230 Séries de nombres réels ou complexes. Comportement des restes ou des sommes partielles des séries numériques. Exemples.

I - Séries réelles et complexes

1. Notion de série et convergence

Soit $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . Muni de sa norme usuelle |.|, \mathbb{K} est un espace de Banach.

Définition 1. Soit (u_n) une suite à valeurs dans \mathbb{K} .

— On appelle **série** de terme général u_n la suite (S_n) définie par

$$\forall n \in \mathbb{N}, S_n = u_0 + \cdots + u_n$$

On note cette série $\sum u_n$.

- u_n s'appelle le **terme** d'indice n.
- S_n s'appelle la **somme partielle** d'indice n.

Définition 2. En reprenant les notations précédentes, on dit que $\sum u_n$ converge si la suite (S_n) converge. Dans ce cas, la limite s'appelle la **somme** de la série, et on la note $\sum_{n=0}^{+\infty} u_n$.

Définition 3. On appelle **reste** d'ordre n d'une série convergente $\sum u_n$ l'élément R_n défini par

$$R_n = \sum_{k=0}^{+\infty} u_k - \sum_{k=0}^{n} u_k = \sum_{k=n+1}^{+\infty} u_k$$

Exemple 4. Soit $q \in \mathbb{C}$. Alors $\sum q^n$ converge $\iff |q| < 1$. Dans ce cas :

- La somme partielle d'indice n est égale à $\frac{1-q^{n+1}}{1-q}$.
- La somme de la série est égale à $\frac{1}{1-q}$.
- Le reste d'ordre n de $\sum q^n$ est égal à $\frac{q^n}{1-q}$.

Proposition 5. Si $\sum u_n$ converge, alors $\lim_{n\to+\infty} u_n = 0$.

[AMR11] p. 81

[GOU20]

p. 208

Contre-exemple 6. La réciproque est fausse, par exemple en considérant la suite (u_n) définie pour tout $n \in \mathbb{N}$ par $u_n = \ln(1 + \frac{1}{n})$, on a $\sum_{k=1}^n u_k = \ln(n+1) \longrightarrow_{n \to +\infty} +\infty$.

Proposition 7. Muni des opérations :

$$--\forall \lambda \in \mathbb{K}, \forall (u_n) \in \mathbb{K}^{\mathbb{N}}, \lambda \sum u_n = \sum (\lambda u_n),$$

l'ensemble des séries numériques est un espace vectoriel sur $\mathbb K$ dont l'ensemble des séries convergentes est un sous-espace vectoriel.

Proposition 8 (Critère de Cauchy pour les séries). Une série $\sum u_n$ converge si et seulement si

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n \geq N, \forall p \in \mathbb{N}, \left| \sum_{k=0}^{p} u_{n+k} \right| < \epsilon$$

Définition 9. On dit que $\sum u_n$ est **absolument convergente** si $\sum |u_n|$ est convergente.

Théorème 10. Tout série à valeurs dans K absolument convergente est convergente.

Ce dernier théorème justifie de s'intéresser plus particulièrement aux séries à termes positifs.

2. Séries à termes positifs

a. Comparaison

Proposition 11. Une série à termes positifs converge si et seulement si la suite des sommes partielles est majorée.

Corollaire 12. On considère deux séries réelles $\sum u_n$ et $\sum v_n$ telles que $\forall n \in \mathbb{N}$, $0 \le u_n \le v_n$. Alors :

- (i) Si $\sum v_n$ converge, $\sum u_n$ converge.
- (ii) Si $\sum u_n$ diverge, $\sum v_n$ diverge.

Proposition 13. On considère deux séries $\sum u_n$ et $\sum v_n$ à termes positifs.

- (i) Si $v_n = O(u_n)$ et si $\sum u_n$ converge, alors $\sum v_n$ converge.
- (ii) Si $u_n \sim v_n$, alors les séries $\sum u_n$ et $\sum v_n$ sont de même nature.
 - En cas de convergence, les restes vérifient $\sum_{k=n}^{+\infty} u_k \sim \sum_{k=n}^{+\infty} v_k$.
 - En cas de divergence, les sommes partielles vérifient $\sum_{k=0}^{n} u_k \sim \sum_{k=0}^{n} v_k$.

p. 219

[GOU20]

Application 14 (Formule de Stirling).

