OBLAST DEFINISANOSTI FUNKCIJE (DOMEN)

Prva tačka u ispitivanju toka funkcije je odredjivanje oblasti definisanosti , u oznaci D_f .

Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na osnovu toga i radi odredjivanje oblasti definisanosti funkcija.

- 1. Ako je data racionalna funkcija ili funkcija u kojoj bilo gde imamo razlomak $\frac{P(x)}{Q(x)}$ onda je $Q(x) \neq 0$, odnosno sve što je u imeniocu **mora** biti različito od 0.
- Ako je data logaritamska funkcija , onda sve iza logaritma mora biti veće od 0. (log⊗ ili ln ⊗ , onda je ⊗>0)
 Zašto ovo?

Podsetimo se grafika logaritamskih funkcija:

Vidimo da je logaritamska funkcija postoji samo za vrednosti x koje su veće od 0. U situaciji kad iza log ili ln nije samo x već neka funkcija od x (recimo \otimes) cela ta funkcija mora biti veća od 0. (\otimes >0)

3. Ako nam je data korena funkcija, onda moramo razlikovati dve situacije: kada je u pitanju paran koren (2,4,6....) i kad je u pitanju neparan koren (3,5,7...)

Iz grafika elementarnih funkcija možemo zaključiti da je:

- i) Ako imamo $y = \sqrt[n]{\Delta}, n paran$ onda je $\Delta \ge 0$, dakle sve unutar korena je veće ili jednako 0.
- ii) Ako imamo $y = \sqrt[n]{\Delta}$, n neparan onda je ta funkcija svuda definisana, sem naravno ako u izrazu Δ nema nešto drugo da nam smeta.
- 4. U slučaju kada su nam date eksponencijalne funkcije $y = a^x$ odnosno $y = e^x$, funkcija je svuda definisana:

Trebamo voditi računa da ako u eksponentu postoji razlomak , logaritam ili parni koren to odradimo po prethodnim stavkama....

5. U slučaju da nam je zadata trigonometrijska funkcija , odlast definisanosti tražimo na osnovu elementarnih grafika:

Funkcija je definisana za $x \in [-1,1]$

Funkcija je definisana za $x \in [-1,1]$

Funkcija je definisana na celom skupu R.

Funkcija je definisana na celom skupu R.

PRIMERI

1. Odrediti oblast definisanosti sledećih funkcija:

a)
$$y = \frac{x^2 + 3x}{x + 4}$$

b)
$$y = \frac{2x^3}{x^2 - 4}$$

$$y = \frac{2x^2 - 5}{x^2 + 1}$$

Rešenje:

a)
$$y = \frac{x^2 + 3x}{x + 4}$$

Sve što je u imeniocu mora biti različito od 0.

$$x + 4 \neq 0$$

$$x \neq -4$$

Oblast definisanosti je $D_f = (-\infty, -4) \cup (-4, \infty)$ ili neki profesori vole da zapišu $x \in R \setminus \{-4\}$

Šta ovo konkretno znači?

Ovo znači da funkcija ima prekid u x = -4 i da je tu potencijalna vertikalna asimptota!

b)
$$y = \frac{2x^3}{x^2 - 4}$$

Sve što je u imeniocu mora biti različito od 0.

Dakle $x^2 - 4 \neq 0$.

Ovo možemo rešavati kao kvadratnu jednačinu sa $x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ a u ovoj situaciji možemo upotrebiti I razliku kvadrata.

$$(x-2)(x+2) \neq 0 \rightarrow x-2 \neq 0 \land x+2 \neq 0 \rightarrow \boxed{x \neq 2 \land x \neq -2}$$

Ako vam je lakše, vi prvo rešite ovo sa (x-2)(x+2) = 0 pa na kraju precrtajte =, to jest \neq .

Odlast definisanosti ove funkcije je : $D_f = (-\infty, -2) \cup (-2, 2) \cup (2, \infty)$

Ovo znači da funkcija ima prekide u x = -2 i x = 2 i da su tu potencijalne vertikalne asimptote.

v)
$$y = \frac{2x^2 - 5}{x^2 + 1}$$

Sve što je u imeniocu mora biti različito od 0.

Dakle: $x^2 + 1 \neq 0$

Razmislimo malo....

Izraz $x^2+1>0$ pa nikad ne može biti nula! To nam govori da je ova funkcija definisana na celom skupu realnih brojeva I da nema vertikalnih asimptota. To jest $D_f=(-\infty,\infty)$.

