COMP-40730 HPC

REPORT FOR ASSIGNMENT 4

Author: Paula Dwan

Due date: July-2014

Lecturer: Alexey Lastovetsky

Subject: COMP-40730 High Performance Computing

College: University College Dublin

CONTENTS

Contents	2
Exercise	3
Overview of Computations Obtained and How	4
Assignment Execution	5
Running A4-mpi-manual- <atlas cblas="" =""> : standalone</atlas>	7
Running A4-mpi-solo : standalone	7
Log Files Obtained	7
GNUplot Execution	8
DGEMM Computation on CSICLUSTER – Why Not?	9
Overview of MPI functions Used	9
Matrix Sizes Evaluated	12
Row-Major as applied	13
Summary Results	14
Comparison MPI, Open MP & pthreads	14
GNUplot Graphs – matrix sizes 50 → 1000	15
\$./runAssignment4.sh -i -v : manual – sample set	
\$./runAssignment4.sh -i -v : solo MPI – sample set	
GNUPlot Graphs – matrix sizes $50 \rightarrow 1000$	17
\$./runAssignment4.sh -r -v : manual – sample set \$./runAssignment4.sh -r -v : solo MPI – sample set	
GNUplot Graphs – matrix sizes 50 → 100	19
\$./runAssignment4.sh -r -v : manual – sample set \$./runAssignment4.sh -i -v : solo MPI – sample set	
Conclusions	20
Appendices	21
Appendix I – Validate Results	21
A4-mpi-manual-cblas A4-mpi-solo	
Appendix II – Summary of Results Obtained	24
./A4-mpi-manual-cblas -r 50 → 100	24
./A4-mpi-manual-cblas -i 50 → 100	
./A4-mpi-manual-cblas -r 50 → 1000	
./A4-mpi-manual-cblas -i 50 → 1000	
./A4-mpi-solo -r 50 → 100	
./A4-mpi-solo -i 50 → 1000	27
./A4-mpi-solo -r 50 → 1000	
Appendix III – References / Acknowledgements	28

EXERCISE

Write a parallel MPI program computing the norm of the product of two n×n dense matrices on a p-processor SMP so that:

- p processors are involved in the computations.
- The 1-dimensional parallel algorithm of matrix multiplication is employed:
 - the matrices are identically and equally partitioned in one dimension into p horizontal slices
 - there is one-to-one mapping between the partitions and the processors
 - each processor is responsible for computation of the corresponding slice of the resulting matrix

You can use BLAS or ATLAS for local computations.

Experiment with the program and build:

- The dependence of the execution time of the program on the matrix size n.
- The speedup over a serial counterpart of the program.

Explain the results.

Variants of the assignment:

- 1. Granularity of the program:
 - (a) Two successive steps:
 - i. Parallel matrix multiplication
 - ii. Parallel computation of the norm of the resulting matrix
 - (b) One-step algorithm. No intermediate resulting matrix.
- 2. Partitioning scheme:
 - (a) Left matrix is horizontally partitioned
 - (b) Right matrix is vertically partitioned
- 3. Matrix norm to be computed:
 - (a) The maximum absolute column sum norm (aka one-norm):

$$||A||_1 = \max_{0 \le j < n} \sum_{i=0}^{n-1} |a_{ij}|$$

(b) The maximum absolute row sum norm (aka infinity-norm):

$$||A||_{\infty} = \max_{0 \le i < n} \sum_{j=0}^{n-1} |a_{ij}|$$

OVERVIEW OF COMPUTATIONS OBTAINED AND HOW

Assignment 4 basically involved (for me) writing two programmes,

A4-mpi-manual.c

one which contained the code for manual straight-forward IJK computation and dgemm to calculate matrix |C| and the infinity norm of |C|.

A4-mpi-solo.c

second which contained the code for manual straight-forward IJK computation and MPI to calculate matrix |C| and the infinity norm of |C|.

I then compared the time taken to calculate matrix |C| for each method using [N]x[N] matrices |A| and |B| of different sizes, allocating values for the |A| and |B| using random numbers (1 to 10 inclusive) or the column value + 1 (so that column 1000 would have a value of 1001).

1. manual straight-forward IJK computation

Implementation of a straight forward matrix nxn multiplication.

Present in **A4-mpi-manual.c** and in **A4-mpi-solo.c**

```
for (ni=0 ; ni<rows ; ni++)
{
    for (nj=0 ; nj<cols ; nj++)
    {
        double sum = 0.0 ;
        for (nk=0 ; nk<rows ; nk++)
        {
            sum+= (A[(ni*rows)+nk]) * (B[(nk*rows)+nj]) ;
        }
        C[(ni*rows)+nj] = sum ;
    }
}</pre>
```

2. Dgemm for straight-forward IJK computation

I used dgemm compiled for atlas or for cblas.

The matrix |C| was calculated using cblas by default otherwise the user could decide to re-build and execute using cblas or atlas).

Present in **A4-mpi-manual.c** only

```
int ni, nj;
// m, n, k : local integers indicating the size of the matrices for
// rows x columns :: A : m x k, B : k x n, C: m x n
// Here, m = n = k = rows = columns = <nx> = <ny> as supplied
    int lm = rows, ln = rows;
// la_offset, lb_offset, lc_offset :
// Leading dimension of matrix A, B or C respectively, or the number of elements
// between successive rows for row-major storage or columns for column-major
// storage.
    int la_offset = rows, lb_offset = cols, lc_offset = rows;
    int ALPHA=1.0;
    int BETA=0.0;

cblas_dgemm( CblasRowMajor, CblasNoTrans, CblasNoTrans, lm, ln, ln, ALPHA, \
        A, la_offset, B, lb_offset, BETA, C, lc_offset);
```

3. MPI calculation

This was completed using a data structure, creating a new process to correspond to the each segment.

Present in A4-mpi-solo.c only

```
MPI_Barrier ()

MPI_Bcast ()

MPI_Comm_rank ()

MPI_Comm_size ()

Code MPI_Finalize ()

MPI_Gather ()

MPI_Init ()

MPI_Scatter ()

MPI_Wtime()
```

Note: Please see section for detailed description of code used: <u>Overview of MPI functions used</u>.

Thus results were obtained for each option 1., 2. and 3. using the same source |A| and |B| for both -i (increment) and also using -r (random).

Multiple implementation of each .c program was enabled using ./runAssignment4.sh, for example:

```
$ ./runAssignment4.sh -1 -i -v
```

This runs the c. program using cblas and manual straight-forward IJK for incremental column values, using predefined matrix sizes for each implementation.

Single implementation is completed using

./A4-mpi-manual.c.

\$./A4-mpi-manual-cblas -i 10 file.txt file.dat

This is compiled using gcc for atlas and cblas, as follows:

./A4-mpi-solo.c.

```
$ mpirun -np <number of processors> --hostfile hostfile A4-mpi-solo -i <matrix
size> <matrix file>.txt <summary timing file>.dat
mpirun -np 5 --hostfile hostfile A4-mpi-solo -i 10 10.txt 10.dat
```

This is compiled using *mpicc*, as follows:

```
mpicc -Wall A4-mpi-solo.c -o A4-mpi-solo
```

ASSIGNMENT EXECUTION

The compiled .c program ./A4-mpi-manual-<cblas|atlas> was executed multiple times standalone or using the script ./runAssignment4.sh to obtain as wide a range of time taken to calculate |C| using each algorithm.

This has multiple options and the syntax and usage follows:

```
pdwan@csserver
 File Edit View Search Terminal Help
[pdwan@csserver Assignment4]$ ./runAssignment4.sh
USAGE : ./runAssignment4.sh \
-1|--manual -2|--solo -d1|--atlas -d2|--cblas -r|--random -i|--increment -m|--matrix <n> -v|--values -?|-h|--help
          Calculate |C| = |A| \times |B| and then infinity norm using mpi
TO :
Compile A4-mpi-1D-manual.c : straight-forward IJK and DGEMM computations only Compile A4-mpi-1D-solo.c : straight-forward IJK and MPI computations only, only valid on 'csicluster.ucd.ie' '-1|--manual' and '-2|--solo' are mutually exclusive
WHERE : -1|--manual
-2|--solo
                              Compile .c source files using dgemm atlas
Compile .c source files using dgemm cblas
          -d1|--atlas
-d2|--cblas
                              Initialize |A| & |B| with random numbers and |C| with '0' Initialize |A| & |B| incrementally with <column> value and |C| with '0' '-i|--increment' & '-r|--random' are mutually exclusive
          -r|--random
-i|--increment
                              -vi--values
          -?|-h|--help
[pdwan@csserver Assignment4]$ ■
```

Execute this script in the home directory of Assignment 4.

