II.2.1. Tipuri de funcții

Funcțiile Oracle sunt împărțite astfel:

- **Funcții singulare** acestea operează la un moment dat asupra unei singure înregistrări. Aceste funcții vor fi discutate în acest capitol
- **Funcțiile de grup** operează asupra unui grup de înregistrări și returnează o singură valoare pentru întregul grup.

Funcțiile singulare pot fi folosite în:

- clauza SELECT, pentru a modifica modul de afișare a datelor, pentru a realiza diferite calcule etc.
- clauza WHERE, pentru a preciza mai exact care sunt înregistrările ce se afișează
- clauza ORDER BY

Funcțiile singulare (single-row functions) pot fi la rândul lor împărțite în:

- Funcții care operează asupra șirurilor de caractere
- Funcții numerice
- Funcții pentru manipularea datelor calendaristice
- Funcții de conversie care convertesc datele dintr-un tip în altul
- Funcții de uz general.

Unele funcții, precum **TRUNC** și **ROUND** pot acționa asupra mai multor tipuri de date, dar cu semnificații diferite.

II.2.2. Tabela DUAL

În cele ce urmează vom folosi tabela **DUAL** pentru a testa modul de operare a funcțiilor singulare.

Această tabela este una specială, care conține o singură coloană numită "DUMMY" și o singură linie.

Tabela **DUAL** se folosește atunci când realizăm calcule, sau evaluăm expresii care nu derivă din nici o tabelă anume.

Fie de exemplu comanda

SELECT (5*7-3)/2 FROM DUAL;

Expresia evaluată în această comandă nu are în componență nicio coloană a vreunei tabele, motiv pentru care este nevoie să apelăm la tabela **DUAL**.

Putem privi tabela **DUAL** ca pe o variabilă în care memorăm rezultatele calculelor noastre.

Tabela **DUAL** este o facilitate specifică Oracle. Este echivalentul tabelei **SYSDUMMY1** din **DB2**, tabelă aflată în schema sistem **SYSIBM**. În **Microsoft SQL Server 2000** este permisă scrierea de interogări fără clauza **FROM**.

II.2.3. Funcții asupra șirurilor de caractere

Șirurile de caractere pot conține orice combinație de litere, numere, spații, și alte simboluri, precum semne de punctuație, sau caractere speciale. În Oracle există două tipuri de date pentru memorarea șirurilor de caractere:

- CHAR pentru memorarea șirurilor de caractere de lungime fixă
- VARCHAR2 pentru memorarea șirurilor de caractere având lungime variabilă.
- **DLOWER(sir)** convertește caracterele alfanumerice din șir în litere mici.
- **♥UPPER(sir)** convertește caracterele alfanumerice din șir în litere mari.
- ☼INITCAP(sir) convertește la majusculă prima literă din fiecare cuvânt al șirului. Cuvintele sunt șiruri de litere separate prin orice caracter diferit de literă. Literele din interiorul cuvântului care erau scrise cu majuscule vor fi transformate în litere mici.

Exemplu	Rezultatul afișat
SELECT LOWER(first_name)	afișează prenumele persoanelor din tabela employees
FROM employees;	scrise cu litere mici
SELECT LOWER('abc123ABC')	abc123abc
FROM DUAL;	
SELECT UPPER('abc123ABC')	ABC123ABC
FROM DUAL;	
SELECT INITCAP('aBc def*ghi')	Abc Def*Ghi
FROM dual;	Explicație șirul conține 3 cuvinte aBc def și ghi

√CONCAT(sir1, sir2) - concatenează două șiruri de caractere

Exemplu	Rezultatul afișat
SELECT CONCAT('abc','def')	abcdef
FROM dual;	Explicație comanda poate fi transcrisă folosind operatorul de concatenare astfel:
	SELECT 'abc' 'def'
	FROM dual;
	SELECT first_name ' ' last_name "nume angajat" from emloyees;

♥SUBSTR(sir, poz, nr) - extrage din **sir** cel mult **nr** caractere începând din poziția **poz**.

Observații

- dacă din poziția **poz** până la sfârșitul șirului sunt mai puțin de **nr** caractere, se vor extrage toate caracterele de la poziția **poz** până la sfârșitul șirului.
- parametrul **poz** poate fi și o valoare negativă, ceea ce înseamnă că poziția de unde se va începe extragerea caracterelor din șir se va determina numărând caracterele din șir de la dreapta spre stânga (vezi ultimele 3 exemple de mai jos)
- dacă **nr** nu este specificat, se va returna subșirul începând cu caracterul de pe poziția **poz** din șir până la sfârșitul șirului.

Exemplu	Rezultatul afișat
select substr('ab <u>cd</u> ef',3,2)	cd
from dual	
select substr('ab <u>cdef</u> ',3,7)	cdef
from dual	Explicație. Chiar dacă din poziția 3 până la sfârșitul șirului nu mai sunt 7 caractere se returnează caracterele rămase
select substr('ab <u>cdef</u> ',3)	cdef
from dual	Explicație. Același rezultat ca mai sus dacă nu se specifică numărul de caractere ce se extrag
select substr('abcdef',7,3) from dual	nu se va afișa nimic deoarece nu există poziția 7 în șir, acesta având doar 5 caractere.
select substr('ab <u>cd</u> ef',-4,2)	cd
from dual	Explicație. Se extrag două caractere începând cu al patrulea caracter din dreapta.
select substr('ab <u>cdef</u> ',-4,7)	cdef
from dual	
select substr('abcdef',-10,5)	nu se va afișa nimic deoarece șirul conține mai puțin de 10
from dual	caractere

ŢINSTR(sir, subsir, poz, k) - returnează poziția de început a celei de a k-a apariții a subșirului subșir în șirul sir, căutarea făcându-se începând cu poziția poz.

