

ORGANISATION MONDIALE DE LA PROPRIETE INTELLECTUELLE Bureau international

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets ⁶ : C08F 2/32, A61K 7/48	A1	(11) Numéro de publication internationale: WO 99/36445 (43) Date de publication internationale: 22 juillet 1999 (22.07.99)
(21) Numéro de la demande internationale: PCT/FR (22) Date de dépôt international: 14 janvier 1999 (DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(30) Données relatives à la priorité: 98/00464 16 janvier 1998 (16.01.98) 98/01525 10 février 1998 (10.02.98) 98/09999 4 août 1998 (04.08.98)	. 1	Publiée Avec rapport de recherche internationale. R R R R
(71) Déposant: SOCIETE D'EXPLOITATION DE PR POUR LES INDUSTRIES CHIMIQUES SEPPIC 75, quai d'Orsay, F-75321 Paris Cedex 07 (FR).		
(72) Inventeurs: MALLO, Paul; 15, avenue Victor Hugo, Chatou (FR). TABACCHI, Guy; 11, rue E F-81100 Castres (FR). BOITEUX, Jean-Pierre; gadou, Saix, F-81100 Castres (FR).	Becquer	el,
(74) Mandataire: CONAN, Philippe; L'Air Liquide S.A. d'Orsay, F-75321 Paris Cedex 07 (FR).	, 75, գւ	lai

- (54) Title: THICKENING LATEX, METHOD OF PRODUCTION AND COSMETIC APPLICATIONS
- (54) Titre: LATEX EPAISSISSANT, PROCEDE DE FABRICATION ET APPLICATIONS EN COSMETIQUE
- (57) Abstract

The invention relates to a mixture comprising an oil phase, an aqueous phase, at least one water-in-oil (E/H) emulsifier and at least one oil-in-water (H/E) emulsifier, characterized in that said mixture is a positive latex containing between 20 and 60 weight percent, preferably between 25 and 45 weight percent, of a branched or reticulated anionic polyelectrolyte, in a base of at least one monomer having a strong acid function and copolymerised with either at least one monomer having a weak acid function or at least one neutral monomer. The invention further relates to cosmetic applications of the mixture.

(57) Abrégé

Composition comprenant une phase huile, une phase aqueuse, au moins un agent émulsifiant de type eau dans huile (E/H), au moins un agent émulsifiant de type huile dans eau (H/E), caractérisée en ce que ladite composition est un latex inverse comprenant de 20 % à 60 % en poids, et de préférence de 25 % à 45 % en poids, d'un polyélectrolyte anionique, branché ou réticulé, à base d'au moins un monomère possédant une fonction acide fort, copolymérisé soit avec au moins un monomère possédant une fonction acide faible, soit avec au moins un monomère neutre. Applications en cosmétique.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

AL	Albanie	ES	Espagne	LS	Lesotho	SI	Slovénie
AM	Arménie -	FI	Finlande	LT	Lituanie	SK	Slovaquie
ΑT	Autriche	FR	France	LU	Luxembourg	SN	Sénégal
ΑU	Australie	GA	Gabon	LV	Lettonie	SZ	Swaziland
AZ.	Azerbaidjan	GB	Royaume-Uni	. MC	Monaco	TD	Tchad
BA	Bosnie-Herzégovine	GE	Géorgie	MD	République de Moldova	TG	Togo
BB .	Barbade	CH	Ghana	MG	Madagascar	TJ	Tadjikistan
BE	Belgique	GN T	Guinée	MK	Ex-République yougoslave	TM	Turkménistan
BF	Burkina Faso	. GR	Grèce		de Macédoine	TR	Turquie
· BG	Bulgarie	HU	Hongrie	ML	Mali	TT	Trinité-et-Tobago
BJ	Bénin	ΙE	Irlande	MN	Mongolie	UA	Ukraine
BR.	Brésil	IL	Israël	MR	Mauritanie	UG	Ouganda
BY	Bélarus	IS	Islande	MW	Malawi	US	Etats-Unis d'Amérique
CA	Canada	IT	Italic	MX	Mexique	UZ	Ouzbékistan
CF	République centrafricaine	JP	Japon	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Pays-Bas	YU	Yougoslavie
CH	Suisse	KG	Kirghizistan	NO	Norvège	zw	Zimbabwe
CI	Côte d'Ivoire	KP	République populaire	NZ	Nouvelle-Zélande		
CM	Cameroun		démocratique de Corée	PL	Pologne		
CN	Chine	KR .	République de Corée	PT	Portugal		
CU.	Cub ₂	KZ	Kazakstan	RO	Roumanie		
CZ	République tchèque	LC	Sainte-Lucie	RU	Fédération de Russie		
DE	Allemagne	LJ	Liechtenstein	SD	Soudan		
DK	Danemark	LK	Sri Lanka	SE	Suède		
EE	Estonic	LR	Libéria	SG	Singapour		

WO 99/36445 PCT/FR99/00055

LATEX EPAISSISSANT, PROCEDE DE FABRICATION ET APPLICATIONS EN COSMETIQUE

La présente demande concerne des latex eau dans huile épaississants, leur procédé de préparation et leur application en tant qu'épaississant et/ou émulsionnant pour des produits de soins de la peau et des cheveux ou pour la fabrication de préparations cosmétiques, dermo-pharmaceutiques ou pharmaceutiques.

10

15

20

25

30

Différents épaississants existent et sont déjà utilisés pour ces usages. On connaît en particulier les produits naturels tels que les gommes de guar ou l'amidon mais dont les inconvénients sont ceux inhérents aux produits naturels, tels que la fluctuation des cours, les difficultés d'approvisionnement et une qualité aléatoire.

Les polymères synthétiques sous forme de poudre, principalement les polyacides acryliques sont également largement utilisés mais présentent l'inconvénient de nécessiter une neutralisation lors de l'utilisation, car ils ne développent leur viscosité qu'à partir d'un pH > 6.5 et leur mise en solution est souvent fastidieuse.

Il existe aussi des polymères épaississants synthétiques, se présentant sous forme de latex inverse, c'est-à-dire dont la phase continue est une huile. La mise en solution de ces latex est extrêmement rapide; les polymères contenus dans ces latex inverses, sont le plus souvent des copolymères acrylamide / acrylate de métal alcalin ou acrylamide/acrylamido 2-méthyl 2-propane sulfonate de sodium; ils sont déjà neutralisés et lorsqu'ils sont mis en solution dans l'eau, par exemple à une concentration de 1%, on observe que le pH est généralement supérieur à 6.

Les copolymères acrylamide/acrylate de sodium ne développent cependant pas de propriétés épaississantes importantes lorsqu'on abaisse le pH en dessous de 6 ; par contre les copolymères acrylamide/acrylamido

10

15

20

25

2-méthyl 2-propane sulfonate de sodium décrits dans EP 0 503 853, gardent une capacité épaississante importante même à pH 4.

Cependant, de tels copolymères présentent des teneurs en monoacrylamide qui, bien qu'extrêmement faibles, pourraient conduire à rendre leur utilisation en cosmétique impossible dans un futur proche, suite à l'évolution de la législation européenne sur les substances dangereuses.

La demanderesse s'est donc intéressée à la synthèse et à la mîse au point de polymères épaississants, même en pH acide, sous forme de latex inverse sans utiliser de mono-acrylamide.

L'invention a pour objet une composition comprenant une phase huile, une phase aqueuse, au moins un agent émulsifiant de type eau dans huile (E/H), au moins un agent émulsifiant de type huile dans eau (H/E), caractérisée en ce que ladite composition est un latex inverse comprenant de 20 % à 60 % en poids, et de préférence de 25 % à 45 % en poids, d'un polyélectrolyte anionique, branché ou réticulé, à base d'au moins un monomère possédant une fonction acide fort, copolymérisé soit avec au moins un monomère neutre.

Par « agent émulsifiant du type eau dans huile », on désigne des agents émulsifiants possédant une valeur de HLB suffisamment faible pour fournir des émulsions eau dans huile tels que les polymères tensioactifs commercialisés sous le nom de HYPERMER™ ou tels que les esters de sorbitan, comme le monooléate de sorbitan commercialisé par la Société SEPPIC sous le nom de marque MONTANE 80™, ou l'isostéarate de sorbitan commercialisé par SEPPIC sous le nom de MONTANE 70™.

Par « agent émulsifiant du type huile dans eau », on désigne des agents émulsifiants possédant une valeur de HLB suffisamment élevée pour fournir des émulsions huile dans l'eau tels que les esters de sorbitan éthoxylés comme l'oléate de sorbitan éthoxylé avec 20 moles d'oxyde d'éthylène , commercialisé par la société SEPPIC sous le nom de MONTANOX™80.

- 10

15

20

25

30

Par polymère branché, on désigne un polymère non linéaire qui possède des chaînes pendantes de manière à obtenir, lorsque ce polymère est mis en solution dans l'eau, un fort état d'enchevêtrement conduisant à des viscosités à bas gradient très importantes.

Par polymère réticulé, on désigne un polymère non linéaire se présentant à l'état de réseau tridimensionnel insoluble dans l'eau, mais gonflable à l'eau et conduisant donc à l'obtention d'un gel chimique.

La composition selon l'invention peut comporter des motifs réticulés et/ou des motifs branchés.

L'invention a notamment pour objet une composition telle que définie précédemment, caractérisée en ce que ledit polyélectrolyte anionique est le résultat d'une copolymérisation de ses monomères précurseurs effectuée à un pH inférieur à 4.

