

CORRIGÉ

EXERCICE 1

1. Les vecteurs V_1, V_2, V_3 sont non nuls et vérifient :

$$MV_1 = V_1$$
, $MV_2 = 6V_2$, $MV_3 = -2V_3$

Ce sont bien des vecteurs propres, V_1 est associé à la valeur propre 1, V_2 est associé à la valeur propre 6, V_3 est associé à la valeur propre -2.

2. $M \in \mathcal{M}_3(\mathbb{R})$ et admet trois valeurs propres distinctes, donc M est diagonalisable. En posant

$$P = \begin{pmatrix} 1 & -1 & -1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$$
, la matrice P est inversible et on a $M = PDP^{-1}$, autrement dit $MP = PD$.

- 3. (a) $P^2 = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & -2 & 1 \end{pmatrix}$, $P^3 = \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ -1 & 2 & -2 \end{pmatrix}$. On obtient $P^3 + P^2 + I_3 = 0$, donc $X^3 + X^2 + 1$ est bien un polynôme annulateur de P.
 - (b) On en déduit que, $-P^3-P^2=I_3\Longrightarrow P(-P^2-P)=I_3$, donc P est inversible et :

$$P^{-1} = -P^2 - P = \begin{pmatrix} -1 & 2 & 1 \\ -1 & 1 & 1 \\ -1 & 1 & 0 \end{pmatrix}$$

4. (a)
$$Y^2 = (P^{-1}XP)(P^{-1}XP) = P^{-1}X(PP^{-1})XP = P^{-1}X^2P$$
. (b)

$$X^{2} - 4X + I = M \iff P^{-1}(X^{2} - 4X + I)P = P^{-1}MP$$

 $\iff (P^{-1}X^{2}P) - 4(P^{-1}XP) + (P^{-1}P) = (P^{-1}MP)$
 $\iff Y^{2} - 4Y + I_{3} = D$

5. (a) Soit
$$Y = \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}$$
 une matrice diagonale. Alors $Y^2 = \begin{pmatrix} a^2 & 0 & 0 \\ 0 & b^2 & 0 \\ 0 & 0 & c^2 \end{pmatrix}$. On a :

$$\begin{split} Y^2 - 4Y + I &= D \Longleftrightarrow \left(\begin{array}{ccc} a^2 - 4a + 1 & 0 & 0 \\ 0 & b^2 - 4b + 1 & 0 \\ 0 & 0 & c^2 - 4c + 1 \end{array} \right) = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & -2 \end{array} \right) \\ \Longleftrightarrow \left\{ \begin{array}{ccc} a^2 - 4a + 1 & = 1 \\ b^2 - 4b + 1 & = 6 \\ c^2 - 4c + 1 & = -2 \end{array} \right. \end{split}$$

ANNALES DU CONCOURS ECRICOME PREPA 2018 EPREUVE MATHEMATIQUES OPTION TECHNOLOGIQUE - PAGE 3

$$\iff \begin{cases} a^2 - 4a &= 0 \\ b^2 - 4b - 5 &= 0 \\ c^2 - 4c + 3 &= 0 \end{cases}$$

$$\iff \begin{cases} a = 0 \text{ ou } a = 4 & (\Delta_a = 16) \\ b = -1 \text{ ou } b = 5 & (\Delta_b = 36) \\ c = 1 \text{ ou } c = 3 & (\Delta_c = 4) \end{cases}$$

Si on impose que $a \leq 2, b \leq 2, c \leq 2$, alors :

$$Y^{2} - 4Y + I = D \iff \begin{cases} a = 0 \\ b = -1 \\ c = 1 \end{cases} \iff Y = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

(b) On sait que $Y = P^{-1}XP$, donc $X = PYP^{-1}$.

On obtient:
$$PY = \begin{pmatrix} 0 & 1 & -1 \\ 0 & 1 & 0 \\ 0 & -1 & -1 \end{pmatrix}$$
 ou $YP^{-1} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & -1 & -1 \\ -1 & 1 & 0 \end{pmatrix}$, puis $X = \begin{pmatrix} 0 & 0 & 1 \\ -1 & 1 & 1 \\ 2 & -2 & -1 \end{pmatrix}$.

