

STUDENT ID NO												

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 2, 2018/2019

PPH0105 – MODERN PHYSICS & THERMODYNAMICS

(Foundation in Engineering)

5 MARCH 2019 2.30p.m – 4.30p.m (2 Hours)

INSTRUCTIONS TO STUDENTS

- 1. This question paper consists of **THREE** printed pages, excluding the cover page and appendixes, with **FIVE** questions.
- 2. Answer ALL questions. The distribution of the marks for each question is given.
- 3. Write all your answers in the Answer Booklet provided.
- 4. All necessary workings MUST be shown.

Answer ALL questions.

QUESTION 1: [10 Marks]

a) A certain transverse wave is described by

$$y = (14.4) \cos \left[2\pi \left(\frac{t}{0.03} - \frac{x}{15} + \frac{1}{6} \right) \right]$$

where y, x are in millimeter and t is in second, Determine the wave's

- i) amplitude, wavelength, frequency, speed of propagation and direction of propagation. (4 marks)
- ii) Determine the displacement, y of the transverse wave at point x = 5 mm and t = 0.15 s. (1 mark)
- b) i) What is Doppler effect?

(1 mark)

ii) A car sounds its horn while approaches a stationary observer at a constant speed. The frequency detected is 106 Hz. After the car goes by, the observer hears a frequency of 100 Hz. What could be the speed of the car? (The speed of sound in air is 340 m/s)

(4 marks)

QUESTION 2: [10 Marks]

a) If 700 nm and 600 nm light passes through two slits 0.60 mm apart, how far apart are the second-order fringes for these two wavelengths on a screen 2.0 m away?

(5 marks)

b) The prism in Figure Q2 has an index of refraction of 1.40. Light is incident at an angle of 15° . Find the angle ϕ at which the light emerges. (5 marks)

Continued...

QUESTION 3: [10 Marks]

a) What is electronvolt?

(1 mark)

- b) What is the energy in a photon of green light of wavelength 5.46 x 10⁻⁷ m. Give your answer in electronvolts. (2 marks)
- c) State Einstein's photoelectric equation and explain each term.

(2 marks)

- d) Sketch a graph of the maximum kinetic energy of photoelectrons as a function of the incident frequency of light on a material when the photoelectric effect takes place.

 (2 marks)
- e) Sketch a graph of current against the retarding potential for two different intensities of light. Show the stopping potential. (3 marks)

QUESTION 4: [10 Marks]

- a) A sample of organic material is found to contain 18.0 g of carbon and has an activity of 86.5 decays / min. It is known that carbon from a living organism has a decay rate of 15.0 decays / min.g and ¹⁴C has a half-life of 5730 year. How old is the organic material? (4 marks)
- b) A typical fission reaction in a nuclear power plant is

$$^{235}\text{U} + ^{1}\text{n} \rightarrow ^{140}\text{Xe} + ^{94}\text{Sr} + b\text{n} + \text{Q},$$

where mass of: $^{235}U = 235.043923 \text{ u}$, $^{140}Xe = 139.921636 \text{ u}$, $^{94}Sr = 93.915360 \text{ u}$, n = 1.008665 u, and b is some number of neutrons.

i) What is the value of b?

(1 mark)

ii) Calculate the energy produced, Q.

(2 marks)

iii) Calculate the mass of the ²³⁵U consumed each year by a 300 MW power plant operating at 60% efficiency of conversion of heat to electricity. (3 marks)

Continued...

QUESTION 5: [10 Marks]

- a) Define Heat. (1 mark)
- b) Two equal mass objects make up a system that is thermally isolated from its surroundings. One object has an initial temperature of 80 °C and the other has an initial temperature of 0 °C. What is the equilibrium temperature of the system, assuming that no phase changes take place for either object? (The hot object has a specific heat capacity twice that of the cold object.)

 (4 marks)
- c) A leaf of area 20 cm² and mass 2.0×10⁻⁴ kg directly faces the Sun on a clear day. The leaf has an emissivity of 0.85 and a specific heat of 3350 J/kg·K. On a clear day, about 1000 W/m² reaches the Earth's surface. Estimate the rate of rise of the leaf's temperature. (5 marks)

