Project Overview

For my final project, I chose to curate a database of protein-specific information acquired from the UniProt Knowledge Base (UniProtKB, https://www.uniprot.org/uniprot/?query=reviewed:yes). I wanted the R script to read in a list of UniProt IDs from a CSV file and output R and SQL dataframes containing relevant information corresponding to each UniProt entry, including molecular function, biological process, Reactome pathway, and disease involvement. This involves querying the UniProt webpage for each ID using rvest, cleaning the data within R using dplyr, and organizing the data into a SQL database with normalized tables using sqldf.

My motivation for this project comes from my work as a Research Technician in the lab of Dr. Brad Hyman at Massachusetts General Hospital. Researchers in the lab recently completed a long-term study collecting plasma samples from cognitively impaired patients, from which protein expression was measured for 414 proteins over time. I joined this project over the summer and have been involved in analyzing the resulting dataset, both statistically and visually, with the goal of identifying biomarkers that either predict or correlate with cognitive decline. I realized it would be tremendously helpful to have functional information about each protein in addition to the expression data, in order to potentially identify overarching trends in protein networks. Hopefully, the SQL database created in this project will provide further insight into the relationship between protein expression change and cognitive decline going forward.

Background

The project at MGH involves longitudinal measurement of protein expression in plasma obtained over several years from patients with varying severity of mild cognitive impairment (MCI) or Alzheimer's Disease (AD). This particular study analyzed plasma samples collected at either two or three time points per patient, with approximately one year in between blood draws. Briefly, protein expression was measured in plasma samples using a highly-sensitive transcription-based amplification technology from Olink Proteomics, yielding normalized relative protein expression values for each plasma sample. In total, for 414 proteins and 123 subjects with plasma from multiple time points (2 or 3), this generated 145,314 unique data points.

Multiple groups in the lab are analyzing the resulting dataset with different goals, analyzing different subsets of the 414 total proteins assayed. My group is particularly interested in the interplay between cerebral vasculature changes and AD pathogenesis and progression. As such, we have been focusing on a smaller subset of 21 vasculature-related proteins. I came across the R package for Time-course Gene Set Analysis (TcGSA) which is designed to analyze longitundinal RNA-Seq data by grouping individual genes into gene sets a priori which are known to share common biological functions and/or expression patterns. While this package didn't work with the protein expression data in my hands, it inspired me to approach this longitudinal data analysis from a similar perspective.

Methods

I first explored UniProt's Retrieve/ID Mapping tool (https://www.uniprot.org/uploadlists/) to see what information I could download for a given list of UniProt IDs. The tool allows a user to enter a list of UniProt IDs or upload a file containing IDs, after which the user can select which column(s) they wish to download corresponding to each UniProt ID entry.

I opted to download the tissue specificity, KEGG ID, GO Biological Processes, and GO Molecular Functions columns for each UniProt entry. This downloaded file is also available in this GitHub Repo as

 $UniProt_download.csv.$

```
UP_df <- read.csv("UniProt_download.csv", stringsAsFactors = F)
colnames(UP_df)[1] <- "UniProt_ID"</pre>
```

Here is an excerpt of this dataset:

UniProt_ID	GO_BP	GO_CC	GO_MF	Tissue_specificity	Function	KEGG_ID
O00175	cell-cell signa	extracellular s	CCR3 chemokine	Activated monoc	Chemotactic for	hsa:6369;
O00182	cellular respon	collagen-contai	carbohydrate bi	Peripheral bloo	Binds galactosi	hsa:3965;
O00300	apoptotic proce	extracellular m	cytokine activi	Highly expresse	Acts as decoy r	hsa:4982;
O00308	cellular protei	cytoplasm [GO:0	RNA polymerase	Detected in hea	E3 ubiquitin-pr	hsa:11060;
O00533	adult locomotor	apical part of	protease bindin	Expressed in th	Extracellular m	hsa:10752;

I then normalized this dataset by breaking it up into several subsets, each in long format with one value per row and (potentially) multiple rows per UniProt ID.

First, I created a **Tissue_specificity** tibble to store UniProt IDs and the corresponding tissue(s) in which the protein is typically present. Some proteins are expressed in multiple sets of tissue systems, the names of which were all concatenated in one value. To simplify for downstream analysis, I split the string strings by the [.] delimiter and stored separate entries in different rows, such that one UniProt ID may be listed in several rows corresponding to different tissues.

