שיעור 5 צורת ז'ורדן

n מטריצת ז'ורדן נילפוטנטית יסודית מסדר 5.1 הגדרה

$$E=\{e_1,\ldots,e_n\}=\left\{egin{pmatrix}1\\0\\\vdots\\0\end{pmatrix},\ldots,egin{pmatrix}0\\0\\\vdots\\1\end{pmatrix}
ight\}$$
 יהי $L(0)\in\mathbb{F}^{n imes n}$ מערבעם

$$J_n(0) = \begin{pmatrix} | & | & | & | \\ \bar{0} & e_1 & e_2 & \dots & e_{n-1} \\ | & | & | & | \end{pmatrix}$$

שהעמודה ה-אשונה שלה היא וקטור האפס ושלכל $i \leq i \leq n$ העמודה היא וקטור היא וקטור האפס ושלכל מטריצת ז'ורדן נילפוטנטית יסודית מסדר n. כלומר:

$$J_n(0) = \begin{pmatrix} 0 & 1 & & & \\ & 0 & 1 & & & \\ & & \ddots & \ddots & & \\ & & & & \ddots & 1 \\ & & & & & 0 \end{pmatrix}$$

הגדרה 5.2 בלוק ז'ורדן

מצורה מסדר איורדן $k\times k$ מסדר מטריצה אוא $\lambda\in\mathbb{F}$, $k\in\mathbb{N}$, $J_k(\lambda)$ ז'ורדן ז'ורדן

$$J_k(\lambda) = \begin{pmatrix} \lambda & 1 & 0 & 0 & \dots & 0 \\ 0 & \lambda & 1 & 0 & \dots & 0 \\ 0 & 0 & \lambda & 1 & \dots & 0 \\ \vdots & & \ddots & \ddots & \vdots \\ \vdots & & & \ddots & \ddots & 1 \\ 0 & 0 & 0 & 0 & \dots & \lambda \end{pmatrix}$$

דוגמה 5.1

$$J_4(2) = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

 $J_4(2)$ מצאו את הפולינום האופייני של

פתרון:

משולשית עליונה, לכן הפולינום האופייני מתפרק לגורמים לינאריים, והערכים עצמיים נמצאים על האלכסון $J_4(2)$ הראשי. לכן נקבל

$$P_{J_4(2)} = (\lambda - 2)(\lambda - 2)(\lambda - 2)(\lambda - 2) = (\lambda - 2)^4$$
.

יש ערך עצמי יחיד $\lambda=2$ מריבוי אלגברי λ . נמצא את הריבוי הגאומטרי:

$$(A - 2I_{4\times 4}) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

משפט 5.1 בלוק ז'ורדן לא לכסין

. לא לכסין $J_k(\lambda)$

הוכחה:

$$J_k(\lambda_1) = \begin{pmatrix} \lambda_1 & 1 & 0 & 0 & \dots & 0 \\ 0 & \lambda_1 & 1 & 0 & \dots & 0 \\ 0 & 0 & \lambda_1 & 1 & \dots & 0 \\ \vdots & & & \ddots & \ddots & \vdots \\ \vdots & & & & \ddots & 1 \\ 0 & 0 & 0 & 0 & \dots & \lambda_1 \end{pmatrix}$$

משולשית עליונה. לכן הפולינום האופייני מתפרק לגורמים לינאריים, והערכים עצמיים נמצאים על האלכסון $J_k(\lambda_1)$ הראשי (משפט $\ref{eq:substruction}$).

$$p_{J_k(\lambda_1)}(\lambda) = \underbrace{(\lambda - \lambda_1) \dots (\lambda - \lambda_1)}_{\text{Prive } k} = (\lambda - \lambda_1)^k$$

 $:V_{\lambda_1}$ יש ערך עצמי יחיד: $\lambda=\lambda_1$ מריבוי אלגברי $\lambda=\lambda_1$ יש ערך עצמי יחיד:

$$(A - \lambda_1 I_{k \times k}) = \begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 \\ \vdots & & & \ddots & \ddots & \vdots \\ \vdots & & & & \ddots & 1 \\ 0 & 0 & 0 & 0 & \dots & 0 \end{pmatrix}$$

. נקבל כי לוכן המטריצה א"א הריבוי גאומרטי פחות מהריבוי אלגברי, ולכן המטריצה לא לכסינה. $V_{\lambda_1}=k-1$

הגדרה 5.3 צרות ז'ורדן

צורת ז'ורדן היא מטריצה ריבועית $A\in\mathbb{F}^{n imes n}$ שעל האלכסון הראשי שלה יש בלוקים ז'ורדן ו- 0 בכל מקום אחר.

$$A = \operatorname{diag}\left(J_{k_1}(\lambda_1), J_{k_2}(\lambda_2), \dots, J_{k_l}(\lambda_l)\right) = \begin{pmatrix} J_{k_1}(\lambda_1) & 0 & \dots & 0 \\ 0 & J_{k_2}(\lambda_2) & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & J_{k_l}(\lambda_l) \end{pmatrix}$$

דוגמה 5.3

$$\operatorname{diag}\bigg(J_2(1),J_3(0)\bigg) = \begin{pmatrix} J_1(1) & 0 \\ 0 & J_3(0) \end{pmatrix} = \begin{pmatrix} \begin{array}{c|cccc} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{array} \\ \end{array}$$

- 1) צורת ז'ורדן היא משולשית.
- 2) מטריצה אלכסונית היא בצורת ז'ורדן.
- 3) צורת ז'ורדן היא הצורה הקרובה ביותר למטירצה אלכסונית.

