PLANO DE ENSINO

1. IDENTIFICAÇÃO

COMPONENTE CURRICULAR: Linguagens Formais e Autômatos						
UNIDADE OFERTANTE: Faculdade de Computação						
CÓDIGO: GBC044 PERÍOD		PERÍODO,	/SÉRIE: 4°.	TURMA: C		
CARGA HORÁRIA			NATUREZA			
TEÓRICA:	PRÁTICA: 0h	TOTAL:	OBRIGATÓRIA: (X)	OPTATIVA: ()		
60h		60h				
PROFESSOR(A	ANO/SEMESTRE:					
				2020/1		
OBSERVAÇÕES:						

2. EMENTA

Linguagens, gramáticas e reconhecedores. Hierarquia de Chomsky. Linguagens regulares. Linguagens livres de contexto. Linguagens sensíveis ao contexto. Linguagens recursivamente enumeráveis. Autômatos finitos. Autômatos com pilha. Autômatos limitados linearmente. Máquinas de Turing. Tese de Church-Turing. Problemas indecidíveis e os limites da computação convencional.

3. JUSTIFICATIVA

Este componente contém conteúdo básico para formação em Ciência da Computação, sendo fundamental para outros componentes como Teoria da Computação e Compiladores. Além disso, necessita de componentes anteriores como Matemática para Ciência da Computação.

4. OBJETIVO

Objetivo Geral: Apresentar as linguagens formais, as máquinas reconhecedoras (autômatos) e as gramáticas principais da Hierarquia de Chomsky.

Objetivos Específicos: Mostrar o relacionamento existente entre cada tipo de linguagem, os autômatos que as reconhecem, e as gramáticas que as geram.

Evidenciar a linguagem reconhecida por um autômato como uma expressão de sua computabilidade e, a partir daí, aprofundar a noção de indecibilidade e discutir os limites da computação convencional

5. PROGRAMA

1- Introdução

Motivação e apresentação da disciplina

Histórico

Revisão sobre Conjuntos, Relações e Funções

2- Linguagens, Gramáticas e Reconhecedores

Alfabetos e cadeias

Operações envolvendo cadeias e entre conjuntos de cadeias

Fechamento de Kleene e fechamento positivo

Noção formal de linguagem

Relacionamento entre linguagens, gramáticas e reconhecedores

Noção formal de gramática, derivação

Hierarquia de Chomsky: tipos de gramáticas, exemplos

Reconhecedores de linguagens: descrição geral de uma máquina reconhecedora e linguagem aceita

3- Autômatos Finitos e Linguagens Regulares

Autômatos Finitos (determinísticos- AFD): definições, exemplos

Função de transição de estados: definição, representação em tabela e em grato.

Função de transição estendida e linguagem aceita

Autômatos finitos não-determinísticos (AFND): definição, exemplos e equivalência com autômatos finitos determinísticos (algoritmo de conversão AFND em AFD)

Autômatos finitos não-determinísticos com transições vazias (AFE): definição, exemplos e equivalência com autômatos finitos não-determinísticos sem transições vazias (algoritmo de conversão AFE em AFND).

Gramática regular: definição, exemplos

Equivalência autômatos finitos e gramáticas regulares: conversão autômato finito em gramática regular e conversão gramática regular em autômato finito

Expressões regulares: definição, exemplos e equivalência com autômato finito (conversão expressão regular em autômato finito e conversão autômato finito em expressão regular)

Minimização de autômatos finitos: método das relações de k-equivalência e método do particionamento da tabela de transições

Autômatos finitos com saída: Máquina de Moore, Máquina de Mealy e equivalência Moore/Mealy (algoritmos de conversão)

Variantes de autômatos finitos

Propriedades das linguagens regulares

Lema do bombeamento para linguagens regulares

4- Autômatos com Pilha e Linguagens Livres de Contexto

Autômatos com pilha: definição e exemplos

Gramáticas Livres de Contexto: definição e exemplos

Árvores de derivação, derivações a esquerda e a direita e derivação ambígua

Gramáticas e linguagens ambíguas: exemplo de remoção de ambiguidade

Simplificação de Gramáticas Livres de Contexto

Formas normais de Chomsky e Greibach

Equivalência entre Gramáticas Livres de Contexto e autômatos com pilha (algoritmos de conversão)

