# Emparelhamento em grafos: Comparação de desempenho entre o algoritmo força-bruta e resolvedor minisat

Gisele Goulart Tavares da Silva<sup>1</sup>, Guilherme Almeida Félix da Silva<sup>1</sup>

<sup>1</sup>Departamento de Ciência da Computação Universidade Federal de Juiz de Fora

qiseleqoulart@ice.ufjf.br, quilherme.felix@enqenharia.ufjf.br

Resumo. Trabalho prático apresentado como parte da avaliação da disciplina Análise e Projeto de Algoritmos - DCC001 da Universidade Federal de Juiz de Fora - UFJF. O problema tratado é o de emparelhamento maximal mínimo em grafos. Apresenta-se um algoritmo que produz a solução exata, sua complexidade é avaliada e, por tratar-se de um problema NP-Completo, é esperado que a partir de determinado tamanho de instância de teste o algoritmo proposto não retorne a solução exata em tempo factível. Ainda, apresenta-se um modelo deste problema na forma de um problema SAT e, utilizando um resolvedor de problemas SAT, uma solução é obtida. É feito um estudo comparativo com instâncias de tamanhos pequeno (até 10 vértices), médio (30 vértices) e grandes (50 vértices).

## 1. Introdução

Um grafo é um conjunto finito e não vazio de vértices e arestas, indicado por G(V,E), de maneira que cada aresta está associada a dois vértices, chamados de **extremidades**. O conjunto de vértices de G é representado por V(G) e o conjunto de arestas de G é indicado por E(G).

O número de arestas de um grafo é denotado por |E| e o número de vértices é denotado por |V|. A **cardinalidade** de um conjunto de quaisquer elementos de um grafo representa a número de elementos desse conjunto.

Sejam u e v dois vértices pertencentes a um grafo G, indica-se a aresta entre esses vértices como (u,v). Neste contexto não há distinção entre arestas caso a ordem dos vértices seja trocada, ou seja, a aresta (u,v) é a mesma que a aresta (v,u) (o grafo é dito ser  $não\ direcionado$ ).

Duas arestas são consideradas *adjacentes* se possuem um vértice em comum. Um **grafo completo** é um grafo tal que todos os vértices são vizinhos entre si, ou seja, todo vértice possui aresta que o liga a todos os demais.

Um **subgrafo** H de um grafo G é tal que todos os seus vértices e arestas estão em G e as extremidades de cada aresta de H são as mesmas em G.

Um **emparelhamento** M em um grafo G(V,E) é um subconjunto de arestas tais que não são adjacentes duas a duas. Um emparelhamento M é **maximal** se não é possível adicionar mais arestas a M, e será **máximo** se for um emparelhamento maximal que contém o maior número de arestas possível.

O problema de determinar um emparelhamento máximo em um grafo é considerado tradicional na área de estudo de algoritmos e possui complexidade polinomial. O

algoritmo de Edmonds permite obter o emparelhamento máximo em um grafo qualquer em tempo polinomial. O objetivo deste trabalho é escrever (e avaliar a complexidade e desempenho) de um algoritmo que encontre o **emparelhamento maximal mínimo**, ou seja, um emparelhamento maximal de **menor cardinalidade** possível. Este problema foi demonstrado por Yannakakis e Gavril ser NP-Completo [Centeno 2007]. Desta forma, sabe-se que o algoritmo apresentado aqui será capaz de encontrar a solução exata apenas para instâncias consideradas pequenas. Para instâncias a partir de um determinado tamanho, o tempo necessário para a obtenção da solução exata torna-se impraticável.

## 2. Algoritmo

O algoritmo apresentado a seguir foi construído de acordo com o paradigma *força-bruta*, que consiste em gerar todas as possibilidades e testar uma a uma afim de se encontrar a solução.

- 1. Gera todas as permutações de arestas do grafo G de entrada
- 2. Para cada permutação, seleciona a primeira aresta, verifica se as demais são vizinhas dela e inclui as não-vizinhas numa solução temporária.
- 3. Se a solução temporária tiver tamanho menor que a solução global, atualiza a solução global
- 4. Repete o procedimento iniciando de cada aresta da permutação
- 5. Retorna a solução global: Conjunto de arestas e seu tamanho.

