Chapter 21: TCP Timeout and Retransmission

Network & System Lab, NSYSU

- 1

Introduction

- ☐ Two examples of timeout and retransmission had already seen:
 - ❖ 1. In the ICMP port unreachable (TFTP, Section 6.5)
 - 2. In the ARP example to a nonexistent host (Section 4.5)
- □ TCP manage four different timers for each connection:
 - 1. A retransmission timer (this chapter)
 - 2. A persist timer (Chapter 22)
 - 3. A keepalive timer (Chapter 23)
 - 4. A 2MSL timer (Section 18.6)
- **□** Simple Timeout and Retransmission Example:
 - ❖ Line 4 is the transmission of "hello,world" and line 5 is its ACK.
 - ❖ Line 6 shows "and hi". Line 7-18 are 12 retransmissions
 - Line 19 is the TCP finally gives up and sends a reset

Simple Timeout and Retransmission Example

Department Contract Section and Department AND SERVICE AND SERVICE CONTRACTS

Network & System Lab, NSYSU

3

Round-Trip Time (RTO) Measurement

- □ Two methods of RTO calculate:
 - The original TCP specification method

- ✓ R=>smoothed RTT estimator, is smoothing factor = 0.9
 - is delay variance factor = 2
- The Jacobson method

- ✓ A is the smoothed RTT average,D is mean deviation
- ✓ The gain g is 1/8(0.125),h is 0.25

Round-Trip Time Measurement (Cont.)

□ Karn's Algorithm:

- A packet is transmitted, a timeout occurs, the packet is retransmitted with the longer RTO, and an acknowledgment is received
- ❖ Is the ACK for the first transmission or the second?
- This is called the retransmission ambiguity problem
- Karn and Partridge: don't count retransmitted packets into the RTT estimator.

□ An RTT Example:

- sent 32768 bytes of data from slip to vangogh.cs.berkeley.edu
 slip% sock -D -i -n32 vangogh.cs.berkeley.edu. discard
- ❖ slip is connected to the 140.252.1 Ethernet by two SLIP links
- ❖ MTU between slip and bsdi is 296
- ❖ 32 1024-byte => 128 segment with 256 bytes of user data

Network & System Lab, NSYSU

,

An RTT Example

Department Graphs Johns and Department BASTORIAL BUR EAST-BOX UNIVERSITY

6

An RTT Example

□ Round-Trip Time Measurements:

- One connection, one timer
- ❖ RTT#1 is 1.061 seconds => 3 clock ticks
- ❖ RTT#2 is 0.808 seconds => 1 clock tick
- ❖ RTT#3 is 1.015 seconds => 2 clock ticks
- Segment 4,7,9 cannot be timed, since the timer is already being used by segment 3 and 6

Dipotent of Grando Jeans and Department MATIONAL BUN ENT-BEN UNIVERSITY

Network & System Lab, NSYSU

7

An RTT Example

❖ In this complete example 18 RTT samples were collected

Department of Graphics of Security Security Americans and Employees and Employees and Construction of Construc

An RTT Example

□ RTT Estimator Calculations:

- ❖ The initial RTO=A+2D => 0 + 2x3 = 6 seconds
- ❖ After 5.802 seconds RTO=A+4D => 0 + 4x3 = 12 seconds
- The ACK arrives 467 ms after the retransmission. The A and D are not updated because of retransmission ambiguity
- The ACK on line 4 is not timed since it is only an ACK

Network & System Lab, NSYSU

9

An RTT Example

□ RTO caculations

- first segment arrives => RTO=6 seconds
- ❖ second segment arrives => RTO=6.3125 seconds
- Fixed-point calculations that are actually used =>RTO is 6 seconds (not 6.3125)

□ Slow Start

See the slow start algorithm in Section 20.6

□ Congetion Example:

- Normally the data points should move up and to the right, with the slope of the points being the transfer rate.
- * Retransmissions will appear as motion down and to the right.

Congetion Example

Network & System Lab, NSYSU

Congetion Example

Discount of Course of Course of Courses, April 2011

12

Congetion Example

☐ The Jacobson's fast retransmit algorithm:

- It is followed by his fast recovery algorithm. The third of the duplicate ACKs was received that forces to retransmit
- Berkeley-derived implementation when the third one is received, assume that a segment has been lost and retransmit only one segment
- ☐ When the missing data arrives (segment 63):
 - The receiving TCP now has data bytes 6657-8960 in its buffer, and passes these 2304 bytes to the user process.
 - All 2304 bytes are acknowledged in segment 72

Network & System Lab, NSYSU

Congestion Avoidance Algorithm

■ What's congestion avoidance?

- It is a way to deal with lost packets
- ❖ Assumption: packet loss caused by damage is very small (< 1%)</p>
- The loss of a packet signals congestion somewhere in the path between the source and the destination.
- ☐ Two indications of packet loss:

- A timeout occurring
- The receipt of duplicate ACKs
- □ Congestion avoidance and slow start are independent algorithms with different objectives.
- □ Two variables be maintained for each connection: cwnd and ssthresh ____

14

Congestion Avoidance Algorithm (Cont.)

