2. Sommes

Dans toute la feuille, $n \in \mathbb{N}^*$. On essaiera autant que possible d'éviter de raisonner par récurrence même si cela sera parfois (rarement!) nécessaire.

Exercice 1. (c) Montrer les égalités suivantes :

1)
$$\sum_{k=0}^{n} k^2 - \sum_{j=0}^{n-2} (n-j)^2 = 1.$$

2)
$$\sum_{k=1}^{n} k^5 - \sum_{j=4}^{n+2} (j-2)^5 = 1.$$

3)
$$\sum_{k=1}^{n} 3^{k+2} = \frac{3^{n+3}}{2} - \frac{27}{2}.$$

4)
$$\sum_{k=2}^{n} 2^{2k} = \frac{4^{n+1}}{3} - \frac{16}{3}.$$

Exercice 2. (c) Montrer les égalités suivantes :

1)
$$2^{n-1} \left(\sum_{k=0}^{n-1} 3^k \cdot 2^{-k} \right) = 3^n - 2^n$$
.

2)
$$\sum_{k=0}^{n} (-1)^k = \frac{1 + (-1)^n}{2}$$
.

3)
$$\sum_{k=0}^{n} \binom{n}{k} (-1)^k = 0.$$

2)
$$\sum_{k=0}^{n} (-1)^k = \frac{1 + (-1)^n}{2}.$$
4)
$$\sum_{k=0}^{n} \binom{n}{k} (-1)^k \cdot 3^k \cdot 2^{-k} = \frac{(-1)^n}{2^n}.$$

Exercice 3. © Déterminer $\sum_{i=1}^{q} (ak+b)$ où a et b sont des réels fixés et $p \leq q$ des entiers fixés.

Exercice 4. © Montrer que $\prod_{i=1}^{n} \exp(k) = \exp\left(\frac{n(n+1)}{2}\right)$.

Exercice 5. (m) Le but de cet exercice est de fournir une méthode pour déterminer des formules pour calculer les sommes arithmétiques $S_p = \sum_{k=0}^n k^p$ où $p \in \mathbb{N}$. On pose $P_p = \sum_{k=0}^n ((k+1)^p - k^p)$.

- 1) Rappeler sans justification les valeurs de S_0 , S_1 .
- 2) Montrer en calculant P_3 de deux manières différentes que $P_3 = (n+1)^3$ et $P_3 = 3S_2 + 3S_1 + S_0$. Retrouver alors la valeur de S_2 vue en cours.
- 3) De la même manière, déterminer P_4 tout d'abord en fonction de n, puis en fonction de S_3, S_2, S_1 et S_0 et en déduire que :

$$S_3 = \sum_{k=0}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2.$$

1

Exercice 6. (m) Déterminer les sommes et produits suivants :

1)
$$\sum_{k=1}^{n} \left(\frac{1}{k} - \frac{2}{k+1} + \frac{1}{k+2} \right)$$
.

2)
$$\prod_{k=2}^{n} \left(1 - \frac{1}{k^2} \right).$$
4)
$$\sum_{k=1}^{n} \frac{k}{(k+1)!}$$

3)
$$\sum_{k=2}^{n-1} \ln\left(1 + \frac{1}{k}\right).$$

$$4) \quad \sum_{k=1}^{n} \frac{k}{(k+1)}$$

Exercice 7. (m) Montrer que la suite définie par $\forall n \in \mathbb{N}^*, \ u_n = \sum_{k=1}^n \frac{1}{n+k}$ est croissante et majorée.

Exercice 8. (m) Calculer $\sum_{i=1}^{2n} (-1)^k k^3$.

Exercice 9. (m) Montrer que $\forall k \in [1, n], k \binom{n}{k} = n \binom{n-1}{k-1}$ et en déduire la valeur de $\sum_{k=0}^{n} k \binom{n}{k}$.

Exercice 10. (i) Soient $a_1, \ldots, a_n \in]0,1[$. Montrer que $\prod_{i=1}^n (1-a_i) \geq 1 - \sum_{i=1}^n a_i$.

Exercice 11. (i) Déterminer $A_n = \sum_{\substack{0 \le k \le n \\ k \text{ position}}} \binom{n}{k}$ et $B_n = \sum_{\substack{0 \le k \le n \\ k \text{ in position}}} \binom{n}{k}$ en fonction de n.

Exercice 12. (i) Montrer que $\sum_{k=1}^{2n} \frac{(-1)^{k+1}}{k} = \sum_{k=1}^{n} \frac{1}{n+k}$.

Exercice 13. (*) Simplifier le produit $\prod_{n=2}^{n} \frac{p^3 - 1}{p^3 + 1}$.

Exercice 14. (m) Montrer que $\forall p, k, n \in \mathbb{N} / 0 \le p \le k \le n$, $\binom{n}{k} \binom{k}{p} = \binom{n}{p} \binom{n-p}{k-p}$ et en déduire la valeur de $\sum_{k=0}^{n} \sum_{n=0}^{k} (-1)^k \binom{n}{p} \binom{n-p}{k-p}$.

Exercice 15. (m) Montrer les égalités suivantes :

1)
$$\sum_{1 \le i,j \le n} ij = \frac{n^2(n+1)^2}{4}.$$
 2)
$$\sum_{1 \le i,j \le n} (i+j) = n^2(n+1).$$
 3)
$$\sum_{1 \le i,j \le n} |i-j| = \frac{(n-1)n(n+1)}{3}.$$
 4)
$$\sum_{1 \le i \le j \le n} 1 = \frac{n(n+1)}{2}$$
 5)
$$\sum_{1 \le i \le j \le n} i = \frac{n(n+1)(n+2)}{6}$$
 6)
$$\sum_{1 \le i \le j \le n} j = \frac{(n-1)n(n+1)}{6}.$$

4)
$$\sum_{1 \le i \le j \le n} 1 = \frac{n(n+1)}{2}$$
 5)
$$\sum_{1 \le i \le j \le n} i = \frac{n(n+1)(n+2)}{6}$$
 6)
$$\sum_{1 \le j < i \le n} j = \frac{(n-1)n(n+1)}{6}$$

Exercice 16. (m) Calculer les expressions suivantes :

$$1) \quad \prod_{1 \leq i,j \leq n} ij. \qquad 2) \quad \sum_{1 \leq i,j \leq n} \min(i,j). \qquad 3) \quad \sum_{1 \leq i \leq j \leq n} \frac{i^2}{j}. \qquad 4) \quad \sum_{1 \leq j \leq i \leq n} \binom{i}{j}.$$

Exercice 17. (m) Montrer que $\forall x > 0, \ x + \frac{1}{x} \ge 2$ et en déduire que :

$$\forall x_1, \dots, x_n > 0, \ \left(\sum_{i=1}^n x_i\right) \left(\sum_{i=1}^n \frac{1}{x_i}\right) \ge n^2.$$

Exercice 18. (i) Soient $n, m \in \mathbb{N}$ tels que $n \leq m$. Que représente sur le triangle de Pascal la somme $\sum_{k=0}^{m} {k \choose k}$? Conjecturez la valeur de cette somme puis prouver le résultat.