L'invention a aussi pour objet une composition telle que définie précédemment, caractérisée en ce 30% à 90% des motifs monomériques que le polyélectrolyte anionique comprend, possèdent une fonction acide fort.

La fonction acide fort du monomère en comportant est notamment la fonction acide sulfonique ou la fonction acide phosphonique, partiellement ou totalement salifiée. Ledit monomère peut être par exemple l'acide styrènesulfonique partiellement ou totalement salifié ; il est de préférence l'acide 2-méthyl 2-[(1-oxo 2-propènyl) amino] 1-propane-sulfonique partiellement ou totalement salifiée sous forme d'un sel de métal alcalin ou de sel d'ammonium. La fonction acide faible du monomère en comportant est notamment la fonction acide carboxylique, et de préférence, ledit monomère est choisi parmi l'acide acrylique, l'acide méthacrylique, l'acide itaconique ou l'acide maléique partiellement ou totalement salifié. Le monomère neutre est notamment choisi parmi l'acrylate de (2-hydroxy éthyle), l'acrylate de (2,3-dihydroxy propyle), le méthacrylate de (2-hydroxy éthyle), le méthacrylate de (2,3-dihydroxy propyle), ou un dérivé éthoxylé de poids moléculaire compris entre 400 et 1000, de chacun de ces esters.

10

15

20

25

30

Selon un aspect particulier de la présente invention, celle-ci a pour objet une composition comprenant une phase huile, une phase aqueuse, au moins un agent émulsifiant de type eau dans huile (E/H), au moins un agent émulsifiant de type huile dans eau (H/E), caractérisée en ce que ladite composition est un latex inverse comprenant de 20% à 60% en poids, et de préférence de 25% à 45% en poids, d'un polyélectrolyte anionique, branché ou réticulé, à base d'acide 2-méthyl 2-[(1-oxo 2-propènyl) amino] 1-propane sulfonique partiellement ou totalement salifié, copolymérisé avec de l'acrylate de (2-hydroxy éthyle) plus particulièrement, une composition telle que définie précédemment, caractérisée en ce que 30% à 90%, de préférence 50% à 90%, en proportions molaires, des motifs monomériques que le poly-électrolyte anionique comprend, est l'acide 2-méthyl 2-[(1-oxo 2-propènyl) amino] 1propanesulfonique (AMPS) partiellement ou totalement salifié et notamment, une composition telle que définie précédemment, pour laquelle le polyélectrolyte anionique comporte, en proportions molaires, de 60% à 90% de sel de sodium ou de sel d'ammonium de l'acide 2-méthyl 2-[(1-oxo 2-propènyl) amino] 1-propane sulfonique et de 10% à 40% d'acrylate de (2-hydroxy éthyle).

Selon un autre aspect particulier de la présente invention, celle-ci a pour objet, une composition telle que définie précédemment, caractérisée en ce que ladite composition est un latex inverse comprenant de 20% à 60% en poids, et de préférence de 30% à 45% en poids, d'un polyélectrolyte anionique, branché ou réticulé, à base d'un acide 2-méthyl 2-[(1-oxo 2-propènyl) amino] 1-propane sulfonique, partiellement ou totalement salifié sous forme de sel de sodium ou de sel d'ammonium, copolymérisé avec l'acide acrylique, partiellement salifié sous forme de sel de sodium ou de sel d'ammonium.

L'invention a plus particulièrement pour objet une composition telle que définie précédemment, caractérisée en ce que le polyélectrolyte anionique est réticulé et/ou branché avec un composé diéthylènique ou polyéthylènique dans la proportion molaire exprimée par rapport aux monomères mis en œuvre, de 0,005% à 1%, et de préférence de 0,01 % à 0,2 % et, plus particulièrement de

15

20

25

0,01 % à 0,1 %, de préférence celle pour laquelle l'agent de réticulation et/ou l'agent de ramification est choisi parmi le diméthacrylate d'éthylèneglycol, le diallyloxyacétate de sodium, le diacrylate d'éthylèneglycol, le diallyl urée, le triméthylol propanetriacrylate ou le méthylène-bis-(acrylamide).

Le latex selon l'invention contient généralement de 2,5% à 15% en poids, et de préférence de 4% à 9% en poids, d'agents émulsifiants, parmi lesquels de 20% à 50%, notamment de 25% à 40% du poids total des agents émulsifiants présents, sont du type eau dans huile (E/H) et dans laquelle de 80% à 50%, notamment de 75% à 60%, du poids total des agents émulsifiants, sont du type huile dans eau (H/E).

Selon un aspect particulier, la composition telle que définie précédemment, est caractérisée en ce que la phase huile représente de 15% à 40%, de préférence de 20% à 25%, de son poids total.

Cette phase huile est constituée soit par une huile minérale commerciale contenant des hydrocarbures saturés comme les paraffines, les isoparaffines, les cycloparaffines, présentant à température ambiante, une densité entre 0.7 et 0.9 et un point d'ébullition supérieur à 180°C, telle que par exemple l'EXXSOL™ D 100 S, ou le MARCOL™52 commercialisés par EXXON CHEMICAL, l'isohexadécane ou l'isododécane, soit par une huile végétale, soit une huile de synthèse, soit par un mélange de plusieurs de ces huiles.

Selon un aspect préféré de la présente invention, la phase huile est constituée de MARCOL™ 52 ou d'isohexadécane ; l'isohexadécane, qui est identifié dans Chemical Abstracts par le numéro RN = 93685-80-4, est un mélange d'isoparaffines en C₁₂, C₁₆ et C₂₀ contenant au moins 97 % d'isoparaffines en C₁₆, parmi lesquelles le constituant principal est le 2,2,4,4,6,8,8-heptaméthyl nonane (RN = 4390-04-9). Il est commercialisé en France par la société BAYER. Le MARCOL™ 52 est une huile commerciale répondant à la définition des huiles de vaseline du Codex français. C'est une huile blanche minérale conforme aux réglementations FDA 21 CFR 172.878 et

10

15

20

25

CFR 178.3620 (a) et elle est inscrite à la Pharmacopée des USA, US XXIII (1995) et à la Pharmacopée européenne (1993).

Les latex contiennent entre 20 % et 50 % d'eau. Les latex selon l'invention peuvent également contenir divers additifs tels que des agents complexants, des agents de transfert, ou des agents limiteurs de chaîne.

Selon un autre aspect de la présente invention, celle-ci a pour objet un procédé de préparation de la composition telle que définie précédemment, caractérisé en ce que :

- a) l'on émulsionne une solution aqueuse contenant les monomères et les éventuels additifs, dans une phase huile en présence d'un ou plusieurs agents émulsifiants de type eau dans huile,
- b) l'on amorce la réaction de polymérisation par introduction dans l'émulsion formée en a), d'un initiateur de radicaux libres puis on la laisse se dérouler.
- c) lorsque la réaction de polymérisation est terminée, on introduit un ou plusieurs agents émulsifiants de type huile dans eau à une température inférieure à 50°C.

Selon une variante de ce procédé, le milieu réactionnel issu de l'étape b), est concentré par distillation, avant la mise en oeuvre de l'étape c).

Selon une mise en oeuvre préférée du procédé tel que défini précédemment, la réaction de polymérisation est amorcée par un couple oxydoréducteur, tel que le couple hydroperoxyde de cumène - métabisulfite de sodium, à une température inférieure ou égale à 10°C, puis conduite soit de manière quasi-adiabatique jusqu'à une température supérieure ou égale à 40°C, plus particulièrement supérieure ou égale à 50°C, soit en contrôlant l'évolution de la température.

Selon une autre mise en oeuvre préférée du procédé, la solution aqueuse de départ est ajustée à un pH inférieur ou égal à 4 avant la mise en oeuvre de l'étape c).

10

15

20

25

L'invention a aussi pour objet l'utilisation de la composition telle que définie précédemment pour préparer une composition topique cosmétique, dermo-pharmaceutique ou pharmaceutique.

Une composition topique selon l'invention, destinée à être appliquée sur la peau ou les muqueuses de l'homme ou de l'animal, peut consister en une émulsion topique comprenant au moins une phase aqueuse et au moins une phase huile. Cette émulsion topique peut être du type huile dans eau. Plus particulièrement, cette émulsion topique peut consister en une émulsion fluide, telle un lait ou un gel fluide. La phase huile de l'émulsion topique peut consister en un mélange d'une ou plusieurs huiles.

Une composition topique selon l'invention peut être destinée à une utilisation cosmétique ou être utilisée pour préparer un médicament destiné au traitement des maladies de la peau et des muqueuses. Dans ce dernier cas, la composition topique comporte alors un principe actif qui peut par exemple consister en un agent anti-inflammatoire, un myorelaxant, un antifongique ou un antibactérien.

Lorsque la composition topique est utilisée en tant que composition cosmétique destinée à être appliquée sur la peau ou les muqueuses, elle peut ou non comporter un principe actif, par exemple un agent hydratant, un agent bronzant, un filtre solaire, un antirides, un agent à visée amincissante, un agent antiradicalaire, un agent antiacnéique ou un antifongique.

Une composition topique selon l'invention comporte habituellement entre 0,1 % et 10 % en poids de l'agent épaississant défini ci-dessus. Le pH de la composition topique est de préférence supérieur ou égal à 5.

La composition topique peut en outre comporter des composés classiquement compris dans ce type de compositions, par exemple des parfums, des conservateurs, des colorants, des émollients ou des tensioactifs.

Selon encore un autre aspect, l'invention concerne l'utilisation du nouvel agent épaississant conforme à l'invention mentionné ci-dessus, pour épaissir et

15

20

25

30

émulsionner une composition topique comprenant au moins une phase aqueuse.

