

PROPERTIES OF GASES

(Function values at 100 kPa and 288 K or the normal boiling temperature if greater.)

Substance Formula mass map. mass mass map. mass mass map. mass mass map. mass				<u> </u>	~	~	Cuiti anl	Pitzer's			<u> </u>
Substance				_			Critical		Thermal	Thermal	Dynamic
Actione	Substance	Formula	mass	temp.	temp	pressure			capacity	conductivity	viscosity
Receive	Substance	Tormula	M	T_h	T_{cr}	p_{cr}	ractor	ractor	C_{D}	k	u: 10 ⁶
Acetylene C2H2 N2 (2) 42							Z_{cr}	ω			
Air	Acetone	C ₃ H ₆ O	0.058	329.2	508	4.70	0.233	0.309	1300		
Arr	Acetylene	C_2H_2	0.026	189.5 ^f	309	6.20	0.271	0.184	1580	0.019	9.3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Air		0.029	82e	132 ^g	3.75 ^g	$0.28^{\rm g}$	0.035	1004	0.024	18.1
Benzene	Ammonia	NH ₃	0.017	239.8	406	11.30	0.242	0.250	2200	0.022	9.3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Argon	Ar	0.040	87.4	151	4.86	0.291	0	523	0.018	21.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Benzene	C_6H_6	0.078	353.3	563	4.92	0.271	0.212	1300	0.007	7.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,3-Butadiene	C_4H_6	0.054	268.5	425	4.33	0.270	0.193	1510		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	n-Butane	C_4H_{10}	0.058	272.6	425	3.80	0.274	0.193	1580	0.015	7.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	iso-Butane	C_4H_{10}	0.058	261.5	408	3.64	0.280	0.176	1580	0.015	9.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Carbon dioxide	CO_2	0.044	194.7 ^f	304	7.38	0.274	0.225	840 ^h	0.016	14,4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Carbon monoxide	CO	0.028	81.7	133	3.50	0.295	0.049	1100	0.023	17.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Carbon tetrachloride	CCl ₄	0.154	349.7	556	4.56	0.272	0.194	862	0.017	16.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cyclohexane	C_6H_6	0.084	353.9	554	4.07	0.273	0.212			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_ *	$C_{10}H_{22}$	0.142	447.3	619	2.12	0.247	0.490	1680		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	n-Dodecane		0.170	489.4	659	1.80	0.240	0.562	1690		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DME (dimethyl ether)		0.046	250.6	400	5.37	0.271	0.274	1430		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•	C_2H_6	0.030	184.6	305	4.88	0.285	0.100	1700	0.020	11.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ethanol		0.046	351.5	516	6.39	0.248	0.635	1520	0.013	14.2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ether (diethyl ether)	$C_4H_{10}O$	0.074	307.6	467	3.61	0.260	0.281	1600	0.015	7.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	C ₆ H ₁₄ O	0.102	345	517	3.11	0.274	0.298	1550		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ethylene	C_2H_4	0.028	169.5	283	5.12	0.276	0.085	1470	0.018	9.6
Helium 3 (3 He) He 0.003 3.2 3.3 0.11 0.301 -0.460 n-Heptane $C_{7}H_{16}$ 0.100 371 540 2.77 0.263 0.350 1650 0.013 6.5 n-Hexane $C_{6}H_{14}$ 0.086 342 508 3.03 0.263 0.296 1700 0.014 6.5 Hydrazine $N_{2}H_{4}$ 0.032 387 653 14.7 0.376 0.325 Hydrogen H_{2} 0.002 20.1 33 1.32 0.305 -0.22 14200 0.168 8.4 (Hydrogen) Deuterium D_{2} 0.004 23.6 38 1.66 0.249 -0.16 14200 0.131 12 Mercury Hg 0.201 630 736 104 Methane C_{14} 0.016 112 191 4.60 0.288 0.010 2180 0.031 10.3 Methanol C_{14} 0.032 338.1 513 8.08 0.224 0.559 1350 0.015 9.8 MTBE (methyl tert-butyl ether) $C_{5}H_{12}O$ 0.088 328 497 3.43 0.273 0.267 1500	Ethylene glycol	$C_2H_6O_2$	0.062	471	645	7.53	0.268	1.137	1410		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Helium (⁴ He)	Не	0.004	4.2	5.3	0.23	0.301	-0.387	5190	0.142	19.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Helium 3 (³ He)	Не	0.003	3.2	3.3	0.11	0.301	-0.460			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	n-Heptane	C7H16	0.100	371	540	2.77	0.263	0.350	1650	0.013	6.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	n-Hexane	C_6H_{14}	0.086	342	508	3.03	0.263	0.296	1700	0.014	6.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Hydrazine	N_2H_4	0.032	387	653	14.7	0.376	0.325			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Hydrogen	H_2	0.002	20.1	33	1.32	0.305	-0.22	14200	0.168	8.4
	(Hydrogen) Deuterium	D_2	0.004	23.6	38	1.66	0.249	-0.16	14200	0.131	12
Methanol CH ₄ O 0.032 338.1 513 8.08 0.224 0.559 1350 0.015 9.8 MTBE (methyl tert-butyl ether) C ₅ H ₁₂ O 0.088 328 497 3.43 0.273 0.267 1500	Mercuryi	Hg	0.201	630	736	104					
MTBE (methyl tert-butyl c ₅ H ₁₂ O 0.088 328 497 3.43 0.273 0.267 1500	Methane	CH ₄	0.016	112	191	4.60	0.288	0.010	2180	0.031	10.3
etter)	Methanol	CH ₄ O	0.032	338.1	513	8.08	0.224	0.559	1350	0.015	9.8
	MTBE (methyl tert-butyl ether)	C ₅ H ₁₂ O	0.088	328	497	3.43	0.273	0.267	1500		
μ_{10} μ	· · · · · · · · · · · · · · · · · · ·	Ne	0.020	26.2	44	2.70	0.301	0	1030	0.046	30.0

