Digital Speech Processing Homework #1

Implementing Discrete Hidden Markov Model

蔡翔陞

October 14, 2020 Due on 23:59, November 6, 2020

Outline

- 1. HMM in Speech Recognition
- 2. Homework of HMM
 - 2.1 Training
 - 2.2 Testing
- 3. Requirements
 - 3.1 File Format
 - 3.2 Submission Requirement
- 4. Grading
- 5. Contact TAs

HMM in Speech Recognition

Speech Recognition 1/2

In acoustic model

- · each word consists of syllables
- · each syllable consists of phonemes
- · each phoneme consists of some (hypothetical) states

Each phoneme can be described by a HMM (acoustic model). Given a sequence of observation (MFCC vectors), each of them can be mapped to a corresponding state.

HMM in Speech Recognition 1 / 42

Speech Recognition 2/2

Hence, there are

- · state transition probabilities (a_{ij}) and
- observation distribution $(b_j[o_t])$

in each phoneme acoustic model (HMM).

Usually in speech recognition we restrict the HMM to be a *left-to-right model*, and the observation distribution is assumed to be a continuous Gaussian mixture model.

HMM in Speech Recognition 2 / 42

Review

- Left-to-right
- The observation distribution is a continuous Gaussian mixture model

Figure 1: HMM from lecture 2.0

HMM in Speech Recognition 3 / 42

General Discrete HMM

$$a_{ij} = P(q_{t+1} = j \mid q_t = i), \forall t, i, j$$
 (1)

$$b_j(A) = P(o_t = A \mid q_t = j), \forall t, A, j$$
 (2)

Given q_t , the probability distributions of q_{t+1} and o_t are completely determined. (independent of other states or observation)

HW1 v.s. Speech Recognition

	Homework	Speech Recognition
λ set	5 models	initial-final
λ	model_01-05	"∐"
$\{o_t\}$	A, B, C, D, E, F	39-dim MFCC
unit	an alphabet	a time frame
observation	sequence	voice wave

HMM in Speech Recognition 5 / 42

Homework of HMM

Flowchart

Figure 2: Training and testing models

Homework of HMM 6 / 42

Problems of HMM

Training

- · Basic problem 3 in lecture 4.0
 - Given observations O and an initial model $\lambda = (A, B, \pi)$, adjust λ to maximize $P(O \mid \lambda)$.

$$A_{ij} = a_{ij}, B_{jt} = b_j[o_t], \pi_i = P(q_1 = i)$$

· Baum-Welch algorithm

Testing

- · Basic problem 2 in lecture 4.0
 - Given λ and O, find the best state sequences to maximize $P(O \mid \lambda, q)$.

· Viterbi algorithm

Homework of HMM 7 / 42

Homework of HMM

Training

Training

- · Basic problem 3
- Baum-Welch algorithm: A generalized expectation-maximization (EM) algorithm¹
 - Calculate α (forward probabilities) and β (backward probabilities) given the observations
 - Find temporary variables ϵ and γ from α and β
 - Update model parameters $\lambda' = (A', B', \pi')$

¹http://en.wikipedia.org/wiki/Baum-Welch algorithm

Forward Procedure

Forward algorithm: define a forward variable $\alpha_t(i)$

$$\alpha_t(i) = P(o_1, o_2, \dots, o_t, q_t = i \mid \lambda)$$
(3)

= Prob[observing
$$o_1, o_2, \dots, o_t$$
, state i at time $t \mid \lambda$] (4)

Initialization

$$\alpha_1(i) = \pi_i b_i(o_1), \ 1 \le i \le N$$
 (5)

Induction

$$\alpha_{t+1}(j) = \left[\sum_{i=1}^{N} \alpha_{t}(i) a_{ij} \right] \cdot b_{j}(o_{t+1}),$$

$$1 \le t \le T - 1, \ 1 \le j \le N \quad (6$$

Termination

$$P\left(\bar{O}\mid\lambda\right)=\sum_{i}^{N}\alpha_{T}(i)\tag{7}$$

Homework of HMM | Training

Backward Procedure

Backward algorithm: define a backward variable $\beta_t(i)$

$$\beta_t(i) = P(o_{t+1}, o_{t+2}, \dots, o_T \mid q_t = i, \lambda)$$
 (8)