תהי A מטריצה ריבועית מסדר 2×2 עם ערך עצמיי אחד, λ מריבוי אלגברי 2. יהי אז מטריצה ריבועית מסדר ישנן שתי אפשרויות:

- $\dim(V_{\lambda})=2$ (ב) (ב) אומרטי (ווי)
- $\dim(V_{\lambda})=1$ (2) מהריבוי (2)
 - $\dim(V_{\lambda}) = 2$:(1) מקרה

השייכים u_2 , u_1 עצמיים עצמיים יהיו שני אלגברי שווה לריובי אומטרי. אלגברי שווה לריובי אלגברי אלגברי אלגברי אלגברי אלגברי אווה לריובי אומטרי. איכו אלגברי אלגברי ווה אלגברי אלגברי

$$A \cdot \begin{pmatrix} | & | \\ u_1 & u_2 \\ | & | \end{pmatrix} = \begin{pmatrix} | & | \\ A \cdot u_1 & A \cdot u_2 \\ | & | \end{pmatrix} = \begin{pmatrix} | & | \\ \lambda u_1 & \lambda u_2 \\ | & | \end{pmatrix} = \begin{pmatrix} | & | \\ u_1 & u_2 \\ | & | \end{pmatrix} \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$$

נסמן
$$D=egin{pmatrix} \lambda & 0 \ 0 & \lambda \end{pmatrix}$$
 -ו $P=egin{pmatrix} | u_1 & u_2 \ | & | \end{pmatrix}$ נסמן $A\cdot P=PD$ \Rightarrow $A=PDP^{-1}$

. דומה למטריצה אלכסונית ולכן A לכסינה A

 $\dim(V_{\lambda})=1$:(2) מקרה

לא לכסינה אז A לא לכסינה אבל שווה לריובי אווה לריובי אז לכסינה אבל היא אווה לכסינה אבל היא לכסינה אבל אווה למטריצה בלוק ז'ורדן ל $J_2(\lambda)$

יש וקטור עצמי אחד, השייך לערך עצמי u_1 , כלומר

$$A \cdot u_1 = \lambda u_1 \qquad \Rightarrow \qquad (A - \lambda I) \cdot u_1 = 0 .$$

-ע כך u_2 כך ש

$$(A - \lambda I) \cdot u_2 = u_1 \qquad \Rightarrow \qquad A \cdot u_2 = \lambda u_2 + u_1 .$$

מכאן

$$(A - \lambda I)^2 u_2 = (A - \lambda I) \cdot u_1 = 0.$$

לכן נקבל

דוגמה 5.4

$$A=PJP^{-1}$$
- כך ש- P כך ומטריצה ומטריצה איורדן צורת מצאו אורת . $A=\left(\begin{array}{cc} 2 & 3 \\ 0 & 2 \end{array}\right)$ תהי

פתרון:

הפולינום האופיינו הוא:

$$|\lambda I - A| = \begin{vmatrix} \lambda - 2 & -3 \\ 0 & \lambda - 2 \end{vmatrix} = (2 - \lambda)^2 = 0$$

. מירבוי את המרחב עצמי: $\lambda=2$, מירבוי אלגברי 2. נמצא את המרחב עצמי:

$$(A-2I) = \left(\begin{array}{cc|c} 0 & 3 & 0 \\ 0 & 0 & 0 \end{array}\right) \to \left(\begin{array}{cc|c} 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

לכן
$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ 0 \end{pmatrix} = x \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 לכן

$$V_2 = \operatorname{span}\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}$$
 .

נסמן ב- $dim(V_\lambda)=1<2$. $\lambda=2$ עצמי של ערך עצמי של לכסינה. לכסינה. לכס מות $u_1=\begin{pmatrix}1\\0\end{pmatrix}$

$$.u_1=egin{pmatrix}1\\0\end{pmatrix}$$
 עצמי

$$(A - \lambda I) \cdot u_2 = u_1 .$$

$$.u_2 = \begin{pmatrix} x \\ y \end{pmatrix}$$
 נסמן

דוגמה 5.5

$$A=PJP^{-1}$$
- כך ש- P כך ומטריצה ומטריצה איורדן איורדן $A=\begin{pmatrix}4&0&1\\0&4&0\\0&0&4\end{pmatrix}$ תהי

פתרון:

הפולינום האופיינו הוא:

$$|\lambda I - A| = \begin{vmatrix} \lambda - 4 & 0 & -1 \\ 0 & \lambda - 4 & 0 \\ 0 & 0 & \lambda - 4 \end{vmatrix} = (\lambda - 4)^3 = 0$$

עצמי: את המרחב עצמי, $\lambda=4$, מירבוי עצמי ערך עצמי לכן יש ערך אחד,

$$(A-4I)=\left(egin{array}{cc|c} 0&0&1&0\\0&0&0&0\\0&0&0&0 \end{array}
ight)$$
 אכן
$$\left(\begin{matrix} x\\y\\z\end{matrix}
ight)=\left(\begin{matrix} x\\y\\0\end{matrix}
ight)=x\left(\begin{matrix} 1\\0\\0\end{matrix}
ight)+y\left(\begin{matrix} 0\\1\\0\end{matrix}
ight)$$
 הפתרון הוא $V_4=\mathrm{span}\left\{\left(\begin{matrix} 1\\0\\0\end{matrix}
ight),\left(\begin{matrix} 0\\1\\0\end{matrix}
ight)
ight\}$.

