Suma directa de subespacios

Objetivos. Estudiar la definición y el criterio de la suma directa, conocer ejemplos.

Requisitos. Suma e intersección de subespacios de un espacio vectorial.

1. Definición (suma directa). Sean V un espacio vectorial, S_1 y S_2 subespacios de V. Se dice que V es la *suma directa* de S_1 y S_2 si para cualquier $v \in V$ existe un único par ordenado (u, w) tal que $u \in S_1$, $w \in S_2$ y v = u + w:

$$\forall v \in V$$
 $\exists ! (u, w) \in S_1 \times S_2 \quad v = u + w.$

- 2. Teorema (criterio de suma directa). Sea V un espacio vectorial y sean S_1 y S_2 subespacios de V. Entonces las siguientes condiciones son equivalentes:
 - (a) V es la suma directa de S_1 y S_2 , esto es,

$$\forall v \in V$$
 $\exists ! (u, w) \in S_1 \times S_2$ $v = u + w$.

(b)
$$V = S_1 + S_2 \text{ y } S_1 \cap S_2 = \{\mathbf{0}\}.$$

Demostración. (a) \Rightarrow (b). Supongamos que V es la suma directa de S_1 y S_2 . Entonces en particular tenemos que para todo $v \in V$ existen $u \in S_1$ y $w \in S_2$ tales que v = u + w. Esto significa que $V \subset S_1 + S_2$. Pero $S_1 + S_2$ es un subconjunto de V. Por eso $V = S_1 + S_2$.

Demostremos que $S_1 \cap S_2 = \{0\}$. Supongamos que $a \in S_1 \cap S_2$. Entonces

$$a = \underbrace{a}_{S_1} + \underbrace{0}_{S_2} = \underbrace{0}_{S_1} + \underbrace{a}_{S_2}.$$

Pero la definición de suma directa dice que la representación de a en forma u + w con $u \in S_1, w \in S_2$ es única. Por eso $a = \mathbf{0}$.

(b) \Rightarrow (a). Supongamos que $V = S_1 + S_2$ y $S_1 \cap S_2 = \{0\}$. Vamos a demostrar que V es la suma directa de S_1 y S_2 . Como $V = S_1 + S_2$, para todo $v \in V$ existe un par $(u, w) \in S_1 \times S_2$ tal que v = u + w. Sólo falta demostrar que este par es único. Supongamos que

$$u \in S_1, \ w \in S_2, \ u + w = v,$$
 y también $u' \in S_1, \ w' \in S_2, \ u' + w' = v.$

Entonces u + w = u' + w', u - u' = w' - w. Pero

$$u - u' = u + (-1)u' \in S_1, \qquad w' - w = w' + (-1)w \in S_2.$$

Así que $u - u' \in S_1 \cap S_2$. Por la hipótesis, $S_1 \cap S_2 = \{0\}$. Por eso u - u' = 0, u = u', w = w'.

Suma directa de subespacios, página 1 de 2

- **3. Observación.** Algunos autores definen la suma directa por la condición (b). La condición (a) es más cómoda para generalizarla al caso de varios subespacios.
- **4. Ejemplo.** Demostrar que el espacio \mathbb{F}^3 es la suma directa de los siguientes dos subespacios:

$$S_1 := \left\{ x \in \mathbb{F}^3 : \ x_2 = 0 \right\} = \left\{ \begin{bmatrix} x_1 \\ 0 \\ x_3 \end{bmatrix} : \ x_1, x_3 \in \mathbb{F} \right\} = \ell(e_1, e_3);$$

$$S_2 := \left\{ x \in \mathbb{F}^3 \colon x_1 = x_3 = 0 \right\} = \left\{ \begin{bmatrix} 0 \\ x_2 \\ 0 \end{bmatrix} \colon x_2 \in \mathbb{F} \right\} = \ell(e_2).$$

- **5. Ejemplo.** En el espacio $\mathcal{M}_n(\mathbb{R})$ denotemos por S_1 al subespacio que consiste en todas las matrices simétricas y por S_2 al subespacio que consiste en todas las matrices antisimétricas. Demuestre que $\mathcal{M}_n(\mathbb{R})$ es la suma directa de S_1 y S_2 .
- **6. Ejemplo.** Denotemos por $C(\mathbb{R}, \mathbb{C})$ al espacio vectorial real de las funciones continuas de \mathbb{R} en \mathbb{C} . Denotemos por S_1 y S_2 a dos subespacios de $C(\mathbb{R}, \mathbb{C})$ que consisten en las funciones pares e impares, respectivamente:

$$S_1 := \{ f \in C(\mathbb{R}, \mathbb{C}) \colon \forall x \in \mathbb{R} \ f(-x) = f(x) \};$$

$$S_2 := \{ f \in C(\mathbb{R}, \mathbb{C}) \colon \forall x \in \mathbb{R} \ f(-x) = -f(x) \}.$$

Demuestre que $C(\mathbb{R}, \mathbb{C})$ es la suma directa de S_1 y S_2 .