

1 概述

- (1) 基于 T5L0 双核 ASIC, GUI 和 OS 核均运行在 200MHz 主频, 功耗极低。
- (2) 8Mbytes 低成本 SPI Flash, JPEG 图片、图标压缩存储,可以指定背景图片存储空间大小。
- (3) 512Kbytes Nor Flash 片内用户数据库, 128Kbytes 数据变量空间。
- (4) 支持标准 T5 DWIN OS 平台或 8051 开发 OS CPU 核: 50Pin FPC 引出 22 个 IO、3 路 UART、1 路 CAN 接口、5 路 AD、2 路 PWM,提供定制服务。 4 路 AD 值通过 UART3 实时传递给 OS 核,每路高达 16KSPS 采样率。 通过 UART3 实时控制 2 路 PWM,最快 32uS 更新一次。
- (5) 20mS DGUS 周期, UI 极其流畅。 支持预装组态模块开发模式, 大幅度提升 UI 开发速度和质量。
- (6) 显示变量可以在应用中开启、关闭或修改,实现复杂的显示组合功能。
- (7) 触控指令可以在应用中开启、关闭或修改,实现复杂的触控组合功能。
- (8) 支持 SD 接口下载和配置,下载文件统计显示,下载校验;支持加密下载。
- (9) 支持电容触摸屏灵敏度调节,方便用户前装面板(最厚到6mm钢化玻璃)应用。
- (10) 超薄、高集成度的 COF 结构,提供极高的性价比和设计简化。
- (11) 支持 ED4 USB 下载器。

2 接口定义 (50Pin 0.5mm间距FPC)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(001 111 0.		
PIN#	定 义	1/0	说明
1	+5V	I	供电输入,DC3.6-5.5V。
2	+5V	I	
3	GND	GND	
4	GND	GND	GND
5	GND	GND	
6	AD7	I	5 路 ADC 输入,3.3V 电源做为参考,12bit 分辨率,输入电压范围 0-3.3V。
7	AD6	I	除 AD6 外,其余数据通过 UART3 实时发送给 OS 核,采样速度为 16KHz。
8	AD5	l	AD1 和 AD5 并联,AD3 和 AD7 并联使用,可以等效成两路 32KHz 采样 AD。
9	AD3	ı	AD1、AD3、AD5、AD7 并联在一起使用,可以等效成一路 64KHz 采样 AD;对数据
10	AD1	I	做 1024 次累加后再除以 64,过采样获得 1 路 64Hz 16bit 的 AD 值。
11	+3.3	0	3.3V 输出,最大负载 150mA。
12	SPK	0	外接 MOSFET 驱动蜂鸣器或扬声器,外部要 10K 下拉到 GND 确保上电是低电平。
13	SD CD	Ю	
14	SD CK	0	
15	SD D3	Ю	OD/ODIJO 校只 OD OK 本告诉 OD F校口的此子社 OND 校 A 00-E 中南
16	SD D2	Ю	SD/SDHC 接口,SD_CK 在靠近 SD 卡接口的地方对 GND 接一个 22pF 电容。
17	SD D1	Ю	
18	SD D0	Ю	
19	PWM0	0	2 路 16bit PWM 输出,外部要 10K 下拉到 GND 确保上电是低电平。
20	PWM1	0	OS 核可以通过 UART3 来实时控制。
21	P3.3	Ю	如果使用 RX8130 或 SD2058 I2C RTC,连接在这两个 IO 上。
22	P3.2	10	SCL 接 P3.2,SDA 接 P3.3 并 10K 上拉到 3.3V。
23	P3.1/EX1	Ю	同时也可以做为外部中断 1 输入,支持低电平或下跳沿中断两种模式。
24	P3.0/EX0	10	同时也可以做为外部中断 0 输入,支持低电平或下跳沿中断两种模式。
25	P2.7	10	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
26	P2.6	10	
27	P2.5	10	
28	P2.4	10	
29	P2.3	10	
30	P2.2	10	
31	P2.1	10	
32	P2.0	Ю	
33	P1.7	Ю	
34	P1.6	Ю	
35	P1.5	Ю	
36	P1.4	Ю	X
37	P1.3	Ю	
38	P1.2	IO /	
39	P1.1	10	
40	P1.0	IO _y ′	
41	UART4_TXD	0	UART4
42	UART4_RXD		Z
43	UART5_TXD	0	UART5
44	UART5_RXD	1/	
45	P0.0	10	
46	P0.1	10	
47	CAN DX	0	CAN 接口
48	CAN_RX	1	
49	UART2_TXD	0	UART2(OS 核的 UART0 串口)
50	UART2_RXD	1	

