

Test Report

FCC ID: 2AI6SNSF-1100

Date of issue: Dec. 23, 2016

Sample Description:	Sound Bar
Model(s):	NSF-1100
Applicant:	NBREDS INC.
πρριισατιί.	NORLOG ING.
Address:	Maru-Bldg 4, 5F, 50, Achasan-ro, Seongdong-gu, Seoul, Korea
Date of Test:	Dec 08 2016 to Dec 23 2016

Shenzhen Microtest Co., Ltd. http://www.mtitest.com

This test report is valid for the tested samples only. It cannot be reproduced except in full without prior written consent of Shenzhen Microtest Co., Ltd.

- Page 2 of 35 -

Report No.: MTi161208E100

Table of Contents

1 G	General description	5
1.1	Feature of equipment under test (EUT)	5
1.2	Operation channel list	
1.3	Test Frequency Channel	5
1.4	EUT operation mode	5
1.5	Test conditions	5
1.6	Ancillary equipment list	6
1.7	Measurement uncertainty	6
2 T	Testing site	7
	ist of test equipment	
4 T	Fest Result	9
4.1	Antenna requirement	9
4.2	Conducted emission	10
4.3	Peak output power	13
4.4	20dB emission bandwidth	17
4.5	Carrier frequency separation	21
4.6	Number of hopping channel	25
4.7	Time of occupancy (dwell time)	27
4.8	Band edge emission	29
4 Q	Radiated emission	33

- Page 3 of 35 - Report No.: MTi161208E100

Test Result Certification				
Applicant's name:	NBREDS INC.			
Address:	Maru-Bldg 4, 5F, 50, Achasan-ro, Seongdong-gu, Seoul, Korea			
Manufacture's Name:	Shenzhen Longxin Industry Co., Ltd			
Address:	Longxin Industrial Park, The 3th Industry Estate Fenghuang, Fuyong Town, Baoan, Shenzhen, China			
Product name:	Sound Bar			
Trademark:	NBREDS			
Model name:	NSF-1100			
Standards:	FCC Part 15.247			
Test Procedure:	ANSI C63.10-2013 FCC public notice DA 00-705			

This device described above has been tested by Shenzhen Microtest Co., Ltd. and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

Tested by:	David C	hen
	David Chen	Dec. 23, 2016
Reviewed by:	(en ch	~
	Leon Chen	Dec. 23, 2016
Approved by:	Jun	/. /iu.
	Ares Liu	Dec. 23, 2016

Report No.: MTi161208E100

Summary of Test Result

Item	FCC Part No.	Description of Test	Result
1	15.203	Antenna requirement	Pass
2	15.207	AC power line conducted emission	Pass
3	15.247(b)(1)	Peak output power	Pass
4	15.247(a)(1)	20dB emission bandwidth	Pass
5	15.247(a)(1)	Carrier frequency separation	Pass
6	15.247(a)1	Number of hopping channel	Pass
7	15.247(a)(1)	Time of occupancy (dwell time)	Pass
8	15.247(d)	Band edge spurious emission, conducted spurious emission	Pass
9	15.247(d), 15.205, 15.209	Radiated emission	Pass

- Page 5 of 35 - Report No.: MTi161208E100

1 General description

1.1 Feature of equipment under test (EUT)

Product name:	Sound Bar	
Model name:	NSF-1100	
Tx/Rx frequency range:	Tx/Rx: 2402MHz~2480MHz	
Bluetooth version:	V4.0 Dual-mode	
Modulation Type:	GFSK, π/4-DQPSK, 8DPSK	
Power Source:	DC 18V from adapter	
Antenna Designation:	PCB antenna (Antenna Gain: 0dBi)	

Note: The EUT supports Bluetooth classic rate / EDR and low energy Dual-mode operation. This report is for classic rate / EDR mode, for low energy mode please refers to the report number MTi161208E022.

1.2 Operation channel list

Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz
1	2403MHz	21	2423MHz	41	2443MHz
18	2420MHz	38	2440MHz	77	2479MHz
19	2421MHz	39	2441MHz	78	2480MHz

1.3 Test Frequency Channel

Low	2402MHz
Middle	2441MHz
High	2480MHz

1.4 EUT operation mode

During testing, RF test program provided by the manufacture to control the Tx operation followed the test requirement.

