ABSTRACT

Recommender systems are efficient tools for filtering online information, which is widespread owing to the changing habits of computer users, personalization trends, and emerging access to the internet. Even though the recent recommender systems are eminent in giving precise recommendations, they suffer from various limitations and challenges like scalability, cold-start etc. Due to the existence of various techniques, the selection of techniques becomes a complex work while building application-focused recommender systems. In addition, each technique comes with its own set of features, advantages and disadvantages which raises even more questions, which should be addressed.

In the spread of information, how to quickly find one's favorite movie in a large number of movies become a very important issue. Personalized recommendation system can play an important role especially when the user has no clear target movie. we design and implement a movie recommendation system prototype combined with the actual needs of movie recommendation through researching of KNN algorithm and collaborative filtering algorithm. Finally, the test results showed that the system has a good recommendation effect.

LIST OF FIGURES/TABLES

FIGURENO	FIGURENAME	PAGENO
Figure3.1	Project Architecture for Movie	8
	Recommendation with	
	Collaborative Filtering using KNN	
Figure 3.2	Use Case Diagram for Movie	9
	Recommendation with Collaborative	
	Filtering Using KNN	
Figure 3.3	Sequence diagram for Movie	10
	Recommendation with Collaborative	
	Filtering Using KNN	
Figure 3.4	Class diagram for Movie	11
	Recommendation with Collaborative	
	Filtering Using KNN	

LIST OF SCREENSHOTS

SCREENSHOTNO.	SCREENSHOTNAME	PAGENO.
Screenshot5.1	Imported Libraries	18
Screenshot5.2	Dataset movie and rating info	19
Screenshot5.3	Rating Frequency of All Users	20
Screenshot5.4	Movie Recommendation System Output	21

TABLE CONTENTS

ABSTRACT LISTOFFIGURES		i	
		ii	
LISTOFSCREENSHOTS			
1. INTRODUCTION			
1.1	RECOMMENDATION SYSTEM	1	
1.2	K-NEAREST NEIGHBOR	5	
2. SYS'	TEM ANALYSIS	7	
2.1	PROBLEM DEFINITION	7	
2.2	EXISTING SYSTEM	7	
	2.2.1 LIMITATIONS OF THE EXISTING SYSTEM	8	
2.3	PROPOSED SYSTEM	8	
	2.3.1 ADVANTAGES OF PROPOSED SYSTEM	8	
2.4	HARDWARE & SOFTWARE REQUIREMENTS	9	
	2.4.1 HARDWARE REQUIREMENTS	9	
	2.4.2 SOFTWARE REQUIREMENTS	9	
2.5	MODULES	10	
3. ARC	CHITECTURE	11	
3.1	PROJECT ARCHITECTURE	11	
3.2	USE CASE DIAGRAM	12	
3.3	SEQUENCE DIAGRAM	13	
3.4	CLASS DIAGRAM	14	
4. IMP	LEMENTATION	15	
4.1	SAMPLE CODE	15	
5.SCR	EENSHOTS	21	
6. TES	TING	25	
6.1 I	INTRODUCTION TO TESTING	25	
6.2	ΓYPES OF TESTING	25	
	6.2.1 UNIT TESTING	25	

		6.2.2 INTEGRATION TESTING	25
		6.2.3 TOP-DOWN INTEGRATION	26
		6.2.4 BOTTOM-UP INTEGRATION	26
		6.2.5 USER ACCEPTANCE TESTING	26
		6.2.6 OUTPUT TESTING	27
7. CONCLUSION & FUTURE SCOPE		NCLUSION & FUTURE SCOPE	28
7	7.1	PROJECT CONCLUSION	28
7	7.2	FUTURE SCOPE	28
8.	BIB	LIOGRAPHY	29
8	8.1	REFERENCES	29
8	3.2	GITHUB LINK	29