Introduction to Data Structures

- Data Structure is a way of storing and organizing data in computer memory so that it can be used efficiently.
- Types of Data Structure:

Primitive Data Structures

• **Primitive Data Structures** are those which can store only one value of one type.

Non-Primitive Data Structures

• Non-Primitive Data Structures are those which can store multiple values of similar or dissimilar types.

Linear Data Structures

Linear Data Structures store the elements(values) in linear manner.
Here, each element is connected to one other element.

Non-Linear Data Structures

• **Non-Linear Data Structures** store the elements (values) in non-linear manner. Here, each element is connected to n- other elements.

Data Structures Hierarchy

Introduction to Algorithms

- Algorithm is a collection or sequence of steps followed to performed a computational task. In simple words we can say it is a step-by-step process to solve a given computer problem.
- Types of Algorithms:

Simple Algorithm

An algorithm that contains only simple steps is called simple algorithm.

Simple Algorithm to Find Sum of Two Entered Numbers:

Let **n1** will store the first number entered through keyboard and **n2** will store the second number entered through keyboard and **s** will store their sum, then the algorithm is given below:

- 1. Read n1.
- 2. Read n2.
- 3. Set s = n1 + n2.
- 4. Print, sum of n1 and n2 is s.
- 5. Exit.

Conditional Algorithm

 An algorithm that contains one or more conditional step is called conditional algorithm.

Conditional Algorithm to Find Greatest of Two Entered Numbers:

Let **n1** will store the first number entered through keyboard and **n2** will store the second number entered through keyboard, then the algorithm is given below:

- 1. Read n1.
- 2. Read n2.
- 3. Check if n1 > n2, then:
 - a) Print, n1 is greater than n2.
 - b) Otherwise, check if n2 > n1, then:
 - i. Print, n2 is greater than n1.
 - c) Otherwise,
 - i. Print, n1 is equal to n2.
- 4. Exit.

Iterative Algorithm

- An algorithm that contains one or more repetitional step is called iterative algorithm.
- Iterative algorithm are further of two types:
 - Range Based Iteration Algorithm: An algorithm that contains one or more ranged based repetitional step is called range based iterative algorithm.
 - Condition Based Iteration Algorithm: An algorithm that contains one or more condition based repetition step is called condition based iterative algorithm.

Iterative Algorithm

Range Based Iterative Algorithm to Print First n Natural Numbers:

Let **n** will store the last natural number entered through keyboard, and **i** will start with 1 for iteration then the algorithm is given below:

- 1. Read n.
- 2. Repeat for i = 1 to na) Print, i
- 3. Exit.

Iterative Algorithm

Condition Based Iterative Algorithm to Count Digits in Entered Number:

Let **n** will store the number entered through keyboard, **c** will store the count of digits of entered number, **p** will store the copy of **n**, and then the algorithm is given below:

- 1. Read n.
- 2. Copy n to p
- 3. Set c = 0.
- 4. Repeat while n > 0. then
 - a) Set c = c + 1.
 - b) Set n = n / 10.
- 5. Print, number of digits of given number p is c.
- 6. Exit.

Recursive Algorithm

 An algorithm that contains one or more recursive step is called recursive algorithm.

Recursive Algorithm to Find Factorial of Entered Number:

Let **n** will store the number entered through keyboard, **f** will store the factorial value of entered number, and then the algorithm is given below:

- 1. Read n.
- 2. factorial(n)
 - a) Check if n > 1, then:
 - i. return n * factorial(n 1)
 - b) Otherwise,
 - i. return 1
- 3. Set f = factorial(n)
- 4. Print, factorial of n is f.
- 5. Exit