

Introduction

Plan

- > Eléments introductifs
 - Concepts, vocabulaire, rappels
 - Retour sur un exemple concret
 - Tri par fusion
 - Classes de complexité

Rappels

> Algorithme :

- Suite (ordonnée) d'instructions permettant de réaliser une tâche
- Vision de haut niveau masquant certains détails de mise en œuvre
- Focalisation sur la suite logique (abstraction des contingences matérielles)

> Programme

- Traduction dans un langage de programmation d'un algorithme
- Syntaxe, sémantique à respecter
- Le texte devient action

Construction d'un algorithme

- > Etant donné un énoncé du problème
 - Données disponibles (d)
 - Résultats attendus (r)
- > Fournir une suite d'instructions permettant étant donné d de construire r
 - Instructions =?

Construction de d'algorithme

- ➤ Résoudre un problème = trouver la suite logique de tous les ordres nécessaire à la solution → algorithme
 - Décomposer l'énoncé en étapes
 - Définir les objets manipulés
 - Définir les opérations (actions)
- Exemple: convertir un nombre entier de secondes en j/h/m/s

Un premier exemple

> La suite de fibonacci

Suite de fibonacci – récursivité multiple

$$F_0 = 0, F_1 = 1, \forall n \ge 2, F_n = F_{n-1} + F_{n-2}$$

```
static int fib(int n){
   if(n <= 1) return n; // cas de base
   else return fib(n-1)+fib(n-2);
}</pre>
```

Carrés de Fibonacci en spirale: (extrait de Wikipedia)

			,	,_						
	3		Ĺ							
			1	1						
						Ш	- 5	2	Ш	
ш		Ļ		Ш		Ш	_`	_	Ш	L
ш		5		ш		Ш			Ш	L

Un premier exemple

- > La suite de fibonacci
- F(48) = ???
- > Essayons
- > Et F(65)

Autres écritures de l'algorithme?

- > Voir code
- > Pourquoi est-ce lent (ou pas)?
- > Pourrait on prédire le temps qui va être mis?

Problème de complexité

Deux critères de performances: temps d'exécution et place en mémoire

Nombre d'appels (temps d'exécution) ...?

Représentation des données/résultats

- > Sous la forme de type de « données »
 - Entier, réel, ...
 - Classe d'objet
 - Et plus généralement
 - Enumération, (bleu, blanc, rouge)
 - Restriction 1..20
 - "renomage": type indice = entier, type patronyme = chaine,
 - Etc.
- > Type de données
 - Description des valeurs du type (intension/extension)
 - Opérations sur le type
 - Ex: booleen, liste, tableau, graphe

Représentation des données

- > Coût en mémoire
 - Représentation des informations
- > Coût d'utilisation
 - Ex: liste
 - Opération ajout en queue
 - Si liste chainée « classique » → tout parcourir
 - Si liste dans un tableau ou liste chainée avec pointeur de queue
 - → 2 ou 3 opérations

Instructions

- > Affectation (et expression)
- > Condition
- > Itérations
- Procédure/fonction (appel)

Exécution d'un algorithme

- > Programmation (implantation) dans un langage
- > Exécution sur une machine
- > Consommation de ressources
 - Mémoire
 - Processeur (temps de calcul)
- > Comparer deux algorithmes devient dépendant
 - De la machine
 - De l'implantation

Stratégies de conception d'algo.

