Lecture 7: Support Vector Machines I

Reading: Section 12.2

GU4241/GR5241 Statistical Machine Learning

Linxi Liu February 15, 2019

Hyperplanes

Hyperplanes

A **hyperplane** in \mathbb{R}^d is a linear subspace of dimension (d-1).

- A \mathbb{R}^2 -hyperplane is a line, a \mathbb{R}^3 -hyperplane is a plane.
- ► As a linear subspace, a hyperplane always contains the origin.

Normal vectors

A hyperplane H can be represented by a **normal vector**. The hyperplane with normal vector \mathbf{v}_H is the set

$$H = \{ \mathbf{x} \in \mathbb{R}^d \mid \langle \mathbf{x}, \mathbf{v}_{\mathsf{H}} \rangle = 0 \} .$$

Which side of the plane are we on?

- ▶ The projection of \mathbf{x} onto the direction of \mathbf{v}_H has length $\langle \mathbf{x}, \mathbf{v}_H \rangle$ measured in units of \mathbf{v}_H , i.e. length $\langle \mathbf{x}, \mathbf{v}_H \rangle / ||\mathbf{v}_H||$ in the units of the coordinates.
- Recall the cosine rule for the scalar product,

$$\cos \theta = \frac{\langle \mathbf{x}, \mathbf{v}_{\mathsf{H}} \rangle}{\|\mathbf{x}\| \cdot \|\mathbf{v}_{\mathsf{H}}\|} \ .$$

► Consequence: The distance of x from the plane is given by

$$d(\mathbf{x}, H) = \frac{\langle \mathbf{x}, \mathbf{v}_{\mathsf{H}} \rangle}{\|\mathbf{v}_{\mathsf{H}}\|} = \cos \theta \cdot \|\mathbf{x}\|.$$

ightharpoonup We can decide which side of the plane ${f x}$ is on using

$$\operatorname{sgn}(\cos \theta) = \operatorname{sgn}\langle \mathbf{x}, \mathbf{v}_{\mathsf{H}} \rangle$$
.

Affine Hyperplanes

Affine Hyperplanes

- An affine hyperplane $H_{\mathbf{w}}$ is a hyperplane translated (shifted) by a vector \mathbf{w} , i.e. $H_{\mathbf{w}} = H + \mathbf{w}$.
- We choose \mathbf{w} in the direction of \mathbf{v}_{H} , i.e. $\mathbf{w} = c \cdot \mathbf{v}_{H}$ for c > 0.

Which side of the plane?

ightharpoonup Which side of $H_{\mathbf{w}}$ a point \mathbf{x} is on is determined by

$$\operatorname{sgn}(\langle \mathbf{x} - \mathbf{w}, \mathbf{v}_{\mathsf{H}} \rangle) = \operatorname{sgn}(\langle \mathbf{x}, \mathbf{v}_{\mathsf{H}} \rangle - c \langle \mathbf{v}_{\mathsf{H}}, \mathbf{v}_{\mathsf{H}} \rangle) = \operatorname{sgn}(\langle \mathbf{x}, \mathbf{v}_{\mathsf{H}} \rangle - c \|\mathbf{v}_{\mathsf{H}}\|^2) \ .$$

ightharpoonup If \mathbf{v}_{H} is a unit vector, we can use

$$sgn(\langle \mathbf{x} - \mathbf{w}, \mathbf{v}_{\mathsf{H}} \rangle) = sgn(\langle \mathbf{x}, \mathbf{v}_{\mathsf{H}} \rangle - c)$$
.

Classification with Affine Hyperplanes

Linear Classifiers

Definition

A linear classifier is a function of the form

$$f_{\mathsf{H}}(\mathbf{x}) := \mathsf{sgn}(\langle \mathbf{x}, \mathbf{v}_{\mathsf{H}} \rangle - c) ,$$

where $\mathbf{v}_{\mathsf{H}} \in \mathbb{R}^d$ is a vector and $c \in \mathbb{R}_+$.

Note: We usually assume v_H to be a unit vector. If it is not, f_H still defines a linear classifier, but c describes a shift of a different length.

Definition

Two sets $A,B\in\mathbb{R}^d$ are called **linearly separable** if there is an affine hyperplane H which separates them, i.e. which satisfies

$$\langle \mathbf{x}, \mathbf{v}_{\mathsf{H}} \rangle - c = \begin{cases} < 0 & \text{if } \mathbf{x} \in A \\ > 0 & \text{if } \mathbf{x} \in B \end{cases}$$

Maximum Margin Idea

- Suppose we have a classification problem with response Y=-1 or Y=1.
- ▶ If the classes can be separated, most likely, there will be an infinite number of hyperplanes separating the classes.