- □ Congestion avoidance algorithm operates:
 - ❖ 1.Initialization=>cwnd is one segment, ssthresh is 65535 bytes
 - 2.TCP output never sends more than the minimum of cwnd and the receiver's advertised window
 - ❖ 3.When congestion occurs, one-half of the current window size is saved in ssthresh. If timeout, cwnd is set to one segment
 - ❖ 4.When new data is acknowledged by the other end, increase *cwnd*
- ☐ If *cwnd* is less than or equal to *ssthresh*, doing slow start. Otherwise, we're doing congestion avoidance.
- F
- Congestion avoidance dictates that cwnd be increased by 1/cwnd, plus a small fraction of segment size, each time an ACK is received: an additive increase.
- □ Increase cwnd by at most one segment each round-trip time (regardless how many ACKs are received in that RTT)

Network & System Lab, NSYSU

15

Congestion Avoidance Algorithm

Dispersion of Contract Science and Contracting AMPLICATE BUT DAY-BUT DRAWBARTT

Fast Retransmit and Fast Recovery Algorithms

- □ TCP is required to generate an immediate ACK when an out-oforder segment is received.
- □ Duplicate ACK: a segment is received out of order.
 - Two possible situations:
 - Packet loss if two or more duplicate ACKs are received a strong indication of segment loss.
 - > First out last in
- ☐ The receipt of the duplicate ACKs tells us more than just a packet has been lost:

- ❖ A segment leaves the network into receiver's buffer.
- ❖ There still is data flowing between the two ends DON'T reduce the flow abruptly by going into slow start.

Network & System Lab, NSYSU

4-

Fast Retransmit and Fast Recovery Algorithms (Cont.)

- ☐ Fast retransmit algorithm:
 - If three or more duplicate ACKs are received in a row, indicate a segment has been lost, then retransmission the missing segment
- ☐ Fast recovery algorithm:
 - Next, congestion avoidance, but not slow start is performed
- □ Congestion Example
 - In congestion avoidance:
 - 考 > cwnd cwnd + (segsize x segsize) / cwmd + segsize / 8
 - By fast retransmit and fast recovery, we can send a new data segment when cwnd > unacknowledged bytes
 - cwnd is allowed to keep increasing while the duplicate ACKs are received, since each duplicate ACK means the a segment has left the network.

Congestion Example (Continued)

Superior	4440			TypePer	
Figure 3.11	Rental	Saver	Enum	.000	adhe
			Make	79	983
	100		Sterior .	- 29	. 90
	401	SSCACE			
1	252000	KEE	derest	#	100
1	39400000	40,00	distant.	766	8
	MONTH COM	A330	100,000	011	8
1	10110700	AXID	100,000	m	100
-	Madama	ACK (NO	100,000	-	1

Squeet (Squeet)	3/04			Trebelle	
	Sed	Bireto	Comment	TUNE	diffe
- 10		ALE MIT	ACE of new date.	145e	341
39.	870x89612566				
- 60		ACK WIT	durines ACE (1)	3431	241
40		ACK NOT	Auplican ACK 61	3434	766
12		ACKAGE	sharkone ACE 81	2702	3004
40	NUTRITION.		Historian .		
16		ACCREC	Applicate ACE No.	Told	1034
10		ACK 665*	(Replant ACK)(8)	2304	1004
46-		ACE NOT	Audiow 400m	294	1034
40	\$91.037(20)		17.00		
46		ACK NOT	Statement (CCO)	204	loss
800	REPRESENT				
- 10		ACK MT	risplace activiti	365	1 icas
- 11	HET HYDROXICS IN				
. 22		BOX 893	ACE of see Asia	226	1988

Piper H.H. Danyle of corgotton in obligate spettered

Network & System Lab, NSYSU

. .

Congestion Example (Continued)

Department of Greeke Section and Department MATERIAL BUT EAT-BEST UNIVERSITY

ICMP Errors

☐ Berkeley-based implementations handle ICMP errors as follows:

- A received source quench causes the cwnd set to one segment to initiate slow start, but the ssthresh is not changed
- A received host unreachable or network unreachable is effectively ignored, since these two errors are considered transient.

□ An Example

- > slip% sock aix echo
- test line
- > test line
- another line
- >

SLIP link is brought down here type this line and retransmissions SLIP link is reestablished here after the last line,SLIP link is brought

TCP finally gives up

Network & System Lab, NSYSU

read error: No route to host

21

ICMP Errors

Department Greens Johns and Department MATICALA BUT EAT-BOX UNIVERSITY

Repacketization

- When TCP times out and retransmits, it does not have to retransmit the identical segment again. Instead, TCP is allowed to perform repacketization, sending a bigger segment, which can increase performance.
- notice on bytes of line 3 and 6 in following illustration

```
2 d.0 | beds. 2003 - eved. diseased: F 1-0.1023 and 3 | b. 140400 + b. 14021 | eved. diseased: F beds. 1003 | eved. diseased: F 1-0.1023 and 3 | Cheer of classes of the control of the co
```


Network & System Lab, NSYSU

00

Summary

- □ TCP calculates a smoothed RTT estimator and a smoothed mean deviation estimator. Then use these two estimators to calculate the next retransmission timeout value.
- We see many of TCP's algorithm in action:
 - slow start
 - congestion avoidance
 - fast retransmit
 - fast recovery
- ☐ Effect which various ICMP errors have on a TCP connection
- □ How TCP is allowed to repacketize its data

