Dartmouth College COVID-19 Vaccination Staff Scheduling

ENGS103 Spring 2021 Tiantong Qi, Lilly Yang, Ye Zhang

Dr. Lisa Adams and Joshua Keniston

☐ Inbox - Dartmouth April 23, 2021 at 1:38 PM

COVID-19 Campus Update: On-Site Vaccination Clinics

To: All Students:;, All Faculty:;, All Staff:;

To the Dartmouth community,

We are pleased to share that we have partnered with the state of New Hampshire to offer on-site, first-dose vaccination clinics for Dartmouth students, staff, and faculty who are 18 or older. The clinics will take place from 8 a.m. to 6:30 p.m. on Wednesday. May 5, and Thursday. May 6, in Thompson arena. These appointments are open to those who have not yet received their first COVID-19 vaccine. They can be booked online at http://dartgo.org/vaxappt. An appointment is necessary to receive a vaccine.

The state has indicated that they will provide us with doses of either Moderna or Pfizer-BioNTech vaccines. The clinics are open to everyone regardless of whether they are residents of New Hampshire. More details, including appointment instructions, are being emailed to students and employees today.

We will announce the dates of clinics to provide a second dose of vaccine to individuals who receive their first dose at Dartmouth as soon as those details have been finalized.

We are excited to be able to offer our community this opportunity, which we hope will help bring us even closer to a more normal on-campus environment.

Sincerely,

Dr. Lisa V. Adams Josh Keniston

Dartmouth COVID-19 Task Force Co-Chairs

Background

- Where: Thompson arena
- When: May 5th, May 6th
- Who: Dartmouth students, faculty & staff

- ~6500 population, 20% unvaccinated
 - Vaccinate 1300 people in 2 days

Problem Statement

To accelerate the path of returning to campus on fall, **Dartmouth College** is **managing medical workforce** to efficiently provide **on campus** first dose COVID-19 vaccination appointments to Dartmouth students, staff and faculty on **May 5th and 6th**, so that the vaccination can be **completed within a reasonable time** and the **unnecessary waste of medical workforce is avoided**.

- 1. How much human resource is required to satisfy demand? ---> Queuing theory and simulation
- 2. What is the lowest cost to assign workers with different skills and salary? ----> Integer programming

Agenda

- Process Overview
- No pre-registration: Queueing Theory
- Pre-registration: Simulation
- Nurse scheduling: Integer Programming
- Potential Improvement & Future Steps

Queuing Theory

No Pre-Registration: Queuing theory

Assumptions:

- Registration times are negative exponential with mean rate of 1 every 4 minutes
- Vaccination times are negative exponential with mean rate of 1 every 3 minutes
- Recording times are negative exponential with mean rate of 1 every 3 minutes
- Observation 15 min for all
- Arrival process is Poisson:
 - 8:00-11:30: inter arrival time mean = 2 min
 - \circ 11:30-3:00: inter arrival time mean = 1.43 min
 - \circ 3:00-6:30: inter arrival time mean = 1.11 min

Registration Queue

1 patient/ 4min

1 patient/3min

Results

Simulation

- # registration stations and # vaccination stations varied to find the reasonable set of staff numbers that yields reasonable total time in the system (<30min)
- 8:00am-6:30pm, 10 min appointments slots available, 10 slots per 10 min
- Level of busyness varied by % of people who signed up
- 3.5hr simulation periods, equivalent to shift length, simulated multiple times

			1←	Arrive
	N1	Outside of Arena Capacity = Infinite		
Number of			—	TSA start
people in each State = N	N2	Registration Queue Capacity = 30	-	TSA complete
			↓	Registration Start
There is an N	N3	Registration Stations		
for each state	145	Capacity = a	—	Registration Complete
for every Δt	N4	Vaccine Queue		·
ioi every Δt		Capacity = 5] ,	Vaccination/Decording Start
	N5	Vaccination Stations		Vaccination/Recording Start
		Capacity = b		Both Complete
	N6	Observation		Both Complete
		Capacity = 60		Duna anna Camandata
		-	-	Process Complete

For each person that comes to the vaccination Simulation Algorithm ->

Then time in the system W is calculated

Time in systems calculated with different # of stations

	1	2	3	4	5	6			
1	160.0589	128.4338	127.5529	127.4257	125.8966	126.9808			
2	131.6591	44.6347	37.16632	36.18122	35.90469	35.98012			
3	129.3792	35.09832	26.6427	26.06307	25.89047	25.86569			
4	130.9925	34.20051	25.64519	24.99642	24.87306	24.85764			
5	129.7175	34.243	25.39045	24.83361	24.69813	24.65446			
6	129.663	34.04469	25.35193	24.78221	24.67269	24.63315			

