

Manual

Protocols

PROFINET, PROFIsafe, PROFIBUS DP

All of the HIMA products mentioned in this manual are trademark protected. Unless noted otherwise, this also applies to other manufacturers and their respective products referred to herein.

HIQuad®, HIQuad®X, HIMax®, HIMatrix®, SILworX®, XMR®, HICore® and FlexSILon® are registered trademarks of HIMA Paul Hildebrandt GmbH.

All of the technical specifications and information in this manual were prepared with great care and effective control measures were employed for their compilation. For questions, please contact HIMA directly. HIMA appreciates any suggestion on which information should be included in the manual.

Equipment subject to change without notice. HIMA also reserves the right to modify the written material without prior notice.

All the current manuals can be obtained upon request by sending an e-mail to: documentation@hima.com.

© Copyright 2020, HIMA Paul Hildebrandt GmbH All rights reserved.

Contact

HIMA Paul Hildebrandt GmbH P.O. Box 1261 68777 Brühl, Germany

Fax: +49 6202 709-107 E-mail: info@hima.com

Phone: +49 6202 709-0

Document designation	Description
HI 801 514 D, Rev. 11.04 (2020)	German original document
HI 801 523 E, Rev. 11.04.00 (2027)	English translation of the German original document

Protocol Table of Contents

Table of Contents

1	Introduction	7
1.1	Structure and Use of This Manual	7
1.2	Target Audience	8
1.3	Writing Conventions	8
1.3.1 1.3.2	Safety Notices Operating Tips	8 9
1.4	Safety Lifecycle Services	9
2	Safety	10
2.1	Intended Use	10
2.2	Residual Risk	10
2.3	Safety Precautions	10
2.4	Emergency Information	10
2.5	Automation Security for HIMA Systems	10
3	PROFINET IO	12
3.1	PROFINET IO Function Blocks	12
3.2	Controlling the Consumer/Provider Status (IOxS)	13
3.2.1	Control Variables in the HIMA Controller	13
3.2.2 3.2.3	Control Variables in the HIMA DO Device Control Variables in the HIMA DI Device	13 13
3.3	PROFIsafe	14
3.3.1	PROFIsafe in Connection with HIMA Controllers	14
3.3.2	PROFIsafe Control Byte and Status Byte	15
3.3.3 3.3.4	F_WD_Time (PROFIsafe Watchdog Time) SFRT (Safety Function Response Time)	15 17
3.4	Requirements for Safely Operating PROFIsafe	19
3.4.1	Addressing	19
3.4.2	Network Aspects	19
3.5	PROFINET IO-Controller and PROFIsafe F-Host	21
3.5.1 3.5.2	System Requirements for the PROFINET IO-Controller PROFINET IO-Controller and PROFIsafe F-Host Properties	21 21
3.6	PROFINET IO/PROFIsafe Example	22
3.6.1	Creating a PROFINET IO-Controller in SILworX	22
3.6.2 3.6.3	Creating the GSDML Library in SILworX Configuring the Device in the PROFINET IO-Controller	22 23
3.6.4	Configuring the Device Access Point (DAP) Module	24
3.6.5	Configuring the PROFINET IO-Device Module	25
3.6.6 3.6.7	Configuring the PROFIsafe IO-Device Modules Identifying the PROFINET IO-Devices within the Network	25 26
3.7	Menu Functions for the PROFINET IO-Controller	20 27
3.7.1	Example of Structure Tree for the PROFINET IO-Controller	27
3.7.2	PROFINET IO-Controller	27
3.7.3	PROFINET IO-Device (within the Controller)	29
3.7.4 3.7.5	DAP Module (Device Access Point Module)	29 31
3.7.5 3.7.6	Input/Output PROFINET IO Modules Submodule Input	32

HI 801 523 E Rev. 11.04.00 Page 3 of 134

Table of Contents		Protocol
3.7.7	Submodule Output	37
3.7.8 3.7.9	Submodule Inputs and Outputs Application Polation (Proportion)	39 41
3.7.10	Application Relation (Properties) Alarm CR (Properties)	41
3.7.10	Input CR (Properties)	43
3.8	PROFINET IO-Device	46
3.8.1	System Requirements	46
3.8.2	PROFINET IO-Device Properties	46
3.9	PROFINET IO/PROFIsafe Example	47
3.9.1	Configuring the PROFINET IO-Device in SILworX	47
3.9.2	Configuring the PROFINET IO-Device Input Module	48
3.9.3 3.9.4	Configuring the PROFIsafe Device Output Module Verifying the PROFINET IO-Device Configuration	48 48
3.10	Menu Functions for PROFINET IO-Device	49
3.10.1	The Properties Menu Function	49
3.10.2	PROFINET IO Modules	50
3.10.3	HIMA PROFIsafe Modules	51
3.10.4	PROFINET IO and PROFIsafe Module	52
4	PROFIBUS DP	55
4.1	HIMA PROFIBUS DP Master	55
4.1.1	Creating a HIMA PROFIBUS DP Master	56
4.2	PROFIBUS DP: Example	57
4.2.1	Configuring the PROFIBUS DP Slave	57
4.2.2	Configuring the PROFIBUS DP Master	59
4.3	Menu Functions of the PROFIBUS DP Master	66
4.3.1	Edit	66
4.3.2	The Properties Menu Function	67
4.4	PROFIBUS DP Bus Access Method	72
4.4.1	Master/Slave Protocol Token Protocol	72 73
4.4.2 4.4.3	Token Protocol Token Rotation Time (Ttr)	72 72
4.4.4	Calculating the Token Rotation Time (Ttr)	73
4.5	Isochronous PROFIBUS DP Cycle (DP-V2 and Higher)	75
4.5.1	Isochronous Mode (DP-V2 and Higher)	76
4.5.2	Isochronous Sync Mode (DP-V2 and Higher)	76
4.5.3	Isochronous Freeze Mode (DP-V2 and Higher)	76
4.6	Menu Functions of the PROFIBUS DP Slave (in the Master)	77
4.6.1	Creating a PROFIBUS DP Slave (in the Master)	77
4.6.2	Edit	77
4.6.3	Properties	78
4.7	Importing GSD File	82
4.8	Configuring the User Parameters	83
4.9	PROFIBUS Function Blocks	85
4.9.1	MSTAT Function Block	86
4.9.2 4.9.3	RALRM Function Block RDIAG Function Block	90 94
4.9.4	RDREC Function Block	94 97
4.9.5	SLACT Function Block	99
4.9.6	WRREC Function Block	102

Page 4 of 134 HI 801 523 E Rev. 11.04.00

Protocol Table of Contents

4.10	PROFIBUS Auxiliary Function Blocks	105
4.10.1	Auxiliary Function Block: ACTIVE	105
4.10.2	Auxiliary Function Block: ALARM	106
4.10.3	Auxiliary Function Block: DEID	107
4.10.4	Auxiliary Function Block: ID	108
4.10.5 4.10.6	Auxiliary Function Block: NSLOT Auxiliary Function Block: SLOT	109 109
4.10.0 4.10.7	Auxiliary Function Block: SEOT Auxiliary Function Block: STDDIAG	110
4.11	Error Codes of the Function Blocks	112
4.12	Control Panel (PROFIBUS DP Master)	113
4.12.1	Context Menu (PROFIBUS DP Master)	113
4.12.2	Context Menu (PROFIBUS DP Slave)	113
4.12.3	View Box (PROFIBUS Master)	114
4.12.4	PROFIBUS DP Master State	115
4.12.5	Behavior of the PROFIBUS DP Master	115
4.12.6 4.12.7	Function of the FBx LED in the PROFIBUS Master Function of the FAULT LED in the PROFIBUS DP Master (HIMax only)	116 116
4.12. <i>1</i>	HIMA PROFIBUS DP Slave	110 117
4.13.1	Creating a HIMA PROFIBUS DP Slave	117
4.14	Menu Functions of the PROFIBUS DP Slave	118
4.14.1	Edit	118
4.14.2	Properties	119
4.15	Control Panel (PROFIBUS DP Slave)	121
4.15.1	View Box (PROFIBUS DP Slave)	121
4.16	Function of the FBx LED in the PROFIBUS Slave	122
4.17	Function of the FAULT LED in the PROFIBUS Slave (HIMax Only)	122
5	General	123
5.1	Maximum Communication Time Slice	123
5.1.1	Determining the Maximum Duration of the Communication Time Slice	123
5.2	Load Limitation	123
5.3	Configuring the Function Blocks	124
5.3.1	Purchasing Function Block Libraries	124
5.3.2	Configuring the Function Blocks in the User Program	124
5.3.3	Configuring the Function Blocks in the SILworX Structure Tree	125
	Appendix	127
	Glossary	127
	Index of Figures	128
	Index of Tables	129

HI 801 523 E Rev. 11.04.00 Page 5 of 134

Table of Contents Protocol

Page 6 of 134 HI 801 523 E Rev. 11.04.00

Introduction Protocol

1 Introduction

This manual describes the properties of the PROFINET, PROFIsafe and PROFIBUS DP protocols and their configuration in SILworX for the safety-related HIMA controller systems.

Knowledge of regulations and the proper technical implementation of the instructions detailed in this manual performed by qualified personnel are prerequisites for planning, engineering, programming, installing, starting up, operating and maintaining the HIMA controllers.

HIMA shall not be held liable for severe personal injuries, damage to property or the environment caused by any of the following: unqualified personnel working on or with the devices, de-activation or bypassing of safety functions, or failure to comply with the instructions detailed in this manual (resulting in faults or impaired safety functionality).

HIMA automation devices have been developed, manufactured and tested in compliance with the pertinent safety standards and regulations. They may only be used for the intended applications under the specified environmental requirements.

1.1 Structure and Use of This Manual

The manual contains the following chapters:

- Introduction
- Safety
- Product description
- PROFINET
- PROFIsafe
- PROFIBUS DP

Additionally, the following documents must be taken into account:

Name	Content	Document no.
HIMax system manual	Hardware description	HI 801 001 E
	HIMax system	
HIMax safety manual	Safety function	HI 801 003 E
	HIMax systems	
HIMatrix safety manual	Safety function	HI 800 023 E
	HIMatrix systems	
HIMatrix compact system	Hardware description	HI 800 141 E
manual	HIMatrix compact system	
HIMatrix modular system	Hardware description	HI 800 191 E
manual	HIMatrix modular F 60 system	
HIQuad X system manual	Hardware description	HI 803 211 E
	HIQuad X system	
HIQuad X safety manual	Safety function	HI 803 209 E
	HIQuad X system	
Automation security manual	Description of automation security aspects	HI 801 373 E
	related to the HIMA systems	
SILworX first steps manual	Introduction to SILworX.	HI 801 103 E

Table 1: Additional Applicable Manuals

All the current manuals can be obtained upon request by sending an e-mail to: documentation@hima.com. The documentation is available for registered HIMA customers in the download area https://www.hima.com/en/downloads/.

HI 801 523 E Rev. 11.04.00 Page 7 of 134

Protocol Introduction

1.2 Target Audience

This document is aimed at the planners, design engineers, programmers and the persons authorized to start up, operate and maintain the automation systems. Specialized knowledge of safety-related automation systems is required.

1.3 Writing Conventions

To ensure improved readability and comprehensibility, the following writing conventions are used in this document:

Bold To highlight important parts.

Names of buttons, menu functions and tabs that can be clicked and used

in the programming tool.

Italics Parameters and system variables, references.

Courier Literal user inputs.

RUN Operating states are designated by capitals.

Chapter 1.2.3 Cross-references are hyperlinks even if they are not specially marked.

In the electronic document (PDF): When the mouse pointer hovers over a hyperlink, it changes its shape. Click the hyperlink to jump to the

corresponding position.

Safety notices and operating tips are specially marked.

1.3.1 Safety Notices

Safety notices must be strictly observed to ensure the lowest possible risk.

The safety notices are represented as described below.

- Signal word: warning, caution, notice.
- Type and source of risk.
- Consequences arising from non-observance.
- Risk prevention.

The signal words have the following meanings:

- Warning indicates hazardous situations which, if not avoided, could result in death or serious injury.
- Caution indicates hazardous situation which, if not avoided, could result in minor or moderate injury.
- Notice indicates a hazardous situation which, if not avoided, could result in property damage.

A SIGNAL WORD

Type and source of risk!

Consequences arising from non-observance.

Risk prevention.

NOTICE

Type and source of damage! Damage prevention.

Page 8 of 134 HI 801 523 E Rev. 11.04.00

Introduction **Protocol**

1.3.2 Operating Tips

Additional information is structured as presented in the following example:

1

The text giving additional information is located here.

Useful tips and tricks appear as follows:

TIP

The tip text is located here.

1.4 Safety Lifecycle Services

HIMA provides support throughout all the phases of a plant's safety lifecycle, from planning and engineering through commissioning to maintenance of safety and security.

HIMA's technical support experts are available for providing information and answering questions about our products, functional safety and automation security.

To achieve the qualification required by the safety standards, HIMA offers product or customerspecific seminars at HIMA's training center or on site at the customer's premises. The current seminar program for functional safety, automation security and HIMA products can be found on HIMA's website.

Safety Lifecycle Services:

Onsite+ / On-Site En-

gineering

In close cooperation with the customer, HIMA performs changes or

extensions on site.

Startup+ / Preventive

Maintenance

HIMA is responsible for planning and executing preventive maintenance measures. Maintenance actions are carried out in accordance with the manufacturer's specifications and are documented

for the customer.

Lifecycle+ / Lifecycle

Management

As part of its lifecycle management processes, HIMA analyzes the current status of all installed systems and develops specific recommendations for maintenance, upgrading and migration.

Hotline+ / 24 h Hotline

HIMA's safety engineers are available by telephone around the

clock to help solve problems.

Standbv+ / 24 h Call-

Out Service

Faults that cannot be resolved over the phone are processed by HIMA's specialists within the time frame specified in the contract.

Logistics+/ 24 h Spare **Parts Service**

HIMA maintains an inventory of necessary spare parts and guarantees quick, long-term availability.

Contact details:

Safety Lifecycle Ser-

https://www.hima.com/en/about-hima/contacts-worldwide/

vices

Technical Support

https://www.hima.com/en/products-services/support/

Seminar Program https://www.hima.com/en/products-services/seminars//

HI 801 523 E Rev. 11.04.00 Page 9 of 134 Protocol Safety

2 Safety

All safety information, notes and instructions specified in this document must be strictly observed. The product may only be used if all guidelines and safety instructions are adhered to.

The product is operated with SELV or PELV. No imminent risk results from the product itself. Use in the Ex zone is only permitted if additional measures are taken.

2.1 Intended Use

To use the HIMA controllers, all pertinent requirements must be met, see relevant manuals in Table 1.

2.2 Residual Risk

No imminent risk results from a HIMA system itself.

Residual risk may result from:

- Faults related to engineering.
- Faults in the user program.
- Faults related to the wiring.

2.3 Safety Precautions

Observe all local safety requirements and use the protective equipment required on site.

2.4 Emergency Information

A HIMA system is a part of the safety equipment of an overall system. If the controller fails, the system enters the safe state.

In case of emergency, no action that may prevent the HIMA system from operating safely is permitted.

2.5 Automation Security for HIMA Systems

Industrial controllers must be protected against IT-specific problem sources. Those problem sources are:

- Attackers inside and outside of the customer's plant
- Operating failures
- Software error.

All requirements for protection against manipulation specified in the safety and application standards must be met. The operator is responsible for authorizing personnel and implementing the required protective actions.

A WARNING

Physical injury possible due to unauthorized manipulation of the controller! Protect the controller against unauthorized access!

For example:

- Changing the default settings for login and password!
- Controlling the physical access to the controller and PADT!

Page 10 of 134 HI 801 523 E Rev. 11.04.00

Safety Protocol

Careful planning should identify the measures to implement. The required measures are to be implemented after the risk analysis is completed. Such measures can include:

- Meaningful allocation of user groups.
- Maintained network maps help to ensure that secure networks are permanently separated from public networks and, if required, only a well-defined connection exists (e.g., via a firewall or a DMZ).
- Use of appropriate passwords.

A periodical review of the security measures is recommended, e.g., every year.

The user is responsible for implementing the necessary measures in a way suitable for the plant!

For further details, refer to the HIMA automation security manual (HI 801 373 E).

HI 801 523 E Rev. 11.04.00 Page 11 of 134

3 PROFINET IO

PROFINET IO is the transmission protocol provided by PNO Germany and based on Ethernet technology.

As with PROFIBUS DP, the remote field devices for PROFINET IO are integrated in SILworX via a device description (GSDML file).

The PROFINET IO-Controller complies with Conformance Class A and supports non-real time (NRT) and real time (RT) communication with the PROFINET IO-Devices. Real time communication is used for time critical data exchange, and non-real time communication for non time critical processes, such as acyclic read/write operations.

A redundant PROFINET IO connection can be implemented by configuring a second PROFINET IO-Controller/Device and adjusting it in the user program.

3.1 PROFINET IO Function Blocks

To acyclically exchange data, function blocks with the same functionality as with SILworX are available in PROFIBUS DP.

The following PROFINET IO function blocks are available:

Function block	Function description
MSTAT 4.9.1	To control the controller state using the user program
RALRM 4.9.2	To read the alarm messages from the devices
RDREC 4.9.4	To read the data records of the devices
SLACT 4.9.5	To control the device states using the user program
WRREC 4.9.6	To write the data records of the devices

Table 2: Overview of PROFINET IO Function Blocks

The PROFINET IO function blocks are configured like the PROFIBUS DP function blocks. Refer to Chapter 4.9 for details.

Page 12 of 134 HI 801 523 E Rev. 11.04.00

3.2 Controlling the Consumer/Provider Status (IOxS)

The system variables described in this chapter, the Consumer/Provider status (IOxS) can be controlled via the user program. If the Consumer/Provider status should not be controlled via the user program, the output variables must be assigned a constant that is set to TRUE. The statuses are then set to GOOD as soon as the communication module obtains valid process values from the processor module.

The following picture shows how system variables are exchanged between the HIMA controller and a DO device or a DI device, respectively.

Figure 1: Controlling the Consumer/Provider Status (IOxS)

3.2.1 Control Variables in the HIMA Controller

The Valid Output Data 1 and Input Data Accepted by Controller 1 input variables can be used to control the Consumer/Provider status (IOxS) via the user program.

The Output Data Accepted by Device 2 and Valid Input Data 3 input variables can be used to read the Consumer/Provider status (IOxS) via the user program.

3.2.2 Control Variables in the HIMA DO Device

The *Valid Output Data* output variable can be used to control the Consumer/Provider status (IOxS) via the user program.

The Output Data Accepted by Controller 5 input variable can be used to read the Consumer/Provider status (IOxS) via the user program.

3.2.3 Control Variables in the HIMA DI Device

The *Input Data Accepted by Device* output variable can be used to control the Consumer/Provider status (IOxS) via the user program.

The Valid Input Data input variable can be used to read the Consumer/Provider status (IOxS) via the user program.

HI 801 523 E Rev. 11.04.00 Page 13 of 134

3.3 PROFIsafe

Familiarity with the PROFIsafe specification from the PNO is assume!

PROFIsafe uses the PROFINET protocol to transfer safety-related data up to SIL 3, based on Ethernet technology.

The PROFIsafe protocol is superposed on the PROFINET protocol and contains safe user data, as well as data backup information. The safe PROFIsafe data is transferred together with the non-safety-related PROFINET data via the subsidiary PROFINET protocol.

Similarly to the black-channel principle, PROFIsafe uses unsafe data transmission channels (Ethernet) to transfer safe data. This allows the F-Host and F-Device to exchange safe PROFIsafe data.

3.3.1 PROFIsafe in Connection with HIMA Controllers

According to the PROFIsafe specification, the F-Host repeatedly sends a message packet until the F-Device acknowledges its receipt to the F-Host. Only then does the F-Host send a new message packet to the F-Device.

The current process value is transferred in every resent PROFIsafe message packet. It may thus happen that the same process signal has different values in the resent message packets.

In HIMA devices, PROFIsafe is implemented on the receiver side such that process values can only be adopted when the message packet is received for the first time.

The process values of the resent message packets (with identical progressive number of the message packet) are rejected.

If the connection is lost and after F_WD_Time has expired, the PROFIsafe process value variables adopt the initial value.

A given process value is only received on the opposite side (F-Host/F-Device) if the process value remains unchanged for at least the following time:

The PROFIsafe system must be configured so that the *SFRT* (Safety Function Response Time) is suitable for performing the corresponding safety function.

For the calculation formula, refer to Chapter 3.3.4.

The following conditions must be met to ensure a behavior consistent with PROFIsafe:

- The initial values of the process value variables must be set to 0.
- The AutoAwaitFParamsOnConnLoss parameter must be deactivated, see Chapter 3.10. The SILworX default settings are configured to ensure a behavior consistent with PROFIsafe!

Page 14 of 134 HI 801 523 E Rev. 11.04.00

3.3.2 PROFIsafe Control Byte and Status Byte

Both system variables Control Byte and Status Byte are contained in each PROFIsafe submodule and are exchanged during communication between F-Host and F-Device; refer to Chapter 3.7.6.3 and Chapter 3.10.4 for details.

The PROFIsafe control byte is written to the F-Host and read in the F-Device. The PROFIsafe status byte is written to the F-Device and read in the F-Host.

Figure 2: PROFIsafe Control Byte and Status Byte

† The Control Byte and Status Byte system variables have additional features in HIMA systems that deviate from the PROFIsafe specification, see Table 12 and Table 29.

3.3.3 F_WD_Time (PROFIsafe Watchdog Time)

The following inequality applies to functional PROFIsafe connection between HIMA F-Host and F-Device:

F_WD_Time >

- 3 * CPU cycle time * number of communication time slices +
- 2 * PROFINET controller production interval1) +
- 1 * DAT (F-Device acknowledgement time) +
- 2 * internal F-Device bus time +
- 2 * PROFINET device production interval1) +
- 2 * Ethernet delay

¹⁾ In general, PROFINET controller and PROFINET device production intervals are identical and are calculated as follows: Reduction factor * SendClockFactor * 31.25 μ s

Refer to the device description provided by the F-Device manufacturer for the values of *DAT* (F-Device acknowledgment time) and the *internal device bus time*!

For HIMax and HIMatrix F-Devices, DAT = DATout = DATin = 2 * WDT CPU

HI 801 523 E Rev. 11.04.00 Page 15 of 134

3.3.3.1 Remarks about F_WD_Time (PROFIsafe Watchdog Time)

1. DAT (F-Device acknowledgement time) is the time required by an F-Device to respond to a received PROFIsafe message. F-Devices are the safe units (in HIMA systems the CPU module) processing the F-Device stacks. In particular, if modular systems/devices are used, they do not include the time values for the non safety-related functions/components. This DAT definition differs from that provided in the PROFIsafe specification V2.5c, Chapter 9.3.3, in the following points:

- DAT does not include the time values for the internal F-Device bus.
- DAT does not include the portion of PROFINET device production intervals.
- DAT does not include any delays, e.g., due to input or output value filters or the physical properties of the inputs and outputs.
- DAT refers to DATin (input) or DATout (output), depending on the connection.
- The corresponding maximum value must be used for all time parameters.
- 2. In HIMatrix and in HIMax, the internal F-Device bus time is: (Max. number of communication time slices 1) * WDT CPU.
- 3. Requirement: The F-Device runs cyclically and its DAT is: DAT = 2 * max. cycle
 - F-Device does not operate with communication time slices.

HIMA CPU cycle time * number of communication time slices is less than the F-Device cycle time,

Delta = F-Device cycle time – HIMA CPU cycle time * number of communication time slices must be added to the HIMA CPU cycle time specified in the F_WD_Time equation.

F-Device operates with communication time slices.

(HIMA CPU cycle time * number of communication time slices) is less than the F-Device cycle time * number of F-Device communication time slices, for the HIMA CPU cycle time

Delta = $(F ext{-}Device\ cycle\ time\ *\ number\ of\ F ext{-}Device\ communication\ time\ slices})$ – $(HIMA\ CPU\ cycle\ time\ *\ number\ of\ communication\ time\ slices)$ must be added to the calculation of the $F ext{-}WD ext{-}Time$.

Page 16 of 134 HI 801 523 E Rev. 11.04.00

3.3.4 SFRT (Safety Function Response Time)

3.3.4.1 Calculation of the SFRT between an F-Device and a HIMA F-Host

The maximum SFRT allowed for a PROFIsafe connection between an F-Device and a HIMA F-Host with local output is calculated as follows:

Figure 3: Response Time between an F-Device and a HIMA F-Host

SFRT <= MaxDataAgeIn + 2 * F_WD_TIME + MaxDataAgeOut + Tu

Remarks:

With HIMax/HIMatrix and if data is used locally, i.e., if it is not output to a HIMax I/O, the fault tolerance time of the CPU module can be replaced by

2*WDT CPU. See also the Remark on SFRT calculations in Chapter 3.3.4.3.

3.3.4.2 Calculation of the SFRT using an F-Device and a HIMA F-Host

The maximum SFRT allowed for a PROFIsafe connection between a HIMA F-Host and an F-Device with local output is calculated as follows:

Figure 4: Response Time using 1 HIMA F-Host and 2 F-Devices

SFRT <= MaxDataAgeIn + 2 * F_WD_TIME(input) + 2 * WDT CPU + 2 * F_WD_TIME(output) + MaxDataAgeOut + Tu

3.3.4.3 Remark on the SFRT Calculations

- 1. Definition of **SFRT** in accordance with IEC 61784-3, Ed.2.
- 2. All additional delays in the user program must be added, e.g., due to TOF or TON function blocks, or in the modules, due to output filters, input filters, relays, etc.
- MaxDataAgeIn is the maximum age of a process value that is read on a physical input and is added to a PROFIsafe message by an F-Device, <u>but only the portion that is not already</u> <u>contained in DATin.</u>

HI 801 523 E Rev. 11.04.00 Page 17 of 134

In HIMatrix, MaxDataAgeIn must be set to 0 ms.

In a HIMax system, the MaxDataAgeIn value must be set as follows:

- FTT CPU¹) 2 * WDT CPU DATin, for physical inputs.
- 0 ms, for data created by the user program.

4. MaxDataAgeOut

is the worst case response time of an output F-Device or F-Host for

- a) outputting the received process values to a physical output,
- b) controlling the physical outputs after F_WD_Time has expired and
- c) deactivating the physical outputs if the devices fail.
- In HIMatrix, MaxDataAgeOut = 3 * WDT CPU (for physical outputs)
- In HIMax, MaxDataAgeOut = WDT CPU + FTT CPU¹) (for physical outputs)
- After F_WD_TIME has expired, the HIMax and HIMatrix respond without faults at the latest after 2 * WDT CPU.
 - If the F-Host/F-Device (HIMA CPU module) fails immediately prior to this response, the outputs of HIMatrix are de-energized once WDT CPU has expired. In the HIMax system, this occurs at the latest after FTT CPU¹) – WDT CPU since the output module has not received any message for the duration of a WDT CPU.
 - Assuming that only **one** fault occurs in HIMatrix or HIMax, 1 * WDT CPU can be subtracted from MaxDataAgeOut.
- Tu is the minimum value of DATin, DATout, WDT CPU. Theoretically, it is possible to use
 half of the value of DATin and half of the value of DATout, but the manufacturer must specify
 to which inaccuracy degree F_WD_Time is monitored by the device. If the device runs
 cyclically,

DAT = 2 * max. device cycle.