A ideia do algoritmo é selecionar arestas e adicionar no conjunto solução, uma a uma, testando se são vizinhas, de todas as formas possíveis. Dessa maneira, primeiramente é gerada uma lista com uma ordenação de todas as arestas do grafo. A primeira da lista é colocada na solução candidata. Testa-se se todas demais arestas e as não vizinhas são adicionadas na solução candidata. Guarda-se essa solução. Em seguida, o processo é feito na mesma lista, porém iniciando o processo adicionando a aresta na segunda posição da lista. E isso é feito para todas as permutações com o conjunto de arestas do grafo.

A complexidade de gerar todas as permutações de arestas domina assintoticamente todas as demais operações, de forma que a complexidade desse algoritmo é |E|!. O algoritmo de Johnson Trotter foi usado nessa etapa. Assim, supondo o tempo necessário para gerar um subconjunto igual a  $10^{-9}s$ , para uma instância com 5 arestas o tempo gasto para o processamento seria de  $1,2\times 10^{-7}$  s. Para uma instância de 10 arestas, o tempo sobe para  $1,6288\times 10^{-3}$  s. Para 20 arestas o tempo seria  $2,432\times 10^9$  s, que já se mostra uma instância intratável.

O grafo está representado como uma lista de adjacências e diversas listas ligadas foram utilizadas em todo o procedimento, como estruturas auxiliares. Também é utilizada uma estrutura listaAresta, onde são incluídas todas as arestas do grafo e onde o algoritmo força bruta realiza sua busca. A estrutura do grafo em si não é utilizada durante a execução do algoritmo força bruta e da transformação da entrada para SAT. A montagem do grafo foi realizada em um primeiro momento para uma tentativa de solução do problema utilizando abordagem gulosa, de modo a retornar uma solução aproximada. Funções de inclusão, exclusão e busca foram implementadas na estrutura lista (que representa um grafo). A implementação do algoritmo força bruta, apesar de mais custosa, retorna a solução exata do problema. Desse modo, partindo da estrutura do grafo já pronta, implementamos estruturas auxiliares para tratar apenas das arestas do grafo, onde as permutações são realizadas.

# 2.1. Resultados - Algoritmo Força-Bruta

Os testes foram executados em uma máquina com a seguinte especificação: 8GB de memória RAM, 1TB de HD, processador i5 quinta geração (2 cores físicos, total de 4 com hyperthreading).

| Instancia       | V | E  | Solução   | Tempo de Execução (ms)                  | Observações                         |
|-----------------|---|----|-----------|-----------------------------------------|-------------------------------------|
| teste1_wiki.txt | 6 | 6  | 1 aresta  | 7.348                                   | Processo concluído                  |
| teste3_wiki.txt | 5 | 6  | 2 arestas | 12.543                                  | Processo concluído                  |
| teste2_wiki.txt | 6 | 7  | 2 arestas | 89.513                                  | Processo concluído                  |
| teste4.txt      | 8 | 8  | 3 arestas | 1239.88                                 | Processo concluído                  |
| teste_10.txt    | 6 | 10 | 2 arestas | 189420                                  | Processo concluído                  |
| teste_30.txt    | 9 | 30 | 4 arestas | $2077118 \ (\approx 35 \ \mathrm{min})$ | Processo encerrado. Solução parcial |

Tabela 1. Resultados algoritmo força bruta

O consumo de memória foi da ordem de 90 % As figuras a seguir indicam algumas instâncias de teste e a solução está indicada em vermelho.



Figura 1. Instancias teste1\_wiki.txt e teste2\_wiki.txt



Figura 2. Instancias teste3\_wiki.txt e teste4\_wiki.txt

## 3. Formulação SAT

O problema da **satisfatibilidade** consiste em determinar se uma fórmula proposicional na *forma normal conjuntiva* (FNC) é satisfatível. Uma fórmula proposicional consiste de variáveis booleanas, conectivos  $\land$  (conjunção),  $\lor$  (disjunção) e  $\neg$  (negação). A fórmula é dita ser *satisfatível* se, e somente se, existir uma atribuição de valores *verdadeiro* e *falso* para as variáveis de forma que toda a expressão assuma o valor lógico *verdadeiro*. A fórmula está na FNC se for uma conjunção de *cláusulas*. Uma *cláusula* é uma disjunção de *literais*. Um *literal* é uma variável (booleana) ou sua negação. [Stamm-Wilbrandt 1993].

