AmberGlasses:

a standalone modularized lightweighted BCI device

Ching-Chih Amber Tsao

Traditional steady state visually evoked potentials (SSVEP) paradigms, which require users to gaze at a visual stimulus with both eyes, restricts its applicability in real-world scenarios.

Design

AG is a 3D-printed EEG-based BCI device that features a portable, standalone, and monocle design.

- Transparent Display
- 2 EEG Dry Electrodes (Forehead)
- 3 EEG Electrode Holder
- 4 Rotatable Strap Holder
- **5** EEG Expansion Module

Digital Fabrication

The prototype is 3D-printed using a FDM printer.

Adjustable strap length to fit different head size

Rotatable joints to adjust angle position

Specifications

Dimension: 25 x 16 x 4 cm

Visual Stimulation Range: 0-20Hz

Wireless Connection: WiFi 2.4GHz

Battery: Lithium Polymer battery 300mAh

Charging Interface: USB Type-C

	EEG Channels	Weight
Transparent Display Module	Fp1, Fp2	50g
Sensing Headset	O1, Oz, O2	30g (w/o electrodes)
EEG Expansion Module	Flexible adjustment from Frontal to Parietal	10g (w/o electrodes)

EEG Expansion Module

Amber Glasses, consisting of a sensing headset, a display module, and an EEG expansion module, is designed to accommodate a wide range of use cases that require mobile EEG capabilities.

Rotation Joint at 0°

The expansion module covers 3 additional channels spanning from the **frontal lobe** to the **parietal lobe** by a rotating joint.

Rotation Joint at 90°

Display Module

The transparent screen can provide a **0-20Hz** visual stimulation display or be used as a basic operating interface without blocking the user's line of sight.

The user can start the stimulation function themselves by touching the capacitive touch sensor during operation.

EEG Data Extraction

Value

Event Marker

Bandpass Filter

Select Data (channel, event)

Fast Fourier Transform

Time

Use Case - Person Identification

>> SSVEP Signal >> Classification

Authenticated / Rejected

- How do we verify signal quality?
- How do we model personal features?

SSVEP Signal

Both the fundamental frequency (8 Hz) and the second harmonic (16 Hz) peak were observed during the stimulation state.

Data Flow and Communication

The device provides a WiFi wireless networking function, which can transmit data to the computer for computation through the wireless network connection and send the computation results back to the device.

Person Identification Goal

Capture individual differences through EEG (SSVEP) signals

Machine Learning Classification Result

We tested ML on personal identification using an existing dataset (Y. Sun et al., 2024).

- Decision tree model (DT): FPR **1.73**%, FNR **16.15**%
- Random forest model (RF): FPR 1.28%, FNR 13.85%

$$FPR = \frac{Logged in}{Non-subject}$$

$$FNR = \frac{Rejected}{Registered subject}$$