HNCO

Generated by Doxygen 1.9.4

1 Namespace Index	1
1.1 Namespace List	1
2 Hierarchical Index	3
2.1 Class Hierarchy	3
3 Class Index	7
3.1 Class List	7
4 Namespace Documentation	15
4.1 hnco Namespace Reference	15
4.1.1 Detailed Description	20
4.1.2 Typedef Documentation	20
4.1.2.1 sparse_bit_vector_t	20
4.1.3 Function Documentation	20
4.1.3.1 bm_add_columns()	20
4.1.3.2 bm_add_rows()	21
4.1.3.3 bm_identity() [1/2]	21
4.1.3.4 bm_identity() [2/2]	21
4.1.3.5 bm_invert()	22
4.1.3.6 bm_multiply()	22
4.1.3.7 bm_rank()	23
4.1.3.8 bm_row_echelon_form()	23
4.1.3.9 bm_set_column()	23
4.1.3.10 bm_solve()	24
4.1.3.11 bm_solve_upper_triangular()	25
4.1.3.12 bm_transpose() [1/2]	26
4.1.3.13 bm_transpose() [2/2]	26
4.1.3.14 bv_add() [1/2]	27
4.1.3.15 bv_add() [2/2]	27
4.1.3.16 bv_from_size_type()	28
4.1.3.17 bv_from_stream()	28
4.1.3.18 bv_from_string()	29
4.1.3.19 bv_from_vector_bool()	29
4.1.3.20 bv_to_size_type() [1/2]	29
4.1.3.21 bv_to_size_type() [2/2]	30
4.1.3.22 bv_to_vector_bool()	30
4.1.3.23 ensure()	31
4.1.3.24 is_in_range() [1/2]	31
4.1.3.25 is_in_range() [2/2]	32
4.1.3.26 load_from_archive()	
4.1.3.27 perm_identity()	
4.1.3.28 perm_random()	33

4.1.3.29 save_to_archive()	 33
4.1.3.30 sbv_flip()	 33
4.1.3.31 sbv_is_valid() [1/2]	 34
4.1.3.32 sbv_is_valid() [2/2]	 34
4.2 hnco::algorithm Namespace Reference	 35
4.2.1 Detailed Description	 38
4.2.2 Function Documentation	 38
4.2.2.1 pv_add()	 38
4.2.2.2 pv_average()	 38
4.2.2.3 pv_bound()	 38
4.2.2.4 pv_init()	 39
4.2.2.5 pv_sample()	 39
4.2.2.6 pv_uniform()	 40
4.2.2.7 pv_update() [1/2]	 40
4.2.2.8 pv_update() [2/2]	 40
4.3 hnco::algorithm::fast_efficient_p3 Namespace Reference	 41
4.3.1 Detailed Description	 41
4.4 hnco::algorithm::walsh_moment Namespace Reference	 41
4.4.1 Detailed Description	 42
4.5 hnco::app Namespace Reference	 42
4.5.1 Detailed Description	 43
4.5.2 Function Documentation	 43
4.5.2.1 parse_representations()	 43
4.6 hnco::exception Namespace Reference	 44
4.6.1 Detailed Description	 44
4.7 hnco::function Namespace Reference	 44
4.7.1 Detailed Description	 47
4.7.2 Function Documentation	 47
4.7.2.1 compute_fast_walsh_transform()	 47
4.7.2.2 compute_walsh_transform()	 47
4.8 hnco::function::controller Namespace Reference	 49
4.8.1 Detailed Description	 49
4.9 hnco::function::modifier Namespace Reference	 50
4.9.1 Detailed Description	 50
4.10 hnco::logging Namespace Reference	 50
4.10.1 Detailed Description	 50
4.11 hnco::map Namespace Reference	 50
4.11.1 Detailed Description	 52
4.11.2 Typedef Documentation	 52
4.11.2.1 transvection_sequence_t	 52
4.11.3 Function Documentation	 52
4.11.3.1 ts_is_valid() [1/2]	 52

4.11.3.2 ts_is_valid() [2/2]	. 53
4.11.3.3 ts_multiply() [1/2]	. 53
4.11.3.4 ts_multiply() [2/2]	. 54
4.11.3.5 ts_random()	. 54
4.11.3.6 ts_random_commuting()	. 55
4.11.3.7 ts_random_disjoint()	. 55
4.11.3.8 ts_random_non_commuting()	. 56
4.11.3.9 ts_random_unique_destination()	. 56
4.11.3.10 ts_random_unique_source()	. 57
4.12 hnco::multiobjective Namespace Reference	. 57
4.12.1 Detailed Description	. 58
4.13 hnco::multiobjective::algorithm Namespace Reference	. 58
4.13.1 Detailed Description	. 58
4.13.2 Function Documentation	. 58
4.13.2.1 operator<()	. 58
4.14 hnco::multiobjective::app Namespace Reference	. 59
4.14.1 Detailed Description	. 59
4.15 hnco::multiobjective::function Namespace Reference	. 59
4.15.1 Detailed Description	. 60
4.15.2 Typedef Documentation	. 60
4.15.2.1 value_t	. 60
4.15.3 Function Documentation	. 60
4.15.3.1 dominates()	. 60
4.16 hnco::neighborhood Namespace Reference	. 61
4.16.1 Detailed Description	. 61
4.17 hnco::random Namespace Reference	. 61
4.17.1 Detailed Description	. 62
4.18 hnco::representation Namespace Reference	. 62
4.18.1 Detailed Description	. 62
4.18.2 Function Documentation	. 62
4.18.2.1 difference_is_safe()	. 62
5 Class Documentation	65
5.1 AbstractMaxSat Class Reference	
5.1.1 Detailed Description	. 66
5.1.2 Member Function Documentation	
5.1.2.1 load()	
5.1.2.2 load_()	
5.1.2.3 save()	
5.1.2.4 save_()	
5.1.3 Member Data Documentation	
5.1.3.1 eypression	68

5.2 AdditiveGaussianNoise Class Reference	68
5.2.1 Detailed Description	69
5.3 AffineMap Class Reference	69
5.3.1 Detailed Description	70
5.3.2 Member Function Documentation	70
5.3.2.1 is_surjective()	71
5.3.2.2 load()	71
5.3.2.3 random()	71
5.3.2.4 save()	72
5.4 Algorithm Class Reference	72
5.4.1 Detailed Description	74
5.4.2 Member Function Documentation	74
5.4.2.1 finalize()	74
5.4.2.2 set_solution()	75
5.4.2.3 update_solution()	75
5.4.3 Member Data Documentation	75
5.4.3.1 _functions	75
5.5 Algorithm Class Reference	76
5.5.1 Detailed Description	77
5.5.2 Constructor & Destructor Documentation	77
5.5.2.1 Algorithm()	77
5.5.3 Member Data Documentation	77
5.5.3.1 _functions	77
5.6 AlgorithmFactory Class Reference	78
5.6.1 Detailed Description	78
5.6.2 Member Function Documentation	78
5.6.2.1 make()	78
5.7 AlgorithmFactory Class Reference	79
5.7.1 Detailed Description	79
5.7.2 Member Function Documentation	79
5.7.2.1 make()	79
5.8 BiasedCrossover Class Reference	80
5.8.1 Detailed Description	81
5.8.2 Member Function Documentation	81
5.8.2.1 recombine()	81
$5.9 \ BmPbil < GibbsSampler > Class \ Template \ Reference \ \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	81
5.9.1 Detailed Description	84
5.9.2 Member Enumeration Documentation	84
5.9.2.1 anonymous enum	84
5.9.2.2 anonymous enum	85
5.9.3 Member Function Documentation	85
5.9.3.1 set_selection_size()	85

5.10 Cache Class Reference	85
5.10.1 Detailed Description	87
5.10.2 Constructor & Destructor Documentation	87
5.10.2.1 Cache()	87
5.10.3 Member Function Documentation	87
5.10.3.1 provides_incremental_evaluation()	87
5.11 CallCounter Class Reference	88
5.11.1 Detailed Description	89
5.12 CommandLineAlgorithmFactory Class Reference	89
5.12.1 Detailed Description	90
5.12.2 Member Function Documentation	90
5.12.2.1 make()	90
5.13 CommandLineAlgorithmFactory Class Reference	90
5.13.1 Detailed Description	91
5.13.2 Member Function Documentation	91
5.13.2.1 make()	91
5.14 CommandLineApplication Class Reference	91
5.14.1 Detailed Description	92
5.14.2 Constructor & Destructor Documentation	93
5.14.2.1 CommandLineApplication()	93
5.15 CommandLineApplication Class Reference	93
5.15.1 Detailed Description	94
5.15.2 Constructor & Destructor Documentation	94
5.15.2.1 CommandLineApplication()	94
5.16 CommandLineFunctionFactory Class Reference	95
5.16.1 Detailed Description	96
5.17 CommandLineFunctionFactory Class Reference	96
5.17.1 Detailed Description	97
5.18 CommaSelection Class Reference	97
5.18.1 Detailed Description	97
5.18.2 Constructor & Destructor Documentation	97
5.18.2.1 CommaSelection()	97
5.19 CompactGa Class Reference	98
5.19.1 Detailed Description	99
5.20 CompleteSearch Class Reference	99
5.20.1 Detailed Description	100
5.21 ComplexRepresentation < ScalarRep > Class Template Reference	100
5.21.1 Detailed Description	101
5.21.2 Constructor & Destructor Documentation	101
5.21.2.1 ComplexRepresentation() [1/2]	101
5.21.2.2 ComplexRepresentation() [2/2]	102
5.22 ComplexToDouble < T > Struct Template Reference	102

5.22.1 Detailed Description
5.23 Controller Class Reference
5.23.1 Detailed Description
5.23.2 Member Function Documentation
5.23.2.1 provides_incremental_evaluation()
5.24 Crossover Class Reference
5.24.1 Detailed Description
5.24.2 Member Function Documentation
5.24.2.1 recombine()
5.25 DeceptiveJump Class Reference
5.25.1 Detailed Description
5.25.2 Member Function Documentation
5.25.2.1 get_maximum()
5.25.2.2 has_known_maximum()
5.26 DecoratedFunctionFactory Class Reference
5.26.1 Detailed Description
5.26.2 Member Function Documentation
5.26.2.1 make_function_controller()
5.27 Decorator Class Reference
5.27.1 Detailed Description
$5.28 \ Dyadic Float Representation < T > Class \ Template \ Reference \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
5.28.1 Detailed Description
5.28.2 Constructor & Destructor Documentation
5.28.2.1 DyadicFloatRepresentation() [1/2]
5.28.2.2 DyadicFloatRepresentation() [2/2]
5.28.3 Member Function Documentation
5.28.3.1 compute_lengths()
5.29 DyadicIntegerRepresentation < T > Class Template Reference
5.29.1 Detailed Description
5.29.2 Constructor & Destructor Documentation
5.29.2.1 DyadicIntegerRepresentation() [1/3]
5.29.2.2 DyadicIntegerRepresentation() [2/3]
5.29.2.3 DyadicIntegerRepresentation() [3/3]
5.30 EqualProducts Class Reference
5.30.1 Detailed Description
5.30.2 Member Function Documentation
5.30.2.1 generate()
5.30.2.2 load()
5.30.2.3 random()
5.30.2.4 save()
5.31 ProgressTracker::Event Struct Reference
5.31.1 Detailed Description

5.32 ExtendedHypercubeIterator Class Reference	20
5.32.1 Detailed Description	21
5.33 Factorization Class Reference	21
5.33.1 Detailed Description	23
5.33.2 Constructor & Destructor Documentation	23
5.33.2.1 Factorization()	23
5.33.3 Member Function Documentation	23
5.33.3.1 load()	23
5.34 FfgenOptions Class Reference	24
5.34.1 Detailed Description	28
5.35 FirstAscentHillClimbing Class Reference	28
5.35.1 Detailed Description	29
5.36 FourPeaks Class Reference	29
5.36.1 Detailed Description	30
5.36.2 Member Function Documentation	31
5.36.2.1 get_maximum()	31
5.36.2.2 has_known_maximum()	31
5.37 FrontDistancePair Struct Reference	31
5.37.1 Detailed Description	32
5.38 Function Class Reference	32
5.38.1 Detailed Description	34
5.38.2 Member Function Documentation	34
5.38.2.1 describe()	34
5.38.2.2 evaluate()	35
5.38.2.3 evaluate_incrementally()	35
5.38.2.4 evaluate_safely()	35
5.38.2.5 get_maximum()	36
5.38.2.6 provides_incremental_evaluation()	36
5.38.2.7 update()	36
5.39 Function Class Reference	37
5.39.1 Detailed Description	38
5.39.2 Member Function Documentation	38
5.39.2.1 describe()	38
5.39.2.2 evaluate()	38
5.40 FunctionFactory Class Reference	39
5.40.1 Detailed Description	39
5.41 FunctionFactory Class Reference	39
5.41.1 Detailed Description	40
5.42 FunctionMapComposition Class Reference	40
5.42.1 Detailed Description	41
5.42.2 Constructor & Destructor Documentation	41
5.42.2.1 FunctionMapComposition()	41

5.42.3 Member Function Documentation	42
5.42.3.1 get_maximum()	42
5.42.3.2 has_known_maximum()	42
5.43 FunctionPlugin Class Reference	43
5.43.1 Detailed Description	44
5.43.2 Constructor & Destructor Documentation	44
5.43.2.1 FunctionPlugin()	44
5.44 Generator Struct Reference	44
5.44.1 Detailed Description	45
5.44.2 Member Function Documentation	45
5.44.2.1 reset()	45
5.44.2.2 set_seed()	45
5.45 GeneticAlgorithm Class Reference	46
5.45.1 Detailed Description	47
5.45.2 Constructor & Destructor Documentation	47
5.45.2.1 GeneticAlgorithm()	47
5.46 HammingBall Class Reference	48
5.46.1 Detailed Description	49
5.46.2 Constructor & Destructor Documentation	49
5.46.2.1 HammingBall()	49
5.47 HammingSphere Class Reference	49
5.47.1 Detailed Description	50
5.47.2 Constructor & Destructor Documentation	51
5.47.2.1 HammingSphere()	51
5.48 HammingSphereIterator Class Reference	51
5.48.1 Detailed Description	52
5.48.2 Constructor & Destructor Documentation	52
5.48.2.1 HammingSphereIterator()	52
5.49 Hboa Class Reference	53
5.49.1 Detailed Description	54
5.49.2 Member Data Documentation	54
5.49.2.1 _pimpl	54
5.50 Hea< Herding > Class Template Reference	55
5.50.1 Detailed Description	57
5.50.2 Constructor & Destructor Documentation	57
5.50.2.1 Hea()	57
5.50.3 Member Function Documentation	57
5.50.3.1 set_reset_period()	57
5.50.3.2 set_selection_size()	58
5.51 Hiff Class Reference	58
5.51.1 Detailed Description	59
5.51.2 Member Function Documentation	59

5.51.2.1 get_maximum()	159
5.51.2.2 has_known_maximum()	160
5.52 HncoEvaluator Class Reference	160
5.52.1 Detailed Description	160
5.53 HncoOptions Class Reference	161
5.53.1 Detailed Description	174
5.54 HncoOptions Class Reference	174
5.54.1 Detailed Description	178
5.55 Human Class Reference	179
5.55.1 Detailed Description	180
5.56 Hypercubelterator Class Reference	180
5.56.1 Detailed Description	180
5.57 Implementation Struct Reference	181
5.57.1 Detailed Description	181
5.58 InformationTheoreticEa Class Reference	181
5.58.1 Detailed Description	183
5.59 Injection Class Reference	184
5.59.1 Detailed Description	184
5.59.2 Constructor & Destructor Documentation	185
5.59.2.1 Injection()	185
5.60 IntegerCategoricalRepresentation Class Reference	185
5.60.1 Detailed Description	186
5.60.2 Constructor & Destructor Documentation	186
5.60.2.1 IntegerCategoricalRepresentation()	186
5.61 IterativeAlgorithm Class Reference	186
5.61.1 Detailed Description	188
5.61.2 Constructor & Destructor Documentation	188
5.61.2.1 IterativeAlgorithm()	188
5.61.3 Member Function Documentation	188
5.61.3.1 loop()	188
5.61.3.2 maximize()	189
5.61.3.3 set_num_iterations()	189
5.62 IterativeAlgorithm Class Reference	189
5.62.1 Detailed Description	191
5.62.2 Constructor & Destructor Documentation	191
5.62.2.1 IterativeAlgorithm()	191
5.62.3 Member Function Documentation	191
5.62.3.1 loop()	192
5.62.3.2 minimize()	192
5.62.3.3 set_num_iterations()	192
5.63 Iterator Class Reference	193
5.63.1 Detailed Description	193

5.64 Jump Class Reference
5.64.1 Detailed Description
5.64.2 Member Function Documentation
5.64.2.1 get_maximum()
5.64.2.2 has_known_maximum()
5.65 Labs Class Reference
5.65.1 Detailed Description
5.66 LastEvaluation Class Reference
5.66.1 Detailed Description
5.67 LeadingOnes Class Reference
5.67.1 Detailed Description
5.67.2 Member Function Documentation
5.67.2.1 get_maximum()
5.67.2.2 has_known_maximum()
5.68 LinearCategoricalRepresentation Class Reference
5.68.1 Detailed Description
5.68.2 Constructor & Destructor Documentation
5.68.2.1 LinearCategoricalRepresentation()
5.69 LinearFunction Class Reference
5.69.1 Detailed Description
5.69.2 Member Function Documentation
5.69.2.1 generate()
5.69.2.2 has_known_maximum()
5.69.2.3 load()
5.69.2.4 provides_incremental_evaluation()
5.69.2.5 random()
5.69.2.6 save()
5.70 LinearMap Class Reference
5.70.1 Detailed Description
5.70.2 Member Function Documentation
5.70.2.1 is_surjective()
5.70.2.2 load()
5.70.2.3 random()
5.70.2.4 save()
5.71 LocalSearchAlgorithm < Neighborhood > Class Template Reference
5.71.1 Detailed Description
5.72 LogContext Class Reference
5.72.1 Detailed Description
5.73 Logger Class Reference
5.73.1 Detailed Description
5.73.2 Constructor & Destructor Documentation
5.73.2.1 Logger()

5.73.2.2 ~Logger()	210
5.74 LongPath Class Reference	210
5.74.1 Detailed Description	211
5.74.2 Member Function Documentation	212
5.74.2.1 get_maximum()	212
5.74.2.2 has_known_maximum()	212
5.75 LowerTriangularWalshMoment2 Struct Reference	212
5.75.1 Detailed Description	213
5.75.2 Constructor & Destructor Documentation	213
5.75.2.1 LowerTriangularWalshMoment2()	213
5.75.3 Member Function Documentation	214
5.75.3.1 bound()	214
5.75.3.2 display()	214
5.75.3.3 scaled_difference()	214
5.75.3.4 update() [1/2]	215
5.75.3.5 update() [2/2]	215
5.76 LowerTriangularWalshMoment2GibbsSampler Class Reference	216
5.76.1 Detailed Description	217
5.77 LowerTriangularWalshMoment2Herding Class Reference	217
5.77.1 Detailed Description	218
5.77.2 Constructor & Destructor Documentation	218
5.77.2.1 LowerTriangularWalshMoment2Herding()	218
5.78 Ltga Class Reference	219
5.78.1 Detailed Description	219
5.78.2 Member Data Documentation	220
5.78.2.1 _pimpl	220
5.79 Map Class Reference	220
5.79.1 Detailed Description	221
5.79.2 Member Function Documentation	221
5.79.2.1 is_surjective()	221
5.80 MapComposition Class Reference	222
5.80.1 Detailed Description	222
5.80.2 Constructor & Destructor Documentation	223
5.80.2.1 MapComposition()	223
5.80.3 Member Function Documentation	223
5.80.3.1 is_surjective()	223
5.81 MapgenOptions Class Reference	224
5.81.1 Detailed Description	225
5.82 MaxNae3Sat Class Reference	226
5.82.1 Detailed Description	226
5.82.2 Member Function Documentation	226
5.82.2.1 load()	226

5.83 MaxSat Class Reference
5.83.1 Detailed Description
5.83.2 Member Function Documentation
5.83.2.1 random() [1/2]
5.83.2.2 random() [2/2]
5.84 Mimic Class Reference
5.84.1 Detailed Description
$5.85\ {\it MixedIntegerMultivariateFunctionAdapter} < {\it Fn,\ IntRep,\ FloatRep} > {\it Class\ Template\ Reference}\ \ .\ \ .\ \ .\ \ 230000000000000000000000000000000000$
5.85.1 Detailed Description
5.85.2 Constructor & Destructor Documentation
5.85.2.1 MixedIntegerMultivariateFunctionAdapter()
$5.86\ {\it MixedIntegerMultivariateFunctionAdapter} < {\it Fn,\ IntRep,\ FloatRep} > {\it Class\ Template\ Reference}\ \ .\ \ .\ \ \ \ \textbf{23} = 1.00000000000000000000000000000000000$
5.86.1 Detailed Description
5.86.2 Constructor & Destructor Documentation
5.86.2.1 MixedIntegerMultivariateFunctionAdapter()
5.87 Mmas Class Reference
5.87.1 Detailed Description
5.88 Modifier Class Reference
5.88.1 Detailed Description
5.89 MuCommaLambdaEa Class Reference
5.89.1 Detailed Description
5.89.2 Constructor & Destructor Documentation
5.89.2.1 MuCommaLambdaEa()
5.90 MultiBitFlip Class Reference
5.90.1 Detailed Description
5.90.2 Constructor & Destructor Documentation
5.90.2.1 MultiBitFlip()
5.90.3 Member Function Documentation
5.90.3.1 bernoulli_trials()
5.90.3.2 rejection_sampling()
5.91 MultivariateFunctionAdapter< Fn, Rep, Conv > Class Template Reference
5.91.1 Detailed Description
5.91.2 Constructor & Destructor Documentation
5.91.2.1 MultivariateFunctionAdapter()
5.92 MultivariateFunctionAdapter< Fn, Rep, Conv > Class Template Reference
5.92.1 Detailed Description
5.92.2 Constructor & Destructor Documentation
5.92.2.1 MultivariateFunctionAdapter()
5.93 MuPlusLambdaEa Class Reference
5.93.1 Detailed Description
5.93.2 Constructor & Destructor Documentation
5.03.2.1 MuPlusI ambdaFa/)

5.94 NearestNeighborIsingModel1 Class Reference
5.94.1 Detailed Description
5.94.2 Member Function Documentation
5.94.2.1 evaluate()
5.94.2.2 generate()
5.94.2.3 load()
5.94.2.4 provides_incremental_evaluation()
5.94.2.5 random()
5.94.2.6 save()
5.95 NearestNeighborIsingModel2 Class Reference
5.95.1 Detailed Description
5.95.2 Member Function Documentation
5.95.2.1 evaluate()
5.95.2.2 generate()
5.95.2.3 load()
5.95.2.4 provides_incremental_evaluation()
5.95.2.5 random()
5.95.2.6 save()
5.96 Needle Class Reference
5.96.1 Detailed Description
5.96.2 Member Function Documentation
5.96.2.1 get_maximum()
5.96.2.2 has_known_maximum()
5.97 Negation Class Reference
5.97.1 Detailed Description
5.97.2 Member Function Documentation
5.97.2.1 provides_incremental_evaluation()
5.98 Neighborhood Class Reference
5.98.1 Detailed Description
5.98.2 Constructor & Destructor Documentation
5.98.2.1 Neighborhood()
5.98.3 Member Function Documentation
5.98.3.1 map()
5.98.3.2 mutate()
5.99 NeighborhoodIterator Class Reference
5.99.1 Detailed Description
5.99.2 Constructor & Destructor Documentation
5.99.2.1 NeighborhoodIterator()
5.100 NkLandscape Class Reference
5.100.1 Detailed Description
5.100.2 Member Function Documentation
5 100 2 1 generate() 26

5.100.2.2 load()	266
5.100.2.3 random()	267
5.100.2.4 random_structure()	:67
5.100.2.5 save()	268
5.101 NpsPbil Class Reference	:68
5.101.1 Detailed Description	:69
5.102 Nsga2 Class Reference	:70
5.102.1 Detailed Description	:71
5.102.2 Constructor & Destructor Documentation	:72
5.102.2.1 Nsga2()	:72
5.103 Nsga2ParetoFrontComputation Class Reference	:72
5.103.1 Detailed Description	:73
5.103.2 Member Function Documentation	:73
5.103.2.1 compute()	:73
5.103.2.2 is_non_dominated()	:73
5.103.3 Member Data Documentation	:74
5.103.3.1 _dominated	:74
5.104 OnBudgetFunction Class Reference	:74
5.104.1 Detailed Description	:75
5.104.2 Member Function Documentation	:75
5.104.2.1 evaluate()	:75
5.104.2.2 evaluate_incrementally()	:76
5.104.2.3 update()	:76
5.105 OneMax Class Reference	?76
5.105.1 Detailed Description	277
5.105.2 Member Function Documentation	:78
5.105.2.1 get_maximum()	:78
5.105.2.2 has_known_maximum()	:78
5.105.2.3 provides_incremental_evaluation()	:78
5.106 OnePlusLambdaCommaLambdaGa Class Reference	:79
5.106.1 Detailed Description	:80
5.106.2 Constructor & Destructor Documentation	:80
5.106.2.1 OnePlusLambdaCommaLambdaGa()	280
5.107 OnePlusOneEa Class Reference	:81
5.107.1 Detailed Description	:82
5.107.2 Constructor & Destructor Documentation	:82
5.107.2.1 OnePlusOneEa()	:82
5.107.3 Member Function Documentation	:83
5.107.3.1 set_num_iterations()	:83
5.108 ParameterLessPopulationPyramid Class Reference	
5.108.1 Detailed Description	:84
5.108.2 Member Data Documentation	84

5.108.2.1 _pimpl
5.109 ParsedModifier Class Reference
5.109.1 Detailed Description
5.109.2 Constructor & Destructor Documentation
5.109.2.1 ParsedModifier()
5.110 ParsedMultivariateFunction< Parser > Class Template Reference
5.110.1 Detailed Description
5.110.2 Constructor & Destructor Documentation
5.110.2.1 ParsedMultivariateFunction()
5.111 ParsedMultivariateFunction< Parser > Class Template Reference
5.111.1 Detailed Description
5.111.2 Constructor & Destructor Documentation
5.111.2.1 ParsedMultivariateFunction()
5.111.3 Member Data Documentation
5.111.3.1 _indices
5.111.3.2 _names
5.111.3.3 _ordered_names
5.111.3.4 _variables
5.112 Partition Class Reference
5.112.1 Detailed Description
5.112.2 Member Function Documentation
5.112.2.1 generate()
5.112.2.2 load()
5.112.2.3 random()
5.112.2.4 save()
5.113 Pbil Class Reference
5.113.1 Detailed Description
5.114 Permutation Class Reference
5.114.1 Detailed Description
5.114.2 Member Function Documentation
5.114.2.1 is_surjective()
5.114.2.2 load()
5.114.2.3 save()
5.115 PermutationFunctionAdapter< Fn > Class Template Reference
5.115.1 Detailed Description
5.115.2 Constructor & Destructor Documentation
5.115.2.1 PermutationFunctionAdapter()
5.116 PermutationRepresentation Class Reference
5.116.1 Detailed Description
5.116.2 Constructor & Destructor Documentation
5.116.2.1 PermutationRepresentation()
5 117 Plateau Class Reference

5.117.1 Detailed Description
5.117.2 Member Function Documentation
5.117.2.1 get_maximum()
5.117.2.2 has_known_maximum()
5.118 PlusSelection Class Reference
5.118.1 Detailed Description
5.118.2 Constructor & Destructor Documentation
5.118.2.1 PlusSelection()
5.119 Population Struct Reference
5.119.1 Detailed Description
5.119.2 Constructor & Destructor Documentation
5.119.2.1 Population()
5.119.3 Member Function Documentation
5.119.3.1 get_best_bv() [1/2]
5.119.3.2 get_best_bv() [2/2]
5.119.3.3 get_best_value() [1/2]
5.119.3.4 get_best_value() [2/2]
5.119.3.5 get_equivalent_bvs()
5.119.3.6 get_worst_bv()
5.119.3.7 partial_sort()
5.119.3.8 sort()
5.120 Population Struct Reference
5.120.1 Detailed Description
5.120.2 Constructor & Destructor Documentation
5.120.2.1 Population()
5.120.3 Member Function Documentation
5.120.3.1 resize()
5.120.3.2 shrink()
5.121 DyadicIntegerRepresentation < T >::Precision Struct Reference
5.121.1 Detailed Description
5.122 PriorNoise Class Reference
5.122.1 Detailed Description
5.122.2 Member Function Documentation
5.122.2.1 get_maximum()
5.122.2.2 has_known_maximum()
5.122.2.3 provides_incremental_evaluation()
5.123 ProgressTracker Class Reference
5.123.1 Detailed Description
5.123.2 Member Function Documentation
5.123.2.1 get_last_improvement()
5.123.3 Member Data Documentation
5.123.3.1 record evaluation time

5.124 ProgressTrackerContext Class Reference
5.124.1 Detailed Description
5.124.2 Member Function Documentation
5.124.2.1 to_string()
5.125 Projection Class Reference
5.125.1 Detailed Description
5.125.2 Constructor & Destructor Documentation
5.125.2.1 Projection()
5.125.3 Member Function Documentation
5.125.3.1 is_surjective()
5.126 PvAlgorithm Class Reference
5.126.1 Detailed Description
5.127 PythonFunction Class Reference
5.127.1 Detailed Description
5.127.2 Constructor & Destructor Documentation
5.127.2.1 PythonFunction()
5.127.3 Member Function Documentation
5.127.3.1 get_maximum()
5.128 PythonFunction Class Reference
5.128.1 Detailed Description
5.128.2 Constructor & Destructor Documentation
5.128.2.1 PythonFunction()
5.129 Qubo Class Reference
5.129.1 Detailed Description
5.129.2 Member Function Documentation
5.129.2.1 load() [1/2]
5.129.2.2 load() [2/2]
5.129.3 Member Data Documentation
5.129.3.1 _q
5.130 RandomLocalSearch Class Reference
5.130.1 Detailed Description
5.130.2 Member Function Documentation
5.130.2.1 set_patience()
5.130.3 Member Data Documentation
5.130.3.1 _patience
5.131 RandomSearch Class Reference
5.131.1 Detailed Description
5.132 RandomSelection Class Reference
5.132.1 Detailed Description
5.132.2 Constructor & Destructor Documentation
5.132.2.1 RandomSelection()
5 133 RandomWalk Class Reference

5.133.1 Detailed Description
5.134 InformationTheoreticEa::Replacement Struct Reference
5.134.1 Detailed Description
5.134.2 Member Enumeration Documentation
5.134.2.1 anonymous enum
5.135 Restart Class Reference
5.135.1 Detailed Description
5.136 Ridge Class Reference
5.136.1 Detailed Description
5.136.2 Member Function Documentation
5.136.2.1 get_maximum()
5.136.2.2 has_known_maximum()
5.137 ScalarToDouble < T > Struct Template Reference
5.137.1 Detailed Description
5.138 SelfAdjustingOnePlusOneEa Class Reference
5.138.1 Detailed Description
5.139 SimulatedAnnealing Class Reference
5.139.1 Detailed Description
5.139.2 Member Function Documentation
5.139.2.1 init_beta()
5.140 SingleBitFlip Class Reference
5.140.1 Detailed Description
5.141 SingleBitFlipIterator Class Reference
5.141.1 Detailed Description
5.141.2 Constructor & Destructor Documentation
5.141.2.1 SingleBitFlipIterator()
5.142 SinusSummationCancellation Class Reference
5.142.1 Detailed Description
5.143 SixPeaks Class Reference
5.143.1 Detailed Description
5.143.2 Member Function Documentation
5.143.2.1 get_maximum()
5.143.2.2 has_known_maximum()
5.144 StandardBitMutation Class Reference
5.144.1 Detailed Description
5.144.2 Constructor & Destructor Documentation
5.144.2.1 StandardBitMutation() [1/2]
5.144.2.2 StandardBitMutation() [2/2]
5.144.3 Member Function Documentation
5.144.3.1 set_mutation_rate()
5.145 SteepestAscentHillClimbing Class Reference
5 1/5 1 Detailed Description

5.146 StopOnMaximum Class Reference
5.146.1 Detailed Description
5.146.2 Constructor & Destructor Documentation
5.146.2.1 StopOnMaximum()
5.147 StopOnTarget Class Reference
5.147.1 Detailed Description
5.147.2 Constructor & Destructor Documentation
5.147.2.1 StopOnTarget()
5.147.3 Member Function Documentation
5.147.3.1 evaluate()
5.147.3.2 evaluate_incrementally()
5.147.3.3 update()
5.148 StopWatch Class Reference
5.148.1 Detailed Description
5.149 Sudoku Class Reference
5.149.1 Detailed Description
5.149.2 Member Function Documentation
5.149.2.1 load()
5.149.2.2 load_()
5.149.2.3 random()
5.149.2.4 save()
5.150 SummationCancellation Class Reference
5.150.1 Detailed Description
5.150.2 Constructor & Destructor Documentation
5.150.2.1 SummationCancellation()
5.150.3 Member Function Documentation
5.150.3.1 has_known_maximum()
5.151 SymmetricWalshMoment2 Struct Reference
5.151.1 Detailed Description
5.151.2 Constructor & Destructor Documentation
5.151.2.1 SymmetricWalshMoment2()
5.151.3 Member Function Documentation
5.151.3.1 average()
5.151.3.2 bound()
5.151.3.3 display()
5.151.3.4 scaled_difference()
5.151.3.5 update() [1/2]
5.151.3.6 update() [2/2]
5.152 SymmetricWalshMoment2GibbsSampler Class Reference
5.152.1 Detailed Description
5.153 SymmetricWalshMoment2Herding Class Reference
5 153 1 Detailed Description

5.153.2 Constructor & Destructor Documentation
5.153.2.1 SymmetricWalshMoment2Herding()
5.154 TargetReached Class Reference
5.154.1 Detailed Description
5.155 TournamentSelection Class Reference
5.155.1 Detailed Description
5.155.2 Constructor & Destructor Documentation
5.155.2.1 TournamentSelection()
5.155.3 Member Function Documentation
5.155.3.1 select()
5.156 TournamentSelection < T, Compare > Class Template Reference
5.156.1 Detailed Description
5.157 Translation Class Reference
5.157.1 Detailed Description
5.157.2 Member Function Documentation
5.157.2.1 is_surjective()
5.157.2.2 load()
5.157.2.3 save()
5.158 Transvection Struct Reference
5.158.1 Detailed Description
5.158.2 Member Function Documentation
5.158.2.1 is_valid()
5.158.2.2 multiply() [1/2]
5.158.2.3 multiply() [2/2]
5.158.2.4 random()
5.158.2.5 random_non_commuting()
5.159 Trap Class Reference
5.159.1 Detailed Description
5.159.2 Constructor & Destructor Documentation
5.159.2.1 Trap()
5.159.3 Member Function Documentation
5.159.3.1 get_maximum()
5.159.3.2 has_known_maximum()
5.160 TsAffineMap Class Reference
5.160.1 Detailed Description
5.160.2 Member Enumeration Documentation
5.160.2.1 SamplingMode
5.160.3 Member Function Documentation
5.160.3.1 is_surjective()
5.160.3.2 load()
5.160.3.3 random()
5.160.3.4 save()

5.161 Tsp Class Reference
5.161.1 Detailed Description
5.161.2 Member Function Documentation
5.161.2.1 generate()
5.161.2.2 load()
5.161.2.3 load_()
5.161.2.4 random()
5.161.2.5 save()
5.162 TwoRateOnePlusLambdaEa Class Reference
5.162.1 Detailed Description
5.163 Umda Class Reference
5.163.1 Detailed Description
5.164 UniformCrossover Class Reference
5.164.1 Detailed Description
5.164.2 Member Function Documentation
5.164.2.1 recombine()
5.165 UniformSelection Class Reference
5.165.1 Detailed Description
5.165.2 Constructor & Destructor Documentation
5.165.2.1 UniformSelection()
5.166 UniversalFunction Class Reference
5.166.1 Detailed Description
5.167 UniversalFunction Class Reference
5.167.1 Detailed Description
5.168 UniversalFunctionAdapter Class Reference
5.168.1 Detailed Description
5.168.2 Constructor & Destructor Documentation
5.168.2.1 UniversalFunctionAdapter()
5.169 UniversalFunctionAdapter Class Reference
5.169.1 Detailed Description
5.169.2 Constructor & Destructor Documentation
5.169.2.1 UniversalFunctionAdapter()
5.170 WalshExpansion Class Reference
5.170.1 Detailed Description
5.170.2 Member Function Documentation
5.170.2.1 generate()
5.170.2.2 load()
5.170.2.3 random()
5.170.2.4 save()
5.171 WalshExpansion1 Class Reference
5.171.1 Detailed Description
5 171 2 Member Function Documentation

5.171.2.2 has_known_maximum() 407 5.171.2.3 load() 407 5.171.2.4 provides_incremental_evaluation() 407 5.171.2.5 random() 408 5.171.2.6 save() 408 5.172 WalshExpansion2 Class Reference 409 5.172.1 Detailed Description 410 5.172.2 Member Function Documentation 410 5.172.2.1 generate() 410 5.172.2.2 generate_ising1_long_range() 411 5.172.2.3 generate_ising1_long_range_periodic() 411 5.172.2.4 load() 412 5.172.2.5 random() 412 5.172.2.6 save() 412 5.172.3 Member Data Documentation 413 5.173.WalshTerm Struct Reference 413 5.173.1 Detailed Description 414 5.173.2 Member Data Documentation 414 5.173.2.1 feature 414	5.171.2.1 generate()	-06
5.171.2.4 provides_incremental_evaluation() 407 5.171.2.5 random() 408 5.171.2.6 save() 408 5.172 WalshExpansion2 Class Reference 409 5.172.1 Detailed Description 410 5.172.2 Member Function Documentation 410 5.172.2.1 generate() 410 5.172.2.2 generate_ising1_long_range() 411 5.172.2.3 generate_ising1_long_range_periodic() 411 5.172.2.4 load() 412 5.172.2.5 random() 412 5.172.3 Member Data Documentation 413 5.172.3.1 quadratic 413 5.173 WalshTerm Struct Reference 413 5.173.2 Member Data Documentation 414 5.173.2 Member Data Documentation 414	5.171.2.2 has_known_maximum()	07
5.171.2.5 random() 408 5.171.2.6 save() 408 5.172 WalshExpansion2 Class Reference 409 5.172.1 Detailed Description 410 5.172.2 Member Function Documentation 410 5.172.2.1 generate() 410 5.172.2.2 generate_ising1_long_range() 411 5.172.2.3 generate_ising1_long_range_periodic() 411 5.172.2.4 load() 412 5.172.2.5 random() 412 5.172.2.6 save() 412 5.172.3 Member Data Documentation 413 5.173.3 WalshTerm Struct Reference 413 5.173.1 Detailed Description 414 5.173.2 Member Data Documentation 414	5.171.2.3 load()	07
5.171.2.6 save() 408 5.172 WalshExpansion2 Class Reference 409 5.172.1 Detailed Description 410 5.172.2 Member Function Documentation 410 5.172.2.1 generate() 410 5.172.2.2 generate_ising1_long_range() 411 5.172.2.3 generate_ising1_long_range_periodic() 411 5.172.2.4 load() 412 5.172.2.5 random() 412 5.172.3 Member Data Documentation 413 5.172.3.1 _quadratic 413 5.173 WalshTerm Struct Reference 413 5.173.1 Detailed Description 414 5.173.2 Member Data Documentation 414	5.171.2.4 provides_incremental_evaluation()	07
5.172 WalshExpansion2 Class Reference 409 5.172.1 Detailed Description 410 5.172.2 Member Function Documentation 410 5.172.2.1 generate() 410 5.172.2.2 generate_ising1_long_range() 411 5.172.2.3 generate_ising1_long_range_periodic() 411 5.172.2.4 load() 412 5.172.2.5 random() 412 5.172.2.6 save() 412 5.172.3 Member Data Documentation 413 5.173 WalshTerm Struct Reference 413 5.173.1 Detailed Description 414 5.173.2 Member Data Documentation 414	5.171.2.5 random()	80
5.172.1 Detailed Description 410 5.172.2 Member Function Documentation 410 5.172.2.1 generate() 410 5.172.2.2 generate_ising1_long_range() 411 5.172.2.3 generate_ising1_long_range_periodic() 411 5.172.2.4 load() 412 5.172.2.5 random() 412 5.172.2.6 save() 412 5.172.3 Member Data Documentation 413 5.173.1 quadratic 413 5.173.1 Detailed Description 414 5.173.2 Member Data Documentation 414	5.171.2.6 save()	80
5.172.2 Member Function Documentation 410 5.172.2.1 generate() 410 5.172.2.2 generate_ising1_long_range() 411 5.172.2.3 generate_ising1_long_range_periodic() 411 5.172.2.4 load() 412 5.172.2.5 random() 412 5.172.2.6 save() 412 5.172.3 Member Data Documentation 413 5.173 WalshTerm Struct Reference 413 5.173.1 Detailed Description 414 5.173.2 Member Data Documentation 414	5.172 WalshExpansion2 Class Reference	09
5.172.2.1 generate() 410 5.172.2.2 generate_ising1_long_range() 411 5.172.2.3 generate_ising1_long_range_periodic() 411 5.172.2.4 load() 412 5.172.2.5 random() 412 5.172.2.6 save() 412 5.172.3 Member Data Documentation 413 5.172.3.1 _quadratic 413 5.173 WalshTerm Struct Reference 413 5.173.1 Detailed Description 414 5.173.2 Member Data Documentation 414	5.172.1 Detailed Description	10
5.172.2.2 generate_ising1_long_range() 411 5.172.2.3 generate_ising1_long_range_periodic() 411 5.172.2.4 load() 412 5.172.2.5 random() 412 5.172.2.6 save() 412 5.172.3 Member Data Documentation 413 5.172.3.1 _quadratic 413 5.173 WalshTerm Struct Reference 413 5.173.1 Detailed Description 414 5.173.2 Member Data Documentation 414	5.172.2 Member Function Documentation	10
5.172.2.3 generate_ising1_long_range_periodic() 411 5.172.2.4 load() 412 5.172.2.5 random() 412 5.172.2.6 save() 412 5.172.3 Member Data Documentation 413 5.172.3.1 _quadratic 413 5.173 WalshTerm Struct Reference 413 5.173.1 Detailed Description 414 5.173.2 Member Data Documentation 414	5.172.2.1 generate()	10
5.172.2.4 load() 412 5.172.2.5 random() 412 5.172.2.6 save() 412 5.172.3 Member Data Documentation 413 5.172.3.1 _quadratic 413 5.173 WalshTerm Struct Reference 413 5.173.1 Detailed Description 414 5.173.2 Member Data Documentation 414	5.172.2.2 generate_ising1_long_range()	11
5.172.2.5 random() 412 5.172.2.6 save() 412 5.172.3 Member Data Documentation 413 5.172.3.1 _quadratic 413 5.173 WalshTerm Struct Reference 413 5.173.1 Detailed Description 414 5.173.2 Member Data Documentation 414	5.172.2.3 generate_ising1_long_range_periodic()	11
5.172.2.6 save() 412 5.172.3 Member Data Documentation 413 5.172.3.1 _quadratic 413 5.173 WalshTerm Struct Reference 413 5.173.1 Detailed Description 414 5.173.2 Member Data Documentation 414	5.172.2.4 load()	12
5.172.3 Member Data Documentation 413 5.172.3.1 _quadratic 413 5.173 WalshTerm Struct Reference 413 5.173.1 Detailed Description 414 5.173.2 Member Data Documentation 414	5.172.2.5 random()	12
5.172.3.1 _quadratic 413 5.173 WalshTerm Struct Reference 413 5.173.1 Detailed Description 414 5.173.2 Member Data Documentation 414	5.172.2.6 save()	12
5.173 WalshTerm Struct Reference 413 5.173.1 Detailed Description 414 5.173.2 Member Data Documentation 414	5.172.3 Member Data Documentation	13
5.173.1 Detailed Description 414 5.173.2 Member Data Documentation 414	5.172.3.1 _quadratic	13
5.173.2 Member Data Documentation	5.173 WalshTerm Struct Reference	13
	5.173.1 Detailed Description	14
5.173.2.1 feature	5.173.2 Member Data Documentation	14
	5.173.2.1 feature	14
Index 415	Index 4	115

Chapter 1

Namespace Index

1.1 Namespace List

Here is a list of all documented namespaces with brief descriptions:

hnco	
Top-level HNCO namespace	15
hnco::algorithm	
Algorithms	35
hnco::algorithm::fast_efficient_p3	
Algorithms from the FastEfficientP3 library	41
hnco::algorithm::walsh_moment	
Algorithms using Walsh moments	41
hnco::app	
Classes for applications	42
hnco::exception	
Exceptions	44
hnco::function	
Functions defined on bit vectors	44
hnco::function::controller	
Controllers	49
hnco::function::modifier	
Modifiers	50
hnco::logging	
Logging	50
hnco::map	
Maps	50
hnco::multiobjective	
Multiobjective optimization	57
hnco::multiobjective::algorithm	
Multiobjective Algorithms	58
hnco::multiobjective::app	
Classes for applications	59
hnco::multiobjective::function	
Functions defined on bit vectors	59
hnco::neighborhood	
Neighborhoods for local search	61
hnco::random	
Random numbers	61
hnco::representation	
Representations	62

2 Namespace Index

Chapter 2

Hierarchical Index

2.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

Algorithm
CompleteSearch
IterativeAlgorithm
LocalSearchAlgorithm< neighborhood::NeighborhoodIterator >
FirstAscentHillClimbing
SteepestAscentHillClimbing
LocalSearchAlgorithm< neighborhood::Neighborhood >
RandomLocalSearch
RandomWalk
SimulatedAnnealing
GeneticAlgorithm
Human
InformationTheoreticEa
LocalSearchAlgorithm < Neighborhood >
Mimic
MuCommaLambdaEa
MuPlusLambdaEa
OnePlusLambdaCommaLambdaGa27
PvAlgorithm
CompactGa
Mmas
NpsPbil
Pbil
Umda
RandomSearch
Restart
SelfAdjustingOnePlusOneEa
TwoRateOnePlusLambdaEa
BmPbil < GibbsSampler >
Hea < Herding >
OnePlusOneEa
Hboa
Ltga
ParameterLessPopulationPyramid

4 Hierarchical Index

Algorithm	
IterativeAlgorithm	39
Nsga2	70
AlgorithmFactory	78
CommandLineAlgorithmFactory	
	79
CommandLineAlgorithmFactory	}0
CommandLineApplication	91
CommandLineApplication	93
CommaSelection	97
ComplexRepresentation < ScalarRep >)0
$Complex Representation < Dyadic Float Representation < double >> \dots \dots$)0
$Complex To Double < T > \hspace{0.5cm} \dots 0.5cm$)2
Crossover)5
BiasedCrossover	30
UniformCrossover	33
DecoratedFunctionFactory	າຂ
DyadicFloatRepresentation< T >	
DyadicFloatRepresentation < double >	- 7
DyadicIntegerRepresentation < T >	- 7
DyadicIntegerRepresentation < int >	
ProgressTracker::Event	
exception	10
std::runtime error	
LastEvaluation	36
TargetReached	
FigenOptions	
FrontDistancePair	
Function	
AbstractMaxSat	
MaxNae3Sat	
MaxSat	
DeceptiveJump	
Decorator)9
Controller)3
Cache	35
CallCounter	38
OnBudgetFunction	74
ProgressTracker	
StopOnTarget	55
StopOnMaximum	
Modifier	
AdditiveGaussianNoise	
FunctionMapComposition	
Negation 25 ParsedModifier 25	
PriorNoise	
EqualProducts	
Factorization	
FourPeaks	
FunctionPlugin	
Hiff	
Jump	
Labs	
LeadingOnes	
LinearFunction)0

2.1 Class Hierarchy 5

LongPath	. 210
MixedIntegerMultivariateFunctionAdapter< Fn, IntRep, FloatRep >	
MultivariateFunctionAdapter< Fn, Rep, Conv >	
NearestNeighborlsingModel1	
NearestNeighborlsingModel2	
Needle	
NkLandscape	
OneMax	
Partition	
PermutationFunctionAdapter< Fn >	
Plateau	
PythonFunction	
Qubo	
Ridge	
SixPeaks	. 347
SummationCancellation	. 361
SinusSummationCancellation	. 345
Trap	. 380
UniversalFunctionAdapter	
WalshExpansion	
WalshExpansion1	
WalshExpansion2	
Function	
$\label{thm:mixed-mixed-mixed-mixed-mixed} \textbf{Mixed-Integer-Multivariate-Function-Adapter} < \textbf{Fn}, \textbf{IntRep}, \textbf{FloatRep} > \dots $	
$\label{eq:multivariate} \textit{MultivariateFunctionAdapter} < \textit{Fn}, \textit{Rep}, \textit{Conv} > \; \dots \dots$	
PythonFunction	
UniversalFunctionAdapter	. 399
FunctionFactory	139
CommandLineFunctionFactory	95
FunctionFactory	
CommandLineFunctionFactory	
Generator	144
HncoEvaluator	160
HncoOptions	161
HncoOptions	174
Implementation	181
IntegerCategoricalRepresentation	185
Iterator	
ExtendedHypercubeIterator	120
Hypercubelterator	
NeighborhoodIterator	
HammingSphereIterator	
SingleBitFlipIterator	
LinearCategoricalRepresentation	
LogContext	
ProgressTrackerContext	. 316
Logger	209
LowerTriangularWalshMoment2	
LowerTriangularWalshMoment2GibbsSampler	
LowerTriangularWalshMoment2Herding	
Lower mangular warshivionientz Herding	
·	
AffineMap	
Injection	
LinearMap	
MapComposition	
Permutation	. 295

6 Hierarchical Index

Projection	18
Translation	75
TsAffineMap	83
MapgenOptions	24
Neighborhood	60
MultiBitFlip	40
HammingBall	48
HammingSphere	
StandardBitMutation	49
SingleBitFlip	43
Nsga2ParetoFrontComputation	
ParsedMultivariateFunction < Parser >	
ParsedMultivariateFunction < Parser >	288
PermutationRepresentation	99
PlusSelection	03
Population	04
Population	
DyadicIntegerRepresentation< T >::Precision	
RandomSelection	31
TournamentSelection	71
UniformSelection	94
InformationTheoreticEa::Replacement	34
ScalarToDouble < T >	38
StopWatch	58
Sudoku	58
-,	64
·	868
, o	69
TournamentSelection < T, Compare >	
· · · · · · · · · · · · · · · · · · ·	373
TournamentSelection< hnco::multiobjective::algorithm::FrontDistancePair, std::less< hnco::multiobjective ↔	
::algorithm::FrontDistancePair >>	
	377
•	887 896
	96 197
WalshTerm	
**aomoni	10

Chapter 3

Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

AbstractMaxSat	
Abstract class for MaxSat-like functions	65
AdditiveGaussianNoise	
Additive Gaussian Noise	68
AffineMap	
Affine map	69
Algorithm	
Abstract search algorithm	72
Algorithm	
Abstract multiobjective search algorithm	76
AlgorithmFactory	
Algorithm factory	78
AlgorithmFactory	
Algorithm factory	79
BiasedCrossover	
Biased crossover	80
BmPbil < GibbsSampler >	
Boltzmann machine PBIL	81
Cache	
Cache	85
CallCounter	
Call counter	88
CommandLineAlgorithmFactory	
Command line algorithm factory	89
CommandLineAlgorithmFactory	
Command line algorithm factory	90
CommandLineApplication	
Command line application	91
CommandLineApplication	
Command line application	93
CommandLineFunctionFactory	
Command line function factory	95
CommandLineFunctionFactory	
Command line function factory	96
CommaSelection	
Comma selection	97

8 Class Index

CompactGa	
Compact genetic algorithm	98
CompleteSearch	
Complete search	99
ComplexRepresentation < ScalarRep >	
and the second s	100
ComplexToDouble < T >	
Convert a complex to a double	102
	103
Crossover	100
_	105
DeceptiveJump	
	106
DecoratedFunctionFactory	
Decorated function factory	108
Decorator	
	109
DyadicFloatRepresentation< T >	
)	110
DyadicIntegerRepresentation < T >	
79	114
EqualProducts Equal products	116
ProgressTracker::Event	110
	120
ExtendedHypercubelterator	
· · · · · · · · · · · · · · · · · · ·	120
Factorization	
Factorization	121
FfgenOptions	
	124
FirstAscentHillClimbing	
g	128
FourPeaks	
	129
FrontDistancePair	
	131
Function Function	132
Function	102
	137
FunctionFactory	
	139
FunctionFactory	
Function factory	139
FunctionMapComposition	
p	140
FunctionPlugin	
	143
Generator Pandem number generator	
	144
GeneticAlgorithm Genetic algorithm	146
HammingBall	+0
	148
HammingSphere	
	149

3.1 Class List

Hamming	SphereIterator	
Hboa	Hamming sphere neighborhood iterator	151
	, ,	153
Hea< He		155
Hiff		150
HncoEva	,	158
UnacOnt		160
HncoOpt	Command line options for hnco	161
HncoOpt		174
Human		
Hypercuk	Human	179
	Hypercube iterator	180
Impleme		181
Informati	onTheoreticEa Information-theoretic evolutionary algorithm	181
Injection	miormation-theoretic evolutionary algorithm	101
IntogorC	Injection	184
_	Integer categorical representation	185
Iterative <i>A</i>		186
Iterative <i>A</i>	algorithm	100
Iterator	Iterative algorithm	189
	Iterator over bit vectors	193
Jump	Jump	194
Labs	·	405
LastEvalı	, ,	195
		196
LeadingC		197
LinearCa	tegoricalRepresentation	400
LinearFu		199
		200
LinearMa		204
LocalSea	rchAlgorithm< Neighborhood >	
LogConte	3	207
Logger	Log context	208
Logger	Logger	209
LongPath		210
LowerTria	angularWalshMoment2	
LowerTria	Lower triangular Walsh moment	212
	Gibbs sampler with lower triangular Walsh moments	216

10 Class Index

LowerTria	angularWalshMoment2Herding	
Ltga	Herding with lower triangular Walsh moment	217
	Linkage Tree Genetic Algorithm	219
Мар	Map	220
MapCom	position	
Mangan	Map composition	222
Mapgen(Command line options for mapgen	224
MaxNae	3Sat Max not-all-equal 3SAT	226
MaxSat	MAX-SAT	227
Mimic		
	Mutual information maximizing input clustering	229
MixedInte	egerMultivariateFunctionAdapter< Fn, IntRep, FloatRep >	
	Mixed-integer multivariate function adapter	231
MixedInte	egerMultivariateFunctionAdapter< Fn, IntRep, FloatRep >	000
Mmas	Mixed-integer multivariate function adapter	233
Willias	Max-min ant system	235
Modifier		
MuComn	Function modifier	237
	(mu, lambda) EA \dots	238
MultiBitF	lip Multi bit flip	240
Multivaria	ateFunctionAdapter< Fn, Rep, Conv >	
Multivaria	Multivariate function adapter	242
	Multivariate function adapter	244
MuPlust	ambdaEa (mu+lambda) EA	246
NearestN	leighborIsingModel1 Nearest neighbor Ising model in one dimension	248
	leighborlsingModel2	
	Nearest neighbor Ising model in two dimensions	252
Needle	Needle in a haystack	256
Negation	Negation	258
Neighbor	- 3	200
	Neighborhood	260
Neighbor	hoodIterator Neighborhood iterator	263
NkLands	cape	200
NpsPbil	NK landscape	264
Nogo	Population-based incremental learning with negative and positive selection	268
Nsga2	NSGA-II	270
Nsga2Pa	retoFrontComputation Pareto front computation from the NSGA-II paper	272
OnBudge	etFunction	
OneMax	Function with a limited number of evaluations	274
Uliciviax	OneMax	276

3.1 Class List

OnePlusLambdaCommaLambdaGa	
(1+(lambda, lambda)) genetic algorithm	279
OnePlusOneEa	
(1+1) EA	281
Parameter-less Population Pyramid	283
ParsedModifier	
Parsed modifier	285
ParsedMultivariateFunction< Parser >	
Parsed multivariate function	286
ParsedMultivariateFunction < Parser > Parsed multivariate function	288
Partition	200
Partition	291
Pbil	
Population-based incremental learning	294
Permutation Permut	295
PermutationFunctionAdapter< Fn >	200
Permutation function adapter	298
PermutationRepresentation	
Permutation representation	299
Plateau Plateau	301
PlusSelection	301
Plus selection	303
Population	
Population	304
Population	308
DyadicIntegerRepresentation < T >::Precision	300
Precision	311
PriorNoise	
Prior noise	311
ProgressTracker ProgressTracker	314
ProgressTracker ProgressTrackerContext	314
Log context for ProgressTracker	316
Projection	
Projection	318
PvAlgorithm Prabability yeater algorithm	220
Probability vector algorithm	320
Python function	321
PythonFunction	
Python function	323
Qubo Quadratic unconstrained binary optimization	325
RandomLocalSearch	323
Random local search	328
RandomSearch	
Random search	330
RandomSelection Random selection	221
Random selection	331
Random walk	332
InformationTheoreticEa::Replacement	
Selection for replacement	334

12 Class Index

Restart		
	Restart	335
Ridge	Ridge	336
ScalarTol	Double < T >	550
	Convert a scalar to a double	338
SelfAdjus	stingOnePlusOneEa	
Simulator	Self-adjusting (1+1) evolutionary algorithm	338
Omidiato	·	341
SingleBit	·	
CinaloDit	One bit neighborhood	343
Siriglebit	·	344
SinusSur	nmationCancellation	
		345
SixPeaks		347
Standard	BitMutation) 4 /
		349
Steepest	AscentHillClimbing	
StopOnM	ı	352
Otoponiv		353
StopOnTa	arget	
O: W:		355
StopWate		358
Sudoku	Stop Water	,,,,
		358
Summati	onCancellation	261
Symmetr	Summation cancellation	361
- ,		364
Symmetr	icWalshMoment2GibbsSampler	
Symmetr	Gibbs sampler with symmetric Walsh moments	368
•	· · · · · · · · · · · · · · · · · · ·	369
TargetRe	· · · · · ·	
_	g	371
Iournam	entSelection Tournament selection	371
Tourname	entSelection< T, Compare >	,,,
		373
Translatio		75
Transvec		375
Hanovoo		377
Trap		
ToAffinal	'	380
TsAffine	_'	383
Tsp		
	š i	387
IwoRate	OnePlusLambdaEa Two-rate (1+lambda) evolutionary algorithm	390
Umda	Two Tate (Triallibua) evolutionally algorithm	JJU
	Univariate marginal distribution algorithm	392

3.1 Class List

niformCrossover	
Uniform crossover	 393
niformSelection	
Uniform selection	 394
niversalFunction	
Universal function	 396
niversalFunction	
Universal function	 397
niversalFunctionAdapter	
Universal function adapter	 397
niversalFunctionAdapter	
Universal function adapter	 399
alshExpansion	
Walsh expansion	 402
alshExpansion1	
Walsh expansion of degree 1	 405
alshExpansion2	
Walsh expansion of degree 2	 409
alshTerm	
Walsh transform term	 413

14 Class Index

Chapter 4

Namespace Documentation

4.1 hnco Namespace Reference

top-level HNCO namespace

Namespaces

• namespace algorithm

Algorithms.

namespace app

Classes for applications.

