

Job Queue

Usage statistics

API ▼

Citations

<u>Help</u>

COVID-19 Blog

Blog Classic

Fast Unconstrained Bayesian AppRoximation

results summary

INPUT DATA | 60961fdc238adf71a515f4a8 | 91 sequences | 1743 sites

≛ Export **▼**

FUBAR **found evidence** of

- episodic positive/diversifying selection at 0 sites
- episodic negative/purifying selection at 1602 sites

with posterior probability of 0.9

See <u>here</u> for more information about the FUBAR method.

Please cite **PMID 23420840** if you use this result in a publication, presentation, or other scientific work.

Posterior rate distribution

a

This graph shows the posterior distribution over the discretized rate grid. The size of a dot is proportional to the posterior weight allocated to that gridpoint, and the color shows the intensity of selection. Site-specific distributions can be viewed by entering a site number in the input box above the figure. When this is empty, the alignment-wide distribution will be shown.

Methods and Tools ▼

Job Queue

<u>Usage statistics</u>

API ▼

Citations

<u>Help</u>

COVID-19 Blog

<u>C</u>Classic

Positively selected sites with evidence are highlighted in green.

Negatively selected sites with evidence are highlighted in black.

Showing entries 1 through 20 out of 1743.

Export Table to CSV

« () »									
Site \$	Partition \$	α \$	β \$	β-α 💠	Prob [α>β] \$	Prob [α<β] \$	BayesFactor[α<β] \$	_	
3	1	0.980	0.375	-0.605	0.852	0.102	1.669	0.000	0.000
4	1	0.671	0.356	-0.314	0.723	0.205	3.797	0.000	0.000
8	1	1.904	0.494	-1.410	0.869	0.100	1.633	0.000	0.000
	'	1.504	0.494	-1.410	0.809	0.100	1.033	0.000	0.000
11	1	1.431	0.623	-0.808	0.628	0.331	7.281	0.000	0.000

HYLOCEREUS_POLYRHIZUS_SRR11190797_NC_002815

<u>Help</u>

HYLOCEREUS_UNDATUS_SRR11603186_NC_024458 HYLOCEREUS_UNDATUS_SRR11603190_NC_024458 HYLOCEREUS_POLYRHIZUS_SRR11190801_NC_024458 HYLOCEREUS_POLYRHIZUS_SRR11190798_NC_024458 HYLOCEREUS_POLYRHIZUS_SRR11190795_NC_024458 JF930327 HYLOCEREUS_UNDATUS_SRR11603184_NC_024458 HYLOCEREUS_POLYRHIZUS_SRR11190798_NC_006059 HYLOCEREUS_POLYRHIZUS_SRR11190801_NC_006059 HYLOCEREUS_POLYRHIZUS_SRR11190796_NC_006059 HYLOCEREUS_POLYRHIZUS_SRR11190797_NC_006059 HYLOCEREUS_POLYRHIZUS_SRR11190802_NC_006059 AY366208 JF930326 HYLOCEREUS_UNDATUS_SRR11603191_NC_006059 HYLOCEREUS_UNDATUS_SRR11603189_NC_006059

COVID-19

Blog

Classic

KM288844 KM288842 KM288845 JF937699 KX883791 KM288846 KM365479 SCHLUMBERGERA_TRUNCATA_15H03_CONS SCHLUMBERGERA_TRUNCATA_19JSF_STY_NC_002815 SCHLUMBERGERA_TRUNCATA_15H04_CONS SCHLUMBERGERA_TRUNCATA_15H06_CONS HYLOCEREUS_UNDATUS_SRR11603187_NC_002815 LC128411 HYLOCEREUS_UNDATUS_SRR11603189_NC_002815 HYLOCEREUS_UNDATUS_SRR11603186_NC_002815 HYLOCEREUS_UNDATUS_SRR11603190_NC_002815 HYLOCEREUS_UNDATUS_SRR11603191_NC_002815 HYLOCEREUS_UNDATUS_SRR11190793_NC_002815 HYLOCEREUS_UNDATUS_SRR11190792_NC_002815 HYLOCEREUS_UNDATUS_SRR11603183_NC_002815 - AF308158 HYLOCEREUS_POLYRHIZUS_SRR11190802_NC_002815 HYLOCEREUS_POLYRHIZUS_SRR11190795_NC_002815 HYLOCEREUS_POLYRHIZUS_SRR11190796_NC_002815 HYLOCEREUS_UNDATUS_SRR11603182_NC_002815 HYLOCEREUS_UNDATUS_SRR11603184_NC_002815 HYLOCEREUS_POLYRHIZUS_SRR11190798_NC_002815 HYLOCEREUS_POLYRHIZUS_SRR11190801_NC_002815 HYLOCEREUS_UNDATUS_SRR11190799_NC_002815 HYLOCEREUS_UNDATUS_SRR11190791_NC_002815 HYLOCEREUS UNDATUS SRR11190800 NC 002815

Model fits

Model	AIC _C	log L	Parameters	Rate distributions
Nucleotide GTR	178350.13	-88987.99	187	

This table reports a statistical summary of the models fit to the data. Here, MG94 refers to the MG94xREV baseline model that infers a single ω rate category per branch.

Datamonkey is funded jointly by MIDAS and NIH award R01 GM093939

COVID-19

Blog

Classic

