

ELL100: INTRODUCTION TO ELECTRICAL ENGG.

Adder and Subtracter Circuits

Instructor for this part: Debanjan Bhowmik, Assistant Professor, Department of Electrical Engineering, IIT Delhi

Contact: debanjan@ee.iitd.ac.in

Textbook: Moris Mano's 'Digital Design':

Chapter 4.5 Binary Adder - Subtracter

Logic Circuits: Half Adder

• Half Adder: Sums two binary digits. Gives out sum (S) and carry (C) bits.

Half Adder

x	у	С	S
0	0	0	0
0	1	0 0 0	1
1	0	0	1
1	1	1	0

$$S = x'y + xy'$$
$$C = xy$$

Logic Circuits: Half Adder

• Half Adder: Sums two binary digits. Gives out sum (S) and carry (C) bits.

Logic Circuits: Half Adder

• Half Adder: Sums two binary digits. Gives out sum (S) and carry (C) bits.

Logic Circuits: Full Adder Cout | 1-bit Full Adder

- Cout Cin Adder
- Half Adder can only accept 2 input bits
- If two n-bit binary numbers are to be added, there can be carry-in bit also
- Full Adder makes provision for carry in bit

Logic Circuits: Full Adder Cout Full Adder (or C)

x	y	z	c	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Logic Circuits: Full Adder Cout 1-bit Full (or C) Adder

Full Adder

x	y	z	c	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	- 1

$$S = x'y'z + x'yz' + xy'z' + xyz$$

Output is 1 when an odd number of inputs are 1

Logic Circuits: Full Adder Cout 1-bit Full (or C) Adder

Full Adder

x	y	z	c	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S = x'y'z + x'yz' + xy'z' + xyz = x \oplus y \oplus z$$

$$S = x'(y'z + yz') + x(y'z' + yz) = x'(y \oplus z) + x(y \oplus z)' = x \oplus y \oplus z$$

Distributive

Logic Circuits: Full Adder (or C) (or Z)

x	y	z	c	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$C = x'yz + xy'z + xyz' + xyz$$

$$S = x'y'z + x'yz' + xy'z' + xyz = x \oplus y \oplus z$$

Logic Circuits: Full Adder (or C) Logic Circuits: Logic Circuits: Full Adder (or C) Adder (or C)

x	y	z	c	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$C = x'yz + xy'z + xyz' + xyz$$

= $x'yz + xyz + xy'z + xyz' + xyz' + xyz$ Idempotence

$$S = x'y'z + x'yz' + xy'z' + xyz = x \oplus y \oplus z$$

Logic Circuits: Full Adder Cout 1-bit Full (or C) Adder

x	y	z	c	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$C = x'yz + xy'z + xyz' + xyz$$

= $(x'+x)yz + x(y'+y)z + xy(z'+z)$ Distributive
= $xy + yz + xz$ Complement

$$S = x'y'z + x'yz' + xy'z' + xyz = x \oplus y \oplus z$$

Full Adder: Logic Gates

It is useful if the same logic can be implemented using lesser number of logic gates and logic levels.

$$S = (x \oplus y) \oplus z$$

$$C = xy + yz + xz = xy + (x + y)z$$

= $xy + (x(y + y') + (x + x')y)z = xy + (xy + x \oplus y)z$
= $xy + xyz + (x \oplus y)z = xy + (x \oplus y)z$

4 Bit Binary Adder

4 Bit Binary Adder+Subtractor

```
A_{3}A_{2}A_{1}A_{0} \leftarrow C_{0}
+/- B_{3}B_{2}B_{1}B_{0}
----
C_{4}S_{3}S_{2}S_{1}S_{0}
```

- 1. Need a **selection bit** to select between the 2 operations ADD or SUB
- 2. If SUB, then first Flip all the bits of B, and find B'

3. Add B' to A (like the normal ADDER)

4. Add 1 to the Sum

