

FIRST SEMESTER 2023-24 Course Handout (Part-II)

Date: 11.08.2023

In addition to part I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : BIO F311

Course Title : Recombinant DNA Technology

Instructor In Charge : VIDYA RAJESH

Lecture and Tutorial Instructors : VIDYA RAJESH and Devika P.

- 1. Course Description: Recombinant DNA technology is an interdisciplinary field encompassing biochemistry, microbiology, molecular biology, genetic engineering, and cell biology. It will focus mainly on the tools and techniques available to create and manipulate chimeric DNA molecules to gain basic theoretical understanding of recombinant technology through lectures, interactive tutorials, and quizzes. Emphasis will be placed on procedures to create chimeric molecules using examples from actual experimental work.
- 2. Scope and Objective: The course aims to introduce the students to the versatile tools and techniques of genetic engineering and recombinant DNA technology that can be applied to virtually any research question that involves a molecular approach. Vector designing, PCR, qPCR, DNA sequencing, in-vitro mutagenesis, cloning in prokaryotic and eukaryotic systems and whole genome approaches will be covered. The specific learning objectives are listed in the table below.
- **3. Text Book (T1):** Gene Cloning & Manipulation, by Christopher Howe, 2nd Edition (First South Asia Edition, 2016), Cambridge University Press
- **4. Reference Book (R1):** S. B. Primrose and R.M. Twyman Principles of Gene Manipulation and Genomics. 7th Edition, 2006; Blackwell Publishing;

Reference Book (R2): Sambrook and Russell. Molecular Cloning: A laboratory Manual. Vols 1-3, 2001; CSH Press. Reference Book (R3): Desmond S. T. Nicholl. An introduction to Genetic Engineering. Third Edition. 2008, Cambridge)

Course Plan: Divided into 3 modules

MODULE 1: BASIC TOOLS AND FACTS							
Lect.	Learning	Topics to be covered	Reference for	Advanced			
	Objective		basic content	content			
1	Introductory	Overview of rDNA technology	R1, R3:	-			
	concepts		Chapter 1				
2-3	About DNA	Review of nucleic acid chemistry; Genes and	R3: Chapter 2	-			
	and RNA	Genome, size complexity, Phosphodiester chemistry-	Lecture notes				
		based synthesis					
4-6	Basic tools &	Cutting DNA; restriction endonucleases; other DNA	T1: Chapter 1	R1: Chapter 3			
	techniques	modifying enzymes; joining DNA; ligases; Plasmid		R3: Chapter 3			
		transformation, purification and electrophoresis;		and 4			
		blotting techniques. Restriction mapping					
7-9	Polymerase	Principle of PCR; primer design; melting	T1: Chapter 2	R1: Chapter 2,			
	Chain	temperature; applications of PCR; modifications of		R3 Chapter 7			
	Reaction	PCR: inverse PCR; RNA-PCR; real-time PCR.					
10-11	DNA	Principle of sequencing; Sanger sequencing; cycle	R3: Chapter 3	R1: Chapter 7			
	sequencing	sequencing; pyrosequencing; analysing DNA	Lecture notes				
		sequence data					
MODULE 2: ENGINEERING RECOMBINANT MOLECULES BASIC METHODOLOGY AND TECHNIQUES							
12-15	Plasmid	Plasmid biology; plasmid replicons & copy number;	T1: Chapter 3	R1: Chapter 4			
	vectors	examples of common plasmids; selection markers;		R3: Chapter 5			
		cloning and expression vectors; expression modules					
16-18	Cloning:	Basic cloning; sticky and blunt ends; ligation; linkers	T1: Chapter 3	R1: Chapter 3			
	making	& adaptors; homopolymer tailing; TA cloning for PCR		R3: Chapter			
	recombinant	products		6,8			

	DNA								
	molecules								
19-21	Alternate	Bacteriophage and cosmid vectors; molecular	T1, Chapter 4	R1, Chapters					
	vectors for E.	aspects of lambda and M13 life cycle relevant to		4, 5					
	coli	vector design; BACs and PACs		R3: Chapter 6					
	MODULE 3: ADVANCED APPLICATIONS AND POSSIBILITIES FOR FUTURE INNOVATIONS								
22-27	Making	Library screening; screening by hybridization; PCR	T1, Chapter 5	R1, Chapter 6					
	libraries and	screening; expression screening; functional	and 6	R3: Chapter 6					
	Library	screening; Southwestern and Northwestern							
	screening	screening; screening for other functions							
28-30	Modification &	Restriction enzyme-based and oligonucleotide-	T1, Chapter 7	R1, Chapter 8					
	mutagenesis;	directed mutagenesis; The single primer method;							
	protein	PCR-based mutagenesis; gene inactivation							
	engineering	techniques; creating chimeric proteins							
31-34	Expression	Expression of RNA and protein using cloned DNA;	T1, Chapter 8	R1, Chapter 6					
	and uses of	Expression strategies; purification of recombinant							
05.44	cloned DNA	proteins; reporter genes and tags	T1 01 1 0	D4 01 4					
35-41	Cloning in	Gram stain; bacterial transposons; IncP, IncQ and	T1: Chapter 9	R1: Chapter					
	bacteria other	IncW plasmids for cloning in Gram negative (other	R1, Chapter	10-14					
	than <i>E. coli</i> and other	than <i>E. coli</i>); cloning in Gram positive bacteria;	10						
	organisms; Gene transfer into animal	multigene assembly using <i>B. subtilis</i>							
		Different methods of DNA transfection (physical and							
		chemical); transient and stable transfection; selection							
	cells	markers (endogenous; dominant, amplifiable							
	CCIIS	markers); viral vectors and introduction to their							
		design							
42	Futuristic road	Where we are heading and what impact and	R3: Chapter	R1: Part III					
	ahead	transformations can this knowledge bring about.	13-15;	and IV,					
		Whole organism cloning, targeting gene therapy,	Lecture	commentaries					
		Overview of gene editing CRISPR-CAS9 and other		and research					
		advanced methods, Implications, Ethics and		papers.					
		Perceptions							

5. Evaluation Scheme:

Evaluation Component	Duration	Weightage (%)	Date & Time	Remarks
Mid Sem examination	90 mins	30 (60)	12/10 - 4.00 - 5.30PM	Closed Book
Quizzes	30 mins	20 (40)	One each before and after mid sem	Tutorial (Closed book)
Assignment	1	10 (20)	During semester	October end or November (Open Book)
Comprehensive examination	3 hours	40 (80)	16/12 FN	Closed book (20%) + Open Book (20%)

- 6. Chamber Consultation Hour: Will be announced in the Class.
- 7. Notices: All notices, concerning the course will be displayed on CMS
- **8. Grading policy:** Award of grades will be guided in general by the histogram of marks. Decision on border line cases will be taken based on individual's sincerity, attendance in classes, and the section instructor's assessment of the student. Students missing one or more component of evaluation completely may be given NC.
- **9. Make-up policy:** For midsem and Compre, make-up will be granted only if candidate is sick and hospitalized. <u>No make-up will be granted for surprise quizzes and assignments under any circumstances</u>.
- **10. Academic Honesty and Integrity Policy:** Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

INSTRUCTOR-IN-CHARGE BIO F311

