Espectro de un anillo

Levia MN

20 de diciembre de 2023

1. Topología

Definición 1. Sea A un anillo denotamos

$$Spec(A) = \{ \mathfrak{p} \subset A; \mathfrak{p} \text{ es un ideal primo} \}$$

 $Si\ M \subset A\ entonces\ denotamos$

$$V(M) = \{ \mathfrak{p} \in A; M \subset \mathfrak{p} \}$$

 $Si\ M = \{f\}\ entonces\ escribimos\ V(f).$

Observacion 1. Si \mathfrak{a} es el ideal generado por $M \subset A$ entonces

$$V(M) = V(\mathfrak{a})$$

Demostración. Si $M \subset \mathfrak{p}$ como \mathfrak{a} es el minimo ideal que contiene a M entonces $\mathfrak{a} \subset \mathfrak{p}$ por lo que $V(M) \subset V(\mathfrak{a})$.

Por otro lado si $\mathfrak{a} \subset \mathfrak{p}$ como $M \subset \mathfrak{a}$ entonces $M \subset \mathfrak{p}$ por lo que $V(\mathfrak{a}) \subset V(M)$ $\therefore V(M) = V(\mathfrak{a})$

Lema 1. 1. Si $\mathfrak{a} \subset \mathfrak{b}$ entonces $V(\mathfrak{b}) \subset V(\mathfrak{a})$

- 2. $V(0) = Spec(A) \ y \ V(1) = \emptyset$
- 3. Si $\{a_i \subset A; i \in I\}$ es una familia de ideales de A, entonces

$$V(\bigcup_{i\in I}\mathfrak{a}_i)=V(\sum_{i\in I}\mathfrak{a}_i)=\bigcap_{i\in I}V(\mathfrak{a}_i)$$

4. Si a y b son ideales de A, entonces

$$V(\mathfrak{a} \cap \mathfrak{b}) = V(\mathfrak{a}\mathfrak{b}) = V(\mathfrak{a}) \cup V(\mathfrak{b})$$

Demostración. 1. Si $\mathfrak{b} \subset \mathfrak{p}$ entonces $\mathfrak{a} \subset \mathfrak{p}$

2. Para cualquier $\mathfrak{p} \in Spec(A)$ se cumple que $0 \in \mathfrak{p}$

$$\therefore V(0) = Spec(A)$$

Para cualquier $\mathfrak{p} \in Spec(A)$ se cumple que $1 \notin \mathfrak{p}$

$$\therefore V(1) = \emptyset$$

3. Por la observación se sigue la primer igualdad, para la segunda Dado $j \in I$

$$\mathfrak{a}_j\subset\bigcup_{i\in I}\mathfrak{a}_i$$

así que por 1. $V(\bigcup_{i\in I}\mathfrak{a}_i)\subset V(\mathfrak{a}_j)$

$$\therefore V(\bigcup_{i\in I}\mathfrak{a}_i)\subset \bigcap_{i\in I}V(\mathfrak{a}_i)$$

Por otro lado si $\mathfrak{p} \in \bigcap_{i \in I} V(\mathfrak{a}_i)$ entonces para todo $i \in I$ ocurre que $\mathfrak{a}_i \subset \mathfrak{p}$ por lo que $\bigcup_{i \in I} \mathfrak{a}_i \subset \mathfrak{p}$

$$\therefore \bigcap_{i \in I} V(\mathfrak{a}_i) \subset V(\bigcup_{i \in I} \mathfrak{a}_i)$$

4. Como $\mathfrak{ab} \subset \mathfrak{a} \cap \mathfrak{b} \subset \mathfrak{a}, \mathfrak{b}$ entonces por 1.

$$V(\mathfrak{a}) \cup V(\mathbf{b}) \subset V(\mathfrak{a} \cap \mathfrak{b}) \subset V(\mathfrak{ab})$$

