Enrichment of Bacterial Virulence Factors in Bacteriophages

Cody Glickman NLM 2018

June 4th, 2018

Outline

Introduction

Baseline Virulence Factor Abundance

Virulence Factors in Cystic Fibrosis Phages

Virulence Factors in Gut with Clostridium Difficile

Bacterial Virulence Factors

Number of Cases

The number of NTM cases is estimated over 100K

Increasing Case

The rate of cases is estimated to grow at 8% every year

Populations at risk of developing NTM

- Immunocompromised individuals
- Patients with lung damage or malfunction
- Residents of warm costal areas especially Hawaii

Importance of Phages as Vectors of Virulence Factors Hawaiian Soil Project

Identifying important soil characteristics for NTM soil culture

Pulmonary NTM

- 90% of NTM cultures are from respiratory samples
- The lung has the lowest abundance of bacteriophages among human niches

Of "Viral" Importance

Bacteriophages (Phages)

Phages are DNA viruses that infect prokaryotes

Bacteriophage Adherence to Mucus (BAM)

- Phages act as an innate immune system in mucosal tissues
- Prior studies identified Ig-like motifs in induced phages from Pseudomonas cultures

Phages in the Lungs

Does phage abundance in the lungs affect bacterial biofilm formation?

The BAM model 5) Phage and bacteria are shed with muscus 3) Adherent phage form anti-microbial laver 4) Mucus-adherent phage

Barr et al. PNAS 2013:110:10771-1077/

02013 by National Academy of Science

PNAS

Barr, Jeremy, et al., PNAS 2013 Tariq, Mohammad, et al., Frontiers in Microbiology 2015

Molecular Methods to Study Phages

Difficulties of phage study

- Lack of universal marker gene
- Sequence heterogeneity
- Misclassification in databases

Phage Isolation Methods

- Biological filtration
- In silico methods

Yarza, P., et al. Nature Reviews Microbiology 2014

Objective

Metagenomics

What is Metagenomics?

Unbiased study of all genetic material in a sample

Importance of Metagenomics

- Functional capabilities of a sample
- Species level distinctions
- Due to lack of a universal gene marker, phages are studied by metagenomics

Metagenomics Gold Standard

Critical Assessment of Metagenome Interpretation (CAMI)

- Comprehensive simulation study of tools from all levels of analysis (binners, assemblers, taxonomic profilers)
- Viral and plasmids affected the performance of taxonomic profilers and abundance calculations

Sczvrba. A., et al. Nature Methods 2017

Viral Filtration Simulation Study

Study Design

30 simulated mixed metagenomes are used to compare the viral contiguous sequence (contigs) identification performance of multiple tools

Sequencing Depth of Experiment

Each metagenome is comprised of 10 million reads

Complexity of Metagenomes

8 bacteria and 8 phages comprise the low complexity samples in each metagenome

Genomes in Simulation

Virus - 0.12 Mb

- Bacillus phage Pony
- Caulobacter phage CcrColossus
- Mycobacterium phage Bxb1
- Mycobacterium phage Che9d
- Mycobacterium phage TM4
- Pseudomonas phage vB-PaeM-C2-10-Ab1
- Staphylococcus phage CNPH82
- uncultured phage crAssphage

Bacteria - 4.72 Mb

- Bacillus subtilis subs. subtilis 168
- Clostridium acetobutylicum ATCC 824
- Clostridium perfringes str. 13
- Lactococcus lactis subsp. lactis Il1403
- Pseudomonas aeruginosa LESB58
- Staphylococcus aureus subsp. aureus N315
- Streptococcus pyogenes M1 476
- Xylella fastidiosa 9a5c

Tools Used in Study

Assembler

MEGAHIT - Effective at assembling viromes Roux, S, et al. PeerJ 2017

Viral Contig Identification Methods

VirFinder - Viral contig K-mer identification model Ren, Jie, et al. Microbiome 2017

Blastx - Filtering against a viral protein database Camacho C., et al. BMC Bioinformatics 2008

VirSorter - Hybrid HMM and gene marker database ROUX, S., et al. PeerJ 2015

vHMM - Iterative HMM trained on viral genes Paez-Espino, D., et al. Nature 2016

Performance Measurements

True Viral Contigs

True viral contigs are defined by BLAST hits (E-value 10-05) against a custom database of the reference phages and bacterial prophage elements.

