ROLLING

BULK DEFORMATION **FORGING**

EXTRUSION

WIRE & BAR DRAWING

BENDING

DEEP OR CUP DRAWING

SHEARING

MISCELLANEOUS

SHEET METAL WORKING

BULK DEFORMATION PROCESSES

- Bulk deformation processes are those where the thicknesses or cross sections are reduced or shapes are significantly changed.
- Since the volume of the material remains constant, changes in one dimension require proportionate changes in others.
- Thus the enveloping surface area changes significantly, usually increasing as the product lengthens or the shape becomes more complex.

BULK DEFORMATION PROCESSES

- Starting geometry of the raw material may be:
 - cylindrical bars and billets
 - rectangular billets and slabs
 - or any of the above similar shapes

- Rolling is a deformation process in which the thickness of the work is reduced by compressive forces exerted by two opposing rolls.
- Rolling operations reduce the thickness or change the cross section of a material through compressive forces exerted by rolls.

- Rotating rolls perform two main functions:
 - Pull the work into the gap between them by friction between workpart and rolls
 - Simultaneously squeeze the work to reduce its cross section

- Most rolling processes are very capital intensive, requiring massive pieces of equipment, called rolling mills, to perform them.
- Most rolling is carried out by hot working, called hot rolling, owing to the large amount of deformation required.
- Hot-rolled metal is generally free of residual stresses, and its properties are isotropic.
- Disadvantages of hot rolling are that the product cannot be held to close tolerances, and the surface has a characteristic oxide scale.

- Rolling is often the first process that is used to convert material into a finished wrought product (Products such as; sheet, rod, bar, tube, plate and wire that are produced by rolling and extrusion mills as well as forging).
- Thick starting stock can be rolled into blooms, billets, or slabs, or these shapes can be obtained directly from continuous casting.

- A slab is a rectangular solid where the width is greater than twice the thickness (25cm x 4 cm or more). Or 50 150mm thick and width ½ to 1.5 meters
- Slabs can be further rolled to produce plate, sheet, and strip.
- A bloom has a square or rectangular cross section, with a thickness greater than 15 cm and a width no greater than twice the thickness. (150 –300mm.)

- A billet is usually smaller than a bloom and has a square or circular cross section (4cm x 4 cm or more).
- Billets are usually produced by some form of deformation process, such as rolling or extrusion.
- Plates have thickness greater than 6 mm while sheet and strip range from 6 mm to 0.1 mm.

(1.1) SHAPE ROLLING

- In shape rolling, the work is deformed into a contoured cross section.
- Products made by shape rolling include construction shapes such as *I-beams*, *L-beams*, and *U-channels*; rails for railroad tracks; and round and square bars and rods.
- The process is accomplished by passing the work through rolls that have the reverse of the desired shape.

(1.1) SHAPE ROLLING

(1.1) SHAPE ROLLING

(1.2) Thread Rolling

- Bulk deformation process used to form threads on cylindrical parts by rolling them between two dies
- Important commercial process for mass producing bolts and screws
- Performed by cold working in thread rolling machines
- Advantages over thread cutting (machining):
 - Higher production rates
 - Better material utilization
 - Stronger threads and better fatigue resistance due to work hardening

(1.2) Thread Rolling

(1.3) Ring Rolling

- Ring rolling is a deformation process in which a thick-walled ring of smaller diameter is rolled into a thin-walled ring of larger diameter.
- As the thick-walled ring is compressed, the deformed material elongates, causing the diameter of the ring to be enlarged.
- Ring rolling is usually performed as a hot-working process for large rings and as a cold-working process for smaller rings.

(1.3) Ring Rolling

Reducing the ring thickness results in an increase in its diameter.

(1.4) Roll Piercing

- Roll Piercing is a specialized hot working process for making seamless thick-walled tubes.
- It utilizes two opposing rolls, and hence it is grouped with the rolling processes.

(1) ROLLING MILLS CONFIGURATIONS

- Various rolling mill configurations are available to deal with the variety of applications and technical problems in the rolling process.
 - Two-high two opposing rolls
 - Three-high work passes through rolls in both directions
 - Four-high backing rolls support smaller work rolls
 - Cluster mill multiple backing rolls on smaller rolls
 - Tandem rolling mill sequence of two-high mills

(1.a) Two-High Rolling Mill

(1.b) Three-High Rolling Mill

(1.c) Four-High Rolling Mill

(1.d) Cluster Mill

(1.e) Tandem Rolling Mill

 In flat rolling, the work is squeezed between two rolls so that its thickness is reduced by an amount called the *DRAFT*:

$$d = t_o - t_f \tag{1}$$

d = draft, mm $t_o = \text{starting thickness, mm}$ $t_f = \text{final thickness, mm}$

 Conservation of matter is preserved, so the volume of metal exiting the rolls equals the volume entering

$$t_o w_o L_o = t_f w_f L_f \tag{2}$$

 w_o and w_f are the before and after work widths, mm

 L_o and L_f are the before and after work lengths, mm

 Similarly, before and after volume rates of material flow must be the same, so the before and after velocities can be related

$$t_o w_o v_o = t_f w_f v_f \tag{3}$$

 v_o and v_f are the entering and exiting velocities of the work.

- The rolls contact the work along an arc defined by the angle θ .
- Each roll has radius R, and its rotational speed gives it a surface velocity V_r .
- This velocity is greater than the entering speed of the work \mathbf{v}_o and less than its exiting speed \mathbf{v}_f .
- Since the metal flow is continuous, there is a gradual change in velocity of the work between the rolls.