La composition selon l'invention est un substitut intéressant à celles vendues sous le nom SEPIGEL ™ 305 ou SEPIGEL ™ 501 par la demanderesse, car elle présente aussi une bonne compatibilité avec les autres excipients utilisés pour la préparation de formulations telles que les laits, les lotions, les crèmes, les savons, les bains, les baumes, les shampooings ou les aprèsshampooings. Elle peut aussi être mise en œuvre avec lesdits SEPIGEL.

Elle est notamment compatible avec les concentrés décrits et revendiqués dans les publications internationales WO 92/06778, WO 95/04592, WO95/13863, WO 96/37285, WO 98/22207, WO 98/47610 ou dans FR 2734 496, avec les agents tensioactifs décrits dans WO 93/08204.

Elle est particulièrement compatible avec le MONTANOV® 68, le MONTANOV™ 82, le MONTANOV ™ 202 ou le SEPIPERL™ N. Elle peut également être utilisée dans des émulsions du type de celles décrites et revendiquées dans EP 0 629 396 et dans les dispersions aqueuses cosmétiquement ou physiologiquement acceptable avec un composé organo polysiloxane choisi, par exemple parmi ceux décrits dans WO 93/05762 ou dans WO 93/21316.

Elle peut également être utilisée pour former des gels aqueux à pH acide cosmétiquement ou physiologiquement acceptables , tels que ceux décrit dans WO 93/07856; elle peut également être utilisée en association avec des celluloses non-ioniques, pour former par exemple des gels de coiffage tels que ceux décrits dans EP 0 684 024, ou encore en association avec des esters d'acides gras et de sucre , pour former des compositions pour le traitement du cheveux ou de la peau telles que celles décrites dans EP 0 603 019. ou encore dans les shampooings ou après-shampooings tels que décrits et revendiqués dans WO 92/21316 ou enfin en association avec un homopolymère anionique tels que le CARBOPOL pour former des produits de traitement des cheveux comme ceux décrits dans DE 195 23596.

15

20

30

La composition selon l'invention est également compatible avec les principe actifs tels que par exemple, les agents auto-bronzants comme le dihydroxy-acétone (DHA) ou les agents anti-acné; elle peut donc être introduite dans des compositions auto-bronzantes comme celles revendiquées dans EP 0 715 845, EP 0 604249, EP 0576188 ou dans WO 93/07902.

Elle est également compatible avec les dérivés N-acylés d'aminoacides, ce qui permet son utilisation dans des compositions apaisantes notamment pour peau sensible, telles que celles décrites ou revendiquées dans WO 92/21318, WO 94/27561, ou WO 98/09611.

Les exemples qui suivent ont pour but d'illustrer la présente invention.

Exemple 1: Préparation et propriétés du latex inverse selon l'invention

A] Préparation

- a) On charge dans un bécher, sous agitation
- 200 g d'eau permutée
- 112,1 g d'une solution aqueuse d'hydroxyde de sodium à 48 % (en poids)
- 278,4 g de l'acide 2-methyl-2[(1-oxo-2 propenyl) amino] 1-propane sulfonique
 - 73,1 g d'acide acrylique
 - 0,18 g de diéthylène triamine pentacétate de sodium
 - 0,182 g de méthylène-bis-acrylamide

le pH de la phase aqueuse précédemment décrit est ajusté à 3,5 et la quantité de phase aqueuse est complétée jusqu'à concurrence de 682 g par ajout d'eau permutée.

Parallèlement, on prépare une phase organique en introduisant dans un bécher agité successivement :

- 220 g d'isohexadécane
- 25 g de Montane 80 VG (oléate de sorbitan commercialisé par SEPPIC)

10

15

20

- 0,2 g azo-bis-isobutyronitrile

La phase aqueuse est introduite progressivement dans la phase organique puis soumise à une agitation mécanique violente de type ultraturrax[™] commercialisé par IKA.

L'émulsion obtenue est alors transférée dans un réacteur de polymérisation. L'émulsion est soumise à un barbotage d'azote important de manière à éliminer l'oxygène et refroidit à environ 5-6°C.

On introduit alors 5ml d'une solution contenant 0,42 % (en poids) d'hydroperoxyde de cumène dans l'isohexadécane.

Après un temps suffisant pour une bonne homogénéisation de la solution, on introduit alors une solution aqueuse de métabisulfite de sodium (0,2 g dans 100 ml d'eau) à raison de 0,5 ml/minute. L'introduction est réalisée pendant environ 60 minutes.

Pendant cette introduction, on laisse monter la température dans le réacteur de polymérisation jusqu'à la température finale de polymérisation.

On maintient alors le milieu réactionnel pendant environ 90 minutes à cette température.

L'ensemble est refroidi jusqu'à une température d'environ 35°C et on introduit lentement 50 g d'oléate de sorbitan éthoxylé à 20 moles d'oxyde d'éthylène.

On obtient l'émulsion désirée:

Evaluation des propriétés

- + viscosité 25°C du latex (Brookfield RVT, Mobile 3, vitesse 20): η = 650 mPas
- + viscosité dans l'eau à 2 % de latex (Brookfield RVT Mobile 6, vitesse 20):

 $\eta = 33800 \text{ mPas}.$

(Brookfield Mobile 6, vitesse 5): $\eta = 74000$ mPas.

On constate que le produit final est exempt d'acrylamide.

- b) En opérant de la même manière qu'au paragraphe a) à partir de :
- 200 g d'eau permutée
- 121,8g d'une solution aqueuse d'hydroxyde de sodium à 48% (en poids)
- 302,66g de l'acide 2-methyl-2[(1-oxo-2 propenyl) amino] 1-propane

5 sulfonique

- 49,54g d'acide acrylique
- 0,18g de diéthylène triamine pentacétate de sodium et
- 0.163q de méthylène-bis-acrylamide.

On obtient l'émulsion désirée qui présente les caractéristiques suivantes :

10 + viscosité dans l'eau à 2% de latex

(Brookfield RVT Mobile 6, vitesse 20):

n = 29000 mPas

(Brookfield Mobile 6, vitesse 5): $\eta = 66000$ mPas.

On constate que le produit final est aussi exempt d'acrylamide.

15

20

- c) On charge dans un bécher, sous agitation :
- 608 ,8 g d'une solution commerciale à 50% du sel de sodium de l'acide 2-methyl-2[(1-oxo-2 propènyl) amino] 1-propanesulfonique,
 - 72,6 g d'acrylate de (2-hydroxy éthyle),

- 0,18 g de diéthylène triaminepentacétate de sodium, et

- 0,121 g de méthylène bis(acrylamide,)

le pH de la phase aqueuse précédemment décrit est ajusté à 3,5, par ajout de 0,7g d'acide 2-methyl-2[(1-oxo-2 propènyl) amino] 1-propane-sulfonique.

- 25 Parallèlement, on prépare une phase organique en introduisant dans un bécher agité successivement :
 - 220 g d'iso hexadécane,
 - 25 g de Montane 80 VG (oléate de sorbitan éthoxylé à 20 moles d'oxyde d'éthylène, commercialisé par SEPPIC) et
- 30 0,2 g d'azo bis(isobutyronitrile).

15

20

25

30

La phase aqueuse est introduite progressivement dans la phase organique puis soumise à une agitation mécanique violente de type ultraturrax[™] commercialisé par IKA.

L'émulsion obtenue, caractérisée par une viscosité 25°C de 2600mPas (Brookfield RVT, Mobile 4, vitesse 20), est alors transférée dans un réacteur de polymérisation. L'émulsion est soumise à un barbotage d'azote important de manière à éliminer l'oxygène et refroidit à environ 5-6°C.

On introduit alors 10g d'une solution à 1,1% en poids de matière active d'hydroperoxyde de cumène dans l'iso hexadécane. Après un temps suffisant pour une bonne homogénéisation de la solution, on introduit en environ 25 minutes, 25g d'une solution aqueuse de métabisulfite de sodium (solution à 0,2%). Pendant cette introduction, on laisse monter la température dans le réacteur de polymérisation jusqu'à la température finale de polymérisation puis on maintient le milieu réactionnel pendant environ 90 minutes à cette température. L'ensemble est ensuite refroidi jusqu'à une température d'environ 35°C et on introduit lentement 50 g de MONTANOX TM 80 VG.

Evaluation des propriétés :

- Viscosité à 20°C du latex à 3% dans l'eau (Brookfield RVT, Mobile 6, vitesse 20):

 $\eta = 36700 \text{ mPas}$; le pH est de 5,1.

On abaisse le pH à 3,7 et l'on obtient alors le résultat suivant: η = 31000 mPas

On constate que le produit final est exempt d'acrylamide.

- d) En opérant de la même manière qu'au paragraphe a) en abaissant la quantité de méthylène bis(acrylamide) de 0,121 g à 0,091g, on obtient une émulsion ayant les caractéristiques de viscosité suivantes :
- Viscosité à 20°C du latex à 3% dans l'eau (Brookfield RVT Mobile 6, vitesse 20):

10

15

25

 $\eta = 33000 \text{ mPas}$; le pH est de 5,2.

Après abaissement du pH, on obtient les résultats suivants :

 $\dot{a} pH = 4.0, \eta = 31000 \text{ mPas}$;

 $\dot{a} pH = 2.8, \eta = 18300 \text{ mPas}$.

On constate que le produit final est exempt d'acrylamide.

