

91. If $u = x^2 + y^2 + z^2$ where $\phi = ax + by + cz - p = 0$ Find the stationary value of u_3 - u_2 St: Let f(x,y,z) = x2+y2+22 & p(x,y,z) = ax+by+cz $F(x,y,z) = f(x,y,z) + 2\phi(x,y,z)$ $= \langle F(x,y,z) = x + y^2 + z^2 + \chi(ax + 6y + cz - p)$ Now, we find $\partial F = 0$, $\partial F = 0$ • $\partial F = 0 \Rightarrow 2x + a\lambda = 0$ $\frac{\partial x}{\partial x} = -a\lambda$ $\frac{\partial F}{\partial y} = 0 \Rightarrow 2y + b = 0$ $\frac{\partial y}{\partial y} = -b = 0$ · 2F = 0=> 2z + c> = 0 $= \frac{1}{2} \frac{a(-a\lambda) + b(-b\lambda) + c(-c\lambda) - p}{2} = 0$ $= \frac{1}{2} \frac{a(-a\lambda) + b(-b\lambda) + c(-c\lambda) - p}{2} = 0$ $= \frac{1}{2} \frac{a(-a\lambda) + b(-b\lambda) + c(-c\lambda) - p}{2} = 0$ z) > = (-à-b--2) = 2p 2 p - (a²+b²+2) > Put 2 in x,y,2

x = -ax = +a (+2p) = ap $2 (a^2+b^2+c^2) a^2+b^2+c^2$ $y = -6\lambda = \pm b \left(\pm 2p \right) = bp$ $2 \left(\frac{1}{a^2 + b^2 + c^2} \right) = \frac{bp}{a^2 + b^2 + c^2}$ $\frac{z = -cx}{2} = \frac{+c}{2} \left(\frac{+2p}{a^2 + b^2 + c^2} \right) = \frac{cp}{a^2 + b^2 + c^2}$ $f(x,y,z) = x^2 + y^2 + z^2$ $= \frac{(ap)^2 + (bp)^2 + (ep)^2}{(a^2 + b^2 + c^2)}$ $= p^2 (a^2 + b^2 + c^2)$ $= \frac{1}{2} \left(\frac{a^2 + b^2 + c^2}{a^2 + b^2 + c^2} \right)$ $= \frac{a^2 + b^2 + c^2}{a^2 + b^2 + c^2}$ $= \frac{a^2 + b^2 + c^2}{a^2 + b^2 + c^2}$ $= \frac{a^2 + b^2 + c^2}{a^2 + b^2 + c^2}$ $= \frac{a^2 + b^2 + c^2}{a^2 + b^2 + c^2}$ $= \frac{a^2 + b^2 + c^2}{a^2 + b^2 + c^2}$ $= \frac{a^2 + b^2 + c^2}{a^2 + b^2 + c^2}$ $= \frac{a^2 + b^2 + c^2}{a^2 + b^2 + c^2}$ If you are asked to find maxima & mindmer: Sab condition: - Tax for fra = A , fry = B , fyy = C i) A>O & AC-B2O -> f is minimum i) ACO & AC-BZO -> f is maximum