PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS NÚCLEO DE EDUCAÇÃO A DISTÂNCIA

Pós-graduação *Lato Sensu* em Ciência de Dados e Big Data

Rodrigo Xavier de Almeida Leão

Análise de Histórico de Jogos de Poker para Aumento de Rendimento

Rodrigo Xavier de Almeida Leão

ANÁLISE DE HISTÓRICO DE JOGOS DE POKER PARA AUMENTO DE RENDIMENTO

Trabalho de Conclusão de Curso apresentado ao Curso de Especialização em Ciência de Dados e Big Data como requisito parcial à obtenção do título de especialista.

Belo Horizonte 2022

SUMÁRIO

1. Introdução	4
1.1. Contextualização	4
1.2. O problema proposto	4
1.3. Fundamentos do Poker	4
1.4. Objetivos	6
2. Coleta de Dados	7
3. Processamento/Tratamento de Dados	8
4. Análise e Exploração dos Dados	10
5. Criação de Modelos de Machine Learning	12
Regressão Linear Simples	12
Regressão Linear com Atributos Polinomiais	13
Árvore de Decisão	14
6. Interpretação dos Resultados	17
7. Apresentação dos Resultados	18
8. Links	18
APÊNDICE	19

1. Introdução

1.1. Contextualização

O poker é um dos jogos de carta mais populares do mundo e vem cada vez mais conquistando adeptos, principalmente através dos jogos online. Muitos entusiastas podem ficar frutados com seus resultados iniciais ou mesmo culpar o azar, porém além das regras básicas o Poker possui algumas estratégias de jogo que são fundamentais para evitar grandes perdas.

Na verdade, é possível eliminar consideravelmente o fator sorte tornando-o um jogo de probabilidade e estatísticas. É claro que a capacidade e habilidade individual faz total diferença na mesa, porém todos os grandes jogadores sabem como aplicar a probabilidade a seu favor fazendo com que no longo prazo seus ganhos superem as perdas.

1.2. O problema proposto

Neste contexto, este trabalho apresenta os esforços iniciais em desenvolver um método capaz de fornecer uma análise global do estilo de jogo do cliente a partir de seu histórico de jogos online, que pode ser obtido na plataforma de jogo. Desta forma é possível apontar falhas no estilo de jogo e sugerir alterações que resultem em maior lucratividade.

1.3. Fundamentos do Poker

Neste trabalho considera-se torneios do estilo Texas Hold'em de 9 jogadores como ilustrado abaixo.

Neste estudo, o jogador está sempre sentado na posição zero. O botão, assim como as posições giram no sentido horário a cada rodada. As regras básicas de cada rodada são:

- 1. O "blind" é o valor mínimo de aposta da mão e aumenta em períodos específicos de tempo;
- 2. Os jogadores nas posições SB e BB fazem uma aposta obrigatória cada, de 1/2 e 1 blind respectivamente;
- 3. Todos os jogadores recebem duas cartas cada;
- 4. Etapa 1: o pré flop, cada jogador decide se irá jogar com suas cartas e quanto irá apostar. Se mantêm no jogo todos aqueles que pagarem a maior aposta;
- 5. Etapa 2: o flop, são viradas três cartas sobre a mesa;
- 6. A partir de agora, a cada virada de carta, os jogadores anunciam suas apostas sempre no sentido horário iniciando do jogador à esquerda do botão (posição 8) até o botão (posição 0) que é sempre o último a falar. Se mantêm no jogo aqueles que pagarem a maior aposta;
- 7. Etapa 3: o turn, vira-se mais uma carta e repete-se o procedimento da etapa anterior.
- 8. Etapa 4: o river, vira-se mais uma carta e repete-se o procedimento da etapa anterior.
- Etapa 5: o showdown, os jogadores que permaneceram no jogo mostram suas cartas e ganha aquele que obtiver a maior jogada considerando 5 cartas escolhidas entre as duas da mão e as cinco da mesa.

A tabela abaixo apresenta as jogadas do poker:

ROYAL STR. FLUSH	10 💗	J 🍑	Q 💗	K♥	A 💗
STRAIGHT FLUSH	4 👫	5 👫	6 👫	7 👫	8 🖡
QUADRA	K 🏟	K 🖤	K &	K •	3 ♠
FULL HOUSE	10 🛡	10 🌲	10 🔷	A 	A *
FLUSH	10 🏟	K 🍁	2 🏟	6 🏟	7 🏟
SEQUÊNCIA	7 ♣	8 🏟	9 🔷	10 💠	J 🖊
TRINCA	5 🏟	5 💙	5 👫	J	A •
2 PARES	A 🏟	A 💙	3 ♣	3 ♠	J 🌞
1PAR	Q •	Q 🖤	2 💗	8 •	9 👫

É de conhecimento geral da comunidade de poker que quatro fatores afetam diretamente o resultado de uma mão. Em primeiro lugar a posição, sendo sempre melhor jogar no botão por ser o último a tomar decisões a cada mão; neste trabalho o parâmetro "BT_pos" indica a posição em que o botão se encontra em relação ao jogador, de forma que quanto menor seu valor melhor para jogar.

