Exercices sur le cours de Rayonnement

Grandeurs fondamentales

Exercice 1

Une petite surface $S1 = 10^{-3} \text{ m}^2$ émet un rayonnement de luminance totale isotrope L = $7000 \text{ W.m}^{-2}.\text{sr}^{-1}$.

Ce rayonnement émis est intercepté par 3 surfaces $S2 = S3 = S4 = 10^{-3} \text{ m}^2$, à une distance d = 0.5 m de S1, orientées comme le montre la figure ci-contre.

- 1) Calculer les flux interceptés par les surfaces S2, S3 et S4.
- 2) Calculer les éclairements des surfaces S2, S3 et S4.

Exercice 2

Un projecteur est modélisé par une source ponctuelle O d'intensité I isotrope, émettant le flux Φ_0 = 2000 W dans tout l'espace.

- 1) Calculer l'intensité de la source et le flux émis dans le cône de demi angle θ_d .
- 2) Déterminer l'éclairement E_M d'un point M quelconque d'un écran placé à la distance L = OH = 3 m de la source et le rapport E_M/E_H .
- 3) Calculer l'exitance de la source élémentaire dS autour du point H sachant que le taux de réflexion de l'écran vaut 0,8.

L'exitance monochromatique d'une surface diffuse est approchée de la manière suivante :

- 1) Calculer l'exitance totale
- 2) Quelle est la luminance totale dans la direction normale, et dans un direction faisant un angle de 30° avec la normale à la surface ?

Exercice 4

La luminance totale directionnelle d'une surface émettrice, de symétrie azimuthale, est donnée par la figure ci- dessous

En déduire la valeur de l'émittance totale

Rappeler la loi de Lambert. Peut elle se vérifier ici?

Déterminer la fraction du flux hémisphérique total qui quitte une surface lambertienne pour les valeurs de l'angle $\square \theta$ (entre la normale et la direction d'émission courante), pour :

 $0 < \theta < 30^{\circ}$

 $30^{\circ} < \theta < 60^{\circ}$

 $60^{\circ} < \theta < 90^{\circ}$

Corps noir

Exercice 6

Comment passer de l'expression de la densité volumique spectrale en fréquence :

$$\rho_{v} = \frac{1}{V} \frac{dU_{v}}{dv} = \frac{8\pi h}{c^{3}} \frac{v^{3}}{\exp{\frac{hv}{kT}} - 1}$$

à la loi de Planck en fréquence :

$$L_{v}^{o} = \frac{2h}{c^{2}} \frac{v^{3}}{e^{hv/kT} - 1}$$

puis à la loi de Planck en longueur d'onde

$$L_{\lambda} = \frac{C_1 \lambda^{-5}}{e^{C_2/\lambda T} - 1}$$

On indiquera les dimensions de $L^0_{\nu} et L^0_{\lambda}$, ainsi que les expressions et valeurs des constantes C1 et C2.

Exercice 7

Un radiateur de surface S = 1m2, assimilé à un corps noir est porté à T = 1000 K. Quel est le flux hémisphérique émis ?

Exercice 8

Un four porté à T = 1000 K a une ouverture circulaire de rayon R = 1 cm. A la distance d = 1 m, sur l'axe du four est placée une surface s de raton r = 1 cm

- 1) Quel est le flux hémisphérique Φ émis par l'ouverture du four ?
- 2) Quel est le flux Φ_{Ss} reçu par s en provenance du four ?
- 3) Quelle est la fraction F_{Ss} du flux hémisphérique issu du four et incident sur s?
- 4) La surface s est maintenant disposée dans le plan parallèle à l'ouverture du four, plan toujours à la distance d, mais s est à l'intersection avec la direction

qui fait un angle de θ =30° avec l'axe du four. Que devient le flux incident sur s ?

Exercice 9

Le soleil est assimilé à un corps noir de température T = 5800 K. Le rayon du soleil vaut $R_s = 7 \cdot 10^8$ m et la distance terre / soleil d_{ts} est estimée à 150 10^6 km.

Evaluer la densité surfacique de flux solaire incident, ϕ_S sur un panneau de surface $S = 1m^2$, disposé normalement aux rayons du soleil, au voisinage de la terre, hors atmosphère.

Exercice 10

Une enceinte, assimilée à un corps noir, est maintenue isotherme à la température T= 2000K.

