clear clc rng(1)

Real Speed Estimation: Kalman Filter

Ian Lum

4/19/2023

Define Time Parameters

dt: time step, set to 0.1 seconds

T: time vector, from 0 to 8 seconds with a step of 0.1 seconds

```
dt = 0.1;
T = 0:dt:8;
```

Define Simulation Movement

The car will accellerate for 2 seconds, decelerate for 4 seconds, then accelerate for 2 seconds, coming to a stop.

$$a(t) \begin{cases} 0 \le t \le 2 : & 5t \\ 2 < t \le 6 : & -5t + 20 \\ 6 < t \le 8 : & 5t - 40 \end{cases}$$
$$v(t) = \int a(t)dt$$
$$p(t) = \int v(t)dt$$

The vectors acceleration, velocity, and position, represent the respective state of the car from time 0 to 8 seconds, with the timestep of 0.1 second.

```
syms a(t) v(t)
assume(0<=t & t<=8)

a(t) = piecewise( ...
    (0<=t) & (t<=2), 5*t, ...
    (2<t) & (t<=6), -5*t+20, ...
    (6<t) & (t<=8), 5*t-40);

v(t) = int(a(t),t,0,t);
p(t) = int(v(t),t,0,t);

acceleration = double(a(T));
velocity = double(v(T));</pre>
```

```
position = double(p(T));
```

Plot Simulated Movement

```
figure()
sgtitle("Simulated Movement of the Car")
subplot(1,3,1)
hold on
plot(T, acceleration)
hold off
xlabel("time (s)")
ylabel("acceleration (m/s)")
subplot(1,3,2)
hold on
plot(T, velocity)
hold off
xlabel("time (s)")
ylabel("velocity (m/s)")
subplot(1,3,3)
hold on
plot(T, position)
hold off
xlabel("time (s)")
ylabel("position (m)")
```


Add Artificial Noise

In order to simulate sensor readings, noise is added onto the three states. The noise is normally distributed, and scaled by acc_sigma, vel_sigma, and pos_sigma. The sigma values were chosen based on very rough estimates of the error of the three sensors: IMU accelerometer, wheel speed sensor, and GPS repsectively.

noisy_acceleration, noisy_velocity, and noisy_position, represent the theoretical measurements of an IMU accelerometer, wheel speed sensor, and GPS repsectively.

```
acc_sigma = 1;
noisy_acceleration = acceleration + acc_sigma*randn(size(acceleration));

vel_sigma = 2;
noisy_velocity = velocity + vel_sigma*randn(size(velocity));

pos_sigma = 5;
noisy_position = position + pos_sigma*randn(size(position));
```

Plot Simulated Sensor Measurements

```
figure()
sgtitle("Simulated Noisy Sensor Readings")
subplot(1,3,1)
plot(T, noisy_acceleration)
```

```
xlabel("time")
ylabel("acceleration")
title("IMU Accelerometer")

subplot(1,3,2)
plot(T, noisy_velocity)
xlabel("time")
ylabel("velocity")
title("Wheel Speed Sensor")

subplot(1,3,3)
plot(T, noisy_position)
xlabel("time")
ylabel("time")
ylabel("position")
title("GPS")
```

Simulated Noisy Sensor Readings

Running Kalman Filter

In order to run the Kalman Filter, two more variables need to be defined, R, representing the measurement noise covariance, and Q, representing the process noise covarience.

R is a 3x3 matrix representing the measurement noise covariance. Here R is defined as the square of the acceleration, velocity and position noise sigmas. These sigmas were used to scale the noise of each measurement repectively.

Q is a 3x3 matrix representing the initial process noise covariance. These values are all manually tuned. Here Q is defined as the identity matrix. Currently, we (Ian & Richard) are unsure how exactly Q impacts the Kalman filter, though we believe it is a metric of how much to "trust" each measurement.

```
R = [acc_sigma^2 0 0;
    0 vel_sigma^2 0;
    0 0 pos_sigma^2];
Q = eye(3);
```

Now that we have those matrices defined, we can run our Kalman Filter on the noisy sensor readings.

```
sensor_reading = [noisy_acceleration; noisy_velocity; noisy_position]';
kalman_state = run_kalman(sensor_reading, T, dt, R, Q);
figure()
sgtitle("Kalman Filter Results")
subplot(1,3,1)
plot(T, kalman_state(:,1))
xlabel("time")
ylabel("acceleration")
title("Acceleration")
subplot(1,3,2)
plot(T, kalman_state(:,2))
xlabel("time")
ylabel("velocity")
title("Velocity")
subplot(1,3,3)
plot(T, kalman_state(:,3))
xlabel("time")
ylabel("position")
title("Position")
```

Kalman Filter Results

Parameter Sweep of Q

Now, we'll tune Q to try and optimize the Kalman Filter. While we could tweak the individual values, we'll keep Q as the identity matrix, scaled by a the value q_coeff. We'll sweep through values 0 through 10 with a 0.1 increment. How well each iteration of the Kalman filter does with a new Q will be defined as the sum of the mean squared error of each measurement (acceleration, velocity, position).

```
[state, p_cov] = kalman_update(state, p_cov, measurement, dt, R, Q);
    kalman_state(i,:) = state';
end

mse(j) = sum(mean((kalman_state - [acceleration' velocity' position']).^2));
end

figure()
semilogy(q_coeffs,mse)
title('Parameter Sweep of Q Coefficents')
xlabel('Q coefficient')
ylabel('Summed Mean Squared Error')
```


We can see that the error rapidly decreases as Q coefficient increases from 0, reaches a minimum between 0 and 1, the steadily increases.

```
[M, idx] = min(mse);
best_q_coeff = q_coeffs(idx)
```

 $best_q_coeff = 0.2000$

Rerunning the Kalman Filter with Best Q

We'll now run the Kalman Filter again using the best Q coefficient. We can see from the increased smoothness graph on the right that the results are marginally better than the original run.

```
R = [acc_sigma^2 0 0;
```

```
0 vel_sigma^2 0;
    0 0 pos_sigma^2];
Q = best_q_coeff*eye(3);
sensor_reading = [noisy_acceleration; noisy_velocity; noisy_position]';
kalman_state = run_kalman(sensor_reading, T, dt, R, Q);
figure()
sgtitle("Kalman Filter Results with Best Q")
subplot(1,3,1)
plot(T, kalman_state(:,1))
xlabel("time")
ylabel("acceleration")
title("Acceleration")
subplot(1,3,2)
plot(T, kalman_state(:,2))
xlabel("time")
ylabel("velocity")
title("Velocity")
subplot(1,3,3)
plot(T, kalman_state(:,3))
xlabel("time")
ylabel("position")
title("Position")
```

Kalman Filter Results with Best Q