Em segundo lugar a quantidade de fichas em jogo "Pot_BB" e terceiro a quantidade de fichas que o jogador possui naquele momento "Stack_BB". Em quarto e mais óbvio a força da mão "Hand_Power" que também depende se as cartas são do mesmo naipe ou não "Swited". O Pot e o Stack são calculados em relação ao big blind daquela rodada.

1.4. Objetivos

- Definir pesos e variáveis de relevância;
- Desenvolver um método de extração das variáveis a partir do histórico de jogos;
- Desenvolver uma forma de análise que permita relacionar as variáveis aos resultados obtidos pelo jogador;
- Aplicar métodos de aprendizado de máquina e avaliar a capacidade do modelo em tomar decisões consistentes com os fundamentos do Poker.

2. Coleta de Dados

Os dados são obtidos a partir do histórico de jogos que pode ser obtido na plataforma de jogo utilizada. No presente caso utilizou-se a plataforma *PokerStars* que fornece o arquivo do tipo ".txt". A Figura 1 apresenta a estrutura dos dados para uma mão jogada, o arquivo completo é composto por todas as mãos de um torneio.

O histórico contém nas duas primeiras linhas as identificações e especificações do torneio, estas informações são utilizadas para agrupar as mãos entre os torneios. NA terceira linha são fornecidas as fichas iniciais de cada jogador e os níveis de aposta.

Finalmente o arquivo é dividido pelas etapas das mãos (*hole cards* = pré-flop, flop, turn e river) e a ação de cada jogador naquela etapa, além das cartas recebidas e colocadas sobre a mesa em cada uma.

```
PokerStars Hand #236216463916: Tournament #3413806416, $0.23+$0.02 USD Hold'em No Limit
Table '3413806416 1' 3-max Seat #1 is the button
Seat 1: zoriank (500 in chips)
Seat 2: Asecos (500 in chips)
Seat 3: rodxal (500 in chips)
Asecos: posts small blind 10
rodxal: posts big blind 20
*** HOLE CARDS ***
Dealt to rodxal [4h 9s]
zoriank: folds
Asecos: calls 10
rodxal: checks
*** FLOP *** [5h Td 5s]
Asecos: checks
rodxal: checks
*** TURN *** [5h Td 5s] [Jc]
Asecos: checks
rodxal: bets 29
Asecos: folds
Uncalled bet (29) returned to rodxal
rodxal collected 40 from pot
rodxal: doesn't show hand
*** SUMMARY **
Total pot 40 | Rake 0
Board [5h Td 5s Jc]
Seat 1: zoriank (button) folded before Flop (didn't bet)
Seat 2: Asecos (small blind) folded on the Turn
Seat 3: rodxal (big blind) collected (40)
```

Figura1. Históricos de mãos

3. Processamento/Tratamento de Dados

Foram processados um total de 96 históricos que passam pelo fluxo KNIME apresentado na Figura 2.

Figura 2. Fluxo KNIME

able "default" -	Rows: 1812 Sp	ec - Columns: 6	Properties Flo	ow Variables		
Row ID	D BT_Pos	S Tourna	D Swited	D Stack_BB	D Pot_BB	D Hand_P
Row0	5	3400213716	1	75	6.5	60
Row1	6	3400213716	1	75	21	224
Row2	7	3400213716	1	65.5	80.6	88
Row3	8	3400213716	1	58.5	48.15	21
Row4	0	3400213716	1	28.3	101.433	22
Row5	1	3400213716	1	28.3	15	24
Row6	2	3400213716	1	28.3	9.5	45
Row7	3	3400213716	1	28.3	107	60
Row8	4	3400213716	0	16.98	6	26
Row9	5	3400213716	0	16.98	18	8
Row10	6	3400213716	1	16.98	39.28	117
Row11	1	3399211094	1	75	157.55	39

A partir do fluxo apresentado é extraída a Tabela 1 com um total de 1812 mão.

Os parâmetros que constam na tabela são: BT_Pos = Posição do botão; Tournament = identifica o torneio em que aquela mão foi jogada; Swited = Identifica se a mão é do mesmo naipe; Stack_BB = número de fichas do jogador ao iniciar aquela mão, contado em blinds; Pot_BB = quantidade de fichas no pote ao final da mão, contado em blinds; Hand_Power = Força da mão, resultado da multiplicação do valor das cartas da mão, que vão de 2 a 14 (Ás), pela categoria da mão:

- 5. Cartas iguais (par de mão);
- 4. Ás e outra carta qualquer;
- 3. Duas figuras;
- 2. Figura e outra carta qualquer que não seja o Ás;
- 1. Dois números diferentes.

