Vorlesung 1 02.11.2020

Ziele:

- 1. Maßtheorie \to Lebesgue-Maß (Volumen von Teilmengen des \mathbb{R}^n bestimmen)
- 2. Integral
rechnung für Funktionen $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$ \to Lebesgue-Integrale (Satz von Fubini, ...)
- 3. Version des Hauptsatzes \rightarrow Satz von Gauß

I Konvergenzsätze und L^n -Räume

Bsp.:

Punktweise Konvergenz reicht nicht für Konvergenz der Integrale.

Für
$$\epsilon > 0$$
 sei $f_{\epsilon} : \mathbb{R} \to \mathbb{R}, f_{\epsilon} = \frac{1}{2\epsilon} \chi_{[-\epsilon, \epsilon]}$
Es gilt $f_{\epsilon}(x) = 0$ für $\epsilon < |x|$
 $\implies f(x) := \lim_{\epsilon \downarrow 0} f_{\epsilon}(x) = \begin{cases} 0, & \text{für } x \neq 0 \\ \infty, & \text{für } x = 0 \end{cases}$
Weiter $\int f_{\epsilon} d\lambda^{1} = \frac{1}{2\epsilon} \lambda^{1}([-\epsilon, \epsilon]) = 1 \ \forall \epsilon > 0$
 $\implies \int f d\lambda^{1} = 0 < 1 = \lim_{\epsilon \downarrow 0} f_{\epsilon} d\lambda^{1}$

Satz I.1 (Lemma von Fatou)

 $f_k: X \to [0, \infty]$ Folge von μ -messbaren Funktionen.

Für $f: X \to \overline{\mathbb{R}}, f(x) = \liminf_{k \to \infty} f_k(x)$ gilt:

$$\int f d\mu \le \liminf_{k \to \infty} \int f_k d\mu$$

Beweis. siehe Aufschrieb

Satz I.2 (Dominierte Konvergenz bzw. Satz von Lebesgue)

 f_1, f_2, \dots Folge von μ -messbare Funktionen und $f(x) = \lim_{k \to \infty} f_k(x)$ für μ -fast alle $x \in X$. Es gebe eine integrierbare Funktion $g: X \to [0, \infty]$ mit $\sup_{k \in \mathbb{N}} |f_k(x)| \leq g(x)$

für μ -fast alle x. Fann ist f integrierbar und $\int f d\mu = \lim_{k \to \infty} \int f_k d\mu$.

Es gilt sogar $||f_k \cdot f||_{L^1(y)} := \int |f_k - f| d\mu \to 0$

Beweis. siehe Aufschrieb

Bem.: (Anwendung)

Vergleich Riemann- \int mit Lebesgue- \int

Sei I = [a, b] kompaktes Intervall, $f: I \to \mathbb{R}$ beschränkt. Unterteilungspunkte $a = x_0 \le ... \le x_N = b \to \text{Zerlegung } Z \text{ von } I \text{ mit Teilintervallen } I_j = [x_{j-1}, x_j]$

$$\bar{S}_Z(f) = \sum_{j=1}^{N} (\sup_{I_j} f)(x_j - x_{j-1}), \quad \underline{S}_Z(f) = \sum_{j=1}^{N} (\inf_{I_j} f)(x_j - x_{j-1})$$

Für Zerlegungen Z_1, Z_2 mit Verfeinerung $Z_1 \cup Z_2$

$$\implies \underline{\mathbf{S}}_{Z_1}(f) \leq \underline{\mathbf{S}}_{Z_1 \cup Z_2}(f) \leq \bar{S}_{Z_1 \cup Z_2}(f) \leq \bar{S}_{Z_2}(f)$$

f heißt Riemann-integrierbar mit Integral $\int_{a}^{b} f(x)dx = S$, falls gilt:

$$\sup_{Z} \underline{S}_{Z}(f) = \inf_{Z} \bar{S}_{Z}(f) = S$$

Satz I.3

 $f: I \to \mathbb{R}$ beschränkt auf kompaktem Intervall I = [a, b]. Dann gilt: f Riemann-integrierbar $\Leftrightarrow \lambda^1(\{x \in I \mid f \text{ ist nicht stetig in } x\}) = 0$

In diesem Fall ist f auch Lebesgue-integrierbar und die Integrale stimmen überein.

Beweis. siehe Aufschrieb

Satz I.4

X metrischer Raum, μ Maß auf Y und $f: X \times Y \to \mathbb{R}$ mit $f(x, \cdot)$ integrierbar bzgl. $\mu \ \forall x \in X$.

