C.01.01 – Ciclo Otto de Tempo Finito de Adição de Calor FTHA – Finite-Time Heat Addition Otto Engine Model

Prof. C. Naaktgeboren, PhD

https://github.com/CNThermSci/ApplThermSci Compiled on 2020-09-15 00h17m23s UTC

Sumário da Parte I

- Introdução
 - Limitações do Ciclo Otto Ideal
 - Proposta do Ciclo Otto FTHA
- Modelagem FTHA
 - Modelagem do Motor
 - Modelagem do Ciclo
 - Procedimento de Solução
- Tópicos de Leitura

Sumário da Parte II

- Validação do Modelo FTHA
- Estudo de Caso com Modelo FTHA

Tópicos de Leitura

Parte I

Apresentação do Modelo FTHA

O ciclo Otto ideal, da termodinâmica aplicada:

Assume todas as hipóteses padrão a ar;

O ciclo Otto ideal, da termodinâmica aplicada:

• Assume todas as hipóteses padrão a ar;

• Gás ideal;

O ciclo Otto ideal, da termodinâmica aplicada:

• Assume todas as hipóteses padrão a ar;

- Gás ideal;
- Processos internamente reversíveis;

O ciclo Otto ideal, da termodinâmica aplicada:

• Assume todas as hipóteses padrão a ar;

- Gás ideal;
- Processos internamente reversíveis;
- Entrada de calor modela a combustão;

O ciclo Otto ideal, da termodinâmica aplicada:

Assume todas as hipóteses padrão a ar;

- Gás ideal;
- Processos internamente reversíveis;
- Entrada de calor modela a combustão;
- Saída de calor modela a exaustão;

O ciclo Otto ideal, da termodinâmica aplicada:

Assume todas as hipóteses padrão a ar;

- Gás ideal;
- Processos internamente reversíveis;
- Entrada de calor modela a combustão;
- Saída de calor modela a exaustão;
- Modelo em ciclo fechado;

- Assume todas as hipóteses padrão a ar;
- Assume entrada de calor isocórica;

- Gás ideal;
- Processos internamente reversíveis;
- Entrada de calor modela a combustão;
- Saída de calor modela a exaustão;
- Modelo em ciclo fechado;

- Assume todas as hipóteses padrão a ar;
- Assume entrada de calor isocórica;
- Possui parâmetros $r \in k$, e

- Gás ideal;
- Processos internamente reversíveis;
- Entrada de calor modela a combustão;
- Saída de calor modela a exaustão;
- Modelo em ciclo fechado;

- Assume todas as hipóteses padrão a ar;
- Assume entrada de calor isocórica;
- Possui parâmetros r e k, e
- Solução analítica, hip. padrão a ar frio:

- Gás ideal:
- Processos internamente reversíveis;
- Entrada de calor modela a combustão;
- Saída de calor modela a exaustão;
- Modelo em ciclo fechado;

- Assume todas as hipóteses padrão a ar;
- Assume entrada de calor isocórica;
- Possui parâmetros r e k, e
- Solução analítica, hip. padrão a ar frio:

- Gás ideal:
- Processos internamente reversíveis;
- Entrada de calor modela a combustão;
- Saída de calor modela a exaustão;
- Modelo em ciclo fechado;
- Calores específicos constantes.

- Assume todas as hipóteses padrão a ar;
- Assume entrada de calor isocórica;
- Possui parâmetros $r \in k$, e
- Solução analítica, hip. padrão a ar frio:

$$\eta_t = 1 - r^{1-k} -$$

- Gás ideal:
- Processos internamente reversíveis;
- Entrada de calor modela a combustão;
- Saída de calor modela a exaustão;
- Modelo em ciclo fechado;
- Calores específicos constantes.

O ciclo Otto ideal, da termodinâmica aplicada:

- Assume todas as hipóteses padrão a ar;
- Assume entrada de calor isocórica;
- Possui parâmetros $r \in k$, e
- Solução analítica, hip. padrão a ar frio:

$$\eta_t = 1 - r^{1-k} -$$

• $\eta_t : \eta_t(r,k)$ apenas!

- Gás ideal;
- Processos internamente reversíveis;
- Entrada de calor modela a combustão;
- Saída de calor modela a exaustão;
- Modelo em ciclo fechado;
- Calores específicos constantes.

Desvios do ciclo Otto ideal—incluem, mas não limitados a:

Diagrama P-V ilustrativo de perdas por (i) combustão não instantânea—verde, (ii) transferência de calor—vermelho—e de (iii) bombeamento—azul. Fonte: adaptado de Wikimedia Commons.

https://upload.wikimedia.org/wikipedia/commons/6/6c/P-V_diagram_deviations_to_Otto_cycle.svg.

• Modela combustão (adição de calor) de forma não instantânea:

- Modela combustão (adição de calor) de forma não instantânea:
 - Interações simultâneas de calor e trabalho;

- Modela combustão (adição de calor) de forma não instantânea:
 - Interações simultâneas de calor e trabalho;
 - Tempos de motor discretizados em sub-processos;

- Modela combustão (adição de calor) de forma não instantânea:
 - Interações simultâneas de calor e trabalho;
 - Tempos de motor discretizados em sub-processos;
 - Elemento computacional: sub-processo localmente politrópico;

- Modela combustão (adição de calor) de forma não instantânea:
 - Interações simultâneas de calor e trabalho;
 - Tempos de motor discretizados em sub-processos;
 - Elemento computacional: sub-processo localmente politrópico;
 - Remoção de calor permanece isocórica (instantânea).

