Spotify & Youtube Performance im Vergleich

Collective Intelligence - SoSe2023

Projekt von Sebastian Braun & Sandra Kiefer

Inhaltsverzeichnis

- Motivation
- Explorative Datenanalyse (EDA)
- Lösungswege
 - → Predict Views/Likes/Kommentare/Streams und Klassifizierung Popularität
- Herausforderungen
- Evaluationsergebnisse
- Diskussion
 - → Vergleich zu State-of-the-Art, Eigenschaften der Popularitätsklassen
- Zusammenfassung
- Ausblick

Motivation

- Performance von Liedern anhand ihrer Eigenschaften vorhersagen
- Objektive Einschätzung der Qualität, Popularität und kommerzieller Erfolgschancen
- Besonders wertvoll für Musikproduzenten und Plattenlabels
- Zielgruppen analysieren
- Gezieltes Marketing und maximieren der Reichweite und Erfolgschancen
- Schwachstellen eines Liedes analysieren

Explorative Datenanalyse

- Datensatz wurde erhoben am 07. Februar 2023
- Umfasst Einträge von 20717 Liedern
- Top 10 Songs verschiedener Künstler
- Aufrufzahlen von YouTube und Spotify
- Eigenschaften der Lieder:
 - → Danceability, Energy, Key, Loudness, Speechiness, Acousticness, Instrumentalness, Liveness, Valence und Tempo

Top 5 YouTube vs. Spotify

Eigenschaften der Top Hits

Different properties for top 5 songs based on Spotify streams

Different properties for top 5 songs based on YouTube views

Lösungswege - Predict Views/Likes/Streams ...

Vorhersage	Linear Regression (MSE)	Complex Regression (MSE)
Views	13 845 475 698 058 648	3 186 447 608 515 025 408
Likes	332 489 855 901	51 371 805 025 899
Kommentare	8 512 847 112	30 114 110 934
Streams	29 869 146 780 298 188	167 281 257 616 288 192

→ keine aussagekräftigen Ergebnisse

(da ein Wert in einem sehr großen Wertebereich vorhergesagt werden muss)

Herausforderungen

Lösungswege - Klassifizierung Popularität

Popularitätsklasse Low Popularity		Moderate	Good	High	Very High	
		Popularity	Popularity	Popularity	Popularity	
Popularitätswert (%)	[0-30]	[31-50]	[51-80]	[81-90]	[91-100]	

Berechnung des Wertes / der Klasse aus den Views, Likes, Kommentare und Streams

Logistic Regression K Nearest Neighbor Support Vector Machine

Naive Bayes Decision Tree Random Forest Gradient Boosting

Evaluationsergebnisse - Übersicht

Modell	Accuracy	Precision	Recall		
Gradient Boosting	97.71 %	97.35 %	97.35 %		
KNN	95.41 %	95.02 %	94.53 %		
SVM	95.27 %	94.73 %	94.56 %		
Random Forest	94.85 %	95.09 %	92.88 %		
Naive-Bayes	88.46 %	87.07 %	86.25 %		
Logistic Regression	83.52 %	82.63 %	82.92 %		
Decision Tree	79.55 %	79.88 %	75.61 %		

Evaluationsergebnisse - schlechteste Klassifizierung

Decison Tree

	TP	TN	FP	FN	TPR	TNR	FPR	FNR	Precision	Recall	F1
Low Popularity	678.0	1796.0	256.0	146.0	0.8228	0.8752	0.1248	0.1772	0.7259	0.8228	0.7713
Moderate Popularity	177.0	2480.0	84.0	135.0	0.5673	0.9672	0.0328	0.4327	0.6782	0.5673	0.6178
Good Popularity	789.0	1936.0	90.0	61.0	0.9282	0.9556	0.0444	0.0718	0.8976	0.9282	0.9127
High Popularity	424.0	2132.0	146.0	174.0	0.709	0.9359	0.0641	0.291	0.7439	0.709	0.726
Very High Popularity	220.0	2572.0	12.0	72.0	0.7534	0.9954	0.0046	0.2466	0.9483	0.7534	0.8397

Evaluationsergebnisse - sehr gute Klassifizierung

K-Nearest-Neighbor

	TP	TN	FP	FN	TPR	TNR	FPR	FNR	Precision	Recall	F1
Low Popularity	786.0	2012.0	40.0	38.0	0.9539	0.9805	0.0195	0.0461	0.9516	0.9539	0.9527
Moderate Popularity	281.0	2534.0	30.0	31.0	0.9006	0.9883	0.0117	0.0994	0.9035	0.9006	0.9021
Good Popularity	839.0	2004.0	22.0	11.0	0.9871	0.9891	0.0109	0.0129	0.9744	0.9871	0.9807
High Popularity	562.0	2244.0	34.0	36.0	0.9398	0.9851	0.0149	0.0602	0.943	0.9398	0.9414
Very High Popularity	276.0	2578.0	6.0	16.0	0.9452	0.9977	0.0023	0.0548	0.9787	0.9452	0.9617

Diskussion

Wissenschaftliche Veröffentlichung

"Predicting Music
Popularity Using Spotify
and YouTube Features"

- selbstständige
 Musik-Feature-Extraction
- bestes Modell = Random
 Forest mit 79,6% Accuracy

Artikel

"Effect of Feature
selection on the
Accuracy of Music
Popularity Classification
Using Machine Learning
Algorithms"

- Einbeziehung von Social-Media-Merkmalen
- Modell mit 95,15% Accuracy
- Optimierung der Laufzeit

Python Notebook auf Kaggle

"Youtube/Spotify EDA and Simple Regression"

- Fokus auf die Visualisierung des Datensatzes
- gescheitertes Prediciton Modell mit Linear Regression

Eigenschaften der Popularitätsklassen im Vergleich

Eigenschaften der höchsten Popularität

Zusammenfassung

- Erfolgreiche Entwicklung eines Modells zur Vorhersage der Performance
- Erste Baseline zur Vorhersage genauer Zahlen erfolglos
- Zweite Baseline zur Klassifizierung on Popularitätsklassen
- Zweite Baseline mit verschiedenen Algorithmen getestet und verbessert
- Bestes Ergebnis für Gradient Boosting mit 97% Accuracy, Precision & Recall
- Einfluss der Eigenschaften anhand Box Whisker Plots ablesen
- Eigenschaften populärer Lieder: geringer akustischer Anteil, sehr tanzbar, energetisch und fröhlich, Gleichgewicht zwischen Gesang und Melodie, Geschwindigkeit um 120 BPM

Ausblick

- weitere Unterteilung in noch mehr Popularitätsklassen
 - → um genauere (kleinschrittigere) Vorhersagen/Klassifizierungen zu treffen
- eigene Popularitätsklassen für Views, Likes, Kommentare und Streams
 - → um Aussagen über nur einen Parameter tätigen zu können
- Hinzunahme weiterer Features in den Datensatz
 - → um genauere Klassifizierung der Lieder zu ermöglichen
 - → Betrachtung der Korrelationen ist dabei wichtig