CS 474/574 Machine Learning 2. Linear Classifiers

Prof. Dr. Forrest Sheng Bao Dept. of Computer Science Iowa State University Ames, IA, USA

January 25, 2023

Vectors

- Imagine a grocery store selling the following items:
 - juice, at 1 dollar per bottle
 - sugar, at 2 dollars per bag
 - tomatoes, at 3 dollars each
- Now customer A wants to buy 2 bottles of juice, 3 bags of sugar, and 5 tomatoes. The total is $1 \times 2 + 2 \times 3 + 3 \times 5 = 23$
- For any customer who wants to buy x bottles of juice, y bags of sugar, and z tomatoes, the total is 1x + 2y + 3z.
- We see two groups of numbers here: the unit prices and the amounts of items. And there is always a one-to-one correpondence between them when computing the total price.
- ► For each of the groups, we could use an *ordered* list to represent the numbers.
- ▶ Hence, we introduce the concept of *vectors*. For example, the vector $\mathbf{u} = [u_0, u_1, u_2]$ for unit prices and the vector $\mathbf{v} = [v_0, v_1, v_2]$ for respective amounts. A number in a vector is called an *element*.
- Note that we use bold font for vectors. The notation \vec{u} is also used.

Vectors II

- ▶ The sum of pairwise products, e.g., the total price in the grocery example, is called the *dot product* denoted as $\mathbf{u} \cdot \mathbf{v}$.
- For example, for customer A, the total is $[1,2,3] \cdot [2,3,5] = 23$ where $\mathbf{u} = [1,2,3]$ (dollars) and $\mathbf{v} = [2,3,5]$ (amounts).
- Generalize: any expression of the form

$$\sum_{i} x_i y_i = x_1 y_1 + x_2 y_2 + \dots$$

is the dot product $\mathbf{x} \cdot \mathbf{y}$ between two vectors $\mathbf{x} = [x_1, x_2, \dots]$ and $\mathbf{y} = [y_1, y_2, \dots]$.

- ▶ It is also called....the weighted sum.
- More examples of dot product: taxi (start price, mileage, time, tips), cloud service (storage, instance, badnwidth)
- ▶ In contrast to a vector, a *scalar* has only one number.
- ▶ A vector resembles a 1-D array in computer programming. Demo.

Dot product

```
In numpy:
In [5]: numpy.array((1,2,3))@numpy.array((4,5,6))
Out[5]: 32
In [6]: numpy.array((1,2,3)).dot(numpy.array((4,5,6)))
Out[6]: 32
In [7]: numpy.matmul(numpy.array((1,2,3)), \
                     numpy.array((4,5,6))
Out[7]: 32
Dot and matmul differ.
In TF: matmul
```

Why vectors matter in machine learning?

- ▶ Earlier we mentioned that each sample is often characterized by a set of factors known as *feature values*, e.g., factors related to house price, sizes of parts for flowers, or just a sequence of raw information unit, e.g., pixels of hardwritten digits
- ▶ For an ML model, the input is a vector order of elements matters.
- The simplest model is a weighted sum of such vector. Hence we need dot products.
 - For example, predicting the fuel efficiency of a car from the number of seats and the price.
- ► The batched multiplication and summation operations can be very predicable and efficient if parallelized or vectorized. Hence, GPU and SIMD are used widely in ML. (See FMA)
- "Computer science is no more about computers than astronomy is about telescopes." – Edsger Dijkastra

Matrixes (matrices)

- ▶ In the grocery store example, what if we want to compute the total prices for two customers at once?
- ▶ We introduce *matrixes* which can be considered as the stacked vectors.
- For example, Customer A's amount vector is $\mathbf{v_A} = [2, 3, 5]$, and Customer B's amount vector is $\mathbf{v_B} = [4, 2, 1]$. Their totals are $\mathbf{u} \cdot \mathbf{v_A}$ and $\mathbf{u} \cdot \mathbf{v_B}$, respecitvely.
- $lackbox{W}$ We could stack v_A and v_B into a matrix of two *rows* and three columns

$$\mathbf{V} = \begin{pmatrix} 2 & 3 & 5 \\ 4 & 2 & 1 \end{pmatrix}$$

► And then (tentatively!!!)

$$\mathbf{u} \cdot \mathbf{V} = \mathbf{u} \cdot \begin{pmatrix} \mathbf{v_A} \\ \mathbf{v_B} \end{pmatrix} = \begin{pmatrix} [1, 2, 3] \cdot [2, 3, 5] \\ [1, 2, 3] \cdot [4, 2, 1] \end{pmatrix} = \begin{pmatrix} 23 \\ 11 \end{pmatrix} < ! ---->$$

► In principle, yes. In notation, no.

