Competitive Programming Reference

TryOmar's Algorithm Collection

A comprehensive collection of algorithms, data structures, and templates

August 5, 2025

Contents

1	Intr 1.1	roduct How t	ion to Use This Reference		
2	Dat	Data Structures			
	2.1	STL I	Basics		
		2.1.1	Important STL Concepts		
		2.1.2	Common STL Operations		
		2.1.3	Performance Considerations		
		2.1.4	Memory Management		
		2.1.5	Vectors and Arrays		
		2.1.6	Sets and Maps		
		2.1.7	Priority Queue and Heaps		
		2.1.8	Stack and Queue		
		2.1.9	Bitset		
	2.2	Advar	nced Data Structures		
		2.2.1	Segment Tree (Iterative)		
		2.2.2	Disjoint Set Union (DSU)		

1 Introduction

This document contains a comprehensive collection of algorithms, data structures, and templates for competitive programming. Each section includes implementation details, time complexity analysis, and usage examples.

1.1 How to Use This Reference

- Code Templates: Ready-to-use implementations
- Complexity Analysis: Time and space complexity for each algorithm
- Usage Examples: Practical examples and edge cases
- Notes: Important implementation details and optimizations

2 Data Structures

2.1 STL Basics

This section covers the essential C++ Standard Template Library (STL) data structures commonly used in competitive programming.

2.1.1 Important STL Concepts

- Containers: Data structures that hold objects (vector, set, map, etc.)
- Iterators: Objects that point to elements in containers
- Algorithms: Functions that operate on containers (sort, find, etc.)
- Function Objects: Objects that can be called like functions
- Allocators: Manage memory allocation for containers

2.1.2 Common STL Operations

- Insertion: insert(), push_back(), emplace()
- Deletion: erase(), pop_back(), clear()
- Access: at(), operator[], front(), back()
- Size: size(), empty(), capacity()
- Iteration: Range-based for loops, iterators, begin(), end()

2.1.3 Performance Considerations

- Vector: O(1) amortized insertion at end, O(n) insertion in middle
- Set/Map: O(log n) for insert, delete, search (Red-Black tree)
- Unordered Set/Map: O(1) average case, O(n) worst case (hash table)
- Stack/Queue: O(1) for push/pop operations
- **Priority Queue**: O(log n) for push/pop operations

2.1.4 Memory Management

- Vector: Automatically grows, use reserve() to pre-allocate
- Set/Map: Memory allocated per node, efficient for sparse data
- Unordered: Memory allocated in buckets, good for dense data
- Stack/Queue: Memory allocated as needed, efficient for LIFO/FIFO

2.1.5 Vectors and Arrays

1: Basic Vector Operations

```
1 // Vector initialization
 vector<int> v;
                              // Empty vector
 vector < int > v(5);
                              // Size 5, initialized with Os
                        // Size 5, initialized with 2s
 vector < int > v(5, 2);
5 vector < int > v = {1, 2, 3};
                              // Direct initialization
7 // Basic operations
                              // Add element to end
 v.push_back(4);
                              // Remove last element
9 v.pop_back();
                              // Get current size
10 v.size();
11 v.empty();
                              // Check if empty
12 v.front();
                              // First element
13 v.back();
                              // Last element
                              // Remove all elements
14 v.clear();
16 // Access and iteration
17 for(int i = 0; i < v.size(); i++) {</pre>
     18
19 }
20 for(int x : v) {
                              // Range-based for loop
     cout << x << " ";
21
22
```

2: 2D Vector Operations

```
1 // 2D vector initialization
 vector<vector<int>> grid = {
                                         // Direct init
    {1, 2, 3},
    {4, 5, 6},
    {7, 8, 9}
 };
 // Access elements
 10 grid[i][j] = value;
13 // Common operations
14 for(int i = 0; i < grid.size(); i++) {
    for(int j = 0; j < grid[i].size(); j++) {</pre>
15
        cout << grid[i][j] << " ";</pre>
16
17
    cout << "\n";
18
19 }
```

2.1.6 Sets and Maps

3: Set and Unordered Set

```
// Set (ordered)
 set <int> s;
                            // Ordered unique elements
3 s.insert(5);
                             // O(log n) insertion
4 s.erase(5);
                            // O(log n) deletion
5 auto it = s.find(5);
                            // O(log n) search
auto it = s.lower_bound(5); // First element >= 5
 auto it = s.upper_bound(5); // First element > 5
9 // Unordered Set (hash table)
unordered_set <int > us; // Unordered unique elements
us.insert(5);
                            // O(1) average case
12 us.erase(5);
                          // O(1) average case
                         // O(1) average case
auto it = us.find(5);
```

4: Map and Unordered Map

5: Multiset and Multimap Operations

2.1.7 Priority Queue and Heaps

Priority queues in C++ use comparators with reversed logic. By default, priority_queue<int> creates a max-heap.

