11.2

Recherche de primitives

Maths Spé terminale - JB Duthoit

11.2.1 Primitives de fonctions usuelles

On rappelle ici les dérivées des fonctions usuelles ainsi que les opérations sur les dérivées :

Propriété (rappel sur les dérivées de fonctions usuelles)

1 (11	Teprior (rapper ser les dell'ess de l'elleviers)					
Fonction usuelle	Fonction dérivée	Fonction usuelle	Primitive			
$f(x) = mx + p, \mathbb{R}$	$f'(x) = m, \mathbb{R}$	$f(x) = m, \mathbb{R}$	$F(x) = mx, \mathbb{R}$			
$f(x) = x^2, \mathbb{R}$	$f'(x) = 2x, \mathbb{R}$	$f(x) = x, \mathbb{R}$	$F(x) = \frac{1}{2}x^2, \mathbb{R}$			
$f(x) = x^3, \mathbb{R}$	$f'(x) = 3x^2, \mathbb{R}$	$f(x) = x^2, \mathbb{R}$	$F(x) = \frac{1}{3}x^3, \mathbb{R}$			
$f(x) = x^n, n \in \mathbb{N}^*, \mathbb{R}$	$f'(x) = nx^{n-1}, \mathbb{R}$	$f(x) = x^n, n \in \mathbb{N}^*, \mathbb{R}$	$F(x) = \frac{x^{n+1}}{n+1}, \mathbb{R}$			
$f(x) = \frac{1}{x}, \mathbb{R}^*$	$f'(x) = -\frac{1}{x^2}, \mathbb{R}^*$	$f(x) = \frac{1}{x^2}, \mathbb{R}^*$	$F(x) = -\frac{1}{x}, \mathbb{R}^*$			
$f(x) = \frac{1}{x^n}, n \ge 2, \mathbb{R}^*$	$f'(x) = -\frac{n}{x^{n+1}}, \mathbb{R}^*$	$f(x) = \frac{1}{x^n}, n \ge 2, \mathbb{R}^*$	$F(x) = -\frac{1}{(n-1)x^{n-1}}, \mathbb{R}^*$			
$f(x) = \sqrt{x},]0; +\infty[$	$f'(x) = \frac{1}{2\sqrt{x}},]0; +\infty[$	$f(x) = \frac{1}{\sqrt{x}},]0; +\infty[$	$F(x) = 2\sqrt{x},]0; +\infty[$			
$f(x) = e^x, \mathbb{R}$	$f'(x) = e^x, \mathbb{R}$	$f(x) = e^x, \mathbb{R}$	$F(x) = e^x, \mathbb{R}$			
$f(x) = ln(x),]0; +\infty[$	$f'(x) = \frac{1}{x},]0; +\infty[$	$f(x) = \frac{1}{x},]0; +\infty[$	$F(x) = ln(x),]0; +\infty[$			
$f(x) = cos(x), \mathbb{R}$	$f'(x) = -\sin(x), \mathbb{R}$	$f(x) = \sin(x), \mathbb{R}$	$F(x) = -\cos(x), \mathbb{R}$			
$f(x) = cos(x), \mathbb{R}$ $f(x) = sin(x), \mathbb{R}$	$f'(x) = cos(x), \mathbb{R}$	$f(x) = cos(x), \mathbb{R}$	$F(x) = -\cos(x), \mathbb{R}$ $F(x) = \sin(x), \mathbb{R}$			
f(x) = tan(x),	$f'(x) = \frac{1}{\cos^2(x)},$	$f(x) = \frac{1}{\cos^2(x)}$	F(x) = tan(x)			
$\mathbb{R} - \{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}\$	$\mathbb{R} - \{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}\$	$\mathbb{R} - \{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}\$	$\mathbb{R} - \{ \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \}$			

Propriété rappel de la dérivée d'une somme et de λu

Dérivation	Primitive		
Derivation	Fonction	Primitive	
(u+v)' = u' + v'	u' + v'	u + v	
$(\lambda u)' = \lambda u'$	$\lambda u'$	λu	

Savoir-Faire 11.3

SAVOIR CALCULER UNE PRIMITIVE EN UTILISANT LES FONCTIONS DE RÉFÉRENCE

- 1. Déterminer une primitive sur \mathbb{R} de la fonction f définie sur \mathbb{R} par $f(x) = x^2$.
- 2. Déterminer une primitive sur \mathbb{R} de la fonction f définie sur \mathbb{R} par f(x) = -4x + 9.
- 3. Déterminer une primitive sur \mathbb{R} de la fonction f définie sur \mathbb{R} par $f(x) = x^2 4x + 9$.

4. Déterminer une primitive sur $]0; +\infty[$ de la fonction f définie sur $]0; +\infty[$ par $f(x) = \frac{1}{x} - \frac{4}{x^3}$.

