Minimizando una medida de desvío

Contribución de Melanie Sclar

Descripción del problema

Una medida muy utilizada en estadística es la mediana de los desvíos absolutos, o MAD por su denominación en inglés (Median Absolute Deviation).

Para este problema, se considera una muestra formada por N enteros x_0, x_1, \dots, x_{N-1} distintos. La cantidad de enteros N será siempre **impar**, es decir N = 2k + 1 para cierto entero positivo k.

Para un cierto valor \mathbf{t} , el *desvío absoluto* de \mathbf{x}_i respecto a \mathbf{t} es simplemente el valor absoluto de la diferencia, es decir, $|\mathbf{x}_i - \mathbf{t}|$.

La MAD de toda la muestra respecto a t se define como la **mediana** de los n desvíos absolutos respecto a t. Es decir, si se calculan los n desvíos $|x_0-t|, |x_1-t|, \cdots, |x_{n-1}-t|$ y **se ordenan** de menor a mayor, la MAD justamente se define como el desvío que queda justo en el medio de menor a mayor, es decir, el $\frac{N-1}{2}$ -ésimo contando desde n.

Por ejemplo para una muestra con N = 3, $x_0 = 10$, $x_1 = 12$, $x_2 = -2$:

- La MAD respecto de t = 4 es 6. Ya que los desvíos absolutos respecto a 4 son |x₀ 4| = 6, |x₁ 4| = 8, |x₂ 4| = 6. Ordenados de menor a mayor son 6,6,8 y la mediana entre ellos es 6.
- Para la misma muestra, la MAD respecto de t = 11 es 1. Ya que los desvíos absolutos respecto a 11 son |x₀ − 11| = 1, |x₁ − 11| = 1, |x₂−11| = 13. Ordenados de menor a mayor son 1, 1, 13 y la mediana entre ellos es 1.

Dada una muestra de **N** números, debes escribir una función que calcule un valor **entero t** respecto al cual la MAD de la muestra sea mínima. Es decir, la función debe encontrar y retornar un **entero t** para que la mediana de los desvíos absolutos respecto a **t** sea lo más chica posible.

Descripción de la función

Debes implementar la función mad(x), que recibe un único parámetro x: un arreglo de **N** enteros **x**_i correspondientes a los valores de la muestra.

La función debe retornar un único entero: el valor **t** explicado anteriormente.

Si existe más de un valor **t** posible, cualquiera de ellos será aceptado.

Evaluador

El evaluador local lee de la entrada estándar con el siguiente formato:

- Primera línea: un entero N
- Segunda línea: los enteros x_i

El evaluador local escribe a la salida estándar la respuesta retornada por la función.

Restricciones

- 3 < N < 200.000
- $-10^9 \le x_i \le 10^9$
- N es impar
- x_i ≠ x_j para i ≠ j

Ejemplo

Si se invoca al evaluador con la siguiente entrada:

Para un programa correcto, la salida será:

Si en cambio la entrada es:

Para un programa correcto, la salida podría ser:

Pero $\mathbf{t} = \mathbf{3}$ o $\mathbf{t} = \mathbf{4}$ serían en este último caso respuestas igual de válidas, ya que respecto a cualquiera de esos valores de \mathbf{t} se obtiene el mínimo posible valor de la MAD en este caso, que es $\mathbf{1}$.

Subtareas

- 1. $N = 3 \text{ y } |\mathbf{x_i}| \le 100 \text{ (5 puntos)}$
- 2. N = 3 (7 puntos)
- 3. $|\mathbf{x_i}| \le 500$ (6 puntos)
- 4. **N** ≤ **100** (10 puntos)
- 5. $N \le 1500$ (22 puntos)
- 6. Sin más restricción (50 puntos)