المحاضرة التانية: الجبر البولي

د سمير امبارك

الجبر البولي:

نوع من انواع الجبر عناصره العنصر 0 والعنصر 1 والعمليات المسموح بها هي عمليه NOT وعمليه OR وعمليه OR

يتكون من ثلاثة عناصر رئيسية:

- المعادلات المنطقية
- الدوائر التركيبية (المنطقية)
 - جدول الاحتمالات

الصيغ القانونية MINTERMS

كل حد عبارة عن ناتج عملية (AND) كل حد يحتوي على جميع المتغيرات قيمة الدالة عبارة عن عملية OR لجميع الحدود ذات القيمة '1'

مثال1

من جدول الاحتمالات التالي استنتاج الدالة الثنائية Y بصيغة MINTERMS وارسم الدائرة المنطقية

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

الحل

لكل مخرج يشتغل (Y=1) نصمم بوابة AND و تكون مدخلاتها حسب الجدول

❖ الحالة الاولى للمخرج ٢ يساوي 1 مدخلاته عبارة عن A=0
 منفية) و B=1 نصمم دائرة AND الخاصة به

اختصارا ترسم بهذا الشكل

❖ الحالة الثانية للمخرج Y يساوي 1 مدخلاته عبارة عن B=0 و B=1 في هذه الحالة سيكون المدخل B و تليها دارة نفي (B منفية) نصمم دائرة AND الخاصة به.

اختصارا ترسم بهذا الشكل

الدائرة التركيبية المطلوبة

- Y (A,B) = \overline{A} . B + A $.\overline{B}$
 - يعبر عنها بالصبيغة القانونية

• $Y(A,B) = \sum m (1, 2)$

الصيغ القانونية MAXTERMS

كل حد عبارة عن ناتج عملية (OR) كل حد يحتوي على جميع المتغيرات قيمة الدالة تساوي عملية AND لجميع الحدود ذات القيمة '0'

مثال2

من جدول الاحتمالات التالي استنتاج الدالة الثنائية Y بصيغة MAXTERMS وارسم الدائرة المنطقية

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

- $Y(A,B) = (A+B) \cdot (A+B)$
- $Y(A,B) = \prod M(0,3)$

نلاحظ من المثال 1

ان المعادلة الناتجة هي معادلة بوابة XOR لان الجدول المعطى في المثال هو جدول بوابة XOR.

ومنها نستنتج ان معادلة بوابة XOR التفصيلية هي : $A \oplus B = \bar{A}.B + A.\bar{B}$

نلاحظ من المثال 2

ان المعادلة الناتجة هي معادلة بوابة XNOR لان الجدول المعطى في المثال هو جدول بوابة XNOR.

ومنها نستنتج ان معادلة بوابة XNOR التفصيلية هي : $A \odot B = (A.B) + (\overline{A.B})$

الصيغ القياسية

Sum-of-Products (SOP) تشبه MINTERMS تشبه Sum-of-Sums (POS)

غير انها ليست بالضرورة على ان تحتوي على جميع المتغيرات مثلا

$$Y(A,B,C)=B+C$$

ن ال 3 :

من الدائرة المنطقية التالية واكتب المعادلة الجبرية و اوجد جدول الاحتمالات

الحل:

المعادلة الجبرية المطلوبة:

 $Y (A,B) = \overline{A}. B + A.\overline{B}$

يعبر عنها بالصيغة القانونية

 $Y(A,B) = \sum m(1,2)$

ولمعرفة جدول الاحتمالات المطلوب نعوض بجميع القيم الممكنة ل A و B في المعادلة الجبرية او الدائرة المنطقية

Α	В	Υ
0	0	
0	1	
1	0	
1	1	

A=0 , B=0 , B=0 >

Α	В	Υ
0	0	0
0	1	
1	0	
1	1	

$$Y = 1.0 + 0.1$$

 $Y = 0 + 0$
 $Y = 0$

$$Y = 0$$

Α	В	Υ	
0	0	0	
0	1	1	
1	0		
1	1		\

	في حالة B=1 , B=1	
	Y = 1.1 + 0.1	
\	Y = 1 + 0	
	Y = 1	

Α	В	Υ	
0	0	0	
0	1	1	
1	0	1	<
1	1		

$$Y = 0.0 + 1.1$$

$$Y = 0 + 1$$

$$Y = 1$$

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

$$Y = 1.1 + 0.1$$

 $Y = 1 + 0$
 $Y = 1$

اذا جدول الاحتمالات المطلوب:

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

مثال 4:

صمم دائرة تركيبية لها مدخلان كل منهما عبارة عن عدد ثنائي من خانة واحدة .

مخرج الدائرة عبارة عن حاصل جمع المدخلين .

• الحل:

اولا: نضع جدول الاحتمالات وذلك بفرض جميع القيم المحتملة للمدخلين

Α	В	Υ
0	0	
0	1	
1	0	
1	1	

لتمثيل المخرج نحتاج لخانتين لنفرض ان الخانة الاولى نرمز لها برمز و والخانة الثانية نرمز لها بالرمز C .

Α	В	С	S	
0	0	0	0	0+0=00
0	1	0	1	0+1=01
1	0	0	1	1+0=01
1	1	1	0	1+1=10

نبدأ بإيجاد المعادلة الجبرية للمخرج S ثم المخرج C ثبدأ بالمعادلة الجبرية للمخرج S

المعادلة المنطقية للمخرج S هي : $S = \bar{A}. \; \mathsf{B} \; + \; \mathsf{A}. \bar{B}$ المعادلة المنطقية للمخرج C هي $\mathsf{C} = \mathsf{A}. \; \mathsf{B}$

تانيا نرسم الدائرة المنطفية للمخرج S و المخرج C

• المخرج S : عبارة عن بوابتان AND

مخرجا البوابتان السابقتان سيدخلان في بوابة OR الدائرة المنطقية للمخرج S

المخرج C : عبارة عن بوابة C

الدائرة المنطقية للمخرج ٢

اذا الدائرة المطلوبة:

انتهى حل المثال

XOR نلاحظ ان معدلة مخرج S هي نفس معادلة بوابة $S = \overline{A}$. $B + A.\overline{B} = A \oplus B$

يمكن اختصار الدائرة السابقة كالاتي

دائرة نصف جامع HALF ADDER

• وظيفتها تجمع خانة واحدة مع خانة واحدة

انتهت المحاضرة