- e) En opérant de la même manière qu'au paragraphe A) en abaissant le quantité de méthylène bis(acrylamide) de 0,121 g à 0,084g, celle d'acrylate de (2-hydroxy éthyle) de 72,6 g à 53g , et en augmentant la quantité de solution commerciale à 50% du sel de sodium de l'acide 2-methyl-2[(1-oxo-2 propènyl) amino] 1-propane sulfonique de 608,8g à 628g, on obtient une émulsion ayant les caractéristiques de viscosité suivantes :
- Viscosité à 20°C du latex à 3% dans l'eau (Brookfield RVT Mobile 6, vitesse 20):

n = 27400 mPas; le pH est de 5,2.

Après abaissement du pH, on obtient les résultats suivants :

à pH = 4.0, η = 27400 mPas ;

à pH = 2,8, η = 18200 mPas .

On constate que le produit final est exempt d'acrylamide.

On constate que le toucher des émulsions obtenues est très particulier à partir de 1% de polymère dans la solution et que cette différence s'accentue avec l'augmentation de la concentration ; il s'agit d'un toucher très frais au début qui fond complètement sur la peau, toucher que l'on ne ressent pas du tout avec les latex d'état de la technique.

Les exemples suivants mettent en œuvre indifféremment les émulsions préparées selon l'un des paragraphes A a) à A e) (appelés dans les exemples suivants – composé de l'exemple 1).

B] Propriétés

a) Pouvoir « émulsionnant » de phases grasses ...

Le latex inverse préparé au paragraphe A] b) (composition 1) a été utilisé pour préparer des émulsions avec différents types de corps gras, apolaires ou polaires, d'origine végétale ou synthétique. Les gels crèmes obtenus dans les différents cas sont stables et d'aspect parfaitement homogène. Leur viscosité est consignée dans le tableau suivant :

Huile utilisée pour la phase grasse du gel-crème
(3 % en composition 1 ; phase grasse : 10%)
eau distillée : 87 %
Huile de jojoba
Huile d'amande douce
Squalane
Diméthicone
Isohexadécane
Isononyl isononanoate
Cetearyl octanoate
Benzoate C ₁₂ -C ₁₅
Caprylic / capric Triglycéride
Huile de paraffine

10

La composition 1 permet donc de disperser et de stabiliser des phases grasses dans un milieu aqueux, par simple dilution sans qu'une étape de neutralisation soit nécessaire.

b) stabilité à la température

On a préparé un gel crème comprenant 2,5 % de composition 1 et 20 % de cétéaryl octanoate et mesuré la viscosité. Les résultats sont les suivants :

	Viscosité Brookfield LVT 6rpm (en
	mPa.s)
	(mesuré à Ta)
Après 1 jour à 40 °C	≈ 69 000
Après 7 jours à 40 °C	≈ 68 000
Après 1 mois à 40°C	≈ 66 000

5

c) Influence du pH sur la viscosité

La viscosité du gel crème préparé avec la composition 1 est très stable au pH dans l'intervalle pH = 6 à pH = 9.

10d) Compatibilité avec les solvants

On a mesuré la viscosité (en mPas), des gels à 3 % en composition 1, dans divers solvants cosmétiques à plusieurs concentrations.

Les résultats consignés dans le tableau suivant montrent que la viscosité de ces gels n'est pas affectée par la présence de solvants.

15

Solvant	20 %	40 %	60 %
Hexylène glycol	≈ 100 000	≈ 10 000	5000
Ethanol	≈ 100 000	100 000	40 000
Dipropylèneglycol	≈ 100 000	100 000	90 000
Butylèneglycol	≈ 100 000	≈ 100 000	≈ 100 000
Propylène glycol	≈ 100 000	≈ 100 000	≈ 100 000
glycérine	≈ 100 000	≈ 100 000	≈ 100 000

e) on prépare avec chacun des latex préparés aux paragraphes A]c), A]d) et Ale) des formules cosmétiques comprenant :

0,5%, 1%, 1,5%, 2%, 2,5% ou 3% de latex

5% de SIMULSOL 165,

20% de LANOL 1688

0,5% de SEPICIDE HB

eau qsp 100%.

10

On constate que le toucher des émulsions obtenues, est très particulier à partir de 1% de polymère dans la solution et que cette différence s'accentue avec l'augmentation de la concentration ; il s'agit d'un toucher très frais au début, qui fond complètement sur la peau, toucher que l'on ne ressent pas du tout avec les latex d'état de la technique.

Exemple 2 : Crème de soin

15	Cyclométhicone:	10%
	Composé de l'exemple 1 :	0,8 %
	MONTANOV ™68 :	4,5 %
	Conservateur :	0,65 %
	Lysine :	0,025 %
20	EDTA (sel disodique) :	0,05 %
	Gomme de xanthane :	0,2 %
	Glycérine :	3%
	Eau :	qsp 100 %
25	Exemple 3 : Crème de soin	
	Cyclométhicone:	10 %
	Composé de l'exemple 1 :	0,8 %
	MONTANOV [™] 68 :	4,5 %
•	Perfluoropolymethylisopropylethe r :	0,5 %
30	Conservateur :	0,65 %

	Lysine	e: a	•	0,025 %
	EDTA	(sel disodique):		0,05 %
	PEMU	LEN [™] TR :	•	0,2 %
	Glycé	rine :		3 %
5	Eau:		qsp	100 %
				+ :
	Exemp	le 4 : Baume après-rasage		
	FORM	<u>JLE</u>		
	Α	Composé de l'exemple 1 :		1,5 %
10		Eau:	q.s.p	100 %
	В	MICROPEARL [™] M 100:	٠.	5,0 %
	_	SEPICIDE ™ CI:	٠	0,50 %
		Parfum:		0.20 %
15		Ethanol 95°:		10,0 %
	MODE	OPERATOIRE		
	Ajouter	B dans A.		
	Exemp	ele 5 : Emulsion satinée pour le	corps	
20	FORM	<u>ULE</u>		
	A	SIMULSOL [™] 165:		5,0 %
	•	LANOL [™] 1688 :	•	8,50 %
		Beurre de Karité :		2 %
		Huile de paraffine :	•	6,5 %
25	•	LANOL [™] 14M:		3 %
		LANOL™S:		0,6 %
	В	Eau:		66,2 %
30	С	MICROPEARL ™ M 100:		5 %

	. D	Composé de l'exemple 1:	3 %
			•
	·Ε	SEPICIDE [™] CI :	0,3 %
5		SEPICIDE ™ HB :	0,5 %
		MONTEINE [™] CA:	1 %
		Parfum :	0,20 %
* .		Acétate de vitamine E :	0,20 %
	•	Sodium pyrolidinone carboxylate:	1 % (agent hydratant)
- 10			
	MO	DE OPERATOIRE	• . •

MODE OPERATOIRE

Ajouter C dans B, émulsionner B dans A à 70°C, puis ajouter D à 60°C puis E à 30°C.

15	Exem	ple 6 : Lait corporel	
	FORM	<u>IULE</u>	
	Α	SIMULSOL [™] 165:	5,0 %
		LANOL [™] 1688:	12,0 %
		LANOL [™] 14M:	2,0 %
20		Alcool cétylique:	0,3 %
		SCHERCEMOL™ OP:	3 %
	В	Eau:	q.s.p. 100%
25	C	Composé de l'exemple 1 :	0,35 %
•	D	SEPICIDE ™ CI :	0,2 %
		SEPICIDE [™] HB :	0,5 %
		Parfum :	0,20 %
30	(Le S	CHERCEMOL [™] OP est un ester émoille	ent à effet non gras)

MODE OPERATOIRE

Emulsionner B dans A vers 75°C; ajouter C vers 60°C, puis D vers 30°C

5 Exemple 7 : crème H/E

FORMULE

A SIMULSOL[™]165: 5,0%

LANOL[™]1688: 20,0%

1,0% (additif à effet stabilisant

10 B Eau: q.s.p. 100%

C Composé de l'exemple 1 : 2,50%

D SEPICIDE[™] CI: 0,20%

SEPICIDE[™] HB: 0,30%

MODE OPERATOIRE

Introduire B dans A vers 75°C; ajouter C vers 60°C, puis D vers 45°C

Exemple 8 : gel solaire non gras

20 FORMULE

15

25

A Composé de l'exemple 1 : 3,00%

Eau: 30%

B SEPICIDE[™] C: 0,20%

SEPICIDE™ HB: 0,30%

Parfum: 0,10%

C Colorant: q.s.

Eau: 30%

D	MICROPEARL™ M 100:		3,00%
··· .	Eau:	q.s.p	100%
			0.007
· E	Huile de silicone :		2,0%
	PARSOL [™] MCX :		5,00%
MOT	OF OPERATOIDE		
	DE OPERATOIRE		
Intro	duire B dans A; ajouter C,puis D, pu	uis E.	
•			
	mple 9 : Lait solaire		•
FOR	MULE		
Α	SEPIPERL [™] N:		3,0%
•	Huile de sésame :		5,0%
	PARSOL [™] MCX :		5,0%
	Carraghénane λ :		0,10%
. B	Eau :	q.s	s.p.100%
С	Composé de l'exemple 1 :		0,80%
•			
D	Parfum :		q.s.

