

ETL - PROJETO FINAL

Índice

1	Introdu	Jção	3					
2	Arquitetura							
2.1	Design escolhido							
	2.1.1	Data Source	4					
	2.1.2	Data Ingestion	2					
	2.1.3	Data Engineering						
	2.1.4	Data Visualization						
	2.1.5	Componentes da seleção e decisão da Arquitetura						
2 2		low Design						
2.2	Data Fi	low Design	12					
-:	- 4 14-		_					
		delo inicial juitetura do projeto de Analytics						
_		portação das bibliotecas no Databricks						
_	-	delo Dimensional BikeCapStoredelo						
_		1 Staffs final						
_		Customers final						
_		 n_Products final						
Figur	a 8 - Din	n_Stores final	7					
_		ação da Dimensão Data						
_		m_Date final						
_		ınção da transformação das datas para chaves						
_		oct_Orders final						
_		mpeza do DBFS e exportação dos dataframes para tabelas gação direta do Databricks para o PowerBI						
		edido de especificações do cluster pelo PowerBI						
_		pecificações do cluster						
		odelo Dimensional importado no PowerBI						
		ata Flow do projeto						
,								
Tabo	la 1 – Jos	outs, caminhos e endpoints do ETL	13					
יםטפ	10 1 – 111 h	ous, canninos e enuponios do Li L	1 3					

1 Introdução

Este relatório pretende fornecer toda a informação técnica utilizada durante o desenvolvimento do projeto de ETL para a BikeCapStore, de forma a possibilitar a sua reprodução por outros membros da equipa.

Para a elaboração do projeto final da Especialização de Analytics, os dados fornecidos foram trabalhados no Dbeaver, e posteriormente exportados para o repositório do GitHub. De seguida foi feita a ingestão dos ficheiros para o Databricks, onde foi construído o modelo dimensional, através de várias operações de transformação de dados. No final desta tarefa, as novas tabelas foram exportadas para o Power BI.

Apresenta-se o input original na Figura 1.

Figura 1 - Modelo inicial

2 Arquitetura

2.1 Design escolhido

A Figura 2 representa a arquitetura do projeto de Analytics.

Figura 2 - Arquitetura do projeto de Analytics

2.1.1 Data Source

O GitHub é responsável por manter os ficheiros em Cloud para diferentes equipas terem acesso aos dados.

Neste projeto foram utilizados dados de uma única fonte, o repositório GitHub, onde estão ficheiros do tipo csv, na seguinte localização: https://github.com/XLucas27X/bikecapstore

2.1.2 Data Ingestion

O Databricks foi utilizada como ferramenta de ETL para ingerir os ficheiros do GitHub, através do comando "wget" do Power Shell.

Para a ingestão é utilizada o raw link de cada ficheiro.

%sh

wget https://raw.githubusercontent.com/XLucas27X/bikecapstore/main/brands.csv

wget https://raw.githubusercontent.com/XLucas27X/bikecapstore/main/categories.csv

wget https://raw.githubusercontent.com/XLucas27X/bikecapstore/main/customers.csv

wget https://raw.githubusercontent.com/XLucas27X/bikecapstore/main/order items.csv

wget https://raw.githubusercontent.com/XLucas27X/bikecapstore/main/orders.csv

wget https://raw.githubusercontent.com/XLucas27X/bikecapstore/main/products.csv

wget https://raw.githubusercontent.com/XLucas27X/bikecapstore/main/staffs.csv

wget https://raw.githubusercontent.com/XLucas27X/bikecapstore/main/stocks.csv

wget https://raw.githubusercontent.com/XLucas27X/bikecapstore/main/stores.csv

wget https://raw.githubusercontent.com/XLucas27X/bikecapstore/main/shipping companies.csv

wget https://raw.githubusercontent.com/XLucas27X/bikecapstore/main/order-status.csv

O notebook pode ser consultado no sequinte link (é necessário manter sempre o cluster ativo):

https://databricks-prod-

cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/390495171271310 7/315028503103403/245661924386905/latest.html

2.1.3 Data Engineering

O processo inicia-se com a importação das bibliotecas necessárias de modo a facilitar a transformação dos dados. Neste projeto utilizaram-se as linguagens Python, SQL e Linux.

```
from pyspark.sql.functions import *
from pyspark.sql import functions as F
from pyspark.sql.types import *
import pandas as pd
```

