Российская Академия наук Санкт-Петербургский академический университет — Научно-образовательный центр нанотехнологий

Санкт-Петербургская кафедра философии РАН

История и методология механизмов элиминации в языках с зависимыми типами

Реферат аспиранта СПБАУ-НОЦНТ Шабалина Александра Леонидовича

> Научный руководитель к.ф.-м.н., доцент Москвин Денис Николаевич

Руководитель аспирантской группы д.ф.н., проф. Мангасарян Владимир Николаевич

Содержание

1	Лямбда-исчисление с индуктивными типами			3
	1.1	Лямбда-исчисление		
		1.1.1 Нетг	ипизированное лямбда-исчисление	3
		1.1.2 Про	сто типизированное лямбда-исчисление	4
		1.1.3 Дру	гие способы типизирования	4
	1.2	Сопоставление с образцом		5
		1.2.1 Pacı	пирение лямбда-исчисления дополнительными ти-	
		памі	и данных	5
		1.2.2 Mex	анизм сопоставления с образцом	8
	1.3	В Индуктивные типы данных		9
2	Зав	Зависимые типы в лямбда-исчислении		
	2.1	Зависимые типы		10
	2.2	Индуктивные семейства типов		10
3	Me	канизмы эл	иминации в языках с зависимыми типами	11
	3.1	Сопоставление с образцом для индуктивных семейств типов		11
	3.2	Выразимость сопоставления с образцом через элиминаторы		11
	3.3	Расширение сопоставления с образцом views		11
	3.4	Прочие расширения сопоставления с образцом		11
	3.5	Проблемы механизма сопоставлением с образцом		11
4	Спи	Список литературы		

1. Лямбда-исчисление с индуктивными типами

1.1. Лямбда-исчисление

1.1.1. Нетипизированное лямбда-исчисление

Лямбда-исчисление Чёрча, наряду с машинами Тьюринга и общерекурсивными функциями Гёделя, задает множество эффективно вычислимых функций [1]. То есть функций, для вычисления которых существует алгоритм. Это, в свою очередь, означает, что любая программа, исполняемая на современных вычислительных устройствах, должна быть выразима на языке лямбда-исчисления. Формально этот язык задается следующим образом [1]:

- ullet Есть некоторое множество $nepemenhux\ V.$
- ullet Есть множество $mермов\ T,$ задаваемых индуктивно:

$$T = \left\{ \begin{array}{ll} x, & x \in V & \text{переменная} \\ M\ N, & M,N \in T & \text{применение} \\ \lambda x.M, & x \in V,M \in T & \text{лямбда-абстракция} \end{array} \right.$$

• Множеством свободных переменных терма t называется подмножество V, в которое входят все переменные в терме t, кроме тех, что связаны лямбда-абстракцией (определение аналогично для других связывающих конструкций в математике, к примеру, кванторов существования и всеобщности):

$$FV(x) = \{x\}$$

$$FV(MN) = FV(M) \cup FV(N)$$

$$FV(\lambda x.M) = FV(M) \setminus \{x\}$$

• Вычисление выполняется с помощью правила бэта-редукции:

$$(\lambda x.M)N \Rightarrow_{\beta} M[x := N]$$

Где нотация M[x := N] означает замену в M всех свободных вхождений переменной x на терм N.

1.1.2. Просто типизированное лямбда-исчисление

Недостаток нетипизированного лямбда-исчисления лежит во «вседозволенности» операции применения MN: ничто не гарантирует, что M будет функцией. Чтобы решить эту проблему, Чёрч разработал просто типизированное лямбда-исчисление [2]:

- Множество переменных на уровне термов V и на уровне типов TyV.
- Множество типов Ty:

$$Ty = \begin{cases} x, & x \in TyV \\ \sigma \to \tau, & \sigma, \tau \in Ty \end{cases}$$

• Множество термов T:

$$T = \begin{cases} x, & x \in V \\ M N, & M, N \in T \\ \lambda x : \sigma . M, & x \in V, \sigma \in Ty, M \in T \end{cases}$$

