

Data Mining

Week 7: Clustering

Pabitra Mitra

Computer Science and Engineering, IIT Kharagpur

Clustering

- Unsupervised method
- Exploratory Data Analysis

 Useful in many applications like market segment analysis

What is clustering?

- Organizing data into classes such that there is
 - high intra-class similarity
 - low inter-class similarity
- Finding the class labels and the number of classes directly from the data (in contrast to classification).
- More informally, finding natural groupings among objects.

What is a natural grouping among these objects?

What is a natural grouping among these objects?

Clustering is subjective

Females

What is similarity?

The quality or state of being similar; likeness; resemblance; as, a similarity of features.

Similarity is hard to define.

Defining distance measures

Definition: Let O_1 and O_2 be two objects from the universe of possible objects. The distance (dissimilarity) between O_1 and O_2 is a real number denoted by $D(O_1,O_2)$

Peter Piotr

What properties should a distance measure have?

•
$$D(A,B) = D(B,A)$$

Symmetry

$$\bullet D(A,B) = 0 \text{ iff } A = B$$

Reflexive

• $D(A,B) \le D(A,C) + D(B,C)$ Triangle Inequality

Two types of clustering

- Partitional algorithms: Construct various partitions and then evaluate them by some criterion
- **Hierarchical algorithms:** Create a hierarchical decomposition of the set of objects using some criterion

Hierarchical

Partitional

Desirable Properties of clustering algorithm

- Scalability (in terms of both time and space)
- Ability to deal with different data types
- Minimal requirements for domain knowledge to determine input parameters
- Able to deal with noise and outliers
- Insensitive to order of input records
- Incorporation of user-specified constraints
- Interpretability and usability

Summarizing similarity measurements

Dendrogram.

The similarity between two objects in a dendrogram is represented as the height of the lowest internal node they share.

Hierarchical clustering

The number of dendrograms with n leafs = $(2n-3)!/[(2^{(n-2)})(n-2)!]$

Bottom-Up (agglomerative): Starting with each item in its own cluster, find the best pair to merge into a new cluster. Repeat until all clusters are fused together.

Top-Down (divisive): Starting with all the data in a single cluster, consider every possible way to divide the cluster into two. Choose the best division and recursively operate on both sides.

Distance matrix

We begin with a distance matrix which contains the distances between every pair of objects in our database.

$$D(\mathbb{Z},\mathbb{Z})=8$$

$$D(\mathbf{2},\mathbf{2})=1$$

Starting with each item in its own cluster, find the best pair to merge into a new cluster. Repeat until all clusters are fused together.

Choose the best

Starting with each item in its own cluster, find the best pair to merge into a new cluster. Repeat until all clusters are fused together.

Choose the best

Starting with each item in its own cluster, find the best pair to merge into a new cluster. Repeat until all clusters are fused together.

Consider all possible merges...

Choose the best

Consider all possible merges...

Choose the best

Consider all **F** KHAR

Choose the best

Starting with each item in its own cluster, find the best pair to merge into a new cluster. Repeat until all clusters are

Consider all possible merges...

Choose the best

Consider all possible merges...

Choose the best

KHAR

Choose the best

Extending distance measure to clusters

We the distance between two objects, defining the distance between an object and a cluster, or defining the distance between two clusters:

- Single linkage (nearest neighbor): In this method the distance between two clusters is determined by the distance of the two closest objects (nearest neighbors) in the different clusters.
- Complete linkage (farthest neighbor): In this method, the distances between clusters are determined by the greatest distance between any two objects in the different clusters (i.e., by the "furthest neighbors").
- **Group average linkage:** In this method, the distance between two clusters is calculated as the average distance between all pairs of objects in the two different clusters.

Minimal Spanning Tree – Single Linkage

- Build MST (Minimum Spanning Tree)
 - Start with a tree that consists of any point
 - In successive steps, look for the closest pair of points (p, q) such that one point (p) is in the current tree but the other (q) is not
 - Add q to the tree and put an edge between p and q

MST: Divisive Hierarchical Clustering

Use MST for constructing hierarchy of clusters

Algorithm 7.5 MST Divisive Hierarchical Clustering Algorithm

- 1: Compute a minimum spanning tree for the proximity graph.
- 2: repeat
- 3: Create a new cluster by breaking the link corresponding to the largest distance (smallest similarity).
- 4: until Only singleton clusters remain

Summary of hierarchal clustering

- No need to specify the number of clusters in advance.
- Hierarchal nature maps nicely onto human intuition for some domains
- They do not scale well: time complexity of at least $O(n^2)$, where n is the number of total objects.

