The Sparse Grids Matlab Kit

C. Piazzola, <u>L.Tamellini</u>¹

¹ CNR-IMATI, Pavia

February 25, 2022

Outline

- Example
- Basic data structure
- Main features
- 4 Example reprise
- Conclusions

• main contributors: Lorenzo Tamellini, Chiara Piazzola

- main contributors: Lorenzo Tamellini, Chiara Piazzola
- other contributors: Fabio Nobile, Eva Vidlickova (EPFL), Diane Guignard (U. Ottawa), Giovanni Porta (Politecnico Milano), Björn Sprungk (TU Freiberg)

- main contributors: Lorenzo Tamellini, Chiara Piazzola
- other contributors: Fabio Nobile, Eva Vidlickova (EPFL), Diane Guignard (U. Ottawa), Giovanni Porta (Politecnico Milano), Björn Sprungk (TU Freiberg)
- releases:

- main contributors: Lorenzo Tamellini, Chiara Piazzola
- other contributors: Fabio Nobile, Eva Vidlickova (EPFL), Diane Guignard (U. Ottawa), Giovanni Porta (Politecnico Milano), Björn Sprungk (TU Freiberg)
- releases:
 - 22-2 ("California")
 - ► 18-10 ("Esperanza")
 - ► 17-5 ("Trent")
 - ▶ 15-8 ("Woodstock")
 - ▶ 14-12 ("Fenice")
 - ▶ 14-4 ("Ritchie")

- main contributors: Lorenzo Tamellini, Chiara Piazzola
- other contributors: Fabio Nobile, Eva Vidlickova (EPFL), Diane Guignard (U. Ottawa), Giovanni Porta (Politecnico Milano), Björn Sprungk (TU Freiberg)
- releases:
 - 22-2 ("California")
 - ► 18-10 ("Esperanza")
 - ▶ 17-5 ("Trent")
 - ▶ 15-8 ("Woodstock")
 - ▶ 14-12 ("Fenice")
 - ▶ 14-4 ("Ritchie")
- Download from https://sites.google.com/view/sparse-grids-kit

- main contributors: Lorenzo Tamellini, Chiara Piazzola
- other contributors: Fabio Nobile, Eva Vidlickova (EPFL), Diane Guignard (U. Ottawa), Giovanni Porta (Politecnico Milano), Björn Sprungk (TU Freiberg)
- releases:
 - 22-2 ("California")
 - ► 18-10 ("Esperanza")
 - ► 17-5 ("Trent")
 - ▶ 15-8 ("Woodstock")
 - ▶ 14-12 ("Fenice")
 - ▶ 14-4 ("Ritchie")
- Download from https://sites.google.com/view/sparse-grids-kit
- BSD2 license

• Lightweight, high-level and (hopefully) easy to use, good for quick prototyping and teaching

- Lightweight, high-level and (hopefully) easy to use, good for quick prototyping and teaching
- Some ad-hoc features and integration with parallel toolbox gives nonetheless reasonable speed

- Lightweight, high-level and (hopefully) easy to use, good for quick prototyping and teaching
- Some ad-hoc features and integration with parallel toolbox gives nonetheless reasonable speed
- Very extensive documentation and examples (8800 lines of code, 4800 lines of comments)

- Lightweight, high-level and (hopefully) easy to use, good for quick prototyping and teaching
- Some ad-hoc features and integration with parallel toolbox gives nonetheless reasonable speed
- Very extensive documentation and examples (8800 lines of code, 4800 lines of comments)
- Geared towards UQ, but flexible enough for other purposes

- Lightweight, high-level and (hopefully) easy to use, good for quick prototyping and teaching
- Some ad-hoc features and integration with parallel toolbox gives nonetheless reasonable speed
- Very extensive documentation and examples (8800 lines of code, 4800 lines of comments)
- Geared towards UQ, but flexible enough for other purposes
- Similar to:
 - Dakota, PyApprox, MUQ, ChaosPy, UQTk (not Matlab);
 - ▶ SG++, Tasmanian (Matlab wrappers);
 - UQLab, Spinterp (Matlab).

- Lightweight, high-level and (hopefully) easy to use, good for quick prototyping and teaching
- Some ad-hoc features and integration with parallel toolbox gives nonetheless reasonable speed
- Very extensive documentation and examples (8800 lines of code, 4800 lines of comments)
- Geared towards UQ, but flexible enough for other purposes
- Similar to:
 - Dakota, PyApprox, MUQ, ChaosPy, UQTk (not Matlab);
 - ▶ SG++, Tasmanian (Matlab wrappers);
 - UQLab, Spinterp (Matlab).

