Uncovering Sentiments using EDGAR Datasets

Group 3 Report

Experiment 1

- Web scraping [1]:
 - Queried the facebook earnings call website to obtain HTML
 - Used Beautiful soup python package to parse HTML content
 - Obtained element information of page

[bs4.element.Doctype, bs4.element.NavigableString, bs4.element.Tag, bs4.element.NavigableString]

- Obtained tags
- Obtained paragraphs
- Creating json file in specified format [2]:
 - Created a list of numbers for each paragraph
 - Created json from this dictionary of numbers and parahs
 - Labelled the sentiments of paragraphs manually
- Consolidated json files into single dataset [3]:
 - Collected all 12 json files
 - Ran a loop to create dictionary
 - Converted dictionary to dataframe
- Preprocessing text data [4]:
 - Implemented NLTK package to remove:
 - Stop words the, is, are
 - Stemmer to remove inflicted and similar words to roots like, likes, respons, responsive
 - Non-alphabetic characters -!,?
 - Changed to lower case
 - Tokenized

- Bag of Words CountVectorizer [5]:
 - Sklearn's CountVectorizer package to create a Bag of Words
 - Includes maximum 2000 features
 - Minimum number of occurance of a word to be included in Bag is 3
 - Maximum frequency is 0.6
 - Stop words from English language
 - Total number of words contained = 1649
 - Created a Logistic Regression model
- Balancing uneven distribution of classes [a, b, c, d, e, f, g]:
 - Oversampled: RandomOverSampler Increased the proportion of negative and positive classes to match that of positive class on the training dataset
 - Downsampled: RandomUnderSampler Decreased the proportion of neutral class to match that of positive and negative classes on the training dataset
 - NearMiss1 Downsampling with 1 nearest neighbour [ref]
 - NearMiss2 Downsampling with 2 nearest neighbour
 - NearMiss3 Downsampling with 3 nearest neighbour
 - SMOTE Synthetic minority over sampling technique increase negative and positive class for nearest neighbours to match neutral class
 - o Results -

Model	f1-score	accuracy
ROS	49	62
Original	52	65
RUS	52	58
Smote	48	59
NearMiss1	45	48
NearMiss2	42	44
NearMiss3	46	52

- Keras model [7]:
 - o Input size of bag of words 1649, F1 score = 0.48
- Grid search CV [a , b]:
 - batch_size = [10, 20, 40, 60, 80, 100] and epochs = [2,5,10, 20], f1 score = 0.49,
 Best: 0.692949 using {'batch_size': 80, 'epochs': 5}

optimizer = ['SGD', 'RMSprop', 'Adagrad', 'Adadelta', 'Adam', 'Adamax', 'Nadam'], f1 score = 0.52, Best: 0.687642 using {'optimizer': 'Adagrad'}

RNN:

1. Data Preprocessing

```
In [3]: data = pd.read_csv("cleanedfinancial_data.csv")
                         data.head()
Out[3]:
                                 sentiment text
                          0 neutral
                                                              Good day, ladies and gentlemen, and welcome to..
                          1 negative
                                                              I'm not sure. I think Model T was a little bit...
                          2 negative
                                                              Well, we need to bring the Shanghai factory on...
                          3 neutral
                                                              So it's - it is eligible for that. But it soun..
                          4 positive
                                                              The demand for - the demand for Model 3 is ins...
In [0]: data_inputs = data["text"].get_values()
                         # Convert sentiments into 0,1,2
                         sent = {'positive': 1, 'negative': 0, 'neutral': 2}
data.sentiment = [sent[item] for item in data.sentiment]
In [0]: data_labels = data.sentiment
In [8]: tokenizer = Tokenizer(nb_words=2000)
                         tokenizer.fit_on_texts(data_inputs)
                         sequences = tokenizer.texts_to_sequences(data_inputs)
                         word_index = tokenizer.word_index
                         print('Found %s unique tokens.' % len(word index))
                         data = pad sequences(sequences, maxlen=1000)
                         labels = keras.utils.to_categorical(np.asarray(data_labels))
                         print('Shape of data tensor:', data.shape)
print('Shape of label tensor:', labels.shape)
                         /usr/local/lib/python 3.6/dist-packages/keras\_preprocessing/text.py: 178: \ UserWarning: \ The `nb\_words` \ argume for the argument for the a
                        nt in `Tokenizer' has been renamed `num_words'.
warnings.warn('The `nb_words' argument in `Tokenizer' '
                         Found 6376 unique tokens.
                         Shape of data tensor: (1649, 1000)
                         Shape of label tensor: (1649, 3)
```

