Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação

Estudo sobre Bitcoin: escalabilidade da blockchain

Elias Italiano Rodrigues *elias.rodrigues@usp.br*

20 de junho de 2016 São Carlos – SP, Brasil

Sumário

- Introdução
 - Motivação
 - Objetivos do Projeto
- Bitcoin e Criptomoedas
- Escalabilidade da Blockchain
 - Principais Implementações: Core, Classic, Unlimited
 - Tamanho Máximo do Bloco: Fee Market
 - Inovações para Escalabilidade: SegWit, Lightning Network
- Conclusão

Introdução

• Motivação:

- O Bitcoin surgiu de maneira privada e independente;
- Descentralizou e desestatizou a moeda;
- Teve **adoção voluntária** e consequente valorização;
- - 2009-2011:
 - pequeno grupo de hackers e entusiatas;
 - 1 BTC = entre zero e poucas dezenas de reais [1];
- **-** 2012-2016:
 - interesse mundial de empresas e governos;
 - 1 BTC \sim R\$ 2.900,00^[2].

Introdução

• Motivação:

- Tecnologia com grande potencial disruptivo;
- Sistemas distribuídos, P2P; Escola Austríaca de Economia;
- Maior inovação em TI desde a criação da Internet;
- Ou seria apenas mais um "hype" dos tecnologistas?
 Veremos nas próximas décadas.

Introdução

- Objetivos do Projeto:
 - Estudar o cenário atual sobre Bitcoin e criptomoedas;
 - Aprender sobre as tecnologias envolvidas;
 - Entender o problema da escalabilidade da blockchain;
 - Contribuir como material em português.

Criptomoeda:

- Moeda digital e sistema de pagamento online;
- P2P, open-source e descentralizada;
- Baseada em técnicas de criptografia.

• Bitcoin:

- Primeira criptomoeda de sucesso;
- Criada pelo anônimo cientista Satoshi Nakamoto em 2008 [3]; colocada em operação em janeiro de 2009.

• Endereço:

- *Hash* de uma chave pública;
- chave privada → chave pública → hash() → endereço
- Ex: 17NJGu7kMncocFEKfLDwmGwvTSgPjMqpHF

Carteira:

- Guarda chaves privadas;
- Gerencia o conjunto de endereços;
- Confere saldos, cria, assina e envia transações.

• Blockchain:

- Banco de dados público do histórico das transações;
- Cada nó da rede possui uma cópia idêntica;
- Estrutura de dados em que blocos são ligados por ponteiros *hash*;
- Cada bloco contém um conjunto de transações assegurados por uma Merkle Tree (árvore hash).

• Mineração:

- Processo que emite novas unidades da moeda (recompensa por bloco);
- Adiciona blocos à blockchain;
- Valida e consolida as transações (recebendo taxas);
- Define o consenso sobre a blockchain;
- Poder computacional protege a rede contra fraudes.

Escalabilidade da Blockchain

- Atualmente, problema de escalabilidade:
 - Liquidez está estagnada a uma pequena circulação;
 - Blocksize limit (1 MB) e intervalo (10min) ≈ 7 tx/s;
 - Comparação: Visa Inc. máximo de 56000 tx/s ^[4].

Escalabilidade da Blockchain

- **Fato**: aprimoramentos tecnológicos não são suficientes para aumentar a escalabilidade:
 - Lei de Moore ainda é satisfatória;
 - Logo, são necessárias mudanças no protocolo.

Escalabilidade da Blockchain

• Fato: blocos cada vez mais cheios* [5]

Principais Implementações

• Bitcoin Core:

- Cliente de referência;
- 1 MB *blocksize limit*;
- Desenvolvedores experientes;
- Atualmente, a implementação mais executada pelos mineradores (~ 80%) ^[6].

Principais Implementações

Bitcoin Classic:

- 2 MB *blocksize limit*;
- Governança: decisões em modelo de votação entre as entidades envolvidas;
- Tem crescido e ganhado suporte de importantes desenvolvedores e de empresas.
- Atualmente, a segunda implementação mais executada pelos mineradores (~ 14%) ^[6].

Principais Implementações

• Bitcoin Unlimited:

- Liberdade: Bitcoin deve ser o que os seus usuários definem pelo código que escolhem executar;
- Configurações facilitadas: cada minerador pode escolher o blocksize limit que deseja;
- Atualmente, a terceira implementação mais executada pelos mineradores (~ 2%) [6].