Partitional clustering

- Nonhierarchical, each instance is placed in exactly one of K nonoverlapping clusters.
- Since only one set of clusters is output, the user normally has to input the desired number of clusters K.

k-means

- 1. Decide on a value for k.
- 2. Initialize the *k* cluster centers (randomly, if necessary).
- 3. Decide the class memberships of the *N* objects by assigning them to the nearest cluster center.
- 4. Re-estimate the *k* cluster centers, by assuming the memberships found above are correct.
- 5. If none of the *N* objects changed membership in the last iteration, exit. Otherwise goto 3.

Evaluation of *K-means*

• Strength

- Relatively efficient: O(tkn), where n is # objects, k is # clusters, and t is # iterations. Normally, k, t << n.
- Often terminates at a local optimum. The global optimum may be found using techniques such as: deterministic annealing and genetic algorithms

Weakness

- Applicable only when mean is defined, then what about categorical data?
- Need to specify k, the number of clusters, in advance
- Unable to handle noisy data and outliers
- Not suitable for clusters with non-convex shapes

DBSCAN

- DBSCAN is a density-based algorithm.
 - Density = number of points within a specified radius (Eps)
 - A point is a core point if it has more than a specified number of points (MinPts) within Eps
 - These are points that are at the interior of a cluster
 - A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point
 - A noise point is any point that is not a core point or a border point.

DBSCAN: Core, Border, and Noise Points

DBSCAN Algorithm

- Eliminate noise points
- Perform clustering on the remaining points

```
current\_cluster\_label \leftarrow 1
for all core points do
  if the core point has no cluster label then
     current\_cluster\_label \leftarrow current\_cluster\_label + 1
    Label the current core point with cluster label current_cluster_label
  end if
  for all points in the Eps-neighborhood, except i^{th} the point itself do
    if the point does not have a cluster label then
       Label the point with cluster label current_cluster_label
    end if
  end for
end for
```


DBSCAN: Core, Border and Noise Points

Original Points

Point types: core, border and noise

When DBSCAN Works Well

- Resistant to Noise
- Can handle clusters of different shapes and sizes

When DBSCAN Does NOT Work Well

Original Points

- Varying densities
- High-dimensional data

(MinPts=4, Eps=9.75).

DBSCAN: Determining EPS and MinPts

- Idea is that for points in a cluster, their kth nearest neighbors are at roughly the same distance
- Noise points have the kth nearest neighbor at farther distance
- So, plot sorted distance of every point to its kth nearest neighbor

Summary of Clustering Algorithms

- K-Means fast, works only for data where mean can be defined, generates spherical clusters, robust to noise
- Single linkage produces non-convex clusters, slow for large data sets, sensitive to noise
- Complete linkage produces non-convex clusters, very sensitive to noise, very slow for large data sets
- DBSCAN produces arbitrary shaped clusters works only for low dimensional data

Cluster Validity

- For supervised classification we have a variety of measures to evaluate how good our model is
 - Accuracy, precision, recall
- For cluster analysis, the analogous question is how to evaluate the "goodness" of the resulting clusters?
- But "clusters are in the eye of the beholder"!
- Then why do we want to evaluate them?
 - To avoid finding patterns in noise
 - To compare clustering algorithms
 - To compare two sets of clusters
 - To compare two clusters

Different Aspects of Cluster Validation

- 1. Determining the clustering tendency of a set of data, i.e., distinguishing whether non-random structure actually exists in the data.
- 2. Comparing the results of a cluster analysis to externally known results, e.g., to externally given class labels.
- 3. Evaluating how well the results of a cluster analysis fit the data *without* reference to external information.
 - Use only the data
- 4. Comparing the results of two different sets of cluster analyses to determine which is better.
- 5. Determining the 'correct' number of clusters.

