

livroaberto@impa.br

Atividade: As colônias

Habilidades

EM13MAT304 Resolver e elaborar problemas com funções exponenciais nos quais é necessário compreender e interpretar a variação das grandezas envolvidas, em contextos como o da Matemática Financeira e o do crescimento de seres vivos microscópicos, entre outros.

Para o professor

Objetivos específicos

OE1 Reconhecer situações em que uma quantidade aumenta ou diminui a uma taxa percentual constante por unidade da outra.

0E2 Expressar o crescimento/decaimento exponencial em termos de variação percentual e viceversa

Observações e recomendações

- Discuta com os estudantes a possibilidade exibir tabelas e gráficos com valores não necessariamente iguais a 6% ou 10% dos valores anteriores, mas que possam ser aproximados tentando retratar alguma coleta de dados real e que tenha levado os cientistas a escolher o modelo exponencial.
- No item (g), se achar conveniente, apresente as expressões (1+r) para crescimento e (1-r) para decaimento, nas quais a taxa percentual r é sempre considerada um número positivo.

Atividade

Analise cada uma das situações abaixo e em seguida responda as perguntas para cada uma delas.

- **(A)** Uma população de 100 coelhos é introduzida em uma reserva ecológica. Após um período de observação de 12 meses, os biólogos concluíram que essa colônia cresceu ao longo do ano seguindo uma taxa percentual aproximada de 6% ao mês, isto é, a cada mês a população de coelhos na colônia estava aproximadamente 6% maior em relação ao registro do mês anterior.
- (B) Um laboratório está pesquisando a eficácia de um antibiótico e uma equipe de biomédicos o adiciona em uma colônia de bactérias com uma população de 950.000 indivíduos. As células então começam a morrer de maneira que ao final de 12 horas, os pesquisadores afirmam que população da colônia diminuiu a uma taxa percentual de 10% a cada hora.
 - a) Elabore uma tabela com os possíveis dados observados pelos pesquisadores em cada uma das situações.
 - b) Descreva como você obteve os dados das tabelas anteriores.
 - c) Pode-se afirmar que os dados tabelas apresentam crescimento e decaimento exponenciais? Em caso afirmativo, quais são os fatores em cada situação?

Realização:

7 OLIMPÍADA BRASILEIRA
DE MATE MÁTICA
DAS ESCOLAS PÚBLICAS

Patrocínio:

- d) Qual a relação do fator de crescimento/decaimento com a taxa percentual?
- e) Escreva uma expressão matemática para cada uma das situações que relacione o números de indivíduos nas colônias com o número de meses (ou horas) decorridos desde o início das observações.
- f) Com a ajuda de uma calculadora compare os valores gerados pela expressão matemática com as que você calculou no item a).
- g) Denotando por P(t) a população no tempo t, P_0 seu valor inicial e r a taxa percentual observada, generalize as expressões obtidas no item anterior.

Solução:

a) Os valores abaixo não são a única resposta correta, e podem variar dependendo da maneira como se procede os cálculos.

t (meses)	C coelhos
0	100
1	106
2	112
3	119
4	126
5	133
6	141
7	150
8	159
9	169
10	179
11	190
12	201

t (meses)	B bactérias
0	950.000
1	855.000
2	769.500
3	692.550
4	623.295
5	560.965
6	504.868
7	454.382
8	408.943
9	368.049
10	331.244
11	298.120
12	268.308

- b) 100 + 6%100 = 106, 106 + 6%106 = 112, e assim successivamente. 950.000 10%950.000 = 855.000, 855.000 10%855.000 = 769.500, e assim successivamente.
- c) Sim. Basta fazer as divisões de cada valor pelo anterior e observar que os valores ficam próximos de constantes, em cada caso: 1,06 no primeiro caso e 0,9 no segundo caso.
- d) O fator será dado por 1 mais a taxa percentual considerada positiva no caso de crescimento (1+6%) e negativa para o decaimento (1-10%).
- e) $C(t) = 100 \cdot 1,06^t$, e $B(t) = 950.000 \cdot 0,9^t$.
- f) —
- g) $P(t) = P_0 \cdot (1+r)^t$.

OLIMPÍADA BRASILEIRA
DE MATEMÁTICA
DAS ESCOLAS PÚBLICAS

