

 ω_r = The speed of right wheel.

 ω_l = The speed of left wheel

L = distance between wheels

R = Radius of each wheel is 6 cm.

Angular velocity of the robot =
$$\omega = \frac{R}{L}(\omega_r - \omega_l)$$

Angle of rotation of the robot = $\theta = \omega \times \Delta T$

Since the time interval is 1 sec.
$$\theta = \omega = \frac{R}{L}(\omega_r - \omega_l)$$

Linear speed of the robot =
$$v = \frac{R}{2}(\omega_r + \omega_l)$$

			Angle (φ)												
		N	В	N	M	N	S	2	Z	I	PS	P	M	F	В
		V_R	V_L	V_R	V_L	V_R	V_L	V_R	V_L	V_R	V_L	V_R	V_L	V_R	V_L
	VS	В	Z	M	Z	F	Z	S	F	Z	F	Z	F	Z	M
	S	VB	Z	В	Z	M	Z	S	F	Z	M	Z	В	Z	VE
Distance (D)	M	VB	Z	VB	Z	В	Z	M	M	Z	В	Z	VB	Z	VE
	В	VB	Z	VB	Z	VB	Z	В	В	Z	VB	Z	VB	Z	VE
	VB	VB	Z	VB	Z	VB	Z	VB	VB	Z	VB	Z	VB	Z	VE

Motors	Axis ro	otation (°)	ga*	Rotation velocity (°/s)	Rated output of motor (W)	Energy consumption of motor (W.s/°)	
	$\theta_{ m i,min}$		$\theta_{\rm i, max}$	v_i		EP_i	
θ_1	310	-155	155	90	280	3.1111	
θ_2	245	-65	180	90	190	2.1111	
θ_3	173	-68	105	90	240	2.6666	
θ_4	700	-350	350	120	100	0.8333	
θ_5	360	50	310	120	60	0.5	
θ_6	700	-530	170	190	50	0.2631	

$$R_{\text{PTP}} = \sum_{i=1}^{n} \left| \theta_{i,j} - \theta_{i,j-1} \right|$$

Points (j)	θ ₁ (°)	θ ₂ (°)	θ_3 (°)	θ ₄ (°)	θ_5 (°)	θ_6 (°)
1	82.96	50.39	-165.65	-305.56	-134.13	- 54.44
2	82.88	-7.84	90.08	-139.00	84.70	55.62
3	-7.82	150.31	11.73	82.95	79.09	-297.32
4	15.42	109.37	-0.78	-3.84	179.00	-298.37
5	-153.10	32.55	62.70	259.50	96.55	-118.21
6	12.49	-17.63	74.53	262.34	216.91	-375.83
7	14.66	-5.46	79.98	249.74	206.47	-375.86
8	78.66	17.58	60.21	219.04	162.09	-375.74
9	63.07	6.77	75.65	199.34	142.18	-371.24
10	34.38	8.27	92.79	184.11	114.27	-371.34

Task Planning of Robot using Clustering Algorithm

Problem Definition:

		[30-70]	[0.2-0.9]	[10-35]
		Reach	Accuracy	Gripper force
1		36	0.80	26.00
2		67	0.90	32.00
3		34	0.30	35.00
4		69	0.40	23.00
5		34	0.20	27.00
6		49	0.80	25.00
7		53	0.60	11.00
8		66	0.88	18.00
9		62	0.51	23.00
10)	54	0.29	20.00

	1			4	C1	C2	C11	C22	
1	0			1.01	0.4	0.729	0.546	0.667	
2	0.82379		3	0.8	0.906	0.624	1.056	0.592	
3	0.80144			1.01	0.438	0.985	0.294	0.961	Ĵ
4	1.01072	,		0	0.820	0.347	0.896	0.404	
5	0.85953			0.93	0.485	0.928	0.342	0.917	Ĵ
6	0.32096			0.77	0.485	0.459	0.658	0.392	
7	0.78275			0.69	0.784	0.467	0.892	0.468	
8	0.83147			0.72	0.956	0.435	1.116	0.419	
9	0.7754			0.24	0.627	0.148	0.732	0.185	
10	0.88435			0.43	0.612	0.489	0.635	0.515	9
C1	38.18	0.53	28.25						
C2	61.71	0.60	21.17						
C11	34.67	0.43							
C22	59.86	0.63	21.71						

Obstacle Avoidance Robot Manipulator

- The applications of industrial robots in the field of manufacturing are increasing due to their autonomy, flexibility, and self governing work in different environments.
- In most of manufacturing applications such as material handling, assembly, spraying, spot welding, riveting, molding, etc., these robots has to perform the tasks under the conditions of restrictions. Therefore motion control of manipulator movements in an environment with obstacles is of increasing importance.

