Universidade de São Paulo Escola Politécnica Curso de Engenharia de XXX

O Efeito Borboleta

Rafael Ribeiro Correia, rafael.correia.poli@gmail.com Fabiano Shimura, fabianoshimura@hotmail.com

.

RELATÓRIO apresentado ao Professor Alexandre Roma do MAP/IME-USP como atividade da disciplina MAP3122 - Métodos Numéricos.

São Paulo - SP

Resumo

Este é um "boneco" de um relatório na forma próxima ao que gostaria. As seções não são as mesmas que pedi mas já representa um bom avanço. Modifiquem à vontade. Encontrei fazendo google it em "modelo de relatório em latex". Encontrei também sugestões de editores inteligentes: o Kile para usuários de linux e TeXnic-Center para usuários de Windows. Eu uso o Kile. O para windows eu não conheço. Consta que ambos são programas gratuitos.

Sumário

1	Introdução					
2	EDOs e Condições Inicias	2				
3	Metodologias	2				
	3.1 Euler	2				
	3.1.1 Algoritmo	2				
	3.1.2 Discretização	3				
	3.2 Runge-Kutta	3				
	3.2.1 Algoritmo	3				
	3.2.2 Discretização	3				
4	Análise	3				
	4.1 Euler	3				
	4.1.1 Equações	3				
	4.1.2 Tabela	4				
	4.2 Runge-Kutta	9				
	4.2.1 Equações	9				
	4.2.2 Tabela	9				
	4.3 Gráficos	9				
5	Spline	12				
6	Conclusão	12				
7	Apêndice	12				
	7.1 Definição Spline	12				
	7.2 Algoritmo Spline Cúbico					
8	Exemplos de Equações	17				
	8.1 Equações simples	17				
	8.2 Equações com mais de uma linha	17				
	8.3 Sistema linear	18				
9	Tabelas	19				
	9.1 Tabela Simples	19				
	9.2 Tabela mais elaborada	19				
10	O Edição					
11	1 Inserir figuras					
12	2 Conclusões	20				

1 Introdução

- introduzir o problema a ser estudado
- apresentar trabalhos relacionados
- apresentar motivação
- apresentar objetivos
- último parágrafo deve conter a organização do documento
- novo item

2 EDOs e Condições Inicias

Apresentação das equações envolvidas:

$$\frac{dx}{dt} = \sigma(y - x)$$

$$\frac{dy}{dt} = x(\rho - z) - y$$

$$\frac{dz}{dt} = xy - \beta z$$

em que a σ se chama o número de Prandtl e a ρ se chama o número de Rayleigh.

Todos os $\sigma, \rho, \beta > 0$, mas usualmente $\sigma = 10, \beta = \frac{8}{3}$, enquanto ρ varia.

O sistema exibe comportamento caótico para $\rho=28$ mas tem órbitas periódicas para outros valores de ρ .

3 Metodologias

3.1 Euler

3.1.1 Algoritmo

```
for i=1:n-1
	t(i,:)=h*i
	x(i+1,:) = y(i,:)+dxdt (t(i,:),x(i,:),y(i,:),z(i,:))*h
	y(i+1,:) = y(i,:)+dydt (t(i,:),x(i,:),y(i,:),z(i,:))*h
	z(i+1,:) = z(i,:)+dzdt (t(i,:),x(i,:),y(i,:),z(i,:))*h
end
```

3.1.2 Discretização

3.2 Runge-Kutta

3.2.1 Algoritmo

```
for i=1:n-1
k1 = dydt (t(i),y(i,:))
ymid = y(i,:) + k1(h/2)
k2 = dydt (t(i)+(h/2),ymid)
ymid = y(i,:) + k2(h/2)
k3 = dydt(t(i) + (h/2),ymid)
yend = y(i,:) + k3h
k4 = dydt(t(i)+h,yend) //como podemos perceber, o método eh de QUARTA ORDEM
phi = (1/6)(k1+2k2+2k3+k4)
y(i+1,:) = y(i,:)+phi*h
```