2.1 Modeling - 1st Try

```
print('Build model...')
model = Sequential()
model.add(Embedding(nb_words,
                       embedding_dims,
                       input_length=maxlen))
model.add(Dropout(0.2))
# model.add(LSTM(lstm_units))
# running on a GPU:
model.add(CuDNNLSTM(lstm units))
# To stack multiple RNN layers, all RNN layers except the last one need
# to have "return_sequences=True". An example of using two RNN layers:
#model.add(LSTM(lstm_units, return_sequences=True))
#model.add(LSTM(lstm_units))
model.add(Dense(3, activation='softmax'))
model.compile(optimizer='adadelta',
                loss='poisson',
                metrics=['accuracy'])
print(model.summary())
Build model...
```

Layer (type)	Output Shape	Param #
embedding_3 (Embedding)	(None, 1000, 50)	500000
dropout_3 (Dropout)	(None, 1000, 50)	0
cu_dnnlstm_3 (CuDNNLSTM)	(None, 32)	10752
dense_3 (Dense)	(None, 3)	99

Total params: 510,851 Trainable params: 510,851 Non-trainable params: 0

2.2. Accuracy Score and Confusion Matrix

```
loss, acc = model.evaluate(x_val,y_val, verbose = 2, batch_size = 128)
print("Validation Loss: %.2f" % (loss))
print("Validation Accuracy: %.2f" % (acc*100))
```

Validation Loss: 0.62 Validation Accuracy: 59.88

```
# Confusion matrix
cm = confusion_matrix(y_val.argmax(axis=1), y_pred.argmax(axis=1))
print(cm)
LABELS = ['negative', 'positive', 'neutral']
sns.heatmap(cm, annot=True, xticklabels=LABELS, yticklabels=LABELS, fmt='g')
xl = plt.xlabel("Predicted")
yl = plt.ylabel("Actual")
[[ 1 36
   8 108
            6]
[ 8 108 6]
[ 11 77 79]]
                                                                100
                                                3
             1
                               36
   negative
                                                                80
              8
                              108
                                                6
                                                                40
                                                                20
             11
   neutral
           negative
                             positive
                                               neutral
                            Predicted
```

3.1 Modeling - 2nd Try

Since the first model is a bit easy thus did not result in a good performance for accuracy score, so I tried second modeling with one more LSTM layers and a Flatten layer, which shows the performance has been improved:

Build 2nd model...

Layer (type)	Output Shape	Param #
embedding_5 (Embedding)	(None, 1000, 50)	500000
dropout_7 (Dropout)	(None, 1000, 50)	0
cu_dnnlstm_6 (CuDNNLSTM)	(None, 1000, 128)	92160
dropout_8 (Dropout)	(None, 1000, 128)	0
cu_dnnlstm_7 (CuDNNLSTM)	(None, 1000, 128)	132096
dropout_9 (Dropout)	(None, 1000, 128)	0
flatten_2 (Flatten)	(None, 128000)	0
dense 5 (Dense)	(None, 3)	384003

Total params: 1,108,259 Trainable params: 1,108,259 Non-trainable params: 0

SVG(model_to_dot(model, show_shapes=True).create(prog='dot', format='svg'))

