# PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-165087

(43) Date of publication of application: 10.06.1994

(51)Int.CI.

HO4N 5/66

(21)Application number: 04-309033

(71)Applicant: TOSHIBA CORP

(22)Date of filing:

18.11.1992

(72)Inventor: SAKAMOTO TSUTOMU

## (54) LIQUID CRYSTAL DISPLAY DEVICE

#### (57)Abstract:

PURPOSE: To provide the easy—to—see liquid crystal display device with high picture quality by varying a response speed correction according to the content of picture.

CONSTITUTION: In an input signal switching switch 3, the switching between a signal from a MUSE decoder 1 and a signal from an external input terminal 2 is selected according to the user's operation. The output of the switch 3 is inputted to a response speed correction circuit 4. In this case, the correction level of the response speed correction circuit 4 is controlled to take a control signal out from the MUSE decoder section 1. The response speed of the still picture part of the MUSE signal is made low, the response speed of an animation part is made 'middle', and the response speed is made high'in the external input signal processing when the MUSE signal is in pan, chilt processing, and at the time of scene changing. Thus, the noise elimination of the still picture part in the MUSE signal, a smooth display of animation part, and faithful display for pan, chilt, scene change, and base band signals can be executed.



#### LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

# Japanese Laid-Open Publication No. 165087/1994 (Tokukaihei 6-165087)

### A. Relevance of the Above-identified Document

The following is a partial English translation of exemplary portions of non-English language information that may be relevant to the issue of patentability of the claims of the present application.

B. Translation of the Relevant Passages of the Document See the attached English Abstract.

[Embodiment]

[0028]

Assume that the input is a MUSE signal. (1) In a case where a still image is displayed, an operation of an is speed correction circuit 4 suspended, response restoring an original slow response speed of liquid crystal. the response is further retarded Alternatively, reverse-operating the response speed correction circuit 4. By doing so, a noise reduce function works on an image with a low SN. With an interlace signal, a line flicker is restrained and a vertical resolution of a still image improves. A degree of this function is made variable in accordance with user's preference inputted using a remote controller or the like.

[0029]

Assume that the input is a MUSE signal as in the case above. (2) In a case where a moving image is displayed, the effect of the response speed correction circuit 4 is moderately exerted, appropriately blurring the moving image part. This eliminates the excessive conspicuity in the moving image part. A degree of the blurring is made variable in accordance with user's preference inputted using a remote controller or the like.

(19)日本国特許庁(JP)

# (12) 公開特許公報(A)

(11)特許出願公開番号

## 特開平6-165087

(43)公開日 平成6年(1994)6月10日

(51)Int.Cl.<sup>5</sup>

識別記号

庁内整理番号

FΙ

技術表示箇所

H 0 4 N 5/66

102 B 9068-5C

審査請求 未請求 請求項の数1(全 6 頁)

(21)出願番号

(22)出願日

特願平4-309033

平成 4年(1992)11月18日

(71)出願人 000003078

株式会社東芝

神奈川県川崎市幸区堀川町72番地

(72) 発明者 坂本 務

埼玉県深谷市幡羅町1丁目9番2号 株式

会社東芝深谷工場内

(74)代理人 弁理士 鈴江 武彦

#### (54)【発明の名称】 液晶表示装置

#### (57)【要約】

【目的】MUSE信号における静止画部分のノイズ除去、ラインフリッカーの除去、垂直解像度のアップ、動画部分の滑らかな表示、パン、チルト、シーンチェンジやベースバンド信号に対する忠実な高速表示を実現し、見やすく、高画質な液晶表示装置を実現する。

【構成】応答速度補正回路4は、MUSE信号に対するゲインを制御し、液晶パネル6が持つ応答速度の不足を補正するのものであるが、との補正回路に対するゲイン制御を補正ゲインコントロール回路7により、画像内容や、ユーザのこのみに応じて調整できるようにしたものである。



10

40

#### 【特許請求の範囲】

【請求項1】 入力映像信号の各画素の信号電位の変化 量を検出する映像変化部検出手段と、

前記映像変換部検出手段により検出された変化量に対し てある割合で前記入力映像信号の電位を増減変化させ補 正映像信号を得る映像信号振幅可変手段と、

前記補正映像信号を液晶パネルに適合した信号に変換 し、変換された出力映像信号を前記液晶パネルに供給す る液晶表示パネル駆動回路手段と、

前記映像信号振幅可変手段の可変割合を、前記入力映像 信号の性質若しくは操作入力に応じて増減させる可変割 合制御手段とを具備したことを特徴とした液晶表示装 置。

#### 【発明の詳細な説明】

[0001]