3.2.2 Discretização

4 Análise

4.1 Euler

4.1.1 Equações

Equações Euler

$$\frac{dx}{dt} = -10x + 10y$$

$$\frac{dy}{dt} = 28x - y - xz$$

$$\frac{dz}{dt} = xy - \frac{8}{3}z$$

Discretização Euler

$$\Delta t = \frac{t_f - t_i}{n}$$

Aplicando nas equações

$$x_{k+1} = x_k + h(-10x_k + 10y_k)$$

$$y_{k+1} = x_k + h(28x_k - y_k - x_k z_k)$$

$$z_{k+1} = z_k + h(x_k y_k - \frac{8}{3}y_k)$$

Matriz

$$\begin{bmatrix} x_{k+1} \\ y_{k+1} \\ z_{k+1} \end{bmatrix} = \begin{bmatrix} x_k \\ y_k \\ z_k \end{bmatrix} \begin{bmatrix} 1 - 10h & 10h & 0 \\ 28h & 1 - h & -hx \\ hy & -\frac{8}{3}h & 1 \end{bmatrix}$$
(1)

4.1.2 Tabela

Tabela 1: 0 < t < 0.25

\mathbf{t}	X	\mathbf{y}	${f z}$
0.015625	0.1	0.1	10.0
0.03125	0.1	0.1265625	9.5834895833333334
0.046875	0.104150390625	0.15336075846354166	9.184375271267362
0.0625	0.11183951059977214	0.18158410075865686	8.80194253990571
0.078125	0.12273710281209788	0.21229530779060363	8.43551225090383
0.09375	0.1367305723399894	0.2464983271114824	8.084439706767506
0.109375	0.15388178402303518	0.2851946963341975	7.748114675089904
0.125	0.17439942657165428	0.3294322205106489	7.425962286575729
0.140625	0.1986233006246222	0.3803489104946197	7.117444891150979
0.15625	0.2270179271668093	0.4392147403493156	6.8220650960403875
0.171875	0.2601736792265759	0.5074734300871471	6.539370346516859
0.1875	0.29881426529854016	0.5867862042336864	6.268959570038273
0.203125	0.3438098807571568	0.6790793085464708	6.0104926101695755
0.21875	0.3961957288492371	0.7865969742505293	5.7637034520806765
0.234375	0.457195923443189	0.911961485867094	5.528418615976125
0.25	0.5282530425719242	1.058242015808195	5.304582607086634

Tabela 2: 0.25 < t < 0.5

t	x	y	Z
0.265625	0.6110638196400915	1.2290339107212898	5.092293012488672
0.28125	0.7076216463715287	1.4285501141629053	4.891848795655069
0.296875	0.8202667194639313	1.6617263311263097	4.703816652873215
0.3125	0.9517447837861779	1.9343412929864916	4.529122086184953
0.328125	1.105275488348727	2.2531529231797602	4.369174278984467
0.34375	1.284631337541076	2.6260501031125623	4.226037142841758
0.359375	1.4942280196616209	3.062217721873976	4.102663297146446
0.375	1.7392264106323014	3.572309165230505	4.00321354813506
0.390625	2.0256455910382707	4.168614409014198	3.9334919593655684
0.40625	2.3604844688470092	4.865201932376449	3.901536076658017
0.421875	2.751846572523484	5.677996430528672	3.9184132234511058
0.4375	3.2090574878367946	6.624728236801238	3.9992862404346674
0.453125	3.742756042362489	7.724649205031856	4.164823278643497
0.46875	4.364926849029578	8.997846118931902	4.443030811105178
0.484375	5.088820484951816	10.463886762298115	4.871575466496042
0.5	5.928674590787175	12.139394790242786	5.500606300832646