Shift 1 (relatively) Idle

Registration Stations

vaccination stations

vaccination stations 1 5 6 248.2986 205.1096 205.0978 206.4149 204.1084 205.4796 # Registration Stations 214.3726 85.02821 68.76478 66.92255 66.89638 67.09747 212.1873 69.42814 35.36896 31.22662 30.52265 30.19805 211.2348 68.18714 29.83244 26.14779 25.66994 25.52728 212.3847 29.32588 68.30247 25.39201 24.95664 24.86789 211.6365 67.94748 28.56874 25.19043 24.80507 24.69743 Shift 2 Normal # vaccination stations 6

338.3333 286.6138 285.5161 283.9802 285.2086 284.4529 # Registration Stations 295.4905 128.3856 108.4287 106.2201 105.5732 105.5659 293.3481 109.7111 60.48912 49.60022 47.2973 47.22472 293.3535 107.9419 49.45368 31.10255 28.49382 28.11046 292,727 107.487 47.99694 27.71783 25.75922 25.38716 292.4625 107.9519 47.57065 26.96659 25.22146 24.93989

Shift 3 Busy

Conditions with time less than 30 min

vaccination stations 2 5 1 6 127.4257 160.0589 128.4338 127.5529 125.8966 126.9808 2 131.6591 44.6347 37.16632 36.18122 35.90469 35.98012 129.3792 26.6427 25.89047 35.09832 26.06307 25.86569 130.9925 34.20051 25.64519 24.99642 24.87306 24.85764 129.7175 34.243 25.39045 24.83361 24.69813 24.65446 6 129.663 34.04469 25.35193 24.78221 24.67269 24.63315

Shift 1 (relatively) Idle

Registration Stations

vaccination stations 1 5 6 248.2986 205.1096 205.0978 206.4149 204.1084 205.4796 Stations 214.3726 85.02821 68.76478 66.92255 66.89638 67.09747 212.1873 69.42814 35.36896 31.22662 30.52265 30.19805 # Registration 211.2348 29.83244 68.18714 26.14779 25.66994 25.52728 212.3847 29.32588 68.30247 25.39201 24.95664 24.86789 211.6365 67.94748 28.56874 25.19043 24.80507 24.69743 Shift 2 Normal # vaccination stations 5 6 286.6138 283.9802 338.3333 285.5161 285.2086 284.4529 # Registration Stations 2 295.4905 128.3856 108.4287 106.2201 105.5732 105.5659 293.3481 109.7111 60.48912 49.60022 47.2973 47.22472 293.3535 107.9419 49.45368 31.10255 28.49382 28.11046

Shift 3 Busy

27.71783

26.96659

25.75922

25.22146

25.38716

24.93989

47.99694

47.57065

292,727

292.4625

6

107.487

107.9519

- More staff, less average time
- Improvement of wait time per additional station decreases as # stations increase

	1	2#	vaccinatio	5	6		
1	338.3333	286.6138	285.5161	283.9802	285.2086	284.4529	
2	295.4905	128.3856	108.4287	106.2201	105.5732	105.5659	
3	293.3481	109.7111	60.48912	49.60022	47.2973	47.22472	
4	293.3535	107.9419	49.45368	31.10255	28.49382	28.11046	Less time
5	292.727	107.487	47.99694	27.71783	25.75922	25.38716	
6	292.4625	107.9519	47.57065	26.96659	25.22146	24.93989	▼

Less time

- More staff, less average time
- Improvement of wait time per additional station decreases as # stations increase

	1	2#	vaccinatio	on stations	5	6	
1	338.3333	286.6138	285.5161	283.9802	285.2086	284.4529	178.8871
2	295.4905	128.3856	108.4287	106.2201	105.5732	105.5659	
3	293.3481	109.7111	60.48912	49.60022	47.2973	47.22472	58.34115
4	293.3535	107.9419	49.45368	31.10255	28.49382	28.11046	19.11426
5	292.727	107.487	47.99694	27.71783	25.75922	25.38716	2.723297
6	292.4625	107.9519	47.57065	26.96659	25.22146	24.93989	0.447269

184.5106 60.38122 20.60406 1.745135 0.281564

- More staff, less average time
- Improvement of wait time per additional station decreases as number of the same type of station increase
 1
 2
 3
 4
 5
 6

184.5106 60.38122 20.60406 1.745135 0.281564

- More staff, less average time
- Improvement of wait time per additional station decreases as number of the same type of station increase

