Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «КАЗАНСКИЙ (ПРИВОЛЖСКИЙ) ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

ИНСТИТУТ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

Кафедра прикладной математики и искусственого интеллекта

Направление подготовки: 01.03.04 – Прикладная математика

ОТЧЁТ

По дисциплине «Численные методы» на тему: «Система линейных алгебраических уравнений»

Выполнил: студент группы 09-222 Романов И. И. Проверил: ассистент Глазырина О.В.

Содержание

1	Постановка задачи	3
2	Ход работы 2.1 Метод прогонки 2.2 Метод Зейделя 2.3 Метод верхней релаксации 2.4 Метод наискорейшего спуска	
3	Выводы	11
4	Список литературы	12
5	Листинг программы	13

1 Постановка задачи

Решить систему линейных алгебраических уравнений:

$$\begin{cases}
(a_{1} + a_{2} + h^{2}g_{1})y_{1} - a_{2}y_{2} = f_{1}h^{2}, \\
\dots \dots \dots \dots \\
-a_{i}y_{i-1} + (a_{i} + a_{i+1} + h^{2}g_{i})y_{i} - a_{i+1}y_{i+1} = f_{i}h^{2}, \\
\dots \dots \dots \dots \dots \\
(a_{n-1} + a_{n} + h^{2}g_{n-1})y_{n-1} - a_{n-1}y_{n-2} = f_{n-1}h^{2}.
\end{cases}$$
(1)

Здесь $a_i=p(ih),\ g_i=q(ih),\ f_i=f(ih),\ f(x)=-(p(x)u'(x))'+q(x)u(x),$ $h=1/n,\ p,\ q,\ u$ — заданные функции.

Данную систему решить методом прогоки и итерационными методами:

- 1. метод Зейделя.
- 2. метод нижней релаксации.
- 3. метод наискорейшего спуска.

Во всех итерационных методах вычисления продолжать до выполнения условия:

$$\max_{1 \le i \le n-1} \left| r_i^k \right| \le \varepsilon,$$

r — вектор невязки, ε — заданное число.

Исходные данные:
$$n=10,\ n=50,\ \varepsilon=h^3,\ u(x)=x^\alpha(1-x)^\beta,$$
 $p(x)=1+x^\gamma,\ g(x)=x+1,\ \alpha=1,\ \beta=3,\ \gamma=2.$

Для сравнения результатов вычисления составим соответсвтенные таблицы и подведём выводы.

2 Ход работы

2.1 Метод прогонки

Метод прогонки состоит из двух этапов: прямой ход (определение прогоночных коэффициентов), обратных ход (вычисление неизвестных y_i).

Основным преимуществом является экономичность — максимально использование структуры исходной системы.

К недостаткам же можно отнести то, что с каждой итерацией накапливается ошибка округления.

Реализуем прямой ход метода и найдём прогоночные коэффициенты:

$$\begin{cases}
\alpha_1 = \frac{a_1}{a_0 + a_1 + h^2 g_1}, \\
\alpha_{i+1} = \frac{a_{i+1}}{a_i + a_{i+1} + h^2 g_i - \alpha_i a_i}, \quad i = \overline{2, n-1};
\end{cases}$$
(2)

$$\begin{cases} \beta_1 = \frac{f_0 h^2}{a_0 + a_1 + h^2 g_1}, \\ \beta_{i+1} = \frac{f_i h^2 + \beta_i a_i}{a_i + a_{i+1} + h^2 g_i - \alpha_i a_i}, & i = \overline{2, n-1}; \end{cases}$$
(3)

Обратных ход метода:

$$\begin{cases} y_n = \beta_{n+1}; \\ y_i = \alpha_{i+1}y_{i+1} + \beta_{i+1}, \quad i = \overline{n-1,0}; \end{cases}$$
 (4)

Формулы (2-4) являются методом Гаусса, записанным применительно трёхдиагональной системы уравнений. Метод может быть реализован только в случае, когда в формулах (3) и (4) все знаменатели отличны от нуля, то есть условие выполняется, когда матрица системы (2) имеет диагональное препобладание. Это означает выполняется условие: $|c_0| < |b_0|, \ |a_n| < |b_n|, \ |a_i| + |c_i| < |b_i|, \ i = 1, \dots n-1.$

