

🧲 Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE181208101

FCC REPORT

Applicant: SHENZHEN DOME TECHNOLOGY CO., LTD.

Address of Applicant:

Room 1801-1808, Haiyun Building, No. 468 Minzhi Avenue,

Longhua New District, Shenzhen, China 518131

Equipment Under Test (EUT)

Product Name: CAR DVR

Model No.: G75

FCC ID: 2ALJ7-G70

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 28 Mar., 2018

Date of Test: 28 Mar., to 26 Dec., 2018

Date of report issued: 27 Dec., 2018

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description			
00	00 27 Dec., 2018	This report was amended on FCC ID: 2ALJ7-G70 follow FCC Class II Permissive Change. The differences between them as below: model number, appearance, loudspeaker, antenna. Base on the differences description, AC Power Line Conducted Emission and Radiated emission were re-tested.			

Tested by: 27 Dec., 2018

Test Engineer

Reviewed by: 27 Dec., 2018

Project Engineer

3 Contents

			Page
1	CO	VER PAGE	1
2	VEF	RSION	2
3	COI	NTENTS	3
4		ST SUMMARY	
5	GEN	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT AND TEST MODE	6
	5.4	DESCRIPTION OF SUPPORT UNITS	6
	5.5	MEASUREMENT UNCERTAINTY	
	5.6	LABORATORY FACILITY	
	5.7	LABORATORY LOCATION	
	5.8	TEST INSTRUMENTS LIST	7
6	TES	ST RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT	
	6.2	CONDUCTED EMISSION	9
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	
	6.5	Power Spectral Density	
	6.6	BAND EDGE	
	6.6.		
	6.6.		
	6.7	SPURIOUS EMISSION	
	6.7.		
	6.7.		
7	TES	ST SETUP PHOTO	42
Q	FIIT	CONSTRUCTIONAL DETAILS	11

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203 & 15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass*
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass*
Power Spectral Density	15.247 (e)	Pass*
Band Edge	15.247 (d)	Pass*
Spurious Emission	15.205 & 15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

Pass*: please refer to the FCC ID: 2ALJ7-G70

N/A: N/A: Not Applicable.

5 General Information

5.1 Client Information

Applicant:	SHENZHEN DOME TECHNOLOGY CO., LTD.		
Address:	Room 1801-1808, Haiyun Building, No. 468 Minzhi Avenue, Longhua New District, Shenzhen, China 518131		
Manufacturer/ Factory:	DONGGUAN KAKA ELECTRONIC TECHNOLOGY CO., LTD.		
Address:	No.395, Huanshi East Road, Shitanpu, Tangxia Town, Dongguan, Guangdong, China		

5.2 General Description of E.U.T.

Product Name:	CAR DVR
Model No.:	G75
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1.55dBi
Power supply:	DC12V/ DC 24V
Car charging:	Model No.: XHC051500 Input: DC12-24V Output: DC 5V, 1.5A

Operation Frequency each of channel for 802.11b/g/n(H20)								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz	
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz	
3	2422MHz	6	2437MHz	9	2452MHz			

Note:

- 1. For 802.11n-HT40 mode, the channel number is from 3 to 9;
- Channel 1, 6 & 11 selected for 802.11b/g/n-HT20 as Lowest, Middle and Highest channel, Channel; 3, 6 & 9 selected for 802.11n-HT40 as Lowest, Middle and Highest channel, Channel.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23116366

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 5 of 54

5.3 Test environment and test mode

Operating Environment:			
Temperature:	24.0 °C		
Humidity:	54 % RH		
Atmospheric Pressure:	1010 mbar		
Tost mode:			

l est mode:

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate, the follow list were the worst case.				
Mode Data rate				
802.11b	1Mbps			
802.11g	6Mbps			
802.11n(H20)	6.5Mbps			
802.11n(H40)	13.5Mbps			

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty		
Conducted Emission (9kHz ~ 30MHz)	±2.22 dB (k=2)		
Radiated Emission (9kHz ~ 30MHz)	±2.76 dB (k=2)		
Radiated Emission (30MHz ~ 1000MHz)	±4.28 dB (k=2)		
Radiated Emission (1GHz ~ 18GHz)	±5.72 dB (k=2)		
Radiated Emission (18GHz ~ 40GHz)	±2.88 dB (k=2)		

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.8 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-16-2018	03-15-2019
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-16-2018	03-15-2019
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-16-2018	03-15-2019
EMI Test Software	AUDIX	E3	6.110919b	N/A	N/A
Pre-amplifier	HP	8447D	2944A09358	03-07-2018	03-06-2019
Pre-amplifier	CD	PAP-1G18	11804	03-07-2018	03-06-2019
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-07-2018	03-06-2019
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-07-2018	03-06-2019
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2018	03-06-2019
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2018	03-06-2019
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2018	03-06-2019

Conducted Emission:							
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-07-2018	03-06-2019		
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-07-2018	03-06-2019		
LISN	CHASE	MN2050D	1447	03-19-2018	03-18-2019		
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2019		
Cable	HP	10503A	N/A	03-07-2018	03-06-2019		
EMI Test Software	AUDIX	E3	6.110919b	N/A	N/A		

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WiFi antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is 1.55 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 1	5.207	
Test Method:	ANSI C63.10: 2013		
Test Frequency Range:	150 kHz to 30 MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9 kHz, VBW=30 k	 Ц ₇	
·	Frequency range	Limit (dDu\/\
Limit:	(MHz)	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	* Decreases with the log	arithm of the frequency.	
Test procedure	line impedance stab 50ohm/50uH coupling 2. The peripheral device a LISN that provides termination. (Please photographs). 3. Both sides of A.C. light interference. In order positions of equipments	plators are connected to the pilization network (L.I.S.N.), and impedance for the measures are also connected to the associated as a 500hm/50uH coupling it is refer to the block diagram are checked for maximum error to find the maximum emit and all of the interface 263.4: 2014 on conducted	which provides a suring equipment. the main power through mpedance with 50ohm of the test setup and sision, the relative cables must be changed
Test setup:	AUX Equipment Test table/Insula Remark: E.U.T. Equipment Under LISN: Line Impedence St. Test table height=0.8m	E.U.T EMI Receiver	ilter — AC power
Test Instruments:	Refer to section 5.8 for d	etails	
Test mode:	Refer to section 5.3 for d	etails	
Test results:	Passed		