Dacă parametrii **poz** și **k** lipsesc, atunci se va returna poziția primei apariții a subșirului **subsir** în întregul șir **sir**.

Poziția de unde începe căutarea poate fi precizată și relativ la sfârșitul șirului, ca și în cazul funcției **substr**, dacă parametrul **poz** are o valoare negativă.

Exemplu	Rezultatul afișat
select	3
instr('ab <u>cd</u> abcdabc','cd')	

Exemplu	Rezultatul afișat
from dual	
select	0
instr('abcd','ef')	
from dual	
select instr('abcd','bce')	0
from dual	
select	7
instr('abab <u>ababababab</u> ','ab',4,2)	Explicație. Se începe căutarea din poziția a patra, adică în
from dual	zona subliniată cu o linie, și se afișează poziția de start a
	celei de a doua apariții, (subșirul subliniat cu linie dublă)
select	9
instr('abababab <u>abab</u> ','ab',-4,1)	
from dual	

₹LENGTH(sir) - returnează numărul de caractere din șirul **sir**.

Exemplu	Rezultatul afișat
select length('abcd')	4
from dual	

♣ LPAD(sir1, nr, sir2) - completează şirul sir1 la stânga cu caracterele din şirul sir2 până ce şirul obținut va avea lungimea nr.

Dacă lungimea șirului **sir1** este mai mare decât **nr**, atunci funcția va realiza trunchierea șirului **sir1**, ștergându-se caracterele de la sfârșitul șirului.

Exemplu	Rezultatul afișat
select lpad('abcd',3,'*')	abc
from dual	
select lpad('abcd',10,'*.')	*.*.*.abcd
from dual	
select lpad('abc',10,'*.')	*.*.*.*abc
from dual	
select lpad('abc',5,'xyzw')	xyabc
from dual	

Exemplu	Rezultatul afișat
select rpad('abcd',3,'*')	abc
from dual	
select rpad('abcd',10,'*.')	abcd*.*.*.
from dual	
select rpad('abc',10,'*.')	abc*.*.*
from dual	
select rpad('abc',5,'xyzw')	abcxy
from dual	

⟨TRIM(LEADING ch FROM sir)

TRIM(TRAILING ch FROM sir)

TRIM(BOTH ch FROM sir)

TRIM(sir)

TRIM(ch FROM sir)

- funcția **TRIM** șterge caracterele **ch** de la începutul, sfârșitul sau din ambele părți ale șirului **sir**.
- în ultimele două formate ale funcției este subînțeleasă opțiunea **BOTH**.
- dacă **ch** nu este specificat se vor elimina spațiile inutile de la începutul, sfârșitul sau din ambele părți ale șirului **sir**.

Exemplu	Rezultatul afișat
select	xaxaa
trim(leading 'a' from 'aaxaxaa')	
from dual	
select	aaxax
trim(trailing 'a' from 'aaxaxaa')	
from dual	
select	xax
trim(both 'a' from 'aaxaxaa')	
from dual	
select	xax
trim('a' from 'aaxaxaa')	
from dual	
select '*' trim(' abc ') '*'	*abc*
from dual	

⟨¬REPLACE(sir, subsir, sirnou) - înlocuiește toate aparițiile subșirului subsir din șirul sir cu
șirul sirnou. Dacă nu este specificat noul șir, toate aparițiile subșirului subsir se vor elimina.

Exemplu	Rezultatul afișat
select replace('abracadabra','ab','xy') from dual	xyracadxyra
select replace('abracadabra','ab','xyz') from dual	xyzracadxyzra
select replace('abracadabra','a') from dual	brcdbr

Combinarea funcțiilor asupra șirurilor de caractere

Evident într-o expresie pot fi folosite două sau mai multe astfel de funcții, imbricate ca în următorul exemplu.

```
SELECT substr('abcabcabc',1,instr('abcabcabc','bc')-1)||
   'xyz' ||
   substr('abcabcabc',instr('abcabcabc','bc')+length('bc'))
FROM dual
```

Să analizăm pe această comandă

```
instr('abcabcabc','bc')
```

retunează poziția primei apariții a șirului 'bc' în șirul 'abcabcabc', adică 2. Primul apel al funcției substr este deci echivalent cu apelul

```
substr('abcabcabc',1,1)
```

adică extrage doar prima litera 'a'. Al doilea apel al funcției substr este echivalent cu

```
substr('abcabcabc',4)
```

adică extrage toate caracterele de la poziția 4 până la sfârșitul șirului, deci 'abcabc'. Așadar cele două apeluri extrag subșirul de dinaintea primei apariții a lui 'bc' în șirul 'abcabcabc', și respectiv de după această apariție. Cele două secvențe se concatenează apoi între ele incluzându-se șirul 'xyz'. În concluzie comanda înlocuiește prima apariție a șirului 'bc' din șirul 'abcabcabc' cu șirul 'xyz'.