Проделаем вычисления и составим таблицу для n=10 (Таблица 1), для n=50 (Таблица 2):

ih	y_i	u(ih)	$ y_i - u(ih) $
0,0	0,000000	0,000000	0,000000
0,1	0,071338	0,072900	0,001562
0,2	0,099583	0,102400	0,002817
0,3	0,099491	0,102900	0,003409
0,4	0,083074	0,086400	0,003326
0,5	0,059738	0,062500	0,002762
0,6	0,036421	0,038400	0,001979
0,7	0,017694	0,018900	0,001206
0,8	0,005825	0,006400	0,000575
0,9	0,000812	0,000900	0,000088
1,0	0,000384	0,000000	0,000384

Таблица 1 - значения метода прогонки для n=10

ih	y_i	u(ih)	$ y_i - u(ih) $
0,0	0,000000	0,000000	0,000000
0,10	0,072724	0,072900	0,000176
0,20	0,083074	0,086400	0,003326
0,30	0,102460	0,102900	0,000440
0,40	0,085983	0,086400	0,000417
0,50	0,062186	0,062500	0,000314
0,60	0,038220	0,038400	0,000180
0,70	0,018838	0,018900	0,000062
0,80	0,006408	0,006400	0,000008
0,90	0,000925	0,000900	0,000025
1,0	0,000011	0,000000	0,000011

Таблица 2 - значения метода прогонки для n=50

2.2 Метод Зейделя

Для больших систем вида Ax = b предпочтительнее оказываются итерационные методы. Основная идея данных методов состоит в построении последовательности векторов x^k , $k = 1, 2, \ldots$, сходящейся к решению исходной системы. За приближенное решение принимается вектор x^k при достаточно большом k.

Будем считать, что все диагональные элементы матрицы из полной системы Ax = b отличны от нуля. Представим эту систему, разрешая каждое уранвение относительно переменной, стоящей на главной диагонали:

$$x_{i} = -\sum_{j=1}^{i-1} \frac{a_{ij}}{a_{ii}} x_{j} - \sum_{j=i+1}^{n} \frac{a_{ij}}{a_{ii}} x_{j} + \frac{b_{i}}{a_{ii}}, \quad i = \overline{1, n}.$$

$$(5)$$

Выберем некоторое начальное приближение $x^0 = (x_1^0, x_2^0, \dots, x_n^0)^T$. Построим последовательность векторов x^1, x^2, \dots , определяя вектор x^{k+1} по уже найденному вектору x^k при помощи соотношения:

$$x_i^{k+1} = -\sum_{i=1}^{i-1} \frac{a_{ij}}{a_{ii}} x_j^k - \sum_{j=i+1}^n \frac{a_{ij}}{a_{ii}} x_j^k + \frac{b_i}{a_{ii}}, \quad i = \overline{1, n}.$$
 (6)

Формула (6) определяют итерационный метод решения системы (5), называемый методом Якоби или методом простой итерации.

Метод Якоби допускает естественную модификацию: при вычислении x_i^{k+1} будем использовать уже найденные компоненты вектора x^{k+1} , то есть x_1^{k+1} , x_2^{k+1} , ..., x_{i-1}^{k+1} . В резултате приходим к итерационному методу Зейделя:

$$x_i^{k+1} = -\sum_{j=1}^{i-1} \frac{a_{ij}}{a_{ii}} x_j^{k+1} - \sum_{j=i+1}^{n} \frac{a_{ij}}{a_{ii}} x_j^k + \frac{b_i}{a_{ii}}, \quad i = \overline{1, n}.$$
 (7)

Запишем формулу (7) для нашей системы (1):

$$y_i^{k+1} = -\sum_{j=1}^{i-1} \frac{a_j}{a_i + a_{i+1} + h^2 g_i} y_j^{k+1} - \sum_{j=i+1}^{n} \frac{a_j}{a_i + a_{i+1} + h^2 g_i} y_j^{k} + \frac{f_i h^2}{a_i + a_{i+1} + h^2 g_i},$$

$$i = \overline{1, n-1};$$
(8)

Вычисления продолжаем, пока не выполнится условие:

$$\max |r_i^k| \le \varepsilon,$$

где r^k — вектор невязки для k-той итерации $r^k = Ay^k - f, \quad \varepsilon = h^3.$

