Problem statement

Data collection

Importing libraries

In [1]:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

Importing dataset

In [2]:

data=pd.read_csv(r"C:\Users\user\Downloads\uber - uber.csv")
data

Out[2]:

2]:		Unnamed: 0	key	fare_amount	pickup_datetime	pickup_longitude	pickup_latitude	dropoff_l
,	0	24238194	2015- 05-07 19:52:06	7.5	2015-05-07 19:52:06 UTC	-73.999817	40.738354	-7
	1	27835199	2009- 07-17 20:04:56	7.7	2009-07-17 20:04:56 UTC	-73.994355	40.728225	-1
	2	44984355	2009- 08-24 21:45:00	12.9	2009-08-24 21:45:00 UTC	-74.005043	40.740770	-1
	3	25894730	2009- 06-26 08:22:21	5.3	2009-06-26 08:22:21 UTC	-73.976124	40.790844	-1
	4	17610152	2014- 08-28 17:47:00	16.0	2014-08-28 17:47:00 UTC	-73.925023	40.744085	-1
	•••							
	199995	42598914	2012- 10-28 10:49:00	3.0	2012-10-28 10:49:00 UTC	-73.987042	40.739367	-7
	199996	16382965	2014- 03-14 01:09:00	7.5	2014-03-14 01:09:00 UTC	-73.984722	40.736837	-1
	199997	27804658	2009- 06-29 00:42:00	30.9	2009-06-29 00:42:00 UTC	-73.986017	40.756487	-7

7/31/23, 12:14 PM uber regression

	Unnamed: 0	key	fare_amount	pickup_datetime	pickup_longitude	pickup_latitude	dropoff_l
199998	20259894	2015- 05-20 14:56:25	14.5	2015-05-20 14:56:25 UTC	-73.997124	40.725452	-1
199999	11951496	2010- 05-15 04:08:00	14.1	2010-05-15 04:08:00 UTC	-73.984395	40.720077	-1

200000 rows × 9 columns

head

In [3]:

to display first 8 dataset values
da=data.head(8)
da

Out[3]:		Unnamed: 0	key	fare_amount	pickup_datetime	pickup_longitude	pickup_latitude	dropoff_longitu
	0	24238194	2015- 05-07 19:52:06	7.5	2015-05-07 19:52:06 UTC	-73.999817	40.738354	-73.999!
	1	27835199	2009- 07-17 20:04:56	7.7	2009-07-17 20:04:56 UTC	-73.994355	40.728225	-73.994 [°]
	2	44984355	2009- 08-24 21:45:00	12.9	2009-08-24 21:45:00 UTC	-74.005043	40.740770	-73.962!
	3	25894730	2009- 06-26 08:22:21	5.3	2009-06-26 08:22:21 UTC	-73.976124	40.790844	-73.965:
	4	17610152	2014- 08-28 17:47:00	16.0	2014-08-28 17:47:00 UTC	-73.925023	40.744085	-73.973(
	5	44470845	2011- 02-12 02:27:09	4.9	2011-02-12 02:27:09 UTC	-73.969019	40.755910	-73.969(
	6	48725865	2014- 10-12 07:04:00	24.5	2014-10-12 07:04:00 UTC	-73.961447	40.693965	-73.871 ⁻
	7	44195482	2012- 12-11 13:52:00	2.5	2012-12-11 13:52:00 UTC	0.000000	0.000000	0.0000
	4 ▮							>

info

```
In [4]:
    # to identify missing values
    data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200000 entries, 0 to 199999
Data columns (total 9 columns):
    Column
                       Non-Null Count
 #
                                        Dtype
    Unnamed: 0
 0
                        200000 non-null int64
 1
     key
                        200000 non-null object
    fare_amount
                        200000 non-null float64
 2
 3
     pickup_datetime
                       200000 non-null object
 4
    pickup_longitude
                       200000 non-null float64
 5
     pickup latitude
                        200000 non-null float64
     dropoff_longitude 199999 non-null float64
 7
     dropoff_latitude
                       199999 non-null float64
 8
     passenger_count
                       200000 non-null int64
dtypes: float64(5), int64(2), object(2)
memory usage: 13.7+ MB
```

describe

```
In [5]: # to display summary of the dataset
data.describe()
```

Out[5]:		Unnamed: 0	fare_amount	pickup_longitude	pickup_latitude	${\bf dropoff_longitude}$	dropoff_latitu
	count	2.000000e+05	200000.000000	200000.000000	200000.000000	199999.000000	199999.0000
	mean	2.771250e+07	11.359955	-72.527638	39.935885	-72.525292	39.9238
	std	1.601382e+07	9.901776	11.437787	7.720539	13.117408	6.7948
	min	1.000000e+00	-52.000000	-1340.648410	-74.015515	-3356.666300	-881.9855
	25%	1.382535e+07	6.000000	-73.992065	40.734796	-73.991407	40.7338
	50%	2.774550e+07	8.500000	-73.981823	40.752592	-73.980093	40.7530
	75%	4.155530e+07	12.500000	-73.967153	40.767158	-73.963659	40.7680
	max	5.542357e+07	499.000000	57.418457	1644.421482	1153.572603	872.6976
	4						>

columns

```
In [7]:     a=data.dropna(axis=1)
     a
     b=a.head(8)
     b
```

