§1.3 概率的基本运算法则

上次我们介绍了

概率的公理化定义

它给出了概率所必须满足的最基本的性质,为建立严格的概率理论提供了一个坚实的基础.

由概率所必须满足的三条公理,我们推导出概率的其它几条重要性质.它们在计算概率时很有用,尤其是加法公式.

1. 概率的性质

三条公理:

- □ 非负性: P(A) ≥ 0
- □ 规范性: $P(\Omega) = 1$

$$P(\emptyset) = 0$$

基本性质

可列可加性: $P\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}P(A_{i})$

其中 A₁, A₂,… 为两两互斥事件 加法公式

性质1 加法公式

若事件A,B互斥,则

$$P(A+B) = P(A) + P(B)$$

若事件 A_1, A_2, \dots, A_n 两两互斥,则

$$P\left(\sum_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} P(A_i)$$

$$(p(X) = \sum_{Y} p(X, Y)$$
所有就是没有)

性质2 逆事件公式

对任一事件A,有

$$P(\overline{A}) = 1 - P(A)$$

因为
$$S = A + \overline{A}$$
 $A = \overline{A}$ 五斥

$$1=P(S)=P(A)+P(\frac{A}{A})$$

注意:

性质2在概率的计算上很有用,如果正面计算事件A的概率不容易,而计算其对立事件 \overline{A} 的概率较易时,可以先计算 $P(\overline{A})$,再计算P(A).

$$P(A) = 1 - P(\overline{A})$$

性质3 减法公式

设 $A \setminus B$ 是两个事件,若 $A \subset B$,则有P(B-A) = P(B) - P(A) $P(B) \ge P(A)$

$$A \cap (B - A) = \varphi$$

$$P(B) = P(A \cup (B - A))$$

由可加性 = $P(A) + P(B - A)$
移项得 $P(B - A) = P(B) - P(A)$
再由 $P(B - A) \ge 0$
 $P(B) \ge P(A)$

注意:

广义减法公式

□ 对任意两个事件A, B, 有

$$P(B-A) = P(B) - P(AB)$$

$$B = AB + (B - A)$$

互斥, 加法公式

$$P(B)=P(AB)+$$

$$P(B-A)$$

性质4 广义加法公式

对任意两个事件A、B,有

$$P(A \cup B) = P(A) + P(B) - P(AB)$$

$$A \cap (B - AB) = \varphi$$

$$P(A \cup B) = P(A \cup (B - AB))$$
$$= P(A) + P(B - AB)$$

又因

再由减法公式得证.

推广:

$$P(A \cup B \cup C) = P(A) + P(B) + P(C)$$
$$-P(AB) - P(AC) - P(BC)$$
$$+ P(ABC)$$

一般:

$$P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i) - \sum_{1 \le i < j \le n} P(A_i A_j) +$$

$$+ \sum_{1 \le i < j < k \le n}^{n} P(A_i A_j A_k) + \dots + (-1)^{n-1} P(A_1 A_2 \cdots A_n)$$

右端共有 2^n-1 项.

例1. 设有50件产品,其中有3件不合格品,从中任取4件,求至少有一件不合格品的概率。

解法一:

设A表示至少有一件不合格品, A_i 表示<mark>恰好</mark>有i件不合格品,则 $A = A_1 + A_2 + A_3$

$$P(A_{1}) = P(A_{1} + A_{2} + A_{3})$$
 法公式
$$P(A_{i}) = \frac{C_{3}^{i}C_{47}^{4-i}}{C_{50}^{4}} = P(A_{1}) + P(A_{2}) + P(A_{3})$$

$$\approx 0.2255$$

第1章 随机事件及其概率 计算机科学与技术学院 10

例1. 设有50件产品,其中有3件不合格品, 中任取4件,求至少有一件不合格品的概率。

解法二:

因为4表示全是合格品,

计算事件A的概率不容易,而计算其对立 事件的概率较易时,可以利用性质2。

例2 有r个人,设每个人的生日是365天的任何一天是等可能的,试求事件"至少有两人同生日"的概率.

解: 令 $A=\{\text{至少有两人同生日}\}$ 则 $\overline{A}=\{r$ 个人的生日都不同}

为求P(A), 先求 $P(\overline{A})$

$$P(\overline{A}) = \frac{P_{365}^r}{(365)^r} = \frac{C_{365}^r r!}{(365)^r}$$

$$P(A) = 1 - P(\overline{A}) = 1 - \frac{P_{365}^r}{(365)^r}$$

你们班里肯定有同生日的

美国数学家伯格米尼曾经做过一个别开 生面的实验,在一个盛况空前、人山人海的 世界杯足球赛赛场上,他随机地在某号看台 上召唤了22个球迷,请他们分别写下自己的 生日,结果竟发现其中有两人同生日.

用上面的公式可以计算此事出现的概率为

$$P(\overline{A}) = 1-0.524 = 0.476$$

即22个球迷中至少有两人同生日的概率 为0.476.

这个概率不算小,而且这个概率随着球 迷人数的增加而迅速地增加,如下表所示:

人数	至少有两人同
	生日的概率
20	0.411
21	0.444
22	0.476
23	0.507
24	0.538
30	0.706
40	0.891
50	0.970
60	0.994

所有这些概率都是 在假定一个人的生日在 365天的任何一天是等 可能的前提下计算出来 的. 实际上, 这个假定 并不完全成立,有关的 实际概率比表中给出的 还要大.

例已知 P(A) = P(B) = P(C) = 1/4, P(AB) = 0, P(AC) = P(BC) = 1/9则事件A, B, C全不发生的概率为

试一下

$$P(\overline{A}\,\overline{B}\,\overline{C}) = 1 - P(A \cup B \cup C)$$

$$= 1 - P(A) - P(B) - P(C)$$

$$+P(AB) + P(AC) + P(BC) - P(ABC)$$

$$= 1 - 3/4 + 2/9 = 17/36.$$

第1章 随机事件及其概率

例 当事件 A与 B同时发生时,事件 C 必发生,

则下列结论正确的是

$$(A) P(C) = P(AB)$$

(B)
$$P(C) = P(A \cup B)$$

试一下

(C)
$$P(C) \ge P(A) + P(B) - 1$$

(D)
$$P(C) \le P(A) + P(B) - 1$$

事件A与B同时发生时,事件C必发生

$$\Rightarrow AB \subset C \Rightarrow P(C) \geq P(AB)$$
.

$$\mathbb{X} \oplus P(A \cup B) = P(A) + P(B) - P(AB)$$

$$P(C) \ge P(A) + P(B) - P(A \cup B) \ge P(A) + P(B) - 1$$
 所以应选 (*C*).

2. 条件概率与乘法公式

(1). 条件概率Conditional probability

在解决许多概率问题时,往往需要在有某些附加信息(条件)下求事件的概率.

如在事件A发生的条件下求事件B发生的概率,将此概率记作P(B|A).

一般
$$P(B|A) \neq P(B)$$

等概率样本空间

P(A|B)可想成 $A \cap B$ 在B中占的比重。

$$P(A | B) = \frac{|A \cap B|}{|B|}$$

$$= \frac{|A \cap B|/|S|}{|B|/|S|}$$

$$= \frac{P(A \cap B)}{P(B)} = \frac{P(AB)}{P(B)}$$

例如,掷一颗均匀骰子die, $B={掷出2点}$, A={掷出偶数点}, P(B)=1/6, P(B|A)=?

己知事件A发生,此时试验所有 可能结果构成的集合就是A,

A中共有3个元素,它们的出现是等 可能的, 其中只有1个在集合B中, 于是P(B|A)= 1/3.

容易看到

$$P(B|A) = \frac{1}{3} = \frac{1/6}{3/6} = \frac{P(AB)}{P(A)}$$

又如,10件产品中有7件正品,3件次品,7件正品中有3件一等品,4件二等品. 现从这10件中任取一件,记 $A=\{$ 取到正品}, $B=\{$ 取到一等品},求P(B|A)

$$P(B|A) = \frac{3}{7} = \frac{3/10}{7/10} = \frac{P(AB)}{P(A)}$$

P(AB)=3/10, P(A)=7/10

定义

设A、B为两事件,P(A) > 0,则称

$$P(B \mid A) = \frac{P(AB)}{P(A)}$$

为事件 A 发生的条件下事件 B 发生的条件概率.

同理
$$P(A|B) = \frac{P(AB)}{P(B)}$$

称为在事件B发生的条件下事件A的条件概率.

Note: 这个定义适用所有的样本空间,不只局限于等概率样本空间。

例如: 非等概率样本空间

甲挂科之后参加补考,时间1小时,可以提早交卷,或者撑到 铃响后交卷。假设

 $P(\text{甲在x小时以前交卷}) = \frac{x}{2}$ 非等概率Event

对任何0≤x≤1都成立。如果甲45分钟时尚未交卷,则甲撑到铃 响后交卷的概率为多少? 1-P(甲1小时以

先观察 P(甲撑到铃响后交卷)=1/2 (Why?) 前交卷)=1-1/2

P(甲撑到铃响后交卷|甲45分钟之前没交卷)

P(甲撑到铃响后交卷 且 45分钟之前没交卷)

P(甲45分钟之前没交卷)

$$=\frac{P(甲撑到铃后交卷)}{1-P(甲45分钟之前交卷)}$$

$$=\frac{1/2}{1-0.75/2}$$

$$=\frac{1}{1.25}=0.8$$

B=45分钟之前没交卷 =45分钟之后交卷 $A \subset B \Rightarrow AB = A$

性质

条件概率也是概率,故具有概率的性质:

□ 非负性

$$P(B \mid A) \ge 0$$

□ 规范性

$$P(\Omega \mid A) = 1$$

□ 可列可加性

$$P\bigg(\bigcup_{i=1}^{\infty} B_i \mid A\bigg) = \sum_{i=1}^{\infty} P(B_i \mid A)$$

概率的一些重要性质都适用于条件概率. 例如:

- $P(B_1 \cup B_2 \mid A) = P(B_1 \mid A) + P(B_2 \mid A) P(B_1 \mid A)$
- $\square P(\overline{B} \mid A) = 1 P(B \mid A)$

计算

1) 用定义计算

$$P(B \mid A) = \frac{P(AB)}{P(A)}, \qquad P(A) > 0$$

2) 在等概率样本空间下:可用样本空间转换(缩减样本空间)法

例: B={掷出2点}, A={掷出偶数点}

$$P(B|A) = \frac{1}{3}$$

A发生后的 缩减样本空间 所含样本点总数 在缩减样本空间 中B所含样本点 个数

掷骰子

例1 掷两颗均匀骰子, (若)已知第一颗掷 出6点,问"掷出点数之和不小于10"的概率 是多少?

解: 设A={掷出点数之和不小于10}

 $B={第一颗掷出6点}$

应用定义

解法1:
$$P(A|B) = \frac{P(AB)}{P(B)} = \frac{3/36}{6/36} = \frac{1}{2}$$

解法2:
$$P(A|B) = \frac{3}{6} = \frac{1}{2}$$

在B发生后的缩减 样本空间中计算

例2 某单位100名员工做体检,95人血压正常 (事件A),94人肝功能正常(事件B),92人两项 都正常。随机抽一人,求P(A|B),P(B|A).

用第二种方法简单

$$P(A \mid B) = \frac{92}{94} \approx 0.98$$

$$P(B \mid A) = \frac{92}{95} \approx 0.97$$

例3 设某种动物由出生算起活到20年以上的 概率为0.8,活到25年以上的概率为0.4.问 (若)现年20岁的这种动物,它能活到25岁 以上的概率是多少? (教材P30 习题10)

解:设 $A=\{$ 能活20年以上 $\}$, $B=\{$ 能活25年以上 $\}$ 所求为P(B|A).

依题意,P(A)=0.8, P(B)=0.4

$$P(B \mid A) = \frac{P(AB)}{P(A)} = \frac{P(B)}{P(A)} = \frac{0.4}{0.8} = 0.5$$

由条件概率的定义:

$$P(B \mid A) = \frac{P(AB)}{P(A)}$$

若已知P(A), P(B|A)时, 可以反过来求P(AB).