Aim of these slides: give rough idea of sparse grids and of the structure of the code, show features by examples

Outline

- Example
- Basic data structure
- Main features
- 4 Example reprise
- Conclusions

Forward Uncertainty Quantification

$$\begin{cases} -\frac{d}{dx} \left[a(x, \mathbf{y}) \frac{d}{dx} u(x, \mathbf{y}) \right] = 1, & \text{for } x \in (0, 1) \\ u(0, \cdot) = u(1, \cdot) = 0 \\ a(x, \mathbf{y}) = 1 + \sigma_1 y_1 \mathbb{I}_{[0, 0.5]}(x) + \sigma_2 y_2 \mathbb{I}_{[0.5, 1]}(x) \\ y_1, y_2 \sim \mathcal{U}(-\sqrt{3}, \sqrt{3}) \\ I(\mathbf{y}) = \int_0^1 u(x, \mathbf{y}) dx \end{cases}$$

- often, more than N=2 parameters
- ODE and algebraic models are also of interest

Forward Uncertainty Quantification

Forward Uncertainty Quantification

Goals:

- statistics of I (mean, variance,pdf)
- sensitivity analysis for I
- ullet meta-model for $I(y_1,y_2)$ (aka response surface aka surrogate model)

Need

- High-dimensional quadrature (mean, variance)
- High-dimensional interpolation/approximation (pdf, metamodel)

Results

Results

Where do we sample? Sparse grids

Our matlab library handles:

- generation of these schemes
- integration and interpolation on them

Sparse grids in a nutshell

- Linear combination of tensor grids
- ullet Reasonably slows down "curse of dimensionality" up to N=a few tens
- ullet Works well under regularity assumptions on $I({m y})$
- Anisotropic and adaptive versions available

Sparse grids in a nutshell

Outline

- Example
- Basic data structure
- Main features
- 4 Example reprise
- Conclusions

```
N=2;
knots=@(n) knots_CC(n,-1,1);
w = 3;
m = @lev2knots_doubling;
Ifun = @(i) sum(i-1);
S = smolyak_grid(N,w,knots,m,Ifun);
```

```
N=2;
knots=@(n) knots_CC(n,-1,1);
w = 3;
m = @lev2knots_doubling;
Ifun = @(i) sum(i-1);
S = smolyak_grid(N,w,knots,m,Ifun);
```

•
$$S = \sum_{i \in \mathcal{I}} c_i \otimes_{n=1}^N \mathcal{U}^{m(i_n)}$$

```
N=2;
knots=@(n) knots_CC(n,-1,1);
w = 3;
m = @lev2knots_doubling;
Ifun = @(i) sum(i-1);
S = smolyak_grid(N,w,knots,m,Ifun);
```

•
$$S = \sum_{i \in \mathcal{I}} c_i \otimes_{n=1}^N \mathcal{U}^{m(i_n)}$$

ullet $m(i)="2^{i-1}+1"$, $\mathcal{U}^{m(i_n)}=$ interpolant on $m(i_n)$ Clenshaw–Cts pts

```
N=2;
knots=@(n) knots_CC(n,-1,1);
w = 3;
m = @lev2knots_doubling;
Ifun = @(i) sum(i-1);
S = smolyak_grid(N,w,knots,m,Ifun);
```

- $S = \sum_{i \in \mathcal{I}} c_i \otimes_{n=1}^N \mathcal{U}^{m(i_n)}$
- ullet $m(i)="2^{i-1}+1"$, $\ \mathcal{U}^{m(i_n)}=$ interpolant on $m(i_n)$ Clenshaw–Cts pts
- $\mathcal{I} = \left\{ i \in \mathbb{N}_+^N : \sum_{n=1}^N (i_n 1) \le w \right\}$

```
N=2;
knots=@(n) knots_CC(n,-1,1);
w = 3;
m = @lev2knots_doubling;
Ifun = @(i) sum(i-1);
S = smolyak_grid(N,w,knots,m,Ifun);
```

```
>>> S
    S =
    1 x 7 struct array with fields:
    knots
    weights
    size
    knots_per_dim
    m
    coeff
    idx
```

```
N=2;
knots=@(n) knots_CC(n,-1,1);
w = 3;
m = @lev2knots_doubling;
Ifun = @(i) sum(i-1);
S = smolyak_grid(N,w,knots,m,Ifun);
```

```
>>> S
    S =
    1 x 7 struct array with fields:
    knots
    weights
    size
    knots_per_dim
    m
    coeff
    idx
```