• Правила присваивания типов:

$$\frac{\Gamma \vdash x : \sigma}{\Gamma \vdash x : \sigma} \quad (x : \sigma) \in \Gamma$$

$$\frac{\Gamma \vdash M : \tau \to \sigma \quad \Gamma \vdash N : \tau}{\Gamma \vdash MN : \sigma}$$

$$\frac{(\Gamma \cup \{x : \sigma\}) \vdash M : \tau}{\Gamma \vdash (\lambda x : \sigma . M) : \sigma \to \tau}$$

• Вычисление выполняется также с помощью бэта-редукции, имеющему аналогичный вид нетипизированному случаю. Но определяется только для термов, которым можно присвоить тип.

1.1.3. Другие способы типизирования

Недостаток просто типизированного лямбда-исчисления обратный: множество термов, которые хотелось бы написать будут отвергнуты системой типов. Поэтому было придумано множество способов расширить систему типов, чтобы с одной стороны позволить писать больше программ, которые хочется, а с другой — отвергать некорректные. Одной из таких систем типов является System F Жирара [7]:

• Типы

$$Ty = \begin{cases} x, & x \in TyV \\ \sigma \to \tau, & \sigma \in Ty, \tau \in Ty \\ \forall x.\sigma, & x \in TyV, \sigma \in Ty \end{cases}$$

• Термы

$$T = \begin{cases} x, & x \in V \\ M\ N, & M, N \in T \\ \lambda x : \sigma.M, & x \in V, \sigma \in Ty, M \in T \\ \Lambda x.M, & X \in TyV, M \in T \\ M[\sigma], & M \in T, \sigma \in Ty \end{cases}$$
 применение типа

• Типизация. Все правила из просто типизированного плюс:

$$\frac{\Gamma \cup \{x\} \vdash M : \sigma}{\Gamma \vdash \Lambda x.M : \forall X.\sigma}$$

$$\frac{\Gamma \vdash M : \forall x.\tau}{\Gamma \vdash M[\sigma] : \tau[x := \sigma]}$$

Введение абстракции по типам позволяет строить утверждения о программах [9]. Например, существует ровно один терм с типом $\forall a. \forall b. a \rightarrow b \rightarrow a - \Lambda a. \Lambda b. \lambda x. \lambda y. x.$

1.2. Сопоставление с образцом

1.2.1. Расширение лямбда-исчисления дополнительными типами данных

Чтобы превратить лямбда-исчисление в практический язык программирования, требуется ввести дополнительные типы данных, такие как числа, списки, Здесь будем рассматривать System F.

Посмотрим, как можно ввести типы Bool, Nat и List [7]:

- Расширяем множество типов типами Bool, Nat, List T, где $T \in Ty.$
- ullet Расширяем множество термов термами $true,\ false,\ if Then Else,\ 0,\ succ,\ pred,\ iszero,\ nil,\ cons,\ isnil,\ head,\ tail.$
- Дополняем правила типизации:

$$\Gamma \vdash true : Bool$$

$$\Gamma \vdash false : Bool$$

$$\frac{\Gamma \vdash e : Bool \quad \Gamma \vdash t : T \quad \Gamma \vdash f : T}{\Gamma \vdash ifThenElse\ e\ t\ f : T}$$

$$\Gamma \vdash 0 : Nat$$

$$\frac{\Gamma \vdash n : Nat}{\Gamma \vdash succ \; n : Nat}$$

$$\frac{\Gamma \vdash n : Nat}{\Gamma \vdash pred \ n : Nat}$$

$$\frac{\Gamma \vdash n : Nat}{\Gamma \vdash iszero \ n : Bool}$$

$$\Gamma \vdash nil[T] : List T$$

$$\frac{\Gamma \vdash x : T \quad \Gamma \vdash xs : List \ T}{\Gamma \vdash cons[T] \ x \ xs : List \ T}$$