2. Odrediti oblast definisanosti sledećih funkcija:

a)
$$y = \log_2 \frac{x-2}{x+1}$$

b)
$$y = \frac{x}{\ln x}$$

$$y = \frac{1 + \ln x}{1 - \ln x}$$

Rešenje:

$$a) y = \log_2 \frac{x-2}{x+1}$$

Ovde imamo prvo razlomak, pa mora da je $x+1 \neq 0 \rightarrow x \neq -1$

Imamo i logaritamsku funkciju pa mora da je $\frac{x-2}{x+1} > 0$.

Ovu nejednačinu možemo rešavati na više načina ali mi preferiramo tablicu (pogledajte fajl iz II godine o

5

nejednačinama)

	<u>-</u> ω -	1 2	<u> </u>	_o → brojevna prava
x+1	-	+	+	prava
x-2	-	-	+	_
x-2 x+1	+	-	+	_

Oblast definisanosti je $D_f = (-\infty, -1) \cup (2, \infty)$

Ovo znači da je funkcija nema izmedju prava x = -1 i x = 2, što bi na slici izgledalo:

b)
$$y = \frac{x}{\ln x}$$

Zbog razlomka mora da je $\ln x \neq 0 \rightarrow x \neq 1$, a zbog $\ln t$ funkcije mora da je x > 0, to jest, oblast definisanosti je: $D_f = (0,1) \cup (1,\infty) \text{ a na slici bi to izgledalo:}$

$$y = \frac{1 + \ln x}{1 - \ln x}$$

Sve u imeniocu mora da je različito od nule:

$$1 - \ln x \neq 0$$

$$\ln x \neq 1$$

$$x \neq e^1 \rightarrow x \neq e$$

Kako imamo i $\ln x$ to mora biti x>0 pa je oblast definisanosti : $D_f=(0,e)\cup(e,\infty)$

Grafik bi bio sličan kao u prethodnom primeru samo bi potencijalna vertikalna asimptota bila u x = e.

3. Odrediti oblast definisanosti sledećih funkcija:

$$a) \quad y = \frac{e^{-x}}{x+1}$$

$$b) \quad y = x \cdot e^{\frac{1}{x-2}}$$

Rešenje:

a)
$$y = \frac{e^{-x}}{x+1}$$

Imamo razlomak , pa je $x-1\neq 0 \rightarrow x\neq 1$, a kako je e^{-x} uvek definisano , onda je $D_f=(-\infty,1)\cup (1,\infty)$

b)
$$y = x \cdot e^{\frac{1}{x-2}}$$

Pazite ovde! Jeste da je funkcija e^x uvek definisana, ali kad u eksponentu ima razlomak on ne sme da bude 0.

Dakle: $x-2 \neq 0 \rightarrow x \neq 2$ pa je $D_f = (-\infty, 2) \cup (2, \infty)$

4. Odrediti oblast definisanosti sledećih funkcija:

a)
$$y = \sqrt{\frac{x^3}{x+1}}$$

b)
$$y = \frac{x-2}{\sqrt{x^2-4x+3}}$$

v)
$$y = \sqrt[3]{(x+1)^2} - \sqrt[3]{(x+1)^2}$$

g)
$$y = \frac{x^2}{\sqrt[3]{x^3 - 1}}$$

Rešenje:

a)
$$y = \sqrt{\frac{x^3}{x+1}}$$

Najpre uočimo da postoji razlomak , pa mora biti $x+1 \neq 0 \rightarrow x \neq -1$

Dalje, pošto se radi o parnom korenu (kvadratni koran) sve unutar korena mora biti veće ili jednako 0.

$$\frac{x^3}{x+1} \ge 0$$
, ovo je najbolje rešiti upotrebom tablice....

Dobijamo $x \in (-\infty, -1] \cup [0, \infty)$, ali ovo nije oblast definisanosti, jer moramo uzeti u obzir da je $x \ne -1$, pa je onda:

$$D_f = (-\infty, -1) \cup [0, \infty)$$
.

b)
$$y = \frac{x-2}{\sqrt{x^2-4x+3}}$$

Imamo razlomak, pa je $\sqrt{x^2-4x+3} \neq 0$ a zbog korena mora biti $x^2-4x+3 \geq 0$.

Kad spakujemo ova dva uslova dobijemo $x^2 - 4x + 3 > 0$.

Rešimo prvo ovu kvadratnu jednačinu:
$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \rightarrow x_1 = 1 \land x_2 = 3$$

Sad možemo kvadratnu napisati u onom drugom obliku proizvoda $a(x-x_1)(x-x_2) = (x-1)(x-3)$ pa da koristimo tablicu a može i brže (koristeći činjenicu da kvadratni trinom ima znak broja a svuda osim izmedju nula)

Oblast definisanosti je $D_f = (-\infty, 1) \cup (3, \infty)$.

v)
$$y = \sqrt[3]{(x+1)^2} - \sqrt[3]{(x+1)^2}$$

Ovde nemamo razlomaka a već smo rekli da su neparni koreni svuda definisani (treći koren bilo kog realnog broja je realan broj) pa je oblast definisanosti ove funkcije $D_f = (-\infty, \infty)$.

g)
$$y = \frac{x^2}{\sqrt[3]{x^3 - 1}}$$

Ovde nam najpre smeta razlomak : $\sqrt[3]{x^3 - 1} \neq 0$ a kako je treći koren uvek definisan, ostaje da je $x^3 - 1 \neq 0$.