• namespace exception

Exceptions.

namespace function

Functions defined on bit vectors.

namespace logging

Logging.

namespace map

Maps.

• namespace multiobjective

Multiobjective optimization.

· namespace neighborhood

Neighborhoods for local search.

· namespace random

Random numbers.

• namespace representation

Representations.

Classes

· class ExtendedHypercubeIterator

Extended Hypercube iterator.

· class Hypercubelterator

Hypercube iterator.

· class Iterator

Iterator over bit vectors

class StopWatch

Stop watch.

Functions

• void ensure (bool b, const std::string message)

Ensure that a condition is satisfied or throw a runtime exception.

template < class A , class B >

```
bool have_same_size (const A &a, const B &b)
```

Check whether two containers have the same size.

template<class T >

T square (T x)

Generic square function.

• double logistic (double x)

Logistic function (sigmoid)

• template<typename Iter >

std::string join (Iter begin, Iter end, std::string const &separator)

Convert to string and join elements of a container (from SO)

Load from and save to boost archives

```
    template < typename T > void load_from_archive (T & object, std::string path, std::string name)
        Load from a boost archive.
    template < typename T > void save_to_archive (const T & object, std::string path, std::string name)
        Save to a boost archive.
```

Range checking

```
• bool is in range (int i, int a, int b)
```

Check whether an index is in a given range.

• bool is_in_range (int i, int n)

Check whether an index is in a given range.

Intervals

• bool is_in_interval (double x, double a, double b)

Check whether a double value belongs to a given interval.

• template<typename T >

```
T clip_value (T x, T low, T high)
```

Clip value between two bounds.

Types and functions related to bit matrices

Output and input-output function parameters appear at the beginning of the parameter list.

Output and input-output bit_matrix_t parameters are passed by reference and must have the right size for the considered function.

Input object parameters are passed by const reference.

```
    using bit_matrix_t = std::vector< bit_vector_t >
    Bit matrix.
```

bit_matrix_t bm_rectangular (int nrows, int ncols)

Make a rectangular bit matrix. bit_matrix_t bm_square (int n) Make a square bit matrix. void bm identity (bit matrix t &M) Set a matrix to the identity matrix. bit_matrix_t bm_identity (int n) Make an identity bit matrix. void bm_transpose (bit_matrix_t &N, const bit_matrix_t &M) Transpose a bit matrix. bit_matrix_t bm_transpose (const bit_matrix_t &M) Transpose a bit matrix. void bm_display (const bit_matrix_t &M, std::ostream &stream) Display bit matrix. bool bm is valid (const bit matrix t &M) Check whether a bit matrix is valid. int bm_num_rows (const bit_matrix_t &M) Number of rows. int bm_num_columns (const bit_matrix_t &M) Number of columns. bool bm_is_square (const bit_matrix_t &M) Check whether the matrix is a square matrix. bool bm_is_identity (const bit_matrix_t &M) Check whether the matrix is the identity matrix. bool bm_is_upper_triangular (const bit_matrix_t &M) Check whether the matrix is upper triangular. void bm_resize (bit_matrix_t &M, int nrows, int ncols) Resize a bit matrix. void bm_resize (bit_matrix_t &M, int nrows) Resize a bit matrix and make it a square matrix. void bm_clear (bit_matrix_t &M) Clear bit matrix. void bm_random (bit_matrix_t &M) Sample a random bit matrix. void bm_swap_rows (bit_matrix_t &M, int i, int j) Swap two rows. void bm_add_rows (bit_matrix_t &M, int dest, int src) • void bm_add_columns (bit_matrix_t &M, int dest, int src) Add two columns. void bm_set_column (bit_matrix_t &M, int j, const bit_vector_t &bv) void bm_row_echelon_form (bit_matrix_t &A) Compute a row echelon form of a matrix. int bm_rank (const bit_matrix_t &A) Compute the rank of a matrix. bool bm_solve (bit_matrix_t &A, bit_vector_t &b) Solve a linear system. bool bm_solve_upper_triangular (bit_matrix_t &A, bit_vector_t &b) Solve a linear system in upper triangular form. bool bm_invert (bit_matrix_t &M, bit_matrix_t &N) Invert a bit matrix.

void bm_multiply (bit_vector_t &y, const bit_matrix_t &M, const bit_vector_t &x)

Multiply a bit matrix and a bit vector.

Types and functions related to bit

```
using bit_t = std::uint8_t

Bit.
bit_t bit_flip (bit_t b)

Flip bit.
bit_t bit_random (double p)

Sample a random bit.
```

Add two bit vectors.

Types and functions related to bit vectors

Output and input-output function parameters appear at the beginning of the parameter list.

Output and input-output bit_vector_t parameters are passed by reference and must have the right size for the considered function.

Input bit_vector_t parameters are passed by const reference.

```
using bit_vector_t = std::vector < bit t >
      Bit vector.

    std::string bv_domain (const bit_vector_t &x)

     Display bit vector.

    void bv_display (const bit vector t &v, std::ostream &stream)

      Display bit vector.

    bool bv_is_valid (const bit_vector_t &x)

      Check whether the bit vector is valid.

    bool bv_is_zero (const bit_vector_t &x)

      Check whether the bit vector is zero.
int bv_hamming_weight (const bit_vector_t &x)
      Hamming weight.

    int bv_hamming_weight (const std::vector< bool > &x)

      Hamming weight.

    int bv_hamming_distance (const bit_vector_t &x, const bit_vector_t &y)

      Hamming distance between two bit vectors.

    bit_t bv_dot_product (const bit_vector_t &x, const bit_vector_t &y)

      Dot product.

    bit t bv_dot_product (const bit_vector_t &x, const std::vector< bool > &y)

      Dot product.

    void bv_clear (bit_vector_t &x)

      Clear bit vector.

    void bv_flip (bit vector t &x, int i)

      Flip a single bit.

    void bv_flip (bit_vector_t &x, const bit_vector_t &mask)

      Flip many bits.

    void bv_random (bit_vector_t &x)

      Sample a random bit vector.

    void bv_random (bit_vector_t &x, int k)

      Sample a random bit vector with given Hamming weight.

    void bv_add (bit_vector_t &dest, const bit_vector_t &src)
```

Types and functions related to permutations

```
    using permutation_t = std::vector< int >
    Permutation type
```

Read a bit vector from a stream.

bool perm_is_valid (const permutation_t &permutation)

Check that a vector represents a permutation.

void perm_identity (permutation_t &s)

Identity permutation.

void perm_shuffle (permutation_t &s)

Shuffle a permutation.

void perm random (permutation t &s)

Sample a random permutation.

void perm_display (const permutation_t &permutation, std::ostream &stream)

Display a permutation.

Types and functions related to sparse bit vectors

Output and input-output function parameters appear at the beginning of the parameter list.

Input object parameters are passed by const reference.

4.1.1 Detailed Description

top-level HNCO namespace

4.1.2 Typedef Documentation

4.1.2.1 sparse_bit_vector_t

```
using sparse_bit_vector_t = std::vector<int>
```

Sparse bit vector.

A sparse bit vector is represented as an vector containing the indices of its non-zero components. The indices must be sorted in ascending order.

A sparse bit vector does not know the dimension of the space it belongs to.

Definition at line 50 of file sparse-bit-vector.hh.

4.1.3 Function Documentation

4.1.3.1 bm_add_columns()

```
void bm_add_columns (
          bit_matrix_t & M,
          int dest,
          int src )
```

Add two columns.

Equivalent to dest = dest + src.

Parameters

	М	Bit matrix
ſ	dest	Destination column
ſ	src	Source column

Warning

M is modified by the function.

Definition at line 187 of file bit-matrix.cc.

4.1.3.2 bm_add_rows()

Add two rows.

Equivalent to dest = dest + src.

Parameters

М	Bit matrix
dest	Destination row
src	Source row

Definition at line 178 of file bit-matrix.cc.

4.1.3.3 bm_identity() [1/2]

```
void bm_identity ( bit\_matrix\_t \ \& \ \mathit{M} \ )
```

Set a matrix to the identity matrix.

Precondition

bm_is_square(M)

Definition at line 39 of file bit-matrix.cc.

4.1.3.4 bm_identity() [2/2]

Make an identity bit matrix.

Parameters

n Dimension

Returns

An order n identity matrix

Definition at line 50 of file bit-matrix.cc.

4.1.3.5 bm_invert()

```
bool bm_invert ( \label{eq:bit_matrix_t & M, bit_matrix_t & N )}  bit_matrix_t & N )
```

Invert a bit matrix.

Parameters

М	Bit matrix
Ν	Inverse bit matrix

Precondition

```
bm_is_square(M)
bm_is_square(N)
bm_num_rows(M) == bm_num_rows(N)
```

Returns

true if M is invertible

Warning

M is modified by the function. Provided that M is invertible, after returning from the function, M is the identity matrix and N is the computed inverse matrix.

Definition at line 316 of file bit-matrix.cc.

4.1.3.6 bm_multiply()

```
void bm_multiply (
                bit_vector_t & y,
                const bit_matrix_t & M,
                 const bit_vector_t & x )
```

Multiply a bit matrix and a bit vector.

Computes y = Mx.

Parameters

У	Output bit vector
М	Bit matrix
Х	Bit vector

Definition at line 360 of file bit-matrix.cc.

4.1.3.7 bm_rank()

Compute the rank of a matrix.

Precondition

A must be in row echelon form.

Definition at line 244 of file bit-matrix.cc.

4.1.3.8 bm_row_echelon_form()

Compute a row echelon form of a matrix.

Warning

A is modified by the function.

Definition at line 213 of file bit-matrix.cc.

4.1.3.9 bm_set_column()

```
void bm_set_column (
          bit_matrix_t & M,
           int j,
           const bit_vector_t & bv )
```

Set column.

Set a column to a given bit vector.

Parameters

М	Bit matrix
j	Column index
bv	Bit vector

Precondition

```
bm_num_rows(M) == bv.size()
```

Definition at line 202 of file bit-matrix.cc.

4.1.3.10 bm_solve()

```
bool bm_solve (
                bit_matrix_t & A,
                bit_vector_t & b )
```

Solve a linear system.

Solve the linear equation Ax = b.

Parameters

Α	Matrix
b	Right hand side

Precondition

```
bm_is_square(A)
bm_num_rows(A) == b.size()
```

Returns

true if the system has a unique solution

Warning

Both A and b are modified by the function. Provided that A is invertible, after returning from the function, A is the identity matrix and b is the unique solution to the linear equation.

Definition at line 262 of file bit-matrix.cc.

4.1.3.11 bm_solve_upper_triangular()

Solve a linear system in upper triangular form.

Solve the linear equation Ax = b.

Parameters

Α	Upper triangular matrix
b	Right hand side

Precondition

```
bm_is_square(A)
bm_num_rows(A) == b.size()
bm_is_upper_triangular(A)
```

Returns

true if the system has a unique solution

Warning

Both A and b are modified by the function. Provided that A is invertible, after returning from the function, A is the identity matrix and b is the unique solution to the linear equation.

Definition at line 295 of file bit-matrix.cc.

4.1.3.12 bm_transpose() [1/2]

```
void bm_transpose (
                bit_matrix_t & N,
                 const bit_matrix_t & M )
```

Transpose a bit matrix.

Precondition

```
bm_num_columns(N) == bm_num_rows(M)
bm_num_rows(N) == bm_num_columns(M)
```

Definition at line 59 of file bit-matrix.cc.

4.1.3.13 bm_transpose() [2/2]

Transpose a bit matrix.

Parameters

Μ	Bit matrix
---	------------

Returns

Transposed bit matrix

Definition at line 73 of file bit-matrix.cc.

4.1.3.14 bv_add() [1/2]

```
void bv_add (
                bit_vector_t & dest,
                const bit_vector_t & src )
```

Add two bit vectors.

Equivalent to dest = dest + src.

Parameters

dest	Destination bit vector
src	Source bit vector

Warning

Vectors must be of the same size.

Definition at line 124 of file bit-vector.cc.

4.1.3.15 bv_add() [2/2]

```
void bv_add (
                bit_vector_t & dest,
                const bit_vector_t & x,
                 const bit_vector_t & y )
```

Add two bit vectors.

Equivalent to dest = x + y.

Parameters

dest	Destination bit vector
X	First operand
V	Second operand

Generated by Doxygen

Warning

Vectors must be of the same size.

Definition at line 133 of file bit-vector.cc.

4.1.3.16 bv_from_size_type()

Convert a size_t to a small bit vector.

Parameters

X	Output bit vector
и	Unsigned integer representing a bit vector

Precondition

```
x.size() <= 8 * sizeof(std::size t)
```

Warning

Depending on the size of the output bit vector, some bits might be lost. The original bit vector can be reconstructed only if it is small and the unsigned integer u is the result of bv_to_size_type.

Definition at line 201 of file bit-vector.cc.

4.1.3.17 bv_from_stream()

Read a bit vector from a stream.

Parameters

stream	Input stream

Returns

A bit_vector_t

Definition at line 232 of file bit-vector.cc.

4.1.3.18 bv_from_string()

Read a bit vector from a string.

Parameters

```
str Input string
```

Returns

```
A bit_vector_t
```

Definition at line 216 of file bit-vector.cc.

4.1.3.19 bv_from_vector_bool()

```
void bv_from_vector_bool (
          bit_vector_t & x,
          const std::vector< bool > & y )
```

Convert a bool vector to a bit vector.

Warning

Vectors must be of the same size.

Definition at line 156 of file bit-vector.cc.

4.1.3.20 bv_to_size_type() [1/2]

Convert a small bit vector to a size_t.

x[0] is the least significant bit.

Parameters

```
x Input bit vector
```

Returns

An unsigned integer representing x

Precondition

```
x.size() <= 8 * sizeof(std::size_t)
```

Definition at line 169 of file bit-vector.cc.

4.1.3.21 bv_to_size_type() [2/2]

Convert a slice of a small bit vector to a size_t.

x[start] is the least significant bit.

x[stop-1] is the most significant bit.

Parameters

X	Input bit vector	
start	Start bit	
stop	Stop bit	

Returns

An unsigned integer representing x[start], ..., x[stop-1]

Precondition

```
start in [0, x.size())
stop in [start+1, x.size()]
(stop - start) <= 8 * sizeof(std::size_t)</pre>
```

Definition at line 184 of file bit-vector.cc.

4.1.3.22 bv_to_vector_bool()

```
void bv_to_vector_bool (
          std::vector< bool > & y,
          const bit_vector_t & x )
```

Convert a bit vector to a bool vector.

Warning

Vectors must be of the same size.

Definition at line 143 of file bit-vector.cc.

4.1.3.23 ensure()

```
void ensure (
                bool b,
                const std::string message ) [inline]
```

Ensure that a condition is satisfied or throw a runtime exception.

Parameters

b	Boolean	
message	Message to display if the boolean is false	

Definition at line 39 of file util.hh.

4.1.3.24 is_in_range() [1/2]

Check whether an index is in a given range.

Parameters

i	Index
а	Lower bound
b	Upper bound (excluded)

Returns

```
true if i \ge a and i < b
```

Definition at line 58 of file util.hh.

4.1.3.25 is_in_range() [2/2]

Check whether an index is in a given range.

The lower bound is implicit and is equal to 0.

Parameters

i	Index
n	Upper bound (excluded)

Returns

```
true if i \ge 0 and i < n
```

Definition at line 67 of file util.hh.

4.1.3.26 load_from_archive()

Load from a boost archive.

Parameters

object	Object to load	
path	Path of the file	
name	Class name	

Definition at line 44 of file serialization.hh.

4.1.3.27 perm_identity()

Identity permutation.

Warning

This function does not set the size of the permutation.

Definition at line 47 of file permutation.hh.

4.1.3.28 perm_random()

Sample a random permutation.

Warning

This function does not set the size of the permutation.

Definition at line 60 of file permutation.hh.

4.1.3.29 save_to_archive()

Save to a boost archive.

Parameters

object	Object to save	
path	Path of the file	
name	Class name	

Definition at line 64 of file serialization.hh.

4.1.3.30 sbv_flip()

```
void sbv_flip (
          bit_vector_t & x,
          const sparse_bit_vector_t & sbv )
```

Flip many bits of a bit vector.

Parameters

Х	Input-output bit vector	
sbv	Bits to flip	

Definition at line 54 of file sparse-bit-vector.cc.

4.1.3.31 sbv_is_valid() [1/2]

Check that a sparse bit vector is valid.

A sparse bit vector is valid if:

- · Its elements are non negative.
- Its elements are sorted in non-descending order.

Definition at line 32 of file sparse-bit-vector.cc.

4.1.3.32 sbv_is_valid() [2/2]

Check that a sparse bit vector is valid.

A sparse bit vector is valid if:

- Its elements are non negative.
- Its elements are sorted in non-descending order.
- Its elements are valid indices w.r.t. the given dimension.

Parameters

sbv	Input sparse bit vector	
n	Dimension	

Definition at line 43 of file sparse-bit-vector.cc.

4.2 hnco::algorithm Namespace Reference

Algorithms.

Namespaces

• namespace fast_efficient_p3

Algorithms from the FastEfficientP3 library.

• namespace walsh_moment

Algorithms using Walsh moments.

Classes

· class Algorithm

Abstract search algorithm.

class BiasedCrossover

Biased crossover.

· class CommaSelection

Comma selection.

· class CompactGa

Compact genetic algorithm.

class CompleteSearch

Complete search.

· class Crossover

Crossover

· class FirstAscentHillClimbing

First ascent hill climbing.

class GeneticAlgorithm

Genetic algorithm.

class Human

Human

· class InformationTheoreticEa

Information-theoretic evolutionary algorithm.

· class IterativeAlgorithm

Iterative search.

· class LocalSearchAlgorithm

Local search algorithm.

• class Mimic

Mutual information maximizing input clustering.

class Mmas

Max-min ant system.

• class MuCommaLambdaEa

(mu, lambda) EA.

• class MuPlusLambdaEa

(mu+lambda) EA.

class NpsPbil

Population-based incremental learning with negative and positive selection.

· class OnePlusLambdaCommaLambdaGa

(1+(lambda, lambda)) genetic algorithm.

• class OnePlusOneEa

(1+1) EA.

• class Pbil

Population-based incremental learning.

class PlusSelection

Plus selection.

struct Population

Population

class PvAlgorithm

Probability vector algorithm.

· class RandomLocalSearch

Random local search.

• class RandomSearch

Random search.

class RandomSelection

Random selection.

class RandomWalk

Random walk.

· class Restart

Restart.

· class SelfAdjustingOnePlusOneEa

Self-adjusting (1+1) evolutionary algorithm.

· class SimulatedAnnealing

Simulated annealing.

· class SteepestAscentHillClimbing

Steepest ascent hill climbing.

class TournamentSelection

Tournament selection.

• class TwoRateOnePlusLambdaEa

Two-rate (1+lambda) evolutionary algorithm.

class Umda

Univariate marginal distribution algorithm.

· class UniformCrossover

Uniform crossover.

· class UniformSelection

Uniform selection.

Typedefs

using solution_t = std::pair< bit_vector_t, double >

Type of a solution.

Functions

```
    template < class T >
        bool matrix_is_symmetric (const std::vector < std::vector < T > > &A)
            Check for symmetric matrix.
    template < class T >
        bool matrix_is_strictly_lower_triangular (const std::vector < std::vector < T > > &A)
            Check for strictly lower triangular matrix.
    template < class T >
        bool matrix_has_diagonal (const std::vector < std::vector < T > > &A, T x)
            Check for diagonal elements.
    template < class T >
        bool matrix_has_range (const std::vector < std::vector < T > > &A, T inf, T sup)
            Check for element range.
    template < class T >
        bool matrix_has_dominant_diagonal (const std::vector < std::vector < T > > &A)
            Check for element range.
```

Type and functions related to probability vectors

Output and input-output function parameters appear at the beginning of the parameter list.

Output and input-output pv_t parameters are passed by reference and must have the right size for the considered function.

Input object parameters are passed by const reference.

```
• using pv t = std::vector< double >
      Probability vector type.

    double pv_entropy (const pv_t &pv)

      Entropy of a probability vector.

    void pv_sample (bit_vector_t &x, const pv_t &pv)

      Sample a bit vector.
void pv_uniform (pv_t &pv)
      Probability vector of the uniform distribution.
void pv_init (pv_t &pv)
      Initialize.

    void pv_add (pv_t &pv, const bit_vector_t &x)

      Accumulate a bit vector into a probability vector.

    void pv_average (pv_t &pv, int count)

     Average.

    template < class T >

  void pv update (pv t &pv, double rate, const T &x)
      Update a probability vector.

    void pv_update (pv_t &pv, double rate, const pv_t &x, const pv_t &y)

      Update a probability vector.

    void pv_bound (pv_t &pv, double lower_bound, double upper_bound)

      Bound the elements of a probability vector.
```

4.2.1 Detailed Description

Algorithms.

4.2.2 Function Documentation

4.2.2.1 pv_add()

Accumulate a bit vector into a probability vector.

Equivalent to pv += x

Parameters

pv	Probability vector	
Х	Bit vector	

Definition at line 58 of file probability-vector.cc.

4.2.2.2 pv_average()

Average.

Equivalent to pv = pv / count.

Parameters

pv	Probability vector	
count	Number of accumulated bit vectors	

Definition at line 67 of file probability-vector.cc.

4.2.2.3 pv_bound()

```
void pv_bound (
```

```
pv_t & pv,
double lower_bound,
double upper_bound )
```

Bound the elements of a probability vector.

Parameters

pv	Probability vector
lower_bound	Lower bound
upper_bound	Upper bound

Definition at line 82 of file probability-vector.cc.

4.2.2.4 pv_init()

Initialize.

All the elements of the probability vector are set to 0.

Parameters

pv	Probability vector

Definition at line 74 of file probability-vector.hh.

4.2.2.5 pv_sample()

```
void pv_sample (
          bit_vector_t & x,
          const pv_t & pv )
```

Sample a bit vector.

Parameters

X	Sampled bit vector
pv	Probability vector

Definition at line 46 of file probability-vector.cc.

4.2.2.6 pv_uniform()

Probability vector of the uniform distribution.

All the elements of the probability vector are set to 1/2.

Parameters

```
pv Probability vector
```

Definition at line 66 of file probability-vector.hh.

4.2.2.7 pv_update() [1/2]

Update a probability vector.

Equivalent to pv += rate(x - y)

Parameters

pv	Probability vector
rate	Rate
X	Attractor probability vector
У	Repulsor probability vector

Definition at line 73 of file probability-vector.cc.

4.2.2.8 pv_update() [2/2]

Update a probability vector.

Equivalent to pv += rate * (x - pv)

Parameters

pv	Probability vector
rate	Rate
X	Attractor bit vector

Definition at line 103 of file probability-vector.hh.

4.3 hnco::algorithm::fast_efficient_p3 Namespace Reference

Algorithms from the FastEfficientP3 library.

Classes

· class Hboa

Hierarchical Bayesian Optimization Algorithm.

class HncoEvaluator

Evaluator for HNCO functions.

struct Implementation

Implementation

• class Ltga

Linkage Tree Genetic Algorithm.

· class ParameterLessPopulationPyramid

Parameter-less Population Pyramid.

4.3.1 Detailed Description

Algorithms from the FastEfficientP3 library.

4.4 hnco::algorithm::walsh_moment Namespace Reference

Algorithms using Walsh moments.

Classes

• class BmPbil

Boltzmann machine PBIL.

class Hea

Herding evolutionary algorithm.

• struct LowerTriangularWalshMoment2

Lower triangular Walsh moment.

• class LowerTriangularWalshMoment2GibbsSampler

Gibbs sampler with lower triangular Walsh moments.

class LowerTriangularWalshMoment2Herding

Herding with lower triangular Walsh moment.

• struct SymmetricWalshMoment2

Symmetric Walsh moment.

· class SymmetricWalshMoment2GibbsSampler

Gibbs sampler with symmetric Walsh moments.

· class SymmetricWalshMoment2Herding

Herding with symmetric Walsh moment.

4.4.1 Detailed Description

Algorithms using Walsh moments.

4.5 hnco::app Namespace Reference

Classes for applications.

Classes

· class AlgorithmFactory

Algorithm factory.

• class CommandLineAlgorithmFactory

Command line algorithm factory.

• class CommandLineApplication

Command line application.

· class CommandLineFunctionFactory

Command line function factory.

· class DecoratedFunctionFactory

Decorated function factory.

class FfgenOptions

Command line options for ffgen.

class FunctionFactory

Function factory.

class HncoOptions

Command line options for hnco.

class MapgenOptions

Command line options for mapgen.

Typedefs

- using IntRep = representation::DyadicIntegerRepresentation < int >
 Int representation.
- using LongRep = representation::DyadicIntegerRepresentation < long >

Long representation.

 $\bullet \ \ using \ \textbf{DoubleRep} = representation:: DyadicFloatRepresentation < double >$

Double representation.

Functions

• std::ostream & operator<< (std::ostream &stream, const HncoOptions &options)

Print a header containing the parameter values.

std::string read_file_content (std::string path)

Read file content.

std::vector< std::string > split_string (std::string str, std::string delimiter)
 Split string.

template<typename Options >

env_t parse_representations (std::string expression, const Options &options)

Parse representations.

 $\bullet \quad \text{template}{<} \text{typename Options} \; , \\ \text{typename Adapter} >$

Adapter * make_multivariate_function_adapter (const Options &options)

Make a multivariate function adapter.

• template<typename Options , typename Adapter >

Adapter * make_multivariate_function_adapter_complex (const Options &options)

Make a multivariate function adapter over complex domain.

template<typename Options , typename Adapter >

Adapter * make_multivariate_function_adapter_mixed (const Options &options)

Make a mixed-integer multivariate function adapter.

std::ostream & operator<< (std::ostream &stream, const FfgenOptions &options)

Print a header containing the parameter values.

• std::ostream & operator << (std::ostream & stream, const MapgenOptions & options)

Print a header containing the parameter values.

4.5.1 Detailed Description

Classes for applications.

4.5.2 Function Documentation

4.5.2.1 parse_representations()

Parse representations.

Parameters

expression	Expression to parse
options	Options

Syntax:

representations = declaration [; declaration]*

declaration = name : representation

representation =

- int(a, b) where a, b are int
- long(a, b) where a, b are long
- double(a, b, precision = e) where a, b, e are double
- double(a, b, size = n) where a, b are double, and n is int

Example:

"x: double(0, 1); y: double(0, 1, precision = 1e-3); z: double(0, 1, size = 8); u: int(-100, 100); v: long(1, 10000)"

Definition at line 242 of file make-multivariate-function-adapter.hh.

4.6 hnco::exception Namespace Reference

Exceptions.

Classes

· class LastEvaluation

Last evaluation.

class TargetReached

Target reached.

4.6.1 Detailed Description

Exceptions.

4.7 hnco::function Namespace Reference

Functions defined on bit vectors.

Namespaces

namespace controller

Controllers.

· namespace modifier

Modifiers.

Classes

class AbstractMaxSat

Abstract class for MaxSat-like functions.

• struct ComplexToDouble

Convert a complex to a double.

class DeceptiveJump

Deceptive jump.

class Decorator

Function decorator

class EqualProducts

Equal products.

· class Factorization

Factorization.

class FourPeaks

Four Peaks.

class Function

Function

• class FunctionPlugin

Function plugin

· class Hiff

Hierarchical if and only if.

· class Jump

Jump.

· class Labs

Low autocorrelation binary sequences.

class LeadingOnes

Leading ones.

class LinearFunction

Linear function.

· class LongPath

Long path.

class MaxNae3Sat

Max not-all-equal 3SAT.

· class MaxSat

MAX-SAT.

class MixedIntegerMultivariateFunctionAdapter

Mixed-integer multivariate function adapter.

· class MultivariateFunctionAdapter

Multivariate function adapter.

• class NearestNeighborIsingModel1

Nearest neighbor Ising model in one dimension.

• class NearestNeighborIsingModel2

Nearest neighbor Ising model in two dimensions.

· class Needle

Needle in a haystack.

class NkLandscape

NK landscape.

class OneMax

OneMax.

· class ParsedMultivariateFunction

Parsed multivariate function.

class Partition

Partition.

class PermutationFunctionAdapter

Permutation function adapter.

class Plateau

Plateau.

· class PythonFunction

Python function.

class Qubo

Quadratic unconstrained binary optimization.

class Ridge

Ridge.

struct ScalarToDouble

Convert a scalar to a double.

class SinusSummationCancellation

Summation cancellation with sinus.

class SixPeaks

Six Peaks.

· class Sudoku

Sudoku

class SummationCancellation

Summation cancellation.

class Trap

Trap.

class Tsp

Traveling salesman problem.

class UniversalFunction

Universal function.

class UniversalFunctionAdapter

Universal function adapter.

• class WalshExpansion

Walsh expansion.

class WalshExpansion1

Walsh expansion of degree 1.

class WalshExpansion2

Walsh expansion of degree 2.

struct WalshTerm

Walsh transform term.

Functions

- void compute_walsh_transform (function::Function *function, std::vector< function::WalshTerm > &terms)

 Compute the Walsh transform of the function.
- void compute_fast_walsh_transform (function::Function *function, std::vector< function::WalshTerm > &terms)

Compute the Walsh transform of the function using a fast Walsh transform.

- bool **bv_is_locally_maximal** (const bit_vector_t &bv, Function &fn, neighborhood::NeighborhoodIterator &it)

 Check whether a bit vector is locally maximal.
- bool bv_is_globally_maximal (const bit_vector_t &bv, Function &fn)

Check whether a bit vector is globally maximal.

4.7.1 Detailed Description

Functions defined on bit vectors.

4.7.2 Function Documentation

4.7.2.1 compute_fast_walsh_transform()

Compute the Walsh transform of the function using a fast Walsh transform.

Let f be a fitness function defined on the hypercube $\{0,1\}^n$. Then it can be expressed as $\sum_u c_u \chi_u$ where $c_u = \langle f, \chi_u \rangle$, $\langle f, g \rangle = \frac{1}{2^n} \sum_x f(x)g(x)$, $\chi_u(x) = (-1)^{x \cdot u}$, and $x \cdot u = \sum_i x_i u_i$ (mod 2). In the respective sums, we have x and u in the hypercube and i in $\{1, \dots, n\}$.

We have dropped the normalizing constant 2^n since we are mostly interested in ratios $|c_u/c_{\max}|$, where c_{\max} is the coefficient with the largest amplitude. It is also helpful to achieve exact computations in the case of functions taking only integer values.

Parameters

function	Function the Walsh transform of which to compute
terms	Vector of non zero terms of the Walsh transform

Warning

The time complexity is exponential in the dimension n. It requires 2^n function evaluations and $n2^n$ additions, which is faster than compute_walsh_transform.

The size of the Walsh transform is potentially exponential in the dimension n. For example, if n = 10 then the number of terms is at most 1024.

Definition at line 77 of file function.cc.

4.7.2.2 compute_walsh_transform()

Compute the Walsh transform of the function.

Let f be a fitness function defined on the hypercube $\{0,1\}^n$. Then it can be expressed as $\sum_u c_u \chi_u$ where $c_u = \langle f, \chi_u \rangle, \langle f, g \rangle = \frac{1}{2^n} \sum_x f(x)g(x), \chi_u(x) = (-1)^{x \cdot u}$, and $x \cdot u = \sum_i x_i u_i$ (mod 2). In the respective sums, we have x and u in the hypercube and i in $\{1, \dots, n\}$.

We have dropped the normalizing constant 2^n since we are mostly interested in ratios $|c_u/c_{\max}|$, where c_{\max} is the coefficient with the largest amplitude. It is also helpful to achieve exact computations in the case of functions taking only integer values.

Parameters

function	Function the Walsh transform of which to compute
terms	Vector of non zero terms of the Walsh transform

Warning

The time complexity is exponential in the dimension n. The computation is done with two nested loops over the hypercube. It requires 2^n function evaluations and 2^{2n} dot products and additions.

The size of the Walsh transform is potentially exponential in the dimension n. For example, if n = 10 then the number of terms is at most 1024.

Definition at line 33 of file function.cc.

4.8 hnco::function::controller Namespace Reference

Controllers.

Classes

· class Cache

Cache.

class CallCounter

Call counter.

class Controller

Function controller.

• class OnBudgetFunction

Function with a limited number of evaluations.

• class ProgressTracker

ProgressTracker.

· class StopOnMaximum

Stop on maximum.

class StopOnTarget

Stop on target.

Functions

std::ostream & operator<< (std::ostream &stream, const ProgressTracker::Event &event)
 Insert formatted output.

4.8.1 Detailed Description

Controllers.

4.9 hnco::function::modifier Namespace Reference

Modifiers.

Classes

· class AdditiveGaussianNoise

Additive Gaussian Noise.

• class FunctionMapComposition

Composition of a function and a map.

· class Modifier

Function modifier.

class Negation

Negation.

· class ParsedModifier

Parsed modifier.

class PriorNoise

Prior noise.

4.9.1 Detailed Description

Modifiers.

4.10 hnco::logging Namespace Reference

Logging.

Classes

· class LogContext

Log context.

• class Logger

Logger.

• class ProgressTrackerContext

Log context for ProgressTracker.

4.10.1 Detailed Description

Logging.

4.11 hnco::map Namespace Reference

Maps.

Classes

class AffineMap

Affine map.

· class Injection

Injection.

class LinearMap

Linear map.

class Map

Мар

· class MapComposition

Map composition.

class Permutation

Permutation.

· class Projection

Projection.

· class Translation

Translation.

struct Transvection

Transvection.

class TsAffineMap

Transvection sequence affine map.

Types and functions related to transvections

Output and input-output function parameters appear at the beginning of the parameter list.

Output and input-output transvection_sequence_t parameters are passed by reference.

Input object parameters are passed by const reference.

using transvection_sequence_t = std::vector< Transvection >

Transvection sequence.

bool transvections_commute (const Transvection &a, const Transvection &b)

Check whether two transvections commute.

• bool transvections_are_disjoint (const Transvection &a, const Transvection &b)

Check whether two transvections are disjoint.

bool ts_is_valid (const transvection_sequence_t &ts)

Check validity.

• bool ts_is_valid (const transvection_sequence_t &ts, int n)

Check validity.

• void ts_display (const transvection_sequence_t &ts, std::ostream &stream)

Display a transvection sequence.

• void ts random (transvection sequence t &ts, int n, int t)

Sample a random transvection sequence.

void ts_random_commuting (transvection_sequence_t &ts, int n, int t)

Sample a random sequence of commuting transvections.

void ts random unique source (transvection sequence t &ts, int n, int t)

Sample a random sequence of transvections with unique source.

void ts_random_unique_destination (transvection_sequence_t &ts, int n, int t)

Sample a random sequence of transvections with unique destination.

void ts_random_disjoint (transvection_sequence_t &ts, int n, int t)

Sample a random sequence of disjoint transvections.

• void ts_random_non_commuting (transvection_sequence_t &ts, int n, int t)

Sample a random sequence of non commuting transvections.

void ts_multiply (bit_vector_t &x, const transvection_sequence_t &ts)

Multiply a vector by a transvection sequence from the left.

void ts_multiply (bit_matrix_t &M, const transvection_sequence_t &ts)

Multiply a matrix by a transvection sequence from the left.

4.11.1 Detailed Description

Maps.

4.11.2 Typedef Documentation

4.11.2.1 transvection_sequence_t

```
using transvection_sequence_t = std::vector<Transvection>
```

Transvection sequence.

The general linear group of a linear space of dimension n over the finite field F_2 is the group of invertible n by n bit matrices.

Any invertible bit matrix can be expressed as a finite product of transvections.

Finite transvection sequences can then represent all invertible bit matrices.

Definition at line 166 of file transvection.hh.

4.11.3 Function Documentation

4.11.3.1 ts_is_valid() [1/2]

```
bool ts_is_valid ( {\tt const\ transvection\_sequence\_t\ \&\ ts\ )}
```

Check validity.

Parameters

ts Transvection sequence

Definition at line 150 of file transvection.cc.

4.11.3.2 ts_is_valid() [2/2]

Check validity.

Parameters

ts	Transvection sequence
n	Dimension

Definition at line 156 of file transvection.cc.

4.11.3.3 ts_multiply() [1/2]

```
void ts_multiply (
          bit_matrix_t & M,
           const transvection_sequence_t & ts )
```

Multiply a matrix by a transvection sequence from the left.

Parameters

ts	Transvection sequence
М	Bit matrix

Precondition

```
ts_is_valid(ts)
ts_is_valid(ts, bm_num_rows(M))
```

Warning

This function modifies the given bit vector.

Definition at line 366 of file transvection.cc.

4.11.3.4 ts_multiply() [2/2]

```
void ts_multiply ( \label{eq:bit_vector_t & x,}  const transvection_sequence_t & ts )
```

Multiply a vector by a transvection sequence from the left.

Parameters

ts	Transvection sequence
Х	Bit vector

Precondition

```
ts_is_valid(ts)
ts_is_valid(ts, x.size())
```

Warning

This function modifies the given bit vector.

Definition at line 356 of file transvection.cc.

4.11.3.5 ts_random()

Sample a random transvection sequence.

Parameters

ts	Transvection sequence
n	Dimension
t	Length of the sequence

Precondition

```
n > 1
t >= 0
```

Definition at line 172 of file transvection.cc.

4.11.3.6 ts_random_commuting()

Sample a random sequence of commuting transvections.

This function ensures that all transvections in the sequence commute.

Parameters

ts	Transvection sequence
n	Dimension
t	Length of the sequence

Precondition

```
n > 1
t >= 0
```

Warning

```
If t > floor(n / 2) then t is set to floor(n / 2).
```

If t = floor(n/2) then the space and time complexity of $ts_random_commuting$ is quadratic in the dimension n.

Definition at line 183 of file transvection.cc.

4.11.3.7 ts_random_disjoint()

Sample a random sequence of disjoint transvections.

Two transvections τ_{ij} and τ_{kl} are said to be disjoint if the pairs {i,j} and {k,l} are disjoint.

If 2t > n then the sequence length is set to the largest t such that 2t <= n.

Parameters

ts	Transvection sequence
n	Dimension
t	Length of the sequence

Precondition

```
n > 1
```

t >= 0

Definition at line 311 of file transvection.cc.

4.11.3.8 ts_random_non_commuting()

Sample a random sequence of non commuting transvections.

This function ensures that two consecutive transvections do not commute.

Parameters

ts	Transvection sequence
n	Dimension
t	Length of the sequence

Precondition

```
n > 1
```

t >= 0

Definition at line 341 of file transvection.cc.

4.11.3.9 ts_random_unique_destination()

Sample a random sequence of transvections with unique destination.

A transvection sequence with unique destination is such that, for each source, there is a unique destination.

Parameters

ts	Transvection sequence
n	Dimension
t	Length of the sequence

Precondition

```
n > 1
```

t >= 0

Definition at line 278 of file transvection.cc.

4.11.3.10 ts_random_unique_source()

Sample a random sequence of transvections with unique source.

A transvection sequence with unique source is such that, for each destination, there is a unique source.

Parameters

ts	Transvection sequence
n	Dimension
t	Length of the sequence

Precondition

n > 1

t >= 0

Definition at line 245 of file transvection.cc.

4.12 hnco::multiobjective Namespace Reference

Multiobjective optimization.

Namespaces

namespace algorithm

Multiobjective Algorithms.

namespace app

Classes for applications.

namespace function

Functions defined on bit vectors.

4.12.1 Detailed Description

Multiobjective optimization.

4.13 hnco::multiobjective::algorithm Namespace Reference

Multiobjective Algorithms.

Classes

· class Algorithm

Abstract multiobjective search algorithm.

· struct FrontDistancePair

Front-distance pair.

· class IterativeAlgorithm

Iterative algorithm.

· class Nsga2

NSGA-II.

• class Nsga2ParetoFrontComputation

Pareto front computation from the NSGA-II paper.

struct Population

Population

· class TournamentSelection

Tournament selection.

Functions

• bool operator < (const FrontDistancePair &a, const FrontDistancePair &b)

Comparison operator for front-distance pairs.

4.13.1 Detailed Description

Multiobjective Algorithms.

4.13.2 Function Documentation

4.13.2.1 operator<()

Comparison operator for front-distance pairs.

Favors individuals with smaller Pareto front then greater crowding distance.

Definition at line 61 of file nsga2.hh.

4.14 hnco::multiobjective::app Namespace Reference

Classes for applications.

Classes

· class AlgorithmFactory

Algorithm factory.

class CommandLineAlgorithmFactory

Command line algorithm factory.

class CommandLineApplication

Command line application.

· class CommandLineFunctionFactory

Command line function factory.

class FunctionFactory

Function factory.

class HncoOptions

Command line options for hnco-mo.

Functions

• std::ostream & **operator**<< (std::ostream & stream, const HncoOptions & options)

Print a header containing the parameter values.

4.14.1 Detailed Description

Classes for applications.

4.15 hnco::multiobjective::function Namespace Reference

Functions defined on bit vectors.

Classes

· class Function

Function

· class MixedIntegerMultivariateFunctionAdapter

Mixed-integer multivariate function adapter.

· class MultivariateFunctionAdapter

Multivariate function adapter.

• class ParsedMultivariateFunction

Parsed multivariate function.

class PythonFunction

Python function.

· class UniversalFunction

Universal function.

· class UniversalFunctionAdapter

Universal function adapter.

Typedefs

```
using value_t = std::vector< double > 
Value type.
```

Functions

• bool dominates (const value_t &a, const value_t &b)

Domination relation.

void value_display (const value_t &a, std::ostream &stream)
 Display a value.

4.15.1 Detailed Description

Functions defined on bit vectors.

4.15.2 Typedef Documentation

4.15.2.1 value_t

```
using value_t = std::vector<double>
```

Value type.

A value type is the type of the output of a Function in the context of multiobjective optimization.

Definition at line 42 of file value.hh.

4.15.3 Function Documentation

4.15.3.1 dominates()

Domination relation.

Parameters

а	First value
b	Second value

Returns

true if a dominates b with respect to minimization

Definition at line 51 of file value.hh.

4.16 hnco::neighborhood Namespace Reference

Neighborhoods for local search.

Classes

· class HammingBall

Hamming ball.

class HammingSphere

Hamming sphere.

· class HammingSphereIterator

Hamming sphere neighborhood iterator.

· class MultiBitFlip

Multi bit flip.

· class Neighborhood

Neighborhood.

· class NeighborhoodIterator

Neighborhood iterator.

· class SingleBitFlip

One bit neighborhood.

class SingleBitFlipIterator

Single bit flip neighborhood iterator.

· class StandardBitMutation

Standard bit mutation.

4.16.1 Detailed Description

Neighborhoods for local search.

There are two unrelated kinds of neighborhoods, those for random local search and those for exhaustive local search.

4.17 hnco::random Namespace Reference

Random numbers.

Classes

struct Generator

Random number generator.

4.17.1 Detailed Description

Random numbers.

4.18 hnco::representation Namespace Reference

Representations.

Classes

• class ComplexRepresentation

Complex representation.

class DyadicFloatRepresentation

Dyadic float representation.

• class DyadicIntegerRepresentation

Dyadic integer representation.

class IntegerCategoricalRepresentation

Integer categorical representation.

• class LinearCategoricalRepresentation

Linear categorical representation.

class PermutationRepresentation

Permutation representation.

Functions

```
    template < class T >
        bool difference_is_safe (T a, T b)

    Check whether the difference is safe.
```

4.18.1 Detailed Description

Representations.

4.18.2 Function Documentation

4.18.2.1 difference is safe()

Check whether the difference is safe.

The template parameter T must be an integral type such as int or long.

The difference b - a is safe if it can be represented by the type of a and b, i.e. there is no overflow.

Parameters

а	Smallest value
b	Greatest value

Precondition

 $\mathsf{a}<\mathsf{b}$

Definition at line 52 of file integer.hh.

Chapter 5

Class Documentation

5.1 AbstractMaxSat Class Reference

Abstract class for MaxSat-like functions.

#include <hnco/functions/collection/max-sat.hh>

Inheritance diagram for AbstractMaxSat:

Public Member Functions

AbstractMaxSat ()

Default constructor.

• int get_bv_size () const override

Get bit vector size.

· void display (std::ostream &stream) const override

Display the expression.

Load and save instance

• void load (std::string path)

Load instance.

• void save (std::string path) const

Save instance.

Protected Member Functions

```
void load_ (std::istream &stream)
```

Load an instance.

• void save_ (std::ostream &stream) const

Save an instance.

Protected Attributes

```
    std::vector< std::vector< int > > _expression
    Expression.
```

• int _num_variables

Number of variables.

5.1.1 Detailed Description

Abstract class for MaxSat-like functions.

Definition at line 36 of file max-sat.hh.

5.1.2 Member Function Documentation

5.1.2.1 load()

Load instance.

Parameters

path | Path of the instance to load

Exceptions

std::runtime_error

Definition at line 87 of file max-sat.hh.

5.1.2.2 load_()

Load an instance.

Parameters

```
stream Input stream
```

Exceptions

```
std::runtime_error
```

Definition at line 61 of file max-sat.cc.

5.1.2.3 save()

Save instance.

Parameters

Exceptions

```
std::runtime_error
```

Definition at line 99 of file max-sat.hh.

5.1.2.4 save_()

Save an instance.

Parameters

```
stream Outputstream
```

Definition at line 153 of file max-sat.cc.

5.1.3 Member Data Documentation

5.1.3.1 _expression

std::vector<std::vector<int> > _expression [protected]

Expression.

An expression is represented by a vector of clauses. A clause is represented by a vector of literals. A literal is represented by a non null integer; if the integer is positive then the literal is a variable; if it is negative then it is the logical negation of a variable.

Definition at line 47 of file max-sat.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/max-sat.hh
- lib/hnco/functions/collection/max-sat.cc

5.2 AdditiveGaussianNoise Class Reference

Additive Gaussian Noise.

#include <hnco/functions/modifiers/modifier.hh>

Inheritance diagram for AdditiveGaussianNoise:

Public Member Functions

• AdditiveGaussianNoise (Function *function, double stddev)

Constructor

• double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

Information about the function

int get_bv_size () const override
 Get bit vector size.

Private Attributes

 std::normal_distribution < double > _dist Normal distribution.

