UNIVERSIDAD SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERIA DEPARTAMENTO DE FÍSICA

Pág.1/2
M.A. Ing. Edgar Darío Álvarez Cotí, Coordinador
Guatemala 28 octubre del año 2021

EXAMEN DE REPOSICIÓN FISICA 2

INSTRUCCIONES GENERALES:

El examen consta de siete problemas. Para los cálculos realizados en el examen se pide utilizar todos los decimales y la respuesta debe aproximarla a 2 decimales. Debe dejar constancia en sus cálculos, suposiciones y referencias en la solución de cada problema. El problema que no tenga el procedimiento de solución será anulado. Debe enviar su procedimiento al correo indicado. Tiempo de examen 110 minutos

NOMBRE	CARNE

PROBLEMA 1: (10 puntos)

Dos pequeñas esferas idénticas cargadas, cada una con $6.00 \times 10^{-2} \text{ kg}$ de masa, cuelgan en equilibrio como se muestra en la figura. Si la longitud "L" de cada cuerda es 0.200 m y el ángulo es $\theta = 5.00 \,^{\circ}$, la magnitud de la carga **(en nC)** sobre cada esfera tiene un valor de

Respuesta: 83.35 tolerancia = ± 0.3

PROBLEMA 2: (15 puntos, cada inciso tiene su valor)

Una carga positiva +Q = 5.00 nC está distribuida uniformemente en una esfera aislada de radio R = 10.0 cm, centrada en el origen de coordenadas.

a) Utilizando la Ley de Gauss, calcular la magnitud del campo eléctrico (en kN/C) en el punto x = R/2 (8 puntos)

Respuesta: 2.25 tolerancia ± 0.05

b) Si ahora se coloca una carga puntual +Q2 = 2.00 nC en x = 20.0 cm, la nueva magnitud del campo resultante (en kN/C) en el punto x = 15.0 cm es: (7 puntos)

Respuesta: 5.20 tolerancia ± 0.5

PROBLEMA 3: (10 puntos)

Una varilla delgada se dobla para formar un arco semicircular de radio r = 20 cm, y una carga eléctrica total $Q = 1.5 \times 10^{-9}$ C está distribuida de manera uniforme a lo largo de la varilla. Calcular la magnitud campo eléctrico (en N/C) en el centro de curvatura del arco.

Respuesta = 214.66 tolerancia = ± 0.10

PROBLEMA 4: (20 puntos, 10 puntos cada inciso)

En la red de capacitores que se illustra en la figura el voltaje de la batería es $V=8.00~\rm V$; $C_1=C_2=3\rm nF$, $C_4=1.2~\rm nF$ y C_3 es un capacitor de placas paralelas, el área de cada placa es de $20~\rm cm^2$ y la separación entre ellas $2d=0.885~\rm mm$. Los materiales dieléctricos entre las placas tienen las siguientes constantes $k_1=120, k_2=75.0~\rm y$ $k_3=50.0$

a) Calcule el valor de la capacitancia de C_3 (en nF)

Respuesta= 1.80 tolerancia = ± 0.05

b) ¿Cuál es la energía (en nJ) del sistema de capacitores

Respuesta= 32.0 tolerancia = ± 0.05

PROBLEMA 5: (20 puntos, 10 puntos cada inciso)

En el circuito de la figura

a) ¿Cuál debe ser la fem ${\pmb {\cal E}}$ (en V) para que la corriente a través del resistor de 7 Ω sea de 1.80 A? Cada fuente de fem tiene resistencia interna despreciable.

Respuesta: 8.60 tolerancia = ± 0.05

b) ¿Cuál es la corriente (en A) que proporciona al circuito la fem de 24 V?

Respuesta: 3.80 tolerancia = ± 0.05

PROBLEMA 6 (15 puntos, cada inciso tiene su valor)

El switch del circuito de la figura se cierra en t=0, inicialmente el capacitor esta descargado. Si $C=3~\mu F$.

a) ¿cuál es la corriente (en A) que pasa inicialmente en el capacitor (en t=0)?

Respuesta: $4.00 \text{ tolerancia} = \pm 0.5$ (8 puntos)

b) ¿Cuál es la carga máxima (en μC) que adquiere el capacitor?

Respuesta: 22.50 tolerancia = ± 0.5 (7 puntos)

PROBLEMA 7 (10 puntos, 5 puntos cada inciso)

Un sistema de bombeo de agua consta de dos bombas eléctricas conectadas en paralelo a un voltaje de 480V. En la bomba uno circula una corriente de 75 A y en la bomba dos una corriente de 100A. Si las bombas trabajan durante 10 horas diarias,

a) ¿Cuánta energía eléctrica (en kWh) consumen ambas bombas durante un mes de 30 días? Respuesta: 25,200 tolerancia = ± 5

b) Si la bomba dos se instalara un moderno sistema de enfriamiento, ¿cuál es el costo (en US\$) de energía eléctrica consumida al operar la bomba dos durante 7 días continuos, si el costo de la energía es US\$0.25/kWh?

Respuesta: 2016 tolerancia = ±5