Term Definitions

TP = True Positive FP = False Positive FN = False Negative Performance Metrics

- Recall = TP / (TP + FN)
- Precision = TP / (TP + FP)

Recall and Precision

Order of Tools from left to right

BLAST, vHMM, VirFinder, VirSorter

Conclusions

Performance

The variance of tool performance suggests that no single tool is optimal for viral filtration

Tool Parameter Optimization

Used default tool parameters for all tools

- Lenient BLASTX filtering resulting in false positives
- vHMM model is the second iteration

Future Directions

Expansion of Tools

Inclusion of binners MetaBat and MetaWatt 3.5

Expanded Dataset

Filter viral elements from CAMI data

Combinations of Tools

Explore how the tools perform in combinations

GRAB

Creating Custom BLAST Databases

Demand for Custom Databases

The Strong Lab uses custom databases to identify mycobacterium elements in metagenomics

Current Tools

- makeblastdb from Command-line BLAST allows users to create custom BLAST databases
- makeblastdb requires local sequences to create usable database

Batch Sequence Retrieval

Current Methods

- NCBI Webserver
- ESearch / Efetch function
- biomartr R package

Test Case

Retrieve protein sequences of three Mycobacterium subspecies

- Mycobacterium avium paratuberculosis
- Mycobacterium abscessus massiliense
- Mycobacterium abscessus bolletii

NCBI Webserver

Batch Download Process

- Query Assembly: "Mycobacterium abscessus subsp.
 massiliense" [Organism] OR "Mycobacterium abscessus subsp.
 bolletii" [Organism] OR "Mycobacterium avium subsp.
 paratuberculosis" [Organism]
- Select Complete Genome Tab
- Click "Download Assemblies" button and select Protein FASTA from File Type drop down

Difficulties

- · Query string must to be specific
- · Length of query string can become unwieldy
- Sparse information on download procedure and examples

GRAB

Efetch and biomartr

Efetch Retrieval Process

```
Efetch can be utilized via Python or via command-line
handle = Entrez.efetch(db="nuccore", id= UID_List ,
rettype = "fasta_cds_aa")
```

biomartr Sequence Retrieval

```
library(biomartr)
meta.retrieval(kingdom = "bacteria", group =
"Actinobacteria", db = "genbank", type = "proteome")
```

Difficulties

- Entrez.efetch function requires a priori knowledge of Entrez UID
- biomartr only able to bulk download phylum level
- Programming skills important [not required for Efetch]

GRAB

Genomic Retrieval and Blast Database Creation (GRAB)

A Batch Retrieval System for Biologists

Well documented command line tool and web interface (in development)

GRABs Sequences by Taxonomy

- GRAB requires the name of organisms and the taxonomic level
- GRAB retrieves genomic, coding sequences, or protein sequences

GRAB Sequence Retrieval

python GRAB.py -m protein -q
paratuberculosis,massiliense,bolletii -l subspeices

Finding Prophages

Prophage Discovery Problem

Same difficulties as gene prediction: finding signal in data

Prophage Discovery Tools

Number of Tools

10 tools listed at Omic Tools for prophage discovery

Methods Used

- Sequence similarity
- Hidden Markov models
- Transcription direction

- Protein length
- Sliding window GC content
- Phage specific kmer

Prophage Discovery Methods

Top Down Methods

All prophage discovery methods find prophages within contiguous sequences or genomes

Potential Prophage Tool Pitfalls

- Metagenomics produces short contigs that are discarded
- In metagenomics, prophage hosts may not be identified

Concluding Remarks

Improve Bacterial Abundance Calculations

Quantify Viral Abundances Infer Biological Relationships

Metagenomic Simulation Study

Effectively identifying viral elements improves bacterial abundance calculation

GRAB

Viral GRAB will contribute to a focus on phages specific to lung infections

Building Up Domains

Allows for the identification of prophages elements in metagenomics

Acknowledgements

Elaine Epperson Nabeeh Hasan Michael Strong

Rebecca Davidson

Jacob Waldman

Ben Busby Jan Buchman Karina 7ile

Computational Bioscience Program

Chris Miller Cathy Lozupone James Costello Kirk Harris

Funding

NLM: 5 T15 LM 9451-09

Questions?

Cody Glickman

cody.glickman@ucdenver.edu www.github.com/glickmac www.codyglickman.com