Saudi Arabia King Abdulaziz University The Faculty of Computer and Information Technology Computer Science Department

MACHINE LEARNING APPLICATION ON RAPIDMINER AND WEKA

Team Members:

Name: Wajd Bandar Alharbi

ID: 2007057

Name: Renad Baghdadi

ID: 2006538

Artificial Intelligence | CPCS 331

ACADEMIC YEAR 2022 | **HAND IN DATE : 4/11/2022**

Task Assignment

Task	Wajd Alharbi	Renad Baghdadi
Introduction	50%	50%
The chosen dataset	50%	50%
The machine learning	100%	0%
Linear Regression algorithm	100%	0%
Multilayer Perceptron algorithm (Neural Net)	0%	100%
Conclusion	50%	50%

Table of Contents

1-	Introduction	4
2-	Purpose of the project	4
3-	The chosen dataset	4
•	Metro Interstate Traffic Volume Data Set	4
•	Attribute Information	5
4-	The machine learning method	6
5-	Linear Regression Algorithm:	
•	Result of the experiment	
6-	Multilayer Perceptron Algorithm (Neural Net):	12
•	Result of the experiment	
7-	Conclusion	17
8-	References	
9-	Appendix	
• Li	inear Regression	
• M	lultilayer Perceptronlultilayer Perceptron	26
• De	esigns and Steps	32

1-Introduction

Artificial Intelligence and computer science's field of machine learning is concerned with utilizing algorithms and data to mimic how individuals learn in order to increase accuracy over time. Machine learning algorithms are used to generate a prediction, regression, or classification. Based on certain input data, which may be labeled or unlabeled, our algorithms will offer an estimate about a pattern in the data.

2-Purpose of the project

This project's objective is to employ the tools to apply machine learning algorithms to massive amounts of data. The methods we chose include the Multilayer Perceptron algorithm and the Linear Regression algorithm, both of which leverage machine learning tools like Rapid-miner and Weka. Examining how various validations use the same method and the same data to get different results that rely on the qualities of the validations is the aim.

3-The chosen dataset

Metro Interstate Traffic Volume Data Set

Traffic volume is determined by observing the temperature, weather, if there is snow, clouds, or rain, and if there is a holiday or not. This data set uses anomaly detection, a method that makes use of AI to spot unusual activity in comparison to a pre-existing pattern. An anomaly is something that deviates from the accepted baseline pattern. The AI in Dynatrace automatically creates baselines, finds abnormalities, fixes underlying causes, and notifies users. Metro Interstate Traffic Volume Data Set is a multivariate, sequential, time-Serried type of data set. The characteristics of its 9 attributes are Integer and Real for the most part, but it also included date and time, as well as polynomial attributes The tasks associated with the data is Regression, for this reason, we chose regression algorithms for our regression problem

Attribute Information

- 1. holiday Categorical US National holidays plus regional holiday, Minnesota State Fair
- 2. temp Numeric Average temp in kelvin
- 3. rain_1h Numeric Amount in mm of rain that occurred in the hour
- 4. snow_1h Numeric Amount in mm of snow that occurred in the hour
- 5. clouds_all Numeric Percentage of cloud cover
- 6. weather_main Categorical Short textual description of the current weather
- 7. weather_description Categorical Longer textual description of the current weather
- 8. date_time DateTime Hour of the data collected in local CST time
- 9. traffic_volume Numeric Hourly I-94 ATR 301 reported westbound traffic volume

