第 9 章 g: 多元函数的极值

数学系 梁卓滨

2019-2020 学年 II

Outline

1. 多元函数的极值点

2. 条件极值

3. 求解多元函数的最值

We are here now...

1. 多元函数的极值点

2. 条件极值

3. 求解多元函数的最值

假设
$$y = f(x)$$
 定义在区间 $[a, b]$ 上,如图

		极值点	驻点	最值点
	а			
	<i>x</i> ₁			
	x_2			
	X 3			
X	<i>x</i> ₄			
	b			

		极值点	驻点	最值点
	а			
	<i>x</i> ₁	极小值点		
	<i>x</i> ₂			
	X 3			
X	x_4			
	b			

		极值点	驻点	最值点
	а			
	x_1	极小值点		
	<i>x</i> ₂	极大值点		
	<i>X</i> ₃			
х	<i>x</i> ₄			
	b			

		极值点	驻点	最值点
	а			
	<i>x</i> ₁	极小值点		
	x_2	极大值点		
	X 3	极小值点		
χ	<i>X</i> ₄			
	b			

		极值点	驻点	最值点
	а			
	<i>x</i> ₁	极小值点		
	<i>x</i> ₂	极大值点		
	X 3	极小值点		
х	x_4	极大值点		
	b			

		极值点	驻点	最值点
	а			
	<i>x</i> ₁	极小值点	√	
	<i>X</i> ₂	极大值点		
	X 3	极小值点		
X	x_4	极大值点		
	b			

		极值点	驻点	最值点
	а			
	<i>x</i> ₁	极小值点	√	
	<i>X</i> ₂	极大值点	×(不可导)	
	X 3	极小值点		
х	x_4	极大值点		
	b			

		极值点	驻点	最值点
	а			
	x_1	极小值点	✓	
	x_2	极大值点	×(不可导)	
	X 3	极小值点	✓	
χ	<i>X</i> ₄	极大值点		
	b			

		极值点	驻点	最值点
	а			
	<i>x</i> ₁	极小值点	√	
	x_2	极大值点	×(不可导)	
	X 3	极小值点	✓	
χ	x_4	极大值点	✓	
	b			

		极值点	驻点	最值点
	а			×
	<i>x</i> ₁	极小值点	√	
	X ₂	极大值点	×(不可导)	
	X 3	极小值点	✓	
χ	x_4	极大值点	✓	
	b			

		极值点	驻点	最值点
	а			×
	<i>x</i> ₁	极小值点	√	×
	<i>X</i> ₂	极大值点	×(不可导)	
	X 3	极小值点	✓	
х	x_4	极大值点	✓	
	b			

		极值点	驻点	最值点
	а			×
	x_1	极小值点	✓	×
	<i>X</i> ₂	极大值点	×(不可导)	×
	X 3	极小值点	√	
X	x_4	极大值点	✓	
	b			

		极值点	驻点	最值点
	а			×
	x_1	极小值点	✓	×
	x_2	极大值点	×(不可导)	×
	X 3	极小值点	✓	×
X	x_4	极大值点	✓	
	b			

		极值点	驻点	最值点
	а			×
	<i>x</i> ₁	极小值点	√	×
	<i>X</i> ₂	极大值点	×(不可导)	×
	X 3	极小值点	✓	×
X	x_4	极大值点	✓	最大值点
	b			

	极值点	驻点	最值点
а			×
x_1	极小值点	✓	×
<i>x</i> ₂	极大值点	×(不可导)	×
X 3		✓	×
<i>x</i> ₄	极大值点	√	最大值点
b			最小值点
	<i>X</i> ₁ <i>X</i> ₂ <i>X</i> ₃	a x1 极小值点 x2 极大值点 x3 极小值点	a x1 极小值点 √ x2 极大值点 ×(不可导) x3 极小值点 √

定义 在点 (x_0, y_0) 的某个邻域内

• 如果总是成立

$$f(x, y) \le f(x_0, y_0)$$
, 其中 $(x, y) \ne (x_0, y_0)$

则称点 (x_0, y_0) 是函数 f(x, y) 极大值点, $f(x_0, y_0)$ 是极大值

定义 在点 (x_0, y_0) 的某个邻域内

• 如果总是成立

$$f(x, y) \le f(x_0, y_0)$$
, 其中 $(x, y) \ne (x_0, y_0)$

则称点 (x_0, y_0) 是函数 f(x, y) 极大值点, $f(x_0, y_0)$ 是极大值

• 如果总是成立

$$f(x, y) \ge f(x_0, y_0)$$
, 其中 $(x, y) \ne (x_0, y_0)$

则称点 (x_0, y_0) 是函数 f(x, y) 极小值点, $f(x_0, y_0)$ 是极小值

定义 在点 (x_0, y_0) 的某个邻域内

• 如果总是成立

$$f(x, y) \le f(x_0, y_0)$$
, 其中 $(x, y) \ne (x_0, y_0)$

则称点 (x_0, y_0) 是函数 f(x, y) 极大值点, $f(x_0, y_0)$ 是极大值

• 如果总是成立

$$f(x, y) \ge f(x_0, y_0)$$
, 其中 $(x, y) \ne (x_0, y_0)$

则称点 (x_0, y_0) 是函数 f(x, y) 极小值点, $f(x_0, y_0)$ 是极小值

极大、极小值点统称极值点;极大、极小值统称极值.

- *z* = *xy* 点 *p*₀(0, 0) 是

- $z = x^2 + y^2$ 点 $p_0(0, 0)$ 是极小值点;
- *z* = *xy* 点 *p*₀(0, 0) 是

• $z = x^2 + y^2$ 点 $p_0(0, 0)$ 是极小值点;

- *z* = *xy* 点 *p*₀(0, 0) 是

• $z = x^2 + y^2$ 点 $p_0(0, 0)$ 是极小值点;

- $z = -\sqrt{x^2 + y^2}$ 点 $p_0(0, 0)$ 是极大值点;
- *z* = *xy* 点 *p*₀(0, 0) 是

- $z = x^2 + y^2$ 点 $p_0(0, 0)$ 是极小值点;
- $z = -\sqrt{x^2 + y^2}$ 点 $p_0(0, 0)$ 是极大值点;

- $z = x^2 + y^2$ 点 $p_0(0, 0)$ 是极小值点;
- $z = -\sqrt{x^2 + y^2}$ 点 $p_0(0, 0)$ 是极大值点;
- z = xy点 $p_0(0, 0)$ 不是极值点.

- $z = x^2 + y^2$ 点 $p_0(0,0)$ 是极小值点;
- $z = -\sqrt{x^2 + y^2}$ 点 $p_0(0,0)$ 是极大值点;
- \circ z = xy点 $p_0(0,0)$ 不是极值点.

- $z = x^2 + y^2$ 点 $p_0(0, 0)$ 是极小值点;
- $z = -\sqrt{x^2 + y^2}$ 点 $p_0(0, 0)$ 是极大值点;
- z = xy点 $p_0(0, 0)$ 不是极值点.

问题

■ z = xy 是否有极值点?

• $z = x^2 + y^2$ 点 $p_0(0, 0)$ 是极小值点;

• $z = -\sqrt{x^2 + y^2}$ 点 $p_0(0, 0)$ 是极大值点;

• z = xy点 $p_0(0, 0)$ 不是极值点.

问题

- *z* = *xy* 是否有极值点?
- 是否有一般方法求出函数的极值点? 如:

$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$

定理 设 z = f(x, y) 在内点 (x_0, y_0) 处存在偏导数,则 (x_0, y_0) 是极值点的必要条件是

$$f_x(x_0, y_0) = 0, \quad f_y(x_0, y_0) = 0.$$

定理 设 z = f(x, y) 在内点 (x_0, y_0) 处存在偏导数,则 (x_0, y_0) 是极值点的必要条件是

$$f_x(x_0, y_0) = 0, \quad f_y(x_0, y_0) = 0.$$

证明

1. 一元函数 $x \mapsto f(x, y_0)$

定理 设 z = f(x, y) 在内点 (x_0, y_0) 处存在偏导数,则 (x_0, y_0) 是极值 点的必要条件是

$$f_x(x_0, y_0) = 0, \quad f_y(x_0, y_0) = 0.$$

证明

1. 一元函数 $x \mapsto f(x, y_0)$ 具有极值点 $x = x_0$,

$$f_x(x_0,\,y_0)=0,\quad f_y(x_0,\,y_0)=0.$$

证明

1. 一元函数 $x \mapsto f(x, y_0)$ 具有极值点 $x = x_0$,所以

$$\frac{d}{dx}[f(x, y_0)]\big|_{x=x_0}=0$$

$$f_x(x_0, y_0) = 0, \quad f_y(x_0, y_0) = 0.$$

证明

1. 一元函数 $x \mapsto f(x, y_0)$ 具有极值点 $x = x_0$,所以

$$f_x(x_0, y_0) = \frac{d}{dx} [f(x, y_0)] \Big|_{x=x_0} = 0$$

$$f_x(x_0, y_0) = 0, \quad f_y(x_0, y_0) = 0.$$

证明

1. 一元函数 $x \mapsto f(x, y_0)$ 具有极值点 $x = x_0$,所以

$$f_x(x_0, y_0) = \frac{d}{dx} [f(x, y_0)] \big|_{x=x_0} = 0$$

2. 一元函数 $y \mapsto f(x_0, y)$ 具有极值点 $y = y_0$,

$$f_x(x_0, y_0) = 0, \quad f_y(x_0, y_0) = 0.$$

证明

1. 一元函数 $x \mapsto f(x, y_0)$ 具有极值点 $x = x_0$,所以

$$f_X(x_0, y_0) = \frac{d}{dx} [f(x, y_0)] \big|_{x=x_0} = 0$$

2. 一元函数 $y \mapsto f(x_0, y)$ 具有极值点 $y = y_0$,所以

$$\frac{d}{dy}[f(x_0, y)]\Big|_{y=y_0} = 0$$

$$f_x(x_0, y_0) = 0, \quad f_y(x_0, y_0) = 0.$$

证明

1. 一元函数 $x \mapsto f(x, y_0)$ 具有极值点 $x = x_0$,所以

$$f_x(x_0, y_0) = \frac{d}{dx} [f(x, y_0)] \big|_{x=x_0} = 0$$

2. 一元函数 $y \mapsto f(x_0, y)$ 具有极值点 $y = y_0$,所以

$$f_y(x_0, y_0) = \frac{d}{dy} [f(x_0, y)] \Big|_{y=y_0} = 0$$

$$f_x(x_0, y_0) = 0, \quad f_y(x_0, y_0) = 0.$$

证明

1. 一元函数 $x \mapsto f(x, y_0)$ 具有极值点 $x = x_0$,所以

$$f_{x}(x_{0}, y_{0}) = \frac{d}{dx} [f(x, y_{0})] \big|_{x=x_{0}} = 0$$

2. 一元函数 $y \mapsto f(x_0, y)$ 具有极值点 $y = y_0$,所以

$$f_y(x_0, y_0) = \frac{d}{dy} [f(x_0, y)] \Big|_{y=y_0} = 0$$

定义 使偏导数为零的点,称为驻点

$$f_x(x_0, y_0) = 0, \quad f_y(x_0, y_0) = 0.$$

证明

1. 一元函数 $x \mapsto f(x, y_0)$ 具有极值点 $x = x_0$,所以

$$f_{x}(x_{0}, y_{0}) = \frac{d}{dx} [f(x, y_{0})] \Big|_{x=x_{0}} = 0$$

2. 一元函数 $y \mapsto f(x_0, y)$ 具有极值点 $y = y_0$,所以

$$f_y(x_0, y_0) = \frac{d}{dy} [f(x_0, y)] \Big|_{y=y_0} = 0$$

定义 使偏导数为零的点,称为驻点

注 如果函数存在偏导数,则 {极值点} ⊂ {驻点}

例1点 (0,0)是 $z = x^2 + y^2$ 的极小值点,从而也是驻点.

$$z_x = z_y =$$

$$\begin{cases} z_X = 2x \\ z_y = 2y \end{cases}$$

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_x(0, 0) = 0 \\ z_y(0, 0) = 0 \end{cases}$$

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_x(0, 0) = 0 \\ z_y(0, 0) = 0 \end{cases}$$

例 2 点 (0, 0) 是 $z = -\sqrt{x^2 + y^2}$ 的极大值点,但不是驻点:

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_x(0, 0) = 0 \\ z_y(0, 0) = 0 \end{cases}$$

例 2 点
$$(0,0)$$
 是 $z=-\sqrt{x^2+y^2}$ 的极大值点,但不是驻点:一阶偏导
$$z_x(0,0),\quad z_y(0,0)$$

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_x(0, 0) = 0 \\ z_y(0, 0) = 0 \end{cases}$$

例 2 点
$$(0,0)$$
 是 $z = -\sqrt{x^2 + y^2}$ 的极大值点,但不是驻点:一阶偏导 $z_x(0,0)$, $z_v(0,0)$

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_x(0, 0) = 0 \\ z_y(0, 0) = 0 \end{cases}$$

例 2 点
$$(0,0)$$
 是 $z = -\sqrt{x^2 + y^2}$ 的极大值点,但不是驻点:一阶偏导 $z_x(0,0)$, $z_v(0,0)$

$$(z(x,0) = \frac{\frac{d}{dx}z(x,0)|_{x=0} =$$

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_x(0, 0) = 0 \\ z_y(0, 0) = 0 \end{cases}$$

例 2 点
$$(0,0)$$
 是 $z = -\sqrt{x^2 + y^2}$ 的极大值点,但不是驻点:一阶偏导 $z_x(0,0)$, $z_v(0,0)$

$$(z(x,0) = -\sqrt{x^2} = \frac{\frac{d}{dx}z(x,0)|_{x=0} =$$

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_x(0, 0) = 0 \\ z_y(0, 0) = 0 \end{cases}$$

例 2 点
$$(0,0)$$
 是 $z = -\sqrt{x^2 + y^2}$ 的极大值点,但不是驻点:一阶偏导 $z_x(0,0)$, $z_v(0,0)$

$$(z(x,0) = -\sqrt{x^2} = -|x|, \frac{d}{dx}z(x,0)|_{x=0} =$$

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_x(0, 0) = 0 \\ z_y(0, 0) = 0 \end{cases}$$

例 2 点
$$(0,0)$$
 是 $z = -\sqrt{x^2 + y^2}$ 的极大值点,但不是驻点:一阶偏导 $z_x(0,0)$, $z_v(0,0)$

$$(z(x,0) = -\sqrt{x^2} = -|x|, \frac{d}{dx}z(x,0)|_{x=0} = -\frac{d}{dx}|x||_{x=0}$$

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_x(0, 0) = 0 \\ z_y(0, 0) = 0 \end{cases}$$

例 2 点
$$(0,0)$$
 是 $z = -\sqrt{x^2 + y^2}$ 的极大值点,但不是驻点:一阶偏导 $z_x(0,0)$, $z_y(0,0)$

$$(z(x,0) = -\sqrt{x^2} = -|x|, \frac{d}{dx}z(x,0)|_{x=0} = -\frac{d}{dx}|x||_{x=0}$$
 不存在)

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_x(0, 0) = 0 \\ z_y(0, 0) = 0 \end{cases}$$

例 2 点
$$(0,0)$$
 是 $z = -\sqrt{x^2 + y^2}$ 的极大值点,但不是驻点:一阶偏导 $z_x(0,0)$, $z_y(0,0)$

不存在.

$$(z(x,0) = -\sqrt{x^2} = -|x|, \frac{d}{dx}z(x,0)\big|_{x=0} = -\frac{d}{dx}|x|\big|_{x=0}$$
 不存在)

例 3(驻点不一定是极值点) 设 z = xy.

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_x(0, 0) = 0 \\ z_y(0, 0) = 0 \end{cases}$$

例 2 点
$$(0,0)$$
 是 $z = -\sqrt{x^2 + y^2}$ 的极大值点,但不是驻点:一阶偏导 $z_x(0,0)$, $z_y(0,0)$

不存在.

$$(z(x,0) = -\sqrt{x^2} = -|x|, \frac{d}{dx}z(x,0)\big|_{x=0} = -\frac{d}{dx}|x|\big|_{x=0}$$
 不存在)

例3(**驻点不一定是极值点**) 设z = xy. 点(0,0)是驻点:

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_x(0, 0) = 0 \\ z_y(0, 0) = 0 \end{cases}$$

例 2 点
$$(0,0)$$
 是 $z = -\sqrt{x^2 + y^2}$ 的极大值点,但不是驻点:一阶偏导 $z_x(0,0)$, $z_v(0,0)$

不存在.

$$(z(x,0) = -\sqrt{x^2} = -|x|, \frac{d}{dx}z(x,0)|_{x=0} = -\frac{d}{dx}|x||_{x=0}$$
 不存在)

例3(驻点不一定是极值点) 设z = xy. 点 (0,0) 是驻点:

$$\begin{cases} z_X = y \\ z_Y = x \end{cases}$$

$$\begin{cases} z_x = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_x(0, 0) = 0 \\ z_y(0, 0) = 0 \end{cases}$$

例 2 点
$$(0,0)$$
 是 $z = -\sqrt{x^2 + y^2}$ 的极大值点,但不是驻点:一阶偏导 $z_x(0,0)$, $z_v(0,0)$

不存在.

$$(z(x,0) = -\sqrt{x^2} = -|x|, \frac{d}{dx}z(x,0)|_{x=0} = -\frac{d}{dx}|x||_{x=0}$$
 不存在)

例3(**驻点不一定是极值点**) 设z = xy. 点(0,0)是驻点:

$$\begin{cases} z_x = y \\ z_y = x \end{cases} \implies \begin{cases} z_x(0, 0) = 0 \\ z_y(0, 0) = 0 \end{cases}$$

$$\begin{cases} z_X = 2x \\ z_y = 2y \end{cases} \implies \begin{cases} z_X(0, 0) = 0 \\ z_Y(0, 0) = 0 \end{cases}$$

例 2 点
$$(0,0)$$
 是 $z = -\sqrt{x^2 + y^2}$ 的极大值点,但不是驻点: 一阶偏导 $z_x(0,0)$, $z_y(0,0)$

不存在.

$$(z(x,0) = -\sqrt{x^2} = -|x|, \frac{d}{dx}z(x,0)|_{x=0} = -\frac{d}{dx}|x||_{x=0}$$
 不存在)

例 3(驻点不一定是极值点) 设 z = xy. 点 (0, 0) 是驻点:

 $\begin{cases} z_X = y \\ z_Y = x \end{cases} \implies \begin{cases} z_X(0, 0) = 0 \\ z_Y(0, 0) = 0 \end{cases}$

$$(2y = x)$$
 ($2y(0, 0)$) 但点 $(0, 0)$ 不是极值点.

