

Parafusos

Órgãos de Máquinas

Carlos Fernandes 2023/2024

Licenciatura em Engenharia Mecânica

Hiperligação para aula

Aula 1

Aula 2

Referências

Aula 1

Sumário

1. Parafusos de transmissão de potência: introdução	3
2. Problema de base	5
3. Condição de auto-retenção	11
4. Rendimento	14
5. Tensões nos parafusos	17

Parafusos de transmissão de potência: introdução

Os parafusos de transmissão de potência ("power screws") transformam o movimento angular em movimento linear e para além disso transmitem carga.

Os parafusos de transmissão de potência podem ter diferentes tipo de rosca. Os mais comuns são:

- · quadrada
- acme
- trapezoidal

Figura 1: Macaco de parafuso.

Formas de rosca

Figura 2: Formas de rosca para parafusos de transmissão de potência [1].

Problema de base

O problema de base consiste em determinar o momento $M_{\rm t}$ que permite mover a carga F.

Considerando d_m o diâmetro médio da rosca, o binário M_t :

$$M_t = H \frac{d_m}{2}$$

 ${\it H}$ é a força que permite o corpo subir o plano inclinado com ângulo γ , que é o ângulo de hélice da rosca.

Figura 3: Parafuso de transmissão de movimento com momento torsor M_t e força F [2].

Equilíbrio de forças: rosca quadrada

$$M_t = H \frac{d_m}{2}$$

A força H necessária para vencer a força F:

$$H\cos\gamma = F\sin\gamma + N\tan\phi$$

De notar que a componente normal *N* é:

$${\it N} = {\it H} \sin \gamma + {\it F} \cos \gamma$$

Figura 4: Rosca quadrada com ângulo de hélice γ planificada.

Substituindo a componente normal:

 $H\cos\gamma = F\sin\gamma + (F\cos\gamma + H\sin\gamma)\tan\phi$

Expandindo os termos:

 $\mathit{H}\cos\gamma = \mathit{F}\sin\gamma + \mathit{F}\cos\gamma\tan\phi + \mathit{H}\sin\gamma\tan\phi$

Agrupando H à esquerda e F à direita: $H(\cos \gamma - \sin \gamma \tan \phi) = F(\sin \gamma + \cos \gamma \tan \phi)$

Equilíbrio de forças (continuação)

$$H(\cos \gamma - \sin \gamma \tan \phi) = F(\sin \gamma + \cos \gamma \tan \phi)$$

Dividindo por $\cos \gamma$:

$$H(1 - \tan \gamma \tan \phi) = F(\tan \gamma + \tan \phi)$$

Figura 5: Rosca planificada $\alpha = 0^{\circ}$.

A força H em função do ângulo de hélice (γ) e do coeficiente de atrito $(\tan \phi)$ é:

$$H = F \frac{\tan \phi + \tan \gamma}{1 - \tan \phi \tan \gamma}$$

O momento a aplicar para elevar a carga *F*:

$$M_{t} = F \frac{\tan \phi + \tan \gamma}{1 - \tan \phi \tan \gamma} \frac{d_{m}}{2}$$

Parafusos com rosca trapezoidal

Figura 6: Relação entre ângulos [1].

As relações vistas previamente consideram a existência de uma forma de rosca quadrada. Para o caso de uma rosca trapezoidal, o ângulo do flanco é α_n ou β_n : $\left[\tan\alpha_n = \tan\alpha\cos\gamma\right]$

8

Parafusos com rosca trapezoidal

A força H necessária para vencer a força F para rosca quadrada:

$$H\cos\gamma = F\sin\gamma + N\tan\phi$$

Figura 7: Relação entre ângulos [3].

