Which findings should be published?

Alex Frankel Maximilian Kasy

August 30, 2018

Evidence on selective publication

- Data from Camerer et al. (2016), replications of lab experiments in QJE and AER, 2011-2014.
- left Histogram: Jump in density of z-stats at critical value.
- middle Original and replication estimates: More cases where original estimate is significant and replication not, than reversely.
 - right Original estimate and standard error: Larger estimates for larger standard errors.
- Andrews and Kasy (2017): Can use replications (middle) or meta-studies (right) to identify selective publication.

Introduction

- Not all empirical findings get published (prominently).
 - Selection might depend on findings.
 - Statistical significance (as in preceding slide), surprisingness, or confirmation of prior beliefs.
- Selective publication distorts statistical inference.
 - Explanation of "replication crisis?"
 - Ioannidis (2005), Christensen and Miguel (2016).
- Calls for reform: Publication should not select on findings.
 - De-emphasize statistical significance, ban "stars."
 - Pre-analysis plans to avoid selective reporting of findings.
 - Registered reports reviewed and accepted prior to data collection.

This talk

- We characterize optimal publication rules.
- Instrumental perspective:
 - Study might inform the public about some state of the world.
 - Then the public chooses a policy action.
 - Take as given that not all findings get published (prominently).
- Key results:
 - Optimal rules selectively publish surprising findings.
 In leading examples: Similar to two-sided or one sided tests.
 - 2. But: Selective publication always distorts inference.

 There is a trade-off policy relevance vs. statistical credibility.
 - 3. With dynamics: Additionally publish precise null results.
 - With incentives: Modify publication rule to encourage more precise studies.

Roadmap

- 1. Baseline model.
- 2. Optimal publication rules in the baseline model.
- 3. Selective publication and statistical inference.
- 4. Extension 1: Dynamic model.
- 5. Extension 2: Researcher incentives.
- Conclusion.

Baseline model - timeline and notation

State of the world	θ
Common prior	$ heta \sim \pi_0$
Study might be submitted	
Exogenous submission probability	q
Design (e.g., standard error)	$S \perp \theta$
Findings	$X \sim f_{X \theta,S}$
Journal decides whether to publish	$D \in \{0,1\}$
Publication probability	p(X,S)
Publication cost	С
Public updates beliefs	$\pi_1=\pi_1^{(X,S)}$ if $D=1$
	$\pi_1=\pi_1^0$ if $D=0$
Public chooses policy action	$a=a^*(\pi_1)\in\mathbb{R}$
Utility	$U(a, \theta)$
Social welfare	$U(a,\theta)-Dc$.

Belief updating and policy decision

- Public belief when study is published: $\pi_1^{(X,S)}$.
 - Bayes posterior after observing (X, S)
 - Same as journal's belief when study is submitted.
- Public belief when no study is published: π_1^0 . Two alternative scenarios:
 - 1. Naive updating: $\pi_1^0 = \pi_0$.
 - 2. Bayes updating: π_1^0 is Bayes posterior given no publication.
- Public action $a=a^*(\pi_1)$ maximizes posterior expected welfare, $\mathbb{E}_{\theta \sim \pi_1}[U(a,\theta)]$. Default action $a^0=a^*(\pi_1^0)$.

Optimal publication rules

- Interim gross benefit $\Delta(\pi, a^0)$ of publishing equals
 - Expected welfare given publication, $\mathbb{E}_{\theta \sim \pi}[U(a^*(\pi), \theta)]$,
 - minus expected welfare of default action, $\mathbb{E}_{\theta \sim \pi}[U(a^0, \theta)]$.
- Interim optimal publication rule:
 Publish if interim benefit exceeds cost c.
- Want to maximize ex-ante expected welfare:

$$EW(p, a^{0}) = \mathbb{E}[U(a^{0}, \theta)] + q \cdot \mathbb{E}[p(X, S) \cdot (\Delta(\pi_{1}^{(X, S)}, a^{0}) - c)].$$

• Immediate consequence: Optimal policy is interim optimal given a^0 .

Optimality and interim optimality

- Under naive updating:
 - Default action $a^0 = a^*(\pi_0)$ does not depend on p.
 - Interim optimal rule given a^0 is optimal.
- Under Bayes updating:
 - a^0 maximizes $EW(p, a^0)$ given p.
 - p maximizes $EW(p, a^0)$ given a^0 , when interim optimal.
 - These conditions are necessary but not sufficient for joint optimality.
- Commitment does not matter in our model.
 - Ex-ante optimal is interim optimal.
 - This changes once we consider researcher incentives (endogenous study submission).

