MS-E2122 - Nonlinear Optimization Lecture 10

Fabricio Oliveira

Systems Analysis Laboratory
Department of Mathematics and Systems Analysis

Aalto University School of Science

November 25, 2021

Outline of this lecture

Barrier functions

Barrier method

Interior point method for LP/ QP

Fabricio Oliveira 1/24

Outline of this lecture

Barrier functions

Barrier method

Interior point method for LP/ QP

Fabricio Oliveira Barrier functions 1/24

Same idea as in penalty methods: turn constrained optimisation unconstrained and solve them iteratively.

Main difference: barrier functions prevent the search from leaving the feasible region. Consider the primal problem ${\cal P}$

$$(P): \ \min \ f(x)$$
 subject to: $g(x) \leq 0$
$$x \in X.$$

Same idea as in penalty methods: turn constrained optimisation unconstrained and solve them iteratively.

Main difference: barrier functions prevent the search from leaving the feasible region. Consider the primal problem ${\cal P}$

$$(P)$$
: min. $f(x)$
subject to: $g(x) \le 0$
 $x \in X$.

We define the barrier problem BP as

$$(BP)$$
: $\inf_{\mu} \theta(\mu)$ subject to: $\mu > 0$.

where $\theta(\mu)=\inf_x\left\{f(x)+\mu B(x):g(x)<0,x\in X\right\}$ and B(x) is a barrier function.

The barrier function $B: \mathbb{R}^m \to \mathbb{R}$ is such that

$$5(x) \le 0$$

$$y < 0;$$
(1)

The barrier function
$$B: \mathbb{R}^m \to \mathbb{R}$$
 is such that
$$B(x) = \sum_{i=1}^m \phi(g_i(x)), \text{ where } \begin{cases} \phi(y) \geq 0, & \text{if } y < 0; \\ \phi(y) = \infty, & \text{when } y \to 0^-. \end{cases}$$

The barrier function $B: \mathbb{R}^m \to \mathbb{R}$ is such that

$$B(x) = \sum_{i=1}^{m} \phi(g_i(x)), \text{ where } \begin{cases} \phi(y) \ge 0, & \text{if } y < 0; \\ \phi(y) = \infty, & \text{when } y \to 0^-. \end{cases}$$
 (1)

Some common alternatives include

$$B(x) = -\sum_{i=1}^{m} \frac{1}{q_i(x)}$$

$$B(x) = -\sum_{i=1}^{m} \ln(\min\{1, -g_i(x)\}).$$

Perhaps the most important is Frisch's log barrier function

$$B(x) = -\sum_{i=1}^{m} \ln(-g_i(x)).$$

Ideally, B(x) would serve as an indicator function

$$B(x) = \begin{cases} \infty, & \text{if } g(x) \ge 0\\ 0, & \text{if } g(x) < 0. \end{cases}$$

Ideally, B(x) would serve as an indicator function

$$B(x) = \begin{cases} \infty, & \text{if } g(x) \ge 0\\ 0, & \text{if } g(x) < 0. \end{cases}$$

To avoid numerical issues, the shape of B(x) is controlled by μ .

We will proceed by repeatedly solving $\theta(\mu)$ and iteratively reducing the value of μ . For that to work, we need the following result.

We will proceed by repeatedly solving $\theta(\mu)$ and iteratively reducing the value of μ . For that to work, we need the following result.

Theorem 1 (Convergence of barrier methods)

L < x < U

Let $f: \mathbb{R}^n \to \mathbb{R}$ and $g: \mathbb{R}^n \to \mathbb{R}$ be continuous functions and $X \in \mathbb{R}^n$ a nonempty closed set in problem P. Suppose $\{x: g(x) < 0, x \in X\}$ is not empty. Let \overline{x} be the optimal solution of P such that, for any neighbourhood $N_{\epsilon}(\overline{x}) = \{x: ||x-\overline{x}|| \le \epsilon\}$, there exists $x \in X \cap N_{\epsilon}$ for which g(x) < 0. Then

$$\min \left\{ f(x) : g(x) \le 0, x \in X \right\} = \lim_{\mu \to 0^+} \theta(\mu) = \inf_{\mu > 0} \theta(\mu).$$

Letting $\theta(\mu) = f(x_{\mu}) + \mu B(x_{\mu})$, where B(x) is a barrier function 2 observing (1), $x_{\mu} \in X$, and $g(x_{\mu}) < 0$, the limit of $\{x_{\mu}\}$ is optimal to P and $\mu B(x_{\mu}) \to 0$ as $\mu \to 0^+$.

