5 The quantum Fourier transform and its applications

If computers that you build are quantum, Then spies everywhere will all want 'em. Our codes will all fail, And they'll read our email, Till we get crypto that's quantum, and daunt 'em. Iennifer and Peter Shor

To read our E-mail, how mean of the spies and their quantum machine; be comforted though, they do not yet know how to factorize twelve or fifteen.

Volker Strassen

Computer programming is an art form, like the creation of poetry or music. Donald Knuth

The most spectacular discovery in quantum computing to date is that quantum com-

puters can efficiently perform some tasks which are not feasible on a classical computer. For example, finding the prime factorization of an n-bit integer is thought to require $\exp(\Theta(n^{1/3}\log^{2/3}n))$ operations using the best classical algorithm known at the time of writing, the so-called number field sieve. This is exponential in the size of the number being factored, so factoring is generally considered to be an intractable problem on a classical computer: it quickly becomes impossible to factor even modest numbers. In contrast, a quantum algorithm can accomplish the same task using $O(n^2 \log n \log \log n)$ operations. That is, a quantum computer can factor a number exponentially faster than the best known classical algorithms. This result is important in its own right, but perhaps the most exciting aspect is the question it raises: what other problems can be done efficiently on a quantum computer which are infeasible on a classical computer?

In this chapter we develop the quantum Fourier transform, which is the key ingredient for quantum factoring and many other interesting quantum algorithms. The quantum Fourier transform, with which we begin in Section 5.1, is an efficient quantum algorithm for performing a Fourier transform of quantum mechanical amplitudes. It does not speed up the classical task of computing Fourier transforms of classical data. But one important task which it does enable is phase estimation, the approximation of the eigenvalues of a unitary operator under certain circumstances, as described in Section 5.2. This allows us to solve several other interesting problems, including the order-finding problem and the factoring problem, which are covered in Section 5.3. Phase estimation can also be combined with the quantum search algorithm to solve the problem of counting solutions to a search problem, as described in the next chapter. Section 5.4 concludes the chapter with a discussion of how the quantum Fourier transform may be used to solve the hidden

subgroup problem, a generalization of the phase estimation and order-finding problems that has among its special cases an efficient quantum algorithm for the discrete logarithm problem, another problem thought to be intractable on a classical computer.

5.1 The quantum Fourier transform

A good idea has a way of becoming simpler and solving problems other than that for which it was intended.

- Robert Tarjan

One of the most useful ways of solving a problem in mathematics or computer science is to transform it into some other problem for which a solution is known. There are a few transformations of this type which appear so often and in so many different contexts that the transformations are studied for their own sake. A great discovery of quantum computation has been that some such transformations can be computed much faster on a quantum computer than on a classical computer, a discovery which has enabled the construction of fast algorithms for quantum computers.

One such transformation is the discrete Fourier transform. In the usual mathematical notation, the discrete Fourier transform takes as input a vector of complex numbers, x_0, \ldots, x_{N-1} where the length N of the vector is a fixed parameter. It outputs the transformed data, a vector of complex numbers y_0, \ldots, y_{N-1} , defined by

$$y_k \equiv \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} x_j e^{2\pi i j k/N} . {(5.1)}$$

The quantum Fourier transform is exactly the same transformation, although the conventional notation for the quantum Fourier transform is somewhat different. The quantum Fourier transform on an orthonormal basis $|0\rangle, \ldots, |N-1\rangle$ is defined to be a linear operator with the following action on the basis states,

$$|j\rangle \longrightarrow \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{2\pi i j k/N} |k\rangle.$$
 (5.2)

Equivalently, the action on an arbitrary state may be written

$$\sum_{j=0}^{N-1} x_j |j\rangle \longrightarrow \sum_{k=0}^{N-1} y_k |k\rangle, \qquad (5.3)$$

where the amplitudes y_k are the discrete Fourier transform of the amplitudes x_j . It is not obvious from the definition, but this transformation is a unitary transformation, and thus can be implemented as the dynamics for a quantum computer. We shall demonstrate the unitarity of the Fourier transform by constructing a manifestly unitary quantum circuit computing the Fourier transform. It is also easy to prove directly that the Fourier transform is unitary:

Exercise 5.1: Give a direct proof that the linear transformation defined by Equation (5.2) is unitary.

