Редове с неотрицателни членове.

В този раздел ще разглеждаме редове $\sum_{n=1}^{\infty} a_n$, за които $a_n \geq 0$ за всяко n. Ключовото наблюдение в този случай е следното:

Лема. Ако $\sum_{n=1}^{\infty} a_n$ е ред с неотрицателни членове, то редицата от частичните му суми е монотонно растяща.

Наистина, ако $S_n = a_1 + \ldots + a_n$, то $S_n - S_{n-1} = a_n \ge 0$.

Следствие. Ако е даден ред с неотрицателни членове $\sum_{n=1}^{\infty} a_n$ и редицата S_n от частичните му суми е ограничена, то редът е сходящ.

Наистина, знаем, че една монотонно растяща редица е сходяща точно тогава, когато е ограничена отгоре.

Този прост факт позволява да се установи сходимостта на даден ред, без да се знае неговата сума, като се сравни с друг ред с установена вече сходимост. По-точно, имаме следното твърдение:

Теорема 4. (Принцип за сравняване за редове с неотрицателни членове). Нека $\sum_{n=1}^{\infty} a_n \ u \sum_{n=1}^{\infty} b_n$ са редове с неотрицателни членове, като $a_n \leq b_n$ за всяко n. Тогава:

- 1/ Ако редът $\sum\limits_{n=1}^{\infty}b_n$ е сходящ, то редът $\sum\limits_{n=1}^{\infty}a_n$ е също сходящ.
- 2/ Ако редът $\sum\limits_{n=1}^{\infty}a_n$ е разходящ, то редът $\sum\limits_{n=1}^{\infty}b_n$ е също разходящ.

Доказателство. 1/ Нека $S_n=a_1+\ldots+a_n,\ \widetilde{S}_n=b_1+\ldots+b_n.$ Тогава $S_n\leq \widetilde{S}_n$ за всяко n. Сходимостта на $\sum\limits_{n=1}^{\infty}b_n$ означава, че редицата от частичните му суми \widetilde{S}_n е сходяща,

и следователно ограничена. Оттук следва, че редицата S_n от частичните суми на реда $\sum_{n=1}^{\infty} a_n$ е ограничена. Тъй като тя е и монотонна, от тук следва нейната сходимост.

2/ Това е просто логическо следствие от 1/. Наистина, ако допуснем противното, т.е. че реда $\sum_{n=1}^{\infty} b_n$ е сходящ, то оттук би следвала и сходимостта на реда $\sum_{n=1}^{\infty} a_n$, което противоречи на направените предположения.

Теорема 5. (Втора форма на принципа за сравняване). $Heka\sum_{n=1}^{\infty}a_n\ u\sum_{n=1}^{\infty}b_n\ ca\ pedose$ с неотрицателни членове, като

$$\frac{a_{n+1}}{a_n} \le \frac{b_{n+1}}{b_n}$$

за всяко п. Тогава:

- 1/ Aко редът $\sum\limits_{n=1}^{\infty}b_n$ е сходящ, то редът $\sum\limits_{n=1}^{\infty}a_n$ е също сходящ.
- 2/ Ако редът $\sum_{n=1}^{\infty}a_n$ е разходящ, то редът $\sum_{n=1}^{\infty}b_n$ е също разходящ.

Доказателство. Имаме

$$a_n = a_1 \cdot \frac{a_2}{a_1} \cdot \dots \cdot \frac{a_n}{a_{n-1}} \le a_1 \cdot \frac{b_2}{b_1} \cdot \dots \cdot \frac{b_n}{b_{n-1}} = \frac{a_1}{b_1} \cdot b_n$$
.

Тъй като умножението с константа не променя сходимостта, според теорема 3 сходимостта на реда $\sum_{n=1}^{\infty} b_n$ влече сходимостта на $\sum_{n=1}^{\infty} a_n$. Твърдението за разходимост се доказва както в теорема 3.

Принципът за сравняване е основно средство при извеждането на критерии за сходимост (или разходимост) на редове с неотрицателни членове. По-голямата част от известните критерии се получават чрез сравняване с даден ред или клас редове, за които сходимостта е предварително известна.

Първите два критерия, които ще разгледаме, се получават чрез сравнение с геометричната прогресия.

Критерий на Коши. Нека $\sum_{n=1}^{\infty} a_n$ е ред с неотрицателни членове. Да допуснем, че съществува число q<1 такова, че от известно място нататък

$$\sqrt[n]{a_n} \le q.$$

Тогава редът е сходящ.