• Fee Market:

- Proposta por Peter R. Rizun ^[7];
- Não deve existir um blocksize limit: ele será melhor definido pelo mercado de taxas de transação;
- Proposição: um minerador racional toma decisões quanto as transações e o *blocksize* para maximizar o seu lucro e minimizar o seu prejuízo;

• Fee Market:

Equação do lucro do minerador:

```
Lucro = (Recompensa + Fees) * (hashPower / hashPowerRede) * (1 - P_{orfão})
```

- Objetivo: maximizar a equação;
- **Porém,** quanto maior o *blocksize*, maior o P_{orfão}.
- **Logo**, buscar pelo melhor *blocksize*.

• Fee Market:

- Curva *fee* por bloco:
 - O minerador ordena sua mempool de acordo com a densidade das transações (fee/byte).
- Curva custo por bloco:
 - Caso neutro: bloco vazio*;
 - Serve como comparação para determinar até que ponto compensa inserir transações no bloco ou quais transações deve-se inserir.

^{*} existência de uma recompensa por bloco

- Fee Market:
 - Existe um mercado:
 - Caso contrário não existiria uma rede, não existiriam mineradores investindo recursos.
 - O tamanho do bloco será finito:
 - Fisicamente infactível um bloco infinito;
 - Existe prejuízo por um bloco muito grande.
 - Um mercado de taxas de transações surgirá.

Inovações para Escalabilidade

• SegWit:

- Apresentado por Pieter Wuille [8];
- Somente nós completos de validação precisam de todas assinaturas (~60% da blockchain);
- Separar as assinaturas das transações;
- Otimização de espaço => melhor aproveitamento do *blocksize*;
- A mais factível de ser implementada em breve.

Inovações para Escalabilidade

• Lightning Network:

- Proposta por Joseph Poon e Thaddeus Dryja ^[9].
- Canais de pagamentos off-blockchain;
- A e B criam um "canal" com respaldo na blockchain e por meio desse canal várias transações podem ser executadas;
- Indo além: uma camada de canais de pagamentos em cima da rede de Bitcoin;
 - Usuários mantém uma pequena quantidade de canais abertos formando uma rede de pagamentos;
 - Torna-se possível o roteamento de pagamentos pelos canais existentes;

Conclusão

- Bitcoin **é** Unlimited:
 - Open-source + Consenso => Unlimited;
 - Conforme a oferta de profissionais capacitados na área aumentar, isso se tornará mais evidente.
- Unlimited => livre mercado => sem blocksize limit;
- SegWit + Lightning Network + demais soluções:
 - Para resolver o atual problema de escalabilidade;
 - Vale lembrar que escalabilidade é um problema recorrente. A Internet é um exemplo disso.

Referências

- [1] BITCOIN HISTORY. The Complete History of Bitcoin [Timeline]. 2016. Disponível em: http://historyofbitcoin.org. Acesso em: 16 jun. 2016.
- [2] Disponível em: http://exchangewar.info/coinprice?BTC_BRL. Acesso em: 17 jun. 2016.
- [3] NAKAMOTO, S. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008. Disponível em: https://bitcoin.org/bitcoin.pdf. Acesso em: 17 jun. 2016.
- [4] Disponível em: https://usa.visa.com/dam/VCOM/download/corporate/media/visa-fact-sheet-Jun2015.pdf. Acesso em: 16 jun. 2016.
- [5] Disponível em: https://blockchain.info/charts/avg-block-size. Acesso em: 27 mai. 2016.
- [6] Disponível em: http://nodecounter.com. Acesso em 27 mai. 2016.
- [7] RIZUN, P. R. A Transaction Fee Market Exists Without a Block Size Limit. 2015. Disponível em: https://scalingbitcoin.org/papers/feemarket.pdf e https://www.youtube.com/watch?v=ad0Pjj_ms2k. Acesso em: 27 mai. 2016.
- [8] WUILLE, P. Segregated Witness for Bitcoin. Disponível em: https://prezi.com/lyghixkrguao/segregated-witness-and-deploying-it-for-bitcoin e https://www.youtube.com/watch?v=fst1IK_mrng&t=37m12s. Acesso em 30 mai. 2016.
- [9] POON, J.; DRYJA, T. The Bitcoin Lightning Network: Scalable Off-Chain Instant Payments. 2016. Disponível em: https://lightning.network/lightning-network-paper.pdf e https://www.youtube.com/watch?v=8zVzw912wPo. Acesso em: 30 mai. 2016.

Obrigado pela atenção!