נרשום . $u_2=\begin{pmatrix}1\\0\\0\end{pmatrix}$, $u_1=\begin{pmatrix}0\\1\\0\end{pmatrix}$ -ב V_4 ב- בבסיס של A לכסינה. נסמן הוקטורים בבסיס של A ב- . $\dim(V_\lambda)=2<3$ וקטור עצמי $\lambda=4$ כצירוף לינארי של הבסיס הזה:

$$w_1 = \alpha_1 u_1 + \alpha_2 u_2 .$$

 w_2 לפי:

$$(A-4I) \cdot w_2 = w_1 = \alpha_1 u_1 + \alpha_2 u_2$$
.

נסמן $w_2 = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ נסמן נסמן

$$(A-4I) \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \alpha_2 \\ \alpha_1 \\ 0 \end{pmatrix}$$

נרכיב את המטריצה המורחבת של המשוואה:

$$\left(\begin{array}{ccc|c}
0 & 0 & 1 & \alpha_2 \\
0 & 0 & 0 & \alpha_1 \\
0 & 0 & 0 & 0
\end{array}\right)$$

יש פתרון כאשר x,y נבחור $\alpha_1=1$ ונקבל את הפתרון $\alpha_2=1$ ונקבל $\alpha_2=1$ יש פתרון כאשר $\alpha_1=0$ יש פתרון כאשר מון מ

$$w_2=egin{pmatrix}1\\1\\1\end{pmatrix}$$
 ונקבל $x=1,y=1$ כל ערך. נציב

 $u_3=egin{pmatrix}1\\1\\1\end{pmatrix}$ אורדן מהוקטורים עצמיים $u_2=egin{pmatrix}1\\0\\0\end{pmatrix}$, $u_1=egin{pmatrix}0\\1\\0\end{pmatrix}$ נבנה בסיס ז'ורדן מהוקטורים עצמיים

$$P = \begin{pmatrix} | & | & | \\ u_1 & u_2 & u_3 \\ | & | & | \end{pmatrix} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

$$J = \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix} = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 4 & 1 \\ 0 & 0 & 4 \end{pmatrix}$$

$$A = PJP^{-1} .$$

שימו לב שבדוגמה הזאת J צורת ז'ורדן מצורה

$$J = \operatorname{diag}(J_1(\lambda), J_2(\lambda)) = \operatorname{diag}(J_1(4), J_2(4)) .$$

דוגמה 5.6

$$A=PJP^{-1}$$
 -פיכה P כך ומטריצה זיורדן איורדן פורת מצאו או $A=\begin{pmatrix}4&1&1\\0&4&1\\0&0&4\end{pmatrix}$ תהי

פתרון:

הפולינום האופיינו הוא:

$$|\lambda I - A| = \begin{vmatrix} \lambda - 4 & -1 & -1 \\ 0 & \lambda - 4 & -1 \\ 0 & 0 & \lambda - 4 \end{vmatrix} = (\lambda - 4)^3 = 0$$

עצמי: את המרחב עצמי: .3 מירבוי אלגברי $\lambda=4$, אחד, אחד, לכן יש ערך א

$$(A-4I)=\left(egin{array}{cc|c}0&1&1&0\\0&0&1&0\\0&0&0&0\end{array}
ight)$$
 אכן
$$\left(\begin{matrix}x\\y\\z\end{matrix}
ight)=\left(\begin{matrix}x\\0\\0\end{matrix}
ight)=x\left(\begin{matrix}1\\0\\0\end{matrix}
ight)$$
 הפתרון הוא
$$V_4=\mathrm{span}\left\{\left(\begin{matrix}1\\0\\0\end{matrix}
ight)\right\}\ .$$

 $u_1=egin{pmatrix}1\\0\\0\end{pmatrix}$ -ב V_4 של בסינה. נסמן הוקטור בבסיס אל A לכן . $\dim(V_\lambda)=1<3$

$$(A-4I)\cdot u_2=u_1.$$

$$u_2 = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 נסמן

$$(A - 4I) \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$lpha \in \mathbb{R}$$
 , $u_2 = egin{pmatrix} lpha \ 1 \ 0 \end{pmatrix}$ הפתרון הוא

$$(A-4I)\cdot u_3=u_2.$$

$$u_3 = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 נסמן

$$\left(\begin{array}{ccc|c} 0 & 1 & 1 & \alpha \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right) \to \left(\begin{array}{ccc|c} 0 & 1 & 0 & \alpha - 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

:ונקבל הבסיס ה' נציב
$$\beta=1$$
 , $lpha=1$ נציב $eta\in\mathbb{R}$ $u_3=egin{pmatrix} eta\\ lpha-1\\ 1 \end{pmatrix}$ ונקבל הבסיס ג'ורדן:

$$\left\{ u_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, u_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, u_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right\}$$

$$,P = \begin{pmatrix} | & | & | \\ u_1 & u_2 & u_3 \\ | & | & | \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\
 .J = \begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix} = \begin{pmatrix} 4 & 1 & 0 \\ 0 & 4 & 1 \\ 0 & 0 & 4 \end{pmatrix}$$

$$A = PJP^{-1} .$$

שימו לב שבדוגמה הזאת J צורת ז'ורדן מצורה

$$J = J_3(\lambda) = J_3(4)$$
.

