恒等射を持つ A_{∞} 圏

よの

2023年8月13日

概要

恒等射を持つ A_∞ 圏を定義し、 A_∞ 圏が A_∞ 加群に埋め込まれることをみる。このことから、任意の A_∞ 圏が dg 圏と A_∞ 擬同値であることが分かる。 $(A_\infty$ -Yoneda の補題)

目次

恒等射を持つ A_∞ 圏と恒等射を保つ A_∞ 関手 1 A_{∞} 関手圏と A_{∞} 合成関手に対する c-unital 性 2 3 Morita 不变量 7 3 A_{∞} 擬同値 7 恒等射を保つ A_{∞} 加群 5 10 6 A_{∞} プルバック関手に対する c-unital 性 10 7 A_{∞} -Yoneda の補題 10

1 恒等射を持つ A_∞ 圏と恒等射を保つ A_∞ 関手

「恒等射を持つ」 A_{∞} 圏には複数の定義がある.

「任意の $a_1 \in \text{hom}_{\mathcal{A}}(X_0, X_1), \cdots, a_d \in \text{hom}_{\mathcal{A}}(X_{d-1}, X_d)$ に対して」を以降では省略する.

定義 1.1 (恒等射を持つ A_∞ 圏). A を恒等射を持たない A_∞ 圏とする. 任意の $X\in \mathrm{Ob}A$ に対してある $e_X\in \mathrm{hom}^0_\mathcal{A}(X,X)$ が一意に存在して、次の条件を満たすとき、A は恒等射を持つ A_∞ 圏 (strictly unital A_∞ -category) であるという. このとき、 e_X を X の恒等射 (strict unit) という.

$$(d=1) \ \mu_{\mathcal{A}}^{1}(e_{X}) = 0^{*1}$$

^{*1} この定義は課さないことが多い.

$$(d=2)$$
 $(-1)^{|a_1|}\mu_{\mathcal{A}}^2(e_{X_1},a_1)=a_1=\mu_{\mathcal{A}}^2(a_1,e_{X_0})$ $(d\geq 3)$ 任意の $0\leq n< d$ に対して $\mu_{\mathcal{A}}^d(a_{d-1},\cdots,a_{n+1},e_{X_n},a_n,\cdots,a_1)=0$

定義 1.3 (ホモトピー恒等射を持つ A_{∞} 圏). ホモトピー恒等射を持つ A_{∞} 圏 (homotopy unital A_{∞} -category) $(\mathcal{A},\mu_A^{-,(i)})$ は次のデータから構成される.

- 対象の集まり ObA
- 任意の $X_0, X_1 \in ObA$ に対して、次数付きベクトル空間 $hom_A(X_0, X_1)$
- 任意の $d + i_0 \cdots + i_d \ge 0$ に対して

$$\mu_{\mathcal{A}}^{d,(i_d,\cdots,i_0)}: \hom_{\mathcal{A}}(X_{d-1},X_d) \otimes \cdots \otimes \hom_{\mathcal{A}}(X_0,X_1) \to \hom_{\mathcal{A}}(X_0,X_d)[2-d-2\sum_k i_k]$$

が与えられていて、一般化 A_{∞} 結合式 (generalized A_{∞} -associativity equation) を満たす. ([Fuk02] Section 5)

3 つの「恒等射を持つ」 A_{∞} 圏には次のような関係がある.

補題 1.4. 次の 2 つが成立する.

- 1. 任意の恒等射を持つ A_{∞} 圏はホモトピー恒等射を持つ.
- 2. 任意のホモトピー恒等射を持つ A_{∞} 圏は c-unital である.

Proof. それぞれ次のように示すことができる.

1. $\mathcal A$ を恒等射を持つ A_∞ 圏とする. 任意の $X\in \mathrm{Ob}\mathcal A$ の恒等射を e_X とする. $\mu_\mathcal A^{0,(1)}:=e_X$ として, 任意の $i_0+\dots+i_d>0$ に対して $\mu_\mathcal A^{d,(i,\dots,i_0)}:=0$ とすると, $\mathcal A$ はホモトピー恒等射を持つ.

2. 一般化 A_{∞} 結合式より従う.

「恒等射を持つ」 A_∞ 圏の間の「恒等射を保つ」 A_∞ 関手が定義される.

定義 1.5 (恒等射を保つ A_{∞} 関手). 恒等射を持つ A_{∞} 圏 A, \mathcal{B} に対して、恒等射を考えない A_{∞} 関手 $\mathcal{F}: \mathcal{A} \to \mathcal{B}$ が次の条件を満たすとき、 \mathcal{F} は恒等射を保つ A_{∞} 関手 (strictly unital A_{∞} -functor) であるという.

$$(d=1)$$
 任意の $X\in \mathrm{Ob}\mathcal{A}$ に対して $\mathcal{F}^1(e_X)=e_{\mathcal{F}X}$ $(d\geq 2)$ 任意の $0\leq n< d$ に対して $\mathcal{F}^d(a_{d-1},\cdots,a_{n+1},e_{X_n},a_n,\cdots,a_1)=0$

2

定義 1.6 (コホモロジー圏上で恒等射を保つ A_∞ 関手). c-unital な A_∞ 圏 A,\mathcal{B} に対して、コホモロジー圏上の関手 $H(\mathcal{F}): H(\mathcal{A}) \to H(\mathcal{B})$ が通常の関手であるとき、 \mathcal{F} はコホモロジー圏上で恒等射を保つ A_∞ 関手 (cohomologically unital A_∞ -functor) であるという. 以降では、c-unit を保つ A_∞ 関手という.

