反常积分

December 20, 2017

f(x) 是[a, b]上的有界函数,"四步",如果极限存在,且与分割和" ξ_i "的取法无关,则称f(x)为Riemann可积。

$$\int_{a}^{b} f(x) dx$$

f(x) 是[a,b]上的有界函数,"四步",如果极限存在,且与分割和" ξ_i "的取法无关,则称f(x)为Riemann可积。

$$\int_{a}^{b} f(x) dx$$

▶ 区域[a, b]无界?

f(x) 是[a,b]上的有界函数,"四步",如果极限存在,且与分割和" ξ_i "的取法无关,则称f(x)为Riemann可积。

$$\int_{a}^{b} f(x) dx$$

- ▶ 区域[a, b]无界?
- ▶ *f*(*x*)无界?

f(x) 是[a, b]上的有界函数,"四步",如果极限存在,且与分割和" ξ_i "的取法无关,则称f(x)为Riemann可积。

$$\int_{a}^{b} f(x) dx$$

- ▶ 区域[a, b]无界?
- ▶ f(x)无界?

⇒ "反常"积分

 $\int_a^{+\infty} f(x) dx$ 的类型

$$\int_{a}^{+\infty} f(x) dx$$
的类型

$$\int_{2}^{+\infty} f(x) dx$$
的类型

$$\int_{2}^{+\infty} f(x) dx$$
的类型

►
$$\int_{a}^{+\infty} f(x)dx$$
 limited $\iff \lim_{b \to +\infty} \int_{a}^{b} f(x)dx$ exists

► $\int_{-\infty}^{a} f(x)dx$ 类似

$$\int_{a}^{+\infty} f(x) dx$$
的类型

▶
$$\int_{-\infty}^{a} f(x) dx$$
 类似

►
$$\int_{-\infty}^{+\infty} f(x) dx$$
收敛

$$\int_{a}^{+\infty} f(x) dx$$
的类型

- ▶ $\int_{-\infty}^{+\infty} f(x) dx$ 收敛 ⇔ $\forall c \in \mathbb{R}$, $\int_{-\infty}^{c} f(x) dx$ 和 $\int_{c}^{+\infty} f(x) dx$ 都存在

$$\int_{a}^{+\infty} f(x) dx$$
的类型

- ▶ $\int_{-\infty}^{+\infty} f(x) dx$ 收敛 ⇔ $\forall c \in \mathbb{R}$, $\int_{-\infty}^{c} f(x) dx$ 和 $\int_{c}^{+\infty} f(x) dx$ 都存在 (任意可以变为存在)

1. $\int_{a}^{+\infty} \frac{1}{x^{p}} dx \ (a > 0)$ 何时收敛? 何时发散?

2. $\int_{-\infty}^{+\infty} \frac{x}{\sqrt{1+x^2}} dx$ 收敛? 发散?

2.
$$\int_{-\infty}^{+\infty} \frac{x}{\sqrt{1+x^2}} dx$$
 收敛? 发散?

$$\frac{x}{\sqrt{1+x^2}}$$
 为奇函数 \Rightarrow "=0"?

3. 已知 $\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$, 求 $\int_0^{+\infty} t^2 e^{-t^2} dt$.

f(x)在(a,b)无界

$$f(x)$$
在 (a,b) 无界

▶ if $x \to a^+$ 时, $f(x) \to \infty$,

$$f(x)$$
在 (a,b) 无界

▶ if $x \to a^+$ 时, $f(x) \to \infty$, $\int_a^b f(x) dx$ 收敛

f(x)在(a,b)无界

f(x)在(a,b)无界

▶ if $x \to a^+$ 时, $f(x) \to \infty$, $\int_a^b f(x)dx \, \psi \, \text{\text{σ}} \ \lim_{c \to a^+} \int_c^b f(x)dx \, \, \text{存在}$ ▶ if $x \to b^-$ 时, $f(x) \to \infty$ 类似

▶ if both $x \to a^+$ and $x \to b^ \forall$, $f(x) \to \infty$,

▶ if both $x \to a^+$ and $x \to b^-$ 时, $f(x) \to \infty$, $\int_a^b f(x) dx$ 收敛

 ▶ if both $x \to a^+$ and $x \to b^-$ 时, $f(x) \to \infty$, $\int_a^b f(x)dx \, \psi \, \text{钦} \iff$ $\forall c \in (a,b), \int_a^c f(x)dx \, \text{和} \int_c^b f(x)dx \, \text{都存在} \quad \text{(任意可以变}$ 为存在)

- ▶ if $x \to c$ 时, $f(x) \to \infty$, 其中 $c \in (a, b)$,

- ▶ if both $x \to a^+$ and $x \to b^-$ 时, $f(x) \to \infty$, $\int_a^b f(x)dx \, \psi \otimes \Longleftrightarrow$ $\forall c \in (a,b), \int_a^c f(x)dx \, \pi \int_c^b f(x)dx \, \pi \, F dx \, \text{(任意可以变}$ 为存在)
- ▶ if $x \to c$ 时, $f(x) \to \infty$, 其中 $c \in (a, b)$, $\int_a^b f(x) dx$ 收敛

▶ if $x \to a^+$ $\exists f$, $f(x) \to \infty$,

▶ if $x \to a^+$ 时, $f(x) \to \infty$, $\int_a^{+\infty} f(x) dx$ 收敛

- ▶ 同理 $x \to b^-$ 时, $f(x) \to \infty$, $\int_{-\infty}^{b} f(x) dx$

1. $\int_a^b \frac{1}{(x-a)^p} dx$, 何时收敛,何时发散?

1. $\int_a^b \frac{1}{(x-a)^p} dx$, 何时收敛,何时发散?

回忆
$$\int_1^{+\infty} \frac{1}{x^p} dx$$
, 对比。

 $2. \int_{-1}^{1} \frac{1}{x^3} dx$

2.
$$\int_{-1}^{1} \frac{1}{x^3} dx = \frac{1}{1-3} x^{-2} \Big|_{-1}^{1} = 0$$

2.
$$\int_{-1}^{1} \frac{1}{x^3} dx = \frac{1}{1-3} x^{-2} \Big|_{-1}^{1} = 0$$
 right?????

3. $\vec{x} \int_{1}^{2} \left(\frac{1}{x \ln^{2} x} - \frac{1}{(x-1)^{2}} \right) dx$

应用

4. 火箭质量 m, 发射到高度 H, 求克服地球引力所做的功。并计算第二宇宙速度(离开地球引力范围)。