CC81IART - Intelligence Artificielle

Cours 02 : la logique, les logiques, la programmation logique

Pierre-Alexandre FAVIER

Ecole Nationale Supérieure de Cognitique

1 Introduction

- Introduction
- La logique aristotélique

- Introduction
- 2 La logique aristotélique
- 3 La logique des propositions

- Introduction
- 2 La logique aristotélique
- 3 La logique des propositions
- La logique des prédicats

- Introduction
 - La logique
 - Les systèmes formels
- La logique aristotélique
- La logique des propositions
- La logique des prédicats

 $\lambda o \gamma o \sigma$: la parole, la raison

parole : loghorée, logotype, syllogisme. . .

 $\lambda o \gamma o \sigma$: la parole, la raison

- parole : loghorée, logotype, syllogisme. . .
- raison : analogie, logiciel, psychologie, étymologie...

 $\lambda o \gamma o \sigma$: la parole, la raison

- parole : loghorée, logotype, syllogisme. . .
- raison : analogie, logiciel, psychologie, étymologie...
- corpus : mythologie, œnologie, généalogie...

 $\lambda o \gamma o \sigma$: la parole, la raison

- parole : loghorée, logotype, syllogisme. . .
- raison : analogie, logiciel, psychologie, étymologie...
- corpus : mythologie, œnologie, généalogie...
- "abus" : scientologie, sofrologie...

• assurer la cohérence du discours / de la pensée

- assurer la cohérence du discours / de la pensée
- validité du raisonnement (pas de contradiction)

- assurer la cohérence du discours / de la pensée
- validité du raisonnement (pas de contradiction)
- vérité du propos (découverte d'énoncés vrais)

- assurer la cohérence du discours / de la pensée
- validité du raisonnement (pas de contradiction)
- vérité du propos (découverte d'énoncés vrais)
- ⇒ recherche de la vérité

- Cherchez l'intrus : qu'est-ce qui est vrai?
 - mon amour des fraises
 - mon pantalon
 - ma rencontre avec Batman

- Cherchez l'intrus : qu'est-ce qui est vrai?
 - mon amour des fraises
 - mon pantalon
 - ma rencontre avec Batman
- vérité formelle (correction de l'énoncé)

- Cherchez l'intrus : qu'est-ce qui est vrai?
 - mon amour des fraises
 - mon pantalon
 - ma rencontre avec Batman
- vérité formelle (correction de l'énoncé)
- vérité matérielle (adéquation de l'énoncé)

- Cherchez l'intrus : qu'est-ce qui est vrai ?
 - mon amour des fraises
 - mon pantalon
 - ma rencontre avec Batman
- vérité formelle (correction de l'énoncé)
- vérité matérielle (adéquation de l'énoncé)

Les deux formes étaient confondues dans l'antiquité (un énoncé correct révélait une proposition adéquate)

- Cherchez l'intrus : qu'est-ce qui est vrai ?
 - mon amour des fraises
 - mon pantalon
 - ma rencontre avec Batman
- vérité formelle (correction de l'énoncé)
- vérité matérielle (adéquation de l'énoncé)

Les deux formes étaient confondues dans l'antiquité (un énoncé correct révélait une proposition adéquate)

⇒ étude des systèmes formels

Comment définit-on des ensembles de formules ?

- Comment définit-on des ensembles de formules ?
- Comment interpréter des formules qui portent sur des formules ?

- Comment définit-on des ensembles de formules ?
- Comment interpréter des formules qui portent sur des formules?
- Comment utiliser un ensemble de formules pour prouver des vérités?

- Comment définit-on des ensembles de formules ?
- Comment interpréter des formules qui portent sur des formules?
- Comment utiliser un ensemble de formules pour prouver des vérités?
- ⇒ on ne traite que de la vérité formelle

• un langage

- un langage
 - un alphabet

- un langage
 - un alphabet
 - une syntaxe

- un langage
 - un alphabet
 - une syntaxe
- des axiomes

- un langage
 - un alphabet
 - une syntaxe
- des axiomes
- des règles

Utilisation

 Le respect de la syntaxe garantit la construction des "expressions bien formées": les formules (formellement vraies, qu'elles soient matériellement vraies ou non)

Utilisation

- Le respect de la syntaxe garantit la construction des "expressions bien formées": les formules (formellement vraies, qu'elles soient matériellement vraies ou non)
- L'exploitation des règles en combinaison avec les axiomes permet d'inférer les vérités du système formel

Le langage :

Le langage :

a est un terme

Le langage :

- a est un terme
- si t est un terme, alors S(t) est un terme

Le langage :

- a est un terme
- si t est un terme, alors S(t) est un terme

Les axiomes :

Le langage:

- a est un terme
- si t est un terme, alors S(t) est un terme

Les axiomes :

•
$$\forall x \neg (a = S(x))$$

Le langage:

- a est un terme
- si *t* est un terme, alors *S*(*t*) est un terme

Les axiomes:

•
$$\forall x \neg (a = S(x))$$

•
$$\forall x \neg (a = x) \Rightarrow \exists y (x = S(y))$$

Le langage:

- a est un terme
- si t est un terme, alors S(t) est un terme

Les axiomes :

