(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2003 年9 月25 日 (25.09.2003)

PCT

(10) 国際公開番号 WO 03/079469 A1

(51) 国際特許分類⁷: H01M 4/38, 4/02, 10/40

(21) 国際出願番号: PCT/JP03/03190

(22) 国際出願日: 2003年3月17日(17.03.2003)

(25) 国際出願の言語: 日本語

(26) 国際公開の言語: 日本語

(30) 優先権データ:

特願2002-79128 2002 年3 月20 日 (20.03.2002) JF

(71) 出願人 (米国を除く全ての指定国について): 松下電器産業株式会社 (MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.) [JP/JP]; 〒571-8501 大阪府 門真市大字門真 1 0 0 6 番地 Osaka (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 島村 治成 (SHI-MAMURA,Harunari) [JP/JP]; 〒570-0034 大阪府 守口市 西郷通 4-1 3-8-3 0 9 Osaka (JP). 佐藤 俊忠 (SATO,Toshitada) [JP/JP]; 〒538-0044 大阪府 大阪市鶴見区放出東 3-2 5-9-3 0 6 Osaka (JP). 中本貴之 (NAKAMOTO,Takayuki) [JP/JP]; 〒590-0111 大阪府堺市三原台 3 丁目 1 9-1 7 Osaka (JP). 美藤靖彦 (BITO,Yasuhiko) [JP/JP]; 〒587-0032 大阪府南河内郡美原町 さつき野東 3-2 1-1 9 Osaka (JP). 新田芳明 (NITTA,Yoshiaki) [JP/JP]; 〒573-1122 大阪府 枚方市西船橋 1-5 3-6 Osaka (JP).

(74) 代理人: 石井和郎, 外(ISHII,Kazuo et al.); 〒541-0041 大阪府 大阪市 中央区北浜2丁目3番6号 北浜山本 ビル Osaka (JP).

/続葉有/

(54) Title: CATHODE MATERIAL AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY USING IT

(54) 発明の名称: 負極材料およびそれを用いた非水電解質二次電池

(57) Abstract: A non-aqueous electrolyte secondary battery-use cathode material including composite particles in which solid phase A is dispersed in solid phase B, characterized in that, on a diffraction line, obtained by a wide-angle X-ray diffraction measurement, of the composite particles, a ratio I_A/I_B between the maximum diffraction X-ray intensity IA of a diffraction X-ray belonging to solid phase A and the maximum diffraction X-ray intensity IB of a diffraction X-ray belonging to solid phase B is $0.001 \le I_A/I_B \le 0.1$. This cathode material can restrict micronization resulting from cycling. When this cathode material is used, a high-capacity non-aqueous electrolyte secondary battery excellent in cycle life characteristics can be produced.

WO 03/079469 A1

- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許

(AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

— 国際調査報告書

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(57) 要約:

本発明は、固相B中に固相Aが分散した複合粒子を含み、前記複合粒子の広角X線回折測定により得られる回折線において、固相Aに帰属される回折X線の最大回折X線強度 I_A と固相Bに帰属される回折X線の最大回折X線強度 I_B の比 I_A/I_B は、 $0.001 \le I_A/I_B \le 0.1$ であることを特徴とする非水電解質二次電池用負極材料に関する。

この負極材料は、サイクルにともなう微細化を抑制することができる。 また、この負極材料を用いることにより、高容量であり、かつサイクル 寿命特性に優れた非水電解質二次電池が得られる。

明細書

負極材料およびそれを用いた非水電解質二次電池

技術分野

本発明は、携帯情報端末、携帯電子機器、家庭用小型電力貯蔵装置、 モーターを動力源とする自動二輪車、電気自動車、ハイブリット電気自 動車等に用いられる非水電解質二次電池に関する。さらに詳しくは、非 水電解質二次電池の負極材料に関する。

背景技術

近年、移動体通信機器、携帯電子機器の主電源として利用されている リチウム二次電池は、起電力が大きく、高エネルギー密度である特徴を 有している。

負極材料にリチウム金属を用いたリチウム二次電池は、エネルギー密度は高いが、充電時に負極でデンドライトが析出する。充放電を繰り返すとデンドライトは成長し、セパレータを突き破って正極と接触し、内部短絡の原因となる。また、析出したデンドライトは比表面積が大きいため、反応活性度が高く、その表面で電解液中の溶媒と反応して電子伝導性に乏しい固体電解質的な界面皮膜を形成する。このため、電池の内部抵抗が高くなったり、電子伝導のネットワークから孤立した粒子が存在するようになる。これらの要因により充放電効率が低下する。

よって、負極材料にリチウム金属を用いたリチウム二次電池は、信頼 性が低く、サイクル寿命が短いという問題があった。

現在、リチウム金属に代わる負極材料として、リチウムイオンを吸蔵・放出できる炭素材料が用いられ、これを負極に用いた電池が実用化さ

れている。通常、炭素材料を用いた負極では金属リチウムは析出しないため、デンドライトによる内部短絡の問題はない。しかし、炭素材料の一つである黒鉛の理論容量は372mAh/gであり、Li金属単体の理論容量の10分の1程度と少ない。

他の負極材料として、リチウムと化合物を形成する単体金属材料や単体非金属材料が知られている。例えば、ケイ素、スズ、亜鉛の場合、リチウムを最も含む化合物の組成は、それぞれLi²²Si₅、Li²²Sn₅、Li Znである。化合物中のリチウム含有量が、この程度であれば、金属リチウムは通常析出しないため、デンドライトによる内部短絡の問題はない。そして、これら化合物と各単体材料との間の電気化学容量は、それぞれ4199mAh/g、993mAh/g、410mAh/gであり、いずれも黒鉛の理論容量よりも大きい。

また、上記以外の化合物を用いた負極材料として、特開平7-240201号公報では、遷移元素からなる非鉄金属の珪化物が提案されている。また、特開平9-63651号公報では、4B族元素及びP、S bの少なくとも一つを含む金属間化合物からなり、その結晶構造が CaF_2 型、ZnS型、AlLiSi型のいずれかである化合物が提案されている。

しかしながら、上記のような炭素材料よりも高容量の負極材料には、 それぞれ以下に示すような問題がある。

リチウムと化合物を形成する単体金属材料および単体非金属材料は、 炭素材料に比べて充放電サイクル特性が悪い。その理由は、以下のよう に推測される。

 は19. 9×10^{-3} n m 3 である。ケイ素-リチウム二元系の相図から判断して、室温でケイ素とリチウムが電気化学的に反応して化合物を形成する場合、その反応の初期には、ケイ素と化合物Li $_12$ Si $_7$ の2相が共存しているものと考えられる。Li $_12$ Si $_7$ は、結晶学的な単位格子(斜方晶、空間群Pnma)に56個のケイ素原子を含む。その格子定数a=0.8610nm、b=1.9737nm、c=1.4341nmより、単位格子体積は2.4372nm 3 であり、ケイ素原子1個あたりの体積(単位格子体積を単位格子中のケイ素原子数で除した値)は43.5×10 $^{-3}$ nm 3 である。したがって、ケイ素から化合物Li $_12$ Si $_7$ に変わると、体積が2.19倍に膨張し、材料が膨張する。ケイ素と化合物Li $_12$ Si $_7$ の2相が共存した状態で反応が進行すると、ケイ素が部分的に化合物Li $_12$ Si $_7$ に変化するために、これらの体積差が大きく、材料に大きな歪みが生じる。このため、この材料は亀裂を生じやすく、微細な粒子になりやすいことが考えられる。

さらに、ケイ素とリチウムとの間の電気化学的反応の進行により、最終的に最もリチウムを多く含む化合物Li₂₂Si₅が得られる。 Li₂₂Si₅は、結晶学的な単位格子(立方晶、空間群F23)に80個のケイ素原子を含む。その格子定数 a=1. 8750nmより、単位格子体積は6. 5918nm³であり、ケイ素原子1個あたりの体積(単位格子体積を単位格子中のケイ素原子数で除した値)は82. 4×10-³nm³である。したがって、ケイ素からLi₂₂Si₅に変わると、体積が4. 14倍に増加し、材料が大きく膨張する。一方、負極材料の放電反応は、化合物からリチウムが減少してゆく反応であるため、材料は収縮する。このように充放電時の材料の体積変化が大きいため、材料に大きな歪みが生じ、亀裂が発生して粒子が微細化するものと考えられる。

さらに、この微細化した粒子間に空間が生じ、電子伝導ネットワークが分断されると、電気化学的な反応に関与できない部分が増加し、充放電特性が低下するものと考えられる。

また、スズは結晶学的な単位格子(正方晶、空間群 I 4 1 / a m d)に 4 個のスズ原子を含む。格子定数 a = 0 . 5 8 2 0 n m、c = 0 . 3 1 7 5 n m より、単位格子体積は 0 . 1 0 7 5 n m 3 であり、スズ原子 1 個の占める体積は 2 6 . 9 × 1 0 $^{-3}$ n m 3 である。スズーリチウム二元系の相図から判断して、室温でスズとリチウムが電気化学的に反応して化合物を形成する場合、その反応の初期には、スズと化合物 L i $_2$ S n $_5$ の 2 相が共存しているものと考えられる。L i $_2$ S n $_5$ は、結晶学的な単位格子(正方晶、空間群 P 4 / m b m)に 1 0 個のスズ原子を含む。その格子定数 a = 1 . 0 2 7 4 n m、c = 0 . 3 1 2 5 n m より、単位格子体積は 0 . 3 2 9 8 6 n m 3 であり、スズ原子 1 個あたりの体積(単位格子体積を単位格子中のスズ原子数で除した値)は 3 3 . 0 × 1 0 $^{-3}$ n m 3 である。したがって、スズから化合物 L i $_2$ S n $_5$ に変わると、体積が 1 . 2 3 倍に増加し、材料が膨張する。

更に、スズとリチウムとの間の電気化学的反応の進行により、最終的に最もリチウムを多く含む化合物 L i $_{22}$ S n $_{5}$ が得られる。 L i $_{22}$ S n $_{5}$ は、結晶学的な単位格子(立方晶、空間群 F 2 3)に 8 0 個のスズ原子を含む。その格子定数 a=1. 9 7 8 n m $_{5}$ り、単位格子体積は 7. 7 3 9 n m $_{5}$ であり、スズ原子 1 個あたりの体積(単位格子体積を単位格子中のスズ原子数で除した値)は 9 6 . 7 × 1 0 $_{5}$ n m $_{5}$ である。 したがって、スズから L i $_{22}$ S n $_{5}$ に変わると、体積が 3 . 5 9 倍に増加し、材料は大きく膨張する。

亜鉛は結晶学的な単位格子(六方晶、空間群 P 6 3 / mm c) に 2 個の亜鉛原子を含む。格子定数 a = 0. 2 6 6 5 n m 、 c = 0. 4 9 4 7

