ST3131 Cheatsheet

by Yiyang, AY22/23

1. Simple Linear Regression

Simple Regression Model

Consider regressing *Y* on *X*:

$$Y = \beta_0 + \beta_1 + \epsilon$$

Here X is called Covariate, Predictor or Regressor, and Y Response.

The Regression function:

$$EY = \mathbb{E}[Y|X] = \beta_0 + \beta_1 X$$

Regression coefficients, $\beta_1 = \rho_{xy} \frac{\sigma_y}{\sigma_x}$ and $\beta_0 = \mu_y - \beta_1 \mu_x$, minimising $\mathbb{E}(Y - \beta_0 - \beta_1 X)^2$

Observed ~

Assumptions of LRM

- 1. x_i and ϵ_i independent
- $2. \quad \frac{1}{n} \sum_{j=1}^{n} \epsilon_j = 0$
- 3. $Cov(\epsilon_i, \epsilon_i) = 0, \forall i, j$
- 4. **Homogenity**, $vare_j = \sigma^2$ for all j
- 5. Normality, $\epsilon_j \sim \mathcal{N}(\cdot, \cdot)$ for all j

Least Square Estimates of *n* observations (x_i, y_i) gives

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{X})(y_i - \bar{Y})}{\sum_{i=1}^n (x_i - \bar{X})^2}, \, \hat{\beta}_0 = \hat{Y} - \hat{\beta}_1 \bar{X}$$

, where $\hat{X}=\frac{1}{n}\sum_{i=1}^n x_i$ and $\hat{Y}=\frac{1}{n}\sum_{i=1}^n y_i$, and the estimates minimises

$$Q = Q(\hat{\beta}_0, \hat{\beta}_1) = \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$$

Lastly, Residual Stanndard Error $\hat{\sigma}^2 = s^2 = \frac{1}{n-2} SSE$ gives $\hat{\sigma}$ the LSE for σ .

Analysis of Variance (ANOVA)

Sum of Squares

Sum of Square Errors SSE = $\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} e_i^2$, measures variation of *Y* due to random errors.

Regression Sum of Squares SSR = $\sum_{i=1}^{n} (\hat{y}_i - \bar{Y})^2$, measures variation of Y explained by X.

Total Sum of Squares $SST = \sum_{i=1}^{n} (y_i - \bar{Y})^2$

$$SST = SSR + SSE$$

Coefficients of Determination

Coefficients of Determination measures how much of Y is explained by X,

$$R^2 = \frac{\text{SSR}}{\text{SST}} = \frac{\beta_1^2 \sigma_x^2}{\beta_1^2 \sigma_x^2 + \sigma^2}$$

Note: $R^2 \in [0,1]$ and $R^2 = corr(X,Y)^2 = corr(Y,\hat{Y})^2$.

Adjusted R^2 for a RM with p regressors,

$$R_a^2 = \frac{n-1}{n-p-1}R^2 - \frac{p}{n-p-1}$$

Note: [1] R^2 strictly increasing as p increases while R_a^2 does not. [2] Sample R^2 and R_a^2 are both biased estimated for their population counterparts, but latter less biased.

Theoretical Properties of LSE

Unbiasedness of LSE

 $\hat{\beta}_0$, $\hat{\beta}_1$, s are unbiased estimators for their population counterparts. $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X$ unbiased estimator for $EY = \beta_0 + \beta_1 X$.

Standard Errors

$$\begin{split} var(\hat{\beta}_0) &= \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{X})^2} \\ var(\hat{\beta}_0) &= var(\bar{Y}) + \bar{X}^2 var(\hat{\beta}_1) \\ &= \frac{\sigma^2}{n} + \frac{\bar{X}^2}{\sum_{i=1}^n (x_i - \bar{X})^2} \sigma^2 \\ var(\hat{Y}) &= \Big[\frac{1}{n} + \frac{(X - \bar{X})^2}{\sum_{i=1}^n (x_i - \bar{X})^2} \Big] \sigma^2 \end{split}$$

The sample SEs are estimated by substituting σ^2 with s^2 .

Inferences for ~

Statistical Tests

Significance Test (ANOVA) Null: $\beta_1 = 0$. Statistics: $F = \frac{\text{MSR}}{\text{MSE}} \sim F_{1,n-2}$. Decision: Reject null if $F > f_{1,n-2}(\alpha)$

Test for
$$\beta_1$$
 (and β_0)

Statistic: $T_{\beta_1} = \frac{\hat{\beta}_1 - \beta_1}{s(\hat{\beta}_1)} \sim t_{n-2}$.

Confidence Interval: $\hat{\beta}_1 \pm t_{n-2}(\alpha/2) \, s(\hat{\beta}_1)$

Confidence Lower Bound: $\hat{\beta}_1 - t_{n-2}(\alpha) \, s(\hat{\beta}_1)$, upper similar.

