NumPDEs

欧阳尚可 3190102458

2022 年 4 月 7 日

Ex 9.5

依题意得 $A\mathbf{x} = \mathbf{b}$ 和 $A\mathbf{e} = \mathbf{r}$,因此有 $\frac{||\mathbf{r}||_2}{||\mathbf{b}||_2} \le ||A||_2 \frac{||\mathbf{e}||_2}{||\mathbf{b}||_2}$ 且 $\frac{||\mathbf{e}||_2}{||\mathbf{x}||_2} \ge \frac{1}{||\mathbf{a}||_2} \frac{||\mathbf{e}||_2}{||\mathbf{b}||_2}$,联立即可得 $\frac{1}{cond(A)} \frac{||\mathbf{e}||_2}{||\mathbf{b}||_2} \le \frac{||\mathbf{e}||_2}{||\mathbf{x}||_2}$,同理可证得另一个不等式。

Ex 9.8

 $cond(A) = ||A||_2 ||A^{-1}||_2 = \sqrt{\lambda_{max}A^TA}\sqrt{\lambda_{max}(A^{-1})^TA^{-1}}$, 观察矩阵 A 不难得到其对称性,若 λ 是 A 的一个特征值,**x** 为相应的特征向量,有 $A^TA\mathbf{x} = \lambda A^T\mathbf{x} = \lambda^2\mathbf{x}$,由此得出要求 A 的二范数即求 A 的最大特征值。 同时我们注意到 A^{-1} 的对称性以及 $A\mathbf{x} = A^{-1}AA\mathbf{x} = \lambda^2A^{-1}\mathbf{x} = \lambda\mathbf{x}$,得 到 $\frac{1}{\lambda}$ 为 A^{-1} 的特征值。再由 lemma 7.24 知 $cond(A) = \frac{\lambda_{max}(A)}{\lambda_{min}(A)} = \frac{sin^2\frac{(n-1)\pi}{2n}}{sin^2\frac{2n}{2n}}$ 。 由 Matlab 计算得,n = 8, cond(A, 2) = 32.1634; n = 1024, cond(A, 1024) =

曲 Matlab 计算得,n = 8, cond(A, 2) = 32.1634; n = 1024, $cond(A, 1024) = 4.2580 * 10^5$ 。

0.1 Ex 9.11

要使得波数最大,则需要保证在每一个取值点处所取的值与其相邻的点异号。

若要保证在边界上取值为零,本质上相当于减少了一个满足与其相邻 的点异号的点。

Ex 9.14

由 Matlab 画图得如下所示图像,其中红色为高频波,蓝色为低频波。容易发现在上面均匀的取五个点会满足 $sin(x_jk\pi) = -sin(x_jk^{'}\pi)$

Ex 9.17

$$T_{\omega}=(1-\omega)I+\omega D^{-1}(L+U)=I-\omega D^{-1}(D-L-U)=I-\omega D^{-1}A=I-rac{\omega h^{2}}{2}A$$
 再由 lemma 7.24 知,A 的特征值为 $\lambda_{k}(A)=rac{4}{h^{2}}sin^{2}rac{k\pi}{2n}$,由此可知 $\lambda_{k}(T_{\omega})=1-2\omega sin^{2}rac{k\pi}{2n}$ 。

Ex 9.18

我们知道 $1-\sin^2\frac{\pi}{2*64}=0.99875$,因此有 $\rho(T_\omega)\geq 0.9986$ 。因此其收敛速度很慢。

Ex 9.21

从图像中不难看出在 $\omega=1$ 时仅在 $16 \le k \le 48$ 有较好的收敛速度。在 $\omega=1$ 时仅在 $16 \le k \le 64$ 有较好的收敛速度。

Ex 9.35

由 lemma 9.32 以及 FMG 的算法流程不难得出其计算开销为

$$\begin{split} &2WU(1+2^{-D}+2^{-2D}+\ldots+2^{-mD})+2WU(2^{-D}+2^{-2D}+\ldots+2^{-mD})+\ldots+2WU(2^{-mD})\\ &=\frac{WU}{1-2^{-D}}(1+2^{-D}+2^{-2D}+\ldots+2^{-mD}-(m+1)2^{-(m+1)D})\leq \frac{2}{(1-2^{-D})^2}WU\\ &D=1,8WUs,\ D=2,\frac{32}{9}WUs,\ D=3,\frac{128}{49}WUs. \end{split}$$

Ex 9.41

从图像中不难直观看出 c_i 都很小,其原因是 c_i 是 T_ω 和三角函数的乘积,而它们的绝对值都小于 1。具体来看,低频波部分会使得 s_k 和 $\lambda_{k'}$ 很小,高频波部分会使得 c_k 和 λ_k 很小,所以导致了它们都很小。同样的通过画图发现其图像的形状与 n 没有关系,所以仅仅对前六张图进行分析很容易得出 $\rho(TG)\approx 0.1$ 。

Ex 9.45

容易看出 I_h^{2h} 的偶数列的列向量是线形无关的,且其个数恰好为 $\frac{n}{2}-1$,为矩阵的行数,因此有 $dim \mathcal{R}(I_h^{2h})$, $dim \mathcal{N}(I_h^{2h})=\frac{n}{2}$ 。