Week 5: Analyzing Algorithm Running Time

Michael Zhou

2023-02-28

1 Asymptotic growth

When we write $f: A \to B$, we are saying the function maps elements of A to elements of B. We will mainly be concerned about mapping natural numbers to the nonnegative real numbers.¹ Or in other words: $f: \mathbb{N} \to \mathbb{R}^{\geq 0}$. We will only care about long term (asymptotic) growth.

Definition 5.1. Let $f, g : \mathbb{N} \to \mathbb{R}^{\geq 0}$. We say that g is absolutely dominated by f if and only if for all $n \in \mathbb{N}$, $g(n) \leq f(n)$.

Example 5.1. Let $f(n) = n^2$ and g(n) = n. Prove that g is absolutely dominated by f.

Translation. $\forall n \in \mathbb{N}, g(n) \leq f(n)$.

Proof. Let $n \in \mathbb{N}$. We want to show that $n < n^2$.

Case 1. Assume n = 0, then $n^2 = n = 0$, so the statement is True.

Case 2. Assume $n \ge 1$, then we can multiple both sides of the inequality by n, which is $n^2 \ge n$. Thus this is True.

Definition 5.2. Let $f, g : \mathbb{N} \to \mathbb{R}^{\geq 0}$. We say that g is dominated by f up to a constant factor if and only if there exists a postive real number c such that for all $n \in \mathbb{N}$, $g(n) \leq c \cdot f(n)$.

Example 5.2. Let $f(n) = n^n$ and g(n) = 2n. Prove that g is dominated by f up to constant factor.²

Translation. $\exists c \in \mathbb{R}^+, \forall n \in \mathbb{N}, g(n) \leq c \cdot f(n)$.

Proof. Let c=2, and let $n \in \mathbb{N}$. We want to prove that $g(n) \leq c\dot{f}(n)$, or in other words, $2n \leq 2n^2$.

Case 1. Assume n = 0, then $2n = 2n^2 = 0$. So this case is True.

Case 2. Assume $n \ge 1$. Taking the inequality, we can multiply both sides by 2n, and we get $2n^2 \ge 2n$. Thus this is True.

These two definitions are still too restrictive for runtimes, where constant factors do not matter. Consider $f(n) = n^2$ and g(n) = n + 90, no matter how much we scale f(n), f(0) will always be smaller than g(0). So, we cannot say that f(n) is dominated by g(n) up to a constant factor.

But it is certainly possible to find a constant factor at any value other than n = 0, this brings us to the third definition:

¹ This is the domain and range that arises for algorithm analysis since an algorithm cannot take negative time to run...

² At n = 1, $2n > n^2$.

Definition 5.3. Let $f, g : \mathbb{N} \to \mathbb{R}^{\geq 0}$. We say that g is eventually dominated by f if and only if there exists $n_0 \in \mathbb{R}^+$ such that $\forall n \in \mathbb{N}$, if $n \geq n_0$ then $g(n) \leq f(n)$.

Example 5.3. Let $f(n) = n^2$ and g(n) = n + 90. Prove that g is eventually dominated by f.

Translation. $\exists n_0 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \geq n_0 \Rightarrow g(n) \leq f(n)$.

Proof. Let $n_0 = 90$, let $n \in \mathbb{N}$, and assume $n \ge n_0$. WTS $n + 90 \le n^2$.

$$n+90 \le n+n$$
 since $n \ge 90$
 $\le 2n$
 $\le n \cdot n$ since $n \ge 2$
 $< n^2$

This definition ignores small values of n, whereas the previous ignores constant factors. Our last definition will combine both of these traits:

Definition 5.4. Let $f, g : \mathbb{N} \to \mathbb{R}^{\geq 0}$. We say that g is eventually dominated by f up to a constant factor if and only if there exist $c, n_0 \in \mathbb{R}^+$, such that for all $n \in \mathbb{N}$, if $n \geq n_0$ then $g(n) \leq c \cdot f(n)$.

In this case, we also say that g is **Big-Oh** of f, and write $g \in \mathcal{O}(f)$.

Definition 5.5. $\mathcal{O}(f)$ is defined as the *set of functions* that are eventually dominated by f up to a constant factor:

$$\mathcal{O}(f) = \{ g \mid g : \mathbb{N} \to \mathbb{R}^{\geq 0}, \exists c, n_0 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \geq n_0 \Rightarrow g(n) \leq c \cdot f(n) \}$$

Example 5.4. Let $f(n) = n^3$ and $g(n) = n^3 + 100n + 5000$. Prove that $g \in \mathcal{O}(f)$.

Translation. $\exists c, n_0 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \ge n_0 \Rightarrow n^3 + 100n + 5000 \le cn^3$.

Discussion. We can have two approaches: focus on choosing n_0 , or focus on choosing c. Either way, we will divide the inequality to three smaller inequalities:

- 1. $n^3 \le n^3$
- 2. $100n \le n^3$
- 3. $5000 < n^3$

Proof. Let c=3 and $n_0=\sqrt[3]{5000}$. Let $n\in\mathbb{N}$, and assume that $n\geq n_0$. WTS $n^3+100n+5000\leq cn^3$.