$$\exists k > 0 \text{ tel que } n! \sim k \sqrt{n} \left(\frac{n}{e}\right)^n$$

Application 15 (Développement asymptotique de la suite des sinus itérés). Soit (u_n) une suite vérifiant

 $u_0 \in \left[0, \frac{\pi}{2}\right], \quad \text{et} \quad \forall n \in \mathbb{N}, u_{n+1} = \sin(u_n)$

Alors

[DEV]

$$u_n = \sqrt{\frac{3}{n}} - \frac{3\sqrt{3}}{10} \frac{\ln(n)}{n\sqrt{n}} + o\left(\frac{\ln(n)}{n\sqrt{n}}\right)$$

Proposition 16 (Comparaison série - intégrale). Soit $f : \mathbb{R}^+ \to \mathbb{R}^+$ une fonction positive, continue par morceaux et décroissante sur \mathbb{R}^+ . Alors la suite (U_n) définie par

$$\forall n \in \mathbb{N}, \sum_{k=0}^{n} f(k) - \int_{0}^{n} f(t) dt$$

est convergente. En particulier, la série $\sum f(n)$ et l'intégrale $\int_0^{+\infty} f(t) \, \mathrm{d}t$ sont de même nature.

Exemple 17. La série de Riemann $\sum \frac{1}{n^{\alpha}}$ converge si et seulement si $\alpha > 1$.

Exemple 18. La série de Bertrand $\sum \frac{1}{n^{\alpha} \ln(n)^{\beta}}$ converge si et seulement si $\alpha > 1$ ou si $\alpha = 1$ et $\beta > 1$.

Lemme 19. Soit $\alpha > 1$. Lorsque n tend vers $+\infty$, on a

$$\sum_{k=n+1}^{+\infty} \frac{1}{n^{\alpha}} \sim \frac{1}{\alpha - 1} \frac{1}{n^{\alpha - 1}}$$

Application 20 (Développement asymptotique de la série harmonique). On note $\forall n \in \mathbb{N}^*$, $H_n = \sum_{k=1}^n \frac{1}{k}$. Alors, quand n tend vers $+\infty$,

$$H_n = \ln(n) + \gamma + \frac{1}{2n} - \frac{1}{12n^2} + o\left(\frac{1}{n^2}\right)$$

Proposition 21. Soit $\sum f(n)$ une série relevant d'une comparaison série - intégrale. On note

p. 228

p. 211

[**I-P**] p. 380

p. 100

[AMR11]

 R_n le reste d'ordre n de cette série. Alors,

$$\forall n \ge 1, \int_{n+1}^{+\infty} f(t) dt \le |R_n| \le \int_{n}^{+\infty} f(t) dt$$

Exemple 22. La somme $\sum_{n=1}^{20} \frac{1}{n^3}$ donne une approximation de $\zeta(3) = \sum_{n=1}^{+\infty} \frac{1}{n^3}$ à moins de 125×10^{-5} près.

Proposition 23. Soient deux séries réelles $\sum u_n$ et $\sum v_n$ à termes strictement positifs telles que $\frac{u_{n+1}}{u_n} \ge \frac{v_{n+1}}{v_n}$ à partir d'un certain rang. Alors :

[**GOU20**] p. 213

- (i) Si $\sum u_n$ converge, $\sum v_n$ converge.
- (ii) Si $\sum v_n$ diverge, $\sum u_n$ diverge.

b. Critères

Proposition 24 (Règle de d'Alembert). Soit $\sum u_n$ une série à termes strictement positifs telle que

$$\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = \lambda \in [0, +\infty]$$

Alors:

- (i) Si $\lambda < 1$, $\sum u_n$ converge.
- (ii) Si $\lambda > 1$, $\sum u_n$ diverge.

Exemple 25. $\sum \left(1-\frac{1}{n}\right)^{n^2}$ converge.

[AMR11] p. 94

p. 108

Proposition 26. Soit $\sum u_n$ une série relevant de la règle de D'Alembert. On note R_n le reste d'ordre n de cette série. Alors il existe $N \in \mathbb{N}$ et $\alpha \in]0,1[$ tels que

$$\forall n \ge N, |R_n| \le \frac{\alpha}{1-\alpha}$$

Exemple 27. $\sum_{k=0}^{10} \frac{1}{n!}$ donne une valeur approchée de e à moins de 3×10^{-8} près par défaut.