- Modela combustão (adição de calor) de forma não instantânea:
 - Interações simultâneas de calor e trabalho;
 - Tempos de motor discretizados em sub-processos;
 - Elemento computacional: sub-processo localmente politrópico;
 - Remoção de calor permanece isocórica (instantânea).
- Mantém-se como modelo padrão a ar:

- Modela combustão (adição de calor) de forma não instantânea:
 - Interações simultâneas de calor e trabalho;
 - Tempos de motor discretizados em sub-processos;
 - Elemento computacional: sub-processo localmente politrópico;
 - Remoção de calor permanece isocórica (instantânea).
- Mantém-se como modelo padrão a ar:
 - Transferência de calor para bloco inclui irreversibilidades;

- Modela combustão (adição de calor) de forma não instantânea:
 - Interações simultâneas de calor e trabalho;
 - Tempos de motor discretizados em sub-processos;
 - Elemento computacional: sub-processo localmente politrópico;
 - Remoção de calor permanece isocórica (instantânea).
- Mantém-se como modelo padrão a ar:
 - Transferência de calor para bloco inclui irreversibilidades;
 - Perdas de bombeamento envolvem sistema e ciclo abertos.

- Modela combustão (adição de calor) de forma não instantânea:
 - Interações simultâneas de calor e trabalho;
 - Tempos de motor discretizados em sub-processos;
 - Elemento computacional: sub-processo localmente politrópico;
 - Remoção de calor permanece isocórica (instantânea).
- Mantém-se como modelo padrão a ar:
 - Transferência de calor para bloco inclui irreversibilidades;
 - Perdas de bombeamento envolvem sistema e ciclo abertos.
- Mantém-se como modelo de substância pura:

- Modela combustão (adição de calor) de forma não instantânea:
 - Interações simultâneas de calor e trabalho;
 - Tempos de motor discretizados em sub-processos;
 - Elemento computacional: sub-processo localmente politrópico;
 - Remoção de calor permanece isocórica (instantânea).
- Mantém-se como modelo padrão a ar:
 - Transferência de calor para bloco inclui irreversibilidades;
 - Perdas de bombeamento envolvem sistema e ciclo abertos.
- Mantém-se como modelo de substância pura:
 - Evita combustão e equilíbrio químico;

- Modela combustão (adição de calor) de forma não instantânea:
 - Interações simultâneas de calor e trabalho;
 - Tempos de motor discretizados em sub-processos;
 - Elemento computacional: sub-processo localmente politrópico;
 - Remoção de calor permanece isocórica (instantânea).
- Mantém-se como modelo padrão a ar:
 - Transferência de calor para bloco inclui irreversibilidades;
 - Perdas de bombeamento envolvem sistema e ciclo abertos.
- Mantém-se como modelo de substância pura:
 - Evita combustão e equilíbrio químico;
 - Evita modelagem termodinâmica de misturas reativas.

• Inclui todos os parâmetros do ciclo Otto ideal:

- Inclui todos os parâmetros do ciclo Otto ideal:
 - Razão de compressão do motor;

- Inclui todos os parâmetros do ciclo Otto ideal:
 - Razão de compressão do motor;
 - Calores específicos do fluido de trabalho.

- Inclui todos os parâmetros do ciclo Otto ideal:
 - Razão de compressão do motor;
 - Calores específicos do fluido de trabalho.
- Inclui parâmetros construtivos do motor:

- Inclui todos os parâmetros do ciclo Otto ideal:
 - Razão de compressão do motor;
 - Calores específicos do fluido de trabalho.
- Inclui parâmetros construtivos do motor:
 - Conjunto pistão-cilindro;

- Inclui todos os parâmetros do ciclo Otto ideal:
 - Razão de compressão do motor;
 - Calores específicos do fluido de trabalho.
- Inclui parâmetros construtivos do motor:
 - Conjunto pistão-cilindro;
 - Mecanismo biela-manivela.

- Inclui todos os parâmetros do ciclo Otto ideal:
 - Razão de compressão do motor;
 - Calores específicos do fluido de trabalho.
- Inclui parâmetros construtivos do motor:
 - Conjunto pistão-cilindro;
 - Mecanismo biela-manivela.
- Inclui parâmetros operacionais do motor:

Ciclo Otto padrão a ar de tempo finito de adição de calor—FTHA

- Inclui todos os parâmetros do ciclo Otto ideal:
 - Razão de compressão do motor;
 - Calores específicos do fluido de trabalho.
- Inclui parâmetros construtivos do motor:
 - Conjunto pistão-cilindro;
 - Mecanismo biela-manivela.
- Inclui parâmetros operacionais do motor:
 - Velocidade angular (rotação);

Ciclo Otto padrão a ar de tempo finito de adição de calor—FTHA

- Inclui todos os parâmetros do ciclo Otto ideal:
 - Razão de compressão do motor;
 - Calores específicos do fluido de trabalho.
- Inclui parâmetros construtivos do motor:
 - Conjunto pistão-cilindro;
 - Mecanismo biela-manivela.
- Inclui parâmetros operacionais do motor:
 - Velocidade angular (rotação);
 - Ângulo de ignição e

Ciclo Otto padrão a ar de tempo finito de adição de calor—FTHA

- Inclui todos os parâmetros do ciclo Otto ideal:
 - Razão de compressão do motor;
 - Calores específicos do fluido de trabalho.
- Inclui parâmetros construtivos do motor:
 - Conjunto pistão-cilindro;
 - Mecanismo biela-manivela.
- Inclui parâmetros operacionais do motor:
 - Velocidade angular (rotação);
 - Ângulo de ignição e
 - Duração da combustão.

