日本国特許庁 JAPAN PATENT OFFICE

rec'd	1	3	JAN 2005
WIPO	A SECOND		PCT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年12月22日

出 願 番 号 Application Number:

人

特願2003-425369

[ST. 10/C]:

[JP2003-425369]

出 願 Applicant(s):

J S R 株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年10月18日

·)·

【書類名】 特許願 1010-10752 【整理番号】 平成15年12月22日 【提出日】 特許庁長官 殿 【あて先】 【発明者】 東京都中央区築地五丁目6番10号 JSR株式会社内 【住所又は居所】 牛野 卓浩 【氏名】 【発明者】 東京都中央区築地五丁目6番10号 ISR株式会社内 【住所又は居所】 【氏名】 廣野 達也 【発明者】 東京都中央区築地五丁目6番10号 JSR株式会社内 【住所又は居所】 【氏名】 関口 正之 【特許出願人】 【識別番号】 000004178 J S R 株式会社 【氏名又は名称】 【代理人】 【識別番号】 100081994 【弁理士】 鈴木 俊一郎 【氏名又は名称】 【選任した代理人】 【識別番号】 100103218 【弁理士】 【氏名又は名称】 '牧村 浩次 【選任した代理人】 【識別番号】 100107043 【弁理士】 【氏名又は名称】 高畑 ちより 【選任した代理人】 【識別番号】 100110917 【弁理士】 【氏名又は名称】 鈴木 亨 【手数料の表示】 【予納台帳番号】 014535 【納付金額】 21,000円 【提出物件の目録】 特許請求の範囲 1 【物件名】 【物件名】 明細書 1 【物件名】 要約書 1

【包括委任状番号】

9912908

【請求項1】

少なくとも 2 枚の位相差フィルムが積層され、当該積層された位相差フィルムが 2 枚のガラス基板に挟まれている波長板であって、位相差フィルム同士が、ガラス転移温度が 0 \mathbb{C} 以下でありかつ 2 3 \mathbb{C} におけるヤング率が 1 0 MP a 以下である接着剤(A)で積層固定され、位相差フィルムとガラス基板とが、ガラス転移温度が 4 0 \mathbb{C} 以上でありかつ 2 3 \mathbb{C} におけるヤング率が 3 0 MP a 以上である接着剤(B)で固定されてなり、接着剤 Bと接着剤 A とのガラス転移温度差が 6 0 \mathbb{C} 以上であり、しかも 2 3 \mathbb{C} における接着剤 B と接着剤 A とのヤング率差が 4 0 MP a 以上であることを特徴とする波長板。

【請求項2】

位相差フィルムが、環状オレフィン系樹脂フィルムを延伸配向させて得られたものであることを特徴とする請求項1に記載の波長板。

【書類名】明細書

【発明の名称】波長板

【技術分野】

[0001]

本発明は、透過光に位相差を与える機能を有する高分子フィルム(以下、「位相差フィルム」という。)を用いた光学情報記録・再生装置用の波長板に関する。さらに詳しくは、少なくとも2枚の位相差フィルムが積層され、かつ、当該積層された位相差フィルムが2枚のガラス基板に挟まれた構造を有する光学情報記録・再生装置用の波長板に関する。

【背景技術】

[0002]

光ディスク装置は、非接触、単位体積あたりの情報量の多さ、高速アクセス性、低コストなどの理由から、近年、大きく伸長している光学情報記録・再生装置であり、これらの特徴を生かし、各種の記録媒体が開発されている。例えば、あらかじめ記録された情報を音や画像あるいはコンピュータ用プログラムなどとして再生するコンパクトディスク(CD)、レーザーディスク(R)(LD)、CD-ROM、DVD-ROMなど、レーザーによって情報を1回だけ書き込め、係る情報を再生できるCD-RやDVD-R、情報の記録再生が繰り返しできる光磁気ディスク(MO)やDVD-RAM、DVD-RWなどが開発されている。

[0003]

このような光学情報記録・再生装置での情報の記録および/または再生を行うための光学系装置としては様々なものが知られているが、その1つとして書き換え型光磁気ディスク装置が広く知られている。書き換え型光磁気ディスク装置では、レーザー光源からの照射光が、偏光子、偏光ビームスプリッター(PBS)を通り光磁気ディスクに照射され、光磁気ディスクで反射された戻り光が、再びPBSを通り、光検出器にいたる光路の途中位置に $1/2\lambda$ 波長板(以下「1/2波長板」ともいう)が配置された光ピックアップ装置が知られている。

[0004]

ここで、1/2波長板とは、特定波長の直交する2つの偏光成分の間に $\lambda/2$ の光路差(したがって、 π の位相差)を与えるものである。

[0005]

このような波長板としては、複屈折性を備える雲母、石英、水晶、方解石、 $LiNbO^3$ 、 $LiTaO^3$ などの単結晶から形成される波長板、ガラス基板などの下地基板に対して斜め方向から無機材料を蒸着することにより得られる下地基板の表面に複屈折膜を有する波長板、複屈折性を有するLB(Langmuir-Blodget)膜を有する波長板など無機系のものが従来使用されている。

[0006]

また、ポリカーボネート(PC)、トリアセチルアセテート(TAC)、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリアリレート、ポリスルホン、ポリエーテルスルホン、アクリル樹脂などの透明樹脂フィルムを延伸し配向させることにより、複屈折性(透過光に位相差を与える機能)を付与した有機物薄膜(以下、「位相差フィルム」という。)を、平坦性、定形性維持のためガラス基板に接着したり、2枚のガラス基板で挾持したりした波長板も使用されている。さらに、高分子液晶膜を、平坦性、定形性維持および分子配向のためにガラス基板上に形成したり、2枚のガラス基板で挾持したりして複屈折性を付与した波長板も使用されている。

$[0\ 0\ 0\ 7\]$

また、最近、高密度の情報記録媒体としてDVDが急速に普及しつつあるが、一方、既に市場にはCD、CD-ROM、CD-Rといった再生専用光ディスクが広く普及していることから、光ディスク装置に対して、これら方式の異なる多種の光ディスクに対する記録あるいは再生を兼用できることが強く要求されており、また、応用分野の拡大に伴い小

型化、低価格化も求められている。そして、これらの要求に対応するために、複数の読み書き用のレーザーに対応するための広帯域波長板(位相差板)の使用が提案されている(特許文献 $1 \sim 3$)。例えば、特許文献 3(特開 2 0 0 2 -1 4 2 2 8 号公報)では、互いに偏波面が平行である 2 種の入射直線偏光が波長板通過後に、出射した偏光の偏波面が直交化されるという波長板が提案されている。このような波長板では、所望の光学特性を得るために、位相差フィルムが 2 枚以上使用されているため、ガラス基板に接着固定されるが、フィルムだけでなく、位相差フィルムどうしが接着固定される必要もあった。ところが、フィルムどうしを接着する構成の波長板では、面内収差が長期の連続使用によって変化してしまい、初期に得られていた良好な特性が保持できないという問題があった。また、位相差フィルムの物性が波長板の特性として反映されるため、使用環境によっては、長期の連続使用により波長板の位相差値(レターデーション)が徐々に変化したり、また、フィルムの厚みむらによって面内収差が大きくなってしまったりして、結果として初期に得られていた良好な特性が保持できない場合が生じる問題が指摘されていた。

【特許文献1】特開2001-101700号公報

【特許文献2】特開2001-208913号公報

【特許文献3】特開2002-14228号公報

【発明の開示】

【発明が解決しようとする課題】

[0008]

本発明は、上記従来技術の課題を背景になされたもので、初期特性に優れ、使用環境や 製造環境の影響を受けにくく長期信頼性に優れた、光学情報記録・再生装置用波長板を提 供することにある。

【課題を解決するための手段】

[0009]

本発明者らは、上記従来技術の課題を解決すべく鋭意検討を進めた結果、少なくとも 2 枚の位相差フィルムが積層され、当該積層された位相差フィルムが 2 枚のガラス基板に挟まれている波長板であって、位相差フィルムどうしが、ガラス転移温度が 0 $^{\circ}$ C以下でありかつ 2 5 $^{\circ}$ Cにおけるヤング率が 1 0 M P a 以下である接着剤で積層固定され、位相差フィルムとガラス基板とが、ガラス転移温度が 4 0 $^{\circ}$ C以上でありかつ 2 5 $^{\circ}$ Cにおけるヤング率が 3 0 M P a 以上である接着剤で固定されてなり、しかも接着剤 B と接着剤 A とのガラス転移温度差が 6 0 $^{\circ}$ C以上であり、しかも 2 3 $^{\circ}$ Cにおける接着剤 B と接着剤 A とのヤング率差が 4 0 M P a 以上である波長板が、初期特性に優れ、使用環境や製造環境の影響を受けにくく長期信頼性に優れた光学情報記録・再生装置用波長板として最適であることを見出して本発明の完成に至った。

[0010]

また、本発明者らは、耐熱性に優れ、低吸湿性であり、位相差の安定性に優れかつ位相差の波長依存性が小さい環状オレフィン系樹脂を原料としたフィルム(以下、「環状オレフィン系樹脂フィルム」という。)を延伸配向させた位相差フィルムを用いた波長板が、特に初期特性に優れ、使用環境や製造環境の影響を受けにくく長期信頼性に優れた光学情報記録・再生装置用波長板として最適であることを見出して本発明の完成に至った。

【発明の効果】

[0011]

本発明の波長板は、位相差フィルムどうしが、ガラス転移温度が0 C以下かつヤング率が10 MP a 以下である接着剤で固定され、なおかつ固定された位相差フィルムの両側にガラス基板が、ガラス転移温度が40 C以上かつヤング率が30 MP a 以上である接着剤で固定された、安価で長期にわたり高性能の波長板である。また、本発明の波長板を使用すると安価で長期にわたり高性能の光学情報記録再生装置を製造することができる。

[0012]

本発明の波長板を使用した光学情報記録再生装置は、前述のように音声、画像の記録に 関して、再生専用記録媒体、追記型記録媒体、および書き換え可能型記録媒体のいずれに も適用でき、 CD-ROM、CD-R、書き換え可能DVDなどの記録装置およびそれらを用いたOA機器、CDなどの音響再生装置、DVDなどの画像再生装置およびそれらを用いたAV機器、上記のCD、DVDなどを用いたゲーム機などに用いることができる

【発明を実施するための最良の形態】

 $[0\ 0\ 1\ 3]$

以下本発明をより具体的に説明する。

 $[0\ 0\ 1\ 4\]$

本発明で用いられる位相差フィルムとしては、ポリカーボネート(PC)、トリアセチルアセテート(TAC)、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリアリレート、ポリスルホン、ポリエーテルスルホン、アクリル樹脂、環状オレフィン系樹脂などの透明樹脂フィルムを延伸し配向させたものが挙げられる。なかでも、環状オレフィン系樹脂フィルムを延伸し、配向させたものが好ましく用いられる。

[0015]

本発明では、位相差フィルムとして、下記のような環状オレフィン系樹脂からなるフィルムが特に好ましいが、以下にこの環状オレフィン系(共)重合体について説明する。

[0016]

(1) 下記一般式(I) で表される特定単量体の開環重合体。

[0017]

(2) 下記一般式 (I) で表される特定単量体と共重合性単量体との開環共重合体。

[0018]

(3) 上記(1) または(2)の開環(共)重合体の水素添加(共)重合体。

[0019]

(4) 上記(1) または(2) の開環(共) 重合体をフリーデルクラフト反応により環化したのち、水素添加した(共) 重合体。

[0020]

