

Expectation 1/8

D.E. Brow

Moments Mean

# Probability Review 4 - Expectation and Moments of Random Variables

Donald E. Brown

School of Data Science University of Virginia Charlottesville, VA 22904



# Agenda

Expectation 2/8

D.E. Brown

#### Moments

Mean Variance

- Moments of a Random Variable
  - Mean
  - Variance



Expectation 3/8

D.E. Brown

Moments Mean

Discrete random variable

$$E[X] = \sum_{x:p(x)>0} x p(x)$$



Expectation 3/8

D.E. Brown

Moments

Mean

Variance

Discrete random variable

$$E[X] = \sum_{x:p(x)>0} x p(x)$$

• Bernoulli: E[X] = p



Expectation 3/8

D.E. Brow

Moments

Mean

Variance

Discrete random variable

$$E[X] = \sum_{x:p(x)>0} x p(x)$$

• Bernoulli: E[X] = p

• Binomial: E[X] = np



Expectation 3/8

D.E. Brow

Moments

Mean

Variance

Discrete random variable

$$E[X] = \sum_{x:p(x)>0} x p(x)$$

• Bernoulli: E[X] = p

• Binomial: E[X] = np

• Poisson:  $E[X] = \lambda$ 



Expectation 4/8

D.E. Brown

Moment Mean

$$E[X] = \int_{-\infty}^{\infty} x f(x) dx$$



Expectation 4/8

D.E. Brown

Moment

Mean

Variance

Continuous random variable

$$E[X] = \int_{-\infty}^{\infty} x f(x) dx$$

• If X is uniform (a,b), what is E[X]?



Expectation 4/8

D.E. Brown

Moment

Mean

Variance

$$E[X] = \int_{-\infty}^{\infty} x f(x) dx$$

- If X is uniform (a,b), what is E[X]?
- Uniform (a,b):  $E[X] = \frac{b+a}{2}$



Expectation 4/8

D.E. Brown

Moments

Mean

Variance

$$E[X] = \int_{-\infty}^{\infty} x f(x) dx$$

- If X is uniform (a,b), what is E[X]?
- Uniform (a,b):  $E[X] = \frac{b+a}{2}$
- Beta  $E[X] = \frac{a}{a+b}$



Expectation 4/8

D.E. Brown

Moments

Mean

Variance

$$E[X] = \int_{-\infty}^{\infty} x f(x) dx$$

- If X is uniform (a,b), what is E[X]?
- Uniform (a,b):  $E[X] = \frac{b+a}{2}$
- Beta  $E[X] = \frac{a}{a+b}$
- ullet Gamma:  $E[X] = rac{lpha}{\lambda}$



Expectation 4/8

D.E. Brown

Moment

Mean

Variance

$$E[X] = \int_{-\infty}^{\infty} x f(x) dx$$

- If X is uniform (a,b), what is E[X]?
- Uniform (a,b):  $E[X] = \frac{b+a}{2}$
- Beta  $E[X] = \frac{a}{a+b}$
- ullet Gamma:  $E[X] = rac{lpha}{\lambda}$
- Gaussian:  $E[X] = \mu$



Expectation 4/8

D.E. Brown

Moments Mean Variance Continuous random variable

$$E[X] = \int_{-\infty}^{\infty} x f(x) dx$$

• If X is uniform (a,b), what is E[X]?

• Uniform (a,b):  $E[X] = \frac{b+a}{2}$ 

• Beta  $E[X] = \frac{a}{a+b}$ 

• Gamma:  $E[X] = \frac{\alpha}{\lambda}$ 

• Gaussian:  $E[X] = \mu$ 

• t Distribution:  $E[X] = \mu, \nu > 1$ 



Expectation 5/8

D.E. Brown

Moments

• Assume a real valued function  $g(\cdot)$ 



Expectation 5/8

D.E. Brown

Moments

Mean

Variance

- Assume a real valued function  $g(\cdot)$
- Discrete case:

$$E[g(X)] = \sum_{-\infty}^{\infty} g(x)p(x)$$



Expectation 5/8

D.E. Brown

Mean
Variance

- Assume a real valued function  $g(\cdot)$
- Discrete case:

$$E[g(X)] = \sum_{-\infty}^{\infty} g(x)p(x)$$

Continuous case:

$$E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x)$$



Expectation 5/8

D.E. Brown

Moments

Mean

Variance

- Assume a real valued function  $g(\cdot)$
- Discrete case:

$$E[g(X)] = \sum_{-\infty}^{\infty} g(x)p(x)$$

Continuous case:

$$E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x)$$

• Find  $E[X^3]$  for  $X \sim U(0,1)$ 



Expectation 6/8

D.E. Brown

Moments

Mean

Variance

Variance

$$Var[X] = \sum_{x:p(x)>0} (x - E[X])^2 p(x)$$



Expectation 6/8

D.E. Brow

Moments

Mean

Variance

Variance

$$Var[X] = \sum_{x:p(x)>0} (x - E[X])^2 p(x)$$

• Bernoulli: Var[X] = p(1-p)



Expectation 6/8

. .

Mean
Variance

Variance

$$Var[X] = \sum_{x:p(x)>0} (x - E[X])^2 p(x)$$

- Bernoulli: Var[X] = p(1-p)
- Binomial: Var[X] = np(1-p)



Expectation 6/8

Moment Mean

Variance

Variance

$$Var[X] = \sum_{x:p(x)>0} (x - E[X])^2 p(x)$$

• Bernoulli: Var[X] = p(1-p)

• Binomial: Var[X] = np(1-p)

• Poisson:  $Var[X] = \lambda$ 



Expectation 7/8

D.E. Brown

Moment

Mean

Variance

Variance

$$Var[X] = \int_{-\infty}^{\infty} (x - E[X])^2 f(x) dx$$



Expectation 7/8

D.E. Brown

Moment

Mean

Variance

Variance

$$Var[X] = \int_{-\infty}^{\infty} (x - E[X])^{2} f(x) dx$$

• Uniform (a,b):  $Var[X] = \frac{b+a}{12}$ 



Expectation 7/8

D.E. Brown

Moment Mean Variance Variance

$$Var[X] = \int_{-\infty}^{\infty} (x - E[X])^2 f(x) dx$$

- Uniform (a,b):  $Var[X] = \frac{b+a}{12}$
- Beta  $Var[X] = \frac{ab}{(a+b)^2(a+b+1)}$



Expectation 7/8

D.E. Brown

Moment

Mean

Variance

Variance

$$Var[X] = \int_{-\infty}^{\infty} (x - E[X])^{2} f(x) dx$$

- Uniform (a,b):  $Var[X] = \frac{b+a}{12}$
- Beta  $Var[X] = \frac{ab}{(a+b)^2(a+b+1)}$
- Gamma:  $Var[X] = \frac{\alpha}{\lambda^2}$



Expectation 7/8

D.E. Brown

Moment Mean Variance Variance

$$Var[X] = \int_{-\infty}^{\infty} (x - E[X])^2 f(x) dx$$

• Uniform (a,b):  $Var[X] = \frac{b+a}{12}$ 

• Beta  $Var[X] = \frac{ab}{(a+b)^2(a+b+1)}$ 

• Gamma:  $Var[X] = \frac{\alpha}{\lambda^2}$ 

• Gaussian:  $Var[X] = \sigma^2$ 



Expectation 7/8

D.E. Brown

Moment Mean Variance Variance

$$Var[X] = \int_{-\infty}^{\infty} (x - E[X])^{2} f(x) dx$$

• Uniform (a,b):  $Var[X] = \frac{b+a}{12}$ 

• Beta  $Var[X] = \frac{ab}{(a+b)^2(a+b+1)}$ 

• Gamma:  $Var[X] = \frac{\alpha}{\lambda^2}$ 

• Gaussian:  $Var[X] = \sigma^2$ 

• t Distribution:  $Var[X] = \hat{\sigma}^2 \frac{\nu}{\nu-2}, \nu > 2$ 



#### **Useful Formulas**

Expectation 8/8

D.E. Brown

Moment Mean

Variance

• Standard Deviation:  $Std[X] \equiv (Var[X])^{\frac{1}{2}}$ 



#### **Useful Formulas**

Expectation 8/8

D.E. Brow

Moment

Mean

Variance

- Standard Deviation:  $Std[X] \equiv (Var[X])^{\frac{1}{2}}$
- Second Moment:  $E[X^2] = (E[X])^2 + Var[X]$