$

1983年度(昭和58年度)

問 102

f(x) は体 k 上で既約な最高次係数 1 の多項式で $f(x^2)$ が f(x) で割り切れるものとする. $f(x) \neq 1, x$ のとき、

- (i) f(x) = 0 の根は位数が奇数の 1 の冪根であることを示せ.
- (ii) $k=\mathbb{Q}$ (有理数体) のとき $f(x^4)$ はいくつの \mathbb{Q} 上既約な多項式の積に分解するか.
- (iii) $k = \mathbb{Q}$ のとき次数が 6 以下の f(x) を全て求めよ.

解答. (i) a が f(x) の根なら仮定より $f(a^2) = 0$ だから, a^2 も f(x) の根である.同様にして a^{2^n} ($n = 1, 2, \ldots$) も f(x) の根であるが,f は多項式だから, $a^{2^n} = a$ となる n が存在する.今 f(x) は k 上既 約だから $a \neq 0$ である.よって $a^{2^n-1} = 1$.

(ii) 1 の原始 n 乗根を ζ_n とおき, $\Phi_n(x) = \prod_{(n,d)=1} (x-\zeta_n^d)$ を円分多項式とする.(i) より f はある ζ_n の $\mathbb Q$ 上最小多項式で割り切れるが,仮定から奇数 n が存在して $f(x) = \Phi_n(x)$ となる.ここで

$$\Phi_{2m}(x) = \begin{cases} \Phi_m(x^2) & (2 \mid m) \\ \Phi_m(x^2)/\Phi_m(x) & (2 \nmid m) \end{cases}$$
 (*)

であるから,

$$f(x^4) = \Phi_n(x^4) = \Phi_n(x^2)\Phi_{2n}(x^2) = \Phi_n(x)\Phi_{2n}(x)\Phi_{4n}(x).$$

円分多項式は ℚ上既約だから, 答えは 3.

(iii) n=1 の時は $f(x)=\Phi_1(x)=x-1$ で、これは条件を満たす。以下 $n\geq 3$ とする。 $\varphi(x)$ を Euler 関数とする。n の素因数分解を $\prod_i p_i^{e_i}$ とすると

$$6 \ge \deg \Phi_n = \varphi(n) = \prod_j p_j^{e_j - 1} (p_j - 1)$$

だから,n の素因数としてありうるのは 3,5,7 のみである. $7\mid n$ の時は n=7 のみ. $7\nmid n$ の時は $\varphi(3^a)=3^{a-1}\cdot 2\leq 6$ となるのは $3,3^2$ の 2 つ. $\varphi(5^b)=5^{b-1}\cdot 4\leq 6$ となるのは 5 のみ.また $\varphi(3^a5^b)=3^{a-1}\cdot 2\cdot 5^{b-1}\cdot 4>6$ だから,答えは

$$\Phi_1(x) = x - 1, \quad \Phi_3(x) = x^2 + x + 1,$$

$$\Phi_5(x) = x^4 + x^3 + x^2 + x + 1,$$

$$\Phi_7(x) = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1,$$

$$\Phi_9(x) = \frac{x^9 - 1}{\Phi_1(x)\Phi_2(x)} = x^6 + x^3 + 1$$

の 5 個.

(補足) (*) は手元の教科書には書かれているものがなかったが、教科書によっては公式として扱われている 6 ので既知とした. $\Phi_n(x) = \prod_{d|n} (x^{n/d}-1)^{\mu(d)}$ (μ は Möbius 関数) を使う証明や、 $\Phi_m(x^2)$ の根に注目した証明がある.

⁶例えば Lang, S. (2002). Algebra. Graduate Texts in Mathematics, vol 211. Springer, P280

1982年度(昭和57年度)

問 104

有理数体 $\mathbb Q$ 上代数的である 2 つの複素数 α,β に対して,2 変数多項式環 $\mathbb Q[x,y]$ のイデアル I を

$$I = \{ f(x,y) \in \mathbb{Q}[x,y] ; f(\alpha,\beta) = 0 \}$$

で定義する.

- (i) I は $\mathbb{Q}[x,y]$ の極大イデアルであるか?
- (ii) p を素数とし

$$\alpha = e^{2\pi\sqrt{-1}/p}, \quad \beta = \sqrt{p}$$

とするとき,I の生成元を具体的に一組求めよ.その際生成元の個数を最小となるように取り,その最小性の証明も与えよ.

解答. (i) $I \subsetneq J$ となる $\mathbb{Q}[x,y]$ のイデアル J が存在したとする. $g(x,y) \in J \setminus I$ を取ると $a := g(\alpha,\beta) \neq 0$ だから, $g(x,y) - a \in I$. よって $a \in g(x,y) + I \subset J$ から $1 \in J$ なので $J = \mathbb{Q}[x,y]$. 従って I は $\mathbb{Q}[x,y]$ の極大イデアル.

