Physics 4481-7681; CS 4812 Solution Set 5

Problem 1: Searching for one of four items

a) The circuit diagrams for the four possibilities for the function \mathbf{U}_f are

corresponding to the special number being 00, 01, 10, and 11.

b) A circuit diagram that acts as $\mathbf{1} - 2|11\rangle\langle 11|$ is

c) The circuit diagram for a single Grover iteration applied to $|0\rangle|0\rangle|1\rangle$ is

where the '?' box is a 3-Qbit gate representing any of the four possibilities of part (a).

d) If the \mathbf{U}_f is the Toffoli gate (3) from part a), then the state of the top two Qbits that emerges from \mathbf{U}_f is $|\psi\rangle_0 = \frac{1}{2}(|0\rangle|0\rangle + |0\rangle|1\rangle + |1\rangle|0\rangle - |1\rangle|1\rangle$.

Since XH = HZ and HXH = Z, the state just prior to the cNOT in the middle of the figure above is

$$\begin{split} |\psi\rangle_1 &= (\mathbf{H}\otimes\mathbf{1})(\mathbf{Z}\otimes\mathbf{Z})|\psi\rangle_0 = \frac{1}{2}(\mathbf{H}\otimes\mathbf{1})\big(|0\rangle|0\rangle - |0\rangle|1\rangle - |1\rangle|0\rangle - |1\rangle|1\rangle\big) \\ &= \frac{1}{\sqrt{2}}(\mathbf{H}\otimes\mathbf{1})\Big(\frac{1}{\sqrt{2}}\big(|0\rangle - |1\rangle\big)|0\rangle - \frac{1}{\sqrt{2}}\big(|0\rangle + |1\rangle\big)|1\rangle\Big) = \frac{1}{\sqrt{2}}\big(|1\rangle|0\rangle - |0\rangle|1\rangle\big) \;. \end{split}$$

The cNOT changes this to $|\psi\rangle_2 = \frac{1}{\sqrt{2}} \left(|1\rangle|1\rangle - |0\rangle|1\rangle\right) = -\frac{1}{\sqrt{2}} \left(|0\rangle - |1\rangle\right)|1\rangle$.

The final gates after the cNOT are equivalent to acting on $|\psi\rangle_2$ with $\mathbf{ZH}\otimes\mathbf{Z}$. The \mathbf{H} on the upper wire gives

$$|\psi\rangle_3 = -|1\rangle|1\rangle$$

and this is invariant under the final $\mathbf{Z} \otimes \mathbf{Z}$. So acting on the oracle associated with 11, the final state is indeed $|1\rangle|1\rangle$ (to within an overall minus sign).

The other three possibilities for the oracle correspond to keeping the box with the question mark a Toffoli gate, but sandwiching it between two \mathbf{X} gates on either the upper

wire, the lower wire, or both. Any ${\bf X}$ to the left of the Toffoli gate in the above figure can be brought to the left through the ${\bf H}$ gate if it is changed to a ${\bf Z}$. But ${\bf Z}|0\rangle=|0\rangle$, so the extra ${\bf X}$ gates on the left can be ignored. Any ${\bf X}$ to the right of the Toffoli gate in the figure above can be brought to the right through the ${\bf H}$ gate if it is converted to a ${\bf Z}$ gate. The ${\bf Z}$ gate can be brought to the right through the next ${\bf X}$ gate if a factor of -1 is introduced. A ${\bf Z}$ on the upper wire can be brought to the right through the cNOT gate (because the computational basis states that determine whether NOT acts are eigenstates of ${\bf Z}$) and a ${\bf Z}$ on the lower wire can be brought to the right through the ${\bf H}$ gate if it is converted back to an ${\bf X}$ which also commutes with the cNOT gate, and can be converted back to the ${\bf Z}$ gate by being brought through the ${\bf H}$ gate on the other side of the cNOT gate. So now we have one or two ${\bf Z}$ gates to the left of the final two ${\bf X}$ gates. Either or both ${\bf Z}$ gates can be brought to the right through the ${\bf X}$ gates producing more minus signs that cancel the earlier ones. Finally either or both ${\bf Z}$ gates can be brought through the ${\bf H}$ gates converting them back to ${\bf X}$ gates.

In short, the effect of sandwiching the Toffoli gate on the left of the above figure between one or two pairs of **X** gates left is to leave the circuit unchanged except for one or two final **X** gates on the extreme right on the same wire(s) as the original pair(s) of **X** gates. These have the effect of converting the $-|1\rangle|1\rangle$ that would be produced by the unsandwiched Toffoli gate into either $-|0\rangle|1\rangle$, $-|1\rangle|0\rangle$, or $-|0\rangle|0\rangle$, corresponding precisely to whether the sandwiched Toffoli gates were taken from parts (2), (1), or (0) of part a).

