Ex 3.3 (a)
$$\hat{\theta}_{l,s} = \alpha^{T} \hat{\beta} = \alpha^{T} (x^{T} x)^{-1} x^{T} y \quad \mathcal{E}[\alpha^{T} \hat{\beta}] = \alpha^{T} \beta$$

$$\hat{\theta} = c^{T} y \quad \text{unbiased} \quad c^{T} = \alpha^{T} (x^{T} x)^{-1} x^{T} + \delta^{T}$$

$$\mathcal{E}[\hat{\theta}] = \mathcal{E}[c^{T} y]$$

$$= \mathcal{E}[\alpha^{T} (x^{T} x)^{-1} x^{T} y + \delta^{T} y]$$

$$= \alpha^{T} (x^{T} x)^{-1} x^{T} x \beta + \delta^{T} x \beta$$

$$= \alpha^{T} \beta \cdot \delta^{T} x \beta + \delta^{T} x \beta$$

$$= \alpha^{T} \beta \cdot \delta^{T} x \beta + \delta^{T} x \beta$$

$$= \alpha^{T} (\alpha^{T} (x^{T} x)^{-1} x^{T} + \delta^{T}) (\alpha^{T} (x^{T} x)^{-1} x^{T} + \delta^{T})^{T}$$

$$= \alpha^{T} (\alpha^{T} (x^{T} x)^{-1} x^{T} + \delta^{T}) (x (x^{T} x)^{-1} x^{T} + \delta^{T})$$

$$= \alpha^{T} (\alpha^{T} (x^{T} x)^{-1} x^{T} x^{T} x (x^{T} x)^{-1} x^{T} + \delta^{T})$$

$$= \alpha^{T} (\alpha^{T} (x^{T} x)^{-1} x^{T} x (x^{T} x)^{-1} x + \alpha^{T} (x^{T} x)^{-1} x^{T} x + \delta^{T} x (x^{T} x)^{-1} x$$

Variable Selection

IDEA: remove irrelevent veriables from the model not useful to predict / explain the response

- less verience (despite small increase of bies)
- better interpretability
- better portability

When a variable is considered irrelevent
- p-value of a test > a , usually a = 0.05
- its inclusion increases a information criterion

INFORMATION CRITERIA IDEA: instead of & = argmin L(0), we find $\hat{\theta}_{ic} = argmin\{L(0) + 2J(0)\}$ $\hat{\theta}_{ic} = X_{\beta}$ -20(0)

COAL: penalize larger models

$$\overline{J}(\theta) = \sum_{j=1}^{p} \underline{I}[\theta_{j}; fo] \qquad \text{# veriables in the model}$$

n is the sample size

NB: using AIC for model selection is like using &= 0.157

if two explenatory veriables are strongly correlated -s collinearity extreme case: variables linearly dependent

in the case (T)-1

super-collinearity (XTX) is not invertible (not full renk)

Haerl & Kennerd (1970) XTX - XTX + AIP $I_{p} = \begin{pmatrix} 1_{A} & 0 \\ 0 & \ddots & 1 \end{pmatrix}$

 $\frac{\beta(\lambda)}{\text{Bridge}} = (X^{T}X + \lambda I_{P})^{-1}X^{T}y \quad \lambda \in [0; op)$ when $\lambda \in (0; op) (X^{T}X + \lambda I_{P})^{-1} exists$

RINGE REGRESSION AS A SHRINKAGE METHOD

• $\hat{\beta}_{ridge}^{(\lambda)} = argmin \int_{i=1}^{\infty} (y_i - \beta_b - \sum_{j=1}^{p} x_{ij} \beta_j)^2 + \sum_{j=1}^{p} \beta_j^2$

alternative formulation

• $\beta_{ridge}^{(z)} = argmin \left\{ \sum_{i=1}^{n} (y_i - \beta_o - \sum_{j=1}^{p} x_{ij} \beta_j)^2 \right\}$ Subject to $\sum_{j=1}^{p} \beta_j^2 \le t$

