

FIN3080_Assignment 4 Report:

Back Testing for CAPM in China Stock Market

Weiyuan XU (许炜塬) 120090888

Table 2 Replication Result

	αр	αp的t值	显著性	βр	βp的t值	显著性	R-squared
组合名称							
1	-0.003161	-3.126657	0.002304	0.933000	24.789105	5.647082e-45	0.857641
2	-0.001235	-1.409426	0.161751	0.980540	30.059634	1.716546e-52	0.898566
3	-0.000971	-0.953381	0.342651	0.998030	26.308512	2.949400e-47	0.871559
4	-0.000728	-0.725422	0.469854	1.070760	28.651638	1.370310e-50	0.889481
5	-0.000891	-0.892345	0.374309	1.114878	29.996453	2.081998e-52	0.898182
6	-0.000479	-0.451716	0.652433	1.124066	28.480757	2.358562e-50	0.888299
7	-0.000876	-0.793891	0.429102	1.117396	27.204491	1.477451e-48	0.878872
8	-0.001092	-0.881953	0.379876	1.171259	25.407182	6.478497e-46	0.863550
9	-0.000735	-0.556441	0.579128	1.171006	23.802675	1.940793e-43	0.847435
10	-0.001997	-1.417472	0.159393	1.266914	24.155090	5.421063e-44	0.851197

Analysis:

- 1. **Analysis for Beta:** As can be seen from Table 2, the βp values of all portfolios are similar, mostly around 1, and the significance level is basically small, which indicates that stock returns are significantly affected by stock market returns.
- 2. **Analysis for Alpha:** In addition, all the αp values are close to 0. However, **90%** of them are not significant (only the first one is significant), which means that the null hypothesis: existence of alpha return is not significantly rejected.
- 3. **Analysis for the whole Regression:** At the same time, R-square does not increase with the increase of βp value, which indicates that stock returns may be affected by other factors besides systemic risk.

Table 3 Replication Result

			01.0.0-		D					
De	p. Variable:	. AVG	OLS Regression Results AVG_Excess_Group_Return				R-s	guared:	0.317	
	Model:		OLS					guared:		
	Method		ı	₋east Sq	uares			tatistic:	3.718	
	Date		Mon	, 17 Apr	2023	Pro	b (F-st	atistic):	0.0900	
	Time			06:2	26:46	L	og-Like	elihood:	69.251	
No. Ob	servations				10			AIC:	-134.5	
Df	Residuals				8			BIC:	-133.9	
	Df Model:				1					
Covari	ance Type			nonre	obust					
	coef	std err	t	P> t	[0.0	25	0.975]			
const	0.0002	0.001	0.178	0.863	-0.0	02	0.002			
βр	0.0017	0.001	1.928	0.090	-0.0	00	0.004			
(Omnibus:	0.200	Durk	oin-Wats	on:	2.036	5			
Prob(O	mnibus):	0.905	Jarque	e-Bera (J	B):	0.174	1			
	Skew:	-0.203		Prob(J	B):	0.917	7			
	Kurtosis:	2.498		Cond. I	No.	22.9	9			
Notes: [1] Stand	dard Errors	assume	that the	covarian	ce ma	atrix o	f the er	rors is co	orrectly sp	ecifie

Р	F-statistic	R-squared	γ1	γ0	
0.09	3.718	0.317	0.0017	0.0002	系数
NaN	NaN	NaN	1.9280	0.1780	t检验值

Analysis:

- 1. Analysis for γ0 Coefficient: As can be seen from Table 3, the γ0 value is close to 0; however, its p-value is 0.863 (which is higher than 0.1), then it means that the constant γ0 is not significant to be zero, the null hypothesis is not rejected, indicating there may be the presence of factors other than systemic risk.
- 2. Analysis for $\gamma 1$ Coefficient: In addition, the $\gamma 1$ value is positive (0.0017); and its p-value is 0.09 (which is smaller than 0.1), then it means that $\gamma 1$ is significant to be positive, showing that there is a significant positive correlation between return and systemic risk, which is consistent with CAPM.
- **3. Analysis for the whole Regression:** At the same time, R-square is 0.317, which is relatively low, which means the fitting result is not sufficiently great. However, the p-value of the regression is 0.09 (which is smaller than 0.1), then it means that the model does make sense.

General Conclusion

1. Consistency with CAPM

The results of the empirical tests show that there is a certain positive linear correlation between returns and risks, i.e., it is largely consistent with the findings of the CAPM model.

2. Inconsistency with CAPM

2.1. Inconsistency Behavior

However, systematic risk is not the only determinant in the pricing model, so that it cannot be excluded that unsystematic risk also plays a role in pricing.

2.2. Reason for Inconsistency: Mainly the Asymmetric Information / Inefficiency

The securities market in China started late, the size of the stock market is small, and the degree of information disclosure in the securities market is low, compared with the securities markets in developed countries. The number of individual investors is absolutely dominant in the structure of investors, and the immature investment concept of investors is also the main reason for the bias of the model. The main reason for the deviation of the model.

3. Future Expectation

China's securities market is gradually becoming mature, and the equilibrium relationship between risk and return in securities investment will become increasingly important. The balanced relationship between risk and return in securities investment will be increasingly reflected. That is

Data Acquisition and Data Processing Highlights

Data Acquisition Highlights

- Weekly Return: $NetReturn = \frac{Price_{t+1} + C}{Price_t} = \frac{Price'_{t+1}}{Price_t}$. Only when we incorporate the cash dividend reinvestment to our price, then we can compute the return more accurately.
- Weekly Market Return: Use Weekly Market Return with Cash Dividend
 Reinvested (Total-Value-Weighted) since
 - Compared with Weekly Market Return with Cash Dividend Reinvested

 (Equally-Weighted), Weekly Market Return with Cash Dividend Reinvested

 (Total-Value-Weighted) takes market capitalization of different individual stocks into consideration.
 - Compared with Weekly Market Return with Cash Dividend Reinvested

 (Current-Value-Weighted / Negotiable-Value-Weighted), Weekly Market

 Return with Cash Dividend Reinvested (Total-Value-Weighted) incorporates all

 the outstanding shares rather than just tradable shares, which is more representative.
- Weekly Market Return: Employ Market Capitalization to compute the valueweighted-average Weekly Market Return for the whole main board
- **Market Type Extraction**: Market Type = 1, 4 (including SME)
- Weekly Risk-Free Rate: Use Weeklized Risk-Free Rate since these two are equivalent. (0.0286% = 0.00286)

Data Processing Highlights

- Period-Dividing Criterion: Since our data incorporate 6 years, which means that everytwo-year data can be approximately defined as one period, then we divide them into three parts based on year difference approximately.
- Null Value Processing: It is obvious that there are some null values for some certain stocks, we need to drop it before grouping.
- **Portfolio Return after Grouping:** The computation of group returns obeys the criterion used in the paper, that is, taking **Equal-weighted Average**.