Polarkoordinatendarstellung komplexer Zahlen Sei $z = x + iy \in \mathbb{C} \setminus \{0\}$.

$$z = r \cdot e^{i\varphi}$$
 mit $r := |z|$ und

$$\varphi = \arg(z) := \begin{cases} \operatorname{sign}(y) \arccos(\frac{x}{r}) & z \in \mathbb{C} \backslash \mathbb{R}_{-} \\ \pi & z \in (-\infty, 0) \end{cases} \in (-\pi, \pi]$$

Spezielle Werte von arccos

Polynomdivision Nullstelle raten, durch x minus Nullstelle teilen

 $\mathbf{p\text{-}q\text{-}Formel} \quad x^2 + px + q = 0$

$$\Rightarrow x_{1/2} = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2 - q}$$

n-te Einheitswurzel $z^n = r \cdot e^{i\varphi}$, $n \in \mathbb{N}$ hat n Lösungen der Form

$$z_k = \sqrt[n]{r} \cdot e^{i\frac{2\pi k + \varphi}{n}}, \quad k = 0, \dots, n - 1$$

Generell: Darauf achten, dass der Winkel φ in $(-\pi, \pi]$ liegt! Bei n-ten Wurzeln macht es also Sinn, z in Polarkoordinaten darzustellen

Eulersche Formel $e^{i\varphi} = \cos(\varphi) + i \cdot \sin(\varphi)$

Gleichung für Kreis mit Zentrum a und Radius r - |z - a| = r

Gleicher Abstand von zwei Punkten Wird ausgedrückt durch |z - a| = |z - b|

Stetigkeit von Funktionen

- f(z) ist nicht stetig in p: Folge z_n angeben, sodass gilt $z_n \stackrel{n \to \infty}{\longrightarrow} p$, $f(z_n) \nrightarrow f(p)$ für $n \to \infty$. Beliebte Folgen für p = 0: 1/n, i/n, (i+1)/n
- f(z) ist stetig in p: Zeige $f(z) \xrightarrow{z \to p} f(p)$. Für f(p) = 0 bietet es sich an, zu zeigen dass $|f(z)| \xrightarrow{z \to p} 0$.

f heißt stetig in $z_0 :\Leftrightarrow \lim f(z) = f(z_0)$

f heißt gleichmäßig stetig auf M, falls $\forall \epsilon > 0 \quad \exists \delta > 0 \quad \forall z, z' \in M \colon (|z-z'| < \delta \Rightarrow |f(z) - f(z')| < \epsilon)$

Stereographische Projektion

$$\Pi(x_1, x_2, x_3) = \frac{x_1 + ix_2}{1 - x_3}$$
$$p(x + iy) = \frac{1}{1 + x^2 + y^2} \cdot (2x, 2y, x^2 + y^2 - 1)$$

Chordaler Abstand

$$\chi(z, w) = ||p(z) - p(w)|| = 2 \frac{|z - w|}{\sqrt{1 + |z|^2} \cdot \sqrt{1 + |w|^2}}$$

Verallgemeinerter Kreis $\alpha \in \mathbb{C}, \beta \in \mathbb{R}, \varepsilon \beta < |\alpha|^2, \varepsilon \in \mathbb{R}$

$$\varepsilon |z|^2 + \overline{\alpha}z + \alpha \overline{z} + \beta = 0$$

Für $\varepsilon = 1$ ist das die Gleichung des Kreises um $-\alpha$ mit Radius $\sqrt{|\alpha|^2 - \beta}$.

Für $\varepsilon = 0$ ist das eine Gerade.

