Methodology for Estimating Olsson 2nd Floor Energy Consumption

There are three primary aspects of energy consumption of the VAV (variable air volume) HVAC system used in Olsson Hall.

- · Heating/Cooling
- · Fan Operation
- · Pump Operation

Remaining Questions and Points of Uncertainty

Heating/Cooling

- · figure out how to use a Mollier diagram/calculator
- confirm that %_OutdoorAir is percentage of outdoor air in mixed air, not percent outdoor air duct is open
- confirm that temperature differential is the difference between the temperature of supply air and mixed air for initial heating/coolin
- confirm that energy consumption calculations are done for each AHU for inital cooling heating, then again per VAV box to get reheating energy consumption
 - temperature differential for each VAV box is AHU supply temp VAV box supply temp
- · find humidity weather data
- · is SEER relevant at all? Doesn't seem link it but worth checking

Fans

- unsure what the pressure terms in the equations mean. Is this general atmospheric data (e.g. weather data) or internal data (interior building pressure)
- how should i factor heat produced by the fan into the heating/cooling equations?

Energy Estimation Procedures

Heating/Cooling

There are three main energy consuming portions of the heating/cooling process

- 1. Inital Heating/Cooling
 - o Occurs at thu AHU level when mixed air is heated/cooled to supply air temperature
- 2. Reheating
 - Occurs at the VAV box level to ensure each room is maintained at the correct temperature
- 3. Humidity Removal
 - Occurs at the AHU level to create suitable supply air

The below equations can be applied to estimate energy consumption from these processes

Equations

Source: https://www.engineeringtoolbox.com/cooling-heating-equations-d_747.html

Equation 1, Sensible Heat

 $h s = c^* \rho^* q^* dt$

```
where:
h = sensible heat (kW)\
c = specific heat of air (1.006 kJ/kg C)\
\rho = density of air (1.202 kg/m3)\
q = air volume flow (m3/s)\
dt = temperature difference (C)
Equation 2, Air Temperatures and %OutdoorAir
%_OutdoorAir = (t_mixed - t_return)/(t_outdoor - t_return)
Equation 3, Latent Heat
h_l = \rho^* h_w e^* q^* dw_k g
where:
h I = latent heat (kW)\
\rho = density of air (1.202 kg/m3)\
q = air volume flow (m3/s)\
h_we = latent heat evaporization water (2454 kJ/kg - in air at atmospheric pressure and 20oC)\
dw_kg = humidity ratio difference (kg water/kg dry air)
Equation 4, Latent and Sensible Heat
h t = \rho^*q^*dh
where:
h_t = total heat (kW)\
q = air volume flow (m3/s)\
\rho = density of air (1.202 kg/m3)\
```

Where dh can be estimated using the Mollier diagram\

Fan Operaion

dh = enthalpy difference (kJ/kg)

Source: https://www.engineeringtoolbox.com/fans-efficiency-power-consumption-d_197.html

Power Used by Fan

```
P = dp*q/mu

where:

mu = fan efficiency (values between 0 - 1)\
dp = total pressure (Pa) \
q = air volume delivered by the fan (m3/s)\
P = power used by the fan (W, Nm/s)
```

- We can assume 60-70% efficiency and tweak using the energy consumption data we have/get over time.
- Air flow in CFM is available per AHU
- Obtain local weather/air pressure data to estimate dp?

Heating Caused by Fan Inefficiency

```
dt = dp / 1000
```

where:

dt = temperature increase (K)\

dp = increased pressure head (Pa) not entirely sure what this means yet

Pump Operation

We have been advised that energy consumption here is negligible compared to other contributors and thus will not investigate this are for now