

Building Custom Ecosystem Models with PALEOtoolkit

Sara Sjosten, Stuart Daines

Schedule

- Introductions: workshop leaders, participants, goals and activities
- Introduction to modelling: theory, examples, evaluation process
- Group exercise: what processes in my work could be modelled?
- 9.30-9.45am: Break
- Introduction to the PALEOtoolkit: motivation and approach
- Tutorial 1: group walk-through of NP (primary production) model
- Tutorial 2: hands-on exercise creating NPZ
- Closing: reflections, next steps

Workshop Goals

Participants will leave with...

- an understanding of how to use models to generate knowledge;
- a firmer sense of what modelling is, if new to modelling;
- the ability to define models to test hypotheses about the Earth system;
- awareness of how PALEOtoolkit can be used to test Earth system models;
- confidence engaging with the mathematics and code used for models.

What is modelling?

- Cambridge dictionary: Modelling is "the activity of using mathematical models (simple descriptions of a system or process) to do calculations or predict what might happen"
- **Dictionary.com:** A model is "a simplified representation of a system or phenomenon, as in the sciences or economics, with any hypotheses required to describe the system or explain the phenomenon, often mathematically"

What is modelling for our purposes?

- Scientific hypothesis about a process or system of processes in the Earth system and how the system evolves over time
- Mathematical expression of the processes in terms of how it affects physical matter
- How the processes connect with Earth system biogeochemical cycles across different temporal and spatial scales
- Matter must be conserved across scales!
- Need to predict some observable data for testing!

Introto Modelling

Example: Great Oxidation Event

Local: Sponge evolution Global: Redox change

Local: Plant evolution Global: LDME

Local: Biotic innovations Global: Redox change

Example: Great Oxidation Event

- Transition from the **methanogenic atmosphere** of early Earth to the current **oxygenic atmosphere** ~2.4 Gyr
- Transition driven by evolution of oxygenic photosynthesis ~2.7 Gyr
- Spatially and temporally local biological process in the ocean driving a permanent system-level change to the surface Earth

Example: Great Oxidation Event

Photosynthesis $H_2O + CO_2 \rightarrow "CH_2O" + O_2$

Respiration "CH₂O" + O₂ \rightarrow CO₂ + H₂O

O₂ increase proportional

If net O₂ < "volcanic" reduced gasses, atmos is anoxic (redox budget closed by H escape)

If net O₂ > "volcanic" reduced gasses, atmos is oxic (redox budget closed by oxidative weathering)

Organic Matter Cycling

Biology:

- 1. Photosynthesis: $CO2 + H2O \rightarrow CH2O + O2$
- 2. Aerobic respiration: CH2O + O2 \rightarrow CO2 + H2O
- 3. Methanogenesis: $2CH2O \rightarrow CH3COOH \rightarrow CH4 + CO2$
- 4. Methanotrophy: $CH4 + 2O2 \rightarrow CO2 + 2H2O$

Burial and tectonic recycling:

Only the organic material from (1) photosynthesis that escapes (2) aerobic respiration or (3) methanogenesis and (4) methanotrophy provides a net O2 source:

- 1. Organic carbon burial: $CO2 + H2O \rightarrow CH2O(\downarrow burial) + O2$
- 2. Metamorphism and subduction: CH2O -> CH4 + CO2 († "volcanic" gasses)
- 3. Oxidative weathering: CH2O(\uparrow weathering) + O2 \rightarrow CO2 + H2O

A+B+C is a null cycle (no net source or sink of O_2) if the amount of organics (CH₂O) in the crust is at steady state

What Caused the Great Oxidation Event?

- 1. Increase in " CH_2O " burial? (oxygen source)
 - a. Constrained by carbon isotope data (δ^{13} C)
 - b. 'Transient' (< 100My sediment cycle time)
- 2. Decrease in reductant input?
 - a. Mantle degassing?
 - b. Slow oxidation driven by H_2 escape?
 - c. End of formation (and oxidation) of continents?

What Processes to Consider?