Nitrogen	N_2	0.028	77.4	126	3.39	0.290	0.038	1040	0.024	16.6
Nitrogen dioxide ^j	NO_2	0.046	294.4	431	10.1	0.233		800	0.017	130
Nitrogen monoxide	NO	0.030	121.2	180	6.55	0.250	0.607	996	0.024	29.4
di-Nitrogen oxide ^k	N_2O	0.044	184.7	310	7.26	0.272	0.141	864	0.015	13.6
n-Octane	C_8H_{18}	0.114	399	569	2.49	0.259	0.394	1700	0.020	7.5
iso-Octane	C_8H_{18}	0.114	372	544	2.59	0.267		1650		
Ozone	O_3	0.048	161.4	268	6.78	0.272				
Oxygen	O_2	0.032	90.2	155	5.08	0.288	0.021	913	0.024	19.1
iso-Pentane	C_5H_{12}	0.072	301.3	461	3.33	0.268	0.227	1680	0.015	11.7
n-Pentane	C_5H_{12}	0.072	309.2	470	3.38	0.262	0.251	1680	0.015	11.7
Phenol	C ₆ H ₆ O	0.094	455	694	6.13	0.243	0.426			
Propane	C_3H_8	0.044	231.1	370	4.26	0.281	0.152	1570	0.015	7.4
iso-Propanol	C ₃ H ₈ O	0.060	355.4	508	4.76	0.248	0.669	1540		
Propylene (propene)	C_3H_6	0.042	225.4	365	4.62	0.275	0.148	1460	0.014	8.1
Propylene glycol	$C_3H_8O_2$	0.076	461.3	626	6.10	0.280	1.107			
R12 (CFC-12) (dichlorodifluoromethane)		0.121	243.0	385	4.14	0.280	0.179	573	0.008	12.5
R134a (HFC-134a) (tetrafluoroethane)	CF ₃ CH ₂ F	0.102	246.6	374	4.07	0.258	0.330	840	0.014	12.2
R410A ¹	n.a.	0.073	221.8	345	4.90	0.271	0.296	820		
Sulfur dioxide	SO_2	0.064	263.2	430	7.87	0.264	0.251	607	0.009	11.6
Sulfur hexafluoride ^m	SF ₆	0.146	204.9 ^f	319	3.76	0.360	0.210	598	0.12	16.0
Toluene	C_7H_8	0.092	383.7	592	4.13	0.284	0.266			
Tetradecafluorohexane	C_6F_{14}	0.338	329	449	1.83					
Uranium hexafluoride ⁿ	UF ₆	0.352	329 ^f	503	4.60	0.282	0.092	370	0.009	20
Water (steam) ^p	H ₂ O	0.018	372.8	647.3	22.12	0.229	0.344	2050 ^p	0.025	12.1
Xenon	Xe	0.131	165.0	289.8	5.84	0.291	0	158	0.006	22.5

^aCritical molar volumes can be obtained from $v_{\rm cr} = Z_{\rm cr} R T_{\rm cr}/p_{\rm cr}$, and critical densities from $\rho_{\rm cr} = M/v_{\rm cr}$ (e.g. for acetone $v_{\rm cr} = 209 \cdot 10^{-6}$ m³/mol and $\rho_{\rm cr} = 351$ kg/m³.

^bThermal capacities of monoatomic gases do not change with temperature, but for polyatomic gases it increases more the more atoms has the molecule.

d Dynamic viscosity of gases increases with the square root of temperature, and do not change with pressure. Kinematic viscosity $v = \mu/\rho$.

^e Bubble point.

^f Sublimation point.

