中国矿业大学 18~19 学年第一学期

《工程数学》试卷(A)卷

考试时间: 100 分钟 考试方式: 闭卷

学院			姓名	序	序号		
	题 号	_	=	三	总分	1	
	得 分						
	阅卷人						

一、填空题(每题4分,共20分)

2.
$$\operatorname{Res}[\sin \frac{z}{z+1}, -1] = \underline{-\cos 1}$$

5. 积分
$$\oint_C \frac{\mathrm{d}z}{(z-1)^2(z^2+1)} = -\frac{\pi i}{2}$$
. (其中 $C: |z-(1+i)| = \sqrt{2}$) (积分曲线为正向)

二、选择题(每题4分,共20分)

1. 复数 $1-\cos\varphi+i\sin\varphi$, (其中 $4\pi<\varphi<5\pi$)的辐角主值为(B).

(A)
$$\frac{\pi}{2} - \frac{\varphi}{2}$$

(B)
$$\frac{5\pi}{2} - \frac{\varphi}{2}$$

(C)
$$4\pi - \varphi$$

(D)
$$\frac{7\pi}{2} - \frac{\varphi}{2}$$

- z = i 是函数 $\frac{z i}{(e^{\pi z} + 1)^3}$ 的 (B).
 - (A) 一阶极点 (B) 二阶极点 (C) 三阶极点 (D) 四阶极点

- 3. 级数 $\sum_{n=1}^{\infty} nz^n$ 的和函数为 (A).
 - (A) $\frac{z}{(1-z)^2}$ (B) $\frac{1}{(1-z)^2}$ (C) $\frac{z}{(1+z)^2}$ (D) $\frac{1}{(1+z)^2}$

- 4. $\operatorname{Res}\left[\frac{z\sin z}{(1-e^z)^3},0\right] = (D).$

- (A) 1 (B) 2 (C) 0 (D) -1
- 5. 已知 $\mathcal{L}[u(t)] = \frac{1}{s}$,则 $\mathcal{L}[t \cdot u(t-2)] = (D)$.
 - (A) $\int_{s}^{\infty} \frac{e^{-2s}}{s} ds$

(B) $\frac{e^{2s}}{s^2}$

(C) $-\frac{2s+1}{s^2}e^{2s}$

(D) $\frac{2s+1}{s^2}e^{-2s}$

- 三、计算题(共60分)
- 2. $(10 \, \beta)$ 求函数 $\frac{1}{(s^2+1)^2}$ 的拉氏逆变换.

解:

$$f(t) = \sin t * \sin t = \int_0^t \sin \tau \sin(t - \tau) d\tau$$

$$= \frac{1}{2} \int_0^t (\cos(2\tau - t) - \cos t) d\tau \qquad \cdots 6 \text{ } \text{/} \text{/}$$

$$= \frac{1}{2} (\sin t - t \cos t)$$

$$\cdots 4 \text{ } \text{/} \text{/}$$

3. (10 分) 已知 $u(x,y) = y^3 - 3x^2y + x$ 为解析函数 f(z) 的实部,求 f(z) 的虚部 v(x,y).

解:
$$\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} = -(3y^2 - 3x^2), \dots 2$$
 分

$$v(x,y) = \int_{(0,0)}^{(x,y)} \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy + C$$

$$= \int_{(0,0)}^{(x,y)} -\frac{\partial u}{\partial y} dx + \frac{\partial u}{\partial x} dy + C,$$

$$= \int_{0}^{x} 3x^{2} dx + \int_{0}^{y} (-6xy + 1) dy + C$$

$$= x^{3} - 3xy^{2} + y + C \qquad (C是任意实数)$$

$$(4)$$

故得解析函数

$$f(z) = u(x, y) + iv(x, y) = iz^3 + z + iC \cdots 2$$

4. (10分) 已知
$$f(t) = t \int_0^t e^{-t} \sin 2t dt$$
, 求 $\mathcal{L}[f(t)]$.

解:

$$L(f(t)) = -\frac{d}{ds} \frac{1}{s} \frac{2}{(s+1)^2 + 4} \dots 6 \text{ }$$

$$= \frac{6s^2 + 8s + 10}{s^2 \{(s+1)^2 + 4\}^2} \dots 6 \text{ }$$

5. (10 分) 把函数 $f(z) = \frac{1}{(z+1)^2(z-1)}$ 在圆环域 0 < |z-1| < 2 内展开成关于 z-1 的洛朗级数.

解:
$$\frac{1}{(z+1)^2} = -(\frac{1}{z+1})' = -(\frac{1}{z-1+2})' = -\frac{1}{2} \left(\frac{1}{\frac{z-1}{2}+1} \right)', \dots 4 分$$

$$= -\frac{1}{2} \left(\sum_{n=0}^{+\infty} (-1)^n \left(\frac{z-1}{2} \right)^n \right)' = \sum_{n=1}^{+\infty} (-1)^{n+1} \frac{n}{2^{n+1}} (z-1)^{n-1} \cdots \cdot \cdot \cdot 4$$

从而

$$f(z) = \sum_{n=1}^{+\infty} (-1)^{n+1} \frac{n}{2^{n+1}} (z-1)^{n-2} \cdots 2$$

6. (10分) 利用拉氏变换求下面微分方程的解:

$$y'' - 3y' + 2y = 2e^{-t}$$
, $y(0) = 1$, $y'(0) = 2$.