例1设 $z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$,求驻点.

例1设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
,求驻点.

$$\begin{cases} z_X = \\ z_Y = \end{cases}$$

例1设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
, 求驻点.

$$\begin{cases} z_x = 3x^2 + 6x - 9 \\ z_y = \end{cases}$$

例1设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
,求驻点.

$$\begin{cases} z_x = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

例1 设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
, 求驻点.

$$\begin{cases} z_x = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases}$$

例1 设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
, 求驻点.

$$\begin{cases} z_x = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Longrightarrow \begin{cases}$$

例1 设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
, 求驻点.

$$\begin{cases} z_x = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Longrightarrow \begin{cases} 3(x+3)(x-1) = 0 \\ \end{cases}$$

例1 设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
,求驻点.

$$\begin{cases} z_x = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Longrightarrow \begin{cases} 3(x+3)(x-1) = 0 \\ -3y(y-2) = 0 \end{cases}$$

例1设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
,求驻点.

$$\begin{cases} z_x = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Longrightarrow \begin{cases} 3(x+3)(x-1) = 0 \\ -3y(y-2) = 0 \end{cases} \Longrightarrow \begin{cases} x = 0 \\ y = 0 \end{cases}$$

例1设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
,求驻点.

$$\begin{cases} z_x = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Longrightarrow \begin{cases} 3(x+3)(x-1) = 0 \\ -3y(y-2) = 0 \end{cases} \Longrightarrow \begin{cases} x = -3, 1 \\ y = 0 \end{cases}$$

例1设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
,求驻点.

$$\begin{cases} z_x = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Longrightarrow \begin{cases} 3(x+3)(x-1) = 0 \\ -3y(y-2) = 0 \end{cases} \Longrightarrow \begin{cases} x = -3, 1 \\ y = 0, 2 \end{cases}$$

例1设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
,求驻点.

$$\begin{cases} z_x = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

求解方程组

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Longrightarrow \begin{cases} 3(x+3)(x-1) = 0 \\ -3y(y-2) = 0 \end{cases} \Longrightarrow \begin{cases} x = -3, 1 \\ y = 0, 2 \end{cases}$$

所以驻点为

y = 2		
y = 0		
	x = -3	x = 1

例1 设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
, 求驻点.

$$\begin{cases} z_x = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

求解方程组

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Longrightarrow \begin{cases} 3(x+3)(x-1) = 0 \\ -3y(y-2) = 0 \end{cases} \Longrightarrow \begin{cases} x = -3, 1 \\ y = 0, 2 \end{cases}$$

y = 2		
y = 0	(-3, 0)	
	x = -3	x = 1

例1 设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
, 求驻点.

$$\begin{cases} z_x = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

求解方程组

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Longrightarrow \begin{cases} 3(x+3)(x-1) = 0 \\ -3y(y-2) = 0 \end{cases} \Longrightarrow \begin{cases} x = -3, 1 \\ y = 0, 2 \end{cases}$$

y = 2	(-3, 2)	
y = 0	(-3, 0)	
	x = -3	x = 1

例1 设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
, 求驻点.

$$\begin{cases} z_x = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

求解方程组

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Longrightarrow \begin{cases} 3(x+3)(x-1) = 0 \\ -3y(y-2) = 0 \end{cases} \Longrightarrow \begin{cases} x = -3, 1 \\ y = 0, 2 \end{cases}$$

y = 2	(-3, 2)	
y = 0	(-3, 0)	(1, 0)
	x = -3	x = 1

例1 设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
, 求驻点.

$$\begin{cases} z_x = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

求解方程组

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Longrightarrow \begin{cases} 3(x+3)(x-1) = 0 \\ -3y(y-2) = 0 \end{cases} \Longrightarrow \begin{cases} x = -3, 1 \\ y = 0, 2 \end{cases}$$

y = 2	(-3, 2)	
y = 0	(-3, 0)	(1, 0)
	x = -3	x = 1

例1 设
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
,求驻点.

$$\begin{cases} z_x = 3x^2 + 6x - 9 \\ z_y = -3y^2 + 6y \end{cases}$$

求解方程组

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Longrightarrow \begin{cases} 3(x+3)(x-1) = 0 \\ -3y(y-2) = 0 \end{cases} \Longrightarrow \begin{cases} x = -3, 1 \\ y = 0, 2 \end{cases}$$

所以驻点为

$$y = 2$$
 (-3, 2) (1, 2)
 $y = 0$ (-3, 0) (1, 0)
 $x = -3$ $x = 1$

例2 求 $z = x^3 + y^3 - 3xy$,求驻点.

$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$

解求一阶偏导

$$z_x = z_y =$$

解求一阶偏导

$$\begin{cases} z_x = 3x^2 - 3y \\ z_y = \end{cases}$$

解求一阶偏导

$$\begin{cases} z_x = 3x^2 - 3y \\ z_y = 3y^2 - 3x \end{cases}$$

解 求一阶偏导

$$\begin{cases} z_x = 3x^2 - 3y \\ z_y = 3y^2 - 3x \end{cases}$$

$$\begin{cases} z_x = 3x^2 - 3y = 0 \\ z_y = 3y^2 - 3x = 0 \end{cases}$$

解求一阶偏导

$$\begin{cases} z_x = 3x^2 - 3y \\ z_y = 3y^2 - 3x \end{cases}$$

$$\begin{cases} z_x = 3x^2 - 3y = 0 \\ z_y = 3y^2 - 3x = 0 \end{cases} \implies \begin{cases}$$

解求一阶偏导

$$\begin{cases} z_x = 3x^2 - 3y \\ z_y = 3y^2 - 3x \end{cases}$$

$$\begin{cases} z_x = 3x^2 - 3y = 0 \\ z_y = 3y^2 - 3x = 0 \end{cases} \implies \begin{cases} x^2 = y \end{cases}$$

解求一阶偏导

$$\begin{cases} z_x = 3x^2 - 3y \\ z_y = 3y^2 - 3x \end{cases}$$

$$\begin{cases} z_x = 3x^2 - 3y = 0 \\ z_y = 3y^2 - 3x = 0 \end{cases} \implies \begin{cases} x^2 = y \\ y^2 = x \end{cases}$$

解 求一阶偏导

$$\begin{cases} z_x = 3x^2 - 3y \\ z_y = 3y^2 - 3x \end{cases}$$

$$\begin{cases} z_x = 3x^2 - 3y = 0 \\ z_y = 3y^2 - 3x = 0 \end{cases} \implies \begin{cases} x^2 = y \\ y^2 = x \end{cases} \implies x^4 = x$$

解 求一阶偏导

$$\begin{cases} z_x = 3x^2 - 3y \\ z_y = 3y^2 - 3x \end{cases}$$

$$\begin{cases} z_x = 3x^2 - 3y = 0 \\ z_y = 3y^2 - 3x = 0 \end{cases} \implies \begin{cases} x^2 = y \\ y^2 = x \end{cases} \implies x^4 = x \implies x = 0, 1$$

解 求一阶偏导

$$\begin{cases} z_x = 3x^2 - 3y \\ z_y = 3y^2 - 3x \end{cases}$$

求解方程组

$$\begin{cases} z_x = 3x^2 - 3y = 0 \\ z_y = 3y^2 - 3x = 0 \end{cases} \implies \begin{cases} x^2 = y \\ y^2 = x \end{cases} \implies x^4 = x \implies x = 0, 1$$
$$\implies \begin{cases} x = 1 \\ y = 1 \end{cases}$$

暨南大学
 原
 原
 原
 原
 京
 民
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日
 日

解 求一阶偏导

$$\begin{cases} z_x = 3x^2 - 3y \\ z_y = 3y^2 - 3x \end{cases}$$

$$\begin{cases} z_x = 3x^2 - 3y = 0 \\ z_y = 3y^2 - 3x = 0 \end{cases} \implies \begin{cases} x^2 = y \\ y^2 = x \end{cases} \implies x^4 = x \implies x = 0, 1$$
$$\implies \begin{cases} x = 1 \\ y = 1 \end{cases} \implies \begin{cases} x = 0 \\ y = 0 \end{cases}$$

解 求一阶偏导

$$\begin{cases} z_x = 3x^2 - 3y \\ z_y = 3y^2 - 3x \end{cases}$$

求解方程组

$$\begin{cases} z_x = 3x^2 - 3y = 0 \\ z_y = 3y^2 - 3x = 0 \end{cases} \implies \begin{cases} x^2 = y \\ y^2 = x \end{cases} \implies x^4 = x \implies x = 0, 1$$
$$\implies \begin{cases} x = 1 \\ y = 1 \end{cases} \implies \begin{cases} x = 0 \\ y = 0 \end{cases}$$

所以驻点为 (1, 1), (0, 0)

$$z = x^3 + y^3 - 3xy$$

定理(极值的充分条件) 设 z = f(x, y) 具有直到二阶的连续偏导数, (x_0, y_0) 是驻点.

定理(极值的充分条件) 设 z = f(x, y) 具有直到二阶的连续偏导数, (x_0, y_0) 是驻点. 定义判别式

$$P(x, y) = f_{xx}(x, y) \cdot f_{yy}(x, y) - f_{xy}(x, y)^2$$

定理(极值的充分条件) 设 z = f(x, y) 具有直到二阶的连续偏导数, (x_0, y_0) 是驻点. 定义判别式

$$P(x, y) = f_{xx}(x, y) \cdot f_{yy}(x, y) - f_{xy}(x, y)^2$$

结论是:

3. 若 $P(x_0, y_0) < 0$,则 (x_0, y_0) 一定不是极值点;

定理(极值的充分条件) 设 z = f(x, y) 具有直到二阶的连续偏导数, (x_0, y_0) 是驻点. 定义判别式

$$P(x, y) = f_{xx}(x, y) \cdot f_{yy}(x, y) - f_{xy}(x, y)^2$$

- 3. 若 $P(x_0, y_0) < 0$,则 (x_0, y_0) 一定不是极值点;
- 4. 若 $P(x_0, y_0) = 0$,则此判定法失效,结论不确定.

定理(极值的充分条件) 设 z = f(x, y) 具有直到二阶的连续偏导数, (x_0, y_0) 是驻点. 定义判别式

$$P(x, y) = f_{xx}(x, y) \cdot f_{yy}(x, y) - f_{xy}(x, y)^2$$

- 1. 若 $P(x_0, y_0) > 0$,
- 2. 若 $P(x_0, y_0) > 0$,
- 3. 若 $P(x_0, y_0) < 0$,则 (x_0, y_0) 一定不是极值点;
- 4. 若 $P(x_0, y_0) = 0$,则此判定法失效,结论不确定.

定理(极值的充分条件) 设 z = f(x, y) 具有直到二阶的连续偏导数, (x_0, y_0) 是驻点. 定义判别式

$$P(x, y) = f_{xx}(x, y) \cdot f_{yy}(x, y) - f_{xy}(x, y)^2$$

- 1. 若 $P(x_0, y_0) > 0$,且 $f_{xx}(x_0, y_0) < 0$,则 (x_0, y_0) 是极大值点;
- 2. 若 $P(x_0, y_0) > 0$,
- 3. 若 $P(x_0, y_0) < 0$,则 (x_0, y_0) 一定不是极值点;
- 4. 若 $P(x_0, y_0) = 0$,则此判定法失效,结论不确定.

定理(极值的充分条件) 设 z = f(x, y) 具有直到二阶的连续偏导数, (x_0, y_0) 是驻点. 定义判别式

$$P(x, y) = f_{xx}(x, y) \cdot f_{yy}(x, y) - f_{xy}(x, y)^2$$

- 1. 若 $P(x_0, y_0) > 0$,且 $f_{xx}(x_0, y_0) < 0$,则 (x_0, y_0) 是极大值点;
- 2. 若 $P(x_0, y_0) > 0$,且 $f_{xx}(x_0, y_0) > 0$,则 (x_0, y_0) 是极小值点;
- 3. 若 $P(x_0, y_0) < 0$,则 (x_0, y_0) 一定不是极值点;
- 4. 若 $P(x_0, y_0) = 0$,则此判定法失效,结论不确定.

定理(极值的充分条件) 设 z = f(x, y) 具有直到二阶的连续偏导数, (x_0, y_0) 是驻点. 定义判别式

$$P(x, y) = f_{xx}(x, y) \cdot f_{yy}(x, y) - f_{xy}(x, y)^2$$

- 1. 若 $P(x_0, y_0) > 0$,且 $f_{xx}(x_0, y_0) < 0$,则 (x_0, y_0) 是极大值点;
- 2. 若 $P(x_0, y_0) > 0$,且 $f_{xx}(x_0, y_0) > 0$,则 (x_0, y_0) 是极小值点;
- 3. 若 $P(x_0, y_0) < 0$,则 (x_0, y_0) 一定不是极值点;
- 4. 若 $P(x_0, y_0) = 0$,则此判定法失效,结论不确定.
 - 总结 求 z = f(x, y) 极值点的步骤:
 - 1. 求驻点:

定理(极值的充分条件) 设 z = f(x, y) 具有直到二阶的连续偏导数, (x_0, y_0) 是驻点. 定义判别式

$$P(x, y) = f_{xx}(x, y) \cdot f_{yy}(x, y) - f_{xy}(x, y)^2$$

- 1. 若 $P(x_0, y_0) > 0$,且 $f_{xx}(x_0, y_0) < 0$,则 (x_0, y_0) 是极大值点;
- 2. 若 $P(x_0, y_0) > 0$,且 $f_{xx}(x_0, y_0) > 0$,则 (x_0, y_0) 是极小值点;
- 3. 若 $P(x_0, y_0) < 0$,则 (x_0, y_0) 一定不是极值点;
- 4. 若 $P(x_0, y_0) = 0$,则此判定法失效,结论不确定.
 - **总结** 求 *z* = *f*(*x*, *y*) 极值点的步骤:
 - 1. 求驻点: 解方程 $\begin{cases} z_x(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$, 设解为 (x_0, y_0)

定理(极值的充分条件) 设 z = f(x, y) 具有直到二阶的连续偏导数, (x_0, y_0) 是驻点. 定义判别式

$$P(x, y) = f_{xx}(x, y) \cdot f_{yy}(x, y) - f_{xy}(x, y)^2$$

- 1. 若 $P(x_0, y_0) > 0$,且 $f_{xx}(x_0, y_0) < 0$,则 (x_0, y_0) 是极大值点;
- 2. 若 $P(x_0, y_0) > 0$,且 $f_{xx}(x_0, y_0) > 0$,则 (x_0, y_0) 是极小值点;
- 3. 若 $P(x_0, y_0) < 0$,则 (x_0, y_0) 一定不是极值点;
- 4. 若 $P(x_0, y_0) = 0$,则此判定法失效,结论不确定.
 - **总结** 求 *z* = *f*(*x*, *y*) 极值点的步骤:
 - 1. 求驻点: 解方程 $\begin{cases} z_x(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$, 设解为 (x_0, y_0)
 - 2. 通过 $P(x_0, y_0)$ 辨别驻点 (x_0, y_0) 是否极值点

例1 求 $z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$ 的极值点.

