GIẢI CHI TIẾT ĐỀ SỐ 13

BẢNG ĐÁP ÁN PHẦN I

1.C	2.B	3.C	4.B	5.A	6.D	7.D	8.A	9.B	10.A
11.A	12.D								

BẢNG ĐÁP ÁN PHẦN II

Câu 1	a) Sai	b) Đúng	c) Đúng	d) Sai
Câu 2	a) Sai	b) Đúng	c) Sai	d) Đúng
Câu 3	a) Sai	b) Đúng	c) Sai	d) Đúng
Câu 4	a) Đúng	b) Sai	c) Đúng	d) Sai

BẢNG ĐÁP ÁN PHẦN III

Câu 1: 0,33	Câu 2: 17,1	Câu 3: 1200	Câu 4: −4	Câu 5: 2,51	Câu 6: 89				

PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ Câu 1 đến Câu 12. Mỗi Câu thí sinh chỉ chọn một phương án.

Câu 1: • Vì mặt phẳng cần tìm song song với mặt phẳng $(P) \Rightarrow \vec{n} = \overrightarrow{n_P} = (3; -2; 1)$

• Mặt phẳng đi qua điểm M(2;-1;4) và nhận n=(3;-2;1) làm vectơ pháp tuyến có phương trình là: $3(x-2)-2(y+1)+(z-4)=0 \Leftrightarrow 3x-2y+z-12=0$. **Chọn C.**

Câu 2: • Số trung bình của mẫu số liệu ghép nhóm được tính bởi công thức:

$$\overline{x} = \frac{152, 5.1 + 157, 5.4 + 162, 5.10 + 167, 5.9 + 172, 5.4 + 177, 5.2}{1 + 4 + 10 + 9 + 4 + 2} = \frac{4960}{30} = 165, 33$$

• Phương sai của mẫu số liệu được tính bởi công thức:

$$s^{2} = \frac{1.(165,33-152,5)^{2} + 4.(165,33-157,5)^{2} + ... + 2.(165,33-177,5)^{2}}{1+4+10+9+4+2} \approx 34,47$$

• Độ lệch chuẩn của mẫu số liệu là: $s = \sqrt{s^2} = \sqrt{34,47} \approx 5,87$. Chọn B.

Câu 3: • $\int f(x) dx = \int (\sin x + 4x^3) dx = -\cos x + x^4 + C$. **Chọn C.**

Câu 4: • $\overrightarrow{BA} + \overrightarrow{BD} + \overrightarrow{BB'} = \overrightarrow{BA} + \overrightarrow{BD} + \overrightarrow{DD'} = \overrightarrow{BA} + \overrightarrow{BD'} \neq \overrightarrow{BD'}$ \Rightarrow Mệnh đề B sai

Chọn B.

Câu 5: • Đồ thị đã cho là độ thị của hàm bậc $3 \Rightarrow$ Hàm số có dạng $y = ax^3 + bx^2 + cx + d$. $\Rightarrow y' = 3ax^2 + 2bx + c$

• Vì đồ thị hàm số đi qua các điểm (0;0);(1;-2);(2;-4) và đạt cực trị tại điểm x=0

$$\Rightarrow \begin{cases} d = 0 \\ a+b+c+d = -2 \\ 8a+4b+2c+d = -4 \end{cases} \Leftrightarrow \begin{cases} a = 1 \\ b = -3 \\ c = 0 \end{cases} \Rightarrow y = x^3 - 3x^2.$$
 Chọn A.
$$c = 0 \qquad d = 0$$

Câu 6: • Vì mặt phẳng (P) có phương trình 3x - z + 2 = 0

 \Rightarrow Vector pháp tuyến có dạng $\vec{n} = k.(3;0;-1)(k \neq 0)$, tại k = 1

 $\Leftrightarrow \vec{n} = (3;0;-1)$. Chọn **D**.

Câu 7: • Ta có
$$\int_{0}^{2} \left[\frac{1}{2} f(x) - 2 \right] dx = \frac{1}{2} \int_{0}^{2} f(x) dx - \int_{0}^{2} 2 dx = \frac{1}{2} \cdot 4 - 4 = 2 - 4 = -2$$
Chon D.

