# Domain Knowledge-Informed Self Supervised Representations for Workout Form Assessment

Challenges of Fitness-AQA Dataset



Paritosh Parmar<sup>1,2</sup>

Amol Gharat<sup>2</sup> <sup>1</sup>University of British Columbia

Helge Rhodin<sup>1</sup> <sup>2</sup>FlexAl Inc.



#### **Task Definition**

Detecting errors (Bad forms) in Workout Form in Real-World Scenarios



**Shortcomings of Current Work** 

But does not fare well in real-world, in-the-wild conditions

Contribution 1: Our Fitness-AQA Dataset

**Fitness-AQA Dataset** 

Academic research is limited to controlled conditions

Dataset void: No suitable in-the-wild datasets available

Use off-the-shelf 2D/3D Pose Estimators

Good for simple, controlled conditions













People record themselves by using their cellphone

cameras placed somewhere in the vicinity

occlusion from gym equipment

camera angles

illumination

clothing



# Our Proposal

- Replace error-prone pose estimators with Self-Supervised Pose-sensitive representations learned from unlabeled real-world videos
- Map these self-supervised representations to errors-labels using smaller labeled datasets

### Contribution 2: Quasi-Synchronizing Videos

- Steps to Quasi-synchronize videos:
- Track the weight to get trajectories along the time direction
- Normalize the amplitudes of these trajectories
- At any given amplitude, the people doing the same exercise would approximately be in the same pose







## Contribution 3: Self-Supervised Pose Contrastive Learning



# Contribution 3: Self-Supervised Motion Disentangling

 Objective: Separate local (irregular/erroneous) motion from global (regular) motion



People generally make errors when lifting the weight, as opposed to lowering them

We leverage this asymmetricity

# Exp. 1 — Simple Conditions

| Features     | Accuracies (%) |       |       |       |       |       |
|--------------|----------------|-------|-------|-------|-------|-------|
| Extraction   | KIE            | CVRB  | CCRB  | SS    | KFE   | Avg.  |
| HMR-TDM [21] | 89.80          | 98.65 | 93.05 | 87.30 | 83.58 | 89.08 |
| Ours CVCSPC  | 95.92          | 91.89 | 94.44 | 77.77 | 89.55 | 89.92 |

#### **Exp. 3** — **OHP**

| Feature extraction model Modality |                | F-score ↑               |                  |  |
|-----------------------------------|----------------|-------------------------|------------------|--|
|                                   | ioi modalioj   | Elbow Err.              | Knees Err        |  |
| OpenPose-TDM [2, 27]              | 2D Pose        | 0.4265                  | 0.7131           |  |
| SimSiam [5]<br>Ours CVCSPC        | Image<br>Image | $0.4145 \\ 0.4522$      | 0.5301<br>0.7203 |  |
| TemporalXform [17]<br>Ours MD     | Video<br>Video | 0.4138<br><b>0.4552</b> | 0.8416 $0.8452$  |  |

## Exp. 4 — Xfer Repr.

| Feature extraction model              | Modality    | F-score ↑   |          |  |
|---------------------------------------|-------------|-------------|----------|--|
| reduction model                       | THO CHAILON | Lumbar Err. | Torso Er |  |
| OpenPose-TDM [2,27] (SQ→BR)           | 2D Pose     | 0.5422      | 0.4060   |  |
| SimSiam [5] (SQ→BR)                   | Image       | 0.5934      | 0.4543   |  |
| Ours CVCSPC (SQ→BR)                   | Image       | 0.6057      | 0.4800   |  |
| Ours CVCSPC (OHP→BR)                  | Image       | 0.5760      | 0.4675   |  |
| Ours CVCSPC (SQ+OHP $\rightarrow$ BR) | Image       | 0.6338      | 0.5261   |  |

# Pose Retrieval Exp.



# Exp. 2 — Complex Conditions F-score

| Feature extraction model | Modality     |        |        |
|--------------------------|--------------|--------|--------|
|                          | 1.10 active  | KIE    | KFE    |
| OpenPose-TDM [2, 27]     | 2D Pose      | 0.4143 | 0.8123 |
| OpenPose-TDM* $[2, 27]$  | 2D Pose      | 0.3186 | 0.7968 |
| SPIN-TDM $[22, 27]$      | 3D Pose      | 0.2878 | 0.7761 |
| ImageNet [39]            | Image        | 0.1923 | 0.7725 |
| SimSiam [5]              | Image        | 0.2270 | 0.7868 |
| Ours PAD                 | Image        | 0.3180 | 0.7784 |
| Ours Vanilla PC          | Image        | 0.4118 | 0.7965 |
| Ours CVCSPC              | Image        | 0.5195 | 0.8286 |
| Kinetics [20]            | Video        | 0.2970 | 0.8184 |
| VideoSpeed-1 [1]         | Video        | 0.3095 | 0.8155 |
| VideoSpeed-2             | Video        | 0.3617 | 0.8000 |
| VideoRot [18]            | Video        | 0.3333 | 0.8138 |
| TemporalXform [17]       | Video        | 0.3414 | 0.8319 |
| Ours TemporalXform-1     | Video        | 0.3457 | 0.8097 |
| Ours TemporalXform-2     | Video        | 0.2286 | 0.8184 |
| Ours MD                  | Video        | 0.4186 | 0.8338 |
| Ours MD + CVCSPC         | Image, Video | 0.5263 | 0.8468 |

# Motion Disentangling for **Scoring Olympic Dives**



| <b>1</b> odel | SSL SoTA [38] | Ours baseline | Ours MD |
|---------------|---------------|---------------|---------|
| p. Corr.      | 0.7700        | 0.5665        | 0.7763  |



Characteristics of exercises in the dataset:

Severe to Subtle, Finegrained action errors

People making errors under the impact of actual weights

Various types of clothing, background, illumination

- Compound exercises more likely to cause injuries than isolation exercises
- Upper & Lower bodies covered

BackSquat

Real-world videos

Occlusions

Unusual poses

Targeting injury prone & complex joints: shoulders, knees, hips, spine, wrists