例1 求
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
 的极值点.

$$z_X =$$
 , $z_Y =$

例1 求
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
 的极值点.

$$z_x = 3x^2 + 6x - 9, z_y =$$

例1 求 $z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$ 的极值点.

$$z_x = 3x^2 + 6x - 9$$
, $z_y = -3y^2 + 6y$

例1 求
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
 的极值点.

$$z_x = 3x^2 + 6x - 9, \qquad z_y = -3y^2 + 6y$$

求解方程组
$$\begin{cases} z_x(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$$

$$z_x = 3x^2 + 6x - 9, \qquad z_y = -3y^2 + 6y$$

求解方程组
$$\begin{cases} z_x(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$$
 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

例1 求
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
 的极值点.

$$z_x = 3x^2 + 6x - 9,$$
 $z_y = -3y^2 + 6y$

求解方程组
$$\begin{cases} z_X(x, y) = 0 \\ z_Y(x, y) = 0 \end{cases}$$
 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

$$P(x, y) =$$

例 1 求
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
 的极值点.

$$z_x = 3x^2 + 6x - 9,$$
 $z_y = -3y^2 + 6y$

求解方程组
$$\begin{cases} z_X(x, y) = 0 \\ z_Y(x, y) = 0 \end{cases}$$
 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

$$\begin{cases} z_{xx} = \\ z_{xy} = \\ z_{yy} = \end{cases} \Longrightarrow P(x, y) =$$

例1 求
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
 的极值点.

$$z_x = 3x^2 + 6x - 9,$$
 $z_y = -3y^2 + 6y$

求解方程组
$$\begin{cases} z_x(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$$
 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = \\ z_{yy} = \end{cases} \Longrightarrow P(x, y) =$$

例 1 求
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
 的极值点.

$$z_x = 3x^2 + 6x - 9,$$
 $z_y = -3y^2 + 6y$

求解方程组
$$\begin{cases} z_x(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$$
 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = \end{cases} \Longrightarrow P(x, y) =$$

例 1 求
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
 的极值点.

$$z_x = 3x^2 + 6x - 9, z_y = -3y^2 + 6y$$

求解方程组
$$\begin{cases} z_x(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$$
 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \implies P(x, y) =$$

例1 求
$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
 的极值点.

$$z_x = 3x^2 + 6x - 9,$$
 $z_y = -3y^2 + 6y$

求解方程组 $\begin{cases} z_x(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$ 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \implies P(x, y) = -36(x+1)(y-1)$$

解 1. 求一阶偏导

$$z_x = 3x^2 + 6x - 9$$
, $z_y = -3y^2 + 6y$

求解方程组 $\begin{cases} z_x(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$ 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

2. 再求判别式 P(x, y)

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \implies P(x, y) = -36(x+1)(y-1)$$

	(-3, 0)	(-3, 2)	(1, 0)	(1, 2)
$P(x_0, y_0)$				
$z_{xx}(x_0, y_0)$				
是否极值点				0

解 1. 求一阶偏导

$$z_x = 3x^2 + 6x - 9,$$
 $z_y = -3y^2 + 6y$

求解方程组 $\begin{cases} z_x(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$ 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

2. 再求判别式 P(x, y)

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \implies P(x, y) = -36(x+1)(y-1)$$

	(-3, 0)	(-3, 2)	(1, 0)	(1, 2)
$P(x_0, y_0)$	-72 < 0			
$Z_{xx}(x_0, y_0)$				
是否极值点				0

解 1. 求一阶偏导

$$z_x = 3x^2 + 6x - 9,$$
 $z_y = -3y^2 + 6y$

求解方程组 $\begin{cases} z_x(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$ 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

2. 再求判别式 P(x, y)

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \implies P(x, y) = -36(x+1)(y-1)$$

	(-3, 0)	(-3, 2)	(1, 0)	(1, 2)
$P(x_0, y_0)$	-72 < 0			
$z_{xx}(x_0, y_0)$				
是否极值点	×			0

解 1. 求一阶偏导

$$z_x = 3x^2 + 6x - 9$$
, $z_y = -3y^2 + 6y$

求解方程组 $\begin{cases} z_x(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$ 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

2. 再求判别式 P(x, y)

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \implies P(x, y) = -36(x+1)(y-1)$$

	(-3, 0)	(-3, 2)	(1, 0)	(1, 2)
$P(x_0, y_0)$	-72 < 0	72 > 0		
$z_{xx}(x_0, y_0)$				
是否极值点	×			a

解 1. 求一阶偏导

$$z_x = 3x^2 + 6x - 9,$$
 $z_y = -3y^2 + 6y$

求解方程组 $\begin{cases} z_x(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$ 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

2. 再求判别式 P(x, y)

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \implies P(x, y) = -36(x+1)(y-1)$$

	(-3, 0)	(-3, 2)	(1, 0)	(1, 2)
$P(x_0, y_0)$	-72 < 0	72 > 0		
$z_{xx}(x_0, y_0)$		-12 < 0		
是否极值点	×			C

解 1. 求一阶偏导

$$z_x = 3x^2 + 6x - 9,$$
 $z_y = -3y^2 + 6y$

求解方程组 $\begin{cases} z_x(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$ 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

2. 再求判别式 P(x, y)

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \implies P(x, y) = -36(x+1)(y-1)$$

	(-3, 0)	(-3, 2)	(1, 0)	(1, 2)
$P(x_0, y_0)$	-72 < 0	72 > 0		
$z_{xx}(x_0, y_0)$		-12 < 0		
是否极值点	×	极大值点		0

解 1. 求一阶偏导

$$z_x = 3x^2 + 6x - 9,$$
 $z_y = -3y^2 + 6y$

求解方程组 $\begin{cases} z_x(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$ 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

2. 再求判别式 P(x, y)

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \implies P(x, y) = -36(x+1)(y-1)$$

	(-3, 0)	(-3, 2)	(1, 0)	(1, 2)
$P(x_0, y_0)$	-72 < 0	72 > 0	72 > 0	
$z_{xx}(x_0, y_0)$		-12 < 0		
是否极值点	×	极大值点		a

解 1. 求一阶偏导

$$z_x = 3x^2 + 6x - 9,$$
 $z_y = -3y^2 + 6y$

求解方程组 $\begin{cases} z_x(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$ 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

2. 再求判别式 P(x, y)

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \implies P(x, y) = -36(x+1)(y-1)$$

 -				
	(-3, 0)	(-3, 2)	(1, 0)	(1, 2)
$P(x_0, y_0)$	-72 < 0	72 > 0	72 > 0	
$z_{xx}(x_0, y_0)$		-12 < 0	12 > 0	
是否极值点	×	极大值点		a

解 1. 求一阶偏导

$$z_x = 3x^2 + 6x - 9,$$
 $z_y = -3y^2 + 6y$

求解方程组 $\begin{cases} z_x(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$ 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

2. 再求判别式 P(x, y)

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \implies P(x, y) = -36(x+1)(y-1)$$

	(-3, 0)	(-3, 2)	(1, 0)	(1, 2)
$P(x_0, y_0)$	-72 < 0	72 > 0	72 > 0	
$z_{xx}(x_0, y_0)$		-12 < 0	12 > 0	
是否极值点	×	极大值点	极小值点	a

解 1. 求一阶偏导

$$z_x = 3x^2 + 6x - 9,$$
 $z_y = -3y^2 + 6y$

求解方程组 $\begin{cases} z_x(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$ 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

2. 再求判别式 P(x, y)

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \implies P(x, y) = -36(x+1)(y-1)$$

	(-3, 0)	(-3, 2)	(1, 0)	(1, 2)
$P(x_0, y_0)$	-72 < 0	72 > 0	72 > 0	-72 < 0
$Z_{xx}(x_0, y_0)$		-12 < 0	12 > 0	
是否极值点	×	极大值点	极小值点	

解 1. 求一阶偏导

$$z_x = 3x^2 + 6x - 9,$$
 $z_y = -3y^2 + 6y$

求解方程组 $\begin{cases} z_x(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$ 得: (-3, 0), (-3, 2), (1, 0), (1, 2)

2. 再求判别式 P(x, y)

$$\begin{cases} z_{xx} = 6x + 6 \\ z_{xy} = 0 \\ z_{yy} = -6y + 6 \end{cases} \implies P(x, y) = -36(x+1)(y-1)$$

	(-3, 0)	(-3, 2)	(1, 0)	(1, 2)
$P(x_0, y_0)$	-72 < 0	72 > 0	72 > 0	-72 < 0
$z_{xx}(x_0, y_0)$		-12 < 0	12 > 0	
是否极值点	×	极大值点	极小值点	×

$$z = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$

$$z_X =$$
 , $z_y =$

$$z_x = 3x^2 - 3y, \qquad z_y =$$

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$

$$z_x = 3x^2 - 3y, z_y = 3y^2 - 3x$$

求解方程组
$$\begin{cases} z_x(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$$

$$z_x = 3x^2 - 3y, \qquad z_y = 3y^2 - 3x$$
 求解方程组 $\begin{cases} z_x(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$ 得: (1, 1), (0, 0)

例 2 求
$$z = x^3 + y^3 - 3xy$$
 的极值点.

$$z_{x} = 3x^{2} - 3y,$$
 $z_{y} = 3y^{2} - 3x$
求解方程组 $\begin{cases} z_{x}(x, y) = 0 \\ z_{y}(x, y) = 0 \end{cases}$ 得: (1, 1), (0, 0)

$$P(x, y) =$$

例 2 求
$$z = x^3 + y^3 - 3xy$$
 的极值点.

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$
求解方程组 $\begin{cases} z_x(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$ 得: (1, 1), (0, 0)

$$\begin{cases} z_{xx} = \\ z_{xy} = \\ z_{yy} = \end{cases} \Longrightarrow P(x, y) =$$

例 2 求
$$z = x^3 + y^3 - 3xy$$
 的极值点.

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$
求解方程组 $\begin{cases} z_x(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$ 得: (1, 1), (0, 0)

$$\begin{cases} z_{xx} = 6x \\ z_{xy} = \Longrightarrow P(x, y) = \\ z_{yy} = \end{cases}$$

例 2 求
$$z = x^3 + y^3 - 3xy$$
 的极值点.

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$ 求解方程组 $\begin{cases} z_x(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$ 得: (1, 1), (0, 0)

$$\begin{cases} z_{xx} = 6x \\ z_{xy} = -3 \implies P(x, y) = \\ z_{yy} = \end{cases}$$

例 2 求
$$z = x^3 + y^3 - 3xy$$
 的极值点.

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$ 求解方程组 $\begin{cases} z_x(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$ 得: (1, 1), (0, 0)

$$\begin{cases} z_{xx} = 6x \\ z_{xy} = -3 \implies P(x, y) = \\ z_{yy} = 6y \end{cases}$$

例 2 求
$$z = x^3 + y^3 - 3xy$$
 的极值点.

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$ 求解方程组 $\begin{cases} z_x(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$ 得: (1, 1), (0, 0)

$$\begin{cases} z_{xx} = 6x \\ z_{xy} = -3 & \Longrightarrow P(x, y) = 36xy - 9 \\ z_{yy} = 6y \end{cases}$$

解 1. 求一阶偏导

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$ 求解方程组 $\begin{cases} z_x(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$ 得: (1, 1), (0, 0)

2. 再求判别式 P(x, y)

$$\begin{cases} z_{xx} = 6x \\ z_{xy} = -3 \\ z_{yy} = 6y \end{cases} \implies P(x, y) = 36xy - 9$$

	(1, 1)	(0, 0)
$P(x_0, y_0)$		
$z_{xx}(x_0, y_0)$		
是否极值点		

例 2 求
$$z = x^3 + y^3 - 3xy$$
 的极值点.

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$ 求解方程组 $\begin{cases} z_x(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$ 得: (1, 1), (0, 0)

2. 再求判别式 P(x, y)

$$\begin{cases} z_{xx} = 6x \\ z_{xy} = -3 \\ z_{yy} = 6y \end{cases} \implies P(x, y) = 36xy - 9$$

	(1, 1)	(0, 0)
$P(x_0, y_0)$	27 > 0	
$z_{xx}(x_0, y_0)$		
是否极值点		

例 2 求
$$z = x^3 + y^3 - 3xy$$
 的极值点.

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$ 求解方程组 $\begin{cases} z_x(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$ 得: (1, 1), (0, 0)

2. 再求判别式 P(x, y)

$$\begin{cases} z_{xx} = 6x \\ z_{xy} = -3 \\ z_{yy} = 6y \end{cases} \implies P(x, y) = 36xy - 9$$

	(1, 1)	(0, 0)
$P(x_0, y_0)$	27 > 0	
$z_{xx}(x_0, y_0)$	6 > 0	
是否极值点		

例 2 求
$$z = x^3 + y^3 - 3xy$$
 的极值点.

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$ 求解方程组 $\begin{cases} z_x(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$ 得: (1, 1), (0, 0)

2. 再求判别式 P(x, y)

$$\begin{cases} z_{xx} = 6x \\ z_{xy} = -3 \\ z_{yy} = 6y \end{cases} \implies P(x, y) = 36xy - 9$$

	(1, 1)	(0, 0)
$P(x_0, y_0)$	27 > 0	
$z_{xx}(x_0, y_0)$	6 > 0	
是否极值点	极小值点	

例 2 求
$$z = x^3 + y^3 - 3xy$$
 的极值点.

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$ 求解方程组 $\begin{cases} z_x(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$ 得: (1, 1), (0, 0)

2. 再求判别式 P(x, y)

$$\begin{cases} z_{xx} = 6x \\ z_{xy} = -3 \\ z_{yy} = 6y \end{cases} \implies P(x, y) = 36xy - 9$$

	(1, 1)	(0, 0)
$P(x_0, y_0)$	27 > 0	-9 < 0
$z_{xx}(x_0, y_0)$	6 > 0	
是否极值点	极小值点	

例 2 求
$$z = x^3 + y^3 - 3xy$$
 的极值点.

解 1. 求一阶偏导

$$z_x = 3x^2 - 3y$$
, $z_y = 3y^2 - 3x$ 求解方程组 $\begin{cases} z_x(x, y) = 0 \\ z_y(x, y) = 0 \end{cases}$ 得: (1, 1), (0, 0)

2. 再求判别式 P(x, y)

$$\begin{cases} z_{xx} = 6x \\ z_{xy} = -3 \\ z_{yy} = 6y \end{cases} \implies P(x, y) = 36xy - 9$$

3. 结论

	(1, 1)	(0, 0)
$P(x_0, y_0)$	27 > 0	-9 < 0
$z_{xx}(x_0, y_0)$	6 > 0	
是否极值点	极小值点	×

$$z = x^3 + y^3 - 3xy$$

- 设 u = f(x, y, z)。
- (x₀, y₀, z₀) 是 **驻点** 指在该点处偏导数全为零:

$$f_x(x_0, y_0, z_0) = 0$$
, $f_y(x_0, y_0, z_0) = 0$, $f_z(x_0, y_0, z_0) = 0$

- 设 u = f(x, y, z)。
- (x₀, y₀, z₀) 是 **驻点** 指在该点处偏导数全为零:

$$f_x(x_0, y_0, z_0) = 0$$
, $f_y(x_0, y_0, z_0) = 0$, $f_z(x_0, y_0, z_0) = 0$

• 设 (x_0, y_0, z_0) 是 u = f(x, y, z) 的 极值点,则 (x_0, y_0, z_0) 一定 是驻点

- 设 u = f(x, y, z)。
- (x₀, y₀, z₀) 是 **驻点** 指在该点处偏导数全为零:

$$f_x(x_0, y_0, z_0) = 0$$
, $f_y(x_0, y_0, z_0) = 0$, $f_z(x_0, y_0, z_0) = 0$

- 设 (x_0, y_0, z_0) 是 u = f(x, y, z) 的 极值点,则 (x_0, y_0, z_0) 一定是驻点
- 如何进一步判别哪些驻点为极值点?

- 设 u = f(x, y, z)。
- (x₀, y₀, z₀) 是 **驻点** 指在该点处偏导数全为零:

$$f_x(x_0, y_0, z_0) = 0$$
, $f_y(x_0, y_0, z_0) = 0$, $f_z(x_0, y_0, z_0) = 0$

- 设 (x_0, y_0, z_0) 是 u = f(x, y, z) 的 极值点,则 (x_0, y_0, z_0) 一定是驻点
- 如何进一步判别哪些驻点为极值点? 考虑矩阵

$$\begin{pmatrix}
f_{xx} & f_{xy} & f_{xz} \\
f_{yx} & f_{yy} & f_{yz} \\
f_{zx} & f_{zy} & f_{zz}
\end{pmatrix}_{(x_0, y_0, z_0)}$$

- 设 u = f(x, y, z)。
- (x₀, y₀, z₀) 是 **驻点** 指在该点处偏导数全为零:

$$f_x(x_0, y_0, z_0) = 0$$
, $f_y(x_0, y_0, z_0) = 0$, $f_z(x_0, y_0, z_0) = 0$

- 设 (x_0, y_0, z_0) 是 u = f(x, y, z) 的 极值点,则 (x_0, y_0, z_0) 一定是驻点
- 如何进一步判别哪些驻点为极值点?考虑矩阵

$$\begin{pmatrix}
f_{xx} & f_{xy} & f_{xz} \\
f_{yx} & f_{yy} & f_{yz} \\
f_{zx} & f_{zy} & f_{zz}
\end{pmatrix}_{(x_0, y_0, z_0)}$$

- 如果是正定矩阵,则(x₀, y₀, z₀)是极小值点
- 如果是负定矩阵,则(x₀, y₀, z₀)是极大值点

We are here now...

