141

ARCM200L 系列多功能型 电气火灾监控探测器

安装使用说明书 V1.1

江苏安科瑞电器制造有限公司 Jiangsu Acrel Electric MFG. Co., Ltd.

申 明 DECLARATION

版权所有,未经本公司之书面许可,此手册中任何段落、章节内容均不得被摘抄、拷贝或以任何形式复制、传播,否则一切后果由违者自负。

本公司保留一切法律权利。

本公司保留对本手册所描述之产品规格进行修改的权利,恕不另行通知。订货前,请垂询当地代理商以获悉本产品的最新规格。

目录

1	概述	1
2	产品型号	1
3	技术参数	2
4	安装与接线	2
	4.1 外形及安装尺寸	2
	4.2 安装方式	3
	4.3 接线说明	3
	4.4 注意事项	4
5	编程与使用	5
	5.1 测量项目及面板说明	5
	5.2 LED 指示说明	6
	5.3 按键功能说明	
	5.4 液晶显示	
	5.5 编程	
6	功能应用	
	6.1 剩余电流监测	
	6.2 温度保护	
	6.3 过流保护	
	6.4 过压保护	
	6.5 缺相保护	
	6.6 消防联动功能	
	6.7 自检和试验功能	
	6.8 集中监控	
	6.9 报警复位	
7	通讯协议	
,		
	7.1 通讯协议概述	
	7.2 功能码简介 7.3 探测器参数地址表	
0		13
\sim		/

Acrel

	8.1 典型应用	17
	8.2 分级保护应用原则	17
	8.3 AKH-0.66L 系列剩余电流互感器选型	17
	8.4 NTC 温度传感器	18
9	注意事项	18

1 概述

ARCM200L 系列多功能型电气火灾监控探测器(以下简称探测器),是针对 0.4kV 以下的 TT、TN 系统设计的,通过对配电回路的剩余电流、导线温度、过电流、过电压等火灾危险参数实施监控和管理,从而预防电气火灾的发生,并实现了对多种电力参数的实时监测,为能耗管理提供精确的数据。

产品采用先进的微控制器技术,集成度高,体积小巧,安装方便,集智能化,数字化,网络化于一身, 是建筑电气火灾预防监控、系统绝缘老化预估等的理想选择。

产品符合 GB14287.2-2014《电气火灾监控系统 第2部分:剩余电流式电气火灾监控探测器》、GB14287.3-2014《电气火灾监控系统 第3部分:测温式电气火灾监控探测器》的标准要求。

2产品型号

3 技术参数

表 1

技术参数		ARCM200L	
	网络	三相 TT、TNS、TN-C-S 或 TNC(局部 TT)系统	
	频率	45~65HZ	
输入	输入电压	AC 220V	
刊八	输入电流	AC 5A	
	剩余电流测量范围	10mA ~ 3000mA	
	NTC 温度传感器	NTC 型热敏电阻(0℃ ~ 110℃)	
	通讯	RS485 接口,MODBUS-RTU 协议,波特率可设(4800/9600/19200/38400bps)	
输出	报警方式	声光报警	
	事件记录	20条报警记录、20条故障记录、20条开关记录	
报警	额定动作电流值 300mA~1000mA(步长为 1mA)		
设置	温度报警值	45℃~110℃(步长为 1℃)	
以且	音响器件声压值	大于 70dB,小于 115dB(蜂鸣器前方 1m 处,A 计权)	
	测量精度	剩余电流 1 级,温度±1℃,电能 2 级,其他均为 1 级	
	工作电源	AC/DC 85~270V,功耗≤ 5VA	
	开关量输入	4 路无源干结点输入(光耦隔离)	
继电器输出 工频耐压		输出方式:2路继电器常开触点输出,机械触点,触点容量 AC 220V/3A,DC30V/3A	
		电源与信号输入、继电器输出、通讯端子之间 2 kV/min;	
		信号输入与继电器输出、通讯端子之间 1.5 kV/min	
	环境	工作温度:-10℃~+45℃;储存温度:-20℃~+70℃	
	~ 1`~%i	相对湿度: 5%~95%不结露;海拔高度: ≤2500m	

4 安装与接线

4.1 外形及安装尺寸

ARCM200L的外形尺寸如图 1 所示(单位 mm):

4.2 安装方式

ARCM200L 型探测器安装方式为嵌入式安装,固定方式为挤压式,如图 2 所示:

4.3 接线说明(注:以探测器上接线图为准)

4.3.1 接线方法

上排端子: "12、13"为辅助电源; "34、35、36"为继电器输出(DO1为报警输出,DO2为脱扣输出); "24、25、26、27、28"为开关量输入; "21、22"为通讯 1;

中排端子: "41、42、43、44、45、46、47、48"为剩余电流信号和温度信号输入; "31、32"为通讯 2 (只限 Z2 型); "17、18"为脉冲输出(只限 Z 和 Z2 型)。(COM3、COM4 不可接地)

