Anil Neerukonda Institute of Technology and Sciences (ANITS)

(An Autonomous Institute Affiliated to Andhra University, Visakhapatnam)

Department of Computer Science & Engineering Descriptive Examination-II

Academic Year: 2019-2020 Program: B.TECH Year: 3/4 CSE – A,B & C Semester: I

Course: **Database Management Systems**Code: CSE312
Date:12-10-2019
Time: 09:30AM - 11:30AM

Max Marks : 40M

<u>NOTE</u>: Answer any three of the following six questions, one question from each unit. Students should write the answers in serial number i.e. 1a, b, 2a, b, 3a, b, etc. and in one space in the answer book.

Question		M	For Faculty Use				
		A R	Contributing	Plaama			
		K S	CO	Taxonomy Level			
UNIT-III							
	Develop a Trigger for the following scenario:		CO3	L3			
1	• A teacher has already created a table stu_marks with stu_id, sub1, sub2, sub3,						
	total, percentage as attributes (initially table is empty).						
	Before updating the table with marks, the trigger has to calculate total, percentage	10					
	of the marks and assign grade according to the following constraints:						
	[percentage>90:grade=outstanding],[percentage>=80 and percentage<=90:grade=good]						
	[percentage>=70 and percentage<80 :grade=average][Else grade=not promoted]						
	(or)		<u>, </u>				
2	Identify the need for having a CURSOR when you work with database using a host	10	CO3	L3			
	language. Give the general form of a cursor with syntax and example.	10					
	UNIT-IV	1	1 1				
	a) Consider a schema R(A,B,C,D) and Functional Dependencies A->B, C->D.		CO5	L5			
3	Suppose schema R is divided into R1(A,B) and R2(C,D).	8					
	Find whether R1 and R2 are dependency preserving (and/or) lossless with proper						
	reasoning.		COF	1.2			
	b) Show that La Padula Principles of Mandatory Access Control mechanism provides	7	CO5	L3			
	more security and authorization than Discretionary Access Control mechanisms with	7					
example scenario. (or)							
	a) Make use of the Normalization properties and classify the below relations to which		CO5	L3			
	normal forms do they belong along with the reasoning:		003	LS			
	i)R(A,B,C,D), F(AB->C,A->D,B->C)						
4	ii)R(P,Q,R,S),F(PQ->R,R->S)	7					
	iii)R(CSZ),F(CS->Z,Z->C)						
	iv)R(A,B,C),F(A->B,B->A,AB->C)						
	b) Construct an authorization graph for the following grant and revoke commands.		CO5	L3			
	Write down the set of access rights, each user has after executing each grant/revoke						
	command.						
	GRANT SELECT ON Sailors TO Art WITH GRANT OPTION(executed by Joe)	8					
	GRANT SELECT ON Sailors TO Bob WITH GRANT OPTION (executed by Art)						
	GRANT SELECT ON Sailors TO Art WITH GRANT OPTION executed by Bob)						
	GRANT SELECT ON Sailors TO Cal WITH GRANT OPTION(executed by Joe)						

	GRANT SELECT ON Sailors TO Bob WITH GRANT OPTION(executed by Cal) REVOKE SELECT ON Sailors FROM Art CASCADE(executed by Joe)						
UNIT-V							
5	Consider the following sequence of operations on the database: _ Transaction T1 writes A. _ Transaction T2 writes B. _ Transaction T2 writes C. _ The system ushes the log to disk and also ushes page P2 to disk. _ Transaction T1 writes D. _ Transaction T1 commits. The system writes a commit log record and pushes the tail of the log to disk. _ Transaction T2 writes B. _ The system writes an END log record for T1. _ The system crashes. Implement ARIES Algorithm on the above sequence of operations after the system crashes(Write down the Analysis, Redo, Undo operations for this sequence.)	15	CO1	L5			
6	Concurrent execution of Conflicting Actions of transactions leaves Database in inconsistent state. Support the statement with appropriate examples.	15	CO1	L5			