Tabela 3: 0.5 < t < 0.75

$\overline{\mathbf{t}}$	X	y	Z
0.515625	6.899099621952114	14.033960242463532	6.395953769138265
0.53125	8.013921593907023	16.143561913424637	7.642294598600282
0.546875	9.28417789383165	18.440460241631673	9.345322522938321
0.5625	10.714847010675404	20.85847405424829	11.63100460522378
0.578125	12.299788736233667	23.273049168611244	14.63849438783028
0.59375	14.014360678792663	25.47727802890932	18.501269434512825
0.609375	15.805441514748392	27.159174249323385	23.3092545113719
0.625	17.579462254525733	27.893238768569603	29.04526588881278
0.640625	19.190989834845087	27.170294221586836	35.4967361344124
0.65625	20.437756145273486	24.497792953280413	42.164968590523706
0.671875	21.07213689652457	19.591574721845067	48.23121862544789
0.6875	20.840799056730898	12.624284359645058	52.67215239976062
0.703125	19.556968635311236	4.392852253081042	54.588419595203824
0.71875	17.18757545058777	-3.800612439715472	53.656259514149426
0.734375	13.908171092727887	-10.631366873146536	50.39990526773614
0.75	10.073868285560009	-15.333091061450041	45.98955188020628

Tabela 4: 0.75 < t < 1

t	X	y	Z
0.765625	6.104030887589688	-17.925142391074985	41.659827743058955
0.78125	2.349472562798333	-18.947874704695476	38.21438248054246
0.796875	-0.9782379477475747	-19.026789340309023	35.92653042288409
0.8125	-3.798324102835301	-18.608338993528555	34.720415520209066
0.828125	-6.112388929506122	-17.91873500532532	34.37811439196363
0.84375	-7.957130503852872	-17.02960608648333	34.65704104454802
0.859375	-9.37470481363888	-15.935847485741814	35.33029138736928
0.875	-10.399883356154964	-14.61311052573731	36.19247507123929
0.890625	-11.058200101402205	-13.053518405974291	37.05905910376477
0.90625	-11.369968586491593	-11.284293301195628	37.77037568111729
0.921875	-11.356581823164099	-9.372212709418744	38.20132972078977
0.9375	-11.046524149141387	-7.415580703346188	38.272674844381015
0.953125	-10.479189235735888	-5.526628649469965	37.957923673564416
0.96875	-9.705351644131838	-3.8097912241611245	37.28125894945916
0.984375	-8.784170328511413	-2.3427963330844386	36.30561321491729
1.0	-7.777705641725948	-1.166222622214858	35.11443436275655

Tabela 5: 1 < t < 1.25

$\overline{\mathbf{t}}$	X	y	Z
1.015625	-6.74466141992734	-0.28340701435367965	33.79306006016735
1.03125	-5.735090419056455	0.33152479354454456	32.414882834053834
1.046875	-4.787181792087549	0.7219658474397697	31.034554518044242
1.0625	-3.926377473411405	0.9376689456966233	29.6874452398022
1.078125	-3.166370220425776	1.0265420399384677	28.392942695030747
1.09375	-2.511227679743863	1.0299429775625417	27.15911572630119
1.109375	-1.9579197645397373	0.980855558169787	25.987073071343648
1.125	-1.498736120366374	0.9039492304141569	24.874271539982985
1.140625	-1.123316534306916	0.8166274901657378	23.81667510035975
1.15625	-0.8202002804830639	0.7304427164421525	22.809980338437374
1.171875	-0.5779123122134988	0.6525161805270208	21.85020340786338
1.1875	-0.38565786022279264	0.5867886907030928	20.93388612314024
1.203125	-0.233713086640623	0.535040393069602	20.058104935652217
1.21875	-0.11359535543590034	0.4976784367831294	19.22039672049366
1.234375	-0.01808382540167694	0.47431905253461615	18.418663514031646
1.25	0.05885412427586886	0.4642005170867789	17.651085177463703

