DATU-BASE ERLAZIONALEN NORMALIZAZIOA

Indizea

1. Diseinuaren egokitasuna. Zer da diseinu on bat?

2. Mendekotasun-funtzionalak

3. Forma normalak eta normalizazioa

1. Diseinuaren egokitasuna

Diseinu kontzeptuala egin dugu. Egokia ote?

 Diseinuaren "egokitasuna" eta "ontasuna" neurtu behar dugu diseinuaren kalitatea ebaluatzeko

 HELBURUA: erlazio-eskemetako atributu taldekatzeen multzo bat beste bat baino hobea zergatik den neurtzea

1. Zer da diseinu on bat?

Zergatik honakoa EZ DA diseinu ona?

SALMENTAK(SukKod, EnpIzen, SukTfnoa, IFK, Unitateak, ProKod, Salneurria, Banatzailea, Sum)

Zergatik da hau hobea?

SALMENTAK(<u>SukKod</u>, <u>EnpIzen</u>, <u>ProKod</u>, Unitateak) SUKURTSALA(<u>SukKod</u>, <u>EnpIzen</u>, SukTfnoa) ENPRESA(<u>EnpIzen</u>, IFK)

PRODUKTUA(<u>ProKod</u>, Salneurria, Banatzailea, Sum)

Normalizazioa

Normalizazioa

Arazo kopurua **minimizatzen** duen diseinu metodologia.

Testuingurua

Normalizazioaren helburuak

- Diseinu logikoa hobetzea eta balidatzea
- Datuen erredundantzia ekiditea
- Ongi egituratutako erlazioak lortzea

 Ideia intuitiboa: Taula bakoitzak kontzeptu bakarra lantzen duela ziurtatzea

Arazoak diseinuan

- Akatsak
 - txertatzean
 - ezabatzean
 - eguneratzean
- NULL balio gehiegi
- Tupla aizunen (faltsuen) agerpena

Aldatze-akatsak

SukKod	EnpIzen	SukTfnoa	IFK	Uni	ProKod	Sal	Ban
suk1	corte_inglés	193	ci	12	#prod1	123	agro
suk2	corte_inglés	294	ci	18	#prod1	123	agro
suk2	corte_inglés	294	ci	7	#prod2	827	telna
suk2	corte_inglés	294	ci	86	#prod3	123	agro
suk2	corte_inglés	294	ci	45	#prod6	123	agro
suk2	corte_inglés	294	ci	98	#prod2	827	telna
suk1	eroski	185	ab	103	#prod2	827	telna
suk1	eroski	185	ab	40	#prod5	308	xcon
suk2	eroski	200	ab	27	#prod7	126	agro

EGUNERATZEA: #prod1-en salneurria 200-era igo da

→ 2 tupla aldatu behar dira. Erredundantzia! Akatsa!

TXERTATU: agro banatzaileak #prod9 produktu berria banatzen du

ezin dugu txertatu, ez baitakigu gako osoa Akatsa!

EZABATU: *eroski*-ko *suk2* sukurtsala itxi egingo da

#prod7 produktuari buruz genuen informazio galduta! Akatsa! 9

Motibazioa

Zergatik akatsak?

Arrazoia

Erlazio batek entitate mota bat baino gehiago du

Soluzioa

 Erlazioak deskonposatzea, modu honetan entitateak "isolatuaz", beti ere, informazioa eta mendekotasunak babestuaz (mantenduaz)

Jarraipena

<u>SukKod</u>	<u>EnpIzen</u>	SukTfnoa	IFK	Uni	ProKod	Sal	Ban
suk1	corte_inglés	193	ci	12	#prod1	123	agro
suk2	corte_inglés	294	ci	18	#prod1	123	agro
suk2	corte_inglés	294	ci	7	#prod2	827	telna
suk2	corte_inglés	294	ci	86	#prod3	123	agro
suk2	corte_inglés	294	ci	45	#prod6	123	agro
suk2	corte_inglés	294	ci	98	#prod2	827	telna
suk1	eroski	185	ab	103	#prod2	827	telna
suk1	eroski	185	ab	40	#prod5	308	xcon
suk2	eroski	200	ab	27	#prod7	126	agro

Diseinu onerako gida-lerroak

 gida-lerroa: Erlazio-eskema erraz azaltzeko moduan definitu behar da

Taula berean entitate bat baino gehiago adieraztea ekidin

Bestela, anbiguotasun semantikoa

Adib. LANGILE-PROIEKTUA ez egokia, entitate ezberdinetako atributuen nahasketa

Diseinu onerako gida-lerroak

2. gida-lerroa: Diseinatu oinarri-erlazioen eskemak, txertatze-, ezabatze- edo eguneratze-akatsik gabe, hau da aldatze-akatsik gabe

Eraginkortasunagatik akatsen arriskua onartzen bada, argi adierazi eta arrazoitu

Adibide gehiago <u>Aldatze-akatsak:</u> Txertatze-akatsa

LANG_SAIL

NAN	Izena	JaioData	Helbidea	Szenb	Sizena	ZuzNAN
34	Pepe	1960-1-1	Matia, 23-Donostia	1	LSI	30
30	Aitor	1961-2-1	Matia, 23-Donostia	1	LSI	30
20	Miren	1963-6-8	Urdaibai, 2-Bilbo	3	KZAA	14
15	Ana	1960-1-1	Alameda, 54-Bilbo	2	KAT	15
17	Asier	1950-8-1	Heriz, 3-Gazteiz	3	KZAA	14
18	Gorka	1945-7-7	Gaztelu, 6-Iruña	4	LSI	10
16	Ainhoa	1945-5-1	Nagusia, 45-Bilbo	1	LSI	30
14	Leire	1956-8-8	Berria, 21-Iruña	3	KZAA	14
10	Aitor	1950-9-9	Goenkale, 20-Iruña	4	LSI	10

Suposatu ez direla SAILA eta LANGILEA bakoitza bere aldetik existitzen

Bi mota:

- (45, 'Josu', '1970-1-1', 'Ona-1, Iruña') langilea 2 kodea duen sailean sartu => Saileko balioak ongi sartu besteekin koherenteak izan daitezen
- 5, KZAA saila sartu (langilerik gabea) => Langilean null => Arazoa! NAN-ek ezin du null izan. Adib, SAILA taulan sartzeko arazorik ez.

