## A study on the energy transfer of a square prism under fluid-elastic galloping

H.G.K.G. Jayatunga, B.T. Tan, J. S. Leontini

## Abstract

Extracting useful energy from flow induced vibrations has become a developing area of research in recent years. In this paper, we analyse power transfer of an elastically mounted body under the influence of fluid-elastic galloping. The system and the power transfer is analysed by numerically integrating the quasi-steady state model equations. The power transfer is analysed for both high (Re = 22300) and low (Re = 200) Reynolds numbers cases.

A combined mass-damping coefficient,  $\Pi_2$ , that can be derived from the equation of motion, is shown to be the parameter that governs power output. The system is a balance between the power delivered to the system due to fluid-dynamic forcing and power removed through mechanical damping which are governed by the fluid-dynamic forcing characteristics (i.e. the lift force as a function of incident angle) and mechanical damping coefficient respectively. Comparing the DNS results with the QSS data uncovered that a good agreement of the data could be obtained even at low Reynolds numbers when the inertia of the system (mass ratio) is substantially high.

Keywords:



Figure 1: Comparison of the mean power data using different independent variables. (a) using classical VIV parameters  $U^*$  and  $\zeta$  at Re=200 and  $m^*=20$  at three different damping ratios:  $\zeta=0.075$  (×),  $\zeta=0.1$  ( $\spadesuit$ ) and  $\zeta=0.15$  (+) and (b)the same data collapsed using  $\Pi_2$  as the independent variable.



Figure 2: QSS data at high  $\Pi_1$  levels. (a) displacement amplitude, (b) velocity amplitude and (c) mean power as a function of  $\Pi_2$ . Data presented at four different combined mass-stiffness levels.  $\Pi_1 = 10 \ (m^* = 20, \ U^* \approx 40) \ (\clubsuit), \ \Pi_1 = 100 \ (m^* = 130, \ U^* \approx 80) \ (+)$  and  $\Pi_1 = 1000 \ (m^* = 400, \ U^* \approx 40) \ (\triangle)$ 



Figure 3: Comparison of QSS data at high and low  $\Pi_1$ . (a) displacement amplitude, (b) velocity amplitude and (c) mean power as a function of  $\Pi_2$ . Data presented at  $\Pi_1=100~m^*=130(+),~\Pi_1=0.1~m^*=2~(\spadesuit),~\Pi_1=0.1~m^*=20~(\triangle)$  and  $\Pi_1=0.1~m^*=50~(*)$ 



Figure 4:



Figure 5: Comparison of data generated using the quasi-static theory and full DNS simulations . (a) Displacement amplitude, (b) velocity amplitude and (c) mean power as functions of  $\Pi_2$ . Data were obtained at Re = 200 at three different combined values  $\Pi_2 = 10 \ (m^* \approx 20) \ (*), \ \Pi_2 = 60 \ (m^* \approx 50) \ (\bullet), \ \Pi_2 = 250 \ (m^* \approx 100) \ (\triangle), \ \Pi_2 = 1000 \ (m^* \approx 250) \ and \ \Pi_2 = 6200 \ (m^* \approx 500)$ 

## References

- Barrero-Gil, A., Alonso, G., Sanz-Andres, A., Jul. 2010. Energy harvesting from transverse galloping. Journal of Sound and Vibration 329 (14), 2873–2883.
- Barrero-Gil, A., Sanz-Andrés, A., Roura, M., Oct. 2009. Transverse galloping at low Reynolds numbers. Journal of Fluids and Structures 25 (7), 1236–1242.
- Den Hartog, J. P., 1956. Mechanical Vibrations. Dover Books on Engineering. Dover Publications.
- Glauert, H., 1919. The rotation of an aerofoil about a fixed axis. Tech. rep., Advisory Committee on Aeronautics R and M 595. HMSO, London.
- Griffith, M. D., Leontini, J. S., Thompson, M. C., Hourigan, K., 2011. Vortex shedding and three-dimensional behaviour of flow past a cylinder confined in a channel. Journal of Fluids and Structures 27 (5-6), 855–860.
- Joly, A., Etienne, S., Pelletier, D., Jan. 2012. Galloping of square cylinders in cross-flow at low Reynolds numbers. Journal of Fluids and Structures 28, 232–243.
- Leontini, J. S., Lo Jacono, D., Thompson, M. C., Nov. 2011. A numerical study of an inline oscillating cylinder in a free stream. Journal of Fluid Mechanics 688, 551–568.
- Leontini, J. S., Thompson, M. C., 2013. Vortex-induced vibrations of a diamond cross-section: Sensitivity to corner sharpness. Journal of Fluids and Structures 39, 371–390.
- Leontini, J. S., Thompson, M. C., Hourigan, K., Apr. 2007. Three-dimensional transition in the wake of a transversely oscillating cylinder. Journal of Fluid Mechanics 577, 79.
- Luo, S., Chew, Y., Ng, Y., Aug. 2003. Hysteresis phenomenon in the galloping oscillation of a square cylinder. Journal of Fluids and Structures 18 (1), 103–118.

- Ng, Y., Luo, S., Chew, Y., Jan. 2005. On using high-order polynomial curve fits in the quasi-steady theory for square-cylinder galloping. Journal of Fluids and Structures 20 (1), 141–146.
- Païdoussis, M., Price, S., de Langre, E., 2010. Fluid-Structure Interactions: Cross-Flow-Induced Instabilities. Cambridge University Press.
- Parkinson, G. V., Smith, J. D., 1964. The square prism as an aeroelastic non-linear oscillator. The Quarterly Journal of Mechanics and Applied Mathematics 17 (2), 225–239.
- Thompson, M., Hourigan, K., Sheridan, J., Feb. 1996. Three-dimensional instabilities in the wake of a circular cylinder. Experimental Thermal and Fluid Science 12 (2), 190–196.
- Thompson, M. C., Hourigan, K., Cheung, A., Leweke, T., Nov. 2006. Hydrodynamics of a particle impact on a wall. Applied Mathematical Modelling 30 (11), 1356–1369.
- Vio, G., Dimitriadis, G., Cooper, J., Oct. 2007. Bifurcation analysis and limit cycle oscillation amplitude prediction methods applied to the aeroelastic galloping problem. Journal of Fluids and Structures 23 (7), 983–1011.