6: Basic Priority Queue

```
1 // Max heap (default)
 priority_queue < int > maxHeap;
3 // Min heap using greater <int>
 priority_queue<int, vector<int>, greater<int>> minHeap;
 // Custom comparator for complex types
 struct Compare {
      bool operator()(const Point& a, const Point& b) {
          // Note: reversed logic compared to set/map
          if (a.x != b.x) return a.x > b.x;
9
          return a.y > b.y;
10
      }
11
12 };
priority_queue < Point, vector < Point >, Compare > pq;
```

2.1.8 Stack and Queue

7: Stack and Queue Operations

```
1 // Stack (LIFO)
stack<int> s;
                               // Add element
3 s.push(5);
                               // Remove top element
4 s.pop();
5 s.top();
                               // Access top element
6 s.empty();
                              // Check if empty
7 s.size();
                               // Get size
 // Queue (FIFO)
 queue < int > q;
                               // Add element
10 q.push(5);
                               // Remove front element
11 q.pop();
12 q.front();
                               // Access front element
13 q.back();
                               // Access back element
                               // Check if empty
14 q.empty();
15 q.size();
                               // Get size
16 // Deque (double-ended queue)
17 deque < int > dq;
dq.push_front(5);
                               // Add to front
dq.push_back(5);
                               // Add to back
                              // Remove from front
20 dq.pop_front();
21 dq.pop_back();
                              // Remove from back
22 dq.front();
                              // Access front
23 dq.back();
                              // Access back
```

2.1.9 Bitset

Bitset provides space-efficient storage for boolean values.

8: Bitset Operations

```
1 // Bitset initialization
bitset <32> bs;
                              // 32-bit bitset
                            // S2-bit bitset
// From binary string
3 bitset <32> bs("1010");
4 bitset <32> bs(42);
                              // From integer
6 // Basic operations
7 bs.set(5);
                              // Set bit at position 5
8 bs.reset(5);
                              // Reset bit at position 5
9 bs.flip(5);
                              // Flip bit at position 5
10 bs.test(5);
                              // Check if bit is set
                              // Count set bits
11 bs.count();
                              // Total number of bits
12 bs.size();
13
14 // Bitwise operations
15 bitset <32> a("1010"), b("1100");
16 auto c = a & b;
                            // AND
17 auto d = a | b;
                              // OR
                              // XOR
18 auto e = a ^ b;
                              // NOT
19 auto f = ~a;
21 // Useful for competitive programming
                        // Set all bits
22 bs.set();
bs.reset();
                              // Reset all bits
24 bs.flip();
                             // Flip all bits
```

2.2 Advanced Data Structures

2.2.1 Segment Tree (Iterative)

Efficient range query data structure supporting point updates and range queries.

9: Segment Tree for Range Sum

```
struct SegmentTree {
      int n;
2
3
      vector < int > tree;
4
      SegmentTree(const vector<int>& v) {
5
           n = v.size();
6
           tree.resize(n << 1);</pre>
7
           for (int i = 0; i < n; i++)</pre>
                tree[i + n] = v[i];
           for (int i = n - 1; i > 0; i--)
10
                tree[i] = tree[i << 1] + tree[i << 1 | 1];</pre>
11
      }
12
13
      void update(int pos, int value) {
14
           tree[pos += n] = value;
15
           for (pos >>= 1; pos > 0; pos >>= 1)
16
                tree[pos] = tree[pos << 1] + tree[pos << 1 | 1];</pre>
17
      }
18
19
      int query(int 1, int r) { // inclusive range [1, r]
20
           int res = 0;
21
           for (1 += n, r += n + 1; 1 < r; 1 >>= 1, r >>= 1) {
22
                if (1 & 1) res += tree[1++];
23
                if (r & 1) res += tree[--r];
24
           }
25
           return res;
26
      }
^{27}
^{28}
  };
```

