Ы

Colle 02

Emmanuel PINAULT-BIGEARD Savoirs et compétences :

Mise en situation

Question 1 Déterminer le torseur de cohésion.

Question 2 Identifier les sollicitations auxquelles est soumise la poutre.

Question 3 Tracer les diagrammes des efforts intérieurs adaptés.

Xavier Pessoles

1

Il y a 3 tronçons à étudier ([AB], [BC] et [CD]), mais il est nécessaire au préalable de faire une étude statique pour déterminer les efforts de liaison.

En utilisant l'équation de résultante du PFS appliqué à la poutre suivant \overrightarrow{x} , puis les équations de moment selon \overrightarrow{z} en A puis en D, on trouve immédiatement (par la méthode des bras de levier) :

$$X_A = -\frac{\sqrt{2}}{2}F$$
 , $Y_A = \left(\frac{\sqrt{2}}{3} + \frac{1}{3}\right)F$ et $Y_D = \left(\frac{\sqrt{2}}{6} + \frac{2}{3}\right)F$

On peut maintenant passer à l'étude des différents tronçons...

Tronçon $[AB]: x \in [0, L/3]$

$$\{\mathcal{T}_{\mathrm{coh}}\} = -\{\mathcal{T}_{\mathrm{ext}\to\mathrm{Gauche}}\}_G$$

$$\{\mathcal{T}_{\rm coh}\} = \left\{ \begin{array}{cc} N & 0 \\ T_y & 0 \\ 0 & M f_z \end{array} \right\} \quad \text{avec}:$$

$$N = \frac{\sqrt{2}}{2}F$$

$$T_y = -\left(\frac{\sqrt{2}}{3} + \frac{1}{3}\right)F$$

$$M f_z = \left(\frac{\sqrt{2}}{3} + \frac{1}{3}\right) F x$$

Tronçon $[BC]: x \in [L/3, 2L/3]$

 $\{\mathcal{T}_{\mathrm{coh}}\} = \{\mathcal{T}_{\mathrm{ext} \to \mathrm{Droite}}\}_G$

$$\boxed{N=0} \qquad T_y = \left(\frac{\sqrt{2}}{6} - \frac{1}{3}\right) F$$

$$Mf_z = \frac{1}{3}F\left(x + \frac{\sqrt{2}}{2}(L - x)\right)$$

Tronçon $[CD]: x \in [2L/3, L]$

 $\{\mathcal{T}_{\mathrm{coh}}\} = \{\mathcal{T}_{\mathrm{ext} \to \mathrm{Droite}}\}_G$

$$\boxed{N=0} \qquad T_y = \left(\frac{\sqrt{2}}{6} + \frac{2}{3}\right) F$$

2

La poutre est soumise à de la traction et de la flexion simple .

Xavier Pessoles

On doit tout d'abord trouver le modèle global de la charge répartie :

$$F = \int_0^L p(x) dx \quad \text{avec } p(x) = p_0$$
 Soit : $F = p_0 L$ (aire du rectangle)

On peut ensuite déterminer le torseur de cohésion :

Tronçon
$$[OA]:x\in [0,L]$$

$$\{\mathcal{T}_{\mathrm{coh}}\} = \{\mathcal{T}_{\mathrm{ext} \to \mathrm{Droite}}\}_G$$

$$\{\mathcal{T}_{\rm coh}\} = \left\{ \begin{array}{ccc} 0 & 0 \\ -p_0(L-x) & 0 \\ 0 & -\frac{p_0}{2}(L-x)^2 \end{array} \right\}$$

La poutre est soumise à de la flexion simple

Xavier Pessoles

3