实验一 单级交流放大电路

作者: GeorgeDong32

一、实验目的

- 1. 熟悉电子元器件和模拟电路实验箱,
- 2. 掌握放大电路静态工作点的调试方法及其对放大电路性能的影响。
- 3. 学习测量放大电路 Q 点, A_u、r_i、r_o的方法, 了解共射极电路特性。
- 4. 学习放大电路的动态性能。

二、实验仪器

- 1. 示波器
- 2. 信号发生器
- 3. 数字万用表

三、预习要求

- 1. 三极管及单管放大电路工作原理。
- 2. 放大电路静态和动态测量方法。

四、实验内容及步骤

图 1.1 基本放大电路

- 1. 装接电路与简单测量
- (1)用万用表判断实验箱上三极管 V 的极性和好坏,电解电容 C 的极性和好坏。

测三极管 B、C 和 B、E 极间正反向导通电压,可以判断好坏;测电解电容的好坏必须使用指针万用表,通过测正反向电阻。

三极管导通电压 UBE=0.7V、UBC=0.7V,反向导通电压无穷大。

(2) 按图 1.1 所示,连接电路(注意:接线前先测量+12V 电源,关断电源后再连线),将 R_P 的阻值调到最大位置。

2. 静态测量与调整

(1) 接线完毕仔细检查,确定无误后接通电源。改变 R_P ,记录 I_C 分别为 0.5 mA、1 mA、 1.5 mA 时的 I_B ,并计算三极管 V 的 β 值。 β = I_C/I_B

注意: I_B和 I_C的测量和计算方法

- ① $I_B \to I_C$ 一般可用间接测量法,即通过测 $U_C \to U_B$, $R_c \to R_b$ 、 R_{b2} 计算出 $I_B \to I_C$ 。此法虽不直观,但操作较简单,建议初学者采用。
- ②直接测量法,即将电流表直接串联在基极和集电极中测量。此法直观,但操作 不当容易损坏器件和仪表。不建议初学者采用。
- (2) 调整 Rp 使 UE=2.2V, 计算并填表 1.1。

表 1.1

实测			实测计算		
$U_{BE}(V)$	$U_{CE}(V)$	$R_b(K\Omega)$	$I_B(\mu A)$	$I_{C}(mA)$	β
0.672	3.602	62. 78	0.0257	1. 215	47. 29

3. 动态研究

(1) 按图 1.2 所示电路接线,调节 R_P 使 U_C =6V。如想做直流负反馈放大电路实验按图 1.5 所示电路接线。

注:在进行小信号放大实验时,由于所用信号发生器及连接电缆的缘故,往往在进入放大器前就出现噪声或不稳定,实验时可采用在放大器输入端加衰减的方法。一般可用实验箱中电阻组成衰减器,这样连接电缆上信号电平较高,不易受干扰。实验连接线应尽量短,避免相互干扰。

- (2) 将信号发生器的输出信号调到 f=1kHz,幅值为 500mV,接至放大电路的 A 点,经过 R_1 、 R_2 衰减, U_i 点得到接近 5mV 的小信号。或者不接 R_1 、 R_2 ,直接从 U_i 点输入幅值 5mV、1kHz 信号。观察 U_i 和 U_o 端波形,并比较相位。
- (3)信号源频率不变,逐渐加大信号源幅度,观察 U。不失真时的最大值并填表 1.2。

$$r_{be} \approx 200 + (1+\beta) \frac{26mV}{I_E}$$
 , $A_V = -\beta \frac{R_L \|R_c\| r_{ce}}{r_{be}}$,

表 1.2

 $R_L = \infty$

实	测	实测计算	估算 Au 199. 16		
U _i (mV)	U _o (V)	A_{u}	A_{u}		
1.66	0.42	253. 01	199. 16		
3. 31	0.838	253. 94	199. 16		
17.4	3.3	191. 4	199. 16		

图 1.2 小信号放大电路

(4) 保持 U_i =5mV 不变,放大器接入负载 R_L ,在改变 R_c 数值情况下测量,并将计算结果填表 1.3。

农1.0							
给定参数		实测		实测计算	估算		
$R_{\rm C}$	R_{L}	U _i (mV)	U _o (V)	A_{u}	A_{u}		
2k	5k1	5. 1	0. 582	114.1	112.14		
2k	2k2	5. 1	0. 583	114.3	81.77		
5k1	5k1	5. 1	1. 298	254. 5	199.05		
5k1	2k2	5 . 1	1. 296	254. 1	119.97		

表 1.3

(5) R_{C} =5k1,不接负载电阻,选择合适 U_{i} ,增大和减小 R_{P} ,观察 U_{o} 波形变化,应可出现正常放大和两种失真现象。若失真观察不明显可增大 U_{i} 幅值,并重测,将测量结果填入表 1.4。

表 1.4

R_P	U_{B}	$U_{\rm C}$	$U_{\rm E}$	输出波形情况
较大	0.465	11. 99	0	一条直线
合适	0. 59	11.668	0.003	正弦波
较小	0.696	0. 447	0.087	底部失真

输出波形图片如下: (黄色线为输入电压,蓝色线为输出电压)

4. 测放大电路输入、输出电阻。

(1)输入电阻测量(见图 1.3)

不接衰減电路的 R_2 ,即在输入端 U_i 串接一个 5k1 电阻如图 1.3,测量 U_s 与 U_i ,即可计算 r_i 。

图 1.3 输入电阻测量

(2)输出电阻测量(见图 1.4)

图 1.4 输出电阻测量

在输出端接入可调电阻作为负载,选择合适的 R_L 值使放大电路输出不失真(接示波器监视),测量带负载时 U_L 和空载时的 U_o ,即可计算出 r_o 。将上述测量及计算结果填入表 1.5 中。

$$r_i = R_b \left\| R_{b2} \right\| r_{be}, r_o = r_{ce} \left\| R_c \right. \approx R_c$$

表 1.5

测算输入电阻(设: R=5k1)			测算输出电阻				
实测		测算	估算	实测		测算	估算
U _s (mV)	U _i (mV)	ri	r_{i}	U_{o} $R_{L}=\infty$	U_L R_L =	$r_o(k\Omega)$	$r_o(k\Omega)$
174. 96	22. 26	743. 46	605. 84	3. 637	3. 321	4. 582	5. 1