• Diâmetro do pistão/cilindro, D;

- Diâmetro do pistão/cilindro, D;
- Raio da manivela, *R*;

 $m V_{PMS}$

- Diâmetro do pistão/cilindro, D;
- Raio da manivela, *R*;
- Curso do pistão, S = 2R;

- Diâmetro do pistão/cilindro, D;
- Raio da manivela, R;
- Curso do pistão, S = 2R;
- Comprimento da biela, *L*;

- Diâmetro do pistão/cilindro, D;
- Raio da manivela, *R*;
- Curso do pistão, S = 2R;
- Comprimento da biela, *L*;
- Volume morto (do PMS), V_{PMS};

- Diâmetro do pistão/cilindro, D;
- Raio da manivela, *R*;
- Curso do pistão, S = 2R;
- Comprimento da biela, *L*;
- Volume morto (do PMS), V_{PMS};
- Volume máximo (do PMI), V_{PMI};

- Diâmetro do pistão/cilindro, D;
- Raio da manivela, *R*;
- Curso do pistão, S = 2R;
- Comprimento da biela, *L*;
- Volume morto (do PMS), V_{PMS};
- Volume máximo (do PMI), V_{PMI};
- Razão de compressão, $r = \frac{V_{\text{PMS}}}{V_{\text{PMI}}}$

• Posição do pistão (rel. PMS), x;

- Posição do pistão (rel. PMS), x;
- Ângulo do virabrequim (rel. PMS), α;

- Posição do pistão (rel. PMS), x;
- Ângulo do virabrequim (rel. PMS), α;
- Volume instantâneo, *V*;

- Posição do pistão (rel. PMS), x;
- Ângulo do virabrequim (rel. PMS), α;
- Volume instantâneo, *V*;

$$x(\alpha) = L\left(1 - \sqrt{1 - \frac{R^2}{L^2}\sin^2\alpha}\right) + R(1 - \cos\alpha)$$

- Posição do pistão (rel. PMS), x;
- Ângulo do virabrequim (rel. PMS), α;
- Volume instantâneo, *V*;

$$x(\alpha) = L\left(1 - \sqrt{1 - \frac{R^2}{L^2}\sin^2\alpha}\right) + R(1 - \cos\alpha)$$

$$V(\alpha) = rac{\pi x(\alpha)}{4} D^2 + V_{ ext{PMS}} \quad ext{$ o$} \quad v(\alpha) = rac{V(\alpha)}{m_0}$$

• Ângulo de ignição (rel. PMS), θ ;

- Ângulo de ignição (rel. PMS), θ;
- Duração da combustão, Δt_c ;

- Ângulo de ignição (rel. PMS), θ;
- Duração da combustão, Δt_c ;
- Velocidade angular, $\omega \equiv \frac{d\alpha}{dt} = 2\pi N/60$;

- Ângulo de ignição (rel. PMS), θ;
- Duração da combustão, Δt_c ;
- Velocidade angular, $\omega \equiv \frac{d\alpha}{dt} = 2\pi N/60$;
- "Duração angular" da combustão, $\delta = \omega \Delta t_c$;

- Ângulo de ignição (rel. PMS), θ ;
- Duração da combustão, Δt_c ;
- Velocidade angular, $\omega \equiv \frac{d\alpha}{dt} = 2\pi N/60$;
- "Duração angular" da combustão, $\delta = \omega \Delta t_c$;
- Casos de ω constante—discretização em α:
 - Intervalo de simulação: $-\pi \leqslant \alpha \leqslant +\pi$;

- Ângulo de ignição (rel. PMS), θ ;
- Duração da combustão, Δt_c ;
- Velocidade angular, $\omega \equiv \frac{d\alpha}{dt} = 2\pi N/60$;
- "Duração angular" da combustão, $\delta = \omega \Delta t_c$;
- Casos de ω constante—discretização em α:
 - Intervalo de simulação: $-\pi \le \alpha \le +\pi$;
 - Intervalo de adição de calor: $\theta \le \alpha \le \theta + \delta$.

- Ângulo de ignição (rel. PMS), θ ;
- Duração da combustão, Δt_c ;
- Velocidade angular, $\omega \equiv \frac{d\alpha}{dt} = 2\pi N/60$;
- "Duração angular" da combustão, $\delta = \omega \Delta t_c$;
- Casos de ω constante—discretização em α:
 - Intervalo de simulação: $-\pi \le \alpha \le +\pi$;
 - Intervalo de adição de calor: $\theta \le \alpha \le \theta + \delta$.
 - $\alpha_i = -\pi + i\Delta\alpha$, $i \in \mathbb{N}$, $0 \le i \le 2I$, with

- Ângulo de ignição (rel. PMS), θ;
- Duração da combustão, Δt_c ;
- Velocidade angular, $\omega \equiv \frac{d\alpha}{dt} = 2\pi N/60$;
- "Duração angular" da combustão, $\delta = \omega \Delta t_c$:
- Casos de ω constante—discretização em α:
 - Intervalo de simulação: $-\pi \le \alpha \le +\pi$:
 - Intervalo de adição de calor: $\theta \le \alpha \le \theta + \delta$.
 - $\alpha_i = -\pi + i\Delta\alpha$, $i \in \mathbb{N}$, $0 \le i \le 2I$, with
 - $\Delta \alpha = \pi/I, I \in \mathbb{N}^*$.

- Ângulo de ignição (rel. PMS), θ ;
- Duração da combustão, Δt_c ;
- Velocidade angular, $\omega \equiv \frac{d\alpha}{dt} = 2\pi N/60$;
- "Duração angular" da combustão, $\delta = \omega \Delta t_c$;
- Casos de ω constante—discretização em α:
 - Intervalo de simulação: $-\pi \le \alpha \le +\pi$;
 - Intervalo de adição de calor: $\theta \le \alpha \le \theta + \delta$.
 - $\alpha_i = -\pi + i\Delta\alpha$, $i \in \mathbb{N}$, $0 \le i \le 2I$, with
 - $\Delta \alpha = \pi/I, I \in \mathbb{N}^*$.
- Casos de w variável—discretização em t.