3.2 Accuracy Score and Confusion Matrix

```
Validation Loss: 0.61
Validation Accuracy: 64.44
```

```
# Predicting the Test set results
y_pred = model.predict(x_val)
# cutoff 0.5
y_pred = (y_pred > 0.5)
y_pred = y_pred.astype(int)
# Confusion matrix
cm = confusion_matrix(y_val.argmax(axis=1), y_pred.argmax(axis=1))
print(cm)
LABELS = ['negative', 'positive', 'neutral']
sns.heatmap(cm, annot=True, xticklabels=LABELS, yticklabels=LABELS, fmt='g')
xl = plt.xlabel("Predicted")
yl = plt.ylabel("Actual")
[[ 18 8 14]
   64 42 16]
 [ 47 18 102]]
                                  8
               18
                                                     14
Actual
                                                     16
                                                                       40
                                  18
                                                     102
                                                                       20
                               positive
Predicted
             negative
                                                    neutral
```

4. RNN Best Accuracy: 64.44%

GloVe

1. Modeling

```
model = Sequential()
model.add(Embedding(max_words, embedding_dim, weights = [embedding_matrix], trainable = False, input_lengt
h=maxlen))
model.add(Flatten())
model.add(Dense(32, activation='relu'))
model.add(Dense(3, activation='softmax'))
model.summary()
Layer (type)
                               Output Shape
                                                          Param #
embedding_3 (Embedding)
                               (None, 1000, 100)
                                                          500000
flatten_3 (Flatten)
                               (None, 100000)
dense 5 (Dense)
                               (None, 32)
                                                          3200032
dense_6 (Dense)
                               (None, 3)
                                                          99
Total params: 3,700,131
Trainable params: 3,200,131
Non-trainable params: 500,000
from IPython.display import SVG
from keras.utils.vis_utils import model_to_dot
SVG(model_to_dot(model, show_shapes=True).create(prog='dot', format='svg'))
                     140688942264104
                                          (None, 1000)
                              input:
  embedding_3: Embedding
                             output:
                                       (None, 1000, 100)
                         input:
                                   (None, 1000, 100)
      flatten_3: Flatten
                         output:
                                    (None, 100000)
                                   (None, 100000)
                          input:
        dense_5: Dense
                          output:
                                      (None, 32)
                            input:
                                      (None, 32)
           dense 6: Dense
                            output:
                                      (None, 3)
```

2. Accuracy Score and Confusion Matrix

```
loss, acc = model.evaluate(x_val,y_val, verbose = 2, batch_size = batch_size)
print("Validation Loss: %.2f" % (loss))
print("Validation Accuracy: %.2f" % (acc*100))
Validation Loss: 1.10
Validation Accuracy: 59.27
# Confusion matrix
cm = confusion_matrix(y_val.argmax(axis=1), y_pred.argmax(axis=1))
print(cm)
LABELS = ['negative', 'positive', 'neutral']
sns.heatmap(cm, annot=True, xticklabels=LABELS, yticklabels=LABELS, fmt='g')
xl = plt.xlabel("Predicted")
yl = plt.ylabel("Actual")
[[ 5 15 11]
   9 76 45]
[ 9 76 45]
[ 15 46 107]]
                                                               100
             5
                              15
                                               11
                                                               80
                                                               60
             9
                                                               40
             15
                                               107
                                                               20
           negative
                                              neutral
                            Predicted
```

