Lecture 10: Beginning optimization

Ciaran Evans

Motivation: regression models

Data on 116 sparrows from Kent Island, New Brunswick.

- ► Weight: the weight of the sparrow (in grams)
- WingLength: the sparrow's wing length (in mm)

Question: How could I model the relationship between these two variables?

Motivation: linear regression

Question: How do I get the fitted regression line?

Motivation: linear regression

Population model: Weight_i = $\beta_0 + \beta_1$ WingLength_i + ε_i

Fitted model: $\widehat{\text{Weight}}_i = \widehat{\beta}_0 + \widehat{\beta}_1 \text{WingLength}_i$

In R:

lm(Weight ~ WingLength, data = Sparrows)

Coefficients:

(Intercept) WingLength 1.3655 0.4674

Mathematically: $\widehat{\beta}_0, \widehat{\beta}_1$ are the values which *minimize* the residual sum of squares:

$$RSS(\beta_0, \beta_1) = \sum_{i=1}^{n} (Weight_i - \beta_0 - \beta_1 WingLength_i)^2$$

Overview: Optimization

Definition: *Optimization* is the problem of finding values that minimize or maximize some function.

Example:

$$RSS(\beta_0, \beta_1) = \sum_{i=1}^{n} (Weight_i - \beta_0 - \beta_1 WingLength_i)^2$$

- ▶ $RSS(\beta_0, \beta_1)$ is a function of β_0 and β_1
- We want to find the values of β_0 and β_1 that *minimize* this function

Question: How could we go about minimizing this function?

Overview: types of optimization methods

In this course, we will focus on two main types of optimization

▶ **Derivative-based methods:** use the derivative (and possibly higher-order derivatives too) to find a maximum/minimum.

Derivative-free methods: do not use any derivatives (or approximations to derivatives).

We will begin with derivative-free methods.

Optimization without a derivative

$$RSS(\beta_0, \beta_1) = \sum_{i=1}^{n} (Weight_i - \beta_0 - \beta_1 WingLength_i)^2$$

Question: How would you try to minimize $RSS(\beta_0, \beta_1)$ without taking a derivative? Brainstorm with your neighbor for 1-2 minutes, then we will discuss as a class.

- ▶ Define a set of values for β_0, β_1
- ▶ Calculate $RSS(\beta_0, \beta_1)$ for each pair of values
- ▶ Choose the values which minimize $RSS(\beta_0, \beta_1)$

Question: What is a reasonable range of values to consider for β_0 and β_1 ?

Consider values:

- $\beta_0 = -5, -4.9, -4.8, ..., 4.8, 4.9, 5$
- $\beta_1 = 0, 0.05, ..., 1.45, 1.5$

Grid of possible values

Now we calculate $RSS(\beta_0, \beta_1)$ for each possible pair in the grid.

Combination with smallest RSS: $\beta_0 = 1.8, \ \beta_1 = 0.45$

Grid search: limitations

Question: What are some disadvantages of this grid search procedure?

Grid search: limitations

For the basic grid search procedure described here:

- ▶ Does not scale well to higher dimensions (more coefficients)
- Requires a good selection of grid points
- Doesn't consider new values
- Can't tell when it is "close" to an optimal value

Step 1: Start with an initial guess for β_0 and β_1 , and calculate $RSS(\beta_0, \beta_1)$:

Step 2: Try test points in the four directions around the initial point:

Which of the 5 points is the best current guess for (β_0, β_1) ?

Step 3: If one of the four new points is better, move to the new best point:

Step 3: If one of the four new points is better, move to the new best point:

Step 3: If one of the four new points is better, move to the new best point:

After a few more iterations, we end up here:

Step 4: If none of the new points is an improvement, try again with half the distance:

Compass search overview (in 2 dimensions)

To minimize some function $f(\beta_0, \beta_1)$:

- 1. Choose an initial guess $(\beta_0^{(0)}, \beta_1^{(0)})$ and initial step size Δ_0
- 2. Evaluate f at the points
 - $(\beta_0^{(0)}, \beta_1^{(0)})$ $(\beta_0^{(0)}, \beta_1^{(0)} \pm \Delta_0)$
 - $(\beta_0^{(0)} \pm \Delta_0, \beta_1^{(0)})$
- 3. If f is smaller at one of the new points: move to the smallest value, update to $(\beta_0^{(1)},\beta_1^{(1)})$
- 4. Otherwise: $\Delta_{k+1} = 0.5\Delta_k$ (shrink step size and try again)
- 5. Repeat