定義 1.7 (ホモトピー恒等射を保つ A_{∞} 関手). [Fuk02] Section 5 を参照.

「恒等射を保つ」 A_∞ 恒等関手や「恒等射を保つ」 A_∞ 関手の合成がそれぞれに対して定義される. 3 つの「恒等射を持つ」 A_∞ 圏の間にはさらに次のような関係がある.

補題 1.8. 任意のホモトピー恒等射を持つ A_{∞} 圏は恒等射を持つ A_{∞} 圏と A_{∞} 擬同型である.

Proof. [Fuk02] を参照. □

次の命題は非常に重要である.

補題 **1.9.** \mathcal{A} を c-unital な A_{∞} 圏とする. 任意の $X \in \mathrm{Ob}\mathcal{A}$ に対して, $\mathrm{hom}_{\mathcal{A}}(X,X)$ は 0 か非自明 なコホモロジーをもつとする. このとき, $\Phi^1 = \mathrm{id}_{\mathrm{hom}_A(X_0,X_1)}$ である形式的微分同相 Φ が存在して, $\Phi_*\mathcal{A}$ は恒等射を持つ.

Proof. 任意の $X \in \mathrm{Ob}\mathcal{A}$ に対して, $e_X \in \mathrm{hom}^0_{\mathcal{A}}(X,X)$ は $\mu^1_{\mathcal{A}}$ で閉じている $H(\mathcal{A})$ における c-unit とする. (途中)

注意 1.10 ([Sei]). [SS08] の命題の主張には誤りがある. 元の主張は

• 任意の c-unital な A_∞ 圏 $\mathcal A$ に対して, $\Phi^1=\mathrm{id}_{\hom_A(X_0,X_1)}$ である形式的微分同相 Φ が存在して, $\Phi_*\mathcal A$ は恒等射を持つ.

であるが、次のような反例がある. (執筆中)

2 A_{∞} 関手圏と A_{∞} 合成関手に対する c-unital 性

恒等射を持つ A_{∞} 圏に対して成立する命題を c-unital な A_{∞} 圏に対して拡張することが本節の目標である.

例えば、恒等射を持つ A_∞ 圏への A_∞ 関手のなす A_∞ 関手圏は恒等射を持つ.

補題 **2.1.** A を恒等射を持つ A_{∞} 圏とする. 任意の A_{∞} 圏 C に対して, Q:=nu-fun(C,A) は恒等射を持つ.

Proof. 任意の $X \in Ob\mathcal{C}$ と $\mathcal{F} \in Ob\mathcal{Q}$ に対して, $E_{\mathcal{F}} : \mathcal{F} \to \mathcal{F}$ を次のように定義する.

(e = 0)
$$E_{\mathcal{F}}^0 := e_{\mathcal{F}X} \in \hom_{\mathcal{A}}^0(\mathcal{F}X, \mathcal{F}X)$$

(e \ge 1) $E_{\mathcal{F}}^e := 0$

このとき、任意の $t_1 \in \text{hom}_{\mathcal{Q}}(\mathcal{F}_0, \mathcal{F}_1), \cdots, t_{e-1} \in \text{hom}_{\mathcal{Q}}(\mathcal{F}_{e-2}, \mathcal{F}_{e-1})$ に対して

$$(e=1) \mu_{\mathcal{O}}^{1}(E_{\mathcal{F}})=0$$

$$(e=2) (-1)^{|t_1|} \mu_{\mathcal{O}}^2(E_{\mathcal{F}_1}, t_1) = t_1 = \mu_{\mathcal{O}}^2(t_1, E_{\mathcal{F}_0})$$

$$(e \ge 3) \ \mu_{\mathcal{O}}^e(t_{e-1}, \cdots, t_{n+1}, E_{\mathcal{F}_n}, t_n, \cdots, t_1) = 0$$

を示せばよいが、これらは計算すればわかる.

この命題を c-unital な場合に拡張する. 次の命題はこの拡張において非常に重要である.

補題 **2.2.** $\mathcal{F}:\mathcal{A}\to\mathcal{B}$ を A_∞ 擬同型とする. このとき, \mathcal{A} が c-unital であることと \mathcal{B} が c-unital であることは同値である.