- one to one correspondence between 2 and t

- from a Bayesian point of view, lidge estimator is the posterior mean/mode

if Xs ere uncorrelated

if Xs are correlated

IMPORTANT! We need to standardize our explanatory variables before applying the ridge regression $E[x_i] = 0$ (21 [x_i] = 1

Expected value of ridge estimator

$$E[\hat{\beta}_{ridge}^{(2)}] = E[(x^Tx + \lambda I_p)^T x^Ty] \hat{\beta}_{ls}$$

$$= E[(I_p + \lambda(x^Tx)^T)^T (x^Tx)^T x^Ty] \hat{\beta}_{ls}$$

$$= W_{\lambda} \beta \qquad E[\hat{\beta}_{ridge}^{(2)}] \neq \beta$$

$$\lambda \to 0 \qquad E[\hat{\beta}_{ridge}^{(2)}] = \beta \qquad \text{ without intercall }$$

$$\lambda \to \infty \qquad E[\hat{\beta}_{ridge}^{(2)}] = \rho_{pii} \qquad \text{ without intercall }$$

$$\lambda \to \infty \qquad E[\hat{\beta}_{ridge}^{(2)}] = \rho_{pii} \qquad \text{ without intercall }$$

$$\lambda \to \infty \qquad E[\hat{\beta}_{ridge}^{(2)}] = \rho_{pii} \qquad \text{ without intercall }$$

$$\lambda \to \infty \qquad E[\hat{\beta}_{ridge}^{(2)}] = \rho_{pii} \qquad \text{ without intercall }$$

$$\lambda \to \infty \qquad E[\hat{\beta}_{ridge}^{(2)}] = \rho_{pii} \qquad \text{ without intercall }$$

$$\lambda \to \infty \qquad E[\hat{\beta}_{ridge}^{(2)}] = \rho_{pii} \qquad \text{ without intercall }$$

$$\lambda \to \infty \qquad E[\hat{\beta}_{ridge}^{(2)}] = \rho_{pii} \qquad \text{ without intercall }$$

$$\lambda \to \infty \qquad E[\hat{\beta}_{ridge}^{(2)}] = \rho_{pii} \qquad \text{ without intercall }$$

$$\lambda \to \infty \qquad E[\hat{\beta}_{ridge}^{(2)}] = \rho_{pii} \qquad \text{ without intercall }$$

$$\lambda \to \infty \qquad E[\hat{\beta}_{ridge}^{(2)}] = \rho_{pii} \qquad \text{ without intercall }$$

$$\lambda \to \infty \qquad E[\hat{\beta}_{ridge}^{(2)}] = \rho_{pii} \qquad \text{ without intercall }$$

$$\lambda \to \infty \qquad E[\hat{\beta}_{ridge}^{(2)}] = \rho_{pii} \qquad \text{ without intercall }$$

$$\lambda \to \infty \qquad E[\hat{\beta}_{ridge}^{(2)}] = \rho_{pii} \qquad \text{ without intercall }$$

$$\lambda \to \infty \qquad E[\hat{\beta}_{ridge}^{(2)}] = \rho_{pii} \qquad \text{ without intercall }$$

$$\lambda \to \infty \qquad E[\hat{\beta}_{ridge}^{(2)}] = \rho_{pii} \qquad \text{ without intercall }$$

$$\lambda \to \infty \qquad E[\hat{\beta}_{ridge}^{(2)}] = \rho_{pii} \qquad \text{ without intercall }$$