Outline of this lecture

Barrier functions

Barrier method

Interior point method for LP/ QF

Fabricio Oliveira Barrier method 6/24

Algorithm Barrier method

```
1: initialise. \epsilon > 0, x^0 \in X with g(x^k) < 0, \mu^k, \beta \in (0,1), k = 0.

2: while \mu^k B(x^k) > \epsilon do

3: \overline{x}^{k+1} = \arg\min\left\{f(x) + \mu^k B(x) : x \in X\right\} -> ywc. Optimisation.

4: \mu^{k+1} = \beta \mu^k, \ k = k+1

5: end while

6: return x^k.
```

Algorithm Barrier method

```
1: initialise. \epsilon > 0, x^0 \in X with g(x^k) < 0, \mu^k, \beta \in (0,1), k = 0.

2: while \mu^k B(x^k) > \epsilon do

3: \overline{x}^{k+1} = \arg\min\left\{f(x) + \mu^k B(x) : x \in X\right\}

4: \mu^{k+1} = \beta \mu^k, \ k = k+1

5: end while

6: return x^k.
```

Remarks:

- 1. Notice that, starting with $x^0 \in X$ with $g(x^0) < 0$, x^k for all k>1 satisfies $g(x^k) < 0$ due to the barrier function.
- 2. However, applying the barrier method using a fixed step size may cause infeasibility issues.
- 3. Due to 1., these methods are called interior point methods.

Example 1:
$$P = \min$$
. $\{(x+1)^2 : x \ge 0\}$ with $B(x) = -\ln(x)$

$$\mathcal{B}P: (x+1)^2 - \mu \ln(-x) : \int_{\mathcal{A}} (x)$$

$$\int_{\mathcal{A}} (x) = 0 \implies 2(x+1) - \frac{\mathcal{A}}{x} = 2$$

$$2x^2 + x - \mathcal{A} = 0 \implies x_{\mathcal{A}} = -\frac{1}{2} + \frac{\sqrt{4+8}x_{\mathcal{A}}}{4}$$

$$\mathcal{A} = 0 + x + x_{\mathcal{A}} = 0$$

Example 1: $P = \min \{(x+1)^2 : x \ge 0\}$ with $B(x) = -\ln(x)$

8/24

Example 2:
$$P = \min_{x \in \mathbb{R}} B(x) = -\frac{1}{x^2 - x^2}$$
.

Example 2:
$$P = \min$$
. $\left\{ \underbrace{(x_1 - 2)^4 + (x_1 - 2x_2)^2 : x_1^2 - x_2 \le 0} \right\}$ with $B(x) = -\frac{1}{x_1^2 - x_2}$.

Example 2:
$$P = \min$$
. $\{(x_1 - 2)^4 + (x_1 - 2x_2)^2 : x_1^2 - x_2 \le 0\}$ with $B(x) = -\frac{1}{x_1^2 - x_2}$.

Fabricio Oliveira

Example 2:
$$P = \min$$
. $\{(x_1 - 2)^4 + (x_1 - 2x_2)^2 : x_1^2 - x_2 \le 0\}$ with $B(x) = -\frac{1}{x_1^2 - x_2}$.

Fabricio Oliveira

Outline of this lecture

Barrier functions

Barrier method

Interior point method for LP/QP

Consider the following LP and its dual

```
(P): \mbox{ min. } c^\top x \qquad \qquad (D): \mbox{ max. } b^\top v subject to: Ax = b : v \qquad \qquad \text{subject to: } A^\top v + u = c \qquad \qquad u \geq 0, v \in \mathbb{R}^m.
```

Consider the following LP and its dual

$$(P): \mbox{ min. } c^\top x \\ \mbox{subject to: } Ax = b : v \\ \mbox{ } x \geq 0 : u \\ \mbox{} (D): \mbox{ max. } b^\top v \\ \mbox{subject to: } A^\top v + u = c \\ \mbox{ } u \geq 0, v \in \mathbb{R}^m.$$

The optimal solution $(\overline{x}, \overline{v}, \overline{u}) = \overline{w}$ satisfies KKT conditions of P:

$$\begin{aligned} Ax &= b, \ x \geq 0 \\ A^\top v + u &= c, \ u \geq 0, \ v \in \mathbb{R}^m \\ u^\top x &= 0. \end{aligned}$$

$$\mathbf{C}^{\top} \times \mathbf{+} \left(\mathbf{b} - \mathbf{A} \times \mathbf{x} \right)^{\top} \mathbf{v} - \mathbf{v}^{\top} \times \mathbf{x}$$

Let us consider the barrier problem for P by using the logarithmic barrier function.

