Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа программной инженерии

Отчет по лабораторной работе

Вариант 6. Разложение дискретизированного сигнала в действительный и комплексный ряд Фурье

Выполнил студент гр. в3530904/00321 <подпись> В.Я. Копылов Руководитель <подпись> В.С. Тутыгин

Оглавление

Цель работы	3
Программа работы	4
Результат работы	6
Выводы	13
Приложение. Тексты программ	14

Цель работы

Требуется исследовать зависимость точности представления функции f(x) с помощью ограниченного ряда Фурье от количества членов ряда K, количества точек дискретизации N и вида функции.

Заданная функция по варианту:

6.
$$f(x)=abs(sin(x))$$
;

Рисунок 1. Функция, заданная вариантом

Программа работы

Определить зависимости погрешность восстановления значений:

- гармонической функции с целым количеством периодов;
- гармонической функции с нецелым количеством периодов;
- заданной функции.

от количества членов ряда Фурье и количества отсчётов.

Интересующий диапазон допустимых погрешностей (СКО) - не более 10%.

Последовательность действий:

- 1. Задать большое количество отсчётов N 1024;
- 2. Увеличивать количество членов K ряда Фурье (KP<K<N/4) и фиксировать погрешности восстановления. Построить график зависимости δ =f(K)
- 3. Выбрать оптимальное количество членов К ряда Фурье и количество отсчётов N при допустимой погрешности 1%.

Крайние значения восстановленной функции при расчёте погрешности исключить.

Также проанализировать зависимость погрешности для комплексного разложения ряда Фурье.

Результаты работы

Для заданной по варианту функции, было выбрано количество точек x = 1024, интервалом от $[-\pi:\pi]$, количество периодов kp = 1. Количество членов ряда Фурье было задано такими значениями: 8, 16, 32, 64, 128, 256.

Для каждого различного числа членов ряда Фурье был построен график оригинальной функции и восстановленной, а также график амплитуд.

Рисунок 2 - Графики исходной и восстановленной функции, а также спектр амплитуд сигнала для количества членов ряда равного 8

Рисунок 3 - Графики исходной и восстановленной функции, а также спектр амплитуд сигнала для количества членов ряда равного 16

Рисунок 4 - Графики исходной и восстановленной функции, а также спектр амплитуд сигнала для количества членов ряда равного 32

Рисунок 5 - Графики исходной и восстановленной функции, а также спектр амплитуд сигнала для количества членов ряда равного 64

Рисунок 6 - Графики исходной и восстановленной функции, а также спектр амплитуд сигнала для количества членов ряда равного 128.

Рисунок 7 - Графики исходной и восстановленной функции, а также спектр амплитуд сигнала для количества членов ряда равного 256.

Также была высчитана зависимость погрешности функции от количества членов ряда для заданных параметров.

Рисунок 8 - График зависимости для целого числа интервалов.

На данном графике видно, что для заданной функции |sin(x)|, с количестве точек 1024, интервалом от $[-\pi:\pi]$, количество периодов kp=1:

- 1. Для количество членов ряда Фурье = 8, погрешность достигает 130%
- 2. Погрешность в 1% достигается при количестве членов ряда Фурье в 256 (далее при данном количестве точек нецелесообразно повышать количество членов ряда, т.к. условие K < N / 4 не будет выполняться)

Также по заданию было необходимо исследовать функции с нецелым количеством периодов, для этого была выбрана та же самая функция с параметрами: количество точек 1024, интервал от $[-\pi:\pi]$, количество периодов kp = 1.5.

Рисунок 9 - График зависимости для целого числа интервалов.

При таких параметров становится видно, что процент погрешности ухудшается с увеличением количество членов ряда Фурье от 32. А на 32 членах ряда Фурье достигается наименьший процент погрешности, равный 82%.

Такое поведение можно объяснить низким числом периодов, при увеличении такого число, данный график зависимости становится похож, как и для целого числа периодов.

