Московский государственный технический университет имени Н.Э.Баумана

Кафедра «Системы обработки информации и управления»

ОТЧЕТ

по домашнему заданию по курсу «Методы машинного обучения»

Исполнитель: Гунькин М.А. группа ИУ5-21М

Проверил: Гапанюк Ю.Е.

Задание

Домашнее задание по дисциплине направлено на решение комплексной задачи машинного обучения. Домашнее задание включает выполнение следующих шагов:

- 1. Поиск и выбор набора данных для построения моделей машинного обучения. На основе выбранного набора данных студент должен построить модели машинного обучения для решения или задачи классификации, или задачи регрессии.
- 2. Проведение разведочного анализа данных. Построение графиков, необходимых для понимания структуры данных. Анализ и заполнение пропусков в данных.
- 3. Выбор признаков, подходящих для построения моделей. Кодирование категориальных признаков. Масштабирование данных. Формирование вспомогательных признаков, улучшающих качество моделей.
- 4. Проведение корреляционного анализа данных. Формирование промежуточных выводов о возможности построения моделей машинного обучения. В зависимости от набора данных, порядок выполнения пунктов 2, 3, 4 может быть изменен.
- 5. Выбор метрик для последующей оценки качества моделей. Необходимо выбрать не менее двух метрик и обосновать выбор.
- 6. Выбор наиболее подходящих моделей для решения задачи классификации или регрессии. Необходимо использовать не менее трех моделей, хотя бы одна из которых должна быть ансамблевой.
- 7. Формирование обучающей и тестовой выборок на основе исходного набора данных.
- 8. Построение базового решения (baseline) для выбранных моделей без подбора гиперпараметров. Производится обучение моделей на основе обучающей выборки и оценка качества моделей на основе тестовой выборки.
- 9. Подбор гиперпараметров для выбранных моделей. Рекомендуется подбирать не более 1-2 гиперпараметров. Рекомендуется использовать методы кросс-валидации. В зависимости от используемой библиотеки можно применять функцию GridSearchCV, использовать перебор параметров в цикле, или использовать другие методы.
- 10. Повторение пункта 8 для найденных оптимальных значений гиперпараметров. Сравнение качества полученных моделей с качеством baseline-моделей.
- 11. Формирование выводов о качестве построенных моделей на основе выбранных метрик.

Решение

In [2]:

import numpy as np

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

from sklearn.preprocessing import MinMaxScaler

from sklearn.linear_model import LinearRegression, LogisticRegression from sklearn.model_selection import train_test_split

from sklearn.neighbors import KNeighborsRegressor, KNeighborsClassifier **from sklearn.metrics import** accuracy_score, balanced_accuracy_score

from sklearn.metrics import precision_score, recall_score, fl_score, classificat ion_report

from sklearn.metrics import confusion_matrix

from sklearn.metrics import plot_confusion_matrix from

sklearn.model_selection import GridSearchCV

from sklearn.metrics import mean_absolute_error, mean_squared_error, mean_square d_log_error, median_absolute_error, r2_score

from sklearn.metrics import roc_curve, roc_auc_score

from sklearn.svm import SVC, NuSVC, LinearSVC, OneClassSVM, SVR, NuSVR, LinearSV R

from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor, export_g raphviz

from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor **from sklearn.ensemble import** ExtraTreesClassifier, ExtraTreesRegressor

from sklearn.ensemble import GradientBoostingClassifier, GradientBoostingRegress or from sklearn.utils import shuffle

!pip install gmdhpy

from gmdhpy import gmdh

% matplotlib inline

sns.set(style="ticks")

1. Поиск и выбор набора данных для построения моделей машинного обучения. На основе выбранного набора данных построение модели машинного обучения для решения или задачи регрессии.

В качестве набора данных возьмем набор с данными о песнях и их характеристиках.

Набор содержит такие колонки как:

- song_name название песни
- song_popularity индекс популярности песни
- song_duration_ms длительность в мс
- acousticness индекс акустики
- danceability индекс танцевальности
- energy индекс энергичности
- instrumentalness индекс инструментальности
- key ключ
- liveness индекс живости
- loudness индекс громкости
- audio_mode режим аудио
- speechiness индекс разговорности
- tempo темп
- time_signature временная метка
- audio_valence

Поставим задачу предсказания популярности песни по данным характеристикам. Построим модель машинного обучения для данного набора и решим задачу регрессии.

2. Проведение разведочного анализа данных. Построение графиков, необходимых для понимания структуры данных. Анализ и заполнение пропусков в данных.

In [4]:

data = pd.read_csv('data/song_data.csv', sep=',')
data.head()

Out[4]:

	song_name	song_popularity	song_duration_ms	acousticness	danceability	energy
0	Boulevard of Broken Dreams	73	262333	0.005520	0.496	0.682
1	In The End	66	216933	0.010300	0.542	0.853
2	Seven Nation Army	76	5 231733	0.008170	0.737	0.463
3	By The Way	74	216933	0.026400	0.451	0.970
4	How You Remind Me	56	223826	0.000954	0.447	0.766

In [5]:

data.shape

Out[5]:

(18835, 15)

In [6]:

data.columns

Out[6]:

In [7]:

data.isnull().sum()

Out[7]:

song_name	0
song_popularity	0
song_duration_ms	0
acousticness	0
danceability	0
energy	0
instrumentalness	0
key	0
liveness	0
loudness	0
audio_mode	0
speechiness	0
tempo	0
time_signature	0
audio_valence	0
dtype: int64	

In [9]:

data.dtypes

Out[9]:

song_name	object
song_popularity	int64
song_duration_ms	int64
acousticness	float64
danceability	float64
energy	float64
instrumentalness	float64
key	int64
liveness	float64
loudness	float64
audio_mode	int64
speechiness	float64
tempo	float64
time_signature	int64
audio_valence	float64
dtype: object	

In [10]:

data.describe()

Out[10]:

	song_popularity	song_duration_	ms acousticness	danceability	energy
count	18835.000000	1.883500e+04	18835.000000	18835.000000	18835.000000
mean	52.991877	2.182116e+05	0.258539	0.633348	0.644995
std	21.905654	5.988754e+04	0.288719	0.156723	0.214101
min	0.000000	1.200000e+04	0.000001	0.000000	0.001070
25%	40.000000	1.843395e+05	0.024100	0.533000	0.510000
50%	56.000000	2.113060e+05	0.132000	0.645000	0.674000
75%	69.000000	2.428440e+05	0.424000	0.748000	0.815000
max	100.000000	1.799346e+06	0.996000	0.987000	0.999000

In [14]:

sns.pairplot(data)

Out[14]:

<seaborn.axisgrid.PairGrid at 0x7fbd3ff7a7d0>

Видим, что наиболее заметна корреляция таких характеристик как громкость и энергичность. В остальных случаях зависимости не такие очевидные.

