Control of AUVs and USVs

Martin Syre Wiig

November 12, 2020

Outline

Context

Degrees of freedom and reference frames

Kinematics

Dynamics

3DOF example

Guidance

Context

Possible view of an autonomy system:

- High level planning minutes
- Motion planning several seconds
- ightharpoonup Path following / guidance < 1 sec
- ▶ Heading and speed control < 1 sec</p>

In addition: Decision making, navigation, sensor processing, image analysis etc.

Focus today: Guidance and control

Degrees of freedom

- Any marine craft has 6 DOF
- ► Horizontal:
 - ► Surge *u*
 - **►** Sway *v*
 - ightharpoonup Yaw ψ
- ► Other:
 - ► Heave w
 - \triangleright Pitch θ
 - **▶** Roll *φ*

(Images from https://en.wikipedia.org/w/index.php?curid=5456221)

Degrees of freedom

- Maneuvering USVs: Yaw and surge
- Maneuvering AUVs: Also pitch
- Roll: Fast acceleration seasick!
- Most vehicles are usually passively stabilized in roll

(Images from https://en.wikipedia.org/w/index.php?curid=5456221)

Reference frames

There are many reference frames in use in maritime systems. The three most important are:

- ► Earth-Centered Earth-Fixed (ECEF)
 - Latitude, Longitude, Height
- ► North East Down (NED)
 - Why down? Right hand rule on compass.
- Body frame
 - Forward, starboard (=right), down

Velocity in BODY and NED

Velocities are usually measured in BODY, and Newtonian laws also gives them in BODY. Hence they must be converted to NED. Euler Angles:

- ightharpoonup Roll (ϕ) , pitch (θ) , yaw (ψ)
- Any orientation can be decomposed into three principal rotations around the x (roll), y (pitch) and z (yaw) axis.

$$\mathbf{R}_{\mathbf{x}}(\phi) \triangleq \begin{bmatrix} 1 & 0 & 0\\ 0 & \cos(\phi) & -\sin(\phi)\\ 0 & \sin(\phi) & \cos(\phi) \end{bmatrix}$$
 (1)

$$\mathbf{R}_{y}(\theta) \triangleq \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{bmatrix}$$
 (2)

$$\mathbf{R}_{z}(\psi) \triangleq \begin{bmatrix} \cos(\psi) & -\sin(\psi) & 0\\ \sin(\psi) & \cos(\psi) & 0\\ 0 & 0 & 1 \end{bmatrix}$$
 (3)

Linear velocity in NED

Combine the rotations in the zyx convention

$$\mathbf{R}_{b}^{n}(\Theta_{nb}) \triangleq R_{z}(\psi)R_{y}(\theta)R_{x}(\phi) \tag{4}$$

$$\mathbf{R}_{n}^{b}(\Theta_{nb}) = R_{x}^{T}(\phi)R_{y}^{T}(\theta)R_{z}^{T}(\psi)$$
 (5)

The velocity in NED is then:

$$\dot{\boldsymbol{p}}_{b/n}^{n} = \boldsymbol{R}_{b}^{n}(\boldsymbol{\Theta}_{nb})\boldsymbol{v}_{b/n}^{b} \tag{6}$$

Linear velocity in NED

Lets write it out for clarity

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{bmatrix} = \begin{bmatrix} c\psi c\theta & -s\psi c\phi + c\psi s\theta s\phi & s\psi s\phi + c\psi s\theta c\phi \\ s\psi c\theta & c\psi c\phi + s\psi c\theta s\psi & -c\psi s\phi + s\psi s\theta c\phi \\ -s\theta & c\theta s\phi & c\theta c\phi \end{bmatrix} \begin{bmatrix} \dot{u} \\ \dot{v} \\ \dot{w} \end{bmatrix}$$
(7)

Angular velocity in NED

From measured angular rates to euler angle rates:

$$\dot{\Theta}_{nb} = T_{\Theta}(\Theta_{nb})\omega_{b/n}^b \tag{8}$$

Where

$$T_{\Theta}(\Theta_{nb}) = \begin{bmatrix} 1 & s\phi t\theta & c\phi t\theta \\ 0 & c\phi & -s\phi \\ 0 & \frac{s\phi}{c\theta} & \frac{c\phi}{c\theta} \end{bmatrix}$$
(9)

