Section 6.4- General Exponential and Logarithmic Functions

Name/ Uid:_______ Date:_____

Definition. The exponential function with base a > 0 is defined for any x as

$$a^x = (e^{\ln a})^x = e^{x \ln a}.$$

Theorem 1 (Properties of the Exponential:). For a, b > 0 and any x, y,

- $(a) \ a^{x+y} = a^x a^y.$
- (b) $a^{x-y} = \frac{a^x}{a^y}$.
- $(c) (a^x)^y = a^{xy}.$
- $(d) (ab)^x = a^x b^x$
- (e) $\left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$

The derivative is easy to calculate using the Chain Rule:

$$D_x(a^x) = D_x(e^{x \ln a}) = e^{x \ln a} \ln a = a^x \ln a$$

It follows that a^x is increasing if a > 1 and a^x is decreasing if 0 < a < 1. Assuming $a \ne 1$, we have

$$\int a^x \, dx = \frac{a^x}{\ln a} + C$$

Example 1. Compute the following derivatives or indefinite integrals:

(a)
$$D_x(4^{x^2-x}) =$$

(b)
$$\int \frac{2^{\sqrt{x}}}{\sqrt{x}} dx =$$

General Logarithms

Definition. The logarithmic function with base a > 0, written $\log_a x$, is defined as the inverse to the function a^x . In particular,

$$\log_a x = y \Leftrightarrow a^y = x.$$

Remark 1. The inverse relationship between a^x and $\log_a x$ implies that

$$a^{\log_a x} = x$$
 $\log_a (a^y) = y$

for all y and x > 0.

Theorem 2 (Properties of the Logarithm). For positive x, y and rational r

(a)
$$\log_a(xy) = \log_a x + \log_a y$$
.

(b)
$$\log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y$$
.

(c)
$$\log_a(x^r) = r \log_a x$$
.

Since $x = a^{\log_a x}$, differentiating both sides of this equation with the Chain Rule gives

$$1 = a^{\log_a x} (\ln a) D_x (\log_a x) = x(\ln a) D_x (\log_a x)$$

which implies that

$$\boxed{D_x(\log_a x) = \frac{1}{x \ln a}}$$

This formula also gives a relationship between $\ln x$ and $\log_a x$. Since

$$D_x(\log_a x) = D_x(\frac{\ln x}{\ln a}),$$

it follows that

$$\log_a x = \frac{\ln x}{\ln a} + C$$

for some C. Setting x = 1 yields C = 0, or

$$\log_a x = \frac{\ln x}{\ln a}$$

Example 2. Compute the following derivatives:

(a)
$$D_x(\log_2(\sqrt[3]{x})) =$$

In the next two problems, you will be asked to compute the derivative of a function of the form $y = a(x)^{b(x)}$. There are two (equivalent) methods for doing this:

- 1. Logarithmic differentiation: write $\ln y = \ln (a(x)^{b(x)}) = b(x) \ln a(x)$, then differentiate.
- 2. Write $a(x) = e^{\ln a(x)}$, so $y = (e^{\ln a(x)})^{b(x)} = e^{b(x) \ln a(x)}$.
- (b) Use method 1 described above to find $D_x((\sin x)^x)$.
- (c) Use method 2 described above to find $D_x(x^{\sin x})$.