

<u>Course</u> > <u>Unit 7:</u>... > <u>Lec. 16:</u>... > 6. Exer...

6. Exercise: LMS estimation error

Exercises due Apr 15, 2020 05:29 IST Completed

Exercise: LMS estimation error

3.0/3.0 points (graded)

As in the previous exercise, let Θ be the bias of a coin, i.e., the probability of Heads at each toss. We assume that Θ is uniformly distributed on [0,1]. Let K be the number of Heads in 9 independent tosses. We have seen that the LMS estimate of K is $\mathbf{E}\left[K\mid\Theta=\theta\right]=n\theta$.

a) Find the conditional mean squared error $\mathbf{E}ig[ig(K-\mathbf{E}\left[K\mid\Theta= heta
ight]ig)^2\mid\Theta= hetaig]$ if heta=1/3.

b) Find the overall mean squared error of this estimation procedure.

Solution:

- a) This is the variance of the conditional distribution of K. Since the conditional distribution is binomial with parameters n=9 and $\theta=1/3$, the conditional variance is $9\left(1/3\right)\left(2/3\right)=2$.
- b) This is the average of the conditional variance, averaged over all possible values of the observation Θ , which has a uniform distribution:

$$\int_{0}^{1}f_{\Theta}\left(heta
ight) \mathsf{Var}\left(K\mid\Theta= heta
ight) \,d heta\ =\int_{0}^{1}9 heta\left(1- heta
ight) \,d heta$$

$$= \left(9\frac{1}{2}\theta^2 - 9\frac{\theta^3}{3}\right) \left|0_1\right|$$

$$= 4.5 - 3$$

$$= 1.5.$$

Submit

You have used 3 of 3 attempts

1 Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Unit 7: Bayesian inference:Lec. 16: Least mean squares (LMS) estimation / 6. Exercise: LMS estimation error

Show	all posts	∨ by recent	activity 🗸
-	_	gy needs to be improved great course, but the methodology needs to be improved. Contents are becoming very abs.	9
1		th questions- (a) and (b) or are struggling like I did. The first part simply uses the formula for the variance of the bino.	1
	<u>Part 2</u> Oy. So many t	things, I'll throw them out. I wish I could move on to the next problems, but my brain gets s.	2
2 /	Another a <u>pp</u>	proach without integration	7
-		ust don't remember var properties off the top of my head hese two things mean based on the video, but could someone please direct me to the lectu	1 new_
•		here do I start out loud and hopefully someone can point me in the right direction. OK, I got the last on	2 new_
	Motivation Despite gettin	ng average grades in the lectures and problem sets. I usually have to think hard to solve pro	2
? !	Hint on Part	t <u>2</u>	8