# Campina Grande – PB, 07/03/17

Curso: Engenharia de Computação

Disciplina: Probabilidade e estatística aplicada à computação

Professor: Paulo Ribeiro Lins Júnior Aluno: Filipe Fernandes Ribeiro

# **Projeto 1**

#### Resumo

Neste relatório estão as interpretações e os resultados dos dados retirados do google com relação a pesquisas sobre gripe no Brasil, com informações sobre o mesmo e os estados do Ceará, Minas Gerais, Paraná e Rio de Janeiro, tendo os dados nacionais no período de 22 de janeiro de 2006 à 09 de agosto de 2015. Os resultados foram feitos com a utilização das bibliotecas Pandas e Matplotlib no Python.

## Introdução

Este projeto tem como principal objetivo a aplicação dos conteúdos relacionados a dados estatísticos, com o auxílio de ferramentas computacionais para realizar o cálculo e gerar os gráficos correspondentes.

#### Medidas

#### Posição

| Local          | Média  | Moda        | Mediana |
|----------------|--------|-------------|---------|
| Brasil         | 199,41 | 149 193 196 | 192     |
| Ceará          | 161,83 | 122 148     | 153     |
| Minas Gerais   | 218,73 | 128         | 208     |
| Paraná         | 196,70 | 181         | 183     |
| Rio de Janeiro | 209,10 | 260         | 204     |

Com esses dados é possível observar que o Brasil e o estado do Ceará se destacam em relação a moda, onde o primeiro é trimodal e o segundo bimodal. Apesar de não se ter uma variação tão grande quanto a média e a mediana, é importante frisar que o cálculo da mediana é bem mais exato do que o da média, pois este não é influenciado por outliers que podem causar uma alteração drástica no valor da média, dessa forma o resultado da mediana mostra exatamente o valor central dos dados, sendo bem mais preciso.

#### Dispersão

| Local          | Amplitude | Desvio médio absoluto | Variância | Desvio padrão |
|----------------|-----------|-----------------------|-----------|---------------|
| Brasil         | 343       | 52,75                 | 4326,28   | 65,77         |
| Ceará          | 258       | 39,65                 | 2388,36   | 48,87         |
| Minas Gerais   | 377       | 63,87                 | 6268,96   | 79,18         |
| Paraná         | 494       | 61,36                 | 6209,70   | 78,80         |
| Rio de Janeiro | 281       | 49,16                 | 3522,18   | 59,35         |

Com essas medidas é possível medir a variação dos dados. Sendo assim, vemos que Paraná e o Ceará foram os estados com os extremos de número de pesquisa nas datas avaliadas, logo, pode-se supor que o Paraná foi o estado com maior número de casos de dengue e o Ceará o menor.

### Quartis

| Local          | 1º Quartil | 2º Quartil | 3º Quartil |
|----------------|------------|------------|------------|
| Brasil         | 150        | 192        | 239        |
| Ceará          | 122        | 153        | 192        |
| Minas Gerais   | 157        | 208        | 264        |
| Paraná         | 138,50     | 183        | 239        |
| Rio de Janeiro | 161        | 204        | 251,50     |

Com esses valores é possível ter uma média das pesquisas realizadas no período proposto, o segundo quartil é referente ao valor da mediana a média de acessos pode ser analisada pegando o  $1^{\circ}$  e o  $3^{\circ}$  Quartil, onde dão 50% dos acessos no tempo.

## Gráficos



Histograma



Boxplots

## Conclusão

Com este projeto foi possível ter uma maior ideia de como aplicar os conhecimentos a cerca de dados estatísticos na computação e com isso poder-se ter um maior conhecimento sobre os conjuntos de dados aos quais estamos lidando, tendo a aplicação dessas estatísticas extremamente vastas, podendo facilitar e muito na tomada de decisões para realização de uma atividade ou para controle do que está acontecendo.

