Fields

Definition

To say that '*' is a binary operator on a set S means $\forall a,b\in S$, the operator '*' is:

- 1). Closed: $a * b \in S$
- 2). Well-defined: a * b = c and $a * b = d \implies c = d$

Definition

A field is a mathematical object consisting of a non-empty set of elements F and two binary operators called addition (a+b) and multiplication $(a\cdot b=ab)$ that satisfy the following nine axioms:

- A1. Additive Commutativity: $\forall a, b \in F, a + b = b + a$
- A2. Additive Associativity: $\forall a, b, c \in F, (a + b) + c = a + (b + c)$
- A3. Additive Identity: $\exists 0 \in F, \forall a \in F, a+0=0+a=a$
- A4. Additive Inverse: $\forall a \in F, \exists (-a) \in F, a + (-a) = 0$
- M1. Multiplicative Commutativity: $\forall a, b \in F, ab = ba$
- M2. Multiplicative Associativity: $\forall a, b, c \in F, (ab)c = a(bc)$
- M3. Multiplicative Identity: $\exists 1 \in F, \forall a \in F, a1 = 1a = a$
- M4. Multiplicative Inverse: $\forall a \in F \{0\}, \exists a^{-1} \in F, aa^{-1} = 1$
- LD. Left Distribution: $\forall a,b,c \in F, a(b+c) = ab + ac$

Theorem: Right Distribution (RD)

$$\forall a, b, c \in F, (a+b)c = ac + bc$$

Proof

Assume $a, b, c \in F$.

$$a+b \in F$$
 closure $(a+b)c = c(a+b)$ M1

$$(a+b)c = ca + cb$$
 LD

$$\therefore (a+b)c = ac + bc \quad M1$$

Theorem: Right Cancellation

1).
$$\forall a, b, c \in F, a + c = b + c \iff a = b$$

2).
$$\forall a, b, c \in F, ac = bc \text{ and } c \neq 0 \implies a = b$$

3).
$$\forall a, b, c \in F, a = b \implies ac = bc$$

Proof

1). Assume $a, b, c \in F$.

$$\implies \text{Assume } a + c = b + c. \\ \exists (-c) \in F, c + (-c) = 0 \\ (a + c) + (-c) = (b + c) + (-c) \\ a + (c + (-c)) = b + (c + (-c)) \\ a + 0 = b + 0 \\ \therefore a = b$$
 A3

 \iff Assume a = b.

$$\therefore a + c = b + c \quad \mathsf{WD}$$

2). Assume $a, b \in F$ and $c \in F - \{0\}$. Assume ac = bc.

$$\begin{array}{ll} \exists c^{-1} \in F, cc^{-1} = 1 & \text{M4} \\ (ac)c^{-1} = (bc)c^{-1} & \text{WD} \\ a(cc^{-1}) = b(cc^{-1}) & \text{M2} \\ a1 = b1 & \text{M4} \\ \therefore a = b & \text{M3} \end{array}$$

3). Assume $a,b,c\in F$.

Assume a = b.

$$\therefore ac = bc$$
 WD

Theorem: Left Cancellation

1).
$$\forall a, b, c \in F, c + a = c + b \iff a = b$$

2).
$$\forall a, b, c \in F, ca = cb \text{ and } c \neq 0 \implies a = b$$

3).
$$\forall a, b, c \in F, a = b \implies ca = cb$$

Proof

1). Assume $a, b, c \in F$.

$$c + a = c + b \iff a + c = b + c$$
 (A1)
 $\iff a = b$ (RCAN)

2). Assume $a, b \in F$ and $c \in F - \{0\}$.

Assume ac = bc.

$$ac = bc$$
 M1
 $\therefore a = b$ RCAN

3). Assume
$$a, b, c \in F$$
.