Measurement Data:

Product name:	CAR DVR	Product model:	G75
Test by:	Zora	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	DC 24V	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∜	₫B	dB	dBu₹	dBu₹	dB	
1	0.234	14.24	0.14	10.75	25.13	52.30	-27.17	Average
2	0.238	19.10	0.14	10.75	29.99	62.17	-32.18	QP
3	0.513	15.62	0.12	10.76	26.50	46.00	-19.50	Average
4	0.573	25.71	0.12	10.76	36.59	56.00	-19.41	QP
5	0.608	15.07	0.13	10.77	25.97	46.00	-20.03	Average
6	1.016	22.64	0.13	10.87	33.64		-22.36	
7	1.610	20.82	0.14	10.93	31.89		-24.11	
1 2 3 4 5 6 7 8 9	1.636	12.63	0.14	10.93	23.70	46.00	-22.30	Average
9	2.678	13.75	0.16	10.93	24.84			Average
10	2.765	22.56	0.16	10.93	33.65		-22.35	
11	16.573	8.94	0.30	10.91	20.15	50.00	-29.85	Average
12	16.661	18.49	0.30	10.91	29.70		-30.30	

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	CAR DVR	Product model:	G75
Test by:	Zora	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	DC 24V	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Level	Factor	Loss	Level	Limit	Limit	Remark
	MHz	₫₿u₹	<u>d</u> B	₫B	dBu₹	dBu₹	<u>d</u> B	
1	0.238	16.43	0.94	10.75	28.12	52.17	-24.05	Average
2	0.555	19.09	0.97	10.76	30.82	46.00	-15.18	Average
3	0.561	29.90	0.97	10.76	41.63	56.00	-14.37	QP
4	0.582	29.70	0.97	10.76	41.43	56.00	-14.57	QP
1 2 3 4 5 6 7 8 9	0.783	14.08	0.97	10.81	25.86	46.00	-20.14	Average
6	1.016	22.08	0.97	10.87	33.92	56.00	-22.08	QP
7	1.628	12.24	0.98	10.93	24.15	46.00	-21.85	Average
8	1.636	21.30	0.98	10.93	33.21	56.00	-22.79	QP
9	2.636	23.54	0.99	10.93	35.46	56.00	-20.54	QP
10	2.839	23.12	0.99	10.93	35.04	56.00	-20.96	QP
11	2.839	14.52	0.99	10.93	26.44	46.00	-19.56	Average
12	16.839	4.84	0.82	10.91	16.57			Average

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.10:2013 and KDB 558074
Limit:	30dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Refer to the FCC ID: 2ALJ7-G70

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)
Test Method:	ANSI C63.10:2013 and KDB 558074
Limit:	>500kHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Refer to the FCC ID: 2ALJ7-G70

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)
Test Method:	ANSI C63.10:2013 and KDB 558074
Limit:	8dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Refer to the FCC ID: 2ALJ7-G70

6.6 Band Edge

6.6.1 Conducted Emission Method

0.0.1 Oolidacted Elillosion	
Test Requirement:	FCC Part 15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013 and KDB 558074
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Refer to the FCC ID: 2ALJ7-G70

6.6.2 Radiated Emission Method

0.0.2	Radiated Emission Me	etnoa						
	Test Requirement:	FCC Part 15 C	Section 1	15.20	9 and 15.205			
	Test Method:	ANSI C63.10:	2013 and	KDE	3 558074			
	Test Frequency Range:	2.3GHz to 2.50	GHz					
	Test Distance:	3m						
	Receiver setup:	Frequency	Detec	tor	RBW	V	BW	Remark
	•	Above 1GHz	Pea		1MHz		ИНz	Peak Value
			RMS		1MHz		MHz T	Average Value
	Limit:	Frequen		LIN	nit (dBuV/m @ 54.00	3m)	Δν	Remark verage Value
		Above 1G	iHz		74.00			Peak Value
	Test Procedure:	the ground to determine to determine to determine to determine the EUT antenna, we tower. 3. The antenna the ground Both horize make the 4. For each so case and meters and to find the 5. The test-respecified 6. If the emist the limit spof the EUT have 10df.	d at a 3 m ne the po was set 3 which was na height d to deter ontal and measurer suspected then the a d the rota maximun eceiver sy Bandwidt ssion leve pecified, t would b 3 margin	eter esition metes mou is varine vertinent. I emis table n reavistem h with hen te repwould	camber. The to of the highest ers away from to unted on the to aried from one the maximum cal polarization assion, the EUT na was turned from the was turned from the example of the EUT in peak esting could be orted. Otherwise	able value interpretation and the interpretat	vas rota tion. erference variable to four of the fi he antel errange ghts fror degrees etect Ful de. e was 1 ped ance e emission	meters above ield strength. nna are set to d to its worst n 1 meter to 4 s to 360 degrees nction and OdB lower than d the peak values ons that did not sing peak, quasi-
	Test setup:	- 130cm	AE E	· W	Hor 3m Ground Reference Plane	rn Antenna	Antenna Tox	wer
	Test Instruments:	Refer to sectio	n 5.8 for c	detail	S			
	Test mode:	Refer to sectio	n 5.3 for c	detail	S			
	Test results:	Refer to the FO	C ID: 2A	LJ7-(G70			