Problem 2: Quantum Zeno

Let
$$\mathbf{V}|x\rangle = (-1)^{f(x)}|x\rangle$$
, $|\phi\rangle = \mathbf{H}^{\otimes n}|0\rangle_n = \frac{1}{2^{n/2}}\sum_{x=0}^{2^n-1}|x\rangle$ and $\mathbf{W} = 2|\phi\rangle\langle\phi| - \mathbf{1}$.
a) Setting $|\text{yes}\rangle = \frac{1}{m^{1/2}}\sum_{x|f(x)=1}|x\rangle$ and $|\text{no}\rangle = \frac{1}{(2^n-m)^{1/2}}\sum_{x|f(x)=0}|x\rangle$, we can write

$$|\phi\rangle = \frac{1}{2^{n/2}} \sum_{x=0}^{2^n - 1} |x\rangle = \cos\theta |\text{no}\rangle + \sin\theta |\text{yes}\rangle ,$$

where $\sin \theta = \sqrt{m/2^n}$ and $\cos \theta = \sqrt{1 - m/2^n}$. The matrix elements of **V** in the $|\text{no}\rangle$, $|\text{yes}\rangle$ basis are

$$\mathbf{V} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} .$$

Using

$$\langle \operatorname{no}|\mathbf{W}|\operatorname{no}\rangle = \langle \operatorname{no}|\left(2|\phi\rangle\langle\phi|-\mathbf{1}\right)|\operatorname{no}\rangle = 2\langle \operatorname{no}|\phi\rangle\langle\phi|\operatorname{no}\rangle - 1 = 2\cos^2\theta - 1 = \cos2\theta$$

$$\langle \operatorname{yes}|\mathbf{W}|\operatorname{yes}\rangle = \langle \operatorname{yes}|\left(2|\phi\rangle\langle\phi|-\mathbf{1}\right)|\operatorname{yes}\rangle = 2\langle \operatorname{yes}|\phi\rangle\langle\phi|\operatorname{yes}\rangle - 1 = 2\sin^2\theta - 1 = -\cos2\theta$$

$$\langle \operatorname{no}|\mathbf{W}|\operatorname{yes}\rangle = \langle \operatorname{no}|\left(2|\phi\rangle\langle\phi|-\mathbf{1}\right)|\operatorname{yes}\rangle = 2\langle \operatorname{no}|\phi\rangle\langle\phi|\operatorname{yes}\rangle = 2\cos\theta\sin\theta = \sin2\theta$$

$$\langle \operatorname{yes}|\mathbf{W}|\operatorname{no}\rangle = \langle \operatorname{yes}|\left(2|\phi\rangle\langle\phi|-\mathbf{1}\right)|\operatorname{no}\rangle = 2\langle \operatorname{yes}|\phi\rangle\langle\phi|\operatorname{no}\rangle = 2\sin\theta\cos\theta = \sin2\theta$$

we find that the matrix elements of $\boldsymbol{\mathsf{W}}$ are

$$\mathbf{W} = \begin{pmatrix} \langle \text{no} | \mathbf{W} | \text{no} \rangle & \langle \text{no} | \mathbf{W} | \text{yes} \rangle \\ \langle \text{yes} | \mathbf{W} | \text{no} \rangle & \langle \text{yes} | \mathbf{W} | \text{yes} \rangle \end{pmatrix} = \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix} ,$$

so that $\mathbf{WV} = \begin{pmatrix} \cos 2\theta & -\sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{pmatrix}$ is a rotation by 2θ (counterclockwise from the $|\text{no}\rangle$ towards the $|\text{yes}\rangle$ axis).

The explicit form for the quantum state after k iterations is thus

$$(\mathbf{WV})^k |\phi\rangle = \cos((2k+1)\theta)|\text{no}\rangle + \sin((2k+1)\theta)|\text{yes}\rangle.$$

If $m \ll 2^n$, then $\theta \approx \sqrt{m/2^n}$. The above state is first close to |yes\rangle when $(2k+1)\theta \approx \pi/2$, or $k \approx \pi/(4\theta) \approx (\pi/4)\sqrt{2^n/m}$, as in eq. (4.22).

b) We implement \mathbf{U}_f in the standard way, so that $\mathbf{U}_f|x\rangle_n|0\rangle = |x\rangle_n|f(x)\rangle$. Applying \mathbf{U}_f to the initial state gives

$$\mathbf{U}_f |\phi\rangle |0\rangle = \cos\theta |\mathrm{no}\rangle |0\rangle + \sin\theta |\mathrm{yes}\rangle |1\rangle$$
.

Measuring the output Qbit gives 0 with probability $\cos^2\theta = 1 - m/2^n$ and 1 with probability $\sin^2\theta = m/2^n \ll 1$. If we measure 0, then the state of the input bits is left as $|\text{no}\rangle$. Applying **WV** to $|\text{no}\rangle$ and measuring again gives

$$\mathbf{U}_f(\mathbf{WV}|\text{no}\rangle)|0\rangle = \cos 2\theta|\text{no}\rangle|0\rangle + \sin 2\theta|\text{yes}\rangle|1\rangle$$
.

