OR iii. Find the voltage v(t) in the circuit shown in figure 9. Use Laplace 6

transform method to solve the equations.

Enrollment No.....

Faculty of Engineering

End Sem (Odd) Examination Dec-2018 EC3CO05/EI3CO05 Circuit Analysis and Synthesis

Programme: B.Tech. Branch/Specialisation: EC/EI

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

- Q.1 i. Three resistances of two ohms each are connected in star. In the 1 equivalent delta representation each resistance will have a value of _____ohms.
 - (a) 3.4 (b) 6 (c) 0.06 (d) 5.2
 - ii. How much inductance is needed to resonate at 5 kHz with a **1** capacitance of 12 nF?
 - (a) 2.652 mH (b) 11.844 H (c) 3.333 H (d) 84.43 mH
 - iii. In the circuit in figure 1, $v(\infty)$ is:

Figure 1

(d) 4 V

(a) 10 V (b) 7 V (c) 6 V

iv. Which one of the following theorems is a manifestation of law of 1 conservation of energy?

- (a) Tellegen's Theorem (b) Reciprocity Theorem
- (c) Thevenins's Theorem (d) Superposition Theorem

v. Given that $F(s) = e^{-2s}/(s+1)$, then f(t) is

(a) $e^{-2(t-1)}u(t-1)$ (b) $e^{-(t-2)}u(t-2)$

(c) $e^{-t}u(t-2)$ (d) $e^{-t}u(t+1)$

vi. If the input to a linear system is $\delta(t)$ and the output is $e^{-2t} u(t)$, the transfer function of the system is:

(a) $\frac{1}{(S+2)}$ (b) $\frac{1}{(S-2)}$ (c) $\frac{S}{(S+2)}$ (d) $\frac{S}{(S-2)}$

vii. If a two-port is reciprocal, which of the following is *not* true?

(a) $Z_{21} = Z_{12}$ (b) $Y_{21} = Y_{12}$ (c) $h_{21} = h_{12}$ (d) AD = BC + 1

P.T.O.

1

1

Figure 9

- Q.5 i. Derive expression for the h-parameters in terms of Z-parameters for a **4** two port network.
 - ii. Determine the y parameters for the two-port network shown in 6 figure 10.
- OR iii. Find the transmission parameters for the two-port network shown in 6 figure 11.

- Q.6 i. What are the three conditions to be satisfied by a transfer function so 3 that it represents a stable network?
 - ii. Find the Foster first and second form for the following driving point 7 impedance function:

$$Z(s) = \frac{10(s^2+4)(s^2+16)}{s(s^2+9)}$$

OR iii. Find the Cauer first and second form for the following impedance 7 function:

$$Z(s) = \frac{s(s^2+4)(s^2+6)}{(s^2+1)(s^2+5)}$$

viii. For the two port network shown in figure 2 the Z parameter matrix is **1** given by

Figure 2

(a)	60]	100	
(a)	$\begin{bmatrix} 60 \\ 100 \end{bmatrix}$	$\frac{100}{60}$	
(c)	[60	40]	

$$(b) \begin{bmatrix} 60 & 60 \\ 100 & 40 \end{bmatrix}$$

- (c) $\begin{bmatrix} 60 & 40 \\ 40 & 100 \end{bmatrix}$ (d) $\begin{bmatrix} 60 & 60 \\ 60 & 10 \end{bmatrix}$
- ix. The denominator polynomial in a transfer function may not have any missing terms between the highest and the lowest degree, unless?
 - (a) All odd terms are missing
 - (b) All even terms are missing
 - (c) All even or odd terms are missing
 - (d) All even and odd terms are missing
- x. If the ratio of the polynomial P(s) and its derivative gives a continued fraction expansion with _____ coefficients, then the polynomial P(s) is Hurwitz.
 - (a) All negative
- (b) All positive
- (c) Positive or negative
- (d) Positive and negative

5

- Q.2 i. Two coils are mutually coupled, with $L_1 = 25$ mH, $L_2 = 60$ mH and 2 k=0.5. Calculate the maximum possible equivalent inductance if the two coils are connected in series.
 - ii. Explain with illustrative examples the meaning of the following terms:
 - (a) Incidence matrix
- (b) Tie-set

- (c) Cut-set
- iii. Find v_x and i_x in the circuit shown in figure 3

Figure 3

OR iv. Determine the phasor currents I_1 and I_2 in the circuit of figure 4

Figure

- Q.3 Attempt any two questions:
 - Find the Thevenin and Norton equivalent between terminals *a-b* of the circuit in figure 5.