A tabela de dados é então transmitida por meio de arquivo ".csv" para o Colab no qual as análises são realizas por meio de linguagem Python. A Tabela 1 aberta no Colab é apresentada a seguir.

Figura 3. Tabela 1 no Colab

4. Análise e Exploração dos Dados

Foram identificados 54 torneios diferente. O parâmetro *Stack* é transformado em ganho por mãos "Gain" subtraindo o *Stack* anterior pelo Stack da próxima mão em cada torneio. A remoção dos valores vazios resultou em uma redução do banco de dados para 1758 mãos representando uma perda de 2.98%. A Figura 4 apresenta a distribuição do ganho parametrizado em função do maior valor.

Figura 4. Ganho do jogador

São realizados dois cortes de *outliers* baseado nas análise primárias e dinâmica do jogo. As mão envolvidas em potes maiores que 500 BB que normalmente representam os instantes finais do jogo em que os *blinds* já estão muito altos ou situações extraordinárias de início de jogo. E as mãos em que o jogador inicia com cartas que possuam "Hand_Power" maior que JJ (par de valetes) que normalmente envolverão muitas fichas.

Os comportamentos acima são padrões e comuns em qualquer nível de jogo e mascaram as nuances referentes ao próprio jogador. O corte de *outliers* reduz o banco de dados para 1656 mãos, representando uma perda de 5.15 %.

A distribuição dos dados é harmonizada pela aplicação de escalas logarítmicas nos parâmetros Hand_Power, Stack e Pot. A Figura 5 apresenta os histogramas dos parâmetros antes e depois da harmonização.

Figura 5. Harmozização de parâmetros

A Figura 6 apresetna a nova dsitribuição de parâmetros e o histograma de ganho.

Figura 6. Distribuição de parâmetros em relação ao ganho.

5. Criação de Modelos de Machine Learning

Regressão Linear Simples

O modelo linear é aplicado considerando o ganho escalonado como Target, apresentado na Figura 7.

Figura 7. Features e Target.

O gráfico de erros é apresentado na Figura 8.

Figura 8. Erros

Regressão Linear com Atributos Polinomiais

Os resultados dos modelos de regressão RIDGE são apresentados na Figura 9 no qual são avaliados 20 parâmetros e a variação de Alpha.

20.0

```
from sklearn.preprocessing import PolynomialFeatures

Xpoly=PolynomialFeatures(degree=2, include_bias=False).fit_transform(X)

('Xpoly SHAPE --> ', Xpoly.shape)

C 'Xpoly SHAPE --> ', (1746, 20))

Ridge A1
Ridge A0.5
Ridge A0.1
LnR

-0.1
-0.2
```

10.0

Coeficientes

12.5

15.0

17.5

Figura 9. Modelos RIDGE

0.0

2.5

5.0

O melhor modelo RIDGE é comparado ao LASSO na Figura 10.

7.5

Figura 10. RIDGE x LASSO

Árvore de Decisão

Os parâmetros são classificados em categorias como apresentado abaixo. O novo parâmetro POT é obtido pela divisão (Pot_BB / Stack_BB], ou seja, o número de fichas na mesa pelo número de fichas na mão do jogador. Desta forma o modelo possui quatro parâmetros categóricos de entrada que podem ser obtidos facilmente em cada mão em um jogo real.

```
HAND POWER CLASSES
[1.4313637641589874, 1.7323937598229686, 1.9590413923210936, 2.6989700043360187]
STACK CLASSES
[0.4783110046077968, 0.6868093788388092, 0.8936897164191739, 2.2223924213364477]
SHAPE -> (1656, 5)
   BT_Pos HP SWT POT LDW
        5 C ST
                    Α
                         D
 1
        6 D ST
                    C
                         L
 2
        7 C ST
                    D
                         L
 3
        8 A ST
                    D
                         L
 4
        0 A ST
                    D
                         D
```

O resultado nesta análise é binário, vitória "W" ou derrota "L", removendo os empates que são inexpressivos na amostra.

```
#ENCODING
dfENC=dfEncode(dfLDW)
dfENC.shape
[0, 1, 2, 3, 4, 5, 6, 7, 8]
['A', 'B', 'C', 'D']
['NS', 'ST']
['A', 'B', 'C', 'D']
['D', 'L', 'W']
ENCODED DF
   BT_Pos HP SWT POT LDW
0
     5 2 1 0
                     0
1
     6 3 1 2 1
2
      7 2 1 3 1
3
      8 0 1 3 1
4
      0 0 1 3
(1656, 5)
#REMOVENDO DRAWS
dfENC=dfENC[dfENC['LDW'] != 0]
dfENC.shape
```

(1635, 5)