Si $\mathfrak{p} \in V(\mathfrak{ab})$ y $\mathfrak{p} \notin V(\mathfrak{a})$ entonces $\mathfrak{a} \not\subset \mathfrak{p}$, es decir, existe $a \in \mathfrak{a} \setminus \mathfrak{p}$ pero para toda $b \in \mathfrak{b}$ ocurre que $ab \in \mathfrak{ab} \subset \mathfrak{p}$ y como \mathfrak{p} es in ideal primo $b \in \mathfrak{p}$

$$\therefore \mathfrak{b} \subset \mathfrak{p}$$

i.e. $\mathfrak{p} \in V(\mathfrak{b})$

$$\therefore V(\mathfrak{ab}) \subset V(\mathfrak{a}) \cup V(\mathfrak{b})$$

Lo que prueba la igualdad entre los tres términos.

Observacion 2. El lema anterior prueba que $\{V(\mathfrak{a}); \mathfrak{a} \subset A \text{ es in ideal}\}$ forman los cerrados de una topología sobre Spec(A)

Por otro lado vamos a definir el otro lado de la conección de Galois que nos gustaría crear.

Definición 2. Sea $Y \subset Spec(A)$ definimos

$$I(Y) = \bigcap_{\mathfrak{p} \in Y} \mathfrak{p}$$

 $Y \ definite mos \ I(\emptyset) = A$

Probemos un lema técnico

Lema 2. Sea $J \subset A$ un ideal entonces $rad(J) = \bigcap_{J \subset \mathfrak{p}} \mathfrak{p}$. Con $\mathfrak{p} \in Spec(A)$

Demostración. Por un lado si $a \in rad(J)$ entonces existe $n \in \mathbb{N}$ tal que $a^n \in J$ Asi que dado $\mathfrak{p} \in Spec(A)$ tal que $J \subset \mathfrak{p}$ se tiene que $a^n \in \mathfrak{p}$ y es un ideal primo se sigue que $a \in \mathfrak{p}$

$$\therefore rad(J) \subset \bigcap_{J \subset \mathfrak{p}} \mathfrak{p}$$

Por otro lado sea $a\in\bigcap_{J\subset\mathfrak{p}}\mathfrak{p}$ y supongamos que $a\notin rad(J)$ entonces para cualquier $n\in\mathbb{N}$ ocurre que $a^n\notin J$

$$\mathcal{F} = \{I \subset A; \text{ I es un ideal, } J \subset I, \quad \forall n \in \mathbb{N}, a^n \notin I\} \neq \emptyset$$

pues $rad(J) \in \mathcal{F}$ y además esta familia esta ordenada por la contención así que por principio de maximalidad de Hausdorff existe $\mathfrak{q} \in \mathcal{F}$ maximal tal que $rad(J) \subset \mathfrak{q}$.

Veamos que $\mathfrak{q} \in Spec(A)$, en efecto, si $xy \in \mathfrak{q}$ y además se tuviera que $x, y \notin \mathfrak{q}$ entonces $\mathfrak{q} \subset \mathfrak{q} + \langle x \rangle, \mathfrak{q} + \langle y \rangle$ y por la maximalidad de \mathfrak{q} se tiene que $\mathfrak{q} + \langle x \rangle, \mathfrak{q} + \langle y \rangle \notin \mathcal{F}$ por lo que existen $n, m \in \mathbb{N}$ tales que $a^n \mathfrak{q} + \langle x \rangle$ y $a^m \in \mathfrak{q} + \langle y \rangle$ ya que $J \subset \mathfrak{q} \subset \mathfrak{q} + \langle x \rangle, \mathfrak{q} + \langle y \rangle$ Por lo que $a^n = q_1 + r_1 x$ y $a^m = q_2 + r_2 y$ con $q_1, q_2 \in \mathfrak{q}$ y $r_1, r_2 \in A$

$$a^{n+m} = (q_1 + r_1 x)(q_2 + r_2 y) = q_1 q_2 + q_1 r_2 y + q_2 r_1 x + r_1 r_2 x y \in \mathfrak{q}$$

pues cada termino esta en \mathfrak{q} lo cual es una contradicción y por ende \mathfrak{q} es un ideal primo, es decir, $\mathfrak{q} \in Spec(A)$. Por lo que $a \in \bigcap_{J \subset \mathfrak{p}} \mathfrak{p}, \subset \mathfrak{q}$ pues $\mathfrak{p} \in Spec(A)$ lo cual es una contradicción pues $\mathfrak{q} \in \mathcal{F}$. Esta contradicción vino de suponer que $a \notin rad(J)$ por lo que $a \in rad(J)$.