Cauchy-Riemannsche Differentialgleichungen u(x,y) $\hat{=}$ Realteil von f(x+iy), v(x,y) $\hat{=}$ Imaginärteil von f(x+iy) $D_1u=D_2v, \quad D_2u=-D_1v$

Komplexe Differenzierbarkeit f ist komplex diffbar $\Leftrightarrow f$ ist reell diffbar und die Cauchy-Riemannschen DGL sind erfüllt. Dann:

$$f'(x+iy) = D_1 u(x,y) + i \cdot D_1 v(x,y)$$

Konforme Abbildung $f \in \mathcal{H}(G), f'(z) \neq 0$ heißt konforme Abbildung. Sie erhält Winkel in Größe und Drehsinn. Integrationsregeln

Ableitungsregeln

$$(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g(x)^2}$$

$$(f(g(x)))' = f'(g(x)) \cdot g'(x)$$

$$(f^{-1})'(y) = \frac{1}{f(f^{-1}(y))}$$

$$(\log x)' = \frac{1}{x}$$

$$\frac{d}{dw}z^w = \log(z)z^w$$

$$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$

$$\int_a^b f'(x) \cdot g(x) dx = [f(x) \cdot g(x)]_a^b - \int_a^b f(x) \cdot g'(x) dx$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

Substitutionsregel:

- 1. Substituiere u = u(x)
- 2. dx ersetzen: $u' = \frac{du}{dx}$ nach dx auflösen
- 3. a und b durch u(a) und u(b) ersetzen
- 4. Bei unbestimmten Integralen: Danach Rücksubstitution

$$\int_{a}^{b} f(x)dx = \int_{u(a)}^{u(b)} f(u(x))du$$

Abschätzungen von Integralen $|\int\limits_a^b w(t)dt| \leq \int\limits_a^b |w(t)|dt$

Bei gleichmäßig Konvergenten Funktionenfolgen kann man den Limes und das Integral vertauschen.

Häufungspunkt z_0 heißt Häufungspunkt von M

$$\Leftrightarrow \forall \varepsilon > 0 \quad \exists z \in M \setminus \{z_0\} \quad z \in D(z_0, \varepsilon) = \{z \in \mathbb{C} \mid |z - z_0| < \varepsilon\}$$

Trick mit der Dreiecksungleichung

$$|a - b| = |a - b + c - c| \le |a - c| + |c - b|$$

Kompakte Menge Die Menge $K \subset \mathbb{C}$ heißt kompakt, falls aus jeder Folge $(z_n) \subset K$ eine Teilfolge ausgewählt werden kann, die gegen ein Element aus K konvergiert.

 $K \subset \mathbb{C}$ kompakt $\Leftrightarrow K$ beschränkt und abgeschlossen

Bolzano-Weierstraß Jede beschränkte Folge hat eine konvergente Teilfolge.

Unbeschränkt in Umgebung von $z \in \mathbb{C}$ Wenn eine Funktion in jeder Umgebung von z unbeschränkt ist, kann sie dort nicht differenzierbar sein.

Harmonische Funktion

$$u \in C^2(D, \mathbb{R})$$
 harmonisch : $\Leftrightarrow \Delta u(x, y) = D_1^2 u + D_2^2 u = 0$

Etwas über Konvergenz von Reihen

$$\sum_{k=1}^{\infty} z_k \text{ konvergiert } \Rightarrow \sum_{k=1}^{\infty} \operatorname{Re}(z_k) \text{ konvergiert }$$

Majorantenkriterium

$$|a_k| \leq |b_k| \forall k, \sum_{k=1}^{\infty} b_k$$
 ist konvergent $\Rightarrow \sum_{k=0}^{\infty} a_k$ ist absolut konvergent

Eine divergente Reihe

$$\sum_{k=1}^{\infty} \frac{1}{k}$$
 ist divergent.

Trivialkriterium

$$\sum_{k=0}^{\infty} a_n \text{ konvergent } \Rightarrow a_n \to 0 \quad (n \to \infty)$$

Folge, die gegen e geht

$$\left(1+\frac{1}{n}\right)^n\to e\quad (n\to\infty)$$

Quotientenkriterium und Wurzelkriterium

$$\limsup_{k\to\infty}\left|\frac{a_{k+1}}{a_k}\right|\leq q<1\Rightarrow \sum_{k=0}^\infty a_k \text{ absolut konvergent} \qquad \limsup_{k\to\infty}\sqrt[k]{|a_k|}\leq q<1\Rightarrow \sum_{k=0}^\infty a_k \text{ absolut konvergent}$$

