Ejemplo comparación de resultados predictores in sillico

Cambio de estudio GLA c.636+919G>A (chrX:100654735 C/T, rs199473684 o NM_000169:c.636+919G>A)

Exón 4 e intrones adyacentes:

Se ha descrito que este cambio causa la inclusión *in*-frame de un exón críptico de 57 pb. La mutación elimina el motivo que une la proteína silenciadora de splicing (hnRNPA1/A2). Esto lleva al reconocimiento y la inclusión de una secuencia de pseudoexón¹.

El cambio se encuentra en el intrón 4 (la **g** en color rojo subrayada en azul).

Se va a obtener los resultados que produce analizar esta variable con los diferente predictores y ver cuál de ellos es más preciso.

Nota: en Ensembl está anotada como c. 640-801G>A

1. Palhais B, Dembic M, Sabaratnam R, Nielsen KS, Doktor TK, Bruun GH, Andresen BS (2016) The prevalent deep intronic c. 639+919G>A GLA mutation causes pseudoexon activation and Fabry diseaseby abolishing the binding of hnRNPA1 and hnRNPA2/B1to a splicing silencer. Mol Genet Metab 119(3):258–269

NetGene2

Donor splice s	sites, direct	strand	ı			Donor splice s	sites, direct	strand		
	pos 5'->3' 212 247		strand + +	confidence 0.47 0.49	5' exon intron 3' GTGTACTCCT^GTGAGTGGCC CTTTCAAAAG^GTGAGATAGT		pos 5'->3' 212 247 1169	phase strand 1 + 0 + 1 +	confidence 0.47 0.49 0.32	5' exon intron 3' GTGTACTCCT^GTGAGTGGCC CTTTCAAAAG^GTGAGATAGT CCACTAAAGT^GTAAGTTTCA
Donor splice s	sites, comple	ement st	rand			Donor splice s	sites, comple	ement strand		
pos 3'->5' 1149 355 344	pos 5'->3' 178 972 983	phase 0 1 0	-	confidence 0.32 0.44 0.56	5' exon intron 3' GGGAGACATG^GTAACAAGTC GGGAGAGATG^GTAGGATGAT TAGGATGATA^GTAAGTAACG	pos 3'->5' 1149 355 344	pos 5'->3' 178 972 983	phase strand 0 - 1 - 0 -	confidence 0.32 0.44 0.56	5' exon intron 3' GGGAGACATG^GTAACAAGTC GGGAGAGATG^GTAGGATGAT TAGGATGATA^GTAAGTAACG
Acceptor splic	ce sites, dir	rect str	and			Acceptor splic	ce sites, dir	ect strand		
	pos 5'->3' 154 367 701 953 1111	phase 1 2 0 0	strand + + + + +	confidence 0.80 0.53 0.56 0.16 0.56	5' intron exon 3' TCTCATACAG^GTTATAAGCA TCTCTCCCAG^GTTCCAACCA TTTTTTAAAG^AAAAAAACCC TTCTGCCTAG^AACAGTTCTT TTCTTCTCAG^AGCTCCACAC		pos 5'->3' 154 367 701 953 1111	phase strand 1 + 2 + 0 + 0 + 1 +	confidence 0.80 0.53 0.56 0.16 0.56	5' intron exon 3' TCTCATACAG^GTTATAAGCA TCTCTCCCAG^GTTCCAACCA TTTTTTAAAG^AAAAAAACCC TTCTGCCTAG^AACAGTTCTT TTCTTCTCAG^AGCTCCACAC
Acceptor splic	ce sites, com	nplement	strand	l		Acceptor splic	ce sites, com	nplement stran	d	
pos 3'->5' 178	pos 5'->3' 1149	phase 1	strand -	confidence 0.26	5' intron exon 3' TCCTATTCAG^GGCCAAGGAC	pos 3'->5' 178	pos 5'->3' 1149	phase strand 1 -	confidence 0.26	5' intron exon 3' TCCTATTCAG^GGCCAAGGAC

Aparece un nuevo sitio *donor* en la secuencia mutada (en rojo) si empleamos el acceptor anterior (en verde), se produciría la inclusión de un exón críptico de 57 pb. Si empleara el anterior, se produciría la inclusión de un exón críptico de 215 pb (aunque es menos probable porque tiene menos *confidence*.

