МЕТОДЫ И АЛГОРИТМЫ ВИБРОДИАГНОСТИКИ ПОДШИПНИКОВ КАЧЕНИЯ

Выполнил: Гончаров А.А.

Научный руководитель: доцент, к.т.н. Гай В.Е.

АКТУАЛЬНОСТЬ ТЕМЫ ИССЛЕДОВАНИЯ

- Широкая применимость подшипников качения
- По статистике вышедших из строя подшипников, только 10% деградировали вследствие естественного износа, остальные по причине неправильной установки или эксплуатации
- Проблемы существующих методов вибродиагностики

ЦЕЛЬ И ЗАДАЧИ ИССЛЕДОВАНИЯ

Цель: разработать метод вибродиагностики подшипников качения **Задачи:**

- Исследовать существующие методов вибродиагностики состояний подшипников качения
- Разработать собственный метод вибродиагностики
- Выполнить вычислительный эксперимент с целью проверки работоспособности разработанного алгоритма

ХАРАКТЕРИСТИКА ИССЛЕДОВАНИЯ

• Объект исследования - сигнал, полученный с датчиков (акселерометров), установленных на диагностируемое оборудование

• **Предмет исследования** - методы диагностики подшипников качения по вибросигналу.

НАУЧНАЯ НОВИЗНА

 Новая система признаков на основе матрицы переходов, используемая для составления описания сигнала

ПОЛОЖЕНИЯ ВЫНОСИМЫЕ НА ЗАЩИТУ

- Разработанная система признаков на основе матрицы переходов
- Результаты экспериментального исследования

ЭТАПЫ АНАЛИЗА

•Предварительная обработка

•Формирование системы признаков

•Классификация

ПРЕДВАРИТЕЛЬНАЯ ОБРАБОТКА СИГНАЛА

ФОРМИРОВАНИЕ СИСТЕМЫ ПРИЗНАКОВ

$$S = \{S_i\}, i \in \{\overline{1,N}\}$$

$$\forall i \in \overline{1,(N-1)}$$

$$M_{P,V} = PROB[M_{P,V}, D_v[S_i], D_v[S_{i+1}]]$$

PROB:

$$A = D_v[S_i]$$
 $B = D_v[S_{i+1}]$
 $M = M_{P,V}$
 $\forall k \in \overline{1,15}$

$$v_1 = \begin{cases} 1, \text{если } A_k < 0 \\ 2, \text{если } A_k = 0 \\ 3, \text{если } A_k > 0 \end{cases}$$
 $v_1 = v_1 + (k-1) * 3$
 $\forall l \in \overline{1,15}$

$$v_2 = \begin{cases} 1, \text{если } B_l < 0 \\ 2, \text{если } B_l = 0 \\ 3, \text{если } B_l > 0 \end{cases}$$
 $v_2 = v_2 + (l-1) * 3$
 $M_{v_1,v_2} = M_{v_1,v_2} + 1$

ФОРМИРОВАНИЕ СИСТЕМЫ ПРИЗНАКОВ

Таблица 2.8 — Матрица переходов $M_{P,V}$

			V_1^2			V_2^2				V_{14}^{2}			V_{15}^{2}	
		-1	0	1	-1	0	1	• • •	-1	0	1	-1	0	1
V_1^1	-1	154	0	257	170	0	241		209	0	202	200	0	211
	0	0	0	0	0	0	0		0	0	0	0	0	0
	1	257	0	80	209	0	128		161	0	176	158	0	179
V_2^1	-1	247	0	132	171	0	208		211	0	168	163	0	216
	0	0	0	0	0	0	0		0	0	0	0	0	0
	1	164	0	205	208	0	161		159	0	210	195	0	174
:														
V_{14}^1	-1	236	0	135	210	0	161		115	0	256	241	0	130
	0	0	0	0	0	0	0		0	0	0	0	0	0
	1	175	0	202	169	0	208		255	0	122	117	0	260
V_{15}^1	-1	180	0	179	188	0	171		119	0	240	219	0	140
	0	0	0	0	0	0	0		0	0	0	0	0	0
	1	231	0	158	191	0	198		251	0	138	139	0	250

