A/B Testing of Auctions

Jason D. Hartline — Northwestern University (with Shuchi Chawla and Denis Nekipelov)

Yandex Events — August 7, 2018

A Grand Challenge for CS _____

A Grand Challenge: understand and guide computation in the wild

A Grand Challenge for CS ____

A Grand Challenge: understand and guide computation in the wild

• computational primitive: local/individual/strategic optimization.

A Grand Challenge for CS —

A Grand Challenge: understand and guide computation in the wild

- computational primitive: local/individual/strategic optimization.
- objective: good global outcomes

A Grand Challenge for CS —

A Grand Challenge: understand and guide computation in the wild

- computational primitive: local/individual/strategic optimization.
- objective: good global outcomes
- a key application area: "online markets"
 uber, airbnb, twitter, stackexchange, tinder, ...

Bidders with private preferences

Economic Mechanism

Bidders with private preferences

Economic Mechanism

Note: output affects input.

Challenges: need to rethink classical

- algorithms
 - ⇒ algorithmic mechanism design
- data science

Bidders with private preferences

Economic Mechanism

Note: output affects input.

Challenges: need to rethink classical

- algorithms [since 1999]
 - ⇒ algorithmic mechanism design
- data science

Bidders with private preferences

Economic Mechanism

Note: output affects input.

Challenges: need to rethink classical

- algorithms [since 1999]
 - ⇒ algorithmic mechanism design
- data science [since 2014; this talk]

Motivating Example Search Engine Advertising

one mainline ad.

three mainline ads.

____ A/B testing ____

Question: how many mainline ads to show?

A/B testing _____

Question: how many mainline ads to show?

A/B testing: randomize traffic into A or B; compare performance.

A/B testing ____

Question: how many mainline ads to show?

A/B testing: randomize traffic into A or B; compare performance.

Example: estimating ads *click-through rates*.

1. user searches.

- 2. page layout A or B is shown.
- 3. user reacts.

A/B testing ____

Question: how many mainline ads to show?

A/B testing: randomize traffic into A or B; compare performance.

Example: estimating ads *click-through rates*.

- 1. user searches.
- 2. page layout A or B is shown.
- 3. user reacts.

Example: estimating *auction revenue*.

- 1. advertisers bid.
- 2. searches randomized to page layout A or B.
- 3. outcome reported.

A/B testing _____

Question: how many mainline ads to show?

A/B testing: randomize traffic into A or B; compare performance.

Example: estimating ads *click-through rates*.

1. user searches.

2. page layout A or B is shown.

3. user reacts.

Example: estimating *auction revenue*.

1. advertisers bid.

2. searches randomized to page layout A or B.

3. outcome reported.

Note: bids in A/B test are neither for A nor B, but C = 0.5A + 0.5B.

First-price Position Auctions _____

"First-price" Position Auction: [Varian '06; Edelman et al. '07]

- n bidders, n positions, click probabilities w with $w_1 \geq \ldots \geq w_n$.
- bidders assigned to positions in order of bid.
- bidders pay bid if clicked.

Example: A =three mainline ads;

First-price Position Auctions _____

"First-price" Position Auction: [Varian '06; Edelman et al. '07]

- n bidders, n positions, click probabilities w with $w_1 \geq \ldots \geq w_n$.
- bidders assigned to positions in order of bid.
- bidders pay bid if clicked.

Example: A =three mainline ads; B =one mainline ad;

First-price Position Auctions _____

"First-price" Position Auction: [Varian '06; Edelman et al. '07]

- n bidders, n positions, click probabilities w with $w_1 \geq \ldots \geq w_n$.
- bidders assigned to positions in order of bid.
- bidders pay bid if clicked.

Example: A = three mainline ads; B = one mainline ad; C = mix.

_ Toy Example ____

Toy Example: three bidders, highest-bidders win, first-price.

Toy Example _____

Toy Example: three bidders, highest-bidders win, first-price.

• Auction A: one unit.

Toy Example _____

Toy Example: three bidders, highest-bidders win, first-price.

- Auction A: one unit.
- Auction B: two units.

Toy Example _____

Toy Example: three bidders, highest-bidders win, first-price.

- Auction A: one unit.
- Auction B: two units.
- Auction C: mix 0.5A + 0.5B.

