MATH 503: Mathematical Statistics

Lecture 10: Linear Regression Reading: C&B Sections 11.3,12.1-12.2.4

Kimberly F. Sellers

Department of Mathematics & Statistics

1

Today's Topics

- What's the point?
- Method of least squares
- Best linear unbiased estimators (BLUEs)
- · Simple regression model assumptions
- Point estimation
- Sampling distributions
- Inference and testing

What's the point?

Given the values (x,y), we want to see if there is a relationship between X and Y.

What's the point? (cont.)

- · Simple (linear) regression refers to regression with one predictor variable
- "Linear" regression ⇒ linear in the parameters
- Which of the following are linear models?

$$\bigvee \cdot Y_i = \alpha + \beta x_i + \epsilon_i$$

$$\bigvee \cdot \log(Y_i) = \alpha + \beta x_i^2 + \epsilon_i$$

$$\times \cdot Y_i = \alpha + \beta^2 x_i + \epsilon_i$$

$$X \cdot Y_i = \alpha + \beta^2 x_i + \epsilon_i$$

not linear in B

What's the point?

- For simple regression, we want to find a line $\hat{Y}_i = \hat{\alpha} + \hat{\beta}x_i$ that best describes the relationship displayed in the scatterplot.
- We may think of the value $\hat{Y}_i = \hat{\alpha} + \hat{\beta} x_i$ as predicting Y_i , and then define the *i*th residual as $r_i = Y_i \hat{Y}_i = Y_i (\hat{\alpha} + \hat{\beta} x_i)$. To judge the quality of the fit of the line, examine the r_i 's.

Notation

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

$$\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$$

$$S_{xx} = \sum_{i=1}^{n} (X_i - \bar{X})^2$$

$$S_{yy} = \sum_{i=1}^{n} (Y_i - \bar{Y})^2$$

$$S_{xy} = \sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})$$

Method of Least Squares

The method of least squares chooses the line that has the smallest residual sum of squares, $RSS = \sum_{i=1}^{n} r_i^2$

RSS =
$$\sum_{i=1}^{n} r_i^2 = \sum_{i=1}^{n} (Y_i - (\alpha + \beta x_i))^2 = \sum_{i=1}^{n} (Y_i - \alpha - \beta x_i)^2$$

$$\frac{\partial RSS}{\partial \alpha} = \lambda \sum_{i=1}^{n} (Y_i - \alpha - \beta x_i) (Y_i) = 0$$

$$\sum_{i=1}^{n} Y_i - n\alpha - \beta \sum_{i=1}^{n} X_i = 0 \Rightarrow \hat{\alpha} = \frac{\sum Y_i - \beta \sum X_i}{n} = \hat{Y} - \hat{\beta} \sum_{i=1}^{n} X_i$$

$$\frac{\partial RSS}{\partial \beta} = \lambda \sum_{i=1}^{n} (Y_i - \alpha - \beta x_i) (+x_i) = 0$$

$$\sum X_i Y_i - \alpha \sum X_i - \beta \sum X_i^2 = 0$$

$$\sum X_i Y_i - \frac{1}{n} (\sum Y_i - \beta \sum X_i) \sum X_i - \beta \sum X_i^2 = 0$$

$$\hat{\beta} = \frac{\sum_{x'} Y_{x'} - \frac{(\sum_{x'})(\sum_{x'})}{n}}{\sum_{x'} \frac{(\sum_{x'})^{\frac{1}{2}}}{\sum_{x'}}} = \frac{S_{xy}}{S_{xx}}$$
 (see Scrapfor details)

Why is the least squares approach reasonable?

- Least squares is only one way to fit lines, and it has good and bad properties
 - Good: easily computable and have some nice mathematical properties
 - Bad: heavily influenced by outliers

Show
$$S_{xy} = \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) = \sum_{i=1}^{n} x_i y_i - \frac{(\sum x_i)(\sum y_i)}{n}$$