Measuring the output Qbit gives 0 with probability $\cos^2 2\theta \approx 1 - 4m/2^n$, and 1 with probability $\sin^2 2\theta \approx 4m/2^n \ll 1$. Again if we measure 0, then the state is left as $|\text{no}\rangle$, and so on. (If instead we had reset the state to $|\phi\rangle$ before applying **WV**, then the state would instead have 3θ in the above, and the probability of measuring 0 would be $\cos^2 3\theta \approx 1 - 9m/2^n$.)

If the probability of finding a solution in a given step is $p = 4m/2^n$, and not finding a solution is q = 1-p, then the probability of finding a solution on the k^{th} step is $q^{k-1}(1-q)$. The average value of the number of steps is thus

$$\sum_{k=1}^{\infty} kq^{k-1}(1-q) = (1-q)\frac{\partial}{\partial q} \sum_{k=0}^{\infty} q^k = (1-q)\frac{\partial}{\partial q} \frac{1}{1-q} = (1-q)\frac{1}{(1-q)^2} = \frac{1}{1-q} = 1/p ,$$

so on average it takes $1/p = 2^n/4m$ iterations (or $2^n/9m$ using a protocol in which the state is reset to $|\phi\rangle$ before each iteration). The number of steps grows as $2^n/m$ rather than as $\sqrt{2^n/m}$. [Hence "the watched quantum pot takes longer to boil."]

Problem 3: Modified Grover

- a) For M/N=4, we have $\sin\theta=\sqrt{M/N}=1/2$, i.e., $\theta=\pi/3$. This reduces to the case N=4, M=1 considered in problem 1, in which a single application of **WV** rotates $|\phi\rangle$ by $2\theta=2\pi/3$. Hence $\mathbf{WV}\phi=|\mathrm{yes}\rangle$, and measurement will result in finding one of the marked states with probability 1.
- b) To simplify the algebra, use the abbreviated notation $|\phi\rangle = \cos\theta |\text{no}\rangle + \sin\theta |\text{yes}\rangle = c|n\rangle + s|y\rangle$, so that $\mathbf{V}_{\alpha}|\phi\rangle = \cos\theta |\text{no}\rangle + e^{i\alpha}\sin\theta |\text{yes}\rangle = c|n\rangle + ps|y\rangle$, where $p = e^{i\alpha}$, $c = \cos\theta$, $s = \sin\theta$. Then $\mathbf{W}_{\alpha}|\phi\rangle = (1-p)c\langle\phi|n\rangle|\phi\rangle + (1-p)ps\langle\phi|y\rangle|\phi\rangle c|n\rangle ps|y\rangle$.

Using $\langle \phi | n \rangle = c$, $\langle \phi | y \rangle = s$, and expanding $| \phi \rangle = c | n \rangle + s | y \rangle$, we extract the component in the $| n \rangle$ direction:

$$[(1-p)c^{3} + (1-p)ps^{2}c - c]|n\rangle = c[(-p^{2}s^{2} + c^{2} - 1 + ps^{2} - pc^{2}]|n\rangle$$
$$= cp[-s^{2}(p+p^{-1}) + s^{2} - c^{2}]|n\rangle = cp[-2s^{2}\cos\alpha + s^{2} - c^{2}]|n\rangle.$$

Setting this to zero requires $\cos \alpha = (s^2 - c^2)/2s^2$, and there's a solution for α if $|s^2 - c^2|/2s^2| \le 1$. Substituting $s = \sqrt{M/N}$, $c = \sqrt{(N-M)/N}$, then $s^2 - c^2 = (2M-N)/N$, and the condition $|(2M-N)/2M| \le 1$ implies $M \ge N/4$.

c) The modified Grover only works starting from $\sin \theta' \geq 1/2$, i.e., $\theta' \geq \pi/6$, and starting from some smaller θ we would iterate the standard Grover ℓ times until $(2\ell+1)\theta \geq \pi/6$, and then use the modified Grover. For $M \ll N$ and $\theta \approx \sqrt{M/N}$, that would mean $\ell \approx (\pi/12)\sqrt{N/M}$ standard Grover iterations followed by a single modified Grover. In particular, M = 1 gives a total of $\ell \approx (\pi/12)\sqrt{N} + 1$, including the final modified Grover.

