Helcome !!!

$$\log_a(b) = c \rightarrow a^c = b$$

$$\log_{3}(64) = 6$$
 $2^{6} = 64$
 $3^{4} = 81$

$$\log_{2}(2^{6}) = 6$$
 $\log_{2}(3^{6}) = 4$

$$\log_2(2^6) = \frac{6}{4}$$

$$\log_3(3^4) = \frac{4}{4}$$

$$\log_3(a^2) = \chi$$

Q → liver a +ve no. N, how many times we need to divide it by 2 to reach 1. irteger division $\rightarrow 5 = (2.5) \rightarrow 2$

$$N = 10 \qquad \underline{10} \longrightarrow \underline{5} \longrightarrow \underline{2} \longrightarrow 1 \qquad \text{Ans} = \underline{3} \checkmark$$

$$N = 30 \qquad \underline{30} \longrightarrow \underline{15} \longrightarrow \underline{7} \longrightarrow \underline{3} \longrightarrow 1 \quad \text{Ans} = \underline{4}$$

$$N=9 \qquad \frac{9}{2} \rightarrow \frac{4}{2} \rightarrow \frac{2}{2} \rightarrow 1 \qquad \text{Ans} = \frac{3}{2}$$

$$N = 27 \qquad \frac{27}{2} \longrightarrow \frac{13}{2} \longrightarrow \frac{6}{2} \longrightarrow \frac{3}{2} \longrightarrow 1 \qquad \text{Ans} = \frac{4}{2}$$

$$\frac{N}{2} \rightarrow \frac{N}{2^{2}} \rightarrow \frac{N}{2^{3}} \dots \qquad \frac{N}{2^{K}7} \Rightarrow N = 2^{K}$$

$$\Rightarrow \log_{2}(N) = \log_{2}(2^{K}) = K$$

$$* Steps$$

 $floor(2\cdot3) = 2$

steps = log 2 (N)

floor
$$(3.6) = 3$$

Ans = floor $(\log_2(N))$

N=10

floor $(\log_2(10)) = \text{floor}(3.3..)$
 $2^3 = 8$
 $2^4 = 16$
 $\frac{\text{int}}{\text{int}} \rightarrow \text{int}$

int $a = 5, b = 2$
print $(a/b) \rightarrow 2$

Iterations

Compare Iterations

In Real life we have to deal with mostly large inputs. Eg \rightarrow Youtube "baby Shork" \rightarrow views $\approx 12B$

Asymptotic Analysis / Big O

* Analysing performance of algorithm over large inputs.

Steps to calculate Rig O - rate of growth of function vert inputs. West inputs.

- 2) Igrore lower order terns.
- 3) Ignore constant coefficients.

Eg
$$\rightarrow$$
 100* log (N) = $O(\log (N)) \leftarrow \log ()$
 $N/10 = O(N) \leftarrow linear$

$$KN^2 + 3N - log(N) = o(N^2)$$

Why to neglect lower order terms?

10:40 PM

N # iterations =
$$N^2 + 10N$$
 % contribution of $10N$

10 $10^2 + 10 * 10 = 200$ $10 * 10 * 100 = 50\%$

100 $100^2 + 10 * 100 = 11000$ $10 * 1000 = 9\%$

10000 $10000^2 + 10 * 10000$ $10 * 10000$ $10 * 10000$ $10 * 10000$ 10000

⇒ for large values of N, % contribution of lower order term is very less.

Why igrore constart coefficient?

Big 0 -> rate of growth of furction wet input.

$$y = x \rightarrow lirear$$

 $y = 3x \rightarrow lirear$
 $y = 100x \rightarrow lirear$

Limitations with Big O

iterations
$$\rightarrow 1000 \times N^{2}$$

Big $\rightarrow N^{2}$

Now have N^{2}

Now have N^{2}

Now have N^{2}

* iterations $\rightarrow 10^{6} \times NJN$

Big $0 \rightarrow 0(NJN) \times 0/N^{2}$

Now have $N^{2}/10$

Rig $0 \rightarrow 0(NJN) \times 0/N^{2}$

Now have $N^{2}/10 = 10^{4}$

Now have $N^{2}/10 = 10^{3}$

Now hav

Online Editor

processing speed = 16Hz \Rightarrow 10 instructions per second

allowed a = 2time \Rightarrow 1sec x + y (a == 1)

1 iteration → 10 to 100 instructions (usually)

for (—) d for (___) { 109 instructions → I sec 10 instructions → 1 sec 10 sterations - 1 sec 10 titerations - 1 sec (1 iteration → 10 instructions) (1 iteration > 100 instructions) → usually allow -> 10 to 10 iterations per sec Read Question → develop logic → pseudo-code (thirk) $TC = O(N^2)$ idea of TC#iterations Constraints $N \leq 10^3$ $N^2 = 10^6 \checkmark (no TLE)$ N <= 10⁵ $N^2 = 10^{10} X \qquad (TLE)$ N2 = 10 8 (may or may not work) N <= 104 1 <= N <= 106 linear solution $| \langle = N \rangle = 10^3$ N² solution | <= N <= 102 N³ solution

even 2" works.

1 <= N <= 20