- 1. (original) A monocyclopentadienyl complex in which the cyclopentadienyl system bears at least one uncharged donor bound via a boron-containing bridge and comprising one or more atoms of group 15 and/or 16 of the Periodic Table of the Elements and is bound to a metal selected from the group consisting of titanium in the oxidation state 3, vanadium, chromium, molybdenum and tungsten.
- 2. (original) A monocyclopentadienyl complex as claimed in claim 1 which comprises the following structural feature of the formula (Cp)(-Z-A)_mM(I), where the variables have the following meanings:
 - Cp is a cyclopentadienyl system,
 - Z is a divalent bridge between A and Cp selected from the group consisting of

where

L^{1B} are each, independently of one another, carbon or silicon,

R^{1B}-R^{6B}

are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{7B}_{3} , where the organic radicals R^{1B} - R^{6B} may also be substituted by halogens and two geminal or vicinal radicals R^{1B} - R^{6B} may also be joined to form a five- or six-membered ring and

 R^{7B}

are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl or alkylaryl having from 1 to 10 carbon atoms in the alkyl radical and 6-20 carbon atoms in the aryl radical and two radicals R^{7B} may also be joined to form a five- or six-membered ring,

u is 1, 2 or 3,

Α

is an uncharged donor group containing one or more atoms of group 15 and/or 16 of the Periodic Table of the Elements,

Μ

is a metal selected from the group consisting of titanium in the oxidation state 3, vanadium, chromium, molybdenum and tungsten and

m is 1, 2 or 3.

3. (currently amended) A monocyclopentadienyl complex as claimed in claim 1 or 2 of the formula (Cp)(–Z-A)_mMX_k (V), where the variables have the following meanings:

Cp is a cyclopentadienyl system,

Z is a divalent bridge between A and Cp selected from the group consisting of

where

 L^{1B}

 $R^{1B}-R^{6B}$

are each, independently of one another, carbon or silicon, are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{7B}_3 , where the organic radicals R^{1B} - R^{6B} may also be substituted by halogens and two geminal or vicinal radicals R^{1B} - R^{6B} may also be

joined to form a five- or six-membered ring and R^{7B} are each, independently of one another, hydrogen, C₁-C₂₀-alkyl, C₂- C_{20} -alkenyl, C_6 - C_{20} -aryl or alkylaryl having from 1 to 10 carbon atoms in the alkyl radical and 6-20 carbon atoms in the aryl radical and two radicals R7B may also be joined to form a five- or six-

membered ring,

is 1, 2 or 3,

Α is an uncharged donor group containing one or more atoms of group 15 and/or 16 of the Periodic Table of the Elements.

> is a metal selected from the group consisting of titanium in the oxidation state 3, vanadium, chromium, molybdenum and tungsten, is 1, 2 or 3,

> are each, independently of one another, fluorine, chlorine, bromine,

iodine, hydrogen, C₁-C₁₀-alkyl, C₂-C₁₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having 1-10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, NR¹R², OR¹, SR¹, SO₃R¹, OC(O)R¹, CN, SCN, βdiketonate, CO, BF₄, PF₆ or a bulky noncoordinating anion,

are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 -C₂₀-alkenyl, C₆-C₂₀-aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, SiR³, where the organic radicals R1-R2 may also be substituted by

u

М

Χ

m

R¹-R²

halogens and two radicals R¹-R² may also be joined to form a fiveor six-membered ring,

R³ are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two radicals R³ may also be joined to form a five- or six-membered ring and

k is 1, 2, or 3.

4. (currently amended) A monocyclopentadienyl complex as claimed in claim 2 or 3, wherein the cyclopentadienyl system Cp has the formula (II):

$$R^{1A} = E^{1A} = E^{1A} = E^{1A}$$

$$R^{5A} = E^{5A} = E^{5A} = E^{3A} = E^{3A}$$

$$R^{4A} = E^{4A} = E^{3A} = E^{3A}$$

$$R^{4A} = E^{4A} = E^{3A} = E^{3A}$$

$$R^{4A} = E^{4A} = E$$

where the variables have the following meanings:

 E^{1A} - E^{5A} are each carbon or at most one E^{1A} - E^{5A} is phosphorus, R^{1A} - R^{5A} are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, NR^{6A}_{2} ,

N(SiR^{6A}₃)₂, OR^{6A}, OSiR^{6A}, OSiR^{6A}₃, SiR^{6A}₃, BR^{6A}₂, where the organic radicals R^{1A}-R^{5A} may also be substituted by halogens and two vicinal radicals R^{1A}-R^{5A} may also be joined to form a five- or six-membered ring, and/or two vicinal radicals R^{1A}-R^{5A} are joined to form a heterocycle which contains at least one atom from the group consisting of N, P, O and S, with 1, 2 or 3 substituents, preferably 1 substituent, R^{1A}-R^{5A} being a group -Z-A, and

 R^{6A}

are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two geminal radicals R^{6A} may also be joined to form a five- or six-membered ring.