Problem 4: Grover plus period finding

a) The algorithm begins with a uniform superposition over all counter values and all input values $|\Phi\rangle = \frac{1}{\sqrt{T}} \sum_{t=0}^{T-1} |t\rangle \otimes \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle$. We apply **G** to obtain the state

$$\mathbf{G}|\Phi\rangle = \frac{1}{\sqrt{T}} \sum_{t=0}^{T-1} |t\rangle \otimes \left(\cos(2t+1)\theta|\mathrm{no}\rangle + \sin(2t+1)\theta|\mathrm{yes}\rangle\right)$$

since the initial state $|\phi\rangle = \cos\theta |\text{no}\rangle + \sin\theta |\text{yes}\rangle$, $\sin\theta = \sqrt{\frac{m}{N}}$, and each Grover iteration rotates $|\phi\rangle$ closer to $|\text{yes}\rangle$ by an angle 2θ . Finally we apply the QFT on the counter register and then measure in the computation basis. Applying the QFT on $\mathbf{G}|\Phi\rangle$ produces

$$|\Phi\rangle_{\text{QFT}} = \frac{1}{T} \sum_{t=0}^{T-1} \sum_{\ell=0}^{T-1} e^{2\pi i \ell t/T} |\ell\rangle \otimes \left(\cos(2t+1)\theta|\text{no}\rangle + \sin(2t+1)\theta|\text{yes}\rangle\right)$$
$$= \frac{1}{T} \sum_{t=0}^{T-1} |\ell\rangle \otimes \left(\frac{a_{\ell} + b_{\ell}}{2}|\text{no}\rangle + \frac{a_{\ell} - b_{\ell}}{2i}|\text{yes}\rangle\right)$$

where $a_{\ell} = \sum_{t=0}^{T-1} e^{2\pi i (\ell + T\theta/\pi)t/T + i\theta}$, $b_{\ell} = \sum_{t=0}^{T-1} e^{2\pi i (\ell - T\theta/\pi)t/T - i\theta}$. Therefore, the probability of measuring the outcome ℓ is given by

$$P(\ell) = \frac{1}{4T^2} (|a_{\ell} + b_{\ell}|^2 + |a_{\ell} - b_{\ell}|^2) = \frac{1}{2T^2} (|a_{\ell}|^2 + |b_{\ell}|^2)$$

Since a_{ℓ} and b_{ℓ} are invariant under $\ell \to \ell + T$, we consider ℓ to be defined mod T.

- b) (i) When $T\theta/\pi$ is an integer, all a_{ℓ} and b_{ℓ} vanish except for $\ell = \pm T\theta/\pi$, for which $|a_{\ell=-T\theta/\pi}| = |b_{\ell=T\theta/\pi}| = T$. Measuring the counter gives either $T\theta/\pi$ or $T T\theta/\pi$ with equal probability 1/2, and either determines θ to accuracy O(1/T).
- (ii) When $T\theta/\pi$ is not an integer, there are a few cases to consider. First recall that $|a_{\ell}|^2$ and $|b_{\ell}|^2$ are given respectively by

$$\left| \sum_{t=0}^{T-1} e^{2\pi i (\ell \pm T\theta/\pi) t/T \pm i\theta} \right|^2 = \left| \frac{1 - e^{2\pi i (\ell \pm T\theta/\pi)}}{1 - e^{2\pi i (\ell \pm T\theta/\pi)/T}} e^{\pm i\theta} \right|^2 = \left| \frac{\sin \pi (\ell \pm T\theta/\pi)}{\sin \pi (\ell \pm T\theta/\pi)/T} \right|^2.$$

Letting δ equal the smaller of $\ell \pm T\theta/\pi$, note that whenever $0 < \delta < 1/2$, we use $\sin x \ge 2x/\pi$ ($0 \le x \le \pi/2$), and $\sin \varepsilon \le \varepsilon$ for $0 < \varepsilon \ll 1$, to bound

$$\left|\frac{\sin \pi \delta}{\sin \pi \delta / T}\right|^2 \ge \left|\frac{2\delta}{\pi \delta / T}\right|^2 = T^2 \frac{4}{\pi^2} \ .$$

That means that when $\ell + T\theta/\pi < 1/2$, we have $|a_{\ell}|^2 \ge T^2(4/\pi^2)$, and when $\ell - T\theta/\pi < 1/2$, we have $|b_{\ell}|^2 \ge T^2(4/\pi^2)$.

When $0 < T\theta/\pi \le 1/2$, success means measuring $\ell = 0$ (the closest integer to $T\theta/\pi$), and we have

$$P(\ell=0) = \frac{1}{2T^2} (|a_{\ell=0}|^2 + |b_{\ell=0}|^2) \ge \frac{1}{2T^2} (T^2(4/\pi^2) + T^2(4/\pi^2)) = \frac{4}{\pi^2}.$$

When $1/2 < T\theta/\pi < 1$, success means measuring $\ell = \pm 1$ (i.e., $\ell = 1$ or $\ell = T - 1 = -1$ (mod T), since 1 is now the closest integer to $T\theta/\pi$, and

$$P(\ell = -1) + P(\ell = 1) \ge \frac{1}{2T^2} (|a_{\ell=-1}|^2 + |b_{\ell=1}|^2) \ge \frac{1}{2T^2} (T^2(4/\pi^2) + T^2(4/\pi^2)) = \frac{4}{\pi^2}.$$

When $1 < T\theta/\pi < T/2 - 1$, success means measuring $\ell = \pm j$, where j is the closest integer to $T\theta/\pi$, within 1/2 of $T\theta/\pi$ above or below, so that

$$P(\ell = -j) + P(\ell = j) \ge \frac{1}{2T^2} (|a_{\ell = -j}|^2 + |b_{\ell = j}|^2) \ge \frac{1}{2T^2} (T^2(4/\pi^2) + T^2(4/\pi^2)) = \frac{4}{\pi^2}.$$

