The Goods Market (by Ling)

	The Goods Market (by Ling)
	Overview
	The Goods Market I: Consumption & Saving
Consumption & Saving	 Determinants of optimal consumption of a utility-maximizing consumer
Life-Cycle Model	 Pattern of income/consumption/saving over an individual's lifetime [early working life][highest income][dissaving] low savingmaximum savingretirement
Intertemporal Choice	 Choices involving different periods of time Assume forward-looking consumer who maximize lifetime satisfaction Consumer's choices are subject to intertemporal budget constraint
The Consumer's Consumption- Saving Decision: A 2-Period Utility Maximization Problem	 Intuition/ Graph Consumer utility maximization problem/ Budget constraint First order derivative/ Lagraingan multiplier method
Government & Fiscal Policy	 Government decisions taken as exogenous Government budget constraint Fiscal policy
Ricardian Equivalence: Theory & Evidence	 Rationale consumer will save the increase in income from decrease tax cut, leaves government lump-sum tax cut with no-effect However, in reality majority of consumers are short-sighted
The (Goods Market II: Investment & Goods Market Equilibrium
Investment & Desired Capital Stock	 Investment becomes capital with a lag Desired capital stock is determined by MPK^f and user cost
The Firm's Investment Decision: A 2-Period Profit Maximization Problem	Profit-maximising firms decides on labour and capital income to maximise profit
Goods Market Equilibrium	 Goods market equilibrium condition: Y = C^d + I^d + G or S^d = I^d Goods market equilibrium might not hold Goods market equilibrium implies loanable funds market in equilibrium, vice versa
Loanable Funds Market & the Saving-Investment Diagram	Loanable Funds Market reach equilibrium when savings = investment
Alternative: Keynesian Cross & the Income-Expenditure Diagram	•

Definitions Formula

Dejinitions						
Consumption & Saving						
Consumption	Goods and services purchased by consumers	Determined by optimal/desired consumption of a utility- maximizing consumer				
Marginal propensity to consume	proportion of an aggregate raise in pay that a consumer spends on the consumption of goods and services, as opposed to saving it	$MPC = \frac{\partial c(y)}{\partial y}$ $0 < MPC < 1$				
Consumer preferences	Consumer preferences are given by the consumer's utility function $U(c_1,c_2)$	Indifference curve shows all combinations of c_1 and c_2 of the same utility (a person's satisfaction) $U(c_1,c_2)=u(c_1)\ +\delta u(c_2)$				
Saving	Current income not consumed	$\frac{\text{saving}}{S} = \frac{\text{income}}{Y} - \frac{\text{consumption}}{C}$				
National saving	Private saving + public saving					
Consumption- smoothing	The desire to have a relatively even pattern of consumption over time	$\frac{\partial c_1}{\partial y_1} = MPC\Delta y_1; \ \frac{\partial c_2}{\partial y_1} = (1 - MPC)\Delta y_1 \times (1 + r)$				