Improper A/B Test: $\mathbf{C} = 0.5\mathbf{A} + 0.5\mathbf{B}$ _____

Auction	Bid 1	Bid 2	Bid 3	Rev C	
1A	0.74	0.34	0.11	0.74	
2A	0.08	0.86	0.50	0.86	
3B	0.69	0.83	0.46	1.53	
4B	0.53	0.03	0.77	1.30	
5A	0.91	0.49	0.54	0.91	
6A	0.44	0.35	0.92	0.92	
7A	0.86	0.97	0.85	0.97	
8B	0.21	0.10	0.30	0.51	
:	•	•	•		
200B	0.13	0.30	0.98	1.28	
Average				0.98	

Improper A/B Test: $\mathbf{C} = 0.5\mathbf{A} + 0.5\mathbf{B}$ _____

Auction	Bid 1	Bid 2	Bid 3	Rev C	Est A	Est B	
1A	0.74	0.34	0.11	0.74	0.74	0.00	
2A	0.08	0.86	0.50	0.86	0.86	0.00	
3B	0.69	0.83	0.46	1.53	0.00	1.53	
4B	0.53	0.03	0.77	1.30	0.00	1.30	
5A	0.91	0.49	0.54	0.91	0.91	0.00	
6A	0.44	0.35	0.92	0.92	0.92	0.00	
7A	0.86	0.97	0.85	0.97	0.97	0.00	
8B	0.21	0.10	0.30	0.51	0.00	0.51	
:	:	:	:	:	:	:	
200B	0.13	0.30	0.98	1.28	0.00	1.28	
Average				0.98	0.75	1.19	

Improper A/B Test: C = 0.5A + 0.5B _____

Auction	Bid 1	Bid 2	Bid 3	Rev C	Est A	Est B	
1A	0.74	0.34	0.11	0.74	0.74	0.00	
2A	0.08	0.86	0.50	0.86	0.86	0.00	
3B	0.69	0.83	0.46	1.53	0.00	1.53	
4B	0.53	0.03	0.77	1.30	0.00	1.30	
5A	0.91	0.49	0.54	0.91	0.91	0.00	
6A	0.44	0.35	0.92	0.92	0.92	0.00	
7A	0.86	0.97	0.85	0.97	0.97	0.00	
8B	0.21	0.10	0.30	0.51	0.00	0.51	
	:	:	:	:	:		
200B	0.13	0.30	0.98	1.28	0.00	1.28	
Average				0.98	0.75	1.19	

Note: Improper A/B test always shows A < B.

Improper A/B Test: C = 0.5A + 0.5B _____

Auction	Bid 1	Bid 2	Bid 3	Rev C	Est A	Est B	Rev A	Rev B
1A	0.74	0.34	0.11	0.74	0.74	0.00	0.99	0.00
2A	0.08	0.86	0.50	0.86	0.86	0.00	1.14	0.00
3B	0.69	0.83	0.46	1.53	0.00	1.53	0.00	1.20
4B	0.53	0.03	0.77	1.30	0.00	1.30	0.00	1.08
5A	0.91	0.49	0.54	0.91	0.91	0.00	1.21	0.00
6A	0.44	0.35	0.92	0.92	0.92	0.00	1.23	0.00
7A	0.86	0.97	0.85	0.97	0.97	0.00	1.30	0.00
8B	0.21	0.10	0.30	0.51	0.00	0.51	0.00	0.48
· ·	:	:	:	:	:	:		
200B	0.13	0.30	0.98	1.28	0.00	1.28	0.00	0.95
Average				0.98	0.75	1.19	1.01	0.96

Note: Improper A/B test always shows A < B.

Improper A/B Test: C = 0.5A + 0.5B _____

Auction	Bid 1	Bid 2	Bid 3	Rev C	Est A	Est B	Rev A	Rev B
1A	0.74	0.34	0.11	0.74	0.74	0.00	0.99	0.00
2A	0.08	0.86	0.50	0.86	0.86	0.00	1.14	0.00
3B	0.69	0.83	0.46	1.53	0.00	1.53	0.00	1.20
4B	0.53	0.03	0.77	1.30	0.00	1.30	0.00	1.08
5A	0.91	0.49	0.54	0.91	0.91	0.00	1.21	0.00
6A	0.44	0.35	0.92	0.92	0.92	0.00	1.23	0.00
7A	0.86	0.97	0.85	0.97	0.97	0.00	1.30	0.00
8B	0.21	0.10	0.30	0.51	0.00	0.51	0.00	0.48
· ·	:	:	:	:	:	:	:	
200B	0.13	0.30	0.98	1.28	0.00	1.28	0.00	0.95
Average				0.98	0.75	1.19	1.01	0.96

Note: Improper A/B test always shows A < B.

