# 2е занятие. Системы счисления

# 1.Перевести из 10 в 16 систему 12345678, 1000000

Перевод числа 1234567810:

- **1)** 12345678 ÷ 16
  - Частное: 771604Остаток: 14 == Е
- **2**) 771604 ÷ 16
  - Частное: 48225
  - Остаток: 4
- **3)** 48225 ÷ 16
  - Частное: 3014
  - Остаток: 1
- **4)** 3014 ÷ 16
  - Частное: 188
  - Остаток: 6
- **5**) 188 ÷ 16
  - Частное: 11
  - Остаток: 12 == С
- **6)** 11 ÷ 16
  - Остаток: 11 == В

**Otbet:**  $12345678_{10} = BC614E_{16}$ 

Перевод числа 100000010:

- **1**) 1000000 ÷ 16
  - Частное: 62500
  - Остаток: 0
- **2**) 62500 ÷ 16
  - Частное: 3906
  - Остаток: 4
- **3**) 3906 ÷ 16
  - Частное: 244

• Остаток: 2

**4):** 244 ÷ 16

Частное: 15Остаток: 4

**5):** 15 ÷ 16

• Остаток: 15 == F

**Ответ:**  $1000000_{10} = F4240_{16}$ 

## 2. Перевести из 16 в 10 систему 12345678, 1000000

Перевод числа 1234567816:

$$1*16^{7} + 2*16^{6} + 3*16^{5} + 4*16^{4} + 5*16^{3} + 6*16^{2} + 7*16^{1} + 8*16^{0} =$$

$$= (1*268435456) + (2*16777216) + (3*1048576) + (4*65536) + (5*4096) + (6*256) + (7*16) + (8*1) = 268435456 + 33554432 + 3145728 + 262144 + 20480 + 1536 + 112 + 8 =$$

$$305419896$$

**Ответ:**  $12345678_{16} = 305419896_{10}$ 

Перевод числа 100000016:

$$1*16^6 + 0*16^5 + 0*16^4 + 0*16^3 + 0*16^2 + 0*16^1 + 0*16^0 =$$
  
=  $1*16^6 = 16777216$ 

**Ответ:**  $1000000_{16} = 16777216_{10}$ 

# 3. Записать в виде логического выражение ответ Винни Пуха: "Сгущенного молока и меда и можно без хлеба"

А – есть сгущенное молоко?

В – есть мед?

С – есть хлеб?

Если «можно без хлеба» == !C,

тогда получается Сгущенного молока и меда и можно без хлеба =>

#### A && B && !C

Ответ: А && В && !С

Однако если «можно без хлеба» это факт снимающий ограничение на наличия хлеба, то как логический аргумент, элемент C вообще может не использоваться, отставляя только A & B

4. Доказать тождества  $A \to B = !A || B, A \leftrightarrow B = (A & B) || (!A & !B)$ 

Доказетельство  $A \rightarrow B = !A||B:$ 

Таблица истинности

| A | В | !A | $A \rightarrow B$ | !A  B |
|---|---|----|-------------------|-------|
| 0 | 0 | 1  | 1                 | 1     |
| 0 | 1 | 1  | 1                 | 1     |
| 1 | 0 | 0  | 0                 | 0     |
| 1 | 1 | 0  | 1                 | 1     |

**Ответ:** Исходя из совпадения столбцов  $A \to B$  и  $!A \| B$  выходит доказательства того, что выражения тождественны

Доказетельство  $A \leftrightarrow B = (A \&\& B) \parallel (!A \&\& !B)$ :

| A | В | !A | !B | $A \leftrightarrow B$ | A && B | !A && !B | (A && B)<br>   (!A &&<br>!B) |
|---|---|----|----|-----------------------|--------|----------|------------------------------|
| 0 | 0 | 1  | 1  | 1                     | 0      | 1        | 1                            |
| 0 | 1 | 1  | 0  | 0                     | 0      | 0        | 0                            |
| 1 | 0 | 0  | 1  | 0                     | 0      | 0        | 0                            |
| 1 | 1 | 0  | 0  | 1                     | 1      | 0        | 1                            |

**Ответ:** Исходя из совпадения столбцов  $A \leftrightarrow B$  и  $(A \&\& B) \parallel (!A \&\& !B)$  выходит доказательства того, что выражения тождественны

## 5. Прислать скриншот Boolean games by July Sudarenko:



## 6. Упростить выражение: $X = (B \to A) \&\& !(A||B) \&\& (A \to C)$

## 1) Из доказанного тождества в задаче 4 известно что:

$$(B \rightarrow A) = !B \parallel A$$

$$(A \rightarrow C) = !A \parallel C$$

Тогда:  $X = (!B \parallel A) \&\& !(A \parallel B) \&\& (!A \parallel C)$ 

### 2) Таблица истинности для !(А || В) и !А && !В

| A | В | !A | !B | !A && !B | !(A    B) |
|---|---|----|----|----------|-----------|
| 0 | 0 | 1  | 1  | 1        | 1         |
| 0 | 1 | 1  | 0  | 0        | 0         |
| 1 | 0 | 0  | 1  | 0        | 0         |
| 1 | 1 | 0  | 0  | 0        | 0         |

