Fanghua Ye

School of Data and Computer Science Sun Yat-sen University

Introduction

Education

Research Interests

> Social network analysis, data mining, machine learning

Publications

> SIGMOD, ICDM, CIKM, TNNLS, Information Sciences

Research Focus

Community Detection

Influential Nodes

Network Embedding

Complex Network

Complex network is everywhere

Social

Internet

Protein

History

Computational Social Science [Giles] Computational Social Science [Lazer et al.]

2002

Social Influence Analysis [Tang, Sun]

Spread of Obesity, Happiness [Christakis, Fowler]

Densification [Leskovec, Kleinberg, Faloutsos]

Link Prediction [Liben-Nowell, Kleinberg] Influence Maximization [Kempe, Kleinberg, Tardos]

Community Detection [Girvan, Newman]

Scale Free [Barabási, Albert & Faloutsos et al.] Small World [Watts, Strogatz] HITS [Kleinberg]&PageRank [Brin&Page]

1999 1998 1997

1995 1992

1973 1967

Structural Hole [Burt] Dunbar's Number [Dunbar]

Weak Tie [Granovetter]

Six Degrees of Separation [Milgram]

Community Detection

Community Structure

➤ Groups of nodes with dense internal connections and sparse external connections

Community Detection

The procedure of finding the community structure

Paper

♦ ICDM 2018

➤ Adaptive Affinity Learning for Accurate Community Detection

♦ CIKM 2018

➤ Deep Autoencoder-like Nonnegative Matrix Factorization for Community Detection

♦ ICDM 2019

➤ Discrete Overlapping Community Detection with Pseudo Supervision

NMF

♦ NMF for community detection

- Determine the community membership according to matrix V
- For undirected networks, set $V = U^T$

$$A \approx UV$$

$$A \approx UU^T$$

NMF

♦ An example

Disjoint communities

Community 1	Community 2
1, 2, 3	4, 5, 6

Overlapping communities

Community 1	Community 2
1, 2, 3, 4	4, 5, 6

^{*} Threshold: 0.5

Sketch

♦ ICDM 2018

Learn similarity between nodes to improve community detection via graph regularization

♦ CIKM 2018

➤ Deep AE-like architecture to capture hierarchical information

♦ ICDM 2019

➤ Learn discrete overlapping community memberships to avoid post-processing

Adaptive Affinity Learning for Accurate Community Detection

Fanghua Ye, Shenghui Li, Zhiwei Lin, Chuan Chen, Zibin Zheng

[ICDM 2018]

Motivation

Learn similarity between nodes (denoted by matrix S) adaptively

➤ Improve community detection via graph regularization

$$\|\mathbf{A} - \mathbf{U}\mathbf{U}^T\|_F^2 + \gamma \text{Tr}(\mathbf{U}^T \mathbf{L_S} \mathbf{U}) \qquad \mathbf{U} \in \mathbb{R}_+^{n \times k}$$

Adaptive Affinity Learning

- \triangleright Embed nodes into a low-dimensional space $\mathbb{R}^{k'}$
- Learn similarity between nodes in this low-dimensional space

Transformation matrix

$$\min_{\mathbf{S}, \mathbf{Q}} \sum_{i,j=1}^{n} \|\mathbf{Q}^T \mathbf{a}_i - \mathbf{Q}^T \mathbf{a}_j\|_2^2 s_{ij} + \alpha \|\mathbf{S}\|_F^2,$$

s.t.
$$\mathbf{Q}^T \mathbf{A} \mathbf{A}^T \mathbf{Q} = \mathbf{I}_{k'}, \forall i, \sum_{j=1}^n s_{ij} = 1, s_{ij} \ge 0, s_{ii} = 0$$

♦ Theorem in Graph Theory

The multiplicity k of the eigenvalue 0 of the Laplacian matrix L_S equals the number of connected components

$$\delta_i \geq 0 \longrightarrow \sum_{i=1}^k \delta_i = 0$$

Ky Fan's Theorem

$$\sum_{i=1}^{k} \delta_i = \min_{\mathbf{Q}^T \mathbf{A} \mathbf{A}^T \mathbf{Q} = \mathbf{I}_k} \operatorname{Tr}(\mathbf{Q}^T \mathbf{A} \mathbf{L}_{\mathbf{S}} \mathbf{A}^T \mathbf{Q})$$

$$\downarrow \mathbf{k'} = \mathbf{k}$$

Deep Autoencoder-like Nonnegative Matrix Factorization for Community Detection

Fanghua Ye, Chuan Chen, Zibin Zheng

[CIKM 2018]

CIKM 2018

Motivation One

$\mathbf{A} pprox \mathbf{UV}$

- > Traditional NMF is shallow
- ➤ V captures the community-level similarity between nodes
- ➤ A captures the link-level similarity between nodes
- ➤ Real-life networks consist of complicated patterns, the mapping between **A** and **V** should be hierarchic

CIKM 2018

Motivation Two

$\mathbf{A} pprox \mathbf{UV}$

- > NMF reconstructs A from V with the aid of U
- ➤ An ideal V should be predictable from A with the aid of U as well, which is ignored by traditional NMF-based approaches

Deep NMF

Further factorize the mapping U to learn hierarchical similarity between nodes from low level to high level

Deep AE-like NMF

➤ Incorporate a symmetric encoder component into deep NMF to strengthen its representation learning ability

Visualization

Discrete Overlapping Community Detection with Pseudo Supervision

Fanghua Ye, Chuan Chen, Zibin Zheng, Rong-Hua Li, Jeffrey Xu Yu

[ICDM 2019]