Câu 8: • Ta có
$$\left(\frac{1}{2}\right)^x \le \frac{1}{8} \Leftrightarrow 2^{-x} \le 2^{-3} \Leftrightarrow -x \le -3 \Leftrightarrow x \ge 3 \Rightarrow S = [3; +\infty)$$

Chọn A.

Câu 9: • Thể tích của khối tròn xoay khi quay hình phẳng (H) quanh trục Ox được tính bởi công thức:

$$V = \pi \int_{a}^{b} f(x)^{2} dx = \pi \int_{a}^{b} (2x^{2} + 1)^{2} dx$$
. Chọn B.

Câu 10: • Cấp số nhân có
$$\begin{cases} u_1 = 2 \\ q = 5 \end{cases} \Rightarrow u_n = u_1.q^{n-1} \Leftrightarrow u_3 = 2.5^2 = 2.25 = 50$$
. **Chọn A.**

Câu 11:

• Ta có
$$V_{S.ABCD} = \frac{1}{3}.h.S_{ABCD} = \frac{1}{3}.SA.AB^2 = \frac{1}{3}.a\sqrt{2}.a^2 = \frac{\sqrt{2}}{3}a^3$$
. Chọn A.

Câu 12:

• Từ đồ thị hàm số đã cho \Rightarrow Hàm số đạt cực đại tại điểm x = -1 và đạt cực tiểu tại điểm x = 1 \Rightarrow Giá trị cực tiểu của hàm số đã cho là f(1) = 2. **Chọn D.**

PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ Câu 1 đến Câu 4. Trong mỗi ý a), b), c), d) ở mỗi Câu, thí sinh chọn đúng (Đ) hoặc sai (S).

a) Sai – Giải thích: Câu 1:

• Ta có
$$B' \in Oz \Rightarrow AB' \perp (ABC)$$

- Lại có
$$AB' = \sqrt{(0-0)^2 + (0-0)^2 + (4-0)^2} = 4$$
;

$$AB = \sqrt{(2-0)^2 + (0-0)^2 + (0-0)^2} = 2$$
;

$$AC = \sqrt{(0-0)^2 + (3-0)^2 + (0-0)^2} = 3$$

$$\Rightarrow V_{{\scriptscriptstyle ABC.A'B'C'}} = AB'.S_{{\scriptscriptstyle ABC}} = AB'.\frac{1}{2}AB.AC = 4.\frac{1}{2}.2.3 = 12$$

• Giả sử
$$A'(a;b;c)$$
; do $\overrightarrow{BB'} = \overrightarrow{AA'} \Rightarrow (-2;0;4) = (a;b;c)$

$$\Rightarrow A'(-2;0;4) \Rightarrow \vec{u} = \overrightarrow{A'B} + \overrightarrow{A'C} = (4;0;-4) + (2;3;-4) = (6;3;-8)$$

• Giả sử
$$C'(d;e;f)$$

- Ta có
$$\overrightarrow{BB'} = \overrightarrow{CC'} \Rightarrow (-2;0;4) = (d;e-3;f) \Rightarrow \begin{cases} d = -2 \\ e-3 = 0 \Leftrightarrow \begin{cases} d = -2 \\ e = 3 \end{cases} \Rightarrow C'(-2;3;4)$$

d) Sai – Giải thích:

• Hình chiếu của
$$C'(-2;3;4)$$
 lên mặt phẳng (Oyz) là $D(0;3;4)$

- Mà
$$A; B'; C \in (Oyz) \Rightarrow$$
 Hình chiếu của lăng trụ lên mặt phẳng (Oyz) là tứ giác $B'ACD$

- Ta có
$$\overrightarrow{AB}' = (0;0;4)$$
 và $\overrightarrow{CD} = (0;0;4) \Rightarrow \overrightarrow{AB}' = \overrightarrow{CD}$

$$\Rightarrow$$
 $AB//CD$ và $AB = CD$; mà $B'A \perp AC \Rightarrow$ tứ giác $B'ACD$ là hình chữ nhật

$$\Rightarrow$$
 $S_{B'ACD} = AB'.AC = 4.3 = 12$

Câu 2: a) Sai – Giải thích:

• Ta có
$$f'(x) = \frac{(x^2 + 2x - 1)! \cdot (x - 1) - (x^2 + 2x - 1) \cdot (x - 1)!}{(x - 1)^2}$$

$$= \frac{(2x+2)(x-1)-(x^2+2x-1)}{(x-1)^2} = \frac{x^2-2x-1}{(x-1)^2} \Rightarrow f'\left(-\frac{1}{3}\right) = -\frac{1}{8} < 0$$