(ii) $f(x) = x^{p-1} + \dots + x + 1, g(x) = x^2 - p$ とおく、全射な環準同型 $\varphi : \mathbb{Q}[x,y] \to \mathbb{Q}[\alpha,\beta] = \mathbb{Q}(\alpha,\beta)$ を $x \mapsto \alpha, y \mapsto \beta$ で定める、 $(f,g) \subset \operatorname{Ker} \varphi = I$ は明らか、 $h(x,y) \in \mathbb{Q}[x,y]$ は

$$\sum_{j=0}^{p-1} \sum_{k=0}^{1} a_{jk} x^{j} y^{k} + h(x,y) \quad (h \in (f,g))$$

とおける. これが I の元とすると

$$\sum_{j=0}^{p-1} \sum_{k=0}^{1} a_{jk} \alpha^{j} \beta^{k} = 0.$$

今 $[\mathbb{Q}(\alpha,\beta):\mathbb{Q}]=[\mathbb{Q}(\alpha,\beta):\mathbb{Q}(\beta)][\mathbb{Q}(\beta):\mathbb{Q}]=2(p-1)$ だから、 $\alpha^j\beta^k$ $(0\leq j\leq p-1,k=0,1)$ は \mathbb{Q} 上一次独立。よって $a_{jk}=0$ なので $h\in (f,g)$. 従って I=(f,g) である。これが単項イデアルで あったとして、生成元を h とおく、 $f\in (h),g\in (h)$ で f,g は共通因子を持たないから $fg\mid h$. よって h=fga $(a\in \mathbb{Q}[x,y])$ とおける。 $f\in I=(h)=(fga)$ だから gab=1 となる $b\in \mathbb{Q}[x,y]$ が存在するが、g は定数でないから矛盾。

1981年度(昭和56年度)

問 103

p を素数とする. p 進整数環 \mathbb{Z}_p の (p 進位相に関する) コンパクト開集合全体の族 A から有理数体 $\mathbb O$ の中への写像 μ が次の二つの条件を満たすものとする.

- (i) $U, V \in A, U \cap V = \emptyset$ ならば $\mu(U \cup V) = \mu(U) + \mu(V)$.
- (ii) $\mathbb Q$ 係数の一変数 k 次多項式 $F(t)\in\mathbb Q[t]$ $(k\geq 1)$ が存在して、任意の自然数 N および $0\leq a\leq p^N-1$ なる任意の整数 a に対して

$$\mu(a+p^N \mathbb{Z}_p) = p^{N(k-1)} F\left(\frac{a}{p^N}\right)$$

と表される.

このとき F(t+1)-F(t) は t^{k-1} の定数倍であることを示し, $\mu(\mathbb{Z}_p^{\times})$ を F の特殊値を用いて表わせ. ただし \mathbb{Z}_p^{\times} は \mathbb{Z}_p の単数群である.

解答. 任意の $N \in \mathbb{N}$ と $0 \le a \le p^N - 1$ に対し

$$p^{N(k-1)}F\left(\frac{a}{p^N}\right) = \mu(a+p^N\mathbb{Z}_p) = \sum_{j=0}^{p-1} \mu(a+jp^N+p^{N+1}\mathbb{Z}_p)$$
$$= \sum_{j=0}^{p-1} p^{(N+1)(k-1)}F\left(\frac{a+jp^N}{p^{N+1}}\right)$$

である. N と a を動かした時 a/p^N は相異なる k+1 個以上の値を取り, $\deg F=k$ であるから, $t=a/p^N$ とおいた

$$F(t) = p^{k-1} \sum_{j=0}^{p-1} F\left(\frac{t+j}{p}\right) \tag{*}$$

はtについての恒等式である。よって

$$F(t+1) - F(t) = p^{k-1} \bigg(F\bigg(\frac{t+p}{p}\bigg) - F\bigg(\frac{t}{p}\bigg) \bigg) = p^{k-1} \bigg(F\bigg(\frac{t}{p}+1\bigg) - F\bigg(\frac{t}{p}\bigg) \bigg).$$

ここで $\deg(F(t+1)-F(t))=k-1$ より $F(t+1)-F(t)=a_{k-1}t^{k-1}+\cdots+a_1t+a_0$ とおけるから、代入して t^j の係数を比べると $a_j=p^{k-1-j}a_j$. よって $a_0=\cdots=a_{k-2}=0$ なので、 $c\in\mathbb{Q}$ があって $F(t+1)-F(t)=ct^{k-1}$ と書ける.また

$$\mu(\mathbb{Z}_p^{\times}) = \sum_{i=1}^{p-1} \mu(j + p\mathbb{Z}_p) = \sum_{i=1}^{p-1} p^{k-1} F\left(\frac{j}{p}\right) = (1 - p^{k-1}) F(0)$$

である. ただし最後の等号は (*) で t=0 とした等式による.

1980年度(昭和55年度)

問 101

p を奇素数とする. $\alpha=\tan\frac{2\pi}{p}$ は有理数体 $\mathbb Q$ 上で代数的であることを示せ. さらに $\mathbb Q$ に α を添加した体 $\mathbb Q(\alpha)$ は $\mathbb Q$ のガロア拡大体であることを示し,そのガロア群 $\mathrm{Gal}(\mathbb Q(\alpha)/\mathbb Q)$ を記述せよ.

解答. $\zeta = e^{2\pi i/p}$ とおく. ζ, i は $\mathbb Q$ 上代数的だから

$$\alpha = \frac{\sin\frac{2\pi}{p}}{\cos\frac{2\pi}{n}} = \frac{\zeta - \zeta^{-1}}{i(\zeta + \zeta^{-1})} \in \mathbb{Q}(\zeta, i)$$

も ℚ 上代数的である.

