STEPHEN G. WITHERS et al. Application No.: 09/837,711 Page 3

43.

molecule is an α -glycosyl fluoride.

1 2

IN THE CLAIMS:

The status of the claims in the present application is provided herein below. No amendments have been made to the claims in this response.

Claims 1-39. (Cancelled)

1	40. (Previously added) A method for synthesizing an oligosaccharide
2	comprising the steps of:
3	(a) combining a glycosyl donor molecule and a glycoside
4	acceptor molecule in a reaction mixture: and
5	(b) enzymatically coupling the donor molecule to the acceptor
6	molecule using a mutant form of glycosidase enzyme to form the oligosaccharide, said enzyme
7	being selected from among glycoside enzymes having two catalytically active amino acids with
8	carboxylic acid side chains within the active site of the wild-type enzyme, and said mutant
9	enzyme being mutated to replace one of said amino acids having a carboxylic acid side chain
10	with a different amino acid of comparable or smaller size, said different amino acid having a
11	non-carboxylic acid side chain characterized in that, said glycosyl donor molecule having a $oldsymbol{eta}$
12	configuration and said glycoside acceptor molecule having an α configuration.
1	41. (Previously added) The method of claim 40, wherein the glycosidase
2	enzyme is a stereochemistry retaining enzyme in which one of the carboxylic acid side chains in
3	the active site functions as an acid/base catalyst and the other carboxylic acid side chain
4	functions as a nucleophile, and wherein the amino acid having the nucleophile carboxylic acid
5	side chain is replaced in the mutant enzyme.
1	42. (Previously added) The method of claim 41, wherein the enzyme is a β -
2	glycosidase.

(Previously added) The method of claim 42, wherein the glycosyl donor

STEPHEN G. WITHERS et al. Application No.: 09/837,711 Page 4

3

4

5

6

I	44. (Previously added) The method of claim 43, wherein the α -glycosyl
2	fluoride is an α -glucosyl fluoride.
1	45. (Previously added) The method of claim 43, wherein the α-glycosyl
2	fluoride is a α-galactosyl fluoride.
1	46. (Previously added) The method of claim 40, wherein the enzyme is a β -
2	glycosidase.
1	47. (Previously added) The method of claim 40, wherein the enzyme is a β -
2	glucosidase.
1	48. (Previously added) The method of claim 40, wherein the acceptor
2	molecule is an aryl-glycoside.
1	49. (Previously added) The method of claim 48, wherein the acceptor
2	molecule is a nitrophenyl-glycoside.
1	50. (Previously added) The method of claim 40, wherein the glycosidase
2	enzyme is a stereochemistry inverting enzyme in which one of the carboxylic acid side chains in
3	the active site functions as an acid catalyst and the other carboxylic acid side chain functions as a
4	base catalyst, and wherein the amino acid having the carboxylic acid die chain which functions
5	as a base catalyst is replaced in the mutant enzyme.
	Claims 51-54. (Withdrawn)
1	55. (Previously added) The method of claim 40, wherein the glycosidase
2	enzyme is selected from the group consisting of β -glucosidases, β -galactosidases, β -

mannosidases, β -N-acetyl glucosaminidases, β -N acetyl galactosaminidases, β -xylosidases, β -

 α -N acetyl galactosaminidases, α -xylosidases, α -fucosidsases, and neuraminidases/sialidases.

glucoamylases, α - glucosidases, α -galactosidases, α -mannosidases, α -N-acetyl glucosaminidases,

fucosidsases, cellulases, xylanases, galactanases, mannanases, hemicellulases, amylases,

STEPHEN G. WITHERS *et al.* Application No.: 09/837,711 Page 5

Claims 56-70. (Withdrawn)