Pf $S_{xy} = \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$

$$= \sum_{i=1}^{n} (x_i y_i - \overline{x} y_i - x_i \overline{y} + \overline{x} \overline{y})$$

$$= \sum_{i=1}^{n} x_i y_i - \overline{x} \sum_{i=1}^{n} y_i - \overline{y} \sum_{i=1}^{n} x_i + n \overline{x} \overline{y}$$

$$= \sum_{i=1}^{n} x_i y_i - \frac{(\sum x_i)(\sum y_i)}{n}$$

$$= \sum_{i=1}^{n} x_i y_i - \frac{(\sum x_i)(\sum y_i)}{n}$$

$$= \sum_{i=1}^{n} x_i y_i - \frac{(\sum x_i)(\sum y_i)}{n}$$

Show
$$S_{xx} = \sum_{i=1}^{n} (x_i - \overline{x})^2 = \sum_{i=1}^{n} (x_i^2 - \overline{x})^2$$

$$= \sum_{i=1}^{n} (x_i - \overline{x})^2 = \sum_{i=1}^{n} (x_i^2 - 2x_i \overline{x} + \overline{x}^2)$$

$$= \sum_{i=1}^{n} x_i^2 - 2\overline{x} \sum_{i=1}^{n} x_i + n\overline{x}^2$$

$$= \sum_{i=1}^{n} x_i^2 - 2\overline{x} (n\overline{x}) + n\overline{x}^2$$

$$= \sum_{i=1}^{n} x_i^2 - n\overline{x}^2$$

Another Reasonable Approach

- · Use horizontal distances instead of vertical distances
- The resulting line would be

$$x^* = a^* + b^* y$$

where
$$b^* = \frac{s_{xy}}{s_{yy}}$$
 and $a^* = \bar{x} - b^* \bar{y}$

Re-expressing the line as a function of y on x implies

$$\hat{y} = \frac{-a^*}{b^*} + \frac{1}{b^*}x$$

9

What's the difference?

 If the two lines were the same, then the slopes would be equal, i.e.

$$^b/_{(1/b^*)}=1$$

In actuality,

$$b/(1/b^*) = bb^* = \frac{(S_{xy})^2}{S_{xx}S_{yy}} \le 1$$

 Problem when there is no distinction between predictor and response variables

Best Linear Unbiased Estimators (BLUEs)

· Setup:

11

- Assume x_i 's known & fixed
- y_i 's observed values from uncorrelated rv's Y_i 's
- Consider model $Y_i = \alpha + \beta x_i + \epsilon_i$, where ϵ_i 's uncorrelated rv's with $E(\epsilon_i)=0$ and $Var(\epsilon_i)=\sigma^2$ unknown
- Goal: determine estimates for α , β
- Restrict choice of estimators to class of linear estimators (i.e. of the form ∑_{i=1}ⁿ d_iY_i where d_i's known & fixed)

"Unbiased" is self-explanatory

"Best" refers to estimator with smallest variance

Example

What specifications must be in place to satisfy a BLUE of β ?

Estimator has the form
$$\sum_{i=1}^{n} d_{i}Y_{i}$$
 where

"Unbrased" \Rightarrow $\mathbb{E}\left(\sum_{i=1}^{n} d_{i}Y_{i}\right) = \sum_{i=1}^{n} d_{i} \mathbb{E}(Y)$
 $= \sum_{i=1}^{n} d_{i} \left(\alpha + \beta X_{i}\right)$
 $= \alpha \sum_{i=1}^{n} d_{i} + \beta \sum_{i=1}^{n} d_{i}X_{i} = \beta$

ie. $\sum_{i=1}^{n} d_{i} = 0$ and $\sum_{i=1}^{n} d_{i}X_{i} = 1$

"Best" \Rightarrow $\text{Var}\left(\sum_{i=1}^{n} d_{i}Y_{i}\right)$ minimized, where

 $\text{Var}\left(\sum_{i=1}^{n} d_{i}Y_{i}\right) = \sum_{i=1}^{n} d_{i}^{2} \text{Var}(Y_{i}) = \sigma^{2} \sum_{i=1}^{n} d_{i}^{2}$

"we want to minimize $\sum_{i=1}^{n} d_{i}^{2}$

13

Result (Casella & Berger, Lemma 11.2.7)

Let $(v_1, ..., v_k)$ be constants and let $(c_1, ..., c_k)$ be positive constants. Then, for

$$A = \{ \boldsymbol{a} = (a_1, \dots, a_k) : \sum_{i=1}^k a_i = 0 \},$$

$$\max_{\boldsymbol{a} \in A} \left\{ \frac{\left(\sum_{i=1}^k a_i v_i\right)^2}{\sum_{i=1}^k a_i^2 / c_i} \right\} = \sum_{i=1}^k c_i (v_i - \bar{v}_c)^2,$$

where $\bar{v}_c = \frac{\sum_{i=1}^k c_i v_i}{\sum_{i=1}^k c_i}$. The maximum is attained at any a of the form $a_i = Kc_i(v_i - \bar{v}_c)$ where K is a nonzero constant.

