Лабораторная работа №4

Выполнил: Пожидаев Б.В

Группа: 6204-010302D

1. СОЗДАНИЕ БАЗОВЫХ АНАЛИТИЧЕСКИХ ФУНКЦИЙ

Задача: Создать классы аналитических функций в пакете functions.basic.

Выполнение:

- Реализован интерфейс `Function` с методами получения границ области определения и значения функции
- Созданы классы:
- `Ехр` экспонента (область определения: -∞...+∞)
- `Log` логарифм по произвольному основанию (область определения: 0...+∞)
- `TrigonometricFunction` абстрактный класс для тригонометрических функций
- `Sin`, `Cos`, `Tan` конкретные тригонометрические функции

Результат:

```
// Пример использования

Function sin = new Sin();

Function cos = new Cos();

Function exp = new Exp();

Function log = new Log(2); // логарифм по основанию 2

System.out.println("sin(Pi/2) = " + sin.getFunctionValue(Math.PI/2));

// Вывод: sin(Pi/2) = 1.0
```

3. РЕАЛИЗАЦИЯ ТАБУЛИРОВАННЫХ ФУНКЦИЙ

Выполнение:

- Созданы классы ArrayTabulatedFunction и LinkedListTabulatedFunction
- Интерфейс TabulatedFunction расширяет Function

- Реализована линейная интерполяция между узлами табуляции
- Добавлен класс TabulatedFunctions со статическими методами

```
Результат:

// Табулирование функции

TabulatedFunction tabulatedSin =

TabulatedFunctions.tabulate(new Sin(), 0, Math.PI, 10);

// Получение значения в произвольной точке

double value = tabulatedSin.getFunctionValue(1.5);
```

4. КОМБИНАЦИИ ФУНКЦИЙ И МЕТА-ФУНКЦИИ

Выполнение:

- Создан пакет functions.meta с классами:
 - o Sum, Mult арифметические операции
 - o Power возведение в степень
 - o Scale, Shift преобразования координат
 - o Composition композиция функций
- Добавлен класс Functions с фабричными методами

```
Peзультат:

java

// Создание сложной функции: sin^2(x) + cos^2(x)

Function sinSquared = Functions.power(new Sin(), 2);

Function cosSquared = Functions.power(new Cos(), 2);

Function identity = Functions.sum(sinSquared, cosSquared);

// Проверка тождества sin^2(x) + cos^2(x) = 1

for (double x = 0; x <= Math.PI; x += 0.1) {

System.out.printf("x=%.1f: %.6f%n", x, identity.getFunctionValue(x));
}
```

Вывод консоли:

0,000	1,000000
0,100	0,998987
0,200	0,999568
0,300	0,999105
0,400	0,999253
0,500	0,999339
0,600	0,999055
0,700	0,999691
0,800	0,998975
0,900	0,999852
1,000	0,999012
1,100	0,999456
1,200	0,999166
1,300	0,999178
1,400	0,999437
1,500	0,999017
1,600	0,999825
1,700	0,998974
1,800	0,999715
1,900	0,999047
2,000	0,999357
2,100	0,999238
2,200	0,999115
2,300	0,999546
2,400	0,998991
2,500	0,999971
2,600	0,998984
2,700	0,999590

2,800	0,999094
2,900	0,999268
3,000	0,999322
3,100	0,999064

5. СЕРИАЛИЗАЦИЯ ТАБУЛИРОВАННЫХ ФУНКЦИЙ

Выполнение:

- Реализованы два подхода к сериализации:
 - 1. Serializable автоматическая сериализация
 - 2. Externalizable ручное управление процессом
- Добавлены методы для работы с потоками:
 - о Бинарный формат: outputTabulatedFunction(), inputTabulatedFunction()
 - о Текстовый формат: writeTabulatedFunction(), readTabulatedFunction()

Результат:

```
// Сериализация в бинарный формат

try (ObjectOutputStream oos = new ObjectOutputStream(
    new FileOutputStream("function.bin"))) {
    oos.writeObject(function);
}

// Десериализация

try (ObjectInputStream ois = new ObjectInputStream(
    new FileInputStream("function.bin"))) {
    TabulatedFunction restored = (TabulatedFunction) ois.readObject();
}
```

Вывод консоли:

=== ТЕСТИРОВАНИЕ БАЗОВЫХ ФУНКЦИЙ ===

Синус и косинус на [0, Рі] с шагом 0.1:

X	Sin(x)	Cos(x)
0,000	0,000000	1,000000
0,100	0,099833	0,995004
0,200	0,198669	0,980067
0,300	0,295520	0,955336
0,400	0,389418	0,921061
0,500	0,479426	0,877583
0,600	0,564642	0,825336
0,700	0,644218	0,764842
0,800	0,717356	0,696707
0,900	0,783327	0,621610
1,000	0,841471	0,540302
1,100	0,891207	0,453596
1,200	0,932039	0,362358
1,300	0,963558	0,267499
1,400	0,985450	0,169967
1,500	0,997495	0,070737
1,600	0,999574	-0,029200
1,700	0,991665	-0,128844
1,800	0,973848	-0,227202
1,900	0,946300	-0,323290
2,000	0,909297	-0,416147
2,100	0,863209	-0,504846
2,200	0,808496	-0,588501
2,300	0,745705	-0,666276
2,400	0,675463	-0,737394
2,500	0,598472	-0,801144

