SEQUENCE LISTING

<213> Homo sapiens

DBQ0BII	Bioline
<110>	Hunton and Williams Emorine, Laurent
<120> GENES	INTRON/EXON STRUCTURE OF THE HUMAN AND MOUSE BETA3 ADRENERGIC RECEPTOR
<130>	58769.000011
<140>	09/895,211
<141>	2001-07-02
<160>	9
<170><210><211><211><212>	

<400> 1 agateteace aagetgaggt ettgggagag gagataetgg etgageeeta ttaettaatt 60 taaaatacct taggggaggc cacccaagtg gatgcggggc tcctgtgaat cetttgcttg 120 180 actocagegg gttacetttg cetetgatae ataaagggtg gggatgggag egeteteete 240 teteetteee etgeettget gtgggaaett etgggaaagg aggtgeaggg eteeaggaag 300 ccagtgccca gggagtgcta tgctgagtcc aggagcctgq ccacggcagg ggtggacaga tggtggcaga ggaaccacgg tgtcccttcc tccagattta gctaaaggaa acgtggagca 360 420 trocattgge catecteded actetedaat teggetedag aggedeeted agactatagg cagetgeece tittaagegte getaeteete eeccaagage ggtggeaceg agggagttgg 480 gytgggggga ggctgagcgc tctggctggg acagctagag aagatggccc aggctgggga 540 agtogototo atgoottgot gtocootooo otgagocagg tgatttggga gaccooctoo 500 ttoottottt cootacegee ceaegegega ceeggggatg geteegtgge eteaegagaa 550 720 cagetetett geoccatgge eggacetece caecetggeg eccaataceg ecaacaceag 780 tgggetgeca ggggtteegt gggaggegge cetageeggg geeetgetgg egetggeggt gctggccacc gtgggaggca acctgctggt catcgtggcc atcgcctgga ctccgagact 840 900 ccagaccatg accaacgtgt tcgtgacttc gctggccgca gccgacctgg tgatgggact cctggtggtg ccgccggcgg ccaccttggc gctgactggc cactggccgt tgggcgccac 950 tggctgcgag ctgtggacct cggtggacgt gctgtgtgtg accgccagca tcgaaaccct 1020

1080 gtqcgccctg gccgtggacc gctacctggc tgtgaccaac ccgctgcgtt acggcgcact 1140 ggtcaccaag cgctgcgccc ggacagctgt ggtcctggtg tgggtcgtgt cggccgcggt 1200 gtcgtttgcg cccatcatga gccagtggtg gcgcgtaggg gccgacgccg aggcgcagcg 1260 ctgccactcc aaccogoget getgtgeett egeeteeaac atgecetaeg tgetgetgte 1320 ctcctccgtc tecttctacc ttcctcttct cgtgatgctc ttcgtctacg cgcgggtttt 1380 cgtggtggct acgcgccagc tgcgcttgct gcgcggggag ctgggccgct ttccgcccga 1440 ggagteteeg ceggegeegt egegetetet ggeeeeggee ceggtgggga egtgegetee 1500 georgaaggg gtgeorgeet geggeorgeg georgeges etectgeete teegggaaca 1560 cogggeootg tgeacettgg gteteateat gggeacette actetetget ggttgeeett 1620 etttetggee aaegtgetge gegeeetggg gggeeeetet etagteeegg geeeggettt cettgeeetg aactggetag gttatgeeaa ttetgeette aaccegetea tetactgeeg 1680 cageceggae titegeageg cetteegeeg tettetgtge egetgeggee gtegeetgee 1740 1800 teeggageee tgegeegeeg eeeggeeegge eetetteeee tegggegtte etgeggeeeg 1860 gagcagecca gegeagecca ggetttgeca aeggetegae gggtaggtaa eeggggeaga 1920 gggaccggcg gctcagggtc gggaagcatg cgatgtgtcc gtgggtcaac tttttgagtg 1980 tggagtttat taagagaagg tgggatggct ttgcttggag agaaaaggga acgaggagta 2040 gcgaaccaaa atgggaccca gggtcctttt ctttccggat ccagtcacta gggtagaagc aaaggagggc gagcgggccg tcgttcctca cccaaggacc caaggtgcgc caccggaaag 2100 2150 egetgeggtg tecegaggae tetegeeteg eetggtegge tttagggatt ttttttttt 2220 ttaaatagag acagggtttc gtctctgtcg cccacgeggg aatgcagtgg tgcgatctca geteaetgea gtettgaaet eetggeteet gggeteaage gateeteeea eeteageete 2280 ctgagtatct gggactacag gcgagcccca ccaatcccag ctatttttaa aatttcttgt 2340 agagatgggg tettgetatg ttgeceagge ttgtettgaa ettetggeet caagtgatee 2400 ttctgcctca gccttccaaa gcattaggat tacaggccgg agccagggcg ccgggtcggc 1450 2520 totagtiting gitticcage toagticiti geoecectee eeegatitet igecateact 2580 agacctgget eggaettgaa ggeagggeta gtgeeeeeee accegeeeee caageceteg 2640 geoteagtte tyggttttet caaaggtttg acagetgtgg aggtgagaat ceaetteegg tatgaagtac agttgtgagt gaggageetg tgagtgeaga tgtgtgeeet eeegeteeet 2700 gggctgggtt ggagtaggga tggggtgggg cgtgtgtggc tgggtggtgc cctggcgttt 2760