Составим таблицы вычесленных результатов для n=10, для n=50, в которых будем сравнивать значения метода прогонки и метода Зейделя для точки $i,\ i=\overline{0,n-1}$, найдём модуль их разности и значение k, при котором была достигнута необходимая точность.

i	y_i	y_i^k	$ y_i - y_i^k $	k
0	0,071338	0,068591	0,002747	19
1	0,099583	0,094675	0,004908	19
2	0,099491	0,093153	0,006339	19
3	0,083074	0,076065	0,007009	19
4	0,059738	0,052761	0,006977	19
5	0,036421	0,030057	0,006363	19
6	0,017694	0,012371	0,005322	19
7	0,005825	0,001806	0,004019	19
8	0,000812	-0,001799	0,002611	19
9	0,000384	-0,000850	0,001234	19

Таблица 3 - значения метода Зейделя для n=10

i	y_i	y_i^k	$ y_i - y_i^k $	k
0	0,018796	0,018695	0,000101	851
4	0,072724	0,072233	0,000491	851
9	0,102046	0,101135	0,000912	851
14	0,102460	0,101242	0,001218	851
19	0,085983	0,084599	0,001384	851
24	0,062186	0,060785	0,001402	851
29	0,038220	0,036937	0,001283	851
34	0,018838	0,017783	0,001055	851
39	0,006408	0,005658	0,000750	851
44	0,000925	0,000518	0,000408	851
49	0,000011	-0,000054	0,000065	851

Таблица 4 - значения метода Зейделя для n=50

2.3 Метод верхней релаксации

Во многих ситуациях существенного ускорения сходимости можно добиться за счет введения так называемого итерационного параметра. Рассмотрим итерационный процесс:

$$x_i^{k+1} = (1 - \omega)x_i^k + \omega \left(-\sum_{j=1}^{i-1} \frac{a_{ij}}{a_{ii}} x_j^{k+1} - \sum_{j=i+1}^n \frac{a_{ij}}{a_{ii}} x_j^k + \frac{b_i}{a_{ii}} \right),$$

$$i = 1, 2, \dots, n, \quad k = 0, 1, \dots$$

$$(9)$$

Этот метод называется методом релаксации – одним из наиболее эффективных и широко используемых итерационных методов для решения систем линейных алгебраических уравнений. Значение ω – называется релаксационным параметром. При $\omega=1$ метод переходит в метод Зейделя. При $\omega\in(1,2)$ – это метод верхней релаксации, при $\omega\in(0,1)$ – метод нижней релаксации. Ясно, что по затратам памяти и объему вычислений на каждом шаге итераций метод релаксации не отличается от метода Зейделя.

Преобразуем формулу (2.3) относительно нашей системы:

$$y_i^{k+1} = (1-\omega)y_i^k + \omega \left(-\sum_{j=1}^{i-1} \frac{a_j}{a_i + a_{i+1} + h^2 g_i} y_j^{k+1} - \sum_{j=i+1}^{n} \frac{a_j}{a_i + a_{i+1} + h^2 g_i} y_j^k + \frac{f_i h^2}{a_i + a_{i+1} + h^2 g_i} \right),$$

$$i = \overline{1, n-1}; \tag{10}$$

Параметр ω следует выбирать так, чтобы метод релаксации сходился наиболее быстро. Нужно отметить, что оптимальный параметр для метода верхней релаксации лежит вблизи 1,8. Заполним таблицы, в которых приведём значения параметра ω и количство итераций k:

ω	k
1.1	15
1.2	12
1.3	9
1.4	7
1.5	6
1.6	8
1.7	11
1.8	18
1.9	34

Таблица 5 - значения ω и соответствующие значения k для n=10

ω	k
1.02	818
1.14	639
1.30	452
1.38	375
1.54	245
1.62	189
1.78	93
1.86	51
1.94	102

Таблица 6 - значения ω и соответствующие значения k для n=50

Для вычислений выберем $\omega=1,86$. Составим таблицы результатов для n=10, n=50, в которых будем сравнивать значения метода прогонки и метода верхней релаксации для точки $i,\ i=\overline{0,n-1},$ найдём модуль их разности и значение k:

i	y_i	y_i^k	$ y_i - y_i^k $	k
0	0,071338	0,071702	0,000364	18
1	0,099583	0,099998	0,000416	18
2	0,099491	0,099766	0,000275	18
3	0,083074	0,083252	0,000178	18
4	0,059738	0,059116	0,000622	18
5	0,036421	0,035560	0,000861	18
6	0,017694	0,016902	0,000792	18
7	0,005825	0,005242	0,000583	18
9	0,000384	0,000246	0,000138	18

