2,
$$134 + 52$$
 $r_1 + r_2 + r_3 + r_4 + r_5 + r_$

- 2. Use Euclidean Algorithm to find GCD of 134 and 52
- 3. Given two integers 134 and 52, find two integers, s and t, such that s*a+t*b=gcd(a,b)
- 4. Find the multiplicative inverse of 8 mod 11.
- 5. Let n > \(\mathbb{m}\) be an integer. Prove that n is divisible by 9 if and only if the sum of its digits is divisible by 9.
- 6. Let us consider Z_{28} the set of integers modulo 28.
 - 1) Give the necessary and sufficient condition required for an element of Z_{28} to have an inverse in Z_{28} .
 - 2) Determine all the elements of Z_{28} that have an inverse in Z_{28} .
 - 3) Evaluate $\varphi(28)$ wherein φ is the Euler totient function.
 - 4) Evaluate 4⁻¹ and 5⁻¹ if they exist.