1. 多元函数的极值点

2. 条件极值

3. 求解多元函数的最值

定义 曲线上一点 $p(x_0, y_0)$ 称为 f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的 极大值点,是指

定义 曲线上一点 $p(x_0, y_0)$ 称为 f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的 极大值点,是指存在一小段曲线 C

定义 曲线上一点 $p(x_0, y_0)$ 称为 f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的 极大值点,是指存在一小段曲线 C 满足:

- (x_0, y_0) ∈ C
- $f(x_0, y_0) \ge f(x, y), \ \forall (x, y) \in C$

定义 曲线上一点 $p(x_0, y_0)$ 称为 f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的 极大值点,是指存在一小段曲线 C 满足:

- ار (۲۰ ۲۰) د (

定义 曲线上一点 $p(x_0, y_0)$ 称为 f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的 极大值点,是指存在一小段曲线 C 满足:

- $(x_0, y_0) \in C$
- $f(x_0, y_0) \ge f(x, y), \ \forall (x, y) \in C$

求解条件极值点 (列出 (x_0, y_0) 满足的方程)

定义 曲线上一点 $p(x_0, y_0)$ 称为 f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的 极大值点,是指存在一小段曲线 C 满足:

- $(x_0, y_0) \in C$
- $f(x_0, y_0) \ge f(x, y), \ \forall (x, y) \in C$

$$p(x_0, y_0)$$

$$y = y(x)$$

求解条件极值点 (列出 (x_0, y_0) 满足的方程)

不妨设 $C \in y = y(x)$ 的图形,

定义 曲线上一点 $p(x_0, y_0)$ 称为 f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的 极大值点,是指存在一小段曲线 C 满足:

- $(x_0, y_0) \in C$
- $f(x_0, y_0) \ge f(x, y), \ \forall (x, y) \in C$

$$p(x_0, y_0)$$

$$y = y(x)$$

$$0$$

求解条件极值点 (列出 (x_0, y_0) 满足的方程)

不妨设 C = y = y(x) 的图形,则 $x = x_0 = f(x, y(x))$ 的极值点,

定义 曲线上一点 $p(x_0, y_0)$ 称为 f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的 极大值点,是指存在一小段曲线 C 满足:

$$(x_0, y_0) \in C$$

 $f(x_0, y_0) \ge f(x, y), \ \forall (x, y) \in C$

$$p(x_0, y_0)$$

$$y = y(x)$$

$$0$$

$$0$$

求解条件极值点 (列出 (x_0, y_0) 满足的方程)

不妨设 C = y = y(x) 的图形,则 $x = x_0 = f(x, y(x))$ 的极值点,所以

$$0 = \frac{d}{dx} f(x, y(x))|_{x=x_0}$$

定义 曲线上一点 $p(x_0, y_0)$ 称为 f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的 极大值点,是指存在一小段曲线 C 满足:

$$(x_0, y_0) \in C$$

$$f(x_0, y_0) \ge f(x, y), \ \forall (x, y) \in C$$

$$p(x_0, y_0)$$

$$y = y(x)$$

$$0$$

求解条件极值点 (列出 (x_0, y_0) 满足的方程)

不妨设 C 是 y = y(x) 的图形,则 $x = x_0$ 是 f(x, y(x)) 的极值点,所以

$$0 = \frac{d}{dx} f(x, y(x))|_{x=x_0} = f_x + f_y \quad y'$$

定义 曲线上一点 $p(x_0, y_0)$ 称为 f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的 极大值点,是指存在一小段曲线 C 满足:

$$(x_0, y_0) \in C$$

 $f(x_0, y_0) \ge f(x, y), \ \forall (x, y) \in C$

$$p(x_0, y_0)$$

$$y = y(x)$$

$$0$$

求解条件极值点 (列出 (x_0, y_0) 满足的方程)

不妨设 C 是 y = y(x) 的图形,则 $x = x_0$ 是 f(x, y(x)) 的极值点,所以

$$0 = \frac{d}{dx} f(x, y(x))|_{x=x_0} = f_x(p) + f_y(p)y'(x_0)$$

定义 曲线上一点 $p(x_0, y_0)$ 称为 f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的 极大值点,是指存在一小段曲线 C 满足:

$$(x_0, y_0) \in C$$

$$f(x_0, y_0) \ge f(x, y), \ \forall (x, y) \in C$$

$$p(x_0, y_0)$$

$$y = y(x)$$

$$0$$

求解条件极值点 (列出 (x_0, y_0) 满足的方程)

不妨设 $C \ge y = y(x)$ 的图形,则 $x = x_0 \ge f(x, y(x))$ 的极值点,所以

$$0 = \frac{d}{dx}f(x, y(x))|_{x=x_0} = f_x(p) + f_y(p)y'(x_0) = \nabla f(p) \cdot (1, y'(x_0))$$

定义 曲线上一点 $p(x_0, y_0)$ 称为 f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的 极大值点,是指存在一小段曲线 C 满足:

$$(x_0, y_0) \in C$$

• $f(x_0, y_0) \ge f(x, y)$, $\forall (x, y) \in C$

$$p(x_0, y_0)$$

$$y = y(x)$$

$$y = y(x)$$

(列出 (x_0, y_0) 满足的方程) 求解条件极值点

不妨设 $C \in \mathcal{Y} = \mathcal{Y}(x)$ 的图形,则 $\mathcal{X} = \mathcal{X}_0 \in \mathcal{Y}(x, \mathcal{Y}(x))$ 的极值点,所以

$$0 = \frac{d}{dx} f(x, y(x))|_{x=x_0} = f_x(p) + f_y(p)y'(x_0) = \nabla f(p) \cdot (1, y'(x_0))$$

定义 曲线上一点 $p(x_0, y_0)$ 称为 f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的 极大值点,是指存在一小段曲线 C 满足:

$$(x_0, y_0) \in C$$

•
$$f(x_0, y_0) \ge f(x, y)$$
, $\forall (x, y) \in C$

$$p(x_0, y_0)$$

$$y = y(x)$$

(列出 (x_0, y_0) 满足的方程) 求解条件极值点

不妨设 $C \in \mathcal{Y} = \mathcal{Y}(x)$ 的图形,则 $\mathcal{X} = \mathcal{X}_0 \in \mathcal{Y}(x, \mathcal{Y}(x))$ 的极值点,所以

$$0 = \frac{d}{dx} f(x, y(x))|_{x=x_0} = f_x(p) + f_y(p)y'(x_0) = \nabla f(p) \cdot \underbrace{(1, y'(x_0))}_{\longrightarrow}$$

定义 曲线上一点 $p(x_0, y_0)$ 称为 f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的

极大值点,是指存在一小段曲线 C 满足:

- $(x_0, y_0) \in C$

$$p(x_0, y_0)$$

$$y = y(x)$$

求解条件极值点 (列出 (x_0, y_0) 满足的方程)

不妨设 $C \ge y = y(x)$ 的图形,则 $x = x_0 \ge f(x, y(x))$ 的极值点,所以

$$0 = \frac{d}{dx} f(x, y(x))|_{x=x_0} = f_x(p) + f_y(p)y'(x_0) = \nabla f(p) \cdot \underbrace{(1, y'(x_0))}_{\overrightarrow{s}}$$

$$\Rightarrow \nabla f(p) \perp \overrightarrow{s}$$

定义 曲线上一点 $p(x_0, y_0)$ 称为 f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的

极大值点,是指存在一小段曲线 C 满足:

$$(x_0, y_0) \in C$$

$$f(x_0, y_0) \ge f(x, y), \ \forall (x, y) \in C$$

$$p(x_0, y_0)$$

$$y = y(x)$$

$$y = 0$$

求解条件极值点 (列出 (x_0, y_0) 满足的方程)

不妨设 C = y = y(x) 的图形,则 $x = x_0 = f(x, y(x))$ 的极值点,所以

$$0 = \frac{d}{dx}f(x, y(x))|_{x=x_0} = f_x(p) + f_y(p)y'(x_0) = \nabla f(p) \cdot \underbrace{(1, y'(x_0))}_{s}$$

$$\Rightarrow \quad \nabla f(p) \perp \overrightarrow{s} \quad \xrightarrow{\nabla \varphi(p) \perp \overrightarrow{s}}$$

定义 曲线上一点 $p(x_0, y_0)$ 称为 f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的

极大值点,是指存在一小段曲线 C 满足:

$$(x_0, y_0) \in C$$

 $f(x_0, y_0) \ge f(x, y), \ \forall (x, y) \in C$

$$p(x_0, y_0)$$

$$y = y(x)$$

$$y = y(x)$$

求解条件极值点 (列出 (x_0, y_0) 满足的方程)

不妨设 $C \ge y = y(x)$ 的图形,则 $x = x_0 \ge f(x, y(x))$ 的极值点,所以

$$0 = \frac{d}{dx} f(x, y(x))|_{x=x_0} = f_x(p) + f_y(p)y'(x_0) = \nabla f(p) \cdot \underbrace{(1, y'(x_0))}_{\overrightarrow{s}}$$

$$\Rightarrow \nabla f(p) \perp \overrightarrow{s} \xrightarrow{\nabla \varphi(p) \perp s'} \nabla f(p) \parallel \nabla \varphi(p)$$

定义 曲线上一点 $p(x_0, y_0)$ 称为 f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的

极大值点,是指存在一小段曲线 C 满足:

$$(x_0, y_0) \in C$$

 $f(x_0, y_0) \ge f(x, y), \ \forall (x, y) \in C$

$$p(x_0, y_0)$$

$$y = y(x)$$

求解条件极值点 (列出 (x_0, y_0) 满足的方程)

不妨设 C = y = y(x) 的图形,则 $x = x_0 = f(x, y(x))$ 的极值点,所以

$$0 = \frac{d}{dx}f(x, y(x))|_{x=x_0} = f_x(p) + f_y(p)y'(x_0) = \nabla f(p) \cdot \underbrace{(1, y'(x_0))}_{==0}$$

$$\Rightarrow \quad \nabla f(p) \perp \overrightarrow{s} \quad \stackrel{\nabla \varphi(p) \perp \overrightarrow{s}}{=\!\!\!=\!\!\!=\!\!\!=} \quad \nabla f(p) \parallel \nabla \varphi(p)$$

$$\Rightarrow \exists \lambda \in \mathbb{R} \text{ s.t. } \nabla f(p) + \lambda \nabla \varphi(p) = 0$$

定义 曲线上一点 $p(x_0, y_0)$ 称为 f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的

极大值点,是指存在一小段曲线 C 满足:

$$(x_0, y_0) \in C$$

• $f(x_0, y_0) \ge f(x, y)$, $\forall (x, y) \in C$

$$p(x_0, y_0)$$

$$y = y(x)$$

$$y = 0$$

求解条件极值点 (列出 (x_0, y_0) 满足的方程)

不妨设 $C \ge y = y(x)$ 的图形,则 $x = x_0 \ge f(x, y(x))$ 的极值点,所以

$$0 = \frac{d}{dx}f(x, y(x))|_{x=x_0} = f_x(p) + f_y(p)y'(x_0) = \nabla f(p) \cdot \underbrace{(1, y'(x_0))}_{==}$$

$$\Rightarrow \quad \nabla f(p) \perp \overrightarrow{s} \quad \stackrel{\nabla \varphi(p) \perp \overrightarrow{s}}{=\!\!\!=\!\!\!=\!\!\!=} \quad \nabla f(p) \parallel \nabla \varphi(p)$$

$$\Rightarrow \exists \lambda \in \mathbb{R} \text{ s.t. } \nabla f(p) + \lambda \nabla \varphi(p) = 0 \Rightarrow \nabla (f + \lambda \varphi)(p) = 0$$

定义 曲线上一点 $p(x_0, y_0)$ 称为 f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的

极大值点,是指存在一小段曲线
$$C$$
 满足: $\nabla f(p) \| \nabla \varphi(p) \| \nabla \varphi($

•
$$f(x_0, y_0) \ge f(x, y), \ \forall (x, y) \in C$$

求解条件极值点 (列出
$$(x_0, y_0)$$
 满足的方程) $\phi = 0$ 不妨设 $C = y = y(x)$ 的图形,则 $x = x_0$ 是 $f(x, y(x))$ 的极值点,所以

$$0 = \frac{d}{dx} f(x, y(x))|_{x=x_0} = f_x(p) + f_y(p)y'(x_0) = \nabla f(p) \cdot \underbrace{(1, y'(x_0))}_{\longrightarrow}$$

$$\Rightarrow \quad \nabla f(p) \perp \overrightarrow{s} \quad \xrightarrow{\nabla \varphi(p) \perp \overrightarrow{s}} \quad \nabla f(p) \parallel \nabla \varphi(p)$$

$$\Rightarrow \exists \lambda \in \mathbb{R} \text{ s.t. } \nabla f(p) + \lambda \nabla \varphi(p) = 0 \Rightarrow \nabla (\underline{f + \lambda \varphi})(p) = 0$$

拉格朗日函数

定义 曲线上一点 $p(x_0, y_0)$ 称为 f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的

极大值点,是指存在一小段曲线
$$C$$
 满足: $\nabla f(p) \| \nabla \varphi(p) \| \nabla \varphi($

• $f(x_0, y_0) \ge f(x, y), \ \forall (x, y) \in C$

求解条件极值点 (列出 (x_0, y_0) 满足的方程)

不妨设
$$C$$
 是 $y = y(x)$ 的图形,则 $x = x_0$ 是 $f(x, y(x))$ 的极值点,所以
$$0 = \frac{d}{dx} f(x, y(x))|_{x=x_0} = f_x(p) + f_y(p)y'(x_0) = \nabla f(p) \cdot \underbrace{(1, y'(x_0))}_{}$$

$$\Rightarrow \quad \nabla f(p) \perp \overrightarrow{s} \quad \xrightarrow{\nabla \varphi(p) \perp \overrightarrow{s}} \quad \nabla f(p) \parallel \nabla \varphi(p)$$

$$\Rightarrow \exists \lambda \in \mathbb{R} \text{ s.t. } \nabla f(p) + \lambda \nabla \varphi(p) = 0 \quad \Rightarrow \quad \nabla (f + \lambda \varphi)(p) = 0$$

所以条件极值点 (x_0, y_0) 满足方程组 $\begin{cases} \nabla (f + \lambda \varphi) = 0 & \text{拉格朗日函数} \\ \alpha = 0 \end{cases}$

p(x₀, y₀) 为条件极值点 ⇒ ∇f(p) || ∇φ(p)。图示如下:

所以 $\nabla f(p)$ $\bigvee \nabla \varphi(p)$ 时,p不是条件极值点

p(x₀, y₀) 为条件极值点 ⇒ ∇f(p) || ∇φ(p)。图示如下:

条件极值(二元函数 + 一个附加条件)求解

<mark>问题</mark> 求解二元函数 u = f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的极值点.

求解步骤 (拉格朗日乘数法)

- 1. 构造拉格朗日函数 $L = f + \lambda \varphi$,其中 λ 是待定常数.
- 2. 求解方程组

$$\left\{ \begin{array}{c} \nabla L = 0 \\ \varphi = 0 \end{array} \right.$$

3. 条件极值点(如果存在的话)包含在上述解 {(x, y)} 中. (至于如何判断解是否条件极值点,需另行分析.)

条件极值(二元函数+一个附加条件)求解

<mark>问题</mark> 求解二元函数 u = f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的极值点.

求解步骤 (拉格朗日乘数法)

- 1. 构造拉格朗日函数 $L = f + \lambda \varphi$,其中 λ 是待定常数.
- 2. 求解方程组

$$\left\{ \begin{array}{l} \nabla L = 0 \\ \varphi = 0 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} L_{x} = f_{x} + \lambda \varphi_{x} = 0 \\ L_{y} = f_{y} + \lambda \varphi_{y} = 0 \\ \varphi = 0 \end{array} \right.$$

3. 条件极值点(如果存在的话)包含在上述解 $\{(x, y)\}$ 中. (至于如何判断解是否条件极值点,需另行分析.)

条件极值(二元函数 + 一个附加条件)求解

<mark>问题</mark> 求解二元函数 u = f(x, y) 在附加条件 $\varphi(x, y) = 0$ 下的极值点.

求解步骤(拉格朗日乘数法)

- 1. 构造拉格朗日函数 $L = f + \lambda \varphi$, 其中 λ 是待定常数.
- 2. 求解方程组

$$\left\{ \begin{array}{l} \nabla L = 0 \\ \varphi = 0 \end{array} \right. \Rightarrow \left. \begin{cases} L_x = f_x + \lambda \varphi_x = 0 \\ L_y = f_y + \lambda \varphi_y = 0 \\ \varphi = 0 \end{array} \right.$$

3. 条件极值点(如果存在的话)包含在上述解 {(x, y)} 中. (至于如何判断解是否条件极值点,需另行分析.)