(5) 下記一般式 (I) で表される特定単量体と不飽和二重結合含有化合物との飽和共 重合体。

[0021]

(6) 下記一般式(I) で表される特定単量体、ビニル系環状炭化水素系単量体およびシクロペンタジエン系単量体から選ばれる1種以上の単量体の付加型(共) 重合体およびその水素添加(共) 重合体。

[0022]

(7) 下記一般式(I) で表される特定単量体とアクリレートとの交互共重合体。

[0023]

【化1】

一般式(1)

[0024]

〔式中、 $R^1 \sim R^4$ は、それぞれ水素原子、ハロゲン原子、炭素数 $1 \sim 3$ 0の炭化水素基、またはその他の1価の有機基であり、それぞれ同一または異なっていてもよい。 R^1 と

 R^2 または R^3 と R^4 は、一体化して2 価の炭化水素基を形成しても良く、 R^1 または R^2 と R^3 または R^4 とは互いに結合して、単環または多環構造を形成してもよい。mは0または正の整数であり、pは0または正の整数である。〕

<特定単量体>

上記特定単量体の具体例としては、次のような化合物が挙げられるが、本発明はこれらの具体例に限定されるものではない。

ビシクロ「2.2.1] ヘプトー2ーエン、

トリシクロ $[4.3.0.1^{2,5}]$ -8-デセン、

トリシクロ $[4. 4. 0. 1^{2,5}]$ -3 - ウンデセン、

テトラシクロ $[4.4.0.1^{2.5}.1^{7.10}]$ -3 - ドデセン、

ペンタシクロ $[6.5.1.1^{3.6}.0^{2.7}.0^{9.13}]$ -4 -ペンタデセン、

5-メチルビシクロ[2.2.1] ヘプト-2-エン、

5-エチルビシクロ[2.2.1] ヘプト-2-エン、

5-メトキシカルボニルビシクロ[2.2.1] ヘプトー2-エン、

5-メチル-5-メトキシカルボニルビシクロ[2.2.1] ヘプト-2-エン、

5-シアノビシクロ[2.2.1] ヘプトー2ーエン、

8 - メトキシカルボニルテトラシクロ $[4.4.0.1^{2,5}.1^{7,10}]$ -3 - ドデセン、

8-エトキシカルボニルテトラシクロ $[4.4.0.1^{2,5}.1^{7,10}]-3-$ ドデセン、

8-n-プロポキシカルボニルテトラシクロ $[4.4.0.1^{2,5}.1^{7,10}]-3-$ ドデ

8 - n - τ + τ +

8-メチル-8-メトキシカルボニルテトラシクロ $[4.4.0.1^{2,5}.1^{7,10}]-3$ ードデセン、

8-メチル-8-エトキシカルボニルテトラシクロ $[4.4.0.1^{2,5}.1^{7,10}]-3$ ードデセン、

8-メチル-8-n-プロポキシカルボニルテトラシクロ $[4.4.0.1^{2.5}.1^{7.10}]$ -3-ドデセン、

8-メチル-8-イソプロポキシカルボニルテトラシクロ $\begin{bmatrix} 4 . 4 . 0 . 1^{2,5} . 1^{7,10} \\ 1 - 3 -$ ドデセン、

8-メチル-8-n-ブトキシカルボニルテトラシクロ $[4.4.0.1^{2,5}.1^{7,10}]$ -3-ドデセン、

5-エチリデンビシクロ[2.2.1] ヘプト-2-エン、

8 -エチリデンテトラシクロ $\begin{bmatrix} 4 & 4 & 0 & 1^{2,5} & 1^{7,10} \end{bmatrix}$ - 3 -ドデセン、

5-フェニルビシクロ [2.2.1] ヘプトー2ーエン、

8 -フェニルテトラシクロ $[4.4.0.1^{2.5}.1^{7.10}]$ -3 -ドデセン、

5-フルオロビシクロ[2.2.1] ヘプトー2ーエン、

5-フルオロメチルビシクロ[2.2.1] ヘプトー2ーエン、

5-トリフルオロメチルビシクロ[2.2.1] ヘプト-2-エン、

5-ペンタフルオロエチルビシクロ[2.2.1] ヘプトー2-エン、

5,5-ジフルオロビシクロ[2.2.1] ヘプト-2-エン、

5,6-ジフルオロビシクロ[2.2.1] ヘプトー2ーエン、

5、5-ビス(トリフルオロメチル)ビシクロ[2.2.1]ヘプト-2-エン、

5, 6-ビス(トリフルオロメチル)ビシクロ[2.2.1] ヘプトー2-エン、

5-メチル-5-トリフルオロメチルビシクロ[2.2.1] ヘプト-2-エン、

5, 5, 6-トリフルオロビシクロ[2.2.1] ヘプトー2ーエン、

5, 5, 6-トリス (フルオロメチル) ビシクロ [2.2.1] ヘプトー2-エン、

5, 5, 6, 6ーテトラフルオロビシクロ[2.2.1] ヘプトー2ーエン、

出証特2004-3093671

```
5, 5, 6, 6ーテトラキス (トリフルオロメチル) ビシクロ [2. 2. 1] ヘプトー2
ーエン、
5, 5-ジフルオロー6, 6-ビス(トリフルオロメチル)ビシクロ[2.2.1]ヘプ
トー2ーエン、
5, 6-ジフルオロー5, 6-ビス(トリフルオロメチル)ビシクロ[2.2.1]ヘプ
トー2ーエン、
5, 5, 6ートリフルオロー5ートリフルオロメチルビシクロ [2. 2. 1] ヘプトー2
ーエン、
5-フルオロ-5-ペンタフルオロエチル-6,6-ビス(トリフルオロメチル)ビシク
ロ「2.2.1] ヘプトー2ーエン、
5, 6-ジフルオロー5-ヘプタフルオローiso-プロピルー6-トリフルオロメチル
ビシクロ[2.2.1] ヘプトー2ーエン、
5-クロロ-5, 6, 6-トリフルオロビシクロ [2. 2. 1] ヘプト<math>-2-エン、
5, 6-ジクロロ-5, 6-ビス (トリフルオロメチル) ビシクロ [2.2.1] ヘプト
-2-エン、
5, 5, 6-トリフルオロー6-トリフルオロメトキシビシクロ[2.2.1] ヘプトー
2-エン、
5, 5, 6-トリフルオロー6-ヘプタフルオロプロポキシビシクロ[2.2.1] ヘプ
トー2ーエン、
8 — フルオロテトラシクロ [4.~4.~0.~1^{2,5}.~1^{7,10}] -3 - ドデセン、
8 — フルオロメチルテトラシクロ [4.4.0.1^{2.5}]
                                  . 1^{7,10}] -3-i\vec{r}tzzz
8 -ジフルオロメチルテトラシクロ[4.4.0.1^{2.5}.1^{7.10}] -3 -ドデセン、
8 ートリフルオロメチルテトラシクロ [4.~4.~0.~1^{2,5}.~1^{7,10}] -3 ードデセン、
8 ーペンタフルオロエチルテトラシクロ [4.4.0.1^{2.5}.1^{7.10}] -3 ードデセン
8, 8 -ジフルオロテトラシクロ [4.4.0.1^{2,5}.1^{7,10}] -3 -ドデセン、
8, 9 -ジフルオロテトラシクロ [4.4.0.1^{2.5}.1^{7.10}] -3 -ドデセン、
8, 8-ビス(トリフルオロメチル)テトラシクロ [4.\ 4.\ 0.\ 1^{2.5}.\ 1^{7.10}]-3
ードデセン、
8, 9-ビス(トリフルオロメチル)テトラシクロ [\,4\,.\,\,4\,.\,\,0\,.\,\,1^{\,2\,,\,5}\,\,.\,\,1^{\,7\,,\,10}\,]\,-3
ードデセン、
8 - メチル<math>- 8 - トリフルオロメチルテトラシクロ [ 4 . 4 . 0 . 1^{2,5} . 1^{7,10} ] - 3
ードデセン、
8, 8, 9ートリフルオロテトラシクロ [4.~4.~0.~1^{2.5}.~1^{7.10}] -3 - ドデセン
8, 8, 9 - トリス (トリフルオロメチル) テトラシクロ [4.4.0.1^{2,5}.1^{7,10}
] -3-ドデセン、
8, 8, 9, 9ーテトラフルオロテトラシクロ [4. 4. 0. 1^{2,5} . 1^{7,10}] -3ード
デセン、
8, 8, 9, 9ーテトラキス (トリフルオロメチル) テトラシクロ [4.4.0.1^{2.5}]
[1^{7,10}] - 3 - ドデセン、
8, 8-ジフルオロ-9, 9-ビス (トリフルオロメチル) テトラシクロ [4.~4.~0.
1^{2,5} \cdot 1^{7,10} - 3 - F = 10
8、9-ジフルオロ-8、9-ビス (トリフルオロメチル) テトラシクロ <math>[4.4.0.
1^{2,5} \cdot 1^{7,10} - 3 - F = 2 \cdot 10^{-10}
8, 8, 9ートリフルオロー 9ートリフルオロメチルテトラシクロ [4.4.0.1^{2.5}]
1^{7,10} - 3 - 1
8, 8, 9ートリフルオロー 9ートリフルオロメトキシテトラシクロ [4.4.0.1^{2}]
5 \cdot 1^{7,10} - 3 - F = 10
8, 8, 9-トリフルオロー9-ペンタフルオロプロポキシテトラシクロ[4.4.0.
```

 $1^{2,5}$, $1^{7,10}$] -3 - $1^{7,10}$

8-フルオロ-8-ペンタフルオロエチル-9, 9-ビス(トリフルオロメチル)テトラシクロ $[4.\ 4.\ 0.\ 1^{2,5}.\ 1^{7,10}]$ -3-ドデセン、

8, 9-ジフルオロ-8-ヘプタフルオロiso-プロピルー <math>9-トリフルオロメチルテトラシクロ「 $4.~4.~0.~1^{2,5}.~1^{7,10}$] -3-ドデセン、

8 -クロロ-8, 9, 9 -トリフルオロテトラシクロ [4.4.0. $1^{2,5}$. $1^{7,10}$] -3 -ドデセン、

 $\frac{1}{8}$, 9-ジクロロ-8, 9-ビス (トリフルオロメチル) テトラシクロ $[4.4.0.1]^{2,5}$, $1^{7,10}$] -3-ドデセン、

8-(2, 2, 2-トリフルオロエトキシカルボニル)テトラシクロ $[4.4.0.1^2, 1^{7,10}]$ [-3-ドデセン、

8-メチル-8-(2, 2, 2-トリフルオロエトキシカルボニル)テトラシクロ $[4.4.0.1^{2,5}.1^{7,10}]$ -3-ドデセン

などを挙げることができる。

[0025]

これらは、1種単独で、または2種以上を併用することができる。

[0026]

特定単量体のうち好ましいのは、上記一般式(1)中、 R^1 および R^3 が水素原子または炭素数 $1\sim10$ 、さらに好ましくは $1\sim4$ 、特に好ましくは $1\sim2$ の炭化水素基であり、 R^2 および R^4 が水素原子または一価の有機基であって、 R^2 および R^4 の少なくとも一つは水素原子および炭化水素基以外の極性を有する極性基を示し、mは $0\sim3$ の整数、pは $0\sim3$ の整数であり、より好ましくは $m+p=0\sim4$ 、さらに好ましくは $0\sim2$ 、特に好ましくはm=1、p=0であるものである。m=1、p=0である特定単量体は、得られる環状オレフィン系樹脂のガラス転移温度が高くかつ機械的強度も優れたものとなる点で好ましい。