下排端子: "1, 2, 3, 4"为电压输入信号端子; "5, 6, 7, 8, 9, 10"为电流输入信号端子。

4.4 注意事项

4.4.1 剩余电流互感器接法

表 2

注:如上表中,剩余电流互感器安装时,必须严格区分N线和PE线,三相四线制中N线必须穿入剩余电流互感器。通过剩余电流互感器的N线,不得作为PE线,不得重复接地或接设备外露可接近导体。PE线不得穿入剩余电流互感器。在TN-C系统中,必须先将系统改造形成局部TT系统,或改造成TN-C-S系统,再按上表接线。

4.4.2 辅助电源接法

图 4

结合上图,连接辅助电源时,需按上图 3 的方式做线,做线时,先用锡固定好,之后用压线头压紧;接线如图 4 所示,插入端子排中,用螺丝刀拧紧,保证电源的正常运行。

4.4.3 电压输入

直接接在 0.4KV 的低压系统,输入电压应不高于产品的额定输入电压的 120%,在电压输入端须安装 1A 保险丝。

4.4.4 电流输入

标准额定输入电流为 5A 或 1A, 通过 CT 二次输入。

接线时确保输入电流与电压相序一致,否则会出现显示数值和符号错误;同时确保电流进出线连接 正确(打*号端子接进线)。

如果使用的 CT 上连有其它监控装置,接线应采用串联方式。

安装接线时建议使用接线排,不要直接接 CT,以便于拆装。

去除产品电流输入连线前,必须先切断 CT 一次回路或者短接二次回路。

4.4.5 通讯接线

该装置提供异步半双工 RS485 通讯接口,采用 MODBUS-RTU 协议,各种数据信息均可在通讯线路上传送。理论上在一条线路上可以同时连接多达 128 个装置,每个装置均可设定其通讯地址和通讯速率。通讯连接线建议使用两芯屏蔽线,线径不小于 0.5mm²,分别接 A、B,屏蔽层单点接大地或悬空,布线时应使通讯线远离强电电缆或者其它强电磁环境。

4.4.6 传感器匹配及安装

外置传感器有两种,剩余电流互感器和温度探头,均为定制产品,不可随意替换其它厂商产品使用。接线时,剩余电流互感器二次信号不区分电流方向。对于 Z,Z2,UI 等型号,剩余电流互感器和温度探头有一个公共端。安装时温度探头可紧贴线缆、母排表面或线缆接头处安装,安装时以尼龙扎带扎紧即可。另外,根据客户需求,温度探头也可悬空或紧贴柜体安装,用以测量环境或柜体的温度。

5 编程与使用

5.1 测量项目及面板说明

UI,Z,Z2 型可监控一路剩余电流、四路温度、三相电流、三相电压、频率、功率以及四象限电能等电

参量监测,并根据剩余电流的大小决定作出报警指令。并且当输入信号达到报警设置时,发出声光报警。

5.2 LED 指示说明

共有 5 个 LED 指示灯用于说明探测器状况:

- "运行"(绿色)状态:探测器处于正常运行时,运行指示灯闪烁,闪烁频率大约为一秒一次。
- "消音"(绿色)状态:探测器处于消音状态时,消音指示灯亮。
- "报警"(红色)状况:探测器处于报警状态时,报警指示灯亮;
- "脱扣"(红色)状况:探测器处于继电器控制输出动作时,脱扣指示灯亮;
- "故障"(黄色)状况:探测器处于故障时,故障指示灯常亮。(故障为外部线路故障,而不是装置本身的故障)

5.3 按键功能说明

ARCM200L 系列多功能型电气火灾监控探测器共有六个按键,分别为 MENU 菜单键、 ◆ 左键、 ▶ 右键、 ▲ 上键、 ▼ 下键、 ➡回车键。

表 3

MENU 菜单键	非编程模式下,按该键进入编程模式,装置提示输入密码,输入正确后,可以对 装置进行编程; 编程模式下,用于返回上一级菜单,或退出编程模式。
◆左键、▶右键 非编程模式下,用于切换显示四个界面; 编程模式下,用于同级菜单的切换和光标的移位。	
▲上键、▼下键 非编程模式下,用于同级菜单的切换以及在报警记录界面时用于翻阅日 编程模式下,用于同级菜单的切换和位数的增减以及更改保护动作状态	
□车键 非编程模式下,在"报警记录"界面下用于解除报警和启动系统自检; 编程模式下,用于菜单项目的选择确认,及进入下一级菜单。	
▲上键+▼下键 非编程模式下,在报警记录界面下用于启动自检测试。	

5.4 液晶显示

1、开机、关机与自检:

打开相关联电源设备,上电瞬间,探测器界面显示如左下图所示,并伴随扬声器发出报警声音,所有指示灯同时变亮,探测器进行自检,界面入右下图所示,所有指示灯依次熄灭,最终运行指示灯间断闪烁。

