21. If S^2 is the sample variance based on a sample of size n from a normal population, we know that $(n-1)S^2/\sigma^2$ has a χ^2_{n-1} distribution. The conjugate prior for σ^2 is the inverted gamma PDF, $IG(\alpha, \beta)$ given by

$$\pi(\sigma^2) = \frac{1}{\Gamma(\alpha)\beta^\alpha} \frac{1}{(\sigma^2)^{\alpha+1}} \exp\left\{-\frac{1}{\beta\sigma^2}\right\}, 0 < \sigma^2 < \infty$$

where $\alpha > 0$ is the shape parameter and $\beta > 0$ is the scale parameter.

- (a) If Y is distributed as inverted gamma with shape parameter α and scale parameter β , use transformation methods to show that $W = Y^{-1}$ has a gamma distribution with shape parameter α and scale parameter β .
- (b) Show that the posterior distribution of σ^2 is the inverted gamma distribution with shape and scale parameters given by

$$\frac{n-1}{2} + \alpha$$
, and $\left\{ \frac{(n-1)S^2}{2} + \frac{1}{\beta} \right\}^{-1}$,

respectively.

(c) Based on observing $S^2 = s^2$, a decision about the hypothesis

$$H_0: \sigma \leq 1 \text{ versus } H_1: \sigma > 1$$

is to be made. Find the region of the sample space for which $P(\sigma \le 1 \mid S^2 = s^2) > P(\sigma > 1 \mid S^2 = s^2)$, the region for which a Bayes test will decide $\sigma \le 1$. Hint: Consider a transformation of the posterior that will result in a gamma distribution with scale parameter equal to two.

- (d) For the same hypotheses, derive the likelihood ratio test. You may use that $\hat{\mu} = \bar{X}$ is the MLE of the mean and $\hat{\sigma}^2 = (n-1)S^2/n$ is the MLE of the variance without proof.
- (e) Compare the region in part (c) with the acceptance region of the likelihood ratio test. Is there any choice of prior parameters for which the two regions would agree?