解: 设
$$L(y(t)) = Y(s)$$
,对方程两边取拉氏变换,得

$$s^{2}Y(s) - sy(0) - y'(0) - 3sY(s) + 3y(0) + 2Y(s) = \frac{2}{s+1} \cdot \dots \cdot 4 \text{ f}$$

$$\mathbb{P} s^2 Y(s) - s - 2 - 3s Y(s) + 3 + 2Y(s) = \frac{2}{s+1},$$

$$s^{2}Y(s) - 3sY(s) + 2Y(s) = \frac{2}{s+1} + s - 1 \cdots 3$$

$$Y(s) = \frac{2}{(s+1)(s-1)(s-2)} + \frac{1}{s-2}$$
, 利用反演公式得

$$y(t) = \frac{1}{3}e^{-t} - e^{t} + \frac{5}{3}e^{2t} \cdots 3$$

中国矿业大学 2022-2023 学年第一 学期课程考试试卷 (参考答案)

考试科目	工程数学				试卷类型	B 卷
课程代码	M10815	考试时长	100	分钟	考试方式	闭卷
开课学院	数学学院	年级专业	电气、	 计算机、	信控 2021 级	ž

学院	<u> </u>	班级		姓	名		学号		
题 号	1	1	<u>=</u>					总分	
趣 与			1	<u>2</u>	3	4	<u>5</u>	6	心力
得分									
阅卷人									

考生承诺:

- 1. 未携带通信工具及其它各类带有拍照、摄像、接收、发送、储存等功能的设备(包括但不限于手机、智能手表、智能眼镜,平板电脑、无线耳机),或关机与其它禁止携带物品、资料等放置监考老师指定位置;
- 2. 已按要求清理干净整个座位(包括考生邻座)桌面和抽屉里的所有物品(无论是否属于考生本人);
- 3. 已知晓并理解《中国矿业大学学生违纪处分管理规定》等与考试相关规定,承诺在考试中自觉遵守以上规定,服从监考教师的安排,自觉遵守考试纪律,诚信考试,不违规、不作弊。如有违反,自愿按《中国矿业大学学生违纪处分管理规定》相关条款接受处理。

考生签名

一、填空题(共 5 题,每小题 4 分,满分 20 分)

- 2、函数 $f(z) = x^2 i y$ 在 $z = -\frac{1}{2} + 2i$ 处的导数为_____.
- 3、判别级数 $\sum_{n=1}^{\infty} \left[\frac{1}{n^2} + i(-1)^n \frac{1}{2^n} \right]$ 的敛散性 收敛 ... (填"发散"或者"收

中国矿业大学 第 1 页 共 5 页

敛")

5. $\operatorname{Res}\left[\frac{\sin z}{(1-\cos z)^2},0\right] = \frac{0}{1-\cos z}$

二、选择题(共 5 题,每小题 4 分,满分 20 分)

1、复数 $\sin \varphi + i(1-\cos \varphi)$, (其中 $0 < \varphi < \pi$) 的辐角主值为(C).

(A) $\frac{\pi}{2} - \frac{\varphi}{2}$ (B) $\frac{5\pi}{2} - \frac{\varphi}{2}$ (C) $\frac{\varphi}{2}$ (D) $\frac{\pi}{2} + \frac{\varphi}{2}$

2、点 z = 1 是函数 $\frac{(z^2 - 1)^2(z - 2)^2}{\sin^4(\pi z)}$ 的(B).

(A) 一阶极点 (B) 二阶极点 (C) 三阶极点 (D) 四阶极点

3、级数 $\sum_{n=0}^{\infty} n^2 z^n$ 的收敛半径为 (A).

(A) 1 (B) 2 (C) $\frac{1}{2}$ (D) $+\infty$

4, $z_1 = -1 + i \frac{\sqrt{3}}{2}$, $z_2 = -1 + i$, $\text{Marg}(z_1 z_2) = (B)$.

(A) $-\frac{7}{12}\pi$ (B) $-\frac{5}{12}\pi$ (C) $-\frac{5}{11}\pi$ (D) $-\frac{5}{9}\pi$

5, $\mathcal{L}[t \cdot u(t-1)] = (D)$.

(A) $\frac{e^s}{s}$ (B) $\frac{e^{-s}}{s^2}$ (C) $\frac{2s+1}{s^2}e^s$ (D) $\frac{s+1}{s^2}e^{-s}$

三、计算题(共 6 题,每小题 10 分,满分 60 分)

中国矿业大学 第 2 页 共 5 页

1、已知 $u(x, y) = y^3 - 3x^2y + 4x$ 为解析函数f(z)的实部,求f(z)的虚部v(x, y).

解:
$$\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} = -(3y^2 - 3x^2), \dots 2$$
 分

$$v(x,y) = \int_{(0,0)}^{(x,y)} \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy + C$$

$$= \int_{(0,0)}^{(x,y)} -\frac{\partial u}{\partial y} dx + \frac{\partial u}{\partial x} dy + C,$$

$$= \int_{0}^{x} 3x^{2} dx + \int_{0}^{y} (-6xy + 4) dy + C$$

$$= x^{3} - 3xy^{2} + 4y + C \qquad (C是任意实数) \qquad 4$$

故得解析函数

$$f(z) = u(x, y) + iv(x, y) = iz^3 + 4z + iC \cdots 2$$
 /

2、已知
$$f(t) = t \int_0^t e^{-t} \cos 2t dt$$
 , 求 $\mathcal{L}[f(t)]$.

解:

$$\mathcal{L}[f(t)] = -\frac{d}{ds} \frac{1}{s} \frac{s+1}{(s+1)^2 + 4} \dots 6 \text{ }$$

$$= \frac{2s^3 + 5s^2 + 4s + 5}{s^2 \{(s+1)^2 + 4\}^2} \dots 6 \text{ }$$

$$\dots 4 \text{ }$$

3、把函数 $f(z) = \frac{1}{z^2(2-z)}$ 在圆环域 0 < |z-2| < 1内展开成洛朗级数.

