

Data Structures and Algorithms

2-3 Trees 2-3-4 Trees

Lecturer: Le Ngoc Thanh

Email: Inthanh@fit.hcmus.edu.vn

Outline

- 2-3 Tree
- o 2-3-4 Tree

Complete Tree:

- Every level, excluding the last, is filled
- All nodes at the last level are as far left as they can be.

O Perfect Tree:

• Null links are all the same distance from the root

Do you like perfect tree? Why? Why not?

Is a AVL tree a perfectly balanced search tree?

- o Is there any way to make a perfectly AVL tree all time?
 - No
- o Is there a perfect balanced search tree all time?
 - Yes

2-3 Search Tree

- A 2-3 search tree is a tree that is either empty or
 - Has 2-node, with one key and two links
 - Has 3-node, with two keys and three links

2-3 Search Tree

- A 2-3 search tree is a tree that is either empty or
 - Has 2-node, with one key and two links
 - Has 3-node, with two keys and three links
 - Satisfy value properties as a seach tree
 - All leaves are at the same level in the tree

2-3 Search Tree

Example

Search an Item

Search in 2-3 tree is same the search algorithm for BST.

Search an Item

Time Efficiency of Searching

- O What is the time efficiency of searching for an item?
 - O(logn)
 - But
 - A AVL tree's height: 1.44log(n+2)-0.328
 - A 2-3 tree's height: 2log(n+1)
 - ⇒ A AVL is slightly faster than a 2-3 tree.
 - \Rightarrow So why we need a 2-3 tree?

- To insert an item to a 2-3 tree:
 - Do an unsuccessful search and then hook on the node at the bottom.
 - Insert a new item into this node.

- There are two cases:
 - Insert into a 2-node
 - Insert into a 3-node

Insert into a 2-node:

Just replace the node with a 3-node containing its key and the new key to be

inserted.

Insert into a 3-node:

- The new key to be inserted the leaf and after that ...
- Divide (split) the leaf and move middle value up to parent.
- Check and fix parent if it is overcrowded and repeat again until root.

Insert into a 3-node whose parent is a 2-node

Exercises

Insert some following values into current 2-3 tree:

35, 34, 33, 32, 15, 29, 48, 17

Comments

- Some comments on inserting:
 - Simple balancing
 - No part of the tree needs to be examined or modified other than the specified nodes and links.
 - Number of links changed is bounded by a small constant.
 - Is better than AVL tree?

Delete an item

- To delete an item from a 2-3 tree:
 - Do an successful search and then delete that value from the node at the bottom (similar with BST)
 - Deletion leaves a hole in a bottom node so removing the hole without violating the 2-3 tree.

Delete an item

- There are 2 main cases:
 - If the node (with hole) is enough (2-node), do nothing.
 - Otherwise (empty):
 - If sibling is rich (3-node), borrow (redistribute) a value from it through parent.
 - If sibling is poor (2-node), join (merge) with sibling and parent. Consequently, new hole is created on parent node. Repeat removing the hole from parent.

Redistribute and Merge (1)

Redistribute and Merge (2)

Redistribute and Merge (3)

Exercise

Delete following values from a 2-3 tree:

70, 100, 80, 20, 50

Comments

Advantages:

- Perfect balanced
- Do not use rotation
- Complexity is O(logn)

Disadvantages:

- Walking up the tree to split nodes
- When insert an item, we create the temporary 4-node.
- Need to check which value is middle
- \Rightarrow Waste space and time
- \Rightarrow Solve with a 2-3-4 tree

Outline

- 2-3 Tree
- 2-3-4 Tree

2-3-4 Tree

 A 2-3-4 tree is like a 2-3 tree, but it allows 4-nodes, which are nodes that have four children and three data items.

Search, Insert, Delete in a 2-3-4 tree

 Search, Insert, Delete in a 2-3-4 tree are similar to 2-3 tree, but it has more efficient insertion and deletion operations than a 2-3 tree.

Top Down Insertion

- For a 2-3 tree:
 - The insertion algorithm traces a path from the root to a leaf and then backs up from the leaf as it splits nodes.
- For a 2-3-4 tree:
 - Insertion can be done in one pass
 - To avoid this return path after reaching a leaf, whenever we reach a 4-node, we break it up into two 2-nodes, and move the middle element up into the parent node.

Top Down Insertion

Exercise

Inserting 60, 30, 10, 20, 50, 40, 70, 80, 15, 90, 100 into a 2-3-4 tree.

Result Tree

Top Down Deletion

- For a 2-3 tree:
 - The deletion algorithm traces a path from the root to a leaf and then backs up from the leaf, fixing empty nodes on the path back up to root.
- For a 2-3-4 tree:
 - Deletion can be done in one pass
 - To avoid this return path after reaching a leaf, we transforms each 2-node into either 3-node or 4-node as soon as it encounters them on the way down the tree from the root to a leaf.
 - Case 1: If an adjacent sibling is a 3-node or 4-node, transfer an item from that sibling to our 2-node.
 - Case 2: If adjacent sibling is a 2-node, merge them.

Top Down Deletion

- For a 2-3-4 tree:
 - To avoid ...
 - Case 1: If an adjacent sibling is a 3-node or 4-node, transfer an item from that sibling to our 2-node.

Top Down Deletion

- For a 2-3-4 tree:
 - To avoid ...
 - Case 1: ...
 - Case 2: If adjacent sibling is a 2-node, merge them.

Exercise

Delete 32, 35, 40, 38, 39, 37, 60 from the following 2-3-4 tree

Comments

Advantages:

- Perfect balanced
- Time complexity: O(logN)
- Insertion/deletion performance is more efficient than a 2-3 tree.

Disadvantages:

- Different node structures
 - Interconversion of nodes among 2-nodes, 3-nodes and 4-nodes.

=> Solved by Red-Black Tree

2-3 tree to red-black tree

2-3-4 tree to red-black tree

Exercises

Find an order such that if you add the items 1, 2, 3, 4, 5, 6, and 7 in that order, the resulting 2-3 tree has height 1.

Conclusion

- Binary search trees are simple, but they are subject to imbalance which leads to crappy runtime.
- 2-3 trees are balanced, but painful to implement and relatively slow.
- 2-3-4 trees are more effective than 2-3 trees in insertion and deletion.
- LLRBs maintain correspondence with 2-3 tree, Standard Red-Black trees maintain correspondence with 2-3-4 trees.
 - More complex implementation, but significantly faster.

Thecond