Often useful to classify ecosystem processes into:

- 1. Autotrophic (biomass production)
 - i. Photosynthesis, etc.
 - ii. Often tractable, small molecule inorganic substrates
- 2. Heterotrophic (biomass degradation)
 - i. Respiration, etc.
 - ii. "CH2O" -> CH4 + CO2 (disproportionation, without TEA)
 - iii. Complicated, multiple organic carbon substrates
- 3. Secondary redox
 - i. eg CH4 + 2O2 -> CO2 + 2 H2O (either in the biota or atmosphere)
- 4. Preservation and burial (net oxygen source)
 - i. On long timescales
 - ii. Poorly understood

To construct a model we don't necessarily need to represent each part completely!

Global: GOE

Local: Sponge evolution Global: Redox change

Local: Plant evolution Global: LDME

Local: Biotic innovations Global: Redox change

Cambrian Substrate Revolution

Sponge size-selective filtering

Adapted from Lenton et al 2014; see also Erwin 2011, Logan 1995

Group Exercise

How can I use modelling?

Cambrian Substrate Revolution

Sponge size-selective filtering

Adapted from Lenton et al 2014; see also Erwin 2011, Logan 1995

Intro to PALEOtoolkit

Stuart Daines

PALEOtoolkit: scientific needs, approach, and design

- Science drivers for biogeochemical and ecosystem models
 - Processes and scales
 - Piecing together a puzzle
 - Model hierarchies
 - Hypothesis testing
- PALEO approach and design
 - Provide a flexible and extensible way of combining components into systems
 - PALEO components and workflow
- PALEOtoolkit examples
 - Models
 - Comparison to other tools

Processes and spatial scales

Darwinian natural selection Evolutionary ecology Biosphere dynamics (Lovelock)

Piecing together a puzzle

System level: dynamics, observations

Model hierarchy

Model hierarchy exploiting timescale separation:

GCM 'snapshots' <-> 'offline' long-timescale models

Hypothesis testing and knowledge generation

(eg exoplanet biosignatures: cf Lovelock (1965) *Nature*: 'A physical basis for life detection experiments')

Model needs:

A flexible way of combining components into systems to make predictions and test hypotheses

PALEO approach and design

0D Earth system model:

System of ~10 differential equations for Earth surface and sedimentary reservoirs:

eg atmosphere-ocean oxygen:

$$\frac{d0}{dt} = sources - sinks$$

ocean phosphorus:

$$\frac{dP}{dt} = sources - sinks$$

PALEO approach and design

1D shelf sea water column: System of ~1000 differential equations for tracers in water column cells (populations, nutrients, ...)

eg phytoplankton population:

$$\frac{dP1_conc}{dt} = \underbrace{growth}_{\text{per-cell}} - \underbrace{death}_{\text{transport by}} + \underbrace{VP1_conc}_{\text{vertical growth rate}}$$

Transport is implemented using "transport matrix" representing ocean circulation calculated by an (offline) physical model (eg Khatiwala 2007) GBC

PALEO represents components as "Reactions"

eg phytoplankton population:

ReactionReservoir: P1_conc (state variable) P1_sms (time derivative)

$$\frac{dP1_conc}{dt} = growth - death + T P1_conc + V P1_conc$$

$$\frac{dP1_conc}{dt} = growth - death + T P1_conc + V P1_conc$$
Reaction
Phytoplankton
Reaction
SinkFloat

(most Reactions implement processes that transfer fluxes between reservoirs and appear as terms in ODEs)

Minimal example: Reservoir + transport

Sarmiento & Toggweiler (1984) 3-box model of global ocean

ReactionReservoir: X_conc, X_sms

ReactionOceanTransport3box

$$\frac{d}{dt} \begin{pmatrix} X_conc[1] \\ X_conc[2] \\ X_conc[3] \end{pmatrix} = \begin{pmatrix} X_sms[1] \\ X_sms[2] \\ X_sms[3] \end{pmatrix} = \begin{pmatrix} -T & 0 & T \\ T & -(T+fhd) & fhd \\ 0 & T+fhd & -(T+fhd) \end{pmatrix} \begin{pmatrix} X_conc[1] \\ X_conc[2] \\ X_conc[3] \end{pmatrix}$$