Wenn > 1 (bei Quotientenkriterium \liminf): divergent

Geometrische Reihe

$$\sum_{k=0}^{\infty} q^k$$
mit $|q| < 1$ konvergiert gegen $\frac{1}{1-q}$

Konvergenzradius einer Potenzreihe

$$R = \frac{1}{\limsup_{k \to \infty} \sqrt[k]{|a_n|}} = \frac{1}{\lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right|}$$

Die Folgen $\sqrt[n]{n}$, $\sqrt[n]{x}$

$$\lim_{n \to \infty} \sqrt[n]{n} = 1 \qquad \qquad \lim_{n \to \infty} \sqrt[n]{x} = 1 \quad x \in \mathbb{R}, x > 0$$

Möbiustransformation $T: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ Möbiustransformation \Leftrightarrow es gibt Zahlen $a, b, c, d \in \mathbb{C}$ mit $ad - bc \neq 0$ und

$$T(z) := \begin{cases} \frac{az+b}{cz+d} & z \in \mathbb{C} \setminus -\frac{d}{c} \\ \frac{a}{c} & z = \infty \\ \infty & z = -\frac{d}{c} \end{cases}$$

Wikipedia: Umkehrabbildung ist gegeben durch $\frac{dz-b}{-cz+a}$

$$T'(z) = \frac{ad - bc}{(cz+d)^2} \neq 0$$

Möbiustransformation, die $z_1\mapsto 0, z_2\mapsto 1, z_3\mapsto \infty$ abbildet.

$$T(z) = \begin{cases} \frac{z-z_1}{z-z_3} \frac{z_2-z_3}{z_2-z_1} & (z_1, z_2, z_3) \in \mathbb{C} \\ \frac{z_2-z_3}{z-z_3} & z_1 = \infty \\ \frac{z-z_1}{z-z_3} & z_2 = \infty \\ \frac{z-z_1}{z-z_1} & z_3 = \infty \end{cases}$$

Doppelverhältnis (z, z_1, z_2, z_3)

Es gilt: $(z, z_1, z_2, z_3 \in \widehat{\mathbb{C}}, z_i$ paarweise verschieden, S Möbiustransformation):

$$(z, z_1, z_2, z_3) = (S(z), S(z_1), S(z_2), S(z_3))$$

Möbiustransformationen und Kreise $T \colon \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ Möbiustransformation.

- \bullet Tbildet verallgemeinerte Kreise auf verallgemeinerte Kreise ab.
- da T stetig, werden zusammenhängende Mengen auf zusammenhängende Mengen abgebildet.
- G offen: $T(G) \cap T(\partial G) = \emptyset$
- \bullet T ist holomorph und bijektiv.
- Falls $T \mathbb{R}$ auf \mathbb{R} abbildet, gilt $\overline{T(z)} = T(\overline{z})$.
- ullet T ist symmetrieer haltend, winkel-, orientierungs- und gebietstreu.
- T hat mehr als 2 Fixpunkte $\Rightarrow T = id$

Was zu Unendlichkeiten ...

$$\widehat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$$

Es gibt also kein $-\infty$ in $\widehat{\mathbb{C}}!!!$

 ∞ liegt auf keinem Kreis und auf jeder Geraden.

Spiegeln an verallgemeinerten Kreisen z_1, z_2, z_3 auf verallgemeinertem Kreis K. Spiegelung von z an K:

$$(\varrho_K(z), z_1, z_3, z_3) = \overline{(z, z_1, z_2, z_3)}$$

L Gerade mit $z(t) = a + te^{i\varphi}, a \in \mathbb{C}, \varphi \in \mathbb{R}$ fest. Dann:

$$\varrho_L(z) = e^{2i\varphi}(\overline{z} - \overline{a}) + a$$

An Kreis K um a mit Radius R:

$$\varrho_K(z) = a + \frac{R^2}{\overline{z} - \overline{a}}$$

Hauptzweig des Logarithmus

$$\log(z) = \ln(|z|) + i \cdot \arg(z), \quad -\pi < \arg(z) < \pi, \quad z \neq 0$$

ist auf $E_{-\pi} = \mathbb{C} \setminus (-\infty, 0]$ definiert.