Splice Site Prediction by Neural Network (NNSplice)

Donor site predictions for 85.53.15.54.14582.0:

Start	End	Score	Exon Intron
148	162	0.41	catacag gt tataag
205	219	0.90	tactcct gt gagtgg
240	254	0.98	tcaaaag gt gagata
1162	1176	0.96	ctagagt gt aagttt

Donor site predictions for 85.53.15.54.14594.0:

Exon Intron	Score	End	Start
catacag gt tataag	0.41	162	148
tactcct gt gagtgg	0.90	219	205
tcaaaag gt gagata	0.98	254	240
ctaaagt gt aagttt	0.98	1176	1162

Acceptor site predictions for 85.53.15.54.14582.0:

Acceptor site predictions for 85.53.15.54.14594.0:

Start	End	Score	Intron	Exon					
134	174	0.98	acccattgttttc	catac ag gttataagcacatgtccttg	Start	End	Score	Intron	Exon
165	205	0.71	catgtccttggcc	tgaat ag gactggcagaagcattgtgt	134	174	0.98	acccattgttttctcata	c ag gttataagcacatgtccttg
347	387	0.90	tcatcctaccatc	ctccc ag gttccaaccacttctcacca	165	205	0.71	catgtccttggccctgaa	t ag gactggcagaagcattgtgt
681	721	0.83	atatcagtttttt	tttaa ag aaaaaaaccctgagacttaa	347	387	0.90	tcatcctaccatctctcc	c ag gttccaaccacttctcacca
933	973	0.98	acttgcttttttc	tgcct ag aacagttcttccccaaagat	681	721	0.83	atatcagttttttttta	a ag aaaaaaaccctgagacttaa
1091	1131	0.98	cctgtttaatttt	ttctc ag agctccacactatttggaag	933	973	0.98	acttgctttttttctgcc	t ag aacagttcttccccaaagat
1145	1185	0.71	gttaccatgtctc	ccact ag agtgtaagtttcatgagggc	1091	1131	0.98	cctgtttaattttcttct	c ag agctccacactatttggaag

Desaparece un sitio aceptor de la secuencia wt a la mutada (en rojo). En el *splicing* normal, este sitio no se utiliza, por lo que no tiene por qué estar afectando al *splicing*.

GENSCAN → no da resultados para este cambio

MaxEntScan

MAXENT: -34.50 MDD: -24.86 MM: -22.93 WMM: -19.58 MAXENT: -7.01 MM: -6.49 WMM: -7.51

Spliceman

[Point mutation	Wildtype (wt)	Mutation (mt)	L1 distance	Ranking (L1)
[cacta(g/a)agtgt	tagagt	taaagt	27888	61%

En el análisis del efecto del cambio, se obtiene una puntuación elevada (61%) para el cambio, por lo que puede estar afectando al splicing.

CRYP-SKIP

Se emplea para el exón y las regiones flanqueantes a este, por lo que este predictor no va a ser útil para una variante intrónica profunda.

