Machine Learning

COGS 108 Spring 2025

Jason Chen

Week 9

xic007@ucsd.edu

OH: Thu, 3-5 PM

Discussion slides and materials adapted from Ruby Ying & previous quarter

Due dates

- Checkpoint #2: EDA is due Wednesday, May 28
- Discussion lab 8 is due Friday May 30

What is Machine Learning

 Machine learning is a subset of artificial intelligence that focuses on the development of algorithms and statistical models that enable computers to learn and make predictions or decisions without being explicitly programmed.

Steps Involved in ML

D8: Machine Learning

- 1. Data preprocessing: Handle missing values and extract ABV, IBU features
- 2. Filter data to keep only top 4 most common beer styles
- 3. Split data into training (80%) and test (20%) sets
 - Train SVM model and generate predictions
- 5. Evaluate model using classification reports and confusion matrices for both training and test sets

Part I: Data, Wrangling, & EDA

- Analyze missing values(.isnull().sum(axis=0) Name ABV IBU Name ABV **IBU** Name 1 O False False False ABV 0 Beer1 5.0 45.0 1 False True False IBU 1 Beer2 NaN 60.0 2 False False True dtype: int64 2 Beer3 7.5 NaN 3 True False True 3 None 4.8 NaN
- 2. Remove rows with missing values in style, abv, ibu(**dropna(subset=[])**)
- 3. Merge beer and brewery datasets(left join)
 - How does left join works?
- 4. Filter dataset to keep only top 4 styles (.value_counts()[:].index.tolist())

Part II: Prediction Model

1. Extract features (X: ABV, IBU) and labels (Y: Style)

```
data_x = beer_df[['abv','ibu']]
data_y= np.array(beer_df['style'])
```

2. Split data into train/test sets

```
beer_train_X, beer_test_X, beer_train_Y, beer_test_Y = train_test_split(
   beer_X, beer_Y, test_size=0.2, random_state=42, stratify=beer_Y
)
3. Train SVM model and generate predictions
```

Train SVM model and generate predictions beer_clf = Pipeline([
 ('scaler', StandardScaler()),
 ('svm', SVC(kernel='linear'))

```
beer_clf.fit()
beer_predicted_train_ Y = beer_clf.predict()
```

Part III: Model Assessment

- 1. Generate classification reports (precision, recall, f1-score)
- 2. Create confusion matrices
- 3. Compare training vs testing performance Train accuracy vs test accuracy
- 4. Evaluate potential overfitting

Section Materials

https://github.com/JasonC1217/COGS 108 B03-B04 Sp25/tree/master

or:

https://tinyurl.com/4d8wx3ne

THANKS!

Questions on EdStem or office hours

Office hours: Thu, 3-5 PM

When asked to draw a flowchart of my code