- > Force brute
 - une approche directe, OK pour des pb simples
- > Diviser pour régner
 - découper un problème en petite taille, typiquement à l'aide de la récursivité
- > Approche gloutonne
 - espérer que l'optimalité locale conduit à l'optimalité globale, mais ne marche pas dans tous les cas, eg. rendu de monnaie
- > Programmation dynamique
 - optimiser des sommes de fonctions monotones croissantes sous contrainte, par le principe : toute solution optimale s'appuie elle-même sur des sousproblèmes résolus localement de façon optimale
- > Backtracking
 - pb d'optimisation et combinatoires, avec une approche sans exploiter tout espace d'état

Intérêts

- > Gestion d'un annuaire
 - Opérations
 - Ajout, suppression et consultation d'un contact
 - Combien de temps pour faire une opération selon l'implantation et le nombre de contacts
 - Implantations possibles
 - Tableau (statique) = ???
 - Tableau dynamique
 - Liste
 - Arbre binaire de recherche
 - Table

Comparaison d'algorithmes

- > Notion de complexité
 - Nombre d'opération fondamentales nécessaires à son exécution
- > Abstraction dans un souci de généralité
 - Pas de considération de la machine, système, langage, compilateur,
- > Modèle
 - On considère que toutes les opérations ont le même coût
 - On exprime le coût mémoire/exécution comme une fonction de la taille des données

Principes de calcul

- > Séquences d'instruction
 - Cumul
 - P(i1;i2;i3) = P(i1)+P(i2)+P(i3)
- > Condition
 - Majorant
 - $P(si \ C \ alors \ A \ sinon \ S) \le P(C) + max \ (P(A), P(S))$

> Itération

- Cumul sur le nombre d'itération
- Somme(P(i)) où
 - i = variable d'itération;
 - P(i) nombre d'opérations lors de l'exécution de <u>la ième itération</u>
- > Fonction/procédure
 - Non récursif : reprendre les principes ci-dessus
 - Récursif = formule de récurrence

fonction FunctionRecursive (n)

```
1 si (n > 1) alors
```

- 2 FunctionRecursive(n/2), coût T(n/2)
- 3 Traitement(n), coût C(n)
- 4 FunctionRecursive(n/2), coût T(n/2)

Equation récursive

$$T(n) = 2 * T(n/2) + C(n)$$

$$\begin{aligned} &\text{si } C(n) = 1 \text{ alors } T(n) = K \times n \\ &\text{si } C(n) = n \text{ alors } T(n) = K \times n \times \log n \end{aligned}$$

En pratique

```
L: tableau [1..n] d'element j \leftarrow 1

X entier Tant que (j <=n) et L[j]!=X

j \leftarrow j+1

ftq
```

Nombre d'itérations, nombre d'opérations par itération

Qu'est-ce qui est significatif?

En pratique

```
L: tableau [1..n] d'element j \leftarrow 1

X entier Tant que (j <=n) et L[j]!=X

j \leftarrow j+1

ftq
```

Qu'est-ce qui est significatif?

j ← j+1 : disparaît avec un « for » L[j] : structure de tableau (disparaît avec une liste mais apparition de nouvelles instructions)

En pratique

```
i \leftarrow 1
 L: tableau [1..n] d'element
 X entier
                                      Tant que (j \le n) et L[j]! =
                                      X faire
 j entier
                                         i \leftarrow i+1
                                      ftq
C'est une recherche séquentielle
       significatif : comparaisons de X
             Complexité:
                    meilleur cas 1
                    pire cas n
                                         O(n)
                    en moyenne? Dépend des données propension
    V. Chevrier
```


Compromis espace/temps

- > Perdre de l'espace pour gagner du temps
- > Perdre du temps pour gagner de l'espace
- > Ex:
 - calculer une propriété quand nécessaire
 - La calculer une fois et la stocker
- > Trouver un compromis
 - Efficacité demande souvent de l'espace (en plus)

Comparaison d'algorithme

- > Ordre de grandeur
 - Soit deux algorithmes A et B et leurs complexités P(A) et P(B)
 - Comment les comparer ?

