Lápis

Em Nlogônia, existem N cidades ($N \leq 5000$), com cada cidade tendo várias rotas de comércio para outras cidades. No total, existem R rotas de comércio R ($0 \leq R \leq 25000000$). Em Nlogônia, para cada rota de comércio entre duas cidades x e y, existe um custo de transporte C(x,y) entre as cidades, onde $0 \leq C(x,y) \leq 10000$ e C(x,y) = C(y,x). Dentre as N cidades, K ($1 \leq K \leq N$) dessas cidades têm lojas que vendem lápis on-line. O preço de cada lápis na cidade x é P(x) ($0 \leq P(x) \leq 10000$).

Encontre o preço mínimo para comprar um lápis on-line e enviá-lo para uma determinada cidade D ($1 \le D \le N$), utilizando a sequência mais barata possível de rotas de comércio. Observe que é possível comprar o lápis na própria cidade D e, portanto, sem necessidade de despesas de envio.

Entrada

A primeira linha da entrada conterá um inteiro T, o número de casos de teste. Em cada caso de teste, a primeira linha contém N, o número de cidades. Você pode assumir que as cidades são numeradas de 1 a N. A segunda linha da entrada contém R, o número de rotas de comércio. As próximas R linhas contém, cada uma, 3 números inteiros x, y e C(x,y), para denotar que o custo de utilização da rota de comércio entre as cidades x e y é C(x,y). A próxima linha contém o inteiro K, o número de cidades com uma loja que vende lápis on-line. As K linhas seguintes contém dois inteiros z e P(z), para denotar que o custo de um lápis na cidade z é P(z). A última linha contém o inteiro D, a cidade de destino.

Saída

Em cada caso de teste, escreva uma linha com o custo mínimo total de compra de um lápis on-line e envio do mesmo para a cidade D.

Exemplo

Entrada:			
1			
3			
3			
1	2	4	
2	3	2	
1	3	3	
3			
1	14		
2	8		
3	3		
1			