1.5 Test conditions

During the measurement the environmental conditions were within the listed ranges:

- Temperature: 20°C~30°C - Humidity: 30%~70%

- Atmospheric pressure: 98kPa~101kPa

- Page 6 of 35 - Report No.: MTi161208E100

1.6 Ancillary equipment list

Equipment	Model	S/N	Manufacturer	Certificate type
Adapter	PS12A050K2500ED	/	Supply by Lab	FCC VOC

1.7 Measurement uncertainty

Measurement Uncertainty for a Level of Confidence of 95 %, U=2xUc(y)

RF frequency	1 x 10-7
RF power, conducted	± 1 dB
Conducted emission(150kHz~30MHz)	± 2.5 dB
Radiated emission(30MHz~1GHz)	± 4.2 dB
Radiated emission (above 1GHz)	± 4.3 dB
Temperature	±1 degree
Humidity	±5%

- Page 7 of 35 - Report No.: MTi161208E100

2 Testing site

Test Site	Shenzhen Toby Technology Co., Ltd.
Test Site Location	1 A/F., Bldg.6, Yusheng Industrial Zone The National Road No.107 Xixiang Section 467, Shenzhen, Guangdong, China
FCC Registration No.:	811562
CNAS Registration No.:	CNAS L5813

- Page 8 of 35 - Report No.: MTi161208E100

3 List of test equipment

For AC power line conducted emission:

Equipment	Manufacturer	Model	Serial No.	Calibration Due
LISN	R&S	ENV216	101313	2017.12.06
LISN	SCHWARZBECK	NNLK 8129	8129245	2017.12.25
Pulse Limiter	SCHWARZBECK	VTSD 9561F	9716	2017.12.25
Test Cable	N/A	N/A	C01	2017.12.06
EMI Test Receiver	R&S	ESCI	101160	2017.12.06

For Radiated emission:

Equipment	Manufacturer	Model	Serial No.	Calibration Due
Log-Bicon Antenna	MESS-ELEKTRO NIK	VULB 9160	3058	2017.12.11
Horn Antenna	Schwarzbeck	BBHA 9120D	631	2017.12.05
Horn Antenna	Schwarzbeck	BBHA 9170	373	2017.12.05
Test Cable	United Microwave	57793	1m	2017.12.05
Test Cable	United Microwave	A30A30-5006	10m	2017.12.05
Microwave Pre-amplifier	Agilent	8449B	3008A01714	2017.12.05
Pre-Amplifier	Anritsu	MH648A	M09961	2017.12.05
EMI Test Receiver	R&S	ESCI-7	101318	2017.12.05
Spctrum analyzer	Agient	E4470B	MY41441082	2017.06.01

For RF conducted emission:

Equipment	Manufacturer	Model	Serial No.	Calibration Due
Spctrum analyzer	Agient	E4470B	MY41441082	2017.06.01

Note: the calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

- Page 9 of 35 - Report No.: MTi161208E100

4 Test Result

4.1 Antenna requirement

4.1.1 Requirement defined in FCC 15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

4.1.2 EUT antenna description

The Bluetooth antenna of EUT is an internal permanently attached antenna (PCB antenna), the maximum gain is 0dBi. So the antenna meets the requirement of this part.

- Page 10 of 35 - Report No.: MTi161208E100

4.2 Conducted emission

4.2.1. Limit

Frequency	Limit		
(MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56	56 to 46	
0.5-5	56	46	
5-30	60	50	

Note: Decreases with the logarithm of the frequency from 0.15MHz to 0.5MHz.

4.2.2. Test method

- 1. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.
- 2. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- 3. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 4. LISN is at least 80 cm from nearest part of EUT chassis.
- 5. The resolution bandwidth of EMI test receiver is set at 9kHz.

4.2.3. Test Result

- Page 11 of 35 - Report No.: MTi161208E100

Tem	pera	ature:		24°C			Relativ	ve Hum	nidity:	58%	
Pres	sure	:		101kPa			Polaria	zation:		L	
Test	volt	age:		AC 120V	/60Hz		Test m	node:		Transmitting	
100.0	dBu	v									
90											
80											
70											
60								FCCI	Part15 ClassB A	AC Conduction(QP)	
50	-							FCCP	art15 ClassB AC	Conduction(AVG)	
30											
40	Mr.	mark. A		\							
30	Mir	Mhm m	~~~ //``	- Hollewoods	any of her married	Myser-en/M	ware person	y many my	march	1.11.	
20	ŊŸ	MAAMIN	~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Jan January	M. Marriage	Jan Market	\triangle	$\sim \sim$	ATT WARREN	Hard brown war on	and the state of t
			M ^r A	1₩	``\\\\	W Y	'		, , and other law	Mahalaran Andrew	peak
10										74	AVG
0.0	50		0.	.5		(MHz)			5		30.000
			Reading	Correct	Measure-						
No.	Mk.	Freq.	Level	Factor	ment	Limit	Over				
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment		
1		0.1539	45.65	-0.04	45.61		-20.17	QP			
3		0.1539	27.59 41.55	-0.04	27.55 41.52		-28.23 -14.51	AVG QP			
4		0.4979	12.36	-0.03	12.33		-33.70	AVG			
5		3.4260	32.81	-0.04	32.77		-23.23	QP			
6		3.4260	25.62	-0.04	25.58		-20.42	AVG			