Human Splicing Finder

SVM-BPfinder

seq_i	d agez	ss_dis	st bp_seq bp_scr	y_cont ppt_off	ppt_len ppt_scr	svm_scr				seq_id	agez	ss_dis	st bp_seq bp_scr	y_cont ppt_off	ppt_len ppt_scr	svm_scr			
wt	36	349	tttttaaag	-4.30072364603	0.587209302326	57	18	34	-4.3837729	mut	36	349	tttttaaag	-4.30072364603	0.587209302326	57	18	34	-4.3837729
wt	36	348	ttttaaagg	-1.53245739368	0.588921282799	56	18	34	-3.2360146	mut	36	348	ttttaaagg	-1.53245739368	0.588921282799	56	18	34	-3.2360146
wt	36	332	tccttaaca	-1.36843041922	0.593272171254	40	18	34	-2.1576119	mut	36	332	tccttaaca	-1.36843041922	0.593272171254	40	18	34	-2.1576119
wt	36	331	ccttaacat	1.05271534081	0.59509202454	39	18	34	-1.1457329	mut	36	331	ccttaacat	1.05271534081	0.59509202454	39	18	34	-1.1457329
wt	36	325	cattgaagt	-0.26992727141	0.596875	33	18	34	-1.2832442	mut	36	325	cattgaagt	-0.26992727141	0.596875	33	18	34	-1.2832442
wt	36	282	ctctaacta	2.4742265856	0.610108303249	15	24	42	1.0093922	mut	36	282	ctctaacta	2.4742265856	0.610108303249	15	24	42	1.0093922
wt	36	274	actttaaaa	-5.48424977644	0.60594795539	7	24	42	-1.6016844	mut	36	274	actttaaaa	-5.48424977644	0.60594795539	7	24	42	-1.6016844
wt	36	273	ctttaaaat	-1.31248017832	0.608208955224	6	24	42	0.095789053	mut	36	273	ctttaaaat	-1.31248017832	0.608208955224	6	24	42	0.095789053
wt	36	253	cattcattc	-0.207235646277	0.604838709677	1	9	19	0.62968323	mut	36	253	cattcattc	-0.207235646277	0.604838709677	1	9	19	0.62968323
wt	36	246	tcttcatca	-1.29719370536	0.597510373444	10	19	37	-0.20145336	mut	36	246	tcttcatca	-1.29719370536	0.597510373444	10	19	37	-0.20145336
wt	36	243	tcatcacat	-1.53711726586	0.596638655462	7	19	37	-0.10578137	mut	36	243	tcatcacat	-1.53711726586	0.596638655462	7	19	37	-0.10578137
wt	36	238	acattaacc		0.596566523605	2	19	37	-0.32384679	mut	36	238	acattaacc		0.596566523605	2	19	37	-0.32384679
wt	36	237	cattaacct		0.599137931034	1	19	37	1.9090688	mut	36	237	cattaacct	2.63671602189	0.599137931034	1	19	37	1.9090688
wt	36	229	tgtttaatt	-3.49488724098	0.59375 2	10	27	-0.64	994069	mut	36	229	tgtttaatt	-3.49488724098	0.59375 2	10	27	-0.649	94069
wt	36	228	gtttaattt	-1.03861221981	0.596412556054	1	10	27	0.37596535	mut	36	228	gtttaattt	-1.03861221981	0.596412556054	1	10	27	0.37596535
wt	36	217	ttctcagag	-0.233334927075	0.580188679245	22	8	14	-0.76434108	mut	36	217	ttctcagag	-0.233334927079	0.580188679245	22	8	14	-0.76434108
wt	36	186	tgttgactt	1.53476146582	0.591160220994	1	9	14	1.2607604	mut	36	186	tgttgactt	1.53476146582	0.591160220994	1	9	14	1.2607604
wt	36	179	ttgttacca		0.586206896552		12	20	0.20487857	mut	36	179	ttgttacca		0.586206896552		12	20	0.20487857
wt	36	155	gtgtaagtt		0.586666666667		10	16	-1.9668857	mut	36	162	cactaaagt		0.573248407643		10	16	-1.7105445
wt	36	149	gtttcatga		0.583333333333	32	10	16	-1.7294174	mut	36	155	gtgtaagtt		0.586666666667		10	16	-1.9668857
wt	36	146	tcatgaggg	-2.18584999844	0.58865248227	29	10	16	-1.950566	mut	36	149	gtttcatga	-1.13166954383	0.583333333333	32	10	16	-1.7294174
wt	36	127	gtctgactt		0.614754098361		10	16	1.1185444	mut	36	146	tcatgaggg	-2.18584999844		29	10	16	-1.950566
wt	36	121	ctttgactg		0.612068965517		10	16	1.0228253	mut	36	127	gtctgactt	2.55945786451	0.614754098361		10	16	1.1185444
wt	36	99	tggttaagt		0.606382978723		8	14	-1.2249542	mut	36	121	ctttgactg	1.34723665694	0.612068965517		10	16	1.0228253
wt	36	98	ggttaagtg		0.612903225806		8	14	-0.26779609	mut	36	99	tggttaagt		0.606382978723		8	14	-1.2249542
wt	36	91	tgttgaata	-0.787962435	0.627906976744		8	14	0.10997911	mut	36	98	ggttaagtg		0.612903225806		8	14	-0.26779609
wt	36	84	tagttattt		0.645569620253		27	46	-1.1798655	mut	36	91	tgttgaata	-0.787962435	0.627906976744		8	14	0.10997911
wt	36	80	tatttatgg	-2.44529988651		27	46		342572	mut	36	84	tagttattt		0.645569620253		27	46	-1.1798655
wt	36	72	gaatgaatc		0.686567164179		27	46	0.75759948	mut	36	80	tatttatgg	-2.44529988651		27	46	-0.553	
wt	36	62	ctattattc		0.684210526316	1	18	32	-0.12093569	mut	36	72	gaatgaatc		0.686567164179		27	46	0.75759948
wt	36	54	ccctcatta	0.224180695393		1	10	17	0.79554588	mut	36	62	ctattattc		0.684210526316	1	18	32	-0.12093569
wt	36	51	tcattatct		0.652173913043		11	30	-0.97163764	mut	36	54	ccctcatta	0.224180695393		1	10	17	0.79554588
wt	36	25	ttctcaaca	0.330802281765		0	0	-0.54		mut	36	51	tcattatct		0.652173913043		11	30	-0.97163764
wt	36	17	atcttaaac	-1.729610229	0.583333333333		0	0	-0.84662656	mut	36	25	ttctcaaca	0.330802281765		0	0	-0.540	
wt	36	16	tcttaaacc	-0.436349277476	0.636363636364	11	0	0	-0.25982823	mut	36	17	atcttaaac	-1.729610229	0.583333333333		0	0	-0.84662656
										mut	36	16	tcttaaacc	-0.436349277476	0.636363636364	11	0	0	-0.25982823

