Análisis Matemático II

Doble Grado en Ingeniería Informática y Matemáticas

Objetivos de aprendizaje para el tema 13

- 1. Conocer y comprender el enunciado de los siguientes resultados, así como la forma en que se usan en la práctica:
 - a) Teorema de Tonelli, con especial atención al caso particular de una función característica
 - b) Teorema de Fubini
- 2. En ejemplos sencillos, saber estudiar la integrabilidad de funciones de dos o tres variables, usando el teorema de Tonelli
- **3.** En ejemplos sencillos, saber calcular áreas, volúmenes y, en general, integrales dobles o triples, usando el teorema de Fubini.

1 - as Teorema de Jonelli

Si fire Tool función medible positivo, se tiene

• fx ex medible pot xolap y fr ex medible pot yolap

• das funciones q y q definidas opd en /Rp y IRp respectivo mente, por

que = fre fox, y dy pot xolap y que y fox, y dx pot yolap

son medibles, verificando

fixe fox, y dox, y = fre que dx = fre que y dy

Para todo $\mathbb{E}^{C}|R^{N}$ conjunto medible se tiene: $\frac{1}{100} \mathbb{E}^{N} = \mathbb{E}^{N}$

bs recreema de Fubini

Vfch, CIR" > se tiene que

• $f_x \in \mathcal{L}_1 \subset IR^{\varphi}$ pct $x \in IR^{\varphi}$ y $f^v \in \mathcal{L}_1 \subset IR^{\varphi}$) pct $y \in IR^{\varphi}$ • das funciones (y, y), definidas oped en IR^{φ} y IR^{φ} respectivamente pore $(y \in x) = \int_{IR^{\varphi}} f(x, y) dy$ pct $x \in IR^{\varphi}$ y $(y \in x) = \int_{IR^{\varphi}} f(x, y) dx$ pct $y \in IR^{\varphi}$ verifican que $(y \in \mathcal{L}_1 \subset IR^{\varphi})$ y $(y \in \mathcal{L}_1 \subset IR^{\varphi})$ con $\int_{IR^{\varphi}} f(x, y) d(x, y) = \int_{IR^{\varphi}} (y \in x) dx = \int_{IR^{\varphi}} (y \in x) dx$ Uso $\int_{IR^{\varphi}} f(x, y) d(x, y) = \int_{IR^{\varphi}} f(x, y) d(x) dx = \int_{IR^{\varphi}} (x \in x) d(x) dx$

Si alguna no existe o no courciden, f no es integrable en IR"