

Fakultät Informatik Institut für Technische Informatik, Professur für Prozessorentwurf

Rechnerarchitektur: Übungssatz 6

Aufgabe 6.1

Entwerfen Sie einen Halbaddierer (HA), d.h. eine Schaltung, die zwei 1-Bit Zahlen addiert und neben dem Summenbit auch einen Übertrag signalisiert!

Stellen Sie dazu zunächst:

- (a) die Schaltbelegungstabellen und
- (b) die Funktionsgleichungen auf!
- (c) Zeichnen Sie die Schaltung mit Ihnen bekannten Gattern!
- (d) Geben Sie ein zweckmäßiges Schaltsymbol für den HA an!

Aufgabe 6.2

Um Zahlen höherer Bitbreite verarbeiten zu können, ist ein Volladdierer vonnöten, der neben zwei Operandenbits auch noch einen einlaufenden Übertrag verarbeiten kann.

- (a) Kombinieren Sie zwei Halbaddierer, um alle drei Eingangsbits zu addieren! Wie ist der resultierende Übertrag des kompletten Volladdierers zu berechnen?
- (b) Nutzen Sie mehrere Volladdierer zur Realisierung der Addition zweier 4-Bit-Operanden!
- (c) Erweitern Sie den 4-Bit-Addierer zu einem 4-Bit-Addierer/Subtrahierer, welcher über den Eingang add /sub gesteuert wird!
- (d) Wie verläuft der längste Signalpfad, der sogenannte kritische Pfad, durch diese Schaltung?
- (e) Erweitern Sie den 4-Bit-Addierer/Subtrahierer um die Flagberechnungen für Sign (S), Zero (Z), Carry (C) und Overflow (V)!

Aufgabe 6.3

Entwerfen Sie ausgehend vom schriftlichen Multiplikationsschema eine Schaltung die zwei vorzeichenlose 4-Bit-Ganzzahlen multipliziert!

- (a) Bis zu wie viele Bits kann das vollständige Produkt umfassen?
- (b) Entwerfen Sie eine geeignete Multipliziererzelle (MC), die die Operation für eine Ziffer in der (schiefen) Produktmatrix realisiert!
 - Welche Eingänge werden benötigt?
 - Welche Ausgänge sind bereitzustellen?
 - Zeichnen Sie die Zelle!
- (c) Entwerfen Sie einen kompletten 4×4 -Feldmultiplizierer unter Nutzung dieser Multipliziererzelle!
- (d) Welche Vereinfachungen können in der Schaltung vorgenommen werden?