Du Big Bang à l'apocalypse: Symétries et solitons dans la cosmologie

Éric Dupuis

Université de Montréal, département de physique Conférences du vendredi des stagiaires

04-07-2014

Bonne fête Boson de Higgs!: 4 juillet 2012 - ...

- Cosmologie
 - Cosmologie 101
 - Notions de symétrie
- Solitons
 - Formalisme mathématique
 - Kink
- 3 Quotidien en cosmo des particules
- 4 BONUS!!!

Cosmologie 101

- Cosmologie : Structure/origine/évolution de l'univers
 - Big Bang
 - Modèles inflationnistes
 - Expansion de l'univers

État d'origine \rightarrow État actuel

Big Bang:

- -Matière compressée
- -Température très élevée
- -État instable

Forme symétrique : Importance en cosmologie

La symétrie en physique

Définition (approximative)

La **symétrie** d'un système physique définit une transformation qui le laisse invariant.

Théorème de Noether : Symétries \leftrightarrow Lois de conservations.

Symétrie de l'univers (postultats de la relativité restreinte)

- **1** Homogénéitié : Invariance sous translation $\rightarrow \vec{p}$
- 2 Isotropie : Invariance sous rotation $\rightarrow \vec{L}$

Groupes de symétrie :

Exemple: U(n), O(n), SU(n), SO(n)

Ferroaimant de Heisenberg : Dipôles magnétiques en 2D

$$H = -J \sum_{i} \sum_{voisinsj} \vec{S}_i \cdot \vec{S}_j$$

Invariance de H sous rotation dans le plan **SO(2)**

Vide : Température de Curie

Brisure spontanée de symétrie

Les lois de la nature peuvent posséder des symétries qui ne laissent toutefois pas l'état de vide (fondamental) invariant.

Mécanisme de Kibble

Vides dégénérés, différant dans l'espace : défauts topologiques (solitons)

Brisure de symétrie - Particules

Grande unification:

$$G \rightarrow H \rightarrow ... \rightarrow SU(3)xU(1)$$

Groupes de Lie, transformations continues		
Force	Groupe de symétrie	Bosons de jauge
Nucléaire faible	SU(2)	W^{\pm} , Z^0
Nucléaire forte	SU(3)	g
Électromagnétique	U(1)	γ
	(symétries internes)	

Supposition : Univers est dans un potentiel ${\sf V}$

- 1) Origine $\rightarrow \max(U)$, Big Bang
- 2) État actuel
- → symétrie brisée?
- \rightarrow défauts topologiques, solitons ?
- 3) Évolution future
- \rightarrow vide métastable?
- \rightarrow Vers un vrai vide? solitons?

$$\begin{split} \mu &= \{0,1,2,3\} \to \{t,x,y,z\} \\ \partial_{\mu} &= \frac{\partial}{\partial x^{\mu}} = \left(\frac{1}{c}\partial_{t},\nabla\right) \\ \partial_{\mu}\partial^{\mu} &= \frac{1}{c^{2}}\partial_{t}^{2} - \nabla^{2} \text{ (indices répétés)} \end{split}$$

Motivation : Invariants de Lorentz $x_{\mu}x^{\mu}=x_0^2-x_1^2-x_2^2-x_3^2$

Action et équations du mouvement

Champ scalaire défini dans \mathbb{R}^{d+1} : $\phi(\vec{x},t)$

$$L = T - V$$

$$\mathcal{L} = rac{1}{2}\dot{q}^2 - V(q) \qquad \mathcal{L} = rac{1}{2}(\partial_{\mu}\phi)(\partial^{\mu}\phi)^* - V(\phi)$$

$$\Rightarrow$$
 Action : $S[\phi] = \int dt (L[\phi]) = \int d^{\mu}x (\mathcal{L}[\phi])$

 \Rightarrow Principe d'Hamilton : ϕ_0 | action minimisée

$$\textit{Euler-Lagrange}: \ \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \phi)} \right) = \frac{\partial \mathcal{L}}{\partial \phi} \qquad \quad \frac{1}{\partial t} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}} \right) = \frac{\partial \mathcal{L}}{\partial q}$$

Équation d'ondes et solitons

$$V = 0$$

Équation d'onde :
$$\frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2} - \nabla^2 \phi = \Box \phi = 0$$

- 1) Forme et vitesse de l'onde conservées
- 2) Deux ondes retrouvent asymptotiquement leur forme/vitesse

$V \neq 0$

Terme dispersif : $+m^2\phi$ Terme non-linéaire : $+\phi^3$

Ondes solitaires 1) Solitons
$$1)+2$$
)

Sur sa monture, John Russell poursuit sa destinée, vers l'onde solitaire!

