Fall 2024 AE426

Course	AE 426 Project 3
Author(s)	Elijah Serena Ikemhe
Date	6 December 2024.
Instructor	Professor David Canales Garcia

Objectives

The purpose of this project is to study the properties and dynamics of a 3-1-3 motion with, and without torque. We explored quaternions, and DCM. However, the main focus is on the angular velocity, precession angle, and nutation angle.

Assumptions

$$\begin{split} \hat{b}_i &= \hat{e}_i \\ \text{Initial State(s) at t} &= 0 \\ \tilde{q} &= [0\ 0\ 0\ 1] \\ w_1(0) &= 1 \frac{rad}{s} \text{, } w_2(0) = -1 \frac{rad}{s} \text{, } w_3(0) = 2 \frac{rad}{s} \\ T &= 80 \text{Nm} \text{; A} = 400 \text{; C} = 100 \end{split}$$

Methodology

The kinematic equations of motion

$$\begin{array}{l} M_1 = A\dot{w}_1 + \ (C-A)w_2w_3 \ ; M_2 = A\dot{w}_2 + \ (-C+A)w_1w_3 \ ; \ M_3 = C\dot{w}_3 \\ \text{If } M_2 = M_3 = 0 \ \text{and} \ M_1 = T = 80 \\ \text{Therefore,} \\ \dot{w}_1 = \frac{T}{A} + \frac{(A-C)}{A}w_2w_3 \ . \ \text{At initial conditions,} \ \dot{w}_1 = -1.3\frac{rad}{s^2} \\ \dot{w}_2 = \frac{(C-A)}{A}w_1w_3 \ . \ \ \text{At initial conditions,} \ \dot{w}_2 = -1.5\frac{rad}{s^2} \end{array}$$

$$\dot{w}_2 = \frac{1}{4} w_1 w_3$$
. At initial conditions, $\dot{w}_2 = \dot{w}_3 = 0$. This indicates that w_3 is a constant.

Differentiating
$$\dot{w}_1$$
 & \dot{w}_2 , we get:

$$\ddot{w}_1 = \frac{(A-C)}{A} \dot{w}_2 w_3$$
. Substituting the value of \dot{w}_2 , $\ddot{w}_1 = \frac{-(C-A)^2}{A^2} w_1 w_3^2$
 $\ddot{w}_2 = \frac{(C-A)}{A} \dot{w}_1 w_3$. Substituting the value of \dot{w}_1 , $\ddot{w}_2 = \frac{(C-A)}{A^2} T w_3 - \frac{(C-A)^2}{A^2} w_2 w_3^2$

Solving Analytically:

Let
$$k = \frac{(C-A)^2}{A^2} w_3^2$$
. At $t = 0$, $k = \frac{9}{4}$

For
$$\ddot{w}_1$$
,

$$\ddot{w}_1 + kw_1 = 0$$

$$w_1(t) = C_1 \cos kt + C_2 \sin kt$$
. At $t = 0$, $w_1 = 1 = C_1$

$$\dot{w}_1(t) = -C_1 k \sin kt + C_2 k \cos kt$$
. At $t = 0$, $\dot{w}_1 = -1.3 = -C_2 * \frac{9}{4}$. $C_2 = \frac{26}{45}$ or $0.5\overline{7}$

Therefore,
$$w_1(t) = \cos \frac{9}{4}t + 0.5\overline{7} \sin \frac{9}{4}t$$

$$w_2(t) = w_{2h} + w_{2p}$$
. Starting with the particular solution, w_{2p} :

$$w_2(t) = w_{2h} + w_{2p}$$
. Starting with the particular solution, w_{2p} :
 $w_{2p} = \frac{(c-A)}{A^2} T w_3 - \frac{(c-A)^2}{A^2} C_5 w_3^2 = 0$. Rearranging, $C_5 = \frac{T}{(c-A)w_3}$

Recall,
$$w_3$$
, is constant. Therefore, $w_{2p} = C_5 = -\frac{2}{15}$.

Recall,
$$w_3$$
, is constant. Therefore, $w_{2p} = C_5 = -\frac{2}{15}$. $w_2(t) = C_3 \cos kt + C_4 \sin kt - \frac{2}{15} = -1$. $C_3 = -1 + \frac{2}{15}$. Therefore, $C_3 = \frac{13}{15}$ $\dot{w}_2(t) = -C_3 k \sin kt + C_4 k \cos kt = = -1.5$. $C_4 = -1.5 * \frac{4}{9} = = -\frac{2}{3}$.

$$\dot{w}_2(t) = -C_3 k \sin kt + C_4 k \cos kt = -1.5 \cdot C_4 = -1.5 * \frac{4}{9} = -\frac{2}{3}.$$

Therefore,
$$w_2(t) = \frac{13}{15} \cos \frac{9}{4} t - \frac{2}{3} \sin \frac{9}{4} t - \frac{2}{15}$$
.

