非整数ベキを含む代数と Weyl 群作用の構成

黒木玄

2012年4月14日更新 (2012年4月13日作成)

目次

1	一般論	1
2	対称化 GCM に付随する設定	2
3	Ore 整域とは限らない場合	2
4	Ore 整域の場合 (もしくは斜体に含まれる場合)	2

1 一般論

可換とは限らない体を斜体と呼び、可換体を単に体と呼ぶ、体上の結合的で1を持つ代数を単に代数と呼ぶことにし、体K上の代数はKをその中心に含むものとする。

 $A \geq B$ は \mathbb{F} 上の代数であるとする.

各 $i \in I$ に対して f_i は B の可逆元であるとする.

自由 \mathbb{Z} 加群 $L=\bigoplus_{k=1}^N\mathbb{Z}e_k$ の双対を $P=\mathrm{Hom}(L,\mathbb{Z})$ と書き, L と P の自然な内積を \langle , \rangle と表わす. $P_+=\{\lambda\in P\mid \langle e_k,\lambda\rangle\geq 0\,(k=1,2,\ldots,N)\}$ とおく.

A と f_i の非整数べき " f_i^{β} " $(i \in I, \beta \in L)$ で生成される代数を構成したい.

各 $\lambda \in P_+$ に対して $\phi_\lambda: A \to B$ は代数準同型であるとし、代数準同型 $\phi: A \to B^{P_+}$ を $\phi(a) = (\phi_\lambda(a))_{\lambda \in P_+} \ (a \in A)$ と定める.この ϕ は単射であると仮定し,この ϕ によって $A \subset B^{P_+}$ とみなす.

 B^{P_+} の元 f_i^β を $f_i^\beta=(f_i^{\langle eta,\lambda \rangle})_{\lambda \in P_+}$ と定める. A と $\{\,f_i^\beta \mid i \in I, \beta \in L\,\}$ で生成される B^{P_+} の部分代数を

$$\mathcal{A} = A[\,f_i^\beta\mid i\in I, \beta\in L\,]$$

と表わすことにする. \mathcal{A} の中で $f_i^{\beta} f_i^{\gamma} = f_i^{\beta+\gamma} (\beta, \gamma \in L)$ が成立している.

A は自然に $\mathcal A$ の部分代数とみなされる. $\lambda \in P_+$ に対して代数準同型 $\phi_\lambda: A \to B$ を $\phi_\lambda(f_i^\beta) = f_i^{\langle \beta, \lambda \rangle} \ (i \in I, \ \beta \in L)$ によって代数準同型 $\phi_\lambda: \mathcal A \to B$ に拡張できる. $a, a' \in \mathcal A$ に対して a = a' となるための必要十分条件はすべての $\lambda \in P_+$ に対して $\phi_\lambda(a) = \phi_\lambda(a')$ が成立することである.

2 対称化GCMに付随する設定

 $[a_{ij}]_{i,j\in I}$ は正の整数たち d_i $(i\in I)$ によって対称化可能な GCM であるとする.

U は GCM $[a_{ij}]_{i,j\in I}$ に対応する $U_q(\mathfrak{n}_-)$ であるとする. すなわち U は f_i $(i\in I)$ で生成され, g-Serre 関係式を基本関係式とする $\mathbb{C}(g)$ 上の代数であるとする.

 $W = \langle s_i \mid i \in I \rangle$ は GCM $[a_{ij}]_{i,j \in I}$ に対応する Weyl 群であるとする.

記号 α_i^\vee $(i \in I)$ で生成される自由 $\mathbb Z$ 加群を Q^\vee と書き, coroot lattice と呼ぶ. Q^\vee の双対を $P = \operatorname{Hom}(\mathbb Q^\vee, \mathbb Z)$ 書き, weight lattice と呼ぶ. Q^\vee と P の自然な内積を $\langle \, , \, \rangle$ と書く. $\{\alpha_i^\vee\}_{i \in I}$ の双対基底を $\{\Lambda_i\}_{i \in I}$ と書き, $\alpha_j = \sum_{i \in I} a_{ij} \Lambda_i$ とおく. このとき $\langle \alpha_i^\vee, \alpha_j \rangle = a_{ij}$ が成立している. $P_+ = \{\, \lambda \in P \mid \langle e_k, \lambda \rangle \supseteq 0 \, (k=1,2,\ldots,N)\,\}$ とおき, P_+ の元を dominant integral weight と呼ぶ.

 Q^{\vee} と P には自然に Weyl 群が作用している:

$$s_i(\alpha_j^{\vee}) = \alpha_i^{\vee} - a_{ji}\alpha_j^{\vee}, \quad s_i(\Lambda_j) = \Lambda_j - \delta_{ij}\alpha_i = \begin{cases} -\Lambda_i + \sum_{k \neq i} (-a_{ki})\Lambda_k & (i = j), \\ \Lambda_j & (i \neq j). \end{cases}$$

この作用は内積(,)を保つ.