Leading examples

Normal prior and signal, normal posterior:

$$egin{aligned} eta &\sim \pi_0 = \mathscr{N}(\mu_0, \sigma_0^2) \ X | eta, S &\sim \mathscr{N}(eta, S^2) \end{aligned}$$

- Canonical utility functions:
 - 1. Quadratic loss utility, $\mathscr{A} = \mathbb{R}$:

$$U(a,\theta) = -(a-\theta)^2$$

Optimal policy action: a = posterior mean.

2. Binary action utility, $\mathscr{A} = \{0,1\}$:

$$U(a, \theta) = a \cdot \theta$$

Optimal policy action: a = 1 iff posterior mean is positive.

Interim optimal rules for leading examples

Quadratic loss utility: "Two-sided test." Publish if

$$\left|\mu_1^{(X,S)}-a^0\right|\geq \sqrt{c}.$$

Binary action utility: "One-sided test." Publish if

$$a^0=0$$
 and $\mu_1^{(X,S)}\geq c,$ or $a^0=1$ and $\mu_1^{(X,S)}\leq -c.$

Normal prior and signals:

$$\mu_1^{(X,S)} = \frac{\sigma_0^2}{S^2 + \sigma_0^2} X + \frac{S^2}{S^2 + \sigma_0^2} \mu_0.$$

Quadratic loss utility, normal prior, normal signals

- Optimal publication region (shaded). left Axes are standard error S, estimate X. right Axes are standard error S, "t-statistic" $(X - \mu_0)/S$.
- Note:
 - Given S, publish outside symmetric interval around μ_0 .
 - Critical value for t-statistic is non-monotonic in S.

Binary action utility, normal prior, normal signals

- Optimal publication region (shaded). left Axes are standard error S, estimate X. right Axes are standard error S, "t-statistic" $(X - \mu_0)/S$.
- Note:
 - When prior mean is negative, optimal rule publishes for large enough positive X.

Generalizing beyond these examples

Two key results that generalize:

- Don't publish null results:
 - A finding that induces $a^*(\pi^I) = a^0 = a^*(\pi_1^0)$ always has 0 interim benefit and should never get published.
- Publish findings outside interval:
 Suppose
 - U is supermodular.
 - $f_{X|\theta,S}$ satisfies monotone likelihood ratio property given S=s.
 - Updating is either naive or Bayes.

Then there exists an interval $I^s \subseteq \mathbb{R}$ such that (X,s) is published under the optimal rule if and only if $X \notin I^s$.

Roadmap

- 1. Baseline model.
- 2. Optimal publication rules in the baseline model.
- 3. Selective publication and statistical inference.
- 4. Extension 1: Dynamic model.
- 5. Extension 2: Researcher incentives.
- Conclusion.

Selective publication and inference

- Just showed:
 Optimal publication rules select on findings.
- But: Selective publication rules can distort inference.
- We show a stronger result:
 Any selective publication rule distorts inference.
- Put differently:
 If we desire that standard inference be valid, then the publication rule must not select on findings at all.
- Next two slides:
 - 1. Bias and size distortions,
 - 2. distortions of likelihood and of naive posterior, when publication is based on statistical significance.

Distortions of frequentist inference.

• $X|\theta \sim \mathcal{N}(\theta, 1)$; publish iff X > 1.96.

left **Bias** of X as an estimator of θ , conditional on publication. right **Coverage** probability of [X-1.96,X+1.96] as a confidence set for θ , conditional on publication.

Distortions of likelihood and Bayesian inference.

- Same model.
 - left **Probability of publication** conditional on θ . right **Bayesian default belief** and naive default belief, for prior $\theta \sim \mathcal{N}(0,4)$.

Validity of inference is equivalent to no selection

For normal signals and prior support with non-empty interior, the following statements are equivalent:

- 1. Non-selective publication. p(x,s) is constant in x for each s.
- 2. Publication probability constant in state. $\mathbb{E}[p(X,S)|\theta,S=s]$ is constant over $\theta\in\Theta_0$ for each s.
- 3. Frequentist unbiasedness. $\mathbb{E}[X|\theta, S = s, D = 1] = \theta$ for $\theta \in \Theta_0$ and for all s.
- 4. Bayesian validity of naive updating. For all distributions F_S , the Bayesian default belief π_1^0 is equal to the prior π_0 .