- Calculer l'exitance totale émise à travers une petite ouverture de cette enceinte
- 2) Quelle est la longueur d'onde en dessous de la quelle est émis 10 % du flux hémisphérique total ?
- 3) Quelle est la longueur d'onde au dessus de laquelle est émis 10 % du flux hémisphérique total ?
- 4) Donner la longueur d'onde correspondant au maximum d'émission et l'exitance monochromatique correspondante.

Facteurs d'absorption et d'émission...

Exercice 11

Schématisation de l'effet de serre

Le soleil est assimilable à un corps noir à $T_S = 5800$ K. L'éclairement énergétique d'un écran situé hors atmosphère au voisinage de la terre et orienté perpendiculairement aux rayons du soleil vaut $E_0 = 1400$ W /m2.

Le facteur de transmission τ = 0.7 de l'atmosphère est supposé indépendant de la longueur d'onde.

Une vitre est disposée au sol, perpendiculairement aux rayons solaire et recouvre un absorbeur supposé être un corps noir. On indique ci-dessous le spectre de transmission de la vitre.

1) Quelle est la densité de flux total incident sur la vitre ?

- 2) Calculer la densité de flux total ayant traversé la vitre Φ_t
- 3) La température de l'absorbeur est à T_a =320 K. Quelle est l'émittance de l'absorbeur ?
- 4) Quelle est la fraction de l'émittance traversant la vitre vers l'extérieur.
- 5) Concluez.

$$0.38 \mu < \lambda < 2.76 \mu \tau 1 = 0.85$$

$$2.76 \mu < \lambda < 4.31 \mu \tau 2 = 0.30$$

4.31
$$\mu < \lambda \quad \tau 3 = 0.03$$

Le facteur hémisphérique, spectral d'absorption d'une surface opaque vaut 0.2 dans l'intervalle [0;6 μ m], croît linéairement jusqu'à la valeur de 1 pour la longueur d'onde 8 μ m puis reste constant. La distribution spectrale du flux surfacique ϕ_{λ} croît linéairement de la valeur 0 à 500W/nr². μ m dans l'intervalle [2 μ m;6 μ m], reste constante dans l'intervalle [6 μ m;12 μ m], puis décroît avec le même taux jusqu'à la valeur 0 pour λ =16 μ m.

- 1/Comment varie la réflectivité spectrale avec la longueur d'onde ?
- 2/Quelle est la valeur du facteur d'absorption total hémisphérique ?
- 3/Si la surface est initialement à 500K et possède un facteur d'émission hémisphérique total de 0.8, dans quel sens va évoluer la température de la surface ?

Exercice 13

Calculer les facteurs d'absorption et d'émission totaux d'une surface dont la température est 300K. Elle est soumise au flux solaire (5800K) et ses facteur d'absorption et d'émission monochromatiques valent 0.1 dans l'intervalle $[0;5\mu m]$ et 1 pour les longueurs d'onde supérieures à $5\mu m$.

Une plaque portant une surface grise dont l'émissivité totale directionnelle ϵ_{θ} vaut 0.8 dans l'intervalle [0°;45°] et 0.2 ailleurs, est en orbite autour de la terre où la constante solaire donnant l'éclairement est E=1353W/m². Calculer la température d'équilibre de la plaque lorsqu'elle est orientée normale au flux solaire et à 60° du flux solaire.

Facteurs de forme

Exercice 15

Déterminer l'ensemble des facteurs de forme relatifs aux géométries suivantes dans lesquelles les surfaces sont diffuses et noires:

1/Sphère de diamètre D (A₁) dans une boîte cubique d'arête D (A₂).

2/Diagonale et côtés dans une conduite de section carrée.

3/Disques terminaux (A₁ et A₃) et enveloppe latérale (A₂) d'un cylindre.

Noter: Hauteur L = diamètre D

Exercice 16

Les parois d'un four parallélépipédique de section 1,5x1,5 m² et de profondeur 2m ont les températures suivantes: pour la voûte, T_1 =1200K, la sole T_2 =800K, les parois latérales T_3 = T_5 =1000K, le fond T_4 =1000K et enfin la porte, T_6 . Les parois sont assimilables à des surfaces noires et la température de la salle est T_a =300K.

1/Calculer le flux net perdu par le four lorsque la porte (6) est ouverte. La valeur du facteur de forme F_{61} est obtenue dans les abaques.