Betrachte $F: X \to \mathbb{R}, F(x) = \int f(x, y) d\mu(y)$

Sei $f(\cdot, y)$ stetig in $x_0 \in X$ für μ -fast alle $y \in Y$. Weiter gebe es eine μ -integrierbare Funktion $g: Y \to [0, \infty]$, so dass für alle $x \in X$ gilt: $|f(x, y)| \leq g(y) \ \forall y \in Y \setminus N_X$ mit einer μ -Nullmenge N_x .

Dann ist F stetig in x_0 .

Beweis. siehe Aufschrieb

Vorlesung 14

18.12.20

Satz I.5

Sei $I \subseteq \mathbb{R}$ offenes Intervall, μ Maß auf Y und $f: I \times Y \to \mathbb{R}$ mit $f(x, \cdot)$ integrierbar bzgl. μ für alle $x \in I$.

Setze $F: U \to \mathbb{R}, F(x) = \int f(x, y) d\mu(y)$

Es sei $f(\cdot, y)$ in x_0 differenzierbar für μ -fast alle $y \in Y$ und es existiere $g: Y \to [0, \infty]$ μ -integrierbar mit

$$\frac{|f(x,y) - f(x_0,y)|}{|x - x_0|} \le g(y) \ \forall x \in I \ \forall y \in Y \setminus N_x$$

mit einer μ -Nullmenge N_x . Dann folgt:

$$F'(x_0) = \int \frac{\partial f}{\partial x}(x_0, y) d\mu(y)$$

Beweis. siehe Aufschrieb

Lemma I.6

 $\mathcal{U} \subseteq \mathbb{R}^n$ offen, μ Maß auf Y und $f: \mathcal{U} \times Y \to \mathbb{R}$ mit f integrierbar bzgl. $\mu \ \forall x \in \mathcal{U}$. Betrachte $F: \mathcal{U} \to \mathbb{R}$, $F(x) = \int f(x,y) d\mu(y)$

Es gebe eine μ -Nullmenge $N \subseteq Y$, so dass $\forall y \in Y \setminus N$ gilt:

$$f(\cdot,y) \in C^1(\mathcal{U})$$
 und $|D_x f(x,y)| \leq g(y)$ mit $g: Y \to [0,\infty]$ integrierbar

 $\implies F \in C^1(\mathcal{U}) \text{ und } \forall x \in \mathcal{U} \text{ gilt:}$

$$\frac{\partial F}{\partial x_i}(x) = \int \frac{\partial f}{\partial x_i}(x,y) d\mu(y)$$

Beweis. siehe Aufschrieb

Bsp.:

$$\int_{0}^{\infty} \frac{\sin(x)}{x} dx = ? \quad \text{Betrachte } F: [0, \infty] \to \mathbb{R}, F(t) = \int_{0}^{\infty} e^{-tx} \frac{\sin x}{x} dx$$

 $f(t,x):=e^{-tx}\frac{\sin(x)}{x}$ hat für $t\geq \delta$ die Abschätzungen $|f(t,x)|, |\partial_t f(t,x)|\leq e^{-\delta x}=:g(x)\in L^1([0,\infty))$ Lemma V.6 $\Longrightarrow \forall t>0$ gilt:

$$F'(t) = \int_0^\infty e^{-tx} (-\sin x) dx$$

$$= [e^{-tx} \cos x]_{x=0}^{x=\infty} + t \int_0^\infty e^{-tx} \cos x dx$$

$$= -1 + t^2 \int_0^\infty e^{-tx} \sin x dx$$

$$= -1 - t^2 F'(t)$$

$$\implies F'(t) = \frac{-1}{1+t^2}$$

... (siehe Aufschrieb)

$$\int_{0}^{\infty} \frac{\sin(x)}{x} dx = \frac{\pi}{2}$$

Def. I.7 (L^p -Norm)

Für $\mu\text{-messbares }f:X\to\bar{\mathbb{R}}$ und $1\leq p\leq\infty$ setzen wir

$$||f||_{L^p(\mu)} := \begin{cases} (\int |f|^p d\mu)^{1/p} & \text{, für } 1 \le p < \infty \\ \inf\{s > 0 \mid \mu(\{|f| > s\}) = 0\} & \text{, für } p = \infty \end{cases}$$

auf $\mathcal{L}^p(\mu) = \{ f : X \to \bar{\mathbb{R}} \mid f\mu - \text{messbar}, ||f||_{L^p(\mu)} < \infty \}$

Betrachte Äquivalenzrelation $f \sim g \Leftrightarrow f(x) = g(x)$ für μ -fast alle $x \in X$, und definiere den L^p -Raum durch $\mathcal{L}^p(\mu)/_{\sim}$.

