Presentation on Gnu parallel

What is gnu parallel?

For people who live life in the parallel lane

- It is a shell tool for executing tasks/jobs in parallel using one or more nodes
- Very efficient for jobs that do the same scripts with different inputs

Strengths of gnu parallel

Easily scales to very large number of tasks

Easily scales to multiple nodes

Efficient use of SLURM resources

- Does not easily balance work across multiple nodes
- Careful optimization of input/output files is required
- Scaling up requires careful consideration of I/O performance
- Bash scripting familiarity recommended

Cons of gnu parallel

Example case to experiment gnu parallel (1)

Requesting nodes and loading gnu parallel

```
[kefo9343@login10 ~]$ acompile --ntasks=4 --time=01:00:00 acompile: submitting job... salloc --nodes=1 --partition=aco e=acompile --bell --oversubscribe srun --pty /bin/bash salloc: Granted job allocation 1219511 salloc: Waiting for resource configuration [salloc: Nodes c3cpu-a2-u7-4 are ready for job
```

Requesting nodes and loading gnu parallel

```
[kefo9343@c3cpu-a2-u7-4 ~]$ ml gnu_parallel
```

Parallelizing echo (1)

• ":::" is where we are giving the argument parameters to echo

```
[kefo9343@c3cpu-a2-u7-4 ~]$ parallel echo ::: A B C
A
B
C
```

Parallelizing echo (2)

We can give two lists of parameters

```
[kefo9343@c3cpu-a2-u7-4 ~]$ parallel echo ::: A B C C D E F ::: 1 2 3 4 5 6
A 3
A 1
A 2
A 4
A 5
```

Parallelizing echo (3)

• Or even 3!!!

```
[kefo9343@c3cpu-a2-u7-4 ~]$ parallel echo ::: A B C C D E F ::: 1 2 3 4 5 6 ::: alpha beta
A 1 alpha
A 1 beta
A 2 beta
```

Parallelizing echo (4)

 We can find text files in a directory and echo them

```
[kefo9343@c3cpu-a2-u7-4 gnu_parallel]$ find . -name "*.txt" | parallel echo find files {}
find files ./nodelist.txt
find files ./test1.txt
find files ./output_gnu_.txt
find files ./test3.txt
find files ./test4.txt
[find files ./test4.txt]
```

Parallelizing echo (5)

Another way to give arguments is by using brackets

```
[kefo9343@c3cpu-a2-u7-4 gnu_parallel]$ parallel python3 hello_dummy.py {} ::: {1..1000}
Hello world from task: 1
Hello world from task: 2
Hello world from task: 3
Hello world from task: 4
Hello world from task: 6
Hello world from task: 8
Hello world from task: 7
```

Parallelizing echo (6)

• Files can be used as parameter inputs. In that case, ':::' is used.

```
[kefo9343@c3cpu-a2-u7-4 gnu_parallel]$ parallel python3 hello_dummy.py {} :::: arg_file.txt Hello world from task: 2 Hello world from task: 34 Hello world from task: 1 Hello world from task: 7667
```

Parallelizing multiple nodes

 Gnu parallel needs to know the address of all the nodes involved.

[kefo9343@c3cpu-a2-u7-4 gnu_parallel]\$ scontrol show hostname > \$SLURM_SUBMIT_DIR/nodelist.txt

• '—sshloginfile' will help gnu parallel read the list of nodes involved and '—wd' will let gnu parallel know the working directory

[kefo9343@c3cpu-a2-u7-4 gnu_parallel]\$ parallel --sshloginfile nodelist.txt --wd \$SLURM_SUBMIT_DIR python3 hell o_dummy.py {} :::: arg_file.txt

Advanced commands

- '—joblog' helps you keep track of your tasks.
- '-j' represents the number of jobs/tasks per node
- '--env PATH' exports the PATH environment. It can be very useful when working with anaconda for instance

```
^C[kefo9343@c3cpu-a2-u7-4 gnu_parallel]parallel --joblog job.log -j 3 --env PATH --sshloginfile nodelist.txt --wd $SLU RM_SUBMIT_DIR python3 hello_dummy.py {} :::: arg_file.txt Hello world from task: 1 Hello world from task: 2 Hello world from task: 34 Hello world from task: 76 Hello world from task: 68 Hello world from task: 7667
```

Advanced gnu parallel on Alpine

- '—delay' helps delay the execution for each task by 0.2 sec to mitigate I/O related issues
- Here for each task we cd to a directory and we run the Rscript using the parameter number as input (from 1 to 1000)

```
# GNU parallel for the main psa

my_parallel="parallel --env PATH --delay .2 -j $SLURM_NTASKS_PER_NODE --wd $TMPDIR --sshloginfile nodelist.txt --joblog job.log"

my_srun="srun --export=all --exclusive -n1 --cpus-per-task=$SLURM_CPUS_PER_TASK --cpu-bind=cores"

$my_parallel '$my_srun cd /scratch/alpine/kfotso@xsede.org/reduce_psa/{}; pwd; Rscript PSA.R {}' ::: {1..1000}
```

Sources:

- https://www.gnu.org/software/parallel/
- https://docs.nersc.gov/jobs/workflow/gnuparallel/
- https://www.youtube.com/watch?v=RI06WD60afA
- https://curc.readthedocs.io/en/latest/software/GNUParallel.html?hig hlight=gnu%20parallel#using-gnu-parallel