

THÈSE

En vue de l'obtention du

DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE

Délivré par : l'Institut Supérieur de l'Aéronautique et de l'Espace (ISAE)

Présentée et soutenue le 30 Octobre 2020 par :

Andrea BRUGNOLI

A port-Hamiltonian formulation of flexible structures Modelling and symplectic finite element discretization

JURY

DANIEL ALAZARD ISAE-Supaéro, Toulouse Directeur Valérie P. BUDINGER ISAE-Supaéro, Toulouse Co-directeur YANN LE GORREC Institut FEMTO-ST Rapporteur ALESSANDRO MACCHELLI Universitá di Bologna Rapporteur THOMAS HÉLIE Directeur de Recherches CNRS Examinateur Luc DUGARD GIPSA-LAB, Grenoble Président

École doctorale et spécialité:

EDSYS: Automatique

Unité de Recherche:

CSDV - Commande des Systèmes et Dynamique du Vol - ONERA - ISAE

Directeur de Thèse:

Daniel ALAZARD et Valérie POMMIER-BUDINGER

Rapporteurs:

Yann LE GORREC et Alessandro MACCHELLI

Abstract

This thesis aims at extending the port-Hamiltonian (pH) approach to continuum mechanics in higher geometrical dimensions (particularly in 2D). The pH formalism has a strong multiphysics character and represents a unified framework to model, analyze and control both finite- and infinite-dimensional systems. Despite the large literature on this topic, elasticity problems in higher geometrical dimensions have almost never been considered. This work establishes the connection between port-Hamiltonian distributed systems and elasticity problems. The originality resides in three major contributions. First, the novel pH formulation of plate models and coupled thermoelastic phenomena is presented. The use of tensor calculus is mandatory for continuum mechanical models and the inclusion of tensor variables is necessary to obtain an intrinsic, i.e. coordinate free, and equivalent pH description. Second, a finite element based discretization technique, capable of preserving the structure of the infinite-dimensional problem at a discrete level, is developed and validated. The discretization of elasticity problems in port-Hamiltonian form requires the use of non-standard finite elements. Nevertheless, the numerical implementation is performed thanks to well-established open-source libraries, providing external users with an easy to use tool for simulating flexible systems in pH form. Third, flexible multibody systems are recast in pH form by making use of a floating frame description valid under small deformations assumptions. This reformulation include all kinds of linear elastic models and exploits the intrinsic modularity of pH systems.

Résumé

Cette thèse vise à étendre l'approche port-hamiltonienne (pH) à la mécanique des milieux continus dans des dimensions géométriques plus élevées (en particulier on se focalise sur la dimension deux). Le formalisme pH, avec son fort caractère multiphysique, représente un cadre unifié pour modéliser, analyser et contrôler les systèmes de dimension finie et infinie. Malgré l'abondante littérature sur ce sujet, les problèmes d'élasticité en deux ou trois dimensions géométriques n'ont presque jamais été considérés. Dans ce travail de thèse la connexion entre problèmes d'élasticité et systèmes distribués port-Hamiltoniens est établie. L'originalité apportée réside dans trois contributions majeures. Tout d'abord, la nouvelle formulation pH des modèles de plaques et des phénomènes thermoélastiques couplés est présentée. L'utilisation du calcul tensoriel est obligatoire pour modéliser les milieux continus et l'introduction de variables tensorielles est nécessaire pour obtenir une description pH équivalente qui soit intrinsèque, c'est-à-dire indépendante des coordonnées choisies. Deuxièmement, une technique de discrétisation basée sur les éléments finis et capable de préserver la structure du problème de la dimension infinie au niveau discret est développée et validée. La discrétisation des problèmes d'élasticité écrits en forme port-Hamiltonienne nécessite l'utilisation d'éléments finis non standard. Néanmoins, l'implémentation numérique est réalisée grâce à des bibliothèques open source bien établies, fournissant aux utilisateurs externes un outil facile à utiliser pour simuler des systèmes flexibles sous forme pH. Troisièmement, une nouvelle formulation pH de la dynamique multicorps flexible est dérivée. Cette reformulation, valable sous de petites hypothèses de déformations, inclut toutes sortes de modèles élastiques linéaires et exploite la modularité intrinsèque des systèmes pH.