Missing effect: more units \Rightarrow lower bids.

Outline _____

- 0. Improper A/B testing.
- 1. Overview of Results.
- 2. Economic inference (get values from bids).
- 3. Auction revenue analysis (revenue from values).
- 4. Direct estimation of revenue from bids.

Results Overview _

Results: N bid samples, n positions, auction B with probability ϵ .

- 1. Can estimate revenue of A and B directly from bids in C.
- 2. Revenue estimator is a weighted order statistic.
- 3. "Revenue B" estimator has error: $O(\frac{1}{\sqrt{N}} n \log \frac{n}{\epsilon})$.

Note: "Ideal A/B test" error:
$$O(\frac{1}{\sqrt{N}} n \frac{1}{\sqrt{\epsilon}})$$
.

- 4. A universal B test.
- 5. Can optimize revenue over all feasible position auctions.

Simulation Results (Normalized) _____

Theoretical Bound: error is $O(\frac{1}{\sqrt{N}} n \log \frac{n}{\epsilon})$. $(\epsilon \text{ prob. on B})$

Simulation Results (Normalized) _____

Theoretical Bound: error is $O(\frac{1}{\sqrt{N}} n \log \frac{n}{\epsilon})$. $(\epsilon \text{ prob. on B})$

Simulation Results:

- ullet n bidders; N bid samples.
- ullet error normalized by \sqrt{N} .

Simulation Results (Normalized) _____

Theoretical Bound: error is $O(\frac{1}{\sqrt{N}} n \log \frac{n}{\epsilon})$. $(\epsilon \text{ prob. on B})$

Simulation Results:

- ullet n bidders; N bid samples.
- ullet error normalized by \sqrt{N} .

n =			N =		
	10^{1}	10^2	10^{3}	10^4	10^{5}
2^1	0.1215	0.1150	0.1169	0.1177	0.1196
2^2	0.0814	0.0605	0.0582	0.0596	0.0642
2^3	0.0779	0.0653	0.0652	0.0672	0.0661
2^4	0.0690	0.0621	0.0612	0.0646	0.0623
2^5	0.0566	0.0522	0.0494	0.0508	0.0487
2^{6}	0.0425	0.0358	0.0355	0.0356	0.0349
2^7	0.0230	0.0281	0.0241	0.0248	0.0253

Simulation Results (Normalized) _

Theoretical Bound: error is $O(\frac{1}{\sqrt{N}} n \log \frac{n}{\epsilon})$. $(\epsilon \text{ prob. on B})$

Simulation Results:

- ullet n bidders; N bid samples.
- ullet error normalized by \sqrt{N} .

n =			N =		
	10^1	10^2	10^{3}	10^4	10^{5}
2^1	0.1215	0.1150	0.1169	0.1177	0.1196
2^2	0.0814	0.0605	0.0582	0.0596	0.0642
2^3	0.0779	0.0653	0.0652	0.0672	0.0661
2^4	0.0690	0.0621	0.0612	0.0646	0.0623
2^5	0.0566	0.0522	0.0494	0.0508	0.0487
2^{6}	0.0425	0.0358	0.0355	0.0356	0.0349
2^7	0.0230	0.0281	0.0241	0.0248	0.0253

Note: constant with N as expected; dependence on n is not tight.

Outline _____

- 0. Improper A/B testing.
- 1. Overview of Results.
- 2. Economic inference (get values from bids).
- 3. Auction revenue analysis (revenue from values).
- 4. Direct estimation of revenue from bids.

Equilibrium and Inference _____

Assumption: bidders are happy with their bids.

Equilibrium and Inference _____

Assumption: bidders are happy with their bids.

Equilibrium: bidder's bid must be best response to competing bid distribution.

Equilibrium and Inference _____

Assumption: bidders are happy with their bids.

Equilibrium: bidder's bid must be best response to competing bid distribution.

Observation: competing bids distribution is observed in data.