Additional Inherited Members

5.2.1 Detailed Description

Additive Gaussian Noise.

Definition at line 170 of file modifier.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/modifiers/modifier.hh
- lib/hnco/functions/modifiers/modifier.cc

5.3 AffineMap Class Reference

Affine map.

#include <hnco/maps/map.hh>

Inheritance diagram for AffineMap:

Public Member Functions

void random (int rows, int cols, bool surjective)

Random instance.

void map (const bit_vector_t &input, bit_vector_t &output) override

Мар

• int get_input_size () const override

Get input size.

• int get_output_size () const override

Get output size.

• bool is_surjective () const override

Check for surjective map.

• void display (std::ostream &stream) const override

Display.

Load and save map

void load (std::string path)

Load map.

· void save (std::string path) const

Save map.

Private Member Functions

template < class Archive >

void save (Archive &ar, const unsigned int version) const

Save.

 $\bullet \quad {\sf template}{<} {\sf class \ Archive} >$

void load (Archive &ar, const unsigned int version)

Load.

Private Attributes

• bit_matrix_t _bm

Bit matrix.

bit_vector_t _bv

Translation vector

5.3.1 Detailed Description

Affine map.

An affine map f from F_2^m to F_2^n is defined by f(x)=Ax+b, where A is an n x m bit matrix and b is an n-dimensional bit vector.

Definition at line 331 of file map.hh.

5.3.2 Member Function Documentation

5.3.2.1 is_surjective()

```
bool is_surjective ( ) const [override], [virtual]
```

Check for surjective map.

Returns

```
true if rank(_bm) == bm_num_rows(_bm)
```

Reimplemented from Map.

Definition at line 156 of file map.cc.

5.3.2.2 load()

Load map.

Parameters

```
path Path of the file
```

Exceptions

```
std::runtime_error
```

Definition at line 405 of file map.hh.

5.3.2.3 random()

Random instance.

Parameters

rows	Number of rows
cols	Number of columns
surjective	Flag to ensure a surjective map

Exceptions

```
std::runtime_error
```

Definition at line 119 of file map.cc.

5.3.2.4 save()

Save map.

Parameters

```
path Path of the file
```

Exceptions

```
std::runtime_error
```

Definition at line 412 of file map.hh.

The documentation for this class was generated from the following files:

- lib/hnco/maps/map.hh
- lib/hnco/maps/map.cc

5.4 Algorithm Class Reference

Abstract search algorithm.

```
#include <hnco/algorithms/algorithm.hh>
```

Inheritance diagram for Algorithm:

Public Member Functions

• Algorithm (int n)

Constructor.

virtual ∼Algorithm ()

Destructor.

void set_log_context (logging::LogContext *log_context)

Set the log context.

Optimization

- virtual void maximize (const std::vector< function::Function * > &functions)=0
 Maximize.
- virtual void finalize ()

Finalize.

• const solution_t & get_solution ()

Get the solution.

Protected Member Functions

- void set_functions (const std::vector< function::Function * > &functions)
 Set functions.
- int get_bv_size ()

Get bit vector size.

Managing solution

• void random_solution ()

Random solution.

• void **set_solution** (const bit_vector_t &bv, double value)

Set solution.

void set_solution (const bit_vector_t &bv)

Set solution.

void update_solution (const bit_vector_t &bv, double value)

Update solution (strict)

void update_solution (const solution_t &s)

Update solution (strict)

void update_solution (const bit_vector_t &bv)

Update solution (strict).

Protected Attributes

```
• std::vector< function::Function *> functions
```

Functions

function::Function * _function

Function.

solution t_solution

Solution.

Parameters

```
    logging::LogContext * _log_context = nullptr
Log context.
```

5.4.1 Detailed Description

Abstract search algorithm.

All algorithms maximize some given function, sometimes called a fitness function or an objective function.

Definition at line 46 of file algorithm.hh.

5.4.2 Member Function Documentation

5.4.2.1 finalize()

```
virtual void finalize ( ) [inline], [virtual]
```

Finalize.

Does nothing.

It is usually overridden by algorithms which do not keep $_$ solution up-to-date. In case $_$ function throws a Last \hookrightarrow Evaluation exception, the algorithm might leave $_$ solution in an undefined state. This can be fixed in this member function.

Reimplemented in Hboa, Ltga, ParameterLessPopulationPyramid, OnePlusOneEa, SelfAdjustingOnePlusOneEa, and RandomLocalSearch.

Definition at line 143 of file algorithm.hh.

5.4.2.2 set_solution()

Set solution.

Warning

Evaluates the function once.

Definition at line 45 of file algorithm.cc.

5.4.2.3 update_solution()

Update solution (strict).

Warning

Evaluates the function once.

Definition at line 69 of file algorithm.cc.

5.4.3 Member Data Documentation

5.4.3.1 _functions

```
std::vector<function::Function *> _functions [protected]
```

Functions.

Each thread has its own function.

Definition at line 54 of file algorithm.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/algorithm.hh
- lib/hnco/algorithms/algorithm.cc

5.5 Algorithm Class Reference

Abstract multiobjective search algorithm.

#include <hnco/multiobjective/algorithms/algorithm.hh>

Inheritance diagram for Algorithm:

Public Types

• using **Function** = hnco::multiobjective::function::Function *Function type*.

Public Member Functions

• Algorithm (int n, int num_objectives)

Constructor.

virtual ∼Algorithm ()

Destructor.

• void **set_log_context** (logging::LogContext *log_context)

Set the log context.

Optimization

- virtual void minimize (const std::vector< Function * > &functions)=0
 Minimize.
- virtual const Population & get_solutions ()=0
 Get solutions.

Protected Member Functions

void set_functions (const std::vector < Function * > &functions)
 Set functions.

Protected Attributes

```
    std::vector < Function * > _functions
        Functions.
    Function * _function
        Function.
```

Parameters

```
    logging::LogContext * _log_context = nullptr
Log context.
```

5.5.1 Detailed Description

Abstract multiobjective search algorithm.

All algorithms minimize some given function.

Definition at line 43 of file algorithm.hh.

5.5.2 Constructor & Destructor Documentation

5.5.2.1 Algorithm()

```
Algorithm (
                int n,
                int num_objectives ) [inline]
```

Constructor.

Parameters

п	Size of bit vectors
num_objectives	Number of objectives

Definition at line 85 of file algorithm.hh.

5.5.3 Member Data Documentation

5.5.3.1 _functions

```
std::vector<Function *> _functions [protected]
```

Functions.

Each thread has its own function.

Definition at line 56 of file algorithm.hh.

The documentation for this class was generated from the following file:

• lib/hnco/multiobjective/algorithms/algorithm.hh

5.6 AlgorithmFactory Class Reference

Algorithm factory.

```
#include <hnco/app/algorithm-factory.hh>
```

Inheritance diagram for AlgorithmFactory:

Public Member Functions

virtual hnco::algorithm::Algorithm * make (int bv_size)=0
 Make an algorithm.

5.6.1 Detailed Description

Algorithm factory.

Definition at line 32 of file algorithm-factory.hh.

5.6.2 Member Function Documentation

5.6.2.1 make()

```
virtual hnco::algorithm::Algorithm * make ( int bv\_size ) [pure virtual]
```

Make an algorithm.

Parameters

Implemented in CommandLineAlgorithmFactory.

The documentation for this class was generated from the following file:

· lib/hnco/app/algorithm-factory.hh

5.7 AlgorithmFactory Class Reference

Algorithm factory.

#include <hnco/multiobjective/app/algorithm-factory.hh>

Inheritance diagram for AlgorithmFactory:

Public Member Functions

virtual hnco::multiobjective::algorithm::Algorithm * make (int bv_size, int num_objectives)=0
 Make an algorithm.

5.7.1 Detailed Description

Algorithm factory.

Definition at line 35 of file algorithm-factory.hh.

5.7.2 Member Function Documentation

5.7.2.1 make()

```
virtual hnco::multiobjective::algorithm::Algorithm * make ( int \ bv\_size, \\ int \ num\_objectives \ ) \ \ [pure virtual]
```

Make an algorithm.

Parameters

bv_size	Bit vector size
---------	-----------------

Implemented in CommandLineAlgorithmFactory.

The documentation for this class was generated from the following file:

• lib/hnco/multiobjective/app/algorithm-factory.hh

5.8 BiasedCrossover Class Reference

Biased crossover.

#include <hnco/algorithms/ea/crossover.hh>

Inheritance diagram for BiasedCrossover:

Public Member Functions

• BiasedCrossover ()

Constructor.

- void recombine (const bit_vector_t &parent1, const bit_vector_t &parent2, bit_vector_t &offspring)

 **Recombine*.
- void set_bias (double b)
 Set bias.

Private Attributes

 std::bernoulli_distribution _bernoulli_dist Bernoulli distribution.

5.8.1 Detailed Description

Biased crossover.

Definition at line 75 of file crossover.hh.

5.8.2 Member Function Documentation

5.8.2.1 recombine()

Recombine.

Each offspring's bit is copied from second parent with a fixed probability (the crossover bias), from first parent otherwise.

Parameters

parent1	First parent
parent2	Second parent
offspring	Offspring

Implements Crossover.

Definition at line 45 of file crossover.cc.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/ea/crossover.hh
- · lib/hnco/algorithms/ea/crossover.cc

5.9 BmPbil < GibbsSampler > Class Template Reference

Boltzmann machine PBIL.

```
#include <hnco/algorithms/walsh-moment/bm-pbil.hh>
```

Inheritance diagram for BmPbil< GibbsSampler >:

Public Types

- enum { SAMPLING_ASYNCHRONOUS, SAMPLING_ASYNCHRONOUS_FULL_SCAN, SAMPLING_SYNCHRONOUS }
- enum { RESET_NO_RESET, RESET_ITERATION, RESET_BIT_VECTOR }

Public Member Functions

• BmPbil (int n, int population_size)

Constructor.

Setters for parameters

void set_selection_size (int x)

Set the selection size.

void set_learning_rate (double x)

Set the learning rate.

void set_num_gs_steps (int x)

Set the number of gibbs sampler steps.

void set_num_gs_cycles (int x)

Set the number of gibbs sampler cycles.

• void set_negative_positive_selection (bool x)

Set negative and positive selection.

void set_sampling (int x)

Set the sampling mode.

void set_mc_reset_strategy (int x)

Set the MC reset strategy.

Setters for logging

• void set_log_norm_infinite (bool x)

Log infinite norm of the model parameters.

void set_log_norm_1 (bool x)

Log 1-norm of the model parameters.

Protected Member Functions

void set_something_to_log ()

Set flag for something to log.

void sample (bit_vector_t &x)

Sample a bit vector.

• void sample_asynchronous ()

Asynchronous sampling.

void sample_asynchronous_full_scan ()

Asynchronous sampling with full scan.

void sample_synchronous ()

Synchronous sampling.

Loop

· void init () override

Initialize

· void iterate () override

Single iteration.

void log () override

Log.

Protected Attributes

• Population _population

Population.

· GibbsSampler::Moment _model_parameters

Model parameters.

• GibbsSampler _gibbs_sampler

Model.

GibbsSampler::Moment _walsh_moment_all

Parameters averaged over all individuals.

• GibbsSampler::Moment _walsh_moment_best

Parameters averaged over selected individuals.

• GibbsSampler::Moment _walsh_moment_worst

Parameters averaged over negatively selected individuals.

std::uniform_int_distribution< int > _choose_bit

Uniform distribution on bit_vector_t components.

• permutation_t _permutation

Permutation.

Parameters

• int _selection_size = 1

Selection size (number of selected individuals in the population)

• double _learning_rate = 1e-3

Learning rate.

• int _num_gs_steps = 100

Number of gibbs sampler steps.

• int _num_gs_cycles = 1

Number of gibbs sampler cycles.

bool _negative_positive_selection = false

Negative and positive selection.

• int _sampling = SAMPLING_ASYNCHRONOUS Sampling mode.

 int _mc_reset_strategy = RESET_NO_RESET MC reset strategy.

Logging

• bool _log_norm_infinite = false

Log infinite norm of the model parameters.

• bool _log_norm_1 = false

Log 1-norm of the model parameters.

5.9.1 Detailed Description

template < class GibbsSampler > class hnco::algorithm::walsh_moment::BmPbil < GibbsSampler >

Boltzmann machine PBIL.

The BM model is slightly different from the one given in the reference below. More precisely, 0/1 variables are mapped to -1/+1 variables as in Walsh analysis.

Reference:

Arnaud Berny. 2002. Boltzmann machine for population-based incremental learning. In ECAI 2002. IOS Press, Lvon.

Definition at line 50 of file bm-pbil.hh.

5.9.2 Member Enumeration Documentation

5.9.2.1 anonymous enum

anonymous enum

Enumerator

SAMPLING_ASYNCHRONOUS	Asynchronous sampling.	
	A single component of the internal state is randomly selected then updated by Gibbs sampling. This step i repeated _num_gs_steps times.	
SAMPLING_ASYNCHRONOUS_FULL_SCAN	Asynchronous sampling with full scan.	
	To sample a new bit vector, a random permutation is and all components of the internal state are updated Gibbs sampling in the order defined by the permutati	by by
SAMPLING_SYNCHRONOUS	Synchronous sampling.	
	The full internal state is updated in one step from probability vector made of the very magenard by Powygen:	

used in Gibbs sampling.

Definition at line 54 of file bm-pbil.hh.

5.9.2.2 anonymous enum

anonymous enum

Enumerator

RESET_NO_RESET	No reset.
RESET_ITERATION	Reset MC at the beginning of each iteration.
RESET_BIT_VECTOR	Reset MC before sampling each bit vector.

Definition at line 82 of file bm-pbil.hh.

5.9.3 Member Function Documentation

5.9.3.1 set_selection_size()

```
void set_selection_size (
          int x ) [inline]
```

Set the selection size.

The selection size is the number of selected individuals in the population.

Definition at line 309 of file bm-pbil.hh.

The documentation for this class was generated from the following file:

• lib/hnco/algorithms/walsh-moment/bm-pbil.hh

5.10 Cache Class Reference

Cache.

#include <hnco/functions/controllers/controller.hh>

Inheritance diagram for Cache:

Public Member Functions

• Cache (Function *function)

Constructor.

• bool provides_incremental_evaluation () const

Check whether the function provides incremental evaluation.

• double get_lookup_ratio ()

Get lookup ratio.

Evaluation

• double **evaluate** (const bit_vector_t &) Evaluate a bit vector.

Private Attributes

std::unordered_map< std::vector< bool >, double > _cache
 Cache.

• $std::vector < bool > _key$

Key.

• int _num_evaluations

Evaluation counter.

• int _num_lookups

Lookup counter.

5.10 Cache Class Reference 87

Additional Inherited Members

5.10.1 Detailed Description

Cache.

This is a naive approach, in particular with respect to time complexity. Moreover, there is no control on the size of the database. There is no default hash function for std::vector<char> hence the need to first copy a bit_vector_t into a std::vector<bool>, for which such a function exists, before inserting it or checking its existence in the map.

Definition at line 356 of file controller.hh.

5.10.2 Constructor & Destructor Documentation

5.10.2.1 Cache()

```
Cache (
     Function * function ) [inline]
```

Constructor.

Parameters

Definition at line 376 of file controller.hh.

5.10.3 Member Function Documentation

5.10.3.1 provides_incremental_evaluation()

```
\verb|bool provides_incremental_evaluation ( ) const [inline], [virtual]|\\
```

Check whether the function provides incremental evaluation.

Returns

false

Reimplemented from Controller.

Definition at line 386 of file controller.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/controllers/controller.hh
- lib/hnco/functions/controllers/controller.cc

5.11 CallCounter Class Reference

Call counter.

#include <hnco/functions/controllers/controller.hh>

Inheritance diagram for CallCounter:

Public Member Functions

• CallCounter (Function *function)

Constructor.

int get_num_calls ()

Get the number of calls.

Evaluation

double evaluate (const bit_vector_t &)

Evaluate a bit vector.

double evaluate_incrementally (const bit_vector_t &x, double value, const hnco::sparse_bit_vector_t &flipped_bits)

Incrementally evaluate a bit vector.

void update (const bit_vector_t &x, double value)

Update after a safe evaluation.

Protected Attributes

· int _num_calls

Number of calls.

5.11.1 Detailed Description

Call counter.

Definition at line 158 of file controller.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/controllers/controller.hh
- lib/hnco/functions/controllers/controller.cc

5.12 CommandLineAlgorithmFactory Class Reference

Command line algorithm factory.

#include <hnco/app/algorithm-factory.hh>

Inheritance diagram for CommandLineAlgorithmFactory:

Public Member Functions

• CommandLineAlgorithmFactory (const HncoOptions &options)

Constructor

hnco::algorithm::Algorithm * make (int bv_size)

Make an algorithm.

Private Attributes

const HncoOptions & _options
 HNCO options.

5.12.1 Detailed Description

Command line algorithm factory.

Definition at line 42 of file algorithm-factory.hh.

5.12.2 Member Function Documentation

5.12.2.1 make()

```
Algorithm * make ( int bv_size ) [virtual]
```

Make an algorithm.

Parameters

bv_size	Bit vector size
---------	-----------------

Implements AlgorithmFactory.

Definition at line 92 of file algorithm-factory.cc.

The documentation for this class was generated from the following files:

- lib/hnco/app/algorithm-factory.hh
- lib/hnco/app/algorithm-factory.cc

5.13 CommandLineAlgorithmFactory Class Reference

Command line algorithm factory.

```
#include <hnco/multiobjective/app/algorithm-factory.hh>
```

Inheritance diagram for CommandLineAlgorithmFactory:

Public Member Functions

• CommandLineAlgorithmFactory (const HncoOptions &options)

Constructor

• hnco::multiobjective::algorithm::Algorithm * make (int bv_size, int num_objectives)

Make an algorithm.

Private Attributes

const HncoOptions & _options
 HNCO options.

5.13.1 Detailed Description

Command line algorithm factory.

Definition at line 46 of file algorithm-factory.hh.

5.13.2 Member Function Documentation

5.13.2.1 make()

Make an algorithm.

Parameters

```
bv_size Bit vector size
```

Implements AlgorithmFactory.

Definition at line 33 of file algorithm-factory.cc.

The documentation for this class was generated from the following files:

- · lib/hnco/multiobjective/app/algorithm-factory.hh
- lib/hnco/multiobjective/app/algorithm-factory.cc

5.14 CommandLineApplication Class Reference

Command line application.

```
#include <hnco/app/application.hh>
```

Public Member Functions

CommandLineApplication (const HncoOptions & options, FunctionFactory & function_factory, AlgorithmFactory & algorithm_factory)

Constructor.

· void run ()

Run the application.

Private Member Functions

· void init ()

Initialization.

void make_functions ()

Make all functions.

• void load_solution ()

Load a solution.

void print_information ()

Print information about the function.

void make_algorithm ()

Make algorithm.

· void maximize ()

Maximize the function.

void print_results (double total_time, bool target_reached)

Print results.

void manage_solution (const bit_vector_t &bv)

Manage solution.

Private Attributes

• const HncoOptions & _options

HNCO options.

DecoratedFunctionFactory _decorated_function_factory

Decorated functin factory.

AlgorithmFactory & _algorithm_factory

Algorithm factory.

std::vector< function::Function * > _fns

All functions.

• function::Function * _fn = nullptr

Main function.

• hnco::algorithm::Algorithm * _algorithm = nullptr

Algorithm.

• logging::ProgressTrackerContext * _log_context = nullptr

Log context.

5.14.1 Detailed Description

Command line application.

Definition at line 34 of file application.hh.

5.14.2 Constructor & Destructor Documentation

5.14.2.1 CommandLineApplication()

Constructor.

Parameters

options	HNCO options
function_factory	Function factory
algorithm_factory	Algorithm factory

Definition at line 89 of file application.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/app/application.hh
- lib/hnco/app/application.cc

5.15 CommandLineApplication Class Reference

Command line application.

```
#include <hnco/multiobjective/app/application.hh>
```

Public Member Functions

CommandLineApplication (const HncoOptions & options, FunctionFactory & function_factory, AlgorithmFactory & algorithm_factory)

Constructor.

• void run ()

Run the application.

Private Member Functions

```
· void init ()
```

Initialization.

void make_functions ()

Make all functions.

void print_information ()

Print information about the function.

• void make_algorithm ()

Make algorithm.

• void minimize ()

Minimize objective functions.

• void manage_solutions ()

Manage solutions.

Private Attributes

• const HncoOptions & _options

HNCO options.

FunctionFactory & _function_factory

Functin factory.

AlgorithmFactory & _algorithm_factory

Algorithm factory.

• $std::vector < hnco::multiobjective::function::Function * > _fns$

All functions.

hnco::multiobjective::function::Function * _fn = nullptr

Main function.

hnco::multiobjective::algorithm::Algorithm * _algorithm = nullptr

Algorithm

 logging::ProgressTrackerContext * _log_context = nullptr Log context.

5.15.1 Detailed Description

Command line application.

Definition at line 37 of file application.hh.

5.15.2 Constructor & Destructor Documentation

5.15.2.1 CommandLineApplication()

Constructor.

Parameters

options	HNCO options
function_factory	Function factory
algorithm_factory	Algorithm factory

Definition at line 86 of file application.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/multiobjective/app/application.hh
- lib/hnco/multiobjective/app/application.cc

5.16 CommandLineFunctionFactory Class Reference

Command line function factory.

#include <hnco/app/function-factory.hh>

Inheritance diagram for CommandLineFunctionFactory:

Public Member Functions

CommandLineFunctionFactory (const HncoOptions & options)

Constructor.

• hnco::function::Function * make ()

Make a function.

Private Attributes

const HncoOptions & _options
 HNCO options.

5.16.1 Detailed Description

Command line function factory.

Definition at line 40 of file function-factory.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/app/function-factory.hh
- lib/hnco/app/function-factory.cc

5.17 CommandLineFunctionFactory Class Reference

Command line function factory.

#include <hnco/multiobjective/app/function-factory.hh>

Inheritance diagram for CommandLineFunctionFactory:

Public Member Functions

• CommandLineFunctionFactory (const HncoOptions &options)

Constructor

• hnco::multiobjective::function::Function * make ()

Make a function.

Private Attributes

const HncoOptions & _options
 HNCO options.

5.17.1 Detailed Description

Command line function factory.

Definition at line 44 of file function-factory.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/multiobjective/app/function-factory.hh
- · lib/hnco/multiobjective/app/function-factory.cc

5.18 CommaSelection Class Reference

Comma selection.

```
#include <hnco/algorithms/ea/selection.hh>
```

Public Member Functions

· CommaSelection (Population &parents, Population &offsprings)

Constructor.

· void select ()

Apply selection.

Private Attributes

Population & _parents

Parent population.

Population & _offsprings

Offspring population.

5.18.1 Detailed Description

Comma selection.

Used as selection for replacement in evolutionary algorithms.

Definition at line 38 of file selection.hh.

5.18.2 Constructor & Destructor Documentation

5.18.2.1 CommaSelection()

Constructor.

Parameters

parents	Parent population
offsprings	Offspring population

Definition at line 53 of file selection.hh.

The documentation for this class was generated from the following file:

• lib/hnco/algorithms/ea/selection.hh

5.19 CompactGa Class Reference

Compact genetic algorithm.

#include <hnco/algorithms/pv/compact-ga.hh>

Inheritance diagram for CompactGa:

Public Member Functions

· CompactGa (int n)

Constructor.

Setters

• void **set_learning_rate** (double x)

Set the learning rate.

Protected Member Functions

Loop

- void **init** () override Initialize.
- void iterate () override Single iteration.

Protected Attributes

std::vector< bit_vector_t > _candidates
 Candidates.

Parameters

• double _learning_rate = 1e-3 Learning rate.

5.19.1 Detailed Description

Compact genetic algorithm.

Reference:

Georges R. Harik, Fernando G. Lobo, and David E. Goldberg. 1999. The Compact Genetic Algorithm. IEEE Trans. on Evolutionary Computation 3, 4 (November 1999), 287–297.

Definition at line 41 of file compact-ga.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/pv/compact-ga.hh
- lib/hnco/algorithms/pv/compact-ga.cc

5.20 CompleteSearch Class Reference

Complete search.

#include <hnco/algorithms/complete-search.hh>

Inheritance diagram for CompleteSearch:

Public Member Functions

• CompleteSearch (int n)

Constructor.

void maximize (const std::vector< function::Function * > &functions)

Maximize

Additional Inherited Members

5.20.1 Detailed Description

Complete search.

Definition at line 34 of file complete-search.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/complete-search.hh
- lib/hnco/algorithms/complete-search.cc

5.21 ComplexRepresentation < ScalarRep > Class Template Reference

Complex representation.

```
#include <hnco/representations/complex.hh>
```

Inheritance diagram for ComplexRepresentation < ScalarRep >:

Public Types

```
• using scalar_rep = ScalarRep
```

Scalar representation.

using scalar_type = typename scalar_rep::domain_type
 Scalar type.

using domain_type = std::complex < scalar_type >

Domain type.

Public Member Functions

• ComplexRepresentation (scalar_rep real_part, scalar_rep imaginary_part)

Constructor.

ComplexRepresentation (scalar_rep rep)

Constructor.

· int size () const

Size of the representation.

domain_type unpack (const bit_vector_t &bv, int start)

Unpack bit vector into a value.

· void display (std::ostream &stream) const

Display.

Private Attributes

· scalar_rep _real_part

Representation of the real part.

scalar_rep _imaginary_part

Representation of the imaginary part.

5.21.1 Detailed Description

```
template < class ScalarRep > class hnco::representation::ComplexRepresentation < ScalarRep >
```

Complex representation.

Definition at line 39 of file complex.hh.

5.21.2 Constructor & Destructor Documentation

5.21.2.1 ComplexRepresentation() [1/2]

Constructor.

Parameters

real_part	Representation of real part
imaginary_part	Representation of imaginary part

Definition at line 68 of file complex.hh.

5.21.2.2 ComplexRepresentation() [2/2]

Constructor.

Parameters

rep	Representation of both real and imaginary parts
-----	---

Definition at line 78 of file complex.hh.

The documentation for this class was generated from the following file:

• lib/hnco/representations/complex.hh

${\bf 5.22 \quad ComplexToDouble} < {\bf T} > {\bf Struct\ Template\ Reference}$

Convert a complex to a double.

```
#include <hnco/functions/converter.hh>
```

Public Types

using codomain_type = std::complex< T >
 Codomain type.

Public Member Functions

double operator() (std::complex < T > z)
 Convert to double.

5.22.1 Detailed Description

$$\label{template} \begin{split} & \text{template} \! < \! \text{class T} \! > \\ & \text{struct hnco::} \\ & \text{function::} \\ & \text{ComplexToDouble} \! < \\ & \text{T} > \end{split}$$

Convert a complex to a double.

Definition at line 44 of file converter.hh.

The documentation for this struct was generated from the following file:

· lib/hnco/functions/converter.hh

5.23 Controller Class Reference

Function controller.

#include <hnco/functions/controllers/controller.hh>

Inheritance diagram for Controller:

Public Member Functions

• Controller (Function *function)

Constructor.

Information about the function

• int get_bv_size () const

Get bit vector size.

• double get_maximum () const

Get the global maximum.

• bool has_known_maximum () const

Check for a known maximum.

· bool provides_incremental_evaluation () const

Check whether the function provides incremental evaluation.

Evaluation

double evaluate_safely (const bit_vector_t &x)
 Safely evaluate a bit vector.

Additional Inherited Members

5.23.1 Detailed Description

Function controller.

Definition at line 42 of file controller.hh.

5.23.2 Member Function Documentation

5.23.2.1 provides_incremental_evaluation()

```
bool provides_incremental_evaluation ( ) const [inline], [virtual]
```

Check whether the function provides incremental evaluation.

Returns

true if the decorated function does

Reimplemented from Function.

Reimplemented in Cache.

Definition at line 68 of file controller.hh.

The documentation for this class was generated from the following file:

• lib/hnco/functions/controllers/controller.hh

5.24 Crossover Class Reference

Crossover

#include <hnco/algorithms/ea/crossover.hh>

Inheritance diagram for Crossover:

Public Member Functions

- virtual \sim Crossover ()
 - Destructor.
- virtual void recombine (const bit_vector_t &parent1, const bit_vector_t &parent2, bit_vector_t &offspring)=0
 Recombine.

5.24.1 Detailed Description

Crossover

Definition at line 35 of file crossover.hh.

5.24.2 Member Function Documentation

5.24.2.1 recombine()

Recombine.

The offspring is the crossover of two parents.

Parameters

parent1	First parent
parent2	Second parent
offspring	Offspring

Implemented in UniformCrossover, and BiasedCrossover.

The documentation for this class was generated from the following file:

· lib/hnco/algorithms/ea/crossover.hh

5.25 DeceptiveJump Class Reference

Deceptive jump.

#include <hnco/functions/collection/jump.hh>

Inheritance diagram for DeceptiveJump:

Public Member Functions

• DeceptiveJump (int bv_size, int gap)

Constructor.

• int get_bv_size () const override

Get bit vector size.

· bool has_known_maximum () const override

Check for a known maximum.

• double get_maximum () const override

Get the global maximum.

double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

Private Attributes

```
    int _bv_size
    Bit vector size.
```

• int **_gap** *Gap*.

5.25.1 Detailed Description

Deceptive jump.

This is a jump function with a deceptive gap as defined in "Analyzing evolutionary algorithms" by Thomas Jansen, where it is called Jump_k. Algorithms in the neighborhood of the maximizer (which is the all one bit vector) are taken away from it.

Reference:

Thomas Jansen, Analyzing Evolutionary Algorithms. Springer, 2013.

Definition at line 85 of file jump.hh.

5.25.2 Member Function Documentation

5.25.2.1 get_maximum()

```
double get_maximum ( ) const [inline], [override], [virtual]
```

Get the global maximum.

Returns

```
_bv_size + _gap
```

Reimplemented from Function.

Definition at line 108 of file jump.hh.

5.25.2.2 has_known_maximum()

```
bool has_known_maximum ( ) const [inline], [override], [virtual]
```

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 104 of file jump.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/collection/jump.hh
- lib/hnco/functions/collection/jump.cc

5.26 DecoratedFunctionFactory Class Reference

Decorated function factory.

#include <hnco/app/decorated-function-factory.hh>

Public Member Functions

• DecoratedFunctionFactory (const HncoOptions & options, FunctionFactory & function_factory)

Constructor.

hnco::function::Function * make_function_modifier ()

Make a function modifier.

• hnco::function::Function * make_function_controller (hnco::function::Function *function)

Make a function controller.

hnco::map::Map * get_map ()

Get map

hnco::function::controller::ProgressTracker * get_tracker ()

Get tracker controller.

hnco::function::controller::Cache * get cache ()

Get Cache controller.

hnco::function::controller::StopOnTarget * get_stop_on_target ()

Get StopOnTarget controller.

Private Member Functions

• hnco::function::Function * make_function ()

Make a function.

Private Attributes

const HncoOptions & _options

HNCO options.

FunctionFactory & _function_factory

Factory function.

hnco::map::Map * _map = nullptr

Man

• hnco::function::controller::ProgressTracker * _tracker = nullptr

Tracker controller.

• hnco::function::controller::Cache * _cache = nullptr

Cache controller.

hnco::function::controller::StopOnTarget * _stop_on_target = nullptr

StopOnTarget controller.

5.26.1 Detailed Description

Decorated function factory.

Definition at line 35 of file decorated-function-factory.hh.

5.26.2 Member Function Documentation

5.26.2.1 make_function_controller()

Make a function controller.

Parameters

function	Decorated function
----------	--------------------

Definition at line 254 of file decorated-function-factory.cc.

The documentation for this class was generated from the following files:

- · lib/hnco/app/decorated-function-factory.hh
- lib/hnco/app/decorated-function-factory.cc

5.27 Decorator Class Reference

Function decorator

#include <hnco/functions/decorator.hh>

Inheritance diagram for Decorator:

Public Member Functions

• Decorator (Function *function)

Constructor.

Display

- void display (std::ostream &stream) const override

 Display
- void describe (const bit_vector_t &x, std::ostream &stream) override
 Describe a bit vector.

Protected Attributes

• Function * _function

Decorated function.

5.27.1 Detailed Description

Function decorator

Definition at line 34 of file decorator.hh.

The documentation for this class was generated from the following file:

· lib/hnco/functions/decorator.hh

5.28 DyadicFloatRepresentation < T > Class Template Reference

Dyadic float representation.

#include <hnco/representations/float.hh>

Inheritance diagram for DyadicFloatRepresentation < T >:

Public Types

using domain_type = T
 Domain type.

Public Member Functions

• DyadicFloatRepresentation (T lower_bound, T upper_bound, int size)

Constructor.

• DyadicFloatRepresentation (T lower_bound, T upper_bound, T precision)

Constructor.

· int size () const

Size of the representation.

domain_type unpack (const bit_vector_t &bv, int start)

Unpack bit vector into a value.

· void display (std::ostream &stream) const

Display.

Private Member Functions

T affine_transformation (T x)

Affine transformation.

• void compute_lengths (int size)

Compute lengths.

Private Attributes

• $std::vector < T > _lengths$

Lengths of dyadic intervals.

T_lower_bound

Lower bound of the interval.

T _length

Length of the interval.

5.28.1 Detailed Description

 $template\!<\!class~T\!>$

class hnco::representation::DyadicFloatRepresentation < T >

Dyadic float representation.

Definition at line 44 of file float.hh.

5.28.2 Constructor & Destructor Documentation

5.28.2.1 DyadicFloatRepresentation() [1/2]

Constructor.

The represented interval is [lower_bound, upper_bound).

Parameters

lower_bound	Lower bound of the interval
upper_bound	Upper bound of the interval
size	Size in bits per float number

Definition at line 89 of file float.hh.

5.28.2.2 DyadicFloatRepresentation() [2/2]

Constructor.

The represented interval is [lower_bound, upper_bound).

Parameters

lower_bound	Lower bound of the interval
upper_bound	Upper bound of the interval
precision	Precision

Definition at line 108 of file float.hh.

5.28.3 Member Function Documentation

5.28.3.1 compute_lengths()

```
void compute_lengths ( \label{eq:compute_lengths} \text{int } size \text{ ) } \text{ [inline], [private]}
```

Compute lengths.

Parameters

size	Size in bits per float number
	'

Definition at line 63 of file float.hh.

The documentation for this class was generated from the following file:

lib/hnco/representations/float.hh

5.29 DyadicIntegerRepresentation < T > Class Template Reference

Dyadic integer representation.

#include <hnco/representations/integer.hh>

Inheritance diagram for DyadicIntegerRepresentation < T >:

Classes

struct Precision

Precision

Public Types

• using domain_type = T

Domain type.

Public Member Functions

• DyadicIntegerRepresentation (T lower_bound, T upper_bound, int size)

Constructor.

• DyadicIntegerRepresentation (T lower_bound, T upper_bound)

Constructor.

• DyadicIntegerRepresentation (T lower_bound, T upper_bound, Precision precision)

Constructor.

• int size () const

Size of the representation.

domain_type unpack (const bit_vector_t &bv, int start)

Unpack bit vector into a value.

· void display (std::ostream &stream) const

Display.

Private Member Functions

void set_exact_size (T lower_bound, T upper_bound)
 Set the exact size for a given interval.

Private Attributes

• int _size

Size in bits.

• int _exact_size

Exact size required for a given interval.

T_lower_bound

Lower bound of the interval.

T_upper_bound

Upper bound of the interval.

5.29.1 Detailed Description

```
\label{template} \mbox{template} < \mbox{class T} > \\ \mbox{class hnco::representation::DyadicIntegerRepresentation} < \mbox{T} > \\ \mbox{template} < \mbox{T} > \\ \
```

Dyadic integer representation.

Definition at line 74 of file integer.hh.

5.29.2 Constructor & Destructor Documentation

5.29.2.1 DyadicIntegerRepresentation() [1/3]

Constructor.

The represented interval is [lower_bound..upper_bound].

Parameters

lower_bound	Lower bound of the interval
upper_bound	Upper bound of the interval
size	Size in bits per integer

Definition at line 122 of file integer.hh.

5.29.2.2 DyadicIntegerRepresentation() [2/3]

Constructor.

The represented interval is [lower_bound..upper_bound].

Parameters

	Lower bound of the interval
upper_bound	Upper bound of the interval

Definition at line 143 of file integer.hh.

5.29.2.3 DyadicIntegerRepresentation() [3/3]

Constructor.

The represented interval is [lower_bound..upper_bound].

Parameters

lower_bound	Lower bound of the interval
upper_bound	Upper bound of the interval
precision	Precision

Definition at line 160 of file integer.hh.

The documentation for this class was generated from the following file:

· lib/hnco/representations/integer.hh

5.30 EqualProducts Class Reference

Equal products.

#include <hnco/functions/collection/equal-products.hh>

Inheritance diagram for EqualProducts:

Public Member Functions

• EqualProducts ()

Constructor.

• int get_bv_size () const override

Get bit vector size.

double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

Instance generators

template < class Generator > void generate (int n, Generator generator)

Instance generator.

• void random (int n)

Random instance.

Load and save instance

• void load (std::string path)

Load instance.

· void save (std::string path) const

Save instance.

Private Member Functions

template < class Archive > void serialize (Archive & ar, const unsigned int version)
 Serialize.

Private Attributes

std::vector< double > _numbers
 Numbers.

5.30.1 Detailed Description

Equal products.

Partition a finite set of positive numbers into two subsets such that the product of numbers in the first subset is the closest to the product of numbers in the second subset. This is equivalent to the partition problem applied to the logarithms of the given numbers.

The function computes the negation of the distance between the product of numbers corresponding to ones in the bit vector and the product of those corresponding to zeros. The negation is a consequence of the fact that algorithms in HNCO maximize rather than minimize a function.

Reference:

S. Baluja and S. Davies. 1997. Using optimal dependency-trees for combinatorial optimization: learning the structure of the search space. Technical Report CMU- CS-97-107. Carnegie-Mellon University.

Definition at line 59 of file equal-products.hh.

5.30.2 Member Function Documentation

5.30.2.1 generate()

```
void generate (
          int n,
          Generator generator ) [inline]
```

Instance generator.

Parameters

n	Size of bit vectors
generator	Number generator

Definition at line 91 of file equal-products.hh.

5.30.2.2 load()

Load instance.

Parameters

path	Path of the instance to load

Exceptions

```
std::runtime_error
```

Definition at line 124 of file equal-products.hh.

5.30.2.3 random()

```
void random ( \quad \text{int } n \text{ ) } \quad [\text{inline}]
```

Random instance.

The weights are sampled from the uniform distribution on [0,1).

Parameters

```
n Size of bit vector
```

Definition at line 106 of file equal-products.hh.

5.30.2.4 save()

Save instance.

Parameters

path Path of the instance to save

Exceptions

std::runtime_error

Definition at line 131 of file equal-products.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/equal-products.hh
- · lib/hnco/functions/collection/equal-products.cc

5.31 ProgressTracker::Event Struct Reference

Event

#include <hnco/functions/controllers/controller.hh>

Public Attributes

· int num evaluations

Number of evaluations.

· double value

Value.

5.31.1 Detailed Description

Event

Definition at line 247 of file controller.hh.

The documentation for this struct was generated from the following file:

· lib/hnco/functions/controllers/controller.hh

5.32 ExtendedHypercubelterator Class Reference

Extended Hypercube iterator.

#include <hnco/iterator.hh>

 $Inheritance\ diagram\ for\ Extended Hypercube Iterator:$

Public Member Functions

• ExtendedHypercubeIterator (int n)

Constructor.

• bool has_next () override

Has next bit vector.

· const bit_vector_t & next () override

Next bit vector.

Additional Inherited Members

5.32.1 Detailed Description

Extended Hypercube iterator.

Similar to Hypercube. In dimension 0, an Hypercubelterator does not contain any element. However, in dimension 0, an ExtendedHypercubelterator contains a unique element which is the vector of size 0. An ExtendedHypercubelterator is helpful when the enumerated vectors are seen as prefixes or suffixes hence can be empty. This is used, in particular, in compute_fast_walsh_transform.

Definition at line 97 of file iterator.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/iterator.hh
- lib/hnco/iterator.cc

5.33 Factorization Class Reference

Factorization.

#include <hnco/functions/collection/factorization.hh>

Inheritance diagram for Factorization:

Public Member Functions

• Factorization ()

Constructor.

• Factorization (const std::string number)

Constructor.

∼Factorization ()

Destructor.

• int get_bv_size () const override

Get bit vector size.

• double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

· void display (std::ostream &stream) const override

Display

void describe (const bit_vector_t &x, std::ostream &stream) override

Describe a bit vector.

Load and save instance

void load (std::string path)

Load instance.

Private Member Functions

· void init ()

Init GMP data structures.

· void clear ()

Clear GMP data structures.

void set_number (const std::string number)

Set number.

void convert (const bit_vector_t &x)

Convert a bit vector into two numbers.

Private Attributes

mpz_t _number

Number to factorize.

mpz_t _first_factor

First factor.

mpz_t _second_factor

Second factor.

mpz_t _product

Product.

• std::string _first_factor_string

First factor in binary form.

• std::string _second_factor_string

Secon factor in binary form.

• size_t _number_size

Number size in bits.

• size_t _first_factor_size

First factor size in bits.

• size_t _second_factor_size

Second factor size in bits.

• int _bv_size

Bit vector size.

5.33.1 Detailed Description

Factorization.

Reference:

Torbjörn Granlund and the GMP development team. 2012. GNU MP: The GNU Multiple Precision Arithmetic Library (5.0.5 ed.).

```
http://gmplib.org/.
```

Definition at line 29 of file factorization.hh.

5.33.2 Constructor & Destructor Documentation

5.33.2.1 Factorization()

Constructor.

Parameters

number Number to factorize written in decimal form

Definition at line 82 of file factorization.hh.

5.33.3 Member Function Documentation

5.33.3.1 load()

Load instance.

The file referenced by the path is a text file which contains exactly one natural number written in base 10 without any space

Parameters

path Path of the instance to load

Exceptions

std::runtime error

Definition at line 102 of file factorization.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/collection/factorization.hh
- · lib/hnco/functions/collection/factorization.cc

5.34 FfgenOptions Class Reference

Command line options for ffgen.

#include <ffgen-options.hh>

Public Member Functions

• FfgenOptions ()

Default constructor.

FfgenOptions (int argc, char *argv[], bool ignore_bad_options=false)

Constructor.

• int get_bv_size () const

Get the value of bv_size.

• bool with_bv_size () const

With parameter bv_size.

• double **get_coupling_constant** () const

Get the value of coupling_constant.

• bool with_coupling_constant () const

 $With\ parameter\ coupling_constant.$

double get_ep_upper_bound () const

Get the value of ep_upper_bound.

bool with_ep_upper_bound () const

With parameter ep_upper_bound.

• double get_field_constant () const

Get the value of field_constant.

· bool with_field_constant () const

With parameter field_constant.

• int get_function () const

Get the value of function.

· bool with_function () const

With parameter function.

double get_lin_distance () const

Get the value of lin_distance.

· bool with lin distance () const

With parameter lin_distance.

• int get_lin_generator () const

Get the value of lin_generator.

• bool with_lin_generator () const

With parameter lin_generator.

• double get lin initial weight () const

Get the value of lin_initial_weight.

bool with lin initial weight () const

With parameter lin_initial_weight.

· double get_lin_ratio () const

Get the value of lin ratio.

• bool with_lin_ratio () const

With parameter lin ratio.

• int get_ms_num_clauses () const

Get the value of ms_num_clauses.

• bool with_ms_num_clauses () const

With parameter ms_num_clauses.

• int get_ms_num_literals_per_clause () const

Get the value of ms_num_literals_per_clause.

• bool with_ms_num_literals_per_clause () const

With parameter ms_num_literals_per_clause.

int get_nk_k () const

Get the value of nk k.

• bool with_nk_k () const

With parameter nk k.

• int get_nn1_generator () const

Get the value of nn1_generator.

• bool with_nn1_generator () const

With parameter nn1_generator.

• int get_nn2_generator () const

Get the value of nn2_generator.

• bool with nn2 generator () const

With parameter nn2_generator.

• int **get_nn2_num_columns** () const

Get the value of nn2_num_columns.

bool with_nn2_num_columns () const

With parameter nn2_num_columns.

• int **get_nn2_num_rows** () const

Get the value of nn2_num_rows.

bool with_nn2_num_rows () const

With parameter nn2_num_rows.int get_part_upper_bound () const

Get the value of part_upper_bound.

• bool with_part_upper_bound () const

With parameter part_upper_bound.

• std::string get_path () const

Get the value of path.

• bool with_path () const

With parameter path.

• int get_seed () const

Get the value of seed.

bool with_seed () const

With parameter seed.

· double get_stddev () const

Get the value of stddev.

· bool with_stddev () const

With parameter stddev.

int get_sudoku_num_empty_cells () const

Get the value of sudoku_num_empty_cells.

• bool with_sudoku_num_empty_cells () const

With parameter sudoku_num_empty_cells.

· int get_walsh2_generator () const

Get the value of walsh2_generator.

• bool with_walsh2_generator () const

With parameter walsh2_generator.

• double get_walsh2_ising_alpha () const

Get the value of walsh2_ising_alpha.

• bool with_walsh2_ising_alpha () const

With parameter walsh2_ising_alpha.

• int get_walsh_num_features () const

Get the value of walsh_num_features.

· bool with walsh num features () const

With parameter walsh_num_features.

bool with_ms_planted_solution () const

With the flag ms_planted_solution.

bool with_periodic_boundary_conditions () const

With the flag periodic_boundary_conditions.

Private Member Functions

 void print_help (std::ostream &stream) const Print help message.

• void print_version (std::ostream &stream) const

Print version.

Private Attributes

• std::string _exec_name

Name of the executable.

• std::string _version = "0.23"

Name Version.

• int _bv_size = 100

Size of bit vectors.

• double _coupling_constant = 1

Coupling constant.

• double _ep_upper_bound = 1

Upper bound of numbers.

double _field_constant = 1

Field constant.

• int _function = 1

Type of function.

• double _lin_distance = 1

Common distance of arithmetic progression.

• int _lin_generator = 0

Type of LinearFunction generator.

• double _lin_initial_weight = 1

Initial weight.

• double _lin_ratio = 2

Common ratio of geometric progression.

• int ms num clauses = 100

Number of clauses.

• int _ms_num_literals_per_clause = 3

Number of literals per clause.

• int _nk_k = 3

Each bit is connected to k other bits.

• int _nn1_generator = 0

Type of NearestNeighborlsingModel1 generator.

• int _nn2_generator = 0

Type of NearestNeighborlsingModel2 generator.

• int _nn2_num_columns = 10

Number of columns.

int _nn2_num_rows = 10

Number of rows.

• int _part_upper_bound = 100

Upper bound of numbers.

std::string _path = "function.txt"

Path (relative or absolute) of a function file.

• int _seed

Seed for the random number generator.

• double _stddev = 1

Standard deviation.

• int _sudoku_num_empty_cells = 10

Number of empty cells.

• int _walsh2_generator = 0

Type of WalshExpansion2 generator.

• double _walsh2_ising_alpha = 2

Dyson-Ising: exponential decay parameter for long range interactions.

• int _walsh_num_features = 100

Number of features.

• bool _ms_planted_solution = false

Generate an instance with a planted solution.

• bool _periodic_boundary_conditions = false

Periodic boundary conditions.

Friends

• std::ostream & operator<< (std::ostream &, const FfgenOptions &)

Print a header containing the parameter values.

5.34.1 Detailed Description

Command line options for ffgen.

Definition at line 11 of file ffgen-options.hh.

The documentation for this class was generated from the following files:

- · app/ffgen-options.hh
- · app/ffgen-options.cc

5.35 FirstAscentHillClimbing Class Reference

First ascent hill climbing.

#include <hnco/algorithms/ls/first-ascent-hill-climbing.hh>

Inheritance diagram for FirstAscentHillClimbing:

Public Member Functions

• FirstAscentHillClimbing (int n, neighborhood::NeighborhoodIterator *neighborhood)

Constructor.

Protected Member Functions

• void **iterate** () override Single iteration.

Additional Inherited Members

5.35.1 Detailed Description

First ascent hill climbing.

Definition at line 34 of file first-ascent-hill-climbing.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/ls/first-ascent-hill-climbing.hh
- lib/hnco/algorithms/ls/first-ascent-hill-climbing.cc

5.36 FourPeaks Class Reference

Four Peaks.

#include <hnco/functions/collection/four-peaks.hh>

Inheritance diagram for FourPeaks:

Public Member Functions

· FourPeaks (int bv_size, int threshold)

Constructor.

int get_bv_size () const override

Get bit vector size.

· bool has known maximum () const override

Check for a known maximum.

• double get_maximum () const override

Get the global maximum.

• double evaluate (const bit vector t &) override

Evaluate a bit vector.

Private Attributes

• int _bv_size

Bit vector size.

· int _threshold

Threshold.

int maximum

Maximum.

5.36.1 Detailed Description

Four Peaks.

It is defined by

```
f(x) = \max\{head(x, 1) + tail(x, 0)\} + R(x)
```

where:

- head(x, 1) is the length of the longest prefix of x made of ones;
- tail(x, 0) is the length of the longest suffix of x made of zeros;
- R(x) is the reward;
- R(x) = n if (head(x, 1) > t and tail(x, 0) > t);
- R(x) = 0 otherwise;
- the threshold t is a parameter of the function.

This function has four maxima, of which exactly two are global ones.

For example, if n = 6 and t = 1:

- f(111111) = 6 (local maximum)
- f(111110) = 5
- f(111100) = 10 (global maximum)

Reference:

S. Baluja and R. Caruana. 1995. Removing the genetics from the standard genetic algorithm. In Proceedings of the 12th Annual Conference on Machine Learning. 38–46.

Definition at line 60 of file four-peaks.hh.

5.36.2 Member Function Documentation

5.36.2.1 get_maximum()

```
double get_maximum ( ) const [inline], [override], [virtual]
```

Get the global maximum.

Returns

```
2 * _bv_size - _threshold - 1
```

Reimplemented from Function.

Definition at line 88 of file four-peaks.hh.

5.36.2.2 has_known_maximum()

```
bool has_known_maximum ( ) const [inline], [override], [virtual]
```

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 84 of file four-peaks.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/collection/four-peaks.hh
- lib/hnco/functions/collection/four-peaks.cc

5.37 FrontDistancePair Struct Reference

Front-distance pair.

#include <hnco/multiobjective/algorithms/nsga2.hh>

Public Attributes

int pareto_front

Pareto front.

• double crowding_distance

Crowding distance.

5.37.1 Detailed Description

Front-distance pair.

A front-distance pair measures the quality of an individual within a population.

Definition at line 45 of file nsga2.hh.

The documentation for this struct was generated from the following file:

• lib/hnco/multiobjective/algorithms/nsga2.hh

5.38 Function Class Reference

Function

#include <hnco/functions/function.hh>

Inheritance diagram for Function:

Public Member Functions

virtual ~Function ()
 Destructor.

Information about the function

• virtual int get_bv_size () const =0

Get bit vector size.

· virtual double get maximum () const

Get the global maximum.

virtual bool has_known_maximum () const

Check for a known maximum.

• virtual bool provides_incremental_evaluation () const

Check whether the function provides incremental evaluation.

Evaluation

• virtual double evaluate (const bit_vector_t &)=0

Evaluate a bit vector.

virtual double evaluate_incrementally (const bit_vector_t &x, double value, const sparse_bit_vector_t &flipped_bits)

Incrementally evaluate a bit vector.

virtual double evaluate safely (const bit vector t &x)

Safely evaluate a bit vector.

• virtual void update (const bit_vector_t &x, double value)

Update states after a safe evaluation.

Display

 virtual void display (std::ostream &stream) const Display

virtual void describe (const bit_vector_t &x, std::ostream &stream)
 Describe a bit vector.

5.38.1 Detailed Description

Function

Definition at line 41 of file function.hh.

5.38.2 Member Function Documentation

5.38.2.1 describe()

Describe a bit vector.

The member function Function::describe is not declared const for the same reason Function::evaluate is not: it might need to decode the given bit vector hence use some pre-allocated memory buffer.

Reimplemented in MultivariateFunctionAdapter < Fn, Rep, Conv >, MixedIntegerMultivariateFunctionAdapter < Fn, IntRep, FloatRep PermutationFunctionAdapter < Fn >, UniversalFunctionAdapter, Factorization, Partition, Decorator, and FunctionMapComposition.

Definition at line 130 of file function.hh.

5.38.2.2 evaluate()

Evaluate a bit vector.

This member function is not declared const and is not supposed to be thread-safe. In particular, in order to evaluate a bit vector, it might require some data member to store temporary results. In case of parallel evaluation, there should be a copy of the function per thread, as is done in Population::evaluate in parallel.