Maximum Margin Idea

Idea:

- Draw the largest possible empty margin around the hyperplane.
- ▶ Out of all possible hyperplanes that separate the 2 classes, choose the one such that distance to closest point in each class is maximal. This distance is called the *margin*.

Possible solution

Good generalization under a specific distribution (here: Gaussian)

Maximum margin solution

Example: Gaussian data

- The ellipses represent lines of constant standard deviation (1 and 2 STD respectively).
- ▶ The 1 STD ellipse contains $\sim65\%$ of the probability mass ($\sim95\%$ for 2 STD; $\sim99.7\%$ for 3 STD).

Optimal generalization: Classifier should cut off as little probability mass as possible from either distribution.

Generalization Error

Without distributional assumption: Max-margin classifier

- ▶ Philosophy: Without distribution assumptions, best guess is symmetric.
- In the Gaussian example, the max-margin solution would not be optimal.

Substituting convex sets

Observation

Where a separating hyperplane may be placed depends on the "outer" points on the sets. Points in the center do not matter.

In geometric terms

Substitute each class by the smallest convex set which contains all point in the class:

Substituting convex sets

Definition

If C is a set of points, the smallest convex set containing all points in C is called the **convex hull** of C, denoted conv(C).

Corner points of the convex set are called **extreme points**.

Barycentric coordinates

Every point x in a convex set can be represented as a convex combination of the extreme points $\{e_1,\ldots,e_m\}$. There are weights $\alpha_1,\ldots,\alpha_m\in\mathbb{R}_+$ such that

$$\mathbf{x} = \sum_{i=1}^{m} \alpha_i e_i$$
 and $\sum_{i=1}^{m} \alpha_i = 1$.

 e_1 α_1 e_2 α_3 e_3

The coefficients α_i are called **barycentric coordinates** of x.

Convex Hulls and Classification

Key idea

A hyperplane separates two classes if and only if it separates their convex hull.

Next: We have to formalize what it means for a hyperplane to be "in the middle" between to classes.

Distances to sets

Definition

The **distance** between a point x and a set A the Euclidean distance between x and the closest point in A:

$$d(\mathbf{x}, A) := \min_{\mathbf{y} \in A} \|\mathbf{x} - \mathbf{y}\|$$

In particular, if A=H is a hyperplane, $d(\mathbf{x},H):=\min_{\mathbf{y}\in H}\|\mathbf{x}-\mathbf{y}\|.$

Margin

Definition

The **margin** of a classifier hyperplane H given two training classes $\mathcal{X}_\ominus, \mathcal{X}_\oplus$ is the shortest distance between the plane and any point in either set:

$$\mathsf{margin} = \min_{x \in \mathcal{X}_{\ominus} \cup \mathcal{X}_{\oplus}} d(x, H)$$

Equivalently: The shortest distance to either of the convex hulls.

$$\mathsf{margin} = \min\{d(H, \mathsf{conv}(\mathcal{X}_{\ominus})), d(H, \mathsf{conv}(\mathcal{X}_{\oplus}))\}$$

Idea in the following: H is "in the middle" when margin maximal.

Linear Classifier with Margin

Recall: Specifying affine plane

Normal vector \mathbf{v}_{H} .

$$\langle \mathbf{v_H}, \mathbf{x} \rangle - c \begin{cases} > 0 & \mathbf{x} \text{ on positive side} \\ < 0 & \mathbf{x} \text{ on negative side} \end{cases}$$

Scalar $c \in \mathbb{R}$ specifies shift (plane through origin if c = 0).

Plane with margin

Demand

$$\langle \mathbf{v}_{\mathsf{H}}, \mathbf{x} \rangle - c > 1 \text{ or } < -1$$

 $\{-1,1\}$ on the right works for any margin: Size of margin determined by $\|\mathbf{v}_{\mathsf{H}}\|$. To increase margin, scale down \mathbf{v}_{H} .

Classification

Concept of margin applies only to training, not to classification. Classification works as for any linear classifier. For a test point \mathbf{x} :

$$y = \operatorname{sign}\left(\langle \mathbf{v}_{\mathsf{H}}, \mathbf{x} \rangle - c\right)$$

Support Vector Machine

Finding the hyperplane

For n training points $(\tilde{\mathbf{x}}_i, \tilde{y}_i)$ with labels $\tilde{y}_i \in \{-1, 1\}$, solve optimization problem:

$$\begin{split} \min_{\mathbf{v_H},c} & \quad \|\mathbf{v_H}\| \\ \text{s.t.} & \quad \tilde{y}_i(\langle \mathbf{v_H}, \tilde{\mathbf{x}}_i \rangle - c) \geq 1 \quad \text{ for } i = 1,\dots,n \end{split}$$

Definition

The classifier obtained by solving this optimization problem is called a **support vector machine**.