このように、スズおよび亜鉛もケイ素の場合と同様に充放電反応による負極材料の体積変化が大きく、また体積差の大きな2つの相が共存する状態で変化を繰り返す。このため、材料に亀裂が発生し、粒子が微細化するものと考えられる。そして、微細化した粒子間に空間が生じ、電子伝導ネットワークが分断され、電気化学的な反応に関与できない部分が増加し、充放電特性が低下するものと考えられる。

すなわち、リチウムと化合物を形成する単体金属材料および単体非金属材料を負極に用いた場合、その材料は体積変化が大きく、微細化しやすい。このため、炭素材料を用いた負極に比べて充放電サイクル特性が悪くなると推察している。

上記の単体材料以外では、特開平7-240201号公報で、遷移元素からなる非鉄金属の珪化物がサイクル寿命特性を改善する負極材料として提案されている。この公報では、遷移元素からなる非鉄金属の珪化物を負極材料に用いた電池を実施例とし、負極材料にリチウム金属を用いた電池を比較例として、両者の充放電サイクル特性を比較している。そして、実施例の電池の方が比較例の電池よりも充放電特性が改善され

ていることが開示されている。しかし、負極材料に天然黒鉛を用いた電池と比較すると、実施例の電池容量は最大でも12%程度しか増加していない。

よって、その公報では明言されていないが、負極に遷移元素からなる 非鉄金属の珪化物を用いた電池は、負極に黒鉛を用いた電池に比べて容量の大幅な増加はないと思われる。

また、特開平9-63651号公報においても、4B族元素およびP、S bの少なくとも一つを含む金属間化合物からなり、その結晶構造は、C a F $_2$ 型、Z n S型、A 1 L i S i 型のいずれかである化合物が、サイクル寿命特性を改善する負極材料として提案されている。

負極に上記の化合物を用いた実施例のほうが負極にLi-Pb合金を 用いた比較例よりも充放電サイクル特性が改善されていることが開示さ れている。また、負極に黒鉛を用いた場合よりも実施例の方が高容量で あることが開示されている。

しかし、実施例の電池は $10\sim20$ サイクルにおける放電容量の減少が著しく、最も良好と思われる Mg_2Sn においても約20 サイクル後には初期容量の70%程度に減少している。

さらに、特開2000-30703号公報では、固相Aと固相Bからなり、固相Aはケイ素、スズ、亜鉛の少なくとも一種を構成元素として含み、前記固相Bは固相Aの構成元素であるケイ素、スズ、亜鉛のいずれかと、前記構成元素を除いて、周期表の2族元素、遷移元素、12族、13族元素、ならびに炭素を除く14族元素からなる群から選ばれた少なくとも一種の元素との固溶体または金属間化合物である負極材料が提案されている。負極にこの負極材料を用いた電池は負極に黒鉛を用いた電池よりも高容量で、サイクル寿命特性が向上することが開示されている。

しかし、この材料における固相Aの結晶性が高いと、リチウムが吸蔵したときに粒子内の応力が一方向に集中し、粒子の破壊が起こり易くなり、サイクル寿命の低下を招くという問題がある。

結晶性について述べる。一般に、結晶の性質は、非晶質(広角 X 線回 折測定において回折線が得られない状態)、微結晶、多結晶、および単 結晶に大別される。上記の問題を解決するためには、固相 A の結晶性を 低くする必要がある。ここでいう固相 A の結晶性が低い状態とは、固相 A が非晶質と微結晶の両方が混在した状態であることをいう。なお、微 結晶とは、結晶体の大きさがおよそ150 n m以下の多結晶を意味する。 また、固相 B の結晶性としては、多結晶または微結晶であればよい。

上記の問題を解決するため、本発明は、サイクルに伴う微細化を抑制する負極材料を提供することを目的とする。また、この負極材料を用いることにより、高容量であり、かつサイクル寿命特性に優れた非水電解質二次電池を提供することを目的とする。

発明の開示

本発明の非水電解質二次電池用負極材料は、リチウムの吸蔵・放出が可能な非水電解質二次電池用負極材料であって、

固相B中に固相Aが分散した複合粒子を含み、前記固相Aは、ケイ素、スズ、および亜鉛からなる群より選ばれた少なくとも一種の元素を含み、前記固相Bは、固相Aの構成元素と、長周期型周期表の2族元素、遷移元素、12族元素、13族元素および14族元素からなり、固相Aの構成元素と炭素を除く群より選ばれた少なくとも一種の元素とを含む固溶体または金属間化合物からなり、前記複合粒子の広角X線回折測定により得られる回折線において、固相Aに帰属される回折X線の最大回折X線強度IBの比線強度IAと固相Bに帰属される回折X線の最大回折X線強度IBの比

 I_A/I_B は、0.001 $\leq I_A/I_B\leq 0$.1であることを特徴とする。

また、本発明の第二の非水電解質二次電池用負極材料は、リチウムの 吸蔵・放出が可能な非水電解質二次電池用負極材料であって、

固相B中に固相Aが分散した複合粒子を含み、前記固相Aは、ケイ素、スズ、および亜鉛からなる群より選ばれた少なくとも一種の元素を含み、前記固相Bは、固相Aの構成元素と、長周期型周期表の2族元素、遷移元素、12族元素、13族元素および14族元素からなり、固相Aの構成元素と炭素を除く群より選ばれた少なくとも一種の元素とを含む固溶体または金属間化合物からなり、前記複合粒子の広角X線回折測定により得られる回折線において、固相Aに帰属される回折X線の最大ピーク強度の半価幅W(ラジアン)が、0.001≦W≦0.1であることを特徴とする。

前記固相AがSiおよびSnからなり、前記固相BがCuならびに SnおよびSiの少なくとも一つを含む固溶体または金属化合物からな ることが好ましい。

前記固相BがCuSi2およびCu6Sn5からなることが好ましい。

前記固相 B が C u S i $_2$ および C u と S n を含む固溶体からなることが好ましい。

前記固相 B が C u と S i を含む固溶体および C u $_6$ S n $_5$ からなることが好ましい。

前記固相BがCuとSiを含む固溶体およびCuとSnを含む固溶体からなることが好ましい。

前記固相AがSiからなり、前記固相BがTiおよびSiを含む固溶体または金属間化合物からなることが好ましい。

前記固相 B が C m c m および F d d d からなる群より選ばれた少なくとも一種の結晶構造を有する T i S i 2 を含むことが好ましい。

また、本発明の非水電解質二次電池は、リチウムの可逆的な電気化学 反応が可能な正極、リチウム塩を有機溶媒に溶解させた非水電解質、お よび上述の負極材料を含む負極を具備する。

図面の簡単な説明

図1は、実施例で用いた円筒型非水電解二次電池の構造を示す断面図である。

発明を実施するための最良の形態

本発明の非水電解質二次電池用負極材料は、リチウムの吸蔵・放出が可能な非水電解質二次電池用負極材料であって、固相B中に固相Aが分散した複合粒子を含み、前記固相Aは、ケイ素、スズ、および亜鉛からなる群より選ばれた少なくとも一種の元素を含み、前記固相Bは、固相Aの構成元素と、長周期型周期表の2族元素、遷移元素、12族元素、13族元素および14族元素からなり、固相Aの構成元素と炭素を除く群より選ばれた少なくとも一種の元素とを含む固溶体または金属間化合物からなり、前記複合粒子の広角X線回折測定により得られる回折線において、固相Aに帰属される回折X線の最大回折X線強度Ⅰ₄と固相Bに帰属される回折X線の最大回折X線強度Ⅰ₄と固相Bに帰属される回折X線の最大回折X線強度Ⅰ₃の比Ⅰ₄/Ⅰвは、

0. 001≦ I A / I B ≦ 0. 1 である点に特徴を有する。

IA/IBが0.1以下では、固相Aと固相Bからなる1粒子中における固相Aの結晶体の体積割合が小さいため、固相Aにリチウムが吸蔵されても、一方向の応力集中を緩和させることができ、粒子が割れるのを抑制する効果がある。

しかし、 I_A/I_B が0.1を超えると、1粒子中における固相Aの結晶体の体積割合が大きくなるため、固相Aにリチウムが吸蔵された場合、

固相Aの一方向の応力集中が大きくなり、粒子が割れるのを抑制することが困難となる。

また、 I_A/I_B が0.001未満となると、粒子が割れるのを抑制できるが、1粒子中での固相Aの結晶体の体積割合が小さすぎるため、粒子の真比重が低下し、体積あたりの容量が低下する。

また、本発明の非水電解質二次電池用負極材料は、リチウムの吸蔵・放出が可能な非水電解質二次電池用負極材料であって、固相B中に固相Aが分散した複合粒子を含み、固相Aは、ケイ素、スズ、および亜鉛からなる群より選ばれた少なくとも一種の元素を含み、固相Bは、固相Aの構成元素と、長周期型周期表の2族元素、遷移元素、12族元素、13族元素および14族元素からなり、固相Aの構成元素と炭素を除く群より選ばれた少なくとも一種の元素とを含む固溶体または金属間化合物からなり、前記複合粒子の広角X線回折測定により得られる回折線において、固相Aに帰属される回折X線の最大ピーク強度の半価幅W(ラジアン)が、0.001≦W≦0.1である点に特徴を有する。

Wは、固相Aに帰属される回折X線の最大ピーク強度の半分の強度に おける 2 θ で測定したピーク幅であり、ラジアン単位で表される。なお、 θ はX線の入射角である。

Wが 0. 1 ラジアン以下では、固相Aおよび固相Bからなる 1 粒子中での固相Aの結晶体の大きさが小さいため、固相Aにリチウムが吸蔵されても、固相Aが塑性限界から断裂にいたる、その塑性限界値が高くなる。このため、固相Aが断裂しにくくなり、粒子が割れ難くなる。

しかし、Wが0.1ラジアンを超えると、1粒子中での固相Aの結晶体が大きくなり、塑性限界値が低くなる。このため、固相Aは、リチウム吸蔵により断裂し、粒子が割れ易くなる。

また、Wが0.001ラジアン未満となると、塑性限界値がかなり高

く、粒子が割れるのを抑制できる。しかし、1粒子中における、固相Aと固相Bとの間の境界が増し、電子伝導性が低下するため、Li吸蔵量が低下する。

本発明の第一の好ましい態様として、前記固相AがSiからなり、前記固相BがTiおよびSiを含む固溶体または金属間化合物からなることが好ましい。

固相Aにケイ素を用いることにより、リチウムの吸蔵量が理論的に最大であるため、高容量化できる。また、固相Bにチタンを用いることにより、リチウムと結合して、リチウムの可逆性を損なう不純物の酸素がケイ素と結合することを抑制することができる。

さらに、前記固相Bとしては、 $TiSi_2$ の金属間化合物が特に好ましい。 $TiSi_2$ の結晶構造としては、CmcmもしくはFdddのいずれか一方、またはその両方を含有した構造でも構わない。