Sample execution follows for matrixArray range 2:

\$./runAssignment4.sh -1 -d2 -r -v

```
pdwan@csserver
  File Edit View Search Terminal Help
[pdwan@csserver Assignment4]$ ./runAssignment4.sh -1 -d2 -r -v
                                     ./A4-mpi-manual-cblas -r 50
matrices |allA|, |allB| and |allC| ...
|allA| & |allB| ...
<50> x <50> matrix |allC| for Straight-forward IJK manual computation ...
manual Straight-forward IJK calculation ...
Matrix |allC| calculated in [0.001195] seconds and has infinity norm of [1625625.0] ...
|allC| for BLAS/ATLAS computation ...
BLAS/ATLAS computation ...
Matrix |allC| calculated in [0.000275] seconds and has infinity norm of [1625625.0] ...
|Matrix| Time/manual Inf Norm/manual Time/dgemm Inf Norm/dgemm 50 0.001195 1625625.0 0.000275 1625625.0
 # RUNNING :
     INITIALIZE :
     INITIALIZE :
     RESULTS :
# INITIALIZE :
    SUMMARY :
# CLEAN-UP ...
                                     # RUNNING :
    ALLOCATE :
INITIALIZE :
     INITIALIZE :
     INITIALIZE :
# SUMMARY :
# CLEAN-UP ...
                                    ./A4-mpi-manual-cblas -r 50
matrices |allA|, |allB| and |allC| ...
|allA| & |allB| ...
<50> x <50> matrix |allC| for Straight-forward IJK manual computation ...
manual Straight-forward IJK calculation ...
Matrix |allC| calculated in [0.001194] seconds and has infinity norm of [1625625.0] ...
|allC| for BLAS/ATLAS computation ...
BLAS/ATLAS computation ...
Matrix |allC| calculated in [0.000272] seconds and has infinity norm of [1625625.0] ...
|Matrix| Time/manual Inf Norm/manual Time/dgemm Inf Norm/dgemm
50 0.001194 1625625.0 0.000272 1625625.0
    RUNNING :
     ALLOCATE :
    INITIALIZE : INITIALIZE :
     RESULTS :
     INITIALIZE :
     RESULTS :
    SUMMARY :
# CLEAN-UP ..
```

Sample execution follows for matrixArray range 1 for MPI:

\$./runAssignment4.sh -2 -r -v

```
pdwan@csicluster
 File Edit View Search Terminal Help
pdwan@csicluster:~/exercises/Assignment4$ ./runAssignment4.sh -2 -r -v
 # RUNNING :
                               A4-mpi-solo -r 50
# ALLOCATE : |segmentA|, |segmentB|, |segmentC| and |allB| ...
# INITIALIZE : matrices ...
# RUNNING : A4-mpi-solo -r 50
# ALLOCATE : |segmentA|, |segmentB|, |segmentC| and |allB| ...
# INITIALIZE : matrices ...
# RUNNING: A4-mpi-solo -r 50
# ALLOCATE: |segmentA|, |segmentB|, |segmentC| and |allB| ...
# INITIALIZE: matrices ...
# RUNNING : A4-mpi-solo -r 50
# ALLOCATE : |segmentA|, |segmentB|, |segmentC| and |allB| ...
# INITIALIZE : matrices ...
   A4-mpi-solo -r 50
ALLOCATE : |segmentA|, |segmentB|, |segmentC| and |allB| ...
CLEAN-UP ...
CLEAN-UP ...
CLEAN-UP ...
CLEAN-UP ...
CLEAN-UP ...
 # RUNNING :
# CLEAN-UP ...
# CLEAN-UP ...
# RESULTS :
                               MPI computation
                               MPI computation ...

Matrix |allC| calculated in [0.009072] seconds and has infinity norm of [83811.0] ...

|allC| for Straight-forward IJK manual computation ...

Straight-forward IJK computation ...

Matrix |allC| calculated in [0.001097] seconds and has infinity norm of [83811.0] ...

|Matrix| |Processors| Time/mpi Inf Norm/mpi Time/manual Inf Norm/manual
50 5 0.009072 83811.0 0.001097 83811.0
# INITIALIZE :
# RESULTS :
# SUMMARY:
# CLEAN-UP ...
# RUNNING :
# RUNNING : A4-mpi-solo -r 50
# ALLOCATE : |segmentA|, |segmentB|, |segmentC| and |allB| ...
# INITIALIZE : matrices ...
# RUNNING : A4-mpi-solo -r 50
# ALLOCATE : |segmentA|, |segmentB|, |segmentC| and |allB| ...
# INITIALIZE : matrices ...
```

Please retain the overall directory structure when unzipping.

Note that the script ./runAssignment4.sh allows two types of implementation

- Multiple iteration : use the switch <-v|--values>, when a predefined range applies for [N] : matrix size.
- Single iteration: use the switch <-m|--matrix> [N] where the user specifies value for [N]: matrix size.

RUNNING A4-MPI-MANUAL-<ATLAS | CBLAS>: STANDALONE

The compiled .c program may also be run standalone. Usage and sample execution follows:

```
File Edit View Search Terminal Help [pdwan@csserver Assignment4]$ ./A4-mpi-manual-cblas
ERROR: <number of arguments> 1 : is invalid, less than <default> 5
USAGE : contents file>.txt <timing file>.dat
         Calculate |allC| = |allA| \times |allB| manually for MPI comparison and also calculate infinity norm of |allC|.
                    <-r> initialize |allA| & |allB| with _random_ numbers and |allC| with '0'
<-i> initialize |allA| & |allB| _incrementally_ with <column> value and |allC| with '0'
[N] max size of each matrix, if invalid defaults to 1,000
<matrix contents file>.txt
WHERE : 1.
                    [N]
                    name of .txt file to store values of matrices |allA| |allB| & |allC| <timing .dat file> .dat name of .dat file to contain time to complete for each iteration
          4.
          MANUAL : Straight-forward IJK & DGEMM computations only SOLO : Straight-forward IJK & MPI computations only
[pdwan@csserver Assignment4]$ ./A4-mpi-manual-cblas -i 10 f1.txt f1.dat
# RUNNING :
                    ./A4-mpi-manual-cblas -i 10
                  ALLOCATE
  INITIALIZE :
# INITIALIZE
# RESULTS :
  INITIALIZE :
  INITIALIZE :
  RESULTS :
                                                                                Time/dgemm
0.000007 3025.0
# 10
# CLEAN-UP ...
[pdwan@csserver Assignment4]$ ■
                                                            3025.0
                                        0.000013
```

RUNNING A4-MPI-SOLO: STANDALONE

The compiled .c program may also be run standalone. Usage and sample execution follows:

LOG FILES OBTAINED

Data text files suitable containing the values of the computation used for matrices |A| and |B| and the results stored in |C| are saved in the appropriate log files. File naming convention via the script is:

```
<data log file name> Values-<time>-A4-mpi-<iteration>.txt

values-20140715.170928-A4-mpi-0.txt
f1.txt
```

Single iteration also applies where the user enters arbitrary, valid values for matrix size and does not use the scripts and the other required parameters. Each new matrices |A| and |B| and the results in |C| were saved to the data file, thus simple validation using *LibreOffice Calc*.

A summary file containing processing time for each computation (manual & DGEMM and manual & MPI) is also saved. This is in a format suitable for us with GNUplot.

```
<timing log file name> Data-<time>-A4-mpi-1D.dat

Data-20140715.171337-A4-mpi-1D.dat
Data-20140715.172124-A4-mpi-1D.dat
f1.dat
```

I did not save a separate .dat file for each run of the script for each algorithm. Instead each .dat file contains the time taken for each matrix size for the preset range of values. ./runAssignment4.sh may be updated with more if needed but the following are those in use at the moment.

```
# Matrix - range 1
    declare -a NXArray=( 50 50 50 50 50 50 100 100 100 100 100 )
# Matrix size - range 2
    declare -a NXArray=( 50 50 50 100 100 100 500 500 500 1000 1000 1000 )
```

For compilation using the script, a suffix of *-atlas* indicates compilation for atlas and a suffix of *-cblas* indicates that the c program was compiled via cblas. No suffix indicates compilation using mpicc for MPI.

Finally a log file containing a listing of each algorithm used for that iteration.

After each run, all .log, .txt, .dat and .bup files are copied to the directory logDir/.

If either compiled file is used without the script then .dat and .txt files may be named whatever the user wishes and no .log file applies.

I wished to keep each .c program as clean as possible and so all production setup was completed in the script for each assignment. Thus file creation and validation for each iteration was completed before the .c program was even called. Simple validation of the arguments passed to each .c program is also completed if ran standalone.

I also spot-checked the results as practical. Results spot-check are detailed in <u>Appendix I – Validate Results</u>.

GNUPLOT EXECUTION

I followed the same structure for each .dat file as produced, an example follows:

If wished, the .txt file contains the matrices |A| and |B| used to calculate |C| and the type of computation applicable and the time taken to complete. The .dat file is just a summary of the matrix sizes (when the later is applicable) as well as time taken for each type of computation.

The contents of each .dat was then presented in graphical format using GNUplot, comparing times taken for manual and for BLAS/ATLAS computations.

```
# To execute, launch GNUplot and run :
           # gnuplot> load <filename.gp>
           # making sure that the data file name used is updated if needed.
              _____
           # Paula Dwan : Assignment 4
           set xtic auto
           set ytic auto
           set size 1,1
           set grid
Sample
           set key outside
GNUplot
program
           set title 'mpi : Matrix size -v- Time taken'
           set ylabel 'Time taken / seconds'
execution
           set xlabel 'Matrix size'
           set xrange [0:1000]
           set yrange [0:25]
           set xtics (0,100,200,300,400,500,600,700,800,900,1000)
           set ytics (0,5,10,15,20,25)
           set origin 0,0
           set key outside
           plot 'logDir/Data-mpi.dat' u 1:2 t 'manual' w l lw 0.8 lc rgb 'blue',
           'logDir/Data-mpi.dat' u 1:4 t 'dgemm' w l lw 0.8 lc rgb 'red'
           pause -1
```

Thankfully for Linux (Ubuntu) – I could install and run GNUplot locally.

Screen shots of each were taken and added to the section **Summary Results.**

DGEMM COMPUTATION ON CSICLUSTER - WHY NOT?