Matrixes II

- Matrixes are derived from systems of linear equations.
- ightharpoonup For example, the system of linear equations (x and y are unknowns)

$$\begin{cases} a_1x+b_1y=&c_1\\a_2x+b_2y=&c_2 \end{cases}$$
 can be written into matrix representation as
$$\begin{pmatrix} a_1&b_1\\a_2&b_2 \end{pmatrix}\begin{pmatrix} x\\y \end{pmatrix}=\begin{pmatrix} c_1\\c_2 \end{pmatrix}$$

- ightharpoonup Caught your eyes? \dot{x} and y are written vertically.
- ▶ In matrix multiplication, the second matrix is sliced vertically, and a vertical slice is dot-produced with rows of the first matrix to populate one column in the resulting matrix.
- ► The proper way to write the grocery totals:

$$\mathbf{u} \cdot \mathbf{V}^T = \mathbf{u} \cdot \begin{pmatrix} \mathbf{v}_{\mathbf{A}}^T & \mathbf{v}_{\mathbf{B}}^T \\ \mathbf{v}_{\mathbf{A}}^T & \mathbf{v}_{\mathbf{B}}^T \end{pmatrix} = \begin{pmatrix} [1, 2, 3] \cdot [2, 3, 5]^T \\ [1, 2, 3] \cdot [4, 2, 1]^T \end{pmatrix} = \begin{pmatrix} 23 & 11 \end{pmatrix} < !----$$

What is the superscript T?

Matrixes III

- ► The superscript T means *transpose*, basically swapping the row and the column.
- ▶ Allow us to extend the definition of a vector: a vector is a matrix of only one column (a *column vector*) or one row (*row vector*).
- ▶ The vertical bars in previous slide do not mean anything numerical. They simply indicate that v_A or v_B is a column vector, and V is the result of horizontally stacking them (Demo: hstack and vstack).
- ▶ Due to ML convention, any vector is a column vector in this class. And the dot product between any two (column) vectors \mathbf{u} and \mathbf{v} will be written as $\mathbf{u}^T \mathbf{v}$ or $\mathbf{v}^T \mathbf{u}$
- ▶ Given two matrixes A and B, AB is not always the same as BA.

Tensors

- ▶ In computers, matrixes and vectors are special cases of tensors.
- row-major vs column-major
- axses
- Hadamard product
- Outer/tensor product
- ► Broadcast, tensor product
- Squeeze

Matrix calculus

Matrix calculus on Wikipedia

Demo: Think "matricsilly"

- scalar multiplication
- ▶ no/avoiding for-loops. use matrixes for batch operations.

The hyperplane

▶ In matrix form (By default, all vectors are column vectors):

$$(x_1, x_2, 1) \begin{pmatrix} w_1 \\ w_2 \\ -w_1 w_2 \end{pmatrix} = \underbrace{\begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}}^T \underbrace{\begin{pmatrix} w_1 \\ w_2 \\ -w_1 w_2 \end{pmatrix}}_{\mathbf{w}} = 0$$

The hyperplane (cond.)

► Let

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

and

$$\mathbf{w} = \begin{pmatrix} w_1 \\ w_2 \\ -w_1 w_2 \end{pmatrix}$$

- ▶ x_1 and x_2 are two **feature values** comprising the feature vector. 1 is **augmented** for the bias $-w_1w_2$.
- ► Then the equation is rewritten into matrix form: $\mathbf{x}^T \cdot \mathbf{w} = 0$. For space sake, $\mathbf{x}^T \mathbf{w} = \mathbf{x}^T \cdot \mathbf{w}$.
- ▶ Further, since both x and w are vectors, $\mathbf{x}^T \mathbf{w} = \mathbf{w}^T \mathbf{x}$.

The hyperplane (cond.)

► Expand to *D*-dimension.

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_D \\ 1 \end{pmatrix}$$

and

$$\mathbf{w} = \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_D \\ -w_1 w_2 \cdots w_D \end{pmatrix}.$$

Then $\mathbf{x}^T \cdot \mathbf{w} = 0$, denoted as the *hyperplane* in \mathbb{R}^n .