可以使用 HDL662S 转接板连接 USB 接口和 SD 卡接口,并把信号引出到 2.54mm 间距通孔焊盘上。

3 DGUS 功能一览表

3.1 显示变量

3. 1	显示变量			
序号	功能 代码	功能	用户变量长度 (字,Word)	说
01	0x00	变量图标显示	1	将一个数据变量的变化范围线性对应一组 ICON 图标显示; 当变量变化时, 图标也自动相应切换。多用于精细的仪表板、进度条显示。 支持背景叠加和透明度设置,背景滤除强度可以设置。
02	0x01	动画图标显示	2	将一个定值数据变量对应了3种不同的图标指示状态:不显示、显示固定图标、显示动画图标。多用于变量的报警提示。变量占2个字位置,(VP+1)位置保留;图标ID不能超过255(0xFF)。支持背景叠加和透明度设置,可以设置动画速度。支持单次播放模式,背景滤除强度可以设置。
03	0x02	滑块刻度指示	1	将一个数据变量的变化范围对应一个图标(滑块)的显示位置变化。 多用于液位、刻度盘、进度表的指示。 支持背景叠加和透明度设置,背景滤除强度可以设置。
04	0x03	艺术字变量显示	1/2/4	用 ICON 图标取代字库来显示变量数据。 支持背景叠加和透明度设置,背景滤除强度可以设置。
05	0x04	图片动画显示	无	将一组全屏图片按照指定速度播放。多用于开机界面或屏保。 可以指定图片库存储位置。
06	0x05	图标旋转显示	1	把一个数据变量的变化范围线性对应角度数据,然后把一个 ICON 图标按 照对应的角度数据旋转后显示出来。背景滤除强度可以设置。
07	0x06	位变量图标显示	3	把一个数据变量的每个位(bit)的 0/1 状态对应 8 种不同显示方案中的两种,用 ICON 图标(或图标动画)来对应显示。 背景滤除强度可以设置。
08	0x07	JPEG 图标平移显示	4	把超过屏幕分辨率的 JPEG 图标页面以屏幕视窗上下或左右平移显示。 配合 0x0C 触控变量可以实现图标滑动选择。 背景滤除强度可以设置。
09	0x08	变量数据 JPEG 图标 叠加显示	最大 120KB	把变量缓冲区的 JPEG 图标叠加显示到当前页面指定区域,显示亮度、透明度可以设置。VP(必须是偶数)=5AA5 开启显示, VP+1=JPEG 数据缓冲区字长度(偶数), VP+2=JPEG 数据开始存放。背景滤除强度可以设置。
10	0x09	批量数据图标快速 复制粘贴	最大 64KB	根据变量缓冲区的定义,从背景或显存快速复制图标显示到指定位置。
11	0x10	数据变量显示	1/2/4	把一个数据变量按照指定格式(整数、小数、是否带单位)用指定字体和大小的阿拉伯数字显示出来。 支持字符间距调整/不调整选择,支持整数位无效零显示/不显示的选择。 支持锯齿优化的8bit编码字库。
12	0x11	文本显示	最大 2K。	把字符串按照指定格式(选择字库决定),在指定的文本框显示区域显示。 支持锯齿优化的8bit编码字库。
13	0x12_00	文本格式 RTC 显示	无	按用户编辑格式把 RTC 用文本显示。支持锯齿优化的 8bit 编码字库。
14	0x12_01	表盘格式 RTC 显示	无	采用 ICON 图标旋转,用指针表盘方式把公历 RTC 显示出来。
15	0x13	HEX 数据显示	最大 8	把变量数据按照字节 HEX 方式间隔用户指定的 ASCII 字符显示出来。 多用于计时显示,比如把 0x1234 显示成 12:34。 支持锯齿优化的 8bit 编码字库。 支持把 HEX 数据转换成 BCD 码显示,比如 0x0C 转换成 0x12 显示成 12。
16	0x14	文本滚屏显示	用户定义	把存储在变量空间的文本在屏幕指定区域滚屏显示。
17	0x15	数据窗口指示	2	把数据变量在一个指定的显示窗口中显示出来,并突出显示选中的值。 结合触摸屏滑动或增量调节,可以让数据滚动显示。也可以 DWIN OS 控制 调节速度。支持锯齿优化的 8bit 编码字库。 变量占 2 个字位置,(VP+1) 位置保留。
18	0x16	DGUSII 文本显示 (文本显示无锯齿)	最大 2K。	基于 DGUS II 字库,把字符串在指定文本框显示区域显示,不支持缩放。 相比 0x11 文本显示,主要是显示文本没有锯齿,多语言显示直接换字库。
19	0x17	组态图标字库滚字 轮显示	4	基本功能同数据窗口指示。
20	0x18	GTF 图标字库文本 显示	最大 128	高效率显示图标字符。
21	0x20	实时曲线 (趋势图)	每通道 2K	基于曲线缓冲区数据显示实时曲线(趋势图),线条粗细可设置。 可以指定显示区域、中心轴坐标、显示比例(放大/缩小)、设置曲线方向。
22	0x21_01	绘图_置点	用户定义	置点 (x, y, color)
23	0x21_02	绘图_端点连线		端点连线 (color, (x0, y0), …(xn, yn))
24	0x21_03	绘图_矩形		显示矩形,颜色和位置、大小可控。
25	0x21_04	绘图_矩形填充		填充指定的矩形区域,填充颜色和位置、大小可控。
26	$0x21_{05}$	绘图_圆显示		以圆心和半径显示圆,颜色和圆弧粗细可以设置。

27	0x21_06	绘图_图片复制粘贴		从指定图片上复制一个区域粘贴到当前显示页面上。
28	0x21_07	绘图_ICON 图标显示		ICON 图标显示,图标库可以选择。
29	0x21_08	绘图_封闭区域填充		选定种子位置,对封闭的纯色区域用指定颜色填充。
30	0x21_09	绘图_频谱显示		根据变量数据显示频谱(垂直线条),线条颜色、位置可控。
31	0x21_0D	绘图_矩形域 XOR		对指定的矩形域位图数据用指定颜色进行 XOR 操作,多用于高亮显示。
32	0x21_0E	绘图_双色位图显示		每 bit 表示 1 个点,在指定区域快速进行双色位图显示。
33	22 0 01 10	公园 田东公园日 二		每 2bit 表示 1 个点,在指定区域快速进行四色位图显示。
33	0x21_12	绘图_四色位图显示		可以定义多个四色位图显示区域,多图层实现更多颜色的显示。
				把指定区域的内容做环移,移动方向可以设定。
34	0x24	区域滚屏	1	用于简单实现屏幕上面的流程图、进度条等动态运行效果。变量被系统占
				用,用户不要使用。
35	0x25	二维码显示	最大 259	根据指定内容在屏幕显示二维码图形。可固定二维码大小为 73*73 像素.
36	0x26	调节区域显示亮度	1	调节指定显示区域的显示亮度,用来突出或淡化背景显示。
37	0x30	数据变量传递	最大 11	页面切换后,把预定义的数据传送到变量或串口一次。

备注:

- ▶ 更具体功能说明请参考《迪文 DGUS 屏开发指南》。
- ▶ VP 指的是用户变量存储空间的存储位置(指针)。
- ➤ 在 PC 组态软件开发时设置变量描述指针,将把显示变量配置信息存储在变量描述指针指向的用户变量空间,应用中可以通过串口或 DWIN OS 访问,动态开、关或修改变量配置信息,实现复杂的显示变量组合功能。