15 / 25

```
N=2;
knots=@(n) knots_CC(n,-1,1);
w = 3;
m = @lev2knots_doubling;
Ifun = @(i) sum(i-1);
S = smolyak_grid(N,w,knots,m,Ifun);
```

```
>> S(1)
ans =
struct with fields:

    knots: [2x5 double] % points are always column vectors
    weights: [-0.1333 -1.0667 -1.6000 -1.0667 -0.1333]
    size: 5
knots_per_dim: {[0] [1 0.7071 6.1232e-17 -0.7071 -1]}
    m: [1 5]
    coeff: -1
    idx: [1 3] %multiidx are always row vectors
```

```
N=2;
knots=@(n) knots_CC(n,-1,1);
w = 3;
m = @lev2knots_doubling;
Ifun = @(i) sum(i-1);
S = smolyak_grid(N,w,knots,m,Ifun);
```

```
N=2;
knots=@(n) knots_CC(n,-1,1);
w = 3;
m = @lev2knots_doubling;
Ifun = @(i) sum(i-1);
S = smolyak_grid(N,w,knots,m,Ifun);
```

Sparse grids "ingredients": nodes, m, \mathcal{I}

```
N=2;
knots=@(n) knots_CC(n,-1,1);
w = 3;
m = @lev2knots_doubling;
Ifun = @(i) sum(i-1);
S = smolyak_grid(N,w,knots,m,Ifun);
```

Sparse grids "ingredients": nodes, m, \mathcal{I}

```
N=2;
knots=@(n) knots_CC(n,-1,1);
w = 3;
m = @lev2knots_doubling;
Ifun = @(i) sum(i-1);
S = smolyak_grid(N,w,knots,m,Ifun);
```

	knots	function	nestedness
uniform	Gauss–Legendre	knots_uniform	No
	Clenshaw-Curtis	knots_CC	Yes
	Leja (standard, symmetric, p-disk)	knots_leja	Yes
	midpoints	knots_midpoint	Yes
	equispaced	knots_trap	Yes
normal	Gauss–Hermite	knots_normal	No
	Genz–Keister	knots_GK	Yes
	weighted Leja (standard, symmetric)	knots_normal_leja	Yes
exponential	Gauss-Laguerre	knots_exponential	No
	weighted Leja	knots_exponential_leja	Yes
gamma	Gauss-generalized Laguerre	knots_gamma	No
-	weighted Leja	knots_gamma_leja	Yes
beta	Gauss–Jacobi	knots_beta	No
	weighted Leja (standard, symmetric)	knots_beta_leja	Yes

Sparse grids "ingredients": nodes, m, \mathcal{I}

```
N=2;
knots=@(n) knots_CC(n,-1,1);
w = 3;
m = @lev2knots_doubling;
Ifun = @(i) sum(i-1);
S = smolyak_grid(N,w,knots,m,Ifun);
```

```
• m = lev2knots_lin(i)
m(i) = i
```

```
N=2;
knots=@(n) knots_CC(n,-1,1);
w = 3;
m = @lev2knots_doubling;
Ifun = @(i) sum(i-1);
S = smolyak_grid(N,w,knots,m,Ifun);
```

```
m = lev2knots_lin(i)
```

• m = lev2knots_2step(i)

$$m(i) = 2(i-1) + 1$$

```
N=2;
knots=@(n) knots_CC(n,-1,1);
w = 3;
m = @lev2knots_doubling;
Ifun = @(i) sum(i-1);
S = smolyak_grid(N,w,knots,m,Ifun);
```

- m = lev2knots_lin(i)
- m = lev2knots_2step(i)
- m = lev2knots_doubling(i)

$$m(1) = 1, m(i) = 2^{i-1} + 1$$

```
N=2;
knots=@(n) knots_CC(n,-1,1);
w = 3;
m = @lev2knots_doubling;
Ifun = @(i) sum(i-1);
S = smolyak_grid(N,w,knots,m,Ifun);
```

```
m = lev2knots_lin(i)
m = lev2knots_2step(i)
m = lev2knots_doubling(i)
m = lev2knots_tripling(i)
m(i) = 3<sup>i-1</sup>
```

it is possible to specify different m and knots in each direction

m = lev2knots_tripling(i)

m = lev2knots_GK(i)

```
N=2;
knots=@(n) knots_CC(n,-1,1);
w = 3;
m = @lev2knots_doubling;
Ifun = @(i) sum(i-1);
S = smolyak_grid(N,w,knots,m,Ifun);
```

presets for m, Ifun are available:

```
[m,Ifun]=define_functions_for_rule(<'TP','TD','HC','SM'>,<N,g>)
```

where for $g \in \mathbb{R}^{N}_{+}$, $w \in \mathbb{N}$

```
ullet 'TP' = tensor prod., \mathcal{I}=\left\{ oldsymbol{\mathsf{i}}\in\mathbb{N}_+^{oldsymbol{N}}: \max_n g_n(i_n-1)\leq w 
ight\}, m(i)=i
```

```
N=2;
knots=@(n) knots_CC(n,-1,1);
w = 3;
m = @lev2knots_doubling;
Ifun = @(i) sum(i-1);
S = smolyak_grid(N,w,knots,m,Ifun);
```

