

Paul-Konstantin Oehlmann

Uppsala Universitet

Based on • arXiv:1910.04095 with: Nadir Hajouji

• arXiv:2005.12929 with: Markus Dierigl and Fabian Ruehle

Summer Series on String Phenomenology June 23rd 2020

Example: The group SU(2) admits a \mathbb{Z}_2 center and reps carry charges

Matter Rep 1 2 3 4 ...

$$\mathsf{Matter} \quad \frac{\mathit{Rep}}{\mathit{q}_{\mathit{cent}}} \; \begin{array}{|c|c|c|c|c|c|c|c|}\hline 1 & \mathbf{2} & \mathbf{3} & \mathbf{4} & \dots \\ \hline q_{\mathit{cent}} & 0 & 1 & 0 & 1 & \dots \\ \hline \end{array}$$

- Matter with $q_{cent}=0$ only: electric 1-form symmetry [Gaiotto, Kapustin, Seiberg, Willet'14]
- Gauging this symmetry one obtains $SU(2)/\mathbb{Z}_2 \sim SO(3)$
- Gauging impacts the **spectrum** of Wilson Line and t'Hooft surface operators
 [Aharony, Seiberg, Tachikawa'13]

Matter
$$\frac{Rep}{q_{cent}}$$
 $\frac{1}{0}$ $\frac{2}{1}$ $\frac{3}{0}$ $\frac{4}{1}$...

- Matter with $q_{cent}=0$ only: electric 1-form symmetry [Gaiotto, Kapustin, Seiberg, Willet'14]
- Gauging this symmetry one obtains $SU(2)/\mathbb{Z}_2 \sim SO(3)$
- Gauging impacts the spectrum of Wilson Line and t'Hooft surface operators
 [Aharony, Seiberg, Tachikawa'13]

Lie Group	Center
SU(p)	\mathbb{Z}_p
SO(4n)	$\mathbb{Z}_2 imes \mathbb{Z}_2$
SO(4n+2)	\mathbb{Z}_4
E_6	\mathbb{Z}_3
E ₇	\mathbb{Z}_2
E ₈	\mathbb{Z}_1

- Matter with $q_{cent}=0$ only: electric 1-form symmetry [Gaiotto, Kapustin, Seiberg, Willet 14]
- Gauging this symmetry one obtains $SU(2)/\mathbb{Z}_2 \sim SO(3)$
- Gauging impacts the **spectrum** of Wilson Line and t'Hooft surface operators
 [Aharony, Seiberg, Tachikawa'13]

Lie Group	Center	
SU(p)	\mathbb{Z}_p	$\longleftarrow \text{ Can take arbitrary high quotient } SU(p)/\mathbb{Z}_l$
SO(4n)	$\mathbb{Z}_2 \times \mathbb{Z}_2$	
SO(4n+2)	\mathbb{Z}_4	
E_6	\mathbb{Z}_3	
E_7	\mathbb{Z}_2	Landscape: There should be a cutoff!
E ₈	$\ \mathbb{Z}_1 \ $	

- We want to **systematically** construct SQFTs and SUGRA theories with Gauge groups $G = G^*/T$
- Flexible (all sorts of G^*) and consistent using geometric arguments
- Tool of choice is F-theory: allows (especially in 6D) to construct a large patch of the string landscape and relate swampland questions to geometry

- We want to **systematically** construct SQFTs and SUGRA theories with Gauge groups $G=G^*/T$
- Flexible (all sorts of G^*) and consistent using geometric arguments
- Tool of choice is F-theory: allows (especially in 6D) to construct a large patch of the string landscape and relate swampland questions to geometry
- $G^* = ABCDE$ algebras geometrically realized by torus fiber singularities [Kodaira 68]; $\pi_1(G)$ encoded in finite Mordell-Weil group [Aspinwall, Morrison 98; Mayrhofer, Morrison, Till, Weigand 14]
- M-theory dual for higher form symmetries in lower dimensions
 [Morrison, Schafer-Nameki, Willet; Albertini, del Zotto, Etxebarria, Hosseini 20]
- Other fun geometric games: (Fiberwise-mirror duality, smooth quotients...) [Klevers, Mayorga, O. Piragua, Reuter'14; O.Reuter, Schimanneck; Cvetic, Klevers, Piragua, Poretschkin'16; Anderson, Gray, O. '19]