Figura 11. Árvore de Decisão

weighted avg

```
PARAMETROS -> {'criterion': 'gini', 'min_impurity_decrease': 0.002,
'min_weight_fraction_leaf': 0.017, 'splitter': 'best'}
   361 109
 L
 W 104
           80
 Acurácia do Treino: 72.0 %
 Acurácia do Teste: 67.4 %
                precision
                              recall f1-score
                                                   support
             1
                      0.78
                                0.77
                                           0.77
                                                        470
             2
                      0.42
                                 0.43
                                           0.43
                                                        184
                                           0.67
                                                        654
     accuracy
                      0.60
                                0.60
                                           0.60
                                                        654
    macro avg
```

0.67

0.68

654

0.68

Resultado do Modelo Naive-Bayes

Erros de Classificação: 23.9 %

Acurácia do Teste: 76.1 %

	precision	recall	f1-score	support
L W	0.76 0.73	0.97 0.18	0.86 0.29	239 88
accuracy macro avg	0.75	0.58	0.76 0.57	327 327
weighted avg	0.75	0.76	0.70	327

L 233 6 W 72 16

6. Interpretação dos Resultados

A partir do histórico de mão do jogador foi possível obter uma tabela que relaciona seu ganho em relação a alguns parâmetros fundamentais do poker e permite algumas análise em relação ao comportamento do jogador. O modelo desconsidera mãos inicialmente muito forte que obviamente tendem a um maior ganho.

Uma primeira análise do histórico de jogo indica que o jogador joga preferencialmente com mãos do mesmo naipe o que é vantajoso, porém tende a jogar com mão de naipes diferentes quando está com uma quantidade maior de fichas. Da mesma forma, as maiores perdas ocorrem quando o jogador se envolve em mão com muitas fichas ou quando seu *Stack* é muito superior ao *Pot*. O ganho do jogador praticamente nulo, indicando que seu padrão de jogo não tem refletido em lucro efetivo sendo esta a principal reclamação do cliente.

O modelo de regressão linear obteve coeficientes condizentes com a realidade, apresentado para o ganho uma relação positiva para cartas naipadas e força das mão e negativa para Stack e Pot. Este resultado indica que o modelo foi capaz de compreender os princípios básicos que levam à vitória no poker. O melhor modelo para regressão polinomial foi o RIDGE considerando alpha de 0.1 e 20 parâmetros.

A árvore de decisão pode ajudar o jogador a tomar decisões a cada mão. Este modelo indica jogar preferencialmente com mão cuja razão Pot/Stack inferior a 1.5 e em posições menores que 2. Nos demais casos, a força da mão devem ser superior a 2.5 que corresponde a par de oitos "88". Estes são os principais componentes que levam este jogador à vitória.

A matriz de confusão indica que o modelo tem uma boa capacidade de prever mão perdedora, porém precisa evoluir para avaliar melhor as mãos vencedora. Neste ponto vale ressaltar que a base de aprendizado do modelo é um histórico de um jogador amador que como demostrado não obtém lucro com seus jogos. Espera-se um resultado muito melhor caso o modelo utilize como banco de dados o histórico de um jogador profissional lucrativo.

Ademais, diversos outros parâmetros podem ser obtidos a partir do histórico e considerados no modelo de forma a contribuir na tomada de decisão em cada etapa da mão e podendo posteriormente evoluir para um modelo autônomo.

7. Apresentação dos Resultados

8. Links

https://youtu.be/aArSSwsSamM

https://github.com/rodrigoxal/TCC_PUCMinas

APÊNDICE

```
Scripts
```

```
# -*- coding: utf-8 -*-
"""PSL-Regression.ipynb
```

Automatically generated by Colaboratory.

Original file is located at

https://colab.research.google.com/drive/14Lpfe2ba3pKVYwU0fk2KxJUjSxbZaYoE

MACHINE POKER LEARNING

.....

#Bibliotecas

import pandas as pd

from sklearn.naive bayes import GaussianNB

from sklearn.tree import DecisionTreeClassifier as d3

from sklearn.preprocessing import LabelEncoder as le #Classes nominais para binaria

from sklearn.metrics import accuracy_score, classification_report, confusion_matrix

from sklearn.model_selection import train_test_split

from sklearn.linear model import LinearRegression

import matplotlib.pyplot as plt

import numpy as np

import seaborn as sns

#Configuração de impressão

np.printoptions(thereshold=None, precision=2)

pd.set_option('display.max_columns', 500)

pd.set_option('display.max_rows', 500)

pd.set option('precision',2)

```
"""-> FUNÇÕES"""
#Relativizar em relação ao maior valor
def rlta (lt_abs):
lt_rlta = list()
lt_max=abs(max(lt_abs))
for i in lt_abs:
 lt_rlta.append(i/lt_max)
return(lt_rlta)
#Classificação LDW
def ldw_cls (lt):
lt_cls = list()
for i in It:
 if i<0:
  lt_cls.append('L')
 elif i>0:
  lt_cls.append('W')
 elif i==0.0:
  lt_cls.append('D')
 else:
  lt_cls.append('D')
return (lt_cls)
#Classificação Swt
def swt_cls (lt):
lt_cls = list()
```