= Prob[observing
$$o_{t+1}, o_{t+2}, \dots, o_T$$
 | state i at time t, λ] (9)

Initialization

$$\beta_T(i) = 1, \ 1 \le i \le N \tag{10}$$

Induction

$$\beta_{t}(i) = \sum_{j=1}^{N} a_{ij} \ b_{j}(o_{t+1}) \ \beta_{t+1}(j),$$

$$t = \{T - 1, T - 2, \dots, 1\}, \ 1 \le i \le N \quad (11)$$

Calculate Y

Define a temporary variable $\gamma_t(i) = P(q_t = i \mid \bar{O}, \lambda)$

$$\gamma_t(i) = \frac{\alpha_t(i)\beta_t(i)}{\sum_{i=1}^N \alpha_t(i)\beta_t(i)} = \frac{P(\bar{O}, q_t = i \mid \lambda)}{P(\bar{O} \mid \lambda)}$$
(12)

It should be a $N \times T$ matrix!

Calculate ε

The probability of transition from state *i* to state *j* given observation and model.

$$\epsilon_t(i,j) = P\left(q_t = i, q_{t+1} = j \mid \bar{O}, \lambda\right) \tag{13}$$

$$= \frac{\alpha_t(i) \ a_{ij} \ b_j(o_{t+1}) \ \beta_{t+1}(j)}{\sum_{i=1}^N \sum_{j=1}^N \alpha_t(i) \ a_{ij} \ b_j(o_{t+1}) \ \beta_{t+1}(j)}$$
(14)

$$=\frac{\operatorname{Prob}\left[\bar{O},\ q_{t}=i,\ q_{t+1}=j\mid\lambda\right]}{P\left(\bar{O}\mid\lambda\right)}\tag{15}$$

In total T-1 matrices (each $N \times N$)

Accumulate ϵ and γ

Recall
$$\gamma_t(i) = P(q_t = i \mid \bar{O}, \lambda)$$

$$\sum_{t=1}^{T-1} \gamma_t(i) = \text{expected number of times that state } i$$
 is visited in \bar{O} from $t=1$ to $t=T-1$ (16)
$$\sum_{t=1}^{T-1} \epsilon_t(i,j) = \text{expected number of transitions from}$$
 state i to state j in \bar{O} (17)

Homework of HMM | Training

Re-estimate Model Parameters

Now we could update the parameters with $\epsilon and \, \gamma$

$$\lambda' = (A', B', \pi') \tag{18}$$

$$\pi'_i = \gamma_1(i) = p(\text{the first state is i})$$
 (19)

$$a'_{ij} = \frac{\sum_{t=1}^{T-1} \epsilon_t(i,j)}{\sum_{t=1}^{T-1} \gamma_t(i)} = \frac{\mathbb{E}\left[\text{Number of transition from } i \text{ to } j\right]}{\mathbb{E}\left[\text{Number of visiting state } i\right]}$$
(20)

$$b_i'(k) = \frac{\sum_{O_t = k} \gamma_t(i)}{\sum_{t=1}^T \gamma_t(i)} = \frac{\mathbb{E}\left[\text{ Number of observation } O = k \text{ in state } i\right]}{\mathbb{E}\left[\text{ Number of visiting state } i\right]}$$

(21)

Re-estimate Model Parameters with Multiple Sequences

With N training sequences, we should update parameters from all those sequences

$$\pi_i' = \frac{\sum_{n=1}^{N} \gamma_{n,1}(i)}{N}$$
 (22)

$$a'_{ij} = \frac{\sum_{n=1}^{N} \sum_{t=1}^{T-1} \epsilon_{n,t}(i,j)}{\sum_{n=1}^{N} \sum_{t=1}^{T-1} \gamma_{n,t}(i)}$$
(23)

$$b_i'(k) = \frac{\sum_{n=1}^{N} \sum_{O_{n,t}=k} \gamma_{n,t}(i)}{\sum_{n=1}^{N} \sum_{t=1}^{T} \gamma_{n,t}(i)}$$
(24)

