Cylindrical and Spherical Integrals

Lecture for 6/30

Converting Integrals

Cylindrical: $(x, y, z) = (r\cos(\theta), r\sin(\theta), z)$

• Bounds: $0 \le \theta \le 2\pi$

Spherical: $(x, y, z) = \rho(\cos(\theta) \sin(\phi), \sin(\theta)\sin(\phi), \cos(\phi))$

• Bounds: $0 \le \varphi \le \pi$, $0 \le \theta \le 2\pi$

We can convert functions, but what about dV = dx dy dz?

- Cylindrical: $dV = r dr d\theta dz$
- Spherical: $dV = \rho^2 \sin(\varphi) d\rho d\varphi d\theta$

Differential Derivation

Practice Problems

Evaluate $\iiint_{F} f dV$ for the following functions and regions:

- f = z, E is region inside $y^2+z^2 = 1$ and between x+y+z = 2, x = 0
- $f = x^2+y^2$, E is portion of $x^2+y^2+z^2 = 4$ with $y \ge 0$
- $f = x^2$, E is region inside $x^2+y^2+z^2 = 36$ and $z = -(3x^2+3y^2)^{1/2}$

Scratchwork