$ au_1^{\#2}$	0	0	0	$\frac{12ik}{(3+4k^2)^2t_1}$	$\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$	0	$\frac{24 k^2}{(3+4 k^2)^2 t_1}$
$\tau_{1^{-}\alpha}^{\#1}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	$\frac{12}{(3+4k^2)^2t_1}$	0	$-\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	$\frac{6}{(3+4 k^2)^2 t_1}$	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	0	$-\frac{12ik}{(3+4k^2)^2t_1}$
$\tau_{1}^{\#1}_{+}\alpha\beta$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{ik}{(1+k^2)^2 t_1}$	$\frac{k^2}{(1+k^2)^2t_1}$	0	0	0	0
$\sigma_{1}^{\#2}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{1}{(1+k^2)^2 t_1}$	$-\frac{ik}{(1+k^2)^2t_1}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\sigma_1^{\#1} + \alpha^{\beta}$	$\sigma_1^{\#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\tau_1^{\#2} +^{\alpha}$

Lagrangian density	$-rac{1}{3}t_1\;\omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	$rac{1}{3}r_2\partial_ heta\omega_{lphaeta}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$rac{1}{2}t_1\partial^{lpha}f_{\kappa heta}\partial^{\kappa}f_{lpha}^{$	$rac{2}{3}t_1\partial^{lpha}f_{\kappalpha}\partial^{\kappa}f'_{,-rac{1}{3}}t_1\partial_{\kappa}f^{\lambda}_{\ \ \lambda}\partial^{\kappa}f'_{,}+2t_1\ \omega_{,\kappa heta}\partial^{\kappa}f'^{ heta}-rac{1}{3}t_1\ \omega_{,lpha}^{\ \ lpha}\partial^{\kappa}f'_{,}$	$rac{1}{3}t_1\;\omega_{/\lambda}^{\;\;\;\lambda}\;\partial^\kappa f'_{\;\;\;\kappa} + rac{1}{2}t_1\;\partial^\alpha f^\lambda_{\;\;\;\kappa}\;\partial^\kappa f_{\lambda\alpha} + rac{1}{2}t_1\;\partial_\kappa f_{\;\;\theta}^{\;\;\;\lambda}\;\partial^\kappa f_\lambda^{\;\;\;\theta} +$	$rac{1}{2}t_1\partial_\kappa f^\lambda_{ heta}\partial^\kappa f_\lambda^{ heta} - rac{1}{3}t_1\partial^\alpha f^\lambda_{lpha}\partial^\kappa f_{\lambda\kappa} + rac{1}{3}r_2\partial_\kappa\omega^{lphaeta heta}\partial^\kappa\omega_{lphaeta heta} +$	$rac{2}{3}r_2\partial_\kappa\omega^{ hetalphaeta}\partial^\kappa\omega_{lphaeta heta} -rac{2}{3}r_2\partial^\beta\omega_{}{}^{lpha\lambda}\partial_\lambda\omega_{lphaeta}{}^{\prime\prime} +rac{2}{3}r_2\partial^\beta\omega_{\lambda}{}^{\lambdalpha}\partial_\lambda\omega_{lphaeta}{}^{\prime\prime}$	Added source term: $f^{\alpha\beta} t_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi}$
$r_2 < 0 \&\& t_1 < 0$	Unitarity conditions	(No massless particle						

$f_{1^-}^{\#2}$	0	0	0	<i>ikt</i> 1 3	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{3}$
$f_{1^-}^{\#1}$	0	0	0	0	0	0	0
$\omega_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	€ 1 7	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_1$
$\omega_{1^-}^{\#1}{}_{\alpha}$	0	0	0	1 1 6	$\frac{t_1}{3\sqrt{2}}$	0	$-\frac{1}{3}$ \bar{l} kt_1
$f_{1}^{\#1}$	$-\frac{i k t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#2}\alpha_{\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#1}{}_{lphaeta}$ ($-\frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
	$\omega_1^{\#1} +^{lphaeta}$	$\omega_{1}^{\#2} + \alpha^{\beta}$	$f_{1+}^{\#1} \dagger^{\alpha\beta}$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{\alpha}$	$f_{1}^{\#1} \dagger^{\alpha}$	$f_{1}^{\#2} \dagger^{\alpha}$

| # | - |

 $\tau_{0}^{\#2} == 0$

 $\tau_{0}^{\#1} == 0$

Source constraints SO(3) irreps

__

1

 $\sigma_{0}^{\#1} == 0$

3

0

 $t_1^{\#2}\alpha + 2ik \, \sigma_1^{\#1}\alpha =$

m

 $\tau_{1}^{\#1\alpha} == 0$

ω

 $\sigma_{1}^{\#1}{}^{\alpha} := \sigma_{1}^{\#2}{}^{\alpha}$

	$\sigma_{2^{+}lphaeta}^{\#1}$	$\tau_{2}^{\#1}_{\alpha\beta}$	$\sigma_{2}^{\#1}_{\alpha\beta}$
$\sigma_{2}^{\#1}\dagger^{lphaeta}$		$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$ au_2^{\#1} \dagger^{lphaeta}$	$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\sharp 1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{t_1}$

$\omega_{0}^{#1} + f_{0}^{#1} + f_{0}^{#1} + f_{0}^{#1}$	f#2+ f_0+	$\omega_{0}^{\#1}$ \dagger	
3 ~	<i></i>	3	
$\omega_{2}^{\#1}$ $\alpha_{2}^{\#1}$ $\alpha_{2}^{\#1}$ $\alpha_{2}^{\#1}$	0	0	<u>£1</u> 2
$f_{2}^{\#1}$	$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0
$ u_2^{\#1} $	$\frac{t_1}{2}$	$\frac{i k t_1}{\sqrt{2}}$	0

 $\omega_2^{\#1} +^{\alpha \beta}$

 $f_2^{\#1} +^{\alpha\beta}$

 $\omega_{2^{\text{-}}}^{\#_1} +^{\alpha\beta\chi}$

 $k^2 r_2 - t_1$

0

0

0

 $\omega_{0^{\text{-}}}^{\#1}$

 $f_{0}^{\#2}$

 $f_{0}^{\#1}$

20

Total #:

2

 $\tau_2^{\#1}\alpha\beta - 2ik \sigma_2^{\#1}\alpha\beta == 0$

 \sim

 $\tau_{1}^{\#1}\alpha\beta + ik \ \sigma_{1}^{\#2}\alpha\beta == 0$

0

0

0

0

0

0

0

0

0

0

0

0

	Massive p
? $P = 0^{-1}$	Pole resid
3 = 0	Polarisati
\vec{k}^{μ}	Square m
?	Spin:
·	Parity:

Massive particle				
Pole residue:	$-\frac{1}{r_2} > 0$			
Polarisations:	1			
Square mass:	$\frac{t_1}{r_2} > 0$			
Spin:	0			
Parity:	Odd			

(No massless particles)