GROUPS

ADAM KELLY (AK2316@CAM.AC.UK)

1. Basic Results

Theorem 1.1 (Lagrange). Let G be a finite group, and let $H \leq G$. Then |G| = |H||G:H|, where |G:H| is the index of H in G, the number of left cosets.

Theorem 1.2 (First Isomorphism Theorem). Let $\phi : G \to H$ be a homomorphism. Then $G/\ker \phi \cong \operatorname{img} \phi$.

Theorem 1.3 (Second Isomorphism Theorem). Let $H \leq G$ and $N \leq G$. Then $H \cap N \leq H$ and $H/(H \cap N) \cong HN/N$.

Theorem 1.4 (Third Isomorphism Theorem). Let $N \leq M \leq G$ such that $N \leq G$ and $M \leq G$. Then $M/N \leq G/N$ and $(G/N)/(M/N) \cong G/M$.

Theorem 1.5 (Correspondence Theorem). Let $N \leq G$. Then the subgroups of G/N are in bijective correspondence with subgroups of G containing N.

2. Simple Groups

Definition 2.1. A group is *simple* if $\{e\}$ and G are its only normal subgroups.

Lemma 2.2. The only simple abelian group if C_p for a prime p.

Lemma 2.3. If G is a finite group, then G has a composition series

$$1 \cong G_0 \triangleleft G_1 \triangleleft \cdots \triangleleft G_n = G$$

where each quotient G_{i+1}/G_i is simple.

Proof Sketch. Induct on |G|. Let G_{n-1} be a normal subgroup of largest possible order not equal to |G|. Then G/G_{n-1} exists, and it's simple by the correspondence theorem.

3. Simplicity of the Alternating Group

Lemma 3.1. A_n is generated by 3-cycles.

Lemma 3.2. If $n \geq 5$, all 3-cycles are conjugate in A_n .

Theorem 3.3. A_n is simple for $n \geq 5$.

Proof Sketch. Let N be normal and nontrivial, and let $\sigma \in N$. We then consider $\sigma^{-1}\delta^{-1}\sigma\delta$ for a given δ .

• Case 1. σ contains a cycle of length $r \geq 4$.

Write $\sigma = (1\ 2\ \cdots\ r)\tau$, and let $\delta = (1\ 2\ 3)$. Then we get $(2\ 3\ r) \in N$.

Date: June 7, 2022.

• Case 2. σ contains two 3-cycles.

Again write $\sigma = (1\ 2\ 3)(4\ 5\ 6)\tau$. Then let $\delta = (1\ 2\ 4)$, and we get $(1\ 2\ 4\ 3\ 6)$, which is the first case.

• Case 3. σ contains two 2-cycles.

Write $\sigma = (1\ 2)(3\ 4)\tau$. We then repeatedly perform our process for δ in $\{(1\ 2\ 3), (1\ 2\ 4), (1\ 2\ 3), (2\ 3\ 5)\}$ (in order), operating on our result. We then get $(2\ 5\ 3)$.

In each case we get a 3 cycle, and in the last case, σ contains a 3 cycle but then (by considering powers of σ) we get a 3-cycle as required.

4.
$$p$$
-Groups

Definition 4.1. A finite group G is a p-group if $|G| = p^n$ where p is a prime.

Theorem 4.2. If G is a p-group then Z(G) is non-trivial.

Proof. For $g \in G$, we have $|\operatorname{ccl}_G(g)| \cdot |C_G(g)| = |G| = p^n$. So each conjugacy class has size that is a power of p. Since G is a union of it's conjugacy classes,

$$|G| \equiv \#(\text{ conj. classes of size 1}) \pmod{p}$$

$$\Longrightarrow 0 \equiv |Z(G)| \pmod{p}.$$

In particular, |Z(g)| > 1.

Theorem 4.3. Let G be a p-group of order p^n . Then G has a subgroup of order p^r for all $0 \le r \le n$.

Proof. We have a composition series $1 \equiv G_0 \triangleleft \cdots G_m = G$ with G_i/G_{i-1} simple. Each of these is a p-group and is thus isomorphic to C_p .