

ESC201: Introduction to Electronics Module 6: Digital Circuits

Dr. Shubham Sahay,
Associate Professor,
Department of Electrical Engineering,
IIT Kanpur

Visualising the Sequential Circuit

State Transition Diagrams

For Analysis, we want to visualise the sequential circuit as "State Transition Diagrams".

Memory state decided by contents of registers A& B

Initial state is 00. **Next state** can be 11 or 10 depending x.

Value of z is defined by current state and input x.

If x = 0 then z = 0

the system would stay in 00 state at clock edge.

If x = 1 then z = 0.

the system would go to 01 state at clock edge.

Example

Sequential Circuit "Canonical Form"

What To Look for In Sequential Circuits

The dependence of output z on input x depends on the state of the memory (A,B)

The memory has 2 registers and each register can be in state 0 or 1.

- Thus there are four possible states: AB: 00,01,10,11.

To describe the behavior of a sequential circuit, we need to show

- 1. how the system goes from one memory state to the next as the input changes
- 2. how the output responds to input in each state

Obtaining State Transition Table

Preser	t State	Input	Next State	Output			
Α	А В		А В	z			
0	0	0	0 0	0			
0	0	1	0 1	0			
0	1	0	0 0	1			
0	1	1	1 1	0			
1	0	0	0 0	1			
1	0	1	1 0	0			
1	1	0	0 0	1			
1	1	1	1 0	0			

Next state Logic

Obtaining State Transition Diagram

Output Logic

Memory

$$A(t+1) = A(t).x + B(t).x$$

$$B(t+1) = \overline{A(t)}.x$$

$$z = (A+B).\overline{x}$$

State Transition Table

Present	Present State Input			Next State	
A(t)	B(t)	Х	Α(<i>t</i> +	1) B(<i>t</i> +1)	Z
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

Understanding the Given Sequential Circuit

State Transition Diagram

From state transition diagram, one figures out the purpose of the sequential circuit

- Redraw circuit in "canonical form"
- Identify the blocks
- Determine logic for next state inputs and output
- Write out state transition table
- Draw state transition diagram

Designing of Sequential Circuits

System specification to State diagram

Detect 3 or more consecutive 1's in the input stream

Example-1

Conversion of State transition graph to a circuit

3 blocks need to be designed

- 1. How many registers do we need?
- · -
- 2. Which register do we choose?
- 3. How are the states encoded?

N registers can represent 2^N states

→ so minimum is 1

Say D register

Say register output Q=0 represents S₀ and Q=1 represents S₁ state

State Transition Table

Present State Q(t)	Input x	Next State Q(t+1)	D	Output z	
0	0	0 1	0 1	0 0	$x \longrightarrow D Q \longrightarrow Z$
1	0 1	1 0	1 0	0 1	

$$D = \overline{Q}.x + Q.\overline{x} ; z = Q.x$$

Example-2

- 1. How many registers do we need? 1
- 2. Which register do we choose? Say JK register
- 3. How are the states encoded? Say register output Q=0 represents S_0 and Q=1 represents S_1 state

State Transition Table

Present State	Input	Next State	J K	Output
Q(t)	Х	Q(t+1)		Z
0	0	0	0 X	0
0	1	1	1 X	0
1	0	1	хо	0
1	1	0	X 1	1

Q(t)	Q(t+1)	J K
0	0	0 X
0	1	1 X
1	0	X 1
1	1	X 0

Example-3

Preser	nt State	Input	Next :	State				
A (t)	B(t)	Х	A (t+1)	B(t+1)	D_A	D_B	D_A	
0	0	0 1	0 0	1 0	0	1	x AB	
0	1 1	0 1	1 1	1 0	1	1	0 0 1 0 1	
1	0	0 1	1 1	1 0	1	1	1 0 [.1.] .1.]	
1	1 1	0 1	0 1	0 1	0	0 1	$D_A = \overline{A}B + xB + A\overline{B}$	
•	ΔR		D_B		¥	$=A\oplus B+x.B$		
AB x 00 01 11 10								
$D_{B} = x.A + x.B + x.A.B$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							$= \frac{1}{r} \left(\overline{A} + \overline{R} \right) + r A R$	
							_	
							$= x.AB + x.AB = x \oplus AB$	

