

# SOLUTION OF 3 COMPONENT DECAY

Computer Project 1 of NPRE 247

Hao Xiong

OCTOBER 1, 2013
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

#### **I INTRODUCTION**

### 1.1 BACKGROUNDS

Radioactive decays obey to the radioactive decay law: the decay probability of an unstable nucleus is independent of the past history and is the same for all radionuclides of the same type.

$$\frac{dN}{dt} = -\lambda N \tag{1.1}$$

The number of atoms of a particular radionuclide depends on three aspects: (1) rates of production and decay, (2) initial values of it and its parents, (3) the rate at which it escapes from the sample. In this computer project, we consider a decay chain of three components, where A decays to B with decay constant  $\lambda_A$ , B decays to C with decay constant  $\lambda_B$  and C is stable.

$$A \xrightarrow{\lambda_A} B \xrightarrow{\lambda_B} C$$

We denote the number of these three types of particles at time t as  $N_A(t), N_B(t), N_C(t)$ , and decay constant of particle A, B as  $\lambda_A, \lambda_B$ . The differential decay equations for these particles are

$$\begin{split} \frac{dN_A(t)}{dt} &= -\lambda_A N_A(t) \\ \frac{dN_B(t)}{dt} &= -\lambda_B N_B(t) + \lambda_A N_A(t) \\ \frac{dN_C(t)}{dt} &= \lambda_B N_B(t) \end{split} \tag{1.2}$$

#### 1.2 ANALYTICAL SOLUTIONS

The analytical solutions of the equations above can be attained through this way: Integrate the first equation we can get  $N_A(t)$ ; Plug it into the second equation and integrate, we can get  $N_B(t)$ ; Plug it into the third equation and integrate, we can get  $N_C(t)$ . Thus, the solutions are

$$\begin{split} N_{A}(t) &= N_{A}(0)e^{-\lambda_{A}t} \\ N_{B}(t) &= N_{B}(0)e^{-\lambda_{B}t} + \frac{\lambda_{A}N_{A}(0)}{\lambda_{B} - \lambda_{A}} \Big[ e^{-\lambda_{A}t} - e^{-\lambda_{B}t} \Big] \\ N_{C}(t) &= N_{C}(0) + N_{B}(0) \Big[ 1 - e^{-\lambda_{B}t} \Big] + \frac{N_{A}(0)}{\lambda_{B} - \lambda_{A}} \Big[ \lambda_{B}(1 - e^{-\lambda_{A}t}) - \lambda_{A}(1 - e^{-\lambda_{B}t}) \Big] \end{split} \tag{1.3}$$

To obtain the time of maximal  $N_B$  , we can let  $\frac{dN_B(t)}{dt}=-\lambda_BN_B(t)+\lambda_AN_A(t)=0$  , which yields

$$\lambda_B N_B(t) = \lambda_A N_A(t) \tag{1.4}$$

$$\lambda_{B} \left( N_{B}(0)e^{-\lambda_{B}t} + \frac{\lambda_{A}N_{A}(0)}{\lambda_{B} - \lambda_{A}} \left[ e^{-\lambda_{A}t} - e^{-\lambda_{B}t} \right] \right) = \lambda_{A}N_{A}(0)e^{-\lambda_{A}t}$$

$$(1.5)$$

Its solution is

$$t = \frac{1}{\lambda_B - \lambda_A} \log(\frac{\lambda_A \lambda_B N_A(0) + \lambda_A \lambda_B N_B(0) - \lambda_B^2 N_B(0)}{\lambda_A^2 N_A(0)})$$
(1.6)

Note that, to make the above solution meaningful, these following conditions should be satisfied,

$$\lambda_{A}\lambda_{B}N_{A}(0) + \lambda_{A}\lambda_{B}N_{B}(0) - \lambda_{B}^{2}N_{B}(0) > 0 
\lambda_{B} - \lambda_{A} \quad \lambda_{A}\lambda_{B}N_{A}(0) + \lambda_{A}\lambda_{B}N_{B}(0) - \lambda_{B}^{2}N_{B}(0) - \lambda_{A}^{2}N_{A}(0) > 0$$
(1.7)