משפט 5.2 משפט ז'ורדן

יהי אופרטור לינארי מעל שדה $\mathbb F$. נניח שהפולינום האופייני מתפרק לגורמים לינאריים T:V o V

$$p(x) = (\lambda - \lambda_1)^{n_1} (x - \lambda_2)^{n_2} \dots (x - \lambda_l)^{n_l}$$

כאשר $\lambda_i
eq \lambda_i$ עבור $i \neq j$ לכל הוא $1 \leq i \leq l$ לכל גניח שפולינום המינימלי

$$m(x) = (x - \lambda_1)^{m_1} (x - \lambda_2)^{m_2} \dots (x - \lambda_l)^{m_l}$$

כאשר א'ורדן מצורת ז'ורדן מטריצה מטריצה אי יש ל- ז'ורדן מצורה ו $1 \leq m_i \leq n_i$ כאשר כאשר

$$\begin{pmatrix} \beta_1 & 0 & \\ & \beta_2 & \\ & & \ddots & \\ & 0 & & \beta_l \end{pmatrix}$$

 λ_i כאשר מתאים לערך עצמי β_i

$$\beta_{i} = \operatorname{diag}\left(J_{a_{1}}(\lambda_{i}), J_{a_{2}}(\lambda_{i}), \dots, J_{a_{s}}(\lambda_{i})\right) = \begin{pmatrix} J_{a_{1}}(\lambda_{i}) & 0 & \dots & 0 \\ 0 & J_{a_{2}}(\lambda_{i}) & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & J_{a_{s}}(\lambda_{i}) \end{pmatrix}$$

כאשר

$$a_1 = m_i$$
 (1

$$a_1 \geq a_2 \geq a_3 \geq \ldots \geq a_s$$
 (2

$$a_1 + a_2 + \ldots + a_s = n_i$$
 (3

 λ_i הוא הריבוי הגאומרטי של s (4

לכן, שתי מטריצות דומות אם ורק אם יש להן אותה צורת ז'ורדן עד כדי סדר הבלוקים.

נתון פולינום אופייני $m(x)=(x-2)^2(x-3)^2$ ופולינום מינימלי $p(x)=(x-2)^4(x-3)^3$ אז צורת ז'ורדן פולינום אופייני היא

$$\begin{pmatrix} \beta_1 & 0 \\ 0 & \beta_2 \end{pmatrix}$$

 $: \lambda = 2$ נמצא β_1 עבור

 $.eta_1$ יש שתי אפשרויות עבור

$$eta_1=egin{pmatrix} J_2(2) & 0 & 0 \ 0 & J_1(2) & 0 \ 0 & 0 & J_1(2) \end{pmatrix}$$
 if $eta_1=egin{pmatrix} J_2(2) & 0 \ 0 & J_2(2) \end{pmatrix}$

 $:\lambda=3$ עבור β_2

$$\beta_2 = \begin{pmatrix} J_2(3) & 0\\ 0 & J_1(3) \end{pmatrix}$$

 $\lambda=2$ יש למצוא הירבוי הגאומטרי של eta_1 בכדי לקבוע בכדי

 $\lambda=2$ של הגאומרי לריבוי שווה β_1 ב- מספר מספר מספר

דוגמה 5.8

. נתון הפולינום האופייני $p(x) = (x-2)^3 (x-5)^2$ ז'ורדן האפשריות הפולינום נתון הפולינום האופייני

פתרון:

האפשרויות של הפולינום המינימלי הן

$$(x-2)(x-5)$$
, $(x-2)(x-5)^2$, $(x-2)^2(x-5)$, $(x-2)^2(x-5)^2$, $(x-2)^3(x-5)$, $(x-2)^3(x-5)^2$.

לכן האפשרויות לצורת ז'ורדן הן:

$$m(x) = (x-2)(x-5)$$

$$\begin{pmatrix} J_1(2) & & & & & \\ & J_1(2) & & & & \\ & & J_1(2) & & & \\ & & & J_1(5) & & \\ & & & & J_1(5) \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 0 & 5 \end{pmatrix}$$

$$m(x) = (x-2)^2(x-5)$$

$$\begin{pmatrix} J_2(2) & & & & \\ & J_1(2) & & & \\ & & J_1(5) & & \\ & & & J_1(5) \end{pmatrix} = \begin{pmatrix} \begin{array}{c|c} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ \hline 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 0 & 5 \end{array} \end{pmatrix}$$

$$m(x) = (x-2)^3(x-5)$$

$$\underline{m(x) = (x-2)(x-5)^2}$$

$$\begin{pmatrix} J_1(2) & & & & \\ & J_1(2) & & & \\ & & J_1(2) & & \\ & & & J_2(5) \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 5 & 1 \\ 0 & 0 & 0 & 5 & 0 \end{pmatrix}$$

