Pattern Recognition

- S. S. Samant

Random Forest classifier

- Bagging is performed repeatedly select a random sample with replacement of the training set and fits trees to these samples:
- At each candidate split in the learning process, a random subset of the features is selected
- *Combine* results of individual classifiers built on the samples and subset features
 - Combining classifiers? Ex. voting

Other Types of Ensembles

- Extremely Randomized Trees Classifier(Extra Trees Classifier)
- Boosting AdaBoost, Gradient Boosting
- Stacking

Support Vector Machine (SVM)

- SVM was first introduced in 1992
- SVM becomes popular because of its success in handwritten digit recognition
- •SVM is now regarded as an important example of *kernel methods*, one of the key area in machine learning

denotes +1

f(x,w,b) = sign(w. x + b)

w: weight vector

x: data vector

$$f(x, w, b) = sign(w. x + b)$$

denotes +1

denotes -1

$$f(x, w, b) = sign(w. x + b)$$

denotes +1

• denotes -1

- denotes +1
- denotes -1

 $f(x, \mathbf{w}, b) = sign(\mathbf{w}. x + b)$

- denotes +1
- denotes -1

Any of these would be fine..

..but which is best?

Classifier Margin

$$f(x, w, b) = sign(w. x + b)$$

denotes +1

denotes -1

Define the margin of a linear classifier as the width that the boundary could be increased by before hitting a datapoint.

Maximum Margin

- denotes +1
- denotes -1

$$f(x, \mathbf{w}, b) = sign(\mathbf{w} \cdot \mathbf{x} + b)$$

The maximum margin linear classifier is the linear classifier with the, um, maximum margin.

This is the simplest kind of SVM (Called an LSVM)

Linear SVM

0 0

0 0

0

• denotes -1

Support Vectors

are those datapoints that the margin pushes up against

$$f(x, w, b) = sign(w. x + b)$$

The maximum margin linear classifier is the linear classifier with the, um, maximum margin.

This is the simplest kind of SVM (Called an LSVM)

Linear SVM

Margin

Support Vectors: Input vectors that just touch the boundary of the margin (street) – circled below, there are 3 of them (or, rather, the 'tips' of the vectors

Margin

Here, we have shown the actual support vectors, v_1 , v_2 , v_3 , instead of just the 3 circled points at the tail ends of the support vectors. d denotes 1/2 of the street 'width'

Maximum Margin

We want a classifier (linear separator) with as big a margin as possible.

Recall the distance from a point(x_0, y_0) to a line:

$$Ax+By+c = 0$$
 is: $|Ax_0 + By_0 + c|/sqrt(A^2+B^2)$, so,

The distance between H_0 and H_1 is then:

$$|w \cdot x + b|/||w|| = 1/||w||$$
, so

The total distance between H_1 and H_2 is thus: 2/||w||

In order to <u>maximize</u> the margin, we thus need to <u>minimize</u> ||w||. With the <u>condition that there are no datapoints between II₁ and II₂:</u>

Non-linear SVMs: Feature spaces

General idea: the original input space can always be mapped to some higher-dimensional feature space where the training set is separable:

Important Topics for Implementation

K-fold cross validation

Averaging multiple folds/categories

Micro-averaging: average using total TP/FP etc.

Macro-averaging: average of all fold's/category's Precision/Recall/F1-score

Average Precision

$$PRE = \frac{TP}{TP + FP}$$

Micro-averaging: average using total TP/FP etc.

$$PRE_{micro} = \frac{TP_1 + \dots + TP_k}{TP_1 + \dots + TP_k + FP_1 + \dots + FP_k}$$

Macro-averaging: average of all fold's/category's Precision/Recall/F1-score

$$PRE_{macro} = \frac{PRE_1 + \dots + PRE_k}{k}$$

Example: Microaverage vs. Macroaverage

Classification on first category

True positive (TP1) = 20 False positive (FP1) = 10 False negative (FN1) = 10

Classification on second category

True positive (TP2) = 40 False positive (FP2) = 20 False negative (FN2) = 10

$$PRE = rac{TP}{TP + FP}$$
 $REC = TPR = rac{TP}{P} = rac{TP}{FN + TP}$ $F_1 = 2 \cdot rac{PRE \cdot REC}{PRE + REC}$

Example: Microaverage vs. Macroaverage

Classification on first category

True positive (TP1) = 20

False positive (FP1) = 10

False negative (FN1) = 10

Find precision and recall for each category

Classification on second category

True positive (TP2) = 40 False positive (FP2) = 20 False negative (FN2) = 10

$$PRE = rac{TP}{TP + FP}$$
 $REC = TPR = rac{TP}{P} = rac{TP}{FN + TP}$ $F_1 = 2 \cdot rac{PRE \cdot REC}{PRE + REC}$

Example: Microaverage vs. Macroaverage

Classification on first category

Classification on second category

True positive (TP2) = 40 False positive (FP2) = 20 False negative (FN2) = 10

$$PRE = rac{TP}{TP + FP}$$
 $REC = TPR = rac{TP}{P} = rac{TP}{FN + TP}$ $F_1 = 2 \cdot rac{PRE \cdot REC}{PRE + REC}$

Classification on first category

True positive (TP1) = 20 False positive (FP1) = 10 False negative (FN1) = 10

Classification on second category

True positive (TP2) = 40 False positive (FP2) = 20 False negative (FN2) = 10

Find micro/macro averaged F1-score of the two categories

Thank You!