Kinematics

Linear + angular velocities = kinematics

$$\begin{bmatrix} \dot{\boldsymbol{p}}_{b/n}^{n} \\ \dot{\boldsymbol{\Theta}}_{nb} \end{bmatrix} = \begin{bmatrix} \boldsymbol{R}_{b}^{n}(\boldsymbol{\Theta}_{nb}) & \boldsymbol{0}_{3\times3} \\ \boldsymbol{0}_{3\times3} & \boldsymbol{T}_{\boldsymbol{\Theta}}(\boldsymbol{\Theta}_{nb}) \end{bmatrix} \begin{bmatrix} \boldsymbol{v}_{b/n}^{b} \\ \boldsymbol{\omega}_{b/n}^{b} \end{bmatrix}$$
(10)

$$\dot{\boldsymbol{\eta}} = \boldsymbol{J}(\boldsymbol{\eta})\boldsymbol{\nu} \tag{11}$$

Kinematics 3 DOF

The 3 DOF kinematics in component form becomes:

$$\dot{x} = u\cos(\psi) - v\sin(\psi) \tag{12a}$$

$$\dot{y} = u\sin(\psi) + v\cos(\psi) \tag{12b}$$

$$\dot{\psi} = r$$
 (12c)

We see that, when v (sway) is not zero, then the velocity vector of the vehicle points in a different direction from the vehicle it self. The difference is called sideslip.

Kinematics 3 DOF

- lacktriangle Heading angle ψ : The direction of the body.
- ightharpoonup Course angle χ : The direction of the velocity vector.
- ▶ Sideslip angle $\beta \triangleq \chi \psi$.

Sideslip can be found from BODY velocities as

$$\beta = \arctan(\frac{v}{u}) = \arcsin(\frac{v}{U}) \tag{13}$$

where $U \triangleq \sqrt{u^2 + v^2}$ is the total speed of the vehicle.

Kinematics 3 DOF

The 3 DOF kinematics can be written:

$$\dot{x} = U\cos(\chi) \tag{14a}$$

$$\dot{y} = U\sin(\chi) \tag{14b}$$

$$\dot{\chi} = r + \frac{\dot{u}v - \dot{v}u}{U^2} \tag{14c}$$

Simpler in \dot{x} and \dot{y} , more difficult in χ , which now includes dynamics. It is theoretically possible for the vehicle to turn without the course changing!

Dynamics: Maneuvering VS Dynamic positioning

Maneuvering

- ► The ship is moving at some positive speed, which is sometimes considered constant
- No frequency dependencies in the hydrodynamic parameters (i.e. no waves)
- Most vehicles are underactuated in this domain

Dynamic positioning

- The vehicle stands stillish, but are affected by waves
- Frequency-dependent models
- Wave spectra important
- Thrusters are of more use at low speeds, hence it is more common with fully actuated vehicles

The complete, robot-like, dynamics equation from [Fossen, 2011]:

$$\mathbf{M}\dot{\mathbf{\nu}} + \mathbf{C}(\mathbf{\nu})\mathbf{\nu} + \mathbf{D}(\mathbf{\nu})\mathbf{\nu} + \mathbf{g}(\mathbf{\eta}) = \tau + \tau_{wind} + \tau_{wave}$$
 (15)

- ▶ **M**: Mass and added mass matrix
- C: Coriolis and centripetal matrix (stuff that happens because we turn)
- ▶ **D**: Damping matrix
- g: Gravitational effects
- $\triangleright \tau$: Forces and moments from actuators
- ightharpoonup au_{wind} and au_{wave} : Forces and moments from environment

3 DOF case with linear damping:

- ► Roll, pitch and heave is zero
- We are floating or neutrally buoyant: ignore gravity
- lacktriangle We assume linear damping: $m{D}(m{
 u})m{
 u} = m{D}m{
 u}$
- Ship design: port-starboard symmetry, BODY frame located in center of gravity

3 DOF case: 10 parameters

$$\mathbf{M} = \begin{bmatrix} m_{11} & 0 & 0 \\ 0 & m_{22} & m_{23} \\ 0 & m_{23} & m_{33} \end{bmatrix}$$
 (16)

$$\boldsymbol{D} = \begin{bmatrix} d_{11} & 0 & 0 \\ 0 & d_{22} & d_{23} \\ 0 & d_{32} & d_{33} \end{bmatrix}$$
 (17)

$$\boldsymbol{C}(\boldsymbol{\nu}) = \begin{bmatrix} 0 & 0 & -m_{22}v - m_{23}r \\ 0 & 0 & m_{11}u \\ m_{22}v + m_{23}r & -m_{11}u & 0 \end{bmatrix}$$
(18)

How to find the parameters?