802.11b mode:

rodu	ct Na	me:	CAR DVR			Pr	oduct M	odel:	G75	G75			
est B	y:		Zora				Te	est mode	:	802.11b Tx	mode		
est C	hann	iel:	Lowest	channel			Po	olarizatio	n:	Vertical	Vertical Temp: 24°C Huni: 57%		
est V	'oltag	e:	DC 24\	/			Eı	nvironme	ent:	Temp: 24℃			
		NE DE R											
110	Level	(dBuV/m)											
100		-	-		+	-							
80										FC@ PAF	RT 15 (PIO		
										1	1		
60										FCC PAR	RT 15 (AV)		
	اسوسيعد		ny	man	man	m	and a	mym	more	marely			
40									- 2				
20		-											
0	2310	2320			2350				- 1		2422		
	2310	2320				Frequen	cy (MHz)				2422		
			Read	intenna	Cable	Preamp		Limit	Over				
		Freq	Level	Factor	Loss	Factor			Limit	Remark			
		MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	dB				
	1 2	2390.000 2390.000	18.82 7.85	27.37 27.37	4.69	0.00	50.88 39.91	74.00	-23.12	Peak Average			
	2	2380.000	1.00	41.01	4.09	0.00	39.91	04.00	14.09	uver age			

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product I	Name:	CAR	CAR DVR				Product N	lodel:	G75 802.11b Tx mode		
Γest By:		Zora	Zora			Т	Test mode: Polarization:				
Test Cha	nnel:	Lowes	t channel	channel					Horizontal	Horizontal	
Test Volt	age:	DC 24	V			Е	nvironm	ent:	Temp: 24°C Huni: 57%		
				- 27							
110 Lev	el (dBuV/m)										
100											
										~	
80									1	1	
	_		_	-					FCC PAR	T 15 (PK)	
60									/	11-1-1-1	
00		M 0 0 00	marana	امریسیر	- Arean	~Man	a. a. M	~~~~	FCC PAR	T 15 (AV)	
40	and the same		V	ALL THE STATE OF T			-wey b	2			
40											
20											
										2422	
0231	0 2320			2350	200000000000000000000000000000000000000					2422	
0231	0 2320	22.0000000				ncy (MHz)		227.54.76		2422	
0231		ReadA Level	intenna Factor	Cable			Limit	Over Limit	Remark	2422	
0 ²³¹		ReadA Level	Factor	Cable	Preamp Factor	Level	Limit	Limit		2422	
0231	Freq	Level	Factor dB/m	Cable Loss	Preamp Factor dB	Level	Limit Line	Limit dB	Remark	2422	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:		CAR D	٧R			Prod	duct Mod	el:	G75	
est By:		Zora				Test	mode:		802.11b Tx mode	
Test Channel:		Highest	channel			Pola	rization:		Vertical	
Test Voltage:		DC 24V			Envi	ironment	:	Temp: 24℃	Huni: 57%	
110 Level (dBu	V/m)		JII - 15-22							
80		~~	- John State of the State of th						FCC PART 15	(PK)
60				1	~~~	~~~	1	~	FCC PART 15	(AV)
40							2	~ -		
20										
0 2452				Fre	equency (MHz)				2500
	Freq	ReadA Level	ntenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark	
	MHz	dBu∜	dB/m	₫B	dB	dBuV/m	dBuV/m	dB		
1 248 2 248	33.500 33.500	19.47 8.41	27.57 27.57	4.81 4.81	0.00 0.00	51.85 40.79	74.00 54.00	-22.15 -13.21	Peak Average	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

	Zora	•	CAR DVR			roduct M		G75	
					T	est mode):	802.11b Tx mode	
	Highes	t channel			Р	olarizatio	n:	Horizontal	
	DC 24V		E	nvironme	ent:	Temp: 24℃	Huni: 57%		
BuV/m)									
1		-							
		4						FCC PART 15	5 (PK)
			1						
				1		- 1		FCC PART 15	5 (AV)
				man	many	~~		~~~~	~~
									2500
			F	requency	(MHz)				2500
Freq	ReadA Level	ntenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark	
MHz	dBu₹	dB/m	₫B	<u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>		
483.500 483.500	16.95 8.00	27.57 27.57	4.81 4.81	0.00 0.00	49.33 40.38	74.00 54.00	-24.67 -13.62	Peak Average	
	MHz 483.500	ReadA Freq Level MHz dBuV 483.500 16.95	ReadAntenna Freq Level Factor MHz dBuV dB/m 483.500 16.95 27.57	ReadAntenna Cable Freq Level Factor Loss MHz dBuV dB/m dB 483,500 16.95 27.57 4.81	Frequency ReadAntenna Cable Preamp Freq Level Factor Loss Factor MHz dBuV dB/m dB dB 483.500 16.95 27.57 4.81 0.00	Frequency (MHz) ReadAntenna Cable Preamp Freq Level Factor Loss Factor Level MHz dBuV dB/m dB dB dBuV/m 483.500 16.95 27.57 4.81 0.00 49.33	Frequency (MHz) ReadAntenna Cable Preamp Limit Freq Level Factor Loss Factor Level Line MHz dBuV dB/m dB dB dBuV/m dBuV/m 483.500 16.95 27.57 4.81 0.00 49.33 74.00	Frequency (MHz) ReadAntenna Cable Preamp Limit Over Freq Level Factor Loss Factor Level Line Limit MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 483,500 16,95 27,57 4.81 0.00 49,33 74,00-24,67	Frequency (MHz) Frequency (MHz) ReadAntenna Cable Preamp Limit Over Level Factor Loss Factor Level Line Limit Remark MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 483,500 16.95 27.57 4.81 0.00 49.33 74.00 -24.67 Peak

Remark.

