Web scraping

Week 14

AEM 2850: R for Business Analytics Cornell Dyson Spring 2022

Announcements

Final project groups posted on canvas

Choose final project data and plan by this Thursday

More details in a few minutes

Questions before we get started?

Plan for today

Course evaluations

Final project guidance

Web scraping basics

Web scraping with rvest

- Cornell sports
- College rankings

Course evaluations

Course evaluations

I take feedback seriously and will use it to improve this course!

Extra useful since this is the first offering of AEM 2850

Concrete suggestions are most helpful

I would appreciate your feedback through two channels:

- 1. Reflection Week 15 Course Feedback Survey
- 2. University course evaluations

Both will be anonymous

University course evaluations

Anonymous: we just get summary reports, after grades are submitted

I will give you time to complete them in class next Tuesday

I will award a bonus point on Reflection 15 for completing evaluations

Thank you in advance for your feedback!

Final project

Where to start?

The final project is intentionally open-ended: I want you to choose a topic and dataset that are as interesting and useful to you as possible

Since we do not have examples from past years, here are a few random ideas:

- Write a program to automate an investment plan
- Use functions to compute business analytics metrics for different companies
- Study the relationship twitter activity and a company's performance
- Construct a prediction model for future stock price movements
- Develop a pricing strategy for a specific product

See the preliminary guidance on the course site for more details on these

Key steps and timeline

Step 1: Choose a group by Friday, April 29

Step 2: Choose data and make a plan by Thursday, May 5

Step 3: Execute your plan

Step 4: Submit your final project by Thursday, May 19 at 4:30pm

Step 2: Choose data and make a plan

I posted a list of data sources for inspiration on the course site

You can also start by coming up with a project idea and then finding data

Your project must use at least one of the following special topics:

- space
- text
- functions
- prediction methods
- web scraping

Submit a few sentences describing your data, plan, and special topic(s) on canvas

Expectations and grading

I will post more detailed instructions and a grading rubric over the next week

What do I expect? How long should it be? etc.

- As a rule of thumb, this project is worth 130/50 = 2.6x mini project 1
- I will adjust my expectations accordingly
- So you might want to adjust your effort

Any questions?

Web scraping basics

What is web scraping?

Getting data or "content" off the web and onto our computers

We get content off the web all the time!

- Copy and paste
- Read and take notes
- Screenshot

The goal of web **scraping** is to write computer code to help us automate this process and store the results in a machine-readable format

Why would we want to scrape data?

When is web scraping useful?

- When the data is publicly available
- When you can't get the data in a more convenient format

When is web scraping not useful?

- When data is publicly available in other formats (e.g., csv)
- When the site owner offers a way to access data directly

Web scraping is time consuming and costly (for both you and "them")

Server-side vs client-side content

1. Server-side

- Host server "builds" site and sends HTML code that our browser renders
- All the information is embedded in the website's HTML

2. Client-side

- Site contains an empty template of HTML and CSS
- When we visit, our browser sends a request to the host server
- The server sends a response script that our browser uses to populate the HTML template with information we want

We will focus on server-side web scraping due to time constraints

HTML stands for "HyperText Markup Language" and looks like this:

```
<html>
<head>
  <title>Page title</title>
</head>
<body>
  <h1 id='first'>A heading</h1>
  Some text &amp; <b>some bold text.</b>
  <img src='myimg.png' width='100' height='100'>
</body>
```

HTML has a hierarchical structure formed by **elements** that consist of:

- 1. a start tag
 - optional attributes
- 2. an end tag
- 3. contents in between tags

HTML has a hierarchical structure formed by **elements** that consist of:

```
1. a start tag (e.g., <h1>)
o optional attributes (e.g., id='first')
2. an end tag (e.g., </h1>)
3. contents in between tags (e.g., A heading)
```

Elements

- There are over 100 HTML elements
- Google tags to learn about them as needed

Contents

- Most elements can have content in between start and end tags
- Content can be text or more elements (as children)

Attributes

- Attributes like id and class are used with CSS to control page appearance
- These attributes are useful for scraping data

What is CSS?

CSS stands for Cascading Style Sheets

Tool for defining visual appearance of HTML

CSS selectors help identify what we want to scrape

We will learn by example using the extension/bookmarklet SelectorGadget

Web scraping with rvest

The rvest package

rvest (as in "harvest") is part of the tidyverse

```
library(rvest) # installed with tidyverse but needs to be loaded
```

We will cover several functions that make it easy to scrape data from web pages:

- read_html reads HTML, much like read_csv reads .csv files
- html_element(s) find HTML elements using CSS selectors or XPath expressions
- html_text2 retrieves text from HTML elements
- html_table parses HTML tables into data frames

Let's learn these commands by working through two examples

Example 1: Cornell Big Red on Wikipedia

How could we scrape a list of varsity sports?