ttgtgtaact aaatatgcgt tccagggtct ctgatctctg tcattcccct cagtgcacct gttgctcctt tcaccccagg gtctattatc tccacttttt ttcccagggc ttcttgggga 2820 gtttcttagg cetgaaggae aagaageaae aactetgttg ateagaaeet gtggaaaaee 2880 totggcotot gttcagaatg agtcccatgg gattccccgg otgtgacact ctaccetcca 2940 gaacctgacg actgggccat gtgacccaag gagggatcct taccaagtgg gttttcacca 3000 teetettget etetgtetga gagatgtttt etaaaeeeea geettgaaet teaeteetee 3060 ctcagtggta gtgtccaggt gccgtggagc agcaggctgg ctttggtagg ggcacccatc 3120 acceggettg cetgtgeagt cagtgagtge ttagggeaaa gagageteee etggtteeat 3180 teettetgee acceaaacce tgatgagace ttagtgttet ccaggetetg tggeecagge 3240 tgagagcagc agggtagaaa agaccaagat ttggggtttt atctctggtt cccttattac 3300 tgeteteaag cagtggeete teteaettta gecatggaat ggeteegate taceteacag 3350 cagtgtcaga aggacttcgc cagggttttg ggagctccag ggttcataag aaggtgaacc 3420 attagaacag atcccttctt ttccttttgc aatcagataa ataaatatca ctgaatgcag 3480 3540 cettetacte tgetggettt tgacagagge gtaaattagg eetaateete actetttet 3600 tcctaatgtt catcaaagaa aaa 3660 3683

