United International University (UIU)

Dept. of Computer Science & Engineering (CSE) Final Exam Total Marks: 40 Fall 2024

Course Code: CSE 2217 Course Title: Data Structure and Algorithms II

Time: 2 hours

Any examinee found adopting unfair means will be expelled from the trimester / program as per UIU disciplinary rules.

There are **five** questions. **Answer all of them**. Show full simulation/tabulations wherever necessary. Figures in the right-hand margin indicate full marks.

	structure would help y	ou to perform	the followin	g operations:							
	i) joining two	trees in the fo	rest								
	ii) detecting a	cycle									
								[2]			
3	(a) If we increase the weights of every edge in a graph by the same amount does the shortest path change? Justify your answer by showing an example.										
	change? Justify your a										
	(b) Apply Dijkstra's a following directed gra	_	ind the shorte	est path from	source node A	A to every no	de in the	[4]			
	A	3 11 7 B	c 5	I 2	G						
	(c) "Every connected directed acyclic graph (DAG) has exactly one topological ordering" - true or false? Design a graph G with exactly 4 vertices that justifies your reasoning.										
	(d) The Bellman-Ford algorithm tries to relax every edge in each iteration. If there are n vertices, explain why the algorithm requires (n-1) iterations to correctly calculate the lengths of all shortest										
4	paths in the graph. (a) What is a spurious hit in the Rabin-Karp algorithm? How does the occurrence of spurious hits										
•	impact the time compl				does the occu	frence of spu	nous mus	[2]			
	rr										
	(b) You are tasked with building a plagiarism detection system to check if short patterns from a reference document are present in a student's submission. Suppose the reference document contains the text "academy" and you want to verify if the pattern "emy" appears in it. You need to apply <i>Rabin-Karp's algorithm (using the rolling hash technique)</i> to find whether the pattern exists in the text or not. The hash code for each character is given as follows:										
	a	с	d	e	m	У					
	1	2	3	4	5	6					
							I				
	The hash function is d		(vz) = (x + 1)	+y+z)%	7						
	Where, x, y and z repr	•	• ,	•	•						
	You must calculate the hash values for the pattern and for all substrings in the text "academy"										
	using rolling hash tech	nnique. Find th	ne valid hits a	and spurious h	its(if any).						

()	(a) In Chaining, what is the average cost of a successful search? (the load factor is defined a											ned as a)	[
	(b) Given that memory is not an issue to be concerned about, what is the best possible hash scheme and why?											ible hashing	[
items hash f	Consider an open-addressing hash table as shown below. The table already contains some daterms and other empty slots. Assume that collisions are handled by Quadratic probing using the hash function: $h(k, i) = (h'(k) + 2i^2) \mod 13$, where $h'(k) = (k + 7) \mod 13$. By showing detailed calculations, redraw the table after												
(i) Insert 47												[
	i) Inse											[
(j	(iii) Delete 12 (replace with NIL)											[
(i	(iv) Search 38.											[
				I	1					Ī	I		
		2	3	4	5	6	7	8	9	10	11	12	
0	1	ı				12		38				70	
0	1	_						20				70	