The barrier problem is given by:

lem is given by:
$$(BP): \quad \min. \quad c^{\top}x - \mu \sum_{i=1}^{n} \ln(x_{j}) \qquad \qquad \overbrace{A} \times \in \overleftarrow{b} \\ \text{subject to: } Ax = b. \qquad \qquad \downarrow \\ \overbrace{A} \times + \mathbf{s} = \overleftarrow{b} \\ A \times = \mathbf{b} \qquad \qquad \downarrow \\ \overbrace{A} \times = \overleftarrow{b} \qquad \qquad \downarrow$$

The barrier problem is given by:

$$(BP)$$
: min. $c^{\top}x - \mu \sum_{i=1}^{n} \ln(x_j)$ subject to: $Ax = b$.

The KKT conditions of BP are

$$Ax = b, \ x > 0$$

$$A^{\top}v = c - \mu\left(\frac{1}{x_1}, \dots, \frac{1}{x_n}\right).$$

Notice that since $\mu > 0$ and x > 0, $u = \mu\left(\frac{1}{x_1}, \dots, \frac{1}{x_n}\right)$ serve as an estimate for the Lagrangian dual variables.

Let $X \in \mathbb{R}^{n \times n}$ and $U \in \mathbb{R}^{n \times n}$ be defined as

$$X = \mathbf{diag}(x) = \begin{bmatrix} \ddots & & & \\ & x_i & & \\ & & \ddots \end{bmatrix} \text{ and } U = \mathbf{diag}(u) = \begin{bmatrix} \ddots & & & \\ & u_i & & \\ & & \ddots \end{bmatrix}$$

and let $e = [1, ..., 1]^{T}$ be a vector of ones of suitable dimension.

Let $X \in \mathbb{R}^{n \times n}$ and $U \in \mathbb{R}^{n \times n}$ be defined as

$$X = \mathbf{diag}(x) = \begin{bmatrix} \cdot & & & \\ & \cdot & & \\ & & \cdot & \cdot \end{bmatrix} \text{ and } U = \mathbf{diag}(u) = \begin{bmatrix} \cdot & & & \\ & \cdot & & \\ & & \cdot & \cdot \end{bmatrix}$$

and let $e = [1, ..., 1]^{T}$ be a vector of ones of suitable dimension.

We can rewrite the KKT conditions of BP as

$$Ax = b, x > 0$$

$$A^{T}v + u = c$$

$$u = \mu X^{-1}e \Rightarrow XUe = \mu e$$

$$(2) \quad A^{T}v + v = c$$

$$(3) \quad \times^{\tau}v = 0$$

$$(4)$$

Remark: condition (3) is called relaxed complementarity condition with 0 replaced by μ . This is known as the perturbed KKT system.

According to Theorem 1, $w_{\mu}=(x_{\mu},v_{\mu},u_{\mu})$ approaches the optimal primal-dual solution of P as $\mu \to 0^+$.

Remarks:

1. The trajectory formed by successive solutions $\{w_{\mu}\}$ is called a central path due to its interiority forced by the barrier function.

According to Theorem 1, $w_{\mu}=(x_{\mu},v_{\mu},u_{\mu})$ approaches the optimal primal-dual solution of P as $\mu \to 0^+$.

Remarks:

- 1. The trajectory formed by successive solutions $\{w_{\mu}\}$ is called a central path due to its interiority forced by the barrier function.
- 2. Notice that $XUe = \mu e \Rightarrow u_i x_i = \mu$ for all i = 1, ..., n.

According to Theorem 1, $w_{\mu}=(x_{\mu},v_{\mu},u_{\mu})$ approaches the optimal primal-dual solution of P as $\mu\to 0^+$.

