DAY 3 ASSIGNMENT

Questions Roots of Quadratic Equation

- Q.1 The roots of the equation $(x+2)^2 = 4(x+1)-1$ are -
 - (A) ± 1
- (B) ± i
- (C) 1,2
- (D) 1, -2
- Q.2 The roots of Quadratic equation $x^2 + 14x + 45 = 0$ are -
 - (A) 9.5
- (B) 5, 9
- (C) 5, 9
- (D) 5, -9
- **Q.3** The roots of the equation $x^4 8x^2 9 = 0$ are-
 - (A) ± 3 , ± 1
- (B) ± 3 , $\pm i$
- (C) ± 2 , $\pm i$
- (D) None of these
- Q.4 Which of the following equations has 1 and 2 as the roots -
 - (A) $x^2 x 2 = 0$
- (B) $x^2 + x 2 = 0$
- (C) $x^2 x + 2 = 0$
- (D) $x^2 + x + 2 = 0$
- **Q.5** Roots of $3^x + 3^{-x} = 10/3$ are-
 - (A) 0, 1
- (B) 1, 1
- (C) 0, -1
- (D) None of these
- Q.6 If $f(x) = 2x^3 + mx^2 13 x + n$ and 2 and 3 are roots of the equations f(x) = 0, then values of m and n are -
 - (A) 5,30
- (B) 5, 30
- (C) 5, -30
- (D) 5, -30
- Q.7 The number of roots of the quadratic equation $8 \sec^2 \theta 6 \sec \theta + 1 = 0$ is -
 - (A) Infinite
- (B) 1
- (C) 2
- (D) 0

Questions Nature of roots

- Q.8 If roots of the equation $ax^2 + 2 (a+b) x + (a+2b+c) = 0$ are imaginary, then roots of the equation $ax^2 + 2bx + c = 0$ are -
 - (A) rational
- (B) irrational
- (C) equal
- (D) complex
- **Q.9** If a and b are the odd integers, then the roots of the equation
 - $2ax^2 + (2a + b) x + b = 0, a \ne 0$, will be-
 - (A) rational
- (B) irrational
- (C) non-real
- (D) equal

- Q.10 If the roots of the equation
 - $6x^2 7x + k = 0$
 - are rational then k is equal to -
 - (A) 1
- (B) -1, -2
- (C) 2
- (4) 1,2
- Q.11 The roots of the equation

$$(a^2 + b^2) x^2 - 2(bc + ad) x + (c^2 + d^2) = 0$$

are equal, if -

- (A) ab = cd
- (B) ac = bd
- (C) ad+ bc = 0
- (4) None of these
- Q.12 For what value of m, the roots of the equation $x^2 x + m = 0$ are not real-
 - (A) $]\frac{1}{4}, \infty[$
- (B)] $-\infty$, $\frac{1}{4}$ [
- (C)] $-\frac{1}{4}, \frac{1}{4}$
- (4) None of these
- **Q.13** Roots of the equation (a + b c) $x^2 2ax + (a b + c) = 0$, ($a,b,c \in Q$) are -
 - (A) rational
- (B) irrational
- (C) complex
- (D) none of these
- **Q.14** The roots of the equation $x^2 x 3 = 0$ are-
 - (A) Imaginary
- (B) Rational
- (C) Irrational
- (D) None of these
- **Q.15** The roots of the equation $x^2 + 2\sqrt{3}x + 3 = 0$ are-
 - (A) Real and equal
 - (B) Rational and equal
 - (C) Irrational and equal
 - (D) Irrational and unequal
- Q.16 If the roots of the equation $ax^2 + x + b = 0$ be real, then the roots of the equation $x^2 - 4 \sqrt{ab} x + 1 = 0$ will be -
 - (A) Rational
- (B) Irrational
- (C) Real
- (D) Imaginary
- Q.17 If one root of equation $x^2 + px + 12 = 0$ is 4, while the equation $x^2 + px + q = 0$ has equal roots then the value of q is -
 - (A) 49/4
- (B) 4/49
- (C) 4
- (D) None of these
- Q.18 If roots of the equation (a-b) $x^2 + (c-a) x + (b-c) = 0$ are equal, then a,b,c are in -
 - (A) A.P.
- (B) H.P.
- (C) G.P.
- (D) None of these