$$m(x) = (x-2)^2(x-5)^2$$

$$\begin{pmatrix} J_2(2) & & & \\ & J_1(2) & & \\ & & & J_2(5) \end{pmatrix} = \begin{pmatrix} \begin{array}{c|c} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ \hline 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 5 & 1 \\ 0 & 0 & 0 & 0 & 5 \end{array} \end{pmatrix}$$

$$\underline{m(x) = (x-2)^3(x-5)^2}$$

$$\begin{pmatrix}
J_3(2) \\
J_2(5)
\end{pmatrix} = \begin{pmatrix}
\begin{bmatrix}
2 & 1 & 0 & 0 & 0 \\
0 & 2 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 5 & 1 \\
0 & 0 & 0 & 0 & 5
\end{bmatrix}$$

למטריצות A ו- B יש אותו פולינום מינימלי ופולינום אופייני:

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} , \qquad p_A(x) = x^4 , \qquad m_A(x) = x^2 .$$

מטריצות A ו- B לא דומות אבל

,יש אותם ערכים עצמיים B ו- B יש אותם ערכים עצמיים

- אבל |A| = |B|
- $.rank(A) \neq rank(B) \bullet$

בדוגמה היו שתי מטריצות לא דומות עם אותם p(x) ו- p(x) ו- p(x) אותם ערכים עצמיים וגם אותה דרגה.

3 imes 3 משפט 5.3 צורת ז'ורדן של מטריצה

עבור מטריצות 3×3 צורות פולינום אופייני הן:

$$p(x) = (x - a)(x - b)(x - c)$$
, $p(x) = (x - a)^{2}(x - b)$, $p(x) = (x - a)^{3}$.

מקרה 1:

$$p(x) = (x - a)(x - b)(x - c)$$
, $m(x) = (x - a)(x - b)(x - c)$.

קיימת צורת ז'ורדן אחת:

$$\begin{pmatrix}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{pmatrix}$$

מטריצה אלכסונית. הצ'ורת ז'ורדן היא

$$\begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix} = \begin{pmatrix} J_1(a) & 0 & 0 \\ 0 & J_1(b) & 0 \\ 0 & 0 & J_1(c) \end{pmatrix}$$

מקרה 2:

$$p(x) = (x - a)^2(x - b)$$

⇒ ישנן שתי אפשרויות לפולינום המינימלי:

$$m(x) = (x - a)(x - b)$$
 \forall $m(x) = (x - a)^{2}(x - b)$

$$\underline{m(x) = (x - a)(x - b)}$$

קיימת צורת ז'ורדן אחת:

$$\begin{pmatrix} J_1(a) & 0 & 0 \\ 0 & J_1(a) & 0 \\ 0 & 0 & J_1(b) \end{pmatrix} = \begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & b \end{pmatrix}$$

$$m(x) = (x - a)^2(x - b)$$

קיימת צורת ז'ורדן אחת:

$$\begin{pmatrix} J_2(a) & 0 \\ 0 & J_1(b) \end{pmatrix} = \begin{pmatrix} a & 1 & 0 \\ 0 & a & 0 \\ 0 & 0 & b \end{pmatrix}$$

מקרה 3:

$$p(x) = (x - a)^3$$

m(x) -אז ישנן 3 אפשרויות ל

$$(x-a)$$
, $(x-a)^2$, $(x-a)^3$.

$$\underline{m(x) = (x - a)}$$

קיימת צורת ז'ורדן אחת:

$$\begin{pmatrix} J_1(a) & 0 & 0 \\ 0 & J_1(a) & 0 \\ 0 & 0 & J_1(a) \end{pmatrix} = \begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{pmatrix}$$

$$\underline{m(x) = (x - a)^2}$$

קיימת צורת ז'ורדן אחת:

$$\begin{pmatrix} J_2(a) & 0 \\ 0 & J_1(a) \end{pmatrix} = \begin{pmatrix} a & 1 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{pmatrix}$$

$$\underline{m(x) = (x-a)^3}$$

קיימת צורת ז'ורדן אחת:

$$(J_3(a)) = \begin{pmatrix} a & 1 & 0 \\ 0 & a & 1 \\ 0 & 0 & a \end{pmatrix}$$

ז"א לכל פולינום מינימלי כאן יש צורת ז'ורדן אחת. לכן כל שתי מטריצות מסדר 3×3 עם אותו פולינום אופייני ואותו פולינום מינימלי הן דומות אחת לשניה.

מצאו את צורת ז'ורדן ובסיס מז'רדן אל מטריצה

$$A = \begin{pmatrix} 1 & -3 & 4 \\ 4 & -7 & 8 \\ 6 & -7 & 7 \end{pmatrix}$$

פתרון:

$$p_{A}(x) = |xI - A|$$

$$= \begin{vmatrix} x - 1 & 3 & -4 \\ -4 & x + 7 & -8 \\ -6 & 7 & x + 7 \end{vmatrix}$$

$$= (x - 1) \begin{vmatrix} x + 7 & -8 \\ 7 & x + 7 \end{vmatrix} - 3 \begin{vmatrix} -4 & -8 \\ -6 & x + 7 \end{vmatrix} - 4 \begin{vmatrix} -4 & x + 7 \\ -6 & 7 \end{vmatrix}$$

$$= (x - 1) ((x + 7)^{2} + 56) - 3(-28 - 4x + 48) - 4(-28 - 6(7 + x))$$

$$= -(x + 1)^{2}(x - 3)$$

האפשרויות לפולינום המינימלי הן:

$$m(x) = (x+1)(x-3)$$
 או $m(x) = (x+1)^2(x-3)$.