Equilibrium and Inference ____

Assumption: bidders are happy with their bids.

Equilibrium: bidder's bid must be best response to competing bid distribution.

Observation: competing bids distribution is observed in data.

Equilibrium and Inference ____

Assumption: bidders are happy with their bids.

Equilibrium: bidder's bid must be best response to competing bid distribution.

Observation: competing bids distribution is observed in data.

Equilibrium and Inference ___

Assumption: bidders are happy with their bids.

Equilibrium: bidder's bid must be best response to competing bid distribution.

Observation: competing bids distribution is observed in data.

Approach:

- 1. given bid distribution, solve for bid strategy,
- 2. invert bid strategy to get bidder's value for item from bid.

Example: How should bidder 1 bid in Auction C?

Example: How should bidder 1 bid in Auction C?

• What's expected utility with value v and bid b?

Example: How should bidder 1 bid in Auction C?

ullet What's expected utility with value v and bid b? 0

$$\mathbf{E}[\mathrm{utility}(v,b)] = (v-b) \times \Pr[1 \text{ wins w. bid } b]$$

Example: How should bidder 1 bid in Auction C?

 \bullet What's expected utility with value v and bid b?

$$\begin{aligned} \mathbf{E}[\text{utility}(v,b)] &= (v-b) \times \Pr[\text{1 wins w. bid } b] \\ &\approx (v-b) \times b \end{aligned}$$

Example: How should bidder 1 bid in Auction C?

ullet What's expected utility with value v and bid b?

$$\mathbf{E}[\mathrm{utility}(v,b)] = (v-b) \times \Pr[\mathrm{1\ wins\ w.\ bid\ }b]$$

$$\approx (v-b) \times b = vb - b^2$$

Example: How should bidder 1 bid in Auction C?

ullet What's expected utility with value v and bid b?

$$\begin{aligned} \mathbf{E}[\text{utility}(v,b)] &= (v-b) \times \Pr[\text{1 wins w. bid } b] \\ &\approx (v-b) \times b = vb - b^2 \end{aligned}$$

ullet to maximize, take derivative $\frac{d}{db}$ and set to zero, solve

Example: How should bidder 1 bid in Auction C?

ullet What's expected utility with value v and bid b?

$$\begin{aligned} \mathbf{E}[\text{utility}(v,b)] &= (v-b) \times \Pr[\text{1 wins w. bid } b] \\ &\approx (v-b) \times b = vb - b^2 \end{aligned}$$

- ullet to maximize, take derivative $\frac{d}{db}$ and set to zero, solve
- \bullet optimal to bid b=v/2 (bid half your value!)

Example: How should bidder 1 bid in Auction C?

ullet What's expected utility with value v and bid b?

$$\begin{aligned} \mathbf{E}[\text{utility}(v,b)] &= (v-b) \times \Pr[\text{1 wins w. bid } b] \\ &\approx (v-b) \times b = vb - b^2 \end{aligned}$$

- ullet to maximize, take derivative $\frac{d}{db}$ and set to zero, solve
- optimal to bid b = v/2 (bid half your value!)

Conclusion 1: Infer that bidder with bid b has value v=2b.

Example: How should bidder 1 bid in Auction C?

ullet What's expected utility with value v and bid b? 0

$$\begin{aligned} \mathbf{E}[\text{utility}(v,b)] &= (v-b) \times \Pr[\text{1 wins w. bid } b] \\ &\approx (v-b) \times b = vb - b^2 \end{aligned}$$

- ullet to maximize, take derivative $\frac{d}{db}$ and set to zero, solve
- optimal to bid b = v/2 (bid half your value!)

Conclusion 1: Infer that bidder with bid b has value v=2b.

Recall: Bids uniform on [0, 1].

Example: How should bidder 1 bid in Auction C?

ullet What's expected utility with value v and bid b?

$$\begin{aligned} \mathbf{E}[\text{utility}(v,b)] &= (v-b) \times \Pr[\text{1 wins w. bid } b] \\ &\approx (v-b) \times b = vb - b^2 \end{aligned}$$

- ullet to maximize, take derivative $\frac{d}{db}$ and set to zero, solve
- \bullet optimal to bid b=v/2 (bid half your value!)

Conclusion 1: Infer that bidder with bid b has value v=2b.

Recall: Bids uniform on [0, 1].

