

Inteligência Artificial

Trabalho Prático

Autores

Dércio Simione Domingos, № 20220103 Joel Dialamicua, № 20221985

Introdução

Este relatório apresenta os resultados obtidos no trabalho experimental de implementação de uma rede neural para classificação de estudantes em relação à depressão. O objetivo principal foi avaliar o impacto de diferentes configurações da rede, tamanhos dos conjuntos de treino e teste, e número de épocas no desempenho da rede. Foram testadas três redes com diferentes números de unidades na camada escondida (4, 7 e 11) e diferentes números de épocas (5, 50 e 100). Além disso, foram utilizados dois conjuntos de dados: um com 280 exemplos para treino e 128 para teste, e outro com 384 exemplos para treino e 128 para teste.

Trabalho Experimental

Camada Escondida	Épocas	Conjunto de Treino	Conjunto de Teste	Exatidão Treino (%)	Exatidão Teste (%)
4	5	280	128	78.57	77.34
4	50	280	128	93.21	92.19
4	100	280	128	96.79	94.53
7	5	280	128	82.50	79.69
7	50	280	128	95.36	88.28
7	100	280	128	97.86	90.62
11	5	280	128	83.57	77.34
11	50	280	128	91.07	91.41
11	100	280	128	96.43	91.41
4	5	379	123	89.97	89.43
4	50	379	123	93.40	93.50
4	100	379	123	97.36	92.68
7	5	379	123	88.13	91.06
7	50	379	123	95.78	92.68
7	100	379	123	98.42	88.62
11	5	379	123	89.45	90.24
11	50	379	123	94.72	92.68
11	100	379	123	99.21	93.50

Gráficos de Exatidão

Foram gerados gráficos de exatidão ao longo das épocas para cada configuração da rede.

Abaixo estão os gráficos para a rede com 4 unidades na camada escondida.

A imagem mostra gráficos da evolução da exatidão de uma rede neural ao longo de 5 épocas, com 280 exemplos no treino e 128 no teste

A imagem mostra gráficos da evolução da exatidão de uma rede neural ao longo de 50 épocas, com 280 exemplos no treino e 128 no teste

A imagem mostra gráficos da evolução da exatidão de uma rede neural ao longo de 100 épocas, com 280 exemplos no treino e 128 no teste

Abaixo estão os gráficos para a rede com 7 unidades na camada escondida.

A imagem mostra gráficos da evolução da exatidão de uma rede neural ao longo de 5 épocas, com 280 exemplos no treino e 128 no teste

A imagem mostra gráficos da evolução da exatidão de uma rede neural ao longo de 50 épocas, com 280 exemplos no treino e 128 no teste

A imagem mostra gráficos da evolução da exatidão de uma rede neural ao longo de 100 épocas, com 280 exemplos no treino e 128 no teste

Abaixo estão os gráficos para a rede com 11 unidades na camada escondida.

A imagem mostra gráficos da evolução da exatidão de uma rede neural ao longo de 5 épocas, com 280 exemplos no treino e 128 no teste

A imagem mostra gráficos da evolução da exatidão de uma rede neural ao longo de 50 épocas, com 280 exemplos no treino e 128 no teste

A imagem mostra gráficos da evolução da exatidão de uma rede neural ao longo de 100 épocas, com 280 exemplos no treino e 128 no teste

Abaixo estão os gráficos para a rede com 4 unidades na camada escondida.

A imagem mostra gráficos da evolução da exatidão de uma rede neural ao longo de 5 épocas, com 379 exemplos no treino e 123 no teste

A imagem mostra gráficos da evolução da exatidão de uma rede neural ao longo de 50 épocas, com 379 exemplos no treino e 123 no teste

A imagem mostra gráficos da evolução da exatidão de uma rede neural ao longo de 100 épocas, com 379 exemplos no treino e 123 no teste

Abaixo estão os gráficos para a rede com 7 unidades na camada escondida.

A imagem mostra gráficos da evolução da exatidão de uma rede neural ao longo de 5 épocas, com 379 exemplos no treino e 123 no teste

A imagem mostra gráficos da evolução da exatidão de uma rede neural ao longo de 50 épocas, com 379 exemplos no treino e 123 no teste

A imagem mostra gráficos da evolução da exatidão de uma rede neural ao longo de 100 épocas, com 379 exemplos no treino e 123 no teste

Abaixo estão os gráficos para a rede com 11 unidades na camada escondida.

A imagem mostra gráficos da evolução da exatidão de uma rede neural ao longo de 5 épocas, com 379 exemplos no treino e 123 no teste

A imagem mostra gráficos da evolução da exatidão de uma rede neural ao longo de 50 épocas, com 379 exemplos no treino e 123 no teste

A imagem mostra gráficos da evolução da exatidão de uma rede neural ao longo de 100 épocas, com 379 exemplos no treino e 123 no teste

Discussão de Resultados

As épocas de treino tiveram um impacto significativo na precisão da rede. À medida que o número de épocas aumentou de 5 para 50 e depois para 100, verificou-se uma melhoria notável na exatidão, tanto no conjunto de treino como no de teste. Por exemplo, para uma rede com 4 neurónios na camada escondida e 280 exemplos no conjunto de treino, a exatidão no teste foi de 77.34% com 5 épocas e aumentou para 94.53% com 100 épocas.

O número de camada escondida também influenciou o desempenho. Redes com mais camadas (11) apresentaram melhores resultados em comparação com redes menores (4 ou 7 camadas). No entanto, é importante notar que redes maiores podem apresentar risco de overfitting, especialmente quando o conjunto de treino é pequeno. Por exemplo, com 11 camadas e 100 épocas, a exatidão do teste alcançou 93.50%.

A dimensão dos conjuntos de dados também foi determinante. Redes treinadas com mais exemplos (379 no treino) apresentaram maior precisão geral. Por exemplo, para uma rede com 4 camadas escondidas e 100 épocas, a exatidão no teste foi de 92.68% com 379 exemplos no treino, enquanto foi de 94.53% com 280 exemplos.

A normalização dos dados teve um papel importante, melhorando a uniformidade dos valores dos atributos e facilitando o processo de aprendizagem da rede.

Com base nos resultados obtidos, a melhor configuração identificada foi a seguinte: uma rede com 11 camadas escondida, 100 épocas de treino, e um conjunto de dados de 379 exemplos para treino e 123 para teste. Esta configuração alcançou uma exatidão no teste de 93.50%.

Conclusão

Concluímos que as redes neuronais multicamadas foram eficazes para identificar estados de depressão em estudantes, com base nos atributos analisados. O desempenho da rede dependeu principalmente do número de épocas de treino, da quantidade de camadas escondidas e do tamanho do conjunto de dados.

De forma simples, mais exemplos de treino e mais épocas levaram a melhores resultados, mas foi preciso cuidado para evitar overfitting, especialmente com redes maiores. A normalização dos dados também ajudou a melhorar a precisão, tornando o treino mais eficiente.

A melhor configuração alcançada utilizou 11 neurónios, 100 épocas de treino e conjuntos de dados maiores, atingindo uma exatidão de 93.50%. Estes resultados mostram o potencial da Inteligência Artificial para ajudar na identificação de problemas de saúde mental, reforçando a importância de ajustar os parâmetros do modelo e a qualidade dos dados para obter os melhores resultados.