Predictions

Confidence Interval for $E[Y|X = x_h]$:

$$\hat{y}_h \pm t_{n-2}(\alpha/2) \cdot \sqrt{\hat{\sigma}^2 \Big(\frac{1}{n} + \frac{(x_h - \bar{X})^2}{\sum_{i=1}^n (x_i - \bar{X})^2}\Big)}$$

Prediction Interval for *Y* when $X = x_h$:

$$\hat{y}_h \pm t_{n-2}(\alpha/2) \cdot \sqrt{\hat{\sigma}^2 \Big(1 + \frac{1}{n} + \frac{(x_h - \bar{X})^2}{\sum_{i=1}^n (x_i - \bar{X})^2}\Big)}$$

2. Multiple Linear Regression

Multiple Regression Model

Objective: To investigate relationship between Y and p predictors $\vec{X} = (X_1,...,X_p)$ with n observations.

Least Square Estimation

Let
$$\boldsymbol{\beta} = (\beta_0, \beta_1, ..., \beta_p)^T \in \mathbb{R}^{p+1}$$
,

$$\hat{\boldsymbol{\beta}} = (X^T X)^{-1} X^T \boldsymbol{y}$$

$$s^2 = \frac{\|\boldsymbol{y} - H \boldsymbol{y}\|^2}{n - p - 1}$$

Here $X = X_{n \times (p+1)}$ is the **Design Matrix** where a column of 1 is joined to the left of observed predictors.

Hat Matrix

The Hat Matrix $H = H_{n \times n}$ is the projection matrix of linear space spanned by column vectors of X.

$$H = X(X^T X)^{-1} X^T$$

Properties of *H*:

- \bullet HX = X
- Idempotent, $H^2 = H$, so does I H
- H1 = 1 for 1 = One(n, 1)
- $Hx_i = x_i$ for $x_i = (x_{1i}, ..., x_{ni})^T$
- $\hat{y} = Hy$ is the fitted values, and e = (I H)y is the residuals.

Explicit Expression for One Coefficient

$$\hat{\beta}_j = \frac{\mathbf{x_j}^T (I - H_{-j} \mathbf{y})}{\mathbf{x_i}^T (I - H_{-i} \mathbf{x_i})}$$

, where X_{-j} is the Sub-Design Matrix with column $\mathbf{x_j}$ removed, and H_{-i} the corresponding Hat Matrix.

ANOVA

Sum of Squares

SST =
$$\mathbf{y}^T H_T \mathbf{y}$$
, $H_T = I - \frac{1}{n} \mathbf{1} \mathbf{1}^T$
SSR = $\mathbf{y}^T H_R \mathbf{y}$, $H_R = H - \frac{1}{n} \mathbf{1} \mathbf{1}^T$
SSE = $\mathbf{y}^T H_E \mathbf{y}$, $H_E = I - H$

Distributions of Sum of Squares

$$\frac{\rm SSE}{\sigma^2} \sim \chi^2_{n-p-1}, \ \frac{\rm SSR}{\sigma^2} \sim \chi^2_p$$

ANOVA Table

	df	SS	MS	F
Regression	р	SSR	MSR	MSR/MSE
Error	n-p-1	SSE	MSE	
Total	n-1	SST		

Inferences for ~

Statistical Tests

Significance Test (ANOVA)
Null:
$$\beta = 0$$
. Statistics, $F = \frac{\text{MSR}}{\text{MSE}} \sim F_{p,n-p-1}$.

Individual *t*-Test

Null:
$$\beta_i = 0$$
. Statistic: $T_{\beta_i} = \frac{\hat{\beta}_i}{s(\hat{\beta}_i)} \sim t_{n-p-1}$.

General Linear Hypothesis Test For a given linear hypothesis $\mathbf{c} = (c_0, c_1, ..., c_p)^T$,

Null:
$$\mathbf{c}^T \boldsymbol{\beta} = 0$$
 Statistics: $T = \frac{\mathbf{c}^T \hat{\boldsymbol{\beta}}}{\sqrt{\mathbf{c}^T \hat{\Sigma} \mathbf{c}}} \sim t_{n-p-1}$

Predictions

Confidence Interval for $E[Y|\vec{X} = x_h]$:

$$\hat{y}_h \pm \hat{\sigma}_F^2(\hat{y}_h) \times t_{n-p-1}(\alpha/2)$$

where the estimated variance is

$$\hat{\sigma}_F^2(\hat{y}_h) = \boldsymbol{x_h}^T Var(\boldsymbol{\hat{\beta}}) \boldsymbol{x_h} = \boldsymbol{x_h}^T (X^T X)^{-1} \boldsymbol{x_h} \hat{\sigma}^2$$

Prediction Interval for Y when $\vec{X} = x_h$:

$$\hat{y}_h \pm \hat{\sigma}_P^2(\hat{y}_h) \times t_{n-\nu-1}(\alpha/2)$$

where the estimated variance is

$$\hat{\sigma}_P^2(\hat{y}_h) = \left[1 + \boldsymbol{x_h}^T (X^T X)^{-1} \boldsymbol{x_h}\right] \hat{\sigma}^2 = \hat{\sigma}^2 + \hat{\sigma}_F^2$$