Warnung: das Logarithmusgesetz gilt i.A. nicht!

$$\log(a \cdot b) \neq \log(a) + \log(b)$$
, falls $|arg(a) + arg(b)| \geq \pi$

Potenzen

$$a^b = e^{b\log(a)}, \quad a, b \in \mathbb{C}, a \neq 0$$

Einige Reihendarstellungen

$$\exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

$$\sin(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^{2n+1}, \quad \sinh(z) = \sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n+1)!}$$

$$\cos(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^{2n}, \quad \cosh(z) = \sum_{n=0}^{\infty} \frac{z^{2n}}{(2n)!}$$

$$\log(z) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{(z-1)^n}{n}, \quad |z-1| < 1 \quad \text{(Hauptzweig)}$$

$$(1+x)^{\alpha} = \sum_{k=0}^{\infty} \binom{\alpha}{k} x^k, \quad \alpha \in \mathbb{R}, -1 < x < 1, \quad \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

$$\gamma(t) = c + r \cdot e^{it}, \quad t \in [0, 2\pi]$$
 Kreislinie um c mit Radius r

Ableitung: $i \cdot r \cdot e^{it}$

$$\gamma(t) = w + t(z - w), \quad t \in [0, 1]$$
 Verbindungsstrecke von w nach z

$$\hat{\gamma}(t) = \gamma(b - t + a), \quad t \in [a, b]$$
 Rückwärtsweg

Kurvenintegral $\gamma : [a, b] \to \mathbb{C}$ stückweise stetig differenzierbar.

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t))\gamma'(t)$$

Standardabschätzung für Wegintegrale

$$\left| \int_{\gamma} f(z)dz \right| \le l(\gamma) \cdot \max_{z \in \gamma} |f(z)|$$

Bogenlänge $\gamma \colon [a,b] \to \mathbb{C}$ stückweise stetig differenzierbar.

$$l(\gamma) = \int_{a}^{b} |\gamma'(t)| dt$$

Integration über Summe von Wegen

$$\int_{\gamma_1 + \gamma_2} f(z)dz = \int_{\gamma_1} f(z)dz + \int_{\gamma_2} f(z)dz$$

Integral über Rückwärtsweg

$$\int_{-\gamma} f(z)dz = -\int_{\gamma} f(z)dz$$

Cauchy Integralsatz für sternförmige Gebiete Seien $D \subseteq \mathbb{C}$ ein sternförmiges Gebiet, $f \in H(D)$ und $\Gamma \subseteq D$ eine geschlossene Kurve. Dann gilt

$$\int_{\Gamma} f(z)dz = 0.$$

Insbesondere besitzt f eine Stammfunktion auf D.

Cauchy Integral formel für sternförmige Gebiete Seien $D \subseteq \mathbb{C}$ ein sternförmiges Gebiet, $f \in H(D)$ und $\Gamma \subseteq D$ eine geschlossene Kurve. Dann gilt

$$n(\Gamma, z)f(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(w)}{w - z} dw \quad \forall z \in D \backslash \Gamma.$$

Insbesondere für $\gamma(t) = z_0 + re^{it}, \quad t \in [0, 2\pi]$:

$$f(z_0) = \frac{1}{2\pi} \int_{0}^{2\pi} f(z_0 + re^{it}) dt.$$

Cauchy Integral formel / Integralsatz Seien $D \subseteq \mathbb{C}$ offen, $f \in H(D)$ und $\Gamma_1, \dots, \Gamma_m \subseteq D$ geschlossene Kurven mit $\sum_{j=1}^m n(\Gamma_j; w) = 0$ $\forall w \in \mathbb{C} \backslash D$. Dann gilt

