

集成运算放大器应用 实验报告

专 业: 通信工程

姓 名: 张悦熠

学 号: <u>9211040G0637</u>

指导老师: 丁淑艳

2023 年 5 月 29 日

目录

一 、	实验目的	3
_,	实验原理	3
三、	实验仪器	3
四、	实验内容及步骤	3
Ħ、	思考题	6

实验三 集成放大电路

一、实验目的

- 1. 掌握 LM741 (F007) 集成运放功能和使用方法。
- 2. 掌握反相放大,低通滤波电路和振荡电路的测试和计算方法。

二、实验原理

通用运放——LM741

本实验采用通用型集成运算放大器 LM741 作为实验基本元件,它具有高放大倍数 (10⁵~10⁸)、高输入阻抗、低输出阻抗的直接耦合放大电路。芯片引脚图如图 1.3.1 所示。

三、实验仪器

- 1. 数字存储示波器 DST1102B 一台
- 2. 低频信号源 SG1020P 一台
- 3. 交流毫伏表 YB2173 一台
- 4. 双路直流稳压电源 DH1718 一台
- 5. 万用表 MF-47 一块

四、实验内容及步骤

1.、测量反向放大倍数

接图 1.3.3 连线经仔细检查确认无误后, 接入 $\pm V_{o}$ = $\pm 12V$, 调信号源频率 f_i =1KHz, U_i =0, 接入电路后, 逐渐增大 U_i , 使输出电压 U_o =2V, 按表 1.3.1 测定在不同 R_i 的 U_i 值。反相放大电压增益表达式:

$$A_U = -\frac{U_o}{U_i} = -\frac{R_F}{R_3}$$

图 1.3.3 反相比例放大电路

R_F ($K\Omega$)	U _o (V)	U _i (mV)	$A_U = -U_o/U_i$	$A_{U} = -R_{F}/R_{3}$	(A _U '-A _U) / A _U '%
5.1	2	400	-5	-5.1	1.96
51	2	40	-50	-51	1.96
100	2	21	-95.2	-100	4.8

2、测量低通特性曲线

换 RF 成以下电路,即将 RF 换做一个 20KΩ的电阻和一个 0.22μF 的电容并联,电路放大增益频率特性计算式为:

$$A_U(j\omega) = \frac{U_o}{U_i} = -\frac{R_1}{R_3} \cdot \frac{1}{1 + j\omega R_1 C_1}$$

其上限频率为 $f_H = \frac{1}{2\pi R_1 C_1}$

图 1.3.3 低通滤波器 (积分电路)

a. 测低通的幅频特性:按表 1.3.2 保持 Ui=40mV,改变输入信号频率依次测出 Uo 值,求出 AU 并画出幅频特性曲线。

fi (Hz)	50	100	200	300	400	4000	40000
Uo (v)	0.8	0.78	0.76	0.74	0.70	0.15	0.016
Au	20	19.5	19	18.5	17.5	3.75	0.4

b. 测此低通的截止频率 fH: fH=380 Hz, 理论计算值: 361。

3、积分器

a.按图 1.3.4 组装电路,用连续方波输入,并按表 1.3.3 保持方波 Vi 为 40mV 不变,改变频率,用示波器观察频率与输出波形间的关系,并测量输出信号的有效值,记录实验结果。

776 EL 1844 1844 1844 1844 1844 1844 1844 184								
f	50	100	300	500	1000	2000		
(Hz								
)								
Vo	0.76	0.74	0.65	0.56	0.39	0.23		
(V)								
波	AN	444	-0.0-6	1000	1444	\sim \sim \sim		
形				1711	4 4 4 6	1444		

实验结果记录图

b.测量正弦振荡频率 fo; 反馈系数 F; 反馈电压 V_f及振幅 V。

按图 1.3.5 连线在电路振荡条件下测量表 1.3.4 中电路的各参数值。验证起振条件采用"替代法": 当振荡电路产生了一个稳定完整正弦波形后,断开正反馈环节,用低频信号源信号替代自振荡电路的模拟输入信号(注: 此时 RF 应保持不变),调信号源的幅度、频率,用示波器观察输出 Vo`的波形,使 Vo`=Vo,fo`=fo,然后测出其此时 Vi,Vf

图 1.3.5 正弦振荡电路

测量值				测算值		
v _o (v)	y _t (∨)	V _i (V)	T (ms)	$F = V_f / V_o$	$A_{Vf} = V_o / V_i$	f=1/T (HZ)
6.6	11	2.2	0.667	1.67	3	1.49k

当电路选频网络中取 $C_1 \neq C_2$, $R_1 \neq R_2$ 时元件参数与振荡频率的关系为 $f_o = \frac{1}{2\pi\sqrt{R_1R_2C_1C_2}}$,当 取 $C_1 = C_2$, $R_1 = R_2$ 时元件参数与振荡频率的关系为 $f_o = \frac{1}{2\pi RC}$, $R_F = 2R_f$ 。

4、设计正弦波—方波—三角波函数发生器

五、思考题:

1. 当 RF=100KΩ 时, 在理想反相放大电路中, 若考虑到运算放大器的最大输出幅度时(±12V), Ui 的大小不应超过多少伏?

当 RF=100KΩ 时,在理想反相放大电路中,若考虑到运算放大器的最大输出幅度为±12V 时,Ui 的大小不应超过 0.12V。这是因为理想反相放大电路的放大倍数为-Vout/Vin = RF/Ri,当 RF=100KΩ 时,放大倍数为-100,因此 Ui 的大小应该控制在运算放大器的最大输出幅度之内,以避免输出失真。如果 Ui 超过了 0.12V,输出信号将会被削顶或削底,导致失真。

2、绘制低通特性曲线,指出其低频通带。

3、在低通滤波电路中,改变积分时间常数,输出会有怎样变化?

电路的时间常数越长,输出波形的周期也越长,电路的波形频率就越低,电路的时间常数越短,输出波形的周期也越短,电路的波形频率就越高。

作用:使用更大的时间常数可以有效地滤除高频噪声,更小的时间常数可以提高电路的响应速度和实时性。