BIOS 662 Fall 2018 Tests of Hypotheses

David Couper, Ph.D.

 $david_couper@unc.edu$

or

couper@bios.unc.edu

https://sakai.unc.edu/portal

Basic Approach

- 1. Set up a hypothesis
- 2. Collect data
- 3. Infer from the data whether the hypothesis is plausible

• Examples:

Is mean BP the same in diabetics and non-diabetics? Will folic acid supplementation reduce the risk of stroke?

Null Hypothesis: H_0

- Null hypothesis H_0 : the hypothesis to be tested
- Example: Null hypothesis for folic acid study

 The incidence of stroke is the same in those taking
 folic acid supplements as in those not taking folic acid
 supplements
- See Note 4.16 in the text. Typically H_0 is:
 - the prevailing view or straw man, or
 - the most parsimonious hypothesis

Null and Alternative

- In a test of a hypothesis, we are testing whether some population parameter has a particular value
- For example,

$$H_0: \theta = \theta_0$$

where θ_0 is a specified constant

• The alternative hypothesis is the complement of the null hypothesis

$$H_A: \theta \neq \theta_0$$

Test Statistic

- Once the data are collected, we compute the value of a $test\ statistic\ related\ to\ \theta$, say $S(\hat{\theta})$
- $S(\hat{\theta})$ is a random variable, because it is computed from a sample
- $S(\hat{\theta})$ will have a particular probability distribution under the assumption H_0 , say $F_0(S(\hat{\theta}))$

Test Statistic

- Under F_0 , we compute the probability that we would observe $S(\hat{\theta})$ or a value more extreme than $S(\hat{\theta})$ if the null H_0 is true
- ullet If this probability is large, the data are consistent with H_0
- If this probability is small, there are two possibilities:
 - 1. An unlikely event has occurred
 - 2. H_0 is not true

Interpretation

- Usually if the probability is small, we conclude H_0 is not true; i.e., we "reject" H_0
- If the probability is large, we have not proved H_0 . We say that "we failed to reject H_0 "
- We can never prove H_0 is true!
- Also: we don't "accept the alternative"

Significance Level

- How do we decide if the probability is too small?
- Prior to seeing the data, we select a value α such that:

If the computed probability is less than or equal to α , we reject H_0

 $\bullet \alpha$ is known as the *significance level*

Critical Region and Value

- We have a statistic $S(\hat{\theta})$ with distribution F_0 under the null hypothesis
- We specify α and under F_0 determine a *critical* region or rejection region C_{α} such that

$$\Pr[S(\hat{\theta}) \in C_{\alpha}|H_0] = \alpha$$

• Values at the boundaries of C_{α} are called *critical* values

Critical Region and Value

- From the data we compute the value of $S(\hat{\theta})$
- If $S(\hat{\theta}) \in C_{\alpha}$, we reject H_0
- If $S(\hat{\theta}) \notin C_{\alpha}$, the data are consistent with H_0 (or, at least, not *inconsistent* with H_0) and we do not reject H_0

Tests of Hypotheses: Seven Steps

- 1. Design study (sample size depends on steps 2-4)
- 2. Establish null hypothesis
- 3. Determine test statistic to be employed
- 4. Choose significance level α and establish C_{α}
- 5. Carry out study and collect data
- 6. Compute statistic from data
- 7. If statistic is in C_{α} , reject H_0

Example

- Does calcium supplementation affect blood pressure in African Americans with high blood pressure?
- Study: Enroll 10 AA men with hypertension; measure their BP; ask them to take calcium tablets for 3 weeks and re-measure their BP
- Aside: Later in the semester we will look at how to determine whether n = 10 is a large enough sample size to provide a reasonable test of the hypotheses.

- Let θ denote the mean BP change after 3 weeks
- Hypotheses

$$H_0: \theta = 0 \text{ vs } H_A: \theta \neq 0$$

- Let $Y_i = \text{BP}$ at 3 weeks -BP at baseline for the i^{th} individual in the study, i = 1, ..., 10
- $\bullet \ \hat{\theta} = \bar{Y}$

• Intuition: We want to reject H_0 if \bar{Y} is far from $\theta_0 = 0$, i.e., if

$$|\bar{Y}| > c$$

for some constant c

 \bullet In particular, we want c such that

$$\Pr\left[\left|\bar{Y}\right| > c \mid H_0\right] = \alpha$$

• Equivalently, want c such that

$$\Pr\left[\left|\frac{\bar{Y}}{s/\sqrt{n}}\right| > \frac{c}{s/\sqrt{n}} \mid H_0\right] = \alpha$$

• Assuming Y_i are iid $N(\theta, \sigma^2)$, under H_0 ,

$$\frac{\bar{Y}}{s/\sqrt{n}} \sim t_{n-1}$$

ullet Thus choose c such that

$$\frac{c}{s/\sqrt{n}} = t_{n-1,1-\alpha/2}$$

• So we reject H_0 if

$$|\bar{Y}| > c = t_{n-1, 1-\alpha/2} s / \sqrt{n}$$

that is, if

$$\frac{|\bar{Y}|}{s/\sqrt{n}} > t_{n-1,1-\alpha/2}$$

• Equivalently

$$C_{\alpha} = \{T : |T| > t_{n-1,1-\alpha/2}\}$$

where

$$T = \frac{\bar{Y}}{s/\sqrt{n}}$$

• In the calcium supplementation example,

$$S(\hat{\theta}) = S(\bar{Y}) = \frac{\bar{Y} - \theta_0}{s/\sqrt{n}} \sim t_9$$

