CAP 2. DADOS MULTIMÍDIA

Aula 2: Representação digital de Áudio

INE5431 SISTEMAS MULTIMÍDIA PROF. ROBERTO WILLRICH (INE/UFSC) ROBERTO.WILLRICH@UFSC.BR

HTTPS://MOODLE.UFSC.BR

Representação Digital de Áudio

Digitalização do áudio

- Digitalização: processo envolvido na transformação de sinais analógicos em digitais
- Conversão é realizada pelos CODECs (Codificador/Decodificador)

Sinais analógicos

- Medida que varia continuamente com o tempo e/ou espaço
 - Descritos por s=f(t) ou s=f(x,y,z)

Sinais digitais

 Sequências de valores dependentes do tempo ou do espaço codificados no formato binário (0's e 1's)

Representação Digital de Áudio

- Sinal analógico: Contínuo no tempo e na amplitude.
 - Sinal elétrico de áudio
- Sinal digital: Discreto no tempo e na amplitude. Passos:
 - Amostragem
 - Quantização
 - Codificação

A conversão analógica-digital implica perda de informação!

- Amostragem
 - o conjunto discreto de valores (analógicos) é amostrado em intervalos temporais em periodicidade constante
 - T = período de amostragem
 - 1/T = frequência de amostragem

- Quantização
 - o sinal amostrado é quantificado (descontinuidade de valores)
 - Técnica que utiliza o mesmo passo de quantização é chamada modulação PCM (Pulse Coded Modulation).

- Codificação
 - um conjunto de bits, chamado de *code-word*, é associado com cada valor quantificado

Quanto maior a taxa de amostragem melhor é a digitalização

- b) Se a taxa de amostragem é igual a do sinal: será gerada uma constante
- C) Se a taxa é de 1.5 a taxa do sinal, vai produzir uma frequência "alias" (pseudonímia)
 - Frequência reduzida

Quanto maior a taxa de amostragem melhor é a digitalização

Taxa muito baixa provoca baixa qualidade:

Taxas maiores representam melhor o sinal original

Qual a taxa de amostragem devo utilizar?

- Teorema de Nyquist
 - se um sinal analógico contem componentes de frequência até f Hz, a taxa de amostragem deve ser ao menos 2f Hz (frequência de Nyquist)
 - para digitalizar sons até 20 kHz → freq Nyquist =40 kHz
 - para digitalizar voz até 4 kHz → freq Nyquist =8 kHz

Maior componente de frequência digitalizado

- Definido pela taxa de amostragem
 - Freq Nyquist =40kHz → maior componente de frequência é 20kHz
 - Freq Nyquist =8kHz → maior componente de frequência é 4 kHz

Pseudonímia (aliasing)

- Se o sinal tiver componentes de frequência maiores que a frequência de Nyquist
 - Ocorre a pseudonímia (aliasing)
 - São convertidos em frequências mais baixas na reconstrução
- Exemplo

Sinal amostrado adequadamente

Sinal *aliased* devido a subamostragem

Pseudonímia (aliasing)

- Se o sinal tiver componentes de frequência maiores que a frequência de Nyquist
 - Ocorre a pseudonímia (aliasing)
 - São convertidos em frequências mais baixas na reconstrução
- Filtro anti-pseudonímia
 - Filtro passa baixa para eliminar as freqüências maiores que a de Nyquist

Filtros anti-Pseudonímia (aliasing)

- Filtros com curvas "suaves" são mais fáceis de se construir e mais baratos.
- Filtros de curvas abruptas, além de caros, podem gerar problemas de fase e prejudicar os agudos.
- A solução é utilizar taxas de amostragens altas, como 88.1 ou 96kHz
 - Para conseguir gravar todo o espectro audível, sem se preocupar com aliasing ou outras distorções causadas pelo filtro.
 - Conversores A/D (e D/A) utilizam oversampling, fazendo amostragens em alto taxa de amostragem
 - Depois aplicam filtros digitais precisos para fazer o down-sampling para 44.1kHz, antes de armazenar o áudio.

Cap 2. Dados Multimídia

Aula 2: Representação digital de Áudio (Continuação)

INE5431 SISTEMAS MULTIMÍDIA PROF. ROBERTO WILLRICH (INE/UFSC)

ROBERTO.WILLRICH@UFSC.BR

HTTPS://MOODLE.UFSC.BR

Representação Digital de Áudio

- Sinal analógico: Contínuo no tempo e na amplitude.
 - Sinal elétrico de áudio
- Sinal digital: Discreto no tempo e na amplitude. Passos:
 - Amostragem
 - Quantização
 - Codificação

A conversão analógica-digital implica perda de informação!

- Amostragem
 - o conjunto discreto de valores (analógicos) é amostrado em intervalos temporais em periodicidade constante
 - T = período de amostragem
 - 1/T = frequência de amostragem

Qual a taxa de amostragem devo utilizar?