A נבדוק איזה מהם מתאפס ע"י

$$(A+I)(A-3) = \begin{pmatrix} 2 & -3 & 4 \\ 4 & -6 & 8 \\ 6 & -7 & 8 \end{pmatrix} \begin{pmatrix} -2 & -3 & 4 \\ 4 & -10 & 8 \\ 6 & -7 & 4 \end{pmatrix} \neq 0$$

לכן ז'ורדן היא $m(x) = (x+1)^2(x-3)$ לכן

$$\begin{pmatrix} J_2(-1) & 0 \\ 0 & J_1(3) \end{pmatrix} = \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

 $\lambda=-1$ ערך עצמי. נמצא וקטור עצמי השייך ל $\lambda=-1$ (נמצא את הבסיס המז'רדן: $\lambda=-1$

$$(A+I) = \begin{pmatrix} 2 & -3 & 4 \\ 4 & -6 & 8 \\ 6 & -7 & 8 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & -3 & 4 \\ 0 & 0 & 0 \\ 0 & 2 & -4 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & -3 & 4 \\ 0 & 2 & -4 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & -3 & 4 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 2 & 0 & -2 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix}$$

 $z \in \mathbb{R} \ (x,y,z) = (z,2z,z)$:פתרון

$$V_{-1} = \operatorname{span}\left\{ \begin{pmatrix} 1\\2\\1 \end{pmatrix} \right\}$$

 $(A+I)u_2 = u_1$

$$u_1 = egin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$
 -ב V_{-1} של הבסיס של את הבסיס של

$$u_2 = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 נסמן

$$(A+I)\begin{pmatrix} x\\y\\z \end{pmatrix} = \begin{pmatrix} 1\\2\\1 \end{pmatrix}$$

$$\begin{pmatrix}
2 & -3 & 4 & | & 1 \\
4 & -6 & 8 & | & 2 \\
6 & -7 & 8 & | & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
2 & -3 & 4 & | & 1 \\
6 & -7 & 8 & | & 1 \\
0 & 0 & 0 & | & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
2 & -3 & 4 & | & 1 \\
0 & 2 & -4 & | & -2 \\
0 & 0 & 0 & | & 0
\end{pmatrix}$$

$$\rightarrow
\begin{pmatrix}
2 & -3 & 4 & | & 1 \\
0 & 0 & 0 & | & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
2 & 0 & -2 & | & -2 \\
0 & 1 & -2 & | & -1 \\
0 & 0 & 0 & | & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & -1 & | & -1 \\
0 & 1 & -2 & | & -1 \\
0 & 0 & 0 & | & 0
\end{pmatrix}$$

z=1 נציב . $z\in\mathbb{R}$ (x,y,z) = (-1+z,-1+2z,z) (נציב

$$u_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

 $:\lambda=3$ נחפש הוקטור עצמי ששייך לערך עצמי

$$(A-3I) = \begin{pmatrix} -2 & -3 & 4 \\ 4 & -10 & 8 \\ 6 & -7 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} -2 & -3 & 4 \\ 0 & -16 & 16 \\ 0 & -16 & 16 \end{pmatrix} \rightarrow \begin{pmatrix} -2 & -3 & 4 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$
$$\rightarrow \begin{pmatrix} -2 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

$$z \in \mathbb{R}$$
 $(x, y, z) = (\frac{1}{2}z, z, z)$

$$u_3=\begin{pmatrix}1\\2\\2\end{pmatrix}$$

$$P=\begin{pmatrix}|&|&|\\u_1&u_2&u_3\\|&|&|\end{pmatrix}=\begin{pmatrix}1&0&1\\2&1&2\\1&1&2\end{pmatrix}$$
 אירדן היא $J=\begin{pmatrix}J_2(-1)&0\\0&J_1(3)\end{pmatrix}=\begin{pmatrix}-1&1&0\\0&-1&0\\0&0&3\end{pmatrix}$ לכן הצורת ז'ורדן היא
$$A=PJP^{-1}$$