Proof. d=2 における多項等式より

$$\begin{split} &\mu_{\mathcal{B}}^{1}(\mathcal{F}^{2}(a_{2},a_{1})) + \mu_{\mathcal{B}}^{2}(\mathcal{F}^{1}(a_{2}),\mathcal{F}^{1}(a_{1})) \\ &= \mathcal{F}^{2}(a_{2},\mu_{A}^{1}(a_{1})) + (-1)^{|a_{1}|-1}\mathcal{F}^{2}(\mu_{A}^{1}(a_{2}),a_{1}) + \mathcal{F}^{1}(\mu_{A}^{2}(a_{2},a_{1})) \end{split}$$

である. a_1,a_2 が μ^1_A で閉じている射のとき, $H(\mathcal{B})$ において

$$[\mu_{\mathcal{B}}^{2}(\mathcal{F}^{1}(a_{2}), \mathcal{F}^{1}(a_{1}))] = [\mathcal{F}^{1}(\mu_{\mathcal{A}}^{2}(a_{2}, a_{1}))]$$

となる.

 $(\mathcal{A}$ が c-unital) 任意の $X\in \mathrm{Ob}\mathcal{A}$ に対して, e_X が $H(\mathcal{A})$ における c-unit であるとする. \mathcal{F} は A_∞ 擬同型なので, 任意の $Y\in \mathrm{Ob}\mathcal{B}$ に対して, ある $X\in \mathrm{Ob}\mathcal{A}$ が存在して $\mathcal{F}X=Y$ となる. この Y に対して, $e_Y:Y\to Y$ を $e_Y=e_{\mathcal{F}X}:=\mathcal{F}^1(e_X)$ と定義する. この e_Y が $H(\mathcal{B})$ における c-unit であることを示す. $\mathcal{F}:\mathcal{A}\to\mathcal{B}$ は A_∞ 擬同型なので, $\mu^1_\mathcal{B}$ で閉じている任意の射 $\tilde{a_1},\tilde{a_2}$ に対して, $\mu^1_\mathcal{A}$ で閉じているある射 a_1,a_2 が存在して

$$[\mathcal{F}^1(a_1)] = [\tilde{a_1}], \ [\mathcal{F}^1(a_2)] = [\tilde{a_2}]$$

となる. $H(\mathcal{B})$ における多項等式において $a_1=e_X$ または $a_2=e_X$ とすると, \mathcal{B} が c-unital であることが分かる.

($\mathcal B$ が c-unital) 任意の $Y\in \mathrm{Ob}\mathcal B$ に対して、 e_Y が $H(\mathcal B)$ における c-unit であるとする. $\mathcal F$ は A_∞ 擬同型なので、 $\mathcal FX=Y$ となる $X\in \mathrm{Ob}\mathcal A$ と $\mu^1_\mathcal A$ で閉じている射 $e_X:X\to X$ が存在して、 $[\mathcal F^1(e_X)]=[e_Y]$ となる.この e_X が $H(\mathcal A)$ における c-unit であることを示す. $H(\mathcal B)$ における多項等式において $a_1=e_X$ または $a_2=e_X$ とすると、 $\mathcal A$ が c-unital であることが分かる.

定理 2.3. 任意の c-unital な A_{∞} 圏 A に対して, 次の 2 つが成立する.

1. 任意の A_{∞} 圏 \mathcal{C} に対して, $\mathcal{Q} := nu\text{-}fun(\mathcal{C}, \mathcal{A})$ は c-unital である.

ごある.

 $2. \ E_{\mathcal{F}} \in \hom^0_{\mathcal{Q}}(\mathcal{F},\mathcal{F})$ が $H(\mathcal{Q})$ における c-unit であるとき、任意の $X \in \mathrm{Ob}\mathcal{C}$ に対して、 $E^0_{\mathcal{F}} \in \hom^0_{\mathcal{A}}(\mathcal{F}X,\mathcal{F}X)$ は $H(\mathcal{A})$ における c-unit である.

Proof. 補題 1.9 を用いて, $\Phi^1=\mathrm{id}_{\hom_{\mathcal{A}}(X_0,X_1)}$ である形式的微分同相を Φ , $\tilde{\mathcal{A}}:=\Phi_*\mathcal{A}$ を恒等射を持つ A_∞ 圏とする. それぞれ次のように示すことができる.

- 1. 補題 2.1 より $\tilde{\mathcal{Q}}:=nu\text{-}fun(\mathcal{C},\tilde{\mathcal{A}})$ は恒等射を持つ. $\Phi:\mathcal{A}\to\tilde{\mathcal{A}}$ は A_∞ 擬同型なので、 $\mathcal{L}_\Phi:\mathcal{Q}\to\tilde{\mathcal{Q}}$ は A_∞ 擬同型である. 補題 2.2 より、 \mathcal{Q} は c-unital である.
- $2. \mathcal{F} \in \mathrm{Ob}\mathcal{Q}$ の Φ による左合成を $\tilde{\mathcal{F}}$ とあらわす. 自然変換性より, 次の図式は可換である.