	Also known as subjective discount rate,	higher ρ indicates higher discounting factor and lower patience, higher ρ meaning prefer future consumption.				
Rate of time preference	measures the discount of future utility,	increasing	perfect smoothing;	decreasing		
preference	can be seen as a measure of consumer patient	consumption profile	constant profile	consumption profile		
	patient	$r > \rho$	$r = \rho$	$r < \rho$		
		$c_1 < c_2$	$c_1 = c_2$	$c_1 > c_2$		
Discounting factor	Measures the worth of utility today	Inverse relationship v	$c_1 = c_2$ $S = \frac{1}{1+\rho}, 0 < \delta < 1$ with ρ	1		
Marginal rate of substitution (MRS)	The amount of c_2 the consumer would be willing to substitute for one unit of c_1	On an indifference curve, utility is constant $U(c_1,c_2)=\overline{U}$ $\frac{\partial U}{\partial c_1}\partial c_1+\frac{\partial U}{\partial c_2}\partial c_2=d\overline{U}=0$ $MRS=\frac{MU_{c_1}}{MU_{c_1}}$				
Interest rate	Opportunity cost of current consumption	$\frac{c_{\text{urrent}}}{c_t} = \frac{\text{opp cost}}{(1+r)} \times c_t$				
	The Go	overnment				
Government spending	Goods and services purchase by governments	Taken as exogenous				
Government bond	Bonds issued by government to borrow money	Budget Constraint: e	$\frac{\text{xpenditure}}{G_1} = \frac{\text{revenue}}{T_1}$	$+\frac{\text{bond}}{B_1}$		
Lump-Sum Tax	A tax for which the individual's liability does not depend upon behaviour	non-distortionary tax that does not change behaviours				
Fiscal Policy	Consist of Government purchases and Taxes to stimulate economy/ control inflation	$\uparrow \frac{\text{current(resp.future)}}{G} \text{ financed by } \frac{\text{current(resp.future)}}{T} \text{ result in } \downarrow \frac{\text{current(resp.future)}}{Y}$ $\Rightarrow MPC \times \downarrow \frac{\text{current(resp.future)}}{C} \text{ in additional, consumption smoothing effect } \downarrow \frac{\text{current}}{S}$				
Fiscal Policy: Lump-sum Tax	A lowered tax rate today financed by increase future tax rate Assume G_1 and G_2 unchanged	Opposing effects: $\downarrow \begin{array}{c} current \\ T \end{array} \Rightarrow \uparrow \begin{array}{c} current \\ Y \end{array} \Rightarrow \uparrow \begin{array}{c} current \\ C_1 \end{array}$ $\uparrow \begin{array}{c} future \\ T \end{array} \Rightarrow \downarrow \begin{array}{c} [expected] future \\ T \end{array} \Rightarrow \downarrow \begin{array}{c} current \\ C_1 \end{array}$				
Ricardian Equivalence	A cut in lump-sum tax today has no effect on consumers' consumption choices or on the equilibrium real interest rate	$\uparrow \begin{array}{c} \textit{future} \\ T \end{array} \Rightarrow \downarrow \begin{array}{c} [expected] \ \textit{future} \\ Y \end{array} \Rightarrow \downarrow \begin{array}{c} \textit{current} \\ C_1 \end{array}$ $G_1 + \frac{G_2}{1+r} = T_1 - \Delta T + \frac{Y_2 + (1+r)\Delta T}{1+r} = T_1 + \frac{Y_2}{1+r}$ Private households hold the entire tax cut + interest in anticipation of future tax rate increase				
Crowding Out Effect	The reduction in investment that results when expansionary fiscal policy raises the interest rate	Since $S^d=Y-C^d-G$, S decrease when G increase, result in increased interest rate through loanable funds market and decrease I				
	Inve	estment				
	Purchase of new capital goods by firms	investment = desired _ cu	rrent + depreciation rat	e x current		
Investment	and new housings by consumer, and	I K* Inventory Investment = Pro	K d oduction - Sales	· · K		
Desired capital stock	The amount of capital that allows firms to maximise expected profit Inventory Investment = Production - Sales Investment = Production - Sales Investment = Production - Sales Investment = Production - Sales					
Profit- maximising	The firm maximises the present value of stream of profits by choosing how many workers to employ and how much to invest	$ \lim_{\Pi} = \pi_1 + \frac{\pi_2}{1+r} $				
Profit	Profit = Revenue - Cost	$\frac{\text{profit}}{\pi_t} = \frac{\text{output}}{Y_t} - \frac{\text{real wa}}{w_t}$	· · N.	I.		
Final profit	Firm's profit at shut down	$\frac{\text{profit}}{\pi_{t+1}} = \frac{\text{output}}{Y_{t+1}} - \frac{\text{real wa}}{W_{t+1}}$				
Output	The total production by firm	$\frac{\text{real output}}{Y_t} = \frac{\text{total factor}}{T_t}$	$\begin{array}{c} \text{productivity} \times \begin{array}{c} \text{production} \\ F(F) \end{array}$	on function (X_t, N_t)		
Equation of motion for capital	Investment becomes capital with a one- period lag	$\frac{\text{future}}{K_{t+1}} = \frac{\text{net value, after}}{(1 - \frac{1}{2})^{n+1}}$	depreciation $\times \frac{\text{present}}{K_t}$	$present \\ I_t$		
User cost of capital	The expected real cost of using a unit of capital for a specified period of time		$uc = \frac{(r+d)P_k}{(1+\tau)}$			

