Term 2 Week 8

1.
$$\int \sqrt{1-x} \cdot \sqrt{x+3} \, dx$$
$$\int \sqrt{-x^2 - 2x + 3} \, dx$$

Completing the square:

$$\int \sqrt{-(x^2 + 2x) + 3} \, dx$$
$$\int \sqrt{-((x+1)^2 - 1) + 3} \, dx$$
$$\int \sqrt{4 - (x+1)^2} \, dx$$

$$\sin \theta = \frac{x+1}{2}$$

$$x + 1 = 2\sin \theta$$

$$dx = 2\cos \theta \, d\theta$$

Substitute into the integral:

$$\int \sqrt{4-(2\sin\theta)^2}.2\cos\theta\,d\theta$$

$$\int \sqrt{4-4\sin^2\theta} \cdot 2\cos\theta \,d\theta$$

$$\int \sqrt{4(1-\sin^2\theta)}.2\cos\theta\,d\theta$$

$$\int \sqrt{4\cos^2\theta} \cdot 2\cos\theta \, d\theta$$

$$\int 2\cos\theta . 2\cos\theta \, d\theta$$

$$4\int \cos^2\theta \, d\theta$$

Using cosine double angle rule, $\cos 2\theta = 2\cos^2 \theta - 1$, we know $\cos^2 \theta = \frac{1}{2}(\cos 2\theta + 1)$

$$2\int(\cos 2\theta + 1)\,d\theta = 2(\frac{\sin 2\theta}{2} + \theta) + c = \sin 2\theta + 2\theta + c$$

Use the sine double angle rule: $2 \sin \theta \cos \theta + 2\theta + c$

Use the triangle to rewrite in terms of x: $\sin \theta = \frac{x+1}{2}$, $\cos \theta = \frac{\sqrt{4-(x+1)^2}}{2}$, $\theta = \sin^{-1} \frac{x+1}{2}$

$$\int \sqrt{1-x} \cdot \sqrt{x+3} \, dx = 2\frac{x+1}{2} \times \frac{\sqrt{4-(x+1)^2}}{2} + 2 \times \sin^{-1}\left(\frac{x+1}{2}\right) + c$$
$$= \frac{(x+1)\sqrt{4-(x+1)^2}}{2} + 2\sin^{-1}\left(\frac{x+1}{2}\right) + c$$

2. $\sin x \cos y = \frac{1}{4}$ $\sin y \cos x = \frac{3}{4}$

Subtract the equations and use the compound angles formula for sine:

$$\sin y \cos x - \sin x \cos y = \frac{1}{2}$$

$$\sin\left(y - x\right) = \frac{1}{2}$$

We can solve this using the sine general formula:

Remembering $\sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6}$

$$\begin{array}{l} y-x=n\pi+(-1)^n \times \frac{\pi}{6} \\ n=0 \Rightarrow : y-x=\frac{\pi}{6} \\ n=1 \Rightarrow : y-x=\frac{5\pi}{6} \\ n=-1 \Rightarrow : y-x=\frac{-7\pi}{6} \\ n=-2 \Rightarrow : y-x=\frac{-11\pi}{6} \end{array}$$

Add the equations and use the compound angles formula for sine again:

 $\sin y \cos x + \sin x \cos y = 1$

$$\sin\left(x+y\right) = 1$$

We know that $\sin^{-1}(1) = \frac{\pi}{2}$

Therefore, $x + y = \frac{\pi}{2}$

Combining the two:

$$(x+y) + (y-x) = 2y$$

Here we find the first solutions either side of the origin. We know that these will repeat every 2π so will use these as our principal solutions.

$$2y = \frac{\pi}{6} + \frac{\pi}{2} = \frac{2\pi}{3}$$

$$= \frac{5\pi}{6} + \frac{\pi}{2} = \frac{4\pi}{3}$$

$$= \frac{-7\pi}{6} + \frac{\pi}{2} = \frac{-2\pi}{3}$$

$$= \frac{-11\pi}{6} + \frac{\pi}{2} = \frac{-4\pi}{3}$$

$$y = \left\{\frac{\pi}{3}, \frac{2\pi}{3}, -\frac{\pi}{3}, -\frac{2\pi}{3}\right\}$$

Solving for x:

$$x = \frac{\pi}{2} - y$$

$$x = \frac{\pi}{2} - \frac{\pi}{3} = \frac{\pi}{6}$$

$$= \frac{\pi}{2} - \frac{2\pi}{3} = -\frac{\pi}{6}$$

$$= \frac{\pi}{2} - -\frac{\pi}{3} = \frac{5\pi}{6}$$

$$= \frac{\pi}{2} - -\frac{2\pi}{3} = \frac{7\pi}{6}$$

So our first principal solutions are: $(\frac{\pi}{6}, \frac{\pi}{3}), (\frac{-\pi}{6}, \frac{2\pi}{3}), (\frac{5\pi}{6}, -\frac{\pi}{3}), (\frac{7\pi}{6}, -\frac{2\pi}{3})$

Since we know the values of each will repeat every 2π , we can generalise:

$$(x,y) = (\frac{\pi}{6} \pm 2\pi a, \frac{\pi}{3} \pm 2\pi b)$$

$$= (-\frac{\pi}{6} \pm 2\pi a, \frac{2\pi}{3} \pm 2\pi b)$$

$$= (\frac{5\pi}{6} \pm 2\pi a, -\frac{\pi}{3} \pm 2\pi b)$$

$$= (\frac{7\pi}{6} \pm 2\pi a, -\frac{2\pi}{3} \pm 2\pi b)$$