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g mode:

Product Name:	CAR DVR	Product Model:	G75
Test By:	Zora	Test mode:	802.11g Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	DC 24V	Environment:	Temp: 24℃ Huni: 57%
Laural (dDr.d.//m)			

Freq		Antenna Factor				Limit Line		
MHz	dBu₹	dB/m	dB	<u>d</u> B	dBuV/m	dBuV/m	dB	
2390.000 2390.000				0.00 0.00				

Remark:

1 2

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

oduct N	lame:	CAR DVR				Pro	oduct Mo	del:	G75		
est By:		Zora				Te	st mode:		802.11g Tx mode		
est Chan	nnel:	Lowes	t channel			Ро	larization):	Horizontal		
est Volta	ige:	DC 24	V			En	vironmer	nt:	Temp: 24°C	Huni: 57%	
110 Leve	el (dBuV/m)										
100							_				
80				-					PCC PART	15 (DIC)	
									CCPARI	15 (FKA	
60		_							FCC PART	15 (AV)	
12.50									TOUTANT	12 (Ma)	
~~	~~~~	man	man	more	wany	maran	mm	mary	~	a (1) / / / (a)	
40	~~~~	ma	V-C-M	m	wany	m	mm	2	~	1 (n / 4 n	
40	~~~~	ma	y-cm	- may have	many			2	~1	-	
40	~~~~	ma	v		rann			2	~/		
	~~~~	· · · ·	y was		money			2	~		
20	0 2320		y com	2350	wany			2		2422	
20	0 2320	····	y and a second	2350	Frequence	y (MHz)		2		2422	
20		ReadA	intenna	Cable	Preamp		Limit			2422	
20		ReadA Level	intenna	Cable				Over Limit	Remark	2422	
20		ReadA Level	intenna Factor	Cable	Preamp Factor	Level		Limit	Remark	2422	
20	Freq	Level	ntenna Factor dB/m	Cable Loss dB	Preamp Factor dB	Level dBuV/m 52.14	Line dBuV/m 74.00	Limit 		2422	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



Product Name:	CAR DVR	Product Model:	G75
Test By:	Zora	Test mode:	802.11g Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	DC 24V	Environment:	Temp: 24°C Huni: 57%
1			



0.00 52.84 74.00 -21.16 Peak

0.00 40.70 54.00 -13.30 Average

#### Remark

2483.500

2483.500

20.46 27.57

8.32 27.57

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

4.81

4.81

2. The emission levels of other frequencies are very lower than the limit and not show in test report.



oduct Name:	CAR DVR	F	Product I	Model:	G75				
st By:	Zora			7	Test mod	e:	802.11g Tx mode		
st Channel:	nnel: Highest channel Polariza			Highest channel Polarizatio					
st Voltage:	DC 24V	E	Environm	nent:	Temp: 24°C	Huni: 57%			
110 Level (dBuV/m	)								
100					-				
80		~					FCC PAR	T 45 (DIC)	
			1				FCCPAR	1 15 (PK)	
60			1		-		FCC PAR	T 45 (AV)	
			1		~~	for	~~~~		
40						2			
20									
02452	1.1							2500	
2452			Frequ	ency (MH	z)			2500	
	ReadAntenna	Cable	Preamp		Limit	Over			
Freq	Level Factor	Loss	Factor	Level	Line	Limit	Remark		
MHz	dBu∀ dB/m	dB	dB	dBuV/m	dBuV/m	dB			
1 2483.500	18.14 27.57	4.81	0.00	50.52	74.00	-23.48	Peak		
2 2483.500	8.28 27.57	4.81	0.00	40.66	54.00	-13.34	Average		

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.





#### 802.11n(HT20):

Product Name:	CAR	DVR			Pro	duct Mod	del:	G75		
est By:	Zora				Tes	t mode:		802.11n(HT20	O) Tx mode	
est Channel:	Lowes	Lowest channel				arization		Vertical		
est Voltage:	DC 24V				Env	vironmen	t:	Temp: 24℃	Huni: 579	
110 Level (dBuV	/m)									
100			-				-			
80								FCC PART 1	5 (DIC)	
								JCC PART	SIFIL	
60							-	FCC PART 1	E (AVA	
namm	ΛΛ	an ann	man	m.A. a/	many	an many	norma	V FCC PART I	(AV)	
40	· m					311 00: 213	2			
20										
0										
2310 2320			2350	Frequenc	v (MHz)				2422	
	Read	Antenna			and the same of the same of	Limit	Over			
F	req Level	Factor	Loss	Factor	Level		Limit	Remark		
	MHz dBuV	dB/m	₫B	dB	dBuV/m	dBuV/m	dB			
1 0000	000 15.88	27.37	4.69	0.00	47.94	74.00	-26.06	Peak		
1 2390.	000 7.74	27.37	4.69	0.00	20 00	E4 00	-14 20	Average		

#### Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



roduc	t Name:	CAR	DVR			P	roduct M	odel:	G75		
est By	<i>r</i> :	Zora				To	est mode	:	802.11n(HT20) Tx mode		
est Ch	nannel:	Lowe	st channe	el .		P	olarizatio	n:	Horizontal		
est Vo	ltage:	DC 2	4V			E	nvironme	ent:	Temp: 24℃	Huni: 57%	
					11-1						
110L	evel (dBuV/m)								- 10		
100		-		-	-			-		-	
80									VCC PAR	T 15 (PK)	
60									FCC PAR	RT 15 (AV)	
-	manno	·~~	more	~~~	my	www	ww	mm-	m		
40							2000	- 2			
20									-	-	
02	310 2320			2350						2422	
-	.010 2020			2000		ency (MH	z)			2722	
	Freq	ReadA Level	ntenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark		
	MHz	dBu₹	dB/m	₫B	<u>dB</u>	dBuV/m	dBuV/m	dB			
1 2	2390.000 2390.000	19.46 8.04	27.37 27.37	4.69 4.69	0.00 0.00	51.52 40.10	74.00 54.00	-22.48 -13.90	Peak Average		

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



roduct Name	e:	: CAR DVR				Pro	duct Mod	del:	G75		