•
$$\forall x \neg (a = S(x))$$

•
$$\forall x \neg (a = x) \Rightarrow \exists y (x = S(y))$$

Les règles :

```
Les règles :
               modus ponens:
                               si F
                               et F \Rightarrow G
                               alors G
               modus tollens:
                               si F \Rightarrow G
                               et \neg G
                               alors ¬F
               universalité:
                               si \forall x F(x)
                               alors F(t) pour tout t
```

première prémisse :

première prémisse :

premier axiome : $\forall x \neg (a = S(x))$

ENSC

```
première prémisse :
```

premier axiome : $\forall x \neg (a = S(x))$

universalité : si $\forall x \ F(x)$

alors F(t) pour tout t

ENSC

première prémisse :

```
premier axiome : \forall x \neg (a = S(x))
```

universalité : si
$$\forall x \ F(x)$$

alors
$$F(t)$$
 pour tout t

conclusion 1 :
$$\neg(a = S(a))$$

```
première prémisse :
```

premier axiome : $\forall x \neg (a = S(x))$

universalité : si $\forall x \ F(x)$

alors F(t) pour tout t

conclusion 1 : $\neg(a = S(a))$

seconde prémisse :

```
première prémisse :
```

premier axiome : $\forall x \neg (a = S(x))$

universalité : si $\forall x \ F(x)$

alors F(t) pour tout t

conclusion 1 : $\neg(a = S(a))$

seconde prémisse :

troisième axiome : $\forall xy(S(x) = S(y)) \Rightarrow x = y$

alors F(t) pour tout t

```
première prémisse :
               premier axiome : \forall x \neg (a = S(x))
               universalité : si \forall x \ F(x)
                              alors F(t) pour tout t
               conclusion 1 : \neg(a = S(a))
seconde prémisse :
               troisième axiome : \forall xy(S(x) = S(y)) \Rightarrow x = y
               universalité : si \forall x \ F(x)
                              alors F(t) pour tout t
               conclusion 2: (S(a) = S(S(a))) \Rightarrow (a = S(a))
```

conclusion:

ENSC

conclusion:

$$eg(a = S(a))$$
 $(S(a) = S(S(a))) \Rightarrow (a = S(a))$

conclusion:

```
conclusions 1 & 2 : \neg(a = S(a)) \\ (S(a) = S(S(a))) \Rightarrow (a = S(a)) modus tollens : \operatorname{si} F \Rightarrow G \\ \operatorname{et} \neg G \\ \operatorname{alors} \neg F
```

ENSC

conclusion:

conclusions 1 & 2 :
$$\neg(a=S(a)) \\ (S(a)=S(S(a))) \Rightarrow (a=S(a))$$
 modus tollens :
$$\text{si } F \Rightarrow G \\ \text{et } \neg G \\ \text{alors } \neg F$$
 CONCLUSION :
$$\neg(S(a)=S(S(a)))$$

ENSC

a dénote le zéro

- a dénote le zéro
- S(...) dénote la relation de successeur

- a dénote le zéro
- S(...) dénote la relation de successeur
- interprétation des axiomes :

- a dénote le zéro
- S(...) dénote la relation de successeur
- interprétation des axiomes :

•
$$\forall x \neg (a = S(x))$$

- a dénote le zéro
- S(...) dénote la relation de successeur
- interprétation des axiomes :
 - $\forall x \neg (a = S(x))$

•
$$\forall x \neg (a = x) \Rightarrow \exists y (x = S(y))$$

- a dénote le zéro
- S(...) dénote la relation de successeur
- interprétation des axiomes :

•
$$\forall x \neg (a = S(x))$$

•
$$\forall x \neg (a = x) \Rightarrow \exists y (x = S(y))$$

•
$$\forall xy(S(x) = S(y)) \Rightarrow x = y$$

- a dénote le zéro
- S(...) dénote la relation de successeur
- interprétation des axiomes :
 - $\forall x \neg (a = S(x))$
 - $\forall x \neg (a = x) \Rightarrow \exists y (x = S(y))$
 - $\forall xy(S(x) = S(y)) \Rightarrow x = y$
- interprétation de notre déduction :

- a dénote le zéro
- S(...) dénote la relation de successeur
- interprétation des axiomes :

•
$$\forall x \neg (a = S(x))$$

•
$$\forall x \neg (a = x) \Rightarrow \exists y (x = S(y))$$

•
$$\forall xy(S(x) = S(y)) \Rightarrow x = y$$

• interprétation de notre déduction :

•
$$\neg (S(a) = S(S(a)))$$

- a dénote le zéro
- S(...) dénote la relation de successeur
- interprétation des axiomes :

•
$$\forall x \neg (a = S(x))$$

•
$$\forall x \neg (a = x) \Rightarrow \exists y (x = S(y))$$

•
$$\forall xy(S(x) = S(y)) \Rightarrow x = y$$

interprétation de notre déduction :

•
$$\neg (S(a) = S(S(a)))$$

ENSC

- a dénote le zéro
- S(...) dénote la relation de successeur
- interprétation des axiomes :

•
$$\forall x \neg (a = S(x))$$

•
$$\forall x \neg (a = x) \Rightarrow \exists y (x = S(y))$$

•
$$\forall xy(S(x) = S(y)) \Rightarrow x = y$$

interprétation de notre déduction :

•
$$\neg (S(a) = S(S(a)))$$

 il existe des expressions bien formées que l'on ne peut pas prouver, par exemple :

$$\forall x \neg (x = S(x))$$

⇒ ce systèle formel n'est pas complet

consistance : un énoncé appartenant au langage est vrai ou faux

consistance : un énoncé appartenant au langage est vrai ou

faux

décidabilité : un énoncé vrai peut être produit en un temps fini

consistance : un énoncé appartenant au langage est vrai ou

faux

décidabilité : un énoncé vrai peut être produit en un temps fini

complétude : toute vérité du modèle peut être prouvée dans le

langage

consistance : un énoncé appartenant au langage est vrai ou faux

décidabilité : un énoncé vrai peut être produit en un temps fini

complétude : toute vérité du modèle peut être prouvée dans le

langage

adéquation : tout énoncé prouvé dans le langage est valide

dans le modèle

ENSC

on modélise ce qu'est le système (ontologie)

- on modélise ce qu'est le système (ontologie)
- pour comprendre ou expliquer

- on modélise ce qu'est le système (ontologie)
- pour comprendre ou expliquer
- ce qu'il fait (fonctionnalité)

- on modélise ce qu'est le système (ontologie)
- pour comprendre ou expliquer
- ce qu'il fait (fonctionnalité)
- et anticiper ce qu'il va devenir (génétique)

- on modélise ce qu'est le système (ontologie)
- pour comprendre ou expliquer
- ce qu'il fait (fonctionnalité)
- et anticiper ce qu'il va devenir (génétique)
- ⇒ le but est de systématiser et donc, potentiellement, d'automatiser le raisonnement

- on modélise ce qu'est le système (ontologie)
- pour comprendre ou expliquer
- ce qu'il fait (fonctionnalité)
- et anticiper ce qu'il va devenir (génétique)
- ⇒ le but est de systématiser et donc, potentiellement, d'automatiser le raisonnement
- "Nous ne raisonnons que sur des modèles " Paul Valéry

Pourquoi ne pas formaliser?

on propose toujours un modèle du concept abordé

Pourquoi ne pas formaliser?

