Determinants Permutations, Signature of permutation

- \Rightarrow Let [n] = {1, 2 . . . , n}, where n \in N, and n > 0.
- \Rightarrow Definition: A permutation on n elements is a bijection $\pi: [n] \to [n]$.

If
$$m=4$$

then, $[m] = \{1,2,3,4\}$

 \Rightarrow A permutation σ on n elements, say $\sigma(i) = k_i$ for $i = 1, \ldots, n$, can be represented in functional notation by the $2 \times n$ array

$$\begin{pmatrix} 1 & \cdots & i & \cdots & n \\ k_1 & \cdots & k_i & \cdots & k_n \end{pmatrix}$$

known as Cauchy two-line notation.

 \Rightarrow A more concise notation often used in computer science and in combinatorics is to represent a permutation by its image, namely by the sequence

$$\sigma(1) \ \sigma(2) \ \cdots \ \sigma(n)$$

The above is known as the one-line notation.

 \Rightarrow A transposition is a permutation $\tau:[n] \rightarrow [n]$ such that, for some i < j (with $1 \le i < j \le n$), $\tau(i) = j$, $\tau(j) = i$, and $\tau(k) = k$, for all $k \in [n] - \{i, j\}$.

If τ is a transposition, clearly, $\tau \circ \tau = id$.

 \Rightarrow set of permutations on [n] is a group often denoted \mathfrak{S}_n and called the symmetric group on n elements. \ni It is easy to show by induction that the group \mathfrak{S}_n has n! elements.

Proposition 6.1. For every $n \geq 2$, every permutation $\pi: [n] \rightarrow [n]$ can be written as a nonempty composition of transpositions.

> Every transposition can be written as a product of basic transpositions.

In fact, the transposition that exchanges k and k + p ($1 \le p \le n - k$) can be realized using 2p - 1 basic transpositions.

Therefore, the group of permutations \mathfrak{S}_n is also generated by the basic transpositions.

Definition 6.2. For every $n \geq 2$, let $\Delta \colon \mathbb{Z}^n \to \mathbb{Z}$ be the function given by

$$\Delta(x_1, \dots, x_n) = \prod_{1 \le i < j \le n} (x_i - x_j).$$

The expression $\Delta(x_1,\ldots,x_n)$ is often called the **discriminant** of (x_1,\ldots,x_n) .

 \Rightarrow The discriminant consists of $\binom{n}{2}$ factors. When n=3,

$$\Delta(x_1, x_2, x_3) = (x_1 - x_2)(x_1 - x_3)(x_2 - x_3).$$

 \neg More generally, for any permutation $\sigma \in \mathfrak{S}_n$, define $\Delta(x_{\sigma(1)}, \ldots, x_{\sigma(n)})$ by

$$\Delta(x_{\sigma(1)}, \dots, x_{\sigma(n)}) = \prod_{1 \le i < j \le n} (x_{\sigma(i)} - x_{\sigma(j)}).$$

Proposition 6.2. For every basic transposition τ of [n] $(n \geq 2)$, we have

$$\Delta(x_{\tau(1)},\ldots,x_{\tau(n)}) = -\Delta(x_1,\ldots,x_n).$$

 \Rightarrow The above also holds for every transposition, and more generally, for every composition of transpositions $\sigma = \tau_p \circ \cdots \circ \tau_1$, we have

$$\Delta(x_{\sigma(1)},\ldots,x_{\sigma(n)})=(-1)^p\Delta(x_1,\ldots,x_n).$$

- \Rightarrow Consequently, for every permutation σ of [n], the parity of the number p of transpositions involved in any decomposition of σ as $\sigma = \tau_p \circ \cdots \circ \tau_1$ is an invariant (only depends on σ).
- \Rightarrow **Definition 6.3.** For every permutation σ of [n], the parity $\epsilon(\sigma)$ (or $\operatorname{sgn}(\sigma)$) of the number of transpositions involved in any decomposition of σ is called the *signature* (or *sign*) of σ .

Solviously
$$\epsilon(\tau) = -1$$
 for every transposition τ (since $(-1)^1 = -1$).

