Tangent Planes and Linear Approximations

November 10, 2006

Tangent Planes

- Let S be a surface with equation z = f(x, y).
- Let $P(x_0, y_0, z_0)$ be a point on S.
- Let C_1 and C_2 be the curves obtained by intersecting the vertical planes $y=y_0$ and $x=x_0$ with the surface S.
- ullet Let T_1 and T_2 be the tangent lines to the curves C_1 and C_2 .
- The **tangent plane** to the surface S at the point P is defined to be the plane that contains both tangent lines T_1 and T_2 .

Equations of the tangent plane

- ullet Suppose f has a continuous partial derivatives.
- ullet An equation of the tangent plane to the surface z=f(x,y) at the point $P(x_0,y_0,z_0)$ is

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

 \bullet Find the tangent plane to the elliptic paraboloid $z=2x^2+y^2$ at the point (1,1,3).

Lecture 23

Linear Approximations

• The linear function whose graph is this tangent plane

$$L(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

is called the **linearization** of f at (a,b) and the approximation

$$f(x,y) \approx f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

is called the **linear approximation** or the **tangent plane** approximation of f at (a,b).

 \bullet Find the linearization of the function $f(x,y)=\sqrt{xy}$ at the point (4,16).

- Find the linearization of the function $f(x,y) = \sqrt{xy}$ at the point (4,16).
- ullet Find the linearization of the function $f(x,y)=1+y+x\cos y$ at $P_0(0,0)$.

The increment of z

ullet Recall that for a function of one variable, y=f(x), if x changes from a to $a+\Delta x$, we defined the increment of y as

$$\Delta y = f(a + \Delta x) - f(a).$$

• If f is differentiable at a, then

$$\Delta y = f'(a)\Delta x + \epsilon \Delta x,$$

where $\epsilon \to 0$ as $\Delta x \to 0$.

• If z=f(x,y) and x changes from (a,b) to $(a+\Delta x,b+\Delta y)$, then the **increment** of z is

$$\Delta z = f(a + \Delta x, b + \Delta y) - f(a, b)$$

• If z = f(x,y) and x changes from (a,b) to $(a + \Delta x, b + \Delta y)$, then the **increment** of z is

$$\Delta z = f(a + \Delta x, b + \Delta y) - f(a, b)$$

• If z=f(x,y), then f is **differentiable** at (a,b) if Δz can be expressed in the form

$$\Delta z = f_x(a, b)\Delta x + f_y(a, b)\Delta y + \epsilon_1 \Delta x + \epsilon_2 \Delta y,$$

where ϵ_1 and $\epsilon_2 \to 0$ as $(\Delta x, \Delta y) \to (0,0)$.

• FACT: If the partial derivatives f_x and f_y exist near (a,b) and are continuous at (a,b), then f is differentiable at (a,b).

Lecture 23

- FACT: If the partial derivatives f_x and f_y exist near (a,b) and are continuous at (a,b), then f is differentiable at (a,b).
- Example: Show t hat $f(x,y)=xe^{xy}$ is differentiable at (1,0) and find its linearization there.

Lecture 23

Differentials

ullet For a differentiable function z=f(x,y) we define the differential dz, also called the total differential, is defined by

$$dz = f_x(x, y)dx + f_y(x, y)dy = \frac{\partial z}{\partial x}dz + \frac{\partial z}{\partial y}dy,$$

where the **differentials** dx and dy are independent variables.

 \bullet If $\mathrm{d} x = \Delta x = x - a$ and $\mathrm{d} y = \Delta y = y - b$ the the differential of z is

$$dz = f_x(a, b)(x - a) + f_y(a, b)(y - b)$$

ullet If $f(x,y)=x^2+3xy-y^2$, find the differential $\mathrm{d}z$.

- If $f(x,y) = x^2 + 3xy y^2$, find the differential dz.
- \bullet If x changes from 2 to 2.05 and y changes 3 to 2.96 , compare the values of Δz and $\mathrm{d}z.$