ess 5

Degrees of freedom

$$\hat{Y}_{is} = \frac{x(x^{T}x)^{-1}x^{T}}{y} \qquad df = fr(H) = p$$

$$\hat{Y}_{is} = \frac{x(x^{T}x)^{-1}x^{T}}{y} \qquad df = fr(H_{a})$$

$$\hat{Y}_{is} = \frac{x(x^{T}x + 2\pi)^{-1}x^{T}}{y} \qquad df = fr(H_{a})$$

$$\hat{Y}_{is} = \frac{x(x^{T}x + 2\pi)^{-1}x^{T}}{y} \qquad df = fr(H_{a})$$

$$\hat{Y}_{is} = \frac{x(x^{T}x + 2\pi)^{-1}x^{T}}{y} \qquad df = fr(H_{a})$$

$$\hat{Y}_{is} = \frac{x(x^{T}x + 2\pi)^{-1}x^{T}}{y} \qquad df = fr(H_{a})$$

$$\hat{Y}_{is} = \frac{x(x^{T}x + 2\pi)^{-1}x^{T}}{y} \qquad df = fr(H_{a})$$

$$\hat{Y}_{is} = \frac{x(x^{T}x + 2\pi)^{-1}x^{T}}{y} \qquad df = fr(H_{a})$$

$$\hat{Y}_{is} = \frac{x(x^{T}x + 2\pi)^{-1}x^{T}}{y} \qquad df = fr(H_{a})$$

$$\hat{Y}_{is} = \frac{x(x^{T}x + 2\pi)^{-1}x^{T}}{y} \qquad df = fr(H_{a})$$

$$\hat{Y}_{is} = \frac{x(x^{T}x + 2\pi)^{-1}x^{T}}{y} \qquad df = fr(H_{a})$$

$$\hat{Y}_{is} = \frac{x(x^{T}x + 2\pi)^{-1}x^{T}}{y} \qquad df = fr(H_{a})$$

$$\hat{Y}_{is} = \frac{x(x^{T}x + 2\pi)^{-1}x^{T}}{y} \qquad df = fr(H_{a})$$

$$\hat{Y}_{is} = \frac{x(x^{T}x + 2\pi)^{-1}x^{T}}{y} \qquad df = fr(H_{a})$$

$$\hat{Y}_{is} = \frac{x(x^{T}x + 2\pi)^{-1}x^{T}}{y} \qquad df = fr(H_{a})$$

$$\hat{Y}_{is} = \frac{x(x^{T}x + 2\pi)^{-1}x^{T}}{y} \qquad df = fr(H_{a})$$

$$\hat{Y}_{is} = \frac{x(x^{T}x + 2\pi)^{-1}x^{T}}{y} \qquad df = fr(H_{a})$$

$$\hat{Y}_{is} = \frac{x(x^{T}x + 2\pi)^{-1}x^{T}}{y} \qquad df = fr(H_{a})$$

$$\hat{Y}_{is} = \frac{x(x^{T}x + 2\pi)^{-1}x^{T}}{y} \qquad df = fr(H_{a})$$

$$\hat{Y}_{is} = \frac{x(x^{T}x + 2\pi)^{-1}x^{T}}{y} \qquad df = fr(H_{a})$$

$$\hat{Y}_{is} = \frac{x(x^{T}x + 2\pi)^{-1}x^{T}}{y} \qquad df = fr(H_{a})$$

$$\hat{Y}_{is} = \frac{x(x^{T}x + 2\pi)^{-1}x^{T}}{y} \qquad df = fr(H_{a})$$

$$\hat{Y}_{is} = \frac{x(x^{T}x + 2\pi)^{-1}x^{T}}{y} \qquad df = fr(H_{a})$$

$$\hat{Y}_{is} = \frac{x(x^{T}x + 2\pi)^{-1}x^{T}}{y} \qquad df = fr(H_{a})$$

$$\hat{Y}_{is} = \frac{x(x^{T}x + 2\pi)^{-1}x^{T}}{y} \qquad df = fr(H_{a})$$

$$\hat{Y}_{is} = \frac{x(x^{T}x + 2\pi)^{T}}{y} \qquad df = fr(H_{a})$$

$$\hat{Y}_{is} = \frac{x(x^{T}x + 2\pi)^{T}}{y} \qquad df = fr(H_{a})$$

$$\hat{Y}_{is} = \frac{x(x^{T}x + 2\pi)^{T}}{y} \qquad df = fr(H_{a})$$

$$\hat{Y}_{is} = \frac{x(x^{T}x + 2\pi)^{T}}{y} \qquad df = fr(H_{a})$$

$$\hat{Y}_{is} = \frac{x(x^{T}x + 2\pi)^{T}}{y} \qquad df = fr(H_{a})$$

$$\hat{Y}_{is} = \frac{x(x^{T}x + 2\pi)^{T}}{y} \qquad df = fr(H_{a})$$

$$\hat{Y}_{is} = \frac{x(x^{T}x + 2\pi)^{T}}{y} \qquad df = fr(H_{a})$$

$$\hat{Y}_{is} = \frac{x(x^{T}x + 2\pi)^{T}}{y} \qquad df = fr(H_{a})$$

