

SPHINCS+

Submission to the NIST post-quantum project

Daniel J. Bernstein, Christoph Dobraunig, Maria Eichlseder, Scott Fluhrer, Stefan-Lukas Gazdag, Andreas Hülsing, Panos Kampanakis, Stefan Kölbl, Tanja Lange, Martin M. Lauridsen, Florian Mendel, Ruben Niederhagen, Christian Rechberger, Joost Rijneveld, Peter Schwabe

Stateless hash-based signatures

Goldreich

Security parameter $\lambda=128$ Use binary tree as in Merkle, but...

...to prevent OTS reuse

pick Even with optimization

• use t (using WOTS-16 as OTS):

• ...for ef 0.6 MB signature.

- use binary certification tree or 013,
- all OTS secret keys are generated pseudorandomly.

The SPHINCS Approach

- Use a "hyper-tree" of total height h
- Parameter $d \ge 1$, such that $d \mid h$
- Each (Merkle) tree has height h/d
- (h/d)-ary certification tree

The SPHINCS Approach

- Pick index (pseudo-)randomly
- Messages signed with few-time signature scheme
- Significantly reduce total tree height
- Require

$$\sum_{r \in [0,\infty]} (\Pr[r - \text{times index collision}] *$$

$$Succ_{\text{EU-CMA}}^{\text{HORST}}(A, q = r)) = \text{negl}(n)$$

SPHINCS+

Adding multi-target attack resilience

Preimage search:

$$\operatorname{Succ}_{\mathcal{H}_n}^{\operatorname{ow}}(\mathcal{A}) = \left(\frac{q+1}{2^n}\right),$$

Multi-target preimage search:

$$\operatorname{Succ}_{\mathcal{H}_n,p}^{\operatorname{SM-OW}}(\mathcal{A}) = \left(\frac{(q+1)p}{2^n}\right),$$

Multi-function multi-target preimage search

$$\operatorname{Succ}_{\mathcal{H}_n,p}^{\operatorname{MM-OW}}(\mathcal{A}) = \left(\frac{q+1}{2^n}\right),$$

Tweakable hash functions

$$T_l: \mathbb{B}^n \times \mathbb{B}^{32} \times \mathbb{B}^n \to \mathbb{B}^n$$
, md $\leftarrow T_l(\mathbf{PK}. \operatorname{seed}, \mathbf{ADRS}, M)$

- Generates new keys and bitmasks for each call from PK.seed and ADRS.
- Allows to embed one challenge per call in reduction

Few-Time Signature Schemes

Recap LD-OTS

Message M = b1,...,bn, OWF H

* = n bit

HORS [RR02]

Message M, OWF H, CRHF H'

* = n bit

Parameters $t=2^a$, k, with m = ka (typical a=16, k=32)

HORS mapping function

Message M, OWF H, CRHF H' = n bit Parameters $t = 2^a$, k, with m = ka (typical a = 16, k = 32)

HORS

Message M, OWF H, CRHF H' = n bit Parameters $t = 2^a$, k, with m = ka (typical a = 16, k = 32)

HORS Security

- M mapped to k element index set $M^i \in \{1, ..., t\}^k$
- Each signature publishes k out of t secrets
- Either break one-wayness or...
- r-Subset-Resilience: After seeing index sets M_j^i for r messages msg_j , $1 \le j \le r$, hard to find $msg_{r+1} \ne msg_j$ such that $M_{r+1}^i \in \bigcup_{1 \le j \le r} M_j^i$.
- Best generic attack: Succ_{r-SSR}(A,q) = q(rk/t)^k
- → Security shrinks with each signature!

HORST

Using HORS with MSS requires adding PK (tn bits) to MSS signature. (SPHINCS-256: $n=256, t=2^{16}$, k=32)

HORST: Merkle Tree on top of HORS-PK

- New PK = Root
- Publish Auth-Paths for HORS signature values
- PK can be computed from Sig
- With optimizations: $tn \to (k(\log t x + 1) + 2^x)n$
 - E.g. SPHINCS-256: 2 MB \rightarrow 16 KB
- Use randomized message hash

FORS

Shortcomings of HORST

- "index collisions"
 - Allows to search for weak messages (no impact on SPHINCS as hash randomized)
 - Still reduces security
- Indices are in unordered list
- Authentication paths will most likely contain redundant nodes
 - Variable size signatures could go lower but requires complicated algorithm (and protocols have to reserve worst-case size)

FORS

FORS (Forest of random subsets)

- No index collisions
 - "One tree per index"
- Ordered list of indices

- Signature size same as worst-case variable signature size (at same security level)
 - Only need authpaths in small trees
 - Simple to compute

FORS

Parameters t, a = log t, k such that ka = m

kt n-byte private key values k binary hash trees.

Verifiable index selection

(and optionally non-deterministic randomness)

• SPHINCS:

$$(idx||\mathbf{R}) = PRF(\mathbf{SK}. prf, M)$$

 $md = H_{msg}(\mathbf{R}, PK, M)$

• SPHINCS+:

$$\mathbf{R} = PRF(\mathbf{SK}. \text{ prf, OptRand}, M)$$

 $(\text{md}||\text{idx}) = H_{\text{msg}}(\mathbf{R}, \text{PK}, M)$

Optionally non-deterministic randomness

 Non-deterministic randomness complicates sidechannel attacks

 Bad randomness in worst-case still leads to secure pseudorandom value

Verifiable index selection

Improves FORS security

- SPHINCS: Attacks could target "weakest" HORST key pair
- SPHINCS⁺: Every hash query ALSO selects FORS key pair
 - Leads to notion of interleaved target subset resilience

Instantiations

- SPHINCS⁺-SHAKE256
- SPHINCS⁺-SHA-256
- SPHINCS+-Haraka

Instantiations (small vs fast)

	n	h	d	$\log(t)$	k	\overline{w}	bitsec	sec level	sig bytes
SPHINCS ⁺ -128s	16	64	8	15	10	16	133	1	8 080
SPHINCS ⁺ -128f	16	60	20	9	30	16	128	1	16976
$SPHINCS^+-192s$	24	64	8	16	14	16	196	3	17064
SPHINCS ⁺ -192f	24	66	22	8	33	16	194	3	35664
$SPHINCS^+-256s$	32	64	8	14	22	16	255	5	29792
$SPHINCS^+-256f$	32	68	17	10	30	16	254	5	49216

Summary of SPHINCS⁺

- Strengthened security gives smaller signatures
- Collision- and multi-target attack resilient
- Fixed length signatures (far easier to compute than Octopus (-> Gravity-SPHINCS))
- Small keys, medium size signatures (lv 3: 17kB)
- Sizes can be much smaller if q_sign gets reduced
- THE conservative choice
- No citable speeds yet

Thank you! Questions?

Visit us at https://sphincs.org