Exercise 5.2: Explicitly compute the Fourier transform of the n qubit state $|00...0\rangle$.

In the following, we take $N=2^n$, where n is some integer, and the basis $|0\rangle,\ldots,|2^n-1\rangle$ is the computational basis for an n qubit quantum computer. It is helpful to write the state $|j\rangle$ using the binary representation $j=j_1j_2\ldots j_n$. More formally, $j=j_12^{n-1}+j_22^{n-2}+\cdots+j_n2^0$. It is also convenient to adopt the notation $0.j_lj_{l+1}\ldots j_m$ to represent the binary fraction $j_l/2+j_{l+1}/4+\cdots+j_m/2^{m-l+1}$.

With a little algebra the quantum Fourier transform can be given the following useful product representation:

$$|j_1,\ldots,j_n\rangle \to \frac{\left(|0\rangle + e^{2\pi i 0.j_n}|1\rangle\right)\left(|0\rangle + e^{2\pi i 0.j_{n-1}j_n}|1\rangle\right)\cdots\left(|0\rangle + e^{2\pi i 0.j_1j_2\cdots j_n}|1\rangle\right)}{2^{n/2}}.$$
(5.4)

This product representation is so useful that you may even wish to consider this to be the definition of the quantum Fourier transform. As we explain shortly this representation allows us to construct an efficient quantum circuit computing the Fourier transform, a proof that the quantum Fourier transform is unitary, and provides insight into algorithms based upon the quantum Fourier transform. As an incidental bonus we obtain the classical fast Fourier transform, in the exercises!

The equivalence of the product representation (5.4) and the definition (5.2) follows from some elementary algebra:

$$|j\rangle \to \frac{1}{2^{n/2}} \sum_{k=0}^{2^n-1} e^{2\pi i j k/2^n} |k\rangle$$
 (5.5)

$$= \frac{1}{2^{n/2}} \sum_{k_1=0}^{1} \dots \sum_{k_n=0}^{1} e^{2\pi i j \left(\sum_{l=1}^{n} k_l 2^{-l}\right)} |k_1 \dots k_n\rangle$$
 (5.6)

$$= \frac{1}{2^{n/2}} \sum_{k_1=0}^{1} \dots \sum_{k_n=0}^{1} \bigotimes_{l=1}^{n} e^{2\pi i j k_l 2^{-l}} |k_l\rangle$$
 (5.7)

$$= \frac{1}{2^{n/2}} \bigotimes_{l=1}^{n} \left[\sum_{k_l=0}^{1} e^{2\pi i j k_l 2^{-l}} |k_l\rangle \right]$$
 (5.8)

$$= \frac{1}{2^{n/2}} \bigotimes_{l=1}^{n} \left[|0\rangle + e^{2\pi i j 2^{-l}} |1\rangle \right]$$
 (5.9)

$$=\frac{\left(|0\rangle+e^{2\pi i0.j_n}|1\rangle\right)\left(|0\rangle+e^{2\pi i0.j_{n-1}j_n}|1\rangle\right)\cdots\left(|0\rangle+e^{2\pi i0.j_1j_2\cdots j_n}|1\rangle\right)}{2^{n/2}}.(5.10)$$

The product representation (5.4) makes it easy to derive an efficient circuit for the quantum Fourier transform. Such a circuit is shown in Figure 5.1. The gate R_k denotes the unitary transformation

$$R_k \equiv \begin{bmatrix} 1 & 0 \\ 0 & e^{2\pi i/2^k} \end{bmatrix} . {(5.11)}$$

To see that the pictured circuit computes the quantum Fourier transform, consider what happens when the state $|j_1...j_n\rangle$ is input. Applying the Hadamard gate to the first bit produces the state

$$\frac{1}{2^{1/2}} \left(|0\rangle + e^{2\pi i 0.j_1} |1\rangle \right) |j_2 \dots j_n\rangle , \qquad (5.12)$$

Figure 5.1. Efficient circuit for the quantum Fourier transform. This circuit is easily derived from the product representation (5.4) for the quantum Fourier transform. Not shown are swap gates at the end of the circuit which reverse the order of the qubits, or normalization factors of $1/\sqrt{2}$ in the output.

