Tentamen SSY080 Transformer, Signaler och System, D3

Examinator: Ants R. Silberberg

31 Oktober 2019 kl. 08.30-12.30 sal: M

Förfrågningar: Ants Silberberg, tel. 1808 Resultat: Rapporteras in i Ladok

Granskning: Onsdag 20 November kl. 12.00 - 13.00, rum 3311 på

plan 3 i ED-huset (Lunnerummet), i korridor parallell med Hörsalsvägen.

Bedömning: Del A: Rätt svar ger 1p.

Del B: En korrekt och välmotiverad lösning med ett tyd-

ligt angivet svar ger full poäng.

Hjälpmedel

- Typgodkänd miniräknare
- Beta Mathematics Handbook
- Fyra sidor med egna anteckningar. Endast egenproducerade och handskrivna anteckningar. Inga kopior eller 'maskin(dator)skriven' text.

Krav för godkänt.

		av tot 10 p
Del B	7 p	av tot 15 p

Betygsgränser.

Poäng	12-15	16-20	21-25
Betyg	3	4	5

Lycka till!

Del A. En poäng (1p) per A-uppgift. **Ange endast svar**. Flera del A svar kan ges på samma blad. Inga uträkningar eller motsvarande kommer att beaktas.

A1. Fyra olika diskreta signaler visas i figur 1. De har alla längden N=16. Signalernas Diskreta Fouriertransform (DFT) beräknas och presenteras som |X[k]| i figur 2 men i blandad ordning. Para ihop signal (1,2,3,4) med motsvarande |X[k]| (A, B, C, D).

Figur 1: Fyra diskreta signaler, $x_{1,2,3,4}[n]$

Figur 2: Beloppet av fyra DFT (X[k])

A2. Ett diskret system har impulssvaret

$$h[n] = \delta[n] + \delta[n-2] + \delta[n-3] .$$

Systemets stegsvar ¹ tecknar vi med y[n]. Beräkna värdet på y[4].

A3. Ett kontinuerligt och kausalt system har överföringsfunktionen

$$H(s) = \frac{K}{(s+4)^2}$$

där K är en positiv konstant. Vilket utseende har impulssvar till systemet. Välj en variant ifrån figur 3.

Figur 3: Fyra olika impulssvar h(t).

A4. En elektronisk förstärkare kan beskrivas med överföringsfunktionen

$$G(s) = \frac{s(s^2 + 4.0 \cdot 10^6)}{(s + 4.0 \cdot 10^3)^6}$$

En sinusformad spänning med olika vinkelfrekvens utgör insignal till förstärkaren. Vid en vinkelfrekvens märker man att utsignalen försvinner. Vid vilken vinkelfrekvens är det? (Bortse från $\omega = 0$).

 $^{^{1}}$ Systemets utsignal då insignalen är enhetssteget u[n]

A5. En kausal och diskret signal x[n] har z-transformen

$$X(z) = \frac{1 + 3z^{-1} + 2z^{-2}}{1 + z^{-1}} \quad .$$

Beräkna signalen x[n].

A6. Ett kontinuerligt och kausalt system har impulssvaret

$$h(t) = e^{-4(t-1)}u(t).$$

När når systemets stegsvar ² halva sitt slutvärde?

- A7. Ett kontinuerligt LTI-system med insignal $x(t) = \sin(5000\pi t)$ får en utsignal som kan tecknas $y(t) = A\sin(5000\pi t + \phi)$. Utsignalen är fördröjd 20μ s jämfört med insignalen. Vilket värde har ϕ ?
- A8. En reell sinusformad signal med frekvensen $f=100~{\rm Hz}$ samplas. Sampelintervallet är $T=6.25~{\rm ms}$ och N=800 värden samplas in. Därefter beräknas den Diskreta Fouriertransformen X[k]. Vid vilka k-värden blir |X[k]| markant störst?
- A9. Den samplade signalen i problem A8 kan tecknas $x[n] = A\sin(\Omega n)$. Vilket värde har då Ω ?
- A10. Se överföringsfunktionen G(s) i uppgift A4. Vilken lutning har Bodediagrammets amplitudkarakteristik (Magnitude) vid mycket höga frekvenser?

 $^{^{2}}$ stegsvar är systemets utsignal då insignalen är ett enhetssteg

 $\mathbf{Del}\ \mathbf{B}.$ Fem poäng (5p) per B-uppgift. Fullständiga lösningar skall redovisas.

(5p)

(5p)

B11. Ett kontinuerligt och kausalt LTI-system har stegsvaret 3

$$y(t) = (1.8 + 0.2e^{-50t} - 2.0e^{-10t})u(t)$$
 .

Beräkna systemets impulssvar, h(t).

B12. Ett diskreta LTI-system har impulssvaret

$$h[n] = (8(0.2)^n - 6(-0.8)^n)u[n]$$
.

Beräkna systemets utsignal y[n] för insignalen

 $x[n] = 2(0.4)^n u[n]$.

 $^{^3}$ Systemets utsignal då insignalen är enhetssteget u(t)

B13. En fyrkantspuls upprepas med jämna tidsintervall och bildar en periodisk signal x(t). En del av signalen visas i figur 4. Signalen kan beskrivas med den komplexa Fourierserien enligt

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\frac{\pi}{2}t} .$$

Beloppet av de centrala Fourierseriekoefficienterna visas i figur 5 där också värdet på $|c_0|$ finns angivet.

Beräkna värdet på konstanterna A och B i figur 4. (5p)

Figur 4: Del av periodisk signal x(t).

Figur 5: De centrala Fourierseriekoefficienterna som $|c_k|$.