Таблица 7 - значения метода верхней релаксации для n=10

i	y_i	y_i^k	$ y_i - y_i^k $	k
0	0,018796	0,018671	0,000125	51
9	0,102046	0,101108	0,000938	51
14	0,102460	0,101328	0,001132	51
24	0,062186	0,061123	0,001063	51
29	0,038220	0,037341	0,000880	51
34	0,018838	0,018184	0,000653	51
39	0,006408	0,005988	0,000420	51
44	0,000925	0,000719	0,000206	51

Таблица 8 - значения метода верхней релаксации для n=50

2.4 Метод наискорейшего спуска

Существуют итерационные методы, позволяющие за счет некоторой дополнительной работы на каждом шаге итераций автоматически настраиваться на оптимальную скорость сходимости. К их числу относятся методы, основанные на замене системы (6) эквивалентной задачей минимизации некоторого функционала.

Опишем итерационный метод наискорейшего спуска. Будем двигаться из точки начального приближения x^0 в направлении наибыстрейшего убывания функционала F, то есть следующее приближение будем разыскивать так: $x^1 = x^0 - \tau \operatorname{grad} F(x^0)$. Формула:

$$F'_{x_i}(x) = 2\sum_{j=1}^n a_{ij}x_j - 2b_i; (11)$$

, которая является производной функции F(x) по переменной x_i , показывает, что $\operatorname{grad} F(x^0) = 2(Ax^0 - b)$. Вектор $r_0 = Ax^0 - b$ принято называть невязкой. Для сокращения записей удобно обозначить 2τ вновь через τ . Таким образом, $x^1 = x^0 - \tau r^0$.

Параметр τ выберем так, чтобы значение $F(x^1)$ было минимальным. Получим $F(x^1)=F(x^0-\tau r^0)=F(x^0)-2\tau(r^0,r^0)+\tau^2(Ar^0,r^0)$, следовательно, минимум $F(x^1)$ достигается при $\tau=\tau_*=\frac{(r^0,r^0)}{(Ar^0,r^0)}$.

Таким образом, мы пришли к следующему итерационнму методу:

$$x^{k+1} = x^k - \tau_* r^k, \quad r^k = Ax^k - b, \quad \tau_* = \frac{(r^k, r^k)}{(Ar^k, r^k)}, \ k = 0, 1, \dots$$
 (12)

Метод (12) называют методом наискорейшего спуска. По сравнению с методом простой итерации этот метод требует на каждом шаге итераций проведения дополнительной работы по вычислению параметра τ_* . Вследствие этого происходит адаптация к оптимальной скорости сходимости.

Составим таблицы результатов для $n=10,\ n=50,$ в которых будем сравнивать значения метода прогонки и метода верхней релаксации для точки $i,\ i=\overline{0,n-1},$ найдём модуль их разности и значение k:

i	y_i	y_i^k	$ y_i - y_i^k $	k
0	0,071338	0,068795	0,002543	22
1	0,099583	0,095015	0,004568	22
2	0,099491	0,093633	0,005858	22
3	0,083074	0,076716	0,006359	22
4	0,059738	0,053639	0,006099	22
5	0,036421	0,031081	0,005340	22
6	0,017694	0,013500	0,004194	22
7	0,005825	0,002806	0,003019	22
8	0,000812	-0,000835	0,001647	22
9	0,000384	-0,000349	0,000733	22

Таблица 9 - значения метода наискорейшего спуска для n=10

i	y_i	y_i^k	$y_i - y_i^k$	k
0	0,018796	0,018713	0,000083	617
5	0,081561	0,081089	0,000472	617
10	0,104022	0,103249	0,000772	617
15	0,100175	0,099229	0,000946	617
20	0,081546	0,080564	0,000982	617
25	0,057220	0,056321	0,000900	617
30	0,033867	0,033129	0,000738	617
35	0,015762	0,015226	0,000535	617
40	0,004798	0,004465	0,000332	617
45	0,000495	0,000343	0,000152	617
46	0,000224	0,000108	0,000116	617
47	0,000080	-0,000005	0,000085	617
48	0,000022	-0,000033	0,000056	617
49	0,000011	-0,000015	0,000026	617