- Ask your local hydrodynamics expert
- Experiments and curve fitting
 - Turning circle
 - Kempf's zigzag maneuver
 - Pull-out maneuver
 - Stopping trials
- ▶ The dark side: can machine learning be used?

Complete vehicle model in 3DOF

Vehicle model of a ship with rudder and propeller in component form.

$$\dot{x} = u \cos(\psi) - v \sin(\psi),$$
 (19a)
 $\dot{y} = u \sin(\psi) + v \cos(\psi),$ (19b)
 $\dot{\psi} = r,$ (19c)

$$\dot{u} = F_u(u, v, r) + \tau_u, \tag{19d}$$

$$\dot{v} = X(u)r + Y(u)v, \tag{19e}$$

$$\dot{r} = F_r(u, v, r) + \tau_r. \tag{19f}$$

Note: Underactuation in sway

Complete vehicle model in 3DOF

A quick look on $F_u(v,r)$, $F_r(u,v,r)$, X(u) and Y(u)...

$$F_{u}(u,v,r) \triangleq \frac{1}{m_{11}}(m_{22}v + m_{23}r)r - \frac{d_{11}}{m_{11}}u$$
 (20)

$$X(u) \triangleq \frac{m_{23}^2 - m_{11} m_{33}}{m_{22} m_{33} - m_{23}^2} u + \frac{d_{33} m_{23} - d_{23} m_{33}}{m_{22} m_{33} - m_{23}^2}$$
(21)

$$Y(u) \triangleq \frac{(m_{22} - m_{11})m_{23}}{m_{22}m_{33} - m_{23}^2}u - \frac{d_{22}m_{33} - d_{32}m_{23}}{m_{22}m_{33} - m_{23}^2}$$
(22)

$$F_{r}(u, v, r) \triangleq \frac{m_{23}d_{22} - m_{22}(d_{32} + (m_{22} - m_{11})u)}{m_{22}m_{33} - m_{23}^{2}}v + \frac{m_{23}(d_{23} - m_{11}u) - m_{22}(d_{33} + m_{23}u)}{m_{22}m_{33} - m_{23}^{2}}r$$
(23)

Surge and Yaw controllers

Surge and yaw

$$\dot{u} = F_u(u, v, r) + \tau_u, \tag{24}$$

$$\dot{r} = F_r(u, v, r) + \tau_r. \tag{25}$$

can be controlled using feedback linearizing controllers:

$$\tau_u = -F_u(u, v, r) + \frac{d_{11}}{m_{11}}u_d + \dot{u}_d - k_u(u - u_d), \tag{26}$$

$$\tau_r = -F_r(u, v, r) + \ddot{\psi} - k_{\psi}(\psi - \psi_d) - k_r(\dot{\psi} - \dot{\psi}_d), \tag{27}$$

 k_u , k_ψ and k_r are constant, positive gains. Also possible: PID control.

The dark side: Machine learning

- ► Finding a controller = finding a function
- Can use machine learning to find parameters or function
- Problem with guarantees
- Difficult to find cost function
- ► Rely on a good model
- Example: Summer intern Marius Sleire Rundhovde

