1

TEMA 5. ORGANIZACIÓN DE LA MEMORIA DE UN COMPUTADOR

INTRODUCCIÓN

- Objetivos
 - Analizar la organización de la memoria
 - Organización por niveles
 - ➤ Ventajas de cada uno de los niveles
 - ➤ Influencia sobre el rendimiento del computador
 - Soporte Hardware para su implementación

Visión global

- Componentes básicos de la Estructura VON NEUMAN
 - Unidad de Cálculo
 - ➤ Unidad de Control
 - > Unidad de Memoria
 - ➤ Unidades de E/S

Papel de la Unidad de Memoria de un Computador

- Almacenamiento de
 - Programas y Datos de usuario(s)
 - Programas y Datos del Sistema

Características de la Memoria

- Parámetros a tener en cuenta
 - Capacidad (Kbytes o Mbytes)
 - ➤ Velocidad de Acceso (miliseg, microseg. o nanoseg)
 - Costo (por bit o byte)
- Condiciones óptimas (imposibilidad de cumplir todas)
 - ➤ Gran capacidad (Gigabytes)
 - Rápidas (mínimo nanoseg.)
 - **➤** Baratas

- Una primera clasificación
 - > Memoria Principal
 - * Acceso directo por la CPU
 - * Almacena los programas que se están ejecutando
 - * De tipo Semiconductora
 - Estáticas (SRAM) o Dinámicas (DRAM)
 - De Lectura/Escritura o de solo Lectura (ROM)
 - * Capacidad del orden de Megas
 - * Tiempos de acceso de decenas de nanosegundos
 - * Costo alto y proporcional a la velocidad de acceso
 - Memoria Secundaria o Auxiliar
 - * Acceso a través de Interfaces
 - * Almacena programas y datos no ejecutándose
 - * De tipo Magnético u óptico
 - Discos y Cintas
 - * Capacidades del orden de Gigas
 - * Tiempos de acceso de miliseg.
 - * Baratas y proporcional a la capacidad

• Organización mínima de la Memoria Principal

- Memoria de Acceso Aleatorio de R/W (RAM)
 - Líneas de dirección
 - ➤ Líneas de Datos (1/0)
 - Líneas de Habilitación (CS)
 - ➤ Línea de control Lectura/Escritura (R/W)

(a) Diagrama de bloques

CS1	$\overline{\text{CS2}}$	RD	WR	Función de memoria	Estado del barraje de datos
0	0	X	X	Inhibir	Alta impedancia
0	1	X	X	Inhibir	Alta impedancia
i	0	0	0	Inhibir	Alta impedancia
i	0	0	1	Leer	Entrada de datos al RAM
1	0	1	X	Escribir	Salida de datos al RAM
1	1	X	X	Inhibir	Alta impedancia

(b) Tabla de función

CIRCUITO RAM TÍPICO

- Memoria de Acceso Aleatorio de solo Lectura (ROM)
 - Líneas de dirección
 - Líneas de Datos (O)
 - Líneas de Habilitación (CS)

CIRCUITO ROM TÍPICO

Mapa de direcciones

	S 22	barraje de dirección									
Componente	Dirección hexadecimal	10	9	8	7	6	5	4	3	2	1
RAM 1	0000-007F	0	0	0	х	х	х	х	х	X	x
RAM 2	0080-00FF	0	, 0	1	X	X	x	х	х	X	x
RAM 3	0100-017F	0	1	0	X	X	X	X	x	X	х
RAM 4	0180-01FF	0	1	1	X	X	X	X	x	X	x
ROM	0200-03FF	1	x	x	X	X	X	X	X	X	x

- Organizaciones de la Memoria para un Sistema Microprocesador

CONEXIONES DE MEMORIA AL MICROPROCESADOR

JERARQUÍA DE LA MEMORIA

- Definición amplia de Memoria "Todo componente que almacena información en la computadora"
 - Registros
 - Memoria Principal
 - Discos Magnéticos u ópticos
 - Cintas Magnéticas
 - etc...

