

$\begin{tabular}{ll} Low \ V_{\tt CE(sat)} \ IGBT \ with \ Diode \\ High \ Speed \ IGBT \ with \ Diode \\ \end{tabular}$

IXGH/IXGT 15N120BD1 IXGH/IXGT 15N120CD1

V _{DSS}	C25	$\mathbf{V}_{CE(sat)}$
1200 V	30 A	3.2 V
1200 V	30 A	3.8 V

Symbol	Test Conditions		Maximum Ratings		
V _{CES}	T _J = 25°C to 150°C		1200	V	
V _{CGR}	$T_J = 25^{\circ}\text{C to } 150^{\circ}\text{C}; R_{GE} = 1 \text{ M}$	Ω	1200	V	
V _{GES}	Continuous		±20	V	
V _{GEM}	Transient		±30	V	
I _{C25}	T _C = 25°C		30	Α	
I _{C90}	$T_{\rm C} = 90^{\circ} \rm C$		15	Α	
I _{CM}	$T_{\rm C} = 25^{\circ} \rm C, 1 ms$		60	Α	
SSOA (RBSOA)	V_{GE} = 15 V, T_J = 125°C, R_G = 10 Clamped inductive load) Ω @	I _{CM} = 40 0.8 V _{CES}	А	
P _c	T _c = 25°C		150	W	
 T _J		-55	5 +150	°C	
T _{JM}			150	°C	
T _{stg}		-55	5 +150	°C	
M _d	Mounting torque		1.13/10	Nm/lb.in.	
	ad temperature for soldering 62 in.) from case for 10 s		300	°C	
	b temperature MD devices for 10s		260	°C	
Weight		TO-247AD/TO-268	6/4	g	

TO-247AD (IXGH)	
G C E	TAB

G = Gate	C = Collector
E = Emitter	TAB = Collector

Features

- International standard packages: JEDEC TO-247AD & TO-268
- IGBT and anti-parallel FRED in one package
- MOS Gate turn-on
 - drive simplicity
- Fast Recovery Expitaxial Diode (FRED)
 - soft recovery with low I_{RM}

Symbol	Test Conditions	$(T_J = 25^{\circ}C,$	_		ristic Va se speci max.	
BV _{CES}	$I_{C} = 1 A, V_{GE} = 0 V$		1000			V
$V_{_{GE(th)}}$	$I_{_{\text{\tiny C}}} = 250 \; \mu\text{A}, \; V_{_{\text{\tiny CE}}} = V_{_{\text{\tiny GE}}}$		2.5		5.0	V
I _{CES}	$V_{CE} = V_{CES}$ $V_{GE} = 0 V$	$T_J = 25^{\circ}C$ $T_J = 125^{\circ}C$		2	500	μA mA
I _{GES}	$V_{CE} = 0 \text{ V}, V_{GE} = \pm 20 \text{ V}$				±100	nA
V _{CE(sat)}	$I_{\rm C} = I_{\rm C90,} V_{\rm GE} = 15 \text{ V}$ Note 2	15N120BD1 15N120CD1			3.2 3.8	V V

Applications

- AC motor speed control
- DC servo and robot drives
- · DC choppers
- Uninterruptible power supplies (UPS)
- Switch-mode and resonant-mode power supplies

Advantages

- Saves space (two devices in one package)
- Easy to mount with 1 screw (isolated mounting screw hole)
- Reduces assembly time and cost

IXYS reserves the right to change limits, test conditions, and dimensions.

