

1. 머신러닝

1959년, 아서 사무엘은 기계 학습을 "기계가 일일이 코드로 명시하지 않은 동작을 데이터로부터 학습하여 실행할 수 있도록 하는 알고리즘을 개발하는 연구 분야"라고 정의하였다. 기계 학습의 핵심은 표현 (representation)과 일반화(generalization)에 있다. 표현이란 데이터의 평가이며, 일반화란 아직 알 수 없는 데이터에 대한 처리이다.

2. 지도학습과 비지도학습

	지도학습 (Supervised Learning)	비지도학급 (Unsupervised Learning)	강화학급 (Reinforcement Learning)
훈련 방식	정답이 있는 데이터로 훈련	정답이 없는 데이터로 훈련	자신의 행동에 대한 보상을 받으며 목표를 달성하는 방향으로 학습
주요 알고리즘	분류, 회귀	군집화, 차원축소 로보틱스, 시듈	
예시	 강아지와 고양이 사진 분류하기(분류) 집 값 예측하기(회귀)	• 라벨이 없는 데이터를 n개의 집단으로 구분(군집화) • 자율주행 차 • 변수의 여러가지 특징을 보다 작은 수로 축소(차원 축소) • 알파고 등	

2. 지도학습과 비지도학습

2. 지도학습과 비지도학습

2. 지도학습과 비지도학습 – 지도학습의 경우

- 본적이 없는(학급데이터에 없었던) test data의 output을 예측(prediction)
- 어떤 input이 output에 <u>어떻게 영향을 미쳤는지 이해하고 분석(inference)</u>
- 모델을 평가하고, 다시 훈련하는 반복과정을 거쳐 성능을 향상시킴

지도학습 알고리즘

	알고리즘 병	분류(classification)	到刊(regression)
1	나이브 베이즈 분류(Naïve Bayes Classification)	О	X
2	로지스틱 회귀(Logistic Regression)	О	X
3	서포트 벡터 머신(SVM)	О	0
4	K-최근접 이웃(K-nearest neighbors)	0	0
5	결정 트리(Decision Tree)	0	0
6	선형 회귀(Linear Regression)	X	0
7	Lidge, Lasso	X	0
8	ElasticNet	X	0

나이브 베이즈 분류기

나이브 베이즈 분류기

다항 나이브 베이즈: 자세히 살펴보기 Part 4

친애하는

친구에게

p(친애하는 | N) = 0.47

p(친구에게 | N) = 0.29

p(점심 | N) = 0.18

p(돈 N) = 0.06

다시 복습해봅시다. 우리의 목표는 '친애하는 친구에게'라는 메시지가 정상 메시지인지 스팸인지 여부를 구별하는 것입니다.

8개의 정상 메시지와 4개의 스팸 메시지가 있는 훈련 데이터를 사용했습니다.

그다음 메시지에 담긴 각 단어의 히스토그램을 만들었습니다.

그리고 히스토그램을

사용해 확률을

계산했습니다.

p(친애하는 | S) = 0,29

p(친구에게 | S) = 0.14

p(점심 | S) = 0.00

p(돈|S)=0.57

그다음 메시지가 정상 혹은 스팸일 조건에 따라 사전 확률과 각 단어가 나올 확률로 '친애하는 친구에게'라는 메시지의 점수를 계산합니다.

이제 '친애하는 친구에게'라는 메시지를 분류할 수 있게 되었습니다. 왜냐하면 정상 메시지일 확률, 즉 점수는 0.09로 해당 메시지가 스팸일 점수(0.01)보다 크기 때문에 우리는 이 메시지를 정상 메시지로 구분합니다.

p(N) = -

p(S) = -

먼저 정상 혹은 스팸일 수 있는 메시지에 담긴 내용을 보지 않고 추측한 확률인 **사전 확률**을

계산했습니다.

전체 메시지 수

#스팸 메시지 수

전체 메시지 수

 $p(N) \times p($ 친애하는 $|N|) \times p($ 친구에게 $|N|) = 0.67 \times 0.47 \times 0.29 = 0.09$

 $p(S) \times p(\Delta m \Rightarrow b \mid S) \times p(\Delta m \Rightarrow b \mid S) = 0.33 \times 0.29 \times 0.14 = 0.01$

친애하는 친구에게

BAM!!!

