题 号	1	2	3	4	5	6	7	8
分 值	15 分	25 分	12 分	10 分	10 分	12 分	8分	8分

本试卷共 (8) 大题, 满分 (100) 分. 请将所有答案写在答题本上.

This exam includes 8 questions and the score is 100 in total. Write all your answers on the examination book.

1. (15 points, 3 points each) Multiple Choice. Only one choice is correct.

(共15分,每小题3分)选择题,只有一个选项是正确的.

(1) Let
$$A = \begin{bmatrix} 0 & 3 \\ 0 & 0 \end{bmatrix}$$
 and $f(t) = 1 + 2t + t^2 + t^4 - 5t^8$. Then $f(A) = 1 + 2t + t^4 - 5t^8$.

$$(A) \left[\begin{array}{cc} 1 & 6 \\ 0 & 1 \end{array} \right]$$

$$(B) \left[\begin{array}{cc} 1 & 8 \\ 1 & 0 \end{array} \right]$$

(C)
$$\begin{bmatrix} 6 & 1 \\ 1 & 0 \end{bmatrix}$$

(D)
$$\left[\begin{array}{cc} 0 & 3 \\ 0 & 0 \end{array} \right]$$

设
$$A = \begin{bmatrix} 0 & 3 \\ 0 & 0 \end{bmatrix}$$
, 且 $f(t) = 1 + 2t + t^2 + t^4 - 5t^8$, 则 $f(A) = 1 + 2t + t^2 + t^4 - 5t^8$

$$(A) \left[\begin{array}{cc} 1 & 6 \\ 0 & 1 \end{array} \right]$$

$$(B) \left[\begin{array}{cc} 1 & 8 \\ 1 & 0 \end{array} \right]$$

$$(C) \left[\begin{array}{cc} 6 & 1 \\ 1 & 0 \end{array} \right]$$

(D)
$$\begin{bmatrix} 0 & 3 \\ 0 & 0 \end{bmatrix}$$

- (2) Let A and B be invertible matrices. If A is similar to B, which of the following statements is **NOT** correct?
 - (A) A^T is similar to B^T .
 - (B) A^{-1} is similar to B^{-1} .
 - (C) $A + A^T$ is similar to $B + B^T$.
 - (D) $A + A^{-1}$ is similar to $B + B^{-1}$.

假定 A 和 B 都是可逆矩阵, 且 A 和 B 相似,下列陈述中哪个是**不正确**的?

- (A) A^T 和 B^T 相似.
- (B) A^{-1} 和 B^{-1} 相似.
- (C) $A + A^T$ 和 $B + B^T$ 相似.
- (D) $A + A^{-1}$ 和 $B + B^{-1}$ 相似.
- (3) Let $A = \begin{bmatrix} -1 & -2 & 3 \\ -2 & 6 & 8 \\ 3 & 8 & 5 \end{bmatrix}$. Then the number of positive eigenvalues of A is
 - (A) 0.
 - (B) 1.
 - (C) 2.
 - (D) 3.

设
$$A = \begin{bmatrix} -1 & -2 & 3 \\ -2 & 6 & 8 \\ 3 & 8 & 5 \end{bmatrix}$$
,则矩阵 A 的正的特征值的个数为

- (A) 0.
- (B) 1.
- (C) 2.
- (D) 3.
- (4) The equation $2x_1x_2 2x_1x_3 + 2x_2x_3 = 1$ represents a graph of
 - (A) An ellipsoid.
 - (B) Hyperboloid of one sheet.
 - (C) Hyperboloid of two sheets.
 - (D) Hyperbolic paraboloid.

$$2x_1x_2 - 2x_1x_3 + 2x_2x_3 = 1$$
 表示的曲面是

- (A) 椭球面.
- (B) 单叶双曲面.
- (C) 双叶双曲面.
- (D) 双曲抛物面.
- (5) Which of the following statements is correct?
 - (A) If A is a Hermitian matrix, and $x^H A x = 0$ for all complex vectors x, then A = O, where O denotes the zero matrix.
 - (B) An $n \times n$ matrix with real eigenvalues and n linearly independent real eigenvectors is symmetric.
 - (C) If A is a complex matrix, and $A^T = A$, then A is diagonalizable.
 - (D) Let A, B be $n \times n$ real matrices, then $\det(A + B) = \det A + \det B$.

