Edexcel M1(Old) May 2013(R) Q6

[In this question i and j are horizontal unit vectors due east and due north respectively. Position vectors are given with respect to a fixed origin O.]

A ship S is moving with constant velocity $(3\mathbf{i} + 3\mathbf{j})$ km h⁻¹. At time t = 0, the position vector of S is $(-4\mathbf{i} + 2\mathbf{j})$ km.

(a) Find the position vector of
$$S$$
 at time t hours. (2)

A ship T is moving with constant velocity $(-2\mathbf{i} + n\mathbf{j})$ km h⁻¹. At time t = 0, the position vector of T is $(6\mathbf{i} + \mathbf{j})$ km. The two ships meet at the point P.

(b) Find the value of
$$n$$
. (5)

(a) Use of
$$r = r_0 + vt$$

 $(-4i+2j)+(3i+3j)t = (-4+3t)i+(2+3t)j = \begin{pmatrix} -4+3t \\ 2+3t \end{pmatrix}$

M1

A1

B1

M1

A1

A1

DM1

M1A1

M1A1

(b)
$$(6i+j)+(-2i+nj)t = (6-2t)i+(1+nt)j$$

Position vectors identical $\Rightarrow -4+3t = 6-2t$ AND $5t = 10$,

$$\begin{pmatrix} 6-2t \\ 1+nt \end{pmatrix} = \begin{pmatrix} -4+3t \\ 2+3t \end{pmatrix}$$
 Either equation $2+3\times 2=1+2n$, $n = 3.5$

(c) Position vector of P is
$$(-4+6)i+(2+6)j=2i+8j$$

Distance OP = $\sqrt{2^2+8^2} = \sqrt{68} = 8.25$ (km)

Vector methods for projectiles

A ball is struck by a racket from a point A which has position vector 20j m relative to a fixed origin O. Immediately after being struck, the ball has velocity (5i + 8j) ms⁻¹, where i and j are unit vectors horizontally and vertically respectively. After being

- (a) Find the speed of the ball 1.5 seconds after being struck.
- (b) Find an expression for the position vector, r, of the ball relative to θ at time tseconds.

b)
$$q = \begin{pmatrix} 0 \\ -9.8 \end{pmatrix} = ?$$

$$y = \begin{pmatrix} 0 \\ -9.8 \end{pmatrix} = ?$$

$$y = \begin{pmatrix} 0 \\ 20 \end{pmatrix} + \begin{pmatrix} 5 \\ 8 \end{pmatrix} + \begin{pmatrix} 0 \\ -4.9 \end{pmatrix} + ?$$

$$y = \begin{pmatrix} 5 \\ 8 \end{pmatrix} + \begin{pmatrix} 5 \\ 8 \end{pmatrix} + \begin{pmatrix} 0 \\ -4.9 \end{pmatrix} + ?$$

$$y = \begin{pmatrix} 5 \\ 20 + 8t - 4.9t^2 \end{pmatrix}$$

 $(5i + 8j) \text{ ms}^{-1}$

b)
$$q = \begin{pmatrix} 0 \\ -9.8 \end{pmatrix} = \begin{cases} 1 \\ 1 \\ 1 \\ 1 \end{cases} = \begin{cases} 0 \\ 20 \end{pmatrix} + \begin{pmatrix} 5 \\ 8 \end{pmatrix} + \begin{pmatrix} 0 \\ -4.9 \end{pmatrix} + \begin{cases} 2 \\ 1 \\ 1 \end{bmatrix} = \begin{cases} 0 \\ 20 \end{pmatrix} + \begin{pmatrix} 5 \\ 8 \end{pmatrix} + \begin{pmatrix} 0 \\ -4.9 \end{pmatrix} + \begin{pmatrix}$$

4. [In this question the unit vectors **i** and **j** are in a vertical plane, **i** being horizontal and **j** being vertically upward.]

Figure 2

A small ball is projected from the fixed point O on horizontal ground with velocity $(9\mathbf{i} + 12\mathbf{j}) \,\mathrm{m}\,\mathrm{s}^{-1}$

The ball passes through the point A which is h metres vertically above the level of O, as shown in Figure 2.

The velocity of the ball at the instant it passes through the point A is $\lambda(\mathbf{i} - \mathbf{j}) \,\mathrm{m} \,\mathrm{s}^{-1}$, where λ is a positive constant.

The ball is modelled as a particle moving freely under gravity.

- (a) Find the value of h.
- (b) State the minimum speed of the ball as it moves from O to A.
- (c) Find the length of time for which the speed of the ball is less than 12 m s⁻¹

The model could be refined by considering air resistance.

(d) Suggest one other refinement to the model that would make it more realistic.