[0027]

上記特定単量体の極性基としては、カルボキシル基、水酸基、アルコキシカルボニル基、アリロキシカルボニル基、アミノ基、アミド基、シアノ基などが挙げられ、これら極性基はメチレン基などの連結基を介して結合していてもよい。また、カルボニル基、エーテル基、シリルエーテル基、チオエーテル基、イミノ基など極性を有する2価の有機基が連結基となって結合している炭化水素基なども極性基として挙げられる。これらの中では、カルボキシル基、水酸基、アルコキシカルボニル基またはアリロキシカルボニル基が好ましく、特にアルコキシカルボニル基またはアリロキシカルボニル基が好ましい。

[0028]

さらに、 R^2 および R^4 の少なくとも一つが式-(CH_2) $_nCOOR$ で表される極性基である単量体は、得られる環状オレフィン系樹脂が高いガラス転移温度と低い吸湿性、各種材料との優れた密着性を有するものとなる点で好ましい。上記の特定の極性基にかかる式において、Rは炭素原子数 $1\sim12$ 、さらに好ましくは $1\sim4$ 、特に好ましくは $1\sim2$ の炭化水素基、好ましくはアルキル基である。また、nは、通常、 $0\sim5$ であるが、nの値が小さいものほど、得られる環状オレフィン系樹脂のガラス転移温度が高くなるので好ましく、さらにnが0である特定単量体はその合成が容易である点で好ましい。

[0029]

また、上記一般式(I)において R^1 または R^3 がアルキル基であることが好ましく、炭素数 $1\sim 4$ のアルキル基、さらに好ましくは $1\sim 2$ のアルキル基、特にメチル基であることが好ましく、特に、このアルキル基が上記の式-(CH_2) $_n$ COORで表される特定の極性基が結合した炭素原子と同一の炭素原子に結合されていることが、得られる環状オレフィン系樹脂の吸湿性を低くできる点で好ましい。

< 共重合性単量体>

共重合性単量体の具体例としては、シクロブテン、シクロペンテン、シクロへプテン、 シクロオクテン、ジシクロペンタジエンなどのシクロオレフィンを挙げることができる。

[0030]

特定単量体/共重合性単量体の好ましい使用範囲は、重量比で $100/0\sim50/50$ であり、さらに好ましくは $100/0\sim60/40$ である。

<開環重合触媒>

本発明において、(1)特定単量体の開環重合体、および(2)特定単量体と共重合性 単量体との開環共重合体を得るための開環重合反応は、メタセシス触媒の存在下に行われ る。

[0031]

このメタセシス触媒は、(a)W、MoおよびReの化合物から選ばれた少なくとも1種と、(b)デミングの周期律表IA族元素(例えばLi、Na、Kなど)、IIA族元素(例えば、Mg、Caなど)、IIB族元素(例えば、Zn、Cd、Hgなど)、II IA族元素(例えば、B、Alなど)、IVA族元素(例えば、Si、Sn、Pbなど)、あるいはIVB族元素(例えば、Ti、Zrなど)の化合物であって、少なくとも1つの該元素—炭素結合あるいは該元素—水素結合を有するものから選ばれた少なくとも1種との組合せからなる触媒である。また、この場合に触媒の活性を高めるために、後述の(c)添加剤が添加されたものであってもよい。

[0032]

(a) 成分として適当なW、MoあるいはReの化合物の代表例としては、WCl6、MoCl6、ReOCl3 などの特開平1-132626 号公報第8頁左下欄第6行~第8頁右上欄第17行に記載の化合物を挙げることができる。

[0033]

[0034]

添加剤である(c)成分の代表例としては、アルコール類、アルデヒド類、ケトン類、アミン類などが好適に用いることができるが、さらに特開平1-132626号公報第8頁右下欄第16行~第9頁左上欄第17行に示される化合物を使用することができる。

[0035]

メタセシス触媒の使用量としては、上記(a)成分と特定単量体とのモル比で「(a)成分:特定単量体」が、通常、 $1:500\sim1:50$, 000となる範囲、好ましくは $1:1,000\sim1:10$, 000となる範囲とされる。

[0036]

(a) 成分と(b) 成分との割合は、金属原子比で(a):(b)が1: $1\sim1$:50、好ましくは1: $2\sim1$:30の範囲とされる。

[0037]

(a) 成分と (c) 成分との割合は、モル比で (c): (a) が $0.005:1\sim15$: 1、好ましくは $0.05:1\sim7:1$ の範囲とされる。

<重合反応用溶媒>

開環重合反応において用いられる溶媒(分子量調節剤溶液を構成する溶媒、特定単量体および/またはメタセシス触媒の溶媒)としては、例えばペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカンなどのアルカン類、シクロヘキサン、シクロヘプタン、シクロオクタン、デカリン、ノルボルナンなどのシクロアルカン類、ベンゼン、トルエン、キシレン、エチルベンゼン、クメンなどの芳香族炭化水素、クロロブタン、ブロモヘキサン、塩化メチレン、ジクロロエタン、ヘキサメチレンジブロミド、クロロベンゼン、クロロホルム、テトラクロロエチレンなどの、ハロゲン化アルカン、ハロゲン化アリールなどの化合物、酢酸エチル、酢酸 n-ブチル、酢酸 i s o-ブチル、プロピオン酸メチル、ジメ

[0038]

溶媒の使用量としては、「溶媒:特定単量体(重量比)」が、通常、 $1:1\sim10:1$ となる量とされ、好ましくは $1:1\sim5:1$ となる量とされる。

<分子量調節剤>

得られる開環(共)重合体の分子量の調節は、重合温度、触媒の種類、溶媒の種類によっても行うことができるが、本発明においては、分子量調節剤を反応系に共存させることにより調節する。

[0039]

ここに、好適な分子量調節剤としては、例えばエチレン、プロペン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセンなどの $\alpha-$ オレフィン類およびスチレンを挙げることができ、これらのうち、1-ブテン、1-ヘキセンが特に好ましい。

[0040]

これらの分子量調節剤は、単独であるいは2種以上を混合して用いることができる。

[0041]

分子量調節剤の使用量としては、開環重合反応に供される特定単量体 1 モルに対して 0 . 0

[0042]

(2) 開環共重合体を得るには、開環重合工程において、特定単量体と共重合性単量体とを開環共重合させてもよいが、さらに、ポリブタジエン、ポリイソプレンなどの共役ジエン化合物、スチレンーブタジエン共重合体、エチレンー非共役ジエン共重合体、ポリノルボルネンなどの主鎖に炭素ー炭素間二重結合を2つ以上含む不飽和炭化水素系ポリマーなどの存在下に特定単量体を開環重合させてもよい。

[0043]

以上のようにして得られる開環(共)重合体は、そのままでも用いることができるが、 分子中のオレフィン性不飽和結合を水素添加して得られた(3)水素添加(共)重合体は 耐熱着色性や耐光性に優れ、位相差フィルムの耐久性を向上させることができるので好ま しい。

<水素添加触媒>

水素添加反応は、通常のオレフィン性不飽和結合を水素添加する方法が適用できる。すなわち、開環重合体の溶液に水素添加触媒を添加し、これに常圧 \sim 300気圧、好ましくは3 \sim 200気圧の水素ガスを0 \sim 200 $^{\circ}$ 、好ましくは20 \sim 180 $^{\circ}$ で作用させることによって行われる。

[0044]

水素添加触媒としては、通常のオレフィン性化合物の水素添加反応に用いられるものを使用することができる。この水素添加触媒としては、不均一系触媒および均一系触媒が挙げられる。

[0045]

不均一系触媒としては、パラジウム、白金、ニッケル、ロジウム、ルテニウムなどの貴金属触媒物質を、カーボン、シリカ、アルミナ、チタニアなどの担体に担持させた固体触媒を挙げることができる。また、均一系触媒としては、ナフテン酸ニッケル/トリエチルアルミニウム、ニッケルアセチルアセトナート/トリエチルアルミニウム、オクテン酸コバルト/nーブチルリチウム、チタノセンジクロリド/ジエチルアルミニウムモノクロリド、酢酸ロジウム、クロロトリス(トリフェニルホスフィン)ロジウム、ジクロロトリス(トリフェニルホスフィン)ルテニウム、クロロヒドロカルボニルトリス(トリフェニルホスフィン)ルテニウム、ジクロロカルボニルトリス(トリフェニルホスフィン)ルテニウムなどを挙げることができる。触媒の形態は、粉末でも粒状でもよい。

[0046]

これらの水素添加触媒は、開環(共)重合体:水素添加触媒(重量比)が、 $1:1\times1$ 0 $^{-6}\sim1:2$ となる割合で使用される。

[0047]

水素添加(共)重合体の水素添加率は、500MHz、 ^1H-NMR で測定した値が50%以上、好ましくは90%以上、さらに好ましくは98%以上、最も好ましくは99%以上である。水素添加率が高いほど、熱や光に対する安定性が優れたものとなり、本発明の波長板として使用した場合に長期にわたって安定した特性を得ることができる。

[0048]

なお、開環(共)重合体分子中に芳香族基を有する場合、係る芳香族基は、屈折率や波 長分散性等の光学的特性あるいは耐熱性に関して有利な効果をもたらすこともあり、必ず しも水素添加される必要はない。

[0049]

上記のようにして得られた開環(共)重合体には、公知の酸化防止剤、例えば 2,6 ージー t ーブチルー 4 ーメチルフェノール、 2, 2′ ージオキシー 3, 3′ ージー t ーブチルー 5, 5′ ージメチルジフェニルメタン、テトラキス [メチレンー 3 ー (3, 5 ージー t ーブチルー 4 ーヒドロキシフェニル)プロピオネート] メタン;紫外線吸収剤、例えば 2, 4 ージヒドロキシベンゾフェノン、 2 ーヒドロキシー 4 ーメトキシベンゾフェノンなどを添加することによって安定化することができる。また、加工性を向上させる目的で、滑剤などの添加剤を添加することもできる。

[0050]

なお、本発明において用いられる環状オレフィン系樹脂として使用される水素添加(共)重合体は、当該水素添加(共)重合体中に含まれるゲル含有量が5重量%以下であることが好ましく、さらに1重量%以下であることが特に好ましい。

[0051]

また、本発明において用いられる環状オレフィン系樹脂として、(4)上記(1)または(2)の開環(共)重合体をフリーデルクラフト反応により環化したのち、水素添加した(共)重合体も使用できる。

<フリーデルクラフト反応による環化>

上記(1)または(2)の開環(共)重合体をフリーデルクラフト反応により環化する方法は特に限定されるものではないが、特開昭 50-154399 号公報に記載の酸性化合物を用いた公知の方法が採用できる。酸性化合物としては、具体的には、A 1C13、B F3、F eC13、A 12O3、H C1、C H3C1COOH、ゼオライト、活性白土、などのルイス酸、ブレンステッド酸が用いられる。

[0052]

環化された開環(共)重合体は、上記(1)または(2)の開環(共)重合体と同様に 水素添加できる。

[0053]

さらに、本発明において用いられる環状オレフィン系樹脂として、(5)上記特定単量 体と不飽和二重結合含有化合物との飽和共重合体も使用できる。

<不飽和二重結合含有化合物>

不飽和二重結合含有化合物としては、例えばエチレン、プロピレン、ブテンなど、好ましくは炭素数 $2 \sim 1$ 2、さらに好ましくは炭素数 $2 \sim 8$ のオレフィン系化合物を挙げることができる。

[0054]

特定単量体/不飽和二重結合含有化合物の好ましい使用範囲は、重量比で90/10~40/60であり、さらに好ましくは85/15~50/50である。

[0055]

