Math 327 Homework 1

Sathvik Chinta

October 7th, 2022

- 1. Let x and y be two positive numbers.
 - (i) Use the mathematical induction to show that if x < y, then $x^n < y^n$ for all $n \in \mathbb{N}$.

First, we let k = 1. Given that x < y, $x^k < y^k = x^1 < y^1 = x < y$ which we are given so it is true.

Now, we assume this is true for k. We want to show that it is true for k+1.

$$x^k < y^k$$

Since x < y, we can multiply both sides by x to get

$$x^{k+1} < y^k x$$

Knowing that $x < x^k < y^k$, we can substitute x for y^k since the inequality will still hold. Thus, we can write

$$x^{k+1} < y^k y^k$$

$$x^{k+1} < y^{k+1}$$

(ii) Deduce that if $x^n < y^n$ for some $n \in \mathbb{N}$, then x < y.

Assume that $x^n < y^n$ for all n, but $x \ge y$. We then have two cases,

Case 1: x = u.

If x = y. We can thus multiply both sides by x and y respectively (they are both equal, so the order is irrelevant) n times to get $x^n = y^n$ for all n. This is a contradiction to our original statument of $x^n < y^n$, so $x \neq y$.

Case 2: x > y.

If x > y, we can multiply both sides by y n times to get

$$xy^n > yy^n$$

Since $x^n < y^n$, we can substitute y^n for x^n since the inequality will still hold. Thus, we can write

$$xx^n > yy^n$$

$$x^{n+1} > y^{n+1}$$

For all n. However, if we plug in n = n - 1, we get

$$x^n < y^n$$

which is a contradiction to our original statement of $x^n < y^n$, so x cannot be less than y. Thus, we have shown that x < y.

- 2. Do problem 17 on page 11 of the textbook $[{\bf F}]$
- 3. Suppose that S is a non-empty set of real numbers that is bounded. Prove that $\inf S \leq \sup S$, and the quality holds if and only if S consists of exactly one number.
- 4. Do Problem 10 on page 11 of the textbook [F].