est By:		Zora				Tes	t mode:		802.11n(HT20) Tx mode		
est Channel:		Highes	t channel			Pol	arization		Vertical		
est Voltage:		DC 24	V			Env	Environment:		Temp: 24℃	Huni: 57%	
110 Level (d	BuV/m)										
100											
80		~~		~					FCC PART	15 (DK)	
				1	0				TOOTANT	10 (11)	
60									FCC PART	15 (AV)	
					ha				m		
40							- 2				
20									-		
02452									1	2500	
2.102					Frequenc	y (MHz)				2000	
	Freq		Intenna Factor		Preamp Factor		Limit Line	Over Limit	Remark		
	MHz	dBu∜	dB/m	d₿	<u>dB</u>	dBuV/m	dBuV/m	dB			
1 24 2 24	83.500 83.500	16.10 8.37	27.57 27.57	4.81 4.81	0.00 0.00	48.48 40.75	74.00 54.00	-25.52 -13.25	Peak Average		

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



oduct Name:	CAR DVR		F	Product N	/lodel:	G75			
est By:	Zora	a			7	Test mod	e:	802.11n(HT20) Tx mode	
est Channel:	High	nest chanr	nel		F	Polarizati	on:	Horizontal	
est Voltage:	DC	24V			E	Environm	ent:	Temp: 24℃	Huni: 57%
110 Level (dBuV/n	n)								
100									
		~~	~						
80		200000	1	\				FCC PART	15 (DIC)
				1				TCC PART	13 (FK)
60				1				FCC PART	15 (AV)
				1	1		~~~	~~~~	- M
40						2			
20									
02452									2500
2432				Freque	ncy (MHz)				2500
Fran	Read/ Level	Intenna	Cable	Preamp Factor	Lamal	Limit	Over Limit	Panaula	
								Nemark	
MHz		dB/m	dB			dBuV/m			
1 2483,500 2 2483,500		27.57 27.57	4.81	0.00	50.54	74.00	-23.46 -13.06	Peak Average	
2 2400.000	0.00	21.01	4.01	0.00	40.04	04.00	15.00	Wast age	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



#### 802.11n(HT40):

roduc	t Name:	CAR	DVR			P	Product M	lodel:	G75			
est By	<i>/</i> :	Zora				Т	est mode	e:	802.11n(HT4	0) Tx mode		
est Ch	nannel:	Lowe	st channe	el		P	olarizatio	on:	Vertical			
est Vo	oltage:	DC 2	4V			E	nvironm	ent:	Temp: 24℃	Huni: 57%		
110 Le	evel (dBuV/m)											
100												
80									her was	M2		
								-	FOZ PAR	T 15 (PK)		
60												
_	and a da	70 - m	mark	Marian -	man	www	non-	w	FCC PAR	T 15 (AV)		
40		V - W	coldini	0.000	V 1.77	822 S	2	90.23				
40												
20												
20												
23	310 2320		235	0	F					2442		
					Freque	ency (MHz	.)					
	Freq	ReadA	ntenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark			
						TD 777	Jp., 07/-	dB				
	MHz	dBu∀	dB/m	dB	dB	qpn/m	dbuv/m	ш				

#### Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.



- Gudet	Name:	CAR E	OVR			Pro	duct Mo	del:	G75	
st By:		Zora				Tes	st mode:		802.11n(HT40	) Tx mode
st Cha	nnel:	Lowest	t channel			Pol	arization	:	Horizontal	
st Volt	age:	DC 24\	V			Env	vironmen	t:	Temp: 24℃	Huni: 57%
110 Le	evel (dBuV/m)									
100		-					-			
								be	m . h	0.00
80								1	FCC PAR	T 15 (PK)
								1	1001741	
60								-	FCC PAR	T 15 (AV)
v	mm	menor	- market	· · · · · · · · · · · · · · · · · · ·	mm	m	m	J	1001111	, , , , , ,
40							2	-		-
20										
20										
20										
	10 2320		235	0						2442
	310 2320		235	0	Frequen	ncy (MHz)				2442
	110 2320	ReadA						Over		2442
		ReadA Level	intenna	Cable	Frequent Preamp Factor		Limit	Over Limit	Remark	2442
		ReadA Level	intenna	Cable	Preamp Factor		Limit Line		Remark	2442
	Freq	Level	ntenna Factor dB/m 27.37	Cable Loss	Preamp Factor dB	Level dBuV/m 49.72	Limit Line dBuV/m	Limit 		2442

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



Produc	t Name:	CAF	R DVR			F	Product N	lodel:	G75		
Test By	<b>:</b>	Zora	1			Т	est mode	<b>)</b> :	802.	11n(HT40)	) Tx mode
Test Ch	annel:	High	est chann	el		F	Polarizatio	on:	Verti	cal	
Test Vo	ltage:	DC 2	24V			E	nvironm	ent:	Temp	o: <b>24</b> ℃	Huni: 57%
	- I I I D. M.										
110	evel (dBuV/m)										
100											-
80		~~~	mar	nu	~~~	m			FCC	PART 15	(PK)
						1					
60/							1		FCC	PART 15	(AV)
							hun	may		- manual	~~
40											
20											
02	432		2450		Fraguer	icy (MHz)					2500
					rrequer	icy (MHZ)					
	Freq	ReadA Level	intenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark		
	MHz	dBu∀	dB/m	₫₿	dB	dBuV/m	dBuV/m	dB			
1 2	2483.500 2483.500	17.58 8.75	27.57 27.57	4.81 4.81	0.00 0.00	49.96 41.13	74.00 54.00	-24.04 -12.87	Peak Average	,	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



roduct N	lame:	CAR	DVR			Pro	oduct Mo	del:	G75	
est By:		Zora			_	Tes	st mode:		802.11n(HT	Γ40) Tx mode
est Char	nel:	Highe	st channel			Ро	larization	n:	Horizontal	
est Volta	ige:	DC 24	IV			En	vironmer	nt:	Temp: 24℃	Huni: 57%
110 Lev	el (dBuV/m)									
100								_		
		~ -								
80 /	~~~			~~	~~	m			FCC DA	RT 15 (PK)
/						1			10014	art to (FR)
60						- 4			FCC DA	RT 15 (AV)
							Manch .	Many		
40						-		- 4	2	
20										