For HIMA HIMatrix and HIMax F-Devices, DATout = DATin = 2 * WDT CPU.

- 6. F WD TIME, see Chapter 3.3.3.
- 1) Process safety time of the CPU module

Page 18 of 134 HI 801 523 E Rev. 11.04.00

3.4 Requirements for Safely Operating PROFIsafe

3.4.1 Addressing

The HIMA PROFIsafe network corresponds to the PROFINET Ethernet network that can be used to transfer the PROFIsafe messages. In this context, network refers to a logical network that can include multiple physical sub-networks.

A separation is suitable for a PROFIsafe network if PROFIsafe messages cannot override the network separation.

This would be the case, if an IP-based router is used and the networks are connected to different Ethernet interfaces of the router.

The PROFIsafe networks are not separated if, for instance, the networks are connected via one port router, switches, hubs or Ethernet bridges.

Even if managed switches are used and the PROFIsafe networks are separated, e.g., via port-based VLANs, one-to-one addressing should still be aimed for. This ensures that no connections between PROFIsafe networks are accidentally established during upgrade or maintenance.

The following conditions must be met for addressing the PROFIsafe devices:

- A one-to-one correspondence between the F-addresses of the PROFIsafe devices/modules in a PROFIsafe network must be ensured.
- Additionally, HIMA recommends selecting bijective F-addresses, even in separate PROFIsafe networks, to ensure addressing safety.
- When starting up and modifying safety functions, ensure that the safety functions use the proper inputs and outputs of the corresponding PROFIsafe devices throughout the entire PROFIsafe network.
- The PROFIsafe F-modules must be configured such that F-modules with identical input and output data lengths that operate in a given PROFIsafe network have different CRC1 signatures, e.g., by assigning suitable F-addresses or F_WD_Time. The CRC1 can be read in SILworX.

Remark:

This is ensured in any case for the affected F-modules if only one F-Host is used in a given PROFIsafe network and the F-Parameters of the F-Modules in a PROFIsafe network only differ in the F-address.

To avoid accidental generation of the same CRC1 signature, make sure that, e.g., the parameters *F_WD_Time*, *F_Prm_Flag1/2* are identical for all F-modules and the F-modules do not use an iPar CRC.

Risk Associated with PROFIsafe Devices with Identical Input and Output Data Length

PROFIsafe device may only be operated if the F-INPUT data length does not equal the F-OUTPUT data length of the same PROFIsafe connection.

Otherwise, potential addressing faults in standard components and/or standard transmission technologies might not be detected and could cause safety-related malfunctions.

In HIMA F-modules configured for the HIMA controller, the F-input data length must differ from the F-output data length. To prevent the risk of a safety-related malfunction, only use F-Input modules or F-Output modules. Do not use F-input/output modules!

3.4.2 Network Aspects

The network used for transferring PROFIsafe messages must ensure sufficient availability and transmission quality.

HI 801 523 E Rev. 11.04.00 Page 19 of 134

i

A safety reaction is triggered if reduced transmission quality is detected by PROFIsafe, but is not recognized by the standard transmission devices (Ethernet).

After a safety reaction due to reduced transmission quality, the problems must be resolved to once again ensure sufficient transmission quality. A PROFIsafe restart may only be acknowledged after the required measures were taken. To do so, the Operator Acknowledge or Reset signal must be used.

A WARNING

Operator Acknowledge and Reset may only be used if dangerous states no longer exist.

A PROFIsafe network must be protected against unauthorized access and actions (e.g., DoS, hacker, etc.). The measures must be agreed upon together with the supervising authority. This is particularly important if wireless transmission technologies are used. For further details, refer to the PROFIsafe Specification V2.5c, Table 23 and Table 24.

Availability with respect to added messages

Message packets can be stored, e.g., using network components such as switches, and can be added (sent) to a later point in time¹⁾. These message packets cause a shutdown if they are older than the last message packet received by the PROFIsafe device (see Consecutive Number in Table 12 and Table 29).

1) Fault assumption for safety-related communication

Page 20 of 134 HI 801 523 E Rev. 11.04.00

3.5 PROFINET IO-Controller and PROFIsafe F-Host

This chapter describes the features of the PROFINET IO-Controller and PROFIsafe F-Host, and the menu functions and dialog boxes required to configure the PROFINET IO-Controller and PROFIsafe F-Host in SILworX.

3.5.1 System Requirements for the PROFINET IO-Controller

Equipment and system requirements

Element	Description
Controller	HIMax with X-COM 01 module.
	HIMatrix
CPU module	The Ethernet interfaces on the processor module may not be used for PROFINET IO.
COM module	Ethernet 10/100BaseT.
Activation	Software activation code is required for activation, refer to the communication manual (HI 801 101 E) for details.

Table 3: System Requirements and Equipment for the PROFINET IO-Controller

3.5.2 PROFINET IO-Controller and PROFIsafe F-Host Properties

Properties	Description
Safety-related	PROFINET: No
	PROFIsafe: Yes
Transfer rate	100 Mbit/s full duplex
Transport path	Ethernet interfaces on the COM module.
	The Ethernet interfaces in use can simultaneously
	be employed for other protocols.
Conformance class	The PROFINET IO-Controller meets the
	requirements for conformance class A.
Real time class	RT Class 1
Max. number of	One PROFINET IO-Controller can be configured
PROFINET IO-Controller	for each COM module.
Max. number of application relations	A PROFINET IO-Controller can establish an
(ARs) for PROFINET IO-Devices	application relation (AR) with a maximum of
	64 PROFINET IO-Devices.
Number of communication relations (CRs for each AR)	Standard: 1 input CR, 1 output CR, 1 alarm CR
Max. process data length of a CR	Output: max. 1440 bytes
	Input: max. 1440 bytes
Transmit clocking	Possible at device level using the Reduction Rate
	setting.
The following features apply to PROF	Flsafe
Max. number of F-Hosts (HIMax)	1024
Max. number of F-Hosts (HIMatrix)	512
Max. process data length of a CR	Output: max. 123 bytes user data + 5 bytes ¹⁾
	Input: max. 123 bytes user data + 5 bytes ¹⁾
Max. user data size	
HIMax	1024 x 123 bytes = 125 952 bytes
HIMatrix	512 x 123 bytes = 62 976 bytes
1) 5 bytes management data (status/con	trol bytes and CRC)

Table 4: PROFINET IO-Controller Properties

HI 801 523 E Rev. 11.04.00 Page 21 of 134

3.6 PROFINET IO/PROFIsafe Example

This example shows how a PROFINET IO-Controller connected to a PROFINET IO-Device is configured in a HIMax controller.

The PROFINET IO-Device is equipped with one PROFINET IO module and one PROFIsafe module. In the PROFINET IO-Controller, the PROFINET IO-Device must be configured as it is actually structured.

3.6.1 Creating a PROFINET IO-Controller in SILworX

To create a new PROFINET IO-Controller

- 1. In the structure tree, select **Configuration, Resource, Protocols.**
- 2. Right-click Protocols and select **New**, **PROFINET IO-Controller** from the context menu to add a new PROFINET IO-Controller.
- 3. Right-click PROFINET IO-Controller and select Properties from the context menu.
- 4. Enter the controller's device name in the Name field.
- 5. Select COM Module.

Figure 5: HIMax Structure Tree for the PROFINET IO-Controller

3.6.2 Creating the GSDML Library in SILworX

A GSDML library is used to manage the GSDML files that can be reused within a PROFINET IO-Controller.

A GSDML library can be created at project level, configuration level, resource level or directly below the PROFINET IO-Controller, see Figure 5.

If the GSDML library is created at project level, configuration level or resource level, it can be used by all PROFINET IO-Controllers included in it.

Creating the GSDML Library in SILworXat Configuration Level

- 1. If the project does not yet include a library, right-click **Project** in the structure tree and select **New**, **Library**.
- In the structure tree, right-click Project, and select New, GSDML Library.
 ☑ A new GSDML library is created.

Page 22 of 134 HI 801 523 E Rev. 11.04.00

To read the GSDML file from an external data source (e.g., DVD, USB stick, Internet)

- 1. In the structure tree, select Project, Library, GSDML Library.
- Right-click GSDML Library and select New from the context menu to open the Add GSDML File dialog box.
- 3. Click the ... button and select the required GSDML files from the storage location.
- 4. Click **OK** to confirm.

3.6.3 Configuring the Device in the PROFINET IO-Controller

To create a HIMax PROFINET IO-Device within the PROFINET IO-Controller

Select New, PROFINET IO-Device from the context menu of the PROFINET IO-Controller.

To load the GSDML file for a new PROFINET IO-Device

- 1. In the structure tree, open Configuration, Resource, Protocols, PROFINET IO-Device.
- 2. Select **Properties** from the context menu and open the **Parameter** tab.
- 3. Enter the PROFINET IO-Device name in the Name field.
- 4. Enter the IP address of the PROFINET IO-Device in the IP Address field.
- 5. Select the GSDML library file specific to the PROFINET IO-Device from the drop-down menu for **GSDML File** and close **Properties**.

To select the device access point (DAP) for the PROFINET IO-Device

- 1. In the structure tree, select **Protocols**, **PROFINET IO-Controller**, **PROFINET IO-Device**, **DAP Module**.
- 2. Select **Edit** from the context menu and choose the appropriate DAP data record for the PROFINET IO-Device (DAP = Device Access Point).

The GSDML file often contains several DAPs from the same manufacturer.

Figure 6: Device Access Point (DAP) for the PROFINET IO-Device

To configure the module slots

1

- 1. In the structure tree, open Protocols, PROFINET IO-Device.
- 2. Right-click **PROFINET IO-Device** and select **New** from the context menu to open the module list.
- 3. From the module list, select appropriate modules for the PROFINET IO-Device and click **Insert Module(s)** to confirm the action.

HI 801 523 E Rev. 11.04.00 Page 23 of 134

To number the PROFINET IO-Device modules

The **Device Access Point (DAP)** module is associated by default with slot 0. All other PROFINET IO-Device modules must be numbered.

- 1. Right-click **PROFINET IO-Device Module** and select **Properties** from the context menu.
- In the Slots field, enter the device module slots as arranged in the actual PROFINET IO-Device.
- 3. Repeat these steps for any additional **PROFINET IO-Device modules**.

The Model and Features tabs display additional details of the GSDML file.

To configure the application relation

- 1. In the structure tree, open **PROFINET IO-Device**, **Application Relation**.
- 2. Right-click **Default Input CR** and select **Properties** from the context menu.
- 3. Adjust the reduction factor parameter, e.g., set it to 4.
- 4. Right-click **Default Output CR** and select **Properties** from the context menu.
- 5. Adjust the reduction factor parameter, e.g., set it to 4.

3.6.4 Configuring the Device Access Point (DAP) Module

To configure the Device Access Point (DAP) module

- 1. Select [000] DAP Module, [xxxxx] DAP Submodule.
- 2. Right-click [xxxxx] DAP Submodule and select Edit from the context menu.
- 3. If the Consumer/Provider status should not be controlled using a given user program logic, select the System Variables tab located in the Edit dialog box and assign a global variable with the initial value TRUE to the *Input Data Accepted by Controller* output variable.
- These system variables can be used to control the Consumer/Provider status. Refer to Chapter 3.2 for details.

Setting the header parameters, e.g., for a DAP with alarm settings.

To set the header parameters for the device access point (DAP) for the PROFINET IO-Device

- 1. In the structure tree, select Protocols, PROFINET IO-Controller, PROFINET IO-Device, DAP Module, [xxxxx] DAP Submodule, Alarm Settings (Header): Parameters.
- 2. Select Properties from the context menu.
- 3. Enter the header parameter name in the **Name** field.
- Click the Edit button to open a dialog box for configuring the interfaces, diagnostics or alarms.

Page 24 of 134 HI 801 523 E Rev. 11.04.00

3.6.5 Configuring the PROFINET IO-Device Module

The sum of the variables (in bytes), must be identical to the size of the module (in bytes). $\mathbf{1}$

To configure the PROFINET IO-Device module

- 1. Select [001] PROFINET IO-Device Module, [xxxxx] PROFINET IO-Device Submodule.
- Right-click [xxxxx] Submodule and select Edit from the context menu.
- 3. In the Edit dialog box, select the Process Variables tab.
- 4. Drag the appropriate variable from the Object Panel onto the **Input Signals** area.
- 5. Right-click a free space in the **Inputs Signals** area and select **New Offsets** from the context menu to generate the new variable offsets.
- 6. If the Consumer/Provider status should not be controlled, select the **System Variables** tab located in the **Edit** dialog box and assign a global variable with the initial value TRUE to the output variables *Valid Output Data* and *Input Data Accepted by Controller*.
- These system variables can be used to control the Consumer/Provider status. Refer to Chapter 3.2 for details.

3.6.6 Configuring the PROFIsafe IO-Device Modules

The sum of the variables (in bytes), must be identical to the size of the module (in bytes).

To configure the PROFIsafe IO-Device modules

- 1. Select [001] PROFIsafe IO-Device Module, [xxxxx] PROFIsafe IO-Device Submodule.
- 2. Right-click [xxxxx] Submodule and select Edit from the context menu.
- 3. In the Edit dialog box, select the Process Variables tab.
- 4. Drag the appropriate variable from the Object Panel onto the Input Signals area.
- 5. Right-click a free space in the **Inputs Signals** area and select **New Offsets** from the context menu to generate the new variable offsets.
- 6. If the Consumer/Provider status should not be controlled, select the **System Variables** tab located in the **Edit** dialog box and assign a global variable with the TRUE initial value to the output variables *Valid Output Data* and *Input Data Accepted by Controller*.
- These system variables can be used to control the Consumer/Provider status. Refer to Chapter 3.2 for details.

To configure the F parameters

- 1. Select [001] PROFIsafe IO-Device Module, [xxxxx] PROFIsafe IO-Device Submodule, F Parameters.
- 2. Right-click F Parameters and select Properties from the context menu.
- 3. Set the following parameters:
 - F Dest Add: Destination address of the device module
 - F_WD_Time: Watchdog time for the connection to this device module

HI 801 523 E Rev. 11.04.00 Page 25 of 134

To verify the PROFINET IO configuration

- 1. In the structure tree, open Configuration, Resource, Protocols, PROFINET IO-Controller.
- 2. Right-click PROFINET IO-Controller and select Verification from the context menu.
- 3. Thoroughly verify the messages displayed in the logbook and correct potential errors.
- Recompile the resource and load it into the controller to ensure that the new configuration can be used for communication with the PROFINET IO.

3.6.7 Identifying the PROFINET IO-Devices within the Network

To identify the PROFINET IO-Devices within the Ethernet network

- 1. Log-in to the communication module containing the **PROFINET IO-Controller**.
- In the structure tree for to the online view, select PROFINET IO-Controller, PROFINET IO Network Member.
- 3. Select Determine PROFINET IO Network Member from the context menu.
 - ☑ A list appears specifying all the PROFINET devices in the network of this PROFINET IO-Controller.

To configure the PROFINET IO-Device in SILworX

- 1. In the list, right-click the PROFINET IO-Device to be configured, to change the settings.
- 2. Name the device using the Name the PROFINET IO-Device context menu function.
 - ☑ Make sure that the PROFINET IO-Device name complies with the project requirements.

 (Only lower case letters may be used!)
- 3. Use the **Network Settings** context menu function to set the IP address, subnet mask and gateway.
- † The PROFINET IO-Device name and network settings must be configured in the PROFINET IO-Controller, or no communication is possible.

Page 26 of 134 HI 801 523 E Rev. 11.04.00

3.7 Menu Functions for the PROFINET IO-Controller

3.7.1 Example of Structure Tree for the PROFINET IO-Controller

Figure 7: Structure Tree for the PROFINET IO-Controller

3.7.2 PROFINET IO-Controller

The **Properties** function of the context menu for the PROFINET IO-Controller is used to open the **Properties** dialog box. The dialog box contains the following tabs:

3.7.2.1 The PROFINET IO (Properties) Tab

Element	Description	
Туре	PROFINET IO	-Controller
Name	Name of the P	ROFINET IO-Controller
Process Data Refresh Rate [ms]	protocol data. If the <i>Refresh</i> i	,
Force Process Data Consistency	Activated:	Transfer of all of the protocol data from the CPU to the COM within a CPU cycle.
	Deactivated:	Transfers all of the protocol data from the CPU to the COM, distributed over multiple CPU cycles, each with 1100 bytes per data direction. This may also cause the cycle time of the controller to be reduced.
	Default value:	Activated
Module	Selection of the	e COM module within which the protocol is processed.
Activate Max. μP Budget	Activated:	Use the μP budget limit from the <i>Max.</i> μP <i>Budget</i> in [%] field.
	Deactivated:	Do not use the μP budget limit for this protocol.

HI 801 523 E Rev. 11.04.00 Page 27 of 134

Element	Description
Max. μP Budget in [%]	Maximum μP budget of the module that can be used for processing the protocols. Range of values: 1100% Default value: 30%
RPC Port Server	Remote Procedure Call Port Range of values: 102465535 Default value: 49152 RPC port server and RPC port client must not be identical!
RPC Port Client	Remote Procedure Call Port Range of values: 102465535 Default value: 49153 RPC port server and RPC port client must not be identical!
F_Source_Add	Address of the controller (F-Host). Unique PROFIsafe controller/device addresses must be used in a PROFIsafe network. Also refer to IEC 61784-3-3 V2.5c Chapter 9.7 for further details.

Table 5: The PROFINET IO-Device (Properties) Tab

Page 28 of 134 HI 801 523 E Rev. 11.04.00

3.7.3 PROFINET IO-Device (within the Controller)

The **Properties** function of the context menu for the PROFINET IO-Device is used to open the **Properties** dialog box, which contains the following tabs:

The Parameters (Properties) Tab

Element	Description
Name	Name of the PROFINET IO-Device
IP Address	IP address of the communication partner. Range of values: 0.0.0.0255.255.255.255 Default value: 192.168.0.99 Do not use IP addresses already in use, refer to the chapter in the communication manual (HI 801 101 E) concerning the network ports and Ethernet communication for details.
Subnet Mask	Subnet mask for the addressed subnet containing the device. Range of values: 0.0.0.0255.255.255.255 Default value: 255.255.255.0
GSDML File	GSDML stands for Generic Station Description Markup Language and refers to an XML-based description language. The GSDML file contains the PROFINET device master data.

Table 6: The Parameters (Properties) Tab

The Model and Features Tabs

The **Model** and **Features** tabs display additional details of the GSDML file, such as *Manufacturer Name, Device Description* or *Supported Factors*. This additional information is intended to support the users during the device configuration and cannot be changed.

3.7.4 DAP Module (Device Access Point Module)

Within a PROFINET IO-Device, a DAP module is always used for connecting to the bus. This DAP module should not be deleted.

The **Properties** function in the context menu for the DAP module is used to open the **Properties** dialog box, which contains the following tabs:

The Parameters (Properties) Tab

Element	Description
Name	Name for the DAP module
Slot	Not changeable Default value: 0

Table 7: The Parameters (Properties) Tab

The Model and Features Tabs

The **Model** and **Features** tabs display additional details of the GSDML file, such as *Module ID, Hardware/Software Version*. This additional information is intended to support the users during the device configuration and cannot be changed.

HI 801 523 E Rev. 11.04.00 Page 29 of 134

3.7.4.1 DAP-Submodule (Properties)

The **Properties** function in the context menu for the DAP submodule is used to open the **Properties** dialog box, which contains the following tabs:

The Parameters Tab

Element	Description
Name	Name of the input submodule
Subslot	Default value: 1
IO Data CR, Inputs	Selection of the communication relation (CR) to which the submodule inputs should be transferred. - None - Default Input CR
Input Data Accepted by Controller	Selection of the communication relation (CR) to which the submodule IO consumer status (CS) should be transferred. - None - Default Output CR

Table 8: The Parameters Tab

The Model and Features Tabs

The **Model** and **Features** tabs display additional details of the GSDML file, such as *Submodule ID* or *Data Length*. This additional information is intended to support the users during the device configuration and cannot be changed.

3.7.4.2 DAP Submodule (Edit)

The **Edit** function of the context menu for input submodules is used to open the **Edit** dialog box, which contains the following tabs:

The System Variables Tab

The **System Variables** tab provides the following system variables, which allow the PROFINET IO submodule state to be evaluated and controlled in the user program.

Element	Description	
Valid Input Data	TRUE	Valid input data GOOD
	FALSE	Invalid input data BAD
Input Data Accepted by Controller	TRUE	Valid input data GOOD
	FALSE	Invalid input data BAD

Table 9: The System Variables Tab

 $\begin{tabular}{ll} \hline 1 & These system variables can be used to control the Consumer/Provider status. Refer to Chapter 3.2 for details. \\ \hline \end{tabular}$

Page 30 of 134 HI 801 523 E Rev. 11.04.00

3.7.4.3 Header Parameters

Some devices contain so-called header parameters used to activate/deactivate parameters, such as Diagnosis, Alarm and Interfaces.

3.7.5 Input/Output PROFINET IO Modules

A PROFINET IO module can have multiple submodules. HIMax PROFINET IO-Controllers have one submodule in each input and output PROFINET IO module.

The PROFINET IO input modules are used to enter the HIMax PROFINET IO-Controller input variables that are sent by the PROFINET IO-Device.

The PROFINET IO output modules are used to enter the HIMax PROFINET IO-Controller output variables that are sent to the PROFINET IO-Device.

To create the required PROFINET IO module

- 1. In the structure tree, open Configuration, Resource, Protocols, PROFINET IO-Device.
- 2. Right-click PROFINET IO-Device and select New from the context menu.
- 3. Select the modules required.

The **Properties** function of the context menu for the input/output PROFINET IO modules is used to open the **Properties** dialog box, which contains the following tabs:

3.7.5.1 The Parameters Tab

Element	Description
Name	Name of the I/O PROFINET IO module.
Slot	032767
	Default value: 1

Table 10: The Parameters Tab for the I/O PROFINET IO Module

The Model and Features Tabs

The **Model** and **Features** tabs display additional details of the GSDML file, such as *Module ID, Hardware/Software Version*. This additional information is intended to support the users during the device configuration and cannot be changed.

HI 801 523 E Rev. 11.04.00 Page 31 of 134

3.7.6 Submodule Input

The submodule parameters are used to define the communication relation of the module and its behavior after connection is interrupted.

3.7.6.1 Submodule Input (Properties)

The **Properties** function in the context menu for the *Input Submodules* is used to open the **Properties** dialog box, which contains the following tabs:

The Parameters Tab

Element	Description		
Name	Name of the input submodule.		
Subslot	Not changeable for HIMax PROFINET IO- Controller. Default value: 1		
IO Data CR, Inputs	Selection of the communication relation (CR) to which the submodule inputs should be transferred. - None - Default input CR		
Input Data Accepted by Controller	Selection of the communication relation (CR) to which the submodule IO consumer status (CS) should be transferred. - None - Default output CR		
Shared Input	Not applicable		
Input Values if IO CR is Disconnected	Behavior of the input variables for this PROFINET IO submodule after the connection is interrupted.		
	Retain Last Value The input variables are frozen to the current value and used until a new connection is established.		
	Adopt Initial The initial values are used for the input variables.		

Table 11: The Parameters Tab

The Model and Features Tabs

The **Model** and **Features** tabs display additional details of the GSDML, file such as *Submodule ID, Hardware/Software Version* or *Data Length*. This additional information is intended to support the users during the device configuration and cannot be changed.

Page 32 of 134 HI 801 523 E Rev. 11.04.00

3.7.6.2 Input Submodule (Edit)

The **Edit** function of the context menu for the input submodules is used to open the **Edit** dialog box. The dialog box contains the following tabs:

The System Variables Tab

The **System Variables** tab provides the following system variables, which allow the PROFINET IO submodule state to be evaluated in the user program.

Element	Description	
Valid Input Data	TRUE	Valid Input Data GOOD
	FALSE	Invalid input data BAD
Input Data Accepted by Controller	TRUE	Valid Input Data
		GOOD
	FALSE	Invalid input data
		BAD
The following parameters are only available for PROFIsafe modules:		
Valid Output Data	TRUE	Valid Output Data GOOD
	FALSE	Invalid output data BAD
Output Data Accepted by Device	TRUE	Valid Output Data GOOD
	FALSE	Invalid output data BAD

 $\begin{tabular}{ll} \hline 1 & These system variables can be used to control the Consumer/Provider status. Refer to Chapter 3.2 for details. \\ \hline \end{tabular}$

HI 801 523 E Rev. 11.04.00 Page 33 of 134

Element	Description	
PROFIsafe Control	With each message, PROFIsafe sends the PROFIsafe	
	control byte from the controller to the device that can b	
	set in the user program. See also Chapter 3.3.2.	
	Bit 0	iPar_EN_C: To load new iParameters into the F-Device, the iPar_EN_C must be set to TRUE to unlock the F-Device. As long as iPar_EN_C is TRUE, failsafe values of 0 are exchanged between F-Host and F-Device.
	Bit 1	OA_C: Operator acknowledgment. After a PROFIsafe error (e.g., CRC error or timeout), bit must be set to TRUE for at least a PROFIsafe cycle.
	Di. o	If a PROFIsafe connection should be (re-)started, the operator acknowledgment may only be sent if no dangerous states exist.
	Bit 2	Reserved
	Bit 3	Reserved
	Bit 4	Activate_FV_C:
		FALSE: Process values are exchanged between F-Host and F-Device.
		TRUE: Failsafe values of "0" are exchanged
		between F-Host and F-Device.
	Bit 5	Reserved
	Bit 6	
	Bit 7	Reset_Comm:
		PROFIsafe communication reset; the
		protocol stack is set to the initial state.
		The bit must be set to TRUE until the
		PROFIsafe status <i>Bit 2 Reset_Comm</i> has read back the TRUE value.
PROFIsafe RoundTrip Time last	For an F-Host, this is the time between a data message	
	transmission (with consecutive number N) and the reception of the corresponding acknowledgment (with	
	consecuti	ve number N), measured in milliseconds.