注 求最大、最小值时,只需要在条件极值点中挑选函数值最大、最小

 \mathbf{H} 等价求: $z = f(x, y) = x^2 + y^2$ 在条件 $\varphi(x, y) = x^6 + y^6 - 1 = 0$ 下的最值.

$$\mathbf{F}$$
 等价求: $z = f(x, y) = x^2 + y^2$ 在条件 $\varphi(x, y) = x^6 + y^6 - 1 = 0$ 下的最值.

$$L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y) =$$

2. 求解方程组:
$$\begin{cases} L_x = 0 \\ L_y = 0 \\ \varphi = x^6 + y^6 - 1 = 0 \end{cases}$$

解 等价求: $z = f(x, y) = x^2 + y^2$ 在条 件 $\varphi(x, y) = x^6 + y^6 - 1 = 0$ 下的最值.

$$L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y) = x^2 + y^2 + \lambda (x^6 + y^6 - 1)$$

2. 求解方程组:
$$\begin{cases} L_x = 0 \\ L_y = 0 \\ \varphi = x^6 + y^6 - 1 = 0 \end{cases}$$

$$\mathbf{F}$$
 等价求: $z = f(x, y) = x^2 + y^2$ 在条件 $\varphi(x, y) = x^6 + y^6 - 1 = 0$ 下的最值.

$$L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y) = x^2 + y^2 + \lambda (x^6 + y^6 - 1)$$

2. 求解方程组:
$$\begin{cases} L_x = 2x + 6\lambda x^5 = 0 \\ L_y = 0 \\ \varphi = x^6 + y^6 - 1 = 0 \end{cases}$$

$$\mathbf{F}$$
 等价求: $z = f(x, y) = x^2 + y^2$ 在条件 $\varphi(x, y) = x^6 + y^6 - 1 = 0$ 下的最值.

$$L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y) = x^2 + y^2 + \lambda (x^6 + y^6 - 1)$$

2. 求解方程组:
$$\begin{cases} L_x = 2x + 6\lambda x^5 = 0 \\ L_y = 2y + 6\lambda y^5 = 0 \\ \varphi = x^6 + y^6 - 1 = 0 \end{cases}$$

解 等价求:
$$z = f(x, y) = x^2 + y^2$$
 在条件 $\varphi(x, y) = x^6 + y^6 - 1 = 0$ 下的最值.

$$L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y) = x^2 + y^2 + \lambda (x^{6} + y^6 - 1)$$

2. 求解方程组:
$$\begin{cases} L_x = 2x + 6\lambda x^5 = 0 \\ L_y = 2y + 6\lambda y^5 = 0 \\ \varphi = x^6 + y^6 - 1 = 0 \end{cases} \Rightarrow \begin{cases} x(1 + 3\lambda x^4) = 0 \\ y(1 + 3\lambda y^4) = 0 \\ x^6 + y^6 - 1 = 0 \end{cases}$$

解 等价求: $z = f(x, y) = x^2 + y^2$ 在条 件 $\varphi(x, y) = x^6 + y^6 - 1 = 0$ 下的最值.

$L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y) = x^2 + y^2 + \lambda (x^6 + y^6 - 1)$

2. 求解方程组:
$$\begin{cases} L_x = 2x + 6\lambda x^5 = 0 \\ L_y = 2y + 6\lambda y^5 = 0 \\ \varphi = x^6 + y^6 - 1 = 0 \end{cases} \Rightarrow \begin{cases} x(1 + 3\lambda x^4) = 0 \\ y(1 + 3\lambda y^4) = 0 \\ x^6 + y^6 - 1 = 0 \end{cases}$$

所以
$$\begin{cases} x = 0 \\ 1 + 3\lambda y^4 = 0 \\ y^6 - 1 = 0 \end{cases}$$

 \mathbf{F} 等价求: $z = f(x, y) = x^2 + y^2$ 在条件 $\varphi(x, y) = x^6 + y^6 - 1 = 0$ 下的最值.

$$L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y) = x^2 + y^2 + \lambda (x^6 + y^6 - 1)$$

2. 求解方程组:
$$\begin{cases} L_x = 2x + 6\lambda x^5 = 0 \\ L_y = 2y + 6\lambda y^5 = 0 \\ \varphi = x^6 + y^6 - 1 = 0 \end{cases} \Rightarrow \begin{cases} x(1 + 3\lambda x^4) = 0 \\ y(1 + 3\lambda y^4) = 0 \\ x^6 + y^6 - 1 = 0 \end{cases}$$

所以
$$\begin{cases} x = 0 \\ 1 + 3\lambda y^4 = 0 \\ y^6 - 1 = 0 \end{cases}$$
 或
$$\begin{cases} 1 + 3\lambda x^4 = 0 \\ y = 0 \\ x^6 - 1 = 0 \end{cases}$$

解 等价求: $z = f(x, y) = x^2 + y^2$ 在条件 $\varphi(x, y) = x^6 + y^6 - 1 = 0$ 下的最值.

$$L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y) = x^2 + y^2 + \lambda (x^6 + y^6 - 1)$$

2. 求解方程组:
$$\begin{cases} L_x = 2x + 6\lambda x^5 = 0 \\ L_y = 2y + 6\lambda y^5 = 0 \\ \varphi = x^6 + y^6 - 1 = 0 \end{cases} \Rightarrow \begin{cases} x(1 + 3\lambda x^4) = 0 \\ y(1 + 3\lambda y^4) = 0 \\ x^6 + y^6 - 1 = 0 \end{cases}$$

所以
$$\begin{cases} x = 0 \\ 1 + 3\lambda y^4 = 0 \end{cases}$$
 或
$$\begin{cases} 1 + 3\lambda x^4 = 0 \\ y = 0 \end{cases}$$
 或
$$\begin{cases} 1 + 3\lambda x^4 = 0 \\ 1 + 3\lambda y^4 = 0 \\ x^6 - 1 = 0 \end{cases}$$

解 等价求: $z = f(x, y) = x^2 + y^2$ 在条件 $\varphi(x, y) = x^6 + y^6 - 1 = 0$ 下的最值.

$$L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y) = x^2 + y^2 + \lambda (x^6 + y^6 - 1)$$

2. 求解方程组:
$$\begin{cases} L_x = 2x + 6\lambda x^5 = 0 \\ L_y = 2y + 6\lambda y^5 = 0 \\ \varphi = x^6 + y^6 - 1 = 0 \end{cases} \Rightarrow \begin{cases} x(1 + 3\lambda x^4) = 0 \\ y(1 + 3\lambda y^4) = 0 \\ x^6 + y^6 - 1 = 0 \end{cases}$$

所以
$$\begin{cases} x = 0 \\ 1 + 3\lambda y^4 = 0 \\ y^6 - 1 = 0 \end{cases}$$
 或
$$\begin{cases} 1 + 3\lambda x^4 = 0 \\ y = 0 \\ x^6 - 1 = 0 \end{cases}$$
 或
$$\begin{cases} 1 + 3\lambda x^4 = 0 \\ 1 + 3\lambda y^4 = 0 \\ x^6 + y^6 - 1 = 0 \end{cases}$$

解 等价求: $z = f(x, y) = x^2 + y^2$ 在条件 $\varphi(x, y) = x^6 + y^6 - 1 = 0$ 下的最值.

1. 构造拉格朗日函数:

$$L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y) = x^2 + y^2 + \lambda (x^6 + y^6 - 1)$$

2. 求解方程组:
$$\begin{cases} L_x = 2x + 6\lambda x^5 = 0 \\ L_y = 2y + 6\lambda y^5 = 0 \\ \varphi = x^6 + y^6 - 1 = 0 \end{cases} \Rightarrow \begin{cases} x(1 + 3\lambda x^4) = 0 \\ y(1 + 3\lambda y^4) = 0 \\ x^6 + y^6 - 1 = 0 \end{cases}$$

所以
$$\begin{cases} x = 0 \\ 1 + 3\lambda y^4 = 0 \\ y^6 - 1 = 0 \end{cases}$$
 或
$$\begin{cases} 1 + 3\lambda x^4 = 0 \\ y = 0 \\ x^6 - 1 = 0 \end{cases}$$
 或
$$\begin{cases} 1 + 3\lambda x^4 = 0 \\ 1 + 3\lambda y^4 = 0 \\ x^6 + y^6 - 1 = 0 \end{cases}$$

解(x, y) $(0, \pm 1)$

解 等价求: $z = f(x, y) = x^2 + y^2$ 在条 件 $\varphi(x, y) = x^6 + y^6 - 1 = 0$ 下的最值.

$$L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y) = x^2 + y^2 + \lambda (x^6 + y^6 - 1)$$

2. 求解方程组:
$$\begin{cases} L_x = 2x + 6\lambda x^5 = 0 \\ L_y = 2y + 6\lambda y^5 = 0 \\ \varphi = x^6 + y^6 - 1 = 0 \end{cases} \Rightarrow \begin{cases} x(1 + 3\lambda x^4) = 0 \\ y(1 + 3\lambda y^4) = 0 \\ x^6 + y^6 - 1 = 0 \end{cases}$$

所以
$$\begin{cases} x = 0 \\ 1 + 3\lambda y^4 = 0 \end{cases}$$
 或
$$\begin{cases} 1 + 3\lambda x^4 = 0 \\ y = 0 \end{cases}$$
 或
$$\begin{cases} 1 + 3\lambda x^4 = 0 \\ 1 + 3\lambda y^4 = 0 \\ x^6 - 1 = 0 \end{cases}$$

解 (x, y)	(0, ±1)	(±1, 0)

 \mathbf{F} 等价求: $z = f(x, y) = x^2 + y^2$ 在条件 $\varphi(x, y) = x^6 + y^6 - 1 = 0$ 下的最值.

1. 构造拉格朗日函数:

$$L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y) = x^2 + y^2 + \lambda (x^6 + y^6 - 1)$$

2. 求解方程组:
$$\begin{cases} L_x = 2x + 6\lambda x^5 = 0 \\ L_y = 2y + 6\lambda y^5 = 0 \\ \varphi = x^6 + y^6 - 1 = 0 \end{cases} \Rightarrow \begin{cases} x(1 + 3\lambda x^4) = 0 \\ y(1 + 3\lambda y^4) = 0 \\ x^6 + y^6 - 1 = 0 \end{cases}$$

所以
$$\begin{cases} x = 0 \\ 1 + 3\lambda y^4 = 0 \end{cases}$$
 或
$$\begin{cases} 1 + 3\lambda x^4 = 0 \\ y = 0 \end{cases}$$
 或
$$\begin{cases} 1 + 3\lambda x^4 = 0 \\ 1 + 3\lambda y^4 = 0 \\ x^6 - 1 = 0 \end{cases}$$

解 (x, y)	(0, ±1)	(±1, 0)	$(\pm \sqrt[6]{1/2}, \pm \sqrt[6]{1/2})$

9g 多元函数极值 20/29 ⊲ ▷ △ ▽

例 1 求平面曲线 $x^6 + y^6 = 1$ 上的点,到 (-) [] [] 原点的距离分别是最远和最近.

解 等价求: $z = f(x, y) = x^2 + y^2$ 在条 件 $\varphi(x, y) = x^6 + y^6 - 1 = 0$ 下的最值.

1. 构造拉格朗日函数:

知道 拉格朗日函数:
$$L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y) = x^2 + y^2 + \lambda (x^6 + y^6 - 1)$$

2. 求解方程组:
$$\begin{cases} L_x = 2x + 6\lambda x^5 = 0 \\ L_y = 2y + 6\lambda y^5 = 0 \\ \varphi = x^6 + y^6 - 1 = 0 \end{cases} \Rightarrow \begin{cases} x(1 + 3\lambda x^4) = 0 \\ y(1 + 3\lambda y^4) = 0 \\ x^6 + y^6 - 1 = 0 \end{cases}$$

所以
$$\begin{cases} x = 0 \\ 1 + 3\lambda y^4 = 0 \\ y^6 - 1 = 0 \end{cases}$$
 或
$$\begin{cases} 1 + 3\lambda x^4 = 0 \\ y = 0 \\ x^6 - 1 = 0 \end{cases}$$
 或
$$\begin{cases} 1 + 3\lambda x^4 = 0 \\ 1 + 3\lambda y^4 = 0 \\ x^6 + y^6 - 1 = 0 \end{cases}$$

解(x, y) $| (0, \pm 1) | (\pm 1, 0)$ $(\pm \sqrt[6]{1/2}, \pm \sqrt[6]{1/2})$

 $(\sqrt[6]{\frac{1}{2}}, \sqrt[6]{\frac{1}{2}})$

例 1 求平面曲线 $x^6 + y^6 = 1$ 上的点,到 $(-\sqrt[6]{\frac{1}{2}}, \sqrt[6]{\frac{1}{2}})$ 原点的距离分别是最远和最近.

解 等价求: $z = f(x, y) = x^2 + y^2$ 在条 件 $\varphi(x, y) = x^6 + y^6 - 1 = 0$ 下的最值.

1. 构造拉格朗日函数:

D适拉格朗日函数:
$$L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y) = x^2 + y^2 + \lambda (x^6 + y^6 - 1)$$

 $(\sqrt[6]{\frac{1}{2}}, \sqrt[6]{\frac{1}{2}})$

2. 求解方程组:
$$\begin{cases} L_x = 2x + 6\lambda x^5 = 0 \\ L_y = 2y + 6\lambda y^5 = 0 \\ \varphi = x^6 + y^6 - 1 = 0 \end{cases} \Rightarrow \begin{cases} x(1 + 3\lambda x^4) = 0 \\ y(1 + 3\lambda y^4) = 0 \\ x^6 + y^6 - 1 = 0 \end{cases}$$

所以
$$\begin{cases} x = 0 \\ 1 + 3\lambda y^4 = 0 \\ y^6 - 1 = 0 \end{cases}$$
 或
$$\begin{cases} 1 + 3\lambda x^4 = 0 \\ y = 0 \\ x^6 - 1 = 0 \end{cases}$$
 或
$$\begin{cases} 1 + 3\lambda x^4 = 0 \\ 1 + 3\lambda y^4 = 0 \\ x^6 + y^6 - 1 = 0 \end{cases}$$

解 (x, y)	$(0, \pm 1)$	(±1, 0)	$(\pm \sqrt[6]{1/2}, \pm \sqrt[6]{1/2})$
函数值 f(x, y)	1	1	$2\sqrt[3]{1/2}$

9g 多元函数极值 20/29 < ▷ △ ▽ **例 1** 求平面曲线 $x^6 + y^6 = 1$ 上的点,到 (-) [] [] 原点的距离分别是最远和最近.

解 等价求: $z = f(x, y) = x^2 + y^2$ 在条 件 $\varphi(x, y) = x^6 + y^6 - 1 = 0$ 下的最值.

1. 构造拉格朗日函数:

阿迪拉格朗日图数:
$$L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y) = x^2 + y^2 + \lambda (x^6 + y^6 - 1)$$

2. 求解方程组:
$$\begin{cases} L_x = 2x + 6\lambda x^5 = 0 \\ L_y = 2y + 6\lambda y^5 = 0 \\ \varphi = x^6 + y^6 - 1 = 0 \end{cases} \Rightarrow \begin{cases} x(1 + 3\lambda x^4) = 0 \\ y(1 + 3\lambda y^4) = 0 \\ x^6 + y^6 - 1 = 0 \end{cases}$$

所以
$$\begin{cases} x = 0 \\ 1 + 3\lambda y^4 = 0 \\ y^6 - 1 = 0 \end{cases}$$
 或
$$\begin{cases} 1 + 3\lambda x^4 = 0 \\ y = 0 \\ x^6 - 1 = 0 \end{cases}$$
 或
$$\begin{cases} 1 + 3\lambda x^4 = 0 \\ 1 + 3\lambda y^4 = 0 \\ x^6 + y^6 - 1 = 0 \end{cases}$$

解 (x, y)	$(0, \pm 1)$	(±1, 0)	$(\pm \sqrt[6]{1/2}, \pm \sqrt[6]{1/2})$
函数值 f(x, y)	1	1	$2\sqrt[3]{1/2} \approx 1.59$

9g 多元函数极值 20/29 < ▷ △ ▽

 $(\sqrt[6]{\frac{1}{2}}, \sqrt[6]{\frac{1}{2}})$

条件极值(三元函数 + 一个附加条件)求解

<mark>问题</mark> 求三元函数 u = f(x, y, z) 在附加条件 $\varphi(x, y, z) = 0$ 下的极值点.

求解步骤(拉格朗日乘数法)

- 1. 构造拉格朗日函数 $L = f + \lambda \varphi$,其中 λ 是待定常数.
- 2. 求解方程组

$$\begin{cases} \nabla L = 0 \\ \varphi = 0 \end{cases}$$

3. 条件极值点(如果存在的话)包含在上述解 $\{(x, y, z)\}$ 中. (至于如何判断解是否条件极值点,需另行分析.)

条件极值(三元函数+一个附加条件)求解

<mark>问题</mark> 求三元函数 u = f(x, y, z) 在附加条件 $\varphi(x, y, z) = 0$ 下的极值点.

求解步骤(拉格朗日乘数法)

- 1. 构造拉格朗日函数 $L = f + \lambda \varphi$,其中 λ 是待定常数.
- 2. 求解方程组

$$\left\{ \begin{array}{l} \nabla L = 0 \\ \varphi = 0 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} L_x = f_x + \lambda \varphi_x = 0 \\ L_y = f_y + \lambda \varphi_y = 0 \\ L_z = f_z + \lambda \varphi_z = 0 \\ \varphi = 0 \end{array} \right.$$

3. 条件极值点(如果存在的话)包含在上述解 $\{(x, y, z)\}$ 中. (至于如何判断解是否条件极值点,需另行分析.)

条件极值(三元函数+一个附加条件)求解

<mark>问题</mark> 求三元函数 u = f(x, y, z) 在附加条件 $\varphi(x, y, z) = 0$ 下的极值点.