本発明において、(5)特定単量体と不飽和二重結合含有化合物との飽和共重合体を得るには、通常の付加重合法を使用できる。

<付加重合触媒>

上記 (5) 飽和共重合体を合成するための触媒としては、チタン化合物、ジルコニウム 化合物およびバナジウム化合物から選ばれた少なくとも一種と、助触媒としての有機アル ミニウム化合物とが用いられる。

[0056]

ここで、チタン化合物としては、四塩化チタン、三塩化チタンなどを、またジルコニウム化合物としてはビス (シクロペンタジエニル) ジルコニウムクロリド、ビス (シクロペンタジエニル) ジルコニウムジクロリドなどを挙げることができる。

[0057]

さらに、バナジウム化合物としては、一般式

VO (OR) a Xb、またはV (OR) c Xd

〔ただし、R は炭化水素基、X はハロゲン原子であって、 $0 \le a \le 3$ 、 $0 \le b \le 3$ 、 $2 \le (a+b) \le 3$ 、 $0 \le c \le 4$ 、 $0 \le d \le 4$ 、 $3 \le (c+d) \le 4$ である。〕 で表されるバナジウム化合物、あるいはこれらの電子供与付加物が用いられる。

[0058]

上記電子供与体としては、アルコール、フェノール類、ケトン、アルデヒド、カルボン酸、有機酸または無機酸のエステル、エーテル、酸アミド、酸無水物、アルコキシシランなどの含酸素電子供与体、アンモニア、アミン、ニトリル、イソシアナートなどの含窒素電子供与体などが挙げられる。

[0059]

さらに、助触媒としての有機アルミニウム化合物としては、少なくとも1つのアルミニウムー炭素結合あるいはアルミニウムー水素結合を有するものから選ばれた少なくとも一種が用いられる。

[0060]

上記において、例えばバナジウム化合物を用いる場合におけるバナジウム化合物と有機アルミニウム化合物の比率は、バナジウム原子に対するアルミニウム原子の比(A 1 / V)が2以上であり、好ましくは2~50、特に好ましくは3~20の範囲である。

$[0\ 0\ 6\ 1\]$

付加重合に使用される重合反応用溶媒は、開環重合反応に用いられる溶媒と同じものを 使用することができる。また、得られる(5)飽和共重合体の分子量の調節は、通常、水 素を用いて行われる。

[0062]

さらに、本発明において用いられる環状オレフィン系樹脂として、(6)上記特定単量体、およびビニル系環状炭化水素系単量体またはシクロペンタジエン系単量体から選ばれる1種以上の単量体の付加型共重合体およびその水素添加共重合体も使用できる。 <ビニル系環状炭化水素系単量体>

ビニル系環状炭化水素系単量体としては、例えば、4-ビニルシクロペンテン、2-メチル-4-イソプロペニルシクロペンテンなどのビニルシクロペンテン系単量体、4-ビニルシクロペンタン、4-イソプロペニルシクロペンタンなどのビニルシクロペンタン系単量体などのビニルとうロペンタンなどのビニルシクロペンタン系単量体などのビニルシクロへキセン、1-メチル-4-イソプロペニルシクロへキセン、2-メチル-4-イソプロペニルシクロへキセンなどのビニルシクロへキセンなどのビニルシクロへキセンス単量体、4-ビニルシクロへキセンスがリールシクロへキセン系単量体、4-ビニルシクロへキセン系単量体、4-ビニルシクロへキサンなどのビニルシクロへキサン系単量体、2-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、1-ビニルナフタレン、2-ビニルナフタレン、4-フェニルスチレン、1-ビニルナフタレン、1-ビニルナフタレン、1-ビニルナフタレン、1-ビニルナフタレン、1-アルペン、1-ア

<シクロペンタジエン系単量体>

(6) 付加型共重合体の単量体に使用されるシクロペンタジエン系単量体としては、例えばシクロペンタジエン、1-メチルシクロペンタジエン、2-メチルシクロペンタジエン、5-メチルシクロペンタジエン、5, 5-メチルシクロペンタジエンなどが挙げられる。好ましくはシクロペンタジエンである。これらは、1種単独で、または2種以上を併用することができる。

[0063]

上記特定単量体、ビニル系環状炭化水素系単量体およびシクロペンタジエン系単量体から選ばれる1種以上の単量体の付加型(共)重合体は、上記(5)特定単量体と不飽和二重結合含有化合物との飽和共重合体と同様の付加重合法で得ることができる。

[0064]

また、上記付加型(共)重合体の水素添加(共)重合体は、上記3)開環(共)重合体の水素添加(共)重合体と同様の水添法で得ることができる。

[0065]

さらに、本発明において用いられる環状オレフィン系樹脂として、(7)上記特定単量体とアクリレートとの交互共重合体も使用できる。 <アクリレート>

(7)上記特定単量体とアクリレートとの交互共重合体の製造に用いられるアクリレートとしては、例えば、メチルアクリレート、2-エチルヘキシルアクリレート、シクロヘキシルアクリレートなどの炭素原子数1~20の直鎖状、分岐状または環状アルキルアクリレート、グリシジルアクリレート、2-テトラヒドロフルフリルアクリレートなどの炭素原子数2~20の複素環基含有アクリレート、ベンジルアクリレートなどの炭素原子数6~20の芳香族環基含有アクリレート、イソボロニルアクリレート、ジシクロペンタニルアクリレートなどの炭素数7~30の多環構造を有するアクリレートが挙げられる。

[0066]

本発明において、(7)上記特定単量体とアクリレートとの交互共重合体を得るためには、ルイス酸存在下、上記特定単量体とアクリレートとの合計を100 モルとしたとき、通常、上記特定単量体が $30\sim70$ モル、アクリレートが $70\sim30$ モルの割合で、好ましくは上記特定単量体が $40\sim60$ モル、アクリレートが $60\sim40$ モル割合で、特に好ましくは上記特定単量体が $45\sim55$ モル、アクリレートが $55\sim45$ モルの割合でラジカル重合する。

[0067]

(7) 上記特定単量体とアクリレートとの交互共重合体を得るために使用するルイス酸の量は、アクリレート100モルに対して0.001~1モルとなる量とされる。また、公知のフリーラジカルを発生する有機過酸化物またはアゾビス系のラジカル重合開始剤を用いることができ、重合反応温度は、通常、-20 \mathbb{C} \sim 80 \mathbb{C} 、好ましくは5 \mathbb{C} \sim 60 \mathbb{C} である。また、重合反応用溶媒には、開環重合反応に用いられる溶媒と同じものを使用することができる。

[0068]

なお、本発明でいう「交互共重合体」とは、上記特定単量体に由来する構造単位が隣接しない、すなわち、上記特定単量体に由来する構造単位の隣は必ずアクリレートに由来する構造単位である構造を有する共重合体のことを意味しており、アクリレート由来の構造単位どうしが隣接して存在する構造を否定するものではない。

[0069]

本発明において用いられる環状オレフィン系樹脂の好ましい分子量は、固有粘度〔 η 〕 $_{inh}$ で 0. $2\sim5$ $_{d}$ $_{l}$ / $_{g}$ 、さらに好ましくは 0. $3\sim3$ $_{d}$ $_{l}$ / $_{g}$ 、特に好ましくは 0. $4\sim1$. 5 $_{d}$ $_{l}$ / $_{g}$ であり、ゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算の数平均分子量(M $_{n}$)は 8 , 0 0 $0\sim1$ 0 0 , 0 0 0 、さらに

[0070]

固有粘度 $[\eta]$ inh 、数平均分子量および重量平均分子量が上記範囲にあることによって、環状オレフィン系樹脂の耐熱性、耐水性、耐薬品性、機械的特性と、本発明の波長板として使用したときの位相差の安定性とのバランスが良好となる。

[0.071]

本発明において用いられる環状オレフィン系樹脂のガラス転移温度(Tg)としては、通常、120 C以上、好ましくは120 ~350 C、さらに好ましくは130 ~250 C、特に好ましくは140 ~200 Cである。Tgが120 C未満の場合は、レーザー光源やその隣接部品からの熱により、得られる環状オレフィン系樹脂フィルムの光学特性変化が大きくなり好ましくない。一方、Tgが350 Cを超えると、延伸加工など、Tg近辺まで加熱して加工する場合に樹脂が熱劣化する可能性が高くなる。

[0072]

本発明において用いられる環状オレフィン系樹脂の23 \mathbb{C} における飽和吸水率は、好ましくは $0.05\sim2$ 重量%、さらに好ましくは $0.1\sim1$ 重量%の範囲にある。飽和吸水率がこの範囲内であると、位相差が均一であり、得られる環状オレフィン系樹脂フィルムとガラス基板などとの密着性が優れ、使用途中で剥離などが発生せず、また、酸化防止剤などとの相溶性にも優れ、多量に添加することも可能となる。飽和吸水率が0.05 重量%未満であると、ガラス基板や透明支持体との密着性が乏しくなり、剥離を生じやすくなり、一方、2 重量%を超えると、環状オレフィン系樹脂フィルムが吸水により寸法変化を起こしやすくなる。

[0073]

なお、上記の飽和吸水率はASTMD570に従い、23 \mathbb{C} 水中で1週間浸漬して増加重量を測定することにより得られる値である。

[0074]

本発明において用いられる環状オレフィン系樹脂としては、その光弾性係数(C_P)が $0\sim1~0~0~(\times1~0^{-12}~P~a^{-1})$ であり、かつ応力光学係数(C_R)が 1 , 5~0~0~4 , $0~0~0~(\times1~0^{-12}~P~a^{-1})$ を満たすようなものが好適に使用される。

[0075]

ここで、光弾性係数 (C_P) および応力光学係数 (C_R) については、種々の文献 (Polymer Journal, Vol. 27, No, 9 pp 943-950 (1995), 日本レオロジー学会誌, Vol. 19, No. 2, pp 993-97 (1991), 光弾性実験法,日刊工業新聞社,昭和 5 0 年第 7 版に記載されており公知の事実であり、前者がポリマーのガラス状態での応力による位相差の発生程度を表すのに対し、後者は流動状態での応力による位相差の発生程度を表す。

[0076]

光弾性係数 (C_P) が大きいことは、ポリマーをガラス状態下で使用した場合に外的因子または自らの凍結した歪みから発生した歪みから発生する応力などにおいて敏感に位相差を発生しやすくなってしまうことを表し、例えば本発明のように、積層した際の貼り合わせ時の残留歪みや、温度変化や湿度変化などにともなう材料の収縮により発生する微小な応力によって不必要な位相差を発生しやすいことを意味する。このことから、できるだけ光弾性係数 (C_P) は小さい程よい。

[0077]

一方、応力光学係数(C_R)が大きいことは、環状オレフィン系樹脂フィルムに位相差の発現性を付与する際に少ない延伸倍率で所望の位相差を得られるようになったり、大きな位相差を付与しうるフィルムを得やすくなったり、同じ位相差を所望の場合には応力光学係数(C_R)が小さいものと比べてフィルムを薄肉化できるという大きなメリットがある。

[0078]