Quaternions at
$$t = 0$$

$$\begin{split} \tilde{q} &= [0\ 0\ 0\ 1] \\ \dot{\bar{q}} &= \frac{1}{2}*\left(q_4\overline{w} + \overline{q}\times\overline{w}\right) = -\frac{1}{2}(1[1-1\ 2] + [\ 0\ 0\ 0] \times [1-1\ 2]) = [\frac{1}{2} - \frac{1}{2}\ 1] \\ \dot{q}_4 &= -\frac{1}{2}(\overline{w}*\overline{q}) = -\frac{1}{2}*\left([1-1\ 2]*[0\ 0\ 0]\right) = 0 \\ \dot{\bar{q}} &= [\frac{1}{2} - \frac{1}{2}\ 1\ 0] \end{split}$$

$$\dot{\tilde{q}} = [\frac{1}{2} - \frac{1}{2} \ 1 \ 0]$$

To get the equations for precession rate and nutation rate (for ode to output precession, nutation angles): 3-1-3 rotation:

3-1-3 rotation:
$$DCM = \begin{bmatrix} c1c3 - c2c1s3 & -c1s3 - c2c3s1 & s1s2 \\ c3s1 + c1c2s3 & c1c2c3 - s1s3 & -c1s2 \\ s2s3 & c3s2 & c2 \end{bmatrix}$$

$$\overline{w} = w_p(c3\widehat{b}_1 - s3\widehat{b}_2) + w_n(c3\widehat{b}_1 - s3\widehat{b}_2) + w_s \widehat{b}_3$$

$$\overline{w} = (w_pc3 + w_nc3)\widehat{b}_1 + (-s3w_p - s3w_n)\widehat{b}_2 + w_s \widehat{b}_3 = w_1 \widehat{b}_1 + w_2 \widehat{b}_2 + w_3 \widehat{b}_3$$

$$w_n = \frac{1}{2} * (w_1 + w_2) ; \qquad w_p = w_1 - (\frac{1}{2} * (w_1 + w_2)) ; \qquad w_s = w_3 = 0$$

AE426 Fall 2024

Results & Discussion. Analysis For Torque

Figure 1: Plot of Angular Velocities obtained from Analytical solution.

Figure 2: Plot of Angular Velocities obtained from Numerical Integration.

To determine the correct quadrant, for the angles:

- A. Precession Normalization (p):
- Any angle is wrapped into [0°,360°) using MATLAB function mod(p, 360).
- Negative angles are corrected by adding 360°.
- B. Nutation Normalization (n):
- 1. First, all angles are wrapped into [0°,360°).
- 2. Any value greater than 180° is adjusted symmetrically to 360°-n, which reflects the tilt symmetry.

As requested in the problem statement, Table 1 lists the quaternions, angular velocities, precession, nutation angle, and C12, C22, and C33 of the DCM.

Table 1: Properties for 1 second intervals until t = 12s.

T (s)	q_1	q_2	q_3	q_4	$w_1(\frac{rad}{s})$	$w_2(\frac{rad}{s})$	$w_3(\frac{rad}{s})$	Precession(°)	Nutation(°)	C12	C22	C33
0	0.00	0.00	0.00	1.00	1.00	-1.00	2.00	0.00	0.00	0.00	1.00	1.00
1	0.06	-0.65	0.67	0.37	-0.79	-1.19	2.00	41.75	34.41	-0.57	0.11	0.16
2	-0.53	-0.75	0.12	-0.37	-1.11	0.58	2.00	17.74	78.22	0.88	0.41	-0.69
3	-0.76	-0.17	-0.62	0.09	0.64	1.03	2.00	339.69	57.11	0.37	-0.93	-0.22
4	-0.29	0.11	-0.20	0.93	1.20	-0.69	2.00	5.42	17.41	0.30	0.75	0.80
5	0.06	-0.37	0.70	0.61	-0.47	-1.37	2.00	54.20	40.00	-0.90	0.02	0.72
6	-0.33	-0.75	0.46	-0.32	-1.27	0.24	2.00	42.48	90.00	0.80	0.35	-0.36
7	-0.79	-0.38	-0.43	-0.21	0.29	1.16	2.00	359.13	81.58	0.43	-0.62	-0.55
8	-0.58	0.12	-0.36	0.72	1.31	-0.33	2.00	11.83	37.49	0.39	0.08	0.31
9	-0.05	-0.08	0.61	0.79	-0.10	-1.45	2.00	64.06	46.77	-0.95	0.26	0.98
10	-0.15	-0.63	0.75	-0.17	-1.32	-0.13	2.00	65.86	99.28	0.44	-0.16	0.17
11	-0.70	-0.56	-0.14	-0.43	-0.09	1.19	2.00	20.98	104.52	0.65	-0.01	-0.59
12	-0.79	0.02	-0.44	0.42	1.31	0.05	2.00	19.93	59.86	0.35	-0.64	-0.26