Remarks:

- 1. The trajectory formed by successive solutions $\{w_{\mu}\}$ is called a central path due to its interiority forced by the barrier function.
- 2. Notice that $XUe = \mu e \Rightarrow u_i x_i = \mu$ for all i = 1, ..., n.
- 3. $c^{\mathsf{T}}x b^{\mathsf{T}}v = u^{\mathsf{T}}x$ measures the duality gap for the current μ .

$$C^{T} \times = (A^{T} \sigma + \upsilon)^{T} \times$$

$$= (A^{T} \upsilon)^{T} \chi + \upsilon^{T} \chi$$

$$= v^{T} (A \chi) + \upsilon^{T} \chi$$

$$= v^{T} (A \chi) + \upsilon^{T} \chi$$

$$= \sum_{i=1}^{n} U_{i} \chi_{i}$$

$$= \sum_{i=1}^{n} U_{i} \chi_{i}$$

Fabricio Oliveira

Interior point method for LP/QP

According to Theorem 1, $w_{\mu}=(x_{\mu},v_{\mu},u_{\mu})$ approaches the optimal primal-dual solution of P as $\mu \to 0^+$.

Remarks:

- 1. The trajectory formed by successive solutions $\{w_{\mu}\}$ is called a central path due to its interiority forced by the barrier function.
- 2. Notice that $XUe = \mu e \Rightarrow u_i x_i = \mu$ for all i = 1, ..., n.
- 3. $c^{\top}x b^{\top}v = u^{\top}x$ measures the duality gap for the current μ .
- 4. Also, $u^{\top}x = \sum_{i=1}^{n} u_i x_i = n\mu$ is equal to the total slack violation and can be used as a stopping condition.

The notion of interiority

For large enough μ , the solution of the barrier problem is close to the analytic centre of the feasibility set.

The notion of interiority

For large enough μ , the solution of the barrier problem is close to the analytic centre of the feasibility set.

The analytic centre of a polyhedral set $S = \{x \in \mathbb{R}^n : Ax \leq b\}$ is given by the solution of

$$\max_x. \ \prod_{i=1}^m (b_i - a_i^\top x)$$

 $\text{subject to: } x \in X,$

i.e., finding $\overline{x} \in S$ of maximum distance to each of the hyperplanes $a_i^\top x = b_i$.

The notion of interiority

For large enough μ , the solution of the barrier problem is close to the analytic centre of the feasibility set.

The analytic centre of a polyhedral set $S = \{x \in \mathbb{R}^n : Ax \leq b\}$ is given by the solution of

$$\max_{x}. \ \prod_{i=1}^{m} (b_i - a_i^\top x)$$

i.e., finding $\overline{x} \in S$ of maximum distance to each of the hyperplanes $a_i^\top x = b_i. \text{ This is equivalent to}$ $\min_{x \in S} \sum_{i=1}^{m} a_i = b_i.$ $\min_{x \in S} \sum_{i=1}^{m} a_i = b_i.$ $\min_{x \in S} \sum_{i=1}^{m} a_i = b_i.$

$$\min_{x}. \ \sum_{i=1}^{m} -\ln(b_i - a_i^{\top}x)$$

subject to: $x \in X$.

$$\begin{array}{c} \mathbf{A}_{i}^{\mathsf{T}} \mathbf{X} + \mathbf{S}_{i} = \mathbf{b}_{i} \\ \begin{pmatrix} \mathbf{a}_{i}^{\mathsf{T}} \mathbf{x} & \mathbf{b}_{i}^{\mathsf{T}} \\ \mathbf{x} \end{pmatrix} \end{array}$$

IPM for LP/QP: primal/dual method

Primal/dual path following method is a specialisation of IPM to linear and quadratic problems.

It combines BP with one "additional trick": instead of solving BP to optimality, perform a single Newton step for each μ .

IPM for LP/QP: primal/dual method

Primal/dual path following method is a specialisation of IPM to linear and quadratic problems.

It combines BP with one "additional trick": instead of solving BP to optimality, perform a single Newton step for each μ .

Suppose we start with a $\overline{\mu}>0$ and a $w^k=(x^k,v^k,u^k)$ sufficiently close to $w_{\overline{\mu}}$. Then, for a sufficiently small $\beta\in(0,1)$, $\beta\overline{\mu}$ will lead to a w^{k+1} sufficiently close to $w_{\beta\overline{\mu}}$.