Option 1: use dt tag to get headings

Championship teams [edit]

Baseball Main article: Cornell Big Red baseball • lvv 1972, 1977, 1979, 1982, 2012 • EIBL 1939, 1940, 1952, 1972, 1977^[6] Men's basketball Main article: Cornell Big Red men's basketball • lvy 1988,^[7] 2008, 2009,^[8] 2010^[9] Women's basketball Poster illustration of a Cornell Main article: Cornell Big Red women's basketball baseball player, 1908. lvv 2008^[10] **Men's sports Women's sports** Men's cross country Baseball Basketball Heptagonal Champions 1939, 1940, 1953, 1954, 1955, 1957, 1961, 1963, 1993 Ivy Champions 1957, 1961, 1963, 1992, 1993^[11] Basketball Cross country Women's cross country Cross country Equestrian Heptagonal Champions 1991, 1992, 1993, 1998, 2011, 2012^[12] Football Fencing Football Field hockey Golf Main article: Cornell Big Red foot Clear (77) **Toggle Position** Help XPath National 1915, 1921, 1922, 1939 ICE HOCKE

Scraping text using dt tag

Use html_elements() and html_text2() to extract the sports

```
big_red <- read_html("https://en.wikipedia.org/wiki/Cornell_Big_Red")</pre>
big red text <- big red %>%
  html_elements("dt") %>% # dt tag is for terms in a description list
  html text2() # convert html to text
head(big_red_text) # looks good!
## [1] "Baseball"
                              "Men's basketball"
                                                       "Women's basketball"
## [4] "Men's cross country"
                             "Women's cross country" "Football"
tail(big_red_text) # uh-oh...
## [1] "MRDA" "USARL" "NARL" "MLR" "USAR" "WTT"
```

That doesn't seem right...

What went wrong?

1. Got irrelevant data

What went wrong?

- 1. Got irrelevant data
- 2. Didn't get relevant data

Volleyball

Ivy 1991, 1992, 1993, 2004, 2005, 2006

Men's wrestling^[30]

Main article: Cornell Big Red wrestling
See also: Collegiate wrestling, Eastern Ir

- EIWA champions 1910, 1912–1917, 192;
- Ivy League champions 1957–1960, 1962
- NCAA Runner-up 2010, 2011^[34]

Other teams [edit]

- Equestrian
- Women's Fencing
- Men's Golf
- Gymnastics
- Men's Squash

Option 2: use .wikitable tag to get table

Ivy 2008^[10]

Men's cross country

- Heptagonal Champions 1939, 1940, 1953, 1954, 1955, 1957, 1961, 1963, 1993
- Ivy Champions 1957, 1961, 1963, 1992, 1993^[11]

Women's cross country

Heptagonal Champions 1991, 1992, 1993, 1998, 2011, 2012^[12]

Football

Main article: Cornell Big Red football

- National 1915, 1921, 1922, 1939^{[13][14]}
- Ivy 1971, 1988, 1990

Sprint football

• CSFL 1975(Co-Champs), 1978, 1982, 1984(Tri-Champs), 1986(Tri-Champs), 2006

Field Hockey

Ivy 1991

Men's ice hockey

Main article: Cornell Big Red men's ice hockey

- NCAA 1967, 1970
- ECAC 1967, 1968, 1969, 1970, 1973, 1980, 1986, 1996, 1997, 2003, 2005, 2010
- Ivy 1966, 1967, 1968, 1969, 1970, 1971, 1972, 1973, 1977, 1978, 1983, 1984*, 1985*, 1996, 1997, 2002, 2003, 2004*, 2005, 2012, 2014, 2018, 2019, 2020^[15] (*shared title)
- Ned Harkness Cup 2003, 2005, 2008, 2013

Women's ice hockey

Main article: Cornell Big Red women's ice hockey

- NCAA Frozen Four 2010, 2011, 201
- ECAC 2010, 2011, 2013, 2014

.wikitable

Clear (1)

Toggle Position

XPath

Help X

Men's sports Women's sports Basketball Baseball Basketball Cross country Equestrian Cross country Football Fencina Field hockey Golf Ice hockey **Gymnastics** Lacrosse Ice hockey Polo Lacrosse Rowing (heavyweight) Polo Rowing (lightweight) Rowing Soccer Sailing Sprint Football Soccer Softball Squash Swimming & diving Squash Swimming & diving Track and field[†] Tennis Wrestling Track and field[†] Volleyball t - Track and field includes both indoor and outdoor.