Basic Linear Algebra Subprograms (BLAS) are a specified set of low-level subroutines that are used in this exercise for matrix multiplication (Level 3 BLAS). Compilation may be completed using ATLAS (Automatically Tuned Linear Algebra Software) or cBLAS.

So in this exercise, we calculate:

```
|C| += |A| \times |B|
```

Attempting to compile for cblas or for atlas on csisluster gave the following error.

Hence, I compiled A4-mpi-manual.c on *csserver* and A4-mpi-solo.c on *csicluster*. I also compiled manual Straight-forward IJK for each to ensure better validation.

OVERVIEW OF MPI FUNCTIONS USED

Message Passing Interface (MPI) supports communication between processors, i.e.: parallel programming. MPI is a standardized implementation, in this case written in C, and easily calculated the segment of the matrix A as sent to that processor for computation.

In this .c program implementing MPI, we have a fixed number of processors [P] using a [N]x[N] sized matrix for |A|, |B|, and |C|. Each processor can communicate via calls to MPI communication primitives. Each will use collective communication which involves a group of processors.

The MPI functions used are (not necessarily in order of use):

Ø MPI Init (&argc, &argv)

When the program starts only one process is in use (the root process), MPI_Init initializes the run time environment creating the child processes.

Syntax:

int MPI_Init(int *argc, char ***argv)

where:

&argc C/C++ only: Pointer to the number of arguments.

Number of arguments in program.

&argv C/C++ only: Argument vector.

Listing of arguments applicable to program.

MPI Comm rank (MPI COMM WORLD, &rank)

Returns the rank of the current process.

Syntax:

int MPI Comm rank(MPI Comm comm, int *rank)

where:

comm Communicator (handle).

MPI_COMM_WORLD Default communicator

communicator of all processes making up the MPI program

rank Rank of the calling process in group of comm (integer).

Returns the rank of all the processes in the group.

MPI_Comm_size (MPI_COMM_WORLD, &size)

Returns the number of processes requested for the the job

Syntax:

&rank

int MPI Comm size(MPI Comm comm, int *size)

where:

comm Communicator (handle).

MPI_COMM_WORLD Default communicator

communicator of all processes making up the MPI program

size Number of processes in the group of comm (integer).

Number of processes in the group

MPI_Bcast (B, nx*ny, MPI_DOUBLE, 0, MPI_COMM_WORLD)

Broadcasts a message from the root process to all other processes in the group.

Svntax:

int MPI Bcast(void *buffer, int count, MPI Datatype datatype, int root, MPI Comm comm) where:

buffer Starting address of buffer (choice). В

Matrix |B|

count Number of entries in buffer (integer). חx*חע

 $[N] \times [N]$ matrix size of $[row] \times [column]$

datatype Data type of buffer (handle). MPI DOUBLE

Data item is an integer: size of matrix [row] x [column]

Rank of broadcast root (integer). root 0

Root process reference

Communicator (handle). comm

MPI COMM WORLD Default communicator

communicator of all processes making up the MPI program

MPI Scatter (A, nx*ny/np, MPI DOUBLE, A + offset, nx*ny/np, MPI DOUBLE, 0, MPI COMM WORLD) Sends data from one task to all tasks in a group.

Syntax:

int MPI Scatter(const void *sendbuf, int sendcount, MPI Datatype sendcount, void *recvbuf, int recvcount, MPI Datatype recvtype, int root, MPI Comm comm)

where:

A + offset

Α	sendbuf	Address of send buffer (choice, significant only at root). matrix $ A \rightarrow full$
ov*ov/oo	sendcount	Number of elements in send buffer (integer, significant only at
nx*ny/np	root).	Size of buffer – so [row] x [column] / [no. of processors]
MDI DOUBLE	sendtype	Datatype of send buffer elements (handle, significant only at root).
MPI_DOUBLE		

→ here, double.

Address of receive buffer (choice). recvbuf matrix $|A| \rightarrow subset$ only

recvcount Number of elements in receive buffer (integer). nx*ny/np

size of buffer – so $[row] \times [column] / [no. of processors]$

Datatype of receive buffer elements (handle). recvtvpe MPI DOUBLE

→ here, double.

Rank of broadcast root (integer). root 0

Root process reference

Communicator (handle). comm

MPI COMM WORLD Default communicator

communicator of all processes making up the MPI program

MPI Finalize ()

Closes the run-time environment. No more MPI calls may be made once this function is executed, not even MPI Init().

Svntax:

int MPI Finalize(void)

Ø MPI_Wtime ()

MPI Wtime returns a floating-point number of seconds, representing elapsed wall-clock time since some time in the past.

Syntax:

double MPI Wtime()

MPI COMM WORLD

MPI Barrier

Blocks until all processes in the communicator have reached this routine.

int MPI Barrier(MPI Comm comm)

where:

comm Communicator (handle). Default communicator

communicator of all processes making up the MPI program

communicator of all processes making up the MPI program

MPI_Gather (C+offset, nx*ny/np, MPI_DOUBLE, C, nx*ny/np, MPI_DOUBLE, 0, MPI_COMM_WORLD) Gather / collect the distributed blocks and return them to the root process.

int MPI Gather(const void *sendbuf, int sendcount, MPI Datatype sendtype, void *recvbuf, int recvcount, MPI Datatype recvtype, int root, MPI Comm comm)

where:

C + offset	sendbuf	Starting address of send buffer (choice). matrix $ C \rightarrow$ subset only
nx*ny/np	sendcount	Number of elements in send buffer (integer). size of buffer – so [row] x [column] / [no. of processors]
MPI_DOUBLE	sendtype	Datatype of send buffer elements (handle). → here, double.
С	recvbuf	Address of receive buffer (choice, significant only at root). matrix $ C \rightarrow full$
nx*ny/np	recvcount Nui	mber of elements for any single receive (integer, significant only at root). As previously, size of buffer – so [row] x [column] / [no.of processors]
MPI_DOUBLE	recvtype r	Datatype of recvbuffer elements (handle, significant only at root). → here, double.
0	root Rai	nk of receiving process (integer).
MPI_COMM_WORLD	comm	Communicator (handle). Default communicator

MATRIX SIZES EVALUATED

When applying the three options I used matrices |A| and |B| of varying sizes from [10x10] to [1000x1000]. The values in each matrix were dependent on the switch

- random from 1 to 10, so each cell regardless of matrix size had a value of 1 to 10 inclusive. This reduced computation time based on large cell values.
- increment based on column index + 1, so all cells in column 1000 had a value of 1001. This could increase computation time of larger matrices as the cell would have comparatively larger values also.

ROW-MAJOR AS APPLIED

For the straight-forward algorithm of $|C|_{[ij]} += |A|_{[ik]} * |B|_{[kj]}$ uses row major as follows (e.g.: [4x4] matrix:

Whereas column-major is as follows:

0	4	8	12
1	5	9	13
2	6	10	14
3	7	11	15

So for this assignment (variant applied) we use:

SUMMARY RESULTS

Build/plot:	 The dependence of the execution time of the program on the matrix size n. The speedup over a serial counterpart of the program.
Variant :	One-step algorithm. No intermediate resulting matrix.
	Left matrix is horizontally partitioned
	• The maximum absolute row sum norm (aka infinity-norm):
	$ A _{\infty} = \max_{0 \le i < n} \sum_{j=0}^{n-1} a_{ij} $
Infinity norm	Sum the absolute values along each row and then take the largest value as the answer.
	Example: A = 1 -7 -2 -3
	then matrix norm of $A = \max(1 + -7 , -2 + -3) = \max(8, 5) = _8$

COMPARISON MPI, OPEN MP & PTHREADS

As this is the fourth assignment in a series using pthreads, open MP and MPI, it is probably worth comparing each at this stage, at a very high level.

OpenMP implementation utilities thread spawning and thread-to-processor allocation. This means less memory usage and direct thread to thread communication. However, threads must be synchronized and joined, thus increasing the time taken to execute the program particularly for larger matrix sizes. Open MP optimizes program performance which runs on a single machine using multiple CPU's.

PThreads is essentially OpenMP on a lower level. It uses #pragmas (basically, code comments) to indicate to the compiler that this is where threading applies.

Message Passing Interface (MPI), basically divides a complex problem into smaller parts which can be solved on individual machines. MPI uses direct inter-process communication via bus messages. Each process (program segment) is standalone and no memory is thus shared.

