C3

1 Algebraic fractions

Any polynomial F(x) can be put in the form: $F(x) = Q(x) \times \text{divisor+remainder}$ Where Q(x) is the quotient

2 Functions

2.1 Range and domain

The input to a function is the **Domain**

The output from a function is the **Range**

2.2 Function mapping

One-to-one function: One element in the domain maps to one element in the range Many-to-one function: To elements of the domain maps to one element in the range Not a function: One input maps to two outputs

2.3 Mappings to functions by changing the domain

Consider $y = \sqrt{x}$

If the domain is all the real numbers $x \in \Re$ then it is not a function as values less than 0 don't get mapped anywhere. The domain must be restricted to $x \ge 0$

2.4 Combining functions

fg(x) means apply g to x, then apply f $f^2(x)$ means ff(x)

2.5 Inverse functions

The inverse of f(x) is written as $f^{-1}x$ The domain of f(x) is the range of $f^{-1}x$ The range of f(x) is the domain of $f^{-1}x$ Example, find the inverse function of $y = 2x^2 - 7$: $y + 7 = 2x^2$

$$\frac{y+7}{2} = x^2$$

$$x = \sqrt{\frac{y+7}{2}}$$

$$f^{-1}x = \sqrt{\frac{x+7}{2}}$$

When finding the graph of an inverse function, reflect f(x) in the line y=x.

3 The exponential and log functions

3.1 Exponential functions

Exponential functions are in the form $y = a^x$, graphs of these functions all pass through (0,1) as $a^0 = 1$ for any value of a.

3.2 Functions including e

The function $y = e^x$ is the function where the gradient is identical to the function.

$$y = e^x \frac{dy}{dx} = e^x$$

Below is the graph of $y = e^x$

$$y=e^{-x}$$

$$y = e^{2x}$$
 (black) $y = e^x$ (red)

$$y = 10e^{-x}$$
 (black) $y = e^{-x}$ (red)

3.3 Formulas for exponential growth or decay

Example:

$$P = 16000e^{-\frac{t}{10}}$$

Where P is the Price in $\pounds s$ and t is the years from new

 $What \ was \ the \ price \ when \ new?$

Substitute t=0

$$P = 16000e^{-\frac{0}{10}}$$

$$P = 16000 \times 1$$

What is the value at 5 years old Substitute t=5

$$P = 16000e^{-\frac{5}{10}}$$

P = £9704.49

What does the model say about the eventual value of the car

As
$$t \to \infty$$
, $e^{-\frac{t}{10}} \to \infty$

Therefore
$$P \rightarrow 16000 \times 0 = 0$$

The eventual value is zero.

3.4 The inverse of the exponential function

The inverse of e^x is $\log_e x$ (also written as $\ln x$)

Examples:

If
$$e^x = 3$$
 then $x = \ln 3$

If
$$\ln x = 4$$
 then $x = e^4$

The function $f(x) = \ln x$ has domain $\{x \in \mathbb{R}, x > 0\}$ and range $\{f(x) \in \mathbb{R}\}$

Numerical methods

Approximations for roots based on graphs 4.1

Approximations for roots can be found graphically by plotting the function and finding where the line crosses the x axis. This value is one of the roots of the function.

If trying to find a range in which a root can be found, substitute the values at the extreme of the range, and if there is a change in sign between the two results, there will be a root in the range.

The exception to this rule is $f(x) = \frac{1}{x}$ and transformations of this as there is a discontinuity at x=0. The function changes sign in the interval that includes x=0, but there is not a root.

4.2Iteration for finding approximations of roots

To solve an equation of the form f(x) = 0 by an iterative method, rearrange f(x) = 0 into a for x = g(x) and use the iterative formula $x_{n+1} = g(x_n)$.

Example, find a root of the equation $x^2 - 4x + 1 = 0$

Re-write as
$$x = 4 - \frac{1}{x}$$

Create the formula
$$x_{n+1} = 4 - \frac{1}{x_n}$$

You get given a rough approximation, $x_0 = 3$

Substitute

$$x_1 = 4 - \frac{1}{x_0}$$

$$x_1 = 4 - \frac{1}{x_0}$$
$$x_1 = 4 - \frac{1}{3}$$

$$x_1 = \frac{11}{3}$$

$$x_2 = 4 - \frac{1}{\frac{11}{3}}$$

$$x_2 = \frac{41}{11}$$

Continuing this increases the accuracy of the result.

This may not work and will not converge to a root.

