

骨髓间充质干细胞 (Bone marrow mesenchymal stem cells)

岳锐 教授

分子与细胞生物系主任 同济大学生命科学与技术学院 同济大学附属东方医院

Skeletal development

Endochondral ossification

Intramembranous ossification

The bone marrow microenvironment

Crane et al., Nat. Rev. Immunol., 2017

Bone marrow adipocytes

regulated Marrow Adipose Tissue (rMAT):

Inducible

constitutive Marrow Adipose Tissue (cMAT):

Appears early in postnatal life

Scheller et al. Trends in Endocrinology & Metabolism Tem, 2016

Bone aging: Osteoporosis and fatty marrow

Osteogenic activity

Animal models for osteoporosis

1. What is mesenchymal stem cells?

Definition of BMSC

BMSC: Bone marrow stromal cells

HSC: Hematopoietic stem cells

1. What is mesenchymal stem cells?

Definition of BMSC

Uccelli A, Moretta L, Pistoia V. Nat Rev Immunol. 2008

Morphologies of mouse and human BMSCs

Friedenstein AJ, Piatetzky-Shapiro II, Petrakova KV. *J Embryol Exp Morphol*. 1966

Pittenger MF, Mackay AM, Beck SC, et al. Science. 1999

PROTOCOL

A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow

Masoud Soleimani^{1,4} & Samad Nadri²⁻⁴

Soleimani M, Nadri S. Nat Protoc. 2009

PROTOCOL

A protocol for isolation and culture of mesenchymal stem cells from mouse compact bone

Heng Zhu¹, Zi-Kuan Guo², Xiao-Xia Jiang¹, Hong Li¹, Xiao-Yan Wang¹, Hui-Yu Yao¹, Yi Zhang¹ & Ning Mao¹

Zhu H, Guo ZK, Jiang XX, et al. Nat Protoc. 2009

Yue et al. Cell, 2016

Chan et al. *Cell*, 2015, 2018

Maintain bone homeostasis and fracture repair

Einhorn, T., Gerstenfeld, L. Nat Rev Rheumatol. 2015

■ Formation of HSC niche in the bone marrow

Pinho S, Frenette PS. Nat Rev Mol Cell Biol. 2019

Angiogenesis

■ The effects of MSCs on immune cells

Uccelli A, Moretta L, Pistoia V. Nat Rev Immunol. 2008

4. Clinical application of BMSC

Mechanisms

4. Clinical applications of BMSC

Disease	Target organ	Mechanism of MSC
Myocardial infarction	Heart	Generation of new myocytes and vascular structures
Skin-graft rejection	Skin	Inhibition of T cells
Stroke	CNS	Release of trophic factors and induction of neurogenesis
Melanoma	Skin	Inhibition of tumour-specific T cells by CD8+ T cells
Acute renal failure	Kidney	Inhibition of pro-inflammatory cytokine production and induction of anti- apoptotic and trophic factors
EAE	CNS	Inhibition of myelin-specific T cells and induction of peripheral tolerance
Diabetes	Pancreas & renal glomeruli	Induction of local progenitor cells and inhibition of macrophage infiltration
Rheumatoid arthritis	Joint	Inhibition of T cells and of production of pro-inflammatory cytokines; induction of regulatory T cells
Retinal degeneration	Eye	Decreased retinal degeneration through anti-apoptotic and trophic molecules
Acute lung injury	Lung	Inhibition of production of pro-inflammatory cytokines
Acute renal failure	Kidney	Tubular-cell regeneration through IGF1 secretion
Hepatic failure	Liver	Inhibition of leukocyte invasion through the release of cytokines and chemokines

4. limitations

- Easy to culture and industrialize
- Advantages: Low immunogenicity and tumorigenicity
 - Little ethical issues

- Unwanted differentiation
- Potential to suppress anti-tumor immune response

- Limitations: Generation of new blood vessels that may promote tumor growth and metastasis
 - Undesired calcifications or ossifications
 - Postoperative complications