Clasificación Jerárquica

- Tiene en cuenta varias cuestiones
 - ➤ Valores de sus parámetros (Capacidad, Rapidez y Costo)
 - Forma de acceso de la CPU (Directo o a través de Interfaces)
- Memoria de Reserva (M. Caché)
 - Almacenar la información que más se utiliza
 - > Instrucciones y Datos
 - Debe ser muy rápida
 - No es muy grande por ser costosa
 - Se accede directamente desde la CPU y la M. Principal

Relación entre los parámetros de cada nivel Jerárquico

- A mayor nivel jerárquico mayor rapidez
- A mayor nivel jerárquico mayor costo
- A menor nivel jerárquico mayor capacidad

Necesidad de un Módulo Administrador de la Memoria (S.O.)

- La amplitud obliga a su optimización
- Programas que necesitan más memoria de la existente
- Complejidad en Sistemas Multiusuarios

ORGANIZACIÓN JERARAQUICA DE LA MEMORIA

MEMORIA ASOCIATIVA

"Memoria de acceso para la lectura por contenido y no por dirección (CAM)"

- Diferencia con el tipo de memorias visto hasta ahora
 - Acceso aleatorio por dirección
 - Acceso Secuencial
 - Tipo LIFO o FIFO
- Casos en los que interesa este tipo de acceso
 - Búsqueda en base de datos
 - Obtención de datos de una cuenta a partir del nombre
- Tipo de búsqueda del contenido
 - De forma secuencial
 - Barrido de direcciones y comparación de contenido
 - Lenta aunque sencilla y económica
 - * Memoria RAM, Contador y Comparador
 - De forma paralela
 - Comparación de todos los contenidos a la vez
 - Rápida pero compleja y costosa

Características que se pretenden de este tipo de Memoria

- Acceso de lectura por contenido
 - > por palabra entera
 - > por campo en una palabra
- Muy rápidas
- El acceso para escritura puede ser
 - > por dirección
 - > se almacena en cualquier posición vacía

ORGANIZACIÓN DEL HARDWARE

- La búsqueda debe ser rápida, lo que complica la circuitería
 - Incluir la comparación
 - Incluir el estado de las posiciones
 - etc..
- Componentes de una Memoria Asociativa
 - Matriz de memoria que incluye
 - > Celdas de almacenamiento (m x n)
 - > Circuitería de comparación

- Registro de Argumento (A)
 - Contiene el dato o instrucción que se busca (n)
- Registro Clave (**K**)
 - Para emmascarar parte del argumento de búsqueda (m)
- Registro Equiparador (M)
 - ➤ Indica las posiciones que tienen ese contenido (m)

Ejemplo de búsqueda

- **A** 101 111100
- **K** 111 000000
- palabra 1 100 111100 $\mathbf{M_1} = 0$
- palabra 2 $101\ 000001\ \mathbf{M}_2 = 1$
-

DIAGRAMA DE BLOQUES DE UNA MEMORIA ASOCIATIVA

• Organización de la matriz

- Conjunto de celdas asociativas (C_{ij})
- Registros A, K y M

MATRIZ ASOCIATIVA DE M PALABRAS DE N CELDAS

Estructura de la celda básica

- Biestable de almacenamiento
- Lógica de comparación y seguimiento
- Lógica para escritura

CELDA DE MEMORIA ASOCIATIVA

Lógica de comparación o equiparamiento

- Función de igualdad de dos bits: x_j $x_j = A_j F_{ij} + A'_j F'_{ij}$ $A_j = \text{bit j del registro de Argumento}$ $F_{ij} = \text{bit j de la palabra i de almacenamiento}$
- Función de equiparamiento de la palabra almacenada
 M_i=x₁x₂x₃x₄...x_n
 M_i = bit i del Registro de Equiparamiento M
- Si se tiene en cuenta la Máscara $M_i = (x_1 + K'_1)(x_2 + K'_2)(x_3 + K'_3).....(x_n + K'_n)$ K_j = bit j del Registro de enmascaramiento