GNUPLOT GRAPHS - MATRIX SIZES 50 → 1000

\$./runAssignment4.sh -i -v : manual - sample set

	- 1	Matrix	[Processors]	Time / manual	Inf Norm / manual	Time / dgemm	Inf Norm / dgemm
		50		0.001198	1,625,625.0	0.000273	1,625,625.0
		50		0.001207	1,625,625.0	0.000277	1,625,625.0
		50		0.001203	1,625,625.0	0.000279	1,625,625.0
		100		0.009300	25,502,500.0	0.001984	25,502,500.0
		100		0.011436	25,502,500.0	0.002175	25,502,500.0
		100		0.009349	25,502,500.0	0.001974	25,502,500.0
ata		500		3.036239	15,687,562,500.0	0.649100	15,687,562,500.
		500		3.046358	15,687,562,500.0	0.648188	15,687,562,500.0
		500		3.079162	15,687,562,500.0	0.646728	15,687,562,500.0
		500		3.144015	15,687,562,500.0	0.649152	15,687,562,500.0
		1000		20.152267	250,500,250,000.0	5.141762	250,500,250,000.0
		1000		19.991013	250,500,250,000.0	5.130485	250,500,250,000.0
		1000		19.986013	250,500,250,000.0	5.131284	250,500,250,000.0
		1000		20.326687	250,500,250,000.0	5.139508	250,500,250,000.0
		25					manual ——— dgemm ———
	s/	20					
raph	Time taken / s	10					
	Ξ						
		5					

	Matrix	[Processors]	Time / mpi	Inf Norm / mpi	Time / manual	Inf Norm / manual
		50 5	0.009033	75,625.0	0.001095	75,625.0
		50 5	0.008928	75,625.0	0.001123	75,625.0
	!	50 5	0.008975	75,625.0	0.001087	75,625.0
	10	00 5	0.038091	1,102,500.0	0.008466	1,102,500.0
	10	00 5	0.038131	1,102,500.0	0.008528	1,102,500.0
	10	00 5	0.038197	1,102,500.0	0.008449	1,102,500.0
Data	50	00 5	1.358874	637,562,500.0	2.393659	637,562,500.0
	50	00 5	1.367390	637,562,500.0	2.380557	637,562,500.0
	50	00 5	1.362464	637,562,500.0	2.319429	637,562,500.0
	50	00 5	1.358222	637,562,500.0	2.378163	637,562,500.0
	10	00 5	7.291051	10,100,250,000.0	17.179521	10,100,250,000.0
	10	00 5	7.340551	10,100,250,000.0	17.143703	10,100,250,000.0
	10	00 5	7.283727	10,100,250,000.0	17.212086	10,100,250,000.0
	10	00 5	7.353827	10,100,250,000.0	17.172394	10,100,250,000.0
	20 15	Com	panson : Maun	x Size v time taker		mpi —— manual ——
Graph	Time taken / s	100 200 3	300 400 50	00 600 700	800 900 1	.000
	_		Matri			

GNUPLOT GRAPHS - MATRIX SIZES 50 → 1000

\$./runAssignment4.sh -r -v : manual - sample set

	Matrix	Processors	Time/manual	Inf Norm / manual	Time / dgemm	Inf Norm / dgemm
		50	0.001202	89,502.0	0.000280	89,502.0
		50	0.001196	89,502.0	0.000276	89,502.0
		50	0.001191	89,502.0	0.000278	89,502.0
		100	0.009326	353,266.0	0.001976	353,266.0
		100	0.009313	353,266.0	0.001984	353,266.0
		100	0.009330	353,266.0	0.001985	353,266.0
Data		500	3.039778	8,117,937.0	0.660509	8,117,937.0
		500	3.030908	8,117,937.0	0.644442	8,117,937.0
		500	3.052243	8,117,937.0	0.645495	8,117,937.0
		500	3.028897	8,117,937.0	0.649714	8,117,937.0
	1	1000	21.223333	31,896,067.0	5.537096	31,896,067.0
	1	1000	20.835579	31,896,067.0	5.389093	31,896,067.0
	1	1000	20.613177	31,896,067.0	5.260293	31,896,067.0
	1	1000	20.402660	31,896,067.0	5.315662	31,896,067.0
Graph	Time taken / s - 25 - 20 - 15 10 10 10 10 10 10 - 10	Co	omparison : Matr	ix Size v time taker	1	manual ————————————————————————————————————
	5 - 0 - 0	100 200		500 600 700 ix size	800 900 1	1000

		Matrix	Processo	rsl '	Time / mpi	Inf Norm / m	ni .	Time / ma	nual	Inf Norm / manual
		IMACIIXI	50	5	0.009035		811.0		1208	83,811.0
			50	5	0.008932		811.0		1103	83,811.0
			50	5	0.008888		811.0		01088	83,811.0
			100	5	0.037540		563.0	0.00	08523	338,563.0
			100	5	0.037636	338,	563.0	0.00	8522	338,563.0
			100	5	0.037552	338,	563.0	0.00	8451	338,563.0
Data			500	5	1.350460	8,078,	358.0	2.39	95111	8,078,358.0
			500	5	1.328560	8,078,	358.0	2.39	7888	8,078,358.0
		!	500	5	1.359001	8,078,	358.0	2.39	1396	8,078,358.0
		!	500	5	1.323249	8,078,	358.0	2.39	94876	8,078,358.0
		10	000	5	7.143116	31,600,	720.0	17.15	6587	31,600,720.0
		10	000	5	7.045932	31,600,	720.0	17.11	6244	31,600,720.0
		10	000	5	7.149100	31,600,	720.0	17.17	77210	31,600,720.0
		10	000	5	7.089481	31,600,	720.0	17.19	1204	31,600,720.0
		20				x Size v time t				mpi —— manual ———
Graph	Time taken / s	5					/			- - -
		0 0	100 200	300		00 600 70 x size	00	800 90	00 1	.000

GNUPLOT GRAPHS - MATRIX SIZES 50 → 100

\$./runAssignment4.sh -r -v : manual - sample set

	Matrix	[Processors]	Time / manual	Inf Norm / manual	Time / dgemm	Inf Norm / dgemm
	50		0.001339	1,625,625.0	0.000280	1,625,625.0
	50		0.001196	1,625,625.0	0.000549	1,625,625.0
	50		0.001221	1,625,625.0	0.000327	1,625,625.0
	50		0.001198	1,625,625.0	0.000275	1,625,625.0
	50		0.001192	1,625,625.0	0.000275	1,625,625.0
Data	50		0.001198	1,625,625.0	0.000273	1,625,625.0
	100		0.009352	25,502,500.0	0.001989	25,502,500.0
	100		0.010935	25,502,500.0	0.002078	25,502,500.0
	100		0.009532	25,502,500.0	0.002036	25,502,500.0
	100		0.009452	25,502,500.0	0.003692	25,502,500.0
	100		0.009453	25,502,500.0	0.002046	25,502,500.0
	100		0.009330	25,502,500.0	0.002878	25,502,500.0
	0.01					manual ————————————————————————————————————
						_
Graph	11me taken / s 0.000 – v 0.004 – v					_
	0.002					_
	0	10 20	30 40	50 60 70 trix size	80 90	100

	Į.	/atrix	Processors	Time / mpi	Inf Norm / mpi	Time / manual	Inf Norm / manual
		50	5	0.008958	75,625.0	0.001088	75,625.0
		50	5	0.008924	75,625.0	0.001087	75,625.0
		50	5	0.008960	75,625.0	0.001089	75,625.0
		50	5	0.008933	75,625.0	0.001089	75,625.0
		50	5	0.008925	75,625.0	0.001088	75,625.0
Data		50	5	0.008914	75,625.0	0.001088	75,625.0
		100	5	0.038111	1,102,500.0	0.008443	1,102,500.0
		100	5	0.038198	1,102,500.0	0.008453	1,102,500.0
		100	5	0.038174	1,102,500.0	0.008453	1,102,500.0
		100	5	0.038084	1,102,500.0	0.008454	1,102,500.0
		100	5	0.038198	1,102,500.0	0.008459	1,102,500.0
		100	5	0.038247	1,102,500.0	0.008617	1,102,500.0
Graph	Time taken / s	0.05					MPI manual
	Tim	0.02	10 20	30 40	50 60 70	80 90	100
				Matı	rix size		

CONCLUSIONS

Manual straight-forward IJK computation seems to be consistent in time taken for one or multiple processors with a slight increase when using multiple processors. However this could be perceived to be due to the fact that the cell values were not fully incremental (e.g.: matrix column ha1000 having value if 1001, but instead based on the segment value also \rightarrow [N] / [P]). This reduced the cell value somewhat but the time taken overall was consistent averaging about 18 to 19 seconds for multiple processors (A4-mpi-solo.c) and 20 to 22 seconds for single processors (A4-mpi-manual.c). Dgemm (cblas only) was computed on single processor only in order to complete the results obtained for large and smaller matrix sizes with the time taken for straight-forward IJK computations. It seemed to remain reasonably consistent for smaller matrices of time taken for dgemm: manual of 1:5 and larger matrices of 1:4.

For matrices of [100] x [100], MPI was slower than a manual straight-forward IJK computation. However, not surprisingly for large matrices of [1000] x [1000], MPI was usually quicker to compute results by a ratio of MPI: manual of 1: 2.5. This was the case for both random and incremental cell value initialization for |A| and |B|.

I was restricted to a maximum of five processor on csicluster (csicluster02 still appears to be inoperable). It would be interesting to calculate the results for the large matrices using more processors and confirm if the trend continues, whereby computation time is reduced over that on a single processor: csserver. Or if the amalgamation of the results over a larger number of processors for a similarly large matrix would negate the speed of computing the individual segments.

APPENDICES

APPENDIX I - VALIDATE RESULTS

Spot check only using 10x10 matrices, initializing matrices |A| and |B| using successive column values.