• Sample of data set on Rapid Miner

Row No.	traffic_volu	holiday	temp	rain_1h	snow_1h	clouds_all	weather_m	weather_de	date_time
1	5545	None	288.280	0	0	40	Clouds	scattered clo	Feb 10, 2012
2	4516	None	289.360	0	0	75	Clouds	broken clouds	Feb 10, 2012
3	4767	None	289.580	0	0	90	Clouds	overcast clou	Feb 10, 2012
4	5026	None	290.130	0	0	90	Clouds	overcast clou	Feb 10, 2012
5	4918	None	291.140	0	0	75	Clouds	broken clouds	Feb 10, 2012
6	5181	None	291.720	0	0	1	Clear	sky is clear	Feb 10, 2012
7	5584	None	293.170	0	0	1	Clear	sky is clear	Feb 10, 2012
8	6015	None	293.860	0	0	1	Clear	sky is clear	Feb 10, 2012
9	5791	None	294.140	0	0	20	Clouds	few clouds	Feb 10, 2012
10	4770	None	293.100	0	0	20	Clouds	few clouds	Feb 10, 2012
11	3539	None	290.970	0	0	20	Clouds	few clouds	Feb 10, 2012
12	2784	None	289.380	0	0	1	Clear	sky is clear	Feb 10, 2012
13	2361	None	288.610	0	0	1	Clear	sky is clear	Feb 10, 2012
14	1529	None	287.160	0	0	1	Clear	sky is clear	Feb 10, 2012
15	963	None	285.450	0	0	1	Clear	sky is clear	Feb 10, 2012
16	506	None	284.630	0	0	1	Clear	sky is clear	Mar 10, 2012
17	321	None	283.470	0	0	1	Clear	sky is clear	Mar 10, 2012
18	273	None	281.180	0	0	1	Clear	sky is clear	Mar 10, 2012

4-The machine learning method

Regression is a method for determining how independent traits or variables relate to a dependent feature or result. It is a technique for machine learning predictive modeling, where an algorithm is utilized to estimate continuous outcomes. One of the most popular uses of machine learning models, particularly in supervised machine learning, is to solve regression issues. The link between an outcome or result of events occurring and independent factors is something that algorithms are designed to grasp. The model may then be used to forecast the results of fresh, unforeseen input data or to complete a data gap.

There are many error metrics that are commonly used for evaluating and reporting the performance of a regression model; they are:

- Correlation Coefficient
- Root Mean Squared Error (RMSE).
- Mean Absolute Error (MAE)
- Mean Squared Error (MSE).
- Mean Absolute error.
- Relative Absolute Error.

However, the most common ones are **Root Mean Squared Error**, and **Correlation**, which are the ones we will be using for comparison. The lower the Root mean squared error, the better the model is. The correlation coefficient ranges between 0 – 1, and the closer the correlation is to 1, the better the model. A correlation of 1 means 100% accuracy.

In this project we are going to use Two regression task suitable algorithms:

5- Linear Regression Algorithm:

An algorithm for machine learning based on supervised learning is linear regression. Given that it is one of the most extensively utilized regression analysis approaches, it is frequently employed for tasks and issues involving regression. Based on independent variables, regression models a goal prediction value. Finding the connection between variables and predicting is its main purpose. The linear regression procedure, often known as linear regression, illustrates a linear connection between one or more independent variables (y) and a dependent variable (y). As a result of displaying a linear connection, linear regression may be used to determine how the values of the dependent variable variable changes in proportion to the values of the independent variable.

• Result of the experiment

1- Split validation:

In Rapid Miner and In Weka "Look at the appendix "

	Split validation		
	Rapid Miner Weka		
Split Ratio	70%	70%	
Root Mean Squared Error	1968.796	1960.8132	
Correlation Coefficient	0.146 0.1589		
Mean Absolute Error	1717.258	1709.0488	
Relative absolute error	215.70%	98.168 %	

2- Split validation :

In Rapid Miner and In Weka "Look at the appendix "

	Split validation		
	Rapid Miner	Weka	
Split Ratio	80%	80%	
Root Mean Squared Error	1972.306	1960.5496	
Correlation Coefficient	0.142	0.1477	
Mean Absolute Error	1717.684	1707.4839	
Relative absolute error	187.75%	98.3212 %	

1- Cross validation:

In Rapid Miner and In Weka "Look at the appendix "

	Cross validation		
	Rapid Miner	Weka	
FOLDS	10	10	
Root Mean Squared Error	2945.127		
Correlation Coefficient	0.137	0.0076	
Mean Absolute Error	1730.589	1730.2904	
Relative absolute error	295.54%	99.1521 %	

2- Cross validation:

In Rapid Miner and In Weka "Look at the appendix "

	Cross validation		
	Rapid Miner Weka		
FOLDS	20	20	
Root Mean Squared Error	2676.623	4143.6945	
Correlation Coefficient	0.144	0.0076	
Mean Absolute Error	1730.178	1730.3893	
Relative absolute error	295.48%	99.1574 %	

6-Multilayer Perceptron Algorithm (Neural Net):

A feed-forward artificial neural network that produces a set of outputs from a collection of inputs and it is a supervised learning algorithm called a multilayer perceptron (MLP), MLP is characterized by several layers of inputs, it consists of three types of layers, the input layer, output layer and hidden layer. MPL is a deep learning method and it trains the network through backpropagation. MPL was created to approximate any continuous function and can resolve issues that cannot be divided linearly. Pattern classification, recognition, prediction, and approximation are the main applications of MLP.