- Page 12 of 35 - Report No.: MTi161208E100

- Page 13 of 35 - Report No.: MTi161208E100

4.3 Peak output power

4.3.1 Limits

Conducted peak output power limit is 125mW (21dBm)

4.3.2 Test Method

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW > the 20 dB bandwidth of the emission being measured

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.

4.3.3 Test Result

GFSK

Frequency (MHz)	Peak output power (dBm)	Limit (dBm)
2402	1.525	21
2441	1.109	21
2480	0.676	21

π/4-DQPSK

Frequency (MHz)	Peak output power (dBm)	Limit (dBm)
2402	2.797	21
2441	2.405	21
2480	1.825	21

8DPSK

Frequency (MHz)	Peak output power (dBm)	Limit (dBm)
2402	3.011	21
2441	2.594	21
2480	2.04	21

Test plots as below

- Page 14 of 35 -Report No.: MTi161208E100

GFSK

- Page 15 of 35 - Report No.: MTi161208E100

π/4-DQPSK

- Page 16 of 35 -

Report No.: MTi161208E100

8DPSK

- Page 17 of 35 - Report No.: MTi161208E100

4.4 20dB emission bandwidth

4.4.1 Test method

Use the following spectrum analyzer settings:

Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel

RBW ≥1% of the 20 dB bandwidth

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

The EUT should be transmitting at its maximum data rate. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20 dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth of the emission.

4.4.2 Test result

GFSK

Frequency (MHz)	20dB emission bandwidth (MHz)
2402	1.147
2441	1.143
2480	1.149

$\pi/4$ -DQPSK

Frequency (MHz)	20dB emission bandwidth (MHz)
2402	1.425
2441	1.43
2480	1.43

8DPSK

Frequency (MHz)	20dB emission bandwidth (MHz)
2402	1.445
2441	1.443
2480	1.447

Test plots as below

- Page 18 of 35 -

Report No.: MTi161208E100

GFSK

- Page 19 of 35 - Report No.: MTi161208E100

π/4-DQPSK

- Page 20 of 35 -Report No.: MTi161208E100

8DPSK

- Page 21 of 35 -Report No.: MTi161208E100

4.5 Carrier frequency separation

4.5.1 Limits

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

4.5.2 Test method

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings:

Span = wide enough to capture the peaks of two adjacent channels Resolution (or IF) Bandwidth (RBW) ≥1% of the span Video Bandwidth (VBW) ≥RBW

Sweep = auto

Detector function = peak

Trace = max hold

Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

4.5.3 **Test result**

GFSK

Channels (MHz)	Separation (MHz)	Limit (MHz)
2402-2403	0.998	0.766
2441-2442	0.998	0.766
2479-2480	0.998	0.766

π/4-DQPSK

Channels (MHz)	Separation (MHz)	Limit (MHz)
2402-2403	1.005	0.953
2441-2442	0.998	0.953
2479-2480	1.005	0.953

8DPSK

Channels (MHz)	Separation (MHz)	Limit (MHz)
2402-2403	1.005	0.965
2441-2442	1.005	0.965
2479-2480	1.005	0.965

Tel:(86-755)88850135 Fax: (86-755) 88850136 E-mail:mti@51mti.com http://www.mtitest.com Address: No.102A & 302A, East Block, Hengfang Industrial Park, Xingye Road, Xixiang, Bao'an District, Shenzhen, Guangdong, China

- Page 22 of 35 -

Report No.: MTi161208E100

GFSK

- Page 23 of 35 - Report No.: MTi161208E100

π/4-DQPSK

- Page 24 of 35 -

Report No.: MTi161208E100

8DPSK

- Page 25 of 35 - Report No.: MTi161208E100

4.6 Number of hopping channel

4.6.1 Limits

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

4.6.2 Test method

The EUT must have its hopping function enabled. Use the following spectrum analyser settings:

Span = the frequency band of operation

RBW ≥ 1% of the span

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

Allow the trace to stabilize.