for i in It:

```
if i==0:
  lt_cls.append('NS')
 else:
  lt_cls.append('ST')
return (lt_cls)
#CLassificador de Mãos
def HP_cls (HP):
#Classes
A=HP.describe().get('25%')
B=HP.describe().get('50%')
C=HP.describe().get('75%')
D=HP.describe().get('max')
classIt=[A,B,C,D]
classltstr=['A','B','C','D']
print(classIt)
#Classificacao
HPIt=list()
for i in HP:
 n=0
 for j in classIt:
   if (i<=j):
   HPlt.append(classItstr[n])
    break
   n+=1
```

```
return(HPlt)
#DATA FRAME ENCODING
def dfEncode (df):
 le = preprocessing.LabelEncoder()
 dfENC=df.copy()
 for i in df.keys():
 dfENC[i]=le.fit_transform(df[i])
 print(list(le.classes_))
 print('\nENCODED DF\n',dfENC.head())
 return(dfENC)
"""-> BEGIN
-> KNIME -> db -> python
111111
#Download do DataSet
from google.colab import files
uploaded = files.upload()
for fn in uploaded.keys():
 print('User uploaded file "{name}" with length {length} bytes'.format(
   name=fn, length=len(uploaded[fn])))
#DataSet -> Dataframe
df=pd.read_csv('PokerData.csv')
print('Dimensões do DataSet --> ', df.shape)
df.head()
gain=list()
```

```
gain.clear()
#Ganho hand by hand
#Identificador: Numero do torneio
i=0
n=1
for x in df['Tournamnet_Number']:
 if i<df.shape[0]-1:
 if x==df['Tournamnet_Number'][i+1]:
                                                  #Calcula o ganho para mãos no mesmo
torneio
  gain.append(df['Stack_BB'][i+1]-df['Stack_BB'][i]) #Stack i+1 - Stack i
 else:
  gain.append(np.nan)
  n+=1
 i+=1
gain.append(np.nan)
print('Tamanho da lista --> ', len(gain))
print('\nNumero de Torneios --> ',n)
#DataFrame Completo com ganho das mãos
df['gain']=gain
df.head()
"""-> TRATAMENTO E ANALISE PRIMARIA"""
#Excluir col_torneios*
del df['Tournamnet_Number']
#Removendo Nan Values
#Referente a maos iniciais e finais dos torneios
dftr=df[~np.isnan(df['gain'])]
```

```
print('SHAPE --> ', dftr.shape)
print('Perda de dados: ',100*(1-(len(dftr)/df.shape[0])),'%')
gain_rlta=rlta(dftr['gain'])
sns.scatterplot(data=gain_rlta)
print('Dimensão:', len(gain_rlta))
#DataFrame com ganho Relativizado
dftr.loc[:]['gain']=gain_rlta
dftr.head()
sns.pairplot(dftr, hue='Swited', corner=True, palette='coolwarm')
#hue: parametro de coloração
print('BY SWITED HANDS \n')
dftr['gain'].describe()
dftr.to_csv('PSLpdDFckp1.csv')
files.download('PSLpdDFckp1.csv')
"""*CKP 1
-> Fim do PreProcessamento
111111
#Download do DataSet
from google.colab import files
uploaded = files.upload()
for fn in uploaded.keys():
 print('User uploaded file "{name}" with length {length} bytes'.format(
   name=fn, length=len(uploaded[fn])))
```

```
#DataSet -> Dataframe
dftr=pd.read_csv('PSLpdDFckp1.csv', index_col=0)
print('Dimensões do DataSet --> ', dftr.shape)
dftr.head()
"""--> CORTE DE OUTLIERS"""
# Corte de Outliers
#Removendo Outliers
dftrH=dftr[(abs(dftr['Pot_BB'])<500)] # Corte de potes maiores que 500 BB
dftrH=dftrH[dftrH['Hand_Power']<605]
                                                                                        IJ
                                                          Top
                                                                    Hands
(605#dftr_out=dftr[(abs(dftr['gain'])<200)] # Ganhos ou perdas acima de 200 BB
#dftr_out1=dftr_out[dftr_out['Stack_BB']<250] # High Stacks
print('SHAPE --> ', dftrH.shape)
print('Perda de dados: ',100*(1-(len(dftrH)/dftr.shape[0])),'%')
"""-> HARMONIZAÇÃO log"""
#LogModel
from numpy.ma.core import log10
dflog=dftrH.copy()
#Ajustando dados com logaritmo
dflog['Hand_Power']=np.log10(dftr['Hand_Power'])
dflog['Stack_BB']=np.log10(dftr['Stack_BB'])
dflog['Pot_BB']=np.log10(dftr['Pot_BB'])
