LAB – 6
CMOS Gates

מגישים:

אביתר כהן – 205913858 יונתן קופפר – 316061860

מבוא: במעבדה זו נבנה שער NAND2 וננתח את אופן התנהגותו V_OUT ויצאה B ,A עם 2 כניסות אם (8=G) NAND ניסעיף אה התבקשנו לבנות שער β , שלנו היא β שלנו היא β

ניתן לראות כי השער מתפקד כראוי עבור המצבים השונים לפי ווקטור המעברים המוגדר:


```
radix 1 1
io i i
vname V_A V_B
tunit ps
trise 5
tfall 5
vih 1.8
vil 0.0
voh 1.8
vol 0.0
;Time
         ; V_A
                 ; V_B
0
        0
                 1
                 1
200
        1
400
        1
600
        1
                 1
800
```

2. כעת נדרשנו לחשב את tplh ואת tplh עבור המצבים השונים:

Test	Output	Nominal	Spec	Weight	Pass/Fail
introDigitalCircLab:TB_lab_6_NAND2:1	/V_OUT	<u></u>			
introDigitalCircLab:TB_lab_6_NAND2:1	/V_B	<u>~</u>			
introDigitalCircLab:TB_lab_6_NAND2:1	/V_A	~			
introDigitalCircLab:TB_lab_6_NAND2:1	tpd_01_11	24.04p			
introDigitalCircLab:TB_lab_6_NAND2:1	tphl_01_11	25.07p			
introDigitalCircLab:TB_lab_6_NAND2:1	tplh_01_11	23.01p			
introDigitalCircLab:TB_lab_6_NAND2:1	tpd_10_11	18.35p			
introDigitalCircLab:TB_lab_6_NAND2:1	tphl_10_11	20.14p			
introDigitalCircLab:TB_lab_6_NAND2:1	tplh_10_11	16.57p			

אם נסדר את התוצאות בטבלה נקבל כי:

Transaction	t_{pd}	$t_{p_{lh}}$	$t_{p_{hl}}$
01 - 11	24.04	23.01	25.07
10 - 11	18.35	16.57	20.14

נוכל לראות כי TPD: 01->11 גדול יותר מ TPD: 10->11, ובהתאם לאופן שבו בנינו את השער קיבלנו תוצאה הגיונית. כאשר הכניסה A, היא הגורמת לשינוי במוצא, ה t_{pd} צריך להיות גדול יותר מכיוון שבPDN בשער, הכניסה מחוברת בטור בין האדמה ובין המוצא. האשר נרצה לטעון את המוצא ע"י שינוי A בלבד, הmosa של כניסה זו נסגר והmosa נפתח. באותו זמן הmosa של כניסה B פתוח ולכן כאשר A טוענת את המוצא, היא במקביל טוענת גם הקיבולים של הmosa של B ואת הקיבול בין 2 הmosa. אך כאשר C כניסה B היא זו שגורמת לשינוי במוצא, הpmosa של B טוען רק את המוצא ולא עובר דרך הmosa של B מכיוון שהוא סגור.

כאשר נפרוק נקבל השפעה דומה. כאשר A היא הכניסה הפורקת, זה מתרחש כאשר הnmos של B כבר פתוח ולכן היא צריכה לפרוק גם את קיבול המוצא וגם את כל הקיבולים של B. אך כאשר כניסה B גורמת לפריקה, היא פורקת רק הכניסות בPUN ובמוצא מכיוון שהקיבולים בין הnmos של A ובין הnmos של B כבר פרוקים.

.B אמשר מעבר של A מאשר מתרחש מעבר אול יותר אדול יותר t_pd גדול אנחנו מצפים לקבל

3. כעת נדרשנו לחשב s.c energy וכן switch energy עבור המעברים ולמצוא את המקרה הגרוע ביותר static power עבור כל מצב בכניסה.

