Appendix

Problem 4 Part (c)

```
prob <- data.frame()</pre>
for(i in 1:4){
  for(j in 1:4){
    if(j==1){
        n <- i*8
        counter \leftarrow c(0)
        for(k in 1:10000){
           code \leftarrow sample(c(0,1), size = n, replace = TRUE, prob= c(0.01, (1-0.01)))
           error <- c(0)
          for(1 in 1:(n-1)){
             if(code[1]==0 \&\& code[1+1]==0){
             error = error + 1
             }
          }
           if(error>0){
             counter <- counter + 1</pre>
        prob[i,j] <- (10000-counter)/10000</pre>
    if(j==2){
        n <- i*8
        counter \leftarrow c(0)
        for(k in 1:10000){
          code \leftarrow sample( c(0,1), size = n, replace = TRUE, prob= c(0.05, (1-0.05)))
          error <- c(0)
          for(1 in 1:(n-1)){
             if(code[l]==0 && code[l+1]==0){
             error = error + 1
          }
           if(error>0){
             counter <- counter + 1</pre>
          }
        prob[i,j] <- (10000-counter)/10000</pre>
    if(j==3){
        n <- i*8
        counter \leftarrow c(0)
        for(k in 1:10000){
           code <- sample(c(0,1), size = n, replace = TRUE, prob= c(0.1, (1-0.1)))
```

```
error <- c(0)
          for(1 in 1:(n-1)){
            if(code[1]==0 && code[1+1]==0){
            error = error + 1
             }
          }
          if(error>0){
            counter <- counter + 1</pre>
          }
        prob[i,j] <- (10000-counter)/10000</pre>
    if(j==4){
        n <- i*8
        counter <- c(0)</pre>
        for(k in 1:10000){
          code <- sample(c(0,1), size = n, replace = TRUE, prob=c(0.15, (1-0.15)))
          error \leftarrow c(0)
          for(1 in 1:(n-1)){
             if(code[l]==0 && code[l+1]==0){
             error = error + 1
            }
          }
          if(error>0){
            counter <- counter + 1</pre>
          }
        prob[i,j] <- (10000-counter)/10000</pre>
    }
  }
}
row.names(prob) \leftarrow c("n = 8", "n = 16", "n = 24", "n = 32")
colnames(prob) \leftarrow c("p = 0.01", "p = 0.05", "p = 0.10", "p = 0.15")
prob
        p = 0.01 p = 0.05 p = 0.10 p = 0.15
##
## n = 8 0.9995 0.9828 0.9378 0.8670
```

Problem 4 Part (d)

```
prob <- data.frame()
for(i in 1:4){
  for(j in 1:4){
    if(j==1){
        n <- i*8
        counter <- c(0)</pre>
```

```
for(k in 1:10000){
      code <- sample(c(0,1), size = n, replace = TRUE, prob=c(0.01, (1-0.01)))
      error \leftarrow c(0)
      for(1 in 1:(n-2)){
         if(code[1]==0 && code[1+1]==0 && code[1+2]==0){
         error = error + 1
        }
      }
      if(error>0){
        counter <- counter + 1</pre>
      }
    prob[i,j] <- (10000-counter)/10000</pre>
if(j==2){
    n <- i*8
    counter <- c(0)</pre>
    for(k in 1:10000){
      code <- sample(c(0,1), size = n, replace = TRUE, prob= c(0.05, (1-0.05)))
      error \leftarrow c(0)
      for(1 in 1:(n-2)){
        if(code[1]==0 && code[1+1]==0 && code[1+2]==0){
        error = error + 1
        }
      }
      if(error>0){
        counter <- counter + 1</pre>
    prob[i,j] <- (10000-counter)/10000</pre>
if(j==3){
    n <- i*8
    counter \leftarrow c(0)
    for(k in 1:10000){
      code \leftarrow sample( c(0,1), size = n, replace = TRUE, prob= c(0.1, (1-0.1)))
      error \leftarrow c(0)
      for(1 in 1:(n-2)){
         if(code[1]==0 && code[1+1]==0 && code[1+2]==0){
        error = error + 1
      }
      if(error>0){
        counter <- counter + 1</pre>
      }
    prob[i,j] <- (10000-counter)/10000</pre>
}
if(j==4){
    n <- i*8
    counter <- c(0)
    for(k in 1:10000){
```

```
code <- sample(c(0,1), size = n, replace = TRUE, prob=c(0.15, (1-0.15)))
           error \leftarrow c(0)
           for(1 in 1:(n-2)){
             if(code[1]==0 && code[1+1]==0 && code[1+2]==0){
             error = error + 1
           }
           if(error>0){
             counter <- counter + 1</pre>
         }
        prob[i,j] <- (10000-counter)/10000</pre>
    }
  }
}
row.names(prob) \leftarrow c("n = 8", "n = 16", "n = 24", "n = 32")
colnames(prob) \leftarrow c("p = 0.01", "p = 0.05", "p = 0.10", "p = 0.15")
prob
```

