Università degli Studi di Milano - Bicocca

Integrazione di classificatori di ADL in App Android

Relatore

Daniela Micucci

Correlatore

Marco Mobilio

Candidato

Gabriele De Rosa

Introduzione

Contesto

Riconoscimento delle attività quotidiane (ADLs)

- Immagini o frame di video
- Dati ottenuti da sensori inerziali

Obiettivi

- Sviluppo di un'applicazione Android
 - Raccolta di dati inerziali
 - □ Raccolta di eventuali dati aggiuntivi
- Sviluppo di un classificatore per il riconoscimento di ADLs

Classificazione

In Statistica

Un problema che ha l'obiettivo di ipotizzare quale tra un insieme di etichette meglio definisce un insieme di caratteristiche.

In Informatica

Una tecnica che consiste nell'assegnazione di un'etichetta ad un gruppo di informazioni applicando regole di calcolo precedentemente apprese da un set di dati a disposizione.

Operazioni

Apprendimento

- 1. Acquisizione di nuovi dati
- 2. Salvataggio dei nuovi dati nel dataset
- 3. Training sull'intero dataset
- 4. Salvataggio dei modelli generati

Riconoscimento

- Acquisizione dei dati da riconoscere
- 2. Prediction sui nuovi dati usando i modelli pre-allenati
- 3. Riscontro dell'attività predetta

Apprendimento - Acquisizione

- Dati selezionati
 - Attività
 - Posizione del dispositivo
- Dati inerziali
 - Sensori
 - Accelerometro
 - Giroscopio
 - Campionamento

$$f_c = 20Hz \iff T_c = 0.05s$$

Apprendimento - Preprocessamento

- 1. Partizionamenti preliminari
- 2. Preprocessamento dei singoli valori
- 3. Creazione di finestre ed etichette
 - Ampiezza: 80 records
 - $T_{finestra} = 0.05 * 80 = 4s$
 - □ Step: 40 records

Esempio di record

Creazione di finestre ed etichette

Apprendimento - Training

- Input:
 - Finestre di dati
 - Etichette

- Output:
 - Modello

Processo di apprendimento

Riconoscimento - Acquisizione

- Dati selezionati
 - Posizione del dispositivo
- Dati inerziali
 - Sensori
 - Accelerometro
 - Giroscopio
 - Campionamento

$$f_c = 20Hz \iff T_c = 0.05s$$

Feedback dell'attività

Riconoscimento - Preprocessamento

- 1. Partizionamenti preliminari
- 2. Preprocessamento dei singoli valori
- 3. Creazione delle finestre
 - Ampiezza: 80 records
 - $T_{finestra} = 0.05 * 80 = 4s$
 - □ Step: 40 records

Esempio di record

Creazione delle finestre

Riconoscimento - Prediction

- Input:
 - □ Finestre di dati
 - Modello

- Output:
 - Etichette

Processo di predizione

Riepilogo

Risultati

Ottimizzazioni future

- Disponibilità offline
- Modelli basati su entrambi i sensori
- Valutazione degli aspetti fisici del soggetto

12 of 13

Grazie per l'attenzione

