無人車倒車入庫

成果報告書

指導教師: 陸子強 老師

專題學生

組長: 資工四B 410817152 張宸瑄

組員: 資工四B 410817445 石昕儒

資工四B 410817233 朱博瑄

資工四B 410817178 林睿哲

● 前言

● 研究動機

「無人車」這項創新的科技和想法出現在媒體上也有相當的一段時間了,最早可以追溯到1920年代就開始有汽車自動化的實驗,隨著時間的推演,科技的進步,到了21世紀後開始突飛猛進的發展。

我們此次專題研究車子如何達到完全自動的 倒車入庫,研究的主要內容在於,藉由影像辨識, 深度學習,模糊控制,jetson Nano以及ROS各項技 術,來實現完全自動的倒車入庫。

● 研究背景

● (一) 架構圖

- 1. 首先攝像頭先拍攝影像照片。
- 2. 藉由深度模型學習傳入jetson nano,傳入 後啟動ros將照片經由模型判斷出角度及距離傳 入topic。
- 3. 將接收的兩個數值使用模糊控制器計算 出車子該轉的角度和移動的距離回傳至topic。
 - 4. 算出後再將算出的兩個數值傳到Arduino

把這些程式編輯燒錄後,就完成了能控制這台車子倒車入庫的裝置。

● (二) 流程圖

● 系統功能介紹

● (一) 無人車

實驗之無人車

• (二) Jetson nano

JetsonNano是 款體責」巧 功能強大的人工智慧嵌入式 開發板 預裝 Ubuntu

18.04LTS系統可以快速將AI技術落地並應用,其中包括用於深度學習、計算機規覺、GPU計算、多媒體起理等的板級支援包、CUDA、cuDNN和TensorRT等軟體車。

● (三) Arduino

Arduino就像是一台沒有鍵盤滑鼠和螢幕的主機,也能叫它開發版它是一個硬體與軟體的開源電子平台,arduino價格便宜並且能跨平台像是Microsoft Windows,Linux,Mac OS X,編程方式也

相對簡單清晰。

● (四) CSI攝像頭

為了能使影像辨識的更清楚,我們選用的是CSI鏡頭而不是USB鏡頭,鏡頭最大的解析度為800W像素,,最大可視範圍有160度。

● 研究方法

• ROS

ii:ROS

ROS的全名是Robot Operating System,他不像Windows或是Linux,需要灌在硬碟裡面然後開機的時候要選擇使用這個作業系統,而是安裝在Linux的環境上面的。

ROS比較像是在負責為機器人的各個元件 進行溝通與操作的一個框架,ROS內的函式可 以控制馬達的程式得以與接收感測器的程式溝 通。

● 樣本標註、模型訓練

本專題使用 LabelImg 對所有照片進行標註 ,標註完成後將標註檔儲存至 Annoations 資料 夾中。

並使用 Single-Shot MultiBox Detector(SSD)深度學習框架,對目標停車格進行訓練並輸出模型。

模型運作情況

● 模糊控制

經由停車位與影像中心點的像素差,以及 停車格的入口角度,擬定出在各種情境下,可 以讓車輪有正確的轉動角度。

我們透過應用fuzzy 控制車子輪軸角度完成 將車子開往正確的倒車位置。

● 使用環境

本專題實驗場域為五樓電梯前空地, 在此場域 放置停車格以模擬路邊停車的情境, 本專題無人車

可依停車格距離以及角度判斷無人車行徑方向,完成無人車自動駛入停車格。

● 開發工具

1.系統: Ubuntu

2.開發語言: Python

3.開發環境: Jetson nano

• 成本分析

物品	說明	數量	單價	總計	備註
車子	主要研究設備	1	40000	40000	實驗室提供
Jetson nano	主要研究設備	1	4667	4667	實驗室提供
CSI鏡頭	主要研究設備	1	1000	1000	實驗室提供
Sd+₹	主要研究設備	1	539	539	實驗室提供
Arduino	主要研究設備	1	429	429	實驗室提供
電池	消耗性材料	2	1000	2000	實驗室提供
筆記型電腦	輔助設備	1	30000	30000	同學自行負擔

● 結論及未來發展

本專題的停車格辨識是使用影像辨識來完成, 由於我們在有限時間並無法將訓練模型達到完善, 未來可以增加訓練模型資料,能使模型更加快速且 精準地找出停車格,並更加準確地駛入停車格。