Введение в матан. Лекция 1

Сергей Григорян 10 сентября 2024 г.

1 Инфа

Лектор: Редкозубов Вадим Витальевич

2 Учебники

- Зорич. В. А. "Мат. анализ";
- Виноградов О. Л. "Мат. анализ".

3 П. 1. Действительные числа

3.1 Вспомогательные конструкции

$$x \in \{a, b\} \Rightarrow x = a$$
 или $x = b$ - неуп. пара $(a, b) - \text{ уп. пара}$ $(a, b) = (c, d) \iff a = c$ и $b = d$ $A, B - \text{ мн-ва}, A \cdot B = \{(a, b) : a \in A \lor b \in B\}$

Определение 3.1. Пусть X,Y - мн-ва. Ф-цией $f\colon X\to Y$ наз-ся ф-ла $\overline{P(x,y)},$ т. ч. $\forall x\in X$ сущ-ет утв. $y\in Y,$ что P(x,y) - истина. Пишут y=f(x) или $f\colon x\Rightarrow y.$

Определение 3.2. Ф-ции $f,g\colon X\to Y$ называются равными, если $\forall x\in \overline{X\colon (f(x)=g(x))}.$ Пишут f=g.

Обозначение. $f: X \to Y, X$ - область опред. ф-ции

- 1. $A\subset X$ $f(A)=\{f(x)\colon x\in A\},\ oбраз\ A.$ f(X) мн-во значений f.
- 2. $B \subset Y$ $f^{-1}(B) = \{x \in X \colon f(x) \in B\} \text{ прообраз } B.$
- 3. $f:X\to Y,g:Z\to X\Rightarrow f\circ g:Z\to Y,f\circ g(z)=f(g(z))$ композиция ф-ций f и g.

Утверждение 3.1. $f \circ (g \circ h) = (f \circ g) \circ h$

Определение 3.3. Ф-ция $f: X \to Y$ наз-ся инъекцией, если $\forall x_1, x_2 \in \overline{X(f(x_1) = f(x_2)} \Rightarrow x_1 = x_2), x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$ сюрьекцией, если f(X) = Y биекцкией = сюрьекцией + инъекция

 $\begin{array}{ll} {\bf \Pi pимер.} & 1. \ f: \{0,1,2\} \rightarrow \{1,2\} \\ & f(0)=1, f(1)=f(2)=2 \\ & \exists mo \ {\it ciopberius} \end{array}$

2.
$$f: \{1,2\} \rightarrow \{0,1,2\}$$

 $f(1) = 2, f(2) = 1$
 Это инъекция

<u>Пример.</u> $id:X\to X, \forall x\in X(id(x)=x)$ - это тождественная филя.

Пример. Пусть $f: X \to Y$ - биекция $\Rightarrow y = f(x)$ - имеет **1** решение. Тогда: $f^{-1}: Y \to X, x = f^{-1}(y) \iff y = f(x)$ - обратная к f ф-ция. $f^{-1} \circ f = id_X, f \circ f^{-1} = id_Y$

- Задача 3.1. 1. Композиция инъекций (сюрьекций, биекция) яв-ся инъекцией (сюрьекцией, биекцией).
 - 2. Обр-я ф-ция к биек. $f: X \to Y$ явл. биекцией.

Определение 3.4. Пусть $A, \Lambda \neq \emptyset$

Говорят, что A - **семейство, индексированное эл-ми** $\Lambda,$ если $\exists \phi: \Lambda \to A$ - сюрьекция.

Пишут
$$A=\{a_{\lambda}\}_{\lambda\in\Lambda}$$
, где $a_{\lambda}=\phi(\lambda)$ $\mathscr{A}=\{A_{\lambda}\}_{\lambda\in\Lambda}$

$$\bigcup_{\lambda \in \Lambda} A_{\lambda} = \{x \colon \exists \lambda \in \Lambda (x \in A_{\Lambda})\}\$$

$$\bigcap_{\lambda \in \Lambda} A_{\lambda} = \{x \colon \forall \lambda \in \Lambda (x \in A_{\lambda})\}\$$

Пример.

