◎ 축하합니다! 통과하셨습니다!

 \bigcirc 0 and $z^{[l+1]}$, respectively

 \bigcirc 0 and $\alpha^{[l]}$

받은 학점 100% **최신 제출물 학점** 100% **통과 점수:** 80% 이상

다음 항목으로 이동

1.	When building a ConvNet, typically you start with some POOL layers followed by some CONV layers. True/False?	1/1점
	False	
	○ True	
	_₹ ² 더보기	
	맞습니다 Correct, It is typical for ConvNets to use a POOL layer after some Conv layers; sometimes even one POOL layer after each CONV layer; but is not common to start with POOL layers.	
	tayer after each CONV tayer, but is not common to start with POOL tayers.	
2.	LeNet - 5 made extensive use of padding to create valid convolutions, to avoid increasing the number of channels after every convolutional layer. True/False?	1/1점
	○ True	
	False	
	□ 전보기	
	맞습니다 Yes, back in 1998 when the corresponding paper of LeNet - 5 was written padding wasn't used.	
3.	Training a deeper network (for example, adding additional layers to the network) allows the network to fit more complex functions and thus almost always results in lower training error. For this question, assume we're referring to "plain" networks.	1/1점
	○ True	
	False	
	∠ ² 더보기	
4.	The following equation captures the computation in a ResNet block. What goes into the two blanks above?	1/1점
	$a^{[l+2]} = g(W^{[l+2]}g(W^{[l+1]}a^{[l]} + b^{[l+1]}) + b^{l+2} + \underline{\hspace{1cm}}) + \underline{\hspace{1cm}}$	

	Inception networks incorporate a variety of network architectures (similar to dropout, which randomly chooses a network architecture on each step) and thus has a similar regularizing effect as dropout.	
	√ 7 더보기	
⊘	맞습니다 Great, you got all the right answers.	
	having a small training set to construct a classification model, which of the following is a strategy of transfer ng that you would use to build the model?	1/1점
0	It is always better to train a network from a random initialization to prevent bias in our model.	
0	Use an open-source network trained in a larger dataset. Use these weights as an initial point for the training of the whole network.	
•	Use an open-source network trained in a larger dataset freezing the layers and re-train the softmax layer.	
0	Use an open-source network trained in a larger dataset, freeze the softmax layer, and retrain the rest of the layers.	
	∠	
⊘	맞습니다 Yes, this is a strategy that can provide a good result with small data.	
n Dej	othwise Separable Convolution you:	1/1점
~		
	For the "Depthwise" computations each filter convolves with only one corresponding color channel of the input image.	
·	channel of the input image.	
~	channel of the input image. Correct You convolve the input image with \$\$n_c\$\$ number of \$\$n_f\$\$ x \$\$n_f\$\$ filters (\$\$n_c\$\$) is	
~	channel of the input image. Correct You convolve the input image with \$\$n_c\$\$ number of \$\$n_f\$\$ x \$\$n_f\$\$ filters (\$\$n_c\$\$ is the number of color channels of the input image).	
~	channel of the input image. Correct You convolve the input image with \$\$n_c\$\$ number of \$\$n_f\$\$ x \$\$n_f\$\$ filters (\$\$n_c\$\$ is the number of color channels of the input image). Correct	
~	channel of the input image. Correct You convolve the input image with \$\$n_c\$\$ number of \$\$n_f\$\$ x \$\$n_f\$\$ filters (\$\$n_c\$\$ is the number of color channels of the input image). Correct Perform one step of convolution. For the "Depthwise" computations each filter convolves with all of the color channels of the	
~	channel of the input image. Correct You convolve the input image with \$\$n_c\$\$ number of \$\$n_f\$\$ x \$\$n_f\$\$ filters (\$\$n_c\$\$ is the number of color channels of the input image). Correct Perform one step of convolution. For the "Depthwise" computations each filter convolves with all of the color channels of the input image. You convolve the input image with a filter of \$\$n_f\$\$ x \$\$n_f\$\$ x \$\$n_c\$\$ where \$\$n_c\$\$	
	Correct You convolve the input image with \$\$n_c\$\$ number of \$\$n_f\$\$ x \$\$n_f\$\$ filters (\$\$n_c\$\$ is the number of color channels of the input image). Correct Perform one step of convolution. For the "Depthwise" computations each filter convolves with all of the color channels of the input image. You convolve the input image with a filter of \$\$n_f\$\$ x \$\$sn_f\$\$ x \$\$sn_c\$\$\$ where \$\$sn_c\$\$\$ acts as the depth of the filter (\$\$n_c\$\$ is the number of color channels of the input image).	
	Correct You convolve the input image with \$\$n_c\$\$ number of \$\$n_f\$\$ x \$\$n_f\$\$ filters (\$\$n_c\$\$ is the number of color channels of the input image). Correct Perform one step of convolution. For the "Depthwise" computations each filter convolves with all of the color channels of the input image. You convolve the input image with a filter of \$\$n_f\$\$ x \$\$n_f\$\$ x \$\$n_c\$\$ where \$\$n_c\$\$ acts as the depth of the filter (\$\$n_c\$\$ is the number of color channels of the input image). Perform two steps of convolution.	
	Correct You convolve the input image with \$\$n_c\$\$ number of \$\$n_f\$\$ x \$\$n_f\$\$ filters (\$\$n_c\$\$ is the number of color channels of the input image). Correct Perform one step of convolution. For the "Depthwise" computations each filter convolves with all of the color channels of the input image. You convolve the input image with a filter of \$\$n_f\$\$ x \$\$n_f\$\$ x \$\$n_c\$\$ where \$\$n_c\$\$ acts as the depth of the filter (\$\$n_c\$\$ is the number of color channels of the input image). Perform two steps of convolution. Correct The final output is of the dimension \$\$n_{out}\$\$ x \$\$n_{out}\$\$	

⊘ 맞습니다

Great, you got all the right answers.

10. Suppose that in a MobileNet v2 Bottleneck block the input volume has shape $64 \times 64 \times 16$. If we use 32 filters for the expansion and 16 filters for the projection. What is the size of the input and output volume of the depthwise convolution, assuming a pad='same'?

64 × 64 × 32 64 × 64 × 32
 64 × 64 × 32 64 × 64 × 16
 32 × 32 × 32 \$\$32 \times 32 \times 32 \\$
 Processing math: 100% jimes 16\$\$ \$\$64 \times 64 \times 32\$\$

∠ 7 더보기

⊘ 맞습니다

Correct, the size of the input and output volume of the depthwise convolution is determined by the number of filters in the expansion.

1/1점