なお、広角 X線回折測定により得られる Cm cm または Fd dd dの結晶構造に帰属する Ti Si 2の回折ピークについては、そのピーク位置が高角度側や低角度側へシフトしたものについても Cm cm または Fd dd の結晶構造に帰属する Ti Si 2の回折ピークとする。

また、本発明の第二の好ましい態様として、前記固相AがSiおよびSnからなり、前記固相BがCuならびにSnおよびSiの少なくとも一つを含む固溶体または金属化合物からなることが好ましい。

固相AにSiおよびSnを用いることにより、固相Aの電子伝導性が向上し、固相BにCuを用いることにより、固相Bの電子伝導性が向上する。

前記固相Bとしては、例えば、CuSi2およびCu6Sn5、 CuSi2およびCuとSnを含む固溶体、CuとSiを含む固溶体およびCu6Sn5、ならびにCuとSiを含む固溶体およびCuとSnを含 む固溶体等が形成される。

上記の複合粒子は、メカニカルアロイング法により合成することが好ましい。

これ以外にも複合粒子の作製方法としては、複合粒子を構成する各元素の仕込み組成分の溶融物を、乾式噴霧法、湿式噴霧法、ロール急冷法および回転電極法などで急冷し、凝固させる。そして、その凝固物を、仕込み組成から決まる固溶体または金属間化合物の固相線温度より低い温度で熱処理する方法が考えられる。

しかし、このような熱処理による方法に比べて、メカニカルアロイン グ法は、固相Aの結晶体の体積率の制御や結晶体の大きさの制御が容易 であるという面で効果的である。

メカニカルアロイング法では、固相Aおよび固相Bで構成される元素単体の仕込み組成分の溶融物を、乾式噴霧法、湿式噴霧法、ロール急冷法および回転電極法などで急冷し、凝固させて得られた凝固物が用いられる。また、出発原料として、固相Aおよび固相Bで構成される元素単体の粉末を用いてもよい。

固相Aおよび固相Bからなる複合粒子 1 粒子中に固相Aは $10 \sim 40$ 重量%含まれることが好ましく、さらに $15 \sim 35$ 重量%含まれることが特に好ましい。

上記の負極材料を含む負極、リチウムイオンの可逆的な電気化学反応が可能な正極、リチウム塩を有機溶媒に溶解させた非水電解質を組み合わせることにより、高容量かつ優れたサイクル寿命特性を有する非水電解質二次電池が得られる。

前記負極は、例えば、上記の負極材料、導電剤、および結着剤等を含む負極合剤を集電体の表面に塗着することにより得られる。

負極に用いられる導電剤としては、電子伝導性材料であれば何でもよ

い。例えば、天然黒鉛(鱗片状黒鉛など)、人造黒鉛、膨張黒鉛などのグラファイト類、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック類、炭素繊維、金属繊維などの導電性繊維類、鍋などの金属粉末類、ポリフェニレン誘導体などの有機導電性材料などが好ましく、これらの材料を混合して用いてもよい。さらに、これらのなかでも、人造黒鉛、アセチレンブラック、炭素繊維が特に好ましい。

導電剤の添加量は、特に限定されないが、負極材料100重量部に対して $1\sim50$ 重量部が好ましく、さらに $1\sim30$ 重量部が特に好ましい。また、本発明で用いる負極材料は電子伝導性を有するため、導電剤を添加しなくても電池として機能させることは可能である。

負極に用いられる結着剤としては、熱可塑性樹脂または熱硬化性樹脂のどちらでも構わない。例えば、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム、テトラフルオロエチレンーへキサフルオロエチレン共重合体、テトラフルオロエチレンーペーフルオロプロピレン共重合体(FEP)、テトラフルオロエチレンーパーフルオロアルキルビニルエーテル共重合体(PFA)、フッ化ビニリデンーへキサフルオロプロピレン共重合体、フッ化ビニリデンークロロトリフルオロエチレン共重合体(ETFE)、フッ化ビニリデンーペンタフルオロプロピレン共重合体、プロピレンーテトラフルオロエチレン共重合体、プロピレンーテトラフルオロエチレン共工の体(ECTFE)、フッ化ビニリデンーへキサフルオロプロピレン共享合体(ECTFE)、フッ化ビニリデンーへキサフルオロプロピレンス共工の体(ECTFE)、フッ化ビニリデンーへキサフルオロプロピレンスキリフルオロエチレン共工の体、フッ化ビニリデンーパーフルオロメチルビニルエーテルーテトラフルオロエチレン共工の体、エチレン

アクリル酸共重合体または前記共重合体の(Na⁺)イオン架橋体、エチレンーメタクリル酸共重合体または前記共重合体の(Na⁺)イオン架橋体、エチレンーアクリル酸メチル共重合体または前記共重合体の

 (Na^+) イオン架橋体、エチレン-メタクリル酸メチル共重合体または前記共重合体の(Na^+)イオン架橋体が好ましく、これらの材料を混合して用いてもよい。さらに、これらの中でも、スチレンブタジエンゴム、ポリフッ化ビニリデン、エチレン-アクリル酸共重合体または前記共重合体の(Na^+)イオン架橋体、エチレン-メタクリル酸共重合体または前記共重合体の(Na^+)イオン架橋体、エチレン-アクリル酸メチル共重合体または前記共重合体の(Na^+)イオン架橋体、エチレン-メタクリル酸メチル共重合体または前記共重合体の(Na^+)イオン架橋体、エチレン-メタクリル酸メチル共重合体または前記共重合体の(Na^+)イオン架橋体が特に好ましい。

負極に用いられる集電体としては、構成された電池において化学変化を起こさない電子伝導体であれば何でもよい。例えば、ステンレス鋼、ニッケル、銅、チタン、炭素、導電性樹脂、または銅やステンレス鋼の表面をカーボン、ニッケルもしくはチタンで処理したものなどが好ましい。さらに、これらのなかでも銅および銅合金が特に好ましい。表面処理により集電体表面に凹凸を設けることが好ましい。これらの材料は、その表面を酸化して用いることもできる。また、集電体としては、フォイル、フィルム、シート、ネット、パンチングされたもの、ラス体、多孔質体、発泡体、繊維群の成形体などの形状のものが用いられる。厚みは、特に限定されないが、 $1\sim500\mu$ mのものが用いられる。

前記正極は、例えば、正極材料、導電剤、結着剤等を含む正極合剤を 集電体の表面に塗着することにより得られる。

正極材料には、リチウムを含有する金属酸化物が用いられる。例えば、 Li_xCoO₂、Li_xNO₂、Li_xMnO₂、Li_xCo_yNi_{1-y}O₂、 $L i_x C o_y M_{1-y} O_z$, $L i_x N i_{1-y} M_y O_z$, $L i_x M n_2 O_4$,

Li $_x$ Mn $_{2-y}$ M $_y$ O $_4$ が挙げられる。なお、Mは、Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、SbおよびBからなる群より選ばれた少なくとも一種の元素である。またX、Y、およびZは、それぞれ0 \le x \le 1.2、0 \le y \le 0.9、2.0 \le z \le 2.3を満たす。また、上記のx値は、充放電にともない増減する。

上記の化合物以外に、遷移金属カルコゲン化物、バナジウム酸化物およびそのリチウム化合物、ニオブ酸化物およびそのリチウム化合物、有機導電性物質からなる共役系ポリマー、ならびにシェブレル相化合物なども正極材料として用いることが可能である。また、複数の正極材料を混合して用いることも可能である。正極活物質粒子の平均粒径は、特に限定はされないが、 $1 \sim 30~\mu$ mが好ましい。

正極に用いられる導電剤としては、正極材料の充放電電位で、化学変化を起こさない電子伝導性材料であれば何でもよい。例えば、天然黒鉛(鱗片状黒鉛など)、人造黒鉛などのグラファイト類、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック類、炭素繊維、金属繊維等の導電性繊維類、フッ化カーボン、アルミニウムなどの金属粉末類、酸化亜鉛、チタン酸カリウムなどの導電性ウィスカー類、酸化チタンなどの導電性金属酸化物あるいはポリフェニレン誘導体などの有機導電性材料などが好ましく、これらを混合して用いてもよい。さらに、これらのなかでも、人造黒鉛、アセチレンブラックが特に好ましい。導電剤の添加量は、特に限定されないが、正極材料100重量部に対して1~50重量部が好ましく、特に1~30重量部が好ましい。さらに、カーボンやグラファイトの場合、その添加量は2~15重量部が特に好ましい。

正極に用いられる結着剤としては、熱可塑性樹脂または熱硬化性樹脂 のどちらを用いても構わない。例えば、ポリエチレン、ポリプロピレン、 ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(P VDF)、スチレンブタジエンゴム、テトラフルオロエチレンーヘキサ フルオロエチレン共重合体、テトラフルオロエチレンーヘキサフルオロ プロピレン共重合体(FEP)、テトラフルオロエチレンーパーフルオ ロアルキルビニルエーテル共重合体(PFA)、フッ化ビニリデンーへ キサフルオロプロピレン共重合体、フッ化ビニリデンークロロトリフル オロエチレン共重合体、エチレンーテトラフルオロエチレン共重合体 (ETFE樹脂)、ポリクロロトリフルオロエチレン (PCTFE)、 フッ化ビニリデンーペンタフルオロプロピレン共重合体、プロピレンー テトラフルオロエチレン共重合体、エチレンークロロトリフルオロエチ レン共重合体(ECTFE)、フッ化ビニリデン-ヘキサフルオロプロ ピレンーテトラフルオロエチレン共重合体、フッ化ビニリデンーパーフ ルオロメチルビニルエーテルーテトラフルオロエチレン共重合体、エチ レンーアクリル酸共重合体または前記共重合体の(Na+)イオン架橋体、 エチレン-メタクリル酸共重合体または前記共重合体の(Na+)イオン 架橋体、エチレン-アクリル酸メチル共重合体または前記共重合体の (Na+) イオン架橋体、エチレン-メタクリル酸メチル共重合体または 前記共重合体の(Na⁺)イオン架橋体などが好ましく、これらの材料を 混合して用いてもよい。さらに、これらの材料の中でも、ポリフッ化ビ ニリデン (PVDF)、ポリテトラフルオロエチレン (PTFE) が特 に好ましい。

正極に用いられる集電体としては、正極材料の充放電電位において化 学変化を起こさない電子伝導体であれば何でもよい。例えば、ステンレ ス鋼、アルミニウム、チタン、炭素、導電性樹脂、アルミニウム、ステ ンレス鋼の表面をカーボンまたはチタンで処理したものが好ましい。 さらに、これらの中でも、アルミニウム、アルミニウム合金が特に好ましい。また、表面処理により集電体表面に凹凸を設けることが好ましい。 これらの材料は、その表面を酸化して用いることもできる。また、集電体としては、フォイルの他、フィルム、シート、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群、および不織布体の成形体などの形状のものが用いられる。厚みは、特に限定されないが、 $1 \sim 500 \mu m$ のものが用いられる。

