## Homework 1 Template

Use this template to record your answers for Homework 1. Add your answers using LaTeX and then save your document as a PDF to upload to Gradescope. You are required to use this template to submit your answers. You should not alter this template in any way other than to insert your solutions. You must submit all 10 pages of this template to Gradescope. Do not remove the instructions page(s). Altering this template or including your solutions outside of the provided boxes can result in your assignment being graded incorrectly.

You should also export your code as a .py file and upload it to the **separate** Gradescope coding assignment. Remember to mark all teammates on **both** assignment uploads through Gradescope.

#### Instructions for Specific Problem Types

On this homework, you must fill in blanks for each problem. Please make sure your final answer is fully included in the given space. **Do not change the size of the box provided.** For short answer questions you should **not** include your work in your solution. Only provide an explanation or proof if specifically asked.

| Fill in the blank: | What is the course number? |
|--------------------|----------------------------|
| 10-703             |                            |

## Problem 0: Collaborators

Enter your team members' names and Andrew IDs in the boxes below. If you worked in a team with fewer than three people, leave the extra boxes blank.

| I         | Kimberly Nestor |              | kimberln |
|-----------|-----------------|--------------|----------|
| Name 1:   |                 | Andrew ID 1: |          |
|           |                 |              |          |
| Name 2:   |                 | Andrew ID 2: |          |
|           |                 |              |          |
| Name 3: I |                 | Andrew ID 3: |          |

## Problem 1: Value Iteration & Policy Iteration (30 pts)

#### 1.1: Contraction Mapping (3 pts)

#### Solution

- 1. False, because we only need one use case in the set of possible solutions to break this theory
- 2. True, because there is guaranteed convergence
- 3. True, because  $\pi_k$  and  $\pi_{k+1}$  would be the same if the algorithm reached convergence and  $\pi_k = \pi_*$

#### 1.2.1 Table: Policy Iteration (4 pts)

| Environment       | # Policy<br>Improvement<br>Steps | Total # Policy Evaluation Steps |
|-------------------|----------------------------------|---------------------------------|
| Deterministic-4x4 | 9                                | 19                              |
| Deterministic-8x8 | 17                               | 40                              |

## 1.2.2 Optimal Policies for Deterministic-4x4 and 8x8 Maps (2 pts)

| Solution                     |                                                                        |
|------------------------------|------------------------------------------------------------------------|
| 4x4 grid DURD RUUD UUUD ULLL | 8x8 grid RRRRRRDD RRRRRRDD UUUUUUDD DRDDDDDD DRDDDLLL DUDDLUUU DUDDUUU |
|                              | RULLLLL                                                                |

#### 1.2.3 Value Functions of the Optimal Policies (2 pts)



#### 1.3.1 Table: Synchronous Value Iteration (3 pts)

| Environment       | # Iterations |
|-------------------|--------------|
| Deterministic-4x4 | 6            |
| Deterministic-8x8 | 15           |

## 1.3.2 Value Functions from Synchronous Value Iteration (2 pts)



#### 1.3.3 Optimal Policies from Synchronous Value Iteration (2 pts)

| Solution |          |  |
|----------|----------|--|
|          | 8x8 grid |  |
|          | RRRRRDD  |  |
| 4x4 grid | RRRRRDD  |  |
| DURD     | UUUUUDD  |  |
| RUUD     | DRDDDDDD |  |
| UUUD     | DRDDDLLL |  |
| ULLL     | DUDDLUUU |  |
|          | DUDDUDUU |  |
|          | RULLLLL  |  |
|          |          |  |
|          |          |  |

#### 1.4.1 Table: Asynchronous Policy Iteration (4 pts)

| Heuristic | Policy<br>Improvement<br>Steps | Total Policy Evaluation Steps |
|-----------|--------------------------------|-------------------------------|
| Ordered   | 8x8 = 17                       | 8x8 = 40                      |
| Randperm  | 8x8 = 17                       | 8x8 = 40                      |

#### 1.5.1 Table: Asynchronous Value Iteration (4 pts)

| Heuristic | # Iterations |
|-----------|--------------|
| Ordered   | 8x8 = 15     |
| Randperm  | 8x8 = 13     |

#### 1.5.2 Asynchronous VI with Domain-specific Heuristic (4 pts)

#### Solution

| Env               | # Iterations |
|-------------------|--------------|
| Deterministic-4x4 | 6            |
| Deterministic-8x8 | 14           |

This custom heuristic that uses Manhattan distance to determine update order for states based on distance to goal would be best in a setting where the agent is given a limit number of time or timesteps (i.e. movement actions) in order to solve the goal of the game or reach the end target. In this sense only states that are closest to the goal and most essential will have value updates first and the algorithm can converge

faster i.e. in fewer timesteps.

## Problem 2: Bandits (36 pts)

## 2.1 $\epsilon$ -Greedy Plot (8 pts)



## 2.2 Optimistic Initialization Plot (8 pts)



## 2.3 UCB Exploration Plot (8 pts)



## 2.4 Boltzmann Exploration Plot (8 pts)



#### 2.5 Comparison Plot (8 pts)



# 2.6 Why not use the best-performing exploration strategy? (2-3 sentences) (4 pts)



## Problem 3: Feedback

| Feedback:   | You can    | help the   | course  | staff imp | rove the | course   | by pro | viding f | eedba  | ck. V | What  |
|-------------|------------|------------|---------|-----------|----------|----------|--------|----------|--------|-------|-------|
| was the mos | t confusir | ng part of | this ho | omework,  | and wh   | at would | d have | made it  | less c | onfu  | sing? |

| For problem 2 it would be helpful  | to but the formulas for all to<br>Boltzmann question | he algorithms in the assignment like with the n. |
|------------------------------------|------------------------------------------------------|--------------------------------------------------|
| For problem 1.5.2 it is a little c | onfusing to understand, may needed.                  | be needs to be rephrased or more detail is       |
|                                    |                                                      |                                                  |
|                                    |                                                      |                                                  |
|                                    |                                                      |                                                  |
|                                    |                                                      |                                                  |
| Callah anation. Datail the m       |                                                      |                                                  |
| Collaboration: Detail the v        | vork division amongst yo                             | our group in detail below.                       |
|                                    |                                                      |                                                  |
|                                    |                                                      |                                                  |
|                                    |                                                      |                                                  |
|                                    |                                                      |                                                  |
|                                    |                                                      |                                                  |
|                                    |                                                      |                                                  |
|                                    |                                                      |                                                  |
| Time Spent: How many ho            | ours did you spend worl                              | king on this assignment? Your answe              |
| will not affect your grade.        | v - 1                                                |                                                  |
|                                    |                                                      |                                                  |
|                                    | Alone                                                | 30hrs_                                           |
|                                    | With teammates Tith other classmates                 |                                                  |
|                                    | At office hours                                      |                                                  |
|                                    |                                                      |                                                  |
|                                    |                                                      |                                                  |
|                                    |                                                      |                                                  |