Ако за безкрайно много индекси п имаме $\sqrt[n]{a_n} \ge 1$, то редът е разходящ.

Доказателство. Тъй като добавянето или премахването на краен брой членове не влияе на сходимостта на реда, можем да считаме, че условието на критерия е изпълнено за всички n. Тогава $a_n \leq q^n$, и тъй като редът $\sum_{n=1}^{\infty} q^n$ е сходящ, от принципа за сравняване получаваме,

че и реда $\sum\limits_{n=1}^{\infty}a_n$ е сходящ.

Твърдението за разходимост е очевидно; при направеното предположение имаме $a_n \ge 1$ за безкрайно много стойности на n, т.е. общия член на реда не клони към нула. Както знаем от предния параграф, такъв ред не може да бъде сходящ.

Критерий на Даламбер. Нека $\sum\limits_{n=1}^{\infty}a_n$ е ред със строго положителни членове. Да допуснем, че съществува число q<1 такова, че от известно място нататък

$$\frac{a_{n+1}}{a_n} \le q.$$

Тогава редът е сходящ.

Ако от известно място нататък имаме $\frac{a_{n+1}}{a_n} \ge 1$, то редът е разходящ.

Доказателство. За доказване на сходимостта се използва втората форма на принципа за сравняване. Наистина, условието за сходимост може да се напише във вида

$$\frac{a_{n+1}}{a_n} \le \frac{q^{n+1}}{q^n},$$

и според втората форма на принципа за сравняване редът $\sum_{n=1}^{\infty} a_n$ е сходящ.

Обратно, условието $\frac{a_{n+1}}{a_n} \ge 1$ означава, че редицата a_n от членовете на реда е монотонно растяща, и следователно не може да клони към нула. Това означава, че редът е разходящ.

Следващата форма на критериите на Коши и Даламбер е с по-малка общност, но понякога е по-удобна:

Гранична форма на критериите на Коши и Даламбер. $Heka \sum_{n=1}^{\infty} a_n \ e \ ped \ coc \ cmporo$ положителни членове, и да предположим, че съществува някоя от границите:

$$l = \lim_{n \to \infty} \sqrt[n]{a_n}$$
 (Коши), или $l = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$ (Даламбер).

Тогава при l < 1 даденият ред е сходящ, а при l > 1 - разходяш.

Доказателство. Ще докажем твърдението за критерия на Коши; за критерия на Даламбер доказателството е абсолютно същото. Да предположим, че l < 1, и да изберем произволно

число q такова, че l < q < 1. Нека $0 < \varepsilon < q - l$. Тогава от дефиницията на граница следва, че за всички номера n от известно място нататък ще имаме $\sqrt[n]{a_n} \in (l - \varepsilon, l + \varepsilon)$ и следователно $\sqrt[n]{a_n} < l + \varepsilon < q$, което според критерия на Коши ни осигурява сходимост. Обратно, ако l > 1, то от известно място нататък ще имаме $\sqrt[n]{a_n} > 1$ и следователно редът е разходящ.

Интегрален критерий на Коши - Маклорен за сходимост на редове с положителни членове.

Теорема 6. Нека $\sum_{n=1}^{\infty} a_n$ е ред с положителни членове . Да предположим, че съществува функция f(x), монотонно намаляваща в интервала $[1,\infty)$ и клоняща към нула при $x \to +\infty$ такава, че $a_n = f(n)$ за всяко естествено n. Тогава редът $\sum_{n=1}^{\infty} a_n$ и интегралът $\int_a^{+\infty} f(x) \, dx$ са едновременно сходящи или разходящи.

Доказателство. В интервала [n, n+1] монотонната функция f(x) удовлетворява неравенствата

$$a_n = f(n) \ge f(x) \ge f(n+1) = a_{n+1}$$
.

Интегрирайки от n до n+1, получаваме

$$a_n \ge \int_{n}^{n+1} f(x) dx \ge a_{n+1}.$$

Сумираме горните неравенства при n = 1, 2, ..., N - 1:

$$\sum_{n=1}^{N-1} a_n \ge \int_{1}^{N} f(x) dx \ge \sum_{n=2}^{N} a_n.$$

Ако редът $\sum\limits_{n=1}^{\infty}a_n$ е сходящ, то редицата от частичните му суми е ограничена отгоре и от лявото неравенство следва, че редицата от частични интеграли $\int\limits_1^N f(x)\,dx$ е ограничена отгоре от същата константа. Тогава и растящата функция $F(A)=\int\limits_1^A f(x)\,dx$ е ограничена отгоре и от това следва, че интегралът $\int\limits_1^{\infty}f(x)\,dx$ е сходящ.