正極および負極に用いられる電極合剤には、導電剤や結着剤の他、フィラー、分散剤、イオン伝導体、圧力増強剤およびその他の各種添加剤が挙げられる。フィラーには、構成された電池において、化学変化を起こさない繊維状材料であれば何でも用いることができる。通常、ポリプロピレン、ポリエチレンなどのオレフィン系ポリマー、ガラス、炭素などの繊維が用いられる。フィラーの添加量は特に限定されないが、電極合剤100重量部に対して30重量部以下が好ましい。

正極と負極の構成は、少なくとも正極合剤面の対向面に負極合剤面が 存在していることが好ましい。

前記非水電解質は、非水溶媒と、その溶媒に溶解するリチウム塩とからなる。

前記非水溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)などの環状カーボネート類、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)などの鎖状カーボネート類、ギ酸メチル、酢酸メチル、プロピオン酸メチル、プロピオン酸エチルなどの脂肪族カルボン酸エステル類、アーブチロラクト

ン等の γ ーラクトン類、 1 , 2 ージメトキシエタン (DME) 、 1 , 2 ージエトキシエタン (DEE) 、エトキシメトキシエタン (EME) 等の鎖状エーテル類、テトラヒドロフラン、2 ーメチルテトラヒドロフラン等の環状エーテル類、ジメチルスルホキシド、 1 , 3 ージオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、 1 , 3 ージメチルー 2 ーイミダゾリジノン、3 ーメチルー2 ーオキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、 1 , 3 ープロパンサルトン、アニソール、ジメチルスルホキシド、Nーメチルピロリドン、などの非プロトン性有機溶媒が好ましく、これらを混合して用いてもよい。さらに、これらのなかでも、環状カーボネートと鎖状カーボネートとの混合系または環状カーボネートと鎖状カーボネートおよび脂肪族カルボン酸エステルとの混合系が特に好ましい。

前記リチウム塩としては、例えばLiСl〇4、LiBF4、 LiPF $_6$ 、LiA1Сl $_4$ 、LiSbF $_6$ 、LiSCN、LiСl、 LiCF $_3$ SО $_3$ 、LiCF $_3$ СО $_2$ 、Li(CF $_3$ SО $_2$) $_2$ 、LiAsF $_6$ 、 LiN(CF $_3$ SО $_2$) $_2$ 、LiB $_{10}$ С $_{10}$ 、低級脂肪族カルボン酸リチウム、 LiС1、LiBr、LiI、クロロボランリチウム、四フェニルホウ 酸リチウム、イミド類などが好ましく、これらを混合して用いてもよい。 さらに、これらの中でもLiPF $_6$ を用いることが特に好ましい。

非水電解質としては、非水溶媒が少なくともエチレンカーボネートおよびエチルメチルカーボネートからなり、リチウム塩がLiPF。からなるのが好ましい。非水電解質の電池への添加量は、特に限定されないが、正極材料もしくは負極材料の量および電池のサイズによって適宜必要な

量を用いることができる。リチウム塩の非水溶媒に対する溶解量は、特に限定されないが、 $0.2\sim2\,\mathrm{mol/1}$ が好ましい。さらに、前記溶解量は、 $0.5\sim1.5\,\mathrm{mol/1}$ がより好ましい。

上記非水電解質の他にも、以下に示すような固体電解質も用いることができる。固体電解質としては、無機固体電解質と有機固体電解質に分けられる。

有機固体電解質としては、例えば、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリホスファゼン、ポリアジリジン、ポリエチレンスルフィド、ポリビニルアルコール、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレンなどやこれらの誘導体、混合物、複合体などのポリマー材料が用いられる。

さらに、放電特性や充放電サイクル特性を改善する目的で、他の化合物を電解質に添加することも有効である。例えば、トリエチルフォスファイト、トリエタノールアミン、環状エーテル、エチレンジアミン、nーグライム、ピリジン、ヘキサリン酸トリアミド、ニトロベンゼン誘導体、クラウンエーテル類、第四級アンモニウム塩、エチレングリコールジアルキルエーテルが用いられる。

セパレータとしては、大きなイオン透過度および所定の機械的強度を有する絶縁性の微多孔性薄膜が用いられる。また、この膜が一定温度以上で孔を閉塞し、抵抗を増大させる機能を有することが好ましい。例えば、耐有機溶剤性および疎水性を兼ね備えたセパレータとして、ポリプロピレンおよびポリエチレンからなる群より選ばれた少なくとも一種を

含むオレフィン系ポリマーもしくはガラス繊維等からなるシート、不織布、および織布が用いられる。セパレータの孔径は、電極より脱離した電極材料、結着剤、導電剤等が透過しない範囲であることが好ましい。その孔径の範囲としては、例えば、 $0.01\sim1~\mu$ mが好ましい。セパレータは、一般的に、その厚みが $10\sim300~\mu$ mのものが用いられる。また、その空孔率は、電子やイオンの透過性と素材や膜圧に応じて決まるが、一般的には $30\sim80$ %であることが好ましい。

また、ポリマー材料に溶媒とその溶媒に溶解させるリチウム塩とからなる非水電解質を吸収保持させたものを、正極合剤、および負極合剤に含ませ、さらに非水電解質を吸収保持したポリマーからなる多孔性のセパレータと、正極および負極とを一体化させた電池を構成することも可能である。ポリマー材料としては、非水電解質を吸収保持できるものであればよい。例えば、フッ化ビニリデンとヘキサフルオロプロピレンの共重合体が挙げられる。

電池としては、コイン型、ボタン型、シート型、積層型、円筒型、偏平型、角型、電気自動車などに用いる大型のものなどいずれの形状にも適用できる。

また、本発明の非水電解質二次電池は、携帯情報端末、携帯電子機器、 家庭用小型電力貯蔵装置、自動二輪車、電気自動車、ハイブリッド電気 自動車などに用いられるが、特に、これらに限定されるわけではない。

以下、実施例により本発明をさらに詳しく説明する。ただし、本発明はこれらの実施例に限定されるものではない。

実施例1

(i) 負極材料の作製

複合粒子における固相AとしてSnが20重量部および固相Bとして

FeSn₂が80重量部となるように、SnとFeの混合粉末を溶解し、その溶融物をロール急冷法で急冷し、凝固させた。この凝固物をボールミル容器に投入した後、この容器を遊星ボールミルに設置し、回転数を2800rpm、合成時間を10時間として、メカニカルアロイングを行い所定の粉末を得た。そして、得られた粉末を篩で分級して45 μ m以下の粒子とし、負極材料A2を作製した。

(ii) 負極の作製

上記で得られた負極材料 7 5 重量部に対し、導電剤として炭素粉末 2 0 重量部と結着剤としてポリフッ化ビニリデン樹脂 5 重量部とを混合 した。この混合物を脱水 N - メチルピロリジノンに分散させてスラリー 状とした。これを銅箔からなる負極集電体に塗布し、乾燥後、圧延して 負極を得た。

(iii)正極の作製

正極材料としてコバルト酸リチウム粉末85重量部に対し、導電剤として炭素粉末10重量部および結着剤としてポリフッ化ビニリデン樹脂5重量部を混合した。この混合物をNーメチルー2ーピロリドンに分散させてスラリー状とした。これをアルミニウム箔からなる正極集電体に塗布し、乾燥後、圧延して正極を得た。

(iv)電池の組み立て

図1に、本発明における円筒型電池の縦断面図を示した。

正極1および負極2をポリエチレンからなるセパレータ3を介して渦巻状に巻回して電極群を形成した。この電極群を底部に下部絶縁板5を設けた電池ケース4内に収納した。そして、正極1から正極リード板10を引き出し、それを正極端子9および安全弁8を備えた封口板6に接続した。そして、エチレンカーボネートおよびエチルメチルカーボネートを体積比1:1で混合した混合溶媒に、LiPF6を1.5

mol/1溶解させた非水電解質を電池ケース4内に注入した。この電池ケース4を周縁部にガスケット7を備えた封口板6で封口し、直径18mm、高さ650mmの円筒型電池を作製した。

実施例2

メカニカルアロイングによる合成時間を15時間とした以外は、実施例1と同様の条件で、負極材料A3を作製した。そして、負極材料A2の代わりに負極材料A3を用いた以外は実施例1と同様の方法により電池を作製した。

比較例1、2

メカニカルアロイングによる合成時間を3時間および20時間とした 以外は、実施例1と同様の条件で、負極材料A1、A4を作製した。そ して、負極材料A2の代わりに負極材料A1またはA4を用いた以外は 実施例1と同様の方法により電池をそれぞれ作製した。

実施例3、4

複合粒子における固相AとしてSnが25重量部および固相BとしてFeとSnの固溶体が75重量部となるようにSnとFeの混合粉末を用い、メカニカルアロイングによる合成時間を10時間および15時間とした以外は、実施例1と同様の条件で、負極材料A6、A7を作製した。そして、負極材料A2の代わりに負極材料A6またはA7を用いた以外は実施例1と同様の方法により電池をそれぞれ作製した。

比較例3、4

メカニカルアロイングによる合成時間を3時間および20時間とした

以外は、実施例3と同様の条件で、負極材料A5、A8を作製した。そして、負極材料A2の代わりに負極材料A5またはA8を用いた以外は 実施例1と同様の方法により電池をそれぞれ作製した。

実施例5、6

FeとSnの混合粉末の代わりに、複合粒子における固相AとしてSiが15重量部および固相BとしてCoSi₂が85重量部となるようにSiとCoの混合粉末を用い、メカニカルアロイングによる合成時間を10時間および15時間とした以外は、実施例1と同様の条件で、負極材料B2、B3を作製した。そして、負極材料A2の代わりに負極材料B2またはB3を用いた以外は実施例1と同様の方法により電池をそれぞれ作製した。

比較例5、6

メカニカルアロイングによる合成時間を3時間および20時間とした 以外は、実施例5と同様の条件で、負極材料B1、B4を作製した。そ して、負極材料A2の代わりに負極材料B1またはB4を用いた以外は 実施例1と同様の方法により電池をそれぞれ作製した。

実施例7、8

FeとSnの混合粉末の代わりに、複合粒子における固相AとしてSiが30重量部および固相BとしてCoとSiの固溶体が70重量部となるようにSiとCoの混合粉末を用い、メカニカルアロイングによる合成時間を10時間および15時間とした以外は、実施例1と同様の条件で、負極材料B6、B7を作製した。そして、負極材料A2の代わりに負極材料B6またはB7を用いた以外は実施例1と同様の方法によ

