

Subequivariant Graph Reinforcement Learning in 3D Environments

Runfa Chen*, Jiaqi Han*, Fuchun Sun, Wenbing Huang

* Equal contribution, Correspondence to: Fuchun Sun <fcsun@mail.tsinghua.edu.cn>, Wenbing Huang <hwenbing@126.com>.

Background

☐ Challenges posed by morphology

Physical

Symmetry

- Each robot has a different morphology.
- A separate policy is trained for each robotics setup. It doesn't generalize.
- Prior Attempts only use topology graph in 2D Planar environments.
- Real Physical World is 3D Geometric Structure and Systems, which contains Physical Symmetry.

Motivation: 3D-SGRL

☐ Illustrative comparison between previous 2D planar setting and our 3D subequivariant formulation.

(a) 2D Planar Locomotion Environments

(b) 3D Subequivariant Locomotion Environments

		2D-Planar	Our 3D-SGRL
State Space	Range Initial Target	xoz -plane x^+ -axis x^+ -axis	3D space Arbitrary direction Arbitrary direction
Action Space	# Actuators DoF	1 per joint 1 per joint	3 per joint 3 per joint
Symmetry	External Force Group	NULL Ø	Gravity \vec{g} , Target \vec{d} $O_{\vec{g}}(3)$

Method: SubEquivariant Transformer (SET)

☐ Equivariance

Definition 2.1 (E(3)-equivariance). Suppose \vec{Z} to be 3D geometric vectors (positions, velocities, etc) that are steerable by E(3) transformations, and h non-steerable features.

- The function f is E(3)-equivariant, if for any transformation $g \in \mathrm{E}(3), f(g \cdot ec{oldsymbol{Z}}, oldsymbol{h}) = g \cdot f(ec{oldsymbol{Z}}, oldsymbol{h}), orall ec{oldsymbol{Z}} \in \mathbb{R}^{3 imes m}, oldsymbol{h} \in \mathbb{R}^{d}.$
- Similarly, f is invariant if $f(g \cdot \vec{Z}, h) = f(\vec{Z}, h)$.

■ SubEquivariance

Han et al. (2022a) additionally considers equivariance on the subgroup of O(3), induced by the external force $\vec{q} \in \mathbb{R}^3$ like gravity, defined as

$$\mathrm{O}_{ec{oldsymbol{o}}}(3) := ig\{ oldsymbol{O} \in \mathbb{R}^{3 imes 3} \mid oldsymbol{O}^ op oldsymbol{O} = oldsymbol{I}, oldsymbol{O} oldsymbol{ar{g}} = oldsymbol{ar{g}} ig\}$$

Han et al. (2022a) also presented a universally expressive construction of the $O_{\vec{a}}$ (3)equivariant functions:

$$egin{aligned} f_{ec{m{g}}}(ec{m{Z}},m{h}) &= [ec{m{Z}},ec{m{g}}]m{M}_{ec{m{g}}}, \ ext{s.t.} & m{M}_{ec{m{g}}} &= \sigma\Big([ec{m{Z}},ec{m{g}}]^ op [ec{m{Z}},ec{m{g}}],m{h}\Big), \end{aligned}$$

where $\sigma(\cdot)$ is an Multi-Layer Perceptron (MLP) and $[\vec{\boldsymbol{Z}}, \vec{\boldsymbol{g}}] \in \mathbb{R}^{3 \times (m+1)}$ is a stack of $\vec{\boldsymbol{Z}}$ and \vec{q} along the last dimension.

☐ Illustration of the Flowchart of 3D-SGRL.

Notation: $\vec{Z}_i \in R^{3 \times 6}$ include its position $\vec{p}_i \in \mathbb{R}^3$, positional velocity $\vec{v}_i \in \mathbb{R}^3$, rotational velocity $\vec{\omega}_i \in \mathbb{R}^3$, etc. $h_i \in \mathbb{R}^{13}$ consist of the rotation angles $\kappa_i, \zeta_i, \delta_i$ of joint axes, etc. External forces like gravity $\vec{q} \in \mathbb{R}^3$ and a target direction $\vec{d} \in \mathbb{R}^3$. Also, $\vec{u}_i = \vec{Z}_i W_u$, where W_u is a matrix.

Experiment

☐ Comparison with Invariant Methods

Environment	SET	SWAT+HN
cross-domain (3D_	CWHH++)	
3d_walker_3 3d_walker_6	206.8 \pm 37.4 243.7 \pm 32.3	26.3 ± 72.4 156.8 ± 11.1
3d_humanoid_7 3d_humanoid_8	$egin{array}{l} {f 161.9} \pm 3.4 \ {f 180.0} \pm 6.5 \end{array}$	130.2 ± 2.1 152.9 ± 36.8
3d_cheetah_11 3d_cheetah_12	1078.1 ± 722.8 3038.3 ± 2803.3	$786.5 \pm 779.3 \\ 2517.3 \pm 2113.9$

■ Zero-Shot Generalization

Environment	SET	SWAT	SMP			
in-domain (3D_Walker++, 3D_Humanoid++, 3D_Cheetah++)						
3d_walker_3 3d_walker_6	276.2 ± 17.4 431.3 ± 146.2	207.0 ± 52.7 358.0 ± 58.9	56.8 ± 15.1 143.4 ± 50.7			
3d_humanoid_7 3d_humanoid_8	244.8 ± 7.9 299.6 ± 23.7	170.3 ± 51.7 141.4 ± 22.1	190.9 ± 16.2 185.4 ± 9.2			
3d_cheetah_11 3d_cheetah_12	4643.9 ± 292.6 916.0 ± 39.7	1785.3 ± 999.3 744.1 ± 317.1	2.0 ± 2.9 29.8 ± 10.7			
cross-domain (3D_CWHH++)						
3d_walker_3 3d_walker_6	206.8 ± 37.4 243.7 ± 32.3	17.9 ± 13.7 114.9 ± 40.3	18.0 ± 22.9 103.9 ± 1.8			
3d_humanoid_7	161.9 \pm 3.4	152.0 ± 6.8	124.2 ± 15.7			

3d_cheetah_12 3038.3 ± 2803.3 349.7 ± 304.3

Website

 6.2 ± 0.5

Our Contributions

>To learn a policy in this massive search space, we design SET, a novel model that preserves geometric symmetry by construction.

Wechat

➤ We introduce a new morphology-agnostic RL benchmark that extends the widely adopted 2D-Planar setting to 3D-SGRL, permitting significantly larger exploring space of the agents with arbitrary initial location and target direction.