Aldatze-akatsak: Ezabatze-akatsa

LANG_SAIL

NAN	Izena	JaioData	Helbidea	Szenb	Sizena	ZuzNAN
34	Pepe	1960-1-1	Matia, 23-Donostia	1	LSI	30
30	Aitor	1961-2-1	Matia, 23-Donostia	1	LSI	30
20	Miren	1963-6-8	Urdaibai, 2-Bilbo	3	KZAA	14
15	Ana	1960-1-1	Alameda, 54-Bilbo	2	KAT	15
17	Asier	1950-8-1	Heriz, 3-Gazteiz	3	KZAA	14
18	Gorka	1945-7-7	Gaztelu, 6-Iruña	4	LSI	10
16	Ainhoa	1945-5-1	Nagusia, 45-Bilbo	1	LSI	30
14	Leire	1956-8-8	Berria, 21-Iruña	3	KZAA	14
10	Aitor	1950-9-9	Goenkale, 20-Iruña	4	LSI	10

Suposatu ez direla SAILA eta LANGILEA bakoitza bere aldetik existitzen

[•] LANG_SAILetik tupla bat ezabatzen badugu, eta sail batentzat lan egiten duen azken langilea bada, sail horri buruzko informazioa DBtik ezabatuta!

Aldatze-akatsak: Eguneratze-akatsa

LANG_SAIL

NAN	Izena	JaioData	Helbidea	Szenb	Sizena	ZuzNAN
34	Pepe	1960-1-1	Matia, 23-Donostia	1	LSI	30
30	Aitor	1961-2-1	Matia, 23-Donostia	1	LSI	30
20	Miren	1963-6-8	Urdaibai, 2-Bilbo	3	KZAA	14
15	Ana	1960-1-1	Alameda, 54-Bilbo	2	KAT	15
17	Asier	1950-8-1	Heriz, 3-Gazteiz	3	KZAA	14
18	Gorka	1945-7-7	Gaztelu, 6-Iruña	4	LSI	10
16	Ainhoa	1945-5-1	Nagusia, 45-Bilbo	1	LSI	30
14	Leire	1956-8-8	Berria, 21-Iruña	3	KZAA	14
10	Aitor	1950-9-9	Goenkale, 20-Iruña	4	LSI	10

Suposatu ez direla SAILA eta LANGILEA bakoitza bere aldetik existitzen

• 1. saileko zuzendariaren NAN zenbakia aldatzen badugu => sail horretako langile guztiei zuzendariaren NAN aldatu!

Diseinu onerako gida-lerro informalak

3. gida-lerroa: Ahal dela, saihestu *null* balioak sarri izan ditzaketen atributuak oinarri-erlazioetan kokatzea

Null balio asko:

- Espazioa alferrik galduta
- Atributuaren esanahia ulertzea zaila
- KONBINATU (barne, kanpo) zaila
- COUNT, SUM eragiketak
- Null-en interpretazioak

Saihestu ezin badira, ziurtatu ohiz kanpoko kasuetan soilik aplikatzen direla

NULL balioak

- Atributu asko ez badira erabiltzen erlazioko tupla guztietan, tupla horietan null pila izango dugu.
- Biltegiratze-espazioaren galera sor dezake

NULL balioak

- Gainera, NULL balioek ondorengo esanahiak izan ditzakete:
 - Ez aplikagarria (N/A)
 - Ezezaguna (Unknown)
 - Ezagutzen da baina falta da

Esanahi ezberdinak nahas daitezke

Tupla aizunak

Konbinazio (join) baten emaitzan, "espero ez diren"

tuplak agertzen dira

IrakIzen	Ikaslelzen
FBD	Alaitz
TBD	Alaitz
TBD	Juan

Iraklzen	Gela
TBD	318
TBD	121
TBD	125
FBD	330
FBD	325
ALG	102
ALG	330

Iraklzen	Ikaslelzen	Gela
FBD	Alaitz	330
FBD	Alaitz	325
TBD	Alaitz	318
TBD	Alaitz	121
TBD	Alaitz	125
TBD	Juan	318
TBD	Juan	121
TBD	Juan	125
ALG	Juan	102
ALG	Juan	330

Tupla aizunek baliozkoa ez den informazioa errepresentatzen dute (kasu honetan natural join)

Diseinu onerako gida-lerro informalak

4. gida-lerroa: Erlazioak diseinatu, oinarrizko gakoak eta gako arrotzak berdintasun-baldintzen bidez bildu/konbinatu ahal izateko moduan. Horrela, tupla aizunik (faltsurik) ez dela sortuko ziurtatuko dugu.

Adibide gehiago Tupla Aizunak (faltsuak)

<u>NAN</u> Izena Sizena S	3 74111
NAN Izena Sizena 34 Pepe LSI	Szenb 1
34 Pepe LSI	4
* 34 Pepe LSI 30 Aitor LSI	1
20 Miren KZAA	4
* 30 Aitor LSI 17 Asier KZAA 20 Miren KZAA	3
18 Gorka LSI	3
16 Ainhoa LSI LANGILEA L	1
14 Leire KZAA	4
10 Aitor LSI SAILA 16 Ainhoa LSI	1
SAILA	4
Szenb Sizena OG, ez GA 16 Ainhoa LSI OG, ez GA 14 Leire KZAA	3
1 I SI	
Tupla aizuna * 10 Jon LSI 3 KZAA	23
Ikus Lang_sail taula 10 Jon LSI 4 LSI	4 3

Laburpena. Arazoak

- Tresna gehigarririk gabe detekta daitezkeenak
 - Erlazio batean txertatzeak eta eguneratzeak egitean lan erredundantea sorraraz dezaketen akatsak, eta ezabaketak egitean nahi gabe informazioa galtzea eragin dezaketenak
 - Null-balioen ondorioz gordetze-espazioa alferrik galtzea eta agregazio-eragiketak eta konbinazioak egiteko zailtasunak
 - Behar bezala erlazionatuta ez dauden erlazioekin konbinazioak egitean datu baliogabeak eta aizunak sortzea

Baina ...

- Nola deskonposatu modu egokian erlazioak?
 - Nola detektatu entitate zuzenak?