Out[7]:		Unnamed:	key	fare_amount	pickup_datetime	pickup_longitude	pickup_latitude	passenger_cour
	0	24238194	2015- 05-07 19:52:06	7.5	2015-05-07 19:52:06 UTC	-73.999817	40.738354	
	1	27835199	2009- 07-17 20:04:56	7.7	2009-07-17 20:04:56 UTC	-73.994355	40.728225	
	2	44984355	2009- 08-24 21:45:00	12.9	2009-08-24 21:45:00 UTC	-74.005043	40.740770	
	3	25894730	2009- 06-26 08:22:21	5.3	2009-06-26 08:22:21 UTC	-73.976124	40.790844	
	4	17610152	2014- 08-28 17:47:00	16.0	2014-08-28 17:47:00 UTC	-73.925023	40.744085	
	5	44470845	2011- 02-12 02:27:09	4.9	2011-02-12 02:27:09 UTC	-73.969019	40.755910	
	6	48725865	2014- 10-12 07:04:00	24.5	2014-10-12 07:04:00 UTC	-73.961447	40.693965	
	7	44195482	2012- 12-11 13:52:00	2.5	2012-12-11 13:52:00 UTC	0.000000	0.000000	
	4							•
In [8]:	a	.columns						
Out[8]:	<pre>Index(['Unnamed: 0', 'key', 'fare_amount', 'pickup_datetime',</pre>							

EDA and Visualization

dtype='object')

```
In [9]: sns.pairplot(b)
```

Out[9]: <seaborn.axisgrid.PairGrid at 0x21700623ac0>

distribution plot

```
In [10]: sns.displot(b['Unnamed: 0'])
```

Out[10]: <seaborn.axisgrid.FacetGrid at 0x21707cf4760>

correlation

Out[11]: <AxesSubplot:>

To train the model-Model Building

```
In [12]:
           x=b[[ 'passenger_count']]
          y=b['Unnamed: 0']
In [13]:
           # to split my dataset into training and test data
           from sklearn.model_selection import train_test_split
           x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [14]:
           from sklearn.linear_model import LinearRegression
           lr= LinearRegression()
          lr.fit(x_train,y_train)
Out[14]: LinearRegression()
In [15]:
           print(lr.intercept_)
          31799696.25
In [16]:
           coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
           coeff
                         Co-efficient
Out[16]:
          passenger_count
                          3385233.75
In [17]:
           prediction=lr.predict(x_test)
           plt.scatter(y_test,prediction)
Out[17]: <matplotlib.collections.PathCollection at 0x2170a5d9250>
          4.8
          4.6
          4.4
          4.2
          4.0
          3.8
          3.6
                           2.5
                                           3.5
                  2.0
                                   3.0
                                                   4.0
                                                           4.5
                                                            1e7
In [18]:
           print(lr.score(x_test,y_test))
          -2.3546184496726354
```

```
In [19]: lr.score(x_test,y_test)
Out[19]: -2.3546184496726354
```

Ridge regression

Lasso regression

```
In [23]:
          la=Lasso(alpha=10)
          la.fit(x_train,y_train)
          la.score(x train,y train)
         0.30061383674065434
Out[23]:
In [24]:
          la.score(x_test,y_test)
         -2.354615938563074
Out[24]:
In [25]:
          from sklearn.linear_model import ElasticNet
          en=ElasticNet()
          en.fit(x_train,y_train)
Out[25]: ElasticNet()
In [26]:
          print(en.coef_)
          [2832090.81699346]
In [27]:
          print(en.intercept_)
         32795353.529411763
```

```
In [28]:
          predict=en.predict(x_test)
In [29]:
          print(en.score(x_test,y_test))
         -2.0085978401533984
In [30]:
          from sklearn import metrics
In [31]:
          print("Mean Absolute error:",metrics.mean_absolute_error(y_test,predict))
         Mean Absolute error: 18033154.082788672
In [32]:
          print("Mean Squared error:",metrics.mean squared error(y test,predict))
         Mean Squared error: 395261228749370.0
In [33]:
          print("Root squared error:",np.sqrt(metrics.mean squared error(y test,predict)))
         Root squared error: 19881177.7505602
```