They can be simplified as

$$\lambda_A N_A(0) > \lambda_B N_B(0) \tag{1.8}$$

which means, the number of particle  $\,B\,$  should increase at first. So the time of maximal  $\,N_B\,$  is

$$t = \begin{cases} \frac{1}{\lambda_B - \lambda_A} \log(\frac{\lambda_A \lambda_B N_A(0) + \lambda_A \lambda_B N_B(0) - \lambda_B^2 N_B(0)}{\lambda_A^2 N_A(0)}) & \text{for } \lambda_A N_A(0) > \lambda_B N_B(0) \\ 0 & \text{for } \lambda_A N_A(0) \le \lambda_B N_B(0) \end{cases}$$
(1.9)

## 1.3 NUMBERICAL METHODS

In this section we show how to numerically solve the differential equations above with a forward difference approximation. For  $\frac{dN_i(t)}{dt}$ , we can approximate it as  $\frac{N_i(t+\Delta t)-N_i(t)}{\Delta t}$ . If we denote the initial number of paritcle i as  $N_i^1=N_i(0)$ , and denote the number after time  $(j-1)\Delta t$  as  $N_i^j$ , then we can approximate  $\frac{dN_i(t)}{dt}$  as  $\frac{N_i^{j+1}-N_i^j}{\Delta t}$  for time  $t=(j-1)\Delta t, j=1,2,3,\ldots$ . Thus, the differential equations can be converted into the equations below,

$$\begin{split} N_A^{j+1} &= N_A^j + (-\lambda_A N_A^j) \Delta t \\ N_B^{j+1} &= N_B^j + (-\lambda_B N_B^j + \lambda_A N_A^j) \Delta t \\ N_C^{j+1} &= N_C^j + (\lambda_B N_B^j) \Delta t \end{split} \tag{1.10}$$

If we give the initial number of these three types of particles  $N_1^1, N_2^1, N_3^1$ , then we can get  $N_A^2, N_B^2, N_C^2$  using the above equations, and so on. Thus, by repeating this process, we can get the numbers at any time  $t=(j-1)\Delta t, j=1,2,3,\ldots$ , with a time resolution of  $\Delta t$ .

To use the numerical solutions above, we also need these initial values: (1) half life time  $T_{1/2}$  or decay constant  $\lambda$  of particle A and B; (2) initial numbers of A, B and C; (3) time resolution  $\Delta t$  used to calculate; (4) final time  $t_{\text{final}}$ , which is the end time of calculation.

In practice, the given  $\Delta t$  may yields a coarse solution, which is not stable enough. Thus, we may have to decrease  $\Delta t$  by half until the solution does not change significantly with further decreasing of  $\Delta t$ .

# 1.4 FILE FORMAT DESCRIPTION

There are four output files for every decay chain, they are

- (1) Coarse numbers of A, B and C;
- (2) Medium numbers of A, B and C;
- (3) Stable numbers of A, B and C;
- (4) Time of maximal  $N_B$  vs.  $1/\triangle t$  .

The first three files have the following format,

(First line) 
$$T_{1/2A}$$
  $T_{1/2B}$   $N_{A0}$   $N_{B0}$   $N_{C0}$   $\triangle t_{\mathrm{initial}}$   $t_{\mathrm{final}}$ 

(Second line)  $\triangle t_{\mathrm{used}}$  'Length of the data'

(Third line) data.

The fourth file has the following format,

(First line) 
$$T_{1/2A}$$
  $T_{1/2B}$   $N_{A0}$   $N_{B0}$   $N_{C0}$   $\triangle t_{\mathrm{initial}}$   $t_{\mathrm{final}}$ 

(Second line)  $t_{\mathrm{max}}$  calculated by analytical solution; 'length of the data'

(Third line) data.