^g Pseudo-critical point (Kay's model).

h Most gas properties vary a lot near the critical point, what may be here the case; e.g., for CO₂ gas at 288 K and 100 kPa, thermal capacity at constant pressure is c_p =840 J/(kg·K), growing at constant T=288 K from c_p =833 J/(kg·K) at very low pressure, to c_p =3010 J/(kg·K) at the saturation pressure (5063 kPa). Thermal capacity in the ideal gas limit (p \rightarrow 0) varies almost linearly (e.g. c_p =753 J/(kg·K) at the triple-point temperature, c_p =850 J/(kg·K) at the critical-point temperature).

Mercury is obtained by oxidation of cinnabar at some 600 °C and vapour condensation. Mercury vapour should not exceed 0.1 mg/m³ in breathing air (notice that saturated air at 20 °C already contains more than that

limit.

Nitrogen dioxide, NO₂, is a very toxic brown gas at normal conditions (but readily condensable, T_b =21.3 °C). All nitrogen oxides slowly decomposing to nitrogen and oxygen, making it difficult to keep them in pure state; besides, NO₂ is paramagnetic, but readily dimerises to dinitrogen tetroxide, N₂O₄, a diamagnetic pale-yellow or colourless gas with double density than NO₂ (e.g. when heating from above an ampoule containing NO₂, some N₂O₄ is formed at the top (2NO₂(g)=N₂O₄(g)+57 kJ/mol), which can be seen sinking to the bottom because of buoyancy). The NO₂/N₂O₄ equilibrium depends on temperature, NO₂ being favoured at

Thermal conductivity of gases increases with the square root of temperature, decreases with the square root of molar mass, and do not change with pressure. Thermal diffusivity $a = k/(\rho c_p)$. According to simple generalised transport theory in gases, thermal diffusivity, mass diffusivity and kinematic viscosity of gases have the same values.

high temperatures and N_2O_4 at low temperatures; when condensing (at 21.3 °C at 100 kPa), most of the liquid is N_2O_4 which is colourless or pale brownish, and if solidified (at -11.2 °C) a white solid appears. The liquid N_2O_4 is a hypergolic propellant that spontaneously reacts upon contact with various forms of hydrazine, which

makes the pair a popular bipropellant for spacecraft rockets.

^k Di-nitrogen oxide, N₂O, also known as nitrous oxide (NO is nitric oxide), or nitrogen hemi-oxide, or nitrogen protoxide, or laughing gas, is used in respiratory anaesthesia since the pioneering trials of Sir Humphrey Davy in 1789 shortly after its discovery by J. Prietsley in 1772, as a non-flammable non-ozone-depleting propellant in aerosol cans, and as a fuel additive to enhance combustion (it liberates oxygen; if added as compressed liquid in the intake manifold, it greatly increases fuel load). It has a global warming potential (GWP) of 300 times that of CO₂, being the third contributor to anthropogenic GWP, after CO₂ and CH₄.

R410A is a near-azeotropic mixture of R32 (diffuoromethane, CH₂F₂) and R125 (pentafluoroethane, CHF₂CF₃), 50/50 by weight (70/30 molar), which can be approximated as a pure substance. The critical point of a binary mixture is defined as the point where $\frac{\partial^2 g}{\partial x^2}$ and $\frac{\partial^3 g}{\partial x^3}$ are simultaneously zero, where g is the

Gibbs energy and x is the mole fraction of a component.

^m Sulfur hexafluoride is a synthetic gas used as insulator for electrical equipment (breakdown potential three times larger than air, and as a fluorine source for edging in the electronics industry. It is a non-flammable, non-toxic gas, which decomposes at 750 K; it has low water solubility, and a very large IR absortance (it is the most potent greenhouse gas, GWP=22 000), what has been used as a trace gas for gas-leakage detection.

ⁿ Uranium hexafluoride, perhaps the heaviest simple molecule, is the only uranium compound presently used in industrially enrichment of U-235, both on gas diffusion and on gas centrifugation processes. At room

conditions, it is a white crystalline solid with a high vapour pressure (p_v =11 kPa at 20 °C).

P The boiling point of water at 100 kPa is T_b =372.75±0.02 K (99.60±0.02 °C), whereas at 101.325 kPa (1 atm) it is 373.12±0.02 K (99.97±0.02 °C). Steam thermal capacity varies appreciably with T and p: at p→0, $c_p(T)$ grows almost linearly from 1890 J/(kg·K) at 100 °C to 2130 J/(kg·K) at 500 °C, but a high-p it has a minimum (e.g. at 200 kPa, c_p =2180 J/(kg·K) as saturated vapour at 120 °C, drops to a minimum c_p =2010 J/(kg·K) at 230 °C, and grows to match $c_p(T,p$ →0) at high-T, say c_p =2130 J/(kg·K) at 500 °C). For the perfect gas model in adiabatic expansion of steam, a value of γ = c_p/c_v =1.33 is recommended.