Universidade Federal do Paraná Curso de Verão UFPR 2019

Curso: Introdução à Análise na Reta

Professores: Bruno de Lessa e Ricardo Paleari

1º Lista de Exercícios - 07/01

- 1. Escreva as seguintes proposições, sem se preocupar com sua validade ou falsidade, completamente em símbolos:
 - a) Todo número natural par maior que 2 pode ser escrito como soma de dois números primos.
 - b) O cubo de qualquer natural ímpar ainda é ímpar.
 - c) Todo número natural pode ser escrito como produto de números primos.
 - d) Dado qualquer número natural, sempre existe um número primo maior que ele.
- 2. Discuta o significado, por extenso, das seguintes proposições, sem se preocupar com sua validade ou falsidade:
 - a) $\forall x \in \mathbb{R}, x^2 \ge 0$.
 - b) $\forall x \in \mathbb{R}, x > 0, \exists n \in \mathbb{N} \text{ tal que } \frac{1}{n} \leq x.$
 - c) $\forall n \in \mathbb{N}, \not\exists m \in \mathbb{N} \text{ tal que } n < m < n + 1.$
 - d) $\forall n \in \mathbb{N}, n > 2, \ \exists a, b, c \in \mathbb{Z} \text{ tais que } a^n + b^n = c^n.$
 - e) $\forall q \in \mathbb{Q}, \exists m, n \in \mathbb{Z} \text{ com } \mathrm{mdc}(m,n) = 1 \text{ tais que } q = \frac{m}{r}.$
- 3. Para cada uma das proposições abaixo escreva a negação da proposição, sua contrapositiva e sua recíproca, discuta a validade ou falsidade de cada uma delas:
 - a) Se $x \in \mathbb{R}$, então $x^2 \ge 0$.
 - b) Se $n \in \mathbb{N}$ é múltiplo de 3, então também é múltiplo de 6.
 - c) Para qualquer função $f: \mathbb{R} \to \mathbb{R}$ existe x tal que f(x) = x.
 - d) Para qualquer função $f: \mathbb{R} \to \mathbb{R}$ a equação f(x) = 0 sempre tem pelo menos uma solução.
 - e) Para qualquer função $f: \mathbb{R} \to \mathbb{R}$ da forma $f(x) = ax^2 + bx + c$ a equação f(x) = 0 tem pelo menos uma solução.
- 4. Sejam X um conjunto e $A, B, C \subset X$, prove que valem as igualdades de conjuntos abaixo:
 - a) $(X A)^c = A;$

e) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$;

b) $A \cup (B \cup C) = (A \cup B) \cup C$;

f) $(A \cup B)^c = A^c \cap B^c$;

c) $A \cap (B \cap C) = (A \cap B) \cap C$;

- g) $(A \cap B)^c = A^c \cup B^c$:
- d) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$;
- h) $A \cup B = (A B) \cup (A \cap B) \cup (B A)$.
- 5. Sejam X e Y conjuntos quaisquer não vazios e $f: X \to Y$ uma função.
 - Dado $A \subset X$ definimos a imagem de A por f como $f(A) = \{f(x); x \in A\} \subset Y;$
 - Dado $B \subset Y$ definimos a imagem inversa de B por f como $f^{-1}(B) = \{x \in X; f(x) \in B\} \subset X$.
 - a) Sejam $f: \mathbb{R} \to \mathbb{R}$ dada por $f(x) = 2 \cdot x + 1$, A = [1, 3] e B = [-1, 4], encontre f(A) e $f^{-1}(B)$.
 - b) Dados $B_1, B_2 \subset Y$, prove que valem as igualdades de conjuntos $f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$ e $f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$.

- c) Dados $A_1, A_2 \subset X$, será que valem $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$ ou $f(A_1 \cap A_2) = f(A_1) \cap f(A_2)$? Se sim, prove, senão, encontre contraexemplos.
- d) Dados $A \subset X$ e $B \subset Y$, prove que $f(f^{-1}(B)) \subset B$ e que $A \subset f^{-1}(f(A))$. Prove que as igualdades não valem em geral encontrando contraexemplos. Você consegue encontrar condições sobre a função para que aconteçam as igualdades?
- 6. Considere a função $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ definida por f(1,n) = 2n-1 e $f(m+1,n) = 2^m(2n-1)$. Prove que f é uma bijeção.
- 7. Sejam $a, b \in \mathbb{R}$ e defina $f : \mathbb{R} \to \mathbb{R}$ por f(x) = ax + b. Encontre condições sobre a e b para que f seja uma bijeção, e quando for, encontre a sua função inversa.
- 8. Sejam $a, b, c, d \in \mathbb{R}$, $A, B \subset \mathbb{R}$ e defina $f: A \to B$ por $f(x) = \frac{ax+b}{cx+d}$. Encontre o maior domínio $A \subset \mathbb{R}$ para o qual f esteja definida. Encontre condições sobre os números a, b, c, d e sobre os conjuntos A e B para que f seja uma bijeção, e quando for, encontre a sua função inversa.
- 9. Sejam $f: X \to Y$ e $g: Y \to Z$ funções e $g \circ f: X \to Z$ sua composição. Prove que se f e g são injetivas, então $g \circ f$ também é injetiva. Prove também que se f e g são sobrejetivas, então $g \circ f$ também é sobrejetiva. Em outra direção, prove que se $g \circ f$ é injetiva, então f é injetiva, e se $g \circ f$ for sobrejetiva, então g é sobrejetiva. Encontre exemplos de funções f e g tais que:
 - $f \in g \circ f$ sejam injetivas mas g não seja injetiva;
 - $g \in g \circ f$ sejam sobrejetivas mas f não seja sobrejetiva.
- 10. Prove usando indução que $n^3 \leq 2^n$ para todo $n \in \mathbb{N}$ com $n \geq 10$.
- 11. Prove usando indução que $2^n < n!$ para todo $n \in \mathbb{N}$ com $n \ge 4$.
- 12. Prove usando indução que $n! < n^n$ para todo $n \in \mathbb{N}$ com n > 1.
- 13. Prove que para todo $n \in \mathbb{N}$ valem as seguintes fórmulas:

•
$$1+2+3+\cdots+n=\frac{n(n+1)}{2}$$
;

•
$$1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$
;

•
$$1^3 + 2^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$$
.

- 14. Prove usando indução que $n^3 n$ é divisível por 3 para todo $n \in \mathbb{N}$.
- 15. Prove usando indução que $4^n + 15n 1$ é divisível por 9 para todo $n \in \mathbb{N}$.
- 16. Seja $f:A\to B$ uma função sobrejetiva. Prove que existe uma função injetiva $g:B\to A$ tal que $(f\circ g)(x)=x$ para todo $x\in B$.