A1. Educational Game

time limit per test: 2 seconds memory limit per test: 256 megabytes

input: standard input output: standard output

The Smart Beaver from ABBYY began to develop a new educational game for children. The rules of the game are fairly simple and are described below.

The playing field is a sequence of n non-negative integers a_i numbered from 1 to n. The goal of the game is to make numbers $a_1, a_2, ..., a_k$ (i.e. some prefix of the sequence) equal to zero for some fixed k (k < n), and this should be done in the smallest possible number of moves.

One move is choosing an integer i ($1 \le i \le n$) such that $a_i > 0$ and an integer t ($t \ge 0$) such that $i + 2^t \le n$. After the values of i and t have been selected, the value of a_i is decreased by 1, and the value of a_{i+2^t} is increased by 1. For example, let n = 4 and a = (1, 0, 1, 2), then it is possible to make move i = 3, t = 0 and get a = (1, 0, 0, 3) or to make move i = 1, t = 1 and get a = (0, 0, 2, 2) (the only possible other move is i = 1, t = 0).

You are given n and the initial sequence a_i . The task is to calculate the minimum number of moves needed to make the first k elements of the original sequence equal to zero for each possible k ($1 \le k \le n$).

Input

The first input line contains a single integer n. The second line contains n integers a_i ($0 \le a_i \le 10^4$), separated by single spaces.

The input limitations for getting 20 points are:

• 1 < n < 300

The input limitations for getting 50 points are:

• 1 < n < 2000

The input limitations for getting 100 points are:

• $1 < n < 10^5$

Output

Print exactly n-1 lines: the k-th output line must contain the minimum number of moves needed to make the first k elements of the original sequence a_i equal to zero.

Please do not use the %11d specifier to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams, or the %164d specifier.

Examples

```
input
4
1 0 1 2
output
1
1
1
3
```

input 8 1 2 3 4 5 6 7 8

output	
$oldsymbol{0}$	
6	
4	
0	