• Result of the experiment

1- Split validation :

In Rapid Miner and In Weka "Look at the appendix"

	Split validation		
	Rapid Miner	Weka	
Split Ratio	70%	70%	
Root Mean Squared Error	1982.307	1966.8953	
Correlation Coefficient	0.164 0.1415		
Mean Absolute Error	1730.491	1719.0456	
Relative absolute error	196.56%	98.7422 %	

2- Split validation :

In Rapid Miner and In Weka "Look at the appendix"

	Split validation	
	Rapid Miner	Weka
Split Ratio	80%	80%
Root Mean Squared Error	1972.886	2082.3326
Correlation Coefficient	0.156 0.129	
Mean Absolute Error	1722.592	1756.4698
Relative absolute error	179.24%	101.1419 %

1- Cross validation:

In Rapid Miner and In Weka "Look at the appendix "

	Cross validation		
	Rapid Miner	Weka	
FOLDS	10	10	
Root Mean Squared Error	2029.831	2108.8495	
Correlation Coefficient	0.171	0.0464	
Mean Absolute Error	1750.541	1805.6282	
Relative absolute error	287.83%	103.4693 %	

2- Cross validation:

In Rapid Miner and In Weka "Look at the appendix "

	Cross validation			
	Rapid Miner Weka			
FOLDS	20	20		
Root Mean Squared Error	2007.699	2156.026		
Correlation Coefficient	0.167	0.0369		
Mean Absolute Error	1734.916	1827.4707		
Relative absolute error	290.46%	104.7205 %		

7-Conclusion

	For Linear Regression							
		Split validation 70%	Split validation 80%	Cross validation 10 folds	Cross validation 20 folds			
Rapid Miner	Root Mean Squared Error	1968.796	1972.306	2945.127	2676.623			
Weka	Root Mean Squared Error	1960.8132	1960.54	4161.0686	4143.6945			

As the previous result for the linear regression algorithm, we approved a difference between each program in predicting the target. In Spilt validation, the Root mean squared error values are better in Weka than in RapidMiner. However, in Cross validation, we noticed that RapidMiner was better than Weka in Root mean square error.

For Multilayer Perceptron								
		Split validation 70%	Split validation 80%	Cross validation 10 folds	Cross validation 20 folds			
Rapid Miner	Root Mean Squared Error	1982.307	1972.886	2029.831	2007.699			
Weka	Root Mean Squared Error	1966.8953	2082.3326	2108.8495	2156.026			

As the previous result for the Multilayer Perceptron Algorithm (Neural Net) we approved a difference between each program in predicting the target. In Split validation and the Root mean squared error we noticed both values were better in RapidMiner than Weka

In conclusion, Linear regression seems to perform better in split validation than Multilayer perception on both RapidMiner and Weka. On the contrary, Multilayer perceptron performs better in cross validation than linear regression did on all programs. However, the root mean squared error in cross validation in Weka for linear regression spiked to the worst case, so we will only be looking at the good side, (split validation). Linear regression has noticeably performed better in split validation, in comparison to multilayer perceptron's best-case performance in any of the validation methods and programs. For this reason, we have considered linear regression to be the better algorithm in performance.

8-References

Anomaly detection powered by ai. Dynatrace. (2022, October 13). Retrieved November 4, 2022, from <a href="https://www.dynatrace.com/monitoring/platform/artificial-intelligence/anomaly-detection/?utm_source=google&utm_medium=cpc&utm_term=ai%20anomaly%20detection&utm_campaign=me-aiops-

<u>aiops&utm_content=none&gclid=Cj0KCQjwteOaBhDuARIsADBqReiqBeH0CLIUAGmZzawbp4w</u> OZsyzkL zbDu FtJ GYL1VVROjlraZx0aAvX0EALw wcB&gclsrc=aw.ds