In [15]:

```
fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, x='energy', y='loudness', data=data)
```

Out[15]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fbd3467b410>

In [22]:

```
fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, x='liveness', y='energy', data=data, hue='song_popularit y')
Out[22]:
```

<matplotlib.axes._subplots.AxesSubplot at 0x7fbd32a99d90>

In [23]:

fig, ax = plt.subplots(figsize=(10,10)) sns.distplot(data['song_popularity'])

Out[23]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fbd32a23a50>

In [24]:

data.columns

Out[24]:

In [26]:

sns.violinplot(x=data[col])
plt.show()

Анализ и заполнение пропусков в данных.

Поскольку в данном наборе пустых значений нет, пропустим данный пункт.

3. Выбор признаков, подходящих для построения моделей. Кодирование категориальных признаков. Масштабирование данных. Формирование вспомогательных признаков, улучшающих качество моделей.

Кодирование категориальных признаков числовыми

In [28]:

from sklearn.preprocessing import LabelEncoder le =
 LabelEncoder()
data['song_name'] = le.fit_transform(data['song_name'])
data.dtypes

Out[28]:

song_name int64 song_popularity int64 int64 song_duration_ms float64 acousticness danceability float64 float64 energy instrumentalness float64 int64 key liveness float64 float64 loudness audio_mode int64 speechiness float64 float64 tempo time_signature int64 audio_valence float64 dtype: object

In [29]:

data.head()

Out[29]:

	song_name	song_popularity	song_duration_ms	acousticness	danceability	energy
0	1561	73	262333	0.005520	0.496	0.682
1	5541	66	216933	0.010300	0.542	0.853
2	9638	76	231733	0.008170	0.737	0.463
3	1760	74	216933	0.026400	0.451	0.970
4	4988	56	223826	0.000954	0.447	0.766

Масштабирование данных.

In [30]:

```
scale\_cols = ['song\_popularity', 'song\_duration\_ms', 'acousticness', 'danceability', 'energy', 'instrumentalness', 'key', 'liveness', 'loudness', 'audio\_mode', 'speechiness', 'tempo', 'time\_signature', 'audio\_valence']
```

In [31]:

data.columns

Out[31]:

In [32]:

```
sc1 = MinMaxScaler()
sc1_data = sc1.fit_transform(data[scale_cols])
```

In [33]:

```
# Добавим масштабированные в набор данных for i in
range(len(scale_cols)):
    col = scale_cols[i]
    new_col_name = col + '_scaled'
    data[new_col_name] = sc1_data[:,i]
```

In [34]:

data.head()

Out[34]:

song_name	song_popularity	song_duration_ms	acousticness	danceability	energy
1561	73	262333	0.005520	0.496	0.682
5541	66	216933	0.010300	0.542	0.853
9638	76	231733	0.008170	0.737	0.463
1760	74	216933	0.026400	0.451	0.970
4988	56	223826	0.000954	0.447	0.766
	1561 5541 9638 1760	1561 73 5541 66 9638 76 1760 74	1561 73 262333 5541 66 216933 9638 76 231733 1760 74 216933	1561 73 262333 0.005520 5541 66 216933 0.010300 9638 76 231733 0.008170 1760 74 216933 0.026400	1561 73 262333 0.005520 0.496 5541 66 216933 0.010300 0.542 9638 76 231733 0.008170 0.737 1760 74 216933 0.026400 0.451

5 rows × 29 columns

In [35]:

```
# Проверим, что масштабирование не повлияло на распределение данных for col in scale_cols:
        col_scaled = col + '_scaled'

fig, ax = plt.subplots(1, 2, figsize=(8,3))
        ax[0].hist(data[col], 50)
        ax[1].hist(data[col_scaled], 50)
        ax[0].title.set_text(col)
        ax[1].title.set_text(col_scaled)
        plt.show()
```


4. Проведение корреляционного анализа данных. Формирование промежуточных выводов о возможности построения моделей машинного обучения.

In [36]:

```
# Воспользуемся наличием тестовых выборок,
# включив их в корреляционную матрицу
corr_cols_1 = scale_cols
corr_cols_1
```

Out[36]:

```
['song_popularity',
    'song_duration_ms',
    'acousticness',
    'danceability',
    'energy',
    'instrumentalness',
    'key',
    'liveness',
    'loudness',
    'audio_mode',
    'speechiness',
    'tempo',
    'time_signature',
    'audio_valence']
```

In [37]:

```
scale_cols_postfix = [x+'_scaled' for x in scale_cols] corr_cols_2 =
scale_cols_postfix corr_cols_2
Out[37]:
```

['song_popularity_scaled',
 'song_duration_ms_scaled',
 'acousticness_scaled',
 'danceability_scaled',
 'energy_scaled',
 'instrumentalness_scaled',
 'key_scaled',
 'liveness_scaled',
 'loudness_scaled',
 'audio_mode_scaled',
 'speechiness_scaled',
 'tempo_scaled',
 'time_signature_scaled',
 'audio_valence_scaled']

In [38]:

```
fig, ax = plt.subplots(figsize=(10,5))
sns.heatmap(data[corr_cols_1].corr(), annot=True, fmt='.2f')
```

Out[38]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fbd31befc90>

In [39]:

```
fig, ax = plt.subplots(figsize=(10,5))
sns.heatmap(data[corr_cols_2].corr(), annot=True, fmt='.2f')
```

Out[39]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fbd31da5fd0>

- Видим, что популярность песни не сильно коррелирует с данными характеристиками. Наибольшее влияние на популярность оказывают такие признаки как танцевальность трека и громкость.
- Наибольшую корреляцию видим между громкостью и энергичностью трека, как и во 2 пункте.

