Introdução à Teoria dos Jogos

Laboratório de Programação Competitiva - 2020

Pedro Henrique Paiola

Teoria dos Jogos

- A teoria dos jogos é uma teoria matemática criada para se modelar fenômenos que podem ser observados quando dois ou mais "agentes de decisão" interagem entre si.
- É utilizada para se estudar assuntos tais como eleições, leilões, balança de poder, evolução genética, etc.
- Não confundir:
 - Teoria Econômica dos Jogos: com motivações predominantemente econômicas, procurando estabelecer métodos para se maximizar o ganho.
 - Teoria Combinatória dos Jogos: que se concentra nos aspectos combinatórios de jogos de mesa e não permite "elementos imprevisíveis".

Teoria dos Jogos

 Em problemas de Programação Competitiva, os problemas que envolvem teoria dos jogos normalmente contém dois jogadores adversários, que jogam de forma ótima, e precisamos determinar qual jogador será vencedor em um certo cenário.

Árvores de decisão

- Uma solução possível para problemas deste tipo é utilizando árvores de decisão, em que podemos explorar todos os possíveis movimentos de cada jogador.
- Se temos sobreposição de subproblemas, então podemos aplicar Programação Dinâmica.
- Caso contrário, podemos aplicar um algoritmo de backtracking.
- Em cada estado, temos que considerar o jogador do momento, sendo que cada um está buscando ganhar o jogo.

Algoritmo Minimax

- Se considerarmos a pontuação/ganho do jogador 1 como referência, podemos dizer que o jogador 1 está querendo MAXIMIZAR esse ganho, enquanto o jogador 2 tenta MINIMIZAR. Dessa estratégia obtemos o Algoritmo Minimax.
- Formulação:
 - Estado inicial: estado inicial do jogo + de quem é a vez
 - Estado final: posições em que o jogo acaba
 - Operadores: jogadas legais
 - Função de utilidade: valor numérico do resultado (pontuação)

Algoritmo Minimax

Jogo da velha (min-max)

Algoritmo Minimax

Euclid's Game (UVA 10368)

O estado do jogo consiste em uma tupla (id, a, b), sendo a > b. O jogador atual id pode subtrair de a qualquer múltiplo de b, desde que o resultado seja maior ou igual a zero. Ganha o jogador que atingir o valor zero.

Euclid's Game (UVA 10368)

Insights para melhorar a solução

- Nem todos os jogos podem ser resolvidos explorando inteiramente a árvore de decisão, pois é comum que esta árvore seja muito grande.
- Porém, analisando melhor o problema pode-se obter alguns "insights matemáticos", percebendo padrões que podem nos guiar a solução de uma forma mais rápida, possivelmente até de forma gulosa/gananciosa.
- Explorar a árvore de decisão para problemas pequenos pode ajudar a perceber estes padrões.

A multiplication game (UVA 847)

- Neste jogo, o estado consiste no par (id, p). O jogador atual id pode multiplicar o valor p por qualquer inteiro entre 2 e 9. Stan e Ollie jogam alternadamente, até que um deles seja capaz de obter um resultado maior ou igual a n (número alvo), sendo este jogador o vencedor.
- Stan é o primeiro jogador, começando com p = 1.

A multiplication game (UVA 847)

A multiplication game (UVA 847)

- Este é um exemplo de problema em que a árvore de decisão se torna muito grande, devido ao alto fator de ramificação (8).
- Porém, caso o competidor construa e analise esta árvore para casos mais simples, pode-se perceber que a seguinte estratégia corresponde a estratégia ótima para Stan:
 - Stan sempre multiplica p pelo maior valor possível (9)
 - Ollie sempre multiplica p pelo menor valor possível (2)

α-β Pruning

- Uma forma de otimizar a busca pelo algoritmo minimax é a poda α-β.
- Função: não expandir desnecessariamente nós durante o minimax.
- Ideia: se já encontramos uma solução, podemos eliminar ramos que sabemos que terão soluções piores.
- Para cada nó manteremos dois parâmetros:
 - o a: melhor valor (no caminho) para MAX
 - β: melhor valor (no caminho) para MIN
- Teste de expansão:
 - α não pode diminuir (não pode ser menor que um ancestral)
 - β não pode aumentar (não pode ser maior que um ancestral)

α-β Pruning

Jogos combinatórios

- Caracterização:
 - Dois jogadores (alternando turnos)
 - Conjunto de estados
 - Regras de transição
 - Informação perfeita
 - Condição de vitória
 - Normal play: vence o último jogador a se movimentar
 - Misère play: vence o jogador que ficar sem movimentos
 - Não há opção de empate
- Exemplos: xadrez, damas, take-away, nim

Jogos combinatórios

- Em particular, nos concentraremos nos jogos combinatórios que possuem as seguintes restrições:
 - Imparciais: os dois jogadores possuem o mesmo conjunto de movimentos/ações possíveis.
 - Acíclicos: não podemos voltar a um estado anterior.
 - OBS: até podemos trabalhar com alguns problemas que permitem ciclos, porém que são derivados de ações "inúteis" e por isso podem ser desconsiderados.

