Teoria Analisi 1

A. Languasco

February 8, 2025

Contents

1	Teorema del differenziale (Lagrange - Rolle generalizzato) 1.1 Enunciato	3
2	Teorema dell'unicità del limite 2.1 Enunciato	3
3	Teorema fondamentale del calcolo integrale (TFCI) 3.1 Enunciato	3
4	Formula fondamentale del calcolo integrale 4.1 Enunciato	4
5	Teorema del confronto I 5.1 Enunciato	CH CH CH
6	teorema del confronto II 6.1 Enunciato	6
7	! Teorema del confronto dei limiti	7
8	! Teorema media integrale	7
9	! Condizione necessaria del primo ordine per punti estremali interni	7
10	Criterio integrale convergenza delle serie numeriche 10.1 Enunciato	7
11	! Teorema del valore medio integale	7
12	Teorema delle 3 funzioni (Carabinieri) 12.1 Enunciato	7 7 8
13	! Condizione estremalità locale con le derivate successive	8

	Teorema di Rolle	8
	14.1 Enunciato	8
15	Teorema di Lagrange	8
	15.1 Enunciato	8
16	Teorema condizione necessaria di convergenza delle serie	g
	16.1 Enunciato	Ö
	16.2 Dimostrazione	Ć
17	Teorema Disuguaglianza di Bernoulli	ç
	17.1 Enunciato	G
	17.2 Dimostrazione	Ć

Teorema del differenziale (Lagrange - Rolle generalizzato) 1

Enunciato 1.1

 $2.2\text{em} f: I \subset \mathbb{R}, I \text{ intervallo, } x_0 \in I, x_0 \text{ interno ad } I, f \text{ derivabile in } x_0.$ Allora: \exists w: $I \to \mathbb{R}$ t.c. w è continua in x_0 , $w(x_0) = 0$ e

$$f(x_0) + f'(x_0)(x - x_0) + w(x)(x - x_0)$$

dove: $f(x_0) + f'(x_0)(x - x_0)$ è la tangente $w(x)(x-x_0)$ è l'errore causato da alcuni fattori, lo possiamo trascurare.

$\mathbf{2}$ Teorema dell'unicità del limite

2.1 Enunciato

 $f: A \subset \mathbb{R} \to \mathbb{R}, x_0 \in \widetilde{\mathbb{R}}$ punto di accumulazione per A Se:

1. $\lim_{x\to x_0} f(x) = l_1 \in \widetilde{\mathbb{R}}$

2. $\lim_{x\to x_0} f(x) = l_2 \in \widetilde{\mathbb{R}}$

Allora: $l_1 = l_2$

2.2 Dimostrazione

ip1) $\forall V l_1$ intorno di $l_1 \exists U x_0$ intorno di x_0 t.c. $f(x) \in \forall l_1$ per ogni $x \in (U x_0 \cap A) - \{0\}$

ip2) $\forall V l_2$ intorno di $l_2 \exists U' x_0$ intorno di x_0 t.c. $f(x) \in \forall l_2$ per ogni $x \in (U' x_0 \cap A) - \{0\}$

Per contraddizione: $l_1 \neq l_2$

Allora $\exists V l_1, V l_2$ intorni di l_1 e l_2 (rispettivamente) tali che: $V l_1 \bigcup V l_2 \neq \emptyset$

 $Wx_0 = \bigcup U'x_0$ è un intorno di x_0

Sia $x \in (Wx_0 \cup A) - \{x_0\} \neq \emptyset$ (perché x_0 è di accumulazione)

$$\Rightarrow \begin{cases} f(x) \in Vl_1 \text{ (Per definizione di limite 1)} \\ f(x) \in Vl_2 \text{ (Per definizione di limite 2)} \end{cases}$$

$$\Rightarrow f(x) \in Vl_1 \bigcap Vl_2 \neq \emptyset \Rightarrow \mathbf{l_1} = \mathbf{l_2}.$$
 Contraddizione

3 Teorema fondamentale del calcolo integrale (TFCI)

Enunciato 3.1

 $[a, b] \subset \mathbb{R}$, a < b. f R-integrale su [a, b].

