1. Lr0.01 node=128:



Lr0.01 node=256:



Lr0.01 node=512:





Lr0.001 node=512:





Lr0.0001 node=512:





# Train acc:

| train acc | 10^-2 | 10^-3 | 10^-4 |
|-----------|-------|-------|-------|
| train acc | 86.77 | 88.89 | 80.42 |
| nodes=128 | 00.11 | 00.00 | 00.12 |
| train acc | 85.71 | 88.36 | 89.42 |
| nodes=256 | 65.71 | 00.30 | 09.42 |
| train acc | 89.95 | 87.83 | 89.42 |
| nodes=512 | 09.90 | 01.03 | 09.42 |

### Train lass

| train loss | 10^-2  | 10^-3  | 10^-4  |
|------------|--------|--------|--------|
| train loss | 0.3086 | 0.3051 | 0.4635 |
| nodes=128  | 0.3000 | 0.3031 | 0.4035 |
| train loss | 0.3095 | 0.2059 | 0.3309 |
| nodes=256  | 0.3085 | 0.2958 | 0.3298 |
| train loss | 0.3905 | 0.2012 | 0.0744 |
| nodes=512  | 0.2805 | 0.3013 | 0.2741 |

#### Val acc:

| val acc   | 10^-2 | 10^-3 | 10^-4  |
|-----------|-------|-------|--------|
| val acc   | 00.70 | 00.70 | 74, 07 |
| nodes=128 | 82.72 | 82.72 | 14. 01 |
| val acc   | 07.65 | 96.49 | 90.05  |
| nodes=256 | 87.65 | 86.42 | 80.25  |
| val acc   | 00.70 | 02.05 | 00.70  |
| nodes=512 | 82.72 | 83.95 | 82.72  |

## Val loss:

| val loss  | 10^-2   | 10^-3   | 10^-4   |
|-----------|---------|---------|---------|
| val loss  | 0. 4056 | 0. 4174 | 0. 6643 |
| ndoes=128 | 0.4030  | 0.4114  | 0.0045  |
| val loss  | 0. 3138 | 0. 4588 | 0. 5171 |
| ndoes=256 | 0.0100  | 0.4500  | 0. 5171 |
| val loss  | 0. 4741 | 0. 3945 | 0. 4278 |
| ndoes=512 | 0.4741  | 0. 5945 | 0.4210  |

#### Test acc:

| test acc              | 10^-2       | 10^-3     | 10^-4     |
|-----------------------|-------------|-----------|-----------|
| test acc<br>nodes=128 | 80. 6451613 | 80. 64516 | 74. 19355 |
| test acc<br>nodes=256 | 77. 4193548 | 74. 19355 | 74. 19355 |
| test acc<br>nodes=512 | 83. 8709677 | 80. 64516 | 77. 41935 |

不變時,大多數情況下準確率 (ACC) 會下降,而損失值 (loss) 則會上升。相反地,在相同 learning rate 的情況下,當 nodes 數設為 256 時,不論是準確率還是損失值表現都最好,其次是 nodes 為 128,再來是 512。因此,最佳的參數組合為 learning rate =  $10^{-2}$ 、nodes = 256。

3.

訓練集與測試集準確率差異通常是過擬合所造成。模型過度學習訓練資料中的 細節與雜訊,導致無法良好泛化至未見資料。此外,模型過於複雜、資料量不 足、未正確使用正則化(如 Dropout 或 L2)也可能造成此現象。若訓練與測試 資料分布不同或發生資料洩漏,也會導致表現差距。解法包括交叉驗證、簡化 模型結構與正則化技巧的應用。

4.

特徵選擇的目的在於找出對模型預測最有幫助的欄位。像是我會先看每個欄位跟目標變數的關係,例如數值型的我會用相關係數,類別型的可以看分布情況。也可以透過模型本身去判斷哪些特徵比較重要,例如用樹模型觀察feature importance。選對特徵能讓模型學得更快、準確率更高,也比較不容易過擬合。

5.

雖然人工神經網路很常見,但它不一定適合處理表格資料,因為表格資料不像影像或語音那樣有明確的結構。我覺得比較適合的模型是那種能根據不同欄位特性去學習的,例如有注意力機制的模型,它會自己判斷哪些欄位比較重要,動態調整學習方向。這樣不只提升準確率,也讓模型在資料稀疏或異質性高的情況下還是有穩定表現。另外,這種模型通常也有比較強的可解釋性,對於需要知道模型怎麼判斷的情境很有幫助。