No caso de a rosca apresentar um ângulo, a componente normal N é:

$$N = \frac{H\sin\gamma + F\cos\gamma}{\cos\alpha_n}$$

ou

$$N = (H \sin \gamma + F \cos \gamma) \sec \alpha_n$$

Podemos escrever a força H e o binário em função do ângulo do flanco da rosca:

$$H\cos\gamma = F\sin\gamma + (H\sin\gamma + F\cos\gamma)\sec\alpha_n\tan\phi$$

Parafusos com rosca trapezoidal

$$H\cos\gamma = F\sin\gamma + (F\cos\gamma + H\sin\gamma)\sec\alpha_n\tan\phi$$

Expandindo os termos:

$$H\cos\gamma = F\sin\gamma + F\cos\gamma \sec\alpha_{\it n}\tan\phi + H\sin\gamma \sec\alpha_{\it n}\tan\phi$$

Agrupando H à esquerda e F à direita:

$$H(\cos \gamma - \sin \gamma \sec \alpha_n \tan \phi) = F(\sin \gamma + \cos \gamma \sec \alpha_n \tan \phi)$$

$$H = F \frac{\sin \gamma + \cos \gamma \sec \alpha_n \tan \phi}{\cos \gamma - \sin \gamma \sec \alpha_n \tan \phi}$$

Dividindo por $\cos \gamma$:

$$H = F \frac{\tan \gamma + \sec \alpha_n \cdot \tan \phi}{1 - \tan \gamma \cdot \sec \alpha_n \cdot \tan \phi}$$

$$M_{t} = F \cdot \frac{d_{m}}{2} \cdot \frac{\tan \gamma + \sec \alpha_{n} \cdot \tan \phi}{1 - \tan \gamma \cdot \sec \alpha_{n} \cdot \tan \phi}$$

Auto-retenção

$$F\sin\gamma < F\cos\gamma \tan\phi$$

Sendo $\tan \phi$ o coeficiente de atrito.

$$\tan\gamma \leq \tan\phi$$

Esta equação é válida apenas para rosca quadrada. Se a rosca possui flancos inclinados, devemos substituir *F* por:

$$F_n = F \sec \alpha_n$$

 $F \sin \gamma \le F \sec \alpha_n \cos \gamma \tan \phi$

$$\tan \gamma \leq \sec \alpha_n \tan \phi$$

Figura 8: Condição de auto-retenção.

Condição de desaperto

As equações demonstradas anteriormente partiram do pressuposto que o parafuso estaria na condição de aperto.

Para o desaperto, a componente tangencial da força F e da força devida ao momento aplicado estão no mesmo sentido.

$$\begin{aligned} &H\cos\gamma + F\sin\gamma = \\ &\tan\phi\sec\alpha_n\left(F\cos\gamma - H\sin\gamma\right) \\ &H\left(\cos\gamma + \sin\gamma\tan\phi\sec\alpha_n\right) = \\ &F\left(\cos\gamma\tan\phi\sec\alpha_n - \sin\gamma\right) \end{aligned}$$

Dividindo por
$$\cos \gamma$$
:
 $H(1 + \tan \gamma \tan \phi \sec \alpha_n) = F(\tan \phi \sec \alpha_n - \tan \gamma)$

$$H = F \cdot \frac{\tan \phi \cdot \sec \alpha_n - \tan \gamma}{1 + \tan \gamma \cdot \tan \phi \cdot \sec \alpha_n}$$

$$F \cdot \frac{d_m}{2} \cdot \frac{\tan \phi \cdot \sec \alpha_n - \tan \gamma}{1 + \tan \gamma \cdot \tan \phi \cdot \sec \alpha_n}$$

Figura 9: Condição de desaperto.

Passo

Figura 10: Passo em roscado: (a) entrada dupla; (b) entrada simples.

