TALENT School on Nuclear Quantum Monte Carlo

July 11 – 29, 2016 Department of Physics, NC State University

Course Lecturers: Joseph Carlson (LANL), Joaquín Drut (UNC-CH), Stefano Gandolfi (LANL), Dean Lee (NC State)

Special Lecturers: Shailesh Chandrasekharan (Duke), David Dean (ORNL), Alexandros Gezerlis (Guelph), Lubos Mitas (NC State)

Financial Support: Los Alamos National Laboratory and NC State Physics and College of Sciences

Quantum Monte Carlo

J. Carlson QMC in the continuum S. Gandolfi

J. Drut QMC on the lattice D. Lee

- Goals for Week 1:
 - Why QMC?
 - Types of QMC
 - Introduction to MC methods: sampling, statistics
 - Introduction to parallel computation
 - Variational Monte Carlo (VMC): Bosons, Fermions
 - Diffusion Monte Carlo (DMC): Bosons, Fermions
 - GFMC with spins/isospins introduction
 - AFMC with spins/isospins introduction

Small Projects, Sample Codes, up to more complicated projects...

Why QMC?

Allows for accurate studies of non-perturbative quantum systems with many degrees of freedom:

Nuclear Physics
Atoms/Molecules
Cold Atoms
Condensed Matter
Lattice QCD

Search for "Quantum Monte Carlo" on Google Scholar from 2010: 13,600 hits

Examples: 1st two pages of Google Scholar Search

- Measuring Renyi entanglement entropy in quantum Monte Carlo simulations
- · Correlation effects in quantum spin-Hall insulators: a quantum Monte Carlo study
- Quantum Monte Carlo Methods in Equilibrium and Nonequilibrium Systems
- Communications: Survival of the fittest: Accelerating convergence in full configuration-interaction quantum Monte Carlo
- Continuous-time Monte Carlo methods for quantum impurity models
- Applications of quantum Monte Carlo methods in condensed systems
- Quantum Monte Carlo calculations with chiral effective field theory interactions
- Itinerant ferromagnetism of a repulsive atomic Fermi gas: A quantum Monte Carlo study
- Weak-coupling QMC calculations on the Keldysh contour: Theory and application to the current-voltage characteristics of the Anderson model
- Quantum ice: a quantum Monte Carlo study
- Loop updates for variational and projector quantum Monte Carlo simulations in the valence-bond basis
- Photoisomerization of model retinal chromophores: insight from quantum monte carlo and multiconfigurational perturbation theory
- Magnetism of finite graphene samples: Mean-field theory compared with exact diagonalization and quantum Monte Carlo simulations

Many important/current topics in physics and QMC