- We want to **systematically** construct SQFTs and SUGRA theories with Gauge groups $G=G^*/T$
- Flexible (all sorts of G^*) and consistent using geometric arguments
- Tool of choice is F-theory: allows (especially in 6D) to construct a large patch of the string landscape and relate swampland questions to geometry
- $G^* = ABCDE$ algebras geometrically realized by torus fiber singularities [Kodaira 68]; $\pi_1(G)$ encoded in finite Mordell-Weil group [Aspinwall, Morrison 98; Mayrhofer, Morrison, Till, Weigand 14]
- M-theory dual for higher form symmetries in lower dimensions
 [Morrison, Schafer-Nameki, Willet; Albertini, del Zotto, Etxebarria, Hosseini 20]
- Other fun geometric games: (Fiberwise-mirror duality, smooth quotients...) [Klevers, Mayorga, O. Piragua, Reuter'14; O.Reuter, Schimanneck; Cvetic, Klevers, Piragua, Poretschkin'16; Anderson, Gray, O.'19]
- Question 1: what $T = \pi_1(G)$ in a SUGRA are allowed?
- Question 2: What structure does an **SCFT** with $T = \pi_1(G_F)$ have?

1) Geometrize via F-theory

*(G always non-Abelian!)

Finite MW group MW(YX) = T

Restricted Monodromies: $\Gamma_1(p)$

Modular curves $X_1(p)$

SUGRA: $G = G^*/T$ (swampland) Question: which T are possible?

 $\begin{array}{c} \textbf{ 6D SCFT: } \textit{G}_{\textit{F}}/\textit{T} \\ \hline \textbf{SCFTs with modified} \\ \textbf{global flavor structure} \\ \end{array}$

[p,q] 7 Branes act as $SL(2,\mathbb{Z})$ defects on the IIB axio-dilaton au

1. Mordell-Weil torsion and restricted monodromies

Review:Torsion and $\pi_1(G)$

[p,q] 7 Branes act as $SL(2,\mathbb{Z})$ defects on the IIB axio-dilaton τ

- ullet A [1,0] 7-brane acts on au by a trafo $\mathcal{T}\in SL(2,\mathbb{Z})$
- \bullet A [p,q] 7-branes engineered by combinations of $\mathcal{S},\mathcal{T}\in\textit{SL}(2,\mathbb{Z})$

Fix an additional point s_p of order p on the elliptic curve ${\mathcal E}$

Fix an additional point s_p of order p on the elliptic curve \mathcal{E}

- Second point S_p generates an addition law and a group on the elliptic curve
- If $s_p \oplus_{\uparrow}^{(p)} s_p = s_0$ the group is finite $MW(\mathcal{E}) = T \sim \mathbb{Z}_p$

MW Addition Law

Neutral Element

Fix an additional point s_p of order p on the elliptic curve \mathcal{E}

- Second point sp generates an addition law and a group on the elliptic curve
- If $s_p \oplus^{(p)} s_p = s_0$ the group is finite $MW(\mathcal{E}) = T \sim \mathbb{Z}_p$
- If torsion s_p preserved over all B construct projector on states $\sigma(s_p)$ $MW(\mathcal{E}) \hookrightarrow NS(Y_{res})$, [Mayrhofer, Morrison, Till, Weigand 14]

 $\sigma(s_p)$ allows only compatible matter representations \checkmark

Fix an additional point s_p of order p on the elliptic curve \mathcal{E}

- ullet Second point s_p generates an addition law and a group on the elliptic curve
- If $s_p \oplus^{(p)} s_p = s_0$ the group is finite $MW(\mathcal{E}) = T \sim \mathbb{Z}_p$
- Different perspective: which $SL(2,\mathbb{Z})$ elements stabilize the \mathbb{Z}_p torsion point

Fix an additional point s_p of order p on the elliptic curve $\mathcal E$

- ullet Second point s_p generates an addition law and a group on the elliptic curve
- If $s_p \oplus^{(p)} s_p = s_0$ the group is finite $MW(\mathcal{E}) = T \sim \mathbb{Z}_p$
- Different perspective: which $SL(2,\mathbb{Z})$ elements stabilize the \mathbb{Z}_p torsion point

