Python Basics: Data wrangling with Pandas

Dr. Binzheng Zhang
Department of Earth Sciences

Review of Lecture 9

In Lecture 9, we learned:

- Basics concepts of file system
- Intro to Pandas load data
- The concept of a data frame

In Lecture 10, you will learn:

- Data wrangling with Pandas: filtering, cleaning
- Dealing with multiple data files: the glob module
- Format strings

Recall in Lecture 9, we used the head() and tail() functions

Out[1]:

	ear	Month	Day	Hour	Lat.	Long.	Pressure (hPa)	Wind	(kt)	Class	
0	2018	10	20	18	8.4	160.7	1008		0	0.0	Observations 1:
1	2018	10	21	0	8.5	159.9	1008		0	2.0	quite a few zeros in the wind da
2	2018	10	21	6	8.6	158.9	1004		0	2.0	
3	2018	10	21	12	8.7	158.0	1006		0	2.0	
4	2018	10	21	18	8.9	157.1	1004		0	2.0	

In [2]: 1 yutu.tail()

Out[2]:

	ear	Month	Day	Hour	Lat.	Long.	Pressure (hPa)	Wind (kt)	Class
49	2018	11	2	0	20.7	116.4	1008	35	3.0
50	2018	11	2	6	20.7	116.1	1008	200	2.0
51	2018	11	2	12	20.5	116.0	1012	0	NaN
52	2018	11	2	18	20.2	115.9	1012	0	NaN
53	2018	11	3	0	19.9	115.7	1014	0	NaN

Observations 2:

NaN (Not a Number) in the data

More tricks on the head() and tail() functions

Or display multiple columns by specifying the column names as a list:

```
In [4]: 1 yutu[["Pressure (hPa)","Wind (kt)","Class"]].head()
```

Out[4]:

	Pressure (hPa)	Wind (kt)	Class
0	1008	0	0.0
1	1008	0	2.0
2	1004	0	2.0
3	1006	0	2.0
4	1004	0	2.0

You can show the data rows of selected columns using the head() or tail() function

Outliers in a dataset

Recall the plot in the previous lecture, we made a plot to show the relationship between Pressure and Wind speed during a Typhoon track:

Outliers in a dataset

Here's another example you've worked on yesterday:

ontinent	C	Population	Life Exp	GDP	
Europe		4.627926	80.196	49357.19017	0
Asia		2.505559	77.588	47306.98978	1
Asia		4.553009	79.972	47143.17964	2
America	North	301.139947	78.242	42951.65309	3
Europe		4.109086	78.885	40675.99635	4

Observation

These data points are way out of the range, why?

Find outliers in your data set: histograms

Out[14]:

in	onti	nt	ıtir	ner	ηt
ır	Eu	E	Eur	rop	е
,			,	Asi	ia
1			,	Asi	ia
ie	Am	٩m	me	eric	a
ır	Eu	E	Eur	rop	е

Outliers in a dataset

Typical data outliers:

NaNs: invalid data or measurements

zeros: possibly bad data

out of range: way too large or too small

non-physical data: e.g., negative age, negative pressure

To remove/fix these bad data points in a data file, it's called "data wrangling", it's a basic step towards sophisticated data analysis. In lots of data analysis practices, preparing the datasets for processing, is more than 50% of the job!

Data wrangling is relatively straightforward in Pandas (could be tricky), and you improve as you practise more.

Data Wrangling: Remove NaNs

Recall that there are a couple of NaNs in the last a few lines of the Yutu dataFrame:

```
In [6]: 1 yutu = pd.read_excel("datasets/Yutu.xlsx")
2 yutu.tail()
```

Out[6]:

	ear	Month	Day	Hour	Lat.	Long.	Pressure (hPa)	Wind (kt)	Class
49	2018	11	2	0	20.7	116.4	1008	35	3.0
50	2018	11	2	6	20.7	116.1	1008	200	2.0
51	2018	11	2	12	20.5	116.0	1012	0	NaN
52	2018	11	2	18	20.2	115.9	1012	0	NaN
53	2018	11	3	0	19.9	115.7	1014	0	NaN

Let's drop the NaN data rows using the dropna() function:

```
In [7]:
```

```
1 yutu = pd.read_excel("datasets/Yutu.xlsx")
```

2 yutu_no_nan = yutu.dropna()

3 yutu_no_nan.tail()

Function: dropna() Syntax: DataFram.dropna()

Out[7]:

	ear	Month	Day	Hour	Lat.	Long.	Pressure (hPa)	Wind (kt)	Class
46	2018	11	1	6	19.9	116.8	994	45	3.0
47	2018	11	1	12	20.2	116.8	994	45	3.0
48	2018	11	1	18	20.6	116.8	1000	40	3.0
49	2018	11	2	0	20.7	116.4	1008	35	3.0
50	2018	11	2	6	20.7	116.1	1008	200	2.0

What the dropna() function does is just simply **remove** all the rows with NaNs in them