<210> 2

<211> 408

<212> PRT

<213> Homo sapiens

<400> 2

Met Ala Pro Trp Pro His Glu Asn Ser Ser Leu Ala Pro Trp Pro Asp
1 10 15

Leu Pro Thr Leu Ala Pro Asn Thr Ala Asn Thr Ser Gly Leu Pro Gly 25 30

Val Pro Trp Glu Ala Ala Leu Ala Gly Ala Leu Leu Ala Leu Ala Val 35 40 45

Leu Ala Thr Thr Gly Val Asn Leu Leu Val Ile Val Ala Ile Ala Trp
50 55 60

Thr Pro Arg Leu Gln Thr Met Thr Asn Val Phe Val Thr Ser Leu Ala 65 Ala Ala Asp Leu Val Met Gly Leu Leu Val Val Pro Pro Ala Ala Thr Leu Ala Leu Thr Gly His Trp Pro Leu Gly Ala Thr Gly Cys Glu Leu Trp Thr Ser Val Asp Val Leu Cys Val Thr Ala Ser Ile Glu Thr Leu 120 115 Cys Ala Leu Ala Val Asp Arg Tyr Leu Ala Val Thr Asn Pro Leu Arg 135 Tyr Gly Ala Leu Val Thr Lys Arg Cys Ala Arg Thr Ala Val Val Leu 150 155 145 Val Trp Val Val Ser Ala Ala Val Ser Phe Ala Pro Ile Met Ser Gln 170 165 Trp Trp Arg Gly Val Ala Asp Ala Glu Ala Gln Arg Cys His Ser Asn 185 180 Pro Arq Cys Cys Ala Phe Ala Ser Gln Met Pro Tyr Val Leu Leu Ser 205 195 200 Ser Ser Val Ser Phe Tyr Leu Pro Leu Leu Val Met Leu Phe Val Tyr 210 215 Ala Arg Val Phe Val Val Ala Thr Arg Gln Leu Arg Leu Leu Arg Gly 240 225 230 Glu Leu Gly Arg Phe Pro Pro Glu Glu Ser Pro Pro Ala Pro Ser Arg 245 250 Ser Leu Ala Pro Ala Pro Val Gly Thr Cys Ala Pro Pro Glu Gly Val 260 265 Pro Ala Cys Gly Arg Arg Pro Ala Arg Leu Leu Pro Leu Arg Glu His 285 280 Arg Ala Leu Cys Thr Leu Gly Leu Ile Met Gly Thr Phe Thr Leu Cys 290 295 300

Trp Leu Pro Phe Phe Leu Ala Asn Val Leu Arg Ala Leu Gly Gly Pro 305 310 315 320

Ser Leu Val Pro Gly Pro Ala Phe Leu Ala Leu Asn Trp Leu Gly Tyr 325 330 335

Ala Asn Ser Ala Phe Asn Pro Leu Ile Tyr Cys Arg Ser Pro Asp Phe 340 345 350

Arg Ser Ala Phe Arg Arg Leu Leu Cys Arg Cys Gly Arg Arg Leu Pro 355 360 365

Pro Glu Pro Cys Ala Ala Ala Arg Pro Ala Leu Phe Pro Ser Gly Val 370 375 380

Pro Ala Ala Arg Ser Ser Pro Ala Gln Pro Arg Leu Cys Gln Arg Leu 385 390 395 400

Asp Gly Ala Ser Trp Gly Val Ser 405

<210> 3

<211> 3437

<212> DNA

<213> Mus musculus

<400> 3

qatctqtaat cccaqcactg gggaggttga ggcagaagga tctggaggtc cagaccaatc 60 tqqqcaacat ataqaaaqac tatctcaaac aataaqatac cttagggaga gcatccaagc 120 agaagaggg ctatcttgga tggtttgggt tgttcggttt tgttttggtt tgtttctgga 180 tggttgcctt ccttgttggg taaaggatag ggtgcggggg tttctcttct ttgcagggtt 240 300 qcctcaqqtt ctqccaqqaa qqaqctqctg agctccagga aaccggtgct gagggagtgt caagacagga egeceetete caecetecaa tteecaecag aggeetetet tgtgaetatt 360 ggacgctgtt cctttaaaag cagccactcc tcccggcaac tagggtgtac atggggggtg 420 agatqqaqqq aaqctqacaq acttacccca gcaattaggg aagatggccc aggctggaag 480 aqteqetece aaqeeetaet qteeeettee etaageeage gggtetgggg aggagggga 540 accttcccac cccaqqcqcc acacqaqatq qctccqtgqc ctcacagaaa cggctctctg 600