り電池をそれぞれ作製した。

比較例7、8

メカニカルアロイングによる合成時間を3時間および20時間とした 以外は、実施例7と同様の条件で、負極材料B5、B8を作製した。そ して、負極材料A2の代わりに負極材料B5またはB8を用いた以外は 実施例1と同様の方法により電池をそれぞれ作製した。

実施例9、10

FeとSnの混合粉末の代わりに、複合粒子における固相AとしてZ n が 1 0 重量部および固相BとしてV Z n 16 が 9 0 重量部となるようにZ n と V の混合粉末を用い、メカニカルアロイングによる合成時間を1 0 時間および 1 5 時間とした以外は、実施例 1 と同様の条件で、負極材料 C 2 、 C 3 を作製した。そして、負極材料 A 2 の代わりに負極材料 C 2 または C 3 を用いた以外は実施例 1 と同様の方法により電池をそれぞれ作製した。

比較例9、10

メカニカルアロイングによる合成時間を 3 時間および 2 0 時間とした 以外は実施例 9 と同様の条件で、負極材料 C 1 、 C 4 を作製した。そし て、負極材料 A 2 の代わりに負極材料 C 1 または C 4 を用いた以外は実 施例 1 と同様の方法により電池をそれぞれ作製した。

実施例11、12

FeとSnの混合粉末の代わりに、複合粒子における固相Aとして Znが40重量部および固相BとしてZnとCuの固溶体が60重量部 となるようにZnとVの混合粉末を用い、メカニカルアロイングによる合成時間を10時間および15時間とした以外は、実施例1と同様の条件で、負極材料C6、C7を作製した。そして、負極材料A2の代わりに負極材料C6またはC7を用いた以外は実施例1と同様の方法により電池をそれぞれ作製した。

比較例11、12

メカニカルアロイングによる合成時間を 3 時間および 2 0 時間とした 以外は実施例 1 1 と同様の条件で、負極材料 C 5 、 C 8 を作製した。そ して、負極材料 A 2 の代わりに負極材料 C 5 または C 8 を用いた以外は 実施例 1 と同様の方法により電池をそれぞれ作製した。

実施例13、14

SnとFeの混合粉末の代わりに、複合粒子における固相AとしてSnが22重量部および固相BとしてTi $_2$ Snが78重量部となるようにSnとTiの混合粉末を用い、メカニカルアロイングによる合成時間を15時間および10時間とした以外は、実施例1と同様の条件で、負極材料D2、D3を作製した。そして、負極材料A2の代わりに負極材料D2またはD3を用いた以外は実施例1と同様の方法により電池をそれぞれ作製した。

比較例13、14

メカニカルアロイングによる合成時間を20時間および3時間とした以外は、実施例13と同様の条件で、負極材料D1、D4を作製した。そして、負極材料A2の代わりに負極材料D1またはD4を用いた以外は実施例1と同様の方法により電池をそれぞれ作製した。

実施例15、16

SnとFeの混合粉末の代わりに、複合粒子における固相AとしてSnが26重量部および固相BとしてTiとSnの固溶体が74重量部となるようにSnとTiの混合粉末を用い、メカニカルアロイングによる合成時間を15時間および10時間とした以外は、実施例1と同様の条件で、負極材料D6、D7を作製した。そして、負極材料A2の代わりに負極材料D6またはD7を用いた以外は実施例1と同様の方法により電池をそれぞれ作製した。

比較例15、16

メカニカルアロイングによる合成時間を 20 時間および 3 時間とした以外は、実施例 15 と同様の条件で、負極材料 D5、 D8 を作製した。そして、負極材料 A2 の代わりに負極材料 D5 または D8 を用いた以外は実施例 1 と同様の方法により電池をそれぞれ作製した。

実施例17、18

SnとFeの混合粉末の代わりに、複合粒子における固相AとしてSiが12重量部および固相BとしてNiSi2が88重量部となるようにSiとNiの混合粉末を用い、メカニカルアロイングによる合成時間を15時間および10時間とした以外は、実施例1と同様の条件で、負極材料E2、E3を作製した。そして、負極材料A2の代わりに負極材料E2またはE3を用いた以外は実施例1と同様の方法により電池をそれぞれ作製した。

比較例17、18

メカニカルアロイングによる合成時間を20時間および3時間とした 以外は実施例17と同様の条件で、負極材料E1、E4を作製した。そ して、負極材料A2の代わりに負極材料E1またはE4を用いた以外は 実施例1と同様の方法により電池をそれぞれ作製した。

実施例19、20

SnとFeの混合粉末の代わりに、複合粒子における固相AとしてSiが28重量部および固相BとしてNiとSiの固溶体が72重量部となるようにSiとNiの混合粉末を用い、メカニカルアロイングによる合成時間を15時間および10時間とした以外は、実施例1と同様の条件で、負極材料E6、E7を作製した。そして、負極材料A2の代わりに負極材料E6またはE7を用いた以外は実施例1と同様の方法により電池をそれぞれ作製した。

比較例19、20

メカニカルアロイングによる合成時間を20時間および3時間とした 以外は、実施例19と同様の条件で、負極材料E5、E8を作製した。 そして、負極材料A2の代わりに負極材料E5またはE8を用いた以外 は実施例1と同様の方法により電池をそれぞれ作製した。

実施例21、22

材料F2またはF3を用いた以外は実施例1と同様の方法により電池を それぞれ作製した。

比較例21、22

メカニカルアロイングによる合成時間を20時間および3時間とした以外は、実施例21と同様の条件で、負極材料F1、F4を作製した。そして、負極材料A2の代わりに負極材料F1またはF4を用いた以外は実施例1と同様の方法により電池をそれぞれ作製した。

実施例 2 3 、 2 4

SnとFeの混合粉末の代わりに、複合粒子における固相Aとして Z nが35重量部および固相BとしてCdとZnの固溶体が65重量部 となるようにZnとCdの混合粉末を用い、メカニカルアロイングによる合成時間を15時間および10時間とした以外は、実施例1と同様の条件で、負極材料F6、F7を作製した。そして、負極材料A2の代わりに負極材料F6またはF7を用いた以外は実施例1と同様の方法により電池をそれぞれ作製した。

比較例23、24

メカニカルアロイングによる合成時間を20時間および3時間とした 以外は実施例23と同様の条件で、負極材料F5、F8を作製した。そ して、負極材料A2の代わりに負極材料F5またはF8を用いた以外は 実施例1と同様の方法により電池をそれぞれ作製した。

比較例 2 5

負極材料に、本発明の固相Aおよび固相Bからなる複合粒子の代わり

に、黒鉛を用いた以外は、実施例1と同様に負極を作製した。そして、 実施例1と同様の方法で電池を作製した。

実施例25

SnとFeの混合粉末の代わりに、複合粒子における固相AとしてSiが20重量部および固相BとしてCdSi $_2$ が80重量部となるようにSiとCdの混合粉末を用いた以外は、実施例1と同様の条件で、負極材料G1を作製した。そして、負極材料A2の代わりに負極材料G1を用いた以外は実施例1と同様の方法により電池を作製した。

実施例26

SnとFeの混合粉末の代わりに、Siが20重量部および NiSi $_2$ が80重量部となるようにSiとNiの混合粉末を用いた以外は、実施例1と同様の条件で、負極材料G2を作製した。そして、負極 材料A2の代わりに負極材料G2を用いた以外は実施例1と同様の方法 により電池を作製した。

実施例27

SnとFeの混合粉末の代わりに、複合粒子における固相AとしてSiが20重量部および固相BとしてWSi $_2$ が80重量部となるようにSiとWの混合粉末を用いた以外は、実施例1と同様の条件で、負極材料G3を作製した。そして、負極材料A2の代わりに負極材料G3を用いた以外は実施例1と同様の方法により電池を作製した。

実施例28

SnとFeの混合粉末の代わりに、Siが20重量部および

 $CuSi_2$ が80重量部となるようにSiECuの混合粉末を用いた以外は、実施例1と同様の条件で、負極材料G4を作製した。そして、負極材料A2の代わりに負極材料G4を用いた以外は実施例1と同様の方法により電池を作製した。

実施例29

SnとFeの混合粉末の代わりに、複合粒子における固相AとしてSiが20重量部および固相BとしてFdddの結晶構造を有するTiSi2が80重量部となるようにTiとSiの混合粉末を用いた以外は、実施例1と同様の条件で、負極材料G5を作製した。そして、負極材料A2の代わりに負極材料G5を用いた以外は実施例1と同様の方法により電池を作製した。

実施例30

SnとFeの混合粉末の代わりに、Siが20重量部およびСmcmの結晶構造を有するTiSi $_2$ が80重量部となるようにTiとSiの混合粉末を用いた以外は、実施例1と同様の条件で、負極材料G6を作製した。そして、負極材料A2の代わりに負極材料G6を用いた以外は実施例1と同様の方法により電池を作製した。

実施例31

SnとFeの混合粉末の代わりに、複合粒子における固相AとしてSiが20重量ならびに固相BとしてFdddおよびCmcmが共存した結晶構造を有するTiSi $_2$ が80重量部となるようにTiとSiの混合粉末を用いた以外は、実施例1と同様の条件で、負極材料G7を作製した。そして、負極材料A2の代わりに負極材料G7を用いた以外は実

施例1と同様の方法により電池を作製した。

[負極材料および電池の評価]

①広角 X 線回折測定

実施例 $1\sim3$ 1および比較例 $1\sim2$ 4の負極材料A1 \sim A8、B1 \sim B8、C1 \sim C8、D1 \sim D8、E1 \sim E8、F1 \sim F8、G1 \sim G7 について広角X線回折測定を行った。

広角 X線回折測定には R I N T - 2 5 0 0 (理学電機 (株) 製)を用い、C u K α を X線源とした。全ての方向に配向性を持たせない試料とする測定法 (X線回折の手引改訂第四版、理学電機株式会社、p 4 2)を用いて、粉体を試料ホルダーに充填し、測定した。また、測定する試料としては、負極作製前の粉体を用いてもよいし、負極作製後の電極の合剤を回収し、乳鉢で粒子間を十分分離させたものを用いてもよい。また、広角 X線回折を測定する際、 X線が入射する試料面は平面とした。その面をゴニオメーターの回転軸に一致させ、回折角、強度の測定誤差がないようにした。広角 X線回折測定により、固相 A に帰属される回折 X線の最大回折 X線強度 I β を測定し、回折 X線強度の比 I Δ / I β を計算した。

回折 X 線強度は、広角 X 線回折測定により得られる回折線のプロファイルが示すピーク強度、または回折線のプロファイルもしくは計数値より得られる積分強度のいずれの値を用いて表してもよく、これらの間には実質的な差異はほとんどない。また、この時の回折線のプロファイルは、バックグランド強度を含んでいても、それを差し引いたものでもどちらでも構わない。

