Meine Antwort zum erweiterten Wigner's Freund Gedankenexperiment

Jannis Naske

April 21, 2019

Abstract

In diesem Dokument schlage ich zwei mögliche Korrekturen zum erweiterten Wigner's Freund Gedankenexperiment von Renner und Frauchiger vor. Durch diese Verbesserungen wird der Widerspruch vernichtet, und alle drei Annahmen, (Q), (C) und (S), bleiben unverletzt.

Der erste Fehler

Im Artikel von Renner und Frauchiger wird folgendes Statement hergeleitet:

• Statement 1 by F_1 : "If I get t, I know that W_2 will measure plus"

Der Beweis, welcher benutzt wird, ist folgender(ich lasse in diesem Dokument die doppelten Symbole weg, da dies in diesem Fall redundante Information ist):

Nachdem F_1 t gemessen hat, setzt er den Spin für F_2 in die Superposition $\frac{1}{\sqrt{2}} |\downarrow\rangle + \frac{1}{\sqrt{2}} |\uparrow\rangle$. In der Basis $\left\{|+\rangle_{L_2}, |-\rangle_{L_2}\right\}$, mit $|+\rangle_{L_2} = \frac{1}{\sqrt{2}} |\downarrow\rangle + \frac{1}{\sqrt{2}} |\uparrow\rangle$, $|-\rangle_{L_2} = \frac{1}{\sqrt{2}} |\downarrow\rangle - \frac{1}{\sqrt{2}} |\uparrow\rangle$, ist diese Superposition dargestellt als $|+\rangle_{L_2}$, und W_2 wird somit $|+\rangle_{L_2}$ messen, und die Aussage folgt.

Jedoch wurde bei diesem Beweis weggelassen, dass die Superposition durch das Messen von W_1 verändert wird. Wenn W_1 nach Annahme $|-\rangle_{L_1} = \frac{1}{\sqrt{2}} |h\rangle + \frac{1}{\sqrt{2}} |t\rangle$ misst, geht die Superposition, nach dem Artikel, in $|-\rangle_{L_1} |\uparrow\rangle = \frac{1}{\sqrt{2}} |h\rangle |\uparrow\rangle - \frac{1}{\sqrt{2}} |t\rangle |\uparrow\rangle = \left(\frac{1}{\sqrt{2}} |h\rangle - \frac{1}{\sqrt{2}} |t\rangle\right) \left(|+\rangle_{L_2} - |-\rangle_{L_2}\right) = \frac{1}{2} |h\rangle |+\rangle_{L_2} - \frac{1}{2} |t\rangle |+\rangle_{L_2} - \frac{1}{2} |h\rangle |-\rangle_{L_2} + \frac{1}{2} |t\rangle |-\rangle_{L_2}$ über. Es ist also doch möglich, dass $W_2 |t\rangle |-\rangle_{L_2}$ misst, und Statement 1 stellt sich als falsch heraus.

Zum Schluss misst W_2 nach Annahme noch $|-\rangle_{L_2}$, und der Zustand geht in $\frac{1}{\sqrt{2}} |t\rangle |-\rangle - \frac{1}{\sqrt{2}} |h\rangle |-\rangle = \frac{1}{2} |t\rangle |\downarrow\rangle - \frac{1}{2} |t\rangle |\uparrow\rangle - \frac{1}{2} |h\rangle |\downarrow\rangle + \frac{1}{2} |h\rangle |\uparrow\rangle$ über.