Lecture 9 Part I

RELATIONS

1 / 19

Let A and B be two sets.

- A relation R from A to B is a subset of $A \times B$.
- Let R be a relation from A to B. For each $(a,b) \in A \times B$, we write a R b if $(a, b) \in R$, and a R b if $(a, b) \notin R$.

Example

- Let $R = \{(1,3), (2,2), (2,3), (3,1)\}$, a relation from \mathbb{Z} to \mathbb{Z} . We have 2R3 but 3R2.
- Let $f: A \to B$ be a function. Recall the graph $\Gamma(f)$ of f as introduced in Tut 4, Qn 8:

$$\Gamma(f) = \{(a, f(a)) \mid a \in A\}.$$

Then $\Gamma(f)$ is a relation from A to B. This example shows that functions can be thought of as special types of relations.

《中》《圖》《意》《意》 Tan Kai Meng (NUS)

Let R be a relation from A to B. The domain of R is the set

$${a \in A \mid \exists b \in B \ a R b}.$$

The range of R is the set

$$\{b \in B \mid \exists a \in A \ a R b\}.$$

Note

When R is the graph $\Gamma(f)$ of a function $f:A\to B$, then the domain of R is exactly the domain of the function f, and the range of R is exactly the range of the function f.

Tan Kai Meng (NUS) Semester 1, 2019/20 3 / 19

Arrow Diagrams

Generalising the idea of arrow diagrams for functions, we also have arrow diagrams for a relation R from A to B, where we get an arrow from $a \in A$ to $b \in B$ if and only if a R b.

Example

Let $A=\{2,3,4,5\}$ and $B=\{6,7,8,9,10\}$. Define the relation R from A to B by $a\,R\,b$ if and only if $a\mid b$, where $a\in A$ and $b\in B$. Then R may be depicted by the following arrow diagram:

4 / 19

Tan Kai Meng (NUS) Semester 1, 2019/20

Inverse of a Relation

Definition

Let R be a relation from A to B. Then the **inverse of** R, denoted R^{-1} , is the relation from B to A defined by

$$R^{-1} = \{(b, a) \in B \times A \mid \underline{a} \, R \, \underline{b}\}.$$

Note

- $\forall a \in A \ \forall b \in B \ (a R b \Leftrightarrow b R^{-1} a).$
- The arrow diagram of R^{-1} can be obtained by reversing the arrows in the arrow diagram of R.
- Let $f:A\to B$ be a function. Then $(\Gamma(f))^{-1}$ is a relation from B to A. Furthermore, $(\Gamma(f))^{-1}$ is the graph of a function $g:B\to A$ if and only if f is bijective, if and only if $g=f^{-1}$.

< ロ > → 4 回 > → 4 直 > → 1 至 → りへ(^)

(Binary) Relations on a Set

Definition

Let A be a set. A (binary) relation on A is a relation from A to A, i.e. a subset of $A \times A$.

Example

- On \mathbb{R} , we have relations \leq , \geq (the inverse of \leq), < and > (the inverse of <).
- Let A be a set. Then on $\mathcal{P}(A)$, we have the relation \subseteq .
- Let $n \in \mathbb{Z}^+$. On \mathbb{Z} , we have the relation $\equiv \pmod{n}$.

Tan Kai Meng (NUS) Semester 1, 2019/20 6 / 19

Arrow Diagram

The arrow diagram of a relation R on a set A displays the set A only once, with an arrow going from a_1 to a_2 if and only if $a_1 R a_2$.

Example

Let $A=\{n\in\mathbb{Z}\mid 2\leq n\leq 10\}$. Define the relation R on A by $x\,R\,y$ if and only if $x\mid y$. Below is the arrow diagram of R:

Tan Kai Meng (NUS) Semester 1, 2019/20 7 / 19

Let R be a relation on a set A. We say that R is:

• reflexive if, and only if,

$$\forall x \in A \ x R x;$$

symmetric if, and only if,

$$\forall x, y \in A \ (x R y \to y R x);$$

transitive if, and only if,

$$\forall x, y, z \in A \ (x R y \land y R z \rightarrow x R z).$$

Exercise

How do you check if R is reflexive and/or symmetric from its arrow diagram?