 $K=\mathbb{Q}(\alpha), L=\mathbb{Q}(\zeta,i)$ とおくと K は L の部分体であり、 L/\mathbb{Q} は Galois 拡大で $[L:\mathbb{Q}]=2(p-1)$ である. 7 ここで $\sigma_j, \tau \in G:=\mathrm{Gal}(L/\mathbb{Q})$ $(j=1,2,\ldots,p-1)$ を

$$\sigma_j: \zeta \mapsto \zeta^j, i \mapsto i, \qquad \tau: \zeta \mapsto \zeta, i \mapsto -i$$

で定める. $\tau^2=\mathrm{id}_L,\sigma_j\tau=\tau\sigma_j$ だから、 \mathbb{F}_p^{\times} の生成元 k を取れば $\langle \sigma_k,\tau \rangle \cong \mathbb{Z}/(p-1)\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}$. 位数を比較してこれが G である. これは Abel 群だから,K に対応する G の部分群 H は G の正規部分群となる.従って K/\mathbb{Q} も Galois 拡大である. α を固定する G の元を求める.

$$\sigma_{j}(\alpha) - \alpha = \frac{\zeta^{j} - \zeta^{-j}}{i(\zeta^{j} + \zeta^{-j})} - \frac{\zeta - \zeta^{-1}}{i(\zeta + \zeta^{-1})} = \frac{2(\zeta^{j-1} - \zeta^{-j+1})}{i(\zeta^{j} + \zeta^{-j})(\zeta + \zeta^{-1})}$$

が 0 となることは $\zeta^{2(j-1)} = 1$ と同値. p は奇数だから j = 1.

$$\tau \sigma_j(\alpha) - \alpha = \frac{\zeta^j - \zeta^{-j}}{-i(\zeta^j + \zeta^{-j})} - \frac{\zeta - \zeta^{-1}}{i(\zeta + \zeta^{-1})} = \frac{-2(\zeta^{j+1} - \zeta^{-j-1})}{i(\zeta^j + \zeta^{-j})(\zeta + \zeta^{-1})}$$

が 0 となることは $\zeta^{2(j+1)}=1$ と同値。 よって j=p-1. 以上から $H=\{\sigma_1=\mathrm{id}_L,\tau\sigma_{p-1}\}\cong\mathbb{Z}/2\mathbb{Z}$ だから $|\mathrm{Gal}(K/\mathbb{Q})|=|G/H|=p-1$. また $\sigma_kH\in G/H$ の位数は p-1 だから $\mathrm{Gal}(K/\mathbb{Q})\cong\mathbb{Z}/(p-1)\mathbb{Z}$. \square

⁷京大数理研平成 14 年度専門問 1 と同様に示せる.

複素数体 \mathbb{C} 上の 3 変数多項式環 $\mathbb{C}[x,y,z]$ のイデアル I が 3 つの元

$$zx-y^2$$
, $zy-x^6$, z^2-yx^5

で生成されているとき,以下の間に答えよ.

- (i) I が $\mathbb{C}[x,y,z]$ の素イデアルであることを示せ.
- (ii) $\mathbb{C}[x,y,z]$ の I による商環 $R=\mathbb{C}[x,y,z]/I$ の商体 K は \mathbb{C} の純粋超越拡大体であることを示せ.
- (iii) R 上整であるような K の元の全体のなす K の部分環(すなわち K 内の R の整閉包)を R' と する. R' と R を \mathbb{C} 上のベクトル空間とみなして、商ベクトル空間 R'/R の \mathbb{C} 上の次元を求めよ.
- (iv) 環 R の自己同型であって $\mathbb C$ の各元を固定するものの全体のなす群 G を決定せよ.
- 解答. (i) 全射な環準同型 $\varphi:\mathbb{C}[x,y,z]\to\mathbb{C}[t^3,t^7,t^{11}]$ を $x\mapsto t^3,y\mapsto t^7,z\mapsto t^{11}$ で定めると $I\subset \operatorname{Ker}\varphi$ である. $\mathbb{C}[x,y,z]$ の元は f=g(x,y)+cz+h(x,y,z) ($g\in\mathbb{C}[x,y],h\in I,c\in\mathbb{C}$) と書ける. これが $\operatorname{Ker}\varphi$ の元とすると $g(t^3,t^7)+ct^{11}=0$ である. 3n+7m=11 となる非負整数 n,m は存在しないから t^{11} の係数から c=0. また京大数理研平成 20 年度専門問 3(1) と同様の議論により $g\equiv 0$ がわかるから $f\in I$. よって $\operatorname{Ker}\varphi=I$ だから,準同型定理より $\mathbb{C}[x,y,z]/I\cong\mathbb{C}[t^3,t^7,t^{11}]$. この右辺は整域なので,I は素イデアルである.
- (ii) $R_1:=\mathbb{C}[t^3,t^7,t^{11}]$ の商体を K_1 とおく、 $t^{-1}=(t^3)^2/t^7\in K_1$ だから $\mathbb{C}(t)\subset K_1$. また逆の包含は明らかだから $K_1=\mathbb{C}(t)$. よって $K\cong K_1=\mathbb{C}(t)$ だから示された.
- (iii) K_1 内の R_1 の整閉包を R_1' とする。任意の $f\in R_1'$ は 共通因子を持たない $p,q\in\mathbb{C}[t]$ を用いて f=p/q と書ける。また f はある $X^n+a_{n-1}X^{n-1}+\cdots+a_0\in R_1[X]$ の根である。もし $\deg q\geq 1$ なら,X=f を代入して整理すると $p^n=-a_{n-1}p^{n-1}q-\cdots-a_0q^n$. 右辺は q の根で 0 になるから p もそうなるが,これは矛盾。よって $q\in\mathbb{C}$ だから $R_1'\subset\mathbb{C}[t]$. また $X^3-t^3\in R_1[X]$ は monic で X=t を根に持つから $t\in R_1'$. 以上から $R_1'=\mathbb{C}[t]$ なので

$$R'/R \cong R'_1/R_1 = \mathbb{C}[t]/\mathbb{C}[t^3, t^7, t^{11}].$$

ここで $k\geq 0$ に対し $t^{9+3k},t^{10+3k},t^{11+3k}\in\mathbb{C}[t^3,t^7,t^{11}]$ であるから, $\mathbb{C}[t]/\mathbb{C}[t^3,t^7,t^{11}]$ の \mathbb{C} 上の基底は t,t^2,t^4,t^5,t^8 である.よって $\dim_{\mathbb{C}}R'/R=5$.