Scraping tables using .wikitable tag

Use html_element() to extract the first table element

```
big_red %>%
   html_element(".wikitable")

## {html_node}
## 
## [1] \n\n
```

Scraping tables using .wikitable tag

Then use html_table() to convert the table into a data frame

6 Ice hockey

7 Lacrosse

8 Polo

Gymnastics
Ice hockey

Lacrosse

Example 2: College rankings on Wikipedia

How could we scrape college rankings?

Use .wikitable tag to get the first table

```
rankings <- read_html("https://en.wikipedia.org/wiki/College_and_university_rankings_in_the_United_S
first_table <- rankings %>%
  html_element(".wikitable") %>%
  html_table()
first_table
```

```
## # A tibble: 21 × 5
     ##
     <chr>
                                  <int> <lgl> <chr>
                                                                       <int>
##
                                             Williams College
   1 Princeton University
                                      1 NA
   2 Columbia University
                                             Amherst College
##
                                      2 NA
   3 Harvard University
                                             Swarthmore College
                                      2 NA
##
   4 Massachusetts Institute ...
                                             Pomona College
##
                                      2 NA
   5 Yale University
                                      5 NA
                                             Wellesley College
                                      6 NA
   6 Stanford University
                                             Bowdoin College
   7 University of Chicago
                                      6 NA
                                             United States Naval ...
   8 University of Pennsylvan...
                                      8 NA
                                             Claremont McKenna Co...
   9 California Institute of ...
                                      9 NA
                                             Carleton College
## 10 Duke University
                                      9 NA
                                             Middlebury College
## # ... with 11 more rows
```

Scraped data frames are data frames

How does Cornell stack up?

What if CSS selectors match multiple tables?

Top national universities ^[13]	2022 rank
Princeton University	1
Columbia University	2
Harvard University	2
Massachusetts Institute of Technology	2
Yale University	5
Stanford University	6
University of Chicago	6
University of Pennsylvania	8
California Institute of Technology	9

University +	Parents' Dream College Ranking
Stanford University	1
Princeton University	2
Massachusetts Institute of Technology	3
Harvard University	4
New York University	5
University of Pennsylvania	6
University of Michigan	7
Duke University	8
University of California, Los Angeles	9
Cornell University	10

What if CSS selectors match multiple tables?

Multiple options:

- 1. Tweak CSS selectors to uniquely identify element (if possible)
- 2. Scrape all of them, then use familiar R tools to extract data

Let's try option 2

Scrape all the tables

Use html_elements() to extract all matching elements

```
all_tables <- rankings %>%
  html_elements(".wikitable") %>% # get all the tables
  html_table() # convert html to a data frame

class(all_tables) # we get a list of tables

## [1] "list"

length(all_tables) # 11 tables, to be exact

## [1] 11
```

How could we extract individual tables?

```
## # A tibble: 3 × 2
     `Top national universities[13]` `2022 rank`
##
     <chr>
                                            <int>
## 1 Princeton University
## 2 Columbia University
## 3 Harvard University
## # A tibble: 3 × 2
                                            `Students' Dream College Ranking`
    University
     <chr>
                                                                          <int>
## 1 Stanford University
## 2 Harvard University
## 3 University of California, Los Angeles
## # A tibble: 3 × 2
                                            `Parents' Dream College Ranking`
    University
##
     <chr>
                                                                         <int>
## 1 Stanford University
## 2 Princeton University
## 3 Massachusetts Institute of Technology
                                                                             3
```

String matching!

```
# use str_detect() to search for tables with "Parents"
str_detect(all_tables, "Parents")

## [1] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
# or use str_which() to get position of matching object(s)
str_which(all_tables, "Parents")

## [1] 8
```

You are fulfilling your parents' dreams

```
# now extract table(s) with "Parents"
all_tables[str_detect(all_tables, "Parents")]
## [[1]]
## # A tibble: 10 × 2
                                            `Parents' Dream College Ranking`
##
     University
    <chr>
##
                                                                        <int>
   1 Stanford University
   2 Princeton University
   3 Massachusetts Institute of Technology
   4 Harvard University
   5 New York University
   6 University of Pennsylvania
   7 University of Michigan
   8 Duke University
   9 University of California, Los Angeles
## 10 Cornell University
                                                                           10
```