Desired Capital The optimal level of capital to achieve Stock profit maximising output		$\frac{\partial \Pi}{\partial k_2} = MPF^f \frac{(r+d)P_k}{(1+\tau)}$, taking k_1 as given, only investigate k_2		
	Calc	culation		
Present Value	The amount today that is equivalent to an amount to be received in the future, taking into account the interest that could be earned over the interval of time	$PV = \frac{x}{(1+r)^T} = \frac{\text{amount}}{(\text{discounting factor})^{\text{time}}}$		
Future Value	Value in terms of dollars or goods in the future The factor (1+r) is the price of c_1 measured in terms of c_2	$FV = x(1+r)^T = amount \times compounding factor^{time}$		
Intertemporal Budget Constraint (simple)	Total resources available for present and future consumption Incentives for future planning	Period 1: $\frac{\text{period 1}}{y_1} = \frac{\text{period 1}}{c_1} + \frac{\text{period 1}}{s_1}$ Period 2: $\frac{\text{period 2}}{c_2} = \frac{\text{period 2}}{y_2} + \frac{\text{period 1}}{(1+r) \times s_1}$ present value of lifetime consumption} = $\frac{\text{present value of lifetime resources}}{\text{PVLC}}$ $c_1 + \frac{c_2}{1+r} = y_1 + \frac{y_2}{1+r}$		
Intertemporal Budget Constraint	Advanced version of the previous budget constraint, taking into consideration tax and dividends	$c_1 + \frac{c_2}{1+r} = y_1 + \pi_1 - t_1 + \frac{y_2 + \pi_2 - t_2}{1+r}$		
Intertemporal Budget Constraint with Income-Leisure Decision	Combining the utility maximising objective of consumer and leisure requirement of consumer	$c_1 + \frac{c_2}{1+r} = (h - l_1)w_1 + \pi_1 - t_1 + \frac{(h - l_2)w_2 + \pi_2 - t_2}{1+r}$		
Lagrangian multiplier	A strategy to find local maxima and minima of a function subject to a constraint	Single constraint $\Lambda(x,y,\lambda) = f(x,y) - \lambda g(x,y)$ where f(x,y) is the function and g(x,y) is the constraint. Solve for $\frac{\partial \Lambda}{\partial x}$; $\frac{\partial \Lambda}{\partial y}$; $\frac{\partial \Lambda}{\partial \lambda}$ =0		
Euler Equation	An differential equation representing an intertemporal first order condition for a dynamic choice problem	$\frac{\partial U}{\partial c_1} = \frac{\delta}{1+r} \times \frac{\partial U}{\partial c_2}$ where δ is the discount factor and r is interest rate		
Hicks Substitution Effect	Investigate substitution effect by keeping the utility constant and change relative price	At the intermediate basket, \overline{U} and $(1+r_2)$		