APPENDIX I

LIST OF PHYSICAL CONSTANTS

Electron mass,	$m_{ m e}$	=	$9.11 \times 10^{-31} \mathrm{kg}$
Proton mass,	$m_{ m p}$	=	$1.67 \times 10^{-27} \text{ kg}$
Neutron mass,	m_{n}	=	$1.67 \times 10^{-27} \text{ kg}$
Magnitude of the electron charge,	e	=	1.602 x 10 ⁻¹⁹ C
Universal gravitational constant,	G	==	$6.67 \times 10^{-11} \mathrm{N.m^2/kg^2}$
Universal gas constant,	R	_	8.314 J/mol.K
Hydrogen ground state,	E_0	=	13.6 eV
Boltzmann's constant,	$k_{ m B}$	===	$1.38 \times 10^{-23} \text{J/K}$
Compton wavelength,	$\lambda_{\rm c}$	=	$2.426 \times 10^{-12} \text{m}$
Planck's constant,	h	=	$6.63 \times 10^{-34} \text{J.s}$
ŕ		=	$4.14 \times 10^{-15} \text{eV.s}$
Speed of light in vacuum,	c		$3.0 \times 10^8 \text{m/s}$
Rydberg constant,	$R_{ m H}$	==	$1.097 \times 10^7 \mathrm{m}^{-1}$
Acceleration due to gravity of earth,	g	-	9.80 m/s^2
1unified atomic mass unit,	1 u	=	931.5 MeV/c^2
,		=	$1.66 \times 10^{-27} \text{ kg}$
I electron volt,	1 eV	=	$1.60 \times 10^{-19} \text{J}$
Avogadro's number,	N_{A}	*****	$6.023 \times 10^{23} \text{ mol}^{-1}$
Threshold of intensity of hearing,	I_0	-	$1.0 \times 10^{-12} \text{ W/m}^2$
	-		
Coulomb constant,	$k = \frac{1}{4\pi\varepsilon_0}$	-	$9.0 \times 10^9 \text{ N.m}^2/\text{C}^2$
D	_		0.07 10-12 02 5 - 2
Permittivity of free space,	€0	-	$8.85 \times 10^{-12} \mathrm{C}^2/\mathrm{N.m}^{-2}$
Permeability of free space,	μ_0	=	$4\pi \times 10^{-7} \text{ T.m/A}$
1 atmosphere pressure,	1 atm		$1.0 \times 10^5 \mathrm{N/m^2}$
			$1.0 \times 10^5 \text{ Pa}$
Wein's displacement constant		••••	$0.2898 \times 10^{-2} \mathrm{m.K}$
Speed of Sound in Air		=	343 m/s
Refractive index of air/vacuum	n	=	1.0
Earth: Mass,	$M_{ m E}$	=	$5.97 \times 10^{24} \mathrm{kg}$
Radius (mean),	$R_{\mathbf{E}}$	=	$6.38 \times 10^3 \text{km}$
Moon: Mass,	M_{M}	=	$7.35 \times 10^{22} \text{ kg}$
Radius (mean),	R_{M}	<u> </u>	$1.74 \times 10^3 \mathrm{km}$
Sun: Mass,	$M_{ m S}$	=	1.99 x 10 ³⁰ kg
Radius (mean),	$R_{\mathbf{S}}$	_	$6.96 \times 10^5 \mathrm{km}$
Earth-Sun distance (mean),		=	149.6 x 10 ⁶ km
Earth-Moon distance (mean),		-	$384 \times 10^3 \text{km}$
martin into on albumioo (mount),			30-1 X 10 KIII

APPENDIX II

 $\sin\theta_1 + \sin\theta_2 = 2\sin\frac{1}{2}(\theta_1 + \theta_2)\cos\frac{1}{2}(\theta_1 - \theta_2)$ $\cos\theta_1 + \cos\theta_2 = 2\cos\frac{1}{2}(\theta_1 + \theta_2)\cos\frac{1}{2}(\theta_1 - \theta_2)$

$$\sin\left(\theta + \frac{\pi}{2}\right) = \cos\,\theta$$

 $\sin \theta \approx \tan \theta \approx \theta$ rad for small angle

 $D(x, t) = D_{\rm M} \sin(kx \pm \omega t \pm \phi)$

$$v = \sqrt{\frac{F_r}{\mu}}$$
 $v = \sqrt{\frac{\text{elastic property of the medium}}{\text{inertia property of the medium}}}$

$$\lambda_{n} = \frac{2}{n}L \qquad f' = f\left(\frac{v \pm v_{o}}{v \mp v_{s}}\right) \qquad \frac{1}{d_{o}} + \frac{1}{d_{i}} = \frac{1}{f}$$

$$\frac{1}{f} = (n-1)\left\{\frac{1}{R_{i}} + \frac{1}{R_{2}}\right\} \qquad d\sin\theta = m\lambda \qquad d\sin\theta = \left(m + \frac{1}{2}\right)\lambda$$

$$\lambda_m . T = 0.2898 \times 10^{-2} \qquad I(\lambda, T) = \frac{2\pi c k_B T}{\lambda^4}$$

$$E_n = -\frac{mk^2 Z^2 e^4}{2\hbar^2} \left(\frac{1}{n^2}\right) \qquad r_n = \frac{\hbar^2}{mkZe^2} n^2 \qquad L = mvr_n = n\hbar \qquad \hbar = \frac{\hbar}{2\pi}$$

$$\frac{1}{\lambda} = R_H \left[\frac{1}{n_i^2} - \frac{1}{n_f^2} \right] \qquad \frac{1}{\lambda} = \frac{mk^2 Z^2 e^4}{4\pi c\hbar^3} \left[\frac{1}{n_f^2} - \frac{1}{n_i^2} \right] \qquad \lambda = \frac{h}{p} \qquad \Delta E = hf$$

$$N=N_0 e^{-\lambda t}$$
 $R=R_0 e^{-\lambda t}$ $\lambda=\frac{\ln 2}{T_{\frac{1}{2}}}$ $Q=(M_X-M_Y-M_\alpha)c^2$
$$\Delta L=\alpha L_0 \Delta T \qquad PV=nRT \qquad k=\frac{R}{N_A} \qquad Q=mc\Delta T \qquad Q=mL$$

$$\Delta L = \alpha \ L_0 \Delta T$$
 $PV = nRT$ $k = \frac{R}{N_A}$ $Q = mc \Delta T$ $Q = mL$

$$\frac{\Delta Q}{\Delta t} = -kA\frac{\Delta T}{\Delta L} \qquad \qquad \frac{\Delta Q}{\Delta t} = e\,\sigma A T^4 \qquad \qquad \frac{\Delta Q}{\Delta t} = Ie\,A\cos\theta$$

$$\overline{KE} = \frac{1}{2}m\overline{v}^2 = \frac{3}{2}kT \qquad U = \frac{f}{2}nRT \qquad \Delta U = \frac{f}{2}nR\Delta T \qquad Q = \Delta U + W$$

$$W = \int dW = \int_{V_l}^{V_f} P dV \qquad W = P(V_f - V_i) \qquad W = nRT \ln\left(\frac{V_f}{V_i}\right)$$