Problem 5 (b)

```
for(i in 1:6){
    prob <- as.data.frame(matrix(0, nrow = (5+1), ncol = 1))
    for(j in 0:5){
        row.names(prob)[j+1] <- paste("Cell",j)
    }
    for(j in 1:1000){
        path <- sample((0:1), size = 5, replace = TRUE)
            prob[(sum(path)+1), 1] <- prob[(sum(path)+1), 1] + 1
    }
    colnames(prob) <- paste("Number of Balls")
    prob[i, 2] <- choose(5,(i-1))*((0.5)^(i))*((0.5)^(5-i))
}
for (i in 1:6) {
    prob[i, 2] <- choose(5,(i-1))*((0.5)^(i))*((0.5)^(5-i))
}
colnames(prob) <- c("Number of Balls", "Theoretical Probabilities")
prob</pre>
```

```
## Cell 0 Salls Theoretical Probabilities
## Cell 1 1 152 0.15625
## Cell 2 299 0.31250
## Cell 3 310 0.31250
```

```
## Cell 4 175 0.15625
## Cell 5 34 0.03125
```

Problem 5 (d)

```
for(i in 1:6){
    prob <- as.data.frame(matrix(0, nrow = (100+1), ncol = 1))
    for(j in 0:100){
        row.names(prob)[j+1] <- paste("Cell",j)
    }
    for(j in 1:1000){
        path <- sample((0:1), size = 100, replace = TRUE)
            prob[(sum(path)+1), 1] <- prob[(sum(path)+1), 1] + 1
    }
    colnames(prob) <- paste("Number of Balls")
    prob[i, 2] <- choose(5,(i-1))*((0.5)^(i))*((0.5)^(5-i))
}
for (i in 1:101) {
    prob[i, 2] <- round(choose(100,(i-1))*((0.5)^(i))*((0.5)^(100-i)), digits = 4)
}
colnames(prob) <- c("Number of Balls", "Theoretical Probabilities")
prob</pre>
```

```
Number of Balls Theoretical Probabilities
##
## Cell 0
                           0
                                                  0.0000
## Cell 1
                           0
                                                  0.0000
## Cell 2
                           0
                                                  0.0000
                           0
## Cell 3
                                                  0.0000
## Cell 4
                           0
                                                  0.0000
## Cell 5
                           0
                                                  0.0000
## Cell 6
                           0
                                                 0.0000
## Cell 7
                           0
                                                  0.0000
## Cell 8
                           0
                                                  0.0000
## Cell 9
                           0
                                                  0.0000
## Cell 10
                           0
                                                 0.0000
## Cell 11
                           0
                                                 0.0000
## Cell 12
                           0
                                                 0.0000
## Cell 13
                           0
                                                 0.0000
## Cell 14
                           0
                                                  0.0000
## Cell 15
                           0
                                                  0.0000
## Cell 16
                           0
                                                  0.0000
## Cell 17
                           0
                                                  0.0000
                           0
## Cell 18
                                                  0.0000
## Cell 19
                           0
                                                  0.0000
## Cell 20
                           0
                                                  0.0000
## Cell 21
                           0
                                                  0.0000
## Cell 22
                           0
                                                  0.0000
## Cell 23
                           0
                                                  0.0000
## Cell 24
                           0
                                                  0.0000
## Cell 25
                           0
                                                  0.0000
## Cell 26
                           0
                                                  0.0000
## Cell 27
                           0
                                                 0.0000
```

## Cell 28	0	0.0000
## Cell 29	0	0.0000
## Cell 30	0	0.0000
## Cell 31	0	0.0001
## Cell 32	0	0.0001
## Cell 33	2	0.0002
## Cell 34	0	0.0005
## Cell 35	1	0.0009
## Cell 36	4	0.0016
## Cell 37	4	0.0027
## Cell 38	2	0.0045
## Cell 39	2	0.0071
## Cell 40	12	0.0108
## Cell 41	12	0.0159
## Cell 42	22	0.0223
## Cell 43	24	0.0301
## Cell 44	49	0.0390
## Cell 45	43	0.0485
## Cell 46	64	0.0580
## Cell 47	68	0.0666
## Cell 48	68	0.0735
## Cell 49	69	0.0780
## Cell 50	72	0.0796
## Cell 51	87	0.0780
## Cell 52	83	0.0735
## Cell 53	72	0.0666
## Cell 54	60	0.0580
## Cell 55	58	0.0485
## Cell 56	38	0.0390
## Cell 57	26	0.0301
## Cell 58	19	0.0223
## Cell 59	15	0.0159
## Cell 60	12	0.0108
## Cell 61	6	0.0071
## Cell 62	0	0.0045
## Cell 63	1	0.0027
## Cell 64	3	0.0016
## Cell 65	2	0.0009
## Cell 66	0	0.0005
## Cell 67	0	0.0002
## Cell 68	0	0.0001
## Cell 69	0	0.0001
## Cell 70	0	0.0000
## Cell 71	0	0.0000
## Cell 72	0	0.0000
## Cell 73	0	0.0000
## Cell 74	0	0.0000
## Cell 75	0	0.0000
## Cell 76	0	0.0000
## Cell 77	0	0.0000
## Cell 78	0	0.0000
## Cell 79	0	0.0000
## Cell 80	0	0.0000
## Cell 81	0	0.0000

##	Cell	82	0	0.0000
##	Cell	83	0	0.0000
##	Cell	84	0	0.0000
##	Cell	85	0	0.0000
##	Cell	86	0	0.0000
##	Cell	87	0	0.0000
##	Cell	88	0	0.0000
##	Cell	89	0	0.0000
##	Cell	90	0	0.0000
##	Cell	91	0	0.0000
##	Cell	92	0	0.0000
##	Cell	93	0	0.0000
##	Cell	94	0	0.0000
##	Cell	95	0	0.0000
##	Cell	96	0	0.0000
##	Cell	97	0	0.0000
##	Cell	98	0	0.0000
##	Cell	99	0	0.0000
##	Cell	100	0	0.0000