Assignment 4 MAT 347

Q1: Let $(g,e) \in G \times \{e\}$. Let $h = (h,h') \in P$. We compute that

$$h(g,e)h^{-1} = (h,h')(g,e)(h^{-1},{h'}^{-1}) = (hg,h')(h^{-1},{h'}^{-1}) = (hgh^{-1},e)$$

Which is clearly an element of $G \times \{e\}$. We now claim that $G \times \{e\}$ is isomorphic to G'. Consider the map $\phi: P \to G'$ defined by $\phi(g, g') = g'$. This will have a kernel of $G \times \{e\}$ and is clearly surjective onto G'. Hence by the first isomorphism theorem, there exists an isomorphism from $G \times G'/G \times \{e\}$ to G'.