Symbol	Test Conditions (T	Cha _J = 25°C, unless o min.		istic Values se specified) max.
g _{fs}	$I_{C} = I_{C90}; V_{CE} = 10 \text{ V},$ Note 2.	12	15	S
C _{ies}			1700	pF
C _{oes}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		155	pF
\mathbf{C}_{res}			38	pF
$\overline{\mathbf{Q}_{g}}$			69	nC
\mathbf{Q}_{ge}	$I_{\rm C} = I_{\rm C90}, {\rm V}_{\rm GE} = 15 {\rm V}, {\rm V}_{\rm CE} = 0.5 {\rm V}_{\rm CE}$	5	13	nC
\mathbf{Q}_{gc}			26	nC
t _{d(on)}			25	ns
t _{ri}	Inductive load, T _J = 25°C		15	ns
$\mathbf{t}_{d(off)}$	$I_{\rm C} = I_{\rm C90}; V_{\rm GE} = 15 \text{ V}$		150	280 ns
t _{fi}	$V_{CE} = 0.8 V_{CES}$; $R_{G} = R_{off} = 10 \Omega$ Note 1.	15N120BD1 15N120CD1 15N120BD1	160 115 1.75	320 ns 190 ns 3.0 mJ
E _{off}		15N120CD1	1.05	1.6 mJ
t _{d(on)}			25	ns
t _{ri}	Inductive load, T _J = 125°C		18	ns
E _{on}	$I_{\rm C} = I_{\rm C90}$; $V_{\rm GE} = 15 \text{ V}$		1.5	mJ
t _{d(off)}	$V_{CE} = 0.8 V_{CES}$; $R_G = R_{off} = 10 \Omega$		270	ns
t _{fi}	Note 1	15N120BD1 15N120CD1 15N120BD1 15N120CD1	360 250 3.5 2.1	ns mJ mJ mJ
R _{thJC}	TO-247		0.25	0.83 K/W K/W

Reverse Diode (FRED)

Characteristic Values (T₁ = 25°C, unless otherwise specified)

Symbol	Test Conditions n	nin.	typ.	max.	
V _F	$I_F = 20 \text{ A}, V_{GE} = 0 \text{ V}$ $I_F = 20 \text{ A}, V_{GE} = 0 \text{ V}, T_J = 125^{\circ}\text{C}$		2.6 2.1	2.8	V
I _F	$T_{\rm C} = 25^{\circ}\text{C}$ $T_{\rm C} = 90^{\circ}\text{C}$			33 20	V
I _{RM}	$I_F = 20 \text{ A}; -di_F/dt = 400 \text{ A}/\mu\text{s}, \ \ V_R = 600 \text{ V}$ $V_{GE} = 0 \text{ V}; \ T_J = 125^{\circ}\text{C}$		15 200		A ns
t _{rr}	$I_F = 1 \text{ A}; -di_F/dt = 100 \text{ A/}\mu\text{s}; V_R = 30 \text{ V}, V_{GE} = 0$	V	40		ns
R _{thJC}				1.6	K/W

Notes:

- 1. Switching times may increase for V_{CE} (Clamp) > 0.8 V_{CES} , higher T_J or increased R_g . 2. Pulse test, $t \le 300 \ \mu s$, duty cycle $d \le 2 \ \%$

Dim.	Millimeter Min. Max.			
A		20.32	0.780	0.800
B		21.46	0.819	0.845
C	15.75	16.26	0.610	0.640
D	3.55	3.65	0.140	0.144
E	4.32	5.49	0.170	0.216
F	5.4	6.2	0.212	0.244
G H	1.65	2.13 4.5	0.065	0.084 0.177
J	1.0	1.4	0.040	0.055
K	10.8	11.0	0.426	0.433
L	4.7	5.3	0.185	0.209
M	0.4	0.8	0.016	0.031
N	1.5	2.49	0.087	0.102

TO-268AA (D3 PAK)

Dim.	Milli	meter	Inches		
	Min.	Max.	Min.	Max.	
Α	4.9	5.1	.193	.201	
A ₁	2.7	2.9	.106	.114	
A_2	.02	.25	.001	.010	
b	1.15	1.45	.045	.057	
b_2	1.9	2.1	.75	.83	
С	.4	.65	.016	.026	
D	13.80	14.00	.543	.551	
E	15.85	16.05	.624	.632	
E ₁	13.3	13.6	.524	.535	
е	5.45	BSC	.215	BSC	
Н	18.70	19.10	.736	.752	
L	2.40	2.70	.094	.106	
L1	1.20	1.40	.047	.055	
L2	1.00	1.15	.039	.045	
L3	0.25	5 BSC	.010 BSC		
L4	3.80	4.10	.150	.161	

