Hypothesis testing Cheatsheet

• Central Limit Theorem (CLT):

the distribution of sample means is Gaussian, no matter what the shape of the original distribution is.

Assumptions: population mean and standard deviation should be finite and sample size >=30.

- **Hypothesis Testing:** a method of statistical inference to decide whether the data at hand sufficiently support a particular hypothesis. A test statistic directs us to either reject or not reject the null hypothesis.
- **Null hypothesis** (H₀) represents the assumption that is made about the data sample whereas the **alternative hypothesis** (Ha) represents a counterpoint.
- **p-value**: Probability of observing the Test statistic as extreme or more than T_{observed} considering the null hypothesis as true.

If p-value < significance level; reject the null hypothesis, else fail to reject the null hypothesis.

- **Critical value:** a cut-off value used to mark the start of a region where the test statistic is unlikely to fall in.
- Types of Hypothesis testing:

One-Tailed Test (Left Tail)	Two-Tailed Test	One-Tailed Test (Right Tail)
$H_0: \mu_X = \mu_0$ $H_1: \mu_X < \mu_0$	$H_0: \mu_X = \mu_0$ $H_1: \mu_X \neq \mu_0$	$H_0: \mu_{\chi} = \mu_0$ $H_1: \mu_{\chi} > \mu_0$
Rejection Region Acceptance Region	Rejection Region Region Acceptance Region	Acceptance Region

Type I error (α **)** - Reject a null hypothesis that is true.

Type II error (β **)** - Not reject a null hypothesis that is false.

Framework for Hypothesis testing:

- 1. Define the experiment and a sensible test statistic variable.
- 2. Define the null hypothesis and alternate hypothesis.
- 3. Decide a test statistic and a corresponding distribution.
- 4. Determine whether the test should be left-tailed, right-tailed, or two-tailed.
- 5. Determine the p-value.
- 6. Choose a significance level.
- 7. Accept or reject the null hypothesis by comparing the obtained p-value with the chosen significance level.

One sample Z-test: used to determine whether the population mean is significantly different from an assumed value.

It uses Standard normal distribution as the baseline.

Assumptions: Either the standard deviation of the population should be known or we should estimate them well when the sample size is not too small (n>30).

Test statistic =
$$Z = \frac{\bar{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}}$$

Two sample Z-test: used to compare the means of two populations.

Assumption: Either the standard deviation (σ_1, σ_2) of the populations should be known or we should estimate them when the sample sizes are not too small $(n_1, n_2 \ge 30)$.

Test statistic = t =
$$\frac{(\overline{x}_1 - \overline{x}_2) - 0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

One sample t-test: The test statistic follows a t - distribution

It is used when the sample size is too small (n < 30) and/or the population standard deviation (σ) is unknown.

Test statistic =
$$z = \frac{\overline{x} - \mu_0}{\frac{s}{\sqrt{n}}}$$

Degree of freedom = n-1

Two sample t-test:

It is used when the sample sizes are too small $(n_1,n_2<30)$ and/or the population standard deviations (σ_1,σ_2) are unknown.

Test statistic = t =
$$\frac{(\bar{x}_1 - \bar{x}_2) - 0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

Degree of freedom = The smaller of $(n_1 - 1)$ and $(n_2 - 1)$

ANOVA (Analysis of variance): used to determine if there is a statistically significant difference between two or more categorical groups by testing for differences of means using variance.

The test statistic f follows the F distribution represented by two parameters (k-1) and (n-k). k = No. of groups, n = Total sample size.

Test statistic =
$$f = \frac{MSB}{MSW}$$

where, MSB = mean of the squared distances between the groups and MSW = the mean of the squared distances within the groups.

$$MSB = \frac{\sum_{i=1}^{k} n_i (\bar{X}_i - \bar{X})^2}{k-1}$$
 $MSW = \frac{\sum_{i=1}^{k} \sum_{j=1}^{m} (X_i j - \bar{X}_i)^2}{n-k}$

Assumptions of ANOVA:

- The variance of each group should be the same or close to each other.
- The total n observations should be independent of each other.

KS (Kolmogorov - Smirnov) test: It is a non - parametric test used for determining whether the distributions of two samples are the same or not.

The test statistic T_{ks} follows a distribution called the **Kolmogorov Distribution**.

 T_{KS} = the maximum absolute value of the difference in the CDFs of the two samples X and Y.

Correlation is the degree of the mutual relationship between two variables.

Pearson correlation coefficient(PCC):

$$\rho_{xy} = \frac{Cov(X, Y)}{\sigma_{x}.\sigma_{y}}$$

Limitation of PCC is that it only captures the linear relationship between the variables. It fails to capture the non-linear patterns.

Spearman Rank Correlation Coefficient: It is a statistical measure of the strength of a monotonic relationship between paired data. It captures the monotonicity of the variables rather than the linearity.

$$ho=1-rac{6\sum d_i^2}{n(n^2-1)}$$

where, d =difference between the two ranks of each observation and n = number of observations