

Department of Electronic and Telecommunication

University of Moratuwa

EN2160 - Electronic Design Realization Conceptual Design Report

Bicycle speedo meter with electric horn

The conceptual design for a bicycle speedometer and electric horn involves integrating two essential components into a compact and user-friendly device. The speedometer would feature a clear digital display that shows real-time speed, temperature and humidity of an environment, real time-time, while the electric horn would provide a loud and attention-grabbing sound for signaling. The speedometer could be attached to the handlebars or stem of the bicycle, powered by a rechargeable battery, and designed for easy readability. The electric horn would be conveniently positioned within reach of the rider's hand and activated by a button or switch, with adjustable different sounds. This integrated design aims to enhance safety and convenience for cyclists, combining essential features into a single device.

List of team members who contributed to this conceptual design.

200068R M.M.K.R.Bandara

200148M D.P.C.L.Dombawala

200396U C.M.C.C.Miranda

200117T K.A.G.D.Deshan

200431B B.Nirushtihan

200377M T.Manimohan

200094R L.G.S.Clarance

200331T V. Kurrshanth

Functional block diagrams for schematic design

Design 1:

Design 3: Charging module (for dynamo) Power supply Voltage regulator (Battery (9V)) DHT11 sensor (Input) Reed switch sensor (Input) ESP 32 chip OLED display Keypad (Output) (Input) ${\bf Speaker}$ (Output)

Sketches for enclosure design 1:

Sketches for enclosure design 2:

Sketches for enclosure design 3:

• User-Centered Design

Based on the user needs survey, valuable insights have been gathered regarding the expectations and requirements of users for a bicycle speedometer. The feedback received has aided in refining the design and incorporating features that align with user preferences. Here is a description of the user design for the bicycle speedometer:

- 1. Wireless Sensor: Users expressed a desire for a wireless sensor that can be easily installed on the bicycle. This feature eliminates the need for messy wiring and simplifies the installation process, making it more convenient for users.
- 2. Accurate Speed Measurement: Users emphasized the importance of accurate speed measurement. The speedometer should provide precise and real-time speed readings, enabling cyclists to track their performance effectively.
- 3. Multi-Function Display: Users highlighted the need for a multi-function display that can show various metrics such as speed, distance traveled, elapsed time, and possibly additional data like average speed or cadence. This feature provides cyclists with comprehensive information about their rides.
- 4. Waterproof and Shockproof Design: Given the outdoor nature of cycling, users emphasized the requirement for the speedometer to be waterproof and shockproof. This ensures durability and reliability, even in challenging weather conditions or bumpy terrains.
- 5. Easy Mounting and Adjustments: Users requested a design that allows for easy mounting and adjustments of the speedometer on different bicycle handlebars. This feature ensures compatibility with a wide range of bicycles and enhances user convenience.
- 6. Battery Life: Users expressed a desire for a long battery life to minimize the need for frequent replacements. Efficient power management and possibly rechargeable batteries would contribute to a sustainable and user-friendly solution.
- 7. Backlit Display: Users highlighted the importance of a backlit display, especially for night rides or low-light conditions. This feature enhances visibility and readability, ensuring the speedometer remains functional in various lighting situations.

By incorporating these user-driven design considerations into the bicycle speedometer, you can create a product that meets the expectations of users, enhances usability, and provides valuable insights for efficient tracking of cycling performance.

User centered Design for functionality (Block diagram: Design 4) Charging module (for dynamo) Power supply Voltage regulator (Battery (9V)) DHT11 sensor (Input) Reed switch sensor (Input)(Wireless) ESP 32 chip OLED display Keypad (Output) (Input) Speaker (Output)

User centered Design for enclosure (Enclosure Design 4:)

Selection matrices for block diagram

Criteria	Explanation	Block	Block	Block	Block
	_	Diagram1	Diagram 2	Diagram 3	Diagram 4
		(Score	(Score	(Score	(Score
Functionality	Does the	Out of 10)	Out of 10)	Out of 10)	Out of 10) 8
	diagram clearly	(1	0
	depict all the				
	essential				
	functions and				
	features of the				
	speedometer?				
Clarity	Is the diagram	8	6	9	7
Clarity	clear and easy			9	'
	to understand,				
	providing a				
	visual				
	representation				
	of the circuit's				
	operation?				
Block	Are the	6	5	8	6
Identification	individual				
	functional				
	blocks clearly				
	labeled and				
	identifiable				
	within the				
	diagram?				
Efficiency	Does the	8	5	9	9
	diagram				
	demonstrate an				
	efficient use of				
	components				
	and resources				
	within the				
	circuit design?				
Safety	Does the circuit	5	6	7	8
	design				
	incorporate				
	safety features				
	and				
	considerations,				
	such as				

	protection against overvoltage or				
	short circuits?				
Reliability	Does the	5	8	9	8
	diagram depict				
	a circuit design				
	that is reliable				
	and robust,				
	minimizing the				
	chances of				
	failure or				
	malfunction?				
User	Does the	6	6	6	8
Interface	diagram depict				
	the user				
	interface				
	elements				
	required for				
	user				
	interaction,				
	such as				
	buttons,				
	switches, or				
	displays?				
Power	Does the	7	7	9	8
Consumption	diagram show a				
	clear and				
	appropriate				
	power source				
	for the circuit,				
	considering the				
	required				
	voltage and				
	current levels?				
Total marks		51	56	64	62

Selection matrices for Enclosure

Criteria	Explanation	Enclosure	Block	Block	Score
		Diagram1	Diagram 2	Diagram 3	(Out of 10)
Functionality	Does the design meet the functional requirements of the enclosure, including adequate space for components and proper ventilation?	8	6	7	8
Aesthetics:	Is the design visually appealing and aligned with the desired aesthetic of the overall product?	7	8	9	6
Ergonomics:	Does the design prioritize user ergonomics, ensuring comfort in holding, carrying, or interacting with the enclosure?	7	6	8	9
Assembly and Manufacturing	Is the design feasible for manufacturing, considering ease of assembly and the manufacturing process?	3	7	8	6

Durability	Will the	6	7	7	8
	enclosure				
	design				
	withstand				
	normal usage				
	and potential				
	environmental				
	factors, offering				
	sufficient				
	protection for				
	internal				
	components?				
Cost-	Is the design	7	8	7	5
Effectiveness	cost-effective in				
	terms of				
	materials,				
	manufacturing,				
	and assembly?				
Safety	Consider any	7	8	9	7
	potential risks				
	associated with				
	the enclosure				
	design, such as				
	sharp edges or				
	exposed				
	electrical				
	components.				
Total		45	48	52	49
marks					

Selected functional block diagram and enclosure design.

According to the selection matrices generated according to evaluation Criteria, I would like to go forward with the designs which taken the highest scores compared to others. Therefore, Sketch-3 and functional block diagram-3 are selected designs.

Block diagram

Enclosure design

Team contribution

Index	Name	Contribution
200068R	M.M.K.R.Bandara	Sketch3, Diagram1, Eevaluate
200148M	D.P.C.L.Dombawala	Sketch1, Diagram3, Eevaluate
200396U	C.M.C.C.Miranda	Sketch2, Diagram2, Eevaluate
200431B	B.Nirushtihan	Sketch1, Diagram2, Eevaluate
200377M	T.Manimohan	Sketch2, Diagram3, Eevaluate
200094R	L.G.S.Clarance	Sketch2, Diagram1, Eevaluate
200331T	Krushanth	Sketch3, Diagram1, Eevaluate