$$\therefore \bigcap_{J \subset \mathfrak{p}} \mathfrak{p} \subset rad(J)$$

Lo cual da la igual que buscabamos.

Además tenemos los siguientes resultados

Lema 3. 1. Si $Y \subset X$ entonces $I(X) \subset I(Y)$

2.
$$rad(I(Y)) = I(Y)$$

3. $I(V(\mathfrak{a})) = rad(\mathfrak{a})$ y V(I(Y)) = cl(Y) donde cl es la cerradura en Spec(A)

Demostración. 1. Si $p \in I(X) = \bigcap_{\mathfrak{p} \in X} \mathfrak{p}$ entonces, para todo $\mathfrak{p} \in X$, se tiene que $p \in \mathfrak{p}$, como $Y \subset X$ entonces en particular para todo $\mathfrak{p} \in Y$ ocurre que $p \in \mathfrak{p}$.

$$I(X) \subset I(Y)$$

2. Siempre ocurre que $I(Y) \subset rad(I(Y))$, y por otro lado si $a \in rad(I(Y))$ entonces existe $n \in \mathbb{N}$ tal que $a^n \in I(Y)$ por lo que $a^n \in \mathfrak{p}$ para cualquier $\mathbf{p} \in Y$. Como cada uno de estos ideales es primo entonces $a \in \mathfrak{p}$ para cualquier $\mathfrak{p} \in Y$.

$$\therefore rad(I(Y)) \subset I(Y)$$

Lo que prueba la igualdad

3. Para lo primero notemos que

$$I(V(\mathfrak{a})) = \bigcap_{\mathfrak{p} \in V(\mathfrak{a})} \mathfrak{p} = \bigcap_{\mathfrak{a} \subset \mathfrak{p}} \mathfrak{p} = rad(\mathfrak{a})$$

Por el lema previo.

Por otro lado observemos que V(I(Y)) es un cerrado de Spec(A) Además dado $y \in Y$ entonces $I(Y) = \bigcap_{\mathfrak{p} \in Y} \mathfrak{p} \subset y$ por lo que $y \in V(y) \subset (V(I(Y)))$

$$\therefore Y \subset V(I(Y))$$

Además si tenemos V(J) un cerrado tal que $Y \subset V(J)$ entonces $J \subset y$ para cualquier $y \in Y$ por lo que $J \subset \bigcap_{y \in Y} y = I(Y)$ asi que $V(I(Y)) \subset V(J)$. Lo que lo hace el cerrado más pequeño en contener a Y, es decir, su cerrad.

$$\therefore V(I(Y)) = cl(Y)$$

Observacion 3. Sean $A = \{I \subset A; I \text{ es un idel radical de } A\} \ y \ \mathcal{B} = \{Y \subset Spec(A); Y \text{ es un cerrado de } Spec(A)\}.$

La prueba anterior nos dice que $V: A \to B$ y $I: B \to A$ son inversas una de otra y por ende biyecciones entre A y B.