En image

Description d'un soliton topologique

- 1) Densité d'énergie $\epsilon(x,t)$ d'un soliton (1+1 dim.)
- → Localisée dans l'espace (non-nulle et finie) et conservée

Énergie finie :
$$\lim_{x \to +\infty} \epsilon(x, t) = 0$$

$$\epsilon(x,t) = \mathcal{H}[\phi] = \frac{1}{2}(\partial_x \phi)^2 + V(\phi)$$

Donc : ϕ tend asymptotiquement vers un vide de V

2) Structure des vides non triviale

Cas de figure typique

Théorie des champs :

$$\mathcal{L}[\phi] = \frac{1}{2} \partial_{\mu} \phi (\partial^{\mu} \phi)^* - V(\phi)$$
$$= \frac{1}{2} \frac{(\partial_t \phi)^2}{c^2} - \frac{1}{2} (\partial_x \phi)^2 - V$$

- ightarrow Champ scalaire $\phi \in \mathbb{R}$
- $ightarrow 1{+}1$ dimensions
- \rightarrow solutions statiques

Sous : $\phi \to -\phi$ (Z_2) $\mathcal{L} \to \mathcal{L}$ $\phi_0 \to -\phi_0$

$$V(\phi)=(\phi^2-1)^2$$

Kink

$$\underset{\textit{Euler-Lagrange}}{\Longrightarrow} \partial_{\mathbf{x}}^2 \phi = \phi^3 - \phi$$

+ conditions frontières

$$\phi(x) = tanh\left[rac{1}{\sqrt{2}}(x-x_0)
ight]$$

$$\epsilon(x) = rac{1}{\sqrt{2}} sech^4 \left[rac{1}{\sqrt{2}} (x - x_0)
ight]$$

Retour - Cosmologie et solitons

Symétries brisées dans la nature (MS)
 → défauts topologiques → solitons

- \bullet Mur de domaine (sym. discrète 1 dim.)
 - ⇒ Corde Cosmique (cylindrique)
 - ⇒ Monopôle (sphérique)
- évolution de l'univers?

Taux de désintégration du faux vide

Effet tunnel quantique

Espace Euclidien : $t \rightarrow i\tau$ Quantique Min. \rightarrow Classique Euc.

 $ightarrow \min(S_E)
ightarrow Instanton$ ightarrow Intégrale de chemin : $m T pprox Ae^{-So/\hbar}$ Fluctuation d'un soliton : autre source de désintégration!!!

Bref...

- L'univers serait arrivé dans un état métastable par brisure de symétrie
- Présence de solitons, essentiellement des ondes non-évanescentes
- Se les solitons peuvent accélérer le taux de de désintégration du faux vide

Potentiel à deux champs $\phi(x,t)$ et $\psi(x,t)$

$$V(\phi,\psi) = (\psi^2 - \delta_1)(\psi^2 - 1)^2 + \frac{\alpha}{\psi^2 + \gamma}[(\phi^2 - 1)^2 - \frac{\delta_2}{4}(\phi - 2)(\phi + 1)^2]$$

- 1+1 dimensions, on cherche une solution statique
- 2 Paramètres : $\alpha, \gamma, \delta_1, \delta_2$
- \circ γ : couplage
- $oldsymbol{\alpha}$: Importance du 2ème terme

- $\delta_1 \rightarrow$ contrôle du minimum central
- Ordre 6, CLASSIQUE!

 $oldsymbol{\delta}_2
ightarrow {
m Contrôle}$ de la séparation entre minimum sur l'axe ϕ

À venir...

Solutions aux équations de mouvements (contraintes à $\lim_{x\to\pm\infty}$)

Tester la stabilité de la solution

Trouver une borne maximale sur l'action o borne minimale sur T

Symétrie élecrofaible : Glashow, Salam et Weinberg

Mécanisme de Higgs : Bosons de Goldstone

Analogie mécanique classique

$$\mathcal{H}[\phi] = rac{1}{2}\partial_{\mu}\phi(\partial_{\mu}\phi)^* + V$$

Champ

$$E_{\phi} = \int dx \left[\frac{1}{2} (\partial_x \phi)^2 + V(\phi) \right]$$

Particule

$$S_q = \int dt [\frac{1}{2} \dot{q}^2 - U(q)]$$

Notation covariante

1
$$x_0 = ct$$
 $x_{1,2,3} = x, y, z$

$$x_{\mu} = (x_0, \vec{x})$$
 $x^{\mu} = (x_0, -\vec{x})$

3 Métrique : $x^{\mu} = g^{\nu\mu}x_{\nu}$

lacktriangledown Minkowski : $\eta^{
u\mu}
ightarrow extit{diag}(1,-1,-1,-1)$

$$\begin{split} \partial^{\mu} = & (\frac{1}{c}\partial_{t}, -\nabla) \\ \partial_{\mu}\partial^{\mu} = & \frac{1}{c^{2}}\partial_{t}^{2} - \nabla^{2} \end{split}$$