Jogos combinatórios x DAG

- Com esta caracterização, podemos modelar nosso problema como sendo um grafo direcionado acíclico, em que:
 - Os nós representam os estados;
 - As arestas representam as regras de transições (ações).
- E podemos determinar se um certo estado é vencedor ou perdedor baseado na seguinte recursão:
 - Caso base: nós terminais são perdedores (normal play);
 - Passo:
 - Um nó é vencedor se ele leva a PELO MENOS um nó perdedor;
 - Um nó é perdedor se ele leva SOMENTE a nós vencedores.

- Temos uma pilha com N palitos
- A cada turno, o jogador atual remove 1 ou 2 palitos.
- Perde o jogador que n\u00e3o puder mais se movimentar (pilha vazia)

7	
6	
5	
4	
3	
2	
1	
0	

7	
6	
5	
4	
3	
2	
1	
0	Р

7	
6	
5	
4	
3	
2	
1	V
0	Р

7	
6	
5	
4	
3	
2	V
1	V
0	Р

7	
6	
5	
4	
3	Р
2	V
1	V
0	Р

7	
6	
5	
4	V
3	Р
2	V
1	V
0	Р

7	
6	
5	V
4	V
3	Р
2	V
1	V
0	Р

7	
6	Р
5	V
4	V
3	Р
2	V
1	V
0	Р

7	V
6	Р
5	V
4	V
3	Р
2	V
1	V
0	Р

- Temos N pilhas de palitos.
 - A i-ésima pilha possui A, palitos
- A cada turno, jogador atual escolhe uma pilha n\u00e3o vazia e remove quantos palitos desejar dela (pelo menos um)
- Perde o jogador que n\u00e3o puder mais se movimentar (quando todas as pilhas estiverem vazias)
- Qualquer jogo imparcial entre dois jogadores com informação perfeita pode ser reduzido ao Nim.

- Se N = 1
 - Caso degenerado: A₀= 0 então o primeiro jogador perde
 - Caso contrário, o primeiro jogador sempre ganha

- Se N = 2
 - Jogador 1 só ganha se A₀!= A₁
 - Estratégia da cópia

- Se N = 2
 - Jogador 1 só ganha se A₀ != A₁
 - Estratégia da cópia
 - \circ Se $A_0 = A_1 = 1$, então é evidente que o jogador 1 perde

- Se N = 2
 - Jogador 1 só ganha se A₀!= A₁
 - Estratégia da cópia
 - Se $A_0 = A_1 = x$, e o jogador 1 retira y peças, o jogador 2 pode copiar a ação do jogador 1 na outra pilha, de forma que $A_0 = A_1 = x$ -y. Depois de uma certa quantidade de passos, acabaremos no caso $A_0 = A_1 = 1$.

- Se N = 2
 - \circ Jogador 1 só ganha se $A_0 := A_1$
 - Estratégia da cópia
 - Se $A_0 = A_1 = x$, e o jogador 1 retira y peças, o jogador 2 pode copiar a ação do jogador 1 na outra pilha, de forma que $A_0 = A_1 = x$ -y. Depois de uma certa quantidade de passos, acabaremos no caso $A_0 = A_1 = 1$.

- Se N = 2
 - \circ Jogador 1 só ganha se $A_0 := A_1$
 - Estratégia da cópia
 - Se $A_0 = A_1 = x$, e o jogador 1 retira y peças, o jogador 2 pode copiar a ação do jogador 1 na outra pilha, de forma que $A_0 = A_1 = x$ -y. Depois de uma certa quantidade de passos, acabaremos no caso $A_0 = A_1 = 1$.

• **Teorema**: O estado $(A_0, ..., A_{n-1})$ é perdedor sse $(A_0 \oplus ... \oplus A_{n-1}) = 0$.

- **Teorema**: O estado $(A_0, ..., A_{n-1})$ é perdedor sse $(A_0 \oplus ... \oplus A_{n-1}) = 0$.
- **Demonstração:** Por indução
 - Caso base: se todas as N pilhas estão vazias, então temos 0 ⊕ ... ⊕ 0 = 0.
 Neste caso, estamos em uma posição perdedora.

- **Teorema**: O estado $(A_0, ..., A_{n-1})$ é perdedor sse $(A_0 \oplus ... \oplus A_{n-1}) = 0$.
- **Demonstração:** Por indução
 - Passo: considere $S = A_0 \oplus ... \oplus A_{n-1}$
 - Se S = 0, como esta é uma posição perdedora, então ao realizar qualquer ação, sempre levamos a um estado vencedor.
 - Considere um movimento qualquer em que reduzimos uma pilha de tamanho \mathbf{x} para \mathbf{y} . Usando as propriedades de \oplus (\mathbf{x} \oplus \mathbf{x} = 0), sabemos que o *xor-sum* do novo estado é dada por:

$$T = S \oplus x \oplus y = 0 \oplus x \oplus y = x \oplus y$$

Como y < x. Então x ⊕ y != 0</p>

- **Teorema**: O estado $(A_0, ..., A_{n-1})$ é perdedor sse $(A_0 \oplus ... \oplus A_{n-1}) = 0$.
- **Demonstração:** Por indução
 - Passo: considere $S = A_0 \oplus ... \oplus A_{n-1}$
 - Se **S != 0**, como esta é uma posição vencedora, podemos alcançar pelo menos um estado perdedor.
 - Considere a representação binária de S, sendo d o bit 1 mais significativo de S. A ação escolhida será pegar uma pilha que possua o bit d ligado, e diminuir o tamanho dessa pilha de x para y = x ⊕ S. Sendo assim, temos:

$$T = S \oplus x \oplus y = S \oplus x \oplus (S \oplus x) = 0$$

Valor de Grundy (nímero)