Aknowledgements

Remerciements

Ringraziamenti

Contents

AI	bstract	1
Ré	ésumé	iii
Al	knowledgements	v
Re	emerciements	vii
Ri	ingraziamenti	ix
Li	ist of Acronyms	xix
Ι	Introduction and state of the art	1
1	Introduction	3
	1.1 Motivation and context	. 3
	1.2 Overview of chapters	. 3
	1.3 Contributions	. 3
2	Literature review	5
	2.1 Port-Hamiltonian distributed systems	. 5
	2.2 Structure-preserving discretization	. 5
	2.3 Mixed finite element for elasticity	. 5
	2.4 Multibody dynamics	. 5
II	Port-Hamiltonian elasticity and thermoelasticity	7
3	Elasticity in port-Hamiltonian form	9

	3.1	Deformation, strain and stress	9
	3.2	The linear elastodynamics problem	11
	3.3	Port-Hamiltonian formulation	12
		3.3.1 Reminder of distributed port-Hamiltonian systems	13
4	Por	rt-Hamiltonian plate (and shell?) theory	15
	4.1	Mindlin-Reissner model	15
		4.1.1 Lagrangian formulation	15
		4.1.2 Port-Hamiltonian formulation	15
	4.2	Kirchhoff-Love model	15
		4.2.1 Lagrangian formulation	15
		4.2.2 Port-Hamiltonian formulation	15
	4.3	Laminated anisotropic plates	15
		4.3.1 Thin plate assumption	15
		4.3.2 Thick plate assumption	15
	4.4	The membrane shell problem ?	15
5	The	ermoelasticity in port-Hamiltonian form	17
	5.1	Linear coupled thermoelasticity	17
	5.2	Thermoelastic Euler-Bernoulli beam	17
	5.3	Thermoelastic Kirchhoff plate	17
			10
II	.1 F	Finite element structure preserving discretization	19
6	Par	titioned finite element method	21
	6.1	General procedure	21
		6.1.1 Non-linear case	21
		6.1.2 Linear case	21
			0.1

	6.2	Connection with mixed finite elements	21
	6.3	Inhomogeneous boundary conditions	21
		6.3.1 Solution using Lagrange multipliers	21
		6.3.2 Virtual domain decomposition	21
7	Cor	nvergence numerical study	23
	7.1	Plate problems using known mixed finite elements	23
	7.2	Non-standard discretization of flexible structures	23
8	Nu	merical applications	25
	8.1	Boundary stabilization	25
	8.2	Thermoelastic wave propagation	25
	8.3	Mixed boundary conditions	25
		8.3.1 Trajectory tracking of a thin beam	25
		8.3.2 Vibroacoustic under mixed boundary conditions	25
	8.4	Modal analysis of plates	25
I	V P	ort-Hamiltonian flexible multibody dynamics	27
9	Mo	dular multibody systems in port-Hamiltonian form	29
	9.1	Reminder of the rigid case	29
	9.2	Flexible floating body	29
	9.3	Modular construction of multibody systems	29
10) Val	idation	31
	10.1	Beam systems	31
		10.1.1 Modal analysis of a flexible mechanism	31
		10.1.2 Non-linear crank slider	31
		10.1.3 Hingad boam	21

10.2 Plate systems	31
10.2.1 Boundary interconnection with a rigid element	31
10.2.2 Actuated plate	31
Conclusions and future directions	35
A Mathematical tools	37
A.1 Differential operators	37
B Finite elements gallery	39
C Implementation using FEniCS and Firedrake	41
Bibliography	43

List of Figures

List of Tables

List of Acronyms

 ${f DAE}$ Differential-Algebraic Equation

 $\mathbf{dpHs} \qquad \qquad \textit{distributed port-Hamiltonian systems}$

FEM Finite Element Method

 ${\bf IDA\text{\bf -PBC}} \quad \textit{Interconnection and Damping Assignment Passivity Based Control}$

PDE Partial Differential Equation

PFEM Partitioned Finite Element Method

 ${f pH}$ port-Hamiltonian

 $\mathbf{pHs} \hspace{1.5cm} \textit{port-Hamiltonian systems}$

 $\mathbf{pHDAE} \qquad \textit{port-Hamiltonian Descriptor System}$

Part I

Introduction and state of the art

CHAPTER 1

Introduction

Je n'ai cherché de rien prouver, mais de bien peindre et d'éclairer bien ma peinture

André Gide Préface de L'Immoraliste

Contents

1.1	Motivation and context	3
1.2	Overview of chapters	3
1.3	Contributions	3

- 1.1 Motivation and context
- 1.2 Overview of chapters
- 1.3 Contributions

Literature review

Whereof one cannot speak, thereof one must be silent.