Fix an additional point s_p of order p on the elliptic curve $\mathcal E$

- ullet Second point s_p generates an addition law and a group on the elliptic curve
- If $s_p \oplus^{(p)} s_p = s_0$ the group is finite $MW(\mathcal{E}) = T \sim \mathbb{Z}_p$
- Different perspective: which $SL(2,\mathbb{Z})$ elements stabilize the \mathbb{Z}_p torsion point

Fix an additional point s_p of order p on the elliptic curve $\mathcal E$

- Second point s_p generates an addition law and a group on the elliptic curve
- If $s_p \oplus^{(p)} s_p = s_0$ the group is finite $MW(\mathcal{E}) = T \sim \mathbb{Z}_p$
- Different perspective: which $SL(2,\mathbb{Z})$ elements stabilize the \mathbb{Z}_p torsion point
- This is the congruence subgroup $\Gamma_1(p) \in SL(2,\mathbb{Z})$

$$\Gamma_1(p) = \{ \gamma \in \mathrm{SL}(2, \mathbb{Z}) : \gamma \equiv \begin{pmatrix} 1 & 0 \\ * & 1 \end{pmatrix} \mod p \}. \tag{1}$$

Fiber	(f,g,Δ)	Monodromy	Subgroups	Group	center
11*	$(\geq 1,1,2)$	$\left(egin{array}{cc} 1 & 1 \ -1 & 0 \end{array} ight)$	-	_	-
In	(0,0,n)	$\left(\begin{array}{cc} 1 & n \\ 0 & 1 \end{array}\right)$	$\Gamma_1(n), \Gamma(n)$	SU(n)	\mathbb{Z}_n
III	$(\geq 1, \geq 2, 3)$	$\left(egin{array}{cc} 0 & -1 \ 1 & 0 \end{array} ight)$	Γ ₁ (2)	<i>SU</i> (2)	\mathbb{Z}_2
IV	(≥ 2, 2, 4)	$\left(egin{array}{cc} 0 & 1 \ -1 & -1 \end{array} ight)$	Γ ₁ (3)	<i>SU</i> (3)	\mathbb{Z}_3
I*	$(\geq 2, 3, 6 + 2n)$	$\left(\begin{array}{cc} -1 & -2n \\ 0 & -1 \end{array}\right)$	$\Gamma_1(2), \Gamma(2)$	SO(8+4n)	$\mathbb{Z}_2 imes \mathbb{Z}_2$
I_{2n+1}^*	$(\geq 2,3,7+2n)$	$\left(\begin{array}{cc} -1 & -2n-1 \\ 0 & -1 \end{array}\right)$	$\Gamma_1(2), \Gamma_1(4)$	SO(10+4n)	\mathbb{Z}_4
IV*	$(\geq 3, 4, 8)$	$\left(\begin{array}{cc} -1 & -1 \\ 1 & 0 \end{array}\right)$	Γ ₁ (3)	E ₆	\mathbb{Z}_3
111*	$(3, \ge 5, 9)$	$\left(\begin{array}{cc}0&-1\\1&0\end{array}\right)$	Γ ₁ (2)	E ₇	\mathbb{Z}_2
11*	$(4,\geq 5,10)$	$\left(\begin{array}{cc} 0 & -1 \\ 1 & 1 \end{array} \right)$	-	E ₈	-

7 Brane monodromies consistent with center of the covering group ($\Gamma(p)$ fixes a $\mathbb{Z}_p \times \mathbb{Z}_p$ group)

