Chapter 4

Integers

The Division Algorithm

Let $\emptyset \neq A \subseteq \mathbb{R}$ and $x \in A$. Then x is the *least element* of A if $x \leq b$, for all $b \in A$.

Let $S \subseteq A$ where $S \neq \emptyset$. Then A is well-ordered if every S has a least element.

(Well-Ordering Principle) The set of natural numbers is well-ordered. In other words, any nonempty subset of \mathbb{N} contains a least element.

Lemma 4.0.1. Let $a, b \in \mathbb{N}$. Then there are unique nonnegative integers q and r with $0 \le r < b$ such that

$$a = qb + r$$
.

Example 4.0.2. Consider the integers 11 and 5. Then 11 = 2(5) + 1. Here a = 11, b = 5, q = 2, and r = 1. Notice that $0 \le r < b$.

Problem 4.0.3. Find integers q and r as in Lemma 4.0.1 for the integers a = 51 and b = 7.