计算机图形学 期末速通补充

1.1 齐次坐标

[齐次坐标]

- (1) 定义: 三维空间的四维**齐次坐标**形如 $P=[x,y,z,w]^T$, 其中 P 为向量时 w=0 , P 为点时 w=1 .
- (2) 优点:
 - ① 标准变换(旋转、平移、缩放)都可用 4 阶矩阵乘法实现.
 - ② 硬件流水线体系可应用四维表示.
 - ③ 正交投影中, 可通过 w=0 保证向量, 通过 w=1 保证点; 透视投影中, 需进行透视除法.

1.2 投影

[基准面与基准方向]

- (1) 基准面: 平坦面.
- (2) 基准方向: 几个面相交于直角得到的三个正交的方向.

[平面几何投影的分类]

[透视投影, 中心投影]

- (1) 定义: 投影线汇聚于投影中心的投影.
- (2) 特点:
 - ① 投影中心在原点.
 - ② 投影平面为 z=d<0 .
 - ③ 近大远小.
- (3) 分类:

三点透视	两点透视	单点透视
	VP ₁ VP ₂	a) b) VP VP VP
① 无基准面平行于投影面.② 正方体的投影有 3 个灭点.	① 一个基准方向平行于投影 面. ② 正方体的投影有 2 个灭点.	① 一个基准面平行于投影面. ② 正方体的投影有 1 个灭点.

- (4) 优点: 保直线, 但不是仿射变换.
- (5) 缺点:
 - ① 非均匀收缩: 在直线上等距的几点投影后未必等距.
 - ② 只有平行于投影面的平面上保角度.

[平行投影]

- (1) 定义: 所有投影线平行的投影.
- (2)分类:

平行投影	正交投影	多视点正交投影
投影方向投影光		前平面 轮廓面 柳视图
① 投影中心在无穷远处. ② 投影方向平行.	投影线垂直于投影面.	① 投影面垂直于基准面. ② 常从前面、顶部、侧面投影.

- (3) 优点:
 - ① 保距离和角度.
 - ② 保形状.
 - ③ 可用于测量, 如建筑规划.
- (4) 缺点: 不能看到对象真正的全局形状, 因为很多面从视点不可见.

[轴测投影]

- (1) 定义: 投影线垂直于投影面, 但投影面与对象基准面有夹角的投影.
- (2) 示意图:

[斜投影]

- (1) 定义: 投影线平行, 但投影线与投影面间关系任意的投影.
- (2) 示意图:

[投影规范化]

- (1) 定义: 先将对象变形, s.t. 变形后的对象的正交投影图与原想得到的对象的投影图相同, 将所有投影转化为正交投影.
- (2)作用: s.t. 任一投影类型都相对于默认正方体裁剪.