- on propose toujours un modèle du concept abordé
- on ne travaille que sur la vérité formelle : le passage de l'interprétation syntaxique à l'interprétation sémantique pose à nouveau le problème vérité formelle / matérielle

Pourquoi ne pas formaliser?

- on propose toujours un modèle du concept abordé
- on ne travaille que sur la vérité formelle : le passage de l'interprétation syntaxique à l'interprétation sémantique pose à nouveau le problème vérité formelle / matérielle
- on se heurte au problème d'incomplétude

ENSC

Comment formaliser?

Le modèle

Le modèle

minimaliste

Le modèle

- minimaliste
- cohérent

Le modèle

- minimaliste
- cohérent

Le langage :

Le modèle

- minimaliste
- cohérent

Le langage :

simple

Le modèle

- minimaliste
- cohérent

Le langage :

- simple
- sans ambiguïté

Le modèle

- minimaliste
- cohérent

Le langage :

- simple
- sans ambiguïté
- expressif

Le modèle

- minimaliste
- cohérent

Le langage :

- simple
- sans ambiguïté
- expressif

Axiomatique:

Le modèle

- minimaliste
- cohérent

Le langage :

- simple
- sans ambiguïté
- expressif

Axiomatique:

cohérente

Le modèle

- minimaliste
- cohérent

Le langage :

- simple
- sans ambiguïté
- expressif

Axiomatique:

- cohérente
- minimale

Le modèle

- minimaliste
- cohérent

Le langage :

- simple
- sans ambiguïté
- expressif

Axiomatique:

- cohérente
- minimale
- automatisable

Plan

- Introduction
- 2 La logique aristotélique
 - Les propositions catégoriques
 - Les syllogisme logiques
- 3 La logique des propositions
- La logique des prédicats

Catégories : une analyse des éléments les plus simples des propositions

Catégories : une analyse des éléments les plus simples des

propositions

De l'interprétation : étude de la proposition

Catégories : une analyse des éléments les plus simples des

propositions

De l'interprétation : étude de la proposition

Premiers Analytiques : les règles et les formes de la

démonstration en général

Catégories : une analyse des éléments les plus simples des

propositions

De l'interprétation : étude de la proposition

Premiers Analytiques : les règles et les formes de la

démonstration en général

Seconds Analytiques : la théorie du syllogisme nécessaire

Catégories : une analyse des éléments les plus simples des

propositions

De l'interprétation : étude de la proposition

Premiers Analytiques : les règles et les formes de la

démonstration en général

Seconds Analytiques : la théorie du syllogisme nécessaire

Les Topiques : la dialectique

Catégories : une analyse des éléments les plus simples des

propositions

De l'interprétation : étude de la proposition

Premiers Analytiques : les règles et les formes de la

démonstration en général

Seconds Analytiques : la théorie du syllogisme nécessaire

Les Topiques : la dialectique

Les Réfutations Sophistiques : les principaux sophismes et

les moyens de les réfuter

sujet copule prédicat

sujet copule prédicat

Le sujet : l'objet de la proposition qui tend à le catégoriser

sujet copule prédicat

Le sujet : l'objet de la proposition qui tend à le catégoriser

Le prédicat : formule contenant une variable libre, par exemple

"X est sympa" est un prédicat unaire

sujet copule prédicat

Le sujet : l'objet de la proposition qui tend à le catégoriser

Le prédicat : formule contenant une variable libre, par exemple

"X est sympa" est un prédicat unaire

La copule : introduit un rapport double entre le sujet et le

prédicat (rapport "S est P")

sujet copule prédicat

Le sujet : l'objet de la proposition qui tend à le catégoriser

Le prédicat : formule contenant une variable libre, par exemple

"X est sympa" est un prédicat unaire

La copule : introduit un rapport double entre le sujet et le

prédicat (rapport "S est P")

compréhension : l'ensemble S possède

l'attribut P

sujet copule prédicat

Le sujet : l'objet de la proposition qui tend à le catégoriser

Le prédicat : formule contenant une variable libre, par exemple

"X est sympa" est un prédicat unaire

La copule : introduit un rapport double entre le sujet et le

prédicat (rapport "S est P")

compréhension : l'ensemble S possède

l'attribut P

extension: l'ensemble S fait partie de

l'ensemble P

Le prof d'info est sympa

Le prof d'info est sympa

Le sujet : Le prof d'info

Le prof d'info est sympa

Le sujet : Le prof d'info

Le prédicat : "X est sympa", prédicat unaire

Le prof d'info est sympa

Le sujet : Le prof d'info

Le prédicat : "X est sympa", prédicat unaire

La copule : est

Le prof d'info est sympa

Le sujet : Le prof d'info

Le prédicat : "X est sympa", prédicat unaire

La copule : est

compréhension : le prof d'info possède tous les

attributs de quelqu'un de

sympathique

Le prof d'info est sympa

Le sujet : Le prof d'info

Le prédicat : "X est sympa", prédicat unaire

La copule: est

compréhension : le prof d'info possède tous les

attributs de quelqu'un de

sympathique

extension: parmi les gens sympathiques se

trouve le prof d'info

Le prof d'info est sympa

Le sujet : Le prof d'info

Le prédicat : "X est sympa", prédicat unaire

La copule: est

compréhension : le prof d'info possède tous les

attributs de quelqu'un de

sympathique

extension: parmi les gens sympathiques se

trouve le prof d'info

Cet énoncé (proposition catégorique) est bien formé (vérité formelle), il n'est pas vrai pour autant (vérité matérielle).

