Math 636 Homework #4 Due Friday, May 2

- 1. Compute all of the homology groups for the spaces in parts (a) and (b) below, and use your calculations to show that
 - (a) $\mathbb{R}P^2 \times S^3$ and $\mathbb{R}P^3 \times S^2$ have isomorphic homotopy groups (in all dimensions), but non-isomorphic homology groups.
 - (b) $S^4 \times S^2$ and $\mathbb{C}P^3$ have isomorphic homology groups but non-isomorphic homotopy groups. [Hint for the latter: Recall that there is a fiber bundle $S^{2n+1} \to \mathbb{C}P^n$.]
- 2. Let I_* be the chain complex concentrated in degrees 0 and 1 with $I_1 = \mathbb{Z}\langle e \rangle$, $I_0 = \mathbb{Z}\langle a, b \rangle$, and d(e) = b a (the elements e, a, and b are chosen basis elements for the given free abelian groups). Note that this is the simplicial chain complex for Δ^1 . Let C_* and D_* be chain complexes.
 - (a) Describe the chain complex $I_* \otimes C_*$ by giving the groups in each degree as well as the boundary maps.
 - (b) Let $F: I_* \otimes C_* \to D_*$ be a chain map. Define $f, g: C_* \to D_*$ by $f(x) = F(a \otimes x)$ and $g(x) = F(b \otimes x)$. Likewise, define $s_n: C_n \to D_{n+1}$ by $s_n(x) = F(e \otimes x)$. Prove that f and g are chain maps and the collection $\{s_n\}$ is a chain homotopy between f and g.

[Don't write this out, but convince yourself that giving a chain map $I_* \otimes C_* \to D_*$ is equivalent to giving the data of two chain maps $C_* \to D_*$ and a chain homotopy between them.]

- 3. Let Y be the space obtained by starting with S^3 and attaching a 4-cell via a map of degree 5: $Y = S^3 \cup_f e^4$ where $f: \partial(e^4) \to S^3$ has degree 5. Write down the cellular chain complex for $\mathbb{R}P^3 \times Y$; in particular, specify the rank of each chain group and identify the boundary maps. Compute the homology groups of $\mathbb{R}P^3 \times Y$ (you do not need to compute the homology groups directly from the chain complex, though).
- 4. Compute both the homology and cohomology groups of the following spaces, both with integral and $\mathbb{Z}/2$ coefficients. Heck, do it with $\mathbb{Z}/3$ coefficients as well.
 - (a) $K \times K$, where K is the Klein bottle.
 - (b) $K \times T^g$, where T^g is the genus g torus and K is the Klein bottle.
 - (c) $K \times \mathbb{R}P^n$.
- 5. Let $f: A_* \to B_*$ be a map of chain complexes. We can regard this as a forming a double complex

by putting zeros in all the "empty" spots. The total complex of this double complex is called the **algebraic mapping cone** of f, denoted Cf. Specifically, we set $(Cf)_n = A_{n-1} \oplus B_n$ and define $d: (Cf)_n \to (Cf)_{n-1}$ by

$$d(a,b) = (d_A(a), (-1)^{n-1} f(a) + d_B(b))$$

(one sometimes sees the definition with slightly different signs).

This is an algebraic analog of the mapping cone in topology. If $f: A \to B$ is a cellular map of CW-complexes then the topological mapping cone has an evident cell structure where the *i*-cells consist of the *i*-cells of B together with one *i*-cell in the cone on A for every (i-1)-cell of A; note the parallels with the above algebraic construction.

- (a) Explain why there is a short exact sequence of chain complexes $0 \to B_* \hookrightarrow C(f) \to \Sigma A_* \to 0$, where ΣA_* is the evident chain complex having $(\Sigma A)_n = A_{n-1}$.
- (b) The short exact sequence from (a) gives rise to a long exact sequence in homology groups. This has the form

$$\cdots \to H_i(B) \to H_i(Cf) \to H_i(\Sigma A) \xrightarrow{\partial} H_{i-1}(B) \to \cdots$$

Verify that the connecting homomorphism is really just the map $f_*: H_{i-1}(A) \to H_{i-1}(B)$, possibly up to a sign.