Test	Name	Туре	Details	EvalType	Plot	Save	Output	Nominal
introDigitalC	ivdd	signal	/10/V_DD	point	✓	✓		
introDigitalC	ignd	signal	/I0/DGND	point	✓	✓	ivdd	<u></u>
introDigitalC		signal	N_OUT	point	✓	~	ignd	<u>~</u>
introDigitalC	rising	expr	cross(VT("/V_OUT") (0.1 * 1.8) 2 "rising" nil nil nil)	point	✓		/V_OUT	<u>_</u>
introDigitalC	rising_mid	expr	cross(VT("/V_OUT") (0.9 * 1.8) 2 "rising" nil nil nil)	point	~		rising	801.1n
introDigitalC	falling	expr	cross(VT("/V_OUT") (0.1 * 1.8) 2 "falling" nil nil nil)	point	<u>~</u>		rising_mid	813.2n
introDigitalC	falling_mid	expr	cross(VT("/V_OUT") (0.9 * 1.8) 2 "falling" nil nil nil)	point	~		falling	613.1n
introDigitalC	rise_E_switch	expr	integ((IT("/I0/V_DD") * 1.8) rising rising_mid " ")	point	<u>~</u>		falling_mid	601.2n
introDigitalC	fall_E_switch	expr	integ((IT("/I0/DGND") * 1.8) falling_mid falling " ")	point	~		rise_E_switch	2.603p
introDigitalC	sc_rise	expr	integ((IT("/I0/DGND") * 1.8) rising rising_mid " ")	point	<u>~</u>		fall_E_switch	-2.608p
introDigitalC	sc fall	expr	integ((IT("/I0/V_DD") * 1.8) falling_mid falling " ")	point	<u>×</u>		sc_rise	-2.205f
introDigitalC	_	expr	(value(IT("/I0/V_DD") 170) * 1.8)	point	<u>~</u>		sc_fall	3.758f
introDigitalC	-,	expr	(rise E_switch - sc_rise)	point	~		static_p	6.148p
introDigitalC		expr	(fall_E_switch - sc_fall)	point	<u>v</u>		E_switch_rise E_switch_fall	2.606p -2.612p

לצורך חישוב מדויק הגדרנו את המדידה שלנו על הזרם הנכנס ממקור המתח ועל הזרם הנפרק לאדמה כאשר הזרם הנפרק לצורך חישוב מדויק הגדרנו את המדידה שלנו על הזרם הנכנס ממקור הזרם לאדמה מהזרם של מקור המתח. מכיוון שהזרם ממקור לאדמה הוא I_{sc} והזרם במוצא הוא $I_{switch}+I_{sc}=I_{switch}+I_{sc}$ מדדנו את הזרם וכך ביצענו את חישוב האנרגיה:

$$E = \int_{t_0}^{t_1} Pdt$$

את ההספק הסטטי מדדנו ע"י ער הזרם במצב יציב והכפלנו אותו במתח.

. tpd ואת ה static power עת ננתח את ה

Corner -	V_DD	temperature	header.scs	Pass/Fail ivdd	ignd	/V_OUT	static_p	tphl	tplh	tpd	/V_A	/V_B
nom	1.8	27	NOM	<u></u>	<u>L</u>		2.602p	5.961n	2.832n	4.396n	<u>_</u>	<u></u>
C3	1.6	125	SLOW		<u>L</u>	ഥ	30.8p	7.987n	5.846n	6.916n	<u>~</u>	<u>L</u>
C4	1.8	27	FASTSLOW	<u>Ľ</u>	<u>L</u>	드	6.588p	5.479n	3.387n	4.433n	<u>~</u>	<u>L</u>
C5	1.8	27	SLOWFAST	<u>Ľ</u>	<u>L</u>	<u>L</u>	1.987p	6.531n	2.193n	4.362n	<u>~</u>	<u>L</u>
FAST1	1.8	25	FAST	<u>Ľ</u>	<u>L</u>	<u>L</u>	25.72p	5.029n	1.958n	3.494n	<u>L</u>	<u>L</u>

נוכל לראות שעבור SS קיבלנו את ההשהיה הגבוהה ביותר ועבור FF את ההשהיה הקצרה ביותר, כפי שציפינו שיקרה. בנוסף נשים לב שעבור SF קיבלנו את ה static power הנמוך ביותר ואילו עבור SS את ה

5. כעת התבקשנו להריץ סימוצלית Monte Carlo על הGelay:

Test	Name	Yield	Min	Target	Max	Mean	Std Dev	Cpk	Errors
Vield Esti	mate: 100 %(200 passed/20	0 pts) Confidence	Level: <not< td=""><td>set> Filter: <</td><td>not set></td><td></td><td></td><td></td><td></td></not<>	set> Filter: <	not set>				
- (C) in	troDigitalCircLab:TB_lab_6_N	NAND2:1							
	- Static_p(summary)	100% (200/200)	1.806p		52.31p	13.55p	8.138p		0
	static_p	100% (200/200)	2.105p	info	4.396p	2.646p	350.9f		0
	static_p_FF	100% (200/200)	12.02p	info	52.31p	25.81p	8.138p		0
	static_p_FS	100% (200/200)	3.442p	info	13.41p	6.674p	1.97p		0
	static_p_SF	100% (200/200)	1.806p	info	2.699p	2.009p	139.3f		0
	static_p_SS	100% (200/200)	17.9p	info	51.62p	30.62p	6.562p		0
	- (tphi(summary)	100% (200/200)	4.906n		8.202n	6.21n	81.86p		0
	tphl	100% (200/200)	5.792n	info	6.159n	5.982n	69.36p		0
	tphl_FF	100% (200/200)	4.906n	info	5.16n	5.034n	48.42p		0
	tphI_FS	100% (200/200)	5.338n	info	5.628n	5.484n	55.15p		0
	tphi_SF	100% (200/200)	6.342n	info	6.755n	6.556n	81.86p		0
	tphl_SS	100% (200/200)	7.789n	info	8.202n	7.995n	79.19p		0
	- D tplh(summary)	100% (200/200)	1.918n		5.99n	3.244n	54.46p		0
	tplh	100% (200/200)	2.771n	info	2.905n	2.837n	25.08p		0
	tplh_FF	100% (200/200)	1.918n	info	1.999n	1.957n	15.92p		0
	tplh_FS	100% (200/200)	3.305n	info	3.471n	3.387n	31.68p		0
	tplh_SF	100% (200/200)	2.145n	info	2.236n	2.192n	17.62p		0
	tplh_SS	100% (200/200)	5.708n	info	5.99n	5.849n	54.46p		0
	- 🖨 tpd(summary)	100% (200/200)	3.436n		7.042n	4.727n	47.64p		0
	tpd	100% (200/200)	4.325n	info	4.493n	4.409n	36.46p		0
	tpd_FF	100% (200/200)	3,436n	info	3.56n	3.496n	24.06p		0
	tpd_FS	100% (200/200)	4.361n	info	4.513n	4.435n	29.87p		0
	tpd_SF	100% (200/200)	4.272n	info	4.48n	4.374n	42.85p		0
	tpd_SS	100% (200/200)	6.795n	info	7.042n	6.922n	47.64p		0

ניתן לראות כי לאחר 200 דגימות של מדידות, נקבל התפלגות נורמלית בקירוב סביב התוחלת של הערך אותו רצינו לבדוק. ניתן לראות כי הממוצע של הבדיקות שלנו קרוב מאוד לתוצאה של המדידה הקודמת אם כי לא זהה מכיוון שקיימת לנו כאן סטיית תקן כלשהי. יש לציין כי לקחנו כמות מדידות קטנה יחסית ואם נגדיל את כמות המדידות (לפחות 1000) נקבל תוצאות יותר טובות ויותר מדויקות. 6. כעת התבקשנו לבנות שער AND2 מהשער NAND2 שיצרנו. בנינו אותות באופן הבא

כעת נריץ סימולציה ונשים לב כי אכן מתקבל שער AND2

נשים לב כי הdelay של השער החדש גבוה יותר מאשר השער הישן כיוון שהוא מורכב מ 2 שערי NAND2 ולכן הוא מכיל את הdelay של שניהם. כלומר הוא גדול בצורה מורגשת ולא רק כחיבור בין שני זמני הtpd, זאת מכיוון שהשער הראשון דוחף את הקיבול שלו לשער השני באופן הבא:

<u>סיכום ומסקנות:</u>

. PDN ו PUN באמצעות NAND 2 במעבדה זו בנינו שער

בחנו את זמן ה TPD שלו וכן את צריכת האנרגיה וההספק שלו כתלות במצבים השונים (Sort Circ / Switch).

הרצנו סימולציית MONTE CARLO וניתחנו את התוצאות.

. ובחנו את זמני ההשהיה שלו באמצעותו שער AND2 ובחנו את זמני ההשהיה שלו