(iv) $G \cong \operatorname{Aut}_{\mathbb{C}} R_1$ である。 $\sigma \in \operatorname{Aut}_{\mathbb{C}} R_1$ は $\operatorname{Aut}_{\mathbb{C}} R_1'$ に一意に拡張されるから, $\sigma(t) = at + b (a, b \in \mathbb{C}, a \neq 0)$ とおける。 $(at + b)^3 = \sigma(t)^3 = \sigma(t^3) \in R_1$ より b = 0 が必要。逆にこの時 $\sigma(t^k) = (at)^k \in R_1 (k = 3, 7, 11)$ であるから, $G \cong \operatorname{Aut}_{\mathbb{C}} R_1 \cong \mathbb{C}^{\times}$ となる.

1979年度(昭和54年度)

問 101

各自然数 n に対し、変数 x の整数係数多項式 $f_n(x)$ であって

$$f_n\left(\frac{x^2+1}{x}\right) = \frac{x^{2n}+1}{x^n}$$

を満たすものが一意的に存在することを示せ、そして

- (i) 有理数係数多項式環 $\mathbb{Q}[x]$ における $f_n(x)$ の既約因子の個数を求めよ. 特に n=12,15 のときにこの個数を求めよ.
- (ii) $f_n(x)$ が $\mathbb{Q}[x]$ において既約となるような n の値を決定せよ.

解答. $f_1(x) = x$ であり、 $x^2 + x^{-2} = (x + x^{-1})^2 - 2$ より $f_2(x) = x^2 - 2$ である. また

$$x^{n+1} + x^{-(n+1)} = (x + x^{-1})(x^n + x^{-n}) - (x^{n-1} + x^{-(n-1)})$$

であるから、 $f_{n+1}(x) = xf_n(x) - f_{n-1}(x)$ により帰納的に f_n が一意に定まる.

 $t=x+x^{-1},\zeta_n=e^{2\pi i/n}$ とおく. $\Phi_n(x)=\prod_{(n,d)=1}(x-\zeta_n^d)$ を円分多項式とし, $n=2^rm\,(2\nmid m)$ とすると

$$f_n(t) = x^{-n} \frac{x^{4n} - 1}{x^{2n} - 1} = x^{-n} \frac{\prod_{d|4n} \Phi_d(x)}{\prod_{d|2n} \Phi_d(x)} = x^{-n} \prod_{\substack{d|4n \ d \nmid 2n}} \Phi_d(x) = x^{-n} \prod_{d|m} \Phi_{2^{r+2}d}(x)$$

である. また

$$\sum_{d|m} \deg \Phi_{2^{r+2}d}(x) = \sum_{d|m} \varphi(2^{r+2}d) = \sum_{d|m} 2^{r+1} \varphi(d) = 2^{r+1}m = 2n$$

だから,

$$f_n(t) = \prod_{d|m} x^{-\varphi(2^{r+2}d)/2} \Phi_{2^{r+2}d}(x).$$

ここで $n\in\mathbb{N}$ に対し、 $x^{-\varphi(4n)/2}\Phi_{4n}(x)$ が t の多項式であり、それは \mathbb{Q} 上既約であることを示す。上で見たように $\deg\Phi_{4n}(x)=\varphi(4n)$ は偶数だから 2k とおける。また (4n,d)=1 なら (4n,4n-d)=1 だから、 ζ_{4n}^d が $\Phi_{4n}(x)$ の根なら $\zeta_{4n}^{4n-d}=\zeta_{4n}^{-d}$ も $\Phi_{4n}(x)$ の根である。よって $\Phi_{4n}(x)$ の x^j, x^{2k-j} $(j=0,1,\ldots,k)$ の係数は等しく、それらを c_j とおくと

$$x^{-k}\Phi_{4n}(x) = x^{-k}(x^{2k} + c_1x^{2k-1} + \dots + c_{k-1}x^{k+1} + c_kx^k + c_{k-1}x^{k-1} + \dots + c_1x + 1)$$

$$= (x^k + x^{-k}) + \sum_{j=1}^{k-1} c_j(x^{k-j} + x^{-k+j}) + c_k = f_k(t) + \sum_{j=1}^{k-1} c_j f_{k-j}(t) + c_k$$

は t の多項式である。また $x^{-k}\Phi_{4n}(x)=g(t)h(t)$ と書けたとすると $\Phi_{4n}(x)=x^kg(t)h(t)$ であるが、右 辺の次数から $\deg g+\deg h=k$ なので $\Phi_{4n}(x)=x^{\deg g}g(t)\cdot x^{\deg h}h(t)$. ところが $\Phi_{4n}(x)$ は $\mathbb Q$ 上既約 なので $x^{\deg g}g(t), x^{\deg h}h(t)\in \mathbb Q[x]$ のどちらかは定数.よって $x^{-k}\Phi_{4n}(x)$ は $\mathbb Q$ 上既約である.

(i) 上の議論から,m の約数の個数,すなわち n の奇数の約数の個数である. $n=12=2^2\cdot 3$ の時は $2\cdot n=15=3\cdot 5$ の時は $2^2=4$.

(ii) 奇数の約数を持たない
$$n$$
 だから, $n = 2^k (k = 1, 2, ...)$.

