[PTKB] Kolokwium 2 - opracowanie

1 Kolokwium 2 z PTKB (11.01.2012)

1.1 Zadanie 1.

Treść: Ile razy trzeba wykonać protokół uwierzytelniania Fiata-Shamira by prawdopodobieństwo oszustwa było mniejsze od 10^{-1000} ?

Rozwiązanie: Prawdopodobieństwo udanego oszustwa po wykonaniu n eksperymentów wynosi $(\frac{1}{2})^n$. Rozwiązujemy równanie $(\frac{1}{2})^x = 10^{-1000}$.

$$\begin{array}{rcl} (\frac{1}{2})^x & = & 10^{-1000} \\ 2^x & = & 10^{1000} \\ x & = & \log_2 10^{1000} \\ x & = & 1000 \log_2 10 \\ x & \simeq & 3321.928 \end{array}$$

Wybieramy $\lceil x \rceil = 3322$.

1.2 Zadanie 2.

Treść: Skonstruować system podpisów cyfrowych ElGamala "dla małych liczb". Przyjąć odpowiedni klucz publiczny i prywatny. Podpisać dowolną wybraną wiadomość m i zweryfikować podpis.

Rozwiązanie:

1. Ustanawianie systemu. Wybieramy liczbę pierwszą np. p=13. Jako generator grupy multiplikatywnej Z_{13}^* można wybrać g=2, ponieważ $2^1 (mod13)=2$, $2^2 (mod13)=4$, $2^3 (mod13)=8$, $2^4 (mod13)=3$, $2^5 (mod13)=6$, $2^6 (mod13)=12$, $2^7 (mod13)=11$, $2^8 (mod13)=9$, $2^9 (mod13)=5$, $2^{10} (mod13)=10$, $2^{11} (mod13)=7$, $2^{12} (mod13)=1$ Jako klucz prywatny wybieramy losowo dowolną liczbę $x\in <2$, p-2>. Wybierzmy np. x=3. Będzie to tajemnica strony podpisującej wiadomość. Ujawniamy klucz publiczny $y=g^x (modp)=2^3 (mod13)=8$.

- 2. Podpisywanie wiadomości (dokumentu) przez stronę dysponującą tajnym kluczem prywatnym x. Wybieramy jako wiadomość podpisywaną dowolna liczbę $m \in \mathbb{Z}_{p-1}$ czyli w naszym przypadku $m \in \mathbb{Z}_{12}$. Wiadomość jawna m jest więc jednym z elementów zbioru $0, 1, 2, \dots, 11$. Wybierzmy jako wiadomość podpisywaną m =4. Mając m=4 i x=3 tworzymy teraz podpis wiadomości m=4 czyli odpowiednią parę uporządkowaną $(a,b)\in Z_p^*\times Z_{p-1}$. Losujemy $k\in Z_{p-1}$ takie, że NWD(k,p-1)=1. Niech to będzie k=5. Obliczamy k^{-1} w pierścieniu Z_{p-1} czyli w pierścieniu Z_{12} . Łatwo sprawdzić, że $k^{-1}=5$. Obliczamy $a\in Z_p^*$ jako $g^k(modp)$, mamy więc $2^5(mod13)=6$. Obliczamy teraz $b \in Z_{p-1}$ jako $b = k^{-1} \otimes_{p-1} (m - 12 \times \otimes [a]_{p-1}).$ Przy przyjętych i obliczonych wartościach mamy więc $b = 5 \otimes_{12} (4 -_{12} 3 \otimes_{12} 6) = 2$. Zatem podpis (a, b) wiadomości m = 4 ma postać pary uporządkowanej (6,2) a podpisywana wiadomość 4 z podpisem to para uporządkowana (4, (6, 2)).
- 3. Weryfikacja podpisu. Równanie weryfikacyjne dla podpisów ElGamala ma postać:

$$y^a \otimes_p a^b = g^m$$

gdzie podnoszenie do potęgi jest jak pierścieniu Z_p . Musimy sprawdzić dla y=8, a=6, b=2, m=4 i g=2 czy równanie (*) jest spełnione.

$$\begin{split} L = y^a \otimes_p a^b &= 8^6 \cdot 2 (mod 13) = 3 \\ P = g^m &= 2^4 (mod 13) = 3 \end{split}$$

Mamy więc L=P i równanie weryfikacyjne (*) jest spełnione, zatem przedstawiony do weryfikacji podpis akceptujemy.

1.3 Zadanie 3.

 ${f Tre}$ ść: Wykazać, że charakterystyka ciała skończonego (czyli najmniejsza taka liczba n, że spełniona

jest równość $\underbrace{1+1+1+\cdots+1}_{n} = 0$) jest zawsze

liczbą pierwszą.