 $\tan \gamma = \frac{p}{2\pi r_m}$

O passo é:

Figura 11: Rosca planificada (de uma entrada).

p – passo p_a – passo aparente

Rendimento

O trabalho fornecido durante uma rotação é:

$$W_f = \mathbf{2} \cdot \pi \cdot \mathbf{M}_t$$

O trabalho útil é:

$$W_u = F \cdot p$$

O rendimento é então:

$$\eta = \frac{W_u}{W_f} = \frac{2\pi r_m \tan \gamma F}{2\pi r_m F \frac{\tan \phi \sec \alpha_n + \tan \gamma}{1 - \tan \phi \tan \gamma \sec \alpha_n}}$$

$$\eta = \frac{\tan \gamma}{\frac{\tan \phi \sec \alpha_n + \tan \gamma}{1 - \tan \phi \tan \gamma \sec \alpha_n}}$$

Figura 12: Rendimento: influência do ângulo do flanco α_n e do coeficiente de atrito $\tan \phi$.

Rendimento

Figura 13: Eficiência em função do coeficiente de atrito e do ângulo de hélice para $\alpha_n = 0^{\circ}$.

Colar de apoio

Normalmente, é necessário fornecer uma componente adicional de binário devido ao atrito no colar de apoio que suporta a componente axial da carga (Figura 14). Tipicamente é considerado que a carga está concentrada no diâmetro médio do colar d_c . Se μ_c é o coeficiente de atrito no colar, o binário requerido é:

$$\mathbf{M_c} = \frac{\mathbf{F} \cdot \mu_{\mathbf{C}} \cdot \mathbf{d_c}}{\mathbf{2}}$$

Para colares de grandes dimensões, o binário deve ser calculado de uma forma semelhante àquele empregue para uma embraiagem de disco.

Figura 14: Colar de apoio de um parafuso de transmissão de potência [3].

Tensões no parafusos

É frequente supor que a carga aplicada se distribui uniformemente por toda a rosca em contacto com a porca.

No núcleo do parafuso as tensões são:

$$\sigma = \frac{\mathbf{4} \cdot \mathbf{F}}{\pi \cdot \mathbf{d_i}^2}$$

$$\tau = \frac{16 \cdot M_t}{\pi \cdot d_i^3}$$

Fazer a verificação à encurvadura se relevante.

Figura 15: Modelo simplificado de rosca planificada [3, 2].

Tensões no parafusos

Considerando um modelo do tipo "viga à flexão":

$$\sigma \approx \frac{\left(F \cdot \frac{h}{2}\right) \cdot \frac{b}{2}}{\frac{\pi \cdot d_i \cdot n \cdot b^3}{12}} = \frac{3 \cdot F \cdot h}{\pi \cdot d_i \cdot n \cdot b^2}$$

$$\tau \approx \frac{3}{2} \frac{\mathsf{F}}{\pi \cdot \mathsf{d}_i \cdot \mathsf{n} \cdot \mathsf{b}}$$

Sendo *n* o número de espiras em contacto:

$$n = \frac{\Delta}{p}$$

p é o passo do parafuso e Δ a largura da porca onde está aplicada a força F.

Figura 16: Modelo simplificado de rosca planificada à flexão [2].

Aula 2

Sumário

1. Parafusos de ligação: introdução	20
2. Dimensionamento REApE	22
3. Ligações pré-esforçadas	23

Parafusos de ligação: introdução

Figura 17: Tipos básicos de ligações roscadas [1].

- (a) parafuso aperta num furo roscado;
- (b) parafuso aperta com uma porca;
- (c) perno aperta num furo roscado e numa porca;
- (d) perno aperta em duas porcas.

Parafusos de ligação: propriedades mecânicas

Resistência à tração = $100 \times A = 1200 \text{ MPa}$

B = 0.9 Carga de cedência = 10 \times A \times B = 1080 MPa

Figura 18: Sistema de designação para classes de propriedades de materiais de parafusos.

Classe	Diâmetro / mm	Carga de ensaio ¹ / MPa	Resistência à tração / MPa	Carga de cedência ² / MPa
4.6	M5-M36	225	400	240
4.8	M1.6-M16	310	420	340
5.8	M5-M24	380	520	420
8.8	M16-M36	600	830	660
9.8	M1.6-M16	650	900	720
10.9	M5-M36	830	1040	940
12.9	M1.6-M36	970	1220	1100

¹Carga de ensaio (proof load ou strength) corresponde à carga que o parafuso deve resistir sem deformação plástica.

