MATH 4720 / MSCS 5720

Instructor: Mehdi Maadooliat

Chapter 6 (Part B)

Department of Mathematics, Statistics and Computer Science

CHAPTER 6 (PART B)

- Comparing Two Population Means
 - Independent Samples
 - Dependent Samples
- Two sample t-test (Independent Samples)
 - Pooled t-test
 - Unequal variance t-test
- Paired t-test (Dependent Samples)
- Power Analysis
 - Independent Samples
 - Dependent Samples
- Non-parametric Tests
 - Sign test (from Chapter 5, test for median M)
 - Wilcoxon Rank-Sum (or Mann-Whitney) Test (two independent samples)
 - Wilcoxon Signed-Rank Test (dependent samples)

COMPARING TWO DEPENDENT POPULATION MEANS (REMINDER)

- Dependent Samples
- Here, there is only one group of subjects, but two different measurements are taken from this group.

Subject	Before	After
1	y_{11}	y_{21}
2	y_{12}	y_{22}
n	y_{1n}	y_{2n}

• Since the subjects are same for before and after measurements, the two samples are dependent.

COMPARING TWO DEPENDENT POPULATION MEANS (CONT'D)

Subjec t	Before (y ₁)	After (y ₂)	Difference $d = y_1 - y_2$
1	y_{11}	y_{21}	d_1
2	y_{12}	y_{22}	d_2
•			
n	y_{1n}	y_{2n}	d_n

- μ_1 = Mean Before, μ_2 = Mean After
- $\mu_d = \mu_1 \mu_2$
- $H_0: \mu_1 = \mu_2 \equiv \mu_d = 0$
- $H_a: \mu_1 > \mu_2 \equiv \mu_d > 0$ or $\mu_1 < \mu_2 \equiv \mu_d < 0$

or
$$\mu_1 \neq \mu_2 \equiv \mu_d \neq 0$$

COMPARING TWO DEPENDENT POPULATION MEANS (CONT'D)

• Assumption: $n \ge 30$ or the differences are normally distributed.

• T.S.
$$t = \frac{\bar{d}}{s_d/\sqrt{n}}$$

• Decision Rule: (df = n - 1)

- H_a : $\mu_d > 0$: Reject H_0 in favor of H_a if $t > t_\alpha$

- H_a : μ_d < 0: Reject H_0 in favor of H_a if $t < -t_\alpha$

- H_a : $\mu_d \neq 0$: Reject H_0 in favor of H_a if $|t| > t_{\alpha/2}$

 Note that this method is same as one sample t-test for the sample of differences. We call it paired t-test.

COMPARING TWO DEPENDENT POPULATION MEANS (CONT'D)

- p-values can be calculated in the similar manner.
- Confidence Interval for the difference $\mu_d = \mu_1 \mu_2$

$$\bar{d} \pm t_{\alpha/2} \frac{s_d}{\sqrt{n}}$$

- Example: Consider a drug that can be used to reduce blood pressure for the hypertensive individuals.
- Objective: Is this drug effective?
- Sample of 10 hypertensive individuals use the drug for four weeks.

Subject	Before y_1	After y_2	Difference $d = y_1 - y_2$
1	143	124	19
2	153	129	24
3	142	131	11
4	139	145	-6
5	172	152	20
6	176	150	26
7	155	125	30
8	149	142	7
9	140	145	-5
10	169	160	9

•
$$\bar{d} = 13.5$$
, $s_d = 12.48$

 Does the data provide sufficient evidence that the drug is effective in reducing the blood pressure?

EXAMPLE CONT'D

- $\mu_1 =$ Mean Before, $\mu_2 =$ Mean After
- $\mu_d = \mu_1 \mu_2$
- $H_0: \mu_1 = \mu_2 \equiv \mu_d = 0$
- $H_a: \mu_1 > \mu_2 \equiv \mu_d > 0$
- Assumption: Differences are normally distributed. This can be tested by normal probability plot of the differences.
- Note that here the distribution of y_1 and y_2 is not important.

NORMAL PROBABILITY PLOT

- H_0 : Data is normally distributed
 - $P-Value < \alpha$, therefore Fail to reject H_0

• **TS.**
$$t = \frac{\overline{d}}{s_d/\sqrt{n}} = \frac{13.5}{\frac{12.48}{\sqrt{10}}} = 3.42$$

EXAMPLE CONT'D

- **Decision Rule:** $\alpha = 0.05, \ df = n 1 = 9$
- Reject H_0 in favor of H_a if $t > t_\alpha = 1.833$
- Conclusion: Is t>1.833? Yes, since t=3.42. We reject H_0 in favor of H_a , and conclude that the drug is effective in reducing blood pressure.
- Estimate the difference in the mean Blood Pressures using a 95% CI.
- Formula: $\bar{d} \pm t_{\alpha/2} \frac{s_d}{\sqrt{n}}$
- $df = 9, \frac{\alpha}{2} = 0.025$, $t_{\alpha/2} = 2.262$
- 95% CI: $13.5 \pm 2.262 \frac{12.48}{\sqrt{10}}$, $i.e. 4.57 < \mu_d < 22.42$

BOOK EXAMPLE: 6.8

• 15 cars involved in accidents were taken to two garages (Garage I and Garage II).

