having mean of each paper our respectively $\hat{\mu}_1 = 0.3$, $\hat{\mu}_2 = 0.5$, $\hat{\mu}_3 = 0.4$. Let may that we get these nample much after 100 times of sampling. Where the fixed arong $N_1 = 25$ times second one $N_2 = 55$ times, there are $N_3 = 30$ times selected. Find the $\hat{\mu}_1$, $\hat{\mu}_2$, $\hat{\mu}_3$, at 101, 102 and 103 times. The treported are given by 8, 27 and 8.

epoch	mm 1	anm 2	atim 3	
)o)	F	3	1	
102	3	1	2	
103	4	H	3	

$$=\left(\stackrel{\wedge}{M_1} + \stackrel{1}{\sqrt{\frac{210y(H)}{N_1}}}, \stackrel{\wedge}{M_2} + \stackrel{1}{\sqrt{\frac{210y(H)}{N_2}}}, \stackrel{\wedge}{N_3} + \stackrel{1}{\sqrt{\frac{210y(H)}{N_3}}}\right)$$

$$= \begin{pmatrix} 0.3 + \sqrt{\frac{2109(101)}{25}}, & 0.5 + \sqrt{\frac{2109(101)}{55}}, & 0.4 + \sqrt{\frac{2109(101)}{20}} \\ = \begin{pmatrix} 0.7, & 0.76, & 0.84 \end{pmatrix}$$

Ton, t-11) the max $= 0.8y \Rightarrow a_1m s$ the algorithm will choose aron 3.

Now updating the mean and remained of anim 3.

Mun,
$$\hat{\mu}_{3} = \frac{9}{21} = 0.428$$
.

For t=102 }

$$= 0.3 + \sqrt{\frac{217(102)}{25}}, 0.6 + \sqrt{\frac{2157(102)}{55}}, 0.43 + \sqrt{\frac{2158(102)}{21}}$$

For t-11) the max = 0.8% \Rightarrow arm 3 the algorithm will choose arm 3.

Now updating the mean and reward of arim 3

$$N_3=22$$
, neward, $r=8+2=10$

megn,
$$\hat{\mu}_3 = \frac{10}{22} = 0.45$$
.

NOW, NOW
$$\rightarrow \hat{\mu}_{1}=6.3$$
, $\hat{\mu}_{2}=0.5$, $\hat{\mu}_{3}=0.45$

The t=103;

$$(\hat{\mu}_{1}+\sqrt{\frac{2167(t)}{N_{1}}}, \hat{\mu}_{2}) \frac{1}{2167(t)}, \hat{\mu}_{2} \frac{1}{2167(t)}, \hat{\mu}_{3})$$

$$= 0.3 + \sqrt{\frac{2167(t)}{257}}, 0.6 + \sqrt{\frac{2167(t)}{55}}, 0.45 + \sqrt{\frac{2169(03)}{22}}$$

$$= 0.701, 0.77, 0.88$$

Now max $(0.70, 0.77, 0.88) = 0.88$

For t=11) the max = 0.88 \Rightarrow arm 3 the algorithm will chass arm 3.

Now updating the mean and remaind of arm 3

No = 23, noward, $r = 8+3 = 11$

mush, $\hat{\mu}_{3} = \frac{71}{23} = 0.48$.

NOW, New - M, - 8.3, H2=0.5, H3=0.48