Inteligência Artificial

Inteligência Artificial

Samy Soares samy@ufc.br

Representação e Solução de Problemas

Objetivos

- Fundamentar a necessidade de uma boa representação do mundo para uma aplicação.
- Introduzir técnicas de modelagem de espaços de soluções para problemas.

Roteiro

- Contextualização
 - Exemplo
- Técnicas
 - Redes Semânticas
 - Quadros

Contextualização

Contextualização

- Necessidade de uma representação
 - A resolução de problemas por computador:
 - Computador como máquina manipuladora de símbolos.
 - Entradas e saídas, no mínimo, precisam de uma representação.
 - Domínio do Problema;
 - Quais as informações essenciais sobre o problema?
 - Soluções.
 - Quais os elementos que constituem uma solução?

Contextualização

- Necessidade de uma BOA representação
 - O modo pelo qual o computador representa um problema, as variáveis que ele usa e os operadores que aplica a essas variáveis podem fazer a diferença entre um algoritmo eficiente e um algoritmo que simplesmente não funciona (Coppin, 2010).

- O agente aspirador de pó
 - Objetivo: Manter uma área limpa.
 - Como resolver o problema?
 - Solução 1: Se movimente por todas as áreas limpando continuamente.
 - Solução 2: Idem à solução 1, mas, ao limpar uma área, monitore registre se realmente era necessário limpá-la.
 - Solução 3: Limpe apenas quando uma das áreas estiver suja.
 Monitore continuamente.

- O agente aspirador de pó
 - Objetivo: Manter uma área limpa.
 - Como resolver o problema?
 - Solução 1: Se movimente por todas as áreas limpando continuamente.
 - Solução 2: Idem à solução 1, mas, ao limpar uma área, monitore registre se realmente era necessário limpá-la.
 - Solução 3: Limpe apenas quando uma das áreas estiver suja.
 Monitore continuamente.

- O agente aspirador de pó
 - Solução 1: Se movimente por todas as áreas limpando continuamente.
 - Representação do mundo:
 - Como é a área a ser monitorada?
 - Descrição:

```
While(ligado)
Para i de 1 a n, faça:
Vá para A(i);
Limpe A(i).
```

- O agente aspirador de pó
 - Solução 2: Idem à solução 1, mas, ao limpar uma área, monitore registre se realmente era necessário limpá-la.
 - Representação do mundo:
 - Como é a área a ser monitorada?
 - O que fazer para descobrir se era necessário limpar uma área?
 - Descrição:

```
While(ligado)
Para i de 1 a n, faça:
Vá para A(i);
Registre A(i).esta_sujo;
Limpe A(i).
```

- O agente aspirador de pó
 - Solução 3: Limpe apenas quando uma das áreas estiver suja. Monitore continuamente.
 - Representação do mundo:
 - Como é a área a ser monitorada?
 - O que fazer para descobrir se era necessário limpar uma área?
 - Descrição:

```
While(ligado)
Para i de 1 a n, faça:
Vá para A(i);
Se A(i).esta sujo, então Limpe A(i).
```

Técnicas

Técnicas

- Redes Semânticas
- Quadros

TécnicasRedes Semânticas

- Uma rede semântica é um grafo direcionado:
 - Nós representam objetos ou classes de objetos;
 - Arestas representam relacionamentos
 - Rótulos descrevem a natureza dos relacionamentos.

Técnicas

Redes Semânticas

- Na rede abaixo podemos concluir que:
 - Fido é um cachorro (Fido is a Dog),
 - Fang é um gato,
 - Fido persegue Fang,

- - -

TécnicasRedes Semânticas

- É um método intuitivo para representação de conhecimento (KR).
 - Objetos são instâncias e classes.
 - Fido é uma instância, Cachorro é uma classe.
 - Queijo é uma... ?! (difícil dizer).
 - É necessário definir regras especiais para que o sistema possa diferenciar instâncias e classes.
 - Cuidado ao criar as regras, pois precisam ser obedecidas.
 - Exemplo: Elementos que não possuam relacionamentos é-um com uma classe são classes.

 Representação baseada em quadros são um desenvolvimento das redes semânticas que permite expressar herança.

Frame Name	Slot	Slot Value
Bob	is a	Builder
	owns	Fido
	eats	Cheese
Fido	is a	Dog
	chases	Fang
Fang	is a	Cat
	chases	Mice
Mice	eat	Cheese
Cheese		
Builder		
Dog		
Cat		

- Representação baseada em quadros são um desenvolvimento das redes semânticas que permite expressar herança.
 - Uma representação alternativa:

- Propriedades de uma classe são passadas para suas subclasses.
 - Exemplo: Mamífero.
 - Seria superclasse de cachorro, Fido, gato, Fang, rato, ...
 - Se mamíferos dão à luz bebês vivos e considerarmos essa herança, podemos concluir que Fido dá à luz mamíferos vivos.
 - Note que sexo e idade de Fido não foram levados em conta.

- Generalização
 - Uma classe é superclasse de outra.
 - Ex: Cachorro é um Mamífero.
- Agregação
 - Uma classe é composta por várias outras.
 - Ex: Fido tem uma cauda, um par de patas dianteiras, um par de patas traseiras, etc... Fido é um agregado de partes de cachorro.
- Associação
 - Relacionamento entre classes.
 - Cachorros caçam Gatos.

- Poderíamos estender nosso sistema com:
 - Associações:
 - Cachorros perseguem gatos;
 - Gatos perseguem ratos;
 - Uma classe extra:
 - Mamíferos respiram;
 - Generalizações:
 - Cachorros são mamíferos;
 - Gatos são mamíferos.

- Com essas informações, podemos inferir que:
 - Fido persegue Fang;
 - Fido respira;
 - Fang respira;

Frame Name	Slot	Slot Value
Mammal	*number of legs	four
Dog	subclass	Mammal
Cat	subclass	Mammal
Fido	is a number of legs	Dog three
Fang	is a	Cat

Referências

- Russel, S., Norvig, P.; Inteligência Artificial; Editora Campus, Tradução da 2a edição, 2004.
- Coppin, B.; Inteligência Artificial; Editora LTC, Tradução da 1a edição, 2010.

Dúvidas

