

Меню сайта

Главная страница
Блоки КАМАК
Платы ISA
Платы PCI
Встраиваемые платы
Документация и ПО
Ссылки

Страница создателя сайта

Блоки КАМАК

Контроллеры крейта КАМАК К0607 и К0607М

K0607

Крейт-контроллер К0607 предназначен для преобразования управляющих воздействий ЭВМ в сигналы стандарта КАМАК, приема запросов от модулей и передачи прерывания в ЭВМ. Крейт-контроллер устанавливается всегда в крайнюю правую позицию крейта и занимает два места. С компьютером контроллер соединен одним коаксиальным кабелем 75ом через интерфейс ППИ (Параллельно-Последовательный Интерфейс в стандарте ISA) или ИПС (Интерфейс Последовательной Связи в стандарте PCI). Максимальная длина соединительного кабеля - до 200м, техническая скорость передачи информации 10 Мбит/сек. Любой обмен с контроллером начинается с 12-ти разрядной адресной посылки. Взаимно - однозначное соответствие адресов регистров блоков КАМАК и разрядов адресной посылки следующее:

Стартовый бит	1-ввод, 0-вывод	(Номер в	иодуля в	крейте		Адр	бит четности			
CT	в/в	N16	N8	N4	N2	N1	A8	A4	A2	A1	чет
1	1/0	A09	A08	A07	A06	A05	A04	A03	A02	A01	1/0

При приеме посылки с адресом модуля КАМАК, равным N(0), выполняется операция с одним из внутренних регистров контроллера.

Устройство контроллера К0607 схематически изображено на рисунке 1.

Рис. 1.

В контроллер входят следующие узлы:

- узел сопряжения;
- схема адресации, позволяющая выбирать нужный блок и регистр в нем;
- регистр статуса и управления, часть разрядов которого отражает текущее состояние контроллера, а другие служат для управления шинами магистрали крейта и режимами работы;
- регистр маски и запросов, предназначенный для сгруппированных LAM-запросов от модулей крейта (старший байт) и установки масок (младший байт);
- 16-разрядный регистр данных, предназначенный для обмена данными между контроллером и модулями в крейте;

- 8-разрядный регистр старшего байта, дополняющий 16-разрядное слово данных до 24 разрядов;
- схема прерывания, которая обеспечивает передачу данных о LAM-запросах в компьютер.

Контроллер работает следующим образом.

В принимаемом узлом сопряжения последовательном коде выделяются две части: адрес и данные. Адрес поступает на схему адресации, которая определяет N и A, а данные поступают в выбранный в соответствии с N и A регистр. В первую очередь заполняются внутренние регистры контроллера, которые имеют следующие адреса:

N(0) A(0) - регистр статуса и управления;

N(0) A(1) - регистр маски и запросов;

N(0) A(2) - регистр старшего байта.

После того как заполнены внутренние регистры, поступает посылка с N0, и схема адресации инициирует КАМАК-цикл, выставляя на магистраль крейта то, что лежит во внутренних регистрах контроллера.

1. Формат внутренних регистров

Статусный регистр:

15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Q	X		П		ΧE	Z	С	D	DE	IF	F16	F8	F4	F2	F1

Разряды F1, F2, F4, F8, F16 соответствуют шинам F магистрали.

Разряд **IF** управляет шиной "Inhibit" на магистрали.

Разряд **DE** разрешает (если установлен) или запрещает (если сброшен) прерывания

Разряд D=1, если имеется хотя бы один немаскированный групповой запрос.

Разряд "С", если установлен, дает цикл "Clear".

Разряд "Z", если установлен, дает цикл "Zero".

Разряды "С" и "Z" автоматически сбрасываются после каждого цикла.

Разряд XE, если установлен, разрешает прерывание по отсутствию ответа от адресуемого модуля.

Разряд IL=1, если IF=1 либо включен "Inhibit" с передней панели.

Разряды \mathbf{Q} , \mathbf{X} содержат соответственно \mathbf{Q} и \mathbf{X} последнего КАМАК-цикла и фиксируются по стробу S1.

Прочитав CSR, можно узнать о наличии группового запроса, состояния шины "Inhibit" и об ответах по Q и X на последний КАМАК-цикл.

Разряды Q, X, C, Z, IF, DE только записываются от ЭВМ, а разряды XE, F1, F2, F4, F8, F16 и пишутся и читаются, следовательно, слово, записанное в CSR, при чтении выглядит несколько иначе.

Регистр старшего байта (DHR) имеет следующий формат:

07	06	05	04	03	02	01	00
W24	W23	W22	W21	W20	W19	W18	W17

Реально имеется два 8-разрядных регистра, один из которых только читается (после КАМАК-функции чтения), а другой только пишется от ЭВМ (перед функцией записи).

С помощью DHR производится переформатирование 24-разрядной информации на КАМАК-магистрали в два слова 16-разрядной ЭВМ. При передаче 24-разрядного слова в регистр КАМАК делается запись старшего байта в DHR по N(0)A(2), затем, при записи остальных 16 разрядов, на магистраль автоматически передается содержимое этих 16 разрядов и содержимое DHR - все 24-разрядное слово.

При чтении данных в ЭВМ производится чтение младших 16 разрядов из КАМАК-устройства, при этом 8 старших разрядов остаются в DHR, который затем можно прочитать по N(0) A(2).

2. Система прерываний К0607

Рис. 2.

Схема обработки прерываний в К0607 показана на рисунке 2. LAM-запросы от модулей по индивидуальным проводам поступают в контроллер и собираются в группы по схеме "или". Таких схем в контроллере восемь. Соответствие между групповыми запросами D_k и запросами от модулей L_j определяется перемычками внутри контроллера и в используемых в практикуме контроллерах является следующим:

Lx	L23-L21	L20-L18	L17-L15	L14-L12	L11-L9	L8-L5	L4-L1
D8	D7	D6	D5	D4	D3	D2	D1

Групповой запрос D_k пропускается или не пропускается в зависимости от состояния соответствующей маски M_k . При M_k =1 групповой запрос D_k пропускается далее. Состояние масок и групповых запросов от КАМАК-модулей фиксируется в контроллере в специальном регистре масок и запросов. Его формат приведен ниже:

Регистр маски и запросов

Групповые запросы							Маска								
D8	D7	D6	D5	D4	D3	D2	D1	M8	М7	М6	М5	M4	М3	M2	М1
15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00

Восемь групповых запросов также собираются по схеме "или" и образуют один "обобщенный" запрос от всего крейта, состояние которого записывается в бит "D" статусного регистра контроллера.

Прохождение обобщенного запроса D блокируется, если в разряд DE (DEMAND ENABLE) статусного регистра записан "0". Если же DE=1, то возникающий обобщенный запрос инициирует работу узла сопряжения и в IBM PC уходит сообщение о наличии в крейте запроса на прерывание.

В соответствии с этим сообщением интерфейс ППИ (ИПС) устанавливает на шине IRQ IBM PC активное состояние и в компьютере срабатывает аппаратное прерывание.

Разработка программ обслуживания прерывания требует специальных средств и более глубокого изучения работы компьютера. В большинстве простых случаев достаточно ограничиться работой "по флагу", когда инициатором всех обменов является компьютер.

Документация и ПО >>>