²Carga de cedência (yield load ou strength) corresponde à tensão para uma deformação axial de 0.2%.

Dimensionamento REAPE

O REAPE divide as ligações aparafusadas em:

- correntes realizadas com parafusos de tensão de cedência $\sigma_{\rm c}=21\,{\rm kg\,mm^{-2}}$:
 - brutos: diâmetro do furo é igual ao diâmetro do parafuso mais um milímetro;
 - ajustados: diâmetro do furo é igual ao diâmetro do parafuso mais 0.2 mm.
- pré-esforçadas realizadas com parafusos de alta resitência com tensão de cedência que podem atingir $\sigma_c = 108 \, \mathrm{kg \, mm^{-2}}$:
 - · devem ser usados parafusos de classe 8.8 ou superior.

Ligações pré-esforçadas

Nas ligações pré-esforçadas evita-se o deslizamento ou desencosto dos elementos ligados.

Devido à aplicação de um binário de aperto M_p resulta um pré-esforço F_i tal como representado na Figura 19.

Consideremos os seguintes carregamentos:

- no plano da ligação
- 2. paralelo ao eixo da ligação

Figura 19: Ligação com pré-esforço [1].

Carregamento no plano da ligação

A Figura 20 apresenta uma ligação com pré-esforço e carregamento no plano da ligação.

Nesta situação o pré-esforço deverá impedir o movimento relativo dos elementos ligados.

A força de atrito F_a devida ao pré-esforço F_i deve ser superior à carga F:

$$F_a = \tan \phi \cdot F_i > F$$

Sendo por isso dependente do coeficiente de atrito $an \phi$.

Figura 20: Ligação com pré-esforço e carregamento no plano da ligação [1].

Carregamento excêntrico no plano da ligação

Figura 21: Ligação com pré-esforço e carregamento excêntrico no plano da ligação [2].

A Figura 21 apresenta uma ligação com pré-esforço e carregamento excêntrico no plano da ligação.

Nesta situação o pré-esforço também deverá impedir o movimento relativo dos elementos ligados. No entanto, a carga excêntrica promove um momento torsor *M* no ponto C.

Carregamento excêntrico no plano da ligação

O momento torsor *M* está aplicado no centro geométrico da ligação, ponto *C*.

Assumindo que a distância de cada parafuso ao centro geométrico da ligação é Δ_i ,

$$4T\Delta_i = M$$

$$\left| \vec{\mathsf{T}} + \frac{\vec{\mathsf{F}}}{\mathsf{4}} \right|_{\mathsf{max}} < \mathsf{F}_i \tan \phi$$

Figura 22: Modelo de análise da ligação pré-esforçada com carregamento excêntrico no plano da ligação [2].

Carregamento no plano da ligação

A distância do elemento i da ligação ao centro geométrico é d_i . Então o elemento 1 fica sujeito a um deslocamento $d_1\theta$.

Assumindo um comportamento elástico (força proporcional ao deslocamento):

$$\frac{T_1}{d_1}=\frac{T_2}{d_2}=...\frac{T_i}{d_i}=...=\frac{T_n}{d_n}$$

Então:

$$T_2 = \frac{T_1}{d_1}d_2; \ T_3 = \frac{T_1}{d_1}d_3; ...$$

Figura 23: Ligação com pré-esforço e carregamento excêntrico no plano da ligação [2].

