

B. Bicikliparkolás

Feladat neve	bikeparking
Időkorlát	1 másodperc
Memóriakorlát	1 gigabyte

Sanne-nek az a jövedelmező üzlet jutott eszébe, hogy prémium kategóriás kerékpár parkolóhelyeket ad bérbe az eindhoveni vasútállomáson. A profit maximalizálása érdekében a kerékpár-parkolóhelyeket N különböző szintre osztotta, amelyek számozása 0-tól N-1-ig terjed. A 0. szint, a prémium szint van a legközelebb a peronokhoz. A magasabb számozású szintek a rosszabb minőségű (messzebb levő) parkolóhelyeket jelentik (minél magasabb a szint, annál rosszabb a parkolóhely). A t-edik szinthez tartozó parkolóhelyek száma x_t .

A kerékpárral parkoló felhasználók egy alkalmazáson keresztül foglalhatják le a helyüket. Minden felhasználónak van egy előfizetési szintje és az annak megfelelő szinthez tartozó parkolóhelyet vár. A szolgáltatási feltételek viszont nem garantálják a felhasználóknak, hogy az adott szinthez tartozó parkolóhelyet kapnak.

Ha egy s előfizetési szintű felhasználónak a t szinten rendel az alkalmazás parkolóhelyet, akkor a következő három dolog egyike történik:

- 1. Ha t < s, akkor a felhasználó nagyon örül és azonnal felértékeli az alkalmazást.
- 2. Ha t=s, a felhasználó csendben elégedett lesz és nem értékel.
- 3. Ha t>s, a felhasználó dühös lesz és leértékeli az alkalmazást.

Ma Sanne alkalmazásának $y_0+y_1+...+y_{N-1}$ felhasználója van, ahol y_s az s előfizetési szintű felhasználók száma. Szüksége van a segítségedre, hogy a felhasználókat a parkolóhelyekhez rendelje.

Az alkalmazás minden felhasználónak pontosan egy parkolóhelyet ad ki. Egyetlen parkolóhelyet sem rendel egynél több felhasználóhoz, de lehetséges, hogy néhány parkolóhelyet nem rendel egyetlen felhasználóhoz sem. A felhasználók száma nem haladja meg a rendelkezésre álló parkolóhelyek számát.

Sanne szeretné maximalizálni az alkalmazása értékelését. Legyen U a felértékelések száma és D a leértékelések száma. A feladatod, hogy maximalizáld az U-D értéket.

Bemenet

A bemenet első sora egyetlen N egész számot tartalmaz, a parkolási és az előfizetési szintek számát.

A második sorban N darab egész található: $x_0,x_1,...,x_{N-1}$, az egyes szintekhez tartozó parkolóhelyek száma.

A harmadik sorban N darab egész található: $y_0, y_1, ..., y_{N-1}$, az egyes előfizetési szintekhez tartozó felhasználók száma.

Kimenet

A kimenet egyetlen egész számot tartalmaz, az U-D maximális értékét a felhasználók egy optimális parkolási szintekhez rendelése esetén.

Korlátok és pontozás

- $1 \le N \le 3 \cdot 10^5$.
- $ullet 0 \leq x_i, y_i \leq 10^9$, ahol i=0,1,...,N-1.
- $\bullet \ \ y_0+y_1+...+y_{N-1} \leq x_0+x_1+...+x_{N-1} \leq 10^9.$

A megoldásodat különböző tesztcsoportokon ellenőrzik, ahol minden tesztcsoportnak önálló pontértéke van. Minden tesztcsoport több tesztesetet tartalmaz. Egy tesztcsoport pontjainak megszerzéséhez a programodnak a tesztcsoport összes tesztesetét helyesen kell megoldania.

Tesztcsoport	Pontszám	Korlátok
1	16	$N=2, x_i \leq 100, y_i \leq 100$
2	9	$x_i=x_j=y_i=y_j$ minden i,j -re. Más szavakkal az x -ek és az y -ok értéke ugyanannyi a bemenetben.
3	19	$x_i,y_i \leq 1$
4	24	$N, x_i, y_i \leq 100$
5	32	Nincsenek további korlátok.

Példák

Vedd figyelembe, hogy a példák nem feltétlenül felelnek meg az összes korábban felsorolt tesztcsoportnak.

Az i. példa legalább az i. tesztcsoportnak megfelel.

Az első példában a 0. előfizetési szintű felhasználót egy 0. szintű helyhez rendelheted, a két darab 1. szintű felhasználót még a 0. szintű helyhez rendelheted (ez 2 felértékelést eredményez), és a fennmaradó 1. szintű felhasználót egy 1. szintű helyhez. Ez a kiosztás összesen 2 értéket eredményez.

A második példában az 1. szintű felhasználót a 0. szintű helyhez rendelheted, a 2. szintű felhasználót pedig az 1. szintű helyhez, a 0. szintű felhasználót pedig a 2. szintű helyhez. Ez 2 felértékelés és 1 leértékelés, ami összesen 1 értéket jelent.

A harmadik példában az 1. szintű felhasználót a 0. szinthez, a 0. szintű felhasználót pedig a 2. szinthez rendelhetjük, a 4. szintű felhasználót pedig a 3. szintű helyhez. Ez 2 felértékelést és 1 leértékelést jelent, ami összesen 1 értéket eredményez.

A negyedik példa az alábbi ábrán látható. Az 1. szintű felhasználókat rendre a 0., 0., 3. és 3. szintekhez rendeli, ami azt eredményezi, hogy 2 felértékelést és 2 leértékelést kap. Ezután a 2. szintű felhasználókat az 1., 2., 3. és 3. szintekhez rendeli, ami 1 felértékelést és 2 leértékelést eredményez. Ez összesen 3 fel- és 4 leértékelést jelent, így az érték-1.

Az ötödik mintában mindenkit hozzárendelhetünk a saját előfizetési szintjének megfelelő helyhez, így az értékelés 0.

Input	Output
2	2
3 3	
1 3	

Input	Output
3 1 1 1 1 1 1	1
6 1 0 1 1 0 1 1 1 0 0 1 0	1
4 2 1 1 8 0 4 4 0	-1
1 100000000 1000000000	0