Методы оценки малых вероятностей в задачах биоинформатики

Быков Кирилл Владимирович, гр. 422

Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

Научный руководитель: к.ф.-м.н. Коробейников А.И. Рецензент: Младший научный сотрудник Шлемов А.Ю.

Санкт-Петербург 2018г.

Довольно часто в прикладных задачах встает вопрос об оценке вероятности редких событий.

Примеры:

- PSM: задача о совпадении теоретического и экспериментального масс спектра пептидов [Abramova A. et al., 2017].
- Оценки вероятностей в задачах поляризация дрожжевых клеток и изучении ферментативного цикла [Bernie J. et al., 2011].
- Задачи, связанные с локальным выравниванием последовательностей [Wolfsheimer S. et al., 2007]

Известно, что метод Монте-Карло не эффективен в задачах оценки малых вероятностей. Актуальной задачей является уменьшение дисперсии оценки при фиксированном числе моделирований.

Постановка задачи

Пусть заданы:

- ullet марковский процесс $\mathrm{S}(t)\in\mathbb{S},t\in\mathbb{N}_0$ на множестве $\mathbb S$ со стационарным распределением $\mathcal P,$
- функция $\varphi(S)$: $\mathbb{S} \to \mathbb{R}$.

Требуется оценить вероятность «редкого» (например, порядка 10^{-7} или меньше) события

$$A = \{ S \in S | \varphi(S) \ge k \},\$$

где k — некоторая заданная константа.

В работе рассматривается применение метода RESTART для данной задачи.

Задачи:

- формализовать метод для применения в прикладных задачах биоинформатики,
- определить способ для оценки дисперсии оценки, полученной методом RESTART,
- изучить закон распределения оценок,
- научиться строить доверительные интервалы.

Метод RESTART

Метод RESTART (Repetitive Simulation Trials After Reaching Thresholds) [Villen-Altamirano, M. and Villen-Altamirano, J., 1991.]

 \mathbb{Z} – область значений функции φ .

 $A=\{\mathbf{S}\in\mathbb{S}|\varphi(\mathbf{S})\geqslant k\},\ \varphi(A)$ — образ множества A. Далее, определим на \mathbb{Z} семейство вложенных подмножеств: $\left\{C_i\right\}_{i=0}^M$:

$$\mathbb{Z} = C_0 \supset C_1 \supset C_2 \supset \dots \supset C_M \supset \varphi(A).$$

Определение

Уровень T_i :

$$T_i := \begin{cases} C_i \backslash C_{i+1} & i \in [0, 1, ..., M-1] \\ \varphi(A) & i = M \end{cases}$$

Таким образом:

$$\mathbb{Z} = \bigsqcup_{i=0}^{M} T_i.$$

Метод RESTART

Определение

Процесс $\mathrm{S}(t) \in \mathbb{S}, t \in \mathbb{N}_0$ будем называть главной ветвью моделирования.

Определение

 $\Phi(S)$ — функция состояния, определяет номер уровня, которому принадлежит данное состояние.

$$\Phi(S(t)): \mathbb{S} \to \mathbb{I}, \mathbb{I} = [0, \dots M]$$

$$\Phi(S(t_0)) = i$$
, где $i : \varphi(S(t_0)) \in T_i$.

Определим события:

- ullet B_i^t переход на новый уровень: $\Phi(\mathbf{S}(t)) \geqslant i$ при $\Phi(\mathbf{S}(t-1)) < i,$
- ullet D_i^t угасание: $\Phi(\mathbf{S}(t)) < i$ при $\Phi(\mathbf{S}(t-1)) \geqslant i$.

Описание работы

Определение

Ветвью уровня i,i>0 называется процесс $\{S^i_{t_0}(t)\in\bar{\mathbb{S}}=\mathbb{S}\cup\Delta,t\geqslant t_0\}$, где $\bar{\mathbb{S}}=\mathbb{S}\cup\Delta,\,\Delta$ — поглощающее состояние.

Ветвь $S^i_{t_0}$ определена аналогично главной ветви, но вероятность перейти из состояний принадлежащих $X_i=\mathbb S\backslash \varphi^{-1}(C_i)$ в поглощающее состояние Δ равна 1.