- Q.19 If the roots of $x^2 - 4x - \log_2 a = 0$ are real,

 - (A) $a \ge \frac{1}{4}$ (B) $a \ge \frac{1}{8}$
 - (C) a $\geq \frac{1}{16}$
- (D) None of these
- If the roots of both the equations Q.20 $px^{2} + 2qx + r = 0$ and $qx^{2} - 2\sqrt{pr}x + q = 0$ are real, then -
 - (A) p = q, $r \neq 0$
- (B) $2q = \pm \sqrt{pq}$
- (C) p/q = q/r
- (D) None of these
- Q.21 The roots of the equation (p - 2) $x^2 + 2 (p - 2) x + 2 = 0$ are not real when -
 - (A) $p \in [1, 2]$
- (B) $p \in [2, 3]$
- (C) $p \in (2,4)$
- (D) $p \in [3, 4]$
- If the roots of the equation $x^2 10 x + 21 = m$ Q.22 are equal then m is -
 - (A) 4
- (B) 25
- (C) 4
- (D) 0

Questions based on Sum and Product of roots

- For what value of a, the difference of roots of Q.23 the equation $(a-2) x^2 - (a-4) x - 2 = 0$ is equal to 3 -
 - (A) 3. 3/2
- (B) 3.1
- (C) 1, 3/2
- (D) None of these
- If α . β are roots of the equation $x^2 + px q = 0$ Q.24 and γ , δ are roots of $x^2 + px + r = 0$, then the value of $(\alpha - \gamma)$ ($\alpha - \delta$) is-
 - (A) p + r
- (B) p r
- (C) q r
- (D) q + r
- If α , β are roots of the equation Q.25 $2x^2 - 35 x + 2 = 0$, then the value of $(2\alpha - 35)^3$. $(2\beta - 35)^3$ is equal to -
 - (A) 1
- (B) 8
- (C) 64
- (D) None of these

Q.26 If α , β are roots of the equation

> $px^2 + qx - r = 0$, then the value of $\frac{\alpha}{\beta^2} + \frac{\beta}{\alpha^2}$ is equal to -

- (A) $-\frac{p}{qr^2}(3pr + q^2)$ (B) $-\frac{q}{pr^2}(3pr + q^2)$
- (C) $-\frac{q}{pr^2}$ (3pr $-q^2$) (D) $\frac{q}{pr^2}$ (3pr + q)
- If product of roots of the equation Q.27 $mx^2 + 6x + (2m - 1) = 0$ is - 1, then m equals -
 - (A) 1
- (B) 1
- (C) 1/3
- (D) 1/3
- Q.28 For what value of a the sum of roots of the eqn. $x^2+ 2(2-a-a^2)x - a^2 = 0$ is zero -
 - (A) 1,2
- (B) 1, -2
- (C) 1, 2
- (D) 1, -2
- Q.29 The difference between the roots of the equation $x^2 - 7x - 9 = 0$ is -
 - (A) 7
- (B) $\sqrt{85}$
- (C) 9
- (D) $2\sqrt{85}$
- The HM of the roots of the equation Q.30 $x^2 - 8x + 4 = 0$ is -
 - (A) 1
- (B) 2
- (C)3
- (D) None of these
- Q.31 If the sum of the roots of the equation $ax^2 + 4x + c = 0$ is half of their difference. then the value of ac is-
 - (A) 4
- (B) 8
- (C) 12
- (D) 12
- If the sum of the roots of the equation (a+1) Q.32 $x^2 + (2a + 3) x + (3a + 4) = 0$ is -1, then the product of the roots is -
 - (A) 0
- (B) 1
- (C) 2
- (D) 3
- Sum of roots is 1 and sum of their Q.33 reciprocals is $\frac{1}{6}$, then equation is -
 - (A) $x^2 + x 6 = 0$ (B) $x^2 x + 6 = 0$
 - (C) $6x^2 + x + 1 = 0$ (D) $x^2 6x + 1 = 0$