(補足) $x = e^{i\theta}$ とおくと $f_n(2\cos\theta) = 2\cos n\theta$ だから、第一種 Chebyshev 多項式 $T_n(x)$ を用いて $f_n(x) = 2T_n(x/2)$ と書ける。Chebyshev 多項式の既約因子については色々研究があるらしい。8

⁸例えば https://www.fq.math.ca/Papers1/52-4/DJGrubb4282014.pdf

 \mathbb{Z} を有理整数環, $i=\sqrt{-1}$ とし、ガウス整数環 $R=\mathbb{Z}[i]$ の元を複素平面内の格子点で表す。R の各元 α に対して下図の \bigcirc 印で表される 13 個の R の元の積を $P(\alpha)$ とおく。 α が R の元全体を動くとき $P(\alpha)$ の R における最大公約数を求めよ。

解答. 求める最大公約数を d とおく. また $x+iy \in R$ に対し $N(x+iy)=x^2+y^2$ とおく.

$$P(2i) = (-13)(-8)(-5)(-10)(-2)i \cdot 2i \cdot 3i = 2^{6} \cdot 3 \cdot 5^{2} \cdot 13i,$$

$$P(5i) = (-34)(-29)(-26)(-37)(-17)4i \cdot 5i \cdot 6i = 2^{5} \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2} \cdot 29 \cdot 37i$$

であり、17,29,37 の(R における)因数は P(2i) を割らないから,d は $2^5 \cdot 3 \cdot 5 \cdot 13$ を割り切る. $\alpha+j+ik$ $(j,k\in\{0,\pm1\})$ の 9 点には,実部と虚部がともに 3 の倍数の点があるから $P(\alpha)$ は 3 で割り切れる.

 $R_1=(1+2i)R$ とおく、 $P(\alpha)\in (1+2i)R$ を示す。それには R/R_1 の元として $P(\alpha)$ が 0 であることを示せば良い。 R/R_1 の代表元は 0,1,1+i,2,2+i だから, α がこの 5 点の時を調べれば十分。 $\alpha=0$ の時は明らか。 $\alpha=1$ の時は $\alpha+1-i=-i(1+2i)\in R_1$. $\alpha=1+i$ の時は $\alpha+i=1+2i\in R_1$. $\alpha=2$ の時は $\alpha-i=-i(1+2i)\in R_1$. $\alpha=2+i$ の時は $\alpha-1+i=1+2i\in R_1$. よって示された。同様の議論で $P(\alpha)\in (1-2i)R$ がわかるから, $P(\alpha)$ は (1+2i)(1-2i)=5 で割り切れる.

同様に R/(2+3i)R の代表元 12 個について調べれば, $P(\alpha) \in (2+3i)R$ がわかる. (\mathbb{C} 上の 2+3i と 3-2i が張る格子上に,13 個の点のうち少なくとも一つが必ず存在することを見れば良い.以下の 1+i で割り切れる回数を調べるのも同様.) よって $P(\alpha)$ は (2+3i)(2-3i)=13 で割り切れる.

 $2=-i(1+i)^2$ であるから, $P(\alpha)$ が 1+i で最低何回割り切れるか調べる. $\alpha=x+iy\in R$ が $(1+i)^2=-2i$ で割り切れることと,x,y が共に偶数であることは同値であることに注意する.

- x, y が共に奇数の時: $\alpha \pm 1 \pm i$ は 2 回割り切れ, $\alpha, \alpha \pm 2$ は 1 回割り切れるから 11.
- x が奇数で y が偶数の時: $\alpha \pm 1, \alpha \pm 3$ は 2 回割り切れ, $\alpha \pm i$ は 1 回割り切れるから 10.
- x, y が共に偶数の時 : $\alpha, \alpha \pm 2$ は 2 回割り切れ, $\alpha \pm 1 \pm i$ は 1 回割り切れるから 10.
- x が偶数で y が奇数の時: $\alpha\pm 1, \alpha\pm 3$ は 1 回割り切れる。 $\alpha=2n+(2m+1)i$ とおくと $\alpha-i=2(n+mi), \alpha+i=2(n+(m+1)i)$. n-m が偶数なら $\alpha-i=2(m(1+i)+(n-m))$ は 1+i で 3 回割り切れ, $\alpha+i$ は 2 回割り切れる。 n-m が奇数の時も同様だから 9.

以上から $P(\alpha)$ は $(1+i)^9$ で割り切れる. $\alpha=2+i$ の時

$$\alpha + i = 2(1+i) = -i(1+i)^3$$
, $\alpha - i = 2 = -i(1+i)^2$, $\alpha + 1 = 3 + i = (1+i)(2-i)$, $\alpha - 1 = 1 + i$, $\alpha + 3 = 5 + i = (1+i)(3-2i)$, $\alpha - 3 = -1 + i = i(1+i)$

であり, 2-i, 3-2i は R の既約元だから, P(2+i) は 1+i で丁度 9 回割り切れる. 以上から

$$d = (1+i)^9 \cdot 3 \cdot 5 \cdot 13 = 2^4 \cdot 3 \cdot 5 \cdot 13 \cdot (1+i).$$

⁹P(4), P(5), P(6), P(2i), P(3i), P(4i), P(5i) あたりを計算すれば予想がつく.

1978年度(昭和53年度)

問 101

A を有理数を成分とする m 行 n 列の行列とする. 整数を成分とする n 次元列ベクトル全体のなす加群を \mathbb{Z}^n とする. \mathbb{Z}^n の部分加群 L_A を

$$L_A = \{ v \in \mathbb{Z}^n ; Av \in \mathbb{Z}^n \}$$

によって定める. このとき次の問に答えよ.

(i) 商加群 \mathbb{Z}^n/L_A は有限群であることを示せ.