Обратно, ако горният интеграл е сходящ, от дясното неравенство следва, че редицата от частичните суми на реда $\sum_{n=1}^{\infty} a_n$ е ограничена и следователно той е сходящ (добавянето на първия член a_1 не променя сходимостта).

Забележка. Ако означим с R_n n-тия остатък на реда $\sum_{n=1}^{\infty} a_n$, горните разсъждения по-

$$R_n \le \int_{n}^{\infty} f(x) dx \le R_{n-1},$$

т.е. остатъците на реда и на интеграла намаляват с еднаква скорост.

С горния критерий лесно се изследва сходимостта на редове от вида $\sum_{n=1}^{\infty} \frac{1}{n^{\lambda}}$ и $\sum_{n=1}^{\infty} \frac{1}{n \left(\ln n \right)^{\lambda}}$. И в двата случая при $\lambda > 1$ имаме сходимост, а при $\lambda \leq 1$ - разходимост.

По-тънки критерии за сходимост. Както се вижда, критериите на Коши и Даламбер далеч не винаги дават отговор на въпроса за сходимост на дадения ред. Да се спрем по-специално на критерия на Даламбер: извън полето на действие на критерия остава случаят, когато $\frac{a_{n+1}}{a_n} \to 1$, но винаги $\frac{a_{n+1}}{a_n} < 1$. Другояче казано, ако редицата $\frac{a_n}{a_{n+1}}$ клони към единица със стойности, по-големи от единица. Оказва се, че сходимостта на дадения ред зависи от скоростта, с която това отношение клони към единица. По-точно, налице е следният критерий:

Критерий на Раабе-Дюамел. Нека $\sum_{n=1}^{\infty} a_n$ е ред със строго положителни членове. Да означим

$$R_n = n \left(\frac{a_n}{a_{n+1}} - 1 \right).$$

 T_{02080}

- ако съществува число $\alpha > 1$ такова, че $R_n \ge \alpha$ от известно място нататък, то даденият ред е сходящ;
 - ако от известно място нататък е изпълнено $R_n \le 1$, то редът е разходящ.

Гранична форма на критерия на Раабе-Дюамел. Heka peduuama $R_n=n\left(\frac{a_n}{a_{n+1}}-1\right)$ e cxodяща u клони към числото l. Torasa npu l>1 pedът $\sum\limits_{n=1}^{\infty}a_n$ e cxodящ, a npu l<1 - pasxodящ.

Забележка. Лесно се вижда, че критерият на Раабе-Дюамел представлява усилване на критерия на Даламбер. Наистина, да предположим, че сходимостта на реда $\sum_{n=1}^{\infty} a_n$ може да бъде доказана чрез критерия на Даламбер. Това означава, че $\frac{a_{n+1}}{a_n} \leq q < 1$ и следователно $\frac{a_n}{a_{n+1}} - 1 \geq \frac{1}{q} - 1 > 0$. Очевидно в такъв случай $\lim R_n = +\infty$, т.е критерият на Раабе-Дюамел също дава резултат. За широк клас от редове обаче сходимостта не може да се установи с критерия на Даламбер, а може да се получи от критерия на Раабе-Дюамел; като пример може да се дадат редовете от вида $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$.

Критерий на Кумер. Нека е фиксирана редица $\{c_n\}$ от положителни числа такава, че редът $\sum\limits_{n=1}^{\infty} \frac{1}{c_n}$ е разходящ. За дадения ред с положителни членове $\sum\limits_{n=1}^{\infty} a_n$ да образуваме редицата

$$K_n = c_n \, \frac{a_n}{a_{n+1}} - c_{n+1}.$$

Тогава

- ако съществува число $\delta>0$ такова, че $K_n\geq \delta$ от известно място нататък, то даденият ред е сходящ;
 - ако от известно място нататък е изпълнено $K_n \le 0$, то редът е разходящ.