ÁREA DE CONOCIMIENTO DE ARQUITECTURA Y TECNOLOGÍA DE COMPUTADORES - DPTO. ELECTROTECNIA Y ELECTRÓNICA

LOGICA DE EQUIPARAMIENTO

Operación de lectura

"Se busca una información cuya etiqueta coincida con la que se presenta"

- Se presenta la información de entrada
 - palabra de búsqueda (n) en el R. Argumento
 - palabra de máscara (n) en R. Clave
 - * El n° de bits a comparar siempre es menor que n
- Testeo de los bits del Registro M (m)
 - \triangleright Si todos a 0 => No se encuentra (Fallo)
 - \triangleright Algunos M_i a 1 => si se encuentra (Éxito)
 - Lectura secuencial de las posiciones con su M igual a 1 * Problema de lentitud
- Si solo puede estar en una posición; caso de que esté
 - Definición de la función de decisión V:

$$V = M_1 + M_2 + M_3 + \dots + M_m$$

M_i => bits del Registro de equiparamiento

➤ Generación de la salida en las líneas de Datos

$$\begin{aligned} &D_{j} = F_{1j}M_{1} + F_{2j}M_{2} + F_{3j}M_{3} + ... + F_{mj}M_{m} \\ &j = 1, 2, 3,, n \end{aligned}$$

- \triangleright Si V = 1 se lee los datos en las líneas de salida
- \triangleright Si V = 0 se produce fallo de lectura

Operación de escritura

- Necesidad de esta función para introducir la información
- Dependiendo de la aplicación puede hacerse
 - > Direccionando las posiciones de forma secuencial
 - Similar a una de acceso aleatorio
 - ➤ Solo accediendo a aquellas posiciones vacías
 - * Registro de Rótulo **R**, de m bits (tantos como palabras)

 $R_i = 1 \Rightarrow$ la posición está ocupada

 $R_i = 0 \Rightarrow$ la posición está libre

- * Se testean los bits de R hasta encontrar el primer 0
 Se escribe la palabra
 Se pone el bit de R a 1
- Los R_i se deben usar también como máscara
 - * Impide la lectura de una información no válida

Procesador Asociativo

- Computador cuya Memoria es de tipo Asociativo
 - Cada celda es asociada a sus vecinas para manejar las operaciones Aritméticas usuales, las Lógicas y de Desplazamiento
 - Las operaciones se computan en paralelo
 - Requerimientos excesivos de circuitos en cada celda

ORGANIZACIÓN DE UNA MEMORIA ASOCIATIVA DE 2*2 PALABRAS

MEMORIA VIRTUAL

Sistemas de Programa Almacenado

- El programa debe estar en Memoria Principal
 - > Su tamaño menor que la memoria física
- Problemas con Sistemas multitareas y multiusuarios
 - > Imposibilidad de disponer de tanta memoria
- En un principio el programa está en Memoria Secundaria

Sistemas con Memoria Virtual

- Permite ejecutar programas de gran tamaño de la M. Secundaria
- El Programa(s) está (n)
 - Completos (s) está(n) en M. Secundaria
 - Parte que se ejecuta en M. Principal
- La CPU lanza direcciones virtuales para captar Inst. y/o Datos
 - > Conversión a direcciones físicas
 - ➤ Necesidad de Hardware apropiado
- Si no se encuentra en M. Principal
 - > Traerlo desde M. Secundaria

- Inconveniente del costo temporal de acceso a M. Secundaria
 - > Cuando se producen fallos de acceso
- Es una combinación e software y hardware
 - > Software de administración
 - ➤ Hardware de mapeo