- Bada ...
 - Mendekotasunetan oinarrituta. Mendekotasun funtzional bat datu-baseko bi atributu multzoren arteko murriztapen bat da

2. Mendekotasun funtzionala

- Datu-baseko bi atributu multzoren arteko murriztapena da
- Demagun datu-base erlazionalaren eskemak n atributu dituela, A₁, A₂, ..., An
- Datu-base osoa (eskema unibertsal bakarra):

$$R=\{A_1, A_2, ..., A_n\}$$

2. Mendekotasun funtzionala. Definizioa

Izan bitez X eta Y atributu multzoak eta R eskemaren azpimultzoak direnak. Y-k Xrekiko mendekotasun funtzionala duela esango dugu (X → Y), baldin eta edozein r(R) estentsiorako r-ko t1 eta t2 tupla guztientzat zera betetzen bada:

•
$$t1.X = t2.X$$
 \Rightarrow $t1.Y = t2.Y$

Eragiketak erabiliz:

$$PROY_Y$$
 (HAUTESPENA_{x='balioa'} (r)) = tupla bakarra

- Xren balioa ezagututa, modu unibokoan identifikatzen da Yren balioa
- Determinatzailea: mendekotasunaren ezker aldea (determinatzailea → atributua)

2. Mendekotasun funtzionala. Definizioa

Y atributu-multzoa X atributu-multzoaren **mendeko funtzionala** da Xtik Yrako mendekotasun funtzionala dago X atributu-multzoak Y atributu-multzoa funtzionalki zehazten du

- Mendekotasun funtzionala atributuen esanahia edo semantikaren ezaugarria da
 - Eskemaren gainean definitzen da
 - Hedapen guztiek betetzen dute

Mendekotasun funtzionala. Adibidea

Adibidea (informala):

{PROBINTZIA, MATRIKULA_ZENBAKIA} → NAN Aplikagarria EAEko pertsona heldu guztientzat

LANG PROI

- {NAN, PZENBAKIA} → ORDUAK
 NAN → LIZENA
 PZENBAKIA → {PIZENA, PKOKALEKUA}
- 1 MF: NAN eta PZENBAKIA konbinazioak modu unibokoan identifikatzen du langileak asteko sartzen duen ordu-kopurua
- 2 MF: Langilearen NAN balioak modu unibokoan zehazten du langilearen izena
- 3MF?

Mendekotasun funtzionala. Adibidea

- Ez dira gertatzen:
 - Irakasgaia → Irakaslea
 - (Irakasgaia, taldea) → Irakaslea
 - (Irakasgaia, gaia) → Irakaslea
- Gertatzen dira
 - (Irakasgaia, taldea, gaia) → Irakaslea
- Mendekotasunak egiazta al daitezke, taularen estentsio bat begiratuaz?
 - EZ! domeinuaren ezaugarri bat dira, integritate-murriztapenak bezala

Mendekotasun funtzionalak

- X R-ko gako hautagaia bada
 - X→Y (R-ko edozein Y azpimultzotarakoa)
- $\bullet \quad X \rightarrow Y \Rightarrow Y \rightarrow X$
 - Na→Tfnoa versus Tfnoa→Na

MFak inferitzen

- Mendekotasun-funtzionalak semantikoki begi-bistakoak dira
- MF batzuk inferitu edo deduzitu daitezke
- Adib:
 - Sail bakoitzak kudeatzaile bakarra du, eta saila SAIL_ZKak modu unibokoan zehazten du (SAIL_ZK → KUD_NAN)
 - Kudeatzaileak KUD_TELEFONOA zenbaki bakarra du (KUD_NAN → KUD_TELEFONOA)
 - Orduan,

Armstrong-en axiomak MFtarako Inferentzia-erregelak

MF batzuetatik beste batzuk inferi daitezke, erregela hauek erabiliz:

Bedi R eta bere atributu-multzoak A, B, C

bihurkorrarena: baldin $B \subseteq A$ orduan $A \rightarrow B$

• izena \subseteq {izena, tutore_id} orduan {izena, tutore_id} \rightarrow {izena}

handitzearena: baldin $A \rightarrow B$ orduan $AC \rightarrow BC$

• {tutore_id} \rightarrow {espezializazioa} orduan {tutore_id, izena} \rightarrow {espezializazioa, izena}

iragankorrarena: baldin $A \rightarrow B$ eta $B \rightarrow C$ orduan $A \rightarrow C$

Baldin {tutore_id} → {espezializazioa} eta {espezializazioa} → {lab} orduan {tutore_id} → {lab}

Armstrong-en inferentzia erregelak

- Armstrong-ek (1974) frogatu zuen, inferentzia-erregelak (bihurkorrarena, handitzearena, iragankorrarena) zuzenak eta osoak direla.
 - Zuzenak: R erlazio baten gainean zehaztutako F mendekotasun funtzioen multzo bat izanik, erregelak erabiliz F-tik inferi daitekeen edozein mendekotasun, F-ren mendekotasunak betetzen dituen R-ren egoera guztietan beteko da.

 Osoak: Behin eta berriz aplikatzen baditugu erregelak, gehiago inferitzea posible ez den arte, Ftik inferi daitezkeen mendekotasun posible guztien multzo osoa lortuko dugu.

MFtarako Inferentzia-erregelak

Bedi R eta bere atributu-multzoak A, B, C

Sinplifikazio-erregelak

$$A \rightarrow B, A \rightarrow C \Rightarrow A \rightarrow BC$$

deskonposaketarena
$$A \rightarrow BC$$
 eta $B \subseteq BC$

$$\Rightarrow$$
 A \rightarrow B eta A \rightarrow C

sasi-iragankorrarena
$$A \rightarrow B, CB \rightarrow D \Rightarrow CA \rightarrow D$$

Mendekotasun funtzionalak

 Datu-baseen diseinatzaileek lehenengo atributuen semantikatik abiatuta lor daitekeen mendekotasun funtzionalen F multzoa zehazten dute. Gero, erregelak erabiltzen dira gainerako mendekotasun funtzionalak lortzeko.

Mendekotasun funtzionalen multzoaren itxidura (I)

 Bedi F mendekotasun funtzionalen multzoa, F-ren itxidura (F⁺) multzotik eratortzen/inferitzen diren mendekotasunen multzoa da (Armstrong-en erregelak aplikatuta)

$$(A \rightarrow B, B \rightarrow C) \Rightarrow (A \rightarrow C)$$

Bitez E eta F mendekotasun funtzionalen bi multzo,
 baliokideak dira, baldin eta E⁺=F⁺

Itxidura. Adibidea

• $F = \{a \rightarrow b, b \rightarrow c, ca \rightarrow d, db \rightarrow e, aej \rightarrow k\}$

- $a+ = \{a,b,c,d,e\}$
- $ad+ = \{a,b,c,d,e\}$
- $j+=\{j\}$
- $aj+ = \{a,b,c,d,e,j,k\}$

Atributu-multzo baten itxidura

 Bedi X atributu-multzoa, X-ren itxidura F-n oinarrituta (X⁺), F mendekot. funtzionaletan oinarrituta, X-ren mendekoak diren atributuen multzoa

```
itxidura := {X};  // erregela bihurkorra

loop

lag := itxidura;
  for F-ko Y→Z mendekotasun funtzional bakoitzeko loop
      if Y ⊆ itxidura then itxidura := itxidura ∪ {Z}; end if;
      end loop;  // erregela iragankorra

while not (lag = itxidura)
```

Itxidura. Beste modu batera esanda...

