Fuentes de corriente y cargas activas

Ejemplos de otras fuentes:

Fuente Widlar: *Io* << *Ir* (relación logarítmica)

¿Ventajas? ¿Desventajas?

Espejos de corriente como carga activa:

Para $VodQ = 0 \Rightarrow$ simetría perfecta (apareamiento)

VCC – VEC4Q – VCE2Q + VBE2Q = 0

$$\Rightarrow$$
 No se puede despreciar VA
 $I_C = I_S.(e^{V_{BE}/V_T}).(1+V_{CE}/|V_A|)$

Veamos cuál es la solución, con un ejemplo con FETs:

MOSFET de canal inducido: $V_T = \pm 1.5 \text{ V}$; $k' = 200 \ \mu\text{A/V}^2$; $\lambda = 0.01 \text{V}^{-1}$; $(\text{W/L})_{1.2.3.4} = 20$; $(\text{W/L})_{5.6.7} = 2$

En reposo ($v_1 = v_2 = 0$):

Como T3-T4 es un espejo de corriente e $I_{D7Q} = I_{D1Q} + I_{D2Q} = cte$.

Única solución: $I_{D1Q} = I_{D2Q}$ Hay un lazo de realimentación que iguala las ID.

Como $VGS1Q = VGS2Q \Rightarrow Voq = VD1Q$

 $ID7Q = 400 \mu A$; $VGS5Q \approx 2.5 V$

ID1Q = 200 μ A; VsG3Q \cong 1,7 V; VoQ \cong 3,3 V

Comportamiento en señal (análisis cualitativo)

Con una CAE no es válido aplicar hemi-circuitos

Haciendo las cuentas se llega a: $RRMC = |Avd/Avc| \cong 400000 \cong 112 dB$

Otro ejemplo: el **OTA**:

Veamos un circuito más complejo...

Cómo se evalúa fн...

Otro ejemplo: el **Amplificador de instrumentación** :

Ejemplos de clase de funcionamiento: Clase A... Clase H

