Date. No.	.076 J. 376G
第12章 静电场	3,电偶混分在均匀电场中所受力矩
1. 电荷以基本单的整数信出现,称之为量	$\vec{M} = \vec{p} \times \vec{E}$
子性 e=1.602×10-19C.	9. 带电直导线.
2. 电新中恒定律. Pan Ps	(1)有限长时,中垂纷上、*(用水水!)
电荷伯相对论和变性。	当为<<し、带电直线中部近处
点 电荷是相对概念.	女 E=2118.0x. (相等于无限长直军的)
3. 库仓定律. 0.0	当x>>L 远离带电路
3.库仓定律。	E= 人 (相對之电荷)
k= 9x109N·m3/c2.	10.均匀带电圆环.
Eo = 4Th = 8.85×10-12 c2/(N·m2)	$E = \frac{x_0}{2\xi_0} \left(\frac{1}{\sqrt{R_1^2 + x^2}} - \frac{1}{\sqrt{R_2^2 + x^2}} \right)$
	若 1=0,则 E=0. (在圆环中的无效验)
3. 电力的叠加原理	★若 R, >0, R2 > 00. 则 E = 5 . 171 (无限大桶)
デ= = 1 191 er; (失量和)	R, \Rightarrow 0, R,=R, 刚E = $\frac{0\times}{260}$ (例 - $\frac{1}{1000}$) (图码)
4. 电场强度.	川、电通量定义.
$\vec{E} = \frac{\vec{F}}{q}$. (W/c = V/m).	川、电通量定义 E = ds.
5.电场的叠加原理。	夏e= fs E ds (自内向外为正)
豆= 艾豆; (灰量和)	12. 高斯定律.
6. 点电荷场强分布, 点电荷系场强分布	A So F. ds = Eo = De > 90 xz
山产 quent (r为电影到 Pt 便容)	前场强, 电例, 例共同决定
以E= = = (天皇和)	大 电场的发射正电荷, 终止于放电荷, 光电
7.整个带电体在 P.S. 产生的总域是. 产= ∫和&r· 产r	荷处不间断.
E= JANEON Er 000	13.均月带电球壳、
8. 电偶极子产生的场强 节=则 电偶极矩式	r <r, e="0.</td"></r,>
()电偶极子轴磁上	R <r<r. e="3+180</td"></r<r.>
$\vec{E} = \frac{27}{4\pi \epsilon_0 r^3}$	$F < R_1$ $E = 0$. $R < r < R_2$ $E = \frac{(r^3 - R_1^3)}{3 + 260}$ $F > R_2$ $E = \frac{(R_1^3 - R_1^3)}{3 + 260}$
(2) 单线上 \$P12.	· 本在用高斯定理注意分析对称性!!
E=- 478. F3	