Analysis

Hausübung 01.04. (Gruppe 1)/02.04. (Gruppen 2, 3)

Lösungen

22. Der Definitionsbereich von f besteht aus allen $x \in \mathbb{R}$ mit

$$2x - \sqrt{x^2 - 1} > 0$$
 und $x^2 - 1 \ge 0$.

Also müssen wir folgendes System von Ungleichungen lösen:

$$\begin{cases} 2x > 0 \\ 4x^2 > x^2 - 1 \end{cases} \Longrightarrow \begin{cases} x > 0 \\ x^2 > -\frac{1}{3} \end{cases} \Longrightarrow \begin{cases} x > 0 \\ x^2 > -\frac{1}{3} \end{cases}$$
$$|x| \ge 1$$

Da dieses System für alle $x \geq 1$ erfüllt ist, erhalten wir $Dom_f = \{x \in \mathbb{R} : x \geq 1\}$ or $Dom_f = [1, +\infty)$.

23. Um den Definitionsbereich von g zu finden, bemerken wir, dass die Ungleichung $\sin(x) \ge 1$ nur für $x \in \mathbb{R}$ mit $\sin(x) = 1$ gelten kann, also für $\{x \in \mathbb{R} : x = \frac{\pi}{2} + 2k\pi, k \in \mathbb{Z}\}$. Für solche x haben wir g(x) = 0.

Also ist $Dom_g = \{\frac{\pi}{2} + 2k\pi, k \in \mathbb{Z}\}.$

24. Die Definitionsmenge von h besteht aus allen $x \in \mathbb{R}$ mit

$$\begin{cases} \frac{x^2 + 2x}{x - 1} \ge 0 & (A) & \text{und} \\ x^2 - 1 > 0 & (B) \end{cases}$$

Sei $h_1(x):=\frac{x^2+2x}{x-1}=\frac{N(x)}{D(x)}$; wir bestimmen jene $x\in\mathbb{R}$ mit $h_1(x)\geq 0$, um die erste Ungleichung des obigen Systems zu erfüllen. Da h_1 der Quotient aus N und D ist, gilt

 $h_1(x) > 0$ falls N(x) und D(x) das gleiche Vorzeichen haben, also entweder beide positiv oder beide negativ sind. Ausserdem ist $h_1(x) = 0 \iff N(x) = 0$. Nun gilt

$$N(x) = x(x+2) \geq 0 \implies (x \geq 0 \land x \geq -2) \lor (x \leq 0 \land x \leq -2) \implies x \leq -2 \lor x \geq 0 \,.$$

und ähnlich $N(x) < 0 \Longleftrightarrow -2 < x < 0$. Weiters ist $D(x) < 0 \Longleftrightarrow x < 1$ und

$$D(x) > 0 \iff x - 1 > 0 \iff x > 1$$
.

Kombination der Bedingungen an Zähler und Nenner zeigt, dass (A) gilt für alle $x \in \mathbb{R}$ mit

$$-2 \le x \le 0 \lor x > 1. \tag{C}$$

Beachte, dass die Ungleichung in (B) erfüllt ist für alle x mit $x < -1 \lor x > 1$. Im Verein mit Bedingung (C) erhalten wir

$$Dom_h = \{x \in \mathbb{R} : -2 \le x < -1 \ \lor \ x > 1\} = [-2, -1) \cup (1, +\infty).$$

25. Sei $a(x) = \arcsin\left(\frac{2x-2}{x-2}\right)$. Die Arcussinusfunktion ist definiert auf [-1,1], also kann der Nenner x-2 nicht Null sein und

$$Dom_a = \left\{ x \in \mathbb{R} \setminus \{2\} : -1 \le \frac{2x - 2}{x - 2} \le 1 \right\}. \tag{1}$$

Isolation von x in (1) zeigt, dass x>2 unmöglich ist, sonst wäre nämlich $2x-2\le x-2$ wegen der rechten Ungleichung, also x<0. Andererseits sind im Fall x<2 die Ungleichungen in (1) äquivalent zu den zwei Bedingungen $2-x\ge 2x-2\ge x-2$ die wieder durch Isolation von x schließlich zu $x\in[0,\frac43]$ führen.