Proposition 28 (Règle de Cauchy). Soit $\sum u_n$ une série à termes strictement positifs telle que

$$\lim_{n\to+\infty} \sqrt[n]{u_n} = \lambda \in [0, +\infty]$$

Alors:

[**GOU20**] p. 214

- (i) Si $\lambda < 1$, $\sum u_n$ converge.
- (ii) Si $\lambda > 1$, $\sum u_n$ diverge.

Exemple 29. $\sum \left(\frac{4n+1}{3n+2}\right)^n$ converge.

[AMR11] p. 112

Proposition 30. Soit $\sum u_n$ une série relevant de la règle de Cauchy. On note R_n le reste d'ordre n de cette série. Alors il existe $N \in \mathbb{N}$ et $\alpha \in]0,1[$ tels que

p. 107

$$\forall n \ge N, |R_n| \le \frac{\alpha^{n+1}}{1-\alpha}$$

Exemple 31. En reprenant les notations précédentes, pour $u_n = n^{-n}$, on a $R_4 < 0,00035$.

3. Séries semi-convergentes

Définition 32. On appelle **séries semi-convergentes** les séries convergentes mais non absolument convergentes.

p. 214

Théorème 33 (Critère de Leibniz). Soit (a_n) une suite à termes positifs, décroissantes, tendant vers 0. Alors

$$\sum (-1)^n a_n$$
 converge et $\forall n \in \mathbb{N}, |R_n| = \left| \sum_{k=n+1}^{+\infty} (-1)^k a_k \right| \le a_{n+1}$

Exemple 34. La série $\sum (-1)^{n-1} n^{-\alpha}$ est convergente pour $\alpha > 0$. De plus, les restes R_n vérifient

p. 97

$$|R_n| \le \frac{1}{(n+1)^\alpha}$$

Proposition 35 (Transformation d'Abel). Soit une série $\sum u_n$ où $\forall n \in \mathbb{N}$, $u_n = \alpha_n v_n$. On note $\forall n \in \mathbb{N}$, $S_n = \sum_{k=0}^n v_k$. Alors,

[**GOU20**] p. 215

$$\sum_{k=0}^{n} u_k = \alpha_n S_n + \sum_{k=0}^{n-1} (\alpha_k - \alpha_{k+1}) S_k$$

Corollaire 36 (Critère d'Abel). Soit une série $\sum u_n$ où $\forall n \in \mathbb{N}$, $u_n = \alpha_n v_n$. On suppose :

[AMR11] p. 99

- (α_n) est une suite réelle positive, décroissante et qui tend vers 0.
- La série $\sum v_n$ est bornée par une constante M.

Alors $\sum u_n$ est convergente, et les restes R_n vérifient $\forall n \in \mathbb{N}$, $|R_n| \leq M a_{n+1}$.

Remarque 37. En reprenant les notations précédentes, avec $v_n = (-1)^n$, on retrouve le critère de Leibniz.

[**GOU20**] p. 216

p. 267

Exemple 38. La série $\sum \frac{e^{ni\theta}}{n^{\alpha}}$ converge pour tout $\alpha > 0, \theta \in \mathbb{R} \setminus 2\pi\mathbb{Z}$.

II - Calcul de sommes

1. Séries de Fourier

Définition 39. Soit $f : \mathbb{R} \to \mathbb{C}$ une application 2π -périodique et continue par morceaux sur \mathbb{R} . On appelle **coefficients de Fourier** de f les nombres complexes définis par

$$\forall n \in \mathbb{Z}, c_n(f) = \int_0^{2\pi} f(t)e^{-int} dt$$

La **série de Fourier** associée à f est

$$\sum_{n\in\mathbb{Z}}c_n(f)e^{inx}$$

Théorème 40 (Parseval). Soit $f : \mathbb{R} \to \mathbb{C}$ une application 2π -périodique et continue par morceaux sur \mathbb{R} . Alors la série de Fourier de f est convergente et,

$$\sum_{n=-\infty}^{+\infty} |c_n(f)|^2 = \frac{1}{2\pi} \int_0^{2\pi} |f(t)| \, \mathrm{d}t$$

Exemple 41. Avec $f: x \mapsto 1 - \frac{x^2}{\pi^2}$, on obtient $\sum_{n=1}^{+\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$.

