Problem Set 3 Physics 266 Second Semester, AY 2024-2025 10 points per number Due: 30 May 2025 (Friday)

- 1. **Diffraction grating** (Section 8.6, Born & Wolf). Plot the normalized intensity function l(p) of a reflection grating (size: 64 x 64 mm², groove spacing d = 0.64 micron = 2s, Figure 8.19c) where: $0 \le p \le 4\lambda/s$ for $\lambda = 0.400$, 0.550 and 0.800 micron.
- 2. Plot I(m)/I(m=0) where m is the spectral order, $p=m\lambda/d$ and $0 \le p \le 4\lambda/s$. Generate plots for: $\lambda=0.400$, 0.550 and 0.800 micron. Interpret your results.
- 3. Plot the resolution limit $\Delta\lambda$ as a function of λ at m=1, 2 and 4 (Section 8.6.1, Equation 14) for $0.400 \le \lambda$ (micron) ≤ 1.1 (512 data points). How does the resolution improve with increasing m? Is there a corresponding trade-off?
- 4. **Prism**. Plot the resolution limit $\Delta\lambda$ versus λ for a similarly sized prism (Section 8.6.1, Equation 17) for $0.400 \le \lambda$ (micron) ≤ 1.1 (512 data points). The prism material is made of the refractive index assigned to you in Physics 265. Cite the possible advantages of using a prism rather than a grating.

END