Доказателство. От неравенството $K_n \geq \delta$ получаваме

$$c_n a_n - c_{n+1} a_{n+1} \ge \delta a_{n+1}.$$

В частност, $c_n a_n - c_{n+1} a_{n+1} > 0$. Да положим $b_n = c_n a_n - c_{n+1} a_{n+1}$; тогава за частичните суми на реда с положителни членове $\sum_{n=1}^{\infty} b_n$ получаваме

$$b_1 + \ldots + b_n = (c_1 a_1 - c_2 a_2) + \ldots + (c_n a_n - c_{n+1} a_{n+1}) = c_1 a_1 - c_{n+1} a_{n+1} \le c_1 a_1$$

т.е. редицата от частичните суми е ограничена и следователно редът е сходящ. Тъй като

$$a_n \le \frac{1}{\delta} b_{n-1},$$

то от принципа за сравняване на редове с положителни членове получаваме сходимостта на реда $\sum a_n$.

Да докажем условието за разходимост. Условието

$$K_n = c_n \frac{a_n}{a_{n+1}} - c_{n+1} \le 0$$

може да се напише във вида

$$\frac{a_{n+1}}{a_n} \ge \frac{\frac{1}{c_{n+1}}}{\frac{1}{c_n}},$$

и от разходимостта на реда $\sum_{n=1}^{\infty} \frac{1}{c_n}$ по втората форма на принципа за сравняване (теорема 5) следва разходимостта на реда $\sum_{n=1}^{\infty} a_n$.

По същество от критерия на Кумер при всеки конкретен избор на редицата $\{c_n\}$ се получава самостоятелен критерий. Например при $c_n \equiv 1$ ние получаваме критерия на Даламбер; наистина, в този случай условието за сходимост се свежда до неравенството $\frac{a_{n+1}}{a_n} \leq \frac{1}{1+\delta}$. Като частен случай от критерия на Кумер може да се получи и критерия на Раабе-

Дюамел:

Доказателство на критерия на Раабе-Дюамел. Да положим $c_n = n$ (да си спомним разходимостта на хармоничния ред $\sum \frac{1}{n}).$ Тогава

$$K_n = n \frac{a_n}{a_{n+1}} - (n+1) = R_n - 1$$

и условието на Кумер за сходимост има вида $R_n \geq 1 + \delta$, т.е. съвпада с условието на Раабе-Дюамел за сходимост. Обратно, ако $R_n \le 1$, то $K_n \le 0$, т.е. изпълнено е условието на Кумер за разходимост.

При друг избор на редицата $\{c_n\}$ от критерия на Кумер се получава поредица от все по-тънки критерии.

Допълнения:

1. Критерий на Бертран. За даден ред $\sum_{n=1}^{\infty} a_n$ с положителни членове да положим

$$B_n = \ln n. (R_n - 1) = \ln n. \left(n \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right),$$

където $R_n = n\left(\frac{a_n}{a_{n+1}} - 1\right)$ е израза, участващ в критерия на Раабе-Дюамел. Докажете, че 1/ ако $B_n \geq \alpha > 1$, то редът е сходящ,

2/ ако $B_n \leq 1$, то редът е разходящ.

Покажете, че така формулираният критерий е по-силен от критерия на Раабе-Дюамел.

Упътване: Приложете критерия на Кумер, като положите $c_n = n \ln n$. (Разходимостта на реда $\sum_{n=1}^{\infty} \frac{1}{n \ln n}$ отново следва от интегралния критерий на Коши - Маклорен.) Докажете, че в този случай

$$K_n = B_n - \ln\left(1 + \frac{1}{n}\right)^{n+1}.$$

2. Критерий на Гаус. Да предположим, че за даден ред $\sum_{n=1}^{\infty} a_n$ с положителни членове имаме

$$\frac{a_n}{a_{n+1}} = \lambda + \frac{\mu}{n} + \frac{\theta_n}{n^2},$$

където θ_n е ограничена редица. Тогава:

- 1/ При $\lambda > 1$ или при $\lambda = 1,\, \mu > 1$ редът е сходящ,
- 2/ При $\lambda < 1$ или при $\lambda = 1, \, \mu \leq 1$ редът е разходящ.

Упътване: При $\lambda \neq 1$ приложете признака на Даламбер; при $\lambda = 1, \, \mu \neq 1$ - признака на Раабе-Дюамел. Най-сетне, при $\lambda = \mu = 1$ докажете разходимостта чрез критерия на Бертран.