Why minimize $\|\mathbf{v}_{\scriptscriptstyle H}\|$?

We can project a vector \mathbf{x} (think: data point) onto the direction of \mathbf{v}_{H} and obtain a vector \mathbf{x}_{v} .

▶ If H has no offset (c=0), the Euclidean distance of \mathbf{x} from H is $d(\mathbf{x},H) = \|\mathbf{x}_{\mathbf{y}}\| = \cos\theta \cdot \|\mathbf{x}\|.$

It does not depend on the length of
$$\mathbf{v}_{\mathsf{H}}$$
.

- ► The scalar product $\langle \mathbf{x}, \mathbf{v}_H \rangle$ does increase if the length of \mathbf{v}_H increases.
- ▶ To compute the distance $\|\mathbf{x}_{\mathbf{v}}\|$ from $\langle \mathbf{x}, \mathbf{v}_{\mathsf{H}} \rangle$, we have to scale out $\|\mathbf{v}_{\mathsf{H}}\|$:

$$\|\mathbf{x}_{\mathbf{v}}\| = \cos \theta \cdot \|\mathbf{x}\| = \frac{\langle \mathbf{x}, \mathbf{v}_{\mathsf{H}} \rangle}{\|\mathbf{v}_{\mathsf{H}}\|}$$

Why minimize $\|\mathbf{v}_{\scriptscriptstyle H}\|$?

If we scale \mathbf{v}_{H} by α , we have to scale \mathbf{x} by $1/\alpha$ to keep $\langle \mathbf{v}_{\mathsf{H}}, \mathbf{x} \rangle$ constant, e.g.:

$$1 = \langle \mathbf{v}_{\mathsf{H}}, \mathbf{x} \rangle = \langle \alpha \mathbf{v}_{\mathsf{H}}, \frac{1}{\alpha} \mathbf{x} \rangle.$$

A point \mathbf{x}' is precisely on the margin if $\langle \mathbf{x}', \mathbf{v}_H \rangle = 1$. Look at what happens if we scale \mathbf{v}_H :

Distance With Offset

The optimization algorithm can also rotate the vector \mathbf{v}_{H} , which rotates the plane.

Support Vectors

Definition

Those extreme points of the convex hulls which are closest to the hyperplane are called the **support vectors**.

There are at least two support vectors, one in each class.

Implications

- The maximum-margin criterion focuses all attention to the area closest to the decision surface.
- ► Small changes in the support vectors can result in significant changes of the classifier.
- ▶ In practice, the approach is combined with "slack variables" to permit overlapping classes. As a side effect, slack variables soften the impact of changes in the support vectors.

Dual Optimization Problem

Solving the SVM opimization problem

$$\begin{split} & \min_{\mathbf{v}_{\mathsf{H}},c} & & \|\mathbf{v}_{\mathsf{H}}\| \\ & \text{s.t.} & & \tilde{y}_i(\langle \mathbf{v}_{\mathsf{H}}, \tilde{\mathbf{x}}_i \rangle - c) \geq 1 & \text{for } i = 1,\dots,n \end{split}$$

is difficult, because the constraint is a function. It is possible to transform this problem into a problem which seems more complicated, but has simpler constraints:

$$\begin{aligned} \max_{\pmb{\alpha} \in \mathbb{R}^n} & W(\pmb{\alpha}) := \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j \tilde{y}_i \tilde{y}_j \left\langle \tilde{\mathbf{x}}_i, \tilde{\mathbf{x}}_j \right\rangle \\ \text{s.t.} & \sum_{i=1}^n \tilde{y}_i \alpha_i = 0 \\ & \alpha_i > 0 \quad \text{for } i = 1, \dots, n \end{aligned}$$

This is called the optimization problem **dual** to the minimization problem above. It is usually derived using Lagrange multipliers. We will use a more geometric argument.

Convex Duality

Sets and Planes

Many dual relations in convex optimization can be traced back to the following fact:

The closest distance between a point \mathbf{x} and a convex set A is the maximum over the distances between \mathbf{x} and all hyperplanes which separate \mathbf{x} and A.

$$d(\mathbf{x}, A) = \sup_{H \text{ separating }} d(\mathbf{x}, H)$$

Deriving the Dual Problem

Idea

As a consequence of duality on previous slide, we can find the maximum-margin plane as follows:

- 1. Find shortest line connecting the convex hulls.
- 2. Place classifier orthogonal to line in the middle.