- However, there is one point along the arc where work velocity equals roll velocity.
- This is called the no-slip point, also known as the neutral point.
- On either side of this point, slipping and friction occur between roll and work.

 The amount of *slip* between the rolls and the work can be measured by means of the *FORWARD SLIP*, a term used in rolling that is defined as

$$S = \frac{v_f - v_r}{v_r} \tag{4}$$

 v_f = final (exiting) work velocity, m/s v_r = roll speed, m/s

 There is a limit to the maximum possible draft that can be accomplished in flat rolling with a given coefficient of friction, defined by:

$$d_{max} = \mu^2 R \tag{5}$$

 d_{max} = maximum draft, mm μ = coefficient of friction R = roll radius mm

 The roll force F required to maintain separation between the two rolls is given by:

$$F = \sigma w L$$

(6)

 σ = average flow stress, N/mm²

w L = roll-work contact area, mm²

Contact length can be approximated by

$$L = \sqrt{R(t_o - t_f)} \tag{7}$$

Torque for each roll is

$$T = 0.5 \, FL$$

(8)

The power required to drive each roll is

$$P = 2\pi NT$$

(9)

 A 40 mm thick plate is to be reduced to 30 mm in one pass in a rolling operation. *Entrance speed =* 16 m/min. Roll radius = 300 mm, and rotational speed = $18.5 \, m/min$. Determine: (a) minimum required coefficient of friction that would make this rolling operation possible, (b) exit velocity under the assumption that the plate widens by 2% during the operation, and (c) forward slip.

- $t_o = 40 \, mm$
- $t_f = 30 mm$.
- $v_o = 16 \text{ m/min}$.
- R = 300 mm
- rotational speed = 18.5 m/min.
- plate widens by 2% during the operation

(a) Maximum draft
$$d_{max} = \mu^2 R$$
 (5)
Given that $d = t_o - t_f = 40 - 30 = 10$ mm,
 $\mu^2 = 10/300 = 0.0333$
 $\mu = (0.0333)^{0.5} = \mathbf{0.1826}$

(b) Plate widens by 2%.

$$t_o w_o v_o = t_f w_f v_f$$
 (3)
 $w_f = 1.02 w_o$
 $40(w_o)(16) = 30(1.02w_o)v_f$
 $v_f = 40(w_o)(16)/30(1.02w_o)$
 $= 640/30.6 = 20.915 \text{ m/min}$

(c)
$$s = (v_f - v_r)/v_r$$
 (4)
= $(20.915 - 18.5)/18.5 = 0.13$

 A 2.0 in thick slab is 10.0 in wide and 12.0 ft long. Thickness is to be reduced in three steps in a hot rolling operation. *Each step* will reduce the slab to 25% of its previous thickness. It is expected that for this metal and reduction, the slab will widen by 3% in each step. If the entry speed of the slab in the first step is 40 ft/min, and roll speed is the same for the three steps, determine: (a) length and (b) exit velocity of the slab after the final reduction.

- $t_o = 2 in$
- $w_o = 10 in$.
- $L_o = 12 ft$.
- Each step will reduce the slab to 25% of its previous thickness
- widen by 3% in each step
- $v_o = 40$ ft/min (same for the three steps)

(a) After three passes,

$$t_f = (0.75)(0.75)(0.75)(2.0)$$

= 0.844 in.

$$w_f = (1.03)(1.03)(1.03)(10.0)$$

= 10.927 in.

$$t_o w_o L_o = t_f w_f L_f$$

(2)

$$(2.0)(10.0)(12 \times 12) = (0.844)(10.927)L_f$$

$$L_f = 312.3 \text{ in.} = 26.025 \text{ ft}$$

(b) Given that entry speed is the same at all three steps

$$t_o w_o v_o = t_f w_f v_f \tag{3}$$

Step 1

$$v_f = (2.0)(10.0)(40)/(0.75 \text{ x } 2.0)(1.03 \text{ x } 10.0)$$

 $v_f = 51.78 \text{ ft/min.}$

Step 2

$$v_f = (0.75 \text{ x } 2.0)(1.03 \text{ x } 10.0)(40)/(0.75^2 \text{ x } 2.0)(1.03^2 \text{ x } 10.0)$$

$$v_f = 51.78 \text{ ft/min.}$$

Step 3

$$v_f = (0.75^2 \text{ x } 2.0)(1.03^2 \text{ x } 10.0)(40)/(0.75^3 \text{ x } 2.0)(1.03^3 \text{ x } 10.0)$$

$$v_f = 51.78 \text{ ft/min.}$$

 A series of cold rolling operations are to be used to reduce the thickness of a plate from 50 mm down to 25 mm in a reversing two-high mill. Roll diameter = 700 mm and coefficient of friction between rolls and work = 0.15. The specification is that the draft is to be equal on each pass. Determine: (a) minimum number of passes required, and (b) draft for each pass?

- $t_o = 50 \, mm$
- $t_f = 25 mm$.
- R = 700/2 mm = 350 mm
- $\mu = 0.15$
- draft is to be equal on each pass.

(a) Maximum draft
$$d_{max} = \mu^2 R$$

$$= (0.15)^2 (350) = 7.875 \text{ mm}$$

Minimum number of passes = $(t_o - t_f)/d_{max}$

$$= (50 - 25)/7.875 = 3.17 \rightarrow 4 \text{ passes}$$

(b) Draft per pass d = (50 - 25)/4 = 6.25 mm