Queste brevi note sono un reassunto di quello che abbiamo visto a lezione. Non ci sono quindi ne dimostrazioni ne esercizi. I vettori $\mathbf{e_i}$ rappresentano i vettori di \mathbb{R}^n con 1 nell' i-esima posizione e 0 altrove.

0.1 Combinazioni lineari

Un vettore $\mathbf{v} \in \mathbb{R}^n$ si dice *combinazione lineare* dei vettori $\mathbf{v_1}, \dots, \mathbf{v_k}$ se esistono scalari $x_1, \dots, x_k \in \mathbb{R}$ tali che

$$\mathbf{v} = x_1 \mathbf{v_1} + x_2 \mathbf{v_2} + \cdots + x_k \mathbf{v_k}.$$

Gli scalari x_1, \ldots, x_k si chiamano *coefficienti* della combinazione lineare. La combinazione lineare è detta *non banale* se almeno uno dei coefficienti è diverso da zero.

Lo *spazio generato* dai vettori $\mathbf{v_1}, \ldots, \mathbf{v_k} \in \mathbb{R}^n$ è l'insieme di tutti i vettori che si ottengono come combinazioni lineari di $\mathbf{v_1}, \ldots, \mathbf{v_k}$

$$\mathcal{L} = \{x_1 \mathbf{v_1} + x_2 \mathbf{v_2} + \cdots + x_k \mathbf{v_k} | x_1, \dots, x_k \in \mathbb{R}\}$$

Un insieme di vettori $\mathbf{v_1}, \dots, \mathbf{v_k} \in \mathbb{R}^n$ si dice insieme di

generatori per \mathbb{R}^n se

$$\mathcal{L}(\mathbf{v_1}, \dots, \mathbf{v_k}) = \mathbb{R}^n,$$

cioè se ogni vettore di \mathbb{R}^n è combinazione lineare di $\mathbf{v_1}, \dots, \mathbf{v_k}$. In questo caso si dice anche che che $\mathbf{v_1}, \dots, \mathbf{v_k}$ generano \mathbb{R}^n .

- Se $\mathbf{v_1}$ è un vettore non nullo in \mathbb{R}^3 allora $\mathcal{L}(\mathbf{v_1})$ è la retta per l'origine $\{t\mathbf{v_1}|t\in\mathbb{R}\}$. Se $\mathbf{v_1}=\mathbf{0}$ allora $\mathcal{L}(\mathbf{v_1})$ consiste della sola origine.
- Se $\mathbf{v_1}$ e $\mathbf{v_2}$ sono due vettori di \mathbb{R}^3 , allora $\mathcal{L}(\mathbf{v_1}, \mathbf{v_2})$ è l'insieme dei vettori della forma $a_1\mathbf{v_1} + a_2\mathbf{v_2}$. Se $\mathbf{v_1}$ e $\mathbf{v_2}$ non sono multipli l'uno dell'altro, $\mathcal{L}(\mathbf{v_1}, \mathbf{v_2})$ è un piano per l'origine, altrimenti è una retta per l'origine, eccetto il caso $\mathbf{v_1} = \mathbf{v_2} = \mathbf{0}$., dove $\mathcal{L}(\mathbf{v_1}, \mathbf{v_2})$ è l'origine stessa.
- Analogamente, lo spazio generato da tre vettori $\mathbf{v_1}$, $\mathbf{v_2}$, $\mathbf{v_3}$ può essere tutto \mathbb{R}^3 , o un piano passante per l'origine, o una retta passante per l'origine, o l'origine stessa.
- I vettori $\mathbf{e_i}$, $i = 1, 2, \dots n$ generano \mathbb{R}^n .

I vettori $\mathbf{v_1}, \dots, \mathbf{v_k} \in \mathbb{R}^n$ si dicono linearmente dipendenti se esistono $x_1, \dots, x_k \in \mathbb{R}$, almeno uno dei quali diverso da

zero, tali che

$$x_1\mathbf{v_1} + x_2\mathbf{v_2} + \cdots + x_k\mathbf{v_k} = \mathbf{0}.$$

In altre parole, se il vettore nullo può essere scritto come combinazione lineare non banale di $\mathbf{v_1}, \dots, \mathbf{v_k}$.

I vettori si dicono linearmente indipendenti se non sono linearmente dipendenti, cioè se da

$$x_1\mathbf{v_1} + x_2\mathbf{v_2} + \cdots + x_k\mathbf{v_k} = \mathbf{0}$$

segue che

$$x_1 = x_2 = \dots = x_k = 0.$$

Ovvero l'unica combinazione lineare di $\mathbf{v_1},\dots,\mathbf{v_k}$ che è uguale al vettore nullo è quella banale.