26. Die Funktion $f(x) = x^2 - 4x + 9 = (x - 2)^2 + 5$ ist nicht auf ihrem Definitionsbereich invertierbar, denn sie ist dort nicht injektiv, da f(1) = f(3) = 6; ihr Graph ist eine Parabel mit Symmetrieachse x = 2 und Scheitel im Punkt V = (2, 5). Jeder Teil auf einer Seite der Symmetrieachse entspricht einer strikt monotonen Funktion. Also sind zwei invertierbare Einschränkungen von f gegeben durch

$$f_1: (-\infty, 2] \to [5, +\infty), \qquad f_2: [2, +\infty) \to [5, +\infty).$$

Hier haben wir die Bildmenge ebenfalls eingeschränkt, um f_1 and f_2 beide surjektiv zu machen, damit sind beide bijektiv, also invertierbar. Nun müssen wir die folgenden Gleichungen nach x auflösen, wobei $y \in [5, +\infty)$ ein beliebiger Bildwert ist:

$$x^2 - 4x + 9 - y = 0 \implies x = 2 \pm \sqrt{y - 5}$$
.

Also gilt

$$f_1^{-1}(y) = 2 - \sqrt{y-5}$$
, $f_2^{-1}(y) = 2 + \sqrt{y-5}$, $y \in [5, +\infty)$.

27. Wir haben $Dom_f = \mathbb{R}$, und damit eine Funktion invertierbar ist, muss sie sowohl injektiv als auch surjektiv sein. Aber die Kosinusfunktion ist nicht injektiv auf \mathbb{R} , denn für ein (sogar für jedes) $y \in [-1, 1]$ gibt es mehrere (sogar unendlich viele) $x \in \mathbb{R}$ mit f(x) = y. Also müssen wir den Definitionsbereich einschränken, um Injektivität zu erhalten.

Anhand des Funktionsgraphen des Kosinus können wir ein solches Intervall der Injektivität als $I=[0,\pi]$ wählen, wo eine eineindeutige Relation zwischen x und y=f(x) herrscht. Dies bedeutet in unserem Fall

$$3x \in [0,\pi] \implies x \in [0,\pi/3]$$
.

Da f auch nicht surjektiv auf \mathbb{R} ist, betrachten wir stattdessen die Bildmenge: da $\cos(3x) \in$ [-1,1] für alle $x \in [0,\pi/3]$ ist, haben wir

$$0 \le 2\cos(3x) + 2 \le 4, \forall x \in [0, \pi/3].$$

Also ist Im(f) = [0,4] und die Funktion $f: [0,\pi/3] \to [0,4]$ ist nun invertierbar mit Inverser $f^{-1}: [0,4] \to [0,\pi/3]$. Die Formel für f^{-1} ergibt sich wieder als Lösung einer Gleichung mit fixem Bildwert $y \in [0,4]$:

$$y = 2\cos(3x) + 2.$$

Auflösen nach x ergibt

$$y-2=2\cos(3x) \implies \cos(3x)=\frac{y-2}{2} \implies x=\frac{1}{3}\arccos\left(\frac{y-2}{2}\right)$$
.

Damit erhalten wir die Formel für f^{-1} :

$$f^{-1}(y) = \frac{1}{3} \arccos \left(\frac{y-2}{2} \right) \,, \qquad \text{für alle } y \in [0,4] \,.$$

28. (a) f(x) ist an der Stelle $x_0 = 0$ nicht stetig (und daher auch nicht differenzierbar). Wir zeigen, dass die Funktion bei $x_0 = 0$ eine nicht hebbare Unstetigkeitsstelle besitzt.

(Siehe auch Fall Nr. 4 bei Klassifizierungen von Unstetigkeitsstellen im Artikel https://de.wikipedia.org/wiki/Unstetigkeitsstelle)

Sei $x_k = \frac{1}{k \cdot \pi}$. Die Folge (x_k) ist eine Nullfolge, d.h. $\lim_{k \to \infty} x_k = 0$.

Entlang der Folge (x_k)

$$\lim_{k \to \infty} f(x_k) = \lim_{k \to \infty} \sin\left(\frac{1}{x_k}\right) = \lim_{k \to \infty} \sin\left(k\pi\right) = 0.$$

Sei $x_m = \frac{1}{2m\pi + \frac{\pi}{2}}$. Die Folge (x_m) ist eine Nullfolge, d.h. $\lim_{m \to \infty} x_m = 0$.