II.2.4. Funcții numerice

Aceste funcții operează asupra valorilor numerice și returnează un rezultat numeric. Funcțiile numerice oferite de Oracle sunt destul de puternice.

√ABS(n) – returnează valoarea absolută a argumentului.

Exemplu	Rezultatul afişat

select abs(-5.23) from dual	5.23
select abs(5) from dual	5

- √ACOS(n), ASIN(n), ATAN(n) sunt funcțiile trigonometrice inverse, cu semnificația din matematică. Valoarea returnată de aceste funcții este exprimată în radiani.
- ⟨¬SIN(n), COS(n), TAN(n) sunt funcțiile trigonometrice cu aceeași semnificație ca și la matematică. Argumentul acestor funcții trebuie precizat în radiani.

Exemplu	Rezultatul afișat
select sin(3.1415/2) from dual	.999999998926914037495206086034346145374
select cos(3.1415/2) from dual	.00004632679488004835355670590049419594

Exemplu	Rezultatul afișat	
select power(2,5) from dual	32	
select power(2,0.5) from dual	1.41421356237309504880168872420969807855	
select power(2,-1) from dual	.5	
select power(2,-0.75) from dual	.594603557501360533358749985280237957651	

♦ SQRT (x) – calculează rădăcina pătrată a argumentului. Apelul **SQRT (x)** returnează aceeași valoare ca și **POWER (x, 0.5)**.

Exemplu	Rezultatul afișat
select sqrt(3) from dual	1.73205080756887729352744634150587236694

₹REMAINDER(x,y) – funcția determină mai întâi acel multiplu a lui **y** care este cel mai apropiat de **x**, și returnează apoi diferența dintre **x** și acel multiplu.

Exemplu	Rezultatul afișat
select remainder(10,3)	1
from dual	Explicație. Cel mai apropiat de 10 multiplu a lui 3 este 9. 10-9=1.
select remainder(5,3)	-1
from dual	Explicație. Cel mai apropiat de 5 multiplu a lui 3 este
	6 , iar 5-6=-1 .
select remainder(10,3.5)	-0.5
from dual	Explicație. Cel mai apropiat de 10 multiplu a

Exemplu	Rezultatul afișat	
	lui 3.5 este10.5, iar 10-10.5=-0.5.	
select remainder(-10,3.5)	0.5	
from dual	Explicație. Cel mai apropiat de -10 multiplu a lui 3.5 este-10.5, iar	
	-10-(-10.5)=0.5.	

™OD(x,y) – dacă cei doi parametrii sunt numere întregi, atunci funcția returnează același rezultat ca și funcția **REMAINDER**, adică restul împărțirii lui x la y. Teorema împărțirii cu rest este extinsă de această funcție și pentru numerele reale. Adică se ține cont de relația

unde restul trebuie să fie în modul strict mai mic decât **y**.

Exemplu	Rezultatul afișat
select mod(10,3)	1
from dual	Explicație. 10=3*3+ <u>1</u> .
select mod(5,3)	2
from dual	Explicație. 5=3*1+ <u>2</u>
select mod(10,3.5)	3
from dual	Explicație. 10=3 . 5 * 2 + <u>3</u> .
select mod(-10,3.5)	-3
from dual	Explicație10=3.5*(-2)-3.
select mod(-10,-3.5)	-3
from dual	Explicație10=-3.5*2-3.
select mod(10,-3.5)	3
from dual	Explicație. 10=-3.5* (-2)+3.

Se observă din exemplele anterioare că restul are întotdeauna același semn cu primul parametru.

√SIGN(x) - returnează semnul lui x, adică 1 dacă x este număr pozitiv, respectiv -1 dacă x este număr negativ.

♥CEIL(x) - returnează cel mai mic număr întreg care este mai mare sau egal decât parametrul transmis.

▽FLOOR(x) - returnează cel mai mare număr întreg care este mai mic sau egal decât parametrul transmis.

Exemplu	Rezultatul afișat
select ceil(3) from dual	3
select ceil(-3) from dual	-3

Exemplu	Rezultatul afișat
select ceil(-3.7) from dual	-3
select ceil(3.7) from dual	4
select floor(3) from dual	3
select floor(-3) from dual	-3
select floor(-3.7) from dual	-4
select floor(3.7) from dual	3

 $\sqrt[4]{ROUND(x,y)}$ – rotunjește valoarea lui x la un număr de cifre precizat prin parametrul y.

Dacă al doilea parametru este un număr pozitiv, atunci se vor păstra din \mathbf{x} primele \mathbf{y} zecimale, ultima dintre aceste cifre fiind rotunjită, în funcție de următoarea zecimală.

Al doilea argument poate fi o valoare negativă, rotunjirea făcându-se la stânga punctului zecimal. Cifra a | y | +1 din fața punctului zecimal (numărând de la punctul zecimal spre stânga începând cu 1) va fi rotunjită în funcție de cifra aflată imediat la dreapta ei. Primele | y | cifre din stânga punctului zecimal vor deveni 0.

Cel de al doilea argument este opțional, în cazul în care nu se precizează, este considerată implicit valoarea **0**.

