Chapter 3

Multiple Linear Regression

Chapter 3c

Decomposition of variance: $SS_T = SS_{Res} + SS_R$ (pages 3-4)

$$y'y = SS_{Res} + \hat{\beta}'X'y$$

Test of overall fit of model – analysis of variance (pages 5-8)

Example - Delivery time data (pages 9-12)

Example – Cholesterol age data (page 13)

R² and adjusted R² for assessing the overall adequacy of a model (page 14)

Example - Delivery time data (page 15)

Example - Cholesterol age data (page 16)

Tests and confidence intervals on individual regression coefficients (page 17)

Example - Delivery time data (pages 18-20)

Decomposition of variance: $SS_T = SS_{Res} + SS_R$

$$SS_{Res} = \mathbf{y'y} - \hat{\boldsymbol{\beta}'X'y}$$
 $\mathbf{y'y} = SS_{Res} + \hat{\boldsymbol{\beta}'X'y}$
 $\mathbf{y'y} - n\bar{y}^2 = SS_{Res} + \hat{\boldsymbol{\beta}'X'y} - n\bar{y}^2$
 $\mathbf{y'y} - n\bar{y}^2 = SS_{Res} + \hat{\boldsymbol{\beta}'X'y} - n\bar{y}^2$

$$\sum_{i=1}^{n} y_i^2 - n\bar{y}^2 = SS_{Res} + \hat{\boldsymbol{\beta}}' \boldsymbol{X}' \boldsymbol{y} - n\bar{y}^2$$

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = SS_{Res} + \hat{\beta}' X' y - n \bar{y}^2$$

$$\sum_{i=1}^{n}(y_i-\bar{y})^2=SS_{Res}+\hat{\boldsymbol{\beta}}'\boldsymbol{X}'\boldsymbol{y}-n\bar{y}^2$$
 [avge small $SS_T=SS_{Res}+SS_R$ where

 $SS_T \equiv \sum_{i=1}^n (y_i - \bar{y})^2 = \text{total sum of squares or total variation in } y$

 $SS_{Res} \equiv y'y - \hat{\beta}'X'y = \text{residual sum of squares}$

 $SS_R \equiv \hat{\beta}' X' y - n\bar{y}^2 = \text{sum of squares due to the regression model}$

Test of overall fit of model - analysis of variance

Multiple linear regression model:

$$y_{n\times 1}=X_{n\times (k+1)}eta_{(k+1)\times 1}+\epsilon_{n\times 1}$$
 where $E(\epsilon)=0$ and $Var(\epsilon)=\sigma^2I_n$

Assume $\epsilon \sim N(0, \sigma^2 I)$.

Note that $\beta' = (\beta_0, \beta_1, ..., \beta_k)$.

$$H_0: \beta_1 = \beta_2 = \dots = \beta_k = 0$$

 H_1 : At least one β_j 's is not equal to zero.

- 1. The total variation in y can be decomposed as $SS_T = SS_{Res} + SS_R$. For a given data set, SS_T is a constant. How large SS_R is with respect to SS_{Res} depends on how close the points are to the regression model.
- 2. If all the points fall exactly on the model $y = \beta_0 + \sum_{j=1}^{\kappa} \beta_j x_j + \epsilon$, SS_{Res} will be zero, and $SS_R = SS_T$. In other words, all the variation in y is contributed by the regression model. $SS_R = SS_T \mid \alpha \forall \beta \mid \text{ reject } H$.

 3. If all the points fall close to the regression model $y = \beta_0 + \sum_{j=1}^{\kappa} \beta_j x_j + \epsilon$,
- 3. If all the points fall close to the regression model $y = \beta_0 + \sum_{j=1}^{\infty} \beta_j x_j + \epsilon$, SS_{Res} will be small, and SS_R will be large, hence SS_R/SS_{Res} is large. In other words, most of the variation in y is contributed by the regression model.
- 4. If the points do not fall close to the model $y = \beta_0 + \sum_{j=1}^{\kappa} \beta_j x_j + \epsilon$, this means y does not depend on the regressor variables $x_1, x_2, ..., x_k$, consequently SS_{Res} will be large and SS_R will be small, hence SS_R/SS_{Res} is small.

distribution

5. It makes sense to use the ratio SS_R/SS_{Res} to test the hypotheses

$$H_0: \beta_1 = \beta_2 = \dots = \beta_k = 0$$

 H_1 : At least one β_j 's is not zero.