Can you also tell if R is transitive from its arrow diagram?

4 D > 4 D > 4 D > 4 D > 3 P 9 Q Q

Tan Kai Meng (NUS)

Example

Let R, S, T, U be relations on \mathbb{Z} defined as follows:

$$x R y \Leftrightarrow x \mid y;$$
 $x S y \Leftrightarrow x \equiv y \pmod{7};$ $x T y \Leftrightarrow x < y;$ $x U y \Leftrightarrow \gcd(x, y) = 1.$

Then:

- *R* is reflexive and transitive, but not symmetric.
- S is reflexive, symmetric and transitive.
- ullet T is transitive, but neither reflexive nor symmetric.
- ullet U is symmetric, but neither reflexive nor transitive.

Caution!

Terms like irreflexive, asymmetric and intransitive mean more than not reflexive, not symmetric and not transitive when used to describe a relation. As such do not use them unless you really know what they mean.

Tan Kai Meng (NUS) Semester 1, 2019/20 9 / 19

Equivalence Relations

Definition

A relation on a set A is an equivalence relation if and only if it is reflexive, symmetric and transitive.

Example

- The relation $\equiv \pmod{n}$ on \mathbb{Z} is an equivalence relation.
- Define R on \mathbb{R} by: $a\,R\,b$ if and only if $\lfloor a \rfloor = \lfloor b \rfloor$. Then R is an equivalence relation.

Equivalence Classes

Definition

Let R be an equivalence relation on a set A (assumed non-empty). For each $a \in A$, the **equivalence class of** a (with respect to R), denoted a (or a) to be more precise), is the set

$$[a] = \{ x \in A \mid a R x \}.$$

Note

An equivalence relation on a set A is necessarily reflexive. Thus if $a \in A$ then $a \in [a]$, so that $[a] \neq \emptyset$.

Lemma

Let R be an equivalence relation on a set A, and let $x, y \in A$.

- ② If $x \mathbb{R} y$, then $[x] \cap [y] = \emptyset$.

Proof.

- If x R y, then:
 - If $a \in [x]$, then:
 - ① x R a (definition of [x]).
 - ② y R x (by (1) and symmetricity of R).
 - 3 y R a (by (1.1.2) and (1.1.1), and transitivity of R.)
 - $a \in [y]$ (definition of [y]).
 - $2 \quad \mathsf{Thus} \ [x] \subset [y].$
 - - ① y R a' (definition of [y]).
 - 2 x R a' (by (1) and (1.3.1), and transitivity of R.)
 - 3 $a' \in [x]$ (definition of [y]).
 - $\bullet \quad \mathsf{Thus} \ [y] \subseteq [x].$
 - **6** By (1.2) and (1.4), [x] = [y].

continue on next frame . . .

Proof.

- 2 If x R y then:
 - - 1 there exists $a \in A$ such that $a \in [x] \cap [y]$.
 - $a \in [x] \land a \in [y]$ (definition of \cap).
 - 3 $x R a \wedge y R a$ (definition of [x] and [y]).
 - **4** $x R a \wedge a R y$ (by symmetricity of R).
 - $\mathbf{3}$ x R y (by transitivity of R), a contradiction.
 - $\textbf{ 4 Hence } [x] \cap [y] = \varnothing.$

Tan Kai Meng (NUS)

Let R be an equivalence relation on a non-empty set A. A subset S of A is an **equivalence class of** R if, and only if, S = [a] for some $a \in A$. The set of all equivalence classes of R shall be denoted as A/R.

Note

A/R is a collection of subsets of A. Thus, $A/R \subseteq \mathcal{P}(A)$, the power set of A.

