Mining fuzzy correlated patterns in transactional database

What is fuzzy correlated pattern mining?

Fuzzy correlated pattern mining aims to discover all the interesting patterns using support, all confidence that have support no less than the user-specified minimum support (minSup), all confidence no less than minimum all confidence (minAllConf). It is based on traditional fuzzy frequent pattern mining.

Reference: Lin, N.P., & Chueh, H. (2007). Fuzzy correlation rules mining.

What is a fuzzy transactional database?

A fuzzy transactional database is a collection of transaction, where each transaction contains a set of items called **fuzzy terms** and a positive integer called **fuzzy value** respectively. A hypothetical fuzzy database with items **a**, **b**, **c**, **d**, **e**, **f** and **g** is shown below.

Transactions				
(a,2) (b,3) (c,1) (g,1)				
(b,3) (c,2) (d,3) (e,2)				
(a,2) (b,1) (c,3) (d,4)				
(a,3) (c,2) (d,1) (f,2)				
(a,3) (b,1) (c,2) (d,1) (g,2)				
(c,2) (d,2) (e,3) (f,1)				
(a,2) (b,1) (c,1) (d,2)				
(a,1) (e,2) (f,2)				
(a,2) (b,2) (c,4) (d,2)				
(b,3) (c,2) (d,2) (e,2)				

Note: Duplicate items must not exist within a transaction.

What is the acceptable format of a fuzzy transactional database in PAMI?

about:srcdoc Page 1 of 5

The format we accept for fuzzy databases is the same as the utility database format.

```
a b c g:7:2 3 1 1
b c d e:10:3 2 3 2
a b c d:10:2 1 3 4
a c d f:7:3 2 1 2
a b c d g:9:3 1 2 1 2
c d e f:8:2 2 3 1
a b c d:6:2 1 1 2
a e f:5:1 2 2
a b c d:10:2 2 4 2
b c d e:9:3 2 2 2
```

Understanding the statistics of a temporal database

The performance of a pattern mining algorithm primarily depends on the satistical nature of a database. Thus it is important to know the following details of a database:

- Total number of transactions (Database size)
- Total number of unique items in database
- Minimum lenth of transaction that exists in database
- Average length of all transactions that exists in database
- Maximum length of transaction that exists in database
- Minimum periodicity that exists in database
- Average periodicity hat exists in database
- Maximum periodicity that exists in database
- Standard deviation of transaction length
- Variance in transaction length
- Sparsity of database

The below sample code prints the statistical details of a database.

```
In []: import PAMI.extras.dbStats.utilityDatabaseStats as stats
  obj = stats.utilityDatabaseStats('sampleInputFile.txt', ' ')
  obj.run()
  obj.printStats()
```

about:srcdoc Page 2 of 5

The input parameters to a frequent pattern mining algorithm are:

Fuzzy database

Acceptable formats:

String: E.g., 'FuzzyDatabase.txt'

URL: E.g., https://u-aizu.ac.jp/~udayrage/datasets/transactionalDatabases/transactional_T10

DataFrame with the header titled

• minSup

specified in

- count (beween 0 to length of a database) or
- **[**0, 1]

• minAllConf

specified in

- **[**0, 1]
- seperator

default seperator is '\t' (tab space)

How to store the output of a fuzzy correlated pattern mining algorithm?

The patterns discovered by a fuzzy correlated pattern mining algorithm can be saved into a file or a data frame.

How to run the correlated periodic pattern mining algorithms in a terminal?

- Download the PAMI source code from github.
- Unzip the PAMI source code folder and enter in to fuzzy correlated pattern
- Enter into fuzzyCorrelated pattern folder
- Enter into the folder and execute the following command on terminal.

syntax: python3 algorithmName.py <path to the input file> <path to
the output file> <minSup> <minAllConf> <seperator>

about:srcdoc Page 3 of 5

```
Example: python3 FCPGrowth.py inputFile.txt outputFile.txt 4 0.5
```

How to execute a fuzzy correlated pattern mining algorithm in a Jupyter Notebook?

- Install the PAMI package from the PYPI repository by executing the following command: pip3 install PAMI
- Run the below sample code by making necessary changes

Fuzzy Correlated Patterns Successfully generated using FCPGrowth algorith $^{\mathtt{ms}}$

The FuzzyCorrelatedPatterns.txt file contains the following patterns (*format:* pattern:support:lability):!cat FuzzyCorrelatedPatterns.txt

In [18]: df

The dataframe containing the patterns is shown below:

about:srcdoc Page 4 of 5

Out[18]:		Patterns	Support
	0	a.L	5.399999999999995 : 0.7714285714285714\n
	1	b.L	5.599999999999999999999999999999999999
	2	b.L c.L	4.6 : 0.5111111111111111\n
	3	d.L	6.1999999999999999999999999999999999999
	4	d.L c.L	5.39999999999995 : 0.6\n
	5	c.L	6.999999999999999999999999999999999999

about:srcdoc Page 5 of 5