- Nola egin?
 - Fn mendekotasun funtzionalen batean ezker aldean agertzen diren Xren atributu multzo guztiak zehaztu.
 - Gero, Xren mendeko diren atributu guztiak lortu. Honi X+ deitzen zaio

Atributu-multzo baten itxidura: Adibidea

```
R = \{A,B,C,D,E,G\}
  F = \{ \{A,B\} \rightarrow \{C\}, \{C\} \rightarrow \{A\}, \{B,C\} \rightarrow \{D\}, \{A,C,D\} \rightarrow \{B\}, \{D\} \rightarrow \{E,G\}, \{C\} \rightarrow \{B\}, \{C\} \rightarrow 
                                \{B,E\}\rightarrow\{C\}, \{C,G\}\rightarrow\{B,D\}, \{C,E\}\rightarrow\{A,G\}\}
X = \{B,D\}
X^{(0)} = \{B, D\}
  ■ {D}→{E,G},
X^{(1)} = \{B, D, E, G\},\
\blacksquare {B,E}\rightarrow{C}
X^{(2)} = \{B, C, D, E, G\},\
  - {C,E}→{A,G}
X^{(3)} = \{A,B,C,D,E,G\}
X^{(4)} = X^{(3)}
```

Itxidura. Beste adibide bat.

```
Na→lzena
IrakKod →{IrakIzen, kred}
{Na,IrakKod}→Gela
```

F

```
{Na}+= {Na, Izena}

{IrakKod}+= {IrakKod, IrakIzen, kred}

{Na, IrakKod}+= {Na, IrakKod, Izena, IrakIzen, kred, Gela}
```

Mendekotasun funtzionalak eta gakoak

Adibidea: Ikaslea(id, izena, tutore_id, espezializazioa)

Zera idatziko dugu:

```
\{id\} \rightarrow \{izena, tutore\_id, espezializazioa\}
```

- Id-k atributu guztiak funtzionalki zehazten ditu (tupla osoa)
- Ikaslea erlazioko bi tuplek id bera badute, atributu guztietan balio berak eduki behar dituzte
- Bestela esanda, atributu bera izan behar dute (eredu erlazionalean ez dira errepikatutako tuplak onartzen)

Gakoak eta bertako atributuak definitzea Supergakoa, Gako hautagaia, Oinarrizko gakoa, Atributu lehena

A atributu-multzoa R erlazioaren supergakoa da:

$$A \rightarrow R$$
[edo $A^{\dagger} = R$]

A atributu-multzoa R erlazioaren gako hautagaia da:

A supergakoa da, eta $Z \subset A$ guztietarako (A-Z) $I \rightarrow R$

A atributu-multzoa R-ren oinarrizko gakoa da:

gako hautagaietako bat

 Z atributua R-ren atributu lehena da, R-ren gako hautagairen batean azaltzen bada

Gakoak bilatzen

Adibidea: Izan bedi R(A,B,C,D) erlazio eskema, honako mendekotasun funtzionalekin $\{A\}\rightarrow \{C\}$ eta $\{B\}\rightarrow \{D\}$.

{A,B} gako hautagaia al da?

{A,B} gako hautagaia izateko, zera bete behar du

- Atributu guztiak funtzionalki zehaztu behar ditu (supergakoa)
- Minimoa izan behar du

{A,B} supergakoa da honakoagatik:

- $\{A\} \rightarrow \{C\} \Rightarrow \{A,B\} \rightarrow \{A,B,C\}$ (AB handitzearena)
- $\{B\}\rightarrow \{D\} \Rightarrow \{A,B,C\}\rightarrow \{A,B,C,D\}$ (A,B,C handitzearena)
- {A,B}→{A,B,C,D} lortzen dugu (iragankorra)

Beste modu batera, atributuen itxidura erabiliz:

- $\{A,B\}+=\{A,B,C,D\}$
- {A,B} minimoa da, ez {A} bere aldetik, ezta {B} bere aldetik ere, ez dira gako hautagaiak

Supergakoa lortzen. Adibidea

- Bisita (gaixoa, ospitalea, sendagilea)
- $F = \{ (gaixoa, ospitalea) \rightarrow sendagilea ; sendagilea \rightarrow ospitalea \}$

- gaixoa+ = {gaixoa}
- ospitalea+ = {ospitalea}
- sendagilea+ = {sendagilea, ospitalea}
- (ospitalea, sendagilea)+ = {ospitalea, sendagilea}
- (gaixoa,ospitalea)+ = {gaixoa, ospitalea, sendagilea} supergakoa
- (gaixoa, sendagilea) + = {gaixoa, sendagilea, ospitalea} supergakoa
- (gaixoa,sendagilea,ospitalea)+ = {gaixoa,sendagilea,ospitalea}
 - BAI da supergakoa baina ez da gakoa, ez baita minimoa

Gakoak bilatzen

- Informazio gehigarria:
- http://www.youtube.com/watch?v=s1DNVWKeQ_w

Supergakoa, Gako hautagaia, Oinarrizko gakoa, Atributu lehena. Adibidea

$$A \rightarrow BCF$$

 $CD \rightarrow BE$

$$F \rightarrow AD$$

Supergakoak:

Gako hautagaiak:

Oinarrizko gakoa:

Atributu lehenak:

Supergakoa, Gako hautagaia, Oinarrizko gakoa, Atributu lehena. Adibidea

Supergakoak: CDA, CDF, CDAF, etab.

Gako hautagaiak: A, F

Oinarrizko gakoa: A edo F

Atributu lehenak: A eta F

MF multzoen baliokidetasuna

F-k **G** estaltzen du, Gko MF guztiak **F** +-n ere badaude

F eta G baliokideak dira, haien itxidurak baliokideak badira, $F^+ = G^+$

Adibidez bi multzo hauek baliokideak dira:

- 1. $\{XY \rightarrow Z, X \rightarrow Y\}$
- 2. $\{X \rightarrow Z, X \rightarrow Y\}$
- Baliokidetasunak zera esan nahi du: Fko MF guztiak Gtik inferi daitezkeela, eta Gko MF guztiak Ftik inferi daitezkeela.
- Beste modu batera: Fk G estaltzen du eta Gk F estaltzen du

Estaldura Minimoa. Motibazioa

Izan bedi F, mendekotasun funtzionalen multzo bat.
 Helburua, beste Fc multzo bat topatzea da, Fren baliokidea dena, baina zeinetan egiaztatu beharreko mendekotasun kopurua minimoa den

F multzoa Gren estaldura minimoa da, F minimoa bada eta Gren baliokidea

Adib.