Def. I.8

Für $E \subseteq X$ messbar und $f: E \to \overline{\mathbb{R}}$ sei $f_0: X \to \overline{\mathbb{R}}$ die **Fortsetzung** mit $f_0(x) = 0 \ \forall x \in X \setminus E$. Wir setzen dann

$$\mathcal{L}^p(E) := \{ f : E \to \bar{\mathbb{R}} \mid f_0 \in \mathcal{L}^p(\mu) \}$$

und $L^p(E,\mu) := \mathcal{L}^p(E)/_{\sim}$.

Proposition I.9

Für $1 \leq p \leq \infty$ ist $(L^p(\mu), ||\cdot||_{L^p(\mu)})$ ein normierter Vektorraum. Insbesondere gelten für $\lambda \in \mathbb{R}$ und $f, g \in L^p(\mu)$:

- 1. $||f||_{L^p} = 0 \implies f = 0 \mu$ -fast überall
- 2. $f \in L^p(\mu), \lambda \in \mathbb{R} \implies \lambda f \in L^p(\mu), ||\lambda f||_{L^p} = |\lambda| ||f||_{L^p}$
- 3. $f, g \in L^p(\mu) \implies f + g \in L^p(\mu) \text{ und } ||f + g||_{L^p} \le ||f||_{L^p} + ||g||_{L^p}$

Beweis. siehe Aufschrieb

Lemma I.10 (Youngsche Ungleichung)

Für $1 < p, q < \infty$ mit $\frac{1}{p} + \frac{1}{q} = 1$ und $x, y \ge 0$ gilt: $xy \le \frac{x^p}{p} + \frac{y^q}{q}$

Beweis. siehe Aufschrieb

Satz I.11 (Höldersche Ungleichung)

Für μ -messbare $f, g: X \to \mathbb{R}$ gilt: $|\int fg d\mu| \le ||f||_{L^p}||g||_{L^p}$, falls $1 \le p, q \le \infty$ mit $\frac{1}{p} + \frac{1}{q} = 1$

Beweis. siehe Aufschrieb

Satz I.12 (Minkowski-Ungleichung)

Für $f, g \in L^p(\mu)$ mit $1 \le p \le \infty$ gilt: $||f + g||_{L^p} \le ||f||_{L^p} + ||g||_{L^p}$

Beweis. siehe Aufschrieb

Lemma I.13

Sei $1 \le p < \infty$ und $f_k = \sum_{j=1}^k u_j$ mit $u_j \in L^p(\mu)$. Falls $\sum_{j=1}^k ||u_j||_{L^p} < \infty$, so gelten:

- i) $\exists \mu$ -Nullmenge $N: f(x) = \lim_{k \to \infty} f_k(x) \ \forall x \in X \setminus N \text{ ex.}$
- ii) mit f := 0 auf gilt $f \in L^p(\mu)$
- iii) $||f f_k||_{L^p} \to 0 \text{ mit } k \to \infty$

Beweis. siehe Aufschrieb

Satz I.14 (Satz von Riesz-Fischer)

 $(L^p(\mu), ||\cdot||_{L^p})$ ist vollständig, also ein Banachraum. $(1 \le p \le \infty)$

Beweis. siehe Aufschrieb

Lemma I.15

Konvergiert f_k gegen f in $L^p(\mu)$, so konvergiert eine Teilfolge f_{k_j} punktweise μ -fast überall gegen f.

Bsp.:

Im Fall $p < \infty$ kann im Allgemeinen nicht auf die Wahl einer Teilfolge verzichtet werden: Jedes $n \in \mathbb{N}$ besitzt die eindeutige Darstellung $n = 2^k + j$ mit $k \in \mathbb{N}_0, 0 \le j < 2^k$

Definiere damit $f_n: [0,1] \to \mathbb{R}, f_n(x) = \begin{cases} 1, & \text{falls } j \cdot 2^{-k} \le x \le (j+1)2^{-k} \\ 0, & \text{sonst} \end{cases}$

$$\int_{0}^{1} f_{n}(x)dx = 2^{-k} < \frac{2}{n} \to 0 \text{ mit } n \to \infty$$

Ändererseits: $\limsup_{n\to\infty} f_n(x) = 1 \ \forall x\in[0,1), \ \text{denn zu} \ x\in[0,1), k\in\mathbb{N}$ können wir

$$j \in \{0, 1, ..., 2^k - 1\}$$
 wählen mit $j \cdot 2^{-k} \le x < (j+1)2^{-k}$

$$\implies f_n(x) = 1 \text{ für } n = 2^k + j$$

 \implies Folge konvergiert nicht punktweise λ^1 -fast überall gegen 0.