КЛАССИФИКАЦИЯ

Метод опорных векторов

Метод **k** ближайших соседей

ВЫЧИСЛИТЕЛЬНЫЙ ЭКСПЕРИМЕНТ

Схематическое изображение тестового стенда

ВЫЧИСЛИТЕЛЬНЫЙ ЭКСПЕРИМЕНТ

Case Western Reserve University Bearing Data Center

РЕЗУЛЬТАТЫ ВЫЧИСЛИТЕЛЬНОГО ЭКСПЕРИМЕНТА

Признаки	Количе ство призна ков	Метод классификации	Количество классифицируемых состояний	Точность распозновани я (в %)
Мел-частотные кепстральные коэффициенты	16	Скрытая марковская модель	4	99
Мел-частотные кепстральные коэффициенты	16	Модель гауссовой смеси	4	94
Коэффициенты пакетного вейвлет разложения	32	Метод опорных векторов	21	99,3
Статистические признаки	26	Метод опорных векторов	21	92,88
Спектр комплексной огибающей	72	Метод опорных векторов	21	85,47
Коэффициенты пакетного вейвлет разложения	32	К ближайших соседей	21	97,76—97,35
Статистические признаки	26	К ближайших соседей	21	96,64—95,69
Спектр комплексной огибающей	72	К ближайших соседей	21	98,83—99,92
Свойства коэффициентов вейвлет разложения	5	Сеть радикально базисных функций	4	72,1
Свойства коэффициентов вейвлет разложения	5	Многослойный персептрон	4	100
Свойства коэффициентов вейвлет разложения	5	Вероятностная нейронная сеть	4	97,5
Гистограммы замкнутых групп	840	Расстояние относительно эталона	21	95—100
Матрица переходов	2025	Метод опорных векторов, <i>К</i> ближайших соседей	6	99,86

РЕЗУЛЬТАТЫ ВЫЧИСЛИТЕЛЬНОГО ЭКСПЕРИМЕНТА

Точность распознавания:

- 99,86% при анализе незашумленного сигнала;
- 99,73% при анализе сигнала с ОСШ = 20 дБ;
- 98,92% при анализе сигнала с ОСШ = 10 дБ;
- 83,78% при анализе сигнала с ОСШ = 0,1 дБ.

$$SNR(dB) = 10 \log_{10} \left(\frac{P_{sig}}{P_{noise}} \right) = 20 \log_{10} \left(\frac{A_{sig}}{A_{noise}} \right)$$

ЗАКЛЮЧЕНИЕ

- Проведено исследование существующих методов вибродиагностики подшипников качения.
- Разработан новый метод вибродиагностики подшипников качения на основе теории активного восприятия, с использованием матрицы переходов
- Сформирован алгоритм вибродиагностики подшипников качения, реализованный в программном обеспечении
- Проведено экспериментальное исследование, в рамках которого были получены результаты, подтверждающие корректную работу разработанного метода
- Показатели работы разработанного метода оказались лучше конкурентов

ПУБЛИКАЦИИ

- Гончаров А.А., Гай В.Е. Тезисы доклада «Метод вибродиагностики подшипников качения» НГТУ ИСТ-2015
- Гончаров А.А., Гай В.Е. Метод вибродиагностики подшипников качения // Информационные системы и технологии. НГТУ. 2015.
- Автоматизированная система обработки и анализа виброакустических сигналов: Свидетельство об официальной регистрации программы для ЭВМ в Федеральной службе по интеллектуальной собственности, патентам и товарным знакам. № 2015618114 от 31.07.2015. // Гай В.Е., Утробин В.А., Гончаров А.А., Дербасов М.О

СПАСИБО ЗА ВНИМАНИЕ!

Рисунок 2.1 — Интегрирование сигнала на уровне 1.

Рисунок 2.6 — Вычисление оператора по фильтру.

Рисунок 2.4 — Используемые фильтры при вычислении спектрального представления вибросигнала.

$$w^t x + b = 0$$

$$\begin{cases} \min_{w} \frac{1}{2}(w^T w) \\ d^i((w^T x^j) + b) \ge 1 \end{cases}$$

где $d^i \in \{-1,1\}-i$ -й желаемый результат, $x^i \in R^P-i$ -й входной сигнал из обучающего набора данных $\{x^i,d^i\}_{i=1}^N$.

Таким образом ближайшая точка к гиперплоскости находится на расстоянии $\frac{1}{||w||}$. Увеличение расстояния соответствует уменьшению евклидовой нормы опорного вектора.

$$egin{cases} \min rac{1}{2}(w^Tw) + C \sum_{i=1}^N \xi_i \ d^i((w^Tx^j) + b) \geq 1 - \xi_i \ \xi_i \geq 0, i = 1, \dots, N \end{cases}$$

Коэффициент C — параметр настройки метода, который позволяет регулировать отношение между максимизацией ширины разделяющей полосы и минимизацией суммарной ошибки.

Путем введения множителя Лагранжа α_i и использования теоремы Куна-Таккера [21] функция принятия решения для вектора x принимает вид:

$$f(x) = sign\left(\sum_{i=1}^N d^ilpha_i\langle x, x^i
angle + b
ight)$$

$$SNR(dB) = 10 \log_{10} \left(\frac{P_{sig}}{P_{noise}} \right) = 20 \log_{10} \left(\frac{A_{sig}}{A_{noise}} \right),$$

где SNR — отношение сигнал/шум, P — средняя мощность, а A — среднеквадратичное значение амплитуды [25].