LES FONCTIONS EXPONENTIELLES

I Définition et propriétés algébriques

Définition n°1. Fonctions exponentielles de base a.

Soit *a* un réel strictement positif.

On appelle fonction exponentielle de base a, la fonction $x \rightarrow a^x$

Exemple n°1.

Les fonctions $f_1: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \to 5^x \end{cases}$, $f_2: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \to 2,55^x \end{cases}$, $f_3: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \to 1,57^x \end{cases}$, $f_4: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \to 1,22^x \end{cases}$, $f_5: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \to 1^x = 1 \end{cases}$, $f_6: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \to 0,8^x \end{cases}$, $f_7: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \to 0,56^x \end{cases}$ Les

et f_7 : $\begin{cases} \mathbb{R} \to \mathbb{R} \\ x \to 0,17^x \end{cases}$ sont des fonctions exponentielles de bases respectives :

5; 2,55, 1,57; 1,22; 1; 0,8; 0,56 et 0,17.

Cliquez sur la figure

Remarque n°1.

Pour a=0, on a la fonction $f:\begin{cases}]0; +\infty[\to \mathbb{R} \\ r \to 0 \end{cases}$

Propriété n°1. Propriétés algébriques (admises)

Soit a et b deux réels strictement positifs.

Pour tous rées x et tout réel

$$a^{x} \times a^{y} = a^{x+y}$$

$$a^{-x} = \frac{1}{a^{x}}$$

$$a^{x} \times b^{x} = (a \times b)^{x}$$

$$\frac{a^{x}}{a^{y}} = a^{x-y}$$

$$\frac{a^{x}}{b^{x}} = \left(\frac{a}{b}\right)^{x}$$

$$a^{x} \times b^{x} = (a \times b)^{x}$$

$$\frac{a^{x}}{b^{x}} = \left(\frac{a}{b}\right)^{x}$$

Exemple n°2.

•
$$(4,37^{2,1})^3 = 4,37^{2,1\times 3} = 4,37^{6,3}$$
;

$$\frac{5,2^{3,1}}{5,2^{1,7}} = 5,2^{3,1-1,7} = 5,2^{1,4} ;$$

$$\frac{9.31^{4.3} \times 9.31^{-2.7} \times 9.31^{1.1}}{9.31^{-3}} = 9.31^{(4.3-2.7+1.1)-(-3)} = 9.31^{5.7} .$$

II Sens de variation

Propriété n°2. (admise)

Soit a un réel strictement positif, et $f: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \to a^x \end{cases}$

- Si a > 1 alors f est strictement croissante,
- si a = 1 alors f est constante,
- si 0 < a < 1 alors f est strictement décroissante.

Propriété n°3. (admise)

Soit a un réel strictement positif, k un réel non nul et :

$$g: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \to k \times a^x \end{cases}$$

- Si k > 0 et:
 - si a > 1 alors g est strictement croissante,
 - si a = 1 alors g est constante,
 - si 0 < a < 1 alors g est strictement décroissante.
- Si k < 0 et:
 - si a > 1 alors g est strictement décroissante,
 - si a = 1 alors g est constante,
 - si 0 < a < 1 alors g est strictement croissante.

Remarque n°2.

On peut résumer cette dernière propriété de la façon suivante :

- Si k > 0 alors $x \to k \cdot a^x$ se comporte comme $x \to a^x$ et.
- Si k < 0 alors $x \rightarrow k \cdot a^x$ se comporte à l'inverse de $x \rightarrow a^x$.

Remarque n°3.

Si k=0 alors la fonction $x \rightarrow k \cdot a^x$ est la fonction nulle...

Exemple n°3.

Étudions les variations des fonctions suivantes définies pour tout réel x par :

$f_1(x) = 3,1^x$	$f_1(x) = a^x$ avec $a=3,1 > 1$. Donc f_1 est strictement croissante.
$f_2(x) = 0.23^x$	$f_2(x) = a^x$ avec $a=0.23$ et $0 < a < 1$ Donc f_2 est strictement décroissante.
$f_3(x) = 4 \times 3,1^x$	$f_3(x) = k \times a^x$ avec $k > 0$ et $a > 1$ Donc f_3 est strictement croissante.
$f_4(x) = -5 \times 3,1^x$	$f_4(x) = k \times a^x$ avec $k < 0$ et $a > 1$ Donc f_4 est strictement décroissante.
$f_5(x) = 4 \times 0,23^x$	$f_5(x) = k \times a^x$ avec $k > 0$ et $0 < a < 1$ Donc f_5 est strictement décroissante.
$f_6(x) = -5 \times 0,23^x$	$f_6(x) = k \times a^x$ avec $k < 0$ et $0 < a < 1$ Donc f_6 est strictement croissante.
$f_7(x) = \frac{-0.23^x}{5}$	$f_7(x) = k \times a^x$ avec $k < 0$ et $0 < a < 1$ Donc f_7 est strictement croissante. ($k = -1/5$)

III Moyenne géométrique

Définition n°2.

Soit n un entier naturel non nul et a_1 , a_2 , ..., a_{n-1} , a_n des réels strictement positifs.

On appelle moyenne géométrique des a_1 , a_2 , ..., a_{n-1} , a_n le nombre :

$$(a_1 \times a_2 \times ... \times a_{n-1} \times a_n)^{\frac{1}{n}}$$

Exemple n°4.

La moyenne géométrique de 0,5 ; 0,78 ; 1,3 et 1,78 vaut :

$$(0.5 \times 0.78 \times 1.3 \times 1.78)^{\frac{1}{4}} \approx 0.9747$$
 à 0.0001 près

Méthode n°1. Calculer un taux moyen d'évolution

Soit *n* un entier naturel non nul.

Si CM est le coefficient multiplicateur global sur n évolutions alors le taux moyen d'évolution est le réel $t = CM^{\frac{1}{n}} - 1$

Exemple n°5.

On donne 5 taux d'évolutions et on veut calculer t, le taux moyen d'évolution équivalent à ces 5 évolutions.

Une hausse de 30 % (
$$t_1$$
=0,3 et CM_1 =1,3)
Une hausse de 15 % (t_2 =0,15 et CM_2 =1,15)
Une baisse de 5 % (t_3 =-0,05 et CM_3 =0,95)
Une hausse de 10 % (t_4 =0,1 et CM_4 =1,1)

Une baisse de 20 % ($t_5 = -0.2$ et $CM_5 = 0.8$)

On calcule le Coefficient Multiplicateur global CM:

$$CM = CM_1 \times CM_2 \times CM_3 \times CM_4 \times CM_5 = 1,24982$$

Ainsi:

$$t = CM^{\frac{1}{5}} - 1$$

 $t = 1,24982^{\frac{1}{5}} - 1 \approx 0,0456 \text{ à } 0,0001 \text{ près}$

Soit une hausse d'environ 4,56 %