

Marco Belardinelli

Obiettivo della presentazione

- Trovare un'eventuale correlazione tra i sopravvissuti e le altre variabili presenti all'interno del nostro dataset
- Le altre variabili sono correlate tra loro?
- Possiamo predire i superstiti con i mezzi a nostra disposizione?

Pulizia dataset

	PassengerId	Survived	Pclass		Name	sex	Age	SibSp Pa	arch	Ticket	Fare	Cabin Emb	arked
1	1	0	3	Br	raund, Mr. Owen Harris	male	22	1	0	A/5 21171	7.2500		S
2	2	1	. 1	Cumings, Mrs. John Bradley (Fl	lorence Briggs Thayer)	female	38	1	0	PC 17599	71.2833	C85	C
3	3	1	. 3	H	Heikkinen, Miss. Laina	female	26	0	0	STON/02. 3101282	7.9250		5
4	4	1	. 1	Futrelle, Mrs. Jacques	Heath (Lily May Peel)	female	35	1	0	113803	53.1000	C123	S
5	5	0	3	All	len, Mr. William Henry	male	35	0	0	373450	8.0500		S
6	6	0	3		Moran, Mr. James	male	NA	0	0	330877	8.4583		Q

Nel dataset troviamo 12 variabili e 861 osservazioni.

Non sono presenti osservazioni duplicate.

Alcune delle osservazioni purtroppo presentano molti valori mancanti costringendoci ad eliminarle (notiamo già che la maggior parte dei dati persi appartenevano a passeggeri della terza classe).

> duplicated(data1)

```
[1] FALSE FA
```

> table(data1\$Survived)

0 1 549 342

> table(data1\$Pclass)

1 2 3 216 184 491

- > data=drop_na(data1)
- > table(data\$Survived)

0 1 424 290

> table(data\$Pclass)

1 2 3 186 173 355

Correlazioni

Con questa tabella e il plot precedente cerchiamo eventuali correlazioni tra le variabili, notiamo tuttavia che non sono presenti correlazioni così elevate da necessitare della rimozione di una o più variabili.

Alcune variabili (come l'identificativo del biglietto) sono tuttavia state omesse da questa tabella poiché presentavano valori alfanumerici di difficile interpretazione.

Regressione lineare

Procediamo con la costruiamo del modello di regressione lineare. Mettiamo in relazione le nostre variabili indipendenti con «Survived» ovvero la variabile dicotomica che identifica morti e sopravvissuti. Questa, d'ora in poi, sarà la nostra variabile dipendente (Y).

Il VIF ci conferma che la correlazioni tra le variabili è

trascurabile.


```
> summary(model11)
call:
lm(formula = Survived ~ . - Name - Ticket - Cabin, data = data)
Residuals:
    Min
              10 Median
                                        Max
-1.08883 -0.23205 -0.06948 0.22923 1.00816
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.440e+00 1.026e-01 14.038 < 2e-16 ***
PassengerId 5.357e-05 5.542e-05
                                 0.967
Pclass
           -1.897e-01 2.263e-02 -8.385 2.75e-16 ***
Sexmale
           -4.855e-01 3.141e-02 -15.453 < 2e-16
Age
           -6.449e-03 1.127e-03 -5.720 1.58e-08
           -5.048e-02 1.743e-02 -2.896
SibSp
                                          0.0039 **
Parch
           -1.075e-02 1.903e-02 -0.565
                                          0.5723
           2.017e-04 3.464e-04
                                          0.5604
Fare
                                   0.582
           -3.069e-02 1.916e-02 -1.602
                                          0.1096
Embarked
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 0.3817 on 705 degrees of freedom
Multiple R-squared: 0.4035, Adjusted R-squared: 0.3968
F-statistic: 59.62 on 8 and 705 DF, p-value: < 2.2e-16
```

```
> vif(model11)
PassengerId Pclass Sexmale Age SibSp Parch Fare Embarked
1.009016 1.760276 1.121660 1.312681 1.285432 1.289833 1.644126 1.120922
```

La regressione appena usata può esser letta come: $Y = \beta 0 + \beta 1*X1 + \beta 2*X2 + ... + \beta k*Xk$.