Rozwiązanie: Załóżmy, że charK = n i liczba $n = m_1 m_2$, gdzie $m_1, m_2 \in \mathbb{N}$, a więc $n \cdot 1 = (m_1 m_2) \cdot 1 = 0$. Z łączności dodawania i rozdzielności mnożenia względem dodawania w ciele K mamy $(m_1 m_2) \cdot 1 = (m_1 \cdot 1)(m_2 \cdot 1)$, zatem:

$$(m_1 \cdot 1)(m_2 \cdot 1) = 0$$

Jeśli $m_1 < n$ to z definicji charakterystyki dostajemy, że $m_1 \cdot 1 \neq 0$, zatem istnieje element odwrotny $(m_1 \cdot 1)^{-1}$ do $m_1 \cdot 1$. Mnożąc lewostronnie równość $(m_1 \cdot 1)(m_2 \cdot 1) = 0$ przez $(m_1 \cdot 1)^{-1}$ dostajemy $m_2 \cdot 1 = 0$, ponieważ jednak $1 \leq m_2 \leq n$ to biorąc pod uwagę definicję charakterystyki ciała musimy mieć $m_2 = n$. Wynika stąd, że liczba n nie jest podzielna przez żadną liczbę różną od n i 1, a zatem jest liczbą pierwszą.

Można też rozumować nieco inaczej. Załóżmy, że charK=n i liczba n daje się przedstawić w postaci $n=m_1m_2$, gdzie $m_1,m_2\in\mathbb{N}$ i $m_1,m_2\geqslant 2$, czyli n nie jest liczbą pierwszą. Wówczas $n\cdot 1=(m_1m_2)\cdot 1=(m_1\cdot 1)(m_2\cdot 1)=0$. Ponieważ $m_1\cdot 1\neq 0$ i $m_2\cdot 1\neq 0$ oraz $(m_1\cdot 1)(m_2\cdot 1)=0$ co nie jest możliwe, bo ciało nie ma niezerowych dzielników zera. Zatem założenie, że n nie jest liczbą pierwszą prowadzi do sprzeczności.

1.4 Zadanie 4.

Treść: Podać przykład liczby pseudopierwszej przy podstawie 2 i 3 jednocześnie. Czy takie liczby w ogóle istnieją?

Rozwiązanie: Liczba naturalna jest liczbą Carmichaela wtedy i tylko wtedy, gdy:

- Jest liczbą złożoną.
- 2. Dla każdego $a \in \mathbb{N}$ z przedziału 1 < a < n, względnie pierwszej z n, liczba $(a^{n-1} 1)$ jest podzielna przez n.

Patrząc na najmniejsze liczby Carmichaela:

$$561 = 3 \cdot 11 \cdot 17$$

 $1105 = 5 \cdot 13 \cdot 17$

widzimy, że liczba Carmichaela 1105 jest względnie pierwsza zarówno z 2, jak również 3, a więc pozwala ona stworzyć liczby pseudopierwsze $2^{1105-1}-1$ oraz $3^{1105-1}-1$.

1.5 Zadanie 5.

Treść: Podać przykład ciała $GF(3^2)$, czyli ciała o 9 elementach.

Rozwiązanie: Ciało $GF(p^n)$, gdzie p jest liczbą pierwszą oraz $n \in \mathbb{N}$, można wygenerować:

- Znajdując wielomian f(x) stopnia n nierozkładalny w pierścieniu GF(p)[x].
- Znajdując wszystkie możliwe reszty z dzielenia wielomianu f(x) w pierścieniu GF(p)[x].
- Wykorzystując działania dodawania i mnożenia wielomianów modulo f(x).

Wielomianem drugiego stopnia nierozkładalnym w ciele G(3)[x] jest $x^2 + 1$ (patrz: Zadanie 7.). Wszystkie możliwe reszty z dzielenia tego wielomianu w pierścieniu G(3)[x] to: 2x+2, 2x+1, 2x, x+2, x+1, x, x, x, x.

1.6 Zadanie 7.

Treść: Wykazać, że wielomian x^2+1 jest nierozkładalny w pierścieniu wielomianów GF(3)[x], a jest rozkładalny w pierścieniu wielomianów GF(2)[x].