The dark side: Machine learning

$$\begin{aligned} 20 \cdot R(\cdot) &= e^{\frac{-64}{\pi} \delta_{\psi}^2} + e^{-10000 \delta_{\psi}^2} & \text{Base reward} \\ &- \frac{1}{12500} \cdot \dot{u}_{steering}^2 & \text{Steering derivative penalty} \\ &+ \begin{cases} \frac{1}{3} & \text{if } \delta_{\psi,t} \leq \text{boundary and } \dot{\delta}_{\psi,t} \leq 0.005 \\ 0 & \text{otherwise} \end{cases} & \text{Low error derivative reward} \\ &- \begin{cases} \frac{1}{5} & \text{if } \delta_{\psi,t} > \text{boundary and } \dot{\delta}_{\psi,t} \leq \dot{\delta}_{\psi,t-1} \\ 0 & \text{otherwise} \end{cases} & \text{Error not decreasing penalty} \\ &- \min(\frac{1}{25}(1 - \sum_{i=0}^9 |\Delta u_{steering,t-i}|), \ 0) & \text{Sum change steering penalty} \end{aligned}$$

Example reward function - From Marius Sleire Rundhovde

The dark side: Machine learning

Heading controller using deep learning - From Marius Sleire Rundhovde

Guidance

- Heading and surge are assumed to be perfectly controlled
- Heading and surge references are usually generated by a guidance system
 - Path following
 - Trajectory tracking
 - Target following
- A guidance system is usually reactive. A deliberate approach would be motion planning, MPC etc.
- ▶ Can either control course χ or heading ψ , depending on the measurements and controller available

Path following of straight lines

- A typical Hugin or Odin mission consists of a set of waypoints
- The waypoints can be made either by the user or by a high-level autonomy system
- The vehicle is affected by current, which is often constant or very slowly varying
- Current compensation: Either use course control, or compensate by adding integral effect
- Good idea to use both

Line of Sight guidance law

- Aim toward a point Δ m along the path
- Assume no disturbances
- Coordinate system rotated so that the x-axis is aligned with the desired path
- $\triangleright \mathcal{P} \triangleq \{(x,y) \in \mathbb{R}^2 : y = 0\}$

The LOS guidance law

Line of Sight guidance law

Desired heading:

$$\psi_d = -\tan^{-1}(\frac{y}{\Delta}) \tag{28}$$

If we add sideslip compensation:

$$\psi_d = -\tan^{-1}(\frac{y}{\Delta}) - \beta \tag{29}$$

Which gives the desired course:

$$\chi_d = -\tan^{-1}(\frac{y}{\Delta}) \tag{30}$$

The LOS guidance law

Integral Line of Sight guidance law

- Nominal: Aim toward a point Δ m along the path
- ► Integrate the cross track error to counter disturbances
- ► The integral effect makes the vessel aim towards a parallel path
- Makes it possible to sideslip along the path
- ► First presented in [Børhaug et al., 2008]

The ILOS guidance law

Necessary assumptions

- ▶ **Assumption 1:** The ocean current constant, irrotational and bounded. Hence, there exists a constant $V_{\max} \geq 0$ such that $V_{\max} \geq \sqrt{V_x^2 + V_y^2}$.
- Assumption 2: The vehicle can move faster than the current
- ► Assumption 3: $Y(u) \le -Y_{\min} < 0$

$$\dot{x} = u\cos(\psi) - v\sin(\psi) \tag{31a}$$

$$\dot{y} = u\sin(\psi) + v\cos(\psi) \tag{31b}$$

$$\dot{v} = X(u)r + Y(u)v \tag{31c}$$

Integral Line of Sight guidance law

Guidance law:

$$\psi_d \triangleq -\tan^{-1}(\frac{y + \sigma y_{\text{int}}}{\Delta})$$
 (32a)

$$\dot{y}_{\rm int} \triangleq \frac{\Delta y}{(y + \sigma y_{\rm int})^2 + \Delta^2}$$
 (32b)

The integral term growth rate will decrease for large cross-track errors y.

The ILOS guidance law

Summary

- Reference frames and DOFs
- ► Kinematics: From BODY to NED
- Dynamics
- ► 3DOF example
- Guidance and control
 - ► LOS guidance

- Børhaug, E., Pavlov, A., and Pettersen, K. Y. (2008).
 Integral LOS control for path following of underactuated marine surface vessels in the presence of constant ocean currents.
 In *Proc. 47th IEEE Conference on Decision and Control*, pages 4984–4991, Cancun, Mexico.
- Fossen, T. I. (2011).

 Handbook of marine craft hydrodynamics and motion control.

 John Wiley & Sons.