Modelling sympatric speciation in a bird population

Disruptive selection at the population level

For a male with fitness f

Modelling sympatric speciation in a bird population

A female with fitness **f**

Investment and choosiness have associated costs.

Female finding a partner $\alpha \exp(-ap^2)$ Male survival $\alpha \exp(-bt^2)$ Probability of ith female mating with jth male $\alpha \exp(\alpha p_i t_j q_j)$, where ' α ' is the strength of sexual selection

Genetics of the starting population

Females:

$$N_p = 20$$
, $\Delta p = 0.001$

$$N_t = 20$$
, $\Delta t = 0.005$

Males:

$$N_{t}=20$$
, $\Delta t=0.005$

$$N_p = 20$$
, $\Delta p = 0.001$

Assumptions in the model

- No dominance
- No epistasis
- No linkage
- No sex-linked traits
- No mutation
- Recombination does not give rise to new alleles.