• Exercice 11.8

- 1. Déterminer une primitive sur \mathbb{R} de la fonction f définie sur \mathbb{R} par $f(x) = 2x^3 + 3x^2 x + 2$.
- 2. Déterminer une primitive sur \mathbb{R} de la fonction f définie sur \mathbb{R} par $f(x) = 5x^3 3x + 7$.
- 3. Déterminer une primitive sur \mathbb{R} de la fonction f définie sur \mathbb{R} par $f(x) = 2x^4 \frac{1}{2}x^3$.
- 4. Déterminer une primitive sur \mathbb{R} de la fonction f définie sur \mathbb{R} par $f(x) = x^5 x$.
- 5. Déterminer une primitive sur \mathbb{R} de la fonction f définie sur \mathbb{R} par $f(x) = 4x^4 7x + \sqrt{2}$.

Exercice 11.9

- 1. Déterminer une primitive sur \mathbb{R} de la fonction f définie sur \mathbb{R} par $f(x) = 10 3e^x + x$.
- 2. Déterminer une primitive sur \mathbb{R} de la fonction f définie sur \mathbb{R} par f(x)=(x-1)(x+2).
- 3. Déterminer une primitive sur \mathbb{R} de la fonction f définie sur \mathbb{R} par $f(x) = (2x+1)^2$.
- 4. Déterminer une primitive sur \mathbb{R} de la fonction f définie sur \mathbb{R} par $f(x) = x^4 + x^3 + x^2 + x + 1$.

Exercice 11.10

- 1. Déterminer une primitive sur $]0; +\infty[$ de la fonction f définie sur $]0; +\infty[$ par $f(x)=3x+1+\frac{1}{x}$.
- 2. Déterminer une primitive sur $]0; +\infty[$ de la fonction f définie sur $]0; +\infty[$ par $f(x)=x^2+\frac{4}{x^2}$.
- 3. Déterminer une primitive sur $]0; +\infty[$ de la fonction f définie sur $]0; +\infty[$ par $f(x)=x-\frac{1}{2x}$.
- 4. Déterminer une primitive sur $]0; +\infty[$ de la fonction f définie sur $]0; +\infty[$ par $f(x) = \frac{7}{x^3}$.
- 5. Déterminer une primitive sur $]0; +\infty[$ de la fonction f définie sur $]0; +\infty[$ par $f(x) = \frac{x+5}{x^2}$.
- 6. Déterminer une primitive sur $]0; +\infty[$ de la fonction f définie sur $]0; +\infty[$ par $f(x) = \frac{x^2 x + 2}{x}$.
- 7. Déterminer une primitive sur $]0; +\infty[$ de la fonction f définie sur $]0; +\infty[$ par $f(x)=\frac{4-x\sqrt{x}}{x^2}$.

11.2.2 Primitives avec les formules de composées

Propriété (rappels sur dérivées de fonctions composées)

Dérivation	Primitive	
Derivation	Fonction	Primitive
$\left(\frac{1}{-}\right)' = \frac{-u'}{-}$	$\frac{u'}{a}$	$-\frac{1}{2}$
$\left(\frac{-u}{u}\right) = \frac{-u^2}{u^2}$	$\overline{u^2}$	u
$\int 1 \gamma' -2u'$	u'	-1
$\left(\frac{1}{u^2}\right) \equiv \frac{1}{u^3}$	$\overline{u^3}$	$\overline{2u^2}$
$(u^n)' = nu'u^{n-1}, n \ge 2$	$u'u^n, n \ge 1$	$\frac{u^{n+1}}{n+1}$
$\left(\frac{1}{u^n}\right)' = -\frac{n \times u'}{u^{n+1}}, n \ge 2$	$\frac{u'}{u^n}, n \ge 2$	$-\frac{1}{(n-1)u^{n-1}}$
$(e^u)' = u' \times e^u$	$u' \times e^u$	e^{u}
$(ln(u))'$ avec $u>0=\frac{u'}{u}$ avec $u>0$	$\frac{u'}{u}$ avec u>0	ln(u) avec u>0
$(\cos(u))' = -u' \times \sin(u)$	u'sin(u)	-cos(u)
$(\sin(u))' = u' \times \cos(u)$	u'cos(u)	sin(u)
$\left(\sqrt{u}\right)' = \frac{u'}{2\sqrt{u}}$	$\frac{u'}{\sqrt{u}}$	$2\sqrt{u}$

Savoir-Faire 11.4

Savoir calculer une primitive en utilisant les formules de dérivation Déterminer une primitive des fonctions suivantes, sur l'intervalle I:

1.
$$f(x) = 6x(x^2 - 1)^3, I = \mathbb{R}^+$$

3.
$$f(x) = e^{2x+1}, I = \mathbb{R}^+$$

2.
$$f(x) = \frac{5}{2x+3}, I = \mathbb{R}^+$$

4.
$$f(x) = \frac{2}{\sqrt{3x+4}}, I = \mathbb{R}^+$$

♥Méthode :