2、自检完毕进入"火灾监控"显示界面,分别显示剩余电流、NTC 热敏电阻以及开关输入和继电器输出状态。其中□表示断开,■表示关闭;○表示正常,●表示报警,①表示断线,①表示短路(注:断线和短路针对漏电和温度)。

4、"电能计量"显示界面,分别显示输入有功电能、输出有功电能、输入无功电能、输出无功电能以及视在电能。(注意:装置所示的所有电能都是二次侧电能;实际电能=电流变比 CT×二次电能。)

5、"事件记录"显示界面,在报警的情况下按 ◆▶组合键可以进行消音,此时消音指示灯持续亮;长 按◆️键进行自检如开机自检,如一切正常则显示自检完毕,回归"火灾监控"界面;短按◆️键,可进行复位,按▲上键或▼下键切换到事件记录的下一界面,如下图所示:

按键 键进入报警记录界面,由下图可查看具体的报警类型参数与时间,右上角的数据 "00" 表示第 1 条数据,之后若有更多的报警记录可依次为 "01、02······19"(最多 20 条),按(上键或下键进行界面切换,方便工作人员正确的处理或做好应对措施。

如若想查看故障记录,按"MENU"键返回事件记录显示界面,按▲上键或▼下键选择"2.故障记录",按★键进入故障记录界面可查看故障类型、参数与时间,右上角的数据"00"表示第1条数据,之后若有更多的故障记录可依次为"01、02······19"(最多20条),按▲上键或▼下键进行界面切换,从而更容易去解决问题。具体操作如下图所示:

如若想查看开关记录,按"MENU"键返回事件记录显示界面,按上键或下键选择"3.开关记录",按★键进入开关记录界面可查看开关类型、参数与时间,右上角的数据"00"表示第 1 条数据,之后若有更多的开关记录可依次为"01、02······19"(最多 20 条),按上键或下键进行界面切换,对开关的现有状态一目了然。具体操作如下图所示:

5.5 编程

按 MENU 键,进入编程密码界面:通过按上下左右键,输入用户密码(默认密码为 0001,万能密码为 0008),输好后按➡回车键进入。若此时又不想进行编程设置,再按 MENU 键便可以退回非编程界面。

请输入密码:000**0**

1、密码正确后进入"用户设置"界面,在此模式下按上下左右键选择需要的菜单,按◆回车键进入

下一级菜单进行设置。如下图所示:

用户设置 通讯设置时间设置 安全设置 其它设置 系统测试

- 2、 "系统设置"界面下,可对电压等级、电流等级、电压变比、电流变比进行修改或设置;
 - "通讯设置"界面下,可以对地址和波特率进行修改或设置;
 - "时间设置"界面下,可对日期、时间及背光进行修改或设置;
- "保护设置"界面下,可对剩余电流、温度、过流、过压、缺相、联动的动作状态、动作参数和动作延时时间进行修改或设置,其中漏电设置中对报警阀值、动作时间、保护开关、联动开关进行设置和修改:
 - "其它设置"界面下,可对密码、对比度进行修改或设置,以及是否对电能清零和记录清零;
 - "系统测试"界面下,可对开关量输出以及是否试验进行设置或修改。

注: 设置好时间,断电之后重新上电进行对时间的验证

设置完成后按回车键确认,再按 Menu 键返回,直到是否保存设置界面时,此时通过按▲、▼、◆、 ▶ 键来进行是否选择保存数据,按回车键确认并退出设置界面。

6 功能应用

6.1 剩余电流监测

在线监测配电线路的剩余电流,当超过剩余电流报警设定值时,且持续时间超过延时设定值后,执行报警或者断开断路器的操作。可以根据线路正常漏电流的大小设定报警设定值 I△n,在该值的设置上应遵循不小于被保护电气线路正常泄漏电流最大值的两倍,且不大于 1000mA。对装设二级或多级剩余电流保护的场所,上一级的剩余电流报警设定值必须大于下一级的剩余电流报警设定值,并且上一级的延

时要大于下一级的延时。

参数	范围	步长
剩余电流报警设定值	300∼1000mA	1mA
动作延时时间	0.1~60.0S	0.1S
保护方式	关闭/报警/脱扣	

保护方式:剩余电流保护方式可以设置为关闭、报警、脱扣三种模式。在报警模式或脱扣模式下当 检测到剩余电流值超过报警值时,报警 LED 灯常亮,达到动作延时后触发动作。若在延时过程中,剩余 电流值小于剩余电流报警值时,不会动作。

出厂默认剩余电流报警设定值为 300mA, 动作延时时间为 5.0S, 保护方式为关闭。

6.2 温度保护

通过温度传感器监测配电箱、线缆或线缆连接处的温度,超过温度动作设定值时,延时一定时间, 执行报警或者断开断路器的操作。温度传感器的安装必须固定稳定,防止跌落造成线路短路。