gctttgtggt	cggacgcccc	taccctggac	cccagtgcag	ccaacaccag	tgggttgcca	€60
ggagtaccat	gggcagcggc	attggctggg	gcattgctgg	cgctggccac	ggtgggaggc	720
aacctgctgg	taatcatagc	categeeege	acgccgagac	tacagaccat	aaccaacgtg	780
ttcgtgactt	cactggccgc	agctgacttg	gtagtgggac	tcctcgtaat	gccaccaggg	840
gccacattgg	cgctgactgg	ccattggccc	ttgggcgaaa	ctggttgcga	actgtggacg	900
tcagtggacg	tgctctgtgt	aactgctagc	atcgagacct	tgtgcgccct	ggctgtggac	960
cgctacctag	ctgtcaccaa	ccctttgcgt	tacggcacgc	tggttaccaa	gegeegee	1020
cgcgcggcag	ttgtcctggt	gtggatcgtg	teegetgeeg	tgtcctttgc	gcccatcatg	1080
agccagtggt	ggcgtgtagg	ggcagatgcc	gaggcacagg	aatgccactc	caatccgcgc	1140
tgctgttcct	ttgcctccaa	catgccctat	gegetgetet	cctcctccgt	ctccttctac	1200
cttcccctcc	ttgtgatgct	cttcgtctat	gctcgagtgt	tegttgtgge	taagcgccaa	1260
cggcatttgc	tgcgccggga	actgggccgc	ttctcgcccg	aggagtctcc	gccgtctccg	1320
tcgcgctctc	cgtcccctgc	cacaggcggg	acacccgcgg	caccggatgg	agtgcccccc	1380
tgcggccggc	ggcctgcgcg	cctcctgcca	ctccgggaac	accgcgccct	gcgcacctta	1440
ggtctcatta	tgggcatctt	ctctctgtgc	tggctgccct	tetteetgge	caacgtgctg	1500
egegeacteg	cggggccctc	tctagttccc	agcggagttt	teategeeet	gaactggctg	1560
ggctatgcca	actccgcctt	caacccggtc	atctactgcc	gcagcccgga	ctttcgcgac	1620
gccttccgtc	gtcttctgtg	tagctacggt	ggccgtggac	cggaggagcc	acgcgcagtc	1690
accttcccag	ccagccctgt	tgaagccagg	cagagtccac	cgctcaacag	gtaggggaca	1740
cgagcggggg	accggagtct	ctgggtgggg	acgtctctgt	ctctattttt	gagtttggag	1800
attgggggag	gggaagatgt	agatgggggt	gcggtgtgtg	tgtgggtggg	gggtggcctt	1960
tgtcttgaga	ggacagaaaa	gaggtaggaa	ctaaaacggg	ccctttctct	tcttggatcc	1920
aatccctggg	tctgaagcaa	aagggaggaa	ggggataatt	gcgcacctta	ggaccaggtg	1980
acccccacag	gcagttgctg	ctcttccggc	aggtttctga	cctctctggt	cgcctctagt	2040
ttggggtttg	tttgtttttg	tttgtttgtt	tgtttgtttt	gtttttttag	ttcccttctt	2100
cgggaaccca	ggcatctcta	tacctgtctg	ggatatccat	agacagcaat	ggacttccct	2160
agtcctcggc	ctcagtcccg	ctctctctca	aaggtttgat	ggctatgaag	gtgegegtee	2220
gtttcccacg	tgaagggccg	tgaagatcca	gcaaggaagc	tgtgagttgg	cttggagttg	2280

ctttcctccc	tcagggactg	gattagaact	atagggtggg	acttgggggg	gagggagggt	2340
gcaggatgga	ccctatggga	tttgggggtg	gagtagaggg	atgcgggaat	ggtccctata	2400
tctttgaaaa	gtgaatatgc	ttttcagggt	tcctgaatca	cttccctctt	ccttccagtg	2460
cttgatcccc	atcttcttga	ctggttgccc	caagaaatat	tgtttccgtt	tttgcaggac	1510
ttctggggat	ttttttttc	ctccagaaag	acaagcaacg	gctatggatg	caacattttt	2580
ataatgcctt	tgatttctac	tcagagtgag	tcccctggaa	cctcaactct	ccaacgctcc	2640
agaaccgatg	actagaccac	gaggtgtaag	ggaaatctta	ccaaatgggt	ttcaccgtcc	2700
tctctctctt	tccgagagaa	gttgtctaag	acccaccttg	aacttcacta	ctacctcagc	2760
agctgggacg	gcaggccacc	tgtgcttgac	ggccctggga	ggagccctat	ggccttggag	2820
gcctgccagt	ccctgcctat	gtttgtgctg	tatgcttagg	gaaaagagag	cacccctccc	2880
tecetttett	cctactgctt	tcctaaccct	gatgatcgac	atgttcctcc	acaaatcact	2940
ctgtctccag	gctctgtgtc	tctggttagt	ttgagagcag	gaatccagga	aaaaaaaaa	3000
gtttgaggtt	tcatccctgt	ctcctcacta	tggctctcta	agcaccatct	tggaccatct	3050
ctcacaatag	gcacaaaaca	gctctaatct	acctcacagt	taggacttca	aggtttgggg	3120
gggaaattcc	agggttcata	ggaagaagtc	aaactattgg	aatgggtcct	ttttccactt	3180
aaaatcaaat	taataaatat	tattgaatgt	ggtttgtccc	ctgctcgcct	tttctctggg	3240
tttgttttct	tttcgtggcc	tgcttgctgg	cttccttgct	ccgagctgcg	ttttgacagg	3300
ggcagtaaat	taggagtaat	ccttgcctct	ttcttcctaa	tcctcatcag	acacaaccag	3360
aaagtctgtc	tgtgtaagtg	aggcagtcga	gtctttgcct	agaattaata	cccacctttt	3420
ctgaaacttt	tgagatc					3437

