

Solution

$$\sum_{n=0}^{\infty} \left(\frac{x^2+3}{6}\right)^n \text{: Interval of convergence is } -\sqrt{3} < x < \sqrt{3}$$

Steps

$$\sum_{n=0}^{\infty} \left(\frac{x^2 + 3}{6} \right)^n$$

Use the Root Test to compute the convergence interval

Hide Steps 🖨

$$\sum_{n=0}^{\infty} \left(\frac{x^2 + 3}{6} \right)^n$$

Series Root Test:

If $\lim_{n\to\infty} |a_n|^{\frac{1}{n}} = L$, and:

If L < 1, then $\sum a_n$ converges

If L > 1, then $\sum a_n$ diverges

If L=1, then the test is inconclusive

$$\left| a_n^{\frac{1}{n}} \right| = \left| \left(\frac{x^2 + 3}{6} \right) n^{\frac{1}{n}} \right|$$

$$\operatorname{Compute} L = \lim_{n \to \infty} \left(\left| \left(\frac{x^2 + 3}{6} \right)^{n \frac{1}{n}} \right| \right)$$

Hide Steps 🖨

$$L = \lim_{n \to \infty} \left(\left| \left(\left(\frac{x^2 + 3}{6} \right)^n \right) \frac{1}{n} \right| \right)$$

Simplify $\left(\left(\frac{x^2+3}{6}\right)^n\right)^{\frac{1}{n}}$: $\frac{x^2+3}{6}$

Hide Steps 🖨

$$\left(\left(\frac{x^2+3}{6}\right)^n\right)^{\frac{1}{n}}$$

Use the following exponent property: $(a \cdot b)^n = a^n \cdot b^n$

$$\left(\frac{x^2+3}{6}\right)^n = \frac{(x^2+3)^n}{6^n}, \quad \left(\frac{(x^2+3)^n}{6^n}\right)^{\frac{1}{n}} = \frac{\sqrt[n]{(x^2+3)^n}}{\sqrt[n]{6^n}}$$

$$=\frac{\sqrt[n]{(x^2+3)^n}}{\sqrt[n]{6^n}}$$

Use the following exponent property: $\binom{a^n}{m} = a^{n \cdot m}$

$$\sqrt[n]{(x^2+3)^n} = (x^2+3)^{n\frac{1}{n}}, \quad \sqrt[n]{6^n} = 6^{n\frac{1}{n}}$$

$$= \frac{(x^2+3)^{n\frac{1}{n}}}{6^{n\frac{1}{n}}}$$

$$6^{n\frac{1}{n}} = 6$$

 $6^{n\frac{1}{n}}$

Multiply $n\frac{1}{n}: 1$

Hide Steps 🖨

Hide Steps

 $n\frac{1}{n}$

Multiply fractions: $a \cdot \frac{b}{c} = \frac{a \cdot b}{c}$

 $=\frac{1 \cdot n}{n}$

Cancel the common factor: *n*

= 1

 $=6^{1}$

Apply rule $a^1 = a$

=6

$$=\frac{(x^2+3)^{n\frac{1}{n}}}{6}$$

$$(x^2+3)^{n\frac{1}{n}}=x^2+3$$

Hide Steps 👨

$$(x^2+3)^{n\frac{1}{n}}$$

Multiply $n \frac{1}{n} : 1$

Hide Steps 🖨

 $n\frac{1}{n}$

Multiply fractions: $a \cdot \frac{b}{c} = \frac{a \cdot b}{c}$

 $=\frac{1\cdot n}{n}$

Cancel the common factor: n

= 1

 $= \left(x^2 + 3\right)^1$

Apply rule $a^1 = a$ $=x^2 + 3$ $=\frac{x^2+3}{6}$

$$L = \lim_{n \to \infty} \left(\left| \frac{x^2 + 3}{6} \right| \right)$$

$$L = \left| \frac{x^2 + 3}{6} \right| \cdot \lim_{n \to \infty} (1)$$

 $\lim_{n\to\infty} (1) = 1$

$$\lim_{n\to\infty} (1)$$

 $\lim_{x \to a} c = c$

$$=1$$

$$L = \left| \frac{x^2 + 3}{6} \right| \cdot 1$$

Simplify

$$L = \frac{\left|x^2 + 3\right|}{6}$$

$$L = \frac{\left|x^2 + 3\right|}{6}$$

The power series converges for L < 1

$$\frac{\left|x^2+3\right|}{6}<1$$

Find the interval of convergence

Hide Steps

Hide Steps

Hide Steps

To find the interval of convergence of a power series $\sum_{n=0}^{\infty} c_n (x-a)^n$ solve for x