Page 34 of 134 HI 801 523 E Rev. 11.04.00

Element	Description	
PROFIsafe Status	Each message received by PROFIsafe on the host contains the PROFIsafe status byte, which can be evaluated in the user program.	
	Bit 0	iPar_OK_S TRUE: New iParameters received FALSE: No change
	Bit 1	OA_Req_S Operator Acknowledge Requested.
	Bit 2	Reset_Comm is the Reset_Comm value read back from the host control byte. This bit indicates whether Reset_Comm has arrived.
	Bit 3	FV_activated_S
	Bit 4	Toggle_h
	Bit 5	Device_Fault TRUE: The F-Device reported a device fault. FALSE: The F-Device did not report any device faults.
	Bit 6	WD_timeout TRUE: Either the F-Device reported a watchdog timeout or the host timeout occurred on the F-Host. FALSE: No timeout occurred on the F- Device or on the F-Host.
	Bit 7	CRC TRUE: Either the F-Device reported a CRC error or a CRC error occurred on the F- Host. FALSE: No CRC fault occurred on the F- Device or on the F-Host.

Table 12: The System Variables Tab

The **Process Variables** tab is used to enter the input variables.

HI 801 523 E Rev. 11.04.00 Page 35 of 134

3.7.6.3 F-Parameters of Submodule Input (For PROFIsafe Modules Only)

To exchange process data safely, PROFIsafe F-Devices need normalized F-Parameters. The F-Device only establishes communication if valid F-Parameters were configured. Grayed-out parameters are disabled and, to some extent, preset by the GSDML file or automatically calculated.

Element	Description
Name	Module name.
Index	Module index.
F_Par_Version	Only V2 mode is supported. V1 mode is rejected. Determined through the GSDML file.
F_Source_Add	The F-source address of the F-Host must be unique within the PROFIsafe network! Range of values: 165534
F_Dest_Add	The F-destination address of the F-Device must be unique within the PROFIsafe network! Range of values: 165534
F_WD_Time	Watchdog time. Range of values: 165534 ms
F_iPar_CRC	The F_iPar_CRC of the F-Device is entered in this field.
F_SIL	The SIL is displayed in this field: 0 - SIL1 1 - SIL2 2 - SIL3 3 - NoSIL Determined through the GSDML file.
F_Check_iPar	The CRC iParameter is displayed in this field. Determined through the GSDML file.
F_Block_ID	Structure of the F-Parameters Determined through the GSDML file.
F_CRC_Length	Indicates if the 3-byte CRC or 4-byte CRC is used. Determined through the GSDML file.
F_Par_CRC	The CRC F-parameter (CRC1) is displayed in this field. Calculated based on the current F-Parameters.

Table 13: F-Parameters for Submodule Input (Properties)

Page 36 of 134 HI 801 523 E Rev. 11.04.00

3.7.7 Submodule Output

The submodule parameters are used to define the communication relation of the module and its behavior after connection is interrupted.

3.7.7.1 Submodule Output (Properties)

The **Properties** function on the context menu for the *Output Submodules* is used to open the **Properties** dialog box, which contains the following parameters:

The Parameters Tab

Element	Description
Name	Name of the output submodule
Subslot	Not changeable for HIMax PROFINET IO-Controller. Default value: 1
IO Data CR, Outputs	Selection of the communication relation (CR) to which the submodule outputs should be transferred. - None - Default Input CR
Output Data Accepted by Device	Selection of the communication relation (CR) to which the submodule IO consumer status (CS) should be transferred. - None - Default Output CR

Table 14: The Parameters Tab

The Model and Features Tabs

The **Model** and **Features** tabs display additional details of the GSDML file, such as *Submodule ID*, *Hardware/Software Version* or *Data Length*. This additional information is intended to support the users during the device configuration and cannot be changed.

HI 801 523 E Rev. 11.04.00 Page 37 of 134

3.7.7.2 Submodule Output (Edit)

The **Edit** function of the context menu for Output Submodule is used to open the **Edit** dialog box, which contains the following tabs:

The System Variables Tab

The **System Variables** tab provides the following system variables, which allow the PROFINET IO submodule state to be evaluated in the user program.

Element	Description	n	
Valid Output Data	TRUE	Valid Output Data GOOD	
	FALSE	Invalid output data BAD	
Output Data Accepted by Device	TRUE	Valid Output Data	
		GOOD	
	FALSE	Invalid output data	
		BAD	
The following parameters are only available for PROFIsafe modules:			
Valid Input Data	TRUE	Valid Input Data GOOD	
	FALSE	Invalid input data	
		BAD	
Input Data Accepted by Controller	TRUE	Valid Input Data	
		GOOD	
	FALSE	Invalid input data	
		BAD	
For further PROFIsafe module parameters, see Table 12.			

Table 15: The System Variables Tab

 $\overset{\raisebox{.5ex}{\text{.}}}{1}$ These system variables can be used to control the Consumer/Provider status. Refer to Chapter 3.2 for details.

The Process Variables tab is used to enter the output variables.

3.7.7.3 F-Parameters of Submodule Output (For PROFIsafe Modules Only)

For a description of the F-Parameters, refer to Chapter 3.7.6.3.

Page 38 of 134 HI 801 523 E Rev. 11.04.00

3.7.8 Submodule Inputs and Outputs

The submodule parameters are used to define the communication relation of the module and its behavior after connection is interrupted.

3.7.8.1 Submodule Inputs and Outputs (Properties)

The **Properties** function on the context menu for the *Input and Output Submodules* is used to open the **Properties** dialog box, which contains the following parameters:

The Parameters Tab

Element	Description
Name	Name of the input/output submodule
Subslot	Not changeable for HIMax PROFINET IO-Controller.
	Default value: 1
IO Data CR, Inputs	Selection of the communication relation (CR) to which the submodule inputs should be transferred.
	- None
	- Default Input CR
IO Data CR, Outputs	Selection of the communication relation (CR) to which the submodule outputs should be transferred.
	- None
	- Default Output CR
Input Data Accepted by Controller	Selection of the communication relation (CR) to which the submodule IO consumer status (CS) should be transferred. - None - Default Output CR
Output Data Accepted by Device	Selection of the communication relation (CR) to which the submodule IO consumer status (CS) should be transferred. - None - Default Input CR
Input Values if IO CR is Disconnected	- Retain Last Value
	- Adopt Initial Values

Table 16: The Parameters Tab

The Model and Features Tabs

The **Model** and **Features** tabs display additional details of the GSDML file, such as *Submodule ID*, *Hardware/Software Version* or *Data Length*. This additional information is intended to support the users during the device configuration and cannot be changed.

HI 801 523 E Rev. 11.04.00 Page 39 of 134

3.7.8.2 Submodule Inputs and Outputs (Edit)

The **Edit** function of the context menu for Input/Output Submodules is used to open the **Edit** dialog box, which contains the following tabs:

The System Variables Tab

The **System Variables** tab provides the following system variables, which allow the PROFINET IO submodule state to be evaluated in the user program.

Element	Description	n	
Valid Output Data	TRUE	Valid Output Data	
		GOOD	
	FALSE	Invalid output data	
		BAD	
Output Data Accepted by Device	TRUE	Valid Output Data	
		GOOD	
	FALSE	Invalid output data	
		BAD	
Valid Input Data	TRUE	Valid Input Data	
		GOOD	
	FALSE	Invalid input data	
		BAD	
Input Data Accepted by Controller	TRUE	Valid Input Data	
		GOOD	
	FALSE	Invalid input data	
		BAD	
For PROFIsafe module parameters, see Table 12.			

Table 17: The System Variables Tab

The **Process Variables** tab is used to enter the input and output variables in their corresponding area.

These system variables can be used to control the Consumer/Provider status. Refer to Chapter 3.2 for details.

3.7.8.3 Submodule Input/Output F-Parameters (For PROFIsafe Modules Only) For a description of the F-Parameters, refer to Chapter 3.7.6.3.

Page 40 of 134 HI 801 523 E Rev. 11.04.00

3.7.9 Application Relation (Properties)

An application relation (AR) is a logic construct for enabling data exchange between controller and device. In the following example (see Figure 8), data is transferred within the application relation via standard communication relations (CR): alarm CR, default input CR and default output CR. These communication relations are already configured by default in the input and output modules.

Figure 8: Communication via PROFINET IO/PROFIsafe

The **Properties** function of the context menu for *Application Relation* opens the **Properties** dialog box.

Element	Description
Name	Not changeable
AR UUID	Unique code used to identify the application relation (AR). Not changeable
Connection Establishment Timeout Factor	This parameter is used to calculate the maximum time that the PROFINET IO-Device allows the connection to take during the establishment of a connection between sending the response to the connect request and receiving a new request from the PROFINET IO-Controller. Range of values: 11000 (x 100 ms) Default value: 600
Supervisor may adopt the AR	Defines whether a PROFINET IO supervisor may adopt the application relation (AR). 0 Not allowed 1 Allowed Default value: 0

Table 18: Application Relation (Properties)

HI 801 523 E Rev. 11.04.00 Page 41 of 134

3.7.10 Alarm CR (Properties)

Several communication relations (CRs) can be established within an application relation.

The alarm CR is used by a PROFINET IO-Device to transmit alarms to the PROFINET IO-Controller.

The **Properties** function of the context menu for application relation opens the **Properties** dialog box, which contains the following tabs:

Element	Description		
Name	Not changeable		
VLAN ID, High Priority Alarms	Each virtual LAN (VLAN) is assigned a unique number to ensure separation. A device in the VLAN with ID=1 can communicate with any other device in the same VLAN, but not with a device in another VLAN (e.g., ID=2, 3,). For the range of values, also refer to IEC 61158-6: 0x000 No VLAN		
	0x001	Standard VLAN	
	0x0020xFFF	See IEEE 802.1 Q	
	Default value: 0		
VLAN ID, Low Priority Alarms	Description, see VLAN ID, High Priority Alarms Default value: 0		
Alarm Priority	Use User Priority	The priority assigned by the user is used.	
	Ignore User Priority	The priority assigned by the user is ignored. The generated alarm has low priority.	
Alarm Resends	Maximum number of device resends if the controller does not respond.		
	Range of values: 315		
	Default value: 10		
Alarm Timeout Factor	The RTA timeout factor is used to calculate the maximum device time that may elapse after sending a RTA data (alarm) frame and receiving the RTA ack frame. RTA timeout = RTA timeout factor x 100 ms		
	Range of values: 165535		
	Default value: 5		

Table 19: Alarm CR (Properties)

Page 42 of 134 HI 801 523 E Rev. 11.04.00

3.7.11 Input CR (Properties)

The input CR is used by a PROFINET IO-Device to transmit variables to the PROFINET IO-Controller.

The **Properties** function of the context menu for the default input CR opens the **Properties** dialog box. The dialog box contains the following parameters:

Element	Description	
Name	Any unique name for an input CR.	
	The default input CR cannot be changed.	
Туре	1 (not changeable)	
Send Clock Factor	The send clock factor defines the send clock for the	
	cyclic data transfer of an IO CR.	
	Send Clock = Send Clock Factor x 31.25 µs	
	Range of values: 1128	
	Default value: 32	
Reduction Factor	The reduction factor allows the actual cycle time	
	needed for sending the data of an IO CR to be reduced to send clock. The actual data cycle time is	
	calculated as follows:	
	Send Cycle = Reduction Factor x Send Clock	
	Range of values: 116384	
	Default value: 32 (depending on the device)	
Watchdog Factor	From the perspective of an IO CR consumer, the watchdog factor is used to calculate the maximum	
	time allowed between the reception of 2 frames:	
	Watchdog Time = Watchdog Factor x Send Cycle	
	Range of values: 17680	
	Default value: 3	
VLAN ID	Each virtual LAN (VLAN) is assigned a unique	
	number to ensure separation. A device in the VLAN	
	with ID=1 can communicate with any other device in	
	the same VLAN, but not with a device in another	
	VLAN (e.g., ID=2, 3,).	
	For the range of values, also refer to IEC 61158-6:	
	0x000 No VLAN	
	0x001 Standard VLAN	
	0x0020xFFF See IEEE 802.1 Q	
	Default value: 0	

Table 20: Input CR (Properties)

HI 801 523 E Rev. 11.04.00 Page 43 of 134

3.7.11.1 Input CR (Edit)

The **Edit** function of the context menu for the default input CR opens the **System Variables** dialog box, and contains the following system variables:

Element	Description		
Data Status Input CR	Value	Description	
	0	State With redundant connections, primary describes the leading channel. 1 = Primary 0 = Backup With mono connections: 1 = Connected 0 = Not connected	
	1	Not used	
	2	Data Valid Invalid is set during the start-up phase or if the application is not able to report errors via IOPS 1 = Valid 0 = Invalid	
	3	Not used	
	4	Process State This has only an informational character and the actual data validity is reported via IOPS. 1 = Run 0 = Stop	
	5	Problem Indicator Details on the diagnostic data of the alarm CR are provided when a problem is detected. 1 = Regular operation 0 = Problem detected	
	6	Not used	
	7	Not used	

Table 21: Input CR (Edit)

Page 44 of 134 HI 801 523 E Rev. 11.04.00

3.7.11.2 Output CR (Properties)

Several communication relations (CRs) can be established within an application relation.

The output CR is used by the PROFINET IO-Controller to transmit variables to the PROFINET IO-Device.

The **Properties** function of the context menu for the output CR opens the **Properties** dialog box, which contains the following parameters:

Element	Description	
Name	Any unique name for an output CR.	
	The default output CR cannot be changed.	
Туре	2 (not changeable)	
Send Clock Factor	The send clock factor defines the send clock for the	
	cyclic data transfer of an IO CR.	
	Send Clock = Send Clock Factor x 31.25 µs	
	Range of values: 1128	
	Default value: 32	
Reduction Factor	For setting the rate of transmission.	
	The reduction factor allows the actual cycle time	
	needed for sending the data of an IO CR to be reduced. The actual data cycle time is calculated as	
	follows:	
	Send Cycle = Reduction Factor x Send Clock	
	Range of values: 116384	
	Default value: 32	
Watchdog Factor	From the perspective of an IO CR consumer, the	
	watchdog factor is used to calculate the maximum	
	time allowed between the reception of 2 frames:	
	Watchdog Time = Watchdog Factor x Send Cycle	
	Range of values: 17680	
	Default value: 3	
VLAN ID	Each virtual LAN (VLAN) is assigned a unique	
	number to ensure separation. A device in the VLAN	
	with ID=1 can communicate with any other device in	
	the same VLAN, but not with a device in another	
	VLAN (e.g., ID=2, 3,).	
	For the range of values, also refer to IEC 61158-6:	
	0x000 No VLAN	
	0x001 Standard VLAN	
	0x0020xFFF See IEEE 802.1 Q	
	Default value: 0	

Table 22: Output CR (Properties)

HI 801 523 E Rev. 11.04.00 Page 45 of 134

3.8 PROFINET IO-Device

This chapter describes the characteristics of the PROFINET IO-Device and the menu functions and dialog boxes required to configure the PROFINET IO-Controller in SILworX.

3.8.1 System Requirements

Equipment and system requirements

Element	Description
Controller	HIMax with COM module.
	HIMatrix (Not applicable to HIMatrix F*02).
CPU module	The Ethernet interfaces on the processor module may not be used for PROFINET IO.
COM module	Ethernet 10/100BaseT
Activation	Software activation code is required for activation, refer to the communication manual (HI 801 101 E) for details.

Table 23: System Requirements and Equipment for the PROFINET IO-Controller

3.8.2 PROFINET IO-Device Properties

Element	Description	
Safety-related	PROFINET: No	
	PROFIsafe: Yes	
Transfer rate	100 Mbit/s full duplex	
Transport path	Ethernet interfaces on the COM module	
	The Ethernet interfaces in use can simultaneously be employed for other protocols.	
Conformance class	The PROFINET IO-Device meets the requirements for conformance class A.	
Real time class	RT Class 1	
Max. number of PROFINET IO-Devices	One PROFINET IO-Device can be configured for each COM module.	
Max. number of application relations (ARs) to the PROFINET IO-Controller	A PROFINET IO-Device can establish a maximum of 5 application relations (ARs) to a PROFINET IO-Controller.	
Max. number of communication relations (CRs for each AR)	Standard: 1 input, 1 output, 1 alarm	
Max. process data length of all configured PROFINET IO modules.	Output: max. 1440 bytes Input: max. 1440 bytes	
Data priorization	Possible at device level using the <i>Reduction Rate</i> setting.	
The following features apply to PROFIsafe		
Max. number of F-Devices on each COM module (HIMax and HIMatrix)	63	
Max. process data length of a CR	Output: max. 123 bytes user data + 5 bytes ¹⁾ Input: max. 123 bytes user data + 5 bytes ¹⁾	
Max. user data size		
HIMax:	1024 x 123 bytes = 125 952 bytes	
HIMatrix	512 x 123 bytes = 62 976 bytes	
1) 5 bytes management data (status/cor	ntrol bytes and CRC)	

Table 24: PROFINET IO-Controller Properties

Page 46 of 134 HI 801 523 E Rev. 11.04.00

3.9 PROFINET IO/PROFIsafe Example

The following chapter describes how to configure the PROFINET IO-Divice and the PROFIsafe device.

3.9.1 Configuring the PROFINET IO-Device in SILworX

To create a new PROFINET IO-Device

- 1. In the structure tree, open Configuration, Resource, Protocols.
- 2. Right-click **Protocols** and select **New**, **PROFINET IO-Device** from the context menu to add a new PROFINET IO-Device.
- 3. Right-click **PROFINET IO-Device** and select **Properties** from the context menu.
- 4. Enter the PROFINET IO-Device name in the Name field.
- 5. Select COM Module.

Figure 9: HIMax Structure Tree for the PROFINET IO-Device

To create the required PROFINET IO modules

- 1. In the structure tree, open Configuration, Resource, Protocols, PROFINET IO-Device.
- 2. Right-click PROFINET IO-Device and select New from the context menu.
- 3. For this example, select the following modules.

PROFINET IO/PROFIsafe module	Slot
In 1 Byte	1
Safe Out 1 Byte	2

To number the PROFINET IO-Device modules

- Right-click the first PROFINET IO-Device Module, and then select Properties from the context menu.
- 2. Enter 1 in the Slot field.

i

Repeat these steps for any additional PROFINET IO-Device modules and number the modules consecutively.

Number the modules as arranged in the actual PROFINET IO-Device.

The following step is only required for PROFIsafe modules!

4. Enter the PROFIsafe module address in the PROFIsafe F_Destination_Address field.

HI 801 523 E Rev. 11.04.00 Page 47 of 134

3.9.2 Configuring the PROFINET IO-Device Input Module

 $oldsymbol{i}$ The sum of the variables (in bytes), must be identical to the size of the module (in bytes).

To configure the input module [01] In 1 Byte

- 1. In the PROFINET IO-Device, select the input module [01] In 1 Byte.
- 2. Right-click [01] In 1 Byte and select Edit from the context menu.
- 3. In the **Edit** dialog box, select the **Process Variables** tab.
- 4. Drag the appropriate variable from the Object Panel onto the **Input Signals** area.
- 5. Right-click a free space in the **Input Signals** area to open the context menu.
- 6. Click **New Offsets** to generate the variable offsets.
- 7. If the Consumer/Provider status should not be controlled, select the **System Variables** tab located in the **Edit** dialog box and assign a global variable with the initial value TRUE to the output variable *Input Data Accepted by Device*.
- These system variables can be used to control the Consumer/Provider status. Refer to Chapter 3.2 for details.

3.9.3 Configuring the PROFIsafe Device Output Module

To configure the output module [02] Out 1 Byte

- 1. In the PROFINET IO-Device, select the output module [02] Safe Out 1 Byte.
- 2. Right-click [02] Safe Out 1 Byte and select Edit from the context menu.
- 3. In the Edit dialog box, select the Process Variables tab.
- 4. Drag the appropriate variable from the Object Panel onto the **Output Signals** area.
- 5. Right-click a free space in the Output Signals area to open the context menu.
- 6. Click **New Offsets** to generate the variable offsets.
- 7. If the Consumer/Provider status should not be controlled, select the **System Variables** tab located in the **Edit** dialog box and assign a global variable with the initial value TRUE to the output variables *Valid Output Variable* and *Input Data Accepted by Device*.
- $\dot{1}$ These system variables can be used to control the Consumer/Provider status. Refer to Chapter 3.2 for details.

3.9.4 Verifying the PROFINET IO-Device Configuration

To verify the PROFINET IO-Device configuration

- 1. In the structure tree, select Configuration, Resource, Protocols, PROFINET IO-Device.
- Right-click and select Verification from the context menu.
- 3. Thoroughly verify the messages displayed in the logbook and correct potential errors.
- Recompile the configuration of the PROFINET IO-Device together with the user program of the PROFINET IO-Device resource and transfer it to the controllers. The new configuration can only be used for communication with the PROFINET IO upon completion of this step.

Page 48 of 134 HI 801 523 E Rev. 11.04.00

3.10 Menu Functions for PROFINET IO-Device

3.10.1 The Properties Menu Function

The **Properties** function in the context menu for the PROFINET IO-Device is used to open the **Properties** dialog box.

Element	Description			
Туре	PROFINET IO-Device			
Name	Any unique name for a PROFINET IO-Device.			
Process Data Refresh Rate [ms]	Refresh rate in milliseconds at which the COM and CPU exchange protocol data. If the refresh rate is zero or lower than the cycle time for the controller, data is exchanged as fast as possible. Range of values: 4(2 ³¹ -1) Default value: 0			
Force Process Data Consistency	Activated: Transfer of all of the protocol data from the CPU to the COM within a CPU cycle. Deactivated: Transfers all of the protocol data from the CPU to the COM, distributed over multiple CPU cycles, each with 1100 bytes per data direction. This may also cause the cycle time of the controller to be reduced. Default value: Activated			
Module	Selection of the COM module within which the protocol is processed.			
Activate Max. µP Budget	Activated: Use the μP budget limit from the Max. μP Budget in [%] field.			
Marris D. Divide at	Deactivated: Do not use the µP budget limit for this protocol.			
Max. μP Budget in [%]	Maximum µP budget of the module that can be used for processing the protocols. Range of values: 1100% Default value: 30%			
RPC Port Server	Remote Procedure Call Port Range of values: 102465535 Default value: 49152 RPC port server and RPC port client must not be identical!			
RPC Port Client	Remote Procedure Call Port Range of values: 102465535 Default value: 49153 RPC port server and RPC port client must not be identical!			
AutoAwait- FParams- OnConnLoss	This parameter is only used for PROFIsafe modules. Whenever the connection to the F-Host is lost, the F-Parameters must be reloaded into the F-Device. This parameter can be activated to simplify the PROFIsafe commissioning. Afterwards, the F-Device automatically sets the required F-Parameters at restart or after a connection loss. After commissioning, it is essential that this parameter is deactivated to ensure a PROFIsafe-compliant behavior. Activated: The F-Device automatically enters the Waiting for F-Parameters state. Deactivated: The user must send the online command to allow the F-Device to enter the Wait for F-Parameters state.			

Table 25: General Properties for the PROFINET IO-Device

HI 801 523 E Rev. 11.04.00 Page 49 of 134

3.10.2 PROFINET IO Modules

The following PROFINET IO modules are available in the PROFINET IO-Device.

PROFINET IO module	Max. size for the input variables	Max. size of the output variables
In 1 Byte	1 byte	
In 2 Bytes	2 bytes	
In 4 Bytes	4 bytes	
In 8 Bytes	8 bytes	
In 16 Bytes	16 bytes	
In 32 Bytes	32 bytes	
In 64 Bytes	64 bytes	
In 128 Bytes	128 bytes	
In 256 Bytes	256 bytes	
In 512 Bytes	512 bytes	
In 1024 Bytes	1024 bytes	
In-Out 1 Byte	1 byte	1 byte
In-Out 2 Bytes	2 bytes	2 bytes
In-Out 4 Bytes	4 bytes	4 bytes
In-Out 8 Bytes	8 bytes	8 bytes
In-Out 16 Bytes	16 bytes	16 bytes
In-Out 32 Bytes	32 bytes	32 bytes
In-Out 64 Bytes	64 bytes	64 bytes
In-Out 128 Bytes	128 bytes	128 bytes
In-Out 256 Bytes	256 bytes	256 bytes
In-Out 512 Bytes	512 bytes	512 bytes
Out 1 Byte		1 byte
Out 2 Bytes		2 bytes
Out 4 Bytes		4 bytes
Out 8 Bytes		8 bytes
Out 16 Bytes		16 bytes
Out 32 Bytes		32 bytes
Out 64 Bytes		64 bytes
Out 128 Bytes		128 bytes
Out 256 Bytes		256 bytes
Out 512 Bytes		512 bytes
Out 1024 Bytes		1024 bytes

Table 26: PROFINET IO Modules

Page 50 of 134 HI 801 523 E Rev. 11.04.00

3.10.3 HIMA PROFIsafe Modules

The following PROFIsafe modules are available in the PROFINET IO-Device:

PROFIsafe module	Max. size for the input variables	Max. size of the output variables
Safe In 1 Byte	1 byte	
Safe In 2 Bytes	2 bytes	
Safe In 4 Bytes	4 bytes	
Safe In 8 Bytes	8 bytes	
Safe In 16 Bytes	16 bytes	
Safe In 32 Bytes	32 bytes	
Safe In 64 Bytes	64 bytes	
Safe In 123 Bytes	123 bytes	
Safe In-Out 1 Byte	1 byte	1 byte
Safe In-Out 2 Bytes	2 bytes	2 bytes
Safe In-Out 4 Bytes	4 bytes	4 bytes
Safe In-Out 8 Bytes	8 bytes	8 bytes
Safe In-Out 16 Bytes	16 bytes	16 bytes
Safe In-Out 32 Bytes	32 bytes	32 bytes
Safe In-Out 64 Bytes	64 bytes	64 bytes
Safe In-Out 123 Bytes	123 bytes	123 bytes
Safe Out 1 Byte		1 byte
Safe Out 2 Bytes		2 bytes
Safe Out 4 Bytes		4 bytes
Safe Out 8 Bytes		8 bytes
Safe Out 16 Bytes		16 bytes
Safe Out 32 Bytes		32 bytes
Safe Out 64 Bytes	_	64 bytes
Safe Out 123 Bytes		123 bytes

Table 27: PROFIsafe Modules

To create a PROFINET or PROFIsafe module

- 1. In the structure tree, open Configuration, Resource, Protocols, PROFINET IO-Device.
- 2. Right-click PROFINET IO-Device and select Insert Modules from the context menu.
- 3. Select an appropriate module to transport the required process data.
- 4. Right-click the module selected, and then click Edit.
 - Enter the input and/or output variables in the **Process Variables** tab.
 - If the Consumer/Provider status should not be controlled, select the the System
 Variables tab and assign a global variable with the initial value TRUE to the output variables Valid Output Variable and Input Data Accepted by Controller.
- $\begin{tabular}{ll} \hline 1 & These system variables can be used to control the Consumer/Provider status. Refer to Chapter 3.2 for details. \\ \hline \end{tabular}$

The following setting is only required for PROFIsafe modules.

- Enter the *slot* and the *F_Destination_Address* in the **Properties** tab.

HI 801 523 E Rev. 11.04.00 Page 51 of 134

3.10.4 PROFINET IO and PROFIsafe Module

The module parameters are used to define the communication relations of the module and its behavior after connection is interrupted.

