STATS 2MB3 - Statistical Methods and Applications

Sang Woo Park

January 13, 2017

Course Outline

- Website: https://ms.mcmaster.ca/ bprotas/MATH3Q03/
 Textbook: Numerical Mathematics
- Supplemental references: Approximation Theory and Approximation Practice
- Five assignments

Contents

1	Intr	Introduction			
	1.1	Probability and statistics	2		
	1.2	Descriptive statistics	2		

1 Introduction

1.1 Probability and statistics

Definition 1.1 (Probability). A collection of concepts and methos useful to:

- 1. understand and quantify uncertainty (i.e. variability of randomness)
- 2. model uncertainty (e.g. discrete and continuous distributions)

Definition 1.2 (Statistics). A collection of analytical and graphical methods useful to

- 1. describe, picture, and summarize a data set (descriptive statistics)
- 2. draw conclusion about a population on the basis of observing a portion of it, i.e. a sample (inferential statistics).
- 3. verify and refute hypotheses made about a population on the basis of observing a sample (test of statistical hypothesis).
- 4. develop prediction equations from experimental data in the presence of uncertainty (model building, regression model).

Remark. The statistical methods rely heavily of probability.

1.2 Descriptive statistics

Definition 1.3 (Stem-and-leaf plot). Stem-and-leaf plots is a graphical method that is useful when summarizing numerical data. A stem and leaf are associated with every data point.

Remark. Number of stems in a stem-and-leaf plot is approximately equal to \sqrt{n} where n is the number of points in a given data set (i.e. the sample size).

Example 1.2.1 (Shower flow rate data).

- Do a stem-and-leaf plot of the data.
- Typical observations are 7 l/min, 7.5 l/min, etc.
- It is highly concentrated in the lower side of the scale and spaced out in the upper of the scale.
- The data shows assymetry with a high concentration in the lower side of the scale and spaced out on the larger values. This is called *positive asymmetry* or *positive skewness*.
- Flow rate of 18.9 l/min appears to be unusually far away from the rest of the data. We can consider it to be an outlier.

```
stem(shower_flow)
##
##
     The decimal point is at the |
##
##
      2 | 23
##
      3 | 2344567789
##
      4 | 01356889
##
      5 | 00001114455666789
##
      6 | 0000122223344456667789999
##
      7 | 00012233455555668
      8 | 02233448
##
      9 | 012233335666788
##
     10 | 2344455688
##
     11 | 2335999
##
     12 | 37
##
     13 | 8
##
     14 | 36
##
     15 | 0035
##
     16 |
##
     17 I
##
     18 | 9
```

Definition 1.4 (Dot plots). Dot plots is a useful tool to describe data with repeated observations. Each data point is represented by a dot, and the dots are stacked.

Example 1.2.2 (Pulse rate data). Pulse rate data contains the following:

- n: 50 biomed students
- pulse rate: number of heart beats over 30 seconds multiplied by 2.

With this data, we wish to answer the following questions:

- 1. Do a dot plot of the data.
- 2. What can you say about the distribution of the data based on the plot?
- 3. Are there outliers in the data?

```
pulse_rate <- scan("pulse_rate.txt")
## http://stackoverflow.com/questions/15244938/how-to-draw-a-stacked-dotplot-in-r
stripchart(pulse_rate, method = "stack", pch = 19, offset = 0.5, at = 0.15)</pre>
```


- The data show some negative skewness.
- Observation 42 seems a bit low. Perhaps it's a mild outlier

Definition 1.5 (Frequency table). Frequency table is a tabular method of visualizing data.

- 1. n: sample size
- 2. Represent the observations by x_1, x_2, \ldots, x_n
- 3. Identify the smallest observation, $x_{(1)}$, and the largest observation, $x_{(2)}$.
- 4. Divide the range of the data into non-overlapping subintervals of equal length.

5.