 2 prémisses et une conclusion (attention : prémisses ≠ prémices)

- 2 prémisses et une conclusion (attention : prémisses ≠ prémices)
- les prémisses sont des propositions catégoriques

- 2 prémisses et une conclusion (attention : prémisses \neq prémices)
- les prémisses sont des propositions catégoriques
- la prémisse majeure met en rapport le terme majeur et le terme moyen

- 2 prémisses et une conclusion (attention : prémisses \neq prémices)
- les prémisses sont des propositions catégoriques
- la prémisse majeure met en rapport le terme majeur et le terme moyen
- la prémisse mineure met en rapport le terme mineur et le terme moyen

- 2 prémisses et une conclusion (attention : prémisses ≠ prémices)
- les prémisses sont des propositions catégoriques
- la prémisse majeure met en rapport le terme majeur et le terme moyen
- la prémisse mineure met en rapport le terme mineur et le terme moyen
- la conclusion met en rapport le terme mineur et le terme majeur

Tous les hommes sont mortels

- Tous les hommes sont mortels
- Tous les grecs sont des hommes

- Tous les hommes sont mortels
- Tous les grecs sont des hommes
- Donc, tous les grecs sont mortels

- Tous les hommes sont mortels
- Tous les grecs sont des hommes
- Donc, tous les grecs sont mortels

Paradoxe : qui peut affirmer que tous les hommes sont mortels ?

Ce raisonnement *a priori* purement déductif s'appuie sur une induction.

Les syllogismes

• le syllogisme logique

Les syllogismes

- le syllogisme logique
- le syllogisme dialectique

Les syllogismes

- le syllogisme logique
- le syllogisme dialectique
- le syllogisme sophistique

Une fois encore, un syllogisme bien formé (*concluant*) ne révèle aucune vérité matérielle, seulement une vérité formelle.

⇒ c'est un principe de formalisation du savoir, pas de découverte (≠ théorie des essences, PLATON)

Une fois encore, un syllogisme bien formé (*concluant*) ne révèle aucune vérité matérielle, seulement une vérité formelle.

- \Rightarrow c'est un principe de formalisation du savoir, pas de découverte (\neq théorie des essences, PLATON)
 - Les gros travailleurs sont bien payés

Une fois encore, un syllogisme bien formé (*concluant*) ne révèle aucune vérité matérielle, seulement une vérité formelle.

- \Rightarrow c'est un principe de formalisation du savoir, pas de découverte (\neq théorie des essences, PLATON)
 - Les gros travailleurs sont bien payés
 - Les élèves de l'IdC sont de gros travailleurs

Une fois encore, un syllogisme bien formé (*concluant*) ne révèle aucune vérité matérielle, seulement une vérité formelle.

- \Rightarrow c'est un principe de formalisation du savoir, pas de découverte (\neq théorie des essences, PLATON)
 - Les gros travailleurs sont bien payés
 - Les élèves de l'IdC sont de gros travailleurs
 - Les élèves de l'IdC sont bien payés

• une prémisse n'est pas forcément affirmative (qualité)

- une prémisse n'est pas forcément affirmative (qualité)
- une prémisse n'est pas forcément universelle (quantité)

- une prémisse n'est pas forcément affirmative (qualité)
- une prémisse n'est pas forcément universelle (quantité)
- le syllogisme logique n'est donc pas toujours une tautologie (toujours vrai) il existe des syllogismes non valides :

- une prémisse n'est pas forcément affirmative (qualité)
- une prémisse n'est pas forcément universelle (quantité)
- le syllogisme logique n'est donc pas toujours une tautologie (toujours vrai) il existe des syllogismes non valides :
 - aucun rocher n'est mortel

- une prémisse n'est pas forcément affirmative (qualité)
- une prémisse n'est pas forcément universelle (quantité)
- le syllogisme logique n'est donc pas toujours une tautologie (toujours vrai) il existe des syllogismes non valides :
 - aucun rocher n'est mortel
 - or aucun homme n'est un rocher

- une prémisse n'est pas forcément affirmative (qualité)
- une prémisse n'est pas forcément universelle (quantité)
- le syllogisme logique n'est donc pas toujours une tautologie (toujours vrai) il existe des syllogismes non valides :
 - aucun rocher n'est mortel
 - or aucun homme n'est un rocher
 - donc, aucun homme n'est mortel

A: l'universelle affirmative *Toute femme est belle*

A: l'universelle affirmative *Toute femme est belle*

E : l'universelle négative Aucune femme n'est belle

- A: l'universelle affirmative *Toute femme est belle*
- E: l'universelle négative Aucune femme n'est belle
 - I : la particulière affirmative *Quelques femmes sont* belles

- A: l'universelle affirmative *Toute femme est belle*
- E : l'universelle négative Aucune femme n'est belle
- 1 : la particulière affirmative *Quelques femmes sont* belles
- O : la particulière négative Quelques femmes ne sont pas belles

- A: l'universelle affirmative *Toute femme est belle*
- E: l'universelle négative Aucune femme n'est belle
 - la particulière affirmative Quelques femmes sont belles
- la particulière négative Quelques femmes ne sont pas belles

AffIrmo / nEgO ⇒ noms des syllogismes logiques concluants (Barbara, Celarent, Darii. . .)

Les 4 propositions catégoriques

- A: l'universelle affirmative *Toute femme est belle*
- E: l'universelle négative Aucune femme n'est belle
 - I : la particulière affirmative *Quelques femmes sont* belles
- la particulière négative Quelques femmes ne sont pas belles

AffIrmo / nEgO ⇒ noms des syllogismes logiques concluants (Barbara, Celarent, Darii...)

⇒ étude systématique des 256 syllogismes possibles pour isoler les 19 syllogismes concluants.