3.2 触控变量

	触控 键码	功能	用户变量长度 (字,Word)	说 - 明
01	00	变量数据录入	1/2/4	录入整数、定点小数等各种数据到指定变量存储空间。 弹出键盘透明度可以设置。 <mark>支持组态触控</mark> 。
02	01	弹出菜单选择	1	点击触发一个弹出菜单,返回菜单项的键码。 弹出菜单透明度可以设置。
03	02	增量调节	1	点击按钮,对指定变量进行+/-操作,可设置步长和上下限。 设置 0-1 范围循环调节可以实现栏目复选框功能。
04	03	拖动调节	1	拖拉滑块实现变量数据录入,可设置刻度范围。
05	05	按键值返回	1	点击按键,直接返回按键值到变量,支持位变量返回。 支持按压时间门槛设定功能。
06	06	文本录入	最大 127	ASCII 或 GBK 汉字文本方式录入文本字符,录入过程支持光标移动、编辑。 可以设置在 (VP-1) 位置保存输入状态和录入长度。 ASCII 录入模式弹出键盘透明度可以设置。
07	08	触摸屏按压状态数 据返回	用户定义	点击触摸屏,按照规定返回数据到变量。 不支持返回到串口模式,但可以配置触控数据自动上传来实现。
08	09	转动调节		圆弧类别的拖动调节。
09	OA	滑动(手势)调节	2	根据指定区域 X 轴或 Y 轴方向触摸屏滑动,实时返回相对调节值。 配合数据窗口指示显示变量,可以实现动态滚字调节。 VP 保留,返回数据在(VP+1)位置。
10	0B	滑动(手势)翻页	无	根据指定区域 X 轴或 Y 轴方向触摸屏滑动,实现页面动态拽动。 可以设置页面切换的目标、区域,当前页面的变量显示会跟随拽动。 如果滑动页面上同时有其它触控按钮,并需要整页(包括拖拽触控按钮)都能 手势翻页时,必须把滑动手势翻页的触控优先级设置为最高。 支持手势结束后动画动作。
11	0C	滑动图标选择	4	配合 0x07 显示变量(JPEG 图标平移显示)实现图标页面滑动选择。
12	0D	位变量按钮	1	点击按钮,对指定变量指定位调节。

备注:

- ▶ 具体功能说明请参考《迪文 DGUS II 系统文件说明》。
- ▶ 触控配置文件(13*.BIN)不能超过256Kbytes。
- ▶ 通过串口或 DWIN OS 访问定义在 0x00B0 变量空间的触控指令访问接口,可以动态开、关或修改指定的触控指令,实现复杂的触控功能嵌套、组合功能。

3.3 串口通信协议 (UART2)

系统调试串口UART2模式固定为8N1,波特率可以设置,每个数据帧由5个数据块组成:

数据块	1	2	3	4	5
定义	帧 头	数据长度	指令	数据	CRC 校验(可选)
数据长度	2	1	1	N	2
说明	0x5AA5	包括指令、数据、校验。	0x80/0x81/0x82/0x83		
举例 (无校验)	5A A5	04	83	00 10 04	
举例(带校验)	5A A5	06	83	00 10 04	25 A3

CRC 校验的开启/关闭由 SD 接口配置文件的 0x05.6 位控制。

UART2 调试接口指令说明如下:

UARTZ I	周试接口指令说明如卜:	
指令	数 据	说明
0x80	下发: 寄存器页面(0x00-0x08)+寄存器地址(0x00-0xFF)+写入的数据	指定地址开始写数据串到寄存器。
	应答: 0x4F 0x4B 。	写指令应答。
0x81	下发: 寄存器页面(0x00-0x08)+寄存器地址(0x00-0xFF)+读取数据字节 长度(0x01-0xFB)	从指定寄存器开始读数据。
	应答: 寄存器页面(0x00-0x08)+寄存器地址(0x00-0xFF)+数据长度+数据	数据应答。
0x82	下发: 变量空间首地址(0x0000-0xFFFF)+写入的数据	指定地址开始写数据到变量空间。 系统保留的空间不要写。
0.02	应答: 0x4F 0x4B 。	写指令应答。
	下发: 变量空间首地址(0x0000-0xFFFF)+读取数据字长度(0x01-0x7D)	从变量空间指定地址开始读指定长度字数据。
0x83	应答: 变量空间首地址+变量数据字长度+读取的变量数据	数据应答。
0x84	下发: CH_Mode (Byte) +DATAO (Word) +···+DATAn 应答: 0x4F 0x4B	写曲线缓冲区数据。 CH_Mode 定义了后续数据的通道排列顺序: CH_Mode 的每个位(bit)对应 1 个通道; CH_Mode. 0 对应 0 通道, . 7 对应 7 通道; 对应位置 1 表示对应的通道数据存在; 对应位置 0 表示对应的通道数据不存在。 数据按照低通道数据在前排列。 比如 CH_Mode=0x83(100000118),表示后续数据格式为: (1100+11000-110000-110000-110000-110000-110000-110000-110000-
0x86	下发: 变量空间双字首地址(0x000000-0x00FFFF)+写入的数据 应答:	指定双字地址开始写数据到变量空间。 可以访问的变量空间是 256Kbytes。 系统保留的空间不要写。
4 /	0x4F 0x4B 。	写指令应答。
0x87	下发: 变量空间双字首地址(0x000000-0x00FFFF)+读取数据双字长度 (0x01-0x3D)	从变量空间指定地址开始读指定长度双字数据。 可以访问的变量空间是 256Kbytes。
	应答: 变量空间首地址+变量数据双字长度+读取的变量数据	数据应答。

寄存器页面定义如下:

寄存器页面 ID	定 义	说明
0x00-0x07	数据寄存器	每组 256 个,R0-R255
0x08	接口寄存器	DRO-DR255。 详见 《 基于 T5 的 DWIN OS 开发指南 》 3.4 接口寄存器定义 说明。

3.4 串口通信协议(UART3)

UART3 串口用来和 GUI 核通信,实时读取 4 路 AD 数据和控制 2 路 PWM 输出。 UART3 固定为 8N1, 1612800bps 模式。

(1) GUI 核发送 AD1、AD3、AD5、AD7 的数据(12bit)给 OS 核指令帧格式:

0xAA + AD1 高 4bit: AD3 高 4bit + AD1 低字节 + AD3 低字节 + AD5 高 4bit: AD7 高 4bit + AD5 低字节 + AD7 低字节+从 0xAA 开始的 7 个字节累加和低字节。

假设 AD1 数据是 0x0123, AD3 数据是 0x456, AD5 数据是 0x0789, AD7 数据是 0x0ABC,

则 GUI 核发送给 OS 核数据是 AA 14 23 56 7A 89 BC F6 。

(2) OS 核发送 PWMO、PWM1 占空比数据 (16bit) 给 GUI 核指令帧格式:

0xAA + PWM0 值 + PWM1 值 + 从 0xAA 开始的 5 个字节累加和低字节。 假设 PWM0 数据是 0x1234, PWM1 数据是 0x5678, 则 OS 核发送给 GUI 核数据是 AA 12 34 56 78 BE

3.5 虚拟串口通信协议(ED4 USB下载器,通过SD卡接口和DGUS屏通信)

ED4 USB下载器在PC端通信的虚拟串口模式为 8N1,波特率固定为8Mbps,每个数据帧由4个数据块组成:

数据块	1	2	3	4
定 义	帧 头	数据长度	指令	数据
数据长度	2	3	1	N
说明	0x5AA5	长度包括指令、数据。	0x82/0x83	
举例 (无校验)	5A A5	00 00 05	83	00 10 00 04

接口指令表:

指令	数 据	说明
	下发:	指定地址开始写数据到变量空间。
0x82	变量空间首地址(0x0000-0xFFFF)+写入的数据	系统保留的空间不要写。
	应答: 0xFF(成功) 或 0x00(失败)。	写指令应答。
	下发:	从变量空间指定地址开始读指定长度
0x83	变量空间首地址(0x0000-0xFFFF)+读取数据字长度(0x0001-0xFFFF)	字数据。
	应答:变量空间首地址+读取的变量数据(读取成功)或 0x0000(读取失败)。	数据应答。

PC 端软件处理时,必须收到 ED4 应答再发送新的数据帧,每个数据帧可以读写最大 128KB 数据。

4 系统变量接口(0x0000-0x0FFF 变量存储器空间)

表中相同背景颜色的数据,表示是同时更新,改写时必须一次改写完成。

变量地址	定义	长度	是问时更新,以与时必须一次以与元成。 说 明	
0x00	保留	4	未定义。	
0x04	System_Reset	2	写入 0x55AA 5AA5 将复位 T5L CPU 一次。	
0x06	OS_Update_CMD	2	D3: 0x5A 启动一次更新 DWIN OS 程序操作(写到片内 Flash), CPU 操作完清零。 D2: 文件类别。 0x10: 从 0x1000 开始的 DWIN OS 代码,每次更新 28KB。 0xA5: 8051 代码,每次更新 64KB。 D1:0: 存储升级代码的数据变量空间首地址,必须是偶数。	
0x08	NOR_FLASH_RW_CMD	4	D7: 操作模式 0x5A=读 0xA5=写,CPU 操作完清零。 D6:4: 片内 Nor Flash 数据库首地址,必须是偶数,0x000000-0x03:FFFE,256KWords。 D3:2: 数据变量空间首地址,必须是偶数。 D1:0: 读写字长度,必须是偶数。	
0x0C	保留	3		
0x0F 0x10	Ver RTC	4	应用软件版本。D1 表示 GUI 软件版本,D0 表示 DWIN OS 软件版本。 D7=年(0-0x63) D6=月(0-0x0C) D5=日(0-0x1F) D4=星期(0-0x6) D3=小时(0-0x17) D2=分钟(0-0x3B) D1=秒(0-0x3B) D0 未定义,数据均为 HEX 格式。 需要硬件支持(无内置 RTC 的硬件,RTC 时间由用户写入)。	
0x14	PIC_Now	1	当前显示页面 ID	
0x15	GUI_Status	1	GUI 操作状态反馈: 0x0000 表示空闲, 0x0001 表示正在处理 13、14 变量文件。	
0x16	TP_Status	4	D7:0x5A 表示触摸屏数据已经更新。 D6:触摸屏状态 0x00=松开 0x01=第一次按压 0x02=抬起 0x03=按压中 D5:D4=X 坐标 D3:D2=Y 坐标 D1:D0=0x0000。	
0x1A-0x30	保留	23	未定义。	
0x31	LED_Now	1	D1:0x5A 表示背光亮度值、AD0-AD7 的瞬时值已经更新。 D0:当前背光亮度值,0x00-0x64。	
0x32	ADO-AD7 瞬时值	8	ADO-AD7 通道的 AD 值,每通道 1 个字,256 倍过采样获得的 16bit 值(采样率 64SPS)。 电压=AD 值*3300/65520 mV,AD4 是背光电流采样电阻的电压。	
0x3A-0x79	保留	64	未定义。	
0x7A	LCD_HOR	1	屏幕的水平分辨率。	
0x7B 0x7C-0x7F	LCD_VER 保留	1 4	屏幕的垂直分辨率。 未定义。	
0x80	System_Config	2	D3: 用户写入 0x5A 启动一次系统参数配置, CPU 处理完清零。 D2: 触摸屏灵敏度配置值, 只读。 D1: 触摸屏模式配置值, 只读。 D0: 系统状态设置。 .7: 串口 CRC 校验设置, 1=开启, 0=关闭, 只读。 .6: 保留, 写 0。 .5: 上电加载 22 文件初始化变量空间 1=加载 0=不加载, 只读。 .4: 变量自动上传设置 1=开启, 0=关闭, 读写。 .3: 触摸屏伴音控制 1=开启 0=关闭, 读写。 .2: 触摸屏背光待机控制 1=开启 0=关闭, 读写。 .10: 显示方向 00=0° 01=90° 10=180° 11=270°, 读写。	
0x82	LED_Config	2	触摸屏背光待机设置: D3=开启亮度,0x00-0x64; 背光待机控制关闭时,D3 为软件亮度调节接口。 D2=关闭亮度 0x00-0x64; D1:0=开启时间/10mS 。	
0x84	PIC_Set	2	D3: 0x5A 表示启动一次页面处理, CPU 处理完清零。 D2: 处理模式。 0x01=页面切换(把图片存储区指定的图片显示到当前背景页面)。 D1:D0: 图片 ID。	
0x86	PWMO_Set	2	D3=0x5A 启动一次 PWMO 设置, CPU 处理完清零。 D2=分频系数 D1:D0=PWMO 精度 PWMO 载波频率=825.7536MHz/(分频系数*PWMO 精度)。	
0x88	PWM1_Set	2	D3=0x5A 启动一次 PWM0 设置,CPU 处理完清零。 D2=分频系数 D1:D0=PWM1 精度 PWM1 载波频率=825.7536MHz/(分频系数*PWM1 精度)。	
0x8A-0x9B	保留	18	DZ-	
0x9C	RTC_Set	4	D7: D6=0x5AA5 启动一次 RTC 设置 D5: D0=年月日时分秒,均为 HEX 格式。 仅当安装有硬件 RTC 时有效。	
0xA0	WAE 文件播放	2	Flash 保存的 WAE 音乐播放设置: D3: 本次播放的段 ID, 0x00-0xFF; WAE 文件位置由 CFG 配置文件指定。 D2: 本次播放段数,固定为 0x01, DGUS 处理后清零; 蜂鸣器模式下是鸣叫时间,单位 8ms。 D1: 播放音量,单位为 1/64; 上电初始值为 0x40 (100%)。	