Measures of Cluster Validity

- Numerical measures that are applied to judge various aspects of cluster validity, are classified into the following three types.
 - External Index: Used to measure the extent to which cluster labels match externally supplied class labels.
 - Entropy
 - Internal Index: Used to measure the goodness of a clustering structure without respect to external information.
 - Sum of Squared Error (SSE)
 - Relative Index: Used to compare two different clusterings or clusters.
 - Often an external or internal index is used for this function, e.g., SSE or entropy

Scatter Coefficient

- Cluster evaluation index
- Ratio of average intra-cluster distances to intra-cluster distances (Sum Squared Error)

Internal Measures: Cohesion and Separation

- Cluster Cohesion: Measures how closely related are objects in a cluster
 - Example: SSE
- Cluster Separation: Measure how distinct or wellseparated a cluster is from other clusters
- Example: Squared Error
 - Cohesion is measured by the within cluster sum of squares (SSE)

$$WSS = \sum_{i} \sum_{x \in C_i} (x - m_i)^2$$

Separation is measured by the between cluster sum of squares

$$BSS = \sum_{i} |C_{i}| (m - m_{i})^{2}$$

- Where |C_i| is the size of cluster i

Internal Measures: Cohesion and Separation

Example: SSE

$$WSS = (1-3)^{2} + (2-3)^{2} + (4-3)^{2} + (5-3)^{2} = 10$$

$$BSS = 4 \times (3-3)^{2} = 0$$

$$Total = 10 + 0 = 10$$

$$WSS = (1-1.5)^{2} + (2-1.5)^{2} + (4-4.5)^{2} + (5-4.5)^{2} = 1$$

$$BSS = 2 \times (3-1.5)^{2} + 2 \times (4.5-3)^{2} = 9$$

Internal Measures: Cohesion and Separation

- A proximity graph based approach can also be used for cohesion and separation.
 - Cluster cohesion is the sum of the weight of all links within a cluster.
 - Cluster separation is the sum of the weights between nodes in the cluster and nodes outside the cluster.

cohesion

separation

Internal Measures: Silhouette Coefficient

- Silhouette Coefficient combine ideas of both cohesion and separation, but for individual points, as well as clusters and clusterings
- For an individual point, i
 - Calculate \mathbf{a} = average distance of i to the points in its cluster
 - Calculate b = min (average distance of i to points in another cluster)
 - The silhouette coefficient for a point is then given by

$$s = 1 - a/b$$
 if $a < b$, (or $s = b/a - 1$ if $a \ge b$, not the usual case)

- Typically between 0 and 1.
- The closer to 1 the better.

Can calculate the Average Silhouette width for a cluster or a clustering

External Measures of Cluster Validity: Entropy and Purity

Table 5.9. K-means Clustering Results for LA Document Data Set

Cluster	Entertainment	Financial	Foreign	Metro	National	Sports	Entropy	Purity
1	3	5	40	506	96	27	1.2270	0.7474
2	4	7	280	29	39	2	1.1472	0.7756
3	1	1	1	7	4	671	0.1813	0.9796
4	10	162	3	119	73	2	1.7487	0.4390
5	331	22	5	70	13	23	1.3976	0.7134
6	5	358	12	212	48	13	1.5523	0.5525
Total	354	555	341	943	273	738	1.1450	0.7203

entropy For each cluster, the class distribution of the data is calculated first, i.e., for cluster j we compute p_{ij} , the 'probability' that a member of cluster j belongs to class i as follows: $p_{ij} = m_{ij}/m_j$, where m_j is the number of values in cluster j and m_{ij} is the number of values of class i in cluster j. Then using this class distribution, the entropy of each cluster j is calculated using the standard formula $e_j = \sum_{i=1}^L p_{ij} \log_2 p_{ij}$, where the L is the number of classes. The total entropy for a set of clusters is calculated as the sum of the entropies of each cluster weighted by the size of each cluster, i.e., $e = \sum_{i=1}^K \frac{m_i}{m} e_j$, where m_j is the size of cluster j, K is the number of clusters, and m is the total number of data points.

purity Using the terminology derived for entropy, the purity of cluster j, is given by $purity_j = \max p_{ij}$ and the overall purity of a clustering by $purity = \sum_{i=1}^{K} \frac{m_i}{m} purity_i$.

Outliers Detection

- Important in many applications like anomaly detection
- Outliers are points not belonging to any cluster
- Many outlier detection algorithms available

End of Clustering