Data Wrangling: Change NaNs to something else

You could also fill the NaNs with zeros by using the fillna() function with an argument 0:

```
In [30]:
             yutu = pd.read excel("datasets/Yutu.xlsx")
           2 yutu.tail()
Out[30]:
              ear Month Day Hour Lat. Long. Pressure (hPa) Wind (kt) Class
          49 2018
                     11
                          2
                               0 20.7 116.4
                                                  1008
                                                           35
                                                                3.0
                                                                             Function: fillna(arg)
                                                          200
                                                                2.0
             2018
                     11
                          2
                               6 20.7 116.1
                                                  1008
                                                                        Syntax: DataFram.fillna(arg)
```

NaN 0 2018 11 12 20.5 116.0 1012 **52** 2018 11 2 18 20.2 115.9 1012 NaN **53** 2018 0 19.9 115.7 1014 NaN 11 3

In [29]: 1 yutu_no_nan = yutu.fillna(0)
2 yutu no nan.tail()

Out[29]:

	ear	Month	Day	Hour	Lat.	Long.	Pressure (hPa)	Wind (kt)	Class
49	2018	11	2	0	20.7	116.4	1008	35	3.0
50	2018	11	2	6	20.7	116.1	1008	200	2.0
51	2018	11	2	12	20.5	116.0	1012	0	0.0
52	2018	11	2	18	20.2	115.9	1012	0	0.0
53	2018	11	3	0	19.9	115.7	1014	0	0.0

What the dropna() function does is just simply **replaces** all the rows with NaNs to be arg

Data Wrangling: Filter inappropriate (non-physical) data

In the Typhoon Yutu data, it is clear that there are a couple of outliers in the wind speed data:

- a bunch of zeros and,
- one data point with a wind speed of 200!

Now we need to do something to exclude (or filter) these data points before doing real analysis!

Data Wrangling: Filter inappropriate (non-physical) data

Method 1, The NumPy way (column access):

Steps:

- 1. Load file into Python as a data frame
- 2. Remove NaNs
- 3. Use relational operation to set "conditions" for good data points
- 4. Apply the "conditions" to the column data using index slicing
- 5. Processing!

Data Wrangling: Filter inappropriate (non-physical) data

Method 2, The .loc() function (row access):

```
In [11]: 1  yutu = pd.read_excel("datasets/Yutu.xlsx") # load data

yutu = yutu.dropna() # drop NaNs first

yutu_good = yutu.loc[ (yutu["Wind (kt)"]>0) & (yutu["Wind (kt)"]<=150) ]

# now lets plot the data in the new data Frame called yutu_good

plt.scatter(yutu_good["Pressure (hPa)"], yutu_good["Wind (kt)"],yutu_good["Class"]*20)

plt.xlabel('Pressure, hPa')

plt.ylabel('Wind, kt')

plt.title("Pressure versus Wind")

plt.show()</pre>
```


Steps:

- 1. Load file into Python as a data frame
- 2. Remove NaNs
- 3. Use loc() function with relational operators to the columns to select data with appropriate range
- 4. Processing!

Data Wrangling: The .cut() function

For numeric data points, we can use the pd.cut() function to bin the datasets, for example:

```
yutu = pd.read excel("datasets/Yutu.xlsx") # load data
   yutu = yutu.dropna() # remove NaN first
   yutu good = yutu.loc[ (yutu["Wind (kt)"]>0) & (yutu["Wind (kt)"]<=150) ] # filter data
   bins = [0, 30, 60, 90, 120,150] # define 5 groups (bins) based on the wind speed
   group names = ['Calm','Light','Medium','Large','Super'] # define group names
   color names = ['blue', 'green', 'yellow', 'red', 'magenda'] # set colors to each group
   yutu good['Danger']=pd.cut(yutu good['Wind (kt)'],bins,labels=group names) # bin the data, create a new column
10
   yutu good['Color']=pd.cut(yutu good['Wind (kt)'],bins,labels=color names) # bin the data, create a new column
12
   # now let's color the bubbles!
13
   plt.scatter(yutu_good["Pressure (hPa)"], yutu_good["Wind (kt)"],yutu_good["Class"]*20, yutu_good.Color)
   plt.show()
15
16
   yutu good.head()
17
```


areen									Month		
green	Light	3.0	35	1002	156.1	9.4	0	22	10	2018	5
green	Light	3.0	40	996	155.2	10.2	6	22	10	2018	6
green	Light	3.0	45	992	154.0	10.9	12	22	10	2018	7
green	Light	4.0	50	990	152.8	11.3	18	22	10	2018	8
yellow	Medium	5.0	65	975	151.8	11.6	0	23	10	2018	9
9	Light Light Light	3.0 3.0 4.0	40 45 50	996 992 990	155.2 154.0 152.8	10.2 10.9 11.3	6 12 18	22 22 22	10 10 10	2018 2018 2018	6 7 8

Data Wrangling: Filter Rows based on Conditions (sub-setting your data Frame)

Now let's see the GDP versus Life expectancy full dataset:

Out[13]:

	country	year	рор	continent	lifeExp	gdpPercap
0	Afghanistan	1952	8425333.0	Asia	28.801	779.445314
1	Afghanistan	1957	9240934.0	Asia	30.332	820.853030
2	Afghanistan	1962	10267083.0	Asia	31.997	853.100710
3	Afghanistan	1967	11537966.0	Asia	34.020	836.197138
4	Afghanistan	1972	13079460.0	Asia	36.088	739.981106

- Data frame is named gdp (not a good name though)
- The data file contains data of 10 years for each country
- Can filter the data by either year or continent
 - by year: gdp[Column][gdp.year==2007]
 - by continent: gdp[Column][gdp.continent=='Asia']
- Process the data!

```
file = "datasets/gdp_data.txt"
gdp = pd.read_csv(file)

gdpPC = gdp.gdpPercap[gdp.year==2007] # select year 2007
life = gdp['lifeExp'][gdp.year==2007]
pop = gdp["pop"][gdp.year==2007]/1000000

plt.scatter(gdpPC,life,pop)
plt.xlabel('GDP per Capita, USD',fontsize=16)
plt.ylabel('Year',fontsize=16)
plt.title('GDP versus Life Expectancy',fontsize=18)
plt.xscale('log')
```


Data Wrangling: Filter Rows based on Conditions (sub-setting your data Frame)

Now let's re-do the GDP versus life expectancy plot as you've done in HW 3:

```
file = "datasets/gdp data.txt"
   gdp = pd.read csv(file)
   gdpPC = gdp.gdpPercap[(gdp.year==2007)&(gdp.continent=='Asia')]
   life = gdp['lifeExp'][(gdp.year==2007)&(gdp.continent=='Asia')]
   pop = gdp["pop"][(gdp.year==2007)&(gdp.continent=='Asia')]/1000000
   plt.scatter(gdpPC, life, pop, color='r', alpha=0.5, label='Asia')
   plt.text(4500,77,'China',fontsize=14)
   plt.text(2100,68,'India',fontsize=14)
   plt.xscale('log')
   plt.xlabel('GDP per Capita, USD', fontsize=16)
   plt.ylabel('Year', fontsize=16)
   plt.title('GDP versus Life Expectancy', fontsize=18)
15
   plt.xscale('log')
   plt.legend()
   gdp.head()
```

	country	year	рор	continent	lifeExp	gdpPercap
0	Afghanistan	1952	8425333.0	Asia	28.801	779.445314
1	Afghanistan	1957	9240934.0	Asia	30.332	820.853030
2	Afghanistan	1962	10267083.0	Asia	31.997	853.100710
3	Afghanistan	1967	11537966.0	Asia	34.020	836.197138
4	Afghanistan	1972	13079460.0	Asia	36.088	739.981106

 Now we are doing more filtering to the datasets by using two conditions simultaneously.

Think: How to loop over all the continents use a for-loop?

Loading multiple Excel files (or csv, txt files)

Up to now, we have only opened single files and put their data into individual dataframes. Sometimes we will need to process a bunch of datasets from several Excel files in Python. How to do it?

• The long way: type in the _filenames of individual data file and copy-paste the processing codes

Out[35]:

	fname	age	grade
0	Baker	14	90
1	Josephine	19	100
2	Calvin	15	66
3	Aretha	17	84
4	Britanney	19	66

The long way seems to work fine. What's the problem?

Loading multiple Excel files (or csv, txt files)

Up to now, we have only opened single files and put their data into individual dataframes. Sometimes we will need to process a bunch of datasets from several Excel files in Python. How to do it?

The short way: let Python do it automatically

we use the "glob" module

```
In [22]: import glob

2
3 files = glob.glob("datasets/data*.xlsx") # generate a list of all the files with name pattern data*.xlsx

4 print(files)
```

['datasets/data3.xlsx', 'datasets/data2.xlsx', 'datasets/data1.xlsx']

"loop" over files using the "glob" module:

```
In [26]: 1 all_data = pd.DataFrame() # create an empty data frame

for f in files:
    df = pd.read_excel(f)
    print(f)
    all_data = all_data.append(df,ignore_index=True)

all_data.head()
```

datasets/data3.xlsx datasets/data2.xlsx datasets/data1.xlsx

Out[26]:

	fname	age	grade
0	Aretha	18	86
1	Amber	18	65
2	Serena	14	71
3	Jada	14	99
4	Althea	19	100

Format numeric strings in Python

Remember how the output of the print statement when printing float numbers, it prints out all the decimal places, which is very ugly. We can do better! To show only the first decimal place we can use *string formatting*.

The structure of a formatting statement is:

rounded: 3.14

```
'%FMT'%(DATA),
```

where **FMT** is a 'format string' and **DATA** is the variable name whose value we want to format. Here is an example in which the FMT is:

3.2f.

The first number (3) is the number of characters in the output. The second number (2) is the number of characters AFTER the decimal place. The 'f' means that DATA is a floating point variable.

Other format strings include: %s for a string, %i for an integer, %e for 'scientific notation'.

For example:

