Announcements

□ Homework for tomorrow...

Ch. 31: CQ 10, Probs. 20, 22, & 46

 $CQ3: \Delta V_{12} = 3V$

31.1: See whiteboard

31.6: 8V, 22V

31.8: (48/25)W, (72/25)W

□ Office hours...

MW 10-11 am

TR 9-10 am

F 12-1 pm

□ Tutorial Learning Center (TLC) hours:

MTWR 8-6 pm

F 8-11 am, 2-5 pm

Su 1-5 pm

Chapter 31

Fundamentals of Circuits

(Real Batteries & Parallel Resistors)

Review...

Resistors in series....

$$R_{eq} = R_1 + R_2 + \dots$$

Terminal voltage across a real battery...

$$\Delta V_{bat} = \mathcal{E} - Ir \le \mathcal{E}$$

31.5: Real Batteries

Although physically separated, the internal resistance r is electrically in series with R.

This means the two circuits are equivalent.

Notice:

$$\Delta \mathbf{V}_R = \Delta \mathbf{V}_{bat}$$
 , $\Delta \mathbf{V}_R \neq \boldsymbol{\mathcal{E}}$

i.e. 31.6: Lighting up a flashlight

A 6.0 Ω flashlight bulb is powered by a 3.0V battery with an internal resistance of 1.0 Ω .

What are the power dissipation of the bulb and the terminal voltage of the battery?

A Short Circuit...

What is the current in this circuit?

A Short Circuit...

What is the current in this circuit?

$$I_{short} = rac{\mathcal{E}}{r}$$

Notice:

This is the *maximum possible current* that this battery can produce!

i.e. 31.7: A short-circuited battery

What is the short-circuit current of a 12V car battery with an internal resistance of 0.020Ω ?

What happens to the power supplied by the battery?

Consider the circuit below, where the switch is open. The current is the same through bulbs A and B, and they are equally bright. Bulb C is not glowing.

The switch is now closed, what happens to the brightness of A?

- 1. It increases.
- 2. It decreases.
- 3. It stays the same.

31.6:

Parallel Resistors

Consider two resistors in parallel...

□ Can we find an *equivalent resistor*, R_{eq} , to the two resistors, $R_1 \& R_2$?

31.6:

Parallel Resistors

Consider two resistors in parallel...

□ Can we find an *equivalent resistor*, R_{eq} , to the two resistors, $R_1 \& R_2$?

31.6: Parallel Resistors

What about several resistors in parallel...

□ Can we find an *equivalent resistor*, R_{eq} , to the the resistors, $R_1, R_2,...$ (all in *parallel*)?

31.6:

Parallel Resistors

What about several resistors in *parallel*...

□ Can we find an *equivalent resistor*, R_{eq} , to the the resistors, $R_1, R_2,...$ (all in *parallel*)?

Quiz Question 1, continued..

Consider the circuit below, where the switch is open. The current is the same through bulbs A and B, and they are equally bright. Bulb C is not glowing.

The switch is now closed, what happens to the brightness of A?

- 1. It increases.
- 2. It decreases.
- 3. It stays the same.

The battery current I is

- 1. 3 A.
- 2. 2 A.
- 3. 1 A.
- 4. 2/3 A.
- 5. 1/2 A.

When the switch closes, the battery current

- ı. increases.
- 2. stays the same.
- 3. decreases.

When the switch closes, the battery current

- ı. increases.
- 2. stays the same.
- 3. decreases.

Notice:

The equivalent of several resistors in parallel is *always less* than any single resistor in the group.