## Código

```
'''Projeto de Probabilidad e estatística aplicada a programação.
Aluno: Filipe Fernandes Ribeiro
Curso: Engenharia de Computação'''
'''Imports'''
from pandas import *
from matplotlib.pyplot import *
'''Funcões'''
def linhas f(linhas):
    for i in range (172):
'''Variáveis'''
linhas extras = []
linhas f(linhas extras)
c label = ['Data', 'Brasil', 'Ceará', 'Minas Gerais', 'Paraná', 'Rio
de Janeiro'l
dados = read csv('data.csv', header=None, skiprows=linhas extras,
usecols=[0, 1, 2, 4, 5, 6], names=c label)
'''Código'''
while True:
    print('Selecione uma opção: \n'
          'A - Brasil\n'
          'B- Ceará∖n'
          'C- Minas Gerais\n'
          'D- Paraná\n'
          'E- Rio de Janeiro\n'
          'F- Histograma\n'
          'G- Boxplots\n'
          'H- Finalizar Programa')
    opcao = input('Escolha: ').upper()
    if opcao == 'A':
        print('BRASIL\n'
              ' Média: ' + str(dados['Brasil'].mean()) + '\n'
              ' Moda: \n' + str(dados['Brasil'].mode()) + '\n'
              ' Mediana: ' + str(dados['Brasil'].median()) + '\n'
              ' Amplitude: ' + str(dados['Brasil'].max() -
dados['Brasil'].min()) + '\n'
               ' Desvio Absoluto: ' + str(dados['Brasil'].mad()) + '\n'
              ' Variância: ', dados['Brasil'].var(), '\n'
              ' Desvio Padrão: ', dados['Brasil'].std(), '\n'
              ' Quatis: \n'
              ' Q1 = ', dados['Brasil'].quantile(q=0.25), '\n'
                Q2 = ', dados['Brasil'].quantile(), '\n'
                Q3 = ', dados['Brasil'].quantile(q=0.75), '\n')
    elif opcao == 'B':
        print('CEARÁ\n'
              ' Média: ' + str(dados['Ceará'].mean()) + '\n'
              ' Moda: \n' + str(dados['Ceará'].mode()) + '\n'
              ' Mediana: ' + str(dados['Ceará'].median()) + '\n'
              ' Amplitude: ' + str(dados['Ceará'].max() -
dados['Ceará'].min()) + '\n'
               ' Desvio Absoluto: ' + str(dados['Ceará'].mad()) + '\n'
              ' Variância: ', dados['Ceará'].var(), '\n'
              ' Desvio Padrão: ', dados['Ceará'].std(), '\n'
              ' Quatis: \n'
              ' Q1 = ', dados['Ceará'].quantile(q=0.25), '\n'
              ' Q2 = ', dados['Ceará'].quantile(), '\n'
              ' Q3 = ', dados['Ceará'].quantile(q=0.75), '\n')
    elif opcao == 'C':
```

```
print('MINAS GERAIS\n'
              ' Média: ' + str(dados['Minas Gerais'].mean()) + '\n'
              ' Moda: \n' + str(dados['Minas Gerais'].mode()) + '\n'
              ' Mediana: ' + str(dados['Minas Gerais'].median()) +
'\n'
              ' Amplitude: ' + str(dados['Minas Gerais'].max() -
dados['Minas Gerais'].min()) + '\n'
              ' Desvio Absoluto: ' + str(dados['Minas Gerais'].mad())
+ '\n'
              ' Variância: ', dados['Minas Gerais'].var(), '\n'
              ' Desvio Padrão: ', dados['Minas Gerais'].std(), '\n'
              ' Quatis: \n'
                Q1 = ', dados['Minas Gerais'].quantile(q=0.25), '\n'
              ' Q2 = ', dados['Minas Gerais'].quantile(), '\n'
              ' Q3 = ', dados['Minas Gerais'].quantile(q=0.75), '\n')
    elif opcao == 'D':
       print('PARANÁ\n'
              ' Média: ' + str(dados['Paraná'].mean()) + '\n'
              ' Moda: \n' + str(dados['Paraná'].mode()) + '\n'
              ' Mediana: ' + str(dados['Paraná'].median()) + '\n'
' Amplitude: ' + str(dados['Paraná'].max() -
dados['Paraná'].min()) + '\n'
               ' Desvio Absoluto: ' + str(dados['Paraná'].mad()) + '\n'
              ' Variância: ', dados['Paraná'].var(), '\n'
              ' Desvio Padrão: ', dados['Paraná'].std(), '\n'
              ' Quatis: \n'
                Q1 = ', dados['Paraná'].quantile(q=0.25), '\n'
              ' Q2 = ', dados['Paraná'].quantile(), '\n'
              ' Q3 = ', dados['Paraná'].quantile(q=0.75), '\n')
   elif opcao == 'E':
        print('RIO DE JANEIRO\n'
              ' Média: ' + str(dados['Rio de Janeiro'].mean()) + '\n'
              ' Moda: \n' + str(dados['Rio de Janeiro'].mode()) + '\n'
              ' Mediana: ' + str(dados['Rio de Janeiro'].median()) +
'\n'
              ' Amplitude: ' + str(dados['Rio de Janeiro'].max() -
dados['Rio de Janeiro'].min()) + '\n'
              ' Desvio Absoluto: ' + str(dados['Rio de
Janeiro'].mad()) + '\n'
              ' Variância: ', dados['Rio de Janeiro'].var(), '\n'
              ' Desvio Padrão: ', dados['Rio de Janeiro'].std(), '\n'
              ' Quatis: \n'
              ' Q1 = ', dados['Rio de Janeiro'].quantile(q=0.25),
'\n'
              ' Q2 = ', dados['Rio de Janeiro'].quantile(), '\n'
              ' Q3 = ', dados['Rio de Janeiro'].quantile(q=0.75),
'\n')
    elif opcao == 'F':
        dados.hist(grid=False)
        show()
    elif opcao == 'G':
        dados.boxplot(grid = False)
        show()
    elif opcao == 'H':
        break
```