Contents

1	Fou	rier series	
	1.1	Preliminari	es
	1.2	Orthogonal	and orthonormal systems of functions
	1.3	Fourier coe	fficients. Fourier series
		1.3.1 Exp	onential form
		1.3.2 Four	rier series in terms of sine and cosine
		1.3.3 Four	rier series in terms of sine or cosine
		1.3.4 Cha	nge of period
	1.4	Punctual co	onvergence of Fourier series
		1.4.1 Diri	chlet nucleus

2 CONTENTS

Chapter 1

Fourier series

1.1 Preliminaries

Definition 1.1.1. Let $f : \mathbb{R} \longrightarrow \mathbb{C}$ be a function. We say f has a period T or f is T-periodic with T > 0 if and only if f(x + T) = f(x) for all $x \in \mathbb{R}$.

Lemma 1.1.1. Let $f : \mathbb{R} \longrightarrow \mathbb{C}$ be a T-periodic function. Then, f(x+T') = f(x) for all $x \in \mathbb{R}$ if and only if T' = kT for some $k \in \mathbb{Z}$.

Proposition 1.1.2. Let $f: \mathbb{R} \longrightarrow \mathbb{C}$ be a T-periodic function and $a \in \mathbb{R}$ a number. Then,

$$\int_{a}^{a+T} f \, \mathrm{d}x = \int_{0}^{T} f \, \mathrm{d}x. \tag{1.1}$$

Lemma 1.1.3. Let $f: \mathbb{R} \longrightarrow \mathbb{C}$ be a T-periodic function continuous in \mathbb{R} . Then, |f| is bounded.

Proposition 1.1.4. Let $f : \mathbb{R} \longrightarrow \mathbb{C}$ be a T-periodic function. Then, there is no a power series that converges uniformly to f in \mathbb{R} .

1.2 Orthogonal and orthonormal systems of functions

Definition 1.2.1. Let $f, g : [a, b] \longrightarrow \mathbb{C}$ be two integrable functions. We define the *inner product* of f and g as

$$\langle f, g \rangle_2 := \int_a^b f(x) \overline{g(x)} \, \mathrm{d}x,$$
 (1.2)

where \overline{g} is the conjugate of g.

Definition 1.2.2. Let $f,g:[a,b]\longrightarrow \mathbb{C}$ two integrable functions. We define the 2-norm of f as

$$||f||_2 := \sqrt{\langle f, f \rangle_2} = \left(\int_a^b |f(x)|^2 \, \mathrm{d}x \right)^{1/2}.$$
 (1.3)

Definition 1.2.3. Let $f, g : [a, b] \longrightarrow \mathbb{C}$ two integrable functions. We define the distance between r and g as

$$d(f,g) := \|f - g\|. \tag{1.4}$$

Proposition 1.2.1. Let $f, g : [a, b] \longrightarrow \mathbb{C}$ two integrable functions. Then,

- 1. $\langle f, f \rangle_2 \geq 0$.
- $\text{2. } \langle f+g,h\rangle_2=\langle f,h\rangle_2+\langle g,h\rangle_2 \text{ and } \langle f,g+h\rangle_2=\langle f,g\rangle_2+\langle f,h\rangle_2.$
- 3. $\langle f, q \rangle_2 = \overline{\langle q, f \rangle_2}$
- 4. Fro $\alpha \in \mathbb{C}$, $\langle \alpha f, g \rangle_2 = \alpha \langle f, g \rangle_2$ and $\langle f, \alpha g \rangle_2 = \overline{\alpha} \langle f, g \rangle_2$.

Note that for Riemann integrable functions it is not true that $\langle f, f \rangle_2 = 0 \Leftrightarrow f = 0$, since a function that is not zero at some point will satisfy $\langle f, f \rangle_2 = 0$. However, if we deal with the space of continuous functions in [a, b] the it is true.