Rozwiązanie: Wielomian drugiego stopnia można rozłożyć za pomocą dwóch wielomianów pierwszego stopnia, więc:

$$x^{2} + 1 = (ax + b) * (cx + d)$$

 $x^{2} + 1 = (ac)x^{2} + (ad + bc)x + bd$

Dla ciała GF(3)[x], $b,d \in \{0,1,2\}$ oraz $a,c \in \{1,2\}$ (bo wielomian musi być rozkładalny). Rozważmy wszystkie możliwe wartości $(ad+bc) \mod 3$. Jeżeli $(ad+bc) \equiv 0 \mod 3 \Rightarrow a = 0 \land c = 0$, co jest sprzeczne z dziedziną, a więc wielomian nie może być rozkładalny.

Dla ciała GF(2)[x], $b,d \in \{0,1\}$ oraz $a,c \in \{1\}$. Jeżeli $(b+d) \equiv 0 \mod 2 \Rightarrow (b=0 \land d=0) \lor (b=1 \land d=1)$. Dla drugiego przypadku otrzymujemy w GF(2)[x]:

$$x^2 + 1 \equiv (x+1) * (x+1)$$

Zatem wielomian jest rozkładalny.

1.7 Zadanie 8.

Treść: Wykazać, że w grupie skończonej dla każdego $a \in G$ mamy: $a^{rzG} = 1$, gdzie rzG oznacza rząd grupy G. Wykazać, wykorzystując ten fakt, twierdzenie Eulera. (Wskazówka: wykorzystać twierdzenie Lagrange'a: dla grup skończonych rząd podgrupy jest dzielnikiem rzędu grupy).

Rozwiązanie: W ciągu $a^1, a^2, \cdots, a^{rzG}, a^{rzG+1}$ muszą być dwa elementy równe, tzn. dla pewnych $k', k'' \in [1, rzG+1], k' < k''$ musimy mieć $a^{k'} = a^{k''}$. Zatem $a^{k''-k'} = 1$. Istnieje więc takie $k \in [1, rzG] (k = k'' - k')$, że $a^k = 1$. Niech r będzie najmniejszym takim k, że $a^k = 1$, wówczas zbiór $H = \left\{a^1, a^2, \cdots, a^r\right\}$ stanowi podgrupę cykliczną rzędu r grupy G. Ponieważ, z twierdzenia Lagrange'a, r jest dzielnikiem rzędu grupy G, więc również $a^{rzG} = 1$.

Twierdzenie Eulera: jeśli $n \in \mathbb{N}$, $n \ge 2$ i $a \in \mathbb{N}$ oraz NWD(a,n)=1 to $a^{\phi(n)}\equiv 1 \mod n$, gdzie ϕ jest funkcją Eulera. Rozważmy grupę multiplikatywną Z_n^* . Grupa Z_n^* ma rząd równy $\phi(n)$. Zatem korzystając z $a^{rzG}=1$ dostajemy, że dla każdego $a \in Z_n^*$ mamy $a^{\phi(n)}\equiv 1 \mod n$. Warunek $a \in Z_n^*$ jest równoznaczny warunkowi NWD(a,n)=1. Zatem twierdzenie Eulera jest prostym wnioskiem z ogólnego twierdzenia teoriogrupowego $a^{rzG}=1$.

1.8 Zadanie 10.

Treść: Załóżmy, że mamy dwie niezależne zmienne losowe X_1 oraz X_2 o wartościach w zbiorze $Z_2 = \{0,1\}$. Wykazać, że jeśli X_1 ma rozkład równomierny, to również $X_1 \oplus X_2$ ma rozkład równomierny. Ten fakt jest podstawą protokołu o nazwie "rzut monetą przez telefon".

Rozwiązanie: Najpierw wykażemy, że odwzorowanie $Y = X_1 \otimes X_2$ jest zmienną losową. Ogólnie rzecz biorąc, jeśli (Ω,\mathfrak{M}) jest przestrzenią mierzalną, $(E_t,\mathfrak{F}_t)_{t\in T}$ jest dowolną rodziną przestrzeni mierzalnych, a odwzorowania $f_t:\Omega\to E_t$ są $(\mathfrak{M},\mathfrak{F}_t)$ mierzalne dla każdego $t\in T$ to odwzorowanie $P_t f_t:\Omega\to P_t E_t$ jest $(\mathfrak{M},P_t \mathfrak{F}_t)$ mierzalne. Stosując ten ogólny fakt do naszej sytuacji stwierdzamy, że odwzorowanie (X_1,X_2) jest $(\mathfrak{M},2^{\{0,1\}}\otimes 2^{\{0,1\}})$ mierzalne. Odwzorowanie $S:\{0,1\}\times\{0,1\}\ni (x_1,x_2)\to x_1\oplus x_2\in\{0,1\}$ jest oczywiście $(2^{\{0,1\}}\otimes 2^{\{0,1\}},2^{\{0,1\}})$ mierzalne, zatem $Y=X_1\oplus X_2$ jako superpozycja odwzorowań mierzalnych (X_1,X_2) i S jest $(\mathfrak{M},2^{\{0,1\}})$ mierzalne,

jest więc zmienną losową.