【産業上の利用分野】液晶表示装置を用いたディスプレ イ技術に関する。

[0002]

【従来の技術】液晶表示装置は小型軽量であること、ラ イトバルブとして用いた場合投写式の大画面が実現可能 20 なこと等の特徴からCRTに次ぐディスプレイデバイス として期待されている。

【0003】しかしながら、ツイストネマティック液晶 を用いたアクティブマトリックス型の液晶パネルでは応 答速度が30~60ミリ秒程度であり、NTSCやハイ ビジョンでは1フィールドが17m秒程度であるためフ ィールド毎の映像の変化に追従できない現象、つまり、 応答速度の遅さといった欠点がある。この応答速度の遅 い映像は動画部分がボケて見えたり、程度の悪い場合は 尾引きになり、CRTを凌ぐ画質の実現を目指す上での 大きな障害になっている。

【0004】応答速度を早くする方法として、液晶のセ ルギャップを薄くする、粘性の低い材料を用いる、高い 温度で使用する等が考えられている。〇A用のLCDと してはマウスカーソル等のボンディングデバイス表示の 早い動きに関しては満足のいくレベルではあるが、テレ ビ映像、特にハイビジョン映像の髙画質表示にはまだま だ不十分である。そとで、応答速度の遅さを補正する手 段が考案され、具体的回路の実現と共に発表されてい る。

【0005】図2 (a) は、 このアイデアをハイビジョ ン受信機に用いた場合の例を示している。 1 はMUSE デコーダであり、アンテナから入力されるハイビジョン 信号を伝送用に圧縮したMUSE(multiple sub-Nyqui st sampling encoding) 信号を入力とし、ハイビジョン 信号Y, P<sub>R</sub>, P<sub>B</sub> またはR, G, Bに復調する。2は ハイビジョン信号入力端子であり、VTRや光ディスク 等の信号源からのハイビジョン信号を入力する。入力信 号切り換えスイッチ3は、MUSEデコーダ1からの信 号と外部入力端子2からの信号との切り換え選択をユー 50 のメモリであり、入力したデータを1フレーム期間蓄

ザーの操作に応じて行う。

【0006】入力信号切り換えスイッチ3の出力は、応 答速度補正回路4に入力される。 との回路は、入力の映 像信号の変化に合わせて変化量よりも大きめの補正電圧 を発生し、液晶のツイスト量の変化を促進することで、 液晶(LCD)パネル6の応答速度を高めることが目的 である。応答速度補正回路4の出力は、LCDドライブ 回路5に入力される。LCDドライブ回路5は、応答速 度補正回路4からの映像信号を液晶の書き込みに適した レベルや振幅に対応させる働きをする。

【0007】具体的には第1にネガ表示のノーマリー白 液晶では入力の映像信号を反転する。第2に約3倍に増 幅する。第3に2V程度高圧側にシフトする。第4に液 晶の劣化を防ぐ目的の交流駆動を目的に1水平走査期間 毎または1垂直走査期間毎にある電圧を中心に反転させ る(第2図(b)参照)。第5に液晶パネル6は容量の 比較的大きい負荷となるため、電流増幅を行う。液晶パ ネル6は、ツイストネマチック液晶を2枚のガラスで数 μの間隔ではさみ、配向膜によって90度のねじれ状態 にしてある。

【0008】図2(c)を用いて液晶パネル6を説明す る。片側のガラスには数百~数千本の信号線電極61と 千本程度の走査電極62が直交して設けてあり、それぞ れの交点には薄膜トランジスタ (TFT)等の能動素子 63が設けてあり、それぞれのTFT63が透明電極で 液晶を挟んだ画素64に映像に見合った電位を書き込む ことで、映像を表示している。信号線ドライバー65は 水平の画素数分のシフトレジスタ651とサンブルホー ルド部652からなり、シフトレジスタ651に入力さ 30 れるサンプリングクロックによって左から右へ1段ずつ 画素をシフトすると同時にサンプルホールド部652を 左から順に動作させ、入力の映像信号を細かくサンプリ ングし、その画素を保持する。1水平走査期間の最後の 右端までサンプリングしたら、サンプルが信号線61に 同時に出力され、TFT63のドレインに画素電位を加 える。