Tabela 6: 1.25 < t < 1.5

x	\mathbf{y}	${f z}$
0.12218949815257354	0.46646420149301565	16.91605017186503
0.17598242054951763	0.4803372962673141	16.212105326579298
0.22353786988042332	0.5052454984789395	15.537921733598036
0.26755468684894146	0.5408783255332469	14.892273039007963
0.31026150539336417	0.5872245045460032	14.274022826929684
0.353536974010964	0.6445904082360929	13.682118643913618
0.3990140731086404	0.7136108776211348	13.115591094308952
0.44816982381371767	0.7952589673969657	12.573557206778801
0.5024025024986002	0.8908590796049871	12.055227912818818
0.5630988426714731	1.002106490835685	11.559920028393563
0.6316937876971312	1.131095295751347	11.087073647083777
0.7097252733306024	1.280356150.265625	0.6110638196400915
0.7988863491316097	1.452904866582673	10.20729667112974
0.9010767424833384	1.652302412473303	9.80012867229881
1.0184557534192704	1.8827270743031093	9.415053278798268
1.1534981473073702	2.1490586186921	9.052719926883896
	0.12218949815257354 0.17598242054951763 0.22353786988042332 0.26755468684894146 0.31026150539336417 0.353536974010964 0.3990140731086404 0.44816982381371767 0.5024025024986002 0.5630988426714731 0.6316937876971312 0.7097252733306024 0.7988863491316097 0.9010767424833384 1.0184557534192704	0.12218949815257354 0.46646420149301565 0.17598242054951763 0.4803372962673141 0.22353786988042332 0.5052454984789395 0.26755468684894146 0.5408783255332469 0.31026150539336417 0.5872245045460032 0.353536974010964 0.6445904082360929 0.3990140731086404 0.7136108776211348 0.44816982381371767 0.7952589673969657 0.5024025024986002 0.8908590796049871 0.5630988426714731 1.002106490835685 0.6316937876971312 1.131095295751347 0.7097252733306024 1.280356150.265625 0.7988863491316097 1.452904866582673 0.9010767424833384 1.652302412473303 1.0184557534192704 1.8827270743031093

Tab	ela	7.	1 5	/	<i>t</i> ~	1 '	75

$\overline{\mathbf{t}}$	X	y	Z
1.515625	1.3090544709612342	2.4569741474758686	8.714256624749925
1.53125	1.4884169204166458	2.8130540606587786	8.401417489231013
1.546875	1.695391473579479	3.224894806979896	8.116780259397398
1.5625	1.9343763694232943	3.701222094613411	7.864010131281014
1.578125	2.21044601398425	4.251993358400652	7.648211113693382
1.59375	2.5294377865493125	4.888470503131664	7.476391928287891
1.609375	2.898036648515305	5.623231741722061	7.358080004334014
1.625	3.3238483818288604	6.470072505807043	7.306123519839968
1.640625	3.8154459012004516	7.443716808096719	7.3377257694623985
1.65625	4.382363230402993	8.559217944257464	7.47575436425276
1.671875	5.034996779442754	9.830866092094968	7.750352130324302
1.6875	5.7843513595446625	11.270335556416406	8.200832965198776
1.703125	6.641536390305872	12.883694981403718	8.87775004162198
1.71875	7.61687367016491	14.666779731117606	9.84483643145951
1.734375	8.718421492188769	16.598323600361912	11.18018191910794
1.75	9.949656196590823	18.630260160530547	12.975453212244577

Tabela 8: 1.75 < t < 2.0

$\overline{\mathbf{t}}$	X	y	Z
1.765625	11.306000565956404	20.674929143143498	15.331132507312333
1.78125	12.769895656141887	22.589918110318653	18.344690953780916
1.796875	14.304274164607007	24.163470781220244	22.087686598668572
1.8125	15.844773635952825	25.10734392275938	26.568005555334125
1.828125	17.29205024326635	25.06956710871115	31.676945652864028
1.84375	18.5072872534921	23.684387482464345	37.13057626140257
1.859375	19.31620916426901	20.673972089618132	42.43243395719278
1.875	19.528359621354813	15.995005134051686	46.90414664344501
1.890625	18.9762729827137	9.97684921026929	49.83037301876779
1.90625	17.57011301826926	3.3481622270056253	50.71228582196665
1.921875	15.347933207134318	-2.93942513271616	49.51845498665537
1.9375	12.490533466532682	-8.053868644016111	46.75027820693588
1.953125	9.280470636759432	-11.587417219117906	43.230520013420715
1.96875	6.019863159278598	-13.614901227680562	39.748987639040095
1.984375	2.951931223816229	-14.507282424858634	36.812157284532205

4.2 Runge-Kutta

4.2.1 Equações

4.2.2 Tabela

4.3 Gráficos

A seguir apresentaremos os gráficos obtidos a partir da resolução das equações diferenciais pelas metodologias aprensentadas no item anterior.

