Fundament Analysis

Michael Kaltenbäck

Inhaltsverzeichnis

Vo	rwort		ix
1	Men	gen und Abbildungen	1
	1.1	Mengen	1
	1.2	Funktionen	4
	1.3	Äquivalenzrelation	8
	1.4	Übungsaufgaben	9
2	Die r	reellen Zahlen	13
	2.1	Algebraische Struktur der reellen Zahlen	13
	2.2	Ordnungsstruktur der reellen Zahlen	16
	2.3	Die natürlichen Zahlen	21
	2.4	Die ganzen Zahlen	33
	2.5	Eine alternative Konstruktion von \mathbb{Z}^*	37
	2.6	Dividieren mit Rest*	41
	2.7	Der Körper \mathbb{Q}	44
	2.8	Archimedisch angeordnete Körper	49
	2.9	Das Vollständigkeitsaxiom	50
	2.10	Dedekindsche Schnitte*	54
	2.11	Die komplexen Zahlen	59
	2.12	Übungsaufgaben	61
3	Der (Grenzwert	69
	3.1	Metrische Räume	69
	3.2	Der Grenzwert in metrischen Räumen	74
	3.3	Folgen reeller und komplexer Zahlen	80
	3.4	Monotone Folgen	84
	3.5	Cauchy-Folgen	88
	3.6	Konvergenz in weiteren metrischen Räumen	90
	3.7	Konvergenz gegen unendlich	93
	3.8	Konvergenz gegen ±∞ als metrische Konvergenz*	96
	3.9		100
	3.10	Konvergenzkriterien	105

vi Inhaltsverzeichnis

	3.11	Übungsaufgaben	110
4	Die I	Konstruktion der reellen Zahlen	119
	4.1	Existenz	119
	4.2	Eindeutigkeit	124
5	Topo	ologie metrischer Räume	127
	5.1	ϵ -Kugeln, offene und abgeschlossene Mengen	127
	5.2	Kompaktheit	
	5.3	Gerichtete Mengen und Netze	139
	5.4	Unbedingte Konvergenz und Umordnen von Reihen	146
	5.5	Grenzwerte von Funktionen	154
	5.6	Übungsaufgaben	
6	Reell	le und komplexe Funktionen	165
	6.1	Stetigkeit	165
	6.2	Der Zwischenwertsatz	
	6.3	Gleichmäßige Stetigkeit	
	6.4	Unstetigkeitsstellen	
	6.5	Monotone Funktionen	
	6.6	Gleichmäßige Konvergenz	
	6.7	Vervollständigung*	
	6.8	Reell- und komplexwertige Folgen und Reihen von Funktionen	
	6.9	Die Exponentialfunktion	
	6.10	Fundamentalsatz der Algebra	
	6.11	Weitere wichtige elementare Funktionen	
	6.12	Abelscher Grenzwertsatz*	
	6.13	Übungsaufgaben	
7	Diffe	rentialrechnung	223
•	7.1	Begriff der Ableitung	_
	7.2	Mittelwertsätze	
	7.3	Motivation zum Taylorschen Lehrsatz*	
	7.4	Der Taylorsche Lehrsatz	
	7.5	Stammfunktion	
	7.6	Übungsaufgaben	
8	Dac l	Riemannsche Integral	261
J	8.1	Ober- und Untersummen	
	8.2	Das Riemann-Integral	
	8.3	Integrale von stetigen Funktionen	
	8.4	Differential und Integralrechnung	
		<u> </u>	
	8.5 8.6	Weitere Eigenschaften des Integrals*	279
	ΛD	umergeninche integrate	/ XI