Espacio de Dirección y de Memoria

- Espacio de Dirección
 - > Conjunto de direcciones virtuales, o direcciones que genera el programa
- Espacio de Memoria
 - ➤ Conjunto de localizaciones, o direcciones físicas de la memoria
- En los Sistemas de Programa Almacenado clásico coinciden
- En los Sistemas de Memoria Virtual el Espacio de Dirección es mayor

• Ejemplo de un Computador con Memoria Virtual

- Memoria Principal (física) = 32K (15 bits de dirección)
- Memoria Auxiliar = 1.024K (20 bits de dirección)
 - Espacio de dirección N = 1024 K
 - Espacio de Memoria M = 32K
- Sistema multiprogramado
 - > Se cargan varios trozos de Programas y Datos
 - * No se cargan siempre en la misma posición
 - * El Programa y los Datos no tienen que ser contiguos

RELACIÓN ENTRE ESPACIO DE DIRECCIÓN Y DE MEMORIA

- Necesidad de traducir direcciones virtuales a físicas
 - > De acuerdo con la dirección virtual
 - De acuerdo con el lugar donde se ha cargado
- Existencia de una Tabla de Mapeo de Memoria
 - > Se puede almacenar en M. separada
 - * Se necesita ese módulo
 - * Tiempo de acceso extra
 - > Se puede almacenar en M. Principal
 - * Se necesitan dos accesos a memoria
 - * Mucho más lenta
 - > Utilizar memoria muy rápida para realizar esa traducción

TABLA DE MEMORIA PARA MAPEAR UNA DIRECCIÓN VIRTUAL

Mapeo de dirección

- División de los dos espacios en trozos
 - ➤ Página para el Espacio de Direcciones
 - ➤ Bloques para el Espacio de Memoria
 - Ambos tienen un tamaño fijo e igual
- Los programas también se dividen en páginas
 - El traslado de M. Secundaria a Principal es por página
 - Los tamaños típicos de páginas son: 512B, 1KB, 2KB ó 4KB
- Ejemplo: (página de 1K.)
 - ➤ Programa de 8 páginas (8 KB) => 13 bits de dirección
 - ➤ Memoria con 4 bloques (4 íCB) => 12 bits
- Significado de una dirección virtual
 - > p bits más significativos indican el nº de página
 - Resto de los bits la posición dentro de la página
 - ightharpoonup En este caso p = 3 (los 3 msb)

dirección: <u>101</u>1000000001 ==> página 5, posición 513

ragina o
Página 1
Página 2
Página 3
Página 4
Página 5
Página 6
Página 7
Espacio de dire

Página 0

Espacio	de	dirección
N = 8K	= 2	13

Bloque 0
Bloque 1
Bloque 2
Bloque 3

Espacio de memoria $M = 4K = 2^{12}$

- Mapeo mediante Tabla de página de Memoria
 - Cada posición (que indica no de página) contiene
 - * No de bloque en el que está
 - * bit de presencia (1 = SI, O = NO)
 - > Solo se necesita traducir de página a bloque
 - * La búsqueda se hace accediendo a la dirección
 - La posición en la página y el bloque es la misma
 - La dirección física es el nº de bloque más la posición

TABLA DE MEMORIA EN UN SISTEMA DE PÁGINA

- Inconveniente del tamaño de la tabla
 - > Se necesitan tantas posiciones como páginas
- Inconvenientes de la M. Virtual paginada
 - Penalización cuando la página no está en M. principal
 - * Acceso a Memoria Secundaria
 - * Algoritmos de reemplazo
- Mejora del tamaño de la tabla
 - La tabla tiene tantas posiciones como bloques (menor)
 - En cada una está el nº de página que se contiene
- Proceso de búsqueda
 - > Se averigua si existe esa página y en que posición está
 - ➤ Si se hace secuencialmente es muy lenta

■ Tabla de Página de Memoria Asociativa

Ineficiencia de memoria de acceso aleatorio para la tabla de página

- Con M. Asociativa es parecida a la vista últimamente
 - > Tantas posiciones como bloques
 - La búsqueda se hace por contenido (asociativa) * Muy rápida
 - Cada palabra contiene dos campos