$$\hat{Y$$

More = bout shrinkege

X = UDV

nre

U= non orthogonal matrix, whose columns span the column space of X

V = prin orthegonal matrix, whose columns span 16 row spare

1) = non diagonal matrix, di; one single value of X:

$$U^TU = I_n = VV$$

LS estimator Bis

 $\beta_{cs} = (x^{T}x)^{-1}x^{T}y$ $= (V D U^{T} U D V^{T})^{-1}V D U^{T}y$ $= (V D^{2} V^{T})^{-1}V D U^{T}y$ $= V D^{2} V^{T} V D U^{T}y$ $= V D^{2} D U^{T}y$

 $\beta^{(\lambda)}_{iidge} = (x^{\dagger}x + 2T)^{-1}x^{T}y$ $= (x^{\dagger}x + 2T)^{-1}x^{T}y$

Grid = × βridge = U DV TV (De + 7Ip) DUT = U DE (D2+ 7Ip) UTy = U DE (D2+ 7Ip) UTy

$$\angle ASSQ$$

$$\widehat{\beta}_{LASSO} = \arg\min_{\beta} \left\{ \sum_{i=1}^{n} (y_i - \beta_o - \sum_{j=1}^{n} x_{ij} \beta_j)^2 + A \sum_{j=1}^{n} |\beta_j| \right\}$$

ar, equivelently

= argmin { \frac{2}{2} (g: -\beta_0 - \frac{5}{2} \times i \beta_0)^{\gamma}

subject +. 2 / /3:/ < =

ELASTIC NET

penally:
$$\lambda(\alpha\sum_{j=1}^{p}\beta_{j}^{2}+(1-\alpha)\sum_{j=1}^{p}\beta_{j}^{2})$$

STK4030 - Statistical Learning: Advanced Regression and Classification

Riccardo De Bin

debin@math.uio.no

STK4030: lecture 4 1/ 11

Procedure	Logic						
BE-only	Estimate full model on x_1, \ldots, x_k . Repeat: while the least significant term has $P \ge \alpha_2$, remove it and re-estimate the model						
BE	Estimate full model on x_1, \ldots, x_k . If the least significant term has $P \ge \alpha_2$, remove it and re-estimate; otherwise stop. Again: if the least significant term has $P \ge \alpha_2$, remove it and re-estimate; otherwise stop Repeat • if most significant excluded term has $P < \alpha_1$, add it and re-estimate; • if least significant included term has $P \ge \alpha_2$, remove it and re-estimate; until neither action is possible.						
FS-only	Estimate null model. Repeat: while the most significant excluded term has $P < \alpha_1$, add it and re-estimate.						
FS	Estimate null model. If the most significant excluded term has $P < \alpha_1$, add it and re-estimate; otherwise stop. Again: if the most significant excluded term has $P < \alpha_1$, add it and re-estimate; otherwise stop. Repeat • if least significant included term has $P \ge \alpha_2$, remove it and re-estimate; • if most significant included term has $P < \alpha_1$, add it and re-estimate; until neither action is possible.						

from: Royston & Sauerbrei (2008)

STK4030: lecture 4 2/ 11

Table 2.2 Myeloma study (65 patients, 48 events). Results of applying variable selection strategies."