Metro Interstate Traffic Volume Dataset. UCI Machine Learning Repository: Metro Interstate Traffic Volume Data Set. (n.d.). Retrieved November 4, 2022, from https://archive.ics.uci.edu/ml/datasets/Metro+Interstate+Traffic+Volume

Seldon. (2021, October 29). Machine learning regression explained. Seldon. Retrieved November 4, 2022, from https://www.seldon.io/machine-learning-regression-explained

Multilayer Perceptron. Multilayer Perceptron - an overview | ScienceDirect Topics. (n.d.). Retrieved November 4, 2022, from https://www.sciencedirect.com/topics/computer-science/multilayer-perceptron

Multi-layer perceptron learning in tensorflow. GeeksforGeeks. (2021, November 5). Retrieved November 4, 2022, from https://www.geeksforgeeks.org/multi-layer-perceptron-learning-in-tensorflow/

9-Appendix

• Linear Regression

1- Split validation for **Linear Regression**:

In Rapid Miner With split ratio 0.7

1- Split validation for **Linear Regression**:

In Rapid Miner With split ratio 0.8

2- Split validation for **Linear Regression**:

In weka With split ratio 0.7

Associate	Select attributes	Visualize					
`	0	1					
) U -R 1.UE-1	8 -num-decimal-pla	ces 4					
	Classifian autour						
	Classifier output						
		temp					
		rain 1h					
		snow_1h					
		clouds_	all				
ion ion ion		traffic	_volume				
	Test mode: split 70.0% train, remainder test						
	=== Classifier model (full training set) ===						
	Linear Regression Model						
	traffic_volume =						
	20.6425 * temp + 4.1343 * clouds_all + -2749.0607						
	Time taken to build model: 0.25 seconds						
	=== Evaluation on test split ===						
	Time taken to test model on test split: 0.04 seconds						
	=== Summary	===					
	Correlation	coefficie	nt	0.1589			
	Mean absolut	e error		1709.0488			
	Root mean sq	uared err	or	1960.8132			
	Relative abs			98.168	%		
	Root relativ	e squared	error	98.7324	8		
	Total Number			14461			

2- Split validation for **Linear Regression**:

In weka With split ratio 0.8

Classifier output

```
temp
              rain_1h
              snow 1h
              clouds_all
              traffic_volume
              split 80.0% train, remainder test
Test mode:
=== Classifier model (full training set) ===
Linear Regression Model
traffic_volume =
     20.6425 * temp +
      4.1343 * clouds all +
  -2749.0607
Time taken to build model: 0.13 seconds
=== Evaluation on test split ===
Time taken to test model on test split: 0.01 seconds
=== Summary ===
Correlation coefficient
                                         0.1477
Mean absolute error
                                      1707.4839
                                      1960.5496
Root mean squared error
Relative absolute error
                                       98.3212 %
Root relative squared error
                                        98.9048 %
Total Number of Instances
                                    9641
```

1- Cross validation for **Linear Regression**:

In Rapid Miner With 10 Folds

```
PerformanceVector

| PerformanceVector | PerformanceVector | PerformanceVector | PerformanceVector | PerformanceVector:
| root_mean_squared_error: 2945.127 +/- 2943.786 (micro average: 4163.956 +/- 0.000) | absolute_error: 1730.589 +/- 47.891 (micro average: 1730.588 +/- 3787.294) | relative_error: 295.54% +/- 74.24% (micro average: 295.53% +/- 5,150.77%) | squared_error: 17339645.930 +/- 40448402.595 (micro average: 17338527.171 +/- 2960348196.112) | correlation: 0.137 +/- 0.047 (micro average: 0.008) | squared_correlation: 0.021 +/- 0.008 (micro average: 0.000)
```

1- Cross validation for **Linear Regression**:

In Rapid Miner With 20 Folds

2- Cross validation for **Linear Regression:**

In Weka With 10 Folds

```
Classifier output
  Relation:
               {\tt Metro\_Interstate\_Traffic\_Volume-weka.filters.unsupervised.attribute.Remove-R1,6-8}
  Instances:
 Attributes:
               temp
               rain_1h
               snow_1h
               clouds_all
               traffic_volume
 Test mode: 10-fold cross-validation
  === Classifier model (full training set) ===
 Linear Regression Model
 traffic_volume =
      20.6425 * temp +
       4.1343 * clouds_all +
   -2749.0607
 Time taken to build model: 0.04 seconds
 === Cross-validation ===
 === Summary ===
 Correlation coefficient 0.0076
 Root mean squared error
                                     4161.0686
 Relative absolute error
                                        99.1521 %
 Root relative squared error
Total Number of Instances
                                       209.4266 %
                                   48204
 Total Number of Instances
```