Udowodnimy teraz równomierność rozkładu zmiennej losowej $Y = X_1 \oplus X_2$. Oznaczmy:

$$\begin{array}{lcl} A_0 & = & \left\{ \omega \in \Omega; X_1(\omega) = 0, X_2(\omega) = 0 \right\}, \\ A_1 & = & \left\{ \omega \in \Omega; X_1(\omega) = 1, X_2(\omega) = 0 \right\}, \\ B_0 & = & \left\{ \omega \in \Omega; X_1(\omega) = 1, X_2(\omega) = 1 \right\}, \\ B_1 & = & \left\{ \omega \in \Omega; X_1(\omega) = 0, X_2(\omega) = 1 \right\}. \end{array}$$

Wówczas zdarzenia A_0 , A_1 , B_0 , B_1 są parami rozłączne. Stąd i z niezależności zmiennych losowych X_1 i X_2 oznaczając $P(X_1 = 0) = p_0$, $P(X_1 = 1) = p_1$ dostajemy:

$$P(Y = 1) = P(A_1 \cup B_1) = P(A_1) + P(B_1) =$$

$$= P(X_1 = 1) \cdot P(X_2 = 0) +$$

$$+P(X_1 = 0) \cdot P(X_2 = 1) =$$

$$= p_1 \cdot \frac{1}{2} + p_2 \cdot \frac{1}{2} = \frac{1}{2}$$

ponieważ $p_0 + p_1 = 1$. Podobnie:

$$P(Y = 0) = P(A_0 \cup B_0) = P(A_0) + P(B_0) =$$

$$= P(X_1 = 0) \cdot P(X_2 = 0) +$$

$$+P(X_1 = 1) \cdot P(X_2 = 1) =$$

$$= p_1 \cdot \frac{1}{2} + p_2 \cdot \frac{1}{2} = \frac{1}{2}$$

a więc istotnie zmienna losowa $Y = X_1 \oplus X_2$ ma rozkład równomierny.

2 Zadania przygotowujące do kolokwium #2 z PTKB

2.1 Zadanie 2.

Treść: Ile razy trzeba wykonać protokoł uwierzytelniania Fiata-Shamira by prawdopodobieństwo oszustwa było mniejsze od 10^{-100} .

Rozwiązanie: Patrz 1.1

2.2 Zadanie 3.

Treść: Pokazać jak musi spreparować protokół Fiata-Shamira Prover nie znający tajemnicy (a wieęc oszust lub zapominalski) by zawsze na wyzwanie e=1 odpowiadać prawidłowo.

Rozwiazanie:

- 1. Porver nie znający tajemnicy s prawdziwego Provera (czyli nie znający klucza prywatnego) losuje liczbę $r \in Z_n, r \neq 0, 1$. Podnosi do kwadratu modulo n (przypominamy, że n = pq, gdzie p,q są różnymi liczbami pierwszymi) i przesyła w pierwszym kroku protokołu do Verifiera liczbę $x = (r^2(modn)(s^2(modn))^{-1})(modn)$, gdzie $s \in Z_n$ jest tajemnicą (kluczem prywatnym) prawdziwego Provera, $s^2(modn) \in Z$, kluczem publicznym a odwrotność jest n brana w pierścieniu Z_n .
- 2. Jeśli Verifier żąda w drugim kroku protokołu odpowiedzi na pytanie e=1 to Prover wysyła do Verifiera liczbę y=r
- 3. Verifier sprawdza teraz równanie weryfikacyjne sprawdzając czy:

$$y^2(modn) = (x * s^2)(modn)$$

Równanie to jest dla y=r i $x=(r^2(modn)(s^2(modn))^{-1})(modn)$ Proverowi udało się dobrze odpowiedzieć na pytanie e=1 Verifiera.

2.3 Zadanie 33.

Treść: Obliczyć wartość symbolu Legendre'a: a) $\left(\frac{35}{7}\right)$ b) $\left(\frac{64}{5}\right)$

Rozwiązanie:

1.

$$(\frac{35}{7}) = (\frac{5}{7})(\frac{7}{7}) = 0$$

2.

$$(\frac{64}{5}) = (\frac{4}{5}) = 1$$

2.4 Zadanie 10.

Rozwiązanie: Patrz 1.8