

Predictive Modeling for Metabolomics Data

Illustrative Example

Alex Sanchez-Pla Genetics, Microbiology & Statistics Department Universitat de Barcelona 2024-06-14

Outline

- 1) An Illustrative Example
- 2) References and Resources

An Illustrative Example

Data (1)

- LC-MS metabolomics dataset from www.metabolomicsworkbench.org (Project ID: PR00038)
- Plasma from 131 subjects was collected from the Chronic Obstructive Pulmonary Disease Gene study (COPDGene) study cohort and analyzed using untargeted LC-MS (C18+ and HILIC+) metabolomics.
- Data were annotated, normalized and preprocessed using the methods described in:
 - Cruickshank-Quinn CI, Jacobson S, Hughes G, Powell RL, Petrache I, Kechris K, Bowler R, Reisdorph N (2018) Metabolomics and transcriptomics pathway approach reveals outcome-specific perturbations in COPD. Sci Rep 8(1):17132
 - Regan EA, Hokanson JE, Murphy JR, Make B, Lynch DA, Beaty TH, Curran-Everett D, Silverman EK,
 Crapo JD (2010) Genetic epidemiology of COPD (COPDGene) study design. COPD 7(1):32–43.
 https://doi.org/10.3109/15412550903499522

Data (2)

- COPD is an extremely heterogeneous disease comprising multiple phenotypes.
- The **131 subjects** were either current or former smokers with various chronic obstructive pulmonary disease (COPD) phenotypes including airflow obstruction, radiologic emphysema, and exacerbations.
- Within this set there were **56 males and 75 females**.
- 2999 metabolites

Training and test sets

• **70% training** (93 samples)

Fivefold CV: 5 different subsets (or fivefolds)

- 4 fold for training
- 1 fold as holdout-test dataset

The algorithms were trained against each of the folds.

The metrics were computed (average over fivefolds) for the training dataset.

• **30% test** (38 samples)

The test dataset was used to provide an **unbiased evaluation** of the best model fit on the training dataset.

For **model validation**, the performance of the test data was predicted using the trained models for three classifiers.

Implementing the predictive models

- Different predictive models were implemented based on the training dataset using:
 - metabolite abundances as the predictor variables
 - Gender (Male/Female) as the response
- Then, the **Variable Importance Score**, which is a measure of feature relevance to gender for each metabolite was computed.

Feature Ranking and Variable Importance

Metabolite relevant feature ranking bar plots (top five metabolites) using Variable Important Scores ranging from 0 to 100.

- (a) Random Forest
- (b) Support Vector Machine (SVM)
- (c) Partial Least Square-Discriminant Analysis (PLS-DA) for the training dataset

Model Validation (1)

ROC curves of the testing dataset obtained from three classification algorithms (RF, SVM, and PLS-DA)

Model Validation (2)

Metrics to evaluate the performance of classification on testing dataset:

$$sensitivity = rac{TP}{P}$$
 $specificity = rac{TN}{N}$ $precision = rac{TP}{TP + FP}$ $recall = rac{TP}{TP + FN}$

Model Validation (3)

Metrics to evaluate the performance of classification on testing dataset:

- area under curve (AUC)
- sensitivity (SENS)
- specificity (SPEC)
- precision (PREC)
- recall (REC))

Metrics/methods	AUC	SENS	SPEC	PREC	REC
RF	0.87	0.71	0.64	0.71	0.71
SVM	0.86	0.76	0.71	0.76	0.76
PLS-DA	0.86	0.81	0.65	0.74	0.81

References and Resources

Resources

- Predictive Modeling for MetabolomicsData Tusharkanti Ghosh, Weiming Zhang, Debashis Ghosh, Katerina Kechris
- Metabolomics datasets: www.metabolomicsworkbench.org
- R code