 $\exists x_1 \in [a, b]$ t.c. f sia continua in x_1 . Fissato $x_0 \in [a, b]$ e presa $F(x) = \int_{x_0}^x f(t) dt$, si ha che F è derivabile in x_1 e $F'(x_1) = f(x_1)$

3.2 Dimostrazione

$$0 \le \left| \frac{F(x) - F(x_1)}{x - x_1} - f(x_1) \right|, \quad x \ne x_1$$

$$= \left| \frac{\int_{x_0}^x f(t)dt - \int_{x_0}^{x_1} f(t)dt}{x - x_1} - f(x_1) \right|$$

$$= \left| \frac{\int_{x_0}^x f(t)dt + \int_{x_1}^x f(t)dt - \int_{x_0}^{x_1} f(t)dt}{x - x_1} - f(x_1) \right|$$

$$= \left| \frac{\int_{x_1}^x f(t)dt - f(x_1)(x - x_1)}{x - x_1} \right|$$

$$= \left| \frac{\int_{x_1}^x (f(t) - f(x_1))dt}{x - x_1} \right|$$

$$\le \frac{1}{x - x_1} \int_{x_1}^x |f(t) - f(x_1)|dt$$

Ma f è continua in $x_1 \iff$

$$\forall \epsilon > 0 \ \exists \delta_{\varepsilon} > 0 \ \text{t.c.} \ |f(t) - f(x_1)| < \epsilon \ \forall t/0 < |t - x_1| < \delta_{\varepsilon} \ t \in [a, b]$$

Osservo che $t \in [x_1, x]$ (oppure $t \in [x, x_1]$, dipende come abbiamo disposto $x \in x_1$) Implica che $|t - x_1| \le |x - x_1|$

Sia allora $x \in [a, b]/|x - x_1| < \delta_{\varepsilon}$. Con questo forziamo le due varibli a stare vicine fra loro

Quindi
$$|t - x_1| \le |x - x_1| < \delta_{\varepsilon} \text{ e } |f(t) - f(x_1)| < \epsilon$$

Quindi
$$|t - x_1| \le |x - x_1| < \delta_{\varepsilon}$$
 e $|f(t) - f(x_1)| < \epsilon$
Allora $0 \le \left| \frac{F(x) - F(x_1)}{x - x_1} - f(x_1) \right| < \frac{1}{|x - x_1|} \left| \int_{x_1}^x \epsilon dt \right| = \epsilon \frac{|x - x_1|}{|x - x_1|} = \epsilon$
Ossia: $\forall \epsilon > 0 \ \exists \delta_{\varepsilon} > 0 \ \text{t.c.}$ $\left| \frac{F(x) - F(x_1)}{x - x_1} - f(x_1) \right| < \epsilon \ \forall x \ \text{t.c.}$ $0 < |x - x_1| < \delta_{\varepsilon}, \ x \in [a, b]$

Cioè: $\lim_{x_1} \frac{F(x) - F(x_1)}{x - x_1}$ esiste e vale $f(x_1)$.

Quindi:
$$F'(x_1) = f(x_1)$$

4 Formula fondamentale del calcolo integrale

4.1 Enunciato

 $f \in C^0[a,b]$ e sia $G:[a,b] \to \mathbb{R}$ una primitiva di f in [a,b]

Allora
$$\int_a^b f(t)dt = G(b) - G(a)$$

4.2 Dimostrazione

Sia $x \in [a,b]$ e $F(x) = \int_{x_0}^x f(t)dt$. Per il TFCI* è derivabile in [a,b] e $F'(x) = f(x) \forall x \in [a,b]$. F, G sono primitive di f in un intervallo $[a,b] \Rightarrow \exists c \in \mathbb{R}/G(x) = F(x) + c \ \forall x \in [a,b]$