- 6. If H_0 is true, the ratio will be small. On the other hand, if H_0 is not true, the ratio will be large, so we reject H_0 if the ratio is large.
- 7. Instead of SS_R/SS_{Res} , we will use $F = \frac{SS_R/k}{SS_{Res}/(n-p)} = \frac{MS_R}{MS_{Res}}$ because according to linear model theory (can be learned in a graduate course on multiple linear regression analysis), F follows the F distribution with degrees of freedom k and n-p when H_0 is true. For a given level of significance level α , we reject H_0 if $F > F_{\alpha,k,n-k-1}$.

8. The decomposition of variance and test of $H_0: \beta_1 = \beta_2 = ... = \beta_k = 0$ can be summarized in the following table. This table is commonly known as an analysis of variance (ANOVA) table.

Analysis of variance table

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F
Regression	SS_R	k	MS_R	MS_R/MS_{Res}
Residual	SS_{Res}	n - (k + 1)	MS_{Res}	
Total	SS_T	n-1		

```
# Test of overall fit of model
62
    bxy <- t(betahat) %*% t(X) %*% y
63
64
    bxy
    SSR <- bxy - sum(y)^2/length(time)
65
66
    SSR
    SSRes \leftarrow t(y) %*% y - bxy
67
68 SSRes
    FO <- (SSR/2)/(SSRes/(length(time)-3))
69
70
    F0
    pvalue <- pf(F0, df1=2, df2=length(time)-3, lower.tail=FALSE)</pre>
    pvalue
72
                                                        H_0: \beta_1 = \beta_2 = 0
H_0 = \beta_0 = \beta_1 = \beta_2 = 0
73 # ANOVA table
74 anova(lm(time ~ case + dist))
75
    anova(lm(time~1),lm(time ~ case + dist))
                            y= B0+ B1x1 + B2 x2 + E
```

```
> # Test of overall fit of model
> bxy <- t(betahat) %*% t(X) %*% y</pre>
> bxy
         [,1]
[1,] 18076.9
> SSR <- bxy - sum(y)^2/length(time)</pre>
> SSR
          [,1]
[1,] 5550.811
> SSRes <- t(y) %*% y - bxy
> SSRes
          [,1]
[1,] 233.7317
> F0 <- (SSR/2)/(SSRes/(length(time)-3))</pre>
> F0
          [,1]
[1,] 261.2351
> pvalue <- pf(F0, df1=2, df2=length(time)-3, lower.tail=FALSE)</pre>
> pvalue
              [,1]
[1,] 4.687422e-16
```

```
> # ANOVA table
> anova(lm(time ~ case + dist))
Analysis of Variance Table
Response: time
     Df <u>Sum Sq</u> Mean Sq F value Pr(>F)
      1 5382.4 5382.4 506.619 < 2.2e-16 ***
case
dist 1 168.4 168.4 15.851 0.0006312 ***
Residuals 22 233.7 10.6
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> anova(lm(time~1),lm(time ~ case + dist))
Analysis of Variance Table
                          p-value is small, reject Ho
Model 1: time \sim 1
Model 2: time ~ case + dist
 Res.Df RSS Df Sum of Sq F Pr(>F)
     24 5784.5
2 22 233.7 2 5550.8 261.24 4.687e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

$$SS_{\rm T} = \mathbf{y}'\mathbf{y} - \frac{\left(\sum_{i=1}^{n} y_i\right)^2}{n} = 18,310.6290 - \frac{(559.60)^2}{25} = 5784.5426$$

$$SS_{R} = \hat{\boldsymbol{\beta}}' \mathbf{X}' \mathbf{y} - \frac{\left(\sum_{i=1}^{n} y_{i}\right)^{2}}{n} = 18,076.9030 - \frac{(559.60)^{2}}{25} = 5550.8166$$

$$SS_{Res} = SS_T - SS_R = \mathbf{y'y} - \hat{\boldsymbol{\beta}'}\mathbf{X'y} = 233.7260$$

$$H_0$$
: $\beta_1 = \beta_2 = 0$ $F_0 = \frac{MS_R}{MS_{Res}} = \frac{2775.4083}{10.6239} = 261.24$

Analysis of variance

Source Variation	Sum of Squares	Degrees of Freedom	Mean Square	F_0	P Value
Regression	5550.8166	2	2775.4083	261.24	4.7×10^{-16}
Residual	233.7260	22	10.6239		
Total	5784.5426	24			

Example - Cholesterol age data