When $T/2 - 1 < T\theta/\pi < T/2 - 1/2$ (though note that θ will never be this large for $m \ll N$), success means $\ell = \pm (T/2 - 1)$ (i.e., $\ell = T/2 - 1$ or $\ell = T/2 + 1$), and

$$P(\ell = -T/2 + 1) + P(\ell = T/2 - 1) \ge \frac{1}{2T^2} \left(|a_{\ell = -T/2 + 1}|^2 + |b_{\ell = T/2 - 1}|^2 \right)$$
$$\ge \frac{1}{2T^2} \left(T^2 (4/\pi^2) + T^2 (4/\pi^2) \right) = \frac{4}{\pi^2} .$$

When $T/2 - 1/2 \le T\theta/\pi < T/2$, success means $\ell = T/2$, and

$$P(\ell = T/2) = \frac{1}{2T^2} \left(|a_{\ell = T/2}|^2 + |b_{\ell = T/2}|^2 \right) \ge \frac{1}{2T^2} \left(T^2(4/\pi^2) + T^2(4/\pi^2) \right) = \frac{4}{\pi^2} .$$

For all cases, measuring the counter reveals the closest integer to $T\theta/\pi$ with constant probability of success at least $4/\pi^2$, and θ is determined with O(1/T) accuracy.

c) Since $\theta \approx \sqrt{m/N}$, we have $\delta m \approx 2\sqrt{mN}\delta\theta$. To have m determined with high probability to within $\delta m \approx 1$, given that $\delta\theta = O(1/T)$, it follows that $T = O(\sqrt{mN})$ queries are required. (One of those m special values can then be found with an additional $O(\sqrt{N/m})$ queries by the standard Grover iteration.)

Classically it takes O(N) queries to determine m (and it takes O(N/m) queries to have a high probability of finding a special value).

Problem 5: qudits

a) For C^5Z with a five-state qudit

where $X_A: 0 \leftrightarrow 2$, $X_B: 1 \leftrightarrow 3$, $X_C: 0 \leftrightarrow 4$, $X_D: 1 \leftrightarrow 5$, and there is a total of eight cNOTS, one c**Z**, and eight 1-Qbit gates.

The circuit in fig. 4.5 has ten Toffoli gates ($\mathbf{c}^2\mathbf{X}$) and two double-controlled \mathbf{Z} s ($\mathbf{c}^2\mathbf{Z}$). Each Toffoli and the double-controlled \mathbf{Z} s can be made with six cNOT gates (fig. 2.13 in the text), for a total of 72 cNOT gates.

b) For C^6Z with a six-state qudit, we add one new gate $X_E: 0 \leftrightarrow 6$

so there are now a total of ten cNOTS, one c**Z**, and ten 1-Qbit gates.

The circuit in fig. 4.7 of the text has two $\mathbf{c}^4\mathbf{Z}$ and two $\mathbf{c}^3\mathbf{X}$ gates. According to fig. 4.5, a $\mathbf{c}^3\mathbf{X}$ gate can be built with two Toffolis and two $\mathbf{c}^2\mathbf{Z}$ s, and a $\mathbf{c}^4\mathbf{Z}$ can be built with six Toffolis and two $\mathbf{c}^2\mathbf{Z}$ s, so the total is $(2(6+2)+2(2+2))6=24\cdot 6=144$ cNOT gates. (We see that the number of cNOT gates increases much less quickly if a single reliable qudit is available.)

Problem 6: GHZ

a) For the circuit at left, after the 1-Qbit gates act we have $\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) = \frac{1}{2}(|00\rangle+|01\rangle+|10\rangle+|11\rangle$. The **cZ** gate takes this to $\frac{1}{2}(|0\rangle(|0\rangle+|1\rangle)+|1\rangle(|1\rangle-|0\rangle))$, and the final 1-Qbit gate then has the effect $\rightarrow \frac{1}{2\sqrt{2}}\big((|0\rangle+|1\rangle)(|0\rangle+|1\rangle)+(|1\rangle-|0\rangle)(|1\rangle-|0\rangle)\big) = \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$

Although the circuits agree on the state $|00\rangle$, they do not agree on any of the other computational basis states, as can be easily checked explicitly on any of $|10\rangle$, $|01\rangle$, $|11\rangle$. Alternatively, in python (or similarly in matlab) we can define

$$\begin{split} & I \!\!=\! eye(2) \\ & X \!\!=\! array([[0,\!1],\![1,\!0]]) \\ & Y \!\!=\! array([[0,\!-1j],\![1j,\!0]]) \\ & Z \!\!=\! array([[1,\!0],\![0,\!-1]]) \\ & H \!\!=\! (X \!\!+\! Z)/\!\!sqrt(2) \\ & Ym \!\!=\! (I \!\!-\! 1j \!\!*\! Y)/\!\!sqrt(2) \\ & cNOT \!\!=\! kron((1 \!\!+\! Z)/2,\!I) \!\!+\! kron((1 \!\!-\! Z)/2,\!X) \\ & cZ10 \!\!=\! diag([1,\!1,\!-\!1,\!1]) \end{split}$$

