TUTORIAL 5

1 Yet more applications of Gaussian elimination

For this exercise, K is a field, and we consider an ambient linear space K^n for some $n \ge 2$. All vectors will be row vectors.

- 1. Let $V = \text{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_m\}$ be a linear subspace. Give an algorithm to compute a basis of V.
- 2. Let $W = \text{Span}\{\mathbf{w}_1, \dots, \mathbf{w}_e\}$ be another linear subspace. Give an algorithm to compute a basis of V + W.
- 3. Give an algorithm to compute a basis of $V \cap W$.

2 An algorithm for computing the characteristic polynomial

Let $A \in \mathcal{M}_n(\mathbb{K})$, the goal of the following method is to compute the characteristic polynomial of A with a cost better than $O(n^4)$.

- 1. Let T be the transformation which acts on the left of a matrix A through $L_i \leftarrow L_i + \alpha L_j$, i.e., $T = I_n + \alpha E_{i,j}$. Here $E_{i,j}$ denotes an $n \times n$ matrix with 1 on the (i,j) position and 0s everywhere else. Describe the action of T^{-1} on the right of A in terms of column operations.
- 2. Using Question 1, show that one can find a matrix R such that

$$RAR^{-1} = \begin{bmatrix} a_{1,1} & a'_{1,2} & \cdots & a'_{1,n} \\ l_2 & a'_{2,2} & \ddots & a'_{2,n} \\ 0 & a'_{3,2} & \ddots & a'_{3,n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & a'_{n,2} & \cdots & a'_{n,n} \end{bmatrix}.$$

(Hint: perform row operations by multiplying on the left by some transformation matrices T_i and see what happens on the columns when you multiply on the right by T_i^{-1}).

3. Give an algorithm to compute the matrices R_n and M such that

$$R_n A R_n^{-1} = M = \begin{bmatrix} m_{1,1} & m_{1,2} & m_{1,3} & \cdots & m_{1,n} \\ \ell_2 & m_{2,2} & m_{2,3} & \ddots & m_{2,n} \\ 0 & \ell_3 & m_{3,3} & \ddots & m_{3,n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \ell_n & m_{n,n} \end{bmatrix}$$

using $O(n^3)$ operations in \mathbb{K} .

Remark: such an "almost triangular" shape matrix is called an *upper Hessenberg matrix*, i.e., a matrix that has zero entries below the first subdiagonal. We have shown how to reduce any matrix into (upper) Hessenberg form.

- 4. Deduce an algorithm to compute the characteristic polynomial of A, with a complexity bound $O(n^3)$. Use the fact that two similar matrices have the same characteristic polynomial.
- 5. Could it be possible to find R such that $R^{-1}AR = M$ is upper triangular by (arbitrarily many) elementary operations in \mathbb{K} ? If yes, explain how. If not, explain why.

3 Toeplitz linear systems

Let $M \in \mathcal{M}_n(K)$ be a Toeplitz matrix, that is,

$$M = \begin{bmatrix} m_0 & m_{-1} & \cdots & m_{-n+2} & m_{-n+1} \\ m_1 & m_0 & \ddots & \ddots & m_{-n+2} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ m_{n-2} & \ddots & \ddots & \ddots & m_{-1} \\ m_{n-1} & m_{n-2} & \cdots & m_1 & m_0 \end{bmatrix}$$

for some $m_{-n+1}, \ldots, m_0, \ldots, m_{n-1} \in K$. The goal of this exercise is to solve the linear system $M\vec{x} = \vec{y}$ more efficiently than with general-purpose algorithms.

1. What is the size of the input of our problem? And the size of the output?

For $k \in [n]$, we denote M_k the upper left sub-matrix of M of size $k \times k$. We shall assume that M_k is non-singular (invertible) for all k.

We denote by $e_k^{(1)} \in K^k$ the vector $(1,0,\cdots,0)^T$ and by $e_k^{(k)} \in K^k$ the vector $(0,\cdots,0,1)^T$ of size k. For $k \in [n]$, we define $\vec{f_k} \in K^k$ by $M_k \vec{f_k} = e_k^{(1)}$, and $\vec{b_k} \in K^k$ by $M_k \vec{b_k} = e_k^{(k)}$.

- 2. Find $\vec{f_1}$ and $\vec{b_1}$.
- 3. Let $\vec{f}_k' = (\vec{f}_{k-1}^T, 0)^T$, and $\vec{b}_k' = (0, \vec{b}_{k-1}^T)^T$. Compute $M_k \vec{f}_k'$ and $M_k \vec{b}_k'$. Deduce \vec{f}_k and \vec{b}_k .

For $k \in [n]$, let $\vec{y}^{(k)} = (y_1, \dots, y_k)$ and define $\vec{x}^{(k)} \in K^k$ by $M_k \vec{x}^{(k)} = \vec{y}^{(k)}$. Note that we have $\vec{x} = \vec{x}^{(n)}$.

- 4. Give an algorithm, which on input $\vec{x}^{(k-1)}$, y_k and \vec{b}_k , computes $\vec{x}^{(k)}$.
- 5. Deduce an algorithm to solve a Toeplitz linear system. Give a complexity bound for your algorithm.