Implemented in LongPath, FunctionPlugin, Trap, StopOnTarget, CallCounter, OnBudgetFunction, ProgressTracker, Cache, EqualProducts, Factorization, FourPeaks, SixPeaks, NearestNeighborlsingModel1, NearestNeighborlsingModel2, Jump, DeceptiveJump, Labs, LinearFunction, MaxSat, MaxNae3Sat, NkLandscape, Partition, PythonFunction, Qubo, OneMax, LeadingOnes, Needle, Hiff, Ridge, Plateau, WalshExpansion1, WalshExpansion2, WalshExpansion, Negation, FunctionMapComposition, AdditiveGaussianNoise, ParsedModifier, PriorNoise, MultivariateFunctionAdapter Fn, Rep, Co MixedIntegerMultivariateFunctionAdapter Fn, IntRep, FloatRep >, PermutationFunctionAdapter Fn >, UniversalFunctionAdapter SummationCancellation, and SinusSummationCancellation.

5.38.2.3 evaluate incrementally()

Incrementally evaluate a bit vector.

Exceptions

```
std::runtime error
```

Reimplemented in LinearFunction, OneMax, WalshExpansion1, NearestNeighborIsingModel1, NearestNeighborIsingModel2, StopOnTarget, CallCounter, OnBudgetFunction, ProgressTracker, and Negation.

Definition at line 91 of file function.hh.

5.38.2.4 evaluate_safely()

Safely evaluate a bit vector.

Must neither throw any exception nor update global states (e.g. maximum) in function controllers. It is used in Population::evaluate in parallel inside a OMP parallel for loop.

By default, calls evaluate.

Reimplemented in Controller.

Definition at line 105 of file function.hh.

5.38.2.5 get_maximum()

```
virtual double get_maximum ( ) const [inline], [virtual]
```

Get the global maximum.

Exceptions

std::runtime_error

Reimplemented in LongPath, Trap, Controller, SummationCancellation, FourPeaks, SixPeaks, Jump, DeceptiveJump, LinearFunction, PythonFunction, OneMax, LeadingOnes, Needle, Hiff, Ridge, Plateau, WalshExpansion1, FunctionMapComposition, and PriorNoise.

Definition at line 57 of file function.hh.

5.38.2.6 provides_incremental_evaluation()

```
virtual bool provides_incremental_evaluation ( ) const [inline], [virtual]
```

Check whether the function provides incremental evaluation.

Returns

false

Reimplemented in Controller, Cache, NearestNeighborlsingModel1, NearestNeighborlsingModel2, LinearFunction, OneMax, WalshExpansion1, Negation, and PriorNoise.

Definition at line 67 of file function.hh.

5.38.2.7 update()

Update states after a safe evaluation.

By default, does nothing.

Reimplemented in StopOnTarget, CallCounter, OnBudgetFunction, and ProgressTracker.

Definition at line 111 of file function.hh.

The documentation for this class was generated from the following file:

· lib/hnco/functions/function.hh

5.39 Function Class Reference

Function

#include <hnco/multiobjective/functions/function.hh>

Inheritance diagram for Function:

Public Member Functions

virtual ~Function ()
 Destructor.

Information about the function

- virtual int **get_bv_size** () const =0 Get bit vector size.
- virtual int **get_output_size** () const =0

 Get output size (number of objectives)

Evaluation

virtual void evaluate (const bit_vector_t &bv, value_t &value)=0
 Evaluate a bit vector.

Display

- virtual void display (std::ostream &stream) const Display.
- virtual void describe (const bit_vector_t &x, std::ostream &stream)

 Describe a bit vector.

5.39.1 Detailed Description

Function

Definition at line 41 of file function.hh.

5.39.2 Member Function Documentation

5.39.2.1 describe()

Describe a bit vector.

The member function describe() is not declared const for the same reason evaluate() is not: it might need to decode the given bit vector hence use some pre-allocated memory buffer.

Reimplemented in MultivariateFunctionAdapter < Fn, Rep, Conv >, MixedIntegerMultivariateFunctionAdapter < Fn, IntRep, FloatRep and UniversalFunctionAdapter.

Definition at line 95 of file function.hh.

5.39.2.2 evaluate()

Evaluate a bit vector.

This member function is not declared const and is not supposed to be thread-safe. In particular, in order to evaluate a bit vector, it might require some data member to store temporary results. In case of parallel evaluation, there should be a copy of the function per thread, as is done in Population::evaluate_in_parallel().

Parameters

bv	Bit vector to evaluate
value	Output value

Implemented in PythonFunction, MultivariateFunctionAdapter < Fn, Rep, Conv >, MixedIntegerMultivariateFunctionAdapter < Fn, Intland UniversalFunctionAdapter.

The documentation for this class was generated from the following file:

• lib/hnco/multiobjective/functions/function.hh

5.40 FunctionFactory Class Reference

Function factory.

#include <hnco/app/function-factory.hh>
Inheritance diagram for FunctionFactory:

Public Member Functions

virtual hnco::function::Function * make ()=0
 Make a function.

5.40.1 Detailed Description

Function factory.

Definition at line 33 of file function-factory.hh.

The documentation for this class was generated from the following file:

· lib/hnco/app/function-factory.hh

5.41 FunctionFactory Class Reference

Function factory.

#include <hnco/multiobjective/app/function-factory.hh>
Inheritance diagram for FunctionFactory:

Public Member Functions

virtual hnco::multiobjective::function::Function * make ()=0
 Make a function.

5.41.1 Detailed Description

Function factory.

Definition at line 36 of file function-factory.hh.

The documentation for this class was generated from the following file:

· lib/hnco/multiobjective/app/function-factory.hh

5.42 FunctionMapComposition Class Reference

Composition of a function and a map.

#include <hnco/functions/modifiers/modifier.hh>

Inheritance diagram for FunctionMapComposition:

Public Member Functions

• FunctionMapComposition (Function *function, hnco::map::Map *map)

Constructor.

• double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

Information about the function

• int get_bv_size () const override

Get bit vector size.

• double get_maximum () const override

Get the global maximum.

• bool has_known_maximum () const override

Check for a known maximum.

Display

• void **describe** (const bit_vector_t &x, std::ostream &stream) override Describe a bit vector.

Private Attributes

```
hnco::map::Map * _map
```

Мар.

bit_vector_t _bv

Image of bit vectors under the map.

Additional Inherited Members

5.42.1 Detailed Description

Composition of a function and a map.

Definition at line 100 of file modifier.hh.

5.42.2 Constructor & Destructor Documentation

5.42.2.1 FunctionMapComposition()

Constructor.

Precondition

```
map->get_output_size() == function->get_bv_size()
```

Exceptions

```
std::runtime_error
```

Definition at line 115 of file modifier.hh.

5.42.3 Member Function Documentation

5.42.3.1 get_maximum()

```
double get_maximum ( ) const [inline], [override], [virtual]
```

Get the global maximum.

Exceptions

std::runtime_error

Reimplemented from Function.

Definition at line 135 of file modifier.hh.

5.42.3.2 has_known_maximum()

```
bool has_known_maximum ( ) const [inline], [override], [virtual]
```

Check for a known maximum.

Returns

true if the function has a known maximum and the map is bijective.

Reimplemented from Function.

Definition at line 145 of file modifier.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/modifiers/modifier.hh
- lib/hnco/functions/modifiers/modifier.cc

5.43 FunctionPlugin Class Reference

Function plugin

#include <hnco/functions/collection/plugin.hh>

Inheritance diagram for FunctionPlugin:

Public Member Functions

• FunctionPlugin (int bv_size, std::string path, std::string name)

Constructor.

• ∼FunctionPlugin ()

Destructor.

• int get_bv_size () const

Get bit vector size.

• double evaluate (const bit_vector_t &)

Evaluate a bit vector.

Private Types

using extern_function_t = double(*)(const bit_t *, size_t)
 Type of an extern function.

Private Attributes

• int _bv_size

Bit vector size.

void * _handle

Handle returned by dlopen.

extern_function_t _extern_function

Extern function.

5.43.1 Detailed Description

Function plugin

Definition at line 34 of file plugin.hh.

5.43.2 Constructor & Destructor Documentation

5.43.2.1 FunctionPlugin()

Constructor.

Parameters

bv_size	Size of bit vectors
path	Path to a shared library
name	Name of a function of the shared library

Definition at line 35 of file plugin.cc.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/plugin.hh
- lib/hnco/functions/collection/plugin.cc

5.44 Generator Struct Reference

Random number generator.

```
#include <hnco/random.hh>
```

Static Public Member Functions

```
• static void set_seed (unsigned n)
```

Set seed.

• static void set_seed ()

Set seed.

• static void reset ()

Reset engine.

• static double uniform ()

Sample random number with uniform distribution.

• static double normal ()

Sample random number with normal distribution.

• static bool bernoulli ()

Sample random number with Bernoulli distribution.

Static Public Attributes

• static std::mt19937 engine

Mersenne Twister engine.

• static unsigned **seed** = std::mt19937::default_seed

5.44.1 Detailed Description

Random number generator.

Definition at line 34 of file random.hh.

5.44.2 Member Function Documentation

5.44.2.1 reset()

```
void reset ( ) [static]
```

Reset engine.

Using static member seed.

Definition at line 45 of file random.cc.

5.44.2.2 set_seed()

```
void set_seed ( ) [static]
```

Set seed.

Uses std::chrono::system_clock.

Definition at line 39 of file random.cc.

The documentation for this struct was generated from the following files:

- lib/hnco/random.hh
- lib/hnco/random.cc

5.45 Genetic Algorithm Class Reference

Genetic algorithm.

#include <hnco/algorithms/ea/genetic-algorithm.hh>

Inheritance diagram for GeneticAlgorithm:

Public Member Functions

• GeneticAlgorithm (int n, int mu)

Constructor.

Setters

• void **set_mutation_rate** (double p)

Set the mutation rate.

void set_crossover_probability (double p)

Set the crossover probability.

void set_tournament_size (int n)

Set the tournament size.

• void **set_allow_no_mutation** (bool b)

Set the flag _allow_no_mutation.

Protected Member Functions

Loop

• void init () override

Initialize.

void iterate () override

Single iteration.

Protected Attributes

• Population _parents

Parents.

Population _offsprings

Offsprings.

• CommaSelection _comma_selection

Comma selection.

• TournamentSelection _tournament_selection

Tournament selection.

• neighborhood::StandardBitMutation _mutation

Mutation operator.

• std::bernoulli_distribution _do_crossover

Do crossover.

UniformCrossover _crossover

Uniform crossover.

Parameters

· double mutation rate

Mutation rate.

• double _crossover_probability = 0.5

Crossover probability.

• int tournament size = 10

Tournament size.

bool allow no mutation = false

Allow no mutation.

5.45.1 Detailed Description

Genetic algorithm.

- · Tournament selection for reproduction
- · Uniform crossover
- Standard bit mutation
- (mu, mu) selection (offspring population replaces parent population)

Reference:

J. H. Holland. 1975. Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor.

Definition at line 53 of file genetic-algorithm.hh.

5.45.2 Constructor & Destructor Documentation

5.45.2.1 GeneticAlgorithm()

```
GeneticAlgorithm (
          int n,
          int mu ) [inline]
```

Constructor.

Parameters

n	Size of bit vectors
mu	Population size

Definition at line 115 of file genetic-algorithm.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/ea/genetic-algorithm.hh
- lib/hnco/algorithms/ea/genetic-algorithm.cc

5.46 HammingBall Class Reference

Hamming ball.

#include <hnco/neighborhoods/neighborhood.hh>

Inheritance diagram for HammingBall:

Public Member Functions

HammingBall (int n, int r)
 Constructor.

Private Member Functions

• void **sample_bits** ()

Sample bits.

Private Attributes

std::uniform_int_distribution < int > _choose_k
 Choose the distance to the center.

Additional Inherited Members

5.46.1 Detailed Description

Hamming ball.

Choose k uniformly on [1..r], where r is the radius of the ball, choose k bits uniformly among n and flip them.

Definition at line 302 of file neighborhood.hh.

5.46.2 Constructor & Destructor Documentation

5.46.2.1 HammingBall()

```
\label{eq:ball} \begin{array}{cccc} \mbox{HammingBall (} & & & \\ & \mbox{int } n, & & \\ & \mbox{int } r \mbox{ ) } & \mbox{[inline]} \end{array}
```

Constructor.

Parameters

n	Size of bit vectors
r	Radius of the ball

Definition at line 318 of file neighborhood.hh.

The documentation for this class was generated from the following files:

- lib/hnco/neighborhoods/neighborhood.hh
- lib/hnco/neighborhoods/neighborhood.cc

5.47 HammingSphere Class Reference

Hamming sphere.

#include <hnco/neighborhoods/neighborhood.hh>

Inheritance diagram for HammingSphere:

Public Member Functions

• HammingSphere (int n, int r)

Constructor.

• void set_radius (int r)

Set radius.

Private Member Functions

• void **sample_bits** ()

Sample bits.

Private Attributes

• int _radius

Radius of the sphere.

Additional Inherited Members

5.47.1 Detailed Description

Hamming sphere.

Uniformly choose r bits among n and flip them, where r is the radius of the sphere.

Definition at line 334 of file neighborhood.hh.

5.47.2 Constructor & Destructor Documentation

5.47.2.1 HammingSphere()

```
HammingSphere (
          int n,
          int r) [inline]
```

Constructor.

Parameters

n	Size of bit vectors
r	Radius of the sphere

Definition at line 350 of file neighborhood.hh.

The documentation for this class was generated from the following files:

- lib/hnco/neighborhoods/neighborhood.hh
- lib/hnco/neighborhoods/neighborhood.cc

5.48 HammingSpherelterator Class Reference

Hamming sphere neighborhood iterator.

```
#include <hnco/neighborhoods/neighborhood-iterator.hh>
```

Inheritance diagram for HammingSphereIterator:

Public Member Functions

```
• HammingSphereIterator (int n, int r)
```

Constructor.

• bool has_next () override

Has next bit vector.

· const bit_vector_t & next () override

Next bit vector.

Private Attributes

• int _radius

Radius of the ball.

· sparse_bit_vector_t _bit_indexes

Bit indexes.

Additional Inherited Members

5.48.1 Detailed Description

Hamming sphere neighborhood iterator.

The Hamming sphere iterator is implemented using an array of indexes which indicate the bits to flip in the given origin.

For example, in dimension n = 4 and with radius = 2, the sequence of indexes is as follows (assuming indexes start at 1):

- 12 (first state, bits 1 and 2 are flipped)
- 13
- 14
- · 23 (last index cannot be increased, first index is increased and second index is reset)
- 24
- 34

 $\textbf{Reference:} \quad \texttt{https://en.wikipedia.org/wiki/Combination\#Enumerating_k-combinations}$

Definition at line 96 of file neighborhood-iterator.hh.

5.48.2 Constructor & Destructor Documentation

5.48.2.1 HammingSphereIterator()

Constructor.

5.49 Hboa Class Reference 153

Parameters

n	Size of bit vectors
r	Radius of Hamming Ball

Definition at line 72 of file neighborhood-iterator.cc.

The documentation for this class was generated from the following files:

- lib/hnco/neighborhoods/neighborhood-iterator.hh
- lib/hnco/neighborhoods/neighborhood-iterator.cc

5.49 Hboa Class Reference

Hierarchical Bayesian Optimization Algorithm.

#include <hnco/algorithms/fast-efficient-p3/hboa.hh>

Inheritance diagram for Hboa:

Public Member Functions

• Hboa (int n)

Constructor.

• \sim Hboa ()

Destructor.

- void maximize (const std::vector< function::Function * > &functions)

Maximize.

· void finalize ()

Finalize.

• void **set_population_size** (int n)

Set population size.

Private Attributes

Implementation * _pimpl

Pointer to implementation.

• int _population_size = 10

Population size.

Additional Inherited Members

5.49.1 Detailed Description

Hierarchical Bayesian Optimization Algorithm.

Implementation of the Hierarchical Bayesian Optimization Algorithm and helper classes based on the publication: Pelikan, M. and Goldberg, D. (2006). Hierarchical bayesian optimization algorithm. In Scalable Optimization via Probabilistic Modeling, volume 33 of Studies in Computational Intelligence, pages 63–90. Springer Berlin Heidelberg.

Author: Brian W. Goldman

Integrated into HNCO by Arnaud Berny

Definition at line 48 of file hboa.hh.

5.49.2 Member Data Documentation

5.49.2.1 _pimpl

Implementation* _pimpl [private]

Pointer to implementation.

The main motivation for this pattern is to avoid including declarations from fast_efficient_p3 into the global namespace.

A raw pointer is used instead of a unique_ptr because the latter will not compile with pybind11.

Definition at line 59 of file hboa.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/fast-efficient-p3/hboa.hh
- lib/hnco/algorithms/fast-efficient-p3/hboa.cc

5.50 Hea< Herding > Class Template Reference

Herding evolutionary algorithm.

#include <hnco/algorithms/walsh-moment/hea.hh>

Inheritance diagram for Hea< Herding >:

Public Member Functions

Hea (int n, int population_size)
 Constructor.

Setters

• void **set_margin** (double x)

Set the moment margin.

void set_selection_size (int x)

Set the selection size.

void set_reset_period (int x)

Set the reset period.

void set_learning_rate (double x)

Set the learning rate.

void set_bound_moment (bool x)

Set the bound moment after update.

void set_randomize_bit_order (bool b)

Randomize bit order.

Setters for logging

• void set_log_herding_error (bool b)

Log herding error (moment discrepancy)

void set_log_target_norm (bool b)

Log target 2-norm (distance to uniform moment)

void set_log_delta_norm (bool b)

Log delta (moment increment) 2-norm.

void set_log_target (bool b)

Log target moment as a symmetric matrix.

Private Member Functions

Loop

· void init () override

Initialization.

· void iterate () override

Single iteration.

• void set_something_to_log ()

Set flag for something to log.

· void log () override

Log.

Private Attributes

· Herding::Moment _target

Target moment.

• Herding::Moment _selection

Moment of selected individuals.

• algorithm::Population _population

Population

• Herding _herding

Herding.

• double _herding_error

Herding error (moment discrepancy)

• double _target_norm

Target 2-norm (distance to uniform moment)

• double _delta_norm

Delta (moment increment) 2-norm.

Parameters

• double _margin

Moment margin.

• int _selection_size = 1

Selection size.

• int _reset_period = 0

Reset period.

• double _learning_rate = 1e-4

Learning rate.

• bool _bound_moment = false

Bound moment after update.

Logging

• bool _log_herding_error = false

Log herding error (moment discrepancy)

• bool _log_target_norm = false

Log target 2-norm (distance to uniform moment)

• bool _log_delta_norm = false

Log delta 2-norm (moment increment)

• bool _log_target = false

Log target moment as a symmetric matrix.

Additional Inherited Members

5.50.1 Detailed Description

Herding evolutionary algorithm.

Reference:

Arnaud Berny. 2015. Herding Evolutionary Algorithm. In Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation (GECCO Companion '15). ACM, New York, NY, USA, 1355–1356.

Definition at line 47 of file hea.hh.

5.50.2 Constructor & Destructor Documentation

5.50.2.1 Hea()

```
Hea (
          int n,
          int population_size ) [inline]
```

Constructor.

Parameters

n	Size of bit vectors
population_size	Population size

_margin is initialized to 1 / n.

Definition at line 200 of file hea.hh.

5.50.3 Member Function Documentation

5.50.3.1 set_reset_period()

```
void set_reset_period (
          int x ) [inline]
```

Set the reset period.

Parameters

 $x \le 0$ means no reset.

Definition at line 229 of file hea.hh.

5.50.3.2 set_selection_size()

```
void set_selection_size ( \quad \text{int } x \text{ ) [inline]}
```

Set the selection size.

The selection size is the number of selected individuals in the population.

Definition at line 221 of file hea.hh.

The documentation for this class was generated from the following file:

• lib/hnco/algorithms/walsh-moment/hea.hh

5.51 Hiff Class Reference

Hierarchical if and only if.

#include <hnco/functions/collection/theory.hh>

Inheritance diagram for Hiff:

5.51 Hiff Class Reference 159

Public Member Functions

• Hiff (int bv_size)

Constructor.

• int get_bv_size () const override

Get bit vector size.

double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

· bool has_known_maximum () const override

Check for a known maximum.

• double get_maximum () const override

Get the global maximum.

Private Attributes

int _bv_size

int _depth

Tree depth.

Bit vector size.

5.51.1 Detailed Description

Hierarchical if and only if.

Reference:

Thomas Jansen, Analyzing Evolutionary Algorithms. Springer, 2013.

Definition at line 170 of file theory.hh.

5.51.2 Member Function Documentation

5.51.2.1 get_maximum()

```
double get_maximum ( ) const [inline], [override], [virtual]
```

Get the global maximum.

Returns

```
(i + 1) * 2^i where 2^i = bv_size
```

Reimplemented from Function.

Definition at line 195 of file theory.hh.

5.51.2.2 has_known_maximum()

```
bool has_known_maximum ( ) const [inline], [override], [virtual]
```

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 191 of file theory.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/collection/theory.hh
- lib/hnco/functions/collection/theory.cc

5.52 HncoEvaluator Class Reference

Evaluator for HNCO functions.

```
#include <hnco/algorithms/fast-efficient-p3/hnco-evaluator.hh>
```

Inherits Evaluator.

Public Member Functions

• HncoEvaluator (hnco::function::Function *function)

Constructor.

float evaluate (const std::vector< bool > &x)

Evaluate a bit vector.

Private Attributes

hnco::function::Function * _function

HNCO function.

hnco::bit_vector_t _bv

Argument of HNCO function.

5.52.1 Detailed Description

Evaluator for HNCO functions.

Definition at line 36 of file hnco-evaluator.hh.

The documentation for this class was generated from the following file:

· lib/hnco/algorithms/fast-efficient-p3/hnco-evaluator.hh

5.53 HncoOptions Class Reference

Command line options for hnco.

#include <hnco/app/hnco-options.hh>

Public Member Functions

· HncoOptions ()

Default constructor.

HncoOptions (int argc, char *argv[], bool ignore bad options=false)

Constructor.

int get_algorithm () const

Get the value of algorithm.

· bool with_algorithm () const

With parameter algorithm.

• int get_bm_mc_reset_strategy () const

Get the value of bm_mc_reset_strategy.

bool with_bm_mc_reset_strategy () const

With parameter bm_mc_reset_strategy.

• int get_bm_num_gs_cycles () const

Get the value of bm_num_gs_cycles.

bool with_bm_num_gs_cycles () const

With parameter bm_num_gs_cycles.

• int get_bm_num_gs_steps () const

Get the value of bm_num_gs_steps.

bool with_bm_num_gs_steps () const

With parameter bm_num_gs_steps.

• int get_bm_sampling () const

Get the value of bm_sampling.

bool with_bm_sampling () const

With parameter bm_sampling.

• int get_budget () const

Get the value of budget.

• bool with_budget () const

With parameter budget.

• int get bv_size () const

Get the value of bv_size.

bool with_bv_size () const

With parameter bv_size.

std::string get_description_path () const

Get the value of description_path.

• bool with_description_path () const

With parameter description_path.

• double **get_ea_crossover_bias** () const

Get the value of ea_crossover_bias.

bool with ea crossover bias () const

With parameter ea_crossover_bias.

double get_ea_crossover_probability () const

Get the value of ea_crossover_probability.

bool with_ea_crossover_probability () const

With parameter ea_crossover_probability.

· int get ea it initial hamming weight () const

Get the value of ea_it_initial_hamming_weight.

bool with_ea_it_initial_hamming_weight () const

With parameter ea_it_initial_hamming_weight.

• int get ea it replacement () const

Get the value of ea_it_replacement.

· bool with_ea_it_replacement () const

With parameter ea_it_replacement.

• int get ea lambda () const

Get the value of ea_lambda.

bool with_ea_lambda () const

With parameter ea_lambda.

• int get ea mu () const

Get the value of ea_mu.

• bool with_ea_mu () const

With parameter ea mu.

• double **get_ea_mutation_rate** () const

Get the value of ea_mutation_rate.

• bool with_ea_mutation_rate () const

With parameter ea_mutation_rate.

· double get ea mutation rate max () const

Get the value of ea_mutation_rate_max.

• bool with_ea_mutation_rate_max () const

With parameter ea_mutation_rate_max.

double get_ea_mutation_rate_min () const

Get the value of ea_mutation_rate_min.

- bool $with_ea_mutation_rate_min$ () const

With parameter ea_mutation_rate_min.

• double **get_ea_success_ratio** () const

Get the value of ea_success_ratio.

• bool with_ea_success_ratio () const

With parameter ea_success_ratio.

• int **get_ea_tournament_size** () const

Get the value of ea_tournament_size.

bool with_ea_tournament_size () const

With parameter ea_tournament_size.

double get_ea_update_strength () const

Get the value of ea_update_strength.

bool with_ea_update_strength () const

With parameter ea_update_strength.

• std::string get_expression () const

Get the value of expression.

• bool with expression () const

With parameter expression.

• std::string **get_fn_name** () const

Get the value of fn_name.

• bool with fn name () const

With parameter fn_name.

• int get_fn_num_traps () const

Get the value of fn_num_traps.

• bool with_fn_num_traps () const

With parameter fn_num_traps.

• int get fn prefix length () const

Get the value of fn_prefix_length.

bool with_fn_prefix_length () const

With parameter fn_prefix_length.

int get_fn_threshold () const

Get the value of fn threshold.

bool with_fn_threshold () const

With parameter fn threshold.

double get_fp_default_double_precision () const

Get the value of fp_default_double_precision.

• bool with_fp_default_double_precision () const

With parameter fp_default_double_precision.

• std::string get_fp_default_double_rep () const

Get the value of fp_default_double_rep.

• bool with_fp_default_double_rep () const

With parameter fp_default_double_rep.

• int get fp default double size () const

Get the value of fp default double size.

bool with_fp_default_double_size () const

With parameter fp default double size.

• std::string get_fp_default_int_rep () const

Get the value of fp_default_int_rep.

• bool with_fp_default_int_rep () const

With parameter fp_default_int_rep.

• std::string get_fp_default_long_rep () const

Get the value of fp_default_long_rep.

• bool with fp default long rep () const

With parameter fp_default_long_rep.

• std::string **get_fp_expression** () const

Get the value of fp_expression.

bool with_fp_expression () const

 ${\it With parameter fp_expression}.$

• int get_fp_expression_source () const

Get the value of fp_expression_source.

• bool with_fp_expression_source () const

With parameter fp_expression_source.

std::string get_fp_representations () const

Get the value of fp_representations.

· bool with fp representations () const

With parameter fp_representations.

std::string get_fp_representations_path () const

Get the value of fp representations path.

• bool with_fp_representations_path () const

With parameter fp_representations_path.

• int get_fp_representations_source () const

Get the value of fp_representations_source.

bool with_fp_representations_source () const

With parameter fp_representations_source.

• int get_function () const

Get the value of function.

· bool with_function () const

With parameter function.

• int get_hea_reset_period () const

Get the value of hea_reset_period.

• bool with_hea_reset_period () const

With parameter hea_reset_period.

• double get_learning_rate () const

Get the value of learning_rate.

• bool with_learning_rate () const

With parameter learning_rate.

int get_map () const

Get the value of map.

bool with_map () const

With parameter map.

int get_map_input_size () const

Get the value of map input size.

• bool with_map_input_size () const

With parameter map_input_size.

• std::string get_map_path () const

Get the value of map_path.

• bool with_map_path () const

With parameter map_path.

• int get_map_ts_length () const

Get the value of map_ts_length.

bool with_map_ts_length () const

With parameter map_ts_length.

• int get_map_ts_sampling_mode () const

Get the value of map_ts_sampling_mode.

• bool with_map_ts_sampling_mode () const

With parameter map_ts_sampling_mode.

• int get_neighborhood () const

Get the value of neighborhood.

bool with_neighborhood () const

With parameter neighborhood.

• int **get_neighborhood_iterator** () const

Get the value of neighborhood_iterator.

bool with_neighborhood_iterator () const

With parameter neighborhood_iterator.

• double get noise stddev () const

Get the value of noise_stddev.

· bool with_noise_stddev () const

With parameter noise_stddev.

• int get_num_iterations () const

Get the value of num_iterations.

• bool with_num_iterations () const

With parameter num_iterations.

• int get num threads () const

Get the value of num_threads.

bool with_num_threads () const

With parameter num_threads.

• std::string get_path () const

Get the value of path.

· bool with_path () const

With parameter path.

· double get_pn_mutation_rate () const

Get the value of pn_mutation_rate.

bool with_pn_mutation_rate () const

With parameter pn_mutation_rate.

• int get_pn_neighborhood () const

Get the value of pn neighborhood.

• bool with_pn_neighborhood () const

With parameter pn_neighborhood.

• int get_pn_radius () const

Get the value of pn_radius.

• bool with_pn_radius () const

With parameter pn_radius.

• int get_population_size () const

Get the value of population_size.

• bool with population size () const

With parameter population_size.

int get_pv_log_num_components () const

Get the value of pv log num components.

bool with_pv_log_num_components () const

With parameter pv_log_num_components.

• int **get_radius** () const

Get the value of radius.

bool with_radius () const

With parameter radius.

• int get_rep_categorical_representation () const

Get the value of rep_categorical_representation.

• bool with rep categorical representation () const

With parameter rep_categorical_representation.

• int get_rep_num_additional_bits () const

Get the value of rep_num_additional_bits.

bool with_rep_num_additional_bits () const

With parameter rep_num_additional_bits.

• std::string get_results_path () const

Get the value of results_path.

bool with_results_path () const

With parameter results_path.

• int get rls patience () const

Get the value of rls_patience.

• bool with_rls_patience () const

With parameter rls patience.

• double get_sa_beta_ratio () const

Get the value of sa_beta_ratio.

• bool with_sa_beta_ratio () const

With parameter sa_beta_ratio.

• double **get_sa_initial_acceptance_probability** () const

Get the value of sa_initial_acceptance_probability.

• bool with_sa_initial_acceptance_probability () const

With parameter sa_initial_acceptance_probability.

int get_sa_num_transitions () const

Get the value of sa_num_transitions.

bool with_sa_num_transitions () const

With parameter sa_num_transitions.

• int get_sa_num_trials () const

Get the value of sa_num_trials.

• bool with_sa_num_trials () const

With parameter sa_num_trials.

· unsigned get seed () const

Get the value of seed.

· bool with_seed () const

With parameter seed.

• int get selection size () const

Get the value of selection_size.

• bool with_selection_size () const

With parameter selection size.

• std::string **get_solution_path** () const

Get the value of solution_path.

• bool with_solution_path () const

With parameter solution_path.

• double get_target () const

Get the value of target.

· bool with_target () const

With parameter target.

bool with_additive_gaussian_noise () const

With the flag additive_gaussian_noise.

• bool with_bm_log_norm_1 () const

With the flag bm_log_norm_1.

bool with_bm_log_norm_infinite () const

With the flag bm_log_norm_infinite.

bool with_bm_negative_positive_selection () const

With the flag bm_negative_positive_selection.

• bool with_cache () const

With the flag cache.

bool with_cache_budget () const

With the flag cache_budget.

• bool with_concrete_solution () const

With the flag concrete_solution.

· bool with ea allow no mutation () const

With the flag ea_allow_no_mutation.

· bool with_ea_it_log_center_fitness () const

With the flag ea_it_log_center_fitness.

• bool with_ea_log_mutation_rate () const

With the flag ea_log_mutation_rate.

· bool with_fn_display () const

With the flag fn_display.

· bool with fn get bv size () const

With the flag fn_get_bv_size.

bool with_fn_get_maximum () const

With the flag fn_get_maximum.

bool with_fn_has_known_maximum () const

With the flag fn_has_known_maximum.

• bool with_fn_provides_incremental_evaluation () const

With the flag fn_provides_incremental_evaluation.

· bool with fn walsh transform () const

With the flag fn_walsh_transform.

bool with_hea_bound_moment () const

With the flag hea bound moment.

• bool with_hea_log_delta_norm () const

With the flag hea log delta norm.

• bool with_hea_log_herding_error () const

With the flag hea_log_herding_error.

• bool with_hea_log_target () const

With the flag hea_log_target.

• bool with_hea_log_target_norm () const

With the flag hea_log_target_norm.

· bool with hea randomize bit order () const

With the flag hea_randomize_bit_order.

· bool with incremental evaluation () const

With the flag incremental evaluation.

· bool with_load_solution () const

With the flag load solution.

• bool with_log_improvement () const

With the flag log_improvement.

• bool with_map_display () const

With the flag map_display.

bool with_map_random () const

With the flag map_random.

• bool with_map_surjective () const

With the flag map_surjective.

• bool with mmas strict () const

With the flag mmas_strict.

• bool with_negation () const

With the flag negation.

• bool with_parsed_modifier () const

With the flag parsed_modifier.

• bool with_pn_allow_no_mutation () const

With the flag pn_allow_no_mutation.

· bool with print default parameters () const

With the flag print_default_parameters.

· bool with print description () const

With the flag print_description.

bool with_print_parameters () const

With the flag print parameters.

• bool with_print_results () const

With the flag print_results.

• bool with_print_solution () const

With the flag print_solution.

• bool with_prior_noise () const

With the flag prior_noise.

· bool with_pv_log_entropy () const

With the flag pv_log_entropy.

bool with_pv_log_pv () const

With the flag pv_log_pv.

· bool with_record_evaluation_time () const

With the flag record_evaluation_time.

• bool with_record_total_time () const

With the flag record_total_time.

· bool with_restart () const

With the flag restart.

· bool with rls strict () const

With the flag rls_strict.

bool with rw_log_value () const

With the flag rw_log_value.

· bool with save description () const

With the flag save_description.

bool with_save_results () const

With the flag save results.

bool with_save_solution () const

With the flag save_solution.

• bool with_stop_on_maximum () const

With the flag stop_on_maximum.

• bool with_stop_on_target () const

With the flag stop_on_target.

Private Member Functions

 void print_help (std::ostream &stream) const Print help message.

void print help fn (std::ostream &stream) const

Print help message for section fn.

void print_help_fp (std::ostream &stream) const

Print help message for section fp.

void print_help_rep (std::ostream &stream) const

Print help message for section rep.

void print_help_mod (std::ostream &stream) const

Print help message for section mod.

void print_help_ctrl (std::ostream &stream) const

Print help message for section ctrl.

void print_help_pn (std::ostream &stream) const

Print help message for section pn.

void print_help_map (std::ostream &stream) const

Print help message for section map.

void print_help_alg (std::ostream &stream) const

Print help message for section alg.

void print_help_ls (std::ostream &stream) const

Print help message for section Is.

· void print help sa (std::ostream &stream) const

Print help message for section sa.

void print_help_ea (std::ostream &stream) const

Print help message for section ea.

void print_help_eda (std::ostream &stream) const

Print help message for section eda.

void print_help_hea (std::ostream &stream) const

Print help message for section hea.

void print_help_bm (std::ostream &stream) const

Print help message for section bm.

void print_version (std::ostream &stream) const

Print version.

Private Attributes

• std::string _exec_name

Name of the executable.

• std::string _version = "0.23"

Name Version.

• int _algorithm = 100

Type of algorithm.

• int _bm_mc_reset_strategy = 1

Markov chain reset strategy.

• int _bm_num_gs_cycles = 1

Number of Gibbs sampler cycles per bit vector.

• int _bm_num_gs_steps = 100

Number of Gibbs sampler steps per bit vector.

• int _bm_sampling = 1

Sampling mode for the Boltzmann machine.

• int **budget** = 10000

Number of allowed function evaluations (<= 0 means indefinite)

• int _bv_size = 100

Size of bit vectors.

• std::string _description_path = "description.txt"

Path of the description file.

• double **_ea_crossover_bias** = 0.5

Crossover bias.

• double _ea_crossover_probability = 0.5

Crossover probability.

• int _ea_it_initial_hamming_weight = 0

Initial Hamming weight.

• int _ea_it_replacement = 0

Selection for replacement in it-EA.

int _ea_lambda = 100

Offspring population size.

• int **_ea_mu** = 10

Parent population size.

• double _ea_mutation_rate = 1

Mutation rate relative to bv_size (fixed or initial value)

double _ea_mutation_rate_max = 1

Maximum mutation rate.

• double **_ea_mutation_rate_min** = 0.01

Minimum mutation rate.

• double _ea_success_ratio = 4

Success rate for for self-adjusting mutation rate.

• int **_ea_tournament_size** = 2

Tournament size.

double _ea_update_strength = 1.01

Update strength for self-adjusting mutation rate.

std::string _expression = "x"

Expression of the variable x.

• std::string _fn_name

Name of the function in the dynamic library.

• int fn num traps = 10

Number of traps.

int _fn_prefix_length = 2

Prefix length for long path.

int fn threshold = 10

Threshold (in bits) for Jump, Four Peaks, and Six Peaks.

double _fp_default_double_precision

Default precision of double representations.

• std::string _fp_default_double_rep = "double(0, 1, precision = 1e-3)"

Default representation for double.

• int _fp_default_double_size

Default size of double representations.

std::string _fp_default_int_rep = "int(1, 100)"

Default representation for int.

• std::string **_fp_default_long_rep** = "long(1, 100)"

Default representation for long.

• std::string **_fp_expression** = " $(1-x)^2+100*(y-x^2)^2$ "

Mathematical expression.

• int _fp_expression_source = 0

Source for the expression to parse.

• std::string _fp_representations

Representations. Example: "x: double(0, 1); y: double(0, 1, precision = 1e-3); z: double(0, 1, size = 8); u: int(-100, 100); v: long(1, 10000)".

• std::string _fp_representations_path = "representations.txt"

Path of the representations file.

• int _fp_representations_source = 0

Source for the representations.

• int function = 0

Type of function.

• int _hea_reset_period = 0

Reset period (<= 0 means no reset)

• double _learning_rate = 0.001

Learning rate.

• int _map = 0

Type of map.

• int _map_input_size = 100

Input size of linear and affine maps.

std::string _map_path = "map.txt"

Path of the map file.

• int _map_ts_length = 10

Transvection sequence length.

int _map_ts_sampling_mode = 0

Transvection sequence sampling mode.

• int _neighborhood = 0

Type of neighborhood.

• int _neighborhood_iterator = 0

Type of neighborhood iterator.

• double _noise_stddev = 1

Noise standard deviation.

• int **num iterations** = 0

Number of iterations (<= 0 means indefinite)

• int num threads = 1

Number of threads.

std::string _path = "function.txt"

Path of the function file.

• double _pn_mutation_rate = 1

Mutation rate relative to bv_size.

• int _pn_neighborhood = 0

Type of neighborhood.

• int _pn_radius = 2

Radius of Hamming ball or sphere.

• int _population_size = 10

Population size.

• int _pv_log_num_components = 5

Number of probability vector components to log.

• int _radius = 2

Radius of Hamming ball or sphere.

• int _rep_categorical_representation = 0

Categorical representation.

• int _rep_num_additional_bits = 2

Number of additional bits per element for permutation representation.

• std::string _results_path = "results.json"

Path of the results file.

• int _rls_patience = 50

Number of consecutive rejected moves before ending the search (<= 0 means infinite)

• double _sa_beta_ratio = 1.2

Ratio for beta or inverse temperature.

• double _sa_initial_acceptance_probability = 0.6

Initial acceptance probability.

• int _sa_num_transitions = 50

Number of accepted transitions before annealing.

• int **_sa_num_trials** = 100

Number of trials to estimate initial inverse temperature.

· unsigned _seed

Seed for the random number generator.

• int selection size = 1

Selection size (number of selected individuals)

• std::string _solution_path = "solution.txt"

Path of the solution file.

• double _target = 100

Target.

• bool _additive_gaussian_noise = false

Additive Gaussian noise.

• bool _bm_log_norm_1 = false

Log 1-norm of the parameters.

• bool _bm_log_norm_infinite = false

Log infinite norm of the parameters.

bool bm negative positive selection = false

Negative and positive selection.

bool _cache = false

Cache function evaluations.

• bool _cache_budget = false

Set cache on budget.

• bool _concrete_solution = false

Print or save the solution in the domain of the concrete function.

• bool **_ea_allow_no_mutation** = false

Allow no mutation with standard bit mutation.

bool _ea_it_log_center_fitness = false

Log center fitness.

• bool _ea_log_mutation_rate = false

Log mutation rate.

• bool **fn display** = false

Display the function and exit.

• bool _fn_get_bv_size = false

Print the size of bit vectors.

• bool _fn_get_maximum = false

If the maximum is known then print it and exit with status 0 else exit with status 1.

• bool fn has known maximum = false

Check whether the function has a known maximum.

bool _fn_provides_incremental_evaluation = false

Check whether the function provides incremental evaluation.

• bool **_fn_walsh_transform** = false

Compute the Walsh transform of the function.

bool _hea_bound_moment = false

Bound moment after update.

bool _hea_log_delta_norm = false

Log delta (moment increment) 2-norm.

bool _hea_log_herding_error = false

Log herding error (moment discrepancy)

• bool _hea_log_target = false

Log target moment as a symmetric matrix.

bool _hea_log_target_norm = false

Log target 2-norm (distance to uniform moment)

• bool hea randomize bit order = false

Randomize bit order.

bool _incremental_evaluation = false

Incremental evaluation.

• bool _load_solution = false

Load a solution from a file.

• bool _log_improvement = false

Log improvement.

bool _map_display = false

Display the map and exit.

• bool _map_random = false

Sample a random map.

• bool _map_surjective = false

Ensure that the sampled linear or affine map is surjective.

• bool _mmas_strict = false

Strict (>) max-min ant system.

• bool negation = false

Negation (hence minimization) of the function.

• bool _parsed_modifier = false

Parsed modifier.

• bool _pn_allow_no_mutation = false

Allow no mutation with standard bit mutation.

• bool _print_default_parameters = false

Print the default parameters and exit.

• bool _print_description = false

Print a description of the solution.

• bool _print_parameters = false

Print the parameters.

bool _print_results = false

Print results.

• bool _print_solution = false

Print the solution.

• bool _prior_noise = false

Prior noise.

• bool _pv_log_entropy = false

Log entropy of probability vector.

bool _pv_log_pv = false

Log probability vector.

• bool _record_evaluation_time = false

Record evaluation time.

• bool _record_total_time = false

Record total time.

• bool _restart = false

Restart any algorithm an indefinite number of times.

• bool _rls_strict = false

Strict (>) random local search.

• bool _rw_log_value = false

Log bit vector value during random walk.

• bool _save_description = false

Save the description of the solution in a file.

• bool _save_results = false

Save the results in a file.

• bool _save_solution = false

Save the solution in a file.

• bool _stop_on_maximum = false

Stop on maximum.

• bool _stop_on_target = false

Stop on target.

Friends

std::ostream & operator<< (std::ostream &, const HncoOptions &)

Print a header containing the parameter values.

5.53.1 Detailed Description

Command line options for hnco.

Definition at line 11 of file hnco-options.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/app/hnco-options.hh
- lib/hnco/app/hnco-options.cc

5.54 HncoOptions Class Reference

Command line options for hnco-mo.

#include <hnco/multiobjective/app/hnco-mo-options.hh>

Public Member Functions

· HncoOptions ()

Default constructor.

• **HncoOptions** (int argc, char *argv[], bool ignore_bad_options=false)

Constructor.

• int get_algorithm () const

Get the value of algorithm.

• bool with_algorithm () const

With parameter algorithm.

• int get_bv_size () const

Get the value of bv_size.

· bool with by size () const

With parameter bv_size.

• double **get_ea_crossover_probability** () const

Get the value of ea_crossover_probability.

• bool with_ea_crossover_probability () const

With parameter ea_crossover_probability.

• int get_ea_mu () const

Get the value of ea_mu.

• bool with_ea_mu () const

With parameter ea_mu.

double get_ea_mutation_rate () const

Get the value of ea_mutation_rate.

bool with_ea_mutation_rate () const

With parameter ea_mutation_rate.

int get_ea_tournament_size () const

Get the value of ea_tournament_size.

bool with_ea_tournament_size () const

With parameter ea_tournament_size.

• std::string get_fn_name () const

Get the value of fn_name.

· bool with fn name () const

With parameter fn_name.

double get_fp_default_double_precision () const

Get the value of fp_default_double_precision.

· bool with fp default double precision () const

With parameter fp_default_double_precision.

std::string get_fp_default_double_rep () const

Get the value of fp_default_double_rep.

bool with_fp_default_double_rep () const

With parameter fp_default_double_rep.

int get_fp_default_double_size () const

Get the value of fp default double size.

• bool with_fp_default_double_size () const

With parameter fp_default_double_size.

std::string get_fp_default_int_rep () const

Get the value of fp_default_int_rep.

• bool with fp default int rep () const

With parameter fp_default_int_rep.

std::string get_fp_default_long_rep () const

Get the value of fp_default_long_rep.

bool with_fp_default_long_rep () const

With parameter fp_default_long_rep.

• std::string get_fp_expression () const

Get the value of fp_expression.

• bool with_fp_expression () const

With parameter fp_expression.

• int get_fp_expression_source () const

Get the value of fp_expression_source.

• bool with_fp_expression_source () const

With parameter fp_expression_source.

• std::string **get_fp_representations** () const

Get the value of fp_representations.

· bool with_fp_representations () const

With parameter fp_representations.

• std::string get fp representations path () const

Get the value of fp_representations_path.

bool with_fp_representations_path () const

With parameter fp_representations_path.

• int get_fp_representations_source () const

Get the value of fp_representations_source.

bool with_fp_representations_source () const

With parameter fp_representations_source.

• int get_function () const

Get the value of function.

· bool with_function () const

With parameter function.

• int get_num_iterations () const

Get the value of num_iterations.

· bool with num iterations () const

With parameter num_iterations.

• int get_num_threads () const

Get the value of num_threads.

bool with_num_threads () const

With parameter num_threads.

• std::string get_path () const

Get the value of path.

• bool with_path () const

With parameter path.

• int get_rep_categorical_representation () const

Get the value of rep_categorical_representation.

• bool with_rep_categorical_representation () const

With parameter rep_categorical_representation.

• int get_rep_num_additional_bits () const

Get the value of rep_num_additional_bits.

bool with_rep_num_additional_bits () const

With parameter rep_num_additional_bits.

· unsigned get seed () const

Get the value of seed.

bool with_seed () const

With parameter seed.

• bool with_ea_allow_no_mutation () const

With the flag ea_allow_no_mutation.

· bool with_fn_display () const

With the flag fn_display.

• bool with fn get bv size () const

With the flag fn_get_bv_size.

bool with_fn_get_output_size () const

With the flag fn_get_output_size.

· bool with print default parameters () const

With the flag print_default_parameters.

bool with_print_description () const

With the flag print_description.

bool with print parameters () const

With the flag print_parameters.

bool with_print_pareto_front () const

With the flag print_pareto_front.

Private Member Functions

void print_help (std::ostream &stream) const

Print help message.

void print help fn (std::ostream &stream) const

Print help message for section fn.

• void print help fp (std::ostream &stream) const

Print help message for section fp.

void print_help_rep (std::ostream &stream) const

Print help message for section rep.

void print_help_alg (std::ostream &stream) const

Print help message for section alg.

void print_help_ea (std::ostream &stream) const

Print help message for section ea.

void print_version (std::ostream &stream) const

Print version.

Private Attributes

• std::string _exec_name

Name of the executable.

• std::string _version = "0.23"

Name Version.

• int _algorithm = 100

Type of algorithm.

• int _bv_size = 100

Size of bit vectors.

• double _ea_crossover_probability = 0.8

Crossover probability.

• int _ea_mu = 100

Parent population size.

double _ea_mutation_rate = 1

Mutation rate relative to bv_size.

• int **_ea_tournament_size** = 2

Tournament size.

• std::string _fn_name

Name of the function in the dynamic library.

• double _fp_default_double_precision

Default precision of double representations.

• std::string _fp_default_double_rep = "double(0, 1, precision = 1e-3)"

Default representation for double.

• int _fp_default_double_size

Default size of double representations.

• std::string _fp_default_int_rep = "int(1, 100)"

Default representation for int.

• std::string **_fp_default_long_rep** = "long(1, 100)"

Default representation for long.

• std::string **_fp_expression** = "A := sin(x) + cos(y); A :: B := $sqrt(x^2 + y^2)$; B"

Mathematical expression (list of objectives separated by ::)

• int **_fp_expression_source** = 0

Source for the expression to parse.

• std::string _fp_representations

Representations. Example: "x: double(0, 1); y: double(0, 1, precision = 1e-3); z: double(0, 1, size = 8); u: int(-100, 100); v: long(1, 10000)".

std::string _fp_representations_path = "representations.txt"

Path of the representations file.

• int fp representations source = 0

Source for the representations.

• int _function = 180

Type of function.

• int _num_iterations = 100

Number of iterations.

• int _num_threads = 1

Number of threads.

• std::string _path = "function.txt"

Path of a function file.

• int _rep_categorical_representation = 0

Categorical representation.

• int _rep_num_additional_bits = 2

Number of additional bits per element for permutation representation.

• unsigned _seed

Seed for the random number generator.

• bool _ea_allow_no_mutation = false

Allow no mutation with standard bit mutation.

• bool _fn_display = false

Display the function and exit.

bool _fn_get_bv_size = false

Print the size of bit vectors.

• bool _fn_get_output_size = false

Print the number of objectives.

• bool _print_default_parameters = false

Print the parameters and exit.

• bool _print_description = false

Print a description of the solution.

bool _print_parameters = false

Print the parameters.

• bool _print_pareto_front = false

Print the Pareto front.

Friends

std::ostream & operator<< (std::ostream &, const HncoOptions &)

Print a header containing the parameter values.

5.54.1 Detailed Description

Command line options for hnco-mo.

Definition at line 12 of file hnco-mo-options.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/multiobjective/app/hnco-mo-options.hh
- · lib/hnco/multiobjective/app/hnco-mo-options.cc

5.55 Human Class Reference

Human

#include <hnco/algorithms/human.hh>

Inheritance diagram for Human:

Public Member Functions

• Human (int n)

Constructor.

Protected Member Functions

void parse_bit_vector ()
 Parse bit vector.

Loop

- void **init** () override Initialize.
- void **iterate** () override Single iteration.

Protected Attributes

• bit_vector_t _candidate Candidate.

5.55.1 Detailed Description

Human

Definition at line 32 of file human.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/human.hh
- lib/hnco/algorithms/human.cc

5.56 Hypercubelterator Class Reference

Hypercube iterator.

#include <hnco/iterator.hh>

Inheritance diagram for Hypercubelterator:

Public Member Functions

• Hypercubelterator (int n)

Constructor.

• bool has_next () override

Has next bit vector.

const bit_vector_t & next () override

Next bit vector.

Additional Inherited Members

5.56.1 Detailed Description

Hypercube iterator.

Implemented as a simple binary adder.

Definition at line 69 of file iterator.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/iterator.hh
- · lib/hnco/iterator.cc

5.57 Implementation Struct Reference

Implementation

#include <hnco/algorithms/fast-efficient-p3/implementation.hh>

Public Attributes

· Configuration configuration

Configuration.

• std::shared_ptr< HncoEvaluator > evaluator

Evaluator.

std::shared_ptr< Middle_Layer > middle_layer
 Middle layer.

5.57.1 Detailed Description

Implementation

Definition at line 37 of file implementation.hh.

The documentation for this struct was generated from the following file:

· lib/hnco/algorithms/fast-efficient-p3/implementation.hh

5.58 InformationTheoreticEa Class Reference

Information-theoretic evolutionary algorithm.

#include <hnco/algorithms/ea/it-ea.hh>

Inheritance diagram for InformationTheoreticEa:

Classes

struct Replacement

Selection for replacement.

Public Member Functions

• InformationTheoreticEa (int n, int population_size)

Constructor.

Setters

• void set selection size (int n)

Set the selection size.

void set_learning_rate (double r)

Set the learning rate.

void set_mutation_rate_init (double r)

Set the initial mutation rate.

• void **set_mutation_rate_min** (double r)

Set the minimum mutation rate.

void set_mutation_rate_max (double r)

Set the maximum mutation rate.

void set_replacement (int n)

Set replacement.

void set initial hamming weight (int n)

Set the initial Hamming weight.

void set allow no mutation (bool b)

Allow no mutation.

Setters for logging

• void set_log_mutation_rate (bool b)

Log mutation rate.

void set_log_center_fitness (bool b)

Log center fitness.

Protected Member Functions

void set_something_to_log ()

Set flag for something to log.

• void compute_masks (bool equivalent_individuals, std::pair< int, int > range, double c)

Compute masks.

• void **ml_update** (bool equivalent_individuals, std::pair< int, int > range, double c)

ML update.

• void incremental_ml_update (bool equivalent_individuals, std::pair< int, int > range, double c)

Incremental ML update.

void igo_update (bool equivalent_individuals, std::pair< int, int > range, double c)

IGO update.

Loop

· void init () override

Initialization.

· void iterate () override

Single iteration.

void log () override

Log.

