TP555 - AI/ML

Lista de Exercícios #7

Árvores de Decisão

 Considere o conjunto de treinamento dado na tabela abaixo. Ele é composto por 3 atributos de entrada binários (A1, A2 e A3) e uma saída binária, y. Usando o método ID3, encontre manualmente uma árvore de decisão para este conjunto de dados. Apresente os cálculos feitos para se determinar cada um dos nós.

Exemplo	A 1	A2	А3	Output y
x 1	1	0	0	0
x2	1	0	1	0
х3	0	1	0	0
x4	1	1	1	1
х5	1	1	0	1

2. Considere o conjunto de treinamento dado na tabela abaixo. Ele é composto por 2 atributos de entrada binários (x1 e x2) e uma saída binária, y. Usando o método ID3, encontre manualmente uma árvore de decisão para este conjunto de dados. Apresente os cálculos feitos para se determinar cada um dos nós. Qual o valor do *Remainder* para os atributos x1 e x2 durante a escolha do primeiro nó? Qual dos dois atributos é escolhido como primeiro nó? Baseado nesses valores de *Remainder*, é possível termos uma outra versão da árvore que também classifique corretamente todos os dados do conjunto de treinamento?

XOR						
x1 x2 y						
0	0	0				
0	1	1				
1	0	1				
1	1	0				

3. Exercício sobre árvores de decisão utilizando a métrica ID3: Neste exercício você criar uma árvore de decisões para prever se o senhor Jair pagará o empréstimo que ele está solicitando junto a um banco para montar uma indústria farmacêutica especializada na produção de hidroxicloroquina. Jair possui os seguintes atributos: Possui casa própria? Não - Estado civil: Casado - Experiência de trabalho: 3. Portanto, dado estes três atributos sobre o senhor Jair, e a árvore montada acima, deve-se emprestar ou não o dinheiro a ele?

OBS.: Todos os atributos são discretos, ou seja, assumem valores de um conjunto finito de valores. Por exemplo, o atributo experiência de trabalho assume apenas os seguintes valores: 0, 1, 2, 3, 4 e 5.

Possui casa própria?	Estado civil	Experiência de trabalho (0-5)	Pagou?
Sim	Solteiro	3	Sim
Não	Casado	4	Sim
Não	Solteiro	5	Sim
Sim	Casado	4	Sim
Não	Divorciado	2	Não
Não	Casado	4	Sim
Sim	Divorciado	2	Sim
Não	Casado	3	Não
Não	Casado	4	Sim
Não	Casado	2	Não
Sim	Casado	2	Sim
Não	Solteiro	2	Sim
Não	Divorciado	3	Não
Não	Solteiro	3	Sim
Sim	Divorciado	3	Sim
Sim	Solteiro	2	Não
Sim	Casado	3	Sim

4. **Exercício sobre árvores de decisão utilizando a métrica ID3**: Considere o conjunto de treinamento para classificação de mamíferos dado na tabela abaixo.

Name	Body Temperature	Gives Birth?	Four-legged?	Hibernates?	Mammal?
porcupine	warm-blooded	yes	yes	yes	yes
cat	warm-blooded	yes	yes	no	yes
bat	warm-blooded	yes	no	yes	yes
whale	warm-blooded	yes	no	no	yes
salamander	cold-blooded	no	yes	yes	no
komodo dragon	cold-blooded	no	yes	no	no
python	cold-blooded	no	no	yes	no
salmon	cold-blooded	no	no	no	no

eagle	warm-blooded	no	no	no	no
guppy	cold-blooded	yes	no	no	no

Ele é composto por 4 atributos de entrada (**Body Temperature**, **Gives Birth?**, **Four-legged?** e **Hibernates?**) e uma saída binária, **Mammal?**. Faça o seguinte:

- Usando o método ID3, encontre manualmente uma árvore de decisão para este conjunto de dados. Apresente todos os cálculos feitos para se determinar cada um dos nós da árvore. OBS.: A coluna Name da tabela não deve ser considerada para encontrar a árvore.
- 2. Observando a árvore obtida, existem atributos que podem ser descartados da base de treinamento, ou seja, existem atributos que não são importantes para a classificação? Se sim, quais são eles?
- 3. Baseado na sua resposta do item anterior, as árvores de decisão podem ser utilizadas para que tipo de tarefa além, claro, de classificação?
- 4. Em seguida, de posse da árvore de decisão, classifique os exemplos de teste da tabela abaixo. A classificação feita pela árvore de decisão coincide com as classes da tabela?