乘法公式

(2) 乘法公式 Product Rule

利用条件概率求积事件的概率即乘法公式

$$P(AB) = P(A)P(B \mid A) \quad (P(A) > 0)$$

$$P(AB) = P(B)P(A \mid B) \quad (P(B) > 0)$$

推广: Chain Rule链式规则

$$P(A_1 A_2 \cdots A_n) = P(A_1) P(A_2 \mid A_1) \cdots P(A_n \mid A_1 A_2 \cdots A_{n-1})$$

$$(P(A_1 A_2 \cdots A_{n-1}) > 0)$$

例3 盒中装有100个产品,其中3个次品,从中 不放回地取产品,每次1个,求:

- (1) 取两次, 两次都取得正品的概率;
- (2) 取两次, 取得正品次品各一件的概率:
- (3) 取三次,第三次才取得正品的概率。

$\mathbf{M} \Rightarrow A_i$ 为第 i 次取到正品

$$(1) P(A_1 A_2) = P(A_1) P(A_2 | A_1) = \frac{97}{100} \cdot \frac{96}{99} \approx 0.94$$

$$(2) P(\overline{A_1} A_2 + A_1 \overline{A_2}) = P(\overline{A_1} A_2) + P(A_1 \overline{A_2})$$

$$= P(\overline{A_1}) P(A_2 | \overline{A_1}) + P(A_1) P(\overline{A_2} | A_1)$$

$$= \frac{3}{100} \cdot \frac{97}{99} + \frac{97}{100} \cdot \frac{3}{99} \approx 0.059$$

提问:取三次,第三次才取得正品的概率,是 $P(A_3|A_1A_2)$ 还是 $P(A_1A_2A_3)$?

(3)
$$P(\overline{A_1} \ \overline{A_2} \ A_3) = P(\overline{A_1})P(\overline{A_2} \ \overline{A_1})P(A_3 \ \overline{A_1} \ \overline{A_2})$$

$$= \frac{3}{100} \cdot \frac{2}{99} \cdot \frac{97}{98} \approx 0.0006$$

- 10件产品有7件正品3件次品,每次取一件,取后不放回
- (1)第三次取得次品的概率。
- (2)第三次才取得次品的概率。
- (3) (若)已知前两次没有取得次品,第三次取到次品。

A_i表示第i次取到次品

(1)可以从2种方式来理解 a)绝对概率,与前面取得什么和后面取得什么都没有关系(没有就是所有); b)理解为A₃S,即考虑了其它的所有情况

$$p(A_3) (p(A_3)=p(A_1)=p(A_5)...)$$

- (2) 积事件概率,表示同时发生 $p(\overline{A_1}\overline{A_2}A_3)$
- (3)条件概率 $p(A_3 | \overline{A_1} \overline{A_2})$

乘法公式应用举例

(波里亚罐子模型)

w个白球,r个红球

一个罐子中包含w个白球和r个红球. 随机地抽取一个球,观看颜色后放回罐中, 并且再加进c个与所抽出的球具有相同颜色 的球. 这种手续进行四次, 试求第一、二次 取到白球且第三、四次取到红球的概率.

随机取一个球,观看颜色后放 回罐中,并且再加进c个与所抽出 的球具有相同颜色的球.

w个白球,r个红球

解:设 W_i ={第i次取出是白球}, i=1,2,3,4 R_{i} ={第j次取出是红球},j=1,2,3,4

于是 $W_1W_2R_3R_4$ 表示事件"连续取四个球,第 一、第二个是白球,第三、四个是红球."

用乘法公式容易求出 $P(W_1W_2R_3R_4)$

 $=P(W_1)P(W_2|W_1)P(R_3|W_1W_2)P(R_4|W_1W_2R_3)$

$$= \frac{w}{w+r} \frac{w+c_{w}}{w+r+c_{w}} \frac{r}{w+r+2c_{w}} \frac{r+c_{r}}{w+r+2c_{w}+c_{r}}$$

当c>0时,由于每次取出球后会增加下 一次也取到同色球的概率. 这是一个传染病 模型. 每次发现一个传染病患者,都会增加 再传染的概率.

(抽签问题)

一场精彩的足球赛将要举行,5个球迷好不容易才搞 到一张入场券.大家都想去,只好用抽签的方法来解决.

