ESTATÍSTICA PARA ANÁLISE DE DADOS EM PYTHON

Prof. Luciano Galdino

Teste t para média amostral

É utilizado quando a distribuição for normal, n < 30 (amostras pequenas) e desvio padrão populacional (σ) for desconhecido. É denominado de estatística do teste padronizado t.

$$t = \frac{\bar{x} - \mu}{\frac{S}{\sqrt{n}}}$$

Obs.: g.l (graus de liberdade) = n - 1.

	Nível de confiança, c	0,50	0,80	0,90	0,95 0,025	0,98	0,99
α1	Unicaudal, α Bicaudal, α	0,25	0,10	0,10	0,025	0,01	0,005
g.l.	Dicauciai, α	1000000				20.000000000000000000000000000000000000	
1		1,000	3,078	6,314	12,706	31,821	63,657
2		0,816	1,886	2,920	4,303	6,965	9,925
3		0,765	1,638	2,353	3,182	4,541	5,841
4		0,741	1,533	2,132	2,776	3,747	4,604
5		0,727	1,476	2,015	2,571	3,365	4,032
6		0,718	1,440	1,943	2,447	3,143	3,707
7		0,711	1,415	1,895	2,365	2,998	3,499
8		0,706	1,397	1,860	2,306	2,896	3,355
9		0,703	1,383	1,833	2,262	2,821	3,250
10		0,700	1,372	1,812	2,228	2,764	3,169
11		0,697	1,363	1,796	2,201	2,718	3,106
12		0,695	1,356	1,782	2,179	2,681	3,055
13		0,694	1,350	1,771	2,160	2,650	3,012
14		0,692	1,345	1,761	2,145	2,624	2,977
15		0,691	1,341	1,753	2,131	2,602	2,947
16		0,690	1,337	1,746	2,120	2,583	2,921
17		0,689	1,333	1,740	2,110	2,567	2,898
18		0,688	1,330	1,734	2,101	2,552	2,878
19		0,688	1,328	1,729	2,093	2,539	2,861
20		0,687	1,325	1,725	2,086	2,528	2,845
21		0,686	1,323	1,721	2,080	2,518	2,831
22		0,686	1,321	1,717	2,074	2,508	2,819
23		0,685	1,319	1,714	2,069	2,500	2,807
24		0,685	1,318	1,711	2,064	2,492	2,797
25		0,684	1,316	1,708	2,060	2,485	2,787

Exemplo 1: Uma indústria alimentícia afirma que a quantidade de proteína em um de seus produtos é de 5,3g. Utilizando 22 amostras desse produto para análise da quantidade de proteína, foi encontrado o valor de 5,1g com desvio padrão de 0,5g. Determine se há evidência suficiente para rejeitar a afirmação da indústria, com nível de significância de 0,05. Considere a população normalmente distribuída.

$$H_0$$
: $\mu = 5.3g$ H_a : $\mu \neq 5.3g$

$$t = \frac{\bar{x} - \mu}{\frac{S}{\sqrt{n}}} \qquad t = \frac{5,1 - 5,3}{\frac{0,5}{\sqrt{22}}} = -1,88$$

Conclusão: Com nível de confiança de 95%, não há evidência para rejeitar a hipótese nula, isto é, a afirmação da indústria não pode ser rejeitada.