Runge-Kutta-4

May 14, 2019

- 1. Was wollen wir machen?
 - Lösen einer DGL 1. Ordnung: $\dot{x} = f(x,t)$
 - numerisch, mit Schrittweise h
 - möglichst geringer Fehler
 - angemessener Rechenaufwand
- 2. Wie wollen wir das Erreichen?
 - Ansatz:

$$x_{n+1} = x_n + h \cdot \sum_{i=1}^{m} c_i \, k_i, \tag{1}$$

wo $k_i = f(x_n + h \sum_{j=1}^{i-1} \beta_{ij} k_j, t_n + \alpha_i h)$

- Aber was ist c_i , α_i , β_{ij} ?
- Dazu Taylorn von Steigung zwischen $(x(t_n), t_n)$ und $(x(t_n+h), t_n+h)$ bis zur Ordnung m
 - \rightarrow Fehlerordnung $\mathcal{O}(h^{m+1})$
- Ansatz Taylorn
 - → Koeffizientenvergleich (ab 2. Ordnung unbestimmtes Gleichungssystem)
- Butcher-Tabellen:
 - \Rightarrow 1. Ordnung: Eulerverfahren: $x_{n+1} = x_n + h \cdot f(x_n, t_n)$
 - 2. Ordnung: Heunverfahren: $x_{n+1} = x_n + \frac{h}{2} \left[f(x_n, t_n) + f(x_n + h \cdot f(x_n, t_n), f(x_n, t_n)) \right]$
 - 4. Ordnung: Runge-Kutte-4:

$$x_{n+1} = x_n + \frac{h}{6} \cdot (k_1 + 2k_2 + 2k_3 + k_4)$$
 (2)

- 3. Warum 4. Ordnung?
 - \bullet Butcher-Barriere: Für $m \geq 5$ zu großer Rechenaufwand im Verhältnis zur Genauigkeit.