1.

(1)可结合、1为单位元、其中任何元素都有逆元。故为群

(4)Icm:最小公倍数 gcd:最大公约数。

可结合。对于Icm有单位元1,对gcd有零元1。在S不仅只有一个元素时,零元无逆元。故为半群

(5)可结合。单位元为0。0的逆元为0,1的逆元为1;故其中任何元素都有逆元。为群

5.

可结合。2为单位元。其中任何元素都有逆元,为4-x。故可构成群

6.

(1)给出o运算表

0	f1=x	f2= x ⁻¹	f3=1-x	$f^{4}=(1-x)^{-1}$	f5= $(x-1)x^{-1}$	$f6=x(x-1)^{-1}$
f1=x	x	x^{-1}	1-x	$(1-x)^{-1}$	$(x-1)x^{-1}$	$x(x-1)^{-1}$
f2= x ⁻¹	x^{-1}	×	1- x ⁻¹	$(1-x^{-1})^{-1}$	$(x^{-1}-1)x$	$x^{-1}(x^{-1}-1)^{-1}$
f3=1-x	1-x	$(1-x)^{-1}$	х	x^{-1}	-1	-1
f4= $(1-x)^{-1}$	$(1-x)^{-1}$	1-x	$1-(1-x)^{-1}$	$(1-(1-x)^{-1})^{-1}$	х	$(1-x)^{-1}((1-x)^{-1}-1)^{-1}$
f5= $(x-1)x^{-1}$	$(x-1)x^{-1}$	$(x-1)^{-1}x$	$1-(x-1)x^{-1}$	x	$((x-1)x^{-1}-1)(x-1)^{-1}x$	$(x-1)x^{-1}((x-1)x^{-1}-1)^{-1}$
f6= $x(x-1)^{-1}$	$x(x-1)^{-1}$	$x^{-1}(x-1)$	$1-x(x-1)^{-1}$	$(1-x(x-1)^{-1})^{-1}$	$(x(x-1)^{-1}-1)x^{-1}(x-1)$	х

可结合。f1为其单位元,所以元素都有逆元。故 $< F, \circ >$ 是一个群

7.

(1)可结合,a为单位元,所有元素均有逆元。故 $< G_{, \circ} >$ 为群

(2)生成元有b,c。因为 b^k,c^k 涵盖了G里的所有元素

11.

 $G = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19\}$

(1)所有生成元为:

n=20, 生成元为小于等于20且与20互质的数

1 3 7 9 11 13 17 19

(2)G的所有子群

G = <1>= <3>= <7>= <9>= <11>= <13>= <17>= <19>(生成元的生成子群=G)

20的正因子为 1 2 4 5 10 20,故有6个子群

 $H1 = <0> = \{0\}$

H2 = <1> = G

$$H3 = <2> = \{0, 2, 4, 6, 8, 10, 12, 14, 16, 18\} = <20 - 2> = <18>$$
 $H4 = <4> = \{0, 4, 8, 12, 16\} = <20 - 4> = <16>$
 $H5 = <5> = \{0, 5, 10, 15\} = <15>$
 $H6 = <10> = \{0, 10\}$

(3)

12

(1)

 $\sigma = (1 \ 4 \ 6 \ 2 \ 5 \ 3), \tau = (1 \ 3 \ 2)(4 \ 5 \ 6)$

(2)

 $\sigma au^{-1} \sigma = (1,2,6)(3,5,4)$

 $\sigma^2=(1,6,5)(2,3,4)$

(3)

 σ 是6阶轮换, τ 是3阶轮换

(1)

由于已知为布尔代数,∨对∧有可分配,∧对∨也可分配

 $(a \land b) \lor (a \land b \land c) \lor (b \land c) \lor (a \land b \land c)$

 $=((a \land b) \land (1 \lor c)) \lor ((b \land c) \land (1 \lor a))$

 $=(a \land b) \lor (b \land c)$

=b∧(aVc)

(2)

f*=bV(a∧c)

16

(1)

(3)

18

根据 V对A的分配律可得

 $aV(b \land c)=(aVb) \land (aVc)$

又因为a《=c,故aVc=c

带入可得

 $aV(b \land c)=(a \lor b) \land (a \lor c)=(a \lor b) \land c$