参数		步长
温度动作设定值	45.0∼110.0°C	1℃
动作延时时间	0.1~60.0S	0.1S
保护方式	关闭/报警/脱扣	

保护方式:温度保护模式可以设置为关闭、报警、脱扣三种模式。关闭模式下只检测温度值,无保护动作。保护模式设置为报警或脱扣,当检测到温度值超过动作设定值时延时,达到动作延时后触发动作。在延时过程中,温度值下降到温度设定值以下时,延时清零,不会动作。

出厂默认温度报警设定值是 60℃,动作延时时间为 5.0S,保护方式为关闭。

6.3 过流保护

通过电流采样电路测量三相电流的真有效值,当测量值超过过流动作设定值,延时一定时间,执行报警或者断开断路器的操作。

参数	范围	步长
过流动作设定值	100.0%~120.0%	0.1%
动作延时时间	0.1~60.0S	0.1S
保护方式	关闭/报警/脱扣	

保护方式:过流保护可以设置为关闭、报警、脱扣三种模式。关闭模式下只检测电流值,无保护动作。模式设置为报警或脱扣时,检测到电流值超过动作设定值后进行延时,达到动作延时后触发保护动作。电流变比改变后,保护值也要做相应的调整,保护值为一次侧的电流值。

出厂默认过流保护动作设定值为 120.0%, 延时时间为 5.0S, 保护方式为关闭。

6.4 过压保护

装置实时监测进线电压,当进线电压超过过压动作设定值后,延时一定时间,执行报警或者断开断 路器的操作。

参数	范围	步长
过压动作设定值	100.0%~120.0%	0.1%
动作延时时间	0.1~60.0S	0.1S
保护方式	关闭/报警/脱扣	

保护方式:过压的保护模式可以设置为关闭、报警、脱扣三种模式,关闭模式不对电压进行过压保护。模式设置为报警或脱扣时,检测到电压值超过动作设定值后进行延时,达到动作延时后触发保护动作。

出厂默认过压保护动作设定值为 120.0%, 延时时间为 5.0S, 保护方式为关闭。

6.5 缺相保护

装置实时监测测进线电压,当正常工作时,某相或某两相进线电压低于缺相动作设定值后,延时一

定时间, 执行报警或者断开断路器的操作。

参数	范围	步长
缺相动作设定值	5.0~400.0V	0.1V
动作延时时间	0.1~60.0S	0.1S
保护方式	关闭/报警/脱扣	

保护方式:缺相的保护模式可以设置为关闭、报警、脱扣三种模式,关闭模式不对电压进行缺相保护。模式设置为报警或脱扣时,检测到某相或某两相进线电压低于缺相动作设定值后进行延时,达到动作延时后触发保护动作。

出厂默认缺相保护动作设定值为80.0%,延时时间为5.0S,保护方式为关闭。

6.6 消防联动功能

当发生火灾时,消防联动系统发出指令,通过装置使断路器脱扣,强制切断非消防设备的电源。装置接收到消防联动信号时,将跟根据相应的动作设置做出相应的保护动作。

出厂默认保护方式为关闭。

6.7 自检和试验功能

装置具备自检和试验功能,在没有故障或报警时,在"报警记录"界面下长时按住回车键进入自检 状态,按试验组合键进入试验状态,查看设备是否完好。

6.8 集中监控

集中监控计算机通过 RS485,接受现场采集信号,发出报警信号及控制指令,及时断开故障线路。采用 Modbus-RTU 协议通讯,通讯距离为 1.2 公里,同一链路可监控 32 台装置。

6.9 报警复位 (解除报警)

当发生报警时,可以按**◆**回车键来消除报警声音和复位继电器输出状态;如果在进行复位操作后未排除报警故障,装置将再次进入故障报警或脱扣状态。

7 通讯协议

7.1 通讯协议概述

该装置使用 Modbus-RTU 通讯协议,Modbus 协议详细定义了校验码、数据序列等,这些都是特定数据交换的必要内容。Modbus 协议在一根通讯线上使用主从应答式连接(半双工),这意味着在一根单独的通讯线上信号沿着相反的两个方向传输。首先,主计算机的信号寻址到一台唯一的终端设备(从机),然后,终端设备发出的应答信号以相反的方向传输给主机。

Modbus 协议只允许在主机(PC等)和终端设备之间通讯,而不允许独立的终端设备之间的数据交换,这样各终端设备不会在它们初始化时占据通讯线路,而仅限于响应到达本机的查询信号。(默认通信设置值:地址为0001,波特率为9600)

7.1.1 传输方式

信息传输为异步方式,并以字节为单位,在主机和从机之间传递的通讯信息是 11 位格式,包含 1 个起始位、8 个数据位(最低的有效位先发送)、无奇偶校验位、2 个停止位。

