Particle spectrograph

Wave operator and propagator

${\mathfrak r}_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{2ikt_1-4ikt_3}{3t_1t_3+6k^2t_1t_3}$	$\frac{i\sqrt{2} k(t_1+4t_3)}{3(1+2k^2)^2 t_1 t_3}$	0	$\frac{2 k^2 (t_1 + 4 t_3)}{3 (1 + 2 k^2)^2 t_1 t_3}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{\sqrt{2} (t_1 - 2t_3)}{3(1 + 2k^2)t_1t_3}$	$\frac{t_1+4t_3}{3(1+2k^2)^2t_1t_3}$	0	$-\frac{i\sqrt{2}k(t_1+4t_3)}{3(1+2k^2)^2t_1t_3}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{2(t_1+t_3)}{3t_1t_3}$	$-\frac{\sqrt{2} (t_1-2t_3)}{3(1+2k^2)t_1t_3}$	0	$\frac{2ik(t_1-2t_3)}{3t_1t_3+6k^2t_1t_3}$
$\tau_1^{\#1}{}_+\alpha\beta$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_1+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_1^{\#2}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_1+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\sigma_1^{\#1} + \alpha \beta$	$\sigma_1^{#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + \alpha$

f_{1}^{+2}	0	0	0	$\frac{1}{3}$ \bar{l} k $(t_1 - 2t_3)$	$\frac{1}{3}$ \bar{l} $\sqrt{2}$ $k(t_1 + t_3)$	0	$\frac{2}{3} k^2 (t_1 + t_3)$
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1^{-}}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1-2t_3}{3\sqrt{2}}$	$\frac{t_1+t_3}{3}$	0	$-\frac{1}{3}\bar{l}k(t_1-2t_3)\left -\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)\right $
$\omega_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{1}{6}(t_1+4t_3)$	$\frac{t_1-2t_3}{3\sqrt{2}}$	0	$-\frac{1}{3}ik(t_1-2t_3)$
$f_{1}^{\#1}\!$	$-\frac{i k t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\!\!\!\!/}^{}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#1}{}_{\!$	$+^{\alpha\beta} k^2 r_1 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0
	$ u_1^{\#1} + \alpha^{\beta} $	$ u_1^{\#_2} + \alpha \beta $	$f_{1+}^{#1} + \alpha \beta$	$\omega_{1^{\bar{-}}}^{\#_1} +^{\alpha}$	$\omega_1^{\#2} +^{\alpha}$	$f_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$f_1^{\#2} + \alpha$

$\sigma_{2}^{\#1}{}_{lphaeta\chi}$	0	0	$\frac{2}{2k^2r_1+t_1}$
$\tau_{2}^{\#1}_{\alpha\beta}$	$-\frac{2\bar{i}\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_{2}^{\#1}{}_{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
	$\sigma_2^{#1} + \alpha \beta$	$\tau_{2+}^{#1} + ^{\alpha\beta}$	$\sigma_{2^-}^{\#1} +^{lphaeta\chi}$

$\omega_{2^{+}\alpha\beta}^{\#1}f_{2^{+}\alpha\beta}^{\#1}\omega_{2^{-}\alpha\beta\chi}^{\#1}$							
$\omega_{2}^{\#1}\dagger^{lphaeta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0				
$f_{2}^{#1} \dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0				
$\omega_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$				

	$\omega_0^{\sharp 1}$	$f_{0}^{#1}$	$f_{0+}^{#2}$	$\omega_0^{\#1}$
$\omega_{0}^{\#1}$ †	t_3	$-i \sqrt{2} kt_3$	0	0
$f_{0^{+}}^{#1}\dagger$	$i\sqrt{2} kt_3$	$2k^2t_3$	0	0
$f_{0}^{#2}$ †	0	0	0	0
$\omega_0^{\sharp 1}$ †	0	0	0	-t ₁

Source constraints/gauge generators						
SO(3) irreps	Multiplicities					
$\tau_{0+}^{\#2} == 0$	1					
$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	1					
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3					
$\tau_{1}^{\#1\alpha} == 0$	3					
$\tau_{1+}^{\#1}{}^{\alpha\beta} + i k \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	3					
$\tau_{2+}^{\#1}{}^{\alpha\beta} - 2 i k \sigma_{2+}^{\#1}{}^{\alpha\beta} == 0$	5					
Total constraints:	16					

$\sigma_{0^{\text{-}}}^{\#1}$	0	0	0	$-\frac{1}{t_1}$
$\tau_{0}^{\#2}$	0	0	0	0
$\tau_{0}^{\#1}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$\sigma_0^{\#1}$	$\frac{1}{(1+2k^2)^2t_3}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	0	0
,	$\sigma_{0}^{\#1}$ †	$\tau_0^{\#1}$ †	$\tau_0^{\#2} \dagger$	$\sigma_{0}^{\#1}$ \dagger

Massive and massless spectra

(No massless particles)

Unitarity conditions

 $r_1 < 0 \&\& t_1 > 0$