2- Cross validation for **Linear Regression:**

In Weka With 20 Folds

```
Classifier output
  Relation:
               {\tt Metro\_Interstate\_Traffic\_Volume-weka.filters.unsupervised.attribute.Remove-R1,6-8}
  Instances:
 Attributes: 5
               temp
               rain_1h
               snow_1h
               clouds_all
               traffic_volume
  Test mode: 20-fold cross-validation
  === Classifier model (full training set) ===
  Linear Regression Model
  traffic_volume =
      20.6425 * temp +
       4.1343 * clouds_all +
    -2749.0607
  Time taken to build model: 0.06 seconds
  === Cross-validation ===
  === Summary ===
  Correlation coefficient
                                         0.0076
                                     1730.3893
 Mean absolute error
  Root mean squared error
                                     4143.6945
  Relative absolute error
                                        99.1574 %
                                     208.552 %
  Root relative squared error
  Total Number of Instances
                                    48204
```

• Multilayer Perceptron

1- Split validation for **Multilayer Perceptron**:

In RapidMiner With 0.7 split

1- Split validation for Multilayer Perceptron:

In RapidMiner With 0.8 split

2- Split validation for **Multilayer Perceptron:**

In Weka With 0.7 split

```
Select attributes Visualize
.2 -N 500 -V 0 -S 0 -E 20 -H a
Classifier output
                   traffic_volume
  Test mode: split 70.0% train, remainder test
  === Classifier model (full training set) ===
  Linear Node 0
                   Weights
      Inputs
       Threshold 0.07949686244370083
      Node 1 -2.4872501441034323
Node 2 -0.6195500043980948
  Sigmoid Node 1
       Inputs Weights
      Threshold -5.64880418197142
Attrib temp -0.8722895208103282
      Attrib rain_lh 5.450529133924751
Attrib snow_lh 5.473903002102157
Attrib clouds_all -13.351790725775903
  Sigmoid Node 2
      Inputs
                  Weights
      Threshold -6.33121224083205
Attrib temp -8.312460826540777
Attrib rain_lh 6.276934718911213
Attrib snow_lh 6.351653454677328
Attrib clouds_all -23.81242223784559
  Class
       Input
       Node 0
  Time taken to build model: 15.82 seconds
  === Evaluation on test split ===
  Time taken to test model on test split: 0.15 seconds
  === Summary ===
  Correlation coefficient
                                                     0.1415
                                               1719.0456
  Mean absolute error
  Root mean squared error
                                                1966.8953
  Relative absolute error
                                                 98.7422 %
  Root relative squared error
                                                   99.0386 %
                                              14461
  Total Number of Instances
```

2- Split validation for **Multilayer Perceptron:**

In Weka With 0.8 split

```
).2 -N 500 -V 0 -S 0 -E 20 -H a
 Classifier output
             traffic_volume
  Test mode: split 80.0% train, remainder test
   === Classifier model (full training set) ===
  Linear Node 0
     Inputs Weights
     Threshold 0.07949686244370083
     Node 1 -2.4872501441034323
Node 2 -0.6195500043980948
   Sigmoid Node 1
      Inputs Weights
     Threshold -5.64880418197142
     Attrib temp -0.8722895208103282
     Attrib rain_lh 5.450529133924751
      Attrib snow_1h 5.473903002102157
      Attrib clouds_all -13.351790725775903
   Sigmoid Node 2
     Inputs Weights
     Threshold -6.33121224083205
     Attrib temp -8.312460826540777
     Attrib rain_lh 6.276934718911213
Attrib snow_lh 6.351653454677328
      Attrib clouds all -23.81242223784559
   Class
      Input
      Node 0
   Time taken to build model: 10.73 seconds
   === Evaluation on test split ===
   Time taken to test model on test split: 0.07 seconds
   === Summary ===
  Correlation coefficient
                                     1756.4698
  Mean absolute error
  Root mean squared error
                                     2082.3326
  Relative absolute error
                                      101.1419 %
  Root relative squared error
                                       105.0484 %
  Total Number of Instances
                                     9641
```