Remark: β is typically related to convergence results. Values like $\mu^0 = (x^\top u)/n$ and $\beta \in [0.1, 0.5]$ are often used in practice.

IPM for LP/QP: primal/dual method

Primal/dual path following method is a specialisation of IPM to linear and quadratic problems.

It combines BP with one "additional trick": instead of solving BP to optimality, perform a single Newton step for each μ .

Suppose we start with a $\overline{\mu}>0$ and a $w^k=(x^k,v^k,u^k)$ sufficiently close to $w_{\overline{\mu}}$. Then, for a sufficiently small $\beta\in(0,1)$, $\beta\overline{\mu}$ will lead to a w^{k+1} sufficiently close to $w_{\beta\overline{\mu}}$.

Remark: β is typically related to convergence results. Values like $\mu^0 = (x^\top u)/n$ and $\beta \in [0.1, 0.5]$ are often used in practice.

For example, let $N_{\mu}(\theta) = ||X_{\mu}U_{\mu}e - \mu e|| \leq \theta \mu$. Then, by selecting $\beta = 1 - \frac{\sigma}{\sqrt{n}}$, $\sigma = \theta = 0.1$, and $\mu^0 = (x^{\top}u)/n$, successive Newton steps are guaranteed to remain within $N_{\mu}(\theta)$.

Further reading: see this reference (link) for more details.

Let the perturbed KKT system (2) – (4) for each $\hat{\mu}$ be denoted as H(w)=0. Let $J(\overline{w})$ be the Jacobian of H(w) at \overline{w} .

Applying Newton's method to solve H(w)=0 for \overline{w} , we obtain

$$J(\overline{w})d_{w} = -H(\overline{w}) \tag{5}$$
 where $d_{w} = (w - \overline{w})$.
$$\downarrow (w) = A \times -b$$

$$A \times -b$$

$$A \times + v - c$$

$$\times v_{e} - \mu e$$

Let the perturbed KKT system (2) – (4) for each $\hat{\mu}$ be denoted as H(w)=0. Let $J(\overline{w})$ be the Jacobian of H(w) at \overline{w} .

Applying Newton's method to solve H(w)=0 for \overline{w} , we obtain

$$J(\overline{w})d_w = -H(\overline{w}) \tag{5}$$

where $d_w=(w-\overline{w}).$ By rewriting $d_w=(d_x,d_v,d_u),$ (5) can be equivalently stated as

$$\begin{aligned} Ad_x &= 0 \\ A^\top d_v + d_u &= 0 \\ \overline{U} d_x + \overline{X} d_u &= \hat{\mu} e - \overline{X} \, \overline{U} e. \end{aligned}$$

The algorithm proceeds by iteratively solving the above system with $\mu^{k+1} = \beta \mu^k$ with $\beta \in (0,1)$ until $n\mu^k$ is small enough.

Remark: Notice that primal feasibility conditions are included in the system H(w)=0. This is typically referred to as the equality constrained Newton's method with "Newton system"

$$\mathcal{J}(\overset{\mathbf{w}}{}) \left[\begin{matrix} A & 0^{\top} & 0 \\ 0 & A^{\top} & I \\ \overline{U} & 0^{\top} & \overline{X} \end{matrix} \right] \begin{bmatrix} d_x \\ d_v \\ d_u \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \hat{\mu}e - \overline{X} \, \overline{U}e \end{bmatrix}.$$
(6)

Remark: Notice that primal feasibility conditions are included in the system H(w)=0. This is typically referred to as the equality constrained Newton's method with "Newton system"

$$\begin{bmatrix} A & 0^{\top} & 0 \\ 0 & A^{\top} & I \\ \overline{U} & 0^{\top} & \overline{X} \end{bmatrix} \begin{bmatrix} d_x \\ d_v \\ d_u \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \hat{\mu}e - \overline{X} \overline{U}e \end{bmatrix}.$$
 (6)

In practice, updates incorporate primal and dual infeasibility, which can be shown to vanish as the algorithm progress. Updates become

$$\begin{bmatrix} A & 0^{\top} & 0 \\ 0 & A^{\top} & I \\ U^k & 0^{\top} & X^k \end{bmatrix} \begin{bmatrix} d_x^{k+1} \\ d_v^{k+1} \\ d_u^k \end{bmatrix} = - \begin{bmatrix} Ax^k - b \\ Av + u - c \\ X^k U^k e - \mu^{k+1} e \end{bmatrix}, \quad (7)$$

where $\mu^{k+1} = \beta \mu^k$.