Then we see that

$$\begin{aligned} & \text{kron}(Ym,I).\text{dot}(cZ10).\text{dot}(\text{kron}(Ym,Ym)) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & -1 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix} \\ & \text{cNOT.dot}(\text{kron}(H,I)) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 1 & 0 & -1 & 0 \end{pmatrix} \end{aligned}$$

and the two only agree on the first column (for $|00\rangle$).

b) Now we have

$$\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

$$\rightarrow \frac{1}{2\sqrt{2}}(|000\rangle - |001\rangle + |010\rangle + |011\rangle - |100\rangle + |101\rangle + |110\rangle + |111\rangle)$$

$$= \frac{1}{2\sqrt{2}}(|0\rangle((|0\rangle + |1\rangle)|0\rangle + (-|0\rangle + |1\rangle)|1\rangle) + |1\rangle((-|0\rangle + |1\rangle)|0\rangle + (|0\rangle + |1\rangle)|1\rangle))$$

$$\rightarrow \frac{1}{2\sqrt{2}}((|0\rangle + |1\rangle)((|0\rangle + |1\rangle)(|0\rangle + |1\rangle) + (-|0\rangle + |1\rangle)(|1\rangle - |0\rangle))$$

$$+ (|1\rangle - |0\rangle)((-|0\rangle + |1\rangle)(|0\rangle + |1\rangle) + (|0\rangle + |1\rangle)(|1\rangle - |0\rangle)))$$

$$= \frac{1}{\sqrt{2}}(|000\rangle + |111\rangle)$$

Once again, if we check any state other than $|000\rangle$, we find that the result is different for the two circuits. Or more comprehensively, we use the definitions from part a) plus the additional

cZ01 = diag([1,-1,1,1])

def p(A,B,C): return kron(A,kron(B,C))

to find

p(Ym,I,Ym).dot(kron(I,cZ01)).dot(kron(cZ10,I)).dot(p(Ym,Ym,Ym))

$$=\frac{1}{\sqrt{2}}\begin{pmatrix} 1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & -1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & -1 & 0 & -1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}, \text{ and}$$

$$kron(I,cNOT).dot(kron(cNOT,I)).dot(p(H,I,I)) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \end{pmatrix},$$

and again the two only agree on the first column (for $|000\rangle$).

c) The operator $\mathbf{S}_{01} = (\mathbf{X}_0 \mathbf{X}_1 + \mathbf{Y}_0 \mathbf{Y}_1)/2$ exchanges the states $|01\rangle$ and $|10\rangle$, and vanishes on the states $|00\rangle$ and $|11\rangle$. Thus $\exp(i\alpha \mathbf{S}_{01})$ is the identity on $|00\rangle$ and $|11\rangle$, and since \mathbf{S}_{01}^2 acts as the identity on $|00\rangle$ and $|11\rangle$, we have $\exp(i\alpha \mathbf{S}_{01}) = \cos \alpha \mathbf{1} + i \mathbf{S}_{01} \sin \alpha$

on those states.[†] For $\alpha = -i\pi/2$, that gives the iSWAP: $|01\rangle \rightarrow -i|10\rangle$, $|10\rangle \rightarrow -i|01\rangle$. d) Now we have

$$\begin{split} \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \\ &\rightarrow \frac{1}{2\sqrt{2}}(|000\rangle + |001\rangle - i|100\rangle - i|101\rangle - i|010\rangle - i|011\rangle + |110\rangle + |111\rangle) \\ &\rightarrow \frac{1}{2\sqrt{2}}(|000\rangle - i|010\rangle - i|100\rangle - |110\rangle - |001\rangle - i|011\rangle - i|101\rangle + |111\rangle) \\ &= \frac{1}{2\sqrt{2}}(|00\rangle(|0\rangle - |1\rangle) - i|01\rangle(|0\rangle + |1\rangle) - i|10\rangle(|0\rangle + |1\rangle) - |11\rangle(|0\rangle + |1\rangle)) \\ &\rightarrow \frac{1}{4}((|0\rangle - i|1\rangle)(|0\rangle - i|1\rangle)(|0\rangle - |1\rangle) - i(|0\rangle - i|1\rangle)(-i|0\rangle + |1\rangle)(|0\rangle + |1\rangle) \\ &- i(-i|0\rangle + |1\rangle)(|0\rangle - i|1\rangle)(|0\rangle + |1\rangle) - (-i|0\rangle + |1\rangle)(-i|0\rangle + |1\rangle)(|0\rangle + |1\rangle)) \\ &= \frac{1}{\sqrt{2}}(|000\rangle + |111\rangle) \end{split}$$