<210> 4 <211> 400 <212> PRT <213> Mus musculus

<400> 4

Met Ala Pro Trp Pro His Arg Asn Gly Ser Leu Ala Leu Trp Ser Asp

Ala Pro Thr Leu Asp Pro Ser Ala Ala Asn Thr Ser Gly Leu Pro Gly 25 20

Val Pro Trp Ala Ala Ala Leu Ala Gly Ala Leu Leu Ala Leu Ala Thr

35 40 45

Val	Gly 50	Gly	Asn	Leu	Leu	Val 55	Ile	Ile	Ala	Ile	Ala 60	Arg	Thr	Pro	Arg
Leu 65	Gln	Thr	Ile	Thr	Asn 70	Val	Phe	Val	Thr	Ser 75	Leu	Ala	Ala	Ala	Asp 80
Leu	Val	Val	Gly	Leu 85	Leu	Val	Met	Pro	Pro 90	Gly	Ala	Thr	Leu	Ala 95	Leu
Thr	Gly	His	Trp 100	Pro	Leu	Gly	Glu	Thr 105	Gly	Cys	Glu	Leu	Trp 110	Thr	Ser
Val	Asp	Val 115	Leu	Cys	Val	Thr	Ala 120	Ser	Ile	Glu	Thr	Leu 125	Суѕ	Ala	Leu
Ala	Val 130	Asp	Arg	Tyr	Leu	Ala 135	Val	Thr	Asn	Pro	Leu 140	Arg	Tyr	Gly	Thr
Leu 145	Val	Thr	Lys	Arg	Arg 150	Ala	Arg	Ala	Ala	Val 155	Val	Leu	Val	Trp	Ile 160
Val	Ser	Ala	Ala	Val 165	Ser	Phe	Ala	Pro	Ile 170	Met	Ser	Gln	Trp	Trp 175	Arg
Val	Gly	Ala	Asp 180	Ala	Glu	Ala	Gln	Glu 185	Cys	His	Ser	Asn	Pro 190	Arg	Cys
Cys	Ser	Phe 195	Ala	Ser	Asn	Met	Pro 200	Tyr	Ala	Leu	Leu	Ser 205	Ser	Ser	Val
Ser	Phe 210	Tyr	Leu	Pro	Leu	Leu 215	Val	Met	Leu	Phe	Val 220	Tyr	Ala	Arg	Val
Phe 225	Val	Val	Ala	Lys	Arg 230	Gln	Arg	His	Leu	Leu 235	Arg	Arg	Glu	Leu	Gly 240
Arg	Phe	Ser	Pro	Glu 245	Glu	Ser	Pro	Pro	Ser 250	Pro	Ser	Arg	Ser	Pro 255	Ser
Pro	Ala	Thr	Gly 260	Gly	Thr	Pro	Ala	Ala 265	Pro	Asp	Gly	Val	Pro 270	Pro	Суз

