ТЕОРЕТИЧЕСКИЕ ДОМАШНИЕ ЗАДАНИЯ

Математическая логика, ИТМО, М3232-М3239, осень 2024 года

Общие замечания

- 1. Одно задание оценивается в 3.5 балла. При использовании TeX или Typst для оформления задание оценивается в 4 балла. При крайне плохом оформлении оценка может быть понижена до 3 баллов.
- 2. Заданием (по умолчанию) считается один пункт, занумерованный цифрой или буквой. Пункты без нумерации считаются частями одного задания.
- 3. Курс можно условно разделить на три части (исчисления высказываний и предикатов, формальная арифметика, теория множеств). В каждой из частей можно ответить не более четырёх заданий.

Задание №1. Знакомство с классическим исчислением высказываний.

При решении заданий вам может потребоваться теорема о дедукции (будет доказана на второй лекции):

Теорема 1. $\gamma_1, \ldots, \gamma_n, \alpha \vdash \beta$ тогда и только тогда, когда $\gamma_1, \ldots, \gamma_n \vdash \alpha \rightarrow \beta$.

Пример использования: пусть необходимо доказать $\vdash A \to A$ — то есть доказать существование вывода формулы $A \to A$ (заметьте, так поставленное условие не требует этот вывод предъявлять, только доказать его существование). Тогда заметим, что последовательность из одной формулы A доказывает $A \vdash A$. Далее, по теореме о дедукции, отсюда следует и $\vdash A \to A$ (то есть, существование вывода формулы $A \to A$, не использующего гипотезы).

Теорема будет доказана конструктивно: будет предъявлен алгоритм, перестраивающий вывод $\gamma_1, \dots, \gamma_n, \alpha \vdash \beta$ в вывод $\gamma_1, \dots, \gamma_n \vdash \alpha \to \beta$

- 1. Докажите:
 - (a) $\vdash (A \rightarrow A \rightarrow B) \rightarrow (A \rightarrow B)$
 - (b) $\vdash \neg (A \& \neg A)$
 - (c) $\vdash A \& B \rightarrow B \& A$
 - (d) $\vdash A \lor B \to B \lor A$
 - (e) $A \& \neg A \vdash B$
- 2. Докажите:
 - (a) $\vdash A \rightarrow \neg \neg A$
 - (b) $\neg A, B \vdash \neg (A \& B)$
 - (c) $\neg A, \neg B \vdash \neg (A \lor B)$
 - (d) $A, \neg B \vdash \neg (A \rightarrow B)$
 - (e) $\neg A, B \vdash A \rightarrow B$
- 3. Докажите:
 - (a) $\vdash (A \to B) \to (B \to C) \to (A \to C)$
 - (b) $\vdash (A \to B) \to (\neg B \to \neg A)$ (правило контрапозиции)
 - $(c) \vdash \neg(\neg A \& \neg B) \rightarrow (A \lor B)$ (вариант I закона де Моргана)
 - (d) $\vdash A \lor B \vdash \neg(\neg A \& \neg B)$
 - (e) $\vdash (\neg A \lor \neg B) \rightarrow \neg (A \& B)$ (II закон де Моргана)
 - $(f) \vdash (A \rightarrow B) \rightarrow (\neg A \lor B)$
 - $(g) \vdash A \& B \rightarrow A \lor B$
 - (h) $\vdash ((A \rightarrow B) \rightarrow A) \rightarrow A \ (3akoh \ \Piupca)$
 - (i) $\vdash A \lor \neg A$
 - $(j) \vdash (A \& B \rightarrow C) \rightarrow (A \rightarrow B \rightarrow C)$

- $(k) \vdash A \& (B \lor C) \vdash (A \& B) \lor (A \& C) (дистрибутивность)$
- $(1) \vdash (A \to B \to C) \to (A \& B \to C)$
- $(m) \vdash (A \rightarrow B) \lor (B \rightarrow A)$
- (n) $\vdash (A \rightarrow B) \lor (B \rightarrow C) \lor (C \rightarrow A)$
- 4. Даны высказывания α и β , причём $\vdash \alpha \to \beta$ и $\not\vdash \beta \to \alpha$. Укажите способ построения высказывания γ , такого, что $\vdash \alpha \to \gamma$ и $\vdash \gamma \to \beta$, причём $\not\vdash \gamma \to \alpha$ и $\not\vdash \beta \to \gamma$.
- 5. Покажите, что если $\alpha \vdash \beta$ и $\neg \alpha \vdash \beta$, то $\vdash \beta$.
- 6. Покажите, что классическое исчисление высказываний допускает правило Modus Tollens:

$$\frac{\varphi \to \psi \qquad \neg \psi}{\neg \varphi}$$

А именно, пусть дан некоторый вывод, в котором каждая формула — либо аксиома, либо получена по правилу Modus Ponenes, либо имеет вид $\delta_n \equiv \neg \varphi$, причём ранее в доказательстве встречается $\delta_i \equiv \neg \psi$ и $\delta_j \equiv \varphi \rightarrow \psi$ (при этом $\max(i,j) < n$). Тогда такой вывод можно перестроить в корректное доказательство в классическом исчислении высказываний.