And again if we check any state other than $|000\rangle$, we find that the result is different for this and either of the other two circuits. Or more comprehensively, we use the definitions from parts a,b) plus the additional

$$Xp = (I+1j*X)/sqrt(2)$$

$$SWAP = (Irron(IJ) + Irron(7.7))/2 - 1j*(Irron(7.7))/2$$

 $iSWAP = (kron(I,I) + kron(Z,Z))/2 - 1j^*(kron(X,X) + kron(Y,Y))/2$ to find

 $p(Xp,\!Xp,\!I).dot(kron(I,\!iSWAP)).dot(kron(iSWAP,\!I)).dot(p(Ym,\!Ym,\!Ym)$

$$=\frac{1}{\sqrt{2}}\begin{pmatrix}1&0&0&0&-1&0&0&0\\0&0&0&-1&0&0&0&-1\\0&-i&0&0&0&i&0&0\\0&0&i&0&0&0&i&0\\0&0&-i&0&0&0&i&0\\0&i&0&0&0&i&0&0\\0&0&0&-1&0&0&0&1\\1&0&0&0&1&0&0&0\end{pmatrix}$$

which agrees with the other two circuits only on the first column (for $|000\rangle$).

[†] Formally, \mathbf{S}_{01} satisfies $\mathbf{S}_{01}^2 = \mathbf{P}$, where $\mathbf{P} = (\mathbf{1} - \mathbf{Z}_0 \mathbf{Z}_1)/2$ is the projection on the states $|01\rangle$, $|10\rangle$, so $\exp(i\alpha \mathbf{S}_{01}) = (\mathbf{1} - \mathbf{P}) + (\cos \alpha \mathbf{1} + i \mathbf{S}_{01} \sin \alpha) \mathbf{P}$.

Problem 7: 3-qubit state tomography for GHZ

a) The value of \vec{p} for the state $|0\rangle$ is (1,0,0,1), for the state $(|0\rangle + |1\rangle)/\sqrt{2}$ is (1,1,0,0).

To estimate the expectation the value of **Z**, we measure the state in the computational basis and calculate $(N_0 - N_1)/N$, where $N_{0,1}$ is the number of times 0,1 respectively are measured and $N = N_0 + N_1$ is the total number of measurements.

To estimate the expectation value of **X** in any state, recall that $R_y^{\pi/2} = (\mathbf{1} - i\mathbf{Y})/\sqrt{2}$, so that $R_y^{\pi/2} = \mathbf{Z}(-i\mathbf{Y}) = -\mathbf{X}$, so that $\langle \psi | \mathbf{X} | \psi \rangle = -\langle \psi | R_y^{-\pi/2} \mathbf{Z} R_y^{\pi/2} | \psi \rangle$. That means we apply the operator $R_y^{\pi/2}$ to the state, then measure, and $-(N_0 - N_1)/N$ will give an estimate for $\langle \psi | \mathbf{X} | \psi \rangle$, where again $N_{0,1}$ is the number of times 0,1 respectively are measured.

To estimate the expectation value of \mathbf{Y} , then since $R_x^{\pi/2} = (\mathbf{1} - i\mathbf{X})/\sqrt{2}$, we have $R_x^{-\pi/2}\mathbf{Z}R_x^{\pi/2} = \mathbf{Z}(-i\mathbf{X}) = \mathbf{Y}$, so that $\langle \psi | \mathbf{Y} | \psi \rangle = \langle \psi | R_x^{-\pi/2}\mathbf{Z}R_x^{\pi/2} | \psi \rangle$. That means we apply the operator $R_x^{\pi/2}$ to the state, then measure, and $(N_0 - N_1)/N$ will give an estimate for $\langle \psi | \mathbf{Y} | \psi \rangle$, where again $N_{0,1}$ is the number of times 0,1 respectively are measured.

The general result is to apply $R_y^{\pi/2}$ or $R_x^{\pi/2}$, resp., for the expectation value of \mathbf{X} or \mathbf{Y} , and otherwise the identity, then measure in the computational basis and calculate $(-1)^{|\mathbf{X}|} \sum_x (-1)^x N_x/N$ where N_x is the number of times the result x is measured in $N = \sum_{x=0}^1 N_x$ trials, and $|\mathbf{X}|$ is the number of \mathbf{X} operators (0 or 1 in this case).

b) With $\vec{\mathbf{P}}_{(2)}$ ordered as (II IX IY IZ XI YI ZI XX XY XZ YX YY YZ ZX ZY ZZ), the ideal values of \vec{p} for $|\psi\rangle = (|00\rangle + |11\rangle)/\sqrt{2}$ are (1 0 0 0 0 0 1 0 0 0 -1 0 0 0 1), i.e., the four non-zero values are $p_{\text{II}} = p_{\text{XX}} = -p_{\text{YY}} = p_{\text{ZZ}} = 1$.

