rientation Underlying Event Upshot

Introduction to Event Generators

Frank Krauss

Institute for Particle Physics Phenomenology Durham University

February 4, 2010

Topics of the lectures

1 Lecture 1: The Monte Carlo Principle

2 Lecture 2: Parton level event generation

3 Lecture 3: *Dressing the Partons*

Lecture 4: Modelling beyond Perturbation Theory

Thanks to

- My fellow MC authors, especially S.Gieseke, K.Hamilton, L.Lonnblad, F.Maltoni, M.Mangano, P.Richardson, M.Seymour, T.Sjostrand, B.Webber.
- the other Sherpas: J.Archibald, T.Gleisberg, S.Höche, S.Schumann, F.Siegert, M.Schönherr, and J.Winter.

Menu of lecture 4

- Hadronisation models
- Beyond factorisation: Underlying event

 Orientation
 Hadronisation
 Underlying Event
 Upshot

Prelude: Orientation

Event generator paradigm

Divide event into stages, separated by different scales.

• Signal/background:

Exact matrix elements.

QCD-Bremsstrahlung:
 Parton showers (also in initial state).

Multiple interactions:

Beyond factorisation: Modelling.

Hadronisation:

Non-perturbative QCD: Modelling.

Hadronisation

Some experimental facts \rightarrow naive parameterisations

• In $e^+e^- \to \text{hadrons}$: Limits p_\perp , flat plateau in y.

• Try "smearing": $ho(p_{\perp}^2) \sim \exp(-p_{\perp}^2/\sigma^2)$

Effect of naive parameterisations

Use parameterisation to "guesstimate" hadronisation effects:

$$\begin{split} E &= \int_0^Y \mathrm{d}y \mathrm{d}\rho_\perp^2 \, \rho(\rho_\perp^2) p_\perp \cosh y = \lambda \sinh Y \\ P &= \int_0^Y \mathrm{d}y \mathrm{d}\rho_\perp^2 \, \rho(\rho_\perp^2) p_\perp \sinh y = \lambda (\cosh Y - 1) \approx E - \lambda \\ \lambda &= \int \mathrm{d}\rho_\perp^2 \, \rho(\rho_\perp^2) p_\perp = \langle p_\perp \rangle \,. \end{split}$$

- Estimate $\lambda \sim 1/R_{\rm had} \approx m_{\rm had}$, with $m_{\rm had}$ 0.1-1 GeV.
- Effect: Jet acquire non-perturbative mass $\sim 2\lambda E$ ($\mathcal{O}(10 \, \mathrm{GeV})$) for jets with energy $\mathcal{O}(100 \, \mathrm{GeV})$).

Implementation of naive parameterisations

• Feynman-Field independent fragmentation.

R.D.Field and R.P.Feynman, Nucl. Phys. B 136 (1978) 1

- Recursively fragment $q \rightarrow q'+$ had, where
 - Transverse momentum from (fitted) Gaussian;
 - longitudinal momentum arbitrary (hence from measurements);
 - flavour from symmetry arguments + measurements.
- Problems: frame dependent, "last quark", infrared safety, no direct link to perturbation theory,

Yoyo-strings as model of mesons

B.Andersson, G.Gustafson, G.Ingelman and T.Sjostrand, Phys. Rept. 97 (1983) 31.

- Light quarks connected by string: area law $m^2 \propto area$.
- L=0 mesons only have 'yo-yo' modes:

Dynamical strings in $e^+e^- o q\bar{q}$

B.Andersson, G.Gustafson, G.Ingelman and T.Sjostrand, Phys. Rept. 97 (1983) 31.

- Ignoring gluon radiation: Point-like source of string.
- Intense chromomagnetic field within string: More $q\bar{q}$ pairs created by tunnelling.
- Analogy with QED (Schwinger mechanism): $\mathrm{d}\mathcal{P} \sim \mathrm{d}x\mathrm{d}t\exp\left(-\pi m_q^2/\kappa\right)$, $\kappa=$ "string tension".

Gluons in strings = kinks

B.Andersson, G.Gustafson, G.Ingelman and T.Sjostrand, Phys. Rept. 97 (1983) 31.

- String model = well motivated model, constraints on fragmentation (Lorentz-invariance, left-right symmetry, ...)
- Gluon = kinks on string? Check by "string-effect"

Infrared-safe, advantage: smooth matching with PS.

Preconfinement

- Underlying: Large N_c -limit (planar graphs).
- Follows evolution of colour in parton showers:
 at the end of shower colour singlets close in phase space.
- ullet Mass of singlets: peaked at low scales $pprox Q_0^2$.

Primordial cluster mass distribution

- Starting point: Preconfinement;
- split gluons into $q\bar{q}$ -pairs;
- adjacent pairs colour connected, form colourless (white) clusters.
- Clusters ("≈ excited hadrons) decay into hadrons

Cluster model

B.R.Webber, Nucl. Phys. B 238 (1984) 492.

- Split gluons into $q\bar{q}$ pairs, form singlet clusters:
- \implies continuum of meson resonances.
- Decay heavy clusters into lighter ones; (here, many improvements to ensure leading hadron spectrum hard enough, overall effect: cluster model becomes more string-like);
- if light enough, clusters → hadrons.
- Naively: spin information washed out, decay determined through phase space only → heavy hadrons suppressed (baryon/strangeness suppression).