$$\frac{\Gamma \vdash xs : List \ T}{\Gamma \vdash isnil[T] \ xs : Bool}$$

$$\frac{\Gamma \vdash xs : List \ T}{\Gamma \vdash head[T] \ xs : T}$$

$$\frac{\Gamma \vdash xs : List \ T}{\Gamma \vdash tail[T] \ xs : List \ T}$$

• И расширяем правила вычислений. Назовем их дельта-редукциями:

$$\frac{e \Rightarrow e'}{ifThenElse\ e\ t\ f \Rightarrow ifThenElse\ e'\ t\ f}$$

$$\frac{t \Rightarrow t'}{ifThenElse\ true\ t\ f \Rightarrow t'}$$

$$f \Rightarrow f'$$

$$ifThenElse\ false\ t\ f \Rightarrow f'$$

$$\frac{n \Rightarrow n'}{succ\ n \Rightarrow succ\ n'}$$

$$\frac{n \Rightarrow n'}{pred\ n \Rightarrow pred\ n'}$$

$$pred\ (succ\ n) \Rightarrow n$$

$$\frac{n \Rightarrow n'}{iszero\ n \Rightarrow iszero\ n'}$$

$$iszero\ 0 \Rightarrow true$$

$$iszero\ (succ\ n) \Rightarrow false$$

$$\frac{x \Rightarrow x' \quad xs \Rightarrow xs'}{cons[T]\ x\ xs \Rightarrow cons[T]\ x'\ xs'}$$

$$\frac{xs \Rightarrow xs'}{isnil[T]\ xs \Rightarrow isnil[T]\ xs'}$$

$$isnil[S]\ (nil[T]) \Rightarrow true$$

$$isnil[S]\ (cons[T]\ x\ xs) \Rightarrow false$$

$$\frac{xs \Rightarrow xs'}{head[T]\ xs \Rightarrow head[T]\ xs'}$$

$$head[S]\ (cons[T]\ x\ xs) \Rightarrow x$$

$$tail[S]\ (cons[T]\ x\ xs) \Rightarrow xs$$

$$tail[S]\ (cons[T]\ x\ xs) \Rightarrow xs$$

Можно заметить, что введение типа в систему состоит из шагов:

- 1. Введение типа на уровень типов: Bool, Nat, List T.
- 2. Введение конструкторов функций (или, в частном случае, констант), которые дают на выходе элемент введенного типа: true, false, 0, succ, nil, cons.
- 3. Введение предикатов, которые проверяют каким конструктором был построен аргумент: iszero, isnil.
- 4. Введение деструкторов функций, действующих обратно конструкторам, то есть получая на вход элемент вводимого типа, они возвращают аргумент соответствующего конструктора: pred, head, tail

Последние 2 этапа можно объединить в один элиминатор, как в случае с Bool: ifThenElse. В общем случае эта функция принимает на вход элемент вводимого типа, затем столько же функций, сколько конструкторов и каждая из этих функций имеет число аргументов такое же, как и соответствующий ей конструктор. Все эти функции возвращают какойто тип a и весь элиминатор тоже возвращает этот тип a. Вычислительно первый аргумент проверяется на то, каким конструктором и с какими аргументами он был построен и на результат выдается применение соответствующей функции к аргументам конструктора.

1.2.2. Механизм сопоставления с образцом

В 1968-м году Бурсталл [3] предложил синтаксическую конструкцию, которая позволяет избавиться от явного написания предикатов с декструкторами, заменив их соответствующими конструкторами:

$$\begin{array}{lll} \mathbf{let} \ lst = cons \ x \ xs & \Leftrightarrow \ \mathbf{let} \ lst = cons \ x \ xs \\ \\ \mathbf{let} \ (cons \ x \ xs) = lst & \Leftrightarrow \ \mathbf{let} \ x = head \ lst; \mathbf{let} \ xs = tail \ lst \\ \\ lst \ \mathbf{is} \ nil & \Leftrightarrow \ isnil \ lst \\ \end{array}$$