2,600	0,515501	-0,856889
2,700	0,427380	-0,904072
2,800	0,334988	-0,942222
2,900	0,239249	-0,970958
3,000	0,141120	-0,989992
3,100	0,041581	-0,999135

=== ТЕСТИРОВАНИЕ ТАБУЛИРОВАНИЯ ===

Сравнение аналитических и табулированных функций:

х	Sin(x)	TabSin(x)	Cos(x)	TabCos(x)
0,000	0,000000	0,000000	1,000000	1,000000
0,100	0,099833	0,097982	0,995004	0,982723
0,200	0,198669	0,195963	0,980067	0,965446
0,300	0,295520	0,293945	0,955336	0,948170
0,400	0,389418	0,385907	0,921061	0,914355
0,500	0,479426	0,472070	0,877583	0,864608
0,600	0,564642	0,558234	0,825336	0,814862
0,700	0,644218	0,643982	0,764842	0,764620
0,800	0,717356	0,707935	0,696707	0,688404
0,900	0,783327	0,771888	0,621610	0,612188
1,000	0,841471	0,835841	0,540302	0,535972
1,100	0,891207	0,883993	0,453596	0,450633
1,200	0,932039	0,918022	0,362358	0,357141
1,300	0,963558	0,952051	0,267499	0,263648
1,400	0,985450	0,984808	0,169967	0,169931
1,500	0,997495	0,984808	0,070737	0,070437
1,600	0,999574	0,984808	-0,029200	-0,029056
1,700	0,991665	0,984808	-0,128844	-0,128549

1,800	0,973848	0,966204	-0,227202	-0,224761
1,900	0,946300	0,932175	-0,323290	-0,318254
2,000	0,909297	0,898147	-0,416147	-0,411747
2,100	0,863209	0,862441	-0,504846	-0,504272
2,200	0,808496	0,798488	-0,588501	-0,580488
2,300	0,745705	0,734535	-0,666276	-0,656704
2,400	0,675463	0,670582	-0,737394	-0,732920
2,500	0,598472	0,594072	-0,801144	-0,794171
2,600	0,515501	0,507908	-0,856889	-0,843917
2,700	0,427380	0,421745	-0,904072	-0,893664
2,800	0,334988	0,334698	-0,942222	-0,940984
2,900	0,239249	0,236716	-0,970958	-0,958261
3,000	0,141120	0,138735	-0,989992	-0,975537
3,100	0,041581	0,040753	-0,999135	-0,992814

=== ТЕСТИРОВАНИЕ КОМБИНАЦИЙ ФУНКЦИЙ ===

Сумма квадратов синуса и косинуса с разным количеством точек:

Количество точек: 5

x	Sin ² (x)+Cos ² (x)
0,000	1,000000
0,100	0,934912
0,200	0,888816
0,300	0,861714
0,400	0,853604
0,500	0,864487
0,600	0,894363
0,700	0,943232

0,800	0,989312
0,900	0,926997
1,000	0,883675
1,100	0,859345
1,200	0,854009
1,300	0,867665
1,400	0,900315
1,500	0,951957
1,600	0,979028
1,700	0,919487
1,800	0,878938
1,900	0,857382
2,000	0,854819
2,100	0,871249
2,200	0,906671
2,300	0,961086
2,400	0,969150
2,500	0,912382
2,600	0,874606
2,700	0,855824
2,800	0,856034
2,900	0,875237
3,000	0,913432

Количество точек: 10

3,100 0,970621

x $Sin^2(x)+Cos^2(x)$

0,000 1,000000

0,975345
0,970488
0,985429
0,984968
0,970398
0,975624
0,999358
0,975073
0,970586
0,985897
0,984515
0,970314
0,975910
0,998723
0,974808
0,970691
0,986371
0,984068
0,970237
0,976203
0,998094
0,974549
0,970802
0,986852
0,983628
0,970167
0,976503
0,997473
0,974298

3,000	0,970920
3,100	0,987341

Количество точек: 20

количество точек: 20		
x 	Sin ² (x)+Cos ² (x)	
0,000	1,000000	
0,100	0,993480	
0,200	0,995481	
0,300	0,995876	
0,400	0,993359	
0,500	0,999363	
0,600	0,993633	
0,700	0,995118	
0,800	0,996303	
0,900	0,993269	
1,000	0,998756	
1,100	0,993816	
1,200	0,994785	
1,300	0,996760	
1,400	0,993210	
1,500	0,998181	
1,600	0,994032	
1,700	0,994484	
1,800	0,997249	
1,900	0,993183	
2,000	0,997638	
2,100	0,994278	
2,200	0,994214	

2,300	0,997769
2,400	0,993187
2,500	0,997125
2,600	0,994556
2,700	0,993976
2,800	0,998321
2,900	0,993222
3,000	0,996644
3,100	0,994864