Theorem 1.2.2. Let $f, g : [a, b] \longrightarrow \mathbb{C}$ two Riemann integrable functions. Then,

$$|\langle f, g \rangle_2| \le ||f||_2 ||g||_2.$$
 (1.5)

Theorem 1.2.3. Let $f, g : [a, b] \longrightarrow \mathbb{C}$ two Riemann integrable functions. Then,

$$||f + g||_2 \le ||f||_2 + ||g||_2. \tag{1.6}$$

Definition 1.2.4. Let $f, g : [a, b] \longrightarrow \mathbb{C}$ two Riemann integrable functions with $f \neq g$. Then,

- 1. we say f and g are orthogonal if and only if $\langle f, g \rangle_2 = 0$.
- 2. We say f and g are orthonormal if and only if $\langle f, g \rangle_2 = 0$ and $||f||_2 = ||g||_2 = 1$.
- 3. Let $S = \{\phi_0, \phi_1, \dots\}$ be a collection of Riemann integrable functions in [a, b]. We say S is an orthonormal system if and only if $\|\phi_i\|_2 = 1 \forall i$ and $\langle \phi_i, \phi_j \rangle_2 = 0 \forall i \neq j$.

Definition 1.2.5. Let $\{\phi_0, \ldots, \phi_n\}$ be a collection of Riemann integrable functions in [a, b]. We say the collection is linearly dependent in [a, b] if and only if there exist c_0, \ldots, c_n with not all being zero such that

$$c_0\phi_0(x) + \dots + c_n\phi_n(x) = 0, \forall x \in [a, b].$$
 (1.7)

Theorem 1.2.4. Let $S = \{\phi_0, \phi_1, \dots\}$ be an orthonormal system in [a, b] such that $\sum_{n=0}^{\infty} c_n \phi_n(x)$ converges uniformly in [a, b]. Let f be the function that defines the series in [a, b]. Thenm f is Riemann integrable in [a, b] and

$$c_n = \langle f, \phi_n \rangle_2 = \int_a^b f(x) \overline{\phi_n(x)} \, \mathrm{d}x, n \ge 0.$$
 (1.8)

1.3 Fourier coefficients. Fourier series

1.3.1 Exponential form

Definition 1.3.1. Let f be a Riemann integrable function in [0,1]. We define the n-th Fourier coefficient with $n \in \mathbb{Z}$ as

$$\hat{f}(n) = \langle f, e_n \rangle_2 = \int_0^1 f(x) e^{-2\pi i n x} dx.$$
 (1.9)

The series

$$Sf(x) = \sum_{n=0}^{\infty} \hat{f}(x)e^{2\pi i nx}$$
(1.10)

constructed by these coefficients is called the Fourier series of f.

Proposition 1.3.1. Let f be a Riemann integrable function in [0,1] and $\lambda, \mu \in \mathbb{C}$ two numbers. In relation to Fourier coefficients, the following statements are true.

- 1. $\lambda \widehat{f + \mu} g(n) = \lambda \widehat{f}(b) + \mu \widehat{g}(n)$.
- 2. If $\tau \in (0,1)$ and $f_{\tau}(x) := f(x-\tau)$, then $\hat{f}_{\tau}(n) = e^{-2\pi i n \tau} \hat{f}(n)$.
- 3. If f is even, then $\hat{f}(n) = \hat{f}(-n) \forall n$ and if f is odd, $\hat{f}(n) = -\hat{f}(-n) \forall n$.
- 4. If f' exists and it is continuous, then $\hat{f}'(n) = 2\pi i n \hat{f}(n)$.

Definition 1.3.2. Let f, g be two Riemann integrable functions in [0, 1]. We define the *convolution* of f and g as

$$(f * g)(x) = \int_{0}^{1} f(t)g(x - t) dt, \qquad (1.11)$$

defined for $x \in \mathbb{R}$.

Proposition 1.3.2. Let f, g be two Riemann integrable functions in [0,1]. Then, $\widehat{f * g}(n) = \widehat{f}(n)\widehat{g}(n)$.

