Universidad Nacional de Rosario

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA

Probabilidad y Estadística

Unidad 4

Autor del resumen:

DEMAGISTRIS, Santiago Ignacio

1 Variables aleatorias unidimensionales

1.1 Noción general de una variable aleatoria

En muchas situaciones experimentales deseamos asignar un número real x a cada uno de los elementos S del espacio muestra 1 S. Esto es:

$$X(s):S\to\Re$$

Definición. Sea ϵ un experimento y S el espacio muestral asociado con él. Una función X que asgina a cada uno de los elementos $s \in S$, un numero real X(s), se llama **variable aleatoria.**

El espacio R_x , es decir, el conjunto de todos los valores posibles de X, algunas veces se le llama recorrido. En cierto sentido podemos considerar a R, como otro espacio muestral. El espacio muestral (original) S corresponde a los resultados no numéricos (posiblemente) del experimento, mientras que R_x , es el espacio muestral asociado con la variable aleatoria X, que representa la característica numérica que puede ser de interés. Si X(s) = S, tenemos $S = R_x$.

Una variable aleatoria X puede ser concebida de dos formas:

- Realizamos el experimento ϵ que tiene como resultado $s \in S$. Luego evaluamos el número X(s).
- Efectuamos ϵ , obteniendo el resultado s, e (inmediatamente) calculamos X(s). El número X(s) se considera entonces como el resultado obtenido en el experimento y R_x se convierte en el espacio muestral del experimento.

En el primer caso, el experimento termina, de hecho, con la observación de s. La evaluación de X(s) se estima como algo que se hace posteriormente y que no se afecta por la aleatoriedad de ϵ . En el segundo caso, se considiera que el experimento no está terminado hasta que el número X(s) se ha calculado y se tiene así el espacio muestral R_x , como resultado. Al estudiar variables aleatorias estamos más interesados respecto a los valores que toma X que a su forma funcional. Por lo tanto, en muchos casos ignoraremos por completo el espacio muestral sobre el cual se puede definir X.

Ejemplos págs 71-72

En general nos referiremos a las variables aleatorias con letras mayúsculas (X,Y,Z) y a sus valores con letras minúsculas (x,y,z).

Definición. Sea ϵ un experimento y S su espacio muestral. Sea X una variable aleatoria definida en S y sea R_x su recorrido. Sea B un evento respecto a R_x ; esto es, $B \subset R_x$ y sea A un evento respecto a S definido como:

$$A = \{ s \in S | X(s) \in B \}$$

En palabras, A consta de todos los resultados en S para los cuales $X(s) \in B$. En este caso decimos que A y B son **eventos equivalentes.**

De manera más informal, A y B son eventos equivalentes siempre que ocurran juntos. Es importante destacar que en nuestra definición de eventos equivalentes, A y B están asociados con espacios muestrales diferentes.

Ejemplo pág. 74

Definición. Sea B un evento en el recorrido R_x , entonces definimos P(B) como:

$$P(B) = P(A)$$
, donde $A = \{s \in S | X(s) \in B\}$

En palabras, definimos P(B) igual a la probabilidad del evento $A \subset S$. Por tanto, la definición anterior hace posible asignar probabilidades a eventos asociados con R_x en términos de las probabilidades definidas en S.

Ejemplo pág. 75

Tips para entender mejor

Puesto que en la formulación de la ecuación los eventos A y B se refieren a espacios muestrales diferentes, en realidad deberíamos usar una notación diferente cuando nos referimos a las probabilidades definidas en S y para las definidas en R_x , por ejemplo, algo como P(A) y $P_x(B)$. Sin embargo, no haremos esto sino que continuaremos escribiendo simplemente P(A) y P(B). El contexto dentro del cual aparezcan estas expresiones hará evidente la interpretación

1.2 Variables aleatorias discretas

Ojo... hay que entender los conceptos, los nombres no son intuitivos.

Definición. Sea X una variable aleatoria. Si el número de valores posibles de X (esto es, R_x , el recorrido) es finito o infinito numerable, llamamos a X una variable aleatoria discreta.

Ejemplo pág. 76

Definición Sea X una variable aleatoria discreta. Con cada resultado posible x_i asociamos un número $p(x_i) = P(X = x_i)$, llamado probabilidad de x_i . Los números $p(x_i)$, i = 1,2,. . . deben satisfacer las condiciones siguientes:

- $p(x_i) > 0 \ \forall i$.
- $\sum_{i=1}^{\infty} p(x_i) = 1$.

La función p que antes se definió, se llama función de probabilidad (o función de probabilidad puntual) de la variable aleatoria X. La colección de pares $(x_i,p(x_i))$, i = 1,2,. . . , se la llama distribución de probabilidad de X.

Sea B un evento asociado con la variable aleatoria X. Esto es, B $\subset R_x$. Específicamente, supongamos que B = $\{x_{i_1}, x_{i_2}, ...\}$. Por lo tanto,

$$P(B) = P[s \in S | X(s) \in B] = P[s \in S | X(s) = x_{i_j}, j = 1, 2, ...] = \sum_{i=1}^{\infty} p(x_{i_j})$$

En palabras, la probabilidad de un evento B es igual a la suma de las probabilidades de los resultados individuales asociados con B.

Observaciones.

Si X toma un número infinito numerable de valores, entonces es imposible tener todos los resultados igualmente probables, porque quizá no podamos satisfacer la condición si hemos de tener $p(x_i) = c$ para toda i.

En cada intervalo finito habrá cuando mucho un número finito de valores posibles de X. Si uno de esos intervalos no contiene ninguno de los valores posibles, le asignamos probabilidad cero. Esto es, si $R_x = \{x_1, x_2, ..., x_n\}$ y si ningún $x_i \in [a, b]$ entonces $P[a \le X \le b] = 0$.

Ejemplo pág. 78-79