5. Выбор метрик для последующей оценки качества моделей. Необходимо выбрать не менее двух метрик и обосновать выбор.

Возьмем метрики MAE, Median Absolute Error и R².

- MAE (Mean Absolute Error) это среднее абсолютное значение ошибки(среднее модуля ошибки). Данная метрика удобна, так как показывает среднюю ошибку, но при этом не так чувствительна к выбросам, как, например, MSE.
- Медиана абсолютного отклонения(Median Absolute Error) это альтернатива стандартного отклонения, но она менее чувствительна к воздействию промахов, чем среднее отклонение.
- Коэффициент детерминации, или R² покажет насколько модель соответствует или не соответствует данным.

```
class MetricLogger:
     def __init__(self):
            self.df = pd.DataFrame(
                 {'metric': pd.Series([], dtype='str'),
                 'alg': pd.Series([], dtype='str'),
                 'value': pd.Series([], dtype='float')})
     def add(self, metric, alg, value):
            Добавление значения
            # Удаление значения если оно уже было ранее добавлено
            self.df.drop(self.df['self.df['metric']==metric)&(self.df['alg']==alg)]. index, inplace = True)
            # Добавление нового значения
           temp = [{'metric':metric, 'alg':alg, 'value':value}] self.df =
            self.df.append(temp, ignore index=True)
     def get data for metric(self, metric, ascending=True):
            Формирование данных с фильтром по метрике
            temp data = self.df[self.df['metric']==metric]
            temp data 2 = temp data.sort values(by='value', ascending=ascending)
            return temp_data_2['alg'].values, temp_data_2['value'].values
     def plot(self, str_header, metric, ascending=True, figsize=(5, 5)):
            Вывод графика
            array_labels, array_metric = self.get_data_for_metric(metric, ascending)
            fig, ax1 = plt.subplots(figsize=figsize)
           pos = np.arange(len(array_metric))
            rects = ax1.barh(pos, array_metric,
                                     align='center',
                                     height=0.5,
                                     tick label=array labels)
            ax1.set_title(str_header)
            for a,b in zip(pos, array_metric):
                 plt.text(0.5, a-0.05, str(round(b,3)), color='white')
            plt.show()
```

6. Выбор наиболее подходящих моделей для решения задачи регрессии.

- Возьмем модели случайный лес и дерево решений, поскольку в проведенных экспериментах в лабораторных работах случайный лес показал себя наилучшим образом. Результаты, которые удалось получить при помощи данной модели были соспоставимы с результатами самых сильных среди протестированных ансамблевых моделей. Дерево решений так же дает хорошие результаты по сравнению с, например, линейными моделями.
- В качестве ансамблевой модели возьмем лучшую модель, полученную при выполнении 6 лабораторной работы: 'TREE+RF=>LR', то есть на первом уровне у нас будут две модели: дерево и случайный лес, а на втором уровне линейная регрессия.

7. Формирование обучающей и тестовой выборок на основе исходного набора данных.

In [42]:

data1 = shuffle(data)
data1

Out[42]:

	song_name	song_popularity	song_duration_ms	acousticness	danceability	en
5764	12054	50	204213	0.8570	0.543	0
16725	8262	33	160693	0.0027	0.700	0
5593	4559	100	214289	0.1910	0.687	0
2612	12841	63	246186	0.0133	0.546	0
2528	4667	7	231800	0.0193	0.646	0
•••						
15148	45	54	228240	0.3800	0.745	0
7191	11719	72	233028	0.2000	0.667	0
12766	1204	47	119360	0.0387	0.647	0
3779	4837	66	307200	0.2250	0.932	0
3085	12698	24	161751	0.5160	0.738	0

 $18835 \text{ rows} \times 29 \text{ columns}$

In [43]:

len(data1)

Out[43]:

18835

In [46]:

```
# На основе масштабированных данных выделим
```

обучающую и тестовую выборки

 $train_data_all = data1[:13000]$

test_data_all = data1[13001:]

train_data_all.shape, test_data_all.shape

Out[46]:

((13000, 29), (5834, 29))

In [47]:

```
data.columns
```

```
Out[47]:
```

In [159]:

```
# Выборки для задачи регресии

regr_X_train = train_data_all[task_regr_cols]

regr_X_test = test_data_all[task_regr_cols]

regr_Y_train = train_data_all['song_popularity']

regr_Y_test = test_data_all['song_popularity']

regr_X_train.shape, regr_X_test.shape, regr_Y_train.shape, regr_Y_test.shape
```

Out[160]:

```
((13000, 26), (5834, 26), (13000,), (5834,))
```

8. Построение базового решения (baseline) для выбранных моделей без подбора гиперпараметров. Производится обучение моделей на основе обучающей выборки и оценка качества моделей на основе тестовой выборки.

In [284]:

In [285]:

```
# Сохранение метрик regrMetricLogger =
MetricLogger()
```

In [286]:

```
In [287]:
for model_name, model in regr_models.items():
    regr_train_model(model_name, model, regrMetricLogger)
****************
DecisionTreeRegressor(ccp_alpha=0.0, criterion='mse', max_depth=10,
                         max_features=None, max_leaf_nodes=None,
                         min_impurity_decrease=0.0, min_impurity_split=
None,
                         min_samples_leaf=1, min_samples_split=2,
                         min_weight_fraction_leaf=0.0, presort='depreca
ted',
                         random_state=None, splitter='best')
MAE=16.609, MedAE=13.63, R2=0.034
*****************
********************
RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='ms e',
                                        max_depth=10, max_features='auto', max_leaf_no
des=None,
                         max_samples=None, min_impurity_decrease=0.0,
                         min_impurity_split=None, min_samples_leaf=1,
                         min_samples_split=2, min_weight_fraction_leaf=
0.0,
                         n_estimators=30, n_jobs=None, oob_score=False,
                         random state=None, verbose=0, warm start=Fals
e)
MAE=15.211, MedAE=12.932, R2=0.222
*****************
```