3. GloVe Best Accuracy: 59.27%

Experiment 2

- Bag of Words model
- Transfer learning [i , ii , iii , iv , v]:
 - Created a bag of words with max features of 2000 on the IMDB dataset (25000)
 - Created bag of words of financial dataset and predicted on the keras model
 - Created a bag of words with max features of 2000 on the IMDB dataset (**5000**)
 - Created a bag of words with max features of 2000 on the IMDB dataset (88585 all words)
 - o Max features 5000
- Tests on GE [<u>a</u> , <u>b</u>]:
 - o Trained on financial dataset with BoW keras model and tested on GE dataset
 - Learned on IMDB dataset, tested on whole GE dataset
- Observations:
 - Transfer learning gives very bad results 0.16 f1 score be it on GE or Finance dataset
 - Adagrad optimizer gives best performance with batch size of 80 and 5 epochs
 - Balancing does not impact the results a lot, they are very similar to unbalanced results
- RNN:
- 1. Data Preprocessing for IMDB Dataset

```
# number of most-frequent words to use
nb words = 10000
# cut texts after this number of words
maxlen = 1000
print('Loading data...')
(x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=nb_words)
print('x_train:', x_train.shape)
print('x test:', x test.shape)
print()
print('Pad sequences (samples x time)')
x train = sequence.pad sequences(x train, maxlen=maxlen)
x test = sequence.pad sequences(x test, maxlen=maxlen)
print('x_train shape:', x_train.shape)
print('x_test shape:', x_test.shape)
Loading data...
Downloading data from https://s3.amazonaws.com/text-datasets/imdb.npz
x train: (25000,)
x_test: (25000,)
Pad sequences (samples x time)
x_train shape: (25000, 1000)
x_test shape: (25000, 1000)
```

2. Modeling for IMDB Dataset

Build model...

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.

Instructions for updating:

Colocations handled automatically by placer.

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/keras/backend/tensorflow_backend.py:3445: c alling dropout (from tensorflow.python.ops.nn_ops) with keep_prob is deprecated and will be removed in a f uture version.

Instructions for updating:

Please use `rate` instead of `keep_prob`. Rate should be set to `rate = 1 - keep_prob`.

Output Shape	Param #
(None, 1000, 50)	500000
(None, 1000, 50)	0
(None, 32)	10752
(None, 1)	33
	(None, 1000, 50) (None, 1000, 50) (None, 32)

Total params: 510,785 Trainable params: 510,785 Non-trainable params: 0

3. Training the Model

· Plot the data to see how the training progressed.

```
plt.figure(figsize=(5,3))
plt.plot(history.epoch,history.history['loss'], label='training')
plt.plot(history.epoch,history.history['val_loss'], label='validation')
plt.title('loss')
plt.legend(loc='best')

plt.figure(figsize=(5,3))
plt.plot(history.epoch,history.history['acc'], label='training')
plt.plot(history.epoch,history.history['val_acc'], label='validation')
plt.title('accuracy')
plt.legend(loc='best');
```


A big gap between training and validation accuracies would suggest overfitting.

4. Accuracy Score and Confusion Matrix

```
score, acc = model.evaluate(x_test, y_test, verbose=0)
print("Accuracy: %.2f%%" % (acc*100))
print("Test score: %.2f%%" % (score*100))
```

Accuracy: 87.40% Test score: 30.93%

```
sns.set(font_scale=1.4)
sns.heatmap(df_cm, annot=True, fmt='d')
```

0.87396

		precision	recall	f1-score	support
	pos	0.89	0.86	0.87	12500
	neg	0.86	0.89	0.88	12500
micro	avg	0.87	0.87	0.87	25000
macro	avg	0.87	0.87	0.87	25000
weighted	avg	0.87	0.87	0.87	25000

[[10691 1809] [1342 11158]]

<matplotlib.axes. subplots.AxesSubplot at 0x7f788f0a82e8>

According to the confusion matrix:

10230 positive reviews were correctly predicted (True Positive)

10058 negative samples were correctly predicted (True Negative)

Number of incorrect predictions are 2270 (False Positive) and 2442 (False Negative).