Entlang der Folge (x_m)

$$\lim_{m \to \infty} f(x_m) = \lim_{m \to \infty} \sin\left(\frac{1}{x_m}\right) = \lim_{m \to \infty} \sin\left(2m\pi + \frac{\pi}{2}\right) = 1.$$

Also $\lim_{x\to 0} f(x)$ $\not\equiv$. (Siehe die blaue Kurve in der Figur.)

(b) g(x) ist an der Stelle $x_0 = 0$ stetig:

 $\lim_{x\to 0}g(x)=\lim_{x\to 0}x\cdot\sin\left(\frac{1}{x}\right)=0$, denn $x\to 0$ und $\sin\left(\frac{1}{x}\right)$ ist beschränkt. (Siehe die rote Kurve in der Figur.)

g(x) ist an der Stelle $x_0 = 0$ nicht differenzierbar:

$$g'(0) = \lim_{x \to 0} \frac{g(x) - g(0)}{x - 0} = \lim_{x \to 0} \sin\left(\frac{1}{x}\right) \not\equiv \text{ (siehe Aufgabe (a))}.$$

(c) h(x) ist an der Stelle $x_0 = 0$ stetig:

 $\lim_{x\to 0} h(x) = \lim_{x\to 0} x^2 \cdot \sin\left(\tfrac{1}{x}\right) = 0, \, \text{denn } x^2 \to 0 \, \text{ und } \sin\left(\tfrac{1}{x}\right) \, \text{ ist beschränkt}.$

h(x) ist an der Stelle $x_0 = 0$ differenzierbar:

$$h'(0) = \lim_{x \to 0} \frac{h(x) - h(0)}{x - 0} = \lim_{x \to 0} x \cdot \sin\left(\frac{1}{x}\right) = 0.$$

(Siehe die grüne Kurve in der Figur.)

(d) Ja, z.B Funktion h aus Aufgabe (c). Die Ableitungsfunktion ist

$$h'(x) = \begin{cases} 2x \cdot \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right) & \text{wenn } x \neq 0, \\ 0 & \text{wenn } x = 0. \end{cases}$$

 $\lim_{x\to 0}h'(x)$ \nexists . (Siehe ähnlicherweise wie in Aufgabe (a)).

29. AN 6.1. (a)

 $x=1\,$ ist eine Unstetigkeitsstelle, nämlich ein Pol (siehe Klassifizierung von Unstetigkeitsstellen im Wikipedia-Artikel https://de.wikipedia.org/wiki/Unstetigkeitsstelle).

$$\lim_{x \to 1+} \frac{1}{x-1} = \infty, \quad \lim_{x \to 1-} \frac{1}{x-1} = -\infty.$$

AN 6.1. (b)

 $x=\pm 1\,$ sind Unstetigkeitsstellen, nämlich Polstellen.

$$\lim_{x\to 1+}\frac{1}{x^2-1}=\infty,\ \lim_{x\to 1-}\frac{1}{x^2-1}=-\infty,\ \lim_{x\to -1+}\frac{1}{x^2-1}=-\infty,\ \lim_{x\to 1-}\frac{1}{x^2-1}=\infty.$$

AN 6.2. (d)

 $x=\pm 1\,$ sind Unstetigkeitsstellen, nämlich Sprungstellen.

$$\lim_{x \to 1+} x \cdot \text{sgn}(x^2 - 1) = 1, \quad \lim_{x \to 1-} x \cdot \text{sgn}(x^2 - 1) = -1,$$

$$\lim_{x \to -1+} x \cdot \operatorname{sgn}(x^2 - 1) = 1, \quad \lim_{x \to 1-} x \cdot \operatorname{sgn}(x^2 - 1) = -1.$$

30.(a) Die Dirichlet-Funktion ist an *keiner Stelle* stetig. Die Erklärung lässt sich auf topologische Eigenschaften der reellen Zahlen zurückführen.

Sei $x_0 \in \mathbb{Q}$. Dann existiert eine Folge (y_k) von *irrationalen* Zahlen, sodass $\lim_{k \to \infty} y_k = x_0$. Für diese Eigenschaft sagt man, dass die irrationalen Zahlen eine dichte Teilmenge in der Menge der reellen Zahlen bilden.