解:
$$\frac{1}{z^2} = -(\frac{1}{z})' = -(\frac{1}{z-2+2})'$$
, ……4 分

$$= -\frac{1}{2} \left(\sum_{n=0}^{+\infty} (-1)^n \left(\frac{z-2}{2} \right)^n \right)' = \frac{1}{2} \sum_{n=1}^{+\infty} (-1)^{n+1} \frac{n}{2^n} (z-2)^{n-1} \cdots 4$$

从而

$$f(z) = \sum_{n=1}^{+\infty} (-1)^n \frac{n}{2^n} (z-2)^{n-2} \cdots 2$$

4、用留数的方法求定积分 $\int_0^{2\pi} \frac{1}{2+\sin\theta} d\theta.$

解: 令
$$z = e^{i\theta}$$
,则 $dz = ie^{i\theta}d\theta = izd\theta$,再利用 $\sin\theta = \frac{e^{i\theta} - e^{-i\theta}}{2i} = \frac{z^2 - 1}{2iz}$,……3 分 从而

$$\int_0^{2\pi} \frac{1}{2 + \sin \theta} d\theta = \oint_{|z|=1} \frac{1}{2 + \frac{z^2 - 1}{2iz}} \times \frac{1}{iz} dz = 2 \oint_{|z|=1} \frac{1}{4iz + z^2 - 1} dz , \dots 2$$

可知被积函数的奇点只有 $(-2+\sqrt{3})i$ 在|z|=1内,······3分 所以

$$\int_0^{2\pi} \frac{1}{2 + \sin \theta} d\theta = 2 * 2\pi i \operatorname{Re} s \left[\frac{1}{4iz + z^2 + 1}, (-2 + \sqrt{3})i \right] = \frac{2\sqrt{3}}{3} \pi \dots 2$$

5、计算积分
$$\oint_{|z|=4} \frac{z^6}{(z^2+1)^3(z-5)} dz$$
 (积分曲线为正向).

解:被积函数有3个奇点,i和-i在|z|<4内,

从而

中国矿业大学 第 4 页 共 5 页

以下是严重作弊行为,学校将给予留校察看或开除学籍处分: 1.替他人考试或由他人替考; 2.通讯工具作弊; 3.团伙作弊。

$$=2\pi i - 2\pi i \frac{5^6}{26^3} = \frac{3902}{17576} \pi i. \dots 2$$

6、利用拉氏变换求下面微分方程的解

$$y'' + y' - 2y = 2e^{-t}$$
, $y(0) = 0$, $y'(0) = 1$.

解: 设 $\mathcal{L}[y(t)] = Y(s)$,对方程两边取拉氏变换,得

$$s^{2}Y(s) - sy(0) - y'(0) + sY(s) - y(0) - 2Y(s) = \frac{2}{s+1} \cdot \dots \cdot 4 \text{ }$$

$$\mathbb{H} s^2 Y(s) - 1 + sY(s) - 2Y(s) = \frac{2}{s+1},$$

$$s^{2}Y(s) + sY(s) - 2Y(s) = \frac{s+3}{s+1} \cdots 3$$

$$Y(s) = \frac{s+3}{(s-1)(s+1)(s+2)}$$
, 利用反演公式得

$$y(t) = \frac{1}{3}e^{-2t} + \frac{2}{3}e^{t} - e^{-t}$$
3 /x

中国矿业大学 2022-2023 学年第二学期课程考试试卷

(参考答案)

考试科目: 工程数学 试卷类型: A

课程代码: M10815 考试时长: 100分钟 考试方式: 闭

开课学院: 数学学院 适用年级: 2021

学院	 班纫	爻		姓名_			学号	<u>1</u>
题号	_	三					总分	
应与	1	1	2	3	4	5	6	心力
得分								
阅卷人								

考生承诺:

- 1. 没有携带或已将手机、智能手表等带有接收、发送、储存等功能设备关机与其它非 允许携带物品、资料等放置监考老师指定位置;
- 2. 按要求清理干净整个座位(包括考生邻座)桌面和抽屉里的所有物品(无论是否属于考生本人):
- 3: 已知晓并理解《中国矿业大学学生违纪处分管理规定》等与考试相关规定,承诺在考试中自觉遵守该规定,服从监考教师的安排,自觉遵守考试纪律,诚信考试,不违规、不作弊。如有违反,自愿按《中国矿业大学学生违纪处分管理规定》有关条款接受处理;考生签名
- 一、 填空题 (每题 4 分, 共 20 分)
- 2. 函数 $f(z) = x^2 + i y^2$ 在 z = 2 + 2i 处的导数为____4____.
- 3. 判别级数 $\sum_{n=1}^{\infty} [(-1)^n \frac{1}{n^2} + i \frac{1}{2^n}]$ 的敛散性 <u>收敛</u> (填"发散"或者"收敛")

- 5. $\operatorname{Res}\left[\frac{z^2-1}{z^2\sin z},0\right] = \frac{5}{6}$
- 二、选择题(每题4分,共20分)
- 1. 复数 $1-\cos\varphi+i\sin\varphi$, (其中 $0<\varphi<\pi$)的辐角主值为(C).
 - (A) $4\pi \varphi$

(B) $\frac{5\pi}{2} - \frac{\varphi}{2}$

(C) $\frac{\pi}{2} - \frac{\varphi}{2}$

- (D) $\frac{7\pi}{2} \frac{\varphi}{2}$
- $\frac{(z^2-1)(z-2)^2}{\sin^4(\pi z)}$ 的 (B).
- (A) 一阶极点 (B) 二阶极点 (C) 三阶极点 (D) 四阶极点

- 3. 级数 $\sum_{n=1}^{\infty} nz^n$ 的收敛半径为 (A).

- (A) 1 (B) 2 (C) $\frac{1}{2}$ (D) $+\infty$
- 4. $z_1 = -1 + i\sqrt{3}$, $z_2 = -1 + i$, 则 $\arg(z_1 z_2) = ($ A).
- (A) $-\frac{7}{12}\pi$ (B) $-\frac{5}{12}\pi$ (C) $-\frac{5}{11}\pi$ (D) $-\frac{5}{9}\pi$

- 5. $\mathscr{L}[t \cdot u(t-2)] = (D)$.
 - (A) $\frac{e^{2s}}{s}$

(B) $\frac{e^{-2s}}{s^2}$

以下行为是严重作弊行为,学校将给予留校察看或开除学籍处分: 1.替他人考试或由他人替考; 2.通讯工具作弊; 3.团伙作弊。

(C)
$$-\frac{2s+1}{s^2}e^{2s}$$
 (D) $\frac{2s+1}{s^2}e^{-2s}$

- 二、计算题(每题10分,共60分)
- 1. 已知 $u(x, y) = y^3 3x^2y + 2x$ 为解析函数f(z)的实部,求f(z)的虚部v(x, y).