Homework of HMM

Testing

Testing

- · Basic problem 2
 - Given λ and O, find the best state sequences to maximize $P(O \mid \lambda, q)$.
- Calculate $P(O \mid \lambda) \approx \max P(O \mid \lambda, q)$ for each of the five models
- The model with the highest probability for the most probable path usually also has the highest probability for all possible paths.

Homework of HMM | Testing 16 / 42

Viterbi Algorithm

Complete procedure for Viterbi algorithm²

Initialization

$$\delta_1(i) = \pi_i b_i(o_1), \ 1 \le i \le N$$
 (25)

Recursion

$$\delta_{t}(j) = \max_{1 \le i \le N} [\delta_{t-1}(i) \ a_{ij} \] \cdot b_{j}(o_{t}), \ 2 \le t \le T, \ 1 \le j \le N$$
(26)

Termination

$$P^* = \max_{1 < i < N} [\delta_T(i)]$$
 (27)

$$\delta_t(i) = \max_{q_1, \dots, q_{t-1}} P[q_1, q_2, \dots, q_{t-1}, q_t = i, o_1, o_2, \dots, o_t \mid \lambda]$$
(28)

= the highest probability along a certain single path ending at state i at time t for the first t observations, given λ (29)

²http://en.wikipedia.org/wiki/Viterbi_algorithm

Requirements

Recall: Flowchart

Requirements 18 / 42

Provided Files

data/train_seq_0X.txt

· Training data (10K observation sequences)

data/test lbl.txt

· Testing labels

data/test_seq.txt

· Testing data (2.5K observation sequences)

inc/hmm.h

- · Provided by TA, please work with it!
- · You can load/dump models with functions within.

model init.txt

· Initial model parameters

modellist.txt

· Paths to model files

src/test hmm.c

· A showcase of the usage of hmm.h

Requirements 19 / 42

Input and Output of Your Program

Training

- **Input** 1. number of iterations
 - initial model (model_init.txt)
 - 3. observation sequences
 (train_seq_01~05.txt)
- Output Five files of parameters for 5 models, each contains $\lambda = (A, B, \pi)$ (e.g. model 01~05.txt)

Testing

- Input 1. a file of paths to the models trained in the
 previous step (modellist.txt)
 - observation sequences (test_seq.txt)
- **Output** best answer labels and $P(O \mid \lambda)$ (e.g. result.txt)

Requirements 20 / 42

Training Details

```
./train <iter> <model_init_path> <seq_path> <output_model_path>
```

Requirements 21 / 42

Testing Details

```
./test <models_list_path> <seq_path> <output_result_path>
```

models_list_path
seq_path
output_result_path

path to the model list file path to sequence data path to output testing result

Requirements 22 / 42

Program Execution Example

Compiling

```
make # type this in the root directory of the project
```

Training

```
./train 100 model_init.txt data/train_seq_01.txt model_01.txt
```

Testing

```
./test modellist.txt data/test_seq.txt result.txt
```

Notice!

Command-line arguments are not fixed, read them during runtime. (e.g. Use argv in main function to pass the arguments.)

Also the paths in arguments need to be variable path.

Requirements 23 / 42

Requirements

File Format

Observation Sequence Format

The given data/train_seq_01~05.txt and data/test_seq.txt look like this.

- ACCDDDDFFCCCCBCFFFCCCCCEDADCCAEFCCCACDDFFCCDDFFCCD
- 2 CABACCAFCCFFCCCDFFCCCCDFFCDDDDFCDDCCFCCCEFFCCCCBC
- 3 ABACCCDDCCCDDDFBCCCCCDDAACFBCCBCCCCCCFFFCCCCCDBF
- 4 AAABBBCCFFBDCDDFFACDCDFCDDFFFFCCCDCFFFFCCCCD
- 5 AACCDCCCCCCCCCBFFFCDCDCDAFBCDCFFCCDCCCEACDBAFFF
- 6 ...