$$\{X \to Z, X \to Y\}$$
 estaldura minimoa da ondorengoarentzako $\{XY \to Z, X \to Y\}$

Estaldura Minimoa

 Mendekotasun funtzionalen multzo batek estaldura minimo batzuk izan ditzake (beti, gutxienez bat topa daiteke)

Estaldura Minimoa. Definizioa

MF minimoa da baldin eta,

- Fko mendekotasun guztiek atributu bakarra dute eskuin aldean
 - motibazioa: MF guztiek forma estandar bera izan dezaten nahi dugu, algoritmoek prozesa dezaten. Deskonposizioaren erregelaren bitartez MF guztiak forma estandarrera bihur daitezke
- Ezin dugu Ftik inolako mendekotasunik kendu eta Fren baliokidea den mendekotasun multzoa izaten jarraitu
 - motibazioa: mendekotasun erredundanteak kentzea
- Ezin dugu inolako X → A mendekotasunik ordeztu Y ⊆ X izanik
 Y → A batekin eta Fren baliokidea den MF multzo bat edukitzen jarraitu
 - motibazioa: atributu erredundanteak kentzea

Ariketa

- Ftik abiatuta, lortu MF multzo minimoa
 - 1º) Forma kanonikoa

F

Na→Izena {Na, IrakKod}→Gela IrakKod →{IrakIzen, kred} $lrakKod \rightarrow \{lraklzen, kred\}$

deskonposizioa

IrakKod → IrakIzen IrakKod → kred

Ariketa

- Ftik abiatuta, lortu MF multzo minimoa
 - 1º) Forma kanonikoa
 - 2º) Ezin da inolako eskuineko alderik kendu

Na→Izena {Na, IrakKod}→Gela IrakKod → IrakIzen IrakKod → kred

Ariketa

- Ftik abiatuta, lortu MF multzo minimoa
 - 1º) Forma kanonikoa
 - 2º) Ezin da inolako eskuineko alderik kendu
 - 3º) Ezin da inolako ezkerreko alderik laburtu

Na→Izena {Na, IrakKod}→Gela IrakKod → IrakIzen IrakKod → kred

Adibidea

- $F = \{A \rightarrow BC, A \rightarrow C, B \rightarrow C, AB \rightarrow E\}$
- Estaldura minimoa lortzea
 - 1.Deskonposizioaren erregela erabiliz eskuin aldean atributu bat baino gehiago duten MFak banatu egiten dira: $A \rightarrow BC$, honakoetan banatzen da $A \rightarrow B$ eta $A \rightarrow C$
 - 2.A → C erredundantea da. A → B eta B → C erregeletan iragankortasuna aplikatuz lor daiteke
 - 3.AB → E erregela A → E moduan geratzen da B erredundante baita (A → B betetzen da)
- Beraz, Frentzako estaldura minimoa honakoa da:
 - $A \rightarrow B$
 - \blacksquare B \rightarrow C
 - A → E

Mendekotasun trantsitiboak

```
IKASLEA(EspZbkia, IkasleIzen, Fakultatea, Dekanoa, ...)
EspZbkia \rightarrow Fakultatea
Fakultatea / \rightarrow EspZbkia
Fakultatea \rightarrow Dekanoa
Fakultatean bitartez, Dekanoa EspZbkiaren mendeko da
```

Izan bitez A, B, C atributu multzoak (R eskemakoak). A iragankortasuna erabiliz C ren mendekoa da Rpean baldin eta

 $A \rightarrow B$ $B / \rightarrow A$ (ez da betetzen) $B \rightarrow C$

Eskema baten deskonposizioa

R(A, F) erlazio-eskema

A, atributu-multzoa, F mendekotasun funtzionalen multzoa

R-n akatsak sortzeko arriskua badago, deskonposatu $\{R_i(A_i, F_i)\}$ non i=1...n

Deskonposizioa

R-ren baliokidea

Atributuen kontserbazioa: $A = A1 \cup A2 \cup ... \cup An$, hau da Ako atributu guztiak An-ren batean daude

Mendekotasun funtzionalen kontserbazioa

Informazioaren kontserbazioa

R baino hobea

Erredundantzia gutxiago (Akats gutxiago)

Mendekotasun funtzionalen kontserbazioa (I)

R-ko mendekotasun funtzionalen multzoa, F

R_i-ko mendekotasun funtzionalen multzoa, F_i

{R₁, R₂, ... R_n} multzoa **mendekotasun funtzionalak kontserbatzen** dituen **deskonposizioa**, baldin eta

$$F^+ = (\cup F_i)^+$$

$$F \subset (\cup F_i)^+$$

Oharra: R_i deskonposizioaren ondorengo erlazioa da.

Informazioaren kontserbazioa (I)

• {R1, R2, ... Rn} multzoa informazioaren galerarik gabeko deskonposizioa da, R-ren edozein r hedapenerako betetzen bada

$$r = r_1 |x| r_2 |x| r_3 |x| \dots |x| r_n$$

non r, , R,-ren atributuak hartuz, r-ren proiekzioa den

Hau da, tupla faltsurik/aizunik sortzen ez denean

R-ren galerarik gabeko deskonposizioa

Azter ezazu honako deskonposizioa

Ez da MFrik galtzen baina bai ABC hirukoteak

Informazioaren kontserbazioa (II)

 R-ko mendekotasun funtzionalen multzoa, F {R1, R2} informazioa kontserbatzen duen R-ren deskonposizioa da, F⁺en gutxienez hauetako <u>bat</u> azaltzen bada

 $R1 \cap R2 \rightarrow R1$, hots $R1 \cap R2$ atributua R1en supergakoa da

 $R1 \cap R2 \rightarrow R2$, hots $R1 \cap R2$ atributua R2ren supergakoa da

Jarraipena

- Izan bitez:
 - F, Rko mendekotasun funtzionalen multzoa
 - F_i, R_i barruko mendekotasunak (beraz, egiaztapenak ez du JOINik behar)
- Deskonposaketa batek mendekotasunak mantentzen ditu baldin eta:

$$F+=E+$$
 non $E=\cup F_i$

Adibidea

$R = \{(liburua, argitaletx., herri), \{liburua \rightarrow argitaletx., argitaletx. \rightarrow herri\})$				
	Proiekzioa?	Atributu guztiak?	Tupla aizunik gabe	Mendekotasunik galdu gabe
R[liburua,herri] R[argitaletx.,herri]	Bai	Bai	Ez. Ez dira betetzen herri komunean	Ez liburua → argitaletx. Galtzen da
R[liburua,argitaletx.] R[liburua,herri]	Bai	Bai	Bai. Liburua → argitaletx. Betetzen da	Ez. argitaletx. → herri Galtzen da
R[liburua,argitaletx.] R[argitaletx.,herri]	Bai	Bai	Bai. argitaletx. → herri Betetzen da	Bai

- Adibidea 1
 - R1(ABC) eta R2(DE)

Ez dira mendekotasunak mantentzen

- Adibidea 2
 - R1(ABCD) eta R2(CE)

E eta F berdinak dira

BAI mantentzen dira mendekotasunak

- Adibidea 3
 - R1(ABC) eta R2(DE)

F
$$E= \cup F_i$$
 F_1 F_2

AB \rightarrow C

CD \rightarrow E

 $AB\rightarrow$ C

AB \rightarrow C

CD→E, E-tik?