The following problem gives some more practice with homological algebra, but in somewhat different settings than you have seen so far. I think it is not nearly as long as it looks.

6. Let k be a field, and let \mathcal{V} denote the category of vector spaces over k. Let I be any (small) category, and let \mathcal{V}^I be the category whose objects are functors $I \to \mathcal{V}$ and whose morphisms are natural transformations. We call \mathcal{V}^I the category of "I-shaped diagrams in \mathcal{V} ".

In this problem we will focus on the case where I is the pushout category

$$1 \longleftrightarrow 0 \longrightarrow 2$$

with three objects and two non-identity maps (as shown above). An object of \mathcal{V}^I is then just a diagram of vector spaces $V_1 \leftarrow V_0 \rightarrow V_2$. A map from $[V_1 \leftarrow V_0 \rightarrow V_2]$ to $[W_1 \leftarrow W_0 \rightarrow W_2]$ is a commutative diagram

$$V_1 \longleftarrow V_0 \longrightarrow V_2$$

$$\downarrow \qquad \qquad \downarrow$$

$$W_1 \longleftarrow W_0 \longrightarrow W_2.$$

Let $P \colon \mathcal{V}^I \to \mathcal{V}$ be the pushout functor: P assigns to each diagram its pushout.

Note that if D_1 and D_2 are diagrams in \mathcal{V}^I and $f : D_1 \to D_2$ is a map, then the diagram of kernels and the diagram of cokernels is also an object of \mathcal{V}^I in an evident way. We can talk about chain complexes of objects in \mathcal{V}^I , and we can talk about the homology "groups" of such a complex (which are not groups, but rather objects in \mathcal{V}^I). We can redo all of homological algebra in this setting, in all cases replacing the category of abelian groups with the category \mathcal{V}^I .

(a) Let F_1 , F_0 , and F_2 be the three diagrams

$$F_1 = [k \leftarrow 0 \rightarrow 0]$$
 $F_0 = [k \leftarrow k \rightarrow k]$ $F_2 = [0 \leftarrow 0 \rightarrow k]$

where in F_0 the maps are the identities. These diagrams are "free" in a certain sense: namely, if D is an object of \mathcal{V}^I then morphisms $F_i \to D$ are in bijective correspondence with elements of D_i . Convince yourself that this is true (do not hand anything in).

(b) Let $D = [0 \leftarrow k \rightarrow 0]$ and $E = [0 \leftarrow k \rightarrow k]$, where in E the nontrivial map is the identity. Determine free resolutions for D and E (in each level your resolution will consist of a sum of F_i 's, for various i).

- (c) Apply the functor P to your resolutions, to produce a chain complex of vector spaces. Compute the homology groups, which are the groups $(L_iP)(D)$ and $(L_iP)(E)$. These are the derived functors of the pushout functor P. Confirm in your examples that $L_0P = P$.
- (d) Now let I be the category with one object 0 and one non-identity map $t: 0 \to 0$ such that $t^2 = id$. Objects of \mathcal{V}^I are then pairs (W,t) consisting of a vector space W and an endomorphism $t: W \to W$ such that $t^2 = id$. In \mathcal{V}^I the basic "free" object is $(k^2, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix})$; this can also be thought of as the vector space $k\langle g, tg \rangle$ where t(tg) = g. Let $P: \mathcal{V}^I \to \mathcal{V}$ be the colimit functor, sending an object (W,t) to $W/\{x-tx \mid x \in W\}$. Find the free resolution of the object (k,id) and compute $(L_iP)(k,id)$ for all $i \geq 0$ (the answer will depend on the characteristic of k).