解:
$$\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} = -(3y^2 - 3x^2), \dots 2$$
 分

$$\nabla \frac{\partial v}{\partial y} = \frac{\partial u}{\partial x} = -6xy + 2. \dots 2 \text{ f}$$

$$v(x,y) = \int_{(0,0)}^{(x,y)} \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy + C$$

$$= \int_{(0,0)}^{(x,y)} -\frac{\partial u}{\partial y} dx + \frac{\partial u}{\partial x} dy + C,$$

$$= \int_{0}^{x} 3x^{2} dx + \int_{0}^{y} (-6xy + 2) dy + C$$

$$= x^{3} - 3xy^{2} + 2y + C \qquad (C 是任意实数) \qquad 4 分$$

故得解析函数

$$f(z) = u(x, y) + iv(x, y) = iz^3 + 2z + iC \cdots 2$$

2. 已知
$$f(t) = t \int_0^t e^{-2t} \cos t dt$$
, 求 $\mathcal{L}[f(t)]$.

解:

$$\mathcal{L}[f(t)] = -\frac{d}{ds} \frac{1}{s} \frac{s+2}{(s+2)^2 + 1} \dots 6 \text{ ft}$$

$$= \frac{2s^3 + 10s^2 + 16s + 10}{s^2 \{(s+2)^2 + 1\}^2} \dots 6 \text{ ft}$$

$$\dots 4 \text{ ft}$$

3. 把函数 $f(z) = \frac{1}{z^2(1-z)}$ 在圆环域 0 < |z-1| < 1 内展开成洛朗级数.

解:
$$\frac{1}{z^2} = -(\frac{1}{z})' = -(\frac{1}{z-1+1})'$$
, ……4 分
= $-(\sum_{n=0}^{+\infty} (-1)^n (z-1)^n)' = \sum_{n=1}^{+\infty} (-1)^{n+1} n(z-1)^{n-1}$ ……4 分

从而

$$f(z) = \sum_{n=1}^{+\infty} (-1)^n n(z-1)^{n-2} \cdots 2$$

4. 用留数的方法求积分 $\int_0^{2\pi} \frac{1}{2 + \cos \theta} d\theta.$

解: 令 $z=e^{i\theta}$,则 $dz=ie^{i\theta}d\theta=izd\theta$,再利用 $\cos\theta=\frac{e^{i\theta}+e^{-i\theta}}{2}=\frac{z^2+1}{2z}$,……3 分 从而

$$\int_0^{2\pi} \frac{1}{2 + \cos \theta} d\theta = \oint_{|z|=1} \frac{1}{2 + \frac{z^2 + 1}{2z}} \times \frac{1}{iz} dz = \frac{2}{i} \oint_{|z|=1} \frac{1}{4z + z^2 + 1} dz, \dots 2$$

可知被积函数的奇点只有 $-2+\sqrt{3}$ 在|z|=1内,······3分

所以

$$\int_0^{2\pi} \frac{1}{2 + \cos \theta} d\theta = \frac{2}{i} 2\pi i \operatorname{Re} s \left[\frac{1}{4z + z^2 + 1}, -2 + \sqrt{3} \right] = \frac{2\sqrt{3}}{3} \pi \dots 2$$

5. 计算积分 $\oint_{|z|=\frac{3}{2}} \frac{z^8}{(z^2+1)^4(z-2)} dz$ (积分曲线为正向).

解:被积函数有3个奇点, i和-i在 $|z| < \frac{3}{2}$ 内,

从而

以下行为是严重作弊行为,学校将给予留校察看或开除学籍处分: 1.替他人考试或由他人替考; 2.通讯工具作弊; 3.团伙作弊。

$$\oint_{|z|=\frac{3}{2}} \frac{z^8}{(z^2+1)^4(z-2)} dz = -2\pi i \left\{ \operatorname{Re} s \left[\frac{z^8}{(z^2+1)^4(z-2)}, \infty \right] + \operatorname{Re} s \left[\frac{z^8}{(z^2+1)^4(z-2)}, 2 \right] \right\} \dots 3 \cancel{f}$$

$$= 2\pi i \operatorname{Re} s \left[\frac{z^{-8}}{(z^{-2}+1)^4(z^{-1}-2)}, 0 \right] - 2\pi i \frac{2^8}{5^4} \dots 3 \cancel{f}$$

$$= 2\pi i \operatorname{Re} s \left[\frac{1}{z(1+2z^2)^4(1-2z)}, 0 \right] - 2\pi i \frac{2^8}{5^4} \dots 2 \cancel{f}$$

$$= 2\pi i - 2\pi i \frac{2^8}{5^4} = \frac{738}{625} \pi i \dots 2 \cancel{f}$$

6. 利用拉氏变换求下面微分方程的解:

$$y'' + 2y' - 3y = 2e^{-t}$$
, $y(0) = 0$, $y'(0) = 1$.

