Book 10 Proposition 4

To find the greatest common measure of three given commensurable magnitudes.

Let A, B, C be the three given commensurable magnitudes. So it is required to find the greatest common measure of A, B, C.

For let the greatest common measure of the two (magnitudes) A and B have been taken [Prop. 10.3], and let it be D. So D either measures, or [does] not [measure], C. Let it, first of all, measure (C). Therefore, since D measures C, and it also measures A and B, D thus measures A, B, C. Thus, D is a common measure of A, B, C. And (it is) clear that (it is) also (the) greatest (common measure). For no magnitude larger than D measures (both) A and B.

So let D not measure C. I say, first, that C and D are commensurable. For if A, B, C are commensurable then some magnitude will measure them which will clearly also measure A and B. Hence, it will also measure D, the greatest common measure of A and B [Prop. 10.3 corr.]. And it also measures C. Hence, the aforementioned magnitude will measure (both) C and D. Thus, C and D are commensurable [Def. 10.1]. Therefore, let their greatest

common measure have been taken [Prop. 10.3], and let it be E. Therefore, since E measures D, but D measures (both) A and B, E will thus also measure A and B. And it also measures C. Thus, E measures A, B, C. Thus, E is a common measure of A, B, C. So I say that (it is) also (the) greatest (common measure). For, if possible, let Fbe some magnitude greater than E, and let it measure A, B, C. And since F measures A, B, C, it will thus also measure A and B, and will (thus) measure the greatest common measure of A and B [Prop. 10.3 corr.]. And D is the greatest common measure of A and B. Thus, Fmeasures D. And it also measures C. Thus, F measures (both) C and D. Thus, F will also measure the greatest common measure of C and D [Prop. 10.3 corr.]. And it is E. Thus, F will measure \overline{E} , the greater (measuring) the lesser. The very thing is impossible. Thus, some [magnitude] greater than the magnitude E cannot measure A, B, C. Thus, if D does not measure C then Eis the greatest common measure of A, B, C. And if it does measure (C) then D itself (is the greatest common measure).

Thus, the greatest common measure of three given commensurable magnitudes has been found. [(Which is) the very thing it was required to show.]

Corollary

So (it is) clear, from this, that if a magnitude measures three magnitudes then it will also measure their greatest common measure.

So, similarly, the greatest common measure of more (magnitudes) can also be taken, and the (above) corol-

lary will go forward. (Which is) the very thing it was required to show.