Plan

- Introduction
- 2 La logique aristotélique
- La logique des propositions
 - Le domaine
 - Le langage
 - L'axiomatique
- La logique des prédicats

propositions simples en langage naturel

- propositions simples en langage naturel
- logique d'ordre 0 (pas de variables libres)

- propositions simples en langage naturel
- logique d'ordre 0 (pas de variables libres)
- calcul propositionnel (déduction et démonstration)

ENSC

- propositions simples en langage naturel
- logique d'ordre 0 (pas de variables libres)
- calcul propositionnel (déduction et démonstration)

Exemple:

- propositions simples en langage naturel
- logique d'ordre 0 (pas de variables libres)
- calcul propositionnel (déduction et démonstration)

Exemple:

Si le cours est nul, alors les élèves dorment

- propositions simples en langage naturel
- logique d'ordre 0 (pas de variables libres)
- calcul propositionnel (déduction et démonstration)

Exemple:

- Si le cours est nul, alors les élèves dorment
- Donc, si les élèves écoutent, c'est que le cours est génial

- propositions simples en langage naturel
- logique d'ordre 0 (pas de variables libres)
- calcul propositionnel (déduction et démonstration)

Exemple:

- Si le cours est nul, alors les élèves dorment
- Donc, si les élèves écoutent, c'est que le cours est génial

Formalisation "intuitive":

- propositions simples en langage naturel
- logique d'ordre 0 (pas de variables libres)
- calcul propositionnel (déduction et démonstration)

Exemple:

- Si le cours est nul, alors les élèves dorment
- Donc, si les élèves écoutent, c'est que le cours est génial

Formalisation "intuitive":

 des attributs bivalents : le cours est soit nul, soit génial, un élève ne somnole pas

- propositions simples en langage naturel
- logique d'ordre 0 (pas de variables libres)
- calcul propositionnel (déduction et démonstration)

Exemple:

- Si le cours est nul, alors les élèves dorment
- Donc, si les élèves écoutent, c'est que le cours est génial

Formalisation "intuitive":

- des attributs bivalents : le cours est soit nul, soit génial, un élève ne somnole pas
- des règles : si . . . alors

- propositions simples en langage naturel
- logique d'ordre 0 (pas de variables libres)
- calcul propositionnel (déduction et démonstration)

Exemple:

- Si le cours est nul, alors les élèves dorment
- Donc, si les élèves écoutent, c'est que le cours est génial

Formalisation "intuitive":

- des attributs bivalents : le cours est soit nul, soit génial, un élève ne somnole pas
- des règles : si . . . alors
- déduction (donc) par exploitation des règles et des faits

Modèle

 logique bivalente : une proposition est vraie ou fausse, il fait jour ou nuit...

Modèle

- logique bivalente : une proposition est vraie ou fausse, il fait *jour* ou *nuit*...
- Is valeurs de vérité des termes constitutifs d'une expression bien formée permettent de déduire la valeur de vérité de cette dernière

ENSC

Vocabulaire

tautologie: expression toujours vraie (formule analytique)

ENSC

Vocabulaire

tautologie: expression toujours vraie (formule analytique) contradicion, ou antilogie: expression toujours fausse (formule analytique)

Vocabulaire

tautologie: expression toujours vraie (formule analytique)

contradicion, ou antilogie : expression toujours fausse (formule analytique)

contingence: toute expression qui n'est ni une tautologie, ni une antilogie (formule synthétique)

Langage - 1/2

Les mots:

Les mots:

• les termes atomiques (p, q, r...)

ENSC

Les mots:

- les termes atomiques (p, q, r...)
- les opérateurs (nulaires, unaires et binaires)

Les mots:

- les termes atomiques (p, q, r...)
- les opérateurs (nulaires, unaires et binaires)
 - ¬ negation
 - ∧ conjonction
 - ∨ disjonction
 - → implication
 - \leftrightarrow bi implication
 - false contradiction
 - true tautologie

Les expressions bien formées :

true

- true
- false

- true
- false
- (A ∧ B)
 (si A et B sont des ebf)

- true
- false
- (A ∧ B)
 (si A et B sont des ebf)
- ...

Les axiomes

$$\bullet \ A \rightarrow (B \rightarrow A)$$

Les axiomes

$$\bullet \ A \to (B \to A)$$

$$\bullet \ (A \to (B \to C)) \to ((A \to B) \to (A \to C))$$

Les axiomes

$$\bullet \ A \to (B \to A)$$

$$\bullet \ (A \to (B \to C)) \to ((A \to B) \to (A \to C))$$

$$\bullet \ (\neg B \to \neg A) \to (A \to B)$$

Règle

La substitution : la substitution d'une expression bien formée à une expression bien formée préserve la tautologie

Calcul propositionnel

déduction : exploitation des axiomes, des théorèmes et de la règle de substitution pour traiter de nouvelles formules (hypothèses du raisonnement)

Calcul propositionnel

déduction : exploitation des axiomes, des théorèmes et de la règle de substitution pour traiter de nouvelles formules (hypothèses du raisonnement)

démonstration : exploitation des axiomes et de la règle de substitution pour établir de nouveaux théorèmes

Les théorèmes

$$\begin{array}{ll} \textit{le tiers exclus} & \textit{A} \lor \neg \textit{A} \\ \textit{non-contradiction} & \neg (\textit{A} \land \neg \textit{A}) \\ \textit{double ngation} & \neg (\neg \textit{A}) \Leftrightarrow \textit{A} \\ \textit{De Morgan} & \neg (\textit{A} \land \textit{B}) \Leftrightarrow (\neg \textit{A} \lor \neg \textit{B}) \\ \neg (\textit{A} \lor \textit{B}) \Leftrightarrow (\neg \textit{A} \land \textit{B}) \\ \textit{contraposition} & (\textit{A} \rightarrow \textit{B}) \rightarrow (\neg \textit{B} \rightarrow \neg \textit{A}) \\ \textit{modus ponens} & ((\textit{A} \rightarrow \textit{B}) \land \textit{A}) \rightarrow \textit{B} \\ \textit{modus tollens} & ((\textit{A} \rightarrow \textit{B}) \land \neg \textit{A}) \rightarrow \neg \textit{A} \\ \textit{modus barbara} & ((\textit{A} \rightarrow \textit{B}) \land (\textit{B} \rightarrow \textit{C})) \rightarrow (\textit{A} \rightarrow \textit{C}) \\ \textit{distributilit} & (\textit{A} \land (\textit{B} \lor \textit{C})) \Leftrightarrow (\textit{A} \land \textit{B}) \lor (\textit{A} \land \textit{C}) \\ & (\textit{A} \lor (\textit{B} \land \textit{C})) \Leftrightarrow (\textit{A} \lor \textit{B}) \land (\textit{A} \lor \textit{C}) \\ \end{array}$$