"""-> SAVE LOG DATA"""
```

```
dflog.to_csv('PSLdflog.csv')
files.download('PSLdflog.csv')
"""*CKP2 -> LOG DATA"""
#Download do DataSet
from google.colab import files
uploaded = files.upload()
for fn in uploaded.keys():
 print('User uploaded file "{name}" with length {length} bytes'.format(
   name=fn, length=len(uploaded[fn])))
#DataSet -> Dataframe
dflog=pd.read_csv('PSLdflog (1).csv', index_col=0)
print('Dimensões do DataSet --> ', dflog.shape)
dflog.head()
dflog.head()
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
S= dflog['Stack_BB'].to_numpy().reshape(-1,1)
print(scaler.fit(S))
print('Stack_BB')
print(scaler.data_max_)
print(scaler.data_min_)
S= dflog['Pot_BB'].to_numpy().reshape(-1,1)
print(scaler.fit(S))
```

```
print('Pot_BB')
print(scaler.data_max_)
print(scaler.data_min_)
S= dflog['Hand_Power'].to_numpy().reshape(-1,1)
print(scaler.fit(S))
print('Hand_Power')
print(scaler.data_max_)
print(scaler.data_min_)
#histograma
b=20
fig, ax = plt.subplots(2, 4, figsize=(20,5))
plt.suptitle('TRANSFORMAÇÃO DE DADOS')
ax[0,0].hist(dftr['Hand_Power'], bins=b)
ax[0,0].set_ylabel('HP')
ax[0,1].hist(dflog['Hand_Power'], bins=b)
ax[0,1].set_ylabel('Log10 HP')
ax[0,1].grid()
ax[0,2].hist(dftr['Stack_BB'], bins=b)
ax[0,2].set_ylabel('Stack')
ax[0,3].hist(dflog['Stack_BB'], bins=b)
ax[0,3].set_ylabel('Log10 Stack')
ax[0,3].grid()
ax[1,0].hist(dftr['Pot_BB'], bins=b)
ax[1,0].set_ylabel('Pot')
ax[1,0].grid()
```

```
ax[1,1].hist(dflog['Pot_BB'], bins=b)
ax[1,1].set_ylabel('Log10 Pot')
ax[1,1].grid()
ax[1,2].hist(dflog['gain'], bins=b)
ax[1,2].set_ylabel('gain')
ax[1,2].grid()
sns.pairplot(dflog, hue='Swited', markers=['o','s'], corner=False, palette='coolwarm')
#hue: parametro de coloração
print('BY SWITED HANDS \n')
"""-> FEATURES / TARGET"""
#Features - Target
y=dflog['gain'].to_numpy()
X=dflog.iloc[:,:5]
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
y=scaler.fit_transform(y.reshape(-1,1))
print(y)
X.head()
"""-> 1 MODELO LINEAR"""
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.15, random_state=5)
print('X train shape -> ', X_train.shape)
print('y train shape -> ', y_train.shape)
```

```
#Regressão Linear
Inr=LinearRegression()
Inr.fit(X_train, y_train) #Fitando
y_prev=Inr.predict(X_test) #previsão do teste
print('Acurácia do Treinamento: {:.2f}'.format(Inr.score(X_train,y_train)))
print('Acurácia do Teste: {:.2f}'.format(Inr.score(X_test,y_test))) #y_test é comparado com
y_prev
"""-> COEFICIENTES PRIMARIOS"""
#Coeficientes
import math
atributos=list(dftr.iloc[:,0:dftr.shape[1]-1])
print(atributos)
print(Inr.coef_)
#Nota -> Coeficientes condizem com a realidade
#ERRO
errabs=np.abs(y_prev-y_test)
errperc=errabs/list(y_test)
#print('\nErro Percentual:\n\n Max: {0: .2f}\n Mean: {1:
                                                                        .2f}\n
                                                                                 Min: {2:
.2f}'.format(np.max(errperc), np.mean(errperc), np.min(errperc)))
#ERRO GRAFICO
plt.figure(figsize=(8,4))
plt.errorbar(np.arange(y_test.size),list(y_test),yerr=errabs,capsize=3,ecolor='r',fmt='.')
plt.title("Erros da previsão")
plt.grid()
```

```
#ERRO GRAFICO
fig, ax = plt.subplots(1, 2, figsize=(10,4))
plt.suptitle('ERROS')
ax[0].plot(errabs, '.')
ax[0].set_ylabel('Erro Absoluto')
ax[1].plot(errperc, '.')
ax[1].set_ylabel('Erro Percentual')
ax[1].grid()
"""-> REGRESSÃO LINEAR COM ATRIBUTOS POLINOMIAIS"""
from sklearn.preprocessing import PolynomialFeatures
Xpoly=PolynomialFeatures(degree=2, include_bias=False).fit_transform(X)
('Xpoly SHAPE --> ', Xpoly.shape)