A4-mpi-manual-cblas

Executed using:

```
pdwan@csserver

File Edit View Search Terminal Help

[pdwan@csserver Assignment4]$ ./A4-mpi-manual-cblas -i 10 file.txt file.dat

# RUNNING: ./A4-mpi-manual-cblas -i 10
# ALLOCATE: matrices | allA|, | allB| and | allC| ...
# INITIALIZE: | allA| & | allB| ...
# INITIALIZE: | allA| & | allB| ...
# INITIALIZE: | allA| A/ATLAS computation ...
# RESULTS: manual Straight-forward IJK calculation ...
# Matrix | allC| calculated in [0.000013] seconds and has infinity norm of [3025.0] ...
# RESULTS: BLAS/ATLAS computation ...
# RESULTS: BLAS/ATLAS computation ...
# Watrix | allC| calculated in [0.00007] seconds and has infinity norm of [3025.0] ...
# Matrix | allC| calculated in [0.00007] seconds and has infinity norm of [3025.0] ...
# CLEAN-UP ...
[pdwan@csserver Assignment4]$
```



```
# Computed Matrix [10] x [10] | allC| ...

| Computed Matrix [10] x [10] | allC| ...
| Solution | 10 | 165 | 220 | 275 | 330 | 385 | 440 | 495 | 550 | 550 | 555 | 110 | 165 | 220 | 275 | 330 | 385 | 440 | 495 | 550 | 555 | 110 | 165 | 220 | 275 | 330 | 385 | 440 | 495 | 550 | 655 | 110 | 165 | 220 | 275 | 330 | 385 | 440 | 495 | 550 | 655 | 110 | 165 | 220 | 275 | 330 | 385 | 440 | 495 | 550 | 655 | 110 | 165 | 220 | 275 | 330 | 385 | 440 | 495 | 550 | 655 | 110 | 165 | 220 | 275 | 330 | 385 | 440 | 495 | 550 | 655 | 110 | 165 | 220 | 275 | 330 | 385 | 440 | 495 | 550 | 655 | 110 | 165 | 220 | 275 | 330 | 385 | 440 | 495 | 550 | 655 | 110 | 165 | 220 | 275 | 330 | 385 | 440 | 495 | 550 | 655 | 110 | 165 | 220 | 275 | 330 | 385 | 440 | 495 | 550 | 655 | 110 | 165 | 220 | 275 | 330 | 385 | 440 | 495 | 550 | 655 | 110 | 165 | 220 | 275 | 330 | 385 | 440 | 495 | 550 | 655 | 110 | 165 | 220 | 275 | 330 | 385 | 440 | 495 | 550 | 655 | 110 | 165 | 220 | 275 | 330 | 385 | 440 | 495 | 550 | 655 | 110 | 165 | 220 | 275 | 330 | 385 | 440 | 495 | 550 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 | 650 |
```

Resulting sample summary timing data file contains:

Validating results for manual computation gives:

•																				MAN	IUAL										CBLA	S									
Sourc	e ma	rix ir	nitiali	zed to	o valu	ie of r	ow f	or ead	ch co	lumn	Program -	calcula	ate re	sults	using	dot	produc	t		Prog	gram -	- calc	ulate	resul	ts usi	ng fo	r loo	ps			Progr	am –	calcu	ılate ı	esult	s usi	ng cl	as			
Α	0	1	2	3	4	5	6	7	8	9		1 :							9	Cijk	0	1	2	3	4	5	6	7	8	9	C_{ijk}	0	1	2	3	4	5	6	7	8	9
0	1	2	3	4	5	6	7	8	9	10	0 55	110 1	165 2	220: 2	275: 33	30: 38	B5 44	0: 495	5: 550	0									495		0									495	
1	1	2	3	4	5	6	7	8	9	10	1 55	110 1	165 2	220: 2	275 33	30: 38	B5 44	0 495	5 550	1	55	110	165	220	275	330	385	440	495	550	1	55	110	165	220	275	330	385	440	495	550
2	1	2	3	4	5	6	7	8	9	10	2 55	110 1	165 2	220: 2	275: 33	30: 38	85 44	0: 495	5 550	2	55	110	165	220	275	330	385	440	495	550	2	55	110	165	220	275	330	385	440	495	550
3	1	2	3	4	5	6	7	8	9	10		110: 1	165 2	220: 2	275: 33	30: 38	B5 44	0: 495	5: 550	3	55	110	165	220	275	330	385	440	495	550	3	55	110	165	220	275	330	385	440	495	550
4	1	2	3	4	5	6	7	8	9	10		110: 1	165 2	220: 2	275: 33	30: 38	B5 44	0: 495	5 550	4	55	110	165	220	275	330	385	440	495	550	4	55	110	165	220	275	330	385	440	495	550
5	1	2	3	4	5	6	7	8	9	10	5 55	110 1	165 2	220: 2	275: 33	30: 38	85 44	0: 495	5 550	5	55	110	165	220	275	330	385	440	495	550	5	55	110	165	220	275	330	385	440	495	550
6	1	2	3	4	5	6	7	8	9	10	6 55	110 1	165 2	220: 2	275 33	30: 38	B5 44	0 495	5 550	6	55	110	165	220	275	330	385	440	495	550	6	55	110	165	220	275	330	385	440	495	550
7	1	2	3	4	5	6	7	8	9	10		110: 1	165 2	220: 2	275: 33	30: 38	85 44	0: 495	5 550	7	55	110	165	220	275	330	385	440	495	550	7	55	110	165	220	275	330	385	440	495	550
8	1	2	3	4	5	6	7	8	9	10		110 1	165 2	220 2	275 33	30: 38	B5 44	9 49	5 550	8	55	110	165	220	275	330	385	440	495	550	8	55	110	165	220	275	330	385	440	495	550
9	1	2	3	4	5	6	7	8	9	10					275: 33					9					275						9								440		
						_	_	_		10	3 : 00	110				, o	00 44	0 400	9: 000		"					:				000	•	00	110	100		2.0					300
													-:-			-	· ·	-	5 000										100						:						330
Sourc		rix ir	nitiali			ie of r	ow f	or ead	ch co		Infini	ty Norn	n : <u>m</u> a	ax of	!total	-	· ·	-	5. 550		gram -		erenc	fron			ıct				Progr	am –		rence	from	dot-	prod				330
В	e ma	1	nitiali 2	zed to	o valu	ie of r	ow fo	7	8	9	Infini MAN	ty Norm	n : <u>m</u> a	ax of	!total	-	· ·	-	5 550	Prog			erenci 2	fron 3		prodi 5	ıct 6	7	8	9	Cijk	am – 0		rence	from		prod		7	8	9
Source B 0		1 2	nitiali 2 3				6 7	7 8	8	9 10	Infini MAN	ty Norm	n : <u>m</u> a	ax of CBLA	!total (-	· ·	-	5: 300	Prog	gram -	- diffe	erenc 2	fron 3	4 0	5	6	7 0	8	9	Cijk 0	am – 0 ###	diffe	rence 2	from 3	4 0	prod 5	uct 6	7	8	9
В		1	nitiali 2 3 3				6 7 7	7	8	9 10 10	Infini MAN	ty Nom UAL 3,025 3,025	n : <u>m</u> a	ax of CBLA 2,9	!total (S) 970	-	· ·	-	5: 330	Prog	0 0	- diffe	2 0	3 0	4 0	5 0 0	6 0 0	7 0 0	8 0	9 0	C ijk 0	am – 0 ### 0	diffe 1 0	rence 2 0	3 0	4 0 0	5 0	uct 6 0	7 0	8	9 0
0 1 2		1	anitiali 2 3 3 3				7 7 7	7	8 9 9	9 10 10 10	Infini MAN	ty Nom UAL 3,025 3,025 3,025	n : <u>m</u> a	ax of CBLA 2,9 3,0	!total (8 970 025	-	· ·	-); 330	Prog	0 0 0 0	- diffe	2 0 0	3 0 0	4 0 0	5 0 0	6 0 0	7 0 0	8 0 0	9 0	Cijk 0 1 2	am – 0 ### 0	0 0 0	0 0	from 3 0 0	0 0 0	prod 5 0 0	uct 6 0	7 0 0	8 0 0	9 0 0
В		1	3 3 3 3				7 7 7	7	9 9 9	9 10 10 10	Infini MAN	ty Nom UAL 3,025 3,025 3,025 3,025	n : <u>m</u> a	2,5 3,0 3,0	!total e	-	· ·	-	5 330	Prog Cijk 0 1 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- diffe	2 0 0	3 0 0	4 0 0 0	5 0 0 0	6 0 0 0	7 0 0	8 0 0	9 0 0	Cijk 0 1 2	am – 0 ### 0 0	0 0 0 0	0 0 0	3 0 0	0 0 0	5 0 0	uct 6 0 0	7 0 0	8 0 0	9 0 0
0 1 2		1	3 3 3 3 3				7 7 7 7	7	8 9 9	9 10 10 10 10	Infini MAN	Nome No	n : <u>m</u> a	ax of CBLA 2,9 3,0 3,0 3,0	total S 970 025 025 025	-	· ·	-	5. 550	Prog Cijik 0 1 2 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- diffe	0 0 0	0 0 0 0	4 0 0 0	5 0 0 0	6 0 0 0	7 0 0 0	8 0 0 0	0 0 0	Cijk 0 1 2 3	am - 0 ### 0 0 0	0 0 0 0 0	0 0 0 0	from 3 0 0 0 0 0 0 0 0	0 0 0 0	5 0 0 0	0 0 0 0 0	7 0 0 0	8 0 0	9 0 0
B 0 1 2 3 4 5		1	3 3 3 3 3 3				7 7 7 7 7	7	9 9 9 9	9 10 10 10 10 10	Infini MAN	ty Nom UAL 3,025 3,025 3,025 3,025 3,025 3,025	n : <u>m</u> a	ax of CBLA 2,9 3,0 3,0 3,0 3,0 3,0	!total 0 970 025 025 025 025	-	· ·	-	5: 330	Prog C## 0 1 2 3 4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- diffe	0 0 0 0	3 0 0 0 0	4 0 0 0 0 0	5 0 0 0 0	6 0 0 0 0	7 0 0 0 0	8 0 0 0 0	9 0 0 0 0 0 0 0 0	Cijk 0 1 2 3 4 5	am - 0 ### 0 0 0	0 0 0 0 0	0 0 0 0 0	from 3 0 0 0 0	0 0 0 0 0	5 0 0 0 0	0 0 0 0 0	7 0 0 0 0	8 0 0 0 0	9 0 0 0
0 1 2		1	3 3 3 3 3 3 3 3				7 7 7 7 7 7 7	7	9 9 9	9 10 10 10 10 10 10	Infini MAN	ty Nom UAL 3,025 3,025 3,025 3,025 3,025 3,025 3,025	n : <u>m</u> a	ax of CBLA 2,9 3,0 3,0 3,0 3,0 3,0 3,0	1total (8) 970 925 925 925 925 925	-	· ·	-	5: 330	Prog Cijii 0 1 2 3 4 5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- diffe	0 0 0 0 0	3 0 0 0 0	4 0 0 0 0 0	5 0 0 0 0	6 0 0 0 0	7 0 0 0 0 0	8 0 0 0 0 0	0 0 0 0 0 0 0 0	Cijk 0 1 2 3 4 5	0 ### 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	5 0 0 0 0	0 0 0 0 0	7 0 0 0 0	8 0 0 0 0	9 0 0 0
B 0 1 2 3 4 5		1	3 3 3 3 3 3 3 3				7 7 7 7 7 7 7 7	7	9 9 9 9	9 10 10 10 10 10	Infini MAN	ty Nom UAL 8,025 8,025 8,025 8,025 8,025 8,025 8,025 8,025	n : <u>m</u> a	ax of CBLA 2,5 3,0 3,0 3,0 3,0 3,0 3,0 3,0	Itotal 0 1 1 1 1 1 1 1 1 1	-	· ·	-	5: 550	Prog C## 0 1 2 3 4 5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- diffe	0 0 0 0 0	3 0 0 0 0 0	4 0 0 0 0 0	5 0 0 0 0 0	6 0 0 0 0	7 0 0 0 0 0	8 0 0 0 0	9 0 0 0 0	Cijk 0 1 2 3 4 5 6 7	am - 0 ### 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	5 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 0 0 0 0 0	8 0 0 0 0	9 0 0 0 0
B 0 1 2 3 4 5		1	3 3 3 3 3 3 3 3 3				7 7 7 7 7 7 7 7 7 7 7	7	9 9 9 9 9	9 10 10 10 10 10 10 10	Infini MAN	ty Nom UAL 3,025 3,025 3,025 3,025 3,025 3,025 3,025	n : <u>m</u> a	ax of CBLA 2,5 3,0 3,0 3,0 3,0 3,0 3,0 3,0	1total (8) 970 925 925 925 925 925	-	· ·	-	5: 330	Prog Cijk 0 1 2 3 4 5 6 7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- diffe	0 0 0 0 0 0	3 03 00 00 00 00 00 00 00	4 0 0 0 0 0 0	0 0 0 0 0 0	6 0 0 0 0 0	7 0 0 0 0 0 0	8 0 0 0 0	9 0 0 0	Cijk 0 1 2 3 4 5 6 7	0 #### 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	diffe 1 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	5 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 0 0 0 0 0 0	8 0 0 0 0	9 0 0 0 0 0
B 0 1 2 3 4 5		1	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3				7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7	9 9 9 9 9 9	9 10 10 10 10 10 10 10	Infini MAN	ty Nom UAL 8,025 8,025 8,025 8,025 8,025 8,025 8,025 8,025	n : <u>m</u> a	ax of CBLA 2,5 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0 3,0	Itotal 0 1 1 1 1 1 1 1 1 1	-	· ·	-	5: 330	Prog Cijk 0 1 2 3 4 5 6 7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- diffe	0 0 0 0 0 0	3 0 0 0 0 0 0 0 0 0 0	4 0 0 0 0 0 0	5 0 0 0 0 0 0	6 0 0 0 0 0	7 0 0 0 0 0	8 0 0 0 0 0	9 0 0 0	Cijk 0 1 2 3 4 5 6 7	0 #### 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	diffe 1 0: 0: 0: 0: 0: 0: 0:	0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 dot- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	7 0 0 0 0 0 0	8 0 0 0 0 0	9 0 0 0 0 0

