Retrieval and Encoding in Long Term Memory

The traditional view of long term memory

LTM or long term memory can be described as a place for storing large amounts of information for indefinite periods of time. LTM is often thought of as a *treasure chest* of memories or *scrape* book of memories

Capacity - What is the capacity of LTM?

Thomas Landauer (1986) has tried to provide the answer by making two estimates

- a) The size of the human brain is equal to the no of synapses in the Cerebral Cortex = 10^{13} , which is the no of bits of information stored in the brain
- b) Another estimate is 10^{20} bits of information which is the no is neuronal transmission made by average human lifetime

Coding in LTM

Errors made while recalling information from LTM are likely to be semantic confusion.

Baddeley (1966a)

Group A Similar sounding words list 1 (map, mad, man)

Matched words from list 1 but not similar sounding (pen, day, rig)

Group B Similar meaning words list 2 (huge, big, great)

Matched words from list 2 but not similar meaning (foul, old, deep)

Recall after 20 min / participants engaged in unrelated task

Acoustic similarity produced little effect on performance as compared to semantic similarity. Group 2 performed worse compared to group 1

Review of Long-term Memory

- Retrieval transfers info from LTM to STM
- Forgetting inability to retrieve previously available information

Forgetting theories

- Poor encoding theories
- Decay theories
- Interference theories
- Retrieval-cue theories

Forgetting as encoding failure

Info never encoded into LTM

Encoding failure leads to forgetting

Some encoding failure demos

- What letters accompany the number 5 on your telephone?
- Where is the number 0 on your calculator?
- According to this theory, objects seen frequently, but info never encoded into LTM

Forgetting as retrieval failure

- Not all forgetting is due to encoding failures
- Sometimes info IS encoded into LTM, but we can't retrieve it

Tip of the tongue phenomenon

- a.k.a. TOT experience
- Can't retrieve info that you absolutely know is stored in your LTM
- Example: ???
- Evidence of forgetting as an inability to retrieve info
- Why can't we retrieve info?

Retrieval failure theories

- Decay theories
- Interference theories
- Retrieval cue theories

Decay theories

Average

percentage of

Memories fade

 Memories fade
 away or decay
 gradually if unused

- Time plays critical role
- Ability to retrieve info declines with time after original encoding

Interval between original learning of nonsense syllables and memory test

Decay theories

- Biology-based theory
- When new memory formed, it creates a memory trace
 - a change in brain structure or chemistry
- If unused, normal brain metabolic processes erode memory trace
- Theory not widely favored today
 - info CAN be remembered decades after original learning
 - even if unused since original learning

Interference theories

- "Memories interfering with memories"
- Forgetting NOT caused by mere passage of time
- Caused by one memory competing with or replacing another memory
- Two types of interference

Experimental Paradigm for Interference

Phase	Experimental Group	Control Group
Proactive Interference		
I	Learn List A-B	Unrelated Activity
II	Learn List A-C	Learn List A-C
Test	List A-C	List A-C
Retroactive Interference		
Ι	Learn List A-B	Learn List A-B
II	Learn List A-C	Unrelated Activity
Test	List A-B	List A-B

Retroactive interference

- When a NEW memory interferes with remembering OLD information
- Example: When new phone number interferes with ability to remember old phone number

Retroactive interference

 Example: Learning a new language interferes with ability to remember old language

retroactive interference

Proactive interference

- Opposite of retroactive interference
- When an OLD memory interferes with remembering NEW information
- Example: Memories of where you parked your car on campus the past week interferes with ability find car today

Retrieval cue theories

- Retrieval cue a clue, prompt or hint that can help memory retrieval
- Forgetting the result of using improper retrieval cues

Recall vs. Recognition tests

- Importance of retrieval cues evident in recall vs. recognition tests
- Recall tests must retrieve info learned earlier
 - Examples: Fill-in-the-blank test; essay exams
- Recognition tests only need to identify the correct answer
 - Example: Multiple choice tests

What is the capital of Finland?

What is the capital of Finland?

- A. Uppsala
- B. Helsinki
- C. Tampere
- D. Amsterdam
- Which was easier: recall or recognition?
- For your psychology exam, would you rather have a fill-in-the-blank or a multiple choice test?

Which retrieval cues work best?

 Encoding specificity principle cues used during initial learning more effective during later retrieval than novel cues

Which retrieval cues work best?

- Context-dependent memory improved ability to remember if tested in the same environment as the initial learning environment
 - Better recall if tested in classroom where you initially learned info than if moved to a new classroom
 - If learning room smells of chocolate or mothballs, people will recall more info if tested in room with the same smell
 - compared to different smell or no smell at all

Context dependent effects

Time of day is also important

Learn at 3pm

 $\begin{array}{c|c}
12 \\
\hline
6 \\
6
\end{array}$

Perform better at 3pm

Than 9pm

Context-dependent effects

 Words heard underwater are best recalled underwater

Percentage 50 of words recalled

40

20

30

Land/

water

 Words heard on land are best

recalled on land

10

Water/

land

Water/ Land/ land water

Different contexts for hearing and recall

Same contexts for hearing and recall

State-dependent effects

- Recall improved if internal physiological or emotional state is the same during testing and initial encoding
- Context-dependent external, environmental factors
- State-dependent internal, physiological factors

State-dependent effects

- -Mood or emotions also a factor
- -Bipolar depressives
 - Info learned in manic state, recall more if testing done during manic state
 - Info learned in depressed state, recall more if testing done during depressed state

State dependent effects

Drunk during learning

Recall better if drunk

Than if sober

Eyewitness testimony

- Recall not an exact replica of original events
- Recall a construction built and rebuilt from various sources
- Often fit memories into existing beliefs or schemas
- Schema mental representation of an object, scene or event
 - Example: schema of a countryside may include green grass, hills, farms, a barn, cows etc.

Eyewitness testimony

- Scripts type of schema
 - Mental organization of events in time
 - Example of a classroom script: Come into class, sit down, talk to friends, bell rings, instructor begins to speak, take notes, bell rings again; leave class etc.

Memory distortion

- Memory can be distorted as people try to fit new info into existing schemas
- Giving misleading information after an event causes subjects to unknowingly distort their memories to incorporate the new misleading information

Loftus experiment

- Subjects shown video of an accident between two cars
- Some subjects asked: How fast were the cars going when the smashed into each other?
- Others aksed: How fast were the cars going when the hit each other?

Leading question:

"About how fast were the cars going When they *smashed* into each other?"

Loftus results

Word Used in Question

Average Speed Estimate

smashed

collided

bumped

hit

contacted

41 m.p.h.

39 m.p.h.

38 m.p.h.

34 m.p.h.

32 m.p.h