以上のような見地から、光弾性係数(C_P)が好ましくは $0\sim 1\ 0\ 0\ (\times 1\ 0^{-12}\ P\ a^{-1})$ 、さらに好ましくは $0\sim 8\ 0\ (\times 1\ 0^{-12}\ P\ a^{-1})$ 、特に好ましくは $0\sim 5\ 0\ (\times 1\ 0^{-12}\ P\ a^{-1})$ 、より好ましくは $0\sim 3\ 0\ (\times 1\ 0^{-12}\ P\ a^{-1})$ 、最も好ましくは $0\sim 2\ 0\ (\times 1\ 0^{-12}\ P\ a^{-1})$ である。光弾性係数 (C_P)が $1\ 0\ 0\ (\times 1\ 0^{-12}\ P\ a^{-1})$ を超えた場合には、本発明で用いられる積層位波長板においては、貼り合わせ時に発生する応力、使用する際の環境変化などによって発生する位相差変化によって最適貼り合わせ光軸角度の許容誤差範囲からのずれが発生してしまい波長板として使用した時に透過光量が低下してしまう場合があり好ましくない。

[0079]

また、本発明において用いられる環状オレフィン系樹脂の水蒸気透過度は、40 °C, 90 %RHの条件下で25 μ m厚のフィルムとしたときに、通常、 $1\sim400$ g/m²·24 h r であり、好ましくは $5\sim350$ g/m²·24 h r であり、さらに好ましくは $10\sim300$ g/m²·24 h r である。水蒸気透過度を本範囲とすることで、透明支持体と位相差フィルムとの貼り合わせに使用した接着剤 A や接着剤 B の含有水分や波長板が使用される環境の湿度による特性変化を低減・回避することができることから好ましい。

[0800]

本発明において用いられる環状オレフィン系樹脂は、上記のような(1)~(2)開環(共)重合体、(3)~(4)水素添加(共)重合体、(5)飽和共重合体、(6)付加型(共)重合体、もしくはその水素添加(共)重合体、または(7)交互共重合体より構成されるが、これに公知の酸化防止剤、紫外線吸収剤などを添加してさらに安定化することができる。また、加工性を向上させるために、滑剤などの従来の樹脂加工において用いられる添加剤を添加することもできる。

[0081]

本発明の波長板に用いられる環状オレフィン系樹脂フィルムは、上記の環状オレフィン系樹脂を溶融成形法あるいは溶液流延法(溶剤キャスト法)などによりフィルムもしくはシートとすることで得ることができる。このうち、膜厚の均一性および表面平滑性が良好になる点から溶剤キャスト法が好ましい。

[0082]

溶剤キャスト法により環状オレフィン系樹脂フィルムを得る方法としては特に限定されるものではなく、公知の方法を適用すればよいが、例えば、本発明の環状オレフィン系樹脂を溶媒に溶解または分散させて適度の濃度の液にし、適当なキャリヤー上に注ぐかまたは塗布し、これを乾燥した後、キャリヤーから剥離させる方法が挙げられる。

[0083]

以下に、溶剤キャスト法により環状オレフィン系樹脂フィルムを得る方法の諸条件を示すが、本発明は係る諸条件に限定されるものではない。

[0084]

環状オレフィン系樹脂を溶媒に溶解または分散させる際には、該樹脂の濃度を、通常は $0.1\sim90$ 重量%、好ましくは $1\sim50$ 重量%、さらに好ましくは $10\sim35$ 重量%にする。該樹脂の濃度を上記未満にすると、フィルムの厚みを確保することが困難になる、また、溶媒蒸発にともなう発泡などによりフィルムの表面平滑性が得にくくなるなどの問題が生じる。一方、上記を超えた濃度にすると、溶液粘度が高くなりすぎて得られる環状オレフィン系樹脂フィルムの厚みや表面が均一になりにくくなるために好ましくない。

[0085]

また、室温での上記溶液の粘度は、通常は $1\sim1$, 000, 000mPa·s、好ましくは $10\sim100$, 000mPa·s、さらに好ましくは $100\sim50$, 000mPa·s、特に好ましくは1, 000 ~40 , 000mPa·sである。

[0086]

使用する溶媒としては、ベンゼン、トルエン、キシレンなどの芳香族系溶媒、メチルセロソルブ、エチルセロソルブ、1ーメトキシー2ープロパノールなどのセロソルブ系溶媒

[0087]

また、上記以外でも、SP値(溶解度パラメーター)が、通常は $10\sim30$ (MP $a^{1/2}$)、好ましくは $10\sim25$ (MP $a^{1/2}$)、さらに好ましくは $15\sim25$ (MP $a^{1/2}$)、特に好ましくは $15\sim20$ (MP $a^{1/2}$)の範囲の溶媒を使用すれば、表面均一性と光学特性の良好な環状オレフィン系樹脂フィルムを得ることができる。

[0088]

上記溶媒は、単独でもしくは複数を混合して使用することができる。その場合には、混合系としたときのSP値の範囲を上記範囲内とすることが好ましい。このとき、混合系でのSP値の値は、重量比で予測することができ、例えば二種の混合ではそれぞれの重量分率をW1, W2、SP値をSP1, SP2とすると混合系のSP値は下記式:

 $SP値=W1 \cdot SP1+W2 \cdot SP2$ により計算した値として求めることができる。

[0089]

環状オレフィン系樹脂フィルムを溶剤キャスト法により製造する方法としては、上記溶液をダイスやコーターを使用して金属ドラム、スチールベルト、ポリエチレンテレフタレート(PET)やポリエチレンナフタレート(PEN)などのポリエステルフィルム、ポリテトラフルオロエチレン(商品名;テフロン(R))ベルトなどの基材の上に塗布し、その後、溶剤を乾燥して基材よりフィルムを剥離する方法が一般に挙げられる。また、スプレー、ハケ、ロールスピンコート、デッピングなどで溶液を基材に塗布し、その後、溶剤を乾燥して基材よりフィルムを剥離することにより製造することもできる。なお、繰り返し塗布することで厚みや表面平滑性などを制御してもよい。

[0090]

上記溶剤キャスト法の乾燥工程については、特に制限はなく一般的に用いられる方法、例えば多数のローラーを介して乾燥炉中を通過させる方法などで実施できるが、乾燥工程において溶媒の蒸発に伴い気泡が発生すると、フィルムの特性を著しく低下させるので、これを避けるために、乾燥工程を2段以上の複数工程とし、各工程での温度あるいは風量を制御することが好ましい。

[0091]

また、環状オレフィン系樹脂フィルム中の残留溶媒量は、通常は10重量%以下、好ましくは5重量%以下、さらに好ましくは1重量%以下、特に好ましくは0.5重量%以下である。ここで、残留溶媒量が10重量%を超えると、実際に使用したときに経時による寸法変化が大きくなり好ましくない。また、残留溶媒によりTgが低くなり、耐熱性も低下することから好ましくない。

[0092]

なお、後述する延伸工程を好適に行うためには、上記残留溶媒量を上記範囲内で適宜調節する必要がある場合がある。具体的には、延伸配向時の位相差を安定して均一に発現させるために、残留溶媒量を通常は $10\sim0$. 1重量%、好ましくは $5\sim0$. 1重量%、さらに好ましくは $1\sim0$. 1重量%にすることがある。

[0093]

溶媒を微量残留させることで、延伸加工が容易になる、あるいは位相差の制御が容易になる場合がある。

[0094]

本発明において用いられる環状オレフィン系樹脂フィルムの厚さは、通常は $0.1 \sim 5$ 出証特 2004 - 3093671

[0095]

本発明において用いられる環状オレフィン系樹脂フィルムの厚み分布は、通常は平均値に対して $\pm 20\%$ 以内、好ましくは $\pm 10\%$ 以内、さらに好ましくは $\pm 5\%$ 以内、特に好ましくは $\pm 3\%$ 以内である。また、1cmあたりの厚みの変動は、通常は10%以下、好ましくは5%以下、さらに好ましくは1%以下、特に好ましくは0.5%以下であることが望ましい。かかる厚み制御を実施することにより、延伸配向した際の位相差ムラを防ぐことができる。

[0096]

本発明の波長板に使用される環状オレフィン系樹脂フィルムからなる位相差フィルムは、上記方法によって得た環状オレフィン系樹脂フィルムを延伸加工したものが好適に使用される。具体的には、公知の一軸延伸法あるいは二軸延伸法により製造することができる。すなわち、テンター法による横一軸延伸法、ロール間圧縮延伸法、周遠の異なるロールを利用する縦一軸延伸法などあるいは横一軸と縦一軸を組み合わせた二軸延伸法、インフレーション法による延伸法などを用いることができる。

[0097]

一軸延伸法の場合、延伸速度は、通常は $1\sim5$, 000%/分であり、好ましくは $5.0\sim1$, 000%/分であり、さらに好ましくは $100\sim1$, 000%/分であり、特に好ましくは $100\sim500\%$ /分である。

[0098]

[0099]

延伸加工温度は、特に限定されるものではないが、本発明の環状オレフィン系樹脂のガラス転移温度(Tg)を基準として、通常は $Tg\pm30$ $\mathbb C$ 、好ましくは $Tg\pm10$ $\mathbb C$ 、さらに好ましくは $Tg-5\sim Tg+10$ $\mathbb C$ の範囲である。上記範囲内とすることで、位相差ムラの発生を抑えることが可能となり、また屈折率楕円体の制御が容易になることから好ましい。

$[0\ 1\ 0\ 0\]$

延伸倍率は、所望する特性により決定されるため特に限定はされないが、通常は1.01~10倍、好ましくは1.1~5倍、さらに好ましくは1.1~3.5倍である。延伸倍率が1066を超える場合、位相差の制御が困難になる場合がある。

$[0\ 1\ 0\ 1]$

延伸したフィルムは、そのまま冷却してもよいが、Tg-20C~Tgの温度雰囲気下に少なくとも10秒以上、好ましくは30秒~60分、さらに好ましくは1分~60分静置されることが好ましい。これにより、位相差特性の経時変化が少なく安定した環状オレフィン系樹脂フィルムからなる位相差フィルムが得られる。

[0102]

また、本発明において用いられる環状オレフィン系樹脂フィルムの線膨張係数は温度 20 \mathbb{C} から 100 \mathbb{C} の範囲において好ましくは 1×10^{-4} (1/ \mathbb{C}) 以下であり、さらに好ましくは 9×10^{-5} (1/ \mathbb{C}) 以下であり、特に好ましくは 8×10^{-5} (1/ \mathbb{C}) 以下であり、最も好ましくは 7×10^{-5} (1/ \mathbb{C}) 以下である。また、位相差フィルムの場合には、延伸方向とそれに垂直方向の線膨張係数差が好ましくは 5×10^{-5} (1/ \mathbb{C}) 以下で

[0103]

上記のようにして延伸したフィルムは、延伸により分子が配向し透過光に位相差を与えるようになるが、この位相差は、延伸前のフィルムの位相差値と延伸倍率、延伸温度、延伸配向後のフィルムの厚さにより制御することができる。ここで、位相差は複屈折光の屈折率差(\triangle n)と厚さ(d)の積(\triangle n d)で定義される。

[0104]

延伸前のフィルムが一定の厚さの場合、延伸倍率が大きいフィルムほど位相差の絶対値が大きくなる傾向があるので、延伸倍率を変更することによって所望の位相差値の位相差フィルムを得ることができる。

[0105]

本発明では少なくとも2枚の位相差フィルムが使用されるが、波長板としての所望の光学特性を得るためには、各々の位相差フィルムの位相差値は同じであっても良く、異なっていても良い。1枚当たりの位相差値は、所望する波長板の光学特性にもよるが、一般的に2000nm以下が好ましく、より好ましくは1500nm以下、さらに好ましくは100nm以下である。一枚当たりの位相差値が2000nmよりも大きくなると、延伸倍率が大きすぎてフィルムの厚さむら、位相差値むらが大きくなるために好ましくない。位相差値が2000nmよりも大きい位相差フィルムを得るには、位相差フィルムどうしの光軸を平行にして接着固定することも可能である。