מצאו את צורת ז'ורדן אל מטריצה

$$A = \begin{pmatrix} -4 & 2 & 10 \\ -4 & 3 & 7 \\ -3 & 1 & 7 \end{pmatrix}$$

 $.P^{-1}AP=J$ מעל $\mathbb C$ ומטריצה P כך ש

פתרון:

$$\begin{aligned} p_A(x) &= |x - IA| \\ &= \begin{vmatrix} x + 4 & -2 & -10 \\ 4 & x - 3 & -7 \\ 3 & -1 & x - 7 \end{vmatrix} \\ &= (x + 4) \begin{vmatrix} x - 3 & -7 \\ -1 & x - 7 \end{vmatrix} + 2 \begin{vmatrix} 4 & -7 \\ 3 & x - 7 \end{vmatrix} - 10 \begin{vmatrix} 4 & x - 3 \\ 3 & -1 \end{vmatrix} \\ &= (x + 4) \left(x^2 - 10x + 21 - 7 \right) + 2 \left(4x - 28 + 21 \right) - 10 \left(-4 - 3x + 9 \right) \\ &= (x + 4) (x^2 - 10x + 14) + 2 \left(4x - 7 \right) - 10 \left(-3x + 5 \right) \\ &= x^3 - 10x^2 + 14x + 4x^2 - 40x + 56 + 8x - 14 + 30x - 50 \\ &= x^3 - 6x^2 + 12x - 8 \\ &= (x - 2)^3 \end{aligned}$$

האפשרויות לפולינום המינימלי הן:

$$m(x) = (x-2)$$
 או $m(x) = (x-2)^2$ או $m(x) = (x-2)^3$.

A נבדוק איזה מהם מתאפס ע"י

$$(A-2I) \neq 0$$
, $(A-2I)^2 = \begin{pmatrix} -6 & 2 & 10 \\ -4 & 1 & 7 \\ -3 & 1 & 5 \end{pmatrix} \begin{pmatrix} -6 & 2 & 10 \\ -4 & 1 & 7 \\ -3 & 1 & 5 \end{pmatrix} \neq 0$

לכן $m(x) = (x-2)^3$ לכן

$$J = (J_3(2)) = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

 $\lambda=2$ ערך עצמי. נמצא את המרחב עצמי ששייך ל $\lambda=2$ ערך עצמי את הבסיס המז'רדן:

$$(A - 2I) = \begin{pmatrix} -6 & 2 & 10 \\ -4 & 1 & 7 \\ -3 & 1 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} -6 & 2 & 10 \\ -4 & 1 & 7 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} -3 & 1 & 5 \\ -4 & 1 & 7 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} -3 & 1 & 5 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} -3 & 0 & 6 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} -1 & 0 & 2 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

 V_2 של בבסיס את נסמן גיסמן . $V_2=\left\{egin{pmatrix}2\\1\\1\end{pmatrix}
ight\}$ המרחב עצמי הוא לכן המרחב גיסמן . $z\in\mathbb{R}$ (x,y,z)=(2z,z,z) :פתרון:

$$u_1 = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$$

$$u_2 = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 נסמן

$$(A-2I) \cdot u_2 = u_1 \qquad \Rightarrow \qquad \begin{pmatrix} -6 & 2 & 10 \\ -4 & 1 & 7 \\ -3 & 1 & 5 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix}
-6 & 2 & 10 & 2 \\
-4 & 1 & 7 & 1 \\
-3 & 1 & 5 & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
-3 & 1 & 5 & 1 \\
-4 & 1 & 7 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
-3 & 1 & 5 & 1 \\
0 & -1 & 1 & -1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\rightarrow
\begin{pmatrix}
-3 & 0 & 6 & 0 \\
0 & -1 & 1 & -1 \\
0 & 0 & 0 & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & -2 & 0 \\
0 & 1 & -1 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

נסמן $z\in\mathbb{R}$,(x,y,z)=(2z,z+1,z) :פתרון

$$u_2 = \begin{pmatrix} 2\alpha \\ 1+\alpha \\ \alpha \end{pmatrix} , \qquad \alpha \in \mathbb{R} .$$

$$:u_3 = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 נסמן

$$(A-2I)u_3 = u_2$$
 \Rightarrow $\begin{pmatrix} -6 & 2 & 10 & 2 \\ -4 & 1 & 7 & 2 \\ -3 & 1 & 5 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2\alpha \\ 1+\alpha \\ \alpha \end{pmatrix}.$

$$\begin{pmatrix} -6 & 2 & 10 & 2\alpha \\ -4 & 1 & 7 & 1+\alpha \\ -3 & 1 & 5 & \alpha \end{pmatrix} \xrightarrow{R_1 \to \frac{1}{2} \cdot R_1} \begin{pmatrix} -3 & 1 & 5 & \alpha \\ -4 & 1 & 7 & 1+\alpha \\ -3 & 1 & 5 & \alpha \end{pmatrix}$$

$$\xrightarrow{R_1 \to -\frac{1}{3} \cdot R_1} \quad \begin{pmatrix} 1 & 0 & -2 & -1 \\ 0 & -1 & 1 & 3 - \alpha \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

z=1 נציב . $z\in\mathbb{R}$,(x,y,z)=(-1+2z,-2+z,z) נציב הפתרון לכל lpha=1 ונקבל מת הפתרון לכל המרון לכל מים ונקבל

$$u_3 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$

לכן המטריצה של הבסיס ז'ורדן היא

$$P = \begin{pmatrix} | & | & | \\ u_1 & u_2 & u_3 \\ | & | & | \end{pmatrix} = \begin{pmatrix} 2 & 2 & 1 \\ 1 & 2 & -1 \\ 1 & 1 & 1 \end{pmatrix}$$

