Geo Spatial Analysis of Twitter Data

Group 06

Nikhil Kumar Singh(19211265, ksnikhil@iitk.ac.in) Vishal Singh(19211273, vshlsng@iitk.ac.in) Suvasree Biswas(19111416, suvasree@iitk.ac.in)

+ve/-ve

SENTIMENT

Problem statement

How is India feeling

Introduction

Power of Social Media

Goal1: - segregate +ve / -ve sentiment

Goal2: - according geospatial data clusters

National Level

MOTIVATION

Global Level

Urbanisation

Farmers Protest

if Hathras would have been the only case

Terror attacks

US elections

Datasets Used

NATIONAL

Case 1	Case 2
HathrasRapeCase	FarmersProtest

GLOBAL

Case 1	Case 2
FranceAndVienna TerroristAttack	USElections2020

Scrapping

Creating Datasets

Flowchart to filter and combine all scraped data

METHODOLOGY

Naive Bayes Classifier - to determine the probability of being +ve or -ve sentiment

Creating final dataset

Tweet attribute format

Column	Attribute
1	When the tweet is created.
2	Tweet ID.
3	Text of the tweet.
4	Geo location
5	Geo co-ordinate of tweet location
6	place name
7	How many time that tweet retweeted
8	Users who re-tweeted
9	language of tweet
10	location of user.
11	User ID
12	User's user name
13	User's profile display name
14	User's profile description
15	When user's profile is created in Tweeter.
16	UTC offset
17	User's time-zone
18	User's Geo location is on or not.
19	User is verified user or not.
20	User's Language.

Sentiment Analysis

Appending Location

Final dataset created

Column	Attribute
1	When the tweet is created.
2	Tweet ID.
3	Preprocessed text of the tweet.
4	Geo location
5	Geo co-ordinate of tweet location
6	place name
7	How many time that tweet retweeted
8	Users who re-tweeted
9	language of tweet
10	location of user.
11	User ID
12	User's user name
13	User's profile display name
14	User's profile description
15	When user's profile is created in Tweeter.
16	utc offset
17	User's time-zone
18	User's Geo location is on or not.
19	User is verified user or not.
20	User's Language.
21	Latitude.
22	Longitude.
23	Processed complete address.
24	Tweet is positive or negetive(pos or neg).
25	Tweet's positive sentiment probability value
26	Tweet's negetive sentiment probability value

Objective 2: forming clusters

Which Method to chose? Why?

Why DBSCAN?

- DBSCAN works good with noisy data. Twitter data has a lot of noise.
- Our use case of density data fits well
- Our scenario of uncategorical data - is also also suited well for DBSCAN

After sentiment Analysis

After Clustering

E =0.4 MinPoints=10

Biggest cluster in whole of UP, Delhi region

Result II

FarmersBillProtest

After sentiment Analysis

E =0.5 MinPoints=10

Northern india has the highest density of tweets

Result III

France&ViennaTerroristAttack

Sentiment analysis of France And Vienna Terror Attack

eps =0.8 MinPoints=10

Special Mention: Turkey

Turkey, having protested against France, do show negative sentiment tweets

Result IV

USElections2020

eps=0.5 MinPoints=10

Special Mention:

Its striking to note that negative sentiments tweets have higher density

Questions?