$$q(\alpha) = q_{ent} \cdot y(\alpha), \quad \text{com}$$

$$q(lpha) = q_{ent} \cdot y(lpha), \quad ext{com}$$
 $y(lpha) = egin{cases} 0 & ext{para } lpha < heta, \ g(lpha) & ext{para } lpha \leqslant lpha \leqslant heta + \delta, \ 1 & ext{para } lpha > heta + \delta. \end{cases}$

$$q(lpha) = q_{ent} \cdot y(lpha), \quad ext{com}$$
 $y(lpha) = egin{cases} 0 & ext{para } lpha < heta, \ g(lpha) & ext{para } heta \leqslant lpha \leqslant heta + \delta, \ 1 & ext{para } lpha > heta + \delta. \end{cases}$

• $g(\alpha)$ modela o histórico da ad. de calor:

$$q(lpha) = q_{ent} \cdot y(lpha), \quad ext{com}$$
 $y(lpha) = egin{cases} 0 & ext{para } lpha < heta, \ g(lpha) & ext{para } lpha \leqslant lpha \leqslant heta + \delta, \ 1 & ext{para } lpha > heta + \delta. \end{cases}$

• $g(\alpha)$ modela o histórico da ad. de calor:

•
$$g(\theta) = 0$$
 e $g(\theta + \delta) = 1$;

$$q(lpha) = q_{ent} \cdot y(lpha), \quad ext{com}$$
 $y(lpha) = egin{cases} 0 & ext{para } lpha < heta, \ g(lpha) & ext{para } lpha \leqslant lpha \leqslant heta + \delta, \ 1 & ext{para } lpha > heta + \delta. \end{cases}$

- $g(\alpha)$ modela o histórico da ad. de calor:
 - $g(\theta) = 0$ e $g(\theta + \delta) = 1$;
 - Função $g(\alpha)$ deve ser monotônica;

$$q(lpha) = q_{ent} \cdot y(lpha), \quad ext{com}$$
 $y(lpha) = egin{cases} 0 & ext{para } lpha < heta, \ g(lpha) & ext{para } lpha \leqslant lpha \leqslant heta + \delta, \ 1 & ext{para } lpha > heta + \delta. \end{cases}$

- $g(\alpha)$ modela o histórico da ad. de calor:
 - $g(\theta) = 0$ e $g(\theta + \delta) = 1$;
 - Função $g(\alpha)$ deve ser monotônica;
 - $g(\alpha)$ pode basear-se em experimentos;

$$q(lpha) = q_{ent} \cdot y(lpha), \quad ext{com}$$
 $y(lpha) = egin{cases} 0 & ext{para } lpha < heta, \ g(lpha) & ext{para } lpha \leqslant lpha \leqslant heta + \delta, \ 1 & ext{para } lpha > heta + \delta. \end{cases}$

- $g(\alpha)$ modela o histórico da ad. de calor:
 - $g(\theta) = 0$ e $g(\theta + \delta) = 1$;
 - Função $g(\alpha)$ deve ser monotônica;
 - $g(\alpha)$ pode basear-se em experimentos;
 - Lit.: $g(\alpha) = \frac{1}{2} \frac{1}{2}\cos(\frac{\pi}{\delta}(\alpha \theta))$.

No i-ésimo (sub-)processo politrópico:

No i-ésimo (sub-)processo politrópico:

• O sistema evolui do estado-i para o estado-(i+1).

No *i*-ésimo (sub-)processo politrópico:

- O sistema evolui do estado-i para o estado-(i+1).
- Propriedades P_i , T_i , v_i , u_i , etc., definidas nos estados -i e -(i+1).

No *i*-ésimo (sub-)processo politrópico:

- O sistema evolui do estado-i para o estado-(i+1).
- Propriedades P_i , T_i , v_i , u_i , etc., definidas nos estados -i e -(i+1).
- Interações do *i*-ésimo processo são q_i e w_i .

No *i*-ésimo (sub-)processo politrópico:

- O sistema evolui do estado-i para o estado-(i+1).
- Propriedades P_i , T_i , v_i , u_i , etc., definidas nos estados -i e -(i+1).
- Interações do *i*-ésimo processo são q_i e w_i .

Balanço de energia de processo:

No *i*-ésimo (sub-)processo politrópico:

- O sistema evolui do estado-i para o estado-(i+1).
- Propriedades P_i , T_i , v_i , u_i , etc., definidas nos estados -i e -(i+1).
- Interações do *i*-ésimo processo são q_i e w_i .

Balanço de energia de processo:

$$q_i + w_i = \Delta u_i = u_{i+1} - u_i$$

No i-ésimo (sub-)processo politrópico:

- O sistema evolui do estado-i para o estado-(i+1).
- Propriedades P_i , T_i , v_i , u_i , etc., definidas nos estados -i e -(i+1).
- Interações do *i*-ésimo processo são q_i e w_i .

Balanço de energia de processo:

$$q_i + w_i = \Delta u_i = u_{i+1} - u_i \quad \rightarrow$$

No *i*-ésimo (sub-)processo politrópico:

- O sistema evolui do estado-i para o estado-(i+1).
- Propriedades P_i , T_i , v_i , u_i , etc., definidas nos estados -i e -(i+1).
- Interações do *i*-ésimo processo são q_i e w_i .

Balanço de energia de processo:

$$q_i + w_i = \Delta u_i = u_{i+1} - u_i$$
 \rightarrow $u_{i+1} = u_i + q_i + w_i$, com,