Также необходимо было разложить данную функцию **в** комплексный ряд Фурье. т.е. та же самая функция с параметрами: количество точек 1024, интервал от $[0:2\pi]$, количество периодов kp=1. Количество членов ряда Фурье было задано такими значениями: 8, 16, 32, 64, 128, 256.

Из соображений экономии места, результаты приводятся для количество членов равного 16 и 128.

Рисунок 10 - Графики исходной и восстановленной функции, а также спектр амплитуд сигнала для количества членов ряда равного 16.

Рисунок 10 - Графики исходной и восстановленной функции, а также спектр амплитуд сигнала для количества членов ряда равного 128.

Также был построен график зависимости погрешности от количества членов комплексного ряда Фурье.

Выводы

После проделанной работы удалось исследовать зависимость точности представления функции от количества членов ряда Фурье и количества точек дискретизации - обратно пропорциональная зависимость. Чем больше членов Фурье, тем более низкий процент погрешности.

Но необходимо соблюдать условие K < N / 4, где:

- 1. К количество членов ряда фурье
- 2. N количество точек дискретизации

Приложение. Тексты программ

```
Программа для действительного ряда Фурье.
clear, clc, close all;
dots num = 1024; % кол-во точек
N = 0:1:dots num; % интервал точек
T = pi; % диапазон изменения функции f(i) равен +/-T
kp = 10; % количество периодов гармонической функции
fourie parts arr = [8, 16, 32, 64, 128, 256]; % разные количества членов ряда
Фурье
STD percent arr = []; % массив для создания графика
SKO percent=f(fourie parts)
for fourie parts = fourie parts arr % fourie parts - текущие количество
членов ряда Фурье
  idx = zeros(1, length(N));
  f = zeros(1, length(N)); % исходная функция
  % ---- Вычисление ряда фурье ----
  for i=1:dots num + 1
    idx(i) = 2 * T * (i-1 - dots num/2) / dots num;
    f(i) = abs(sin(kp * idx(i)));
  end
  Sa0 = sum(f) / dots num;
  Sa = zeros(1, fourie parts);
  Sb = zeros(1, fourie parts);
  for i=1:dots num + 1
     for j=1:fourie parts
       Sa(j) = Sa(j) + f(i) * cos(j * idx(i));
       Sb(j) = Sb(j) + f(i) * sin(j * idx(i));
    end
  end
  % ---- нормализация ряда Фурье ----
  for i=1:fourie parts
     Sa(i) = Sa(i) / (dots num / 2);
    Sb(i) = Sb(i) / (dots num / 2);
```

end

```
% ---- Вычисление графика дискретного сигнала ----
f disc = zeros(1, length(N));
for i=1:dots num + 1
   for j=1:fourie parts
     f \operatorname{disc}(i) = f \operatorname{disc}(i) + \dots
        Sa(i) * cos(i * idx(i)) +...
        Sb(i) * sin(i * idx(i));
  end
  f \operatorname{disc}(i) = f \operatorname{disc}(i) + \operatorname{Sa0};
end
% ---- Вычисление спектра амплитуд ----
Sab = zeros(1, fourie parts);
for j=1:fourie parts
  Sab(j) = sqrt(Sa(j)^2 + Sb(j)^2);
end
% ---- Вычисление погрешности ----
df = zeros(1, dots num); % Абсолютная погрешность
for i=2:dots num-1
 df(i) = f(i) - f disc(i);
end
STD = std(df / (max(f) - min(f)) * 100); % STD в процентном отношении
STD percent arr(end+1) = STD;
disp(fourie parts);
disp(STD);
disp('---');
% ---- Визуализация графиков ----
% 1 - спектр амплитуд
% 2 - графики функции и восстановленной функции
figure
subplot(2, 1, 1),
plot(N, f, 'r-', 'DisplayName', 'Original f(x)'), hold on,
plot(N, f disc, 'b-', 'DisplayName', 'Fourie f(x)'),
title('Функция abs(sin(x))'),
xlabel('x'),
```

```
ylabel('f(x)'),
  legend(),
  grid on;
  subplot(2, 1, 2),
  stem(Sab),
  title('Спектр амплитуд сигнала'),
  xlabel('Количество членов ряда Фурье'),
  ylabel('Амплитуда'),
  legend(strcat('Количество членов ряда Фурье: ', num2str(fourie parts)));
  grid on;
  saveas(gcf,strcat('fourie part', num2str(fourie parts), '.png'));
end
figure, plot(fourie parts arr, STD percent arr, '-o'),
title('зависимость процента погрешности от членов ряда Фурье'),
ylabel('%'),
xlabel('Количество членов ряда Фурье');
saveas(gcf, 'STD_depend.png');
```