また、実施例 $29 \sim 31$ では、広角 X 線回折測定で得られた Cmcm または Fddd の結晶構造に帰属する $TiSi_2$ の各ピークが高角度側や

低角度側へシフトしたものについてもCmcmまたはFdddの結晶構造に帰属する $TiSi_2$ の回折ピークとした。

②充放電サイクル試験

実施例 $1\sim3$ 1および比較例 $1\sim2$ 4の負極材料A $1\sim$ A8、B $1\sim$ B8、C $1\sim$ C8、D $1\sim$ D8、E $1\sim$ E8、F $1\sim$ F8、G $1\sim$ G7および比較例25の黒鉛を用いて作製した各電池について充放電試験を行った。

20℃の恒温槽中で、電池電圧4.2 Vまで1000mAの定電流で充電し、その後、電池電圧2.0 Vまで1000mAの定電流で放電する充放電サイクルを繰り返した。充放電は100サイクルまで繰り返し行い、100サイクル目の容量維持率を測定した。なお、容量維持率は、100サイクル目の放電容量を、初期の放電容量を100として相対値で表した。

実施例 $1\sim12$ および比較例 $1\sim12$ の各負極材料について広角X線回折測定より得られた I_A/I_B 値、ならびにこれらの負極材料および比較例25の黒鉛からなる負極を用いた各電池の初期容量および容量維持率を表1に示した。

表 1

負極 材料	固相A	固相B	I _A /I _B	初期放電容量 (mAh)	容量維持率 (%)
A1	Sn	FeSn ₂	0.2	2200	50
A2	Sn	FeSn ₂	0.1	2255	90
A3	Sn	FeSn ₂	0.001	2240	91
A4	Sn	FeSn ₂	0.0005	1600	75
A5	Sn	Fe, Sn 固溶体	0.3	2295	45
A6	Sn	Fe, Sn 固溶体	0.1	2230	91
A7	Sn	Fe, Sn 固溶体	0.001	2210	92
A8	Sn	Fe, Sn 固溶体	0.0005	1580	78
B1	Si	CoSi ₂	0.2	2300	51
B2	Si	CoSi ₂	0.1	2355	91
В3	Si	CoSi ₂	0.001	2340	90
B4	Si	CoSi ₂	0.0005	1600	76
B5	Si	Si, Co 固溶体	0.3	2395	46
В6	Si	Si,Co 固溶体	0.1	2330	92
В7	Si	Si, Co 固溶体	0.001	2310	91
В8	Si	Si, Co 固溶体	0.0005	1580	78
C1	Zn	VZn ₁₆	0.2	2100	51
C2	Zn	VZn ₁₆	0.1	2155	91
C3	Zn	VZn ₁₆	0.001	2140	90
C4	Zn	VZn ₁₆	0.0005	1600	76
C5	Zn	Zn, Cu 固溶体	0.3	2195	46
C6	Zn	Zn, Cu 固溶体	0.1	2130	90
C7	Zn	Zn, Cu 固溶体	0.001	2110	91
C8	Zn	Zn, Cu 固溶体	0.0005	1580	78
黒鉛		_	<u> </u>	1800	89

容量となった。また、 I_A/I_B が 0. 1以下のとき、容量維持率が 9 0 %以上であり、負極材料に黒鉛を用いた比較例 2 5 も容量維持率が高くなった。よって、実施例 $1\sim 4$ の負極材料 A 2 、 A 3 、 A 6 、 A 7 のように I_A/I_B が 0. 0 0 $1 \leq I_A/I_B \leq 0$. 1 の範囲のとき、高容量、かつ高い容量維持率が得られた。

負極材料 B $1 \sim B$ 8 では、固相 B が金属間化合物 C o S i 2 からなる材料 B $1 \sim B$ 4 の場合でも、固相 B が S i と C o の固溶体からなる材料 B $5 \sim B$ 8 の場合でも、 I_A/I_B が 0 . 0 0 1 以上のとき、放電容量が 2 3 0 0 m A h 以上であり、負極材料に黒鉛を用いた比較例 2 5 より高容量となった。また、 I_A/I_B が 0 . 1 以下のとき、容量維持率が 9 0 %以上であり、負極材料に黒鉛を用いた比較例 2 5 も容量維持率が高くなった。よって、実施例 $5 \sim 8$ の負極材料 B 2 、 B 3 、 B 6 、 B 7 のように I_A/I_B が 0 . 0 0 $1 \leq I_A/I_B \leq 0$. 1 の範囲のとき、高容量、かつ高い容量維持率が得られた。

実施例13~24および比較例13~24の各負極材料について広角 X線回折測定より得られたW値、ならびにこれらの負極材料および比較 例25の黒鉛からなる負極板を用いた各電池の初期容量および容量維持 率を表2に示した。

表 2

負極 材料	固相A	固相B	W (rad)	初期放電容量 (mAh)	容量維持率 (%)
121 A-4 D1	Sn	Ti ₂ Sn	0.2	2200	50
D2	Sn	Ti ₂ Sn	0.1	2255	90
D3	Sn	Ti ₂ Sn	0.001	2240	91
D4	Sn	Ti ₂ Sn	0.0005	1600	75
D5	Sn	Ti,Sn 固溶体	0.3	2295	45
D6	Sn	Ti, Sn 固溶体	0.1	2230	91
D7	Sn	Ti, Sn 固溶体	0.001	2210	92
D8	Sn	Ti, Sn 固溶体	0.0005	1580	73
E1	Si	NiSi ₂	0.2	2300	51
E2	Si	NiSi ₂	0.1	2355	91
E3	Si	NiSi ₂	0.001	2340	90
E4	Si	NiSi ₂	0.0005	1600	75
E5	Si	Si,Ni 固溶体	0.3	2395	46
E6	Si	Si,Ni 固溶体	0.1	2330	90
E7	Si	Si,Ni 固溶体	0.001	2310	91
E8	Si	Si,Ni 固溶体	0.0005	1580	72
F1	Zn	Mg_2Zn_{11}	0.2	2300	50
F2	Zn	Mg_2Zn_{11}	0.1	2355	90
F3	Zn	Mg_2Zn_{11}	0.001	2340	90
F4	Zn	Mg_2Zn_{11}	0.0005	1600	69
F5	Zn	Zn, Cd 固溶体	0.3	2395	47
F6	Zn	Zn, Cd 固溶体	0.1	2330	91
F7	Zn	Zn, Cd 固溶体	0.001	2310	92
F8	Zn	Zn, Cd 固溶体	0.0005	1580	63
黒鉛	_	_		1800	89

負極材料 D $1\sim$ D 8 では、固相 B が金属間化合物 T i $_2$ S n からなる材料 D $1\sim$ D 4 の場合でも、 T i と S n の固溶体からなる D $5\sim$ D 8 の場

合でも、Wが0.001ラジアン以上のとき、放電容量が2200 mAh以上であり、負極材料に黒鉛を用いた比較例25よりも高容量となった。また、W(ラジアン)が0.001 \le W \le 0.1の範囲のとき、容量維持率が90%以上となり、負極材料に黒鉛を用いた比較例25よりも容量維持率が高くなった。よって、実施例13~16の負極材料D2、D3、D6、D7のように、W(ラジアン)が0.001 \le W \le 0.1の範囲のとき、高容量、かつ高い容量維持率が得られた。

実施例25~31の各負極材料について広角X線回折測定より得られ

た I A / I B 値およびW値、ならびにこれらの負極材料および比較例 2 5 の黒鉛からなる負極を用いた各電池の初期容量および容量維持率を表 3 に示した。

表 3

負極 材料	固相A	固相B	I _A /I _B	W (rad)	初期放電容量 (mAh)	容量維持率 (%)
G1	Si	CoSi ₂	0.08	0.02	2350	90
G2	Si	NiSi ₂	0.05	0.01	2355	91
G3	Si	WSi ₂	0.08	0.03	2340	90
G4	Si	CuSi ₂	0.05	0.02	2315	91
G5	Si	TiSi ₂ (Fddd)	0.08	0.05	2500	92
G6	Si	TiSi ₂ (Cmcm)	0.08	0.05	2510	92
G7	Si	TiSi ₂ (Cmcm, Fddd 共存)	0.08	0.05	2505	92
黒鉛	_				1800	89

負極材料に固相AがSi、固相Bが表3に示す種々の金属間化合物からなり、 I_A/I_B が0.001 $\le I_A/I_B$ \le 0.1の範囲であり、W (ラジアン)が0.001 \le W \le 0.1の範囲である材料G1 \sim G7を用いた電池では、いずれも放電容量は2300mAh以上であり、容量維持率も90%以上であった。中でも固相BがTiSi2で、その結晶構造がCmcmもしくはFdddまたはその共存状態の材料G5 \sim G7を用いた場合が、放電容量が2500mAh以上と高容量で、容量維持率も92%と高いことがわかった。

よって、さらに高容量、かつ高容量維持率を得るためには、固相AがSi、固相BがTiおよびSiからなり、固相BがCmcmおよびFdddからなる群より選ばれた少なくとも一種の結晶構造を有するTiSi2を含む負極材料を用いることが好ましいことがわかった。

実施例32、33

SnとFeの混合粉末の代わりに、複合粒子における固相AとしてSiとSn(モル比1:2)が20重量部および固相BとしてCuSi2とCu6Sn5(モル比1:6)が80重量部となるようにCuSi2、Cu6Sn5、Si、およびSnの混合粉末を用い、メカニカルアロイングによる合成時間を14時間および12時間とした以外は、実施例1と同様の条件で、負極材料I2、I3を作製した。そして、負極材料A2の代わりに負極材料I2またはI3を用いた以外は実施例1と同様の方法により電池をそれぞれ作製した。

比較例26、27

メカニカルアロイングによる合成時間を15時間および11時間とした以外は、実施例32と同様の条件で、負極材料I1、I4を作製した。そして、負極材料A2の代わりに負極材料I1またはI4を用いた以外は実施例1と同様の方法により電池をそれぞれ作製した。

実施例34、35

SnとFeの混合粉末の代わりに、複合粒子における固相AとしてSiとSn(モル比1:2)が20重量部ならびに固相BとしてCuとSiの固溶体およびCuとSnの固溶体(モル比1:6)が80重量部となるようにCuとSiの固溶体、CuとSnの固溶体、Si、およびSnの混合粉末を用い、メカニカルアロイングによる合成時間を14時間および12時間とした以外は、実施例1と同様の条件で、負極材料I6、I7を作製した。そして、負極材料A2の代わりに負極材料I6 またはI7を用いた以外は実施例1と同様の方法により電池をそれぞれ

作製した。

比較例28、29

メカニカルアロイングによる合成時間を15時間および11時間とした以外は、実施例34と同様の条件で、負極材料I5、I8を作製した。そして、負極材料A2の代わりに負極材料I5またはI8を用いた以外は実施例1と同様の方法により電池をそれぞれ作製した。

