

Mathématiques et Calcul : Contrôle continu n°3 janvier 2014

L1 : Licence Sciences et Technologies, mention Mathématiques, Informatique et Applications

Nombre de pages de l'énoncé : 2. Durée 2h30.

NB : Ce sujet contient 5 exercices. Chaque résultat doit être démontré clairement.

Tout document est interdit. Les calculatrices et les téléphones portables, même à titre d'horloge, sont également interdits.

On rappelle les développements limités suivants. Ils pourront être utilisés au cours de ce contrôle continu. Ils sont donnés au voisinage de 0 (n et p sont des entiers quelconques).

$$\exp(x) = 1 + x + \frac{x^2}{2} + \dots + \frac{x^n}{n!} + o(x^n)$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^n \frac{x^n}{n} + o(x^n)$$

$$\sin(x) = x - \frac{x^3}{6} + \dots + (-1)^p \frac{x^{2p+1}}{(2p+1)!} + o(x^{2p+1})$$

$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + o(x^n)$$

Exercice 1

Soit f et g deux fonctions dont les développements limités en 0 sont donnés par $f(x) = 1 + 2x + x^2 + o(x^2)$ et $g(x) = 1 - x + 3x^2 + o(x^2)$.

- 1) Donner le développement limité à l'ordre 2 en 0 de $f \times g$.
- 2) Donner le dévelopement limité à l'ordre 2 en 0 de $\frac{1}{f}$ et $\frac{1}{q}$.

Exercice 2

- 1) Calculer le développement limité de $f(x) = \exp(x)\sin(x)$ à l'ordre 3 au voisinage de 0.
- 2) En déduire le développement limité de $\frac{1}{1+f(x)}$ à l'ordre 3 au voisinage de 0.

Exercice 3

- 1) Calculer le développement limité de $\ln(1-x+\sin(x))$ à l'ordre 3 au voisinage de 0.
- 2) À l'aide d'un développement limité, en déduire $\lim_{x\to 0}(1-x+\sin(x))^{\frac{1}{x^3}}$.

Exercice 4

Soit f la fonction définie sur]1, $+\infty$ [par $f(x) = \frac{2x}{x-1}$.

- 1) Montrer que f est une bijection continue de $]1, +\infty[\rightarrow]2, +\infty[$.
- 2) Calculer explicitement f^{-1} en précisant son ensemble de définition $D_{f^{-1}}$.
- 3) Calculer la dérivée de f^{-1} en utilisant la forme explicite de f^{-1} obtenue à la question précédente.

Exercice 5 On considère la fonction f définie par $f(x) = \exp\left(\frac{1}{x}\right)$ pour x > 0.

1) Donner l'ensemble de définition de f et l'expression de la dérivée de la fonction f.

- 2) On se fixe un réel x > 0. Montrer qu'il existe c dans]x, x+1[tel que $f(x) f(x+1) = \frac{1}{c^2} \exp\left(\frac{1}{c}\right)$.
- 3) En déduire que pour tout x > 0,

$$\frac{1}{(x+1)^2} \exp\left(\frac{1}{x+1}\right) \leqslant f(x) - f(x+1) \leqslant \frac{1}{x^2} \exp\left(\frac{1}{x}\right).$$

4) En déduire la limite

$$\lim_{x \to +\infty} x^2 \left(f(x) - f(x+1) \right).$$

Exercice 6

On considère les deux suites (u_n) et (v_n) définies, pour tout entier naturel n, par :

$$u_0 = 3,$$
 $v_0 = 4,$ $u_{n+1} = \frac{u_n + v_n}{2},$ $v_{n+1} = \frac{u_{n+1} + v_n}{2}.$

- 1) Calculer u_1, v_1, u_2 et v_2 .
- 2) Soit la suite (w_n) définie, pour tout entier naturel n, par : $w_n = v_n u_n$
 - (a) Montrer que la suite (w_n) est une suite géométrique de raison $\frac{1}{4}$.
 - (b) Exprimer w_n en fonction de n et préciser la limite de la suite (w_n) .
- 3) Après avoir étudié le sens de variation des suites (u_n) et (v_n) , démontrer que ces deux suites sont adjacentes. Que peut-on en déduire?
- 4) On considère à présent la suite (t_n) définie, pour tout entier naturel n, par $t_n = \frac{u_n + 2v_n}{3}$
 - (a) Montrer que la suite (t_n) est constante.
 - (b) En déduire la limite des suites (u_n) et (v_n) .

Exercice 7

On considère le système d'équations linéaires suivant

$$\begin{cases} z + y + 2x &= 4 \\ 2y + x + z &= 2 \\ 3x + 2z + 2y &= 6 \end{cases}$$

- 1) Mettre le système sous forme matricielle : AX = Y.
- 2) Calculer l'inverse de la matrice A.
- 3) Calculer les solutions du système.

Exercice 8 Soit

$$f: \mathbb{R}^2 \quad \to \quad \mathbb{R}^2$$

$$(x,y) \quad \mapsto \quad (3x - y, x + 2y)$$

- 1) Montrer que f est linéaire.
- 2) Donner la matrice de f dans la base canonique \mathcal{B} de \mathbb{R}^2 .
- 3) Soit $\mathcal{B} = \{\vec{u} = (1,1), \ \vec{v} = (1,-1)\}$. Montrer que \mathcal{B}' est une base de \mathbb{R}^2 .
- 4) Donner la matrice de f dans la base \mathcal{B}' .

Exercice 9

On considère la famille de vecteurs dans \mathbb{R}^3

$$\mathcal{F} = \{ \vec{u} = (-2, 1, 1); \ \vec{v} = (1, -2, 1); \ \vec{w} = (1, 1, -2) \}$$

et l'ensemble $E = \{(x, y, z) \in \mathbb{R}^3 | x + y + z = 0\}.$

- 1) Montrer que E est un sous-espace vectoriel de \mathbb{R}^3 .
- 2) Donner une base de E et déterminer la dimension de E.

3) Calculer le rang de la matrice

$$A = \begin{pmatrix} -2 & 1 & 1\\ 1 & -2 & 1\\ 1 & 1 & -2 \end{pmatrix}.$$

- 4) En déduire que $\dim (Vect(\mathcal{F})) \geqslant 2$.
- 5) En déduire que \mathcal{F} est une famille génératrice de E.