presets for m, Ifun are available:

```
[m,Ifun]=define_functions_for_rule(<'TP','TD','HC','SM'>,<N,g>)
```

where for $g \in \mathbb{R}_+^N$, $w \in \mathbb{N}$

- ullet 'TP' = tensor prod., $\mathcal{I}=\left\{ oldsymbol{\mathsf{i}}\in\mathbb{N}_+^{oldsymbol{\mathsf{N}}}: \max_n g_n(i_n-1)\leq w
 ight\}$, m(i)=i
- 'TD' = total deg., $\mathcal{I}=\left\{\mathsf{i}\in\mathbb{N}_+^N:\sum_{n=1}^Ng_n(i_n-1)\leq w
 ight\},\; m(i)=i$

```
N=2;
knots=@(n) knots_CC(n,-1,1);
w = 3;
m = @lev2knots_doubling;
Ifun = @(i) sum(i-1);
S = smolyak_grid(N,w,knots,m,Ifun);
```

presets for m, Ifun are available:

```
[m, Ifun] = define_functions_for_rule(<'TP','TD','HC','SM'>,<N,g>)
```

where for $g \in \mathbb{R}^{N}_{+}$, $w \in \mathbb{N}$

- ullet 'TP' = tensor prod., $\mathcal{I}=\left\{ oldsymbol{\mathsf{i}}\in\mathbb{N}_+^{oldsymbol{\mathsf{N}}}: \max_n g_n(i_n-1)\leq w
 ight\}, \; m(i)=i$
- ullet 'TD' = total deg., $\mathcal{I}=\left\{\mathsf{i}\in\mathbb{N}_+^N:\sum_{n=1}^Ng_n(i_n-1)\leq w
 ight\},\; m(i)=i$
- 'HC' = hyperbolic cross, $\mathcal{I} = \left\{ \mathsf{i} \in \mathbb{N}_+^N : \prod_{n=1}^N i_n^{g_n} \leq w \right\}$, m(i) = i

```
N=2;
knots=@(n) knots_CC(n,-1,1);
w = 3;
m = @lev2knots_doubling;
Ifun = @(i) sum(i-1);
S = smolyak_grid(N,w,knots,m,Ifun);
```

presets for m, Ifun are available:

```
[m,Ifun]=define_functions_for_rule(<'TP','TD','HC','SM'>,<N,g>)
```

where for $g \in \mathbb{R}^{N}_{+}$, $w \in \mathbb{N}$

- ullet 'TP' = tensor prod., $\mathcal{I}=\left\{ oldsymbol{\mathsf{i}}\in\mathbb{N}_+^{oldsymbol{N}}: \max_n g_n(i_n-1)\leq w
 ight\}$, m(i)=i
- 'TD' = total deg., $\mathcal{I} = \left\{ \mathsf{i} \in \mathbb{N}_+^N : \sum_{n=1}^N g_n(i_n-1) \leq w \right\}$, m(i) = i
- 'HC' = hyperbolic cross, $\mathcal{I} = \left\{ \mathsf{i} \in \mathbb{N}_+^N : \prod_{n=1}^N i_n^{g_n} \leq w \right\}$, m(i) = i
- 'SM' = Smolyak, $\mathcal{I} = \left\{\mathsf{i} \in \mathbb{N}_+^N : \sum_{n=1}^N g_n(i_n-1) \leq w \right\}, m(i) = 2^{i-1}+1$

```
N=2;
knots=@(n) knots_CC(n,-1,1);
w = 3;
m = @lev2knots_doubling;
Ifun = @(i) sum(i-1);
S = smolyak_grid(N,w,knots,m,Ifun);
```

It is also possible to define sparse grids directly by a multi-idx set

```
% ex. 1) ''hand-typed'' set
C=[1 1; 1 3; 4 1]; % non downward-closed set
[adm,C_comp1] = check_set_admissibility(C); % fix C
S_M = smolyak_grid_multiidx_set(C_comp1, knots, m);
%ex. 2) create a box in N^2 with top-right corner at [2 3]
jj=[2 3];
D=multiidx_box_set([2 3],1);
T_M = smolyak_grid_multiidx_set(D, knots, m);
```


Multi-index set

Sparse grid set

interpolation of
$$f(\mathbf{y}) = \frac{1}{y_1^2 + y_2^2 + 0.3}$$

res = adapt_sparse_grid(f, N, knots, m, res_old, controls)