0243	2		2450						k h	2500
243			2430		Frequen	cy (MHz)				2500
		Read	Antenna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line		Remark	
	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBuV/m	dB		
1 2	2483.500 2483.500	19.63 8.61	27.57 27.57	4.81	0.00	52.01 40.99		-21.99 -13.01	Peak Average	
LANG	ON A SECURITY OF THE PROPERTY		1065077576		10.00000	2647F-30F1F-0				

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



## 6.7 Spurious Emission

### 6.7.1 Conducted Emission Method

0.7.1 Conducted Linission								
Test Requirement:	FCC Part 15 C Section 15.247 (d)							
Test Method:	ANSI C63.10:2013 and KDB 558074							
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.							
Test setup:	Spectrum Analyzer							
	Non-Conducted Table  Ground Reference Plane							
Test Instruments:	Refer to section 5.8 for details							
Test mode:	Refer to section 5.3 for details							
Test results:	Refer to the FCC ID: 2ALJ7-G70							



#### 6.7.2 Radiated Emission Method

6.7.2 Radiated Emission M										
Test Requirement:	FCC Part 15 C S	ection 15.209	and 15.205							
Test Method:	ANSI C63.10:201	13								
Test Frequency Range:	9kHz to 25GHz									
Test Distance:	3m									
Receiver setup:	Frequency	Detector	RBW	VE	3W	Remark				
· ·	30MHz-1GHz	Quasi-peak	120KHz	300KHz		Quasi-peak Value				
	Above 1GHz	Peak	1MHz		/Hz	Peak Value				
		RMS			1Hz	Average Value				
Limit:	Frequency 30MHz-88MH		nit (dBuV/m @3 40.0	m)	0	Remark uasi-peak Value				
	88MHz-216MH	1	43.5			uasi-peak Value				
	216MHz-960M		46.0			uasi-peak Value				
	960MHz-1GH		54.0			uasi-peak Value				
			54.0			Average Value				
	Above 1GHz		74.0 he top of a rot			Peak Value				
	The table was highest radia?  2. The EUT was antenna, who tower.  3. The antennathe ground to Both horizon make the med.  4. For each suscase and the meters and to find the med.  5. The test-reconspecified Base.  6. If the emission the limit specified EUT whave 10dB med.	as rotated 36 ation. Its set 3 mete ich was mount height is various determine to determine that and vertice asurement. Spected emisten the antenrate rota table aximum reactiver system and width with on level of the cified, then to would be reponargin would.	of degrees to do a segment of the door the top the door the top the maximum was polarization as to the door to the door the door to the do	he interpretation of a value of a value of the was a control of the was	erferent variable to four of the to he ante arrange hts fro degree tect Funde. e was 1 ped and emiss one u	re-height antenna remeters above field strength. enna are set to ed to its worst m 1 meter to 4 es to 360 degrees unction and 10dB lower than d the peak values ions that did not sing peak, quasi-				
Test setup:	Below 1GHz  Turn Table  Ground P  Above 1GHz	minnig			_					







#### Measurement Data (worst case):

#### **Below 1GHz:**

Product Name:	CAR DVR	Product Model:	G75
Test By:	Zora	Test mode:	Wi-Fi Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	DC 12V	Environment:	Temp: 24℃ Huni: 57%



	Freq		Antenna Factor				Limit Line		Remark
	MHz	dBu∜	dB/m	₫B	dB	$\overline{dBuV/m}$	dBuV/m	dB	
1	66.266	40.90	10.27	1.41	29.75	22.83	40.00	-17.17	QP
2	111.347	44.13	12.01	2.07	29.45	28.76	43.50	-14.74	QP
3	148.441	46.60	8.52	2.50	29.23	28.39	43.50	-15.11	QP
4	334.859	37.58	14.31	3.05	28.53	26.41	46.00	-19.59	QP
5	558.730	41.88	18.22	3.90	29.07	34.93	46.00	-11.07	QP
1 2 3 4 5 6	668.142	38.51	19.80	3.97	28.74	33.54	46.00	-12.46	QP

#### Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



ouuci i	Name:	CAF	R DVR			P	roduct M	odel:	G75		
est By:		Zora	ı			T	est mode	:	Wi-Fi Tx m	ode	
est Freq	luency:	30 M	1Hz ~ 1 GI	Hz		P	olarizatio	n:	Horizontal	Horizontal	
est Volta	age:	DC	12V			Environment:			Temp: 24℃	Huni: 57%	
70 60 50	el (dBuV/m)			1		2		3	FCC PART15	CLASS B	
20	Lameran	porch	- June		who		you have of		John Ash July		
20	Lamed Market	o towns	Lalvar	100	Frequer	200 ncy (MHz)	y problem of		500	1000	
10		Read	antenna Factor	Cable	Frequer Preamp Factor	ncy (MHz)	Limit Line	Over		1000	
10		Read		Cable	Preamp	ncy (MHz) Level				1000	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.





#### **Above 1GHz**

				802.11	b			
			Test o	hannel: Low	est channel			
				etector: Pea				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4824.00	49.78	30.94	6.81	41.82	45.71	74.00	-28.29	Vertical
4824.00	51.64	30.94	6.81	41.82	47.57	74.00	-26.43	Horizontal
			Det	ector: Avera	ige Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4824.00	44.56	30.94	6.81	41.82	40.49	54.00	-13.51	Vertical
