The Lamoen circle

Darij Grinberg

Let $\triangle ABC$ be an arbitrary triangle, M_a , M_b , M_c the midpoints of its sides BC, CA, AB, and S its centroid, i. e. the intersection of the lines AM_a , BM_b and CM_c (Fig. 1). We get six triangles: AM_bS , CM_bS , CM_aS , BM_aS , BM_cS and AM_cS . These triangles have some interesting properties. At first, their areas are equal. The area of each one of these triangles will be denoted by k.

Fig. 1

Another interesting property, which turned out to be a theorem of Floor van Lamoen, is that the circumcenters of these six triangles are concyclic (Fig. 2). More precisely:

Theorem 1: Let A_b , C_b , C_a , B_a , B_c , A_c be the circumcenters of triangles AM_bS , CM_aS , BM_aS , BM_cS , AM_cS . Then, A_b , C_b , C_a , A_c , A_c lie on one circle (Fig. 2).

Fig. 2

After his discoverer, I call this circle the **Lamoen circle** of $\triangle ABC$. Here is a half-synthetical *proof* of Theorem 1 (Fig. 3). Regard the circumcenters B_a and B_c ; they both lie on the perpendicular bisector of the segment BS. Hence, $B_aB_c \perp BS$. On the other hand, the circumcenters A_b and C_b both lie on the perpendicular bisector of the segment SM_b , hence, $A_bC_b \perp SM_b$. For BS and SM_b are the same line, we have $B_aB_c \parallel A_bC_b$. Analogously, we show that $A_cA_b \parallel C_aB_a$ and $C_bC_a \parallel B_cA_c$. Therefore, the opposite sides of the hexagon $A_bA_cB_cB_aC_aC_b$ are respectively parallel.

Now we have the following theorem ([1] Aufgabe 34; [4] problem 109; [5] problem 131):

Theorem 2: A hexagon, whose opposite sides are respectively parallel, and whose main diagonals are of equal length, has a circumcircle.

Thus, in order to show that the hexagon $A_bA_cB_cB_aC_aC_b$ has a circumcircle, we must prove:

$$A_bB_a = A_cC_a = B_cC_b$$
.

We will calculate A_cC_a after the Cosine Law in triangle ΔA_cSC_a ; but for this aim we must know the two other sides and the opposite angle. The side A_cS is the circumradius of ΔAM_cS ; so we have

$$k = \frac{AS \cdot SM_c \cdot M_c A}{4 \cdot A_c S} = \frac{AS \cdot \frac{1}{2}CS \cdot \frac{1}{2}c}{4 \cdot A_c S}$$
$$= \frac{AS \cdot CS \cdot c}{16 \cdot A_c S},$$

hence

$$A_c S = \frac{AS \bullet CS \bullet c}{16 \bullet k}.$$

Analogously,

$$C_a S = \frac{AS \bullet CS \bullet a}{16 \bullet k}.$$

Fig. 4

Now we will calculate $\triangle A_c SC_a$. (Our arguments depend on the arrangement of points on Fig. 4, but can be done analogously for other positions.) In the isosceles $\triangle AA_cS$, we have

$$\triangle A_c SA = 90^{\circ} - \frac{1}{2} \triangle AA_c S$$

= $90^{\circ} - \triangle AM_c S$ (central angle),

and similarly $\triangle C_aSC = 90^{\circ} - \triangle SM_aC$. Thus,

$$\triangle A_c S C_a = \triangle A_c S A + \triangle A S C + \triangle C_a S C
= (90^\circ - \triangle A M_c S) + \triangle A S C + (90^\circ - \triangle S M_a C)
= (180^\circ - \triangle A M_c S - \triangle S M_a C) + \triangle A S C
= (180^\circ - \triangle A M_c S - \triangle S M_a C) + (180^\circ - \triangle M_c S A)
= (180^\circ - \triangle A M_c S - \triangle M_c S A) + (180^\circ - \triangle S M_a C)
= \triangle M_c A S + (180^\circ - \triangle S M_a C)
= \triangle B A M_a + \triangle S M_a B
= \triangle B A M_a + \triangle A M_a B = 180^\circ - \beta.$$

Now, we can apply the Cosine Law to $\Delta A_c SC_a$:

$$A_{c}C_{a}^{2} = A_{c}S^{2} + C_{a}S^{2} - 2 \cdot A_{c}S \cdot C_{a}S \cdot \cos \triangle A_{c}SC_{a}$$

$$= \left(\frac{AS \cdot CS \cdot c}{16 \cdot k}\right)^{2} + \left(\frac{AS \cdot CS \cdot a}{16 \cdot k}\right)^{2}$$

$$-2 \cdot \frac{AS \cdot CS \cdot c}{16 \cdot k} \cdot \frac{AS \cdot CS \cdot a}{16 \cdot k} \cdot \cos(180^{\circ} - \beta)$$

$$= \left(\frac{AS \cdot CS}{16 \cdot k}\right)^{2} \cdot (c^{2} + a^{2} - 2ca \cdot \cos(180^{\circ} - \beta))$$

$$= \left(\frac{AS \cdot CS}{16 \cdot k}\right)^{2} \cdot (c^{2} + a^{2} + 2ca\cos\beta)$$

$$= \left(\frac{AS \cdot CS}{16 \cdot k}\right)^{2} \cdot (2 \cdot BM_{b})^{2} \qquad \text{(after a formula for a triangle median)}$$

$$= \left(\frac{AS \cdot CS}{16 \cdot k}\right)^{2} \cdot \left(2 \cdot \frac{3}{2} \cdot BS\right)^{2}$$

$$= \left(\frac{AS \cdot CS}{16 \cdot k}\right)^{2} \cdot (3 \cdot BS)^{2} = \left(\frac{3}{16} \cdot \frac{AS \cdot BS \cdot CS}{k}\right)^{2},$$

therefore

$$A_c C_a = \frac{3}{16} \bullet \frac{AS \bullet BS \bullet CS}{k}.$$

Analogously, one gets the same expression for A_bB_a and B_cC_b , and the equation $A_bB_a = A_cC_a = B_cC_b$ is proven!

References

- [1] H. Dörrie: Mathematische Miniaturen, Wiesbaden 1969.
- [2] D. O. Shkljarskij, N. N. Chenzov, I. M. Jaglom: *Izbrannye zadachi i teoremy elementarnoj matematiki: Chastj* 2 (*Planimetrija*), Moscow 1952.
- [3] D. O. Shkljarskij, N. N. Chenzov, I. M. Jaglom: *Izbrannye zadachi i teoremy planimetrii*, Moscow 1967.