Propriedades das linguagens livres de contexto

Lema do bombeamento para linguagens livres de contexto

5- Máquinas de Turing e Linguagens Recursivamente Enumeráveis

Máquinas de Turing: definição e exemplos

Problema da parada da máquina de Turing

Linguagens recursivas e recursivamente enumeráveis

Tese de Church-Turing

Variantes de máquinas de Turing

Máquina de Turing universal

Problemas indecidíveis e os limites da computação convencional

6. Outras Linguagens e Autômatos

Autômatos limitados linearmente

Linguagens sensíveis ao contexto

Autômatos não clássicos (ex: autômatos celulares)

6. METODOLOGIA

As aulas síncronas serão por meio da plataforma Microsoft Teams nos horários previstos para a disciplina, com apresentação de slides e outros materiais que auxiliem na exposição do conteúdo, tais como artigos, exemplos interativos e capítulos de livros. As atividades assíncronas serão para leitura de material disponibilizado e realização de exercícios e atividades de avaliação.

SEMANA MÓDULO ATIVIDADES CARGA ATIVIDADES CA
--

Início	01/03/2021	ASSÍNCRONAS PREVISTAS	HORÁR IA	SÍNCRONAS PREVISTAS	HORÁR IA 3h20
1ª.	Apresentação da disciplina, discussão do plano preliminar e agenda de avaliações. Introdução Conceitos Básicos	Leitura de Material disponibilizado	30 min	Apresentação de slides com explicação e discussão dos respectivos conteúdos	3h20
2ª.	Linguagens, Gramáticas e Reconhecedores. Autômatos finitos determinísticos (AFD)	Leitura de Material disponibilizado e implementação Trabalho 1	1h30	Apresentação de slides com explicação e discussão dos respectivos conteúdos	3h20
3ª.	Autômatos Finitos Determinísticos	Leitura de Material disponibilizado e implementação Trabalho 1	1h30	Apresentação de slides com explicação e discussão dos respectivos conteúdos	3h20
4ª.	Autômatos Finitos Não Determinísticos (AFN e AFN-E)	Leitura de Material disponibilizado e apresentação Trabalho 1.	50 min	Apresentação de slides com explicação e discussão dos respectivos conteúdos	3h20
5ª.	Expressões e Linguagens Regulares	Leitura de Material disponibilizado e resposta ao Questionário 1.	2h	Apresentação de slides com explicação e discussão dos respectivos conteúdos	3h20
6ª.	Expressões e Linguagens Regulares	Leitura de Material disponibilizado e implementação Trabalho 2	2h	Apresentação de slides com explicação e discussão dos respectivos conteúdos	3h20
7 ^a .	Propriedades Linguagens Regulares	Leitura de Material disponibilizado e preparação apresentação Trabalho 2	50 min	Apresentação de slides com explicação e discussão dos respectivos conteúdos	3h20
8ª.	Autômato de Pilha	Leitura de Material disponibilizado	30 min	Apresentação de slides com explicação e discussão dos respectivos conteúdos	3h20
9ª.	Apresentação Trabalho 2	Leitura de Material disponibilizado e implementação Trabalho 3	2h	Apresentação de slides com a descrição da implementação e resultados obtidos	3h20
10ª.	Gramáticas Livres de Contexto	Leitura de Material disponibilizado e implementação Trabalho 3	1h30	Apresentação de slides com explicação e discussão dos respectivos conteúdos	3h20