	Al	X, [n] - B	En period sinusformad				
			signal i intervallet n= EO, N-17				
			X[k] max vid k=1 och N-1=15				
		XZ[N] - A	Också en period i intervallet n= [qN-i]				
			Fyrkant ger övertoner vid udda k				
			X[k] max vid k=1 men bicling				
	också vid k=3,5,7.						
		x3 [n] - C	Ser ut som tem upprepningær				
(perioder) i intervallet n:							
			X[F] max vid k=5				
		X4 ENJ - D	Två upprepningar (perioder) i				
	intervallet, [X[E]] max viol k=2						
	AZ,	$2]+\delta[n-3]$					
		Insignal x[n] = U[n] = S[n]+ S[n-1]+ J[n-2]+S[n-3]+					
		y [n] = h [n] + h [n-i] + h [n-2] + h [n-3] +					
		,	2 3 4 5 6				
		h[n]					
		h[n-1] 1					
		h[n-2] h[n-3]					
		h [n-4]					
		h [n-5]					
		11 [11-5]					
		1 1 [n3y	23333				
		4 (1.7					
			1 Y[4]=3				

A7
$$y(t) = A \times (t + t_0) = A \sin(5000 \, \text{tr}(t + t_0)) =$$

$$= A \sin(5000 \, \text{tr} t + 5000 \, \text{tr} t + t_0)$$

$$\Phi = -5000 \, \text{tr} t + t_0 = -5000 \, \text{tr} t + 20 \cdot 10 = -0.1 \, \text{tr} = -\frac{17}{10}$$
A8 $\frac{1}{4} = \frac{1}{4} = \frac{1$

BII
$$y(t) = (1, 8 + 0, 2e^{-50t} - 2, 0e^{-10t})$$
 util

 $Y(t) = f(y(t)) = \frac{1}{18} + 0, 2 - 2 = \frac{2}{18} + \frac{$

$$\begin{array}{l} \text{B1Z} \qquad \text{hin} = \left(8 \left(0,2 \right)^{n} - 6 \left(-0,8 \right)^{n} \right) \text{ U[n]} \\ \text{H(z)} = \mathcal{F}\left\{ \text{hin} \right\}_{2}^{2} = 8 \cdot \frac{2}{z - o_{1}2} - 6 \frac{2}{z + o_{8}} = \\ = 2 \left(\frac{8(z + o_{8}) - 6(z - o_{1}2)}{(z - o_{1}2)(z + o_{8})} \right) = 2 \cdot \frac{2z + 7.6}{(z - o_{1}2)(2 + o_{8})} \\ \text{Xin} = 2 \left(0,4 \right)^{n} \text{U(n)} \stackrel{\mathcal{F}}{\Rightarrow} X(z) = 2 \cdot \frac{2}{z - o_{1}4} \\ \text{Y(z)} = \frac{1}{|z|} \frac{1}{|z|} \frac{1}{|z|} \frac{1}{|z|} \frac{1}{|z|} = 2 \left(\frac{2z(2z + 7.6)}{(z - o_{1}4)(z - o_{1}2)(z + o_{8})} \right) \\ \frac{Y(z)}{z} = \frac{2(2z^{2} + 7.6z)}{(z - o_{1}4)(z - o_{2}2)(z + o_{8})} = \frac{A}{z - o_{1}4} + \frac{B}{z + c} \\ \frac{Z}{z} = \frac{2(2z^{2} + 7.6z)}{(z - o_{1}4)(z - o_{2}2)(z + o_{8})} = \frac{A}{z - o_{1}4} + \frac{B}{z - o_{2}2} + \frac{C}{z + o_{8}2} \\ \frac{Z}{z - o_{1}4} = 2 \left(\frac{Z}{z - o_{1}4} \right) = A\left(\frac{o_{1}2}{o_{1}2} \right) + B\left(\frac{z}{z} - o_{1}4 \right) \left(\frac{z}{z + o_{8}2} \right) + C\left(\frac{z}{z} - o_{1}4 \right) \left(\frac{z}{z - o_{1}4} \right) \\ \frac{Z}{z - o_{1}4} = 2 \left(\frac{z}{z - o_{1}4} \right) = A\left(\frac{o_{1}2}{o_{1}2} \right) \left(\frac{1}{z} \right) + A = \frac{6\pi^{2}}{o_{1}2} + 2\left(\frac{z}{z - o_{1}4} \right) \left(\frac{z}{z - o_{1}4} \right) \\ \frac{Z}{z - o_{1}4} = 2\left(\frac{z}{z - o_{1}4} \right) = A\left(\frac{z}{z - o_{1}2} \right) \left(\frac{z}{z - o_{1}4} \right) + A\left(\frac{o_{1}2}{o_{1}2} \right) \left(\frac{z}{z - o_{1}4} \right) \left(\frac{z}{z - o_{1}4} \right) = A\left(\frac{o_{1}2}{o_{1}2} \right) \left(\frac{z}{z - o_{1}4} \right) \left(\frac{z}{z - o_{1}$$

B13	Komplex Fourierseine
	Komplex Fourierseine $X(t) = \sum_{k=-\infty}^{\infty} c_k e_j k \omega_0 t$
	$\frac{-jk\omega_{\delta}t}{\zeta_{\delta}} = \frac{-j}{T_{\delta}} \int X(t)e dt \qquad (integration)$ To
	To: signaleus fundamentales period To= 2# To=B-1
	$k=0 \qquad C_0 = \frac{1}{T_0} \int_0^2 x(t) dt = \frac{1}{B-1} \int_1^2 A dt =$
	= A B-1 = 1 (Signalens medel voide)
	$T_0 = \frac{2\pi}{\omega_0} \implies B-1 = \frac{2\pi}{4}, 2 = 4$
	A= B-1=4
	Svan: A=4
	B = 5