Ludwig Wittgenstein Tractatus Logico-Philosophicus

- 2.1 Port-Hamiltonian distributed systems
- 2.2 Structure-preserving discretization
- 2.3 Mixed finite element for elasticity
- 2.4 Multibody dynamics

Part II

Port-Hamiltonian elasticity and thermoelasticity

Elasticity in port-Hamiltonian form

I try not to break the rules but merely to test their elasticity.

Bill Veeck

Contents

3.1	Defo	ormation, strain and stress	
3.2	The	linear elastodynamics problem	
3.3	Port	-Hamiltonian formulation	
	3.3.1	Reminder of distributed port-Hamiltonian systems	

Continuum mechanics is the mathematical description of how materials behave kinematically under external excitations. In this framework, the microscopic structure of a material body is neglected and a macroscopic viewpoint, that describes the body as a continuum, is adopted. Continua phenomena are modeled using PDE. In this chapter, the general linear elastodynamics problem is recalled. A suitable port-Hamiltonian realization is then derived.

3.1 Deformation, strain and stress

In this section, the main concepts behind a deformable continuum are briefly recalled following [Lee12]. For a detailed discussion on this topic, the reader may consult [Abe12, LPKL12].

The bounded region of \mathbb{R}^n (n=2,3) occupied by a solid is called configuration. The reference configuration Ω is the domain that a bodies occupies at the initial state. To describe how the body deforms in time the deformation map $\Phi: \Omega \times [0,T_f] \to \Omega' \subset \mathbb{R}^n$ is introduced. This map is differentiable and orientation preserving and the image of Ω under $\Phi(\cdot,t) \ \forall t \in [0,T_f]$ is called the deformed configuration Ω_t . Given a specific point in the reference frame is image is denoted by $\mathbf{y} = \Phi(\mathbf{x},t)$. The gradient of the deformation map is called the deformation gradient $\mathbf{F} := \nabla_x \Phi = \frac{\partial \mathbf{y}}{\partial \mathbf{x}}$. A rigid deformation maps a point $\mathbf{x} \in \Omega \to \mathbf{A}(t)\mathbf{x} + \mathbf{b}(t)$, where $\mathbf{A}(t)$ is an orthogonal matrix and $\mathbf{b}(t)$ a \mathbb{R}^n vector. A differentiable deformation map Φ is a rigid deformation iff $\mathbf{F}^{\top}\mathbf{F} - \mathbf{I} = 0$, where \mathbf{I} is the identity in $\mathbb{R}^{n \times n}$ (for the proof see [Cia88],

page 44). For this reason, a suitable measure of the deformation is the Green-St. Venant strain tensor $E = \frac{1}{2}(\mathbf{F}^{\top}\mathbf{F} - \mathbf{I})$.

A quantity of interest is the displacement $\boldsymbol{u}:\Omega\times[0,T_f]\to\mathbb{R}^n$ with respect to the reference configuration. It is defined as $\boldsymbol{u}(\boldsymbol{x},t)=\boldsymbol{\Phi}(\boldsymbol{x},t)-\boldsymbol{x}$. The gradient of the displacement verifies grad $\boldsymbol{u}=\boldsymbol{F}-\boldsymbol{I}$. The strain tensor can now be written in terms of the displacement

$$egin{aligned} oldsymbol{E} &= rac{1}{2} \left[(
abla_x oldsymbol{u} + oldsymbol{I})^ op (
abla_x oldsymbol{u} + oldsymbol{I}) - oldsymbol{I}
ight] \ &= rac{1}{2} \left[
abla_x oldsymbol{u} + (
abla_x oldsymbol{u})^ op + (
abla_x oldsymbol{u})^ op (
abla_x oldsymbol{u})
ight], \end{aligned}$$

or in components

$$E_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} + \frac{\partial u_i}{\partial x_j} \frac{\partial u_j}{\partial x_i} \right).$$