- If α , β are roots of the equation Q.34 $2x^2 - 5x + 3 = 0$, then $\alpha^2 \beta + \beta^2 \alpha$ is equal
 - (A) 15/2
- (B) 15/4
- (C) 15/4
- (D) 15/2
- If α , β be the roots of the equation Q.35 $p(x^2 + n^2) + pnx + qn^2x^2 = 0$ then the value of p ($\alpha^2 + \beta^2$)+ p $\alpha\beta$ + q $\alpha^2\beta^2$ is -
 - (A) $\alpha + \beta$
- (C) p + q
- (D) $\alpha + \beta + p + q$
- If α and β are roots of $ax^2 bx + c = 0$, Q.36 then (α + 1) (β + 1) is equal to -

 - (A) $\frac{a-b+c}{a}$ (B) $\frac{a+b-c}{a}$ (C) $\frac{a+b+c}{a}$
- Q.37 If difference of roots of the equation $x^{2} - px + q = 0$ is 1, then $p^{2} + 4q^{2}$ equals-
 - (A) 2q + 3
- (B) $(1 2q)^2$
- $(C) (1 + 2q)^2$
- (D) 2q 3
- Q.38 If α and β are the roots of the equation $x^2 + (\sqrt{\alpha}) x + \beta = 0$ then the values of α and β are -
 - (A) $\alpha = 1$, $\beta = -2$
- (B) α = 2, β = -2
- (C) $\alpha = 1$, $\beta = -1$
- (D) $\alpha = -1$, $\beta = 1$
- Q.39 If roots α and β of the equation $x^2 + px + q = 0$ are such that $3\alpha + 4\beta = 7$ and $5\alpha - \beta = 4$, then (p,q) is equal to -
 - (A) (1, 1)
- (B) (-1, 1)
- (C) (-2, 1)
- (D)(2,1)
- Q.40 If one root of the equation $x^2 - 30 x + p = 0$ is square of the other, then p is equal to-
 - (A) 125, 216
- (B) 125, 216
- (C) Only 125
- (D) Only 216
- If α , β are roots of the equation x^2 mx + n = 0. Q.41 then value of $(1 + \alpha + \alpha^2) (1 + \beta + \beta^2)$ is -
 - (A) $1 + (m+n) + (m^2 mn + n^2)$
 - (B) $1 + (m + n) + (m^2 + mn + n^2)$
 - (C) $1 (m-n) + (m^2 + mn + n^2)$
 - (D) None of these

- If the equation $\frac{a}{x-a} + \frac{b}{x-b} = 1$ has roots Q.42 equal in magnitude but opposite in sign, then the value of a + b is -
 - (A) 1 (C) 1
- (B) 0
- (D) None of these
- Q.43 If α and β are the root of $ax^2 + bx + c = 0$, then the value of $\left\{ \frac{1}{a\alpha + b} + \frac{1}{a\beta + b} \right\}$ is -

- (D) None of these
- Q.44 If roots of the equations $2x^2 - 3x + 5 = 0$ and ax^2 + bx + 2 = 0 are reciprocals of the roots of the other then (a,b) equals -
 - (A) (-5, 3)
- (B) (5, 3)
- (C) (5, -3)
- (D) (-5, -3)
- If the sum of the roots of $ax^2 + bx + c = 0$ be Q.45 equal to sum of the squares, then -
 - (A) 2 ac = ab + b^2
- (B) 2 ab = bc + c^2
- (C) $2bc = ac + c^2$
- (D) None of these
- If one root of $ax^2 + bx + c = 0$ be square of the Q.46 other, then the value of $b^3 + ac^2 + a^2 c$ is-
 - (A) 3 abc (C) 0
- (B) 3abc (D) None of these

Questions based on with given roots Formation of Quadratic. Equation

- Q.47 The quadratic equation with one root 2i is-
 - (A) $x^2 + 4 = 0$
- (B) $x^2 4 = 0$
- (C) $x^2 + 2 = 0$
- (D) $x^2 2 = 0$
- Q.48 The sum of the roots of a equation is 2 and sum of their cubes is 98, then the equation is -
 - (A) $x^2 + 2x + 15 = 0$
 - (B) $x^2 + 15 x + 2 = 0$
 - (C) $2x^2 2x + 15 = 0$
 - (D) $x^2 2x 15 = 0$
- If α and β are roots of $2x^2 3x 6 = 0$, then Q.49 the equation whose roots are α^2 + 2 and β^2 + 2 will be -
 - (A) $4x^2 + 49 x 118 = 0$
 - (B) $4x^2 49 x 118 = 0$
 - (C) $4x^2 49 x + 118 = 0$
 - (D) $4x^2 + 49 x + 118 = 0$
 - math. GO