実施例36、37

SnとFeの混合粉末の代わりに、複合粒子における固相AとしてSiとSn(モル比1:2)が20重量部ならびに固相BとしてCuSi2およびCuとSnの固溶体(モル比1:6)が80重量部となるようにCuSi2、CuとSnの固溶体、Si、およびSnの混合粉末を用い、メカニカルアロイングによる合成時間を14時間および12時間とした以外は、実施例1と同様の条件で、負極材料I10、I11を作製した。そして、負極材料A2の代わりに負極材料I10またはI11を用いた以外は実施例1と同様の方法により電池をそれぞれ作製した。

比較例30、31

メカニカルアロイングによる合成時間を15時間および11時間とした以外は、実施例36と同様の条件で、負極材料 I9、 I12を作製した。そして、負極材料 A2 の代わりに負極材料 I9 または I12 を用いた以外は実施例1と同様の方法により電池をそれぞれ作製した。

実施例38、39

SnとFeの混合粉末の代わりに、複合粒子における固相AとしてSiとSn(モル比1:2)が20重量部ならびに固相BとしてCuとSiの固溶体およびCu6Sn6(モル比1:6)が80重量部となるようにCuとSiの固溶体、Cu6Sn6、Si、およびSnの混合粉末を用い、メカニカルアロイングによる合成時間を14時間および12時間とした以外は、実施例1と同様の条件で、負極材料I14、I15を作製した。そして、負極材料A2の代わりに負極材料I14またはI15を用いた以外は実施例1と同様の方法により電池をそれぞれ作製した。

比較例32、33

メカニカルアロイングによる合成時間を15時間および11時間とした以外は、実施例38と同様の条件で、負極材料 I13、 I16 を作製した。そして、負極材料 A2 の代わりに負極材料 I13 または I16 を用いた以外は実施例1と同様の方法により電池をそれぞれ作製した。

なお、上記実施例 $34 \sim 39$ および比較例 $28 \sim 33$ における CuとSiまたは Snの固溶体は、CuとSiまたは Snとの原子比が 99:10 のものを用いた。

上記の実施例32~39および比較例26~33の負極材料I1~ I16について実施例1と同様に広角X線回折測定を行いW値を得た。

さらに、負極材料A2の代わりに負極材料 $I1\sim I16$ を用いた以外は実施例1と同様の方法により電池をそれぞれ作製した。これらの電池について実施例1と同様の方法により充放電サイクル試験を行った。

これらの評価結果を表4に示した。

		Ş	M	初期放電容量	容量維持率
	固相A	菌ħΒ Β	(rad)	(mAh)	(%)
	Si, Sn	CuSi2, Cu6Sn5	0.2	2280	53
	Si, Sn	CuSi ₂ , Cu ₆ Sn ₅	0.1	2290	91
	Si, Sn	CuSi ₂ , Cu ₆ Sn ₅	0.001	2230	06
	Si, Sn	CuSi ₂ , Cu ₆ Sn ₅	0.0005	2310	73
	Si, Sn	CuとSiの固溶体, CuとSnの固溶体	0.2	2279	53
	Si, Sn	CuとSiの固溶体, CuとSnの固溶体	0.1	2289	91
	Si, Sn	CuとSiの固溶体, CuとSnの固溶体	0.001	2229	06
	Si, Sn	CuとSiの固溶体, CuとSnの固溶体	0.0005	2309	73
	Si, Sn	CuSi2, CuとSnの固溶体	0.2	2281	53
	Si, Sn	CuSi2, CuとSnの固溶体	0.1	2291	91
	Si, Sn	CuSi2, CuとSnの固溶体	0.001	2231	06
1	Si, Sn	CuSi2, CuとSnの固溶体	0.0005	2311	73
1	Si, Sn	CuとSiの固溶体, CueSns	0.2	2282	53
	Si, Sn	Cu Si の固溶体, Cu sn s	0.1	2292	91
	Si, Sn	L CuとSiの固溶体, Cu ₆ Sn ₅	0.001	2232	06
	Si, Sn	Cu2Siの固溶体, Cu ₆ Sn ₅	0.0005	2312	73

表4

表4に示すように初期の放電容量はいずれも2200mAh以上であるが、容量維持率がW値に依存することがわかった。すなわち、W値が

 $0.001 \le W \le 0.1$ のときに、容量維持率が $90 \sim 91\%$ 程度と良好であることがわかった。

このように、固相AがSiとSnからなり、固相BがCu、SiおよびSnを含む固溶体または金属間化合物からなる複合粒子において、そのW値が $0.001 \le W \le 0.1$ を満たすものを負極材料として用いた時に高容量、かつ高い容量維持率が得られた。

実施例40、41

SnとFeの混合粉末の代わりに、複合粒子における固相AとしてSiとSn(モル比1:3)が20重量部および固相BとしてCuSi2とCu6Sn5(モル比1:6)が80重量部となるようにCuSi2、Cu6Sn5、Si、およびSnの混合粉末を用い、メカニカルアロイングによる合成時間を14時間および12時間とした以外は、実施例1と同様の条件で、負極材料I18、I19を作製した。そして、負極材料A2の代わりに負極材料I18またはI19を用いた以外は実施例1と同様の方法により電池をそれぞれ作製した。

比較例34、35

メカニカルアロイングによる合成時間を15時間および11時間とした以外は、実施例40と同様の条件で、負極材料 I17、 I20を作製した。そして、負極材料 A2 の代わりに負極材料 I17 または I20 を用いた以外は実施例1と同様の方法により電池をそれぞれ作製した。

実施例 4 2 、 4 3

Sn & EFe の混合粉末の代わりに、複合粒子における固相A として Si & ESn (モル比1:3) が 20 重量部ならびに固相B として EE と EE の混合粉末の代わりに、複合粒子における固相A として EE の混合粉末の代わりに、複合粒子における固相A として

Siの固溶体およびCuとSnの固溶体(モル比1:6)が80重量部となるようにCuとSiの固溶体、CuとSnの固溶体、Si、およびSnの混合粉末を用い、メカニカルアロイングによる合成時間を14時間および12時間とした以外は、実施例1と同様の条件で、負極材料I22、I23を作製した。そして、負極材料A2の代わりに負極材料I22またはI23を用いた以外は実施例1と同様の方法により電池をそれぞれ作製した。

比較例36、37

メカニカルアロイングによる合成時間を15時間および11時間とした以外は、実施例42と同様の条件で、負極材料 I21、 I24を作製した。そして、負極材料 A2 の代わりに負極材料 I21 または I24 を用いた以外は実施例 1 と同様の方法により電池をそれぞれ作製した。

実施例44、45

SnとFeの混合粉末の代わりに、複合粒子における固相AとしてSiとSn(モル比1:3)が20重量部ならびに固相Bとして $CuSi_2$ およびCuとSnの固溶体(モル比1:6)が80重量部となるように $CuSi_2$ 、CuとSnの固溶体、Si、およびSnの混合粉末を用い、メカニカルアロイングによる合成時間を14時間および12時間とした以外は、実施例1と同様の条件で、負極材料I26、I27を作製した。そして、負極材料A2の代わりに負極材料I26または I 27を用いた以外は実施例1と同様の方法により電池をそれぞれ作製した。

比較例38、39

メカニカルアロイングによる合成時間を15時間および11時間とした以外は、実施例44と同様の条件で、負極材料I25、I28を作製した。そして、負極材料A2の代わりに負極材料I25またはI28を用いた以外は実施例1と同様の方法により電池をそれぞれ作製した。

実施例 4 6 、 4 7

SnとFeの混合粉末の代わりに、複合粒子における固相AとしてSiとSn(モル比1:3)が20重量部ならびに固相BとしてCuとSiの固溶体およびCu6Sn6(モル比1:6)が80重量部となるようにCuとSiの固溶体、Cu6Sn6、Si、およびSnの混合粉末を用い、メカニカルアロイングによる合成時間を14時間および12時間とした以外は、実施例1と同様の条件で、負極材料I30、I31を作製した。そして、負極材料A2の代わりに負極材料I30またはI31を用いた以外は実施例1と同様の方法により電池をそれぞれ作製した。

比較例 4 0 、 4 1

メカニカルアロイングによる合成時間を15時間および11時間とした以外は、実施例46と同様の条件で、負極材料 129、 132 を作製した。そして、負極材料 A2 の代わりに負極材料 129 または 132 を用いた以外は実施例 12 と同様の方法により電池をそれぞれ作製した。

なお、上記実施例 $42\sim47$ および比較例 $36\sim41$ における C u と S i または S n の固溶体は、 C u と S i または S n との原子比が 99:1 のものを用いた。

上記の実施例40~47および比較例34~41の負極材料I17~ I32について実施例1と同様に広角X線回折測定を行いI_A/I_B値を 得た。

さらに、負極材料A2の代わりに負極材料I17~I32を用いた以外は実施例1と同様の方法により電池をそれぞれ作製した。これらの電池について実施例1と同様の方法により充放電サイクル試験を行った。これらの評価結果を表5に示す。