UniProt_ID	Tissue_specificity
O00175	Activated monocytes and activated T lymphocytes.
O00182	Peripheral blood leukocytes and lymphatic tissues
O00182	Expressed in lung, liver, breast and kidney with higher levels in tumor endothelial cells than no
O00182	Expressed in trophoblast cells in decidua and placenta in pregnancy (at protein level)
O00182	Isoform 2 is the most abundant isoform expressed in endothelial cells
O00182	Upon endothelial cell activation isoform 2 expression decreases while expression of isoform 3 and
O00182	Isoform 4 decreases in pathological pregnancy
O00300	Highly expressed in adult lung, heart, kidney, liver, spleen, thymus, prostate, ovary, small inte
O00300	Detected at very low levels in brain, placenta and skeletal muscle
O00300	Highly expressed in fetal kidney, liver and lung.

I created a **Function_overview** tibble to store each sentence in the protein's general function overview as a separate row.

```
# Table for Function_overview
Function_overview <- UP_df %>%
   select(UniProt_ID, Function) %>%
   mutate(Function = str_split(Function, "[.] ")) %>%
```

UniProt_ID	Function
O00175	Chemotactic for resting T-lymphocytes, and eosinophils
O00175	Has lower chemotactic activity for neutrophils but none for monocytes and activated lymphocytes
O00175	Is a strong suppressor of colony formation by a multipotential hematopoietic progenitor cell line
O00175	Binds to CCR3.
O00182	Binds galactosides

Lastly, I created a table linking UniProt IDs with the corresponding KEGG ID so I can later extract information from the Kyoto Encyclopedia of Genes and Genomes (KEGG, https://www.genome.jp/kegg/).

```
# Table for KEGG IDs
UniProt_KEGG <- UP_df %>%
select(UniProt_ID, KEGG_ID)
```

UniProt_ID	KEGG_ID
O00175	hsa:6369;
O00182	hsa:3965;
O00300	hsa:4982;
O00308	hsa:11060;
O00533	hsa:10752;

The Gene Ontology (GO, http://geneontology.org) is an online consortium integrating structural and functional information about genes and gene products from numerous sources. The GO is organized into three categories: Biological Process (BP), Cellular Component (CC), and Molecular Function (MF). BPs refer to broader processes achieved through several molecular activities, from DNA repair to lipid transporter activity. Cellular Components refer to the intracellular component(s) in which a gene product executes a specific function – for example, ribosome or Golgi apparatus. MFs refer to activities performed at the molecular level by one or more gene products, including transporter activity and Toll-like receptor binding.

I created separate dataframes for the BP, CC, and MF. As with other dataframes, I split multiple values from one string into multiple rows per UniProt ID.

Biological Process:

```
# Table for all Gene Ontology Biological Processes
GO_BP_Full <- UP_df %>%
    select(UniProt_ID, GO_BP) %>%
    mutate(GO_BP = str_split(GO_BP, "; ")) %>%
    unnest(GO_BP) %>%
    filter(GO_BP != "") %>%
    separate(GO_BP, into=c("Biological_process", "GO_ID"), sep=" \\[") %>%
    mutate(GO_ID = str_replace(GO_ID, "\\]", ""))
```

UniProt_ID	Biological_process	GO_ID
O00175	cell-cell signaling	GO:0007267
O00175	cellular response to interferon-gamma	GO:0071346
O00175	cellular response to interleukin-1	GO:0071347
O00175	cellular response to tumor necrosis factor	GO:0071356
O00175	chemokine-mediated signaling pathway	GO:0070098

Cellular Components:

```
# Table for all Gene Ontology Cellular Components
GO_CC_Full <- UP_df %>%
    select(UniProt_ID, GO_CC) %>%
    mutate(GO_CC = str_split(GO_CC, "; ")) %>%
    unnest(GO_CC) %>%
    filter(GO_CC != "") %>%
    separate(GO_CC, into=c("Cellular_component", "GO_ID"), sep=" \\[") %>%
    mutate(GO_ID = str_replace(GO_ID, "\\]", ""))
```

O00182 collagen-containing extracellular matrix GO:0062023 O00182 cytoplasm GO:0005737	UniProt_ID	Cellular_component	GO_ID
· ·	O00182 O00182 O00182	collagen-containing extracellular matrix cytoplasm cytosol	

Molecular Functions:

```
# Table for all Gene Ontology Molecular Functions
GO_MF_Full <- UP_df %>%
    select(UniProt_ID, GO_MF) %>%
    mutate(GO_MF = str_split(GO_MF, "; ")) %>%
    unnest(GO_MF) %>%
    filter(GO_MF != "") %>%
    separate(GO_MF, into=c("Molecular_function", "GO_ID"), sep=" \\[") %>%
    mutate(GO_ID = str_replace(GO_ID, "\\]", ""))
```