Aparición nuevo BP en la secuencia mutante, posible alteración del *splicing*.

IntSplice

SNV at chrX:100654735 can't be predicted by IntSplice.

Prediction shows either Abnormal or Normal.

Prediction Genomic Mutation Ensembl 64 Transcript ID and Exon No.

Variant Effect Predictor tool

Category	Count
Variants processed	1
Variants filtered out	0
Novel / existing variants	0 (0.0) / 1 (100.0)
Overlapped genes	3
Overlapped transcripts	26
Overlapped regulatory features	0

Se trata de una variante que está afectando al sitio de *splicing*, por lo que va a provocar que se altere el *splicing* normal. Es una variante *downstream* que está afectando al 3'UTR del gen y es una *non coding transcript exon variant*, es decir, una variante que se encuentra en un transcrito que no se suele transcribir porque no es el mayoritario. El método de NMD se encarga de degradar estos transcritos², dado que aparece un codón de parada.

Uploaded variant	Location	Allele	Consequence	Symbol -	Gene	Feature type	<u>Feature</u>	Biotype
ENST00000218516.3:c.639+919G>A	X:101399747- 101399747	Т	intron_variant	GLA	ENSG00000102393	Transcript	ENST00000218516.4	protein_coding
ENST00000218516.3:c.639+919G>A	X:101399747- 101399747	T	downstream_gene_variant	RPL36A	ENSG00000241343	Transcript	ENST00000372849.8	nonsense_mediated_decay
ENST00000218516.3:c.639+919G>A	X:101399747- 101399747	T	downstream_gene_variant	RPL36A	ENSG00000241343	Transcript	ENST00000392994.7	protein_coding
ENST00000218516.3:c.639+919G>A	X:101399747- 101399747	T	intron_variant	RPL36A- HNRNPH2	ENSG00000257529	Transcript	ENST00000409170.3	protein_coding
ENST00000218516.3:c.639+919G>A	X:101399747- 101399747	Т	intron_variant	RPL36A- HNRNPH2	ENSG00000257529	Transcript	ENST00000409338.5	protein_coding
ENST00000218516.3:c.639+919G>A	X:101399747- 101399747	T	downstream_gene_variant	RPL36A	ENSG00000241343	Transcript	ENST00000427805.6	protein_coding
ENST00000218516.3:c.639+919G>A	X:101399747- 101399747	Т	downstream_gene_variant	RPL36A	ENSG00000241343	Transcript	ENST00000465744.5	retained_intron
ENST00000218516.3:c.639+919G>A	X:101399747- 101399747	Т	intron_variant, non_coding_transcript_variant	GLA	ENSG00000102393	Transcript	ENST00000466414.2	retained_intron
ENST00000218516.3:c.639+919G>A	X:101399747- 101399747	Т	intron_variant, non_coding_transcript_variant	GLA	ENSG00000102393	Transcript	ENST00000468823.2	retained_intron
ENST00000218516.3:c.639+919G>A	X:101399747- 101399747	Т	downstream_gene_variant	RPL36A	ENSG00000241343	Transcript	ENST00000471855.1	protein_coding
ENST00000218516.3:c.639+919G>A	X:101399747- 101399747	Т	intron_variant, non_coding_transcript_variant	GLA	ENSG00000102393	Transcript	ENST00000479445.2	retained_intron
ENST00000218516.3:c.639+919G>A	X:101399747- 101399747	T	intron_variant, NMD_transcript_variant	GLA	ENSG00000102393	Transcript	ENST00000480513.6	nonsense_mediated_decay