【0009】66は走査線ドライバであり、1水平走査 期間毎に加えられるクロックによって1段ずつ下にシフ トし、走査電極62にゲートパルスを出力する。このゲ ートパルスによりTFT63がオンし、信号線61に信 号線ドライバ65から書き込んだ画素毎の映像信号が画 素64に書き込まれる。図3(a)を参照して応答速度 補正回路4の構成を説明する。

【0010】41はA/D変換器であり、入力の映像信 号を数十MHz(例えば74MHz)のクロックでサン プリングし、10bit程度のデジタル信号に量子化す る。A/D変換器41の出力は、フレームメモリ42、 減算器43、補正電圧発生器45、46、加算器48に 供給される。フレームメモリ42は、20Mbit程度

20

3 え、古いデータから順に出力する。減算器43は、A/

D変換器-41からの映像データと1フレーム前の映像 データを引算する。との減算器43の出力は、補正電圧 発生器45、46、符号検出器44に入力される。符号 検出器44は減算器43の出力が正であるか、負である かの符号を検出する。補正電圧発生器45、46は、A /D変換器41からの現在の映像信号画素電圧と、減算 器43からの1フレーム前の画像信号画素電圧との差の 画素電圧を出力する。との出力は、液晶の応答速度を早 める効果を出力するためのものであり、変化量よりも多 めの信号を出力である。補正電圧発生器45は画素電圧 が増加する場合、補正電圧発生器46は画素電圧が減少 する場合に有効なデータを出力するためのものである。 【0011】切り換えスイッチ47は、、増加側補正信 号発生器45と減少側補正信号発生器46からの画素補 正信号のどちらか一方を符号検出器44の出力結果で切 り換える。つまり、減算器43の出力が正の場合は増加 側補正信号発生器45の出力を選択し、負の場合は現象 側補正信号発生器45の出力を選択する。スイッチ47 の出力は加算器48に入力され、ことではA/D変換器 41からの現在の映像画素電圧と補正信号との加算が行 われ出力される。加算器48の出力は、D/A変換器4 9に入力され、ことでは入力映像信号をアナログ信号に

[0012]次に、図3(b)~(e)を参照して応答 速度補正回路4の動作と効果を説明する。 図のそれぞれ 縦軸は信号電位及び液晶の透過率Vを示し、横軸は時間 Tを示しており、また時間軸の1目盛りが1フレームを 表している。また、説明が分かりやすいようにノーマリ 黒 (ポジ表示) モードの液晶の場合を説明するが、ノー マリ白 (ネガ表示) でも透過率が逆になるだけで同様な 動作をする。

【0013】図3(b)は補正回路がない場合の動作説

変換し出力する。

明図であり、丸印は各フレーム毎の画素書き込み電位を 示している。との例では始めの2フレームが2Vの黒で 3フレーム目以降4 Vの白に変化した場合を示してい る。実線で結んだ様に画素電位の変化に合わせて液晶の 透過率が追従してくれれば動画(各画素にとっては電位 の変化がある場合のこと)部分の表示がボケることな く、見やすい映像となるのであるが、実際のツイストネ マティック液晶では点線のごとく画素電位の変化に透過 率の変化が追従するのに2~3フレーム必要とする。 【0014】図3(c)は応答速度補正回路4を用いた 場合の説明図である。入力信号は(b)図と同じ場合を 説明する。最初の2フレームは2Vの黒の電圧で3フレ ーム目に4Vの白に変化するわけであるが、ととで本来 書き込みたい4Vよりも高い電圧5Vを液晶に加える。 これは、図3(a)における減算器43の出力が+2

(=4-2) であり増加側補正信号発生器  $(\alpha_{on})$  45

が1 Vを出力し、切り換えスイッチ47がこれを選択す

るので、加算器48により映像信号と加算されて5Vと なる。次のフレームでは減算器43の出力が0Vとなり 補正信号発生器も0Vを出力するので、入力の4Vはそ のまま出力される。との様に信号のレベルが増加した時 だけ増加分よりも大きい信号を加えるので、図の点線の ように液晶の透過率の変化が早くなる。