서포트 벡터(Support Vector)머신

데이터의 특징들(x, features) 중 가능한 한 먼 결정 경계를 찾아내는 것 마진(결정 경계에 가장 가까운 점과 결정 경계 사이의 거리) 의 최대화

- 최적의 초평면 찾기 -> 초평면에 가장 가까운 데이터를 '서포트 벡터'로 식별 -> 서포트벡터를 기준으로 결정경계 구축
- 장점: 일반화 능력(다양한 케이스에 적용 가능)과 높은 성능을 보여줌
- 단점: 파라미터를 어떻게 세팅하느냐에 따라 결과의 변동성이 큼, 모델 해석이 어려움
- 주의할 점: 소프트마진(데이터를 완전히 분류하기 어려울 때 일부 데이터가 마진 안에 포함되는 경우) 가 발생할 수 있음

K-최근접 이웃

주변 K개 데이터 포인트와의 거리를 계산하여, 다수결로 더 가까운 데이터로 분류/회귀 주어진 데이터에 대해 주변 k개 데이터와의 유클리드 거리를 계산

- 장점: 구현이 쉽고, 데이터 포인트가 비교적 섞여 있는 경우에도 안정적으로 분류 가능
- 단점 : 리소스의 소모가 크고 과적합에 취약

결정 트리

Decision tree trained on all the iris features

조건 분기에 따라 학습 데이터를 나누어 분류

불순도를 최소화하도록 데이터를 나누며 분류 수행

- 장점: 직관적인 형태로 모델 이해 가능, 스케일링 불필요, 비선형 데이터에 대해 강건
- 단점: 과적합 가능성이 높음, 데이터 변화에 민감
- 분류는 지니 계수를 기준으로, 회귀의 경우 MSE를 기준으로 노드를 나누어 분류/회귀 모두 사용
- 불순도 지표 : 지니 계수

로지스틱 회귀

*머신러닝 도감, 아키바 신야

▲ 그림 2-13 로지스틱 회귀

- HOW ? : y=ax+b의 그래프를 만든 뒤, 결과값인 y에 시그모이드 함수를 적용하여 확률값(0~1사이)로 변환한다.
- 특정한 임계값(보통 0.5)를 기준으로, 클래스 0에 속할지 1에 속할지를 계산하게 한다.
- *이를 응용하여 다중 분류를 수행하는 경우, 각 클래스별로 y=ax+b의 값을 소프트맥스 함수로 감싸 나온 확률 중 가장 높은 값을 반환하게 한다.
- 장점: 결과값을 해석하기 쉬우며, 구현과 학습이 간단함. 임계값을 조정하여 결과를 수정할 수 있음
- 단점: 비선형 관계인 데이터에는 잘 작동하지 않고, 이상치에 민감함. 고차원 데이터에서는 성능에 한계가 있음

2. 지도학습과 비지도학습 – 일반적인 머신 러닝의 순서

- 데이터 불러오기
- 2 데이터 확인하기(통계적 특징, 데이터의 크기 등)
- **3** 데이터 전처리(결측치 및 이상값 정리, 스케일링 등)
- 4 train_test_split 및 x, y 데이터의 정의
- 5 머신러닝 모델 정의 및 훈련, 검증

2. 지도학습과 비지도학습 – 비지도학습의 경우

- 데이터의 특징을 활용하여 군집화/차원축소
- 분석가는 군집화/차원축소의 결과물을 활용하여 데이터를 분석하거나, 지도학습을 수행
- 목표와 일치하지 않는 군집화/차원축소인 경우, 다른 모델을 쓰거나 재군집화/차원축소

선형회귀(Linear Regression)

SSE	$SSE = \sum_{i=1}^{n} (x_i - \overline{x})^2$
MSE	$MSE = rac{1}{N} \sum_{i=1}^{N} \left(y_i - \hat{y}_i ight)^2$
RMSE	$RMSE = \sqrt{\frac{1}{N} \sum_{j=1}^{N} (y_j - \check{y}_j)^2}$
MAE	$MAE = \frac{\sum_{i=1}^{n} y_{pred,i} - y_i }{n}$

- HOW ? : 데이터(x)를 기반으로 y=ax+b 형태의 직선을 만들어 예측을 수행한다.
- 장점: 결과값을 해석하기 쉬우며, 구현과 학습이 간단함. 데이터의 수가 적을 때에도 잘 작동한다.
- 단점: 비선형 관계인 데이터에는 잘 작동하지 않고, 이상치에 민감함. 고차원 데이터에서는 성능에 한계가 있으며
- x 사이에 관계가 있을 때에는 '다중 공선성' 문제가 발생할 수 있다.

