

Calcolo integrale — Compito di pre-esonero 28 Aprile 2023 — Compito n. 00028

Istruzioni: le prime due caselle $(\mathbf{V} \ / \ \mathbf{F})$ permettono di selezionare la risposta vero/falso. La casella " \mathbf{C} " serve a correggere eventuali errori invertendo la risposta data.

Per selezionare una casella, annerirla completamente: \blacksquare (non \boxtimes o \bigcirc).

Nome:					
Cognome:					
Matricola:					

Punteggi: 1 punto per ogni risposta esatta, 0 punti per risposte sbagliate o lasciate in bianco.

1) Sia

$$F(t) = \int_0^t \left[5x^2 + \cos^2(7x) \right] dx$$

- **1A)** La funzione F(t) non è derivabile per qualche t in \mathbb{R} .
- **1B)** Si ha F'(0) = 0.
- **1C)** La funzione F(t) è decrescente su \mathbb{R} .
- **1D)** Si ha F(9) < 0.
- 2) Dire se le seguenti affermazioni sono vere o false.
- 2A)

$$\int_0^1 (6x^2 + 4x + 3) \, dx = 0 \, .$$

2B)

$$\int_0^{\frac{1}{3}} 18 x e^{3x} dx = 2 e.$$

2C)

$$\int_0^{10\,\pi} \cos(7\,x)\,dx = 5\,.$$

2D)

$$\int_0^{\sqrt{5}} \frac{10 \, x}{5 + x^2} \, dx = 5 \, \log(2) \, .$$

- 3) Dire se le seguenti affermazioni sono vere o false.
- **3A**)

$$\int_{8}^{8} \left[9x^{3} + \sin(3x)\right] dx = 0.$$

3B)

$$\int_{-7}^{7} \left[3x^2 + 6x |x| \right] dx > 0.$$

3C)

$$\int_{c}^{7} \left[9 x^3 + 6 x \right] dx = 0.$$

3D)

$$\int_{-4}^{3} \frac{x^7}{4 + x^6} \, dx > 0 \, .$$

- 4) Dire se le seguenti affermazioni sono vere o false.
- 4A)

$$\int_{18}^{66} \frac{dx}{x - 6} = \log(5).$$

4B)

$$\int_{11}^{26} \frac{dx}{(x-8)^2} = -\frac{5}{18}.$$

4C)

$$\int_{8}^{9} \frac{dx}{(x-5)(x-7)} = \frac{1}{2} \log(3/2).$$

4D) $\int_{8}^{-7} \frac{dx}{x^2 + 16x + 65} = \frac{\pi}{4}.$

5) Determinare una primitiva delle funzioni $f(x),\,g(x),\,h(x)$ e k(x), e calcolare gli integrali.

a)
$$f(x) = x \sin(11 x)$$
, $\int_{0}^{5 \pi} f(x) dx$,

a)
$$f(x) = x \sin(11x)$$
, $\int_0^{5\pi} f(x) dx$, b) $g(x) = x^2 e^{7x^3}$, $\int_0^{\sqrt[3]{2}} g(x) dx$,

c)
$$h(x) = (4x^2 + 17x + 9) e^x$$
, $\int_{-\frac{9}{4}}^0 h(x) dx$, d) $k(x) = \frac{1}{1 + 49x^2}$, $\int_0^1 k(x) dx$.

d)
$$k(x) = \frac{1}{1+49x^2}$$
, $\int_0^1 k(x) dx$

6) Sia

$$F(t) = \int_0^t \left[3 e^{x^2} + 6 \right] dx.$$

- a) Dimostrare che F(t) è derivabile per ogni t in \mathbb{R} .
- b) Calcolare F(0) e F'(√5).
 c) Dimostrare che F(t) è una funzione crescente e dispari.
 d) Dimostrare che

$$\lim_{t \to +\infty} F(t) = +\infty.$$

Soluzioni del compito 00028

1) Sia

$$F(t) = \int_0^t \left[5x^2 + \cos^2(7x) \right] dx$$

1A) La funzione F(t) non è derivabile per qualche t in \mathbb{R} .

Vero: Dato che la funzione $x \mapsto 5x^2 + \cos^2(7x)$ è continua su \mathbb{R} , la funzione F(t) è derivabile su \mathbb{R} per il teorema fondamentale del calcolo integrale, e si ha $F'(t) = 5x^2 + \cos^2(7t)$.

1B) Si ha F'(0) = 0.