Esse problema, também conhecido por SAT, foi o primeiro a ser mostrado NP-completo, ou seja, é um problema que não se conhece algoritmo que o resolva em tempo polinomial. Sua importância é permitir identificar outros problemas que também pertençam a essa classe (NP-completo). Para isso é necessário que se faça uma *redução* do problema SAT ao problema que está sendo estudado. Em outras palavras, deve-se reescrever o problema SAT de forma que ele corresponda a uma instância do problema a ser trabalhado. Ao se obter um algoritmo que faça essa "tradução"da entrada de um problema SAT na entrada do problema a ser tratado em tempo polinomial e garantindo que a solução do problema a ser tratado indique a solução do problema SAT, concluímos a *redução*[Levitin 2012]. Em resumo, é possível resolver um problema por meio da solução de uma instância do problema SAT.

No caso deste trabalho, o problema consiste em converter a entrada do problema de emparelhamento (um grafo e um inteiro k) na entrada de um problema SAT (uma fórmula booleana na FNC).

#### 3.1. Modelo SAT

O enunciado do problema original pode ser reescrito na forma de um problema de decisão como: Existe um subconjunto M de arestas em um grafo G, de tamanho não maior do que um dado K tal que as arestas de M não sejam vizinhas entre si duas a duas?

A formulação em uma expressão booleana na forma normal conjuntiva é apresentada a seguir:

$$F = \bigwedge_{1 \leq i \leq K} noMaximoUm\{[e,i] | e \in E\} \land \bigwedge_{e,f \in E}^{e \cap f \neq \emptyset} noMaximoUm\{[e,i], [f,i] | 1 \leq i \leq K\}$$
 
$$\land \bigwedge_{e \in E} nenhum[e,i] | 1 \leq i \leq K \Rightarrow peloMenosUm\{[f,i] | 1 \leq i \leq K, f \in E, e \cap f \neq \emptyset\}$$

Nessa formulação  $K \leq |E|$  e as funções noMaximoUm e peloMenosUm são escritas como:

$$noMaximoUm\{l_1, l_2, ..., l_x\} := \bigwedge_{1 \le i, j \le x} (\bar{l_i} \lor \bar{l_j})$$

$$peloMenosUm\{l_1, l_2, ..., l_x\} := (l_1 \lor l_2 \lor \cdots \lor l_x)$$

A primeira delas indica que a expressão inteira será verdadeira se no máximo um literal assumir o valor verdadeiro. A segunda delas indica que a expressão inteira será verdadeira se ao menos um literal for verdadeiro.

A relação  $a \Rightarrow b$  é equivalente a  $\neg a \lor b$  e também foi utilizada para fins de implementação. Todas essas expressões e o modelo foram retirados de [Stamm-Wilbrandt 1993]

#### 3.2. MiniSat - SAT Solver

O resolvedor de problemas SAT usado foi o miniSat<sup>1</sup>, que recebe como entrada um arquivo de texto contendo uma cláusula por linha e cada linha contem um literal separado por espaço. O fim da cláusula é representado por um caracter "0". Nessa representação, a negação de um literal é representado pelo símbolo "-"e cada literal é indicado por um número inteiro, no nosso caso, o identificador de cada aresta.

Já estando na FNC, cada linha armazena as disjunções de cada literal e de uma linha para a outra está representada a conjunção de cada cláusula. Para produzir este arquivo de entrada, foram escritas as funções noMaximoUm e peloMenosUm e uma função maior que representa a fórmula completa.

A função noMaximoUm consiste em colocar cada literal negado dois a dois em uma cláusula e, em seguida, fazer a conjunção de cada uma delas. A função peloMenosUm consiste em fazer uma disjunção de cada literal.

Para encontrar a solução do problema, é feito um laço, com a variável K iniciando em 1 e indo até o total de arestas do grafo, e para cada valor de K é gerada uma fórmula completa, que é passada para o miniSat. Quando a resposta gerada for SATISFIABLE, o laço é encerrado. O K é guardado (e então temos a cardinalidade do conjunto obtido) e o retorno do solver indica o valor lógico de cada literal da entrada, que é interpretado diretamente: variável negada, aresta fora da solução, variável verdadeira, aresta na solução.

A função que gera a fórmula completa consiste na conjunção de três expressões. A primeira delas itera sobre as arestas do grafo, identificando-as unicamente, para cada K. Assim, para K=1, todas as arestas do grafo serão identificadas com um novo rótulo ([1, 1], [2, 1], [3, 1], etc. ), colocadas em uma lista auxiliar (na qual cada identificador corresponde a um literal) e passada para a função noMaximoUm, que se encarregará de escrever no arquivo de entrada para o miniSat essa parte da fórmula completa.