Conclusion 2: Values are uniform on [0, 2].

Outline _____

- 0. Improper A/B testing.
- 1. Overview of Results.
- 2. Economic inference (get values from bids).
- 3. Auction revenue analysis (revenue from values).
- 4. Direct estimation of revenue from bids.

Question: Values are U[0,2], calculate auction revenue?

Question: Values are U[0,2], calculate auction revenue?

Question: Values are U[0,2], calculate auction revenue?

	Step	Example
1.	Index by values $v(q)$ by quantile q .	v(q) = 2q

Question: Values are U[0,2], calculate auction revenue?

	Step	Example
1.	Index by values $v(q)$ by quantile q .	v(q) = 2q
2.	Revenue from posting price $v(q)$	$v(q) = 2q$ $R(q) = 2q - 2q^2$
	gives revenue curve $R(q) = (1 - q)v(q)$.	

Question: Values are U[0,2], calculate auction revenue?

	Step	Example
1.	Index by values $v(q)$ by quantile q .	v(q) = 2q
2.	Revenue from posting price $v(q)$	$v(q) = 2q$ $R(q) = 2q - 2q^2$
	gives revenue curve $R(q) = (1-q)v(q)$.	
3.	Auction's probability of winning: $x(q)$.	$x_C(q) = q$

Question: Values are U[0,2], calculate auction revenue?

	Step	Example
1.	Index by values $v(q)$ by quantile q .	v(q) = 2q
2.	Revenue from posting price $v(q)$	$R(q) = 2q - 2q^2$
	gives revenue curve $R(q) = (1-q)v(q)$.	
3.	Auction's probability of winning: $x(q)$.	$x_C(q) = q$
4.	View $x(\cdot)$ as cumulative distribution func.	
	of randomized posted price	
	(with density function $x^\prime(q)$)	$x_C'(q) = 1$

Question: Values are U[0,2], calculate auction revenue?

	Step	Example
1.	Index by values $v(q)$ by quantile q .	v(q) = 2q
2.	Revenue from posting price $v(q)$	$R(q) = 2q - 2q^2$
	gives revenue curve $R(q) = (1-q)v(q)$.	
3.	Auction's probability of winning: $x(q)$.	$x_C(q) = q$
4.	View $x(\cdot)$ as cumulative distribution func.	
	of randomized posted price	
	(with density function $x^\prime(q)$)	$x_C'(q) = 1$
5.	Expected revenue $=\int_0^1 R(q) x'(q) dq$.	$\mathbf{Rev}[x_C] = 1/3$
	- 0	

Question: Values are U[0,2], calculate auction revenue?

	Step	Example
1.	Index by values $v(q)$ by quantile q .	v(q) = 2q
2.	Revenue from posting price $v(q)$	$R(q) = 2q - 2q^2$
	gives revenue curve $R(q) = (1-q)v(q)$.	
3.	Auction's probability of winning: $x(q)$.	$x_C(q) = q$
4.	View $x(\cdot)$ as cumulative distribution func.	
	of randomized posted price	
	(with density function $x^\prime(q)$)	$x_C'(q) = 1$
5.	Expected revenue = $\int_0^1 R(q) x'(q) dq$.	$\mathbf{Rev}[x_C] = 1/3$
6.	Auction revenue is $n \times$ per-agent revenue.	C's Revenue $=1$

Revenue of A vs B

Question: Values are U[0,2], compare A and B's revenues.

Recall:
$$C = 0.5A + 0.5B$$
; and $\mathbf{Rev}[x] = \int_0^1 R(q) \, x'(q) \, dq$.

Revenue of A vs B __

Question: Values are U[0,2], compare A and B's revenues.

Recall:
$$C = 0.5A + 0.5B$$
; and $\mathbf{Rev}[x] = \int_0^1 R(q) \, x'(q) \, dq$.

Revenue of A vs B ___

Question: Values are U[0,2], compare A and B's revenues.

Auction C	Auction A	Auction B
v(q) = 2q	v(q) = 2q	v(q) = 2q
$R(q) = 2q - 2q^2$	$R(q) = 2q - 2q^2$	$R(q) = 2q - 2q^2$
$x_C(q) = q$		
$x_C'(q) = 1$		
$\mathbf{Rev}[x_C] = 1/3$		
$ extsf{C}$'s Revenue $=1$		

Recall: C = 0.5A + 0.5B; and $\mathbf{Rev}[x] = \int_0^1 R(q) \, x'(q) \, dq$.