MODE OPERATOIRE

25 Emulsionner B dans A à 75°C puis ajouter C vers 60°C, puis D vers 30°C et ajuster le pH si nécessaire

Exemple 10 : Gel de massage

FORMULE

30 A Composé de l'exemple 1: 3,5%

		Eau:	20,0%
			0
	В	Colorant :	2 gouttes/100g
		Eau:	q.s.
5			
r	C ,	Alcool:	10%
		Menthol:	0,10%
	D	Huile de silicone :	5,0%
10	MOD	DE OPERATOIRE	
	Ajout	ter B dans A; puis ajouter au mélange, C puis l	D
	Exer	nple 11 : gel soin de massage	
15	FOR	<u>MULE</u>	
	Α	Composé de l'exemple 1 :	3,00%
	Eau	J :	30%
	В	SEPICIDE [™] CI:	0,20%
20		SEPICIDE [™] HB:	0,30%
		Parfum:	0,05%
	С	colorant :	q.s.
		Eau:	q.s.p 100%
25	D	MICROPEARL™ SQL:	5,0%
	LAI	NOL [™] 1688 :	2%
	MOE	DE OPERATOIRE	
	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		

Préparer A; additionner B, puis C, puis D.

• •	Exem	iple 12 : Gel coup d'éclat				
	<u>FORMULE</u>					
	Α	Composé de l'exemple 1:	4%			
5		Eau:	30%			
	В	ELASTINE HPM:	5,0%			
	С	MICROPEARL™ M 100:	3%			
10		Eau:	5%			
	D	SEPICIDE [™] CI:	0,2%			
	•	SEPICIDE [™] HB:	0,3%			
		Parfum:	0,06%			
15		Sodium pyrolidinone carboxylate 50%:	1%			
		Eau :	q.s.p. 100%			
	:					
	<u>MOI</u>	DE OPERATOIRE				
	Prép	parer A; additionner B, puis C, puis D.				
20						
	Exe	mple 13 : Lait corporel				
	FOF	RMULE				
	Α	SEPIPERL [™] N :	3,0%			
		Triheptonate de glycerol :	10,0%			
25						
•	В	Eau:	q.s.p.100%			
			· .			
	С	Composé de l'exemple 1:	1,0%			
30	D	Parfum :	q.s.			

Conservateur:

q.s.

MODE OPERATOIRE

Fondre A à environ 75°C . Emulsionner B dans A à 75°C puis ajouter C vers 60°C, puis D.

5

	FOF	RMI	JLE
--	-----	-----	-----

MONTANOV[™]68: 5% 5% Huile d'amandes douces : q.s.p.100% Eau: 0,3% Composé de l'exemple 1: 5% Glycérine: 0,2% Conservateur: 03% Parfum:

15

20

25

10

Exemple 15 : Crème hydratante pour peaux grasses

FORMULE

5% MONTANOV[™] 68: 8% Cétylstéaryloctanoate: 2% Octyl palmitate: q.s.p.100% Eau: 0,6% Composé de l'exemple 1: MICROPEARL™ M100: 3,0% Mucopolysaccharides: 5% SEPICIDE™ HB: 8,0 03% Parfum:

Exemple 16 : Baume après-rasage apaisant sans alcool

FORMULE

0.1% à 5% 30 Mélange de lauryl aminoacides :

	Aspartate de magnésium et de potassium :	0,002% à 0,5%
	LANOL [™] 99 :	2%
	Huile d'amandes douces :	0,5%
	Eau:	q.s.p.100%
5	Composé de l'exemple 1 :	3%
	SEPICIDE™ HB :	0,3%
	SEPICIDE [™] CI :	0,2%
	Parfum :	0,4%
10	Exemple 17 : Crème aux AHA pour peaux sensil	bles
	<u>FORMULE</u>	•
	Mélange de lauryl aminoacides :	0,1% à 5%
	Aspartate de magnésium et de potassium :	0,002% à 0,5%
	LANOL [™] 99 :	2%
15	MONTANOV™ 68 :	5,0%
	Eau:	q.s.p.100%
	Composé de l'exemple 1 :	1,50%
	Acide gluconique:	1,50%
	Triéthanolamine :	0,9%
20	SEPICIDE [™] HB :	0,3%
	SEPICIDE [™] CI:	0,2%
	Parfum :	0,4%
•		
	Exemple 18 : Soin apaisant après-soleil	
25	FORMULE	
	Mélange de lauryl aminoacides:	0,1% à 5%
,	Aspartate de magnésium et de potassium:	0,002% à 0,5%
	LANOL [™] 99:	10,0%
	Eau:	q.s.p.100%
30	Composé de l'exemple 1:	2,50%

. 25

	SEPICIDE [™] HB:	0,3%
	SEPICIDE™ CI:	0,2%
	Parfum:	0,4%
	Colorant:	0,03%
5	•	
	Exemple 19 : Lait démaquillant	
	FORMULE	
	SEPIPERL [™] N	3%
	PRIMOL 352:	8,0%
10	Huile d'amandes douces:	2%
	Eau:	q.s.p.100%
	Composé de l'exemple 1:	0,8%
	Conservateur:	0,2%
15	Exemple 20 : Lait corporel	
	FORMULE	
<i>*</i>	SEPIPERL [™] N:	3,5%
	LANOL [™] 37T:	8,0%
	SOLAGUM [™] L:	0,05%
20	Eau:	q.s.p.100%
	Benzophénone:	2,0%
	Diméthicone 350cPs:	0,05%
	Composé de l'exemple 1:	0,8%
	Conservateur:	0,2%
25	Parfum:	0,4%
	Exemple 21: émulsion fluide à pH alcalin	
	MARCOL™ 82:	5,0%
	NaOH:	10,0%
30	Eau:	q.s.p.100%

	Composé de l'exemple 1:	1,5%
	Exemple 22 : Fond de teint fluide	
	FORMULE	
5	SIMULSOL [™] 165	5,0%
	LANOL [™] 84D:	8,0%
	LANOL [™] 99:	5,0%
	Eau:	q.s.p.100%
÷	Pigments et charges minérales:	10,0%
10	Composé de l'exemple 1:	1,2%
	Conservateur:	0,2%
	Parfum:	0,4%
	Exemple 23 : Lait solaire	e e e e e e e e e e e e e e e e e e e
15	FORMULE	
	SEPIPERL [™] N	3,5%
	LANOL [™] 37T:	10,0%
	PARSOL NOX™:	5,0%
	EUSOLEX [™] 4360:	2,0%
20	Eau:	q.s.p. 100%
	Composé de l'exemple 1:	1,8%
	Conservateur:	0,2%
	Parfum:	0,4%
25	Exemple 24 : Gel contour.des yeux	
	<u>FORMULE</u>	
	Composé de l'exemple 1:	2,0%
	Parfum:	0,06%
	Sodium pyrrolidinonecarboxylate:	0,2%
30	DOW CORNING [™] 245 FLuid	2,0%

Eau: q.s.p. 100% Exemple 25: composition de soin non rincée **FORMULE** 5 Composé de l'exemple 1: 1,5% Parfum: q.s Conservateur: q.s. DOW CORNING™ X2 8360: 5,0% DOW CORNING™ Q2 1401: 15,% 10 Eau: q.s.p. 100% Exemple 26: gel amincissant Composé de l'exemple 1 5 % Ethanol 30 % 15 Menthol 0,1 % Caféine 2,5 % Extrait de ruscus 2% Extrait de lierre 2 % SEPICIDE™HB 1 % 20 Eau q.s.p. 100 % Exemple 27 : Baume après-rasage apaisant sans alcool **FORMULE** LIPACIDE™ PVB : 1,0% LANOL™ 99: 25 2,0% Huile d'amandes douces : 0,5% В Composé de l'exemple 1 3,5% 30 C Eau: q.s.p. 100%

	D -	Parfum :	0,4%
		SEPICIDE [™] HB :	0,4%
		SEPICIDE [™] CI :	0,2%
5			
	Exen	nple 28: Gel rafraîchissant après-	rasage
	<u>FOR</u>	MULE	
•	Α	LIPACIDE [™] PVB :	0,5%
		LANOL [™] 99 :	5,0%
10		Composé de l'exemple 1	2,5%
	В	eau:	q.s.p.100%
	С	MICROPEARL [™] LM :	0,5%
15	Par	fum :	0,2%
		SEPICIDE™ HB :	0,3%
		SEPICIDE [™] CI :	0,2%
	Exer	mple 29: Soin pour les peaux gras	ses
20	FOR	MULE	
	Α	MICROPEARL™ M310:	1,0%
		Composé de l'exemple 1	5,0%
		Isononanoate d'octyle :	4.0%
25 .	В	Eau :	q.s.p.100%
	С	SEPICONTROL™ A5 :	4,0%
		Parfum:	0,1%
		SEPICIDE™ HB :	0,3%
30		SEPICIDE™ CI:	0,2%

•	D	CAPIGEL [™] 98 :	0,5%
		Eau:	10%
5	Exen	nple 30 : Crème aux AHA	
	FOR	MULE	
	Α	MONTANOV [™] 68:	5,0%
		LIPACIDE™ PVB:	1,05%
		LANOL™ 99 :	10,0%
10	•		
	В	Eau :	q.s.p. 100%
		Acide gluconique :	1,5%
		TEA (triéthanolamine):	0,9%
			·
15	С	Composé de l'exemple 1	1,5%
	D	Parfum:	0,4%
		SEPICIDE™ HB:	0,2%
		SEPICIDE [™] CI:	0,4%
20	Exer	nple 31 : Autobronzant non gr	as pour visage et corps
	FOR	MULE	
	. A	LANOL [™] 2681 :	3,0%
		Composé de l'exemple 1	2,5%
	_	_	
25	В .	Eau :	q.s.p.100%
	Dih	ydroxyacétone :	3,0%
	С	Parfum :	0,2%
	SE	PICIDE [™] HB :	0,8%
30		NaOH (hydroxyde de sodium	n): qs pH = 5 %