EXERCICE 2

Partie I.

1. g est dérivable sur $]0,+\infty[$ et $\forall x>0, g'(x)=2x-\frac{4}{x}=\frac{2(x^2-2)}{x}.$ On en déduit ci-contre le tableau de variations de g sur $]0,+\infty[$.

La fonction g atteint donc son minimum sur $]0, +\infty[$ en $\sqrt{2}$, qui vaut :

$$g(\sqrt{2}) = 2 - 4\ln(\sqrt{2}) = 2 - 4\ln(2^{1/2}) = 2 - 4\frac{1}{2}\ln(2) = 2 - 2\ln(2) = 2(1 - \ln(2))$$

- 2. Comme 2 < e, on a $\ln(2) < \ln(e) = 1$, donc $1 \ln(2) > 0$. Ainsi, le minimum de g est strictement positif. On en déduit donc que $\forall x > 0, g(x) > 0$.
- 3. On sait déjà que $\lim_{x\to 0} \frac{x}{4} = 0$. De plus, par quotient, $\lim_{x\to 0^+} \frac{1+\ln(x)}{x} = -\infty$. Par somme, $\lim_{x\to 0} f(x) = -\infty$. La courbe admet donc une asymptote verticale d'équation x=0.
- 4. On sait que par croissances comparées, $\lim_{x\to +\infty} \frac{\ln(x)}{x} = 0$, donc par somme, on a $\lim_{x\to 0} f(x) = +\infty$.

$$f(x) - \left(\frac{x}{4}\right) = \frac{1 + \ln(x)}{x} = \frac{1}{x} + \frac{\ln(x)}{x} \underset{x \to +\infty}{\longrightarrow} 0$$
 (croissances comparées)

Ainsi, la droite (D) est bien asymptote à la courbe (C) au voisinage de $+\infty$.

6. On étudie le signe de $f(x) - \left(\frac{x}{4}\right) = \frac{1 + \ln(x)}{x}$. On a :

$$\frac{1+\ln(x)}{x}\geqslant 0 \Longleftrightarrow 1+\ln(x)\geqslant 0 \Longleftrightarrow \ln(x)\geqslant -1 \Longleftrightarrow x\geqslant e^{-1}$$

ANNALES DU CONCOURS ECRICOME PREPA 2018 EPREUVE MATHEMATIQUES OPTION TECHNOLOGIQUE - PAGE 4

Sur $]0, e^{-1}[$, (C) est en-dessous de (D). Sur $[e^{-1}, +\infty[$, (C) est au-dessus de (D). Les deux courbes s'intersectent au point d'abscisse $\frac{1}{e}$, et d'ordonnée $\frac{1}{4e}$.

7. La fonction f est dérivable et on a :

$$\forall x > 0, f'(x) = \frac{1}{4} + \frac{\frac{1}{x}x - (1 + \ln(x))1}{x^2} = \frac{1}{4} - \frac{\ln(x)}{x^2} = \frac{x^2 - 4\ln(x)}{x^2} = \frac{g(x)}{x^2} > 0$$

La fonction f est donc strictement croissante sur $]0, +\infty[$. On en déduit le tableau de variations de f.

x	0	$+\infty$
f'(x)		+
f(x)	_	+∞

8. (a) La fonction f' est encore dérivable sur $]0, +\infty[$, puisque $\forall x > 0, f'(x) = \frac{1}{4} - \frac{\ln(x)}{x^2},$ et on a :

$$\forall x > 0, f''(x) = -\frac{\frac{1}{x}x^2 - \ln(x)2x}{x^4} = \frac{2x\ln(x) - x}{x^4} = \frac{2\ln(x) - 1}{x^3}$$

(b)
$$f''(x) \geqslant 0 \Longleftrightarrow \frac{2\ln(x) - 1}{x^3} \geqslant 0 \Longleftrightarrow 2\ln(x) \geqslant 1 \Longleftrightarrow \ln(x) \geqslant \frac{1}{2} \Longleftrightarrow x \geqslant e^{1/2} = \sqrt{e}$$

Sur $]0, \sqrt{e}]$, la fonction f est concave. Sur $[\sqrt{e}, +\infty[$, la fonction f est convexe. La courbe admet donc un point d'inflexion au point d'abscisse \sqrt{e} .