Revenue of A vs B ___

Question: Values are U[0,2], compare A and B's revenues.

Auction C	Auction A	Auction B
v(q) = 2q	v(q) = 2q	v(q) = 2q
$R(q) = 2q - 2q^2$	$R(q) = 2q - 2q^2$	$R(q) = 2q - 2q^2$
$x_C(q) = q$	$x_A(q) = q^2$	
$x_C'(q) = 1$		
$\mathbf{Rev}[x_C] = 1/3$		
${ m C's}$ Revenue $=1$		

Recall:
$$C=0.5A+0.5B$$
; and $\mathbf{Rev}[x]=\int_0^1 R(q)\,x'(q)\,dq$.

Revenue of A vs B ___

Question: Values are U[0,2], compare A and B's revenues.

Auction C	Auction A	Auction B
v(q) = 2q	v(q) = 2q	v(q) = 2q
$R(q) = 2q - 2q^2$	$R(q) = 2q - 2q^2$	$R(q) = 2q - 2q^2$
$x_C(q) = q$	$x_A(q) = q^2$	
$x_C'(q) = 1$	$x_A'(q) = 2q$	
$\mathbf{Rev}[x_C] = 1/3$		
${ m C's}$ Revenue $=1$		

Recall: C=0.5A+0.5B; and $\mathbf{Rev}[x]=\int_0^1 R(q)\,x'(q)\,dq$.

Revenue of A vs B __

Question: Values are U[0,2], compare A and B's revenues.

Recall:
$$C = 0.5A + 0.5B$$
; and $Rev[x] = \int_0^1 R(q) x'(q) dq$.

Revenue of A vs B __

Question: Values are U[0,2], compare A and B's revenues.

Recall:
$$C = 0.5A + 0.5B$$
; and $\mathbf{Rev}[x] = \int_0^1 R(q) \, x'(q) \, dq$.

Revenue of A vs B

Question: Values are U[0,2], compare A and B's revenues.

Recall: C = 0.5A + 0.5B; and $\mathbf{Rev}[x] = \int_0^1 R(q) \, x'(q) \, dq$.

Revenue of A vs B _

Question: Values are U[0,2], compare A and B's revenues.

Generally: Revenue is A > B or A < B.

Recall: C = 0.5A + 0.5B; and $\mathbf{Rev}[x] = \int_0^1 R(q) \, x'(q) \, dq$.

Outline ____

- 0. Improper A/B testing.
- 1. Overview of Results.
- 2. Economic inference (get values from bids).
- 3. Auction revenue analysis (revenue from values).
- 4. Direct estimation of revenue from bids.

Classical Revenue Inference _____

Inference Equation: for first price auction C:

$$\hat{v}(q) = \hat{b}_{C}(q) + \frac{x_{C}(q) \hat{b}'_{C}(q)}{x'_{C}(q)}$$

Inference Equation: for first price auction C:

$$\hat{\mathbf{v}}(q) = \hat{\mathbf{b}}_{\mathbf{C}}(q) + \frac{x_{C}(q)\,\hat{\mathbf{b}}'_{C}(q)}{x'_{C}(q)}$$

Notes:

• allocation rule $x_C(\cdot)$ and derivative $x_C'(\cdot)$ known. (from auction definition)

Inference Equation: for first price auction C:

$$\hat{\mathbf{v}}(q) = \hat{\mathbf{b}}_{\mathbf{C}}(q) + \frac{x_{C}(q)\,\hat{\mathbf{b}}'_{C}(q)}{x'_{C}(q)}$$

Notes:

- allocation rule $x_C(\cdot)$ and derivative $x_C'(\cdot)$ known. (from auction definition)
- estimated bid function $\hat{b}_B(\cdot)$ observed; derivative $\hat{b}_B'(\cdot)$ estimated.

Inference Equation: for first price auction C:

$$\hat{\mathbf{v}}(q) = \hat{\mathbf{b}}_{\mathbf{C}}(q) + \frac{x_{C}(q)\,\hat{\mathbf{b}}'_{C}(q)}{x'_{C}(q)}$$

Notes:

- allocation rule $x_C(\cdot)$ and derivative $x_C'(\cdot)$ known. (from auction definition)
- estimated bid function $\hat{b}_B(\cdot)$ observed; derivative $\hat{b}_B'(\cdot)$ estimated.

