Question 1a.

Discussion

- We will show that f is injective.
- We will show that f is surjective.

Proof

Proof. To show that f is bijective, we must show that it is both injective and surjective.

To prove that f is injective, let us first assume $f(s_1) = f(s_2)$. Then, the statement can be rewritten as follows: $ms_1 + b = ms_2 + b \Rightarrow ms_1 = ms_2 \Rightarrow s_1 = s_2$. Thus, f is injective.

Next, we will prove that f is surjective. Let t be an element in the co-domain of f. Assume that there exists a pre-image in the domain $s \in \mathbb{R}$. Then s must satisfy the equation f(s) = ms + b = t. Notice that if $s = \frac{-b+t}{m}$, the equation holds. Thus, every $t \in \mathbb{R}$ has the pre-image $\frac{-b+t}{m} \in \mathbb{R}$.

Since we have shown f to be both injective and surjective, we can conclude that f is bijective. \Box

Question 1b.

Since f is a bijection, it is invertible. The inverse $f^{-1}(x) = \frac{1}{m}(x-b)$. We can confirm this by noting that

$$f^{-1}(f(x)) = \frac{1}{m}(mx + b - b) = \frac{1}{m}(mx) = x.$$

Question 2.

Discussion

- We will show that f is injective.
- ullet We will show that f is surjective.

Proof

Proof. To show that f is bijective, we must show that it is both injective and surjective.

First, we will prove that f is injective. Assume that $f(s_1) = f(s_2)$. Notice that the statement can be rewritten as follows:

$$\frac{\gamma s_1 + 1}{s_1 + \rho} = \frac{\gamma s_2 + 1}{s_2 + \rho} \Rightarrow (\gamma s_1 + 1)(s_2 + \rho) = (\gamma s_2 + 1)(s_1 + \rho) \Rightarrow$$

$$\gamma s_1 s_2 + \gamma s_1 p + s_2 + \rho = \gamma s_1 s_2 + \gamma s_2 \rho + s_1 + \rho \Rightarrow \gamma s_1 \rho + s_2 = \gamma s_2 \rho + s_1 \Rightarrow$$
$$s_2 - \gamma s_2 \rho = s_1 - \gamma s_1 \rho \Rightarrow s_2 (1 - \gamma \rho) = s_1 (1 - \gamma \rho) \Rightarrow s_2 = s_1.$$

Since when $f(s_1) = f(s_2)$, $s_1 = s_2$, we can conclude that f is injective.

Next, we will prove that f is bijective. Let $t \in \mathbb{R} - \{\gamma\}$ be an element in the codomain of f. Assume that there exists a pre-image in the domain $s \in \mathbb{R} - \{-\rho\}$. Then s must satisfy the equation $f(s) = \frac{\gamma s + 1}{s + \rho} = t$. To obtain the solution, we will solve for s:

$$\frac{\gamma s + 1}{s + \rho} = t \Rightarrow \gamma s + 1 = t(s + \rho) \Rightarrow \gamma s + 1 = st + \rho t \Rightarrow \gamma s - st = \rho t - 1 \Rightarrow \tau s + \rho t \Rightarrow \tau s - st = \rho t - 1 \Rightarrow \tau s + \rho t \Rightarrow \tau s - st = \rho t - 1 \Rightarrow \tau s + \rho t \Rightarrow \tau s - st = \rho t - 1 \Rightarrow \tau s + \rho t \Rightarrow \tau s - st = \rho t - 1 \Rightarrow \tau s + \rho t \Rightarrow \tau s - st = \rho t - 1 \Rightarrow \tau s + \rho t \Rightarrow \tau s - st = \rho t - 1 \Rightarrow \tau s + \rho t \Rightarrow \tau s - st = \rho t - 1 \Rightarrow \tau s - st = \rho t - \rho t - \rho t - \rho t - \rho t = \rho t - \rho$$

$$s(\gamma - t) = \rho t - 1 \Rightarrow s = \frac{\rho t - 1}{\gamma - t}.$$

Thus, every $t \in \mathbb{R} - \{\gamma\}$ has the pre-image $\frac{\rho t - 1}{\gamma - t} \in \mathbb{R} - \{-\rho\}$.

Since we have proven that f is both injective and surjective, we can conclude that f is a bijection.

Question 3.

Discussion

- What we know: Since $g \circ f$ is injective, when $g(f(s_1)) = g(f(s_2))$, $f(s_1) = f(s_2)$.
- We will show that if $q \circ f$ is injective, then f is injective.

Proof

Proof. Let us consider the statement "If $g \circ f$ is injective, then f is injective." Assume that $g \circ f$ is injective. Then, by the definition of injectivity, when

$g(f(s_1))=g(f(s_2)),\ f(s_1)=f(s_2).$ Let us assume that f is not injective. Therefore, when $f(s_1)=f(s_2),\ s_1\neq s_2$. However, notice that if $s_1\neq s_2$ and $f(s_1)=f(s_2),$ then $g\circ f$ is not injective — a contradiction. Thus, f must be injective.
Question 4a.
Discussion
• What we know:
Proof

Proof.