Gly Arg Arg Pro Ala Arg Leu Leu Pro Leu Arg Glu His Arg Ala Leu 280 275 Arg Thr Leu Gly Leu Ile Met Gly Ile Phe Ser Leu Cys Trp Leu Pro 295 Phe Phe Leu Ala Asn Val Leu Arg Ala Leu Ala Gly Pro Ser Leu Val 310 Pro Ser Gly Val Phe Ile Ala Leu Asn Trp Leu Gly Tyr Ala Asn Ser 325 330 Ala Phe Asn Pro Val Ile Tyr Cys Arg Ser Pro Asp Phe Arg Asp Ala 340 345 Phe Arg Arg Leu Leu Cys Ser Tyr Gly Gly Arg Gly Pro Glu Glu Pro 355 360 Arg Ala Val Thr Phe Pro Ala Ser Pro Val Glu Ala Arg Gln Ser Pro 375 Pro Leu Asn Arg Phe Asp Gly Tyr Glu Gly Ala Arg Pro Phe Pro Thr 390 385 <210> 5<211> 408<212> PRT<213> Homo sapiens<400> 5 Met Ala Pro Trp Pro His Glu Asn Ser Ser Leu Ala Pro Trp Pro Asp 5 Leu Pro Thr Leu Ala Pro Asn Thr Ala Asn Thr Ser Gly Leu Pro Gly 20 Val Pro Trp Glu Ala Ala Leu Ala Gly Ala Leu Leu Ala Leu Ala Val Leu Ala Thr Val Gly Gly Asn Leu Leu Val Ile Val Ala Ile Ala Trp Thr Pro Arg Leu Gln Thr Met Thr Asn Val Phe Val Thr Ser Leu Ala 70 Ala Ala Asp Leu Val Met Gly Leu Leu Val Val Pro Pro Ala Ala Thr

85 90 95			
95	85	90	95

Leu	Ala	Leu	Thr 100	Gly	His	Trp	Pro	Leu 105	Gly	Ala	Thr	Gly	Cys 110	Glu	Leu
Trp	Thr	Ser 115	Val	Asp	Val	Leu	Cys 120	Val	Thr	Ala	Ser	Ile 125	Glu	Thr	Leu
Cys	Ala 130	Leu	Ala	Val	Asp	Arg 135	Tyr	Leu	Ala	Val	Thr 140	Asn	Pro	Leu	Arg
Tyr 145	Gly	Ala	Leu	Val	Thr 150	Lys	Arg	Cys	Ala	Arg 155	Thr	Ala	Val	Val	Leu 160
Val	Trp	Val	Val	Ser 165	Ala	Ala	Val	Ser	Phe 170	Ala	Pro	Ile	Met	Ser 175	Gln
Trp	Trp	Arg	Val 180	Gly	Ala	Asp	Ala	Glu 185	Ala	Gln	Arg	Cys	His 190	Ser	Asn
Pro	Arg	Cys 195	Cys	Ala	Phe	Ala	Ser 200	Asn	Met	Pro	Tyr	Val 205	Leu	Leu	Ser
Ser	Ser 210	Val	Ser	Phe	Tyr	Leu 215	Pro	Leu	Leu	Val	Met 220	Leu	Phe	Val	Tyr
Ala 225	Arg	Val	Phe	Val	Val 230	Ala	Thr	Arg	Gln	Leu 235	Arg	Leu	Leu	Arg	Gly 240
Glu	Leu	Gly	Arg	Phe 245	Pro	Pro	Glu	Glu	Ser 250	Pro	Pro	Ala	Pro	Ser 255	Arg
Ser	Leu	Ala	Pro 260	Ala	Pro	Val	Gly	Thr 265	Cys	Ala	Pro	Pro	Glu 270	Gly	Val
Pro	Ala	Cys 275	Gly	Arg	Arg	Pro	Ala 280	Arg	Leu	Leu	Pro	Leu 285	Arg	Glu	His
Arg	Ala 290	Leu	Cys	Thr	Leu	Gly 295	Leu	Ile	Met	Gly	Thr 300	Phe	Thr	Leu	Cys
Trp 305	Leu	Pro	Phe	Phe	Leu 310	Ala	Asn	Val	Leu	Arg 315	Ala	Leu	Gly	Gly	Pro 320