1- Cross validation for **Multilayer Perceptron**:

In RapidMiner With 10 Folds

- RapidMiner Studio gui.license.rapidminer-studio.educational.label 9.1.000 @ LAPTOP-TVKG6DJJ

PerformanceVector

```
PerformanceVector:
```

```
root_mean_squared_error: 2029.831 +/- 59.691 (micro average: 2030.709 +/- 0.000) absolute_error: 1750.541 +/- 52.169 (micro average: 1750.541 +/- 1029.264) relative_error: 287.83% +/- 95.13% (micro average: 287.83% +/- 5,212.72%) correlation: 0.171 +/- 0.021 (micro average: 0.094) squared_correlation: 0.030 +/- 0.007 (micro average: 0.009)
```

1- Cross validation for **Multilayer Perceptron**:

In RapidMiner With 20 Folds

2-Cross validation for **Multilayer Perceptron:**

In Weka With 10 Folds

```
Select attributes Visualize
.2 -N 500 -V 0 -S 0 -E 20 -H a
Classifier output
                             rain_lh
                               snow_lh
clouds_all
                           traffic_volume
10-fold cross-validation
    Test mode:
    === Classifier model (full training set) ===
    Linear Node 0
    Inputs Weights
Threshold 0.07949686244370083
Node 1 -2.4872501441034323
Node 2 -0.6195500043980948
Sigmoid Node 1
           moid Node 1
Inputs Weights
Threshold -5.64880418197142
Attrib temp -0.8722895208103282
Attrib rain_lh 5.450529133924751
Attrib snow_lh 5.473903002102157
Attrib clouds_all -13.351790725775903
   Attrib clouds_ail -13.551/507257.

Sigmoid Node 2
Inputs Weights
Threshold -6.33121224083205
Attrib temp -8.312460826540777
Attrib rain_lh 6.276934718911213
Attrib snow_lh 6.351653454677328
Attrib clouds_ail -23.81242223784
                                                    -23.81242223784559
    Class
           Input
    Time taken to build model: 14.74 seconds
    === Cross-validation ===
    Correlation coefficient
                                                                                    0.0464
                                                                        0.0464
1805.6282
2108.8495
103.4693 %
    Root mean squared error
Relative absolute error
Root relative
    Mean absolute error
    Relative absolute error 106.
Root relative squared error 106.
48204
                                                                                 106.1384 %
```

2- Cross validation for **Multilayer Perceptron**:

In Weka With 20 Folds

```
te | Select attributes | Visualize |
402-N500-V0-S0-E20-Ha
   Classifier output
                           rain_lh
                           snow_lh
                           clouds_all
      traffic_volume
Test mode: 20-fold cross-validation
       === Classifier model (full training set) ===
      Linear Node 0
           Inputs
                          Weights
            Threshold 0.07949686244370083
           Node 1 -2.4872501441034323
Node 2 -0.6195500043980948
      Sigmoid Node 1
            Inputs Weights
Threshold -5.64
           Threshold -5.64880418197142
Attrib temp -0.8722895208103282
Attrib rain_lh 5.450529133924751
Attrib snow_lh 5.473903002102157
Attrib clouds_all -13.351790725775903
      Sigmoid Node 2
           Inputs Weights
Threshold -6.33121224083205
Attrib temp -8.312460826540777
Attrib rain_lh 6.276934718911213
Attrib snow_lh 6.351653454677328
Attrib clouds_all -23.81242223784559
      Class
            Input
            Node 0
      Time taken to build model: 15.66 seconds
       === Cross-validation ===
       === Summary ===
       Correlation coefficient
                                                                  0.0369
                                                           1827.4707
2156.026
      Mean absolute error
Root mean squared error
       Mean absolute error
                                                            104.7205 %
108.5127 %
      Relative absolute error
Root relative squared error
       Relative absolute error
                                                           48204
       Total Number of Instances
```

• Designs and Steps

Cross Validation RapidMiner Design with regression performance:

Split validation RapidMiner Design with regression performance:

Weka Steps:

Open file

Remove Unwanted Attributes:

Attributes are removed:

Pick Algorithm (here I chose linear regression):

Pick Label (I Chose traffic volume):