To state the balance laws the actual deformed configuration is considered. The linear and angular momentum in a subdomain $\omega_t \subset \Omega_t$ are computed as

$$\int_{\omega_t} \rho \, \boldsymbol{v} \, d\omega_t, \qquad \int_{\omega_t} \rho \, \boldsymbol{y} \times \boldsymbol{v} \, d\omega,$$

where ρ is the mass density and the velocity $\mathbf{v} = \frac{D\mathbf{u}}{Dt}(\mathbf{y}, t)$ is material time derivative of the displacement (see [Abe12, Chapter 1]). Let $\omega_{t,1}$, $\omega_{t,2}$ be two subregions in a deformed continuum Ω_t with contacting surface S_{12} . There is a force acting on this surface for a continuum that is called stress vector or traction. If \mathbf{n} is the outward normal at \mathbf{y} on S_{12} with respect to $\omega_{t,1}$, then the surface force that $\omega_{t,1}$ exerts on $\omega_{t,2}$ is denoted by $\mathbf{t}(\mathbf{y},\mathbf{n}) \in \mathbb{R}^n$. By the Newton third law, the surface force that $\omega_{t,1}$ applies on $\omega_{t,2}$ is given by $\mathbf{t}(\mathbf{y},-\mathbf{n}) = -\mathbf{t}(\mathbf{y},\mathbf{n})$. It is assumed that the linear and angular momentum balance hold for any subregion $\omega \in \Omega_t$

$$\frac{d}{dt} \int_{\omega_t} \rho \boldsymbol{v} \, d\omega_t = \int_{\partial \omega_t} \boldsymbol{t}(\boldsymbol{y}, \boldsymbol{n}) \, dS + \int_{\omega_t} \boldsymbol{f} \, d\omega_t,$$

$$\frac{d}{dt} \int_{\omega_t} \rho \boldsymbol{y} \times \boldsymbol{v} \, d\omega_t = \int_{\partial \omega_t} \boldsymbol{y} \times \boldsymbol{t}(\boldsymbol{y}, \boldsymbol{n}) \, dS + \int_{\omega_t} \boldsymbol{y} \times \boldsymbol{f} \, d\omega_t,$$

where n is the outward normal to the surface $\partial \omega_t$. The following theorem characterizes the stress vector (see [Cia88, Chapter 2]):

Theorem 1 (Cauchy's theorem)

If the linear and angular momenta balance hold, then there exists a matrix valued function Σ from Ω_t to \mathbb{S} such that $\mathbf{t}(\mathbf{y}, \mathbf{n}) = \Sigma(\mathbf{y})\mathbf{n}$, $\forall \mathbf{y} \in \Omega_t$ where the right-hand side is the matrix-vector multiplication.

The set $\mathbb{S} = \mathbb{R}_{\text{sym}}^{n \times n}$ denotes the field of symmetric matrices in $\mathbb{R}^{n \times n}$. The symmetric of the stress tensor Σ is due to the balance of angular momentum. The divergence theorem can

then be applied

$$\int_{\partial \omega} \mathbf{\Sigma} \, \mathbf{n} \, dS = \int_{\omega} \nabla_y \cdot \mathbf{\Sigma} \, d\omega,$$

where ∇_y is the tensor divergence with respect to the deformed configuration, $\nabla_y \cdot \mathbf{\Sigma} = \sum_{i=1}^n \frac{\partial \Sigma_{ij}}{\partial y_i}$. Because the considered subregion ω is arbitrary, using the linear balance momentum and the conservation of mass the following PDE is found

$$\rho \frac{D \boldsymbol{v}}{D t} - \nabla_y \cdot \boldsymbol{\Sigma} = \boldsymbol{f}, \qquad \boldsymbol{y} \in \Omega_t.$$

This equation is written with respect to the deformed configuration Ω_t . For a detailed derivation of this equation the reader may consult [Abe12, Chapter 4].