והצורת ז'ורדן היא

$$J = J_3(2) = \left(\begin{array}{ccc} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{array}\right) .$$

$$A=PJP^{-1}$$
 - מצאו צורת זיורדן J ומטריצה הפיכה $A=\begin{pmatrix}4&1&1&0&0\\0&4&1&0&0\\0&0&4&0&0\\0&0&0&2&3\\0&0&0&0&2\end{pmatrix}$ תהי

פתרון:

הפולינום האופיינו הוא:

$$|\lambda I - A| = \begin{vmatrix} \lambda - 4 & -1 & -1 & 0 & 0\\ 0 & \lambda - 4 & -1 & 0 & 0\\ 0 & 0 & \lambda - 4 & 0 & 0\\ 0 & 0 & 0 & \lambda - 2 & -3\\ 0 & 0 & 0 & 0 & \lambda - 2 \end{vmatrix} = (\lambda - 4)^3 (\lambda - 2)^2 = 0$$

:הערכים עצמיים הם

 $\lambda=2$ מירבוי אלגברי $\lambda=2$

 $\lambda=4$ מירבוי אלגברי

 $\cdot V_2$ נמצא את המרחב עצמי

$$(A-2I) = \begin{pmatrix} 2 & 1 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

אכן
$$s\in\mathbb{R}$$
 , $egin{pmatrix} x\\y\\z\\s\\t \end{pmatrix}=egin{pmatrix} 0\\0\\s\\0 \end{pmatrix}=segin{pmatrix} 0\\0\\0\\1\\0 \end{pmatrix}$ אכן $s\in\mathbb{R}$, $s\in\mathbb{R}$, $s\in\mathbb{R}$, $s\in\mathbb{R}$

$$V_2 = \operatorname{span} \left\{ egin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}
ight\} \; .$$

$$.u_1 = egin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$
 לכן A לכסינה. נסמו הוקטור עצמי . $\dim(V_2) = 1 < 2$

$$(A-2I)\cdot u_2=u_1.$$

$$u_2 = \begin{pmatrix} x \\ y \\ z \\ s \\ t \end{pmatrix}$$
נסמן

$$(A - 2I) \cdot \begin{pmatrix} x \\ y \\ z \\ w \\ s \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

$$u_2=egin{pmatrix}0\\0\\0\\rac{1}{3}\end{pmatrix}$$
 ונקל $lpha=0$ ונקל פתרון. נציב $lpha=0$ ונקל $lpha\in\mathbb{R}$, $u_2=egin{pmatrix}0\\0\\0\\rac{1}{3}\end{pmatrix}$ לכן $lpha=0$ נמצא את המרחב עצמי $lpha$:

$$\left(\begin{array}{cccccccc}
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -2 & 3 & 0 \\
0 & 0 & 0 & 0 & -2 & 0
\end{array}\right)$$

לכן
$$\begin{pmatrix} x \\ y \\ z \\ s \\ t \end{pmatrix} = \begin{pmatrix} x \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} = x \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
 לכן הפתרון הוא

$$V_4 = \operatorname{span} \left\{ \begin{pmatrix} 1\\0\\0\\0\\0 \end{pmatrix} \right\} .$$

$$.u_3 = egin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
 לכן A לכסינה. נסמו הוקטור עצמי . $\dim(V_4) = 1 < 3$

$$(A-4I)\cdot u_4=u_3.$$

$$.u_4 = \begin{pmatrix} x \\ y \\ z \\ s \\ t \end{pmatrix}$$
נסמן

$$(A - 4I) \cdot \begin{pmatrix} x \\ y \\ z \\ s \\ t \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\left(\begin{array}{cccc|cccc}
0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -2 & 3 & 0 \\
0 & 0 & 0 & 0 & -2 & 0
\end{array}\right)$$

$$eta \in \mathbb{R}$$
 , $u_4 = egin{pmatrix} eta \ 1 \ 0 \ 0 \ 0 \end{pmatrix}$ לכנן

$$(A-4I)\cdot u_5=u_4.$$

$$.u_5 = \begin{pmatrix} x \\ y \\ z \\ s \\ t \end{pmatrix}$$
 נסמן

$$(A - 4I) \cdot \begin{pmatrix} x \\ y \\ z \\ s \\ t \end{pmatrix} = \begin{pmatrix} \beta \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\left(\begin{array}{ccccc|c}
0 & 1 & 1 & 0 & 0 & \beta \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -2 & 3 & 0 \\
0 & 0 & 0 & 0 & -2 & 0
\end{array}\right)$$

ונקבל $\beta=0$ נציב פתרון. נציב $\beta=0$

$$.u_5=egin{pmatrix}0\-1\1\0\0\end{pmatrix}$$
 ונקבל $\gamma=0$ נציב $\gamma\in\mathbb{R}$, $u_5=egin{pmatrix}\gamma\-1\1\0\0\end{pmatrix}$

$$P = \begin{pmatrix} | & | & | & | & | \\ u_1 & u_2 & u_3 & u_4 & u_5 \\ | & | & | & | & | \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 & 0 \end{pmatrix} ,$$

$$J = \begin{pmatrix} J_2(2) & 0 \\ 0 & J_3(4) \end{pmatrix} = \begin{pmatrix} \begin{bmatrix} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 4 & 1 & 0 \\ 0 & 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & 0 & 4 \end{pmatrix} .$$

$$A = PJP^{-1} .$$