### II DECAY CHAIN 1

In this section, we consider a given decay chain with the following initial values:

Table 2.1 Initial values of decay chain 1

| $t_{1\!/2A}$ | $t_{1\!/2B}$ | $t_{1\!/2C}$ | $N_{A0}$ | $N_{B0}$ | $N_{C0}$ | $\triangle t$ | $t_{ m final}$ |
|--------------|--------------|--------------|----------|----------|----------|---------------|----------------|
| 1h           | 10h          | stable       | 100      | 0        | 0        | 1h            | 50h            |

Here,  $t_{1/2A}$  and  $t_{1/2B}$  are half life time of A and B; C is stable.  $N_{A0}$ ,  $N_{B0}$ ,  $N_{C0}$  are initial numbers of A, B and C.  $\Delta t$  is the given initial time interval used for calculation.  $t_{\text{final}}$  is the end time of calculation.

With equations (1.3) and (1.10) in section I, we could get the analytical and numerical solutions. Here, we assume that if the maximal difference of numbers between results calculated from  $\Delta t$  and  $\Delta t/2$  is 0.01, the numerical solution is stable. This value could be smaller if needed.

The numerical solution shows: when  $\Delta t = 1h$ , it gives a coarse solution; when  $\Delta t = 0.5002h$ , it gives a medium solution; when  $\Delta t = 0.00049h$ , it gives a stable solution, which means the change of numbers with further smaller  $\Delta t$  is within 0.01. These three situations and the analytical solution are shown in Fig. 2.1.



Fig. 2.1 Coarse, medium and stable number of  $N_B$ .

The green line indicates the analytical solution.

For stable condition, the numbers of A, B and C and their sum are shown in Fig. 2.2.



Fig. 2.2 stable numbers of  $\,N_A,N_B,N_C$  . The black dash line indicates their sum, which is always  $\,N_{A0}\,+N_{B0}\,+N_{C0}$  .

Time of maximal  $N_B$  and dependence of  $1/\Delta t$  are shown in Fig. 2.3. The time value of the maximal  $N_B$  obtained from equation (1.9) is also shown in it.



Fig 2.3 The time of maximal  $\,N_{B}\,$  vs.  $\,1\!/\!\!\!\!\!\triangle t$ 

## III DECAY CHAIN 2

In this section, we consider a given decay chain with the following initial values:

Table 3.1 Initial values of decay chain 2

| $t_{1\!/2A}$ | $t_{1\!/2B}$ | $t_{1\!/2C}$ | $N_{A0}$ | $N_{B0}$ | $N_{C0}$ | $\triangle t$ | $t_{ m final}$ |
|--------------|--------------|--------------|----------|----------|----------|---------------|----------------|
| 2min         | 12s          | stable       | 100      | 0        | 0        | 10s           | 10min          |

The symbols used here has the same meaning as those in section II.

The numerical solution shows: when  $\Delta t = 10s$ , it gives a coarse solution; when  $\Delta t = 0.5002h$ , it gives a medium solution; when  $\Delta t = 0.00049h$ , it gives a stable solution, which means the change of numbers with further smaller  $\Delta t$  is within 0.01. These three situations and the analytical solution are shown in Fig. 2.1.



Fig. 3.1 Coarse, medium and stable number of  $N_B$ .

The green line indicates the analytical solution.

For stable condition, the numbers of A, B and C and their sum are shown in Fig. 2.2.



Fig. 3.2 stable numbers of  $\,N_A,N_B,N_C$  . The black dash line indicates their sum, which is always  $\,N_{A0}\,+N_{B0}\,+N_{C0}$  .

Time of maximal  $N_B$  and dependence of  $1/\Delta t$  are shown in Fig. 2.3. The time value of the maximal  $N_B$  obtained from equation (1.9) is also shown in it.



Fig 3.3 The time of maximal  $\,N_{B}\,$  vs.  $\,1\!/\!\!\!\!/ \triangle t$