Curs Nr. 1

Şiruri numerice (recapitulare)

Lector Dr. ADINA JURATONI

Departamentul de Matematică

UNIVERSITATEA POLITEHNICA TIMIŞOARA

Curs Nr.1

0.1 Şiruri numerice

Definiția 0.1.1 Se numește șir de numere reale o funcție $f: \mathbb{N} \to \mathbb{R}$ care asociază fiecărui număr natural n numărul real a_n , numit termenul general al șirului sau termenul de rang n al șirului.

Definiția 0.1.2 Şirul $(a_n)_{n\in\mathbb{N}}$ este monoton dacă și numai dacă $sgn(a_{n+1}-a_n)$ este constant oricare ar fi $n\in\mathbb{N}$.

- $Dac\check{a} a_{n+1} a_n > 0$, oricare ar fi $n \in \mathbb{N}$, atunci şirul $(a_n)_{n \in \mathbb{N}}$ este monoton crescător;
- $Dac\ a\ a_{n+1}-a_n < 0$, oricare ar fi $n \in \mathbb{N}$, atunci şirul $(a_n)_{n \in \mathbb{N}}$ este monoton descrescător

Definiția 0.1.3 Şirul $(a_n)_{n\in\mathbb{N}}$ este mărginit dacă există M>0 astfel încât pentru orice $n\in\mathbb{N}, |a_n|\leq M$.

Definiția 0.1.4 Şirul $(a_n)_{n\in\mathbb{N}}$ este convergent cu limita $l\in\mathbb{R}$ dacă și numai dacă este verificată condiția

$$\forall \varepsilon > 0, \exists n_{\varepsilon} \in \mathbb{N} \ a.\hat{\imath}. \ \forall n > n_{\varepsilon}, |a_n - l| < \varepsilon.$$

 $\hat{I}n \ acest \ caz, \ notăm \lim_{n \to \infty} a_n = l.$

Un şir care nu este convergent se numeşte divergent.

Propoziția 0.1.5 (criteriul cleștelui) Fie (a_n) , (b_n) , (x_n) trei șiruri de numere reale care îndeplinesc proprietățile:

i) şirurile $(a_n), (b_n)$ sunt convergente cu aceeaşi limită x

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = x$$

ii) începând de la un rang n_0 toți termenii şirului x_n verifică dubla inegalitate

$$a_n < x_n < b_n$$

atunci şirul (x_n) este convergent şi $\lim_{n\to\infty} x_n = x$.

Corolarul 0.1.6 (criteriul majorării) Fie (x_n) şi (y_n) două şiruri de numere reale cu proprietățile:

- $i)\lim_{n\to\infty}y_n=0$
- ii) există $x \in \mathbb{R}$ astfel $\hat{i}nc\hat{a}t |x_n x| \le |y_n|$ atunci $\lim_{n \to \infty} x_n = x$.

Corolarul 0.1.7 Fie (x_n) şi (y_n) două şiruri de numere reale, primul mărginit, iar cel de-al doilea convergent cu limita 0. Atunci șirul produs $(x_n \cdot y_n)$ este convergent și are limita 0.

Teorema 0.1.8 (Weierstrass) Orice şir monoton şi mărginit este convergent.

Reciproca aceste teoreme este falsă, există șiruri care sunt convergente, dar nu sunt monotone. Un astfel de exemplu este şirul cu termenul general $(-1)^n \frac{1}{n}$.

Propoziția 0.1.9 (Criteriul raportului) Fie (x_n) un şir de numere reale pozitive astfel încât există

$$\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = l \in [0, \infty).$$

- i) Dacă l < 1 atunci $\lim_{n \to \infty} x_n = 0$; ii) Dacă l > 1 atunci $\lim_{n \to \infty} x_n = \infty$.

Propoziția 0.1.10 (Criteriul rădăcinii) Fie (x_n) un şir de numere reale pozitive astfel încât există

$$\lim_{n\to\infty}\frac{x_{n+1}}{x_n}=l\in[0,\infty).$$

 $Atunci \lim_{n \to \infty} \sqrt[n]{x_n} = l.$

Definiția 0.1.11 Şirul (x_n) se numește șir fundamental, sau șir Cauchy, dacă și numai dacă este verificată condiția

$$\forall \varepsilon > 0, \exists n_{\varepsilon} \in \mathbb{N}, \ a.\hat{\imath}. \ \forall n \geq n_{\varepsilon}, \forall p \in \mathbb{N}^*, |x_{n+p} - x_n| < \varepsilon.$$

Teorema 0.1.12 (completitudinea dreptei reale) Orice şir fundamental de numere reale este convergent.