A4-mpi-solo

Executed using:

Resulting matrix file contains:

```
File Edit View Search Terminal Help
                                                                              \ensuremath{\mathsf{A4}}\xspace -mpi-solo .dat contains timing data \& .txt contains matrix values
      Summary of values added to each matrix - retained for later reference and validation
                                                                            A4-mpi-solo -i 10 |segmentA|, |segmentC| and |allB| ... matrices ... <2> x <10> matrix |segmentA| using incremental <segment column> value + 1...
         RUNNING :
ALLOCATE :
INITIALIZE :
                                                                                <2> x <10> matrix |segmentB| using incremental <segment column> value + 1 \dots
"10.txt" 293L, 9199C
    File Edit View Search Terminal Help

WALIDATE: <10> x <10> matrix |allB| contents
# VALIDATE :
                                                                              | Computation | 
# ALLOCATE :
# RESULTS :
                                                                                                                                                                                                                                                                                                                                                                      30
30
30
30
30
30
30
30
                                                                                Matrix |allC| calculated in [0.001315] seconds and has infinity norm of [225.0]
```

Resulting sample summary timing data file contains:

Validating results for mpi computation gives:

APPENDIX II - SUMMARY OF RESULTS OBTAINED

./A4-mpi-manual-cblas -r 50 → 100

Using	Matrix	Time / manual	Inf Norm / manual	Time / dgemm	Inf Norm / dgemm
/A4-mpi-manual-cblas-r	50	0.001191	89,502.0		89,502.0
./A4-mpi-manual-cblas-r	50	0.001198	89,502.0		89,502.0
./A4-mpi-manual-cblas-r	50	0.002133	89,502.0		89,502.0
/A4-mpi-manual-cblas-r	50	0.001196	89,502.0		89,502.0
/A4-mpi-manual-cblas-r	50	0.001186	89,502.0		89,502.0
./A4-mpi-manual-cblas-r	50	0.001208	89,502.0		89,502.0
./A4-mpi-manual-cblas-r	100	0.009325	353,266.0		353,266.0
/A4-mpi-manual-cblas-r	100	0.009433	353,266.0		353,266.0
/A4-mpi-manual-cblas-r	100	0.009892	353,266.0		353,266.0
/A4-mpi-manual-cblas-r	100	0.009310	353,266.0		353,266.0
/A4-mpi-manual-cblas-r	100	0.009311	353,266.0		353,266.0
/A4-mpi-manual-cblas-r	100	0.009313	353,266.0	0.002515	353,266.0
./A4-mpi-manual-cblas-r	50	0.001187	89,502.0	0.000280	89,502.0
/A4-mpi-manual-cblas-r	50	0.001201	89,502.0	0.000281	89,502.0
/A4-mpi-manual-cblas-r	50	0.001240	89,502.0	0.000280	89,502.0
/A4-mpi-manual-cblas-r	50	0.001190	89,502.0	0.000279	89,502.0
./A4-mpi-manual-cblas-r	50	0.001583	89,502.0	0.000276	89,502.0
./A4-mpi-manual-cblas-r	50	0.001195	89,502.0	0.000277	89,502.0
/A4-mpi-manual-cblas-r	100	0.009364	353,266.0	0.001984	353,266.0
/A4-mpi-manual-cblas-r	100	0.009343	353,266.0	0.001987	353,266.0
/A4-mpi-manual-cblas-r	100	0.009307	353,266.0	0.001966	353,266.0
/A4-mpi-manual-cblas-r	100	0.009316	353,266.0	0.001985	353,266.0
/A4-mpi-manual-cblas-r	100	0.009366	353,266.0	0.001989	353,266.0
./A4-mpi-manual-cblas-r	100	0.009341	353,266.0	0.002004	353,266.0

Using	Matrix	Time / manual	Inf Norm / manual	Time / dgemm	Inf Norm / dgemm
./A4-mpi-manual-cblas-i	50	0.001189	1,625,625.0	0.000286	1,625,625.0
,/A4-mpi-manual-cblas-i	50	0.001218	1,625,625.0	0.000287	1,625,625.0
,/A4-mpi-manual-cblas-i	50	0.001195	1,625,625.0	0.000278	1,625,625.0
,/A4-mpi-manual-cblas-i	50	0.001286	1,625,625.0		1,625,625.0
,/A4-mpi-manual-cblas-i	50	0.001201	1,625,625.0		1,625,625.0
,/A4-mpi-manual-cblas-i	50	0.001263	1,625,625.0	0.000282	1,625,625.0
./A4-mpi-manual-cblas-i	100	0.009347	25,502,500.0		25,502,500.0
./A4-mpi-manual-cblas-i	100	0.012126	25,502,500.0		25,502,500.0
./A4-mpi-manual-cblas-i	100	0.010703	25,502,500.0		25,502,500.0
./A4-mpi-manual-cblas-i	100	0.010268	25,502,500.0		25,502,500.0
./A4-mpi-manual-cblas-i	100	0.009789	25,502,500.0		25,502,500.0
/A4-mpi-manual-cblas-i	100	0.010275	25,502,500.0	0.002292	25,502,500.0
./A4-mpi-manual-cblas-i	50	0.001339	1,625,625.0	0.000280	1,625,625.0
./A4-mpi-manual-cblas-i	50	0.001196	1,625,625.0	0.000549	1,625,625.0
,/A4-mpi-manual-cblas-i	50	0.001221	1,625,625.0	0.000327	1,625,625.0
./A4-mpi-manual-cblas-i	50	0.001198	1,625,625.0	0.000275	1,625,625.0
./A4-mpi-manual-cblas-i	50	0.001192	1,625,625.0	0.000275	1,625,625.0
,/A4-mpi-manual-cblas-i	50	0.001198	1,625,625.0	0.000273	1,625,625.0
,/A4-mpi-manual-cblas-i	100	0.009352	25,502,500.0	0.001989	25,502,500.0
./A4-mpi-manual-cblas-i	100	0.010935	25,502,500.0	0.002078	25,502,500.0
./A4-mpi-manual-cblas-i	100	0.009532	25,502,500.0	0.002036	25,502,500.0
./A4-mpi-manual-cblas-i	100	0.009452	25,502,500.0	0.003692	25,502,500.0
./A4-mpi-manual-cblas-i	100	0.009453	25,502,500.0	0.002046	25,502,500.0
./A4-mpi-manual-cblas-i	100	0.009330	25,502,500.0	0.002878	25,502,500.0

