Divisibility and Euclidean Algorithm

Let a and b be integers such that $b \neq 0$. The a is divisible by b, denoted $b \mid a$, if and only if there exists integer k such that a = bk. In this case, b divides a.

Example 4.0.6. The integer 24 is divisible by 4 since 24 can be written as 4(6).

Example 4.0.7. Let $a \in \mathbb{Z}$ such that $a \neq 0$. Then $a^2 \mid a^5$ since $a^5 = a^2(a^3)$.

Theorem 4.0.8. Let $a, b \in \mathbb{Z}$ with $a \neq 0$. If $a \mid b$, then $a \mid (-b)$ and $(-a) \mid b$.

Proof. Suppose that $a \mid b$. By definition, there is an integer k such than b = ak. Hence b = a(-1)(-k). Dividing by side by -1 gives -b = a(-k). Therefore $a \mid -b$.

Now suppose $a \mid b$. Then for some integer k it is the case that b = ak. Hence b = (-a)(-k). Therefore $b \mid -a$.

Theorem 4.0.9. For every integer n, $3|(n^3 - n)$.

First note that $n^3 - n = n(n^2 - 1) = n(n-1)(n+1)$. Since n-1, n, and n+1 are consecutive integers 3 must divide one of them.

Proof. By the Division Algorithm, n = 3q + r where $0 \le r < 3$. Hence $r \in \{0, 1, 2\}$. If r = 0 then we are done. If r = 1 then n - 1 = 3q. This shows that $3 \mid n - 1$. Similarly if r = 2, then n + 1 = 3q which shows that $3 \mid n + 1$.

Problem 4.0.10. Suppose a, b, and c are integers such that $c \mid a$ and $c \mid b$. Show that $c \mid (ax + yb)$ for any integers x and y.