What is the BLUE of β ?

Using Lemma 11.2.7 ($k = n, v_i = x_i, c_i = 1, a_i = d_i$), d_i 's maximize

$$\frac{(\sum_{i=1}^{n} d_{i}x_{i})^{2}}{\sum_{i=1}^{n} d_{i}^{2}} = \frac{1}{\sum_{i=1}^{n} d_{i}^{2}} \iff \min_{i=1}^{n} d_{i}^{2}$$

$$d_i = Kc_i(v_i - \bar{v}_c) = K(x_i - \bar{x}), \qquad i = 1, ..., n$$

Among all
$$d_i$$
's that satisfy $\sum_{i=1}^n d_i = 0$, assuming d_i has the form by the BLUE constraint $d_i = Kc_i(v_i - \bar{v}_c) = K(x_i - \bar{x}), \quad i = 1, ..., n$

Thus, because $d_i = K(x_i - \bar{x})$

$$1 = \sum_{i=1}^n d_i x_i = \sum_{i=1}^n K(x_i - \bar{x}) x_i = KS_{xx} + K = 1$$

$$\Rightarrow d_i = K(x_i - \bar{x}) = \sum_{i=1}^n K(x_i - \bar{x}) x_i = KS_{xx} + K = 1$$

$$\Rightarrow d_i = K(x_i - \bar{x}) = \sum_{i=1}^n K(x_i - \bar{x}) x_i = \sum_{i=1}^n (x_i - \bar{x})$$

$$\Rightarrow d = K(x, -\overline{x}) = \frac{\overline{x} - \overline{x}}{Sxx} \text{ and } \sum d_i Y_i = \frac{\overline{x}}{Sxx} \left(\frac{\overline{x} - \overline{x}}{Sxx} \right) Y_i = \frac{Sxy}{Sxx}$$

= \(\frac{1}{\times} (\frac{1}{\times}) \times.

BLUE Results

- $b = \frac{S_{xy}}{S_{xx}}$ is the BLUE of β .
- $Var(b) = \sigma^2 \sum_{i=1}^n d_i^2 = \frac{\sigma^2}{S_{xx}} = \frac{\sigma^2}{\sum_{i=1}^n (x_i \bar{x})^2}$
- Similar analysis used to determine BLUE for $\alpha \quad \mathbb{E}\left(\sum_{i=1}^{n} d_{i}Y_{i}\right) = \alpha \sum_{i=1}^{n} d_{i} + \beta \sum_{i=1}^{n} d_{i}X_{i} = \alpha \implies \sum_{i=1}^{n} d_{i} = 1 \text{ and } \sum_{i=1}^{n} d_{i}X_{i} = 0$ • Constants d_{1}, \dots, d_{n} must satisfy

$$\sum_{i=1}^{n} d_i = 1 \quad \text{and} \quad \sum_{i=1}^{n} d_i x_i = 0$$

Model & Distribution Assumptions

- Conditional normal model:
 - 1. x_i s known and fixed; y_i s observed from Y_i s
 - 2. $Y_i = \alpha + \beta x_i + \epsilon_i$; i = 1, ..., n holds (linearity of the model)
 - 3. $\epsilon_i \sim N(0, \sigma^2)$ iid

17

Model & Distribution Assumptions (cont.)

- · Bivariate normal model:
 - 1. x_i s can be observed from X_i s; y_i s observed from Y_i s
 - 2. $(X_i, Y_i) \sim \text{BivariateNormal}(\mu_x, \mu_y, \sigma_x^2, \sigma_y^2, \rho)$
 - 3. $E(Y \mid x) = \mu_Y + \rho \frac{\sigma_Y}{\sigma_x} (x \mu_X)$ $= \left(\mu_Y \rho \frac{\sigma_Y}{\sigma_x} \mu_X\right) + \left(\rho \frac{\sigma_Y}{\sigma_x}\right) x$
 - 4. $Var(Y | x) = \sigma_Y^2 (1 \rho^2)$

Point Estimation

- Inference based on point estimators, intervals, tests same for both models
- Determine MLEs for α, β, σ^2 under conditional normal model:

$$Y_i \sim N(\alpha + \beta x_i, \sigma^2), \qquad i = 1, ..., n,$$

i.e.

$$Y_i = \alpha + \beta x_i + \epsilon_i, \quad i = 1, ..., n$$

where $\epsilon_i \sim N(0, \sigma^2)$

SEE SCRAP

Point Estimation (cont.)