Théorème 42 (Jordan-Dirichlet). Soit $f : \mathbb{R} \to \mathbb{C}$ une application 2π -périodique et \mathscr{C}^1 par morceaux sur \mathbb{R} . Alors la série de Fourier de f est convergente en tout point $x \in \mathbb{R}$ et sa somme en ce point vaut

$$\frac{f(x^+)+f(x^-)}{2}$$

Exemple 43. Toujours avec $f: x \mapsto 1 - \frac{x^2}{\pi^2}$, on obtient $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

2. Séries entières

Définition 44. On appelle **série entière** toute série de fonctions de la forme $\sum a_n z^n$ où z est une variable complexe et où (a_n) est une suite complexe.

p. 247

Lemme 45 (Abel). Soient $\sum a_n z^n$ une série entière et $z_0 \in \mathbb{C}$ tels que $(a_n z_0^n)$ soit bornée. Alors :

- (i) $\forall z \in \mathbb{C}$ tel que $|z| < |z_0|$, $\sum a_n z^n$ converge absolument.
- (ii) $\forall r \in]0, |z_0|[, \sum a_n z^n \text{ converge normalement dans } \overline{D}(0, r) = \{z \in \mathbb{C} \mid |z| \le r\}.$

Définition 46. Soit $\sum a_n z^n$ une série entière. Le nombre

$$R = \sup\{r \ge 0 \mid (|a_n|r^n) \text{ est bornée}\}$$

est le **rayon de convergence** de $\sum a_n z^n$. On a :

- $\forall z \in \mathbb{C}$ tel que |z| < R, $\sum a_n z^n$ converge absolument.
- $\forall z \in \mathbb{C}$ tel que |z| > R, $\sum a_n z^n$ diverge.
- $\forall r \in [0, R[, \sum a_n z^n \text{ converge normalement sur } \overline{D}(0, r).$

Le disque D(0,R) est le **disque de convergence** de la série, le cercle C(0,R) est le **cercle d'incertitude**.

Exemple 47. $\sum \frac{z^n}{n!}$ est une série entière de rayon de convergence infini.

[DEV]

Théorème 48 (Nombres de Bell). Pour tout $n \in \mathbb{N}^*$, on note B_n le nombre de partitions de [1, n]. Par convention on pose $B_0 = 1$. Alors,

$$\forall k \in \mathbb{N}^*, B_k = \frac{1}{e} \sum_{n=0}^{+\infty} \frac{n^k}{n!}$$

[**GOU20**] p. 263

Théorème 49 (Abel angulaire). Soit $\sum a_n z^n$ une série entière de rayon de convergence supérieur ou égal à 1 telle que $\sum a_n$ converge. On note f la somme de cette série sur le disque unité D de \mathbb{C} . On fixe $\theta_0 \in \left[0, \frac{\pi}{2}\right[$ et on pose $\Delta_{\theta_0} = \{z \in D \mid \exists \rho > 0 \text{ et } \exists \theta \in [-\theta_0, \theta_0] \text{ tels que } z = 1 - \rho e^{i\theta}\}.$

Alors $\lim_{\substack{z \to 1 \ z \in \Delta_{\theta_0}}} f(z) = \sum_{n=0}^{+\infty} a_n$.

Application 50.

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)} = \frac{\pi}{4}$$

Application 51.

$$\sum_{n=0}^{+\infty} \frac{(-1)^{n-1}}{n} = \ln(2)$$

Contre-exemple 52. La réciproque est fausse :

$$\lim_{\substack{z \to 1 \\ |z| < 1}} (-1)^n z^n = \lim_{\substack{z \to 1 \\ |z| < 1}} \frac{1}{1+z} = \frac{1}{2}$$

Théorème 53 (Taubérien faible). Soit $\sum a_n z^n$ une série entière de rayon de convergence 1. On note f la somme de cette série sur D(0,1). On suppose que

$$\exists S \in \mathbb{C} \text{ tel que } \lim_{\substack{x \to 1 \\ x < 1}} f(x) = S$$

Si $a_n = o(\frac{1}{n})$, alors $\sum a_n$ converge et $\sum_{n=0}^{+\infty} a_n = S$.

Remarque 54. Ce dernier résultat est une réciproque partielle du Théorème 49. Il reste vrai en supposant $a_n = O\left(\frac{1}{n}\right)$ (c'est le théorème Taubérien fort).

Annexes

FIGURE 1 – Illustration du théorème d'Abel angulaire.

[**GOU20**] p. 263