Und dann

$$\lim_{k \to \infty} f(y_k) = 0 \neq f\left(\lim_{k \to \infty} y_k\right) = f(x_0) = 1, ,$$

(siehe das Übertragungsprinzip auf Seite 130 im Skriptum), daher ist die Funktion an der Stelle x_0 (d.h in den rationalen Punkten) nicht stetig.

Sei $y_0 \in \mathbb{Q}^*$. Dann existiert eine Folge (x_k) von rationalen Zahlen, sodass $\lim_{k \to \infty} x_k = y_0$. Für diese Eigenschaft sagt man, dass die rationalen Zahlen eine dichte Teilmenge in der Menge der reellen Zahlen bilden.

Und dann

$$\lim_{k \to \infty} f(x_k) = 1 \neq f\left(\lim_{k \to \infty} x_k\right) = f(y_0) = 0, \quad ,$$

(siehe das Übertragungsprinzip auf Seite 130 im Skriptum), daher ist die Funktion an der Stelle y_0 (d.h in den irrationalen Punkten) nicht stetig.

Also: die Dirichlet-Funktion ist in keinem Punkt stetig.

30.(b) Die Funktion g(x) ist stetig an der Stelle $x_0 = 0$:

 $\lim_{x\to 0} g(x) = 0 = g(0)$ wegen der Definition von g(x).

Die Unstetigkeit von g(x) an der Stelle $x_0 \neq 0$ kann man ebenso zeigen wie in 30.(a).

Die Funktion g(x) ist *nicht* differenzierbar an der Stelle $x_0 = 0$:

Sei (y_k) eine Folge von irrationalen Zahlen, sodass $\lim_{k\to\infty}y_k=0$.

Dann $\lim_{k\to\infty}\frac{g(y_k)-g(0)}{y_k-0}=0$, weil $g(y_k)=0$ für jedes $k,\ g(0)=0$, und $y_k\neq 0$, denn $y_k\in\mathbb{R}\setminus\mathbb{Q}$.

Sei (x_k) eine Folge von rationalen Zahlen, sodass $\lim_{k\to\infty}x_k=0$, und nehmen wir an, dass $x_k\neq 0$ für jedes k.

Dann $\lim_{k\to\infty} \frac{g(x_k)-g(0)}{x_k-0}=1$, weil $g(x_k)=x_k$ für jedes k und g(0)=0.

Also
$$g'(0) = \lim_{x \to 0} \frac{g(x) - g(0)}{x - 0} \not\equiv.$$

30.(c) Die Funktion h(x) ist stetig an der Stelle $x_0 = 0$:

 $\lim_{x\to 0} h(x) = 0 = h(0)$ wegen der Definition von h(x).

Die Unstetigkeit von h(x) an der Stelle $x_0 \neq 0$ kann man ebenso zeigen wie in 30.(a) und 30.(b).

Die Funktion h(x) ist differenzierbar an der Stelle $x_0 = 0$:

$$h'(0) = \lim_{x \to 0} \frac{h(x) - h(0)}{x - 0} = 0$$
, we gen der Definition von $h(x)$:

der Zähler ist entweder 0 oder x^2 , daher nimmt der Differenzenquotient $\frac{h(x)-h(0)}{x-0}$ den Wert 0 oder x an, also für den Differentialquotienten (d.h für die Ableitung) $\lim_{x\to 0}\frac{h(x)-h(0)}{x-0}$ ergibt sich 0.

31. (a)
$$\lim_{x \to 0+} \frac{\sqrt{1 + 2x^2} - \sqrt{1 - 2x^2}}{3x} = \lim_{x \to 0+} \frac{4x}{3 \cdot \left(\sqrt{1 + 2x^2} + \sqrt{1 - 2x^2}\right)} = 0 \quad \& \quad f(0) = b$$

$$\implies \text{ für } b = 0, \ a \in \mathbb{R} \text{ ist } f \text{ stetig.}$$

(b)
$$f'_{+}(0) = \lim_{x \to 0+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0+} \frac{\sqrt{1 + 2x^2} - \sqrt{1 - 2x^2}}{3x^2} = \lim_{x \to 0+} \frac{4}{3\left(\sqrt{1 + 2x^2} + \sqrt{1 - 2x^2}\right)} = \frac{2}{3}.$$

$$f'_{-}(0) = a.$$

 \implies für $b=0,\ a=rac{2}{3}$ ist f differenzierbar.