5. (currently amended) A monocyclopentadienyl complex as claimed in any of claims 2 to 4 claim 2, wherein the cyclopentadienyl system Cp together with –Z-A has the formula (IV):

$$A \xrightarrow{E^{1A}} E^{2A}$$

$$A \xrightarrow{E^{1A}} E^{3A}$$

$$R^{4A}$$

where the variables have the following meanings:

E ^{1A} -E ^{5A}	are each carbon or at most one E ^{1A} to E ^{5A} is phosphorus
FF.,,	are each carbon or at most one E" to E" is phosphoru

R^{1A}-R^{4A} are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part, NR^{6A}_2 , $N(SiR^{6A}_3)_2$, OR^{6A} , $OSiR^{6A}_3$, SiR^{6A}_3 , BR^{6A}_2 , where the organic radicals R^{1A} - R^{4A} may also be substituted by halogens and two vicinal radicals R^{1A} - R^{4A} may also be joined to form a five- or six-membered ring, and/or two vicinal radicals R^{1A} - R^{4A} are joined to form a heterocycle which contains at least one atom from the group consisting of N, P, O and S,

 R^{6A} are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two geminal radicals R^{6A} may also be joined to form a five- or sixmembered ring,

A is a donor group containing one or more atoms of group 15 and/or 16 of the Periodic Table of the Elements,

Z is a divalent bridge between A and Cp selected from the group consisting of

where

 L^{1B}

are each, independently of one another, carbon or silicon,

R^{1B}-R^{6B}

are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part of $SiR^{7B}_{\ 3}$, where the organic radicals R^{1B} - R^{6B} may also be substituted by halogens and two geminal or vicinal radicals R^{1B} - R^{6B} may also be joined to form a five- or six-membered ring and

 R^{7B}

are each, independently of one anther, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl or alkylaryl having from 1 to 10 carbon atoms in the alkyl radical and 6-20 carbon atoms in the aryl radical and two radicals R^{7B} may also be joined to form a five- or six-membered ring and

u is 1, 2 or 3.

6. (currently amended) A monocyclopentadienyl complex as claimed in any of

claims 2 to 5 claim 2, wherein A is an unsubstituted, substituted or fused, heteroaromatic ring system.

7. (currently amended) A monocyclopentadienyl complex as claimed in any of claims 2 to 6 claim 2, wherein A has the formula (III):

$$\begin{array}{c|c}
R_{p}^{2c} \\
R_{p}^{1c} \\
E \\
N \\
\end{array}$$

$$\begin{array}{c|c}
R_{p}^{2c} \\
E^{3c} \\
E^{3c} \\
R_{p}^{3c}
\end{array}$$
(III)

where the variables have the following meanings:

E^{1C}-E^{4C} are each carbon or nitrogen,

 R^{1C} - R^{4C} are each, independently of one another, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or $SiR^{5C}3$, where the organic radicals R^{1C} - R^{4C} may also be substituted by halogens or nitrogen and further C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl, alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part or SiR^{5C}_3 groups and two vicinal radicals R^{1C} - R^{4C} or R^{1C} and Z may also be joined to form a five- or six membered ring.

 R^{5c} are each, independently of one anther, hydrogen, C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_6 - C_{20} -aryl or alkylaryl having from 1 to 10 carbon atoms in the alkyl part and 6-20 carbon atoms in the aryl part and two radicals R^{5c} may also be joined to form a five- or six membered ring and

- p is 0 when E^{1C} - E^{4C} is nitrogen and 1 when E^{1C} - E^{4C} is carbon.
- 8. (currently amended) A monocyclopentadienyl complex as claimed in any of claims 1 to 7 claim 1, wherein Z is selected from the group consisting of BR^{1B}, BNR^{3B}R^{4B}, C(R^{5B}R^{6B})-BR^{1B} and C(R^{5B}R^{6B})-BNR^{3B}R^{4B}.
- (currently amended) A monocyclopentadienyl complex as claimed in any of claims 1 to 8 claim 1, wherein M is chromium.
- 10. (currently amended) A catalyst system for olefin polymerization comprising
 - A) at least one monocyclopentadienyl complex as claimed in any of claims 1 to 9 claim 1,
 - B) optionally, an organic or inorganic support,
 - C) optionally, one or more activating compound,
 - D) optionally, one or more catalysts suitable for olefin polymerization and
 - e) optionally, one or more metal compounds containing a metal of group 1, 2
 or 13 of the Periodic Table.
- 11. (original) A prepolymerized catalyst system comprising a catalyst system as claimed in claim 10 and one or more linear C₂-C₁₀-1-alkenes polymerized onto it

in a mass ratio of from 1:0.1 to 1:1 000 based on the catalyst system.

- 12. (canceled)
- 13. (currently amended) A process for preparing polyolefins by polymerization or copolymerization of olefins in the presence of a catalyst system as claimed in claim 10 or 11.