Algorithms and their Applications CS2004 (2020-2021)

Dr Mahir Arzoky

16.1 The Travelling Salesperson Problem

Labs and CW assessments

- ☐ All class tests (Task #1) should be submitted by 16/02/2021 at 11:00AM
- ☐ Task #2 assessment brief will be released towards the end of the week
- ☐ Check module breakdown on Blackboard!

Previously On CS2004...

So far we have looked at:
Concepts of Computation and Algorithms
Comparing algorithms
Some mathematical foundation
The Big-Oh notation
Computational Complexity
Data structures
Sorting Algorithms
Various graph traversal algorithms
Heuristic Search
Hill Climbing and Simulated Annealing
Parameter Optimisation (Applications)
Evolutionary Computation
Swarm Intelligence

Introduction

- ☐ In this lecture we are going to look in detail at a specific problem
 - ☐ The Travelling Salesperson Problem

The Travelling Salesperson Problem

☐ The Travelling Salesperson Problem (TSP) is an extremely well studied problem
 ☐ Within optimisation (circa 1930s)
 ☐ Within Heuristic Search
 ☐ It is very simple to define
 ☐ Solving the TSP will allow us to solve a number of real world problem
 ☐ I.e. You show that a problem can be decomposed into the TSP...

Solving the TSP

☐ The Travelling Salesperson Problem is well know to be NP-Hard
☐ This means there is no direct algorithmic or mathematical way to derive a solution in polynomial time
\square The search space (as we will see later) is $O(n!)$
One of the worst that we have seen to date
□ We need approximate or Heuristic search methods to find a solution (or partial solution)□ Hill Climbing
☐ Simulated Annealing
☐ Etc

TSP Definition – Part 1

- □ A sales person has to visit n cities as part of their job
- ☐ The aim is to start off at one of the cities, visit each city exactly once and then to arrive back at the starting city
 - ☐ This is called a **tour**
- ☐ The objective is to find a tour where the sum of the total distance travelled is a minimum
 - ☐ I.e. This is analogous to the sales person trying to minimise their petrol costs (or driving time...)

TSP Definition – Part 2

- ☐ In order to solve the TSP we need to know how "far" each city is from each other
- \square We will use the notation d(i,j) to represent the distance from city i to city j

☐ Note:

- \Box d(i,j)=d(j,i), i.e. the distance from city i to city j is the same as from city j to city i
- \Box d(i,i) = 0, i.e.: a city is zero distance from itself

$$d(1,2)=3$$

$$d(1,3)=4$$

$$d(1,4)=5$$

$$d(2,3)=2$$

$$d(2,4)=2.5$$

$$d(3,4)=1.5$$

TSP Representation – Part 1

☐ A natural way to represent a solution to the TSP problem is to represent a **tour** as a **permutation** of the integers 1,2,...,n☐ Starting at the left-hand side of the permutation and visiting the cities in the specified order, moving from left to right ☐ This will ensure that we do not visit any city twice ☐ A permutation is defined as a shuffling of a set of objects \square If we have n objects then there are n! possible permutations 4! = 24, 10! = 3,628,800, $100! \approx 9.333 \times 10^{157}$ \square Number of atoms in the known Universe $\approx 10^{80}$ \square Number of seconds the Universe it thought to have existed for \approx 4.3×10^{17} \Box If every atom was a computer that could evaluate a trillion (10¹²) tours per second then a size 100 problem would take $\approx 10^{48}$ universes...

TSP Representation – Part 2

- ☐ In our previous example a possible tour might be represented as 1,4,2,3
- ☐ This would mean that we start at city 1, visit cities 4, then 2, then 3 and then back to city 1

Scoring a TSP Tour — Part 1

- \square If we are dealing with n cities then we will define a tour, T, as a permutation of the integers 1,...,n
 - \square We will define t_i as the *i*th value of T
 - \square I.e. the *i*th city we visit
 - \square Therefore t_1 is the start and end city
- \square We will define f(T) as the total cost/distanced travelled carrying out that tour

Scoring a TSP Tour — Part 2

 \Box f(T) is defined as follows:

$$f(T) = \left(\sum_{i=1}^{n-1} d(t_i, t_{i+1})\right) + d(t_n, t_1)$$

Thus if $T = \{1,4,2,3\}$ then

$$f(T)=d(t_1,t_2)+d(t_2,t_3)+d(t_3,t_4)+d(t_4,t_1)$$

$$f(T)=d(1,4)+d(4,2)+d(2,3)+d(3,1)$$

$$f(T)=5+2.5+2+4=13.5$$

If
$$T = \{1,2,3,4\}$$
 then

$$f(T)=d(1,2)+d(2,3)+d(3,4)+d(4,1)$$

$$f(T)=3+2+1.5+5=11.5$$

Solving the TSP

☑ We will now look at solving the TSP using a Hill
 Climbing algorithm
 ☑ We will need the following:
 ☑ The number of cities and the distances between each pair
 ☑ A representation and random starting point
 ☑ A fitness function