Fiber	(f,g,Δ)	Monodromy	Subgroups	Group	center
11*	$(\geq 1,1,2)$	$\left(egin{array}{cc} 1 & 1 \ -1 & 0 \end{array} ight)$	-	_	-
In	(0,0,n)	$\left(\begin{array}{cc} 1 & n \\ 0 & 1 \end{array}\right)$	$\Gamma_1(n), \Gamma(n)$	SU(n)	\mathbb{Z}_n
III	$(\geq 1, \geq 2, 3)$	$\left(egin{array}{cc} 0 & -1 \ 1 & 0 \end{array} ight)$	Γ ₁ (2)	<i>SU</i> (2)	\mathbb{Z}_2
IV	(≥ 2, 2, 4)	$\left(egin{array}{cc} 0 & 1 \ -1 & -1 \end{array} ight)$	Γ ₁ (3)	<i>SU</i> (3)	\mathbb{Z}_3
I*	$(\geq 2,3,6+2n)$	$\left(\begin{array}{cc} -1 & -2n \\ 0 & -1 \end{array}\right)$	$\Gamma_1(2), \Gamma(2)$	SO(8+4n)	$\mathbb{Z}_2 imes \mathbb{Z}_2$
I_{2n+1}^*	$(\geq 2, 3, 7 + 2n)$	$\begin{pmatrix} -1 & -2n-1 \\ 0 & -1 \end{pmatrix}$	$\Gamma_1(2), \Gamma_1(4)$	SO(10+4n)	\mathbb{Z}_4
IV*	(≥ 3, 4, 8)	$\left(\begin{array}{cc} -1 & -1 \\ 1 & 0 \end{array}\right)$	Γ ₁ (3)	E ₆	\mathbb{Z}_3
111*	$(3, \ge 5, 9)$	$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$	Γ ₁ (2)	E ₇	\mathbb{Z}_2
11*	$(4,\geq 5,10)$	$\left(\begin{array}{cc} 0 & -1 \\ 1 & 1 \end{array} \right)$	-	E ₈	-

7 Brane monodromies consistent with center of the covering group ($\Gamma(p)$ fixes a $\mathbb{Z}_p \times \mathbb{Z}_p$ group)

Q. What is the highest torsion point s_p a compact fibration can preserve?

A: $T^2 : \mathbb{Z}_{12}$

 $K3: \mathbb{Z}_8$, $\mathsf{CY}_{3/4}$?? [Mazur'78; Oguiso, Shioda'91; Shimada'00]

What is the **moduli space** X(1) of an elliptic curve \mathcal{E}_{τ} ?

- ullet "The Key Hole" no structure: $X(1)^*= au\in \mathcal{H}/\mathit{SL}(2,\mathbb{Z})$
- There is a **cusp** at infinity where $\Delta = 4f^3 + 27g^2 = 0$
- Adding the point at infinity we obtain the compactified modular curve X(1) topologically a \mathbb{P}^1 .

What is the **moduli space** X(1) of an elliptic curve \mathcal{E}_{τ} ?

- ullet "The Key Hole" no structure: $X(1)^* = au \in \mathcal{H}/SL(2,\mathbb{Z})$
- There is a **cusp** at infinity where $\Delta = 4f^3 + 27g^2 = 0$
- Adding the point at infinity we obtain the compactified modular curve X(1) topologically a \mathbb{P}^1 .

Over a compact base space you will always hit the l_1 cusp somewhere

• **Tessellation** into triangular regions of modular curve $X_1(p) = \tau \in \mathcal{H}/\!\!\left(\Gamma_1(p)\right)$

new I_2 cusp from 2 triangles meeting

- **Tessellation** into triangular regions of modular curve $X_1(p) = \tau \in \mathcal{H}/\!\!\left(\Gamma_1(p)\right)$
- Surprise: additional cusps of higher order where triangles meet

new I_2 cusp from 2 triangles meeting

- **Tessellation** into triangular regions of modular curve $X_1(p) = \tau \in \mathcal{H}/\Gamma_1(p)$
- Surprise: additional cusps of higher order where triangles meet

Equivalent construct the Weierstrass model explicitly [Aspinwall,Morrison 98] $s_2@y = x = 0$: $y^2 = x(x + a_2xz^2 + a_4z^4)$, $\Delta = \underbrace{a_4^2}_{l_2}\underbrace{(a^2 + a_4)}_{l_1}$ $a_i \in c_1(B)^i$

new I_2 cusp from 2 triangles meeting

- **Tessellation** into triangular regions of modular curve $X_1(p) = \tau \in \mathcal{H}/\Gamma_1(p)$
- Surprise: additional cusps of higher order where triangles meet

Equivalent construct the Weierstrass model explicitly [Aspinwall, Morrison '98] $s_2@y = x = 0$: $y^2 = x(x + a_2xz^2 + a_4z^4)$, $\Delta = \underbrace{a_4^2}_{b_2}\underbrace{(a^2 + a_4)}_{b_1}$ $a_i \in c_1(B)^i$

Physics: $\pi_1(G^*/T) = \mathbb{Z}_2$ requires $G^* = SU(2)$ at least!