Caractéristiques de ce formalisme

adéquat

Caractéristiques de ce formalisme

- adéquat
- complet

ENSC

Caractéristiques de ce formalisme

- adéquat
- complet
- consistant

ENSC

Caractéristiques de ce formalisme

- adéquat
- complet
- consistant
- décidable

 la conjonction grammaticale n'est pas limitée à la notion de conjonction logique :

- la conjonction grammaticale n'est pas limitée à la notion de conjonction logique :
 - il tua l'agresseur et le désarma

- la conjonction grammaticale n'est pas limitée à la notion de conjonction logique :
 - il tua l'agresseur et le désarma
 - il désarma l'agresseur et le tua

- la conjonction grammaticale n'est pas limitée à la notion de conjonction logique :
 - il tua l'agresseur et le désarma
 - il désarma l'agresseur et le tua
- la stricte bivalence de la logique est restrictive

- la conjonction grammaticale n'est pas limitée à la notion de conjonction logique:
 - il tua l'agresseur et le désarma
 - il désarma l'agresseur et le tua
- la stricte bivalence de la logique est restrictive

...

- la conjonction grammaticale n'est pas limitée à la notion de conjonction logique :
 - il tua l'agresseur et le désarma
 - il désarma l'agresseur et le tua
- la stricte bivalence de la logique est restrictive

...

Exemple, soit A = avoir chaud et B = boire une bière :

- la conjonction grammaticale n'est pas limitée à la notion de conjonction logique :
 - il tua l'agresseur et le désarma
 - il désarma l'agresseur et le tua
- la stricte bivalence de la logique est restrictive

...

Exemple, soit A = avoir chaud et B = boire une bière :

modus ponens
$$((A \rightarrow B) \land A) \rightarrow B$$

Si j'ai chaud je bois une bière, et j'ai chaud, donc je bois une bière.

- la conjonction grammaticale n'est pas limitée à la notion de conjonction logique :
 - il tua l'agresseur et le désarma
 - il désarma l'agresseur et le tua
- la stricte bivalence de la logique est restrictive

...

Exemple, soit A = avoir chaud et B = boire une bière :

modus ponens
$$((A \rightarrow B) \land A) \rightarrow B$$

Si j'ai chaud je bois une bière, et j'ai chaud, donc je bois une bière.

modus tollens
$$((A \rightarrow B) \land \neg B) \rightarrow \neg A$$

Si j'ai chaud je bois une bière, et je ne bois pas une bière, donc je n'ai pas chaud.

Plan

- Introduction
- 2 La logique aristotélique
- 3 La logique des propositions
- 4 La logique des prédicats
 - Le domaine
 - Le langage
 - L'axiomatique

propositions complexes issues d'un raisonnement non trivial

- propositions complexes issues d'un raisonnement non trivial
- logique d'ordre 1 (contient des variables libres)

- propositions complexes issues d'un raisonnement non trivial
- logique d'ordre 1 (contient des variables libres)
- calcul propositionnel (déduction et démonstration)

- propositions complexes issues d'un raisonnement non trivial
- logique d'ordre 1 (contient des variables libres)
- calcul propositionnel (déduction et démonstration)

Exemple:

- propositions complexes issues d'un raisonnement non trivial
- logique d'ordre 1 (contient des variables libres)
- calcul propositionnel (déduction et démonstration)

Exemple:

Si le cours est nul, alors les élèves dorment

- propositions complexes issues d'un raisonnement non trivial
- logique d'ordre 1 (contient des variables libres)
- calcul propositionnel (déduction et démonstration)

Exemple:

- Si le cours est nul, alors les élèves dorment
- Donc, si il existe un élève qui écoute, c'est que le cours n'est pas nul

- propositions complexes issues d'un raisonnement non trivial
- logique d'ordre 1 (contient des variables libres)
- calcul propositionnel (déduction et démonstration)

Exemple:

- Si le cours est nul, alors les élèves dorment
- Donc, si il existe un élève qui écoute, c'est que le cours n'est pas nul

Formalisation "intuitive":

- propositions complexes issues d'un raisonnement non trivial
- logique d'ordre 1 (contient des variables libres)
- calcul propositionnel (déduction et démonstration)

Exemple:

- Si le cours est nul, alors les élèves dorment
- Donc, si il existe un élève qui écoute, c'est que le cours n'est pas nul

Formalisation "intuitive":

• on ajoute des quantificateurs : \exists *élève* \in classe . . .

- propositions complexes issues d'un raisonnement non trivial
- logique d'ordre 1 (contient des variables libres)
- calcul propositionnel (déduction et démonstration)

Exemple:

- Si le cours est nul, alors les élèves dorment
- Donc, si il existe un élève qui écoute, c'est que le cours n'est pas nul

Formalisation "intuitive":

- on ajoute des quantificateurs : \exists *élève* \in classe . . .
- on ajoute la notion de variable : dormir(X) n'a pas la même valeur de vérité pour tout X...

Un exemple

Tout être humain est mortel Or Socrate est un être humain Donc, Socrate est mortel

Un exemple

Tout être humain est mortel Or Socrate est un être humain Donc, Socrate est mortel

⇒ modélisation en logique propositionnelle impossible!