Figura 3 - Importação das bibliotecas no Databricks

Foi desenvolvida uma função que automatiza a criação de dataframes a partir dos csv importados. Nos parâmetros utilizados assume-se a primeira linha como "TRUE", inferimos o schema de cada ficheiro e utilizou-se a vírgula como separador. O formato de leitura é csv e os ficheiros foram carregados a partir do filesystem do databricks: file:/databricks/driver/

Após a criação dos dataframes, procedemos ao design do modelo:

Figura 4 - Modelo Dimensional BikeCapStore

As tabelas foram primeiramente classificadas consoante o grau de granularidade, e foram criadas as diferentes dimensões do modelo e a facts table, de modo a formar o star schema.

Vermelho → Facts Table

Laranja → Dimensões

Verde → Tabelas que vão ser integradas conforme abaixo

Dim_Staffs: Eliminação da coluna com o id desncessário (store_id) para o modelo final.

	staff_id	first_name 📤	last_name 📤	email	phone $ riangle$	active $ riangle$	manager_id 📤
1	1	Fabiola	Jackson	fabiola.jackson@bikes.shop	(831) 555-5554	1	NULL
2	2	Mireya	Copeland	mireya.copeland@bikes.shop	(831) 555-5555	1	1
3	3	Genna	Serrano	genna.serrano@bikes.shop	(831) 555-5556	1	2
4	4	Virgie	Wiggins	virgie.wiggins@bikes.shop	(831) 555-5557	1	2

Figura 5 - Dim_Staffs final

Dim_Customers: Foi mantida a tabela original.

Figura 6 - Dim_Customers final

Dim_Products:

- Join das categories e brands com os products para criar a dimensao products
- Eliminação dos id's repetidos e desnecessários (brands_id e category_id), resultantes do join das tabelas.

	product_id 📤	product_name	brand_id 🔷	category_id 📤	model_year 📤	list_price
1	1	Trek 820 - 2016	9	6	2016	379.99
2	2	Ritchey Timberwolf Frameset - 2016	5	6	2016	749.99
3	3	Surly Wednesday Frameset - 2016	8	6	2016	999.99
4	4	Trek Fuel EX 8 29 - 2016	9	6	2016	2899.99

Figura 7 - Dim_Products final

Dim_Stores: Foi mantida a tabela stores original, descartando a tabela stocks, uma vez que a mesma não continha informação relevante para responder aos KPI's solicitados.

	store_id	store_name	phone 📤	email $ riangle$	street	city 📤	state 📤	zip_code 📤
1	1	Santa Cruz Bikes	(831) 476-4321	santacruz@bikes.shop	3700 Portola Drive	Santa Cruz	CA	95060
2	2	Baldwin Bikes	(516) 379-8888	baldwin@bikes.shop	4200 Chestnut Lane	Baldwin	NY	11432
3	3	Rowlett Bikes	(972) 530-5555	rowlett@bikes.shop	8000 Fairway Avenue	Rowlett	TX	75088

Figura 8 - Dim_Stores final

Dim_Date:

- Criação manual da dimensão data, recorrendo a uma view desenvolvida em Spark SQL, com as seguintes colunas:
 - a) calendarDate (data completa)
 - b) Day Name (nome do dia da semana)
 - c) DayOfMonth (número do dia do mês)
 - d) DayOfWeek (número do dia da semana)
 - e) DayOfYear (número do dia do ano)
 - f) IsWeekDay (se é dia útil ou não)
 - g) Month (número do mês)
 - h) Month Name (nome do mês)
 - i) QuarterOfYear (número do trimestre)
 - j) Year (ano)
 - k) SK_date (chave primária)

```
2 beginDate = '2016-01-01'
     endDate = '2024-12-31'
     #dd-MM-yyyy
 6 spark.sql(f"select explode(sequence(to_date('{beginDate}'), to_date('{endDate}'), interval 1 day)) as calendarDate").createOrReplaceTempView('dates')
 Command took 0.41 seconds -- by lucas.reis.neves@hotmail.com at 12/29/2022, 12:36:24 PM on My Cluster
Cmd 14
 1 %sql
 2
     create temporary view Dim_Date
     select
       day(calendarDate)+ month(calendarDate) * 100+year(calendarDate) * 10000 as SK_date,
       year(calendarDate) AS Year,
       date_format(calendarDate, 'MMMM') as Month_Name,
       month(calendarDate) as Month.
       date_format(calendarDate, 'EEEEE') as Day_Name, weekday(calendarDate) + 1 as DayOfWeek,
 10
 11
        when weekday(calendarDate) < 5 then 'Y'
 14
       end as IsWeekDay,
 15
       dayofmonth(calendarDate) as DayOfMonth.
 16
 17
       dayofyear(calendarDate) as DayOfYear,
 18
       quarter(calendarDate) as QuarterOfYear
 19
 21
       dates
 22 order by
       calendarDate
```