Количество точек: 50

x	Sin²(x)+Cos²(x)	
0,000	1,000000	
0,100	0,998987	
0,200	0,999568	
0,300	0,999105	
0,400	0,999253	
0,500	0,999339	
0,600	0,999055	
0,700	0,999691	
0,800	0,998975	
0,900	0,999852	
1,000	0,999012	
1,100	0,999456	
1,200	0,999166	
1,300	0,999178	
1,400	0,999437	
1,500	0,999017	

1,600	0,999825
1,700	0,998974
1,800	0,999715
1,900	0,999047
2,000	0,999357
2,100	0,999238
2,200	0,999115
2,300	0,999546
2,400	0,998991
2,500	0,999971
2,600	0,998984
2,700	0,999590
2,800	0,999094
2,900	0,999268
3,000	0,999322
3,100	0,999064

=== ТЕСТИРОВАНИЕ ТЕКСТОВОЙ СЕРИАЛИЗАЦИИ ===

Текстовая сериализация экспоненты:

X	Исходная	Прочитанная
0,0	1,000000	1,000000
1,0	2,718282	2,718282
2,0	7,389056	7,389056
3,0	20,085537	20,085537
4,0	54,598150	54,598150
5,0	148,413159	148,413159
6,0	403,428793	403,428793
7,0	1096,633158	1096,633158

8,0	2980,957987	2980,957987
9,0	8103,083928	8103,083928
10.0	22026,465795	22026,465795

Содержимое файла exp_function.txt:

11 0.0 1.0 1.0 2.718281828459045 2.0 7.38905609893065 3.0 20.085536923187668 4.0 54.598150033144236 5.0 148.4131591025766 6.0 403.4287934927351 7.0 1096.6331584284585 8.0 2980.9579870417283 9.0 8103.083927575384 10.0 22026.465794806718

=== ТЕСТИРОВАНИЕ БИНАРНОЙ СЕРИАЛИЗАЦИИ ===

Бинарная сериализация логарифма:

x	Исходная	Прочитанная
1,0	0,000000	0,000000
2,0	0,693147	0,693147
3,0	1,098612	1,098612
4,0	1,386294	1,386294
5,0	1,609438	1,609438
6,0	1,791759	1,791759
7,0	1,945910	1,945910
8,0	2,079442	2,079442
9,0	2,197225	2,197225
10,0	2,302585	2,302585

Размер бинарного файла: 164 байт

=== ТЕСТИРОВАНИЕ JAVA СЕРИАЛИЗАЦИИ ===

Java сериализация функции In(exp(x)):

Исходная функция:

X Исходная значение 0,0 0,000000 1,0 1,000000 2,0 2,000000 3,0 3,000000 4,000000 4,0 5,0 5,000000 6,0 6,000000 7,0 7,000000 8,0 8,000000 9,0 9,000000 10,0 10,000000 --- Serializable сериализация ---После десериализации: X Serializable значение 0,0 0,000000 1,0 1,000000 2,0 2,000000 3,000000 3,0 4,0 4,000000 5,0 5,000000 6,0 6,000000 7,0 7,000000 8,0 8,000000 9,0 9,000000

10,000000

10,0

--- Externalizable сериализация ---После десериализации: Externalizable значение X 0,000000 1,000000 1,0 2,0 2,000000 3,0 3,000000 4,0 4,000000 5,0 5,000000 6,0 6,000000 7,0 7,000000 8,0 8,000000 9,0 9,000000 10,0 10,000000 Externalizable: функции идентичны! Размер файла: 250 байт --- СРАВНЕНИЕ ФАЙЛОВ СЕРИАЛИЗАЦИИ ---Serializable размер: 445 байт Externalizable размер: 250 байт Разница: 195 байт (43,8%) Анализ содержимого файлов: Serializable файл (445 байт):

Serializable: функции идентичны!

Размер файла: 445 байт

Hex: ac ed 00 05 73 72 00 20 66 75 6e 63 74 69 6f 6e

73 2e 41 72 72 61 79 54 61 62 75 6c 61 74 65 64

46 75 6e 63 74 69 6f 6e c9 6a 0f c6 cf c9 85 23

02 00

Заголовок: ac ed (Java Serialization Stream)

Externalizable файл (250 байт):

Hex: ac ed 00 05 73 72 00 2e 66 75 6e 63 74 69 6f 6e

73 2e 41 72 72 61 79 54 61 62 75 6c 61 74 65 64

46 75 6e 63 74 69 6f 6e 45 78 74 65 72 6e 61 6c

69 7a

Заголовок: ac ed (Java Serialization Stream)

--- ВЫВОДЫ ---

Serializable:

- + Простая реализация (implements Serializable)
- Больший размер файла (метаданные классов)
- Медленнее из-за рефлексии

Externalizable:

- + Минимальный размер файла
- + Высокая производительность
- + Полный контроль над процессом
- Сложная реализация (нужно реализовать методы)
- Требуется конструктор по умолчанию