X_train, X_test, y_train, y_test = train_test_split(Xpoly, y, test_size=0.25, random_state=369)
print('X train shape -> ', X_train.shape)
print('y train shape -> ', y_train.shape)
#Regressão Linear
Inr=LinearRegression()
Inr.fit(X_train, y_train) #Fitando
y_prev=lnr.predict(X_test) #previsão do teste
print('Acurácia do Treinamento: {:.2f}'.format(Inr.score(X_train,y_train)))
```

```
print('Acurácia do Teste: {:.2f}'.format(Inr.score(X_test,y_test))) #y_test é comparado com
y_prev
"""->AJUSTE DE PARÂMETROS"""
from sklearn.linear model import Ridge, Lasso
#Ridge
ridge=Ridge().fit(X_train, y_train) #Fitando
print('Acurácia do Treinamento: {:.2f}'.format(ridge.score(X_train,y_train)))
print('Acurácia do Teste: {:.2f}'.format(ridge.score(X test,y test))) #y test é comparado com
y_prev
y_prevRid=ridge.predict(X_test) #previsão do teste
#Ridge -> Ajuste de Parâmetros e Alpha
ridge_alpha=Ridge(alpha=0.1).fit(X_train, y_train) #Fitando
print('Acurácia do Treinamento: {:.2f}'.format(ridge_alpha.score(X_train,y_train)))
print('Acurácia do Teste: {:.2f}'.format(ridge_alpha.score(X_test,y_test))) #y_test é
comparado com y_prev
y_prevRidAlpha=ridge_alpha.predict(X_test) #previsão do teste
#Ridge -> Ajuste de Parâmetros e Alpha
ridge_alphaHalf=Ridge(alpha=0.5).fit(X_train, y_train) #Fitando
print('Acurácia do Treinamento: {:.2f}'.format(ridge_alphaHalf.score(X_train,y_train)))
```

```
print('Acurácia do Teste: {:.2f}'.format(ridge alphaHalf.score(X test,y test))) #y test é
comparado com y prev
y_prevRidAlphaHalf=ridge_alphaHalf.predict(X_test) #previsão do teste
#Comparação
plt.figure(figsize=(9,6))
plt.plot(ridge.coef , 's', label ='Ridge A1')
plt.plot(ridge_alphaHalf.coef_, 's', label ='Ridge A0.5')
plt.plot(ridge_alpha.coef_, '^', label ='Ridge A0.1')
plt.plot(Inr.coef , 'o', label ='LnR')
plt.ylim(-0.25, 0.25)
plt.xlabel('Coeficientes')
plt.ylabel('Magnitude')
plt.legend()
plt.hlines(0,0,len(lnr.coef_))
#LASSO (Regressão Linear com Regularização L1)
#REduz e elimina coeficientes que não agregam ao modelo
#ALPHA -> default=1 e alpha =0 é uma Inr
lasso=Lasso(alpha=0.000005).fit(X train, y train) #Fitando
print('Acurácia do Treinamento: {:.2f}'.format(lasso.score(X_train,y_train)))
print('Acurácia do Teste: {:.2f}'.format(lasso.score(X_test,y_test))) #y_test é comparado com
y_prev
print('Numero de Coeficientes: ', np.sum(lasso.coef_ != 0))
y_prevLasso=lasso.predict(X_test) #previsão do teste
```

```
"""RIDGE X LASSO"""
#Comparação
plt.figure(figsize=(9,6))
plt.plot(lasso.coef_, '^', label ='Lasso')
plt.plot(ridge_alpha.coef_, 'x', label ='Ridge')
plt.ylim(-0.25, 0.25)
plt.xlabel('Coeficientes')
plt.ylabel('Magnitude')
plt.legend()
plt.hlines(0,0,len(lasso.coef_))
"""MODELO QUALITATIVO LDW
L->-1 D->0W->1
!pip install pydotplus
!pip install dtreeviz
from sklearn import tree, datasets
from sklearn.tree import DecisionTreeClassifier as d3
from sklearn import preprocessing
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
#Download do DataSet
```

```
from google.colab import files
uploaded = files.upload()
for fn in uploaded.keys():
 print('User uploaded file "{name}" with length {length} bytes'.format(
   name=fn, length=len(uploaded[fn])))
#DataSet -> Dataframe
dflog=pd.read_csv('PSLdflog (1).csv', index_col=0)
print('Dimensões do DataSet --> ', dflog.shape)
#Descrição de HandPower
sns.boxplot(dflog['Hand Power'])
#CLASSIFICACAO
dflogLDW=dflog.copy()
#Classificação de Hand Power
print('HAND POWER CLASSES')
dflogLDW['HP']=HP_cls(dflogLDW['Hand_Power'])
del dflogLDW['Hand_Power']
#Classificação Swited
dflogLDW['SWT']=swt_cls(dflog['Swited'])
del dflogLDW['Swited']