3 Ore 整域とは限らない場合

この節では第2節の設定を仮定し, $L=Q^{\vee}$ とおく.

 f_i たちが q-Serre 関係式を満たしていることより, $\{f_i\}_{i\in I}$ で生成される積閉集合は U において Ore 集合になる. その積閉集合による U の局所化を B と書く: $B=U[f_i^{-1}|i\in I]$ B 上の Laurent 多項式環 $A=B[q^{\beta}|\beta\in Q^{\vee}]$ を考える.

 $\lambda \in P_+$ に対して代数準同型 $\phi_\lambda: A \to B$ を $\phi_\lambda(b) = b \ (b \in B), \ \phi_\lambda(q^\beta) = q^{\langle \beta, \lambda \rangle} \ (\lambda \in P_+)$ と定める.

代数準同型 $\phi: A \to B^{P_+}$ を $\phi(a) = (\phi_{\lambda}(a))_{\lambda \in P_+}$ と定めると単射になる.

以上の設定に第 1 節の構成を適用することによって $A=U[f_i^{-1}|i\in I][q^{\beta}|\beta\in Q^{\vee}]$ と $\{f_i^{\beta}\mid i\in I, \beta\in Q^{\vee}\}$ で生成される代数 $\mathcal A$ が得られる.

 \mathcal{A} には次のようにして Weyl 群作用 $W \ni w \mapsto \widetilde{w} \in \operatorname{Aut}(\mathcal{A})$ が定まる:

$$\widetilde{w}(b) = b, \quad \widetilde{w}(q^{\beta}) = q^{w(\beta)}, \quad \widetilde{w}(f_i^{\beta}) = f_i^{w(\beta)} \quad (b \in B, i \in I, \beta \in Q^{\vee}).$$

q-Serre 関係式より Verma 関係式が導かれるので、

$$s_i(x) = f_i^{\alpha_i^{\vee}} \tilde{s}_i(x) f_i^{-\alpha_i^{\vee}} \quad (x \in \mathcal{A})$$

によって A への Weyl 群の作用が得られる.

4 Ore 整域の場合 (もしくは斜体に含まれる場合)

この節でも第2節の設定を仮定し、 $L=Q^{\vee}$ とおく、

V は U の商整域であるとし、任意の $i \in I$ に対して f_i の V の像 (同じ記号で表わす) は 0 でないと仮定する. K は V を含む斜体であり、V の元で斜体として生成されると仮

定する. もしも V が U の商 Ore 整域ならば K として V の分数斜体を取れる. GCM が 有限型またはアフィン型ならば U およびその商整域はすべて Ore 整域になる.

B=K とおき, K 上の多項式環 $\widetilde{A}=K[q^{lpha_i^ee}|i\in I]$ を考える. \widetilde{A} は Ore 整域なのでその分数斜体 \widetilde{K} が存在する.

 $\lambda \in P_+$ に対して代数準同型 $\phi_\lambda : \widetilde{A} \to K$ を $\phi_\lambda(k) = k$ $(k \in K)$, $\phi_\lambda(q^{\alpha_i^\vee}) = q^{\langle \alpha_i^\vee, \lambda \rangle}$ $(i \in I)$ と定める. \widetilde{A} の積閉集合 \widetilde{S}_λ を $\widetilde{S}_\lambda = \{a \in \widetilde{A} \mid \phi_\lambda(a) \neq 0\}$ と定める. このとき \widetilde{S}_λ は \widetilde{A} の Ore 集合になることを示せる (要証明). よって \widetilde{S}_λ による \widetilde{A} の局所化 \widetilde{A}_λ が得られる. 代数準同型 ϕ_λ は \widetilde{A}_λ 上に自然に拡張される.

 \widetilde{A}_{λ} は \widetilde{K} の部分代数とみなせる. \widetilde{K} の部分代数 A を \widetilde{A}_{λ} ($\lambda \in P_{+}$) の共通部分と定める. 代数準同型 $\phi_{\lambda}: \widetilde{A}_{\lambda} \to K$ の A 上への制限も同じ記号で表わす.

代数準同型 $\phi:A\to K^{P_+}$ を $\phi(a)=(\phi_\lambda(a))_{\lambda\in P_+}$ と定めると単射になる.

以上の設定に第 1 節の構成を適用することによって A と $\{f_i^\beta \mid i \in I, \beta \in Q^\vee\}$ で生成される代数 A が得られる.

さらに第3節とまったく同様にして Aに Weyl 群作用が定まる.

q-Serre 関係式より、任意の $\beta \in Q^{\vee}$ に対して $f_i^{\beta} f_j f_i^{-\beta} \in A$ となることを示せる. 実際には $f_i^{\beta} f_j f_i^{-\beta} \in \langle f_j, f_i^{\pm 1}, q^{\pm d_i} \rangle_{\mathbb{C}\text{-alg}}$ となることを示せる. ゆえに A への Weyl 群作用は A を保つ. これによって A に Weyl 群作用が定まる.