Glossary: Theorems and Definitions From Higher Theory and Application of Differential Equations

Dylan Wang (z5422214)

May 2023, Term 2

Definition. First-order ODE.

A differential equation of the form y'(t) = f(t, y(t)).

*It is called a 'first-order' ODE because the degree of the derivative is only 1.

Definition. Linear first order ODE.

An ODE of the form

$$a(t)y'(t) + b(t)y(t) = f(t)$$

with $a(t) \neq 0$ on some interval $I \subseteq \mathbb{R}$.

*It is 'linear' because the 'variables' (i.e. y, y', y'', etc.) are not raised to a power.

Definition. Separable first order ODE.

An ODE of the form

$$y'(t) = f(t)g(y).$$

The solution is (implicitly) found by writing

$$\int \frac{1}{g(y)} \, \mathrm{d}y = \int f(t) \, \mathrm{d}t.$$

*These equations are called separable differential equations because we can separate everything involving t from everything involving y.

Definition. Integrating factor method.

For a linear first order ODE (i.e. y' + a(t)y = f(t)), we generally cannot separate the variables. But suppose there is a function $\mu(t)$, called an **integrating factor** such that

$$[\mu y](t)' = \mu(t)(y' + a(t)y) = \mu(t)f(t),$$

for if this happens, then the general solution of the ODE should be

$$y(t) = \frac{1}{\mu(t)} \int \mu(t) f(t) dt + \frac{C}{\mu(t)}.$$

We find that $\mu(t) = e^{\int a(t) dt}$.

Definition. Homogeneous Differential Equations.

Homogeneous differential equation are differential equations of the form

$$\frac{dy}{dx} = f\left(\frac{y}{x}\right),\,$$

where y = y(x).

They can be solved using the substitution y = vx, where v is a function of x. We will always get a separable differential equation. Observe.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}v}{\mathrm{d}x}x + v$$
$$\frac{\mathrm{d}v}{\mathrm{d}x}x + v = f\left(\frac{vx}{x}\right) = f(v)$$
$$\frac{\mathrm{d}v}{\mathrm{d}x} = \frac{f(v) - v}{x}.$$

Definition. Second Order Linear Differential Equations.

A second order linear differential equation is a differential equation of the form

$$p(x)\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + q(x)\frac{\mathrm{d}y}{x} + r(x)y = G(x),$$

where if G(x) = 0 we have a homogenous equation.

Note that the derivative of the exponential function at any point is itself. From this, the generic solution takes the form $y = e^{rx}$.

For the homogenous equation first:

Assume the solution is of the form $y = e^{rx}$ for some constant r. Then

$$y'' = r^2 e^{rx},$$

$$y' = re^{rx},$$

$$y = e^{rx}$$
.

So substituting into the differential equation gives

$$e^{rx} (p(x)r^2 + q(x)r + r(x)) = 0,$$

 $p(x)r^2 + q(x)r + r(x) = 0.$

Solve this quadratic for r, with three cases.

- 1. $\Delta > 0$: $y = c_1 e^{r_1 x} + c_2 e^{r_2 x}$, for some c_1 and c_2 . These constants represent that any linear combination of $e^{r_1 x}$ and $e^{r_2 x}$ is a solution (since = 0).
- 2. $\Delta = 0$: $y = ce^{rx}$.

3.
$$\Delta < 0 \implies r_1 = \alpha + \beta i, r_2 = \alpha - \beta i$$
: $y = e^{\alpha x} [c_1 \cos(\beta x) + c_2 \sin(\beta x)]$.

Now for the non-homogenous case. We call the solution to this the particular solution. We make a guess from the form of the non-homogeneity.

Non-Homogeneity	Particular Solution Form
Constant term $(f(x) = a)$	$y_p(x) = A$
Polynomial term $(f(x) = P_n(x))$	$y_p(x) = Q_n(x) \cdot x^m$, where $Q_n(x)$ is a poly-
	nomial of degree n
Exponential term $(f(x) = e^{rx})$	$y_p(x) = A \cdot e^{rx}$, where r is not a root of the
	characteristic equation
Sine or cosine term $(f(x) = \sin(kx))$ or $f(x) = \cos(kx)$	$y_p(x) = A \cdot \sin(kx) + B \cdot \cos(kx)$
Exponential times a polynomial $(f(x) = e^{rx} \cdot P_n(x))$	$y_p(x) = Q_n(x) \cdot e^{rx}$, where $Q_n(x)$ is a poly-
	nomial of degree n
Combination of the above forms	The particular solution is the sum of the
	particular solutions corresponding to each
	component

Table 1: If any of the coefficients match that of the characteristic polynomial, you must add an extra x.

Then the general solution is $y = y_h + y_p$.