Ансамблевая модель

In [335]:

```
from heamy.estimator import Regressor
from heamy.pipeline import ModelsPipeline
from heamy.dataset import Dataset
# набор данных
dataset = Dataset(regr_X_train, regr_Y_train, regr_X_test)
# Возьмем лучшую модель: 'TREE+RF=>LR'
# модели первого уровня
model_tree = Regressor(dataset=dataset, estimator=DecisionTreeRegressor, paramet ers={'max_depth':10},name='tree')
model_lr = Regressor(dataset=dataset, estimator=LinearRegression, name='lr') model_rf = Regressor(dataset=dataset,
estimator=RandomForestRegressor, parameter s={'max_depth':10},name='rf')
# Первый уровень - две модели: дерево и случайный лес
# Второй уровень: линейная регрессия
pipeline = ModelsPipeline(model tree, model rf)
stack_ds = pipeline.stack(k=10, seed=1)
# модель второго уровня
stacker = Regressor(dataset=stack_ds, estimator=LinearRegression)
results = stacker.validate(k=10,scorer=mean absolute error)
print()
results = stacker.validate(k=10,scorer=median absolute error)
Metric: mean_absolute_error
Folds
        accuracy: [14.89643993242869, 15.616762658202559,
                                                                     14.972788489
15.222334189473978,
                        15.080414157836218,
                                               14.75906546781935,
                                                                           5.05850462402728,
15.044001090351392, 14.8316297901197, 15.548169842 3900331
Mean accuracy: 15.103011024214249
Standard Deviation: 0.2709048887355547
Variance: 0.07338945874082325
Metric: median_absolute_error
Folds
        accuracy:
                    [12.277784575440783,
                                             13.328390040154055.
                                                                     12.16766382
                                                                                    3524233.
12.946816156161724,
                                                                         12.78946051322334,
                         13.11487250948803,
                                                 12.111798154068914,
```

Mean accuracy: 12.777266801123577 Standard Deviation: 0.4177398537009336

Variance: 0.1745065853700774

9. Подбор гиперпараметров для выбранных моделей.

13.216714632887722, 12.85310829872179, 12.9660593 07565189]

Случайный лес

In [173]:

$RandomForestRegressor().get_params()$

Out[173]:

```
{'bootstrap': True,
 'ccp_alpha': 0.0,
 'criterion': 'mse',
 'max_depth': None,
 'max_features': 'auto',
 'max_leaf_nodes': None,
 'max_samples': None,
 'min_impurity_decrease': 0.0,
 'min_impurity_split': None,
 'min_samples_leaf': 1,
 'min_samples_split': 2,
 'min_weight_fraction_leaf': 0.0,
 'n_estimators': 100,
 'n_jobs': None,
 'oob_score': False,
 'random_state': None,
 'verbose': 0,
 'warm_start': False}
```

In [297]:

```
n_range = np.array(range(0,50,5))
tuned_parameters = [{'max_depth': n_range}] tuned_parameters
Out[297]:
```

[{'max_depth': array([0, 5, 10, 15, 20, 25, 30, 35, 40, 45])}]

In [298]:

%%time

 $rf_gs = GridSearchCV(RandomForestRegressor(), tuned_parameters, cv=5, scoring='n\ eg_mean_squared_error') \\ rf_gs.fit(regr_X_train, regr_Y_train)$

/home/lisobol/tensorflow_env/my_tensorflow/lib/python3.7/site-packag es/sklearn/model_selection/_validation.py:536: FitFailedWarning: Est imator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: ValueError: max_depth must be greater than zero.

FitFailedWarning)

/home/lisobol/tensorflow_env/my_tensorflow/lib/python3.7/site-packag es/sklearn/model_selection/_validation.py:536: FitFailedWarning: Est imator fit failed. The score on this train-test partition for these parameters will be set to nan. Details:

ValueError: max_depth must be greater than zero.

FitFailedWarning)

/home/lisobol/tensorflow_env/my_tensorflow/lib/python3.7/site-packag es/sklearn/model_selection/_validation.py:536: FitFailedWarning: Est imator fit failed. The score on this train-test partition for these parameters will be set to nan. Details:

ValueError: max_depth must be greater than zero.

FitFailedWarning)

/home/lisobol/tensorflow_env/my_tensorflow/lib/python3.7/site-packag es/sklearn/model_selection/_validation.py:536: FitFailedWarning: Est imator fit failed. The score on this train-test partition for these parameters will be set to nan. Details:

ValueError: max_depth must be greater than zero.

FitFailedWarning)

/home/lisobol/tensorflow_env/my_tensorflow/lib/python3.7/site-packag es/sklearn/model_selection/_validation.py:536: FitFailedWarning: Est imator fit failed. The score on this train-test partition for these parameters will be set to nan. Details:

ValueError: max_depth must be greater than zero.

FitFailedWarning)

CPU times: user 15min 41s, sys: 1.08 s, total: 15min 42s

Wall time: 15min 44s

Out[298]:

```
GridSearchCV(cv=5, error score=nan, estimator=RandomForestRegressor(bootstrap=True, ccp_alp
ha=0.0,
                                                                         criterion='mse', max_de
pth=None,
                                                               max_features='auto',
                                                               max_leaf_nodes=None,
                                                               max_samples=None,
                                                               min_impurity_decrease=
0.0,
                                                               min_impurity_split=Non
e,
                                                               min_samples_leaf=1,
                                                               min_samples_split=2,
                                                               min_weight_fraction_lea
f=0.0,
                                                                        n_estimators=100, n_job
s=None,
                                                                       oob_score=False, random
_state=None,
                                                                       verbose=0, warm start=F
alse),
                  iid='deprecated', n jobs=None,
                  param_grid=[{'max_depth': array([0, 5, 10, 15, 20, 2 5, 30, 35, 40, 45])}],
                              pre_dispatch='2*n_jobs', refit=True, return_train_score
=False,
                  scoring='neg_mean_squared_error', verbose=0)
In [299]:
# Лучшая модель
rf_gs.best_estimator_
Out[299]:
RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='ms e',
                                                max_depth=40, max_features='auto', max_leaf_no
des=None,
                              max_samples=None, min_impurity_decrease=0.0,
                              min_impurity_split=None, min_samples_leaf=1,
                              min_samples_split=2, min_weight_fraction_leaf=
0.0,
                              n_estimators=100, n_jobs=None, oob_score=Fals
e,
                              random_state=None, verbose=0, warm_start=Fals
e)
In [300]:
# Лучшее значение параметров
rf_gs.best_params_
```

Out[300]:

{'max_depth': 40}

In [301]:

Изменение качества на тестовой выборке в зависимости от K-соседей plt.plot(n_range, rf_gs.cv_results_['mean_test_score'])

Out[301]:

[<matplotlib.lines.Line2D at 0x7fbd32307e10>]

Дерево

In [204]:

DecisionTreeRegressor().get_params()

Out[204]:

```
{'ccp_alpha': 0.0,
    'criterion': 'mse',
    'max_depth': None,
    'max_features': None,
    'max_leaf_nodes': None,
    'min_impurity_decrease': 0.0,
    'min_impurity_split': None,
    'min_samples_leaf': 1,
    'min_samples_split': 2,
    'min_weight_fraction_leaf': 0.0,
    'presort': 'deprecated',
    'random_state': None,
    'splitter': 'best'}
```

In [292]:

```
n_range = np.array(range(0,50,5))

tuned_parameters = [{'max_depth': n_range}] tuned_parameters

Out[292]:
```

[{'max_depth': array([0, 5, 10, 15, 20, 25, 30, 35, 40, 45])}]

In [293]:

%%time

$$\label{eq:control_def} \begin{split} dt_gs = GridSearchCV(DecisionTreeRegressor(), tuned_parameters, cv=5, scoring='n\ eg_mean_squared_error') \\ dt_gs.fit(regr_X_train, regr_Y_train) \end{split}$$

/home/lisobol/tensorflow_env/my_tensorflow/lib/python3.7/site-packag es/sklearn/model_selection/_validation.py:536: FitFailedWarning: Est imator fit failed. The score on this train-test partition for these parameters will be set to nan. Details: ValueError: max_depth must be greater than zero.

FitFailedWarning)

/home/lisobol/tensorflow_env/my_tensorflow/lib/python3.7/site-packag es/sklearn/model_selection/_validation.py:536: FitFailedWarning: Est imator fit failed. The score on this train-test partition for these parameters will be set to nan. Details:

ValueError: max_depth must be greater than zero.

FitFailedWarning)

/home/lisobol/tensorflow_env/my_tensorflow/lib/python3.7/site-packag es/sklearn/model_selection/_validation.py:536: FitFailedWarning: Est imator fit failed. The score on this train-test partition for these parameters will be set to nan. Details:

ValueError: max_depth must be greater than zero.

FitFailedWarning)

/home/lisobol/tensorflow_env/my_tensorflow/lib/python3.7/site-packag es/sklearn/model_selection/_validation.py:536: FitFailedWarning: Est imator fit failed. The score on this train-test partition for these parameters will be set to nan. Details:

ValueError: max_depth must be greater than zero.

FitFailedWarning)

/home/lisobol/tensorflow_env/my_tensorflow/lib/python3.7/site-packag es/sklearn/model_selection/_validation.py:536: FitFailedWarning: Est imator fit failed. The score on this train-test partition for these parameters will be set to nan. Details:

ValueError: max_depth must be greater than zero.

FitFailedWarning)

CPU times: user 15.1 s, sys: 4.24 ms, total: 15.1 s

Wall time: 15.2 s

Out[293]:

GridSearchCV(cv=5, error_score=nan, estimator=DecisionTreeRegressor(ccp_alpha=0.0, criterio n='mse', max_depth=None, max_fea tures=None, max_leaf_nodes=None, min_impurity_decrease= 0.0, min_impurity_split=Non e, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_lea f=0.0,presort='deprecated', random_state=None, splitter='best'), iid='deprecated', n_jobs=None, param_grid=[{'max_depth': array([0, 5, 10, 15, 20, 2 5, 30, 35, 40, 45])}], pre_dispatch='2*n_jobs', refit=True, return_train_score =False, scoring='neg_mean_squared_error', verbose=0) In [294]: # Лучшая модель dt_gs.best_estimator_ Out[294]: DecisionTreeRegressor(ccp_alpha=0.0, criterion='mse', max_depth=5, max features=None, max leaf nodes=None, min_impurity_decrease=0.0, min_impurity_split= None,

min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, presort='depreca

random_state=None, splitter='best')

In [295]:

ted',

Лучшее значение параметров dt_gs.best_params_

Out[295]:

{'max_depth': 5}

In [296]:

```
# Изменение качества на тестовой выборке
plt.plot(n_range, dt_gs.cv_results_['mean_test_score'])
```

Out[296]:

[<matplotlib.lines.Line2D at 0x7fbd31789410>]

Ансамблевая модель

Поскольку параметры для случайного леса и дерева уже подобрали, то воспользуемся ими, а так же попробуем подобрать еще 2 параметра для данных моделей.

Decision tree

In [310]:

```
n_range = [0, 0.5, 1, 1.5, 2, 2.5, 3]
tuned_parameters = [{'min_impurity_split': n_range}] tuned_parameters
Out[310]:
```

[{'min_impurity_split': [0, 0.5, 1, 1.5, 2, 2.5, 3]}]

In [320]:

%%time

/home/lisobol/tensorflow_env/my_tensorflow/lib/python3.7/site-packag es/sklearn/tree/_classes.py:301: FutureWarning: The min_impurity_spl it parameter is deprecated. Its default value will change from 1e-7 to 0 in version 0.23, and it will be removed in 0.25. Use the min_im purity_decrease parameter instead.

FutureWarning)

/home/lisobol/tensorflow_env/my_tensorflow/lib/python3.7/site-packag es/sklearn/tree/_classes.py:301: FutureWarning: The min_impurity_spl it parameter is deprecated. Its default value will change from 1e-7 to 0 in version 0.23, and it will be removed in 0.25. Use the min_im purity_decrease parameter instead.

FutureWarning)

/home/lisobol/tensorflow_env/my_tensorflow/lib/python3.7/site-packag es/sklearn/tree/_classes.py:301: FutureWarning: The min_impurity_spl it parameter is deprecated. Its default value will change from 1e-7 to 0 in version 0.23, and it will be removed in 0.25. Use the min_im purity_decrease parameter instead.

FutureWarning)

/home/lisobol/tensorflow_env/my_tensorflow/lib/python3.7/site-packag es/sklearn/tree/_classes.py:301: FutureWarning: The min_impurity_spl it parameter is deprecated. Its default value will change from 1e-7 to 0 in version 0.23, and it will be removed in 0.25. Use the min_im purity_decrease parameter instead.