Figure 5

- ii. In the circuit shown in figure 6 below, find i_o , v_o and i for all time, 5 assuming that the switch was open for a long time. Use conventional method to solve the equations.
- iii. Use superposition to find V_o in the circuit of figure 7 below.

- Q.4 i. The output of a linear system is $y(t) = 10 e^{-t} \cos 4t \, u(t)$ when the input is $x(t) = e^{-t} \, u(t)$. Find the transfer function of the system and its impulse response.
 - ii. Find the voltage v(t) in the circuit shown in figure 8. Use Laplace 6 transform method to solve the equations.

P.T.O.

5

5

Marking Scheme

EC3CO05/EI3CO05 Circuit Analysis and Synthesis

- Q.1 i. Three resistances of two ohms each are connected in star in the equivalent delta representation each resistance will have a value of _____ohms.
 - (b) 6
 - ii. How much inductance is needed to resonate at 5 kHz with a capacitance 1 of 12 nF?
 - (d) 84.43 mH
 - iii. In the circuit in figure 1, $v(\infty)$ is:

1

(a) 10 V

Figure 1

- iv. Which one of the following theorems is a manifestation of law of conservation of energy?
 - (a) Tellegen's Theorem
- v. Given that $F(s) = e^{-2s}/(s+1)$, then f(t) is

 (b) $e^{-(t-2)}u(t-2)$
- vi. If the input to a linear system is $\delta(t)$ and the output is $e^{-2t} u(t)$, the 1 transfer function of the system is:
 - (a) $\frac{1}{(S+2)}$
- vii. If a two-port is reciprocal, which of the following is *not* true? (c) $h_{21} = h_{12}$
- viii. For the two port network shown in figure 2 the Z parameter matrix is 1 given by

(d)
$$\begin{bmatrix} 60 & 60 \\ 60 & 100 \end{bmatrix}$$

	ix.	missing terms between the highest and the lowest degree, unless?		
	х.	(c) all even or odd terms are missing If the ratio of the polynomial $P(s)$ and its derivative gives a	continued	1
	Α.	fraction expansion with coefficients, then the pol		_
		P(s) is Hurwitz.	J 110 1111011	
		(b) All positive		
Q.2	i.	Calculation of M	1 mark	2
		Equivalent inductance	1 mark	
	ii.	(a) Incidence matrix	1 mark	3
		(b) Tie-set	1 mark	
		(c) Cut-set	1 mark	
	iii.	For writing proper equations	3 marks	5
		Voltage calculation	1 mark	
		Current calculation.	1 mark	
OR	iv.	For writing proper equations	2 marks	5
		Current calculation.	3 marks	
Q.3		Attempt any two questions:		
	i.	Open circuit voltage calculation		5
		Equation	1 mark	
		Calculation	1 mark	
		Short circuit current calculations		
		Equation	1 mark	
		Calculation	1 mark	
		Equivalent circuit representation.	1 mark	
	ii.	Initial current, time constant, final current, v_0 and i_0 calcu	lation.	5
		1 mark for each	(1 mark *5)	
	iii.	Calculation of v_0 for the circuit containing voltage	2 marks	5
		Calculation of current source acting alone	2 marks	
		Applying superposition principle.	1 mark	
Q.4	i.	Conversion from time domain to frequency domain	1 mark	4
		Calculation of transfer function in s domain	1 mark	
		Conversion of transfer function from frequency domain to t		
			1 mark	
		Calculation of impulse response	1 mark	

	ii. Calculation of initial conditions			1 mark	6
		Conversion from time domain to frequency domain	1 mark		
		Calculation of v in s domain		2 marks	
	Conversion of v from frequency domain to time domain.			2 marks	
	iii.	- · · ·			6
	Conversion from time domain to frequency domain.		ı.	1 mark	
		Calculation of <i>v</i> in s domain		2 marks	
		Conversion of v from frequency domain to time do	main	2 marks	
Q.5	i.	Writing equation of Z and h parameters.	2 mark	S	4
		Calculation of parameters.	2 mark	XS.	
	ii.	The y parameters for the two-port network			6
		1.5 marks for each parameter.	(1.5 m	arks *4)	
OR	iii.	Transmission parameters for the two-port network			6
		1.5 marks for each parameter.	(1.5 m	arks *4)	
Q.6 i.		Any three conditions to be satisfied by a transfer function so that it represents a stable network			3
		1 marks for each condition.	(1 mar	k *3)	
	ii.	Foster first form element calculation	3 mark	XS.	7
		Foster second form element calculation	3 mark	XS.	
		Circuit representation.	1 mark	<u> </u>	
OR	iii.	Cauer first form element calculation	3 mark	S	7
		Cauer second form element calculation	3 mark	S	
		Circuit representation.	1 mark	ζ.	
