MA-111 Calculus II (D1 & D2)

Lecture 3

Saurav Bhaumik

Department of Mathematics Indian Institute of Technology Bombay Powai, Mumbai - 76

January 31, 2022

Subtleties in Fubini's theorem - II

We will give examples of two functions f, g with the following properties:

- (1) The function g may be double integrable but the one dimensional integrals $\int_{c}^{d} g(x, y) dy$ may not exist.
- (2) Both the iterated integrals of f exist and are equal, but f is not double integrable.

Example

The examples depend on dyadic rationals, so we itroduce them. Dyadic rationals: A rational number p/q in its reduced form (i.e. p and q are coprime) is called a *dyadic rational* if q is a power of 2. For example, 1/2, 3/2, 3/8 are dyadic rationals but 1/3 is not. The dyadic rationals are dense in \mathbb{R} . The complement of the set of dyadic rationals is also dense in \mathbb{R} .

Example continued...

Consider the functions f and g on the rectangle $R = [0,1] \times [0,1]$ defined by:

- (1) For any integer $i \geq 0$, for any odd integer $j \in [0,2^i]$, for any integer $k \geq 0$, for any odd integer $\ell \in [0,2^k]$, define $f(j/2^i,\ell/2^k) = \delta_{ik}$ (here, δ_{ik} is the Kronecker delta, equal to one if i=k and 0 if not) and $g(j/2^i,\ell/2^k) = 1/2^i$; and
- (2) $\forall x, y \in [0, 1]$, if either x or y is not a dyadic rational, define f(x, y) = 0 and g(x, y) = 0.
 - ▶ g is Riemann integrable on R but, for any dyadic rational $x = i/2^j \in [0,1]$, the Riemann integral $\int_0^1 g(x,y) dy$ does not exist.
 - ▶ For the function f, both the iterated integrals $\int_0^1 \int_0^1 f(x, y) \, dx \, dy$ and $\int_0^1 \int_0^1 f(x, y) \, dy \, dx$ exist and are equal to zero. However, f is not Riemann integrable over R.

Proposition.

Let R be a rectangle in \mathbb{R}^2 and let $f:R\to\mathbb{R}$ be a continuous function. Then f is integrable on R. Moreover, both iterated integrals of f exist and are equal to the double integral of f over R.

Examples:

Example : Find the integral of $f(x,y) = x^2 + y^2$ on the rectangle $[0,1] \times [0,1]$ if it exists.

Solution: Since f is continuous, it is integrable. By Fubini's theorem, the double integral is equal to any of the iterated integrals. Let us now compute the integral using iterated integrals.

$$\int \int_{[0,1]\times[0,1]} x^2 + y^2 \, dx dy \stackrel{\text{Fubini}}{=} \int_0^1 \int_0^1 x^2 + y^2 \, dx dy
= \int_0^1 \left[\frac{x^3}{3} + xy^2\right]_0^1 dy
= \int_0^1 \left(\frac{1}{3} + y^2\right) dy
= \left[\frac{y}{3} + \frac{y^3}{3}\right]_0^1 = \frac{2}{3}$$

Example (Marsden, Tromba and Weinstein page 288): Compute

$$\int \int_R \sin(x+y) dx dy$$
, where $R = [0,\pi] \times [0,2\pi]$. Solution:

$$\int \int_{R} \sin(x+y) dx dy, \text{ where } R = [0,\pi] \times [0,2\pi].$$
Solution:
$$\int \int_{R} \sin(x+y) dx dy = \int_{0}^{2\pi} \left[\int_{0}^{\pi} \sin(x+y) dx \right] dy$$

 $= \int_0^{2\pi} [-\cos(x+y)|_{x=0}^{\pi}] dy$

 $=\int_{0}^{2\pi} [\cos y - \cos(y + \pi)] dy$ $= [\sin y - \sin(y + \pi)]|_{y=0}^{2\pi} = 0$ Example (Marsden, Tromba and Weinstein, page 289): If D is a plate defined by $1 \le x \le 2, 0 \le y \le 1$ (measured in centimeters), and the mass density $\rho(x,y) = ye^{xy}$ grams per square centimeter. Find the mass of the plate.