Assume
$$a = b$$
.

$$ac = bc$$
 WD

$$\therefore ca = cb$$
 M1

Theorem: Uniqueness

- 1). The additive identify is unique
- 2). $\forall a \in F, (-a)$ is unique
- 3). The multiplicative identify is unique
- 4). $\forall a \in F \{0\}, a^{-1} \text{ is unique}$

Proof

1). Assume that there are two: 0 and 0'.

$$a + 0 = a$$

$$a + 0' = a$$
 A3

$$a + 0 = a + 0' \quad \mathsf{WD}$$

$$\therefore 0 = 0'$$
 LCAN

2). Assume that there are two: a' and a''.

$$a + a' = 0$$

A3

$$a + a'' = 0$$

$$a + a'' = 0$$
 A4
 $a + a' = a + a''$ WD

$$\therefore a' = a''$$

3). Assume that there are two: 1 and 1'.

$$a1 = a$$
 A3

$$a1' = a$$
 A3

$$a1 = a1'$$
 WD

$$\therefore 1 = 1'$$
 LCAN

4). Assume that there are two: a' and a''.

$$aa' = 1$$
 M4

$$aa'' = 1$$
 M4

$$aa' = aa''$$
 WD

$$\therefore a' = a''$$
 LCAN

Properties of Zero

1).
$$0 = -0$$

2).
$$\forall a \in F, a0 = 0a = 0$$

3).
$$\forall a, b \in F, ab = 0 \iff a = 0 \text{ or } b = 0$$

Proof

1).
$$0 + (-0) = 0$$
 A4
 $0 + (-0) = -0$ A3
 $\therefore 0 = -0$

2). Assume $a \in F$.

$$a0 \in F$$
 Closure $a0 = a0 + 0$ A3 $a(0+0) = a0 + 0$ A3 $a0 + a0 = a0 + 0$ LD $\therefore a0 = 0$ LCAN $\therefore 0a = 0$ M1

3). Assume $a, b \in F$.

$$\implies \text{Assume } ab = 0.$$

$$AWLOG: b \neq 0$$

$$\exists b^{-1} \in F, bb^{-1} = 1 \quad \text{M4}$$

$$(ab)b^{-1} = 0b^{-1} \quad \text{WD}$$

$$(ab)b^{-1} = 0 \quad \text{prop of } 0$$

$$a(bb^{-1}) = 0 \quad \text{M2}$$

$$a1 = 0 \quad \text{M4}$$

$$\therefore a = 0 \quad \text{M3}$$

$$\iff \text{AWLOG: } a = 0$$

$$ab = 0a = 0 \quad \text{prop of } 0$$

Properties of Negatives

1).
$$\forall a \in F, (-1)a = -a$$

2).
$$\forall a \in F, -(-a) = a$$

3).
$$\forall a, b \in F, (-a)b = -ab$$

4).
$$\forall a, b \in F, a(-b) = -ab$$

5).
$$\forall a, b \in F, (-a)(-b) = ab$$

Proof

1). Assume $a \in F$

$$a + (-1)a = 1a + (-1)a$$
 M3
 $a + (-1)a = (1 + (-1))a$ RD
 $a + (-1)a = 0a$ A4
 $a + (-1)a = 0$ prop of 0
 $\therefore (-1)a = -a$ uniqueness

2). Assume $a \in F$

$$\begin{array}{lll} -(-a)+(-a)=(-1)(-a)+(-a) & \text{(1)} \\ -(-a)+(-a)=(-1)(-a)+1(-a) & \text{M3} \\ -(-a)+(-a)=((-1)+1)(-a) & \text{RD} \\ -(-a)+(-a)=0(-a) & \text{A4} \\ -(-a)+(-a)=0 & \text{prop of 0} \\ \therefore -(-a)=a & \text{uniqueness} \end{array}$$

3). Assume $a, b \in F$

$$ab + (-a)b = (a + (-a))b$$
 RD
 $ab + (-a)b = 0b$ A4
 $ab + (-a)b = 0$ prop of 0
 $\therefore (-a)b = -ab$ uniqueness

4). Assume $a, b \in F$

$$ab + a(-b) = a(b + (-b))$$
 LD
 $ab + a(-b) = a0$ A4
 $ab + a(-b) = 0$ prop of 0
 $\therefore a(-b) = -ab$ uniqueness

5). Assume $a, b \in F$

$$(-a)(-b) + (-ab) = (-a)(-b) + (-a)b$$
 (3)
 $(-a)(-b) + (-ab) = (-a)(-b+b)$ LD
 $(-a)(-b) + (-ab) = (-a)0$ A4
 $(-a)(-b) + (-ab) = 0$ A3
 $\therefore (-a)(-b) = ab$ uniqueness