$\Gamma_1(p)$	T	G_{min}
$\Gamma_1(2)$	\mathbb{Z}_2	$SU(2)/\mathbb{Z}_2$

- How does this moduli space look like for large torsion?
- Larger torsion enforces multiple gauge algebra factors!

$\Gamma_1(p)$	T	G_{min}
$\Gamma_1(2)$	\mathbb{Z}_2	$SU(2)/\mathbb{Z}_2$
$\Gamma_1(3)$	\mathbb{Z}_3	$SU(3)/\mathbb{Z}_3$

- How does this moduli space look like for large torsion?
- Larger torsion enforces multiple gauge algebra factors!

$\Gamma_1(p)$	T	G_{min}
$\Gamma_1(2)$	\mathbb{Z}_2	$SU(2)/\mathbb{Z}_2$
$\Gamma_1(3)$	\mathbb{Z}_3	$SU(3)/\mathbb{Z}_3$
$\Gamma_1(5)$	\mathbb{Z}_5	$SU(5)^2/\mathbb{Z}_5$
$\Gamma_1(3)$		$SU(3)/\mathbb{Z}_3$

- How does this moduli space look like for large torsion?
- Larger torsion enforces multiple gauge algebra factors!

$\Gamma_1(p)$	T	G_{min}
$\Gamma_1(2)$	\mathbb{Z}_2	$SU(2)/\mathbb{Z}_2$
$\Gamma_1(3)$	\mathbb{Z}_3	$SU(3)/\mathbb{Z}_3$
$\Gamma_1(5)$	\mathbb{Z}_5	$SU(5)^2/\mathbb{Z}_5$
$\Gamma_1(7)$	\mathbb{Z}_7	$SU(7)^3/\mathbb{Z}_7$

- How does this moduli space look like for large torsion?
- Larger torsion enforces multiple gauge algebra factors!

$\Gamma_1(p)$	T	G_{min}
$\Gamma_1(2)$	\mathbb{Z}_2	$SU(2)/\mathbb{Z}_2$
$\Gamma_1(3)$	\mathbb{Z}_3	$SU(3)/\mathbb{Z}_3$
$\Gamma_1(5)$	\mathbb{Z}_5	$SU(5)^2/\mathbb{Z}_5$
$\Gamma_1(7)$	\mathbb{Z}_7	$SU(7)^3/\mathbb{Z}_7$
$\Gamma_1(9)$	\mathbb{Z}_9	$SU(9)^4/\mathbb{Z}_9$

- How does this moduli space look like for large torsion?
- Larger torsion enforces multiple gauge algebra factors!

2. Modular Curves and Compact Geom-	t ry
-------------------------------------	------

Results

			•	•
Torsion	$K(\mathbb{P}^1)$	K3	dP_9	$CY_{3/4}$
{0}	√	√	√	√
$\{\mathbb{Z}_2\}$	√	√	√	√
$\{\mathbb{Z}_3\}$	√	√	✓	√
$\{\mathbb{Z}_4\}$	✓	✓	✓	✓
$\{\mathbb{Z}_2 \times \mathbb{Z}_2\}$	✓	✓	✓	✓
$\{\mathbb{Z}_5\}$	√	√	√	√
$\{\mathbb{Z}_6\}$	✓	√	✓	√
$\{\mathbb{Z}_2 \times \mathbb{Z}_4\}$	√	√	√	√
$\{\mathbb{Z}_3 \times \mathbb{Z}_3\}$	√	√	✓	√
$\{\mathbb{Z}_7\}$	√	√	X	X
$\{\mathbb{Z}_8\}$	√	√	X	X
$\{\mathbb{Z}_2 \times \mathbb{Z}_6\}$	√	√	X	X
$\{\mathbb{Z}_2 \times \mathbb{Z}_8\}$	√	√	X	X
$\{\mathbb{Z}_4 \times \mathbb{Z}_4\}$	√	√	X	X
$\{\mathbb{Z}_9\}$	√	X	X	X
$\{\mathbb{Z}_{10}\}$	✓	X	X	X
$\{\mathbb{Z}_{12}\}$	√	X	X	X
$\{\mathbb{Z}_3 \times \mathbb{Z}_6\}$	√	X	X	Х
$\{\mathbb{Z}_5 \times \mathbb{Z}_5\}$	√	X	X	X

