Alexandre Hafemeister Engineering Portfolio

McGill University
BEng Electrical Engineering
Junior

MIPI D-PHY Termination Board

- Project taken on for Introspect Technology as an intern
- MIPI D-PHY is a physical layer for CSI/DSI (Camera and Display Serial Interfaces)
- Designed a 4-layer PCB, with ~350 components, using Cadence OrCAD design tools
- The board is designed to allow active probing of high-speed D-PHY transmitter signals by providing proper D-PHY receiver termination
 - The FPGA detects when the transmitter data goes from low power to high-speed and controls the RF switch
 - RF switch connects the D-PHY termination impedance to the input for high-speed mode and disconnects it for low power mode (unterminated)
 - User can choose whether they want automatic termination or manual, in which case they can control the low power threshold voltage
- Based on the already existing design of Introspect's C-PHY Termination Board
 - C-PHY is trio-based (3 lanes), while D-PHY is differential data and differential clock (4 lanes), requiring significant changes to implement
 - Completely revisited the design by changing the high-speed routing type, termination, RF switches, FPGA pinout, voltage regulators, and general layout of the board

Board Layout

Input \rightarrow RF switch \rightarrow Termination configuration is identical for the five channels, only represented once above

high-speed microstrip trace

Kill Switch and Low-Voltage Detection

- Circuit developed as a team of three in the context of McGill Robotics
- This circuit sheet is part of the power board design for the Autonomous Underwater Vehicle (AUV)
- Power board PCB will be developed when all power circuits are designed
- The purpose of the circuit is to cut-off the battery from the power board if a kill switch is pressed or if low battery voltage is detected
 - Battery connects to circuit through JI and can be damaged if voltage goes below 14.8V
 - U3 comparator outputs BAT_OK signal as a digital low if VBAT < 14.8V
 - U2 AND gate outputs PWR_OK as a digital high to connect battery to power board
 - U2 AND gate outputs a digital low if either: CPU sends digital low signal, battery voltage under 14.8V, or kill switch is pressed
 - If PWR_OK is a digital low output, the transistors disconnect the battery from the rest of the power board

Schematic