下面的哪个陈述是正确的?

- (A) 如果 A 是厄密特矩阵, 而且对所有的复向量 x 都有 $x^H A x = 0$, 那么 A = O, 这里 O 表示零矩阵.
- (B) 一个 n 阶的方阵的所有特征值和 n 个线性无关的特征向量都是实的,则这个矩阵是对称的.
- (C) 如果 A 是一个复矩阵, 且满足 $A^T = A$, 则 A 是可对角化的.
- (D) 设 A, B 都是 n 阶实方阵, 则 det(A+B) = det A + det B.
- 2. (25 points, 5 points each) Fill in the blanks. (共 25 分, 每小题 5 分) 填空题.
 - (1) Suppose A is a 5 × 4 real matrix with 3 linearly independent columns. The dimension of the row space of A is ______, and the dimension of the left nullspace of A is

- (2) If the real quadratic form $f(x_1, x_2, x_3) = a(x_1^2 + x_2^2 + x_3^2) + 4x_1x_2 + 4x_1x_3 + 4x_2x_3$ is changed to standard form $f = 6y_1^2$ by orthogonal transformation x = Qy, then a =_______.

 如果实二次型 $f(x_1, x_2, x_3) = a(x_1^2 + x_2^2 + x_3^2) + 4x_1x_2 + 4x_1x_3 + 4x_2x_3$ 经过正交变换 x = Qy 化为标准形 $f = 6y_1^2$, 则 a =_______.
- (3) The eigenvalues of $I_3 uv^T$ are _____. Where I_3 is the 3×3 identity matrix, and u and v are nonzero vectors in \mathbb{R}^3 .

矩阵 $I_3 - uv^T$ 的特征值为 ______. 这里 I_3 表示 3 阶单位阵, u 和 v 是 \mathbb{R}^3 中的非零向量.

- (4) If $A^2 = A$ and rank (A) = r, then trace (A) =_____. 如果 $A^2 = A$ 且 rank (A) = r, 则 trace (A) =_____.
- (5) Let $\alpha_1 = \begin{bmatrix} 1 \\ 2 \\ -1 \\ 0 \end{bmatrix}$, $\alpha_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 2 \end{bmatrix}$, $\alpha_3 = \begin{bmatrix} 2 \\ 1 \\ 1 \\ a \end{bmatrix}$.

If the dimension of the vector space generated by $\alpha_1, \alpha_2, \alpha_3$ is 2, then $a = \underline{\hspace{1cm}}$.

设
$$\alpha_1 = \begin{bmatrix} 1 \\ 2 \\ -1 \\ 0 \end{bmatrix}$$
, $\alpha_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 2 \end{bmatrix}$, $\alpha_3 = \begin{bmatrix} 2 \\ 1 \\ 1 \\ a \end{bmatrix}$.

如果由 $\alpha_1, \alpha_2, \alpha_3$ 生成的子空间的维数为 2, 则 a =______

考试科目: 线性代数 A

3. (12 points) Let

$$A = \left[\begin{array}{rrr} 1 & 3 & 3 \\ 0 & 0 & 1 \\ 1 & 1 & 2 \\ 0 & 0 & 1 \end{array} \right].$$

- (a) Find an orthonormal basis for the column space of A;
- (b) Write A as QR, where Q has orthonormal columns and R is upper triangular.

(12分)设

$$A = \left[\begin{array}{ccc} 1 & 3 & 3 \\ 0 & 0 & 1 \\ 1 & 1 & 2 \\ 0 & 0 & 1 \end{array} \right].$$

- (a) 求 A 的列空间的一组标准正交基;
- (b) 将 A 分解成 QR, 其中 Q 的列是标准正交的向量, R 是上三角矩阵.
- 4. (10 points) Compute the determinant of an $n \times n$ matrix A:

$$|A| = \begin{vmatrix} a & 0 & \cdots & \cdots & 0 & 1 \\ 0 & a & 0 & \cdots & \cdots & 0 \\ \vdots & 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & \cdots & \cdots & 0 & a & 0 \\ 1 & 0 & \cdots & \cdots & 0 & a \end{vmatrix}, \quad n \ge 2.$$