【0015】映像が白から黒へ変化するときも同様であ り、図3 (d), (e)で説明する。図3 (d)図では 図3(b)と同様に補正回路がない場合の動作説明図で ある。この例では始めの2フレームが4Vの白で3フレ - ム目以降2Vの黒に変化した場合を示している。実線 で結んだ様に画素電位の変化に合わせて液晶の透過率が 追従することはなく、点線のごとく画素電位の変化に透 過率の変化が追従するのに2~3フレーム必要とする。 【0016】図3(e)は図3(d)と同様に応答速度 補正回路4を用いた場合の説明図である。入力信号は図 3 (e) と同じ場合を説明する。最初の2フレームは4 Vの白の電圧で3フレーム目に2Vの黒に変化するわけ であるが、とこで本来書き込みたい2 Vよりも低い電圧 1Vを液晶に加える。これは、図3(a)における減算 器43の出力が-2(=2-4)であり増加側補正信号 発生器(α。。。。 )46が-1Vを出力し、切り換えスイ ッチ47がこれを選択するので、加算器48により映像 信号と加算されて1 Vとなる。次のフレームでは減算器 43の出力が0Vとなり補正信号発生器も0Vを出力す るので、入力の2 V はそのまま出力される。この様に信 号のレベルが減少した時だけ減少分よりも小さい信号を 加えるので、図の点線のように液晶の透過率の変化が早 くなる。以上のような原理で、応答速度補正回路4を用 30 いることで液晶の欠点である動画部分のボケ感が改善さ れる。

#### [0017]

【発明が解決しようとする課題】図2で説明したよう に、MUSEデコーダーからのハイビジョン映像を表示 する場合を考える。

【0018】MUSEでは広帯域なハイビジョン映像を 1チャンネル分の衛星放送で伝送するために、静止画部 分と動画部分の処理の方法を違えて帯域を圧縮してい る。簡単に説明すると、静止画部分では原画を4画素お きに間引いて伝送し、4フィールドで完成する。動画部 分は1/4に間引いた情報から映像を作り上げるため、 静止画部分よりも解像度が甘くなる。実際はこの説明よ りも複雑な処理をしているので解像度が1/4に落ちる わけではないが、静止画部分の水平解像度が650TV 本程度に対して、動画部分のそれは350TV本程度で ある。とれは人間の目は動いているものに対しては解像 度が低いという原理を利用しているためである。

[0019] とのようなMUSE信号を陰極線管(CR T) で再生すると、助画部分の助きがぎこちないと指摘 する声がある。との映像をなんの補正も行っていない液 晶に表示すると応答速度の遅さが逆に幸いして、動画部 分が程度にボケて滑らかになり見やすい。

【0020】ところが、応答速度補正回路4を用いると動画部分がはっきり表示され、CRTのような映像となるため、ぎこちなさが出てしまう。それではMUSE信号入力時のみ応答速度補正回路4を止めてしまえば良さそうであるが、カメラのパニング、チルト時、映像の内容が大きく変化した場合(シーン・チェンジ)は画素毎の信号レベルは大きく変化するので液晶ではボケるが、MUSEでは静止画処理を行っており、液晶でもきっちり表示したい。以上のように、MUSE信号を見やすい状態で表示する応答速度補正回路付きの液晶表示装置の実現が難しかった。

【0021】そこでこの発明は、MUSEの静止画部分の応答速度は低速にし、動画部分は中速にし、MUSE信号におけるパン、チルト処理、シーンチェンジ時、外部入力信号の処理では応答速度が高速になるような装置の実現を目指し、静止画部分のノイズ除去、動画部分の滑らかな表示、パン、チルト、シーンチェンジやベースパンド信号に対する忠実な表示を実現可能な液晶表示装 20置を提供することを目的とする。

#### [0022]

【課題を解決するための手段】との発明は、応答速度補正回路の補正レベルをコントロール可能とし、MUSEデコーダー部からコントロール信号を取り出し、MUSE信号の静止画部分の応答速度は低速にし、動画部分は中速にし、MUSE信号のパン、チルト処理、シーンチェンジ時、外部入力信号処理では応答速度が高速になるようにし、さらに、ユーザーの好みの設定等が可能な構成を実現する。

#### [0023]

【作用】上記の手段によれば、MUSE信号における静止画部分のノイズ除去、動画部分の滑らかな表示、パン、チルト、シーンチェンジやベースパンド信号に対する忠実な表示を実現し、高画質な液晶表示装置を実現する。

#### [0024]

【実施例】以下、との発明の実施例を図面を参照して説明する。

【0025】図1はこの発明の一実施例である。1はM 40 USEデコーダであり、アンテナから入力されるハイビジョン信号を伝送用に圧縮したMUSE (multiple sub-Nyquist sampling encoding) 信号を入力とし、ハイビジョン信号Y, P<sub>R</sub>, P<sub>B</sub> またはR, G, Bに復調する。2はハイビジョン信号入力端子であり、VTRや光ディスク等の信号源からのハイビジョン信号を入力する。