$$q_i = q_{ent} \cdot (y_{i+1} - y_i)$$

$$q_i = q_{ent} \cdot (y_{i+1} - y_i) \quad \neg$$

$$q_i = q_{ent} \cdot (y_{i+1} - y_i) \quad \neg$$

$$q_i = q_{ent} \cdot [y(\alpha_{i+1}) - y(\alpha_i)], \quad e$$

$$q_i = q_{ent} \cdot (y_{i+1} - y_i) \quad \neg$$

$$q_i = q_{ent} \cdot [y(\alpha_{i+1}) - y(\alpha_i)],$$

$$w_i = \int_{v_i}^{v_{i+1}} (P_i v_i^{n_i}) v^{-n_i} dv,$$

$$q_i = q_{ent} \cdot (y_{i+1} - y_i) \quad \neg$$

$$q_i = q_{ent} \cdot [y(\alpha_{i+1}) - y(\alpha_i)], \quad e$$

$$w_i = \int_{v_i}^{v_{i+1}} (P_i v_i^{n_i}) v^{-n_i} dv, \quad \neg$$

$$q_{i} = q_{ent} \cdot (y_{i+1} - y_{i}) \quad \neg$$

$$q_{i} = q_{ent} \cdot [y(\alpha_{i+1}) - y(\alpha_{i})], \quad e$$

$$w_{i} = \int_{v_{i}}^{v_{i+1}} (P_{i}v_{i}^{n_{i}})v^{-n_{i}} dv, \quad \neg$$

$$w_{i} = \begin{cases} \frac{P_{i}v_{i}}{1 - n_{i}} \left[1 - \left(\frac{v_{i}}{v_{i+1}}\right)^{n_{i}-1}\right], & \text{para } n_{i} \neq 1, \\ P_{i}v_{i} \ln \frac{v_{i}}{v_{i+1}}, & \text{para } n_{i} = 1, \\ 0, & \text{para } v_{i} \approx v_{i+1} \end{cases}$$

para $v_i \approx v_{i+1} \rightarrow |v_i - v_{i+1}| \leqslant \varepsilon_v$.

Solução de Sub-Processo

Conjectura (de consistência termodinâmica)

Para uma dada interação de calor, q_i , existe um único expoente politrópico, n_i , tal que o processo politrópico $Pv^{n_i} = C_i = \text{const.}$, aplicado entre estados (i) e (i+1) resulta em uma interação de trabalho, w_i , e em uma variação de energia interna, $\Delta u_i = u_{i+1} - u_i$, que é termodinamicamente consistente com a equação P-v-T de estado da substância de trabalho em ambos estados finais e que também satisfaz o balanço de energia do processo.

Solução de Sub-Processo

Conjectura (de consistência termodinâmica)

Para uma dada interação de calor, q_i , existe um único expoente politrópico, n_i , tal que o processo politrópico $Pv^{n_i} = C_i = \text{const.}$, aplicado entre estados (i) e (i+1) resulta em uma interação de trabalho, w_i , e em uma variação de energia interna, $\Delta u_i = u_{i+1} - u_i$, que é termodinamicamente consistente com a equação P-v-T de estado da substância de trabalho em ambos estados finais e que também satisfaz o balanço de energia do processo.

 \rightarrow Processo de estimativa (n_i^0) e j-ésima correção (n_i^j) até a convergência.

Solução de Sub-Processo

Conjectura (de consistência termodinâmica)

Para uma dada interação de calor, q_i , existe um único expoente politrópico, n_i , tal que o processo politrópico $Pv^{n_i} = C_i = \text{const.}$, aplicado entre estados (i) e (i+1) resulta em uma interação de trabalho, w_i , e em uma variação de energia interna, $\Delta u_i = u_{i+1} - u_i$, que é termodinamicamente consistente com a equação P-v-T de estado da substância de trabalho em ambos estados finais e que também satisfaz o balanço de energia do processo.

- \rightarrow Processo de estimativa (n_i^0) e j-ésima correção (n_i^j) até a convergência.
- \rightarrow Tolerâncias de convergência ε_w e ε_u .

• Com n_i^j é possível obter w_i^j e u_{i+1}^j por balanço de energia;

- Com n_i^j é possível obter w_i^j e u_{i+1}^j por balanço de energia;
- P_{i+1}^{j} pode ser obtida via u_{i+1}^{j} e o modelo de substância;

- Com n_i^j é possível obter w_i^j e u_{i+1}^j por balanço de energia;
- P_{i+1}^{j} pode ser obtida via u_{i+1}^{j} e o modelo de substância;
- O novo expoente n_i^{j+1} pode ser achado pelo processo politrópico:

- Com n_i^j é possível obter w_i^j e u_{i+1}^j por balanço de energia;
- P_{i+1}^{j} pode ser obtida via u_{i+1}^{j} e o modelo de substância;
- O novo expoente n_i^{j+1} pode ser achado pelo processo politrópico:

$$P_i v_i^{n_i^{j+1}} = P_{i+1}^j v_{i+1}^{n_i^{j+1}}$$

- Com n_i^j é possível obter w_i^j e u_{i+1}^j por balanço de energia;
- P_{i+1}^{j} pode ser obtida via u_{i+1}^{j} e o modelo de substância;
- O novo expoente n_i^{i+1} pode ser achado pelo processo politrópico:

$$P_i v_i^{n_i^{j+1}} = P_{i+1}^j v_{i+1}^{n_i^{j+1}} \quad o \quad n_i^{j+1} = rac{\ln rac{P_{i+1}^j}{P_i}}{\ln rac{V_i}{V_{i+1}}}.$$

Algoritmo de Inicialização

```
REQUER: Parâmetros do motor: \{\omega, D, L, R, V_{PMS}, e V_{du}\};
```

REQUER: Ângulos θ e δ (via Δt_c);

REQUER: Refinamento da discretização, *I*;

REQUER: Estado inicial (P_0, T_0) e modelo de substância;

REQUER: Função $g(\alpha)$ e q_{ent} ;

REQUER: Tolerâncias de convergência ε_v , ε_w e ε_u .