Расщепление процесса:

Если на ветви уровня i-1 происходит $B_i^{t_0}$, то процесс расщепляется

$$S_{t'}^{i-1}(t), [S_{1,t_0}^i(t), S_{2,t_0}^i(t), \dots, S_{R_i-1,t_0}^i(t)],$$

то есть определяются R_i-1 независимых ветвей уровня i параллельно с ветвью уровня i-1. Начальное состояние:

$$S_{j,t_0}^i(t_0) = S_{t'}^{i-1}(t_0), \forall j \in [1, R_i - 1].$$

Оценка вероятности

Оценка вероятности A:

$$\hat{p} = \frac{N_A}{N \, r_M},$$

где

• N_A — суммарное время, которое все ветви *провели* в A

$$N_A = \sum_{t=0}^{N-1} \sum_{j \in \mathbb{H}_t} \mathbb{1}_A(S_j(t)),$$

где \mathbb{H}_t — множество индексов *активных* ветвей моделирования в момент времени t,

- ullet N число моделирований в главной ветви, параметр,
- $r_M = \prod_{j=1}^M R_j$, параметр.

Утверждение [Villen-Altamirano, M. and Villen-Altamirano, J., 1991.]

 \hat{p} – несмещенная и состоятельная оценка вероятности $\mathcal{P}(A)$.

Оценка дисперсии

Численно на нескольких примерах была продемонстрирована сходимость:

$$\sqrt{N}(\hat{p}-p) \xrightarrow[N\to\infty]{D} \mathcal{N}(0,\sigma_p^2).$$

Для построения доверительных интервалов хотим оценить величину σ_p^2 . Для этого воспользуемся методами Batch Means и Overlapping Batch Means.

Определим последовательность:

$$Y_t = \frac{\sum_{j \in \mathbb{H}_t} \mathbb{1}_A(S_j(t))}{r_M}, t \ge 0$$

Тогда

$$\hat{p} = \bar{Y}_N = \frac{\sum_{i=0}^{N-1} Y_i}{N}$$

Применение методов ВМ и ОВМ для оценки дисперсии

Методы Batch Means и Overlapping Batch Means [Flegal J. et al., 2010]:

ullet Batch Means: Поделим N на a частей длины b: $N=a\cdot b$.

$$\bar{Y}_j = \frac{1}{b} \sum_{i=jb}^{j(b+1)-1} Y_i, j \in [0, a-1].$$

Тогда оценка σ_p^2 по методу Batch Means:

$$\hat{\sigma}_{BM}^2 = \frac{b}{a} \sum_{i=0}^{a-1} (\bar{Y}_j - \hat{p})^2.$$

• Overlapping Batch Means: Считаем среднее по всем «окнам» фиксированного размера b :

$$\bar{Y}_j = \frac{1}{b} \sum_{i=j}^{j+b-1} Y_i, j \in [0, N-b].$$

Тогда оценка σ_p^2 по методу Overlapping Batch Means:

$$\hat{\sigma}_{OBM}^2 = \frac{Nb}{(N-b)(N-b+1)} \sum_{i=0}^{N-b} (\bar{Y}_i - \hat{p})^2.$$

Доверительные интервалы для оценки

Продемонстрировано, что $\hat{\sigma}^2_{OBM}, \hat{\sigma}^2_{BM}$ при $a=b=\sqrt{N}$ и оценки, полученные путем выборочной дисперсии оценок независимых реализаций метода (Multistart), показывают с достаточной точностью схожие результаты, из чего можно предположить, что

$$\hat{\sigma}_{BM}^2 \xrightarrow[N \to \infty]{} \sigma_p^2, \hat{\sigma}_{OBM}^2 \xrightarrow[N \to \infty]{} \sigma_p^2$$

с вероятностью 1.

Таким образом, в предположении о состоятельности и в предположении

$$\sqrt{N}(\hat{p}-p) \xrightarrow[N\to\infty]{D} \mathcal{N}(0,\sigma_p^2),$$

доверительные интервалы для оценки вероятности имеют вид:

$$\begin{split} P\left(\hat{p} - z_{1-\frac{\alpha}{2}} \frac{\sigma_{BM}^2}{\sqrt{N}}$$

Применение: Расстояние Хэмминга

Определение

 $\mathbb{S}^{(n)}$ – множество строк длины n над конечным алфавитом $\mathfrak{A}.$

$$|\mathbb{S}^{(n)}| = |\mathfrak{A}|^n$$

Определение

Расстояние Хэмминга $d:d(\mathbb{S}^{(n)}\times\mathbb{S}^{(n)})\to\mathbb{Z}$ — число позиций, в которых соответствующие символы двух строк одинаковой длины различны.