【0026】3は入力信号切り換えスイッチであり、MUSEデコーダ1からの信号と外部入力端子2からの信号との切り換えをユーザの操作に応じて選択し導出す

る。スイッチ3の出力は、応答速度補正回路4に入力さ れ、ことでは、入力映像信号の変化に合わせて変化量よ りも大きめの補正電圧を発生し、液晶のツイスト量の変 化を促進することで、液晶パネル6の応答速度を高める ことを目的としている。応答速度補正回路4の出力は、 LCDドライブ回路5に入力され、ことでは応答速度補 正回路4からの映像信号を液晶の書き込みに適したレベ ルや振幅に対応させる働きをする。具体的には、第1に ネガ表示のノーマリー白液晶では入力の映像信号を反転 する。第2に約3倍に増幅する。第3に2 V程度高圧側 にシフトする。第4に液晶の劣化を防ぐ目的の交流駆動 を目的に1水平走査期間毎または1垂直走査期間毎にあ る電圧を中心に反転させる。第5に液晶パネルは容量の 比較的大きい負荷となるため、電流増幅を行う。液晶パ ネル6は、ツイストネマチック液晶を2枚のガラスで数 μの間隔ではさみ、配向膜によって90度のねじれ状態 にしてある。具体的構成は、図2 (c)で説明した通り である。

【0027】7は補正ゲインコントロール回路であり、MUSEデコーダーからの内部コントロール信号(1:静止画、2:動画、3:パン、チルト、4:シーンチェンジの4種)、5:入力がMUSEデコーダーか外部入力かを示す状態信号、6:ユーザの好みの操作入力に応じて応答速度補正回路4の補正レベルを可変、コントロールする回路である。応答速度補正回路4の詳細な構成は図3(a)と同じであるので省略する。補正ゲインコントロール回路7の動きをさらに説明する。

【0028】入力がMUSE信号であり、(1)静止画の場合は応答速度補正回路4の働きを停止し、液晶本来の緩慢な応答速度にするか、応答速度補正回路4の働きを逆にしてさらに応答が遅くなるようにし、SNの悪い映像でもノイズリデュース機能が働くようにする。また、インターレース信号ではラインフリッカーが目立たなくなり、静止画の垂直解像度も向上する。この機能の効き具合をリモコン等でユーザが好みに応じて可変可能としておく。

【0029】同じく入力がMUSE信号で(2)動画の場合は応答速度補正回路4の効き具合を中程度にし、動画部分を適度にぼかす。とれにより、動画部分のぎこちなさが解消される。また、この具合をユーザの好みに応じてリモコン等で可変可能としておく。

【① 0 3 0 】さらに、入力がMUSE信号の(3)パン、チルト(4)シーンチェンジや、(5)外部入力の場合は応答速度補正の効き方を最高にして、ボケや尾引き等の液晶特有の欠点が表れないようにする。とこでもユーザの好みに応じて応答速度補正を可変可能としても良い。

【0031】また、外部入力にワークステーションやパソコン等のコンピュータ映像を接続した場合で、インタ 50 ーレースの場合はラインフリッカーが発生するとかなり

30

7

見にくくなるので、応答速度補正回路4を効かなくする か、低速モードにするようにしても良い。

#### [0032]

【発明の効果】以上説明したようにとの発明によれば、MUSE信号における静止画部分のノイズ除去、ラインフリッカーの除去、垂直解像度のアップ、動画部分の滑らかな表示、パン、チルト、シーンチェンジやベースバンド信号に対する忠実な高速表示を実現し、見やすく、高画質な装置を実現し、この効果は実際の商用セットでは重要な付加機能となる。

## 【図面の簡単な説明】

\*【図1】との発明の一実施例を示す構成説明図。

【図2】MUSEデコーダの出力を液晶パネルに表示するためのシステム説明図及び動作説明図及び液晶パネル構成説明図。

【図3】 応答速度補正回路の具体的回路図及び動作説明 図

#### 【符号の説明】

1 ··· MUSEデコーダ部、3 ··· スイッチ、4 ··· 応答速度 補正回路、5 ··· LCDドライブ回路、6 ··· 液晶パネル、 10 7 ··· 補正ゲインコントロール回路。

\*

#### 【図1】