Exemple 32 : Lait solaire au monoï de Tahiti

		·p··· ou · i unit ou inti un i i unit		•
5	FOR	<u>MULE</u>	•	
	Α	Monoï de Tahiti :	,	10%
		LIPACIDE™ PVB :		0,5%
	Con	nposé de l'exemple 1		2,2%
10	В	Eau :	q.s.p.	100%
	С	Parfum :		0,1%
		SEPICIDE [™] HB :		0,3%
		SEPICIDE [™] CI :		0,1%
15		Méthoxycinnamate d'octyle :		4,0%
	Exen	nple 33 : Soin solaire pour le visage		
	FOR	MULE		
	. · A	Cyclométhicone et diméthiconol:		4,0%
20		Composé de l'exemple 1		3,5%
. •	В	Eau:	q.s.p.	100%
	С	Parfum :		0,1%
25	• ,	SEPICIDE™ HB :		0,3%
,		SEPICIDE [™] CI :		0,21%
		Méthoxycinnamate d'octyle :		5,0%
		Micatitane :		2,0%
		Acide lactique :		q.s.p. pH = 6,5

Exemple 34: Emulsion bronzante sans soleil

	Exemple 34 : Emulsion bronzante sans so	oieii
5	FORMULE	
•	A LANOL [™] 99 :	15%
	MONTANOV [™] 68 :	5,0%
	Paramethoxycinnamate d'octyle :	3,0%
٠		
10	B Eau:	q.s.p. 100%
	Dihydroxyacétone :	5,0%
	Phosphate monosodique :	0,2%
		•
	C Composé de l'exemple 1	0,5%
15	D Parfum:	0,3%
	SEPICIDE [™] HB :	0,8%
	NaOH :	q.s. pH=5.
	Exemple 35 : Gel brillance	
20	Composé de l'exemple 1	1,5 %
	Silicone volatil	25 %
	Monopropylèneglycol	25 %
	Eau déminéralisée	10 %
	Glycérine	qsp 100 %
25		•
	Exemple 36 : Gel amincissant	
•	Composé de l'exemple 1	1,5 %
	Isononylisononanoate	2 %
	Caféine	5 %
30	Ethanol	40 %

	MICROPEARL™ LM	2 %
	Eau déminéralisée	qsp 100 %
	Conservateur parfum	qs
5	Exemple 37 : Lait démaquillant	
	SIMULSOL™ 165	4 %
	MONTANOV™ 202	1 %
	Caprylate-caprate triglyceride	15 %
	PECOSIL™ DCT	1 %
10	Eau déminéralisée	qs
	CAPIGEL™ 98	0,5 %
	Composé de l'exemple 1	1 %
,	PROTEOL™ OAT	2 %
	NaOH	qsp pH 7
15		•
	Exemple 38 : Crème solaire	
,	SIMULSOL™ 165	3 %
	MONTANOV™ 202	2 %
	Benzoate C12-C15	8 %
20	PECOSIL™ PS 100	2 %
	Diméthicone	2 %
•	Cyclométhicone	5 %
	Octyl-méthoxy-cinnamate	6 %
	Benzophénone-3	4 %
25	Oxyde de Titane	8 %
	Gomme xanthane	0,2 %
•	Butylène-glycol	5 %
•	Eau déminéralisée	qsp 100 %
	Composé de l'exemple 1	1,5 %
30	Conservateur, parfum	qs

	Exemple 39 : Gel de soin peaux mix	tes
5	Composé de l'exemple 1	4 %
	Squalane végétal	5 %
	Dimethicone	1,5 %
	SEPICONTROL™ A5	4 %
•	Gomme xanthane	0,3 %
10	Eau	qsp 100 %
	Conservateur, Parfum	qs
	Exemple 40 : Voile parfumé pour le	corps
	Composé de l'exemple 1	1,5 %
15	Cyclométhicone	5 %
	Parfum	2 %
	MICROPEARL™ M100	5 %
	Glycérine	5 %
	Eau déminéralisée	qsp 100 %
20		
	Exemple 41 : Crème vitaminée	
	SIMULSOL™ 165	5 %
	MONTANOV™ 202	1 %
	Caprylic/capric triglycerides	20 %
25	Palmitate de vitamine A	0,2 %
	Acetate de vitamine E	1 %
	MICROPEARL™ M305	1,5 %
	Composé de l'exemple 1	0,7 %
	Eau	qsp 100 %
30	Conservateur, parfum	qs

20

Le MONTANOV[™] 68 (cétéaryl glucoside), est une composition autoémulsionnable telle que décrite dans WO 92/06778, commercialisée par la société SEPPIC.

Le MICROPEARL™ M 100 est une poudre ultra fine au toucher très doux et à action matifiante commercialisée par la société MATSUMO

Le SEPICIDE™ CI, imidazolidine urée, est un agent conservateur commercialisé par la société SEPPIC.

PEMULEN[™] TR est un polymère acrylique commercialisé par 10 GOODRICH.

Le SIMULSOL™ 165 est du stéarate de glycérol auto-émulsionnable commercialisée par la société SEPPIC.

Le LANOL™ 1688 est un ester émollient à effet non gras commercialisé par la société SEPPIC.

Le LANOL™ 14M et le LANOL® S sont des facteurs de consistance commercialisés par la société SEPPIC.

Le SEPICIDE[™] HB , qui est un mélange de phénoxyéthanol, de méthyl paraben, d'éthylparaben, de propylparaben et de butylparaben, est un agent conservateur commercialisé par la société SEPPIC.

Le MONTEINE[™] CA est un agent hydratant commercialisé par la société SEPPIC.

Le SCHERCEMOL™ OP est un ester émollient à effet non gras.

Le LANOL™ P est un additif à effet stabilisant commercialisé par la société SEPPIC.

Le PARSOL™ MCX est de l'octyl paraméthoxycinnamate; commercialisé par la société GIVAUDAN.

Le SEPIPERL[™] N est un agent nacrant, commercialisé par la société SEPPIC, à base d'un mélange d'alkyl poly glucosides tels que ceux décrits dans WO 95/13863.

30 Le MICROPEARL™ SQL est un mélange de micro particules renfermant

5 .

20

25

. 30

du squalane qui se libère sous l'action du massage; il est commercialisé par la société MATSUMO.

Le LANOL[™] 99 est de l'isononyl isononanoate commercialisé par la société SEPPIC.

Le LANOL™ 37T est du triheptanoate de glycérol, commercialisé par la société SEPPIC.

Le SOLAGUM[™] L est un carraghénane commercialisé par la société SEPPIC.

Le MARCOL[™] 82 est une huile de paraffine commercialisée par la société

10 EXXON.

Le LANOL™ 84D est du malate de dioctyle commercialisé par la société SEPPIC.

Le PARSOL NOX[™] est un filtre solaire commercialisé par la société GIVAUDAN.

15 l' EUSOLEX[™] 4360 est un filtre solaire commercialisé par la société MERCK.

Le DOW CORNING[™] 245 Fluid est de la cyclométhicone, commercialisée par la société DOW CORNING.

Le LIPACIDE[™] PVB, est un hydrolysat de protéines de blé acylé commercialisé par la société SEPPIC.

Le MICROPEARL™ LM est un mélange de squalane, de polyméthylméthacrylate et de menthol, commercialisé par la société SEPPIC.

Le SEPICONTROL™ A5 est un mélange capryloy glycine, sarcosine, extrait de cinnamon zylanicum, commercialisé par la société SEPPIC, tel que ceux décrits dans la demande internationale de brevet PCT/FR98/01313 déposée le 23 juin 1998.

Le CAPIGEL[™] 98 est un copolymère acrylique commercialisé par la société SEPPIC.

Le LANOL[™] 2681 est un mélange caprylate, caprate de coprah, commercialisé par la société SEPPIC.

Le MONTANOV™ 202, est une composition APG/alcools gras telle que décrite dans WO9 98/47610, commercialisée par la société SEPPIC.

20

30

REVENDICATIONS

- 1. Composition comprenant une phase huile, une phase aqueuse, au moins un agent émulsifiant de type eau dans huile (E/H), au moins un agent
- émulsifiant de type huile dans eau (H/E), caractérisée en ce que ladite composition est un latex inverse comprenant de 20% à 60% en poids, et de préférence de 25% à 45% en poids, d'un polyélectrolyte anionique, branché ou réticulé, à base d'au moins un monomère possèdant une fonction acide fort, copolymérisé soit avec au moins un monomère possèdant une fonction acide faible, soit avec au moins un monomère neutre.
 - 2. Composition telle que définie à la revendication 1, caractérisée en ce que ledit polyélectrolyte anionique est le résultat d'une copolymérisation de ses monomères précurseurs effectuée à un pH inférieur à 4.
 - 3. Composition telle que définie à l'une des revendications 1 ou 2, caractérisée en ce que 30 % à 90 % des motifs monomèriques que le polyélectrolyte anionique comprend, possèdent une fonction acide fort.
 - 4. Composition telle que définie à l'une des revendications 1 à 3, pour laquelle la fonction acide fort du monomère en comportant, est la fonction acide sulfonique ou la fonction acide phosphonique, partiellement ou totalement salifié et de préférence, ledit monomère est l'acide 2-méthyl 2-[(1-oxo 2-
 - propènyl) amino] 1-propane-sulfonique partiellement ou totalement salifiée sous forme d'un sel de métal alcalin ou de sel d'ammonium.
 - 5. Composition telle que définie à l'une des revendications 1 à 4, pour laquelle la fonction acide faible du monomère en comportant, est la fonction acide
- carboxylique, et de préférence, ledit monomère est choisi parmi l'acide acrylique, l'acide méthacrylique, l'acide itaconique ou l'acide maléïque, partiellement ou totalement salifié.
 - 6. Composition telle que définie à l'une des revendications 1 à 4, pour laquelle le monomère neutre est choisi parmi l'acrylate de (2-hydroxy éthyle), l'acrylate de (2,3-dihydroxy propyle), le méthacrylate de (2-hydroxy éthyle), le

15

30

méthacrylate de (2,3-dihydroxy propyle), ou un dérivé éthoxylé, de poids moléculaire compris entre 400 et 1000 de chacun de ces esters.