ideal partner for you	至	, 10	L ASTO Dy DGUSZ 屏 (GUF 结构) 应用指用 V CI O I
			DO:播放状态反馈,0x00=停止,0x01=暂停,0x02=播放中。
0xA2-0xA9	保留	8	未定义
0xAA	外部存储器 读写操作	6	D11: 0x5A=启动一次外部存储器操作, CPU 操作完清零。 D10: 操作模式。 D10=0x01, 读 8MB SPI NOR FLASH 数据。 D9: 字库 ID, 0x10-0x1F, 每个字库 256Kbytes, 最大 4Mbytes。 D8:D6: 字库内的数据起始地址,按照字定义,0x00 00 00-0x01 FF FF。 D5:D4: 读取到数据变量空间的首地址,必须是偶数。 D3:D2: 读取的数据长度,按照字定义,必须是偶数。 D1:D0: 未定义,写 0x00。 D10=0x02,写 32Kbytes 数据块到 16MB SPI NOR FLASH。 D9:D8: 32Kbytes 存储器块地址,0x0000-0x00FF, 对应整个 8Mbytes 存储器。 D7:D6: 更新数据保存在数据变量空间的首地址,必须是偶数。 D5:D4: 本次操作完成后延时等待下一次写操作的时间,单位为 1mS。
0xB0	触控指令访问接口	36	0xB0: 0x5AA5 启动一次触控指令访问, CPU 操作完清零。 0xB1: 需要访问的触控指令所在的页面 ID 0xB2: 高字节为需要访问的触控指令 ID (DGUS II 组态开发软件设置), 0x00-0xFF; 低字节为触控指令代码 0x00-0x7F。 0xB3: 访问模式 0xB4-0xD3: 模式 0x02、0x03 的修改数据。 模式 0x0000: 关闭本条触控指令。 模式 0x0001: 开启本条触控指令。 模式 0x0002: 读取本条触控指令到 0xB4 开始的数据空间。 模式 0x0003: 用 0xB4 开始的数据替换本条触控指令数据,格式和数据长度务必一致。
0xD4	触摸屏操作模拟	4	0xD4: 0x5AA5 启动一次触摸屏模拟操作,CPU 操作完清零。 0xD5: 按压模式,0x0001=按下 0x00002=松开 0x00003=持续按压 0x0004=点击(按下+抬起) 0xD6: 按压位置的 x 坐标。 0xD7: 按压位置的 y 坐标。 模拟按压模式 0x0001 和 0x0003 后,必须有 0x0002 的模拟抬起模式。 组态触控功能运行时,x=0xAA:KH y=0xA5:KL 将直接给组态触控返回键值 KH,KL。 比如,组态模式下变量录入时坐标(0xAAF0 0xA5F0)将导致输入立即结束。 13 触控文件设计有键控功能时,X 坐标=0xFF:键码 Y 坐标=0x0001 将触发相应键控功能。
0xD8	指针图标叠加显示	4	0xD8_H: 0x5A 开启指针图标叠加显示模式; 0xD8_L: 指针图标保存的图标库(.ICL 文件)位置; 0xD9: 指针图标的图标 ID; 0xDA: 指针图标显示的 X 坐标位置; 0xDB: 指针图标显示的 Y 坐标位置。 指针图标始终采用背景滤除模式显示,背景滤除强度固定为 0x08。
0xDC	保留	4	未定义
0xE0	存储器 CRC 校验	2	D3: 写入 0x5A 进行一次存储器 CRC 校验, CPU 操作完清零。 D2: 存储器类型选择
0xE2	屏幕指定区域单色 位图导出	6	0xE2_H: 0x5A 启动一次单色位图导出, CPU 操作完清零; 0xE2_L: 写 0x00; 0xE3: 屏幕区域左上角 X 坐标; 0xE4: 屏幕区域左上角 Y 坐标; 0xE5: 屏幕区域右下角 X 坐标; 0xE6: 屏幕区域右下角 Y 坐标; 0xE7: 输出位图保存的变量存储器起始地址,必须为偶数。 变量存储器存储的位图数据,按照 MSB、双字对齐到行的模式。

0xE8-0xEF	保留	8	未定义
0xF0	音乐流播放接口	4	D7: 写入 0x5A 启动一次音乐播放处理, CPU 操作完清零。 D6: 播放模式, 0x00=停止(清空缓冲区), 0x01=暂停(不清空缓冲区), 0x02=播放。 D5:D4: 未定义,写 0x00。 D3:D2: 保存音乐数据的变量存储器地址,偶数。 D1:D0: 需要播放的音乐数据字长度,最大 8KWords,偶数;数据为 16bit 整数格式。
0xF4	触摸屏绘图窗口	8	不支持
0xFC	DGUS_STOP_EN	2	写入 0x55 AA 5A A5 将停止 DGUS 刷新,主要用于避免没有备份区升级时改写字库冲突。
0xFE	保留	2	写 0x00。
0x100-0x2FF	保留	512	未定义
0x300-0x37F	动态曲线接口	128	0x300-0x30F: 8 个通道曲线缓冲区的状态反馈(建议用户只读),每通道占 2 个字,高字存储曲线数据的存储指针位置(0x0000-0x07FF),低字存储曲线缓冲区有效数据长度(0x0000-0x0800)。把曲线缓冲区有效数据长度写 0x0000 将导致曲线不显示。0x310-0x311: 曲线缓冲区数据写启动。 D3: D2: 0x5AA5 启动一次曲线缓冲区数据写操作,CPU 操作完清零。 D1: 数据块个数,0x01-0x08。 D0: 未定义,写 0x00。 0x312-0x37F: 需要写入曲线缓冲区的数据块,数据是 16bit 无符号数。单个数据块定义为 数据通道 ID(0x00-0x07)+数据字长度(0x01-0x6E)+数据。启用动态曲线显示后,从 0x1000 开始,按照每通道 2Kwords 为每条曲线建立数据缓冲区。CH0 缓冲区为 0x1000-0x17FF,CH1 缓冲区为 0x1800-0x1FFF,以此类推,不使用的曲线缓冲区可以用作用户变量区。用户也可以直接改写曲线缓冲区数据,然后修改 0x300-0x30F对应的存储指针位置和数据长度来保障曲线的正确显示。
0x380-0x3FF	保留	128	未定义,用户不能使用。
0x400-0x4FF	网络通信接口	256	WiFi 等互联网通信设备应用控制接口。
0x500-0xEFF	保留	2660	未定义,用户不能使用。
0x0F00	变量改变指示	2	设置变量改变自动上传功能后,本功能启用。 D3=5A 表示有变量改变,D2:D1=变量存储器指针,D0=变量长度(字)。
0xF02-0xFFF	保留	254	未定义,用户不能使用。