 \Rightarrow Hàm số không đồng biến trên $(-\infty; 0)$

b) Đúng – Giải thích:

• Ta có
$$f(x) = \frac{x^2 + 2x - 1}{x - 1} = \frac{(x^2 - x) + (3x - 3) + 2}{x - 1} = \frac{x(x - 1) + 3(x - 1) + 2}{x - 1} = x + 3 + \frac{2}{x - 1}$$

 \Rightarrow Đường thắng y = x + 3 là tiệm cận xiên của đồ thị hàm số đã cho

c) Sai – Giải thích:

• Xét phương trình $x-1=0 \Leftrightarrow x=1$ nên x=1 là tiệm cận đứng của đồ thị hàm số đã cho

 $\Rightarrow J(1,4)$ là giao điểm của hai đường tiệm cận $\Rightarrow J(1,4)$ là tâm đối xứng của đồ thị hàm số đã cho

d) Đúng – Giải thích:

• Ta có
$$f'(x) = \frac{x^2 - 2x - 1}{(x - 1)^2} = \frac{(x - 1)^2 - 2}{(x - 1)^2} = 1 - \frac{2}{(x - 1)^2}$$

- Với
$$x \in [-3;-1] \Rightarrow -4 \le x-1 \le -2 \Rightarrow 4 \le (x-1)^2 \le 16$$

$$\Rightarrow \frac{2}{16} \le \frac{2}{(x-1)^2} \le \frac{2}{4} \Leftrightarrow \frac{1}{2} \le 1 - \frac{2}{(x-1)^2} \le \frac{7}{8} \Rightarrow f'(x) > 0; \forall x \in [-3;-1]$$

 \Rightarrow Hàm số đã cho đồng biến trên [-3;-1] \Rightarrow $\underset{[-3;-1]}{\textit{Max}} f(x) = f(-1) = \frac{1-2-1}{-1-1} = 1$

Câu 3: a) Sai – Giải thích:

• Ta có
$$d(A;(P)) = \frac{|2.1 - 0 + 1 - 4|}{\sqrt{2^2 + (-1)^2 + 1^2}} = \frac{\sqrt{6}}{6} \text{ và } d(B;(P)) = \frac{|2.5 - 2 + 3 - 4|}{\sqrt{2^2 + (-1)^2 + 1^2}} = \frac{\sqrt{42}}{6}$$

$$\Rightarrow d(A;(P)) < d(B;(P))$$

b) Đúng – Giải thích:

• Trung điểm của
$$AB$$
 là $M\left(\frac{1+5}{2}; \frac{0+2}{2}; \frac{1+3}{2}\right) = (3;1;2)$ và $\overrightarrow{AB}(4;2;2)$

- Mặt phẳng
$$(\alpha)$$
:
$$\begin{cases} qua\,M\big(3;1;2\big) \\ VTPT\,\vec{n} = \overrightarrow{AB}\big(4;2;2\big) \end{cases}$$
 có phương trình là $4\big(x-3\big)+2\big(y-1\big)+2\big(z-2\big)=0$

$$\Leftrightarrow 2x+v+z-9=0$$

c) Sai – Giải thích:

• Giả sử giao điểm của
$$(P)$$
 và Ox là $C(a;0;0) \Rightarrow 2.a-0+0-4=0 \Leftrightarrow a=2$

- \Rightarrow Mặt phẳng (P) cắt trục Ox tại điểm có hoành đô bằng 2
- d) Đúng Giải thích:

• Ta có
$$\overrightarrow{AB}(4;2;2); \overrightarrow{n_{(P)}} = (2;-1;1) \Rightarrow \overrightarrow{n_{(Q)}} = \left[\overrightarrow{AB}; \overrightarrow{n_{(P)}}\right]$$

$$\overrightarrow{AB}(4;2;2); \overrightarrow{n_{(P)}} = (2;-1;1) \Rightarrow \overrightarrow{n_{(Q)}} = \left[\overrightarrow{AB}; \overrightarrow{n_{(P)}}\right] = (4;0;-8)$$

$$\Rightarrow$$
 Phương trình mặt phẳng $(Q): 4(x-1)+0(y-0)-8(z-1)=0 \Leftrightarrow x-2z+1=0$

