

Tesista: Andrea Gusmara

Relatore: Francesca Gasparini

Co-Relatore : Marta Giltri

Analisi dati inerziali e fisiologici con sensori indossabili

1/13

Pedonalità e Assistenza sanitaria

Posizionamento e Analisi del passo

Identificazione del passo

Magnitudo accelerazione

$$a = \sqrt{a_x^2 + a_y^2 + a_z^2}$$

Varianza mobile

$$\sigma_{ai}^2 = \frac{1}{2\omega + 1} \sum_{J=i-\omega}^{J=i+\omega} (a_J - \bar{a}_J)^2$$

Calcolo picchi

Calcolo la differenza delle occorrenze tra i picchi del segnale della varianza per impostare delle soglie dinamiche

Prime caso T1=5 (m/s)T2=2(m/s)Secondo caso T1=4 (m/s)T2=0.35(m/s)

- La varianza scende sotto T1 e
- Ci rimane sotto per un certo numero di campioni
- La distanza tra un occorrenza e un'atra distino un certo numero di campioni
- il numero delle fasi di oscillazione coincida al numero delle fasi di stazionamento

Risultato Identificazione del passo

Risultato Frequenza del passo

Esperimento	Esperimento 1	Esperimento 2	Esperimento 3
Risultati	69.81	69.63	71.02
Metronomo	70	70	70
Esperimento	Esperimento 4	Esperimento 5	Esperimento 6
Risultati	83.33	85.63	85.78
Metronomo	85	85	85
Esperimento	Esperimento 7	Esperimento 8	Esperimento 9
Risultati	99.92	100.13	99.84
Metronomo	100	100	100

La Zero Velocity Update (ZUPT) è ritenuta una delle tecniche più affidabili e più versatili. Il presupposto per l'utilizzo di questa tecnica è quello di riuscire ad eliminare l'errore quadratico formatosi dopo l'integrazione del segnale del' accelerazione

$$v_i^N = \begin{cases} v_{i-1}^N + a_i^N * Ts & i >= endStanceFase(k) \land i < startStanceFase(k+1) \\ 0 & i < endStanceFase(k) \land i < endStanceFase(k) \end{cases}$$

$$(3.16)$$

$$k = \begin{cases} k = k+1 & i == startStanceFase(k+1) \\ k & altrimenti \end{cases}$$
 (3.17)

Zero Velocity Update

Risultato Velocità del passo

TRACCIAMENTO

$$x_k = (x_{k-1} + \cos(\varphi_K) \cdot L_k)$$

$$y_k = (y_{k-1} + \sin(\varphi_k) \cdot L_k)$$

Pedestrian Dead Reckoning

Questo processo di calcolo si basa sul principio che per calcolare la nuova posizione di un oggetto in certo tempo bisogna prima di tutto conoscere la posizione attuale , e poi integrare le informazioni di velocità e orientamento per predire la nuova posizione.

10/13

Risultato tracciamento

11/13