Тогда:  $!(A \parallel B) = !A \&\& !B$ 

 $X = (!B \parallel A) \&\& (!A \&\& !B) \&\& (!A \parallel C)$ 

#### 3) Так как в основе &&, то можно переставить слагаемые, тогда:

X = (!A && !B) && (!B || A) && (!A || C)

### 4) Разбитие оператора && на два частных случая с ||:

(!A && !B) && (!B || A) = ((!A && !B) && !B) || ((!A && !B) && A)

Тогда: т.к. !B && !B = !B, то (!A && !B) && !B = !A && !B и (!A && !B) && A = !A &

0 && !B = 0, так как A && !A всегда дают 0.

Получается:

$$(!A \&\& !B) \&\& (!B || A) = (!A \&\& !B) || 0 = !A \&\& !B$$

 $X = (!A \&\& !B) \&\& (!A \parallel C)$ 

#### 5) Упрощение (!А && !В) && (!А || С):

(!A && !B) && (!A || C) = ((!A && !B) && !A) || ((!A && !B) && C)

Тогда, (!A && !B) && !A = !A && !В и (!A && !В) && С = !А && !В && С

 $X = (!A \&\& !B) \parallel (!A \&\& !B \&\& C)$ 

## 6) Таблица истинности для (!A && !B) || (!A && !B && C)

| A | В | С | !A | !B | !A &&<br>!B | (!A &&<br>!B && C | (!A &&<br>!B)    (!A<br>&& !B<br>&& C) |
|---|---|---|----|----|-------------|-------------------|----------------------------------------|
| 0 | 0 | 0 | 1  | 1  | 1           | 0                 | 1                                      |
| 0 | 0 | 1 | 1  | 1  | 1           | 1                 | 1                                      |
| 0 | 1 | 0 | 1  | 0  | 0           | 0                 | 0                                      |
| 0 | 1 | 1 | 1  | 0  | 0           | 0                 | 0                                      |
| 1 | 0 | 0 | 0  | 1  | 0           | 0                 | 0                                      |
| 1 | 0 | 1 | 0  | 1  | 0           | 0                 | 0                                      |
| 1 | 1 | 0 | 0  | 0  | 0           | 0                 | 0                                      |
| 1 | 1 | 1 | 0  | 0  | 0           | 0                 | 0                                      |

Исходя из равенства столбов !A && !B и (!A && !B)  $\parallel$  (!A && !B && C), ясно что C не влияет на результат, поэтому итоговое выражение можно привести к виду: X = !A && !B

Ответ: X =! A &&! В Проверка ответа X = (В  $\rightarrow$  A) && !(А||В) && (А  $\rightarrow$  C) и !А &&! В

| A | В | C | !A | !B | $B \rightarrow A$ | $A \rightarrow C$ | !(A  B) | $(B \rightarrow$ | $(B \rightarrow$ |
|---|---|---|----|----|-------------------|-------------------|---------|------------------|------------------|
|   |   |   |    |    |                   |                   |         | A) &&            | A) &&            |
|   |   |   |    |    |                   |                   |         | !(A  B)          | !(A  B)          |
|   |   |   |    |    |                   |                   |         |                  | && (A            |
|   |   |   |    |    |                   |                   |         |                  | $\rightarrow$ C) |
| 0 | 0 | 0 | 1  | 1  | 1                 | 1                 | 1       | 1                | 1                |
| 0 | 0 | 1 | 1  | 1  | 1                 | 1                 | 1       | 1                | 1                |
| 0 | 1 | 0 | 1  | 0  | 0                 | 1                 | 0       | 0                | 0                |
| 0 | 1 | 1 | 1  | 0  | 0                 | 1                 | 0       | 0                | 0                |
| 1 | 0 | 0 | 0  | 1  | 1                 | 0                 | 0       | 0                | 0                |
| 1 | 0 | 1 | 0  | 1  | 1                 | 1                 | 0       | 0                | 0                |
| 1 | 1 | 0 | 0  | 0  | 1                 | 0                 | 0       | 0                | 0                |
| 1 | 1 | 1 | 0  | 0  | 1                 | 1                 | 0       | 0                | 0                |

| A | В | !A | !B | ! A &&! B |
|---|---|----|----|-----------|
| 0 | 0 | 1  | 1  | 1         |
| 0 | 1 | 1  | 0  | 0         |
| 1 | 0 | 0  | 1  | 0         |
| 1 | 1 | 0  | 0  | 0         |

Что показывает что лишь вариант с A=0 и B=0, приводит к X=1, тем самым доказывая тождества упрощения.