Un exemple

Tout être humain est mortel Or Socrate est un être humain Donc, Socrate est mortel \Rightarrow modélisation en logique propositionnelle impossible! $\forall x \in \mathcal{H}, mortel(x)$ $\exists x \in \mathcal{H}, x = socrate$ mortel(s)

Notion d'ordre

Sur la base du calcul propositionnel on ajoute :

• des constantes : a,b,c...

Sur la base du calcul propositionnel on ajoute :

- des constantes : a,b,c...
- des symboles de fonctions : f,g...

Sur la base du calcul propositionnel on ajoute :

- des constantes : a,b,c...
- des symboles de fonctions : f,g...
- des symboles de prédicats : p,q...

Sur la base du calcul propositionnel on ajoute :

- des constantes : a,b,c...
- des symboles de fonctions : f,g...
- des symboles de prédicats : p,q...
- deux quantificateurs : \exists et \forall

 \mathcal{V} : ensemble des variables (infini)

V: ensemble des variables (infini)

C: ensemble des constantes (éventuellement vide)

 ${\cal V}$: ensemble des variables (infini)

C: ensemble des constantes (éventuellement vide)

 \mathcal{P} : ensemble des foncteurs de prédicats

- \mathcal{V} : ensemble des variables (infini)
- C : ensemble des constantes (éventuellement vide)
- \mathcal{P} : ensemble des foncteurs de prédicats
- F: ensemble des foncteurs de fonctions (éventuellement vide)

 \mathcal{V} : ensemble des variables (infini)

C: ensemble des constantes (éventuellement vide)

 \mathcal{P} : ensemble des foncteurs de prédicats

F: ensemble des foncteurs de fonctions

(éventuellement vide)

Les quantificateurs : \exists et \forall

```
\mathcal{V}: ensemble des variables (infini)
```

C: ensemble des constantes (éventuellement vide)

 \mathcal{P} : ensemble des foncteurs de prédicats

F: ensemble des foncteurs de fonctions (éventuellement vide)

```
Les quantificateurs : \exists et \forall
Les connecteurs : \neg, \land, \lor \Rightarrow
```

```
V: ensemble des variables (infini)
```

C: ensemble des constantes (éventuellement vide)

P: ensemble des foncteurs de prédicats

F: ensemble des foncteurs de fonctions (éventuellement vide)

```
Les quantificateurs : \exists et \forall
Les connecteurs : \neg, \land, \lor \Rightarrow
```

```
Attention, un connecteur n'est pas un opérateur, par exemple :
(((boire\ et\ respirer) \Rightarrow mort) \land (boire \Rightarrow respirer))
\Rightarrow (boire \Rightarrow mort)
```

L'opérateur *et* dénote ici la simultanéité, le connecteur ∧ la conjonction.

On notera \mathcal{T} l'ensemble des termes, ainsi définis :

• $x \in \mathcal{V}$ est un terme

On notera \mathcal{T} l'ensemble des termes, ainsi définis :

- $x \in \mathcal{V}$ est un terme
- $x \in \mathcal{C}$ est un terme

On notera \mathcal{T} l'ensemble des termes, ainsi définis :

- $x \in \mathcal{V}$ est un terme
- $x \in \mathcal{C}$ est un terme
- si f est une fonction n-aire et t_1, t_2, \ldots, t_n sont des termes, alors $f(t_1, t_2, \ldots, t_n)$ est un terme

On notera \mathcal{T} l'ensemble des termes, ainsi définis :

- $x \in \mathcal{V}$ est un terme
- $x \in \mathcal{C}$ est un terme
- si f est une fonction n-aire et t_1, t_2, \ldots, t_n sont des termes, alors $f(t_1, t_2, \ldots, t_n)$ est un terme

On notera $\mathcal E$ l'ensemble des énoncés valides du langages (les expressions bien formées).

Les énoncés valides sont :

•
$$p(t_1,t_2,\ldots,t_n)$$
 si $(t_1,t_2,\ldots,t_n)\in\mathcal{T}^n,p\in\mathcal{P}$

Les énoncés valides sont :

• $p(t_1, t_2, ..., t_n)$ si $(t_1, t_2, ..., t_n) \in \mathcal{T}^n, p \in \mathcal{P}$ p est n-aire, il s'agit d'une formule atomique (on dit aussi un atome)

Les énoncés valides sont :

• $p(t_1, t_2, ..., t_n)$ si $(t_1, t_2, ..., t_n) \in \mathcal{T}^n$, $p \in \mathcal{P}$ p est n-aire, il s'agit d'une formule atomique (on dit aussi un atome)

Rappel : c'est une logique d'ordre 1, on peut avoir p(f(X)) mais pas p(q(X)) (avec $\{p,q\} \in \mathcal{P}$ et $f \in \mathcal{F}$)

- $p(t_1, t_2, ..., t_n)$ si $(t_1, t_2, ..., t_n) \in \mathcal{T}^n, p \in \mathcal{P}$
- $e_1 \wedge e_2 \text{ si } \{e_1, e_2\} \in \mathcal{E}$

•
$$p(t_1, t_2, \dots, t_n)$$
 si $(t_1, t_2, \dots, t_n) \in \mathcal{T}^n, p \in \mathcal{P}$

•
$$e_1 \wedge e_2 \text{ si } \{e_1, e_2\} \in \mathcal{E}$$

•
$$e_1 \lor e_2 \text{ si } \{e_1, e_2\} \in \mathcal{E}$$

•
$$p(t_1, t_2, \dots, t_n)$$
 si $(t_1, t_2, \dots, t_n) \in \mathcal{T}^n, p \in \mathcal{P}$

•
$$e_1 \wedge e_2 \text{ si } \{e_1, e_2\} \in \mathcal{E}$$

•
$$e_1 \lor e_2 \text{ si } \{e_1, e_2\} \in \mathcal{E}$$

•
$$e_1 \Rightarrow e_2 \text{ si } \{e_1, e_2\} \in \mathcal{E}$$

•
$$p(t_1, t_2, \dots, t_n)$$
 si $(t_1, t_2, \dots, t_n) \in \mathcal{T}^n, p \in \mathcal{P}$

