intro to tidyverse

ryan snoyman

install

- b) Download R studio IDE
 https://rstudio.com/products/rstudio/download/
- c) Install tidyverse
 install_packages('tidyverse')
 library(tidyverse)

tidy data

variables

observations

diamonds

carat	cut	color	clarity	depth	table	price	х	У	z
0.23	Ideal	E	SI2	61.5	55	326		3.98	2.43
0.23	Good	E	VS1	56.9	65	327		4.07	2.31
0.29	Premium	I	VS2	62.4	58	334		4.23	2.63
0.31	Good	J	SI2	63.3	58	335		4.35	2.75
0.24	Very Good	J	VVS2	62.8	57	336		3.96	2.48

dplyr

filter() select() mutate() summarise() arrange()

select()

select(diamonds, carat, cut, color, clarity, price)

select(diamonds, carat:clarity, price)

select(diamonds, 1:4, price)

select(diamonds, starts_with('c'), price)

mutate()


```
mutate(diamonds, price = price * 1.3)
mutate(diamonds, price_aud = price * 1.3)
mutate(diamonds, ppc = price/carat)
mutate(diamonds, colour = str_to_lower(colour))
```

filter()

filter(diamonds, carat > 0.24, cut == 'Good')
filter(diamonds, colour %in% c('I', 'J'))

arrange()

arrange(diamonds, cut, colour)

arrange(diamonds, desc(cut), colour)

summarise()


```
summarise(diamonds, m_carat = mean(carat))
```

group_by() then summarise()

summarise(group_by(diamonds, colour), m_price = mean(price))

```
by_colour <- group_by(diamonds, colour)
summarise(by_colour, m_price = mean(price))</pre>
```

pipe


```
diamonds %>%
   group_by(colour) %>%
   summarise(m_price = mean(price))
```

dplyr

filter() select() mutate() summarise() arrange()

rapaport report

	RAPAPORT: (.3039 CT.): 03/13/20											UN	D\$	RAPAPORT: (.4049 CT.): 03/13/20										
	IF	VVS1	VVS2	VS1	VS2	SI1	SI2	SI3	11	12	13		IF	VVS1	VVS2	VS1	VS2	SI1	SI2	SI3	11	12	13	
D	38	30	28	26	24	21	18	17	16	11	7	D	47	37	34	31	29	25	21	20	18	12	8	D
E	30	28	26	24	22	20	17	16	15	10	6	E	38	35	32	29	27	23	20	19	17	11	7	E
F	28	27	25	23	21	19	17	15	14	9	6	F	35	33	30	27	26	22	19	18	16	11	7	F
G	26	24	23	22	20	18	16	14	13	8	5	G	31	29	27	26	25	21	19	17	15	10	6	G
н	23	22	21	20	19	17	16	13	11	8	5	Н	27	26	25	24	23	20	18	16	14	9	6	Н
1	22	21	20	19	18	16	15	12	10	7	5	1	25	24	23	22	21	19	18	15	13	8	6	
J	20	19	18	17	16	15	14	11	9	7	4	J	22	21	20	19	18	17	16	14	12	8	5	J
K	18	17	16	15	14	13	12	10	8	6	4	K	20	19	18	17	16	15	14	12	10	7	5	K
L	17	16	15	14	13	12	10	9	6	5	3	L	18	17	16	15	14	13	12	10	8	6	4	L
М	16	15	14	13	12	11	9	8	5	4	3	М	17	16	15	14	13	12	11	9	7	5	4	М

- 0.45 carat
- F colour
- VVS1 clarity

price

 $= 0.45 \times 3300

= \$1485

task 1 — prepare the data

- a) Change the spelling of color column
- b) We only want diamonds that are cut at least 'Very Good' and carat greater than equal to 0.3
- c) Add Price Per Carat (ppc) column in hundreds of \$
- d) Keep columns price, ppc, 4 C's
- e) Assign this table to a new variable name

more dplyr

joins

pivoting

rapaport report

	RAPAPORT : (.3039 CT.) : 03/13/20											UN	DS	RAPAPORT : (.4049 CT.) : 03/13/20										
	IF	VVS1	VVS2	VS1	VS2	SI1	SI2	SI3	11	12	13		IF	VVS1	VVS2	VS1	VS2	SI1	SI2	SI3	11	12	13	
D	38	30	28	26	24	21	18	17	16	11	7	D	47	37	34	31	29	25	21	20	18	12	8	D
E	30	28	26	24	22	20	17	16	15	10	6	E	38	35	32	29	27	23	20	19	17	11	7	E
F	28	27	25	23	21	19	17	15	14	9	6	F	35	33	30	27	26	22	19	18	16	11	7	F
G	26	24	23	22	20	18	16	14	13	8	5	G	31	29	27	26	25	21	19	17	15	10	6	G
н	23	22	21	20	19	17	16	13	11	8	5	Н	27	26	25	24	23	20	18	16	14	9	6	Н
	22	21	20	19	18	16	15	12	10	7	5	1	25	24	23	22	21	19	18	15	13	8	6	1
J	20	19	18	17	16	15	14	11	9	7	4	J	22	21	20	19	18	17	16	14	12	8	5	J
K	18	17	16	15	14	13	12	10	8	6	4	K	20	19	18	17	16	15	14	12	10	7	5	K
L	17	16	15	14	13	12	10	9	6	5	3	L	18	17	16	15	14	13	12	10	8	6	4	L
М	16	15	14	13	12	11	9	8	5	4	3	М	17	16	15	14	13	12	11	9	7	5	4	М

task 2 - create rapaport report

a) Add a column to result of task 1 using the cut function with the following intervals: (use ?cut to read the docs)

```
carat_lower_bounds <- c(0.3, 0.4, 0.5, 0.7, 0.9, 1, 1.5, 2, 3, 4, 5)
```

- b) Find the median ppc within each carat interval, colour and clarity. Store in a new variable
- c) Create the Rapaport Report for diamonds with carat in [1, 1.5). Hint: Use pivot_wider()

ggplot2

layers

```
ggplot(data, mapping = aes(x, y, fill, colour)) +
    geom_bar(), geom_histgram(), geom_point() +
    theme() +
    labs()
```

Distribution of Diamonds by Carat and Colour

task 3 - heat map

Hints

- Use geom_tile()Reorder the factors with reorder()

task 4 - analysis

a) What conclusions can we draw from our analysis?

b) Which diamond should I buy?

other awesome tools

a) shiny

b) rmarkdown

c) dbplyr (show query)

the best resource

R for Data Science, Hadley Wickham https://r4ds.had.co.nz/

questions

thank you

ryan snoyman