É importante notar que apresentamos apenas um gráfico para cada intervalo de tempo (apesar de termos duas metodologias) pois os resultados foram extremamente parecidos. 0 < t < 1

0 < t < 2

0 < t < 4

0 < t < 8

0 < t < 16

0 < t < 32

0 < t < 64

0 < t < 128

5 Spline

6 Conclusão

O escopo deste trabalho consistiu na resolução das três equações diferenciais de Lorentz através de métodos numéricos aprendidos na disciplina.

Para tanto, utilizamos o método de Euler explícito pela sua facilidade do algoritmo e pela obtenção de uma boa aproximação inicial, na qual podemos comparar com o gráfico da solução manufaturada.

Em seguida, implementamos o método de Runge-Kutta Clássico, e já observamos uma aproximação muito mais consistente e próxima do esperado, já que este possui convergência de quarta ordem.

O estudo destas equações, além de ter despertado o interesse na aplicação de métodos numéricos para sua resolução, tem forte aplicação em diversas áreas no estudo da teoria do caos como mencionado anteriormente, apesar do modelo ser derivado de uma simplificação de equações mais complexas.

7 Apêndice

7.1 Definição Spline

Dada uma função f definida em [a, b] e um conjunto de nós a = x0 < x1 < ... < xn = b, um spline cúbico interpolador S para f é uma função que satisfaz as seguintes condições:

S(x) é um polinômio cúbico, indicado por $S_j(x)$, no subintervalo $[xj,x_{j+1}]$ para cada j=0,1,...,n-1;

$$\begin{split} S(x_j) &= f(x_j) \text{ para cada } j = 0,1,...,n-2; \\ S_{\mathbf{j}+1}(x_{\mathbf{j}+1}) &= S_j j(x_{\mathbf{j}+1}) \text{ para cada } j = 0,1,...,n-2; \\ S'_{\mathbf{j}+1}(x_{\mathbf{j}+1}) &= S' j(x_{\mathbf{j}+1}) \text{ para cada } j = 0,1,...,n-2; \\ S''_{\mathbf{j}+1}(x_{\mathbf{j}+1}) &= S''_j(x_{\mathbf{j}+1}) \text{ para cada } j = 0,1,...,n-2; \end{split}$$

Um dos seguintes conjuntos de condições de contorno é satisfeito:

$$S''(x_0) = S''(x_n) = 0$$
 (contorno livre ou natural);
 $S'(x_0) = f'(x_0)$ e $S'(x_n) = f'(x_n)$ (contorno restrito).

Este trabalho utiliza a condição livre, ou seja, o método do Spline Cúbico Natural. O polinômio gerado tem a forma

$$S(x) = S_j(x) = a_j + b_j(x - x_j) + c_j(x - x_j)$$

Para a montagem do gráfico na parte de análise de resultados por Spline, utilizamos a função "splin"do SciLab, cujo algoritmo é fechado ao uso do software.

A fim de propor uma melhor explicação da utilização do método, um algoritmo alternativo (adaptado do arquivo fonte de Matlab) encontra-se abaixo com comentários em cada etapa importante.