Binary Linear Classifier

- ▶ A binary linear classier is a function $\hat{f}(\mathbf{x}) = \operatorname{sgn}(\mathbf{w}^T\mathbf{x}) \in \{-1, 0, 1\}$ where sgn is the sign function. Note that the \mathbf{x} has been augmented as mentioned before.
- ▶ A properly trained binary linear classifier should hold that

$$\begin{cases} \mathbf{w}^T \mathbf{x} > 0 & \forall \mathbf{x} \in C_1 \\ \mathbf{w}^T \mathbf{x} < 0 & \forall \mathbf{x} \in C_2 \end{cases}$$
 (1)

where C_1 and C_2 are the two classes.

- When preparing the training data, we define the label y=+1 for every sample $\mathbf{x} \in C_1$, and y=-1 for every sample $\mathbf{x} \in C_2$.
- ▶ Given a new sample whose augmented feature vector is \mathbf{x} , if $\mathbf{w}^T\mathbf{x} > 0$, it is classified to C_1 , or equivalently its predicted label $\hat{u} = +1$. Otherwise, class C_2 , or $\hat{y} = -1$.
- Example: Let $\mathbf{w} = (2, 4, -8)^T$, what's the class for new sample $\mathbf{x} = (1, 1, 1)^T$ (already augmented)?
- ▶ Solution: $\mathbf{w}^T \mathbf{x} = -2 < 0$. Hence the sample of feature value (1,1) belongs to class C_1 .

Normalized feature vector

- ▶ Eq. 1 has two directions. Let's unify them into one.
- ▶ A correctly classified sample $\mathbf{x_i}$ of label $y_i \in \{+1, -1\}$ shall satisfy the inequality $\mathbf{w}_i^T \mathbf{x} y_i > 0$. (When y_i is negative, it flips the direction of the inequality.)
- $ightharpoonup x_i y_i$ is called the **normalized feature vector** for sample x_i .
- ▶ Please note that the term "normalized" could have different meanings in different context of ML.

Solving inequalities: the simplest way to find the ${f W}$

- Let's look at a case where the feature vector is 1-D.
- Let the training set be $\{(4,+1),(5,+1),(1,-1),(2,-1)\}$. Their augmented feature vectors are: $x_1 = (4,1)^T$, $x_2 = (5,1)^T$, $x_3 = (1,1)^T$, $x_4 = (2,1)^T$.
- Let $\mathbf{w}^T = (w_1, w_2)$. In the training process, we can establish 4 inequalities:

$$\begin{cases}
4w_1 + w_2 > 0 \\
5w_1 + w_2 > 0 \\
w_1 + w_2 < 0 \\
2w_1 + w_2 < 0
\end{cases}$$

▶ We can find many w_1 and w_2 to satisfy the inequalities. But, how to pick the best?

Math recap: Gradient

- ► The partial derivative of a multivariate function is a vector called the gradient, representing the derivatives of a function on different directions.
- ► For example, let $f(\mathbf{x}) = x_1^2 + 4x_1 + 2x_1x_2 + 2x_2^2 + 2x_2 + 14$. f maps a vector $\mathbf{x} = (x_1, x_2)^T$ to a scalar.
- ► Then we have

$$\nabla f = \frac{\partial f}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \end{pmatrix} = \begin{pmatrix} 2x_1 + 2x_2 - 4 \\ 4x_2 + 2x_1 + 2 \end{pmatrix}$$

- ► The gradient is a special case of *Jacobian matrix*. (see also: *Hessian matrix* for second-order partial derivatives.)
- ▶ A *critical point* or a *stationary point* is reached where the derivative is zero on any direction.
 - ▶ a local extremum (a maximum or a minimum)
 - saddle point
- ▶ if a function is convex, a local minimum/maxinum is the global minimum/maximum.

Finding the linear classifier via zero-gradient

- Two steps here:
 - Define a cost function to be minimized (The learning is the about minimizing the cost function)
 - ► Choose an algorithm to minimize (e.g., gradient, least squared error etc.)
- ▶ One intuitive criterion can be the sum of error square:

$$J(\mathbf{w}) = \sum_{i=1}^{N} (\mathbf{w}^T \mathbf{x}_i - y_i)^2 = \sum_{i=1}^{N} (\mathbf{x}_i^T \mathbf{w} - y_i)^2$$

where \mathbf{x}_i is the i-th sample (we have N samples here), y_i the corresponding label, $\mathbf{w}^T \mathbf{X}$ is the prediction.