Properties

The **Properties** function of the context menu for the modules opens the **Properties** dialog box. The dialog box contains the following tabs:

Element	Description		
Name	Name of the device module.		
Slot	032767		
Module ID	Unique number		
Subslot	Number of sub-slots		
Process data behavior Process data value after the connection is Retain last valid process data Apply initial data			
Length of IO input data	1123		
Length of IO output data	1123		
PROFIsafe F_Destination_Address	The F-destination address of the F-Device must be unique within the PROFIsafe network! Range of values: 165534		

Table 28: General Properties for the Device Module

Edit

The Edit function of the context menu for the submodule is used to open the Edit dialog box.

The **System Variables** tab provides the following system variables, which allow the submodule state to be evaluated in the user program.

 $\overset{\raisebox{.5ex}{\text{.}}}{1}$ These system variables can be used to control the Consumer/Provider status. Refer to Chapter 3.2 for details.

Element	Description	
Valid Output Data	TRUE	Valid output data GOOD
	FALSE	Invalid output data BAD
Output Data Accepted by Device	TRUE	valid output data GOOD
	FALSE	Invalid output data BAD
Valid Input Data	TRUE	Valid input data GOOD
	FALSE	Invalid input data BAD
Input Data Accepted by Device	TRUE	Valid input data GOOD
	FALSE	Invalid input data BAD

Page 52 of 134 HI 801 523 E Rev. 11.04.00

The following variables are only	used for F	PROFIsafe modules:		
PROFIsafe Control	The PROFIsafe control byte sent by the controller read within the device, see also Chapter 3.3.2.			
	Bit 0	iPar_EN_DC An enable from the controller releases the		
		device to load new iParameters into the		
		device.		
	D:4.4			
	Bit 1	OA_Req_DC		
		Operator acknowledgment from the host		
		control byte.		
	Bit 2	Reset_Comm		
		is the Reset_Comm value read back from the host control byte.		
	Bit 3	Activate_FV_DC		
		FALSE: Process values are exchanged between F-Host and F-Device.		
		TRUE: Failsafe values of "0" are exchanged between F-Host and F-Device.		
	Bit 4			
	DIL 4	Toggle_d Toggle bit of the F-Device		
	D:+ E			
	Bit 5	Cons_nr_R		
		The consecutive number is adopted whenever there is a change of the Toggle_d		
		bit between 2 consecutive control bytes,		
		i.e., this does not depend on the occurrence		
		of a fault.		
	Bit 6	F_ParamValid		
	2.0	TRUE: F parameters were set		
		FALSE: Otherwise		
		F_Param_ConfiguredTwice		
	Dit 1	TRUE: The F-Device was configured more		
		than once with different F-Parameters.		
		FALSE: Otherwise		
PROFIsafe F_iPar_CRC	Device pa	ers are independent or technology-specific F- rameters. The iPar_CRC results from the ion of the F-Device.		
		e users are responsible for setting the valid		
	0	r_CRC after configuring the iParameters and		
	mo	ving to hot operation.		
PROFIsafe F_SIL	0	SIL1		
I NOI ISAIE I _SIL	_			
	1	SIL2		
	2	SIL3		
	3	No SIL		
PROFIsafe RoundTrip Time last	PROFIsafe must determine the RoundTripTimeLast of an F-Host. For an F-Host, this is the time between a			
	data mess	sage transmission (with consecutive number		
	N) and the reception of the corresponding			
		dgment (with consecutive number N),		
	measured	in milliseconds.		

HI 801 523 E Rev. 11.04.00 Page 53 of 134

PROFIsafe Status	With each message, PROFIsafe sends the PROFIsafe status byte that can be set in the device user program from the device to the controller. See also Chapter 3.3.2.		
	Bit 0 iPar_OK_DS New iParameters received		
	Bit 1 Device_Fault_DS TRUE: Device fault FALSE: No device fault It is only taken into account from the 21 Await Message PROFIsafe state. Bit 2 Reserved Bit 3 Reserved		
	Bit 4	FV_activated_DS Failsafe value activated	
	Bit 5	Reserved	
	Bit 6		
	Bit 7 Reset_Comm		
		Protocol stack is reset to its initial state.	

Table 29: Edit Dialog Box for Submodule

The **Process Variables** tab is used to enter the input variables.

Page 54 of 134 HI 801 523 E Rev. 11.04.00

4 PROFIBUS DP

PROFIBUS DP is an international, open fieldbus standard that is used when a fast response time is required for small amounts of data.

The HIMA PROFIBUS DP master and the HIMA PROFIBUS DP slave meet the criteria specified in the European EN 50170 standard [7] and the internationally binding standard IEC 61158 for PROFIBUS DP.

The HIMA PROFIBUS DP master can exchange data with the PROFIBUS DP slaves cyclically and acyclically.

Different function blocks are available in SILworX to acyclically exchange data. These function blocks are used to tailor the HIMA PROFIBUS DP master and the PROFIBUS DP slaves to best meet the project requirements.

A redundant PROFIBUS DP connection can only be implemented by configuring a second PROFIBUS DP master/slave and adjusting it in the user program.

- PROFIBUS DP master, see also Chapter 4.1.
- PROFIBUS DP slave, see also Chapter 4.13.

4.1 HIMA PROFIBUS DP Master

This section describes the characteristics of the HIMA PROFIBUS DP master and the menu functions and dialog boxes in SILworX required for configuring the HIMA PROFIBUS DP master.

Equipment and System Requirements

Element	Description		
HIMA controller	HIMax with COM module. HIMatrix as of CPU OS V7 and COM OS V12 HIQuad X: Not applicable		
COM module	The serial fieldbus interface (FB1 or FB2) used on the COM module must be equipped with an optional HIMA PROFIBUS DP master submodule.		
Activation	Activation via fieldbus submodule, refer to the communication manual (HI 801 101 E) fo details.		

Table 30: Equipment and System Requirements

for the HIMax system, HIMA recommends operating the PROFIBUS DP using the FB1 fieldbus interface (maximum transfer rate 12 Mbit). The maximum transfer rate permitted for the FB2 fieldbus interface is 1.5 MBit.

HI 801 523 E Rev. 11.04.00 Page 55 of 134

PROFIBUS DP Master Properties:

Element	Description		
Type of HIMA PROFIBUS DP master	DP-V1 Class 1 Master with additional DP-V2 functions		
Transfer rate	9.6 kbit/s12 Mbit/s		
Bus address	0125		
Max. number of PROFIBUS DP master	Two PROFIBUS DP masters can be configured for each HIMatrix COM module or HIMax F30, F35, F60. Only one PROFIBUS DP master can be configured for each HIMatrix F20.		
Max. number of PROFIBUS DP slaves	Up to 122 slaves can be configured for each resource (in all master protocol instances). However, a maximum of 31 slaves can be connected to a bus segment without repeaters.		
Maximum process data length to a slave	DP output: max. 244 bytes DP input: max. 244 bytes		

Table 31: PROFIBUS DP Master Properties

According to the standard, a total of three repeaters may be used so that a maximum of 122 bus stations are possible per serial interface on a master.

4.1.1 Creating a HIMA PROFIBUS DP Master

To create a new HIMA PROFIBUS DP Master

- 1. In the structure tree, open Configuration, Resource, Protocols.
- 2. Select **New**, **PROFIBUS DP Master** from the context menu of Protocols to add a new PROFIBUS DP master.
- 3. Select Properties, General from the context menu of the PROFIBUS DP master.
- 4. Select Module and Interfaces.

Page 56 of 134 HI 801 523 E Rev. 11.04.00

4.2 PROFIBUS DP: Example

In this example, a HIMA PROFIBUS DP master exchanges variables with a HIMA PROFIBUS DP slave.

The example shows how to create and configure a HIMA PROFIBUS DP master and a PROFIBUS DP slave.

Figure 10: Communication via PROFINET IO

Fieldbus interface 1 on the COM modules of both HIMax controllers must be equipped with the corresponding PROFIBUS DP submodule, refer to the communication manual (HI 801 101 E).

For this example, the following global variables must be created in SILworX:

Global variable	Туре
PB_Slave_Master1	UINT
PB_Slave_Master2	DWORD
PB_Slave_Master3	DWORD
PB_Slave_Master4	BYTE
PB_Master_Slave1	UINT
PB_Master_Slave2	BYTE

4.2.1 Configuring the PROFIBUS DP Slave

Configuration of the PROFIBUS DP slave.

To create a new HIMA PROFIBUS DP slave

- 1. In the structure tree, open Configuration, Resource, Protocols.
- Select New, PROFIBUS DP Slave from the context menu of protocols to add a new PROFIBUS DP slave.
- 3. Select Edit from the context menu of the PROFIBUS DP slave.
- 4. In the **Properties** tab, select **COM Module** and **Interface** (e.g., FB1).

HI 801 523 E Rev. 11.04.00 Page 57 of 134

To assign variables in the HIMA PROFIBUS DP slave

- 1. Select **Edit** from the context menu of the PROFIBUS DP slave.
- 2. In the **Edit** dialog box, select the Process Variables tab.

1 The start address of the input and output variables in the HIMA PROFIBUS DP slave always begin with 0. If the PROFIBUS DP master (from another manufacturer) expects a higher start address, dummy variables must be added to the reference variables.

Outputs in the HIMA PROFIBUS DP Slave

Name	Туре	Offset	Global variable
PB_Slave_Master1	UINT	0	PB_Slave_Master1
PB_Slave_Master2	DWORD	2	PB_Slave_Master2
PB_Slave_Master3	DWORD	6	PB_Slave_Master3
PB_Slave_Master4	BYTE	10	PB_Slave_Master4

Table 32: Outputs for the HIMA PROFIBUS DP Slave

- 1. Drag the global variables to be sent from the Object Panel onto the Output Variables area.
- In this example, the output variables of the HIMA PROFIBUS DP slave are composed of 4 variables with a total of 11 bytes. The start address of the output variable with the lowest offset is 0.
 - 2. Right-click a free space in the **Output Variables** area to open the context menu.
 - 3. Click **New Offsets** to generate the variable offsets.

Inputs in the HIMA PROFIBUS DP Slave

Name	Туре	Offset	Global variable
PB_Master_Slave1	UINT	0	PB_Master_Slave1
PB_Master_Slave2	BYTE	2	PB_Master_Slave2

Table 33: Inputs in the HIMA PROFIBUS DP Slave

- 1. Drag the global variables to be received from the Object Panel onto the **Input Variables** area.
- In this example, the input variables of the HIMA PROFIBUS DP slave are composed of **2** variables with a total of **3 bytes**. The start address of the input variable with the lowest offset is **0**.
 - Right-click a free space in the Input Variables area to open the context menu.
 - 3. Click **New Offsets** to generate the variable offsets.

To verify the PROFIBUS DP slave configuration

- 1. In the structure tree, select Configuration, Resource, Protocols, PROFIBUS DP Slave.
- 2. Right-click and select Verification from the context menu.
- 3. Thoroughly verify the messages displayed in the logbook and correct potential errors.

Page 58 of 134 HI 801 523 E Rev. 11.04.00

The configuration of the PROFIBUS DP slave must be recompiled together with the user program of the PROFIBUS DP slave resource and loaded to the controllers. The new configuration can only be used for communication with the PROFIBUS DP upon completion of this step.

4.2.2 Configuring the PROFIBUS DP Master

1

To create a new HIMA PROFIBUS DP master

- 1. In the structure tree, open Configuration, Resource, Protocols.
- Select New, PROFIBUS DP Master from the context menu of protocols to add a new PROFIBUS DP master.
- 3. Select **Properties**, **General** from the context menu of the PROFIBUS DP master.
- 4. In the **General** tab, select **COM Module** and **Interfaces** (e.g., FB1).
- $\begin{tabular}{ll} \hline 1 & Perform these steps to configure the HIMax PROFIBUS DP slave from within the HIMax PROFIBUS DP master. \\ \hline \end{tabular}$

To create a HIMax PROFIBUS DP slave in the PROFIBUS DP master

1. Select New, PROFIBUS DP Slave from the context menu of the PROFIBUS DP master.

To read the GSD file for the new PROFIBUS DP slave

- 1. In the structure tree, open Configuration, Resource, Protocols, PROFIBUS DP Master, PROFIBUS Slave.
- Select Read GSD File from the context menu of the PROFIBUS DP master and choose the GSD file for the PROFIBUS slave (e.g., hax100ea.gsd).
- The GSD files for HIMax controllers are available on the HIMA website at www.hima.com.

HI 801 523 E Rev. 11.04.00 Page 59 of 134

4.2.2.1 Creating the HIMax PROFIBUS DP Modules

The number of bytes to be actually transferred must be configured in the PROFIBUS DP master. To do this, add *Modules* until the physical configuration of the slave is achieved.

The number of modules used to achieve the necessary number of bytes is not important as long as the maximum of 32 modules is not exceeded.

To avoid unnecessarily complicating the PROFIBUS DP master configuration, HIMA recommends keeping the number of selected modules to a minimum.

To create the required PROFIBUS DP Modules

- 1. In the structure tree, open Configuration, Resource, Protocols, PROFIBUS DP Master, PROFIBUS Slave.
- 2. On the menu bar, select PROFIBUS DP Master, Add Modules.
- For this example, select the following modules to receive 11 bytes from the PROFIBUS DP slave and to send 3 bytes.

To number the PROFIBUS DP modules

- Right-click the first PROFINET DP Module, and then select Properties from the context menu.
- 2. Enter 0 in the Slot field.
- 3. Repeat these steps for every further **PROFIBUS DP Module** and number the modules consecutively.

```
Profibus DP Master_1

(001) HIMax Profibus Slave_1

(000) DP-Input/ELOP-Export: 2 Bytes Profibus Modul_1

(001) DP-Input/ELOP-Export: 8 Bytes Profibus Modul_2

(002) DP-Input/ELOP-Export: 1 Byte Profibus Modul_3

(003) DP-Output/ELOP-Import: 2 Bytes Profibus Modul_4

(004) DP-Output/ELOP-Import: 1 Byte Profibus Modul_5
```

Figure 11: HIMax PROFIBUS DP Slave with Modules

 $\overset{\bullet}{1} \qquad \overset{\textbf{Number}}{\textbf{Number}} \text{ the HIMax PROFIBUS DP modules without gaps and in ascending order, starting with } \\ \overset{\bullet}{\textbf{0}}.$

The order in which the PROFIBUS DP modules are arranged is not important for operation. However, HIMA recommends organizing the DP input and output modules in an orderly manner to maintain a clear overview.

Page 60 of 134 HI 801 523 E Rev. 11.04.00

4.2.2.2 Configuring the Input and Output Modules

i

The sum of the variables (in bytes), must be identical to the size of the module (in bytes).

To configure the input module [000] DP Input/ELOP Export: 2 bytes

- 1. In the PROFIBUS DP slave, select the input module [000] DP Input/ELOP Export: 2 Bytes.
- 2. Right-click the input module and select **Edit** from the context menu.
- 3. In the Edit dialog box, select the Process Variables tab.
- 4. Drag the appropriate variable from the Object Panel onto the **Input Signals** area of the input module **[000] DP-Input/ELOP-Export: 2 Bytes**.

Name	Туре	Offset	Global Variable
PB_Slave_Master1	UINT	0	PB_Slave_Master1

Table 34: Variables of the Input Module [000] DP Input/ELOP Export: 2 Bytes

- 5. Right-click a free space in the **Input Signals** area to open the context menu.
- 6. Click **New Offsets** to generate the variable offsets.

To configure the input module [001] DP Input/ELOP Export: 8 bytes

- 1. In the PROFIBUS DP slave, select the input module [001] DP Input/ELOP Export: 8 Bytes.
- 2. Right-click the input module and select Edit from the context menu.
- 3. In the Edit dialog box, select the Process Variables tab.
- 4. Drag the appropriate variable from the Object Panel onto the **Input Signals** area of the input module **[001] DP-Input/ELOP-Export: 8 Bytes**.

Name	Туре	Offset	Global variable
PB_Slave_Master2	DWORD	0	PB_Slave_Master2
PB_Slave_Master3	DWORD	4	PB_Slave_Master3

Table 35: Variables of the Input Module [001] DP Input/ELOP Export: 8 Bytes

- 5. Right-click a free space in the **Input Signals** area to open the context menu.
- 6. Click **New Offsets** to generate the variable offsets.

To configure the input module [002] DP Input/ELOP Export: 1 byte

- 1. In the PROFIBUS DP slave, select the input module [002] DP Input/ELOP Export: 1 Byte.
- 2. Right-click the input module and select **Edit** from the context menu.
- 3. In the Edit dialog box, select the Process Variables tab.
- 4. Drag the appropriate variable from the Object Panel onto the **Input Signals** area of the input module **[002] DP-Input/ELOP-Export: 1 Byte**.

Name	Туре	Offset	Global variable
PB_Slave_Master4	BYTE	0	PB_Slave_Master4

Table 36: Variables of the Input Module [002] DP Input/ELOP Export: 1 Byte

- 5. Right-click a free space in the **Input Signals** area to open the context menu.
- 6. Click **New Offsets** to generate the variable offsets.

HI 801 523 E Rev. 11.04.00 Page 61 of 134

To configure the output module [003] DP Output/ELOP Import: 2 Bytes

- 1. In the PROFIBUS DP slave, select the output module [003] DP Output/ELOP Import: 2 Bytes.
- 2. Right-click the output module, then click Edit.
- 3. In the Edit dialog box, select the Process Variables tab.
- Drag the appropriate variable from the Object Panel onto the Output Signals area of the output module [003] DP-Output/ELOP-Import: 2 Bytes.

Name	Туре	Offset	Global variable
PB_Master_Slave1	UINT	0	PB_Master_Slave1

Table 37: Variables of the Output Module [003] DP Output/ELOP Import: 2 Bytes

- 5. Right-click a free space in the **Output Signals** area to open the context menu.
- 6. Click **New Offsets** to generate the variable offsets.

To configure the output module [004] DP Output/ELOP Import: 1 Byte

- 1. In the PROFIBUS DP slave, select the output module [004] DP Output/ELOP Import: 1 Byte.
- 2. Right-click the output module, then click Edit.
- 3. In the Edit dialog box, select the Process Variables tab.
- Drag the appropriate variable from the Object Panel onto the Output Signals area of the output module [004] DP-Output/ELOP-Import: 1 Byte.

Name	Туре	Offset	Global variable
PB_Master_Slave2	BYTE	0	PB_Master_Slave2

Table 38: Variables of the Output Module [004] DP Output/ELOP Import: 1 Byte

- 5. Right-click a free space in the **Output Signals** area to open the context menu.
- 6. Click **New Offsets** to generate the variable offsets.

4.2.2.3 Creating the User Data within the PROFIBUS DP Master

Creating the User Data within the PROFIBUS DP Master

- 1. In the structure tree, open Configuration, Resource, Protocols, PROFIBUS DP Master, PROFIBUS DP Slave.
- 2. Right-click the first **PROFINET DP module**, and then select **Properties** from the context menu
- 3. Select the **Data** tab and click the **Edit** button next to the user data.

The group's *start address* and *number of variables* are defined in the 32 bytes long user data field, see also Chapter 4.8.

- 4. For this example, create the following user data:
 - 4, to ensure that **4 variables** are received by the PROFIBUS DP master.
 - 2, to ensure that 2 variables will be sent by the PROFIBUS DP master.

The start addresses of the input and output blocks begin with **0**.

Page 62 of 134 HI 801 523 E Rev. 11.04.00

Figure 12: User Data Field

To verify the PROFIBUS DP slave configuration

- 1. In the structure tree, select Configuration, Resource, Protocols, PROFIBUS DP Slave.
- 2. Right-click and select Verification from the context menu.
- 3. Thoroughly verify the messages displayed in the logbook and correct potential errors.

Figure 13: Verification Dialog Box

The configuration of the PROFIBUS DP master must be recompiled together with the user program of the PROFIBUS DP master resource and transferred to the controller. The new configurations can only be used for communication with the PROFIBUS DP upon completion of this step.

HI 801 523 E Rev. 11.04.00 Page 63 of 134

4.2.2.4 Optimizing the PROFIBUS DP parameters

Using the default values for the PROFIBUS parameters, smooth PROFIBUS communication is generally not a problem. However, the settings should be further optimized to achieve faster data exchange rates and improve fault detection.

To determine the actual target rotation time TTR [ms]

- 1. Open the Control Panel associated with the HIMax PROFIBUS DP master.
- 2. In the structure tree associated with the Control Panel, click **PROFIBUS DP Master** and read the actual **Target Rotation Time TTR [ms].** Note down this value.

To determine the parameters required for the PROFIBUS DP slave

- 1. In the structure tree, open Configuration, Resource, Protocols, PROFIBUS DP Master, PROFIBUS DP Slave.
- Right-click HIMax PROFIBUS Slave, and then click Properties.
- Select the Features tab and read Min. Slave Interval MSI [ms] for this PROFIBUS DP slave. Note down this value.
- 4. Select the **Transfer Rate** tab and read **Max. Tsdr** for the transfer rate used. Note down this value.

To enter the parameters previously determined

- 1. Right-click PROFIBUS Master and select Properties from the context menu.
- 2. Select the Timings tab.

Figure 14: PROFIBUS DP Master Properties

- 3. Convert the Max. Tsdr that was previously noted down in bit Time.
- 4. Convert the **Target Rotation Time TTR [ms]** that was previously noted down in **bit Time**, add 1/3 safety margin and enter the resulting value in the **Target Rotation Time TTR [ms]** field.
- 5. Enter the Min. Slave Interval MSI [ms] that was previously noted down.
- If various slaves are configured, the largest values of the parameters MaxTsdr [bit time] and Min. Slave Interval [ms] must be used.
 - 6. The data control time [ms] must be set to \geq 6*Ttr [ms].

Page 64 of 134 HI 801 523 E Rev. 11.04.00

To enter the watchdog time for the PROFIBUS DP slave

1. In the structure tree, open Configuration, Resource, Protocols, PROFIBUS DP Master, PROFIBUS DP Slave.

2. Right-click HIMax PROFIBUS Slave, and then click Properties.

Figure 15: PROFIBUS DP Slave Properties

- 3. Select the Parameter tab and mark the Watchdog Active checkbox.
- 4. Enter the watchdog time [ms] ≥ 6*Ttr [ms] in the Watchdog Time [ms] field.
- The configurations of the PROFIBUS DP master and slave must be recompiled together with the user program of the PROFIBUS DP master and slave resources and transferred to the controllers. The new configurations can only be used for communication with the PROFIBUS DP upon completion of this step.

HI 801 523 E Rev. 11.04.00 Page 65 of 134

4.3 Menu Functions of the PROFIBUS DP Master

4.3.1 Edit

The **Edit** context menu function for the PROFIBUS DP master is used to open the **Edit** dialog box.

The **System Variables** tab provides the following system variables, which allow the PROFIBUS DP master state to be evaluated in the user program.

Element	Description		
Number of Errors	Number of errors since statistics reset.		
Baud Rate	Baud rate (bit/s) used for the bus.		
Bus Error	If a bus error occurs, an error code is set in the <i>Bus Error</i> system variable. An error code retains its value until the bus error has been removed.		
	Code Description		
	0 OK, no bus error.		
	1 Address error The master address is already available on the bus		
	2 Bus malfunction Malfunction detected on the bus, (e.g., bus not properly terminated, multiple subscribers are sending data simultaneously).		
	3 Protocol error An incorrectly coded packet was received.		
	4 Hardware fault The hardware reported a fault, e.g., too short time periods.		
	5 Unknown error The master changed the state for an unknown reason.		
	6 Controller reset The controller chip is reset if a severe bus error occurs.		
	To evaluate the <i>Bus Error</i> status variable from within the user program, it must be connected to a variable.		
Average Cycle Time	Measured average bus cycle time in milliseconds.		
Last Cycle Time	Measured bus cycle time in milliseconds.		
Master Status	Indicates the current protocol state. 0: OFFLINE 1: STOP 2: CLEAR 3: OPERATE Connect the status variable <i>Master State</i> to a variable to evaluate it in the user program		
Maximum Cycle Time	it in the user program. Measured maximum bus evelo time in milliseconds		
Min. Slave Interval	Measured maximum bus cycle time in milliseconds. Minimum slave interval measured for one of the slaves assigned to this master.		
Minimum Cycle Time	Measured minimum bus cycle time in milliseconds.		
Target Rotation Time	Target token rotation time		

Table 39: System Variables in the PROFIBUS DP Master

Page 66 of 134 HI 801 523 E Rev. 11.04.00

4.3.2 The Properties Menu Function

The **Properties** function of the context menu for the PROFIBUS DP master is used to open the **Properties** dialog box.