 - * 1° indica el nº de página * 2° indica el nº de bloque
 - Detección rápida si está presente una página
 - * SI ==> genera dirección física
 - nº de bloque mas posición en la página
 - * NO ==> genera un remplazo de página
 - algoritmos de reemplazo

Para el mismo ejemplo

TABLA DE PÁGINA DE MEMORIA ASOCIATIVA

Reemplazo de página

- El Software de administración de memoria decide
 - Que página de memoria hay que retirar
 - Cuándo una página es transferida de M. Auxiliar a Principal
 - En que lugar de M. Principal se coloca la página
- Carga inicial de unas páginas en M. Principal
 - Indicación en la tabla de página de su posición
- Fallo de página
 - Cuando se referencia una página que está en M. Auxiliar
- Acciones en presencia de un fallo de página
 - Suspensión de ejecución de programa (estado de espera)
 - Lanzar un proceso de E/S a un procesador de E/S
 - * Operación de traer la página necesaria a M. P.
 - Paso de estado de listo cuando se completa la E/S
- Pasos de transferencia de página de M. Auxiliar a Principal
 - PRetirada de una página si la M. Principal está llena (transferencia a M. A. si ha cambiado)
 - * Algoritmos de reemplazo
 - > Transferencia de la página y actualización de tabla
- Algoritmos de reemplazo
 - > Tipo FIFO; elimina página que entró primero
 - * Existencia de una PILA (FIFO) de página
 - > Tipo LRU; elimina la menos recientemente utilizada
 - * Asocia un contador a cada posición
 - Incremento periódico
 - A cero cada vez que se accede a la posición
 - * Se elige la que tiene el valor más alto

MEMORIA DE RESERVA

Localidad de Referencia

"Las referencias a memoria en un intervalo de tiempo suelen estar confinadas en unas áreas localizadas de memoria"

- Los bucles
- Las subrutinas
- La secuencialidad propia de los programas
- Acceso a tablas de datos

Forma de acelerar la ejecución de un Programa

- Colocando en una memoria rápida los trozos y datos activos de programa

■ Memoria de Reserva

- Memoria colocada entre la CPU y M. Principal
- Contiene los trozos y datos activos de programa
- Tiene que ser más rápida que la M. P.
- Siempre es de menor capacidad que la M. P.

Operación de la Memoria de Reserva

- La CPU lanza una dirección y busca en la M. de Reserva
 - > Si está, toma su contenido y continúa
 - ➤ Si no está
 - * Accede a la M. Principal y toma el dato
 - * Trae de la M. Principal a la de Reserva un bloque (bloque que contiene la palabra accesada)

Diferencias entre M. Virtual y M. de Reserva

- Memoria de Reserva
 - > Tiene lo que se utiliza mas frecuentemente (datos e Instr.)
 - ➤ La CPU tiene acceso directo
 - Tiempo de acceso del orden de 5 a 10 veces mas pequeño
 - Tamaño de bloque pequeño (4 a 16 palabras)
 - La administración es totalmente Hardware
- Memoria Virtual
 - > Tiene las partes de programa y datos no usados en ese momento
 - La CPU accede a través de un proceso de E/S
 - > Tiempo de acceso del orden de 5 a 10 veces más grande
 - Tamaño de bloque grande (de 64 a 4K palabras)
 - La administración es parte Hardware y parte Software

Tasa de Acierto

- Si la CPU encuentra la palabra en la M. de R. ----> Acierto
- Si la CPU no encuentra la palabra en la M. de R.—> Fallo

Tasa Acierto = $n^o A / (A+F)$

Ejemplo

- M. Principal con tiempo de acceso 1000 ns
- M. de Reserva con tiempo de acceso de 100 ns
- Para una tasa de Acierto de 0.9 tiempo de acceso medio de 200 ns

