COSC 290 Discrete Structures

Lecture 3: Functions

Prof. Michael Hay Monday, Sep. 4, 2017 Colgate University

Sequences

Plan for today

- 1. Sequences
- 2. CS Connections: traceroute
- 3. Functions
- 4. CS Connections: hash tables

Sets vs. Sequences

A set is an unordered collection. Notation: curly braces. Example: $VarsitySports := \{basketball, soccer, \dots \}$.

A sequence is an ordered collection. Notation: angle brackets. Example: Location := (latitude, longitude).

2

Cartesian product

The Cartesian product takes two sets and generates a set of ordered pairs (sequences of length two).

$$A \times B := \{ \langle a, b \rangle \mid a \in A \text{ and } b \in B \}$$

Ex: let $A := \{ \text{Colgate}, '\text{Gate} \} \text{ and } B := \{ \text{ raiders}, \text{University}, \text{hockey} \}.$ $A \times B = ?$

More than one Cartesian product

The Cartesian product of sets A and B is defined as

$$A \times B := \{ \langle a, b \rangle \mid a \in A \text{ and } b \in B \}$$

Continuing example, if $A := \{ \text{Colgate}, '\text{Gate} \}$ and $B := \{ \text{raiders}, \text{University}, \text{hockey} \}$ and $C := \{ ! \}$.

What about

$$(A \times B) \times C = ?$$
 $A \times (B \times C) = ?$

If you look closely at the definition... $(A \times B) \times C$ produces a set of elements of the form $\langle \langle a, b \rangle, c \rangle$.

More than one Cartesian product

The Cartesian product of sets A and B is defined as

$$A \times B := \{ \langle a, b \rangle \mid a \in A \text{ and } b \in B \}$$

Continuing example, if $A := \{ \text{Colgate}, '\text{Gate} \}$ and $B := \{ \text{raiders}, \text{University}, \text{hockey} \}$ and $C := \{ ! \}.$ What about

$$(A \times B) \times C = ?$$
 $A \times (B \times C) = ?$

More than one Cartesian product

The Cartesian product of sets A and B is defined as

$$A \times B := \{ \langle a, b \rangle \mid a \in A \text{ and } b \in B \}$$

Continuing example, if $A := \{ \text{Colgate}, '\text{Gate} \}$ and $B := \{ \text{raiders}, \text{University}, \text{hockey} \}$ and $C := \{ ! \}$.

What about

$$(A \times B) \times C = ?$$
 $A \times (B \times C) = ?$

If you look closely at the definition... $(A \times B) \times C$ produces a set of elements of the form $\langle (a,b),c \rangle$.

This is awkward. Instead, we define it as

$$\mathsf{A} \times \mathsf{B} \times \mathsf{C} := \{\, \langle a, b, c \rangle \mid a \in \mathsf{A} \text{ and } b \in \mathsf{B} \text{ and } c \in \mathsf{C} \,\}$$

n-ary Cartesian product

For sets A₁, A₂, ..., A_n, the n-ary Cartesian product is defined as

$$A_1 \times A_2 \times \cdots \times A_n := \{ \langle a_1, a_2, \dots, a_n \rangle \mid a_1 \in A_1 \text{ and } a_2 \in A_2 \dots \text{ and } a_n \in A_2 \}$$

n-ary Cartesian product

For sets $A_1, A_2, ..., A_n$, the n-ary Cartesian product is defined as

$$A_1 \times A_2 \times \dots \times A_n := \{\; \langle \alpha_1, \alpha_2, \dots, \alpha_n \rangle \; | \; \alpha_1 \in A_1 \; \text{and} \; \alpha_2 \in A_2 \dots \; \text{and} \; \alpha_n \in A_2 \; \}$$

If A_1, \dots, A_n are all the same set A, we can use this shorthand:

$$A^n := \underbrace{A \times A \times \cdots \times A}_{n \text{ times}}$$

Back to Example

Let $A := \{ Colgate, 'Gate \}$ and $B := \{ raiders, University, hockey \}$ and $C := \{ 1 \}.$

$$A \times B \times C =$$

Back to Example

Let $A := \{ Colgate, 'Gate \}$ and $B := \{ raiders, University, hockey \}$ and $C := \{ 1 \}.$

Back to Example

Let $A := \{ Colgate, 'Gate \}$ and $B := \{ raiders, University, hockey \}$ and $C := \{ ! \}.$

```
\begin{split} A \times B \times C &= \{ &\langle \text{Colgate, raiders, } \rangle \\ &\langle \text{Colgate, University, } \rangle \\ &\langle \text{Colgate, hockey, } \rangle \\ &\langle \text{Gate, raiders, } \rangle \\ &\langle \text{Gate, University, } \rangle \\ &\langle \text{Gate, hockey, } \rangle \} \end{split}
```

 $A^2 =$

Sequences and data types

In programming, we have many different data types that can all be thought of as special cases of sequences.