Falso: Dato che per il teorema fondamentale del calcolo integrale si ha $F'(t) = 5t^2 + \cos^2(7t)$, si ha $F'(0) = 1 \neq 0$.

1C) La funzione F(t) è decrescente su \mathbb{R} .

Falso: Dato che per il teorema fondamentale del calcolo integrale si ha $F'(t) = 5t^2 + \cos^2(7t)$, si ha $F'(t) \ge 0$ per ogni t in \mathbb{R} , e quindi la funzione F(t) è crescente su \mathbb{R} .

1D) Si ha F(9) < 0.

Falso: Dato che la funzione F(t) è crescente (si veda l'esercizio $\mathbf{1C}$), si ha

$$F(9) > F(0) = 0.$$

2A)

$$\int_0^1 (6x^2 + 4x + 3) \, dx = 0 \, .$$

Falso: Dato che

$$\int (6x^2 + 4x + 3) dx = \frac{6}{3}x^3 + \frac{4}{2}x^2 + 3x = 2x^3 + 2x^2 + 3x + c,$$

si ha

$$\int_0^1 (6x^2 + 4x + 3) \, dx = 2x^3 + 2x^2 + 3x \Big|_0^1 = 2 + 2 + 3 = 7 \neq 0.$$

Alternativamente, si poteva osservare che l'integrale non poteva essere uguale a zero perché la funzione integranda è strettamente positiva sull'intervallo di integrazione.

2B)

$$\int_0^{\frac{1}{3}} 18 x e^{3x} dx = 2 e.$$

Falso: Si ha, con la sostituzione y = 3x, da cui dy = 3x,

$$\int_0^{\frac{1}{3}} 18 x e^{3x} dx = 2 \int_0^{\frac{1}{3}} (3 x) e^{3x} (3 dx) = 2 \int_0^1 y e^y dy.$$

Dato che una primitiva di $y e^y$ è $(y-1) e^y$, si ha

$$\int_0^{\frac{1}{3}} 18 x e^{3x} dx = 2(y-1) e^y \Big|_0^1 = 2 \neq 2 e.$$

2C)

$$\int_0^{10\,\pi} \cos(7\,x)\,dx = 5\,.$$

Falso: Si ha

$$\int_0^{10\,\pi} \cos(7\,x)\,dx = \frac{\sin(7\,x)}{7} \Big|_0^{10\,\pi} = \frac{\sin(70\,\pi) - \sin(0)}{7} = 0 \neq 5.$$

2D)

$$\int_0^{\sqrt{5}} \frac{10 x}{5 + x^2} dx = 5 \log(2).$$

Vero: Dato che

$$\frac{10 x}{5 + x^2} = 5 \frac{2x}{5 + x^2} = 5 \frac{(5 + x^2)'}{5 + x^2},$$

si ha

$$\int_0^{\sqrt{5}} \frac{10 x}{5 + x^2} dx = 5 \log(5 + x^2) \Big|_0^{\sqrt{5}} = 5 \left[\log(10) - \log(5) \right] = 5 \log(10/5) = 5 \log(2).$$

3) Dire se le seguenti affermazioni sono vere o false.

3A)

$$\int_{-8}^{8} \left[9 x^3 + \sin(3 x)\right] dx = 0.$$

Vero: La funzione integranda è dispari, e l'intervallo di integrazione è simmetrico rispetto all'origine. Pertanto, l'integrale vale zero.

3B)

$$\int_{-7}^{7} \left[3 x^2 + 6 x |x| \right] dx > 0.$$

Vero: La funzione $x \mapsto 3x^2$ è pari, mentre la funzione $x \mapsto 6x|x|$ è dispari. Dato che l'intervallo è simmetrico rispetto all'origine, si ha

$$\int_{-7}^{7} \left[3 x^2 + 6 x |x| \right] dx = \int_{-7}^{7} 3 x^2 dx = 2 \int_{0}^{7} 3 x^2 dx > 0,$$

dato che la funzione integranda è positiva.

3C)

$$\int_{-6}^{7} \left[9 \, x^3 + 6 \, x \right] dx = 0 \, .$$

Falso: La funzione integranda è dispari; pertanto, si ha

$$\int_{-6}^{7} \left[9\,x^3 + 6\,x \right] dx = \int_{-6}^{6} \left[9\,x^3 + 6\,x \right] dx + \int_{6}^{7} \left[9\,x^3 + 6\,x \right] dx = \int_{6}^{7} \left[9\,x^3 + 6\,x \right] dx \,,$$

e l'ultimo integrale è positivo essendo l'integrale di una funzione positiva.