3.2 The linear elastodynamics problem

Whenever deformations are small, $\nabla_x u \ll 1$, there the reference and deformed configuration are almost indistinguishable $y = x + u = x + O(\nabla_x u) \approx x$. This allows to write the linear momentum balance in the reference configuration

$$\rho \frac{\partial \boldsymbol{v}}{\partial t}(\boldsymbol{x}, \boldsymbol{t}) - \text{Div}(\boldsymbol{\Sigma}(\boldsymbol{x}, t)) = \boldsymbol{f}, \qquad \boldsymbol{x} \in \Omega.$$

The material derivative simplifies to a partial one. The operator Div is the divergence of a tensor field with respect to the reference configuration

$$\operatorname{Div}(\boldsymbol{\Sigma}(\boldsymbol{x},t)) = \nabla_{x} \cdot \boldsymbol{\Sigma}(\boldsymbol{x},t) = \sum_{i=1}^{n} \frac{\partial \Sigma_{ij}}{\partial x_{i}}.$$

Furthermore, the non-linear terms in the Green-St. Venant strain tensor can be dropped

$$\boldsymbol{E} = \frac{1}{2} \left[\nabla_x \boldsymbol{u} + (\nabla_x \boldsymbol{u})^\top + (\nabla_x \boldsymbol{u})^\top (\nabla_x \boldsymbol{u}) \right] \approx \frac{1}{2} \left[\nabla_x \boldsymbol{u} + (\nabla_x \boldsymbol{u})^\top \right].$$

The linearized strain tensor (also called infinitesimal strain tensor) is the symmetric gradient of the displacement

$$\boldsymbol{arepsilon} := \operatorname{Grad} \boldsymbol{u}, \qquad ext{where} \qquad \operatorname{Grad} \boldsymbol{u} = rac{1}{2} \left[
abla_x \boldsymbol{u} + (
abla_x \boldsymbol{u})^{ op}
ight].$$

To obtain a closed system of equations, it is now necessary to characterize the relation between stress and strain. This relation is normally called *constitutive law*. In the following, the particular case of elastic materials is considered. For this class of materials, the stress tensor is solely determined by the deformed configuration at a given time. An elastic material is able to resist distorting excitations and return to its original size and shape when these are removed. A linear elastic material satisfies the Hooke's law

$$\Sigma(x) = \mathcal{D}(x) \, \varepsilon(u(x)).$$

The stiffness tensor or elasticity tensor $\mathcal{D}: \mathbb{S} \to \mathbb{S}$ is a rank 4 tensor that is symmetric positive definite and uniformly bounded above and below. Because of symmetry, its components satisfy

$$\mathcal{D}_{ijkl} = \mathcal{D}_{jikl} = \mathcal{D}_{klij}$$
.

From the uniform boundedness of \mathcal{D} , the map $\mathcal{D}: L^2(\Omega; \mathbb{S}) \to L^2(\Omega; \mathbb{S})$ is a symmetric positive definite bounded linear operator $(L^2(\Omega; \mathbb{S}))$ is the space of square integrable symmetric tensor valued functions). The compliance tensor \mathcal{A} is defined by $\mathcal{A} = \mathcal{D}^{-1}$. Thus $\mathcal{A}: \mathbb{S} \to \mathbb{S}$ is as well symmetric positive definite and uniformly bounded above and below. An isotropic elastic medium has the same kinematic properties in any direction and at each point. If an elastic medium is isotropic, then the stiffness and compliance tensors assume the form

$$\mathcal{D}(\cdot) = 2\mu(\cdot) + \lambda \operatorname{Tr}(\cdot) \boldsymbol{I}, \qquad \mathcal{A}(\cdot) = \frac{1}{2\mu} \left[(\cdot) - \frac{\lambda}{2\mu + n\lambda} \operatorname{Tr}(\cdot) \boldsymbol{I} \right], \qquad n = \{2, 3\},$$

where Tr is the trace operator and the positive scalar functions μ , λ , defined on Ω , are called the Lamé coefficients. In engineering applications it is easier to compute experimentally two other parameters: the Young modulus E and Poisson's ratio ν . Those are expressed in terms of the Lamé coefficients as

$$\nu = \frac{\lambda}{2(\lambda + \mu)}, \qquad E = \frac{\mu(3\lambda + 2\mu)}{\lambda + \mu},$$