Figura 9 - Criação da Dimensão Data

	SK_date	calendarDate 📤	Year 📤	Month_Name	Month -	Day_Name	DayOfWeek 📤	IsWeekDay 📤	DayOfMonth A	DayOfYear —	QuarterOfYear 📤
1	01012016	01-01-2016	2016	January	1	Friday	5	Υ	1	1	1
2	02012016	02-01-2016	2016	January	1	Saturday	6	N	2	2	1
3	03012016	03-01-2016	2016	January	1	Sunday	7	N	3	3	1
4	04012016	04-01-2016	2016	January	1	Monday	1	Υ	4	4	1

Figura 10 - Dim_Date final

Fact_Orders:

- Join das tabelas orders, orders_status e shipping_companies para criar a facts table;
- Eliminação dos id's repetidos e desnecessários (status_id e company_id), que resultaram do join das tabelas;
- Aplicação de uma função que foi desenvolvida para alterar o formato default do Databricks para o do PBI (yyyyMMdd para ddMMyyyy);
- Transformação das datas em chaves (da facts table), de forma a ligar com a dimensão data através da SK_date (i.e., foram retirados os "-" e zeros (00:00:00) das datas).

```
1
    #Reversing datekeys to the desired format (ddMMyyyy)
    def reverse_datekey(spark_dataframe, datekey,colno,dash=False):
2
3
        sklist=[]
        if dash==True:
4
5
             for index, i in spark_dataframe.toPandas().iterrows():
6
                 aux=str(i[1])
7
                 sklist.append(aux[8:]+"-"+aux[5:-3]+"-"+aux[:4])
8
        else:
9
             for index, i in spark_dataframe.toPandas().iterrows():
10
                 aux=str(i[colno])
11
                 sklist.append(aux[6:]+aux[4:-2]+aux[:4])
12
13
14
        new_pandas_df = spark_dataframe.toPandas()
15
        new_pandas_df[datekey] = sklist
16
17
        return spark.createDataFrame(new_pandas_df)
```

Figura 11 - Função da transformação das datas para chaves

Figura 12 - Fact_Orders final

Por fim, efetou-se a limpeza do DBFS e a exportação dos dataframes para tabelas no Databricks.

```
Cmd 24
 1
     %fs rm -r dbfs:/user
 res0: Boolean = true
 Command took 15.95 seconds -- by lucas.reis.neves@hotmail.com at 17
Cmd 25
 1
     #EXPORTS to filesystem
     products_df.write.saveAsTable("dim_products")
 2
 3
     orders_df.write.saveAsTable("fact_orders")
 4
     dimDate_df.write.saveAsTable("dim_date")
 5
     customers.write.saveAsTable("dim_customers")
     staffs.write.saveAsTable("dim_staffs")
 6
 7
     stores.write.saveAsTable("dim_stores")
  ▶ (24) Spark Jobs
   1
```

Figura 13 - Limpeza do DBFS e exportação dos dataframes para tabelas

No que concerne ao processamento dos dados, foi utilizado o motor Spark através de um cluster do Databricks. O cluster tem um runtime 10.4, active memory 15GB e active cores 2.

Spark config:

spark.databricks.rocksDB.fileManager.useCommitService - false spark.databricks.delta.preview.enabled - true

Environment variables:

PYSPARK PYTHON=/databricks/python3/bin/python3

2.1.4 Data Visualization

O PowerBI é o último componente da arquitetura, utilizado como ferramenta para a visualização. O PowerBI permite uma ligação directa com o Databricks.

Os dataframes criados encontram-se no Databricks filesystem, no seguinte diretório:

dbfs:/user/hive/warehouse

Para processar esta ligação é necessário abrir o PBI, fazer a importação dos dados pelo Get Data, escolher o Azure Databricks e conectar.

