1		z = xy	
-		Z = Xy	
		$[x] = \frac{\lfloor z \rfloor}{\lfloor y \rfloor} = \frac{LM^{-1}}{LT^{-1}}$	G1
		$[x] = TM^{-1}$	J1
		TOTAL = 2 I	MARKS
2	a (i)	$average \ acceleration = rac{\Delta v}{\Delta t}$	
		$a = \frac{8 - (-8)}{15 - 5}$	
		$a = 1.6 \ ms^{-2}$	GJU1
	a (ii)	displacement = area under the graph	
		$= \frac{1}{2}(10-5)(-8) + \frac{1}{2}(15-10)(8)$	K1
		=0 m	GJU1
		distance = area under the graph	
		$= \frac{1}{2}(10-5)(8) + \frac{1}{2}(15-10)(8)$	
		=40~m	GJU1
	b (i)	$s_y = u_y t + \frac{1}{2} a_y t^2$	
		$8.6 = (25\sin 35)t + \frac{1}{2}(-9.81)t^2$	G1
		t = 2.08 s	JU1
	b (ii)	$s_x = u_x t + \frac{1}{2} a_x t^2$	
		$s_x = (25\cos 35)(2.08)$	
		$s_x = 42.60 m$	GJU1
	b (iii)	$v_x = u_x = 25\cos 35 = 20.48 \text{ms}^{-1}$	
		$v_y = u_y + a_y t$	
		$v_y = -6.065 ms^{-1}$	K1

		$v = \sqrt{(v_x)^2 + (v_y)^2}$	
		·	
		$v = \sqrt{(20.48)^2 + (-6.065)^2}$	G1
		$v = 21.36 ms^{-1}$	
		TOTAL = 10 N	JU1 MARKS
3	а	$F = \frac{m(v - u)}{t}$	
		t	
		$F = \frac{0.08(-22 - 32)}{0.15}$	G1
		2.2	JU1
		F = -28.8 N	
	b	Consider y-componet of the collision	
		$\sum p_i = \sum p_f$	K1
		$\sum_{i} p_{i} - \sum_{i} p_{f}$	
		$m_1 u_1 + m_2 u_2 = (m_1 + m_2) v$	
		$0 + 3000u_2 = (2000 + 3000)(5.22 \sin 40)$	G1
		$u_2 = 5.59 ms^{-1}$	
		u ₂ – 3.37 ms	JU1
	c (i)		
		Block A Block B	D3
		T_1 T_2	
		↑ ┌─────────────────────────────────	
		3 correct FBD – 2 marks 2 correct FBD – 1 mark	
		T ₂ 1 correct FBD – 1 mark 1 correct FBD – 0 mark 1 correct FBD – 0 mark	
		↓ 	
		$ m W_A m W_B$	
	c (ii)	Apply 2nd newton law to both object (y- comp)	
			K1
		$\sum F_B = m_B a$	I VI
		$T_2 - W_B = m_B a$	
		$T_2 - 11(9.81) = 11(2)$	G1
		2 ((-)	

		$T_2 = 129.91 N$	JU1
		$\sum F_A = m_A a$	
		$T_1 - W_A - T_2 = m_A a$	
		$T_1 - 15(9.81) - T_2 = 15(2)$	G1
		$T_1 = 307.06 N$	JU1
		TOTAL = 13 I	<i>NARKS</i>
4	a (i)	$\Delta U = U_D - U_B$	
		$\Delta U = mgh_D - mgh_B$	
		= 4(9.81)(7) - 4(9.81)(5)	G1
		= 78.48 J	JU1
	a (ii)	Apply conservation of energy	
		$\sum E_A = \sum E_C$	K1
		$\frac{1}{2}mv_A^2 + mgh_A = \frac{1}{2}mv_C^2$	
		$\frac{1}{2}(4)(10)^2 + (4)(9.81)(5) = \frac{1}{2}(4)v_c^2$	G1
		$v_C = 14.07 ms^{-1}$	JU1
	b	$P_{av} = \frac{\Delta W}{\Delta t} = \frac{\Delta K}{t}$	K1
		$=\frac{\frac{1}{2}mv^2 - \frac{1}{2}mu^2}{t}$	
		$=\frac{\frac{1}{2}(0.875)(0.62)^2 - \frac{1}{2}(0.875)(0)^2}{21 \times 10^{-3}}$	G1
		= 8 W	JU1
		TOTAL = 8 I	ΛΑΡΚ
		TOTAL OF	

5	а		
		3 correct FBD – 2 marks 2 correct FBD – 1 mark 1 correct FBD – 0 mark W	D2
	b	$\sum F = ma_c$	K1
		$f_{s(max)} = mr\omega^2$ $0.72 \ (9.81)m = m(0.35)\omega^2$ $\omega = 4.492 \ rads^{-1}$ convert to rpm	G1
		$\omega = 42.895\ rpm$ max number of revolutions per minute = 42 revolutions.	JU1