ANNALES DU CONCOURS ECRICOME PREPA 2018 EPREUVE MATHEMATIQUES OPTION TECHNOLOGIQUE - PAGE 5

Partie II.

1. La fonction u est dérivable sur $]0, +\infty[$ et $\forall x > 0, u'(x) = 2\frac{1}{x}\ln(x)$.

2.

$$\int_{1}^{e} f(x)dx = \int_{1}^{e} \left(\frac{x}{4} + \frac{1}{x} + \frac{\ln(x)}{x}\right) dx$$
$$= \left[\frac{x^{2}}{8} + \ln(x) + \frac{1}{2}(\ln x)^{2}\right]_{1}^{e}$$
$$\frac{e^{2}}{8} + 1 + \frac{1^{2}}{2} - \frac{1}{8} - 0 - 0 = \frac{e^{2} + 11}{8}$$

- 3. La fonction h est continue sur \mathbb{R} sauf éventuellement en 1 et e (f est bien continue sur [1, e]). De plus, la fonction h admet bien des limites finies à droite et à gauche en 1 et en e, donc h est bien continue par morceaux sur \mathbb{R} .
 - $\forall x \in [1, e], f(x) \ge 0$, donc $\forall x \in \mathbb{R}, h(x) \ge 0$.

•
$$\int_{-\infty}^{+\infty} h(x)dx = \frac{8}{e^2 + 11} \int_{1}^{e} f(x)dx = 1.$$

La fonction h est donc bien une densité de probabilité.

4. (a) On pose:

$$\forall x \in [1, e], \begin{vmatrix} u(x) = \ln(x) \\ v'(x) = 1 \end{vmatrix}, \begin{vmatrix} u'(x) = 1/x \\ v(x) = x \end{vmatrix}.$$

Par intégration par parties, on a :

$$\int_{1}^{e} \ln(x)dx = \left[x\ln(x)\right]_{1}^{e} - \int_{1}^{e} \frac{1}{x}dxdx = e\ln(e) - \int_{1}^{e} 1dx = e - (e - 1) = 1$$

(b) X admet une espérance car bornée (h est non-nulle sur un segment), et on a :

$$\begin{split} E(X) &= \int_{-\infty}^{+\infty} x h(x) dx \\ &= \int_{1}^{e} x \frac{8}{e^2 + 11} f(x) dx \\ &= \frac{8}{e^2 + 11} \int_{1}^{e} \left(\frac{x^2}{4} + (1 + \ln(x)) \right) dx \\ &= \frac{8}{e^2 + 11} \left(\left[\frac{x^3}{12} + x \right]_{1}^{e} + 1 \right) \\ &= \frac{8}{e^2 + 11} \left(\frac{e^3}{12} + e - \frac{1}{12} \right) = \frac{2(e^3 + 12e - 1)}{3(e^2 + 11)} \end{split}$$

EXERCICE 3

Partie I - Étude de l'urne du n-ième tirage

- 1. U_2 se réalise si, au cours du premier tirage, on a tiré (dans l'urne U) une boule noire, donc $P(U_2) = \frac{1}{3}$.
- 2. Sachant U_2 , on fait des tirages dans l'urne U, donc : $P_{U_2}(U_3) = \frac{1}{3}$. Sachant $\overline{U_2}$, on fait des tirages dans l'urne $V: P_{\overline{U_2}}(U_3) = \frac{1}{4}$.