If α and β are roots of $2x^2 - 7x + 6 = 0$, then the quadratic equation whose roots are Q.50

$$-\frac{2}{\alpha}$$
, $-\frac{2}{\beta}$ is-

(A)
$$3x^2 + 7x + 4 = 0$$

(B)
$$3x^2 - 7x + 4 = 0$$

(C)
$$6x^2 + 7x + 2 = 0$$

(D)
$$6x^2 - 7x + 2 = 0$$

Q.51 If roots of quadratic equation $ax^2 + bx + c = 0$ are α and β then symmetric expression of its roots is

(A)
$$\frac{\alpha}{\beta} + \frac{\beta^2}{\alpha}$$

(A)
$$\frac{\alpha}{\beta} + \frac{\beta^2}{\alpha}$$
 (B) $\alpha^2 \beta^{-2} + \alpha^{-2} \beta^2$ (C) $\alpha^2 \beta + 2\alpha \beta^2$

(C)
$$\alpha^2\beta + 2\alpha\beta^2$$

(D)
$$\left(\alpha + \frac{1}{\alpha}\right) \left(\beta + \frac{1}{\alpha}\right)$$

The quadratic equation with one root $\frac{1}{2}\left(1+\sqrt{-3}\right)$ is-(A) $x^2-x-1=0$ (B) $x^2+x-1=0$ (C) $x^2+x+1=0$ (D) $x^2-x+1=0$ Q.52

(A)
$$x^2 - x - 1 = 0$$

(B)
$$x^2 + x - 1 = 0$$

(C)
$$x^2 + x + 1 = 0$$

(D)
$$x^2 - x + 1 = 0$$

The quadratic equation with one root $\frac{1}{1+i}$ is-Q.53

(A)
$$2x^2 + 2x + 1 = 0$$
 (

(B)
$$2x^2 - 2x + 1 = 0$$

(A)
$$2x^2 + 2x + 1 = 0$$
 (B) $2x^2 - 2x + 1 = 0$ (C) $2x^2 + 2x - 1 = 0$ (D) $2x^2 - 2x - 1 = 0$

(D)
$$2x^2 - 2x - 1 =$$

If α and β are roots of $x^2 - 2x + 3 = 0$, then the equation whose roots are $\frac{\alpha - 1}{\alpha + 1}$ and $\frac{\beta - 1}{\beta + 1}$ will be Q.54

(A)
$$3x^2 - 2x + 1 = 0$$
 (B) $3x^2 + 2x + 1 = 0$ (C) $3x^2 - 2x - 1 = 0$ (D) $x^2 - 3x + 1 = 0$

(B)
$$3x^2 + 2x + 1 = 0$$

(C)
$$3x^2 - 2x - 1 = 0$$

(D)
$$x^2 - 3x + 1 =$$

Q.55 If α and β be the roots of the equation

 $2x^2 + 2$ (a+ b) x + a² + b² = 0, then the equation whose roots are $(\alpha + \beta)^2$ and $(\alpha - \beta)^2$ is-

(A)
$$x^2 - 2abx - (a^2 - b^2)^2 = 0$$

(B)
$$x^2 - 4abx - (a^2 - b^2)^2 = 0$$

(A)
$$x^2 - 2abx - (a^2 - b^2)^2 = 0$$

(C) $x^2 - 4abx + (a^2 - b^2)^2 = 0$

If $\alpha \neq \beta$ but $\alpha^2 = 5\alpha - 3$, $\beta^2 = 5\beta - 3$, then the equation whose roots are α/β and β/α is-Q.56

(A)
$$x^2 - 5x - 3 = 0$$

(B)
$$3x^2 + 12x + 3 = 0$$

(C)
$$3x^2 - 19x + 3 = 0$$

Ques. 41

42

43

44 45

46

Ques. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

В D D Ans. B D В В В Α D В Α Α С D

22 23 24 25 26 27 28 29 30 31 32 33 34 Ques. 21

Ans. C С D С В С В В С С Α Α D Α В С

Ans. D В С Α Α D С Α В D

47

math. GO

48 49

50 51

52

53 54