1/26/25, 9:01 PM Worksheet 1

10 Points Possible

Unlimited Attempts Allowed

∨ Details

Question 1

What sort of stuff could go wrong when running multiple programs? List 4 issues.

Question 2

What are the contents of the registers after executing the following instruction?

001110 01010 01100 01010 00000 000000

- 001110 is OP code for add, a type 'R' (Register) operation.
- Instruction format:

	6 bits	5 bits	5 bits	5 bits	5 bits	6 bits
R:	op	rs	rt	rd	shamt	funct
I:	op	rs	rt	address / immediate		
J:	op	target address				

Initial Contents

Register	Content	
R9	125	
R10	56	

196

R11

1/26/25, 9:01 PM Worksheet 1

R12 1323

After Execution

Register Content

R9 ?

R10 ?

R11 ?

R12 ?

Answer 1:

Here are the four issues:

- a. memory management issue (not enough memory allocated) for the jobs
- b. difficulty in resource management (jobs taking too much or too little share in CPU)
- c. multiple jobs sharing/competing for the same resource
- **d.** security issue of cross-interference between jobs (such as, read/write operation from one program by one user to another program by another user)

Answer 2:

(this is a naive first attempt with a baseline understanding)

According to the instructions, here is the probable mapping:

(initial) sequential mapping of register contents

register name	bits	instruction	meaning/value
ор	6 bits	001110	add operation
rs	5 bits	01010 (decimal number 10)	(initial) R10 = 56
rt	5 bits	01100 (decimal number 12)	(initial) R12 = 1323
rd	5 bits	01010 (decimal number 10)	(initial) R10 = 56
shamt	5 bits	00000	no operation

1/26/25, 9:01 PM Worksheet 1

	func	6 bits	000000	no operation	
- 1		1		1 '	

(after execution = after add operation)

MIPS operation: add \$rd, \$rs, \$rt

which means, \$rd (R10) <- \$rs (R10) + \$rt (R12)

I am assuming, we will add the contents of R10 and R12 and save the result in R10.

Initial values:

R10 = 56, R12 = 1323

Execution:

R10 + R12 = 56 + 1323 = 1379

After execution values:

R10 = 1379 (as the result gets stored into R10)

R12 = 1323 (remains unchanged)

The answer after execution,

R9 = 125

R10 = 1379

R11 = 196

R12 = 1323

New Attempt