since $e^{2\pi i 0.j_1} = -1$ when $j_1 = 1$, and is +1 otherwise. Applying the controlled- R_2 gate produces the state

$$\frac{1}{2^{1/2}} \left(|0\rangle + e^{2\pi i 0. j_1 j_2} |1\rangle \right) |j_2 \dots j_n\rangle. \tag{5.13}$$

We continue applying the controlled- R_3 , R_4 through R_n gates, each of which adds an extra bit to the phase of the co-efficient of the first $|1\rangle$. At the end of this procedure we have the state

$$\frac{1}{2^{1/2}} \left(|0\rangle + e^{2\pi i 0. j_1 j_2 \dots j_n} |1\rangle \right) |j_2 \dots j_n\rangle. \tag{5.14}$$

Next, we perform a similar procedure on the second qubit. The Hadamard gate puts us in the state

$$\frac{1}{2^{2/2}} \left(|0\rangle + e^{2\pi i 0.j_1 j_2...j_n} |1\rangle \right) \left(|0\rangle + e^{2\pi i 0.j_2} |1\rangle \right) |j_3...j_n\rangle, \tag{5.15}$$

and the controlled- R_2 through R_{n-1} gates yield the state

$$\frac{1}{2^{2/2}} \left(|0\rangle + e^{2\pi i 0. j_1 j_2 \dots j_n} |1\rangle \right) \left(|0\rangle + e^{2\pi i 0. j_2 \dots j_n} |1\rangle \right) |j_3 \dots j_n\rangle. \tag{5.16}$$

We continue in this fashion for each qubit, giving a final state

$$\frac{1}{2^{n/2}} \left(|0\rangle + e^{2\pi i 0.j_1 j_2 \dots j_n} |1\rangle \right) \left(|0\rangle + e^{2\pi i 0.j_2 \dots j_n} |1\rangle \right) \dots \left(|0\rangle + e^{2\pi i 0.j_n} |1\rangle \right). \quad (5.17)$$

Swap operations (see Section 1.3.4 for a description of the circuit), omitted from Figure 5.1 for clarity, are then used to reverse the order of the qubits. After the swap operations, the state of the qubits is

$$\frac{1}{2^{n/2}} \left(|0\rangle + e^{2\pi i 0.j_n} |1\rangle \right) \left(|0\rangle + e^{2\pi i 0.j_{n-1}j_n} |1\rangle \right) \dots \left(|0\rangle + e^{2\pi i 0.j_1 j_2 \dots j_n} |1\rangle \right). \tag{5.18}$$

Comparing with Equation (5.4) we see that this is the desired output from the quantum Fourier transform. This construction also proves that the quantum Fourier transform is unitary, since each gate in the circuit is unitary. An explicit example showing a circuit for the quantum Fourier transform on three qubits is given in Box 5.1.

How many gates does this circuit use? We start by doing a Hadamard gate and n-1 conditional rotations on the first qubit – a total of n gates. This is followed by a Hadamard gate and n-2 conditional rotations on the second qubit, for a total of n+(n-1) gates. Continuing in this way, we see that $n+(n-1)+\cdots+1=n(n+1)/2$ gates are required,

Box 5.1: Three qubit quantum Fourier transform

For concreteness it may help to look at the explicit circuit for the three qubit quantum Fourier transform:

Recall that S and T are the phase and $\pi/8$ gates (see page xxiii). As a matrix the quantum Fourier transform in this instance may be written out explicitly, using $\omega = e^{2\pi i/8} = \sqrt{i}$, as