Ser Leu Val Pro Gly Pro Ala Phe Leu Ala Leu Asn Trp Leu Gly Tyr 325 Ala Asn Ser Ala Phe Asn Pro Leu Ile Tyr Cys Arg Ser Pro Asp Phe 345 Arg Ser Ala Phe Arg Arg Leu Leu Cys Arg Cys Gly Arg Arg Leu Pro Pro Glu Pro Cys Ala Ala Ala Arg Pro Ala Leu Phe Pro Ser Gly Val 375 Pro Ala Ala Arg Ser Ser Pro Ala Gln Pro Arg Leu Cys Gln Arg Leu 395 390 Asp Gly Ala Ser Trp Gly Val Ser 405 <210> 6 <211> 400 <212> PRT <213> Mus musculus <400> 5 Met Ala Pro Trp Pro His Arg Asn Gly Ser Leu Ala Leu Trp Ser Asp 10 Ala Pro Thr Leu Asp Pro Ser Ala Ala Asn Thr Ser Gly Leu Pro Gly 20 Val Pro Trp Ala Ala Ala Leu Ala Gly Ala Leu Leu Ala Leu Ala Thr 40 Val Gly Gly Asn Leu Leu Val Ile Ile Ala Ile Ala Arg Thr Pro Arg 60 50 55 Leu Gln Thr Ile Thr Asn Val Phe Val Thr Ser Leu Ala Ala Ala Asp 75 70 65 Leu Val Val Gly Leu Leu Val Met Pro Pro Gly Ala Thr Leu Ala Leu 85 90

Thr Gly His Trp Pro Leu Gly Glu Thr Gly Cys Glu Leu Trp Thr Ser 100 105 Val Asp Val Leu Cys Val Thr Ala Ser Ile Glu Thr Leu Cys Ala Leu 120 115 Ala Val Asp Arg Tyr Leu Ala Val Thr Asn Pro Leu Arg Tyr Gly Thr 135 Leu Val Thr Lys Arg Arg Ala Arg Ala Ala Val Val Leu Val Trp Ile 150 155 Val Ser Ala Ala Val Ser Phe Ala Pro Ile Met Ser Gln Trp Trp Arg 165 170 Val Gly Ala Asp Ala Glu Ala Gln Glu Cys His Ser Asn Pro Arg Cys Cys Ser Phe Ala Ser Asn Met Pro Tyr Ala Leu Leu Ser Ser Ser Val 200 205 Ser Phe Tyr Leu Pro Leu Leu Val Met Leu Phe Val Tyr Ala Arg Val 215 Phe Val Val Ala Lys Arg Gln Arg His Leu Leu Arg Arg Glu Leu Gly 225 230 Arg Phe Ser Pro Glu Glu Ser Pro Pro Ser Pro Ser Arg Ser Pro Ser 255 250 245 Pro Ala Thr Gly Gly Thr Pro Ala Ala Pro Asp Gly Val Pro Pro Cys 260 265 270 Gly Arg Arg Pro Ala Arg Leu Leu Pro Leu Arg Glu His Arg Ala Leu 280 275 Arg Thr Leu Gly Leu Ile Met Gly Ile Phe Ser Leu Cys Trp Leu Pro 295 Phe Phe Leu Ala Asn Val Leu Arg Ala Leu Ala Gly Pro Ser Leu Val 310 Pro Ser Gly Val Phe Ile Ala Leu Asn Trp Leu Gly Tyr Ala Asn Ser 325 330 335

	Ala	Phe	Asn	Pro 340	Val	Ile	Tyr	Cys	Arg 345	Ser	Pro	Asp	Phe	Arg 350	Asp	Ala		
	Phe	Arg	Arg 355	Leu	Leu	Cys	Ser	Tyr 360	Gly	Gly	Arg	Gly	Pro 365	Glu	Glu	Pro		
	Arg	Ala 370	Val	Thr	Phe	Pro	Ala 375	Ser	Pro	Val	Glu	Ala 380	Arg	Gln	Ser	Pro		
	Pro 385	Leu	Asn	Arg	Phe	Asp 390	Gly	Tyr	Glu	Gly	Ala 395	Arg	Pro	Phe	Pro	Thr 400		
<210> 7 <211> 20 <212> DNA <213> Synthetic																		
	<40(gcto		7 ggc (ctcad	cgaga	aa												20
	<210 <211 <211 <211	L> :	8 25 DNA Syntl	netio	a a													
	<400 ccca		gaa a	agtg	gccag	gt ca	agcg											25
		1 > 2 >	9 36 DNA Syntl	hetio	c													
	<400		9 agg (ggag	ggga	ca g	caag	gcate	g ag	agcg								36