Each of the former has 10000 sequences and the latter has 2500 sequences.

Requirements | File Format 24 | 42

Model Format 1/2

initial: 6

$$\pi = [\pi_1, \ \pi_2, \ \pi_3, \ \pi_4, \ \pi_5, \ \pi_6]$$

transition: 6

$$A = \begin{bmatrix} a_{11} & \dots & a_{16} \\ \vdots & \ddots & \vdots \\ a_{61} & \dots & a_{66} \end{bmatrix}$$

observation: 36

$$B = \begin{bmatrix} b_1(o_1) & \dots & b_6(o_1) \\ \vdots & \ddots & \vdots \\ b_1(o_6) & \dots & b_6(o_6) \end{bmatrix}$$

Requirements | File Format

³The sum of column is 1 here.

Model Format 2/2

A model file (e.g. model_0X.txt) should look like this.

```
initial: 6
   0.2
          0.1
                 0.2
                       0.2
                              0.2
                                     0.1
2
3
   transition: 6
4
   0.3
          0.3
                       0.1
                              0.1
                                    0.1
                0.1
5
   0.1
       0.3
                0.3
                       0.1
                                    0.1
                              0.1
   0.1
       0.1 0.3
                      0.3
                              0.1
                                    0.1
   0.1
       0.1 0.1
                    0.3 0.3
                                    0.1
   0.1
       0.1 0.1
                      0.1
                              0.3
                                    0.3
                       0.1
                              0.1
                                     0.3
   0.3
       0.1
                 0.1
10
11
   observation: 6
12
   0.2
          0.2
                 0.1
                       0.1
                              0.1
                                     0.1
13
   0.2
       0.2
                0.2
                       0.2
                              0.1
                                    0.1
14
       0.2 0.2
                                    0.2
15
   0.2
                       0.2
                              0.2
   0.2
       0.2 0.2
                    0.2
                              0.2
                                    0.2
16
   0.1
       0.1 0.2
                      0.2
                              0.2
                                    0.2
17
                              0.2
                                     0.2
18
   0.1
       0.1
                0.1
                       0.1
```

Requirements | File Format 26 / 42

Model List Format

The given modellist.txt looks like this.

```
model_01.txt
model_02.txt
model_03.txt
model_04.txt
model_05.txt
```

Your testing program should be able to read a list like this and load models from the specified paths for testing. (Don't worry! If you use hmm.h, all of these are done by calling function load_models(). For more details please refer to hmm.h.)

Requirements | File Format 27 | 42

Output Format

Your testing program should output these to the specific path (e.g. result.txt) given as a command-line argument while executing the program.

```
model_01.txt 7.822367e-34
model_05.txt 1.094896e-40
model_01.txt 7.928724e-33
model_02.txt 4.262100e-37
model_02.txt 5.914689e-42
...
```

Each line consists of the hypothesis model and its likelihood. They should be separated by a space.

Requirements | File Format 28 / 42

Label File Format

The first few lines of the given data/test_lbl.txt looks like this.

```
model_01.txt
model_05.txt
model_01.txt
model_02.txt
model_02.txt
...
```

Requirements | File Format 29 / 42

Makefile Format

The Makefile you submit should be capable to compile your program using make. The provided one can compile train.c and test.c in directory src into two executables train and test.

```
.PHONY: all clean run
    CC=gcc
    CFLAGS=-std=c99 -02
    LDFLAGS=-lm
    TARGET=train test
6
    all: $(TARGET)
7
8
    train: src/train.c
        $(CC) -o $0 $^ $(CFLAGS) $(LDFLAGS) -Iinc
10
    test: src/test.c
12
        $(CC) -o $0 $^ $(CFLAGS) $(LDFLAGS) -Iinc
13
14
    clean:
1.5
        rm -f $(TARGET)
16
```

Requirements | File Format 30 / 42

Report Format

Please write a **one-page** report in **PDF** format, name it **report.pdf** and submit with your source code.