3D)

$$\int_{-4}^{3} \frac{x^7}{4 + x^6} \, dx > 0 \, .$$

Falso: Dato che la funzione integranda è dispari, si ha

$$\int_{-4}^{3} \frac{x^{7}}{4 + x^{6}} dx = \int_{-4}^{-3} \frac{x^{7}}{4 + x^{6}} dx + \int_{-3}^{3} \frac{x^{7}}{4 + x^{6}} dx = \int_{-4}^{-3} \frac{x^{7}}{4 + x^{6}} dx < 0,$$

dato che la funzione integranda è negativa.

4A)

$$\int_{18}^{66} \frac{dx}{x-6} = \log(5).$$

Vero: Si ha

$$\int_{18}^{66} \frac{dx}{x-6} = \log(|x-6|) \Big|_{18}^{66} = \log(60) - \log(12) = \log(60/12) = \log(5).$$

4B)

$$\int_{11}^{26} \frac{dx}{(x-8)^2} = -\frac{5}{18} \,.$$

Falso: Ricordando che

$$\int \frac{dx}{(x-a)^2} = \frac{1}{a-x} + c,$$

si ha

$$\int_{11}^{26} \frac{dx}{(x-8)^2} = \frac{1}{8-x} \Big|_{11}^{26} = -\frac{1}{18} + \frac{1}{3} = \frac{5}{18} \neq -\frac{5}{18}.$$

Alternativamente, si poteva osservare che, essendo la funzione integranda positiva, il risultato non poteva essere negativo.

4C)

$$\int_{8}^{9} \frac{dx}{(x-5)(x-7)} = \frac{1}{2} \log(3/2).$$

Vero: Dall'identità

$$\frac{1}{(x-5)(x-7)} = \frac{A}{x-7} + \frac{B}{x-5}$$

si ricava (moltiplicando per (x-5)(x-7)) che deve essere

$$1 = A(x-5) + B(x-7)$$
.

Scegliendo x=5 si ricava $B=-\frac{1}{2},$ e scegliendo x=7 si ricava $A=\frac{1}{2}.$ Pertanto,

$$\frac{1}{(x-5)(x-7)} = \frac{1}{2} \left[\frac{1}{x-7} - \frac{1}{x-5} \right].$$

Ne segue che

$$\int \frac{dx}{(x-5)(x-7)} = \frac{1}{2} \log \left(\left| \frac{x-7}{x-5} \right| \right) + c,$$

cosicché

$$\int_{8}^{9} \frac{dx}{(x-5)(x-7)} = \frac{1}{2} \left[\log(1/2) - \log(1/3) \right] = \frac{1}{2} \log(3/2).$$

4D)

$$\int_{0}^{7} \frac{dx}{x^2 + 16x + 65} = \frac{\pi}{4}.$$

Vero: Si ha

$$x^2 + 16x + 65 = (x+8)^2 + 1$$
,

e quindi

$$\int \frac{dx}{x^2 + 16x + 65} = \int \frac{dx}{1 + (x+8)^2}.$$

Con la sostituzione y=x+8, da cui dx=dy, si ha

$$\int \frac{dx}{x^2 + 16x + 65} = \int \frac{dy}{1 + y^2} = \arctan(y) + c = \arctan(x + 8) + c.$$

Pertanto,

$$\int_{-8}^{-7} \frac{dx}{x^2 + 16x + 65} = \arctan(x+8) \Big|_{-8}^{-7} = \arctan(1) - \arctan(0) = \frac{\pi}{4}.$$

5) Determinare una primitiva delle funzioni f(x), g(x), h(x) e k(x), e calcolare gli integrali.

a)
$$f(x) = x \sin(11x)$$
, $\int_0^{5\pi} f(x) dx$, **b**) $g(x) = x^2 e^{7x^3}$, $\int_0^{\sqrt[3]{2}} g(x) dx$, **c**) $h(x) = (4x^2 + 17x + 9) e^x$, $\int_{-\frac{9}{4}}^0 h(x) dx$, **d**) $k(x) = \frac{1}{1 + 49x^2}$, $\int_0^1 k(x) dx$.