Inference Equation: for first price auction C:

$$\hat{\mathbf{v}}(q) = \hat{\mathbf{b}}_{C}(q) + \frac{x_{C}(q)\,\hat{\mathbf{b}}'_{C}(q)}{x'_{C}(q)}$$

Notes:

- allocation rule $x_C(\cdot)$ and derivative $x_C'(\cdot)$ known. (from auction definition)
- estimated bid function $\hat{b}_B(\cdot)$ observed; derivative $\hat{b}_B'(\cdot)$ estimated.

Auction Theory: Expected revenue of auction B is:

$$\hat{R}_B = \int_0^1 \hat{v}(q) (1 - q) x_B'(q) dq.$$

Inference Equation: for first price auction C:

$$\hat{\mathbf{v}}(q) = \hat{\mathbf{b}}_{C}(q) + \frac{x_{C}(q)\,\hat{\mathbf{b}}'_{C}(q)}{x'_{C}(q)}$$

Notes:

- allocation rule $x_C(\cdot)$ and derivative $x_C'(\cdot)$ known. (from auction definition)
- estimated bid function $\hat{b}_B(\cdot)$ observed; derivative $\hat{b}_B'(\cdot)$ estimated.

Auction Theory: Expected revenue of auction B is:

$$\hat{R}_B = \int_0^1 \hat{v}(q) (1 - q) x_B'(q) dq.$$

Estimators: for N samples from $b(\cdot)$:

• empirical $\hat{b}_C(\cdot)$ has rate \sqrt{N} .

Inference Equation: for first price auction C:

$$\hat{\mathbf{v}}(q) = \hat{\mathbf{b}}_{C}(q) + \frac{x_{C}(q)\,\hat{\mathbf{b}}'_{C}(q)}{x'_{C}(q)}$$

Notes:

- allocation rule $x_C(\cdot)$ and derivative $x_C'(\cdot)$ known. (from auction definition)
- estimated bid function $\hat{b}_B(\cdot)$ observed; derivative $\hat{b}_B'(\cdot)$ estimated.

Auction Theory: Expected revenue of auction B is:

$$\hat{R}_B = \int_0^1 \hat{v}(q) (1 - q) x_B'(q) dq.$$

Estimators: for N samples from $b(\cdot)$:

- empirical $\hat{b}_C(\cdot)$ has rate \sqrt{N} .
- standard $\hat{b}'_{C}(\cdot)$ estimators have rate worse than \sqrt{N} .

Inference Equation: for first price auction C:

$$\hat{\mathbf{v}}(q) = \hat{\mathbf{b}}_{C}(q) + \frac{x_{C}(q)\,\hat{\mathbf{b}}'_{C}(q)}{x'_{C}(q)}$$

Notes:

- allocation rule $x_C(\cdot)$ and derivative $x_C'(\cdot)$ known. (from auction definition)
- estimated bid function $\hat{b}_B(\cdot)$ observed; derivative $\hat{b}_B'(\cdot)$ estimated.

Auction Theory: Expected revenue of auction B is:

$$\hat{R}_B = \int_0^1 \hat{v}(q) (1 - q) x_B'(q) dq.$$

Estimators: for N samples from $b(\cdot)$:

- ullet empirical $\hat{b}_C(\cdot)$ has rate \sqrt{N} .
- standard $\hat{b}'_{C}(\cdot)$ estimators have rate worse than \sqrt{N} .
- \Rightarrow revenue \hat{R}_B estimator has rate worse than \sqrt{N} .