7.2 Algoritmo Spline Cúbico

```
#include <fstream>
#include "Parametros.h"
#include "Spline.h"
using namespace std;
int main(){
    Spline spl(nPontos); //declaracao e passagem de parametro para construtor da Classe Spl
    spl.leituraPontos(); //Le do arquivo pontos.txt, os pontos que serão interpolados.
    spl.exibePontos(); //Exibe na tela os pontos
    spl.passo1(); // gera os h's, pela equacao hi = xi+1 - xi
  /* spl.passo2(); // passo de 2 a 6 \tilde{A}(\tilde{C}) a resolu\tilde{A}§\tilde{A}fo do sistema linear.
    spl.passo3e4();
    spl.passo5e6();*/
    spl.preparandoThomas(); // prepara o sistema e utiliza o algoritmo de thomas pra resolv
    spl.saidaSpline(); // saida na tela e em arquivo .txt, dos coeficientes das do spline C
    spl.splineCubicoGNU(); // gera um arquivo .gnu para desenhar o grÃ;fico da solucao.
    system("PAUSE");
    return EXIT_SUCCESS;
}
Spline.h
// Classe Spline
#include "Parametros.h"
#ifndef SPLINE
```

#define SPLINE class Spline{ private: //Atributos Privados int n; double* x; double* y; double* h; double* a; double* b; double* c; double* d; double* alfa; double* beta; double* gama; double* delta; public: //Metodos Publicos Spline(int ns); // Construtor da Classe Spline void leituraPontos(void); // Le os pontos do arquivo "ponto.txt" void exibePontos(void); // Exibe na tela esses pontos //* Gera os h's, espaços entre os x's void passo1(void); //* Metodos usados para resolver o Sistema Linear void passo2(void); void passo3e4(void); void passo5e6(void); //*************** //* Metodos usados para resolver o Sistema Linear, usando algorimto de Thomas void algoritmoThomas(double *A,double *B, double *C, double *D, double *X, long int N void preparandoThomas(void); //************** //* Exibe os coeficientes dos polinomios void saidaSpline(void); //* Gera um arquivo .gnu para ser plotado

void splineCubicoGNU(void);

```
}:
#endif
Spline.cpp
#include "Spline.h"
#include <fstream>
#include <iostream>
using std::cout;
using std::cin;
using std::endl;
using namespace std;
Spline::Spline(int ns){ // Construtor
  n = ns - 1; // sao ns pontos(qntdade de pontos), mas a referencia sera de ns-1 para os
  x = new double[n+1]; // vetor x, armazena os valores do eixo x
  y = new double[n+1]; // vetor y, armazena os valores do eixo y, os f(x).
  h = new double[n+1]; // vetor h, que armazena os espa\tilde{A}§os entres os x's.
   a = new double[n+1]; // equivale aos f(x), aj = f(xj), sao termos independentes dos pol
  b = new double[n+1]; // sao os valores que multiplicam o termo linear, bj*(x-xj)
   c = new double[n+1]; // sao os valores que multiplicam o termo quadratico, cj*(x-xj)^2
  d = new double[n+1]; // sao os valores que multiplicam o termo cubico, <math>dj*(x-xj)^3
   //Nota: S(x) = Sj(x) = aj + bj(x - xj) + cj(x - xj)^2 + dj(x - xj)^3
  // Sao variaveis auxiliares usadas no algoritmo 1, para resolver o sistema linear
   alfa = new double[n+1];
   beta = new double[n+1];
  gama = new double[n+1];
  delta = new double[n+1];
}
void Spline::leituraPontos(void){
     // classe ifstream, de leitura
     ifstream arq("pontos.txt"); //Leitura dos pontos do problema, no arquivo pontos.txt
     for (int i=0; i <= n; i++){
         if (! arq.eof()){
            arq >> x[i];
```

```
arq >> y[i];
            a[i] = y[i]; // ai = f(xi)
         }
     }
}
void Spline::exibePontos(void){    // Exibe na tela os pontos q foram lidos.
     cout << "j
                      хj
                               f(xj) \n";
     cout << "----\n";
     for (int i=0; i <= n; i++){
         printf("%d\t%0.2f\t%0.2f\n",i,x[i],y[i]);
     }
     cout << "\nPrecione Enter pra executar o metodo Spline Cubica.";</pre>
     getchar();
     cout << "\n\n";
}
//Nota: S(x) = Sj(x) = aj + bj(x - xj) + cj(x - xj)^2 + dj(x - xj)^3
void Spline::passo1(void){ // Calcura os h's, distancia entres os x's
     for (int i=0; i < n; i++){
        h[i] = x[i+1] - x[i];
     }
}
/*** ALGORITMO 1 - Resolucao do Sistema Linear ***/
// Consiste nos Passos de 2 a 6
void Spline::passo2(void){
     for (int i=1; i < n; i++){
         alfa[i] = (3.0/h[i])*(a[i+1] - a[i]) - (3.0/h[i-1])*(a[i] - a[i-1]);
     }
}
void Spline::passo3e4(void){
     beta[0] = 1.0;
     gama[0] = 0.0;
    delta[0] = 0.0;
     for (int i=1; i < n; i++){
         beta[i] = 2.0*(x[i+1] - x[i-1]) - h[i-1]*gama[i-1];
         gama[i] = h[i]/beta[i];
         delta[i] = (alfa[i] - h[i-1]*delta[i-1])/beta[i];
     }
```

```
void Spline::passo5e6(void){
    beta[n] = 1.0;
    gama[n] = 0.0;
    delta[n] = 0.0;
    for (int j=n-1; j >=0; j--){
        c[j] = delta[j] - gama[j]*c[j+1];
        b[j] = (a[j+1] - a[j])/h[j] - h[j]*(c[j+1] + 2.0*c[j])/3.0;
        d[j] = (c[j+1] - c[j])/(3*h[j]);
}
```

