МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа радиотехники и компьютерных технологий

Отчёт о выполнении лабораторной работы 4.2

Исследование энергетического спектра β -частиц и определение их максимальной энергии при помощи магнитного спектрометра

Авторы: Тихонов Дмитрий Романович, студент группы Б01-206а Павловский Кирилл Михайлович, студент группы Б01-206а

1 Введение

Цель работы: исследовать энергетический спектр β -частиц при распаде ядер $^{137}\mathrm{Cs}$ и определить их максимальную энергию.

В работе используются: магнитный спектрометр с «короткой линзой», форвакуумный насос и вакууметр, персональный ЭВМ, высоковольтный и низковольтный выпрямители.

2 Теоретическое введение

Eema-распадом называется самопроизвольное превращение ядер, при котором их массовое число не изменяется, а заряд увеличивается или уменьшается на единицу. Бета-активные ядра встречаются во всей области значений массового числа A, начиная от единицы (свободный нейтрон) и кончая самыми тяжелыми ядрами. Период полураспада β -активных ядер изменяется от ничтожных долей секунды до 10^{18} лет. Выделяющаяся при единичном акте β -распада энергия варьируется от 18 кэВ до 13.4 МэВ.

В данной работе мы будем иметь дело с электронным распадом

$$_{Z}^{A}X \rightarrow_{Z+1}^{A}X + e^{-} + \widetilde{\nu},$$

при котором кроме электрона испускается антинейтрино. Освобождающаяся при β -распаде энергия делится между электроном, антинейтрино и дочерним ядром, однако доля энергии, передаваемой ядру, исчезающе мала по сравнению с энергией, уносимой электроном и антинейтрино. Практически можно считать, что эти две частицы делят между собой всю освобождающуюся энергию. Поэтому электроны могут иметь любое значение энергии от нулевой до некоторой максимальной, которая равна энергии, освобождающейся при β -распаде, являющейся важной физической величиной.

Вероятность dw того, что при распаде электрон вылетит с импульсом в интервале $d^3\mathbf{p}$, а антинейтрино с импульсом в интервале $d^3\mathbf{k}$, пропорциональна произведению этих дифференциалов. Но мы должны еще учесть закон сохранения энергии, согласно которому импульсы \mathbf{p} и \mathbf{k} электрона и антинейтрино связаны соотношением

$$E_e - E - ck = 0, (1)$$

где E_e - максимальная энергия электрона, кинетическая энергия электрона E связана с его импульсом обычным релятивистским соотношением

$$E = c\sqrt{p^2 + m^2c^2} - mc^2, (2)$$

а через ck обозначена энергия антинейтрино с импульсом k. Условие можно учесть введением в выражение для dw δ -функции

$$\delta(E_e - E - ck). \tag{3}$$

Таким образом, вероятность dw может быть записана в виде

$$dw = D\delta(E_e - E - ck)d^3\mathbf{p}d^3\mathbf{k} = D\delta(E_e - E - ck)p^2dpk^2dkd\Omega_e d\Omega_{\widetilde{\nu}},\tag{4}$$

где D — некоторый коэффициент пропорциональности, $d\Omega_e$, $d\Omega_{\tilde{\nu}}$ — элементы телесных углов направлений вылета электрона и нейтрино. Вероятность dw непосредственно связана с β -спектром, поскольку для большого числа N_0 распадов число dN распадов с вылетом электрона и антинейтрино с импульсом соответственно от ${\bf p}$ до ${\bf p}+d{\bf p}$ и от ${\bf k}$ до ${\bf k}+d{\bf k}$ определяется соотношением

$$dN = N_0 dw. (5)$$

Коэффициент D в формуле (4) можно считать для рассматриваемых нами так называемых разрешенных фермиевских типов распадов с хорошей точностью константой (разрешенными называются

такие переходы, при которых не изменяются ни момент, ни четность состояния ядра). В этом случае величину dw из (5) можно проинтегрировать по всем углам и по абсолютному значению импульса нейтрино.

После умножения на полное число распадов N_0 проинтегрированное выражение приобретает смысл числа электронов dN, вылетающих из ядра с импульсом, абсолютная величина которого лежит между p и p+dp:

$$dN = \frac{16\pi^2 N_0}{c^2} Dp^2 (E_e - E)^2 dp.$$
 (6)

Чтобы получить распределение электронов по энергиям, надо в (6) перейти от dp к dE:

$$dE = \frac{c^2 p}{E + mc^2} dp,\tag{7}$$

после чего выражающая форму β -спектра величина N(E)=dN/dE приобретает вид

$$\frac{dN}{dE} = N_0 B c p(E + mc^2)(E_e - E)^2 = N_0 B \sqrt{E(E + 2mc^2)}(E_e - E)^2(E + mc^2)$$
(8)

где $B=(16\pi^2/c^4)D$. В нерелятивистском приближении, которое и имеет место в нашем случае, выражение (8) упрощается, и мы имеем

$$\frac{dN}{dE} \approx \sqrt{E}(E_e - E)^2. \tag{9}$$

Рис. 1: Форма спектра β -частиц при разрешенных переходах

Выражение (9) приводит к спектру, имеющему вид широкого колокола (рис.1). Кривая плавно отходит от нуля и столь же плавно, по параболе, касается оси абсцисс в области максимальной энергии электронов E_e .