Constraints for surfaces:

- $\operatorname{rank}(G_{min}) > 8$ no dP₉ $\operatorname{rank}(G_{min}) > 16$ no K3

[Miranda Persson 89]

2. Modular Curves and Compact Geometry					
Torsion	$K(\mathbb{P}^1)$	K3	dP_9	CY	3/4
{0}	√	√	√	,	7
$\{\mathbb{Z}_2\}$	√	√	√	,	/
$\{\mathbb{Z}_3\}$	√	√	✓	,	/
$\{\mathbb{Z}_4\}$	√	√	\checkmark	,	/
$\{\mathbb{Z}_2 imes \mathbb{Z}_2\}$	√	√	√	•	
$\{\mathbb{Z}_5\}$	√	√	√	,	/
$\{\mathbb{Z}_6\}$	✓	√	✓	,	/
$\{\mathbb{Z}_2 \times \mathbb{Z}_4\}$	✓	√	✓	,	/
$\{\mathbb{Z}_3 \times \mathbb{Z}_3\}$	√	√	√	,	
$\{\mathbb{Z}_7\}$	√	√	X		X
$\{\mathbb{Z}_8\}$	√	√	X		X
$\{\mathbb{Z}_2 \times \mathbb{Z}_6\}$	✓	√	X		X
$\{\mathbb{Z}_2 \times \mathbb{Z}_8\}$	✓	√	X		X
$\{\mathbb{Z}_4 \times \mathbb{Z}_4\}$	√	√	X	1	X
$\{\mathbb{Z}_9\}$	√	X	X		X
$\{\mathbb{Z}_{10}\}$	✓	X	X		X
$\{\mathbb{Z}_{12}\}$	√	X	X	1	X
$\{\mathbb{Z}_3 \times \mathbb{Z}_6\}$	√	X	X		X
$\{\mathbb{Z}_5 \times \mathbb{Z}_5\}$	√	X	X		X

Constraints for surfaces:

- $\operatorname{rank}(G_{min}) > 8$ no dP₉
- rank $(G_{min})>16$ no K3

[Miranda Persson 89] V

Constraints for $CY_{3/4}$

New non-minimal singularities: $T = \mathbb{Z}_p$ | Singularities

- p< 4 Regular
- 4<p< 6 (4,6,12) in codim 2 • 6<p < 6 (8,12,24) in codim 2
- \rightarrow No crepant resolution \checkmark

 $\mathsf{CY}_{3/4}$ folds: $T \in \mathit{dP}_9 \in E_8$ Aspinwall-Morrison'98 is complete!

SCFTs with restricted Monodromies

 \cdot 2 dim non-compact Base B_2

6D SCFT construction in IIB: Take B_2 to be **non-compact** and of the form of

- A generalized quiver of k compact \mathbb{P}^1 's wrapped by 7-branes giving rise to gauge algebras \mathfrak{g}_i and bifundamental matter
- Non-compact Flavor branes with flavor algebra \mathfrak{g}_{F_i}

[Witten 96; Seiberg 96; Harvey, Minasian,

Moore, Heckman, Vafa, Hanany, Zaffaroni, del Zotto, Rudelius, Morrison, Mekareeya, Tomasiello, Ohmori, Tachikawa, Zafrir, Park, Bertolini, Merkx, Cordova, Dumitrescu, Intrilligator, Bhardwaj...]

6D SCFT construction in IIB: Take B₂ to be **non-compact** and of the form of

and gauge algebra \mathfrak{g}_k

- A generalized quiver of k compact \mathbb{P}^1 's wrapped by 7-branes giving rise to gauge algebras \mathfrak{g}_i and bifundamental matter
- Non-compact Flavor branes with flavor algebra \mathfrak{g}_{F_i}

[Witten 96; Seiberg 96; Harvey, Minasian,

Moore, Heckman, Vafa, Hanany, Zaffaroni, del Zotto, Rudelius, Morrison, Mekareeya, Tomasiello, Ohmori, Tachikawa, Zafrir, Park, Bertolini, Merkx, Cordova, Dumitrescu, Intrilligator, Bhardwaj...]