FutureWarning)

/home/lisobol/tensorflow_env/my_tensorflow/lib/python3.7/site-packag es/sklearn/tree/_classes.py:301: FutureWarning: The min_impurity_spl it parameter is deprecated. Its default value will change from 1e-7 to 0 in version 0.23, and it will be removed in 0.25. Use the min_im purity_decrease parameter instead.

FutureWarning)

/home/lisobol/tensorflow_env/my_tensorflow/lib/python3.7/site-packag es/sklearn/tree/_classes.py:301: FutureWarning: The min_impurity_spl it parameter is deprecated. Its default value will change from 1e-7 to 0 in version 0.23, and it will be removed in 0.25. Use the min_im purity_decrease parameter instead.

FutureWarning)

/home/lisobol/tensorflow_env/my_tensorflow/lib/python3.7/site-packag es/sklearn/tree/_classes.py:301: FutureWarning: The min_impurity_spl it parameter is deprecated. Its default value will change from 1e-7 to 0 in version 0.23, and it will be removed in 0.25. Use the min_im purity_decrease parameter instead.

FutureWarning)

/home/lisobol/tensorflow_env/my_tensorflow/lib/python3.7/site-packag es/sklearn/tree/_classes.py:301: FutureWarning: The min_impurity_spl it parameter is deprecated. Its default value will change from 1e-7 to 0 in version 0.23, and it will be removed in 0.25. Use the min_im purity_decrease parameter instead.

FutureWarning)

/home/lisobol/tensorflow_env/my_tensorflow/lib/python3.7/site-packag es/sklearn/tree/_classes.py:301: FutureWarning: The min_impurity_spl it parameter is deprecated. Its default value will change from 1e-7 to 0 in version 0.23, and it will be removed in 0.25. Use the min_im purity_decrease parameter instead.

FutureWarning)

/home/lisobol/tensorflow_env/my_tensorflow/lib/python3.7/site-packag es/sklearn/tree/_classes.py:301: FutureWarning: The min_impurity_spl it parameter is deprecated. Its default value will change from 1e-7 to 0 in version 0.23, and it will be removed in 0.25. Use the min_im purity_decrease parameter instead.

FutureWarning)

/home/lisobol/tensorflow_env/my_tensorflow/lib/python3.7/site-packag

es/sklearn/tree/_classes.py:301: FutureWarning: The min_impurity_spl it parameter is deprecated. Its default value will change from 1e-7 to 0 in version 0.23, and it will be removed in 0.25. Use the min_im purity_decrease parameter instead.

FutureWarning)

/home/lisobol/tensorflow_env/my_tensorflow/lib/python3.7/site-packag es/sklearn/tree/_classes.py:301: FutureWarning: The min_impurity_spl it parameter is deprecated. Its default value will change from 1e-7 to 0 in version 0.23, and it will be removed in 0.25. Use the min_im purity_decrease parameter instead.

FutureWarning)

/home/lisobol/tensorflow_env/my_tensorflow/lib/python3.7/site-packag es/sklearn/tree/_classes.py:301: FutureWarning: The min_impurity_spl it parameter is deprecated. Its default value will change from 1e-7 to 0 in version 0.23, and it will be removed in 0.25. Use the min_im purity_decrease parameter instead.

FutureWarning)

/home/lisobol/tensorflow_env/my_tensorflow/lib/python3.7/site-packag es/sklearn/tree/_classes.py:301: FutureWarning: The min_impurity_spl it parameter is deprecated. Its default value will change from 1e-7 to 0 in version 0.23, and it will be removed in 0.25. Use the min_im purity_decrease parameter instead.

FutureWarning)

/home/lisobol/tensorflow_env/my_tensorflow/lib/python3.7/site-packag es/sklearn/tree/_classes.py:301: FutureWarning: The min_impurity_spl it parameter is deprecated. Its default value will change from 1e-7 to 0 in version 0.23, and it will be removed in 0.25. Use the min_im purity_decrease parameter instead.

FutureWarning)

/home/lisobol/tensorflow_env/my_tensorflow/lib/python3.7/site-packag es/sklearn/tree/_classes.py:301: FutureWarning: The min_impurity_spl it parameter is deprecated. Its default value will change from 1e-7 to 0 in version 0.23, and it will be removed in 0.25. Use the min_im purity_decrease parameter instead.

FutureWarning)

/home/lisobol/tensorflow_env/my_tensorflow/lib/python3.7/site-packag es/sklearn/tree/_classes.py:301: FutureWarning: The min_impurity_spl it parameter is deprecated. Its default value will change from 1e-7 to 0 in version 0.23, and it will be removed in 0.25. Use the min_im purity_decrease parameter instead.

FutureWarning)

/home/lisobol/tensorflow_env/my_tensorflow/lib/python3.7/site-packag es/sklearn/tree/_classes.py:301: FutureWarning: The min_impurity_spl it parameter is deprecated. Its default value will change from 1e-7 to 0 in version 0.23, and it will be removed in 0.25. Use the min_im purity_decrease parameter instead.

FutureWarning)

/home/lisobol/tensorflow_env/my_tensorflow/lib/python3.7/site-packag es/sklearn/tree/_classes.py:301: FutureWarning: The min_impurity_spl it parameter is deprecated. Its default value will change from 1e-7 to 0 in version 0.23, and it will be removed in 0.25. Use the min_im purity_decrease parameter instead.

FutureWarning)

/home/lisobol/tensorflow_env/my_tensorflow/lib/python3.7/site-packag es/sklearn/tree/_classes.py:301: FutureWarning: The min_impurity_spl it parameter is deprecated. Its default value will change from 1e-7 to 0 in version 0.23, and it will be removed in 0.25. Use the min_im purity_decrease parameter instead.

FutureWarning)

/home/lisobol/tensorflow_env/my_tensorflow/lib/python3.7/site-packag es/sklearn/tree/_classes.py:301: FutureWarning: The min_impurity_spl

it parameter is deprecated. Its default value will change from 1e-7 to 0 in version 0.23, and it will be removed in 0.25. Use the min_im purity_decrease parameter instead.

FutureWarning)

/home/lisobol/tensorflow_env/my_tensorflow/lib/python3.7/site-packag es/sklearn/tree/_classes.py:301: FutureWarning: The min_impurity_spl it parameter is deprecated. Its default value will change from 1e-7 to 0 in version 0.23, and it will be removed in 0.25. Use the min_im purity_decrease parameter instead.