Пусть $\mathfrak{A}=\{\mathrm{A},\mathrm{G},\mathrm{T},\mathrm{C}\},\,\bar{\mathrm{S}}\in\mathbb{S}^{(50)}$ — некоторая строка, \mathcal{P} — равномерное распределение на $\mathbb{S}^{(50)}.$ Требуется оценить вероятность $\mathcal{P}(A)$ события $A=\{\mathrm{S}\in\mathbb{S}^{(50)}|d(\mathrm{S},\bar{\mathrm{S}})=50\}.$

Применение: Расстояние Хэмминга

Аналитически известно:

$$\mathcal{P}(A) = \left(\frac{3}{4}\right)^{50} \approx 5.6632 \times 10^{-7}.$$

Зафиксируем С — число моделирований процесса ${
m S}$ и сравним два метода.

Таблица 1: Таблица с результатами

С	$\hat{p}_{RESTART}$	\hat{p}_{MC}
1.7×10^4	4.17×10^{-7}	0
1.8×10^{5}	5.97×10^{-7}	0
1.8×10^{6}	5.76×10^{-7}	1.07×10^{-6}

Таблица 2: Сравнение доверительных интервалов

С	95% CI RESTART	95% CI Монте-Карло
1.7×10^{4}	$[0, 1.3 \times 10^{-6}]$	_
1.8×10^{5}	$[3.46 \times 10^{-7}, 8.48 \times 10^{-7}]$	_
1.8×10^{6}	$[5.06 \times 10^{-7}, 6.45 \times 10^{-7}]$	$[0, 2.94 \times 10^{-6}]$

Задача вычисления вероятности случайного совпадения экспериментального и теоретического масс-спектра пептидов (Peptide-Spectrum-Matches, PSM) [Abramova A. et al., 2017].

Таблица 3: Список пептидов, по которым производились вычисления

Имя	Macca	Пептид	Длина
Fr1.2116.2116.2	544.74634	GEEEPSQGQK	10
Fr1.2076.2076.2	414.68990	GPDGPEEK	8
Fr1.1059.1059.2	436.21185	PPAEDSQK	8
Fr1.1201.1201.2	531.24677	SSSGAGEGQGPK	12

Таблица 4: Сравнение методов RESTART и Монте-Карло: оценки вероятностей

Пептид	С	$\hat{p}_{RESTART}$	\hat{p}_{MC}
GEEEPSQGQK	2×10^{6}	3.28×10^{-7}	0
GPDGPEEK	1.3×10^{6}	3.41×10^{-5}	3.13×10^{-5}
PPAEDSQK	1.6×10^{6}	2.28×10^{-6}	2.44×10^{-6}
SSSGAGEGQGPK	1.9×10^{6}	4.57×10^{-12}	0

 $\mathsf{Т}\mathsf{a}\mathsf{б}\mathsf{л}\mathsf{u}\mathsf{u}\mathsf{a}$ 5: Сравнение методов RESTART и Монте-Карло: доверительные интервалы

П	95% CI	95% CI
Пептид	RESTART	Монте-Карло
GEEEPSQGQK	$[2.98 \times 10^{-7}, 3.59 \times 10^{-7}]$	-
GPDGPEEK	$[3.17 \times 10^{-5}, 3.65 \times 10^{-5}]$	$[2.1 \times 10^{-5}, 4.08 \times 10^{-5}]$
PPAEDSQK	$[2.08 \times 10^{-6}, 2.47 \times 10^{-6}]$	$[4.88 \times 10^{-8}, 4.83 \times 10^{-6}]$
SSSGAGEGQGPK	$[0, 1.6 \times 10^{-11}]$	-

Полученные в данной работе результаты открывают простор для дальнейшего применения метода RESTART в задачах оценки вероятностей редких событий в задачах биоинформатики.

В работе были получены следующие результаты:

- изучен метод RESTART, описание метода было формализовано для применения в прикладных задачах,
- предложен метод для оценки дисперсии,
- изучен закон распределения оценок по методу RESTART,
- предложен способ построения доверительных интервалов
- ullet определена алгоритмизация метода, написана реализация на языке программирования «Python 3»,
- при помощи метода были получены результаты для нескольких биоинформатических задач.