$$\frac{1}{\sqrt{8}} \begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & \omega & \omega^{2} & \omega^{3} & \omega^{4} & \omega^{5} & \omega^{6} & \omega^{7} \\
1 & \omega^{2} & \omega^{4} & \omega^{6} & 1 & \omega^{2} & \omega^{4} & \omega^{6} \\
1 & \omega^{3} & \omega^{6} & \omega^{1} & \omega^{4} & \omega^{7} & \omega^{2} & \omega^{5} \\
1 & \omega^{4} & 1 & \omega^{4} & 1 & \omega^{4} & 1 & \omega^{4} \\
1 & \omega^{5} & \omega^{2} & \omega^{7} & \omega^{4} & \omega^{1} & \omega^{6} & \omega^{3} \\
1 & \omega^{6} & \omega^{4} & \omega^{2} & 1 & \omega^{6} & \omega^{4} & \omega^{2} \\
1 & \omega^{7} & \omega^{6} & \omega^{5} & \omega^{4} & \omega^{3} & \omega^{2} & \omega^{1}
\end{bmatrix} .$$
(5.19)

plus the gates involved in the swaps. At most n/2 swaps are required, and each swap can be accomplished using three controlled-NOT gates. Therefore, this circuit provides a $\Theta(n^2)$ algorithm for performing the quantum Fourier transform.

In contrast, the best classical algorithms for computing the discrete Fourier transform on 2^n elements are algorithms such as the Fast Fourier Transform (FFT), which compute the discrete Fourier transform using $\Theta(n2^n)$ gates. That is, it requires exponentially more operations to compute the Fourier transform on a classical computer than it does to implement the quantum Fourier transform on a quantum computer.

At face value this sounds terrific, since the Fourier transform is a crucial step in so many real-world data processing applications. For example, in computer speech recognition, the first step in phoneme recognition is to Fourier transform the digitized sound. Can we use the quantum Fourier transform to speed up the computation of these Fourier transforms? Unfortunately, the answer is that there is no known way to do this. The problem is that the amplitudes in a quantum computer cannot be directly accessed by measurement. Thus, there is no way of determining the Fourier transformed amplitudes of the original state. Worse still, there is in general no way to efficiently prepare the original state to be Fourier transformed. Thus, finding uses for the quantum Fourier transform is more subtle than we might have hoped. In this and the next chapter we develop several algorithms based upon a more subtle application of the quantum Fourier transform.

- Exercise 5.3: (Classical fast Fourier transform) Suppose we wish to perform a Fourier transform of a vector containing 2^n complex numbers on a classical computer. Verify that the straightforward method for performing the Fourier transform, based upon direct evaluation of Equation (5.1) requires $\Theta(2^{2n})$ elementary arithmetic operations. Find a method for reducing this to $\Theta(n2^n)$ operations, based upon Equation (5.4).
- Exercise 5.4: Give a decomposition of the controlled- R_k gate into single qubit and CNOT gates.
- Exercise 5.5: Give a quantum circuit to perform the inverse quantum Fourier transform.
- Exercise 5.6: (Approximate quantum Fourier transform) The quantum circuit construction of the quantum Fourier transform apparently requires gates of exponential precision in the number of qubits used. However, such precision is never required in any quantum circuit of polynomial size. For example, let U be the ideal quantum Fourier transform on n qubits, and V be the transform which results if the controlled- R_k gates are performed to a precision $\Delta = 1/p(n)$ for some polynomial p(n). Show that the error $E(U, V) \equiv \max_{|\psi\rangle} ||(U V)|\psi\rangle||$ scales as $\Theta(n^2/p(n))$, and thus polynomial precision in each gate is sufficient to guarantee polynomial accuracy in the output state.

5.2 Phase estimation

The Fourier transform is the key to a general procedure known as phase estimation, which in turn is the key for many quantum algorithms. Suppose a unitary operator U has an eigenvector $|u\rangle$ with eigenvalue $e^{2\pi i \varphi}$, where the value of φ is unknown. The goal of the phase estimation algorithm is to estimate φ . To perform the estimation we assume that we have available black boxes (sometimes known as oracles) capable of preparing the state $|u\rangle$ and performing the controlled- U^{2^j} operation, for suitable non-negative integers j. The use of black boxes indicates that the phase estimation procedure is not a complete quantum algorithm in its own right. Rather, you should think of phase estimation as a kind of 'subroutine' or 'module' that, when combined with other subroutines, can be used to perform interesting computational tasks. In specific applications of the phase estimation procedure we shall do exactly this, describing how these black box operations are to be performed, and combining them with the phase estimation procedure to do genuinely useful tasks. For the moment, though, we will continue to imagine them as black boxes.