求解步骤(拉格朗日乘数法)

- 1. 构造拉格朗日函数 $L = f + \lambda \varphi$,其中 λ 是待定常数.
- 2. 求解方程组

$$\left\{ \begin{array}{l} \nabla L = 0 \\ \varphi = 0 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} L_x = f_x + \lambda \varphi_x = 0 \\ L_y = f_y + \lambda \varphi_y = 0 \\ L_z = f_z + \lambda \varphi_z = 0 \\ \varphi = 0 \end{array} \right.$$

3. 条件极值点(如果存在的话)包含在上述解 $\{(x, y, z)\}$ 中. (至于如何判断解是否条件极值点,需另行分析.)

注 求最大、最小值时,只需要在条件极值点中挑选函数值最大、最小

$$\mathbf{F}$$
 求: $\rho(x, y, z) = 3 + xz + y^2$ 在条件 $\phi(x, y, z) = x^2 + y^2 + z^2 - 4 = 0$ 下的最值.

解 求:
$$\rho(x, y, z) = 3 + xz + y^2$$
 在条件 $\varphi(x, y, z) = x^2 + y^2 + z^2 - 4 = 0$ 下的最值.

1. 拉格朗日函数: $L = \rho + \lambda \varphi =$

2. 求解:
$$\begin{cases} L_x &= 0 \\ L_y &= 0 \\ L_z &= 0 \\ \varphi = x^2 + y^2 + z^2 - 4 = 0 \end{cases}$$

解 求:
$$\rho(x, y, z) = 3 + xz + y^2$$
 在条件 $\varphi(x, y, z) = x^2 + y^2 + z^2 - 4 = 0$ 下的最值.

1. 拉格朗日函数: $L = \rho + \lambda \varphi = 3 + xz + y^2 + \lambda(x^2 + y^2 + z^2 - 4)$

2. 求解:
$$\begin{cases} L_x &= 0 \\ L_y &= 0 \\ L_z &= 0 \\ \varphi = x^2 + y^2 + z^2 - 4 = 0 \end{cases}$$

解 求:
$$\rho(x, y, z) = 3 + xz + y^2$$
 在条件 $\varphi(x, y, z) = x^2 + y^2 + z^2 - 4 = 0$ 下的最值.

2. 求解:
$$\begin{cases} L_x = z + 2\lambda x = 0 \\ L_y = 0 \\ L_z = 0 \\ \varphi = x^2 + y^2 + z^2 - 4 = 0 \end{cases}$$

解 求:
$$\rho(x, y, z) = 3 + xz + y^2$$
 在条件 $\varphi(x, y, z) = x^2 + y^2 + z^2 - 4 = 0$ 下的最值.

2. 求解:
$$\begin{cases} L_x = z + 2\lambda x = 0 \\ L_y = 2y + 2\lambda y = 0 \\ L_z = 0 \\ \varphi = x^2 + y^2 + z^2 - 4 = 0 \end{cases}$$

解 求:
$$\rho(x, y, z) = 3 + xz + y^2$$
 在条件 $\phi(x, y, z) = x^2 + y^2 + z^2 - 4 = 0$ 下的最值.

2. 求解:
$$\begin{cases} L_x = z + 2\lambda x = 0 \\ L_y = 2y + 2\lambda y = 0 \\ L_z = x + 2\lambda z = 0 \\ \varphi = x^2 + y^2 + z^2 - 4 = 0 \end{cases}$$

解 求:
$$\rho(x, y, z) = 3 + xz + y^2$$
 在条件

$$\varphi(x, y, z) = x^2 + y^2 + z^2 - 4 = 0$$
 下的最值.
1. 拉格朗日函数: $L = \rho + \lambda \varphi = 3 + xz + y^2 + \lambda(x^2 + y^2 + z^2 - 4)$

2. 求解:
$$\begin{cases} L_{x} = z + 2\lambda x = 0 \\ L_{y} = 2y + 2\lambda y = 0 \\ L_{z} = x + 2\lambda z = 0 \\ \varphi = x^{2} + y^{2} + z^{2} - 4 = 0 \end{cases} \Rightarrow \begin{cases} z = -2\lambda x \\ y(1 + \lambda) = 0 \\ x = -2\lambda z \\ x^{2} + y^{2} + z^{2} = 4 \end{cases}$$

解 求:
$$\rho(x, y, z) = 3 + xz + y^2$$
 在条件

$$\varphi(x, y, z) = x^2 + y^2 + z^2 - 4 = 0$$
 下的最值.

2.
$$\vec{x}$$
 \vec{x} :
$$\begin{cases}
L_x = z + 2\lambda x = 0 \\
L_y = 2y + 2\lambda y = 0 \\
L_z = x + 2\lambda z = 0 \\
\varphi = x^2 + y^2 + z^2 - 4 = 0
\end{cases}
\Rightarrow
\begin{cases}
z = -2\lambda x \Rightarrow z = 4\lambda^2 z \\
y(1 + \lambda) = 0 \\
x = -2\lambda z \\
x^2 + y^2 + z^2 = 4
\end{cases}$$

解 求:
$$\rho(x, y, z) = 3 + xz + y^2$$
 在条件

$$\varphi(x, y, z) = x^2 + y^2 + z^2 - 4 = 0$$
 下的最值.

1. 拉格朗日函数: $L = \rho + \lambda \varphi = 3 + xz + y^2 + \lambda(x^2 + y^2 + z^2 - 4)$

2. 求解:
$$\begin{cases} L_{x} = z + 2\lambda x = 0 \\ L_{y} = 2y + 2\lambda y = 0 \\ L_{z} = x + 2\lambda z = 0 \\ \varphi = x^{2} + y^{2} + z^{2} - 4 = 0 \end{cases} \Rightarrow \begin{cases} z = -2\lambda x \implies z = 4\lambda^{2}z \\ y(1 + \lambda) = 0 \\ x = -2\lambda z \\ x^{2} + y^{2} + z^{2} = 4 \end{cases}$$

若 z = 0,则

解 求:
$$\rho(x, y, z) = 3 + xz + y^2$$
 在条件

- $\varphi(x, y, z) = x^2 + y^2 + z^2 4 = 0$ 下的最值.
- 1. 拉格朗日函数: $L = \rho + \lambda \varphi = 3 + xz + y^2 + \lambda(x^2 + y^2 + z^2 4)$

2. 求解:
$$\begin{cases} L_{x} = z + 2\lambda x = 0 \\ L_{y} = 2y + 2\lambda y = 0 \\ L_{z} = x + 2\lambda z = 0 \\ \varphi = x^{2} + y^{2} + z^{2} - 4 = 0 \end{cases} \Rightarrow \begin{cases} z = -2\lambda x \implies z = 4\lambda^{2}z \\ y(1 + \lambda) = 0 \\ x = -2\lambda z \\ x^{2} + y^{2} + z^{2} = 4 \end{cases}$$

• 若 z = 0,则x = 0,

解 求:
$$\rho(x, y, z) = 3 + xz + y^2$$
 在条件

$$\varphi(x, y, z) = x^2 + y^2 + z^2 - 4 = 0$$
 下的最值.

1. 拉格朗日函数: $L = \rho + \lambda \varphi = 3 + xz + y^2 + \lambda(x^2 + y^2 + z^2 - 4)$

2. 求解:
$$\begin{cases} L_{x} = z + 2\lambda x = 0 \\ L_{y} = 2y + 2\lambda y = 0 \\ L_{z} = x + 2\lambda z = 0 \\ \varphi = x^{2} + y^{2} + z^{2} - 4 = 0 \end{cases} \Rightarrow \begin{cases} z = -2\lambda x \implies z = 4\lambda^{2}z \\ y(1 + \lambda) = 0 \\ x = -2\lambda z \\ x^{2} + y^{2} + z^{2} = 4 \end{cases}$$

• 若 z = 0,则x = 0, $y = \pm 2$,

解 求:
$$\rho(x, y, z) = 3 + xz + y^2$$
 在条件

$$\varphi(x, y, z) = x^2 + y^2 + z^2 - 4 = 0$$
 下的最值.

1. 拉格朗日函数: $L = \rho + \lambda \varphi = 3 + xz + y^2 + \lambda(x^2 + y^2 + z^2 - 4)$

2. 求解:
$$\begin{cases} L_{x} = z + 2\lambda x = 0 \\ L_{y} = 2y + 2\lambda y = 0 \\ L_{z} = x + 2\lambda z = 0 \\ \varphi = x^{2} + y^{2} + z^{2} - 4 = 0 \end{cases} \Rightarrow \begin{cases} z = -2\lambda x \implies z = 4\lambda^{2}z \\ y(1 + \lambda) = 0 \\ x = -2\lambda z \\ x^{2} + y^{2} + z^{2} = 4 \end{cases}$$

• 若 z = 0,则x = 0, $y = \pm 2$,所以此时 $(x, y, z) = (0, \pm 2, 0)$

解 求:
$$\rho(x, y, z) = 3 + xz + y^2$$
 在条件

$$\varphi(x, y, z) = x^2 + y^2 + z^2 - 4 = 0$$
 下的最值.

2. 求解:
$$\begin{cases} L_{x} = z + 2\lambda x = 0 \\ L_{y} = 2y + 2\lambda y = 0 \\ L_{z} = x + 2\lambda z = 0 \\ \varphi = x^{2} + y^{2} + z^{2} - 4 = 0 \end{cases} \Rightarrow \begin{cases} z = -2\lambda x \implies z = 4\lambda^{2}z \\ y(1 + \lambda) = 0 \\ x = -2\lambda z \\ x^{2} + y^{2} + z^{2} = 4 \end{cases}$$

- 若 z = 0,则x = 0, $y = \pm 2$,所以此时 $(x, y, z) = (0, \pm 2, 0)$
- 若 z ≠ 0,则

解 求:
$$\rho(x, y, z) = 3 + xz + y^2$$
 在条件

$$\varphi(x, y, z) = x^2 + y^2 + z^2 - 4 = 0$$
 下的最值.

2. 求解:
$$\begin{cases} L_{x} = z + 2\lambda x = 0 \\ L_{y} = 2y + 2\lambda y = 0 \\ L_{z} = x + 2\lambda z = 0 \\ \varphi = x^{2} + y^{2} + z^{2} - 4 = 0 \end{cases} \Rightarrow \begin{cases} z = -2\lambda x \implies z = 4\lambda^{2}z \\ y(1 + \lambda) = 0 \\ x = -2\lambda z \\ x^{2} + y^{2} + z^{2} = 4 \end{cases}$$

- 若 z = 0,则x = 0, $y = \pm 2$,所以此时 $(x, y, z) = (0, \pm 2, 0)$
- $\exists z \neq 0$, $\exists \lambda = \pm \frac{1}{2}$,

解 求:
$$\rho(x, y, z) = 3 + xz + y^2$$
 在条件

$$\varphi(x, y, z) = x^2 + y^2 + z^2 - 4 = 0$$
 下的最值.

1. 拉格朗日函数: $L = \rho + \lambda \varphi = 3 + xz + y^2 + \lambda(x^2 + y^2 + z^2 - 4)$ 2. 求解: $\begin{cases} L_x = z + 2\lambda x = 0 \\ L_y = 2y + 2\lambda y = 0 \\ L_z = x + 2\lambda z = 0 \\ \varphi = x^2 + y^2 + z^2 - 4 = 0 \end{cases} \Rightarrow \begin{cases} z = -2\lambda x \Rightarrow z = 4\lambda^2 z \\ y(1 + \lambda) = 0 \\ x = -2\lambda z \\ x^2 + y^2 + z^2 = 4 \end{cases}$

- 若 z = 0,则x = 0, $y = \pm 2$,所以此时 $(x, y, z) = (0, \pm 2, 0)$
- 若 $z \neq 0$,则 $\lambda = \pm \frac{1}{2}$,y = 0,

解 求:
$$\rho(x, y, z) = 3 + xz + y^2$$
 在条件

$$\varphi(x, y, z) = x^2 + y^2 + z^2 - 4 = 0$$
 下的最值.

2. 求解:
$$\begin{cases} L_{x} = z + 2\lambda x = 0 \\ L_{y} = 2y + 2\lambda y = 0 \\ L_{z} = x + 2\lambda z = 0 \\ \varphi = x^{2} + y^{2} + z^{2} - 4 = 0 \end{cases} \Rightarrow \begin{cases} z = -2\lambda x \implies z = 4\lambda^{2}z \\ y(1 + \lambda) = 0 \\ x = -2\lambda z \\ x^{2} + y^{2} + z^{2} = 4 \end{cases}$$

- 若 z = 0,则x = 0, $y = \pm 2$,所以此时 $(x, y, z) = (0, \pm 2, 0)$
- 若 $z \neq 0$, 则 $\lambda = \pm \frac{1}{2}$, y = 0, $x = \mp z$,

解 求:
$$\rho(x, y, z) = 3 + xz + y^2$$
 在条件

 $\varphi(x, y, z) = x^2 + y^2 + z^2 - 4 = 0$ 下的最值.

2. 求解:
$$\begin{cases} L_x = z + 2\lambda x = 0 \\ L_y = 2y + 2\lambda y = 0 \\ L_z = x + 2\lambda z = 0 \\ \varphi = x^2 + y^2 + z^2 - 4 = 0 \end{cases} \Rightarrow \begin{cases} z = -2\lambda x \implies z = 4\lambda^2 z \\ y(1+\lambda) = 0 \\ x = -2\lambda z \\ x^2 + y^2 + z^2 = 4 \end{cases}$$

- 若 z = 0,则x = 0, $y = \pm 2$,所以此时 $(x, y, z) = (0, \pm 2, 0)$
- $\exists z \neq 0$, $\exists \lambda = \pm \frac{1}{2}$, y = 0, $x = \pm \lambda$, $\exists \lambda \in \mathbb{Z}$, $\exists \lambda$

$$\mathbf{H}$$
 求: $\rho(x, y, z) = 3 + xz + y^2$ 在条件

$$\varphi(x, y, z) = x^2 + y^2 + z^2 - 4 = 0$$
 下的最值.
1. 拉格朗日函数: $L = \rho + \lambda \varphi = 3 + xz + y^2 + \lambda(x^2 + y^2 + z^2 - 4)$

2.
$$\vec{x}$$
 \vec{x} :
$$\begin{cases} L_x = z + 2\lambda x = 0 \\ L_y = 2y + 2\lambda y = 0 \\ L_z = x + 2\lambda z = 0 \\ \varphi = x^2 + y^2 + z^2 - 4 = 0 \end{cases} \Rightarrow \begin{cases} z = -2\lambda x \implies z = 4\lambda^2 z \\ y(1 + \lambda) = 0 \\ x = -2\lambda z \\ x^2 + y^2 + z^2 = 4 \end{cases}$$

- 若 z = 0,则x = 0, $y = \pm 2$,所以此时 $(x, y, z) = (0, \pm 2, 0)$
- 若 $z \neq 0$,则 $\lambda = \pm \frac{1}{2}$,y = 0, $x = \mp z$,所以此时 $(x, y, z) = (\pm \sqrt{2}, 0, \pm \sqrt{2}), (\pm \sqrt{2}, 0, \mp \sqrt{2})$

$$\Re(x, y, z)$$
 $(0, \pm 2, 0)$ $(\pm \sqrt{2}, 0, \pm \sqrt{2})$ $(\pm \sqrt{2}, 0, \mp \sqrt{2})$ $\rho(x, y, z)$

$$\mathbf{H}$$
 求: $\rho(x, y, z) = 3 + xz + y^2$ 在条件

$$\varphi(x, y, z) = x^2 + y^2 + z^2 - 4 = 0$$
 下的最值.
1. 拉格朗日函数: $L = \rho + \lambda \varphi = 3 + xz + y^2 + \lambda(x^2 + y^2 + z^2 - 4)$

2.
$$\[x] x] \begin{cases} L_x = z + 2\lambda x = 0 \\ L_y = 2y + 2\lambda y = 0 \\ L_z = x + 2\lambda z = 0 \\ \varphi = x^2 + y^2 + z^2 - 4 = 0 \end{cases} \Rightarrow \begin{cases} z = -2\lambda x \implies z = 4\lambda^2 z \\ y(1 + \lambda) = 0 \\ x = -2\lambda z \\ x^2 + y^2 + z^2 = 4 \end{cases}$$

- 若 z = 0,则x = 0, $y = \pm 2$,所以此时 $(x, y, z) = (0, \pm 2, 0)$
- 若 $z \neq 0$,则 $\lambda = \pm \frac{1}{2}$,y = 0, $x = \mp z$,所以此时 $(x, y, z) = (\pm \sqrt{2}, 0, \pm \sqrt{2}), (\pm \sqrt{2}, 0, \mp \sqrt{2})$

解 求:
$$\rho(x, y, z) = 3 + xz + y^2$$
 在条件

$$\varphi(x, y, z) = x^2 + y^2 + z^2 - 4 = 0$$
 下的最值.
1. 拉格朗日函数: $L = \rho + \lambda \varphi = 3 + xz + y^2 + \lambda(x^2 + y^2 + z^2 - 4)$

2. 求解:
$$\begin{cases} L_{x} = z + 2\lambda x = 0 \\ L_{y} = 2y + 2\lambda y = 0 \\ L_{z} = x + 2\lambda z = 0 \\ \varphi = x^{2} + y^{2} + z^{2} - 4 = 0 \end{cases} \Rightarrow \begin{cases} z = -2\lambda x \implies z = 4\lambda^{2}z \\ y(1 + \lambda) = 0 \\ x = -2\lambda z \\ x^{2} + y^{2} + z^{2} = 4 \end{cases}$$

- 若 z = 0,则x = 0, $y = \pm 2$,所以此时 $(x, y, z) = (0, \pm 2, 0)$
- 若 $z \neq 0$,则 $\lambda = \pm \frac{1}{2}$,y = 0, $x = \mp z$,所以此时 $(x, y, z) = (\pm \sqrt{2}, 0, \pm \sqrt{2}), (\pm \sqrt{2}, 0, \mp \sqrt{2})$

解 (x, y, z)	(0, ±2, 0)	$(\pm\sqrt{2}, 0, \pm\sqrt{2})$	$(\pm\sqrt{2}, 0, \mp\sqrt{2})$
$\rho(x, y, z)$	7	5	

$$\mathbf{H}$$
 求: $\rho(x, y, z) = 3 + xz + y^2$ 在条件

$$\varphi(x, y, z) = x^2 + y^2 + z^2 - 4 = 0$$
 下的最值.
1. 拉格朗日函数: $L = \rho + \lambda \varphi = 3 + xz + y^2 + \lambda(x^2 + y^2 + z^2 - 4)$

2. 求解:
$$\begin{cases} L_{x} = z + 2\lambda x = 0 \\ L_{y} = 2y + 2\lambda y = 0 \\ L_{z} = x + 2\lambda z = 0 \\ \varphi = x^{2} + y^{2} + z^{2} - 4 = 0 \end{cases} \Rightarrow \begin{cases} z = -2\lambda x \implies z = 4\lambda^{2}z \\ y(1 + \lambda) = 0 \\ x = -2\lambda z \\ x^{2} + y^{2} + z^{2} = 4 \end{cases}$$

- 若 z = 0,则x = 0, $y = \pm 2$,所以此时 $(x, y, z) = (0, \pm 2, 0)$
- 若 $z \neq 0$,则 $\lambda = \pm \frac{1}{2}$,y = 0, $x = \mp z$,所以此时 $(x, y, z) = (\pm \sqrt{2}, 0, \pm \sqrt{2}), (\pm \sqrt{2}, 0, \mp \sqrt{2})$

解 (x, y, z)	(0, ±2, 0)	$(\pm\sqrt{2}, 0, \pm\sqrt{2})$	$(\pm\sqrt{2}, 0, \mp\sqrt{2})$
$\rho(x, y, z)$	7	5	1

条件极值(三元函数 + 两个附加条件)求解

问题 求三元函数 u = f(x, y, z) 在附加条件 $\begin{cases} \varphi(x, y, z) = 0 \\ \psi(x, y, z) = 0 \end{cases}$ 下的极值点.

求解步骤(拉格朗日乘数法)

- 1. 构造拉格朗日函数 $L = f + \lambda \varphi + \mu \psi$,其中 λ , μ 是待定常数.
- 2. 求解方程组

$$\begin{cases} L_{x} = f_{x} + \lambda \varphi_{x} + \mu \psi_{x} = 0 \\ L_{y} = f_{y} + \lambda \varphi_{y} + \mu \psi_{y} = 0 \\ L_{z} = f_{z} + \lambda \varphi_{z} + \mu \psi_{z} = 0 \\ \varphi = 0 \\ \psi = 0 \end{cases}$$

3. 条件极值点(如果存在的话)包含在上述解 {(x, y, z)} 中. (至于如何判断解是否条件极值点,需另行分析.)

We are here now...

1. 多元函数的极值点

2. 条件极值

3. 求解多元函数的最值

问题 寻找连续函数 z = f(x, y) 在有界闭区域 D 上的最大、最小值点.

<mark>问题</mark> 寻找连续函数 z = f(x, y) 在有界闭区域 D 上的最大、最小值点.

分析

● 连续函数在有界闭区域上一定能取到最大、最小值。所以最大、最小值点一定存在.

问题 寻找连续函数 z = f(x, y) 在有界闭区域 D 上的最大、最小值点.

分析

● 连续函数在有界闭区域上一定能取到最大、最小值。所以最大、最小值点一定存在.记 *p* ∈ *D* 为最值点.

问题 寻找连续函数 z = f(x, y) 在有界闭区域 D 上的最大、最小值点.

- 连续函数在有界闭区域上一定能取到最大、最小值。所以最大、最小值点一定存在.记 $p \in D$ 为最值点.
- 若 p 是 D 的内点,
- 若 p 是 D 的边界点,

问题 寻找连续函数 z = f(x, y) 在有界闭区域 D 上的最大、最小值点.

- 连续函数在有界闭区域上一定能取到最大、最小值。所以最大、最小值点一定存在.记 $p \in D$ 为最值点.
- 若 p 是 D 的内点,
- 若 p 是 D 的边界点,

问题 寻找连续函数 z = f(x, y) 在有界闭区域 D 上的最大、最小值点.

- 连续函数在有界闭区域上一定能取到最大、最小值。所以最大、最小值点一定存在.记 $p \in D$ 为最值点.
- 若 p 是 D 的内点,则 p 是 z = f(x, y) 的极值点,
- 若 *p* 是 *D* 的边界点,

问题 寻找连续函数 z = f(x, y) 在有界闭区域 D 上的最大、最小值点.

- 连续函数在有界闭区域上一定能取到最大、最小值。所以最大、最小值点一定存在.记 $p \in D$ 为最值点.
- 若 $p \neq D$ 的内点,则 $p \neq z = f(x, y)$ 的极值点,从而是驻点: $f_x(p) = f_y(p) = 0$
- 若 p 是 D 的边界点,

问题 寻找连续函数 z = f(x, y) 在有界闭区域 D 上的最大、最小值点.

- 连续函数在有界闭区域上一定能取到最大、最小值。所以最大、最小值点一定存在.记 $p \in D$ 为最值点.
- 若 $p \neq D$ 的内点,则 $p \neq z = f(x, y)$ 的极值点,从而是驻点: $f_x(p) = f_y(p) = 0$
- 若 p 是 D 的边界点,

问题 寻找连续函数 z = f(x, y) 在有界闭区域 D 上的最大、最小值点.

- 连续函数在有界闭区域上一定能取到最大、最小值。所以最大、最小值点一定存在.记 $p \in D$ 为最值点.
- 若 $p \neq D$ 的内点,则 $p \neq z = f(x, y)$ 的极值点,从而是驻点: $f_x(p) = f_y(p) = 0$
- 若 $p \neq D$ 的边界点,则 $p \neq z = f(x, y)$ 在条件 $\varphi(x, y) = 0$ 下的条件极值点

求解步骤

1. 求驻点:

2. 求条件极值:

- 1. 求驻点: 在 D 内部求解方程组 $\begin{cases} f_x(x,y) = 0 \\ f_y(x,y) = 0 \end{cases}$
- 2. 求条件极值:

- 1. 求驻点: 在 D 内部求解方程组 $\begin{cases} f_x(x,y) = 0 \\ f_y(x,y) = 0 \end{cases}$.设驻点为 p_1, p_2, \dots, p_m
- 2. 求条件极值:

- 1. 求驻点: 在 D 内部求解方程组 $\begin{cases} f_x(x,y) = 0 \\ f_y(x,y) = 0 \end{cases}$.设驻点为 p_1, p_2, \dots, p_m
- 2. 求条件极值: z = f(x, y) 在条件 $\varphi(x, y) = 0$ 下的条件极值.

<mark>问题</mark> 寻找连续函数 z = f(x, y) 在有界闭区域 D 上的最大、最小值点.

求解步骤

- 1. 求驻点: 在 D 内部求解方程组 $\begin{cases} f_x(x,y) = 0 \\ f_y(x,y) = 0 \end{cases}$.设驻点为 p_1, p_2, \dots, p_m
- 2. 求条件极值: z = f(x, y) 在条件 $\varphi(x, y) = 0$ 下的条件极值.设条件 极值点为 $q_1, q_2, ..., q_n$

9g 多元函数极值 25/29 ◁ ▷ △ ▽

<mark>问题</mark> 寻找连续函数 z = f(x, y) 在有界闭区域 D 上的最大、最小值点.

- 1. 求驻点: 在 D 内部求解方程组 $\begin{cases} f_x(x,y) = 0 \\ f_y(x,y) = 0 \end{cases}$.设驻点为
- 2. 求条件极值: z = f(x, y) 在条件 $\varphi(x, y) = 0$ 下的条件极值.设条件 极值点为 $q_1, q_2, ..., q_n$
- 3. 比较 p_1 , p_2 , ..., p_m ; q_1 , q_2 , ..., q_n 的函数值,最大者对应最大值点,最小者对应最小值点.

例1 求函数 $f(x,y) = x^3 - y^3 + 3x^2 + 3y^2 - 9x$ 在区域 $D = \{(x,y) | x^2 + y^2 \le 3\}$ 内的最值.

例1 求函数
$$f(x,y) = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
 在区域 $D = \{(x,y) | x^2 + y^2 \le 3\}$ 内的最值.

在条件

例1 求函数
$$f(x, y) = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
 在区域 $D = \{(x, y) | x^2 + y^2 \le 3\}$ 内的最值.

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases}$$

2. 求
$$f = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
 $\varphi(x, y) = x^2 + y^2 - 3 = 0$ 下的条件极值:

比较函数值:

在条件

例 1 求函数
$$f(x, y) = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
 在区域 $D = \{(x, y) | x^2 + y^2 \le 3\}$ 内的最值.

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Rightarrow (x, y) = (1, 0), (1, 2), (-3, 0), (-3, 2)$$

2. 求
$$f = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
 在条件

$$\varphi(x, y) = x^2 + y^2 - 3 = 0$$
 下的条件极值:

例1 求函数
$$f(x, y) = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
 在区域 $D = \{(x, y) | x^2 + y^2 \le 3\}$ 内的最值.

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Rightarrow (x, y) = (1, 0), (1, 2), (-3, 0), (-3, 2)$$

只有驻点 (1,0) 是 D 的内点.

2. 求
$$f = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$

 $\varphi(x, y) = x^2 + y^2 - 3 = 0$ 下的条件极值:

3. 比较函数值:

在条件

例1 求函数
$$f(x,y) = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
 在区域 $D = \{(x,y) | x^2 + y^2 \le 3\}$ 内的最值.

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Rightarrow (x, y) = (1, 0), (1, 2), (-3, 0), (-3, 2)$$

只有驻点 (1,0) 是 D 的内点.

例1 求函数
$$f(x,y) = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
 在区域 $D = \{(x,y) | x^2 + y^2 \le 3\}$ 内的最值.

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Rightarrow (x, y) = (1, 0), (1, 2), (-3, 0), (-3, 2)$$

只有驻点 (1,0) 是 D 的内点.

2. 求
$$f = x^3 - y^3 + 3x^2 + 3y^2 - 9x = x^3 - y^3 - 9x + 9$$
在条件 $\varphi(x, y) = x^2 + y^2 - 3 = 0$ 下的条件极值: 令 $L = f + \lambda \varphi$,求解

例1 求函数
$$f(x,y) = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
 在区域 $D = \{(x,y) | x^2 + y^2 \le 3\}$ 内的最值.

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Rightarrow (x, y) = (1, 0), (1, 2), (-3, 0), (-3, 2)$$

只有驻点 (1,0) 是 D 的内点.

2. 求 $f = x^3 - y^3 + 3x^2 + 3y^2 - 9x = x^3 - y^3 - 9x + 9$ 在条件 $\varphi(x, y) = x^2 + y^2 - 3 = 0$ 下的条件极值: 令 $L = f + \lambda \varphi$,求解

$$\begin{cases} L_x = 3x^2 - 9 + 2\lambda x = 0 \\ L_y = -3y^2 + 2\lambda y = 0 \\ \varphi = x^2 + y^2 - 3 = 0 \end{cases}$$

例 1 求函数
$$f(x,y) = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
 在区域 $D = \{(x,y) | x^2 + y^2 \le 3\}$ 内的最值.

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Rightarrow (x, y) = (1, 0), (1, 2), (-3, 0), (-3, 2)$$

只有驻点 (1,0) 是 D 的内点.

$$\begin{cases} L_x = 3x^2 - 9 + 2\lambda x = 0 \\ L_y = -3y^2 + 2\lambda y = 0 \\ \varphi = x^2 + y^2 - 3 = 0 \end{cases} \Rightarrow (x, y) = (\pm \sqrt{3}, 0), (\sqrt{3/2}, \sqrt{3/2}), (-\sqrt{3/2}, -\sqrt{3/2})$$

例 1 求函数
$$f(x, y) = x^3 - y^3 + 3x^2 + 3y^2 - 9x$$
 在区域 $D = \{(x, y) | x^2 + y^2 \le 3\}$ 内的最值.

$$\begin{cases} z_x = 3x^2 + 6x - 9 = 0 \\ z_y = -3y^2 + 6y = 0 \end{cases} \Rightarrow (x, y) = (1, 0), (1, 2), (-3, 0), (-3, 2)$$

只有驻点 (1,0) 是 D 的内点.

 $f(x,y) \mid -5 \mid \approx -1.4 \mid \approx 19.4$

$$\begin{cases} L_x = 3x^2 - 9 + 2\lambda x = 0 \\ L_y = -3y^2 + 2\lambda y = 0 \\ \varphi = x^2 + y^2 - 3 = 0 \end{cases} \Rightarrow (x, y) = (\pm \sqrt{3}, 0), (\sqrt{3/2}, \sqrt{3/2}), (-\sqrt{3/2}, -\sqrt{3/2})$$

 ≈ 20.0

 ≈ -2.0

J. DALDXII.							
	(x,y)	(1,0)	(√3,0)	(-√3,0)	$(\sqrt{1.5}, \sqrt{1.5})$	$(-\sqrt{1.5}, -\sqrt{1.5})$	

例 2 求 $z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2}$ 在 $\overline{D} = \{(x, y) | x^2 + y^2 \le 1\}$ 上的最大最小值.

例 2 求
$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2}$$
 在 $\overline{D} = \{(x, y) | x^2 + y^2 \le 1\}$ 上的最大最小值.

$$\begin{cases} z_x = \\ z_y = \end{cases}$$

例 2 求
$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2}$$
 在 $\overline{D} = \{(x, y) | x^2 + y^2 \le 1\}$ 上的最大最小值.

$$\begin{cases} z_x = 2x(1 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} \\ z_y = \end{cases}$$

例 2 求
$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2}$$
 在 $\overline{D} = \{(x, y) | x^2 + y^2 \le 1\}$ 上的最大最小值.

$$\begin{cases} z_X = 2x(1 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} \\ z_y = 2y(2 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} \end{cases}$$

例 2 求
$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2}$$
 在 $\overline{D} = \{(x, y) | x^2 + y^2 \le 1\}$ 上的最大最小值.

$$\begin{cases} z_x = 2x(1 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0\\ z_y = 2y(2 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \end{cases}$$

$$\begin{cases} z_x = 2x(1 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \\ z_y = 2y(2 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \end{cases} \Rightarrow \begin{cases} x(1 - 2x^2 - 3y^2) = 0 \\ y(2 - 2x^2 - 3y^2) = 0 \end{cases}$$

例 2 求
$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2}$$
 在 $\overline{D} = \{(x, y) | x^2 + y^2 \le 1\}$ 上的最大最小值.

$$\begin{cases} z_x = 2x(1 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \\ z_y = 2y(2 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \end{cases} \Rightarrow \begin{cases} x(1 - 2x^2 - 3y^2) = 0 \\ y(2 - 2x^2 - 3y^2) = 0 \end{cases}$$

所以有如下四种情况

例 2 求
$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2}$$
 在 $\overline{D} = \{(x, y) | x^2 + y^2 \le 1\}$ 上的最大最小值.

$$\begin{cases} z_x = 2x(1 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \\ z_y = 2y(2 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \end{cases} \Rightarrow \begin{cases} x(1 - 2x^2 - 3y^2) = 0 \\ y(2 - 2x^2 - 3y^2) = 0 \end{cases}$$

所以有如下四种情况

$$\begin{cases} x = 0 & \begin{cases} x = 0 \\ y = 0 \end{cases} & \begin{cases} 1 - 2x^2 - 3y^2 = 0 \\ y = 0 \end{cases} & \begin{cases} 1 - 2x^2 - 3y^2 = 0 \\ 2 - 2x^2 - 3y^2 = 0 \end{cases}$$

$$\begin{cases} z_x = 2x(1 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \\ z_y = 2y(2 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \end{cases} \Rightarrow \begin{cases} x(1 - 2x^2 - 3y^2) = 0 \\ y(2 - 2x^2 - 3y^2) = 0 \end{cases}$$

所以有如下四种情况

$$\begin{cases} x = 0 & \{x = 0 \\ y = 0 \ ' \ \{2 - 2x^2 - 3y^2 = 0 \ ' \ \{y = 0 \ ' \ \{2 - 2x^2 - 3y^2 = 0 \ ' \ \{x = 0 \$$

解得
$$(x,y)=(0,0)$$

$$\begin{cases} z_x = 2x(1 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \\ z_y = 2y(2 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \end{cases} \Rightarrow \begin{cases} x(1 - 2x^2 - 3y^2) = 0 \\ y(2 - 2x^2 - 3y^2) = 0 \end{cases}$$