I vettori $\mathbf{e_i}$, $i = 1, \dots, n$ sono linearmente indipendenti.

Valgono i seguenti fatti:

ullet Se uno dei vettori $\mathbf{v_1}, \dots, \mathbf{v_k}$ è il vettore nullo, allora $\mathbf{v_1}, \dots, \mathbf{v_k}$ sono linearmente dipendenti;

- un vettore $\mathbf{v_1}$ è linearmente indipendente se e solo se $\mathbf{v_1} \neq \mathbf{0}$;
- \bullet due vettori $\mathbf{v_1}$ e $\mathbf{v_2}$ sono linearmente indipendenti se e solo se non sono multipli l'uno dell'altro;
- Se v₁ e v₂ sono linearmente indipendenti, ma v₁, v₂ v₃ sono dipendenti, allora v₃ è combinazione lineare di v₁ e v₂. Viceversa, se v₃ è combinazione lineare di v₁ e v₂, allora v₁, v₂ e v₃ sono linearmente dipendenti;
- Vettori di \mathbb{R}^n non nulli e ortogonali sono linearmente indipendenti.

Criterio per vettori di \mathbb{R}^n

Dati $\mathbf{v_1}, \dots, \mathbf{v_k} \in \mathbb{R}^n$, possiamo formare la matrice $n \times k$, $A = (\mathbf{v_1}, \dots, \mathbf{v_k})$ che ha per colonne i vettori dati. Allora ogni combinazione lineare dei vettori $\mathbf{v_1}, \dots, \mathbf{v_k}$ si può esprimere come un prodotto di matrici:

$$x_1\mathbf{v_1} + x_2\mathbf{v_2} + \dots + x_k\mathbf{v_k} = Ax,$$

dove x è il vettore colonna di componenti (x_1, x_2, \ldots, x_k) .

Ciò consente di riformulare le nozioni di dipendenza lineare, indipendenza lineare e spazio generato nella terminologia dei sistemi lineari:

- 1. I vettori $\mathbf{v_1}, \dots, \mathbf{v_k} \in \mathbb{R}^n$ sono linearmente dipendenti se e solo se esiste una soluzione $x \neq 0$ del sistema lineare omogeneo Ax = 0;
- 2. I vettori $\mathbf{v_1}, \dots, \mathbf{v_k} \in \mathbb{R}^n$ sono linearmente indipendenti se e solo se l'unica soluzione del sistema lineare omogeneo Ax = 0 è quella banale x = 0;
- 3. Un vettore **b** appartiene a $\mathcal{L}(\mathbf{v_1}, \dots, \mathbf{v_k})$ se e solo se il sistema lineare $Ax = \mathbf{b}$ è compatibile.

Combinando le affermazioni precedenti con il Teorema di Rouch \acute{e} -Capelli si ottiene:

- 4. k vettori di \mathbb{R}^n sono lineramente indipendenti se e solo se la corrispondente matrice $n \times k$ ha rango k (quindi $k \leq n$);
- 5. se k > n, k vettori di \mathbb{R}^n sono linearmente dipendenti (Attenzione: il viceversa non è vero. Fare un esempio);

6. k vettori di \mathbb{R}^n generano \mathbb{R}^n se e solo se la matrice $A, n \times k$ ha rango n. Questo richiede che $k \geq n$. (Attenzione non è vero che un qualsiasi insieme di n o più vettori di di \mathbb{R}^n genera \mathbb{R}^n . Fare un esempio).

Un base di \mathbb{R}^n è un insieme ordinato di generatori linearmente indipendenti di \mathbb{R}^n . Una base ortogonale di \mathbb{R}^n è una base i cui vettori sono a due a due ortogonali. Una base di \mathbb{R}^n si dice ortonormale se inoltre tutti i suoi vettori hanno lunghezza uno.

I vettori $\mathbf{e_i}$, $i = 1, \dots n$ sono una base ortonormale di \mathbb{R}^n .

Deduciamo il seguente

Teorema 1 Una base di \mathbb{R}^n è formata esattamente da n vettori. Un insieme di vettori $\mathbf{v_1}, \ldots, \mathbf{v_n} \in \mathbb{R}^n$ è una base se e solo se la matrice $n \times n$ $A = (\mathbf{v_1}, \ldots, \mathbf{v_n})$ è non singolare.

Coordinate Se $\mathcal{B} = (\mathbf{v_1}, \dots \mathbf{v_n})$ è una base di \mathbb{R}^n , allora ogni vettore v si può scrivere in modo unico come v

 $a_1\mathbf{v_1} + \cdots + a_n\mathbf{v_n}$, cioè come combinazione lineare dei vettori di \mathcal{B} . Indicheremo con $[v]_{\mathcal{B}} = (a_1, a_2, \dots, a_n)$ le coordinate del vettore \mathbf{v} rispetto alla base \mathcal{B} .