and inversely

$$\lambda = \frac{E\nu}{(1+\nu)(1-2\nu)}, \qquad \mu = \frac{E}{2(1+\nu)}.$$

The stiffness and compliant tensor assume the expressions

$$\mathcal{D}(\cdot) = \frac{E}{1+\nu} \left[(\cdot) + \frac{\nu}{1-2\nu} \operatorname{Tr}(\cdot) \mathbf{I} \right], \qquad \mathcal{A}(\cdot) = \frac{1+\nu}{E} \left[(\cdot) - \frac{\nu}{1+\nu(n-2)} \operatorname{Tr}(\cdot) \mathbf{I} \right].$$

The linear elastodynamics problem is formulated through a vector-valued PDE

$$\rho \frac{\partial^2 \boldsymbol{u}}{\partial t^2} - \text{Div}(\boldsymbol{\mathcal{D}} \text{Grad} \, \boldsymbol{u}) = \boldsymbol{f}. \tag{3.1}$$

The classical elastodynamics problem is expressed in terms of the displacement as the unknown.

3.3 Port-Hamiltonian formulation

In this section a port-Hamiltonian formulation for elasticity is deduced from the classical elastodynamics problem. It must be appointed that already in the seventies a purely hyperbolic formulation for elasticity was detailed [HM78]. The missing point is the clear connection with the theory of Hamiltonian PDEs. An Hamiltonian formulation can be found in [Gri15], but without any connection to the concept of Stokes-Dirac structure induced by the underlying

geometry.

First, infinite dimensional port-Hamiltonian systems and the concept of Stokes-Dirac are presented. Then, it is shown that the linear elastodynamics model is a pH system.

3.3.1 Reminder of distributed port-Hamiltonian systems

A distributed conservative port-Hamiltonian system is defined by a set of variables that describes the unknowns, by a formally skew-adjoint differential operator, an energy functional and a set of boundary inputs and corresponding conjugated outputs. Such a system is described by the following set of equations

$$\frac{\partial \boldsymbol{\alpha}}{\partial t} = \mathcal{J}\boldsymbol{e},
\boldsymbol{u}_{\partial} = \mathcal{B}\boldsymbol{e},
\boldsymbol{y}_{\partial} = \mathcal{C}\boldsymbol{e},
\boldsymbol{e} = \frac{\delta H}{\delta \boldsymbol{\alpha}}.$$
(3.2)

The unknowns α are called energy variables in the port-Hamiltonian framework, the formally skew-symmetric operator \mathcal{J} is named interconnection operator (see appendix A for a precise definition of formal skew adjointness). \mathcal{B}, \mathcal{C} are boundary operator, that provide the boundary input u_{∂} and output y_{∂} . Vector e contains the coenergy variables. These correspond to the variational derivative of the energy functional $H(\alpha)$.

Definition 1 (Variational derivative)

Consider a functional $H(\alpha)$

$$H(\boldsymbol{\alpha}) = \int_{\Omega} \mathcal{H}(\boldsymbol{\alpha}) \, \mathrm{d}\Omega.$$

Given a variation $\alpha = \bar{\alpha} + \epsilon \delta \alpha$ the variational derivative $\frac{\delta H}{\delta \alpha}$ is defined as

$$H(\bar{\alpha} + \epsilon \delta \alpha) = H(\bar{\alpha}) + \epsilon \int_{\Omega} \frac{\delta H}{\delta \alpha} \delta \alpha \, d\Omega + O(\epsilon^2).$$

Remark 1

If the integrand does not contain derivative of the argument α then the variational derivative is equal to the partial derivative of the Hamiltonian density \mathcal{H}

$$\frac{\delta H}{\delta \alpha} = \frac{\partial \mathcal{H}}{\partial \alpha}.$$

Conservative port-Hamiltonian systems possess a peculiar property. The energy rate is

given by the power due to the boundary ports $\boldsymbol{u}_{\partial},\boldsymbol{y}_{\partial}$

$$\dot{H} = \int_{\Omega} \frac{\partial \mathcal{H}}{\partial \boldsymbol{\alpha}} \frac{\partial \boldsymbol{\alpha}}{\partial t} d\Omega$$

$$= \int_{\partial \Omega} \boldsymbol{u}_{\partial} \boldsymbol{y}_{\partial} dS$$
(3.3)