4.6.3 Test Result

GFSK

- Page 26 of 35 -

85 - Report No.: MTi161208E100

π/4-DQPSK

8DPSK

- Page 27 of 35 - Report No.: MTi161208E100

4.7 Time of occupancy (dwell time)

4.7.1 Limit

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

4.7.2 Test method

The EUT must have its hopping function enabled. Use the following spectrum analyser settings:

Span = zero span, centered on a hopping channel

RBW = 1 MHz

VBW ≥RBW

Sweep = as necessary to capture the entire dwell time per hopping channel

Detector function = peak

Trace = max hold

Use the marker-delta function to determine the dwell time.

4.7.3 Test Result

GFSK

Note: for the worst mode of DH5 packet type, in normal hopping mode, hopping rate is 1600hops/s with 6 slots in 79 hopping channel

Report No.: MTi161208E100

π/4-DQPSK

Note: for the worst mode of DH5 packet type, in normal hopping mode, hopping rate is 1600hops/s with 6 slots in 79 hopping channel

8DPSK

Note: for the worst mode of DH5 packet type, in normal hopping mode, hopping rate is 1600hops/s with 6 slots in 79 hopping channel

- Page 29 of 35 - Report No.: MTi161208E100

4.8 Band edge emission

4.8.1 Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

4.8.2 Test method

Use the following spectrum analyser settings:

Set RBW=100 kHz. VBW≥3RBW. Detector =peak, Sweep time = auto couple, Trace mode = max hold.

4.8.3 Test Result

- Page 30 of 35 - Report No.: MTi161208E100

Band edge (GFSK mode)

- Page 31 of 35 - Report No.: MTi161208E100

Band edge ($\pi/4$ -DQPSK mode)

- Page 32 of 35 - Report No.: MTi161208E100

Band edge (8DPSK mode)

- Page 33 of 35 - Report No.: MTi161208E100

4.9 Radiated emission

4.9.1 Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Frequency (MHz)	Field strength µV/m	Field strength dBµV/m	Detector	Measurement distance	
30-88	100	40	QP		
88-216	150	43.5	QP		
216-960	200	46	QP	2	
960-1000	500	46	QP	3m	
Above 1000	500	54	AV		
Above 1000	5000	74	PK		

Restricted bands defined in FCC 15.205:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

- Page 34 of 35 - Report No.: MTi161208E100

4.9.2 Test method

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane for test frequency range blew 1GHz, and 1.5m above ground plane for test frequency range above 1GHz.
- 2. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 3. Use the following spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured, RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz, VBW \ge RBW, Sweep = auto, Detector function = peak, Trace = max hold

- 4. Follow the guidelines in ANSI C63.4-2014 with respect to maximizing the emission by rotating the EUT, adjusting the measurement antenna height and polarization, etc. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, submit this data. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 5. The peak level, once corrected, must comply with the limit specified in Section 15.209. Set the RBW = 1MHz, VBW = 3MHz, Detector = RMS for AV value, while maintaining all of the other instrument settings.

4.9.3 Test Result

- Page 35 of 35 - Report No.: MTi161208E100

Radiated emission (8DPSK mode)

	,					
Transmitter channel: 2402MHz						
Frequency	Ant. Polarization	Emission level	Limits	Detector	Result	
(MHz)	H/V	dBμV/m	dBμV/m			
93.2	V	42.5	43.5	QP		
93.2	Η	39.8	43.5	QP		
2390	V	46.74	74	PK	Pass	
2390	Η	45.89	74	PK	rass	
4804	V	50.13	74	PK		
4804	Н	51.67	74	PK		
Transmitter chann	el: 2441MHz					
Frequency	Ant. Polarization	Emission level	Limits	Detector		
(MHz)	H/V	dBµV/m	dBµV/m			
138.63	V	42.6	43.5	QP	Result	
138.63	Н	43.9	43.5	QP		
4882	V	50.21	74	PK		
4882	Н	50.3	74	PK		
Transmitter chann	el: 2480MHz					
Frequency	Ant. Polarization	Emission level	Limits	Detector	P Result	
(MHz)	H/V	dBμV/m	dBμV/m			
114.72	V	43.1	43.5	QP		
114.72	Н	36.9	43.5	QP		
2483.5	V	47.7	74	PK		
2483.5	Н	45.65	74	PK		
4960	V	51.4	74	PK		
4960	Н	51.32	74	PK		

Note:

If the PK measured values lower than average mode limit, the EUT shall be deemed to meet average limits and then no additional average mode measurement performed. all three modes (GFSK, π /4-DQPSK and 8DPSK modes of EUT have been tested, only the data of

worst case 8DPSK mode is reported.

----END OF REPORT----