- $e_1 \wedge e_2 \text{ si } \{e_1, e_2\} \in \mathcal{E}$
- $\bullet \ e_1 \lor e_2 \ si \ \{e_1,e_2\} \in \mathcal{E}$
- $e_1 \Rightarrow e_2 \text{ si } \{e_1, e_2\} \in \mathcal{E}$
- ¬e si e ∈ E

•
$$p(t_1, t_2, \dots, t_n)$$
 si $(t_1, t_2, \dots, t_n) \in \mathcal{T}^n, p \in \mathcal{P}$

•
$$e_1 \wedge e_2 \text{ si } \{e_1, e_2\} \in \mathcal{E}$$

•
$$e_1 \lor e_2 \text{ si } \{e_1, e_2\} \in \mathcal{E}$$

•
$$e_1 \Rightarrow e_2 \text{ si } \{e_1, e_2\} \in \mathcal{E}$$

•
$$\forall x(e)$$
 si $e \in \mathcal{E}$ et $x \in \mathcal{V}$

•
$$p(t_1, t_2, \dots, t_n)$$
 si $(t_1, t_2, \dots, t_n) \in \mathcal{T}^n, p \in \mathcal{P}$

•
$$e_1 \wedge e_2 \text{ si } \{e_1, e_2\} \in \mathcal{E}$$

•
$$e_1 \lor e_2 \text{ si } \{e_1, e_2\} \in \mathcal{E}$$

•
$$e_1 \Rightarrow e_2 \text{ si } \{e_1, e_2\} \in \mathcal{E}$$

•
$$\forall x(e)$$
 si $e \in \mathcal{E}$ et $x \in \mathcal{V}$

•
$$\exists x(e)$$
 si $e \in \mathcal{E}$ et $x \in \mathcal{V}$

 une variable est dite liée par un quantificateur à une formule si elle apparaît dans cette formule et que cette dernière est précédée d'un quantificateur portant sur cette même variable

 une variable est dite liée par un quantificateur à une formule si elle apparaît dans cette formule et que cette dernière est précédée d'un quantificateur portant sur cette même variable

Par exemple x est liée dans la formule $\exists x \in Vins, aime(x)$

- une variable est dite liée par un quantificateur à une formule si elle apparaît dans cette formule et que cette dernière est précédée d'un quantificateur portant sur cette même variable
- dans le cas contraire, la variable est dite libre

- une variable est dite liée par un quantificateur à une formule si elle apparaît dans cette formule et que cette dernière est précédée d'un quantificateur portant sur cette même variable
- dans le cas contraire, la variable est dite libre
 Par exemple x est libre dans la formule aime(X)

- une variable est dite liée par un quantificateur à une formule si elle apparaît dans cette formule et que cette dernière est précédée d'un quantificateur portant sur cette même variable
- dans le cas contraire, la variable est dite libre
- un prédicat contient au moins une variable libre

- une variable est dite liée par un quantificateur à une formule si elle apparaît dans cette formule et que cette dernière est précédée d'un quantificateur portant sur cette même variable
- dans le cas contraire, la variable est dite libre
- un prédicat contient au moins une variable libre Par exemple, un prédicat valide est :
 - $\exists x \in Vins, aime_avec(x, Y)$

- une variable est dite liée par un quantificateur à une formule si elle apparaît dans cette formule et que cette dernière est précédée d'un quantificateur portant sur cette même variable
- dans le cas contraire, la variable est dite libre
- un prédicat contient au moins une variable libre
- dire qu'un prédicat est vrai ou faux n'a aucun sens tant que l'on n'a pas substituer des constantes à toutes les variables libres

- une variable est dite liée par un quantificateur à une formule si elle apparaît dans cette formule et que cette dernière est précédée d'un quantificateur portant sur cette même variable
- dans le cas contraire, la variable est dite libre
- un prédicat contient au moins une variable libre
- dire qu'un prédicat est vrai ou faux n'a aucun sens tant que l'on n'a pas substituer des constantes à toutes les variables libres
 - On ne peut pas dire que $\exists x \in Vins, aime_avec(x, Y)$ est vrai ou faux
 - Par contre, on peut dire que cette formule est vraie avec Y = boeuf et fausse avec $Y = croissant_beurre$

- une variable est dite liée par un quantificateur à une formule si elle apparaît dans cette formule et que cette dernière est précédée d'un quantificateur portant sur cette même variable
- dans le cas contraire, la variable est dite libre
- un prédicat contient au moins une variable libre
- dire qu'un prédicat est vrai ou faux n'a aucun sens tant que l'on n'a pas substituer des constantes à toutes les variables libres
- une formule dont toutes les variables sont liées est dite close (aucune "liberté" sur les variables)

L'axiomatique

 le calcul des prédicats découle directement du calcul des propositions

L'axiomatique

- le calcul des prédicats découle directement du calcul des propositions
- quelques axiomes supplémentaires sont nécessaires

L'axiomatique

- le calcul des prédicats découle directement du calcul des propositions
- quelques axiomes supplémentaires sont nécessaires
- une seule règle est ajoutés, la généralisation :
 A ⇒ ∀x(A)

adéquat

- adéquat
- complet (prouvé par GÖDEL)

- adéquat
- complet (prouvé par GÖDEL)
- consistant

- adéquat
- complet (prouvé par GÖDEL)
- consistant
- semi-décidable :

- adéquat
- complet (prouvé par GÖDEL)
- consistant
- semi-décidable :
 - pour un énoncé valide la preuve aboutit ("vrai")

- adéquat
- complet (prouvé par GÖDEL)
- consistant
- semi-décidable :
 - pour un énoncé valide la preuve aboutit ("vrai")
 - pour un énoncé non valide soit la preuve aboutit ("faux"), soit elle conduit à une récursion infinie!

CC81IART - Intelligence Artificielle

Cours 02 : la logique, les logiques, la programmation logique

Pierre-Alexandre FAVIER

Ecole Nationale Supérieure de Cognitique