Таблица 10 - значения метода наискорейшего спуска для n=50

3 Выводы

В процессе выполнения работы были изучены методы решения заданной системы линейных алгебраических уравнений вида:

ческих уравнении вида:
$$\begin{cases} (a_1 + a_2 + h^2 g_1) y_1 - a_2 y_2 = f_1 h^2, \\ \dots \dots \dots \dots \\ -a_i y_{i-1} + (a_i + a_{i+1} + h^2 g_i) y_i - a_{i+1} y_{i+1} = f_i h^2, \\ \dots \dots \dots \dots \dots \\ (a_{n-1} + a_n + h^2 g_{n-1}) y_{n-1} - a_{n-1} y_{n-2} = f_{n-1} h^2. \end{cases}$$

при помощи:

- 1. метод прогонки.
- 2. метод Зейделя.
- 3. метод нижней релаксации.
- 4. метод наискорейшего спуска.

После вычисления результатов решения системы линейных алгебраических уравнений можно сделать вывод, что наилучшим методом дря решения является метод верхней релаксации при итерационном параметре $\omega=1,86$. Данный метод показывается наилучшие результаты вычисления корней системы за наименьшее количество итераций.

4 Список литературы

- 1. Глазырина Л.Л., Карчевский М.М. Численные методы: учебное пособие. Казань: Казан. ун-т, 2012. 122
- 2. Глазырина Л.Л.. Практикум по курсу «Численные методы». Решение систем линейных уравнений: учеб. пособие. Казань: Изд-во Казан. ун-та, 2017. 52 с.

