

PCA on Iris Dataset


```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.decomposition import PCA
%matplotlib inline
iris=pd.read_csv("https://media.githubusercontent.com/media/neurospin/pystatsml/refs/heads/master/
iris.head()
iris.info()
iris.describe()
sns.heatmap(iris.drop(['species'], axis=1).corr(), annot=True, cmap="coolwarm")
plt.show()
pca = PCA()
x_new1 = pca.fit_transform(iris.drop(['species'], axis=1))
x_new1[:5]
explained_variance=pca.explained_variance_ratio_
explained_variance
plt.figure(figsize=(10,6))
plt.bar(range(4), explained_variance, alpha=0.5, align='center', label="Individual Explained Variance",
color="darkred")
plt.ylabel("Explained Variance Ratio")
plt.xlabel("Principal Component")
plt.legend(loc="best")
plt.tight_layout()
plt.show()
pca = PCA(n_components=3)
x_new = pca.fit_transform(iris.drop(['species'], axis=1))
x new[:5]
cateq_num={"variety": {"setosa":0,"versicolor":1,"virginica":2}}
iris1 = iris.replace(categ_num)
columns= list(iris.columns[:4])
fig, axes = plt.subplots(3, 4, figsize=(15, 10))
```



```
for i in range(3): # Loop over 3 PCA components
  for j in range(4): # Loop over 4 original features
    axes[i, j].scatter(x_new[:, i], iris[columns[j]], c="r")
    axes[i, j].set_xlabel(f'PC {i+1}')
    axes[i, j].set_ylabel(columns[j])
plt.tight_layout()
plt.show() explain the above code word by word
```


The code you provided performs **PCA** (**Principal Component Analysis**) on the Iris dataset and visualizes the results. Here's a detailed breakdown of the code step by step:

1. Importing Necessary Libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.decomposition import PCA
%matplotlib inline
```

- `numpy`: Used for numerical computations.
- `pandas`: Handles data manipulation and analysis, especially DataFrames.
- `matplotlib.pyplot`: For visualizations.
- `seaborn`: Provides advanced visualizations and better aesthetics.
- `sklearn.decomposition.PCA`: Library for performing PCA.
- `matplotlib inline`: Enables inline plotting in Jupyter Notebooks.

2. Loading and Inspecting the Dataset

```
python

iris = pd.read_csv("https://media.githubusercontent.com/media/neurospin/pystatsml/refs/head
s/master/datasets/iris.csv")
```

• Downloads the **Iris dataset** from the provided URL and loads it into a pandas DataFrame called `iris`.

```
python
iris.head()
```

• Displays the first five rows of the DataFrame.


```
python
iris.info()
```

• Shows the data types and non-null count for each column in the dataset.

```
python
iris.describe()
```

• Provides summary statistics (mean, standard deviation, min, max, etc.) for each numeric column.

3. Correlation Heatmap

```
python

sns.heatmap(iris.drop(['species'], axis=1).corr(), annot=True, cmap="coolwarm")
plt.show()
```

- `iris.drop(['species'], axis=1)`: Removes the `species` column (categorical variable) to focus only on numeric data for correlation analysis.
- `.corr()`: Computes the correlation matrix for the numeric columns.
- `sns.heatmap()`: Visualizes the correlation matrix as a heatmap.
 - `annot=True`: Displays the correlation values within each cell.
 - o `cmap="coolwarm": Sets the color scheme to highlight positive and negative correlations.
- `plt.show()`: Displays the heatmap.

4. Performing PCA

(a) Without Specifying Number of Components

```
python

pca = PCA()
x_new1 = pca.fit_transform(iris.drop(['species'], axis=1))
x_new1[:5]
```

- `PCA()`: Initializes the PCA object.
- `pca.fit_transform()`: Fits PCA to the numeric data (excluding `species`) and transforms it into the new principal component space.
 - `x new1`: Contains the transformed data in the new PCA space.
- `x_new1[:5]`: Displays the first five rows of the transformed data.


```
python

explained_variance = pca.explained_variance_ratio_
explained_variance
```

• `pca.explained_variance_ratio_`: Extracts the proportion of variance explained by each principal component.

(b) Visualizing Explained Variance

```
python

plt.figure(figsize=(10,6))
plt.bar(range(4), explained_variance, alpha=0.5, align='center', label="Individual Explained Variance", color="darkred")
plt.ylabel("Explained Variance Ratio")
plt.xlabel("Principal Component")
plt.legend(loc="best")
plt.tight_layout()
plt.show()
```

- `plt.bar()`: Creates a bar plot of explained variance for each principal component.
- `range(4)`: Represents the 4 principal components (equal to the number of original features).
- `alpha=0.5`: Makes the bars slightly transparent.
- Labels and titles make the plot informative.

5. Reducing Dimensions to 3 Components

```
python

pca = PCA(n_components=3)
x_new = pca.fit_transform(iris.drop(['species'], axis=1))
x_new[:5]
```

- `n_components=3`: Limits the PCA transformation to 3 principal components.
- `x new`: Contains the transformed data in 3D PCA space.
- `x_new[:5]`: Displays the first five rows of the reduced data.

6. Data Preparation and Visualization

```
python

categ_num = {"variety": {"setosa": 0, "versicolor": 1, "virginica": 2}}
iris1 = iris.replace(categ_num)
```

• `categ_num`: Creates a mapping to convert the `species` categorical variable into numeric values (not used further in this example).

• `iris1`: Replaces the `species` column in the DataFrame with its numeric equivalent.

```
python

columns = list(iris.columns[:4])
```

• Extracts the names of the first 4 columns (features) into a list called `columns`.

Subplot of PCA vs Original Features

```
fig, axes = plt.subplots(3, 4, figsize=(15, 10))
for i in range(3):  # Loop over 3 PCA components
    for j in range(4):  # Loop over 4 original features
        axes[i, j].scatter(x_new[:, i], iris[columns[j]], c="r")
        axes[i, j].set_xlabel(f'PC {i+1}')
        axes[i, j].set_ylabel(columns[j])
plt.tight_layout()
plt.show()
```

- `plt.subplots(3, 4)`: Creates a grid of 3 rows and 4 columns for subplots.
- Nested `for` loops:
 - Outer loop (`i`): Iterates over the 3 PCA components (PC1, PC2, PC3).
 - **Inner loop** (`j`): Iterates over the 4 original features.
- `axes[i, j].scatter()`: Plots scatter plots between a PCA component and an original feature.
- Labels are dynamically set using `f'PC {i+1}'` and the feature names.

Purpose of Visualization

This step explores how each original feature is distributed in relation to the reduced PCA components, giving insight into the influence of individual features on the principal components.