Port-Hamiltonian plate (and shell?) theory

1	1	Mind	lin-Reissner	model
4.			iiii-neissiier	modei

- 4.1.1 Lagrangian formulation
- 4.1.2 Port-Hamiltonian formulation
- 4.2 Kirchhoff-Love model
- 4.2.1 Lagrangian formulation
- 4.2.2 Port-Hamiltonian formulation
- 4.3 Laminated anisotropic plates
- 4.3.1 Thin plate assumption
- 4.3.2 Thick plate assumption
- 4.4 The membrane shell problem?

Thermoelasticity in port-Hamiltonian form

- 5.1 Linear coupled thermoelasticity
- 5.2 Thermoelastic Euler-Bernoulli beam
- 5.3 Thermoelastic Kirchhoff plate

Part III

Finite element structure preserving discretization

Partitioned finite element method

- 6.1 General procedure
- 6.1.1 Non-linear case
- 6.1.2 Linear case
- 6.1.3 Examples
- 6.2 Connection with mixed finite elements
- 6.3 Inhomogeneous boundary conditions
- 6.3.1 Solution using Lagrange multipliers
- 6.3.2 Virtual domain decomposition

Convergence numerical study

- 7.1 Plate problems using known mixed finite elements
- 7.2 Non-standard discretization of flexible structures

Numerical applications

- 8.1 Boundary stabilization
- 8.2 Thermoelastic wave propagation
- 8.3 Mixed boundary conditions
- 8.3.1 Trajectory tracking of a thin beam
- 8.3.2 Vibroacoustic under mixed boundary conditions
- 8.4 Modal analysis of plates

Part IV

Port-Hamiltonian flexible multibody dynamics

Modular multibody systems in port-Hamiltonian form

- 9.1 Reminder of the rigid case
- 9.2 Flexible floating body
- 9.3 Modular construction of multibody systems

Validation

4 A 4 T	_	
10.1 \mathbf{F}	Зеят.	systems

- 10.1.1 Modal analysis of a flexible mechanism
- 10.1.2 Non-linear crank slider
- 10.1.3 Hinged beam
- 10.2 Plate systems
- 10.2.1 Boundary interconnection with a rigid element
- 10.2.2 Actuated plate

Conclusion

Conclusions and future directions

Mathematical tools

ARTICLE PAUL Formal differential operator J is defined without boundary conditions (see e. g. [39], Sect. III.3). Formal skew-symmetry is verified by () ei under zero boundary conditions, where () is the inner product on the appropriate functional space.

A.1 Differential operators

The space of all, symmetric and skew-symmetric $d \times d$ matrices are denoted by $\mathbb{M}, \mathbb{S}, \mathbb{K}$ respectively. The space of \mathbb{R}^d vectors is denoted by \mathbb{V} . $\Omega \subset \mathbb{R}^d$ is an open connected set. For a scalar field $u: \Omega \to \mathbb{R}$ the gradient is defined as

$$\operatorname{grad}(u) = \nabla u := \left(\partial_{x_1} u \dots \partial_{x_d} u\right)^{\top}.$$

For a vector field $u: \Omega \to \mathbb{V}$, with components u_i , the gradient (Jacobian) is defined as

$$\operatorname{grad}(\boldsymbol{u})_{ij} := (\nabla \boldsymbol{u})_{ij} = \partial_{x_i} u_i.$$

The symmetric part of the gradient operator Grad (i. e. the deformation gradient in continuum mechanics) is thus given by

$$\operatorname{Grad}(\boldsymbol{u}) := \frac{1}{2} \left(\nabla \boldsymbol{u} + \nabla^{\top} \boldsymbol{u} \right).$$

The Hessian operator of u is then computed as follows

$$\operatorname{Hess}(u) = \nabla^2 u = \operatorname{Grad}(\operatorname{grad}(u)),$$

For a tensor field $U: \Omega \to \mathbb{M}$, with components u_{ij} , the divergence is a vector, defined column-wise as

$$\operatorname{Div}(\boldsymbol{U}) = \nabla \cdot \boldsymbol{U} := \left(\sum_{i=1}^{d} \partial_{x_i} u_{ij}\right)_{j=1,\dots,d}.$$