5 Листинг программы

```
1 #pragma once
3 #include <algorithm>
#include <cmath>
5 #include <iostream>
6 #include <vector>
 using namespace std;
 double f_x(double x) {
    return -pow(x, 5) + 22 * pow(x, 4) - 36 * pow(x, 3) + 28 * pow(x, 2) -
11
            19 * x + 6;
12
 }
13
 double u_x(double x) { return x * pow((1 - x), 3); }
 double p_x(double x) { return 1 + pow(x, 2); }
17
18
  double q_x(double x) { return 1 + x; }
19
20
 vector < double > func_vec(int n) {
21
    double h = 1. / n;
22
    vector < double > b(n + 1, 0);
23
    for (int i = 1; i <= n; ++i) {</pre>
24
     b[i - 1] = f_x(i * h) * pow(h, 2);
25
    }
26
    return b;
27
28
29
  vector < double > calculate_mtx_vec_mult(vector < vector < double >> &A,
                                            vector < double > &x) {
31
    int n = A.size();
32
    int m = x.size();
33
    vector < double > result(n, 0.0);
34
35
    for (int i = 0; i < n; ++i) {</pre>
36
      for (int j = 0; j < m; ++ j) {
37
        result[i] += A[i][j] * x[j];
38
      }
39
    }
40
41
```

```
return result;
42
43 }
44
  vector < double > calculate_r(vector < vector < double >> &A, vector < double >> &b,
45
                                 vector < double > &x) {
46
    vector < double > Ax = calculate_mtx_vec_mult(A, x);
47
    vector < double > r(Ax.size());
48
49
    for (size_t i = 0; i < r.size(); ++i) {</pre>
50
      r[i] = Ax[i] - b[i];
51
    }
52
53
    return r;
54
55 }
56
  double calculate_error_dec(vector < double > &x, vector < vector < double >> &A,
                                 vector < double > &b) {
58
    vector < double > r = calculate_r(A, b, x);
59
    double max_err = 0.0;
60
    for (int i = 0; i < r.size(); ++i) {</pre>
61
      if (abs(r[i]) > max_err) max_err = abs(r[i]);
62
    }
63
64
    return max_err;
65
66 }
  double calculate_error(vector<double> &new_x, vector<double> &old_x) {
67
    double max_err = 0.0;
68
    for (int i = 0; i < old_x.size(); ++i) {</pre>
69
      double err = abs(abs(new_x[i]) - abs(old_x[i]));
70
      if (err > max_err) max_err = err;
71
    }
72
73
    return max_err;
74
<sub>75</sub> }
76
  vector < vector < double >> create_matrix(int n) {
77
    double h = 1. / n;
78
79
    vector < vector < double >> matrix_res(n + 1, vector < double > (n + 1, 0.0));
80
81
    for (int i = 0; i < n; ++i) {</pre>
82
       if (i == 0) {
83
         double b = (p_x((i + 1) * h) + p_x((i + 2) * h) +
84
```

```
(pow(h, 2) * q_x((i + 1) * h)));
85
         double c = -p_x((i + 2) * h);
86
         matrix_res[i][i] = b;
87
         matrix_res[i][i + 1] = c;
88
         continue;
89
       }
90
91
       if (i == (n - 1)) {
92
         double b = (p_x((i + 1) * h) + p_x((i + 2) * h) +
93
                       (pow(h, 2) * q_x((i + 1) * h)));
94
         double a = -p_x((i + 1) * h);
95
         matrix_res[i][i] = b;
96
         matrix_res[i][i - 1] = a;
97
         continue;
98
       }
99
100
       double a = -p_x((i + 1) * h);
101
       double b =
102
            (p_x((i + 1) * h) + p_x((i + 2) * h) + (pow(h, 2) * q_x((i + 1) * h))
103
                h)));
       double c = -p_x((i + 2) * h);
104
105
       matrix_res[i][i] = b;
106
       matrix_res[i][i + 1] = c;
107
       matrix_res[i][i - 1] = a;
108
    }
109
110
    return matrix_res;
111
112 }
113
  //Алгорит Томаса
114
  void progonka_method(vector<vector<double>> &A, vector<double> &x, int n,
                          vector <double > &b) {
116
     vector < double > alpha(n + 1), betta(n + 1);
117
118
     double h = 1.0 / n;
119
120
     // прямойход
121
     alpha[0] = A[0][1] / A[0][0];
122
     betta[0] = (b[0]) / A[0][0];
123
124
     for (int i = 1; i < n; ++i) {</pre>
125
       double del = 1.0 / (A[i][i] - alpha[i - 1] * A[i][i - 1]);
126
```

```
alpha[i] = A[i][i + 1] * del;
127
       betta[i] = (-A[i][i - 1] * betta[i - 1] + b[i]) * del;
128
    }
129
130
    // обратныйход
131
    x[n-1] = betta[n-1];
132
    for (int i = n - 2; i >= 0; --i) {
133
       x[i] = -alpha[i] * x[i + 1] + betta[i];
134
    }
135
136
    for (int i = 1; i <= n; ++i) {</pre>
137
       printf(
138
            "ih = %4.21f | y_i = %9.61f | u(ih) = %8.61f | |y_i - u(ih) = "
139
            "%8.61f\n",
140
            i * h, x[i - 1], u_x(i * h), abs(x[i - 1] - u_x(i * h)));
141
    }
142
143
144
  double calculate_new_x(int i, vector<double> &x, int n,
145
                             vector < vector < double >> &A, vector < double > &b) {
146
    double h = 1.0 / n;
147
    double sum = 0.0;