TABLE 6.14

Repair estimates (in hundreds of dollars)

- Given $\alpha=0.05$, is there a significant difference between Garage I and Garage II?
- Minitab

Car	Garage I	Garage II	
1	17.6	17.3	
2	20.2	19.1	
3	19.5	18.4	
4	11.3	11.5	
5	13.0	12.7	
6	16.3	15.8	
7	15.3	14.9	
8	16.2	15.3	
9	12.2	12.0	
10	14.8	14.2	
11	21.3	21.0	
12	22.1	21.0	
13	16.9	16.1	
14	17.6	16.7	
15	18.4	17.5	
Totals:	$\bar{y}_1 = 16.85$	$\bar{y}_2 = 16.23$	
	$s_1 = 3.20$	$s_1 = 2.94$	

NORMAL PROBABILITY PLOTS

EXAMPLE 6.8 (CONT'D)

- Is it fine to do two independent sample t-test?
- NO
- WRONG ANALYSIS:
- Assume $\sigma_1 \neq \sigma_2$

Two-Sample T-Test and CI: Garage I, Garage II

```
Two-sample T for Garage I vs Garage II

N Mean StDev SE Mean
Garage I 15 16.85 3.20 0.83
Garage II 15 16.23 2.94 0.76

Difference = mu (Garage I) - mu (Garage II)
Estimate for difference: 0.61
95% CI for difference: (-1.69, 2.92)
T-Test of difference = 0 (vs not =): T-Value = 0.55

P-Value = 0.589
```

• Assume $\sigma_1 = \sigma_2$

```
Difference = mu (Garage I) - mu (Garage II)
Estimate for difference: 0.61
95% CI for difference: (-1.69, 2.91)
T-Test of difference = 0 (vs not =): T-Value = 0.55
Both use Pooled StDev = 3.0754
```

EXAMPLE 6.8 (CONT'D)

• Correct test is the paired t-test. Let $\,\mu_1=$ Garage I, $\,\mu_2=$ Garage II

•
$$\mu_d = \mu_1 - \mu_2$$

•
$$H_0: \mu_1 = \mu_2 \equiv \mu_d = 0$$

•
$$H_a: \mu_1 \neq \mu_2 \equiv \mu_d \neq 0$$

• TS.
$$t = \frac{\bar{d}}{s_d/\sqrt{n}} = \frac{0.613}{\frac{0.394}{\sqrt{15}}}$$
 $t = 6.02$

	Garage 1	Garage 2	Difference	
1	17.6	17.3	0.3	
2	20.2	19.1	1.1	
3	19.5	18.4	1.1	
4	11.3	11.5	-0.2	
5	13.0	12.7	0.3	
6	16.3	15.8	0.5	
7	15.3	14.9	0.4	
8	16.2	15.3	0.9	
9	12.2	12.0	0.2	
10	14.8	14.2	0.6	
11	21.3	21.0	0.3	
12	22.1	21.0	1.1	
13	16.9	16.1	0.8	
14	17.6	16.7	0.9	
15	18.4	17.5	0.9	
<				

- Decision Rule (df = 14):
- Reject H_0 if $|t| > t_{\frac{\alpha}{2}}$

Variable N Mean StDev Difference 15 0.613 0.394

- 6.02 > 2.145, so we reject H₀.
- There is a significant difference between garage estimates

POWER ANALYSIS

Independent Samples:

$$\begin{array}{ll} \bullet & H_0\colon \mu_1 = \mu_2 \\ \bullet & H_a\colon \mu_1 > \mu_2 \\ \bullet & \text{or } \mu_1 < \mu_2 \end{array} \quad \begin{array}{ll} \textbf{One-tail test} \\ \bullet & \textbf{or } \mu_1 \neq \mu_2 \end{array} \quad \begin{array}{ll} \textbf{Two-tail test} \end{array}$$

• The samples sizes $n_1=n_2=n$ needed to correctly discover a difference in testing of hypothesis with the power $P(\Delta_a)$ when the difference in the means is $\geq \Delta_a$ is given by

•
$$n_1=n_2=rac{2\sigma^2(z_{lpha}+z_{eta})^2}{\Delta^2}$$
 - One-tail test

•
$$n_1=n_2=rac{2\sigma^2(z_{lpha/2}+z_eta)^2}{\Delta^2}$$
 - Two-tail test

• Note that
$$\beta = 1 - Power$$

POWER ANALYSIS CONT'D

Dependent Samples:

$$\begin{array}{ll} \bullet & H_0: \mu_d = 0 \\ \bullet & H_a: \mu_d > 0 \\ \bullet & \text{or } \mu_d < 0 \end{array} \right\} \quad \begin{array}{ll} \textbf{One-tail test} \\ \bullet & \textbf{or } \mu_d \neq 0 \end{array} \quad \quad \\ \bullet & \textbf{Two-tail test} \end{array}$$