Solution: The total mass of the plate is got by integrating over the rectangular region covered by D:

$$\int \int_{D} \rho(x, y) dx dy = \int_{0}^{1} \int_{1}^{2} y e^{xy} dx dy = \int_{0}^{1} (e^{xy}|_{x=1}^{2}) dy$$
$$= \int_{0}^{1} (e^{2y} - e^{y}) dy = \frac{e^{2}}{2} - e + \frac{1}{2}$$

Special case Let $\phi: [a,b] \to \mathbb{R}$ and $\psi: [c,d] \to \mathbb{R}$ be Riemann integrable. Define $f(x,y) := \phi(x)\psi(y)$, for all $(x,y) \in R = [a,b] \times [c,d]$. Then f is integrable on R and

$$\int \int_{R} f(x, y) \, dx \, dy = \left(\int_{a}^{b} \phi(x) \, dx \right) \left(\int_{c}^{d} \psi(y) \, dy \right).$$

Example Let 0 < a < b and 0 < c < d and $r \ge 0$ and $s \ge 0$. Denote $R = [a, b] \times [c, d]$. Compute $\int \int_{R} x^{r} y^{s} dx dy$.

Existence of integrals over rectangles -I

Theorem

If f is bounded and monotonic in each of two variables, then f is integrable on R.

Again the proof follows by using Riemann condition.

Example: Let f(x,y) := [x+y], for all $(x,y) \in R$, where [u] means the greatest integer less than equal to u, for any $u \in \mathbb{R}$. Since f is monotonic in each of two variables, f is integrable on R.

Existence of integrals on rectangles - II

Sets of measure zero Let $A \subset \mathbb{R}^n$. We say A has *measure zero* in \mathbb{R}^n if for every $\epsilon > 0$, there is a covering Q_1, Q_2, \ldots of A by countably many rectangles such that

$$\sum_{i=1}^{\infty} volume(Q_i) < \epsilon.$$

If this inequality holds, we often say that the total volume of the rectangles Q_1, Q_2, \ldots is less than ϵ .

Remark If A is closed, bounded and has measure zero, then the collection $\{Q_j\}_j$ could be chosen to be finite. We say A has *content zero*. Not all measure zero sets have content zero, for example, $[0,1] \cap \mathbb{Q}$ has measure zero but not content zero.

- ▶ If $B \subset A$ and A has measure zero in \mathbb{R}^n , then so does B.
- Let A be the union of countable collection of sets A_1, A_2, \ldots If each A_i has measure zero in \mathbb{R}^n . In particular, every countable set has measure zero.
- If Q is a rectangle in Rⁿ, then the boundary of Q has measure zero in Rⁿ. (Q has measure zero if and only if the area of Q is zero.)
- in \mathbb{R}^n . (Q has measure zero if and only if the area of Q is zero.)

 Let $f: [a,b] \to \mathbb{R}$. The graph of f is the subset

$$\Gamma_f = \{(x,y) : y = f(x)\}$$

of \mathbb{R}^2 . If f is continuous, then Γ_f has measure zero in \mathbb{R}^2 .

Continued...

Think about it... Let $D \subset \mathbb{R}^2$ be a measure zero set. Suppose $0 \le \theta < 2\pi$ and let R_θ be the rotation by angle θ i.e. $R_\theta(x,y) = (x\cos\theta - y\sin\theta, x\sin\theta + y\cos\theta)$. Is $R_\theta(D)$ a set of measure zero?

Theorem Let Q be a rectangle in \mathbb{R}^2 , let $f:Q\to\mathbb{R}$ be a bounded function. Let D be the set of points of Q at which f fails to be continuous. Then f is integrable over Q if and only if D has measure zero in \mathbb{R}^2 .

Theorem Let Q be a rectangle in \mathbb{R}^2 , let $f:Q\to\mathbb{R}$ be integrable. Let E be the set of points of Q where f is nonzero. If E has measure zero, then $\int \int_Q f = 0$.