Motivation

$\mathbf{A} pprox \mathbf{U} \mathbf{U}^T$

To bypass the cumbersome post-processing step when using NMF for overlapping community detection

Discrete Overlapping Community Detection

➤ Introduce a rotation matrix Q with orthogonal constraint

$$\min_{\mathbf{U}, \mathbf{F}, \mathbf{Q}} \|\mathbf{A} - \mathbf{U}\mathbf{U}^T\|_F^2 + \alpha \|\mathbf{U} - \mathbf{F}\mathbf{Q}\|_F^2,$$
s.t. $\mathbf{U} \ge \mathbf{0} \wedge \mathbf{Q}^T \mathbf{Q} = \mathbf{I}_k \wedge \mathbf{F} \in \{0, 1\}^{n \times k}$

$$\mathbf{F}\mathbf{F}^T = \mathbf{F}\mathbf{Q}\mathbf{Q}^T\mathbf{F}^T = (\mathbf{F}\mathbf{Q})(\mathbf{F}\mathbf{Q})^T \approx \mathbf{U}\mathbf{U}^T$$

$$\mathbf{F}\mathbf{F}^T \approx \mathbf{U}\mathbf{U}^T \approx \mathbf{A}$$

 \triangleright Why not $||A - FF^T||_F^2$?

Discriminative Pseudo Supervision

Treat **F** as the pseudo ground-truth to learn a discriminative prediction function

Kernel regression

To exploit discriminative information in an unsupervised manner

$$\mathcal{L}(\mathbf{W}, \mathbf{b}; \mathbf{F}, \mathbf{A}) = \|\mathbf{F} - \phi^{T}(\mathbf{A})\mathbf{W} - \mathbf{1}_{n}\mathbf{b}^{T}\|_{F}^{2} + \gamma \|\mathbf{W}\|_{F}^{2}$$

$$\mathcal{L}(\mathbf{B}, \mathbf{b}; \mathbf{F}, \hat{\mathbf{K}}) = tr(\mathbf{F}^{T}\mathbf{S}\mathbf{F})$$

SIGMOD 2018

Database Flavor

DEFINITION 1. Let $H = (V_H, E_H)$ and $H' = (V_{H'}, E_{H'})$ be two communities. If $f_i(H) \leq f_i(H')$ for all $i = 1, \dots, d$, and there exists $f_i(H) < f_i(H')$ for a certain i, we call H' dominates H, denoted by $H \prec H'$.

DEFINITION 2. Given a multi-valued graph G = (V, E, X) and an integer k. A skyline community with a parameter k is an induced subgraph $H = (V_H, E_H)$ of G such that it satisfies the following properties.

- Cohesive property: H is a connected k-core;
- Skyline property: there does not exist an induced subgraph H' such that $H \prec H'$;
- Maximal property: there does not exist an induced supergraph H' such that (1) H' is a connected k-core, (2) H' contains H, and (3) $f_i(H') = f_i(H)$ for all $i = 1, \dots, d$.

On-going: Network Embedding

Network Embedding

 Dimension Reduction or Representation Learning

Network Embedding

Existing Methods

Isomap	2000	Science	A Global Geometric Framework for Nonlinear Dimensionality Reduction
LLE	2000	Science	Nonlinear dimensionality reduction by locally linear embedding
LE	2001	NIPS	Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering
EdgeCluster	2009	CIKM	Scalable Learning of Collective Behavior Based on Sparse Social Dimensions
DeepWalk	2014	KDD	DeepWalk: Online Learning of Social Representations
GraRep	2015	CIKM	GraRep: Learning Graph Representations with Global Structural Information
HNE	2015	KDD	Heterogeneous Network Embedding via Deep Architectures
LINE	2015	WWW	LINE: Large-scale Information Network Embedding
DDRW	2016	ACL	Discriminative Deep RandomWalk for Network Classification
MMDW	2016	IJCAI	Max-Margin DeepWalk: Discriminative Learning of Network Representation
DNGR	2016	AAAI	Deep Neural Networks for Learning Graph Representations
HOPE	2016	KDD	Asymmetric Transitivity Preserving Graph Embedding
SDNE	2016	KDD	Structural Deep Network Embedding
node2vec	2016	KDD	node2vec: Scalable Feature Learning for Networks

Network Embedding

Existing Methods--Category

Degree Preserving Network Embedding

[On-going]

Motivation

Local and Global

- ➤ Degree is a local information
- ➤ Degree (distribution) is a global information

Method

Degree Preserving

$$A1_n = d$$

High-order similarity matrix

Network Embedding

$$U = \dot{S}P \rightarrow \text{Inductive}$$

$$\min_{P,U} \|U - SP\|_F^2 + \alpha \|A - UU^T\|_F^2$$

$$s.t. \ P \ge 0, U \ge 0, UU^T 1_n = d.$$

Multiwalk: Multiple Random Walkers induced Network Embedding

[On-going]

Skip-Gram

Generate node sequences

- Each node corresponds to a word
- Each node sequence corresponds to a sentence

Motivation

Community structure is the most important

- > Single walker is sensitive to boundary nodes
- To be efficient to deal with large-scale networks

Method

Single Walker to Multiple Walkers

> Random walk with restart

$$x^{(t+1)} = cP^{T}x^{(t)} + (1-c)v$$

$$x_{i}^{(t+1)} = cP^{T}x_{i}^{(t)} + (1-c)v_{i}^{(t)} \qquad v_{i}^{(t)} = \frac{1}{k}\sum_{j=1}^{k} x_{j}^{(t)}$$

Future: Federated Learning

Federated Learning

Concept

The main idea is to build machine learning models based on data sets that are distributed across multiple devices while preventing data leakage

THANKS