./A4-mpi-manual-cblas -r 50 → 1000

Using	Matrix	Time / manual	Inf Norm / manual	Time / dgemm	Inf Norm / dgemm
./A4-mpi-manual-cblas-r	50	0.001199	89,502.0	0.000278	89,502.0
./A4-mpi-manual-cblas-r	50	0.001195	89,502.0		89,502.0
./A4-mpi-manual-cblas-r	50	0.001199	89,502.0		89,502.0
/A4-mpi-manual-cblas-r	100	0.009332	353,266.0		353,266.0
./A4-mpi-manual-cblas-r	100	0.009302	353,266.0		353,266.0
/A4-mpi-manual-cblas-r	100	0.009300	353,266.0		353,266.0
/A4-mpi-manual-cblas-r	500	3.138155	8,117,937.0		8,117,937.0
/A4-mpi-manual-cblas-r	500	3.045648	8,117,937.0		8,117,937.0
/A4-mpi-manual-cblas-r	500	3.071243	8,117,937.0		8,117,937.0
/A4-mpi-manual-cblas-r	500	3.048155	8,117,937.0		8,117,937.0
/A4-mpi-manual-cblas-r	1000	20.729409	31,896,067.0		31,896,067.0
/A4-mpi-manual-cblas-r	1000	20.675408	31,896,067.0		31,896,067.0
/A4-mpi-manual-cblas-r	1000	20.361931	31,896,067.0		31,896,067.0
,/A4-mpi-manual-cblas-r	1000	20.082578	31,896,067.0	5.180091	31,896,067.0
/A4-mpi-manual-cblas-r	50	0.001202	89,502.0	0.000280	89,502.0
./A4-mpi-manual-cblas-r	50	0.001196	89,502.0	0.000276	89,502.0
./A4-mpi-manual-cblas-r	50	0.001191	89,502.0	0.000278	89,502.0
./A4-mpi-manual-cblas-r	100	0.009326	353,266.0	0.001976	353,266.0
./A4-mpi-manual-cblas-r	100	0.009313	353,266.0	0.001984	353,266.0
./A4-mpi-manual-cblas-r	100	0.009330	353,266.0	0.001985	353,266.0
./A4-mpi-manual-cblas-r	500	3.039778	8,117,937.0	0.660509	8,117,937.0
./A4-mpi-manual-cblas-r	500	3.030908	8,117,937.0	0.644442	8,117,937.0
./A4-mpi-manual-cblas-r	500	3.052243	8,117,937.0	0.645495	8,117,937.0
./A4-mpi-manual-cblas-r	500	3.028897	8,117,937.0		8,117,937.0
./A4-mpi-manual-cblas-r	1000	21.223333	31,896,067.0		31,896,067.0
./A4-mpi-manual-cblas-r	1000	20.835579	31,896,067.0		31,896,067.0
/A4-mpi-manual-cblas-r	1000	20.613177	31,896,067.0		31,896,067.0
./A4-mpi-manual-cblas-r	1000	20.402660	31,896,067.0	5.315662	31,896,067.0

Using	Matrix	Time / manual	Inf Norm / manual	Time / dgemm	Inf Norm / dgemm
./A4-mpi-manual-cblas-i	50	0.001198	1,625,625.0	0.000273	1,625,625.0
./A4-mpi-manual-cblas-i	50	0.001207	1,625,625.0	0.000277	1,625,625.0
./A4-mpi-manual-cblas-i	50	0.001203	1,625,625.0	0.000279	1,625,625.0
./A4-mpi-manual-cblas-i	100	0.009300	25,502,500.0	0.001984	25,502,500.0
./A4-mpi-manual-cblas-i	100	0.011436	25,502,500.0		25,502,500.0
./A4-mpi-manual-cblas-i	100	0.009349	25,502,500.0		25,502,500.0
./A4-mpi-manual-cblas-i	500	3.036239	15,687,562,500.0		15,687,562,500.0
/A4-mpi-manual-cblas-i	500	3.046358	15,687,562,500.0		15,687,562,500.0
./A4-mpi-manual-cblas-i	500	3.079162	15,687,562,500.0		15,687,562,500.0
/A4-mpi-manual-cblas-i	500	3.144015	15,687,562,500.0		15,687,562,500.0
/A4-mpi-manual-cblas-i	1000	20.152267	250,500,250,000.0		250,500,250,000.0
/A4-mpi-manual-cblas-i	1000	19.991013	250,500,250,000.0		250,500,250,000.0
./A4-mpi-manual-cblas-i	1000	19.986013	250,500,250,000.0		250,500,250,000.0
,/A4-mpi-manual-cblas-i	1000	20.326687	250,500,250,000.0	5.139508	250,500,250,000.0
./A4-mpi-manual-cblas-i	50	0.001201	1,625,625.0	0.000279	1,625,625.0
./A4-mpi-manual-cblas-i	50	0.001210	1,625,625.0	0.000283	1,625,625.0
./A4-mpi-manual-cblas-i	50	0.001365	1,625,625.0	0.000385	1,625,625.0
./A4-mpi-manual-cblas-i	100	0.009341	25,502,500.0		25,502,500.0
./A4-mpi-manual-cblas-i	100	0.009300	25,502,500.0	0.001986	25,502,500.0
./A4-mpi-manual-cblas-i	100	0.009390	25,502,500.0	0.002001	25,502,500.0
./A4-mpi-manual-cblas-i	500	3.195391	15,687,562,500.0		15,687,562,500.0
/A4-mpi-manual-cblas-i	500	3.117510	15,687,562,500.0		15,687,562,500.0
./A4-mpi-manual-cblas-i	500	3.156754	15,687,562,500.0		15,687,562,500.0
/A4-mpi-manual-cblas-i	500	3.033477	15,687,562,500.0		15,687,562,500.0
./A4-mpi-manual-cblas-i	1000	19.872238	250,500,250,000.0		250,500,250,000.0
/A4-mpi-manual-cblas-i	1000	20.226634	250,500,250,000.0		250,500,250,000.0
./A4-mpi-manual-cblas-i	1000	20.099041	250,500,250,000.0		250,500,250,000.0
./A4-mpi-manual-cblas-i	1000	20.223449	250,500,250,000.0	5.154370	250,500,250,000.0

./A4-mpi-solo -i 50 → 100

Using	Matrix	[process or s]	Time / mpi	Inf Norm/ mpi	Time/ manual	Inf Norm / manual
,/A4-mpi-solo -i	50	5	0.008958	75,625.0		75,625.0
./A4-mpi-solo -i	50	5	0.008924	75,625.0		75,625.0
/A4-mpi-solo -i	50	5	0.008960	75,625.0		75,625.0
/A4-mpi-solo -i	50	5	0.008933	75,625.0		75,625.0
/A4-mpi-solo -i	50	5	0.008925	75,625.0		75,625.0
/A4-mpi-solo -i	50 100	5 5	0.008914	75,625.0		75,625.0
./A4-mpi-solo -i ./A4-mpi-solo -i	100	5	0.038111	1,102,500.0 1,102,500.0		1,102,500.0 1,102,500.0
/A4-mpi-solo -i	100	5	0.038174	1,102,500.0		1,102,500.0
JA4-mpi-solo -i	100	5	0.038084	1,102,500.0		1,102,500.0
JA4-mpi-solo -i	100	5	0.038198	1,102,500.0		1,102,500.0
/A4-mpi-solo -i	100	5	0.038247	1,102,500.0		1,102,500.0
./A4-mpi-solo -i	50	5	0.008915	75,625.0	0.001096	75,625.0
./A4-mpi-solo -i	50	5	0.009069	75,625.0		75,625.0
./A4-mpi-solo -i	50	5	0.008928	75,625.0		75,625.0
/A4-mpi-solo -i	50	5	0.008972	75,625.0		75,625.0
/A4-mpi-solo -i	50	5	0.008964	75,625.0		75,625.0
./A4-mpi-solo -i ./A4-mpi-solo -i	50	5 5	0.009050	75,625.0 1,102,500.0		75,625.0
/A4-mpi-solo -i	100 100	5	0.038039 0.038085	1,102,500.0		1,102,500.0 1,102,500.0
/A4-mpi-solo -i	100	5	0.037991	1,102,500.0		1,102,500.0
/A4-mpi-solo -i	100	5	0.037551	1,102,500.0		1,102,500.0
/A4-mpi-solo -i	100	5	0.038142	1,102,500.0		1,102,500.0
./A4-mpi-solo -i	100	5	0.038006	1,102,500.0		1,102,500.0