Comme $(U_2, \overline{U_2})$ forme un système complet d'événements, on a d'après la formule des probabilités totales :

$$P(U_3) = P(U_2 \cap U_3) + P(\overline{U_2} \cap U_3) = P(U_2)P_{U_2}(U_3) + P(\overline{U_2})P_{\overline{U_2}}(U_3) = \frac{1}{3} \cdot \frac{1}{3} + \frac{1}{4} \cdot \frac{2}{3} = \frac{5}{18}$$

- 3. (a) Sachant U_n , on fait des tirages dans l'urne U, donc : $P_{U_n}(U_{n+1}) = \frac{1}{3}$. Sachant $\overline{U_n}$, on fait des tirages dans l'urne $V: P_{\overline{U_n}}(U_{n+1}) = \frac{1}{4}$.
 - (b) Comme $(U_n, \overline{U_n})$ forme un système complet d'événements, on a d'après la formule des probabilités totales :

$$P(U_{n+1}) = P(U_n)P_{U_n}(U_{n+1}) + P(\overline{U_n})P_{\overline{U_n}}(U_{n+1})$$

$$= \frac{1}{3}P(U_n) + \frac{1}{4}(1 - P(U_n))$$

$$= \frac{1}{4} + \frac{1}{12}P(U_n)$$

- (c) $\alpha = \frac{1}{4} + \frac{1}{12}\alpha \iff \frac{11}{12}\alpha = \frac{1}{4} \iff \alpha = \frac{3}{11}$.
- (d) La suite $\left(P(U_n) \frac{3}{11}\right)$ est géométrique de raison $\frac{1}{12}$. On en déduit que :

$$\forall n \in \mathbb{N}^*, \ P(U_n) = \frac{3}{11} + \left(\frac{1}{12}\right)^{n-1} \left(P(U_1) - \frac{3}{11}\right) = \frac{3}{11} + \frac{8}{11} \left(\frac{1}{12}\right)^{n-1}$$

(e) Puisque
$$-1 < \frac{1}{12} < 1$$
, on a $\lim_{n \to +\infty} \left(\frac{1}{12}\right)^{n-1} = 0$, donc $\lim_{n \to +\infty} P(U_n) = \frac{3}{11}$.

Partie II - Étude du nombre de boules blanches

1. On a $X_1(\Omega) = \{0,1\}$, et puisqu'on fait un tirage dans l'urne U au premier tirage, on a :

$$P(X_1 = 0) = \frac{1}{3}$$
, et $P(X_1 = 1) = \frac{2}{3}$

 X_1 suit donc une loi de Bernoulli de paramètre 2/3.

2. (a) Sachant $[X_1 = 0]$, on fait le deuxième tirage dans l'urne U, donc :

$$P_{[X_1=0]}(X_2=0) = \frac{1}{3}$$
 et $P_{[X_1=0]}(X_2=1) = \frac{2}{3}$

Sachant $[X_1 = 1]$, on fait le deuxième tirage dans l'urne V, donc :

$$P_{[X_1=1]}(X_2=1) = \frac{3}{4}$$
 et $P_{[X_1=1]}(X_2=2) = \frac{1}{4}$

(b) On a $X_2(\Omega) = \{0, 1, 2\}.$

•
$$P(X_2 = 0) = P([X_1 = 0] \cap [X_2 = 0]) = P(X_1 = 0)P_{[X_1 = 0]}(X_2 = 0) = \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{9}$$

• $P(X_2 = 2) = P([X_1 = 1] \cap [X_2 = 2]) = P(X_1 = 1)P_{[X_1 = 1]}(X_2 = 2) = \frac{2}{3} \cdot \frac{1}{4} = \frac{1}{6}$

•
$$P(X_2 = 2) = P([X_1 = 1] \cap [X_2 = 2]) = P(X_1 = 1)P_{[X_1 = 1]}(X_2 = 2) = \frac{2}{3} \cdot \frac{1}{4} = \frac{1}{6}$$

• On en déduit que $P(X_2 = 1) = 1 - \frac{1}{9} - \frac{1}{6} = \frac{13}{18}$

(c)
$$E(X_2) = 0.P(X_2 = 0) + 1.P(X_2 = 1) + 2.P(X_2 = 2) = \frac{13}{18} + \frac{2}{6} = \frac{19}{18}$$

```
res1=0
    tirage2=grand(1,1,'uin',1,3)
    if tirage2<3 then res2=1
    else res2= 0
    end
end
```

4. Pour tout $n \ge 1$, $X_n(\Omega) = [0, n]$. En effet, il est possible de n'avoir tiré que des boules noires, ou que des boules blanches, et toutes les situations intermédiaires sont possibles.