Name	Body Temperature	Gives Birth?	Four-legged?	Hibernates?	Mammal?
human	warm-blooded	yes	no	no	yes
pigeon	warm-blooded	no	no	no	no
elephant	warm-blooded	yes	yes	no	yes
turtle	cold-blooded	no	yes	no	no
penguin	warm-blooded	no	no	no	no
dolphin	warm-blooded	yes	no	no	yes
platypus	warm-blooded	no	yes	no	yes
spiny anteater	warm-blooded	no	yes	yes	yes

- 5. Houve algum erro de classificação no conjunto de teste? Se sim, o que poderia ser feito para melhorar a acurácia do classificador.
- Baseado na sua resposta do item anterior, apresente a nova árvore de decisão (ou seja, apresenta o desenho da nova árvore) e todos os cálculos feitos para encontrá-la.
- 7. A nova árvore de decisão classifica os exemplos de validação com 100% de acurácia? Apresente os resultados de classificação feitos pela nova árvore.
- 5. **Exercício sobre árvores de decisão utilizando o método ID3**. Considere o conjunto de treinamento dado pela tabela abaixo.

Customer ID	Gender	Car Type	Shirt Size	Class
1	M	Family	Small	CO
2	M	Sports	Medium	C0
3	M	Sports	Medium	C0

4	M	Sports	Large	C0
5	M	Sports	Extra Large	C0
6	M	Sports	Extra Large	C0
7	F	Sports	Small	C0
8	F	Sports	Small	C0
9	F	Sports	Medium	C0
10	F	Luxury	Large	C0
11	M	Family	Large	C1
12	M	Family	Extra Large	C1
13	M	Family	Medium	C1
14	M	Luxury	Extra Large	c1
15	F	Luxury	Small	C1
16	F	Luxury	Small	C1
17	F	Luxury	Medium	C1
18	F	Luxury	Medium	C1
19	F	Luxury	Medium	C1
20	F	Luxury	Large	C1

Ele é composto por 3 atributos de entrada e uma saída binária. Usando o método ID3, encontre **manualmente** uma árvore de decisão para este conjunto de dados. Apresente todos os cálculos feitos para se determinar cada um dos nós da árvore. **OBS**.: A coluna **Customer ID** da tabela não deve ser considerada para encontrar a árvore.

6. **Exercício sobre árvores de decisão utilizando a métrica ID3**: Considere o conjunto de treinamento para classificação de doenças dado pela tabela abaixo.

Example Number	Fever	Vomiting	Diarrhea	Shivering	y (class)
1	No	No	No	No	Healthy (H)
2	Average	No	No	No	Influenza (I)
3	High	No	No	Yes	Influenza (I)
4	High	Yes	Yes	No	Salmonella Poisoning (S)
5	Average	No	Yes	No	Salmonella Poisoning (S)
6	No	Yes	Yes	No	Bowel Inflammation (B)
7	Average	Yes	Yes	No	Bowel Inflammation (B)

Ele é composto por 4 atributos de entrada (**Fever, Vomiting, Diarrhea, Shivering**) e uma saída, **y**. Faça o seguinte:

- 1. Usando o método ID3, encontre manualmente uma árvore de decisão para este conjunto de dados. Apresente todos os cálculos feitos para se determinar cada um dos nós da árvore. OBS.: A coluna "Example Number" da tabela não deve ser considerada para encontrar a árvore. (Dica: Leia o documento do link a seguir para um exemplo de como calcular a entropia para casos onde tem-se mais de duas classes, como é o caso deste exercício. Cálculo da entropia para mais de duas classes.)
- Observando a árvore obtida, quais atributos poderiam ser descartados da base de treinamento, ou seja, quais atributos não são importantes para a classificação?
- 3. De posse da árvore de decisão, classifique os exemplos de validação da tabela abaixo. A classificação feita pela árvore de decisão coincide com as classes da tabela de validação, ou seja, o classificador atinge acurácia de 100%?