참고 : https://shorturl.at/prNPY

정규화

(a) 2nd-degree polynomial

- (b) 8th-degree polynomial
- (c) Another 8th-degree polynomial

Figure a:
$$\hat{y} = 0.04 + 0.04x + 0.9x^2$$

Figure b:
$$\hat{y} = -0.01 + 0.01x + 0.8x^2 + 0.5x^3 - 0.1x^4 - 0.1x^5 + 0.3x^6 - 0.3x^7 + 0.2x^8$$

Figure c:
$$\hat{y} = -0.01 + 0.57x + 2.67x^2 - 4.08x^3 - 12.25x^4 + 7.41x^5 + 24.87x^6 - 3.79x^7 - 14.38x^8$$

(a)
$$\#params = 3$$

$$MSE = 0.006$$

$$L2 \text{ norm} = 0.90$$

$$L1 \text{ norm} = 0.98$$

(b)
$$\#params = 9$$

$$MSE = 0.035$$

$$L2 \text{ norm} = 1.06$$

$$L1 \text{ norm} = 2.32$$

(c)
$$\#params = 9$$

$$MSE = 0$$

$$L2 \text{ norm} = 32.69$$

$$L1 \text{ norm} = 70.03$$

라쏘(Lasso) - L1 정규화

정규화(Normalization)란 데이터의 수치를 일정한 범위에 맞추어 변환해 주는 것.

 $L_{lasso}(\hat{\beta}) = \sum_{i=1}^{n} (y_i - x_i^T \hat{\beta})^2 + \lambda \sum_{j=1}^{m} |\hat{\beta}_j|$

람다가 크면 더 많은 계수를 0으로 만듦 예측보다는 희소성에 집중

람다가 0이면 일반 선형회귀와 동일함

- HOW ?: 선형회귀 모델에 L1 정규화 항을 추가하여, 불필요한 a를 0으로 만들어 더 나은 추론을 하게 한다.
- 장점: 특성(feature)이 많은 데이터, 해석이 필요한 모델에 유용하게 사용 가능함
- 단점: 비선형 모델에서 약함, 정보의 손실이 발생함(특성을 지움), 적절한 정규화 강도를 선택하기 어려울 수 있음

릿지(Lidge) - L2 정규화

$$\beta = [2.0, -1.5, 0.0, 4.0]$$

$$eta_1^2 + eta_2^2 + eta_3^2 + eta_4^2 = 2.0^2 + (-1.5)^2 + 0 + 4.0^2 = 4 + 2.25 + 0 + 16 = 22.25$$

$$SSE_{L_2} = \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 + \lambda \sum_{j=1}^{P} \beta_j^2$$

- HOW ?: 선형 회귀 모델에 L2 정규화 항을 추가하여, 가중치 a의 크기를 작게(0에 가깝게) 유지하게 하여 더 나은 추론을 하게 한다.
- 장점: 모든 특성(feature)를 유지하며 과적합을 줄일 수 있고, 해가 항상 존재하고, 고차원 데이터에서 잘 작동함
- 단점: 중요한 변수와 덜 중요한 변수를 모두 남기기 때문에 해석력이 떨어질 수 있고, L1보다는 복잡한 모델임

엘라스틱 넷(Elastic Net)

라쏘(L1)

릿지(L2)

(1 - a) 와 a를 더하면 = 1입니다. L1과 L2의 비중 조절을 위해 a를 사용한 것

$$\frac{\sum_{i=1}^{n} (y_i - x_i^J \hat{\beta})^2}{2n} + \lambda \left(\frac{1 - \alpha}{2} \sum_{j=1}^{m} \hat{\beta}_j^2 + \alpha \sum_{j=1}^{m} |\hat{\beta}_j| \right)$$
 깔끔한 미분을 위해 ½를 붙여주는 것(수학적 관례)

 $L = rac{1}{2}(y - \hat{y})^2 \Rightarrow rac{dL}{d\hat{y}} = \hat{y} - y$

- HOW ? : 선형 회귀 모델에 L1, L2 정규화 항을 동시에 추가하여, 불필요한 가중치 a는 0으로 만들고,
- 나머지 가중치의 크기는 작게 유지하여 희소성과 안정성을 동시에 상승시킨다.
- 장점: 특성을 선택하고(L1), 안정화 하는(L2) 과정을 동시에 적용 가능함. 다중공선성이 높고, feature 수 〉데이터 수 인 경우에 강력함
- 단점:하이퍼 파라미터가 2개라서 튜닝이 복잡하며, 직관적 해석이 어려울 수 있음

