

Marzio De Corato

Introduction

- Final Goal Assessment of forecasts and interpretability for different machine learning algorithms, including the probabilistic models
- Method Use a dataset for which the laws that interconnects the different features are known from general principles
- Dataset CNEOS asteroids dataset for more than 3500 asteroids
- Theoretical laws Celestial mechanics
- Algorithms involved probabilistic models GLASSO, mgm, minforest, mmod
- Algorithms involved others Random forest, Support Vector Machines, Quadratic Discriminant Analysis, Logistic Regression

Celestial mechanics

$$\mathbf{F}_1 = \mathcal{G} \cdot \frac{m_1 m_2}{r^3} \mathbf{r} = m_1 \ddot{\mathbf{r}}_1 \tag{1}$$

$$\mathbf{F}_2 = -\mathcal{G} \cdot \frac{m_1 m_2}{r^3} \mathbf{r} = m_1 \ddot{\mathbf{r}}_2 \tag{2}$$

If we consider the motion of the second item with respect to the first one

$$\ddot{\mathbf{r}} = \ddot{\mathbf{r}}_2 - \ddot{\mathbf{r}}_1 \quad \mu = \mathcal{G}(m_1 + m_2) \tag{3}$$

$$\frac{d^2\mathbf{r}}{dt^2} + \mu \frac{\mathbf{r}}{r^3} = 0 \tag{4}$$

 $\mathbf{r} \times \ddot{\mathbf{r}} = 0 \implies \mathbf{r}$ and $\dot{\mathbf{r}}$ lies in the same plane

Celestial mechanics

With polar coordinates $\hat{\mathbf{r}}$ and $\hat{m{ heta}}$

$$\mathbf{r} = r\hat{\mathbf{r}} \tag{5}$$

$$\dot{\mathbf{r}} = \dot{r}\hat{\mathbf{r}} + r\dot{\theta}\hat{\boldsymbol{\theta}} \tag{6}$$

$$\ddot{\mathbf{r}} = \left(\ddot{r} - r\dot{\theta}^2\right)\hat{\mathbf{r}} + \left[\frac{1}{r}\frac{d}{dt}\left(r^2\dot{\theta}\right)\right]\hat{\boldsymbol{\theta}} \tag{7}$$

$$\mathbf{h} = r^2 \dot{\theta} \hat{\mathbf{z}} \tag{8}$$

$$h = r^2 \dot{\theta} \tag{9}$$

Celestial mechanics [4]: 2th Kepler law

Figure 1: [4]

$$\delta A \approx \frac{1}{2}r(r+dr)\sin(\delta\theta) \approx \frac{1}{2}r^2\delta\theta$$
 (10)

$$\frac{dA}{dt} = \frac{1}{2}r^2\frac{d\theta}{dt} = \frac{1}{2}h\tag{11}$$

h is constant $\implies 2^{th}$ Kepler law

Celestial mechanics [4]: 1th Kepler law

Using the substitution $u = \frac{1}{r} h = r^2 \dot{\theta}$

$$\dot{r} = -\frac{1}{u}\frac{du}{d\theta}\dot{\theta} = -h\frac{du}{d\theta} \tag{12}$$

$$\ddot{r} = -h\frac{d^2u}{d\theta^2}\dot{\theta} = -h^2u^2\frac{d^2u}{d\theta^2}$$
 (13)

$$\frac{d^2u}{d\theta^2} + u = \frac{\mu}{h^2} \tag{14}$$

$$u = \frac{\mu}{h^2} \left[1 + e \cos(\theta - \phi) \right] \tag{15}$$

Celestial mechanics [4]: 1th Kepler law

$$r = \frac{p}{1 + e\cos(\theta - \phi)}$$
 (16)
$$e \text{ is eccentricity}$$

- circle: e = 0 p = a
- ellipse: 0 < e < 1 $p = a(1 - e^2)$
- parabola: e = 1 p = 2q
- hyperbola: e > 1 $p = a(e^2 - 1)$

a is the semi-major axis of the conic

Figure 2: [4]

Celestial mechanics [4]: 3th Kepler law

Figure 3: [4]

$$b^2 = a^2(1 - e^2) \tag{17}$$

$$r = \frac{a(1 - e^2)}{1 + e \cdot \cos(\theta - \phi)} \tag{18}$$

Area swept in one orbital period T

$$A = \pi a b$$

We know that: hT/2 $h^2 = \mu a(1 - e^2)$

Therefore

$$T^2 = \frac{4\pi^2}{\mu} a^3$$
 (19)

3th Kepler law

$$\frac{m_c + m}{m_c + m'} = \left(\frac{a}{a'}\right) \left(\frac{T'}{T}\right)^2 \tag{20}$$

But since $m, m' \ll m_c$

$$(a)^3 \approx (T')^2 \tag{21}$$

And therefore

$$T' \approx a'^{3/2} \tag{22}$$

The mass of the asteroid is not involve

Orbital parameters

Mean motion

$$n = \frac{2\pi}{T} \tag{23}$$

$$v_{perihelion} = na\sqrt{\frac{1+e}{1-e}} \tag{24}$$

$$v_{aphelion} = na\sqrt{\frac{1-e}{1+e}} \tag{25}$$

Orbital parameters

Figure 4: [4]

Mean anomaly

$$M = n(t - \tau) \tag{26}$$

- M = f = 0 $t = \tau$ Perihelion
- $M = f = \pi$ $t = \tau + T/2$ Aphelion

$$M = E - e \sin E \tag{27}$$

Jupiter Tisserard invariant

$$T_P = \frac{a_p}{a} + 2\cos I \sqrt{\frac{a}{a_p}(1 - e^2)}$$
 (28)