Colour reconnections in the cluster model

 Maybe toy with phenomenological models of non-perturbative colour reconnection?

rrientation Underlying Event Upshot

Underlying Event

Multiple parton scattering?

- Hadrons = extended objects!
- No guarantee for one scattering only.
- Running of α_S
 ⇒ preference for soft scattering.

Evidence for multiple parton scattering

- Events with $\gamma + 3$ jets:
 - Cone jets, R=0.7, $E_T>5$ GeV; $|\eta_j|<1.3$;
 - "clean sample": two softest jets with E_T < 7 GeV;
- $\sigma_{
 m DPS} = rac{\sigma_{\gamma j} \sigma_{jj}}{\sigma_{
 m eff}}$, $\sigma_{
 m eff} pprox 14 \pm 4 \
 m mb$.

Definition(s)

- Everything apart from the hard interaction including IS showers, FS showers, remnant hadronisation.
- Remnant-remnant interactions, soft and/or hard.
- Lesson: hard to define

Model: Multiple parton interactions

To understand the origin of MPS, realism that

$$\sigma_{
m hard}(oldsymbol{p}_{\perp,
m min}) = \int\limits_{oldsymbol{p}_{\perp}^2,
m min}^{s/4} {
m d}oldsymbol{p}_{\perp}^2 rac{{
m d}\sigma(oldsymbol{p}_{\perp}^2)}{{
m d}oldsymbol{p}_{\perp}^2} > \sigma_{oldsymbol{p}_{
m p},
m total}$$

$$\begin{array}{ll} \text{for low $\rho_{\perp, min}$. Here: } \frac{\mathrm{d}\sigma(\rho_{\perp}^2)}{\mathrm{d}\rho_{\perp}^2} = \int\limits_0^1 \mathrm{d}x_1 \mathrm{d}x_2 \mathrm{d}\hat{t} f(x_1, \ q^2) f(x_2, \ q^2) \frac{\mathrm{d}\hat{\sigma}_2 \to 2}{\mathrm{d}\rho_{\perp}^2} \delta\left(1 - \frac{\hat{t}\hat{u}}{\hat{s}}\right) \\ & (f(x, q^2) = \mathsf{PDF}, \ \hat{\sigma}_{2 \to 2} = \mathsf{parton-parton } \ x\text{-sec}) \end{array}$$

- $ullet \ \langle \sigma_{
 m hard}({\it p}_{\perp,
 m min})/\sigma_{\it pp,
 m total}
 angle \geq 1$
- Depends strongly on cut-off $p_{\perp,\min}$ (Energy-dependent)!

Old Pythia model: Algorithm, simplified

T.Sjostrand and M.van Zijl, Phys. Rev. D 36 (1987) 2019.

- Start with hard interaction, at scale $Q_{
 m hard}^2$.
- Select a new scale p_{\perp}^2

(according to
$$f = \frac{\mathrm{d}\sigma_{2\to2}(\rho_{\perp}^2)}{\mathrm{d}\rho_{\perp}^2}$$
 with $p_{\perp}^2 \in [p_{\perp,\mathrm{min}}^2,\,Q^2]$)

- Rescale proton momentum ("proton-parton = proton with reduced energy").
- Repeat until below $p_{\perp,\min}^2$.
- May add impact-parameter dependence, showers, etc...
- ullet Treat intrinsic k_{\perp} of partons (ightarrow parameter)
- Model proton remnants (→ parameter)

Observables

In the following: Data from CDF, PRD 65 (2002) 092002, plots partially from C.Buttar

Hard component in transverse region

General facts on current models

No first-principles approach for underlying event:

Multiple-parton interactions: beyond factorisation

Factorisation (simplified) = no process-dependence in use of PDFs.

- Models usually based on xsecs in collinear factorisation: ${\rm d}\sigma/{\rm d}\rho_{\perp}\propto \rho_{\perp}^{4-8}\implies$ strong dependence on cut-off $\rho_{\perp}^{\rm min}$.
- "Regularisation": $d\sigma/dp_{\perp} \propto (p_{\perp}^2 + p_0^2)^{2-4}$, also in α_s .
- Model for scaling behaviour of $p_{\perp}^{\min}(s) \propto p_{\perp}^{\min}(s_0)(s/s_0)^{\lambda}$, $\lambda = ?$ Two Pythia tunes: $\lambda = 0.16$, $\lambda = 0.25$.
- Herwig model similar to old Pythia and SHERPA
- New Pythia model: Correlate parton interactions with showers, more parameters.

Summary of lecture 4

- Hadronisation
 - Various phenomenological models;
 - tuned to LEP data, overall agreement satisfying;
 - validity for hadron data not quite clear.

(beam remnant fragmentation not in LEP.)

- Underlying event
 - Theoretically not understood;
 - models typically based on collinear factorisation and semi-independent multi-parton scattering;
 - models highly parameter-dependent, leading to large differences in predictions;
 - even unclear: good observables to distinguish models.