5 Transforming graphs of functions

5.1 y = |f(x)| Graphs

The modulus of a number is written as |a|, this is the positive numerical value.

When $f(x) \ge 0, |f(x)| = f(x)$

When f(x) < 0, |f(x)| = -f(x)

Figure 1: y = x

Figure 3: y = 3x - 2

Figure 5: $y = x^2 - 3x - 10$

Figure 2: y = |x|

Figure 4: y = |3x - 2|

Figure 6: $y = |x^2 - 3x - 10|$

Figure 7: y = sin(x)

Figure 8: y = |sin(x)|

$\mathbf{5.2} \quad \mathbf{y} = \mathbf{f}(|\mathbf{x}|) \ \mathbf{Graphs}$

To plot the graph of y = |x| - 2, first sketch the graph of y = x - 2 for $x \ge 0$:

Then reflect that graph in the y axis

Examples:

Figure 9: $y = 4x - x^3$

Figure 10: $y = 4|x| - |x|^3$

5.3 Graph transformations

- f(x+a) Horizontal translation of $-\mathbf{a}$
- f(x) + a Vertical translation of $+\mathbf{a}$
- f(-x) Reflection in the **y** axis

- af(x) Vertical stretch of scale factor **a**
- -f(x) Reflection in the **x** axis

6 Trigonometry

•
$$\sec \theta = \frac{1}{\cos \theta}$$

•
$$\csc \theta = \frac{1}{\sin \theta} = \csc \theta$$

•
$$\cot \theta = \frac{1}{\tan \theta}$$

$$\bullet \cot \theta = \frac{\cos \theta}{\sin \theta}$$

6.1 Graphs of the new functions

 $\cot(x)$

6.2 New identities

•
$$1 + \tan^2 \theta = \sec^2 \theta$$

•
$$1 + \cot^2 \theta = \csc^2 \theta$$

6.3 Graphs of inverse functions

 $y = \arccos(x)$ $\begin{bmatrix} 3 \\ 2 \\ 1 \\ 0 \end{bmatrix}$

7 Further trigonometric identities and their applications

- $\sin(a \pm b) \equiv \sin A \sin B \pm \cos A \sin B$
- $\cos(a \pm b) \equiv \cos A \cos B \mp \sin A \sin B$
- $\tan(a \pm b) \equiv \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$

7.1 Double angle formulae

- $\sin 2A \equiv 2\sin A\cos A$
- $\cos 2A \equiv \cos^2 A \sin^2 A \equiv 2\cos^2 A 1 \equiv 1 2\sin^2 A$
- $\bullet \ \tan 2A \equiv \frac{2\tan A}{1 \tan^2 A}$

7.2 The R formula

For positive values of a and b $a\sin\theta \pm b\cos\theta$ can be expressed in the form $R\sin(\theta \pm \alpha)$, where $0 < \alpha < 90$ $a\cos\theta \pm b\sin\theta$ can be expressed in the form $R\cos(\theta \mp \alpha)$, where $0 < \alpha < 90$ $R\cos\alpha = a$, $R\sin\alpha = b$ $R = \sqrt{a^2 + b^2}$

8 Differentiation

8.1 The chain rule

If
$$y = [f(x)]^n$$
 then $\frac{dy}{dx} = n[f(x)]^{n-1}f'x$)
If $y = f[g(x)]$ then $\frac{dy}{dx} = f'[g(x)]g'(x)$
Example
 $f(x) = (3x^4 + x)^5$
 $f'(x) = 12x^3 + 1$
 $\frac{dy}{dx} = 5(3x^4 + x)^4(12x^2 + 1)$

8.1.1 Another form of the chain rule

$$\begin{aligned} \frac{dy}{dx} &= \frac{dy}{du} \times \frac{du}{dx} \\ \mathbf{Example} \\ y &= (x^2 - 7x)^4 \\ u &= (x^2 - 7x)^4 \\ y &= u^4 \\ \frac{du}{dx} &= 2x - 7 \\ \frac{dy}{du} &= 4u^3 \\ Using \ the \ chain \ rule: \\ \frac{dy}{dx} &= 4u^3 \times (2x - 7) \\ \frac{dy}{dx} &= 4(2x - 7)(x^2 - 7x)^3 \end{aligned}$$

8.2 The product rule

The product rule is used to differentiate the product of two functions.

