

Práctica 3

Multiplicador en array

$egin{array}{cccccccccccccccccccccccccccccccccccc$
1 1 1 0 1
1 1 1 0 1
1 1 1 0 1
0 0 0 0
1 1 1 0 1
1 1 1 0 1
1 1 0 0 0 0 1 1 1 1

Acarreos

Suma

Puede haber bastante acarreos ¿deberían sumarse a la vez?

							٨	carre	200	T	E
	1	1	1	1]			Carre	=03		
1	1	1	1	1	1						
					1	1	1	0	1	1 1 1 0 1	-
				1	1	1	0	1		1 1 1 0 1	
			0	0	0	0	0			$0 \ 0 \ 0 \ 0 \ 0$	
		1	1	1	0	1				1 1 1 0 1	
	1	1	1	0	1					1 1 1 0 1	
1	1	0	0	0	0	1	1	1	1	1 - 1 - 0 - 0 - 0 - 0 - 1 - 1 - 1	

Cada flecha representa un acarreo

¿El resultado sería el mismo?

- ¿Cómo se traduce el esquema a Hardware?
 - Hay que hacer la and de todos los elementos del multiplicando por todos los elementos del multiplicador
 - Se suman todos los elementos de la misma columna mas el acarreo
 - El acarreo se pasa a la siguiente columna una fila más abajo
 - Los acarreos que se pasan al resultado se trasladan a la siguiente columna pero siguen en la fila resultado

T E

- Asignar nombres a los cables
 - Como se tiene una matriz (6x10) de bits todas las señales serán del siguiente tipo:

type matriz is array (0 to 5) of std_logic_vector(10 downto 0);

Multiplicación nxn

 Transformamos un paralelepípedo en un cuadrado

Práctica 3a

- T E
- Reconstruir en VHDL el cuadrado anterior
 - No hace falta generalizarlo, simplemente traducir el dibujo a código VHDL
 - Práctica 2a funcionando sobre FPGA: 2 puntos
 - Hay 12 switches en la FPGA (placa inferior y superior)
 - Pero sólo hay 8 LEDS, utilizar dos segmentos del display 7 segmentos para representar los bits más significativos de la multiplicación

```
– Ej:NET P<8> LOC=H14;NET P<9> LOC=M4;
```

T L

Filas: for i in 0 to N-1 generate

Columnas: for j in 0 to 2xN-2 generate

- ¿Todas las columnas son iguales?
- ¿Todas las filas son iguales?
 - La interconexión de la última fila es diferente => La última fila no se hace en los dos for encadenados
 - for i tiene que ir hasta N 2
 - La última fila se hará en un for generate aparte

- Condiciones de contorno
 - ¿Cuánto vale la suma (como entrada) para la fila0?
 - ¿Cuánto vale acarreo (como entrada) para la fila 0 y para la columna 0?

O	0	0	0	$a_4 x_0$	a_3x_0	$a_2 x_0$	a_1x_0	$a_0 x_0$
X	X	X	X	\boldsymbol{X}	X	X	\boldsymbol{X}	X
\boldsymbol{X}	X	X	X	\boldsymbol{X}	\boldsymbol{X}	\boldsymbol{X}	X	X
\boldsymbol{X}	X	X	X	X	\boldsymbol{X}	\boldsymbol{X}	X	X
X	X	X	X	\boldsymbol{X}	X	X	X	\boldsymbol{X}

suma

X = indeterminado, da igual su valor ya lo calculará el circuito

		acarreo										
0	0	0	0	0	0	0	0	0				
X	X	X	X	X	X	X	X	0				
X	X	X	X	X	X	X	\boldsymbol{X}	0				
\boldsymbol{X}	X	X	\boldsymbol{X}	\boldsymbol{X}	X	\boldsymbol{X}	X	0				
X	X	X	X	X	X	X	X	0				

Ejemplo para condiciones de contorno de la señal suma:

Valores iniciales

mult
$$0$$
 0 0 a_4x_1 a_3x_1 a_2x_1 a_1x_1 a_0x_1 0 0 0 a_4x_2 a_3x_2 a_2x_2 a_1x_2 a_0x_2 0 0 0 a_4x_3 a_3x_3 a_2x_3 a_1x_3 a_0x_3 0 0 0 a_4x_4 a_3x_4 a_2x_4 a_1x_4 a_0x_4 0 0 0 0

¿Dónde está el producto (AND) de x_0 con todas las a?

- En la fila 0 que columnas están ocupadas
 - De la 1 a la 5
- En la fila 1 que columnas están ocupadas
 - De la 2 a la 6
- En la fila 4 que columnas están ocupadas
 - De la 5 a la 9

Siempre están ocupadas sólo N columnas

Multiplicación nxn

Los extremos: p(0) y p(2*N-1) se tienen que asignar a mano

¿Qué pasa con todo el HW que hemos añadido de más?

Durante la síntesis se elimina lógica "innecesaria"

¿Qué pasa con el HW que hemos añadido de más?

- Revisar los warnings para asegurarnos que no ha borrado celdas de más
- Revisar View RTL Schematics para asegurarnos que el circuito final es el esperado

¿Qué pasa con el HW que hemos añadido de más?

Práctica 3b

- T L
- Construir en VHDL un multiplicador nxn
 - Contestar preguntas de test 5 puntos
 - Si la práctica b os funciona, podéis enseñar directamente en la FPGA el apartado 2b para N=5, en lugar de enseñar el 2a (+ 2 ptos.)

```
entity multiplicador is
  generic ( N: integer := 5);
  port (a, x: in std_logic_vector(N-1 downto 0);
  p: out std_logic_vector((2*N)-1 downto 0));
end multiplicador;
```

Práctica 3c

Avanzado:

- En el laboratorio se pedirá a los alumnos una modificación del código presentado.
- -+3 puntos