7.1.2 信息帧格式

地址码	功能码	数据区	CRC 校验码
1 字节	1 字节	n 字节	2 字节

地址码:地址码在帧的开始部分,由一个字节(8位二进制码)组成,十进制为0~255。这些位标明了用户指定的终端设备的地址,该设备将接收来自与之相连的主机数据。每个终端设备的地址必须是唯一的,仅被寻址到的终端会响应包含了该地址的查询。当终端发送回一个响应,响应中的从机地址数据便告诉了主机哪台终端正与之进行通信。

功能码:功能码告诉了被寻址到的终端执行何种功能。下表列出了该系列仪表用到的功能码,以及它们的意义和功能。

功能	定义	操作
03H/04H	读数据寄存器	获得一个或多个寄存器的当前二进制值
10H	预置多寄存器	设定二进制值到一系列多寄存器中

数据区:数据区包含了终端执行特定功能所需要的数据或者终端响应查询时采集到的数据。这些数据的内容可能是数值、参考地址或者设置值。例如:功能码告诉终端读取一个寄存器,数据区则需要指明从哪个寄存器开始及读取多少个数据,内嵌的地址和数据依照类型和从机之间的不同内容而有所不同。

CRC 校验码:错误校验(CRC)域占用两个字节,包含了一个16位的二进制值。CRC 值由传输设备计算出来,然后附加到数据帧上,接收设备在接收数据时重新计算CRC 值,然后与接收到的CRC 域中的值进行比较,如果这两个值不相等,就发生了错误。

生成一个 CRC 的流程为:

- 1、预置一个 16 位寄存器为 0FFFFH (全 1), 称之为 CRC 寄存器。
- 2、把数据帧中的第一个字节的 8 位与 CRC 寄存器中的低字节进行异或运算,结果存回 CRC 寄存器。
 - 3、将 CRC 寄存器向右移一位,最高位填以 0,最低位移出并检测。
- 4、如果最低位为 0, 重复第三步(下一次移位); 如果最低位为 1, 将 CRC 寄存器与一个预设的固定值(0A001H)进行异或运算。
 - 5、重复第三步和第四步直到8次移位,这样处理完了一个完整的八位。
 - 6、重复第2步到第5步来处理下一个八位,直到所有的字节处理结束。
 - 7、最终 CRC 寄存器的值就是 CRC 的值。

此外还有一种利用预设的表格计算 CRC 的方法,它的主要特点是计算速度快,但是表格需要较大的存储空间,该方法此处不再赘述,请参阅相关资料。

7.2 功能码简介

7.2.1 功能码 03H 或 04H: 读寄存器

此功能允许用户获得设备采集与记录的数据及系统参数。主机一次请求的数据个数没有限制,但不能超出定义的地址范围。

下面的例子是从 01 号从机 ARCM200L 读 3 个采集到的基本数据(数据帧中每个地址占用 2 个字节)A、B、C 三相电压,其中 A 相电压的地址为 000BH, B 相电压的地址为 000CH, C 相电压的地址为 000DH。

主机发送	发送信息		
地址码	地址码		
功能码	03H		
起始 地址	高字节	00H	
尼州 尼州	低字节	0BH	
寄存器数量	高字节	00H	
可行命奴里	低字节	03H	
CRC 校验码	低字节	74H	
して (文)処円	高字节	09H	

从机返回		返回信息		
地址码	01H			
功能码	03H			
字节数	06H			
寄存器 数据	高字节	00H		
可付命 蚁焰	低字节	00H		
寄存器 数据	高字节	00H		
可行命 效功	低字节	00H		
安方思 粉捉	高字节	00H		
寄存器 数据	低字节	00H		
CRC 校验码	低字节	21H		
	高字节	75H		

7.2.2 功能码 10H: 写寄存器

功能码 10H 允许用户改变多个寄存器的内容,该仪表中时间日期可用此功能号写入。主机一次最多可以写入 16 个(32 字节)数据。

下面的例子是预置地址为 01 的装置日期和时间为 09 年 12 月 01 日,星期五,12 点 00 分。其中周一到周日分别用 1 到 7 代替。

主机	上发送	发送信息			
地	01H				
功能	功能码				
起始地址	高字节	00H			
处知地址	低字节	07H			
寄存器数量	高字节	00H			
可什般奴里	低字节	03H			
字	节数	06H			
0007H	高字节	09H			
待写入数据	低字节	0CH			
0008H	高字节	01H			
写入数据	低字节	05H			
0009Н	高字节	0CH			
待写入数据	低字节	00H			
CRC 校验码	低字节	53H			
してし (文元) (万元)	高字节	3FH			

从	返回信息	
ţ	01H	
ز	功能码	10H
起始 地址	高字节	00H
是好 地址	低字节	07H
寄存器数量	高字节	00H
可付船奴里	低字节	03H
CRC 校验码	低字节	31H
これと「又が円	高字节	С9Н

7.3 探测器参数地址表

7.3.1 电气火灾相关参数地址表,起始地址 0x1000:

序号	地址偏移量	地址衣,起始地址 (参数	读写	数值范围	类型
1	0x00	通道类别	R	B0 表示回路 1···.B15 表示回路 16; Bit0 = 1: 回路 1 为温度检测回路; Bit0 = 0: 回路 1 为剩余电流检测回路(剩余电流回路在前,温度回路在后,有温度时若高位为 0,则高位回路不使用)	Word
2	0x01	断线	R	B0 表示回路 1···.B15 表示回路 16; Bit0 = 1:回路 1 断线	Word
3	0x02	短路	R	B0 表示回路 1···.B15 表示回路 16; Bit0 = 1: 回路 1 短路	Word
4	0x03	报警状态	R	B0 表示回路 1···.B15 表示回路 16 Bit0 = 1:回路 1 报警	Word
5	0x04	预留			
6~21	0x05~0x14	测量值	R	-300~9999,(做温度测量时为 1 位小数)	Short
22~37	0x15~0x24	报警测量值		0~9999,(温度为1位小数)	Word
38	0x25	预留			
39~40	0x26~0x27	预留			
41	0x28	开入	R	B0 表示 DI1 ,B1 表示 DI2 Bit0=1 DI1 闭合 Bit0=0 DI1 打开	Word
42	0x29	开出	R/W	R/W B1 表示 DO1, B0 表示 DO2 Bit0=1 DO1 打开 Bit0=0 DO1 闭合	
43~47	0x2A~0x2E	预留			

48	0x2F	DO1 关联	R/W	B0 表示回路 1B15 表示回路 16 Bit0 = 1: 回路 1 报警时关联 DO1	Word
49	0x30	DO2 关联	R/W	B0 表示回路 1B15 表示回路 16 Bit0 = 1:回路 1 报警时关联 DO2	Word
50	0x31	保护开关	R/W	B0 表示回路 1···.B15 表示回路 16 Bit0 = 1: 回路 1 打开报警功能 Bit0 = 0: 回路 1 关闭报警及故障检测功能	Word
51	0x32	保护类型	R/W	B0 表示回路 1B15 表示回路 16 Bit0 = 1: 回路 1 基波保护 Bit0 = 0: 回路 1 真有效值保护	Word
52~67	0x33~0x42	保护设定值	R/W	1~9999	Word
68~83	0x43~0x52	保护延时	R/W	1~9999	Word
84~99	0x53~0x62	保护设定值(%)	R/W	1~9999	Word
100	0x63	Clear	R/W	读取数值为 0,写入 0X1234 时,清除报警	Word

7.3.2 系统设置信息相关参数地址表,起始地址 0x1100:

序号	地址	参数	读写	数值范围	类型
1	0x00 高位	年	R/W	00-99	Word
1	0x00 低位	月	R/W	1-12	Word
2	0x01 高位	日	R/W	1-31	Word
2 0x01 低位		时	R/W	0-23	Word
3	0x02 高位	分	R/W	00-59	Word
3	0x02 低位	秒	R/W	00-59	Word
4~5	0x03~0x04	预留			
6	0x05	通讯1地址	R/W	1-247(双通讯)	Word
7	0x06	通讯1波特率	R/W	4800,9600,19200,38400(双通讯)	Word
8	0x07	通讯2地址	R/W	1-247	Word
9	0x08	通讯2波特率	R/W	4800,9600,19200,38400	Word
10	0x09	密码	R/W	1-9999	Word
11	0x0A	背光时间	R/W	0-99 min 0表示常亮	Word
12	0x0B	液晶对比度	R/W	20-40,默认 30	Word
13	0x0C	DI1 联动设置	R/W	Bit0 联动 DO1,Bit1 联动 DO2 1:关联 0:不关联	Word
14	0x0D	DI2 联动设置	R/W	Bit0 联动 DO2,Bit1 联动 DO3 1:关联 0:不关联	Word
15	0x0E	DI3 联动设置	R/W	Bit0 联动 DO3,Bit1 联动 DO4 1:关联 0:不关联	Word
16	0x0F	DI4 联动设置	R/W	Bit0 联动 DO4,Bit1 联动 DO1 1:关联 0:不关联	Word

7.3.3 基本电参量相关参数地址表,起始地址 0x1200:

序号	地址	参数	读写	数值范围	类型
1~3	0x00~0x02	预留	R		Word
4	0x03	电压频率	R	0~99.99 小数点为两位,单位为 Hz	Word