```
53 # test overall fit of straight line model
 anova(lm(cholesterol~1), lm(cholesterol~age))
 55
 56 # test overall fit of quadratic model
     anova(lm(cholesterol~1), lm(cholesterol~age + I(age^2)))
 58
 53:1 (Top Level) $
Console Background Jobs X
R 3.4.1 · ⋈
> # test overall fit of straight line model
                                                     Ho: 13, = 0
> anova(lm(cholesterol~1), lm(cholesterol~age))
Analysis of Variance Table
Model 1: cholesterol ~ 1  p-value is small, reject Ho
Model 2: cholesterol ~ age
 Res.Df RSS Df Sum of Sq
      32 36.636
      31 5.899 1 30.737 161.52 7.856e-14 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> # test overall fit of quadratic model
> anova(lm(cholesterol~1), lm(cholesterol~age + I(age^2)))
Analysis of Variance Table
                               p-value is small, reject Ho
Model 1: cholesterol ~ 1
Model 2: cholesterol ~ age + I(age^2)
 Res.Df
           RSS Df Sum of Sq
      32 36.636
      30 3.514 2 33.122 141.38 5.356e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

\mathbb{R}^2 and adjusted \mathbb{R}^2 for assessing overall adequacy of a model

1. The R^2 and adjusted R^2 are two measures for assessing the overall adequacy of a model.

2.
$$R^2 = \frac{SS_R}{SS_T} = 1 - \frac{SS_{Res}}{SS_T}$$

Adjusted $R^2 = 1 - \frac{SS_{Res}/(n-p)}{SS_T/(n-1)} = 1 - \frac{MS_{Res}}{SS_T/(n-1)}$

- 3. In general, R^2 almost increases when a regressor variable is added to the model, regardless of the contribution of that variable. Therefore, it is difficult to judge whether an increase in R^2 is actually due to the contribution of the variable.
- 4. Note that $SS_T = SS_{Res} + SS_R$, and SS_T is a constant for a given data set no matter how many variables are there in the model. Adjusted R^2 will only increase if the addition of a regressor variable reduces MS_{Res} , therefore adjusted R^2 is more useful in assessing the contribution of an additional variable.

```
77 #R-square and adjusted R-square
  78 summary(lm(time ~ dist + case))
  79
  80 - 4
75:41 (Top Level) $
Console Background Jobs X
R 3.4.1 · ⋈
> #R-square and adjusted R-square
> summary(lm(time ~ dist + case))
Call:
lm(formula = time ~ dist + case)
Residuals:
            1Q Median 3Q
   Min
                                  Max
-5.7880 -0.6629 0.4364 1.1566 7.4197
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.341231 1.096730 2.135 0.044170 *
dist 0.014385 0.003613 3.981 0.000631 ***
case 1.615907 0.170735 9.464 3.25e-09 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 3.259 on 22 degrees of freedom
Multiple R-squared: 0.9596, Adjusted R-squared: 0.9559
F-statistic: 261.2 on 2 and 22 DF, p-value: 4.687e-16
```

Example - Cholesterol age data

```
59 # coefficient of multiple determination
 60 summary(lm(cholesterol~age))
 61
 62 # test overall fit of quadratic model
 63 summary(lm(cholesterol~age + I(age^2)))
 64
 74:1 (Top Level) $
Console Background Jobs ×
R 3.4.1 · ⋈
> # coefficient of multiple determination
> summary(lm(cholesterol~age))
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
age
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 0.4362 on 31 degrees of freedom
Multiple R-squared: 0.839, Adjusted R-squared: 0.8338
F-statistic: 161.5 on 1 and 31 DF, p-value: 7.856e-14
> # test overall fit of quadratic model
> summary(lm(cholesterol~age + I(age^2)))
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.6053871 0.3830121 -1.581
                                         0.124
age 0.1512522 0.0213221 7.094 6.89e-08 ***
I(age^2) -0.0011555 0.0002561 -4.512 9.20e-05 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 0.3423 on 30 degrees of freedom
Multiple R-squared: 0.9041, Adjusted R-squared: 0.8977
F-statistic: 141.4 on 2 and 30 DF, p-value: 5.356e-16
```

Tests and confidence intervals on individual regression coefficients

1. Linear model theory:

$$T = \frac{\beta_j - \beta_j}{\sqrt{\hat{\sigma}^2 C_{jj}}}$$
 follows the t distribution with $n-p$ degrees of freedom.

