Stochastic Modeling and Optimization Problemset 3

Aimee Barciauskas, Andreas Lloyd, Francis Thomas Moynihan IV, and Seda Yilmaz 17 March 2016

Problem 2

Given definitions:

- x_k the state vector,
- u_k the control vector, and
- w_k is the disturbance vector

In order for the terminal state $x_N = f_{N-1}(x_{N-1}, u_{N-1}) + g_{N-1}(w_{N-1})$ to be in the target set X_N , it is necessary and sufficient for $f_{N-1}(x_{N-1}, u_{N-1})$ belong to the effective target set E_N as defined below.

Part a

Given a prescribed target set $X_N \in \mathbb{R}^N$, we recursively solve for x_k in this target set. To do this, we can define the effective target set:

$$E_N = \left\{ z \in \mathbb{R}^n : z + g_{N-1}(w_{N-1}) \in X_N \forall w_{N-1} \in W_{N-1} \right\}$$

which will only be defined given the updated target set T_{N-1} , defined by:

$$T_{N-1} = \left\{ z \in \mathbb{R}^n : f_{N-1}(z, u_{N-1}) \in E_N \text{ for some } u_{N-1} \in U_{N-1} \right\}$$

The DP recursion becomes:

$$E_{k+1} = \left\{ z \in \mathbb{R}^n : z + g_k(w_k) \in T_{k+1} \forall w_k \in W_k \right\}$$

Which is used to update the target set:

$$T_k = \left\{ z \in \mathbb{R}^n : f_k(z, u_k) \in E_{k+1} \right\}$$

$$T_N = X_N$$

What follows is that for X_N to be reachable from set X_k of x_k if and only if $X_k \in T_k$ Part b

 X_{k+1} is defined as before but must be contained in X_k for all $w_k \in W_k$

The target tube is defined as:

$$\left\{ (X_k, k), k = 1, ..., N \right\}$$

If we consider all sets of X_k but X_N to be in \mathbb{R}^n , the problem is the same as stated in part 1 with the additional requirement that all $x_k \in X_k$

To initialize the recursion, define the modelified target set:

$$X_{N-1}^* = T_{N-1} \cap X_{N-1}$$

it is necessary and sufficient that

$$x_{N-1} \in X_{N-1}^*$$
 and T_{N-1}

e.g. x_{N-1} is from the modified target set.

The DP recursion is:

$$E_{k+1}^* = \left\{ z \in \mathbb{R}^n : z + g_k(w_k) \in X_{k+1}^* \forall w_k \in W_k \right\}$$
$$T_k^* = \left\{ z \in \mathbb{R}^n : f_k(z, u_k) \in E_{k+1} \text{ for some } u_k \in U_k \right\}$$
$$X_k^* = T_k^* \cap X_k$$

The target tube $\{X_j, j; j = k+1, ..., N\}$ is reachable at time k if and only if $x_k \in T_k^*$ e.g. the target tube is reachable if and only if $X_0 \subset T_0^*$

 $X_N^* = X_N$