UniProt_ID	Molecular_function	GO_ID
O00175 O00175	CCR3 chemokine receptor binding CCR chemokine receptor binding	GO:0031728 GO:0048020
O00175 O00175 O00182	chemokine activity receptor ligand activity carbohydrate binding	GO:0008009 GO:0048018 GO:0030246

This dataset contains exhaustive information about the functions, interactions, and localized expression of each protein in the list. However, given the large number of proteins in our study (n=414), I thought it would be beneficial to acquire more succinct information about primary functions and locations of the proteins. This would enable a simpler first-pass analysis to identify relevant protein functions and pathways, which I could then examine in greater detail. I visited the UniProt page for the first protein in the list, with ID O00175, to identify potential information that could serve this purpose.

I noticed that there is a "Keywords" section, with a succinct list of one or two primary Biological Processes and Molecular Functions per protein:

Keywords i

Molecular function	Cytokine
Biological process	Chemotaxis, Inflammatory response

These keywords are manually selected by UniProt database curators from the UniProtKB to reflect the primary one or two biological processes and molecular functions in which a particular protein participates.

There is also a Keywords sections for Subcellular location:

Subcellular location¹

Keywords - Cellular component Secreted

The UniProt page also includes any noted disease associations with the given protein:

Pathology & Biotechi

Involvement in disease

The disease is caused by mutations affecting the gene represented in this entry.

<u>Disease description:</u> An autosomal recessive, juvenile-onset form of Paget disease, a disorder of bone remodeling characterized by increased bone turnover affecting one or more sites throughout the skeleton, primarily the axial skeleton. Osteoclastic overactivity followed by compensatory osteoblastic activity leads to a structurally disorganized mosaic of bone (woven bone), which is mechanically weaker, larger, less compact, more vascular, and more susceptible to fracture than normal adult lamellar bone. PDB5 clinical manifestations include short stature, progressive long bone deformities, fractures, vertebral collapse, skull enlargement, and hyperostosis with progressive deafness.

My next step would thus be to scrape the Keywords, Subcellular Location, and any Disease Associations for each protein in the list. I loaded a CSV file containing the protein names and UniProt IDs included in the longitudinal study.

```
# Load UniProt IDs and protein names
proteins <- read.csv("Protein_UniProt_List.csv")

# Create matrix of UniProt_IDs
UniProt_IDs <- as.matrix(proteins$Uniprot_ID)</pre>
```

The base URL for any UniProt protein query is https://www.uniprot.org/uniprot/.

```
uniprot_url <- "https://www.uniprot.org/uniprot/%s"
```

To reduce computation time and minimize queries sent to UniProt, I chose to load each webpage and read its contents just once, and then apply helper functions to extract the desired information from each page once loaded. Each helper function below takes in a UniProt page upon which read_html() has been called, and extracts the pertinent information to save into a dataframe.

GO Keywords:

```
# Function to extract keywords from UniProt page for a given UniProt ID
extract_keywords <- function(page) {
  page %>%
     #Keywords are contained in the first databaseTable
     html_node(".databaseTable") %>%
     #Convert to table (dataframe)
     html_table()
}
```

Disease Associations:

```
# Function to extract diseases from UniProt page for a given UniProt ID
extract_diseases <- function(page) {
  page %>%
    html_node(".diseaseAnnotation") %>%
    html_nodes(xpath="//a[contains(@href, '/diseases/')]") %>%
    html_text() %>%
    as.data.frame()
}
```

Subcellular location:

Reactome Pathway:

```
# Function to extract pathway
extract_pathway <- function(page) {
  page %>%
    html_nodes(".databaseTable :contains(ReactomeiR)") %>%
    html_text() %>%
    # Only keep the second text entry
    .[2] %>%
    as.data.frame()
}
```

Initialize empty dataframes to append results from helper functions:

Extract_all is the function which will load a UniProt URL, read and parse the associated html content, and call each of the helper functions to extract all of the desired information.

```
# Given a UniProt ID, apply all the above functions to extract relevant info
extract_all <- function(id) {</pre>
  Sys.sleep(0.5)
  #Try the given URL and return NA if there is a 404 error
    page <- sprintf(uniprot_url, URLencode(id)) %>%
      read html(),
    silent=T
  )
  # Keywords
  kw <- extract_keywords(page) %>%
    mutate(UniProt_ID = id) %>%
    distinct()
  keyword_df <<- rbind(keyword_df, kw)</pre>
  # Associated diseases
  disease <- extract_diseases(page) %>%
    mutate(UniProt_ID = id) %>%
    distinct()
  disease_df <<- rbind(disease_df, disease)</pre>
  # Subcellular location
  location <- extract_location(page) %>%
    mutate(UniProt_ID = id) %>%
    distinct()
```

```
location_df <<- rbind(location_df, location)

# Pathway
pathway <- extract_pathway(page) %>%
    mutate(UniProt_ID = id) %>%
    distinct()
pathway_df <<- rbind(pathway_df, pathway)
}</pre>
```

I then apply extract all to each row in the 414x1 matrix containing the UniProt IDs.

```
# Calling invisible() to suppress console output
invisible(apply(UniProt_IDs, 1, extract_all))
```

Once the data is collected in individual data frames, I then cleaned them using dplyr. I first renamed the columns in location $% \left(1\right) =\left(1\right) +\left(1$

```
# Rename DF columnes
colnames(location_df) <- c("Subcellular_location", "UniProt_ID")
colnames(disease_df) <- c("Disease_association", "UniProt_ID")</pre>
```

Then I reorganized the keywords dataframe into separate Biological Process and Molecular Function dataframes.

To better organize rows with multiple values in one column, I split BP_MF into two dataframes, one for BP and one for MF.

```
# Create one dataframe for biological processes
BP <- BP_MF %>%
    select(UniProt_ID, `Biological process`) %>%
    rename(Biological_Process = `Biological process`) %>%
    mutate(Biological_Process = str_split(Biological_Process, ", ")) %>%
    unnest(Biological_Process) %>%
    na.omit()

# Create one dataframe for molecular functions
MF <- BP_MF %>%
    select(UniProt_ID, `Molecular function`) %>%
```

```
rename(Molecular_Function = `Molecular function`) %>%
mutate(Molecular_Function = str_split(Molecular_Function, ", ")) %>%
unnest(Molecular_Function) %>%
na.omit()
```

The pathways dataframe contains multiple values in the Path column, all as one string. I split them by the "R-HSA-" delimiter and store distinct R-HSA pathway entries as separate rows.

```
# Many UniProt proteins are mapped to several Reactome Pathways,
# This code splits multiple pathway entries into distinct rows
colnames(pathway_df) <- c("Path", "UniProt_ID")</pre>
pathway_df <- pathway_df %>%
 rowwise() %>%
 mutate(Path = str replace(Path, "Reactomei", "")) %>%
  # Split by the R-HSA- string
  mutate(Path= str_split(Path, "R-HSA-", n=Inf)) %>%
  # Un-list
  unnest(Path) %>%
  # Remove empty strings that reflect non-existent pathways
  filter(Path != "") %>%
  # Split into R-HSA IDs and pathway descriptions
  mutate(Path = str_split(Path, " ", n=2)) %>%
  purrr::quietly(unnest_wider)(Path) %>%
  # only keep Results of purrr::quietly()
  .[[1]] %>%
  rowwise() %>%
  mutate(`...1` = paste("R-HSA-", `...1`, sep="", collapse=""))
colnames(pathway_df) <- c("Reactome_ID", "Pathway_Description", "UniProt_ID")</pre>
```

Here are snippets of the cleaned web-scraped dataframes:

Biological Process

UniProt_ID	${\bf Biological_Process}$
O00175	Chemotaxis
O00175	Inflammatory response
O00182	Chemotaxis
O00182	Immunity
O00300	Apoptosis

Molecular Function

UniProt_ID	$Molecular_Function$
O00175	Cytokine
O00300	Receptor
O00308	Transferase
O00533	Developmental protein
O14625	Cytokine

Disease Associations

UniProt_ID	Disease_association
O00300	Paget disease of bone 5, juvenile-onset (PDB5)
O14788	Osteopetrosis, autosomal recessive 2 (OPTB2)
O15169	Hepatocellular carcinoma (HCC)
O15169	Caudal duplication anomaly (CADUA)
O95630	Microcephaly-capillary malformation syndrome (MICCAP)

Subcellular Location

${\bf UniProt_ID}$	$Subcellular_location$
O00175	Secreted
O00182	Cytoplasm
O00182	Nucleus
O00182	Secreted
O00300	Secreted

Reactome Pathways

${\bf UniProt_ID}$	$Reactome_ID$	Pathway_Description
O00182	R-HSA-451927	Interleukin-2 family signaling
O00300	R-HSA-5669034	TNFs bind their physiological receptors
O00308	R-HSA-8948751	Regulation of PTEN stability and activity
O00308	R-HSA-9013507	NOTCH3 Activation and Transmission of Signal to the Nucleus
O00533	R-HSA-447041	CHL1 interactions

Each of these cleaned dataframes is available in the GitHub project as a .csv file in the CSV Files folder.