5张同样的卡片,只有一张上写有"入场券",其余的什么 也没写. 将它们放在一起, 洗匀, 让5个人依次抽取.

"先抽的人当然要比后抽的人抽到的机会大。

后抽的确比先抽吃亏吗? 让我们用概率论的知识来计算一下。

我们用 A_i 表示"第i个人抽到入场券" i=1,2,3,4,5.

则 \overline{A} 表示 "第i个人未抽到入场券"

显然, $P(A_1)=1/5$, $P(A_1)=4/5$

也就是说,

第1个人抽到入场券的概率是1/5.

$$P(A_2) = P(\overline{A}_1 A_2)$$
 or $P(A_2 | \overline{A}_1)$?

积事件(Ā1和A2同时发生,联合概率)

条件概率(在Ā太生的情况下A。发生的概率)

其实Ā,发不发生是有概率的,而如果是条件概率,

那么就是确信A₁发生了,所以不是条件概率

由乘法公式

$$P(A_2) = P(\overline{A}_1 A_2) = P(\overline{A}_1) P(A_2 \mid \overline{A}_1)$$

也就是要想第2个人抽到入场券,必须第1个 人未抽到,

计算得: P(A₂)= (4/5)(1/4)= 1/5

同理,第3个人要抽到"入场券",必须 第1、第2个人都没有抽到. 因此

$$P(A_3) = P(\overline{A}_1 \overline{A}_2 A_3) = P(\overline{A}_1) P(\overline{A}_2 \mid \overline{A}_1) P(A_3 \mid \overline{A}_1 \overline{A}_2)$$
=(4/5)(3/4)(1/3)=1/5

继续做下去就会发现,每个人抽到"入 场券"的概率都是1/5.

这就是有关抽签顺序问题的正确解答.

也就是说,抽签不必争先恐后.

我们介绍了条件概率的概念,给出了 计算两个或多个事件同时发生的概率的乘 法公式, 它在计算概率时经常使用, 需要 牢固掌握.

我们说,在事件B发生的条件下事件A的条件概率一般地不等于4的无条件概率. 但是,会不会出现P(A)=P(A|B)的情形呢?

3 事件的独立性Independent

(1). 两事件的独立性

将一颗均匀骰子连掷两次, $B = {第一次掷出6点},$ 设

$$A = {第二次掷出6点},$$

显然

$$P(A|B)=P(A)$$

这就是说,已知事件B发生,并不影响事 件A发生的概率,这时称事件A、B独立.

由乘法公式知,当事件 $A \setminus B$ 独立时, 有 P(AB)=P(A) P(B)

P(AB)=P(B)P(A|B)

用P(AB)=P(A)P(B)刻画独立性,比用

更好,它不受P(B)>0或P(A)>0的制约.

两事件独立的定义

定义1 设A, B 为两事件,若

$$P(A | B) = P(A) \text{ or } P(B) = 0$$

则称事件 A 与事件 B 相互独立 (英文往往记为: $A \perp B$)

两事件独立的定义

最常用

定义2 设A, B 为两事件, 若

$$P(AB) = P(A)P(B)$$

则称事件 A 与事件 B 相互独立 (英文往往记为: $A \perp B$)

Proof: AB相互独立(即P(A|B)=P(A)) $\Longleftrightarrow P(AB)=P(A)P(B)$

(1)
$$P(B)=0$$

then $P(AB)=0$

∴*AB*相互独立⇔*P*(*AB*)=*P*(*A*)*P*(*B*)

$$(2)P(B)\neq 0$$

 \Longrightarrow

∵A与B独立即P(A|B)=P(A)∴P(AB)=P(A)P(B)

$$\leftarrow$$

- P(AB)=P(A)P(B)
- •• $P(A | B) = \frac{P(AB)}{P(B)} = \frac{P(A)P(B)}{P(B)} = P(A)$

例1 若P(A) > 0, P(B|A) = P(B|A),

试证:事件A与B互相独立.