- 7. Composition telle que définie aux revendications 1 à 4 ou 6 comprenant une phase huile, une phase aqueuse, au moins un agent émulsifiant de type eau dans huile (E/H), au moins un agent émulsifiant de type huile dans eau (H/E), caractérisée en ce que ladite composition est un latex inverse comprenant de 20% à 60% en poids, et de préférence de 25% à 45% en poids, d'un polyélectrolyte anionique, branché ou réticulé, à base d'acide 2-méthyl 2-[(1-oxo 2-propènyl) amino] 1-propanesulfonique partiellement ou totalement salifié, co-polymérisé avec de l'acrylate de (2-hydroxy éthyle).
 - 8. Composition telle que définie à la revendication 7, caractérisée en ce que 30% à 90%, de préférence 50% à 90% en proportions molaires, des motifs monomériques que le polyélectrolyte anionique comprend, est l'acide 2-méthyl 2-[(1-oxo 2-propènyl) amino] 1-propanesulfonique partiellement ou totalement salifié sous forme d'un sel de métal alcalin ou de sel d'ammonium, notamment une composition telle que définie précédemment, pour laquelle le polyélectrolyte anionique comporte, en proportions molaires, de 60% à 90% de sel de sodium ou de sel d'ammonium de l'acide 2-méthyl 2-[(1-oxo 2-propènyl) amino] 1-propanesulfonique et de 10% à 40% d'acrylate de (2-hydroxy éthyle).
- 9. Composition telle que définie à l'une des revendications 1 à 5, caractérisée en ce que ladite composition est un latex inverse comprenant de 20% à 60% en poids, et de préférence de 30% à 45% en poids, d'un polyélectrolyte anionique, branché ou réticulé, à base d'un acide 2-méthyl 2-[(1-oxo 2-propènyl) amino] 1-propane-sulfonique partiellement ou totalement salifié sous forme de sel de sodium ou de sel d'ammonium copolymérisé avec l'acide acrylique, partiellement salifié sous forme de sel de sodium ou de sel d'ammonium.
 - 10. Composition telle que définie à l'une quelconque des revendications 1 à 9, caractérisé en ce que le polyélectolyte anionique est réticulé et/ou branché avec un composé diéthylènique ou polyéthylènique dans la proportion molaire

15

20

exprimée par rapport aux monomères mis en oeuvre, de 0,005% à 1%, et de préférence de 0,01% à 0,2 % et plus particulièrement de 0,001 % à 0,1 %.

- 11. Composition telle que définie à la revendication 10, pour laquelle l'agent de réticulation et/ou l'agent de ramification est choisi parmi le diméthacrylate d'éthylèneglycol, le diallyloxyacétate de sodium, le diacrylate d'éthylèneglycol,
- le diallyl urée, le triméthylol propanetriacrylate ou le méthylène-bis-(acrylamide).
- 12. Composition telle que définie à l'une quelconque des revendications 1 à
- 11, caractérisée en ce qu'elle contient de 2,5% à 15% en poids, et de préférence de 4% à 9% en poids, d'agents émulsifiants.
- 13. Composition telle que définie à la revendication 12, dans laquelle de 20% à 50%, notamment de 25% à 40% du poids total des agents émulsifiants présents sont du type eau dans huile (E/H) et dans laquelle de 80% à 50%, notamment de 75% à 60%, du poids total des agents émulsifiants, sont du type huile dans eau (H/E).
- 14. Composition telle que définie à l'une quelconque des revendications 1 à 13, caractérisée en ce que la phase huile représente de 15% à 40%, de préférence de 20% à 25%, de son poids total.
- 15. Composition telle que définie à la revendication 14 dans laquelle la phase huile est constituée d'isohexadécane ou d'huile blanche minérale.
- 16. Composition telle que définie à l'une quelconque des revendications 1 à 15, caractérisée en ce qu'elle contient en outre un ou plusieurs additifs choisis notamment parmi les agents complexants, les agents de transfert ou les agents limiteurs de chaines.
- 25 17. Procédé de préparation de la composition telle que définie à l'une des revendications 1 à 16, caractérisé en ce que
 - a) l'on émulsionne une solution aqueuse contenant les monomères et les éventuels additifs, dans une phase huile en présence d'un ou plusieurs agents émulsifiants de type eau dans huile,
- 30 b) l'on amorce la réaction de polymérisation par introduction dans l'émulsion

15

formée en a), d'un initiateur de radicaux libres puis on la laisse se dérouler, c) lorsque la réaction de polymérisation est terminée, l'on introduit un ou plusieurs agents émulsifiants de type huile dans eau à une température inférieure à 50°C.

- 18. Variante du procédé tel que défini à la revendication 17, selon laquelle le milieu réactionnel issu de l'étape b), est concentré par distillation, avant la mise en oeuvre de l'étape c).
 - 19. Procédé tel que défini à l'une des revendications 17 ou 18, dans lequel la réaction de polymérisation est amorcée par un couple oxydo-réducteur, tel que le couple hydroperoxyde de cumène -disulfite de sodium, à une température inférieure ou égale à 10°C, puis conduite de manière quasi-adiabatique jusqu'à une température supérieure ou égale à 40°C.
 - 20. Procédé tel que défini à l'une des revendications 17 à 19, dans lequel la solution aqueuse de départ est ajustée à un pH inférieur ou égal à 4 avant la mise en oeuvre de l'étape
 - 21. Utilisation de la composition telle que définie à l'une des revendications 1 à 16 pour préparer une composition topique cosmétique, dermo-pharmaceutique ou pharmaceutique.
- 22. Composition cosmétique, dermo-pharmaceutique ou pharmaceutique
 20 comprenant de 0,1 % à 10 % en poids d'un latex inverse tel que défini à l'une des revendications 1 à 16.
 - 23. Composition telle que définie à la revendication 22, sous la forme d'un lait, d'une lotion, d'un gel, d'une crème, d'un gel crème, d'un savon, d'un bain moussant, d'un baume, d'un shampooing ou d'un après-shampooing.
- 24. Composition apaisante pour peau sensible comprenant un latex inverse tel que défini à l'une des revendications 1 à 16, et un ou plusieurs aminoacides Nacylés.

onal Application No

PCT/FR 99/00055 A. CLASSIFICATION OF SUBJECT MATTER ÎPC 6 CO8F2/32 A61K7/48 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 6 C08F A61K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. US 5 185 395 A (ROBINSON PETER M ET AL) 1,2,4-7,9 February 1993 9,12, 14-17,20 see the whole document 1.21-23 EP 0 793 957 A (OREAL) 10 September 1997 1,21-23 see claims 13,14,20 see page 3, line 35 - line 47 US 4 906 701 A (CLARK JR EARL) 1,4,5,9, 6 March 1990 12-17 see column 28 - column 29; examples XXIV,XXV see column 5, line 25 - column 7, line 25 see claims Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance. invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention filing date cannot be considered novel or cannot be considered to document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another involve an inventive step when the document is taken alone citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled document published prior to the international filing date but later than the priority date claimed "\$" document member of the same patent family Date of the actual completion of the international search Date of mailting of the international search report 28 April 1999 06/05/1999 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentiaan 2

NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nt,

Fax: (+31-70) 340-3016

Gamb, V

Inter .onal Application No
PCT/FR 99/00055

·		PCT/FR 99	9/00055	
	etion) DOCUMENTS CONSIDERED TO BE RELEVANT			
Category *	Citation of document, with indication, where appropriate, of the relevant passages	propnate, of the relevant passages		
A	US 4 702 844 A (FLESHER PETER ET AL) 27 October 1987	1		
	see column 4, line 5 - line 54			
	see claim 1			
	see example 4			
Α .	US 4 539 368 A (DUNCAN JOHN J ET AL)	:	1	
	3 September 1985 see column 2, line 20 - column 3, line 67			
	see example 2			
	see claim 1			
Α	WO 92 03498 A (EXXON CHEMICAL PATENTS INC)		1	
	5 March 1992			
	see page 5, line 1 - page 9, line 6 see examples			
	see claims 1,2,7			
j				
		*		
	•			
1				
	•			
			•	
		,	·	
		•		
			,	
	·			
	·			
			•	
		:		
- OCTOS ACIO		_		