The dialog box contains the following tabs:

4.3.2.1 The General Tab

Element	Description	
Туре	PROFIBUS DP master.	
Name	Any unique name for a PROFIBUS DP master.	
Module	Selection of the COM module within which the protocol is processed.	
Activate Max. μP Budget	Activated: Use the μP budget limit from the <i>Max.</i> μP Budget in [%] field. Deactivated: Do not use the μP budget limit for this protocol.	
Max. μP Budget in [%]	Maximum µP budget of the module that can be used for processing the protocols. Range of values: 1100% Default value: 30%	
Behavior on CPU/COM connection loss	If the connection of the processor module to the communication module is lost, the input variables are either initialized or are still used unchanged in the process module, depending on this parameter. For instance, if the communication module is removed when communication is running. If a project created with a SILworX prior to V3 should be converted, this value must be set to Retain Last Value to ensure that the CRC does not change. For HIMatrix controllers with CPU OS prior to V8, this value must always be set to Retain Last Value.	
	Apply Initial Data Input variables are reset to their initial values.	
	Retain Last Value The input variables retain the last value.	
Address	Master station address.	
	Only one master station address may be available on the bus.	
	Range of values: 0125 Default value: 0	
Interface	COM interface that should be used for the master. Range of values: FB1, FB2	

HI 801 523 E Rev. 11.04.00 Page 67 of 134

Element	Description				
Baud rate	Baud rate (bit/s) Possible values:	used for the bus	i.		
	Value	Baud rate	FB1	FB2	
	9600	9.6 kbit/s	X	X	
	19200	19.2 kbit/s	Х	Х	
	45450	45.45 kbit/s	Х	Х	
	93750	93.75 kbit/s	Х	Х	
	187500	187.5 kbit/s	Х	Х	
	500000	500 kbit/s	Χ	X	
	1500000	1.5 Mbit/s	Х	Х	
	3000000	3 Mbit/s	Х	-	
	6000000	6 Mbit/s	Х	-	
	12000000	12 Mbit/s	Х	-	
	Default value: 9.	6 kbit/s			

Table 40: General Properties for the PROFIBUS DP Master

Page 68 of 134 HI 801 523 E Rev. 11.04.00

4.3.2.2 The Timings Tab

Element	Description
MinTsdr	Min. Station Delay Time
[bit time]	Minimum time period that a PROFIBUS DP slave must wait before it
[bit time]	may respond.
	Range of values: 111023
	Default value: 11
MariTarla	
MaxTsdr	Max. Station Delay Time
[bit time]	Maximum time period that a PROFIBUS DP slave may need to
	respond. May Tadr > Tadr (of the connected clave with the highest Tadr)
	Max Tsdr ≥ Tsdr (of the connected slave with the highest Tsdr). The MaxTsdr values of the slaves are read from the GSD files and
	are specified in the Baud Rates tab in the slave's Properties dialog
	box.
	Range of values: 3765535
	Default value: 100
Tsl	Slot Time
_	
[bit time]	Maximum time period that the master waits for a slave to respond. Tsl > MaxTsdr + 2*Tset +Tqui + 13
	Range of values: 3716383
	Default value: 200
T:	
Tqui	Quiet Time for Modulator
[bit time]	Time that a station may need to switch from sending to receiving.
	Range of values: 0493
	Default value: 0
Tset	Setup Time
[bit time]	Response time to an event.
	Range of values: 1494
	Default value: 1
Ttr	Configured token rotation time
[bit time]	Maximum time available for a token rotation.
	A low estimate of the Ttr is obtained through a calculation. Refer to
	Chapter 4.4.4 for details.
	Range of values: 25616777215
	Default value: 9999
TTR [ms]	Actual token rotation time in ms
Min. Slave Interval	Minimum time between 2 cyclical requests of a slave. The master
[ms]	observes the Min. Slave Interval and does not fall below it.
	However, the PROFIBUS DP cycle can be extended if Isochronous
	Mode is inactive and the portion of acyclic telegrams increases
	within a cycle. The value for <i>Min. Slave Interval</i> of the slave is read from the GSD file and is located on the Features tab of the slave in
	the Properties dialog box.
	In Isochronous Mode, the value for <i>Min. Slave Interval</i> defines the
	time period for an isochronous cycle.
	Isochronous Mode is activated if Isochronous Sync Mode or
	Isochronous Freeze Mode is active.
	See also Refresh Rate between CPU and COM (CPU/COM tab).
	Range of values: 06553.5 (step size: 0.1 ms)
	Default value: 1.0
	20.00.1.0

HI 801 523 E Rev. 11.04.00 Page 69 of 134

Element	Description
User Data Monitoring Time [ms]	Time span within which the master must report its current state on the bus Standard value: User data monitoring time = WDT of the slave Range of values: 065,5350 (step size: 10 ms) Default value: 2000

Table 41: Timings Tab in the Properties Dialog Box for the PROFIBUS DP Master

4.3.2.3 The CPU/COM Tab

The default values for the parameters provide the fastest possible exchange of PROFIBUS DP data between the COM module (COM) and the processor module (CPU) within the HIMax controller. These parameters should only be changed if it is necessary to reduce the COM and CPU loads for an application, and the process allows this change.

Only experienced programmers should modify the parameters. Increasing the COM and CPU refresh rate means that the effective refresh rate of the PROFIBUS DP data is also increased. The system time requirements must be verified.

Take also the parameter *Min. Slave Interval [ms]* into account which defines the refresh rate of the PROFIBUS DP data from/to the PROFIBUS DP slave. This can be increased according to the CPU/COM refresh rate.

Element	Description
Process Data Refresh Rate [ms]	Refresh rate in milliseconds at which the COM and CPU exchange protocol data. If the <i>Refresh Rate</i> is zero or less than the cycle time for the controller, data is exchanged as fast as possible. Range of values: 0(2 ³¹ –1) Default value: 0
Force Process Data Consistency	Activated: Transfer of all of the protocol data from the CPU to the COM within a CPU cycle. Deactivated:
	Transfers all of the protocol data from the CPU to the COM, distributed over multiple CPU cycles, each with 1100 bytes per data direction. This may also cause the cycle time of the controller to be reduced.
	Default value: Activated

Table 42: CPU/COM Tab in the Properties Dialog Box for the PROFIBUS DP Master

Page 70 of 134 HI 801 523 E Rev. 11.04.00

4.3.2.4 The Others Tab

Element	Description
Max. Number of Resends	Maximum number of resends attempted by a master if a slave does not respond. Range of values: 07 Default value: 1
Highest Active Address	Highest Station Address (HSA) Highest station address to be expected for one master. Masters having a station address beyond the HSA are not included into the token ring. Range of values: 0125 Default value: 125
Isochronous Sync Mode	Isochronous Sync Mode allows both a clock-controlled synchronization of the master and the slaves and a simultaneous activation of the physical outputs of multiple slaves. If Isochronous Sync Mode is active, the master sends the Sync control command as a broadcast telegram to all slaves. As soon as the slaves supporting Isochronous Sync Mode receive the "Sync" control command, they synchronously switch the data from the user program to the physical outputs. The values of the physical outputs remain frozen up to the next Sync control command. The cycle time is determined by the Min. Slave Interval. Condition: Ttr < Min. Slave Interval
	Default value: Deactivated
Isochronous Freeze Mode	Isochronous Freeze Mode allows the input data from multiple slaves to be simultaneously accepted. If Isochronous Freeze Mode is active, the master sends the Freeze control command as a broadcast telegram to all slaves. As soon as the slaves supporting Isochronous Freeze Mode receive the Freeze control command, the physical inputs' variables are frozen to the current value. The master can thus read the values. The input data are only updated when the next Freeze control command is sent. The cycle time is determined by the Min. Slave Interval. Condition: Ttr < Min. Slave Interval Default value: Deactivated
Auto Clear on Error	If Auto Clear on Error is set in a slave that fails, the master enters the CLEAR state. Default value: Deactivated
Time Master	The master is also timing master and periodically sends the system time via the bus. Default value: Deactivated
Clock Sync Interval [ms]	Clock synchronization interval. Time interval within which the timing master sends the system time over the bus. Range of values: 065,5350 (step size: 10 ms) Default value: 0 (no timing master)

Table 43: Other Properties for the PROFIBUS DP Master

HI 801 523 E Rev. 11.04.00 Page 71 of 134

4.4 PROFIBUS DP Bus Access Method

The bus access method provides a defined time window to every station within which the station can perform its communication tasks.

4.4.1 Master/Slave Protocol

The bus assignment between a PROFIBUS DP master and a PROFIBUS DP slave is ensured by the master/slave method.

An active PROFIBUS DP master communicates with passive PROFIBUS DP slaves.

The PROFIBUS DP master with the token is authorized to send and may communicate with the PROFIBUS DP slaves assigned to it. The master assigns the bus to a slave for a certain time and the slave must respond within this time period.

4.4.2 Token Protocol

The bus assignment between automation devices (class 1 masters) and/or programming devices (class 2 masters) is ensured via token passing.

All PROFIBUS DP masters connected to a common bus form a token ring. As long as the active PROFIBUS DP master has the token, it assumes the master function on the bus.

In a token ring, the PROFIBUS DP masters are organized in ascending order according to their station addresses. The token is passed on in this order until it is received by the PROFIBUS DP master with the highest station address.

This master passes the token on to the master with the lowest station address to close the token ring.

The token rotation time corresponds to one token cycle through all the PROFIBUS DP masters. The token rotation time (Ttr) is the maximum time permitted for a token rotation.

4.4.3 Token Rotation Time (Ttr)

Default values for different transfer rates

While configuring the PROFIBUS DP master, take into account that some parameters set in the **Timings** tab depend on the baud rate set in the **General** tab. For the first (initial) configuration, use the default values specified in the following table. The values are optimized at a later point in time.

	9.6k	19.2k	45.45k	93.75k	187.5k	500k	1.5M	3M	6M	12M
MinTsdr	11	11	11	11	11	11	11	11	11	11
MaxTsdr	60	60	400	60	60	100	150	250	450	800
Tsl bit time	100	100	640	100	100	200	300	400	600	1000
Tqui bit time	0	0	0	0	0	0	0	3	6	9
Tset bit time	1	1	95	1	1	1	1	4	8	16

Table 44: Default Values for Token Rotation Time at Different Transfer Rates

All time values specified are expressed in Tbit (1 Tbit = 1/[bit/s]).

MinTsdr is at least 11 Tbits long since a character is composed of 11 bits (1 start bit, 1 stop bit, 1 parity bit, 8 data bits).

Transmission Time for a Character

Baud rate	Tbit bit = 1/baud rate	Time			
9600 bit/s	1 / 9600 = 104.166 µs	11*104.166 µs = of 114.583 ms			
6 Mbit/s	1/ 6*10 ⁶ = 166.667 ns	11*166.667 ns = 1.833 μs			

Table 45: Transmission Time for a Character at Different Transfer Rates

Page 72 of 134 HI 801 523 E Rev. 11.04.00

4.4.4 Calculating the Token Rotation Time (Ttr)

Calculate the minimum token rotation time Ttr as follows:

 $Ttr_{min} = n * (198 + T1 + T2) + b * 11 + 242 + T1 + T2 + TsI$

Element	Description
n	Number of active slaves
b	Number of I/O data bytes of the active slaves (input plus output)
T0	35 + 2 * Tset + Tqui
T1	If T0 < MinTsdr: T1 = MinTsdr
	If T0 > MinTsdr: T1 = T0
T2	If T0 < MaxTsdr: T2 = MaxTsdr
	If T0 > MaxTsdr: T2 = T0
Tsl	Slot Time: Maximum time period that the master waits for a slave to respond
198	Twice a telegram header with variable length (for request and response)
242	Global_Control, FDL_Status_Req and token passing

Table 46: Elements Required for Calculating the Token Rotation Time

The estimate of the target token rotation time *Ttr* is only valid if only one master is operated on the bus, no resends are necessary and no acyclic data has to be transferred.

Never set *Ttr* to a value less than that calculated with the above formula. Otherwise fault-free operation can no longer be ensured. HIMA recommends using a value two or three times greater than the result.

Example of calculating the target token rotation time Ttr

The following configuration is available:

5 active slaves

(n = 5)

20 I/O data bytes per slave

$$(b = 100)$$

The following time constants for a transmission rate of 6 Mbit/s are taken from Table 46:

- MinTsdr = 11 Tbit
- MaxTsdr = 450 Tbit
- Tsl bit time = 600 T_{bit}
- Tqui bit time = 6 T_{bit}
- Tset bit time = 8 Tbit

T0 = 35 + 2 * Tset + Tqui

T0 = 35 + 2 * 8 + 6

 $T0 = 57 T_{bit}$

As T0>MinTsdr: $T1 = T0 = 57 T_{bit}$

As T0<MaxTsdr: T2 = MaxTsdr = 450 Tbit

HI 801 523 E Rev. 11.04.00 Page 73 of 134

Use the computed values in the formula for the minimum token rotation time:

Ttrmin= 5 (198+57+450)+100*11+242+57+450+600

 $Ttr_{min} [T_{bit}] = 5974 T_{bit}$

Result:

 $Ttr_{min} [\mu s] = 5974 T_{bit} * 166.67 ns = 995.68 \mu s$

Ttr is verified when it is entered into the dialog box.

If the value set for *Ttr* is lower than the value calculated by SILworX, an error message appears in the logbook. A minimum value for *Ttr* is also suggested.

If *Isochronous Sync Mode* or *Isochronous Freeze Mode* is activated, the cycle time is defined by the parameter *Minimum Slave Interval. Ttr* must then in any case be lower than the *Minimum Slave Interval.*

If this condition is not met in isochronous mode, an error message appears.

Page 74 of 134 HI 801 523 E Rev. 11.04.00

4.5 Isochronous PROFIBUS DP Cycle (DP-V2 and Higher)

The PROFIBUS DP cycle consists of 2 telegram phases: a fixed and cyclical phase and an event-driven and acyclic phase.

The acyclic phase of a PROFIBUS DP cycle can extend the corresponding PROFIBUS DP cycle. This effect is not wanted in specific applications and areas, such as drive technology.

To achieve a constant cycle time (t_{const}), Isochronous Mode must be activated in the master, where the *Min. Slave Interval [ms]* parameter defines the constant cycle time (t_{const}). Configured in this way, the isochronous PROFIBUS DP cycle offers clock accuracy with a difference of < 10 ms.

Figure 16: Isochronous PROFIBUS DP Cycle

To determine the cyclical phase, the minimum token rotation time must be calculated.

Additionally, a sufficiently large time interval (typically two to three times the minimum token rotation time *Ttr*) must be reserved for the acyclic phase. If the reserved time is not needed, a break is taken prior to starting the next cycle to ensure the cycle time remains constant. See also Chapter 4.4.3 concerning the token rotation time (*Ttr*).

 $\dot{1}$ The master is configured entering the DP cycle time determined by the user into $\it Min. Slave Interval [ms].$

To operate in *Isochronous Mode*, one of the 2 parameters *Isochronous Sync Mode* or *Isochronous Freeze Mode* must be activated in the master.

On the bus, only one master may simultaneously operate in isochronous mode. Additional masters are not permitted.

HI 801 523 E Rev. 11.04.00 Page 75 of 134

4.5.1 Isochronous Mode (DP-V2 and Higher)

This function allows a clock-controlled synchronization in the master and the slaves, irrespective of congestion on the bus. The bus cycle is synchronized with a clock difference of less than 10 ms. Highly precise positioning processes can be thus implemented.

To a certain degree, slaves (DP-V0 slaves) that do not support *Isochronous Mode* can also benefit from its advantages. To do so, the slaves must be assigned to Group 8 and the parameters *Sync* and/or *Freeze* must be activated.

Sync Mode and Freeze Mode are normally used simultaneously.

4.5.2 Isochronous Sync Mode (DP-V2 and Higher)

Isochronous Sync Mode allows both a clock-controlled synchronization of the master and the slave and a simultaneous activation of the outputs of multiple slaves.

4.5.3 Isochronous Freeze Mode (DP-V2 and Higher)

Isochronous Freeze Mode allows the input data from multiple slaves to be simultaneously accepted.

Page 76 of 134 HI 801 523 E Rev. 11.04.00

4.6 Menu Functions of the PROFIBUS DP Slave (in the Master)

4.6.1 Creating a PROFIBUS DP Slave (in the Master)

To create a PROFIBUS DP slave in the HIMA PROFIBUS DP master

- 1. In the structure tree, open Configuration, Resource, Protocols, PROFIBUS DP Master.
- 2. In the context menu for PROFIBUS DP master, click **New**, **PROFIBUS Slave** to add a new PROFIBUS slave.

4.6.2 Edit

The **Edit** function of the context menu for the PROFIBUS DP slave is used to open the **system** variables dialog box.

The **System Variables** tab provides the following system variables, which allow the PROFIBUS DP slave state to be evaluated in the user program.

Element	Description		
Activation Control	A change from 0 to 1 deactivates the slave. A change from 1 to 0 activates the slave previously deactivated. Activated = 0 Deactivated = 1		
PNO Ident Number	16-bit unique number assigned by the PROFIBUS DP Nutzerorganisation e.V. (PNO) Germany to a product (field device) and identifying it.		
Standard Diagnostics	Is used by the slave to inform the master about its current state. This variable always contains the last received standard diagnostics. The parameters comply with the diagnostic telegram in accordance with IEC 61158.		
Connection Count		d with every new connection. n the counter reset.	
Connection State	Value	Description	
		Deactivated: The parameter sets are loaded for these slaves, but the slaves are completely ignored. The input data is reset to its initial values, no activity related to these slaves is noted on the bus.	
		Inactive (not connected): If a slave is no longer reachable, the input data is reset to the initial value. One of the following options can be selected for each slave: The master continues to send output data to the slave The master attempts to re-configure the slave	
		Active (connected): The slaves are exchanging I/O data with the CPU.	
Slave Alarm Counter	Number of alarms provided so far. Counts from the counter reset.		
Standard Diagnostic Count	Number of diagnostic messages provided so far. Counts from the counter reset.		

Table 47: System Variables in the PROFIBUS DP Slave

HI 801 523 E Rev. 11.04.00 Page 77 of 134

4.6.3 Properties

The **Properties** function of the context menu for the PROFIBUS DP slave is used to open the **Properties** dialog box. The dialog box contains the following tabs:

4.6.3.1 The Parameters Tab

Element	Description
Name	Name of the slave
Address	Address of the slave
	Range of values: 0125
	Default value: 0
Active	Slave State
	Only an active slave can communicate with a PROFIBUS DP
	master.
	Default value: Activated
DP-V0 Sync Active	Sync Mode allows the outputs of various DP-V0 slaves to be
	simultaneous activated.
	Caution:
	This field must be deactivated in DP-V2 slaves operating in
	Isochronous Sync Mode. Default value: Deactivated
DP-V0 Freeze Active	Freeze Mode allows the input data of multiple DP-V0 slaves to be
DP-V0 Freeze Active	simultaneously accepted.
	Caution:
	This field must be deactivated in DP-V2 slaves operating in
	Isochronous Freeze Mode.
	Default value: Deactivated
Watchdog Active	If the Watchdog Active checkbox is ticked, the slave detects a
	master's failure and enters the safe state.
	Default value: Deactivated
Watchdog Time [ms]	The Watchdog Active checkbox must be ticked.
	If master and slave do not exchange any data within this time
	interval, the slave disconnects itself and resets all DP output data to
	its initial values. 0 = Deactivated
	Standard value: Slave's watchdog time > 6 * Ttr
	Range of values: 065535
	Default value: 0
On Failure, Send	Activated: If a fault occurs, data is still sent, even without the slave's
Last Data	acknowledgement.
	Deactivated: If a fault occurs, the connection is terminated and re-
	established.
	Default value: Deactivated
Auto Clear on	This parameter is only effective if Auto Clear on Error is also
Failure	activated in the master!
	Activated: The Auto Clear function for this slave is active.
	The master automatically switches from OPERATE to CLEAR state
	if no data exchange is possible with an Auto Clear slave.
	As soon as all Auto Clear slaves return to active, the master automatically switches to the OPERATE state.
	Deactivated: The Auto Clear function for this slave is not active.
	Default value: Activated
	Doladit value. / telivated

Table 48: The Parameters Tab in the PROFIBUS DP Slave

Page 78 of 134 HI 801 523 E Rev. 11.04.00

4.6.3.2 The Groups Tab

In this tab, the slaves can be organized into various groups. The global control commands, *Sync* and *Freeze*, can systematically address one or multiple groups.

Element	Description	
Member of Group 1	Member of group 1	
Member of Group 2	Member of group 2	
Member of Group 3	Member of group 3	
Member of Group 4	Member of group 4	Default value: Deactivated
Member of Group 5	Member of group 5	Default value. Deactivated
Member of Group 6	Member of group 6	
Member of Group 7	Member of group 7	
Member of Group 8	Member of group 8	

Table 49: Groups Tab in the Properties Dialog Box for the PROFIBUS DP Slave

4.6.3.3 The DP-V1 Tab

This tab contains the parameters set with DP-V1 and higher. In DP-V0 slaves, no parameters can be selected in this tab. The **Supp.** column shows which parameters are supported by the slave.

Element	Description
DP-V1	If the DP-V1 mode is not activated, no DP-V1 features can be used. In this case, the slave acts like a DP-V0 slave. The configuration data may have to be changed (refer to the slave manual). Default value: Deactivated
Failsafe	If this mode is activated, a master in the CLEAR state does not send zeros as output data; rather, it sends an empty data packet (failsafe data packet) to the slave. The slave recognizes that it must place the safe output data on the outputs (the value of the safe output data is not necessarily zero). Default value: Deactivated
Isochronous Mode	This function allows a clock-controlled synchronization in the master and the slaves, irrespective of congestion on the bus. The bus cycle is synchronized with a clock difference of < 1 ms. Highly precise positioning processes can be thus implemented. Default value: Deactivated
Publisher Active	This function is required for the slave intercommunication. Direct and time- saving communication via broadcast between the slaves is thus ensured without detouring through the master. Default value: Deactivated
Prm Block Struct. Supp.	The slave supports structured configuration data (read only). Default value: Deactivated
Check Cfg Mode	Reduced configuration control: If Check Cfg Mode is activated, the slave can operate with an incomplete configuration. This field should be deactivated during start-up. Default value: Deactivated

Table 50: DP-V1 Tab in the Properties Dialog Box for the PROFIBUS DP Slave

HI 801 523 E Rev. 11.04.00 Page 79 of 134

4.6.3.4 The Alarms Tab

This tab is used to activate alarms. This, however, is only possible with DP-V1 slaves, if DP-V1 is activated and the slave supports alarms. The checkmarks in the **Supp.** column designate which alarms are supported by the slave. Mandatory alarms are noted in the **Required** column.

Element	Description	
Update Alarm	Alarm, if the module parameters changed.	
Status Alarm	Alarm, if the module state changed.	
Vendor Alarm	Vendor specific alarm.	Default value:
Diagnostic Alarm	Alarm, if specific events occur in a module, e.g., short circuits, over temperature, etc.	Delault value. Deactivated
Process Alarm	Alarm, if important events occur in the process.	
Pull & Plug Alarm	Alarm, if a module is removed or inserted.	

Table 51: Alarms Tab in the Properties Dialog Box for the PROFIBUS DP Slave

4.6.3.5 The Data Tab

This tab specifies details about the supported data lengths and about the user data (extended configuration data).

Element	Description
Max. Input Len	Maximum length of the input data.
Max. Output Len	Maximum length of the output data.
Max. Data Len	Maximum total length of the input and output data.
User Data Size	Length of the user data.
User Data	Configuration data. HIMA does not recommend editing at this level. Use the dialog box for configuring the user parameters instead, Chapter 4.8.
Max. Diag. Data Len	Maximum length of the diagnostic data sent by the slave.

Table 52: Data Tab in the Properties Dialog Box for the PROFIBUS DP Slave

4.6.3.6 The Model Tab

This tab displays self-explanatory details.

Element	Description
Model	Manufacturer identification of the PROFIBUS DP slave.
Manufacturer	Manufacturer of the field device.
Ident Number	Slave identification provided by PNO Germany.
Revision	Revision of the PROFIBUS DP slave.
Hardware Release	Hardware revision status of the PROFIBUS DP slave.
Software Release	Software revision of the PROFIBUS DP slave.
GSD File Name	File name of the GSD file.
Info Text	Additional details about the PROFIBUS DP slave.

Table 53: The Model Tab in the Properties Dialog Box for the PROFIBUS DP Slave

Page 80 of 134 HI 801 523 E Rev. 11.04.00

4.6.3.7 The Features Tab

Element	Description
Modular Station	TRUE: Modular station
	FALSE: Compact station
First Configurable Slot Number	The modules (slots) must be numbered without gaps, starting with this value.
Max Modules	Maximum number of modules that can be installed in a modular station.
Support for Set Slave Add	The slave supports dynamic address allocation.
Min. Slave Interval [ms]	The minimum time period that must elapse between 2 cyclic calls of the slave.
Diag Update	Number of polling cycles until the slave's diagnosis mirrors the current state.
Support for WDBase1ms	The slave supports 1 ms as time unit for the watchdogs.
Support for DP-V0 Sync	The slave supports DP-V0 Sync.
Support for DP-V0 Freeze	The slave supports DP-V0 Freeze.
DP-V1 Data Types	The slave supports the DP-V1 data types.
Extra Alarm SAP	The slave supports SAP 50 for acknowledging the alarm.
Alarm Seq. Mode Count	Indicates the number of active alarms that the slave can simultaneously process. Zero means one alarm of each model.

Table 54: Features Tab in the Properties Dialog Box for the PROFIBUS DP Slave

4.6.3.8 The Baud Rates Tab

This tab specifies the baud rates that the slave supports and the corresponding MaxTsdr.

MaxTsdr is the time within which the slave must acknowledge a request from the master. The range of values is dependent on the slave and the transfer rate, and is between 15 and 800 Tbit.

Element	Description
9.6k	MaxTsdr = 60
19.2k	MaxTsdr = 60
31.25k	Not supported.
45.45k	MaxTsdr = 60
93.75k	MaxTsdr = 60
187.5k	MaxTsdr = 60
500k	MaxTsdr = 70
1.5M	MaxTsdr = 75
3M	MaxTsdr = 90
6M	MaxTsdr = 100
12M	MaxTsdr = 120

Table 55: Baud Rates Tab in the Properties Dialog Box for the PROFIBUS DP Slave

HI 801 523 E Rev. 11.04.00 Page 81 of 134

4.6.3.9 The Acyclic Tab

This tab contains some parameters for the acyclic data transmission.

Element	Description
Support for C1 Read/Write	The slave supports acyclic data transmission.
C1 Read/Write required	The slave requires the acyclic data transmission.
C1 Max Data Len[Byte]	Maximum length of an acyclic data packet.
C1 Response Timeout [ms]	Time out for the acyclic data transmission.

Table 56: Acyclic Tab in the Properties Dialog Box for the PROFIBUS DP Slave

4.7 Importing GSD File

The GSD file contains data for configuring the PROFIBUS DP slave.

To read the GSD file for the new PROFIBUS DP slave

- 1. In the structure tree, open Configuration, Resource, Protocols, PROFIBUS DP Master, PROFIBUS Slave.
- 2. Select **Read GSD File** from the context menu of the PROFIBUS DP master and choose the GSD file for the PROFIBUS slave (e.g., hax100ea.gsd).
- The GSD files for HIMA controllers are available on the HIMA website at www.hima.com. The manufacturer of the field device is responsible for the correctness of the GSD file.

The GSD files for HIMax (hax100ea.gsd) and HIMatrix (hix100ea.gsd) include the following modules:

PROFIBUS DP master input modules	Туре	Number
DP input/ELOP export	Byte	1
DP input/ELOP export	Bytes	2
DP input/ELOP export	Bytes	4
DP input/ELOP export	Bytes	8
DP input/ELOP export	Bytes	16
DP input/ELOP export	Word	1
DP input/ELOP export	Words	2
DP input/ELOP export	Words	4
DP input/ELOP export	Words	8
		4.0
DP input/ELOP export	Words	16
DP input/ELOP export PROFIBUS DP master output modules	Words Type	Number
		-
PROFIBUS DP master output modules	Туре	Number
PROFIBUS DP master output modules DP output/ELOP import	Type Byte	Number 1
PROFIBUS DP master output modules DP output/ELOP import DP output/ELOP import	Type Byte Bytes	Number 1 2
PROFIBUS DP master output modules DP output/ELOP import DP output/ELOP import DP output/ELOP import	Type Byte Bytes Bytes	Number 1 2 4
PROFIBUS DP master output modules DP output/ELOP import DP output/ELOP import DP output/ELOP import DP output/ELOP import	Type Byte Bytes Bytes Bytes	Number 1 2 4 8
PROFIBUS DP master output modules DP output/ELOP import	Type Byte Bytes Bytes Bytes Bytes Bytes	Number 1 2 4 8 16
PROFIBUS DP master output modules DP output/ELOP import	Type Byte Bytes Bytes Bytes Bytes Word	Number 1 2 4 8 16 1
PROFIBUS DP master output modules DP output/ELOP import	Type Byte Bytes Bytes Bytes Bytes Word Words	Number 1 2 4 8 16 1

Table 57: GSD File of the HIMA PROFIBUS DP Slave

Page 82 of 134 HI 801 523 E Rev. 11.04.00

4.8 Configuring the User Parameters

The group's Start Address and Number of Variables are defined in the user data field.

