U.2 Energieumsatz und Elektronenstruktur der Atome

1. Bei der Reaktion

$$NH_4NO_3$$
 (s) $\longrightarrow N_2O$ (g) + 2 H_2O (l) $\Delta U = -127.5 \text{ kJ} \cdot \text{mol}^{-1}$

wird bei einem Druck p = 95.00 kPa 1 mol Lachgas (N₂O) mit einem Volumen von 26.09 L gebildet. Wie gross ist die Reaktionsenthalpie?

2. Berechnen Sie Standardreaktionsenthalpie ΔH° für die Reaktion

$$B_2H_6(g) + 6 Cl_2(g) \longrightarrow 2 BCl_3(g) + 6 HCl(g)$$

mit Hilfe von:

BCl₃ (g) + 3 H₂O (l)
$$\longrightarrow$$
 H₃BO₃ (s) + 3 HCl (g) $\Delta H^{\circ} = -112.5 \text{ kJ} \cdot \text{mol}^{-1}$
B₂H₆ (g) + 6 H₂O (l) \longrightarrow 2 H₃BO₃ (s) + 6 H₂ (g) $\Delta H^{\circ} = -493.4 \text{ kJ} \cdot \text{mol}^{-1}$
¹/₂ H₂ (g) + ¹/₂ Cl₂ (g) \longrightarrow HCl (g) $\Delta H^{\circ} = -92.3 \text{ kJ} \cdot \text{mol}^{-1}$

3. Berechnen Sie die Standardreaktionsenthalpie ΔH° für die Reaktion

- a) aus mittleren Bindungsenergien (Vorlesungsfolien oder Mortimer Tab. 5.2)
- b) aus Standard-Bildungsenthalpie $\Delta_f H^{\circ}$

Tabellenwerte:
$$\Delta_f H^\circ (HCN, g) = +135.1 \text{ kJ mol}^{-1}$$

 $\Delta_f H^\circ (H_3CNH_2, g) = -23.0 \text{ kJ mol}^{-1}$

4. Prüfungsaufgabe S2014

a) Berechnen Sie $\Delta_r H^{\circ}$ für folgende Reaktion.

$$C_3H_8(g) + 5 O_2(g) \rightarrow 3 CO_2(g) + 4 H_2O(g) \Delta_r H^\circ = ?$$

Gegeben sind folgende Standardbildungsenthalpien:

$$C_3H_8(g)$$
 $\Delta_f H^\circ = -103.8 \text{ kJ mol}^{-1}$
 $CO_2(g)$ $\Delta_f H^\circ = -393.5 \text{ kJ mol}^{-1}$
 $H_2O(g)$ $\Delta_f H^\circ = -241.8 \text{ kJ mol}^{-1}$

	wird.
5.	Welche der folgenden Aussagen zur Enthalpie ist richtig?
	Sie ist eine intensive Eigenschaft, die immer die Einheit Energie pro Molbesitzt. Für einen Prozess unterscheidet sich der Wert ihrer Änderung in der Regel sehr stark von der Änderung der inneren Energie. Sie ist eine Zustandsfunktion. Änderungen der Enthalpie werden bei konstantem Volumen gemessen. Die Änderung der Enthalpie bei einer Reaktion ist gleich dem Kehrwert der Enthalpieänderung bei der Rückreaktion.
6.	Welche der Grössen Wärme, Arbeit, Enthalpie und innere Energie hängen nur vom Anfangs- und Endzustand aber nicht vom Weg eines Prozesses ab?
	Wärme Arbeit
	Arbeit Enthalpie und innere Energie
	innere Energie
	Enthalpie
7.	Wenn Wärme von einem System aus der Umgebung aufgenommen wird, nennt man den Prozess, und das Vorzeichen von <i>q</i> ist
	exotherm, positiv
	exotherm, negativ
	endotherm, positiv
	endotherm, negativ

b) Ein Gastank enthält 13.2 kg Propan C_3H_8 . Berechnen Sie die Wärme (in kJ), die bei der vollständigen Verbrennung des Propans im Tank freigesetzt

- 8. Welche der folgenden Elektronenkonfigurationen neutraler Atome stellen angeregte Zustände dar? Formulieren Sie die dazu gehörenden Grundzustände.
 - a) $1s^2 2s^2 2p^5 3s^1$
 - b) 1s² 2s² 2p⁶ 3s² 3p⁶ 4s¹ 3d⁴
 - c) $1s^2 2s^1$
 - d) $1s^2 2s^2 2p^3 3s^2$
- 9. Welche Elektronenkonfigurationen haben folgende Ionen oder Atome im Grundzustand?
 - a) Ca^{2+} b) P^{3-} c) La
- d) Os
- Berechnen Sie die Energie in Joule eines Photons roten Lichtes, das eine Frequenz von $4,35\cdot 10^{14}~{\rm s}^{-1}$ besitzt. 10.
 - $6,90 \cdot 10^{-7} \text{ J}$
 - \square 2,88 · 10⁻¹⁹ J
 - $4,35 \cdot 10^{14} \, \text{J}$
 - $1,45 \cdot 10^{-10} \, \text{J}$
 - \Box 1,04 · 10²⁷ J
- 11. Welche Werte von l sind für n = 4 möglich?
 - nur 1, 2 und 3
 - 1, 2, 3 und 4
 - nur 0, 1, 2 und 3
 - sowohl 0, 1, 2 und 3 als auch 4
 - 0, 1, 2, 3, 4 und 5

12.	Welches der folgenden Teilchen besitzt bei einer Geschwindigkeit von $1,00 \cdot 10^4 \text{m s}^{-1}$ die grösste de Broglie-Wellenlänge?
	Heliumkern
	Proton
	Neutron
	Elektron
13.	Wie viele Orbitale gibt es in der 4 <i>p</i> -Unterschale?
	5
14.	Wie viele Elektronen kann eine 3 <i>d</i> -Unterschale maximal aufnehmen?
	-
	5
	6
	L 10