Dynamic Programming Chain Matrix Multiply

(Class 20)

- Let m[i,j] denote the minimum number of multiplications needed to compute $A_{i...j}$.
- Where $1 \le i \le j \le n$ (i and j are number of matrices).
- The optimum can be described by the following recursive formulation.
 - If i = j, there is only one matrix and thus m[i, i] = 0 (the diagonal entries).
 - If i < j, we are asking for the product $A_{i...j}$.
 - This can be split by considering each k, $i \le k < j$, as $A_{i...k}$ times $A_{k+1...j}$.

- The optimum time to compute $A_{i...k}$ is m[i,k] and optimum time for $A_{k+1...j}$ is in m[k+1,j].
- Since $A_{i...k}$ is a $p_{i-1} \times p_k$ matrix and $A_{k+1...j}$ is $p_k \times p_j$ matrix, the time to multiply them is $p_{i-1} \times p_k \times p_j$.
- This suggests the following recursive rule:

$$\begin{split} m[i,i] &= 0 \\ m[i,j] &= \min_{i < k < j} (m[i,k] + m[k+1,j] + p_{i-1}p_kp_j) \end{split}$$

- We do not want to calculate m entries recursively.
- ullet So how should we proceed? We will fill m along the diagonals.
- Set all m[i, i] = 0 using the base condition.
- Compute cost for multiplication of a sequence of 2 matrices.

- These are m[1,2], m[2,3], m[3,4], ..., m[n-1,n].
- For example, m[1,2] is:

$$m[1,2] = m[1,1] + m[2,2] + p_0 \cdot p_1 \cdot p_2$$

• For example, the *m* for product of 5 matrices at this stage would be:

m[1, 1]	←m[1, 2] ↓			
	m[2, 2]	\leftarrow m[2,3] \downarrow		
		m[3, 3]	\leftarrow m[3,4] \downarrow	
			m[4, 4]	\leftarrow m[4,5] \downarrow
				m[5, 5]

- Next, we compute cost of multiplication for sequences of three matrices.
- These are $m[1,3], m[2,4], m[3,5], \dots, m[n-2,n]$.
- For example, m[1,3] is:

$$m[1,3] = \min \begin{cases} m[1,1] + m[2,3] + p_0 \cdot p_1 \cdot p_3 \\ m[1,2] + m[3,3] + p_0 \cdot p_2 \cdot p_3 \end{cases}$$

- We repeat the process for sequences of four, five and higher number of matrices.
- The final result will end up in m[1, n].

• Example: We want to find the optimal multiplication order for:

$$A_1 \cdot A_2 \cdot A_3 \cdot A_4 \cdot A_5$$

(5×4) (4×6) (6×2) (2×7) (7×3)

- We will compute the entries of the m matrix starting with the base condition.
- We first fill that main diagonal using base case:

0				
	0			
		0		
			0	
				0

 Next, we compute the entries in the first super diagonal, i.e., the diagonal above the main diagonal:

$$m[1,2] = m[1,1] + m[2,2] + p_0 \cdot p_1 \cdot p_2 = 0 + 0 + (5 \cdot 4 \cdot 6) = 120$$

$$m[2,3] = m[2,2] + m[3,3] + p_1 \cdot p_2 \cdot p_3 = 0 + 0 + (4 \cdot 6 \cdot 2) = 48$$

$$m[3,4] = m[3,3] + m[4,4] + p_2 \cdot p_3 \cdot p_4 = 0 + 0 + (6 \cdot 2 \cdot 7) = 84$$

$$m[4,5] = m[4,4] + m[5,5] + p_3 \cdot p_4 \cdot p_5 = 0 + 0 + (2 \cdot 7 \cdot 3) = 42$$

• The matrix m now looks as follows after the product of two matrices (first super diagonal):

0	120			
	0	48		
		0	84	
			0	42
				0

- We now proceed to the second super diagonal.
- This time, however, we will need to try two possible values for k.
- For example, there are two possible splits for computing m[1,3].

