

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

TITLE: METHOD, APPARATUS AND SYSTEM
FOR HIGH-SPEED TRANSMISSION...
INVENTOR: AGAZZI
APPLICATION NO.: UNASSIGNED
CONF. NO. : DOCKET NO. 13449US03
ATTORNEY: JAW, PHONE: 312-775-8000

Figure 1A

Figure 1B

B600 - 36980

TITLE: METHOD, APPARATUS AND SYSTEM
FOR HIGH-SPEED TRANSMISSION ...
INVENTOR: AGAZZI
APPLICATION NO.: UNASSIGNED,
CONF. NO. ; DOCKET NO. 13449US03
ATTORNEY: JAW, PHONE: 312-775-8000

Figure 1c.

TITLE: METHOD, APPARATUS AND SYSTEM
FOR HIGH-SPEED TRANSMISSION ...
INVENTOR: AGAZZI
APPLICATION NO.: UNASSIGNED,
CONF. NO. ; DOCKET NO. 13449US03
ATTORNEY: JAW, PHONE: 312-775-8000

Figure #1D

Multicarrier Modulation Block Diagram (Transmitter)

Figure 2A

205-

$f_s = 1/T_s$

$\cos(N\omega_0 T_s)$

$\sin(N\omega_0 T_s)$

$f_s = 1/T_s$

$\cos(2\pi f_c t)$

$\sin(2\pi f_c t)$

$\cos(2\pi f_{c1} t)$

$\sin(2\pi f_{c2} t)$

$\cos(2\pi f_{c3} t)$

$\sin(2\pi f_{c4} t)$

$\cos(2\pi f_{c5} t)$

$\sin(2\pi f_{c6} t)$

$\cos(2\pi f_{c7} t)$

$\sin(2\pi f_{c8} t)$

$\cos(2\pi f_{c9} t)$

$\sin(2\pi f_{c10} t)$

$\cos(2\pi f_{c11} t)$

$\sin(2\pi f_{c12} t)$

$\cos(2\pi f_{c13} t)$

$\sin(2\pi f_{c14} t)$

$T_s = \text{Sampling period}$

$\omega_0 = 2\pi f_s = \text{digital carrier angular frequencies}$

Figure 2B

TITLE: METHOD, APPARATUS AND SYSTEM
FOR HIGH-SPEED TRANSMISSION
INVENTOR: AGAZZI
APPLICATION NO.: UNASSIGNED,
CONF. NO.: DOCKET NO. 134491JS03
ATTORNEY: JAW PHONE: 312-775-8000

Figure 2C

Multicarrier Modulation Block Diagram (Receiver)

Figure 3

Alternative Implementation of Multicarrier Modulation (Transmitter)

Figure 4

Alternative Implementation of Multicarrier Modulation (Receiver)

TITLE: METHOD, APPARATUS AND SYSTEM
FOR HIGH-SPEED TRANSMISSION ...
INVENTOR: AGAZZI
APPLICATION NO.: UNASSIGNED
CONF. NO. : DOCKET NO. 13449US03
ATTORNEY: JAW, PHONE: 312-775-8000

Figure 5

TITLE: METHOD, APPARATUS AND SYSTEM FOR
HIGH-SPEED TRANSMISSION ...
INVENTOR: AGAZZI
APPLICATION NO.: UNASSIGNED,
CONF. NO. ; DOCKET NO. 13449US03
ATTORNEY: JAW, PHONE: 312-775-8000

Figure 6

Figure 7A

TITLE: METHOD, APPARATUS AND SYSTEM FOR
HIGH-SPEED TRANSMISSION ...
INVENTOR: AGAZZI
APPLICATION NO.: UNASSIGNED,
CONF. NO. ; DOCKET NO. 13449US03
ATTORNEY: JAW, PHONE: 312-775-8000

Figure 7B

TITLE: METHOD, APPARATUS AND SYSTEM FOR
HIGH-SPEED TRANSMISSION ...
INVENTOR: AGAZZI
APPLICATION NO.: UNASSIGNED,
CONF. NO. ; DOCKET NO. 13449US03
ATTORNEY: JAW, PHONE: 312-775-8000

Figure 8

TITLE: METHOD, APPARATUS AND SYSTEM FOR
HIGH-SPEED TRANSMISSION ...
INVENTOR: AGAZZI
APPLICATION NO.: UNASSIGNED,
CONF. NO. : DOCKET NO. 13449US03
ATTORNEY: JAW, PHONE: 312-775-8000

Figure 9

Figure 10

Figure 11

TITLE: METHOD, APPARATUS AND SYSTEM FOR
 HIGH-SPEED TRANSMISSION ...
 INVENTOR: AGAZZI
 APPLICATION NO.: UNASSIGNED,
 CONF. NO. : DOCKET NO. 13449US03
 ATTORNEY: JAW, PHONE: 312-775-8000

Figure 12.

TITLE: METHOD, APPARATUS AND SYSTEM FOR
 HIGH-SPEED TRANSMISSION ...
 INVENTOR: AGAZZI
 APPLICATION NO.: UNASSIGNED,
 CONF. NO. ; DOCKET NO. 13449US03
 ATTORNEY: JAW, PHONE: 312-775-8000

Figure 13