 $\Phi:\mathcal{A} o ilde{\mathcal{A}}$ は $A_\infty(oldsymbol{\mathbb{R}})$ 同型なので, $\mathcal{L}_\Phi:\mathcal{Q} o ilde{\mathcal{Q}}$ は A_∞ 擬同型である. よって, $H(\mathcal{L}_\Phi^1)$ はコホモロジー圏における複体の同型射である. また, $\Phi^1=\mathrm{id}_{\hom_{\mathcal{A}}(X_0,X_1)}$ なので $H(\mathcal{A})=H(ilde{\mathcal{A}})$ である. よって

$$Nu\text{-}fun(H(\mathcal{C}), H(\mathcal{A})) = Nu\text{-}fun(H(\mathcal{C}), H(\tilde{\mathcal{A}}))$$

である. $H(\tilde{\mathcal{Q}})$ における c-unit である \mathcal{Q} における射を $E_{\mathcal{F}}$ とあらわす. つまり, $E_{\mathcal{F}}$ は

$$\mathcal{L}_{\Phi}^{1}: \hom_{\mathcal{Q}}(\mathcal{F}, \mathcal{F}) \to \hom_{\tilde{\mathcal{O}}}(\mathcal{L}_{\Phi}\mathcal{F}, \mathcal{L}_{\Phi}\mathcal{F}): E_{\mathcal{F}} \mapsto E_{\tilde{\mathcal{F}}}$$

によって, $H(\tilde{Q})$ において

$$[E_{\tilde{\tau}}] = H(\mathcal{L}_{\Phi}^1)([E_{\mathcal{F}}])$$

となる $\mathcal Q$ における射である. $H(\mathcal L_\Phi)$ は関手なので, $[E_{\mathcal F}]$ は $H(\mathcal Q)$ における恒等射である. 上の図式の diagram chasing

より、 $H(E_{\mathcal{F}})$ は Nu- $fun(H(\mathcal{C}),H(\mathcal{A})) (=Nu$ - $fun(H(\mathcal{C}),H(\tilde{\mathcal{A}})))$ における恒等射である. よって、 $[E_{\mathcal{F}}^0]:\mathcal{F}X\to\mathcal{F}X$ は $H(\mathcal{A})$ における c-unit である.

恒等射を保つ A_{∞} 関手の A_{∞} 合成関手は恒等射を保つ.

補題 $\mathbf{2.4.}\ \mathcal{G}: \mathcal{A} \to \mathcal{B}$ を恒等射を保つ A_{∞} 関手とする. 任意の A_{∞} 圏 \mathcal{A} に対して, 左合成関手 $\mathcal{L}_{\mathcal{G}}: nu\text{-}fun(\mathcal{C},\mathcal{A}) \to nu\text{-}fun(\mathcal{C},\mathcal{B})$ は恒等射を保つ.

Proof. 補題 2.1 より, nu- $fun(\mathcal{C},\mathcal{A})$ と nu- $fun(\mathcal{C},\mathcal{B})$ は恒等射を持つ. 任意の $\mathcal{F} \in \mathrm{Ob}nu$ - $fun(\mathcal{C},\mathcal{A})$ における恒等射を $E_{\mathcal{F}}$ と表すとき, $\mathcal{L}^1_{\mathcal{G}}(E_{\mathcal{F}})$ が nu- $fun(\mathcal{C},\mathcal{B})$ における恒等射であることを示せばよい.

この命題を c-unital な場合に拡張する. A_∞ 左合成関手と A_∞ 右合成関手でわずかに主張が異なる.

定理 2.5. $\mathcal{G}:\mathcal{A}\to\mathcal{B}$ を c-unit を保つ A_∞ 関手とする. 任意の A_∞ 圏 \mathcal{A} に対して, 左合成関手 $\mathcal{L}_{\mathcal{G}}:nu\text{-}fun(\mathcal{C},\mathcal{A})\to nu\text{-}fun(\mathcal{C},\mathcal{B})$ は c-unit を保つ.

Proof. 定理 2.3 より nu- $fun(\mathcal{C},\mathcal{A})$ と nu- $fun(\mathcal{C},\mathcal{B})$ は c-unital である. $\mathcal{F}:\mathcal{C}\to\mathcal{A}$ を c-unit を保 つ A_{∞} 関手とする. $E_{\mathcal{F}}\in \hom^0_{nu$ - $fun(\mathcal{C},\mathcal{A})}(\mathcal{F},\mathcal{F})$ を H(nu- $fun(\mathcal{C},\mathcal{A}))$ における c-unit とする. こ のとき

$$[\mathcal{L}^1_{\mathcal{G}}(E_{\mathcal{F}})] \in \hom^0_{H(nu\text{-}fun(\mathcal{C},\mathcal{B}))}(\mathcal{G} \circ \mathcal{F}, \mathcal{G} \circ \mathcal{F})$$

である。定理 2.3 より、任意の $X\in \mathrm{Ob}\mathcal{C}$ に対して $E^0_{\mathcal{F}}\in \mathrm{hom}^0_{\mathcal{A}}(\mathcal{F}X,\mathcal{F}X)$ は $H(\mathcal{A})$ における c-unit である。よって

$$(\mathcal{L}^1_{\mathcal{G}}(E_{\mathcal{F}}))^0 = \mathcal{G}^1(E_{\mathcal{F}}^0) \in \hom^0_{\mathcal{B}}(\mathcal{G}(\mathcal{F}X), \mathcal{G}(\mathcal{F}X))$$

