Objectifs

- Reconnaître une situation de proportionnalité.
- Savoir compléter un tableau de proportionnalité.
- Appliquer un pourcentage.
- Réaliser un agrandissement ou une réduction

I. Grandeurs proportionnelles

Définition

Deux grandeurs sont **proportionnelles** lorsqu'on peut calculer les valeurs de l'une en multipliant les valeurs de l'autre par un même nombre non nul. ce nombre est appelé **coefficient de proportionnalité**.

Méthode

Pour identifier une situation de proportionnalité, on calcule les quotients des nombres de la seconde ligne par les nombres de la première ligne.

Exemple

On s'intéresse à la distance parcourue à vélo par Aurélie pendant trois jours.

	Lundi	Mardi	Mercredi
Temps (en h)	2	3	5
Distance parcourue (en km)	42	63	105

 $42 \div 2 = 63 \div 3 = 105 \div 5 = 21$, ici les grandeurs «temps» et «distance parcourue» sont proportionnelles. Chaque heure elle parcoure 21 km, 21 est le coefficient de proportionnalité.

Exemple

Dans ce tableau on a reporté le nombre de cotés de certains polygones et leur nombre de diagonales.

	Quadrilatère	Pentagone	Hexagone
Nombre de côtés	4	5	6
Nombre de diagonales	2	5	9

 $2\div 4=0,5,\,5\div 5=1,$ donc le nombre de côtés d'un polygone n'est pas proportionnel à son nombre de diagonales.

II. Compléter un tableau de proportionnalité

Exemple

On veut remplir le tableau de proportionnalité suivant :

$ \mathbb{Q} $ emps (h)	4	6	10
Distance parcourue(km)	10		

1) Par passage à l'unité

Méthode

En 4 heures, nous parcourons 10 km.

En 1 heure, nous parcourrons donc 4 fois moins de distance à savoir $10 \div 4 = 2,5$ km.

En 6 heures, nous parcourrons donc 6 fois plus de temps qu'en 1 heure à savoir $2.5 \times 6 = 15 \text{km}$.

En résumé :

(4) ×6				
Temps (h)	4	1	6	10
Distance parcourue (km)	10	2,5	15	

2) Avec le coefficient multiplicateur

Méthode

On cherche par quel nombre on multiplie 4 pour obtenir 10. $4 \times ... = 10$. C'est le nombre 2,5 $(10 \div 4)$. $6 \times 2,5 = 15$.

Temps (h)	4	6	×2.5
Distance parcourue(km)	10	15] -, -

3) En utilisant les propriétés de la proportionnalité

Propriété

Dans un tableau de proportionnalité, on peut :

- multiplier/diviser une colonne par un nombre;
- ajouter/soustraire des colonnes entre elles.

III. Pourcentages

Définition

Un pourcentage traduit une situation de proportionnalité.

Un pourcentage est une proportion exprimée sur un total de 100 (de dénominateur égal à 100).

Exemple

- «Dans une confiture, il y a 60 % de fruits»
 - La masse de fruits est proportionnelle à la masse totale de confiture.
 - \Rightarrow Il y a 60g de fruits pour 100g de confiture.

Propriété

P est un nombre positif.

Pour calculer P% d'une quantité, on multiplie cette quantité par $\frac{P}{100}$.

Exemple

Calculer 20% de 50 revient à multiplier 50 par $\frac{20}{100}$:

$$50 \times \frac{20}{100} = 50 \times 0.2 = 10$$

20% de 50 vaut 10.