

SQL Базовый курс

Основы DDL

Автор курса

Давид Бояров

MCID: 9778145

После урока обязательно

Повторите этот урок в видео формате на <u>ITVDN.com</u>

Доступ можно получить через руководство вашего учебного центра

Проверьте как Вы усвоили данный материал на <u>TestProvider.com</u>

Тема

Основы DDL

Основы DDL

Data Definition Language

Data Definition Language (DDL) (язык описания данных) — это словарь, используемый для определения или описания структуры баз данных.

В DDL входят такие операторы как: CREATE (создать), ALTER (изменить), DROP (удалить).

Оператор CREATE используются для определения новых сущностей.

Оператор ALTER используются для изменения определений существующих сущностей.

Оператор DROP используются для удаления существующих сущностей.

Целостность баз данных

Целостность базы данных — свойство базы данных, обеспечивающее корректность и непротиворечивость хранимых данных в любой момент времени

Целостность БД не гарантирует достоверности содержащейся в ней информации, но обеспечивает по крайней мере правдоподобность этой информации, отвергая заведомо невероятные, невозможные значения.

Целостность базы данных обеспечивается ограничениями на вводимые пользователем данные.

DML

Data Manipulation Language

Data Manipulation Language (DML) — это семейство компьютерных языков, используемых пользователями баз данных для получения, вставки, удаления или изменения данных в базах данных.

Функции DML:

```
INSERT – вставка данных 
SELECT – выборка данных 
UPDATE – изменение данных 
DELETE – удаление данных
```


Типы целостности

Типы целостности базы данных:

- 1) Доменная целостность
- 2) Целостность сущностей
- 3) Ссылочная целостность

Доменная целостность

Доменная целостность гарантирует наличие в некотором столбце только допустимых значений.

Ограничения, обеспечивающие доменную целостности:

- 1) Использование ограничений проверки(СНЕСК).
- 2) Использование ограничений на умолчания(DEFAULT).

Целостность сущностей

Целостность сущностей гарантирует уникальность записей в таблицах (сущностях).

Ограничения, обеспечивающие целостность сущностей:

- 1) Использование ограничений первичного ключа (Primary Key).
- 2) Использование ограничений на уникальность (UNIQUE).

Первичный Ключ

Primary Key

Primary Key (Первичный Ключ) — предоставляет ссылку для связи с другими таблицами, а так же задает ограничение уникальности для столбца, на котором задается.

Внешний Ключ

Foreign Key

Foreign Key (Внешний Ключ) — задает столбец, который ссылается на ограничение Primary Key или UNIQUE. Ограничение Foreign Key запрещает вводить данные не существующие в ссылочных столбцах (столбцах с ограничением Primary Key или UNIQUE).

	Orders Orders							PK	Customers			
	ld	IdC	Date	ldG	Quantity			id	MName	FName	LName	Phone
1	1	1	2011-03-23	1	10		1	1	Иванов	Иван	Иванович	0903243212
2	2	1	2011-04-03	2	10		2	2	Федоров	Федор	Федорович	0904315416
3	3	2	2011-06-12	1	50							

Дочерняя и Родительская таблицы

Child and Parent tables

Таблица, содержащая FK, называется дочерней таблицей по отношению к ссылаемой таблице (родительской таблице), содержащей первичный ключ.

Родительская таблица – таблица, на которую ссылаются.

Дочерняя таблица – таблица, которая ссылается.

СВЯЗИ

Relations

Связь — это некоторая ассоциация между двумя таблицами, реализованная при помощи пары FK -> PK или FK -> UNIQUE.

Одна таблица может быть связана с другой таблицей или сама с собою.

Типы связей

Один к одному

Типы связей

Один ко многим

Типы связей

Многие ко многим

Смотрите наши уроки в видео формате

ITVDN.com

Посмотрите этот урок в видео формате на образовательном портале <u>ITVDN.com</u> для закрепления пройденного материала.

Все курсы записаны сертифицированными тренерами, которые работают в учебном центре CyberBionic Systematics

Проверка знаний

TestProvider.com

TestProvider — это online сервис проверки знаний по информационным технологиям. С его помощью Вы можете оценить Ваш уровень и выявить слабые места. Он будет полезен как в процессе изучения технологии, так и общей оценки знаний IT специалиста.

После каждого урока проходите тестирование для проверки знаний на <u>TestProvider.com</u>

Успешное прохождение финального тестирования позволит Вам получить соответствующий Сертификат.

Q&A

Информационный видеосервис для разработчиков программного обеспечения