は $H(\mathcal{B})$ における c-unit である。フィルトレーションの章の A_{∞} 合成関手の性質と $nu\text{-}fun(\mathcal{C},\mathcal{B})$ が c-unital であることより, $[\mathcal{L}^1_{\mathcal{G}}(E_{\mathcal{F}})]$ は同型射である。 $E_{\mathcal{F}}$ は冪等で $\mathcal{L}_{\mathcal{G}}$ は関手なので, $[\mathcal{L}^1_{\mathcal{G}}(E_{\mathcal{F}})]$ は冪等である。冪等な同型射は恒等射なので, $\mathcal{L}^1_{\mathcal{G}}(E_{\mathcal{F}})$ は $H(nu\text{-}fun(\mathcal{C},\mathcal{B}))$ における c-unit である。よって, $\mathcal{L}_{\mathcal{G}}$ は c-unit を保つ.

定理 2.6. A, \mathcal{B} を恒等射を持たない A_{∞} 圏, $\mathcal{F}: \mathcal{A} \to \mathcal{B}$ を恒等射を考えない A_{∞} 関手とする. 任意 の c-unital な A_{∞} 圏 \mathcal{C} に対して, 右合成関手 $\mathcal{R}_{\mathcal{G}}: nu\text{-}fun(\mathcal{B},\mathcal{C}) \to nu\text{-}fun(\mathcal{A},\mathcal{C})$ は c-unit を保つ.

定義 2.7 (修正前自然変換). $\mathcal C$ を恒等射を持たない A_∞ 圏, $\mathcal A$ を恒等射を持つ A_∞ 圏, $\mathcal F_0$, $\mathcal F_1:\mathcal C\to\mathcal A$ を恒等射を考えない A_∞ 関手とする. $T^0=0$ である次数 0 の前自然変換 $T:\mathcal F_0\to\mathcal F_1$ に対して, 前自然変換 $S:\mathcal F_0\to\mathcal F_1$ を次のように定義する.

$$(e = 0) S^0 := e_{\mathcal{F}_0 X}$$

 $(e \ge 1) S^e := T^e$

S を修正前自然変換 (modified pre-natural transformation) という.

補題 2.8. 定義 2.7 の記号を用いる. このとき, 次の 2 つは同値である.

1. $T \bowtie \mathcal{F}_0$ から \mathcal{F}_1 へのホモトピーである.

2. S は \mathcal{F}_0 から \mathcal{F}_1 への自然変換である.

恒等射を持つ A_∞ 圏へのホモトピックな A_∞ 関手は A_∞ 関手圏の 0 次コホモロジー圏において同型である.

補題 **2.9.** $\mathcal C$ を恒等射を持たない A_∞ 圏, $\mathcal A$ を恒等射を持つ A_∞ 圏, $\mathcal F_0$, $\mathcal F_1$: $\mathcal C\to\mathcal A$ を恒等射を考えない A_∞ 関手とする. $\mathcal F_0$ と $\mathcal F_1$ がホモトピックであるとき, $H^0(nu\text{-}fun(\mathcal C,\mathcal A))$ において $\mathcal F_0$ と $\mathcal F_1$ は同型である.

Proof. 補題 2.8 より,修正前自然変換 S は F_0 から F_1 への自然変換である. $S^0:=e_{F_0X}$ よりフィルトレーションの章の A_∞ 合成関手の性質を用いると, $H^0(\mathcal{Q})$ において [S] の右合成は同型

$$\hom_{H^0(\mathcal{Q})}(\mathcal{F}_0, -) \cong \hom_{H^0(\mathcal{Q})}(\mathcal{F}_1, -)$$

を定める. $H^0(\mathcal{Q})$ における Yoneda の補題より, $H^0(nu\text{-}fun(\mathcal{C},\mathcal{A}))$ において \mathcal{F}_0 と \mathcal{F}_1 は同型である.

この命題を c-unital な場合に拡張する.

定理 2.10. $\mathcal C$ を恒等射を持たない A_∞ 圏, $\mathcal A$ を c-unital な A_∞ 圏, $\mathcal F_0$, $\mathcal F_1$: $\mathcal C \to \mathcal A$ を恒等射を考えない A_∞ 関手とする. $\mathcal F_0$ と $\mathcal F_1$ がホモトピックであるとき, $\mathcal F_0$ と $\mathcal F_1$ は $H^0(nu\text{-}fun(\mathcal C,\mathcal A))$ において同型である.

Proof. 定理 2.3 の記号を用いる. ??より、左合成関手はホモトピーを保つ. よって、 $\tilde{\mathcal{F}}_1:=\Phi\circ\mathcal{F}_1$ と $\tilde{\mathcal{F}}_2:=\Phi\circ\mathcal{F}_2$ は $\tilde{\mathcal{Q}}$ においてホモトピックである. 補題 2.9 より、 $\tilde{\mathcal{F}}_1$ と $\tilde{\mathcal{F}}_2$ は $H^0(\tilde{\mathcal{Q}})$ において同型である. ??より \mathcal{L}_Φ は A_∞ 擬同型なので、 \mathcal{F}_1 と \mathcal{F}_2 は $H^0(\mathcal{Q})$ において同型である.