▶ For each sample \mathbf{x}_i , the error of the classifier is $\mathbf{w}^T\mathbf{x} - y_i$. The square is to avoid that errors on difference samples cancel out, e.g., [+1-(-1)]-[-1-(+1)]=0.

Finding the linear classifier via zero-gradient (cond.)

- ▶ Minimizing $J(\mathbf{w})$ means: $\frac{\partial J(\mathbf{w})}{\partial \mathbf{w}} = 2\sum_{i=1}^{N} \mathbf{x}_i (\mathbf{x}_i^T \mathbf{w} y_i) = (0, \dots, 0)^T$
- ► Hence, $\sum_{i=1}^{N} \mathbf{x}_i \mathbf{x}_i^T \mathbf{w} = \sum_{i=1}^{N} \mathbf{x}_i y_i$
- The sum of a column vector multiplied with a row vector produces a matrix.

$$\sum_{i=1}^{N} \mathbf{x}_{i} \mathbf{x}_{i}^{T} = \begin{pmatrix} | & | & & | \\ \mathbf{x}_{1} & \mathbf{x}_{2} & \cdots & \mathbf{x}_{N} \\ | & | & & | \end{pmatrix} \begin{pmatrix} \mathbf{--} & \mathbf{x}_{1}^{T} & \mathbf{--} \\ \mathbf{--} & \mathbf{x}_{2}^{T} & \mathbf{--} \\ \vdots \\ \mathbf{--} & \mathbf{x}_{N}^{T} & \mathbf{--} \end{pmatrix} = \mathbb{X}^{T} \mathbb{X}$$

Finding the linear classifier via zero-gradient (cond.)

$$\sum_{i=1}^{N} \mathbf{x}_{i} y_{i} = \begin{pmatrix} | & | & & | \\ \mathbf{x}_{1} & \mathbf{x}_{2} & \cdots & \mathbf{x}_{N} \\ | & | & & | \end{pmatrix} \begin{pmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{N} \end{pmatrix}$$

- $= \mathbb{X}^T \mathbf{y}$ $\mathbf{Y}^T \mathbb{X} \mathbf{w} = \mathbb{X}^T \mathbf{v}$
- $(\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T \mathbb{X} \mathbf{w} = (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T \mathbf{v}$
- $\mathbf{w} = (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T \mathbf{v}$

Gradient descent approach

Since we define the target function as $J(\mathbf{w})$, finding $J(\mathbf{w})=0$ or minimizing $J(\mathbf{w})$ is intuitively the same as reducing $J(\mathbf{w})$ along the gradient. The algorithm below is a general approach to minimize any multivariate function: changing the input variable proportionally to the gradient.

Algorithm 1: pseudocode for gradient descent approach

1 **Input**: an initial \mathbf{w} , stop criterion θ , a learning rate function $\rho(\cdot)$, iteration step k=0

1: while $\nabla J(\mathbf{w}) > \theta$ do

2: $\mathbf{w}_{k+1} := \mathbf{w}_k - \rho(k) \nabla J(\mathbf{w})$

3: k := k + 1

4: end while

Gradient descent approach (cond.)

In many cases, the $\rho(k)$'s amplitude (why amplitude but not the value?) decreases as k increases, e.g., $\rho(k)=\frac{1}{k}$, in order to shrink the adjustment.Also in some cases, the stop condition is $\rho(k)\nabla J(\mathbf{w})>\theta$. The limit on k can also be included in stop condition – do not run forever. –>

Gradient descent on J(w)? ► Recall that $J(\mathbf{w}) = \sum_{i=1}^{N} (\mathbf{w}^T \mathbf{x}_i - y_i)^2 = \sum_{i=1}^{N} (\mathbf{x}_i^T \mathbf{w} - y_i)^2$

 $D+1\times1$ N = X.shape[0]

> X_augmented = numpy.hstack((X, numpy.ones((N,1)))) # A = numpy.matmul(X_augmented, w) - y # this results is

gradient = X_augmented * A[:, numpy.newaxis]

gradient = numpy.sum(gradient, axis=0)