В данном задании от вас требуется аккуратное изложение доказательства, видимо, использующее математическую индукцию. То есть, чётко сформулированное индукционное предположение и полные доказательства базы и перехода.

Задание №2. Теоремы об исчислении высказываний. Знакомство с интуиционистским исчислением высказываний.

- 1. Давайте вспомним, что импликация правоассоциативна: $\alpha \to \beta \to \gamma \equiv \alpha \to (\beta \to \gamma)$. Но рассмотрим иную расстановку скобок: $(\alpha \to \beta) \to \gamma$. Возможно ли доказать логическое следствие между этими вариантами расстановки скобок и каково его направление? Зависит ли это от варианта исчисления (классическое/интуиционистское)?
- 2. Покажите, что в классическом исчислении высказываний $\Gamma \models \alpha$ влечёт $\Gamma \vdash \alpha$.
- 3. Покажите, что в классическом исчислении высказываний $\Gamma \vdash \alpha$ влечёт $\Gamma \models \alpha$.
- 4. Возможно ли, что какая-то из аксиом задаётся двумя разными схемами аксиом? Опишите все возможные коллизии для какой-то одной такой пары схем аксиом. Ответ обоснуйте (да, тут потребуется доказательство по индукции).
- 5. Заметим, что можно вместо отрицания ввести в исчисление ложь. Рассмотрим исчисление высказываний с ложью. В этом языке будет отсутствовать одноместная связка (¬), вместо неё будет присутствовать нульместная связка «ложь» (⊥), а 9 и 10 схемы аксиом будут заменены на одну схему:

$$(9_{\perp}) \quad ((\alpha \to \bot) \to \bot) \to \alpha$$

Будем записывать доказуемость в новом исчислении как $\vdash_{\perp} \alpha$, а доказуемость в исчислении высказываний с отрицанием как $\vdash_{\neg} \beta$. Также определим операцию трансляции между языками обычного исчисления высказываний и исчисления с ложью как операции рекурсивной замены $\bot := A \& \neg A$ и $\neg \alpha := \alpha \to \bot$ (и обозначим их как $|\varphi|_{\neg}$ и $|\psi|_{\bot}$ соответственно).

Докажите:

- (a) $\vdash_{\perp} \alpha$ влечёт $\vdash_{\neg} |\alpha|_{\neg}$
- (b) $\vdash \neg \alpha$ влечёт $\vdash \bot |\alpha|$ \bot
- 6. Покажите, что топологическое пространство на вещественных числах с базой $\mathcal{B} = \{(a,b) \mid a,b \in \mathbb{R}\}$ совпадает с топологическим пространством \mathbb{R} из матанализа (то есть, совпадают множества открытых множеств).
- 7. Покажите, что дискретная топология, антидискретная топология (открыты только \varnothing и X), топология стрелки, топология Зарисского (носитель \mathbb{R} , открыты \varnothing , \mathbb{R} и все множества с конечным дополнением) являются топологиями.