Teorema de Nyquist

- se um sinal analógico contem componentes de frequência até f Hz, a taxa de amostragem deve ser ao menos 2f Hz (frequência de Nyquist)
 - para digitalizar sons até 20 kHz → freq Nyquist =40 kHz
 - para digitalizar voz até 4 kHz → freq Nyquist =8 kHz

Maior componente de frequência digitalizado

- Definido pela taxa de amostragem
 - Freq Nyquist =40kHz → maior componente de frequência é 20kHz
 - Freq Nyquist =8kHz → maior componente de frequência é 4 kHz

- Quantização
 - o sinal amostrado é quantificado (descontinuidade de valores)
 - Técnica que utiliza o mesmo passo de quantização é chamada modulação PCM (Pulse Coded Modulation).

- Codificação
 - um conjunto de bits, chamado de code-word, é associado com cada valor quantificado

- Codificação
 - Discretização provoca distorção devido a limitação do tamanho de bits para representar amostras
 - Provoca o Ruído de Quantização

Quantização

Conversor apresenta um número limitado de bits

Ocorrerá um erro de quantização

• Se traduzirá auditivamente por um ruído, ouvido na reprodução do som reconstruído (ruído de

quantização)

Quantização linear

- Modulação por pulso codificado (PCM)
 - tamanho de passo de quantização na conversão A/D é constante
- PCM é simples mas não é eficiente
 - resulta em uma qualidade mais elevada na região de mais alta amplitude de sinal que na região de mais baixa amplitude
 - alta qualidade na amplitude mais alta não aumenta a qualidade percebida

Quantificação não linear

- Tamanho de passo de quantização aumenta logaritmicamente com a amplitude do sinal
 - passos de quantização são menores quando a amplitude é baixa
 - é realizada uma transformação de um sinal linear em um sinal não linear

Quantização não linear

- na prática:
 - uma quantização uniforme é aplicada a um sinal não linear transformado em vez de aplicar uma quantização não uniforme ao sinal linear
 - o processo de transformação de um sinal linear em não linear é chamado de companding
 - o digitalização uniforme de um sinal companded é chamado de companded PCM

52

Sistema telefônico

- Foi projetado para transmitir frequências da voz humana
 - Voz humana tem componentes de frequência até 15Hz e 14kHz
 - Por razões econômicas a faixa de voz escolhida digitalizar sons de 300 Hz a 3.4kHz
 - garante 85% de inteligibilidade (palavras compreendidas)
- Utiliza o codec G.711
 - Quantização não linear: A-law, μ-law
 - Taxa de amostragem de 8KHz (sons até 4kHz)
 - Número de bits por amostra: 8bits

Taxa de bits

- Produto entre taxa de amostragem e o número de bits
 - exemplo: telefonia
 - supondo uma frequência de 8 kHz e 8 bits por amostra
 - taxa de bits necessária é igual a 8000x8 = 64 kbps

Representação Digital de Áudio

Exemplos de Qualidade de Áudio

Aplicações	Nº de canais	Largura de banda (Hz)	Taxa de amostragem	Bits por amostra	Taxa de bits
CD-Audio	2	20-20000	44.1 kHz	16	1,41 Mbps
DAT	2	10-22000	48 kHz	16	1,53 Mbps
Telefone Digital	1	300-3400	8 kHz	8	64 Kbps
Rádio digital, long play DAT	2	30-15000	32 KHz	16	1,02 Mbps

Taxa do áudio = <N° Canais>*< N° bits por amostra> * <freq. Amostragem>

Apresentação do áudio digital

Dados multimídia podem ser representados internamente no formato digital

- Humanos reagem a estímulos sensoriais físicos
- Conversão D/A é necessária na apresentação de certas informações

Apresentação do áudio digital

Para a apresentação do áudio

- é necessário realizar a transformação de uma representação artificial do som em uma forma de onda física audível pelo ouvido humano
 - utilizados Conversores Digital para Analógico (CDA)

Placas de áudio

 Conversores CAD e CDA são implementados em uma única placa

Problemas da Representação digital

Distorção de codificação

- Digitalização introduz distorção
 - sinal gerado após a conversão D/A não é idêntico ao original
 - aumentando a taxa de amostragem e número de bits usado para codificação reduz a distorção
 - problema: capacidade de armazenamento limitado

Padrão MIDI

Representação simbólica da música: padrão MIDI

- Define sequências de notas, condições temporais e o "instrumento" (127) que deve executar cada nota
- Músico pode criar suas músicas no computador:
 - software especiais permitem que o músico edite notas e controles, sejam em uma partitura, seja através de gráfico que exibe as teclas dos pianos
 - as músicas editadas podem ser ouvidas pelos sequenciadores
- Arquivos MIDI são muito mais compactos que amostragens digitalizadas
 - um arquivo MIDI pode ser 1000 vezes menor que um arquivo CD áudio
- Desvantagem
 - processamento extra de informação, e imprecisão dos instrumentos de som (variam com o dispositivo usado para a apresentação)

Editores Midi

Pontos Importantes

Processo de digitalização

- Amostragem
- Quantização
- Codificação

Parâmetros de digitalização

 Efeitos na escolha da taxa de amostragem e bits por amostra na digitalização: frequência de Nyquist e pseudonímia

Quantização linear e não linear

 Entender as vantagens da quantização não linear devido as características do sistema auditivo humano