

## planetmath.org

Math for the people, by the people.

## Lasker-Noether theorem

 ${\bf Canonical\ name} \quad {\bf Lasker Noether Theorem}$ 

Date of creation 2013-03-22 18:19:53 Last modified on 2013-03-22 18:19:53

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 7

Author CWoo (3771)
Entry type Theorem
Classification msc 13C99
Defines Lasker ring

**Theorem 1** (Lasker-Noether). Let R be a commutative Noetherian ring with 1. Every ideal in R is http://planetmath.org/DecomposableIdealdecomposable.

The theorem can be proved in two steps:

**Proposition 1.** Every ideal in R can be written as a finite intersection of irreducible ideals

Proof. Let S be the set of all ideals of a Noetherian ring R which can not be written as a finite intersection of irreducible ideals. Suppose  $S \neq \emptyset$ . Then any chain  $I_1 \subseteq I_2 \subseteq \cdots$  in S must terminate in a finite number of steps, as R is Noetherian. Say  $I = I_n$  is the maxmimal element of this chain. Since  $I \in S$ , I itself can not be irreducible, so that  $I = J \cap K$  where J and K are ideals strictly containing I. Now, if  $J \in S$ , then then I would not be maximal in the chain  $I_1 \subseteq I_2 \subseteq \cdots$ . Therefore,  $J \notin S$ . Similarly,  $K \notin S$ . By the definition of S, J and K are both finite intersections of irreducible ideals. But this would imply that  $I \notin S$ , a contradiction. So  $S = \emptyset$  and we are done.

## **Proposition 2.** Every irreducible ideal in R is primary

*Proof.* Suppose I is irreducible and  $ab \in I$ . We want to show that either  $a \in I$ , or some power n of b is in I. Define  $J_i = I:(b^i)$ , the quotient of ideals I and  $(b^i)$ . Since

$$\cdots \subseteq (b^n) \subseteq \cdots \subseteq (b^2) \subseteq (b),$$

we have, by one of the rules on quotients of ideals, an ascending chain of ideals

$$J_1 \subset J_2 \subset \cdots \subset J_n \subset \cdots$$

Since R is Noetherian,  $J := J_n = J_m$  for all m > n. Next, define  $K = (b^n) + I$ , the sum of ideals  $(b^n)$  and I. We want to show that  $I = J \cap K$ .

First, it is clear that  $I \subseteq J$  and  $I \subseteq K$ , which takes care of one of the inclusions. Now, suppose  $r \in J \cap K$ . Then  $r = s + tb^n$ , where  $s \in I$  and  $t \in R$ , and  $rb^n \in I$ . So,  $rb^n = sb^n + tb^{2n}$ . Now,  $t \in I : (b^{2n})$ , so  $t \in I : (b^n)$ . But this means that  $r = s + tb^n \in I$ , and this proves the other inclusion.

Since I is irreducible, either I = J or I = K. We analyze the two cases below:

• If  $I = J = I:(b^n)$ , then I = I:(b) in particular, since  $I \subseteq I:(b) \subseteq I:(b^n)$ . As  $ab \in I$  by assumption,  $a \in I:(b) = I$ .

• If  $I = K = (b^n) + I$ , then  $b^n \in I$ .

This completes the proof.

## Remarks.

• The above theorem can be generalized to any submodule of a finitely generated module over a commutative Noetherian ring with 1.

• A ring is said to be *Lasker* if every ideal is decomposable. The theorem above says that every commutative Noetherian ring with 1 is Lasker. There are Lasker rings that are not Noetherian.