Definition 6.4. Given any permutation σ on n elements, we say that a pair (i, j) of indices $i, j \in \{1, ..., n\}$ such that i < j and $\sigma(i) > \sigma(j)$ is an *inversion* of the permutation σ .

For example, the permutation σ given by

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 3 & 6 & 5 & 1 \end{pmatrix}$$

has seven inversions

$$(1,6), (2,3), (2,6), (3,6), (4,5), (4,6), (5,6).$$

Proposition 6.3. The signature $\epsilon(\sigma)$ of any permutation σ is equal to the parity $(-1)^{I(\sigma)}$ of the number $I(\sigma)$ of inversions in σ .

$$\epsilon(\pi' \circ \pi) = \epsilon(\pi')\epsilon(\pi)$$

* Alternating Multilinean Map

- \Rightarrow Let E_1, \ldots, E_n , and F, be vector spaces over a field K, where $n \geq 1$.
- **Definition 6.5.** A function $f: E_1 \times ... \times E_n \to F$ is a multilinear map (or an n-linear map) if it is linear in each argument, holding the others fixed. More explicitly, for every i, $1 \le i \le n$, for all $x_1 \in E_1, ..., x_{i-1} \in E_{i-1}, x_{i+1} \in E_{i+1}, ..., x_n \in E_n$, for all $x, y \in E_i$, for all $\lambda \in K$,

$$f(x_1, \dots, x_{i-1}, x + y, x_{i+1}, \dots, x_n) = f(x_1, \dots, x_{i-1}, x, x_{i+1}, \dots, x_n) + f(x_1, \dots, x_{i-1}, y, x_{i+1}, \dots, x_n),$$

$$f(x_1, \dots, x_{i-1}, \lambda x, x_{i+1}, \dots, x_n) = \lambda f(x_1, \dots, x_{i-1}, x, x_{i+1}, \dots, x_n).$$

- \implies When F = K, we call f an n-linear form (or multilinear form).
- If $n \geq 2$ and $E_1 = E_2 = \ldots = E_n$, an *n*-linear map $f: E \times \ldots \times E \to F$ is called *symmetric*, if $f(x_1, \ldots, x_n) = f(x_{\pi(1)}, \ldots, x_{\pi(n)})$ for every permutation π on $\{1, \ldots, n\}$.
- An *n*-linear map $f: E \times ... \times E \to F$ is called *alternating*, if $f(x_1, ..., x_n) = 0$ whenever $x_i = x_{i+1}$ for some $i, 1 \le i \le n-1$
- \Rightarrow When n=2, a 2-linear map $f: E_1 \times E_2 \to F$ is called a bilinear map.

- Symmetric bilinear maps (and multilinear maps) play an important role in geometry (inner products, quadratic forms) and in differential calculus (partial derivatives).
- \Rightarrow A bilinear map is symmetric if f (u, v) = f (v, u), for all u, v \in E.

Proposition 6.4. Let $f: E \times ... \times E \to F$ be an n-linear alternating map, with $n \ge 2$. The following properties hold:

(1)
$$f(\ldots, x_i, x_{i+1}, \ldots) = -f(\ldots, x_{i+1}, x_i, \ldots)$$

(2)
$$f(\ldots, x_i, \ldots, x_j, \ldots) = 0,$$
 where $x_i = x_j$, and $1 \le i < j \le n$.

(3)
$$f(\ldots, x_i, \ldots, x_j, \ldots) = -f(\ldots, x_j, \ldots, x_i, \ldots),$$
 where $1 \le i < j \le n$.

(4)
$$f(\ldots, x_i, \ldots) = f(\ldots, x_i + \lambda x_j, \ldots),$$
 for any $\lambda \in K$, and where $i \neq j$.

