CSED321 Assignment - Inductive Proofs

김민서(20220826)

Tuesday 18th March, 2025

Question 1.

Proof. By rule induction on judgement s lparen.

Case
$$\frac{}{\epsilon \text{ lparen}} Leps \text{ where } s = \epsilon$$
:

 ϵ mparen

by the rule Meps

Case
$$\frac{s_1 \text{ lparen}}{(s_1)s_2 \text{ lparen}} Lseq \text{ where } s = (s_1)s_2$$
:

 s_1 mparen by the induction hypothesis on s_1 lparen by the induction hypothesis on s_2 lparen s_2 mparen (s_1) mparen by the rule Mpar

 $(s_1)s_2$ mparen

by the rule Mseq with (s_1) mparen and s_2 mparen

Question 2.

Proof. We shall show that if s' tparen then s tparen implies ss' tparen. By rule induction on judgement s' tparen.

Case
$$\overline{\epsilon \text{ tparen}} Teps \text{ where } s' = \epsilon$$
:

s tparen assumption

 $ss' = s\epsilon = s$

ss' tparen from s tparen and s = ss'

$${\rm Case} \ \ \frac{s_1 \ {\rm tparen}}{s_1(s_2) \ {\rm tparen}} \ Tseq \ {\rm where} \ s' = s_1(s_2) ;$$

s tparen assumption

 $ss' = ss_1(s_2)$

"s tparen implies ss_1 tparen" by the induction hypothesis on s_1 tparen ss_1 tparen from the assumption s tparen

 $ss_1(s_2)$ tparen by the rule Tseq with ss_1 tparen and s_2 tparen

from $ss_1(s_2)$ tparen and $ss' = ss_1(s_2)$ ss' tparen

Question 3.

Proof. By rule induction on judjement s mparen.

Case
$$\overline{\ \epsilon \ \mathsf{mparen}} \ Meps \ \mathsf{where} \ s = \epsilon \ensuremath{:}$$

$$\epsilon$$
 tparen

by the rule Teps

$$\label{eq:case_def} \text{Case} \ \ \frac{s' \ \text{mparen}}{(s') \ \text{mparen}} \ Mpar \ \text{where} \ s = (s') \vdots$$

 ϵ tparen

by the rule Teps

 s^\prime tparen

by the induction hypothesis

 $\epsilon(s') = (s')$

 $\epsilon(s')$ tparen

by the rule Tseq with ϵ tparen and s' tparen

(s') tparen

from $\epsilon(s')$ tparen and $\epsilon(s') = (s')$

$${\rm Case} \ \ \frac{s_1 \ {\rm mparen}}{s_1 s_2 \ {\rm mparen}} \ Mseq \ {\rm where} \ s = s_1 s_2 ;$$

 s_1 tparen

by the induction hypothesis on \boldsymbol{s}_1 mparen

 s_2 tparen

by the induction hypothesis on s_2 mparen

 s_1s_2 tparen

by Lemma 1.2