Análisis de Clasificación

Juan Sosa, PhD

I - 2018

Análisis de Clasificación (Clustering)

Objetivo

Identificar grupos (*clusters*) de individuos que sean homogéneos dentro de los grupos y heterogéneos entre grupos.

Observaciones

- Diferente del análisis discriminante!
- Los grupos no están definidos a priori (o si incluso existen grupos).
- Es necesario considerar una distancia.
- Cuántos grupos?
- Como asignar los individuos?

Métodos

- Clasificación jerárquica.
- Agrupamiento de K-medias.
- Agrupamiento basado en el modelo (estructura probabilística).

Agrupamiento jerárquico

Algoritmo

- Start: C_1, C_2, \ldots, C_n (singletones), i.e., K = n.
- $oldsymbol{arphi}$ Encontrar y unir el par de clusters más $cercanos,\ C_i$ y $C_j.$
- **3** Decrecer el numero de clusters en 1, i.e., $K \leftarrow K-1$.
- Stop si K=1. De lo contrario, volver al paso 2.

Distancias (similaridad) entre individuos

- $d_{ij} = \sqrt{\sum_{\ell} (x_{i,\ell} x_{j,\ell})^2}$: Euclidiana
- $ullet d_{ij} = \max_{\ell} |x_{i,\ell} x_{j,\ell}|$: Norma máxima.
- $d_{ij} = \sum_{\ell} |x_{i,\ell} x_{j,\ell}|$: Manhattan.
- $d_{ij} = \left(\sum_{\ell} (x_{i,\ell} x_{j,\ell})^p\right)^{1/p}$: Minkowski.

Distancias entre clusters A y B

- $d_{AB} = \min_{i \in A, j \in B} \{d_{ij}\}$ single linkage clustering.
- $d_{AB} = \max_{i \in A, j \in B} \{d_{ij}\}$: complete linkage clustering.
- $d_{AB} = \frac{1}{n_a n_B} \sum_{i \in A} \sum_{i \in B} d_{ij}$: group average clustering.

Agrupamiento jerárquico (cont.)

Cómo elegir K?

Examinar los tamaños de los cambios de altura en el dendrograma y tomar un "gran" cambio para indicar el número apropiado de clusters para los datos.

Cons: chaining

Tendencia juntar puntos intermedios a un cluster ya establecido en lugar de inicializar un nuevo cluster.

Observaciones

- Se debe ser cuidadoso al elegir las distancias (conmesurabilidad).
- No tiene estructura probabilística.

Agrupamiento de K-medias

Método

Encontrar la partición de n individuos en K grupos que minimicen el within-group sum of squares (WGSS):

$$\mathsf{WGSS} = \sum_{j=1}^{p} \sum_{\ell=1}^{K} \sum_{i \in G_{\ell}} (x_{ij} - \bar{x}_{j}^{(\ell)})^{2}$$

donde $\bar{x}_j^{(\ell)} = \sum_{i \in G_\ell} x_{ij}$ es la media en el grupo G_ℓ con la variable j.

Algoritmo (Steinley, 2008)

- Partición inicial (agrupamiento jerárquico).
- Calcular el cambio en el criterio de agrupamiento moviendo cada individuo de su propio cluster a otro cluster.
- Ejecutar el cambio que conlleve al mayor cambio en el valor del criterio de agrupamiento.
- Repetir pasos 2. y 3. hasta que el movimiento de ningún individuo cause una mejora.

Agrupamiento de K-medias (cont.)

Propiedad

Porcentaje de variabilidad explicado =
$$\frac{SC EXPLICADA}{SC TOTAL}$$

Cómo elegir K?

Graficar el WGSS frente a K y elegir aquel valor de K donde el decrecimiento del WGSS no sea "significativo".

Cons

- No es invariante a la escala de medición (conmensurabilidad).
- Tiende a construir grupos con estructura "esferica".

Observaciones

• No tiene estructura probabilística.

Agrupamiento basado en el modelo

Obietivo

Desarrollar un modelo estadístico que caracterice el mecanismo aleatorio que explique como se genera la data.

Modelo

$$f(oldsymbol{x};oldsymbol{\pi},oldsymbol{ heta}) = \sum_{j=1}^K \pi_j f_j(oldsymbol{x},oldsymbol{ heta}_j)$$

donde $\sum_{i=1}^{J} \pi_i = 1$ (probabilidades de la mezcla).

Objetivo

Crear los grupos a partir de las probabilidades a posteriori:

$$\mathbb{P}\text{r}\left[\mathsf{Grupo}\ k\mid \mathbb{X}\right] = \frac{\pi_k\,f(\boldsymbol{x}\mid\boldsymbol{\mu}_k,\boldsymbol{\Sigma})}{\sum_{i=1}^K\pi_i\,f(\boldsymbol{x}\mid\boldsymbol{\mu}_i,\boldsymbol{\Sigma})}$$

Agrupamiento basado en el modelo (cont.)

Diagnósticos

Establecer la estabilidad del agrupamiento:

- Fuerza de predicción: Cross-Validation (OK si superior a 0.8 o 0.9).
- Indice de Jaccard: Jittering o Bootstraping (OK si superior a 0.75).