

A1 Elettronica di frontend del rivelatore di neutroni

Versione: 1.1 Data: 21.0

Data: 21.05.2019 Processore: I.Beltschikow

Storia della versione

Versione	Predecessor e	Cambiamenti	HW	Stato	Editore	Data
1.0	-	-	Scheda Doppio-NINO - v1.1 Scheda singola NINO v1.0	Bloccato	IB	26.02.19
1.1	1.0	Capitolo 1 Aggiunta di uscite di monitoraggio	Scheda Doppio-NINO - v1.1 Scheda singola NINO v1.0	Rilasciato	IB	21.05.19

Contenuto

1.	P:	anoramica	4	
2.	. Alimentazione			
3.	A	ttenuatore	5	
4.	C	omparatore	6	
5.	Generatore di impulsi di prova			
6.	Struttura del bus I ² C			
7.	Α	ssegnazione dei pin	8	
8.	Ir	mpostazione della soglia	9	
ç	9.	Stretching	10	
1	LO.	Risoluzione a doppio impulso	11	
11.		Tempo di superamento della soglia	12	

2. alimentazione

L'elettronica frontale è costituita da 32 canali di ingresso analogici. Ogni canale passa attraverso un attenuatore regolabile prima che il segnale venga discriminato e reso disponibile in uscita come segnale LVDS. Inoltre, il segnale analogico **può essere** bufferizzato dopo l'attenuatore. Questo segnale è soggetto a un offset CC di circa 0,5 V, generato dall'ingresso NINO.

Sono disponibili DAC per l'impostazione dell'attenuazione e di altri parametri del comparatore. I DAC sono controllati tramite un bus I²C locale, collegato all'esterno come bus I²C differenziale. è disponibile l'interfaccia.

Inoltre, la scheda può essere dotata di un modulo SoC per espandere le funzionalità locali.

La scheda è alimentata a +/-5V. Il **consumo di** corrente senza la scheda SoC è di +1,5A e -0,4A.

3. Attenuatore

Ciascuno dei 32 attenuatori è basato sul circuito integrato BAP64Q di NXP. Si tratta di un attenuatore a 4 diodi PIN. Ai pin 4 e 5 viene applicata una tensione stabilizzata di riferimento per polarizzare i diodi. Con una tensione regolabile sul pin 2, è possibile regolare lo fornito smorzamento.

6. Struttura del

Come comparatore viene utilizzato l'ASIC NINO del CERN. Si tratta di un comparatore a 8 canali. Solo gli ingressi negativi **sono** utilizzati come ingressi di segnale. Gli ingressi positivi non sono collegati perché sono terminati internamente con 50 ohm.

Il NINO offre la possibilità di impostare una soglia globale tramite gli ingressi TH- **e** TH+. Inoltre, è possibile impostare l'isteresi e l'allungamento degli impulsi di uscita.

L'impulso di uscita è differenziale e corrisponde il più possibile allo standard LVDS. Viene nuovamente bufferizzato da un buffer LVDS a 8 canali (FIN1108).

5. Generatore di impulsi di prova

La scheda offre la possibilità di alimentare un impulso di prova agli ingressi analogici. In questo modo Si distingue tra impulso di prova monocanale e multicanale. l'impulso di prova monocanale è viene alimentato all'ultimo ingresso NINO (CH7, CH15, CH23 e CH31). L'impulso di prova multicanale è collegato a tutti gli altri canali. L'ampiezza dell'impulso è regolabile tramite DAC.

4. comparatore

Tutti i DAC hanno una risoluzione di 12 bit (intervallo di impostazione 0..4095).

8. impostazione della

Sicht von vorne

Sicht von hinten

Assegnazione dei pin HDMI

HUIVII					
Spillo	Funzione				
1, 3	Impulso di prova a				
	canale singolo				
4	/dS A				
6	dSDA				
7	dSCL				
9	/dSCL				
10, 11	Multicanale-Tespuls				
13	Reset hardware				
14	Non collegato				
2, 5, 8,	Terra				
11,					
16-19					

7. Assegnazione dei

La soglia risultante è mostrata in funzione dell'attenuazione impostata.

10. Risoluzione a doppio

L'ampiezza dell'impulso di uscita è mostrata in funzione dell'allungamento impostato. L'allungamento non è retriggerabile, vale a dire che un ulteriore impulso all'ingresso prolunga l'impulso di uscita solo della quantità di larghezza dell'impulso di ingresso.

9. stiramento

CH4: Ingresso

CH1 e CH2: uscita LVDS QMA:

CH2-CH1

Il NINO è in grado di separare gli impulsi con una distanza di circa 4ns.

10. Risoluzione a doppio

La larghezza dell'impulso di uscita è mostrata in funzione dell'ampiezza dell'ingresso.