Iskoristićemo formulu za razliku kubova:

$$A^3 - B^3 = (A - B)(A^2 + AB + B^2)$$
 pa je $x^3 - 1 = (x - 1)(x^2 + x + 1)$.

Dalje razmišljamo : izraz $x^2 + x + 1 > 0$ jer je kod njega $a > 0 \land D < 0$ (pogledajte fajl kvadratna funkcija iz druge godine). Ostade samo da je $x - 1 \neq 0 \rightarrow x \neq 1$ pa je oblast definisanosti: $D_f = (-\infty, 1) \cup (1, \infty)$

5. Odrediti oblast definisanosti sledećih funkcija:

$$a) y = \arcsin \frac{2x}{1+x^2}$$

b)
$$y = arctg \frac{x-1}{x^2 - 5x + 6}$$

Rešenje:

$$a) y = \arcsin \frac{2x}{1+x^2}$$

Iz elementarnog grafika arcsinx funkcije zaključujemo da ako imamo $\arcsin\Omega \to -1 \le \Omega \le 1$, što znači da sve iza arcsin mora biti izmedju -1 i 1. (slično je i za arccos x)

Za naš zadatak je dakle: $-1 \le \frac{2x}{1+x^2} \le 1$

E sad ovo možemo odmah raditi kao dve nejednačine pa onda upakovati rešenja na istoj brojevnoj pravoj.

U našoj situaciji ćemo sve pomnožiti sa $1+x^2$. Zašto to smemo ovde? Pazite, to smemo da uradimo samo ako je izraz u imeniocu pozitivan, a mi smo ovde sigurni da je $1+x^2>0$

$$-1 \le \frac{2x}{1+x^2} \le 1 \dots *(1+x^2)$$

$$-\left(1+x^2\right) \le 2x \le \left(1+x^2\right)$$

 $-1-x^2 \le 2x \le 1+x^2$ sad razdvojimo na dve nejednakosti

$$-1-x^2 \le 2x \wedge 2x \le 1+x^2$$

$$0 \le 1 + x^2 + 2x \land 0 \le 1 + x^2 - 2x$$

$$0 \le (x+1)^2 \land 0 \le (x-1)^2$$

Ovo očigledno uvek važi, za svako x iz skupa R, pa je $D_f = (-\infty, \infty)$.

b)
$$y = arctg \frac{x-1}{x^2 - 5x + 6}$$

Videli smo na početku fajla da je funkcija arctgx definisana za svako x. Ovde nama smeta samo razlomak!

 $x^2 - 5x + 6 \neq 0$. Rešenja ove kvadratne jednačine su $x_1 = 2 \land x_2 = 3$, pa je onda : $x^2 - 5x + 6 \neq 0 \rightarrow x_1 \neq 2 \land x_2 \neq 3$ a oblast definisanosti je : $D_f = (-\infty, 2) \cup (2, 3) \cup (3, \infty)$

6. Odrediti oblast definisanosti funkcije $y = \log \frac{x^2 - 7x + 12}{1 - x} + \sqrt{\frac{x - 2}{x + 2}} + e^{\frac{1}{x - 3, 5}}$

Rešenje:

Evo jednog zadatka u kome imamo kombinaciju više uslova...

Prvo ćemo da odradimo sve razlomke:

$$1-x \neq 0 \rightarrow \boxed{x \neq 1}$$

$$x+2 \neq 0 \rightarrow \boxed{x \neq -2}$$

$$x-3,5 \neq 0 \rightarrow \boxed{x \neq 3,5}$$

Sad idemo redom, da najpre odradimo logaritam:

Ovde je rešenje $x \in (-\infty, 1) \cup (3, 4)$

Sad uništimo koren: $\frac{x-2}{x+2} \ge 0$

		2	$\lambda \pm \Delta$
	- ∞	2 2	<u> </u>
x-2	-	_	+
x+2	-	+	+
sve	+	-	•

Ovde je rešenje: $x \in (-\infty, -2) \cup [2, \infty)$ s obzirom da smo veš rekli da je $x \neq -2$. Sad sve upakujemo na jednoj brojevnoj pravoj:

 $D_f = (-\infty, -2) \cup (3, 3, 5) \cup (3, 5, 4)$ je tražena oblast definisanosti!