ALUNO: ITALO GABRIEL DA SILVA PEREIRA

ALUNO: DEIVID LINCON SOUZA BARRENSE

DIFERENÇAS FINITAS

As diferenças finitas são técnicas utilizadas para aproximar derivadas de funções quando não se tem uma forma analítica ou quando se deseja obter uma solução numérica. Esse método é muito útil em situações práticas, como simulações computacionais e análise de dados experimentais.

Definição

Seja uma função f(x) definida em um intervalo do conjunto dos reais. Suponha que queremos calcular a derivada de fem um ponto x, mas temos apenas valores aproximados da função em pontos igualmente espaçados.

Com um espaçamento h, as aproximações mais comuns da derivada são:

• Diferença progressiva:

$$f'(x) \approx \frac{f(x+h)-f(x)}{h}$$

• Diferença regressiva:

$$f'(x) \approx \frac{f(x) - f(x - h)}{h}$$

• Diferença central:

$$f'(x) \approx \frac{f(x+h) - f(x-h)}{2h}$$

Essa última é geralmente mais precisa porque leva em conta valores dos dois lados de *x*.

Exemplo Teórico

Se f(x)=cos(x) e queremos uma aproximação de f'(0), sabemos que a derivada analítica é f'(x)=-sen(x).Logo f'(0)=0.

Usando a diferença central com h=0,1h:

$$f'(0) \approx \frac{\cos(0,1) - \cos(-0,1)}{2.0,1} = 0$$

$$f'(0) \approx \frac{0.9950 - 0.9950}{0.2} = 0$$

A aproximação é bem próxima do valor real.

SOMA DE RIEMANN

A soma de Riemann é um método utilizado para aproximar a área sob a curva de uma função definida em um intervalo. Trata-se de uma das ideias fundamentais do cálculo integral.

Definição

Seja f(x) uma função contínua no intervalo [a,b]. Dividimos esse intervalo em n subintervalos de largura igual $\Delta x = \frac{b-a}{n}$.

A soma de Riemann é dada por:

$$S = \sum_{i=1}^{n} f(x^*i) \Delta x$$

Onde x^*i é um ponto dentro do subintervalo i. Esse ponto pode ser:

- o início do intervalo (soma à esquerda),
- o fim do intervalo (soma à direita),
- o ponto médio (soma do ponto médio).

Tipos de Soma

Soma à esquerda:

$$S = \sum_{i=u}^{n-1} f(xi) \Delta x$$

Soma à direita:

$$S=\sum_{i=1}^{n} f(xi)\Delta x$$

Soma do ponto médio:

$$S = \sum_{i=0}^{n-1} f\left(\frac{xi + xi + 1}{2}\right) \Delta X$$

Exemplo Teórico

Vamos aproximar a integral de f(x)=x2 no intervalo [0,1] usando 4 subintervalos e soma à esquerda.

$$\Delta x = \frac{1-0}{4} = 0.25$$

Os pontos são: *x*=0,*x*1=0,25,*x*2=0,5,*x*3=0,75

$$S = f(0) \cdot 0.25 + f(0.25) \cdot 0.25 + f(0.5) \cdot 0.25 + f(0.75) \cdot 0.25$$

$$= (0^{2} + 0.25^{2} + 0.5^{2} + 0.75^{2}) \cdot 0.25$$

$$= (0 + 0.0625 + 0.25 + 0.5625) \cdot 0.25$$

$$= 0.875 \cdot 0.25$$

$$= 0.21875$$

O valor exato da integral é $\int_0^1 x^2 dx = \frac{1}{3} \approx 0.33$, ou seja, a aproximação com soma à esquerda subestima a área.