Figura 14 - Ligação direta do Databricks para o PowerBI

De seguida colocar as especificações solicitadas -Server Hostname e e HTTP- (No Databricks, Ir a Compute, entrar no cluster utilizado e escolher a opção JDBC/ODBC). Posteriormente, utilizar as credenciais de acesso ou token de autenticação do Databricks. Selecionar as tabelas a carregar para o modelo.

Figura 15 - Pedido de especificações do cluster pelo PowerBI

Figura 16 - Especificações do cluster

Da importação resulta o seguinte modelo:

Figura 17 - Modelo Dimensional importado no PowerBI

As ligações entre as dimensões e facts table surgem automaticamente com a importação, com exceção da dim_date, onde é necessário ligar a SK_date com as 3 chaves de datas da facts table.

2.1.5 Componentes da seleção e decisão da Arquitetura

• GitHub: permite uma fácil colaboração de equipas de desenvolvimento, o tracking do histórico das alterações e o armazenamento dos dados em Cloud, de forma gratuita.

Documentação oficial: https://docs.github.com/en/get-started

 Databricks: fornece uma ingestão simplificada de diversas e múltiplas fontes, possui uma abordagem declarativa para construir pipelines e automizar o ETL. Possibilita ainda uma ligação direta com o Power BI, permite a utilização de diferentes linguagens (e.g. Pyspark e SQL) e tem escalabilidade para Big Data.

Documentação oficial: https://docs.databricks.com/introduction/index.html

 Power BI: tecnologia líder de mercado como ferramenta de visualização, que permite a transformação de dados em informação coerente, visualmente envolventes e interativos. Acrescenta-se a facilidade de integração com as outras tecnologias escolhidas e o tipo de ficheiros (csv) utilizados.

Documentação oficial: https://learn.microsoft.com/en-us/power-bi/
https://powerbi.microsoft.com/en-us/why-power-bi/

2.2 Data Flow Design

Na figura 12 apresenta-se o Data Flow esperado após toda a integração.

Figura 18 - Data Flow do projeto

Na Tabela 1 apresentam-se os inputs, caminhos e endpoints do ETL.

Tabela 1 - Inputs, caminhos e endpoints do ETL

GitHub	⊗ databricks	iii Pow	er BI
Inputs	Databricks File Path	Dataframes Path	Endpoint
brands.csv	file:/databricks/driver/	dbfs:/user/hive/warehouse	
categories.csv	file:/databricks/driver/	dbfs:/user/hive/warehouse	
customers.csv	file:/databricks/driver/	dbfs:/user/hive/warehouse	
order_items.csv	file:/databricks/driver/	dbfs:/user/hive/warehouse	
orders.csv	file:/databricks/driver/	dbfs:/user/hive/warehouse	
products.csv	file:/databricks/driver/	dbfs:/user/hive/warehouse	PowerBI
staffs.csv	file:/databricks/driver/	dbfs:/user/hive/warehouse	
stocks.csv	file:/databricks/driver/	dbfs:/user/hive/warehouse	
stores.csv	file:/databricks/driver/	dbfs:/user/hive/warehouse	
shipping_companies.csv	file:/databricks/driver/	dbfs:/user/hive/warehouse	
order_status.csv	file:/databricks/driver/	dbfs:/user/hive/warehouse	

Sobre Capgemini

A Capgemini é uma líder global em parcerias com empresas para transformar e gerir os seus negócios, aproveitando o poder da tecnologia. O Grupo é guiado diariamente pelo objetivo de libertar a energia humana através da tecnologia para um futuro inclusivo e sustentável. É uma organização responsável e diversificada com mais de 270.000 profissionais em quase 50 países. Com uma forte herança de 50 anos e profunda experiência no setor, a Capgemini tem a confiança dos seus clientes para responder a toda a amplitude das suas necessidades de negócio, desde estratégia e desenho até operações, alimentada pelo mundo inovador e em rápida evolução de *cloud*, dados, IA, conectividade, software, engenharia digital e plataformas. O Grupo reportou em 2020 uma receita global de € 16 mil milhões.

Get the Future You Want | www.capgemini.com

Este documento contém informações que podem ser privilegiadas ou confidenciais e a propriedade é do Grupo Capgemini.

Choose an item. Copyright © 2021 Capgemini. Todos os direitos reservados.