Câu 4: a) Đúng – Giải thích:

- Xe máy chuyển động chậm dần đều với gia tốc $a=-2m/s^2 \Rightarrow$ Phương trình vận tốc chuyển động của xe sau khi đạp phanh là $v(t)=\int a(t)dt=\int -2dt=2t+C$
- Biết xe đang chuyển động với vận tốc 10m/s rồi mới đạp phanh nên $C = 10 \Rightarrow v(t) = -2t + 10(m/s)$

- Xét phương trình
$$v(t) = 0 \Leftrightarrow -2t + 10 = 0 \Leftrightarrow t = 5$$

- Vậy sau khi đạp phanh 5 giây thì xe dừng lại
- **b)** Sai Giải thích:
- Sau khi đạp phanh, phương trình vận tốc chuyển động của xe là v(t) = -2t + 10(m/s), với t là thời gian tính bằng giây, kể từ lúc đạp phanh
- c) Đúng Giải thích:
- Quãng đường xe đi được từ khi phát hiện chướng ngại vật đến khi đạp phanh là s = 2.10 = 20m
- d) Sai Giải thích:
- Khi xe dừng, quãng đường xe đã đi được là $s' = 20 + \int_{0}^{5} v(t) dt = 20 + 25 = 45m$
- Vậy khi xe dừng, khoảng cách giữa xe và chướng ngại vật là 50-45=5m>3m

PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ Câu 1 đến Câu 6.

Câu 1: • Theo đề bài ta có:

- A là biến cố "Người được kiểm tra cho ra kết quả dương tính"
- B là biến cố "Người đó thực sự bị bệnh"
- Khi đó ta cần tính P(B|A)
- Ta có công thức $P(B|A) = \frac{P(AB)}{P(A)}$
- Xác xuất để người đó thực sự mắc bệnh là . P(B) = 1% = 0,01.

$$\Rightarrow P(\overline{B}) = 1 - P(B) = 0.99$$

- Xác suất kết quả dương tính nếu người đó mắc bệnh P(A|B) = 98% = 0.98
- Xác suất kết quả dương tính nếu người đó không mắc bệnh $P(A | \overline{B}) = 0,02$
- Áp dụng công thức Bayes: $P(B|A) = \frac{P(B).P(A|B)}{P(B).P(A|B) + P(\overline{B}).P(A|\overline{B})}$

$$\Leftrightarrow P(B \mid A) = \frac{0,01.0,98}{0,01.0,98 + 0,99.0,02} \approx 0,33$$

Đáp án: 0,33

Câu 2: • Ta có diện tích mảnh đất hình chữ nhật là $S_{ABCD} = AB.AD = 2\pi.4 = 8\pi$

- Xác định hàm số $y = a \sin(bx)$
- Đặt trục tọa độ Oxy như hình vẽ
- Ta có $AD = 4 \Rightarrow AM = MD = 2$
- Khi đó hàm số $y = a \sin(bx)$ có tập giá trị là $\begin{bmatrix} -2;2 \end{bmatrix}$ và nét cuối đi xuống

$$\Rightarrow a = -2$$

- Mặt khác đồ thị hàm số $y = -2\sin(bx)$ tuần hoàn với chu kỳ 2π $\Rightarrow b = 1$

- Vậy
$$y = -2\sin x$$
 A

- Diện tích phần trồng hoa được tính bằng công thức: $S_{hoa} = \int_{0}^{2\pi} \left| -2\sin x \right| dx = 8$
- Vậy diện tích phần còn lại lả $S = S_{ABCD} S_{hoa} = 8\pi 8 \approx 17,1$

Đáp án: 17,1

Câu 3: • Ta có Lợi nhuận = Doanh thu − Chi phí

- Ta có tổng chi phí để sản xuất x mét vải lụa là: $C(x) = x^3 3x^2 20x + 500$
- Tổng doanh thu của hộ gia đình đó khi bán hết x mét vải lụa đã sản xuất là: 220x
- Khi đó ta có hàm lợi nhuận: $L(x) = 220x (x^3 3x^2 20x + 500)$

$$\Leftrightarrow L(x) = 220x - x^3 + 3x^2 + 20x - 500$$

$$\Leftrightarrow L(x) = -x^3 + 3x^2 + 240x - 500$$

- Xét hàm số $L(x) = -x^3 + 3x^2 + 240x 500 \ (1 \le x \le 18)$
- Đạo hàm $L'(x) = -3x^2 + 6x + 240$

