Polynomial Factoring solution (version 635)

1. The quadratic formula says if $ax^2 + bx + c = 0$ then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$. Use the quadratic formula to solve the following equation.

$$x^2 + 4x + 31 = 0$$

Simplify your answer(s) as much as possible.

Solution

$$x = \frac{-(4) \pm \sqrt{(4)^2 - 4(1)(31)}}{2(1)}$$

$$x = \frac{-(4) \pm \sqrt{16 - 124}}{2(1)}$$

$$x = \frac{-4 \pm \sqrt{-108}}{2}$$

$$x = \frac{-4 \pm \sqrt{-36 \cdot 3}}{2}$$

$$x = \frac{-4 \pm 6\sqrt{3}i}{2}$$

 $x = -2 \pm 3\sqrt{3}\,i$

Notice that i in NOT under the square-root radical symbol!!

2. Express the product of 7 + 4i and 3 + 2i in standard form (a + bi).

Solution

$$(7+4i) \cdot (3+2i)$$

$$21+14i+12i+8i^{2}$$

$$21+14i+12i-8$$

$$21-8+14i+12i$$

$$13+26i$$

Polynomial Factoring solution (version 635)

3. Write function $f(x) = x^3 + 6x^2 + 3x - 10$ in factored form. I'll give you a hint: one factor is (x+2).

Solution

$$f(x) = (x+2)(x^2+4x-5)$$

$$f(x) = (x+2)(x-1)(x+5)$$

4. Polynomial p is defined below in factored form.

$$p(x) = -(x+4)^2 \cdot (x-1) \cdot (x-4)^2$$

Sketch a graph of polynomial y = p(x).

