Nom: Prénom:

Optimisation

Examen avec documents : 1 feuille A4 RV manuscrite Note finale constituée de 2/3 optimisation et 1/3 recherche opérationnelle

Répondre sur l'énoncé à l'exercice 2 (TSVP)

Exercice 1. Multiplicateurs de Lagrange. 10 points

On considère un paquet de forme parallélépipédique sans couvercle comme dans la figure :

- (1) On suppose que l'on dispose d'une surface S > 0 de papier adhésif pour couvrir les 5 faces externes de la boîte. Proposer un problème d'optimisation pour le problème de la recherche d'une boîte de volume maximum pouvant être ainsi couverte (les inconnues seront les 3 dimensions de la boite notées x_1 , x_2 et x_3). Le problème fera intervenir 4 contraintes : les trois contraintes de positivité et celle sur S.
- (2) Le problème admet-il au moins une solution?
- (3) En quels points des contraintes les contraintes sont-elles qualifiées?
- (4) Former le Lagrangien associé à ce problème.
- (5) Appliquer la méthode des multiplicateurs de Lagrange au premier ordre (KKT1) vue en cours.
- (6) En déduire l'ensemble des solutions du problème.

Exercice 2: vrai ou faux (10pts)

Répondre aux questions ci-dessous. On répondra directement sur la feuille de l'énoncé en justifiant chaque réponse par une preuve ou un contre-exemple. La fonction f est de \mathbb{R}^n dans \mathbb{R} . L'ensemble C est une partie non vide de \mathbb{R}^n . On considère le problème \mathcal{P} : $\min_{x \in C} f(x)$.

1. Si f est continue et C fermé, \mathcal{P} admet-il au moins une solution?

- 2. Si f est quadratique convexe sur l'ouvert convexe C, \mathcal{P} admet-il au moins une solution?
- 3. Si n=1, f est continue sur $C=[0,+\infty[$ et $\lim_{x\to+\infty}f(x)=+\infty,$ alors $\mathcal P$ admet-il au moins une solution?
- 4. Soient f est continue, C fermé non borné et $x_0 \in C$. On suppose que f admet une limite $a \in \mathbb{R}$ lorsque $[||x|| \to +\infty, x \in C]$ avec $f(x_0) < a$. Alors \mathcal{P} admet-il au moins une solution?

5. Reprendre la question précédente en supposant cette fois que $f(x_0) = a$.