Convexity of sets ensures that this classifier has correct orientation.

Barycentric Coordinates

Dual optimization problem

$$\min_{ \substack{ \mathbf{u} \in \mathsf{conv}(\mathcal{X}_{\ominus}) \\ \mathbf{v} \in \mathsf{conv}(\mathcal{X}_{\oplus}) } } \|\mathbf{u} - \mathbf{v}\|^2$$

As points in the convex hulls, ${\bf u}$ and ${\bf v}$ can be represented by barycentric coordinates:

$$\mathbf{u} = \sum_{i=1}^{n_1} \alpha_i \tilde{\mathbf{x}}_i \qquad \mathbf{v} = \sum_{i=n_1+1}^{n_1+n_2} \alpha_i \tilde{\mathbf{x}}_i$$
 (where $n_1 = |\mathcal{X}_{\ominus}|, n_2 = |\mathcal{X}_{\ominus}|$)

The extreme points suffice to represent any point in the sets. If $\tilde{\mathbf{x}}_i$ is not an extreme point, we can set $\alpha_i=0$.

Substitute into minimization problem:

$$\begin{split} \min_{\alpha_1,\dots,\alpha_n} & \quad \| \sum_{i \in \mathcal{X}_{\ominus}} \alpha_i \tilde{\mathbf{x}}_i - \sum_{i \in \mathcal{X}_{\oplus}} \alpha_i \tilde{\mathbf{x}}_i \|_2^2 \\ \text{s.t.} & \quad \sum_{i \in \mathcal{X}_{\ominus}} \alpha_i = \sum_{i \in \mathcal{X}_{\oplus}} \alpha_i = 1, \quad \alpha_i \geq 0 \end{split}$$

Dual optimization problem

Dual problem

$$\begin{split} \| \sum_{i \in \mathcal{X}_{\ominus}} \alpha_{i} \tilde{\mathbf{x}}_{i} - \sum_{i \in \mathcal{X}_{\oplus}} \alpha_{i} \tilde{\mathbf{x}}_{i} \|_{2}^{2} &= \| \sum_{i \in \mathcal{X}_{\ominus}} \tilde{y}_{i} \alpha_{i} \tilde{\mathbf{x}}_{i} + \sum_{i \in \mathcal{X}_{\oplus}} \tilde{y}_{i} \alpha_{i} \tilde{\mathbf{x}}_{i} \|_{2}^{2} \\ &= \left\langle \sum_{i=1}^{n} \tilde{y}_{i} \alpha_{i} \tilde{\mathbf{x}}_{i}, \sum_{i=1}^{n} \tilde{y}_{i} \alpha_{i} \tilde{\mathbf{x}}_{i} \right\rangle \\ &= \sum_{i \in \mathcal{X}_{\ominus}} \tilde{y}_{i} \tilde{y}_{j} \alpha_{i} \alpha_{j} \left\langle \tilde{\mathbf{x}}_{i}, \tilde{\mathbf{x}}_{j} \right\rangle \end{split}$$

Note: Minimizing this term under the constraints is equivalent to *maximizing*

$$\sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \tilde{y}_{i} \tilde{y}_{j} \alpha_{i} \alpha_{j} \langle \tilde{\mathbf{x}}_{i}, \tilde{\mathbf{x}}_{j} \rangle$$

under the same constraints, since $\sum_i \alpha_i = 2$ is constant. That is just the dual problem defined four slides back.

Computing c

Output of dual problem

$$\mathbf{v}_{\mathsf{H}}^* := \mathbf{v}^* - \mathbf{u}^* = \sum_{i=1}^n \tilde{y}_i \alpha_i^* \tilde{\mathbf{x}}_i$$

This vector describes a hyperplane through the origin. We still have to compute the offset.

Computing the offset

$$c^* := \frac{\max_{\tilde{y}_i = -1} \left\langle \mathbf{v}_{\mathsf{H}}^*, \tilde{\mathbf{x}}_i \right\rangle + \min_{\tilde{y}_i = +1} \left\langle \mathbf{v}_{\mathsf{H}}^*, \tilde{\mathbf{x}}_i \right\rangle}{2}$$

Computing c

Explanation

- The max and min are computed with respect to the v_H plane containing the origin.
- ► That means the max and min determine a support vector in each class.
- ► We then compute the shift as the mean of the two distances.