5. Transfer Learning

```
score, acc = model.evaluate(financial_x_test, financial_y_test, verbose=1)
print("Accuracy: %.2f%" % (acc*100))
print("Test score: %.2f%" % (score*100))
```

811/811 [=========] - 1s 2ms/step

Accuracy: 80.64% Test score: 60.56%

<matplotlib.axes._subplots.AxesSubplot at 0x7f788f0b9c18>

Since no neutral sentiment in IMDB Dataset, so we removed all those neutral sentiment in financial dataset

- 6. Transfer Learning for Financial Dataset Accuracy: 80.64%
 - GloVe:
- 1. Modeling on IMDB Dataset

Layer (type)	Output Shape	Param #
embedding_5 (Embedding)	(None, 1000, 50)	250000
dropout_4 (Dropout)	(None, 1000, 50)	0
flatten_4 (Flatten)	(None, 50000)	0
dense_7 (Dense)	(None, 32)	1600032
dense_8 (Dense)	(None, 1)	33
Total naname: 1 050 065		

Total params: 1,850,065 Trainable params: 1,600,065 Non-trainable params: 250,000

SVG(model_to_dot(model, show_shapes=True).create(prog='dot', format='svg'))

1.2. Accuracy Score and Confusion Matrix

```
score, acc = model.evaluate(x_test, y_test, verbose=0)
print("Accuracy: %.2f%%" % (acc*100))
```

Accuracy: 50.00%

<matplotlib.axes._subplots.AxesSubplot at 0x7f110209f0f0>

2.1 CNN With GloVe Modeling

Layer (type)	Output	Shape	Param #
embedding_9 (Embedding)	(None,	1000, 50)	250000
conv1d_3 (Conv1D)	(None,	1000, 64)	22464
max_pooling1d_2 (MaxPooling1	(None,	500, 64)	0
conv1d_4 (Conv1D)	(None,	500, 64)	28736
global_max_pooling1d_2 (Glob	(None,	64)	0
dropout_6 (Dropout)	(None,	64)	0
dense_11 (Dense)	(None,	32)	2080
dense_12 (Dense)	(None,	1)	33

Total params: 303,313 Trainable params: 303,313 Non-trainable params: 0

2.2 Accuracy Score and Confusion Matrix

```
score, acc = model.evaluate(x_test, y_test, verbose=0)
print("Accuracy: %.2f%%" % (acc*100))
print("Test score: %.2f%%" % (score*100))
```

Accuracy: 86.25% Test score: 37.34%

<matplotlib.axes._subplots.AxesSubplot at 0x7f10f7d588d0>

3. Transfer Learning on Financial Dataset

<matplotlib.axes._subplots.AxesSubplot at 0x7f1101d97390>

4. Transfer Learning for Financial Dataset Accuracy: 80.64%

Experiment 3

Azure API:

1. Preprocess the data

```
financial data.text=financial_data.text.astype(str)
text = list(financial_data.text)
id_list = [i for i in range(1, len(text)+1)]
analyze text = []
for i in range(len(text)):
    dict_doc = {"language": "en",
              "id": str(id_list[i]),
              "text": text[i]}
    analyze_text.append((dict_doc))
analyze text
[{'id': '1',
  'language': 'en',
  'text': 'Good day, ladies and gentlemen, and welcome to the Tesla, Inc. Q4 2018 Financial Results and Q&
A Webcast. At this time, all participants are in a listen-only mode. Later, we will conduct a question-and
-answer session, and instructions will follow at that time. [Operator Instructions] As a reminder, this co
nference is being recorded.' },
{'id': '2',
```

2. Using the Azure API for sentiment analysis

```
import requests
from pprint import pprint
headers = {"Ocp-Apim-Subscription-Key": subscription key}
response = requests.post(sentiment_api_url, headers=headers, json=document)
languages = response.json()
pprint(languages)
{'code': 'RequestEntityTooLarge',
 'innerError': {'code': 'InvalidRequestContent',
                    'maxCharactersPerRequest': 524288,
                   'message': 'Request Payload sent is too large to be processed. '
                                 'Limit request size to: 524288 characters.'},
 'message': 'Invalid request'}
document_partA = {"documents": analyze_text[:1000]}
headers = {"Ocp-Apim-Subscription-Key": subscription key}
response = requests.post(sentiment_api_url, headers=headers, json=document_partA)
languages = response.json()
pprint(languages)
{'documents': [{'id': '1', 'score': 0.8151894807815552},
		 {'id': '2', 'score': 0.1584499478340149},
		 {'id': '3', 'score': 0.5},
		 {'id': '4', 'score': 0.7589907646179199},
		 {'id': '5', 'score': 0.14238208532333374},
```