(ii)

$$A = \begin{pmatrix} \frac{1}{12} & \frac{1}{6} & \frac{1}{4} & \frac{1}{3} \\ \frac{1}{6} & \frac{7}{6} & \frac{1}{2} & \frac{3}{2} \\ \frac{1}{4} & \frac{4}{3} & \frac{3}{4} & \frac{11}{6} \end{pmatrix}$$

のとき、 \mathbb{Z}^4/L_A を巡回群の直積に分解せよ.

解答. (i) A の成分の分母たちの最小公倍数を ℓ とすると, $(\ell \mathbb{Z})^n \subset L_A$ であるから

$$|\mathbb{Z}^n/L_A| \le |\mathbb{Z}^n/(\ell\mathbb{Z})^n| = \ell^n < \infty.$$

(ii) A に基本変形を施すと

$$A \to \begin{pmatrix} \frac{1}{12} & \frac{1}{6} & \frac{1}{4} & \frac{1}{3} \\ 0 & \frac{5}{6} & 0 & \frac{5}{6} \\ 0 & \frac{5}{6} & 0 & \frac{5}{6} \end{pmatrix} \to \begin{pmatrix} \frac{1}{12} & \frac{1}{6} & \frac{1}{4} & \frac{1}{3} \\ 0 & \frac{5}{6} & 0 & \frac{5}{6} \\ 0 & 0 & 0 & 0 \end{pmatrix} \to \begin{pmatrix} \frac{1}{12} & 0 & 0 & 0 \\ 0 & \frac{5}{6} & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

となるから,

$$\mathbb{Z}^4/L_A \cong \mathbb{Z}^4/(12\mathbb{Z} \times 6\mathbb{Z} \times \mathbb{Z}^2) \cong \mathbb{Z}/12\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}.$$

1977年度(昭和52年度)

問 101

F を可換体, $a \in F$ とし, $b=1+a^2$ は F の中に平方根を持たないとする. x に関する 4 次方程式 $x^4-2bx^2+a^2b=0$ の一根を F に付け加えて得られる体を K とするとき,

- (i) K は F 上のガロア拡大であることを証明せよ.
- (ii) K/F のガロア群を求めよ.
- (iii) $K \supsetneq F' \supsetneq F$ となる体 F' を定めよ.

解答. (i) $f(x) = x^4 - 2bx^2 + a^2b$ とおくと

$$f(x) = x^4 - 2bx^2 + (b-1)b = (x^2 - b)^2 - b = (x^2 - b + \sqrt{b})(x^2 - b - \sqrt{b})$$

だから、f の根は $\pm \alpha, \pm \beta$ である。ただし $\alpha = \sqrt{b+\sqrt{b}}, \beta = \sqrt{b-\sqrt{b}}$. $\alpha \in K$ とすると $\sqrt{b} = \alpha^2 - b \in F$ だから $\beta = a\sqrt{b}/\alpha \in F$. よって K/F は正規。また仮定より $b \neq 0$ だから $\pm \alpha, \pm \beta$ は相異なる。よって K/F は分離的なので Galois 拡大である。他の場合も同様。

(ii) 仮定から $b\equiv 0 \bmod p, b\not\equiv 0 \bmod p^2$ となる素元 $p\in F$ が存在する. この時 $a\not\equiv 0 \bmod p$ だから, $a^2b\not\equiv 0 \bmod p^2$ である. F は UFD だから,Eisenstein の既約判定法により f は F 上既約である. これより $\#\mathrm{Gal}(K/F)=\deg f=4$ であり, $\sigma\in\mathrm{Gal}(K/F)$ であって $\sigma(\alpha)=-\beta$ となるものが存在する.この時

$$\sigma(\sqrt{b}) = \sigma(\alpha^2 - b) = \sigma(\alpha)^2 - b = \beta^2 - b = -\sqrt{b}$$

より

$$\sigma(-\beta) = \sigma(-a\sqrt{b}/\alpha) = -a(-\sqrt{b})/(-\beta) = -\alpha,$$

$$\sigma(-\alpha) = \beta, \quad \sigma(\beta) = \alpha$$

なので σ の位数は 4. よって $Gal(K/F) = \langle \sigma \rangle \cong \mathbb{Z}/4\mathbb{Z}$.

(iii) $\operatorname{Gal}(K/F)$ の部分群は $\langle \sigma^2 \rangle \cong \mathbb{Z}/2\mathbb{Z}$ のみだから,F' はただ一つで [F':F]=2 である.一方仮定から K の部分体 $F(\sqrt{b})$ は F の 2 次拡大なので, $F'=F(\sqrt{b})$.

次の表の空白部分を補って、それを指標表とする有限群 G が存在するかどうかを調べ、存在すればそれを生成元と基本関係で表わせ、ただし C_n $(1 \le n \le 5)$ は G の全ての相異なる共役類で C_1 は単位元の類、 χ_n $(1 \le n \le 5)$ は G の既約複素指標とし、 $i = \sqrt{-1}$ である.