EZ

Ez dira mendekotasunak mantentzen

- Adibidea 4
 - R1(ABC) eta R2(CDEF)

BAI mantentzen dira mendekotasunak

Mendekotasun funtzionalen galera. Ondorioaz jabetzea

R1-en eta R2-n (a4, b3) eta (a4, c4) tuplak sartzea, jatorrizko R taulan nola adieraziko litzateke?

(a4, b3, c4) tupla sartuta. Baina hori ezinezkoa da aurretik (a3, $\underline{b3}$, $\underline{c1}$) badagoelako. Kontrol hori B \rightarrow C mendekotasunak darama. Deskonposaketaren ondoriozko egoran ez da kontrol hori eramaten, mendekotasuna desagertu delako.

3. Oinarrizko gakoetan oinarritutako Forma Normalak

- Normalizazioa: Codd (1972). Erlazio-eskema bati hainbat test aplikatzen dizkio, forma normal jakin bat betetzen ote duen jakiteko
- Def: Datuen normalizazioa erlazio-eskemak haien MFetan eta oinarrizko gakoetan oinarrituta, analizatzeko prozesua da. Kalitate handiko diseinuak lortzen dira
- Def2: Normalizazioa: erlazio "txarrak" deskonposatzeko prozesua, erlazioaren atributuak erlazio txikiagotan banatuaz
- Helburua: erredundantzia eta txertatze-, ezabatze eta aldatze-akatsak minimizatzea

Jarraipena.

- Izan bedi R(A, D) erlazio eskema bat, A atributu multzo bat eta D, mendekotausnen multzo bat
- Rn <u>akatsak gertatzen badira</u>,
 - $\{R_i(A_i, D_i)\}$ azpieskemetan banatzen da non i=1...n.
- Deskonposizioak honelakoa izan behar du
 - R-ren baliokidea
 - Atributuen kontserbazioa: ∪ A_i = A
 - Edukiaren kontserbazioa: r_{1*} r_{2*} r_{3*...} r_{n=} r
 - Mendekotasunaren kontserbazioa: E+=D+ non $E=\cup D_i$ (BCFNan izan ezik)
 - R baino hobea
 - Erredundantzia txikiagoa (akats kopuru txikiagoa)

Normalizazio prozesua (2)

Erlazio Normalizatua

Diseinu ona

Diseinu ona

Ideia intuitibo batzuk

<u>SukKod</u>	<u>EnpIzen</u>	SukTfno	IFK	Uni	ProKod	Sal	Ban
suk1	corte_inglés	193	ci	12	#prod1	123	agro
suk2	corte_inglés	294	ci	18	#prod1	123	agro
suk2	corte_inglés	294	ci	7	#prod2	827	telna
suk1	eroski	185	ab	103	#prod2	827	telna

Eguneratze-akatsa:

 #prod1 produktuaren salneurria eguneratzeak, tupla batzuk aldatzea dakar

Arrazoia:

- KodPro-k Sal zehazten du: KodPro → Sal Ban
- KodPro ez da supergakoa, beraz, tupla batzuk egon daitezke salneurri berarekin

Ondorioa: erredundantzia

Produktu baten salneurria hainbat tupletan errepikatzen da

Entitateak ezagutzen...

SALMENTAK[*ProKod*, *Salneurria*, *Banatz*.] → *PRODUKTU entitatea*

SALMENTAK[*SukKod*, *EnpIzen*, *SukTfnoa*] → *SUKURTSALA entitatea*

 $SALMENTAK[EnpIzen, IFK] \rightarrow ENPRESA$ entitatea

SALMENTAK(SukKod, EnpIzen, Unitateak, ProKod) → *SALMENTA entitatea*

Diseinu on batek entitateak ezagutzen ditu!! Normalizazioa, beraz, egiaztatze prozesua litzateke...

Normalizazio prozesua

- Prozesu bat da zeinetan eskema bati hainbat proba egiten zaizkion forma normal zehatz batean ote dagoen ezagutzeko.
- Forma normalak
 - Erlazio bat 1FN moduan dago baldin eta soilik baldin atributu guztiak atomikoak dituen
 - Erlazio bat 2FN moduan dago baldin eta soilik baldin 1FNn dago eta
 - Lehena ez den atributu oro, gako hautagaiekiko guztiz mendekoa den
 - Erlazio bat 3FN moduan dago baldin eta soilik baldin 2FNn dago eta
 - Inolako lehena ez den atributuk ez duen mendekotasun iragankorrik gako hautagaietatik

Forma Normalak

- Forma normalak:
 - 1FN, 2FN, 3FN (Codd)
 - 3FN sakonago = BCFN (Boyce and Codd)
 - 4FN, 5FN
 - Normalean 3FN, BCFN edo 4FN arte
- Propietateak:
 - Galerarik gabeko konbinazioaren propietatea (ezinbestekoa): deskonposatu ondoren erlazio-eskemetan ez da tupla aizunik egongo
 - Mendekotasunak kontserbatzearen propietatea (komenigarria): MF bakoitza deskonposizioaren bidez lorturiko banakako erlazioren batean ordezkatuta dago

Normalizazioa

Erredundantzia gutxitzea helburu duen prozesua

Hots, aldatze eragiketak exekutatzean akatsak sortzeko arriskua gutxitzea

Lehen Forma Normala
Bigarren Forma Normala
Hirugarren Forma Normala
Boyce-Codd-en Forma Normala
Laugarren Forma Normala

Lehen Forma Normala (1FN)

- Baldintza: atributuek balio atomikoak izan behar dituzte
 - Tupla bakoitzerako, atributu batek balio bat:
 - Ez dago multzo errepikakorrik
 - Ez dago atributu konposaturik
 - Eredu erlazionaletik datorren murriztapena

Lehen Forma Normala (1FN)

SOLUZIOA:

PERTSONA1

<u>Na</u> Ize

PERTSONA2

<u>Na</u> <u>Tfnoa</u>

Lehen Forma Normala (1FN)

Atributuen balioak atomikoak izan behar dira (sinpleak eta banaezinak)

Atributu

SAILA(Szenb, Sizena, zuzenNAN, STokiak)

Szenb	Sizena	zuzenNAN	STokiak
1	LSI	30000000	{Donostia, Eibar, Gazteiz}
2	KAT	15000000	{Donostia}
3	KZAA	14000000	{Leioa, Donostia}

balioanitza

Lehen Forma Normala. Nola lortu?