FutureWarning)

/home/lisobol/tensorflow_env/my_tensorflow/lib/python3.7/site-packag es/sklearn/tree/_classes.py:301: FutureWarning: The min_impurity_spl it parameter is deprecated. Its default value will change from 1e-7 to 0 in version 0.23, and it will be removed in 0.25. Use the min_im purity_decrease parameter instead.

FutureWarning)

/home/lisobol/tensorflow_env/my_tensorflow/lib/python3.7/site-packag es/sklearn/tree/_classes.py:301: FutureWarning: The min_impurity_spl it parameter is deprecated. Its default value will change from 1e-7 to 0 in version 0.23, and it will be removed in 0.25. Use the min_im purity_decrease parameter instead.

FutureWarning)

/home/lisobol/tensorflow_env/my_tensorflow/lib/python3.7/site-packag es/sklearn/tree/_classes.py:301: FutureWarning: The min_impurity_spl it parameter is deprecated. Its default value will change from 1e-7 to 0 in version 0.23, and it will be removed in 0.25. Use the min_im purity_decrease parameter instead.

FutureWarning)

/home/lisobol/tensorflow_env/my_tensorflow/lib/python3.7/site-packag es/sklearn/tree/_classes.py:301: FutureWarning: The min_impurity_spl it parameter is deprecated. Its default value will change from 1e-7 to 0 in version 0.23, and it will be removed in 0.25. Use the min_im purity_decrease parameter instead.

FutureWarning)

/home/lisobol/tensorflow_env/my_tensorflow/lib/python3.7/site-packag es/sklearn/tree/_classes.py:301: FutureWarning: The min_impurity_spl it parameter is deprecated. Its default value will change from 1e-7 to 0 in version 0.23, and it will be removed in 0.25. Use the min_im purity_decrease parameter instead.

FutureWarning)

/home/lisobol/tensorflow_env/my_tensorflow/lib/python3.7/site-packag es/sklearn/tree/_classes.py:301: FutureWarning: The min_impurity_spl it parameter is deprecated. Its default value will change from 1e-7 to 0 in version 0.23, and it will be removed in 0.25. Use the min_im purity_decrease parameter instead.

FutureWarning)

/home/lisobol/tensorflow_env/my_tensorflow/lib/python3.7/site-packag es/sklearn/tree/_classes.py:301: FutureWarning: The min_impurity_spl it parameter is deprecated. Its default value will change from 1e-7 to 0 in version 0.23, and it will be removed in 0.25. Use the min_im purity_decrease parameter instead.

FutureWarning)

/home/lisobol/tensorflow_env/my_tensorflow/lib/python3.7/site-packag es/sklearn/tree/_classes.py:301: FutureWarning: The min_impurity_spl it parameter is deprecated. Its default value will change from 1e-7 to 0 in version 0.23, and it will be removed in 0.25. Use the min_im purity_decrease parameter instead.

FutureWarning)

/home/lisobol/tensorflow_env/my_tensorflow/lib/python3.7/site-packag es/sklearn/tree/_classes.py:301: FutureWarning: The min_impurity_spl it parameter is deprecated. Its default value will change from 1e-7

to 0 in version 0.23, and it will be removed in 0.25. Use the min_im purity_decrease parameter instead.

FutureWarning)

/home/lisobol/tensorflow_env/my_tensorflow/lib/python3.7/site-packag es/sklearn/tree/_classes.py:301: FutureWarning: The min_impurity_spl it parameter is deprecated. Its default value will change from 1e-7 to 0 in version 0.23, and it will be removed in 0.25. Use the min_im purity_decrease parameter instead.

FutureWarning)

/home/lisobol/tensorflow_env/my_tensorflow/lib/python3.7/site-packag es/sklearn/tree/_classes.py:301: FutureWarning: The min_impurity_spl it parameter is deprecated. Its default value will change from 1e-7 to 0 in version 0.23, and it will be removed in 0.25. Use the min_im purity_decrease parameter instead.

FutureWarning)

/home/lisobol/tensorflow_env/my_tensorflow/lib/python3.7/site-packag es/sklearn/tree/_classes.py:301: FutureWarning: The min_impurity_spl it parameter is deprecated. Its default value will change from 1e-7 to 0 in version 0.23, and it will be removed in 0.25. Use the min_im purity_decrease parameter instead.

FutureWarning)

/home/lisobol/tensorflow_env/my_tensorflow/lib/python3.7/site-packag es/sklearn/tree/_classes.py:301: FutureWarning: The min_impurity_spl it parameter is deprecated. Its default value will change from 1e-7 to 0 in version 0.23, and it will be removed in 0.25. Use the min_im purity_decrease parameter instead.

FutureWarning)

/home/lisobol/tensorflow_env/my_tensorflow/lib/python3.7/site-packag es/sklearn/tree/_classes.py:301: FutureWarning: The min_impurity_spl it parameter is deprecated. Its default value will change from 1e-7 to 0 in version 0.23, and it will be removed in 0.25. Use the min_im purity_decrease parameter instead.

FutureWarning)

CPU times: user 14 s, sys: 4.05 ms, total: 14 s

Wall time: 14 s

Out[320]:

GridSearchCV(cv=5, error_score=nan, estimator=DecisionTreeRegressor(ccp_alpha=0.0, criterio n='mse', max_depth=None, max_fea tures=None, max_leaf_nodes=None, min_impurity_decrease= 0.0, min_impurity_split=Non e, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_lea f=0.0,presort='deprecated', random_state=None, splitter='best'), iid='deprecated', n_jobs=None, param_grid=[{'min_impurity_split': [0, 0.5, 1, 1.5, 2, 2.5, 3]}], pre_dispatch='2*n_jobs', refit=True, return_train_score =False, scoring='neg_mean_squared_error', verbose=0) In [321]: # Лучшая модель ens_dt_gs.best_estimator_ Out[321]: DecisionTreeRegressor(ccp_alpha=0.0, criterion='mse', max_depth=Non e, max_features=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split= 1.5, min samples leaf=1, min samples split=2, min_weight_fraction_leaf=0.0, presort='depreca ted', random_state=None, splitter='best') In [322]:

Лучшее значение параметров ens_dt_gs.best_params_

Out[322]:

{'min_impurity_split': 1.5}

In [323]:

```
# Изменение качества на тестовой выборке
plt.plot(n_range, ens_dt_gs.cv_results_['mean_test_score'])
```

Out[323]:

[<matplotlib.lines.Line2D at 0x7fbd313be850>]

Random Forest

In [324]:

```
n_range = [1, 5, 10, 20, 30, 40, 50, 60]
tuned_parameters = [{'n_estimators': n_range}] tuned_parameters
Out[324]:
```

[{'n_estimators': [1, 5, 10, 20, 30, 40, 50, 60]}]

In [326]: %%time ens_rf_gs = GridSearchCV(RandomForestRegressor(), tuned_parameters, cv=5, scorin g='neg_mean_squared_error') ens_rf_gs.fit(regr_X_train, regr_Y_train) CPU times: user 4min 33s, sys: 95.4 ms, total: 4min 33s Wall time: 4min 33s Out[326]: GridSearchCV(cv=5, error score=nan, estimator=RandomForestRegressor(bootstrap=True, ccp_alp ha = 0.0, criterion='mse', max de pth=None, max_features='auto', max_leaf_nodes=None, max_samples=None, min_impurity_decrease= 0.0. min_impurity_split=Non e, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_lea f=0.0, n_estimators=100, n_job s=None, oob_score=False, random _state=None, verbose=0, warm_start=F alse), iid='deprecated', n_jobs=None, param_grid=[{'n_estimators': [1, 5, 10, 20, 30, 40, 50, 60]}], pre_dispatch='2*n_jobs', refit=True, return_train_score =False, scoring='neg_mean_squared_error', verbose=0) In [328]: # Лучшая модель ens_rf_gs.best_estimator_ Out[328]: RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='ms e', max_depth=None, max_features='auto', max_leaf_ nodes=None, max_samples=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=

0.0, n_estimators=60, n_jobs=None, oob_score=False, random_state=None, verbose=0, warm_start=Fals e)

In [329]:

```
# Лучшее значение параметров
ens_rf_gs.best_params_
```

Out[329]:

{'n_estimators': 60}

In [330]:

```
# Изменение качества на тестовой выборке
plt.plot(n_range, ens_rf_gs.cv_results_['mean_test_score'])
```

Out[330]:

[<matplotlib.lines.Line2D at 0x7fbd31511f10>]

10. Повторение пункта 8 для найденных оптимальных значений гиперпараметров. Сравнение качества полученных моделей с качеством baseline-моделей.

In [289]:

In [290]:

for model_name, model **in** regr_models_grid.items(): regr_train_model(model_name, model, regrMetricLogger) ***************** DecisionTreeRegressor(ccp_alpha=0.0, criterion='mse', max_depth=Non e, max_features=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split= None, min_samples_leaf=14, min_samples_split=2, min_weight_fraction_leaf=0.0, presort='depreca ted', random_state=None, splitter='best') MAE=16.303, MedAE=13.375, R2=0.076 ***************** ***************** RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion='ms e', max_depth=None, max_features='auto', max_leaf_ nodes=None, max_samples=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf= 0.0, n_estimators=61, n_jobs=None, oob_score=False, random_state=None, verbose=0, warm_start=Fals e) MAE=12.462, MedAE=8.665, R2=0.367 *****************

Удалось немного улучшить модель дерева решений и достаточно неплохо улучшить модель случайный лес

Ансамблевый метод

In [333]:

```
# # # Возьмем лучшую модель: 'TREE+RF=>LR'
# ##модели первого уровня
model_tree = Regressor(dataset=dataset,
                                estimator=DecisionTreeRegressor,
                                parameters={'min_impurity_split':1.5,
                                               'max_depth':5},name='tree')
model_lr = Regressor(dataset=dataset,
                             estimator=LinearRegression,
                             name='lr')
model_rf = Regressor(dataset=dataset,
                             estimator=RandomForestRegressor,
                             parameters={'n_estimators': 60,
                                             'max_depth': 40},name='rf')
# Первый уровень - две модели: дерево и случайный лес
# Второй уровень: линейная регрессия
pipeline = ModelsPipeline(model_tree, model_rf)
stack_ds = pipeline.stack(k=10, seed=1)
# модель второго уровня
stacker = Regressor(dataset=stack_ds, estimator=LinearRegression)
```

In [334]:

```
results = stacker.validate(k=10,scorer=mean_absolute_error)
print()
results = stacker.validate(k=10,scorer=median_absolute_error)
```

Metric: mean_absolute_error

13.073417650626174, 12.619076791682607, 13.289157 092900757]

Mean accuracy: 12.97268221790749 Standard Deviation: 0.2042389455719696

Variance: 0.04171354688834995

Metric: median_absolute_error

Folds accuracy: [8.914441360926233, 9.787841717837992, 9.14755896948 7442, 9.635733648259986, 8.944208849177393, 9.359388721509454, 9.130 147663254334,

9.756749380193888, 9.731591020643553, 9.7452828035110 2]

Mean accuracy: 9.41529441348013 Standard Deviation: 0.3379059186286033

Variance: 0.11418040984424027

Удалось неплохо улучшить модель.

11. Формирование выводов о качестве построенных моделей на основе выбранных метрик.

In [218]:

```
# Метрики качества модели
regr_metrics = regrMetricLogger.df['metric'].unique()
regr_metrics
```

Out[218]:

array(['MAE', 'MedAE', 'R2'], dtype=object)

In [219]:

```
regrMetricLogger.plot('Mетрика: ' + 'MAE', 'MAE', ascending=False, figsize=(7, 6))
```


Ансамбль - 12.973

In [220]:

regrMetricLogger.plot('Метрика: ' + 'MedAE', 'MedAE', ascending=False, figsize=(7, 6))

Ансамбль - 9.415

In [221]:

regrMetricLogger.plot('Метрика: ' + 'R2', 'R2', ascending=**True**, figsize=(7, 6))

Вывод:

Лучше всего показала себя модель случайный лес, на втором месте - ансамблевая модель, на третьем - дерево решений. Однако в другой задаче в лабораторной работе лучше показала себя ансамблевая модель, так что в дальнейшем можно использовать обе эти модели и проверять, какая будет работать лучше для конкретной задачи.