Protected Attributes

• Population _population

Population

std::vector< bit_vector_t > _masks

Mutation masks.

std::vector< double > _likelihoods

Mutation likelihoods.

• neighborhood::StandardBitMutation_mutation_operator

Mutation operator.

solution_t _center

Center of the search distribution.

• double _mutation_rate

Mutation rate.

Parameters

• int selection size = 1

Selection size.

• double _learning_rate = 0.01

Learning rate.

double _mutation_rate_init

Initial mutation rate.

• double _mutation_rate_min

Minimum mutation rate.

• double _mutation_rate_max = 0.5

Maximum mutation rate.

• int _initial_hamming_weight = 0

Initial Hamming weight.

• int _replacement = Replacement::elitist

Replacement.

• bool _allow_no_mutation = false

Allow no mutation.

Logging

• bool _log_mutation_rate = false

Log entropy.

• bool _log_center_fitness = false

Log center fitness.

5.58.1 Detailed Description

Information-theoretic evolutionary algorithm.

Definition at line 18 of file it-ea.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/ea/it-ea.hh
- · lib/hnco/algorithms/ea/it-ea.cc

5.59 Injection Class Reference

Injection.

#include <hnco/maps/map.hh>

Inheritance diagram for Injection:

Public Member Functions

- Injection (const std::vector < int > &bit_positions, int output_size)
- void map (const bit_vector_t &input, bit_vector_t &output) override
 Map
- int get_input_size () const override Get input size.
- int get_output_size () const override

Get output size.

• bool is_surjective () const override

Check for surjective map.

Private Attributes

- std::vector < int > _bit_positions
 Bit positions.
- int _output_size Output size.

5.59.1 Detailed Description

Injection.

An injection copies the bits of input x to given positions of output y.

Let
$$I = \{i_1, i_2, \dots, i_m\}$$
 be a subset of $\{1, 2, \dots, n\}$.

An injection f from F_2^m to F_2^n , where $n \ge m$, is defined by f(x) = y, where, for all $j \in \{1, 2, \dots, m\}$, $y_{i_j} = x_j$.

If f is a projection and g is an injection with the same bit positions then their composition $f \circ g$ is the identity.

Definition at line 493 of file map.hh.

5.59.2 Constructor & Destructor Documentation

5.59.2.1 Injection()

Constructor.

The input size of the map is given by the size of bit_positions.

Parameters

bit_positions	Bit positions in the output to where input bits are copied
output_size	Output size

Precondition

```
output_size >= bit_positions.size()
```

Definition at line 176 of file map.cc.

The documentation for this class was generated from the following files:

- lib/hnco/maps/map.hh
- lib/hnco/maps/map.cc

5.60 IntegerCategoricalRepresentation Class Reference

Integer categorical representation.

```
#include <hnco/representations/categorical.hh>
```

Public Types

```
    using domain_type = std::size_t
        Domain type.
```

Public Member Functions

• IntegerCategoricalRepresentation (int num_categories)

Constructor.

• int size () const

Size of the representation.

domain_type unpack (const bit_vector_t &bv, int start)

Unpack bit vector into a category.

· void display (std::ostream &stream) const

Display.

Private Attributes

• int _num_categories

Number of categories.

• int _size

Size in bits.

5.60.1 Detailed Description

Integer categorical representation.

Definition at line 142 of file categorical.hh.

5.60.2 Constructor & Destructor Documentation

5.60.2.1 IntegerCategoricalRepresentation()

```
IntegerCategoricalRepresentation (
                int num_categories ) [inline]
```

Constructor.

Parameters

num_categories	Number of categories
----------------	----------------------

Definition at line 160 of file categorical.hh.

The documentation for this class was generated from the following file:

· lib/hnco/representations/categorical.hh

5.61 Iterative Algorithm Class Reference

Iterative search.

#include <hnco/algorithms/iterative-algorithm.hh>

Inheritance diagram for IterativeAlgorithm:

Public Member Functions

• IterativeAlgorithm (int n)

Optimization

Constructor.

void maximize (const std::vector< function::Function * > &functions) override
 Maximize.

Setters

• void set_num_iterations (int x) Set the number of iterations.

Protected Member Functions

Loop

- virtual void init ()
- Initialize.virtual void iterate ()=0
- Single iteration.
 virtual void log ()
 - Log.
- virtual void loop () final Loop.

Protected Attributes

• int _iteration

Current iteration.

• bool _last_iteration = false

Last iteration.

• bool _something_to_log = false

Something to log.

Parameters

```
• int _num_iterations = 0 
Number of iterations.
```

5.61.1 Detailed Description

Iterative search.

Definition at line 32 of file iterative-algorithm.hh.

5.61.2 Constructor & Destructor Documentation

5.61.2.1 IterativeAlgorithm()

```
IterativeAlgorithm (
          int n ) [inline]
```

Constructor.

Parameters

```
n Size of bit vectors
```

Definition at line 83 of file iterative-algorithm.hh.

5.61.3 Member Function Documentation

5.61.3.1 loop()

```
void loop ( ) [final], [protected], [virtual]
```

Loop.

Calls init() then enter the main loop which, at each iteration, calls iterate() then log() only if _something_to_log is true

Definition at line 28 of file iterative-algorithm.cc.

5.61.3.2 maximize()

Maximize.

Calls set_functions() then loop.

Implements Algorithm.

Definition at line 53 of file iterative-algorithm.cc.

5.61.3.3 set_num_iterations()

Set the number of iterations.

Parameters

```
x Number of iterations
```

Warning

 $x \le 0$ means indefinite

Definition at line 109 of file iterative-algorithm.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/iterative-algorithm.hh
- · lib/hnco/algorithms/iterative-algorithm.cc

5.62 Iterative Algorithm Class Reference

Iterative algorithm.

#include <hnco/multiobjective/algorithms/iterative-algorithm.hh>

Inheritance diagram for IterativeAlgorithm:

Public Member Functions

• IterativeAlgorithm (int n, int num_objectives)

Constructor.

Optimization

void minimize (const std::vector< Function * > &functions) override
 Minimize.

Setters

void set_num_iterations (int n)
 Set the number of iterations.

Protected Member Functions

Loop

• virtual void init ()

Initialize.

• virtual void iterate ()=0

Single iteration.

• virtual void log ()

Log.

• virtual void finalize ()

Finalize.

• virtual void loop () final

Loop.

Protected Attributes

• int _iteration

Current iteration.

• bool _last_iteration = false

Last iteration.

• bool _something_to_log = false

Something to log.

Parameters

• int _num_iterations = 0 Number of iterations.

Additional Inherited Members

5.62.1 Detailed Description

Iterative algorithm.

Definition at line 33 of file iterative-algorithm.hh.

5.62.2 Constructor & Destructor Documentation

5.62.2.1 IterativeAlgorithm()

```
IterativeAlgorithm (
          int n,
          int num_objectives ) [inline]
```

Constructor.

Parameters

п	Size of bit vectors
num_objectives	Number of objectives

Definition at line 87 of file iterative-algorithm.hh.

5.62.3 Member Function Documentation

5.62.3.1 loop()

```
void loop ( ) [final], [protected], [virtual]
```

Loop.

Calls init() then enter the main loop which, at each iteration, calls iterate() then log() only if _something_to_log is true

Definition at line 28 of file iterative-algorithm.cc.

5.62.3.2 minimize()

Minimize.

Calls set_functions() then loop.

Implements Algorithm.

Definition at line 43 of file iterative-algorithm.cc.

5.62.3.3 set_num_iterations()

Set the number of iterations.

Parameters

n Number of iterations

Warning

n <= 0 means indefinite

Definition at line 113 of file iterative-algorithm.hh.

The documentation for this class was generated from the following files:

- lib/hnco/multiobjective/algorithms/iterative-algorithm.hh
- lib/hnco/multiobjective/algorithms/iterative-algorithm.cc

5.63 Iterator Class Reference

Iterator over bit vectors

#include <hnco/iterator.hh>

Inheritance diagram for Iterator:

Public Member Functions

• Iterator (int n)

Constructor.

virtual ∼Iterator ()

Destructor.

· virtual void init ()

Initialization.

virtual bool has_next ()=0

Has next bit vector.

• virtual const bit_vector_t & next ()=0

Next bit vector.

Protected Attributes

bit_vector_t _current

Current bit vector.

• bool _initial_state = true

Flag for initial state.

5.63.1 Detailed Description

Iterator over bit vectors

Definition at line 34 of file iterator.hh.

The documentation for this class was generated from the following file:

· lib/hnco/iterator.hh

5.64 Jump Class Reference

Jump.

#include <hnco/functions/collection/jump.hh>

Inheritance diagram for Jump:

Public Member Functions

• Jump (int bv_size, int gap)

Constructor.

int get_bv_size () const override

Get bit vector size.

• bool has_known_maximum () const override

Check for a known maximum.

• double get_maximum () const override

Get the global maximum.

• double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

Private Attributes

• int _bv_size

Bit vector size.

int _gap

Gap.

5.64.1 Detailed Description

Jump.

Reference:

H. Mühlenbein and T. Mahnig. 2001. Evolutionary Algorithms: From Recombination to Search Distributions. In Theoretical Aspects of Evolutionary Computing, Leila Kallel, Bart Naudts, and Alex Rogers (Eds.). Springer Berlin Heidelberg, 135–174.

Definition at line 41 of file jump.hh.

5.65 Labs Class Reference 195

5.64.2 Member Function Documentation

5.64.2.1 get_maximum()

```
double get_maximum ( ) const [inline], [override], [virtual]
```

Get the global maximum.

Returns

_bv_size

Reimplemented from Function.

Definition at line 64 of file jump.hh.

5.64.2.2 has_known_maximum()

```
bool has_known_maximum ( ) const [inline], [override], [virtual]
```

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 60 of file jump.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/collection/jump.hh
- lib/hnco/functions/collection/jump.cc

5.65 Labs Class Reference

Low autocorrelation binary sequences.

```
#include <hnco/functions/collection/labs.hh>
```

Inheritance diagram for Labs:

Public Member Functions

· Labs (int n)

Constructor.

void set_merit_factor_flag (bool b)

Set merit factor flag.

int get_bv_size () const override

Get bit vector size.

double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

Protected Member Functions

double compute_autocorrelation (const bit_vector_t &)

Compute autocorrelation.

Protected Attributes

• std::vector< int > _sequence

Binary sequence written using 1 and -1.

• bool _merit_factor_flag = false

Merit factor flag.

5.65.1 Detailed Description

Low autocorrelation binary sequences.

Reference:

S Mertens. 1996. Exhaustive search for low-autocorrelation binary sequences. Journal of Physics A: Mathematical and General 29, 18 (1996), L473.

```
http://stacks.iop.org/0305-4470/29/i=18/a=005
```

If $_merit_factor_flag$ is true then the function returns n / (2 * autocorrelation) else it returns -autocorrelation.

Definition at line 44 of file labs.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/labs.hh
- lib/hnco/functions/collection/labs.cc

5.66 LastEvaluation Class Reference

Last evaluation.

#include <hnco/exception.hh>

Inherits runtime_error.

5.66.1 Detailed Description

Last evaluation.

Definition at line 33 of file exception.hh.

The documentation for this class was generated from the following file:

· lib/hnco/exception.hh

5.67 LeadingOnes Class Reference

Leading ones.

#include <hnco/functions/collection/theory.hh>

Inheritance diagram for LeadingOnes:

Public Member Functions

• LeadingOnes (int bv_size)

Constructor.

• int get_bv_size () const override

Get bit vector size.

• double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

• bool has_known_maximum () const override

Check for a known maximum.

• double get_maximum () const override

Get the global maximum.

Private Attributes

• int _bv_size

Bit vector size.

5.67.1 Detailed Description

Leading ones.

Reference:

Thomas Jansen, Analyzing Evolutionary Algorithms. Springer, 2013.

Definition at line 100 of file theory.hh.

5.67.2 Member Function Documentation

5.67.2.1 get_maximum()

```
double get_maximum ( ) const [inline], [override], [virtual]
```

Get the global maximum.

Returns

_bv_size

Reimplemented from Function.

Definition at line 123 of file theory.hh.

5.67.2.2 has_known_maximum()

```
bool has_known_maximum ( ) const [inline], [override], [virtual]
```

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 119 of file theory.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/theory.hh
- lib/hnco/functions/collection/theory.cc

5.68 LinearCategoricalRepresentation Class Reference

Linear categorical representation.

#include <hnco/representations/categorical.hh>

Public Types

using domain_type = std::size_t
 Domain type.

Public Member Functions

LinearCategoricalRepresentation (int num_categories)

Constructor.

· int size () const

Size of the representation.

domain_type unpack (const bit_vector_t &bv, int start)

Unpack bit vector into a category.

· void display (std::ostream &stream) const

Display.

Private Attributes

· int _num_categories

Number of categories.

• int _nrows

Number of rows.

• int _ncols

Number of columns.

bit matrix t A

Linear code as a bit matrix.

bit_vector_t _y

Output category.

bit_vector_t _x

Input bit vector.

5.68.1 Detailed Description

Linear categorical representation.

Definition at line 42 of file categorical.hh.

5.68.2 Constructor & Destructor Documentation

5.68.2.1 LinearCategoricalRepresentation()

```
LinearCategoricalRepresentation (
                int num_categories ) [inline]
```

Constructor.

Parameters

num_categories	Number of categories
----------------	----------------------

Definition at line 72 of file categorical.hh.

The documentation for this class was generated from the following file:

• lib/hnco/representations/categorical.hh

5.69 LinearFunction Class Reference

Linear function.

#include <hnco/functions/collection/linear-function.hh>

Inheritance diagram for LinearFunction:

Public Member Functions

· LinearFunction ()

Constructor.

Instance generators

- template < class Generator > void generate (int n, Generator generator)
 - Instance generator.
- void random (int n)

Random instance.

Load and save instance

- void load (std::string path)
 - Load instance.
- void save (std::string path) const

Save instance.

Evaluation

• double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

double evaluate_incrementally (const bit_vector_t &x, double v, const hnco::sparse_bit_vector_t &flipped bits) override

Incrementally evaluate a bit vector.

Information about the function

• int get_bv_size () const override

Get bit vector size.

· double get_maximum () const override

Get the global maximum.

• bool has known maximum () const override

Check for a known maximum.

· bool provides_incremental_evaluation () const override

Check whether the function provides incremental evaluation.

 void display (std::ostream &stream) const override Display.

Private Member Functions

template < class Archive >
void serialize (Archive & ar, const unsigned int version)
 Serialize.

Private Attributes

std::vector< double > _weights
 Weights.

5.69.1 Detailed Description

Linear function.

Definition at line 39 of file linear-function.hh.

5.69.2 Member Function Documentation

5.69.2.1 generate()

```
void generate (  \mbox{int } n, \\ \mbox{Generator } generator ) \mbox{ [inline]}
```

Instance generator.

Parameters

n	Size of bit vectors
generator	Weight generator

Definition at line 70 of file linear-function.hh.

5.69.2.2 has_known_maximum()

```
bool has_known_maximum ( ) const [inline], [override], [virtual]
```

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 135 of file linear-function.hh.

5.69.2.3 load()

Load instance.

Parameters

path	Path of the instance to load
------	------------------------------

Exceptions

```
std::runtime_error
```

Definition at line 99 of file linear-function.hh.

5.69.2.4 provides_incremental_evaluation()

```
bool provides_incremental_evaluation ( ) const [inline], [override], [virtual]
```

Check whether the function provides incremental evaluation.

Returns

true

Reimplemented from Function.

Definition at line 140 of file linear-function.hh.

5.69.2.5 random()

Random instance.

The weights are sampled from the normal distribution.

Parameters

```
n Size of bit vectors
```

Definition at line 82 of file linear-function.hh.

5.69.2.6 save()

Save instance.

Parameters

path Path of the instance to save

Exceptions

std::runtime_error

Definition at line 106 of file linear-function.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/linear-function.hh
- lib/hnco/functions/collection/linear-function.cc

5.70 LinearMap Class Reference

Linear map.

#include <hnco/maps/map.hh>

Inheritance diagram for LinearMap:

Public Member Functions

• void random (int rows, int cols, bool surjective)

Random instance.

void map (const bit_vector_t &input, bit_vector_t &output) override

• int get_input_size () const override

Get input size.

• int get_output_size () const override

Get output size.

• bool is_surjective () const override

Check for surjective map.

Load and save map

• void load (std::string path)

Load map.

• void save (std::string path) const

Save map.

Private Member Functions

template < class Archive > void save (Archive & ar, const unsigned int version) const

template < class Archive > void load (Archive & ar, const unsigned int version)
 Load.

Private Attributes

• bit_matrix_t _bm Bit matrix.

5.70.1 Detailed Description

Linear map.

A linear map f from ${\cal F}_2^m$ to ${\cal F}_2^n$ is defined by f(x)=Ax, where A is an n x m bit matrix.

Definition at line 248 of file map.hh.

5.70.2 Member Function Documentation

5.70.2.1 is_surjective()

```
bool is_surjective ( ) const [override], [virtual]
```

Check for surjective map.

Returns

```
true if rank(_bm) == bm_num_rows(_bm)
```

Reimplemented from Map.

Definition at line 110 of file map.cc.

5.70.2.2 load()

Load map.

Parameters

```
path Path of the file
```

Exceptions

```
std::runtime_error
```

Definition at line 311 of file map.hh.

5.70.2.3 random()

```
void random (
                int rows,
                int cols,
                bool surjective )
```

Random instance.

Parameters

rows	Number of rows
cols	Number of columns
surjective	Flag to ensure a surjective map

Exceptions

```
std::runtime_error
```

Definition at line 81 of file map.cc.

5.70.2.4 save()

Save map.

Parameters

```
path Path of the file
```

Exceptions

```
std::runtime_error
```

Definition at line 318 of file map.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/maps/map.hh
- lib/hnco/maps/map.cc

5.71 LocalSearchAlgorithm< Neighborhood > Class Template Reference

Local search algorithm.

#include <hnco/algorithms/ls/local-search-algorithm.hh>

Inheritance diagram for LocalSearchAlgorithm < Neighborhood >:

Public Member Functions

• LocalSearchAlgorithm (int n, Neighborhood *neighborhood)

Constructor.

Setters

• void set_random_initialization (bool b)

Set random initialization.

• void set_starting_point (const bit_vector_t &x)

Set the starting point.

Protected Member Functions

Loop

• void **init** () override Initialize.

Protected Attributes

• bit_vector_t _starting_point

Starting point.

• Neighborhood * _neighborhood

Neighborhood.

Parameters

• bool _random_initialization = true

Random initialization.

5.71.1 Detailed Description

template < class Neighborhood > class hnco::algorithm::LocalSearchAlgorithm < Neighborhood >

Local search algorithm.

Definition at line 33 of file local-search-algorithm.hh.

The documentation for this class was generated from the following file:

· lib/hnco/algorithms/ls/local-search-algorithm.hh

5.72 LogContext Class Reference

Log context.

#include <hnco/logging/log-context.hh>

Inheritance diagram for LogContext:

Public Member Functions

virtual std::string to_string ()=0
 Get context.

5.72.1 Detailed Description

Log context.

A log context gives an algorithm more information about what is going on during optimization than what can be gained through its function. In particular, its function may not be a function controller. Information is provided through a log context in the form of a string.

Definition at line 40 of file log-context.hh.

The documentation for this class was generated from the following file:

• lib/hnco/logging/log-context.hh

5.73 Logger Class Reference

Logger.

#include <hnco/logging/logger.hh>

Public Member Functions

· Logger ()

Default constructor.

Logger (LogContext *context)

Constructor.

• std::ostringstream & line ()

Get the line.

virtual ~Logger ()

Destructor.

Static Public Member Functions

• static std::ostream & stream ()

Get the stream.

• static void set_stream (std::ostream *stream)

Set the stream.

Private Attributes

 std::ostringstream _line Line.

Static Private Attributes

static std::ostream * _stream = &std::cout
 Output stream.

5.73.1 Detailed Description

Logger.

Simple logger inspired by the Log class published in Dr. Dobb's:

```
https://www.drdobbs.com/cpp/logging-in-c/201804215
```

Definition at line 43 of file logger.hh.

5.73.2 Constructor & Destructor Documentation

5.73.2.1 Logger()

Constructor.

The constructor converts the context to a string which it writes at the beginning of the line.

Parameters

context Log context

Definition at line 69 of file logger.hh.

5.73.2.2 ∼Logger()

```
virtual ~Logger ( ) [inline], [virtual]
```

Destructor.

Send the line to the output stream and add an end of line.

Definition at line 81 of file logger.hh.

The documentation for this class was generated from the following files:

- lib/hnco/logging/logger.hh
- lib/hnco/logging/logger.cc

5.74 LongPath Class Reference

Long path.

#include <hnco/functions/collection/long-path.hh>

Inheritance diagram for LongPath:

Public Member Functions

LongPath (int bv_size, int prefix_length)

Constructor.

double evaluate (const bit_vector_t &)

Evaluate a bit vector.

Information about the function

• int get_bv_size () const

Get bit vector size.

• bool has_known_maximum () const

Check for a known maximum.

• double get_maximum () const

Get the global maximum.

Private Attributes

int _bv_size

Bit vector size.

int _prefix_length

Prefix length.

5.74.1 Detailed Description

Long path.

Long paths have been introduced by Jeffrey Horn, David E. Goldberg, and Kalyanmoy Deb. Here we mostly follow the definition given by Thomas Jansen (see references below).

As an example, here is the 2-long path of dimension 4:

- 0000
- 0001
- 0011
- 0111
- 1111
- 1101
- 1100

The fitness is increasing along the path. The fitness on the complementary of the path is defined as a linear function pointing to the beginning of the path.

To help with the detection of maximum, we have dropped the constant n^2 whose sole purpose was to make the function non negative.

References:

Jeffrey Horn, David E. Goldberg, and Kalyanmoy Deb, "Long Path Problems", PPSN III, 1994.

Thomas Jansen, Analyzing Evolutionary Algorithms. Springer, 2013.

Definition at line 62 of file long-path.hh.

5.74.2 Member Function Documentation

5.74.2.1 get_maximum()

```
double get_maximum ( ) const [virtual]
```

Get the global maximum.

Let n be the bit vector size and k the prefix length which must divide n. Then the maximum is $k2^{n/k} - k + 1$.

Exceptions

std::runtime_error

Reimplemented from Function.

Definition at line 62 of file long-path.cc.

5.74.2.2 has_known_maximum()

```
bool has_known_maximum ( ) const [virtual]
```

Check for a known maximum.

Let n be the bit vector size and k the prefix length which must divide n.

We have to check that the maximum can be represented exactly as a double, that is, it must be lower or equal to 2^{53} . We are a little bit more conservative with the following test.

If $\log_2(k) + n/k \le 53$ then returns true else returns false.

Reimplemented from Function.

Definition at line 52 of file long-path.cc.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/long-path.hh
- lib/hnco/functions/collection/long-path.cc

5.75 LowerTriangularWalshMoment2 Struct Reference

Lower triangular Walsh moment.

#include <hnco/algorithms/walsh-moment/walsh-moment.hh>

Public Member Functions

LowerTriangularWalshMoment2 (int n)

Constructor.

void display (std::ostream &stream)

Display Walsh moment.

· void init ()

Initialize Walsh moment.

void add (const bit vector t &bv)

Add a bit vector to a Walsh moment.

• void average (int count)

Average each Walsh moment.

• void update (const LowerTriangularWalshMoment2 &wm, double rate)

Update a Walsh moment.

 void update (const LowerTriangularWalshMoment2 &wm1, const LowerTriangularWalshMoment2 &wm2, double rate)

Update a Walsh moment.

void scaled_difference (double lambda, const LowerTriangularWalshMoment2 &wm1, const LowerTriangularWalshMoment2 &wm2)

Compute a scaled difference between two moments.

void bound (double margin)

Bound Walsh moment.

• double norm_1 () const

1-norm of the Walsh moment

· double norm 2 () const

2-norm of the Walsh moment

• double norm_infinite () const

infinite-norm of the Walsh moment

• double distance (const LowerTriangularWalshMoment2 &wm) const

distance between the Walsh moment and another Walsh moment

Public Attributes

std::vector< double > first_moment

First moment

std::vector< std::vector< double >> second_moment

Second moment.

5.75.1 Detailed Description

Lower triangular Walsh moment.

Definition at line 37 of file walsh-moment.hh.

5.75.2 Constructor & Destructor Documentation

5.75.2.1 LowerTriangularWalshMoment2()

```
LowerTriangularWalshMoment2 ( int n)
```

Constructor.

Parameters

```
n Size of bit vector
```

Definition at line 32 of file walsh-moment.cc.

5.75.3 Member Function Documentation

5.75.3.1 bound()

```
void bound ( \mbox{double } \mbox{\it margin} \mbox{\ })
```

Bound Walsh moment.

Ensure that the distance from each Walsh moment to the -1/1 bounds is greater or equal to the given margin.

Parameters

```
margin Distance from the -1/1 bounds
```

Definition at line 161 of file walsh-moment.cc.

5.75.3.2 display()

```
void display (
          std::ostream & stream )
```

Display Walsh moment.

A LowerTriangularWalshMoment2 is displayed as a full symmetric matrix with diagonal entries equal to first moments and off-diagonal entries equal to second moments.

Definition at line 43 of file walsh-moment.cc.

5.75.3.3 scaled_difference()

Compute a scaled difference between two moments.

This member function implements:

```
self = lambda * wm1 - wm2
```

It is mostly useful in herding (Hea).

Parameters

lambda	Scale
wm1	First Walsh moment
wm2	Second Walsh moment

Definition at line 142 of file walsh-moment.cc.

5.75.3.4 update() [1/2]

Update a Walsh moment.

This member function implements:

```
self += rate * (wm1 - self)
```

Parameters

wm	Target Walsh moment
rate	Learning rate

Postcondition

```
\label{lem:cond_moment_interval} For all i, is_in_interval(first_moment[i], -1, 1) \\ For all j < i, is_in_interval(second_moment[i][j], -1, 1) \\
```

Definition at line 104 of file walsh-moment.cc.

5.75.3.5 update() [2/2]

Update a Walsh moment.

This member function implements:

```
self += rate * (wm1 - wm2)
```

The resulting entries are not necessarily those of a Walsh moment, that is

```
is_in_interval(first_moment[i], -1, 1) or
```

```
is_in_interval(second_moment[i][j], -1, 1)
```

might fail for some i, j.

Parameters

wm1	Target Walsh moment
wm2	Walsh moment to move away from
rate	Learning rate

Definition at line 122 of file walsh-moment.cc.

The documentation for this struct was generated from the following files:

- lib/hnco/algorithms/walsh-moment/walsh-moment.hh
- · lib/hnco/algorithms/walsh-moment/walsh-moment.cc

5.76 LowerTriangularWalshMoment2GibbsSampler Class Reference

Gibbs sampler with lower triangular Walsh moments.

#include <hnco/algorithms/walsh-moment/gibbs-sampler.hh>

Public Types

using Moment = LowerTriangularWalshMoment2
 Walsh moment type.

Public Member Functions

- LowerTriangularWalshMoment2GibbsSampler (int n, const LowerTriangularWalshMoment2 &mp)
 - Constructor.
- · void init ()

Initialize.

• void update (int i)

Update state.

void update_sync ()

Update state synchronously.

• const bit_vector_t & get_state ()

Get the state of the Gibbs sampler.

Private Attributes

• const LowerTriangularWalshMoment2 & _model_parameters

Model parameters.

bit_vector_t _state

State of the Gibbs sampler.

pv_t _pv

Probability vector for synchronous Gibbs sampling.

5.76.1 Detailed Description

Gibbs sampler with lower triangular Walsh moments.

Definition at line 38 of file gibbs-sampler.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/walsh-moment/gibbs-sampler.hh
- · lib/hnco/algorithms/walsh-moment/gibbs-sampler.cc

5.77 LowerTriangularWalshMoment2Herding Class Reference

Herding with lower triangular Walsh moment.

#include <hnco/algorithms/walsh-moment/herding.hh>

Public Types

using Moment = LowerTriangularWalshMoment2
 Walsh moment type.

Public Member Functions

LowerTriangularWalshMoment2Herding (int n)

Constructor.

· void init ()

Initialization.

void sample (const LowerTriangularWalshMoment2 &target, bit_vector_t &x)

Sample a bit vector.

• double error (const LowerTriangularWalshMoment2 &target)

Compute the error.

Getters

 const LowerTriangularWalshMoment2 & get_delta () const Get delta.

Setters

void set_randomize_bit_order (bool x)

Randomize bit order.

Protected Attributes

• LowerTriangularWalshMoment2 _delta

Delta moment.

• LowerTriangularWalshMoment2 _count

Counter moment.

• LowerTriangularWalshMoment2 _error

Error moment.

• permutation_t _permutation

Permutation.

• int _time

Time.

Parameters

• bool **_randomize_bit_order** = false Randomize bit order.

5.77.1 Detailed Description

Herding with lower triangular Walsh moment.

Definition at line 37 of file herding.hh.

5.77.2 Constructor & Destructor Documentation

5.77.2.1 LowerTriangularWalshMoment2Herding()

Constructor.

Parameters

n Size of bit vectors

Definition at line 74 of file herding.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/walsh-moment/herding.hh
- · lib/hnco/algorithms/walsh-moment/herding.cc

5.78 Ltga Class Reference

Linkage Tree Genetic Algorithm.

#include <hnco/algorithms/fast-efficient-p3/ltga.hh>

Inheritance diagram for Ltga:

Public Member Functions

• Ltga (int n)

Constructor.

• \sim Ltga ()

Destructor.

void maximize (const std::vector< function::Function * > &functions)

Maximize.

· void finalize ()

Finalize.

void set_population_size (int n)

Set population size.

Private Attributes

• Implementation * _pimpl

Pointer to implementation.

• int _population_size = 10

Population size.

Additional Inherited Members

5.78.1 Detailed Description

Linkage Tree Genetic Algorithm.

Implementation of the Linkage Tree Genetic Algorithm Designed to match the variant in the paper: "Hierarchical problem solving with the linkage tree genetic algorithm" by D. Thierens and P. A. N. Bosman

Author: Brian W. Goldman

Integrated into HNCO by Arnaud Berny

Definition at line 47 of file ltga.hh.

5.78.2 Member Data Documentation

5.78.2.1 _pimpl

Implementation* _pimpl [private]

Pointer to implementation.

The main motivation for this pattern is to avoid including declarations from fast_efficient_p3 into the global namespace.

A raw pointer is used instead of a unique_ptr because the latter will not compile with pybind11.

Definition at line 57 of file ltga.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/fast-efficient-p3/ltga.hh
- lib/hnco/algorithms/fast-efficient-p3/ltga.cc

5.79 Map Class Reference

Мар

#include <hnco/maps/map.hh>

Inheritance diagram for Map:

Public Member Functions

• virtual \sim Map ()

Destructor.

• virtual void map (const bit_vector_t &input, bit_vector_t &output)=0

Mag

• virtual int get_input_size () const =0

Get input size.

• virtual int get_output_size () const =0

Get output size.

• virtual bool is_surjective () const

Check for surjective map.

virtual void display (std::ostream &stream) const

Display.

5.79.1 Detailed Description

Мар

Definition at line 46 of file map.hh.

5.79.2 Member Function Documentation

5.79.2.1 is_surjective()

```
virtual bool is_surjective ( ) const [inline], [virtual]
```

Check for surjective map.

Returns

false

Reimplemented in Translation, Permutation, LinearMap, AffineMap, MapComposition, Injection, Projection, and TsAffineMap.

Definition at line 66 of file map.hh.

The documentation for this class was generated from the following file:

· lib/hnco/maps/map.hh

5.80 MapComposition Class Reference

Map composition.

#include <hnco/maps/map.hh>

Inheritance diagram for MapComposition:

Public Member Functions

· MapComposition ()

Default constructor.

MapComposition (Map *outer, Map *inner)

Constructor.

void map (const bit_vector_t &input, bit_vector_t &output) override

Мар

• int **get_input_size** () const override

Get input size.

• int **get_output_size** () const override

Get output size.

• bool is_surjective () const override

Check for surjective map.

Private Attributes

Map * _outer

Outer map.

Map * _inner

Inner map.

bit_vector_t _bv

Temporary bit vector.

5.80.1 Detailed Description

Map composition.

The resulting composition f is defined for all bit vector x by f(x) = outer(inner(x)).

Definition at line 424 of file map.hh.

5.80.2 Constructor & Destructor Documentation

5.80.2.1 MapComposition()

Constructor.

Parameters

outer	outer map
inner	inner map

Precondition

```
outer->get_input_size() == inner->get_output_size()
```

Definition at line 448 of file map.hh.

5.80.3 Member Function Documentation

5.80.3.1 is_surjective()

```
bool is_surjective ( ) const [inline], [override], [virtual]
```

Check for surjective map.

Returns

true if both maps are surjective

Reimplemented from Map.

Definition at line 472 of file map.hh.

The documentation for this class was generated from the following file:

• lib/hnco/maps/map.hh

5.81 MapgenOptions Class Reference

Command line options for mapgen.

#include <mapgen-options.hh>

Public Member Functions

· MapgenOptions ()

Default constructor.

• MapgenOptions (int argc, char *argv[], bool ignore bad options=false)

Constructor.

• int get_input_size () const

Get the value of input_size.

bool with_input_size () const

With parameter input_size.

• int **get_map** () const

Get the value of map.

• bool with_map () const

With parameter map.

• int get_output_size () const

Get the value of output_size.

• bool with_output_size () const

With parameter output_size.

• std::string get_path () const

Get the value of path.

bool with_path () const

With parameter path.

• int **get_seed** () const

Get the value of seed.

bool with_seed () const

With parameter seed.

• int get_ts_length () const

Get the value of ts_length.

• bool with_ts_length () const

With parameter ts_length.

• int get_ts_sampling_mode () const

Get the value of ts_sampling_mode.

• bool with_ts_sampling_mode () const

With parameter ts_sampling_mode.

• bool with_surjective () const

With the flag surjective.

Private Member Functions

• void print_help (std::ostream &stream) const

Print help message.

• void print_version (std::ostream &stream) const

Print version.

Private Attributes

• std::string _exec_name

Name of the executable.

• std::string _version = "0.23"

Name Version.

• int _input_size = 100

Input bit vector size.

• int _map = 1

Type of map.

• int _output_size = 100

Output bit vector size.

• std::string _path = "map.txt"

Path (relative or absolute) of a map file.

• int _seed

Seed for the random number generator.

• int _ts_length = 10

Transvection sequence length.

• int _ts_sampling_mode = 0

Transvection sequence sampling mode.

• bool _surjective = false

Ensure that the sampled linear or affine map is surjective.

Friends

std::ostream & operator<<< (std::ostream &, const MapgenOptions &)

Print a header containing the parameter values.

5.81.1 Detailed Description

Command line options for mapgen.

Definition at line 11 of file mapgen-options.hh.

The documentation for this class was generated from the following files:

- app/mapgen-options.hh
- · app/mapgen-options.cc

5.82 MaxNae3Sat Class Reference

Max not-all-equal 3SAT.

#include <hnco/functions/collection/max-sat.hh>

Inheritance diagram for MaxNae3Sat:

Public Member Functions

MaxNae3Sat ()

Default constructor.

double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

void load (std::string path)

Load instance.

Additional Inherited Members

5.82.1 Detailed Description

Max not-all-equal 3SAT.

Reference:

Christos M. Papadimitriou. 1994. Computational complexity. Addison-Wesley, Reading, Massachusetts.

Definition at line 162 of file max-sat.hh.

5.82.2 Member Function Documentation

5.82.2.1 load()

Load instance.

Parameters

path Path of the instance to load

Exceptions

std::runtime_error

Definition at line 177 of file max-sat.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/max-sat.hh
- lib/hnco/functions/collection/max-sat.cc

5.83 MaxSat Class Reference

MAX-SAT.

#include <hnco/functions/collection/max-sat.hh>

Inheritance diagram for MaxSat:

Public Member Functions

• MaxSat ()

Default constructor.

• void random (int n, int k, int c)

Random instance.

void random (const bit_vector_t &solution, int k, int c)

Random instance with satisfiable expression.

• double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

Additional Inherited Members

5.83.1 Detailed Description

MAX-SAT.

Reference:

Christos M. Papadimitriou. 1994. Computational complexity. Addison-Wesley, Reading, Massachusetts.

Definition at line 119 of file max-sat.hh.

5.83.2 Member Function Documentation

5.83.2.1 random() [1/2]

Random instance with satisfiable expression.

Warning

Since the expression is satisfiable, the maximum of the function is equal to the number of clauses in the expression. However, this information is lost in the save and load cycle as the archive format only manages the expression itself.

Parameters

solution	Solution
k	Number of literals per clause
С	Number of clauses

Definition at line 218 of file max-sat.cc.

5.83.2.2 random() [2/2]

Random instance.

5.84 Mimic Class Reference 229

Parameters

n	Size of bit vectors
k	Number of literals per clause
С	Number of clauses

Definition at line 190 of file max-sat.cc.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/collection/max-sat.hh
- lib/hnco/functions/collection/max-sat.cc

5.84 Mimic Class Reference

Mutual information maximizing input clustering.

#include <hnco/algorithms/mimic.hh>

Inheritance diagram for Mimic:

Public Member Functions

• **Mimic** (int n, int population_size)

Constructor.

Setters

void set_selection_size (int selection_size)
 Set the selection size.

Protected Member Functions

void sample (bit_vector_t &bv)

Sample a bit vector.

void compute_conditional_entropy (int index)

Compute conditional entropy.

void update_model ()

Update model.

Loop

· void init () override

Initialize.

· void iterate () override

Single iteration.

Protected Attributes

• Population _population

Population.

permutation_t _permutation

Permutation.

std::array< pv_t, 2 > _parameters

Model parameters.

pv_t _mean

Mean of selected bit vectors.

std::vector< double > _entropies

Conditional entropies.

std::array< std::array< int, 2 >, 2 > _table

Contingency table.

• double _lower_bound

Lower bound of probability.

• double _upper_bound

Upper bound of probability.

Parameters

int _selection_size

Selection size.

5.84.1 Detailed Description

Mutual information maximizing input clustering.

This implementation differs from the algorithm described in the reference below in that it constrains all probabilities (marginal and conditional) to stay away from the values 0 and 1 by a fixed margin equal to 1 / n, as usually done in algorithms such as Pbil or Umda.

Reference:

Jeremy S. De Bonet and Charles L. Isbell and Jr. and Paul Viola, MIMIC: Finding Optima by Estimating Probability Densities, in Advances in Neural Information Processing Systems, 1996, MIT Press.

Definition at line 52 of file mimic.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/mimic.hh
- · lib/hnco/algorithms/mimic.cc

5.85 MixedIntegerMultivariateFunctionAdapter< Fn, IntRep, FloatRep > Class Template Reference

Mixed-integer multivariate function adapter.

#include <hnco/functions/multivariate-function-adapter.hh>

Inheritance diagram for MixedIntegerMultivariateFunctionAdapter< Fn, IntRep, FloatRep >:

Public Types

• using function_type = Fn

Function type

• using int_rep_type = IntRep

Integer type.

using float_rep_type = FloatRep

Float type.

Public Member Functions

MixedIntegerMultivariateFunctionAdapter (Fn *fn, std::vector< IntRep > int_reps, std::vector< FloatRep > float_reps, std::vector< std::pair< bool, int > > lut)

Constructor.

Information about the function

int get_bv_size () const override
 Get bit vector size.

Evaluation

 double evaluate (const bit_vector_t &bv) override Evaluate.

Display

- void display (std::ostream &stream) const override

 Display
- void describe (const bit_vector_t &bv, std::ostream &stream) override
 Describe a bit vector.

Private Member Functions

void unpack (const bit_vector_t &bv)
 Unpack a bit vector into values.

Private Attributes

Fn * _function

Multivariate function.

std::vector< IntRep > _int_reps

Integer representations.

std::vector< FloatRep > _float_reps

Float representations.

std::vector< typename Fn::domain_type > _variables

Variables

std::vector< std::pair< bool, int >> _lut
 Lookup table.

5.85.1 Detailed Description

```
template<typename Fn, typename IntRep, typename FloatRep> class hnco::function::MixedIntegerMultivariateFunctionAdapter< Fn, IntRep, FloatRep>
```

Mixed-integer multivariate function adapter.

The purpose of this class is to build a regular hnco function from an arbitrary multivariate function. This is achieved using a composition:

- Representations (Rep): hypercube -> domain
- Multivariate function (Fn): product of domains -> double

Definition at line 172 of file multivariate-function-adapter.hh.

5.85.2 Constructor & Destructor Documentation

5.85.2.1 MixedIntegerMultivariateFunctionAdapter()

```
MixedIntegerMultivariateFunctionAdapter (
        Fn * fn,
        std::vector< IntRep > int_reps,
        std::vector< FloatRep > float_reps,
        std::vector< std::pair< bool, int > > lut ) [inline]
```

Constructor.

Parameters

fn	Multivariate function
int_reps	Integer representations
float_reps	Float representations
lut	Lookup table

For each variable, the lookup table tells whether it is an integer or a float, and gives its index in the corresponding representation table, _int_reps or _float_reps.

Definition at line 238 of file multivariate-function-adapter.hh.

The documentation for this class was generated from the following file:

• lib/hnco/functions/multivariate-function-adapter.hh

5.86 MixedIntegerMultivariateFunctionAdapter< Fn, IntRep, FloatRep > Class Template Reference

Mixed-integer multivariate function adapter.

#include <hnco/multiobjective/functions/multivariate-function-adapter.hh>

Inheritance diagram for MixedIntegerMultivariateFunctionAdapter< Fn, IntRep, FloatRep >:

Public Types

• using **function_type** = Fn

Function type.

 using int_rep_type = IntRep Integer type.

 using float_rep_type = FloatRep Float type.

Public Member Functions

MixedIntegerMultivariateFunctionAdapter (Fn *fn, std::vector< IntRep > int_reps, std::vector< FloatRep > float_reps, std::vector< std::pair< bool, int > > lut)

Constructor.

Information about the function

int get_bv_size () const override
 Get bit vector size.

• int get_output_size () const override

Get output size (number of objectives)

Evaluation

void evaluate (const bit_vector_t &bv, value_t &value) override
 Evaluate.

Display

• void **display** (std::ostream &stream) const override

void describe (const bit_vector_t &bv, std::ostream &stream) override
 Describe a bit vector.

Private Member Functions

void unpack (const bit_vector_t &bv)

Unpack a bit vector into values.

Private Attributes

• Fn * _function

Multivariate function.

std::vector< IntRep > _int_reps

Integer representations.

std::vector< FloatRep > _float_reps

Float representations.

std::vector< typename Fn::domain_type > _variables

Variables

• std::vector< std::pair< bool, int >> _lut

Lookup table.

5.86.1 Detailed Description

template<typename Fn, typename IntRep, typename FloatRep> class hnco::multiobjective::function::MixedIntegerMultivariateFunctionAdapter< Fn, IntRep, FloatRep>

Mixed-integer multivariate function adapter.

The purpose of this class is to build a regular hnco function from an arbitrary multivariate function. This is achieved using a composition:

- Representations (Rep): hypercube -> domain
- Multivariate function (Fn): product of domains -> product of codomains (double)

Definition at line 189 of file multivariate-function-adapter.hh.

5.87 Mmas Class Reference 235

5.86.2 Constructor & Destructor Documentation

5.86.2.1 MixedIntegerMultivariateFunctionAdapter()

Constructor.

Parameters

fn	Multivariate function
int_reps	Integer representations
float_reps	Float representations
lut	Lookup table

For each variable, the lookup table tells whether it is an integer or a float, and gives its index in the corresponding representation table, _int_reps or _float_reps.

Definition at line 255 of file multivariate-function-adapter.hh.

The documentation for this class was generated from the following file:

• lib/hnco/multiobjective/functions/multivariate-function-adapter.hh

5.87 Mmas Class Reference

Max-min ant system.

#include <hnco/algorithms/pv/mmas.hh>

Inheritance diagram for Mmas:

Public Member Functions

· Mmas (int n)

Constructor.

Setters

- void set_compare (std::function < bool(double, double) > x)
 Set the binary operator for comparing evaluations.
- void set_learning_rate (double x)

Set the learning rate.

Protected Member Functions

Loop

- void init () override
 - Initialize.
- void iterate () override

Single iteration.

Protected Attributes

bit_vector_t _x

Candidate solution.

Parameters

- std::function< bool(double, double)> _compare = std::greater_equal<double>()

 Binary operator for comparing evaluations.
- double _learning_rate = 1e-3

Learning rate.

5.87.1 Detailed Description

Max-min ant system.

Reference:

Thomas Stützle and Holger H. Hoos. 2000. MAX-MIN Ant System. Future Generation Computer Systems 16, 8 (2000), 889-914.

Definition at line 42 of file mmas.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/pv/mmas.hh
- lib/hnco/algorithms/pv/mmas.cc

5.88 Modifier Class Reference

Function modifier.

#include <hnco/functions/modifiers/modifier.hh>

Inheritance diagram for Modifier:

Public Member Functions

Modifier (Function *function)
 Constructor.

Additional Inherited Members

5.88.1 Detailed Description

Function modifier.

Definition at line 39 of file modifier.hh.

The documentation for this class was generated from the following file:

· lib/hnco/functions/modifiers/modifier.hh

5.89 MuCommaLambdaEa Class Reference

(mu, lambda) EA.

#include <hnco/algorithms/ea/mu-comma-lambda-ea.hh>

Inheritance diagram for MuCommaLambdaEa:

Public Member Functions

MuCommaLambdaEa (int n, int mu, int lambda)
 Constructor.

Setters

- void **set_mutation_rate** (double p)
 - Set the mutation rate.
- void set_allow_no_mutation (bool b)

Set the flag _allow_no_mutation.

Protected Member Functions

Loop

- void **init** () override Initialize.
- void iterate () override Single iteration.

Protected Attributes

Population _parents

Parents.

• Population _offsprings

Offsprings.

• CommaSelection _comma_selection

Comma selection.

• neighborhood::StandardBitMutation _mutation

Mutation operator.

std::uniform_int_distribution < int > _select_parent
 Select parent.

Parameters

• double _mutation_rate

Mutation rate.

• bool _allow_no_mutation = false

Allow no mutation.

5.89.1 Detailed Description

(mu, lambda) EA.

Reference:

Thomas Jansen, Analyzing Evolutionary Algorithms. Springer, 2013.

Definition at line 43 of file mu-comma-lambda-ea.hh.

5.89.2 Constructor & Destructor Documentation

5.89.2.1 MuCommaLambdaEa()

```
MuCommaLambdaEa (
        int n,
        int mu,
        int lambda ) [inline]
```

Constructor.

Parameters

n	Size of bit vectors
mu	Parent population size
lambda	Offspring population size

Definition at line 94 of file mu-comma-lambda-ea.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/ea/mu-comma-lambda-ea.hh
- lib/hnco/algorithms/ea/mu-comma-lambda-ea.cc

5.90 MultiBitFlip Class Reference

Multi bit flip.

#include <hnco/neighborhoods/neighborhood.hh>

Inheritance diagram for MultiBitFlip:

Public Member Functions

MultiBitFlip (int n)

Constructor.

Protected Member Functions

void bernoulli_trials (int k)

Sample a given number of bits using Bernoulli trials.

• void rejection_sampling (int k)

Sample a given number of bits using rejection sampling.

Additional Inherited Members

5.90.1 Detailed Description

Multi bit flip.

Definition at line 185 of file neighborhood.hh.

5.90.2 Constructor & Destructor Documentation

5.90.2.1 MultiBitFlip()

```
MultiBitFlip (
          int n ) [inline]
```

Constructor.

Parameters

n Size of bit vectors

Definition at line 208 of file neighborhood.hh.

5.90.3 Member Function Documentation

5.90.3.1 bernoulli_trials()

```
\begin{tabular}{ll} \beg
```

Sample a given number of bits using Bernoulli trials.

Parameters

k Number of bits to sample

Definition at line 34 of file neighborhood.cc.

5.90.3.2 rejection_sampling()

```
void rejection_sampling (  \qquad \qquad \text{int } k \text{ )} \quad [\texttt{protected}]
```

Sample a given number of bits using rejection sampling.

Parameters

k Number of bits to sample

Definition at line 52 of file neighborhood.cc.

The documentation for this class was generated from the following files:

- lib/hnco/neighborhoods/neighborhood.hh
- lib/hnco/neighborhoods/neighborhood.cc

5.91 MultivariateFunctionAdapter< Fn, Rep, Conv > Class Template Reference

Multivariate function adapter.

#include <hnco/functions/multivariate-function-adapter.hh>

Inheritance diagram for MultivariateFunctionAdapter< Fn, Rep, Conv >:

Public Types

- using function_type = Fn
 - Function type
- using representation_type = Rep

Representation type.

• using converter_type = Conv

Converter type.

Public Member Functions

MultivariateFunctionAdapter (Fn *fn, std::vector< Rep > reps)
 Constructor.

Information about the function

• int **get_bv_size** () const override Get bit vector size.

Evaluation

 double evaluate (const bit_vector_t &bv) override Evaluate.

Display

- void display (std::ostream &stream) const override Display.
- void describe (const bit_vector_t &bv, std::ostream &stream) override
 Describe a bit vector.

Private Member Functions

void unpack (const bit_vector_t &bv)
 Unpack a bit vector into values.

Private Attributes

Fn * function

Multivariate function.

std::vector< Rep > _representations

Representations.

std::vector< typename Fn::domain_type > _variables

Variables

Conv _converter

Converter from codomain to double.

5.91.1 Detailed Description

```
template<class Fn, class Rep, class Conv> class hnco::function::MultivariateFunctionAdapter< Fn, Rep, Conv>
```

Multivariate function adapter.

The purpose of this class is to build a regular hnco function from an arbitrary multivariate function. This is achieved using a composition:

- Representations (Rep): hypercube -> domain
- Multivariate function (Fn): product of domains -> codomain
- Converter (Conv): codomain -> double

Definition at line 47 of file multivariate-function-adapter.hh.

5.91.2 Constructor & Destructor Documentation

5.91.2.1 MultivariateFunctionAdapter()

```
MultivariateFunctionAdapter (
          Fn * fn,
           std::vector< Rep > reps ) [inline]
```

Constructor.

Parameters

fn	Multivariate function
reps	Representations

Definition at line 96 of file multivariate-function-adapter.hh.

The documentation for this class was generated from the following file:

• lib/hnco/functions/multivariate-function-adapter.hh

5.92 MultivariateFunctionAdapter< Fn, Rep, Conv> Class Template Reference

Multivariate function adapter.

#include <hnco/multiobjective/functions/multivariate-function-adapter.hh>

Inheritance diagram for MultivariateFunctionAdapter< Fn, Rep, Conv >:

Public Types

• using **function_type** = Fn

Function type.

• using representation_type = Rep

Representation type.

• using converter_type = Conv

Converter type.

Public Member Functions

MultivariateFunctionAdapter (Fn *fn, std::vector< Rep > reps)
 Constructor.

Information about the function

• int get_bv_size () const override

Get bit vector size.

• int get_output_size () const override

Get output size (number of objectives)

Evaluation

void evaluate (const bit_vector_t &bv, value_t &value) override
 Evaluate.

Display

void display (std::ostream &stream) const override

Display.

void describe (const bit_vector_t &bv, std::ostream &stream) override

Describe a bit vector.

Private Member Functions

void unpack (const bit_vector_t &bv)

Unpack a bit vector into variables.

Private Attributes

Fn * _function

Multivariate function.

• std::vector< Rep > _representations

Representations.

std::vector< typename Fn::domain_type > _variables

Variables

std::vector< typename Fn::codomain_type > _codomain_value

Codomain value.

· Conv_converter

Converter from codomain to double.

5.92.1 Detailed Description

template < class Fn, class Rep, class Conv > class hnco::multiobjective::function::MultivariateFunctionAdapter < Fn, Rep, Conv >

Multivariate function adapter.

The purpose of this class is to build a regular hnco function from an arbitrary multivariate function. This is achieved using a composition:

- Representations (Rep): hypercube -> domain
- Multivariate function (Fn): product of domains -> product of codomains
- Converter (Conv): codomain -> double

Definition at line 49 of file multivariate-function-adapter.hh.

5.92.2 Constructor & Destructor Documentation

5.92.2.1 MultivariateFunctionAdapter()

Constructor.

Parameters

fn	Multivariate function
reps	Representations

Definition at line 102 of file multivariate-function-adapter.hh.

The documentation for this class was generated from the following file:

• lib/hnco/multiobjective/functions/multivariate-function-adapter.hh

5.93 MuPlusLambdaEa Class Reference

(mu+lambda) EA.

#include <hnco/algorithms/ea/mu-plus-lambda-ea.hh>

 $Inheritance\ diagram\ for\ MuPlusLambda Ea:$

Public Member Functions

• MuPlusLambdaEa (int n, int mu, int lambda)

Constructor.