3. Combining the Azure API Score

```
res = json.dumps(languages)
res = json.loads(res)
score_1 = []

for i in range (len(res['documents'])):
    score_1.append(res['documents'][i]['score'])

res = json.dumps(languages_B)
res = json.loads(res)
score_2 = []

for i in range (len(res['documents'])):
    score_2.append(res['documents'][i]['score'])

score = score_1 + score_2
len(score)

1649
```

4. Save into the azure_df.csv file

```
score_labels = []

for i in range(len(score)):
    if score[i] > 0.6:
        score_labels.append ('positive')
    elif score[i] < 0.4:
        score_labels.append ('negative')
    elif score[i] < 0.6 and score[i] > 0.4:
        score_labels.append ('neutral')

dic = {
    'text': text,
    'sentiment_predicted': score_labels,
    'score': score
}

azure_df = pd.DataFrame.from_dict(dic)
azure_df.to_csv('azure_df.csv')

from google.colab import files
```

Google API:

files.download("azure_df.csv")

1. Get the credentials

```
cred_file_loc = r'My First Project-8ef1ccd74268.json'

cred = service_account.Credentials.from_service_account_file(cred_file_loc)
client = language.LanguageServiceClient(credentials=cred)
```

2. Preprocess the data

```
import pandas as pd
import io
import numpy as np

data = pd.read_csv(io.StringIO(uploaded['cleanedfinancial_data.csv'].decode('utf-8')))
data.text=data.text.astype(str)
texts = list(data['text'])

sentiment = np.array(data['sentiment'])
```

3. Using Google API to get the sentiment score

4. Save into the google_result.csv file

```
score_text_form = []
for score in all_scores:
    if score>0:
        score_text_form.append("positive")
    elif score ==0:
        score_text_form.append("neutral")
    else:
        score_text_form.append("negative")
```

```
google = {
    'text': texts,
    'predict': score_text_form,
    'score': all_scores,
    'label': sentiment
  }
google_result = pd.DataFrame.from_dict(google)
google_result.to_csv('google_result.csv')
```

```
files.download("google_result.csv")
```

IBM Watson API:

1. Preprocess the data

```
import pandas as pd
import io
data = pd.read_csv(io.StringIO(uploaded['cleanedfinancial_data.csv'].decode('utf-8')))

data.text=data.text.astype(str)
text = np.array(data.text)

labels = np.array(data.sentiment)
```

2. Using IBM API to get the sentiment score

```
def watson(texts):
  label = []
  score = []
  for i in range(len(texts)):
    try:
      response = natural_language_understanding.analyze(
                   text = texts[i],
                   features=Features(entities=EntitiesOptions(sentiment = True, limit = 1))).get result()
      if response['entities']:
        label.append(response['entities'][0]['sentiment']['label'])
score.append(response['entities'][0]['sentiment']['score'])
      else:
         label.append('NA')
         score.append('NA')
    except:
      label.append('NA')
      score.append('NA')
  return label, score
```

```
pred, score = watson(text)
```

3. Obtain the score and save into ibm_result.csv file

```
ibm = {
        'text': text,
        'predict': pred,
        'score': score,
        'label': labels
}

df_ibm = pd.DataFrame.from_dict(ibm)
df_ibm.to_csv('ibm_result.csv')
```

```
from google.colab import files
files.download("ibm_result.csv")
```

Experiment 4

• Merge All API's Score

	azure	google	ibm	label
0	0.815189	0.2	0.000000	2
1	0.158450	0.0	0.000000	1
2	0.500000	0.0	-0.183405	1
3	0.758991	0.2	0.554778	2
4	0.142382	0.0	0.000000	0

```
df_scores.to_csv('merged_api_score.csv', index=False)
# Check with the "algo.ipynb" to read the clean data
files.download("merged_api_score.csv")
```

