Math 501 Homework (§3.5)

Problem 15. Approximate the root 0 < r < 1 of equation $x^3 - 5x + 1 = 0$ within 10^{-4} .

Solution. We first rewrite the equation as $x = \frac{1}{5}(x^3 + 1)$. Then we pick an arbitrary $0 < x_1 < 1$ and define

$$x_{n+1} := \frac{1}{5}(x_n^3 + 1) \tag{15.1}$$

Let's use Induction to show that $0 < x_n < 1$ for all n. With the base clear, and assuming a particular $0 < x_n < 1$, we can see that $1 < x_n^3 + 1 < 2$ and $1/5 < (x_n^3 + 1) < 2/5$. Thus using (15.1), since $0 < x_{n+1} = x_n^3 + 1$

$$0 < x_n < 1 \tag{15.2}$$

Now let's look at the difference in subsequent terms of x_n

$$\begin{aligned} \left| x_{n+2} - x_{n+1} \right| \\ &= \left| \frac{1}{5} (x_{n+1}^3 + 1) - \frac{1}{5} (x_n^3 + 1) \right| = \frac{1}{5} \left| x_{n+1}^3 - x_n^3 \right| \\ &= \frac{1}{5} \left| x_{n+1}^2 + x_{n+1} x_n + x_n^2 \right| \left| x_{n+1} - x_n \right| \\ &\leq \frac{3}{5} \left| x_{n+1} - x_n \right| \end{aligned}$$
 (since $0 < x_n < 1$)

This implies that $X = (x_n)$ is a **contractive sequence** with $C = \frac{3}{5}$ and that $\lim X = r$ exists. Substituting r in (15.1) we get $r = \frac{1}{5}(r^3 + 1)$ or $r^3 - 5r + 1 = 0$. Hence r is a root of the given equation. Now to approximate the value of r we can

- 1. Pick $x_1 = 0.5$
- 2. Calculate $x_2 = 0.225$
- 3. Calculate $x_3 = 0.202278125$
- 4. ...

In order to know how many such iterations we need, we use Corollary 3.5.10(i) from the book which states that for a contractive sequence with limit, r and contractive constant, $C = \frac{3}{5}$ here,

$$\left| r - x_n \right| \le \frac{C^{n-1}}{1 - C} |x_2 - x_1|
\le \frac{3^{n-1}}{5^{n-2}} \left(\frac{0.275}{2} \right)
\le \frac{3^{n-1}}{5^{n-2}} (0.1375)$$

This inequality tells us where to stop, depending on the precision we seek in the value of r. E.g., for the required precision we know that $|r - x_n| \le 10^{-4}$. This means the following equation applies

$$\frac{3^{n-1}}{5^{n-2}} = 10^{-4}$$

$$(\frac{3}{5})^{n-1} = 5 \times 10^{-4}$$

$$(n-1)\ln\frac{3}{5} = \ln 5 - 4\ln 10$$

$$(n-1) - 0.51082562376 = -7.60090245954$$

$$n \approx 16$$

We can iterate manually, or use a computer program to calculate the desired approximation of r:

$$x=0.5$$
; for (n in (2:16)) $x=(x^3+1)/5$; print (x) 0.2016397