Mapeo de Memoria

- Manera de relacionar las palabras de M. Principal y M. de Reserva
- Tipos
 - ➤ Mapeo Asociativo
 - ➤ Mapeo Directo
 - ➤ Mapeo Asociativo de Conjunto

Ejemplo a utilizar

EJEMPLO DE MEMORIA DE RESERVA

Mapeo Asociativo

- Se implementa con una memoria Asociativa
 - Rápida pero costosa
- En cada posición de la M. de Reserva se almacena
 - Dirección
 - Datos de esa dirección
- La CPU lanza una dirección de 15 bits en el R. Argumento
 - ➤ Si se encuentra se toman los datos
 - > Si no se encuentra
 - Se accede a M. Principal para traer dirección y datos
 - Algoritmo de reemplazo si la M. de R. está llena

MAPEO ASOCIATIVO DE LA MEMORIA DE RESERVA

Mapeo directo

- Se implementa con M. de acceso Aleatorio
 - Poco costosa y suficientemente rápida de acceso
 - ➤ No es muy eficiente
- La dirección se divide en dos campos

 - Campo índice (p.e. 9 bits)
 * nº de bits que seleccionan cualquier posición de la M.R.
 - > Campo rótulo o de identificación (ej. 6 bits)
- En cada posición M. de Reserva se almacena
 - > Un campo para el rótulo
 - Resto para los datos
- Condición restrictiva de posicionar datos en la M. de Reserva
 - La dirección de M.R. es la que da los bits del campo Índice
 - No puede haber en M. R. dos direcciones del mismo Índice

RELACIONES DE DIRECCIONAMIENTO ENTRE M.P. Y M. R.

- La búsqueda
 - Los bits del Indice seleccionan la dirección de M. R.
 - Compara el rótulo de la dirección con rótulo en la M. R.
 - * Si coincide toma el dato
 - * Si no coincide se sustituye

Dirección o memoria	de Datos de memoria
00000	1220
00777	2 3 4 0
01000	3 4 5 0
:	
01777	4 5 6 0
02000	5 6 7 0
02777	6710

(a) Memoria principal

idice	Rótulo	Datos
000	0.0	1 2 2 0
İ	ļ	
<u> </u>	0.2	

(b) Memoria de reserva

MEMORIA DE RESERVA CON MAPEO DIRECTO

Tamaño de bloque

- > Varias palabras en un mismo bloque
- Campos de una dirección
 Rótulo-Índice(Bloque-Palabra)
- bits asociados a bloque
- bits asociados a palabra = posición en el bloque
- Búsqueda
 - > Se busca mediante los bits de Índice
 - > Se compara rótulos
 - * Si coinciden localiza la palabra
 - * Si no cambio el bloque completo
- Ventajas e incovenientes
 - Mayor probabilidad de acierto al tener N palabras seguidas
 - Mayor tiempo de intercambio en caso de fallo

	Indice	Rótulo	Datos
	000	0 1	3 4 5 0
Bloque 0			
	007	0.1	6578
	010		
Bloque 1			
	017		
	770	0.2	
Bloque 6.	3		
	777	0.2	6710

MAPEO DIRECTO CON BLOQUE DE 8 PALABRAS

Mapeo Asociativo de Conjunto

- Toma ventajas del primero y del segundo
 - ➤ Parte con Mapeo Asociativo
 - Parte de Mapeo Directo
- Las posiciones de M.R. contienen varias palabras con distintos Rótulos
 - No es lo mismo que lo visto de bloque
- Búsqueda
 - Con el índice se selecciona la posición en M.R.
 - > De manera Asociativa se comprueba si el rótulo esta
 - Si lo encuentra, toma el dato
 - Si no, lanza algoritmo de cambio (LRU o FIFO)

Indice	Rótulo	Datos	Rótulo	Datos
000	o i	3 4 5 0	0.2	5670
-				
777	0 2	6710	0.0	2 3 4 0