Graphs & max/min problems

			G	Graphs & max/ Consumption	min problems		
Solve for	• Dete	erminants o	of optimal co	•	_	onsumer	
Parameters	$c_1 + \frac{c_2}{1+r} = y_1 + \frac{y_2}{1+r}$ • Consumer preference						
- Industria		*:l			$u(c_1) + \delta u(c_2) + \delta u(c_2)$		
Intuition Math	• A rational consumer wants to maximise one's utility while subject to intertemporal budget constraints $\frac{\max_{c_1,c_2} U(c_1,c_2)}{s.t.PVLC} = \frac{U(c_1,c_2)}{s.t.PVLC} = U($				(c_2)		
c_1 vs c_2 Graphs	Budget Line Indifference Curve	slope $-(1+r)$ $MRS = \frac{MU_{c_1}}{MU_{c_2}}$	y-intercept (1+r)y ₁ +y ₂	x-intercept $y_1 + \frac{y_2}{1+r}$	Income y1 Income y2 Wealth ω0	Increase $\begin{array}{c} \operatorname{BL}, c_1, c_2 \uparrow \\ \operatorname{Saving} \uparrow \\ \operatorname{BL}, c_1, c_2 \uparrow \\ \operatorname{Saving} \downarrow \\ \operatorname{BL}, c_1, c_2 \uparrow \\ \operatorname{Saving} \downarrow \\ \end{array}$ $\operatorname{BL}, c_1, c_2 \uparrow \\ \operatorname{Saving} \downarrow$	Decrease $\begin{array}{c c} \operatorname{BL}, c_1, c_2 \downarrow \\ \operatorname{Saving} \downarrow \\ \operatorname{BL}, c_1, c_2 \downarrow \\ \operatorname{Saving} \uparrow \\ \operatorname{BL}, c_1, c_2 \downarrow \\ \operatorname{Saving} \uparrow \end{array}$ Saving \uparrow
$\frac{\partial U}{\partial r}$	income effecsubstitution efoverall	ct	for a saver $\begin{array}{c c} c_1 \\ \uparrow \\ \downarrow \\ \end{array}$ Inbiguous		income effect substitution effect overall	$\uparrow r$ for a borrower c_1 \uparrow \uparrow	$\begin{array}{c c} c_2 \\ \uparrow \\ \downarrow \\ \text{ambiguous} \end{array}$

Graphs & max/min problems Investment & Desired Capital Solve for Determinants of desired input (including capital) of a profit-maximizing firm Profit maximising condition $\max_{N_1,N_2,K_2} \Pi_1 = \pi_1 + \frac{\pi_2}{1+r}$ **Parameters** A rational firm chooses the optimal level of input to maximise profit, considering the cost involved Intuition common identity: considering $\frac{\partial \Pi}{\partial N_1}=0$; $\frac{\partial \Pi}{\partial N_2}=0$; $\frac{\partial \Pi}{\partial K_2}=0$ Solve through first order derivatives $= MPN_1 - w_1; \frac{\partial \Pi}{\partial N_2} = MPN_2 - w_2;$ $= MPK^f - \frac{(r+d)P_k}{(1+\tau)}$ Math Increase Decrease Interest rate user cost ↑ user cost \downarrow Κ*↓ Κ* ↑ Depreciation rate x-intercept user cost ↑ user cost↓ slope y-intercept d Κ*↓ User Cost $(1 + \tau)$ $(1 + \tau)$ Price of capital user cost↓ user cost ↑ $\frac{\overrightarrow{\partial Y}}{\partial K_2}, K_2 = 0$ $\frac{\partial Y}{\partial K_2}, K_2 = k$ Κ*↓ Κ* ↑ $MPK^{f'}$ MPK^f $MPK^f \uparrow$ $MPK^f \downarrow$ Technology affects MPKf Κ* ↑ Κ*↓ MPK^f vs KGraphs

Graphs & max/min problems

	Graphs & max/m					
	Loanable Fund Framework: Sa	ving-Investment Diagi	am			
Solve for	Determinants of optimal saving/investment quantity through loanable fund framework					
Parameters	$ullet$ market equilibrium condition $S^d = I^d$					
Intuition	 In a market equilibrium, the output equals t condition in loanable funds market Note as assume government expenditure as 		d. Which implie	s a equilibrium		
Math	Solve by investigating the equilibrium quantity of saving/investment and equilibrium price (interest rate)	$S^{d} = Y - C^{d} - G$ $I^{d} = K^{*} - K - dK$				
Saving vs Investment Graphs		Output Y Wealth Effective tax rate T Technology affects MPKf	Increase $ \begin{array}{c} S^{d} \uparrow \\ r \downarrow \\ S^{d} \downarrow \\ r \uparrow \\ I^{d} \downarrow \\ r \downarrow \\ I^{d} \uparrow \\ r \uparrow \end{array} $	Decrease $S^{d} \downarrow \\ r \uparrow$ $S^{d} \uparrow \\ r \downarrow$ $I^{d} \uparrow \\ r \uparrow$ $I^{d} \downarrow \\ r \downarrow$		