Продолжение таблицы 2.1

Характеристика	Значение
Ночной режим	Да
Объектив	Фиксированный фокус
Сжатие	MPEG / H.264
Поддержка РоЕ	Да
Класс защиты	IP66
Питание	12 V/0,3A
Потребляемая мощность	4 B _T
Место установки камеры	Внутренняя
Конструкция камеры	Корпусная
Вес, кг	0,96
Размеры, мм	99 x 221

Таблица 2.2 – Основные технические характеристики IP-камеры CNB Technology CNB-TDB21R-28(36)

Характеристика	Значение
Стандарт видеокамеры	IP
ПЗС матрица	1/3" CMOS Sensor
Видеосенсор: пикселей по горизонтали	1920
Видеосенсор: пикселей по вертикали	1080
Минимальная светочувствительность, Лк	0,0005
Скорость при максимальной развертке,	25
кадр/сек Поддержка Wi-Fi	IEEE 802.11 b/g/n
Минимальная рабочая температура, °С	-40
Максимальная рабочая температура, °С	+60
Ночной режим	Да
Объектив	Фиксированный фокус
Сжатие	MPEG / H.264/H.265
Поддержка карты памяти	microSD
Потребляемая мощность	1 Вт
Срок работы от батареи, сут.	7
Место установки камеры	Внешнее/внутреннее
Вес, кг	0,93

Продолжение таблицы 3.9

Устройства передачи	Устройство соединения	Длина участка, м
видеосигнала	с видеорегистратором	
Камера 7 (Іот 7)	Switch 0	36,1
Камера 8 (Іот 8)	Switch 0	68,9
Камера 9 (Іот 9)	Switch 0	60,3
Камера 10 (Іот 10)	Switch 0	82,2
Камера 11 (Iot 11)	Switch 1	48,9
Камера 12 (Iot 12)	Switch 1	80,1
Камера 13 (Іот 13)	Switch 1	51,5
Камера 14 (Іот 14)	Switch 1	25,8
Камера 15 (Іот 15)	Switch 1	63,8
Камера 16 (Iot 16)	Switch 1	56,3
Камера 17 (Iot 17)	Switch 1	40,1
Камера 18 (Іот 18)	Switch 1	16,8
Камера 19 (Iot 19)	Switch 1	29,9
Камера 20 (Iot 20)	Switch 1	31,1
Access Point 0	Switch 1	31,6
Общая длина кабеля с учетом запаса		1064,1

3.8 Выбор оборудования электропитания

Популярная сегодня, технология Power over Ethernet (PoE) 802.3af позволяет в данном проекте запитывать проводные IP-камеры видеонаблюдения и точку доступа за счет подачи постоянного напряжения питания вместе с данными по витой паре. Витая пара подключается к сетевому устройству через порт RJ-45, а питание подается от питающего оборудования, от коммутатора, поддерживающего PoE. Стандарт PoE 802.3at обеспечивает гибкое и удобное средство питания устройств, которые расположены в отдалённых местах, и позволяет сэкономить на стоимости кабеля.

Беспроводные камеры работают посредством аккумуляторных батарей, в соответствии с характеристиками беспроводной камеры видеонаблюдения, представленными в таблице 2.2, срок непрерывной работы камеры от батареи составляет суток. Далее съемный аккумулятор необходимо зарядить, зарядное устройство и сменный аккумулятор идет в комплекте.

Рассчитаем мощность потребления видеокамер и точки доступа планируемой системы видеонаблюдения от одного источника питания. Результаты расчета представлены в таблице 3.10.

Так как аппаратура устанавливается в действующем торговом центре, то для обслуживания системы видеонаблюдения будет задействован уже существующий штат, то есть вводить штатные единицы нет необходимости.

Затраты на электроэнергию для производственных нужд определяется в зависимости от потребляемой мощности и тарифа за один кВт×ч. Мощность, потребляемую оборудованием, определяется по формуле 4.4. Потребляемая мощность оборудования системы видеонаблюдения представлена в таблице 4.3.

$$W = (N \times W_{EJI} \times t) / \mu, \qquad (4.4)$$

где N – количество единиц оборудования;

W_{ЕД} – мощность потребляемая единицей оборудования, кВт;

t – время действия в год в часах;

 $\mu - K\PiД$ электропитающей установки ($\mu \approx 0.8$).

Таблица 4.3 – Таблица мощностей оборудования системы видеонаблюдения

Оборудование	Количество, шт.	Мощность, потребляемая единицей оборудования, Вт
Видеорегистратор DR- 8364D IDIS	1	120
Mонитор DAHUA TECHNOLOGY DH- DHL24-F600-FE-V1	1	30
Коммутатор Cisco Catalyst C1000-24P-4G- L	2	250
Маршрутизатор MikroTik CCR2004-1G- 12S+2XS	1	49
Точка доступа MicroTic mANTBox-2-12s	1	11
IP-камера CNB Technology CNB-NB21- 7MHR	20	4
IP-камера CNB Technology CNB- TDB21R-28(36)	2	1

Продолжение таблицы 4.1

Оборудование	Количество, шт.	Мощность, потребляемая единицей оборудования, Вт
ИБП APC Smart-UPS		
2200VA USB & Serial	1	2200
RM 2U 230V		

 $W = ((120+30+250\times2+49+11+4\times20+2\times1+2200)\times8760)/0,8 = 32871900 \text{ BT}$ = 32871,9 kBT.

Отсюда затраты на электроэнергию определяются по формуле 4.5.

$$3_{\mathrm{3H}} = \mathrm{W} \times \mathrm{T},\tag{4.5}$$

где T – тариф за 1 кBт \times ч, равный 0,13 бел.руб.

Таким образом, затраты на электроэнергию составляют:

$$3_{\rm ЭH} = 4273,347$$
 бел.руб.

Прочие расходы -40 % от прямых издержек рассчитываются по формуле 4.6.

$$3_{\Pi P} = 0.4 \times 3_{9H} \tag{4.6}$$

Таким образом, прочие затраты от прямых издержек:

$$3_{\Pi P} = 1709,339$$
 бел.руб.

Общие текущие издержки определяются по формуле 4.7.

$$M = 3_{\Pi P} + 3_{\Im H} \tag{4.7}$$

Итого общие текущие издержки составили:

$$H = 5982,686$$
 бел.руб.

4.2 Выводы

В результате расчетов была определена общая сумма капитальных вложений по реализации проекта, они составили 58546,18 бел.руб. и сумму общих годовых издержек системы видеонаблюдения, которые составляют 5982,686 бел.руб.