Fast Control of Multimode Cavities with Conditional Displacements

Eesh Gupta, S. Chakram, ...

Motivation

Goal: Enact gates on cavity modes

• Typical Schemes (SNAP/GRAPE) use $\chi a^{\dagger} a \sigma_z$ Increase χ for faster gates

 Coupling to the lossy ancilla reduces mode coherence

$$T_1^{cav} \le \frac{\Delta^2}{g^2} T_1^q \sim \frac{2\alpha}{\chi} T_1^q$$

Decrease χ for better mode coherence

Large Displacements

$$\chi a^{\dagger} a \sigma_z \qquad \qquad \chi \left(\alpha_0 a^{\dagger} + \alpha_0^{\star} a \right) \sigma_z$$

$$D(\alpha_0)$$

Advantage in Multimode Context:

Gate Speed
$$g_{gate} = \chi \alpha_0$$

Coherent Errors: $\epsilon_{coh} = \frac{N\chi}{g_{gate}} = \frac{N}{\alpha_0}$

- Hacohen-Gourgy, S., Martin, L., Flurin, E. et al. Nature **538**, 491–494 (2016).

- Eickbusch, A., Sivak, V., Ding, A.Z. et al. Nat. Phys. 18, 1464–1469 (2022)

Echoed Conditional Gates

$$\chi(a^{\dagger} + \alpha^{*})(a + \alpha)\sigma_{z}$$

$$=$$

$$\chi a^{\dagger} a \sigma_{z} + \chi(\alpha_{0} a^{\dagger} + \alpha_{0}^{*} a) \sigma_{z} + \chi(\alpha)^{2} \sigma_{z}$$

$$= D\left(\frac{\beta}{2}\right) |e\rangle\langle g| + D\left(-\frac{\beta}{2}\right) |g\rangle\langle e| =$$

Multimode ECD

- Universal Control for Two Modes
- Asimultaneous drives to prevent heating of modes [1,2] and amplification of cross kerr terms
 - [1] Eickbusch, Alec, et al. W34. 00005. APS March Meeting (2022).
 - [2] Diringer, Asaf A., et al. arXiv preprint arXiv:2301.09831 (2023).

Two Mode ECD: State Transfer

$$g \otimes |0n\rangle \rightarrow g \otimes |n0\rangle$$

Two Mode ECD: State Transfer

$$g \otimes (|n0\rangle \rightarrow |0n\rangle)$$

$$g \otimes (|n\rangle \rightarrow |0\rangle)$$

$$g \otimes (|0\rangle \rightarrow |n\rangle)$$

Two Mode ECD: State Transfer

$$g \otimes (|0\rangle \rightarrow |n\rangle)$$
$$g \otimes (|n\rangle \rightarrow |0\rangle)$$

Multimode ECD: Error Budget

Circle Grape

Qubit Drive Optimized

 Cavity mode always driven far from origin in phase space

Cavity drives detuned

$$H = \chi (\alpha a^{\dagger} + \alpha^* a) \sigma_z$$

$$H = \Delta_c a^{\dagger} a + \chi (\alpha a^{\dagger} + \alpha^* a) \sigma_z$$

 $Im(\alpha)$ $Re(\alpha)$

Rotate in circle because of detuning; is this a spiral?

Example: $|g10\rangle \rightarrow |g01\rangle$

Simulation Parameters

- $\Delta_c = 10 \text{ Mhz}$
- $|\Omega| = 10 \text{ Mhz}$
- $\chi_1, \chi_2/2\pi = 33 \text{ kHz}$
- $\alpha_1, \alpha_2 = 30$

Sideband Drives Method

Since α oscillatory,

$$H = \chi a^{+} a \sigma_{z} + \chi (\alpha a^{+} + \alpha^{*} a) \sigma_{z} + \chi |\alpha|^{2} \sigma_{z} + \Omega_{R} \sigma_{x}$$

$$\omega = 0 \qquad \omega = \Omega_{R} \qquad \omega = 2\Omega_{R}$$

Frame Transformations:

1.
$$\sigma_{\chi} \leftrightarrow \sigma_{z}$$
 \longrightarrow $\Omega_{R} \sigma_{z}$

2. Rotating Frame of the qubit

Shay Hacohen-Gourgy, ..., Irfan Siddiqi. Nature 538-7626 (2016).