 $[X_n=0]$ se réalise si et seulement si on obtient n fois de suite une boule noire (donc toujours dans l'urne U), donc par probabilités composées on en déduit que :

$$P(X_n = 0) = \left(\frac{1}{3}\right)^n$$

- 5. A chaque tirage d'une boule blanche, on change d'urne. Si on a changé un nombre pair de fois d'urne, alors la (n+1)-ième boule est bien tirée dans l'urne U.
- 6. En utilisant le SCE $([X_n = k])_{k \in [0,n]}$, on a :

$$P(X_{n+1} = 1) = \sum_{k=0}^{n} P(X_n = k) P_{[X_n = k]}(X_{n+1} = 1)$$

$$= P(X_n = 0) P_{[X_n = 0]}(X_{n+1} = 1) + P(X_n = 1) P_{[X_n = 1]}(X_{n+1} = 1) \quad \text{(les autres probas conditionnnel}$$

$$= \frac{2}{3} P(X_n = 0) + \frac{3}{4} P(X_n = 1)$$

ANNALES DU CONCOURS ECRICOME PREPA 2018 EPREUVE MATHEMATIQUES OPTION TECHNOLOGIQUE - PAGE 8

En effet, si $[X_n=0]$ est réalisé, le (n+1)-ième tirage se fait dans l'urne U, donc $P_{[X_n=0]}(X_{n+1}=1)=\frac{2}{3}$ (proba de tirer une boule blanche dans U). De même, si $[X_n=1]$ est réalisé, le (n+1)-ième tirage se fait dans l'urne V, donc $P_{[X_n=1]}(X_{n+1}=1)=\frac{3}{4}$ (proba de tirer une boule noire dans V).

7. Pour tout $n \ge 1$,

$$u_{n+1} = \left(\frac{4}{3}\right)^{n+1} P(X_{n+1} = 1)$$

$$= \left(\frac{4}{3}\right)^{n+1} \left(\frac{2}{3}P(X_n = 0) + \frac{3}{4}P(X_n = 1)\right)$$

$$= \left(\frac{4}{3}\right)^n P(X_n = 1) + \frac{2}{3} \left(\frac{4}{3}\right)^{n+1} \left(\frac{1}{3}\right)^n$$

$$= u_n + \frac{8}{9} \left(\frac{4}{9}\right)^n$$

- 8. (a) On a $u_1 = \frac{4}{3}P(X_1 = 1) = \frac{4}{3} \times \frac{2}{3} = \frac{8}{9} = \frac{8}{5}\left(1 \frac{4}{9}\right)$.
 - Soit $n \ge 1$. Supposons que $u_n = \frac{8}{5} \left(1 \left(\frac{4}{9} \right)^n \right)$. Alors :

$$u_{n+1} = u_n + \frac{8}{9} \left(\frac{4}{9}\right)^n = \frac{8}{5} \left(1 - \left(\frac{4}{9}\right)^n\right) + \frac{8}{9} \left(\frac{4}{9}\right)^n = \frac{8}{5} \left(1 - \left(\frac{4}{9}\right)^{n+1}\right)$$

- Par récurrence, on a donc bien que : $\forall n \geqslant 1, u_n = \frac{8}{5} \left(1 \left(\frac{4}{9}\right)^n\right)$.
- (b) On a donc : $P(X_n = 1) = \left(\frac{3}{4}\right)^n u_n = \frac{8}{5} \left(\frac{3}{4}\right)^n \frac{8}{4} \left(\frac{1}{3}\right)^n$.
- (c) Comme $-1 < \frac{3}{4} < 1$ et $0 < \frac{1}{3} < 1$, on en déduit que $\lim_{n \to +\infty} P(X_n = 1) = 0$.