MATH-F211 : Topologie TP 7 - Connexité

Thomas Saillez, Andriy Haydys

Exercice 1 (4.1.2). Démontrez qu'un espace topologique X est connexe ssi ses seuls ensembles ouverts et fermés sont X et \emptyset .

Exercice 2 (4.1.1). Déterminez quels sous-espaces suivants de \mathbb{R}^2 sont connexes.

- (a) $B((1,0),1) \cup B((-1,0),1)$
- (b) $\overline{B((1,0),1)} \cup \overline{B((-1,0),1)}$
- (c) $\overline{B((1,0),1)} \cup B((-1,0),1)$
- (d) $\{(q, y) \in \mathbb{R}^2 | q \in \mathbb{Q}, y \in [0; 1] \} \cup \mathbb{R} \times \{1\}$
- (e) $\{(x,y) \in \mathbb{R}^2 | x \in \mathbb{Q} \text{ XOR } y \in \mathbb{Q} \}$

Exercice 3. La formule

$$(\lambda, x) = \lambda \cdot x, \qquad \lambda \in \mathbb{R}_{>0}, \ x \in \mathbb{R},$$

définit une opération de $\mathbb{R}_{>0}$ sur $X = \mathbb{R}$. Démontrer que la topologie quotient sur $\mathbb{R}/\mathbb{R}_{>0}$ n'est pas Hausdorff.

Exercice 4. Le groupe $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$ opère sur S^1 par

$$([k], z) \mapsto e^{2k\pi/n} \cdot z,$$
 où $k \in \mathbb{Z}$ (et, donc, $[k] \in \mathbb{Z}_n$)

et nous considérons le cercle S^1 comme un sous-ensemble de $\mathbb{C} \cong \mathbb{R}^2$. Démontrer que la topologie quotient sur S^1/\mathbb{Z}_n est Hausdorff. De plus, démontrer que S^1/\mathbb{Z}_n avec la topologie induite est homéomorphe à S^1 .

Exercices frigo

Exercice 5 (4.1.3). Soient $A, B \subseteq X$ deux sous-espaces d'un espace topologique X. De plus, supposons $A \subseteq B \subseteq \overline{A}$. Démontrez que la connexité de A implique celle de B mais que la connexité de B n'implique pas nécessairement celle de A.

Exercice 6. Soient A, B deux ouverts connexes d'un espace X. Démontrer que si $A \cap B$ est non-vide alors $A \cup B$ est connexe. Est-ce que $A \cap B$ est toujours connexe ?