Lemma 6.5. Let $f: E \times ... \times E \to F$ be an n-linear alternating map. Let $(u_1, ..., u_n)$ and $(v_1, ..., v_n)$ be two families of n vectors, such that,

$$v_1 = a_{11}u_1 + \dots + a_{n1}u_n,$$

 \dots
 $v_n = a_{1n}u_1 + \dots + a_{nn}u_n.$

Equivalently, letting

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix},$$

assume that we have

$$\begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} = A^{\top} \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}.$$

Then,

$$f(v_1,\ldots,v_n) = \left(\sum_{\pi \in \mathfrak{S}_n} \epsilon(\pi) a_{\pi(1) 1} \cdots a_{\pi(n) n}\right) f(u_1,\ldots,u_n),$$

where the sum ranges over all permutations π on $\{1, \ldots, n\}$.

$$\det(A) = \sum_{\pi \in \mathfrak{S}_n} \epsilon(\pi) a_{\pi(1) \, 1} \cdots a_{\pi(n) \, n}$$

* Defination of a Determinant

Definition 6.6. A *determinant* is defined as any map

$$D: \mathcal{M}_n(K) \to K$$

which, when viewed as a map on $(K^n)^n$, i.e., a map of the *n* columns of a matrix, is *n*-linear alternating and such that $D(I_n) = 1$ for the identity matrix I_n . Equivalently, we can consider a vector space E of dimension n, some fixed basis (e_1, \ldots, e_n) , and define

$$D \colon E^n \to K$$

as an *n*-linear alternating map such that $D(e_1, \ldots, e_n) = 1$.

Definition 6.7. Given any $n \times n$ matrix with $n \ge 2$, for any two indices i, j with $1 \le i, j \le n$, let A_{ij} be the $(n-1) \times (n-1)$ matrix obtained by deleting Row i and Column j from A and called a *minor*:

 $\stackrel{>}{=}$ **Definition 6.8.** For every $n \geq 1$, we define a finite set \mathcal{D}_n of maps $D: M_n(K) \to K$

 \Rightarrow When n = 1, \mathcal{D}_1 consists of the single map D such that, D(A) = a, where A = (a), with $a \in K$.

 \Rightarrow Assume that \mathcal{D}_{n-1} has been defined, where $n \geq 2$. Then \mathcal{D}_n consists of all the maps D such that, for some $i, 1 \leq i \leq n$,

$$D(A) = (-1)^{i+1} a_{i1} D(A_{i1}) + \dots + (-1)^{i+n} a_{in} D(A_{in}),$$

where for every j, $1 \le j \le n$, $D(A_{ij})$ is the result of applying any D in \mathcal{D}_{n-1} to the minor A_{ij} .

 \Rightarrow Each $(-1)^{i+j}D(A_{ij})$ is called the **cofactor** of a_{ij} ,

This expression for D(A) is called a Laplace expansion of D according to the i-th Row

- → We can think of each member of D_n as an algorithm to evaluate "the" determinant of A.
- \Rightarrow given a $n \times n$ -matrix $A = (a_{ij}),$

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix},$$

its determinant is denoted by D(A) or det(A), or more explicitly by

$$\det(A) = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}.$$

1. When n=2, if

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix},$$

then by expanding according to any row, we have

$$D(A) = ad - bc$$
.

2. When n=3, if

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix},$$

then by expanding according to the first row, we have

$$D(A) = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix},$$

that is,

$$D(A) = a_{11}(a_{22}a_{33} - a_{32}a_{23}) - a_{12}(a_{21}a_{33} - a_{31}a_{23}) + a_{13}(a_{21}a_{32} - a_{31}a_{22}),$$

which gives the explicit formula

$$D(A) = a_{11}a_{22}a_{33} + a_{21}a_{32}a_{13} + a_{31}a_{12}a_{23} - a_{11}a_{32}a_{23} - a_{21}a_{12}a_{33} - a_{31}a_{22}a_{13}.$$

We now show that each $D \in \mathcal{D}_n$ is a determinant (map).

Lemma 6.6. For every $n \geq 1$, for every $D \in \mathcal{D}_n$ as defined in Definition 6.8, D is an alternating multilinear map such that $D(I_n) = 1$.

Theorem 6.7. For every $n \geq 1$, for every $D \in \mathcal{D}_n$, for every matrix $A \in \mathcal{M}_n(K)$, we have

$$D(A) = \sum_{\pi \in \mathfrak{S}_n} \epsilon(\pi) a_{\pi(1) \, 1} \cdots a_{\pi(n) \, n},$$

where the sum ranges over all permutations π on $\{1,\ldots,n\}$. As a consequence, \mathcal{D}_n consists of a single map for every $n \geq 1$, and this map is given by the above explicit formula.