2/Montrer que, lorsqu'une surface se décompose en deux sous-surfaces a et b, les relations suivantes sont vérifiées :

$$F_{ia} + F_{ib} = F_{i(a+b)}$$
 et $F_{ai}.S_a + F_{bi}.S_b = F_{(a+b)i}.S_{(a+b)}$

3/La moitié inférieure de la porte (6) notée 'b' est ouverte. Calculer dans ces conditions le flux net perdu.

Radiosités

Exercice 17

Deux plaques planes parallèles carrées de surface $A_1=A_2=1m^2$ caractérisées par les facteurs d'émission v $\epsilon_1=\epsilon_2=0.8$ sont séparées par un plan A_3 dont les facteurs d'émission sont $\epsilon_{31}=0.2$ et $\epsilon_{32}=0.3$. Le carré de la distance entre les surfaces A_1 et A_2 portées aux températures $A_1=1000K$ et $A_2=1000K$ et $A_2=1000K$ et $A_3=1000K$ et $A_$

- 1/ Représenter le réseau thermique équivalent au problème physique décrit ci-dessus.
- 2/ Calculer la température d'équilibre T₃ de la plaque intercalée.
- 3/ Afin d'imposer la température T_2 à la plaque 2, on la couple à un échangeur à eau. Calculer la température de l'eau en sortie T_s sachant que le débit d'eau d_m vaut 1kg/s, sa température d'entrée T_e , 293K, et sa chaleur massique C_p =4185 $J.kg^{-1}.K^{-1}$.