Direct Approach _____

Inference Equation: for first price auction C:

$$\hat{\mathbf{v}}(q) = \hat{\mathbf{b}}_{\mathbf{C}}(q) + \frac{x_{C}(q)\,\hat{\mathbf{b}}'_{C}(q)}{x'_{C}(q)}$$

Auction Theory: Expected revenue of auction B is:

$$\hat{R}_B = \int_0^1 \hat{v}(q) (1 - q) x_B'(q) dq.$$

Direct Approach ____

Inference Equation: for first price auction C:

$$\hat{\mathbf{v}}(q) = \hat{\mathbf{b}}_{\mathbf{C}}(q) + \frac{x_{C}(q)\,\hat{\mathbf{b}}'_{C}(q)}{x'_{C}(q)}$$

Auction Theory: Expected revenue of auction B is:

$$\hat{R}_B = \int_0^1 \hat{v}(q) (1-q) x_B'(q) dq.$$

Step 1: Combine:

$$\hat{R}_B = \int_0^1 \left(\hat{b}_C(q) + \frac{x_C(q) \, \hat{b}'_C(q)}{x'_C(q)} \right) (1 - q) \, x'_B(q) \, dq$$

Direct Approach ___

Inference Equation: for first price auction C:

$$\hat{\mathbf{v}}(q) = \hat{\mathbf{b}}_{C}(q) + \frac{x_{C}(q)\,\hat{\mathbf{b}}'_{C}(q)}{x'_{C}(q)}$$

Auction Theory: Expected revenue of auction B is:

$$\hat{R}_B = \int_0^1 \hat{v}(q) (1 - q) x_B'(q) dq.$$

Step 1: Combine:

$$\hat{R}_B = \int_0^1 \left(\hat{b}_C(q) + \frac{x_C(q) \, \hat{b}'_C(q)}{x'_C(q)} \right) (1 - q) \, x'_B(q) \, dq$$

Step 2: Simplify with integration by parts (Define $W_{A,B}$):

$$\hat{R}_B = \int_0^1 W_{A,B}(q) \, \hat{b}_C(q) \, dq$$

Direct Approach ___

Inference Equation: for first price auction C:

$$\hat{\mathbf{v}}(q) = \hat{\mathbf{b}}_{C}(q) + \frac{x_{C}(q)\,\hat{\mathbf{b}}'_{C}(q)}{x'_{C}(q)}$$

Auction Theory: Expected revenue of auction B is:

$$\hat{R}_B = \int_0^1 \hat{v}(q) (1-q) x_B'(q) dq.$$

Step 1: Combine:

$$\hat{R}_B = \int_0^1 \left(\hat{b}_C(q) + \frac{x_C(q) \, \hat{b}'_C(q)}{x'_C(q)} \right) (1 - q) \, x'_B(q) \, dq$$

Step 2: Simplify with integration by parts (Define $W_{A,B}$):

$$\hat{R}_B = \int_0^1 W_{A,B}(q) \,\hat{b}_C(q) \,dq$$

Step 3: Bound $\int_0^1 |W_{A,B}(q)| dq$.

Direct Approach ___

Inference Equation: for first price auction C:

$$\hat{\mathbf{v}}(q) = \hat{\mathbf{b}}_{C}(q) + \frac{x_{C}(q)\,\hat{\mathbf{b}}'_{C}(q)}{x'_{C}(q)}$$

Auction Theory: Expected revenue of auction B is:

$$\hat{R}_B = \int_0^1 \hat{v}(q) (1-q) x_B'(q) dq.$$

Step 1: Combine:

$$\hat{R}_B = \int_0^1 \left(\hat{b}_C(q) + \frac{x_C(q) \, \hat{b}'_C(q)}{x'_C(q)} \right) (1 - q) \, x'_B(q) \, dq$$

Step 2: Simplify with integration by parts (Define $W_{A,B}$):

$$\hat{R}_B = \int_0^1 W_{A,B}(q) \,\hat{b}_C(q) \,dq$$

Step 3: Bound $\int_0^1 |W_{A,B}(q)| dq$.

Step 4: Estimator for N sorted bids is $\hat{R}_B \approx \sum_i W_{A,B}(\frac{i}{N-1}) \, \hat{b}_{i,C}$.

Results Overview _____

Results: N bid samples, n positions, auction B with probability ϵ .

- 1. Can estimate revenue of A and B directly from bids in C.
- 2. Revenue estimator is a weighted order statistic.
- 3. "Revenue B" estimator has error: $O(\frac{1}{\sqrt{N}} n \log \frac{n}{\epsilon})$.
- 4. A universal B test.
- 5. Can optimize revenue over all feasible position auctions.

A Grand Challenge for CS —

A Grand Challenge: understand and guide computation in the wild

- computational primitive: local/individual/strategic optimization.
- objective: good global outcomes
- a key application area: "online markets"
 uber, airbnb, twitter, stackexchange, tinder, ...