M. DE RESERVA CON MAPEO ASOCIATIVO DE DOS CONJUNTOS

ÁREA DE CONOCIMIENTO DE ARQUITECTURA Y TECNOLOGÍA DE CO

Escritura en la Memoria de Reserva

- En un proceso de escritura en la M. de R. no esta involucrada la M.P.
 - Falta de coherencia en los datos al no coincidir
- Mecanismos de mantener la coherencia
 - Método de escritura directa
 - * Se actualiza en M. P. y en paralelo en M. de R.
 - * Mantiene la coherencia (necesaria en DMA)
 - Método de re-escritura
 - * Se actualiza solo la posición de M. de R.
 - * Se marca con un bit de bandera
 - * Al retirarla de la reserva se escribirá en M. P.
 - * Falta de coherencia

Iniciación de la Memoria de Reserva

- Se parte de una situación de memoria vacía
 - bit asociado a cada posición indicando validez (0 = no válido)
 - > Se va llenando a medida de la ocurrencia de fallos (1 = válido)

HARDWARE DE ADMINISTRACION DE LA MEMORIA

"Los Sistemas Multitareas y Multiusuarios implican una gran demanda de la Memoria del computador, lo que implica la necesidad de una administración"

Módulo de Manejo de Memoria

- Hardware de administración
- Software de administración (Sistema Operativo)

Objetivos básicos de una Unidad de Administración de Memoria

- Facilidad de relocalización y traducción de D. Lógicas a Físicas
- Compartición de programas comunes pos diferentes usuarios
- Protección de acceso de la información
 - > De otros usuarios
 - > De las funciones del Sistema

Partición de los programas

- La página como unidad de partición
 - No tiene en cuenta coherencia lógica
 - > p.e. parte una rutina en páginas distintas

- El segmento como Unidad de partición

"Conjunto de Instrucciones y/o Datos relacionados entre sí lógicamente"

- > Se basa en cierta coherencia lógica
- > p. e. una rutina, una matriz de datos, etc...
- ➤ Pueden ser generados por el programador o por el S.O.

Dirección lógica

- Dirección generada por un programa segmentado
 - > Similar a dirección virtual
- Diferencias con la dirección virtual
 - La longitud del segmento es variable, la de página es fija
 - La D. Lógica puede ser mayor, igual o menor que la D. Física

Mapeo de Direcciones lógicas a Direcciones Físicas

- Mapeo de Página Segmentada
 - **➤ IBM370**
- Mapeo por Registros de Segmento
 - > PDP 11, Z800: i80X86

MAPEO DE PÁGINA SEGMENTADA

La longitud del segmento es variable

- Imposiblidad de predecir los bits necesarios de dirección
- Se divide en páginas que sí tienen igual tamaño
- La longitud de un segmento se asocia a un po. al da náginas

Campos de la dirección lógica

- Campo de segmento (nº de segmento)
- Campo de página (nº página del segmento)
- Campo de palabra (posición en la página)

MAPEO DE DIRECCIÓN LÓGICA A FÍSICA

Mapeo de direcciones Lógicas a Físicas

segmento-página-palabra ====> bloque-palabra

- Tabla de segmento
 - Se direcciona por el nº de segmento
 - Se obtiene la dirección de la página 0
 - > Se le suma al dato anterior el nº de página
 - Tabla de página
 - > Se direcciona con el dato anterior
 - > Se obtiene la dirección del bloque
 - Ubicación de las tablas
 - En Memoria Aleatoria
 - * Dos memorias pequeñas adicionales
 - * En Memoria Principal
 - Inconvenientes en M. Aleatoria
 - > Cada dirección supone TRES accesos a memoria
 - Es muy lento
 - En Memoria de tipo Asociativa
 - > Como entrada de equiparación
 - * Segmento y página

