# 3.2 Cosines and Projections Onto Lines

Course outcome: The course outcome of this article is to know about the Cosine angle between two lines and also the projection matrix.

### Inner Product and Cosines

The cosine of the angle is directly related to inner product. For this consider the triangle in two dimensional case. Suppose the vectors a and b make angles  $\alpha$  and  $\beta$  with X-axis as in fig. The length  $\parallel a \parallel$  is the hypotenuse in the triangle OaQ. So, the sine and cosine of  $\alpha$  are  $\sin \alpha = \frac{a_2}{\parallel a \parallel}$ ,  $\cos \alpha = \frac{a_1}{\parallel a \parallel}$ .



The cosine of the angle  $\theta = \beta - \alpha$  using inner products. For angle  $\beta$ , the sine is  $\frac{b_2}{\parallel b \parallel}$  and the cosine is  $\frac{b_1}{\parallel b \parallel}$ .

### The cosine formula

$$\cos \theta = \cos(\beta - \alpha)$$

$$= \cos \beta \cos \alpha + \sin \beta \sin \alpha$$

$$= \frac{a_1 b_1 + a_2 b_2}{\parallel a \parallel \parallel b \parallel}$$

$$= \frac{a^T b}{\parallel a \parallel \parallel b \parallel}$$

$$= \frac{\langle a, b \rangle}{\parallel a \parallel \parallel b \parallel}$$

**Law of Cosines:**  $\|b-a\|^2 = \|b\|^2 + \|a\|^2 - 2\|b\|\|a\|\cos\theta$ . When  $\theta$  is a right angle, we have  $\|b-a\|^2 = \|b\|^2 + \|a\|^2$ , which is Pythagoras Theorem.

$$|| b - a ||^{2} = (b - a)^{T}(b - a)$$

$$= (b^{T} - a^{T})(b - a)$$

$$= b^{T}b - ab^{T} - a^{T}b + a^{T}a$$

$$= b^{T}b - a^{T}b - a^{T}b + a^{T}a$$

$$= || b ||^{2} -2a^{T}b + || b ||^{2}$$

$$= || b ||^{2} -2 || a || || b || \cos \theta + || b ||^{2}.$$

When  $\theta$  is a right angle,  $\cos\theta=0.$  Thus  $\parallel b-a\parallel^2=\parallel a\parallel^2+\parallel b\parallel^2$  .

### Projection Onto a Line

Suppose that we want to find the distance from a point b to the line in the direction of the vector a. We are looking also that instead of a line for the point p closest to b. The line connecting b to p is perpendicular to a. The situation is the same when we are given a plane or any subspace S instead of a line. Again, the problem is to find the point P on the subspace that is closed to b onto the subspace. Every point on the line is a multiple of a. So,

$$p = \widehat{x}a$$
, where  $\widehat{x} = \frac{a^T b}{a^T a}$ .

Hence, the projection of the vector b onto the line in the direction of a is

$$p = \widehat{x}a = \frac{a^T b}{a^T a} a = \frac{a^T b}{\parallel a \parallel^2} a.$$



**Example 1** Project b=(1,2,3) onto the line through a=(1,1,1) to get  $\widehat{x}$  and p. **Solution:**  $\widehat{x}=\frac{a^Tb}{a^Ta}=\frac{1+1\times 2+1\times 3}{(\sqrt{1^2+1^2+1^2})^2}=\frac{6}{3}=2$ . The projection is  $p=\widehat{x}a=2(1,1,1)=(2,2,2)$ . The angle between a and b is  $\cos\theta=\frac{a^Tb}{\parallel a\parallel \parallel b\parallel}=\frac{6}{\sqrt{3}\sqrt{14}}$ .

$$\mid ab \mid \leq \parallel a \parallel \parallel b \parallel$$
.

## Exercise-3.2

1. (a) Given any two positive numbers x and y, choose the vector b equal to  $(\sqrt{x}, \sqrt{y})$ , and choose  $a = (\sqrt{y}, \sqrt{x})$ . Apply the Schwarz inequality to compare the arithmetic mean  $\frac{1}{2}(x+y)$  with the geometric mean  $\sqrt{xy}$ .

**Solution:** If  $a = \begin{pmatrix} \sqrt{y} \\ \sqrt{x} \end{pmatrix}$ ,  $b = \begin{pmatrix} \sqrt{x} \\ \sqrt{y} \end{pmatrix}$ . Applying Schwarz inequality, we get

$$a^{T}b \leq \parallel a \parallel \parallel b \parallel$$

$$\Rightarrow \left(\sqrt{y} \quad \sqrt{x}\right) \begin{pmatrix} \sqrt{x} \\ \sqrt{y} \end{pmatrix} \leq \parallel (\sqrt{y}, \sqrt{x}) \parallel \parallel (\sqrt{x}, \sqrt{y}) \parallel$$

$$\Rightarrow \sqrt{xy} + \sqrt{xy} \leq \sqrt{(\sqrt{y})^{2} + (\sqrt{x})^{2}} \sqrt{(\sqrt{x})^{2} + (\sqrt{y})^{2}}$$

$$\Rightarrow 2\sqrt{xy} \leq \sqrt{y + x} \sqrt{x + y}$$

$$\Rightarrow \sqrt{xy} \leq \frac{x + y}{2} \quad (G.M. \leq A.M.)$$

(b) Using the triangle inequality  $||x+y|| \le ||x|| + ||y||$ , reduce to Schwarz inequality.

**Solution:** From the triangle inequality, we know

3. By using the correct b in the Schwarz Inequality, prove that

$$(a_1 + a_2 + \dots + a_n)^2 \le n(a_1^2 + a_2^2 + \dots + a_n^2).$$

When does equality hold?

**Solution:** Let  $b = (1, 1, \dots, 1)$  and  $a = (a_1, a_2, \dots, a_n)$ . Using Schwarz

inequality, we have

$$a^{T}b \leq ||a|| ||b||$$

$$\Rightarrow \left(a_{1} \quad a_{2} \quad \cdots \quad a_{n}\right) \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} \leq \sqrt{a_{1}^{2} + a_{2}^{2} + \cdots + a_{n}^{2}} \sqrt{1^{2} + 1^{2} + \cdots + 1^{2}}$$

$$\Rightarrow a_{1} + a_{2} + \cdots + a_{n} \leq \sqrt{n} \sqrt{a_{1}^{2} + a_{2}^{2} + \cdots + a_{n}^{2}}$$

$$\Rightarrow (a_{1} + a_{2} + \cdots + a_{n})^{2} \leq n(a_{1}^{2} + a_{2}^{2} + \cdots + a_{n}^{2}).$$

The inequality becomes equality, if  $a_i = a_j$  for i = j = 1, 2, ..., n.

# Assignments

Exercise-3.2, Q. 5,9.