Orbital parameters

Figure 5: [4]

I: inclination of the orbit

 $\Omega \colon$ longitude of the ascending node

Magnitude

$$\Phi = \frac{L}{4\pi r^2} \tag{29}$$

$$m = -2.5 \log_{10} \Phi + C \tag{30}$$

$$m_1 - m_2 = -2.5 \log_{10} \frac{\Phi_1}{\Phi_2} \tag{31}$$

$$M - m = -2.5 \log_{10} \frac{\Phi \cdot d^2}{\Phi \cdot 10^2}$$
 (32)

$$M = m + 5 - 5\log_{10}d \tag{33}$$

Where Φ is the flux for a sphere of radius r, m the relative magnitude and M the Absolute magnitude

Magnitude

$$\Phi = \frac{L}{4\pi r^2} \tag{34}$$

$$m = -2.5\log_{10}\Phi + C \tag{35}$$

$$m_1 - m_2 = -2.5 \log_{10} \frac{\Phi_1}{\Phi_2}$$
 (36)

$$M - m = -2.5 \log_{10} \frac{\Phi \cdot d^2}{\Phi \cdot 10^2} \tag{37}$$

$$M = m + 5 - 5\log_{10}d \tag{38}$$

Where Φ is the flux for a sphere of radius r, m the relative magnitude and M the Absolute magnitude

Classification

Amors

Earth-approaching NEAs with orbits exterior to Earth's but interior to Mars' (named after asteroid (1221) Amor)

$$\begin{array}{c} a > 1.0 \text{ AU} \\ 1.017 \text{ AU} < q < 1.3 \text{ AU} \end{array}$$

Apollos

Earth-crossing NEAs with semi-major axes larger than Earth's (named after asteroid (1862) Apollo)

$$\begin{array}{l} a > 1.0 \ \mathrm{AU} \\ q < 1.017 \ \mathrm{AU} \end{array}$$

Atens

Earth-crossing NEAs with semi-major axes smaller than Earth's (named after asteroid (2062) Aten)

$$a < 1.0 \text{ AU}$$

 $Q > 0.983 \text{ AU}$

Atiras

NEAs whose orbits are contained entirely within the orbit of the Earth (named after asteroid (163693) Atira)

 $\begin{array}{c} a < 1.0 \ \mathrm{AU} \\ Q < 0.983 \ \mathrm{AU} \end{array}$

(q = perihelion distance, Q = aphelion distance, a = semi-major axis)

Classification

• Potentially Hazardous Asteroids: MOID \leq 0.05 au $M \leq$ 22.0 NEAs whose Minimum Orbit Intersection Distance (MOID) with the Earth is 0.05 au or less and whose absolute magnitude (M) is 22.0 or brighter

Classification

- The asteroid dataset was retrieved from Kaggle [2], which reports into a more machine readable form the dataset of The Center for Near-Earth Object Studies (CNEOS) [3], a NASA research centre.
- 3552 Asteroids
- Among the 40 the features, the ones connected only to the other name of the asteroid, or connected only to the name of the orbit and the one connected with the orbiting planet (since for all it was the Earth) were discarted
- The proportion hazardous/not hazardous was set 1:5
- The continuous measures were standardised and demeaned

Features

_	_
Features	Туре
Neo Reference ID	not used
Absolute Magnitude	Continuous
Est Dia in KM (min)	Continuous
Est Dia in KM (max)	Continuous
Close Approach Date	Continuous
Epoch Date Close Approach	Continuous
Relative_Velocity	Continuous
Miss_Dist	Continuous
Min_Orbit_Intersection	Continuous
Jupiter_Tisserand_Invariant	Continuous
Epoch_Osculation	Continuous
Eccentricity	Continuous

Features

Туре
Continuous
Categorical (Binary)

a) Perihelion Distance

b) Eccentricity

c) Min orbit intersection

d) Absolute magnitude

FAMD

Mutual information

GLASSO

$$\rho = 0.2$$

$$\rho$$
=0.2

GLASSO

$$\rho$$
=0.3 ρ =0.4

Mixed interactions: mgm

Mixed interactions: minforest

Mixed interactions: mmod

Mixed interactions

The mgm model is the one that has the list of connection more coherent with the celestial mechanics laws.

Random Forest

Random Forest

Support Vector Machines

Quadratic Discriminant Analysis (QDA)

Logistic regression

ϕ coefficient

Table 1: ϕ coefficient (also known as Matthews correlation coefficient)

Almorithm |

Algorithm	$ \varphi $
RF	0.9876
SVM	0.7111
logistic	0.6173
mgm	0.5997
QDA	0.5562

Conclusions: forecast performances vs intepretability

- The mgm algorithm is not the best one in term of performances, but it provides the connections between the features. On the other side, except for the variable importance in RF, the other are black box one
- The mgm model, as the other graphical model is open to a true scientific validation, the other not.
- The probabilistic models lack in the forecast is definitely compensated by their interetability
- This is meaningful since this two features are in conflict
- The probabilistic models provide a good trade-off between interpretability and forecast performances, as long as one is interest to produce a really scientific result (e.g if the only aim is the forecast the RF is definitely better. However how long one can trust to the RF result?)

Ref

- [1] https://cneos.jpl.nasa.gov/about/neo_groups.html.
- [2] https://www.kaggle.com/shrutimehta/nasa-asteroids-classification.
- [3] https://cneos.jpl.nasa.gov/.
- [4] Carl D Murray and Stanley F Dermott. *Solar system dynamics*. Cambridge university press, 1999.