6D SCFT construction in IIB: Take B₂ to be **non-compact** and of the form of

- A generalized quiver of k compact \mathbb{P}^1 's wrapped by 7-branes giving rise to gauge algebras \mathfrak{g}_i and bifundamental matter
- Non-compact Flavor branes with flavor algebra g_{Fi}
- Massive 6D strings from D3 branes that wrap compact cycles
- SCFT point where strings become tensionless at the origin of the tensor branch by contracting all curves (if possible) [Witten '96; Seiberg '96; Harvey, Minasian,

Moore, Heckman, Vafa, Hanany, Zaffaroni, del Zotto, Rudelius, Morrison, Mekareeya, Tomasiello, Ohmori, Tachikawa, Zafrir, Park, Bertolini, Merkx, Cordova, Dumitrescu, Intrilligator, Bhardwaj...]

6D SCFT construction in IIB: Take B_2 to be **non-compact** and of the form of

- A generalized quiver of k compact \mathbb{P}^1 's wrapped by 7-branes giving rise to gauge algebras \mathfrak{g}_i and bifundamental matter
- Non-compact Flavor branes with flavor algebra g_{Fi}
- Massive 6D strings from D3 branes that wrap compact cycles
- SCFT point where strings become tensionless at the origin of the tensor branch by contracting all curves (if possible) [Witten '96; Seiberg '96; Harvey, Minasian,

Moore, Heckman, Vafa, Hanany, Zaffaroni, del Zotto, Rudelius, Morrison, Mekareeya, Tomasiello, Ohmori, Tachikawa,

 $\textbf{Zafrir}, \textbf{Park}, \textbf{Bertolini}, \ \textbf{Merkx}, \ \textbf{Cordova}, \ \textbf{Dumitrescu}, \ \textbf{Intrilligator}, \textbf{Bhardwaj}...]$

Construct SCFTs with global quotient structure in the Flavor group, by restricting to a congruence subgroup!

 \mathbb{Z}_1 : $\mathfrak{S}^{\mathfrak{su}_{3,IV}}$

 \mathfrak{so}_8

 $\overbrace{5}^{\mathfrak{f}_4}$

 $\binom{\mathfrak{e}_6}{6}$

 $\frac{\mathfrak{e}_7}{7}$

8

 $\overbrace{12}$

1. Basic building block: Non-Higgsable Clusters [Taylor Morrison'12] (chains) of \mathbb{P}^1 's with high negative self intersection n>2

- **1. Basic building block:** Non-Higgsable Clusters [Taylor Morrison'12] (chains) of \mathbb{P}^1 's with high negative self intersection n>2
 - Combine n > 2 curves with torsion models!

- 1. Basic building block: Non-Higgsable Clusters [Taylor Morrison 12] (chains) of \mathbb{P}^1 's with high negative self intersection n>2
 - Combine n > 2 curves with torsion models!
 - Torsion model enhances the NHC to a compatible gauge group

- **2. Buidling Block:** When bifundamental matter is not perturbatively allowed, it becomes superconformal matter, a 6D SCFT by itself
 - Simplest case, E-string theory $\mathfrak{su}_1 \times \mathfrak{e}_8$ collision
 - Changed to discrete holonomy instanton theories [Aspinwall, Morrison 98]

- **2. Buidling Block:** When bifundamental matter is not perturbatively allowed, it becomes superconformal matter, a 6D SCFT by itself
 - Simplest case, E-string theory $\mathfrak{su}_1 \times \mathfrak{e}_8$ collision
 - Changed to discrete holonomy instanton theories [Aspinwall, Morrison 98]

 \mathbb{Z}_2 : \mathfrak{su}_2 1 \mathfrak{e}_7

- **2. Buidling Block:** When bifundamental matter is not perturbatively allowed, it becomes superconformal matter, a 6D SCFT by itself
 - Simplest case, E-string theory $\mathfrak{su}_1 \times \mathfrak{e}_8$ collision
 - Changed to discrete holonomy instanton theories [Aspinwall, Morrison 98]