- 1. Stokiak atributua kendu eta kokatu SAILEN_TOKIAK izeneko beste erlazio batean, Szenb oinarrizko gakoarekin batera. Erlazio berriaren OG {Szenb, Stokia} da. 1FN ez den erlazioa bi 1FNtan deskonposatzen da.
- 2. Hedatu gakoa, SAILAren kokaleku bakoitzerako tupla bat. OG {Szenb, Stokiak} da. Desabantaila: erredundantzia!

Adib:

Szenb	Sizena	zuzenNAN	STokiak
1	LSI	30000000	Donostia
1	LSI	30000000	Eibar
1	LSI	30000000	Gazteiz
2	KAT	15000000	Donostia
3	KZAA	14000000	Leioa
3	KZAA	14000000	Donostia

Lehen Forma Normala. Nola lortu?

3. "Gehienezko balio kopurua ezagutzen bada", adibidez sail batek gehienez 3 leku, ordeztu hiru atributu atomikorekin: STOKIA1, STOKIA2 eta STOKIA3. Desabantaila: *null* balioak sartzen dira. Kontsulta zailagoak.

Aurreko hiru irtenbideetatik lehena hoberena

Bigarren Forma Normala (2FN)

- Erlazioa 2FNan dago
 - 1FNan badago, eta
 - Ez-lehenak diren atributu guztiak gako hautagai guztien mendeko osoak badira

X, Yren *mendeko osoa* da, baldin $Y \rightarrow X$ eta $(Y-A)/\rightarrow X$ (Ytik A atributu bat kenduta, mendekotasuna galdu egiten da)

X atributua Yren *mendeko partziala* da, baldin $Y \to X$ eta $(Y-A) \to X$ (Ytik A atributu bat kenduta, mendekotasuna mantendu egiten da)

Bigarren Forma Normala (2FN)

- Mendekotasun osoa vs partziala. Adibideak:
 - {NAN, PZENBAKIA} → ORDUAK mendekotasun osoa
 NAN kenduta MF galdu
 PZENBAKIA kenduta MF galdu
 (ez NAN → ORDUAK, ez PZENBAKIA → ORDUAK ez dira betetzen)
 - {NAN, PZENBKIA} → LIZENA mendekotasun partziala
 NAN → LIZENA betetzen da

Bigarren Forma Normala (2FN)

- Nola lortu:
 - Mendekotasun partzialak taula berrietara eramaten dira
 - Hasierako taulan gakoa eta gakotik guztiz mendekoak diren atributuak geratzen dira

Bigarren Forma Normala

- 2FNrako proba: ezker aldeko atributuak oinarrizko gakoaren barruan dituzten mendekotasun funtzionalak aztertu behar dira. OGk atributu bakarra badu, ez egin proba
- Adib: LAN_PROI 1FN bai, 2FN ez!

- 2FN ez:
 - 2MF eta 3MFren ondorioz, LIZENA, PIZENA eta PKOKALEKUAk LANG_PROIko {NAN, PZENBAKIA} oinarrizko gako OSOAREKIN partzialki mendekoak dira → 2FN hautsi!
 - Adib. NAN → LIZENA, PIZENA → PZENBAKIA, PZENBAKIA → PKOKALEKUA partzialak

Bigarren Forma Normala. Soluzioa

- Bigarren normalizazioa: Hainbat 2FN erlazio bihurtu. Erlazio horietan, atributu ez-lehenak mendekotasun funtzional osoa duten oinarrizko gakoaren zatiarekin bakarrik daude lotuta
- Adibidea: LANG_PROI, 1LP, 2LP eta 3LP erlaziotan Deskonposatu

2FN NORMALIZAZIOA (ez-lehen guztiek MF OSOA. Ezin dute MF partzialik izan!):

2FN: adibidea

2FN gako hautagaiaz

Eta, mendekotasun partzialak badaude baina gako hautagai batekin, oinarrizko gako batekin beharrean?

Modu berean ebazten da

Hirugarren Forma Normala (3FN)

- Erlazioa 3FNan dago
- 2FNan badago, eta
- X → Y mendekotasun guztietan X supergakoa bada edo Y atributu lehena bada

3FN: adibidea

Ez dago 3FNn

3FN: Soluzioa

- R(A,X,Y,B) non $X \rightarrow Y$ mendekotasun funtzionalak ez duen 3FNa betetzen
- Sortu R' erlazioa X⁺ duena eta X gakotzat duena
- R-tik Y ezabatu

Normalizazioa. Adibidea.

- Gako hautagaiak: JABEGO_ID eta {HERRIA, LURSAILZBKIA}, beraz, 1MF eta 2MF betetzen dira
- 3MF: zerga-tasa finkoa da herri jakin batean (Ez da aldatzen herri bereko lursail batetik bestera)
- 4MF: lursail baten prezioa bere azaleraren araberakoa da (berdin dio eskualdea)
- 2 forma normala hausten al da? BAI
 - ZERGA_TASA atributuak {HERRIA, LURSAILZBKIA} gako hautagaiarekiko mendekotasun partziala => 3MF ez dago 2FNn
 - Konponketa:

Normalizazioa. Adibidea.

- 3 forma normala hausten da? BAI
 - LURSAILAK1 erlazioko 4MFko AZALERA ez da supergakoa eta PREZIOA ez da atributu lehena
 - Konponketa: Deskonposaketa
 - 3FN hausten duen PREZIOA LURSAILAK1etik kendu eta eta LURSAILAK2n ipini AZALERArekin batera

Forma normalak modu informalean

- 1. forma normala
 - Atributu guztiak oinarrizko gakoaren mendeko dira
- 2. forma normala
 - Atributu guztiak oinarrizko gako osoaren mendeko dira
- 3. forma normala
 - Atributu guztiak soilik gakoaren mendeko dira

Boyce-Codd-en Forma Normala

Erlazioa **BCFN**an dago

 $X \rightarrow Y$ mendekotasun guztietan **X supergakoa** bada

BCFNan dauden erlazioak 3FNan ere badaude

3FNan dauden batzuk BCFNan ez egotea gerta daiteke (adibidez 3FNan daude Y lehena delako)

BCFN betearazteko prozesua

Aurrekoaren berdina

Baina batzuetan, mendekotasunaren bat galtzea gerta daiteke.