Multi-index set

Sparse grid set

0.5

interpolation of $f(\mathbf{y}) = \frac{1}{y_1^2 + y_2^2 + 0.3}$

Sparse grid set

interpolation of $f(\mathbf{y}) = \frac{1}{v_1^2 + v_2^2 + 0.3}$

res = adapt_sparse_grid(f, N, knots, m, res_old, controls)

Multi-index set

Sparse grid set

0.5

interpolation of
$$f(\mathbf{y}) = \frac{1}{y_1^2 + y_2^2 + 0.3}$$

Multi-index set

Sparse grid set

interpolation of $f(\mathbf{y}) = \frac{1}{v_1^2 + v_2^2 + 0.3}$

0.5

-0.5

res = adapt_sparse_grid(f, N, knots, m, res_old, controls)

-0.5

Multi-index set

Sparse grid set

0.5

interpolation of
$$f(\mathbf{y}) = \frac{1}{y_1^2 + y_2^2 + 0.3}$$

Multi-index set

Sparse grid set

interpolation of $f(\mathbf{y}) = \frac{1}{y_1^2 + y_2^2 + 0.3}$

Multi-index set

Sparse grid set

interpolation of $f(\mathbf{y}) = \frac{1}{y_1^2 + y_2^2 + 0.3}$

Multi-index set

Sparse grid set

interpolation of
$$f(\mathbf{y}) = \frac{1}{y_1^2 + y_2^2 + 0.3}$$

Multi-index set

Sparse grid set

interpolation of
$$f(\mathbf{y}) = \frac{1}{y_1^2 + y_2^2 + 0.3}$$

Multi-index set

Sparse grid set

interpolation of $f(\mathbf{y}) = \frac{1}{y_1^2 + y_2^2 + 0.3}$

-0.5

-0.5 0.5

Sparse grid set

interpolation of
$$f(\mathbf{y}) = \frac{1}{y_1^2 + y_2^2 + 0.3}$$

res = adapt_sparse_grid(f, N, knots, m, res_old, controls)

8 Sparse grid set

-0.5

0.5

-0.5

interpolation of
$$f(\mathbf{y}) = \frac{1}{y_1^2 + y_2^2 + 0.3}$$

Multi-index set

Sparse grid set

interpolation of
$$f(\mathbf{y}) = \frac{1}{y_1^2 + y_2^2 + 0.3}$$

-0.5-0.5 0.5

Multi-index set

Sparse grid set

interpolation of
$$f(\mathbf{y}) = \frac{1}{y_1^2 + y_2^2 + 0.3}$$

Multi-index set

Sparse grid set

interpolation of
$$f(\mathbf{y}) = \frac{1}{y_1^2 + y_2^2 + 0.3}$$

Multi-index set

Sparse grid set

interpolation of
$$f(\mathbf{y}) = \frac{1}{y_1^2 + y_2^2 + 0.3}$$

Multi-index set Sparse

Sparse grid set

interpolation of
$$f(\mathbf{y}) = \frac{1}{y_1^2 + y_2^2 + 0.3}$$

× X -0.5× ×

Multi-index set

Sparse grid set

interpolation of
$$f(\mathbf{y}) = \frac{1}{y_1^2 + y_2^2 + 0.3}$$

Multi-index set

Sparse grid set

interpolation of $f(\mathbf{y}) = \frac{1}{y_1^2 + y_2^2 + 0.3}$

Outline

- Example
- Basic data structure
- Main features
- 4 Example reprise
- Conclusions

```
f=@(x) x.^2; %vector-valued function
N=2; w=3;
S=smolyak_grid(N,w,@(n) knots_uniform(n,-1,1),@lev2knots_lin);
Sr= reduce_sparse_grid(S);
```

```
f=@(x) x.^2; %vector-valued function
N=2; w=3;
S=smolyak_grid(N,w,@(n) knots_uniform(n,-1,1),@lev2knots_lin);
Sr= reduce_sparse_grid(S);
```

ev_f = evaluate_on_sparse_grid(f,Sr)

```
f=@(x) x.^2; %vector-valued function
N=2; w=3;
S=smolyak_grid(N,w,@(n) knots_uniform(n,-1,1),@lev2knots_lin);
Sr= reduce_sparse_grid(S);
```

```
ev_f = evaluate_on_sparse_grid(f, Sr)
can recycle evaluations from previous results if available (regardless of nestedness)
ev_f = evaluate_on_sparse_grid(f, S, Sr, ev_f_old, S_old, Sr_old)
```

```
f=@(x) x.^2; %vector-valued function
N=2; w=3;
S=smolyak_grid(N,w,@(n) knots_uniform(n,-1,1),@lev2knots_lin);
Sr= reduce_sparse_grid(S);
```