Exemplu	Rezultatul afișat
select round(745.123,2) from dual	745.12
select round(745.126,2) from dual	745.13
select round(745.126,-1)	750
from dual	
select round(745.126,-2)	700
from dual	
select round(745.126,-3)	1000
from dual	
select round(745.126,-4)	0
from dual	
select round(745.126,0)	745
from dual	
select round(745.826,0)	746
from dual	
select round(745.826)	746
from dual	

Exemplu	Rezultatul afișat
select trunc(745.123,2) from dual	745.12
select trunc(745.126,2) from dual	745.12
select trunc(745.126,-1)	740
from dual	
select trunc(745.126,-2)	700
from dual	
select trunc(745.126,-3)	0
from dual	
select trunc(745.126,-4)	0
from dual	
select trunc(745.126,0)	745
from dual	
select trunc(745.826,0)	745
from dual	
select trunc(745.826) from dual	745

II.2.5. Funcții asupra datelor calendaristice

Una dintre caracteristicile importante ale Oracle este abilitatea de a memora și opera cu date calendaristice. Tipurile de date calendaristice recunoscute de Oracle sunt:

- **♥DATE** valorile având acest tip sunt memorate într-un format intern specific, care include pe lângă ziua, luna și anul, de asemenea ora, minutul, și secunda.
- **▽TIMESTAMP** valorile având acest tip memorează data calendaristică, ora, minutul și secunda dar și fracțiunea de secundă.
- √TIMESTAMP WITH [LOCAL] TIME ZONE este similar cu TIMESTAMP, însă se va memora şi
 diferența de fus orar față de ora universală, a orei de pe serverul bazei de date, sau a aplicației client,
 în cazul în care se include opțiunea LOCAL.
- **▽INTERVAL YEAR TO MONTH** memorează o perioadă de timp în ani și luni.
- **☐INTERVAL DAY TO SECOND** memorează un interval de timp în zile, ore, minute și secunde.

Să exemplificăm aceste tipuri de date creând o tabelă de test cu comanda:

```
create table test3
  (data1 DATE,
   data2 TIMESTAMP(5),
   data3 TIMESTAMP(5) WITH TIME ZONE,
   data4 TIMESTAMP(5) WITH LOCAL TIME ZONE)
```

Vom insera acum o linie nouă în această tabelă:

insert into test3 values(sysdate, systimestamp, systimestamp)

și la afișarea tabelei

select * from test3

vom obține rezultatul din figura II.2.3.

DATA1	DATA2	DATA3	DATA4
27-FEB-	27-FEB-07 05.49.35.02886	27-FEB-07 05.49.35.02886 AM -06:00	27-FEB-07 11.49.35.02886
07	AM		AM

Figura II.2.3

Aritmetica datelor calendaristice

Oracle știe să realizeze operații aritmetice asupra datelor calendaristice, astfel adăugarea valorii **1** la o dată calendaristică, va duce la obținerea următoarei date calendaristice:

SELECT sysdate, sysdate+5, sysdate-70 from dual

SYSDATE	SYSDATE+5	SYSDATE-70
21-APR-07	26-APR-07	10-FEB-07

Figura II.2.4. Adunarea unui număr întreg la o dată calendaristică

De asemenea se poate face diferența dintre două date calendaristice, obținându-se numărul de zile dintre cele două date:

SELECT first_name, last_name,

hire_date, sysdate-hire_date

FROM employees

FIRST_NAME	LAST_NAME	HIRE_DATE	SYSDATE-HIRE_DATE
Steven	King	17-JUN-87	7248.185659722222222222222222222222222222222222
Neena	Kochhar	21-SEP-89	6421.185659722222222222222222222222222222222222
Lex	De Haan	13-JAN-93	5211.185659722222222222222222222222222222222222
Alexander	Hunold	03-JAN-90	6317.185659722222222222222222222222222222222222

Figura II.2.5. Diferența dintre două date calendaristice

Deși implicit o dată calendaristică de tip **DATE** nu este afișată în format complet (nu se afișează ora, minutul, secunda), în tabelă se memorează complet. De aceea poate fi uneori derutant rezultatul unor operații aritmetice cu date calendaristice, după cum se vede în figura II.2.6. în care diferența dintre ziua de astăzi și cea de ieri este de **1.187997**....

SELECT sysdate-TO_DATE('20-APR-07','dd-MON-yy') FROM dual

SYSDATE-TO_DATE('20-APR-07','DD-MON-YY')

1.18799768518518518518518518518518519

Figura II.2.6.

De ce se obține acest lucru? Simplu, data de **20 aprilie** a fost precizată fără oră, așadar a fost considerată implicit ora **00:00**. Iar **sysdate** ne-a furnizat data curentă incluzând și ora. Așadar de ieri de la ora **00:00** până astăzi la ora **12:32** a trecut mai mult de o zi.

Funcții cu date calendaristice

Oracle oferă un număr foarte mare de funcții care operează asupra datelor calendaristice, dar în cele ce urmează ne vom opri asupra celor mai importante dintre acestea.

♦ SYSDATE – returnează data și ora curentă a serverului bazei de date.

CURRENT_DATE − returnează data și ora curentă a aplicației client. Aceasta poate să difere de data bazei de date.