Carregamento no plano da ligação

O momento torsor M é:

$$\begin{split} \mathbf{M} &= T_1 d_1 + T_2 d_2 + T_3 d_3 + ... \\ \text{Mas } T_i &= T_1 \frac{d_i}{d_1} \end{split}$$

$$M = \frac{T_1}{d_1}d_1^2 + \frac{T_1}{d_1}d_2^2 + \frac{T_1}{d_1}d_3^2 + \dots$$

$$T_1 = \frac{Md_1}{\sum d_i^2}$$

$$\left| \vec{T}_i + \frac{\vec{F}}{9} \right|_{max} < F_i \tan \phi$$

Figura 23: Ligação com pré-esforço e carregamento excêntrico no plano da ligação [2].

Consideremos a ligação com um pré-esforço F_i .

Sobre a ligação é aplicada uma força F_e paralela ao eixo do parafuso.

Consideremos a variação de força no parafuso ΔF_p . A variação de força na ligação é ΔF_l .

A soma da variação de ΔF_p e de ΔF_l é igual à carga F_e :

$$\Delta F_p + \Delta F_l = F_e$$

Figura 24: Ligação com pré-esforço e carregamento paralelo ao eixo do parafuso [1].

A força F_e aumenta a tração no parafuso. A força final no parafuso é:

$$F_p^f = F_i + \Delta F_p$$

No entanto, a força F_e diminui a compressão nos elementos ligados. A força final (de compressão) na ligação é:

$$F_l^f = F_i - \Delta F_l$$

Figura 25: Ligação com pré-esforço e carregamento paralelo ao eixo do parafuso [1].

Se não houver desencosto, o alongamento do parafuso e da junta causado pela força F_e é:

$$\Delta L_p = \Delta L_l$$

Assim:

$$\frac{\Delta F_p}{k_p} = \frac{\Delta F_p}{k_l}$$

$$\Delta F_l = \Delta F_p \frac{k_l}{k_p}$$

Sendo k_p e k_l constantes elásticas.

Figura 26: Ligação com pré-esforço e carregamento paralelo ao eixo do parafuso [1].

A força F_e é a soma das forças devidas aos alongamentos do parafuso e ligação:

$$\Delta F_p + \Delta F_l = F_e$$

E a relação entre alongamentos é: $\Delta F_l = \Delta F_p \frac{k_l}{h}$

Combinando as equações anteriores: $F_e = \Delta F_p + \Delta F_p \frac{k_l}{k_0}$

Após simplificação podemos obter a variação de força no parafuso em função da força F_e e das constantes elásticas:

$$\Delta F_p = F_e \frac{k_p}{k_p + k_l}$$

Figura 27: Ligação com pré-esforço e carregamento paralelo ao eixo do parafuso [1].

Do mesmo modo, podemos obter a variação de força na ligação:

$$\Delta F_l = F_e \frac{k_l}{k_p + k_l}$$

Assim podemos determinar as forças final do parafuso e da ligação como:

$$\begin{cases} F_p^f = F_i + F_e \frac{k_p}{k_p + k_l} \\ \\ F_l^f = F_i - F_e \frac{k_l}{k_p + k_l} \end{cases}$$

Figura 28: Ligação com pré-esforço e carregamento paralelo ao eixo do parafuso [1].

Representação gráfica

O esforço de pré-tensão, origina uma deformação de tração no parafuso e de compressão nos elementos ligados:

Figura 29: Representação esquemática da força F_i .

A Figura 30 apresenta uma solução gráfica do problema.

Figura 30: Representação esquemática da força F_e .

Qual a força F_e que anula a compressão na junta?

Referências

Referências i

- [1] Juvinall, Robert C. e Kurt M. Marshek: Fundamentals of Machine Component Design.
 Wiley, 2017.
- [2] Castro, Paulo M.S. Tavares de: Parafusos de Transmissão de Potência e de Ligação.
 - Órgãos de Máquinas, DEMec, Faculdade de Engenharia da Universidade do Porto, 2016.
- [3] Budynas, Richard G. e J. Keith Nisbett: Shigley's Mechanical Engineering Design.
 - 10ª edição, 2014, ISBN 978-0-07-339820-4.