1: Inicializa todas quant. com índice i como vetores vazios: α_i , v_i , q_i , w_i , n_i , P_i , T_i , and u_i ;

2: Calcula $\Delta \alpha = \pi/I$ e todos $\alpha_i = -\pi + i\Delta \alpha$;

3: $v_0 \leftarrow$ volume específico, de (P_0, T_0) e equação de estado;

4: $m \leftarrow V_0/v_0$;

5: Calcula todos $v_i = V(\alpha_i)/m$;

6: $i \leftarrow 0$;

Algoritmo de Laço do Ciclo

```
    PARA i = 0 até 2I FAÇA
    Calcula q<sub>i</sub> = q<sub>ent</sub> · [y(α<sub>i+1</sub>) - y(α<sub>i</sub>)];
    Resolve para w<sub>i</sub>, n<sub>i</sub>, u<sub>i+1</sub>, P<sub>i+1</sub> e T<sub>i+1</sub> via algoritmo de solução de sub-processo;
    FIM
    i ← i + 1;
    q<sub>i</sub> ← u<sub>0</sub> - u<sub>i</sub>;
    w<sub>i</sub> ← 0;
    Estado-(i) = Estado-0; {Para todas as funções de estado rastreadas}
```


Algoritmo de Finalização

- 1: $w_{ent} \leftarrow \sum w_i \ge 0$; {Trabalho que entra no sistema em um ciclo}
- 2: $w_{out} \leftarrow -\sum w_i < 0$; {Trabalho realizado pelo sistema em um ciclo}
- 3: $w_{net} \leftarrow w_{out} w_{ent}$; {Trabalho líquido realizado pelo sistema no ciclo}
- 4: $q_{ent} \leftarrow \sum q_i \geqslant 0$; {Calor que entra no sistema em um ciclo}
- 5: $q_{rej} \leftarrow -\sum q_i < 0$; {Calor rejeitado pelo sistema em um ciclo}
- 6: $\eta_t \leftarrow w_{net}/q_{ent}$; {Eficiência térmica}
- 7: $r_{bw} \leftarrow w_{ent}/w_{out}$; {Razão de consumo de trabalho}
- 8: MEP $\leftarrow w_{net}/(V_{du}/m)$; {Pressão média efetiva}
- 9: Salva dados da simulação para o pós-processamento (relatório).

Algoritmo de Solução de Sub-Processo

```
    SE |v<sub>i</sub> - v<sub>i+1</sub>| ≤ ε<sub>ν</sub> ENTÃO
    {Processo isocórico}
    u<sub>i+1</sub> ← u<sub>i</sub> + q<sub>i</sub>;
    Calcula T<sub>i+1</sub> via u<sub>i+1</sub> pelo modelo (biblioteca) de substância;
    Calcula P<sub>i+1</sub> pela equação de estado;
    Calcula n<sub>i</sub> pelo processo politrópico ou faz n<sub>i</sub> ← +∞ em caso de excessão;
    SENÃO
    {Processo politrópico}
    ...
    FIM
```


Algoritmo de Solução de Sub-Processo Politrópico

- 1: $j \leftarrow 0$;
- 2: Inicializa vetores n_i , w_i , u_{i+1} , T_{i+1} e P_{i+1} ;
- 3: $n_i^j \leftarrow 1 + R_{gas}/c_v(T_i)$; {Chute inicial isentrópico}
- 4: Calcula w_i^j com $n_i = n_i^j$;
- 5: **ENQUANTO** j = 0 **OU** $|w_i^{j-1} w_i^j| \ge \varepsilon_w$ **FAÇA**
- 6: $u_{i+1}^{j} \leftarrow u_i + q_i + w_i^{j} \text{ com } w_i = w_i^{j};$
- 7: Calcula T_{i+1} via u_{i+1} pelo modelo (biblioteca) de substância;
- 8: Calcula P_{i+1} pela equação de estado;
- 9: Corrige n_i^{j+1} pelo processo politrópico;
- 10: $j \leftarrow j+1$;
- 11: Calcula $w_i^j \operatorname{com} n_i = n_i^j$;
- 12: **FIM**
- 13: n_i , w_i , u_{i+1} , T_{i+1} e $P_{i+1} \leftarrow$ seus últimos elementos j; {Reverte vetores (linha 2)}

Tópicos de Leitura I

- Çengel, Y. A. e Boles, M. A. *Termodinâmica* 7ª *Edição*. Seções 9–3 a 9–5. AMGH. Porto Alegre. ISBN 978-85-8055-200-3.
- Naaktgeboren, C.

 An air-standard finite-time heat addition Otto engine model.

 Int. J. Mech. Eng. Educ. 45 (2), 2017.

 DOI 10.1177/0306419016689447.

Parte II

Validação e Estudo de Caso com FTHA

• Uma solução numérica é o resultado de muitas operações;

- Uma solução numérica é o resultado de muitas operações;
- Tais operações seguem um algoritmo implementado;

- Uma solução numérica é o resultado de muitas operações;
- Tais operações seguem um algoritmo implementado;
- O algoritmo é a estratégia de solução do modelo matemático;

- Uma solução numérica é o resultado de muitas operações;
- Tais operações seguem um algoritmo implementado;
- O algoritmo é a estratégia de solução do modelo matemático;
- O modelo matemático é a descrição do modelo físico;

- Uma solução numérica é o resultado de muitas operações;
- Tais operações seguem um algoritmo implementado;
- O algoritmo é a estratégia de solução do modelo matemático;
- O modelo matemático é a descrição do modelo físico;
- O modelo físico vêm da teoria;

- Uma solução numérica é o resultado de muitas operações;
- Tais operações seguem um algoritmo implementado;
- O algoritmo é a estratégia de solução do modelo matemático;
- O modelo matemático é a descrição do modelo físico;
- O modelo físico vêm da teoria;
- A teoria advém de hipóteses formuladas e testadas por cientistas;

- Uma solução numérica é o resultado de muitas operações;
- Tais operações seguem um algoritmo implementado;
- O algoritmo é a estratégia de solução do modelo matemático;
- O modelo matemático é a descrição do modelo físico;
- O modelo físico vêm da teoria;
- A teoria advém de hipóteses formuladas e testadas por cientistas;
- As hipóteses são formuladas da observação da realidade.