A segunda expressão itera sobre as arestas, porém só identifica com novos rótulos e inclui na lista auxiliar a ser passada para a função noMaximoUm as arestas que são vizinhas. Portanto, antes de se incluir na lista auxiliar é feita iteração na lista de arestas para identificar quais são vizinhas  $(e \cap f \neq \emptyset)$ .

A terceira (e última) expressão foi reescrita como

$$\bigwedge_{e \in E} (peloMenosUm[e,i]|1 \le i \le K) \quad \lor \quad (peloMenosUm\{[f,i]|1 \le i \le K, f \in E, e \cap f \ne \emptyset\})$$

utilizando a relação  $a \Rightarrow b$  é equivalente a  $\neg a \lor b$  e o fato que a negação de "nenhum" é "pelo menos um". Esse trecho também identifica, para cada aresta do grafo quais são

<sup>&</sup>lt;sup>1</sup>disponível em http://minisat.se/Main.html

suas vizinhas, atribui novos rótulos e as inclui em uma lista auxiliar, a ser passada para a função peloMenosUm.

### 4. Resultados miniSat

| Instancia       | V | E  | Saída do miniSat | Valor de K | Tempo de Execução (s) |
|-----------------|---|----|------------------|------------|-----------------------|
| teste1_wiki.txt | 6 | 6  | Satisfiable      | 1 aresta   | 0                     |
| teste3_wiki.txt | 5 | 6  | Satisfiable      | 2 arestas  | 0                     |
| teste2_wiki.txt | 6 | 7  | Satisfiable      | 2 arestas  | 0                     |
| teste4.txt      | 8 | 8  | Satisfiable      | 2 arestas  | 0                     |
| teste_10.txt*   | 6 | 10 | Satisfiable      | 2 arestas  | 0                     |
| teste_30.txt**  | 9 | 30 | Satisfiable      | 2 arestas  | 0                     |

Tabela 2. Resultados do miniSat

As duas últimas instâncias (\* e \*\*) foram executadas com a função do força bruta desabilitado, por conta do consumo de memória. Para as quatro primeiras instâncias os resultado foi o esperado, ao menos na cardinalidade da solução. Porém, inspecionando a solução mostrada pelo miniSat observamos claramente inconsistência na saída. Para o arquivo  $teste2\_wiki.txt$ , por exemplo, a saída foi [-1 -2 -3 4 5 -6 -7 -8 -9 -10 11 -12 13 -14 0], que indica a seleção de quatro arestas para a solução. O arquivo teste4.txt que também apresentou solução com K = 2, teve como saída [-1 -2 -3 4 -5 -6 7 -8 9 -10 -11 -12 13 -14 15 -16 0], também indicando mais de duas arestas para a solução. Além desses erros, a solução do miniSat para todas as instâncias (a menos da primeira na tabela) foi exatamente a mesma, o que é, no mínimo, suspeito.

Considerando que o modelo teórico utilizado já é consolidado na comunidade científica e que o solver também tem reconhecimento de "estado da arte" atestado, os indícios mais fortes dão conta de que a fonte do problema está relacionada à transcrição das cláusulas no arquivo de entrada para o tratamento do miniSat.

De qualquer forma, é notório o péssimo desempenho do algoritmo força bruta, o que o torna proibitivo em problemas cuja complexidade é conhecidamente alta (neste caso NP-Completo), muito embora retorne a solução exata. Sua aplicabilidade está restrita a instâncias de tamanho muito reduzido, o que não reflete a maior parte dos problemas a serem tratados no mundo real, tanto pelo tamanho da instância quanto pela restrição de tempo de solução. Assim, para a referida classe de problemas, outras estratégias trazem melhor resultado, como heurística gulosa, por exemplo.

# Referências

Centeno, C. C. (2007). Sobre emparelhamento maximal mínimo em certas classes de grafos. Master's thesis, Universidade Federal de Goiás.

Levitin, A. (2012). Introduction to the design & analysis of algorithms. Boston: Pearson,.

Stamm-Wilbrandt, H. (1993). Programming in propositional logic or reductions: Back to the roots (satisability). Technical report, Institut für Informatik III, Universität Bonn.