4824.00	48.68	30.94	6.81	41.82	44.61	54.00	-9.39	Horizontal
			Test o	hannel: Mid	dle channel			
			D	etector: Pea	k Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4874.00	49.62	31.20	6.85	41.84	45.83	74.00	-28.17	Vertical
4874.00	50.45	31.20	6.85	41.84	46.66	74.00	-27.34	Horizontal
			Det	ector: Avera	ige Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4874.00	44.36	31.20	6.85	41.84	40.57	54.00	-13.43	Vertical
4874.00	47.12	31.20	6.85	41.84	43.33	54.00	-10.67	Horizontal
			Test c	hannel: High	nest channel			
			D	etector: Pea	k Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4924.00	48.07	31.46	6.89	41.86	44.56	74.00	-29.44	Vertical
4924.00	50.10	31.46	6.89	41.86	46.59	74.00	-27.41	Horizontal
			Det	ector: Avera	ige Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4924.00	43.91	31.46	6.89	41.86	40.40	54.00	-13.60	Vertical
4924.00	47.76	31.46	6.89	41.86	44.25	54.00	-9.75	Horizontal
Remark:								

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.





Test channel: Lowest channel					802.11	<u> </u>			
Prequency (MHz)				Test c					
MHz    Level									
A824.00		Level	Factor	Loss	Factor			Limit	Polarization
Prequency (MHz)	4824.00	47.26	30.94	6.81	41.82	43.19	74.00	-30.81	Vertical
Frequency (MHz)	4824.00	48.63	30.94	6.81	41.82	44.56	74.00	-29.44	Horizontal
Company   Comp			T	Det	ector: Avera	ige Value	T		
Test channel: Middle channel		Level	Factor	Loss	Factor			Limit	Polarization
Test channel: Middle channel	4824.00	43.57	30.94	6.81	41.82		54.00		Vertical
Prequency (MHz)	4824.00	45.36	30.94	6.81	41.82	41.29	54.00	-12.71	Horizontal
Prequency (MHz)									
Frequency (MHz)				Test o	hannel: Mid	dle channel			
(MHz)         Level (dBuV)         Factor (dB/m)         Loss (dB)         Factor (dB)         (dB)         (dBuV/m)         (dBuV/m)         Limit (dB)           4874.00         47.15         31.20         6.85         41.84         43.36         74.00         -30.64         Vertical           4874.00         49.26         31.20         6.85         41.84         45.47         74.00         -28.53         Horizontal           Detector: Average Value           Frequency (MHz)         Read (dB/m)         Antenna (dB/m)         Level (dB/m)         Limit Line (dBuV/m)         Over (dB/m)         Polarization           4874.00         43.15         31.20         6.85         41.84         39.36         54.00         -14.64         Vertical           4874.00         44.89         31.20         6.85         41.84         41.10         54.00         -12.90         Horizontal           Test channel: Highest channel           Detector: Peak Value           Frequency (MHz)         Read (Antenna (ABuV/m))         Level (ABuV/m)         Limit Line (ABuV/m)         Over (ABuV/m)         Polarization           (MHz)         (dBuV)         (dBm)         (dBm)         (dBm)         (dBm)					etector: Pea	k Value			
Test channel: Highest channel   Sequency (MHz)   Read (Antenna (ABV4.00)   Antenna (		Level	Factor	Loss	Factor			Limit	Polarization
Detector: Average Value   Frequency (MHz)	4874.00	` ,	, ,	` ,	41.84	43.36	74.00	` '	Vertical
Frequency (MHz)	4874.00	49.26	31.20	6.85	41.84	45.47	74.00	-28.53	Horizontal
Company   Comp				Det	ector: Avera	ige Value			
Test channel: Highest channel   Detector: Peak Value   Detector: Peak Value   Cable   Preamp   Level   (dBuV)   (dB/m)   (dB)   (dB)		Level	Factor	Loss	Factor			Limit	Polarization
Test channel: Highest channel	4874.00	43.15	31.20	6.85	41.84	39.36	54.00	-14.64	Vertical
Detector: Peak Value   Frequency (MHz)   Read   Level (ABuV) (A	4874.00	44.89	31.20	6.85	41.84	41.10	54.00	-12.90	Horizontal
Detector: Peak Value   Frequency (MHz)   Read   Level (ABuV) (A									
Frequency (MHz)         Read Level (dBuV)         Antenna (dBw)         Cable Loss (dB)         Preamp Factor (dB)         Level (dBuV/m)         Limit Line (dBuV/m)         Over Limit (dB)         Polarization (dB)           4924.00         47.52         31.46         6.89         41.86         44.01         74.00         -29.99         Vertical           4924.00         48.52         31.46         6.89         41.86         45.01         74.00         -28.99         Horizontal				Test c	hannel: High	nest channel			
(MHz)         Level (dBuV)         Factor (dB/m)         Loss (dB)         Factor (dB)         (dBuV/m)         (dBuV/m)         Limit (dB)           4924.00         47.52         31.46         6.89         41.86         44.01         74.00         -29.99         Vertical           4924.00         48.52         31.46         6.89         41.86         45.01         74.00         -28.99         Horizontal					etector: Pea	k Value	T	T	