- Datos de salida
 - * Si está, el bloque
 - * Si no esta reemplazo
- Muy rápida

Registro de argumento

Segmento	Página	Bloque

MEMORIA ASOCIATIVA DE MAPEO

Ejemplo

- Dirección Lógica de 20 bits
 - ➤ 4 bits para nº segmento (de 0 a 15)
 - ➤ 8 para nº página en el segmento (de 0 a 255)
 - ➤ 8 para posición dentro de la página (de 0 a 255)
- Tamaño posible de los segmentos
 - Más pequeño: 1 sola página (256 palabras)
 - Más grande: 256 paginas (64K palabras)
- Dirección Física de 20 bits
 - ➤ 12 bits para el nº de bloque (de 0 a 2047)
 - ➤ 8 bits para posición dentro del bloque (de 0 a 255)
- Programa ejemplo
 - Un solo segmento de 5 páginas
 - Direcciones lógicas de la 60000 (hex) a la 604FF (hex)
 - > Asignación de los bloques de memoria en la figura

Dirección hexadecimal	Número de página
60000	Página 0
60100	Página 1
60200	Página 2
60300	Página 3
60400 604FF	Página 4

Segmento	Página	Bloque
6	00	012
6	01	000
6	02	019
6	03	053
6	04	A61

- (a) Asignación de dirección lógica
- (b) Página segmentada versus asignación de bloques de memoria.

ASIGNACIÓN DE MEMORIA LÓGICA A FÍSICA

Dirección lógica (en hexadecimal)

6	02	7E

TABLA DE SEGMENTOS Y PÁGINAS, Y TABLA ASOCIATIVA

(a) Tabla de mapeo de segmento y página

02	019
	0.7
04	A 61
	04

(b) Mapeo de memoria asociativa

Posibilidades del Sistema de Administración de Memoria

- Asignar cualquier número de páginas a cada uno de los segmentos
- Cada página puede estar mapeada en cualquier bloque de la M. Física
- Las páginas pueden moverse a otros bloques en función de necesidades
 - Actualizar el nº de bloque en la Tabla de Página
- Los segmentos pueden crecer o decrecer sin afectar a los otros
- Segmentos diferentes pueden usar el mismo bloque
 - ➤ Compartir programas varios usuarios
 - En el ejemplo el bloque nº 12

MAPEO CON REGISTROS DE SEGMENTO

"Posibles situaciones en que la M. Física es mayor que la dirección que el programa puede direccionar directamente"

- Nº de bits de la D. Física es mayor que el de la D. Lógica

Mapeo de direcciones

- Traduce dirección Lógica en Física
 - ➤ Mediante unos Registros de Segmentos
 - Deben de ser de acceso rápido (internos a la CPU)
- Campos de la dirección Lógica
 - > Segmento: indica el registro referencia
 - Página: indica el nº de página
 - Palabra: indica posición en la página

Contenido Reg. +
$$n^o$$
 pag. ===> n^o de bloque

- Páginas seguidas corresponden a bloques seguidos

MAPEO CON REGISTROS DE SEGMENTO

(a) Mapeo de dirección de lógico a físico

(b) Ejemplo numérico (todos los números están en octal)

PROTECCIÓN DE LA MEMORIA

- Dónde se establece la protección
 - En la Dirección Física
 - Cada Bloque tiene asignados unos bits de protección
 - ➤ Al mover una página de bloque se actualizan esos bits
 - En la Dirección Lógica
 - > Se incluye información en la tabla o Registro de segmento
- Descriptor :

"Contenido de cada entrada de una Tabla de Segmento o de un Registro de Segmento"

I Dirección base I Longitud I Protección I

- Campos de un descriptor típico
 - Dirección base
 - * dirección base de Tabla de página (página segmentada)
 - * dirección de bloque base (registro de segmento)
 - Longitud, da el tamaño del segmento
 - * Su comparación con nº de página evita accesos fuera
 - Protección; da derechos de acceso a ese segmento
 * Para página segmentada cada una llevará su protección

Derechos de acceso típicos

- Lectura completa y privilegios de escritura
- Solo lectura (protección de escritura)
- Ejecución solamente (protección de programa)
- Sistema solamente (protección de la operación del sistema)