(4) Vext. V = 5122- 92

(1)

uestion	Scheme	Marks	AOs
4(a)	$(\lambda \mathbf{i} = 9\mathbf{i}) \lambda = 9$	B1	3.3
	Vertical distance:	M1	3.4
	$9^2 = 12^2 - 2gh$	A1ft	1.1b
	h = 3.2(1)	A1	1.1b
		(4)	
(b)	Min speed = 9 (m s-1)	B1	2.2a
		(1)	
(c)	Vertical component of velocity = $\sqrt{12^2 - 9^2} \left(= \sqrt{63} \right)$	M1	3.1b
	$\Rightarrow -\sqrt{63} = \sqrt{63} - gt$	A1ft	1.1b
	Complete strategy to find the required time	M1	3.1b
	t = 1.6(2) (s)	A1	2.2a
		(4)	
(d)	Consider the dimensions of the ball	B1	3.5c
		(1)	

(10 marks)

Edexcel M2(Old) Jan 2012 Q7

[In this question, the unit vectors i and j are horizontal and vertical respectively.]

Figure 3

The point O is a fixed point on a horizontal plane. A ball is projected from O with velocity $(6\mathbf{i} + 12\mathbf{j}) \,\mathrm{m \, s^{-1}}$, and passes through the point A at time t seconds after projection. The point B is on the horizontal plane vertically below A, as shown in Figure 3. It is given that OB = 2AB.

Find

(a) the value of t, (7)

(b) the speed, $V \text{ m s}^{-1}$, of the ball at the instant when it passes through A. (5)

At another point C on the path the speed of the ball is also V m s⁻¹.

(c) Find the time taken for the ball to travel from O to C.

(3)

(a)
$$| \mathbf{i} \rightarrow \text{distance} = 6t$$

$$\mathbf{j} \uparrow \text{ distance} = 12t - \frac{1}{2}gt^2$$

(a)
$$\mathbf{i} \rightarrow \text{distance} = 6t$$

 $\mathbf{j} \uparrow \text{ distance} = 12t - \frac{1}{2}gt^2$
At B , $2\left(12t - \frac{1}{2}gt^2\right) = 6t$
 $(24 - 6)t = gt^2$
 $18 = gt$, $t = \frac{18}{g}(=1.84s)$
(b) $\mathbf{i} \rightarrow \text{speed} = 6$

$$(24-6)t = gt^2$$

$$18 = gt$$
, $t = \frac{18}{g} (= 1.84s)$

(b)
$$| \mathbf{i} \rightarrow \text{speed} = 6$$

$$\mathbf{j} \uparrow \text{ velocity} = 12 - gt = -6$$

(b)
$$\mathbf{i} \to \text{speed} = 6$$

 $\mathbf{j} \uparrow \text{ velocity} = 12 - gt = -6$
 $\therefore \text{speed at } A$
 $= \sqrt{6^2 + 6^2} = \sqrt{72} = 6\sqrt{2} (= 8.49) (\text{ms}^{-1})$
M1 A1

(c) $\uparrow \text{ speed} = 12 - gt = +6$
 $t = \frac{6}{g} (= 0.61\text{s})$
M1 A1 for A1

(c)
$$\uparrow$$
 speed = $12 - gt = +6$

$$t = \frac{6}{g} (= 0.61s)$$

Variable Acceleration in One Dimension more complex functions

A particle is moving in a straight line with acceleration at

$$a = \cos 2\pi t \text{ ms}^{-2}, \qquad t \ge 0$$

$$\int v \, dt \, \binom{S}{v} \frac{d}{dt}$$

$$\int a \, dt \, \binom{S}{v} \frac{d}{dt}$$

A particle is moving in a straight line with acceleration at time
$$t$$
 seconds given by $a = \cos 2\pi t \text{ ms}^{-2}$, $t \ge 0$
The velocity of the particle at time $t = 0$ is $\frac{1}{2\pi} \text{ ms}^{-1}$. Find:

(a) an expression for the velocity at time t seconds
(b) the maximum speed
(c) the distance travelled in the first 3 seconds.

A) $V = \int \cos 2\pi t t \, dt$

b) max speed $a = 0$
 $\cot 2\pi t + \cot 2\pi t$
 $\cot 2\pi t + \cot 2\pi$

A particle of mass 6kg is moving on the positive x-axis. At time t seconds the displacement, s, of the particle from the origin is given by

$$s = 2t^{\frac{3}{2}} + \frac{e^{-2t}}{3} \text{ m}, \qquad t \ge 0$$

(a) Find the velocity of the particle when t = 1.5.

Given that the particle is acted on by a single force of variable magnitude F N which acts in the direction of the positive x-axis,

(b) Find the value of F when t=2

(b) Find the value of F when
$$t = 2$$

$$S = 2t^{3/2} + \frac{1}{3}e^{-2t}$$

$$V = 3t^{3/2} - \frac{1}{3}e^{-2t}$$

$$V = 3t^{3/2} - \frac{1}{3}e^{-2t}$$

$$V = 3t^{3/2} - \frac{1}{3}e^{-2t}$$

$$V = 3(1.5)^{1/2} - \frac{1}{3}e^{-3}$$

$$V = 3 \cdot (4 + \frac{1}{3}e^{-2t})$$

$$V = 3 \cdot (4 + \frac$$