0x1000-0xFFFF 变量存储空间用户可以任意使用。

4.1 网络通信接口 (0x0400-0x04FF)

定义	地址	长度	说明	推荐值		
网络接口开关	0x400	1	0x5AA5 表示开启了网络通信接口。	5AA5		
RMA 报警	0x401	3	D5:D4=0x5AA5 表示立即启动一次指定 RMA 空间数据上传给服务器,处理完清零。 D3:D2=需要上传的 RMA 变量存储器字地址。 D1:D0=需要上传的 RMA 变量存储器字长度。			
保留	0x404	12	保留。	全 00		
设备描述(设备描述)	0x410	1	高字节=0x5A 表示设备描述有效。 低字节=设备描述文本的编码方式和长度。 .76:编码方式 0x00=UNICODE 0x01=GBK, 推荐用 GBK。 .50:描述文本长度 0x00-0x34	5A4C		
	0x411	2	4Bytes 设备生产商 ID,迪文来分配,0xFFFF:0000-0xFFFF:FFFF 段保留。	00000001		
	0x413	1	2Bytes 每个生产商设备的分类,按照迪文分类标准设备生产商自行分类。			
	0x414	2	4bytes 每类设备下的单个设备编号,生产商自行编号。	自定义		
	0x416	26	设备描述文本,最多 52Bytes。			
	0x430	1	RMA 自动刷新服务器的时间间隔,0x0000-0xFFFF,单位为 0.1 秒。 0x0000 表示不需要自动刷新。			
)	0x431	1	RMA(映射到服务器的变量存储器)读空间起始地址,字地址,越界不能读。	1000		
设备描述	0x432	1	RMA 读空间大小,单位为 128Words,最大 64KWords,0x0000 表示禁止读。	0004		
(RMA 映射)	0x433	1	RMA 写空间起始地址,可以和读空间重叠,越界不能写。	2000		
	0x434	1	RMA 写空间大小,单位为 128Words,最大 64KWords,0x0000 表示禁止写。	0004		
	0x435	3	保留	全 00		
	0x438	1	远程升级接口使能,0x5AA5 表示设备开启远程升级接口,系统将自动检测 Buffer。	5AA5		
	0x438	1	远程升级的包超时定时器配置,单位为 0.1 秒。	0064		
	0x433	4	设备的第 1 个可远程升级空间(对应 T5L 的 1MB Flash,对齐到 4KB) 定义: D7=0x5A 表示该远程升级空间启用。 D6-D3: 可升级空间的 32bit 起始地址(低 12bit 为 0),最大 4GB。 D2-D0: 可升级空间的大小,单位 4KB,最大 4GB。	5A00 010 0000 00F		
	0x43E	4	设备的第2个可远程升级空间定义,对应16MB-64MB图片和字库存储器。	5A00 000 0000 100		
	0x442	4	设备的第3个可远程升级空间定义,未使用。	全 00		
	0x446	4	设备的第4个可远程升级空间定义,未使用。	全 00		
设备描述 (远程升级)			远程升级升级 Buffer 接口定义:			
	0x44A	2	D7=0x5A 表示远程升级 Buffer 有效。 D6=升级模式 0x00=通信端负责校验数据 CRC,错误帧通知主机重发。 D5=远程升级可以使用的 Buffer 数量,0x01-0x10,最多 16 个。 D4=Buffer0 的起始地址高字节(字地址),地址低 8bit 是 0x00。每个 Buffer 固定占 2304 个字(0x900)空间,顺序往后排。 单个 Buffer 定义(前 512 字节是控制接口,后面 4KB 是数据): D0: 0x5A 表示启动一次这个 buffer 的远程升级,CPU 处理后清零。 D1: 选择 4 个远程升级空间(0x00-0x03)之一进行 4KB 块写操作。 D2-D5: 写远程升级空间目标地址,低 12bit 为 0。 D6-D7: 数据字节长度,0x0001-0x1000。 D8-D9: 数据 CRC 校验和。 D10-D511: 保留。 D512: 数据开始,最多 4096 字节。	5A 00 08 B0		
(远程升级)	0x44C	4	D7=0x5A 表示远程升级 Buffer 有效。 D6=升级模式 0x00=通信端负责校验数据 CRC,错误帧通知主机重发。 D5=远程升级可以使用的 Buffer 数量,0x01-0x10,最多 16 个。 D4=Buffer0 的起始地址高字节 (字地址),地址低 8bit 是 0x00。每个 Buffer 固定占 2304 个字 (0x900)空间,顺序往后排。 单个 Buffer 定义(前 512 字节是控制接口,后面 4KB 是数据): D0: 0x5A 表示启动一次这个 buffer 的远程升级,CPU 处理后清零。 D1: 选择 4 个远程升级空间(0x00-0x03)之一进行 4KB 块写操作。 D2-D5: 写远程升级空间目标地址,低 12bit 为 0。 D6-D7: 数据字节长度,0x0001-0x1000。 D8-D9: 数据 CRC 校验和。 D10-D511: 保留。 D512: 数据开始,最多 4096 字节。	00 08 B0		
			D7=0x5A 表示远程升级 Buffer 有效。 D6=升级模式 0x00=通信端负责校验数据 CRC,错误帧通知主机重发。 D5=远程升级可以使用的 Buffer 数量,0x01-0x10,最多 16 个。 D4=Buffer0 的起始地址高字节(字地址),地址低 8bit 是 0x00。每个 Buffer 固定占 2304 个字(0x900)空间,顺序往后排。 单个 Buffer 定义(前 512 字节是控制接口,后面 4KB 是数据): D0: 0x5A 表示启动一次这个 buffer 的远程升级,CPU 处理后清零。 D1: 选择 4 个远程升级空间(0x00-0x03)之一进行 4KB 块写操作。 D2-D5: 写远程升级空间目标地址,低 12bit 为 0。 D6-D7: 数据字节长度,0x0001-0x1000。 D8-D9: 数据 CRC 校验和。 D10-D511: 保留。 D512: 数据开始,最多 4096 字节。 保留	00 08		
(远程升级)	0x44C	4	D7=0x5A 表示远程升级 Buffer 有效。 D6=升级模式 0x00=通信端负责校验数据 CRC,错误帧通知主机重发。 D5=远程升级可以使用的 Buffer 数量,0x01-0x10,最多 16 个。 D4=Buffer0 的起始地址高字节 (字地址),地址低 8bit 是 0x00。每个 Buffer 固定占 2304 个字 (0x900)空间,顺序往后排。 单个 Buffer 定义(前 512 字节是控制接口,后面 4KB 是数据): D0: 0x5A 表示启动一次这个 buffer 的远程升级,CPU 处理后清零。 D1: 选择 4 个远程升级空间(0x00-0x03)之一进行 4KB 块写操作。 D2-D5: 写远程升级空间目标地址,低 12bit 为 0。 D6-D7: 数据字节长度,0x0001-0x1000。 D8-D9: 数据 CRC 校验和。 D10-D511: 保留。 D512: 数据开始,最多 4096 字节。	00 08 B0		

