ГРАФЫ

Граф – это совокупность двух конечных множеств: множества точек и множества линий, попарно соединяющих некоторые из этих точек.

Множество точек называется **вершинами** (узлами) графа.

Множество линий, соединяющих вершины графа, называются **ребрами** (дугами) графа.

Состав графа

Граф состоит из **вершин**, связанных линиями.

Направленная линия (со стрелкой) называется *дугой*.

Линия ненаправленная (без стрелки) называется **ребром**.

Линия, выходящая из некоторой вершины и входящая в неё же, называется **петлей**.

- ГРАФ пара G = < V,E >,
- где **V** конечное непустое множество вершин,
- Е множество ребер (пар вершин).
- Если парам Е не присвоены направления граф **неориентированный**, иначе **ориентированный**.
- *Смешанный граф* граф, содержащий как ориентированные, так и неориентированные ребра.
- Петля ребро, соединяющее вершину саму с собой. Если в пары Е входят только различные вершины граф без петель.
- Две вершины называются смежными, если существует соединяющее их ребро.
- Ребра, соединяющие одну и ту же пару вершин, называются *кратными*.

- Простой граф не имеет ни петель, ни кратных ребер.
- Мультиграф это граф, у которого любые две вершины соединены более чем одним ребром.
- Маршрут в графе это конечная последовательность смежных вершин и ребер, соединяющих эти вершины.
- Маршрут *открытый*, если его начальная и конечная вершины различны, иначе *замкнутый*
- **Цепь** маршрут со всеми *различными* ребрами.
- Путь открытая цепь с различными вершинами.
- Полным графом называется граф, в котором каждая вершина соединена ребром с любой другой вершиной

Мультиграф

Полный граф К_п

Граф полный, если каждая вершина смежна с каждой.

Полный граф с п вершинами - К_п

$$K_{\mathbf{1}}$$
 O

Граф, у которого хотя бы для ∂syx ребер $u_{j},u_{l}\in U$ справедливо

$$\Gamma_2 u_i = \Gamma_2 u_i \& \Gamma_1 u_i = \Gamma_1 u_i$$

называется *мультиграфом*, а максимальное количество кратных ребер – *мультичислом*.

Мультичисло:

неориентированных ребер r = 3,

- Цикл замкнутая цепь, если различны все ее вершины, за исключением концевых.
- Граф называется *связным*, если для любой пары вершин существует соединяющий их путь.
- **Вес вершины** число (действительное, целое или рациональное), поставленное в соответствие данной вершине (стоимость, пропускная способность и т. д.).
- **Вес (длина)** *ребра* число или несколько чисел, которые интерпретируются по отношению к ребру как длина, пропускная способность и т. д.
- **Взвешенный** граф граф, все ребра которого имеют вес.
- Степень вершины графа это число ребер, инцидентных данной вершине, причем петли учитываются дважды. Поскольку каждое ребро инцидентно двум вершинам, сумма степеней всех вершин графа равна удвоенному количеству ребер: Sum(deg(vi), i=1...|V|) = 2 * |E|.

Графы: примеры

Неориентированный невзвешенный

Ориентированный взвешенный

ПРЕДСТАВЛЕНИЕ ГРАФОВ

```
Количество вершин n = |V|, количество ребер m = |E|.
```

• В математике классический способ представления графа – **МАТРИЦА ИНЦИДЕНЦИЙ А (n x m)**.

```
n строк - соответствующих вершинам m столбцов - соответствующих ребрам. Для орграфа столбец, соответствующий ребру < X,Y > из |E|, содержит
```

1 в строке, соответствующей вершине **X**;

-1 в строке, соответствующей вершине **Y**;

0 -в остальных строках.

В случае петли (ребро типа <X,X>) возможна постановка другого числа (напр., 2).

МАТРИЦА ИНЦИДЕНТНОСТИ для ориентированного графа

	1,2	1,3	3,2	3,4	4,5	5,6	6,5
1	1	1	0	0	0	0	0
2	-1	0	-1	0	0	0	0
3	0	-1	1	1	0	0	0
4	0	0	0	-1	1	0	0
5	0	0	0	0	-1	1	-1
6	0	0	0	0	0	-1	1

Для неориентированного графа столбец, соответствующий ребру **<X,Y>** содержит 1 в строках, соответствующих вершинам **X** и **Y** и 0 в

	1,2	1,3	1,5	2,3	2,5	3,4	4,5	4,6	5,6
1	1	1	1	0	0	0	0	0	0
2	1	0	0	1	1	0	0	0	0
3	0	1	0	1	0	1	0	0	0
4	0	0	0	0	0	1	1	1	0
5	0	0	1	0	1	0	1	0	1
6	0	0	0	0	0	0	0	1	1