Ordre de grandeur

Complexité un exemple concret

- > Tri par fusion
 - Complexité en temps (nombre d'opérations)
 - Complexité en espace (mémoire nécessaire)

Tri par fusion est un exemple typique de « diviser pour résoudre » Principe:

- -couper en deux le tableau à trier
- -trier chacune des deux moitiés en appelant récursivement la même méthode, ceci jusqu'au point où le tableau ne contient plus qu'un élément -Interclasser les deux tableaux par la méthode de fusion

Exemple de fusion: $int[] t = {3, 5, 7, 3, 4, 6};$

Tri par fusion: un exemple

[source: wikipédia]


```
static int[] fusionner(int[] tg, int[] td) {
        int[] f = new int[tg.length + td.length];
        int q = 0, d = 0;
        for (int k = 0; k < f.length; k++) {
            // f[k] est la case à remplir
            if(g >= tg.length) // g est invalide
                f[k] = td[d++];
            else if(d >= td.length) // d est invalide
                f[k] = tq[q++];
            else // g et d sont valides
                if(tg[g] <= td[d])
                    f[k] = tq[q++];
                else // tg[g] > td[d]
                    f[k] = td[d++];
        return f;
                             Nb de comparaisons: O(n)
```

II S


```
static int[] triFusion(int[] t){
  if(t.length == 1) return t;
  int m = t.length / 2;
  int[] tg = sousTableau(t, 0, m);
  int[] td = sousTableau(t, m, t.length);
// on trie les deux moitiés
  tg = triFusion(tg);
  td = triFusion(td);
                                     // on crée un tableau contenant t[g..d[
 // on fusionne
                                        static int[] sousTableau(int[] t, int g, int d){
  return fusionner(tg, td);
                                           int[] s = new int[d-g];
                                           for(int i = g; i < d; i++)
                                              s[i-g] = t[i];
                                           return s;
```

V. Chevrier INP LOSEM

La complexité spatiale (place mémoire nécessaire): 2n = O(n)

La complexité temporelle: T(n) = 2T(n/2) + n //correspond au tri de deux tableaux de n/2, plus copie d'un tableau n

Résolution de l'équation récurrente:

- -diviser par n: T(n)/n = T(n/2)/(n/2) + 1
- -poser $n = 2^k$, on a:

$$\frac{T(2^{k})}{2^{k}} = \frac{T(2^{k-1})}{2^{k-1}} + 1 = \frac{T(2^{k-2})}{2^{k-2}} + 2 = \dots = \frac{T(1)}{1} + k$$

-comme k=log₂n, on a:

$$T(2^k) = T(n) = (k+1)2^k = (\log_2 n + 1)n = O(n\log_2 n)$$

Combien de tableaux sont créés à chaque étape ?

```
static int[] triFusion(int[] t){
  if(t.length == 1) return t;
  int m = t.length / 2;
  int[] tg = sousTableau(t, 0, m);
  int[] td = sousTableau(t, m, t.length);
// on trie les deux moitiés
  tg = triFusion(tg);
  td = triFusion(td);
 // on fusionne
  return fusionner(tg, td);
```



```
static int[] fusionner(int[] tg, int[] td) {
        int[] f = new int[tg.length + td.length];
        int q = 0, d = 0;
        for (int k = 0; k < f.length; k++) {
            // f[k] est la case à remplir
            if(g >= tg.length) // g est invalide
                f[k] = td[d++];
            else if(d >= td.length) // d est invalide
                f[k] = tq[q++];
            else // g et d sont valides
                if(tg[g] <= td[d])
                    f[k] = tq[q++];
                else // tg[g] > td[d]
                    f[k] = td[d++];
        return f;
                             Nb de comparaisons: O(n)
```


- > Étape 1: N données
 - N/2 + N/2 + N = 2N
- > Etape 2 N/2 données
 - $\dots = N$
- > Etape 3 N/4 données
 - N/2

Combien d'étapes ?

$$2(N+N/2+N/4+...)=2N(1+1/2+1/4+1/8+..)<4N$$

- > Comment la réduire ?
- > Idée:
 - Gérer un seul tableau pour stocker
 - Les sous tableaux sont désignés par indices de début et de fin


```
static int[] triFusion(int[] t, int gauche, int droite ){
  if(t.length == 1) return t;
      int m = t.length / 2;
      int[] tg = sousTableau(t, 0, m);
       int[] td = sousTableau(t, m, t.length);
// on trie les deux moitiés
  tg = triFusion(tg.....);
  td = triFusion(td,....);
 // on fusionne
  return fusionner(tg, td, .....);
```


Retour (comparaison d'algorithmes)

Notion de classes de complexité

Ou

Pourquoi utiliser $O(n^2)$ au lieu du nombre exact $(n^2 - n)/2$?