3 Morita 不变量

A,B を恒等射を持つ次数付き線形圏, $F_0,F_1:A\to B$ を恒等射を保つ次数付き線形関手とする. A への包含関手が圏同値であるような A の部分圏を $\tilde{A}\subset A$ と表す.

補題 3.1. F_0, F_1 の \tilde{A} への制限は Hochschild コホモロジー上の同型

$$HH(A,B) \cong HH(\tilde{A},B)$$

を定める.

4 A_{∞} 擬同値

定義 4.1 (c-unit を保つ A_{∞} 関手圏). c-unit を保つ A_{∞} 関手のなす A_{∞} 関手圏を c-unit を保つ A_{∞} 関手圏 (c-unital A_{∞} -functor category) といい, $fun(A, \mathcal{B})$ と表す.

注意 4.2. fun(A, B) は nu-fun(A, B) の充満部分圏である.

定義 $\mathbf{4.3}$ (A_{∞} 擬同値). c-unit を保つ A_{∞} 関手 $\mathcal{F}:\mathcal{A}\to\mathcal{B}$ に対して, $H(\mathcal{F})$ がコホモロジー圏の圏同値

$$H(\mathcal{A}) \simeq H(\mathcal{B})$$

を定めるとき、 \mathcal{F} は A_{∞} 擬同値 (A_{∞} -quasi-equivalence) であるという.

例 4.4. A_∞ 擬同型は A_∞ 擬同値である. また, A_∞ 擬同値はコホモロジー圏上で忠実充満である.

 $\operatorname{c-unit}$ を保つ A_{∞} 関手の制限は A_{∞} 関手圏の間の A_{∞} 擬同値を定める.

補題 4.5. c-unital な A_∞ 圏 A に対して、A への包含関手が A_∞ 擬同値であるような A の A_∞ 充満 部分圏を $\tilde{A}\subset A$ と表す。任意の c-unital な A_∞ 圏 B に対して、c-unit を保つ A_∞ 関手 $F:A\to B$ と前自然変換の \tilde{A} への制限は A_∞ 擬同値

$$H(fun(\mathcal{A},\mathcal{B})) \simeq H(fun(\tilde{\mathcal{A}},\mathcal{B}))$$

を定める.

Proof.

注意 ${f 4.6.}$ 補題 ${f 4.5}$ の証明より, ある ${f c}$ -unit を保つ ${f A}_{\infty}$ 関手 ${\cal P}:{f A}\to { ilde A}$ が存在して

$$\mathcal{P}|_{\tilde{\mathcal{A}}}=\mathrm{Id}_{\tilde{\mathcal{A}}}$$

を満たす. 包含関手を $\mathcal{K}: \tilde{\mathcal{A}} \to \mathcal{A}$ と表すと

$$\mathcal{P} \circ \mathcal{K} = \operatorname{Id}_{\tilde{A}}$$

である. ここで

$$\mathcal{L}_{\mathcal{P}}(\mathcal{K} \circ \mathcal{P}) = \mathcal{P} \circ \mathcal{K} \circ \mathcal{P} = \mathrm{Id}_{\tilde{\mathcal{A}}} \circ \mathcal{P} = \mathcal{P}$$
$$\mathcal{L}_{\mathcal{P}}(\mathrm{Id}_{\mathcal{A}}) = \mathcal{P} \circ \mathrm{Id}_{\mathcal{A}} = \mathcal{P}$$

なので

$$\mathcal{L}_{\mathcal{P}}(\mathcal{K}\circ\mathcal{P})=\mathcal{L}_{\mathcal{P}}(\mathrm{Id}_{\mathcal{A}})$$

である. 定義より, $\mathcal K$ は A_∞ 擬同値なので, $\mathcal P$ も A_∞ 擬同値である. 特に, $\mathcal P$ はコホモロジー圏上で忠実充満である. A_∞ 左合成関手はコホモロジー圏上で忠実充満なので, $\mathcal L_\mathcal P$ はコホモロジー圏上で忠実充満である. よって, $\mathcal K\circ\mathcal P$ と $\mathrm{Id}_\mathcal A$ は $H^0(fun(\mathcal A,\mathcal A))$ において同型である.

 A_{∞} 擬同値は0 次コホモロジー圏においてホモトピー逆関手をもつ.

定理 4.7. A_{∞} 擬同値 $\mathcal{F}:\mathcal{A}\to\mathcal{B}$ に対して、ある A_{∞} 擬同値 $\mathcal{G}:\mathcal{B}\to\mathcal{A}$ が存在して次を満たす.