Intuition and implications

- Sketch of proof:
 - Non-selective publication ⇒ the other conditions: immediate.
 - Constant publication probability ⇒ non-selective publication:
 Completeness of the normal location family.
 - Unbiasedness ⇒ constant publication probability: "Tweedie's formula" and integration.
- Optimal publication if we require non-selectivity?
- Suppose
 - There are normal signals.
 - Updating is either naive or Bayesian.
 - The publication rule is restricted to not select on X.

Then there exists $\bar{s} \ge 0$ for which the optimal rule **publishes** a study **if and only if** $S \le \bar{s}$.

Optimal non-selective publication region

- For quadratic loss utility, normal prior, normal signals.
- Subject to the constraint that p(x,s) is restricted to not depend on x.

Roadmap

- 1. Baseline model.
- 2. Optimal publication rules in the baseline model.
- 3. Selective publication and statistical inference.
- 4. Extension 1: Dynamic model.
- 5. Extension 2: Researcher incentives.
- Conclusion.

A dynamic two-period model

- Period 1 as before, with study (X_1, S_1) , action $a_1 = a^*(\pi_1)$.
- Now additionally: Period 2 study, always published.
- Independent estimate

$$X_2|\theta,X_1,S_1\sim F_{X_2|\theta}.$$

- Period 2 action $a_2 = a^*(\pi_2)$.
- Social welfare

$$\alpha U(a_1,\theta) - Dc + (1-\alpha)U(a_2,\theta).$$

Quadratic loss utility, normal prior, normal signals, dynamic model with naive updating

- Optimal publication region (shaded).
- Note:
 - For S small enough, publish even when $X = \mu_0$.

General implications of dynamic extension

- Publishing a precise (null) result in period 1 can help reduce mistakes in period 2.
- Holds under more general conditions, for normal signals:
 - 1. The benefit of publication is strictly positive whenever $\pi_1^I \neq \pi_1^0$.
 - 2. The benefit goes to 0 as either $s_2 \to 0$ or $s_2 \to \infty$.
- Put differently:
 - 1. Even **null results that improve precision** are valuable to **prevent future mistakes.**
 - 2. This value disappears for
 - a) very precise future information (won't make any mistakes either way), and
 - b) very imprecise future information (effectively back to one-period case).

Researcher Incentives

- Thus far: study submission and design exogenous, random.
- Assume now that a researcher
 - 1. decides whether or not to submit a study,
 - 2. and picks a design S.
- Normal signals with standard error S.
- Researcher utility:
 - 1. Utility 1 from getting published,
 - 2. cost $\kappa(S)$ depending on design S.
- Expected researcher utility

$$E_{\theta \sim \pi_0, X \sim N(\theta, S^2)}[p(X, S)] - \kappa(S).$$

- Outside option with utility 0.
- Journal faces
 - 1. participation constraint (PC) and
 - 2. incentive compatibility constraint (ICC).

Constrained optimal rule

- Journal objective as before, $U(a, \theta) Dc$.
- Journal commits to publication rule p(x,s) ex-ante. Commitment matters in this extension!
- Optimal publication rule subject to (PC) and (ICC)?
- Solution: Relative to baseline model, journal distorts publication rule in two ways
 - Reject imprecise studies (large S) even if valuable ex post.
 - For low enough S, set interim benefit threshold for acceptance below c.

Summary and outlook

- Eliminating selection on findings has costs as well as benefits.
 Important for reform debates!
- Key results:
 - 1. Optimal rules selectively publish surprising findings. In leading examples: Similar to two-sided or one sided tests.
 - 2. But: Selective publication always distorts inference. There is a trade-off policy relevance vs. statistical credibility.
 - 3. With dynamics: Additionally publish precise null results.
 - 4. With incentives: Modify publication rule to encourage more precise studies.
- Agenda and open questions:
 - Statistics as (optimal) communication.
 - Not just "you and the data."
 - What do we communicate to whom?
 - Subject to what costs and benefits?
 - Why not publish everything?
 - Publish all papers, report full datasets in papers,...
 - Attention cost? How much information can readers process?

Thank you!