La dimensione di \mathbb{R}^n è il numero di vettori che compongono una sua base; quindi \mathbb{R}^n ha dimensione n.

Si verifica facilmente che se $\mathbf{v_1}, \dots \mathbf{v_k} \in \mathbb{R}^n$ sono linearmente indipendenti, allora per qualsiasi $\lambda \in \mathbb{R} \ \mathbf{v_1} + \lambda \mathbf{v_2}, \mathbf{v_2}, \dots, \mathbf{v_k}$ sono linearmente indipendenti.

Come conseguenza si ottiene che: il rango di una matrice è uguale al numero delle sue righe linearmente indipendenti.

Si riesce anche a dimostrare anche che: il rango di una matrice è uguale al numero delle sue colonne linearmente indipendenti.

Molti sottoinsiemi di \mathbb{R}^n hanno proprietà analoghe a quelle di \mathbb{R}^n stesso. Un sottoinsieme $W \neq \emptyset$ di \mathbb{R}^n si dice sottospazio vettoriale se:

1. $\forall \mathbf{v}, \mathbf{w} \in W \Rightarrow \mathbf{v} + \mathbf{w} \in W$

2.
$$\forall \mathbf{v} \in W, \forall \lambda \in \mathbb{R} \Rightarrow \lambda \mathbf{v} \in W$$
.

Un sottospazio vettoriale di \mathbb{R}^n è esso stesso uno spazio vettoriale.

Esempi di sottospazi vettoriali di \mathbb{R}^n sono:

• lo spazio

$$W = \mathcal{L}(\mathbf{v_1}, \dots \mathbf{v_k})$$

spazio generato da k vettori $\mathbf{v_1}, \dots, \mathbf{v_k}$. La dimensione di W è data dal rango della matrice $A = (\mathbf{v_1}, \dots, \mathbf{v_k})$.

- Le soluzione di un sistema omogeneo $Ax = 0, A \in M_{m,n}$ la cui dimensione è n rg(A);
- I vettori in \mathbb{R}^3 aventi terza coordinata nulla;
- I vettori (x_1, x_2) di \mathbb{R}^2 con $x_1 = x_2$.

Non sono sottospazi vettoriali di \mathbb{R}^2 i seguenti:

•
$$W = \{(x_1, x_2) \in \mathbb{R}^2 | x_1 = x_2^k, k \neq 0, 1\}$$

•
$$W = \{(x_1, x_2) \in \mathbb{R}^2 | x_1 = x_2 + \alpha, \alpha \neq 0, 1\}$$

Sopra abbiamo introdotto la nozione di coordinate di vettori rispetto ad una base fissata. Cercheremo ora di capire cosa succede alle coordinate di un vettore di \mathbb{R}^n quando cambiamo base.

Siano $\mathcal{B} = (\mathbf{v_1}, \dots, \mathbf{v_n})$ e $\mathcal{B}' = (\mathbf{w_1}, \dots, \mathbf{w_n})$ due basi di \mathbb{R}^n . Chiameremo matrice di cambiamento di base da \mathcal{B} a \mathcal{B}' la matrice $P = M(\mathcal{B}, \mathcal{B}') = (p_{ij})$ che ha come j-esima colonna le coordinate di $\mathbf{w_j}$ rispetto alla base \mathcal{B} . In altri termini

$$P^j = [\mathbf{w_j}]_{\mathcal{B}},$$

dove P^j denota la colonna j-esima di P. Vale la seguente:

Proposizione 2 Siano $\mathcal{B} = (\mathbf{v_1}, \dots, \mathbf{v_n}) \ e \ \mathcal{B}' = (\mathbf{w_1}, \dots, \mathbf{w_n})$ due basi di \mathbb{R}^n . Allora

- $M(\mathcal{B}, \mathcal{B}) = I$;
- $M(\mathcal{B}, \mathcal{B}')$ è invertibile e la sua inversa è $M(\mathcal{B}', \mathcal{B})$;
- Siano $[v]_{\mathcal{B}}$ e $[v]_{\mathcal{B}'}$ i vettori delle coordinate di v rispetto alla base \mathcal{B} e e \mathcal{B}' , rispettivamente. Allora,

$$[v]_{\mathcal{B}'} = M(\mathcal{B}', \mathcal{B})[v]_{\mathcal{B}}, \ [v]_{\mathcal{B}} = M(\mathcal{B}, \mathcal{B}')[v]_{\mathcal{B}'}.$$