CS146 Data Structures and Algorithms

Chapter 3: Growth of Functions

Asymptotic Performance

- *Asymptotic performance*: How does algorithm behave as the problem size gets very large?
 - o Running time
 - o Memory/storage requirements
 - *Order of growth* is the interesting measure:
 - o Highest-order term is what counts
 - · Remember, we are doing asymptotic analysis
 - As the input size grows larger it is the high order term that dominates

L32

Growth Rates

- Growth rates of functions:
 - functions:
 Linear $\approx n$
 - Quadratic $\approx n^2$
 - Quadratic $\approx n$ Cubic $\approx n^3$
- In a log-log chart, the slope of the line corresponds to the growth rate of the function

L3.1

Constant Factors

- The growth rate is not affected by
 - constant factors or
 - lower-order terms
- Examples
 - $10^2 n + 10^5$ is a linear function
 - 10⁵n² + 10⁸n is a quadratic function

L3.4

L3.3

1

Practical Complexity

Practical Complexity

136

Practical Complexity

Practical Complexity

L3.8

Practical Complexity

When n grows to larger number, what is the f(n) for each curve line?

Asymptotic Notation

- Upper Bound Notation:
 - f(n) is O(g(n)) if there exist positive constants c and n_0 such that $f(n) \le c \cdot g(n)$ for all $n \ge n_0$
 - Formally, $O(g(n)) = \{ f(n) : \exists \text{ positive constants } c \text{ and } n_0 \text{ such that } f(n) \le c \cdot g(n) \ \forall \ n \ge n_0 \}$
- Big O fact:
 - A polynomial of degree k is $O(n^k)$

121

Big-Oh Notation

- Given functions f(n) and g(n), we say that f(n) is O(g(n)) if there are positive constants c and n₀ such that
- $f(n) \le cg(n)$ for $n \ge n_0$ • Example: 2n + 10 is O(n)
- $2n+10 \le cn$
- $(c-2) n \ge 10$
- n ≥ 10/(c-2)
- Pick c = 3 and $n_0 = 10$
- 1,000 1,000 1,000 100 100 100 1,000

Upper Bound Notation

- We say InsertionSort's run time is $O(n^2)$
 - Properly we should say run time is in O(n²)
 - Read O as "Big-O" (you'll also hear it as "order")
- In general a function
 - f(n) is O(g(n)) if there exist positive constants c and n₀ such that f(n) ≤ c · g(n) for all n ≥ n₀
- Formally
 - O(g(n)) = { f(n): \exists positive constants c and n_0 such that $f(n) \le c \cdot g(n) \ \forall \ n \ge n_0$

L3.12

Insertion Sort Is O(n²)

- Proof
 - Suppose runtime is $an^2 + bn + c$
 - o If any of a, b, and c are less than 0 replace the constant with its absolute value
 - $an^2 + bn + c \le (a + b + c)n^2 + (a + b + c)n + (a + b + c)$
 - $\leq 3(a+b+c)n^2 \text{ for } n \geq 1$
 - Let c' = 3(a + b + c) and let $n_0 = 1$
- Question
 - Is InsertionSort O(n³)?
 - Is InsertionSort O(n)?

L3.13