	C_1	C_2	C_3	C_4	C_5
χ_1					
χ_1 χ_2 χ_3 χ_4 χ_5	1	i			
χ_3					
χ_4					
χ_5					

解答.表の上から i 行目,左から j 列目の数字を a_{ij} とする.(すなわち $a_{21}=1,a_{22}=i.$) χ_1 は単位指標として良いから $a_{1j}=1$.また C_2 の代表元を x とすると, $a_{21}=1$ より χ_2 は 1 次表現であり, $\chi_2(x)=i$ より $x^4=1$.よって x の位数は 4 なので $x^2\in C_3, x^3\in C_4$ として良い.この時 $a_{2j}=\chi_2(x^j)=i^j$ (j=2,3,4) である. $|C_2|=|C_3|=|C_4|=d_1, |C_5|=d_2$ とおく. $(\chi_1,\chi_2)=0$ より $1-d_1+a_{25}d_2=0$.これと $|a_{25}|=1,d_1,d_2\in\mathbb{N}$ より $a_{25}=\pm 1$.もし $a_{25}=-1$ なら $d_1+d_2=1$ となって不適.よって $a_{25}=1,d_2=d_1-1$. χ_2 は 1 次表現ゆえ $\overline{\chi_2},\chi_2^2$ も G の 1 次表現だから,それを χ_3,χ_4 とする. $d=d_1,a=a_{51}$ とおく.指標の第 2 直交関係から $a_{52}=a_{53}=a_{54}=0,a_{55}=-4/a$ である.また $\mathbb{N}\ni\frac{|G|}{|C_5|}=4+\frac{4}{d-1}$ より d は 2,3,5 のいずれかであるが,|G| を 2 通りに数えると $4d=4+a^2$ となるから d=3 は不適. $y\in C_5$ を取り, $H=\langle x\rangle$, $K=\langle y\rangle$ とおく.G は x,y で生成される.d=2 なら |G|=8 より [G:H]=2 だから $G\triangleright H$.よって $y^{-1}xy\in C_2\cap H=\{x\}$ なので G は Abel 群となるが,指標表のサイズは 5<|G| なので矛盾.従って d=5 なので a=4.以上から G の指標表は以下となる.ただし C_i の下の数字は $|C_i|$ を表す.

	C_1	C_2	C_3	C_4 5	C_5
	1	5	5	5	4
χ_1	1	1	1	$ \begin{array}{c} 1 \\ -i \\ i \\ -1 \\ 0 \end{array} $	1
χ_2	1	i	-1	-i	1
χ_3	1	-i	-1	i	1
χ_4	1	-1	1	-1	1
χ_5	4	0	0	0	-1

x,y の関係式を求める。 y^2 の位数は 5 だが, C_2,C_3,C_4 の元の位数はそれぞれ 4,2,4 なので $y^2 \in C_5$. また G=HK だから $x^{-j}yx^j=y^2$ となる j が存在する。j=0 は明らかに不適。j=1 なら $x^{-1}yx=y^2$. j=3 なら x^{-1} を改めて x とおけば j=1 の場合に帰着される。j=2 なら $x^2yx^2=y^2$ である。ここで G の Sylow 5-部分群の個数を n とすると,Sylow の定理より $n\equiv 1 \bmod 5, n\mid 20$ だから n=1. よって $G\rhd K$ なので $\sigma:H\to \operatorname{Aut}(K)$ が存在して $G=K\rtimes_\sigma H$ となる。 $\sigma:x\mapsto (y\mapsto y^m)$ とすると $x^2yx^2=y^{m^2}x^4=y^{m^2}$ となるから $m^2\equiv 2 \bmod 5$. これは矛盾.以上から

$$G = \langle x, y \, | \, x^4 = y^5 = 1, x^{-1}yx = y^2 \rangle$$
.

(補足) $G \cong \mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$ は Frobenius 群というものらしい.

https://people.maths.bris.ac.uk/~matyd/GroupNames/1/F5.html

1976年度 (昭和51年度)

問 101

共役類の個数が3であるような有限群を全て求めよ.

解答. 実施年度不明2問2と同じ記号を用いると

$$\frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{N} = 1$$

- である. $n_1 \leq n_2 < N$ より $1 \leq \frac{1}{n_1} + \frac{1}{n_1} + \frac{1}{n_1} = \frac{3}{n_1}$ なので $n_1 = 2,3$.

 $n_1 = 3$ の時: $\frac{2}{3} = \frac{1}{n_2} + \frac{1}{N} \leq \frac{1}{3} + \frac{1}{3} = \frac{2}{3}$ だから $n_2 = N = 3$. よって $G \cong \mathbb{Z}/3\mathbb{Z}$.

 $n_1 = 2$ の時: $\frac{1}{n_2} + \frac{1}{N} = \frac{1}{2}$ より $(n_2 2)(N 2) = 4$ なので $(n_2, N) = (3, 6), (4, 4)$. 後者は G が Abel 群なので、共役類は 4 個となって不適. 前者の時、同様に G は非可換群なので $G \cong S_3$.

以上から $\mathbb{Z}/3\mathbb{Z}$, S_3 の 2 個.

- m を平方因子を含まない負の整数とし、 $K = \mathbb{Q}(\sqrt{m}), R = \mathbb{Z}[\sqrt{m}]$ とする.
- (i) $K \otimes_{\mathbb{Q}} K$ において、単位元を 2 個の冪等元 $(\neq 0)$ の和として表わせ.
- (ii) 環 $R \otimes_{\mathbb{Z}} R$ の可逆元のつくる乗法群を求めよ.

解答. $(i) \otimes_{\mathbb{Q}}$ を \otimes と書く. $x = 1 \otimes 1, y = \sqrt{m} \otimes \sqrt{m}$ とおく. $ax + by \in K \otimes K$ が零でない冪等元とすると,

$$ax + by = (ax + by)^2 = (a^2 + b^2m^2)x + 2aby$$

より $a^2 + b^2 m^2 = a$, 2ab = b なので $(a,b) = (0,0), (1,0), (\frac{1}{2}, \pm \frac{1}{2m})$. よって

$$u = \frac{1}{2}x + \frac{1}{2m}y, \quad v = \frac{1}{2}x - \frac{1}{2m}y$$

とおけば、これらは零でない冪等元であり、 $u+v=1\otimes 1$ である.