☐ A small change operator

Cities and Distances – Part 1

- \Box If we are provided with the number of cities (n) and a matrix containing all of the d(i,j) then we can move onto the next step
- ☐ However we might just be given the coordinates or map location of each city
- ☐ If this is the case then we need to compute each pair of distances
- \square We will assume that (x_i, y_i) is the location of city i on a map

Cities and Distances – Part 2

We can compute each d(i,j) using **Pythagoras's** theorem to get the **Euclidean** distance between city i and j

$$d(i, j) = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

Representation and Starting Point

```
☐ Representation will be a vector/array of integers
 containing a permutation of \{1,...,n\}
    ☐ How do we generate a random permutation?
    ☐ There are many ways to do this...
Algorithm 1. RandPerm(N)
Input: Number of cities N
1) Let P = list of length N, (|P|=N) where p_i=i
2) Let T = an empty list
3) While |P| > 0
4) Let i = UI(1, |P|)
5) Add p_i to the end of T
6) Delete the ith element (p;) from P
7) End While
Output: Random tour T
```

Fitness Function

- ☐ We will use the scoring function we discussed previously
- ☐ This is the length of the tour
 - Distance travelled
- ☐ We will try and minimise this value
- ☐ More details can be found in the laboratory worksheet

A Small Change

☐ We must make sure that our small change is valid
☐ If we make a change to T it must still be a permutation
☐ One such operator is the **Swap** operator
☐ We choose two random element of T, t_i and t_j where $i \neq j$ and then let $t_i = t_i$ and $t_j = t_i$

```
Algorithm 2. Swap(T)
Input: A tour (permutation) of size N
1) Let i=j=0
2) While i=j
3)    Let i = UI(1,|T|)
4)    Let j = UI(1,|T|)
5) End While
6) Let temp = t<sub>i</sub>, Let t<sub>i</sub> = t<sub>j</sub>, Let t<sub>j</sub> = temp
Output: Changed tour T
```

Quality of a TSP Solution

☐ It would be very useful if we knew whether a TSP solution was any good or not ☐ With the Scales and OneMax problems we had an idea of what we were aiming for \square E.g. A fitness of 0 (Scales) or n (OneMax) ☐ Does such a limit exist for a given instance of the TSP? There are many lower estimates or lower bounds for the TSP Most of them are very, very complex [mathematically] ☐ We will use one that is based upon Minimum Spanning Trees Not the most accurate however – but one of the "easiest" to understand

Recap: Minimum Spanning Trees

☐ A spanning tree is a sub-graph that is also a tree (no cycles) that contains all of the nodes of the super-graph ☐ With minimum number of edges ☐ A graph may have many spanning trees ☐ The cost of a spanning tree is the sum of all of the edge weights ☐ A minimum spanning tree (MST - there may be many) is the spanning tree with the minimum cost

Minimum Spanning Tree Example

Graph of cities

Spanning Tree, Cost = 10

Minimum
Spanning Tree,
Cost = 4

TSP and MST – Part 1

- ☐ We can use the length of the minimum spanning tree as an absolute lower limit on the fitness of a TSP solution
- ☐ The MST may/will not be a valid TSP solution
- ☐ The minimum value of a TSP solution can never be lower than the length of the corresponding MST

TSP and MST – Part 2

- \square Let D be a matrix such that $d_{ij}=d(i,j)$
 - \square I.e. The distance between city i and j
- \Box Let TSP(D) be a solution to the Travelling Salesman Problem applied to the distances in D
- \square Let MST(D) be the cost (length) of the Minimum Spanning Tree of D
- \square Then we have: $f(TSP(D)) \ge MST(D)$
- ☐ Hence we can define the efficiency as:

$$\frac{MST(D)}{f(TSP(D))} \times 100\% \le 100\%$$

TSP Applications

☐ DNA sequencing

■ Vehicle routing ☐ Snow ploughs ☐ Parcel delivery ☐ Etc.. Often you can mathematically transform a problem into the travelling salesman problem Computer wiring ☐ Manufacturing cell layout ☐ Scheduling (e.g. orders)

Next Lecture

- □ Next week is ASK week there is no lecture
- □ We will look at Bin Packing and Data Clustering for our next lecture

Next Laboratory

- ☐ The laboratory will involve running and comparing algorithms for solving the TSP
 - ☐ This worksheet is a little more complex than the others and thus might take a bit more time
 - Make sure you come to the laboratories!