$$\sum_{j=1}^{m} n(\Gamma_j; z) f(z) = \frac{1}{2\pi i} \sum_{j=1}^{m} \int_{\Gamma_j} \frac{f(w)}{w - z} dw \quad \forall z \in D \setminus \bigcup_j \Gamma_j.$$

und
$$\sum_{j=1}^{m} \int_{\Gamma_j} f(z) dz = 0.$$

Cauchy Integralformel für Kreisringe um 0

$$f(z) = \frac{1}{2\pi i} \int_{|w|=r_2} \frac{f(w)}{w-z} dw - \frac{1}{2\pi i} \int_{|w|=r_1} \frac{f(w)}{w-z} dw \quad \forall z \text{ im Kreisring}$$

Windungszahl $\Gamma \subseteq \mathbb{C}$ geschlossene Kurve und $z \in \mathbb{C} \backslash \Gamma$.

$$n(\Gamma, z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{dw}{w - z}$$

Cauchyprodukt allgemein $\sum_{n=0}^{\infty} a_n$ und $\sum_{n=0}^{\infty} b_n$ absolut konvergent.

$$\left(\sum_{n=0}^{\infty} a_n\right) \cdot \left(\sum_{n=0}^{\infty} b_n\right) = \sum_{n=0}^{\infty} \sum_{k=0}^{n} a_k b_{n-k}$$

Cauchyprodukt von Potenzreihen

$$\left(\sum_{n=0}^{\infty} a_n (x - x_0)^n\right) \cdot \left(\sum_{n=0}^{\infty} b_n (x - x_0)^n\right) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^n a_k b_{n-k}\right) (x - x_0)^n$$

Ableitung einer Potenzreihe $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$

$$f^{(k)}(z) = \sum_{n=k}^{\infty} \frac{n!}{(n-k)!} a_n (z-z_0)^{n-k} = \sum_{n=0}^{\infty} \frac{(n+k)!}{n!} a_{n+k} (z-z_0)^n$$

dran denken: $0^0 = 1$

 $\textbf{Entwicklungssatz} \quad z_0 \in \mathbb{C}, A = \{z \in \mathbb{C} \mid R_1 < |z - z_0| < R_2\}, f \in \mathcal{H}(A), z \in A, r \text{ beliebig mit } R_1 < r < R_2, n \in \mathbb{Z}$

$$a_n = \frac{1}{2\pi i} \int_{|w-z_0|=r} \frac{f(w)}{(w-z)^{n+1}} dw$$

$$f^{(n)}(z) = n! \cdot a_n \quad n \in \mathbb{N}_0$$

c-Stelle G Gebiet, $f \in \mathcal{H}(G)$, $f \neq \text{konst.}$

$$z_0$$
 c-Stelle der Ordnung m : $\Leftrightarrow f(z_0) = c, f^{(j)}(z_0) = 0 \quad (j = 1, \dots, m-1), f^{(m)}(z_0) \neq 0$

Identitätssatz G Gebiet, $f \in \mathcal{H}(G), z_0 \in G$. Aus f(z) = 0 für unendlich viele sich in z_0 häufende Punkte $z \in G$ folgt $f \equiv 0$ in G.

Cauchy- Abschätzung
$$|a_n| \leq \frac{M(r)}{r^n} \ \mathrm{mit} \ M(r) := \max_{z \in \partial B(z_0;r)} |f(z)|$$

Satz von Liouville Eine beschränkte ganze Funktion ist konstant.

Parsevalsche Formel
$$\int\limits_{2\pi}^{1}\int\limits_{0}^{2\pi}|f(z_0+r\cdot e^{i\vartheta})|^2d\vartheta=\sum\limits_{n=0}^{\infty}|a_n|^2r^{2n}$$

Maximumsprinzip Es sei G ein Gebiet, $f \in \mathcal{H}(G)$, $f \neq \text{konst.}$ Dann nimmt |f| in G kein Maximum an. Alternative Formulierung: $G \subset \mathbb{C}$ beschränktes Gebiet, $f \in \mathcal{H}(G) \cap C(\overline{G})$. Dann $|f(z)| \leq \max_{\xi \in \partial G} f(\xi)$ für $z \in G$. "="nur wenn f konstant.