	1	2	3	4	5	6	
1	338.3333	286.6138	285.5161	283.9802	285.2086	284.4529	178.8871
2	295.4905	128.3856	108.4287	106.2201	105.5732	105.5659	
3	293.3481	109.7111	60.48912	49.60022	47.2973	47.22472	58.34115
4	293.3535	107.9419	49.45368	31.10255	28.49382	28.11046	19.11426
5	292.727	107.487	47.99694	27.71783	25.75922	25.38716	2.723297
6	292.4625	107.9519	47.57065	26.96659	25.22146	24.93989	0.447269

184.5106 60.38122 20.60406 1.745135 0.281564

Comparison with Queuing Model

- Same trend
- Difference in time due to different assumptions

	3		4		5		6	
	Sim	Que	Sim	Que	Sim	Que	Sim	Que
3	26.6427	26.1						
4	25.64519	24.2	24.99642	23.8	24.87306	32.5		
5	25.39045	23.9	24.83361	22.7	24.69813	23.2	24.65446	26.6
6	25.35193	23.8	24.78221	22.4	24.67269	22.4	24.63315	22.8

Comparison of shift 1 results

Integer Programming

Parameters

Parameters	Value
Number of candidate staff	11
Number of candidate staff manager	3
Number of candidate vaccination specialist	12
Number of candidate medical student	5
Number of shifts per day	3
Minimum number of shift each day	0
Maximum number of shift each day	2

Parameters	Value
Cost for each registration staff	\$10
Cost for each registration manager	\$15
Cost for each vaccination staff	\$30
Cost for each medical student	\$0
Number of staff in each vaccination station	2
Number of staff in each registration station	1
Number of staff in each observation station	1
Number of vaccination stations per shift	based on scenario
Number of registration stations per shift	based on scenario
Number of observation stations per shift	based on scenario

Integer Programming Formulation

Data:

V: set of all vaccination specialists and medical students

 V_s : set of medical students

R: set of staff responsible for registration and observation

 R_m : set of staff manager

S: set of shifts

D: set of days

 v_i : cost of assigning a vaccination specialist or a medical student i

 r_i : cost of assigning a staff j

 q_s : number of total staff required a shift s

 q_v : number of vaccination specialist and medical students required for a shift s

 s_d : subset of shifts in day d

Decision Variables:

 x_i : whether or not to assign the vaccination specialist or the medical student i

 y_i : whether or not to assign the staff to registration or observation station j

Integer Programming Formulation

 $Minimize \sum_{i \in V} v_i * x_i + \sum_{j \in R} r_j * y_j \tag{1}$

Subject to:

$$\sum_{i \in V} x_i + \sum_{j \in R} y_j = q_s, \forall s \in S$$
 (2)

$$\sum_{i \in V} x_i \ge q_v, \forall s \in S \tag{3}$$

$$0 \leq \sum_{i \in V} x_i \leq 2, \forall d \in D \tag{4}$$

$$0 \le \sum_{j \in R} y_j \le 2, \forall d \in D \tag{5}$$

$$\sum_{i \in V_s} x_i \le 2, \forall s \in S \tag{6}$$

$$\sum_{j \in R_m} y_j \ge 1, \forall s \in S \tag{7}$$

$$x_i \in \{0, 1\}, \forall i \in V \tag{8}$$

$$y_j \in \{0, 1\}, \forall j \in R \tag{9}$$

Simulation Results

Benchmark Scenario 1. Shortest time

2. Fewest People

3. Similar Time

vaccination stations

Shift 1 (relatively) Idle

vaccination stations

Shift 3 Busy

Scenarios & Results

Scenario				Simulation W (min)				Cost
No.	Vaccination Station	Registration Station	Observation Station	Shift 1 (min)	Shift 2 (min)	Shift 3 (min)	Average (min)	(\$)
benchmark	4,4,4,4,4,4	5,5,5,5,5,5	1,1,2,1,1,2	24.8336	25.3920	27.7178	25.9811	1160
1	6,6,6,6,6,6	6,6,6,6,6,6	1,1,2,1,1,2	24.63315	24.6974	24.9399	24.7568	2060
2	3,3,4,3,3,4	3,4,5,3,4,5	1,1,2,1,1,2	26.6427	29.8324	27.7178	28.0643	800
3	4,5,5,4,5,5	4,5,5,4,5,5	1,1,2,1,1,2	24.7964	24.9566	25.2215	25.1705	1340

Shift Assignment (benchmark scenario)