The quantum phase estimation procedure uses two registers. The first register contains t qubits initially in the state $|0\rangle$. How we choose t depends on two things: the number of digits of accuracy we wish to have in our estimate for φ , and with what probability we wish the phase estimation procedure to be successful. The dependence of t on these quantities emerges naturally from the following analysis.

The second register begins in the state $|u\rangle$, and contains as many qubits as is necessary to store $|u\rangle$. Phase estimation is performed in two stages. First, we apply the circuit shown in Figure 5.2. The circuit begins by applying a Hadamard transform to the first register, followed by application of controlled-U operations on the second register, with U raised

to successive powers of two. The final state of the first register is easily seen to be:

$$\frac{1}{2^{t/2}} \left(|0\rangle + e^{2\pi i 2^{t-1} \varphi} |1\rangle \right) \left(|0\rangle + e^{2\pi i 2^{t-2} \varphi} |1\rangle \right) \dots \left(|0\rangle + e^{2\pi i 2^{0} \varphi} |1\rangle \right) \\
= \frac{1}{2^{t/2}} \sum_{k=0}^{2^{t}-1} e^{2\pi i \varphi k} |k\rangle . \tag{5.20}$$

We omit the second register from this description, since it stays in the state $|u\rangle$ throughout the computation.

Figure 5.2. The first stage of the phase estimation procedure. Normalization factors of $1/\sqrt{2}$ have been omitted, on the right.

Exercise 5.7: Additional insight into the circuit in Figure 5.2 may be obtained by showing, as you should now do, that the effect of the sequence of controlled-U operations like that in Figure 5.2 is to take the state $|j\rangle|u\rangle$ to $|j\rangle U^{j}|u\rangle$. (Note that this does not depend on $|u\rangle$ being an eigenstate of U.)

The second stage of phase estimation is to apply the *inverse* quantum Fourier transform on the first register. This is obtained by reversing the circuit for the quantum Fourier transform in the previous section (Exercise 5.5), and can be done in $\Theta(t^2)$ steps. The third and final stage of phase estimation is to read out the state of the first register by doing a measurement in the computational basis. We will show that this provides a pretty good estimate of φ . An overall schematic of the algorithm is shown in Figure 5.3.

To sharpen our intuition as to why phase estimation works, suppose φ may be expressed exactly in t bits, as $\varphi = 0.\varphi_1 \dots \varphi_t$. Then the state (5.20) resulting from the first stage of phase estimation may be rewritten

$$\frac{1}{2^{t/2}}\left(|0\rangle + e^{2\pi i 0.\varphi_t}|1\rangle\right)\left(|0\rangle + e^{2\pi i 0.\varphi_{t-1}\varphi_t}|1\rangle\right)\ldots\left(|0\rangle + e^{2\pi i 0.\varphi_1\varphi_2\cdots\varphi_t}|1\rangle\right). (5.21)$$

The second stage of phase estimation is to apply the inverse quantum Fourier transform. But comparing the previous equation with the product form for the Fourier transform, Equation (5.4), we see that the output state from the second stage is the product state $|\varphi_1 \dots \varphi_t\rangle$. A measurement in the computational basis therefore gives us φ exactly!

Figure 5.3. Schematic of the overall phase estimation procedure. The top t qubits (the '/' denotes a bundle of wires, as usual) are the first register, and the bottom qubits are the second register, numbering as many as required to perform U. $|u\rangle$ is an eigenstate of U with eigenvalue $e^{2\pi i\varphi}$. The output of the measurement is an approximation to φ accurate to $t - \left\lceil \log\left(2 + \frac{1}{2\epsilon}\right) \right\rceil$ bits, with probability of success at least $1 - \epsilon$.

Summarizing, the phase estimation algorithm allows one to estimate the phase φ of an eigenvalue of a unitary operator U, given the corresponding eigenvector $|u\rangle$. An essential feature at the heart of this procedure is the ability of the inverse Fourier transform to perform the transformation

$$\frac{1}{2^{t/2}} \sum_{j=0}^{2^t - 1} e^{2\pi i \varphi j} |j\rangle |u\rangle \to |\tilde{\varphi}\rangle |u\rangle, \qquad (5.22)$$

where $|\tilde{\varphi}\rangle$ denotes a state which is a good estimator for φ when measured.