Gebietstreue Es sei $G \subset \mathbb{C}$, $f \in \mathcal{H}(G)$ und $f \neq \text{konst.}$ Dann ist f(G) ein Gebiet.

Schwarzsches Lemma Es bezeichne $D:=\{z\in\mathbb{C}:|z|<1\}$ die Einheitskreisscheibe. Sei $f\colon D\to D$ eine holomorphe Funktion mit f(0)=0. Dann gilt $|f(z)|\leq |z|\ \forall z\in D$ und $|f'(0)|\leq 1$. Falls in einem Punkt $z_0\in\mathbb{D}, z_0\neq 0$ die Gleichheit $|f(z_0)|=|z_0|$ besteht oder |f'(0)|=1 gilt, so ist $f(z)=e^{i\lambda}\cdot z$ für ein passendes $\lambda\in\mathbb{R}$.

Folgerung für biholomorphe Abbildungen $f \colon D \to D$ Es sei $a \in D$ und $f \in \mathcal{H}(D)$ mit $|f(z)| \le 1, z \in D$. Es gilt:

$$|f'(a)| \le \frac{1 - |f(a)|^2}{1 - |a|^2}$$

Satz von Morera Es sei $U \subset \mathbb{C}$ Gebiet und $f \colon U \to \mathbb{C}$ eine stetige Funktion. Für jedes in U gelegene abgeschlossene Dreieck Δ verschwinde das Kurvenintegral über die Randkurve des Dreiecks, d.h. $\oint_{\partial \Delta} f(z) \, \mathrm{d}z = 0$. Dann ist f holomorph auf U.

Lemma von Goursat G Gebiet, $p \in G$, $f \in \mathcal{H}(G \setminus \{p\}) \cap C(G)$. Dann gilt für jedes abgeschlossene Dreieck Δ in G: $\int_{\partial \Delta} f(z)dz = 0$

Rechnen mit komplexen Zahlen

$$\begin{split} \frac{1}{z} &= \frac{\overline{z}}{|z|^2}, \quad z\overline{z} = |z|^2 \\ |e^{i\phi}| &= 1, \quad \phi \in \mathbb{R} \\ Re(z) &= \frac{z + \overline{z}}{2}, \quad Im(z) = \frac{z - \overline{z}}{2i} \\ |z + w|^2 &= |z|^2 + |w|^2 + 2\mathrm{Re}(\overline{z}w) \end{split}$$

Rechnen mit Beträgen

$$|a| < |b| \Leftrightarrow |a|^2 < |b|^2$$

isolierte Singularität Die Funktion f sei holomorph auf einer punktierten Umgebung von $z_0 \in \mathbb{C}$. Dann heißt z_0 isolierte Singularität von f.

Riemannscher Hebbarkeitssatz Es sei $G \subset \mathbb{C}$ ein Gebiet und z_0 ein Punkt von G. Die Funktion f sei auf $G \setminus \{z_0\}$ holomorph und bei z_0 beschränkt, d.h. \exists Umgebung $U \subset G$ von $z_0, M \in \mathbb{R} \colon |f(z)| \leq M \quad \forall z \in U \setminus \{z_0\}$. Dann lässt sich f eindeutig zu einer holomorphen Funktion auf ganz G fortsetzen (mit $f(z_0) = \lim_{z \to \infty} f(z)$).

 z_0 heißt dann **hebbare Singularität** von f.

Polstelle, wesentliche Singularität Es sei z_0 eine isolierte Singularität von f.

1. Wenn $\lim_{z\to z_0} |f(z)| = +\infty$ gilt, heißt z_0 Pol(stelle) von f

$$\lim_{z \to z_0} (z - z_0)^k f(z)$$
 ex. und k minimal \Rightarrow **Pol k-ter Ordnung**

2. Ist z_0 weder hebbare Singularität noch Polstelle von f, so heißt z_0 wesentliche Singularität von f. Eine wesentliche Singularität liegt also genau dann vor, wenn es Folgen z_n, z'_n im Definitionsbereich von f gibt mit $z_n \to z_0, z'_n \to z_0$, so dass $f(z_n)$ eine beschränkte und $f(z'_n)$ eine unbeschränkte Folge ist.