Дочерние ядра, возникающие в результате β -распада, нередко оказываются возбужденными. Возбужденные ядра отдают свою энергию либо излучая γ -квант (энергия которого равна разности энергий начального и конечного уровней), либо передавая избыток энергии одному из электронов с внутренних оболочек атома. Излучаемые в таком процессе электроны имеют строго определенную энергию и называются конверсионными.

Конверсия чаще всего происходит на оболочках K или L. На спектре, представленном на рис. 1, видна монохроматическая линия, вызванная электронами конверсии. Ширина этой линии в нашем случае является чисто аппаратурной — по ней можно оценить разрешающую силу спектрометра.

3 Методика измерений и экспериментальная установка

Для определения энергии β -частиц в работе используется магнитный спектрометр, схема которого показана на рисунке 2.

Рис. 2: Схема β -спектрометра с короткой магнитной линзой

Электроны испускаются радиоактивным источником и попадают в магнитное поле катушки, ось которой параллельна OZ. Траектории электронов сходятся в одной точке – фокусе, где и установлен сцинтилляционный счетчик, сигналы которого усиливаются фотоумножителем и регистрируются пересчетным прибором. Фокусное расстояние f магнитной линзы связано с током в катушке I и импульсом p_e регистрируемых частиц следующим образом:

$$\frac{1}{f} \propto \frac{I^2}{p_e^2} \tag{10}$$

При неизменной геометрии установки, увеличивая и уменьшая силу тока, можно фокусировать электроны разных импульсов, причем

$$p_e = kI, (11)$$

где k — коэффициент пропорциональности, являющийся параметром установки.

В β -спектрометре установлены диафрагмы для ограничения углов вылета частиц из источника и свинцовый фильтр для защиты от прямого попадания γ -лучей.

Число частиц N, регистрируемых на установке, равно $N \approx W(p_e) \cdot \Delta p_e$, где Δp_e - разрешающая способность спектрометра. Дифференцируя выражение для фокуса магнитной линзы, получим: $\Delta p_e = \frac{1}{2} \frac{\Delta f}{f} p_e$, то есть $\Delta p_e \propto p_e$. Таким образом, для количества частиц справедлива формула:

$$N = CW(p_e)p_e, (12)$$

где C - некоторая константа.

Рис. 3: Блок-схема установки для изучения β -спектра

4 Результаты измерений и обработка данных

На рис. 4 приведён спектр β -распада атома ¹³⁷Cs.

Рис. 4: Спектр β -распада атома 137 Cs

Откалибруем его. Для этого с помощью встроенной в ЭВМ программы пересчитаем значения силы тока в импульс по формуле (11). Коэффициент k определим по известной конверсионной линии:

$$1013.5 \text{ кэB} = kcI_0,$$

где c – скорость света, $I_0=3.25$ A – сила тока, при которой наблюдается конверсионный пик. Сдвиг графика по оси ординат сделаем на величину радиационного фона N_{Φ} .

Рис. 5: Откалиброванный спектр β -распада атома $^{137}\mathrm{Cs}$

Определим максимальную энергию β -спектра. Анализ рис. 5 в таком случае даст достаточно грубый результат, так как нам придётся ограничиться исследованием точек у самой верхней границы спектра. Эти точки измерены с наименьшей статистической точностью. Можно уменьшить ошибку определения максимальной энергии посредством процедуры Ферми-Кюри. Для этого мы отложим по оси ординат величину $\sqrt{N}/p^{3/2}$, а по оси абсцисс энергию β -частиц (с учётом того, что энергия электронов внутренней конверсии ¹³⁷Cs равна 634 кэВ). В таком случае мы задействуем большинство экспериментальных точек, и прежде всего точки середины β -спектра, которые измерены с наилучшей точностью.

Рис. 6: График Ферми-Кюри

Воспользовавшись графиком, получим, что $E_m \approx 600$ кэВ.

5 Заключение

- В ходе лабораторной работы с помощью магнитного спектрометра мы исследовали энергетический спектр β -частиц при распаде ядер $^{137}\mathrm{Cs}$. Калибровку спектрометра осуществили по энергии электронов внутренней конверсии.
- Также мы определили максимальную энергию вылетающих электронов при β -распаде ядря $^{137}\mathrm{Cs}$ методом Ферми-Кюри: $E_m \approx 600$ кэВ.