Esercizi moto a 2o3 dimensioni - moto armonico

- 1) Un corpo oscilla verticalmente fra $h_1 = 25 \, cm$ e $h_2 = 55 \, cm$ di moto armonico semplice di periodo $T = 3,35 \, s$.
 - a) Determinare la frequenza f, la velocità angolare ω , l'ampiezza massima A_0 , la massima velocità v_0 e la massima accelerazione a_0 .
 - b) Scrivere la legge oraria del moto.
- 2) Un corpo di massa $m = 250 \, g$ si muove di moto armonico semplice di periodo $T = 2,75 \, s$. Determinare la costante elastica k della forza di richiamo che lo genera.
- 3) Si consideri il disegno a lato che rappresenta il grafico di un moto armonico semplice:
 - a) Determinare dal grafico tutte le grandezze necessarie per scrivere la legge oraria.
 - b) Scrivere la legge oraria.

- 4) Un corpo di massa m agganciato ad una molla di costante elastica k si muove di moto armonico semplice di periodo $T_0=3.0\,s$; agganciando al corpo una massa supplementare $\Delta m=350\,g$ il periodo di oscillazione diventa $T_1=4.0\,s$. Determinare il valore di m e di k.
- 5) In una esperienza di laboratorio si vuole determinare il valore della costante elastica k di una molla con due esperienze diverse: la prima consiste nel determinare l'allungamento della molla agganciandole vari pesini, con la seconda si misura il periodo di oscillazione del moto armonico ottenuto facendo oscillare i medesimi pesini di moto armonico semplice: le seguenti tabelle riportano i risultati delle esperienze:

F(N)	0,20	0,49	0,98	1,96	2,94	4,90
$\Delta l(mm)$	44	109	218	436	654	1090

m(g)	20	50	100	200	300	500
T(s)	0,47	0,69	0,96	1,34	1,64	2,10

prima esperienza:

seconda esperienza:

- a) Con i dati della prima esperienza rappresentare graficamente la forza F in funzione dell'allungamento Δl ; verificare la linearità del grafico; calcolare dal grafico la costante elastica k della molla.
- b) Con i dati della seconda esperienza ricavare il valore della costante elastica k della molla per ogni coppia di dati; confrontare i valori fra di loro e paragonarli con il valore della costante elastica k della molla ottenuta con la prima esperienza; controllare le eventuali discrepanze fra i risultati e cercarne le cause.
- c) Costruire un grafico che permetta di ricavare un unico valore della costante k. Che significato attribuire al valore dell'ordinata all'origine?