Precession and Nutation Plots. In Figure 3, and figure 4 below, we plot the angles of precession and nutation as a function of time.

Figure 3: Plot of Precession as a function of time.

AE426 Fall 2024

Figure 4: Plot of Nutation as a function of time.

As we can observe from the figure 4 above, the nutation is initially at zero, and it returns to zero indicates a periodic motion typical of rotational dynamics in a 3-1-3 rotation sequence. This periodic motion can be attributed to the following reasons below:

- 1. Cyclic Nature of Rotational Dynamics
- 2. Absence of External Disturbances
- 3. Mathematical Modeling
- 4. Coupled Motion with Precession

Performing analysis for a condition of No Torque

Table 2: Properties for 1 second intervals until t = 12s at zero Torque

Table 2: Properties for 1 second intervals until t = 12s at zero forque.												
T(s)	q_1	q_2	q_3	q_4	$w_1(\frac{rad}{rad})$	$w_2(\frac{rad}{rad})$	$w_3(\frac{rad}{2})$	Precession(°)	Nutation(°)	C12	C22	C33
	0.00	0.00	0.00	1.00	5	1.00	2.00	0.00	0.00	0.00	1.00	1.00
0	0.00	0.00	0.00	1.00	1.00	-1.00	2.00	0.00	0.00	0.00	1.00	1.00
1	0.02	-0.64	0.66	0.38	-0.93	-1.07	2.00	38.10	35.50	-0.54	0.11	0.17
2	-0.62	-0.71	0.09	-0.33	-1.13	0.85	2.00	5.39	76.01	0.94	0.22	-0.77
3	-0.73	-0.08	-0.65	0.19	0.77	1.19	2.00	322.66	46.25	0.36	-0.91	-0.08
4	-0.11	0.08	-0.19	0.97	1.24	-0.68	2.00	349.33	1.52	0.35	0.91	0.96
5	0.09	-0.53	0.63	0.56	-0.59	-1.28	2.00	35.83	24.96	-0.81	0.20	0.42
6	-0.50	-0.77	0.27	-0.27	-1.32	0.50	2.00	15.74	73.00	0.92	0.35	-0.70
7	-0.79	-0.20	-0.59	0.02	0.40	1.36	2.00	326.40	56.36	0.33	-0.92	-0.31
8	-0.23	0.13	-0.36	0.90	1.38	-0.31	2.00	339.50	5.96	0.58	0.64	0.86
9	0.13	-0.40	0.54	0.73	-0.21	-1.40	2.00	30.70	15.47	-0.89	0.39	0.64
10	-0.37	-0.80	0.43	-0.17	-1.41	0.11	2.00	24.84	67.22	0.74	0.35	-0.56
11	-0.80	-0.33	-0.47	-0.13	0.01	1.41	2.00	332.81	65.03	0.40	-0.75	-0.51
12	-0.36	0.14	-0.50	0.77	1.41	0.09	2.00	331.31	12.97	0.67	0.23	0.70

In Figure 5 below, we can observe that the peaks for $w_1 \& w_2$ in Numerical integration methods are equal. However, this is not the case for figure 1 & 2, where it can be visually concluded that $w_1 > w_2$.

Figure 5: Plot of Angular Velocities obtained from Numerical Integration at zero Torque.

Figure 6: Plot of Precession as a function of time at zero Torque.

Figure 7: Plot of Nutation as a function of time at zero Torque.

AE426 Fall 2024

DCM Elements Plot

Observed from the plot in Figure 8 and Figure 9
The plots are out of the page. The curve is a closed, looping pattern with some variation in shape and tightness. Upon further analysis, the curves suggest a damped periodic motion, common in systems experiencing oscillations. This observation is in line, because we know that the system is experiencing a torque.

Figure 8: 2D Plot of c13 verses c23.

Figure 9: 3D Plot of c13 verses c23 verses time.