Erabakia diseinatzailearen ardura

- 3FNn utzi: erredundantzia onartu eta kontrolatu behar
 - Irakurketa eragiketak lehenesten dira
- BCFNra pasa: galdutako mendekotasuna esplizituki kontrolatu behar
 - Aldaketa eragiketak lehenesten dira

Mendekotasunen galera. Adibidea

- R=(A, B, C):
 F = {AB → C, C → B}
- Gako hautagaiak: (A, B), (A, C)
- Ez dago BCFNan (C → B)
- Deskonposatzean AB \rightarrow C galduko da

Hori dela eta 3FN-ren baliagarritasuna...

- Beti lor daiteke deskonposaketa 3FNan:
 - Galerarik gabe
 - Mendekotasun funtzionalak mantenduaz

BCFN: atributu guztiak soilik gakotik guztiz dependente dira

3FN: ez-gakoak diren atributu guztiak soilik gakotik guztiz dependente dira

Normalizazioa: ondorioak ateraz ...

- Mendekotasunak, oinarrizko gakoen mekanismoaren bitartez betearaziko dira
 - DBKSren ardura
- Normalizazioa ez da mendekotasun funtzionalak taula banatan jartzea

Balio anitzetako mendekotasunak

- $A \rightarrow B$
- Mendekotasun funtzionalaren orokortzea
 - B-ko atributuek hartzen dituzten balioak R-A-B ko atributuek hartzen dituztenetatik independente dira
 - Baldin $A \rightarrow B$, orduan $A \rightarrow R B$
- A → → B balio anitzetako mendekotasun arrunta da ondorengo edozein 2 kasuetan:
 - $A \cup B = R$
 - B ⊆ A

Balio anitzeko mendekotasunen determinatzaileek gako izan behar dute

- Beste modu batera esanda:
 - BCFNan dago eta balio anitzeko mendekotasun guztiak, mendekotasun funtzionalak dira
 - Hau da, mendekotasun guztiak gakoek zehazten dituzte

4FN ⇒ FNBC ⇒ 3FN ⇒ 2FN ⇒ 1FN

4FN adibidea

Ikaslea = (Na, Irakasgaia, Zaletasuna);

4FN adibidea

```
    Ikaslea = (Na, Irakasgaia, Zaletasuna);
    Na → → Irakasgaia
    Na → → Zaletasuna
    Irakasgaiak eta zaletasunak independenteak dira
```

Beraz, deskonposatu egin behar dira:

```
Irakasgaia(Na, Irakasgaia);
Zaletasuna(Na, Zaletasuna)
```

Normalizazio prozesuaren laburpena

Forma Normalen arteko erlazioa

1FN, 2FN → Arrazoi historikoengatik hartzen dira kontuan

DesNormalizazioa

- Maiz exekutatzen diren galderen eraginkortasuna hobetzearren, erredundantzia sartzeko prozesua
- Forma normal baxuagoak onartzen ditugu
- Erredundantziarekin join egitea ekiditen dugu
- Motak:
 - 1:1 erlazioa duten taulen konbinaketa
 - 1:N erlazioetan gakoarenak ez diren atributuen bikoizketa
 - M:N motako erlazioetan atributuen bikoizketa
 - Atributu balioaniztunak

DesNormalizazioa.1:1 erlazioa duten taulen konbinaketa

Baldintzak:

- Taulak batera askotan atzitzen dira
- Taulak bereiztuta gutxitan atzitzen dira
- Egon daitezkeen *null* balioen kopurua txikia

IKASLEA			PROIEKTUA		
NAN	izena	•••	Pkodea	izena	•••
10000000	Jon Lasa	•••	LSI-1	Datu-baseak eta internet	
15000000	Miren Alkorta	•••	LSI-2	Internet teknologiak	•••
16000000	Aitor Ansa	•••	KAT-1	XINU Sistema Eragilea	
12000000	Ane Landa	•••	null	null	

DesNormalizazioa. 1:N erlazioetan gakoarenak ez diren atributuen bikoizketa

Baldintzak:

Bikoiztutako atributuak oso gutxitan aldatzen dira

Bikoiztutako atributuak garestiak diren join-etan maiz azaltzen dira

Taula batean egindako aldaketek, bestean ez lukete eguneraketa asko eragingo

GARRAIBIDEA	1 GARRAIO-ENPRESA
GARRAIDIDEA	GIRRIO LIVI RESIT

GARRAIABIDEA						
<u>Gkodea</u>	mota	•••	GEIFZ	izena		
G1	kamioia	•••	10000	San José		
G2	itsasontzia	•••	20000	Guipuzcoana		
G3	kamioia	•••	30000	TDN		
G4	hegazkina	•••	40000	Alvarez		
G7	kamioia	•••	10000	San José		
G8	kamioia	•••	10000	San José		

GARRAIO-ENPRESA						
<u>IFZ</u>	izena	•••				
10000	San José	•••				
20000	Guipuzcoana	•••				
30000	TDN	•••				
40000	Alvarez	•••				

DesNormalizazioa. M:N motako erlazioetan atributuen bikoizketa

Baldintzak

• Bikoiztutako atributuak oso gutxitan aldatzen dira

47000

57000

S3

S2

- Bikoiztutako atributuak garestiak diren *join*-etan maiz azaltzen dira
- Taula batean egindako aldaketek, bestean ez lukete eguneraketa asko eragingo

TN T		N #			
SAILA	Enpresa-Saila	$\rightarrow M$ TF	RATAMI	ENDURAKO	-ENPRES
	ENPRE	SA-SAILA			
	TEIFZ	<u>Skodea</u>	izena	Sizena	
	17000	S1	Tratam1	Karburoak	
	17000	S2	Tratam1	Erradiaktiboak	
	17000	S4	Tratam1	Gasak	
	27000	S2	Tratam2	Erradiaktiboak	
	37000	S1	Tratam3	Karburoak	

Tratam4 Azidoak

Tratam5 Erradiaktiboak

DesNormalizazioa. Atributu balioaniztunak

Baldintzak

- Balioen kopuru maximoa ezaguna eta txikia
- Balioen kopuru maximoa finkoa da

SAILA(Szenb, Sizena, zuzenNAN, STokia1, STokia2, STokia3)

Szenb	Sizena	ZuzenNAN	STokia1	STokia2	STokia3
1	LSI	30000000	Donostia	Eibar	Gazteiz
2	KAT	15000000	Donostia	null	null
3	KZAA	14000000	Leioa	Donostia	null