		TOTAL = 5 N	MARKS
6	a(i)	$v(t = 5) = 0.1(4)\cos(4(5))$ = 0.16 m s ⁻¹	G1 J1
	a(ii)	$= 0.16 m s^{-1}$ $K_{max} = E = \frac{1}{2} m \omega^2 A^2$ $= \frac{1}{2} (5 \times 10^{-3}) (4)^2 (0.1)^2$ $= 4 \times 10^{-4} J$	G1 JU1
	b	$mg = kx$ $k = \frac{10}{0.02} = 500 \text{ N m}^{-1}$ $m = \frac{W}{g} = \frac{10}{9.81} = 1.02 \text{ kg}$	G1 G1
		$T = 2\pi \sqrt{\frac{m}{k}} = 2\pi \sqrt{\frac{1.02}{500}}$ = 0.284 s	G1 JU1
	С	$f = \frac{\omega}{a} = \frac{9\pi}{a} = 4.5 \text{ Hz}$	G1
		$f = \frac{\omega}{2\pi} = \frac{9\pi}{2\pi} = 4.5 \text{ Hz}$ $\lambda = \frac{2\pi}{k} = \frac{2\pi}{2\pi} = 1 \text{ m}$ $v = f\lambda = (4.5)(1) = 4.5 \text{ m s}^{-1}$	G1 G1
		$v = \sqrt{\frac{T}{\mu}}$	

		$T = v^2 \mu = (4.5)^2 (0.15)$	C1
		$T = v^{-}\mu = (4.5)^{-}(0.15)$ T = 3.04 N	G1 JU1
	d(i)	1st overtone $\rightarrow n = 3$	K1
		$f_3 = \frac{nv}{4l} = \frac{3(340)}{4(0.48)}$	G1
		$f_3 = 531.25 \text{Hz}$	JU1
	1/**>		
	d(ii)	Fundamental $\rightarrow n = 1$	
		$f_n = \frac{nv}{2L}$	
		1(340)	G1
		$f_1 = \frac{1(340)}{2(0.48)}$ $f_1 = 354.17 Hz$	O1
		$f_1 = 354.17 Hz$	JU1
	(1)		
	e(i)	Approach	J1
		$f_{apparent} > f_{source}$	K1
	e(ii)	$f_a = \left(\frac{v}{v - v_s}\right) f$	K1
		$1.1 \times 10^3 = \left(\frac{340}{340 - v_c}\right) (1 \times 10^3)$	G1
		$(340 - v_s)^{(1 \times 10^{-3})}$ $v_s = 30.9 \text{ m s}^{-1}$	JU1
		TOTAL - 22	MARKE
7	а		MARKS
7	а	$Y = \frac{\sigma}{\varepsilon} = \frac{Fl_o}{A\Delta L} \to 2 \times 10^{11} = \frac{F(1.5)}{1 \times 10^{-6} (2 \times 10^{-3})}$	MARKS G1
7	a		
7	a	$Y = \frac{\sigma}{\varepsilon} = \frac{Fl_o}{A\Delta L} \to 2 \times 10^{11} = \frac{F(1.5)}{1 \times 10^{-6}(2 \times 10^{-3})}$ $F = 266.67 \text{ N}$	G1
7		$Y = \frac{\sigma}{\varepsilon} = \frac{Fl_o}{A\Delta L} \to 2 \times 10^{11} = \frac{F(1.5)}{1 \times 10^{-6}(2 \times 10^{-3})}$ $F = 266.67 \text{ N}$ $total\ area\ A = 2(2 \times 1) + 2(1.5 \times 1) + (2 \times 1.5) = 10\ m^2$	G1 JU1
7		$Y = \frac{\sigma}{\varepsilon} = \frac{Fl_o}{A\Delta L} \to 2 \times 10^{11} = \frac{F(1.5)}{1 \times 10^{-6}(2 \times 10^{-3})}$ $F = 266.67 \text{ N}$	G1 JU1
7		$Y = \frac{\sigma}{\varepsilon} = \frac{Fl_o}{A\Delta L} \to 2 \times 10^{11} = \frac{F(1.5)}{1 \times 10^{-6}(2 \times 10^{-3})}$ $F = 266.67 \text{ N}$ $total\ area\ A = 2(2 \times 1) + 2(1.5 \times 1) + (2 \times 1.5) = 10\ m^2$ $\frac{Q}{t} = -kA\left(\frac{\Delta T}{L}\right)$	G1 JU1
7		$Y = \frac{\sigma}{\varepsilon} = \frac{Fl_o}{A\Delta L} \to 2 \times 10^{11} = \frac{F(1.5)}{1 \times 10^{-6}(2 \times 10^{-3})}$ $F = 266.67 \text{ N}$ $total\ area\ A = 2(2 \times 1) + 2(1.5 \times 1) + (2 \times 1.5) = 10\ m^2$	G1 JU1