5	004		D	0,0000小粉点头。6、 单层头以	W/1
	0x04	A相相电压	R	0~999.9 小数点为一位,单位为 V	Word
6	0x05	B相相电压	R	0~999.9 小数点为一位,单位为 V	Word
7	0x06	C相相电压	R	0~999.9 小数点为一位,单位为 V	Word
8~10	0x07~0x09	预留		450 400 White N 0	***
11	0x0A	A相相电压角度	R	-179 - 180,数值为 0	Word
12	0x0B	B相相电压角度	R	-179 - 180,相对于 A 相电压	Word
13	0x0C	C相相电压角度	R	-179 - 180,相对于 A 相电压	Word
		电压状态位高	R	0x01 欠压报警 0x00 正常	Word
14	0x0D	字节			
		电压状态位低	R	0x01 过压报警 0x00 正常	Word
1.7	0.00	字节	D		XX7 1
15	0x0E	A相过压值	R	 	Word
16	0x0F	B相过压值	R	发生过压报警时,记录的三相瞬时电压值	Word
17	0x10	C相过压值	R		Word
18	0x11	A相欠压值	R		Word
19	0x12	B相欠压值	R	发生欠压报警时,记录的三相瞬时电压值	Word
20	0x13	C相欠压值	R		Word
21	0x14	A相电流	R	0~9.999 小数点为三位,单位为 A	Word
22	0x15	B相电流	R	0~9.999 小数点为三位,单位为 A	Word
23	0x16	C相电流	R	0~9.999 小数点为三位,单位为 A	Word
24	0x17	A相电流角度	R	-179 - 180,相对于 A 相电压	Word
25	0x18	B 相电流角度	R	-179 - 180,相对于 A 相电压	Word
26	0x19	C相电流角度	R	-179 - 180,相对于 A 相电压	Word
27	0x1A	电流状态	R	0x01 过流报警 0x00 正常	Word
28	0x1B	A 相过流值	R		Word
29	0x1C	B 相过流值	R	发生过流报警时,记录的三相瞬时电流值	Word
30	0x1D	C 相过流值	R		Word
31	0x1E	A 相有功功率	R	0~9.999 小数点为三位,单位为 kW	Word
32	0x1F	B相有功功率	R	0~9.999 小数点为三位,单位为 kW	Word
33	0x20	C相有功功率	R	0~9.999 小数点为三位,单位为 kW	Word
34	0x21	A 相无功功率	R	0~9.999 小数点为三位,单位为 kvar	Word
35	0x22	B 相无功功率	R	0~9.999 小数点为三位,单位为 kvar	Word
36	0x23	C相无功功率	R	0~9.999 小数点为三位,单位为 kvar	Word
37	0x24	A 相视在功率	R	0~9.999 小数点为三位,单位为 kVA	Word
38	0x25	B相视在功率	R	0~9.999 小数点为三位,单位为 kVA	Word
39	0x26	C相视在功率	R	0~9.999 小数点为三位,单位为 kVA	Word
40	0x27	A相功率因数	R	0~1.000 小数点为三位	Word
41	0x28	B相功率因数	R	0~1.000 小数点为三位	Word
42	0x29	C相功率因数	R	0~1.000 小数点为三位	Word
43~45	0x2A~0x2C	预留			
46	0x2D	总有功功率	R	0~9.999 小数点为三位,单位为 kW	Word
47	0x2E	总无功功率	R	0~9.999 小数点为三位,单位为 kvar	Word
48	0x2F	总视在功率	R	0~9.999 小数点为三位,单位为 kVA	Word
49	0x30	总功率因数	R	0~1.000 小数点为三位	Word
50	0x31	电压量程	R	1-2:100V, 400V	Word
51	0x32	电流量程	R	1-2:1A, 5A	Word
52	0x33	电压变比	R/W	默认为 0001	Word

53	0x34	电流变比	R/W	1A:0001~6000 5A:0001~1200	Word
54	0x35	过压报警类型	R/W	Bit0 保护开关: 1 开; 0 关; Bit1 保护关联 DO1: 1 开; 0 关; Bit1 保护关联 DO2: 1 开; 0 关;	Word
55	0x36	过压报警值	R/W	100.0%~120.0% 小数点一位	Word
56	0x37	过压报警时间	R/W	0.1~60.0s 小数点一位	Word
57	0x38	欠压报警类型	R/W	Bit0 保护开关: 1 开; 0 关; Bit1 保护关联 DO1: 1 开; 0 关; Bit1 保护关联 DO2: 1 开; 0 关;	Word
58	0x39	欠压报警值	R/W	40.0%~100.0% 小数点一位	Word
59	0x40	欠压报警时间	R/W	0.1~60.0s 小数点一位	Word
60	0x41	过流报警类型	R/W	Bit0 保护开关: 1 开; 0 关; Bit1 保护关联 DO1: 1 开; 0 关; Bit1 保护关联 DO2: 1 开; 0 关;	Word
61	0x42	过流报警值	R/W	100.0%~120.0% 小数点一位	Word
62	0x43	过流报警时间	R/W	0.1~60.0s 小数点一位	Word
7.3.4 电	能参数地址表,是	起始地址 0x1300:			

序号	地址	参数	读写	数值范围	类型
1~2	0x00~0x01	吸收有功电能	R	小数点 3 位 kWh	Dword
3~4	0x02~0x03	释放有功电能	R	小数点 3 位 kWh	Dword
5~6	0x04~0x05	感性无功电能	R	小数点 3 位 kWh	Dword
7~8	0x06~0x07	容性无功电能	R	小数点 3 位 kWh	Word
9~10	0x08~0x09	视在电能	R	小数点 3 位 kWh	Word

