

Apache Spark

快速增长的数据量

个性化的需求

快速的决策要求近乎实时的数据处理

为什么客户选择Kubernetes运行Spark

更好地资源利用率

计算和存储选择丰富

安全和多租户隔离

成本性价比

开源社区

Spark on Kubernetes

最佳实践

弹性扩展

存储

健壮性和灾备

可观测性

计算与基础设施

尝试采用ARM架构

JDK 11 + Spark

可获得高达58%的成本性价比

采用多架构镜像

不同JDK上的性能表现

Java Benchmark

Instance Type	m6g.4xlarge
os	Amazon Linux 2
SPECjbb Version	specjbb2015-1.02

处理Spot中断以及Pod优雅退出

- > Spot
 - Spot性价比优势高
 - 模拟中断
- > Pod优雅退出
 - Executors Pod Detach 块存储

采用容器化操作系统,降低运维成本和提高敏捷性

▶ 最小化

- 只包括运行容器的包
- 针对不同workload场景
- 不可变

▶ 更新

- 基于镜像的原子更新
- 支持回滚和Operator

> 安全

SELinux

弹性扩展

快速响应大数据负载

- ➤ Spark Pod的特点
 - 数量大
 - 频率高
 - 多个Job同时运行
- Cluster Autoscaler
 - 与节点组/池绑定
 - Namespace/CA

- Karpenter
 - 开源
 - 速度快
 - 为大规模和成本优化而构建

Karpenter 最佳实践

- 机器类型选择顺序:
 - arm spot
 - x86 spot
 - arm on–demand
 - x86 on-demand
- 当遇到Capacity的问题时,Karpenter会自动 fallback
- 采用多架构

- key: karpenter.sh/capacity-type operator: In values:
 - on-demand
 - spot
- key: kubernetes.io/arch operator: In values:
 - amd64
 - arm64

nodeAffinity:

preferedDuringSchedulingIgnoredDuringExecution:

- weight: 1 preference: matchExpressions:
 - key: beta.kubernetes.io/arch operator: In values:
 - arm64

健壮性和灾备

构建Spark Clusters

- 多集群
 - for testing and prod purpose
 - EKS Active/Active Clusters
- 使用节点组运行Systems critical pods
- 使用 On-Demand 节点组运行Driver pods (Single AZ)
- 规划VPC(/16 65k IPs)
- 调优CoreDNS

可观测性

SLI/SLO建设的必要性

Status	SLI	SLO
Official	Latency of mutating API calls for single objects for every (resource, verb) pair, measured as 99th percentile over last 5 minutes	In default Kubernetes installation, for every (resource, verb) pair, excluding virtual and aggregated resources and Custom Resource Definitions, 99th percentile per cluster-day <= 1s
Official	Latency of non-streaming read-only API calls for every (resource, scope) pair, measured as 99th percentile over last 5 minutes	In default Kubernetes installation, for every (resource, scope) pair, excluding virtual and aggregated resources and Custom Resource Definitions, 99th percentile per cluster-day (a) <= 1s if scope=resource (b) <= 5s if scope=namespace (c) <= 30s if scope=cluster

Spark 可观测性

指标

- Prometheus and Grafana for monitoring
- 开启Prometheus serve的VPA
- 尝试使用RemoteWrite,将Metrics写到托管 Prometheus
- Spark history Server for Spark events

日志

- FluentBit for logging
- 使用对象存储导出日志
- FluentBit extraFilters config
 - 使用Kubelet 获取元数据而非apiserver

成本可视化

If you can't measure it, you can't manage it.

Peter Drucker

合适的Pod规格 超售比

任务执行时间 Shuffle成本

存储

Spark Shuffle 存储选项

当开启DRA以及HA时, 结合PVC使用块存储

当对性能和吞吐有高的要求时,使用NVMe/SSD

Amazon EBS

NVMe 可采用RAID0配置

尝试使用RSS

Spark PVC reuse

SHANGHAI

GROWING CLOUD NATIVE TOGETHER

- Spark 3.2 [SPARK-35593]
- 降低重算
- 注意处理中断

"spark.kubernetes.driver.ownPersistentVolumeClaim": "true"
"spark.kubernetes.driver.reusePersistentVolumeClaim": "true"

块设备使用最佳实践

· 当PVC数量较大时:

当运行大规模的 Spark 作业时,我们需要运行许多 Spark 执行器 Pod,每个执行器 Pod 都需要一个独立的PVC 用于 shuffle 。有时并行创建或删除速度可能会受到CSI API的限制,我们可以增加CSI的以下值以提高效率:

csi-attacher - --kube-api-qps=100 - --kube-api-burst=200 - --worker-threads=100

· 处理Spot中断

在Spot中断期间,我们需要确保所有应用程序Pod可以在2分钟内迁移到另一个工作节点。 PVC 的绑定信息也可能保留在原始节点上,并且需要几分钟才能释放。