Setters

• void **set mutation** rate (double p)

Set the mutation rate.

void set_allow_no_mutation (bool b)

Set the flag _allow_no_mutation.

Protected Member Functions

Loop

· void init () override

Initialize.

· void iterate () override

Single iteration.

Protected Attributes

· Population _parents

Parents.

• Population _offsprings

Offsprings.

PlusSelection _plus_selection

Plus selection.

• neighborhood::StandardBitMutation _mutation

Mutation operator.

std::uniform_int_distribution< int > _select_parent

Select parent.

Parameters

• double _mutation_rate

Mutation rate.

• bool _allow_no_mutation = false

Allow no mutation.

5.93.1 Detailed Description

(mu+lambda) EA.

Reference:

Thomas Jansen, Analyzing Evolutionary Algorithms. Springer, 2013.

Definition at line 43 of file mu-plus-lambda-ea.hh.

5.93.2 Constructor & Destructor Documentation

5.93.2.1 MuPlusLambdaEa()

Constructor.

Parameters

n	Size of bit vectors	
mu	Parent population size	
lambda	Offspring population size	

Definition at line 94 of file mu-plus-lambda-ea.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/ea/mu-plus-lambda-ea.hh
- lib/hnco/algorithms/ea/mu-plus-lambda-ea.cc

5.94 NearestNeighborlsingModel1 Class Reference

Nearest neighbor Ising model in one dimension.

#include <hnco/functions/collection/ising/nearest-neighbor-ising-model-1. \leftarrow hb>

Inheritance diagram for NearestNeighborIsingModel1:

Public Member Functions

NearestNeighborlsingModel1 ()

Constructor.

void set_periodic_boundary_conditions (bool x)

Set periodic boundary conditions.

Instance generators

template < class CouplingGen, class FieldGen >
 void generate (int n, CouplingGen coupling_gen, FieldGen field_gen)
 Instance generator.

void random (int n)

Random instance.

Load and save instance

void load (std::string path)

Load instance.

• void save (std::string path) const

Save instance.

Evaluation

• double evaluate (const bit vector t &) override

Evaluate a bit vector.

double evaluate_incrementally (const bit_vector_t &x, double v, const sparse_bit_vector_t &flipped_bits)
 override

Incrementally evaluate a bit vector.

Information about the function

• int get_bv_size () const override

Get bit vector size.

• bool provides_incremental_evaluation () const override

Check whether the function provides incremental evaluation.

· void display (std::ostream &stream) const override

Display.

Private Member Functions

template < class Archive > void save (Archive & ar, const unsigned int version) const

Save.

• template<class Archive >

void load (Archive &ar, const unsigned int version)

Load

• void resize (int n)

Resize data structures.

Private Attributes

std::vector< double > _coupling

Coupling with nearest neighbor to the right.

std::vector< double > _field

External field.

bit_vector_t _flipped_bits

Flipped bits.

• bool _periodic_boundary_conditions = false

Periodic boundary conditions.

5.94.1 Detailed Description

Nearest neighbor Ising model in one dimension.

Its expression is of the form

$$f(x) = \sum_{i} J_{i,i+1}(1 - 2x_i)(1 - 2x_{i+1}) + \sum_{i} h_i(1 - 2x_i)$$

or equivalently

$$f(x) = \sum_{i} J_{i,i+1}(-1)^{x_i + x_{i+1}} + \sum_{i} h_i(-1)^{x_i}$$

where $J_{i,i+1}$ is the interaction between adjacent sites i and i+1 and h_i is the external magnetic field interacting with site i.

In the case of periodic boundary conditions, the sum i+1 is $\bmod n$.

Since we are maximizing f or minimizing -f, the expression of f is compatible with what can be found in physics textbooks.

It should be noted that such an Ising model can be represented by a Walsh expansion of degree 2, that is WalshExpansion2.

Reference: https://en.wikipedia.org/wiki/Ising_model

Definition at line 63 of file nearest-neighbor-ising-model-1.hh.

5.94.2 Member Function Documentation

5.94.2.1 evaluate()

Evaluate a bit vector.

Complexity: O(n)

Implements Function.

Definition at line 44 of file nearest-neighbor-ising-model-1.cc.

5.94.2.2 generate()

```
void generate (
          int n,
          CouplingGen coupling_gen,
          FieldGen field_gen ) [inline]
```

Instance generator.

Parameters

n	Size of bit vectors
coupling_gen	Coupling generator
field_gen	External field generator

Definition at line 124 of file nearest-neighbor-ising-model-1.hh.

5.94.2.3 load()

Load instance.

Parameters

path Path of the instance to load	
-----------------------------------	--

Exceptions

```
std::runtime_error
```

Definition at line 158 of file nearest-neighbor-ising-model-1.hh.

5.94.2.4 provides_incremental_evaluation()

```
bool provides_incremental_evaluation ( ) const [inline], [override], [virtual]
```

Check whether the function provides incremental evaluation.

Returns

true

Reimplemented from Function.

Definition at line 199 of file nearest-neighbor-ising-model-1.hh.

5.94.2.5 random()

```
void random ( \quad \text{int } n \text{ ) } \quad [\text{inline}]
```

Random instance.

The weights are sampled from the normal distribution.

Parameters

n Size of bit vector

Definition at line 140 of file nearest-neighbor-ising-model-1.hh.

5.94.2.6 save()

Save instance.

Parameters

path Path of the instance to save

Exceptions

std::runtime_error

Definition at line 165 of file nearest-neighbor-ising-model-1.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/ising/nearest-neighbor-ising-model-1.hh
- lib/hnco/functions/collection/ising/nearest-neighbor-ising-model-1.cc

5.95 NearestNeighborlsingModel2 Class Reference

Nearest neighbor Ising model in two dimensions.

#include <hnco/functions/collection/ising/nearest-neighbor-ising-model-2. \leftarrow hh>

Inheritance diagram for NearestNeighborIsingModel2:

Public Member Functions

NearestNeighborIsingModel2 ()

Constructor.

void set_periodic_boundary_conditions (bool x)

Set periodic boundary conditions.

Instance generators

template < class CouplingGen, class FieldGen >
 void generate (int num_rows, int num_columns, CouplingGen coupling_gen, FieldGen field_gen)
 Instance generator.

void random (int num_rows, int num_columns)

Random instance.

Load and save instance

void load (std::string path)

Load instance.

• void save (std::string path) const

Save instance.

Evaluation

• double evaluate (const bit vector t &) override

Evaluate a bit vector.

double evaluate_incrementally (const bit_vector_t &x, double v, const sparse_bit_vector_t &flipped_bits)
 override

Incrementally evaluate a bit vector.

Information about the function

• int get_bv_size () const override

Get bit vector size.

• bool provides_incremental_evaluation () const override

Check whether the function provides incremental evaluation.

· void display (std::ostream &stream) const override

Display.

Private Member Functions

template < class Archive > void save (Archive & ar, const unsigned int version) const

Save.

• template<class Archive >

void load (Archive &ar, const unsigned int version)

Load.

• void **resize** (int num_rows, int num_columns)

Resize data structures.

Private Attributes

std::vector< std::vector< double >> coupling right

Coupling with nearest neighbor to the right.

std::vector< std::vector< double >> _coupling_below

Coupling with nearest neighbor below.

std::vector< std::vector< double >> _field

External field.

• bit_vector_t _flipped_bits

Flipped bits.

• bool _periodic_boundary_conditions = false

Periodic boundary conditions.

5.95.1 Detailed Description

Nearest neighbor Ising model in two dimensions.

We are considering a rectangular lattice in which each site has (at most) four neighbors (left, right, above, below).

The expression of the function is of the form

$$f(x) = \sum_{(i,j)} J_{ij}(1 - 2x_i)(1 - 2x_j) + \sum_i h_i(1 - 2x_i)$$

or equivalently

$$f(x) = \sum_{(i,j)} J_{ij}(-1)^{x_i + x_j} + \sum_{i} h_i(-1)^{x_i}$$

where the first sum is over adjacent sites (i, j), J_{ij} is the interaction between adjacent sites i and j, and h_i is the external magnetic field interacting with site i.

Since we are maximizing f or minimizing -f, the expression of f is compatible with what can be found in physics textbooks.

It should be noted that such an Ising model can be represented by a Walsh expansion of degree 2, that is WalshExpansion2.

Reference: https://en.wikipedia.org/wiki/Ising_model

Definition at line 65 of file nearest-neighbor-ising-model-2.hh.

5.95.2 Member Function Documentation

5.95.2.1 evaluate()

Evaluate a bit vector.

Complexity: O(n)

Implements Function.

Definition at line 47 of file nearest-neighbor-ising-model-2.cc.

5.95.2.2 generate()

Instance generator.

Parameters

num_rows	Number of rows
num_columns	Number of columns
coupling_gen	Coupling generator
field_gen	External field generator

Definition at line 132 of file nearest-neighbor-ising-model-2.hh.

5.95.2.3 load()

Load instance.

Parameters

path	Path of the instance to load
------	------------------------------

Exceptions

```
std::runtime_error
```

Definition at line 170 of file nearest-neighbor-ising-model-2.hh.

5.95.2.4 provides_incremental_evaluation()

```
bool provides_incremental_evaluation ( ) const [inline], [override], [virtual]
```

Check whether the function provides incremental evaluation.

Returns

true

Reimplemented from Function.

Definition at line 216 of file nearest-neighbor-ising-model-2.hh.

5.95.2.5 random()

```
void random (
                int num_rows,
                int num_columns ) [inline]
```

Random instance.

The weights are sampled from the normal distribution.

Parameters

num_rows	Number of rows
num_columns	Number of columns

Definition at line 152 of file nearest-neighbor-ising-model-2.hh.

5.95.2.6 save()

Save instance.

Parameters

path	Path of the instance to save

Exceptions

std::runtime error

Definition at line 177 of file nearest-neighbor-ising-model-2.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/ising/nearest-neighbor-ising-model-2.hh
- lib/hnco/functions/collection/ising/nearest-neighbor-ising-model-2.cc

5.96 Needle Class Reference

Needle in a haystack.

#include <hnco/functions/collection/theory.hh>

Inheritance diagram for Needle:

Public Member Functions

• Needle (int bv_size)

Constructor.

• int get_bv_size () const override

Get bit vector size.

• double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

bool has_known_maximum () const override

Check for a known maximum.

• double get_maximum () const override

Get the global maximum.

Private Attributes

• int _bv_size

Bit vector size.

5.96.1 Detailed Description

Needle in a haystack.

Reference:

Thomas Jansen, Analyzing Evolutionary Algorithms. Springer, 2013.

Definition at line 135 of file theory.hh.

5.96.2 Member Function Documentation

5.96.2.1 get_maximum()

```
double get_maximum ( ) const [inline], [override], [virtual]
```

Get the global maximum.

Returns

1

Reimplemented from Function.

Definition at line 158 of file theory.hh.

5.96.2.2 has_known_maximum()

```
bool has_known_maximum ( ) const [inline], [override], [virtual]
```

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 154 of file theory.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/theory.hh
- lib/hnco/functions/collection/theory.cc

5.97 Negation Class Reference

Negation.

#include <hnco/functions/modifiers/modifier.hh>

Inheritance diagram for Negation:

Public Member Functions

• **Negation** (Function *function) Constructor.

Information about the function

- int get_bv_size () const override
 Get bit vector size.
- bool provides_incremental_evaluation () const override

 Check whether the function provides incremental evaluation.

Evaluation

- double **evaluate** (const bit_vector_t &) override Evaluate a bit vector.
- double evaluate_incrementally (const bit_vector_t &x, double value, const hnco::sparse_bit_vector_t &flipped_bits) override

Incrementally evaluate a bit vector.

Additional Inherited Members

5.97.1 Detailed Description

Negation.

Use cases:

- · for algorithms which minimize rather than maximize a function
- · for functions one wishes to minimize
- · when minimization is needed inside an algorithm

Definition at line 60 of file modifier.hh.

5.97.2 Member Function Documentation

5.97.2.1 provides_incremental_evaluation()

```
bool provides_incremental_evaluation ( ) const [inline], [override], [virtual]
```

Check whether the function provides incremental evaluation.

Returns

true

Reimplemented from Function.

Definition at line 79 of file modifier.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/modifiers/modifier.hh
- lib/hnco/functions/modifiers/modifier.cc

5.98 Neighborhood Class Reference

Neighborhood.

#include <hnco/neighborhoods/neighborhood.hh>

Inheritance diagram for Neighborhood:

Public Member Functions

• Neighborhood (int n)

Constructor.

virtual ~Neighborhood ()

Destructor.

virtual void set_origin (const bit_vector_t &x)

Set the origin.

virtual const bit_vector_t & get_origin () const

Get the origin.

• virtual const bit_vector_t & get_candidate () const

Get the candidate bit vector.

virtual const sparse_bit_vector_t & get_flipped_bits () const

Get flipped bits.

• virtual void propose ()

Propose a candidate bit vector.

· virtual void keep ()

Keep the candidate bit vector.

• virtual void forget ()

Forget the candidate bit vector.

virtual void mutate (bit_vector_t &bv)

Mutate.

virtual void map (const bit_vector_t &input, bit_vector_t &output)

Мар.

Protected Member Functions

• virtual void sample_bits ()=0

Sample bits.

Protected Attributes

· bit_vector_t _origin

Origin of the neighborhood.

bit_vector_t _candidate

candidate bit vector

• $std::uniform_int_distribution < int > _index_dist$

Index distribution.

• sparse_bit_vector_t _flipped_bits

Flipped bits.

5.98.1 Detailed Description

Neighborhood.

A neighborhood maintains two points, _origin and _candidate. They are initialized in the same state by set_origin. A Neighborhood class must implement the member function sample_bits which samples the bits to flip in _origin to get a _candidate. The following member functions take care of the modifications:

```
· propose: flip _candidate
```

- · keep: flip _origin
- · forget flip _candidate

After keep or forget, _origin and _candidate are in the same state again.

A Neighborhood class can also behave as a mutation operator through the member functions mutate and map.

Definition at line 61 of file neighborhood.hh.

5.98.2 Constructor & Destructor Documentation

5.98.2.1 Neighborhood()

```
Neighborhood (
          int n ) [inline]
```

Constructor.

Parameters

```
n Size of bit vectors
```

Definition at line 86 of file neighborhood.hh.

5.98.3 Member Function Documentation

5.98.3.1 map()

Мар.

The output bit vector is a mutated version of the input bit vector.

Parameters

input	Input bit vector
output	Output bit vector

Definition at line 151 of file neighborhood.hh.

5.98.3.2 mutate()

```
virtual void mutate (
                bit_vector_t & bv ) [inline], [virtual]
```

Mutate.

In-place mutation of the bit vector.

Parameters

bv Bit vector to mu

Definition at line 137 of file neighborhood.hh.

The documentation for this class was generated from the following file:

• lib/hnco/neighborhoods/neighborhood.hh

5.99 NeighborhoodIterator Class Reference

Neighborhood iterator.

#include <hnco/neighborhoods/neighborhood-iterator.hh>

Inheritance diagram for NeighborhoodIterator:

Public Member Functions

• NeighborhoodIterator (int n)

Constructor.

virtual void set_origin (const bit_vector_t &x)
 Set origin.

Additional Inherited Members

5.99.1 Detailed Description

Neighborhood iterator.

A neighborhood iterator allows to iterate over bit vectors in the neighborhood of a given origin. The origin itself should not belong to the neighborhood.

Definition at line 38 of file neighborhood-iterator.hh.

5.99.2 Constructor & Destructor Documentation

5.99.2.1 NeighborhoodIterator()

```
\begin{tabular}{ll} Neighborhood Iterator ( & & & int $n$ ) & [inline] \end{tabular}
```

Constructor.

Parameters

n Size of bit vectors

Definition at line 47 of file neighborhood-iterator.hh.

The documentation for this class was generated from the following files:

- lib/hnco/neighborhoods/neighborhood-iterator.hh
- lib/hnco/neighborhoods/neighborhood-iterator.cc

5.100 NkLandscape Class Reference

NK landscape.

#include <hnco/functions/collection/nk-landscape.hh>

Inheritance diagram for NkLandscape:

Public Member Functions

· NkLandscape ()

Default constructor.

• int get_bv_size () const override

Get bit vector size.

double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

· void display (std::ostream &stream) const override

Display.

Instance generators

template<class Generator > void generate (int n, int k, Generator generator)

Instance generator.

void random (int n, int k)

Random instance.

Load and save instance

void load (std::string path)

Load instance.

• void save (std::string path) const

Save instance.

Private Member Functions

template < class Archive > void serialize (Archive & ar, const unsigned int version)

Serialize.

void random_structure (int n, int k)

Random structue.

Private Attributes

```
    std::vector< std::vector< int > > _neighbors
    Bit neighbors.
```

• std::vector< std::vector< double >> _partial_functions Partial functions.

5.100.1 Detailed Description

NK landscape.

Reference:

S. A. Kauffman. 1993. The origins of order: self-organisation and selection in evolution. Oxford University Press.

Definition at line 45 of file nk-landscape.hh.

5.100.2 Member Function Documentation

5.100.2.1 generate()

Instance generator.

Parameters

n	Size of bit vector
k	Number of neighbors per bit
generator	Generator for partial function values

Definition at line 89 of file nk-landscape.hh.

5.100.2.2 load()

Load instance.

Parameters

path Path of the instance to load

Exceptions

```
std::runtime_error
```

Definition at line 126 of file nk-landscape.hh.

5.100.2.3 random()

Random instance.

Partial function values are sampled from the normal distribution.

Parameters

n	Size of bit vector	
k	Number of neighbors per bit	

Definition at line 107 of file nk-landscape.hh.

5.100.2.4 random_structure()

```
void random_structure (
          int n,
          int k) [private]
```

Random structue.

Parameters

n	Size of bit vector	
k	Number of neighbors per bit	

Definition at line 32 of file nk-landscape.cc.

5.100.2.5 save()

Save instance.

Parameters

path Path of the instance to save

Exceptions

std::runtime_error

Definition at line 133 of file nk-landscape.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/nk-landscape.hh
- lib/hnco/functions/collection/nk-landscape.cc

5.101 NpsPbil Class Reference

Population-based incremental learning with negative and positive selection.

```
#include <hnco/algorithms/pv/nps-pbil.hh>
```

Inheritance diagram for NpsPbil:

Public Member Functions

• NpsPbil (int n, int population_size)

Constructor.

Setters

• void set_selection_size (int x)

Set the selection size.

void set_learning_rate (double x)

Set the learning rate.

Protected Member Functions

Loop

 void init () override Initialize.

• void iterate () override

Single iteration.

Protected Attributes

• Population _population

Population.

pv_t _mean_best

Mean of best individuals.

pv_t _mean_worst

Mean of worst individuals.

Parameters

• int _selection_size = 1

Selection size.

• double _learning_rate = 1e-3

Learning rate.

5.101.1 Detailed Description

Population-based incremental learning with negative and positive selection.

Reference:

Arnaud Berny. 2001. Extending selection learning toward fixed-length d-ary strings. In Artificial Evolution (Lecture Notes in Computer Science), P. Collet and others (Eds.). Springer, Le Creusot.

Definition at line 42 of file nps-pbil.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/pv/nps-pbil.hh
- lib/hnco/algorithms/pv/nps-pbil.cc

5.102 Nsga2 Class Reference

NSGA-II.

#include <hnco/multiobjective/algorithms/nsga2.hh>

Inheritance diagram for Nsga2:

Public Member Functions

Nsga2 (int n, int num_objectives, int population_size)

Constructor.

• const Population & get_solutions () override

Get solutions.

Setters

void set_tournament_size (int n)

Set the tournament size.

void set_mutation_rate (double p)

Set the mutation rate.

• void set_allow_no_mutation (bool b)

Set the flag _allow_no_mutation.

void set_crossover_probability (double p)

Set the crossover probability.

Protected Member Functions

Loop

· void init () override

Initialize.

· void iterate () override

Single iteration.

· void finalize () override

Finalize.

void log () override

Log.

Protected Attributes

· Population parents

Parent population.

Population _offsprings

Offspring population.

• Population _full_population

Full population.

Population _solutions

Solutions.

neighborhood::StandardBitMutation _mutation

Mutation operator.

std::bernoulli_distribution _do_crossover

Do crossover.

• hnco::algorithm::UniformCrossover _crossover

Uniform crossover.

• Nsga2ParetoFrontComputation _pareto_front_computation

Pareto front computation.

std::vector< int > _pareto_fronts

Pareto fronts.

std::vector< double > _crowding_distances

Crowding distances.

hnco::permutation_t _permutation

Permutation relative to Pareto front.

std::vector< FrontDistancePair > _front_distance_pairs

Front distance pairs.

TournamentSelection < FrontDistancePair, std::less < FrontDistancePair > > _selection_by_front_←
 distance pair

Selection by front distance pairs.

Parameters

• int _tournament_size = 2

Tournament size.

· double _mutation_rate

Mutation rate.

• bool _allow_no_mutation = false

Allow no mutation.

• double _crossover_probability = 0.8

Crossover probability.

Additional Inherited Members

5.102.1 Detailed Description

NSGA-II.

NSGA-II is a (mu+mu) evolutionary algorithm for multiobjective optimization.

Deb, Agrawal, Pratap, and Meyarivan, "A Fast Elitist Non-dominated Sorting Genetic %Algorithm for Multi-objective Optimization: NSGA-II", Parallel Problem Solving from Nature PPSN VI, 2000, Springer Berlin Heidelberg.

https://link.springer.com/chapter/10.1007/3-540-45356-3_83

Definition at line 84 of file nsga2.hh.

5.102.2 Constructor & Destructor Documentation

5.102.2.1 Nsga2()

Constructor.

Parameters

n	Size of bit vectors
num_objectives	Number of objectives
population_size	Population size

Definition at line 174 of file nsga2.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/multiobjective/algorithms/nsga2.hh
- lib/hnco/multiobjective/algorithms/nsga2.cc

5.103 Nsga2ParetoFrontComputation Class Reference

Pareto front computation from the NSGA-II paper.

#include <hnco/multiobjective/algorithms/pareto-front-computation.hh>

Public Member Functions

Nsga2ParetoFrontComputation (Population &population)

Constructor.

void compute (std::vector< int > &pareto_fronts)
 Compute Pareto fronts.

Private Member Functions

• bool is_non_dominated (int i)

Check that a value is non dominated.

Private Attributes

const Population & _population

Population

• $std::vector < int > _pool$

Pool of values to consider for inclusion in the Pareto front.

std::vector< int > _next_pool

Next pool of values.

 $\bullet \quad \mathsf{std} :: \mathsf{unordered_set} < \mathsf{int} > _\mathbf{non_dominated}$

Non dominated values.

• std::vector< int > _dominated

Dominated values.

5.103.1 Detailed Description

Pareto front computation from the NSGA-II paper.

Definition at line 40 of file pareto-front-computation.hh.

5.103.2 Member Function Documentation

5.103.2.1 compute()

Compute Pareto fronts.

Parameters

Definition at line 89 of file pareto-front-computation.hh.

5.103.2.2 is_non_dominated()

Check that a value is non dominated.

Check that no value in the non dominated set dominates the considered value.

Parameters

i Index of the value

Definition at line 67 of file pareto-front-computation.hh.

5.103.3 Member Data Documentation

5.103.3.1 _dominated

std::vector<int> _dominated [private]

Dominated values.

To be removed from the non dominated ones.

Definition at line 58 of file pareto-front-computation.hh.

The documentation for this class was generated from the following file:

· lib/hnco/multiobjective/algorithms/pareto-front-computation.hh

5.104 OnBudgetFunction Class Reference

Function with a limited number of evaluations.

#include <hnco/functions/controllers/controller.hh>

Inheritance diagram for OnBudgetFunction:

Public Member Functions

• OnBudgetFunction (Function *function, int budget)

Constructor.

Evaluation

• double evaluate (const bit_vector_t &)

Evaluate a bit vector.

double evaluate_incrementally (const bit_vector_t &x, double value, const hnco::sparse_bit_vector_t &flipped bits)

Incrementally evaluate a bit vector.

void update (const bit_vector_t &x, double value)

Update after a safe evaluation.

Private Attributes

· int _budget

Budget.

Additional Inherited Members

5.104.1 Detailed Description

Function with a limited number of evaluations.

Definition at line 196 of file controller.hh.

5.104.2 Member Function Documentation

5.104.2.1 evaluate()

Evaluate a bit vector.

Exceptions

LastEvaluation

Reimplemented from CallCounter.

Definition at line 97 of file controller.cc.

5.104.2.2 evaluate_incrementally()

Incrementally evaluate a bit vector.

Exceptions

LastEvaluation

Reimplemented from CallCounter.

Definition at line 106 of file controller.cc.

5.104.2.3 update()

Update after a safe evaluation.

Exceptions

LastEvaluation

Reimplemented from CallCounter.

Definition at line 115 of file controller.cc.

The documentation for this class was generated from the following files:

- lib/hnco/functions/controllers/controller.hh
- lib/hnco/functions/controllers/controller.cc

5.105 OneMax Class Reference

OneMax.

#include <hnco/functions/collection/theory.hh>

Inheritance diagram for OneMax:

Public Member Functions

· OneMax (int by size)

Constructor.

Information about the function

• int get_bv_size () const override

Get bit vector size.

• double get_maximum () const override

Get the global maximum.

bool has_known_maximum () const override

Check for a known maximum.

bool provides_incremental_evaluation () const override

Check whether the function provides incremental evaluation.

 void display (std::ostream &stream) const override Display.

Evaluation

• double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

double evaluate_incrementally (const bit_vector_t &x, double v, const hnco::sparse_bit_vector_t &flipped_bits) override

Incrementally evaluate a bit vector.

Private Attributes

int _bv_size

Bit vector size.

5.105.1 Detailed Description

OneMax.

References:

Heinz Mühlenbein, "How genetic algorithms really work: I. mutation and hillclimbing", in Proc. 2nd Int. Conf. on Parallel Problem Solving from Nature, 1992

Thomas Jansen, Analyzing Evolutionary Algorithms. Springer, 2013.

Definition at line 41 of file theory.hh.

5.105.2 Member Function Documentation

5.105.2.1 get_maximum()

```
double get_maximum ( ) const [inline], [override], [virtual]
```

Get the global maximum.

Returns

```
_bv_size
```

Reimplemented from Function.

Definition at line 61 of file theory.hh.

5.105.2.2 has_known_maximum()

```
bool has_known_maximum ( ) const [inline], [override], [virtual]
```

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 65 of file theory.hh.

5.105.2.3 provides_incremental_evaluation()

```
bool provides_incremental_evaluation ( ) const [inline], [override], [virtual]
```

Check whether the function provides incremental evaluation.

Returns

true

Reimplemented from Function.

Definition at line 70 of file theory.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/collection/theory.hh
- lib/hnco/functions/collection/theory.cc

5.106 OnePlusLambdaCommaLambdaGa Class Reference

(1+(lambda, lambda)) genetic algorithm.

#include <hnco/algorithms/ea/one-plus-lambda-comma-lambda-ga.hh>

Inheritance diagram for OnePlusLambdaCommaLambdaGa:

Public Member Functions

OnePlusLambdaCommaLambdaGa (int n, int lambda)
 Constructor.

Setters

- void **set_mutation_rate** (double p)
 - Set the mutation rate.
- void **set_crossover_bias** (double x)

Set the crossover bias.

Protected Member Functions

Loop

- void **init** () override Initialize.
- void **iterate** () override Single iteration.

Protected Attributes

• Population _offsprings

Offsprings.

std::binomial_distribution< int > _radius_dist

Radius distribution.

• neighborhood::HammingSphere _mutation

Mutation operator.

bit_vector_t _parent

Parent.

• BiasedCrossover _crossover

Biased crossover.

Parameters

double _mutation_rate

Mutation rate.

• double _crossover_bias

Crossover bias.

5.106.1 Detailed Description

(1+(lambda, lambda)) genetic algorithm.

Reference:

Benjamin Doerr, Carola Doerr, and Franziska Ebel. 2015. From black-box complexity to designing new genetic algorithms. Theoretical Computer Science 567 (2015), 87–104.

Definition at line 49 of file one-plus-lambda-comma-lambda-ga.hh.

5.106.2 Constructor & Destructor Documentation

5.106.2.1 OnePlusLambdaCommaLambdaGa()

Constructor.

By default, _mutation_rate is set to lambda / n and _crossover_bias to 1 / lambda.

Parameters

n	Size of bit vectors
lambda	Offspring population size

Definition at line 102 of file one-plus-lambda-comma-lambda-ga.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/ea/one-plus-lambda-comma-lambda-ga.hh
- lib/hnco/algorithms/ea/one-plus-lambda-comma-lambda-ga.cc

5.107 OnePlusOneEa Class Reference

(1+1) EA.

#include <hnco/algorithms/ea/one-plus-one-ea.hh>

Inheritance diagram for OnePlusOneEa:

Public Member Functions

• OnePlusOneEa (int n)

Constructor.

void maximize (const std::vector< function::Function * > &functions) override
 Maximize.

• void finalize () override

Finalize.

Setters

• void set_num_iterations (int x)

Set the number of iterations.

• void set_mutation_rate (double p)

Set the mutation rate.

void set_allow_no_mutation (bool b)

Set the flag _allow_no_mutation.

• void set_incremental_evaluation (bool x)

Set incremental evaluation.

Private Attributes

• neighborhood::StandardBitMutation _neighborhood

Neighborhood.

• RandomLocalSearch _rls

Random local search.

Parameters

• int _num_iterations = 0

Number of iterations.

• double _mutation_rate

Mutation rate.

• bool _allow_no_mutation = false

Allow no mutation.

• bool _incremental_evaluation = false

Incremental evaluation.

Additional Inherited Members

5.107.1 Detailed Description

(1+1) EA.

(1+1) EA is implemented as a RandomLocalSearch with a StandardBitMutation neighborhood and infinite patience. Thus the class OnePlusOneEa is derived from Algorithm instead of IterativeAlgorithm.

Reference:

Thomas Jansen, Analyzing Evolutionary Algorithms. Springer, 2013.

Definition at line 45 of file one-plus-one-ea.hh.

5.107.2 Constructor & Destructor Documentation

5.107.2.1 OnePlusOneEa()

```
OnePlusOneEa (
          int n ) [inline]
```

Constructor.

Parameters

```
n Size of bit vectors
```

_mutation_rate is initialized to 1 / n.

Definition at line 80 of file one-plus-one-ea.hh.

5.107.3 Member Function Documentation

5.107.3.1 set_num_iterations()

Set the number of iterations.

Parameters

x Number of iterations

 $x \le 0$ means indefinite

Definition at line 111 of file one-plus-one-ea.hh.

The documentation for this class was generated from the following file:

• lib/hnco/algorithms/ea/one-plus-one-ea.hh

5.108 ParameterLessPopulationPyramid Class Reference

Parameter-less Population Pyramid.

```
#include <hnco/algorithms/fast-efficient-p3/p3.hh>
```

Inheritance diagram for ParameterLessPopulationPyramid:

Public Member Functions

• ParameterLessPopulationPyramid (int n)

Constructor.

∼ParameterLessPopulationPyramid ()

Destructor.

void maximize (const std::vector< function::Function * > &functions)

Maximize.

· void finalize ()

Finalize.

Private Attributes

• Implementation * pimpl

Pointer to implementation.

Additional Inherited Members

5.108.1 Detailed Description

Parameter-less Population Pyramid.

Implemention of the Parameter-less Population Pyramid (P3 for short).

Author: Brian W. Goldman

Reference:

"Fast and Efficient Black Box Optimization using the Parameter-less Population Pyramid" by B. W. Goldman and W. F. Punch

Integrated into HNCO by Arnaud Berny

Definition at line 53 of file p3.hh.

5.108.2 Member Data Documentation

5.108.2.1 _pimpl

```
Implementation* _pimpl [private]
```

Pointer to implementation.

The main motivation for this pattern is to avoid including declarations from fast_efficient_p3 into the global namespace.

A raw pointer is used instead of a unique_ptr because the latter will not compile with pybind11.

Definition at line 64 of file p3.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/fast-efficient-p3/p3.hh
- lib/hnco/algorithms/fast-efficient-p3/p3.cc

5.109 ParsedModifier Class Reference

Parsed modifier.

#include <hnco/functions/modifiers/parsed-modifier.hh>

Inheritance diagram for ParsedModifier:

Public Member Functions

ParsedModifier (Function *function, std::string expression)
 Constructor.

Information about the function

• int **get_bv_size** () const override Get bit vector size.

Evaluation

 double evaluate (const bit_vector_t &) override Evaluate a bit vector.

Private Attributes

• FunctionParser _fparser

Function parser.

• double _values [1]

Array of values.

Additional Inherited Members

5.109.1 Detailed Description

Parsed modifier.

Let f be the original function. Then the modified function is equivalent to $g \circ f$, where g is a real function defined by an expression g(x) provided as a string.

Definition at line 40 of file parsed-modifier.hh.

5.109.2 Constructor & Destructor Documentation

5.109.2.1 ParsedModifier()

Constructor.

Parameters

function	Decorated function
expression	Expression to parse

Definition at line 31 of file parsed-modifier.cc.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/modifiers/parsed-modifier.hh
- · lib/hnco/functions/modifiers/parsed-modifier.cc

5.110 ParsedMultivariateFunction < Parser > Class Template Reference

Parsed multivariate function.

```
#include <hnco/functions/collection/parsed-multivariate-function.hh>
```

Public Types

- using domain_type = typename Parser::value_type
 Domain type.
- using codomain_type = typename Parser::value_type
 Codomain type.

Public Member Functions

• ParsedMultivariateFunction (std::string expression)

Constructor

bool add_constant (std::string name, domain_type value)

Add a constant to the parser.

· void parse ()

Parse the expression.

· void display (std::ostream &stream) const

Display the problem.

codomain_type evaluate (const std::vector< domain_type > &x)

Evaluate

void describe (const std::vector< domain type > &x, std::ostream &stream)

Describe a solution.

int get_num_variables ()

Get the number of variables.

const std::vector< std::string > & get_variable_names ()

Get variable names.

Private Attributes

· Parser _fparser

Function parser

std::vector< std::string > _variable_names

Variable names.

• std::string _expression

Expression.

5.110.1 Detailed Description

```
template < class Parser > class hnco::function::ParsedMultivariateFunction < Parser >
```

Parsed multivariate function.

Uses the C++ library "Function Parser" (fparser):

```
http://warp.povusers.org/FunctionParser/fparser.html
```

Warning

The function string syntax depends on the chosen parser.

Definition at line 49 of file parsed-multivariate-function.hh.

5.110.2 Constructor & Destructor Documentation

5.110.2.1 ParsedMultivariateFunction()

Constructor.

Parameters

expression	Expression to parse
------------	---------------------

Definition at line 72 of file parsed-multivariate-function.hh.

The documentation for this class was generated from the following file:

• lib/hnco/functions/collection/parsed-multivariate-function.hh

5.111 ParsedMultivariateFunction < Parser > Class Template Reference

Parsed multivariate function.

#include <hnco/multiobjective/functions/collection/parsed-multivariate-function. \leftarrow hh>

Public Types

- using domain_type = typename Parser::value_type
 Domain type.
- using **codomain_type** = domain_type

Codomain type.

Public Member Functions

• ParsedMultivariateFunction (std::string expression)

Constructor.

void add_constant (std::string name, domain_type value)

Add a constant to the parsers.

· void parse ()

Parse the expression.

• int get_num_variables () const

Get the number of variables.

int get_output_size () const

Get output size (number of objectives)

void evaluate (const std::vector< domain_type > &xs, std::vector< codomain_type > &values)

Evaluate.

• void display (std::ostream &stream) const

Display the problem.

void describe (const std::vector< domain_type > &xs, std::ostream &stream)

Describe a solution

const std::vector< std::string > & get_variable_names ()

Get variable names.

Private Attributes

```
- std::vector < std::string > \_expressions
```

Expressions.

std::vector< Parser > _parsers

Function parsers

std::vector< std::vector< std::string >> _names

Names

std::vector< std::vector< domain_type >> _variables

Variables

• std::vector< std::vector< int > > _indices

Indices.

std::vector< std::string > _ordered_names

Ordered variable names.

5.111.1 Detailed Description

```
template < class Parser > class hnco::multiobjective::function::ParsedMultivariateFunction < Parser >
```

Parsed multivariate function.

Uses the C++ library "Function Parser" (fparser):

```
http://warp.povusers.org/FunctionParser/fparser.html
```

Warning

The function string syntax depends on the chosen parser.

Definition at line 54 of file parsed-multivariate-function.hh.

5.111.2 Constructor & Destructor Documentation

5.111.2.1 ParsedMultivariateFunction()

Constructor.

An expression is a list of sub expressions separated by double colons (::). Each sub expression defines a multivariate function.

Parameters

expression	Expression to parse
------------	---------------------

Definition at line 114 of file parsed-multivariate-function.hh.

5.111.3 Member Data Documentation

5.111.3.1 _indices

```
std::vector<std::vector<int> > _indices [private]
```

Indices.

Indexed by parser then variable. Then, _indices[i][j] is the index in the vector to evaluate of the jth variable of the ith parser.

Definition at line 95 of file parsed-multivariate-function.hh.

5.111.3.2 _names

```
std::vector<std::string> > _names [private]
```

Names.

Indexed by parser then variable. Then, _names[i][j] is the name of the jth variable of the ith parser.

Definition at line 78 of file parsed-multivariate-function.hh.

5.111.3.3 _ordered_names

```
std::vector<std::string> _ordered_names [private]
```

Ordered variable names.

As expected by evaluate().

Definition at line 102 of file parsed-multivariate-function.hh.

5.111.3.4 variables

```
std::vector<std::vector<domain_type> > _variables [private]
```

Variables.

Indexed by parser then variable. Then, _variables[i][j] is the value of the jth variable of the ith parser.

Definition at line 86 of file parsed-multivariate-function.hh.

The documentation for this class was generated from the following file:

• lib/hnco/multiobjective/functions/collection/parsed-multivariate-function.hh

5.112 Partition Class Reference

Partition.

#include <hnco/functions/collection/partition.hh>

Inheritance diagram for Partition:

Public Member Functions

• Partition ()

Constructor.

• int **get_bv_size** () const override

Get bit vector size.

• double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

Instance generators

template < class Generator > void generate (int n, Generator generator)

Instance generator.

• void random (int n, int upper_bound)

Random instance.

Load and save instance

• void load (std::string path)

Load instance.

• void save (std::string path) const

Save instance.

Display

 void display (std::ostream &stream) const override Display.

void describe (const bit_vector_t &x, std::ostream &stream) override
 Describe a bit vector.

Private Member Functions

template < class Archive >
void serialize (Archive & ar, const unsigned int version)
 Serialize.

Private Attributes

std::vector < int > _numbers
 Multiset of positive integers.

5.112.1 Detailed Description

Partition.

Partition a finite multiset of positive integers into two subsets such that the sum of numbers in the first subset is the closest to the sum of numbers in the second subset.

The function computes the negation of the distance between the sum of numbers corresponding to ones in the bit vector and the sum of those corresponding to zeros. The negation is a consequence of the fact that algorithms in HNCO maximize rather than minimize a function.

Definition at line 52 of file partition.hh.

5.112.2 Member Function Documentation

5.112.2.1 generate()

```
void generate (  \mbox{int } n, \\ \mbox{Generator } generator ) \mbox{ [inline]}
```

Instance generator.

Parameters

n	Size of bit vectors
generator	Number generator

Definition at line 84 of file partition.hh.

5.112.2.2 load()

Load instance.

Parameters

path	Path of the instance to load
------	------------------------------

Exceptions

```
std::runtime_error
```

Definition at line 120 of file partition.hh.

5.112.2.3 random()

```
void random (
          int n,
          int upper_bound ) [inline]
```

Random instance.

The numbers are sampled from the uniform distribution on [1..upper_bound].

Parameters

n	Size of bit vector
upper_bound	Upper bound of positive integers

Definition at line 100 of file partition.hh.

5.112.2.4 save()

Save instance.

Parameters

path	Path of the instance to save

Exceptions

std::runtime_error

Definition at line 127 of file partition.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/partition.hh
- lib/hnco/functions/collection/partition.cc

5.113 Pbil Class Reference

Population-based incremental learning.

#include <hnco/algorithms/pv/pbil.hh>

Inheritance diagram for Pbil:

Public Member Functions

• **Pbil** (int n, int population_size)

Constructor.

Setters

- void set_selection_size (int x)
 Set the selection size.
- void **set_learning_rate** (double x) Set the learning rate.

Protected Member Functions

Loop

- void **init** () override Initialize.
- void **iterate** () override Single iteration.

Protected Attributes

- Population _population Population.
- pv_t _mean

Mean of selected bit vectors.

Parameters

int _selection_size = 1
 Selection size.
 double _learning_rate = 1e-3

5.113.1 Detailed Description

Learning rate.

Population-based incremental learning.

Reference:

S. Baluja and R. Caruana. 1995. Removing the genetics from the standard genetic algorithm. In Proceedings of the 12th Annual Conference on Machine Learning. 38–46.

Definition at line 42 of file pbil.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/pv/pbil.hh
- lib/hnco/algorithms/pv/pbil.cc

5.114 Permutation Class Reference

Permutation.

#include <hnco/maps/map.hh>

Inheritance diagram for Permutation:

Public Member Functions

• void random (int n)

Random instance.

void map (const bit_vector_t &input, bit_vector_t &output) override

Мар

• int get_input_size () const override

Get input size.

• int get_output_size () const override

Get output size.

• bool is_surjective () const override

Check for surjective map.

Load and save map

• void load (std::string path)

Load map.

• void save (std::string path) const

Save map.

Private Member Functions

template < class Archive > void save (Archive & ar, const unsigned int version) const

Save.

template < class Archive >

void load (Archive &ar, const unsigned int version)

Load.

Private Attributes

• permutation_t _permutation

Permutation.

5.114.1 Detailed Description

Permutation.

A permutation is a linear map f from F_2^n to itself defined by f(x)=y, where $y_i=x_{\sigma_i}$ and σ is a permutation of 0, 1, ..., n - 1.

Definition at line 167 of file map.hh.

5.114.2 Member Function Documentation

5.114.2.1 is_surjective()

```
bool is_surjective ( ) const [inline], [override], [virtual]
```

Check for surjective map.

Returns

true

Reimplemented from Map.

Definition at line 218 of file map.hh.

5.114.2.2 load()

Load map.

Parameters

```
path Path of the file
```

Exceptions

```
std::runtime_error
```

Definition at line 229 of file map.hh.

5.114.2.3 save()

Save map.

Parameters

```
path Path of the file
```

Exceptions

```
std::runtime_error
```

Definition at line 236 of file map.hh.

The documentation for this class was generated from the following files:

- lib/hnco/maps/map.hh
- lib/hnco/maps/map.cc

5.115 PermutationFunctionAdapter < Fn > Class Template Reference

Permutation function adapter.

#include <hnco/functions/permutation-function-adapter.hh>

Inheritance diagram for PermutationFunctionAdapter< Fn >:

Public Member Functions

Constructor.

- $\bullet \ \ \mathsf{PermutationFunctionAdapter} \ (\mathsf{Fn} \ * \mathsf{fn}, \ \mathsf{representation} \\ :: \mathsf{PermutationRepresentation} \ \mathsf{rep})$
- int get_bv_size () const override

Get bit vector size.

• double evaluate (const bit_vector_t &bv) override

Evaluate.

void display (std::ostream &stream) const override

Ointer

void describe (const bit_vector_t &bv, std::ostream &stream) override
 Describe a bit vector.

Private Member Functions

void unpack (const bit_vector_t &bv)

Unpack a bit vector into a permutation.

Private Attributes

Fn * _function

Permutation function.

• representation::PermutationRepresentation _representation

Permutation representation.

· permutation_t _permutation

Permutation.

5.115.1 Detailed Description

```
\label{lem:lemplate} \begin{tabular}{ll} template < class Fn > \\ class hnco:: function:: Permutation Function Adapter < Fn > \\ \end{tabular}
```

Permutation function adapter.

The purpose of this class is to build a regular hnco function from an arbitrary function over permutations. This is achieved using a permutation representation.

Definition at line 42 of file permutation-function-adapter.hh.

5.115.2 Constructor & Destructor Documentation

5.115.2.1 PermutationFunctionAdapter()

```
PermutationFunctionAdapter (  \mbox{Fn * fn,} \\ \mbox{representation::PermutationRepresentation } rep \mbox{ ) [inline]}
```

Constructor.

Parameters

fn	Multivariate function
rep	Permutation representation

Definition at line 66 of file permutation-function-adapter.hh.

The documentation for this class was generated from the following file:

• lib/hnco/functions/permutation-function-adapter.hh

5.116 PermutationRepresentation Class Reference

Permutation representation.

#include <hnco/representations/permutation.hh>

Public Member Functions

PermutationRepresentation (int num_elements, int num_additional_bits)

Constructor.

• int **get_num_elements** () const

Get number of elements.

· int size () const

Size of the representation.

void unpack (const bit_vector_t &bv, int start, hnco::permutation_t &permutation)

Unpack bit vector into a permutation.

· void display (std::ostream &stream) const

Display.

Private Attributes

std::vector< int > _values

Values to be sorted.

• int _element_size

Element size in bits.

• int _size

Size in bits.

5.116.1 Detailed Description

Permutation representation.

Definition at line 39 of file permutation.hh.

5.116.2 Constructor & Destructor Documentation

5.116.2.1 PermutationRepresentation()

```
PermutationRepresentation (
          int num_elements,
          int num_additional_bits ) [inline]
```

Constructor.

Each element is represented by an integer encoded using $std::ceil(std::log(num_elements) / std::log(2)) + num_ additional bits.$

Parameters

num_elements	Number of elements
num additional bits	Number of additional bits per element

Definition at line 62 of file permutation.hh.

The documentation for this class was generated from the following file:

• lib/hnco/representations/permutation.hh

5.117 Plateau Class Reference

Plateau.

#include <hnco/functions/collection/theory.hh>

Inheritance diagram for Plateau:

Public Member Functions

• Plateau (int bv_size)

Constructor.

• int get_bv_size () const override

Get bit vector size.

• double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

• bool has_known_maximum () const override

Check for a known maximum.

• double get_maximum () const override

Get the global maximum.

Private Attributes

int _bv_size

Bit vector size.

5.117.1 Detailed Description

Plateau.

Reference:

Thomas Jansen, Analyzing Evolutionary Algorithms. Springer, 2013.

Definition at line 242 of file theory.hh.

5.117.2 Member Function Documentation

5.117.2.1 get_maximum()

```
double get_maximum ( ) const [inline], [override], [virtual]
```

Get the global maximum.

Returns

```
_bv_size + 2
```

Reimplemented from Function.

Definition at line 265 of file theory.hh.

5.117.2.2 has_known_maximum()

```
bool has_known_maximum ( ) const [inline], [override], [virtual]
```

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 261 of file theory.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/theory.hh
- lib/hnco/functions/collection/theory.cc

5.118 PlusSelection Class Reference

Plus selection.

#include <hnco/algorithms/ea/selection.hh>

Public Member Functions

• PlusSelection (Population &parents, Population &offsprings)

Constructor.

· void select ()

Apply selection.

Private Attributes

• Population & _parents

Parent population.

Population & _offsprings

Offspring population.

Population _pool

Union of parent and offspring population.

5.118.1 Detailed Description

Plus selection.

Used as selection for replacement in evolutionary algorithms.

Definition at line 78 of file selection.hh.

5.118.2 Constructor & Destructor Documentation

5.118.2.1 PlusSelection()

Constructor.

Parameters

parents	Parent population
offsprings	Offspring population

Definition at line 96 of file selection.hh.

The documentation for this class was generated from the following file:

· lib/hnco/algorithms/ea/selection.hh

5.119 Population Struct Reference

Population

#include <hnco/algorithms/population.hh>

Public Types

using Function = hnco::function::Function
 Function type

Public Member Functions

Population (int population_size, int n)

Constructor.

• int get_size () const

Get population size.

• int get_bv_size () const

Get bit vector size.

· void random ()

Sample a random population.

Get sorted bit vectors

```
bit_vector_t & get_best_bv ()
```

Get best bit vector.

bit_vector_t & get_best_bv (int i)

Get best bit vector.

bit_vector_t & get_worst_bv (int i)

Get worst bit vector.

Get sorted values

• double get_best_value () const

Get best value.

double get_best_value (int i) const

Get best value.

Evaluation and sorting

void evaluate (Function *function)

Evaluate the population.

void evaluate_in_parallel (const std::vector< Function * > &functions)

Evaluate the population in parallel.

• void sort ()

Sort the population.

void partial_sort (int selection_size)

Partially sort the population.

std::pair< int, int > get_equivalent_bvs (int index)

Get equivalent bit vectors.

Public Attributes

```
    std::vector< bit_vector_t > bvs
    Bit vectors.
```

• std::vector< double > values

Values.

• hnco::permutation_t permutation

Permutation.

5.119.1 Detailed Description

Population

Definition at line 41 of file population.hh.

5.119.2 Constructor & Destructor Documentation

5.119.2.1 Population()

```
Population (  \mbox{int population\_size,}   \mbox{int } n \mbox{ ) [inline]}
```

Constructor.

Parameters

population_size	Population size
n	Bit vector size

Definition at line 60 of file population.hh.

5.119.3 Member Function Documentation

5.119.3.1 get_best_bv() [1/2]

```
bit_vector_t & get_best_bv ( ) [inline]
```

Get best bit vector.

Precondition

The population must be sorted.

Definition at line 90 of file population.hh.

5.119.3.2 get_best_bv() [2/2]

Get best bit vector.

Parameters

i Index in the sorted population

Precondition

The population must be sorted.

Definition at line 97 of file population.hh.

5.119.3.3 get_best_value() [1/2]

```
double get_best_value ( ) const [inline]
```

Get best value.

Precondition

The population must be sorted.

Definition at line 124 of file population.hh.

5.119.3.4 get_best_value() [2/2]

Get best value.

Parameters

i Index in the sorted population

Precondition

The population must be sorted.

Definition at line 131 of file population.hh.

5.119.3.5 get_equivalent_bvs()

Get equivalent bit vectors.

This member function returns a pair of ints (a, b) such that,

- for all i in [0, a), f(get_best_bv(i)) > f(get_best_bv(index))
- for all i in [a, b), f(get_best_bv(i)) = f(get_best_bv(index))
- for all i in [b, size), f(get_best_bv(i)) < f(get_best_bv(index))

Put another way, the range [a, b) is the equivalence class of index, where two indices i and j are equivalent if $f(get_best_bv(i)) = f(get_best_bv(j))$.

Parameters

index Bit vector's index in the sorted population

Precondition

The population must be sorted.

Definition at line 77 of file population.cc.

5.119.3.6 get_worst_bv()

Get worst bit vector.

Parameters

i Reversed index in the sorted population

Precondition

The population must be sorted.

Definition at line 107 of file population.hh.

5.119.3.7 partial_sort()

Partially sort the population.

Only the permutation is sorted using the order defined by i < j if values[i] > values[j]. Before sorting, the permutation is shuffled to break ties randomly.

Parameters

selection size	Sort the best selection_size individuals

Definition at line 164 of file population.hh.

5.119.3.8 sort()

```
void sort ( ) [inline]
```

Sort the population.

Only the permutation is sorted using the order defined by i < j if values[i] > values[j]. Before sorting, the permutation is shuffled to break ties randomly.

Definition at line 152 of file population.hh.

The documentation for this struct was generated from the following files:

- lib/hnco/algorithms/population.hh
- lib/hnco/algorithms/population.cc

5.120 Population Struct Reference

Population

#include <hnco/multiobjective/algorithms/population.hh>

Public Types

- using Function = hnco::multiobjective::function::Function
 Function type
- using value_t = hnco::multiobjective::function::value_t
 Value type.

Public Member Functions

• Population ()=default

Default constructor.

• Population (int population_size, int bv_size, int num_objectives)

Constructor.

• int get_size () const

Get the population size.

• void resize (int population_size, int bv_size, int num_objectives)

Resize the population.

• void shrink (int population_size)

Shrink the population.

• void random ()

Sample a random population.

• void evaluate (Function *function)

Evaluate a population.

void evaluate_in_parallel (const std::vector< Function * > &functions)

Evaluate a population in parallel.

Public Attributes

```
• std::vector< bit_vector_t > bvs
```

Bit vectors.

• $std::vector < value_t > values$

Values.

5.120.1 Detailed Description

Population

Definition at line 36 of file population.hh.

5.120.2 Constructor & Destructor Documentation

5.120.2.1 Population()

Constructor.

Parameters

population_size	Population size
bv_size	Size of bit vectors
Generated by Betinger	Number of objectives

Definition at line 59 of file population.hh.

5.120.3 Member Function Documentation

5.120.3.1 resize()

Resize the population.

Parameters

population_size	Population size
bv_size	Size of bit vectors
num_objectives	Number of objectives

Definition at line 80 of file population.hh.