• If $\alpha = 0.05$, the critical region is

$$C_{0.05} = \{T : |T| > t_{9,0.975} = 2.26\}$$

where

$$T = \frac{\bar{Y} - 0}{s/\sqrt{10}}$$

Calcium supplementation in African-American men

ID	treatment	before	after	change
1.	calcium	107	100	-7
2.	calcium	110	114	4
3.	calcium	123	105	-18
4.	calcium	129	112	-17
5.	calcium	112	115	3
6.	calcium	111	116	5
7.	calcium	107	106	-1
8.	calcium	112	102	-10
9.	calcium	136	125	-11
10.	calcium	102	104	2

Example using R

```
> x < c(-7,4,-18,-17,3,5,-1,-10,-11,2)
> se <- sd(x)/sqrt(length(x))</pre>
> mean(x)/se
[1] -1.808411
> t.test(x)
        One Sample t-test
data: x
t = -1.8084, df = 9, p-value = 0.104
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 -11.254545
1.254545
```

Example using SAS PROC UNIVARIATE

proc univariate;
 var x;

The UNIVARIATE Procedure

Variable: x

Moments

 N
 10
 Sum Weights
 10

 Mean
 -5
 Sum Observations
 -50

 Std Deviation
 8.74325137
 Variance
 76.4444444

Tests for Location: Mu0=0

Test -Statistic- ----p Value-----

Student's t t -1.80841 Pr > |t| 0.1040

Example using SAS PROC TTEST

proc ttest;
var x;

The TTEST Procedure

Variable: x

N	Mean	Std Dev	Std Err	95% CL Mean

10 -5.0000 8.7433 2.7649 -11.2545 1.2545

DF t Value Pr > |t|

9 -1.81 0.1040

- Because the observed t = -1.8084 is not in the critical region, we do not reject H_0
- The data are consistent with no effect of calcium on BP

Types of Errors

		Nature / Truth	
		H_0 true	H_A true
	Do not reject H_0		Type II
Decision			
	Reject H_0	Type I	$\sqrt{}$

- Type I error: Reject H_0 when H_0 true that is, false positive
- Type II error: Do not reject H_0 when H_A true that is, false negative

Types of Errors

• Type I error

$$\alpha = \Pr\left[S(\hat{\theta}) \in C_{\alpha} \mid H_0\right]$$

• Type II error

$$\beta = \Pr\left[S(\hat{\theta}) \notin C_{\alpha} \mid H_A\right]$$

• Power

$$1 - \beta = \Pr\left[S(\hat{\theta}) \in C_{\alpha} \mid H_A\right]$$

that is, the probability of rejecting H_0 when H_A is true

Power

• Recall $H_A: \theta \neq \theta_0$

• Power:
$$\Pr\left[S(\hat{\theta}) \in C_{\alpha} \mid H_A\right]$$

ullet Power depends on the value of θ

$$\Pr\left[S(\hat{\theta}) \in C_{\alpha} \mid \theta\right] \equiv P(\theta)$$

• Note

$$P(\theta_0) = \alpha$$

Alternative Hypotheses

• Different possible alternatives

$$H_A: \theta \neq \theta_0$$
 (two-sided)

$$H_A: \theta > \theta_0$$
 (one-sided)

$$H_A: \theta < \theta_0 \text{ (one-sided)}$$

Alternative Hypotheses

• In the calcium supplementation example,

$$H_A: \theta \neq 0; \quad C_{0.05} = \{T: |T| > 2.26\}$$

• If we took a 1-sided alternative,

$$H_A: \theta < 0; \quad C_{0.05} = \{T: T < -1.83\}$$

• Because T = -1.8084, we do not reject H_0 in either case

Alternative Hypotheses

- 2-sided test addresses: Does calcium **change** BP?
- 1-sided test addresses: Does calcium **lower** BP?
- If we applied this 1-sided test and obtained T = 2.5, we would not reject H_0 because our test did not ask if calcium raised or changed BP
- We must choose the alternative hypothesis **before** seeing the data
- Friedman et al. (p. 98) "In general, two-sided tests should be used unless there is strong justification for expecting a difference in only one direction"

P-value

- Definition 4.24. The *p-value* is the smallest significance level α for which the observed data indicate the null hypothesis should be rejected
- Probability of obtaining test statistic as unlikely or more unlikely than the observed test statistic if the null hypothesis is true

Calcium Example Revisited

- Recall $T \sim t_9$; $t_{9,0.975} = 2.26$; $t_{9,0.95} = 1.83$
- p-value for 2-sided test = $2 \Pr[T < -1.8084] = 0.1040$
- p-value for 1-sided test = Pr[T < -1.8084] = 0.0520
- R
 - > 2*pt(-1.8084,9) [1] 0.1039981
 - > pt(-1.8084,9) [1] 0.05199907