- Uma solução numérica é o resultado de muitas operações;
- Tais operações seguem um algoritmo implementado;
- O algoritmo é a estratégia de solução do modelo matemático;
- O modelo matemático é a descrição do modelo físico;
- O modelo físico vêm da teoria;
- A teoria advém de hipóteses formuladas e testadas por cientistas;
- As hipóteses são formuladas da observação da realidade.
- : há um longo caminho entre a realidade e a solução numérica!

- Uma solução numérica é o resultado de muitas operações;
- Tais operações seguem um algoritmo implementado;
- O algoritmo é a estratégia de solução do modelo matemático;
- O modelo matemático é a descrição do modelo físico;
- O modelo físico vêm da teoria;
- A teoria advém de hipóteses formuladas e testadas por cientistas;
- As hipóteses são formuladas da observação da realidade.
- : há um longo caminho entre a realidade e a solução numérica!
- Como saber se a solução numérica não retorna "garbage"?

- Uma solução numérica é o resultado de muitas operações;
- Tais operações seguem um algoritmo implementado;
- O algoritmo é a estratégia de solução do modelo matemático;
- O modelo matemático é a descrição do modelo físico;
- O modelo físico vêm da teoria;
- A teoria advém de hipóteses formuladas e testadas por cientistas;
- As hipóteses são formuladas da observação da realidade.
- : há um longo caminho entre a realidade e a solução numérica!
- Como saber se a solução numérica não retorna "garbage"? → Validação!

O que é Validação?

Resultados de um modelo numérico só são confiáveis se o modelo for validado:

Resultados de um modelo numérico só são confiáveis se o modelo for validado:

• Ajusta-se parâmetros do modelo, tal que represente algo com solução conhecida.

- Ajusta-se parâmetros do modelo, tal que represente algo com solução conhecida.
- Tal solução conhecida deve ser confiável:

- Ajusta-se parâmetros do modelo, tal que represente algo com solução conhecida.
- Tal solução conhecida deve ser confiável:
 - Seja por ter uma relação mais direta com a realidade, a saber: experimentos;

- Ajusta-se parâmetros do modelo, tal que represente algo com solução conhecida.
- Tal solução conhecida deve ser confiável:
 - Seja por ter uma relação mais direta com a realidade, a saber: experimentos;
 - Seja por comprovada exatidão, a saber: solução analítica do mesmo modelo matemático;

- Ajusta-se parâmetros do modelo, tal que represente algo com solução conhecida.
- Tal solução conhecida deve ser confiável:
 - Seja por ter uma relação mais direta com a realidade, a saber: experimentos;
 - Seja por comprovada exatidão, a saber: solução analítica do mesmo modelo matemático;
- O FTHA melhora o ciclo Otto ideal e pode ser reduzido a ele, via $\delta = 0$;

- Ajusta-se parâmetros do modelo, tal que represente algo com solução conhecida.
- Tal solução conhecida deve ser confiável:
 - Seja por ter uma relação mais direta com a realidade, a saber: experimentos;
 - Seja por comprovada exatidão, a saber: solução analítica do mesmo modelo matemático;
- O FTHA melhora o ciclo Otto ideal e pode ser reduzido a ele, via $\delta = 0$;
- O ciclo Otto ideal (padrão a ar frio) possui solução exata!

- Ajusta-se parâmetros do modelo, tal que represente algo com solução conhecida.
- Tal solução conhecida deve ser confiável:
 - Seja por ter uma relação mais direta com a realidade, a saber: experimentos;
 - Seja por comprovada exatidão, a saber: solução analítica do mesmo modelo matemático;
- O FTHA melhora o ciclo Otto ideal e pode ser reduzido a ele, via $\delta = 0$;
- O ciclo Otto ideal (padrão a ar frio) possui solução exata!
- FTHA é validado caso produza resultado próximo da solução exata!

- Ajusta-se parâmetros do modelo, tal que represente algo com solução conhecida.
- Tal solução conhecida deve ser confiável:
 - Seja por ter uma relação mais direta com a realidade, a saber: experimentos;
 - Seja por comprovada exatidão, a saber: solução analítica do mesmo modelo matemático;
- O FTHA melhora o ciclo Otto ideal e pode ser reduzido a ele, via $\delta = 0$;
- O ciclo Otto ideal (padrão a ar frio) possui solução exata!
- FTHA é validado caso produza resultado próximo da solução exata!
- Quanto mais casos de validação forem feitos, melhor!

Model validation for r = 12 and k = 1.3343 (constant c_v for hot air

• Estudos de caso é a aplicação do modelo em situações desejadas:

- Estudos de caso é a aplicação do modelo em situações desejadas:
 - É onde se coleta as previsões do modelo!

- Estudos de caso é a aplicação do modelo em situações desejadas:
 - É onde se coleta as previsões do modelo!
 - É onde expectativas educadas podem ser ou não confirmadas!

- Estudos de caso é a aplicação do modelo em situações desejadas:
 - É onde se coleta as previsões do modelo!
 - É onde expectativas educadas podem ser ou não confirmadas!
 - É de onde se aprende com o modelo, pela análise das previsões.

- Estudos de caso é a aplicação do modelo em situações desejadas:
 - É onde se coleta as previsões do modelo!
 - É onde expectativas educadas podem ser ou não confirmadas!
 - É de onde se aprende com o modelo, pela análise das previsões.
- O artigo que traz o FTHA contém um estudo de caso, um teste de rotação:

- Estudos de caso é a aplicação do modelo em situações desejadas:
 - É onde se coleta as previsões do modelo!
 - É onde expectativas educadas podem ser ou não confirmadas!
 - É de onde se aprende com o modelo, pela análise das previsões.
- O artigo que traz o FTHA contém um estudo de caso, um teste de rotação:
 - Para Δt_c fixo, δ aumenta com a rotação.