[0106]

本発明の波長板の光学特性は所望の特性により決定され、特に限定されるものではないが、例えば光の波長が $400\sim800$ n mの範囲で「1/4 波長板」として機能するものなどが知られている。このような広帯域において特定の機能を発現する波長板を得るためには、例えば、2 枚の位相差フィルムの光軸を交差して貼り合わせれば良く、交差させる光軸の角度の精度は、理論値に対して $\pm5^\circ$ 以内が好ましく、より好ましくは $\pm3^\circ$ 以内、さらに好ましくは $\pm1^\circ$ 以内である。上記光軸角度の理論値からのずれが 5° よりも大きくなると所望の光学特性が得られないことがある。

[0107]

本発明において使用されるガラス基板としては、実質的に複屈折を持たないものであることが好ましい。透明支持体が複屈折を持つと、波長板としての特性に影響を与えることから好ましくない。また、ガラス基板の形状は特に限定されるものではなく、平板状であっても格子形状やプリズム形状など光学的な機能を有する形状であってもよい。また、厚さは、通常、 $0.01\sim5\,\mathrm{mm}$ 、好ましくは $0.05\sim3\,\mathrm{mm}$ 、さらに好ましくは $0.05\sim1\,\mathrm{mm}$ である。 $0.01\,\mathrm{mm}$ 未満であると、剛性が不足するとともにハンドリング性に劣り、一方、 $5\,\mathrm{mm}$ を超えると波長板としての大きさが大きくなり、光学系装置の小型化が難しくなる。

[0108]

本発明においては、ガラス基板の片面または両面に、反射防止膜を積層することができる。

[0109]

反射防止膜の形成方法としては、例えば、フッ素系共重合体を有機溶媒に溶解し、その溶液をバーコーターなどを用いて、キャスト法などにより上記フィルムやシート材や位相差板などの上に塗布形成し、プレスを用いて加熱し、硬化させる方法が挙げられる。加熱温度としては、通常は $80\sim165$ C、好ましくは $100\sim150$ Cの温度で、加熱時間としては、通常は $10分\sim3$ 時間、好ましくは $30分\sim2$ 時間であるとされている。

[0110]

反射防止膜の厚みは、通常は $5\sim2$, 000nm、好ましくは $10\sim1$, 000nm、 さらに好ましくは $50\sim200$ nmとされている。5nm未満であると、反射防止効果が発揮できず、一方、2, 000nmを超えると、塗膜の厚みにムラが生じやすくなり、外観などが悪化し好ましくないとされている。

[0111]

また、蒸着法やスパッタ法を用いて、アルミニウム、マグネシウムあるいはケイ素など の透明無機酸化物の被覆層を設けて反射防止膜を形成することもできる。

[0112]

係る無機系反射防止膜の場合、透明無機酸化物被覆層の厚みは、特定の光波長の1/4 とされている。さらに、係る透明無機酸化物被覆層を多層積層することで、より反射防止 性能を向上できるとされている。

[0 1 1 3]

本発明において位相差フィルムどうしを積層固定するために使用される接着剤(以下、「接着剤A」という。)としては、天然ゴム系、合成ゴム系、酢酸ビニル/塩化ビニルコポリマー系、シリコン系、ポリビニルエーテル系、アクリル系、変性ポリオレフィン系、エポキシ系あるいはウレタン系など公知の接着剤から選択される。なかでもアクリル系の接着剤が被接着物との密着性に優れており好ましく用いられる。

$[0\ 1\ 1\ 4\]$

初期特性に優れ、使用環境や製造環境の影響を受けにくく長期信頼性に優れた波長板を得るためには、接着剤Aのガラス転移温度、すなわち、乾燥もしくは硬化した状態での接着剤Aの動的粘弾性測定(測定周波数1~H~z)における $t~a~n~\delta$ (損失正接)のピーク温度は0~C以下であることが必要であり、好ましくは-2~0~C以下、さらに好ましくは-4~0~C以下であることが望ましい。

[0115]

接着剤のガラス転移温度については、例えば、アクリル系接着剤の場合には、含有するアクリル系重合体もしくはアクリル系単量体を適宜選択することにより制御する。すなわち、アクリル系単量体は、その分子中の二重結合の個数に応じて単官能、二官能、多官能と分類されるが、一般に、単官能のアクリル系単量体を多く用いたものはガラス転移温度が低くなり、多官能のアクリル系単量体を多く用いたものはガラス転移温度が高くなる傾向があるため、接着剤に配合するアクリル系重合体を重合する際に用いるアクリル系単量体の種類や量を調節する、あるいは接着剤に配合するアクリル系単量体の種類や量を調節することにより、目的とするガラス転移温度の接着剤を得ることができる。

[0116]

また接着剤Aは、乾燥もしくは硬化した状態での室温(23°)におけるヤング率が10 MPa以下であることが必要であり、好ましくは5 MPa以下、さらに好ましくは2 MPa以下であることが望ましい。

$[0\ 1\ 1\ 7]$

なお、積層固定にあたっては、各位相差フィルムの表面にコロナ処理、プラズマ処理、カップリング剤処理あるいはアンカーコート処理などの下地処理を施すことがあってもよい。

[0118]

本発明において位相差フィルムとガラス基板とを接着するために使用される接着剤(以下、「接着剤B」という。)としては、天然ゴム系、合成ゴム系、酢酸ビニル/塩化ビニルコポリマー系、シリコン系、ポリビニルエーテル系、アクリル系、変性ポリオレフィン系、エポキシ系あるいはウレタン系など公知の接着剤から選択される。なかでもアクリル系の接着剤が被接着物との密着性に優れており好ましく用いられる。

[0119]

初期特性に優れ、使用環境や製造環境の影響を受けにくく長期信頼性に優れた波長板を 得るためには、接着剤Bのガラス転移温度、すなわち、乾燥もしくは硬化した状態での接

[0120]

また接着剤Bは、乾燥もしくは硬化した状態での接着剤Bの室温(23℃)でのヤング率が30MPaより大きいことが必要であり、好ましくは50MPa以上、さらに好ましくは70MPa以上であることが望ましい。

[0121]

また接着剤Bと接着剤Aとのガラス転移温度差が60 C以上、好ましくは80 C以上、さらに好ましくは100 C以上であることが望ましい。

[0122]

さらに23℃における接着剤Bと接着剤Aとのヤング率の差が40MPa以上、好ましくは50MPa以上、さらに好ましくは60MPa以上であることが望ましい。

[0123]

なお、接着固定にあたっては、位相差フィルムやガラス基板の表面にコロナ処理、プラズマ処理、カップリング剤処理あるいはアンカーコート処理などの下地処理を施すことがあってもよい。

[0124]

上記のように位相差フィルム同士を接着剤Aで積層固定し、位相差フィルムとガラス基板とを接着剤Bで積層固定することにより、波長板の面内収差の変化量を小さくすることができ、使用環境や製造環境の影響を受けにくく長期信頼性に優れた波長板となる。

[0125]

この理由としては、明確には判明していないが、波長板への外部からの応力による変形は、ガラス/フィルム間に硬い接着剤Bを使用することにより防止でき、また温度の変化に際してガラス/フィルム間で発生する歪みは、フィルム同士の接着に軟い接着剤Aを使用することによってバランスよく緩和することができるためであると推測される。

[0126]

アクリル系の接着剤としては、例えば、アクリル系単量体(アクリレート化合物)を少なくとも1種含有する単量体組成物の重合体と溶媒を含有する組成物、少なくとも1種のアクリレート化合物と硬化剤を含有する組成物、上記重合体と少なくとも1種のアクリレート化合物および硬化剤を含有する組成物など挙げられるが、本発明はこれらに限定されるものではない。ここで、アクリレート化合物は分子内に少なくとも一つの(メタ)アクリロイル基を有しているものであり、例えば、単官能(メタ)アクリレート化合物、多官能(メタ)アクリレート化合物が挙げられる。

[0127]

単官能 (メタ) アクリレート化合物の具体例としては、メチル (メタ) アクリレート、エチル (メタ) アクリレート、プロピル (メタ) アクリレート、イソプロピル (メタ) アクリレート、イソプロピル (メタ) アクリレート、ブチル (メタ) アクリレート、イソブチル (メタ) アクリレート、tertーブチル (メタ) アクリレート、ペンチル (メタ) アクリレート、アミル (メタ) アクリレート、イソアミル (メタ) アクリレート、ヘキシル (メタ) アクリレート、ヘプチル (メタ) アクリレート、オクチル (メタ) アクリレート、イソオクチル (メタ) アクリレート、フェル (メタ) アクリレート、デシル (メタ) アクリレート、イソデシル (メタ) アクリレート、ウンデシル (メタ) アクリレート、ドデシル (メタ) アクリレート、ラウリル (メタ) アクリレート、ステアリル (メタ) アクリレート、ステアリル (メタ) アクリレート、イソステアリル (メタ) アクリレート等のアルキル (メタ) アクリレート類;

ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒ

ドロキシブチル (メタ) アクリレート等のヒドロキシアルキル (メタ) アクリレート類;フェノキシエチル (メタ) アクリレート、2-ヒドロキシー3-フェノキシプロピル (メタ) アクリレート等のフェノキシアルキル (メタ) アクリレート類;

メトキシエチル (メタ) アクリレート、エトキシエチル (メタ) アクリレート、プロポキシエチル (メタ) アクリレート、ブトキシエチル (メタ) アクリレート、メトキシブチル (メタ) アクリレート等のアルコキシアルキル (メタ) アクリレート類;

ポリエチレングリコールモノ (メタ) アクリレート、エトキシジエチレングリコール (メタ) アクリレート、メトキシポリエチレングリコール (メタ) アクリレート、フェノキシポリエチレングリコール (メタ) アクリレート、ノニルフェノキシポリエチレングリコール (メタ) アクリレート等のポリエチレングリコール (メタ) アクリレート類;

ポリプロピレングリコールモノ (メタ) アクリレート、メトキシポリプロピレングリコール (メタ) アクリレート、エトキシポリプロピレングリコール (メタ) アクリレート、ノニルフェノキシポリプロピレングリコール (メタ) アクリレート等のポリプロピレングリコール (メタ) アクリレート類;

シクロヘキシル (メタ) アクリレート、4 ーブチルシクロヘキシル (メタ) アクリレート、ジシクロペンタニル (メタ) アクリレート、ジシクロペンテニル (メタ) アクリレート、ジシクロペンタジエニル (メタ) アクリレート、ボルニル (メタ) アクリレート、イソボルニル (メタ) アクリレート、トリシクロデカニル (メタ) アクリレート等のシクロアルキル (メタ) アクリレート類;

ベンジル (メタ) アクリレート;テトラヒドロフルフリル (メタ) アクリレートなどが挙 げられる。

[0128]

これらの単官能(メタ)アクリレート化合物は、1種単独で、または2種以上を混合して用いることができる。

[0129]

また、多官能(メタ)アクリレート化合物の具体例としては、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、1リコールジ(メタ)アクリレート、1、4ーブタンジオールジ(メタ)アクリレート、1、6ーへキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等のアルキレングリコールジ(メタ)アクリレート類;

トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパントリヒドロキシエチルトリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールへキサ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート等の多価アルコールのポリ(メタ)アクリレート類;

イソシアヌレートトリ (メタ) アクリレート、トリス (2-ヒドロキシエチル) イソシア ヌレートジ (メタ) アクリレート、トリス (2-ヒドロキシエチル) イソシアヌレートト リ (メタ) アクリレート等のイソシアヌレートのポリ (メタ) アクリレート類;