To estimate the expectation value of any element of $\vec{\mathbf{P}}_{(2)}$ for a 2-Qbit state, we apply $R_y^{\pi/2}$ or $R_x^{\pi/2}$, resp., for any Qbit that corresponds to an \mathbf{X} or \mathbf{Y} in the element of interest of $\vec{\mathbf{P}}_{(2)}$, and then measure in the computational basis. The expectation value is given by $(-1)^{|\mathbf{X}|} \sum_{x,y} (-1)^{x+y} N_{xy}/N$, where N_{xy} is the number of times the result xy is measured in a total of $N = \sum_{x,y=0}^{1} N_{xy}$ trials, and $|\mathbf{X}|$ is the number of \mathbf{X} operators in the element of $\vec{\mathbf{P}}_{(2)}$.

c) The eight non-zero ideal values of \vec{p} for $|\psi\rangle = (|000\rangle + |111\rangle)/\sqrt{2}$ are $p_{\text{III}} = p_{\text{IZZ}} = p_{\text{XXX}} = -p_{\text{XYY}} = -p_{\text{YXY}} = -p_{\text{YYX}} = p_{\text{ZIZ}} = p_{\text{ZZI}} = 1$.

To estimate the expectation value of any element of $\vec{\mathbf{P}}_{(3)}$ for a 3-Qbit state, we apply $R_y^{\pi/2}$ or $R_x^{\pi/2}$, resp., for any Qbit that corresponds to an \mathbf{X} or \mathbf{Y} in the element of interest of $\vec{\mathbf{P}}_{(3)}$, and then measure in the computational basis. The expectation value is given by $(-1)^{|\mathbf{X}|} \sum_{x,y,z} (-1)^{x+y+z} N_{xyz}/N$, where N_{xyz} is the number of times the result xyz is measured in a total of $N = \sum_{x,y,z=0}^{1} N_{xyz}$ trials, and $|\mathbf{X}|$ is the number of \mathbf{X} operators in the element of $\vec{\mathbf{P}}_{(3)}$.

[†] Note that the experimental values for these expectation values are given in Fig.S9 of arXiv:1402.4848 for the N=2 Bell state (part a) above) and for the N=3,4,5 GHZ states (only N=3 asked in part c) here).

Problem 8: Quantum cakes

Work with the state

$$|\Psi\rangle = \alpha |\mathrm{BB}\rangle + \beta |\mathrm{BG}\rangle + \gamma |\mathrm{GB}\rangle + \delta |\mathrm{GG}\rangle$$
.

where

$$|B\rangle = c|F\rangle + s|R\rangle$$
, $|G\rangle = -s|F\rangle + c|R\rangle$,

- a) $|\Psi\rangle$ symmetric in the two Qbits implies that $\beta = \gamma$.
- b) $\langle GG|\Psi\rangle = 0$ implies that $\delta = 0$, and hence $|\Psi\rangle = \alpha |BB\rangle + \beta (|BG\rangle + |GB\rangle)$. A relative phase rotation on the two Qbits permits taking α and β both real, and the normalization of $|\Psi\rangle$ implies that $\alpha^2 + 2\beta^2 = 1$.

[Note also that a more general rotation $U = e^{i(\theta/2)\hat{n}\cdot\vec{\sigma}}$ between the $|F\rangle$, $|R\rangle$ and $|B\rangle$, $|G\rangle$ bases would give no additional degrees of freedom, since a simultaneous transformation by V on each of the basis sets induces $U \to V^{\dagger}UV$, and V can always be chosen to rotate \hat{n} to \hat{y} , so that U takes the (orthogonal) form given above, in terms of real $c = \cos(\theta/2)$ and $s = \sin(\theta/2)$.]

c)
$$0 = \langle BR|\Psi \rangle = \langle RB|\Psi \rangle = \alpha \langle R|B \rangle + \beta \langle R|G \rangle = \alpha s + \beta c$$

So the problem is to maximize $|\langle RR|\Psi\rangle|^2=(\alpha s^2+2\beta sc)^2$, subject to the constraints $\alpha s+\beta c=0,\ \alpha^2+2\beta^2=1$, and $c^2+s^2=1$. Solving those constraints gives $\alpha^2=(1-s^2)/(1+s^2)$, and hence $|\langle RR|\Psi\rangle|^2=|\alpha s^2+2\beta sc|^2=|-\alpha s^2|^2=s^4(1-s^2)/(1+s^2)$. Setting the derivative of this quantity to zero gives the equation $s^4+s^2-1=0$, with positive solution $s^2=(-1+\sqrt{5})/2$. For this value of s^2 , we have

$$|\langle RR|\Psi\rangle|^2 = (1-s^2)^2/(1+s^2) = (5\sqrt{5}-11)/2 \approx .09017$$
.

(This maximum value of the violation of local causality is only slightly larger than the value $|\langle RR|\Psi\rangle|^2=.09$ for the specific state given in class. The value $\sin^2\theta=(-1+\sqrt{5})/2$ corresponds to $\theta\approx.90456$ radians $\approx51.83^\circ$.)