$$\frac{|x^2+3|}{6} < 1$$
 : $-\sqrt{3} < x < \sqrt{3}$

$$\frac{\left|x^2+3\right|}{6} < 1$$

Multiply both sides by 6

$$\frac{6\left|x^2+3\right|}{6} < 1 \cdot 6$$

Simplify

$$|x^2 + 3| < 6$$

Apply absolute rule: If |u| < a, a > 0 then -a < u < a

$$-6 < x^2 + 3 < 6$$

$$x^2 + 3 > -6$$
 and $x^2 + 3 < 6$

 $x^2 + 3 > -6$ and $x^2 + 3 < 6$

$$x^2 + 3 > -6$$
 : True for all $x \in \mathbb{R}$

Hide Steps 🖨

Hide Steps

$$x^2 + 3 > -6$$

Subtract 3 from both sides

$$x^2 + 3 - 3 > -6 - 3$$

Simplify

$$x^2 > -9$$

If n is even, $u^n > 0$ for all u

 $x^2 + 3 < 6$: $-\sqrt{3} < x < \sqrt{3}$

True for all x

Hide Steps

$$x^2 + 3 < 6$$

Subtract 3 from both sides

$$x^2 + 3 - 3 < 6 - 3$$

Simplify

$$x^2 < 3$$

For $u^n < a$, if n is even then $-\sqrt[n]{a} < u < \sqrt[n]{a}$

$$-\sqrt{3} < x < \sqrt{3}$$

Combine the intervals

True for all
$$x$$
 and $-\sqrt{3} < x < \sqrt{3}$

True for all
$$x$$
 and $-\sqrt{3} < x < \sqrt{3}$

Merge Overlapping Intervals

Hide Steps

The intersection of two intervals is the set of numbers which are in both intervals

True for all
$$x \in \mathbb{R}$$
 and $-\sqrt{3} < x < \sqrt{3}$

$$-\sqrt{3} < x < \sqrt{3}$$

$$-\sqrt{3} < x < \sqrt{3}$$

$$-\sqrt{3} < x < \sqrt{3}$$

Check the interval end points: $x = -\sqrt{3}$: diverges, $x = \sqrt{3}$: diverges

Hide Steps 🖨

Hide Steps 🖨

For
$$x=-\sqrt{3}$$
 , $\sum_{n=0}^{\infty}\biggl(\frac{\left(-\sqrt{3}\right)^2+3}{6}\biggr)^n$: diverges

$$\sum_{n=0}^{\infty} \left(\frac{\left(-\sqrt{3}\right)^2 + 3}{6} \right)^n$$

Refine

$$= \sum_{n=0}^{\infty} 1$$

Every infinite sum of a non – zero constant diverges

 $= {\sf diverges}$

For
$$x = \sqrt{3}$$
, $\sum_{n=0}^{\infty} \left(\frac{\sqrt{3}^2 + 3}{6}\right)^n$: diverges

Hide Steps 😑

$$\sum_{n=0}^{\infty} \left(\frac{\left(\sqrt{3}\right)^2 + 3}{6} \right)^n$$

Refine

$$=\sum_{n=0}^{\infty}1$$

Every infinite sum of a non – zero constant diverges

= diverges

$$x = -\sqrt{3}$$
:diverges, $x = \sqrt{3}$:diverges

Therefore

Interval of convergence is
$$-\sqrt{3} < x < \sqrt{3}$$

Interval of convergence is $-\sqrt{3} < x < \sqrt{3}$

Interval of convergence is $-\sqrt{3} < x < \sqrt{3}$