Curs Nr.1

Limite remarcabile

1.
$$\lim_{n \to \infty} \frac{1}{n^p} = \begin{cases} 0, p > 0 \\ 1, p = 0 \\ \infty, p < 0 \end{cases}$$
 2. $\lim_{n \to \infty} q^n = \begin{cases} 0, |q| < 1 \\ 1, q = 1 \\ \infty, q > 1 \end{cases}$

3.
$$\lim_{n \to \infty} (a_0 n^p + a_1 n^{p-1} + \dots + a_p) = \begin{cases} -\infty, a_0 < 0 \\ \infty, a_0 > 0 \end{cases}$$

4.
$$\lim_{n \to \infty} \frac{a_0 n^p + a_1 n^{p-1} + \dots + a_p}{b_0 n^q + b_1 n^{q-1} + \dots + b_q} = \begin{cases} 0, p < q \\ \frac{a_0}{b_0}, p = q \\ \infty \cdot sgn\frac{a_0}{b_0}, p > q \end{cases},$$

5.
$$\lim_{n \to \infty} \sqrt[n]{n} = 1$$
, 6. $\lim_{n \to \infty} \frac{a^n}{n!} = 0$, $(a \in \mathbb{R})$, 7. $\lim_{n \to \infty} \frac{\ln n}{n^r} = 0$, $(r > 0)$,

8.
$$\lim_{n \to \infty} n \sin \frac{1}{n} = 1$$
, 9. $\lim_{n \to \infty} n^2 \left(1 - \cos \frac{1}{n} \right) = \frac{1}{2}$,

10.
$$\lim_{n \to \infty} \left(1 + \frac{a}{n} \right)^{bn} = e^{ab}, \quad 11. \lim_{n \to \infty} \left(1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} \right) = e,$$

12.
$$\lim_{n \to \infty} n(\sqrt[n]{a} - 1) = \ln a, (a > 0),$$

13.
$$\lim_{n \to \infty} n\left(\left(1 + \frac{1}{n}\right)^r - 1\right) = r, (r \in \mathbb{R}),$$

14.
$$f:[0,1]\to\mathbb{R}$$
, integrabilă $\Rightarrow \lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n f\left(\frac{k}{n}\right)=\int_0^1 f(x)dx$,

15. Dacă (x_n) este un şir de numere reale nenule astfel încât $x_n \to 0$ atunci:

•
$$\lim_{n \to \infty} \frac{\sin x_n}{x_n} = 1$$
, $\lim_{n \to \infty} \frac{\arcsin x_n}{x_n} = 1$,

•
$$\lim_{n \to \infty} \frac{\tan x_n}{x_n} = 1$$
, $\lim_{n \to \infty} \frac{\arctan x_n}{x_n} = 1$,

•
$$\lim_{n \to \infty} \frac{\ln(1+x_n)}{x_n} = 1$$
, $\lim_{n \to \infty} \frac{a^{x_n} - 1}{x_n} = \ln a$, $a \in (0,1) \cup (1,\infty)$,

•
$$\lim_{n \to \infty} \frac{(1+x_n)^r - 1}{x_n} = r, \ r \in \mathbb{R}, \ \lim_{n \to \infty} (1+x_n)^{\frac{1}{x_n}} = e.$$

Teorema 0.1.13 (Stolz-Cesàro) Fie (x_n) şi (y_n) două şiruri de numere reale care satifac condițiile:

- i) şirul (y_n) este crescător şi nemărginit
- $ii) \ exist \ \lim_{n \to \infty} \frac{x_{n+1} x_n}{y_{n+1} y_n} = l, \ (finit \ \ sau \ infinit \ \ \)$

atunci şirul cu termenul general $\left(\frac{x_n}{y_n}\right)$ are limită şi în plus, $\lim_{n\to\infty}\frac{x_n}{y_n}=l$.