ev_f = evaluate_on_sparse_grid(f,Sr)
evaluate f in parallel if more than X evals are required, uses Matlab parallel toolbox
ev_f = evaluate_on_sparse_grid(f,S,Sr,[],[],[],X)

```
f=@(x) x.^2; %vector-valued function
N=2; w=3;
S=smolyak_grid(N,w,@(n) knots_uniform(n,-1,1),@lev2knots_lin);
Sr= reduce_sparse_grid(S);
```

```
• ev_f = evaluate_on_sparse_grid(f,Sr)
```

```
f=@(x) x.^2; %vector-valued function
N=2; w=3;
S=smolyak_grid(N,w,@(n) knots_uniform(n,-1,1),@lev2knots_lin);
Sr= reduce_sparse_grid(S);
```

ev_f = evaluate_on_sparse_grid(f,Sr)
 q_f = quadrature_on_sparse_grid(f,Sr)
 same features as evaluate

• int_f = interpolate_on_sparse_grid(S,Sr,ev_f,P)

P is a matrix of eval. points (stored as columns)

```
f=@(x) x.^2; %vector-valued function
N=2; w=3;
S=smolyak_grid(N,w,@(n) knots_uniform(n,-1,1),@lev2knots_lin);
Sr= reduce_sparse_grid(S);

ev_f = evaluate_on_sparse_grid(f,Sr)
eq_f = quadrature_on_sparse_grid(f,Sr)
```

q_f = quadrature_on_sparse_grid(f,Sr)

• int_f = interpolate_on_sparse_grid(S,Sr,ev_f,P)
• [coeffs,I] = convert_to_modal(S,Sr,ev_f,'Legendre')

Converts a sparse grid into its equivalent Polynomial Chaos Exp.

```
f=@(x) x.^2; %vector-valued function
N=2; w=3;
S=smolyak_grid(N,w,@(n) knots_uniform(n,-1,1),@lev2knots_lin);
Sr= reduce_sparse_grid(S);

    ev.f = evaluate_on_sparse_grid(f,Sr)
```

```
f=@(x) x.^2; %vector-valued function
N=2; w=3;
S=smolyak_grid(N,w,@(n) knots_uniform(n,-1,1),@lev2knots_lin);
Sr= reduce_sparse_grid(S);
```

- ev_f = evaluate_on_sparse_grid(f,Sr)
- q_f = quadrature_on_sparse_grid(f,Sr)
- int_f = interpolate_on_sparse_grid(S,Sr,ev_f,P)
- [coeffs, I] = convert_to_modal(S, Sr, ev_f, 'Legendre')
 - ► Converts a sparse grid into its equivalent Polynomial Chaos Exp.
 - ▶ Idea: For each tensor grid in the combination technique, compute the equivalent PCE by solving a Vandermonde system

```
f=@(x) x.^2; %vector-valued function
N=2; w=3;
S=smolyak_grid(N,w,@(n) knots_uniform(n,-1,1),@lev2knots_lin);
Sr= reduce_sparse_grid(S);
```

- ev_f = evaluate_on_sparse_grid(f,Sr)
- q_f = quadrature_on_sparse_grid(f,Sr)
- int_f = interpolate_on_sparse_grid(S,Sr,ev_f,P)
- [coeffs, I] = convert_to_modal(S, Sr, ev_f, 'Legendre')
 - Converts a sparse grid into its equivalent Polynomial Chaos Exp.
 - ▶ Idea: For each tensor grid in the combination technique, compute the equivalent PCE by solving a Vandermonde system
 - Vandermonde matrix is orthogonal for Gaussian quadrature points

```
f=@(x) x.^2; %vector-valued function
N=2; w=3;
S=smolyak_grid(N,w,@(n) knots_uniform(n,-1,1),@lev2knots_lin);
Sr= reduce_sparse_grid(S);
```

- ev_f = evaluate_on_sparse_grid(f,Sr)
- q_f = quadrature_on_sparse_grid(f,Sr)
- int_f = interpolate_on_sparse_grid(S,Sr,ev_f,P)
- [coeffs, I] = convert_to_modal(S, Sr, ev_f, 'Legendre')
 - Converts a sparse grid into its equivalent Polynomial Chaos Exp.
 - Idea: For each tensor grid in the combination technique, compute the equivalent PCE by solving a Vandermonde system
 - ► Vandermonde matrix is orthogonal for Gaussian quadrature points
 - several orthogonal polynomials:

```
'Legendre', 'Hermite', 'Chebyshev', 'Laguerre', 'Jacobi', 'Generalized Laguerre'
```

