13. Übung Maß- und Wahrscheinlichkeitstheorie 2 WS2019

1. Bestimmen Sie die Momente

$$M_n = \mathbb{E}(X^n)$$

und die Momentenerzeugende

$$M(t) = \mathbb{E}(e^{Xt})$$

für die Gammaverteilung.

- 2. Bestimmen Sie die Momente und die Momentenerzeugende für die Laplaceverteilung mit der Dichte $f(x) = \frac{1}{2}e^{-|x|}$.
- 3. (X_n) sei eine Folge von unabhängigen exponentialverteilten Zufallsvariablen mit Parameter 1.
 - (a) Bestimmen Sie die Verteilung von $Y_n = \max(X_1, \dots, X_n)$
 - (b) Zeigen Sie, dass $Y_n \log(n)$ in Verteilung konvergiert und bestimmen Sie die Grenzverteilung (Gumbelverteilung, doppelte Exponentialverteilung).
 - (c) Bestimmen Sie die momentenerzeugende Funktion dieser Verteilung.
- 4. X und Y seien unabhängige Zufallsvariable. Zeigen Sie, dass X+Y genau dann integrierbar ist, wenn X und Y integrierbar sind. (schätzen Sie in $\mathbb{E}(Y[|X| < M]) |Y|$ mit der Dreiecksungleichung ab; damit kann man zeigen, dass in der Bedingung für die Existenz von $\mathbb{E}(X)$ der Realteil von ϕ_X durch den Betrag ersetzt werden kann).
- 5. (X_n) sei eine Folge von unabhängigen identisch verteilten Zufallsvariablen mit der Dichte

$$f(x) = \frac{1}{|x|^3} [|x| \ge 1].$$

Zeigen Sie, dass

$$\frac{S_n}{\sqrt{n\log(n)}}$$

in Verteilung gegen eine Standardnormalverteilung konvergiert (Setzen Sie

$$X_{nk} = \frac{X_k}{\sqrt{n\log(n)}}[|X_k| \le \sqrt{n\log(n)}],$$

zeigen Sie, dass

$$\frac{S_n}{\sqrt{n\log(n)}} - \sum_{k=1}^n X_{nk}$$

in Wahrscheinlichkeit gegen 0 konvergiert, und wenden Sie Lindeberg-Feller auf $\sum_k X_{nk}$ an).

6. Die kumulantenerzeugende Funktion einer Zufallsvariable X ist

$$K_X(t) = \log M_X(t).$$

Wenn M_X in einer Umgebung von 0 existiert, dann kann man K_X als Potenzreihe schreiben:

$$K_X(t) = \sum_n \frac{\kappa_n t^n}{n!}.$$

Die Koeffizienten κ_n heißen die Kumulanten von X. Drücken Sie $\kappa_n,\,n=2,\ldots,5$ durch die zentralen Momente

$$m_n = \mathbb{E}((X - \mathbb{E}(X))^n)$$

von X aus. (mit $\mu = \mathbb{E}(X)$ und $Y = X - \mu$ gilt $K_X(t) = \mu t + K_Y(t)$; diese Darstellung der Kumulanten ist einfacher als die durch die gewöhnlichen Momente, die allerdings im Internet leichter zu finden ist).

7. Bestimmen Sie die Schiefe

$$\frac{\kappa_3}{\kappa_2^{3/2}}$$

und die Kurtosis

$$\frac{\kappa_4}{\kappa_2^2}$$

für die stetige Gleichverteilung, die Exponentialverteilung und die Laplaceverteilung.