Álgebra lineal II, Grado en Matemáticas

Septiembre 2014

No se permite el uso de material impreso (libros, apuntes) ni ningún tipo de calculadora. Todas las soluciones tendrán que darse suficientemente razonadas.

Defina los siguientes conceptos: (2 puntos)

- (a) Coeficientes de Fourier.
- (b) Autovalor o valor propio.
- (c) Polinomio anulador de un endomorfismo.
- (d) Forma canónica de Jordan.

Ejercicio 1: (2 puntos)

Sea $\Phi: \mathbb{R}^n \to \mathbb{R}$ una forma cuadrática cuya signatura es (p,q), con $p+q \leq n$. Demuestre que:

- a) p es la máxima dimensión de un subespacio $U \subset \mathbb{R}^n$ tal que Φ restringida a U es definida positiva.
- b) q es la máxima dimensión de un subespacio $V \subset \mathbb{R}^n$ tal que Φ restringida a V es definida negativa.

Ejercicio 2: (3 puntos)

En un espacio vectorial euclídeo (V, <, >) de dimensión 4.

- a) Determine una base ortogonal $B = \{v_1, v_2, v_3, v_4\}$ tal que v_2, v_3 y v_4 pertenezcan al hiperplano $U: x_1 + x_2 = 0$.
- b) Determine un vector no nulo u, cuya proyección ortogonal sobre U sea un vector del plano de ecuaciones $\Pi: (x_1 = 0, x_2 = 0)$.

Ejercicio 4: (3 puntos)

Dado el endomorfismo f, de un espacio vectorial de dimensión 6, con matriz de Jordan

$$\begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 \end{pmatrix}$$

- a) Determine sus polinomios característico y mínimo, los autovalores y sus multiplicidades algebraicas y geométricas.
 - b) Justifique que no existen hiperplanos invariantes irreducibles.
 - c) Dé la ecuación de un hiperplano reducible.
 - d) Dé las ecuaciones de un plano que contenga infinitas rectas invariantes.