Let, degree of $p^x(\cdot), p^y(\cdot) < s$ where $p^x(\cdot)$ and $p^y(\cdot)$ are encodings of x and y respectively, where $x = (x_1, \dots, x_l)$ and $y = (y_1, ..., y_l)$.

Let, $S = \{\eta_1, \dots, \eta_{2s}\}$. Consider 3l < s and $t < \frac{N}{3}$. S_1, \dots, S_N is a partition of S.

For the privacy, $t.|S_i| < s - l$, to choose a partition such that S_i such that $|S_i| < \frac{2s}{N}$. Let P_i is the i^{th} prover contains a share of $p^x(\cdot)$ and $p^y(\cdot)$, say $p^{x_i}(\cdot)$ and $p^{y_i}(\cdot)$. The provers do the following protocol to get the share of the polynomial $p^{xy}(\cdot) = p^x(\cdot).p^y(\cdot)$:

- $\begin{array}{l} -\ P_i \ \text{evaluates} \ p^{x_i}(\eta) \ \text{and} \ p^{y_i}(\eta) \ \text{and sends this to} \ P_j \ \text{if} \ \eta \in S_j \\ -\ P_j \ \text{computes} \ \sum_{i \in [N]} p^{x_i}(\eta) = p^x(\eta) \ \text{and} \ \sum_{i \in [N]} p^{y_i}(\eta) = p^y(\eta) \ \forall \eta \in S_j \\ -\ P_j \ \text{computes} \ p^x(\eta).p^y(\eta) = p^{xy}(\eta) \ \forall \eta \in S_j \\ -\ P_j \ \text{construct shares} \ p^{xy}(\eta)_1, \ldots, p^{xy}(\eta)_N \ \text{such that} \ p^{xy}(\eta) = \sum_{i \in [N]} p^{xy}(\eta)_i \ \text{and sends} \ p^{xy}(\eta)_i \ \text{to} \ P_i. \end{array}$

Privacy: If t corrupted provers come together they can get the evaluation of p^{x_i} on $t \times \frac{2s}{N} < \frac{N}{3} \times \frac{2s}{N} = \frac{2s}{3} < \frac{3s-3l}{3} = \frac{1}{2s}$ s-l