• int_f = interpolate_on_sparse_grid(S,Sr,ev_f,P)
• [coeffs,I] = convert_to_modal(S,Sr,ev_f,'Legendre')

[Si,Ti]=compute_sobol_indices_from_sparse_grid(S,Sr,ev_f,'Legendre')

```
f=@(x) x.^2; %vector-valued function
N=2; w=3;
S=smolyak_grid(N,w,@(n) knots_uniform(n,-1,1),@lev2knots_lin);
Sr= reduce_sparse_grid(S);

ev_f = evaluate_on_sparse_grid(f,Sr)
eq_f = quadrature_on_sparse_grid(f,Sr)
```

• int_f = interpolate_on_sparse_grid(S,Sr,ev_f,P)
• [coeffs,I] = convert_to_modal(S,Sr,ev_f,'Legendre')

[Si,Ti]=compute_sobol_indices_from_sparse_grid(S,Sr,ev_f,'Legendre')
 Si are the principal Sobol indices of xi (fraction of variability due to xi only)

```
f=@(x) x.^2; %vector-valued function
N=2; w=3;
S=smolyak_grid(N,w,@(n) knots_uniform(n,-1,1),@lev2knots_lin);
Sr= reduce_sparse_grid(S);

    ev_f = evaluate_on_sparse_grid(f,Sr)
     q_f = quadrature_on_sparse_grid(f,Sr)
```

```
f=@(x) x.^2; %vector-valued function
N=2; w=3;
S=smolyak_grid(N,w,@(n) knots_uniform(n,-1,1),@lev2knots_lin);
Sr= reduce_sparse_grid(S);
```

- ev_f = evaluate_on_sparse_grid(f,Sr)
- q_f = quadrature_on_sparse_grid(f,Sr)
- int_f = interpolate_on_sparse_grid(S,Sr,ev_f,P)
- [coeffs, I] = convert_to_modal(S, Sr, ev_f, 'Legendre')
- [Si,Ti]=compute_sobol_indices_from_sparse_grid(S,Sr,ev_f,'Legendre')
 - **Si** are the principal Sobol indices of x_i (fraction of variability due to x_i only)
 - ▶ **Ti** are the **total** Sobol indices of x_i (fraction of variability due to x_i alone and together with any other variable)

grads = derive_sparse_grid(S,Sr,ev_f,P)

```
f=@(x) x.^2; %vector-valued function
N=2; w=3;
S=smolyak_grid(N,w,@(n) knots_uniform(n,-1,1),@lev2knots_lin);
Sr= reduce_sparse_grid(S);

ev_f = evaluate_on_sparse_grid(f,Sr)
eq_f = quadrature_on_sparse_grid(f,Sr)
eint_f = interpolate_on_sparse_grid(S,Sr,ev_f,P)
e[coeffs,I] = convert_to_modal(S,Sr,ev_f,'Legendre')
e[Si,Ti]=compute_sobol_indices_from_sparse_grid(S,Sr,ev_f,'Legendre')
```

```
f=0(x) x.^2: %vector-valued function
N=2; w=3;
S=smolyak\_grid(N, w, @(n) knots\_uniform(n, -1, 1), @lev2knots\_lin);
Sr= reduce_sparse_grid(S);
  ev_f = evaluate_on_sparse_grid(f,Sr)
  • q_f = quadrature_on_sparse_grid(f,Sr)
  • int_f = interpolate_on_sparse_grid(S,Sr,ev_f,P)
  • [coeffs, I] = convert_to_modal(S, Sr, ev_f, 'Legendre')
  • [Si, Ti] = compute_sobol_indices_from_sparse_grid(S, Sr, ev_f, 'Legendre')
  grads = derive_sparse_grid(S,Sr,ev_f,P)
    uses Finite Differences, increment step can be specified
```

```
f=0(x) x.^2: %vector-valued function
N=2; w=3;
S=smolyak\_grid(N, w, @(n) knots\_uniform(n, -1, 1), @lev2knots\_lin);
Sr= reduce_sparse_grid(S);
  ev_f = evaluate_on_sparse_grid(f,Sr)
  • q_f = quadrature_on_sparse_grid(f,Sr)
  • int_f = interpolate_on_sparse_grid(S,Sr,ev_f,P)
  • [coeffs, I] = convert_to_modal(S, Sr, ev_f, 'Legendre')
  [Si,Ti]=compute_sobol_indices_from_sparse_grid(S,Sr,ev_f,'Legendre')
  grads = derive_sparse_grid(S,Sr,ev_f,P)
  • H = hessian_sparse_grid(S,Sr,ev_f,P)
```

grads = derive_sparse_grid(S,Sr,ev_f,P)
H = hessian_sparse_grid(S,Sr,ev_f,P)