- The non-redundant manipulators are not sufficiently effective as they cannot perform complex movements under the conditions of the restrictions.
- To overcome this difficulty, robots should possess at least one degree of-freedom more than the number required for the general free positioning, i.e. they should be redundant.

Definition of problem

- The inverse kinematic problem of a redundant manipulator is highly nonlinear. Hence number of inverse kinematic solutions may become infinite and closed form solutions are impossible to find in general.
- Secondly, the conventional linear PID controllers are not adequate for precise control of redundant robot manipulators.

Obstacle avoidance Model

Minimize
$$P_e = \sqrt{(x_c - x_f)^2 + (y_c - y_f)^2}$$

Where $x_c = \sum_{i=1}^{N} L_i \cos_{\pi_i}$ and $y_c = \sum_{i=1}^{N} L_i \sin_{\pi_i}$

Subjected to $A_{overlap} = 0$

With penalty Objective function $Z = \sqrt{(x_c - x_f)^2 + (y_c - y_f)^2} + p * A_{overlap}$

Determination of Overlap area

- 1. Identification of the point of intersection
- 2. Identification of boundary line segment
- 3. Identification of overlap region
- 4. Calculation of overlap area

1. Identification of the point of intersection

Identification of boundary line segment (Jain et al., 1992)

3. Identification of overlap region

4. Calculation of overlap area

$$A_{overlap} = \frac{1}{2} \sum_{i} x_i (y_{i+1} - y_i) - y_i (x_{i+1} - x_i)$$

Simulated Annealing (SA)

- The simulated annealing algorithm developed by Kirkpatrick *et al.* (1983) resembles the cooling process of molten metals through annealing.
- The cooling phenomenon is simulated by controlling a temperature like parameter introduced with the concept of Boltzman probability distribution.
- If 'i' is the current configuration with cost C(i) then probability of accepting 'j' as next configuration with is:

$$\Pr\{new = j \mid current = i\} = \begin{cases} 1 & if \quad \Delta C \le 0 \\ e^{-\Delta C/T} & otherwise \end{cases}$$

The specifications of manipulator considered in this example are given in the Table 1.

Number of manipulator links = 4

Initial position defined $[X_c, Y_c] = [48.892, 191.335]$

Desired position (DP) $[X_f, Y_f] = [195, 136]$

TABLE 1 Manipulator link specifications considered in example

Link number (i)	Length of the link (L_i)	Initial angle (" ¡)
1	150	90
2	80	280
3	60	90
4	70	60

Servo motors

Servo motors are generally an assembly of four things: a DC motor, a gearing set, a control circuit and a position-sensor. The position of servo motors can be controlled more precisely than those of standard DC motors, and they usually have three wires (power, ground & control). Power to servo motors is constantly applied, with the servo control circuit regulating the draw to drive the motor. However, due to servo motor angle of rotation of manipulator links is restricted to 180°.

The specifications of the servo motor selected are as below:

- Torque capacity: 16 Kg-cm
- Operating temperature: 10-60°C
- Operating features: Double ball bearing, metal gears,

5/12/2024 25

Controller

The controller specifications for 5 axis robot manipulator developed are as follows:

Reach: 550 mm in any direction; 180 degree rotation fourth and

back

Repeatability

0.20 mm

error:

Maximum speed 15°/sec for link1, 90°/sec for other links

Max torque 16 kg-cm

Power: 110/240v ac 420VA (standard controller)

Temperature

10 - 60°C (wider range optional)

range: MTBF:

5000 hours

Drives Servo motors

Gripper High power electro-magnet

Use A* algorithm to determine the shortest path for an automated guided vehicle while moving from work station at (4, 6) to workstation at (1, 1) shown in Fig. below. The obstacles are in the form of tool storage racks at locations (3, 3), (1, 4) and (4, 2).

(1,1)	(2,1)	(3,1)	(4,1)
(1,2)	(2,2)	(3,2)	(4,2)
(1,3)	(2, 3)	(3,3)	(4,3)
(1,4)	(2, 4)	(3,4)	(4,4)
(1, 5)	(2,5)	(3, 5)	(4,5)
(1,6)	(2,6)	(3,6)	(4,6)

	1	2	3	4
1	(1,1)	(2,1)	(3,1)	(4,1)
2	(1,2)	(2,2)	(3,2)	(4,2)
3	(1,3)	(2, 3)	(3,3)	(4,3)
4	(1,4)	(2, 4)	(3,4)	(4,4)
5	(1, 5)	(2,5)	(3, 5)	(4,5)
6	(1,6)	(2,6)	(3,6)	(4,6)

	g h	83	Total
4,5	1	7	8
3, 6	1	7	8
3, 5	2	6	8
4, 4	2	6	8
3,4	3	5	8
3,6	0	7	7
2,5	3	5	8