Soluzione:

a) Si ha, integrando per parti, e ponendo $f'(x) = \sin(11x)$, da cui $f(x) = -\frac{\cos(11x)}{11}$ e g(x) = x, da cui g'(x) = 1,

$$\int x \sin(11 x) = -\frac{x \cos(11 x)}{11} + \int 1 \cdot \frac{\cos(11 x)}{11} dx = -\frac{x \cos(11 x)}{11} + \frac{\sin(11 x)}{121} + c.$$

Pertanto,

$$\int_0^{5\pi} x \sin(11x) dx = -\frac{x \cos(11x)}{11} + \frac{\sin(11x)}{121} \Big|_0^{5\pi} = -\frac{5\pi \cos(55\pi)}{11} = \frac{5}{11}\pi.$$

b) Si ha, con la sostituzione $y = 7x^3$, da cui $dy = 21x^2 dx$ (e quindi $x^2 dx = \frac{dy}{21}$),

$$\int x^2 e^{7x^3} dx = \frac{1}{21} \int e^y dy = \frac{e^y}{21} + c = \frac{e^{7x^3}}{21} + c,$$

da cui segue che

$$\int_0^{\sqrt[3]{2}} x^2 e^{7x^3} dx = \frac{e^{7x^3}}{21} \Big|_0^{\sqrt[3]{2}} = \frac{e^{14} - 1}{21}.$$

c) Ricordiamo che se $P_2(x)$ è un polinomio di grado 2, allora

$$\int P_2(x) e^x dx = Q_2(x) e^x,$$

con $Q_2(x)$ un polinomio di grado 2 tale che $Q_2(x) + Q_2'(x) = P_2(x)$. Pertanto, se $Q_2(x) = a x^2 + b x + c$, deve essere

$$Q_2(x) + Q'_2(x) = a x^2 + (2a + b) x + b + c = 4x^2 + 17x + 9.$$

Da questa relazione si ricava $a=4,\,2a+b=17$ e b+c=9; risolvendo, si trova $a=4,\,b=9$ e c=0. Pertanto,

$$\int (4x^2 + 17x + 9) e^x dx = (4x^2 + 9x) e^x + c,$$

da cui segue che

$$\int_{-\frac{9}{4}}^{0} (4x^2 + 17x + 9) e^x dx = (4x^2 + 9x) e^x \Big|_{-\frac{9}{4}}^{0} = 0.$$

d) Si ha, con la sostituzione y = 7x, da cui $dx = \frac{dy}{7}$,

$$\int \frac{dx}{1+49x^2} = \frac{1}{7} \int \frac{dy}{1+y^2} = \frac{\arctan(y)}{7} + c = \frac{\arctan(7x)}{7} + c.$$

Pertanto,

$$\int_0^1 \frac{dx}{1+49x^2} = \frac{\arctan(7x)}{7} \Big|_0^1 = \frac{\arctan(7)}{7}.$$

6) Sia

$$F(t) = \int_0^t [3e^{x^2} + 6] dx.$$

- a) Dimostrare che F(t) è derivabile per ogni t in \mathbb{R} .
- **b)** Calcolare F(0) e $F'(\sqrt{5})$.
- c) Dimostrare che F(t) è una funzione crescente e dispari.
- d) Dimostrare che

$$\lim_{t \to +\infty} F(t) = +\infty.$$

Soluzione:

a) La funzione $f(x) = 3e^{x^2} + 6$ è continua su \mathbb{R} . Pertanto, per il teorema fondamentale del calcolo integrale, la funzione F(t) è derivabile per ogni t in \mathbb{R} e si ha

(1)
$$F'(t) = f(t) = 3e^{t^2} + 6, \quad \forall t \in \mathbb{R}.$$

b) Si ha

$$F(0) = \int_0^0 \left[3 e^{x^2} + 6 \right] dx = 0,$$

e, per la (1),

$$F'(\sqrt{5}) = f(\sqrt{5}) = 3e^5 + 6.$$

c) Dato che per la (1) la derivata di F(t) è positiva, la funzione F(t) è crescente. Inoltre, dato che la funzione f(x) è pari, la funzione F(t) è dispari. Infatti, con la sostituzione x=-y, da cui dx=-dy,

$$F(-t) = \int_0^{-t} \left[3 e^{x^2} + 6 \right] dx = -\int_0^t \left[3 e^{(-y)^2} + 6 \right] dy = -\int_0^t \left[3 e^{y^2} + 6 \right] dy = -F(t).$$

d) Si ha, se $t \ge 0$, e dato che $f(x) \ge 6$,

$$F(t) = \int_0^t \left[3 e^{x^2} + 6 \right] dx \ge \int_0^t 6 dx = 6 t,$$

da cui segue che (si noti che il limite di F(t) esiste perché F(t) è crescente)

$$\lim_{t \to +\infty} F(t) \ge \lim_{t \to +\infty} 6t = +\infty.$$