148
149
     if (i > 0) {
150
       for (int j = 0; j \le i - 1; ++j) {
151
         sum += A[i][j] * x[j];
152
       }
153
    }
154
155
     if (i < n - 1) {</pre>
156
       for (int j = i + 1; j < n + 1; ++j) {
157
         sum += A[i][j] * x[j];
158
       }
159
    }
160
161
    return (b[i] - sum) * (1.0 / A[i][i]);
162
163 }
164
  int Seidel_method(int n, vector<double>> &x, vector<vector<double>> &A,
165
                       vector < double > &b) {
166
    double h = 1.0 / n;
167
    int k = 0;
168
    vector < double > new_x(n, 0.);
169
```

```
double error = 1.0;
170
171
     while (error > 1.0 / pow(n, 3)) {
172
       for (int i = 0; i < n; ++i) {</pre>
173
         new_x[i] = calculate_new_x(i, new_x, n, A, b);
174
       }
175
176
       error = calculate_error_dec(new_x, A, b);
177
178
       x = new_x;
179
180
       k++;
181
     }
182
183
     return k;
184
185 }
  double calculate_new_x_relax(int i, vector<double> &x, int n,
186
                                    vector < vector < double >> &A, double omega,
187
                                    vector < double > &b) {
188
     double sum = 0.0;
189
190
     if (i > 0) {
191
       for (int j = 0; j \le i - 1; ++j) {
192
         sum += A[i][j] * x[j];
193
       }
194
     }
195
196
     if (i < n - 1) {</pre>
197
       for (int j = i + 1; j < n + 1; ++j) {
198
         sum += A[i][j] * x[j];
199
       }
200
     }
201
202
     double new_x = (b[i] - sum) * (1.0 / A[i][i]);
203
     return x[i] + omega * (new_x - x[i]);
204
205
206
  int relax_top(int n, vector<double> &x, vector<vector<double>> &A,
207
                      vector < double > &b) {
208
     double h = 1.0 / n;
209
     double omega = 1.86;
210
       double error = 1.0;
211
       int k = 0;
212
```

```
vector < double > new_x(n, 0.);
213
214
       while (error > 1.0 / pow(n, 3)) {
215
         for (int i = 0; i < n; ++i) {</pre>
216
            new_x[i] = calculate_new_x_relax(i, new_x, n, A, omega, b);
217
         }
218
219
         error = calculate_error_dec(new_x, A, b);
220
221
         x = new_x;
222
223
         k++;
224
225
226
       return k;
227
228
  double calculate_tau(vector<double> &r, vector<double> &Ar) {
229
     double a = 0.;
230
     double b = 0.;
231
     for (size_t i = 0; i < r.size(); ++i) {</pre>
232
       a += r[i] * r[i];
233
       b += Ar[i] * r[i];
234
     }
235
     if (abs(b) < 1e-10) {
236
       return 0.0;
237
     }
238
     return a * (1.0 / b);
239
240
241
  double calculate_new_x_spusk(int i, vector < double > &x, int n,
242
                                    vector < vector < double >> &A, vector < double >> &b
243
                                        ) {
     vector < double > r = calculate_r(A, b, x);
244
     vector < double > Ar = calculate_mtx_vec_mult(A, r);
245
246
     return x[i] - calculate_tau(r, Ar) * r[i];
247
248
249
  int spusk(int n, vector<double> &x, vector<vector<double>> &A,
250
              vector < double > &b) {
251
     double h = 1.0 / n;
252
     int k = 1;
253
     vector < double > new_x(n, 0.);
254
```

```
double error = 1.0;
255
256
     while (error >= 1.0 / pow(n, 3)) {
257
       for (int i = 0; i < n; ++i) {</pre>
258
         new_x[i] = calculate_new_x_spusk(i, new_x, n, A, b);
259
       }
260
261
       x = new_x;
262
263
       error = calculate_error_dec(new_x, A, b);
264
265
       k++;
266
    }
267
268
    return k;
269
270 }
271
  void m_print(int k, vector<double> &y_i, vector<double> &y_ik) {
272
    for (int i = 0; i < y_i.size() - 1; ++i) {</pre>
273
       printf(
274
            "ih = %3d | y_i = %9.61f | y_ik = %9.61f | |y_i - y_ik| = %9.61f
275
            "%d\n",
276
            i, y_i[i], y_ik[i], abs(y_i[i] - y_ik[i]), k);
277
    }
278
279 }
  #include "header.hpp"
  using namespace std;
  int main() {
```

```
int n = 50.0;
6
    std::vector < double > y_i_p(n + 1), y_i_s(n + 1), y_i_r(n + 1), y_i_sp(n + 1)
8
       + 1),
9
    vector < vector < double >> A = create_matrix(n);
10
11
    b = func_vec(n);
    printf("Прогонка\n");
12
    progonka_method(A, y_i_p, n, b);
13
    int k_s = Seidel_method(n, y_i_s, A, b);
14
    int k_r = relax_top(n, y_i_r, A, b);
15
```

```
int k_dec = spusk(n, y_i_sp, A, b);
16
    printf("Прогонка - Зейдель\n");
17
    m_print(k_s, y_i_p, y_i_s);
18
    printf("Прогонка - Верхняярелаксация \n");
19
    m_print(k_r, y_i_p, y_i_r);
20
    printf("Прогонка - Спуск\n");
21
    m_print(k_dec, y_i_p, y_i_sp);
22
    return 0;
23
24 }
```