Shift No.	Specialist	Student	Reg Manager	Reg Staff
May 5th - shift 1	3,4,5,6,7	13,15	1,2,3	11
May 5th - shift 2	1,2	16,17	2,3	4,5,6,7,8
May 5th - shift 3	1,2	16,17	1	4,5,6,7,8,9,10,11,12,14
May 6th - shift 1	9,10,11	14,16	1,2,3	4,5,7
May 6th - shift 2	7,9,10,11	13,17	3	4,6,10,11
May 6th - shift 3	7,8	15,17	1,2	5,6,7,8,9,10,11,12,14

Shift Assignment (scenario 1)

Shift No.	Specialist	Student	Reg Manager	Reg Staff
May 5th - shift 1	4,5,7,12	14,17	1,2,3	4
May 5th - shift 2	1,2,3,5,6,7,8,9,10	14,16	2,3	5,6,8,10,11,13
May 5th - shift 3	1,2,3,4,6,8,9,10,11	12,16	1	4,5,6,7,8,9,10
May 6th - shift 1	1,2,3,4,8,9,10,11	13,16	2,3	4,6,7,8,9,10
May 6th - shift 2	1,5,6,7,9,10,11,12	13,17	1	4,6,9,10,11,12,13,14
May 6th - shift 3	2,3,4,5,6,7,8,12	15,17	1,2,3	5,7,8,11,12,13,14

Shift Assignment (scenario 2)

Shift No.	Specialist	Student	Reg Manager	Reg Staff
May 5th - shift 1	2	13,15	1	4,5,9,10,13,14
May 5th - shift 2	1	16,17	3	6,7,8,10,11,12,14
May 5th - shift 3	1,2	16,17	1	3,4,5,6,7,8,9,11,12,13
May 6th - shift 1	11	14,16	3	4,5,9,10,12,13
May 6th - shift 2	12	13,17	2	4,6,7,8,11,13,14
May 6th - shift 3	8,9	15,17	2	3,5,6,7,8,9,10,11,12,14

Shift Assignment (scenario 3)

Shift No.	Specialist	Student	Reg Manager	Reg Staff
May 5th - shift 1	3,4,5,6,7	13,15	2,3	4,6,12
May 5th - shift 2	1,2,3	16,17	1,2,3	5,7,8,9,10,11,13,14
May 5th - shift 3	1,2,4	16,17	1	4,5,6,7,8,9,10,11,12,13,1
May 6th - shift 1	9,10,11	14,16	1,3	4,5,7,9,13
May 6th - shift 2	9,10,11,12	13,17	2	4,6,8,9,10,11,12,13,14
May 6th - shift 3	4,5,6,7,8	15,17	1,2,3	5,7,8,10,11,12,14

Conclusion

- More staffing results in <u>less vaccination time</u>, but the <u>marginal benefit decreases</u>
- To keep the average time <u>under 30 min</u>, at least 3 registration and 3 vaccination stations is needed.
- The staffing cost can be potentially decreased by 31% from benchmark situation if the health services is willing to increase the average wait time by 1 minute.

Potential Improvements & Future Steps

- Use more realistic data, especially for arrival rate
- Use weighted score to evaluate the scenario performance

Enjoy Summer!

Reference

Dartmouth Common Data Set. https://www.dartmouth.edu/oir/data-reporting/cds/index.html

New Hampshire COVID-19 Response. https://www.covid19.nh.gov/dashboard/vaccination

OFFICIAL SITE OF DARTMOUTH COLLEGE VARSITY ATHLETICS.

https://dartmouthsports.com/sports/2018/5/29/thompson-arena.aspx

Asgary, Ali, et al. "A drive-through simulation tool for mass vaccination during COVID-19 pandemic." Healthcare. Vol. 8. No. 4.

Multidisciplinary Digital Publishing Institute, 2020.

Wiggers, Jochem, et al. "Design and Analysis of a Simulation Model for Drive-Through Mass Vaccination." IIE Annual Conference.

Proceedings. Institute of Industrial and Systems Engineers (IISE), 2011.

Q&A

Data available: https://github.com/yezhang2020/ENGS103

Useless slides

Simulation Set up

a.

10min registration period

- b. 10 slots per period
- c. i. 8:00-11:30: inter arrival time mean = 2min, pct = 50%
 - ii. 11:30-3:00: inter arrival time mean = 1.43min, pct = 70%
 - iii. 3:00-6:30: inter arrival time mean = 1.11min, pct = 90%
- d. Uniform distribution between [-10 10] min of scheduled time.
- e. Assume infinite queue capacity after arrival (can always wait outside the arena)