Concepts of programming languages Prolog

Winand, Roald, Sjoerd, Alexey and Anvar

Proof Search

- ▶ The manner in which a query is handled
- Knowledge Database is read from top to bottom
- Tries to unify with facts and heads of rules
- ▶ At first valid encounter, unification is carried out
- Variables are replaced by internal variables (e.g. _G2145)
- A search is done in a depth first fashion in a tree-shaped structure

Backtracking

- When a search path is not valid, backtracking occurs:
 Traversing the tree in opposite direction until a variable binding (choise point) is reached
- ▶ If a result is found, one can choose to continue the search by using backtracking, using the; command

A simple example (1)

Knowledge database:

```
u(a).

u(b).

v(a).

v(b).

w(b).

z(X):-u(X),v(X),w(X).
```

Figure 1: Knowledge database

A simple example (2)

A more complicated example (1)

Knowledge database:

```
loves(henk, maria).
loves(theo, maria).
jealous(X,Y):-loves(X,Z),loves(Y,Z).
```

Figure 2: Knowledge database

A more complicated example (2)

A more complicated example (3)

- Results are not always as expected
- ▶ jealous(X,Y):

```
?- jealous(X,Y)
= Y, Y = henk :
= henk.
= theo :
= theo.
= henk ;
= Y. Y = theo.
```

Figure 3: jealous(X,Y)

jealous(X,X)

```
iealous(X,X)
```


Powerful basis for logical inference

- Combining unification and backtracking to search trees results in a fast tool for logical inference
- Understanding of underlying concepts is important to understand results produced
- Various implementations might grant diffrent results, when cosidering a query like:

$$?- father(X) = X$$