5.2.1 Performance and requirements

The above analysis applies to the ideal case, where φ can be written exactly with a t bit binary expansion. What happens when this is not the case? It turns out that the procedure we have described will produce a pretty good approximation to φ with high probability, as foreshadowed by the notation used in (5.22). Showing this requires some careful manipulations.

Let b be the integer in the range 0 to $2^t - 1$ such that $b/2^t = 0.b_1 \dots b_t$ is the best t bit approximation to φ which is less than φ . That is, the difference $\delta \equiv \varphi - b/2^t$ between φ and $b/2^t$ satisfies $0 \le \delta \le 2^{-t}$. We aim to show that the observation at the end of the phase estimation procedure produces a result which is close to b, and thus enables us to estimate φ accurately, with high probability. Applying the inverse quantum Fourier transform to the state (5.20) produces the state

$$\frac{1}{2^t} \sum_{k,l=0}^{2^t - 1} e^{\frac{-2\pi i k l}{2^t}} e^{2\pi i \varphi k} |l\rangle. \tag{5.23}$$

Let α_l be the amplitude of $|(b+l) \pmod{2^t}\rangle$,

$$\alpha_l \equiv \frac{1}{2^t} \sum_{k=0}^{2^t - 1} \left(e^{2\pi i (\varphi - (b+l)/2^t)} \right)^k. \tag{5.24}$$

This is the sum of a geometric series, so

$$\alpha_l = \frac{1}{2^t} \left(\frac{1 - e^{2\pi i (2^t \varphi - (b+l))}}{1 - e^{2\pi i (\varphi - (b+l)/2^t)}} \right)$$
 (5.25)

The quantum Tourier trains.

$$= \frac{1}{2^t} \left(\frac{1 - e^{2\pi i(2^t \delta - l)}}{1 - e^{2\pi i(\delta - l/2^t)}} \right) . \tag{5.26}$$

Suppose the outcome of the final measurement is m. We aim to bound the probability of obtaining a value of m such that |m-b| > e, where e is a positive integer characterizing our desired tolerance to error. The probability of observing such an m is given by

$$p(|m-b| > e) = \sum_{-2^{t-1} < l \le -(e+1)} |\alpha_l|^2 + \sum_{e+1 \le l \le 2^{t-1}} |\alpha_l|^2.$$
 (5.27)

But for any real θ , $|1 - \exp(i\theta)| \le 2$, so

$$|\alpha_l| \le \frac{2}{2^t |1 - e^{2\pi i(\delta - l/2^t)}|}$$
 (5.28)

By elementary geometry or calculus $|1 - \exp(i\theta)| \ge 2|\theta|/\pi$ whenever $-\pi \le \theta \le \pi$. But when $-2^{t-1} < l \le 2^{t-1}$ we have $-\pi \le 2\pi(\delta - l/2^t) \le \pi$. Thus

$$|\alpha_l| \le \frac{1}{2^{t+1}(\delta - l/2^t)}$$
 (5.29)

Combining (5.27) and (5.29) gives

$$p(|m-b| > e) \le \frac{1}{4} \left[\sum_{l=-2^{t-1}+1}^{-(e+1)} \frac{1}{(l-2^t\delta)^2} + \sum_{l=e+1}^{2^{t-1}} \frac{1}{(l-2^t\delta)^2} \right] . \tag{5.30}$$

Recalling that $0 \le 2^t \delta \le 1$, we obtain

$$p(|m-b| > e) \le \frac{1}{4} \left[\sum_{l=-2^{t-1}+1}^{-(e+1)} \frac{1}{l^2} + \sum_{l=e+1}^{2^{t-1}} \frac{1}{(l-1)^2} \right]$$
 (5.31)

$$\leq \frac{1}{2} \sum_{l=0}^{2^{t-1}-1} \frac{1}{l^2} \tag{5.32}$$

$$\leq \frac{1}{2} \int_{c-1}^{2^{t-1}-1} dl \frac{1}{l^2} \tag{5.33}$$

$$=\frac{1}{2(e-1)}. (5.34)$$

Suppose we wish to approximate φ to an accuracy 2^{-n} , that is, we choose $e = 2^{t-n} - 1$. By making use of t = n + p qubits in the phase estimation algorithm we see from (5.34) that the probability of obtaining an approximation correct to this accuracy is at least $1 - 1/2(2^p - 2)$. Thus to successfully obtain φ accurate to n bits with probability of success at least $1 - \epsilon$ we choose

$$t = n + \left\lceil \log\left(2 + \frac{1}{2\epsilon}\right) \right\rceil . \tag{5.35}$$