State your name, student ID and any challenges you encounter or attempts you try. A good report may grant you bonus of extra 5%.

Requirements | File Format 31 / 42

File Structure

All of your source code files must be placed under inc/ and src/.

Let's say you only have two implementation files and use the functions provided in hmm.h. You should put your source code under src/ and leave hmm.h in inc/.

Requirements | File Format 32 / 42

Requirements

Submission Requirement

Submission Requirement 1/2

- 1. Create a directory named hw1_[STUDENT_ID]⁴.
- 2. Put
 - · inc/
 - · Makefile
 - · model_init.txt
 - · report.pdf
 - · src/

into the directory. ⁵

- Compress the directory into a ZIP file named hw1_[STUDENT_ID].zip.
- 4. Upload this ZIP file to CEIBA.

⁴lowercase

⁵Put every source code file in **inc/** and **src/**.

Submission Requirement 2/2

Let's say your student ID is r01234567.

```
hw1_r01234567.zip

— hw1_r01234567

— inc

— [*.h or *.hpp]

— Makefile

— model_init.txt

— report.pdf
— src

— [*.c, *.cc or *.cpp]
```

Grading

Grading Method

Your training and testing program will be tested respectively. We will specify 100 as the number of iterations while testing your training program. And each of your program is allowed to run for 1 min.

Here's TA's environment.

Kernel Linux 5.4.0-48-generic

Processors Intel Core i7-6700 (8 Cores)

RAM 32 GB

GCC Version 9.3.0

Grading 35 / 42

Grading Policy

File Format 20%

- · ZIP file name
- · directory name
- · separated header and implementation files
- · Makefile
- · model_init.txt

Program 20%

- compiled and executed without error
- · output files generated after execution

Report 10%

and bonus of extra 5% for the impressive ones

Accuracy 50%

30% for provided test set, 20% for private test set⁶

Grading 36 / 42

⁶details are provided at the next page

Accuracy vs Credit

Accuracy	Credit
80% ≤ accuracy	100%
60% ≤ accuracy < 80%	75%
40% ≤ accuracy < 60%	50%
accuracy < 40%	0%

Grading 37 / 42

Test Accuracy v.s. # of Training Iterations

Grading 38 / 42

Late Submission

Due on 23:59, November 6, 2020

You are still allowed to submit after the due date. The penalty for late submission is an exponential decay with decay rate 1.5% of the maximum grade applicable for the assignment, for each hour that the assignment is late.

An assignment submitted more than 3 days after the deadline will have a grade of zero recorded for that assignment.

$$SCORE_{final}(hr) = \begin{cases} SCORE_{original} \times 0.985^{hr} &, hr \leq 72 \\ 0 &, hr > 72 \end{cases}$$

Grading 39 / 42

⁷less than 70% after 24 hrs. 48% for 48 hrs and 33% for 72 hrs

Please Note...

File Format

- · All of your source code files should be placed under inc/ and src/.
- model_init.txt must be submitted, even if it's not needed for your program.

Program

- · Only C/C++ is allowed.
- · Make sure your program can be compiled with the Makefile you submit.
- The paths in command-line arguments have to be relative path.
- Each of your program is allowed to run for 1 min.

Accuracy

- Make sure your training program saves models within time limit.
- · Public and private test set come from same models.

If you have any questions, please read the FAQ⁸ first.

Grading 40 / 42

⁸ http://speech.ee.ntu.edu.tw/DSP2020Autumn/hw1/FAQ.html

DO NOT CHEAT

Any form of cheating, lying, or plagiarism will not be tolerated.

Grading 41 / 42

Contact TAs

If you have any question or need help,

- · send email to ntu-dsp-2020-ta@googlegroups.com
- and use "[HW1]" as the subject line prefix

Or come to EE2 R531, and don't forget to inform us by email, thanks!

蔡翔陞 Thr. 9:00 - 12:00

Office hours

Contact TAs 42 / 42