10: Segment Tree Example Usage

```
int main() {
    vector < int > a = {2, 1, 5, 3, 4};
    SegmentTree st(a);

cout << st.query(1, 3) << "\n"; // 1 + 5 + 3 = 9
    st.update(2, 0);
    cout << st.query(1, 3) << "\n"; // 1 + 0 + 3 = 4
}</pre>
```

11: Segment Tree for Range Maximum

```
struct SegmentTree {
2
      int n;
3
      vector<int> tree;
4
5
      SegmentTree(const vector<int>& v) {
6
           n = v.size();
           tree.resize(n << 1);</pre>
7
           for (int i = 0; i < n; i++)</pre>
8
                tree[i + n] = v[i];
9
           for (int i = n - 1; i > 0; i--)
10
                tree[i] = max(tree[i << 1], tree[i << 1 | 1]);</pre>
11
      }
12
13
      void update(int pos, int value) {
14
           tree[pos += n] = value;
15
           for (pos >>= 1; pos > 0; pos >>= 1)
16
                tree[pos] = max(tree[pos << 1], tree[pos << 1 | 1]);</pre>
17
      }
18
19
      int query(int 1, int r) { // inclusive range [1, r]
20
           int res = INT_MIN;
21
           for (1 += n, r += n + 1; 1 < r; 1 >>= 1, r >>= 1) {
22
               if (1 & 1) res = max(res, tree[1++]);
23
               if (r & 1) res = max(res, tree[--r]);
24
25
           return res;
26
27
      }
28 };
```

12: Segment Tree Max Example Usage

2.2.2 Disjoint Set Union (DSU)

Optimized union-find data structure with path compression and union by size.

13: DSU with Vector

```
struct DSU {
2
      vector<int> parent, size;
3
      DSU(int n) {
4
           parent.resize(n);
5
           size.resize(n);
6
           for (int i = 0; i < n; i++) {</pre>
7
8
               parent[i] = i;
                size[i] = 1;
9
           }
10
      }
11
12
      int findParent(int x) {
13
           if (parent[x] == x) return x;
14
           return parent[x] = findParent(parent[x]);
15
      }
16
17
      bool sameGroup(int x, int y) {
18
           return findParent(x) == findParent(y);
19
20
21
      void merge(int x, int y) {
22
           int rootX = findParent(x);
           int rootY = findParent(y);
24
           if (rootX == rootY) return;
25
           if (size[rootX] < size[rootY]) swap(rootX, rootY);</pre>
26
           parent[rootY] = rootX;
27
           size[rootX] += size[rootY];
28
      }
29
30
  };
```

14: DSU Example Usage

```
int main() {
      DSU dsu(10);
2
3
      dsu.merge(1, 2);
4
      dsu.merge(2, 3);
5
      dsu.merge(4, 5);
6
7
      cout << (dsu.sameGroup(1, 3)) << "\n"; // 1 (true)
8
      cout << (dsu.sameGroup(1, 5)) << "\n"; // 0 (false)
9
10 }
```

15: DSU with Unordered Map

```
struct DSUMap {
2
      unordered_map<int, int> parent, size;
3
      void makeSet(int x) {
4
5
           if (!parent.count(x)) {
               parent[x] = x;
6
7
               size[x] = 1;
           }
8
      }
9
10
      int findParent(int x) {
11
           makeSet(x);
12
           if (parent[x] == x) return x;
13
           return parent[x] = findParent(parent[x]);
14
      }
15
16
      bool sameGroup(int x, int y) {
17
           return findParent(x) == findParent(y);
18
19
20
      void merge(int x, int y) {
21
           int rootX = findParent(x);
22
           int rootY = findParent(y);
23
           if (rootX == rootY) return;
24
           if (size[rootX] < size[rootY]) swap(rootX, rootY);</pre>
25
           parent[rootY] = rootX;
26
           size[rootX] += size[rootY];
27
      }
28
 };
29
```

16: DSU Map Example Usage

```
int main() {
    DSUMap dsu;
    dsu.merge(100, 200);
    dsu.merge(200, 300);
    dsu.merge(400, 500);

cout << dsu.sameGroup(100, 300) << "\n"; // 1 (true)
    cout << dsu.sameGroup(100, 500) << "\n"; // 0 (false)
}</pre>
```