• The samples sizes n needed to correctly discover a difference in testing of hypothesis with the power $P(\Delta_a)$ when the difference in the means is $\geq \Delta_a$ is given by

$$n=rac{\sigma_d^2(z_lpha+z_eta)^2}{\Delta^2}$$
 - One-tail test

•
$$n=rac{\sigma_d^2(z_{lpha/2}+z_eta)^2}{\Delta^2}$$
 - Two-tail test

• Note that
$$\beta = 1 - Power$$

BOOK EXAMPLE 6.10

 In building construction, the set-up time needed for concrete to reach solid state is an important factor. An additive is developed to speed up this set-up time. An experiment is to be designed to test if the additive does work.

Without Additive

With additive

 n_1 n_2

- How many sample runs $n_1=n_2$ need to be performed to correctly discover with 90% power that "With Additive" reduces the set-up time by testing hypothesis at $\alpha=0.05$ when the true average reduction is 1.5 hours or more?
- It is known from previous experience that $\sigma = 2.4 \ hours$.

•
$$H_0: \mu_1 = \mu_2$$
 vs. $H_a: \mu_1 > \mu_2$.

BOOK EXAMPLE 6.10 CONT'D

- Two independent sample:
 - Two-sample t-test

• Formula:
$$n_1 = n_2 = \frac{2\sigma^2(z_{\alpha} + z_{\beta})^2}{\Delta^2}$$

•
$$\alpha = 0.05, \beta = 1 - Power = 1 - 0.90 = 0.10,$$

•
$$\Delta = 1.5, \sigma = 2.4$$

•
$$z_{\alpha} = 1.645$$
, $z_{\beta} = 1.28$

•
$$n_1 = n_2 = \frac{2(2.4^2)(1.645 + 1.28)^2}{1.5^2} = 43.8 \approx 44.$$

SUMMARY

Case 2: Two Numerical Variables - Population Standard Deviations unknown

	Independe		
	$\sigma_1 = \sigma_2$	$\sigma_1 \neq \sigma_2$	Paired Samples
Parameters of Interest:	Mean Difference, $\mu_1 - \mu_2$	Mean Difference, $\mu_1 - \mu_2$	Mean Difference, $\mu_1 - \mu_2$
Confidence Interval Formula:	$\overline{x}_1 - \overline{x}_2 \pm t_{\alpha/2} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$ $df = n_1 + n_2 - 2$, where $s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$	$\begin{split} \overline{x}_1 - \overline{x}_2 &\pm t_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \\ df &= \frac{(n_1 - 1)(n_2 - 1)}{(1 - c)^2 (n_1 - 1) + c^2 (n_2 - 1)} \\ , \text{ where } c &= \frac{\frac{s_1^2}{n_1}}{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \end{split}$	$\overline{d} \pm t_{\alpha/2} \frac{s_d}{\sqrt{n}}$ with df = $n-1$ where the subscript " d " denotes the calculation is performed on the differences "Sample1" – "Sample2"
Name of Hypothesis Test, H_0	Two-sample T Test, $H_0: \mu_1 = \mu_2$ or $H_0: \mu_1 - \mu_2 = 0$	Two-sample T Test, $H_0: \mu_1 = \mu_2$ or $H_0: \mu_1 - \mu_2 = 0$	Paired T Test, $H_0: \mu_1 = \mu_2 \text{ or } H_0: \mu_1 - \mu_2 = 0$
Test Statistic Formula:	$t = \frac{\overline{x}_1 - \overline{x}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$	$t' = rac{\overline{x}_1 - \overline{x}_2}{\sqrt{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}}}$	$t = \frac{\overline{d}}{s_d/\sqrt{n}}$ with df = $n - 1$
P-value:	$H_a: \mu_1 \neq \mu_2$, p-value = $2P(T \ge t)$ $H_a: \mu_1 > \mu_2$, p-value = $P(T \ge t)$ $H_a: \mu_1 < \mu_2$, p-value = $P(T \le t)$		$H_a: \mu_1 \neq \mu_2$, p-value = $2P(T \ge t)$ $H_a: \mu_1 > \mu_2$, p-value = $P(T \ge t)$ $H_a: \mu_1 < \mu_2$, p-value = $P(T \le t)$

WHAT IF ASSUMPTIONS ARE VIOLATED?

- In both one-sample and two-sample t-tests, we assumed that either the sample size is ≥ 30 or the samples are drawn from normal populations.
- What if n < 30, and the distribution is non-normal?
- In such cases, we usually use non-parametric tests.
- No assumptions on the distribution means no parameters.