- Y= Survived (sopravvissuti / deceduti)
- Intercetta: 1,440
- $\beta 1 = -1,897e-01$
- $\beta 2 = -4,855e-01$
- Etc

 $Y = 1,440 - (1,897e-01)*X1 - (4,855e-01)*X2 + \beta3...$

L'*R*-quadro risultante dalla regressione è 0,4035, questo valore ci fa sapere che l'affidabilità del nostro modello è del 40% circa; l'*R*-quadro *ADJ* invece è di poco inferiore (0,3968). (Aggiungendo variabili alla regressione l'R-quadro continuerà ad aumentare mentre l'R-quadro ADJ diminuirà nel caso in cui la variabile inserita non dovesse essere significativa).

Osservazione grafica dei dati

- Osserviamo ora le variabili che la regressione ha rilevato come significative.
- La rappresentazione grafica aiuta a capire meglio il dataset e la situazione in cui ci troviamo.

• Ci avviamo ora verso l'ultimo punto della nostra analisi. Dopo aver creato un nuovo dataset composto da tutte le variabili a nostra disposizione, trasformate in numeriche proseguiamo usando una logit poichè la nostra Y è una variabile dicotomica.

I risultati sembrano buoni, l'accuratezza è alta, così come la specificità e la sensitività!

```
> View(a)
> data_elabora=data.frame(a)
> out_LR <-glm(d3~., family=binomial(link="logit") , data=data_elabora)#</pre>
> yprob <-predict(out_LR,data_elabora, "response")
> y_prev<- ifelse(yprob>0.5,'1','0')
> y_oss <- data_elabora$d3 ;</pre>
> n <- nrow(data_elabora)
> T0 = sum((y_prev==0&y_oss==0))
> T1 = sum((y_prev==1&y_oss==1))
> F0 = sum((v_prev==0&v_oss==1))
> F1 = sum((y_prev==1&y_oss==0))
> accuracy=((T0+T1)/n)*100; specificita=(T1/(T1+F0))*100; sensitivita =(T0/(T0+F1))*100
> accuracy
[1] 80.2521
> specificita # raramente sbaglia classificazione morti / falsi positivi
[1] 71.72414
> sensitivita # raramente sbaglia classificazione vivi/ falsi negativi
[1] 86.08491
```

- Ci avvaliamo della stepwise per scegliere la combinazione di variabili migliore per provare ad aumentare i nostri valori.
- Continuiamo creando un nuovo dataset con le variabili suggeriteci dalla stepwise.
- Procediamo come prima

L'accuratezza è la sensibilità sono rimaste invariate ma la specificità è aumentata!

```
42
       87 3
                  d1 d2 d9 0.0444942026
                                          0.0404568541
                                                         423.397204
       88 3
                  d1 d5 d9 0.0369953842
                                          0.0329263506
                                                         432.260723
       89 3
                  d2 d5 d6 0.0181591188
                                          0.0140104953
                                                         454.524979
       90 3
                  d1 d2 d6 0.0134506000
                                          0.0092820815
39
                                                         460.090396
48
       91 3
                  d1 d5 d6 0.0126824871
                                                         460.998297
                                          0.0085107230
       92 3
                  d1 d2 d5 0.0086794653
                                          0.0044907870
                                                         465.729824
130
       93 4
               d2 d4 d5 d8 0.3997184503
                                          0.3963318125
                                                           5.526102
137
       94 4
               d2 d4 d8 d9 0.3932181203
                                          0.3897948093
                                                          13.209419
133
       95 4
               d2 d4 d6 d8 0.3923240049
                                          0.3888956495
                                                          14.266254
96
       96 4
               d1 d2 d4 d8 0.3913651867
                                          0.3879314219
                                                          15.399566
135
       97 4
               d2 d4 d7 d8 0.3902013000
                                          0.3867609688
                                                          16.775267
153
       98 4
               d4 d5 d8 d9 0.3744222800
                                          0.3708929276
                                                          35.425893
117
       99 4
                  d4 d8 d9 0.3730998048
                                                          36.989044
                                          0.3695629913
156
      100 4
                  d6 d8 d9 0.3725014889
                                          0.3689612998
                                                          37.696247
157
      101 4
               d4 d7 d8 d9 0.3722741242 0.3687326524
                                                          37.964989
151
      102 4
               d4 d5 d7 d8 0.3720754856 0.3685328931
                                                          38.199778
```