- · A string is a sequence of characters.
- A vector is meant to represent a sequence of ℝ, but each real number is approximated by a float
- In Java, int[] x is a sequence of integers in the interval $[-2^{31}, 2^{31} 1]$
- In Python, a_list = ['a', 4.3, True] is a sequence of Python objects.

Back to Example

Let $A := \{ Colgate, 'Gate \}$ and $B := \{ raiders, University, hockey \}$ and $C := \{ ! \}.$

```
A × B × C = { (Colgate, raiders, I), I (Colgate, University, I), (Colgate, hockey, I) ('Gate, raiders, I), ('Gate, raiders, I), ('Gate, Hockey, I)}

A<sup>2</sup> = { (Colgate, Colgate), (Colgate, 'Gate), ('Gate, Colgate), ('Gate, Colgat
```

Pset 3

We will go over a couple of problems from the *first half* of pset 3. Which ones would you like to review?

Pset 3

Please turn in problem set 3. Pass to middle aisle.

CS Connections: traceroute

When you type www.auckland.ac.nz into a web browser, what path through the Internet is taken to reach this website?

- \$ man traceroute
- \$ traceroute -m 10 -n www.auckland.ac.nz
 Geography overlaid:

http://csvoss.scripts.mit.edu/traceroute/

CS Connections: traceroute

Poll: traceroute

Let's say that traceroute returns a path from your IP address to a target IP address. The path can be at most 10 hops long.

Let S denote the set of all possible IP addresses.

Which of the following is the best representation for the set of all possible traceroute outputs?

- A) S
- B) $S \times S$
- C) P(S)
- D) $S \cup S^2 \cup S^3 \cup \cdots \cup S^{10}$
- E) S¹⁰

Functions

What is a function?

Is this a function from X to Y?

What is a function?

Is this a function from X to Y?

No. Some x is mapped to more than y.

What is a function?

Is this a function from X to Y?

What is a function?

Is this a function from X to Y?

No. Some x is not mapped to any y.

What is a function?

Is this a function from Y to X?

What is a function?

Is this a function from X to Y?

What is a function?

Let X and Y be sets.

A function f from X to Y, written $f: X \to Y$, assigns each input value $x \in X$ to a unique output value $y \in Y$.

We use f(x) to denote the unique value from Y assigned to x by function f.

- For every element $x \in X$, f(x) is always defined.
- Every element $x \in X$ is mapped to only one value in Y.

13

Terminology

- · Domain: X
- · Codomain: Y
- · Image (aka range): the y values that correspond to function outputs.

$$\{ y \in Y : \text{there is some } x \in X \text{ where } f(x) = y \}$$

- Function composition: $(f \circ g)(x)$ is same as f(g(x))
- · Onto, one-to-one, bijective functions
- · Polynomials

One-to-one

One-to-one

One-to-one: for every $y \in Y$, there is at most one $x \in X$ such that f(x) = y.

Onto

17

Onto

Onto: for every $y \in Y$, there is at least one $x \in X$ such that f(x) = y.

Bijective

A function is bijective if it is both one-to-one and onto.

0

Poll: analyzing functions, part o

Let
$$f : \{ 0, 1, 2, 3, 4, 5 \} \rightarrow \{ 0, 1, 2, 3, 4, 5 \}$$
 where

$$f(x) := 2x \mod 6$$

This function is

- A) One-to-one
- B) Onto
- C) Bijective
- D) None of the above

Poll: analyzing functions, part 1

Let
$$g : \{0, 1, 2, 3, \dots, 9\} \rightarrow \{0, 1, 2, 3, 4\}$$
 where

$$q(x) := |x/2| \mod 5$$

This function is

- A) One-to-one
- B) Onto
- C) Bijective
- D) None of the above

Poll: analyzing functions, part 2

Let
$$h: \{0,1,2,3,4\} \rightarrow \{0,1,2,3,4\}$$
 where

$$h(x) := 2x \mod 5$$

This function is...

- A) One-to-one
- B) Onto
- C) Bijective
- D) None of the above

23

24

Poll: perfect hash function

A perfect hash function for a set S is a hash function $h:S\to\mathbb{Z}^{\geq 0}$ that maps distinct elements in S to a set of non-negative integers, with no collisions.

For a hash function to be perfect, it must be...

- A) One-to-one
- B) Onto
- C) Bijective
- D) None of the above

CS Connections: hash tables