$$A_1 = \{n \in \mathbb{N} : n > 1 \ u \ n \neq 2m : \forall m > 1\}$$

$$A_2 = \{n \in A_1 : n \neq 3m : \forall m > 1\}$$

$$\bigcap_{n \in \mathbb{N}} A_n - \text{мн-во простых чисел.}$$

Теорема 3.1 (Закон Де Моргана). Для любого мн-ва E верно:

1.

$$E \setminus \bigcup_{\lambda \in \Lambda} A_{\lambda} = \bigcap_{\lambda \in \Lambda} (E \setminus A_{\lambda})$$

2.

$$E \setminus \bigcap_{\lambda \in \Lambda} A_{\lambda} = \bigcup_{\lambda \in \Lambda} (E \setminus A_{\lambda})$$

Доказательство.

1.

$$x \in E \setminus \bigcup_{\lambda \in \Lambda} A_{\lambda} \iff x \in E \land x \not\in \bigcup_{\lambda \in \Lambda} A_{\lambda} \iff x \in E \land (\forall \lambda \in \Lambda(x \not\in A_{\lambda}))$$

$$\iff \forall \lambda \in \Lambda(x \in E \land x \not\in A_{\lambda}) \iff \forall \lambda \in \Lambda(x \in E \backslash A_{\lambda}) \iff x \in \bigcap (E \backslash A_{\lambda})$$

2.

$$x \in E \backslash \bigcap_{\lambda \in \Lambda} A_{\lambda} \iff x \in E \land x \not\in \bigcap_{\lambda \in \Lambda} A_{\lambda} \iff x \in E \land \exists \lambda \in \Lambda (x \not\in A_{\lambda}).$$

$$\iff \exists \lambda \in \Lambda(x \in E \land x \not\in A_{\lambda}) \iff \exists \lambda \in \Lambda(x \in E \backslash A_{\lambda}) \iff \bigcup_{\lambda \in \Lambda} (E \backslash A_{\lambda}).$$

3.2 Аксиомат. опр-е мн-ва действ. чисел

На мн-ве $\mathbb R$ опр-ны операции "+": $(\mathbb R \cdot \mathbb R \to \mathbb R)$, "*": $(\mathbb R \cdot \mathbb R \to \mathbb R)$, удовл. аксиомам.

A1:
$$\forall a, b \in \mathbb{R}: (a+b) + c = a + (b+c);$$

A2:
$$\forall a, b \in \mathbb{R} : a + b = b + a$$
;

A3:
$$\exists 0 \in \mathbb{R}, \forall a \in \mathbb{R} : a + 0 = a$$
;

A4:
$$\forall a \in \mathbb{R} \exists (-a) \in \mathbb{R} : a + (-a) = 0.$$

M1:
$$\forall a, b, c \in \mathbb{R}: (a * b) * c = a * (b * c),$$

M2:
$$\forall a, b \in \mathbb{R} : a * b = b * a$$
,

M3:
$$\exists 1 \in \mathbb{R}, 1 \neq 0, \forall a \in \mathbb{R}, a * 1 = a,$$

M4:
$$\forall a \in \mathbb{R}, a \neq 0, \exists a^{-1} \in \mathbb{R} : a * a^{-1} = 1,$$

AM:
$$\forall a, b, c \in R$$
: $a * (b + c) = ab + ac$

На мн-ве \mathbb{R} введено отношение порядка "≤ удовл. след. аксиомам:

O1:
$$\forall a, b, c \in \mathbb{R}$$

- (i): $a \leq a$;
- (ii): $a < b, b < a \iff a = b$;

(iii):
$$a \le b \land b \le c \Rightarrow a \le c$$

O2:
$$\forall a, b \in \mathbb{R} : a < b \lor b < a$$

O3: Если
$$a, b, c \in \mathbb{R}$$
 и $a \le b$, то $a + c \le b + c$;

O4: Если
$$a, b, c \in \mathbb{R}, a \leq b$$
 и $0 \leq c$, то $ac \leq bc$;

Аксиома непрерывности: Для любых непустых $A, B \subset \mathbb{R}$, т. ч. $\forall a \in A, b \in B, a \leq b; \exists c \in \mathbb{R} \colon \forall a \in A, b \in B (a \leq c \leq b)$