解: 设 $\mathcal{L}[y(t)] = Y(s)$,对方程两边取拉氏变换,得

$$s^{2}Y(s) - sy(0) - y'(0) + 2sY(s) - 2y(0) - 3Y(s) = \frac{2}{s+1} \cdots 4$$
 分
即 $s^{2}Y(s) - 1 + 2sY(s) - 3Y(s) = \frac{2}{s+1}$,
 $s^{2}Y(s) + 2sY(s) - 3Y(s) = \frac{s+3}{s+1} \cdots 3$ 分
 $Y(s) = \frac{s+3}{(s-1)(s+1)(s+3)}$, 利用反演公式得

$$y(t) = -\frac{1}{2}e^{-t} + \frac{1}{2}e^{t} + \cdots 3 \text{ }$$

中国矿业大学 2016~2017 学年第一学期

《工程数学》试卷(A)卷

考试时间: 100 分钟 考试方式: 闭卷

学	完 <u></u>	班级			姓名			_学号		
	题号		1	三	四	五	六	七	八	总分
	得分									
	阅卷人									

一、填空题(每题4分,共20分)

5、积分
$$\oint_{|z|=8} \frac{\sin z}{e^z - 1} dz = 0$$
 . (积分曲线为正向)

二、选择题(每题4分,共20分)

1、点
$$z = \frac{\pi}{2}$$
是函数 $\frac{\cos z}{(z - \frac{\pi}{2})^4}$ 的 (C).

- A. 一阶极点 B. 二阶极点 C. 三阶极点 D. 四阶极点

2、复数
$$\sin \varphi + i(1 - \cos \varphi)$$
 (其中 0 < φ < π)的辐角主值为 (B).

A.
$$\frac{\pi}{2} - \frac{\varphi}{2}$$

B.
$$\frac{\varphi}{2}$$

$$C. \quad \pi - \varphi$$

D.
$$\pi - \frac{\varphi}{2}$$

3、设
$$f(z) = \frac{1}{(z-1)^2(z^2+1)}$$
,则 $Res[f(z),1] = (D)$.

A.
$$\frac{1}{4}$$

B.
$$-\frac{1}{4}$$

C.
$$\frac{1}{2}$$

A.
$$\frac{1}{4}$$
 B. $-\frac{1}{4}$ C. $\frac{1}{2}$ D. $-\frac{1}{2}$

4、判別级数
$$\sum_{n=2}^{+\infty} \frac{i^n}{\ln n}$$
 的敛散性(A).

A. 条件收敛

B. 绝对收敛 C. 发散 D. 无法确定

5、下面选项是正实数的为(C).

A.
$$\sqrt[3]{8}$$

$$_{\mathrm{B.}}$$
 $-i$

A.
$$\sqrt[3]{8}$$
 B. $-i^i$ C. $\int_0^1 \sin^2 z dz$ D. $i \cos i$

三、(10分) 用留数计算实积分
$$\int_0^{2\pi} \frac{d\theta}{2+\cos\theta}$$
.

$$\cos\theta = \frac{e^{i\theta} + e^{-i\theta}}{2} = \frac{z^2 + 1}{2z} \dots 2$$

$$=\frac{2}{i}2\pi i\frac{1}{2\sqrt{3}}=\frac{2\pi}{\sqrt{3}}$$
.....2 \(\frac{1}{2}\)

五、(10分) 已知调和函数 $u(x,y) = x^2 - y^2 + 2x$, 求其共轭调和函数v(x,y)

及解析函数 f(z) = u(x, y) + iv(x, y).

$$\nabla \frac{\partial v}{\partial y} = \frac{\partial u}{\partial x} = 2x + 2. \dots 2 \text{ }$$

$$v(x,y) = \int_{(0,0)}^{(x,y)} \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy + C$$

$$= \int_{(0,0)}^{(x,y)} -\frac{\partial u}{\partial y} dx + \frac{\partial u}{\partial x} dy + C,$$

六、(10分)利用拉氏变换的方法求下面微分方程的解:

$$y'' + y' - 6y = e^{-t}$$
, $y(0) = 0$, $y'(0) = 1$.

解:

设 $\mathcal{L}[v(t)] = Y(s)$,方程两边取拉氏变换,得

即

所以
$$y(t) = \mathcal{L}^{-1}[Y(s)] = \sum_{k} [Y(s)e^{st}, s_{k}]$$

$$= -\frac{1}{10}e^{-3t} - \frac{1}{6}e^{-t} + \frac{4}{15}e^{2t} \qquad 4 分$$

七、(10 分) 求函数
$$\frac{1}{(s^2+2s+2)^2}$$
 的拉氏逆变换.

解:

$$f(t) = (e^{-t} \sin t) * (e^{-t} \sin t) \cdots 3$$

$$= \int_0^t e^{-\tau} \sin \tau e^{-(t-\tau)} \sin(t-\tau) d\tau \cdots 2$$

$$= \frac{1}{2} e^{-t} \int_0^t (\cos(2\tau - t) - \cos t) d\tau \cdots 2$$

$$= \frac{1}{2} e^{-t} (\sin t - t \cos t) \cdots 3$$

八、(10 分) 求函数 $f(z) = \frac{z}{z^2 - z - 2}$ 在圆环域1 < |z| < 2 内的洛朗展开式.

以下行为是严重作弊行为,学校将给予留校察看或开除学籍处分: 1. 替他人考试或由他人替考; 2. 通讯工具作弊; 3. 团伙作弊。

解:
$$f(z) = \frac{z}{(z-2)(z+1)} = \frac{z}{3} \left(\frac{1}{z-2} - \frac{1}{z+1}\right) \cdots 2$$
 分
$$= -\frac{z}{3} \left[\frac{\frac{1}{z}}{1+\frac{1}{z}} + \frac{1}{2} \frac{1}{1-\frac{z}{2}}\right] \cdots 2$$
 分

$$\frac{\frac{1}{z}}{1+\frac{1}{z}} = \frac{1}{z} - \frac{1}{z^2} + \dots + (-)^{n+1} \frac{1}{z^n} + \dots \qquad 2 \, \mathcal{D}$$

$$\frac{1}{1-\frac{z}{2}} = 1 + \frac{z}{2} + (\frac{z}{2})^2 + \dots + (\frac{z}{2})^n + \dots \qquad 2 \text{ f}$$