Example

- $\mathbb{Z}/\big(\equiv \pmod{n}\big) = \{[0], [1], \dots, [n-1]\}$, where $[i] = \{k \in \mathbb{Z} \mid k \bmod n = i\}$.
- Let R be the relation on \mathbb{R} defined by $a\,R\,b$ if and only if $\lfloor a \rfloor = \lfloor b \rfloor$. Then $\mathbb{R}/R = \{[m,m+1) \mid m \in \mathbb{Z}\}$, where $[m,m+1) = \{x \in \mathbb{R} \mid m \leq x \leq m+1\}$.

4D > 4A > 4B > 4B > B 900

Tan Kai Meng (NUS)

Corollary

Any two distinct equivalence classes of an equivalence relation are disjoint.

Note

'Distinct' means 'not equal'.

Proof.

Let the two equivalence classes be [x] and [y]. If $x\,R\,y$, then [x]=[y] by the last Lemma, contradicting [x] and [y] are distinct. Thus $x\,R\!\!\!/\,y$, and $[x]\cap [y]=\varnothing$ by the last Lemma.

Recall that: A partition P of a non-empty set A is a collection of pairwise disjoint non-empty subsets of A whose union is A.

Theorem

Let R be an equivalence relation on a non-empty set A. Then A/R is a partition of A.

Proof.

- ① Each element of A/R is an equivalence class, say [a], which is a non-empty (since $a \in [a]$) subset of A.
- ② If $X, Y \in A/R$ with $X \neq Y$, then $X \cap Y = \emptyset$ by the last Corollary.
- **1** Clear that the union of any number of subsets of A is a subset of A; thus the union of the equivalence classes of R is a subset of A.
 - ② If $a \in A$, then $a \in [a]$, so that a is an element of an equivalence class of R, and hence an element of the union of the equivalence classes of R. Thus A is a subset of the union of the equivalence classes of R.
- **3** By (3.1) and (3.2), the union of the equivalence classes of R is A.
- **5** By (1), (2) and (4), A/R is a partition of A.

Tan Kai Meng (NUS) Semester 1, 2019/20 16 / 19

Every Partition is a Set of Equivalence Classes

Let A be a non-empty set, and let $P \subseteq \mathcal{P}(A)$ be a partition of A. We now define a relation R on A as follows:

$$x R y \Leftrightarrow \exists S \in P \ (x \in S \land y \in S)$$

• R is reflexive: For each $a \in A = \bigcup_{S \in P} S$, there exists $S \in P$ such that $a \in S$. Thus

 $\forall a \in A \ \exists S \in P \ (a \in S) \equiv \forall a \in A \ \exists S \in P \ (a \in S \land a \in S) \equiv \forall a \in A \ a R \ a.$

- ullet R is symmetric: This is easy.
- R is transitive: If $x\,R\,y$ and $y\,R\,z$, then $x,y\in S$ for some $S\in P$ and $y,z\in T$ for some $T\in P$. Thus $y\in S\cap T$, so that $S\cap T\neq \varnothing$, and hence S=T (since elements of P are pairwise disjoint). Consequently, $x,z\in S$, so that $x\,R\,z$.

Therefore, R is an equivalence relation.

Claim: A/R = P.

Proof of Claim.

- ① If $x \in S_0$ for some $S_0 \in P$, then $x \in A$, and $[x] = \{a \in A \mid x R a\} = \{a \in A \mid \exists S \in P \ (x \in S \land a \in S)\} = \{a \in A \mid a \in S_0\} = S_0 \in P.$
- ② If $C \in A/R$, then C = [a] for some $a \in A$. Let S_a be the unique element of P such that $a \in S_a$, so that $C = [a] = S_a \in P$ by (1). Thus $A/R \subseteq P$.
- ① If $S \in P$, then $S \neq \emptyset$, so that there exists $s \in S$, and hence $S = [s] \in A/R$ by (1). Thus, $P \subseteq A/R$.
- **4** By (2) and (3), A/R = P.

Summary

We have covered:

- Relations from a set to another set
- (Binary) relations on a set
- Reflexive, symmetric and transitive
- Equivalence relations and equivalence classes
- Equivalence classes partition a set, and every partition is a set of equivalence classes