TPOT:

1. Preprocess the merged data

```
from tpot import TPOTClassifier
from sklearn.model_selection import train_test_split
X = df_scores.iloc[:,:-1]
y = df_scores.iloc[:,-1]

X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.8, test_size=0.2)
X_train.shape, X_test.shape, y_train.shape, y_test.shape

((1319, 3), (330, 3), (1319,), (330,))
```

2. Build TPOTClassifier

```
tpot = TPOTClassifier(verbosity=2, max_time_mins=20, population_size=40)
tpot.fit(X_train, y_train)
print(tpot.score(X_test, y_test))
HBox(children=(IntProgress(value=0, description='Optimization Progress', max=40, style=ProgressStyle(descr
ipti...
Generation 1 - Current best internal CV score: 0.617054308056532
Generation 2 - Current best internal CV score: 0.6170772652270607
Generation 3 - Current best internal CV score: 0.6178147643302963
Generation 4 - Current best internal CV score: 0.6178319822081929
Generation 5 - Current best internal CV score: 0.6223947198507784
Generation 6 - Current best internal CV score: 0.6224004591434105
Generation 7 - Current best internal CV score: 0.6224004591434105
Generation 8 - Current best internal CV score: 0.6238697180572494
Generation 9 - Current best internal CV score: 0.6238697180572494
Generation 10 - Current best internal CV score: 0.6238697180572494
Generation 11 - Current best internal CV score: 0.6238697180572494
Generation 12 - Current best internal CV score: 0.6238697180572494
Generation 13 - Current best internal CV score: 0.6268885859817778
Generation 14 - Current best internal CV score: 0.6268885859817778
Generation 15 - Current best internal CV score: 0.6268885859817778
Generation 16 - Current best internal CV score: 0.6268885859817778
Generation 17 - Current best internal CV score: 0.6268885859817778
Generation 18 - Current best internal CV score: 0.6268885859817778
Generation 19 - Current best internal CV score: 0.6268885859817778
Generation 20 - Current best internal CV score: 0.6268885859817778
Generation 21 - Current best internal CV score: 0.6268885859817778
Generation 22 - Current best internal CV score: 0.6268885859817778
20.0065854 minutes have elapsed. TPOT will close down.
TPOT closed during evaluation in one generation.
WARNING: TPOT may not provide a good pipeline if TPOT is stopped/interrupted in a early generation.
TPOT closed prematurely. Will use the current best pipeline.
Best pipeline: RandomForestClassifier(PolynomialFeatures(Normalizer(input_matrix, norm=max), degree=2, inc
lude bias=False, interaction only=False), bootstrap=True, criterion=entropy, max features=0.350000000000000
003, min_samples_leaf=15, min_samples_split=18, n_estimators=100)
```

3. TPOT Best Score: 0.627

AutoSKLearn

1. Preprocess the merged data

```
from sklearn.model_selection import train_test_split
X = df_scores.iloc[:,:-1]
y = df_scores.iloc[:,-1]

import autosklearn.metrics
from sklearn.metrics import accuracy_score,confusion_matrix
from sklearn.metrics import confusion_matrix
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.2)
```

