Section 0.5

[4a] use the Intermediate Value

Theorem to prove that f(0)=0

for some 0.421

f(x)=x3-4x+1 CE (0,1) prove f(0)=0

f(0)=0-0+1=1>0,f(1)=1-4+1=4<0

Activates between 4 and 1 including

zero must be taken on by f(x) by

Intermediate value Theorem [ab]=[0,1]

fiom (+) to (-) and

therefore interval [0,1] contains

the root.

[4a] Find the Taylor polynomial of degree 2 about the point x=0(a) $f(x) = e^{x^2}$ $g'(x) = e^{x^2}$ $g''(x) = 2(e^{x^2} \cdot 2x \cdot x + e^{x^2}) = 2 \cdot e^{x^2} (2x^2 + 1)$ P2(x) = f(xo) + f(xo (x to) + f"(x-xo) 1 Aylor polynomial

| relative Err (0.9)|- $\frac{1}{5.0.95}$ (0.9-1) | Ano.9| 0.000032147= | 3.2.105] -> upper 60 und | Relative Era(1.1) |= 1 (1.1-1) 5/ en1.1 = = 0,000020984 \(\alpha \) \(\begin{align*} 2.1.10^5 \) \(\alpha \) \(\begin{align*} 4\beta \) \(\beta \) \(\alpha \) \(\alp By using the above result we bess then for 0.9 and we whould expect the Py (1.1) closer to en (1.1) : then Py(0.9) to en (0.9) Ree Erractual = 1en(1.1) - Py(1.1) 10.09531-0.095308/ 10.0953081 Rel Ero actual (0.9) = 18/0.9)-P4/0.911 1-0,105360+0.105358 we can see that over expected cross zurong RE(1,1)=2.1.105 < Upper bound=3.2.105