トリシクロデカンジイルジメチルジ(メタ)アクリレート等のシクロアルカンのポリ(メタ)アクリレート類;

ビスフェノールAのエチレンオキサイド付加体のジ(メタ)アクリレート、ビスフェノールAのプロピレンオキサイド付加体のジ(メタ)アクリレート、ビスフェノールAのアルキレンオキサイド付加体のジ(メタ)アクリレート、水添ビスフェノールAのエチレンオキサイド付加体のジ(メタ)アクリレート、水添ビスフェノールAのプロピレンオキサイド付加体のジ(メタ)アクリレート、水添ビスフェノールAのアルキレンオキサイド付加体のジ(メタ)アクリレート、ビスフェノールAジグリシジルエーテルと(メタ)アクリル酸とから得られる(メタ)アクリレート等のビスフェノールAの(メタ)アクリレート誘導体類;

[0130]

これらの多官能(メタ)アクリレート化合物は、1種単独で、または2種以上を混合して用いることができる。

[0131]

接着剤Aや接着剤Bの接着強度は、取扱い中に容易に剥がれないものであることが必要である。接着強度の具体値としては、接着剤Aにおいては 2 枚の位相差フィルムを互いに接着したときの 9 0 度剥離力が、好ましくは 0. 5 N/c m^2 以上、さらに好ましくは 1 N/c m^2 以上、最も好ましくは 3 N/c m^2 以上であり、接着剤Bにおいては位相差フィルムとガラス基材とを接着したときの 9 0 度剥離力が、好ましくは 0. 5 N/c m^2 以上、さらに好ましくは 1 N/c m^2 以上、最も好ましくは 3 N/c m^2 以上である。接着強度が 0. 5 N/c m^2 よりも小さくなると、取扱い時の衝撃により剥がれてしまったり、接着された層どうしがずれてしまったりするために好ましくない。

[0132]

接着剤 A や接着剤 B の厚さは、上記接着強度が確保できる厚さであれば特に限定されないが、通常 $1~\mu$ m $\sim 1~0~0~\mu$ m、好ましくは $2~\mu$ m $\sim 7~0~\mu$ m、さらに好ましくは $3~\mu$ m $\sim 5~0~\mu$ m、最も好ましくは $4~\mu$ m $\sim 3~0~\mu$ mである。接着剤 A や接着剤 B の厚さが $1~0~0~\mu$ mよりも厚くなると、波長板の厚さが厚くなり光透過率等の光学特性に問題が生じたり取扱いが不便になったりすることがある。また、厚さが $1~\mu$ m未満の場合、接着強度が確保できないことがある。

[0133]

位相差フィルムの屈折率と接着剤Aとの屈折率差は、好ましくは0.20以内、さらに好ましくは0.15以内、特に好ましくは0.10以内、最も好ましくは0.05以内であり、また、ガラス基板と接着剤Bとの屈折率差は、好ましくは0.20以内、さらに好ましくは0.15以内、特に好ましくは0.10以内、最も好ましくは0.05以内である。さらに、位相差フィルムの屈折率とガラス基板との屈折率差は、好ましくは0.20以内、さらに好ましくは0.15以内、特に好ましくは0.10以内、最も好ましくは0.05以内であり、屈折率差を本範囲内とすることで、透過光の反射によるロスを最小限に抑えることができるために好ましい。

[0134]

また、本発明の波長板の面内収差は、通常 50 $(m\lambda)$ 以内、好ましくは 30 $(m\lambda)$ 以内、さらに好ましくは 20 $(m\lambda)$ 以内である。波長板の面内収差を上記範囲内とすることで、良好な S/N や許容されるジッター範囲となるために好ましい。ここで、 λ は、透過光の波長である。

[0135]

本発明の波長板中の異物数としては、可能な限り少ない方がよく、平均粒径 $10 \mu m$ 以上のものが、通常 $10 (\text{Im}/\text{mm}^2)$ 以下、好ましくは $5 (\text{Im}/\text{mm}^2)$ 以下、さらに好ましくは $1 (\text{Im}/\text{mm}^2)$ 以下である。 $10 \mu m$ 以上の異物が波長板中に $10 (\text{Im}/\text{mm}^2)$ を超えた数だけ存在すると、ノイズ信号が多くなり S / N比が小さくなり好ましくない。ここで、波長板中の異物とは、レーザー光の透過を低下させるものやその異物の存在によりレーザー光の進行方向を大きく変えるものが含まれる。前者の例としては、塵や埃、樹脂の焼けや金属粉末、鉱物などの粉末などが挙げられ、後者の例としては、他樹脂のコンタミや屈折率が異なる透明物質などが挙げられる。

[0136]

なお、本発明の波長板は、ノイズの低減などの必要に応じて所望する波長以外の光の透 過を遮断もしくは低下させるために、公知の着色剤などを用いた着色が施されたものであ っても良い。

[0137]

本発明の波長板は、少なくとも 2 枚の位相差フィルム同士を、ガラス転移温度が 0 \mathbb{C} 以下でありかつ 2 3 \mathbb{C} におけるヤング率が 1 0 MP a 以下である接着剤 Aで積層固定し、位相差フィルムとガラス基板とを、ガラス転移温度が 4 0 \mathbb{C} 以上でありかつ 2 3 \mathbb{C} におけるヤング率が 3 0 MP a 以上である接着剤 Bで固定して形成されているため、長期にわたって初期特性を維持することができる。特に位相差フィルムとして、環状オレフィン系樹脂フィルムを延伸配向させたものが好ましい。このような本発明の波長板を使用すると、長期にわたり性能を維持できる高耐久性の光学情報記録再生装置を製造することができる。

[0138]

なお、本発明の波長板を使用した光学情報記録再生装置は、再生専用記録媒体、追記型記録媒体、および書き換え可能型記録媒体のいずれにも適用でき、 CD-ROM、CD-R、書き換え可能DVDなどの記録装置およびそれらを用いたOA機器、CDなどの音響再生装置、DVDなどの画像再生装置およびそれらを用いたAV機器、上記のCD、DVDなどを用いたゲーム機などに用いることができる。

[0139]

「実施例】

以下、実施例を挙げ、本発明をさらに具体的に説明するが、本発明は、これらの実施例により何ら限定されるものではない。なお、実施例中の部および%は、特に断らない限り重量部および重量%である。また、実施例中の各種の試験・測定は、次のとおりである。固有粘度($\begin{bmatrix} n \end{bmatrix}$ inh)

溶媒にクロロホルムまたはシクロヘキサンを使用し、0.5g/dlの重合体濃度で30℃の条件下、ウベローデ粘度計にて測定した。

ゲル含有量

25 \mathbb{C} の温度で、水素添加(共)重合体 50gを1%濃度になるようにクロロホルムに溶解し、この溶液をあらかじめ重量を測定してある孔径0.5 μ mのメンブランフィルター〔アドバンテック東洋(株)〕を用いてろ過し、ろ過後のフィルターを乾燥後、その重量の増加量からゲル含有量を算出した。

水素化率

水素添加単独重合体の場合には、 $500 \, \mathrm{MHz}$ 、 $^1 \, \mathrm{H-NMR}$ を測定し、エステル基のメチル水素とオレフィン系水素のそれぞれの吸収強度の比、またはパラフィン系水素とオレフィン系水素のそれぞれの吸収強度の比から水素化率を測定した。また、水素添加共重合体の場合には、重合後の共重合体の $^1 \, \mathrm{H-NMR}$ 吸収と水素化後の水素添加共重合体のそれを比較して算出した。

樹脂のガラス転移温度

走査熱量計 (DSC) により、チッ素雰囲気下において、10℃/分の昇温速度で測定した。

膜の厚み

キーエンス (株) 製、レーザーフォーカス変位計、LT-8010を用い、測定した。接着剤のガラス転移温度 (tan δ ピーク温度)

オリエンテック社製レオバイブロン(モデルDDV-01FP)を用い、接着剤の短冊状試験片($5\,\mathrm{mm}\times7\,\mathrm{c\,m}$)を準備して、温度範囲 $-1\,0\,0\sim1\,5\,0\,\mathrm{C}$ 、周波数 $1\,\mathrm{H}\,z\,\mathrm{c}$ て測定した。ピークが $2\,\mathrm{t}$ 類以上存在する場合は高温側の値をピーク温度(ガラス転移温度)とした。

[0140]

接着剤のヤング率

インストロン (株) 製引っ張り試験機を用い、接着剤の3号ダンベルを準備して、JIS-Z1702に準拠して23℃にて測定した。引っ張り速度は10mm/分とした。

[0141]

なお、ガラス転移温度が室温以下のものについては、PET基材に予め接着剤を塗布しておいたものを3号ダンベル形状とし、測定直前にPET基材を除去して被検部を露出させて引っ張り試験を行った。

面内収差

富士写真光機(株)製、小口径レーザー干渉計R10を用い、5mmφの範囲について 波長650nmのレーザー光を使用して透過波面収差を測定した。

位相差值

王子計測機器 (株) 製、KOBRA-21ADHを用い、波長480、550、590、630、750nmで測定し、当該波長以外の部分については上記波長での位相差値を用いてコーシー (Cauchy) の分散式を用いて算出した。

高温高湿試験

エスペック (株) 製、環境試験機を95℃、95%RHに設定した。1000時間槽内に入れた後に取り出し、目視観察、位相差値の測定、面内収差の測定を行なった。

[0142]

<合成例1>

[0143]

このようにして得られた開環重合体溶液 4 , 0 0 0 部をオートクレーブに仕込み、この 開環重合体溶液に、RuHCl(CO)[P(C₆H₅)₃]₃ 0. 4 8 部を添加し、水素ガス 圧 1 0 0 k g/c m^2 、反応温度 1 6 5 $\mathbb C$ 0 条件下で、 3 時間加熱攪拌して水素添加反応 を行った。

[0144]

得られた反応溶液(水素添加重合体溶液)を冷却した後、水素ガスを放圧した。この反応溶液を大量のメタノール中に注いで凝固物を分離回収し、これを乾燥して、水素添加重合体(以下、「樹脂A」という。)を得た。

$[0\ 1\ 4\ 5\]$

このようにして得られた樹脂Aについて 1 H-NMRを用いて水素添加率を測定したところ99.9%であった。また、当該樹脂についてDSC法によりガラス転移温度(Tg)を測定したところ165℃であった。また、当該樹脂について、GPC法(溶媒:テトラヒドロフラン)により、ポリスチレン換算の数平均分子量(Mn)および重量平均分子量(Mw)を測定したところ、Mnは32,000、Mwは137,000、分子量分布(Mw/Mn)は4.29であった。また、当該樹脂について、23℃における飽和吸水率を測定したところ、0.3%であった。また、SP値を測定したところ、19(MPa $^{1/2}$)であった。また、当該樹脂について、30℃のクロロホルム中で固有粘度(1 inh)を測定したところ、0.78 dl/g であった。また、ゲル含有量は0.4%であった。

[0146]

<合成例2>

特定単量体として8-メチル-8-メトキシカルボニルテトラシクロ [4.4.0.1 2,5 . $1^{7,10}$] -3-ドデセン 215 部と、ビシクロ [2.2.1] ヘプト-2-エン 35 部とを使用し1-ヘキセン(分子量調節剤)の添加量を18部としたこと以外は、

