Σπυρος Φρονιμός - Μαθηματικός

■ : spyrosfronimos@gmail.com | 📋 : 6932327283 - 6974532090

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ - ΟΡΙΣΜΟΙ ΚΑΙ ΘΕΩΡΗΜΑΤΑ ${\bf 20~ Oκτωβρίου~ 2015}$

ΑΛΓΕΒΡΑ Α΄ ΛΥΚΕΙΟΥ

Ακολουθίες - Πρόοδοι

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΛΟΣ

ΟΡΙΣΜΟΙ

ΟΡΙΣΜΟΣ 1: ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ

Αριθμητική πρόοδος ονομάζεται κάθε ακολουθία (a_v) , $v \in \mathbb{N}^*$ πραγματικών αριθμών στην οποία κάθε όρος της προκύπτει από τον προηγούμενο, προσθέτοντας κάθε φορά τον ίδιο σταθερό αριθμό. Ισχύει δηλαδή

$$a_{v+1} = a_v + \omega$$

Ο αριθμός $\omega = a_{\nu+1} - a_{\nu}$ ονομάζεται **διαφορά** της αριθμητικής προόδου και είναι σταθερός.

ΟΡΙΣΜΟΣ 2: ΑΡΙΘΜΗΤΙΚΟΣ ΜΕΣΟΣ

Αριθμητικός μέσος τριών διαδοχικών όρων a, β, γ μιας αριθμητικής προόδου (a_{ν}) ονομάζεται ο μεσαίος όρος β για τον οποίο ισχύει

$$2\beta = a + \gamma \quad \dot{\eta} \quad \beta = \frac{a + \gamma}{2}$$

Γενικότερα, αριθμητικός μέσος ν διαδοχικών όρων $a_1, a_2, \ldots, a_{\nu}$ μιας αριθμητικής προόδου ονομάζεται ο πραγματικός αριθμός

$$\mu = \frac{a_1 + a_2 + \ldots + a_{\nu}}{\nu}$$

ΟΡΙΣΜΟΣ 3: ΠΑΡΕΜΒΟΛΗ ΑΡΙΘΜΗΤΙΚΩΝ ΕΝΔΙΑΜΕΣΩΝ

Αριθμητικοί ενδιάμεσοι δύο αριθμών a και β , ονομάζονται ν σε πλήθος πραγματικοί αριθμοί $x_1, x_2, \ldots, x_{\nu}$ όταν αυτοί μπορούν να παρεμβληθούν μεταξύ των a και β ώστε οι πραγματικοί αριθμοί

$$a, x_1, x_2, \ldots x_{\nu}, \beta$$

να αποτελούν, $\nu + 2$ σε πλήθος, διαδοχικούς όρους αριθμητικής προόδου.

ΘΕΩΡΗΜΑΤΑ

ΘΕΩΡΗΜΑ 1: ΓΕΝΙΚΟΣ ΟΡΟΣ ΑΡΙΘΜΗΤΙΚΗΣ ΠΡΟΟΔΟΥ

Εαν (a_{ν}) μια αριθμητική πρόοδος με διαφορά ω τότε ο γενικός όρος της a_{ν} θα δίνεται από τον τύπο

$$a_{\nu} = a_1 + (\nu - 1)\omega$$

ΘΕΩΡΗΜΑ 2: ΑΘΡΟΙΣΜΑ ΟΡΩΝ ΑΡΙΘΜΗΤΙΚΗΣ ΠΡΟΟΔΟΥ

Εαν (a_v) μια αριθμητική πρόοδος με διαφορά $\omega \neq 0$, τότε το άθροισμα των v πρώτων όρων της δίνεται από τους παρακάτω τύπους :

$$S_{\nu} = \frac{\nu}{2}(a_1 + a_{\nu})$$
, $S_{\nu} = \frac{\nu}{2}[2a_1 + (\nu - 1)\omega]$

ΘΕΩΡΗΜΑ 3: ΑΡΙΘΜΗΤΙΚΟΣ ΜΕΣΟΣ

Τρεις πραγματικοί αριθμοί a, β, γ αποτελούν διαδοχικούς όρους αριθμητικής προόδου αν και μόνο αν ισχύει

$$2\beta = a + \gamma$$
 ή ισοδύναμα $\beta = \frac{a + \gamma}{2}$

Γενικά έχουμε οτι μια ακολουθία πραγματικών αριθμών (a_{ν}) αποτελεί αριθμητική πρόοδο αν και μόνο αν γιια κάθε $\nu \in \mathbb{N}^*$ ισχύει

$$2a_{\nu} = a_{\nu+1} + a_{\nu-1}$$

ΘΕΩΡΗΜΑ 4: ΔΙΑΦΟΡΑ ΑΡΙΘΜΗΤΙΚΗΣ ΠΑΡΕΜΒΟΛΗΣ

Εαν οι πραγματικοί αριθμοί x_1, x_2, \ldots, x_v είναι αριθμητικοί ενδιάμεσοι δύο αριθμών a και β τότε η διαφορά της αριθμητικής προόδου στην οποία ανήκουν θα είναι

$$\omega = \frac{\beta - a}{\nu + 1}$$

ΘΕΩΡΗΜΑ 5: ΠΑΡΑΣΤΑΣΗ ΟΡΩΝ ΑΡΙΘΜΗΤΙΚΗΣ ΠΡΟΟΔΟΥ

Εαν (a_{ν}) είναι μια αριθμητική πρόοδος με διαφορά ω τότε ισχύουν οι παρακάτω ιδιότητες για τους όρους της :

i. Εαν a_1, a_2, \ldots, a_ν είναι ν διαδοχικοί όροι αριθμητικής προόδου τότε ο μ -οστός όρος από το τέλος βρίσκεται στη θέση $\nu - \mu + 1$ και δίνεται από τον τύπο

$$a_{\nu-\mu+1} = a_{\nu} - (\mu - 1)\omega$$

ii. Το άθροισμα S των μ τελευταίων όρων μιας αριθμητικής προόδου (a_{ν}) είναι

$$S = S_{\nu} - S_{\nu-\mu}$$