 $(ii) \otimes_{\mathbb{Z}}$ を \otimes と書く、 $x \otimes y \in R^{\times}$ の逆元が $z \otimes w$ であるとすると $1 \otimes 1 = (x \otimes y)(z \otimes w) = xz \otimes yw$ だから $(xz,yw) = \pm (1,1)$. よって $x,y \in R^{\times}$ が必要.逆にこの時 $x \otimes y \in (R \otimes R)^{\times}$ である.従って $(R \otimes R)^{\times} = R^{\times} \otimes R^{\times}$ であるから, R^{\times} を求める. K/\mathbb{Q} のノルム $N(a+b\sqrt{m})$ は $N(a+b\sqrt{m}) = a^2-b^2m$ である. $a+b\sqrt{m} \in R^{\times}$ の逆元を $c+d\sqrt{m}$ とすると

$$1 = N(1) = N((a + b\sqrt{m})(c + d\sqrt{m}))$$

= $N(a + b\sqrt{m})N(c + d\sqrt{m}) = (a^2 - b^2m)(c^2 - d^2m)$

だから, m < 0 とから $a^2 - b^2 m = 1$ が必要.

• m < -1 の時: $(a,b) = (\pm 1,0)$ であり、実際 $\pm 1 \in R^{\times}$ である. よって

$$(R \otimes R)^{\times} = \{(\pm 1) \otimes (\pm 1)\} = \{\pm 1 \otimes 1\} \cong \mathbb{Z}/2\mathbb{Z}.$$

• m = -1 の時: $(a, b) = (\pm 1, 0), (0, \pm 1)$ であり、実際 $\pm 1, \pm \sqrt{-1} \in \mathbb{R}^{\times}$ である. よって

$$(R \otimes R)^{\times} = \{ \pm 1 \otimes 1, \pm 1 \otimes \sqrt{-1}, \pm \sqrt{-1} \otimes 1, \pm \sqrt{-1} \otimes \sqrt{-1} \}.$$

ここで $a=1\otimes \sqrt{-1}, b=\sqrt{-1}\otimes \sqrt{-1}$ とおけば $a^4=b^2=1\otimes 1$ であり,

$$a^{2} = -1 \otimes 1, \quad a^{3} = -1 \otimes \sqrt{-1},$$

 $ab = -\sqrt{-1} \otimes 1, \quad a^{2}b = -\sqrt{-1} \otimes \sqrt{-1}, \quad a^{3}b = \sqrt{-1} \otimes 1$

だから

$$(R \otimes R)^{\times} = \{1 \otimes 1, a^2, a, a^3, a^3b, ab, b, a^2b\}$$

$$\cong \langle a, b | a^4 = b^2 = 1, ab = ba \rangle \cong \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}.$$

p を素数, \mathbb{Z}_p を p 進整数環とする. 写像 $f:\mathbb{Z}_p \to \mathbb{Z}_p$ を

$$f(x) = x^p + p \sum_{n=0}^{\infty} a_n x^n$$

によって定義する. ただし, $\{a_n\}_{n=0}^\infty$ は \mathbb{Z}_p における数列で $\lim_{n\to\infty}a_n=0$ とする. このとき各 $b\in\mathbb{Z}_p$ に対して

$$\begin{cases} x \equiv b \pmod{p} \\ f(x) = x \end{cases}$$

を満たす $x \in \mathbb{Z}_p$ がただ一つ存在することを示せ.

解答. $b \in \{0,1,\ldots,p-1\}$ として良い. $B = \{x \in \mathbb{Z}_p \; ; \; |x-b|_p \leq p^{-1}\}$ とおく. f は B から B への写像である. 実際, 任意の $x \in B$ を x = b + pu $(u \in \mathbb{Z}_p^\times)$ と書くと $x^p - b = (b + p^p u^p) - b = p^p u^p$ だから

$$|f(x) - b|_p = \left| p^p u^p + p \sum_{n \ge 0} a_n x^n \right|_p \le \max \left\{ p^{-p} |u^p|_p, \max_{n \ge 0} p^{-1} |a_n|_p |x^n|_p \right\} \le p^{-1}$$

である. \mathbb{Z}_p は $|\cdot|_p$ について完備だから, $f|_B: B \to B$ が縮小写像であることが示せれば,縮小写像の原理により f は B において不動点を一意に持つ.これを示そう.任意に $x,y \in \mathbb{Z}_p$ を取る. $x \equiv y \bmod p^k$ ならば, $x^n \equiv y^n \bmod p^k$ だから $|x^n - y^n|_p \le |x - y|_p$ である.特に $n = p, x \not\equiv y \bmod p^{k+1}$ の時は $x - y = p^k u \ (u \in \mathbb{Z}_p^x)$ とおくと

$$x^{p} = (y + p^{k}u)^{p} = y^{p} + \sum_{j=1}^{p} {p \choose j} y^{p-j} (p^{k}u)^{j} \equiv y^{p} \mod p^{k+1}$$

だから $|x^p-y^p|_p \le p^{-(k+1)} = p^{-1}|x-y|_p$ である. これらより任意の $x,y \in B$ に対し

$$|f(x) - f(y)|_p = \left| (x^p - y^p) + p \sum_{n \ge 0} a_n (x^n - y^n) \right|_p$$

$$\le \max \left\{ |x^p - y^p|_p, \max_{n \ge 0} p^{-1} |a_n|_p |x^n - y^n|_p \right\}$$

$$\le \max \left\{ p^{-1} |x - y|_p, \max_{n \ge 0} p^{-1} |a_n|_p |x - y|_p \right\}$$

$$= p^{-1} |x - y|_p$$

なので示された.