If
$$y = uv$$
 then $\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$
Example:

$$f(x) = x^2\sqrt{3x - 1}$$

$$u = x^2, v = (3x - 1)^{\frac{1}{2}}$$

$$\frac{du}{dx} = 2x \text{ and } \frac{dv}{dx} = \frac{3}{2}(3x - 1)^{-\frac{1}{2}}$$

$$f'(x) = x^2 \times \frac{3}{2}(3x - 1)^{-\frac{1}{2}} + \sqrt{3x - 1} \times 2x$$

$$f'(x) = \frac{15x^2 - 4x}{2\sqrt{3x - 1}}$$

$$f'(x) = \frac{x(15x - 4)}{2\sqrt{3x - 1}}$$

8.3 The quotient rule

If
$$y = \frac{u(x)}{v(x)}$$
 then $\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$

Example
$$y = \frac{x}{2x+5}$$

$$u = x, v = 2x+5$$

$$\frac{du}{dx} = 1, \frac{dv}{dx} = 2$$

$$\frac{dy}{dx} = \frac{(2x+5) \times 1 - x \times 2}{(2x+5)^2}$$

$$\frac{dy}{dx} = \frac{5}{(2x+5)^2}$$

8.4 The exponential function

If
$$y = e^x$$
 then $\frac{dy}{dx} = e^x$
If $y = e^{f(x)}$ then $\frac{dy}{dx} = f'(x)e^{f(x)}$
Example
 $y = e^{2x+3}$
 $\frac{dy}{dx}2x + 3 = 2$
 $\frac{dy}{dx}e^{2x+3} = 2e^{2x+3}$

8.5 The logarithmic function

If
$$y = \ln(x)$$
 then $\frac{dy}{dx} = \frac{1}{x}$
If $y = \ln[f(x)]$ then $\frac{dy}{dx} = \frac{f'(x)}{f(x)}$
Example

$$y = \ln(6x - 1)$$

$$\frac{dy}{dx}6x - 1 = 6$$

$$\frac{dy}{dx}\ln(6x - 1) = \frac{6}{6x - 1}$$

8.6 Trig functions

8.6.1 Sin

If
$$y = \sin(x)$$
 then $\frac{dy}{dx} = \cos(x)$
If $y = \sin f(x)$ then $\frac{dy}{dx} = f'(x)\cos f(x)$

8.6.2 Cos

If
$$y = \cos(x)$$
 then $\frac{dy}{dx} = -\sin(x)$
If $y = \cos f(x)$ then $\frac{dy}{dx} = -f'(x)\sin f(x)$

8.6.3 Tan

If
$$y = \tan(x)$$
 then $\frac{dy}{dx} = \sec^2(x)$
If $y = \tan f(x)$ then $\frac{dy}{dx} = f'(x)\sec^2 f(x)$

8.6.4 Csc

If
$$y = \csc(x)$$
 then $\frac{dy}{dx} = -\csc(x)\cot(x)$
If $y = \csc f(x)$ then $\frac{dy}{dx} = -f'(x)\csc f(x)\cot f(x)$

8.6.5 Sec

If
$$y = \sec(x)$$
 then $\frac{dy}{dx} = \sec(x)\tan(x)$
If $y = \sec f(x)$ then $\frac{dy}{dx} = f'(x)\sec f(x)\tan f(x)$

8.6.6 Cot

If
$$y = \cot(x)$$
 then $\frac{dy}{dx} = -\csc^2(x)$
If $y = \cot f(x)$ then $\frac{dy}{dx} = -f'(x)\csc^2 f(x)$

<u>Differentiation Table</u>

y	$\frac{dy}{dx}$
$[f(x)]^n$	$n(f(x))^{n-1}f'(x)$
uv	$u\frac{dv}{dx} + v\frac{du}{dx}$
$\frac{f(x)}{g(x)}$	$\frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}$
$e^{f(x)}$	$f'(x)e^{f(x)}$
$\ln f(x) $	$\frac{f'(x)}{f(x)}$
$y = \sin f(x)$	$\frac{dy}{dx} = f'(x)\cos f(x)$
$y = \cos f(x)$	$\frac{dy}{dx} = -f'(x)\sin f(x)$
$y = \tan f(x)$	$\frac{dy}{dx} = f'(x)\sec^2 f(x)$
$y = \csc f(x)$	$\frac{dy}{dx} = -f'(x)\csc f(x)\cot f(x)$
$y = \sec f(x)$	$\frac{dy}{dx} = f'(x)\sec f(x)\tan f(x)$
$y = \cot f(x)$	$\frac{dy}{dx} = -f'(x)\csc^2 f(x)$