SYSTIMESTAMP - returnează data în formatul TIMESTAMP.

select CURRENT_DATE, sysdate, systimestamp

from dual

CURRENT_DATE	SYSDATE	SYSTIMESTAMP
21-APR-07	21-APR-07	21-APR-07 04.33.32.445081 AM -05:00

Figura II.2.7. Funcțiile SYSDATE, CURRENT_DATE și SYSTIMESTAMP

√ADD_MONTHS (data, nrluni) - adaugă un număr de luni la data curentă. Dacă al doilea parametru este un număr negativ, se realizează de fapt scăderea unui număr de luni din data precizată.

Exemplu	Rezultatul afișat	
select sysdate,	27-FEB-07	27-APR-07
ADD_MONTHS(sysdate,2) from dual		
select	27-FEB-07	27-DEC-07
sysdate, ADD_MONTHS(sysdate,-2)		
from dual		

√MONTHS_BETWEEN (data1, data2) – determină numărul de luni dintre două date calendaristice
precizate. Rezultatul returnat poate fi un număr real (vezi figura II.2.8). Dacă prima dată este mai mică (o
dată mai veche) atunci rezultatul va un număr negativ.

select sysdate, hire_date,

MONTHS_BETWEEN(sysdate, hire_date), MONTHS_BETWEEN(hire_date, sysdate) from employees

SYSDATE	HIRE_DATE	MONTHS_BETWEEN(SYSDATE,HIRE_DATE)	MONTHS_BETWEEN(HIRE_DATE,SYSDATE)
21-APR-07	17-JUN-87	238.135216173835125448028673835125448029	-238.135216173835125448028673835125448029
21-APR-07	21-SEP-89	211	-211
21-APR-07	13-JAN-93	171.264248431899641577060931899641577061	-171.264248431899641577060931899641577061
21-APR-07	03-JAN-90	207.586829077060931899641577060931899642	-207.586829077060931899641577060931899642
21-APR-07	21-MAY-91	191	-191

Figura II.2.8. Funcția MONTHS_BETWEEN

- **□ LEAST (data1, data2, ...)** determină cea mai veche (cea mai mică) dată dintre cele transmise ca parametru.

select hire_date, sysdate,
least(hire_date, sysdate), greatest(hire_date, sysdate)
from employees

HIRE_DATE	SYSDATE	LEAST(HIRE_DATE,SYSDATE)	GREATEST(HIRE_DATE,SYSDATE)
17-JUN-87	21-APR-07	17-JUN-87	21-APR-07
21-SEP-89	21-APR-07	21-SEP-89	21-APR-07
13-JAN-93	21-APR-07	13-JAN-93	21-APR-07
03-JAN-90	21-APR-07	03-JAN-90	21-APR-07
21-MAY-91	21-APR-07	21-MAY-91	21-APR-07

Figura II.2.9. Funcțiile LEAST și GEATEST

- ☼NEXT_DAY(data, 'ziua') returnează următoarea dată de 'ziua' de după data transmisă ca parametru, unde 'ziua' poate fi 'Monday', 'Tuesday' etc. În exemplele care urmează data curentă este considerată ziua de marţi, 27 februarie 2007.
- **♦ LAST_DAY (data)** returnează ultima zi din luna din care face parte data transmisă ca parametru.

Exemplu	Rezultatul afișat	
select next_day(sysdate,'Friday')	02-MAR-07	
from dual		
select next_day(sysdate,'TUESDAY')	06-MAR-07	
from dual	Explicație. Chiar dacă ziua curentă este o zi de marți, funcția va returna următoarea zi de marți.	

select last_day(sysdate) from dual	28-FEB-07
select last_day(sysdate+20) from dual	31-MAR-07
select last_day(ADD_MONTHS(sysdate,12)) from dual	29-FEB-07 Explicație. Ziua returnată de sysdate este 27-FEB- 07, la care adăugăm 12 luni, deci obținem data de 27- FEB-08, iar anul 2008 este un an bisect de aceea ultima zi din lună este 29-FEB-08.

select to_char(sysdate,'dd-MON-YY hh:mi AM'),
 round(sysdate) from dual

TO_CHAR(SYSDATE,'DD-MON-YYHH:MIAM')	ROUND(SYSDATE)
21-APR-07 04:41 AM	21-APR-07

Figura II.2.10. Funcția ROUND

În cazul în care este specificat formatul, data va fi rotunjită conform formatului indicat. Câteva dintre formatele cele mai uzuale sunt:

- y, yy, yyyy, year se rotunjește data la cea mai apropiată dată de 1 Ianuarie. Dacă data este înainte de 1 iulie, se va returna data de 1 ianuarie a aceluiași an. Dacă data este după data de 1 iulie se va returna data de 1 ianuarie a anului următor.
- mm, month rotunjește data la cel mai apropiat început de lună. Orice dată calendaristică aflată după data de **16**, inclusiv, este rotunjită la prima zi a lunii următoare.
- ww, week se rotunjește data la cel mai apropiat început de săptămână. Prima zi a săptămânii este considerată lunea. Pentru datele aflate după ziua de joi, inclusiv, se va returna ziua de luni a săptămânii următoare.