λ T μm × K	0	20	40	60	80	λT μm × K	0	20 ou 200(*) ou 2000(+)	40 ou 400(*) ou)4000(+)	60 ou 500 ^(*) ou 6000 ⁽⁺⁾	80 ou 8000 ⁽⁺⁾
500											
500	0,0000	0,0000	0,0000	0,0000	0,0000	6200	0,7541	0,7556	0,7572	0,7587	0,7603
600	0,0000	0,0000	0,0000	0,0000	0,0000	6300	0,7618	0,7633	0,7648	0,7662	0,7677
700	0,0000	0,0000	0,0000	0,0000	0,0000	6400	0,7692	0,7706	0,7721	0,7735	0,7749
900	0,0000	0,0000	0,0000	0,0000	0,0000	6500	0,7763	0,7777	0,7791	0,7804	0,7818
1000	0,0001	0,0001	0,0001	0,0001	0,0002	6600	0,7831	0,7845	0,7858	0,7871	0,7884
1100	0,0003	0,0004	0,00047	0,0005	0,0007	6700	0,7897	0,7910	0,7923	0,7936	0,7948
1200	0,0009	0,0010	0,0013	0,0015	0,0018	6800	0,7961	0,7973	0,7985	0,7998	0,8010
1300	0,0021	0,0024	0,0028	0,0033	0,0037	6900	0,8022	0,8034	0,8045	0,8057	0,8089
1400	0,0043	0,0049	0,0033	0,0002	0,0003	7000 7100	0,8080	0,8092	0,8103	0,8115	0,8126
1500	0,0078	0,0140	0,0153	0,0167	0,0182		0,8137	0,8148	0,8159	0,8170	0,8181
1600	0,0120	0,0140	0,0230	0.0247	0,0266	7200	0,8191	0,8202	0,8213	0,8223	
1700	0,0197	0,0305	0,0326	0,0347	0,0200	7300	0,8244	0,8254	0,8264	0,8275	0,8285
1800	0,0393	0,0303	0,0442	0,0347	0,0494	7400	0,8295	0,8304	0,8314	0,8324	0,8334
1900	0,0521	0,0549	0,0577	0,0606	0,0636	7500	0,8343	0,8353	0,8362	0,8372	0,8381
2000	0,0521	0,0698	0,0730	0,0763	0,0796	7600 7700	0,8390	0,8399	0,8409	0,8418	0,8427
2100	0,0830	0,0865	0,0900	0,0936	0,0972		0,8436	0,8444	0,8453	0,8462	
2200	0,1009	0,1045	0,1084	0,1122	0,1161	7800 7900	0,8479	0,8488	0,8496	0,8505	0,8513 0,8554
2300	0,1200	0,1240	0,1280	0,1320	0,1361	8000	0,8521	0,8530	0,8538	0,8546	0,8594
2400	0,1402	0,1444	0,1486	0,1528	0,1571	8100	0,8501		0,8578	0,8586	0,8632
2500	0,1613	0,1656	0,1700	0,1743	0,1787	8200	0,8639	0,8609	0,8617	0,8624	0,8669
2600	0,1831	0,1875	0,1920	0,1964	0,2009	8300	0,8676	0,8647	0,8654	0,8661	0,8704
2700	0,2053	0,2098	0,2143	0,2188	0,2234	8400	0,8711	0,8683	0,8690 0,8725	0,8697	0,8738
2800	0,2279	0,2324	0,2369	0,2415	0,2460	8500	0,8745	0,8752	0,8759		0,8772
2900	0,2506	0,2551	0,2596	0,2642	0,2687	8600	0,8778	0,8785	0,8791	0,8765	0,8804
3000	0,2732	0,2778	0,2823	0,2868	0,2913	8700	0,8810	0,8816	0,8822	0,8829	0,8835
3100	0,2958	0,3003	0,3047	0,3092	0,3137	8800	0,8841	0,8847	0,8853	0,8859	0,8865
3200	0,3181	0,3225	0,3269	0,3313	0,3357	8900	0,8871	0,8877	0,8882	0,8888	0,8894
3300	0,3401	0,3445	0,3488	0,3531	0,3574	9000	0,8899	0,8905	0,8911	0,8916	0,8922
3400	0,3617	0,3660	0,3703	0,3745	0,3787	9100	0,8927	0,8933	0,8938	0,8943	0,8949
3500	0,3829	0,3871	0,3912	0,3954	0,3995	9200	0,8954	0,8959	0,8965	0,8970	0,8975
3600	0,4036	0,4077	0,4117	0,4158	0,4198	9300	0,8980	0,8985	0,8990	0,8995	0,9000
3700	0,4238	0,4277	0,4317	0,4356	0,4395	9400	0,9005	0,9010	0,9015	0,9020	0,9025
3800	0,4434	0,4472	0,4511	0,4549	0,4585	9500	0,9030	0,9035	0,9039	0,9044	0,9049
3900	0,4624	0,4661	0,4699	0,4736	0,4772	9600	0,9054	0,9058	0,9063	0,9067	0,9072
4000	0,4809	0,4845	0,4881	0,4917	0,4952	9700	0,9076	0,9081	0,9085	0,9090	0,9094
4100	0,4987	0,5022	0,5057	0,5092	0,5126	9800	0,9099	0,9103	0,9107	0,9112	0,9116
4200	0,5160	0,5194	0,5227	0,5261	0,5294	9900	0,9120	0,9124	0,9129	0,9133	0,9137
4300	0,5327	0,5359	0,5392	0,5424	0,5456	10000	0,9141	0,9181	0,9218	0,9253	0,9287
4400	0,5488	0,5519	0,5551	0,5582	0,5612	11000	0,9318	0,9347	0,9375	0,9401	0,9426
4500	0,5643	0,5673	0,5703	0,5733	0,5763	12000	0,9450	0,9472	0,9493	0,9513	0,9532
4600	0,5793	0,5822	0,5851	0,5880	0,5908	13000	0,9550	0,9567	0,9584	0,9599	0,9614
4700	0,5937	0,5965	0,5993	0,6020	0,6048	14000	0,9628	0,9641	0,9654	0,9666	0,9678
4800	0,6075	0,6102	0,6129	0,6156	0,6182	15000	0,9689	0,9699	0,9709	0,9719	0,9728
4900 5000	0,6209	0,6235	0,6261	0,6286	0,6312	16000	0,9737	0,9745	0,9753	0,9761	0,9769
5100	0,6337	0,6362	0,6387	0,6412	0,6436	17000	0,9776	0,9783	0,9789	0,9796	0,9802
5200	0,6461	0,6485	0,6509	0,6532	0,6556	18000	0,9807	0,9813	0,9818	0,9824	0,9829
5300			0,6625	0,6648	0,6671	19000	0,9833	0,9838	0,9842	0,9847	0,9851
5400	0,6693	0,6716	0,6736	0,6760	0,6782	20000	0,9855	0,9888	0,9912	0,9929	0,9942
5500	0,6803	0,6825	0,6845	0,6867	0,6888	30000	0,9952	0,9960	0,9966	0,9971	0,9975
5600	0,7010	0,7030	0,7049	0,7069	0,6990	40000	0,9978	0,9981	0,9983	0,9985	0,9987
5700	0,7010	0,7030	0,7045	0,7069	0,7088	50000	0,9988	0,9989	0,9990	0,9991	0,9992
5800	0,7201	0,7219	0,7238	0,7256	0,7183	60000	0,9993	0,9993	0,9994	0,9994	0,9995
5900	0,7291	0,7219	0,7236	0,7343	0,7273	70000	0,9995	0,9995	0,9996	0,9996	0,9996
6000	0,7271	0,7395	0,7326	0,7343	0,7361	80000	0,9996	0,9997	0,9997	0,9997	0,9997
6100	0,7461	0,7477	0,7411	0,7509	0,7444	90000	0,9997	0,9997	0,9997	0,9998	0,9998
0100	0,,401	3,,,,,,	0,7475	0,7507	0,7525	100000	0,9998	0,9998	0,9998	0,9998	0,9998