4924.00 48.52 31.46 6.89 41.86 45.01 74.00 -28.99 Horizontal		Level	Factor	Loss	Factor			Limit	Polarization
	4924.00	47.52	31.46	6.89	41.86	44.01	74.00	-29.99	Vertical
Detector: Average Value	4924.00	48.52	31.46	6.89	41.86	45.01	74.00	-28.99	Horizontal
				Det	ector: Avera	ige Value			
(MHz)   '   '		Read		Cable	·				Polarization
Level Factor Loss Factor (dBuV/m) (dBuV/m) Limit	-	Level	Factor	Loss	Factor	(dBuV/m)	(dBuV/m)	Limit	
(dBuV) (dB/m) (dB) (dB) (dB)		(dBuV)	(dB/m)	(dB)	(dB)			(dB)	
4924.00 43.27 31.46 6.89 41.86 39.76 54.00 -14.24 Vertical	4924.00	43.27	31.46	6.89		39.76	54.00	-14.24	Vertical
4924.00 44.86 31.46 6.89 41.86 41.35 54.00 -12.65 Horizontal		44.86	31.46	6.89	41.86	41.35	54.00	-12.65	Horizontal

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.





				802.11n(H	,			
					est channel			
	1	l	D	etector: Pea	k Value	1	·	
Frequency	Read	Antenna	Cable	Preamp	Level	Limit Line	Over	Polarization
(MHz)	Level (dBuV)	Factor (dB/m)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	
4824.00	47.56	36.06	6.81	41.82	48.61	74.00	-25.39	Vertical
4824.00	48.69	36.06	6.81	41.82	49.74	74.00	-23.39	Horizontal
4024.00	40.03	30.00	l.	ector: Avera		74.00	-24.20	Tionzontai
Frequency	Read	Antenna	Cable	Preamp	Level	Limit Line	Over	Polarization
(MHz)	Level	Factor	Loss	Factor	(dBuV/m)	(dBuV/m)	Limit	Folanzation
(**** 12)	(dBuV)	(dB/m)	(dB)	(dB)	(4241,)	(4241/111)	(dB)	
4824.00	43.25	36.06	6.81	41.82	44.30	54.00	-9.70	Vertical
4824.00	44.17	36.06	6.81	41.82	45.22	54.00	-8.78	Horizontal
	•		•				•	
			Test o	hannel: Mid	dle channel			
			D	etector: Pea	k Value			
Frequency	Read	Antenna	Cable	Preamp	Level	Limit Line	Over	Polarization
(MHz)	Level	Factor	Loss	Factor	(dBuV/m)	(dBuV/m)	Limit	
	(dBuV)	(dB/m)	(dB)	(dB)			(dB)	
4874.00	46.89	36.32	6.85	41.84	48.22	74.00	-25.78	Vertical
4874.00	48.57	36.32	6.85	41.84	49.90	74.00	-24.10	Horizontal
_	1	Τ _		ector: Avera		Ι	l -	
Frequency	Read	Antenna	Cable	Preamp	Level	Limit Line	Over	Polarization
(MHz)	Level (dBuV)	Factor (dB/m)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	
4874.00	42.69	36.32	6.85	41.84	44.02	54.00	-9.98	Vertical
4874.00	44.14	36.32	6.85	41.84	45.47	54.00	-8.53	Horizontal
107 1.00	11111	00.02	0.00	11.01	10.17	01.00	0.00	Honzontai
			Test c	hannel: High	nest channel			
				etector: Pea				
Frequency	Read	Antenna	Cable	Preamp	Level	Limit Line	Over	Polarization
(MHz)	Level	Factor	Loss	Factor	(dBuV/m)	(dBuV/m)	Limit	
	(dBuV)	(dB/m)	(dB)	(dB)			(dB)	
4924.00	47.62	36.58	6.89	41.86	49.23	74.00	-24.77	Vertical
4924.00	47.95	36.58	6.89	41.86	49.56	74.00	-24.44	Horizontal
	T	T		ector: Avera	ı	T	1	
Frequency	Read	Antenna	Cable	Preamp	Level	Limit Line	Over	Polarization
(MHz)	Level	Factor	Loss	Factor	(dBuV/m)	(dBuV/m)	Limit	
4004.00	(dBuV)	(dB/m)	(dB)	(dB)	AF 47	E4.00	(dB)	\/a=t:a=1
4924.00	43.56	36.58	6.89	41.86	45.17	54.00	-8.83	Vertical
4924.00	43.75	36.58	6.89	41.86	45.36	54.00	-8.64	Horizontal
Remark:								

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.





				802.11n(H	T40)			
				hannel: Low				
	I			etector: Pea				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4844.00	47.56	36.06	6.81	41.82	48.61	74.00	-25.39	Vertical
4844.00	48.25	36.06	6.81	41.82	49.30	74.00	-24.70	Horizontal
			Det	ector: Avera	ge Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4844.00	43.52	36.06	6.81	41.82	44.57	54.00	-9.43	Vertical
4844.00	44.17	36.06	6.81	41.82	45.22	54.00	-8.78	Horizontal
				hannel: Mid				
				etector: Pea	k Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4874.00	47.69	36.32	6.85	41.84	49.02	74.00	-24.98	Vertical
4874.00	47.85	36.32	6.85	41.84	49.18	74.00	-24.82	Horizontal
			Det	ector: Avera	ge Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4874.00	43.63	36.32	6.85	41.84	44.96	54.00	-9.04	Vertical
4874.00	43.79	36.32	6.85	41.84	45.12	54.00	-8.88	Horizontal
					est channel			
	1		D ₁	etector: Pea				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4904.00	46.85	36.45	6.87	41.85	48.32	74.00	-25.68	Vertical
4904.00	48.19	36.45	6.87	41.85	49.66	74.00	-24.34	Horizontal
			Det	ector: Avera	ge Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4904.00	42.89	36.45	6.87	41.85	44.36	54.00	-9.64	Vertical
4904.00	43.92	36.45	6.87	41.85	45.39	54.00	-8.61	Horizontal

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.