11 ^a .	Gramáticas Livres de Contexto	Leitura de Material disponibilizado e preparação apresentação Trabalho 3	50 min	Apresentação de slides com explicação e discussão dos respectivos conteúdos	3h20
12ª.	Linguagens Livres de Contexto	Leitura de Material disponibilizado e resposta ao Questionário 2	2h	Apresentação de slides com explicação e discussão dos respectivos conteúdos	3h20
13ª.	Apresentação Trabalho 3	Leitura de Material disponibilizado e implementação Trabalho 4	2h	Apresentação de slides com a descrição da implementação e resultados obtidos	3h20
14ª.	Máquinas de Turing	Leitura de Material disponibilizado e implementação Trabalho 4	1h30	Apresentação de slides com explicação e discussão dos respectivos conteúdos	3h20
15ª.	Apresentação Trabalho 4	Leitura de Material disponibilizado, preparação apresentação Trabalho 4 e resposta ao Questionário 3	2h30	Apresentação de slides com a descrição da implementação e resultados obtidos	3h20
Término	19/06/2021		22h		50h

7. ATENDIMENTO E COMUNICAÇÃO COM OS DISCENTES

O atendimento ocorrerá sempre que solicitado pelo aluno e será feito através de mensagens na plataforma onde ocorrerão as atividades síncronas.

8. AVALIAÇÃO

As atividades de avaliação constarão de três ou quatro trabalhos de implementação relativos aos autômatos, questionários explorando mais os aspectos teóricos da disciplina e listas de exercícios. Os trabalhos serão realizados em grupos de no máximo três componentes e apresentados de maneira síncrona, alguns durante horário normal de aula e outros em horário extra a ser combinado com cada grupo. Todas as atividades avaliativas serão criadas e enviadas aos alunos por meio da plataforma, onde constarão a especificação da atividade, forma de apresentação da atividade realizada, data de entrega e critérios de avaliação.

	Nome da Atividade	Descrição da	Pontuação	Critérios para a realização e
	Avaliativa	Atividade Avaliativa		correção das avaliações
1	Trabalho 1	Implementação de um AFD	10,0	A qualidade da implementação, experimentação realizada, resultados obtidos, envolvimento do aluno para a realização do trabalho e
				apresentação.
2	Trabalho 2	Implementação da	10,0	A qualidade da implementação,

	Nome da Atividade Avaliativa	Descrição da Atividade Avaliativa	Pontuação	Critérios para a realização e correção das avaliações
		conversão de um AFND em AFD		experimentação realizada, resultados obtidos, envolvimento do aluno para a realização do trabalho e apresentação.
3	Trabalho 3	Conversão de expressão regular em AFND-E	15,0	A qualidade da implementação, experimentação realizada, resultados obtidos, envolvimento do aluno para a realização do trabalho e apresentação.
4	Trabalho 4	Implementação de AP	15,0	A qualidade da implementação, experimentação realizada, resultados obtidos, envolvimento do aluno para a realização do trabalho e apresentação.
5	Questionário 1	AFs, expressões e linguagens regulares	10,0	Questões de múltipla escolhas e justificativas apresentadas
6	Questionário 2	AP e linguagens Livres de Contexto	20,0	Questões de múltipla escolhas e justificativas apresentadas
7	Questionário 3	Simplificação de Gramáticas Livre de Contexto e Máquina de Turing	20,0	Questões de múltipla escolhas e justificativas apresentadas

9. BIBLIOGRAFIA

Básica:

HOPCROFT, J. E.; ULLMAN, J. D. Introduction to automata theory languages and computation. Massachusetts: Addison-Wesley, 1979.

MENEZES, Paulo F B: Linguagens Formais e Autômatos. P. Alegre: Sagra Luzzatto, 2004 (4a. Ed). HOPCROFT, J. E.; MOTWANI, R.; ULLMAN, J.D.: Introdução à Teoria de Autômatos, Linguagens e Computação Ed. Campus, 2002.

Complementar:

VIEIRA, N.J. Introdução aos Fundamentos da Computação. São Paulo: Pioneira Thomson Learning, 2006.

HARRISON, M.A. Introduction to formal language theory. Massachusetts: Addison-Wesley, 1978. HOPCROFT, J. E.; ULLMAN, J. D. Formal languages and their relation to automata. Massachusetts: Addison-Wesley, 1969.

LEWIS, H. R.; PAPPADIMITRIOU, C. H.: Elements of the Theory of Computation. Englewood Cliffs: Prentice-Hall, 1981