матрица инцидентности

- Для представления графа матрицей инцидентности надо n x m элементов информации (ячеек памяти), из кот. большинство нули. Неудобен и доступ к информации. Например, в пределе требуется перебор всех столбцов матрицы
- т.е. m шагов для ответа на вопросы типа "к каким вершинам ведут ребра из х?" или "существует ли ребро < x,y >?".
- Матрица инцидентности лучше всего подходит для операции «перечисление ребер, инцидентных вершине х»

МАТРИЦА СМЕЖНОСТИ

Более эффективно представление графа **МАТРИЦЕЙ СМЕЖНОСТИ** В(N * N);

в ней элемент b[x,y] = 1 (или значение веса ребра), если есть ребро из вершины X в вершину Y и b[x,y] = 0 в противоположном случае. У неориентированных графов ребро $\{X,Y\}$ является ребром $\{Y,X\}$, а потому матрица смежности для них всегда симметрична.

- + простота
- разреженность, нельзя представить несколько ребер между вершинами.

Этот способ очень хорош, когда нам надо часто проверять смежность или находить вес ребра по двум заданным вершинам.

Матрица смежности

	1	2	3	4	5
1	0	1	2	0	7
2	1	0	4	0	8
3	2	4	0	10	0
4	0	0	10	0	3
5	7	8	0	3	0

- Для уменьшения времени доступа к эл-ту матрицы можно использовать векторы Айлиффа.
- В этом случае за один шаг просмотра можно ответить на вопрос, существует ли ребро из X в Y. Однако, независимо от количества ребер, объем требуемой памяти равен N*N, хотя для малых n можно хранить строку (столбец) матрицы в машинном слове.

Список ребер

• Можно представить неорграф списком ребер. Это экономит память при неплотных графах (m<<n*n).

1	1	2	2	3	4	4	5
2	3	3	5	4	5	6	6

В третьей строке таблицы при необходимости можно указывать вес ребра

- Требуемый объем памяти: 2*m. Для взвешенного графа: 3*m (m - количество ребер).
- Неудобна; но, затрата, в худшем случае, порядка m шагов для получения множества вершин, непосредственно связанных с данной вершиной. Затраты можно значительно уменьшить, лексикографически упорядочив множество пар и применив двоичный поиск.

СПИСОК ИНЦИДЕНТНОСТИ

Для каждой вершины v из V содержит список вершин U, таких, что v --> u (для неориентированного графа v -- u).

Каждый элемент списка инцидентности является записью (структурой)

R =Record

LINE: TypeV; //вершина

NEXT:^R; //указатель на следующую в списке

End; //(для последней записи в списке .NEXT = nil).

Для неориентированных графов каждое ребро **{u,v}** представлено дважды: через вершину v в списке **ZAP[u]** и через вершину u в списке **ZAP[v].** Требуемый объем памяти для представления графа списками инцидентности имеет порядок **m+n**.

- Начало каждого списка хранится в таблице **BEG**.
- Т.е. **BEG[v]** указатель на начало списка, содержащего вершины, непосредственно связанные с вершиной **v**; { **u: v --> u**},
 - а для неориентированного графа { u: v -- u }. Весь список такого вида обозначим ZAP[v],
- а организацию цикла, выполняющего определенную операцию для каждого элемента **u** из такого списка в последовательности по очереди элементов в списке, будем записывать в виде: **ДЛЯ и ИЗ** ZAP[v] **ДЕЛАТЬ**...
 - или: **For** u **FROM** ZAP[∨] **Do** ...

Для мало меняющихся графов м. исп-ть курсоры на массив смежных вершин:

вершины графа пронумерованы от 1 до n, ребра – от 1 до m

	Способы представления графа							
Операция	Матрица смежности	Матрица инцидентности	Списки смежных вершин	Список ребер				
	Емкостная сложность: O(n²)	Емкостная сложность: O(n*m)	Емкостная сложность: O(n²)	Емкостная сложность: O(m)				
		Временна	я сложность					
Проверка смежности вершин X и Y	O (1)	O(n*m)	O (n)	O (m)				
Перечисление всех вершин, смежных с X	O (n)	O(n*m)	O (n)	O (m)				
Определение веса ребра {X, Y}	O (1)	O(n*m)	O (n)	O (m)				
Определение веса вершины X	O (1)	Вес не хранится	Вес не хранится	Вес не хранится				
Перечисление всех ребер {X, Y}	O (n ²)	O (m)	O (m)	O (m)				
Перечисление ребер, инцидентных вершине Х	Номера ребер не хранятся	O (m)	№ ребер не хранится	O (m)				
Перечисление вершин, инцидентных ребру S	Номера ребер не хранятся	O (n)	№ ребер не хранится	O (1)				

Основные процедуры обработки графовых структур:

- поиск вершин в графе
- поиск кратчайших путей от Vk до Vm
- поиск Эйлерова пути
- поиск Гамильтонова пути
- поиск кратчайших путей между всеми вершинами