Variable	1	All-subsets						
	0.05			0.157				
	Full	BE	FS	Full	BE	FS	AIC	
<i>x</i> ₁	*	1	V	*	1	✓	✓	
x_2			1			1		
X_3	*	1		*	1		1	
x_4		1		*	1		1	
x_5								
x_6		1		*	1		✓	
χ_7	*	1		*	1		✓	
x_8				*	1		V	
x_9								
x_{10}								
x_{11}								
x_{12}	*	1		*	1		1	
x_{13}	*	√		*	✓		1	
x_{14}				*				
x_{15}								
x_{16}								

STK4030: lecture 4 3/ 11

from: Royston & Sauerbrei (2008)

^{*}BE(0.01) and FS(0.01) selected only one variable, x_1 ; * denotes that a variable is significant at the relevant α -level in the full model.

Table 2.3 Educational body-fat data. Full model and that selected by BE(0.05). Final three columns give details of the full model excluding x_6 .

Variable	Full model			BE(0.05)			Full model excl. x_6		
	$\widehat{\beta}$	SE	β/SE	$\widehat{\beta}$	SE	$\widehat{\beta}$ /SE	$\widehat{\beta}$	SE	$\widehat{\beta}$ /SE
r.	0.074	0.032	2.31	0.056	0.024	2.35	0.211	0.034	6.20
X_1 X_2	-0.019	0.067	-0.28				0.227	0.074	3.08
X2 X3	-0.249	0.191	-1.30	-0.322	0.121	-2.65	-0.915	0.212	-4.32
x_4	-0.394	0.234	-1.68				-0.378	0.278	-1.36
X5	-0.119	0.108	-1.10				0.150	0.124	1.21
X ₆	0.901	0.091	9.90	0.774	0.033	23.26	-	-	-
X7	-0.146	0.144	-1.02				0.163	0.166	0.98
X_8	0.178	0.146	1.22				0.231	0.173	1.33
X ₀	-0.041	0.245	-0.17				-0.095	0.291	-0.33
	0.185	0.220	0.85				-0.053	0.259	-0.21
x ₁₀	0.178	0.170	1.04				-0.066	0.200	-0.33
x ₁₁	0.277	0.207	1.34				0.058	0.244	0.24
x_{12} x_{13}	-1.830	0.529	-3.46	-1.943	0.406	-4.78	-2.692	0.620	-4.34

from: Royston & Sauerbrei (2008)

STK4030: lecture 4 5/ 11

```
library(Biobase)
library(breastCancerVDX)
# ids of genes FLOT1
idFLOT1 \leftarrow which(fData(vdx)[.5] == 10211)
# ids of ERBB2
idERBB2 \leftarrow which(fData(vdx)[,5] == 2064)
# get expression levels of probes mapping to FLOT genes
X <- t(exprs(vdx)[idFLOT1,])</pre>
X <- sweep(X, 2, colMeans(X))</pre>
# get expression levels of probes mapping to FLOT genes
Y <- t(exprs(vdx)[idERBB2,])
Y <- sweep(Y, 2, colMeans(Y))
# regression analysis
summary(lm(formula = Y[,1] ~ X[,1] + X[,2] + X[,3] + X[,4]))
```

from: Van der Wieringen (2015)

STK4030: lecture 4 6/ 11

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
            0.0000
                      0.0633 0.0000
                                     1.0000
X[, 1]
            0.1641
                      0.0616 2.6637 0.0081 **
X[, 2]
           0.3203
                     0.3773 0.8490 0.3965
                     0.2974 0.1321 0.8949
X[.3]
           0.0393
X[, 4]
            0.1117
                      0.0773 1.4444
                                     0.1496
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

Residual standard error: 1.175 on 339 degrees of freedom Multiple R-squared: 0.04834, Adjusted R-squared: 0.03711 F-statistic: 4.305 on 4 and 339 DF, p-value: 0.002072

from: Van der Wieringen (2015)

STK4030: lecture 4 7/ 11

STK4030: lecture 4 8/ 11

STK4030: lecture 4 9/ 11

STK4030: lecture 4 10/ 11

Shrinkage Factor s

STK4030: lecture 4 11/ 11