1) Assume a 32-bit number in 40000004h. Add nibble 4 and nibble 0 & store the result in 4000000Ch.

AREA Program1,CODE,READONLY

ENTRY

MAIN

LDR RO, VALUE ; value loading to RO

LDR R1,[R0] ;value of R0 location loading to R1

MOV R2,#0X000000F; mask value is moving to R2

MOV R3,#0X000F0000 ;mask value is moving to R3

AND R4,R1,R2; nibble0 value will be stored in R4

AND R5,R1,R3; nibble4 value will be stored in R5

LSR R5,R5,#16; logical shift right of nibble4 value by 16-bits

ADD R6,R4,R5; Adding the nibble0 and nibble4 values to R6

LDR RO, RESULT ; loading 4000000C to RO

STR R6,[R0]; storing value(result) of R6 to R0

SVC &11; exit

VALUE DCD &40000004 ;value to be entered in this address

RESULT DCD &4000000C ; result to be obtained in this address

END

2. Consider an array of number present from 40000000H. Add only if the numbers are positive. 40000000H has the count of the array.

```
AREA program2, CODE, READONLY
```

ENTRY

MAIN

LDR RO, VALUE; value loading to RO

LDR R2,[R0]; value of R0 location loading to R2(count)

EOR R3,R3,R3 ;EXOR operation to clear the register and hold the sum

LOOP CMP R2,#0 ;compare R2(count) with zero

BEQ DONE; Branch if Equal to zero

LDR R1,[R0,#4]! ;load the array elements to R1

CMP R1,#0 ;compare the content of Register R1 with 0

BMI NEXTNUM; BMI(Branch if Minus) checks the negative flag, if it sets the branch to loop

ADD R3,R3,R1; if the number is positive, add it with content of R3

SUB R2,R2,#1; Decrementing the count(R2)

B LOOP; B(Branch)

NEXTNUM

SUB R2,R2,#1; Decrement

CMP R2,#0

BEQ DONE

BNE LOOP

DONE LDR R4, RESULT

STR R3,[R4]

STOP B STOP

VALUE DCD &40000000

RESULT DCD &4000003C

END