- $H^0(fun(\mathcal{A},\mathcal{A}))$ において $\mathcal{G}\circ\mathcal{F}\cong \mathrm{Id}_{\mathcal{A}}$
- $H^0(fun(\mathcal{B},\mathcal{B}))$ において $\mathcal{F}\circ\mathcal{G}\cong \mathrm{Id}_{\mathcal{B}}$

Proof. 次の条件を満たす A_{∞} 充満部分圏 $\tilde{A} \subset A, \tilde{B} \subset B$ がそれぞれ存在する.

- 包含関手 $\mathcal{K}_{\mathcal{A}}: \tilde{\mathcal{A}} \to \mathcal{A}$ と $\mathcal{K}_{\mathcal{B}}: \tilde{\mathcal{B}} \to \mathcal{B}$ は A_{∞} 擬同値である.
- ullet $\mathcal{F}:\mathcal{A}
 ightarrow \mathcal{B}$ のそれぞれへの制限 $ilde{\mathcal{F}}: ilde{\mathcal{A}}
 ightarrow ilde{\mathcal{B}}$ は A_{∞} 擬同型である.

この図式において、 $\tilde{\mathcal{F}}$ 以外は A_{∞} 擬同値である.注意 4.6 より、 A_{∞} 擬同値 $\mathcal{P}_{\mathcal{A}}:\mathcal{A}\to \tilde{\mathcal{A}}$ と $\mathcal{P}_{\mathcal{B}}:\mathcal{B}\to \tilde{\mathcal{B}}$ が存在する.??より、 A_{∞} 擬同型 $\tilde{\mathcal{G}}:\tilde{\mathcal{B}}\to \tilde{\mathcal{A}}$ が存在する.ここで

$$\mathcal{G} := \mathcal{K}_{\mathcal{A}} \circ \tilde{\mathcal{G}} \circ \mathcal{P}_{\mathcal{B}} : \mathcal{B} \to \mathcal{A}$$

と定義する.

$$\begin{array}{ccc}
\mathcal{A} & \xrightarrow{\mathcal{F}} & \mathcal{B} & & \mathcal{A} & \xleftarrow{\mathcal{G}} & \mathcal{B} \\
\mathcal{P}_{A} \downarrow & & \uparrow \mathcal{K}_{\mathcal{B}} & & \mathcal{K}_{A} \uparrow & \downarrow \mathcal{P}_{\mathcal{B}} \\
\tilde{\mathcal{A}} & \xrightarrow{\tilde{\mathcal{F}}} & \tilde{\mathcal{B}} & & \tilde{\mathcal{A}} & \xleftarrow{\tilde{\mathcal{G}}} & \tilde{\mathcal{B}}
\end{array}$$

注意 4.6 より, $H^0(fun(A,A))$ において

$$\begin{split} \mathcal{G} \circ \mathcal{F} &\cong (\mathcal{K}_{\mathcal{A}} \circ \tilde{\mathcal{G}} \circ \mathcal{P}_{\mathcal{B}}) \circ (\mathcal{K}_{\mathcal{B}} \circ \tilde{\mathcal{F}} \circ \mathcal{P}_{\mathcal{A}}) \\ &= \mathcal{K}_{\mathcal{A}} \circ \tilde{\mathcal{G}} \circ \operatorname{Id}_{\tilde{\mathcal{B}}} \circ \tilde{\mathcal{F}} \circ \mathcal{P}_{\mathcal{A}} \\ &\cong \mathcal{K}_{\mathcal{A}} \circ \operatorname{Id}_{\tilde{\mathcal{A}}} \circ \mathcal{P}_{\mathcal{A}} \\ &= \operatorname{Id}_{\mathcal{A}} \end{split}$$

 $H^0(fun(\mathcal{B},\mathcal{B}))$ において $\mathcal{F}\circ\mathcal{G}\cong \mathrm{Id}_{\mathcal{B}}$ となることも同様に示せる.

 A_{∞} 擬同値を合成する A_{∞} 合成関手は A_{∞} 擬同値である.

補題 $\mathbf{4.8.}\ \mathcal{G}:\mathcal{A}\to\mathcal{B}$ を A_{∞} 擬同値とする. 任意の A_{∞} 圏 \mathcal{C} に対して, $\mathcal{R}_{\mathcal{G}}:fun(\mathcal{B},\mathcal{C})\to fun(\mathcal{A},\mathcal{C})$ は A_{∞} 擬同値である. 左合成に対しても同様に成立する.

Proof. 定理 2.5 より, $\mathcal{R}_{\mathcal{G}}$ はコホモロジー圏上で忠実充満である。あとはコホモロジー圏上で本質的全射であることを示せばよい。 *2 つまり, 任意の $\mathcal{H}\in \mathrm{Ob}fun(\mathcal{A},\mathcal{C})$ に対して、ある $-\in fun(\mathcal{B},\mathcal{C})$

 $^{^{*2}}$ 例えば, $\mathcal G$ が A_∞ 擬同型であるときは??より従う. $\mathcal G$ が充満部分圏からの包含関手であるときは補題 4.5 より従う. (これは A_∞ 擬同値であることまで言えている.)