8 典型应用及附件

8.1 典型应用

- 注: 1、在安装接线时应注意剩余电流互感器的屏蔽层须接大地,若剩余电流互感器在断路器出线处不方便安装时,可以安装于断路器进线处: 电压采样信号也可以取自断路器出线处。
 - 2、上图中保险丝的规格型号为 1A。
- 8.2 分级保护应用原则

系统应用中常有分级保护,常见2~3级,上下级的选择性原则:

- 1、动作电流方面,上级设备的设置必须最少是下级设备的两倍;
- 2、脱扣时间方面,上级设备的延迟时间应大于下一级剩余电流保护装置的动作时间,且动作时间差不得小于 $0.2~\mathrm{s}$ 。
- 8.3 AKH-0.66L 系列剩余电流互感器选型

型号	额定电流(A)	A/mm	B/mm	C/mm	D/mm	E/mm	F/mm	G/mm	H/mm	重量/kg
L45	16~100	74	22.5	4.5	4	45	65	75	64.5	0.18
L 80	100~250	120	23	4.5	4	80	105	120	104.5	0.42
L 100	250~400	140	23	4.5	4	100	124	140	123.5	0.50
L 150	400~800	204	24	4.5	6	150	160	197	173.5	1.32
L 200	800~1500	246	28	4.5	6	200	210	241	213.5	1.94

注: (选购时应按实际需求确定此附件型号)

配套传感器的型号将根据回路的额定电流和导线粗细来选择相应规格的剩余电流互感器;如果对互感器的外形和量程有特殊需求可以来电洽谈。

8.4 NTC 温度传感器

温度传感器为本公司定制的 NTC 热敏电阻,它为探测器提供

0℃~110℃的温度监控信号,可以用来监测线缆或配电箱体的温度,实现温度保护。

其外形尺寸如下(单位 mm):

9 注意事项

- 9.1、该探测器主要安装于建筑、工业等低压配电 TN、TT 系统。其剩余电流电保护功能适用于 TN-C-S 系统、TN-S 系统及局部 TT 系统,不宜设置在 IT 系统的配电线路和消防配电线路中。
- 9.2、电气火灾监控系统的设置不应影响供电系统的正常工作,不宜自动切断供电电源。
- 9.3、该探测器应以设置在低压配电系统首端为基本原则,宜设置在第一级配电柜(箱)的出线端。在供

电线路泄露电流大于 500mA 时, 宜在下一级配电柜(箱)设置。

9.4、电气火灾监控系统应符合《剩余电流动作保护装置的安装和运行》GB13955。为了避免大面积停电,应采用分级保护,即电源端或分支线路上的剩余电流保护装置应与末端的剩余电流保护装置的动作特性应当协调配合,从而实现具有动作选择性的分级保护。

一般情况下,在电源进线端或分支主回路上,应选用低灵敏度延时型的剩余电流保护装置。而在末端,剩余电流动作值 I△n<30mA,额定动作时间 Tn<0.1s,主要用于防人身触电保护,与电气火灾监控系统是互补关系。建筑各楼层总进线处可安装一台或若干台该探测器,但应根据正常泄漏电流大小,正确设定动作参数。一般总进线处的剩余电流为 200~500mA。重要负荷:包括消防、安防、应急电源、通道照明线路及不允许断电的场所,根据 GB139554.6 规定,应将探测器设置为报警方式保护;在采集漏电电流、过电流等信号,超过报警值时,只发出声光报警信号,不切断电源,同时将采集的信号通过总线方式,传送到控制中心,可设置手动断电模式,既保证了用电安全,又保证了供电的不间断性。

9.5、剩余电流互感器可安装在断路器的进线端或出线端。安装时,必须严格区分 N 线和 PE 线, N 线应通过剩余电流火灾监控系统的剩余电流互感器。通过探测器的剩余电流互感器的 N 线不得作为 PE 线,不得重复接地或接设备外露可接近导体。PE 线不得介入电气火灾监控装置。

装设了该探测器的支路,其工作零线只能作为本回路的零线,禁止与其它回路工作零线相连,其它 线路或设备也不能借用已采用剩余电流保护器后的线路或设备的工作零线。

9.6、安装完毕后应由专业技术人员设定参数符合现场实际要求,同时要进行操作实验,保证探测器的正常运行。

总部:安科瑞电气股份有限公司

地址: 上海市嘉定区马东工业园育绿路 253 号 邮编: 201801

电话: 021-69158321 69158322 传真: 69158300

服务热线: 800-8206632 网址: http://www.acrel.cn

生产基地: 江苏安科瑞电器制造有限公司

厂址: 江阴市南闸:街道东盟工业园区东盟路 5 号 邮编: 214405

电话: 0510-86179967 86179968 传真: 0510-86179975