Consider the map given by

$$x_{n+1} = x_n^2 + 0.4, (1)$$

starting from the initial condition $x_0 = 0.1$.

To *iterate* the map forward 4 steps — which you can think of as four discrete steps in time — it suffices to simply apply (1) to x_0 four times. The result is summarized in the table below, and visualized in the **cobweb diagram** to its left.

x_0		0.1
x_1	$=f(x_0)$	0.41
x_2	$= f(f(x_0))$	0.5681
x_3	$= f(f(f(x_0)))$	0.722738
x_4	$= f^4(x_0)$	0.92235

Now consider the map given by

$$x_{n+1} = f(x_n)$$

 $f(x) = x^2 + 0.3,$

starting from $x_0 = 0.1$.

△ Fill in the following table, and draw the cobweb diagram for this map.

x_0		0.1
x_1	$=f(x_0)$	
x_2	$= f(f(x_0))$	
x_3	$= f(f(f(x_0)))$	
x_4	$= f^4(x_0)$	
x_5	$= f^5(x_0)$	
x_6	$= f^6(x_0)$	
x_7	$= f^7(x_0)$	

△ Can you predict the long-term behaviour?

In-class exercise Page 1 of 3

Consider the map given by

$$x_{n+1} = 1 - x_n^2, (2)$$

starting from $x_0 = 0.5$.

 \triangle Fill in the following table, and draw the cobweb diagram for this map.

x_0		0.5
x_1	$=f(x_0)$	
x_2	$= f(f(x_0))$	
x_3	$= f(f(f(x_0)))$	
x_4	$= f^4(x_0)$	
x_5	$=f^5(x_0)$	

Next, consider the map given by

$$x_{n+1} = 2x_n^2. (3)$$

🗷 Draw a few steps of the cobweb diagram for this map using two different initial conditions.

Now consider the map given by

$$x_{n+1} = \cos x_n. (4)$$

 \triangle Draw a few steps of the cobweb diagram for this map using $x_0 = -2$.

Now consider the map given by

$$x_{n+1} = 1 - |2x_n - 1|^{1/2} (5)$$

starting from $x_0 = 0.25$.

△ Fill in the following table, and draw the cobweb diagram for this map.

x_0		0.25
x_1	$= f(x_0)$	
x_2	$= f(f(x_0))$	
x_3	$= f(f(f(x_0)))$	
x_4	$= f^4(x_0)$	
x_5	$= f^5(x_0)$	
x_6	$= f^6(x_0)$	
x_7	$= f^7(x_0)$	

△ Can you predict the long-term behaviour?

In-class exercise Page 3 of 3