证: P(B|A) = P(B|A)

$$\frac{P(AB)}{P(A)} = \frac{P(\overline{A}B)}{P(\overline{A})} = \frac{P(B - AB)}{1 - P(A)} = \frac{P(B) - P(AB)}{1 - P(A)}$$

$$P(AB) = P(A)P(B) \Rightarrow \underline{\text{M}}\underline{\text{M}}.$$

在实际应用中,往往根据问题的实际意 义去判断两事件是否独立.

如: 一批产品共n件,从中抽取2件,设 A_i ={第i件是合格品} i=1,2

若抽取是有放回的,则 A_1 与 A_2 独立.

因为第二次抽取的结果不受第一次抽取的 影响.

若抽取是无放回的, 则 A_1 与 A_2 不独立.

因为第二次抽取的结果受到第一次抽取的影响.

又如

甲、乙两人向同一目标射击,记A={甲命中},B={乙命中},A与B是否独立?

由于"甲命中"并不影响"乙命中"的概率,故认为 $A \setminus B$ 独立.

(即一事件发生与否并不影响另一事件发生的概率)

第1章 随机事件及其概率

两事件相互独立的性质

- 口若 P(A) > 0, 则P(B) = P(B|A)若 P(B) > 0,则P(A) = P(A|B)
- 口若 P(A) > 0, P(B) > 0, 则 "事件A与事件B相互独立"和 "事件A与事件B互斥" 不能同时成立.

请问:如图的两个事件是独立的吗?

我们来计算: P(AB)=0

 $\overline{m}P(A) \neq 0, P(B) \neq 0$

即

 $P(AB) \neq P(A)P(B)$

故A、B不独立

即: 岩A 、B 互斥,且P(A)>0 , P(B)>0 , 则A与B不独立.

反之,若A与B独立,且P(A)>0,P(B)>0,则P(AB)>0,则 $A \setminus B$ 不互斥.

则独立与互斥是两个完全不同的概念

容易证明,若两事件A、B独立,则 \overline{A} 与B, A与 \overline{B} , \overline{A} 与 \overline{B} 也相互独立.

证明: 仅证A与B独立

概率的性质
$$P(A \overline{B}) = P(A-A B)$$

= P(A) - P(AB) = P(A) - P(A) P(B)

$$=P(A)[1-P(B)]=P(A)P(\overline{B})$$

故A与B独立.

口四对事件 A,B; A,\overline{B} ; \overline{A},B ; $\overline{A},\overline{B}$ 任何一对相互独立,则其它三对也相互独立

第1章 随机事件及其概率

A、B独立

(2). 多个事件的独立性

B

将两事件独立的定义推广到三个事件:

定义 对于三个事件A、B、C,若

$$P(AB)=P(A)P(B)$$

四个等式同时

$$P(AC)=P(A)P(C)$$

成立,则称事件

$$P(BC)=P(B)P(C)$$

A、B、C相互

$$P(ABC)=P(A)P(B)P(C)$$

独立.

推广到n个事件的独立性定义,可类似写出:

定义 n 个事件 $A_1, A_2, ..., A_n$ 相互独立 是指下面的关系式同时成立

$$P(A_i A_j) = P(A_i) P(A_j), \ 1 \le i < j \le n$$

$$P(A_i A_j A_k) = P(A_i) P(A_j) P(A_k), \ 1 \le i < j < k \le n$$
....

$$P(A_1 A_2 \cdots A_n) = P(A_1) P(A_2) \cdots P(A_n)$$

独立随机事件的性质

如果n个随机事件 A_1 , A_2 , …, A_n 相互独立.

则 A_{i_1} , …, A_{i_m} , $\overline{A}_{i_{m+1}}$, …, \overline{A}_{i_n} 也相互独立.

其中 i_1 , i_2 , …, i_n 是1, 2, …, n的一个排列.