以下行为是严重作弊行为,学校将给予留校察看或开除学籍处分: 1. 替他人考试或由他人替考; 2. 通讯工具作弊; 3. 团伙作弊。

中国矿业大学 2019~2020 学年第一学期

《工程数学》试卷(B)卷

考试时间: 100 分钟 考试方式: 闭卷

学院		班级_			姓	名			学号	
	HZ E1				_	V ()]			
	题号	1	1	2	3	4	5	6	总分	
	得分									
	阅卷人									

- 一、填空题(每题4分,共40分)
- 2. 函数 $f(z) = x^2y + iy^2$ 在 z = 0处的导数为_____.
- 4. 函数 $f(t) = \cos 2t$ 的傅氏变换为
- 5. $\int_0^i z \sin z \, dz$ 是否为正实数_____.(填"是"或者"否")
- 6. 函数 $f(z) = \frac{e^z}{z^2 1}$ 在 $z = \infty$ 处的留数为______.
- 7. 象函数 $\frac{1}{s^2 2s + 2}$ 的拉氏逆变换为______.
- 8. 点 z = 1 是函数 $\frac{(z^2 1)(z 2)^2}{\sin^3(\pi z)}$ 的______. (填奇点的"类型"和"阶数")

以下行为是严重作弊行为,学校将给予留校察看或开除学籍处分: 1. 替他人考试或由他人替考; 2. 通讯工具作弊; 3. 团伙作弊。

- 10. 判别级数 $\sum_{n=1}^{\infty} \frac{(6+5i)^n}{8^n}$ 的敛散性______. (填"**发散**"或者"**收敛**")
- 三、计算题(每题10分,共60分)
- 1. 用留数的方法求积分 $\int_0^{2\pi} \frac{1}{2+\sin\theta} d\theta.$

2. 己知 $f(t) = t \int_0^t e^{-t} \cos 2t dt$, 求 $\mathcal{L}[f(t)]$.

3. 把函数 $f(z) = \frac{1}{z^2(1-z)}$ 在圆环域 0 < |z-1| < 1 内展开成洛朗级数.

以下行为是严重作弊行为,学校将给予留校察看或开除学籍处分: 1. 替他人考试或由他人替考; 2. 通讯工具作弊; 3. 团伙作弊。

5. 计算积分 $\oint_{|z|=3} \frac{z^4}{(z^2-1)^3(z-2)} dz$ (积分曲线为正向).

6. 利用拉氏变换求下面微分方程的解:

$$y'' - 3y' + 2y = 2e^{-t}$$
, $y(0) = 0$, $y'(0) = 1$.

以下行为是严重作弊行为,学校将给予留校察看或开除学籍处分: 1.替他人考试或由他人替考; 2.通讯工具作弊; 3.团伙作弊。

中国矿业大学 2021~2022 学年第一学期

《 工程数学 》试卷(A)卷

考试时间: 100 分钟 考试方式: 闭卷

学院			姓名	序	序号		
	题 号	_	二	三	总分	1	
	得 分						
	阅卷人					_	

一、填空颢(每题4分,共20分)

- 1. 函数 $f(z) = x^2 i v^2$ 在 z = -1 + i 处的导数为 -2
- 2. $\left(\frac{i}{i-1}\right)^3$ 的辐角主值为___ $-\frac{3\pi}{4}$ _____.
- 3. 积分 $\oint \frac{\overline{z}\cos z dz}{z} = \underline{0}$ ____. (其中C: |z|=1) (积分曲线为正向)
- 4. 象函数 $\frac{1}{s^2}e^{-s}$ 的拉氏逆变换为___u(t-1)(t-1)______.
- 5. 函数 $f(z) = \frac{e^z}{z^2 1}$ 在 $z = \infty$ 处的 留数为____ $f(z) = \frac{e^{-1} e}{2}$ _____
- 二、选择题(每题4分,共20分)
- 1. 复数 $1-\cos\varphi+i\sin\varphi$, (其中 $2\pi<\varphi<3\pi$)的辐角主值为(B).

以下行为是严重作弊行为,学校将给予留校察看或开除学籍处分: 1. 替他人考试或由他人替考: 2. 通讯工具作弊:

(A)
$$\frac{\pi}{2} - \frac{\varphi}{2}$$

(B)
$$\frac{3\pi}{2} - \frac{\varphi}{2}$$

(C)
$$2\pi - \frac{\varphi}{2}$$

$$(D) \quad \frac{5\pi}{2} - \frac{\varphi}{2}$$

2. 点 z = 2 是函数 $\frac{(z^2 - 1)^2(z - 2)}{\sin^3(\pi z)}$ 的(B). (填奇点的"类型"和"阶 数")

- (A) 一阶极点 (B) 二阶极点 (C) 三阶极点 (D) 四阶极点
- 3. 判别级数 $\sum_{n=1}^{\infty} \frac{i^n}{\ln n}$ 的敛散性 (c).

 - (A) 发散
 (B)
 绝对收 (C)
 条件收 (D)
 无法判 别

4.
$$\operatorname{Res}[\frac{z\sin z}{1 - e^z}, 0] = (D).$$

- (A) 1 (B) -1 (C) 2 (D) 0
- 5. 在复数域内,下列数中为实数的是(B)

- (A) $(1-i)^2$ (B) $i \ln i$ (C) e^{i+1} (D) $\int_0^i z \sin z \, dz$

三、计算题(共60分)

1. (10 分) 已知 $f(t) = t \int_{0}^{t} e^{-3t} \cos 3t dt$, 求 $\mathcal{L}[f(t)]$.

以下行为是严重作弊行为,学校将给予留校察看或开除学籍处分: 1. 替他人考试或由他人替考: 2. 通讯工具作弊:

解:

$$L(f(t)) = -\frac{d}{ds} \frac{1}{s} \frac{s+3}{(s+3)^2 + 9} \dots 6$$

$$= \frac{2s^3 + 15s^2 + 36s + 54}{s^2 \{(s+3)^2 + 9\}^2} \dots 6$$

$$\dots 4$$

$$\therefore \dots 4$$

(10 分)设函数 f(z) = 2(x-1)y + iv(x,y) 是解析函数,且 f(2) = -i,求 f(z).