Lastly, I used sqldf to add the dataframes to a SQL database.

```
dbWriteTable(conn = db, name = "Disease_Associations", value=disease_df,
             row.names=FALSE, header=TRUE, overwrite=T)
dbWriteTable(conn = db, name = "Function_Overview", value=Function_overview,
             row.names=FALSE, header=TRUE, overwrite=T)
dbWriteTable(conn = db, name = "Molecular_Function", value=MF,
             row.names=FALSE, header=TRUE, overwrite=T)
dbWriteTable(conn = db, name = "Molecular_Function_Full", value=GO_MF_Full,
             row.names=F, header=T, overwrite=T)
dbWriteTable(conn = db, name = "Protein_Names", value = proteins,
             row.names = FALSE, header = TRUE, overwrite=T)
dbWriteTable(conn = db, name = "Pathways", value=pathway_df,
             row.names=FALSE, header=TRUE, overwrite=T)
dbWriteTable(conn = db, name = "Subcellular_Location", value=location_df,
             row.names=FALSE, header=TRUE, overwrite=T)
dbWriteTable(conn = db, name = "Tissue_Specificity", value=Tissue_specificity,
             row.names=F, header=T, overwrite=T)
dbWriteTable(conn = db, name = "KEGG_IDs", value=UniProt_KEGG,
             row.names=F, header=T, overwrite=T)
```

To confirm the tables were successfully added to the SQL database, I can call dbListTables() on the database:

dbListTables(db)

Results

In total, I have compiled eleven distinct data tables that encompass protein function, cellular location, and protein pathways for the 414 proteins in our study. More specifically, I have amassed the following distinct counts of values across the respective tables:

• Biological Process, Keywords: 81

• Biological Process, Full: 2825

• Cellular Compartment, Full: 335

• Disease Associations: 200

• Function overview: 1763

Molecular Function, Keywords: 67
Molecular Function, Full: 580
Subcellular Location: 41
Reactome Pathway: 583
Tissue Specificity: 638
KEGG IDs: 414

To demonstrate the efficacy of accessing data from the SQL database, I queried the most frequent values from some of the data tables.

Biological Process Keywords:

Biological_Process	Count
Cell adhesion	48
Immunity	45
Inflammatory response	33
Apoptosis	31
Chemotaxis	29
Differentiation	27
Host-virus interaction	27
Adaptive immunity	23
Angiogenesis	23
Innate immunity	20

Biological Process, Full:

Biological_process	Count
signal transduction	86
cytokine-mediated signaling pathway	72
immune response	65
inflammatory response	62
positive regulation of cell population proliferation	60
cell adhesion	47
cell-cell signaling	47
neutrophil degranulation	45
positive regulation of ERK1 and ERK2 cascade	42
negative regulation of apoptotic process	39

Molecular Function Keywords:

Molecular_Function	Count
Receptor	85
Cytokine	74
Hydrolase	56
Protease	38
Growth factor	37
Developmental protein	29
Transferase	24
Heparin-binding	20
Metalloprotease	16
Serine protease	15

Molecular Function, Full:

Molecular_function	Count
identical protein binding	59
cytokine activity	51
protein homodimerization activity	49
signaling receptor binding	44
growth factor activity	42
calcium ion binding	40
heparin binding	34
metal ion binding	32
chemokine activity	31
zinc ion binding	29

Disease Association:

Disease_association	Count
Psoriatic arthritis (PSORAS)	3
Hepatocellular carcinoma (HCC)	2
Ischemic stroke (ISCHSTR)	2
Adams-Oliver syndrome 5 (AOS5)	1
Allergic rhinitis (ALRH)	1

Function Overview:

Function	Count
IGF-binding proteins prolong the half-life of the IGFs and have been shown to either inhibit or stimulate the growth promoting effects of the IGFs on cell culture	4
One of the major HIV-suppressive factors produced by CD8+ T-cells	3
Reversible hydration of carbon dioxide	3
They alter the interaction of IGFs with their cell surface receptors	3
They preferentially interact with themselves in a homophilic manner in connecting cells; cadherins may thus contribute to the sorting of heterogeneous cell types	3
This protein can bind heparin	3
Activates procollagenase.	2
Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate	2
Activities are controlled by presence or absence of small cytoplasmic adapter proteins, SH2D1A/SAP and/or SH2D1B/EAT-2	2
After birth, activates or inhibits angiogenesis, depending on the context	2

Subcellular Location:

Subcellular Location	Count
Secreted	242
Membrane	179
Cell membrane	124
Cytoplasm	65
Nucleus	39
Extracellular matrix	31
Endoplasmic reticulum	17
Cell junction	16
Cell projection	15
Golgi apparatus	15

Cellular Compartment, Full:

Cellular_component	Count
extracellular region	218
extracellular space	211
plasma membrane	176
extracellular exosome	125
cytosol	87
integral component of membrane	87
cell surface	85
cytoplasm	81
integral component of plasma membrane	65
external side of plasma membrane	64

Reactome Pathways:

$Reactome_ID$	Pathway Description	Count
R-HSA-6798695	Neutrophil degranulation	45
R-HSA-6785807	Interleukin-4 and Interleukin-13 signaling	34
R-HSA-5673001	RAF/MAP kinase cascade	29
R-HSA-6783783	Interleukin-10 signaling	26
R-HSA-380108	Chemokine receptors bind chemokines	25
R-HSA-198933	Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell	24
R-HSA-381426	Regulation of Insulin-like Growth Factor (IGF) transport and uptake by Insulin-like Growth Factor Binding Proteins (IGFBPs)	22
R-HSA-418594	G alpha (i) signalling events	21
R-HSA-1257604	PIP3 activates AKT signaling	19
R-HSA-6811558	PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling	19

Discussion

I went through several iterations of my R code. My first approach was to use self-contained functions to download the HTML contents of each UniProt page for each value I wanted to extract, instead of downloading the content once and passing in helper functions. For example, I originally wrote the following two functions that separately extracted the GO Keywords and Reactome Pathways from UniProt pages that were downloaded twice, which is redunant and takes far longer:

```
# Extract GO Keywords
extract_keywords <- function(id) {
   #Sleep for 0.5s between requests to not overload Uniprot server
   Sys.sleep(0.5)</pre>
```

```
#Create temporary dataframe to store this page's data
  page <- data.frame(X1="NA", X2="NA", Uniprot_ID=id)</pre>
  #Try the given URL and return NA if there is a 404 error
  try(
    page <- sprintf(uniprot_url, URLencode(id)) %>%
      read html() %>%
      #Keywords are contained in the first databaseTable
      html node(".databaseTable") %>%
      #Convert to table (dataframe)
      html_table() %>%
      #Add Uniprot ID
      mutate(Uniprot_ID = id),
    silent=TRUE
  #Append to dataframe
  all_keywords <- rbind(all_keywords, page)</pre>
# Extract Reactome Pathway
extract_pathway <- function(id) {</pre>
  #Sleep for 0.5s between requests to not overload Uniprot server
  Sys.sleep(0.5)
  #Create temporary dataframe to store this page's data
  path <- data.frame(Uniprot ID=id, .="NA")</pre>
  try(
    path <- sprintf(uniprot_url, URLencode(id)) %>%
      read_html() %>%
      html_nodes(".databaseTable :contains(ReactomeiR)") %>%
      html_text() %>%
      .[2] %>%
      as.data.frame(.) %>%
      mutate(Uniprot_ID=id),
    silent=TRUE
  rc_path <- rbind(rc_path, path)
```

Once I realized this redundancy and wrote individual helper functions and one larger function to download the HTML content, it was easy to tweak the heler functions to get exactly the format of the content I wanted. It was also easier to download all the content in one go, and then once the data was downloaded and stored in dataframes, to clean and organize the data using dplyr afterward.

Further Implementation

As I described, the purpose for this project is to obtain more information about the proteins studied in the longitudinal Alzheimer's Disease plasma study so that we can examine trends among protein pathways and across functional domains. While I cannot share any of the actual data or analysis for this project due to confidentiality, I am excited about how these datasets will facilitate new discoveries for our project going forward. I have thus far only focused on acquiring and organizing the data, as per the project guidelines,

but the next phase of project implementation will be to perform statistical analyses (e.g. T-Tests, Logistic Regression, PCA) with biological process and Reactome pathway as categorical variables.