请注意多个事件两两(pairwise)独立与相互独立的区别与联系

对n(n>2)个事件

第1章 随机事件及其概率 计算机科学与技术学院 56

例2 随机投掷编号为 1 与 2 的两个骰子 事件 A 表示1号骰子向上一面出现奇数 B 表示2号骰子向上一面出现奇数 C 表示两骰子出现的点数之和为奇数

$$\Pi P(A) = P(B) = P(C) = 1/2$$

$$P(AB) = P(BC) = P(CA) = 1/4$$

$$= P(A)P(B) = P(B)P(C) = P(C)P(A)$$

$$\Phi P(ABC) = 0 \neq 1/8 = P(A)P(B)P(C)$$

本例说明 不能由 A, B, C 两两独立 \longrightarrow A, B, C 相互独立 对独立事件,许多概率计算可得到简化:

例3 三人独立地去破译一份密码,已知各人能 译出的概率分别为1/5, 1/3, 1/4, 问三人中至 少有一人能将密码译出的概率是多少? (P30 习题12)

解:将三人编号为1,2,3,

记 A,={第i个人破译出密码} i=1,2,3

为什么? 样本点(x1, x2, x3) 所求为 P(A₁∪A₂∪A₃) 解法1 理解成"或"

 $= P(A_1) + P(A_2) + P(A_3) - P(A_1A_2) - P(A_2A_3) - P(A_1A_3) + P(A_1A_2A_3)$

利用独立性

简便方法

$$=1-P(\overline{A_1 \cup A_2 \cup A_3})$$

$$=1-\boldsymbol{P}(\overline{A}_{1}\overline{A}_{2}\overline{A}_{3})$$

$$=1-\boldsymbol{P}(\overline{A}_1)\boldsymbol{P}(\overline{A}_2)\boldsymbol{P}(\overline{A}_3)$$

$$=1-[1-P(A_1)][1-P(A_2)][1-P(A_3)]$$

$$=1-\frac{4}{5}\cdot\frac{2}{3}\cdot\frac{3}{4}=\frac{3}{5}=0.6$$

n个独立事件和的概率公式:

设事件 A_1, A_2, \dots, A_n 相互独立,则

$$P(A_1 \cup A_2 \cup \dots \cup A_n) = 1 - P(\overline{A_1} \overline{A_2} \dots \overline{A_n})$$

$$= 1 - P(\overline{A_1})P(\overline{A_2}) \dots P(\overline{A_n})$$

$$\overline{A_1}, \overline{A_2}, \dots, \overline{A_n}$$
也相互独立

也就是说,n个独立事件至少有一个发生的概率等于1减去各自对立事件概率的乘积.

例4 加工某零件三道工序,三道工序的次品率分 别为2%,1%,5%,假设各道工序互不影响,求 加工出来的零件为次品的概率。

记 A_i ={第i道工序出现次品} i=1,2,3

利用独立性

$$P(A_1 \cup A_2 \cup A_3) = 1 - P(\overline{A_1 \cup A_2 \cup A_n})$$

$$=1-\boldsymbol{P}(\overline{\boldsymbol{A}}_{1}\overline{\boldsymbol{A}}_{2}\overline{\boldsymbol{A}}_{3})=1-\boldsymbol{P}(\overline{\boldsymbol{A}}_{1})\boldsymbol{P}(\overline{\boldsymbol{A}}_{2})\boldsymbol{P}(\overline{\boldsymbol{A}}_{3})$$

$$=1-[1-P(A_1)][1-P(A_2)][1-P(A_3)]$$

$$=0.0783$$

例5 某型号高射炮的命中率为0.2, 现有一架 敌机即将入侵,如果欲以90%的把握击中 它,则需配备此型号高射炮多少门?

设需配备 n 门此型号高射炮, 设事件 A_i 表示第i门炮击中敌机,

$$P(\bigcup_{i=1}^{n} A_i) = 1 - [1 - P(A_i)]^n = 1 - 0.8^n \ge 0.9$$

n > 10.32

故需至少配备11 门炮

(3). 伯努利概型Bernoulli Distribution

n 重**伯努利** (Bernoulli)试验:

- → 试验可重复 n 次
- → 每次试验只有两个可能的结果:

$$A, \overline{A} \supseteq P(A) = p, \quad 0$$

→ 每次试验的结果互不影响 称为这 n 次试验是相互独立的

n重Bernoulli试验中事件 A 出现 k 次的概率记为

$$P_n(k)$$

例6 袋中有3个白球,2个红球,有放回地取球 4次、每次一只、求其中恰有2个白球的概率.