(10 分) 计算 n 阶矩阵 A 的行列式:

$$|A| = \begin{vmatrix} a & 0 & \cdots & \cdots & 0 & 1 \\ 0 & a & 0 & \cdots & \cdots & 0 \\ \vdots & 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & \cdots & \cdots & 0 & a & 0 \\ 1 & 0 & \cdots & \cdots & 0 & a \end{vmatrix}, \quad n \ge 2.$$

5. (10 points) Suppose
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & a \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & b \end{bmatrix}$, and A is similar to B .

- (a) Find a and b;
- (b) Find an invertible matrix S, such that $S^{-1}AS = B$.

$$(10\ \mathcal{H})\ 假定\ A = \left[\begin{array}{ccc} 1 & -1 & 1 \\ 2 & 4 & -2 \\ -3 & -3 & a \end{array}\right],\ B = \left[\begin{array}{ccc} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & b \end{array}\right],\ \mathring{H} 且\ A\ 和\ B\ 相似.$$

- (a) 求 a 和 b 的值;
- (b) 求一个可逆矩阵 S, 使得 $S^{-1}AS = B$.
- 6. (12 points) Let

$$A = \left[\begin{array}{cc} 3 & -3 \\ 0 & 0 \\ 1 & 1 \end{array} \right]$$

- (a) Find all the singular values of A;
- (b) Find a singular value decomposition of A.
- (12分)设

$$A = \left[\begin{array}{cc} 3 & -3 \\ 0 & 0 \\ 1 & 1 \end{array} \right]$$

- (a) 求 A 的所有奇异值;
- (b) 求矩阵 A 的一个奇异值分解.

- 7. (8 points) Let A be a real symmetric $n \times n$ positive definite matrix and B be an $m \times n$ real matrix.
 - (a) Show that the matrix $M = \begin{bmatrix} A & B^T \\ B & 0 \end{bmatrix}$ is congruent to the matrix $\begin{bmatrix} A & 0 \\ 0 & -BA^{-1}B^T \end{bmatrix}$.
 - (b) Suppose rank(B) = r. Find the number of positive eigenvalues, the number of negative eigenvalues, and the number of zero eigenvalues of M (counted with multiplicities).
 - (8 分) 假定 A 是一个 $n \times n$ 实对称正定矩阵, B 为一个 $m \times n$ 实矩阵.
 - (a) 证明: 矩阵 $M = \begin{bmatrix} A & B^T \\ B & 0 \end{bmatrix}$ 和矩阵 $\begin{bmatrix} A & 0 \\ 0 & -BA^{-1}B^T \end{bmatrix}$ 相合.
 - (b) 假定 ${\rm rank}(B) = r$. 求矩阵 M 的正的特征值的个数, 负的特征值的个数, 以及零特征值的个数 (重根按重复的次数计).
- 8. (8 points) Let A be an $n \times n$ real symmetric positive definite matrix, and B be an $n \times n$ real symmetric positive semidefinite matrix.
 - (a) Prove that the eigenvalues of AB are all nonnegative real number $\begin{bmatrix} \frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & 1 \end{bmatrix} = \mathbf{I}$
 - (b) Prove that AB is diagonalizable.
 - (8 分) 设 A 为 n 阶正定实对称矩阵, B 为 n 阶半正定实对称矩阵.
 - (a) 证明: AB 的所有特征值都是非负实数. * 入全>0 了相合列 半位厚
 - (b) 证明: AB 可对角化.

(a)
$$A = P^{TP}$$
 P 可是

 $B = Q^{T}Q$
 $AB = P^{T}PQ^{T}QP^{T}P^{T}$
 $AB = P^{T}PQ^{T}QP^{T}P^{T}$
 $AB = P^{T}PQ^{T}QP^{T}P^{T}$
 $AB = P^{T}PQ^{T}QP^{T}P^{T}$
 $AB = P^{T}R^{T}R(P^{T})^{T}$
 $AB = Q^{T}MQ = Q^{T}MQ$

了对角化)