Notes_5

P logically implies Q is written as $P \Rightarrow Q$, which means any of the following

- 1. Every assignment of truth values to the atomic proposition p, q, r that makes P T also makes Q T
- 2. $P \rightarrow Q$ is always T, regardless of the truth values assigned to the atomic propositions
- 3. P → Q is a <u>tautology</u>
- 4. From a truth table

р	q	r	••••	Р	Q	P→Q
Т	Т	Т		F	Т	Т
Т	Т	F		Т	Т	Т
Т	F	Т		F	F	Т
Т	F	F		F	F	Т
F	Т	Т		F	F	Т
F	Т	F		Т	Т	Т
F	F	F		Т	Т	Т

P is <u>logically equivalent</u> to Q written $P \equiv Q \lor P <= \Rightarrow Q$ means $P \Rightarrow Q \land Q \Rightarrow P$

- 1. Every assignment of truth values on atomic proposition p, q, r, ... makes both P \land Q T \lor F
- 2. P <-→ Q is a tautology
- 3. P & Q Truth table is identical

De Margon's Law

1) LHS =
$$\neg$$
(p \land q) \equiv (\neg p) \lor (\neg q) = RHS

р	q	¬р	¬ q	p∧q	¬(p ∧ q)	(¬ p) ∨ (¬ q)	LHS <→ RHS
Т	Т	F	F	Т	F	F	Т
Т	F	F	Т	F	Т	Т	Т
F	Т	Т	Т	F	Т	Т	Т
F	F	Т	Т	F	Т	Т	Т

Columns Are Identical

$$2. \neg (p \lor q) \equiv (\neg p) \land (\neg q)$$

"Direct Proof of LHS ⇒ RHS"

Assume LHS: $\neg(p \lor q)$ is T then $p \lor q$ is F, meaning both p is F \land so is q. Then both $\neg q$ is T $\land \neg p$ T. Theref $\lor e$, $\neg p \land \neg q$ is T. Hence RHS is T.

So, LHS \Rightarrow RHS

Distributive Laws

$$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r) \ p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$$

Algebraically:

$$a \cdot (b+c) = ab + ac$$
$$a + (b \cdot c)! = (a+b)(a+c)$$

Direct Proof:

$$p \wedge (\neg q ee r) \Rightarrow (p \wedge q) ee (p \wedge r)$$

- Assume LHS is T
- Therefore both p is T ∧ q ∨ r is T
- Then either q is T ∨ r is T
- In case (1), $p \land q$ is T which means $(p \land q) \lor (p \land r)$ is T so RHS is T
- In case (2), p ∧ r is T which means (p ∧ r) is T so RHS is T

So, LHS ⇒ RHS