- **2. Buidling Block:** When bifundamental matter is not perturbatively allowed, it becomes superconformal matter, a 6D SCFT by itself
 - Simplest case, E-string theory $\mathfrak{su}_1 \times \mathfrak{e}_8$ collision
 - Changed to discrete holonomy instanton theories [Aspinwall, Morrison 98]

Higher rank collisions can be systematically constructed and their tensor branch can be analyzed

- Example: $[\mathfrak{e}_7] \times [\mathfrak{su}_{2n}]$ admits an diagonal \mathbb{Z}_2 center Inconsistent with modding: \mathfrak{su}_{2k+1} factors, **56** matter, $(2k, \overline{2k-1})$ matter
- $([E_7] \times [SU(2n)])/\mathbb{Z}_2$ admits a **different tensor branch** gauge group and matter compatible with global modding [Ohmori, Tachikawa, Zafir'18]

Higher rank collisions can be systematically constructed and their tensor branch can be analyzed

- Example: $[\mathfrak{e}_7] \times [\mathfrak{su}_{2n}]$ admits an diagonal \mathbb{Z}_2 center Inconsistent with modding: \mathfrak{su}_{2k+1} factors, **56** matter, $(2k, \overline{2k-1})$ matter
- $([E_7] \times [SU(2n)])/\mathbb{Z}_2$ admits a **different tensor branch** gauge group and matter compatible with global modding [Ohmori, Tachikawa, Zafir'18]

Higher rank collisions can be systematically constructed and their tensor branch can be analyzed

- Example: $[\mathfrak{e}_7] \times [\mathfrak{su}_{2n}]$ admits an diagonal \mathbb{Z}_2 center Inconsistent with modding: \mathfrak{su}_{2k+1} factors, **56** matter, $(2k, \overline{2k-1})$ matter
- $([E_7] \times [SU(2n)])/\mathbb{Z}_2$ admits a **different tensor branch** gauge group and matter compatible with global modding [Ohmori, Tachikawa, Zafir'18]

A wide range of possibilities: exotic Matter, non-prime quotients, multiple generators.....

A wide range of possibilities: exotic Matter, non-prime quotients, multiple generators.....

A wide range of possibilities: exotic Matter, non-prime quotients, multiple generators.....

Use the **same geometric approach** to construct **SCFTs** with non-simply connected flavor groups $\pi_1(G_F) = T$.

- Fibrations have **restricted monodromies** that lie in a congruence subgroup $\Gamma_1(p)$ (or generalizations)
- Minimal gauge groups in compact geometries can be deduced from the modular curve $X_1(n)=\mathcal{H}/\Gamma_1(n)$
- **Swampland criterion** in compact geometries $\pi_1(G)$ must be finite Abelian subgroup of E_8 , otherwise non-crepant singularities (modulo 8D)

Use the **same geometric approach** to construct **SCFTs** with non-simply connected flavor groups $\pi_1(G_F) = T$.

- Fibrations have **restricted monodromies** that lie in a congruence subgroup $\Gamma_1(p)$ (or generalizations)
- **Minimal gauge groups** in compact geometries can be deduced from the modular curve $X_1(n) = \mathcal{H}/\Gamma_1(n)$
- Swampland criterion in compact geometries $\pi_1(G)$ must be finite Abelian subgroup of E_8 , otherwise non-crepant singularities (modulo 8D)

Use the same geometric approach to construct SCFTs with non-simply connected flavor groups $\pi_1(G_F) = T$.

- Enhanced flavor and gauge algebras over non-Higgsable clusters
- Quotient extends to gauge group and matter at the tensor branch

- Fibrations have **restricted monodromies** that lie in a congruence subgroup $\Gamma_1(p)$ (or generalizations)
- **Minimal gauge groups** in compact geometries can be deduced from the modular curve $X_1(n) = \mathcal{H}/\Gamma_1(n)$
- Swampland criterion in compact geometries $\pi_1(G)$ must be finite Abelian subgroup of E_8 , otherwise non-crepant singularities (modulo 8D)

Use the same geometric approach to construct SCFTs with non-simply connected flavor groups $\pi_1(G_F) = T$.

- Enhanced flavor and gauge algebras over non-Higgsable clusters
- Quotient extends to gauge group and matter at the tensor branch

Thank you very much!