2. Build the AutoSklearnClassifier

```
cls = autosklearn.classification.AutoSklearnClassifier()
cls.fit(X train, y train)
/usr/local/lib/python3.6/dist-packages/autosklearn/evaluation/train_evaluator.py:197: RuntimeWarning: Mean
of empty slice
 Y_train_pred = np.nanmean(Y_train_pred_full, axis=0)
[WARNING] [2019-04-02 17:57:09,293:EnsembleBuilder(1):7b2a97035e7de8c9013cedc0f1cc61ff] No models better t
han random - using Dummy Score!
[WARNING] [2019-04-02 17:57:09,317:EnsembleBuilder(1):7b2a97035e7de8c9013cedc0f1cc61ff] No models better t
han random - using Dummy Score!
/usr/local/lib/python3.6/dist-packages/autosklearn/evaluation/train evaluator.py:197: RuntimeWarning: Mean
of empty slice
  Y_train_pred = np.nanmean(Y_train_pred_full, axis=0)
/usr/local/lib/python3.6/dist-packages/autosklearn/evaluation/train_evaluator.py:197: RuntimeWarning: Mean
  Y_train_pred = np.nanmean(Y_train_pred_full, axis=0)
/usr/local/lib/python3.6/dist-packages/autosklearn/evaluation/train evaluator.py:197: RuntimeWarning: Mean
of empty slice
AutoSklearnClassifier(delete output folder after terminate=True,
           delete_tmp_folder_after_terminate=True,
           disable_evaluator_output=False, ensemble_memory_limit=1024,
           ensemble_nbest=50, ensemble_size=50, exclude_estimators=None,
           exclude preprocessors=None, get smac object callback=None,
           include_estimators=None, include_preprocessors=None,
           initial_configurations_via_metalearning=25, logging_config=None,
           metadata_directory=None, ml_memory_limit=3072, n_jobs=None,
           output folder=None, per run time limit=360,
           resampling_strategy='holdout',
           resampling_strategy_arguments=None, seed=1, shared_mode=False,
           smac scenario args=None, time left for this task=3600,
           tmp folder=None)
```

3. Obtain the AutoSklearn Score

```
pred_train = cls.predict(X_train)
print("Accuracy score", accuracy_score(y_train, pred_train))

Accuracy score 0.6580742987111448

pred_test = cls.predict(X_test)
print("Accuracy score", accuracy_score(y_test, pred_test))

Accuracy score 0.6181818181818182
```

4. AutoSklearn Best Score: 0.618

H2O

1. Import H2O and get the init

```
import h2o
h2o.init()
from h2o.estimators.word2vec import H2OWord2vecEstimator
from h2o.estimators.gbm import H2OGradientBoostingEstimator
```

Connecting to H2O server at http://127.0.0.1:54321 ... successful.

H2O cluster uptime:	02 secs
H2O cluster timezone:	Etc/UTC
H2O data parsing timezone:	итс
H2O cluster version:	3.24.0.1
H2O cluster version age:	1 day
H2O cluster name:	H2O_from_python_unknownUser_dvad9d
H2O cluster total nodes:	1
H2O cluster free memory:	2.938 Gb
H2O cluster total cores:	2
H2O cluster allowed cores:	2
H2O cluster status:	accepting new members, healthy
H2O connection url:	http://127.0.0.1:54321
H2O connection proxy:	None
H2O internal security:	False
H2O API Extensions:	Amazon S3, XGBoost, Algos, AutoML, Core V3, Core V4
Python version:	3.6.7 final

2. Import the merged dataset

```
h2o_data = h2o.import_file("merged_api_score.csv")
h2o_data.head()
```

azure	google	ibm	label
0.815189	0.2	0	2
0.15845	0	0	1
0.5	0	-0.183405	1
0.758991	0.2	0.554778	2
0.142382	0	0	0
0.5	0	0.82987	2
0.803309	0	0	2
0.910819	0.2	0	0
0.183081	0.1	0	0
0.5	0.4	0.38213	0

3. Build the H2OAutoML

4. View the AutoML Leaderboard

```
# View the AutoML Leaderboard
lb = aml.leaderboard
print (lb)
```

r_class_error log	gloss	rmse	mse
0.90	000581	0.564019	0.318118
0.86	6372	0.553188	0.306017
0.95	51389	0.555784	0.308896
0.87	370487	0.553314	0.306157
0.93	314	0.552502	0.305259
1.08	8477	0.66199	0.43823
0.88	99835	0.555174	0.308219
1.08	895	0.557862	0.31121
0.94	947142	0.566306	0.320703
0.86	869403	0.557416	0.310713
	0.8	0.869403	0.869403 0.557416

5. Get the H2OAutoML's Score

6. H2OAutoML Best Score: 0.6