が存在して $\mathcal{R}_{\mathcal{G}}(-)\cong\mathcal{H}$ を満たすことを言えばよい. 定理 4.7 より, ある $\mathcal{F}:\mathcal{B}\to\mathcal{A}$ が存在して, $\mathcal{F}\circ\mathcal{G}\cong\mathrm{Id}_{\mathcal{A}}$ を満たす. よって, $H^0(fun(\mathcal{A},\mathcal{C}))$ において

$$\mathcal{R}_{\mathcal{G}}(\mathcal{H}\circ\mathcal{F})=\mathcal{L}_{\mathcal{H}}(\mathcal{F}\circ\mathcal{G})\cong\mathcal{L}_{\mathcal{H}}(\mathrm{Id}_{\mathcal{A}})=\mathcal{H}$$

5 恒等射を保つ A_{∞} 加群

補題 5.1. c-unital な A_{∞} 圏 A に対して, nu-mod(A) は恒等射を持つ.

Proof. Ch は恒等射を持つので、定理 2.3 より $nu-mod(\mathcal{A})=nu-fun(\mathcal{A}^{\mathrm{op}},\mathcal{C}h)$ は恒等射を持つ. \square

注意 **5.2.** $nu\text{-}mod(\mathcal{A})$ における恒等射 $e_{\mathcal{M}}$ は次のように表される. 任意の $X\in \mathrm{Ob}\mathcal{A}$ と $b\in\mathcal{M}(X)$ に対して

$$(e = 1) e_{\mathcal{M}}^{1}(b) = (-1)^{|b|}b$$

 $(e \ge 2) e_{\mathcal{M}}^{e} = 0$

定義 5.3 (コホモロジー圏上で恒等射を保つ A_{∞} 加群). A_{∞} 加群 \mathcal{M} が A_{∞} 関手として c-unit を保 つとき, \mathcal{M} はコホモロジー圏上で恒等射を保つ A_{∞} 加群 (cohomologically unital A_{∞} -module) で あるという. 以降では, c-unit を保つ A_{∞} 加群という.

注意 5.4.

定義 5.5 (c-unit を保つ A_{∞} 加群のなす圏). c-unit を保つ A_{∞} 加群のなす A_{∞} 関手圏を c-unit を保つ A_{∞} 加群圏 (category of c-unital A_{∞} -modules) といい, mod(A) と表す.

6 A_{∞} プルバック関手に対する c-unital 性

7 A_{∞} -Yoneda の補題

補題 7.1. A_{∞} -Yoneda 埋め込みは c-unit を保つ.

Proof. A_{∞} -Yoneda 埋め込みの定義より従う.

補題 7.2 $(A_\infty ext{-Yoneda}$ の補題). A を $c ext{-unital}$ な A_∞ 圏とする. 任意の $Y\in \mathrm{Ob}\mathcal{A}$ と $c ext{-unit}$ を保つ A_∞ 加群 \mathcal{M} に対して、「恒等射を持たない A_∞ 圏」で定義された

$$\lambda_{\mathcal{M}}: \mathcal{M}(Y) \to \hom_{\mathcal{Q}}(\mathcal{Y}, \mathcal{M})$$
$$(\lambda_{\mathcal{M}}(c))^{d}(b, a_{d-1}, \cdots, a_{1}) := \mu_{\mathcal{M}}^{d+1}(c, b, a_{d-1}, \cdots, a_{1})$$

は擬同型である.

Proof. $\lambda_{\mathcal{M}}$ の写像錐を -1 だけシフトした複体を考える.

$$\left(\mathcal{M}(Y) \oplus \hom_{\mathcal{Q}}(\mathcal{Y}, \mathcal{M})[-1], \begin{pmatrix} \mu_{\mathcal{M}}^{1} & \lambda_{\mathcal{M}} \\ 0 & -\mu_{\mathcal{Q}}^{1} \end{pmatrix}\right)$$

П

補題 7.2 において c-unit を保つ A_∞ 加群として Yoneda 埋め込み $\mathcal Y$ をとると, $\lambda_\mathcal M$ は $l_\mathcal A$ に一致して次の系が得られる.

系 7.3. A を c-unital な A_{∞} 圏とする. $l_{\mathcal{A}}: \mathcal{A} \to mod(\mathcal{A})$ はコホモロジー圏上で忠実充満である.

 l_A の像を考えると次の命題が従う.

系 7.4. 任意の c-unital な A_{∞} 圏は恒等射を持つ \deg 圏と A_{∞} 擬同型である.

 $Proof. \ mod(A)$ が恒等射を持つ dg 圏であることより従う.

参考文献

[Fuk02] Kenji Fukaya. Floer homology and mirror symmetry ii. preprint, 2002.

[Sei] Paul Seidel. Fukaya categories and picard-lefschetz theory errata. https://math.mit.edu/~seidel/errata/.

[SS08] P. Seidel and European Mathematical Society. <u>Fukaya Categories and Picard-Lefschetz Theory</u>. Zurich lectures in advanced mathematics. European Mathematical Society, 2008. https://books.google.co.jp/books?id=NOQxS9Tp50UC.