Echoing in ECD

A. Eickbusch, ..., R. Schoelkopf, M. Devoret. ArXiv preprint arXiv:2111.06414 (2021)

Conclusions and Future Work

Suppression of cross-talk errors

 Achieve >0.999 fidelity for fock state transfer using Double ECD

- Future Work:
 - Unite ECD with Sidebands scheme and CNOD

Circle Grape Results

$$g \otimes (|n0\rangle \rightarrow |0n\rangle)$$

$$g \otimes (|0\rangle \rightarrow |n\rangle)$$
$$g \otimes (|n\rangle \rightarrow |0\rangle)$$

Uniting with other schemes: Dealing with Unwanted Terms

The **displaced frame** transformation, however, divides the **initial ac-Stark shift** term into the following 3 terms

$$\chi(a^{\dagger} + \alpha^{*})(a + \alpha)\sigma_{z}$$

$$\downarrow$$

$$\chi a^{\dagger} a \sigma_{z} + \chi(\alpha a^{\dagger} + \alpha^{*} a)\sigma_{z} + \chi|\alpha|^{2}\sigma_{z}$$
desired

Sideband Drives

- Make terms oscillate at different frequencies
- Invoke RWA in a frame where only desired term is stationary

Echoed Cond. Displacements

- Terms have different no. of α 's but only a single σ_z
- Clever flipping of α and σ_z can echo out unwanted terms

Transmon Relaxation

• Reduction in Errors if use better qubits i.e. fluxonium

ECD

Optimizer

$$ec{eta}=lpha_0\overrightarrow{t_w}$$
 $ec{\phi}$, $ec{ heta}$

Circle Grape

Optimizer

$$\Omega_{\chi}(t)$$
, $\Omega_{y}(t)$

Comparing Grape and MECD

ECD

Circle Grape

Circle Grape

$$H = \chi a^+ a \sigma_z + \chi (\alpha_0 a^+ + \alpha_0^* a) \sigma_z + \chi |\alpha_0|^2 \sigma_z + \Omega(t) \sigma_\chi$$
 Sent to Optimizer

- Continuous version
- Currently uses simulatenous drives
- Phase Space Dynamics

Multimode ECD

$$MECD(\beta, \gamma) = \begin{pmatrix} D_1 \left(-\frac{\beta}{2} \right) D_2 \left(\frac{\gamma}{2} \right) & 0 \\ 0 & D_1 \left(\frac{\beta}{2} \right) D_2 \left(-\frac{\gamma}{2} \right) \end{pmatrix}$$

Prev. Work: Echoed Cond. Disp.

Pulse Optimization

Prev. Work: Echoed Cond. Disp.

Parameter Optimization

Two Mode ECD: Unwanted Cross Kerr Terms

$$\chi_{ab}a^+ab^+b$$

Displaced Frame Transformation

$$\chi_{ab}(a^+ + \alpha^*)(a + \alpha)(b^+ + \beta^*)(b + \beta)$$

Terms of form:

 $\chi_{ab}\alpha\beta a^+b^+$

 $\chi_{ab} |\alpha|^2 \beta b^+$

 $\chi_{ab} |\alpha|^2 b^+ b$

How to avoid:

 α, β should not be simultaneously nonzero

Echoed out when β flips

$$\begin{aligned} \text{Make } \chi_{ab} \ll \chi_a, \chi_b \approx 10 \text{ kHz} \\ \text{Note } \chi_{ab} = \sqrt{\kappa_a \kappa_b} = \frac{\chi_a \chi_b}{\alpha'} \approx 0.33 \text{ Hz ... good!} \\ (\alpha' \leq 300 \text{ MHz for transmons)} \end{aligned}$$