И развивая идею чуть дальше, заменять конструкции вида:

if
$$e$$
 is c_1 then let $(c_1 \ x_1 \ \dots \ x_{k_1}) = e; \phi_1 \ x_1 \ \dots \ x_{k_1}$
else if e is c_2 then let $(c_2 \ x_1 \ \dots \ x_{k_2}) = e; \phi_2 \ x_1 \ \dots \ x_{k_2}$
 \vdots
else if e is c_n then let $(c_n \ x_1 \ \dots \ x_{k_n}) = e; \phi_n \ x_1 \ \dots \ x_{k_n}$

cases e:

$$c_1 \ x_1 \ \dots \ x_{k_1} : \phi_1 \ x_1 \ \dots \ x_{k_1}$$
 $c_2 \ x_1 \ \dots \ x_{k_2} : \phi_2 \ x_1 \ \dots \ x_{k_2}$
 \vdots
 $c_n \ x_1 \ \dots \ x_{k_n} : \phi_n \ x_1 \ \dots \ x_{k_n}$

Механизм, названный позднее сопоставлением с образцом, оказался очень практически удобным и получил широкое распространение в языках вроде ML, Haskell,

1.3. Индуктивные типы данных

Встроенных в систему типов бывает недостаточно и хочется иметь возможность вводить собственные типы данных. Это можно делать, явно предоставляя функции преобразования между новым введенным типом и комбинацией встроенных [4]. Это позволяет писать функции в терминах нового типа и дает возможность изменить внутреннее представление этого типа, не переписывая эти функции.

Но от ручного написания функций преобразования тоже хочется избавиться, что было впервые сделано в 1980-м году в языке Норе [5]. В нем был введен способ вводить пользовательские типы данных, которые имеют форму деревьев. Например, Bool, Nat, List T принимают вид:

2. Зависимые типы в лямбда-исчислении

2.1. Зависимые типы

Развивая идею построения утверждения по программам, можно придти к соответствию Карри-Говарда между типами и теоремами в математической логике [8]. В частности, System F соответствует интуиционистской (конструктивной) пропозициональной логике второго порядка (но без квантора существования).

Если теперь вместо пропозициональной логики взять логику предикатов и построить по ней систему типов, то получатся так называемые зависимые типы [6]. Ключевая идея в том, что мы объединяем множества типов и термов в одно. Позволяя таким образом писать термы на уровне типов. Это открывает возможность для проведения формальной верификации программ с помощью одной лишь системы типов.

2.2. Индуктивные семейства типов

- 3. Механизмы элиминации в языках с зависимыми типами
- 3.1. Сопоставление с образцом для индуктивных семейств типов
- **3.2.** Выразимость сопоставления с образцом через элиминаторы
- 3.3. Расширение сопоставления с образцом views
- 3.4. Прочие расширения сопоставления с образцом
- 3.5. Проблемы механизма сопоставлением с образцом

4. Список литературы

- [1] H. P. Barendregt. The Lambda Calculus Its Syntax and Semantics, volume 103. North Holland, revised edition, 1984.
- [2] Henk Barendregt, S. Abramsky, D. M. Gabbay, T. S. E. Maibaum, and H. P. Barendregt. Lambda calculi with types. In *Handbook of Logic in Computer Science*, pages 117–309. Oxford University Press, 1992.
- [3] Rod M Burstall. Proving properties of programs by structural induction. The Computer Journal, 12(1):41–48, 1969.
- [4] Rod M Burstall and John Darlington. A transformation system for developing recursive programs. *Journal of the ACM (JACM)*, 24(1):44–67, 1977.
- [5] Rod M Burstall, David B MacQueen, and Donald T Sannella. Hope: An experimental applicative language. In *Proceedings of the 1980 ACM conference on LISP and functional programming*, pages 136–143. ACM, 1980.
- [6] P. Martin-Löf. An intuitionistic theory of types: predicative part. In *Logic Colloquium*, 1973.
- [7] Benjamin C. Pierce. Types and Programming Languages. MIT Press, Cambridge, MA, USA, 2002.
- [8] Philip Wadler. Propositions as types.
- [9] Philip Wadler. Theorems for free! In Functional Programming Languages and Computer Architecture, pages 347–359. ACM Press, 1989.