7		$Y = \frac{\sigma}{\varepsilon} = \frac{Fl_o}{A\Delta L} \to 2 \times 10^{11} = \frac{F(1.5)}{1 \times 10^{-6}(2 \times 10^{-3})}$ $F = 266.67 \text{ N}$ $total\ area\ A = 2(2 \times 1) + 2(1.5 \times 1) + (2 \times 1.5) = 10\ m^2$ $\frac{Q}{t} = -kA\left(\frac{\Delta T}{L}\right)$	G1 JU1 K1
7		$Y = \frac{\sigma}{\varepsilon} = \frac{Fl_o}{A\Delta L} \to 2 \times 10^{11} = \frac{F(1.5)}{1 \times 10^{-6}(2 \times 10^{-3})}$ $F = 266.67 \text{ N}$ $total area A = 2(2 \times 1) + 2(1.5 \times 1) + (2 \times 1.5) = 10 m^2$ $\frac{Q}{t} = -kA\left(\frac{\Delta T}{L}\right)$ $Q = -(3.78 \times 10^{-2})(10)\left(\frac{22 - 96}{0.015}\right)(3600)$	G1 JU1 K1
7	b	$Y = \frac{\sigma}{\varepsilon} = \frac{Fl_o}{A\Delta L} \rightarrow 2 \times 10^{11} = \frac{F(1.5)}{1 \times 10^{-6}(2 \times 10^{-3})}$ $F = 266.67 \text{ N}$ $total\ area\ A = 2(2 \times 1) + 2(1.5 \times 1) + (2 \times 1.5) = 10\ m^2$ $\frac{Q}{t} = -kA\left(\frac{\Delta T}{L}\right)$ $Q = -(3.78 \times 10^{-2})(10)\left(\frac{22 - 96}{0.015}\right)(3600)$ $Q = 6713.28\ kJ$ $\Delta L_{steel} = (12 \times 10^{-6})L_o(100 - 25) = 0.0009L_o$ $\Delta L_{copper} = (16 \times 10^{-6})L_o(100 - 25) = 0.0012L_o$	G1 JU1 K1 G1 JU1
7	b	$Y = \frac{\sigma}{\varepsilon} = \frac{Fl_o}{A\Delta L} \rightarrow 2 \times 10^{11} = \frac{F(1.5)}{1 \times 10^{-6}(2 \times 10^{-3})}$ $F = 266.67 \text{ N}$ $total\ area\ A = 2(2 \times 1) + 2(1.5 \times 1) + (2 \times 1.5) = 10\ m^2$ $\frac{Q}{t} = -kA\left(\frac{\Delta T}{L}\right)$ $Q = -(3.78 \times 10^{-2})(10)\left(\frac{22 - 96}{0.015}\right)(3600)$ $Q = 6713.28\ kJ$ $\Delta L_{steel} = (12 \times 10^{-6})L_o(100 - 25) = 0.0009L_o$ $\Delta L_{copper} = (16 \times 10^{-6})L_o(100 - 25) = 0.0012L_o$ $\Delta L_{copper} > \Delta L_{steel}$	G1 JU1 K1 G1 JU1
7	b	$Y = \frac{\sigma}{\varepsilon} = \frac{Fl_o}{A\Delta L} \rightarrow 2 \times 10^{11} = \frac{F(1.5)}{1 \times 10^{-6}(2 \times 10^{-3})}$ $F = 266.67 \text{ N}$ $total\ area\ A = 2(2 \times 1) + 2(1.5 \times 1) + (2 \times 1.5) = 10\ m^2$ $\frac{Q}{t} = -kA\left(\frac{\Delta T}{L}\right)$ $Q = -(3.78 \times 10^{-2})(10)\left(\frac{22 - 96}{0.015}\right)(3600)$ $Q = 6713.28\ kJ$ $\Delta L_{steel} = (12 \times 10^{-6})L_o(100 - 25) = 0.0009L_o$ $\Delta L_{copper} = (16 \times 10^{-6})L_o(100 - 25) = 0.0012L_o$	G1 JU1 K1 G1 JU1
	b c	$Y = \frac{\sigma}{\varepsilon} = \frac{Fl_o}{A\Delta L} \rightarrow 2 \times 10^{11} = \frac{F(1.5)}{1 \times 10^{-6}(2 \times 10^{-3})}$ $F = 266.67 \text{ N}$ $total\ area\ A = 2(2 \times 1) + 2(1.5 \times 1) + (2 \times 1.5) = 10\ m^2$ $\frac{Q}{t} = -kA\left(\frac{\Delta T}{L}\right)$ $Q = -(3.78 \times 10^{-2})(10)\left(\frac{22 - 96}{0.015}\right)(3600)$ $Q = 6713.28\ kJ$ $\Delta L_{steel} = (12 \times 10^{-6})L_o(100 - 25) = 0.0009L_o$ $\Delta L_{copper} = (16 \times 10^{-6})L_o(100 - 25) = 0.0012L_o$ $\Delta L_{copper} > \Delta L_{steel}$	G1 JU1 G1 JU1 K1 JU1