Additionally, the number of bytes that should actually be transferred must be configured in the PROFIBUS DP master. This is done by choosing the PROFIBUS DP modules from the GDS file of the PROFIBUS DP slave, see also Chapter 4.2.2.

To open the Edit User Parameters dialog box

- 1. In the structure tree, open Configuration, Resource, Protocols, PROFIBUS DP Master.
- 2. Right-click PROFINET Slave and select Properties from the context menu.
- 3. Select the Data tab and click the ... button next to the user data.

The structure of the **Edit User Parameters** dialog box depends on the GSD file of the slave.

Structure of the 32-byte user data field

The 32-byte user data field is structured as follows:

The 32 bytes are allocated in 8 groups, with 4 bytes each.

Groups 1...4 define which and how many variables the PROFIBUS DP master receives from the PROFIBUS DP slave.

Groups 5...8 define which and how many variables the PROFIBUS DP master sends to the PROFIBUS DP slave.

The first 2 bytes of each group specify the start address of the first variables to be read or written to.

The last 2 bytes in each group specify the number of variables that should be received or sent.

To configure the user data in different groups

Usually, it is not necessary to allocate the variables (user data) into the various groups. It is enough to define the first variable group of the input and output variables, and to read or write the data *en bloc*.

In applications requiring that only selected variables are read and written, up to 4 variable groups can be defined for the input and output variables.

Example

The PROFIBUS DP master sends and receives the following variables from the PROFIBUS DP slave:

Group 1: 4 input variables from start address 0 and up.

Group 2: 6 input variables from start address 50 and up.

Group 4: **9** input variables from start address **100** and up.

Group 5: 2 output variables from start address 10 and up.

HI 801 523 E Rev. 11.04.00 Page 83 of 134

User data configuration in the PROFIBUS DP master:

Master import/slave export	Start address	Number of variables
Group 1 (bytes 03)	0.0	0.4
Group 2 (bytes 47)	0.50	0.6
Group 3 (bytes 811)	0.0	0.0
Group 4 (bytes 1215)	0.100	0.9

Table 58: Example: Groups 1...4 of the User Data Field

Master export/slave import	Start address	Number of variables
Group 5 (bytes 1619)	0.10	0.2
Group 6 (bytes 2023)	0.0	0.0
Group 7 (bytes 2427)	0.0	0.0
Group 8 (bytes 2831)	0.0	0.0

Table 59: Example: Groups 1...4 of the User Data Field

Edit User Parameters dialog box of a HIMatrix or HIMax PROFIBUS DP Slave.

Figure 17: Edit User Parameters Dialog Box

Page 84 of 134 HI 801 523 E Rev. 11.04.00

4.9 PROFIBUS Function Blocks

The PROFIBUS function blocks are used to tailor the HIMA PROFIBUS DP master and the corresponding PROFIBUS DP slaves to best meet the project requirements.

The function blocks are configured in the user program such that the master and slave functions (alarms, diagnostic data, and states) can be set and read in the user program.

Function blocks are required for special applications. They are not needed for the normal cyclic data traffic between master and slave!

For further details on the conceptual configuration of the PROFIBUS DP function blocks, refer to Chapter 5.3.

The following function blocks are available:

Function block	Function description	Suitable beginning with stage of extension DP
MSTAT 4.9.1	For controlling the master state using the user program.	DP-V0
RALRM 4.9.2	For reading the alarm messages of the slaves.	DP-V1
RDIAG 4.9.3	For reading the diagnostic messages from the slaves.	DP-V0
RDREC 4.9.4	For reading the acyclic data records of the slaves.	DP-V1
SLACT 4.9.5	For controlling the slave states using the user program.	DP-V0
WRREC 4.9.6	For writing the acyclic data records of the slaves.	DP-V1

Table 60: Overview of the PROFIBUS DP Function Blocks

HIMA PROFIBUS DP masters operate with stage of extension DP-V1.

HIMA PROFIBUS DP slaves operate with stage of extension DP-V0.

For this reason, not all function blocks of the HIMA PROFIBUS DP master can be used to control a HIMA PROFIBUS DP slaves.

HI 801 523 E Rev. 11.04.00 Page 85 of 134

4.9.1 MSTAT Function Block

Figure 18: MSTAT Function Block

The user program uses the **MSTAT** function block (DP-V0 and higher) to control the PROFIBUS DP master. The PROFIBUS DP master can thus be set to one of the following operating states using a timer or a mechanical switch connected to a physical input:

- 0: OFFLINE
- 1: STOP

1

- 2: CLEAR
- 3: OPERATE

The **MSTAT** function block can be used for controlling the PROFIBUS slaves with the additional functions FREEZE, UNFREEZE, SYNC and UNSYNC. Additionally, it can be used for selecting the membership of the slave to be controlled.

To configure the function block, drag it from the function block library onto the user program, see also Chapter 5.3.

Inputs and outputs of the function block with prefix A

These inputs and outputs can be used to control and evaluate the function block using the user program. The prefix A means Application.

A-Inputs	Description	Туре
A_Req	The rising edge triggers the function block.	BOOL
A_ld	Master ID (not used).	DWORD
A_Mode	Modes of Operation for the PROFIBUS DP Master The PROFIBUS DP master can be set to the following modes of operation: The least significant byte sets the modes of operation. (most significant byte=0): 0x0000 - OFFLINE	INT
	0x00 01 - STOP 0x00 02 - CLEAR 0x00 03 - OPERATE	

Page 86 of 134 HI 801 523 E Rev. 11.04.00

A-Inputs	Description	Туре
	Additional Information about PROFIBUS Slave Alternatively, additional functions can be set for the PROFIBUS slaves connected to this PROFIBUS master. The most significant byte set the additional functions: 0x04XX - Unfreeze 0x08XX - Freeze 0x10XX - Unsync 0x20XX - Sync	
	The least significant byte describes the group(s) to which additional functions apply: 0xXX00 - for all slaves 0xXX01 - Group 1 0xXX02 - Group 2 0xXX04 - Group 3 0xXX80 - Group 8	
	Example: To send Sync+Freeze to all the groups, Mode must be set to 0x28ff.	

Table 61: A-Inputs for the MSTAT Function Block

Programming example for setting the A_Mode input

To provide a clearer exposition, recommends using an auxiliary function block for preparing the A_Mode input variables of the **MSTAT** function block.

The following figures show a programming example of how to implement this auxiliary function block in the user program.

Figure 19: Programming Example for Setting the A_Mode Input

HI 801 523 E Rev. 11.04.00 Page 87 of 134

Figure 20: Suggestion for Programming the Logic of the PBM_Mode Auxiliary Function Block

A-Outputs	Description	Туре
A_Done	TRUE: The PROFIBUS DP master has been set to the state defined on the A_Mode input.	BOOL
A_Busy	TRUE: The PROFIBUS DP master is still being set.	BOOL
A_Status	Status or error code, see Chapter 4.11.	DWORD

Table 62: A-Outputs for the MSTAT Function Block

Inputs and outputs of the function block with prefix F

These inputs and outputs of the function block establish the connection to the MSTAT function block in the structure tree. The prefix F means Field.

Shared variables are used to connect the MSTAT function block (in the Blocks directory) to the MSTAT function block (in the user program). These must have been previously created in the Variable Editor.

Connect the *F-Inputs* of the **MSTAT** function block in the user program to the same variables that will be connected to the outputs of the **MSTAT** function block in the structure tree.

Page 88 of 134 HI 801 523 E Rev. 11.04.00

F-Inputs	Туре
F_Ack	BOOL
F_Done	BOOL
F_Busy	BOOL
F_Status	DWORD

Table 63: F-Inputs for the MSTAT Function Block

Connect the *F-Outputs* of the **MSTAT** function block in the user program to the same variables that will be connected to the inputs of the **MSTAT** function block in the structure tree.

F-Outputs	Type
F_Req	BOOL
F_ID	DWORD
F_MODE	INT

Table 64: F-Outputs for the MSTAT Function Block

To create the MSTAT function block in the structure tree

- 1. In the structure tree, open Configuration, Resource, Protocols, PROFIBUS DP Master, Blocks, New.
- 2. Select the MSTAT function block.
- 3. Right-click the MSTAT function block, and then click Edit.
 - ☑ The window for assigning variables to the function blocks appears.

Connect the inputs of the **MSTAT** function block in the structure tree to the same variables that have been previously connected to the *F-Outputs* of the **MSTAT** function block in the user program.

Inputs	Туре
M_ID	DWORD
MODE	INT
REQ	BOOL

Table 65: Input System Variables

Connect the outputs of the **MSTAT** function block in the structure tree to the same variables that have been previously connected to the *F-Input*s of the **MSTAT** function block in the user program.

Outputs	Туре
ACK	BOOL
Busy	BOOL
DONE	BOOL
STATUS	DWORD

Table 66: Output System Variables

To operate the MSTAT function block

- In the user program, set the A_Mode input to the desired state.
 If A_Mode is not set, an error code is issued after step 2 on the A_Status output and the PROFIBUS DP master state is not set.
- 2. In the user program, set the *A_Req* input to TRUE.

HI 801 523 E Rev. 11.04.00 Page 89 of 134

The function block responds to a rising edge at *A_Req*.

☑ The *A_Busy* output is TRUE until the MSTAT command has been processed. Afterwards, *A_Busy* is set to FALSE and *A_Done* is set to TRUE.

If the preset mode could not be set successfully, an error code is output to *A_Status*.

The mode of the current master can be derived from the Master State variable. Refer to Chapter 4.10 for details.

4.9.2 RALRM Function Block

Figure 21: RALRM Function Block

The **RALRM** function block (DP-V1 and higher) is used to evaluate the alarms.

Alarms are a special type of diagnostic messages that are handled with a high priority. Alarms report important events to which the application must react (e.g., a WRREC). How the application reacts, however, depends on the manufacturer. Refer to the manual of the PROFIBUS DP slave for more information.

As long as the **RALRM** function block is active, it waits for alarm messages from the slaves. If an alarm is received, the *A_NEW* output is set to TRUE for at least one cycle and the alarm data can be read from an alarm telegram. Before the next alarm is received, *A_NEW* is set to FALSE for at least one cycle. All alarms are acknowledged implicitly. No alarms are lost.

If multiple **RALRM** function blocks are used, the user program must be configured such that only one **RALRM** function block is active at any given time.

 $\dot{1}$ To configure the function block, drag it from the function block library onto the user program, see also Chapter 5.3.

Page 90 of 134 HI 801 523 E Rev. 11.04.00

Inputs and outputs of the function block with prefix A

These inputs and outputs can be used to control and evaluate the function block using the user program. The prefix A means Application.

A-Inputs	Description	Type
A_Ena	TRUE enables the function block.	BOOL
A_Mode	Not used	INT
A_Fld	Not used	DWORD
A_MLen	Maximum expected length of the received alarm data expressed in bytes.	INT

Table 67: A-Inputs for the RALRM Function Block

A-Outputs	Description	Туре
A_Eno	TRUE: The function block is active.	BOOL
	FALSE: The function block is not active.	
A_New	TRUE: New alarm was received.	BOOL
	FALSE: No new alarm.	
A_Status	Status or error code, see Chapter 4.11.	DWORD
A_ld	Identification number of the slave triggering the alarm.	DWORD
A_Len	Length of the received alarm data in bytes.	INT

Table 68: A-Outputs for the RDIAG Function Block

1

Inputs and outputs of the function block with prefix F

These inputs and outputs of the function block establish the connection to the RALRM function block in the structure tree. The prefix F means Field.

Shared variables are used to connect the **RALRM** function block (in the Blocks directory) to the **RALRM** function block (in the user program). These must have been previously created in the Variable Editor.

Connect the *F-Inputs* of the **RALRM** function block in the user program to the same variables that will be connected to the outputs of the **RALRM** function block in the structure tree.

F-Inputs	Туре
F_Ack	BOOL
F_Eno	BOOL
F_New	BOOL
F_Status	DWORD
F_ID	DWORD
F_Len	INT

Table 69: F-Inputs for the RALRM Function Block

Connect the *F-Outputs* of the **RALRM** function block in the user program to the same variables that will be connected to the inputs of the **RLARM** function block in the structure tree.

F-Outputs	Туре
F_Ena	BOOL
F_MODE	INT
F_Fld	DWORD
F_Mlen	INT

Table 70: F-Outputs for the RALRM Function Block

HI 801 523 E Rev. 11.04.00 Page 91 of 134

To create the RALRM function block in the structure tree

1. In the structure tree, open Configuration, Resource, Protocols, PROFIBUS DP Master, Blocks, New.

- 2. Select the RALRM function block.
- 3. Right-click the RALRM function block, and then click Edit.
 - ☑ The window for assigning variables to the function blocks appears.

Connect the inputs of the **RALRM** function block in the structure tree to the same variables that have been previously connected to the *F-Outputs* of the **RALRM** function block in the user program.

Inputs	Туре
EN	BOOL
F_ID	DWORD
MLEN	INT
MODE	INT

Table 71: Input System Variables

Connect the outputs of the **RALRM** function block in the structure tree to the same variables that have been previously connected to the *F-Inputs* of the **RALRM** function block in the user program.

Outputs	Туре
ACK	BOOL
ENO	BOOL
ID	DWORD
LEN	INT
NEW	BOOL
STATUS	DWORD

Table 72: Output System Variables

1

The Process Variables tab of the **RALRM** function block located in the structure tree contains variables that must be defined and whose structure must match the alarm data. If no variables are defined, alarm data can be requested but not read.

An alarm message contains at least 4 bytes. The first four bytes of the alarm message contain the standard alarm data.

To decode standard alarms, HIMA provides the **ALARM** auxiliary function block. Refer to Chapter 4.10 for details.

If an alarm telegram contains more bytes than defined in the Data tab, only the preset number of bytes is accepted. The rest is cut off.

Page 92 of 134 HI 801 523 E Rev. 11.04.00

Alarm data	Description
Byte 0	Length of the alarm message expressed in bytes (4126)
Byte 1	Identifier for the alarm type
	1: Diagnostic alarm
	2: Process alarm
	3: Pull alarm
	4: Plug alarm
	5: Status alarm
	6: Update alarm
	31: Failure of a master's or a slave's extension
	32126: Manufacturer-specific
	Consult the device manufacturer specifications for details.
Byte 2	Slot number of the component triggering the alarm
Byte 3	0: No further information
	1: Inbound alarm, slot malfunction
	2: Outbound alarm, slot no longer malfunctioning
	3: Outbound alarm, slot still malfunctioning
Bytes 4126	Consult the device manufacturer specifications for details.

Table 73: Alarm Data

1 The structure of the standard alarms (bytes 0...3) is normalized and identical for all manufacturers. Consult the manual of the PROFIBUS DP slave for more information on bytes 4...126, since their use is manufacturer-specific.

Devices built in accordance with the DP-V0 standard do not support alarm telegrams.

To operate the RALRM function block

- 1. At the user program input *A_Mlen*, define the maximum amount of alarm data to be expected, expressed in bytes. *A_Mlen* cannot be changed during operation.
- 2. In the user program, set the *A_Ena* input to TRUE.
- In contrast to other function blocks, the **RALRM** function block is only active as long as the A_Ena input is set to TRUE.

If the function block was started successfully, the *A_Eno* output is set to TRUE. If the function block could not be started, an error code is output to *A_Status*.

If a new alarm is received, the *A_New* output is set to TRUE for at least one cycle. During this time period, the alarm data of the slave triggering the alarm are contained in the outputs and can be evaluated.

Afterwards, the *A_New* output returns to FALSE for at least one cycle. The *A_Id* and *A_Len* outputs are reset to zero before the next alarm message can be received and evaluated.

HI 801 523 E Rev. 11.04.00 Page 93 of 134

4.9.3 RDIAG Function Block

Figure 22: RDIAG Function Block

The **RDIAG** function block (DP-V0 and higher) is used for reading the current diagnostic message of a slave (6...240 bytes).

The number of **RDIAG** function blocks simultaneously active in the HIMA PROFIBUS DP master can be defined by the user.

To configure the function block, drag it from the function block library onto the user program, see also Chapter 5.3.

Inputs and outputs of the function block with prefix A

These inputs and outputs can be used to control and evaluate the function block using the user program. The prefix A means Application.

A-Inputs	Description	Туре
A_Req	The rising edge triggers the reading request of a diagnostic message.	BOOL
A_ld	Slave identification number, see Chapter 4.10.	DWORD
A_MLen	Maximum expected length of the diagnostic message to be read, expressed in bytes.	INT

Table 74: A-Inputs for the RDIAG Function Block

A-Outputs	Description	Туре
A_Valid	A new diagnostic message has been received and is valid.	BOOL
A_Busy	TRUE: Data is still being read.	BOOL
A_Error	TRUE: An error occurred during the reading process.	BOOL
A_Status	Status or error code, see Chapter 4.11.	DWORD
A_Len	Length of the read diagnostic data, expressed in bytes.	INT

Table 75: F-Outputs for the RDIAG Function Block

Page 94 of 134 HI 801 523 E Rev. 11.04.00

Inputs and outputs of the function block with prefix F

These inputs and outputs of the function block establish the connection to the **RDIAG** function block in the structure tree. The prefix F means Field.

Shared variables are used to connect the **RDIAG** function block (in the Blocks directory) to the **RDIAG** function block (in the user program). These must have been previously created in the Variable Editor.

Connect the *F-Inputs* of the **RDIAG** function block in the user program to the same variables that will be connected to the outputs of the **RDIAG** function block in the structure tree.

F-Inputs	Туре
F_Ack	BOOL
F_Valid	BOOL
F_Busy	BOOL
F_Error	BOOL
F_Status	DWORD
F_Len	INT

Table 76: F-Inputs for the RDIAG Function Block

Connect the *F-Outputs* of the **RDIAG** function block in the user program to the same variables that will be connected to the inputs of the **RDIAG** function block in the structure tree.

F-Outputs	Туре
F_Req	BOOL
F_ID	DWORD
F_Mlen	INT

Table 77: F-Outputs for the RDIAG Function Block

To create the RDIAG function block in the structure tree

- 1. In the structure tree, open Configuration, Resource, Protocols, PROFIBUS DP Master, Blocks, New.
- 2. Select the RDIAG function block.
- 3. Right-click the RDIAG function block, and then click Edit.
 - ☑ The window for assigning variables to the function blocks appears.

Connect the inputs of the **RDIAG** function block in the structure tree to the same variables that have been previously connected to the *F-Outputs* of the **RDIAG** function block in the user program.

Inputs	Туре
ID	DWORD
MLEN	INT
REQ	BOOL

Table 78: Input System Variables

Connect the outputs of the **RDIAG** function block in the structure tree to the same variables that have been previously connected to the *F-Input*s of the **RDIAG** function block in the user program.

HI 801 523 E Rev. 11.04.00 Page 95 of 134

Outputs	Туре
ACK	BOOL
Busy	BOOL
Error	BOOL
LEN	INT
Status	DWORD
VALID	BOOL

Table 79: Output System Variables

Diagnostic data

The structure of the variables defined in the **Data** tab must match the diagnostic data. A diagnostic message contains a minimum of 6 and a maximum of 240 bytes. The first 4 bytes of the diagnostic message contain the standard diagnostics.

To decode standard diagnostics, HIMA provides the **STDDIAG** auxiliary function block. Refer to Chapter 4.10 for details.

if a diagnostic telegram contains more bytes than defined in the **Data** tab, only the preset number of bytes is accepted. The rest is cut off.

Diagnostic data	Description
Byte 0	Bytes 03 contain the standard diagnostics. Use the STDDIAG auxiliary
Byte 1	function block to decode the standard diagnostics as a variable of type
Byte 2	DWORD.
Byte 3	Bus address of the master to which a slave is assigned.
Byte 4	High byte (manufacturer ID)
Byte 5	Low byte (manufacturer ID)
Bytes 6240	Consult the device manufacturer specifications for details.

Table 80: Diagnostic Data

i

 $\overset{\centerdot}{1} \qquad \text{The HIMA slaves send a diagnostic telegram of six bytes in length. The meaning of these bytes is standardized.}$

For slaves from other manufacturers, only the first six bytes are functionally identical.

For further details on the diagnostic telegram, refer to the description of the slave provided by the manufacturer.

To operate the RDIAG function block

- 1. In the user program, enter the slave address at the *A_ID* input.
- 2. At the user program input *A_Mlen*, define the maximum amount of diagnostic data to be expected, expressed in bytes.
- 3. In the user program, set the *A_Req* input to TRUE.

The function block responds to a rising edge at A_Req.

The *A_Busy* output is set to TRUE until the diagnostic request has been processed. Afterwards, *A_Busy* is set to FALSE and *A_Valid* or *A_Error* to TRUE.

If the diagnostic telegram is valid, the *A_Valid* output is set to TRUE. The diagnostic data can be evaluated using the variables defined on the *Data* tab. The *A_Len* output contains the number of bytes that were actually read out.

If the diagnostic telegram could not be read successfully, the A_Error output is set to TRUE and an error code is output to A_Status .

Page 96 of 134 HI 801 523 E Rev. 11.04.00

4.9.4 RDREC Function Block

Figure 23: RDREC Function Block

The **RDREC** function block is used for acyclically reading a data record from a slave addressed on the A_Index input. Consult the slave's manual to find out which data can be read.

This functionality is optional and is only defined with DP-V1 and higher!

Up to 32 **RDREC** and/or **WRREC** function blocks can simultaneously be active in the HIMA PROFIBUS DP master.

To configure the function block, drag it from the function block library onto the user program, see also Chapter 5.3.

Inputs and outputs of the function block with prefix A

These inputs and outputs can be used to control and evaluate the function block using the user program. The prefix A means Application.

A-Inputs	Description	Туре
A_Req	The rising edge triggers the reading request.	BOOL
A_ld	Slave identification number, see Chapter 4.10.	DWORD
A_Index	Number of the data record to be read.	INT
	Consult the device manufacturer specifications for details.	
A_MLen	Maximum length of the data to be read in bytes.	INT

Table 81: A-Inputs for the RDREC Function Block

A-Outputs	Description	Туре
A_Valid	A new data record was received and is valid.	BOOL
A_Busy	TRUE: Data is still being read.	BOOL
A_Error	TRUE: An error occurred	BOOL
	FALSE: No error.	
A_Status	Status or error code, see Chapter 4.11.	DWORD
A_Len	Length of the read data record information in bytes.	INT

Table 82: A-Outputs for the RDREC Function Block

HI 801 523 E Rev. 11.04.00 Page 97 of 134

Inputs and outputs of the function block with prefix F

These inputs and outputs of the function block establish the connection to the **RDREC** function block in the structure tree. The prefix F means Field.

Shared variables are used to connect the **RDREC** function block (in the Blocks directory) to the RDREC function block (in the user program). These must have been previously created in the Variable Editor.

Connect the *F-Input*s of the **RDREC** function block in the user program to the same variables that will be connected to the outputs of the **RDREC** function block in the structure tree.

F-Inputs	Туре
F_Ack	BOOL
F_Valid	BOOL
F_Busy	BOOL
F_Error	BOOL
F_Status	DWORD
F_Len	INT

Table 83: F-Inputs for the RDREC Function Block

Connect the *F-Outputs* of the **RDREC** function block in the user program to the same variables that will be connected to the inputs of the **RDREC** function block in the structure tree.

F-Outputs	Туре
F_Req	BOOL
F_ID	DWORD
F_Index	INT
F_MLEN	INT

Table 84: F-Outputs for the RDREC Function Block

To create the RDREC function block in the structure tree

- 1. In the structure tree, open Configuration, Resource, Protocols, PROFIBUS DP Master, Blocks, New.
- 2. Select the RDREC function block.
- 3. Right-click the RDREC function block, and then click Edit.
 - ☑ The window for assigning variables to the function blocks appears.

Connect the inputs of the **RDREC** function block in the structure tree to the same variables that have been previously connected to the *F-Outputs* of the **RDREC** function block in the user program.

Inputs	Туре
ID	DWORD
INDEX	INT
MLEN	INT
REQ	BOOL

Table 85: Input System Variables

Connect the outputs of the **RDREC** function block in the structure tree to the same variables that have been previously connected to the *F-Input*s of the **RDREC** function block in the user program.

Page 98 of 134 HI 801 523 E Rev. 11.04.00

Outputs	Туре
ACK	BOOL
Busy	BOOL
Error	BOOL
LEN	INT
STATUS	DWORD
VALID	BOOL

Table 86: Output System Variables

Data	Description
No predefined variables	A user-specific data structure can be defined in the <i>Process Variables</i> tab; however, the structure must match the data record structure. For further details on the record structure, refer to the operating
	instructions provided by the manufacturer of the slave.

Table 87: Data

To operate the RDREC function block

- 1. In the user program, enter the slave address at the A_ID input.
- 2. In the user program, set the slave-specific index for the data record at the *A_Index* input (see the manual provided by the manufacturer).
- 3. In the user program, set the length of the data record to be read, at the *A_Len* input.
- 4. In the user program, set the A_Req input to TRUE.

• The function block responds to a rising edge at *A_Req*.

The *A_Busy* output is set to TRUE until the data record request has been processed. Afterwards, *A_Busy* is set to FALSE and *A_Valid* or *A_Error* to TRUE.

If the data record is valid, the *A_Valid* output is set to TRUE. The data record can be evaluated using the variables defined in the *Data* tab. The *A_Len* output contains the actual length of the data record that has been read.

If the data record could not be read successfully, the A_Error output is set to TRUE and an error code is output to A_Status .

4.9.5 SLACT Function Block

Figure 24: SLACT Function Block

HI 801 523 E Rev. 11.04.00 Page 99 of 134

The **SLACT** function block (DP-V0 and higher) is used for activating and deactivating a slave from within the user program of the PROFIBUS DP master. The slave can thus be set to one of the following states using a timer or a mechanical switch connected to a physical input of the PROFIBUS DP master:

- ≠ 0: Active
- = 0: Inactive

If various **SLACT** function blocks are used, the user program must be configured such that only one **SLACT** function block is active at a time.

To configure the function block, drag it from the function block library onto the user program, see also Chapter 5.3.

Inputs and outputs of the function block with prefix A

These inputs and outputs can be used to control and evaluate the function block using the user program. The prefix A means Application.

A-Inputs	Description	Туре
A_Req	The rising edge triggers the function block.	BOOL
A_ld	Slave identification number, see Chapter 4.10.	DWORD
A_Mode	Target state for the PROFIBUS DP slave:	INT
	≠ 0: active (connected)	
	= 0: Not active (deactivated)	

Table 88: A-Inputs for the SLACT Function Block

A-Outputs	Description	Туре
A_Done	TRUE: The PROFIBUS DP slave has been set to the state defined on the A_Mode input.	BOOL
A_Busy	TRUE: The PROFIBUS DP slave is still being set.	BOOL
A_Status	Status or error code, see Chapter 4.11.	DWORD

Table 89: A-Outputs for the SLACT Function Block

Inputs and outputs of the function block with prefix F

These inputs and outputs of the function block establish the connection to the **SLACT** function block in the structure tree. The prefix F means Field.

