zu Aufgabe 6:

a) Für den Erwartungswert der Zufallsgröße \mathbb{Z}_n gilt

$$\mathbb{E}\left(Z_{n}\right) = \mathbb{E}\left(\frac{1}{n}\sum_{k=1}^{n}Y_{k}\right) \stackrel{(1)}{=} \frac{1}{n}\sum_{k=1}^{n}\mathbb{E}\left(Y_{k}\right) \stackrel{(2)}{=} \frac{1}{n}n\mathbb{E}\left(Y_{1}\right) = \mathbb{E}\left(Y_{1}\right) = \mathbb{E}\left(g(X_{1})\right)$$

mit (1) wegen der Linearität des Erwartungswertes (siehe (§ 0.54) 1)) und mit (2) wegen der identischen Verteilung der Zufallsgrößen Y_1, Y_2, \ldots, Y_n . Für die Varianz der Zufallsgröße Z_n gilt

$$\operatorname{var}(Z_n) = \operatorname{var}\left(\frac{1}{n}\sum_{k=1}^n Y_k\right) \stackrel{(1)}{=} \frac{1}{n^2} \sum_{k=1}^n \operatorname{var}(Y_k) \stackrel{(2)}{=} \frac{1}{n^2} n \operatorname{var}(Y_1) = \frac{1}{n} \operatorname{var}(Y_1) = \frac{1}{n} \operatorname{var}(g(X_1))$$

mit (1) wegen (§ 0.51) 5) und da aus der Unabhängigkeit der Zufallsgrößen Y_1, Y_2, \ldots, Y_n nach (§ 0.57) auch deren (paarweise) Unkorreliertheit folgt und mit (2) wegen der identischen Verteilung der Zufallsgrößen Y_1, Y_2, \ldots, Y_n .

b) Für die Grenzwerte erhält man

$$\lim_{n \to \infty} \mathbb{E}(Z_n) = \lim_{n \to \infty} \mathbb{E}(g(X_1)) = \mathbb{E}(g(X_1)) = \text{konst.} \quad \text{und}$$

$$\lim_{n \to \infty} \text{var}(Z_n) = \lim_{n \to \infty} \frac{1}{n} \text{var}(g(X_1)) = 0.$$

zu Aufgabe 9:

a) Gegeben seien zwei beliebige Wahrscheinlichkeitsvektoren $p, q \in \mathcal{M}$ der Länge n. Damit gilt:

$$p = (p_k)_{k=1}^n = (p_1, p_2, \dots, p_n) \in \mathbb{R}^n$$
 mit $p_k > 0$ und $\sum_{k=1}^n p_k = 1$ sowie $q = (q_k)_{k=1}^n = (q_1, q_2, \dots, q_n) \in \mathbb{R}^n$ mit $q_k > 0$ und $\sum_{k=1}^n q_k = 1$.

Jede mögliche mit Hilfe von $\lambda \in [0,1]$ gebildete Linearkombination von p und q soll auch wieder ein Wahrscheinlichkeitsvektor sein, d. h. zur Menge \mathcal{M} gehören und die damit verbundenen Eigenschaften erfüllen. Ein solcher Vektor ist

$$r := \lambda \cdot p + (1 - \lambda) \cdot q$$

wobei die einzelnen Vektorkomponenten durch $r_k := \lambda p_k + (1 - \lambda) q_k$ gegeben sind. Es ist nun zu zeigen, dass der Vektor r die durch die Menge \mathcal{M} definierten Eigenschaften erfüllt.

- (1) Es gilt $r=(r_k)_{k=1}^n=(r_1,r_2,\ldots,r_n)\in\mathbb{R}^n$ wegen $\lambda\in[0,1]$ und $p_k,q_k\in\mathbb{R}$ für alle $k=1,2,\ldots,n$.
- (2) Es gilt $p_k > 0$ und $q_k > 0$ nach Voraussetzung. Weiterhin gilt $\lambda \ge 0$ und $(1-\lambda) \ge 0$ für $\lambda \in [0,1]$, wobei mindestens einer der beiden Terme echt größer Null ist, d. h. es gilt $\lambda > 0$ oder $(1-\lambda) > 0$. Damit ergibt sich zwangsläufig $r_k > 0$ für alle $k = 1, 2, \ldots, n$.
- (3) Es gilt $\sum_{k=1}^{n} r_k = 1$ wegen:

$$\sum_{k=1}^{n} r_k = \sum_{k=1}^{n} (\lambda p_k + (1 - \lambda) q_k)$$

$$= \lambda \sum_{k=1}^{n} p_k + (1 - \lambda) \sum_{k=1}^{n} q_k$$

$$= \lambda + (1 - \lambda) = 1.$$

Damit gilt $r \in \mathcal{M}$ für beliebige Vektoren $p, q \in \mathcal{M}$ und jede reelle Zahl $\lambda \in [0, 1]$. Daraus folgt, dass \mathcal{M} eine konvexe Menge ist.

b) Für die Herleitung verwenden wir wieder die Schreibweise $r := \lambda \cdot p + (1 - \lambda) \cdot q$ mit den Vektorkomponenten $r_k := \lambda p_k + (1 - \lambda) q_k$. Wir erhalten folgende (Un-)Gleichungskette:

$$H(\lambda \cdot p + (1 - \lambda) \cdot q) \stackrel{(1)}{=} -\sum_{k=1}^{n} (\lambda p_k + (1 - \lambda) q_k) \log_2(\lambda p_k + (1 - \lambda) q_k)$$

$$= -\lambda \sum_{k=1}^{n} p_k \log_2(\underbrace{\lambda p_k + (1 - \lambda) q_k}) - (1 - \lambda) \sum_{k=1}^{n} q_k \log_2(\underbrace{\lambda p_k + (1 - \lambda) q_k})$$

$$= -\lambda \sum_{k=1}^{n} p_k \log_2 r_k - (1 - \lambda) \sum_{k=1}^{n} q_k \log_2 r_k$$

$$= \lambda \underbrace{\left(-\sum_{k=1}^{n} p_k \log_2 r_k\right)}_{\stackrel{(2)}{\geq} -\sum_{k=1}^{n} p_k \log_2 p_k} + (1-\lambda) \underbrace{\left(-\sum_{k=1}^{n} q_k \log_2 r_k\right)}_{\stackrel{(2)}{\geq} -\sum_{k=1}^{n} q_k \log_2 q_k}$$

$$\stackrel{(2)}{\geq} \lambda \left(-\sum_{k=1}^{n} p_k \log_2 p_k\right) + (1-\lambda) \left(-\sum_{k=1}^{n} q_k \log_2 q_k\right)$$

$$\stackrel{(1)}{=} \lambda H(p) + (1-\lambda) H(q).$$

Dabei ergibt sich (1) aus der Definition der Funktion H und (2) aus der Anwendung des Hinweises in der Aufgabenstellung. Damit ist die Ungleichung

$$H(\lambda \cdot p + (1 - \lambda) \cdot q) \ge \lambda H(p) + (1 - \lambda) H(q)$$

für alle $p, q \in \mathcal{M}$ und $\lambda \in [0, 1]$ gezeigt. Die Funktion H ist somit auf der Menge der Wahrscheinlichkeitsvektoren \mathcal{M} konkav.