解: 因为
$$u(x,y) = 2(x-1)y$$
, 所以

$$f'(z) = \frac{\partial u}{\partial x} - i\frac{\partial u}{\partial y} = 2y - i2(x - 1) = -2iz + 2i \cdot \cdots \cdot 4 \text{ f}$$

$$f(z) = \int f'(z)dz = \int (-2iz + 2i)dz = -iz^2 + 2iz + C \cdots 2$$

又
$$f(2) = -i$$
 , 故 $C = -i$, 所以 ······4 分

$$f(z) = -iz^2 + 2iz - i$$

3.求函数 $\frac{1+s}{(s^2+1)^2}$ 的拉氏逆变换.

解:
$$(-)\frac{1}{2}\frac{d}{ds}\frac{1}{s^2+1} = \frac{s}{(s^2+1)^2}$$
,所以

$$\frac{s}{(s^2+1)^2} = \frac{1}{2} L[tsint], \quad \cdots \quad 4 \implies$$

$$\frac{1}{(s^2+1)^2} = L[\sin t * \sin t],$$

以下行为是严重作弊行为,学校将给予留校察看或开除学籍处分: 1. 替他人考试或由他人替考; 2. 通讯工具作弊; 3. 团伙作弊。

$$\sin t * \sin t = \int_0^t \sin \tau \sin(t - \tau) d\tau$$

$$= \frac{1}{2} \int_0^t (\cos(2\tau - t) - \cos t) d\tau \cdots 4 \mathcal{D}$$

$$= \frac{1}{2} (\sin t - t \cos t)$$

函数
$$\frac{1+s}{(s^2+1)^2}$$
 的拉氏逆变换 $\frac{1}{2}t\sin t + \frac{1}{2}(\sin t - t\cos t)$ 2 分

4. (10 分) 计算积分 $\oint_{|z|=3} \frac{z^3}{(z-4)(z^3-2)} dz$ (积分曲线为正向).

解:被积函数有4个奇点, 从而

$$\oint_{|z|=3} \frac{z^3}{(z-4)(z^3-2)} dz = -2\pi i \left\{ \operatorname{Re} s \left[\frac{z^3}{(z-4)(z^3-2)}, \infty \right] + \operatorname{Re} s \left[\frac{z^3}{(z-4)(z^3-2)}, 4 \right] \right\}$$

-----3分

$$= 2\pi i \left\{ \text{Re } s \left[\frac{\frac{1}{z^3}}{(\frac{1}{z} - 4)(\frac{1}{z^3} - 2)} (\frac{1}{z})^2, 0 \right] - \frac{32}{31} \right\} \dots 3 \text{ }$$

$$= 2\pi i \left\{ \text{Re } s \left[\frac{1}{z(1 - 4z)(1 - 2z^3)}, 0 \right] - \frac{32}{31} \right\} \dots 2 \text{ }$$

$$= -\frac{2}{31}\pi i \dots 2 \text{ }$$

5. (10 分) 把函数 $f(z) = \frac{1}{(z-1)^2}$ 在圆环域 2 < |z+1| < +∞ 内展开成关于 z+1 的洛

以下行为是严重作弊行为,学校将给予留校察看或开除学籍处分: 1. 替他人考试或由他人替考: 2. 通讯工具作弊:

朗级数.

解:
$$\frac{1}{z-1} = \frac{1}{z+1-2} = \frac{1}{z+1} \frac{1}{1-\frac{2}{z+1}} \cdots 4$$
 分
$$\frac{1}{(z-1)^2} = -(\frac{1}{z-1})' = (\sum_{n=0}^{+\infty} 2^n (z+1)^{-(n+1)})'$$
 ······4 分
$$= \sum_{n=0}^{+\infty} (n+1)2^n (z+1)^{-n-2} \cdots 2$$
 分

6. (10分) 利用拉氏变换求下面微分方程的解:

$$y'' + y' - 6y = e^{-t}$$
, $y(0) = 0$, $y'(0) = 1$.

解: 设
$$L(v(t)) = Y(s)$$
,对方程两边取拉氏变换,得

$$s^{2}Y(s) - sy(0) - y'(0) + sY(s) - y(0) - 6Y(s) = \frac{1}{s+1} \cdot \dots \cdot 4 \text{ f}$$

即
$$s^2Y(s) + sY(s) - 6Y(s) = \frac{s+2}{s+1}$$
, ……3 分

$$Y(s) = \frac{s+2}{(s+1)(s-2)(s+3)}$$
, 利用反演公式得

$$y(t) = -\frac{1}{6}e^{-t} + \frac{4}{15}e^{2t} - \frac{1}{10}e^{-3t} \cdots 3$$

以下行为是严重作弊行为,学校将给予留校察看或开除学籍处分: 1.替他人考试或由他人替考: 2.通讯工具作弊: 3.团伙作弊。

中国矿业大学 2021~2022 学年第一学期

《 工程数学 》试卷(B)卷

考试时间: 100 分钟 考试方式: 闭卷

学院			姓名	序	序号		
	题 号		_	_	总分	1	
	越 亏		<u> </u>	<u></u>	总分		
	得 分						
	阅卷人						

一、填空题(每题4分,共20分)

- 1. 函数 $f(z) = y^2 i x^2$ 在 z = 1 + i 处的导数为_____-2i _____.
- 2. $\left(\frac{i-1}{i}\right)^3$ 的辐角主值为 $\frac{3\pi}{4}$
- 3. 积分 $\oint \frac{\overline{z}\sin z dz}{z} = \underline{2\pi i}$. (其中 C:|z|=1) (积分曲线为正向)
- 4. 象函数 $\frac{1}{s^2}e^{-2s}$ 的拉氏逆变换为___u(t-2)(t-2)_____.
- 5. 函数 $f(z) = \frac{\cos z}{z^2 1}$ 在 $z = \infty$ 处的留数为______.
- 二、选择题(每题4分,共20分)
- 1. 复数 $1-\cos\varphi+i\sin\varphi$, (其中 $0<\varphi<\pi$)的辐角主值为(A).

