IIC1253 Matemáticas Discretas

Sasha Kozachinskiy

DCC UC

22.09.2025

Hoy...

inducción matemática: números naturales, inducción, orden.

Operación sucesor

Definición

Sea a un conjunto. Su sucesor es el conjunto $S(a) = a \cup \{a\}$.

Operación sucesor

Definición

Sea a un conjunto. Su **sucesor** es el conjunto $S(a) = a \cup \{a\}$.

Ejercicio: escribir una fórmula que expresa "b = S(a)":

$$\forall x \ x \in \emptyset \iff (x \in \alpha \ v \times = \alpha)$$
$$S(\{x,y\}) = \{x,y,\{x,y\}\}$$

Operación sucesor

Definición

Sea a un conjunto. Su **sucesor** es el conjunto $S(a) = a \cup \{a\}$.

Ejercicio: escribir una fórmula que expresa "b = S(a)":

Primeros números naturales:

Conjuntos inductivos y infinitud

Definición

Un conjunto I se llama inductivo si

- a) $\emptyset \in I$;
- b) para cada $x \in I$, tenemos $S(x) \in I$.

Conjuntos inductivos y infinitud

Definición

Un conjunto I se llama inductivo si

- a) $\emptyset \in I$;
- b) para cada $x \in I$, tenemos $S(x) \in I$.

Axioma (de infinitud)

Existe un conjunto inductivo.

Números naturales

Definición

Un conjunto n se llama un **número natural** si $n \in I$ para todos los conjuntos inductivos I.

o es un número natural porque o EI para todos los conjuntos inductivos I, pa definición.

Números naturales

Definición

Un conjunto n se llama un **número natural** si $n \in I$ para todos los conjuntos inductivos I.

Ejercicio: escribir una fórmula "n es un número natural".

Números naturales

Definición

Un conjunto n se llama un **número natural** si $n \in I$ para todos los conjuntos inductivos I.

Ejercicio: escribir una fórmula "n es un número natural".

Proposición

 $0 = \emptyset$ es un número natural, y si n es un número natural, entonces S(n) tambíen es un número natural.

Spa n un nu'nero natural. Hay que mostrar que s'(n) E I para todos los conj. ind. I.

Tomanos cualq. conj ind. I. nEI. ya
que n es un nu'nero nat. Asíque s'(n) E I par def

Teorema

Existe un conjunto N de todos los números naturales.

Teorema

Existe un conjunto $\mathbb N$ de todos los números naturales.

Demostración.

 $\mathbb{N} = \{ n \in I \mid n \text{ es un número natural} \}$ para cualquier conjunto inductivo I.

Teorema

Existe un conjunto $\mathbb N$ de todos los números naturales.

Demostración.

 $\mathbb{N} = \{ n \in I \mid n \text{ es un número natural} \}$ para cualquier conjunto inductivo I.

Teorema (Principio de inducción)

Sea A un subconjunto de $\mathbb N$ tal que

- a) $0 \in A$;
- b) para cada $n \in A$, tenemos $S(n) = n + 1 \in A$.

Entonces, $A = \mathbb{N}$.

Teorema

Existe un conjunto $\mathbb N$ de todos los números naturales.

Demostración.

 $\mathbb{N} = \{ n \in I \mid n \text{ es un número natural} \}$ para cualquier conjunto inductivo I.

Teorema (Principio de inducción)

Sea A un subconjunto de $\mathbb N$ tal que

- a) $0 \in A$;
- b) para cada $n \in A$, tenemos $S(n) = n + 1 \in A$.

Entonces, $A = \mathbb{N}$.

Demostración.

A es inductivo, por lo tanto $\mathbb{N} \subseteq A$. Ya que $A \subseteq \mathbb{N}$, obtenemos $A = \mathbb{N}$.

$$0 = \frac{1}{5} =$$

Definición

Sean n, m dos números naturales. Entonces, n < m si $n \in m$.

Teorema (Propiedades de orden)

- a) $\neg (n < n)$ para todos los números naturales n; $7 (n \in h)$
- b) n < S(n) para todos los números naturales n; $n \in S(n)$
- c) 0 < n o 0 = n para todos los números naturales n; \checkmark
- d) $((n < m) \land (m < k)) \rightarrow (n < k)$ para todos los números naturales n, m, k;
- e) $(n < m) \lor (m < n) \lor (n = m)$ para todos los números naturales n, m;
- f) no existen dos números naturales n, m tal que n < m < S(n).

Proposición

 $0 < n \ o \ 0 = n$ para todos los números naturales n.

Por principio de ind. Basta A = M

a) oc A

B) NEA -> SIN) EA Dara + 0005 n.

a) techo.

B) Tomames heA.

o ∈ nu }n3= 3(n) BI) ocn (=> sen. 0 < 5 (n) => 5(n) &A

(2) 0=n · S(0)=1={0} 045(0)

n/m/=> n Em en un meros naturales.

Proposición

 $((n < m) \land (m < k)) \rightarrow (n < k)$ para todos los números naturales n, m, k;

nemek=) nek.

Proposición

 $((n < m) \land (m < k)) \rightarrow (n < k)$ para todos los números naturales n, m, k;

Definición

Un conjunto a se llama **transitivo** si $c \in b \in a \implies c \in a$ para todos los conjuntos b, c.

$$S(6) = S(6) = \{6\}$$

Proposición

 $((n < m) \land (m < k)) \rightarrow (n < k)$ para todos los números naturales n, m, k;

Definición

Un conjunto a se llama **transitivo** si $c \in b \in a \implies c \in a$ para todos los conjuntos b, c.

Proposición

Todos los números naturales son transitivos.

$$A = \{ n \in N \mid n \text{ es transitive} \}$$
 $A = N$

A hotomos \emptyset es transitivo

BINEA -> S(n) EA Vn.

nastransitivo => S(n) = n u [n]
estransitivo.

Tomamos B, C (EBESIN). Hay que mostrar (E S(n). Benusn} REHVB=h Caso 1 GEn. Pro nes transière => (EN ES(N) =) (ES(N) D (asoz b=n. (Eb=n \(\int \) (E\(\int \))

iGracias!