445 Lab Notebook

Riyaan Jain (riyaanj2)

May 2025

Lab Notebook – Automatic Vinyl Record Flipper

Team 20 - ECE 445 Senior Design, Spring 2025

Members: Riyaan Jain, Mohammed Alkawai, Alfredo Velasquez

TA: Chi Zhang

1 Overview

This project automates the flipping of 7-inch vinyl records after playback, eliminating the need for manual intervention. It uses:

- An ESP32 microcontroller
- Three servo motors $(2 \times 20 \text{kg}, 1 \times 35 \text{kg torque})$
- A Hall effect sensor and magnet on the tonearm
- A custom 2-layer PCB designed in **KiCad**

The system lifts the tonearm, flips the record, and reseats it within 17 seconds, maintaining a flipping accuracy of 100% across 50+ consecutive cycles.

2 Weekly Logs & Summaries

Week 1-2 (Jan 22-Feb 2): Ideation & Design Exploration

- Identified the problem: interruption due to manual record flipping
- Proposed solutions: rotating tray, robotic arm, flipping claw (chosen)
- Chose initial ATMega microcontroller (later switched to ESP32)
- Considered tonearm detection methods (ultrasonic vs Hall sensor)
- Sketched preliminary mechanical design concepts

Figure 1: Sketch of preliminary proposed mechanical solution

Figure 2: Crosley vinyl player used as base for prototype testing

Week 3–4 (Feb 5–Feb 16): Schematic & PCB Design

• Designed power rail using LP2950-CZ1 and verified:

$$C \ge \frac{I \cdot \Delta t}{\Delta V} = \frac{0.1 \cdot 1 \times 10^{-6}}{0.1} = 1\mu F$$

- Added capacitors to the schematic
- Designed headers and KiCad schematics

Week 5-6 (Feb 19-Mar 1): Assembly & Breadboard Testing

- Soldered and validated custom PCB
- Coordinated with mechanical shop on design tweaks

Figure 3: Power supply schematic with added 1 and 2.2µF capacitors

• Breadboarded servo system, verified torque:

$$\tau = m \cdot g \cdot r = 0.18 \cdot 9.81 \cdot 0.15 \approx 0.265 \text{ Nm}$$

• DSServo provides 0.92 Nm \Rightarrow 3.5 \times safety margin

Week 7–8 (Mar 4–Mar 15): Firmware Integration

- Programmed ESP32 for PWM output to control 3 servos (GPIO 15, 16, 18)
- Created state machine: IDLE \rightarrow LIFT \rightarrow ROTATE \rightarrow RESEAT \rightarrow RESET
- Debounced Hall effect sensor signal on GPIO5
- Verified PWM pulse widths using oscilloscope

Week 9-10 (Mar 18-Mar 29): Testing and Debugging

- Hall sensor output floated without pull-up resistor; added $10k\Omega$ to 3.3V
- Sensor output stabilized at 3.3V (was dropping to $3V \rightarrow false triggers)$
- Observed 0V on GPIO37 when ESP32 powered by USB, 1.7V from VIN after flashing
- When microcontroller was unpowered, regulator outputted 2.1V (noise)
- Motors failed when ESP32 shared 5V rail \rightarrow resolved by adding 10µF cap across 5Vin and GND
- Reoriented pink servo, observed 0–270° physical range despite 0–180° code range \rightarrow scaled angle in firmware

Figure 4: Voltage stability test: $4.94V \pm 0.02V$ sampled over time

Week 11–12 (Mar 30–Apr 12): PCB Redesign and Optimization

- Reordered PCB (4th round) after updates to trace layout and headers
- Inserted soft delays between servo stages to reduce current spikes
- Implemented final clamping adjustments to minimize scratching

Week 13–14 (Apr 15–Apr 26): System Integration & Final Testing

- Assembled final prototype and verified full flipping sequence
- Flipping time: 17 seconds; 50+ flips with 100% success
- Final tweaks: Hall sensor trigger range, clamping force, and sequencing

3 Engineering Justifications

Power Stability

- Target voltage tolerance: $\pm 0.1 \text{V}$
- Achieved: ± 0.05 V fluctuation under servo load

Figure 5: PCB layout 3D view for fourth round PCB order

Figure 6: Final system block diagram showing modules and flow

PWM Signal Design

- 50 Hz frequency, 500–2500 µs pulse width range
- Smooth servo transitions verified with oscilloscope

Sensor Range

- Magnet field ~ 150 Gauss at 0.62"
- Sensor threshold 50 Gauss activates reliably within 1 inch
- Weak magnet issue mitigated with resistor pull-up and consistent power

Voltage and Signal Integrity

- Pull-up resistor $(10k\Omega)$ fixed sensor output instability
- 10µF cap resolved power instability when sharing supply

Figure 7: Completed prototype mounted on Crosley turntable

• GPIO37 behavior dependent on USB vs VIN supply path

4 Tolerance Analysis

- Servo current draw: 2.1A, lab supply: 2.5A
- Angular error tolerance: $\pm 1.5^{\circ}$
- Sensor detection error: 0 in 50 trials after fix
- Pink servo angle scaled 1.5× to reflect 270° physical range
- Clamp reseating misalignment imm using tapered cone

5 Ethics and Safety

- Followed IEEE 1100 and UIUC lab safety rules
- Wore PPE during soldering and hardware tests
- Transparent testing logs and data reporting
- Used N52 magnet with care to prevent finger pinching or circuit damage

6 Conclusion

This system meets all core design requirements for an automatic vinyl record flipper:

- Seamless flipping process under 17 seconds
- 100% tonearm detection reliability with Hall effect sensor
- Robust power delivery and no random motion glitches

Future improvements: soft clamp rubber lining and support for 12-inch records.

7 Appendix: Verification Table

Requirement	Test Method	Result
5V stable voltage	Multimeter over 20s	Pass
Servo torque ¿ 0.3 Nm	Torque equation	Pass
Clamp alignment	Manual inspection	Pass
Hall effect detection	Magnet test at 0.62"	Pass
PWM accuracy	Oscilloscope	Pass
System stability	10-min full-load test	Pass
Reseating accuracy	Visual ¡1mm misalignment	Pass
False triggering	Idle state verification	Pass