Shared variables are used to connect the **SLACT** function block (in the Blocks directory) to the **SLACT** function block (in the user program). These must have been previously created in the Variable Editor.

Connect the *F-Inputs* of the **SLACT** function block in the user program to the same variables that will be connected to the outputs of the **SLACT** function block in the structure tree.

F-Inputs	Туре
F_Ack	BOOL
F_Done	BOOL
F_Busy	BOOL
F_Status	DWORD

Table 90: F-Inputs for the SLACT Function Block

Page 100 of 134 HI 801 523 E Rev. 11.04.00

Connect the *F-Outputs* of the **SLACT** function block in the user program to the same variables that will be connected to the inputs of the **SLACT** function block in the structure tree.

F-Outputs	Туре
F_Req	BOOL
F_ID	DWORD
F_MODE	INT

Table 91: F-Outputs for the SLACT Function Block

To create the SLACT function block in the structure tree

- 1. In the structure tree, open Configuration, Resource, Protocols, PROFIBUS DP Master, Blocks, New.
- 2. Select the SLACT function block.
- 3. Right-click the **SLACT** function block, and then click **Edit**.
 - ☑ The window for assigning variables to the function blocks appears.

Connect the inputs of the **SLACT** function block in the structure tree to the same variables that have been previously connected to the *F-Outputs* of the **SLACT** function block in the user program.

Inputs	Туре
ID	DWORD
MODE	INT
REQ	BOOL

Table 92: Input System Variables

Connect the outputs of the **SLACT** function block in the structure tree to the same variables that have been previously connected to the *F-Inputs* of the **SLACT** function block in the user program.

Outputs	Туре
ACK	BOOL
Busy	BOOL
DONE	BOOL
STATUS	DWORD

Table 93: Output System Variables

1

To operate the SLACT function block

- 1. In the user program, set the A_Mode input to the desired state.
- 2. In the user program, enter the slave address ID at the A_ID input.
- 3. In the user program, set the *A_Req* input to TRUE.

The function block responds to a rising edge at *A_Req*.

A_Busy output is set to TRUE until the SLACT command has been processed. Afterwards, A_Busy is set to FALSE and A_Done is set to TRUE.

If the slave mode could be set successfully, it is output to *A_Status*.

If the slave mode could not be set successfully, an error code is output to A_Status.

HI 801 523 E Rev. 11.04.00 Page 101 of 134

4.9.6 WRREC Function Block

Figure 25: WRREC Function Block

The **WRREC** function block (DP-V1 and higher) is used for acyclically writing a data record to a slave addressed with *A_Index*. Consult the slave's manual to find out which data can be written.

Up to 32 **RDREC** and/or **WRREC** function blocks can simultaneously be active in the HIMA PROFIBUS DP master.

 $\dot{1}$ To configure the function block, drag it from the function block library onto the user program, see also Chapter 5.3.

Inputs and outputs of the function block with prefix A

These inputs and outputs can be used to control and evaluate the function block using the user program. The prefix A means Application.

A-Inputs	Description	Туре
A_Req	The rising edge triggers the request for writing a data record.	BOOL
A_ld	Slave identification number, see Chapter 4.10.	DWORD
A_Index	Number of the data record to be written. Consult the device manufacturer specifications for details.	INT
A_Len	Length of the data record to be written in bytes.	INT

Table 94: A-Inputs for the WRREC Function Block

A-Outputs	Description	Type
A_Done	TRUE: The function block completed the writing process.	BOOL
A_Busy	TRUE: The function block has not yet completed the writing process	BOOL
A_Error	TRUE: An error occurred	BOOL
A_Status	Status or error code, see Chapter 4.11.	DWORD

Table 95: A-Outputs for the WRREC Function Block

Page 102 of 134 HI 801 523 E Rev. 11.04.00

Inputs and outputs of the function block with prefix F

These inputs and outputs of the function block establish the connection to the **WRREC** function block in the structure tree. The prefix F means Field.

Shared variables are used to connect the WRREC function block (in the Blocks directory) to the WRREC function block (in the user program). These must have been previously created in the Variable Editor.

Connect the *F-Input*s of the **WRREC** function block in the user program to the same variables that will be connected to the outputs of the **WRREC** function block in the structure tree.

F-Inputs	Туре
F_Ack	BOOL
F_Done	BOOL
F_Busy	BOOL
F_Error	BOOL
F_Status	DWORD

Table 96: F-Inputs for the WRREC Function Block

Connect the *F-Outputs* of the **WRREC** function block in the user program to the same variables that will be connected to the inputs of the **WRREC** function block in the structure tree.

F-Outputs	Туре
F_Req	BOOL
F_ID	DWORD
F_Index	INT
F_Len	INT

Table 97: F-Outputs for the WRREC Function Block

To create the WRREC function block in the structure tree

- 1. In the structure tree, open Configuration, Resource, Protocols, PROFIBUS DP Master, Blocks, New.
- 2. Select the WRREC function block.
- 3. Right-click the **WRREC** function block, and then click **Edit**.
 - ☑ The window for assigning variables to the function blocks appears.

Connect the inputs of the **WRREC** function block in the structure tree to the same variables that have been previously connected to the *F-Outputs* of the **WRREC** function block in the user program.

Inputs	Туре
ID	DWORD
INDEX	INT
LEN	INT
REQ	BOOL

Table 98: Input System Variables

Connect the outputs of the **WRREC** function block in the structure tree to the same variables that have been previously connected to the *F-Input*s of the **WRREC** function block in the user program.

HI 801 523 E Rev. 11.04.00 Page 103 of 134

Outputs	Туре
ACK	BOOL
Busy	BOOL
DONE	BOOL
Error	BOOL
STATUS	DWORD

Table 99: Output System Variables

Data	Description
No predefined variables	A user-specific data structure can be defined in the <i>Process Variables</i> tab; however, the structure must match the data record structure. For further details on the record structure, refer to the operating instructions provided by the manufacturer of the slave.

Table 100: Data

i

To operate the WRREC function block, the following steps are essential

- 1. In the user program, enter the slave address at the A_ID input.
- 2. In the user program, set the slave-specific index for the data record at the *A_Index* input (see the manual provided by the manufacturer).
- 3. In the user program, set the length of the data record to be written, at the *A_Len* input.
- 4. In the user program, set the data record as defined in the Data tab.In the user program, set the data record as defined in the Data tab.
- 5. In the user program, set the *A_Req* input to TRUE.

The function block responds to a rising edge at A_Req.

The A_Busy output is TRUE until the data record has been written. Afterwards, A_Busy is set to FALSE and A_Done is set to TRUE.

If the data record could not be written successfully, the A_Error output is set to TRUE and an error code is output to A_Status .

Page 104 of 134 HI 801 523 E Rev. 11.04.00

4.10 PROFIBUS Auxiliary Function Blocks

The auxiliary function blocks are used to configure and evaluate the inputs and outputs of the function blocks.

The following auxiliary function blocks are available:

Auxiliary function blocks	Function description
ACTIVE (see Chapter 4.10.1)	Slave active or inactive.
ALARM (see Chapter 4.10.2)	Decodes the alarm data.
DEID (see Chapter 4.10.3)	Decodes the identification number.
ID (see Chapter 4.10.4)	Generates a 4-byte identifier.
NSLOT (see Chapter 4.10.5)	Creates a continuous identification number for the slots.
SLOT (see Chapter 4.10.6)	Creates a SLOT identification number based on a slot number.
STDDIAG (see Chapter 4.10.7)	Decodes the standard diagnostics of a slave.
LATCH	Only used within other function blocks.
PIG	Only used within other function blocks.
PIGII	Only used within other function blocks.

Table 101: Overview of the Auxiliary Function Blocks

4.10.1 Auxiliary Function Block: ACTIVE

Figure 26: The ACTIVE Auxiliary Function Block

The ACTIVE auxiliary function block determines if the slave is active or inactive based on the standard diagnostics of a PROFIBUS DP slave.

 $\dot{1}$ To configure the function block, drag it from the function block library onto the user program, see also Chapter 5.3.

Inputs	Description	Туре
IN	Slave standard diagnostics.	DWORD

Table 102: Inputs for the ACTIVE Auxiliary Function Block

Outputs	Description	Туре
OUT	TRUE: Slave is active.	BOOL
	FALSE: Slave is inactive.	

Table 103: Outputs for the ACTIVE Auxiliary Function Block

HI 801 523 E Rev. 11.04.00 Page 105 of 134

4.10.2 Auxiliary Function Block: ALARM

(Decode the alarm data)

Figure 27: The ALARM Auxiliary Function Block

The **ALARM** auxiliary function block decodes the standard alarm data of a PROFIBUS DP slave.

 $\dot{1}$ To configure the function block, drag it from the function block library onto the user program, see also Chapter 5.3.

Inputs	Description	Туре
IN	Standard alarm	DWORD

Table 104: Inputs for the ALARM Auxiliary Function Block

Output	Description	Туре
LEN	Total length of the alarm message.	SINT
Туре	1: Diagnostic alarm	SINT
	2: Process alarm	
	3: Pull alarm	
	4: Plug alarm	
	5: Status alarm	
	6: Update alarm	
	The other numbers are either reserved or manufacturer-	
	specific. Consult the device manufacturer specifications for	
	details.	
Diagnostic	TRUE = Diagnostic alarm	BOOL
Process	TRUE = Process alarm	BOOL
Pull	TRUE = The module was pulled	BOOL
Plug	TRUE = The module was plugged in again	BOOL
Status	TRUE = Status alarm	BOOL
Update	TRUE = Update alarm	BOOL
Slot	Alarm-triggering module.	BYTE
SeqNr	Alarm sequence number.	SINT

Page 106 of 134 HI 801 523 E Rev. 11.04.00

Output	Description			Туре	
AddAck	an de	RUE means the additional actailed information the contract of	BOOL		
Appears	(Output	Value	Description	BOOL
Disappears	/	Appears	TRUE	If both are FALSE, no error has occurred yet.	
		Disappears	FALSE		
	/	Appears	TRUE	An error occurred and is still present.	
		Disappears	FALSE		
	1	Appears	TRUE	An error occurred and is disappearing.	
	Dis	Disappears	FALSE		
	1	Appears	TRUE	If both are TRUE, the fault has disappeared, but the slave is still in a faulty state.	
	Disappea	Disappears	FALSE		

Table 105: Outputs for the ALARM Auxiliary Function Block

4.10.3 Auxiliary Function Block: DEID

(Decode the identification number)

Figure 28: The DEID Auxiliary Function Block

The **DEID** auxiliary function block decodes the identification number and disjoints it into its 4 component parts.

 $\dot{1}$ To configure the function block, drag it from the function block library onto the user program, see also Chapter 5.3.

Inputs	Description	Type
ID	Identification number of the slave.	DWORD

Table 106: Inputs for the DEID Auxiliary Function Block

Outputs	Description	Туре
Master	Master bus address.	BYTE
Segment	Segment	BYTE
Station	Slave bus address.	BYTE
Slot	Slot or module number.	BYTE

Table 107: Outputs for the DEID Auxiliary Function Block

HI 801 523 E Rev. 11.04.00 Page 107 of 134

4.10.4 Auxiliary Function Block: ID

(Generate the identification number)

Figure 29: The ID Auxiliary Function Block

The **ID** auxiliary function block generates an identifier (identification number) used by other auxiliary function blocks based on 4 bytes.

To configure the function block, drag it from the function block library onto the user program, see also Chapter 5.3.

Inputs	Description	Туре
Ena	Not used	BOOL
Master	Bus address	BYTE
Segment	Segment	BYTE
Station	Slave bus address	BYTE
Slot	Slot or module number	BYTE

Table 108: Inputs for the ID Auxiliary Function Block

Outputs	Description	Type
Enao	Not used	BOOL
ID	Identification number of the slave	DWORD

Table 109: Outputs for the ID Auxiliary Function Block

Page 108 of 134 HI 801 523 E Rev. 11.04.00

4.10.5 Auxiliary Function Block: NSLOT

Figure 30: The NSLOT Auxiliary Function Block

The **NSLOT** auxiliary function block uses an identifier to generate a new identifier that addresses the next slot within the same slave. Ena must be set to TRUE to allow the auxiliary function block to run.

Enao is set to TRUE if the result at the Ido output is valid.

 $\dot{1}$ $\,$ To configure the function block, drag it from the function block library onto the user program, see also Chapter 5.3.

Inputs	Description	Туре
Ena	The auxiliary function block runs as long as Ena is TRUE	BOOL
ID	Identification number of the slave	DWORD

Table 110: Inputs for the NSLOT Auxiliary Function Block

Outputs	Description	Туре
Enao	TRUE = The result is valid	BOOL
	FALSE = No other slot numbers	
Ido	Identification number of the slave	DWORD

Table 111: Outputs for the NSLOT Auxiliary Function Block

4.10.6 Auxiliary Function Block: SLOT

Figure 31: The SLOT Auxiliary Function Block

The **SLOT** auxiliary function block uses an identifier and a slot number to generate a new identifier that addresses the same slave as the previous identifier but with the new slot number.

 $\dot{1}$ To configure the function block, drag it from the function block library onto the user program, see also Chapter 5.3.

HI 801 523 E Rev. 11.04.00 Page 109 of 134

Inputs	Description	Туре
Ena	Not used	BOOL
ID	Logical address of the slave component (slave ID and slot number)	DWORD
Slot	New slot or module number	BYTE

Table 112: Inputs for the SLOT Auxiliary Function Block

Outputs	Description	Туре
Enao	Not used	BOOL
Ido	Identification number of the slave	DWORD

Table 113: Outputs for the SLOT Auxiliary Function Block

4.10.7 Auxiliary Function Block: STDDIAG

Figure 32: The STDDIAG Auxiliary Function Block

The **STDDIAG** auxiliary function block decodes the standard diagnostics of a PROFIBUS DP slave.

The outputs of type BOOL in the **STDDIAG** auxiliary function block are set to TRUE if the corresponding bit has been set in the standard diagnostics.

 $\dot{1}$ To configure the function block, drag it from the function block library onto the user program, see also Chapter 5.3.

Inputs	Description	Туре
IN	Slave standard diagnostics	DWORD

Table 114: Inputs for the STDDIAG Auxiliary Function Block

Page 110 of 134 HI 801 523 E Rev. 11.04.00

Outputs	Description	Туре
StationNonExist	The slave does not exist	BOOL
StationNotReady	Slave is not ready	BOOL
ConfigError	Configuration error	BOOL
ExtendedDiag	Extended diagnostics follow	BOOL
FuncNotSupported	Function not supported	BOOL
InvalidAnswer	Invalid reply from slave	BOOL
ParamError	Parameter error	BOOL
StationLocked	Slave locked by another master	BOOL
NewParamRequired	New configuration data required	BOOL
StaticDiag	Static diagnosis	BOOL
WatchdogOn	Watchdog activated	BOOL
FreezeReceived	Freeze command received	BOOL
SyncReceived	Sync command received	BOOL
StationDeactivated	The slave was deactivated	BOOL
DiagOverflow	Diagnostic overflow	BOOL
MasterAddr	Master bus address	BYTE

Table 115: Outputs for the STDDIAG Auxiliary Function Block

To read out the standard diagnostics of the PROFIBUS DP slave

- 1. In the structure tree, open Configuration, Resource, Protocols, PROFIBUS DP Master.
- 2. Right-click PROFIBUS Slave and select Edit.
- 3. Drag the global variable of type DWORD onto the Standard Diagnostics field.
- 4. Connect this global variable with the input of the **STDDIAG** function block.

HI 801 523 E Rev. 11.04.00 Page 111 of 134

4.11 Error Codes of the Function Blocks

If a function block cannot properly execute a command, an error code is output to **A_Status**. The following table describes the meaning of the error codes.

Error code	Symbol	Description
16#40800800	TEMP_NOT_AVAIL	The service is temporarily not available.
16#40801000	INVALID_PARA	Invalid parameter.
16#40801100	WRONG_STATE	The slave does not support DP-V1.
16#40808000	FATAL_ERR	A fatal program error occurred.
16#40808100	BAD_CONFIG	Configuration error occurred in the data area.
16#40808200	PLC_STOPPED	The controller was stopped.
16#4080A000	READ_ERR	Error while reading a record.
16#4080A100	WRITE_ERR	Error while writing a record.
16#4080A200	MODULE_FAILURE	The error cannot be specified in greater detail.
16#4080B000	INVALID_INDEX	The index is invalid.
16#4080B100	WRITE_LENGTH	Invalid write length.
16#4080B200	INVALID_SLOT	Invalid slot number.
16#4080B300	TYPE_CONFLICT	Invalid type.
16#4080B400	INVALID_AREA	Invalid read/write area.
16#4080B500	STATE_CONFLICT	Master in invalid state.
16#4080B600	ACCESS_DENIED	Slave is not active (or similar).
16#4080B700	INVALID_RANGE	Invalid read/write area.
16#4080B800	INVALID_PARAMETER	Invalid parameter value.
16#4080B900	INVALID_TYPE	Invalid parameter type.
16#4080C300	NO_RESOURCE	Slave is not available.
16#4080BA00	BAD_VALUE	Invalid value.
16#4080BB00	BUS_ERROR	Bus error.
16#4080BC00	INVALID_SLAVE	Invalid slave ID.
16#4080BD00	TIMEOUT	Timeout occurred.
16#4080C000	READ_CONSTRAIN	Read constraint.
16#4080C100	WRITE_CONSTRAIN	Write constraint.
16#4080C200	Busy	A function block of this type is already active.
16#4080C300	NO_RESOURCE	Slave is not active.

Table 116: Error Codes of the Function Blocks

Page 112 of 134 HI 801 523 E Rev. 11.04.00

4.12 Control Panel (PROFIBUS DP Master)

The Control Panel can be used to verify and control the settings for the PROFIBUS DP master. It also displays details on the current status of the master or slave associated with it (e.g., cycle time, bus state, etc.).

To open the Control Panel for monitoring the PROFIBUS DP master

- 1. Right-click the **Hardware** structure tree element and select **Online** from the context menu.
- In the System Login window, enter the access data to open the online view for the hardware.
- 3. Double-click COM Module and select the PROFIBUS DP Master structure tree node.

4.12.1 Context Menu (PROFIBUS DP Master)

The following commands can be chosen from the context menu of the selected PROFIBUS DP master:

Offline

Switches off the selected PROFIBUS DP master. If the master is switched off, it is completely disabled.

Stop

Stops the selected PROFIBUS DP master. The PROFIBUS DP master still participates in the token protocol, but does not send any data to the slaves.

Clear

By clicking the CLEAR button, the selected PROFIBUS DP master adopts a safe state and exchanges safe data with the slaves. The output data sent to the slaves only contains zeros. Failsafe slaves receive failsafe telegrams containing no data. The PROFIBUS DP master ignores the input data from the slaves, and uses the initial values in the user program instead.

Operate

Start the selected PROFIBUS DP master. The PROFIBUS DP master cyclically exchanges I/O data with the slaves.

Reset Statistics

The Reset Statistics button is used to reset the statistical data such as min. or max. cycle time to zero.

4.12.2 Context Menu (PROFIBUS DP Slave)

The following commands can be chosen from the context menu of the selected PROFIBUS DP slave:

Activate

Activates the selected slave which can now exchange data with the PROFIBUS DP master.

Deactivate

Deactivates the selected slave. The communication is terminated.

HI 801 523 E Rev. 11.04.00 Page 113 of 134

4.12.3 View Box (PROFIBUS Master)

The view box displays the following values of the selected PROFIBUS DP master.

Element	Description
Name	Name of the PROFIBUS DP master.
Master State	Indicates the current protocol state, see Chapter 4.12.4. 0 = OFFLINE 1 = STOP 2 = CLEAR 3 = OPERATE 100 = UNDEFINED
Bus State	Bus error code 06:
	0 = OK
	1 = Address error: The master address is already available on the bus.
	2 = Bus malfunction: A malfunction was detected on the bus, e.g., bus was not properly terminated, and multiple subscribers are sending data simultaneously.
	3 = Protocol error: An incorrectly coded packet was received.
	4 = Hardware fault: The hardware reported a fault, e.g., too short time periods.
	5 = Unknown error: The master changed the state for an unknown reason.
	6 = Controller Reset: In the event of severe bus disturbances, the controller chip adopts an undefined state and is reset.
	An error code retains its value until the bus error has been removed.
Fieldbus Interface	FB1, FB2
μP Load (planned) [%]	Load of the COM module planned for this protocol.
μP Load (actual) [%]	Actual load of the COM module for this protocol.
Baud Rate [bps]	Baud rate of the master The master can communicate using all baud rates specified in the standard. Cycle times can be set up to a lower limit of 2 ms.
Fieldbus Address	Master bus address (0125).
PNO-IdentNo	16-bit unique number assigned by the PROFIBUS DP Nutzerorganisation e.V. (PNO) Germany to a product (field device) and identifying it.
Number of Bus Errors	Number of bus errors, so far.
MSI [ms]	Min. Slave Interval in ms, resolution 0.1 ms
TTR [ms]	Target token rotation time in ms, resolution 0.1 ms.

Page 114 of 134 HI 801 523 E Rev. 11.04.00

Element	Description
Last Cycle Time [ms]	Last PROFIBUS DP cycle time [ms].
Minimum Cycle Time [ms]	Minimum PROFIBUS DP cycle time [ms].
Average Cycle Time [ms]	Average PROFIBUS DP cycle time [ms].
Maximum Cycle Time [ms]	Maximum PROFIBUS DP cycle time [ms].

Table 117: View Box for the PROFIBUS Master

4.12.4 PROFIBUS DP Master State

The master status is displayed in the view box of the Control Panel and can be evaluated in the user program using the Master Connection State status variable.

State of the master	State of the master
OFFLINE	The master is switched off; no bus activity.
STOP	The master participates in the token protocol, but does not send any data to the slaves.
Clear	 The master is in the safe state and exchanges data with the slaves. The output data sent to the slaves only contains zeros. Failsafe slaves receive failsafe telegrams containing no data. The input data of the slaves are ignored and initial values are used instead.
Operate	The master is operating and cyclically exchanges I/O data with the slaves.
Undefined	The firmware for the PROFIBUS DP master module is being updated.

Table 118: PROFIBUS DP Master State

4.12.5 Behavior of the PROFIBUS DP Master

Behavior of the PROFIBUS DP master according to the controller operating state.

State of the controller	Behavior of the HIMA PROFIBUS DP master
STOP 1)	If the controller is in STOP, the master is in the OFFLINE state.
RUN	If the controller is in RUN, the master tries to enter the OPERATE state.
STOP	If the controller enters the STOP state, the master adopts the CLEAR state. If the master is already in STOP or OFFLINE, it stays in this state.
¹) After powering up the controller or loading the configuration.	

Table 119: Behavior of the PROFIBUS DP Master

HI 801 523 E Rev. 11.04.00 Page 115 of 134

4.12.6 Function of the FBx LED in the PROFIBUS Master

The FBx LED of the corresponding fieldbus interface indicates the state of the PROFIBUS DP protocol. The states of the FBx LED are specified in the following table:

FBx LED	Description
OFF	No configuration or invalid configuration of the PROFIBUS DP master.
Blinking	Valid configuration.
Every 2 seconds	The PROFIBUS DP master is in the OFFLINE or STOP state.
ON	The PROFIBUS DP master is in the OPERATE or CLEAR state, if all activated slaves are connected.
Blinking, every second	At least one slave failed.

Table 120: The FBx LED

4.12.7 Function of the FAULT LED in the PROFIBUS DP Master (HIMax only)

The FAULT LED of the corresponding fieldbus interface indicates that the PROFIBUS DP protocol has failed. The states of the FAULT LED are specified in the following table:

FAULT LED	Color	Description	
OFF	Red	The PROFIBUS DP protocols is not disturbed.	
Blinking	Red	The protocol is disturbed.	
		 At least one slave failed. 	
		Bus error detected.	
		Calculating time budget was exceeded.	
		If no faults occur for a period longer than 5 s, the state changes to <i>Protocol not disturbed</i> .	

Table 121: The FAULT FBx

Page 116 of 134 HI 801 523 E Rev. 11.04.00

4.13 HIMA PROFIBUS DP Slave

This chapter describes the characteristics of the HIMA PROFIBUS DP slave and the menu functions and dialog boxes in SILworX required for configuring the HIMA PROFIBUS DP slave.

Equipment and System Requirements

Element	Description
HIMA controller	HIMax with X-COM 01 module. HIQuad X with F-COM 01 module HIMatrix as of CPU OS V7 and COM OS V12
COM module	The serial fieldbus interface (FB1 or FB2) used on the COM module must be equipped with an optional HIMA PROFIBUS DP slave submodule. For further details on the interface assignment, refer to the communication manual (HI 801 101 E).
Activation	Activation via the plug-in module, refer to the communication manual (HI 801 101 E) for details.

Table 122: Equipment and System Requirements for the HIMA PROFIBUS DP Slave

For the HIMax system, HIMA recommends operating the PROFIBUS DP using the FB1 fieldbus interface (maximum transfer rate 12 Mbit). The maximum transfer rate permitted for the FB2 fieldbus interface is 1.5 MBit.

PROFIBUS DP Slave Properties

i

Element	Description			
Type of HIMA PROFIBUS DP slave	DP-V0			
Transfer rate	9.6 kbit/s12	Mbit/s		
Bus address	0125			
Max. number of slaves	One HIMA PROFIBUS DP slave can be configured for each COM module.			
Process data volume of a HIMA PROFIBUS DP slave	HIMax and DP output: max. 192 bytes DP input: max. 240 bytes Total: max. 256 bytes HIQuad X DP output: max. 244 bytes DP input: max. 244 bytes Total: max. 488 bytes			
Protocol watchdog	If the COM is in RUN and the connection to the PROFIBUS DP master is lost, the DP slave detects this once the watchdog timeout has expired (the watchdog timeout must be set in the master). In this case, the DP output data (or input data from the perspective of the resource) are reset to their initial value and the <i>Data Valid</i> flag (status variable of the DP slave protocol) is set to FALSE.			

Table 123: Properties of the HIMA PROFIBUS DP Slave

4.13.1 Creating a HIMA PROFIBUS DP Slave

To create a new HIMA PROFIBUS DP slave

- 1. In the structure tree, open Configuration, Resource, Protocols.
- Select New, PROFIBUS DP Slave from the context menu of protocols to add a new PROFIBUS DP slave.
- 3. Select Edit from the context menu of the PROFIBUS DP slave.
- 4. In the Properties tab, select Module and the Interface.

HI 801 523 E Rev. 11.04.00 Page 117 of 134

4.14 Menu Functions of the PROFIBUS DP Slave

4.14.1 Edit

The **Edit** dialog box for the PROFIBUS DP master contains the following tabs:

Process Variables

The send and receive variables are created in the **Process Variables** tab.