设备描述信息由 22 初始化文件 0x0800-0x09FF 相应内容配置(不管有没有启用 22 文件初始化变量缓冲区功能)。

5 SD 接口

SD 卡升级不支持在线热拔插更新,必须先给屏幕断电,插入 SD 卡,然后再上电才可以下载。

基于 T5L 的串口指令屏 SD/SDHC 接口支持以下文件的下载和更新。

文件类型	命名规则	说明
程序文件	T5L_UI∗. BIN	应用程序。
	T5L_OS*. BIN	
DWIN OS 程序	DWINOS*.BIN	DWIN OS 程序,代码必须从 0x1000 开始。
OS CPU 8051 程序	T5L51*.BIN	用户基于 0S 的 8051 平台开发的应用程序。
12/4		下载时可以选择加密或不加密。
1100 DI 1 W ID D		每个 ID 对应 2KWords 存储器,ID 范围 0-79。
NOR Flash 数据库	ID+(可选的)文件名. LIB	数据库位于片内 NOR Flash 中,大小为 160KWords,
→ →). //		可以用于用户数据或者 DWIN OS 程序库文件保存。
字库文件	字库 ID+(可选的)文件名.BIN/DZK/HZK/GTF	字库 ID 00-31; ASCII 字库使用 DGUS 0#字库。
DGUS 输入法文件	12*. BIN	固定存储在 12 字库位置。
DGUS 触控文件	13*. BIN	固定存储在 13 字库位置, 文件不能超过 32KB。
DGUS 变量文件	14*. BIN	固定存储在 14 字库位置,文件不超过 256KB, 必须
	22 /220/	是 DGUS2 格式。
DGUS 变量初始化文件	22*. BIN	固定存储在 22 字库位置,加载 0x2000-0x1FFFF 地
, , , , , , , , , , , , , , , , , , , ,		址内容初始化 0x1000-0xFFFF 的变量空间。
		必须是 DGUS2 格式的 JPEG ICO 文件格式。
TODO EN L. EN L> W.		多片 Flash 扩展时,确保 1 个图片数据保存在 1 片
JPEG 图片、图标文件	字库 ID+(可选的)文件名 .ICL	Flash 中。
		DGUS2 V4.0 及以上版本,必须使用 V7.623 及以上
÷ F → //		版本的 PC 工具软件来生成 ICL 文件。
音乐文件	字库 ID+(可选的)文件名. WAE	必须是 DGUS2 格式,使用迪文专用工具生成。
TIT (11 + ->- /4-	如子姓氏於日 TD. (司)(4) 之业 4 110	组态模块编号从 0x0000-0xFFFF, 每个 ID 对应 32KB
UI 组态文件	组态模块编号 ID+(可选的)文件名. UIC	存储器空间。多片 Flash 扩展时,确保 1 个组态模
7.五.(4) 第7 B. 之. (4)	TEL OPG : OFG	块数据保存在 1 片 Flash 中。
硬件配置文件	T5LCFG*. CFG	
CRC 校验文件	T5*.CRC	SD 下载数据后进行 CRC32 校验检查。

8MB Flash 存储器按照 256Kbytes 单元分割成 32 个字库,可以保存字库、图标库、配置文件。 下载文件必须放在 SD 卡根目录 DWIN_SET 文件夹中,并且必须是 4KB 扇区、FAT32 格式的 SD 或 SDHC 卡。

5. 1 T5LCFG*. CFG 文件格式

类 别	地址	长度	定 义	说明
配置识别	0x00	5	0x54 0x35 0x4C 0x43 0x31	固定内容。
	0x05	1	参数配置	. 7: 串口 CRC 校验选择 0=关闭 1=开启。 . 6: 蜂鸣器/音乐播放选择,0=蜂鸣器 1=音乐播放。 . 5: 上电加载文件初始化变量空间 1=加载 0=不加载 . 4: 触控变量改变自动上传控制 0=不自动上传 1=自动上传。 . 3: 触摸屏伴音控制,0=关闭 1=开启。 . 2: 触摸屏背光待机控制 1=开启 0=关闭。 . 1 0: 上电显示方向 00=0° 01=90° 10=180° 11=270°
系统配置值	0x06	1	参数配置 1	.76: 保留,写0。 .1: 0S CPU用户8051程序下载加密设置,0=未加密1=加密。 选择加密,用户8051程序下载前要使用迪文专用工具加密。.0: 保留,写0。
	0x07	1	音乐 WAE 文件保存位置	0x00-0x3F (00-63) .
	0x08	1	背景图片 ICL 文件保存位置	0x10-0x3F(16-63),对应 12MB-0. 25MB 背景图片空间。
	0x09	1	触摸屏报点率设置	设置范围 0x01-0xFF,出厂值为 0x28,报点率=400Hz/设置值。
	0x0A	2	串口波特率设置	波特率设置值=3225600/设置的波特率。 115200bps,设置值=0x001C ,设置值最大 0x03FF。
	0x0C	1	正常工作及开机亮度	0x00-0x64,单位 1%。
背光待机配置	0x0D	1	待机亮度	0x00-0x64,单位 1%。
	0x0E	2	待机后唤醒点亮时间	0x0001-0xFFFF,单位 10mS。
显示屏配置	0x10	2	Display_Config_En	0x5AA5=显示屏配置有效,出厂已经配置好,用户不要配置。
	0x12	1	PCLK_PHS	数据锁存相位设置: 0x00=PCLK 下降沿 0x01=PCLK 上升沿。
	0x13	1	PCLK_DIV	像素时钟 PCLK 频率设置,PCLK 频率(MHz)=206.4/PCLK_DIV。
	0x14	1	H_W	
	0x15	1	H_S	
	0x16	2	H_D	屏幕的水平(X方向)分辨率。
	0x18	1	H_E	