Validation Examples	Fever	Vomiting	Diarrhea	Shivering	y (class)
1	High	No	No	Yes	Influenza (I)
2	High	No	No	No	Bowel Inflammation (B)
3	High	Yes	Yes	Yes	Salmonella Poisoning (S)
4	No	No	Yes	Yes	Bowel Inflammation (B)
5	Average	Yes	Yes	Yes	Bowel Inflammation (B)
6	Average	No	Yes	Yes	Salmonella Poisoning (S)

- 4. Houve algum erro de classificação no conjunto de validação? Se sim, o que poderia ser feito para melhorar a acurácia do classificador.
- 5. Apresente a nova árvore de decisão e **todos os cálculos** feitos para encontrá-la.
- 6. A nova árvore de decisão classifica os exemplos de validação com 100% de precisão?
- 7. Treine e ajuste uma *árvore de decisão* para o conjunto de dados das luas (*moons dataset*).
 - a. Gere um conjunto de dados das luas usando: make_moons(n_samples = 10000, noise = 0.4, random_state=42).
 - b. Divida-o em um conjunto de treinamento e um conjunto de testes usando: train_test_split (X, y, test_size=0.25, random_state=42).
 - c. Plote os dados do conjunto de treinamento em relação às classes a que pertencem. Ou seja, defina marcadores diferentes para identificar cada um das classes na figura. Por exemplo, use círculos para denotar exemplos que pertencem à classe 0 e quadrados para denotar exemplos que pertencem à classe 1.

- d. Use o *Grid Search* com validação cruzada (com a ajuda da classe *GridSearchCV*) para encontrar bons valores de hiperparâmetro para um DecisionTreeClassifier. (**Dica**: tente vários valores para max_leaf_nodes.)
- e. Treine o modelo com o conjunto de treinamento usando os valores do hiperparâmetro e meça o desempenho do modelo no conjunto de teste. Você deve obter aproximadamente 85% a 87% de precisão.
- f. Plote as seguintes informações
 - A árvore de decisão encontrada com o valor ótimo do hiperparâmetro.
 - A matriz de confusão.
 - A fronteira de decisão.
 - A curva ROC.
- 8. Neste exercício você irá continuar o exercício anterior e criar uma floresta de árvores de decisão.
 - a. Continuando o exercício anterior, gere 1000 subconjuntos a partir do conjunto de treinamento, com cada um contendo 100 exemplos selecionados aleatoriamente. (Dica: use a classe ShuffleSplit do ScikitLearn para isso. O ShuffleSplit fornece índices para subconjuntos de treinamento e teste, porém, neste exercício você irá apenas utilizar os índices criados para o subconjunto de treinamento, podendo ignorar os índices do subconjunto de testes. O conjunto de testes que será utilizado é o criado no exercício anterior com a função train_test_split. A documentação da classe ShuffleSplit pode ser acessada através do seguinte link:
 - https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.Shuffle Split.html)
 - b. Treine uma árvore de decisão em cada um dos 1000 subconjuntos de treinamento, usando os melhores valores de hiperparâmetros encontrados no exercício 3 ou execute o Grid Search novamente. Avalie cada uma das 1000 árvores de decisão no conjunto de teste original, ou seja o conjunto criado no exercício 3 (lembre-se, não é o subconjunto de testes gerado pelo ShuffleSplit). Como foram treinadas em conjuntos menores, essas árvores de decisão provavelmente terão desempenho pior que a árvore de decisão do exercício 3, atingindo provavelmente cerca de 80% de precisão.
 - c. Agora vem a mágica das *florestas aleatórias*. Para o conjunto de teste original, gere predições com as 1000 árvores de decisão e mantenha apenas a predição mais frequente (**Dica**: você pode usar a função mode() da biblioteca SciPy para isso: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mode.html). Essa abordagem fornece previsões por maioria de votos a partir do conjunto de teste original.
 - d. Meça a precisão das predições obtidas com conjunto de teste original (**Dica**: utilize a função *accuracy_score* para medir a precisão). Você deve obter uma precisão um pouco maior que o modelo do exercício 3 (cerca de 0,5 a 1,5% maior). Ao final deste exercício, você terá treinado o que é conhecido como um classificador baseado em *florestas aleatórias*.