Resulting Classification Rule

Output of dual optimization

- lacktriangle Optimal values $lpha_i^*$ for the variables $lpha_i$
- ▶ If $\tilde{\mathbf{x}}_i$ support vector: $\alpha_i^* > 0$, if not: $\alpha_i^* = 0$

Note: $\alpha_i^* = 0$ holds even if $\tilde{\mathbf{x}}_i$ is an extreme point, but not a support vector.

SVM Classifier

The classification function can be expressed in terms of the variables α_i :

$$f(\mathbf{x}) = \operatorname{sgn}\left(\sum_{i=1}^n \tilde{y}_i \alpha_i^* \left\langle \tilde{\mathbf{x}}_i, \mathbf{x} \right\rangle - c^* \right)$$

Intuitively: To classify a data point, it is sufficient to know which side of each support vector it is on.

Soft-Margin Classifiers

Soft-margin classifiers are maximum-margin classifiers which permit some points to lie on the wrong side of the margin, or even of the hyperplane.

Motivation 1: Nonseparable data

SVMs are linear classifiers; without further modifications, they cannot be trained on a non-separable training data set.

Motivation 2: Robustness

- Recall: Location of SVM classifier depends on position of (possibly few) support vectors.
- Suppose we have two training samples (from the same joint distribution on (X, Y)) and train an SVM on each.
- ▶ If locations of support vectors vary significantly between samples, SVM estimate of \mathbf{v}_H is "brittle" (depends too much on small variations in training data). \longrightarrow Bad generalization properties.
- Methods which are not susceptible to small variations in the data are often referred to as robust.

Slack Variables

Idea

Permit training data to cross the margin, but impose cost which increases the further beyond the margin we are.

Formalization

We replace the training rule $\tilde{y}_i(\langle \mathbf{v}_H, \tilde{\mathbf{x}}_i \rangle - c) \geq 1$ by

$$\tilde{y}_i(\langle \mathbf{v}_{\mathsf{H}}, \tilde{\mathbf{x}}_i \rangle - c) \ge 1 - \xi_i$$

with $\xi_i \geq 0$. The variables ξ_i are called **slack variables**.

Soft-Margin SVM

Soft-margin optimization problem

$$\begin{aligned} & \min_{\mathbf{v_H}, c, \boldsymbol{\xi}} & & \|\mathbf{v_H}\|^2 + \gamma \sum_{i=1}^n \boldsymbol{\xi}_i^2 \\ & \text{s.t.} & & \tilde{y}_i(\langle \mathbf{v_H}, \tilde{\mathbf{x}}_i \rangle - c) \geq 1 - \boldsymbol{\xi_i} & \text{for } i = 1, \dots, n \\ & & \boldsymbol{\xi}_i \geq 0, & \text{for } i = 1, \dots, n \end{aligned}$$

The training algorithm now has a **parameter** $\gamma > 0$ for which we have to choose a "good" value. γ is usually set by *cross validation* (discussed later). Its value is fixed before we start the optimization.

Role of γ

- Specifies the "cost" of allowing a point on the wrong side.
- If γ is very small, many points may end up beyond the margin boundary.
- ▶ For $\gamma \to \infty$, we recover the original SVM.

Soft-Margin SVM

Soft-margin dual problem

The slack variables vanish in the dual problem.

$$\begin{aligned} \max_{\pmb{\alpha} \in \mathbb{R}^n} \qquad W(\pmb{\alpha}) := \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j \tilde{y}_i \tilde{y}_j \big(\langle \tilde{\mathbf{x}}_i, \tilde{\mathbf{x}}_j \rangle + \frac{1}{\gamma} \mathbb{I} \{ i = j \} \big) \\ \text{s.t.} \qquad \sum_{i=1}^n \tilde{y}_i \alpha_i = 0 \\ \alpha_i > 0 \quad \text{for } i = 1, \dots, n \end{aligned}$$

Soft-margin classifier

The classifier looks exactly as for the original SVM:

$$f(\mathbf{x}) = \operatorname{sgn}\left(\sum_{i=1}^n \tilde{y}_i \alpha_i^* \left\langle \tilde{\mathbf{x}}_i, \mathbf{x} \right\rangle - c\right)$$

Note: Each point on wrong side of the margin is an additional support vector $(\alpha_i^* \neq 0)$, so the ratio of support vectors can be substantial when classes overlap.

Influence of Margin Parameter

$$\gamma = 100000$$

 $\gamma = 0.01$

Changing γ significantly changes the classifier (note how the slope changes in the figures). We need a method to select an appropriate value of γ , in other words: to learn γ from data.