information on patent family members

Inter .onal Application No PCT/FR 99/00055

Data da la			PCT/FR 99/00055			
	Patent documented in search rep		Publication date		Patent family member(s)	Publication date
U	S 5185395	Α	09-02-1993	NONE		
Ε	P 0793957	Α	10-09-1997	FR	2745494 A	05-09-1997
				AT	175109 T	15-01-1999
				CA	2199053 A	04-09-1997
				DE	69700082 D	11-02-1999
				WO	9732 566 A	12-09-1997
				PL	328600 A	01-02-1999
U:	S 4906701	Α	06-03-1990	US	4764574 A	16-08-1988
	*****			US 	5290479 A	01-03-1994
U!	S 4 702844	A	27-10-1987	AU CA	4621785 A	20-02-1986
				CA	1241492 A 1273449 A	30-08-1988
				CA	12/3449 A 1241149 A	28-08-1990
				DE	3584551 A	23-08-1988 05-12-1991
				EP	0172723 A	26-02-1986
,			•	EP	0172724 A	26-02-1986 26-02-1986
				EP	· 0172025 A	19-02-1986
	•			JP	61082812 A	26-04-1986
	•			JР	61069803 A	10-04-1986
-	•			JP	61081414 A	25-04-1986
		*		US	4892916 A	09-01-1990
	-			US	4940763 A	10-07-1990
				US	4980434 A	25-12-1990
				US	4677152 A	30-06-1987
				AT	53605 T	15-06-1990
				AT	60871 T	15-02-1991
				AU	612965 B	25-07-1991
		٠	•	- AU Br	6089786 A	19-02-1987
•			•	CA	8603812 A 1318689 A	17-03-1987
				CA	1318689 A 1309546 A	01-06-1993
				CA	1286445 A	27-10-1992 16-07-1991
				CA	1264280 A	09-01-1991
				CA	1295778 A	11-02-1990
•				EP	0213799 A	11-03-1987
			• .	ĒΡ	0213800 A	11-03-1987
				ĒΡ	0215565 A	25-03-1987
		,		ΕP	0214760 A	18-03-1987
	•	•		EΡ	0216479 A	01-04-1987
				JP	2530433 B	04-09-1996
		•		JP	62042731 A	24-02-1987
	• .			JP	2085247 C	23-08-1996
				JP	7112994 B	06-12-1995
•				JP	62039537 A	20 - 02-1987
				JP	2553841 B	13-11-1996
				JP	62057408 A	13-03-1987
				JP	62039608 A	20-02-1987
				US	5210324 A	11-05-1993
				US US	4792343 A 4741790 A	20-12-1988 03-05-1988
US	4539368	Α	03-09-1985	NONE		
	9203498	Α	05-03-1992	US	E1100E2 A	05.05.1000
WO	7203490	_	03 03 1332	US	5110853 A 2090425 A,C	05-05-1992

information on patent family members

Inter Shal Application No PCT/FR 99/00055

Patent document cited in search report	Patent document cited in search report			Patent family member(s)	Publication date
WO 9203498	A		DE DE DK	69106880 D 69106880 T 546105 T	02-03-1995 18-05-1995 26-06-1995
•			EP	05461 05 A	16-06-1993

Dei de Internationale No PCT/FR 99/00055

A. CLASSEMENT DE L'OBJET DE LA DEMANDE CIB 6 CO8F2/32 A61K7/48

Selon la classification internationale des prevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement) C1B 6 $\,$ C08F $\,$ A61K

Documentation consultee autre que la documentation minimale dans la mesure ou ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données electronique consultée au cours de la recherche internationale (nom de la pase de données, et si realisable, termes de recherche utilisés)

C. DOCUM	ENTS CONSIDERES COMME PERTINENTS	
Catégorie 3	Identification des documents cités, avec, le cas échéant, l'Indication des passages pertinents	no. des revendications visées
X	US 5 185 395 A (ROBINSON PETER M ET AL) 9 février 1993	1,2,4-7, 9,12,
Y	voir le document en entier	14-17,20 1,21-23
Y	EP 0 793 957 A (OREAL) 10 septembre 1997 voir revendications 13,14,20 voir page 3, ligne 35 - ligne 47	1,21-23
X	US 4 906 701 A (CLARK JR EARL) 6 mars 1990 voir colonne 28 - colonne 29; exemples XXIV.XXV	1,4,5,9, 12-17
	voir colonne 5, ligne 25 - colonne 7, ligne 25 voir les revendications	
	-/	

X Voir la suite du cadre C pour la fin de la liste des documents	Les documents de familles de brevets sont indiqués en annexe				
Catégories spéciales de documents cités:					
"A" document définissant l'état général de la technique, non considére comme particulièrement pertinent "E" document antérieur, mais publié à la date de dépôt international	To document utilérieur publié après la date de dépôt international ou la date de priorité et n'appartenenant pas à l'état de la technique pertinent, mais crié pour comprendre le principe ou la théorie constituant la base de l'invention				
ou après cette date	"X" document particulièrement pertinent; l'inven tion revendiquée ne peut				
"L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée)	étre considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément "Y" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier				
"O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens					
"P" document publié avant la date de dépôt international, mais					
postérieurement à la date de priorité revendiquée	"&" document qui fait partie de la même famille de brevets				
Date à laquelle la recherche internationale a été effectivement achevée	Date d'expédition du présent rapport de recherche internationale				
28 avril 1999	06/05/1999				
Nom et adresse postale de l'administration chargée de la recherche internation. Office Européen des Brevets, P.B. 5818 Patentiaan 2	ale Fonctionnaire autorisé				
NL -2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Gamb, V				

RAPPORT DE CHERCHE INTERNATIONALE

PCT/FR 99/00055

C.(suite) D	OCUMENTS CONSIDERES COMME PERTINENTS	PCT/FR 99	/00055
Catégorie	Identification des documents cités, avec.le cas échéant. l'indicationdes passages pe	rtineet-	
	Personal Property of the Personal Property of	runents	no. des revendications visées
A	US 4 702 844 A (FLESHER PETER ET AL) 27 octobre 1987		1
	voir colonne 4, ligne 5 - ligne 54 voir revendication 1 voir exemple 4		
Α .	US 4 539 368 A (DUNCAN JOHN J ET AL) 3 septembre 1985	,	1
	voir colonne 2, ligne 20 - colonne 3, ligne 67 voir exemple 2		
	voir revendication 1		
A	WO 92 03498 A (EXXON CHEMICAL PATENTS INC) 5 mars 1992 voir page 5, ligne 1 - page 9, ligne 6		1
	voir les examples voir revendications 1,2,7		
			7, e
			•
		,	
	BEST AV	AILABL	E COPY

RAPPORT DE CHERCHE INTERNATIONALE

Renseignements relatifs aux membres de familles de brevets

Der. e Internationale No PCT/FR 99/00055

	ocument brevet rapport de reche		Date de publication	Ma . tam	embre(s) de la lille de brevet(s)	Date de publication	
U	\$ 5185395	Α	09-02-1993	AUCI	JN	J	<u> </u>
Ε	P 0793957	Α	10-09-1997	FR	2745494 A	05-09-1997	٠
		• •	10 05 1557	AT	175109 T	15-01-1999	
				CA	2199053 A		
				DE	69700082 D	04-09-1997	
				WO	9732566 A	11-02-1999	
		•	•	PL	328600 A	12-09-1997	
					3200UU A	01-02-1999	
U:	\$ 4906701	Α .	06-03-1990	US US	4764574 A 5290479 A	16-08-1988	
						01-03-1994	
. US	S 4702844	Α	27-10-1987	AU Ca	4621785 A 1241492 A	20-02-1986	
			,	CA	1273449 A	30-08-1988	
				CA	1273449 A 1241149 A	28-08-1990	
				DE	3584551 A	23-08-1988	
	٠			EP	0172723 A	05-12-1991	
•	•			EP	0172723 A	26-02-1986	
			•	EP	0172724 A	26-02-1986	
				JP	61082812 A	19-02-1986	
				JP	61069803 A	26-04-1986	
				JP	61081414 A	10-04-1986	
	•			US	4892916 A	25-04-1986	
				US	4940763 A	09-01-1990	
				US	4940763 A 4980434 A	10-07-1990	
				US	4980434 A 4677152 A	25-12-1990	
				AT		30-06-1987	
				AT	53605 T	15-06-1990	
			•	.AU	60871 T 612965 B	15-02-1991	
				AU	612965 B 6089786 A	25-07-1991	
			4	BR	8603812 A	19-02-1987	
			•	CA	1318689 A	17-03-1987	
				CA ·	1318689 A 1309546 A	01-06-1993	
				CA	1309546 A 1286445 A	27-10-1992	
			•	CA	1264280 A	16-07-1991	
				CA	1204280 A 1295778 A	09-01-1990	
	-			EP	0213799 A	11-02-1992	
	•			EP		11-03-1987	
				EP	0213800 A 0215565 A	11-03-1987	
				EP EP	0215565 A 0214760 A	25-03-1987	
	• •			EP	0214760 A 0216479 A	18-03-1987	
			•	JP		01-04-1987	
				JP	2530433 B	04-09-1996	
				JP	62042731 A	24-02-1987	
	ž.				2085247 C	23-08-1996	
	•			JP	7112994 B	06-12-1995	
				JP	62039537 A	20-02-1987	
				JP	2553841 B	13-11-1996	
				JP	62057408 A	13-03-1987	
			•	JP	62039608 A	20-02-1987	
				US	5210324 A	11-05-1993	
				US US	4792343 A 4741790 A	20-12-1988 03-05-1988	
US	4539368	Α	03-09-1985	AUCUI			
	9203498	 А	05-03-1992	US	5110853 A	05-05-1992	
WO	3200-30	• • •	10 10 133E	- U	DIIVOUL N	0370371997	

Renseignements relatifs aux membres de familles de brevets

Den e internationale No PCT/FR 99/00055

Document brevet cité au rapport de recherche	Date de publication	Membre(s) de la famille de brevet(s)	Date de publication
WO 9203498 A		DE 69106880 D DE 69106880 T DK 546105 T EP 0546105 A	02-03-1995 18-05-1995 26-06-1995 16-06-1993

BEST AVAILABLE COPY