2. For testing $H_0: \beta_j = c$ versus $H_1: \beta_j \neq c$, we reject H_0 if

$$\frac{\hat{\beta}_j - c}{\sqrt{\hat{\sigma}^2 C_{jj}}} < -t_{\alpha/2, n-p} \quad \text{or} \quad \frac{\hat{\beta}_j - c}{\sqrt{\hat{\sigma}^2 C_{jj}}} > t_{\alpha/2, n-p}$$

3. A $100(1-\alpha)\%$ confidence interval for β_i is given as

$$\hat{\beta}_j - t_{\alpha/2, n-p} \sqrt{\hat{\sigma}^2 C_{jj}} \le \beta_j \le \hat{\beta}_j + t_{\alpha/2, n-p} \sqrt{\hat{\sigma}^2 C_{jj}}$$

4. For example, to perform tests and construct confidence intervals on individual regression coefficients, the following R codes can be used for the model $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \epsilon$,

summary(lm(
$$y \sim x1 + x2 + x3$$
))

confint
$$(lm(y\sim x1+x2+x3), level=0.95)$$

```
#Test individual coefficient X1=case X2=dist
80
81 XPX \leftarrow t(X) %*% X \chi'\chi
82 XPXI <- solve(XPX) (\chi'\chi)^{-1}
84 betahat <- solve(XPX, XPy) \hat{\beta} = (\chi'\chi)^{-1}\chi'\gamma
83 XPXI
    betahat
85
86 SSRes <- t(y) %*% y - bxy
87 SSRes
88 sigma2hat <- SSRes/(length(time)-3)
89 sigma2hat
90
    t2 <-betahat[2]/(sigma2hat*XPXI[2,2])^0.5
91 t2
92
    t3 <-betahat[3]/(sigma2hat*XPXI[3,3])^0.5
93
    †3
94
    summary(lm(time ~ case + dist))
    confint(lm(time ~ case + dist), level=0.95)
95
```

```
> #Test individual coefficient X1=case X2=dist
> XPX <- t(X) %*% X
> XPXI <- solve(XPX)
> XPXI
               [,1]
                             [,2]
                                            [,3]
[1,] 1.132152e-01 -4.448593e-03 -8.367257e-05
[2.] -4.448593e-03 2.743783e-03 -4.785709e-05
[3,] -8.367257e-05 -4.785709e-05 1.228745e-06
> betahat <- solve(XPX, XPy)</pre>
> betahat
           [,1]
[1,] 2.34123115
[2,] 1.61590721
[3,] 0.01438483
> SSRes <- t(y) %*% y - bxy
> SSRes
         [,1]
[1,] 233.7317
> sigma2hat <- SSRes/(length(time)-3)</pre>
> sigma2hat
         [,1]
Γ1. ] 10.62417
> t2 <-betahat[2]/(sigma2hat*XPXI[2,2])^0.5</pre>
> t2
         [,1]
[1,] 9.464421
> t3 <-betahat[3]/(sigma2hat*XPXI[3,3])^0.5</pre>
> t3
         [,1]
[1,] 3.981313
```

```
> summary(lm(time ~ case + dist))
Call:
lm(formula = time ~ case + dist)
Residuals:
   Min 1Q Median 3Q Max
-5.7880 -0.6629 0.4364 1.1566 7.4197
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.341231    1.096730    2.135    0.044170 *
case 1.615907 0.170735 9.464 3.25e-09 ***
dist 0.014385 0.003613 3.981 0.000631 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.259 on 22 degrees of freedom
Multiple R-squared: 0.9596, Adjusted R-squared: 0.9559
F-statistic: 261.2 on 2 and 22 DF, p-value: 4.687e-16
> confint(lm(time ~ case + dist), level=0.95)
                2.5 % 97.5 %
(Intercept) 0.066751987 4.61571030
case 1.261824662 1.96998976
dist 0.006891745 0.02187791
```

The End