We can first prove the three simpler inequalities:

- $n^3 \le n^3$ (since the two quantities are equal)
- Since $n \ge n_0 \ge 10$, we know that $n^2 \ge 100$, and so $n^3 \ge 100n$.
- Since $n \ge n_0$, we know that $n^3 \ge n_0^3 = 5000$

Adding these up we get

$$n^3 + 100n + 5000 \le n^3 + n^3 + n^3 = cn^3$$

2

2 One special case of Big-Oh: $\mathcal{O}(1)$

Consider the function f(n) = 1, which always outputs the value 1. Unpacking the definition of Big-Oh of f we get

$$g \in \mathcal{O}(f)$$

$$\exists c, n_0 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \ge n_0 \Rightarrow g(n) \le c \cdot f(n)$$

$$\exists c, n_0 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \ge n_0 \Rightarrow g(n) \le c \qquad \text{since } f(n) = 1$$

There exists a constant c such that g(n) is eventually always less than or equal to c. We say that such functions g are **asymptotically bounded** with respect to their input, and write $g = \mathcal{O}(1)$.

3 Omega and Theta

Big-Oh is limited in the sense that it is not exact. Consider two functions: g(n) = n + 1 and $f(n) = n^{100}$. We can write $n + 10 \in \mathcal{O}(n^{100})$ but it would not be very informative, since f(n) grows much faster than g(n).

In this section, we will introduce ways to express tight bounds on the growth of a function.

Definition 5.6. Let $f, g : \mathbb{N} \to \mathbb{R}^{\geq 0}$. We say that g is **Omega of** f if and only if there exist constants $c, n_0 \in \mathbb{R}^+$ such that for all $n \in \mathbb{N}$, if $n \geq n_0$, then $g(n) \geq c \cdot f(n)$. In this case, we write $g \in \Omega(f)$.

Omega is the dual of Big-Oh. When $g \in \Omega(f)$, then f is a lower bound on the growth rate of g. We can now express a bound that is tight for a function's growth by combining Big-Oh and Omega: if f is asymptotically both a lower and upper bound for g, then g must grow at the same rate as f.

Definition 5.7. Let $f, g : \mathbb{N} \Rightarrow \mathbb{R}^{\geq 0}$. We say that g is **Theta of** f if and only if g is both Big-Oh of f and Omega of f. In this case, we can write $g \in \Theta(f)$, and say that f is a **tight bound** on g.

Equivalently, g is Theta of f if and only if there exist constants $c_1, c_2, n_0 \in \mathbb{R}^+$ such that for all $n \in \mathbb{N}$ if $n \geq n_0$ then $c_1 f(n) \leq g(n) \leq c_2 f(n)$.

4 Properties of Big-Oh, Omega, and Theta

4.1 Elementary functions

The following theorem tells us how to compare four different types of "elementary" functions: constant functions, logarithms, powers of n, and exponential functions.

Theorem 5.1. For all $a, b \in \mathbb{R}^+$, the following statements are True:

- 1. $a > 1 \land b > 1 \Rightarrow log_a n \in \Theta(log_b n)$
- 2. $a < b \Rightarrow n^a \in \mathcal{O}(n^b) \wedge n^a \notin \Omega(n^b)$
- 3. $a < b \Rightarrow a^n \in \mathcal{O}(b^n) \wedge a^n \notin \Omega(b^n)$
- 4. $a > 1 \Rightarrow 1 \in \mathcal{O}(log_a n) \land 1 \notin \Omega(log_a n)$
- 5. $log_a n \in \mathcal{O}(n^b) \wedge log_a n \notin \Omega(n^b)$

6.
$$b > 1 \Rightarrow n^a \in \mathcal{O}(b^n) \wedge n^a \notin \Omega(b^n)$$

4.2 Basic properties

Theorem 5.2. For all $f: \mathbb{N} \Rightarrow \mathbb{R}^{\geq 0}, f \in \Theta(f)$.

Theorem 5.3. For all $f, g : \mathbb{N} \to \mathbb{R}^{\geq 0}, g \in \mathcal{O}(f)$ if and only if $f \in \Omega(g)$.

Theorem 5.4. For all $f, g, h : \mathbb{N} \to \mathbb{R}^{\geq 0}$:

- If $f \in \mathcal{O}(g)$ and $g \in \mathcal{O}(h)$, then $f \in \mathcal{O}(h)$.
- If $f \in \Omega(g)$ and $g \in \Omega(h)$, then $f \in \Omega(h)$.
- If $f \in \Theta(g)$ and $g \in \Theta(h)$, then $f \in \Theta(h)$.

4.3 Operations on functions

Definition 5.8. Let $f, g: \mathbb{N} \to \mathbb{R}^{\geq 0}$. We can define the **sum of** f **and** g as the function $f + g: \mathbb{N} \to \mathbb{R}^{\geq 0}$ such that

$$\forall n \in \mathbb{N}, (f+g)(n) = f(n) + g(n)$$

Theorem 5.5. For all $f, g, h : \mathbb{N} \to \mathbb{R}^{\geq 0}$, the following hold:

- If $f \in \mathcal{O}(h)$ and $g \in \mathcal{O}(h)$, then $f + g \in \mathcal{O}(h)$.
- If $f \in \Omega(h)$, then $f + g \in \Omega(h)$.
- If $f \in \Theta(h)$ and $g \in \mathcal{O}(h)$, then $f + g \in \Theta$.

$$n+1 = \sum_{i=1}^{k} (a_i \cdot i!) + 1$$
$$\sum_{i=1}^{k} (a_i \cdot i!) + 1 = \sum_{i=1}^{k} (a_i \cdot i!) + 1$$