5.120.3.2 shrink()

```
void shrink (
                int population_size ) [inline]
```

Shrink the population.

If population_size > get_size(), does nothing.

Parameters

population_size	Population size
-----------------	-----------------

Precondition

```
population_size > 0
```

Definition at line 100 of file population.hh.

The documentation for this struct was generated from the following files:

- lib/hnco/multiobjective/algorithms/population.hh
- lib/hnco/multiobjective/algorithms/population.cc

5.121 DyadicIntegerRepresentation < T >::Precision Struct Reference

Precision

#include <hnco/representations/integer.hh>

Public Member Functions

· Precision (int precision)

Constructor.

Public Attributes

· int precision

Precison.

5.121.1 Detailed Description

 $\label{template} template < class T> \\ struct hnco::representation::DyadicIntegerRepresentation < T>::Precision$

Precision

Definition at line 104 of file integer.hh.

The documentation for this struct was generated from the following file:

• lib/hnco/representations/integer.hh

5.122 PriorNoise Class Reference

Prior noise.

#include <hnco/functions/modifiers/prior-noise.hh>

Inheritance diagram for PriorNoise:

Public Member Functions

• **PriorNoise** (Function *fn, neighborhood::Neighborhood *nh) Constructor.

Information about the function

- int get_bv_size () const override
 - Get bit vector size.
- double get_maximum () const override
 - Get the global maximum.
- bool has_known_maximum () const override

Check for a known maximum.

• bool provides_incremental_evaluation () const override

Check whether the function provides incremental evaluation.

Evaluation

double evaluate (const bit_vector_t &) override
 Evaluate a bit vector.

Private Attributes

 $\bullet \quad neighborhood {::} Neighborhood * _neighborhood \\$

Neighborhood.

bit_vector_t _noisy_bv

Noisy bit vector.

Additional Inherited Members

5.122.1 Detailed Description

Prior noise.

Definition at line 37 of file prior-noise.hh.

5.122.2 Member Function Documentation

5.122.2.1 get_maximum()

```
double get_maximum ( ) const [inline], [override], [virtual]
```

Get the global maximum.

Delegation is questionable here.

Reimplemented from Function.

Definition at line 69 of file prior-noise.hh.

5.122.2.2 has_known_maximum()

```
bool has_known_maximum ( ) const [inline], [override], [virtual]
```

Check for a known maximum.

Delegation is questionable here.

Reimplemented from Function.

Definition at line 75 of file prior-noise.hh.

5.122.2.3 provides_incremental_evaluation()

```
bool provides_incremental_evaluation ( ) const [inline], [override], [virtual]
```

Check whether the function provides incremental evaluation.

Returns

false

Reimplemented from Function.

Definition at line 79 of file prior-noise.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/modifiers/prior-noise.hh
- lib/hnco/functions/modifiers/prior-noise.cc

5.123 ProgressTracker Class Reference

ProgressTracker.

#include <hnco/functions/controllers/controller.hh>

Inheritance diagram for ProgressTracker:

Classes

struct Event

Event

Public Member Functions

• ProgressTracker (Function *function)

Constructor.

Evaluation

double evaluate (const bit_vector_t &)

Evaluate a bit vector.

• double **evaluate_incrementally** (const bit_vector_t &x, double value, const hnco::sparse_bit_vector_t &flipped_bits)

Incrementally evaluate a bit vector.

void update (const bit_vector_t &x, double value)
 Update after a safe evaluation.

Get information

• const Event & get_last_improvement ()

Get the last improvement.

• double get evaluation time ()

Get evaluation time.

Setters

• void set_log_improvement (bool x)

Log improvement.

void set_record_evaluation_time (bool b)

Record evaluation time.

Protected Member Functions

void update_last_improvement (double value)

Update last improvement.

Protected Attributes

• Event _last_improvement

Last improvement.

StopWatch _stop_watch

Stop watch.

Parameters

• bool _log_improvement = false

Log improvement.

• bool record evaluation time = false

Record evaluation time.

5.123.1 Detailed Description

ProgressTracker.

A ProgressTracker is a CallCounter which keeps track the last improvement, that is its value and the number of evaluations needed to reach it.

Definition at line 242 of file controller.hh.

5.123.2 Member Function Documentation

5.123.2.1 get_last_improvement()

```
const Event & get_last_improvement ( ) [inline]
```

Get the last improvement.

Warning

If _last_improvement.num_evaluations is zero then _function has never been called. The Event returned by get_last_improvement has therefore no meaning.

Definition at line 321 of file controller.hh.

5.123.3 Member Data Documentation

5.123.3.1 _record_evaluation_time

```
bool _record_evaluation_time = false [protected]
```

Record evaluation time.

Only relevant for ProgressTracker::evaluate.

Definition at line 277 of file controller.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/controllers/controller.hh
- · lib/hnco/functions/controllers/controller.cc

5.124 ProgressTrackerContext Class Reference

Log context for ProgressTracker.

```
#include <hnco/logging/log-context.hh>
```

Inheritance diagram for ProgressTrackerContext:

Public Member Functions

• ProgressTrackerContext (function::controller::ProgressTracker *pt)

Constructor.

• std::string to_string ()

Get context.

Private Attributes

function::controller::ProgressTracker * _progress_tracker
 Progress tracker.

5.124.1 Detailed Description

Log context for ProgressTracker.

Definition at line 49 of file log-context.hh.

5.124.2 Member Function Documentation

5.124.2.1 to_string()

```
std::string to_string ( ) [inline], [virtual]
```

Get context.

Returns

A string made of the following information:

- · Number of evaluations
- · Number of evaluations to find the best so far solution
- · Value of the best so far solution

Implements LogContext.

Definition at line 68 of file log-context.hh.

The documentation for this class was generated from the following file:

• lib/hnco/logging/log-context.hh

5.125 Projection Class Reference

Projection.

#include <hnco/maps/map.hh>

Inheritance diagram for Projection:

Public Member Functions

- Projection (const std::vector< int > &bit_positions, int input_size)
 Constructor.
- void map (const bit_vector_t &input, bit_vector_t &output) override
 Map
- int **get_input_size** () const override
- Get input size.

 int get_output_size () const override

Get output size.

• bool is_surjective () const override

Check for surjective map.

Private Attributes

- $std::vector < int > _bit_positions$
 - Bit positions.
- int _input_size

Input size.

5.125.1 Detailed Description

Projection.

The projection y of a bit vector x is x where we have dropped a given set of components.

Let
$$I = \{i_1, i_2, \dots, i_m\}$$
 be a subset of $\{1, 2, \dots, n\}$.

A projection f from F_2^n to F_2^m , where $n \ge m$, is defined by f(x) = y, where, for all $j \in \{1, 2, \dots, m\}$, $y_j = x_{i_j}$.

If f is a projection and g is an injection with the same bit positions then their composition $f \circ g$ is the identity.

Definition at line 549 of file map.hh.

5.125.2 Constructor & Destructor Documentation

5.125.2.1 Projection()

Constructor.

The output size of the map is given by the size of bit_positions.

Parameters

bit_positions	Bit positions in the input from where output bits are copied
input_size	Input size

Precondition

```
input_size >= bit_positions.size()
```

Definition at line 196 of file map.cc.

5.125.3 Member Function Documentation

5.125.3.1 is_surjective()

```
bool is_surjective ( ) const [inline], [override], [virtual]
```

Check for surjective map.

Returns

true

Reimplemented from Map.

Definition at line 587 of file map.hh.

The documentation for this class was generated from the following files:

- lib/hnco/maps/map.hh
- lib/hnco/maps/map.cc

5.126 PvAlgorithm Class Reference

Probability vector algorithm.

#include <hnco/algorithms/pv/pv-algorithm.hh>

Inheritance diagram for PvAlgorithm:

Public Member Functions

• PvAlgorithm (int n)

Constructor.

Setters for logging

• void **set_log_entropy** (bool x)

Log entropy.

• void **set_log_num_components** (int x)

Set the number of probability vector components to log.

void set_log_pv (bool x)

Log probability vector.

Protected Member Functions

• void set_something_to_log ()

Set flag for something to log.

Loop

• void log () override

Log.

Protected Attributes

pv_t _pv

Probability vector.

• double _lower_bound

Lower bound of probability.

• double _upper_bound

Upper bound of probability.

Logging

• bool _log_entropy = false

Log entropy.

bool _log_pv = false

Log probability vector.

• int _log_num_components = 5

Number of probability vector components to log.

5.126.1 Detailed Description

Probability vector algorithm.

Definition at line 33 of file pv-algorithm.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/pv/pv-algorithm.hh
- · lib/hnco/algorithms/pv/pv-algorithm.cc

5.127 PythonFunction Class Reference

Python function.

#include <hnco/functions/collection/python-function.hh>

Inheritance diagram for PythonFunction:

Public Member Functions

• PythonFunction (std::string path, std::string name)

Constructor.

• ∼PythonFunction ()

Destructor.

• int get_bv_size () const override

Get bit vector size.

· bool has_known_maximum () const override

Check for a known maximum.

• double get_maximum () const override

Get the global maximum.

• double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

Private Attributes

```
• pybind11::object _scope
```

Module.

• Function * _function

Function.

5.127.1 Detailed Description

Python function.

Uses pybind11.

The constructor initializes the python interpreter and the destructor finalizes it.

The python code must import the hnco module (built separately) to allow for communication between C++ and python. It must also define a derived class that inherits Function and an instance of it.

Definition at line 46 of file python-function.hh.

5.127.2 Constructor & Destructor Documentation

5.127.2.1 PythonFunction()

Constructor.

Parameters

path	Path of the python file
name	Name of the Function instance defined in the python file

Definition at line 32 of file python-function.cc.

5.127.3 Member Function Documentation

5.127.3.1 get_maximum()

```
double get_maximum ( ) const [override], [virtual]
```

Get the global maximum.

Exceptions

std::runtime_error

Reimplemented from Function.

Definition at line 59 of file python-function.cc.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/python-function.hh
- lib/hnco/functions/collection/python-function.cc

5.128 PythonFunction Class Reference

Python function.

#include <hnco/multiobjective/functions/collection/python-function.hh>
Inheritance diagram for PythonFunction:

Public Member Functions

• PythonFunction (std::string path, std::string name)

Constructor.

• ∼PythonFunction ()

Destructor.

• int get_bv_size () const

Get bit vector size.

• int get_output_size () const

Get output size (number of objectives)

• void evaluate (const bit_vector_t &bv, value_t &value)

Evaluate a bit vector.

Private Attributes

• pybind11::object _scope

Module.

• Function * _function

Function.

5.128.1 Detailed Description

Python function.

Uses pybind11.

The constructor initializes the python interpreter and the destructor finalizes it.

The python code must import the hnco module (built separately) to allow for communication between C++ and python. It must also define a derived class that inherits Function and an instance of it.

Definition at line 48 of file python-function.hh.

5.128.2 Constructor & Destructor Documentation

5.128.2.1 PythonFunction()

```
PythonFunction (
          std::string path,
          std::string name )
```

Constructor.

Parameters

path	Path of the python file
name	Name of the Function instance defined in the python file

Definition at line 31 of file python-function.cc.

The documentation for this class was generated from the following files:

- lib/hnco/multiobjective/functions/collection/python-function.hh
- lib/hnco/multiobjective/functions/collection/python-function.cc

5.129 Qubo Class Reference

Quadratic unconstrained binary optimization.

#include <hnco/functions/collection/qubo.hh>

Inheritance diagram for Qubo:

Public Member Functions

• Qubo ()

Constructor.

• int get_bv_size () const override

Get bit vector size.

• double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

Load and save instance

void load (std::string path)
 Load instance.

Private Member Functions

void load (std::istream &stream)

Load an instance.

Private Attributes

std::vector< std::vector< double >> _q
 Matrix.

5.129.1 Detailed Description

Quadratic unconstrained binary optimization.

Its expression is of the form $f(x) = \sum_i Q_{ii} x_i + \sum_{i < j} Q_{ij} x_i x_j = x^T Q x$, where Q is an n x n upper-triangular matrix.

Qubo is the problem addressed by qbsolv. Here is its description as given on github:

Qbsolv, a decomposing solver, finds a minimum value of a large quadratic unconstrained binary optimization (QUBO) problem by splitting it into pieces solved either via a D-Wave system or a classical tabu solver.

There are some differences between WalshExpansion2 and Qubo:

- WalshExpansion2 maps 0/1 variables into -1/1 variables whereas Qubo directly deals with binary variables.
- Hence, there is a separate linear part in WalshExpansion2 whereas the linear part in Qubo stems from the diagonal elements of the given matrix.

qbsolv aims at minimizing quadratic functions whereas hnco algorithms aim at maximizing them. Hence Qubo::load negates all elements so that maximizing the resulting function is equivalent to minimizing the original Qubo.

References:

Michael Booth, Steven P. Reinhardt, and Aidan Roy. 2017. Partitioning Optimization Problems for Hybrid Classical/Quantum Execution. Technical Report. D-Wave.

```
https://github.com/dwavesystems/qbsolv
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/bqpinfo.html
```

Definition at line 74 of file qubo.hh.

5.129.2 Member Function Documentation

```
5.129.2.1 load() [1/2]
```

Load an instance.

Exceptions

```
std::runtime_error
```

Definition at line 37 of file qubo.cc.

5.129.2.2 load() [2/2]

Load instance.

Parameters

path Path of the instance to load

Exceptions

std::runtime_error

Definition at line 105 of file qubo.hh.

5.129.3 Member Data Documentation

5.129.3.1 _q

```
\verb|std::vector<| std::vector<| double>| > \_q [private]|
```

Matrix.

n x n upper triangular matrix.

Definition at line 82 of file qubo.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/qubo.hh
- lib/hnco/functions/collection/qubo.cc

5.130 RandomLocalSearch Class Reference

Random local search.

#include <hnco/algorithms/ls/random-local-search.hh>

Inheritance diagram for RandomLocalSearch:

Public Member Functions

- RandomLocalSearch (int n, neighborhood::Neighborhood *neighborhood)
 - Constructor.
- · void finalize () override

Finalize.

Setters

- void **set_compare** (std::function< bool(double, double)> x)
 - Set the binary operator for comparing evaluations.
- void set_patience (int x)

Set patience.

• void set_incremental_evaluation (bool x)

Set incremental evaluation.

Protected Member Functions

• void iterate_full ()

Single iteration with full evaluation.

• void iterate_incremental ()

Single iteration with incremental evaluation.

Loop

· void init () override

Initialize.

· void iterate () override

Single iteration.

Protected Attributes

· int _num_failures

Number of failure.

Parameters

```
• std::function< bool(double, double)> _compare = std::greater_equal<double>()

Binary operator for comparing evaluations.
```

```
• int patience = 50
```

Patience.

• bool _incremental_evaluation = false

Incremental evaluation.

5.130.1 Detailed Description

Random local search.

Definition at line 36 of file random-local-search.hh.

5.130.2 Member Function Documentation

5.130.2.1 set_patience()

```
void set_patience (
          int x ) [inline]
```

Set patience.

Number of consecutive rejected moves before ending the search.

Parameters

If $x \le 0$ then patience is considered infinite.

Definition at line 104 of file random-local-search.hh.

5.130.3 Member Data Documentation

5.130.3.1 _patience

```
int _patience = 50 [protected]
```

Patience.

Number of consecutive rejected moves before ending the search.

Definition at line 55 of file random-local-search.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/ls/random-local-search.hh
- lib/hnco/algorithms/ls/random-local-search.cc

5.131 RandomSearch Class Reference

Random search.

#include <hnco/algorithms/random-search.hh>

Inheritance diagram for RandomSearch:

Public Member Functions

• RandomSearch (int n)

Constructor.

Protected Member Functions

Loop

- void **init** () override *Initialize*.
- void **iterate** () override Single iteration.

Protected Attributes

• bit_vector_t _candidate Candidate.

5.131.1 Detailed Description

Random search.

Definition at line 31 of file random-search.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/random-search.hh
- lib/hnco/algorithms/random-search.cc

5.132 RandomSelection Class Reference

Random selection.

#include <hnco/algorithms/ea/random-selection.hh>

Inheritance diagram for RandomSelection:

Public Member Functions

• RandomSelection (const Population &population)

Constructor.

· virtual void init ()

Initialize.

• virtual const bit_vector_t & select ()=0

Select an individual in the population.

Protected Attributes

· const Population & _population

Population to select from

5.132.1 Detailed Description

Random selection.

Used as selection for reproduction in evolutionary algorithms.

Definition at line 39 of file random-selection.hh.

5.132.2 Constructor & Destructor Documentation

5.132.2.1 RandomSelection()

Constructor.

Parameters

population | Population to select from

Definition at line 52 of file random-selection.hh.

The documentation for this class was generated from the following file:

• lib/hnco/algorithms/ea/random-selection.hh

5.133 RandomWalk Class Reference

Random walk.

#include <hnco/algorithms/ls/random-walk.hh>

Inheritance diagram for RandomWalk:

Public Member Functions

Constructor.

 $\bullet \quad \textbf{RandomWalk} \ (int \ n, \ neighborhood:: Neighborhood *neighborhood)$

Setters

- void set_incremental_evaluation (bool x)
 Set incremental evaluation.
- void set_log_value ()

 Set log.

Protected Member Functions

- void iterate_full ()
 - Single iteration with full evaluation.
- void iterate_incremental ()

Single iteration with incremental evaluation.

Loop

 void iterate () override Single iteration.

 void log () override Log.

Protected Attributes

• double _value

Value of the last visited bit vector.

Parameters

• bool _incremental_evaluation = false

Incremental evaluation.

5.133.1 Detailed Description

Random walk.

The algorithm simply performs a random walk on the graph implicitly given by the neighborhood. At each iteration, the chosen neighbor does not depend on its evaluation. However optimization takes place as in random search, that is the best visited bit vector is remembered.

Definition at line 41 of file random-walk.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/ls/random-walk.hh
- lib/hnco/algorithms/ls/random-walk.cc

5.134 InformationTheoreticEa::Replacement Struct Reference

Selection for replacement.

```
#include <hnco/algorithms/ea/it-ea.hh>
```

Public Types

```
    enum {
    elitist = 0 , non_elitist = 1 , ml_update = 2 , incremental_ml_update = 3 ,
    no_replacement = 4 }
```

5.134.1 Detailed Description

Selection for replacement.

Definition at line 23 of file it-ea.hh.

5.134.2 Member Enumeration Documentation

5.134.2.1 anonymous enum

anonymous enum

Enumerator

elitist	Elitist replacement.
non_elitist	Non elitist replacement.
ml_update	Maximum likelihood update.
incremental_ml_update	Incremental maximum likelihood update.
no_replacement	No replacement (static search)

Definition at line 25 of file it-ea.hh.

The documentation for this struct was generated from the following file:

• lib/hnco/algorithms/ea/it-ea.hh

5.135 Restart Class Reference

Restart.

#include <hnco/algorithms/decorators/restart.hh>

Inheritance diagram for Restart:

Public Member Functions

Restart (int n, Algorithm *algorithm)
 Constructor.

Protected Member Functions

Loop

• void **iterate** () override Single iteration.

Protected Attributes

Algorithm * _algorithm
 Algorithm.

5.135.1 Detailed Description

Restart.

Restart an Algorithm an indefinite number of times. Should be used in conjonction with OnBudgetFunction or StopOnMaximum.

Definition at line 38 of file restart.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/decorators/restart.hh
- lib/hnco/algorithms/decorators/restart.cc

5.136 Ridge Class Reference

Ridge.

#include <hnco/functions/collection/theory.hh>

Inheritance diagram for Ridge:

Public Member Functions

• Ridge (int bv_size)

Constructor.

• int get_bv_size () const override

Get bit vector size.

• double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

· bool has_known_maximum () const override

Check for a known maximum.

• double get_maximum () const override

Get the global maximum.

Private Attributes

• int _bv_size

Bit vector size.

5.136.1 Detailed Description

Ridge.

Reference:

Thomas Jansen, Analyzing Evolutionary Algorithms. Springer, 2013.

Definition at line 207 of file theory.hh.

5.136.2 Member Function Documentation

5.136.2.1 get_maximum()

```
double get_maximum ( ) const [inline], [override], [virtual]
```

Get the global maximum.

Returns

2 * _bv_size

Reimplemented from Function.

Definition at line 230 of file theory.hh.

5.136.2.2 has_known_maximum()

```
bool has_known_maximum ( ) const [inline], [override], [virtual]
```

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 226 of file theory.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/collection/theory.hh
- lib/hnco/functions/collection/theory.cc

5.137 ScalarToDouble < T > Struct Template Reference

Convert a scalar to a double.

#include <hnco/functions/converter.hh>

Public Types

using codomain_type = T
 Codomain type.

Public Member Functions

double operator() (T x)
 Convert to double.

5.137.1 Detailed Description

 $\label{template} \begin{tabular}{ll} template < class T > \\ struct hnco:: function:: Scalar To Double < T > \\ \end{tabular}$

Convert a scalar to a double.

Definition at line 32 of file converter.hh.

The documentation for this struct was generated from the following file:

· lib/hnco/functions/converter.hh

5.138 SelfAdjustingOnePlusOneEa Class Reference

Self-adjusting (1+1) evolutionary algorithm.

#include <hnco/algorithms/ea/self-adjusting-one-plus-one-ea.hh>

Inheritance diagram for SelfAdjustingOnePlusOneEa:

Public Member Functions

• SelfAdjustingOnePlusOneEa (int n)

Constructor.

· void finalize () override

Finalize.

Setters

void set_mutation_rate_init (double p)

Set the initial mutation rate.

void set_mutation_rate_min (double p)

Set the minimum mutation rate.

• void set mutation rate max (double p)

Set the maximum mutation rate.

void set_update_strength (double x)

Set update strength.

• void set_success_ratio (double x)

Set success ratio.

• void set_allow_no_mutation (bool b)

Allow no mutation.

• void set incremental evaluation (bool b)

Turn on incremental evaluation.

Setters for logging

• void set_log_mutation_rate (bool b)

Log mutation rate.

Private Member Functions

void iterate_full ()

Single iteration with full evaluation.

• void iterate_incremental ()

Single iteration with incremental evaluation.

void set_something_to_log ()

Set flag for something to log.

Loop

· void init () override

Initialize.

• void iterate () override

Single iteration.

void log () override

Log.

Private Attributes

neighborhood::StandardBitMutation _mutation

Mutation operator.

• double _mutation_rate

Mutation rate.

· double _coefficient

Update strength to the power the success rate.

Parameters

• double _mutation_rate_init

Initial mutation rate.

· double _mutation_rate_min

Minimum mutation rate.

• double _mutation_rate_max = 1

Maximum mutation rate.

• double success ratio = 4

Success ratio.

• double _update_strength

Update strength.

• bool _allow_no_mutation = false

Allow no mutation.

• bool _incremental_evaluation = false

Incremental evaluation.

Logging

 bool <u>log_mutation_rate</u> = false Log mutation rate.

Additional Inherited Members

5.138.1 Detailed Description

Self-adjusting (1+1) evolutionary algorithm.

Reference: Benjamin Doerr, Carola Doerr, and Johannes Lengler. 2019. Self-adjusting mutation rates with provably optimal success rules. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '19). Association for Computing Machinery, New York, NY, USA, 1479-1487. https://doi.org/10. \leftarrow 1145/3321707.3321733

Definition at line 41 of file self-adjusting-one-plus-one-ea.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/ea/self-adjusting-one-plus-one-ea.hh
- · lib/hnco/algorithms/ea/self-adjusting-one-plus-one-ea.cc

5.139 SimulatedAnnealing Class Reference

Simulated annealing.

#include <hnco/algorithms/ls/simulated-annealing.hh>

Inheritance diagram for SimulatedAnnealing:

Public Member Functions

• **SimulatedAnnealing** (int n, neighborhood::Neighborhood *neighborhood) *Constructor.*

Setters

void set_num_transitions (int x)

Set the number of accepted transitions before annealing.

• void set num trials (int x)

Set the Number of trials.

• void **set_initial_acceptance_probability** (double x)

Set the initial acceptance probability.

void set_beta_ratio (double x)

Set ratio for beta.

Protected Member Functions

• void init_beta ()

Initialize beta.

Loop

· void init () override

Initialize.

· void iterate () override

Single iteration.

Protected Attributes

· double _beta

Inverse temperature.

• double _current_value

Current value.

· int _transitions

Number of accepted transitions.

Parameters

• int _num_transitions = 50

Number of accepted transitions before annealing.

• int **num trials** = 100

Number of trials.

• double _initial_acceptance_probability = 0.6

Initial acceptance probability.

• double beta ratio = 1.2

Ratio for beta.

5.139.1 Detailed Description

Simulated annealing.

Reference:

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. 1983. Optimization by simulated annealing. Science 220, 4598 (May 1983), 671–680.

Definition at line 42 of file simulated-annealing.hh.

5.139.2 Member Function Documentation

5.139.2.1 init_beta()

```
void init_beta ( ) [protected]
```

Initialize beta.

Requires (2 * _num_trials) evaluations. This should be taken into account when using OnBudgetFunction.

Definition at line 34 of file simulated-annealing.cc.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/ls/simulated-annealing.hh
- · lib/hnco/algorithms/ls/simulated-annealing.cc

5.140 SingleBitFlip Class Reference

One bit neighborhood.

#include <hnco/neighborhoods/neighborhood.hh>

Inheritance diagram for SingleBitFlip:

Public Member Functions

• SingleBitFlip (int n)

Constructor.

Private Member Functions

• void sample_bits ()

Sample bits.

Additional Inherited Members

5.140.1 Detailed Description

One bit neighborhood.

Definition at line 163 of file neighborhood.hh.

The documentation for this class was generated from the following file:

• lib/hnco/neighborhoods/neighborhood.hh

5.141 SingleBitFlipIterator Class Reference

Single bit flip neighborhood iterator.

#include <hnco/neighborhoods/neighborhood-iterator.hh>

Inheritance diagram for SingleBitFlipIterator:

Public Member Functions

• SingleBitFlipIterator (int n)

Constructor.

• bool has_next () override

Has next bit vector.

• const bit_vector_t & next () override

Next bit vector.

Private Attributes

size_t _index
 Index of the last flipped bit.

Additional Inherited Members

5.141.1 Detailed Description

Single bit flip neighborhood iterator.

Definition at line 56 of file neighborhood-iterator.hh.

5.141.2 Constructor & Destructor Documentation

5.141.2.1 SingleBitFlipIterator()

```
SingleBitFlipIterator (
          int n ) [inline]
```

Constructor.

Parameters

n Size of bit vectors

Definition at line 68 of file neighborhood-iterator.hh.

The documentation for this class was generated from the following files:

- lib/hnco/neighborhoods/neighborhood-iterator.hh
- lib/hnco/neighborhoods/neighborhood-iterator.cc

5.142 SinusSummationCancellation Class Reference

Summation cancellation with sinus.

#include <hnco/functions/collection/cancellation.hh>

Inheritance diagram for SinusSummationCancellation:

Public Member Functions

• SinusSummationCancellation (int n)

Constructor.

double evaluate (const bit_vector_t &x) override

Evaluate a bit vector.

Additional Inherited Members

5.142.1 Detailed Description

Summation cancellation with sinus.

Reference:

M. Sebag and M. Schoenauer. 1997. A society of hill-climbers. In Proc. IEEE Int. Conf. on Evolutionary Computation. Indianapolis, 319–324.

Definition at line 101 of file cancellation.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/cancellation.hh
- lib/hnco/functions/collection/cancellation.cc

5.143 SixPeaks Class Reference

Six Peaks.

#include <hnco/functions/collection/four-peaks.hh>

Inheritance diagram for SixPeaks:

Public Member Functions

• SixPeaks (int bv_size, int threshold)

Constructor.

• int **get_bv_size** () const override

Get bit vector size.

• bool has_known_maximum () const override

Check for a known maximum.

• double get_maximum () const override

Get the global maximum.

• double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

Private Attributes

• int _bv_size

Bit vector size.

· int threshold

Threshold.

• int _maximum

Maximum.

5.143.1 Detailed Description

Six Peaks.

It is defined by

```
f(x) = max\{head(x, 0) + tail(x, 1) + head(x, 1) + tail(x, 0)\} + R(x)
```

where:

- head(x, 0) is the length of the longest prefix of x made of zeros;
- head(x, 1) is the length of the longest prefix of x made of ones;
- tail(x, 0) is the length of the longest suffix of x made of zeros;
- tail(x, 1) is the length of the longest suffix of x made of ones;
- R(x) is the reward;
- R(x) = n if (head(x, 0) > t and tail(x, 1) > t) or (head(x, 1) > t and tail(x, 0) > t);
- R(x) = 0 otherwise;
- the threshold t is a parameter of the function.

This function has six maxima, of which exactly four are global ones.

For example, if n = 6 and t = 1:

- f(111111) = 6 (local maximum)
- f(1111110) = 5
- f(111100) = 10 (global maximum)

Reference:

J. S. De Bonet, C. L. Isbell, and P. Viola. 1996. MIMIC: finding optima by estimating probability densities. In Advances in Neural Information Processing Systems. Vol. 9. MIT Press, Denver.

Definition at line 128 of file four-peaks.hh.

5.143.2 Member Function Documentation

5.143.2.1 get_maximum()

```
double get_maximum ( ) const [inline], [override], [virtual]
```

Get the global maximum.

Returns

```
2 * _bv_size - _threshold - 1
```

Reimplemented from Function.

Definition at line 156 of file four-peaks.hh.

5.143.2.2 has_known_maximum()

```
bool has_known_maximum ( ) const [inline], [override], [virtual]
```

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 152 of file four-peaks.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/four-peaks.hh
- lib/hnco/functions/collection/four-peaks.cc

5.144 StandardBitMutation Class Reference

Standard bit mutation.

#include <hnco/neighborhoods/neighborhood.hh>

Inheritance diagram for StandardBitMutation:

Public Member Functions

• StandardBitMutation (int n)

Constructor.

• StandardBitMutation (int n, double p)

Constructor.

• void set_mutation_rate (double p)

Set mutation rate.

Setters

• void **set_allow_no_mutation** (bool b) Set the flag_allow_no_mutation.

Private Member Functions

void sample_bits ()

Sample bits.

· void bernoulli_process ()

Bernoulli process.

Private Attributes

• std::bernoulli_distribution _bernoulli_dist

Bernoulli distribution (biased coin)

std::binomial distribution< int > binomial dist

Binomial distribution.

• bool _rejection_sampling = false

Rejection sampling.

Parameters

• bool _allow_no_mutation = false Allow no mutation.

Additional Inherited Members

5.144.1 Detailed Description

Standard bit mutation.

Each component of the origin bit vector is flipped with some fixed probability. Unless stated otherwise, if no component has been flipped at the end, the process is started all over again. Thus the number of flipped bits follows a pseudo binomial law.

Definition at line 222 of file neighborhood.hh.

5.144.2 Constructor & Destructor Documentation

5.144.2.1 StandardBitMutation() [1/2]

```
StandardBitMutation (
          int n ) [inline]
```

Constructor.

Parameters

```
n Size of bit vectors
```

The Bernoulli probability is set to 1 / n.

Definition at line 257 of file neighborhood.hh.

5.144.2.2 StandardBitMutation() [2/2]

Constructor.

Parameters

n	Size of bit vectors
р	Bernoulli probability

Definition at line 267 of file neighborhood.hh.

5.144.3 Member Function Documentation

5.144.3.1 set_mutation_rate()

Set mutation rate.

Sets _rejection_sampling to true if E(X) < sqrt(n), where X is a random variable with a binomial distribution B(n, p), that is if np < sqrt(n) or p < 1 / sqrt(n).

Definition at line 278 of file neighborhood.hh.

The documentation for this class was generated from the following files:

- lib/hnco/neighborhoods/neighborhood.hh
- lib/hnco/neighborhoods/neighborhood.cc

5.145 SteepestAscentHillClimbing Class Reference

Steepest ascent hill climbing.

#include <hnco/algorithms/ls/steepest-ascent-hill-climbing.hh>

Inheritance diagram for SteepestAscentHillClimbing:

Public Member Functions

• SteepestAscentHillClimbing (int n, neighborhood::NeighborhoodIterator *neighborhood) Constructor.

Protected Member Functions

• void **iterate** () override Single iteration.

Protected Attributes

std::vector< bit_vector_t > _candidates
 Potential candidate.

5.145.1 Detailed Description

Steepest ascent hill climbing.

Definition at line 34 of file steepest-ascent-hill-climbing.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/ls/steepest-ascent-hill-climbing.hh
- lib/hnco/algorithms/ls/steepest-ascent-hill-climbing.cc

5.146 StopOnMaximum Class Reference

Stop on maximum.

#include <hnco/functions/controllers/controller.hh>

Inheritance diagram for StopOnMaximum:

Public Member Functions

• StopOnMaximum (Function *function)

Constructor.

Additional Inherited Members

5.146.1 Detailed Description

Stop on maximum.

Definition at line 145 of file controller.hh.

5.146.2 Constructor & Destructor Documentation

5.146.2.1 StopOnMaximum()

```
StopOnMaximum (
          Function * function ) [inline]
```

Constructor.

Precondition

function->has_known_maximum()

Definition at line 152 of file controller.hh.

The documentation for this class was generated from the following file:

· lib/hnco/functions/controllers/controller.hh

5.147 StopOnTarget Class Reference

Stop on target.

#include <hnco/functions/controllers/controller.hh>

Inheritance diagram for StopOnTarget:

Public Member Functions

• StopOnTarget (Function *function, double target)

Constructor.

const algorithm::solution_t & get_trigger ()

Get trigger.

Evaluation

double evaluate (const bit_vector_t &)

Evaluate a bit vector.

double evaluate_incrementally (const bit_vector_t &x, double value, const hnco::sparse_bit_vector_t &flipped_bits)

Incrementally evaluate a bit vector.

void update (const bit_vector_t &x, double value)

Update after a safe evaluation.

Private Attributes

```
    double _target
        Target.
        algorithm::solution_t _trigger
        Trigger.
```

Additional Inherited Members

5.147.1 Detailed Description

Stop on target.

The member function eval throws an exception TargetReached when the value of its decorated function reaches a given target.

Warning

The target is detected using the greater or equal operator hence the result should be taken with care in case of non integer (floating point) function values.

Definition at line 94 of file controller.hh.

5.147.2 Constructor & Destructor Documentation

5.147.2.1 StopOnTarget()

```
StopOnTarget (
          Function * function,
           double target ) [inline]
```

Constructor.

Parameters

function	Decorated function
target	Target

Definition at line 109 of file controller.hh.

5.147.3 Member Function Documentation

5.147.3.1 evaluate()

Evaluate a bit vector.

Exceptions

TargetReached

Implements Function.

Definition at line 33 of file controller.cc.

5.147.3.2 evaluate_incrementally()

Incrementally evaluate a bit vector.

Exceptions

TargetReached

Reimplemented from Function.

Definition at line 46 of file controller.cc.

5.147.3.3 update()

Update after a safe evaluation.

Exceptions

TargetReached

Reimplemented from Function.

Definition at line 59 of file controller.cc.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/controllers/controller.hh
- lib/hnco/functions/controllers/controller.cc

5.148 StopWatch Class Reference

```
Stop watch.
```

```
#include <hnco/stop-watch.hh>
```

Public Member Functions

```
· void start ()
```

Start.

· void stop ()

Stop.

• double get_total_time ()

Get total time.

· void reset ()

Reset.

Private Attributes

```
• double _total_time = 0
```

Total time.

clock_t _start

Start time.

5.148.1 Detailed Description

Stop watch.

Definition at line 31 of file stop-watch.hh.

The documentation for this class was generated from the following file:

· lib/hnco/stop-watch.hh

5.149 Sudoku Class Reference

Sudoku

#include <hnco/functions/collection/sudoku.hh>

Public Types

using domain_type = std::size_t

Domain type.

• using codomain_type = double

Codomain type.

Public Member Functions

· Sudoku ()

Default constructor.

void random (int c)

Random instance.

• int get_num_variables ()

Get the number of variables.

· void display (std::ostream &stream) const

Display the problem.

void describe (const std::vector< domain_type > &x, std::ostream &stream)

Describe a solution.

double evaluate (const std::vector< domain_type > &x)

Evaluate a solution.

Private Member Functions

void write_variables (const std::vector< domain_type > &x)

Write variables.

Private Attributes

std::vector< std::vector< char >> _problem_instance

Problem instance.

std::vector< std::vector< domain_type >> _candidate

Candidate.

std::vector< int > _counts

Counts.

• int _num_variables

Number of variables.

Load and save instance

void load_ (std::istream &stream)

Load an instance.

· void save_ (std::ostream &stream) const

Save an instance.

void load (std::string path)

Load instance.

• void save (std::string path) const

Save instance.

5.149.1 Detailed Description

Sudoku

Definition at line 34 of file sudoku.hh.

5.149.2 Member Function Documentation

5.149.2.1 load()

Load instance.

Parameters

path Path of the instance to load

Exceptions

std::runtime_error

Definition at line 100 of file sudoku.hh.

5.149.2.2 load_()

Load an instance.

Exceptions

std::runtime_error

Definition at line 57 of file sudoku.cc.

5.149.2.3 random()

```
void random ( \quad \text{int } c \ )
```

Random instance.

Parameters

c Number of empty cells

Definition at line 96 of file sudoku.cc.

5.149.2.4 save()

Save instance.

Parameters

path Path of the instance to save

Exceptions

std::runtime_error

Definition at line 112 of file sudoku.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/collection/sudoku.hh
- lib/hnco/functions/collection/sudoku.cc

5.150 SummationCancellation Class Reference

Summation cancellation.

#include <hnco/functions/collection/cancellation.hh>

Inheritance diagram for SummationCancellation:

Public Member Functions

• SummationCancellation (int n)

Constructor.

• int get_bv_size () const override

Get bit vector size.

• bool has_known_maximum () const override

Check for a known maximum.

• double **get_maximum** () const override

Get the global maximum.

• double evaluate (const bit_vector_t &x) override

Evaluate a bit vector.

Protected Member Functions

void convert (const bit_vector_t &x)

Convert a bit vector into a real vector.

Protected Attributes

int _bv_size

Bit vector size.

std::vector< double > _buffer

Buffer.

5.150.1 Detailed Description

Summation cancellation.

Encoding of a signed integer:

- bit 0: sign
- bits 1 to 8: two's complement representation

Reference:

S. Baluja and S. Davies. 1997. Using optimal dependency-trees for combinatorial optimization: learning the structure of the search space. Technical Report CMU- CS-97-107. Carnegie-Mellon University.

Definition at line 46 of file cancellation.hh.

5.150.2 Constructor & Destructor Documentation

5.150.2.1 SummationCancellation()

```
\label{eq:continuous} \begin{tabular}{ll} Summation Cancellation ( \\ & int \ n \ ) & [inline] \end{tabular}
```

Constructor.

The bit vector size n must be a multiple of 9. The size of _buffer is then n / 9.

Parameters

n Size of the bit vector

Definition at line 68 of file cancellation.hh.

5.150.3 Member Function Documentation

5.150.3.1 has_known_maximum()

```
bool has_known_maximum ( ) const [inline], [override], [virtual]
```

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 81 of file cancellation.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/collection/cancellation.hh
- lib/hnco/functions/collection/cancellation.cc

5.151 SymmetricWalshMoment2 Struct Reference

Symmetric Walsh moment.

#include <hnco/algorithms/walsh-moment/walsh-moment.hh>

Public Member Functions

• SymmetricWalshMoment2 (int n)

Constructor.

· void display (std::ostream &stream)

Display Walsh moment.

· void init ()

Initialize Walsh moment.

void add (const bit_vector_t &bv)

Add a bit vector to a Walsh moment.

void average (int count)

Average each Walsh moment.

• void update (const SymmetricWalshMoment2 &wm, double rate)

Update a Walsh moment.

void update (const SymmetricWalshMoment2 &wm1, const SymmetricWalshMoment2 &wm2, double rate)

Update a Walsh moment.

void scaled_difference (double lambda, const SymmetricWalshMoment2 &wm1, const SymmetricWalshMoment2 &wm2)

Compute a scaled difference between two moments.

• void bound (double margin)

Bound Walsh moment.

• double norm_1 () const

1-norm of the Walsh moment

· double norm 2 () const

2-norm of the Walsh moment

• double norm_infinite () const

infinite-norm of the Walsh moment

double distance (const SymmetricWalshMoment2 &wm) const

distance between the Walsh moment and another Walsh moment

Public Attributes

- $std::vector < double > first_moment$
- $std::vector < std::vector < double >> second_moment$ Second moment.

5.151.1 Detailed Description

Symmetric Walsh moment.

Definition at line 144 of file walsh-moment.hh.

5.151.2 Constructor & Destructor Documentation

5.151.2.1 SymmetricWalshMoment2()

```
\label{eq:continuous} {\tt SymmetricWalshMoment2} \mbox{ (} \\ \mbox{int } n \mbox{ )}
```

Constructor.

Parameters

```
n Size of bit vector
```

Definition at line 236 of file walsh-moment.cc.

5.151.3 Member Function Documentation

5.151.3.1 average()

```
void average (
          int count )
```

Average each Walsh moment.

Postcondition

matrix_is_symmetric(second_moment)

Definition at line 296 of file walsh-moment.cc.

5.151.3.2 bound()

```
void bound ( \mbox{double } \mbox{\it margin })
```

Bound Walsh moment.

Ensure that the distance from each Walsh moment to the -1/1 bounds is greater or equal to the given margin.

Parameters

margin	Distance from the -1/1 bounds
--------	-------------------------------

Definition at line 378 of file walsh-moment.cc.

5.151.3.3 display()

```
void display ( {\tt std::ostream~\&~stream~)}
```

Display Walsh moment.

A SymmetricWalshMoment2 is displayed as a full symmetric matrix with diagonal entries equal to first moments and off-diagonal entries equal to second moments.

Definition at line 247 of file walsh-moment.cc.

5.151.3.4 scaled_difference()

Compute a scaled difference between two moments.

This member function implements:

```
self = lambda * wm1 - wm2
```

It is mostly useful in herding (Hea).

Parameters

lambda	Scale
wm1	First Walsh moment
wm2	Second Walsh moment

Definition at line 357 of file walsh-moment.cc.

5.151.3.5 update() [1/2]

Update a Walsh moment.

This member function implements:

```
self += rate * (wm1 - self)
```

Parameters

wm	Target Walsh moment
rate	Learning rate

Postcondition

```
For all i, is_in_interval(first_moment[i], -1, 1)

For all i != j, is_in_interval(second_moment[i][j], -1, 1)

matrix_is_symmetric(second_moment)
```

Definition at line 314 of file walsh-moment.cc.

5.151.3.6 update() [2/2]

Update a Walsh moment.

This member function implements:

```
self += rate * (wm1 - wm2)
```

The resulting entries are not necessarily those of a Walsh moment, that is

```
is_in_interval(first_moment[i], -1, 1) or
is_in_interval(second_moment[i][j], -1, 1)
might fail for some i != j.
```

Parameters

wm1	Target Walsh moment
wm2	Walsh moment to move away from
rate	Learning rate

Definition at line 335 of file walsh-moment.cc.

The documentation for this struct was generated from the following files:

- lib/hnco/algorithms/walsh-moment/walsh-moment.hh
- · lib/hnco/algorithms/walsh-moment/walsh-moment.cc

5.152 SymmetricWalshMoment2GibbsSampler Class Reference

Gibbs sampler with symmetric Walsh moments.

#include <hnco/algorithms/walsh-moment/gibbs-sampler.hh>

Public Types

• using **Moment** = SymmetricWalshMoment2

Walsh moment type.

Public Member Functions

• SymmetricWalshMoment2GibbsSampler (int n, const SymmetricWalshMoment2 &mp)

Constructor.

· void init ()

Initialize.

• void update (int i)

Update state.

• void update_sync ()

Update state synchronously.

• const bit_vector_t & get_state ()

Get the state of the Gibbs sampler.

Private Attributes

• const SymmetricWalshMoment2 & _model_parameters

Model parameters.

bit_vector_t _state

State of the Gibbs sampler.

pv_t _pv

Probability vector for synchronous Gibbs sampling.

5.152.1 Detailed Description

Gibbs sampler with symmetric Walsh moments.

Definition at line 75 of file gibbs-sampler.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/walsh-moment/gibbs-sampler.hh
- · lib/hnco/algorithms/walsh-moment/gibbs-sampler.cc

5.153 SymmetricWalshMoment2Herding Class Reference

Herding with symmetric Walsh moment.

#include <hnco/algorithms/walsh-moment/herding.hh>

Public Types

• using **Moment** = SymmetricWalshMoment2

Walsh moment type.

Public Member Functions

• SymmetricWalshMoment2Herding (int n)

Constructor.

· void init ()

Initialization.

void sample (const SymmetricWalshMoment2 &target, bit_vector_t &x)

Sample a bit vector.

• double error (const SymmetricWalshMoment2 &target)

Compute the error.

Getters

 const SymmetricWalshMoment2 & get_delta () const Get delta.

Setters

void set_randomize_bit_order (bool x)

Randomize bit order.

Protected Attributes

• SymmetricWalshMoment2 _delta

Delta moment.

• SymmetricWalshMoment2 _count

Counter moment.

• SymmetricWalshMoment2 _error

Error moment.

• permutation_t _permutation

Permutation.

• int _time

Time.

Parameters

• bool **_randomize_bit_order** = false Randomize bit order.

5.153.1 Detailed Description

Herding with symmetric Walsh moment.

Definition at line 112 of file herding.hh.

5.153.2 Constructor & Destructor Documentation

5.153.2.1 SymmetricWalshMoment2Herding()

```
SymmetricWalshMoment2Herding (
    int n ) [inline]
```

Constructor.

Parameters

n Size of bit vectors

Definition at line 149 of file herding.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/walsh-moment/herding.hh
- · lib/hnco/algorithms/walsh-moment/herding.cc

5.154 TargetReached Class Reference

Target reached.

#include <hnco/exception.hh>

Inherits runtime error.

5.154.1 Detailed Description

Target reached.

Definition at line 40 of file exception.hh.

The documentation for this class was generated from the following file:

• lib/hnco/exception.hh

5.155 TournamentSelection Class Reference

Tournament selection.

#include <hnco/algorithms/ea/random-selection.hh>

Inheritance diagram for TournamentSelection:

Public Member Functions

• TournamentSelection (const Population &population)

Constructor.

· void init () override

Initialize.

• const bit_vector_t & select () override

Select an individual in the population.

Setters

void set_tournament_size (int n)

Set the tournament size.

Private Attributes

hnco::multiobjective::algorithm::TournamentSelection< double, std::greater< double >> _tournament_←
 selection

Tournament selection.

Parameters

• int _tournament_size = 2 Tournament size.

Additional Inherited Members

5.155.1 Detailed Description

Tournament selection.

Reuses the hnco::multiobjective::algorithm::TournamentSelection class.

Definition at line 93 of file random-selection.hh.

5.155.2 Constructor & Destructor Documentation

5.155.2.1 TournamentSelection()

```
TournamentSelection (

const Population & population ) [inline]
```

Constructor.

Parameters

population Population to select from

Definition at line 115 of file random-selection.hh.

5.155.3 Member Function Documentation

5.155.3.1 select()

```
const bit_vector_t & select ( ) [override], [virtual]
```

Select an individual in the population.

The selection only requires that the population be evaluated, not necessarily sorted.

Precondition

The population must be evaluated.

Implements RandomSelection.

Definition at line 45 of file random-selection.cc.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/ea/random-selection.hh
- · lib/hnco/algorithms/ea/random-selection.cc

5.156 TournamentSelection < T, Compare > Class Template Reference

Tournament selection.

#include <hnco/multiobjective/algorithms/random-selection.hh>

Inheritance diagram for TournamentSelection < T, Compare >:

Public Member Functions

- TournamentSelection (const std::vector< bit_vector_t > &bvs, const std::vector< T > &values)
 Constructor.
- · void init ()

Initialize.

· const bit_vector_t & select ()

Select a bit vector.

Setters

• void set_tournament_size (int n)

Set the tournament size.

Private Attributes

const std::vector< bit_vector_t > & _bvs

Bit vectors.

const std::vector< T > & _values

Values.

hnco::permutation_t _permutation

Permutation.

• int _start

Beginning of the slice of permutation used in a tournament round.

int _stop

End of the slice of permutation used in a tournament round.

• Compare _compare

Comparison operator.

Parameters

• int tournament size = 2

Tournament size.

5.156.1 Detailed Description

```
template<typename T, typename Compare>
class hnco::multiobjective::algorithm::TournamentSelection< T, Compare>
```

Tournament selection.

Implement tournament selection without replacement as explained in the reference:

Goldberg, Korb, and Deb, "Messy genetic algorithms: Motivation, analysis, and first results", Complex systems, 1989.

```
https://www.complex-systems.com/abstracts/v03_i05_a05/
```

Definition at line 45 of file random-selection.hh.

The documentation for this class was generated from the following file:

• lib/hnco/multiobjective/algorithms/random-selection.hh

5.157 Translation Class Reference

Translation.

#include <hnco/maps/map.hh>

Inheritance diagram for Translation:

Public Member Functions

- void map (const bit_vector_t &input, bit_vector_t &output) override
 Map
- int get_input_size () const override

Get input size.

• int get_output_size () const override

Get output size.

• bool is_surjective () const override

Check for surjective map.

· void display (std::ostream &stream) const override

Display.

· void random (int n)

Random instance.

void set_bv (const bit_vector_t &bv)

Set the translation vector.

Load and save map

- void load (std::string path)
 - Load map.
- void save (std::string path) const

Save map.

Private Member Functions

- template < class Archive > void save (Archive & ar, const unsigned int version) const
 - Save
- template < class Archive >

void load (Archive &ar, const unsigned int version)

Load

Private Attributes

bit_vector_t _bv

Translation vector

5.157.1 Detailed Description

Translation.

A translation is an affine map f from F_2y^n to itself defined by f(x)=x+b, where b is an n-dimensional bit vector.

Definition at line 80 of file map.hh.

5.157.2 Member Function Documentation

5.157.2.1 is_surjective()

```
bool is_surjective ( ) const [inline], [override], [virtual]
```

Check for surjective map.

Returns

true

Reimplemented from Map.

Definition at line 122 of file map.hh.

5.157.2.2 load()

Load map.

Parameters

path Path of the file

Exceptions

std::runtime_error

Definition at line 147 of file map.hh.

5.157.2.3 save()

Save map.

Parameters

path Path of the file

Exceptions

std::runtime_error

Definition at line 154 of file map.hh.

The documentation for this class was generated from the following files:

- lib/hnco/maps/map.hh
- · lib/hnco/maps/map.cc

5.158 Transvection Struct Reference

Transvection.

#include <hnco/maps/transvection.hh>

Public Member Functions

template < class Archive >
 void save (Archive & ar, const unsigned int version) const
 Save.

template < class Archive > void load (Archive & ar, const unsigned int version)

Load.

• bool is_valid () const

Check validity.

• bool is_valid (int n) const

Check validity.

· void display (std::ostream &stream) const

Display transvection.

void random (int n)

Sample a random transvection.

void random_non_commuting (int n, const Transvection &a)

Sample a random transvection.

void multiply (bit_vector_t &x) const

Multiply a bit vector from the left.

void multiply (bit_matrix_t &M) const

Multiply a bit matrix from the left.

Public Attributes

int row_index

Row index.

int column_index

Column index.

5.158.1 Detailed Description

Transvection.

We only consider transvections defined by matrices $\tau_{ij} = I_n + B_{ij}$, where I_n is the $n \times n$ identity matrix and B_{ij} is the matrix whose (i,j) entry is 1 and other entries are zero. Such a matrix is also sometimes called a shear matrix.

Transvections generate invertible matrices over the finite field F_2 .

Definition at line 63 of file transvection.hh.

5.158.2 Member Function Documentation

5.158.2.1 is_valid()

```
bool is_valid ( \quad \quad \text{int } n \text{ ) const}
```

Check validity.

Parameters

```
n Dimension
```

Definition at line 48 of file transvection.cc.

5.158.2.2 multiply() [1/2]

```
void multiply (
```

```
bit_matrix_t & M ) const
```

Multiply a bit matrix from the left.

Parameters

```
M Bit matrix
```

Precondition

```
is_valid()
is_valid(bm_num_rows(M))
```

Warning

This function modifies the given bit vector.

Definition at line 117 of file transvection.cc.

5.158.2.3 multiply() [2/2]

```
void multiply ( \label{eq:bit_vector_t & x ) const}
```

Multiply a bit vector from the left.

Parameters

```
x Bit vector
```

Precondition

```
is_valid()
is_valid(x.size())
```

Warning

This function modifies the given bit vector.

Definition at line 105 of file transvection.cc.

5.158.2.4 random()

```
void random ( \quad \text{int } n \ )
```

Sample a random transvection.

Parameters

```
n Dimension
```

Precondition

n > 1

Definition at line 61 of file transvection.cc.