- $\hat{\alpha}, \hat{\beta}$ BLUEs for $\alpha, \beta \Rightarrow$ both are unbiased
- $\widehat{\sigma^2} = \frac{1}{n} RSS$ biased for σ^2 because

$$E(\widehat{\sigma^2}) = \frac{n-2}{n}\sigma^2$$

• What is an unbiased estimator for σ^2 ?

$$\sigma^2 = \mathbb{E}\left(\frac{n}{n-2}\widehat{\sigma^2}\right) = \mathbb{E}\left(\frac{n}{n-2}\cdot\frac{RSS}{n}\right) = \mathbb{E}\left(\frac{RSS}{n-2}\right)$$

 $\frac{RSS}{n-2}$ is unbiased estimator for σ^2

$$Y_{i} \sim N(\alpha + \beta x_{i}, \sigma^{2})$$
 where $\alpha_{i}\beta_{i}, \sigma^{2}$ unknown

$$f(y_{i}; \alpha + \beta x_{i}, \sigma^{2}) = \frac{1}{\sqrt{2\pi\sigma^{2}}} e^{\frac{-1}{2\sigma^{2}} (y_{i} - \alpha - \beta x_{i})^{2}}$$

$$\mathcal{L}(\alpha_{i}\beta_{i}, \sigma^{2}; y) = (2\pi\sigma^{2})^{\frac{-n}{2}} \exp\left[\frac{-1}{2\sigma^{2}} \sum_{i=1}^{n} (y_{i} - \alpha - \beta x_{i})^{2}\right]$$

$$\log \mathcal{L}(\alpha_{i}\beta_{i}, \sigma^{2}; y) = \frac{-n}{2} \ln (2\pi\sigma^{2}) - \frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (y_{i} - \alpha - \beta x_{i})^{2}$$

$$\frac{\partial \log \mathcal{L}(\alpha_{i}\beta_{i}, \sigma^{2})}{\partial \alpha} = \frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (y_{i} - \alpha - \beta x_{i})^{2}$$

$$\sum_{i=1}^{n} (y_{i} - \alpha - \beta x_{i})^{2} + \sum_{i=1}^{n} (y_{i} - \alpha - \beta x_{i})^{2}$$

$$\sum_{i=1}^{n} (y_{i} - \alpha - \beta x_{i})^{2} + \sum_{i=1}^{n} (y_{i} - \alpha - \beta x_{i})^{2}$$

$$\sum_{i=1}^{n} (y_{i} - \alpha - \beta x_{i})^{2} + \sum_{i=1}^{n} (y_{i} - \alpha - \beta x_{i})^{2}$$

$$\sum_{i=1}^{n} (y_{i} - \alpha - \beta x_{i})^{2} + \sum_{i=1}^{n} (y_{i} - \alpha - \beta x_{i})^{2}$$

$$\sum_{i=1}^{n} (y_{i} - \alpha - \beta x_{i})^{2} + \sum_{i=1}^{n} (y_{i} - \alpha - \beta x_{i})^{2}$$

$$\sum_{i=1}^{n} (y_{i} - \alpha - \beta x_{i})^{2} + \sum_{i=1}^{n} (y_{i} - \alpha - \beta x_{i})^{2}$$

$$\sum_{i=1}^{n} (y_{i} - \alpha - \beta x_{i})^{2} + \sum_{i=1}^{n} (y_{i} - \alpha - \beta x_{i})^{2}$$

$$\sum_{i=1}^{n} (y_{i} - \alpha - \beta x_{i})^{2} + \sum_{i=1}^{n} (y_{i} - \alpha - \beta x_{i})^{2}$$

$$\frac{\partial \log \mathcal{L}(\alpha, \beta, \sigma^{2})}{\partial \beta} = \frac{-1}{\sigma^{2}} \sum_{i} (y_{i} - \alpha - \beta x_{i})(-x_{i}) = 0$$

$$\sum_{i} x_{i} y_{i} - \alpha \sum_{i} x_{i} - \beta \sum_{i} x_{i}^{2} = 0$$

$$\sum_{i} x_{i} y_{i} - \left(\frac{\sum y_{i}}{n} - \beta \frac{\sum x_{i}}{n}\right) \sum_{i} x_{i} - \beta \sum_{i} x_{i}^{2} = 0$$