The double divergence of a tensor field U is then a scalar field defined as

$$\operatorname{div}(\operatorname{Div}(\boldsymbol{U})) := \sum_{i,j=1}^{d} \partial_{x_i} \partial_{x_j} u_{ij}.$$

Finite elements gallery

Appendix C

Implementation using FEniCS and Firedrake

Bibliography

- [Abe12] R. Abeyaratne. Lecture Notes on the Mechanics of Elastic Solids. Volume II: Continuum Mechanics. Cambridge, MA and Singapore, 1st edition, 2012.
- [Cia88] P. G. Ciarlet. *Mathematical Elasticity: Three-Dimensional Elasticity*. Studies in mathematics and its applications. North-Holland, 1988.
- [Gri15] M. Grinfeld. *Mathematical Tools for Physicists*. John Wiley & Sons Inc, 2nd edition, jan 2015.
- [HM78] Thomas J.R. Hughes and Jerrold E. Marsden. Classical elastodynamics as a linear symmetric hyperbolic system. *Journal of Elasticity*, 8(1):97–110, 1978.
- [Lee12] Jeonghun Lee. Mixed methods with weak symmetry for time dependent problems of elasticity and viscoelasticity. PhD thesis, University of Minnesota, 2012.
- [LPKL12] L. D. Landau, L. P. Pitaevskii, A. M. Kosevich, and E. M. Lifshitz. *Theory of Elasticity*. Butterworth Heinemann, third edition, Dec 2012.

Résumé — Malgré l'abondante littérature sur le formalisme pH, les problèmes d'élasticité en deux ou trois dimensions géométriques n'ont presque jamais été considérés. Cette thèse vise à étendre l'approche port-Hamiltonienne (pH) à la mécanique des milieux continus. L'originalité apportée réside dans trois contributions majeures. Tout d'abord, la nouvelle formulation pH des modèles de plaques et des phénomènes thermoélastiques couplés est présentée. L'utilisation du calcul tensoriel est obligatoire pour modéliser les milieux continus et l'introduction de variables tensorielles est nécessaire pour obtenir une description pH équivalente qui soit intrinsèque, c'est-à-dire indépendante des coordonnées choisies. Deuxièmement, une technique de discrétisation basée sur les éléments finis et capable de préserver la structure du problème de la dimension infinie au niveau discret est développée et validée. La discrétisation des problèmes d'élasticité nécessite l'utilisation d'éléments finis non standard. Néanmoins, l'implémentation numérique est réalisée grâce à des bibliothèques open source bien établies, fournissant aux utilisateurs externes un outil facile à utiliser pour simuler des systèmes flexibles sous forme pH. Troisièmement, une nouvelle formulation pH de la dynamique multicorps flexible est dérivée. Cette reformulation, valable sous de petites hypothèses de déformations, inclut toutes sortes de modèles élastiques linéaires et exploite la modularité intrinsèque des systèmes pH.

Mots clés : Systèmes port-Hamiltonien, méchanique des solides, discretisation symplectique, méthode des éléments finis, dynamique multicorps

Abstract — Despite the large literature on pH formalism, elasticity problems in higher geometrical dimensions have almost never been considered. This work establishes the connection between port-Hamiltonian distributed systems and elasticity problems. The originality resides in three major contributions. First, the novel pH formulation of plate models and coupled thermoelastic phenomena is presented. The use of tensor calculus is mandatory for continuum mechanical models and the inclusion of tensor variables is necessary to obtain an intrinsic, i.e. coordinate free, and equivalent pH description. Second, a finite element based discretization technique, capable of preserving the structure of the infinite-dimensional problem at a discrete level, is developed and validated. The discretization of elasticity problems requires the use of non-standard finite elements. Nevertheless, the numerical implementation is performed thanks to well-established open-source libraries, providing external users with an easy to use tool for simulating flexible systems in pH form. Third, flexible multibody systems are recast in pH form by making use of a floating frame description valid under small deformations assumptions. This reformulation include all kinds of linear elastic models and exploits the intrinsic modularity of pH systems.

Keywords: Port-Hamiltonian systems, continuum mechanics, structure preserving discretization, finite element method, multibody dynamics.