合成例 1 と同様にして水素添加重合体を得た。得られた水素添加重合体(以下、「樹脂B」という。)の水素添加率は99.9%であった。また、当該樹脂についてDSC法によりガラス転移温度(Tg)を測定したところ 125 ℃であった。また、当該樹脂について、GPC法(溶媒:テトラヒドロフラン)により、ポリスチレン換算の数平均分子量(Mn)および重量平均分子量(Mn)を測定したところ、Mnは46,000、Mwは190,000、分子量分布(Mm0)は4.15であった。また、当該樹脂について、23 ℃における飽和吸水率を測定したところ、18%であった。また、 $19(MPa^{1/2})$ であった。また、当該樹脂について、30 ℃のクロロホルム中で固有粘度(η inh)を測定したところ、1900. 1800 であった。また、ゲル含有量は1800. 1800 であった。

[0147]

<合成例3>

特定単量体として8-xチリデンテトラシクロ $[4.4.0.1^{2.5}.1^{7.10}]-3-$ ドデセン 225部を使用し1-ヘキセン (分子量調節剤) の添加量を30部、開環重合反応用溶媒としてトルエンの代わりにシクロヘキサンを使用したこと以外は、合成例 1 と同様にして水素添加重合体を得た。得られた水素添加重合体(以下、「樹脂C」という。) の水素添加率は99.9%であった。また、当該樹脂についてDSC法によりガラス転移温度(Tg)を測定したところ138%であった。また、当該樹脂について、GPC法(溶媒:テトラヒドロフラン)により、ポリスチレン換算の数平均分子量(Mn)および重量平均分子量(Mw)を測定したところ、Mnは50,000、Mwは190,000、分子量分布(Mw/Mn)は3.80%あった。また、当該樹脂について、23%における飽和吸水率を測定したところ、0.01%であった。また、SP値を測定したところ、 $17(MPa^{1/2})$ であった。また、当該樹脂について、30%のシクロヘキサン中で固有粘度(η inh)を測定したところ、0.72 dl/g であった。また、ゲル含有量は0.4%であった。

<フィルム製造例1>

樹脂Aをトルエンに濃度30%(室温での溶液粘度は30,000mPa・S)になるように溶解し、井上金属工業製、INVEXラボコーターを用い、アクリル酸系で親水化(易接着)の表面処理した厚さ100 μ mのPETフィルム(東レ製、ルミラーU94)に、乾燥後のフィルム厚みが100 μ mになるように塗布し、これを50 Γ で一次乾燥の後、90 Γ で二次乾燥を行った。PETフィルムより剥がした樹脂フィルムAを得た。得られたフィルムの残留溶媒量は0.5%であった。

[0148]

このフィルムを次の方法により光弾性係数(C_P)および応力光学係数(C_R)を求めた。具体的には、光弾性係数(C_P)は短冊状のフィルムサンプルに室温(25 $\mathbb C$)で数種類の一定荷重を加え、発生する位相差とそのときサンプルが受けた応力とから計算した。応力光学係数(C_R)については、フィルム状サンプルを用いて T_g 以上にて数種類の一定荷重をかけて数パーセント伸びた状態でゆっくりと冷やして室温まで戻した後に発生した位相差を測定してかけた応力とから計算した。結果は、それぞれ $C_P=4$ ($\times 10^{-12}$ p_a^{-1}), $C_R=1$ 7 5 0 ($\times 10^{-12}$ p_a^{-1}) であった。

[0149]

樹脂フィルムAの特性値を表1に示した。

<フィルム製造例2>

樹脂Bを使用し、フィルム製造例1と同様にして樹脂フィルムBを得た。得られた樹脂フィルムBの残留溶媒量は0.5%であり、光弾性係数 (C_P) および応力光学係数 (C_R) はそれぞれ $C_P=9$ $(×10^{-12}\,p\,a^{-1})$, $C_R=2$, 350 $(×10^{-12}\,p\,a^{-1})$ であった。

[0150]

樹脂フィルムBの特性値を表1に示した。

<フィルム製造例3>

[0151]

樹脂フィルムCの特性値を表1に示した。

<実施例1>

上記樹脂フィルムAをテンター内で、Tg+10℃である175℃に加熱し、延伸速度400%/分で1.4倍に一軸延伸した後110℃の雰囲気下で1分間この状態を保持し、その後室温まで冷却して取り出したところ、厚みが89 μ mで、波長655nmにおける位相差が160nmである位相差フィルムA-1を得ることができた。また、上記樹脂フィルムAをテンター内で、Tg+10℃である175℃に加熱し、延伸速度400%/分で2.1倍に一軸延伸した後110℃の雰囲気下で1分間この状態を保持し、その後室温まで冷却して取り出したところ、厚みが81 μ mで、波長655nmにおける位相差が330nmである位相差フィルムA-2を得ることができた。これらの位相差フィルムA-1とA-2を、各々の光軸が60°となるように厚さ10 μ mのアクリル系接着剤(住友スリーエム(株)製、8142)を用いて貼り合わせ、さらに貼り合わせたフィルムの両面に、厚さ10 μ mのアクリル系接着剤(協立化学産業(株)製、XVL-90)を用いて厚さ250 μ mのガラス板を積層し、波長板Aを得た。ここで、接着剤Aとして用いた住友スリーエム(株)製8142のtanδピーク温度は-63℃、ヤング率は0.6Mpaであり、接着剤Bとして用いた協立化学産業(株)製XVL-90のtanδピーク温度は61℃、ヤング率は75Mpaであった。

[0152]

波長板A中の 10μ m以上の異物数は10 個以下であることを偏光顕微鏡により確認した。

[0153]

さらに、波長板Aの面内収差を確認したところ、18m Aであった。

[0154]

この波長板Aについて高温高湿試験を行なったところ、位相差値の変化量は3%以内であり、面内収差の変化量も $5m\lambda$ 以下、外観変化も見られず良好な特性が維持していることを確認した。

<実施例2>

樹脂フィルムBを用いて、延伸条件を延伸倍率 1. 3倍、加熱温度 130 $^{\circ}$ とした以外は、実施例 1 と同様にして厚みが 89 $^{\mu}$ mで、波長 655 n mにおける位相差が 275 n mである位相差フィルムBを得た。この位相差フィルムBを 2枚、各々の光軸が 45 $^{\circ}$ となるように厚さ 10 $^{\mu}$ mのアクリル系接着剤(住友スリーエム(株)製、8142)を用いて貼り合わせ、さらに貼り合わせたフィルムの両面に、厚さ 10 $^{\mu}$ mのアクリル系接着剤(協立化学産業(株)製、XVL $^{\circ}$ N を用いて厚さ 250 $^{\mu}$ mのガラス板を積層し、波長板Bを得た。

[0155]

波長板B中の 10μ m以上の異物数は10 個以下であることを偏光顕微鏡により確認した。

[0156]

さらに、波長板Bの面内収差を確認したところ、15mょであった。

[0157]

この波長板Bについて高温高湿試験を行なったところ、位相差値の変化量は3%以内であり、面内収差の変化量も $5m\lambda$ 以下、外観変化も見られず良好な特性が維持していることを確認した。

<実施例3>

樹脂フィルムCを用いて、延伸条件を延伸倍率1.08倍、加熱温度148℃とした以 出証特2004-3093671

[0158]

波長板C中の10μm以上の異物数は10個以下であることを偏光顕微鏡により確認した。

[0159]

さらに、波長板Cの面内収差を確認したところ、35m λ であった。

$[0 \ 1 \ 6 \ 0]$

この波長板Cについて高温高湿試験を行なったところ、位相差値の変化量は3%以内であり、面内収差の変化量も $5m\lambda$ 以下、外観変化も見られず良好な特性が維持していることを確認した。

<比較例1>

位相差フィルム A-1 と A-2 を、各々の光軸が 6 0° となるように厚さ 1 0 μ mのアクリル系接着剤(協立化学産業(株)製、X V L-9 0)を用いて貼り合わせ、さらに貼り合わせたフィルムの両面に、厚さ 1 0 μ mのアクリル系接着剤(協立化学産業(株)製、X V L-9 0)を用いて厚さ 2 5 0 μ mのガラス板を積層し、波長板 D を得た。

[0 1 6 1]

波長板D中の 10μ m以上の異物数は10 個以下であることを偏光顕微鏡により確認した。

[0162]

さらに、波長板Dの面内収差を確認したところ、20m λ であった。

[0163]

この波長板Dについて高温高湿試験を行なったところ、位相差値の変化量は3%以内であり外観変化も見られなかったが、面内収差の変化量が $10m\lambda$ であることが確認された

<比較例2>

位相差フィルムBを 2 枚、各々の光軸が 4 5 °となるように厚さ 10μ mのアクリル系接着剤(住友スリーエム(株)製、 8142)を用いて貼り合わせ、さらに貼り合わせたフィルムの両面に、厚さ 10μ mのアクリル系接着剤(住友スリーエム(株)製、 8142)を用いて厚さ 250μ mのガラス板を積層し、波長板Eを得た。

$[0 \ 1 \ 6 \ 4]$

波長板E中の 10μ m以上の異物数は10個以下であることを偏光顕微鏡により確認した。

[0165]

さらに、波長板Eの面内収差を確認したところ、18mλであった。

[0166]

この波長板Eについて高温高湿試験を行なったところ、位相差値の変化量は3%以内であり外観変化も見られなかったが、面内収差の変化量が $15m\lambda$ であることが確認された

<比較例3>

位相差フィルムC-1とC-2を、各々の光軸が55°となるように厚さ 10μ mのアクリル系接着剤(協立化学産業(株)製、XVL-90)を用いて貼り合わせ、さらに貼り合わせたフィルムの両面に、厚さ 10μ mのアクリル系接着剤(協立化学産業(株)製、XVL-90)を用いて厚さ 250μ mのガラス板を積層し、波長板Fを得た。

[0167]

波長板F中の 10μ m以上の異物数は10個以下であることを偏光顕微鏡により確認した。

[0168]

さらに、波長板Fの面内収差を確認したところ、40m λ であった。

[0169]

この波長板Fについて高温高湿試験を行なったところ、位相差値の変化量は3%以内であり外観変化も見られなかったが、面内収差の変化量が $15m\lambda$ であることが確認された

【0170】 【表1】

	Тg	Cp , CR	厚み	残溶媒量	全光線	590nmにおける
	(℃)	(×10 ⁻¹² pa ⁻¹)	(µ m)	(%)	透過率	位相差(nm)
					(%)	
樹脂フィルムA	165	4 , 1,750	100	0. 5	93	6.8
樹脂フィルムB	125	9 , 2,350	100	0. 5	93	6.8
樹脂フィルムC	138	4 , 1,950	100	0.4	93	5. 2

【要約】

【課題】 本発明は、初期特性に優れ、使用環境や製造環境の影響を受けにくく長期信頼性に優れた、光学情報記録・再生装置用波長板を提供することにある。

【解決手段】 本発明に係る波長板は、少なくとも2枚の位相差フィルムが積層され、当該積層された位相差フィルムが2枚のガラス基板に挟まれている波長板であって、位相差フィルム同士が、ガラス転移温度が0℃以下でありかつ23℃におけるヤング率が10MPa以下である接着剤(A)で積層固定され、位相差フィルムとガラス基板とが、ガラス転移温度が40℃以上でありかつ23℃におけるヤング率が30MPa以上である接着剤(B)で固定されてなり、接着剤Bと接着剤Aとのガラス転移温度差が60℃以上であり、しかも23℃における接着剤Bと接着剤Aとのヤング率差が40MPa以上であることを特徴とする。

【選択図】なし

特願2003-425369

出願人履歴情報

識別番号

[000004178]

1. 変更年月日 [変更理由] 住 所 氏 名

2003年 9月 1日 名称変更 東京都中央区築地五丁目6番10号 JSR株式会社