Inhaltsverzeichnis

	8.7	Vertauschung von Integralen mit Grenzwerten	283
	8.8	Mittelwertsatz	294
	8.9	Übungsaufgaben	
9	Norn	nen und Banachräume	303
	9.1	Normierte Räume	303
	9.2	Lineare Abbildungen	307
	9.3	Banachraumwertige Reihen, Funktionen, etc	313
	9.4	Übungsaufgaben	328
10	Ablei	tungen nach mehreren Variablen	333
	10.1	Partielle Ableitungen	333
	10.2	Höhere Ableitungen	343
	10.3	Extremwerte	350
	10.4	Übungsaufgaben	356
11	Wegi	ntegrale	361
	11.1	Wege	361
	11.2	Wegintegrale	367
	11.3	Offene Mengen in \mathbb{R}^n und Gebiete	373
	11.4	Gradientenfelder	375
	11.5	Homotopie und einfacher Zusammenhang	384
	11.6	Komplexe Wegintegrale und Holomorphie	387
	11.7	Laurentreihen*	401
	11.8	Nochmals komplexe Differenzierbarkeit*	403
	11.9	Harmonische Funktionen*	405
	11.10	Übungsaufgaben	406
12	Торо	logische Grundlagen	413
	12.1	Topologische Grundbegriffe	413
	12.2	Abgeschlossene Mengen	418
	12.3	Stetige Abbildungen	423
	12.4	Basis, Subbasis	427
	12.5	Initiale Topologie	431
	12.6	Spur- und Produkttopologie	434
	12.7	Finale Topologie*	437
	12.8	Zusammenhang und Trennungseigenschaft $(T1)^*$	439
	12.9	Trennungseigenschaften $(T3)$ und $(T4)$	442
	12.10	Das Lemma von Urysohn*	444
	12.11	Kompaktheit	448
	12.12	Satz von Tychonoff*	453
		Kompaktheit in metrischen Räumen	
	12.14	Alexandroff-Kompaktifizierung	460
	12.15	Der Satz von Stone-Weierstraß	463

	12.16 Übungsaufgaben	468
13	Lemma von Zorn*	475
Lit	eraturverzeichnis	479
Inc	lex	480

Vorwort

Das vorliegende Buch ist aus den Skripten zu den Vorlesungen Analysis 1 und Analysis 2 an der TU Wien entstanden. Diese beiden Vorlesung habe ich seit 2005 viermal gehalten, und viele Studenten sowie Kollegen haben mich auf Druckfehler, mathematische Ungereimtheiten oder auch Fehlendes aufmerksam gemacht, wofür ich sehr sehr dankbar bin. Ich hoffe daher, dass das vorliegende Werk nicht mehr allzu fehlerbehaftet ist.

Die hier auftauchenden Begriffe, Konzepte und Ergebnisse sind eine wichtige Grundlage für die meisten Vorlesungen in den folgenden Semestern. So wird etwa das Verständnis von Stetigkeit, Differenzierbarkeit und Konvergenz als selbstverständlich vorausgesetzt werden. Ich habe also darauf geachtet, dass dieses Buch nicht nur als Lernunterlage, sondern auch später als Nachschlagewerk verwendet werden kann. Insbesondere findet sich am Ende ein ausführlicher Index.

Obwohl die Anfänge der Analysis inhaltlich nicht viel Spielraum für den Vortragenden lassen, habe ich versucht, auf die Dinge besonderes Augenmerk zu legen, die mir in meiner Arbeit als Mathematiker und im Hinblick auf spätere Vorlesungen wichtig erscheinen. Ich möchte aber auch betonen, dass das meine ganz persönliche Sicht der Materie ist. Es kann für Sie daher nur von Nutzen sein, wenn sie auch in andere Analysis Bücher bzw. Skripten manch Blicke werfen, um daraus zu lernen.

Neben den klassischen Inhalten wie die Beschaffenheit von \mathbb{R} , Konvergenztheorie von Folgen und Reihen, Stetigkeit, Differenzierbarkeit in einer und mehreren Variablen, Riemann-Integral und Wegintegral werden hier auch elementare Eigenschaften von Banachräumen studiert. Zudem wird aufbauend auf das Konzept der Gradientenfelder eine kurze Einführung in die komplexe Analysis gegeben. Zuletzt beinhaltet diese Buch eine Einführung in die mengentheoretische Topologie. Selbige hat sich in der modernen Mathematik als unverzichtbar wichtiges Werkzeug für diverse Gebiete etabliert.

Die mit * gekennzeichneten Abschnitte, Resultate bzw. Bemerkungen ist weiterführendes bzw. tiefer erklärendes Material, welches nicht zum Verständnis von nachfolgenden Inhalten notwendig ist, und daher beim ersten Mal übergangen werden kann.

Bezüglich der noch versteckten Fehler möchte ich die Leser bitten, mir entdeckte Druckfehler mit Seiten und Zeilenangabe per Email zu schicken:

michael.kaltenbaeck@tuwien.ac.at

Michael Kaltenbäck Wien, 2015