Abaque des facteurs de forme pour deux disques co axiaux

View factor expressions for some common geometries of finite size (3D)

Geometry	Relation				
Aligned parallel rectangles L Y I X	$\begin{split} \overline{X} &= X/L \text{ and } \overline{Y} = Y/L \\ F_{i \to j} &= \frac{2}{\pi X \overline{Y}} \left\{ \ln \left[\frac{(1 + X^2)(1 + \overline{Y}^2)}{1 + X^2 + \overline{Y}^2} \right]^{1/2} \right. \\ &+ \overline{X} (1 + \overline{Y}^2)^{1/2} \tan^{-1} \frac{\overline{X}}{(1 + \overline{Y}^2)^{1/2}} \\ &+ \overline{Y} (1 + \overline{X}^2)^{1/2} \tan^{-1} \frac{\overline{Y}}{(1 + \overline{X}^2)^{1/2}} \\ &- \overline{X} \tan^{-1} X - \overline{Y} \tan^{-1} \overline{Y} \right\} \end{split}$				
Coaxial parallel disks	$R_i = r_i/L \text{ and } R_j = r_j/L$ $S = 1 + \frac{1 + R_j^2}{R_i^2}$ $F_{i \to j} = \frac{1}{2} \left\{ S - \left[S^2 - 4 \left(\frac{r_j}{r_i} \right)^2 \right]^{1/2} \right\}$				
Perpendicular rectangles with a common edge	$\begin{split} H &= Z/X \text{ and } W = Y/X \\ F_{i \to j} &= \frac{1}{\pi W} \Bigg(W \tan^{-1} \frac{1}{W} + H \tan^{-1} \frac{1}{H} \\ &- (H^2 + W^2)^{1/2} \tan^{-1} \frac{1}{(H^2 + W^2)^{1/2}} \\ &+ \frac{1}{4} \ln \left\{ \frac{(1 + W^2)(1 + H^2)}{1 + W^2 + H^2} \right. \\ &\times \left[\frac{W^2(1 + W^2 + H^2)}{(1 + W^2)(W^2 + H^2)} \right]^{W^2} \\ &\times \left[\frac{H^2(1 + H^2 + W^2)}{(1 + H^2)(H^2 + W^2)} \right]^{H^2} \Bigg\} \Bigg) \end{split}$				

View factor between two aligned parallel rectangles of equal size.

View factor between two perpendicular rectangles with a common edge.

View factors for two concentric cylinders of finite length: (a) outer cylinder to inner cylinder; (b) outer cylinder to itself.

View factor expressions for some infinitely long (2D) geometries

Geometry	Relation
Parallel plates with midlines connected by perpendicular line $ \begin{array}{c c} & & & & & & \\ & & & & & & \\ \hline & & & & &$	$W_i = w_i/L \text{ and } W_j = w_j/L$ $F_{i \to j} = \frac{[(W_i + W_j)^2 + 4]^{1/2} - (W_j - W_i)^2 + 4]^{1/2}}{2W_i}$
Inclined plates of equal width and with a common edge $ \frac{w}{w} $	$F_{i \to j} = 1 - \sin \frac{1}{2} \alpha$
Perpendicular plates with a common edge $ \begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ \hline & & & &$	$F_{i \to j} = \frac{1}{2} \left\{ 1 + \frac{W_j}{W_i} - \left[1 + \left(\frac{W_j}{W_i} \right)^2 \right]^{1/2} \right\}$
Three-sided enclosure W_k W_j	$F_{i \to j} = \frac{w_i + w_j - w_k}{2w_i}$
Infinite plane and row of cylinders $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	$\begin{split} F_{i \to j} &= 1 - \left[1 - \left(\frac{D}{s}\right)^2\right]^{1/2} \\ &+ \frac{D}{s} \tan^{-1} \left(\frac{s^2 - D^2}{D^2}\right)^{1/2} \end{split}$