▶ And that
$$\nabla J_w = \frac{\partial J(\mathbf{w})}{\partial \mathbf{w}} = 2 \sum_{i=1}^{N} \mathbf{x}_i (\mathbf{x}_i^T \mathbf{w} - y_i)$$

Do it matrixly:

- $\mathbf{A} = \mathbf{x}_i^T \mathbf{w} y_i = \underbrace{\begin{pmatrix} \mathbf{x}_1^t & \mathbf{x}_2^T & \mathbf{w}_1 \\ \mathbf{x}_2^T & \mathbf{w}_2 \\ \vdots \\ \mathbf{x}_N^T & \mathbf{w}_2 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{pmatrix}}_{= \mathbb{X} \mathbf{w} \mathbf{y}}$

Fisher's linear discriminant

- ▶ What really is w^Tx? The vector x is projected to a 1-D space (actually perpendicular to w) in which the classification decision is done.
- ▶ This is what we prefer after the projection:
 - samples of each class distribute tightly around its center (minimized intra-class difference)
 - the distribution centers of two classes are very far from each other (maximized inter-class difference)
- Quantify this goal (x is not augmented because the bias has equal impact on both classes):

$$\max J(\mathbf{w}) = \frac{(\tilde{m}_1 - \tilde{m}_2)^2}{\tilde{s}_1^2 + \tilde{s}_2^2}$$

- where $\tilde{m}_i = \frac{1}{|C_i|} \sum_{\mathbf{x} \in C_i} \mathbf{w}^T \mathbf{x}$ is the post-projection center of class i and $\tilde{\mathbf{s}}_i^2 = \sum_{\mathbf{x} \in C_i} (\mathbf{w}^T \mathbf{x} \tilde{m}_i)^2$ is the post-projection, inter-class variance for class i.
- ► Tails of the distributions of both classes is less likely to overlap. A new sample projected is clearly proximate to one of the two classes.

Fisher's (cond.)

- $(\tilde{m}_1 \tilde{m}_2)^2 = (\mathbf{w}^T (\mathbf{m_1} \mathbf{m_2}))^2 = \mathbf{w}^T (\mathbf{m_1} \mathbf{m_2}) (\mathbf{m_1} \mathbf{m_2})^T \mathbf{w}$ where $\mathbf{m}_i = \frac{1}{|C_i|} \sum_{\mathbf{x} \in C_i} \mathbf{x}$ is the pre-projection center of each class.
- $\tilde{\mathbf{s}}_{i}^{2} = \sum_{\mathbf{x} \in C_{i}} (\mathbf{w}^{T} \mathbf{x} \tilde{m}_{i})^{2} = \sum_{\mathbf{x} \in C_{i}} (\mathbf{w}^{T} \mathbf{x} \mathbf{w}^{T} \mathbf{m}_{i})^{2} = \mathbf{s}_{i}$ $\mathbf{w}^{T} \underbrace{\left[\sum_{\mathbf{x} \in C_{i}} (\mathbf{x} \mathbf{m}_{i})(\mathbf{x} \mathbf{m}_{i})^{T}\right]}_{\mathbf{x} \in C_{i}} \mathbf{w} = \mathbf{w}^{T} \mathbf{S}_{i} \mathbf{w}$
- ▶ Hence $J(\mathbf{w}) = \frac{\mathbf{w}^T \mathbf{S}_B \mathbf{w}}{\mathbf{w}^T (\mathbf{S}_1 + \mathbf{S}_2) \mathbf{w}} = \frac{\mathbf{w}^T \mathbf{S}_B \mathbf{w}}{\mathbf{w}^T \mathbf{S}_w \mathbf{w}}$. This expression is known as *Rayleigh quotient*. To maximize $J(\mathbf{w})$, the \mathbf{w} must satisfy $\mathbf{S}_B \mathbf{w} = \lambda \mathbf{S}_w \mathbf{w}$.
- Finally $\mathbf{w} = \mathbf{S}_w^{-1}(\mathbf{m}_1 \mathbf{m}_2)$. (Derivation saved.)
- ▶ What about bias? $\mathbf{w}^T \mathbf{m} + w_b = 0$ where $\mathbf{m} = (\mathbf{m}_1 + \mathbf{m}_2)/2$ such that the decision hyperplane lies exactly in the middle between the centers of the two classes.