1 Einleitung

1.1 NP-Vollständigkeit

Eine Sprache B ist NP-Vollständig wenn gilt:

- 1. $B \in NP$
- 2. $\forall A \in NP : A \prec_p B$

Notiz:

 $A \prec_p B : A$ ist polynomialzeitreduzierbar auf B

1.2 Polynomialzeitreduktion

Eine Sprache A ist polynomialzeitreduzierbar auf Sprache $B, A \prec_p B$, wenn eine in polynomialer Zeit berechenbare Funktion $f: \Sigma^* \to \Sigma^*$ existiert, für die gilt:

$$\forall w : w \in A \iff f(w) \in B$$

Die Funktion f heißt dann Polynomialzeitreduktion von A nach B.

1.3 Definition 3SAT

Spezialform des Erfüllbarkeitsproblems

- Literal:
 - x_i oder $\overline{x_i}$
- Variable:

 x_i (l: Anzahl der Variablen)

• Klausel:

$$(x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_4)$$
 (k: Anzahl der Klauseln)

• CNF-Formel(cnf-formula - conjunctive normal form):

$$(x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_4) \wedge (x_3 \vee \overline{x_5} \vee x_6) \wedge (x_3 \vee \overline{x_6})$$

•
$$\phi: (x_1 \vee \overline{x_2} \vee \overline{x_3}) \wedge (\overline{x_2} \vee x_4 \vee ...) \wedge ... \wedge (\overline{x_3} \vee ... \vee ...)$$

 $3SAT = \{\ \langle \phi \rangle | \phi \ \text{ist eine erfüllbare 3CNF-Formel} \}$ $\phi = 1 \iff \forall c_j \text{: mindestens ein Literal ist } true$

2 Hamilton-Pfad-Problem

2.1 Definition

- Geht durch jeden Knoten genau einmal
- Startet in s
- Endet in t

Notiz: Gesucht: Pfad von s nach t, der durch jeden knoten genau einmal geht.

2.2 Beweis Gerichtet

2.2.1 Konstruktion von G

 $\phi \to G$

Darstellung Variable x_i

Darstellung Klausel c_j

\bigcirc c_j

High-level structure of G

Horizontale Struktur im Diamant

 $\langle 3k+1 \rangle$ Knoten

Zusätzliche Kanten wenn x_i in c_j ist

Notiz: Am Beispiel von ϕ zeigen!

Zusätzliche Kanten wenn $\overline{x_i}$ in c_j ist

2.2.2 ϕ ist erfüllbar

Notiz: Zunächst werden die Knoten c_i ignoriert.

Notiz: Der Pfad geht von s nach t durch jeden Diamanten nach einander.

Notiz: Um alle Knoten zu treffen muss der Pfad entweder zig-zaggen oder zag-ziggen.

Zig-zagging and Zag-zigging

Notiz: Zig-zagging wenn Variable $x_i = true$, Zag-zigging wenn Variable $x_i = false$

Notiz: Jetzt fehlen nurnoch die Knoten c_i .

Notiz: In jeder Klausel c_i wählen wir einen Literal aus, dem wir true zuweisen.

Notiz: Jeder wahre Literal in einer Klausel ist nur eine Option für einen Umweg über einen Klauselnoten. \rightarrow Es wird immer nur ein Umweg zu jedem Klauselknoten genommen. \rightarrow Knostruktion von G ist beendet.

This situation cannot occur

Laufzeit

Notiz: Offentsichlich nicht polynomial

2.2.3 Ungerichtet

TODO: muss der auch rein?

3 SUBSET-SUM-Problem

3.1 Definition

- Integer-Arithmetik
- Menge von Nummern: $x_1, ..., x_k$
- Ziel t
- Kann t durch eine Teilmenge erreicht werden?

3.2 Beweis

3SAT \prec_p SUBSET-SUM

 ϕ : Boolesche Formel

 $x_1, x_2, ..., x_l \ c_1, c_2, ..., c_k$ Teilausdrücke

3.2.1 Gesucht

$$\prec_p: \phi \mapsto \langle S, t \rangle$$

$$\phi: (x_1 \vee \overline{x_2} \vee x_3) \wedge (x_2 \vee x_3 \vee \ldots) \wedge \ldots \wedge (\overline{x_3} \vee \ldots \vee \ldots)$$

Notiz: c_1, c_2, c_k dran schreiben

3.2.2 Annahme

Es existiert eine Konfiguration für die ϕ erfüllt ist.

⇒ Subset bauen

 y_i iff $x_i = true$ else z_i

 $\Rightarrow t = 11...1133...33$

Notiz: 1 mal 1 und k mal 3

 \Rightarrow Füge solange g_i unf h_i hinzu bis das Target t erreicht ist.

	1	2	3	4	•••	1	c_1	c_2	 c_k
$\overline{y_1}$	1	0	0	0	•••	0	1	0	 0
z_1	1	0	0	0	•••	0	0	0	 0
y_2		1	0	0	•••	0	0	1	 0
z_2		1	0	0	•••	0	1	0	 0
y_3			1	0	•••	0	1	1	 0
z_3			1	0	•••	0	0	0	 1
•••					•••				
y_l						1	0	0	 0
z_l						1	0	0	 0
g_1						1	0	0	 0
h_1						1	0	0	 0
g_2							1	0	 0
h_2							1	0	 0
					•••				
g_k									1
h_k									1
t	1	1	1	1		1	3	3	 3

Notiz: Zeigen, dass ϕ erfüllbar ist mit einem subset von S dass sich auf t summiert.

Notiz: $\forall c_j$: Mindestens eine Variable von c_j muss 1 sein, da maximal 2 von g_j und h_j kommen können.

Notiz: $\phi = true \text{ iff } \forall c_j : c_j = true \Rightarrow \text{reduzierbar}$

3.2.3 Laufzeit

Tabelle hat etwa eine Größe von $(l+k)^2$ Jeder Eintrag ist leicht zu berechnen $\Rightarrow O(n^2)$