5.158.2.5 random_non_commuting()

```
void random_non_commuting (  \qquad \qquad \text{int } n, \\  \qquad \qquad \text{const Transvection \& } a \text{ )}
```

Sample a random transvection.

This member function ensures that the sampled transvection does not commute with some given one.

Parameters

n	Dimension
а	Given transvection

Precondition

n > 1

Definition at line 77 of file transvection.cc.

The documentation for this struct was generated from the following files:

- lib/hnco/maps/transvection.hh
- lib/hnco/maps/transvection.cc

5.159 Trap Class Reference

Trap.

#include <hnco/functions/collection/trap.hh>

Inheritance diagram for Trap:

Public Member Functions

• Trap (int bv_size, int num_traps)

Constructor.

• int get_bv_size () const

Get bit vector size.

double evaluate (const bit_vector_t &)

Evaluate a bit vector.

bool has_known_maximum () const

Check for a known maximum.

• double get_maximum () const

Get the global maximum.

Private Attributes

• int _bv_size

Bit vector size.

int _num_traps

Number of traps.

int _trap_size

Trap size

5.159.1 Detailed Description

Trap.

Reference:

Kalyanmoy Deb and David E. Goldberg. 1993. Analyzing Deception in Trap Functions. In Foundations of Genetic Algorithms 2, L. Darrell Whitley (Ed.). Morgan Kaufmann, San Mateo, CA, 93–108.

Definition at line 43 of file trap.hh.

5.159.2 Constructor & Destructor Documentation

5.159.2.1 Trap()

Constructor.

Parameters

bv_size	Bit vector size
num_traps	Number of traps

Warning

bv_size must be a multiple of num_traps

Definition at line 64 of file trap.hh.

5.159.3 Member Function Documentation

5.159.3.1 get_maximum()

```
double get_maximum ( ) const [inline], [virtual]
```

Get the global maximum.

Returns

_bv_size

Reimplemented from Function.

Definition at line 88 of file trap.hh.

5.159.3.2 has_known_maximum()

```
bool has_known_maximum ( ) const [inline], [virtual]
```

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 84 of file trap.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/collection/trap.hh
- lib/hnco/functions/collection/trap.cc

5.160 TsAffineMap Class Reference

Transvection sequence affine map.

```
#include <hnco/maps/map.hh>
```

Inheritance diagram for TsAffineMap:

Public Types

enum SamplingMode {
 Unconstrained , CommutingTransvections , UniqueSource , UniqueDestination ,
 DisjointTransvections , NonCommutingTransvections }

Sampling mode.

Public Member Functions

• void random (int n, int t, SamplingMode mode)

Random instance.

void map (const bit_vector_t &input, bit_vector_t &output) override

Мар

int get_input_size () const override

Get input size.

int get_output_size () const override

Get output size.

• bool is_surjective () const override

Check for surjective map.

· void display (std::ostream &stream) const override

Display

· void inverse ()

Inverse.

Load and save map

void load (std::string path)

Load map.

void save (std::string path) const

Save map.

Private Member Functions

template < class Archive > void save (Archive & ar, const unsigned int version) const

Save.

template < class Archive >

void load (Archive &ar, const unsigned int version)

Load

Private Attributes

• transvection_sequence_t _ts

Transvection sequence

bit_vector_t _bv

Translation vector

5.160.1 Detailed Description

Transvection sequence affine map.

An affine map f from F_2^m to F_2^n is defined by f(x) = Ax + b, where A is an n x m bit matrix and b is an n-dimensional bit vector.

In TsAffineMap, A is a finite product of transvections represented by a transvection_sequence_t.

Definition at line 601 of file map.hh.

5.160.2 Member Enumeration Documentation

5.160.2.1 SamplingMode

enum SamplingMode

Sampling mode.

Enumerator

Unconstrained	Unconstrained.
CommutingTransvections	Commuting transvections.
UniqueSource	Transvection sequence with unique source
UniqueDestination	Transvection sequence with unique destination
DisjointTransvections	Disjoint transvections.
NonCommutingTransvections	Non commuting transvections.

Definition at line 637 of file map.hh.

5.160.3 Member Function Documentation

5.160.3.1 is_surjective()

```
bool is_surjective ( ) const [inline], [override], [virtual]
```

Check for surjective map.

Returns

true

Reimplemented from Map.

Definition at line 680 of file map.hh.

5.160.3.2 load()

Load map.

Parameters

path	Path of the file
------	------------------

Exceptions

```
std::runtime_error
```

Definition at line 697 of file map.hh.

5.160.3.3 random()

Random instance.

Parameters

n	Dimension
t	Length of sequence of transvections
mode	Sampling mode

Definition at line 217 of file map.cc.

5.160.3.4 save()

Save map.

Parameters

path	Path of the file

Exceptions

std::runtime_error

Definition at line 704 of file map.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/maps/map.hh
- lib/hnco/maps/map.cc

5.161 Tsp Class Reference

Traveling salesman problem.

#include <hnco/functions/collection/tsp.hh>

Public Member Functions

• Tsp ()

Default constructor.

• int get_num_elements () const

Get the number of elements.

· void display (std::ostream &stream) const

Display the problem.

• void **describe** (const hnco::permutation_t &permutation, std::ostream &stream)

Describe a solution.

double evaluate (const hnco::permutation_t &permutation)

Evaluate a solution.

Instance generators

template < class Generator > void generate (int n, Generator generator)

Instance generator.

• void random (int n)

Random instance.

Private Attributes

std::vector < std::vector < float > > _distances
 Distances.

Load and save instance

void load_ (std::istream &stream)

Load an instance.

- void load_coordinates (std::istream &stream)
- · void save_ (std::ostream &stream) const

Save an instance.

void load (std::string path)

Load instance.

· void save (std::string path) const

Save instance.

5.161.1 Detailed Description

Traveling salesman problem.

Source: TSPLIB 95, Gerhard Reinelt

Definition at line 40 of file tsp.hh.

5.161.2 Member Function Documentation

5.161.2.1 generate()

```
void generate (  \mbox{int } n, \\ \mbox{Generator } generator \mbox{)} \mbox{ [inline]}
```

Instance generator.

Parameters

n	Number of vertices
generator	Generator for distances

Definition at line 94 of file tsp.hh.

5.161.2.2 load()

Load instance.

Parameters

path	Path of the instance to load

Exceptions

std::runtime_error

Definition at line 129 of file tsp.hh.

5.161.2.3 load_()

Load an instance.

Exceptions

std::runtime_error

Definition at line 32 of file tsp.cc.

5.161.2.4 random()

```
void random ( \quad \text{int } n \text{ ) } \quad [\text{inline}]
```

Random instance.

Distances are sampled from the normal distribution.

Parameters

n Number of vertices

Definition at line 113 of file tsp.hh.

5.161.2.5 save()

Save instance.

Parameters

path Path of the instance to save

Exceptions

std::runtime_error

Definition at line 141 of file tsp.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/collection/tsp.hh
- · lib/hnco/functions/collection/tsp.cc

5.162 TwoRateOnePlusLambdaEa Class Reference

Two-rate (1+lambda) evolutionary algorithm.

#include <hnco/algorithms/ea/two-rate-one-plus-lambda-ea.hh>

Inheritance diagram for TwoRateOnePlusLambdaEa:

Public Member Functions

• TwoRateOnePlusLambdaEa (int n, int population_size)

Constructor.

Setters

• void set_mutation_rate_init (double r)

Set the initial mutation rate.

• void set_allow_no_mutation (bool b)

Allow no mutation.

Setters for logging

void set_log_mutation_rate (bool b)

Log mutation rate.

Protected Member Functions

void set_something_to_log ()
 Set flag for something to log.

Loop

- void init () override
 - Initialization.
- void iterate () override Single iteration.
- void **log** () override *Log*.

Protected Attributes

• Population _population

Population.

neighborhood::StandardBitMutation mutation operator

Mutation operator.

double _mutation_rate

Mutation rate.

Parameters

• double _mutation_rate_init

Initial mutation rate.

• bool _allow_no_mutation = false

Allow no mutation.

Logging

 bool <u>log_mutation_rate</u> = false Log entropy.

5.162.1 Detailed Description

Two-rate (1+lambda) evolutionary algorithm.

Reference:

Benjamin Doerr, Christian Gießen, Carsten Witt, and Jing Yang.

 The (1+lambda) evolutionary algorithm with self-adjusting mutation rate. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '17). Association for Computing Machinery, New York, NY, USA, 1351–1358. https://doi.org/10.1145/3071178.3071279

Definition at line 47 of file two-rate-one-plus-lambda-ea.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/ea/two-rate-one-plus-lambda-ea.hh
- lib/hnco/algorithms/ea/two-rate-one-plus-lambda-ea.cc

5.163 Umda Class Reference

Univariate marginal distribution algorithm.

#include <hnco/algorithms/pv/umda.hh>

Inheritance diagram for Umda:

Public Member Functions

• **Umda** (int n, int population_size)

Constructor.

Setters

void set_selection_size (int x)
 Set the selection size.

Protected Member Functions

Loop

- void **init** () override Initialize.
- void **iterate** () override Single iteration.

Protected Attributes

Population _population
 Population.

Parameters

• int _selection_size = 1 Selection size.

5.163.1 Detailed Description

Univariate marginal distribution algorithm.

Reference:

H. Mühlenbein. 1997. The equation for response to selection and its use for prediction. Evolutionary Computation 5, 3 (1997), 303–346.

Definition at line 41 of file umda.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/pv/umda.hh
- lib/hnco/algorithms/pv/umda.cc

5.164 UniformCrossover Class Reference

Uniform crossover.

#include <hnco/algorithms/ea/crossover.hh>

Inheritance diagram for UniformCrossover:

Public Member Functions

void recombine (const bit_vector_t &parent1, const bit_vector_t &parent2, bit_vector_t &offspring)
 Recombine.

5.164.1 Detailed Description

Uniform crossover.

Definition at line 56 of file crossover.hh.

5.164.2 Member Function Documentation

5.164.2.1 recombine()

Recombine.

The offspring is the uniform crossover of two parents.

Parameters

parent1	First parent
parent2	Second parent
offspring	Offspring

Implements Crossover.

Definition at line 30 of file crossover.cc.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/ea/crossover.hh
- lib/hnco/algorithms/ea/crossover.cc

5.165 UniformSelection Class Reference

Uniform selection.

#include <hnco/algorithms/ea/random-selection.hh>

Inheritance diagram for UniformSelection:

Public Member Functions

- UniformSelection (const Population &population) Constructor.
- const bit_vector_t & select () override Select an individual in the population.

Private Attributes

std::uniform_int_distribution< int > _choose_individual
 Random index.

Additional Inherited Members

5.165.1 Detailed Description

Uniform selection.

Definition at line 66 of file random-selection.hh.

5.165.2 Constructor & Destructor Documentation

5.165.2.1 UniformSelection()

Constructor.

Parameters

Definition at line 78 of file random-selection.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/ea/random-selection.hh
- · lib/hnco/algorithms/ea/random-selection.cc

5.166 UniversalFunction Class Reference

Universal function.

#include <hnco/functions/universal-function.hh>

Public Member Functions

virtual ∼UniversalFunction ()

Destructor.

virtual double evaluate (const bit_vector_t &boolean_vars, const std::vector< int > &integer_vars, const std::vector< double > &float_vars, const std::vector< std::complex< double > > &complex_vars, const std::vector< int > &categorical_vars, const std::vector< permutation_t > &permutation_vars)=0

Evaluate the function.

· virtual void display (std::ostream &stream) const

Display the function.

virtual void describe (const bit_vector_t &boolean_vars, const std::vector< int > &integer_vars, const std::vector< double > &float_vars, const std::vector< std::complex< double > > &complex_vars, const std::vector< int > &categorical_vars, const std::vector< permutation_t > &permutation_vars, std::ostream &stream)

Describe variables in the context of the function.

5.166.1 Detailed Description

Universal function.

A universal function is a function taking parameters of all types (boolean, integer, float, complex, categorical, permutation) and returning a double.

Definition at line 40 of file universal-function.hh.

The documentation for this class was generated from the following file:

· lib/hnco/functions/universal-function.hh

5.167 UniversalFunction Class Reference

Universal function.

#include <hnco/multiobjective/functions/universal-function.hh>

Public Member Functions

virtual ~UniversalFunction ()

Destructor.

virtual int get_output_size () const =0

Get output size (number of objectives)

- virtual void display (std::ostream &stream) const

Display the function.

virtual void describe (const bit_vector_t &boolean_vars, const std::vector< int > &integer_vars, const std::vector< double > &float_vars, const std::vector< std::complex< double > > &complex_vars, const std::vector< int > &categorical_vars, const std::vector< permutation_t > permutation_vars, std::ostream &stream)

Describe variables in the context of the function.

5.167.1 Detailed Description

Universal function.

A universal function is a function taking parameters of all types (boolean, integer, float, complex, categorical, permutation) and returning a double.

Definition at line 43 of file universal-function.hh.

The documentation for this class was generated from the following file:

· lib/hnco/multiobjective/functions/universal-function.hh

5.168 UniversalFunctionAdapter Class Reference

Universal function adapter.

#include <hnco/functions/universal-function-adapter.hh>

Inheritance diagram for UniversalFunctionAdapter:

Public Member Functions

UniversalFunctionAdapter (UniversalFunction *fn, int num_boolean_vars, std::vector< representation::DyadicIntegerRepresent int > > integer_reps, std::vector< representation::DyadicFloatRepresentation
 double > > float_
 reps, std::vector< representation::ComplexRepresentation
 DoubleRep > > complex_reps, std::vector<
 representation::LinearCategoricalRepresentation > categorical_reps, std::vector< representation::PermutationRepresentation
 > permutation_reps)

Constructor.

• int get_bv_size () const override

Get bit vector size.

· double evaluate (const bit vector t &bv) override

Evaluate a bit vector.

· void display (std::ostream &stream) const override

Display.

void describe (const bit vector t &bv, std::ostream &stream) override

Describe a bit vector.

Private Member Functions

void unpack (const bit_vector_t &bv)

Unpack bit vector into variables.

Private Attributes

• UniversalFunction * _function

Universal function.

std::vector< representation::DyadicIntegerRepresentation< int >> _integer_reps

Integer representations.

 $\bullet \quad \text{std::vector} < \text{representation::DyadicFloatRepresentation} < \text{double} >> _\textbf{float_reps}$

Float representations.

std::vector< representation::ComplexRepresentation
 DoubleRep >> _complex_reps

Complex representations.

 $\bullet \quad \text{std::vector} < \text{representation::LinearCategoricalRepresentation} > \underline{\text{categorical_reps}}$

Categorical representations.

std::vector< representation::PermutationRepresentation > _permutation_reps

Permuation representations.

bit_vector_t _boolean_vars

Boolean variables.

std::vector< int > _integer_vars

Integer variables.

std::vector< double > float vars

Float variables.

std::vector< std::complex< double >> _complex_vars

Complex variables.

std::vector< int > _categorical_vars

Categorical variables.

std::vector< permutation_t > _permutation_vars

Permutation variables.

int _bv_size

Bit vector size.

5.168.1 Detailed Description

Universal function adapter.

A universal function adapter turns a universal function into a regular hnco function defined on bit vectors.

Definition at line 45 of file universal-function-adapter.hh.

5.168.2 Constructor & Destructor Documentation

5.168.2.1 UniversalFunctionAdapter()

Constructor.

Parameters

fn	Universal function
num_boolean_vars	Number of boolean variables
integer_reps	Integer representations
float_reps	Float representations
complex_reps	Complex representations
categorical_reps	Categorical representations
permutation_reps	Permutation representations

Replace reps with {} if there is no corresponding variable. For example, if there is no categorical variable,

UniversalFunctionAdapter(fn, num_boolean_vars, integer_reps, float_reps, complex_reps, {}, permutation_reps)

Definition at line 134 of file universal-function-adapter.hh.

The documentation for this class was generated from the following file:

· lib/hnco/functions/universal-function-adapter.hh

5.169 UniversalFunctionAdapter Class Reference

Universal function adapter.

#include <hnco/multiobjective/functions/universal-function-adapter.hh>

Inheritance diagram for UniversalFunctionAdapter:

Public Member Functions

UniversalFunctionAdapter (UniversalFunction *fn, int num_boolean_vars, std::vector< representation::DyadicIntegerRepresent int > > integer_reps, std::vector< representation::DyadicFloatRepresentation< double > > float_
reps, std::vector< representation::ComplexRepresentation
 DoubleRep > > complex_reps, std::vector< representation::LinearCategoricalRepresentation > categorical_reps, std::vector< representation::PermutationRepresentation > permutation_reps)

Constructor.

• int get_bv_size () const override

Get bit vector size.

· int get_output_size () const override

Get output size (number of objectives)

void evaluate (const bit_vector_t &bv, value_t &value) override

Evaluate a bit vector.

void display (std::ostream &stream) const override

Display.

• void describe (const bit_vector_t &bv, std::ostream &stream) override

Describe a bit vector.

Private Member Functions

void unpack (const bit_vector_t &bv)

Unpack bit vector into variables.

Private Attributes

UniversalFunction * _function

Universal function.

std::vector< representation::DyadicIntegerRepresentation< int >> _integer_reps

Integer representations.

std::vector < DoubleRep > _float_reps

Float representations.

- std::vector< representation::ComplexRepresentation< DoubleRep >> _complex_reps
 Complex representations.
- std::vector < representation::LinearCategoricalRepresentation > _categorical_reps
 Categorical representations.

std::vector< representation::PermutationRepresentation > _permutation_reps

Permuation representations.

bit_vector_t _boolean_vars

Boolean variables.

std::vector< int > _integer_vars

Integer variables.

std::vector< double > _float_vars

Float variables.

 $\bullet \quad \mathsf{std} :: \mathsf{vector} < \mathsf{std} :: \mathsf{complex} < \mathsf{double} >> _\mathbf{complex}_\mathbf{vars}$

Complex variables.

std::vector< int > _categorical_vars

Categorical variables.

std::vector< permutation_t > _permutation_vars

Permutation variables.

int _bv_size

Bit vector size.

5.169.1 Detailed Description

Universal function adapter.

A universal function adapter turns a universal function into a regular hnco function defined on bit vectors.

Definition at line 46 of file universal-function-adapter.hh.

5.169.2 Constructor & Destructor Documentation

5.169.2.1 UniversalFunctionAdapter()

Constructor.

Parameters

fn	Universal function
num_boolean_vars	Number of boolean variables
integer_reps Generated by Doxygen	Integer representations
float_reps	Float representations
complex_reps	Complex representations
categorical_reps	Categorical representations

Replace reps with {} if there is no corresponding variable. For example, if there is no categorical variable, UniversalFunctionAdapter(fn, num_boolean_vars, integer_reps, float_reps, complex_reps, {}, permutation_reps) Definition at line 135 of file universal-function-adapter.hh.

The documentation for this class was generated from the following file:

· lib/hnco/multiobjective/functions/universal-function-adapter.hh

5.170 WalshExpansion Class Reference

Walsh expansion.

#include <hnco/functions/collection/walsh/walsh-expansion.hh>
Inheritance diagram for WalshExpansion:

Public Member Functions

WalshExpansion ()

Constructor.

• int get bv size () const override

Get bit vector size.

• double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

• void display (std::ostream &stream) const override

Display

void set_terms (const std::vector< function::WalshTerm > terms)

Set terms.

Instance generators

template < class Generator >

void generate (int n, int num_features, Generator generator)

Instance generator.

void random (int n, int num_features)

Random instance.

Load and save instance

void load (std::string path)

Load instance.

• void save (std::string path) const

Save instance.

Private Member Functions

template < class Archive > void serialize (Archive & ar, const unsigned int version)
 Save.

Private Attributes

std::vector< function::WalshTerm > _terms
 Terms.

5.170.1 Detailed Description

Walsh expansion.

Its expression is of the form

$$f(x) = \sum_{u} a_u (-1)^{x \cdot u}$$

where the sum is over a subset of $\{0,1\}^n$ and $x \cdot u = \sum_i x_i u_i$ is mod 2. The real numbers a_u are the coefficients of the expansion and the bit vectors u are its feature vectors.

Definition at line 52 of file walsh-expansion.hh.

5.170.2 Member Function Documentation

5.170.2.1 generate()

```
void generate (
          int n,
          int num_features,
          Generator generator ) [inline]
```

Instance generator.

Parameters

n	Size of bit vectors
num_features	Number of feature vectors
generator	Coefficient generator

Definition at line 85 of file walsh-expansion.hh.

5.170.2.2 load()

Load instance.

Parameters

path | Path of the instance to load

Exceptions

```
std::runtime_error
```

Definition at line 130 of file walsh-expansion.hh.

5.170.2.3 random()

```
void random (
          int n,
          int num_features ) [inline]
```

Random instance.

The coefficients are sampled from the normal distribution.

Parameters

n	Size of bit vector
num_features	Number of feature vectors

Definition at line 111 of file walsh-expansion.hh.

5.170.2.4 save()

Save instance.

Parameters

path	Path of the instance to save

Exceptions

std::runtime_error

Definition at line 137 of file walsh-expansion.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/collection/walsh/walsh-expansion.hh
- lib/hnco/functions/collection/walsh/walsh-expansion.cc

5.171 WalshExpansion1 Class Reference

Walsh expansion of degree 1.

#include <hnco/functions/collection/walsh/walsh-expansion-1.hh>

Inheritance diagram for WalshExpansion1:

Public Member Functions

• WalshExpansion1 ()

Constructor.

Instance generators

template < class Generator >
 void generate (int n, Generator generator)
 Instance generator.

void random (int n)

Random instance.

Load and save instance

void load (std::string path)
 Load instance.

 void save (std::string path) const Save instance.

Evaluation

double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

double evaluate_incrementally (const bit_vector_t &x, double v, const hnco::sparse_bit_vector_t &flipped_bits) override

Incrementally evaluate a bit vector.

Information about the function

• int get_bv_size () const override

Get bit vector size.

• double get_maximum () const override

Get the global maximum.

• bool has_known_maximum () const override

Check for a known maximum.

• bool provides_incremental_evaluation () const override

Check whether the function provides incremental evaluation.

Private Member Functions

template < class Archive > void serialize (Archive & ar, const unsigned int version)
 Serialize.

Private Attributes

std::vector< double > _linear
 Linear part.

5.171.1 Detailed Description

Walsh expansion of degree 1.

Its expression is of the form

$$f(x) = \sum_{i} a_i (1 - 2x_i)$$

or equivalently

$$f(x) = \sum_{i} a_i (-1)^{x_i}$$

Definition at line 49 of file walsh-expansion-1.hh.

5.171.2 Member Function Documentation

5.171.2.1 generate()

```
void generate (  \qquad \qquad \text{int } n, \\ \\ \text{Generator } generator \text{ ) } \text{ [inline]}
```

Instance generator.

Parameters

n	Size of bit vectors
generator	Weight generator

Definition at line 81 of file walsh-expansion-1.hh.

5.171.2.2 has_known_maximum()

```
bool has_known_maximum ( ) const [inline], [override], [virtual]
```

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 149 of file walsh-expansion-1.hh.

5.171.2.3 load()

Load instance.

Parameters

path	Path of the instance to load

Exceptions

```
std::runtime_error
```

Definition at line 113 of file walsh-expansion-1.hh.

5.171.2.4 provides_incremental_evaluation()

```
bool provides_incremental_evaluation ( ) const [inline], [override], [virtual]
```

Check whether the function provides incremental evaluation.

Returns

true

Reimplemented from Function.

Definition at line 154 of file walsh-expansion-1.hh.

5.171.2.5 random()

Random instance.

The weights are sampled from the normal distribution.

Parameters

```
n Size of bit vectors
```

Definition at line 95 of file walsh-expansion-1.hh.

5.171.2.6 save()

Save instance.

Parameters

path Path of the instance to save

Exceptions

std::runtime_error

Definition at line 120 of file walsh-expansion-1.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/walsh/walsh-expansion-1.hh
- lib/hnco/functions/collection/walsh/walsh-expansion-1.cc

5.172 WalshExpansion2 Class Reference

Walsh expansion of degree 2.

#include <hnco/functions/collection/walsh/walsh-expansion-2.hh>

Inheritance diagram for WalshExpansion2:

Public Member Functions

• WalshExpansion2 ()

Constructor.

• int get_bv_size () const override

Get bit vector size.

• double evaluate (const bit_vector_t &) override

Evaluate a bit vector.

Instance generators

template < class LinearGen, class QuadraticGen > void generate (int n, LinearGen linear_gen, QuadraticGen quadratic_gen)

Instance generators.

• void random (int n)

Instance generator.

• void generate_ising1_long_range (int n, double alpha)

Generate one dimensional Ising model with long range interactions.

• void generate_ising1_long_range_periodic (int n, double alpha)

Generate one dimensional Ising model with long range interactions and periodic boundary conditions.

Load and save instance

void load (std::string path)

Load instance.

• void save (std::string path) const

Save instance.

410 Class Documentation

Private Member Functions

template < class Archive >
 void serialize (Archive & ar, const unsigned int version)

• void resize (int n)

Resize data structures.

Private Attributes

std::vector< double > _linear
 Linear part.

std::vector< std::vector< double >> _quadratic
 Quadratic part.

5.172.1 Detailed Description

Walsh expansion of degree 2.

Its expression is of the form

$$f(x) = \sum_{i} a_i (1 - 2x_i) + \sum_{i < j} a_{ij} (1 - 2x_i) (1 - 2x_j)$$

or equivalently

$$f(x) = \sum_{i} a_i (-1)^{x_i} + \sum_{i < j} a_{ij} (-1)^{x_i + x_j}$$

Definition at line 49 of file walsh-expansion-2.hh.

5.172.2 Member Function Documentation

5.172.2.1 generate()

```
void generate (
          int n,
          LinearGen linear_gen,
          QuadraticGen quadratic_gen ) [inline]
```

Instance generators.

Parameters

n	Size of bit vectors
linear_gen	Generator for the linear part
quadratic_gen	Generator for the quadratic part

Definition at line 93 of file walsh-expansion-2.hh.

5.172.2.2 generate ising1 long range()

Generate one dimensional Ising model with long range interactions.

Similar to a Dyson-Ising model except for the finite, instead of infinite, linear chain of spins.

Its expression is of the form

$$f(x) = \sum_{ij} J(d_{ij})(1 - 2x_i)(1 - 2x_j)$$

or equivalently

$$f(x) = \sum_{i,j} J(d_{ij})(-1)^{x_i + x_j}$$

where $J(d_{ij})$ is the interaction between sites i and j, $d_{ij}=|i-j|$, and $J(n)=n^{-\alpha}$.

Since we are maximizing f or minimizing -f, the expression of f is compatible with what can be found in physics textbooks.

Parameters

n	Size of bit vectors
alpha	Exponential decay parameter

Definition at line 82 of file walsh-expansion-2.cc.

5.172.2.3 generate_ising1_long_range_periodic()

```
void generate_ising1_long_range_periodic (  \mbox{int } n, \\ \mbox{double } alpha \mbox{ )}
```

Generate one dimensional Ising model with long range interactions and periodic boundary conditions.

Similar to a Dyson-Ising model except for the finite, instead of infinite, linear chain of spins.

Its expression is of the form

$$f(x) = \sum_{ij} J(d_{ij})(1 - 2x_i)(1 - 2x_j)$$

or equivalently

$$f(x) = \sum_{i,j} J(d_{ij})(-1)^{x_i + x_j}$$

where $J(d_{ij})$ is the interaction between sites i and j, $d_{ij} = \min\{|i-j|, n-|i-j|\}$, and $J(n) = n^{-\alpha}$.

Since we are maximizing f or minimizing -f, the expression of f is compatible with what can be found in physics textbooks.

412 Class Documentation

Parameters

n	Size of bit vectors
alpha	Exponential decay parameter

Definition at line 103 of file walsh-expansion-2.cc.

5.172.2.4 load()

Load instance.

Parameters

Exceptions

std::runtime_error

Definition at line 184 of file walsh-expansion-2.hh.

5.172.2.5 random()

```
void random ( \quad \text{int } n \text{ ) } \quad [\text{inline}]
```

Instance generator.

The weights are sampled from the normal distribution.

Parameters

```
n Size of bit vector
```

Definition at line 115 of file walsh-expansion-2.hh.

5.172.2.6 save()

Save instance.

Parameters

path Path of the instance to

Exceptions

```
std::runtime_error
```

Definition at line 191 of file walsh-expansion-2.hh.

5.172.3 Member Data Documentation

5.172.3.1 _quadratic

```
std::vector<std::vector<double> > _quadratic [private]
```

Quadratic part.

Represented as a lower triangular matrix (without its diagonal).

Definition at line 71 of file walsh-expansion-2.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/collection/walsh/walsh-expansion-2.hh
- lib/hnco/functions/collection/walsh/walsh-expansion-2.cc

5.173 WalshTerm Struct Reference

Walsh transform term.

```
#include <hnco/functions/walsh-term.hh>
```

Public Member Functions

template < class Archive >
void serialize (Archive & ar, const unsigned int version)
Serialize.

414 Class Documentation

Public Attributes

• std::vector< bool > feature

Feature.

double coefficient

Coefficient.

5.173.1 Detailed Description

Walsh transform term.

Definition at line 35 of file walsh-term.hh.

5.173.2 Member Data Documentation

5.173.2.1 feature

std::vector<bool> feature

Feature.

Implemented with a vector bool instead of a bit_vector_t to reduce the memory consumption.

Definition at line 42 of file walsh-term.hh.

The documentation for this struct was generated from the following file:

• lib/hnco/functions/walsh-term.hh

Index

_dominated	SymmetricWalshMoment2, 365
Nsga2ParetoFrontComputation, 274	,
_expression	bernoulli_trials
AbstractMaxSat, 68	MultiBitFlip, 241
_functions	BiasedCrossover, 80
Algorithm, 75, 77	recombine, 81
indices	bm_add_columns
ParsedMultivariateFunction< Parser >, 290	hnco, 20
_names	bm_add_rows
ParsedMultivariateFunction< Parser >, 290	hnco, 20
_ordered_names	bm_identity
ParsedMultivariateFunction< Parser >, 290	hnco, 21
_patience	bm_invert
RandomLocalSearch, 330	hnco, 22
_pimpl	bm_multiply
Hboa, 154	hnco, 22
Ltga, 220	bm_rank
ParameterLessPopulationPyramid, 284	hnco, 23
_q	bm_row_echelon_form
Qubo, 327	hnco, 23
_quadratic	bm_set_column
WalshExpansion2, 413	hnco, 23
_record_evaluation_time	bm_solve
ProgressTracker, 316	hnco, 24
_variables	bm_solve_upper_triangular
ParsedMultivariateFunction < Parser >, 290	hnco, 24
\sim Logger	bm_transpose
Logger, 210	hnco, 26
	BmPbil< GibbsSampler >, 81
AbstractMaxSat, 65	RESET_BIT_VECTOR, 85
_expression, 68	RESET_ITERATION, 85
load, 66	RESET_NO_RESET, 85
load_, 66	SAMPLING_ASYNCHRONOUS, 84
save, 67	SAMPLING_ASYNCHRONOUS_FULL_SCAN, 8-
save_, 67	SAMPLING_SYNCHRONOUS, 84
AdditiveGaussianNoise, 68	set_selection_size, 85
AffineMap, 69	bound
is_surjective, 70	LowerTriangularWalshMoment2, 214
load, 71	SymmetricWalshMoment2, 365
random, 71	bv_add
save, 72	hnco, 27
Algorithm, 72, 76	bv_from_size_type
_functions, 75, 77	hnco, 28
Algorithm, 77	bv_from_stream
finalize, 74	hnco, 28
set_solution, 74	bv_from_string
update_solution, 75	hnco, 29
AlgorithmFactory, 78, 79	bv_from_vector_bool
make, 78, 79	hnco, 29
average	bv_to_size_type

hnco, 29, 30	DyadicIntegerRepresentation
bv_to_vector_bool	DyadicIntegerRepresentation< T >, 115, 116
hnco, 30	DyadicIntegerRepresentation< T >, 114
	DyadicIntegerRepresentation, 115, 116
Cache, 85	DyadicIntegerRepresentation< T >::Precision, 311
Cache, 87	
provides_incremental_evaluation, 87	elitist
CallCounter, 88	InformationTheoreticEa::Replacement, 335
CommandLineAlgorithmFactory, 89, 90	ensure
make, 90, 91	hnco, 31
CommandLineApplication, 91, 93	EqualProducts, 116
CommandLineApplication, 93, 94	generate, 118
CommandLineFunctionFactory, 95, 96	load, 118
CommaSelection, 97	random, 119
CommaSelection, 97	save, 119
CommutingTransvections	evaluate
TsAffineMap, 385	Function, 134, 138
CompactGa, 98	NearestNeighborIsingModel1, 250
CompleteSearch, 99	NearestNeighborIsingModel2, 254
ComplexRepresentation	OnBudgetFunction, 275
ComplexRepresentation < ScalarRep >, 101, 102	StopOnTarget, 356
ComplexRepresentation < ScalarRep >, 100	evaluate_incrementally
ComplexRepresentation, 101, 102	Function, 135
ComplexToDouble < T >, 102	OnBudgetFunction, 275
compute	StopOnTarget, 357
Nsga2ParetoFrontComputation, 273	evaluate_safely
compute_fast_walsh_transform	Function, 135
hnco::function, 47	ExtendedHypercubeIterator, 120
compute_lengths	
DyadicFloatRepresentation< T >, 113	Factorization, 121
compute_walsh_transform	Factorization, 123
hnco::function, 47	load, 123
Controller, 103	feature
provides_incremental_evaluation, 104	WalshTerm, 414
Crossover, 105	FfgenOptions, 124
recombine, 105	finalize
	Algorithm, 74
DeceptiveJump, 106	FirstAscentHillClimbing, 128
get_maximum, 107	FourPeaks, 129
has_known_maximum, 107	get_maximum, 131
DecoratedFunctionFactory, 108	has_known_maximum, 131
make_function_controller, 109	FrontDistancePair, 131
Decorator, 109	Function, 132, 137
describe	describe, 134, 138
Function, 134, 138	evaluate, 134, 138
difference_is_safe	evaluate_incrementally, 135
hnco::representation, 62	evaluate_safely, 135
DisjointTransvections	get_maximum, 135
TsAffineMap, 385	provides_incremental_evaluation, 136
display	update, 136
LowerTriangularWalshMoment2, 214	FunctionFactory, 139
SymmetricWalshMoment2, 366	FunctionMapComposition, 140
dominates	FunctionMapComposition, 141
hnco::multiobjective::function, 60	get_maximum, 142
DyadicFloatRepresentation	has_known_maximum, 142
DyadicFloatRepresentation < T >, 111, 113	FunctionPlugin, 143
DyadicFloatRepresentation< T >, 110	FunctionPlugin, 144
compute_lengths, 113	
DyadicFloatRepresentation, 111, 113	generate

EqualProducts, 118	LeadingOnes, 198
LinearFunction, 201	LinearFunction, 202
NearestNeighborlsingModel1, 250	LongPath, 212
NearestNeighborlsingModel2, 254	Needle, 258
NkLandscape, 266	OneMax, 278
Partition, 292	Plateau, 302
Tsp, 388	PriorNoise, 313
WalshExpansion, 403	Ridge, 337
WalshExpansion1, 406	SixPeaks, 348
WalshExpansion2, 410	SummationCancellation, 363
generate ising1 long range	Trap, 382
WalshExpansion2, 411	WalshExpansion1, 407
generate_ising1_long_range_periodic	Hboa, 153
WalshExpansion2, 411	_pimpl, 154
Generator, 144	Hea
reset, 145	Hea< Herding >, 157
set_seed, 145	Hea< Herding >, 155
GeneticAlgorithm, 146	Hea, 157
GeneticAlgorithm, 147	set_reset_period, 157
get_best_bv	set_selection_size, 158
Population, 305	
get best value	Hiff, 158
5 — —	get_maximum, 159
Population, 306	has_known_maximum, 159
get_equivalent_bvs	hnco, 15
Population, 306	bm_add_columns, 20
get_last_improvement	bm_add_rows, 20
ProgressTracker, 315	bm_identity, 21
get_maximum	bm_invert, 22
DeceptiveJump, 107	bm_multiply, 22
FourPeaks, 131	bm_rank, 23
Function, 135	bm_row_echelon_form, 23
FunctionMapComposition, 142	bm_set_column, 23
Hiff, 159	bm_solve, 24
Jump, 195	bm_solve_upper_triangular, 24
LeadingOnes, 198	bm_transpose, 26
LongPath, 212	bv_add, 27
Needle, 257	bv_from_size_type, 28
OneMax, 278	bv_from_stream, 28
Plateau, 302	bv_from_string, 29
PriorNoise, 313	bv_from_vector_bool, 29
PythonFunction, 323	bv_to_size_type, 29, 30
Ridge, 337	bv_to_vector_bool, 30
SixPeaks, 348	ensure, 31
Trap, 382	is_in_range, 31
get_worst_bv	load_from_archive, 32
Population, 307	perm_identity, 32
•	perm_random, 33
HammingBall, 148	save_to_archive, 33
HammingBall, 149	sbv_flip, 33
HammingSphere, 149	sbv_is_valid, 34
HammingSphere, 151	sparse_bit_vector_t, 20
HammingSphereIterator, 151	hnco::algorithm, 35
HammingSphereIterator, 152	pv_add, 38
has_known_maximum	pv_auerage, 38
DeceptiveJump, 107	pv_bound, 38
FourPeaks, 131	pv_bound, 39
FunctionMapComposition, 142	pv_sample, 39
Hiff, 159	pv_sample, 39 pv_uniform, 39
Jump, 195	pv_uillioiiii, 55
• •	

pv_update, 40	AffineMap, 70
hnco::algorithm::fast_efficient_p3, 41	LinearMap, 205
hnco::algorithm::walsh_moment, 41	Map, 221
hnco::app, 42	MapComposition, 223
parse_representations, 43	Permutation, 296
hnco::exception, 44	Projection, 319
hnco::function, 44	Translation, 376
compute_fast_walsh_transform, 47	TsAffineMap, 385
compute_walsh_transform, 47	is_valid
hnco::function::controller, 49	Transvection, 378
hnco::function::modifier, 50	IterativeAlgorithm, 186, 189
hnco::logging, 50	IterativeAlgorithm, 188, 191
hnco::map, 50	loop, 188, 191
transvection_sequence_t, 52	maximize, 189
ts_is_valid, 52, 53	minimize, 192
ts_multiply, 53	set_num_iterations, 189, 192
ts random, 54	Iterator, 193
ts_random_commuting, 54	norator, rec
ts_random_disjoint, 55	Jump, 194
ts random non commuting, 56	get_maximum, 195
ts_random_unique_destination, 56	has_known_maximum, 195
ts_random_unique_source, 57	
hnco::multiobjective, 57	Labs, 195
hnco::multiobjective::algorithm, 58	LastEvaluation, 196
	LeadingOnes, 197
operator<, 58	get_maximum, 198
hnco::multiobjective::app, 59	has_known_maximum, 198
hnco::multiobjective::function, 59	LinearCategoricalRepresentation, 199
dominates, 60	LinearCategoricalRepresentation, 199
value_t, 60	LinearFunction, 200
hnco::neighborhood, 61	generate, 201
hnco::random, 61	has_known_maximum, 202
hnco::representation, 62	load, 202
difference_is_safe, 62	provides_incremental_evaluation, 202
HncoEvaluator, 160	random, 203
HncoOptions, 161, 174	save, 203
Human, 179	LinearMap, 204
Hypercubelterator, 180	
local-acceptation 404	is_surjective, 205
Implementation, 181	load, 205
incremental_ml_update	random, 206
InformationTheoreticEa::Replacement, 335	save, 206
InformationTheoreticEa, 181	load
InformationTheoreticEa::Replacement, 334	AbstractMaxSat, 66
elitist, 335	AffineMap, 71
incremental_ml_update, 335	EqualProducts, 118
ml_update, 335	Factorization, 123
no_replacement, 335	LinearFunction, 202
non_elitist, 335	LinearMap, 205
init_beta	MaxNae3Sat, 226
SimulatedAnnealing, 342	NearestNeighborlsingModel1, 251
Injection, 184	NearestNeighborlsingModel2, 255
Injection, 185	NkLandscape, 266
IntegerCategoricalRepresentation, 185	Partition, 292
IntegerCategoricalRepresentation, 186	Permutation, 297
is_in_range	Qubo, 326, 327
hnco, 31	Sudoku, 360
is_non_dominated	Translation, 376
Nsga2ParetoFrontComputation, 273	TsAffineMap, 385
is_surjective	Tsp, 388
_ •	•

WalshExpansion, 403	ml_update
WalshExpansion1, 407	InformationTheoreticEa::Replacement, 335
WalshExpansion2, 412	Mmas, 235
load_	Modifier, 237
AbstractMaxSat, 66	MuCommaLambdaEa, 238
Sudoku, 360	MuCommaLambdaEa, 239
Tsp, 388	MultiBitFlip, 240
load_from_archive	bernoulli_trials, 241
hnco, 32	MultiBitFlip, 241
LocalSearchAlgorithm < Neighborhood >, 207	rejection_sampling, 241
LogContext, 208	multiply
Logger, 209	Transvection, 378, 379
∼Logger, 210	MultivariateFunctionAdapter
Logger, 209	MultivariateFunctionAdapter< Fn, Rep, Conv >
LongPath, 210	243, 246
get_maximum, 212	MultivariateFunctionAdapter< Fn, Rep, Conv >, 242
has known maximum, 212	244
loop	MultivariateFunctionAdapter, 243, 246
IterativeAlgorithm, 188, 191	MuPlusLambdaEa, 246
LowerTriangularWalshMoment2, 212	MuPlusLambdaEa, 248
bound, 214	mutate
display, 214	Neighborhood, 263
LowerTriangularWalshMoment2, 213	. 10.g.1.0011.
scaled_difference, 214	NearestNeighborIsingModel1, 248
update, 215	evaluate, 250
LowerTriangularWalshMoment2GibbsSampler, 216	generate, 250
LowerTriangularWalshMoment2Herding, 217	load, 251
LowerTriangularWalshMoment2Herding, 218	provides_incremental_evaluation, 251
	random, 251
Ltga, 219	save, 252
_pimpl, 220	NearestNeighborlsingModel2, 252
make	evaluate, 254
AlgorithmFactory, 78, 79	generate, 254
CommandLineAlgorithmFactory, 90, 91	load, 255
make_function_controller	provides_incremental_evaluation, 255
DecoratedFunctionFactory, 109	random, 255
Map, 220	save, 256
is_surjective, 221	Needle, 256
	get_maximum, 257
Map Neighborhood, 262	has_known_maximum, 258
MapComposition, 222	Negation, 258
is_surjective, 223	
MapComposition, 223	provides_incremental_evaluation, 260 Neighborhood, 260
• •	•
MapgenOptions, 224 maximize	map, 262
	mutate, 263
IterativeAlgorithm, 189	Neighborhood, 262
MaxNae3Sat, 226	NeighborhoodIterator, 263
load, 226	NeighborhoodIterator, 264
MaxSat, 227	NkLandscape, 264
random, 228	generate, 266
Mimic, 229	load, 266
minimize	random, 267
IterativeAlgorithm, 192	random_structure, 267
MixedIntegerMultivariateFunctionAdapter	save, 267
MixedIntegerMultivariateFunctionAdapter< Fn, In-	no_replacement
tRep, FloatRep >, 232, 235	InformationTheoreticEa::Replacement, 335
${\it MixedIntegerMultivariateFunctionAdapter} < \ {\it Fn, \ IntRep,}$	non_elitist
FloatRep >, 231, 233	InformationTheoreticEa::Replacement, 335
MixedIntegerMultivariateFunctionAdapter, 232, 235	NonCommutingTransvections

TsAffineMap, 385	PermutationRepresentation, 299
NpsPbil, 268	PermutationRepresentation, 300
Nsga2, 270	Plateau, 301
Nsga2, 272	get_maximum, 302
Nsga2ParetoFrontComputation, 272	has_known_maximum, 302
_dominated, 274	PlusSelection, 303
compute, 273	PlusSelection, 303
is_non_dominated, 273	Population, 304, 308
	get best bv, 305
OnBudgetFunction, 274	get_best_value, 306
evaluate, 275	get_equivalent_bvs, 306
evaluate_incrementally, 275	get_worst_bv, 307
update, 276	partial_sort, 307
OneMax, 276	Population, 305, 309
get_maximum, 278	resize, 310
has_known_maximum, 278	shrink, 310
provides_incremental_evaluation, 278	sort, 308
OnePlusLambdaCommaLambdaGa, 279	PriorNoise, 311
OnePlusLambdaCommaLambdaGa, 280	get_maximum, 313
OnePlusOneEa, 281	has_known_maximum, 313
OnePlusOneEa, 282	provides_incremental_evaluation, 313
set_num_iterations, 283	ProgressTracker, 314
operator<	_record_evaluation_time, 316
hnco::multiobjective::algorithm, 58	get_last_improvement, 315
	ProgressTracker::Event, 120
ParameterLessPopulationPyramid, 283	-
_pimpl, 284	ProgressTrackerContext, 316
parse_representations	to_string, 317
hnco::app, 43	Projection, 318
ParsedModifier, 285	is_surjective, 319
ParsedModifier, 286	Projection, 319
ParsedMultivariateFunction	provides_incremental_evaluation
ParsedMultivariateFunction< Parser >, 287, 289	Cache, 87
ParsedMultivariateFunction< Parser >, 286, 288	Controller, 104
_indices, 290	Function, 136
names, 290	LinearFunction, 202
_ordered_names, 290	NearestNeighborlsingModel1, 251
_variables, 290	NearestNeighborlsingModel2, 255
ParsedMultivariateFunction, 287, 289	Negation, 260
partial_sort	OneMax, 278
Population, 307	PriorNoise, 313
Partition, 291	WalshExpansion1, 407
	pv_add
generate, 292	hnco::algorithm, 38
load, 292	pv_average
random, 293	hnco::algorithm, 38
save, 293	pv_bound
Pbil, 294	hnco::algorithm, 38
perm_identity	pv_init
hnco, 32	hnco::algorithm, 39
perm_random	pv_sample
hnco, 33	hnco::algorithm, 39
Permutation, 295	pv_uniform
is_surjective, 296	hnco::algorithm, 39
load, 297	pv_update
save, 297	hnco::algorithm, 40
PermutationFunctionAdapter	PvAlgorithm, 320
PermutationFunctionAdapter $<$ Fn $>$, 299	PythonFunction, 321, 323
PermutationFunctionAdapter< Fn >, 298	get_maximum, 323
PermutationFunctionAdapter, 299	901_1114/11114111, 020

PythonFunction, 322, 324	SAMPLING_SYNCHRONOUS BmPbil< GibbsSampler >, 84
Qubo, 325	SamplingMode
g, 327	TsAffineMap, 385
load, 326, 327	save
.000, 000,	
random	AbstractMaxSat, 67
AffineMap, 71	AffineMap, 72
EqualProducts, 119	EqualProducts, 119
LinearFunction, 203	LinearFunction, 203
LinearMap, 206	LinearMap, 206
MaxSat, 228	NearestNeighborIsingModel1, 252
	NearestNeighborlsingModel2, 256
NearestNeighborlsingModel1, 251	NkLandscape, 267
NearestNeighborIsingModel2, 255	Partition, 293
NkLandscape, 267	Permutation, 297
Partition, 293	Sudoku, 361
Sudoku, 360	Translation, 377
Transvection, 379	TsAffineMap, 386
TsAffineMap, 386	Tsp, 389
Tsp, 389	WalshExpansion, 404
WalshExpansion, 404	WalshExpansion1, 408
WalshExpansion1, 408	WalshExpansion2, 412
WalshExpansion2, 412	save
random_non_commuting	AbstractMaxSat, 67
Transvection, 380	save_to_archive
random_structure	hnco, 33
NkLandscape, 267	
RandomLocalSearch, 328	sbv_flip
_patience, 330	hnco, 33
set_patience, 329	sbv_is_valid
RandomSearch, 330	hnco, 34
RandomSelection, 331	ScalarToDouble < T >, 338
RandomSelection, 332	scaled_difference
RandomWalk, 332	LowerTriangularWalshMoment2, 214
recombine	SymmetricWalshMoment2, 366
	select
BiasedCrossover, 81	TournamentSelection, 372
Crossover, 105	SelfAdjustingOnePlusOneEa, 338
UniformCrossover, 394	set_mutation_rate
rejection_sampling	StandardBitMutation, 351
MultiBitFlip, 241	set_num_iterations
reset	IterativeAlgorithm, 189, 192
Generator, 145	OnePlusOneEa, 283
RESET_BIT_VECTOR	set_patience
BmPbil < GibbsSampler >, 85	RandomLocalSearch, 329
RESET_ITERATION	set_reset_period
BmPbil< GibbsSampler >, 85	Hea< Herding >, 157
RESET_NO_RESET	set seed
BmPbil < GibbsSampler >, 85	Generator, 145
resize	set selection size
Population, 310	BmPbil< GibbsSampler >, 85
Restart, 335	Hea< Herding >, 158
Ridge, 336	
get_maximum, 337	set_solution
has_known_maximum, 337	Algorithm, 74
	shrink
SAMPLING ASYNCHRONOUS	Population, 310
BmPbil< GibbsSampler >, 84	SimulatedAnnealing, 341
SAMPLING ASYNCHRONOUS FULL SCAN	init_beta, 342
BmPbil< GibbsSampler >, 84	SingleBitFlip, 343

SingleBitFlipIterator, 344	Trap, 380
SingleBitFlipIterator, 345	get_maximum, 382
SinusSummationCancellation, 345	has_known_maximum, 382
SixPeaks, 347	Trap, 382
get_maximum, 348	ts_is_valid
has_known_maximum, 348	hnco::map, 52, 53
sort	ts_multiply
Population, 308	hnco::map, 53
sparse_bit_vector_t	ts_random
hnco, 20	hnco::map, 54
StandardBitMutation, 349	ts_random_commuting
set_mutation_rate, 351	hnco::map, 54
StandardBitMutation, 350, 351	ts_random_disjoint
SteepestAscentHillClimbing, 352	hnco::map, 55
StopOnMaximum, 353	ts_random_non_commuting
StopOnMaximum, 354	hnco::map, 56
StopOnTarget, 355	ts_random_unique_destination
evaluate, 356	hnco::map, 56
evaluate_incrementally, 357	ts_random_unique_source
StopOnTarget, 356	hnco::map, 57
update, 357	TsAffineMap, 383
StopWatch, 358	CommutingTransvections, 385
Sudoku, 358	DisjointTransvections, 385
load, 360	is_surjective, 385
load_, 360	load, 385
random, 360	NonCommutingTransvections, 385
save, 361	random, 386
SummationCancellation, 361	SamplingMode, 385
has_known_maximum, 363	save, 386
SummationCancellation, 363	Unconstrained, 385
SymmetricWalshMoment2, 364	UniqueDestination, 385
average, 365	UniqueSource, 385
bound, 365	Tsp, 387
display, 366	generate, 388
scaled_difference, 366	load, 388
SymmetricWalshMoment2, 365	load_, 388
update, 367	random, 389
SymmetricWalshMoment2GibbsSampler, 368	save, 389
SymmetricWalshMoment2Herding, 369	TwoRateOnePlusLambdaEa, 390
SymmetricWalshMoment2Herding, 370	
	Umda, 392
TargetReached, 371	Unconstrained
to_string	TsAffineMap, 385
ProgressTrackerContext, 317	UniformCrossover, 393
TournamentSelection, 371	recombine, 394
select, 372	UniformSelection, 394
TournamentSelection, 372	UniformSelection, 395
TournamentSelection < T, Compare >, 373	UniqueDestination
Translation, 375	TsAffineMap, 385
is_surjective, 376	UniqueSource
load, 376	TsAffineMap, 385
save, 377	UniversalFunction, 396, 397
Transvection, 377	UniversalFunctionAdapter, 397, 399
is_valid, 378	UniversalFunctionAdapter, 399, 401
multiply, 378, 379	update
random, 379	Function, 136
random_non_commuting, 380	LowerTriangularWalshMoment2, 215
transvection_sequence_t	OnBudgetFunction, 276
hnco::map, 52	StopOnTarget, 357

```
SymmetricWalshMoment2, 367
update_solution
    Algorithm, 75
value_t
    hnco::multiobjective::function, 60
WalshExpansion, 402
    generate, 403
    load, 403
    random, 404
    save, 404
WalshExpansion1, 405
    generate, 406
    has_known_maximum, 407
    load, 407
    provides_incremental_evaluation, 407
    random, 408
    save, 408
WalshExpansion2, 409
     _quadratic, 413
    generate, 410
    generate_ising1_long_range, 411
    generate_ising1_long_range_periodic, 411
    load, 412
    random, 412
    save, 412
WalshTerm, 413
    feature, 414
```