Input Variables

The variables that the current controller should receive are entered in the *Input Signals* area.

Any variables can be created in the *Input Signals* area. Offsets and types of the received variables must be identical to offsets and types of the send variables of the communication partner.

Output variables

The variables for cyclic data exchange sent by this controller are entered in the *Output Signals* area.

Any variables can be created in the *Output Signals* area. Offsets and types of the received variables must be identical to offsets and types of the receive variables of the communication partner.

System Variables

The variables that should be read in the controller are defined in the **System Variables** tab.

The **System Variables** tab provides the following system variables, which allow the PROFIBUS DP slave state to be evaluated in the user program.

Element	Description
Current Baud Rate	Baud rate currently used by the PROFIBUS DP slave protocol.
Data Valid	If the status variable <i>Data Valid</i> is set to TRUE, the slave received valid import data from the master. The status variable is set to FALSE if the watchdog time within the slave has expired.
	Default value: FALSE
	 Notes: A global variable that is assigned the system variable <i>Data Valid</i> may not have the initial value TRUE. If the master did not activate the slave's watchdog and the connection is lost, the <i>Data Valid</i> status variable retains the value TRUE since the PROFIBUS DP slave has no means to recognize that the connection was lost. This fact must be taken into account when using this variable!
Error Code	If an error occurred in the PROFIBUS DP slave protocol, the error is transferred in this variable. The last occurred error is displayed. Possible (hexadecimal) value:
	0x00: No error.
	0xE1: Faulty configuration by the PROFIBUS DP master.
	0xD2: Faulty configuration by the PROFIBUS DP master.
	Default value: 0x00

Page 118 of 134 HI 801 523 E Rev. 11.04.00

Element	Description
Master Address	This is the address of the PROFIBUS master that configured its own PROFIBUS DP slave. Possible (decimal) values:
	0-125: Master address
	255: The slave is currently not assigned to any master.
	Default value: 255
Protocol State	Describes the state of the PROFIBUS DP slave protocol. Possible (hexadecimal) value:
	0xE1: The controller is disconnected from the bus or not active.
	0xD2: The controller waits for a configuration from the master.
	0xC3: The controller cyclically exchanges data with the PROFIBUS DP master.
	Default value: 0xE1
Slave Address	Address of the controller's PROFIBUS DP slave. This address was previously configured by the user using the PADT. Possible (decimal) values: 0-125: Slave address
Watchdog Time	Watchdog time in milliseconds configured in the master, see Chapter 4.6.3.

Table 124: System Variables in the PROFIBUS DP Slave

4.14.2 Properties

1

The **Properties** tab for the HIMA PROFIBUS DP slave contains the following parameters for configuring the PROFIBUS DP slave.

The default values for *Within one cycle* and *Process Data Refresh Rate [ms]* provide a fast means of exchanging PROFIBUS DP data between the COM module (COM) and the PROFIBUS DP slave hardware of the HIMA controller.

These parameters should only be changed if it is necessary to reduce the COM load for an application, and the process allows this change.

Only experienced programmers should modify the parameters.

Increasing the refresh rate for the COM and PROFIBUS DP hardware means that the effective refresh rate of the PROFIBUS DP data is also increased. The system time requirements must be verified.

The **Min. Slave Interval [ms]** parameter defines the minimum refresh rate of the PROFIBUS DP data between PROFIBUS DP master and PROFIBUS DP slave, see Timings Tab, Chapter 4.3.2).

HI 801 523 E Rev. 11.04.00 Page 119 of 134

Element	Description						
Туре	PROFIBUS DP Slave.						
Name	Name of the PROFIBUS DP Slave						
Module	Selection of the COM module within which the protocol is processed.						
Activate Max. µP	Activated						
Budget	Use the µP budg	et limit from the	Max. µl	P Budge	t in [%] field.		
	Deactivated:	D	41.1				
Ma DD Last's	Do not use the µ						
Max. μP Budget in [%]	the protocols.	Maximum μP budget of the module that can be used for processing					
[,0]	Range of values	: 1100%					
	Default value: 30						
Behavior on	If the connection	of the processo	or modul	e to the	communication		
CPU/COM					llized or are still used		
connection loss	unchanged in the	•	•	-	-		
	For instance, if the communication is		on moac	lie is rem	loved when		
		•	vorX pri	or to V3	should be con-		
	•		to Retai	in Last \	/alue to ensure that		
	the CRC does n	_	2011.00		V0 (II I		
	always be set to			prior to	V8, this value must		
	aiways be set to	Notalli East V	aiuc.				
	Apply Initial Data Input variables are reset to their						
	initial values.						
	Retain Last Val		•	variables	s retain the last		
O A.I.I	01		alue.				
Station Address	Slave station address.						
	Only one slave station address may be available on the bus. Range of values: 1125						
	Default value: 0						
Interface	Fieldbus interfac	e that should be	e used fo	r the PR	OFIBUS DP slave.		
	Range of values						
	Default value: No						
Baud Rate [bps]	Baud rate used f	or the bus.					
	Possible values:	David rata	I ED4	EDO	1		
	Value 9600	Baud rate 9.6 kbit/s	FB1	FB2			
	19200	16.2 kbit/s	X	X	-		
	45450	45.45 kbit/s	X	X	-		
	93750	93.75 kbit/s	X	X	-		
	187500	187.5 kbit/s	X	X	-		
	500000	500 kbit/s	X	X	-		
	1500000	1.5 Mbit/s	Х	Х	1		
	3000000	3 Mbit/s	Х	-			
	6000000	6 Mbit/s	Х]		
	12000000	12 Mbit/s	Х	-			
Process Data					nd the PROFIBUS		
Refresh Rate [ms]	DP slave hardware exchange protocol data.						
	Range of values: 41000						
	Default value: 10)					

Page 120 of 134 HI 801 523 E Rev. 11.04.00

Element	Description
Force Process Data Consistency	Activated: Transfer of all of the protocol data from the CPU to the COM within a CPU cycle.
	Deactivated: Transfers all of the protocol data from the CPU to the COM, distributed over multiple CPU cycles, each with 1100 bytes per data direction. This may also cause the cycle time of the controller to be reduced.
	Default value: Activated

Table 125: Slave Properties: General Tab

4.15 Control Panel (PROFIBUS DP Slave)

The Control Panel can be used to verify and control the settings for the PROFIBUS DP slave. Details on the slave's current status (e.g., cycle time, bus state, etc.) are displayed.

To open the Control Panel for monitoring the PROFIBUS DP slave

- 1. Right-click the **Hardware** structure tree element and select **Online** from the context menu.
- 2. In the **System Login** window, enter the access data to open the online view for the hardware.
- 3. Double-click COM Module and select the PROFIBUS DP Slave structure tree node.

4.15.1 View Box (PROFIBUS DP Slave)

The view box displays the following values of the selected PROFIBUS DP slave.

Element	Description		
Name	Name of the PROFIBUS DP slave.		
Fieldbus Interface	Subordinated slave's fieldbus interface.		
Protocol State	Connection State		
	0 = Deactivated		
	1 = Inactive (connection attempt)		
	2 = Connected		
Error State	See Chapter 4.14.1.		
Timeout	Watchdog time in milliseconds configured in the master. See Chapter 4.6.3.		
Watchdog Time [ms]	Is set in the master. See Chapter 4.6.3.		
Fieldbus Address	See Chapter 4.14.2.		
Master Address	Address of the PROFIBUS DP master.		
Baud Rate [bps]	Current baud rate. See Chapter 4.14.2.		
μP Budget (planned) [%]	Load of the COM module planned for this protocol.		
μP Budget (actual) [%]	Actual load of the COM module for this protocol.		

Table 126: View Box of the PROFIBUS DP Slave

HI 801 523 E Rev. 11.04.00 Page 121 of 134

4.16 Function of the FBx LED in the PROFIBUS Slave

The FBx LED of the corresponding fieldbus interface indicates the state of the PROFIBUS DP protocol. The states of the FBx LED are specified in the following table:

FBx LED	Color	Description
OFF	Yellow	The PROFIBUS DP protocol is not active! This means that the controller is in the STOP state or no PROFIBUS DP slave is configured.
Blinking, every 2 seconds	Yellow	No data traffic! The PROFIBUS DP slave is configured and ready.
ON	Yellow	The PROFIBUS DP protocol is active and is exchanging data with the PROFIBUS DP master.

Table 127: The FBx LED

4.17 Function of the FAULT LED in the PROFIBUS Slave (HIMax Only)

The FAULT LED of the corresponding fieldbus interface indicates that the PROFIBUS DP protocol has failed. The states of the FAULT LED are specified in the following table:

FAULT LED	Color	Description	
OFF	Red	The PROFIBUS DP protocols is not disturbed.	
Blinking	Red	The protocol is disturbed.	
		The configurations of the PROFIBUS DP master and slave are faulty.	
		Calculating time budget was exceeded.	
		If no faults occur for a period longer than 5 s, the state changes to <i>Protocol not disturbed</i> .	

Table 128: The FAULT FBx

Page 122 of 134 HI 801 523 E Rev. 11.04.00

General Protocol

5 General

This chapter describes parameters that are relevant for all communication protocols.

5.1 Maximum Communication Time Slice

The maximum communication time slice is the time period in milliseconds (ms) per CPU cycle assigned to the processor module for processing the communication tasks. Even if the protocol processing could not be completed within one communication time slice, the CPU still executes the safety-relevant monitoring for all protocols within one CPU cycle.

if not all upcoming communication tasks can be processed within one CPU cycle, the whole communication data is transferred over multiple CPU cycles. The number of communication time slices is then greater than 1.

For calculating the maximum response time, the number of communication time slices must be equal to 1.

5.1.1 Determining the Maximum Duration of the Communication Time Slice

For a first estimate of the maximum duration of the communication time slice, the sum of the following times must be entered in the *Max. Com. Time Slice [ms]* system parameter located in the properties of the resource.

- For each COM module: 3 ms.
- For each redundant safeethernet connection: 1 ms.
- For non-redundant safeethernet connection: 0.5 ms.
- For each kilobyte user data of non-safety-related protocols, e.g., Modbus: 1 ms.

HIMA recommends comparing the value estimated for *Max. Com. Time Slice [ms]* with the value displayed in the Control Panel and, if necessary, correcting it in the properties of the resource. This can be done during an FAT (factory acceptance test) or SAT (site acceptance test).

To determine the actual duration of the maximum communication time slice

- Operate the HIMA system under full load (FAT, SAT):
 All communication protocols are in operation (safeethernet and standard protocols).
- 2. Open the Control Panel and select the Com. Time Slice structure tree folder.
- 3. Read the vale displayed for Maximum Com. Time Slice Duration per Cycle [ms].
- 4. Read the value displayed for Maximum Number of Required Com. Time Slice Cycles.

The duration of the communication time slice must be set so that, when using the communication time slice, the CPU cycle cannot exceed the watchdog time specified by the process.

5.2 Load Limitation

A computing time budget expressed in % (μP budget) can be defined for each communication protocol. It allows the available computing time to be distributed among the configured protocols. The sum of the computing time budgets configured for all communication protocols on a CPU or COM module may not exceed 100%.

The defined computing time budgets of the individual communication protocols are monitored. If a communication protocol has already achieved or exceeded its budget and no reserve computing time is available, the communication protocol cannot be processed.

If sufficient additional computing time is available, it is used to process the communication protocol that has already achieved or exceeded its budget. It can therefore happen that a communication protocol uses more computing time budget than has been allocated to it.

HI 801 523 E Rev. 11.04.00 Page 123 of 134

Protocol General

It is possible that more than 100% computing time budget is displayed online. This is not a fault; the computing time budget exceeding 100% indicates the additional computing time used.

 $\dot{1}$ The additional computing time budget is not a guarantee for a certain communication protocol and can be revoked from the system at any time.

5.3 Configuring the Function Blocks

The fieldbus protocols and the corresponding function blocks operate on the COM module of the HIMA system. In the SILworX structure tree, these function blocks must therefore be created as child element of **Configuration**, **Resource**, **Protocols**.

To control the function blocks on the COM module, function blocks can be created in the SILworX user program (see Chapter 5.3.1). These can be used as standard function blocks.

Shared variables are used to connect the function blocks in the SILworX user program to the corresponding function blocks in the SILworX structure tree. These must have been previously created in the Global Variable Editor.

5.3.1 Purchasing Function Block Libraries

The function block libraries for PROFIBUS DP and TCP Send/Receive must be added to the project using the *Restore* function (context menu of the project).

The function block library is available from HIMA support upon request.

5.3.2 Configuring the Function Blocks in the User Program

Drag the required function blocks onto the user program. The inputs and outputs must be configured as described for the individual function block.

Upper Part of the Function Block

The upper part of the function block corresponds to the user interface used by the user program to control the function block.

The variables used in the user program are connected at this level. The prefix A means Application.

Figure 33: PNM_MSTST Function Block (Upper Part)

Lower Part of the Function Block

The lower part of the function block represents the connection to the function block (in the SILworX structure tree).

The variables that must be connected to the function block located in SILworX structure tree are connected here. The prefix F means Field.

Page 124 of 134 HI 801 523 E Rev. 11.04.00

General Protocol

Figure 34: PNM_MSTST Function Block (Lower Part)

5.3.3 Configuring the Function Blocks in the SILworX Structure Tree

To create the function block in the SILworX structure tree

- 1. In the structure tree, open Configuration, Resource, Protocols, e.g., PROFIBUS Master.
- 2. Right-click Function Blocks and select New.
- 3. In the SILworX structure tree, select the suitable function block.

Figure 35: Selecting Function Blocks

The inputs of the function block (checkmark in the Input Variables column) must be connected to the same variables that are connected in the user program to the F_Output s of the function block.

The outputs of the function block (no checkmark in the Input Variables column) must be connected to the same variables that are connected in the user program to the F_I of the function block.

Figure 36: System Variables of the MSTAT Function Block

HI 801 523 E Rev. 11.04.00 Page 125 of 134

Protocol General

Appendix

Glossary

Term	Description
ARP	Address resolution protocol, network protocol for assigning the network addresses to hardware addresses.
Bit variable	Variable that is addressed bit by bit.
CENELEC	Comité Européen de Normalisation Électrotechnique (European Commitee for Electrotechnical Standardization).
COM	Communication module.
Connector board	Connector board for the HIMax module.
CPU	Processor module.
CRC	Cyclic redundancy check.
Data view	The global variables for output and output data are assigned to a data view to allow access to Modbus sources.
EN	European standard.
Export area	The export area is the process data volume that is written to by the system (a user program, hardware input or another protocol) and is read by the Modbus master.
FB	Fieldbus.
FBD	Function block diagrams.
ICMP	Internet control message protocol, network protocol for status or error messages.
IEC	International electrotechnical commission.
Import area	Process data volume that is written to by the Modbus master and can be used as input data for the system (in a user program, hardware output or another protocol).
Interference-free	Supposing that two input circuits are connected to the same source (e.g., a transmitter). An input circuit is termed "interference-free" if it does not distort the signals of the other input circuit.
KE	Communication end point.
MAC address	Media access control address, hardware address of one network connection.
NSIP	Not safety-related protocol.
PADT	Programming and debugging tool (acc. to IEC 61131-3), PC with SILworX.
PE	Protective ground.
PELV	Protective extra low voltage.
PES	Programmable electronic system.
R	Read.
R/W	Read/Write.
Rack ID	Base rack identification (number).
Register variable	Variable that is addressed word by word.
SB	System bus.
SFF	Safe failure fraction, i.e., portion of faults that can be safely controlled.
SIF	Safety-instrumented function.
SIL	Safety integrity level (in accordance with IEC 61508).
SILworX	Programming tool for HIMax, HIQuad X und HIMatrix.
SIP	Safety-instrumented protocol.
SNTP	·
	Simple network time protocol (RFC 1769).
SRS	System.Rack.Slot.
SRS SW	
	System.Rack.Slot.
SW	System.Rack.Slot. Software.
SW TMO	System.Rack.Slot. Software. Timeout.

HI 801 523 E Rev. 11.04.00 Page 127 of 134

General Protocol

Index of I	Figures		
Figure 1:	Controlling the Consumer/Provider Status (IOxS)		
Figure 2:	PROFIsafe Control Byte and Status Byte	15	
Figure 3:	Response Time between an F-Device and a HIMA F-Host	17	
Figure 4:	Response Time using 1 HIMA F-Host and 2 F-Devices	17	
Figure 5:	HIMax Structure Tree for the PROFINET IO-Controller	22	
Figure 6:	Device Access Point (DAP) for the PROFINET IO-Device	23	
Figure 7:	Structure Tree for the PROFINET IO-Controller	27	
Figure 8:	Communication via PROFINET IO/PROFIsafe	41	
Figure 9:	HIMax Structure Tree for the PROFINET IO-Device	47	
Figure 10:	Communication via PROFINET IO	57	
Figure 11:	HIMax PROFIBUS DP Slave with Modules	60	
Figure 12:	User Data Field	63	
Figure 13:	Verification Dialog Box	63	
Figure 14:	PROFIBUS DP Master Properties	64	
Figure 15:	PROFIBUS DP Slave Properties	65	
Figure 16:	Isochronous PROFIBUS DP Cycle	75	
Figure 17:	Edit User Parameters Dialog Box	84	
Figure 18:	MSTAT Function Block	86	
Figure 19:	Programming Example for Setting the A_Mode Input	87	
Figure 20:	Suggestion for Programming the Logic of the PBM_Mode Auxiliary Function Block	88	
Figure 21:	RALRM Function Block	90	
Figure 22:	RDIAG Function Block	94	
Figure 23:	RDREC Function Block	97	
Figure 24:	SLACT Function Block	99	
Figure 25:	WRREC Function Block	102	
Figure 26:	The ACTIVE Auxiliary Function Block	105	
Figure 27:	The ALARM Auxiliary Function Block	106	
Figure 28:	The DEID Auxiliary Function Block	107	
Figure 29:	The ID Auxiliary Function Block	108	
Figure 30:	The NSLOT Auxiliary Function Block	109	
Figure 31:	The SLOT Auxiliary Function Block	109	
Figure 32:	The STDDIAG Auxiliary Function Block	110	
Figure 33:	PNM_MSTST Function Block (Upper Part)	124	
Figure 34:	PNM_MSTST Function Block (Lower Part)	125	
Figure 35:	Selecting Function Blocks	125	
Figure 36:	System Variables of the MSTAT Function Block	125	

Page 128 of 134 HI 801 523 E Rev. 11.04.00

Protocol General

Index of	Tahles	
Table 1:	Additional Applicable Manuals	7
Table 2:	Overview of PROFINET IO Function Blocks	12
Table 3:	System Requirements and Equipment for the PROFINET IO-Controller	21
Table 4:	PROFINET IO-Controller Properties	21
Table 5:	The PROFINET IO-Device (Properties) Tab	28
Table 6:	The Parameters (Properties) Tab	29
Table 7:	The Parameters (Properties) Tab	29
Table 8:	The Parameters Tab	30
Table 9:	The System Variables Tab	30
Table 10:	The Parameters Tab for the I/O PROFINET IO Module	31
Table 11:	The Parameters Tab	32
Table 12:	The System Variables Tab	35
Table 13:	F-Parameters for Submodule Input (Properties)	36
Table 14:	The Parameters Tab	37
Table 15:	The System Variables Tab	38
Table 16:	The Parameters Tab	39
Table 17:	The System Variables Tab	40
Table 18:	Application Relation (Properties)	41
Table 19:	Alarm CR (Properties)	42
Table 20:	Input CR (Properties)	43
Table 21:	Input CR (Edit)	44
Table 22:	Output CR (Properties)	45
Table 23:	System Requirements and Equipment for the PROFINET IO-Controller	46
Table 24:	PROFINET IO-Controller Properties	46
Table 25:	General Properties for the PROFINET IO-Device	49
Table 26:	PROFINET IO Modules	50
Table 27:	PROFIsafe Modules	51
Table 28:	General Properties for the Device Module	52
Table 29:	Edit Dialog Box for Submodule	54
Table 30:	Equipment and System Requirements	55
Table 31:	PROFIBUS DP Master Properties	56
Table 32:	Outputs for the HIMA PROFIBUS DP Slave	58
Table 33:	Inputs in the HIMA PROFIBUS DP Slave	58
Table 34:	Variables of the Input Module [000] DP Input/ELOP Export: 2 Bytes	61
Table 35:	Variables of the Input Module [001] DP Input/ELOP Export: 8 Bytes	61
Table 36:	Variables of the Input Module [002] DP Input/ELOP Export: 1 Byte	61
Table 37:	Variables of the Output Module [003] DP Output/ELOP Import: 2 Bytes	62
Table 38:	Variables of the Output Module [004] DP Output/ELOP Import: 1 Byte	62
Table 39:	System Variables in the PROFIBUS DP Master	66

HI 801 523 E Rev. 11.04.00 Page 129 of 134

General		Protoco
Table 40:	General Properties for the PROFIBUS DP Master	68
Table 41:	Timings Tab in the Properties Dialog Box for the PROFIBUS DP Master	70
Table 42:	CPU/COM Tab in the Properties Dialog Box for the PROFIBUS DP Master	70
Table 43:	Other Properties for the PROFIBUS DP Master	71
Table 44:	Default Values for Token Rotation Time at Different Transfer Rates	72
Table 45:	Transmission Time for a Character at Different Transfer Rates	72
Table 46:	Elements Required for Calculating the Token Rotation Time	73
Table 47:	System Variables in the PROFIBUS DP Slave	77
Table 48:	The Parameters Tab in the PROFIBUS DP Slave	78
Table 49:	Groups Tab in the Properties Dialog Box for the PROFIBUS DP Slave	79
Table 50:	DP-V1 Tab in the Properties Dialog Box for the PROFIBUS DP Slave	79
Table 51:	Alarms Tab in the Properties Dialog Box for the PROFIBUS DP Slave	80
Table 52:	Data Tab in the Properties Dialog Box for the PROFIBUS DP Slave	80
Table 53:	The Model Tab in the Properties Dialog Box for the PROFIBUS DP Slave	80
Table 54:	Features Tab in the Properties Dialog Box for the PROFIBUS DP Slave	81
Table 55:	Baud Rates Tab in the Properties Dialog Box for the PROFIBUS DP Slave	81
Table 56:	Acyclic Tab in the Properties Dialog Box for the PROFIBUS DP Slave	82
Table 57:	GSD File of the HIMA PROFIBUS DP Slave	82
Table 58:	Example: Groups 14 of the User Data Field	84
Table 59:	Example: Groups 14 of the User Data Field	84
Table 60:	Overview of the PROFIBUS DP Function Blocks	85
Table 61:	A-Inputs for the MSTAT Function Block	87
Table 62:	A-Outputs for the MSTAT Function Block	88
Table 63:	F-Inputs for the MSTAT Function Block	89
Table 64:	F-Outputs for the MSTAT Function Block	89
Table 65:	Input System Variables	89
Table 66:	Output System Variables	89
Table 67:	A-Inputs for the RALRM Function Block	91
Table 68:	A-Outputs for the RDIAG Function Block	91
Table 69:	F-Inputs for the RALRM Function Block	91
Table 70:	F-Outputs for the RALRM Function Block	91
Table 71:	Input System Variables	92
Table 72:	Output System Variables	92
Table 73:	Alarm Data	93
Table 74:	A-Inputs for the RDIAG Function Block	94
Table 75:	F-Outputs for the RDIAG Function Block	94
Table 76:	F-Inputs for the RDIAG Function Block	95
Table 77:	F-Outputs for the RDIAG Function Block	95
Table 78:	Input System Variables	95
Table 79:	Output System Variables	96

Page 130 of 134 HI 801 523 E Rev. 11.04.00

Protocol		Genera
Table 80:	Diagnostic Data	96
Table 81:	A-Inputs for the RDREC Function Block	97
Table 82:	A-Outputs for the RDREC Function Block	97
Table 83:	F-Inputs for the RDREC Function Block	98
Table 84:	F-Outputs for the RDREC Function Block	98
Table 85:	Input System Variables	98
Table 86:	Output System Variables	99
Table 87:	Data	99
Table 88:	A-Inputs for the SLACT Function Block	100
Table 89:	A-Outputs for the SLACT Function Block	100
Table 90:	F-Inputs for the SLACT Function Block	100
Table 91:	F-Outputs for the SLACT Function Block	101
Table 92:	Input System Variables	101
Table 93:	Output System Variables	101
Table 94:	A-Inputs for the WRREC Function Block	102
Table 95:	A-Outputs for the WRREC Function Block	102
Table 96:	F-Inputs for the WRREC Function Block	103
Table 97:	F-Outputs for the WRREC Function Block	103
Table 98:	Input System Variables	103
Table 99:	Output System Variables	104
Table 100:	Data	104
Table 101:	Overview of the Auxiliary Function Blocks	105
Table 102:	Inputs for the ACTIVE Auxiliary Function Block	105
Table 103:	Outputs for the ACTIVE Auxiliary Function Block	105
Table 104:	Inputs for the ALARM Auxiliary Function Block	106
Table 105:	Outputs for the ALARM Auxiliary Function Block	107
Table 106:	Inputs for the DEID Auxiliary Function Block	107
Table 107:	Outputs for the DEID Auxiliary Function Block	107
Table 108:	Inputs for the ID Auxiliary Function Block	108
Table 109:	Outputs for the ID Auxiliary Function Block	108
Table 110:	Inputs for the NSLOT Auxiliary Function Block	109
Table 111:	Outputs for the NSLOT Auxiliary Function Block	109
Table 112:	Inputs for the SLOT Auxiliary Function Block	110
Table 113:	Outputs for the SLOT Auxiliary Function Block	110
Table 114:	Inputs for the STDDIAG Auxiliary Function Block	110
Table 115:	Outputs for the STDDIAG Auxiliary Function Block	111
Table 116:	Error Codes of the Function Blocks	112
Table 117:	View Box for the PROFIBUS Master	115
Table 118:	PROFIBUS DP Master State	115
Table 119:	Behavior of the PROFIBUS DP Master	115

HI 801 523 E Rev. 11.04.00 Page 131 of 134

General	Protocol
Table 120: The FBx LED	116
Table 121: The FAULT FBx	116
Table 122: Equipment and System Requirements for the HIMA PROFIBUS DP	Slave 117
Table 123: Properties of the HIMA PROFIBUS DP Slave	117
Table 124: System Variables in the PROFIBUS DP Slave	119
Table 125: Slave Properties: General Tab	121
Table 126: View Box of the PROFIBUS DP Slave	121
Table 127: The FBx LED	122
Table 128: The FAULT FBx	122

Page 132 of 134 HI 801 523 E Rev. 11.04.00

MANUAL

PROFI* Protocols

HI 801 523 E

For further information, please contact:

HIMA Paul Hildebrandt GmbH

Albert-Bassermann-Str. 28 68782 Brühl, Germany

Phone +49 6202 709-0 Fax +49 6202 709-107 E-mail info@hima.com

Learn more about HIMA solutions online:

www.hima.com/en/