- Mínimo excludente (mex):
 - Seja X um conjunto de números inteiros não-negativos
 - Definimos mex(X) = min $\{x \ge 0 / x \notin X\}$
- Exemplos:
 - \circ mex({0, 1, 2, 3}) = 4
 - \circ mex({0, 1, 3, 5}) = 2
 - \circ mex({1, 2, 5}) = 0

Valor de Grundy (nímero)

- Função Sprague-Grundy
 - Seja (X, F) um DAG
 - A função Sprague-Grundy de (X, F) é dada por

$$g(x) = mex\{g(y) / y \subseteq F(x)\}$$

- o g(x) é dito o nímero (nimber) de x
- Um estado x é perdedor sse g(x) = 0.

Exemplo: Take Away 1-2

X		g(x)
7	V	1
6	Р	0
5	V	2
4	V	1
3	Р	0
2	V	2
1	V	1
0	Р	0

Valor de Grundy (nímero)

- Calcular o valor de Grundy para alguns estados também facilita perceber possíveis padrões que ajudam a determinar mais fácil e eficientemente quando uma posição é vencedora ou perdedora.
- No problema Take Away 1-2, por exemplo, podemos perceber que a função
 g(x) é periódica, e que uma posição x é perdedora sse x é múltiplo de 3.

Exemplo: N Take Away 1-2

- Agora suponha que temos N "instâncias" do jogo Take Away 1-2, em uma espécie de Nim "modificado" em que limitamos a quantidade de palitos que podemos tirar de uma pilha.
- Partindo do exemplo para N = 2, podemos considerar que cada pilha representa dois jogos: (X_1, F_1) e (X_2, F_2) .
- Como em cada turno uma ação só irá interferir em apenas um desses jogos, podemos definir o jogo (X, F) como a soma disjunta (X_1 , F_1) \oplus (X_2 , F_2).

Exemplo: N Take Away 1-2

• Exemplo: para o estado (4,6) temos as seguintes possibilidades de ações:

Ação no jogo 1

- o (3, 6)
- 0 (2, 6)

Ação no jogo 2

- o (4, 5)
- o (4, 4)

Teorema de Sprague-Grundy

- Porém, nosso problema é simplificado devido ao seguinte teorema:
- Teorema de Sprague-Grundy: dado um jogo (X, F) formado pela soma disjunta de N subjogos (X_1 , F_1), ..., (X_n , F_n), o nímero $g(x_1, ..., x_n)$ é dado por:

$$g(x_1, ..., x_n) = g_1(x_1) \oplus ... \oplus g_n(x_n)$$

 Com isso temos uma forma simples de "somar" jogos disjuntos (sendo que cada jogo nem precisa ser do mesmo tipo dos outros).

Exemplo: Crosses-crosses

 O jogo: considere um vetor de tamanho N com todas as posições vazias. Em um movimento, um jogador pode marcar uma posição com uma cruz(+), mas é proibido colocar duas cruzes em posições adjacentes. O jogador que ficar sem movimentos válidos perde.

Exemplo: Crosses-crosses

- Solução: quando o jogador coloca uma cruz em uma célula i, podemos considerar que ele dividiu o vetor em duas partes independentes, em dois subjogos, uma de tamanho i 2 e outro de n i 1. A partir disso, basta aplicarmos o Teorema de Sprague-Grundy.
- OBS:
 - Um estado n é perdedor se n = 0
 - Não esquecer dos casos específico em que i = 0 ou i = n-1

$$g(n) = \max(\{g(n-2)\} \cup \{g(i-2) \oplus g(n-i-1) \mid 2 \le i \le n-1\})$$

Referências

Jonathan Queiroz. Aula sobre "jogos combinatórios" apresentada na Summer School 2019. https://www.youtube.com/watch?v=5kk 5HcwqOg

Prof. Dr. Ivan Rizzo Guilherme. Notas de aula da disciplina Inteligência Artificial.

Steven e Felix Halim. Competitive Programming 3

https://cp-algorithms.com/game_theory/sprague-grundy-nim.html

https://www.geeksforgeeks.org/combinatorial-game-theory-set-2-game-nim/?ref=rp

https://www.topcoder.com/community/competitive-programming/tutorials/algorithm-gam

<u>es/</u>

https://medium.com/@lohitmarodia/game-theory-competitive-programming-98120cc14da

<u>3</u>

https://www.ime.usp.br/~rvicente/IntroTeoriaDosJogos.pdf

https://www.geeksforgeeks.org/minimax-algorithm-in-game-theory-set-1-introduction/