	容量維持率 (%)	(0)	52	91	90	72	51	91	90	70	50	91	06	74	54	91	96	71
	~~~~																	
	初期放電容量(m / b)	(11 47111)	2240	2250	2210	2286	2255	2288	2231	2299	2279	2288	2223	2302	2262	2282	2233	2305
	IA/IB		0.0008	0.001	0.1	0.3	0.0008	0.001	0.1	0.3	0.0008	0.001	0.1	0.3	0.0008	0.001	0.1	0.3
表5			CuSi2, Cu6Sn5	CuSi2, Cu6Sn5	CuSi2, Cu6Sn5	CuSi ₂ , Cu ₆ Sn ₅	Culsiの固溶体, Culsnの固溶体	Culsiの固溶体, Culsnの固溶体	Cu2Siの固溶体, Cu2Snの固溶体	Cutsiの固溶体, Cutsnの固溶体	CuSi ₂ , CuとSnの固溶体	Cu2Siの固溶体, Cu ₆ Sn ₅	Cu2Siの固溶体, Cu6Sn5	Cutsiの固溶体, Cuesns	CuとSiの固溶体, Cu ₆ Sn ₅			
	固相A		Si, Sn	Si, Sn	Si, Sn	Si, Sn	Si, Sn	Si, Sn	Si, Sn	Si, Sn	Si, Sn	Si, Sn	Si, Sn	Si, Sn	Si, Sn	Si, Sn	Si, Sn	Si, Sn
	負極材料		117	I 1 8	I 1 9	I 2 0	I 2.1	I 2 2	I 2 3	I 2 4	I 2 5		I 2 7	I 2 8	I 2 9	I 3 0	I 3 I	I 3 2

表 5 に示すように、初期の放電容量はいずれも 2 2 0 0 mAh以上であるが、容量維持率が I A/I B値に依存することがわかった。すなわち、

 $I_A/I_B$ 値が  $0.001 \le I_A/I_B \le 0.1$ の時に、容量維持率が 9.0 ~ 9.1%程度と良好であることがわかった。

このように、固相AがSiとSnからなり、固相BがCu、SiおよびSnを含む固溶体または金属間化合物からなる複合粒子において、その  $I_A/I_B$ 値が  $0.001 \le I_A/I_B \le 0.1$ を満たすものを負極材料として用いた時に高容量、かつ高い容量維持率が得られた。

実施例48~55および比較例42、43

SnとFeの混合粉末の代わりに、複合粒子における固相AとしてSiが20重量部および固相BとしてTiSi2が80重量部となるようにTiとSiの混合粉末を用い、表6に示す合成時間とした以外は、実施例1と同様の条件で実施例48~55の負極材料H2~H9、および比較例42、43の負極材料H1、H10を作製した。

上記の負極材料H1~H10について実施例1と同様に広角X線回折測定を行いW値を得た。

さらに、負極材料A2の代わりに負極材料H1~H10を用いた以外 は実施例1と同様の方法により電池をそれぞれ作製した。これらの電池 について実施例1と同様の方法により充放電サイクル試験を行った。

これらの評価結果を表6に示す。

表 6

 負極			合成時間	W	初期放電容量	容量維持率
材料	固相A	固相B	(hr)	(rad)	(mAh)	(%)
H1	Si	TiSi2	10.1	0.0008	2519	65
H2	Si	TiSi ₂	10.5	0.001	2521	90
Н3	Si	TiSi ₂	11.0	0.005	2520	92
H4	Si	TiSi ₂	11.5	0.008	2530	93
H5	Si	TiSi ₂	12.0	0.01	2525	93
Н6	Si	TiSi ₂	12.5	0.02	2535	93
Н7	Si	TiSi2	13.0	0.04	2532	93
Н8	Si	TiSi ₂	13.5	0.06	2528	92
Н9	Si	TiSi ₂	14.0	0.1	2522	90
H10	Si	TiSi ₂	14.5	0.2	2518	60

固相AがSi、固相BがTiSi2からなる複合粒子において、そのW値が0.001 $\le$ W $\le$ 0.1を満たすものを負極材料として用いた時に高容量、かつ高い容量維持率が得られた。さらに、容量維持率が93%と高くなるため、W値が0.008 $\le$ W $\le$ 0.04を満たすものが特に好ましいことがわかった。

なお、本発明の負極材料における固相Bが固相Aの構成元素以外の元素として、本実施例で用いられた各元素以外の2族元素、遷移元素、12族元素、13族元素、炭素を除く14族元素を含んだ場合でも同様の効果が得られる。

また、負極材料における構成元素の仕込み比率については、特に限定されたものではなく、相が2相になり、1相(固相B)の中にSn、Si、Znを主体としたもう一つ別の相(固相A)が分散した状態になればよく、仕込み組成を特に限定するものではない。

さらに、固相Aは、Sn、Si、Znのみからだけではなく、これら

以外の元素、例えば、O、C、N、S、Ca、Mg、Al、Fe、W、V、Ti、Cu、Cr、Co、P等の元素が微量に存在している場合も含まれる。

固相Bは実施例で示した固溶体や金属間化合物のみからなるだけではなく、それぞれ固溶体、金属間化合物を構成している以外の元素、例えば、O、C、N、S、Ca、Mg、Al、Fe、W、V、Ti、Cu、Cr、Co、P等の元素が微量に存在している場合も含まれる。

## 産業上の利用の可能性

以上のように、本発明によれば、サイクルにともなう微細化を抑制する負極材料を提供することができる。また、この負極材料を用いることにより、高容量であり、かつサイクル寿命特性に優れた非水電解質二次電池を提供することができる。

### 請 求 の 範 囲

1. リチウムの吸蔵・放出が可能な非水電解質二次電池用負極材料であって、

固相B中に固相Aが分散した複合粒子を含み、

前記固相Aは、ケイ素、スズ、および亜鉛からなる群より選ばれた少なくとも一種の元素を含み、

前記固相Bは、固相Aの構成元素と、長周期型周期表の2族元素、遷移元素、12族元素、13族元素および14族元素からなり、固相Aの構成元素と炭素を除く群より選ばれた少なくとも一種の元素とを含む固溶体または金属間化合物からなり、

前記複合粒子の広角 X線回折測定により得られる回折線において、固相Aに帰属される回折 X線の最大回折 X線強度 I Aと固相 B に帰属される回折 X線強度 I B の比 I A/I B は、

- 0.001≦I_A/I_B≤0.1であることを特徴とする非水電解質二次 電池用負極材料。
- 2. リチウムの吸蔵・放出が可能な非水電解質二次電池用負極材料であって、

固相B中に固相Aが分散した複合粒子を含み、

前記固相Aは、ケイ素、スズ、および亜鉛からなる群より選ばれた少なくとも一種の元素を含み、

前記固相Bは、固相Aの構成元素と、長周期型周期表の2族元素、遷移元素、12族元素、13族元素および14族元素からなり、固相Aの構成元素と炭素を除く群より選ばれた少なくとも一種の元素とを含む固溶体または金属間化合物からなり、

前記複合粒子の広角X線回折測定により得られる回折線において、固

相Aに帰属される回折X線の最大ピーク強度の半価幅W(ラジアン)が、 $0.01 \le W \le 0.1$ であることを特徴とする非水電解質二次電池用 負極材料。

- 3. 前記固相AがSiおよびSnからなり、前記固相BがCuならびにSnおよびSiの少なくとも一つを含む固溶体または金属化合物からなることを特徴とする請求の範囲第1または2項記載の非水電解質二次電池用負極材料。
- 4. 前記固相BがCuSi₂およびCu₆Sn₅からなることを特徴とする請求の範囲第3項記載の非水電解質二次電池用負極材料。
- 5. 前記固相BがCuSi2およびCuとSnを含む固溶体からなることを特徴とする請求の範囲第3項記載の非水電解質二次電池用負極材料。
- 6. 前記固相BがCuとSiを含む固溶体およびCu。Sn。からなることを特徴とする請求の範囲第3項記載の非水電解質二次電池用負極材料。
- 7. 前記固相BがCuとSiを含む固溶体およびCuとSnを含む固溶体からなることを特徴とする請求の範囲第3項記載の非水電解質二次電池用負極材料。
- 8. 前記固相AがSiからなり、前記固相BがTiおよびSiを含む 固溶体または金属間化合物からなることを特徴とする請求の範囲第1ま たは2項記載の非水電解質二次電池用負極材料。
- 9. 前記固相BがCmcmおよびFddddからなる群より選ばれた少なくとも一種の結晶構造を有するTiSi2を含むことを特徴とする請求の範囲第8項記載の非水電解質二次電池用負極材料。
- 10. リチウムの可逆的な電気化学反応が可能な正極、リチウム塩を有機溶媒に溶解させた非水電解質、および請求の範囲第1~9項のいずれかに記載の負極材料を含む負極を具備することを特徴とする非水電解

質二次電池。

FIG. 1



## INTERNATIONAL SEARCH REPORT

International application No. PCT/JP03/03190

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ H01M4/38, 4/02, 10/40						
According to International Patent Classification (IPC) or to both national classification a	and IPC					
B. FIELDS SEARCHED						
Minimum documentation searched (classification system followed by classification symbol Int.Cl ⁷ H01M4/38, 4/02, 10/40	pols)					
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched  Jitsuyo Shinan Koho 1922-1996 Toroku Jitsuyo Shinan Koho 1994-2003  Kokai Jitsuyo Shinan Koho 1971-2003 Jitsuyo Shinan Toroku Koho 1996-2003						
Electronic data base consulted during the international search (name of data base and, w	here practicable, search terms used)					
C. DOCUMENTS CONSIDERED TO BE RELEVANT						
Category* Citation of document, with indication, where appropriate, of the relev	vant passages Relevant to claim No.					
X EP 1109239 A1 (Matsushita Electric Indus A Co., Ltd.), 20 June, 2001 (20 06.01), Claim 1; Par. No. [0036]; table 1 & JP 2001-6677 A Claim 1; Par. Nos. [0026], [0048]	1-3,10 4-9					
X JP 2002-50353 A (Matsushita Electric Ind Co., Ltd.), 15 February, 2002 (15.02.02), Claim 1; Par. Nos. [0010], [0018] (Family: none)	dustrial 1-3,10 4-9					
X   Further documents are listed in the continuation of Box C.   See patent far	mily annex.					
"A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed  Date of the actual completion of the international search  priority date an understand the document of particular ("X" document of particular ("Y"	published after the international filing date or d not in conflict with the application but cited to principle or theory underlying the invention articular relevance; the claimed invention cannot be el or cannot be considered to involve an inventive locument is taken alone articular relevance; the claimed invention cannot be envolve an inventive step when the document is one or more other such documents, such is one or more other such documents, such is one of the same patent family  the international search report  2003 (03.06.03)					
Name and mailing address of the ISA/ Japanese Patent Office  Facsimile No.  Telephone No.						

# INTERNATIONAL SEARCH REPORT

International application No. PCT/JP03/03190

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	JP 2000-30703 A (Matsushita Electric Industrial Co., Ltd.), 28 January, 2000 (28.01.00), Claim 1; Par. Nos. [0053] to [0057] (Family: none)	1-10
A		1-10

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. Cl⁷ H01M4/38, 4/02,10/40

調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl7 H01M4/38, 4/02, 10/40

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1922-1996年

日本国公開実用新案公報

1971-2003年

日本国登録実用新案公報

1994-2003年

日本国実用新案登録公報

1996-2003年

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

C. 関連する	ると認められる文献	
引用文献の		関連する
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
X	EP 1109239 A1(Matsushita Electric Industrial Co.,Ltd.),	1-3, 10
A	2001.06.20, 請求項1,[0036], Table1	4-9
	& JP 2001-6677 A,請求項1,【0026】,【0048】	
X	JP 2002-50353 A(松下電器産業株式会社), 2002. 02. 15,	1-3, 10
A	請求項1, 【0010】, 【0018】 (ファミリーなし)	4-9
A	JP 2000-30703 A(松下電器産業株式会社),2000.01.28, 請求項1,【0053】-【0057】(ファミリーなし)	1-10

#### X C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの

電話番号 03-3581-1101 内線 3477

「&」同一パテントファミリー文献

国際調査を完了した日 国際調査報告の発送日 14.05.03 03.06.03 国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 4 X 3132 日本国特許庁(ISA/JP) 植前 充司 郵便番号100-8915 東京都千代田区霞が関三丁目4番3号

□(続き)	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	JP 2001-243946 A (松下電器産業株式会社),2001.09.07, 請求項1,【0059】 (ファミリーなし)	1-10
i		
,		
!		
		ļ