

Laboratory 1

Dr Andreas Schwarzbacher

andreas.schwarzbacher@dit.ie

Laboratory: Basic Design Flow

September 2018

Comparator

- In this laboratory, the Vivado Design Environment will be used to design, simulate and synthesise a digital comparator circuit
- Finally, the functionality of the finished design will be tested by implementing it and programming it onto the Artix-7 FPGA of the Digilent Basys3 board

Learning Objectives

In this laboratory, you will:

- Create VHDL design source code
- Create a VHDL simulation code to test the design
- Implement the design on the Basys 3 development board based on Artix-7 FPGA
- Apply signals to the board via the switches to confirm that the design works as planned

3

An Analogue Comparator

 The output of an analogue comparator is high when the input signal equals or exceeds the reference signal

A Digital Comparator

• A 1-bit digital comparator provides an "1" output when inputs A and B are equal i.e. two "1's" or two "0's"

Α	В	EQ
0	0	1
0	1	0
1	0	0
1	1	1

.

YouTube – Look at old work flow (ver. 2016.2)

- Take a look at the following video to get oriented on the work flow.
- http://www.youtube.com/watch?v=ShjXQdKdxsE

Select a project name and location

9

Select Register-Transfer Level (RTL) project

A constraints (.cdx) file will be created later

13

Select the Basys3 board type

Note project summary

15

Set the port names and directions

Design environment

17

Define comparator behaviour

EQ <= '1' when (A = B) else '0';

Press "Ctrl" + "s" to save the edits and to verify the syntax of the VHDL code.

Generate testbench VHDL code

Use online VHDL Testbench Editor to generate code

https://www.doulos.com/knowhow/perl/testbench_creation/

Paste the design source code (Compare.vhd) into the online editor. Generate new VHDL simulator code for testing the design.

25

Copy testbench VHDL code

Highlight and copy this sub-section of the VHDL simulator code from the online Testbench generator

Compare RTL and Synthesis Schematics

47

Design reports

- Look at the Synthesis report:
 - Copy of the following table and complete it in your report

Cell Type Label	Functional Category	What is it used for?
LUT2		
IBUF		
OBUF		

Select Serial Peripheral Interface BUS – quad

Examine the Master SPI x4 Configuration Mode Details by doubling clicking SPI image.

51

Run implementation

Basys3 board: configure pins

Callout	Component Description	Callout	Component Description
1	Power good LED	9	FPGA configuration reset button
2	Pmod port(s)	10	Programming mode jumper
3	Analog signal Pmod port (XADC)	11	USB host connector
4	Four digit 7-segment display	12	VGA connector
5	Slide switches (16)	13	Shared UART/ JTAG USB port
6	LEDs (16)	14	External power connector
7	Pushbuttons (5)	15	Power Switch
8	FPGA programming done LED	16	Power Select Jumper

Table 1. Basys 3 Callouts and component descriptions.

57

Basys3 board: Pin configurations

Figure 3 shows the different options available for configuring the FPGA. An on-board "mode" jumper (JP1) selects between the programming modes.

Figure 3. Basys 3 configuration options.

Does the programme work properly?

Report:

- Apply signals to the board via the switches to confirm that the design works as planned
- Show that the programme worked using photographs of the Basys 3 to show the LEDs and the different switch states.

YouTube - Advice

- Take a look at the following video to get oriented on the work flow.
- https://www.youtube.com/watch?v=JtixlupNSOQ

