UNEMPLOYMENT ANALYSIS WITH PYTHON

Import the libraries

In []:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

READ THE FILES

In [2]:

```
df=pd.read_csv('Unemployment in India.csv')
```

In [3]:

```
df.sample(5)
```

Out[3]:

	Region	Date	Frequency	Estimated Unemployment Rate (%)	Estimated Employed	Estimated Labour Participation Rate (%)	Area
489	Haryana	31- 01- 2020	Monthly	27.24	2630938.0	42.75	Urban
676	Tamil Nadu	30- 11- 2019	Monthly	2.65	11729952.0	37.38	Urban
116	Himachal Pradesh	31- 01- 2020	Monthly	16.67	2041035.0	45.11	Rural
9	Andhra Pradesh	29- 02- 2020	Monthly	5.91	11723617.0	42.83	Rural
314	Tripura	31- 03- 2020	Monthly	31.61	1060946.0	68.28	Rural

In [4]:

```
df2=pd.read_csv('Unemployment_Rate_upto_11_2020.csv')
```

DATA CLEANING

```
In [7]:
```

```
df.isnull().sum()
```

Out[7]:

Region			28
Date			28
Frequency			28
Estimated	Unemployment Rate (%)		28
Estimated	Employed		28
Estimated	Labour Participation Rate	(%)	28
Area			28

dtype: int64

In [8]:

```
print(df.dtypes)
df.columns=['States','Date','Frequency','Estimated Unemployment Rate','Estimated Employet
```

Region object
Date object
Frequency object
Estimated Unemployment Rate (%) float64
Estimated Employed float64
Estimated Labour Participation Rate (%) float64
Area object

dtype: object

In [35]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	States	768 non-null	object
1	Date	768 non-null	object
2	Frequency	768 non-null	object
3	Estimated Unemployment Rate	768 non-null	float64
4	Estimated Employed	768 non-null	float64
5	Estimated Labour Participation Rate	768 non-null	float64

dtypes: float64(3), object(3)

memory usage: 36.1+ KB

In [36]:

```
df.describe()
```

Out[36]:

	Estimated Unemployment Rate	Estimated Employed	Estimated Labour Participation Rate
count	768.000000	7.680000e+02	768.000000
mean	11.787946	7.204460e+06	42.630122
std	10.523784	7.938986e+06	7.961667
min	0.000000	4.942000e+04	13.330000
25%	4.720000	1.376532e+06	38.265000
50%	9.005000	5.064048e+06	41.430000
75%	15.472500	1.111390e+07	45.362500
max	76.740000	4.577751e+07	72.570000

In [10]:

```
df['Date'].fillna(df['Date'].mode().iloc[0],inplace=True)
df['Frequency'].fillna(df['Frequency'].mode().iloc[0],inplace=True)
df['States'].fillna(df['States'].mode().iloc[0],inplace=True)
df['Estimated Unemployment Rate'].fillna(df['Estimated Unemployment Rate'].mean(),inplace
df['Estimated Employed'].fillna(df['Estimated Employed'].mean(),inplace=True)
df['Estimated Labour Participation Rate'].fillna(df['Estimated Labour Participation Rate
df.drop(['Area'],axis=1,inplace=True)
```

In [11]:

```
df.isnull().sum()
```

Out[11]:

States	0
Date	0
Frequency	0
Estimated Unemployment Rate	0
Estimated Employed	0
Estimated Labour Participation Rate	0
dtvpe: int64	

In [14]:

```
df2.columns=['States','Date','Frequency','Estimated Unemployment Rate','Estimated Employ
```

In [15]:

```
df2.isnull().sum()
```

Out[15]:

States 0 Date 0 Frequency 0 Estimated Unemployment Rate 0 Estimated Employed Estimated Labour Participation Rate 0 Region Longitude 0 Latitude 0 dtype: int64

In [16]:

df2.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	States	768 non-null	object
1	Date	768 non-null	object
2	Frequency	768 non-null	object
3	Estimated Unemployment Rate	768 non-null	float64
4	Estimated Employed	768 non-null	float64
5	Estimated Labour Participation Rate	768 non-null	float64

dtypes: float64(3), object(3)
memory usage: 36.1+ KB

In [17]:

df2.describe()

Out[17]:

	Estimated Unemployment Rate	Estimated Employed	Estimated Labour Participation Rate
count	768.000000	7.680000e+02	768.000000
mean	11.787946	7.204460e+06	42.630122
std	10.523784	7.938986e+06	7.961667
min	0.000000	4.942000e+04	13.330000
25%	4.720000	1.376532e+06	38.265000
50%	9.005000	5.064048e+06	41.430000
75%	15.472500	1.111390e+07	45.362500
max	76.740000	4.577751e+07	72.570000

Analysis through Visualization

In [39]:

```
heat_maps = df[['Estimated Unemployment Rate','Estimated Employed','Estimated Labour Par
heat_maps = heat_maps.corr()

plt.figure(figsize=(12,7))
sns.set_context('notebook',font_scale=1)
sns.heatmap(heat_maps, annot=True,cmap='winter');
```


In [46]:

sns.pairplot(df)