$$\sum_{i} x_{i} y_{i} - \frac{\sum x_{i} \sum y_{i}}{n} - \beta \left(\sum_{i} x_{i}^{2} - \frac{(\sum x_{i})^{2}}{n}\right) = 0$$

$$\sum_{i} \beta = \frac{\sum x_{i} y_{i} - \frac{(\sum x_{i})(\sum y_{i})}{n}}{\sum_{i} x_{i}^{2} - \frac{(\sum x_{i})^{2}}{n}} = \frac{S_{xy}}{S_{xx}}$$

$$\frac{\partial \log \mathcal{L}(\alpha, \beta, \sigma^{2})}{\partial \sigma^{2}} = \frac{-n}{2} \left(\frac{2\pi}{2\pi\sigma^{2}} \right) + \frac{1}{2\sigma^{4}} \sum_{i=1}^{n} (y_{i} - \alpha - \beta x_{i})^{2} = 0$$

$$2\sigma^{4} \left(\frac{-n}{2\sigma^{2}} + \frac{\sum_{i=1}^{n} (y_{i} - \alpha - \beta x_{i})^{2}}{2\sigma^{4}} \right) = 0 \left(2\sigma^{4} \right)$$

$$-n\sigma^{2} + \sum_{i=1}^{n} (y_{i} - \alpha - \beta x_{i})^{2} = 0$$

$$\Rightarrow \hat{\sigma}^{2} = \sum_{i=1}^{n} (y_{i} - \hat{\alpha} - \hat{\beta} x_{i})^{2} = RSS$$

$$n$$

Summarizing the extent to which the line fits the data: s

- Error standard deviation, σ , represents average size of the error
- σ tells how far off, on average, we expect line to be in predicting a value y at any given x_i
- Estimated by $s = \sqrt{s^2}$ where

$$s^{2} = \frac{1}{n-2} \sum_{i=1}^{n} (y_{i} - (\hat{\alpha} + \hat{\beta}x_{i}))^{2} = \frac{RSS}{n-2}$$

called the "residual mean squared error"

- Thought of as the standard deviation of the residuals
- Provides summary of the average deviation of Y_i values from the corresponding values predicted by the line
- · Has the same units as Y

Sampling Distributions Theorem

Under conditional normal regression model, sampling distributions of $\hat{\alpha}$, $\hat{\beta}$, and S^2 are

$$\hat{\alpha} \sim N\left(\alpha, \frac{\sigma^2}{nS_{xx}}\sum_{i=1}^n x_i^2\right)$$

$$\hat{\beta} \sim N\left(\beta, \frac{\sigma^2}{S_{xx}}\right)$$

with $Cov(\hat{\alpha}, \hat{\beta}) = \frac{-\sigma^2 \bar{x}}{S_{xx}}$. Further, $(\hat{\alpha}, \hat{\beta})$ and S^2

are independent and $\frac{(n-2)S^2}{\sigma^2} \sim \chi_{n-2}^2$.

Inference Results

$$\frac{\hat{\alpha} - \alpha}{S\sqrt{\left(\sum_{i=1}^{n} x_i^2\right)/(nS_{xx})}} \sim t_{n-2}$$

and

$$\frac{\hat{\beta} - \beta}{S / \sqrt{S_{xx}}} \sim t_{n-2}$$

This serves as the basis for determining Cls, decision rules for hypothesis tests!

23

Confidence Intervals for Slope

• To compute the 100(1 – α)% CI, use $\hat{\beta} \pm z_{\alpha/2} \cdot \frac{S}{\sqrt{S_{xx}}}$

$$\hat{\beta} \pm z_{\alpha/2} \cdot \frac{S}{\sqrt{S_{xx}}}$$

• For small samples, substitute $t_{\alpha/2,n-2}$ for $z_{\alpha/2}$. Thus, we use

$$\hat{\beta} \pm t_{\alpha/2,n-2} \cdot \frac{S}{\sqrt{S_{xx}}}$$

as $100(1-\alpha)\%$ CI for β .