Exemplu	Rezultatul afișat
select sysdate,	27-FEB-07
round(sysdate,'year'),	01-JAN-07
round(ADD_MONTHS(sysdate,5),'year')	01-JAN-08
from dual	
select sysdate,	27-FEB-07
round(sysdate,'mm'),	01-MAR-07
round(sysdate+16,'mm'),	01-MAR-07

round(sysdate+17,'mm')	01-APR-07
from dual	
select sysdate,	27-FEB-07
round(sysdate,'ww'),	26-FEB-07
round(sysdate+1,'ww'),	26-FEB-07
round(sysdate+2,'ww')	05-FEB-07
from dual	

⟨¬TRUNC (data, 'format') - trunchează data specificată conform formatului specificat. Se pot folosi aceleași formate ca și în cazul funcției ROUND.

Exemplu	Rezultatul afișat
select sysdate,	27-FEB-07
trunc(sysdate,'year'),	01-JAN-07
trunc(ADD_MONTHS(sysdate,5),'year')	01-JAN-07
from dual	
select sysdate,	27-FEB-07
trunc(sysdate,'month'),	01-FEB-07
trunc(sysdate+16,'month'),	01-MAR-07
trunc(sysdate+17,'month')	01-MAR-07
from dual	
select sysdate,	27-FEB-07
trunc(sysdate,'ww'),	26-FEB-07
trunc(sysdate+1,'ww'),	26-FEB-07
trunc(sysdate+2,'ww')	26-FEB-07
from dual	

II.2.6. Funcții de conversie

Oracle oferă un set bogat de funcții care vă permit să transformați o valoare dintr-un tip de dată în altul.

Transformarea din dată calendaristică în șir de caractere

Transformarea unei date calendaristice în șir de caractere se poate realiza cu ajutorul funcției **TO_CHAR**. Această operație se poate dovedi utilă atunci când dorim obținerea unor rapoarte cu un format precis. Sintaxa acestei funcții este:

TO_CHAR (dt, format)

dt poate avea unul din tipurile pentru date calendatistice (DATE, TIMESTAMP, TIMESTAMP WITH TIME ZONE, TIMESTAMP WITH LOCAL TIME ZONE, INTERVAL MONTH TO YEAR, or INTERVAL DAY TO SECOND). Formatul poate conține mai mulți parametrii care pot afecta modul în care va arăta șirul returnat. Câțiva din acești parametrii sunt prezentați în continuare.

Aspect	Parametru	Descriere	Exemplu
Secolul	сс	Secolul cu două cifre	21
Trimestrul	Q	Trimestrul din an în care se găsește data	3
Anul	YYYY, RRRR	Anul cu patru cifre.	2006
	YY, RR	Ultimele două cifre din an.	06
	Υ	Ultima cifră din an	6
	YEAR, Year	Numele anului	TWO THOUSAND-SIX, Two Thousand-Six
Luna	MM	Luna cu două cifre	02
	MONTH, Month	Numele complet al lunii.	JANUARY, January
	MON, Mon	Primele trei litere ale denumirii lunii.	JAN, Jan
	RM	Luna scrisă cu cifre romane.	IV
Săptămâna	WW	Numărul săptămânii din an.	35
	W	Ultima cifră a numărului săptămânii din an.	2
Ziua	DDD	Numărul zilei din cadrul anului.	103
	DD	Numărul zilei în cadrul lunii	31
	D	Numărul zilei în cadrul săptămânii.	5
	DAY, Day	Numele complet al zilei din săptămână	SATURDAY, Saturday
	DY, Dy	Prescurtarea denumirii zilei din săptămână.	SAT, Sat
Ora	HH24	Ora în formatul cu 24 de ore.	23
	НН	Ora în formatul cu 12 ore.	11
Minutele	MI	Minutele cu două cifre	57
Secundele	SS	Secundele cu două cifre	45
Sufixe	AM sau PM	AM sau PM după cum e cazul.	АМ
	A.M. sau P.M.	A.M. sau P.M. după cum e cazul.	P.M.
	ТН	Sufix pentru numerale (th sau nd sau st)	
	SP	Numerele sunt scrise în cuvinte.	

Aspect	Parametru	Descriere	Exemplu

În cadrul formatului se pot folosi oricare dintre următorii separatori

Dacă în șirul returnat dorim să includem și anumite texte acestea se vor include între ghilimele.

lată în continuare și câteva exemple de folosire a acestei funcții.

Exemplu	Rezultatul afișat
select sysdate,	28-FEB-07
to_char(sysdate,'MONTH DD, YYYY')	FEBRUARY 28, 2007
to_char(sysdate,'Month DD, YYYY')	February 28, 2007
to_char(sysdate,'Mon DD, YYYY')	Feb 28, 2007
from dual	
select	Trimestrul 1 al
to_char(sysdate,'"Trimestrul "Q "al anului " Year')	anului Two Thousand Seven
from dual	
select	Secolul 21
to_char(sysdate,'"Secolul "CC')	
from dual	
select	Wednesday, 28.II.2007
to_char(sysdate,'Day, dd.RM.YYYY') from dual	
select	Wed, 4, 28, 059
to_char(sysdate,'Dy, D, DD, DDD')	
from dual	
select	21:53/09:53 PM
to_char(sysdate,'HH24:MI/HH:MI AM')	
from dual	
select to_char(sysdate+1,'ddth')	01st
from dual	
select to_char(sysdate+1,'ddspth')	First
from dual	
select to_char(sysdate+2,'Ddspth')	Second

Exemplu	Rezultatul afișat
from dual	
select to_char(sysdate+10,'DDspth')	TENTH
from dual	
select to_char(sysdate,'mmsp')	Two
from dual	

Transformarea din șir de caractere în dată calendaristică

Folosind funcția **TO_DATE** se poate transforma un șir de caractere precum **'May 26, 2006'** într-o dată calendaristică. Sintaxa funcției este:

Formatul nu este obligatoriu, însă dacă nu este precizat, șirul trebuie să respecte formatul implicit al datei calendaristice **DD-MON-YYYY** sau **DD-MON-YY**. Formatul poate folosi aceiași parametrii de format ca și funcția **TO_CHAR**.

