Alt(p) - model pro "úspěch/neúspěch"; např. šestka padne v hodu s pravděpodobností p

 $\mathbf{Binom}(\mathbf{n},\mathbf{p})$ - model pro "počet úspěchů v n nezávislých situacích"; např. počet šestek, které padají s pravděpodobností p, v n hodech

 $Po(\lambda)$ - model pro "počet vzájemně nezávislých událostí v intervalu"; např. počet prasklých žárovek v průběhu měsíce; λ vztahujeme k našemu časovému intervalu

Ge(p) - model pro "počet neúspěchů před prvním úspěchem"; např. počet hodů kostkou než padne šestka

HypGe(N,K,n) - model pro "vybíráme z hromady N předmětů, ze kterých má K předmětů specifickou vlastnost, celkem n předmětů"; např. z klobouku, kde je 10 kuliček, z toho 3 černé, vybíráme 6

 $\mathbf{Ro}(\mathbf{a},\mathbf{b})$ - model pro "dobu čekání na událost, která přichází v pravidelných intervalech"; např. doba, kterou od příchodu budeme čekat na bus, co jezdí každých 10 minut

 $\operatorname{Exp}(\lambda)$ - model pro "dobu čekání na události, které jsou navzájem nezávislé"; např. doba, za kterou praskne další žárovka; λ lze označi za intenzitu (prasknou obvykle 3 žárovky za měsíc $\to \lambda = 3$)

 $\operatorname{Norm}(\mu, \sigma^2)$ - v realitě často se vyskytující rozdělení, převod na normované pomocí $Y = \frac{(X - \mu)}{\sigma}$

Tabulka jednotlivých modelů rozdělení:

P_x	$Hodnoty\ X$	P(X=k) nebo	$\mathbb{E}X$	varX
		f(x), F(x)		
Alt(p)	0 nebo 1	$p^k(1-p)^{1-k}$	p	p(1-p)
Binom(n,p)	< 0, n >	$\binom{n}{k} p^k (1-p)^{n-k}$	np	np(1-p)
$\operatorname{Po}(\lambda)$	$<0,\infty)$	$\frac{\lambda^k}{k!}e^{-\lambda}$	λ	λ
Ge(p)	$<0,\infty)$	$p(1-p)^k$	$\frac{1-p}{p}$	$\frac{1-p}{p^2}$
$\mathrm{HypGe}(\mathrm{N,K,n})$	<max $(0, n + K - N),\min(n, K) >$	$\frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}$	$n\frac{K}{N}$	$n_{\overline{N}}^{\underline{K}}(1-\frac{K}{N})_{\overline{N-1}}^{\underline{N-n}}$
Ro(a,b)	< a, b >	$\frac{1}{b-a}, \frac{x-a}{b-a}$	$\frac{b+a}{2}$	$\frac{(b-a)^2}{12}$
$\operatorname{Exp}(\lambda)$	$(0,\infty)$	$\lambda e^{-\lambda x}, 1 - e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
$\operatorname{Norm}(\mu, \sigma^2)$	$(-\infty,\infty)$	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}},\Phi$	μ	σ^2