There are a total of n problems. You have to solve all of them.

Problem 1 (CO5): Nonregular Language (25 points)

Use the pumping lemma to **demonstrate** that L_1 and L_2 are not regular.

- (a) $L_1 = \{w \in \{0, 1\}^* : w = 0^{n!} \text{ where } n \ge 0\}$ (5 points)
- (b) $L_2 = \{w \in \{0,1\}^* : w = 0^a 1^b 1^c 0^d \text{ where } a + b = c + d \text{ and } a, b, c, d \ge 0 \}$ (5 points)
- (a) Assume for the sake of contradiction that L_1 is regular. Then let p be the pumping length for L_1 . Now we take the string

$$w = 0^{p!} \in L_1.$$

Then the length of w is $|w| = p! \ge p$. So w can be split into xyz such that |y| > 0, $|xy| \le p$, and $xy^iz \in L_1$ for each $i \ge 0$. y consists of only 0s, so

$$xy^iz = 0^{p! + (i-1)|y|}$$

Then, for i = 2, xy^2z will be

$$xy^2z = xyyz = 0^{p!+|y|}.$$

Now, $|y| \le p , hence,$

$$p! < p! + |y| < p! + p \cdot p! = p! (1+p) = (p+1)!$$

So p! < p! + |y| < (p+1)!, and the length of xy^2z is strictly between two consecutive factorials. Hence, it cannot be a factorial. Thus we get a contradiction! Hence, L_1 is not a regular language.

(a) **(Alternate Solution)** Assume for the sake of contradiction that L_1 is regular. Then its complement language \overline{L}_1 is also regular.

$$\overline{L}_1 = \{ w \in \{0,1\}^* : w = 0^m \text{ where } m \neq n! \text{ for any } n \geq 0 \}.$$

Let *p* be the pumping length of \overline{L}_1 . Now we take the string

$$w = 0^{p \cdot p!} \in \overline{L}_1.$$

Then the length of w is $|w| = p \cdot p! \ge p$. So w can be split into xyz such that |y| > 0, $|xy| \le p$, and $xy^iz \in L_1$ for each $i \ge 0$. y consists of only 0s, so

$$xy^iz = 0^{p \cdot p! + (i-1)|y|}.$$

Now, since $0 < |y| \le p$, we have that |y| divides p!. Now, choosing $i = 1 + \frac{p!}{|y|}$, we have

$$xy^iz = 0^{p \cdot p! + (i-1)|y|} = 0^{p \cdot p! + \frac{p!}{|y|}|y|} = 0^{p \cdot p! + p!} = 0^{(p+1)!} \notin \overline{L}_1.$$

Therefore, \overline{L}_1 is not a regular language. Thus we get a contradiction, and hence L_1 cannot be regular as well.

(b) Assume for the sake of contradiction that L_2 is regular. Then let p be the pumping length for L_2 . Now we take the string

$$w = 0^p 110^p \in L_2.$$

Then the length of w is $|w| = 2p + 2 \ge p$. So w can be split into xyz such that |y| > 0, $|xy| \le p$, and $xy^iz \in L_2$ for each $i \ge 0$. $|xy| \le p$, so y consists of only 0s, so

$$xy^iz = 0^{p+(i-1)|y|} 110^p.$$

We choose i = 4, so that

$$xy^4z = 0^{p+3|y|} 110^p.$$

Since this is in L_2 , one can write it as $0^a 1^b 1^c 0^d$ for a + b = c + d. By equating

$$0^{p+3|y|}110^p = 0^a 1^b 1^c 0^d,$$

we get a = p + 3|y|, d = p and b + c = 2. So $c - b \le 2$. Furthermore,

$$c - b = a - d = 3|y| \ge 3$$
,

as $|y| \ge 1$. So we get $c - b \le 2$ and $c - b \ge 3$, which is a contradiction! Therefore, L_2 is not regular.

(b) **(Alternate Solution)** Assume for the sake of contradiction that L_2 is regular. Then let p be the pumping length for L_2 . Now we take the string

$$w = 0^p 1^p 1^p 0^p \in L_2.$$

Then the length of w is $|w| = 4p \ge p$. So w can be split into xyz such that |y| > 0, $|xy| \le p$, and $xy^iz \in L_2$ for each $i \ge 0$. $|xy| \le p$, so y consists of only 0s, so

$$xy^iz = 0^{p+(i-1)|y|} 1^p 1^p 0^p.$$

We choose i = 2p + 2, so that

$$xy^{2p+2}z = 0^{p+(2p+1)|y|} 1^p 1^p 0^p.$$

Since this is in L_2 , one can write it as $0^a 1^b 1^c 0^d$ for a + b = c + d. By equating

$$0^{p+(2p+1)|y|} 1^p 1^p 0^p = 0^a 1^b 1^c 0^d$$

we get a = p + (2p + 1)|y|, d = p and b + c = 2p. So $c - b \le 2p$. Furthermore,

$$c - b = a - d = (2p + 1)|y| \ge 2p + 1$$
,

as $|y| \ge 1$. So we get $c - b \le 2p$ and $c - b \ge 2p + 1$, which is a contradiction! Therefore, L_2 is not regular.