Программа для комплексного ряда Фурье.

```
clear, clc, close all;
dots num = 1024; % кол-во точек
N = 0:1:dots num; % интервал точек
T = 2 * pi; % размер периода функции
kp = 1; % количество периодов гармонической функции
fourie parts arr = [8, 16, 32, 64, 128, 256]; % разные количества членов
комплексного ряда Фурье
STD percent arr = []; % массив для создания графика
SKO percent=f(fourie parts)
for fourie parts = fourie parts arr % fourie parts - текущие количество
членов комплексного ряда Фурье
  idx = zeros(1, length(N));
  f = zeros(1, length(N)); % исходная функция
  % ---- Вычисление комплексного ряда фурье ----
  for i=1:dots num + 1
    idx(i) = T * (i-1) / dots num;
    f(i) = abs(sin(kp * idx(i)));
  end
  C0 = sum(f) * (2 / dots num);
  C = zeros(1, fourie parts);
  for i=1:dots num + 1
    for j=1:fourie parts
       C(j) = C(j) + f(i) * exp(1i * 2 * pi * j * (i-1) / dots num);
    end
  end
  % ---- нормализация комплексного ряда Фурье ----
  for i=1:fourie parts
    C(i) = C(i) * (2 / dots num);
  end
  % ---- Вычисление графика дискретного сигнала ----
  f complex = zeros(1, length(N));
  for i=1:dots num + 1
```

```
for j=1:fourie parts
       f complex(i) = f complex(i) + ...
         C(j) * exp(1i * 2 * pi * j * (i-1) / dots_num);
     end
     f complex(i) = f complex(i) + C0/2;
  end
  % ---- Вычисление спектра амплитуд ----
  Cab = zeros(1, fourie parts);
  for j=1:fourie parts
    Cab(i) = abs(C(i));
  end
  % ---- Вычисление погрешности ----
  df = zeros(1, dots num); % Абсолютная погрешность
  for i=2:dots num-1
   df(i) = f(i) - real(f complex(i));
  end
  STD = std(df / (max(real(f)) - min(real(f))) * 100); % STD в процентном
отношении
  STD percent arr(end+1) = STD;
  disp(fourie parts);
  disp(STD);
  disp('---');
  % ---- Визуализация графиков ----
  % 1 - спектр амплитуд
  % 2 - графики функции и восстановленной функции
  figure
  subplot(2, 1, 1),
  plot(N, f, 'r-', 'DisplayName', 'Original f(x)'), hold on,
  plot(N, real(f complex), 'b-', 'DisplayName', 'Complex Fourie f(x)'),
  title('Функция abs(sin(x))'),
  xlabel('x'),
  ylabel('f(x)'),
  legend(),
  grid on;
  subplot(2, 1, 2),
```

```
stem(Cab),
title('Спектр амплитуд сигнала'),
xlabel('Количество членов комплексного ряда Фурье'),
ylabel('Амплитуда'),
legend(strcat('Количество членов комплексного ряда Фурье: ',
num2str(fourie_parts)));
grid on;
saveas(gcf,strcat('fourie_complex_part', num2str(fourie_parts), '.png'));
end

figure, plot(fourie_parts_arr, STD_percent_arr, '-o'),
title('зависимость процента погрешности от членов комплексного ряда
Фурье'),
ylabel('%'),
xlabel('Количество членов комплексного ряда Фурье');
saveas(gcf, 'STD_complex_depend.png');
```