Osservo adesso che:
$$G(b) - G(a) = F(b) + c - F(a) - c = F(b) - F(a)$$
$$= \int_{x_0}^b f(t)dt - \int_{x_0}^a f(t)dt$$
$$= \int_{x_0}^a f(t)dt + \int_{x_0}^b f(t)dt - \int_{x_0}^a f(t)dt = \int_{x_0}^b f(t)dt.$$

*TFCI: Teorema Fondamentale Calcolo Integrale

Osservazione: $f \in C^0([a,b])$ e sia

 $H(x) = \int_{\alpha(x)}^{\beta(x)} f(t)dt$ dove $\alpha, \beta : [a, b] \to \mathbb{R}$ derivabili in [a, b].

Si ha che H(x) è derivabile perché $H(x) = F(\beta(x)) - F(\alpha(x))$ dove $F(u) = \int_{x_0}^{u} f(t)dt$ (Composizione di f derivabili)

Inoltre $H'(x) = F'(\beta(x))\beta'(x) - F'(\alpha(x))\alpha'(x) = f(\beta(x))\beta'(x) - f(\alpha(x))\alpha'(x) \ \forall x \in [a, b]$

5 Teorema del confronto I

5.1 Enunciato

 $f,g:A\subset\mathbb{R}\to\mathbb{R}, x_0\in\widetilde{\mathbb{R}}$ punto di accumulazione per A Allora:

a) Se $\lim_{x \to x_0} f(x) = \ell_1 \in \mathbb{R}$ Se $\lim_{x \to x_0} g(x) = \ell_2 \in \mathbb{R}$ $\operatorname{con} \ell_1 < \ell_2$, allora:

 $\exists U_{x_0}$, intervallo di x_0 , tale che $f(x) < g(x) \quad \forall x \in (U_{x_0} \cap A) \setminus \{x_0\}$

b) Se $\lim_{x\to x_0} f(x) = -\infty$ Se $\lim_{x\to x_0} g(x) = \ell \in \mathbb{R} \cup \{+\infty\}$, allora:

 $\exists U_{x_0}$, intervallo di x_0 , tale che $f(x) < g(x) \quad \forall x \in (U_{x_0} \cap A) \setminus \{x_0\}$

c) Se $\lim_{x\to x_0} f(x) = \ell \in \mathbb{R}$ Se $\lim_{x\to x_0} g(x) = +\infty$, allora:

 $\exists U_{x_0}$, intervallo di x_0 , tale che $f(x) < g(x) \quad \forall x \in (U_{x_0} \cap A) \setminus \{x_0\}$

5.2 Dimostrazione

a) $l_1 < l_2(l_1, l_2 \in \mathbb{R})$. Fisso $\epsilon > 0$ $\lim_{x \to x_0} f(x) = l_1 \Rightarrow \exists U'x_0 \text{ intervallo di } x_0 \text{ tale che } \forall x \in (U'x_0 \cap A) \setminus \{x_0\}$ $\lim_{x \to x_0} g(x) = l_2 \Rightarrow \exists U''x_0 \text{ intorno di } x_0/l_2 - \epsilon < g(x) < l_2 + \epsilon \ \forall x \in (U''x_0 \cap A) \setminus \{x_0\}$

Se $x \in (U'x_0 \cap U''x_0 \cap A) \setminus \{x_0\}$ idea: scelgo $\epsilon > 0/l_1 + \epsilon \le l_2 - \epsilon$ Scelgo in quanto sopra $\epsilon = \frac{l_2 - l_1}{2}$ Per $x \in (U'x_0 \cap U''x_0 \ cap A) \setminus \{x_0\}$ si ha allora

$$f(x) < l_1 + \epsilon = l_1 + \frac{l_2 - l_1}{2} = \frac{l_1 + l_2}{2}$$

6 teorema del confronto II

6.1 Enunciato

 $f,g:A\subset\mathbb{R}\to\mathbb{R}$ $A\neq\emptyset$ $x\in\widetilde{\mathbb{R}}$ punto di accumulazione per A Allora:

- a) Se $\lim_{x \to x_0} f(x) = l_1 \in \mathbb{R}$
 - Se $\lim_{x \to x_0} g(x) = l_2 \in \mathbb{R}$

Se $\exists Ux_0$ intorno di $x_0/f(x) \leq g(x) \ \forall x \in (Ux_0 \cap A) \setminus \{x_0\}$

$$\Rightarrow l_1 \leq l_2$$

b) Se $\lim_{x\to x_0}g(x)=-\infty$ e $\exists Ux_0$ intorno di $x_0/f(x)\leq g(x)$ $\forall x\in (Ux_0\cap A)\setminus\{x_0\}$

$$\Rightarrow \exists \lim_{x \to x_0} g(x) = +\infty$$

c) Se $\lim_{l \to x_0} f(x) = +\infty$ e $\exists Ux_0$ intorno di $x_0/f(x) \leq g(x) \ \forall x \in (Ux_0 \cap A) \setminus \{x_0\}$

$$\Rightarrow \exists \lim_{x \to x_0} g(x) = +\infty$$

6.2 Osservazione

Cosa accade se si suppone $f(x) < g(x) \stackrel{?}{\Rightarrow} l_1 < l_2$

NO:
$$f(x) = 0 \ \forall x \mathbb{R} \ g(x) = \begin{cases} \frac{1}{x} \ x > 0 \\ 0 \ x = 0 \\ -\frac{1}{x} \ x < 0 \end{cases}$$

- 7 ! Teorema del confronto dei limiti
- 8 ! Teorema media integrale
- 9 ! Condizione necessaria del primo ordine per punti estremali interni
- 10 Criterio integrale convergenza delle serie numeriche

10.1 Enunciato

$$\begin{split} f: [1,+\infty) &\to \mathbb{R}, \ f(x) \geq 0 \ \forall x \in [1,+\infty. \\ \text{Sia } f. \ \text{debolmente crescente in } [+\infty). \\ \text{Allora } (\sum_{k=1}^{\infty} f(k) \ \text{converge} \iff \int_{1}^{+\infty} f(x) dx \ \text{converge.}) \end{split}$$

- 11 ! Teorema del valore medio integale
- 12 Teorema delle 3 funzioni (Carabinieri)

12.1 Enunciato

 $f,g,h:A\subset\mathbb{R}\to\mathbb{R},\,A\neq\emptyset,\,x_0\in\widetilde{\mathbb{R}}$ punto di accumulazione per A. Inoltre

$$\exists \lim_{x \to x_0} f(x) = l \in \mathbb{R}$$

$$\exists \lim_{x \to x_0} g(x) = l \in \mathbb{R}$$

$$\exists Ux_0$$
intorno di $x_0/f(x) \leq h(x) \leq g(x) \; \forall x \in (Ux_0 \cap A) \setminus \{x_0\}$

$$\Rightarrow \exists \lim_{x \to x_0} h(x) = l$$

12.2 Dimostrazione

Sia
$$\epsilon > 0$$
: $\exists U'x_0, U''x_0$ intorni di $x_0/|f(x) - l| < \epsilon \ \forall x \in (U'x_0 \cap A) \setminus \{x_0\}$
 $|g(x) - l| < \epsilon \ \forall x \in (U''x_0 \cap A) \setminus \{x_0\}$

Sia $Wx_0 = U'x_0 \cap U''x_0$ è un intorno di x_0 . Se $x \in Wx_0 \cap A \setminus \{x_0\}$

$$l - \epsilon < f(x) \text{ definizione } \lim f \text{ (per ipotesi)}$$
$$f(x) \leq h(x) \leq g(x)$$
$$g(x) < l + \epsilon$$

Quindi $l - \epsilon < h(x) < l + \epsilon$ cioè $|h(x) - l| < \epsilon$ Ho fatto vedere che:

$$\forall \epsilon > 0 \; \exists W x_0 \; \text{intorno di} \; x_0 / |h(x) - l| < \epsilon \; \text{per} \; x \in W x_0 \cap A \setminus \{x_0\}$$

