线性代数 A(II) 习题课讲义 08

Caiyou Yuan

June 6, 2022

约定这里所提及的线性空间均是域 F 上的有限维线性空间.

1 线性空间的张量积

Definition 1. 对于线性空间 U, V, 若存在线性空间 T 和双线性映射 $\otimes : U \times V \to T$, 满足:

* 对于任一线性空间 W, 以及双线性映射 $f:U\times V\to W$, 都存在唯一的线性映射 $F:T\to W$, 使得 $f=F\circ\otimes$,

则称二元组 (T, \otimes) 是 U, V 的张量积.

Remark. 说明 U,V 的张量积在同构的意义下是唯一的, 即若 (T_1,\otimes_1) , (T_2,\otimes_2) 均为 U,V 的张量积, 则 T_1 和 T_2 同构. 所以我们用 $U\otimes V$ 表示 U,V 的张量积, 这里省略了双线性映射 \otimes .

Remark. 说明 U,V 的张量积是存在的. 取 T 为 U,V 上的双线性函数空间, 即 $T = L(U^*,V^*;F)$.

Remark. 证明上述性质 * 等价于

*1 $T=span(\mathrm{Im}\,\otimes)$ *2 对于任一线性空间 W,以及双线性映射 $f:U\times V\to W$,都存在线性映射 $F:T\to W$,使得 $f=F\circ\otimes$,

Remark. $Im \otimes \$ 是 T 的子空间么? 若是给出证明, 若不是举出反例.

Remark. 证明 $U \otimes V$ 和 $V \otimes U$ 同构.

2 多个线性空间的张量积

Definition 2. 对于线性空间 $U_i(i=1,\cdots,N)$, 若存在线性空间 T 和 N 重线性映射 $\otimes:U_1\times\cdots\times U_N\to T$, 满足:

* 对于任一线性空间 W, 以及 N 重线性映射 $f:U_1\times\cdots\times U_N\to W$, 都存在唯一的线性映射 $F:T\to W$, 使得 $f=F\circ\otimes$,

则称二元组 (T, \otimes) 是 $U_i(i = 1, \dots, N)$ 的张量积.

Remark. 这里的存在唯一性,和上一节 N=2 的情形说明方式相同.

Remark.	证明	$U_1\otimes U_2$	$U_2 \otimes U_3$	和 (U ₁	$\otimes U_2) \otimes$	$0U_3$ 同和	1. 其中	U_1, U_2, U_3	是三个组	线性空间.

3 线性变换的张量积

Definition 3. 对于线性空间 U,V,设 A,B 分别是 U,V 上的线性变换,则存在唯一的 $U\otimes V$ 上的线性变换,记为 $A\otimes B$,使得

$$(A \otimes B)(\alpha \otimes \beta) = A\alpha \otimes B\beta, \quad \forall \alpha \in V, \beta \in U.$$

$$(3.1)$$

称 $A \otimes B$ 为 A, B 的张量积.

Remark. 证明满足(3.1)的线性映射是存在唯一的.

Remark. 若 A_1,A_2 是 U 上的线性变换, B_1,B_2 是 V 上的线性变换, 说明 $(A_1\otimes B_1)(A_2\otimes B_2)=A_1A_2\otimes B_1B_2$

Remark. 说明 $\operatorname{Im}(A \otimes B) = \operatorname{Im} A \otimes \operatorname{Im} B$, $\operatorname{rank}(A \otimes B) = (\operatorname{rank} A)(\operatorname{rank} B)$

Remark. 证明 $(A \otimes B)_{\Phi_1 \otimes \Phi_2} = A_{\Phi_1} \otimes B_{\Phi_2}$, 其中 $\Phi_1 = \{\alpha_1, \cdots \alpha_n\}$, $\Phi_2 = \{\beta_1, \cdots \beta_m\}$ 分别是 U, V 的一组基. A_{Φ_1}, B_{Φ_2} 分别是 A, B 在基 Ψ_1, Ψ_2 下的矩阵, $A_{\Phi_1} \otimes B_{\Phi_2}$ 中的 \otimes 表示矩阵的 Kronecker 乘积.

Remark. 设 A,B 分别是域 F 上的 n,m 级矩阵, 证明 $A\otimes B$ 和 $B\otimes A$ 相似.