Singularitäten aus Laurentreihe bestimmen z_0 isolierte Singularität, f holomorph auf einer punktierten Kreisscheibe um z_0 . Liegt in z_0 ein Pol n-ter Ordnung vor, so ist der kleinste Grad der Laurentreihe gerade -n, d.h. der Hauptteil der Laurentreihe besteht aus genau n Partialsummen; Liegt in z_0 eine hebbare Singularität, so ist der Hauptteil gleich 0; Liegt in z_0 eine wesentliche Singularität, so besteht der Hauptteil aus unendlich vielen Partialsummen.

Laurentreihenentwicklung Trick: $\frac{1}{z^2} \xrightarrow{\text{Aufleiten}} -\frac{1}{z} \xrightarrow{\text{Entwickeln}} \dots \xrightarrow{\text{Ableiten}} \dots$ nicht bei Logarithmus in der Aufleitung

 $a,b\in\mathbb{C},0<|a|<|b|<\infty$, seien gegeben. Gesucht sind für $f(z)=\frac{1}{(z-a)(z-b)}$ die Laurentreihen um $z_0=0$. f ist holomorph in $R_1=\{z\mid |z|<|a|\}$ f ist holomorph in $R_2=\{z\mid |a|<|z|<|b|\}$ f ist holomorph in $R_3=\{z\mid |b|<|z|\}$

Die Reihe in
$$R_1$$
: $f(z) = \frac{1}{a-b} \sum_{n=0}^{\infty} \left(\frac{1}{b^{n+1}} - \frac{1}{a^{n+1}} \right) z^n$ Die Reihe in R_2 : $f(z) = \frac{1}{a-b} \left(\sum_{n=1}^{\infty} \frac{a^{n-1}}{z^n} + \sum_{n=1}^{\infty} \frac{z^{n-1}}{b^n} \right)$ Die Reihe in R_3 : $f(z) = \frac{1}{a-b} \sum_{n=0}^{\infty} \frac{a^{n-1}-b^{n-1}}{z^n}$

Partialbruchzerlegung

- 1. Polynomdivision machen, damit Grad(Zähler) ≤ Grad(Nenner)
- 2. vom Restbruch R die Nullstellen mit Vielfachheiten des Nenners ermitteln (beachte: auch das komplex konjugierte ist Nullstelle)
- 3. Der Rest ist straight-forward. Bsp.: Der Nenner habe die NST c_1 mit Vielfachheit 1 und die NST c_2 mit Vielfachheit 2. Dann ist der Ansatz:

$$R(z) = \frac{a}{(z - c_1)} + \frac{b}{(z - c_1)^2} + \frac{c}{(z - c_2)}$$

4. Auflösen (mit Hauptnenner multiplizieren) und dann Koeffizientenvergleich.

Formel von Simon:

$$f(z) = \frac{1}{(z-a)(z-b)} = \left(\frac{1}{z-a} - \frac{1}{z-b}\right) \frac{1}{a-b}$$

Rechenregeln Sinus und Kosinus $\sin(x) = \frac{1}{2i}(e^{ix} - e^{-ix}), \cos(x) = \frac{1}{2}(e^{ix} + e^{-ix})$

$$\sin(-\alpha) = -\sin(\alpha), \quad \cos(-\alpha) = \cos(\alpha)$$

$$\sin^2(\alpha) + \cos^2(\alpha) = 1$$

$$\cos(\alpha) = \sin(90^{\circ} - \alpha), \quad \sin(\alpha) = \cos(90^{\circ} - \alpha)$$

sinh und cosh $\sinh(x) = \frac{e^x - e^{-x}}{2}, \quad \cosh(x) = \frac{e^x + e^{-x}}{2}$

Satz von Rouche Es seien f und g holomorph in einer Umgebung von \overline{G} , wobei G ein positiv berandetes Gebiet ist. Auf ∂G gelte

$$|f(z) - g(z)| < |f(z)|.$$

Dann haben f und g gleichviele Nullstellen (mit Vielfachheit gezählt) in G.