d2= Età d4= Classe Passeggero d5= Fratelli/Sorelle/Partnet a bordo d8= Sesso

> #nomi=names(a)

```
> data_elaborab=data.frame(b)
> out_LRb <-glm(d3~., family=binomial(link="logit") , data=data_elaborab)#
> yprob <-predict(out_LRb,data_elaborab,"response")
> y_prev<- ifelse(yprob>0.5, '1', '0')
> y_oss <- data_elaborab$d3 ;</pre>
> n <- nrow(data_elaborab)
> T0 = sum((y_prev==0&y_oss==0))
> T1 = sum((y_prev==1&y_oss==1))
> F0 = sum((y_prev==0&y_oss==1))
> F1 = Sum((y_prev==1&y_oss==0))
> accuracy=((T0+T1)/n)*100; specificita=(T1/(T1+F0))*100; sensitivita =(T0/(T0+F1))*100
> accuracy
[1] 80.81232
> specificita
[1] 73.10345
> sensitivita
[1] 86.08491
> out_LRc <-lm(d3~., data=data_elaborab)
```

 Dividiamo il nostro dataset in 70-30 per procedere con il nostro lavoro ma...

 Data quindi la natura «sbilanciata» del dataset procediamo dividendo il dataset in due subset, uno contenente tutti i morti e uno tutti i superstiti.

 Creiamo ora due dataset, uno contenente il 70% del primo e del secondo dataset e uno che contiene i restanti 30%.

```
> ind <- sample(2, nrow(data_elaborab), replace=TRUE, prob=c(0.70, 0.30))
> ftable(ind)
ind 1 2
508 206
```

```
> morti=subset(data_elaborab, d3== 0)
> vivi=subset(data_elaborab, d3== 1)
```

```
> morti7<-sample_frac(morti, 0.7)
> kek<-as.numeric(rownames(morti7))
> morti3<- morti[-kek,]
> vivi7<-sample_frac(vivi, 0.7)
> wew<-as.numeric(rownames(vivi7))
> vivi3<- vivi[-wew,]
> training=rbind(vivi7,morti7)
> test=rbind(morti3,vivi3)
```

Ci muoviamo ora nello stesso modo di prima per farci restituire i valori di accuratezza, specificità e sensitività.

Anche dopo aver creato i due subset, poiché i dati erano sbilanciati, ci ritroviamo con le strade intraprese prima che ci portano purtroppo allo stesso risultato, un'accuratezza molto bassa!

Specificità e sensibilità sono un pò diminuite ma l'accuratezza è COLATA A PICCO!

```
> out_LA <-glm(d3 ~., family=binomial(link="logit"), data=data.training)
> xpred=predict(out_LA,data.test, "response")
> x_prev<- ifelse(xpred>0.5,'1','0')
> x_oss <- data.test$d3
> tab <- xtabs(~x_prev+x_oss)
> tab
      X_OSS
     1 17 63
> n <- nrow(data_elaborab)</pre>
> T0 = sum((x_prev==0&x_oss==0))
> T1 = sum((x_prev==1&x_oss==1))
> F0 = sum((x_prev==0&x_oss==1))
> F1 = sum((y_prev==1&y_oss==0))
> accuracy=((T0+T1)/n)*100
> specificita=(T1/(T1+F0))*100
> sensitivita =(T0/(T0+F1))*100
> accuracy; specificita; sensitivita
[1] 24.22969
[1] 72.41379
[1] 65.08876
```

Conclusioni

Possiamo quindi affermare che:

- Le variabili iniziali non presentavano correlazione tra loro.
- Il modello sembra avere buoni valori, tuttavia dobbiamo tenere a mente che il nostro *R-quadro ADJ* era abbastanza basso.
- Probabilmente con mezzi più adeguati e tecniche più avanzate saremmo riusciti ad ottenere un risultato migliore.