Exemplu	Rezultatul afișat
select	04-JUL-07
to_date('7.4.07', 'MM.DD.YY')	
from dual;	
select to_date('010101','ddmmyy')	01-JAN-01
from dual	

Formatul RR și formatul YY

Așa cum s-a precizat anterior în formatarea unei date calendaristice se pot folosi pentru an atât **YY** (respectiv **YYYY**) cât și **RR** (respectiv **RRR**). Diferența dintre aceste două formate este modul în care ele interpretează anii aparținând de secole diferite. Oracle memorează toate cele patru cifre ale unui an, dar dacă sunt transmise doar două din aceste cifre, Oracle va interpreta secolul diferit în cazul celor două formate.

Vom începe printr-un exemplu:

YY Format	RR Format
05-FEB-2095	05-FEB-1995

Se observă modul diferit de interpretare a anului.

Dacă utilizați formatul **YY** și anul este specificat doar prin două cifre, se presupune că anul respectiv face parte din același secol cu anul curent. De exemplu, dacă anul transmis este **15**iar anul curent este **2007**, atunci anul transmis este interpretat cu **2015**. De asemenea **75** interpretat ca **2075**.

TO_CHAR(TO_DATE('15','YY'),'YYYY')	TO_CHAR(TO_DATE('75','YY'),'YYYYY')
2015	2075

Figura II.2.12. Formatul YY

Dacă folosiți formatul **RR** și anul transmis este de două cifre, primele două cifre ale anului transmis este determinat în funcție de cele două cifre transmise și de ultimele două cifre ale anului curent. Regulile după care se determină secolul datei transmise sunt următoarele:

Regula 1: Dacă anul transmis este între **00** și **49**, și ultimele două cifre ale anului curent sunt între **00** și **49** atunci secolul este același cu secolul anului curent. De exemplu dacă anul transmis este **15** iar anul curent este **2007**, anul transmis este interpretat ca fiind **2015**.

Regula 2: Dacă anul transmis este între **50** și **99** iar anul curent este între **00** și **49** atunci secolul este secolul prezent minus **1**. De exemplu dacă transmiteți **75** iar anul curent este**2007**, anul transmis este interpretat ca fiind **1975**.

Regula 3: Dacă anul transmis este între **00** and **49** iar anul prezent este între **50** și **99**, secolul este considerat secolul prezent plus 1. De exemplu dacă ați transmis anul **15** iar anul curent este **1987**, anul transmis este considerat ca fiind anul **2015**.

Regula 4: Dacă anul transmis este între 50 și 99, iar anul curent este între 50 și 99, secolul este același cu a anului curent. De exemplu, dacă transmiteți anul 55 iar anul prezent ar fi1987, atunci anul transmis este considerat ca fiind anul 1955.

DT1	DT2
04-JUL-2015	04-JUL-1975

Figura II.2.13. Formatul RR

Transformarea din număr în șir de caractere

from dual

Pentru a transforma un număr într-un șir de caractere, se folosește funcția **TO_CHAR**, cu următoarea sintaxă:

TO_CHAR(numar, format)

Formatul poate conține unul sau mai mulți parametrii de formatare dintre cei prezentați în tabelul următor.

Parametru	Exemplu de format	Descriere
9	999	Returnează cifrele numărului din pozițiile specificate, precedat de semnul minus dacă numărul este negativ
0	0999	Completează cifrele numărului cu zerouri în față
	999.99	Specifică poziția punctului zecimal
,	9,999	Specifică poziția separatorului virgulă
\$	\$999	Afișează semnul dolar
EEEE	9.99EEEE	Returnează scrierea științifică a numărului.
L	L999	Afișează simbolul monetar.
MI	999MI	Afișează semnul minus după număr dacă acesta este negativ.
PR	999PR	Numerele negative sunt închise între paranteze unghiulare.
RN rn	RN rn	Afișează numărul în cifre romane.
V	99V99	Afișează numărul înmulțit cu 10 la puterea x , și rotunjit la ultima cifră, unde x este numărul de cifre 9 de după V .
Х	xxxx	Afișează numărul în baza 16

Vom exemplifica în continuare câteva dintre aceste formate.

Exemplu	Rezultatul afișat
select to_char(123.45,'9999.99')	123.45
from dual	
select to_char(123.45,'0000.000')	0123.450
from dual	
select to_char(123.45,'9.99EEEE')	1.23E+02
from dual	
select to_char(-123.45,'999.999PR')	<123.450>
from dual	
select to_char(1.2373,'99999V99') from dual	124
select to_char(1.2373,'L0000.000')	\$0001.237

Exemplu	Rezultatul afișat
from dual	
select to_char(4987,'XXXXXX')	137B
from dual	
select to_char(498,'RN') from dual	CDXCVIII

Transformarea șir de caractere în număr

Transformarea inversă din șir de caractere într-o valoare numerică se realizează cu ajutorul funcției **TO_NUMBER**:

TO_NUMBER(sir, format)

Parametrii de formatare ce se pot folosi sunt aceeași ca în cazul funcției **TO_CHAR**. lată câteva exemple.