On cherche à réécrire l'expression f(x) sous une des formes bleues suivantes :

$$1. \quad \left(\frac{1}{u}\right)' = \frac{-u'}{u^2}$$

b) Pour
$$n = 3$$
: $\left(\frac{1}{u^3}\right)' = -\frac{3u'}{u^4}$

2.
$$(u^n)' = nu'u^{n-1}$$
, $n \ge 2$, avec en particulier :

c) Pour
$$n = 4$$
: $\left(\frac{1}{u^4}\right)' = -\frac{4u'}{u^5}$

a) Pour
$$n = 2$$
: $(u^2)' = 2u'u$

$$4. \quad (e^u)' = u' \times e^u$$

b) Pour
$$n = 3$$
: $(u^3)' = 3u'u^2$
c) Pour $n = 4$: $(u^4)' = 4u'u^3$

5.
$$(\ln(u))'$$
 avec $u > 0 = \frac{u'}{u}$ avec $u > 0$

3.
$$\left(\frac{1}{u^n}\right)' = -\frac{n \times u'}{u^{n+1}}, \ n \ge 2$$
, avec en particulier:

6.
$$\left(\cos(u)\right)' = -u' \times \sin(u)$$

7. $\left(\sin(u)\right)' = u' \times \cos(u)$

a) Pour
$$n = 2$$
: $\left(\frac{1}{u^2}\right)' = -\frac{2u'}{u^3}$

8.
$$\left(\sqrt{u}\right)' = \frac{u'}{2\sqrt{u}}$$

Exercice 11.11

Déterminer une primitive des fonctions suivantes, sur l'intervalle I:

1.
$$f(x) = 3x^2(x^3+1)^2$$
, $I = \mathbb{R}$

2.
$$f(x) = \frac{x}{x^2 + 1}$$
, $I = \mathbb{R}$

3.
$$f(x) = e^{-x+3}, I = \mathbb{R}$$

3.
$$f(x) = e^{-x+3}, I = \mathbb{R}$$

4. $f(x) = \frac{3x}{\sqrt{2x^2 + 7}}, I = \mathbb{R}$

Exercice 11.12

Déterminer une primitive des fonctions suivantes, sur l'intervalle I:

1.
$$f(x) = 3e^{3x+4}, I = \mathbb{R}$$

2.
$$f(x) = xe^{x^2-3}, I = \mathbb{R}$$

3.
$$f(x) = x^2 e^{-3}, I = \mathbb{R}$$

4.
$$f(x) = \frac{e^x}{e^x + 4}, I = \mathbb{R}$$

Exercice 11.13

Déterminer une primitive des fonctions suivantes, sur l'intervalle ${\cal I}$:

1.
$$f(x) = 5e^{4-x}, I = \mathbb{R}$$

2.
$$f(x) = \frac{4x^3}{x^4 + 5}$$
, $I = \mathbb{R}$

3.
$$f(x) = e^x (e^x + 4)^3$$
, $I = \mathbb{R}$

4.
$$f(x) = (2x-1)^4$$
, $I = \mathbb{R}$

Exercice 11.14

Déterminer une primitive des fonctions suivantes, sur l'intervalle I:

1.
$$f(x) = \frac{4x+2}{x^2+x+1}$$
, $I = \mathbb{R}$

2.
$$f(x) = \frac{x-1}{(x^2-2x+4)^2}$$
, $I = \mathbb{R}$

3.
$$f(x) = \frac{1}{e^x}$$
, $I = \mathbb{R}$

4.
$$f(x) = \frac{3}{e^{-x}(e^x + 1)}, I = \mathbb{R}$$

Exercice 11.15

Déterminer une primitive des fonctions suivantes, sur l'intervalle I:

1.
$$f(x) = \frac{2}{x}(\ln(x) + 2)^2$$
, $I = \mathbb{R}^{*+}$

2.
$$f(x) = \frac{2}{(3x-1)^2} + \frac{1}{3x-1}, I = \left[\frac{1}{3}; +\infty\right]$$

3.
$$f(x) = \frac{ln(x)}{x}$$
, $I = \mathbb{R}^*$

4.
$$f(x) = \frac{1}{x \ln(x)}$$
, $I =]1; +\infty[$

Exercice 11.16

Soit f la fonction définie sur l'intervalle $]-1;+\infty[$ par $f(x)=\frac{x+3}{(x+1)^2}.$

- 1. Déterminer les réels a et b tels que pour tout réel x de $]-1;+\infty[, f(x)=\frac{a}{(x+1)^2}+\frac{b}{x+1}.$
- 2. En déduire une primitive de f sur $]-1;+\infty[.$