- 8. Заметим, что определения стараются давать как можно более узкими: если некоторое свойство вытекает из других, то это уже не свойство из определения, а теорема. Поэтому приведите примеры $\langle X, \Omega \rangle$, нарушающие только первое, только второе и только третье условие на топологию.
- 9. Заметим, что на ℝ ровно два множества одновременно открыты и замкнуты Ø и всё пространство. Постройте другую (не евклидову) топологию на ℝ, чтобы в ней было ровно четыре множества, которые одновременно открыты и замкнуты. А возможно ли построить топологическое пространство, в котором было бы ровно три открыто-замкнутых множества?
- 10. Назовём минимальной базой топологии такую базу, что в ней никакое множество не может быть получено объединением семейства других множеств из базы.
 - (а) Постройте минимальную базу для дискретной топологии.
 - (b) Существует ли минимальная база для топологии стрелки?
 - (c) Существует ли минимальная база для топологии Зарисского (носитель \mathbb{R} , открыты \emptyset , \mathbb{R} и все множества с конечным дополнением)?
- 11. Предложите пример топологического пространства, в котором пересечение произвольного семейства открытых множеств открыто. Топологическое пространство должно иметь бесконечный носитель (чтобы задача имела содержательный смысл) и не должно иметь дискретную или антидискретную топологию (не должно быть в каком-то смысле вырожденным).
- 12. Наибольшим (наименьшим) значением в каком-то множестве назовём такое, которое больше (меньше) всех других элементов множества. Несложно заметить, что для отношения включения множеств далеко всегда такое можно определить: например, на \mathbb{R}^2 не существует наибольшего круга с радиусом 1, хотя такой круг существует на $\{z \mid z \in \mathbb{R}^2, |z| \leq 0.5\}$.
 - Bнутренностью множества A° назовём наибольшее открытое множество, содержащееся в A. Покажите, что внутренность множества всегда определена.
- 13. Напомним определения: замкнутое множество такое, дополнение которого открыто. Замыканием множества \overline{A} назовём наименьшее замкнутое множество, содержащее A. Назовём окрестностью точки x такое открытое множество V, что $x \in V$. Будем говорить, что точка $x \in A$ внутренняя, если существует окрестность V, что $V \subseteq A$. Точка $x \mathit{граничная}$, если любая её окрестность V пересекается как с A, так и с его дополнением.
 - (a) Покажите, что A открыто тогда и только тогда, когда все точки A внутренние. Также покажите, что $A^{\circ} = \{x | x \in A \& x$ внутренняя точка $\};$
 - Покажите, что A замкнуто тогда и только когда, когда содержит все свои граничные точки. Также покажите, что $\overline{A} = \{x \mid x$ внутренняя или граничная точка $\}$.
 - Верно ли, что $\overline{A} = X \setminus ((X \setminus A)^{\circ})$?
 - (b) Пусть $A\subseteq B$. Как связаны A° и B° , а также \overline{A} и \overline{B} ? Верно ли $(A\cap B)^\circ=A^\circ\cap B^\circ$ и $(A\cup B)^\circ=A^\circ\cup B^\circ$?
 - (c) Задача Куратовского. Будем применять операции взятия внутренности и замыкания к некоторому множеству всевозможными способами. Сколько различных множеств может всего получиться? Указание. Покажите, что $\overline{(\overline{A^{\circ}})^{\circ}} = \overline{A^{\circ}}$.
- 14. Задача проверки высказываний на истинность в ИИВ сложнее, чем в КИВ не существует конечного набора значений, на которых можно проверить формулу, чтобы определить её истинность (мы эту теорему докажем). Тем не менее, если формула опровергается, то она опровергается на $\mathbb R$ с евклидовой топологией. Если же такого опровержения нет, то формула доказуема (то есть, ИИВ семантически полно на $\mathbb R$). Например, формула $A \vee \neg A$ опровергается при $[\![A]\!] = (0, +\infty)$, так как $[\![A \vee \neg A]\!] = \mathbb R \setminus \{0\}$.

Очевидно, что любая интуиционистская тавтология общезначима и в классической логике:

- формула общезначима в интуиционистской логике;
- значит, истинна при всех оценках;
- значит, в частности, при всех оценках на \mathbb{R} ;
- то есть, по теореме, упомянутой выше, доказуема в ИИВ;
- а схема аксиом 10и частный случай схемы аксиом 10.

Обратное же неверно. Определите, являются ли следующие формулы тавтологиями в КИВ и ИИВ (предложите опровержение или доказательство общезначимости/выводимости для каждого из исчислений):

- (a) $((A \to B) \to A) \to A$;
- (b) $\neg \neg A \rightarrow A$;
- (c) $(A \to B) \lor (B \to A)$ (из двух утверждений одно непременно следует из другого: например, «я не люблю зиму» и «я не люблю лето»);
- (d) $(A \rightarrow B) \lor (B \rightarrow C)$;
- (e) $(A \rightarrow (B \lor \neg B)) \lor (\neg A \rightarrow (B \lor \neg B));$
- (f) $\alpha \vee \beta \vdash \neg(\neg \alpha \& \neg \beta) \bowtie \neg(\neg \alpha \& \neg \beta) \vdash \alpha \vee \beta$;
- (g) $\neg \alpha \& \neg \beta \vdash \neg (\alpha \lor \beta)$ и $\neg (\alpha \lor \beta) \vdash \neg \alpha \& \neg \beta$;
- (h) $\alpha \to \beta \vdash \neg \alpha \lor \beta$ и $\neg \alpha \lor \beta \vdash \alpha \to \beta$.
- 15. Известно, что в КИВ все связки могут быть выражены через операцию «и-не» («или-не»). Также, они могут быть выражены друг через друга (достаточно, например, отрицания и конъюнкции). Однако, в ИИВ это не так.

Покажите, что никакие связки не выражаются друг через друга: то есть, нет такой формулы $\varphi(A,B)$ из языка интуиционистской логики, не использующей связку \star , что $\vdash A \star B \to \varphi(A,B)$ и $\vdash \varphi(A,B) \to A \star B$. Покажите это для каждой связки в отдельности:

- (а) конъюнкция;
- (b) дизъюнкция;
- (с) импликация;
- (d) отрицание.