1.3.2 Fourier series in terms of sine and cosine

We can write the Fourier series as

$$Sf(x) = A_0 + 2\sum_{n=0}^{\infty} A_n \cos(2\pi nx) + B_n \sin(2\pi nx), \tag{1.12}$$

$$A_0 = \int_0^1 f(x) \, dx, \qquad A_n = \int_0^1 f(x) \cos(2\pi nx) \, dx, \qquad B_n = \int_0^1 f(x) \sin(2\pi nx) \, dx. \tag{1.13}$$

Proposition 1.3.3. Let f be a Riemann integrable function in [0,1]. If f is even, then its Fourier series is written as

$$Sf(x) = A_0 + 2\sum_{n=0}^{\infty} A_n \cos(2\pi nx).$$
 (1.14)

If f is odd, then its Fourier series is written as

$$Sf(x) = 2\sum_{n=0}^{\infty} B_n \sin(2\pi nx),$$
 (1.15)

1.3.3 Fourier series in terms of sine or cosine

Definition 1.3.3. LEt f be a Riemann integrable function in [0, 1/2]. We define the *even extension* and *odd extension*, respectively, as

$$\tilde{f}(x) = \begin{cases} f(x), & \text{if } x \in [0, 1/2] \\ f(-x), & \text{if } x \in [-1/2, 0] \end{cases}, \qquad \tilde{f}(x) = \begin{cases} f(x), & \text{if } x \in [0, 1/2] \\ -f(-x), & \text{if } x \in [-1/2, 0] \end{cases}. \tag{1.16}$$

Proposition 1.3.4. Let $f:[0,1/2] \longrightarrow \mathbb{C}$ be a Riemann integrable function. If we make the even extension of f, then

$$Sf(x) = 2A_0 + 4\sum_{n=0}^{\infty} A_n \cos(2\pi nx), \qquad A_0 = \int_0^{1/2} f(x) dx, \qquad A_n = \int_0^{1/2} f(x) \cos(2\pi nx) dx.$$
(1.17)

If we make the odd extension of f, then

$$Sf(x) = 4\sum_{n=0}^{\infty} B_n \sin(2\pi nx), \qquad B_n = \int_0^{1/2} f(x) \sin(2\pi nx) \, dx.$$
 (1.18)

1.3.4 Change of period

For a function $f: \mathbb{R} \longrightarrow \mathbb{C}$ T-periodic,

$$Sf(x) = \sum_{n = -\infty}^{\infty} \hat{f}(n)e^{2\pi nxi/T}, \qquad \hat{f}(n) = \int_{-T/2}^{T/2} f(x)e^{-2\pi inx/T} dx.$$
 (1.19)

or

$$Sf(x) = A_0 + 2\sum_{n=1}^{\infty} A_n \cos\left[\frac{2\pi nx}{T}\right] + B_n \sin\left[\frac{2\pi nx}{T}\right],$$
(1.20)

$$A_0 = \frac{1}{T} \int_{-T/2}^{T/2} f(x) \, dx, A_n = \frac{1}{T} \int_{-T/2}^{T/2} f(x) \cos\left[\frac{2\pi nx}{T}\right] dx, B_n = \frac{1}{T} \int_{-T/2}^{T/2} f(x) \sin\left[\frac{2\pi nx}{T}\right] dx.$$
(1.21)

1.4 Punctual convergence of Fourier series

We denote the N-th partial sum as

$$S_n f := \sum_{n=-N}^{N} \hat{f}(n) e^{2\pi i n x}. \tag{1.22}$$

1.4.1 Dirichlet nucleus

$$S_N f(x) = \int_0^1 f(t) \sum_{n=-N}^N e^{e\pi i n(x-t)} dt$$
 (1.23)

Definition 1.4.1. We define the Dirichlet nucles of N-th order as

$$D_N(t) = \sum_{n=-N}^{N} e^{2\pi i n t}.$$
 (1.24)

This way, we have

$$S_N f(x) = (f * D_N)(x).$$
 (1.25)

$$D_n(t) = \frac{\sin[(2N+1)\pi t]}{\sin \pi t}.$$
 (1.26)

Proposition 1.4.1. The Dirichlet nucleus has the following elemental properties.

- 1. D_N is a periodic function of period 1.
- 2. D_N is an even function.

3.
$$\int_{0}^{1} D_{N}(t)dt = 1.$$