Bem.:

Jetzt betrachten wir $\mu = \lambda^n$ im \mathbb{R}^n .

 $\mathrm{Im}\ \mathbb{R}^n$ haben wir eine Metrik.

Def. I.16

Der **Träger** einer Funktion $f: \Omega \to \mathbb{R}, \Omega \subseteq \mathbb{R}^n$ offen, ist die Menge

$$spt(f) = \overline{\{x \in \mathbb{R} \mid f(x) \neq 0\}}$$

Der Raum der stetigen Funktionen mit kompaktem Träger in Ω wird mit $C_c^0(\Omega)$ bezeichnet.

Für $K\subseteq\Omega$ kompakt sei $dist(\cdot,K):\mathbb{R}^n\to[0,\infty), dist(x,K)=\inf_{z\in K}||x-z||$ die **Abstandsfunktion** von K.

Wir benötigen:

- 1. $dist(\cdot, K)$ ist Lipschitz-stetig mit Konstante 1
- 2. $dist(\mathbb{R}^n \setminus \Omega, K) = \inf_{x \in \mathbb{R}^n \setminus \Omega} dist(x, K) > 0$

Satz I.17

Sei $\Omega \subseteq \mathbb{R}^n$ offen und $1 \leq p < \infty$. Dann existiert zu jedem $f \in C^p(\Omega)$ eine Folge $f_k \in C_c^0(\Omega)$ mit $||f_k - f||_{L^p(\Omega)} \to 0$ mit $k \to \infty$.

Beweis. siehe Aufschrieb

Bem.:

 $BC^0(\Omega)$ bezeichnet die Menge der beschränkten, stetigen Funktionen auf Ω . Mit Supremumsnorm $||\cdot||_{sup}$ ist diese ein Banachraum.

... (Rest siehe Aufschrieb)

Satz I 18

Für $f \in L^2(I,\mathbb{C})$ konvergiert f_n gegen f in $L^2(I,\mathbb{C})$? (bezieht sich auf Bem. vorher)

Beweis. siehe Aufschrieb

Bem.:

Sei $\ell^2(\mathbb{C})$ der Raum aller komplexen Folgen $c=(c_k)_{k\in\mathbb{Z}}$ mit $||c||_{\ell^2}^2=2\pi\sum_{k\in\mathbb{Z}}|c_k|^2<\infty$

 $\ell^2(\mathbb{C})$ ist vollständig (folgt aus Riesz-Fischer angewandt auf das Zählmaß auf \mathbb{Z})

Lemma I.19

Die Abbildung $\mathcal{F}: (L^2(I,\mathbb{C}), ||\cdot||_{L^2}) \to (\ell^2(\mathbb{C}), ||\cdot||_{\ell^2}), \mathcal{F}(f) = (\hat{f}(k))_{k \in \mathbb{Z}}$ ist eine Isometrie von Hilberträumen.

Beweis. siehe Aufschrieb

Bem.:

Die Konvergenz der Fourierreihe ist ein Spezialfall des Spektralsatzes für selbstadjungierte Operatoren. Dieser verallgemeinert die Diagonalisierbarkeit symmetrischer Matrizen (siehe LA) auf ∞ -dimensionalen Räume.

Hier ist der Operator $H=-\frac{d^2}{dx^2}$ ein Endomorphismus auf $C^{\infty}_{Per}(I)$

$$H: C^{\infty}_{Per}(I) \to C^{\infty}_{Per}(I), Hf = -\frac{d^2f}{dx^2}$$

Part. Int. $\implies \langle Hf, g \rangle_{L^2} = \langle f, Hg \rangle_{L^2} \ \forall f, g \in C^{\infty}_{Per}(I) \text{ sowie } \langle Hf, f \rangle_{L^2} = ||\frac{df}{dx}||^2_{L^2} \geq 0$

Die w_k sind Eigenfunktionen von den Eigenvektoren $\lambda_k = k^2$:

 $Hw_k = \lambda^2 w_k \ \forall k \in \mathbb{Z}$

Satz V.18: Der von den Eigenfunktionen w_k aufgespannte Raum ist dicht in $L^2(I,\mathbb{C})$