以下行为是严重作弊行为,学校将给予留校察看或开除学籍处分: 1.替他人考试或由他人替考: 2.通讯工具作弊:

(A)
$$\frac{\pi}{2} - \frac{\varphi}{2}$$

(B)
$$\frac{3\pi}{2} - \frac{\varphi}{2}$$

(C)
$$2\pi - \frac{\varphi}{2}$$

$$(D) \quad \frac{5\pi}{2} - \frac{\varphi}{2}$$

- (A) 一阶极点 (B) 二阶极点 (C) 三阶极点 (D) 四阶极

点

3. 判别级数
$$\sum_{n=2}^{\infty} \left((-1)^n \frac{1}{\ln n} + i \frac{1}{n^2} \right)$$
的敛散性 (c).

- (A) 发散
 (B)
 绝对收 (C)
 条件收 (D)
 无法判 知

4.
$$\operatorname{Res}\left[\frac{z^2 \sin z}{(1-e^z)^3}, 0\right] = (B).$$

- (A) 1 (B) -1 (C) 2 (D) 0
- 5. 在复数域内, 下列数中为实数的是(D)

(A)
$$(1+i)^2$$

- (A) $(1+i)^2$ (B) $\ln i$ (C) e^{i-1} (D) $\int_0^i z \cos z \, dz$

三、计算题(共60分)

1. (10 分) 已知
$$f(t) = \int_0^t te^{-4t} \cos 3t dt$$
,求 $\mathcal{L}[f(t)]$.

以下行为是严重作弊行为,学校将给予留校察看或开除学籍处分: 1.替他人考试或由他人替考: 2.通讯工具作弊:

解:

$$L(f(t)) = -\frac{1}{s} \frac{d}{ds} \frac{s+4}{(s+4)^2 + 9} \dots 6 \text{ }$$

$$= \frac{s^2 + 8s + 7}{s\{(s+4)^2 + 9\}^2} \dots 6 \text{ }$$

$$\dots 4 \text{ }$$

2. (8 分) 设函数 $f(z) = u(x,y) + i(y^2 - x^2 + 2x)$ 是解析函数,且 f(1) = i,求 f(z).

解: 因为
$$v(x,y) = y^2 - x^2 + 2x$$
, 所以

$$f'(z) = \frac{\partial v}{\partial y} + i \frac{\partial v}{\partial x} = 2y - i2(x - 1) = -2iz + 2i \cdots 4$$

$$f(z) = \int f'(z)dz = \int (-2iz + 2i)dz = -iz^2 + 2iz + C \cdots 4$$

又
$$f(1) = i$$
, 故 $C = 0$, 所以

$$f(z) = -iz^2 + 2iz \cdots 2$$

3. 求函数 $\frac{s^2 + s}{(s^2 + 1)^2}$ 的拉氏逆变换.

解: 由于
$$\frac{s}{(s^2+1)^2} = -\frac{1}{2}(\frac{1}{s^2+1})' = \frac{1}{2}L(t\sin t)$$
, ……3分

从而

以下行为是严重作弊行为,学校将给予留校察看或开除学籍处分: 1. 替他人考试或由他人替考; 2. 通讯工具作弊; 3. 团伙作弊。

$$\frac{s^2}{(s^2+1)^2} = s \frac{s}{(s^2+1)^2} - 0 = L((\frac{1}{2}t\sin t)'), \dots 4$$

于是

$$\frac{s^2 + s}{(s^2 + 1)^2}$$
的拉氏逆变换为 $(\frac{1}{2}t\sin t)' + \frac{1}{2}t\sin t = \frac{1}{2}(t\sin t + t\cos t + \sin t)$3分

4. (10 分) 计算积分 $\oint_{|z|=3} \frac{z^3}{(z-5)(z^3-3)} dz$ (积分曲线为正向).

解:被积函数有4个奇点,

从而

$$\oint_{|z|=3} \frac{z^3}{(z-5)(z^3-3)} dz = -2\pi i \left\{ \operatorname{Re} s\left[\frac{z^3}{(z-5)(z^3-3)}, \infty\right] + \operatorname{Re} s\left[\frac{z^3}{(z-5)(z^3-3)}, 5\right] \right\}$$

-----3分

5. (10 分) 把函数 $f(z) = \frac{1}{z^2}$ 在圆环域 $1 < |z+1| < +\infty$ 内展开成关于 z+1 的洛朗级数.

以下行为是严重作弊行为,学校将给予留校察看或开除学籍处分: 1.替他人考试或由他人替考: 2.通讯工具作弊:

解:
$$\frac{1}{z} = \frac{1}{z+1-1} = \frac{1}{z+1} \frac{1}{1-\frac{1}{z+1}} \cdots 4$$
 分
$$\frac{1}{z^2} = -(\frac{1}{z})' = -(\sum_{n=0}^{+\infty} (z+1)^{-(n+1)})'$$
······4 分
$$= \sum_{n=0}^{+\infty} (n+1)(z+1)^{-n-2} \cdots 2$$
 分

6. (10分) 利用拉氏变换求下面微分方程的解:

$$y'' + 2y' - 8y = e^{-t}$$
, $y(0) = 0$, $y'(0) = 1$.

解: 设
$$L(y(t)) = Y(s)$$
,对方程两边取拉氏变换,得

$$s^{2}Y(s) - sy(0) - y'(0) + 2sY(s) - 2y(0) - 8Y(s) = \frac{1}{s+1} \cdot \dots \cdot 4 \text{ }$$

$$\exists F s^{2}Y(s) + 2sY(s) - 8Y(s) = \frac{s+2}{s+1}, \quad \dots \cdot 3 \text{ }$$

$$Y(s) = \frac{s+2}{(s+1)(s+4)(s-2)}$$
, 利用反演公式得

$$y(t) = -\frac{1}{9}e^{-t} - \frac{1}{9}e^{-4t} + \frac{2}{9}e^{2t} \cdots 3$$