Nullstelle N-ter Ordnung $f(z_0) = f'(z_0) = \dots = f^{(N-1)}(z_0) = 0, f^{(N)}(z_0) \neq 0$ Nullstelle N-ter Ordnung

Bestimmung von Residuen

$$f(z) = \frac{A(z)}{B(z)}, A(z_0) \neq 0, B(z_0) = 0, B'(z_0) \neq 0 \Rightarrow \text{Res}(f; z_0) = \lim_{z \to z_0} (z - z_0) f(z) = \frac{A(z_0)}{B'(z_0)}$$

 $\text{Hat } f \text{ in } z_0 \text{ Polstelle } k\text{-ter Ordnung} \Rightarrow \text{Res}(f; z_0) = \frac{1}{(k-1)!} \lim_{z \to z_0} D^{k-1} \left((z-z_0)^k \cdot f(z) \right) \text{ Hat } f \text{ in } z_0 \text{ eine Nullstelle } N\text{-ter Ordnung}$ ("Polstelle N-ter Ordnung $\hat{=}$ Nullstelle -N-ter Ordnung") \Rightarrow Res $\left(\frac{f'}{f}; z_0\right) = N$

Residuensatz $G \subset \mathbb{C}$ offen, $f \in \mathcal{H}(G \setminus \{a_1, \dots, a_m\}), \Gamma$ geschlossener Weg in G mit $a_j \notin |\Gamma|, j = 1, \dots, m$ und $n(\Gamma, w) = 0$ $\forall w \in \mathbb{C}$ $\mathbb{C}\backslash G$. Dann gilt

$$\int_{\Gamma} f(z)dz = 2\pi i \sum_{j=1}^{m} n(\Gamma; a_j) \cdot \operatorname{Res}(f; a_j)$$

Reelle Integrale $f(z) = \frac{p(z)}{q(z)}, p, q$ Polynome mit Grad(q)- $Grad(p) \ge 2$, q hat keine reellen Nullstellen, z_1, \ldots, z_m Polstellen von f in der oberen Halbebene. Dann:

$$\int_{-\infty}^{\infty} f(x)dx = 2\pi i \sum_{j=1}^{m} \operatorname{Res}(f; z_j)$$

 $f(z) = \frac{p(z)}{q(z)}$, p, q Polynome mit Grad(q)- $Grad(p) \ge 1$, f keine reellen Polstellen außer vllt. in 0 Polstelle 1. Ordnung, z_1, \ldots, z_m Polstellen von f in der oberen Halbebene. Dann:

$$CH \int_{-\infty}^{\infty} f(x)e^{ix}dx = \pi i \cdot \text{Res}(f;0) + 2\pi i \sum_{j=1}^{m} \text{Res}(f(z)e^{iz}; z_j)$$

Funktionenfolgen $U \subset \mathbb{C}$ sei eine offene Menge, (f_k) eine Folge von Funktionen $f_k : U \to \mathbb{C}$. $f_k \to f(k \to \infty)$ punktweise auf U bedeutet: $\forall \epsilon > 0 \quad \forall z \in U \quad \exists k_0 \in \mathbb{N} \quad \forall k \geq k_0 \colon |f_k(z) - f(z)| < \epsilon$.

Für $g: U \to \mathbb{C}$ bezeichnen wir durch $||g||_U$ die **Supremumsnorm**: $||g||_U = \sup\{|g(z)| \mid z \in U\}$

 $f_k \to f(k \to \infty)$ gleichmäßig auf U, falls gilt: $\lim ||f_k - f||_U = 0$.

 $f_k \to f(k \to \infty)$ lokalgleichmäßig auf U, falls gilt: $\forall z \in U \quad \exists D(z, \lambda) \subset U \quad ||f_k - f||_{D(z, \lambda)} \to 0 (k \to \infty)$.