C:\Users\sanja\anaconda3\lib\site-packages\seaborn_oldcore.py:1498: F
utureWarning:

is_categorical_dtype is deprecated and will be removed in a future ver sion. Use isinstance(dtype, CategoricalDtype) instead

C:\Users\sanja\anaconda3\lib\site-packages\seaborn_oldcore.py:1498: F
utureWarning:

is_categorical_dtype is deprecated and will be removed in a future ver sion. Use isinstance(dtype, CategoricalDtype) instead

C:\Users\sanja\anaconda3\lib\site-packages\seaborn_oldcore.py:1498: F
utureWarning:

is_categorical_dtype is deprecated and will be removed in a future ver sion. Use isinstance(dtype, CategoricalDtype) instead

C:\Users\sanja\anaconda3\lib\site-packages\seaborn_oldcore.py:1498: F

In [44]:

df.States.value_counts()

Out[44]:

States	
Andhra Pradesh	56
Kerala	28
West Bengal	28
Uttar Pradesh	28
Tripura	28
Telangana	28
Tamil Nadu	28
Rajasthan	28
Punjab	28
Odisha	28
Madhya Pradesh	28
Maharashtra	28
Karnataka	28
Jharkhand	28
Himachal Pradesh	28
Haryana	28
Gujarat	28
Delhi	28
Chhattisgarh	28
Bihar	28
Meghalaya	27
Uttarakhand	27
Assam	26
Puducherry	26
Goa	24
Jammu & Kashmir	21
Sikkim	17
Chandigarh	12
Name: count, dtype:	int64

In [59]:

```
plt.figure(figsize=(35,10))
plt.title('Indian Unemployment')
sns.histplot(x="Estimated Unemployment Rate",hue="States",data=df)
plt.show()
```

C:\Users\sanja\anaconda3\lib\site-packages\seaborn_oldcore.py:1498: Futu
reWarning:

is_categorical_dtype is deprecated and will be removed in a future versio
n. Use isinstance(dtype, CategoricalDtype) instead

C:\Users\sanja\anaconda3\lib\site-packages\seaborn_oldcore.py:1498: Futu
reWarning:

is_categorical_dtype is deprecated and will be removed in a future versio
n. Use isinstance(dtype, CategoricalDtype) instead

C:\Users\sanja\anaconda3\lib\site-packages\seaborn_oldcore.py:1498: Futu
reWarning:

is_categorical_dtype is deprecated and will be removed in a future versio
n. Use isinstance(dtype, CategoricalDtype) instead

C:\Users\sanja\anaconda3\lib\site-packages\seaborn_oldcore.py:1498: Futu
reWarning:

is_categorical_dtype is deprecated and will be removed in a future versio
n. Use isinstance(dtype, CategoricalDtype) instead

C:\Users\sanja\anaconda3\lib\site-packages\seaborn_oldcore.py:1119: Futu
reWarning:

use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.

In [53]:

```
import plotly.express as px
fg=px.histogram(df,x='States',y='Estimated Unemployment Rate',title='Indian unemployment
fg.update_layout(xaxis={'categoryorder':'total descending'})
fg.show()
```

In [61]:

df2.sample()

Out[61]:

	Region	Date	Frequency	Unemployment_rate	Employed	labour_participation_rate	area
25	Bihar	30- 06- 2020	М	17.82	23963933	36.86	East
							•

In [65]:

```
heat_maps = df2[['Unemployment_rate','Employed','labour_participation_rate']]
heat_maps = heat_maps.corr()
plt.figure(figsize=(12,7))
sns.set_context('notebook',font_scale=1)
sns.heatmap(heat_maps, annot=True,cmap='winter')
```

Out[65]:

<AxesSubplot:>

In [67]:

df2.Region.value_counts()

Out[67]:

Region	
Andhra Pradesh	10
Assam	10
Uttarakhand	10
Uttar Pradesh	10
Tripura	10
Telangana	10
Tamil Nadu	10
Rajasthan	10
Punjab	10
Puducherry	10
Odisha	10
Meghalaya	10
Maharashtra	10
Madhya Pradesh	10
Kerala	10
Karnataka	10
Jharkhand	10
Himachal Pradesh	10
Haryana	10
Gujarat	10
Goa	10
Delhi	10
Chhattisgarh	10
Bihar	10
West Bengal	10
Jammu & Kashmir	9
Sikkim	8
Name: count, dtype:	int64

In [68]:

```
region = df2.groupby(["Region"])[['Unemployment_rate', "Employed", "labour_participation
region = pd.DataFrame(region).reset_index()

fig = px.bar(region, x="Region", y="Employed", color="Region", title="Average Employed F
fig.update_layout(xaxis={'categoryorder':'total descending'})
fig.show()
```

```
In [69]:
```

```
region = df2.groupby(["Region"])[['Unemployment_rate', "Employed", "labour_participation
region = pd.DataFrame(region).reset_index()

fig = px.bar(region, x="Region", y="Unemployment_rate", color="Region", title="Average E
fig.update_layout(xaxis={'categoryorder':'total descending'})
fig.show()
```

Summary

So this is how you can analyze the unemployment rate by using the Python programming language. Unemployment is measured by the unemployment rate which is the number of people who are unemployed as a percentage of the total labour force. I hope you liked this article on unemployment rate analysis with Python. Feel free to ask your valuable questions in the comments section below.