- Estudos de caso é a aplicação do modelo em situações desejadas:
 - É onde se coleta as previsões do modelo!
 - É onde expectativas educadas podem ser ou não confirmadas!
 - É de onde se aprende com o modelo, pela análise das previsões.
- O artigo que traz o FTHA contém um estudo de caso, um teste de rotação:
 - Para Δt_c fixo, δ aumenta com a rotação.
 - Espera-se ciclos parecidos com o Otto ideal para baixos valores de δ ;

- Estudos de caso é a aplicação do modelo em situações desejadas:
 - É onde se coleta as previsões do modelo!
 - É onde expectativas educadas podem ser ou não confirmadas!
 - É de onde se aprende com o modelo, pela análise das previsões.
- O artigo que traz o FTHA contém um estudo de caso, um teste de rotação:
 - Para Δt_c fixo, δ aumenta com a rotação.
 - Espera-se ciclos parecidos com o Otto ideal para baixos valores de δ ;
 - Espera-se desvios progressivos e queda na eficiência com aumento de δ ;

- Estudos de caso é a aplicação do modelo em situações desejadas:
 - É onde se coleta as previsões do modelo!
 - É onde expectativas educadas podem ser ou não confirmadas!
 - É de onde se aprende com o modelo, pela análise das previsões.
- O artigo que traz o FTHA contém um estudo de caso, um teste de rotação:
 - Para Δt_c fixo, δ aumenta com a rotação.
 - Espera-se ciclos parecidos com o Otto ideal para baixos valores de δ;
 - Espera-se desvios progressivos e queda na eficiência com aumento de δ ;
 - Espera-se quedas progressivas na pressão máxima com aumento de δ;

- Estudos de caso é a aplicação do modelo em situações desejadas:
 - É onde se coleta as previsões do modelo!
 - É onde expectativas educadas podem ser ou não confirmadas!
 - É de onde se aprende com o modelo, pela análise das previsões.
- O artigo que traz o FTHA contém um estudo de caso, um teste de rotação:
 - Para Δt_c fixo, δ aumenta com a rotação.
 - Espera-se ciclos parecidos com o Otto ideal para baixos valores de δ ;
 - Espera-se desvios progressivos e queda na eficiência com aumento de δ;
 - Espera-se quedas progressivas na pressão máxima com aumento de δ;
 - Espera-se diagramas *P-v* parecidos com o ilustrado anteriormente:

Recapitulando: Desvios do ciclo Otto ideal

Espera-se que o FTHA prediga ciclos incorporando efeitos de combustão não instantânea—verde, e não os demais efeitos de transferência de calor—vermelho—e de bombeamento—azul. Fonte: adaptado de Wikimedia Commons. https://upload.wikimedia.org/wikipedia/commons/6/6c/P-V-diagram_deviations_to_Otto_cycle.svg.

• Motor quadrado, S = D, com

- Motor quadrado, S = D, com
- $V_{du} = 250 \text{ cm}^3$, L/R = 5 e r = 12:1;

- Motor quadrado, S = D, com
- $V_{du} = 250 \text{ cm}^3$, L/R = 5 e r = 12:1;
- Fluido de trabalho CO₂ como gás ideal e

- Motor quadrado, S = D, com
- $V_{du} = 250 \text{ cm}^3$, L/R = 5 e r = 12:1;
- Fluido de trabalho CO₂ como gás ideal e
- $\bar{c}_v(T)$ como polinômio de 5º grau;

- Motor quadrado, S = D, com
- $V_{du} = 250 \text{ cm}^3$, L/R = 5 e r = 12:1;
- Fluido de trabalho CO₂ como gás ideal e
- $\bar{c}_{v}(T)$ como polinômio de 5º grau;
- $\Delta \alpha = 0.5^{\circ}$ na adição de calor $q_{ent} = 1000 \text{ kJ/kg}$;

- Motor quadrado, S = D, com
- $V_{du} = 250 \text{ cm}^3$, L/R = 5 e r = 12:1;
- Fluido de trabalho CO₂ como gás ideal e
- $\bar{c}_{\nu}(T)$ como polinômio de 5º grau;
- $\Delta \alpha = 0.5^{\circ}$ na adição de calor $q_{ent} = 1000 \text{ kJ/kg}$;
- Ignição $\theta = -10^{\circ}$ em todos os casos;

- Motor quadrado, S = D, com
- $V_{du} = 250 \text{ cm}^3$, L/R = 5 e r = 12:1;
- Fluido de trabalho CO₂ como gás ideal e
- $\bar{c}_{\nu}(T)$ como polinômio de 5º grau;
- $\Delta \alpha = 0.5^{\circ}$ na adição de calor $q_{ent} = 1000 \text{ kJ/kg}$;
- Ignição $\theta = -10^{\circ}$ em todos os casos;
- Variação de δ em $\{10^{\circ}, 30^{\circ}, 50^{\circ}, 70^{\circ}, 90^{\circ}, 110^{\circ}\}$.

- Motor quadrado, S = D, com
- $V_{du} = 250 \text{ cm}^3$, L/R = 5 e r = 12:1;
- Fluido de trabalho CO₂ como gás ideal e
- $\bar{c}_{\nu}(T)$ como polinômio de 5º grau:
- $\Delta \alpha = 0.5^{\circ}$ na adição de calor $q_{ent} = 1000 \text{ kJ/kg}$;
- Ignição $\theta = -10^{\circ}$ em todos os casos;
- Variação de δ em $\{10^{\circ}, 30^{\circ}, 50^{\circ}, 70^{\circ}, 90^{\circ}, 110^{\circ}\}$.
- Caso $\delta = 10^{\circ}$: adição de calor termina no PMS!

Tópicos de Leitura I

Brunetti, F.

Motores de combustão interna. Capítulos 1 e 2.

Blücher. São Paulo. ISBN 978-85-2120-708-5.

Naaktgeboren, C.

An air-standard finite-time heat addition Otto engine model.

Int. J. Mech. Eng. Educ. 45 (2), 2017.

DOI 10.1177/0306419016689447.