PALEO components and workflow

PALEOtoolkit models

PALEOatmosphere.jl (photo)chemistry

PALEOcopse.jl BGC Earth history

PALEOocean.jl MITgcm2.8 deg

PALEOsediment.jl (reaction-transport)

Comparison of model tools

- PALEO: flexible, extensible, hierarchical
 - Julia: fast! (100x python or R)
 - automatic differentiation (Jacobians, MCMC ...)
 - Julia package ecosystem! SciML
- GEOCLIM, SCION: biogeochemistry + offline climate
- GENIE: monolithic ESM
- FABM (marine ecosystem): GCM focused
- R ReactTran (sediments), ...
- ATMOS (atmospheric chemistry), ...

Tutorial 1

Group walk-through of NP model

Local: Sponge evolution

Local: Plant evolution Global: LDME

Local: Biotic innovations Global: Redox change

Ancient Shelf Seas

- Shelf sea setting and redox state drive evolutionary events
- Correlating sedimentary, geochemical and fossil data insufficient

Neoproterozoic Microfossils

Cambrian Substrate Revolution

Sponge size-selective filtering

Adapted from Lenton et al 2014; see also Erwin 2011, Logan 1995

Dynamic Feedbacks are Critical

Bidirectional effects in eutrophication

Atmosphere Single cell 02 **Ocean Surface** Surface area Gas exchange Light Advection **Sinking** Ocean Column of volume cells S2P3-R Marsh et al (2015) P 02 Plankton **Ocean Floor** Surface area Remin of particulates

1D Shelf Sea Column Model

Plankton

Phosphorus Phytoplankton Zooplankton

Assimilate P as in Armstrong (1994):

For nutrient assimilation in autotrophs:

$$\frac{\partial P_i}{\partial dt} = P_i(\mu_{max,i} \frac{S}{K_{S,i} + S} - \lambda_i - Z_i \frac{H_{max,i}}{K_{P,i}})$$

For feeding in heterotrophs:

$$\frac{\partial Z_i}{\partial dt} = Z_i (\gamma_i \frac{H_{max,i}}{K_{P,i}} P_i - \delta_i)$$

S nutrient concentration, mmol N m $^{-3}$; P_1 population of plankton, mmol N m $^{-3}$; Z_1 population of zooplankton, mmol N m $^{-3}$; $\mu_{\max,i}$ maximum phytoplankton, growth rate d $^{-1}$; λ_i plankton growth, mmol N m $^{-3}$; $H_{\max,i}$ maximum zooplankton harvest rate, mmol P d $^{-1}$; K_{P_i} zooplankton larvest and growth, mmol P m $^{-3}$; γ_i zooplankton growth efficiency, dimensionless; δ_i intrinsic zooplankton loss rate, d $^{-1}$

- Spatial resolution 1D enough for redoxcline
 and mass budgets
- **Dynamics** S2P3-R column model enough for some physical transport, light/temp profile
- Elements P and O enough to capture basic redox and nutrient relationship
- "Biological pump" plankton food web base

NPZ Model Output

Figure 1a,b: As the seasonal solar energy flux increases, the light-dependent phytoplankton begin to consume phosphorous and produce oxygen.

Figure 2a,b: Zooplankton feed on the phytoplankton, reducing their population and growing their own.

$$\frac{\partial Z_i}{\partial dt} = Z_i (\gamma_i \frac{H_{max,i}}{K_{P,i}} P_i - \delta_i)$$

- Gamma: 0.4, units=dimensionless; assimilation efficiency
- H_{max} : 1.4, units= d^{-1} ; max harvest rate
- K_p : 2e-3, units=mol m⁻³; full-saturation constant

Closing

Final reflections

Reflection on Workshop Goals

Participants will leave with...

- an understanding of how to use models to generate knowledge;
- a firmer sense of what modelling is, if new to modelling;
- the ability to define models to test hypotheses about the Earth system;
- awareness of how PALEOtoolkit can be used to test Earth system models;
- confidence engaging with the mathematics and code used for models.

