14.05.2024 Родіна А.О.

Клас: 9А

ТЕМА: Узагальнення знань по темі «Основні класи органічних сполук». Розв'язування розрахункових задач.

МЕТА: повторити і узагальнити знання з основних класів органічних речовин; закріпити

вивчений матеріал розв'язуванням розрахункових задач.

ОБЛАДНАННЯ: Періодична система хімічних елементів Д.І.Менделєєва.

ТИП УРОКУ: урок закріплення знань, умінь і навичок.

ПЛАН УРОКУ.

- І.Організаційний етап.
- II. Перевірка домашнього завдання.
- III. Мотивація навчальної діяльності учнів.

Вивчаючи основні визначення , будову та властивості різних класів речовин ми володіємо тільки однією частиною знань — теоретичною. А як же застосувати теоретичні знання на практиці? А практична частина — це розв'язування розрахункових задач. Розв'язування задач — це робота творча, яка сприяє глибокому засвоєнню основних хімічних понять, теорій і законів. Це спосіб розвитку логічного мислення учнів.

IV. Повідомлення теми, мети уроку.

Тому темою сьогоднішнього уроку буде повторення основних класів органічних сполук на прикладі розрахункових задач.

V. Повторення основних понять теми.

Бесіда.

1)Які класи органічних речовин вам відомі, підтвердьте їх загальними формулами.

- Насичені вуглеводні (CH_4 -метан) C_nH_{2n+2} .
- Ненасичені вуглеводні (C₂H₄-етилен) C_nH_{2n}
- Ненасичені вуглеводні (C_2H_2 -ацетилен) C_nH_{2n-2}
- Насичені одноатомні спирти (C_2H_5OH -етанол) $C_nH_{2n+1}OH$
- Насичені одноосновні карбонові кислоти (CH $_3$ COOH-оцтова кислота) C_nH_{2n+1} COOH
- Естери $(CH_3COOC_2H_5$ –етиловий естер оцтової кислоти) R_1COOR_2
- 2) Які реакції характерні для основних класів органічних сполук?
 - Приєднання
 - Замішення
 - Гідратація

- Гідрування
- Галогенування
- Етерифікації

Завдання (біля дошки 2 учні, решта пишуть самостійно)

Здійснити перетворення:

A)
$$C_2H_5OH \rightarrow CH_3COH \rightarrow CH_3COOH \rightarrow CH_2CICOOH$$

 $C_2H_5OH + CuO \rightarrow CH_3COH + Cu + H_2O$
 $CH_3COH + Ag_2O \rightarrow CH_3COOH + Ag \downarrow$
 $CH_3COOH + Cl_2 \rightarrow CH_2CICOOH + HCl$

$$(5)$$
 CH₃COH→ CH₃COOH→ CH₃COOC₂H₅→ CH₃COOH
CH₃COH + Ag₂O → CH₃COOH + Ag ↓
CH₃COOH + C₂H₅OH → CH₃COOC₂H₅ + H₂O
CH₃COOC₂H₅ + H₂O → CH₃COOH + C₂H₅OH

VI.Виконання завдань.

I тип. Задачі, за умовами яких вихідні речовини містять домішки.

1) Який об'єм ацетилену за (н.у.) можна добути з 200 г кальцій карбіду масова частка домішок в якому 5%?

Дано:
$$M(pe4)=100\% - W(dom)$$
 $M(CaC_2)=200$ г $W(pe4)=100\% - W(dom)$ $M(CaC_2)=64$ г/моль $M(pe4)=W \cdot m(cymiui)$ $Po3B' 330K$. $1) Bизначаємо масу чистого кальцій карбіду з суміші: $W(CaC_2)=100\% - 5\% = 95\% = 0,95$ $m(CaC_2)=0,95 \cdot 200$ г $= 190$ г 2 $2) Cкладаємо рівняння реакції та знаходимо об'єм ацетилену. 190 г x л $CaC_2 + 2H_2O \rightarrow C_2H_2 + Ca(OH)_2$ 64 г $22,4$ л $X = \frac{190 \cdot 22,4 \pi}{64 \cdot r} = 66,5$ л $B: V(C_2H_2) = 66,5$ л$$

П тип. Задачі на виведення молекулярної формули органічної сполуки за масовими частками та відносною густиною газів.

2) Масові частки Карбону і Гідрогену , що входять до складу деякої органічної сполуки, відповідно становлять 85,7% і 14,3%. Відносна густина органічної речовини за повітрям 1,45. Визначте молекулярну формулу сполуки.

$$\mathcal{A}$$
ано: $W(C) = 85,7\%$ $W(H) = 14,3\%$ $\mathcal{A}_{nos} = 1,45$ \mathcal{A} \mathcal

$$W(C) = 85,7\%$$
 $\mathcal{A}_{nos} = \frac{M(CxHy)}{M(пов)} \to M(CxHy) = \mathcal{A}_{nos} \cdot M(nos)$ $W(H) = 14,3\%$ $W(E) = \frac{n \cdot Ar(E)}{Mr \cdot (Cпол)} \cdot 100\% \to n = \frac{W(E) \cdot Mr \cdot (Cпол)}{Ar(E) \cdot 100\%}$

1)Обчислюємо молярну масу органічної речовини:

$$M(CxHy) = \mathcal{I}_{nos} \cdot M(nos) = 1,45 \cdot 29 = 42$$
 г/моль

2) Обчислюємо кількість атомів Карбону і Гідрогену:

$$n(C) = \frac{W(C) \cdot Mr(CxHy)}{Ar(C) \cdot 100\%} = \frac{85,7 \cdot 42}{1200} = 3$$

$$n(H) = \frac{W(H) \cdot Mr(CxHy)}{Ar(H) \cdot 100\%} = \frac{14,3 \cdot 42}{100} = 6$$

$$x = 3$$
 $y = 6$ B: C_3H_6

Самостійна робота.

1) Здійснити перетворення:

І варіант.

 $C_2H_5C1 \rightarrow C_2H_5OH \rightarrow CH_3COH \rightarrow CH_3COOH$ $CH_3COOH \rightarrow CH_3COONa$ II варіант C₂H₅OH \rightarrow CH₃COH \rightarrow

(2 бали)

2)Розв'язати задачу І типу.

І варіант.

Визначити об'єм ацетилену (н.у.), який виділиться можна

при взаємодії з водою кальцій карбіду масою 400 г містить

з масовою часткою домішок 2,5%. кількості II варіант

Визначити масу фенолу, який

добути з 30 г хлорбензолу, що

5% домішок і достатньої

натрій гідроксиду.

(3 бали)

3)Розв'язати задачу II типу.

І варіант.

Масові частки Карбону і Гідрогену в органічній газоподібного

II варіант

Вивести молекулярну формулу

речовині відповідно дорівнюють 84,51% і 15,49% вуглеводню за даними: масова частка Відносна густина речовини за киснем дорівнює Карбону дорівнює 85,7%; відносна густина 4,44. Вивести молекулярну формулу. газу за воднем дорівнює 21.

(5 балів)

VII.Підбиття підсумків уроку.

Отже, ми на уроці повторили основні класи органічних сполук, їх склад і властивості та закріпили набуті знання розв'язуванням розрахункових задач.

VII. Домашнє завдання.

Розв'язати задачі:

- 1. Масова частка Карбону в органічній речовині складає 82,76%, Гідрогену 17,24%. Визначити формулу речовини, якщо відносна густина її за воднем становить 29.
- 2. Визначити молекулярну формулу алкану, масова частка карбону в якому становить 83,4%.