ideal partner for you		至」	TOL ASTU BY DGUSZ 屏(00F 名物/应用指用 VCIO。 I
	0x19	1	V_W	
	0x1A	1	V_S	
	0x1B	2	V_D	屏幕的垂直(Y方向)分辨率。
	0x1D	1	V_E	
	0x1E	1	TCON_SEL	0x00=不需要配置 TCON 。
	0x1F	1	保留	写 0x00。
	0x20	1	TP_Set_En	0x5A表示本次配置有效。出厂已经配置好,用户不要再配置。
触摸屏配置	0x21	1	TP_Mode	触摸屏模式配置, .74 (高 4bit), 选择触摸屏类型: 0x0*=4 线电阻触摸屏。 0x1*=GT911、GT9271、GT9110 驱动 IC 电容触摸屏。 0x2*=ILI9881H Incell CTP。 0x3*=ILI2117 等 ILI 驱动 IC 电容触摸屏。 0x4*=ILI2130 等 ILI 驱动 IC 电容触摸屏。 0x5*=BL8825 等贝特莱驱动 IC 电容触摸屏。 0x6*=GSL1680 等思力微驱动 IC 电容触摸屏。 0xF*=5 线电阻触摸屏。 .3 电阻触摸屏校准: 0=关闭 1=开启,只在 SD 下载时有效。 .20 (低 3bit), 选择触摸屏模式(仅电容触摸屏有效): .2 X 轴数据选择: 0=0 到 Xmax 1=Xmax 到 0; .1 Y 轴数据选择: 0=0 到 Ymax 1=Ymax 到 0; .0 X、Y 交换: 0=XY 1=YX。
	0x22	1	TP_Sense	触摸屏灵敏度设置: 0x00-0x1F, 0x00 最低, 0x1F 最高。 出厂默认值是 0x14, 灵敏度较高。(ILI9881 是 0x01-0x06)。 设置为 0xFF 将不配置触摸(使用硬件初始值)。
	0x23	1	TP_Freq	频段选择,ILI9881H 适用,0x01-0x14 为固定频段,0x00 跳频。
时钟输出配置	0x24	3	保留	写 0x00。
	0x27	1	BUZZ_Set_En	0x5A 表示本次配置有效。
	0x28	1	BUZZ_Freq_DIV1	蜂鸣器频率=825753.6/(BUZZ_Freq_DIV1*BUZZ_Freq_DIV1) KHz
	0x29	2	BUZZ_Freq_DIV2	出厂设置: DIV1=0x6E, DIV2=0x0BB8, 对应 2.5KHz 频率。
蜂鸣器设置	0x2B	2	BUZZ_Freq_Duty	蜂鸣器占空比设置: 高电平占空比=BUZZ_Freq_Duty/ BUZZ_Freq_DIV2。 出厂设置: 0x00F0 对应 8%高电平占空比。
	0x2D	1	BUZZ_Time	触摸屏伴音蜂鸣器鸣叫时间,单位 10mS;出厂设置 0x0A。
上电初始化变量	0x2E	1	Init_File_Set_En	0x5A 启动一次配置上电初始化变量文件 ID。
文件 ID 配置	0x2F	1	Init_File_ID	配置的上电初始化变量文件 ID,出厂配置是 0x16。
保留	0x30	16	保留	写 0x00。
	0x40	2	SD_Encrypt_En	0x5AA5 表示设置一次 SD 接口加密; 0x5AAA 表示取消 SD 接口加密, SD 下载目录恢复为 DWIN_SET。 加密设置会保存在屏的 Flash 中,掉电不丢失。
	0x42	1	下载文件夹名称字符长度	0x01-0x08。
SD 下载文件夹名 称设置	0x43	8	文件夹名称	最多8个ASCII字符(只能是0-9, a-z, A-Z, 以及-和_),无效的字符设置将使用"DWIN_SET"做为默认值。 掉电重启后才有效。
	0x4B	5	保留	写 0x00
	0x50	32	解密密钥	只需要设置一次。
未定义	0x70	16	保留	写 0x00 。

注意,绿色背景部分参数必须配置。

5. 2 T5*. CRC 文件格式

类 别	地址	长度	定义
文件识别	0x0000	4	固定为 0x43 0x52 0x43 0x10 。
CRC 结果	0x0004	4	指定校验位置数据,按照顺序进行 CRC32 校验后的最终结果。
保留	0x0008	7	写 0x00。
0S 核代码校验	0x000F	1	写 0x5A 表示进行 0S 核代码 CRC 校验,其余表示略过不校验。
	0x0010	2	0x10=需要检验的 LIB 文件 ID;
LIB 文件校验			0x11=此 ID 开始需要检验的文件个数, 0x00 表示 LIB 文件校验结束。
	0x0012	62	剩余的31个定义位置。
字库文件校验	0x0050	2	0x50=需要检验的字库文件 ID; 0x51=此 ID 开始需要检验的文件个数,0x00 表示字库文件校验结束。 对于片外 NOR Flash,字库文件大小为 256KB。 对于片外 NAND Flash,字库文件大小为 8MB;并且由于存在坏块,最后1个文件不要使用,也不要校验。

Ver5.1

	0x0052	254	剩余的127个定义位置。
保留	0x0150	176	写 0x00。

CRC32 计算采用多项式为 X32+X26+X23+X22+X16+X12+X11+X10+X8+X7+X5+X4+X2+X+1。

附录 1 修订记录

日期	修订内容	软件版本
2021. 11. 13	在 T5L 标准 DGUS2 V4.5 基础上修改后首次发布。	V4. 5
2021. 12. 16	修改了电阻触摸屏校准方法,升级后需要重新上电再校准一次。 0x00FC 系统变量接口增加了对 DGUS 刷新停止的控制,避免无备份区文件升级时字库改写冲突。 增加了对 ED4 USB 下载器的支持。	V4. 5
2022. 04. 30	增加了下载文件可加密选择。 恢复了 0x0400 系统变量接口以支持云平台升级。	V4. 7
2022. 06. 28	 (1) 0S 核接口指令增加(0S 核代码需要升级到 V2.0 及以上版本): 0x84 曲线缓冲区写指令; 变量存储器空间从 128KBytes 扩展到 256KBytes,使用 0x86/0x87 指令双字模式读写。 (2) 增加 0x21_12 四色位图显示变量,方便绘图编辑(可以多个变量实现多图层、多颜色)。 (3) 增加 0x0D 位变量按钮触控控件,可以对指定变量的指定位调节。 	V5. 1

使用本文档或迪文产品过程中如存在任何疑问,或欲了解更多迪文产品最新信息,请及时与我们联络:

400 免费电话: 400 018 9008 企业 QQ 和微信: 400 0189 008 企业 mail: dwinhmi@dwin.com.cn

感谢大家一直以来对迪文的支持,您的支持是我们进步的动力!

谢谢大家!