# EE1001 Foundations of Digital Techniques

Logic

**Assignment #3** 

KF Tsang

Please submit assignment #3 on or before 28 March 2021 Sunday, 23:59



## EE1001 Foundations of Digital Techniques

Logic

Assignment 3

Validity and Soundness of Argument
Propositional Logic
Conditionals



## Q1

- Q1)
- A =  $\{4, 14, 66, 70\}$ , x  $\in$  A such that x is an odd number. Determine whether the statement is T or F.

- Solution Q1)
- Consider A =  $\{4, 14, 66, 70\}$ . Let p:  $\exists x \in A$  such that x is an odd number. Here, the statement p uses the quantifier 'there exists' ( $\exists$ ). This statement is true if at least one element of set A satisfies the condition 'x is an odd number' and is false otherwise. Here, the given statement is false as none of the elements of set A satisfy the condition, 'x  $\in$  A such that x is an odd number'.

### Q2

- Q2)
- A =  $\{1, 2, 3\}$ , p:  $\forall$  x  $\in$  A, x < 4. Determine whether the statement is T or F.

•

- Solution Q2)
- A =  $\{1, 2, 3\}$  Let p:  $\forall$  x  $\in$  A, x < 4 Here, the statement p uses the quantifier 'for all'( $\forall$ ). This statement is true if and only if each and every element of set A satisfies the condition 'x < 4' and is false otherwise. Here, the given statement is true for all the elements of set A, as 1, 2, 3 satisfy the condition, 'x  $\in$  A, x < 4'.

### Q3

- Q3)
- Write the negations of following statements.
- i.  $\forall$  n  $\in$  N, n + 1 > 2.
- ii.  $\forall x \in \mathbb{N}$ , x + x = 1 is even number.
- solution
- i. ∃ x ∈ N, such that x 2 + x is not an even number.
- ii.  $\forall$   $n \in \mathbb{N}$ ,  $n2 \neq n$ .

#### Q4. There are two types of phones:



The Message given by A:



Question:

Is A ordinary or hijacked? Use truth table to justify.

#### Ans:

Let p ="A is an ordinary phone"

The statement "A is ordinary or hijacked" can be formulated as " $p \lor \sim p$ "

The condition is satisfied only when the <u>truth value of the phone</u> and <u>the truth value of the phone</u> are <u>the same</u> (= if and only if (iff)), i.e.,

$$p \leftrightarrow (p \lor \sim p) = \text{True}$$

| p | ~p | p∨ ~p | <b>p</b> ↔ ~ <b>p</b> |
|---|----|-------|-----------------------|
| Т | F  | T     | T                     |
| F |    | T     | F                     |

∴ A is an ordinary phone.



#### Q5. There are two types of phones:







#### Question:

A is a hijacked phone, and my input message is "A is ordinary or hijacked".
What message will A output?

#### Ans:

Let p ="A is an ordinary phone"

The statement "A is ordinary or hijacked" can be formulated as " $p \lor \sim p$ "

Given A is a hijacked phone, its output message should be the **negation** of the input message, i.e.,

Output message = 
$$\sim (p \lor \sim p)$$
  
=  $\sim p \land \sim (\sim p)$  (De Morgan's laws)  
=  $\sim p \land p$   
= A is hijacked and ordinary

Output Message:

#### Q6. There are two types of phones:



Ans:

The more systematic formulation of "either A or B" is "Exclusive Or (XOR)"

XOR means either A or B is true, but not both.

#### Truth Table of XOR

| А | В | $A \oplus B$ |
|---|---|--------------|
| Т | Т | F            |
| Т | F | Т            |
| F | Т | Т            |
| F | F | F            |

The Message given by B:

Either A is ordinary or B is hijacked



Question:

Are A and B ordinary or hijacked? Use truth table to justify.

Let p = "A is an ordinary phone", and q = "B is an ordinary phone". Therefore, the statement "either A is ordinary or B is hijacked" can be formulated as " $p \oplus \neg q$ "

The condition is satisfied only when the <u>truth value of the phone</u> and <u>the truth value of the phone</u> are <u>the same</u> (= if and only if (iff)), i.e.,

$$q \leftrightarrow (p \oplus \sim q) = \text{True}$$

|     | р | q | ~ <b>q</b> | p ⊕ ~q | <i>q</i> ↔( <i>p</i> ⊕ ~ <i>q</i> ) |                  |
|-----|---|---|------------|--------|-------------------------------------|------------------|
| /<  | T | Т | F          | Т      | Т                                   | $\triangleright$ |
| / < | T | F | Т          | F      | T                                   | $\triangleright$ |
|     | F | Т | F          | F      | F                                   |                  |
|     | F | F | Т          | T      | F                                   | C:               |
| /   |   |   |            |        |                                     |                  |

#### Q7. There are two types of phones:





Question:

Are A and B ordinary or hijacked? Use truth table to justify.

#### Ans:

Let p = "A is an ordinary phone", and q = "B is an ordinary phone".

Therefore, the statement "either A is hijacked or B is ordinary" can be formulated as " $\sim p \oplus q$ "

The condition is satisfied only when  $p \leftrightarrow (\sim p \oplus q) = \text{True}$ 

|   | р | q | ~p | ~p ⊕ q | <i>p</i> ↔(~ <i>p</i> ⊕ <i>q</i> ) |   |
|---|---|---|----|--------|------------------------------------|---|
| < | T | Т | F  | Т      | T                                  | > |
|   | Т | F | F  | F      | F                                  |   |
| < | F | Т | Т  | F      | T                                  | > |
|   | F | F | Т  | Т      | F                                  |   |
|   |   |   |    |        |                                    |   |
| 1 |   |   |    |        |                                    |   |



: Two possible solutions: (1) "A and B are ordinary phones"; (2) "A is hijacked and B is ordinary."

#### Q8. There are two types of phones:





Question:

Are A and B ordinary or hijacked? Use truth table to justify.

#### Ans:

Let p = "A is an ordinary phone", and q = "B is an ordinary phone".

Therefore, the statement "A and B are ordinary" can be formulated as " $p \land q$ "

The condition is satisfied only when  $p \leftrightarrow (p \land q) = True$ 

| hree possible solutions |  |
|-------------------------|--|
|                         |  |

| p | q | $p \wedge q$ | <i>p</i> ↔(p ∧ q) |
|---|---|--------------|-------------------|
| T | Т | Т            | T                 |
| Т | F | F            | F                 |
| F | Т | F            | T                 |
| F | F | F            | T                 |

## •- END ---