Model Utility Test (t-test)

- Understanding the association (increasing or decreasing tendency) between two variables can be essential in analyses
 - Assume that y is approximately linear in x
 - Consider the possibility that the slope of the line is zero, i.e. H_0 : $\beta = 0$ vs. H_1 : $\beta \neq 0$

25

Testing Approaches

- There are three approaches to solve this hypothesis test:
 - Find 100(1 α)% Cl for β : $\hat{\beta} \pm t_{\alpha/2,n-2} \cdot \frac{s}{\sqrt{s_{xx}}}$
 - Using p-value or rejection region method associated with t-statistic,

$$t = \frac{\hat{\beta}}{S/\sqrt{S_{xx}}}$$

and t-distribution with n-2 degrees of freedom

- Use ANOVA with $F_{1,n-2}(\alpha)$: $\left(\frac{\widehat{\beta}}{S/\sqrt{S_{xx}}}\right)^2 = \frac{\widehat{\beta}^2}{S^2/S_{xx}} > F_{1,n-2}(\alpha)$

Simple Regression ANOVA Table

Source	df	Sum of Squares	Mean square	F statistic
Regression (slope)	1	$SS(Reg) = S_{xy}^2 / S_{xx}$	$MS(Reg) = S_{xy}^2 / S_{xx}$	$F = \frac{MS(Reg)}{MSE}$
Residual	n-2	$SSE = \sum_{i=1}^{n} \hat{\epsilon}^2$	$MSE = \frac{SSE}{n-2}$	
Total	n-1	$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2$		

27

Summarizing the extent to which the line fits the data: R²

 R² interpreted as fraction of variability in Y attributable to the regression (i.e. proportion of variability in Y explained by X);

$$R^{2} = 1 - \frac{\text{SSE}}{\text{SST}} = \frac{\text{SSReg}}{\text{SST}} = \frac{\sum_{i=1}^{n} (\hat{y}_{i} - \bar{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}} = \frac{S_{xy}^{2}}{S_{xx}S_{yy}}$$

where SSE = "sum of squares due to error" = s^2 , and SST = "total sum of squares" = $\sum_{i=1}^{n} (y_i - \bar{y})^2$

- $\frac{SSE}{SST}$ is proportion of variability in Y attributable to error
- Interpreted as "proportion of variability of Y explained by X"

Coefficient of Determination (cont.)

- $0 \le R^2 \le 1$
- R² is dimensionless (no reference units)
- No universal rule as to what constitutes a "large R²"

29

Example (and R code)

The prevalence of respiratory symptoms was recorded for 9 groups of subjects exposed to differing levels of dust in their work environment. Dust exposure was measured as particules/ft³/year scaled by 10⁶. The direct outcome variable is "relative risk", the ratio of symptom prevalence at a given exposure level to symptom prevalence in the absence of workplace dust.

> dust < data.frame(exposure=c(75,100,150,350,600,900,1300,1650,2250),
 RR=c(1.10,1.05,0.97,1.9,1.83,2.45,3.70,3.52,4.16))
> summary(Im(RR ~ exposure,data=dust))

R Output

Call:

lm(formula = RR ~ exposure, data = dust)

Residuals:

Min 1Q Median 3Q Max -0.34055 -0.13997 -0.05667 0.02818 0.66226

Coefficients:

Estimate Std. Error t value Pr(>[t]) (Intercept) 1.0359939 0.1688447 6.136 0.000474 *** 0.0015398 0.0001541 9.993 2.15e-05 *** exposure

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.3363 on 7 degrees of freedom Multiple R-Squared: 0.9345, Adjusted R-squared: 0.9251 F-statistic: 99.85 on 1 and 7 DF, p-value: 2.150e-05

31

SAS Code

```
data symptoms;
input exposure RR;
```

cards;

75 1.10

100 1.05

150 0.97

350 1.9

600 1.83

900 2.45

1300 3.70

1650 3.52

2250 4.16

proc print data=symptoms; run;

proc gim data=symptoms; model RR=exposure;

run;

SAS Output

The GLM Procedure Dependent Variable: RR

Sum of

Squares Mean Square F Value Pr > F 1 11.29121174 11.29121174 7 0.79154382 0.11307769 99.85 <.0001

Error Corrected Total 8 12.08275556

> R-Square Coeff Var Root MSE RR Mean 0.934490 14.63459 0.336270 2.297778

DF Type ISS Mean Square F Value Pr > F 1 11.29121174 11.29121174 99.85 <.0001 Source exposure <.0001

DF Type III SS Mean Square F Value Pr > F 1 11.29121174 11.29121174 99.85 <.0001 Source exposure

Standard

Estimate Parameter Error t Value Pr > Itl 1.035993934 0.16884466 0.0005 5.14 Intercept 0.001539804 0.00015409 9.99 <.0001 exposure