Let the residuals (i.e., the amount of infeasibility) be $r_p(x,u,v) = Ax - b \text{ (primal)}; \ r_d(x,u,v) = A^\top v + u - c \text{ (dual)}.$

Let $r(w) = r(x, u, v) = (r_p(x, u, v), r_d(x, u, v))$. The optimality conditions (6) require the residuals to vanish, that is $r(\overline{w}) = 0$.

Let the residuals (i.e., the amount of infeasibility) be

$$r_p(x, u, v) = Ax - b$$
 (primal); $r_d(x, u, v) = A^{\mathsf{T}}v + u - c$ (dual).

Let $r(w) = r(x, u, v) = (r_p(x, u, v), r_d(x, u, v))$. The optimality conditions (6) require the residuals to vanish, that is $r(\overline{w}) = 0$.

Consider the first-order approximation for r at w for a step d_{w}

$$r(w+d_w) \approx r(w) + Dr(w)d_w,$$

where Dr(w) is the derivative of r evaluated at w. The step d_w for which the residue vanishes is $Dr(w)d_w = -r(w)$ (cf. (7)).

Let the residuals (i.e., the amount of infeasibility) be

$$r_p(x, u, v) = Ax - b$$
 (primal); $r_d(x, u, v) = A^{\top}v + u - c$ (dual).

Let $r(w) = r(x, u, v) = (r_n(x, u, v), r_d(x, u, v))$. The optimality conditions (6) require the residuals to vanish, that is $r(\overline{w}) = 0$.

Consider the first-order approximation for r at w for a step d_w

$$r(w+d_w) \approx r(w) + Dr(w)d_w,$$

where Dr(w) is the derivative of r evaluated at w. The step d_w for which the residue vanishes is $Dr(w)d_w = -r(w)$ (cf. (7)).

The directional derivative of $||r(w+td_w)||_2^2$ in the direction d_w is

$$\frac{d}{dt}||r(w+td_w)||_2^2\bigg|_{t\to 0^+} = 2r(w)^\top Dr(w) d_w = -2r(w)^\top r(w), \leq 0$$
 which is strictly decreasing.
$$2r(\omega + \sqrt{\omega}) \cdot \mathcal{D}r(\omega + \sqrt$$

Algorithm Interior point method for LP

```
1: initialise. primal-dual feasible w^k, \epsilon > 0, \mu^k, \beta \in (0,1), k = 0.

2: while n\mu = c^\top x^k - b^\top v^k > \epsilon do

3: compute d_{w^{k+1}} = (d_{x^{k+1}}, d_{v^{k+1}}, d_{u^{k+1}}) using (7) and w^k.

4: w^{k+1} = w^k + d_{w^{k+1}}

5: \mu^{k+1} = \beta \mu^k, k = k+1

6: end while

7: return w^k.
```

Algorithm Interior point method for LP

```
1: initialise. primal-dual feasible w^k, \epsilon > 0, \mu^k, \beta \in (0,1), k = 0.

2: while n\mu = c^\top x^k - b^\top v^k > \epsilon do

3: compute d_{w^{k+1}} = (d_{x^{k+1}}, d_{v^{k+1}}, d_{u^{k+1}}) using (7) and w^k.

4: w^{k+1} = w^k + d_{w^{k+1}}  \lambda = 1

5: \mu^{k+1} = \beta \mu^k, k = k+1

6: end while

7: return w^k.
```

Remarks:

- 1. Notice that the step size is set to one. A line search could be performed between Lines 3 and 4.
- 2. This method has polynomial complexity which, under specific conditions, can be shown to be $O(\sqrt{n}\ln(1/\epsilon))$.

The primal-dual interior point (IP) method

Example:

min. $z = x_1 + x_2 : 2x_1 + x_2 \ge 8$, $x_1 + 2x_2 \ge 10$, $x_1, x_2 \ge 0$.

The primal-dual interior point (IP) method

Example:

min. $z = x_1 + x_2 : 2x_1 + x_2 \ge 8$, $x_1 + 2x_2 \ge 10$, $x_1, x_2 \ge 0$.