8 Exemplos de Equações

Nesta seção serão apresentados diferentes exemplos de equações.

8.1 Equações simples

Sem numeração

$$\sum_{i=1}^{100} \frac{2^{i-1}}{4}$$

Com numeração

$$\int_{0}^{100} \sqrt[4]{\frac{2n}{7}} \tag{2}$$

$$M^{-1}(AD^{-1}A^{T})M^{-T}\bar{y} = M^{-1}(AD^{-1}(r_d - X^{-1}r_a) + r_p), \tag{3}$$

8.2 Equações com mais de uma linha

min
$$c^T x$$
 (4)
s.a. $Ax = b$
 $x \ge 0$,

onde $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ and $c \in \mathbb{R}^n$. Referenciando a equação (4)

8.3 Sistema linear

$$\begin{bmatrix} A & 0 & 0 \\ 0 & A^T & I \\ Z & 0 & X \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 (5)

$$d_i = \left\{ \begin{array}{ll} 1 & \text{se } i = 0 \\ 2 & \text{caso contrário} \end{array} \right\}$$

9 Tabelas

9.1 Tabela Simples

12	13	14
15	16	17

Tabela 9: Título da tabela

9.2 Tabela mais elaborada

	CCF preconditioner		CCF preconditioner Number of no		of nonzeros
Problem	η	$\frac{n(AD^{-1}A^T)}{nrow}$	FCC	Cholesky	
ELS-19	-11	31	87750	3763686	
SCR20	-12	31	103179	2591752	
NUG15	-12	32	54786	6350444	
PDS-20	15	5	625519	7123636	

Tabela 10: Título da Tabela.

Referenciando a tabela 10.

10 Edição

Comando para preservar a formatação do texto.

11 Inserir figuras

Para citar referências bibliográficas [1], [2].

12 Conclusões

Apresentar as conclusões finais.

Agradecimentos Agradecimentos aos colaboradores, professores que eventualmente vocês procuraram para ajudar em algum aspecto do modelo de vocês, colega que ajudou a compor alguma parte do trabalho e assim por diante.

Referências

[1] I. Adler, N. K. Karmarkar, M. G. C. Resende, and G. Veiga. An implementation of Karmarkar's algorithms for linear programming. *Mathematical Programming*, 44:297–335, 1989.

[2] F. C. Carmo. Análise da influência de algoritmos de reordenação de matrizes esparsas no desempenho do método $CCCG(\eta)$. Dissertação de mestrado, Departamento de Ciência da Computação, Universidade Federal de Minas Gerais, 2005.