所以有如下四种情况

$$\begin{cases} x=0 & \begin{cases} x=0 & \begin{cases} 1-2x^2-3y^2=0 \\ y=0 \end{cases} & \begin{cases} 1-2x^2-3y^2=0 \end{cases} \\ y=0 & \begin{cases} 2-2x^2-3y^2=0 \end{cases} \end{cases}$$

$$\text{and } (x,y)=(0,0) \quad \vec{y} \quad (0,\pm\sqrt{2/3})$$

例 2 求
$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2}$$
 在 $\overline{D} = \{(x, y) | x^2 + y^2 \le 1\}$ 上的最大最小值.

$$\begin{cases} z_x = 2x(1 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \\ z_y = 2y(2 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \end{cases} \Rightarrow \begin{cases} x(1 - 2x^2 - 3y^2) = 0 \\ y(2 - 2x^2 - 3y^2) = 0 \end{cases}$$

所以有如下四种情况

$$\begin{cases} x=0 & \begin{cases} x=0 & \begin{cases} 1-2x^2-3y^2=0 \\ y=0 \end{cases} & \begin{cases} 1-2x^2-3y^2=0 \end{cases} \\ y=0 & \begin{cases} (2-2x^2-3y^2=0) \end{cases} \end{cases}$$

$$\Rightarrow (x,y) = (0,0) \quad \text{if} \quad (0,\pm\sqrt{2/3}) \quad \text{if} \quad (\pm\sqrt{1/2},0) \end{cases}$$

例 2 求
$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2}$$
 在 $\overline{D} = \{(x, y) | x^2 + y^2 \le 1\}$ 上的最大最小值.

$$\begin{cases} z_x = 2x(1 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \\ z_y = 2y(2 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \end{cases} \Rightarrow \begin{cases} x(1 - 2x^2 - 3y^2) = 0 \\ y(2 - 2x^2 - 3y^2) = 0 \end{cases}$$

所以有如下四种情况

$$\begin{cases} x=0 & \begin{cases} x=0 & \begin{cases} 1-2x^2-3y^2=0 \\ y=0 \end{cases} & \begin{cases} 1-2x^2-3y^2=0 \end{cases} \\ y=0 & \begin{cases} 2-2x^2-3y^2=0 \end{cases} \end{cases}$$

$$\text{GR2} \qquad (x,y)=(0,0) \quad \vec{y} \quad (0,\pm\sqrt{2/3}) \quad \vec{y} \quad (\pm\sqrt{1/2},0)$$

(x, y) = (0, 0) 現 (0, ±√2/3) 現 (±√1/2, 0)
驻点 (x, y) (0, 0)
$$(0, \pm \sqrt{2/3})$$
 (±√1/2, 0)
函数値 $z(x, y)$

例 2 求
$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2}$$
 在 $\overline{D} = \{(x, y) | x^2 + y^2 \le 1\}$ 上的最大最小值.

$$\begin{cases} z_x = 2x(1 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \\ z_y = 2y(2 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \end{cases} \Rightarrow \begin{cases} x(1 - 2x^2 - 3y^2) = 0 \\ y(2 - 2x^2 - 3y^2) = 0 \end{cases}$$

所以有如下四种情况

$$\begin{cases} x=0 & \begin{cases} x=0 & \begin{cases} 1-2x^2-3y^2=0 \\ y=0 \end{cases} & \begin{cases} 1-2x^2-3y^2=0 \end{cases} \\ y=0 & \begin{cases} (2-2x^2-3y^2=0) \end{cases} \end{cases}$$

$$\Rightarrow (x,y) = (0,0) \quad \text{if} \quad (0,\pm\sqrt{2/3}) \quad \text{if} \quad (\pm\sqrt{1/2},0) \end{cases}$$

驻点
$$(x, y)$$
 $(0, 0)$ $(0, \pm \sqrt{2/3})$ $(\pm \sqrt{1/2}, 0)$ 函数值 $z(x, y)$ $e \approx 2.72$

例 2 求
$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2}$$
 在 $\overline{D} = \{(x, y) | x^2 + y^2 \le 1\}$ 上的最大最小值.

$$\begin{cases} z_x = 2x(1 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \\ z_y = 2y(2 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \end{cases} \Rightarrow \begin{cases} x(1 - 2x^2 - 3y^2) = 0 \\ y(2 - 2x^2 - 3y^2) = 0 \end{cases}$$

所以有如下四种情况

$$\begin{cases} x=0 & \begin{cases} x=0 & \begin{cases} 1-2x^2-3y^2=0 \\ y=0 \end{cases} & \begin{cases} 1-2x^2-3y^2=0 \end{cases} \\ y=0 & \begin{cases} (2-2x^2-3y^2=0) \end{cases} \end{cases}$$

$$\text{GR2} \qquad (x,y)=(0,0) \quad \vec{y} \quad (0,\pm\sqrt{2/3}) \quad \vec{y} \quad (\pm\sqrt{1/2},0) \end{cases}$$

驻点
$$(x, y) = (0, 0)$$
 或 $(0, \pm \sqrt{2/3})$ 或 $(\pm \sqrt{1/2}, 0)$
函数值 $z(x, y)$ $e \approx 2.72$ $3e^{\frac{1}{3}} \approx 4.19$

例 2 求
$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2}$$
 在 $\overline{D} = \{(x, y) | x^2 + y^2 \le 1\}$ 上的最大最小值.

$$\begin{cases} z_x = 2x(1 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \\ z_y = 2y(2 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \end{cases} \Rightarrow \begin{cases} x(1 - 2x^2 - 3y^2) = 0 \\ y(2 - 2x^2 - 3y^2) = 0 \end{cases}$$

所以有如下四种情况

$$\begin{cases} x=0 & \begin{cases} x=0 & \begin{cases} 1-2x^2-3y^2=0 \\ y=0 \end{cases} & \begin{cases} 1-2x^2-3y^2=0 \end{cases} \\ y=0 & \begin{cases} (2-2x^2-3y^2=0) \end{cases} \end{cases}$$

$$\exists x=0 & \begin{cases} x=0 & \begin{cases} (2x^2-3y^2=0) \\ (2-2x^2-3y^2=0) \end{cases} \end{cases}$$

$$\exists x=0 & \begin{cases} (2x^2-3y^2=0) & \begin{cases} (2x^2-3y^2=0) \\ (2x^2-3y^2=0) \end{cases} \end{cases}$$

$$\exists x=0 & \begin{cases} (2x^2-3y^2=0) & \begin{cases} (2x^2-3y^2=0) \\ (2x^2-3y^2=0) \end{cases} \end{cases}$$

$$\exists x=0 & \begin{cases} (2x^2-3y^2=0) & \begin{cases} (2x^2-3y^2=0) \\ (2x^2-3y^2=0) \end{cases} \end{cases}$$

$$\exists x=0 & \begin{cases} (2x^2-3y^2=0) & \begin{cases} (2x^2-3y^2=0) \\ (2x^2-3y^2=0) \end{cases} \end{cases}$$

$$\exists x=0 & \begin{cases} (2x^2-3y^2=0) & \begin{cases} (2x^2-3y^2=0) \\ (2x^2-3y^2=0) \end{cases} \end{cases}$$

$$\exists x=0 & \begin{cases} (2x^2-3y^2=0) & \begin{cases} (2x^2-3y^2=0) \\ (2x^2-3y^2=0) \end{cases} \end{cases}$$

$$\exists x=0 & \begin{cases} (2x^2-3y^2=0) & \begin{cases} (2x^2-3y^2=0) \\ (2x^2-3y^2=0) \end{cases} \end{cases}$$

$$\exists x=0 & \begin{cases} (2x^2-3y^2=0) & \begin{cases} (2x^2-3y^2=0) \\ (2x^2-3y^2=0) \end{cases} \end{cases}$$

驻点 (x, y)	(0, 0)	$(0, \pm \sqrt{2/3})$	$(\pm\sqrt{1/2},0)$
函数值 z(x, y)	<i>e</i> ≈ 2.72	$3e^{\frac{1}{3}} \approx 4.19$	$2e^{\frac{1}{2}} \approx 3.30$

例 2 求
$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2}$$
 在 $\overline{D} = \{(x, y) | x^2 + y^2 \le 1\}$ 上的最大最小值.

$$\begin{cases} z_x = 2x(1 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \\ z_y = 2y(2 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \end{cases} \Rightarrow \begin{cases} x(1 - 2x^2 - 3y^2) = 0 \\ y(2 - 2x^2 - 3y^2) = 0 \end{cases}$$

所以有如下四种情况

$$\begin{cases} x=0 & \begin{cases} x=0 & \begin{cases} 1-2x^2-3y^2=0 \\ y=0 \end{cases} & \begin{cases} 1-2x^2-3y^2=0 \end{cases} \\ y=0 & \begin{cases} (2-2x^2-3y^2=0) \end{cases} \end{cases}$$

$$\exists x=0 & \begin{cases} x=0 & \begin{cases} (2x^2-3y^2=0) \\ (2-2x^2-3y^2=0) \end{cases} \end{cases}$$

$$\exists x=0 & \begin{cases} (2x^2-3y^2=0) & \begin{cases} (2x^2-3y^2=0) \\ (2x^2-3y^2=0) \end{cases} \end{cases}$$

$$\exists x=0 & \begin{cases} (2x^2-3y^2=0) & \begin{cases} (2x^2-3y^2=0) \\ (2x^2-3y^2=0) \end{cases} \end{cases}$$

$$\exists x=0 & \begin{cases} (2x^2-3y^2=0) & \begin{cases} (2x^2-3y^2=0) \\ (2x^2-3y^2=0) \end{cases} \end{cases}$$

$$\exists x=0 & \begin{cases} (2x^2-3y^2=0) & \begin{cases} (2x^2-3y^2=0) \\ (2x^2-3y^2=0) \end{cases} \end{cases}$$

$$\exists x=0 & \begin{cases} (2x^2-3y^2=0) & \begin{cases} (2x^2-3y^2=0) \\ (2x^2-3y^2=0) \end{cases} \end{cases}$$

$$\exists x=0 & \begin{cases} (2x^2-3y^2=0) & \begin{cases} (2x^2-3y^2=0) \\ (2x^2-3y^2=0) \end{cases} \end{cases}$$

$$\exists x=0 & \begin{cases} (2x^2-3y^2=0) & \begin{cases} (2x^2-3y^2=0) \\ (2x^2-3y^2=0) \end{cases} \end{cases}$$

$$\exists x=0 & \begin{cases} (2x^2-3y^2=0) & \begin{cases} (2x^2-3y^2=0) \\ (2x^2-3y^2=0) \end{cases} \end{cases}$$

驻点
$$(x, y) = (0, 0)$$
 或 $(0, \pm \sqrt{2/3})$ 或 $(\pm \sqrt{1/2}, 0)$
函数值 $z(x, y)$ $e \approx 2.72$ $3e^{\frac{1}{3}} \approx 4.19$ $2e^{\frac{1}{2}} \approx 3.30$

例 2 求
$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2}$$
 在 $\overline{D} = \{(x, y) | x^2 + y^2 \le 1\}$ 上的最大最小值.

$$\begin{cases} z_x = 2x(1 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \\ z_y = 2y(2 - 2x^2 - 3y^2)e^{1 - x^2 - y^2} = 0 \end{cases} \Rightarrow \begin{cases} x(1 - 2x^2 - 3y^2) = 0 \\ y(2 - 2x^2 - 3y^2) = 0 \end{cases}$$

所以有如下四种情况

$$\begin{cases} x = 0 & \begin{cases} x = 0 & \begin{cases} 1 - 2x^2 - 3y^2 = 0 \end{cases} \\ y = 0 & \begin{cases} 2 - 2x^2 - 3y^2 = 0 \end{cases} \end{cases} \begin{cases} 1 - 2x^2 - 3y^2 = 0 \end{cases} \begin{cases} 2 - 2x^2 - 3y^2 = 0 \end{cases} \end{cases}$$

解得

9g 多元函数极值

例2 求
$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2}$$
 在 $\overline{D} = \{(x, y) | x^2 + y^2 \le 1\}$ 上的最大最小值.

驻点 (x, y)	(0, 0)	$(0, \pm \sqrt{2/3})$	$(\pm\sqrt{1/2},0)$
函数值 z(x, y)	e ≈ 2.72	$3e^{\frac{1}{3}} \approx 4.19$	$2e^{\frac{1}{2}} \approx 3.30$

例2 求
$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2}$$
 在 $\overline{D} = \{(x, y) | x^2 + y^2 \le 1\}$ 上的最大最小值.

驻点 (x, y)	(0, 0)	$(0, \pm \sqrt{2/3})$	$(\pm\sqrt{1/2},0)$
函数值 z(x, y)	e ≈ 2.72	$3e^{\frac{1}{3}} \approx 4.19$	$2e^{\frac{1}{2}} \approx 3.30$

2. 求在边界 $x^2 + y^2 = 1$ 上的最值

例 2 求
$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2}$$
 在 $\overline{D} = \{(x, y) | x^2 + y^2 \le 1\}$ 上的最大最小值.

驻点 (x, y)	(0, 0)	$(0, \pm \sqrt{2/3})$	$(\pm\sqrt{1/2},0)$
函数值 z(x, y)	e ≈ 2.72	$3e^{\frac{1}{3}} \approx 4.19$	$2e^{\frac{1}{2}} \approx 3.30$

2. 求在边界 $x^2 + y^2 = 1$ 上的最值: 此时

$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2}$$

例 2 求
$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2}$$
 在 $\overline{D} = \{(x, y) | x^2 + y^2 \le 1\}$ 上的最大最小值.

驻点 (x, y)	(0, 0)	$(0, \pm \sqrt{2/3})$	$(\pm\sqrt{1/2},0)$
函数值 z(x, y)	e ≈ 2.72	$3e^{\frac{1}{3}} \approx 4.19$	$2e^{\frac{1}{2}} \approx 3.30$

2. 求在边界 $x^2 + y^2 = 1$ 上的最值: 此时

$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2} = 3 + y^2$$

例 2 求
$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2}$$
 在 $\overline{D} = \{(x, y) | x^2 + y^2 \le 1\}$ 上的最大最小值.

驻点 (x, y)	(0, 0)	$(0, \pm \sqrt{2/3})$	$(\pm\sqrt{1/2},0)$
函数值 z(x, y)	e ≈ 2.72	$3e^{\frac{1}{3}} \approx 4.19$	$2e^{\frac{1}{2}} \approx 3.30$

2. 求在边界 $x^2 + y^2 = 1$ 上的最值: 此时

$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2} = 3 + y^2 \implies 3 \le z \le 4$$

例 2 求
$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2}$$
 在 $\overline{D} = \{(x, y) | x^2 + y^2 \le 1\}$ 上的最大最小值.

驻点 (x, y)	(0, 0)	$(0, \pm \sqrt{2/3})$	$(\pm\sqrt{1/2},0)$
函数值 z(x, y)	e ≈ 2.72	$3e^{\frac{1}{3}} \approx 4.19$	$2e^{\frac{1}{2}} \approx 3.30$

2. 求在边界 $x^2 + y^2 = 1$ 上的最值: 此时

$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2} = 3 + y^2 \implies 3 \le z \le 4$$

可见在边界上,在 (± 1 , 0) 处取得最小值 z = 3;

9g 多元函数极值

例 2 求
$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2}$$
 在 $\overline{D} = \{(x, y) | x^2 + y^2 \le 1\}$ 上的最大最小值.

驻点 (x, y)	(0, 0)	$(0, \pm \sqrt{2/3})$	$(\pm\sqrt{1/2},0)$
函数值 z(x, y)	<i>e</i> ≈ 2.72	$3e^{\frac{1}{3}} \approx 4.19$	$2e^{\frac{1}{2}} \approx 3.30$

2. 求在边界 $x^2 + y^2 = 1$ 上的最值: 此时

$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2} = 3 + y^2 \implies 3 \le z \le 4$$

可见在边界上,在 $(\pm 1, 0)$ 处取得最小值 z = 3; 在 $(0, \pm 1)$ 处取得最大值 z = 4

9g 多元函数极值 28/29 ◁ ▷ △ ▽

例 2 求
$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2}$$
 在 $\overline{D} = \{(x, y) | x^2 + y^2 \le 1\}$ 上的最大最小值.

驻点 (x, y)	(0, 0)	$(0, \pm \sqrt{2/3})$	$(\pm\sqrt{1/2},0)$
函数值 z(x, y)	<i>e</i> ≈ 2.72	$3e^{\frac{1}{3}} \approx 4.19$	$2e^{\frac{1}{2}} \approx 3.30$

2. 求在边界 $x^2 + y^2 = 1$ 上的最值: 此时

$$z = (1 + 2x^2 + 3y^2)e^{1-x^2-y^2} = 3 + y^2 \implies 3 \le z \le 4$$

可见在边界上,在 $(\pm 1, 0)$ 处取得最小值 z = 3; 在 $(0, \pm 1)$ 处取得最 大値 2 = 4

3. 点 (0,0) 处得最小值 z=e,点 $(0,\pm\sqrt{2/3})$ 处得最大值 $z=3e^{\frac{1}{3}}$

9g 多元函数极值 28/29 < ▷ △ ▽

$$z=(1+2x^2+3y^2)e^{1-x^2-y^2}$$

$$z=(1+2x^2+3y^2)e^{1-x^2-y^2}$$

$$z=(1+2x^2+3y^2)e^{1-x^2-y^2}$$