./A4-mpi-solo -r 50 → 100

Using	Matrix	[processors]	Time / mpi	Inf Norm/ mpi	Time/ manual	Inf Norm / manual
./A4-mpi-solo -г	50	5	0.009072	83,811.0	0.001097	83,811.0
/A4-mpi-solo -r	50	5	0.008933	83,811.0	0.001087	83,811.0
/A4-mpi-solo -r	50	5	0.008905	83,811.0	0.001087	83,811.0
/A4-mpi-solo -r	50	5	0.008812	83,811.0	0.001087	83,811.0
.∕A4-mpi-solo -r	50	5	0.008925	83,811.0	0.001092	83,811.0
./A4-mpi-solo -r	50	5	0.009015	83,811.0	0.001087	83,811.0
./A4-mpi-solo -r	100	5	0.037541	338,563.0	0.008450	338,563.0
./A4-mpi-solo -r	100	5	0.037656	338,563.0	0.008447	338,563.0
./A4-mpi-solo -r	100	5	0.037570	338,563.0	0.008450	338,563.0
./A4-mpi-solo -r	100	5	0.037487	338,563.0	0.008529	338,563.0
/A4-mpi-solo -r	100	5	0.037527	338,563.0	0.008523	338,563.0
./A4-mpi-solo -г	100	5	0.037631	338,563.0	0.008456	338,563.0
./A4-mpi-solo -г	50	5	0.009118	83,811.0	0.001087	83,811.0
./A4-mpi-solo -г	50	5	0.009014	83,811.0	0.001089	83,811.0
./A4-mpi-solo -г	50	5	0.008918	83,811.0	0.001088	83,811.0
/A4-mpi-solo -r	50	5	0.008817	83,811.0	0.001089	83,811.0
/A4-mpi-solo -r	50	5	0.008911	83,811.0	0.001089	83,811.0
/A4-mpi-solo -r	50	5	0.008957	83,811.0	0.001105	83,811.0
./A4-mpi-solo -г	100	5	0.037528	338,563.0	0.008510	338,563.0
/A4-mpi-solo -r	100	5	0.037641	338,563.0	0.008455	338,563.0
/A4-mpi-solo -r	100	5	0.037601	338,563.0	0.008463	338,563.0
/A4-mpi-solo -r	100	5	0.037511	338,563.0	0.008462	338,563.0
/A4-mpi-solo -r	100	5	0.037566	338,563.0	0.008450	338,563.0
./A4-mpi-solo -r	100	5	0.037486	338,563.0	0.008523	338,563.0

./A4-mpi-solo -i 50 → 1000

Using	Matrix	[processors]	Time / mpi	Inf Norm/mpi	Time/ manual	Inf Norm / manual
./A4-mpi-solo -i	50	5	0.008938	75,625.0	0.001186	75,625.0
/A4-mpi-solo -i	50	5	0.009002	75,625.0	0.001088	75,625.0
/A4-mpi-solo -i	50	5	0.009120	75,625.0	0.001087	75,625.0
/A4-mpi-solo -i	100	5	0.038113	1,102,500.0	0.008523	1,102,500.0
/A4-mpi-solo -i	100	5	0.038247	1,102,500.0	0.008458	1,102,500.0
/A4-mpi-solo -i	100	5	0.038238	1,102,500.0	0.008459	1,102,500.0
/A4-mpi-solo -i	500	5	1.378423	637,562,500.0	2.393414	637,562,500.0
./A4-mpi-solo -i	500	5	1.355162	637,562,500.0	2.391642	637,562,500.0
./A4-mpi-solo -i	500	5	1.379172	637,562,500.0	2.391919	637,562,500.0
/A4-mpi-solo -i	500	5	1.403600	637,562,500.0	2.393041	637,562,500.0
/A4-mpi-solo -i	1000	5	7.395794	10,100,250,000.0	17.110994	10,100,250,000.0
/A4-mpi-solo -i	1000	5	7.315577	10,100,250,000.0		10,100,250,000.0
/A4-mpi-solo -i	1000	5	7.316681	10,100,250,000.0		10,100,250,000.0
/A4-mpi-solo -i	1000	5	7.256198	10,100,250,000.0	17.119226	10,100,250,000.0
/A4-mpi-solo -i	50	5	0.009033	75,625.0	0.001095	75,625.0
/A4-mpi-solo -i	50	5	0.008928	75,625.0	0.001123	75,625.0
/A4-mpi-solo -i	50	5	0.008975	75,625.0	0.001087	75,625.0
/A4-mpi-solo -i	100	5	0.038091	1,102,500.0	0.008466	1,102,500.0
/A4-mpi-solo -i	100	5	0.038131	1,102,500.0	0.008528	1,102,500.0
/A4-mpi-solo -i	100	5	0.038197	1,102,500.0	0.008449	1,102,500.0
/A4-mpi-solo -i	500	5	1.358874	637,562,500.0	2.393659	637,562,500.0
/A4-mpi-solo -i	500	5	1.367390	637,562,500.0	2.380557	637,562,500.0
/A4-mpi-solo -i	500	5	1.362464	637,562,500.0	2.319429	637,562,500.0
/A4-mpi-solo -i	500	5	1.358222	637,562,500.0	2.378163	637,562,500.0
/A4-mpi-solo -i	1000	5	7.291051	10,100,250,000.0	17.179521	10,100,250,000.0
/A4-mpi-solo -i	1000	5	7.340551	10,100,250,000.0	17.143703	10,100,250,000.0
/A4-mpi-solo -i	1000	5	7.283727	10,100,250,000.0	17.212086	10,100,250,000.0
JA4-mpi-solo -i	1000	5	7.353827	10,100,250,000.0	17.172394	10,100,250,000,0

./A4-mpi-solo -r 50 → 1000

Using	Matrix	[processors]	Time / mpi	Inf Norm/ mpi	Time/ manual	Inf Norm / manual
/A4-mpi-solo -r	50	5	0.009046	83,811.0	0.001087	83,811.0
./A4-mpi-solo -r	50	5	0.008892	83,811.0		83,811.0
./A4-mpi-solo -r	50	5	0.008990	83,811.0		83,811.0
./A4-mpi-solo -r	100	5	0.037635	338,563.0		338,563.0
./A4-mpi-solo -r	100	5	0.037697	338,563.0		338,563.0
./A4-mpi-solo -r	100	5	0.037666	338,563.0		338,563.0
./A4-mpi-solo -r	500	5	1.327586	8,078,358.0		8,078,358.0
./A4-mpi-solo -r	500	5	1.337290	8,078,358.0		8,078,358.0
/A4-mpi-solo -r	500	5	1.344111	8,078,358.0		8,078,358.0
/A4-mpi-solo -r	500	5	1.321970	8,078,358.0		8,078,358.0
/A4-mpi-solo -r	1000 1000	5	7.248157 7.149565	31,600,720.0		31,600,720.0
,/A4-mpi-solo -r ./A4-mpi-solo -r	1000	5 5	7.054564	31,600,720.0 31,600,720.0		31,600,720.0 31,600,720.0
/A4-mpi-solo -r	1000	5	7.085431	31,600,720.0		31,600,720.0
JA4-IIIprs000 I	1000	3	7.003431	31,000,720.0	17.121743	31,000,720.0
JA4-mpi-solo -r	50	5	0.009035	83,811.0	0.001208	83,811.0
JA4-mpi-solo -r	50	5	0.008932	83,811.0	0.001103	83,811.0
/A4-mpi-solo -r	50	5	0.008888	83,811.0	0.001088	83,811.0
/A4-mpi-solo -r	100	5	0.037540	338,563.0	0.008523	338,563.0
/A4-mpi-solo -r	100	5	0.037636	338,563.0	0.008522	338,563.0
./A4-mpi-solo -r	100	5	0.037552	338,563.0	0.008451	338,563.0
√A4-mpi-solo -r	500	5	1.350460	8,078,358.0	2.395111	8,078,358.0
√A4-mpi-solo -r	500	5	1.328560	8,078,358.0	2.397888	8,078,358.0
./A4-mpi-solo -г	500	5	1.359001	8,078,358.0	2.391396	8,078,358.0
./A4-mpi-solo -r	500	5	1.323249	8,078,358.0		8,078,358.0
./A4-mpi-solo -r	1000	5	7.143116	31,600,720.0		31,600,720.0
./A4-mpi-solo -г	1000	5	7.045932	31,600,720.0		31,600,720.0
./A4-mpi-solo -r	1000	5	7.149100	31,600,720.0		31,600,720.0
./A4-mpi-solo -r	1000	5	7.089481	31,600,720.0	17.191204	31,600,720.0

APPENDIX III - REFERENCES / ACKNOWLEDGEMENTS

- <u>www.stackoverflow.com</u>: general queries on MPI function not working and possible workaround
- http://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms
- http://en.wikipedia.org/wiki/Message_Passing_Interface
- <u>www.emsl.pnl.gov</u>: Pacific Northwest National Laboratory / Batelle: "Introduction to MPI"
- <u>www.ucd.ie</u>: COMP40700 High Performance Computing Notes 2014 "Message Passing Libraries"