Observacion 4. Si $x \in Spec(A)$ entonces I(x) = x, por lo que

$$V(x) = V(I(\{x\})) = cl(\{x\})$$

Lema 4. Si $I,J\subset A$ son ideales de A, entonces $I\subset rad(J)$ si y solo si $rad(I)\subset rad(J)$

Demostración. \implies Supongamos que $I \subset rad(J)$ y sea $a \in rad(I)$, entonces existe $n \in \mathbb{N}$ tal que $a^n \in I$ por lo que $a^n \in rad(J) = \bigcap_{J \subset \mathfrak{p}} \mathfrak{p}$ donde $\mathfrak{p} \in Spec(A)$ asi que para todo $\mathfrak{p} \in Spec(A)$ tal que $J \subset \mathfrak{p}$ se tiene que $a^n \in \mathfrak{p}$ y como cada uno es un ideal primo $a \in \mathfrak{p}$.

$$\therefore a \in \bigcap_{I \subset \mathfrak{p}} \mathfrak{p} = rad(J)$$

Concluimos que $rad(I) \subset rad(J)$.

 Corolario 1. Sea $g \in A$ y $I, J \subset A$ un ideales de A, entonces $V(I) \subset V(J)$ si y solo si $rad(J) = \bigcap_{\mathfrak{p} \in V(J)} \mathfrak{p} \subset \bigcap_{\mathfrak{p} \in V(I)} \mathfrak{p} = rad(I)$ en particular para V(g), $V(I) \subset V(g)$ si y solo si $\{g\} \subset rad(I)$ si y solo si $g \in rad(I)$.

Definición 3. Sea $f \in A$ definimos

$$D(f) = Spec(A) \setminus V(f)$$

y notamos que es un abierto, a los abiertos de este tipo se les llama abiertos principales.

Observacion 5. Notemos los siguientes hechos $D(0) = \emptyset$, D(1) = Spec(A) y como dado $\mathfrak{p} \in Spec(A)$ se cumple que $fg \notin \mathfrak{p}$ si y solo $f, g \notin \mathfrak{p}$ pues \mathfrak{p} es primo, por lo que $D(fg) = D(f) \cap D(g)$

Lema 5. Sean $\{f_i; i \in \Lambda\} \subset A$ $y \in A$, entonces $D(g) \subset \bigcup_{i \in \Lambda} D(f_i)$ si y solo si $g \in rad(\sum_{i \in I} \langle f_i \rangle)$

Demostración.

$$D(g) \subset \bigcup_{i \in \Lambda} D(f_i) = \bigcup_{i \in \Lambda} Spec(A) \setminus V(f_i) = Spec(A) \setminus (\bigcap_{i \in \Lambda} V(f_i))$$

Y como $\bigcap_{i \in \Lambda} V(f_i) = V(\sum_{i \in \Lambda} \langle f_i \rangle)$ entonces

$$Spec(A) \setminus (\bigcap_{i \in \Lambda} V(f_i)) = Spec(A) \setminus V(\sum_{i \in \Lambda} \langle f_i \rangle)$$

por lo que $D(g) \subset \bigcup_{i \in \Lambda} D(f_i)$ si y solo si

$$V(\sum_{i \in \Lambda} \langle f_i \rangle) \subset V(g)$$

y por corolario y lema previos se sigue que esto ocurre si y solo si

$$g \in rad(\sum_{i \in \Lambda} \langle f_i \rangle)$$

Observacion 6. En particular aplicando el lema anterior a g=1 entonces $\{D(f_i) \ i \in \Lambda\}$ cubre a D(1) = Spec(A) si y solo si $1 \in rad(\sum_{i \in \Lambda} \langle f_i \rangle)$ y esto es si y solo si $1 \in \sum_{i \in \Lambda} \langle f_i \rangle$ si y solo si $\langle f_i; i \in \Lambda \rangle = Spec(A)$ en particular $1 = \sum_{j=1}^n \alpha_j f_{i_j}$ con $n \in \mathbb{N}$, $\alpha_j \in A$ y $i_j \in \Lambda$.

Por lo que $\langle f_{i_j}; j \in \{1,...,n\} \rangle = Spec(A)$ por lo que $Spec(A) \subset \bigcup_{j=1}^n D(f_{i_j})$ Por lo que toda cubierta tiene una subcubierta finita.

Hemos probado entonces que

Corolario 2. Spec(A) es compacto.

5