Adaptive Runtime Partitioning of AMR Applications on Heterogeneous Clusters

Shweta Sinha & Manish Parashar
Presented By Jyoti Batheja
The Applied Software Systems Laboratory
ECE/CAIP, Rutgers University
www.caip.rutgers.edu/TASSL

Introduction

Objective

 Develop a "system-sensitive" partitioning mechanism for SAMR applications that uses current system state of the networked computing environment to partition adaptive grid hierarchies

Approach

- Monitor resources of computing nodes
- Compute relative capacities of nodes
- Perform system sensitive partitioning

Structured Adaptive Mesh-Refinement

Adaptive Mesh Refinement

- •Start with a base coarse grid with minimum acceptable resolution
- Tag regions in the domain requiring additional resolution and overlay finer grids on the tagged regions of the coarse grid
- Proceed recursively so that regions on the finer grid requiring more resolution are similarly tagged and even finer grids are overlaid on these regions
- Resulting grid structure is a dynamic adaptive grid hierarchy

AMR Grid Structure (2D Example)

Partitioning Adaptive Grid Hierarchies

- Balance load and...
 - Expose available parallelism
 - Minimize communication overheads
 - Inter-level prolongations/restrictions
 - Intra-level "ghost" communications
 - Enable dynamic load redistribution with minimum overheads
- Parallel AMR costs
 - Communications
 - intralevel "ghost" communication
 - along the surface of each block
 - interlevel prolongation/restriction communications
 - gather/scatter between parents/children
 - Grid recomposition
 - grid refinement/coarsening
 - redistribution and load-balancing
 - prolongation
 - data-movement

System Sensitive Partitioning

Resource Monitoring Tool

- System characteristics determined at run-time using the Network Weather Service (NWS) from UCSD.
- NWS monitors:
 - Fraction of CPU time available
 - End-to-end TCP network bandwidth
 - Free memory
 - Amount of space unused on disk
- Predictive models
- http://nws.npaci.edu/NWS

Cost Model

- For computing node k, let:
 - $-p_{\scriptscriptstyle k}$: CPU available
 - $-m_k$: Memory available
 - b_{k} : Bandwidth available
- Then, the relative CPU availability of node k is:

$$P_k = \frac{p_k}{\sum_{i=1}^K p_i}$$

Capacity Metric

Relative capacity of node k can be written as:

$$C_k = w_p P_k + w_m M_k + w_b B_k$$

• where w_p, w_m, w_b are the weights associated with relative CPU, Memory, and Bandwidth availabilities, respectively, where

$$w_p + w_m + w_b = 1$$

Capacity Metric

 Using system information a relative capacity metric is computed for each processor

$$C(k) = w_p CPU(k) + w_m MEM(k) + w_l LINK(k)$$
$$w_p + w_m + w_l = 1$$

Weights are application dependent and reflect the applications computational, memory and communication requirements.

The System Sensitive Partitioner

- In GrACE component grids in the adaptive grid hierarchy are maintained as a list of grid patches
 - It is a region in the computational domain
 - Every time application regrids, the bounding box list is updated and passed to the partitioner for load balancing

System Sensitive Partitioning

- L is total work associated with the bounding box list that can be assigned to processors
- L_k is work that can be assigned to kth processor.
 Computed as L_k = C_k * L where
 - C_k is relative capacity of processor k
- If work of bounding box > L_k
 Break the box under following constraints:
 - Minimum box size
 - Aspect Ratio

System Sensitive Partitioning: Experimentation Setup

- Application RM3D Compressible Turbulence Application
 - Euler equations of motion for compressible fluid in three dimensions (Ravi Samtaney et al., Caltech)
 - 128x32x32 base (coarse) grid
 - 2 levels of factor 2 refinement
 - Refinement every 4 iterations
- System
 - Beowulf cluster at University of Texas at Austin (32 Nodes)
- Synthetic Load Generation
 - CPU and Memory usage are varied to change relative capacities of processors.

RM3d: GrACE 3D AMR Example

Richtmyer-Meshkov Instability

Air-SF6 interface with single harmonic perturbation.

System Sensitive Partitioning: Execution Time

System Sensitive Load Distribution

- Consider cluster with 4 nodes and synthetic load generator on 2 of the nodes.
- Relative capacity calculated as 16%, 19%, 31%, and 34%.
- Nodes are assigned work load proportional to .16L,
 .19L, .30L and .34L. Here L is the total work

Work Assignment Using Default Partitioner (ACEComposite)

System Sensitive Work Assignment

The relative capacities of processors are 16%, 19%, 30%, 34% and load is distributed accordingly.

Adaptivity to Load Dynamics

- This experiment evaluates
 - Ability of the system sensitive partitioner to adapt to the load dynamics
 - Overheads involved in sensing the current state

System Sensitive Partitioning: Dynamic Load Assignment

Execution Times

Number of Processors	With Dynamic Sensing (every 20 iterations) (secs)	Static Sensing/ Sense only once (secs)
2	423.7	805.5
4	292	450
6	272	442
8	225	430

Overheads of sensing frequency

Frequency of calculating capacities	Execution time (secs)
10 iterations	316
20 iterations	277
30 iterations	286
40 iterations	293

System Sensitive Partitioning: Dynamic Load Assignment

Load sensing every 10 and 20 iterations

System Sensitive Partitioning: Dynamic Load Assignment

Load sensing every 30 and 40 iterations

Summary of Results

System-sensitive partitioner

Execution time	reduced by 18%
Load Imbalance	reduced by 45%
Dynamic runtime sensing	reduced execution time by 45%

- Distributed work load according to relative capacities of the computing nodes
- Through dynamic-sensing it adapted to load dynamics of cluster

Conclusions & Future Work

- A System-Sensitive partitioner for AMR applications
 - Adapt to system state in a heterogeneous networked environment
 - Uses NWS to query current system state
 - Use relative system capacity to drive load-balancing
- System sensitive partitioning improves performance
 - Speedup
 - Reduced load imbalance
- Dynamic adaptation to changes in network/system environment
- Current Work
 - Balancing monitoring overheads -frequency of sensing
 - Use NWS predictive capabilities

Email Contacts

- Shweta Sinha
 - shwetas@caip.rutgers.edu
- Manish Parashar
 - parashar@caip.rutgers.edu