ENST00000218516.3:c.639+919G>A	X:101399747- 101399747	Т	intron_variant, NMD_transcript_variant	GLA	ENSG00000102393	Transcript	ENST00000486121.6	nonsense_mediated_decay
ENST00000218516.3:c.639+919G>A	X:101399747- 101399747	Т	downstream gene variant	RPL36A	ENSG00000241343	Transcript	ENST00000489407.1	retained_intron
ENST00000218516.3:c.639+919G>A	X:101399747- 101399747	Т	3 prime_UTR_variant, NMD_transcript_variant	GLA	ENSG00000102393	Transcript	ENST00000493905.6	nonsense_mediated_decay
ENST00000218516.3:c.639+919G>A	X:101399747- 101399747	Т	downstream gene variant	RPL36A	ENSG00000241343	Transcript	ENST00000553110.8	protein_coding
ENST00000218516.3:c.639+919G>A	X:101399747- 101399747	Т	downstream_gene_variant	RPL36A	ENSG00000241343	Transcript	ENST00000614077.4	protein_coding
ENST00000218516.3:c.639+919G>A	X:101399747- 101399747	T	intron_variant	GLA	ENSG00000102393	Transcript	ENST00000649178.1	protein_coding
ENST00000218516.3:c.639+919G>A	X:101399747- 101399747	Т	3 prime_UTR_variant, NMD_transcript_variant	GLA	ENSG00000102393	Transcript	ENST00000674127.1	nonsense_mediated_decay
ENST00000218516.3:c.639+919G>A	X:101399747- 101399747	T	intron_variant, non_coding_transcript_variant	GLA	ENSG00000102393	Transcript	ENST00000674142.1	retained_intron
ENST00000218516.3:c.639+919G>A	X:101399747- 101399747	Т	intron_variant	GLA	ENSG00000102393	Transcript	ENST00000674634.1	protein_coding
ENST00000218516.3:c.639+919G>A	X:101399747- 101399747	Т	intron_variant	GLA	ENSG00000102393	Transcript	ENST00000675592.1	protein_coding
ENST00000218516.3:c.639+919G>A	X:101399747- 101399747	Т	intron_variant, NMD_transcript_variant	GLA	ENSG00000102393	Transcript	ENST00000675799.1	nonsense_mediated_decay
ENST00000218516.3:c.639+919G>A	X:101399747- 101399747	Т	non_coding_transcript_exon_variant	GLA	ENSG00000102393	Transcript	ENST00000675968.1	retained_intron
ENST00000218516.3:c.639+919G>A	X:101399747- 101399747	T	intron_variant	GLA	ENSG00000102393	Transcript	ENST00000676156.1	protein_coding
ENST00000218516.3:c.639+919G>A	X:101399747- 101399747	Т	intron_variant, NMD_transcript_variant	GLA	ENSG00000102393	Transcript	ENST00000676372.1	nonsense_mediated_decay

ESEfinder

Cuando se buscan los posibles sitios de *splicing*, solo se obtiene un resultado con la posición de interés con puntuación positiva en las matrices de 5'SS: tctccccactagagtgtaagtttcatgagg (6.52100y 6.49500). Si buscamos los resultados equivalentes en las predicciones para la secuencia mutada, vemos que las puntuaciones suben bastante (6.70680 y 6.63480), por lo que puede que no tenga un papel importante en el *splicing*. Por otro lado, hay un resultado con puntuación positiva en las matrices 3'SS: atgtctccccactagagtgtaagtttcatg (4.49150 y 4.60490). Su equivalente en la secuencia mutada tiene puntuaciones negativas (-9.49340 y -12.74310). Por lo tanto, se está perdiendo un sitio 3'SS, lo que hará que sea más probable la alteración del *splicing*.

EX-SKIP

Predictor para secuencias exónicas.

HOT-SKIP

Predictor para secuencias exónicas.