Example. Let $R := [-1, 1] \times [-1, 1]$,

$$f(x,y) = \begin{cases} \frac{xy}{(x^2+y^2)}, & (x,y) \in R, \quad (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0). \end{cases}$$

Since $f \le 1/2$ and continuous on the complement of the origin, it is integrable over R.

Example: Let $R = [0, 1] \times [0, 1]$ and

$$f(x,y) = \begin{cases} 1, & 0 \le x < y, & y \in [0,1], \\ 0, & y \le x \le 1, & y \in [0,1]. \end{cases}$$

The set of discontinuities of f is on the diagonal line, which is of measure zero as it is the graph of the function y = x. Therefore f is integrable over R.

Bivariate Thomae function: $f:[0,1]\times[0,1]\to\mathbb{R}$ is defined by

$$f(x,y) = \begin{cases} 1, & \text{if } x = 0, \quad y \in \mathbb{Q} \cap [0,1], \\ \frac{1}{q}, & x,y \in \mathbb{Q} \cap [0,1] \quad \text{and} \quad x = \frac{p}{q}, \\ p,q \in \mathbb{N} \quad \text{are relatively prime,} \\ 0, & \text{otherwise.} \end{cases}$$

Then f is continuous at (x,y) if x is irrational, so the points of discontinuities is contained in the measure zero set $\mathbb{Q} \times \mathbb{R}$. This function is integrable on $R = [0,1] \times [0,1]$, and $\int_{\mathbb{R}} f = 0$.

Integrals over any bounded region in \mathbb{R}^2

Let D be any bounded subset (not necessarily rectangle) of \mathbb{R}^2 . Then there exists a rectangle R in \mathbb{R}^2 containing D, i.e., $D \subset R$.

Proof: Indeed, since D is a bounded subset of R^2 , there exists a>0 such that any $(x,y)\in D$ satisfies $x^2+y^2< a^2$, i.e, $D\subset B_a=\{(x,y)\mid x^2+y^2\leq a^2\}$. But $B_a\subset [-a,a]\times [-a,a]$, so the

rectangle $R := [-a, a] \times [-a, a]$ contains D.

Let $f:D\to\mathbb{R}$ be a function. Extend f from D to R by defining

$$f^*(x,y) := \begin{cases} f(x,y), & (x,y) \in D, \\ 0, & (x,y) \notin D. \end{cases}$$

Definition

The function $f:D\to\mathbb{R}$ is said to be integrable on bounded $D\subset\mathbb{R}^2$, if f^* is integrable on R and the integral of f on D is defined by

$$\int \int_D f(x,y) \, dx \, dy := \int \int_R f^*(x,y) \, dx \, dy.$$

If $f \ge 0$ on $D \subset \mathbb{R}^2$ and f is integrable on D, then the double integral of f on D is the volume of the solid that lies above D in the x-y plane and below the graph of the surface z = f(x, y) for all $(x, y) \in D$.

$\int \int_D f = \text{volume of} \quad V$

Independent of choice of rectangle

- ▶ The choice of rectangle *R* containing *D* is not unique.
- ▶ But the value of the integral of *f* on *D* does not depend on the choice of the rectangle *R* containing *D*.
- ▶ Use the additivity property of integrals on rectangle and note that only 'zero' is getting added outside *D*.

Properties of Integrals over bounded sets in \mathbb{R}^2

Let D be a bounded subset of \mathbb{R}^2 . Let $f:D\to\mathbb{R}$ be an integrable function.

▶ The algebraic properties for integrals on any bounded set D in \mathbb{R}^2 hold similarly to those of the case of integrals on rectangle.

Domain additivity property: Let $D\subseteq\mathbb{R}^2$ be a bounded set. Let $D_1,D_2\subseteq D$ such that $D=D_1\cup D_2$. Let $f:D\to\mathbb{R}^2$ be a bounded function. If f is integrable over D_1 and D_2 and $D_1\cap D_2$ has content zero then f is integrable on D and

$$\int \int_D f = \int \int_{D_1} f + \int \int_{D_2} f.$$