비지도학습 알고리즘

	알고리즘 병	군집화(Clustering)	치원축소(Dimensionality Reduction)
1	K-Means Clustering	0	X
2	DBScan	О	X
3	Gaussian Mixture Model	0	X
4	PCA	X	0
5	T-SNE	X	0
6	ISOMAP	X	0
7	UМар	X	0

K-Means Clustering

- HOW ?
- K개의 랜덤한 초기 중심 설정
- 각 데이터 포인트를 가장 가까운 중심점에 할당(유클리드 거리 계산)
- 각 클러스터 안의 모든 데이터 포인트의 평균 좌표를 계산하여, 새 클러스터 중심점으로 옮김
- 중심점 변동이 없을 때까지(혹은 정해진 반복 횟수를 채울 때 까지) 이 순서를 반복함

K-Means Clustering

엘보(Elbow) 그래프

- 장점: 데이터가 선형적, 원형으로 분포할 때 잘 작동함, 빠르고 간단하게 그룹을 나누어야 할 때, K가 미리 정해져 있을 때 좋음
- 단점: K의 개수를 사람이 직접 지정해야 하는데, 적당한 K를 찾아내기 어렵다
- 특징:
 - 반드시 K개의 군집을 지정해야 함
 - 클러스터는 중첩(중복)되지 않음
 - 클러스터가 계층적이지 않음(비계층적 군집화)

$$ext{WCSS} = \sum_{k=1}^K \sum_{x_i \in C_k} \|x_i - \mu_k\|^2$$

- 반경 e(엡실론)과 최소 이웃 수를 선정
- 각 데이터 포인트에 대해, 반경 안에 있는 이웃 수를 기준으로 core point를 선정
- 코어포인트를 따라가면서 클러스터(border point)를 형성
- 클러스터에 속하지 않는 경우, noise point로 분류
- 모든 데이터 포인트에 대해 이 행위를 반복함

DBScan 그림 출처 : https://blog.dailydoseofds.com/p/the-limitations-of-dbscan-clustering

DBSCAN

■ 장점: 복잡한 모양의 클러스터에 좋은 성능을 보임, 모든 샘플을 클러스터에 할당하지 않고, 노이즈 샘플을 구분할 수 있음

■ 단점: 차원의 저주(고차원에서 알고리즘을 수행할 때, 실행이 까다로워 짐)

Gaussian Mixture Model

- WHAT?: 여러 개의 가우시안 분포들을 가중합된 형태로 정의하여 데이터의 분포를 표현하는 방법
- HOW ?:
- 가우스 분포 각각의 평균과 분산을 랜덤하게 초기화
- 각 데이터 포인트가 각 가우시안 분포에서 차지할 가중치를 계산 => E(Expectation)-step
- 위의 가중치로 1의 평균과 분산을 다시 계산(가우시안의 분포 위치를 조정) => M(Maximization)-step
- 갱신한 평균의 변화가 작아질 때(가우시안이 거의 움직이지 않을 때) 까지 2, 3의 반복

출처 : 박혜영, 이관용, 패턴인식과 기계학습, 2011

Gaussian Mixture Model

■ 장점:

- 소프트 클러스터링(경계가 모호한 군집을 나눌 수 있음)
- 타원형 클러스터도 표현 가능
- 다양한 차원과 구조 데이터에 적용 가능
- 해석이 편리함

■ 단점:

- 초기값에 민감함
- 이상치에 취약함(이상치를 멀리 있는 데이터로 간주하지 않고, 분산 수치를 키우는 식으로 동작함
- 클러스터의 수 K를 사전에 정해야 함
- 계산량이 많음

실루엣 계수(Silhouette Coefficient)

■ WHAT?: 클러스터 내부의 데이터 끼리는 얼마나 친하고, 다른 클러스터와는 얼마나 잘 떨어져 있나?

$$s(i) = rac{b(i) - a(i)}{\max(a(i), b(i))}$$

- a(i): 같은 클러스터와의 평균 거리
- b(i): 가장 가까운 다른 클러스터와의 평균 거리
- 우리가 원하는 것 : a(i) < b(i)
- 가장 잘 분류 : a(i)가 0에 가깝고, b(i)가 무한에 가까움
- 가장 못 분류 : a(i)가 무한에 가깝고 b(i)가 0에 가까움
- 결론적으로, -1과 1사이의 값을 가짐