In order to make use of the phase estimation algorithm, we need to be able to prepare an eigenstate $|u\rangle$ of U. What if we do not know how to prepare such an eigenstate? Suppose that we prepare some other state $|\psi\rangle$ in place of $|u\rangle$. Expanding this state in terms of eigenstates $|u\rangle$ of U gives $|\psi\rangle = \sum_u c_u |u\rangle$. Suppose the eigenstate $|u\rangle$ has eigenvalue $e^{2\pi i \varphi_u}$. Intuitively, the result of running the phase estimation algorithm will be to give

as output a state close to $\sum_u c_u |\widetilde{\varphi_u}\rangle|u\rangle$, where $\widetilde{\varphi_u}$ is a pretty good approximation to the phase φ_u . Therefore, we expect that reading out the first register will give us a good approximation to φ_u , where u is chosen at random with probability $|c_u|^2$. Making this argument rigorous is left for Exercise 5.8. This procedure allows us to avoid preparing a (possibly unknown) eigenstate, at the cost of introducing some additional randomness into the algorithm.

Exercise 5.8: Suppose the phase estimation algorithm takes the state $|0\rangle|u\rangle$ to the state $|\widetilde{\varphi_u}\rangle|u\rangle$, so that given the input $|0\rangle\left(\sum_u c_u|u\rangle\right)$, the algorithm outputs $\sum_u c_u|\widetilde{\varphi_u}\rangle|u\rangle$. Show that if t is chosen according to (5.35), then the probability for measuring φ_u accurate to n bits at the conclusion of the phase estimation algorithm is at least $|c_u|^2(1-\epsilon)$.

Why is phase estimation interesting? For its own sake, phase estimation solves a problem which is both non-trivial and interesting from a physical point of view: how to estimate the eigenvalue associated to a given eigenvector of a unitary operator. Its real use, though, comes from the observation that other interesting problems can be reduced to phase estimation, as will be shown in subsequent sections. The phase estimation algorithm is summarized below.

Algorithm: Quantum phase estimation

Inputs: (1) A black box wich performs a controlled- U^j operation, for integer j, (2) an eigenstate $|u\rangle$ of U with eigenvalue $e^{2\pi i \varphi_u}$, and (3) $t = n + \lceil \log \left(2 + \frac{1}{2\epsilon}\right) \rceil$ qubits initialized to $|0\rangle$.

Outputs: An *n*-bit approximation $\widetilde{\varphi_u}$ to φ_u .

Runtime: $O(t^2)$ operations and one call to controlled- U^j black box. Succeeds with probability at least $1 - \epsilon$.

Procedure:

1.
$$|0\rangle|u\rangle$$
 initial state

2. $\rightarrow \frac{1}{\sqrt{2^t}} \sum_{j=0}^{2^t-1} |j\rangle|u\rangle$ create superposition

3. $\rightarrow \frac{1}{\sqrt{2^t}} \sum_{j=0}^{2^t-1} |j\rangle U^j|u\rangle$ apply black box

$$= \frac{1}{\sqrt{2^t}} \sum_{j=0}^{2^t-1} e^{2\pi i j \varphi_u} |j\rangle|u\rangle$$
 result of black box

4. $\rightarrow |\widetilde{\varphi_u}\rangle|u\rangle$ apply inverse Fourier transform

5. $\rightarrow \widetilde{\varphi_u}$ measure first register

Exercise 5.9: Let U be a unitary transform with eigenvalues ± 1 , which acts on a state $|\psi\rangle$. Using the phase estimation procedure, construct a quantum circuit to collapse $|\psi\rangle$ into one or the other of the two eigenspaces of U, giving also a