uses Finite Differences, increment step can be specified

```
f=@(x) x.^2; %vector-valued function
N=2; w=3;
S=smolyak_grid(N,w,@(n) knots_uniform(n,-1,1),@lev2knots_lin);
Sr= reduce_sparse_grid(S);

    ev_f = evaluate_on_sparse_grid(f,Sr)
        q_f = quadrature_on_sparse_grid(f,Sr)
        int_f = interpolate_on_sparse_grid(S,Sr,ev_f,P)
        [coeffs,I] = convert_to_modal(S,Sr,ev_f,'Legendre')
        [Si,Ti]=compute_sobol_indices_from_sparse_grid(S,Sr,ev_f,'Legendre')
```

```
f=@(x) x.^2; %vector-valued function
N=2; w=3;
S=smolyak_grid(N,w,@(n) knots_uniform(n,-1,1),@lev2knots_lin);
Sr= reduce_sparse_grid(S);

ev_f = evaluate_on_sparse_grid(f,Sr)
eq_f = quadrature_on_sparse_grid(f,Sr)
eint_f = interpolate_on_sparse_grid(S,Sr,ev_f,P)
e[coeffs,I] = convert_to_modal(S,Sr,ev_f,'Legendre')
```

• [Si, Ti] = compute_sobol_indices_from_sparse_grid(S, Sr, ev_f, 'Legendre')

grads = derive_sparse_grid(S,Sr,ev_f,P)
 H = hessian_sparse_grid(S,Sr,ev_f,P)
 plus of course. plotting and exporting on file...

Outline

- Example
- Basic data structure
- Main features
- 4 Example reprise
- 6 Conclusions

Results with code

```
N = 2:
knots = @(n) knots_CC(n,-sqrt(3), sqrt(3));
lev2knots = @lev2knots_doubling;
rule = @(ii) sum((ii-1));
w=4:
S = smolyak_grid(N, w, knots, lev2knots, rule);
Sr = reduce_sparse_grid(S);
% solve PDEs on sparse grid (expensive part)
I_on_Sr = evaluate_on_sparse_grid(I,Sr);
% task 1: expected value
exp_I = quadrature_on_sparse_grid(I_on_Sr,Sr);
% task 2: evaluate metamodel
yy = linspace(-sqrt(3), sqrt(3), 15);
[Y1, Y2] = meshgrid(yy, yy);
eval_points = [Y1(:)';Y2(:)'];
I_vals = interpolate_on_sparse_grid(S,Sr,...
                            I_on_Sr.eval_points);
```


Results with code

Results with code

Outline

- Example
- Basic data structure
- Main features
- 4 Example reprise
- Conclusions

• high-level Matlab software, based on combination technique form of sparse grids;

- high-level Matlab software, based on combination technique form of sparse grids;
- high-dimensional quadrature/interpolation, geared towards UQ

- high-level Matlab software, based on combination technique form of sparse grids;
- high-dimensional quadrature/interpolation, geared towards UQ
- next release (2023-??): Multi-Index Stochastic Collocation. Uses multiple fidelities for PDEs to reduce computational costs

Bibliography

- high-level Matlab software, based on combination technique form of sparse grids;
- high-dimensional quadrature/interpolation, geared towards UQ
- next release (2023-??): Multi-Index Stochastic Collocation. Uses multiple fidelities for PDEs to reduce computational costs

Bibliography

 C. Piazzola, L. Tamellini, The Sparse Grids Matlab Kit - a Matlab implementation of sparse grids for high-dimensional function approximation and uncertainty quantification, 2022.

- high-level Matlab software, based on combination technique form of sparse grids;
- high-dimensional quadrature/interpolation, geared towards UQ
- next release (2023-??): Multi-Index Stochastic Collocation. Uses multiple fidelities for PDEs to reduce computational costs

Bibliography

- C. Piazzola, L. Tamellini, The Sparse Grids Matlab Kit a Matlab implementation of sparse grids for high-dimensional function approximation and uncertainty quantification, 2022.
- https://sites.google.com/view/sparse-grids-kit

- high-level Matlab software, based on combination technique form of sparse grids;
- high-dimensional quadrature/interpolation, geared towards UQ
- next release (2023-??): Multi-Index Stochastic Collocation. Uses multiple fidelities for PDEs to reduce computational costs

Bibliography

- C. Piazzola, L. Tamellini, The Sparse Grids Matlab Kit a Matlab implementation of sparse grids for high-dimensional function approximation and uncertainty quantification, 2022.
- https://sites.google.com/view/sparse-grids-kit
- J. Martínez-Frutos, F. Periago Esparza, Optimal Control of PDEs under Uncertainty, Springer 2018. Uses Matlab Sparse Grids Kit