Che è esattamente la definizione di: $\lim_{x \to x_0} h(x) = l$

13 ! Condizione estremalità locale con le derivate successive

14 Teorema di Rolle

14.1 Enunciato

 $f: [a, b] \to \mathbb{R}$, f continua in [a, b] f derivabile in (a, b) e f(a) = f(b)Allora $\exists \overline{x} \in [a, b]$ $x_1 = a$ e $x_2 = b$ (o viceversa): allora, dato che

$$f(a) = f(b) \Rightarrow f(x) = f(a) \ \forall x \in [a, b]$$
$$\Rightarrow f'(x) = 0 \ \forall x \in (a, b)$$

Se almeno uno tra x_1 e x_2 non è in un estremo di [a, b] esempio sia $x_1 \in (a, b)$. Allora x_1 è interno ad [a, b]. Per le condizioni necessarie di estremalità si ha $f'(x_1) = 0$ Nel caso di $x_2 \in (a, b)$: si replichi lo stesso ragionamento.

15 Teorema di Lagrange

15.1 Enunciato

 $f:[a,b]\to\mathbb{R},\ f\ \text{continua in }[a,b],\ f\ \text{derivabile in }(a,b).$ Allora $\exists \overline{x}\in(a,b)/f(b)-f(a)=f'(\overline{x})(b-a)$ Sia $\varphi(x)=(f(x)-f(a))(b-a)-(f(b)-f(a))(x-a),\ f\ \text{è continua in }[a,b];$ φ è derivabile in $(a,b),\ \varphi(a)=0-0=0;\ \varphi(b)=0-0=0.$ Per il teorema di Rolle: $\exists \overline{x}\in(a,b)\qquad \varphi(\overline{x})\to \text{punto che azzera la derivata prima.}$ Ma $\varphi'(x)=(f'(x)(b-a))-(f(b)-f(a))\ \forall x\in(a,b)$ $\Rightarrow 0=\varphi'(\overline{x})=f'(\overline{x})(b-a)-f(b)-f(a)$ e quindi $0=\varphi'(\overline{x})$ dato che il resto è nullo da cui segue la tesi.

16 Teorema condizione necessaria di convergenza delle serie

16.1 Enunciato

Se
$$\sum a_k$$
 converge, allora $\lim_{x \to +\infty} a_k = 0$

16.2 Dimostrazione

Sia
$$A_n = \sum_{k=0}^n a_n, n \in \mathbb{N}.$$

Per ipotesi $\exists A \in \mathbb{R} \lim_{n \to +\infty} An = A.$

Inoltre si ha che
$$A_n - A_{n-1} = \sum_{k=0}^n a_n - \sum_{h=0}^{n-1} a_n = a_n$$

$$\operatorname{Ma} \lim_{n \to +\infty} (A_n - A_{n-1}) = (\lim_{n \to +\infty} A_n) - (\lim_{n \to +\infty} A_{n-1}) = A - A = 0$$

$$\Rightarrow \lim_{n \to +\infty} a_n = 0.$$

17 Teorema Disuguaglianza di Bernoulli

17.1 Enunciato

$$x \in \mathbb{R}, x > -1$$
. Allora $(1+x)^m \ge 1 + nx \ \forall n \in \mathbb{N}$

17.2 Dimostrazione

Passo base:

È vero che: $(1+x)^0 \le 1+0*x$?, si \Rightarrow passo base <u>verificato!</u>

Passo induttivo:

Ipotesi induttiva: $(1+x)^m \ge 1 + mx$ con $m \in \mathbb{N}$ Tesi induttiva: $(1+x)^{m+1} \ge 1 + (m+1)x$

$$(1+x)^{m+1} = (1+x)(1+x)^m \ge (1+mx)(1+x)$$

 $1+x+mx+mx^2 = x(1+m)+1+mx^2 = (m+1)x+1+mx^2 \ge (m+1)x+1$ Posso anche ingnorare mx^2 perche è sempre positivo

Quindi il passo induttivo è verificato per il principio di induzione $\forall x > -1$