There is a geometric interpretation of determinants which we find quite illuminating. Given n linearly independent vectors (u_1, \ldots, u_n) in \mathbb{R}^n , the set

$$P_n = \{ \lambda_1 u_1 + \dots + \lambda_n u_n \mid 0 \le \lambda_i \le 1, \ 1 \le i \le n \}$$

is called a parallelotope.

If n = 2, then P 2 is a parallelogram and if n = 3, then P 3 is a parallelepiped

Then it turns out that $det(u_1, \ldots, u_n)$ is the signed volume of the parallelotope P_n (where volume means n-dimensional volume). The sign of this volume accounts for the orientation of P_n in \mathbb{R}^n .

- Corollary 6.8. For every matrix $A \in M_n(K)$, we have $\det(A) = \det(A^{\top})$.
- Example 6.2. Consider the so-called Vandermonde determinant

$$V(x_1, \dots, x_n) = \begin{vmatrix} 1 & 1 & \dots & 1 \\ x_1 & x_2 & \dots & x_n \\ x_1^2 & x_2^2 & \dots & x_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{n-1} & x_2^{n-1} & \dots & x_n^{n-1} \end{vmatrix}.$$

We claim that
$$V(x_1, \dots, x_n) = \prod_{1 \le i < j \le n} (x_j - x_i),$$
with $V(x_1, \dots, x_n) = 1$, when $n = 1$.

$$\Rightarrow \Delta(x_1,\ldots,x_n) = V(x_n,\ldots,x_1) = (-1)^{\binom{n}{2}}V(x_1,\ldots x_n),$$

 \Rightarrow Proposition 6.9. Let $f: E \times ... \times E \to F$ be an n-linear alternating map. Let $(u_1, ..., u_n)$ and (v_1, \ldots, v_n) be two families of n vectors, such that

$$v_1 = a_{11}u_1 + \dots + a_{1n}u_n,$$

$$\dots$$

$$v_n = a_{n1}u_1 + \dots + a_{nn}u_n.$$

Equivalently, letting

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix},$$

assume that we have

$$\begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} = A \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}.$$

Then,

$$f(v_1,\ldots,v_n)=\det(A)f(u_1,\ldots,u_n).$$

Proposition 6.10. For any two $n \times n$ -matrices A and B, we have $\det(AB) = \det(A) \det(B)$.

* Inverse Matrices and Determinants

Definition 6.9. Let K be a commutative ring. Given a matrix $A \in M_n(K)$, let $\widetilde{A} = (b_{ij})$ be the matrix defined such that

$$b_{ij} = (-1)^{i+j} \det(A_{ji}),$$

the cofactor of a_{ji} . The matrix \widetilde{A} is called the *adjugate* of A, and each matrix A_{ji} is called a *minor* of the matrix A.

Proposition 6.11. Let K be a commutative ring. For every matrix $A \in M_n(K)$, we have

$$A\widetilde{A} = \widetilde{A}A = \det(A)I_n.$$

As a consequence, A is invertible iff det(A) is invertible, and if so, $A^{-1} = (\det(A))^{-1}\widetilde{A}$.

* System of Linean Equation and determinant

 \Rightarrow Let A be an $n \times n$ -matrix, x a column vectors of variables, and b another column vector, and let A^1, \ldots, A^n denote the columns of A. Observe that the system of equations Ax = b,

$$\begin{pmatrix} a_{1\,1} & a_{1\,2} & \dots & a_{1\,n} \\ a_{2\,1} & a_{2\,2} & \dots & a_{2\,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n\,1} & a_{n\,2} & \dots & a_{n\,n} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

is equivalent to

$$x_1A^1 + \dots + x_jA^j + \dots + x_nA^n = b,$$

since the equation corresponding to the *i*-th row is in both cases

$$a_{i1}x_1 + \dots + a_{ij}x_j + \dots + a_{in}x_n = b_i.$$

Proposition 6.12. Given an $n \times n$ -matrix A over a field K, the columns A^1, \ldots, A^n of A are linearly dependent iff $\det(A) = \det(A^1, \ldots, A^n) = 0$. Equivalently, A has rank n iff $\det(A) \neq 0$.