Contracted 1-Tunnel within the Movement Union

April 15, 2016

Theorem 1 A Robot R consisting of two 2x2 contracted Modules M_a , M_b cannot perform a 1-Tunnel move within the union of the movement. Assuming that units cannot switch which module they belong to.

					J
1	2				
3	4				
5 6			9		10
7	8		11	!	12
a	1		a_2		
a_3		a_4			
b_1		b_2			
b_{i}	3		b_4		

Definition 0.1 An INSIDE unit space is a unit space belonging to the set $\{2,4,6,9,10\}$

 $\textbf{\textit{Definition 0.2}} \ \textit{An OUTSIDE unit space is a unit space belonging to the set} \ \{1, 3, 5, 7, 8, 11, 12\}$

Lemma 0.3 A movement of this type requires moving a unit in an INSIDE unit space to an OUTSIDE unit space or vis-versa.

Proof 0.4 Before the movement, M_a has two units $a_1, a_2 \in OUTSIDE$, and two units, $a_3, a_4 \in INSIDE$. M_b has 3 units $b_1, b_3, b_4 \in OUTSIDE$ and 1 unit, $b_2 \in INSIDE$.

It follows that to stay in the union of the movement, all units must be either INSIDE or OUTSIDE. i.e. $UNITS = INSIDE \cup OUTSIDE$, and $INSIDE \cap OUTSIDE = \emptyset$

Lemma 0.5