Example 1.2.3. Going back to the flow rate data, n = 129. Since $\sqrt{n} = 11.69$, we take k = 12. Also, we have $x_{(1)} = 2.2$ and $x_{(129)} = 18.9$. Now, we can find the length of each subinterval:

$$L = \frac{x_{(n)} - x_{(1)}}{k} = 1.396 \approx 1.4$$

We can make some observations based on the table (see table 1):

- The proportion of flow rate less than 6.4l/min is 0.0542+0.1007+0.2171=0.3720 or 37.2%.
- The proportion of shower flow rates between 5.0l/min and 10l/min (exclusive) is 0.2171 + 0.2326 + 0.0853 + 0.1550 = 0.69.

Table 1: Shower flow frequency table

Class	Frequency	Relative frequency
$2.2 \le x \le 3.6$	7	0.0542
$3.6 \le x \le 5.0$	13	0.1007
$5.0 \le x \le 6.4$	28	0.2171
$6.4 \le x \le 7.8$	30	0.2326
$7.8 \le x \le 9.2$	11	0.0853
$9.2 \le x \le 10.6$	20	0.1550
$10.6 \le x \le 12.0$	10	0.0775
$12.0 \le x \le 13.4$	2	0.0155
$13.4 \le x \le 14.8$	3	0.0233
$14.8 \le x \le 16.2$	4	0.0310
$16.2 \le x \le 17.6$	0	0.0000
$17.6 \le x \le 19.0$	1	0.0078

Definition 1.6 (Histogram). Plot of bars for the frequencies or relative frequencies.

 $hist(shower_flow, breaks = seq(2.2, 19, by = 1.4), ylim = c(0, 30))$

Histogram of shower_flow

- $\bullet\,$ The histogram converys similar information as the stem-and-leaf plot
- $\bullet\,$ Both plots show right skewness
- Some unusually large observations are noted

• Summarizing data through measures: measures of location or centrality

Definition 1.7. Given a data $(x_1, x_2, ..., x_n)$ with sample size n, Sample mean or average is given by

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Definition 1.8. Sample median, \tilde{x} , of a data is the middle observation when we order the data. If n is odd, median is the (n+1)/2th ordered observation. If n is even, median is given by taking the average of the (n/2)th and (n/2+1)th ordered observations.

Definition 1.9 (The trimmed mean). Trimmed mean of a data $(\bar{x}_{tr(k)})$ is given by taking the mean of the data after removing the k% smallest observations and the k% largest observations.

Example 1.2.4. Compute the sample mean, median, and trimmed mean for the shower flow data.

Sample mean. We have n = 129. Then, the sample mean is given by

$$\bar{x} = \frac{1}{n} \sum_{i} x_i = 7.7085$$

Sample median. n=129 is odd so we have $\frac{n+1}{2}=65$. x_i is the 65th observation.

10% trimmed mean. 10% of $129=0.1\times129=12.9\approx13$. We leave out 13 smallest and 13 largest observations. Then, sample size becomes $129-2\times13=103$. Then, we have

$$\bar{x}_{\text{tr}(10)} = \frac{1}{103} \sum_{i} x_i = 7.449$$

- The sample mean, median, and trimmed mean are measures of centrality. They represent typical key points in the centre of the data
- The mean is sensitive to extreme values (large or small), whereas the median is not
- The sample trimmed means typically fall between the sample mean and the sample median
- The sample mean or average is by far the most widely used, followed by the sample median.
- Since the shower flow rate is positively skewed, $\bar{x} > x$.

Definition 1.10 (Sample variance). sample variance measures variability or dispersion. Sample variance is given by

$$\sigma^2 = \frac{(x_1 - \bar{x}_1)^2 + (x_2 - \bar{x}_2)^2 + \dots + (x_n - \bar{x}_n)^2}{n - 1}$$
$$= \frac{1}{n - 1} \sum_{i=1}^{n} (x - \bar{x}_i)^2$$

Note that we can calculate variance more easily through the following formula:

$$\sigma^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$
$$= \frac{\sum x_{i}^{2} - n\bar{x}}{n-1}$$

Definition 1.11 (Sample standard deviation). Sample standard deviation is obtained by taking a square root of variance:

$$\sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(x-\bar{x})^2}$$

Theorem 1.1.

$$\sum_{i=1}^{n} (x_i - \bar{x}) = 0$$