# Stack/Pot Class
print('\nSTACK CLASSES')
dflogLDW['POTstk']=dflogLDW['Pot_BB']/dflogLDW['Stack_BB']
dflogLDW['POT']=HP_cls(dflogLDW['POTstk'])
del dflogLDW['POTstk']
del dflogLDW['Stack_BB']
del dflogLDW['Pot_BB']
#Classificação do Ganho
```

```
dflogLDW['LDW']=ldw_cls(dflog['gain'])
del dflogLDW['gain']
print('\nSHAPE -> ',dflogLDW.shape)
dfLDW=dflogLDW.copy()
dfLDW.head()
"""-> Árvore de Decisão"""
#ENCODING
dfENC=dfEncode(dfLDW)
dfENC.shape
#REMOVENDO DRAWS
dfENC=dfENC[dfENC['LDW'] != 0]
dfENC.shape
print('\n',100*dfENC.corr())
plt.figure()
ax=pd.plotting.parallel_coordinates(dfENC, 'LDW',color=('#156270', '#C7F464'))
#Features - Target
y=dfENC['LDW']
X=dfENC.iloc[:,:-1]
print(y.head())
X.head()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=6)
print('X train shape -> ', X_train.shape)
```

```
print('y train shape -> ', y_train.shape)
print('\nX test shape -> ', X_test.shape)
print('y test shape -> ', y_test.shape)
#D3 Model
#1. d3 -> GridSearch
dset3=d3(random_state=3)
                                       {'criterion':('gini','entropy'),'splitter':('best','random'),
parm
'min_impurity_decrease':(0.002,0.0025), 'min_weight_fraction_leaf':(0.017,0.018, 0.020)}
dset3Grid=GridSearchCV(dset3,param_grid=parm)
#2. FitGrid
yPredictG=dset3Grid.fit(X_train, y_train).predict(X_test)
#Matriz de Confusao
cnf_matrix=confusion_matrix(y_test, yPredictG)
cnf_Df=pd.DataFrame(data=cnf_matrix, index=('L','W'), columns=('L','W'))
print('PARAMETROS -> ',dset3Grid.best_params_)
print('\n', cnf_Df)
print('\nAcurácia do Treino: {0:.1f} %'.format(100*dset3Grid.score(X_train, y_train)))
print('\nAcurácia do Teste: {0:.1f} %\n'.format(100*accuracy_score(y_test, yPredictG)))
print(classification_report(y_test, yPredictG))
#parametros do grid
dset3Grid.get_params().keys()
"""-> O CAMINHO DA VITÓRIA"""
```

```
#BEST GRIDSEARCH D3
dset3=d3(random state=0,
                                            criterion=dset3Grid.best params ['criterion'],
splitter=dset3Grid.best params ['splitter'],
    min_impurity_decrease=dset3Grid.best_params_['min_impurity_decrease'],
min_weight_fraction_leaf=dset3Grid.best_params_['min_weight_fraction_leaf'])
yPredict=dset3.fit(X train, y train).predict(X test)
import pydotplus
from IPython.display import Image
#Dot Data
dot_data=tree.export_graphviz(dset3, out_file=None, proportion=True, rounded= True,
filled=True,
                feature names=X.columns[:], class names=('L','W'))
#Graph
graph=pydotplus.graph_from_dot_data(dot_data)
Image(graph.create png())
import graphviz
from graphviz import Graph
with open ("graph3.dot",'w') as f:
f=tree.export_graphviz(dset3, out_file=f)
with open ("graph3.dot") as f:
 dot_graph=f.read()
graphviz.Source(dot graph)
"""->NAIVE-BAYES"""
```

```
from sklearn.naive bayes import GaussianNB
#Modelo
gnb=GaussianNB()
yPred=gnb.fit(X_train, y_train).predict(X_test)
#Avaliação
print('Erros de Classificação: {0:.1f} %'.format(100*(yPred != y_test).sum()/len(yPred)))
print('\nAcurácia do Teste: {0:.1f} %'.format( 100*accuracy_score(y_test, yPred)))
print(classification report(y test, yPred, target names=('L','W')))
cnf_matrix=confusion_matrix(y_test, yPred)
cnf Df=pd.DataFrame(data=cnf matrix, index=('L','W'), columns=('L','W'))
cnf Df
#Notas:
#Avaliar posição mais frequente
#Hero joga com mãos fracas
#Hero tende a jogar mãos offswited ao aumentar seu stack
#HandPower Classes --> HP > 900 XR, 900 > HP > 800 : MR, 800 < HP < 600 : R, 600 < HP <
400 : E, HP<400 : C
#Retorna lista contendo DataFrames agrupados por Tournament Number
#dfgb = [x for _, x in df.groupby('Tournamnet_Number')]
```