- Giải
$$L'(x) = 0 \Leftrightarrow -3x^2 + 6x + 240 = 0 \Leftrightarrow \begin{bmatrix} x = 10 \\ x = -8(L) \end{bmatrix}$$

- Ta có bảng biến thiên

- Quan sát bảng biến thiên dễ thấy, hàm số đạt giá trị lớn nhất tại x = 10
- Vậy lợi nhuận tối đa mà hộ gia đình này có thể nhận được là

$$L(10) = -(10)^3 + 3.(10)^2 + 240.10 - 500 = 1200$$

Đáp án: 1200

Câu 4: • Giả sử quả bóng rơi tại vị trí A, B là vị trí bạn nam đứng như hình vẽ

• Xét
$$\triangle OAB$$
: $OB = \sqrt{OA^2 - AB^2} = \sqrt{5^2 - 3^2} = 4$

$$\Rightarrow A(3;4;0)$$

$$\Rightarrow \overrightarrow{OA} = (3;4;0)$$

- Ta có một vecto chỉ phương của trục Oz là k(0;0;01)
- ullet Dễ thấy (P) chứa trục Oz và đường thẳng OA

- Khi đó
$$\overrightarrow{n_{(P)}} = \left[\overrightarrow{k}, \overrightarrow{OA} \right] = (4; -3; 0)$$

 \Rightarrow Phương trình mặt phẳng (P)đi qua O(0;0;0) là:

$$4x-3y=0 \Leftrightarrow -4x+3y=0$$

$$\Rightarrow \begin{cases} a = -4 \\ c = 0 \Rightarrow a + cd = -4 + 0.0 = -4 \\ d = 0 \end{cases}$$

Đáp án: -4

Câu 5: • Ta có
$$\overrightarrow{MN} = (1;1;-15)$$

- Khi đó đường thẳng MN đi qua M(1,2,3) và có một vecto chỉ phương $\vec{u} = (1,1,-15)$ có phương trình

là:
$$\begin{cases} x = 1 + t \\ y = 2 + t \quad (t \in \mathbb{R}) \\ z = 3 - 15t \end{cases}$$

- ullet Gọi H là giao điểm của đường thẳng MN và tấm bìa cứng
- Do $H \in MN \Rightarrow H(1+t;2+t;3-15t)$
- Mặt phẳng (Oxy) có phương trình z = 0
- Ta có tấm bìa cứng thuộc (Oxy) và có tâm O(0;0;0)
- Thay *H* vào phương trình (Oxy): $3-15t = 0 \Leftrightarrow t = \frac{1}{5}$

$$\Rightarrow H\left(\frac{6}{5}; \frac{11}{5}; 0\right)$$

• Để bán kính của tấm bìa có thể che khuất tầm nhìn của người quan sát thì $R \ge OH$

- Ta có
$$\overrightarrow{OH} = \left(\frac{6}{5}; \frac{11}{5}; 0\right) \Rightarrow OH = \left|\overrightarrow{OH}\right| = \sqrt{\left(\frac{6}{5}\right)^2 + \left(\frac{11}{5}\right)^2} \approx 2,51$$

• Vậy giá trị nhỏ nhất của R thỏa mãn yêu cầu bài toán là 2,51

Đáp án: 2,51

- Câu 6: Vẽ lại chiếc thang đề cho thành hình thang ABCD như hình vẽ và gọi EF là đường chân tường
 - Ta có EF//AB nên (EF,BC) = (AB,BC) = ABC
 - Kẻ $CH \perp AB$
 - Khi đó ABC = HBC
 - Mặt khác, ABCD là hình thang cân nên $2HB+CD=AB \Leftrightarrow 2HB+60=80 \Rightarrow HB=10$
 - \bullet Xét $\triangle CHB$ vuông tại H
 - Ta có $\cos HBC = \frac{HB}{BC} = \frac{10}{600} = \frac{1}{60}$ (Đổi đơn vị 6m = 600cm)

 $\Rightarrow HBC \approx 89^{\circ}$

Đáp án: 89