Exemplu	Rezultatul afișat
select to_number('970.13') + 25.5	995.63
FROM dual	
select	-12345.67
to_number('-\$12,345.67','\$99,999.99')	
from dual;	

II.2.7. Funcții de uz general

Pe lângă funcțiile care controlează modul de formatare sau conversie al datelor, Oracle oferă câteva funcții de uz general, care specifică modul în care sunt tratate valorile **NULL**.

♥ NVL (val1, val2) - funcția returnează valoarea val1, dacă aceasta este nenulă, iar dacă val1 este NULL atunci va returna valoarea val2. Funcția NVL poate lucra cu date de tip caracter, numeric sau dată calendaristică, însă este obligatoriu ca cele două valori să aibă același tip.

```
select first_name, commission_pct, NVL(commission_pct,0.8)
from employees
where employee_id between 140 and 150
```

rezultatul returnat de această comandă este cel din figura II.2.14.

FIRST_NAME	COMMISSION_PCT	NVL(COMMISSION_PCT,0.8)
Trenna	-	.8

Curtis	-	.8
Randall	-	.8
Peter	-	.8
Eleni	.2	.2

Figura II.2.14. Funcția NVL

√NVL2(val1, val2, val3) - dacă valoarea val1 nu este nulă atunci funcția va returna valoarea val2, iar dacă val1 are valoarea NULL atunci funcția va returna valoarea val3(vezi figura II.2.15.).

select first_name, commission_pct,

NVL2(commission_pct,'ARE','NU ARE')

from employees where employee_id between 140 and 150

FIRST_NAME	COMMISSION_PCT	NVL2(COMMISSION_PCT,'ARE','NUARE')
Trenna	1	NU ARE
Curtis	-	NU ARE
Randall	-	NU ARE
Peter	-	NU ARE
Eleni	.2	ARE

Figura II.2.15 Funcția NVL2

♥NULLIF (expr1, expr2) – dacă cele două expresii sunt egale, funcția returnează NULL. Dacă valorile celor două expresii sunt diferite atunci funcția va returna valoarea primei expresii (vezi figura II.2.16.).

EMPLOYEE_ID	FIRST_NAME	LAST_NAME	NULLIF(LENGTH(FIRST_NAME),LENGTH(LAST_NAME))
103	Alexander	Hunold	9
104	Bruce	Ernst	-
107	Diana	Lorentz	5
124	Kevin	Mourgos	5
141	Trenna	Rajs	6
142	Curtis	Davies	-

Figura II.2.16 Funcția NULLIF

COALESCE (expr1, expr2, ..., exprn) − funcția returnează valoarea primei expresii nenule (vezi figura II.2.17).

select coalesce(null, null, '33', 'test') from dual

COALESCE(NULL,NULL,'33','TEST')
33

Figura II.2.17 Funcția COALESCE

II.2.8 Funcții și expresii condiționale

Oracle SQL oferă posibilitatea de a construi expresii alternative asemănătoare structurilor **IF-THEN- ELSE** prezente în alte limbaje.

DECODE(expresie, val11, val12, val21, val22, ..., valn1, valn2,

val) – această compară valoarea expresiei cu valorile **val11**, **val21**, ..., **valn1**. Dacă valoarea expresiei este egală cu valoarea **vali1**, atunci funcția va returna valoarea **vali2**. Dacă funcția nu este egală cu nici una din valorile **vali1**, atunci funcția va returna valoarea **val**.

```
select DECODE('Maria' ,'Dana', 'Ea este Ana' ,

'Maria','Ea este Maria' ,

'Nu e nici Ana nici Maria')
```

from dual

această comandă va afișa mesajul "**Ea este Maria**" însă următoarea comandă va afișa "**Nu e nici Ana nici Maria**".

```
select DECODE('Valeria' ,'Dana', 'Ea este Ana' ,

'Maria','Ea este Maria' ,

'Nu e nici Ana nici Maria')
```

from dual

☼În locul funcției DECODE se poate folosi expresia condițională CASE. Funcția CASE utilizează cuvintele cheie when, then, else, și end pentru a indica ramura selectată. În general orice apel al funcției DECODE poate fi transcris folosind funcția CASE. Chiar dacă o expresie folosind CASE este mai lungă decât expresia echivalentă care folosește funcția DECODE, varianta cu CASE este mult mai ușor de citit și greșelile sunt depistate mai ușor. În plus varianta CASE este compatibilă ANSI-SQL.

Cele două comenzi de mai sus por fi transcrise cu ajutorul funcției CASE astfel:

```
select CASE 'Maria'

WHEN 'Dana' THEN 'Ea este Ana'

WHEN 'Maria' THEN 'Ea este Maria'

ELSE 'Nu e nici Ana nici Maria'
```

END

from dual

select CASE 'Valeria'

WHEN 'Dana' THEN 'Ea este Ana'

WHEN 'Maria' THEN 'Ea este Maria'

ELSE 'Nu e nici Ana nici Maria'

END

from dual