Soient deux fonctions positives f et g, on dit que f(n) est O(g(n)) s'il existe deux constantes positives c et n_0 telle que $f(n) \le cg(n)$ pour tout $n \ge n_0$.

L'idée est donc d'établir un ordre de comparaison relatif entre les fonctions f et g. Cette définition indique qu'il existe une valeur n_0 à partir de laquelle f(n) est toujours inférieure ou égale à cg(n). On dit alors que f(n) est de l'ordre de g(n).

Nous pouvons montrer facilement que la fonction $(n^2 - n)/2$ est de l'ordre de $O(n^2)$.

Pour que $(n^2 - n)/2 \le c n^2$, en prenant $c = \frac{1}{2}$, il est évident que n'importe quel $n_0 > 0$ vérifie l'inégalité.

Remarque: on aurait pu aussi bien écrire que $(n^2 - n)/2$ est $O(n^3)$ ou $O(n^5)$, mais $O(n^2)$ est plus précis.

D'une façon générale, on choisira une fonction g la plus proche possible de f, en respectant les règles suivantes:

```
-cf(n) = O(f(n)) pour tout facteur constant c

-f(n) +c = O(f(n)) pour tout facteur constant c

-f(n)+g(n) = O(\max(f(n), g(n)))

-f(n) \times g(n) = O(f(n) \times g(n))

-Si f(n) est un polynôme de degré m,

f(n) = a_0 + a_1 n + a_2 n^2 + ... + a_m n^m, alors f(n) est de O(n^m).

-c^n = O(c^n) pour tout c > 1

-log n^m = O(log n) pour tout m > 0

-log n = O(log n)
```


- Les algorithmes usuels peuvent être classés en un certain nombre de grandes classes de complexité
 - Temps constant O(1)
 - Sous-linéaire/logarithmique: O(log n)
 - Linéaire: O(n) ou O(n log n)
 - Polynômiale: O(n^k)
 - Exponentielle: O(cⁿ), c > 1
 - Non exponentielle (Nexp) ...

n	10	20	30	40	50	60
complexite						
n	0,00001 secondes	0,00002 secondes	0,00003 secondes	0,00004 secondes	0,00005 secondes	0,00006 secondes
n ²	0,0001 secondes	0,0004 secondes	0,0009 secondes	0,0016 secondes	0,0025 secondes	0,0036 secondes
n ³	0,001 secondes	0,008 secondes	0,027 secondes	0,064 secondes	0,125 secondes	0,216 secondes
n ⁵	0,1 secondes	3,2 secondes	24,3 secondes	1,7 minutes	5,2 minutes	13,0 minutes
2 ⁿ	0,001 secondes	1,0 secondes	17,9 minutes	12,7 jours	35,7 ans	366 siècles
3 ⁿ	0,059 secondes	58 minutes	6,5 ans	3855 siècles	2x10 ⁸ siècles	1,3x10 ¹³ siècles

Les problèmes classiques

- > Tri
- > Recherche
- > Traitement des chaînes de caractères
- > Graphes (le plus court chemin, coloriage,...)
- > Problèmes combinatoires
- > Calcul numérique (intégrale, systèmes d'équations, ...)

En bref

> Concevoir et analyser des algorithmes résolvant ces familles problèmes

- > Concevoir
 - Comment construire l'algorithme ?
- > Analyser
 - Estimer les ressources nécessaires à son utilisation
- > Relations entre complexité et méthode de conception