7	b	$Y = \frac{\sigma}{\varepsilon} = \frac{Fl_o}{A\Delta L} \rightarrow 2 \times 10^{11} = \frac{F(1.5)}{1 \times 10^{-6}(2 \times 10^{-3})}$ $F = 266.67 \text{ N}$ $total\ area\ A = 2(2 \times 1) + 2(1.5 \times 1) + (2 \times 1.5) = 10\ m^2$ $\frac{Q}{t} = -kA\left(\frac{\Delta T}{L}\right)$ $Q = -(3.78 \times 10^{-2})(10)\left(\frac{22 - 96}{0.015}\right)(3600)$ $Q = 6713.28\ kJ$ $\Delta L_{steel} = (12 \times 10^{-6})L_o(100 - 25) = 0.0009L_o$ $\Delta L_{copper} = (16 \times 10^{-6})L_o(100 - 25) = 0.0012L_o$ $\Delta L_{copper} > \Delta L_{steel}$ $Longer = copper\ wire$	G1 JU1 G1 JU1 K1 JU1
	b c	$Y = \frac{\sigma}{\varepsilon} = \frac{Fl_o}{A\Delta L} \rightarrow 2 \times 10^{11} = \frac{F(1.5)}{1 \times 10^{-6}(2 \times 10^{-3})}$ $F = 266.67 \text{ N}$ $total\ area\ A = 2(2 \times 1) + 2(1.5 \times 1) + (2 \times 1.5) = 10\ m^2$ $\frac{Q}{t} = -kA\left(\frac{\Delta T}{L}\right)$ $Q = -(3.78 \times 10^{-2})(10)\left(\frac{22 - 96}{0.015}\right)(3600)$ $Q = 6713.28\ kJ$ $\Delta L_{steel} = (12 \times 10^{-6})L_o(100 - 25) = 0.0009L_o$ $\Delta L_{copper} = (16 \times 10^{-6})L_o(100 - 25) = 0.0012L_o$ $\Delta L_{copper} > \Delta L_{steel}$ $Longer = copper\ wire$	G1 JU1 G1 JU1 K1 JU1
	b c	$Y = \frac{\sigma}{\varepsilon} = \frac{Fl_o}{A\Delta L} \rightarrow 2 \times 10^{11} = \frac{F(1.5)}{1 \times 10^{-6}(2 \times 10^{-3})}$ $F = 266.67 \text{ N}$ $total\ area\ A = 2(2 \times 1) + 2(1.5 \times 1) + (2 \times 1.5) = 10\ m^2$ $\frac{Q}{t} = -kA\left(\frac{\Delta T}{L}\right)$ $Q = -(3.78 \times 10^{-2})(10)\left(\frac{22 - 96}{0.015}\right)(3600)$ $Q = 6713.28\ kJ$ $\Delta L_{steel} = (12 \times 10^{-6})L_o(100 - 25) = 0.0009L_o$ $\Delta L_{copper} = (16 \times 10^{-6})L_o(100 - 25) = 0.0012L_o$ $\Delta L_{copper} > \Delta L_{steel}$ $Longer = copper\ wire$	G1 JU1 G1 JU1 K1 JU1

	$v_{rms} = \sqrt{\frac{3(8.31)(283.45)}{0.04}}$	G1
	$v_{rms} = 420.08 ms^{-1}$	JU1
a(ii)	Monoatamic gas $\rightarrow f=3$ $\Delta U=U_f-U_i$	K1
	$\Delta U = \frac{f}{2} nR \Delta T$	K1
	$\Delta U = \frac{3}{2}(125)(8.31)(323.15 - 283.45)$	G1
	$\Delta U = 61.86 \times 10^3 J$	JU1
b(i)	$W = nRTln\left(\frac{V_f}{V_i}\right)$	
	$W = (1.2)(8.31)(303.15)ln\left(\frac{4}{1}\right)$	G1
	W = 4190.78 J	JU1
b(ii)	$Q = \Delta U + W$	
	Q = 0 + 4190.78	
	Q = 4190.78 J -> ecf	GJU
b(ii)	Isochoric process, W = 0 J	J1
b(iv)	Isobaric process	J1
	TOTAL	= 11 MARK