解 古典概型

设 B 表示4个球中恰有2个白球

$$n_{\Omega} = 5^4$$
 $n_B = C_4^2 3^2 2^2$

$$P(B) = \frac{C_4^2 3^2 2^2}{5^4} = C_4^2 \left(\frac{3}{5}\right)^2 \left(\frac{2}{5}\right)^2 = 0.3456.$$

解二 每取一个球看作是做了一次试验

记取得白球为事件 A , P(A) = 3/5.

有放回地取4个球看作做了4重Bernoulli 试验,记第 i 次取得白球为事件 A_i

感兴趣的问题为:4次试验中A 发生2次的概率

$$P(B) = C_4^2 \left(\frac{3}{5}\right)^2 \left(\frac{2}{5}\right)^2 = 0.3456.$$

一般地, **若**
$$P(A) = p, 0$$

QJ
$$P_n(k) = C_n^k p^k (1-p)^{n-k}, \quad k = 0, 1, 2, \dots, n$$

二项概率公式

例 7 对某种新药的疗效进行研究,设此药有效率 为0.8,把药给10个病人服用,求这10病人中至 少有6个人有效的概率.

10 重伯努利试验

$$P_{10}(6) + P_{10}(7) + P_{10}(8) + P_{10}(9) + P_{10}(10)$$

$$= \sum_{k=6}^{10} C_{10}^{k} 0.8^{k} 0.2^{10-k} \approx 0.97$$

问: 当和式数量巨大时如何计算?

我们介绍了事件独立性的概念. 不难 发现,当事件相互独立时,乘法公式变得 十分简单,因而也就特别重要和有用.如 果事件是独立的,则许多概率的计算就可 大为简化.

需要指出的是,不少复杂事件概率的 计算是前面的加法公式和乘法公式的综合 运用和推广. 下节将给大家介绍的

全概率公式和贝叶斯公式

就是这样的公式.

总结

- 1. 概率性质
- 2. 逆事件公式,(广义)加减法公式,乘法公式(Chain rule)
- 3. 条件概率
- 4. 独立性
- 5. 伯努利概型,二项公式

补充 系统的可靠性问题

独立性应用

一个元件(或系统)能正常工作的概率 称为元件(或系统)的可靠性

系统由元件组成,常见的元件连接方式:

两系统都是由 4 个元件组成,每个元件正常 工作的概率为p,每个元件是否正常工作相互独 立. 两系统的连接方式如下图所示, 比较两系统 的可靠性.

S₁:
$$A_1 A_2 B_1 B_2$$

$$P(S_1) = P(A_1A_2 + B_1B_2)$$

$$= P(A_1A_2) + P(B_1B_2) - P(A_1A_2B_1B_2)$$

$$= 2p^2 - p^4 = p^2(2 - p^2)$$

$$S_2$$
:

$$P(S_2) = \prod_{i=1}^{2} P(A_i \cup B_i) = (2p - p^2)^2$$
$$= p^2 (2 - p)^2 \ge p^2 (2 - p^2) = P(S_1).$$
系统二更可靠

注 利用导数可证, 当 $p \in (0,1)$ 时, 恒有

$$f(p) = (2-p)^2 - (2-p^2) > 0$$

思考题

设
$$P(A) = a, P(B) = 0.3, P(\overline{A} \cup B) = 0.7.$$
试问:

- (1)若事件A与B互不相容,a =
- (2)若事件A与B相互独立,a=

往A,B上靠

思考题

设
$$P(A) = a, P(B) = 0.3, P(\overline{A} \cup B) = 0.7.$$
试问:

- (1)若事件A与B互不相容,a =
- (2)若事件A与B相互独立,a=

$$P(\overline{A} \cup B) = P(\overline{A}) + P(B) - P(\overline{A}B)$$

$$= P(\overline{A}) + P(B) - [P(B) - P(AB)] = 1 - P(A) + P(AB)$$

$$\therefore 0.7 = 1 - a + P(AB)$$

- (1) 若事件 A与 B 互不相容,则 $AB = \phi, P(AB) = 0$, 代入上式得 a = 0.3;
- (2) 若事件A与B相互独立,则有 $P(AB) = P(A) \cdot P(B)$

可得
$$0.7 = 1 - a + 0.3a$$
 解得 $a = \frac{3}{7}$.