CHAPTER 9 Areas of Parallelogram and Triangles

1 EXERCISE 9.9.3

1. In fig.1, PSDA is a Parallelogram. Points **Q** and **R** are taken on PS such that PQ = QR = RS and $PA \parallel QB \parallel RC$. Prove that ar(PQE) = ar(CFD).

Figure 1

- 2. **X** and **Y** are on the side LN of the triangle LMN such that LX = XY = YN. Through **X**, a line is drawn parallel to LM to meet MN at **Z** (See fig.2). Prove that ar(LYZ) = ar(MZYX)
- 3. The area of the parallelogram ABCD is $90cm^2$ (See fig.3). Find

Figure 2

- (a) ar(ABEF)
- (b) ar(ABD)
- (c) ar(BEF)

Figure 3

- 4. In $\triangle ABC$, **D** is the mid-point of AB and **P** is any point on BC. If $CQ \parallel PD$ meets AB in **Q** (fig.4), then prove that $ar(BPQ) = \frac{1}{2}ar(ABC)$.
- 5. ABCD is a square. **E** and **F** are respectively the mid-points of BC and CD. If **R** is the mid-point of EF (fig.5), Prove that ar(AER) = ar(AFR)

Figure 5