We will choose the split that yields the minimum:

$$m[1,3] = m[1,1] + m[2,3] + p_0 \cdot p_1 \cdot p_3 = 0 + 48 + (5 \cdot 4 \cdot 2) = 88$$

 $m[1,3] = m[1,2] + m[3,3] + p_0 \cdot p_2 \cdot p_3 = 120 + 0 + (5 \cdot 6 \cdot 2) = 180$
the minimum $m[1,3] = 88$ occurs with $k = 1$

• Similarly, for m[2, 4] and m[3, 5]:

$$m[2,4] = m[2,2] + m[3,4] + p_1 \cdot p_2 \cdot p_4 = 0 + 48 + (4 \cdot 6 \cdot 7) = 252$$

 $m[2,4] = m[2,3] + m[4,4] + p_1 \cdot p_3 \cdot p_4 = 48 + 0 + (4 \cdot 2 \cdot 7) = 104$
the minimum $m[2,4] = 104$ at $k = 3$

$$m[3,5] = m[3,3] + m[4,5] + p_2 \cdot p_3 \cdot p_5 = 0 + 42 + (6 \cdot 2 \cdot 3) = 78$$

 $m[3,5] = m[3,4] + m[5,5] + p_2 \cdot p_4 \cdot p_5 = 84 + 0 + (6 \cdot 7 \cdot 3) = 210$
the minimum $m[3,5] = 78$ at $k = 3$

• With the second super diagonal computed, the m matrix looks as follow:

0	120	88		
	0	48	104	
		0	84	78
			0	42
				0

- We repeat the process for the remaining diagonals.
- However, the number of possible splits (values of k) increases:

$$m[1,4] = m[1,1] + m[2,4] + p_0 \cdot p_1 \cdot p_4 = 0 + 104 + (5 \cdot 4 \cdot 7) = 244$$

 $m[1,4] = m[1,2] + m[3,4] + p_0 \cdot p_2 \cdot p_4 = 120 + 84 + (5 \cdot 6 \cdot 7) = 414$
 $m[1,4] = m[1,3] + m[4,4] + p_0 \cdot p_3 \cdot p_4 = 88 + 0 + (5 \cdot 2 \cdot 7) = 158$
the minimum $m[1,4] = 158$ at $k = 3$

 $m[2,5] = m[2,2] + m[3,5] + p_1 \cdot p_2 \cdot p_5 = 0 + 78 + (4 \cdot 6 \cdot 3) = 150$ $m[2,5] = m[2,3] + m[4,5] + p_1 \cdot p_3 \cdot p_5 = 48 + 42 + (4 \cdot 2 \cdot 3) = 114$ $m[2,5] = m[2,4] + m[5,5] + p_1 \cdot p_4 \cdot p_5 = 104 + 0 + (4 \cdot 7 \cdot 3) = 188$ the minimum m[2,5] = 114 at k = 3 • The matrix m at this stage is:

0	120	88	158	
	0	48	104	114
		0	84	78
			0	42
				0

That leaves the m[1,5] which can now be computed:

$$m[1,5] = m[1,1] + m[2,5] + p_0 \cdot p_1 \cdot p_5 = 0 + 114 + (5 \cdot 4 \cdot 3) = 174$$

 $m[1,5] = m[1,2] + m[3,5] + p_0 \cdot p_2 \cdot p_5 = 120 + 78 + (5 \cdot 6 \cdot 3) = 288$
 $m[1,5] = m[1,3] + m[4,5] + p_0 \cdot p_3 \cdot p_5 = 88 + 42 + (5 \cdot 2 \cdot 3) = 160$
 $m[1,5] = m[1,4] + m[5,5] + p_0 \cdot p_4 \cdot p_5 = 158 + 0 + (5 \cdot 7 \cdot 3) = 263$
the minimum $m[1,5] = 160$ at $k = 3$

• We thus have the final cost matrix m as:

0	120	88	158	160
0	0	48	104	114
0	0	0	84	78
0	0	0	0	42
0	0	0	0	0

• Here is the order in which m entries are calculated:

0	1	5	8	10
0	0	2	6	9
0	0	0	3	7
0	0	0	0	4
0	0	0	0	0

• And the split k values that led to a minimum m[i,j] value:

0	1	1	3	3
	0	2	3	3
		0	3	3
			0	4
				0

- Based on the computation, the minimum cost for multiplying the five matrices is 160 and the optimal.
- So, the optimal order for multiplication is:

$$((A_1(A_2A_3))(A_4A_5))$$

• This can be represented as a binary tree:

Optimum matrix multiplication order for the five matrices example