AI_Algorithms_Final_Project_Group_5-1

February 14, 2024

1 AI Algorithms Final Project

1.0.1 Group 5

- Hani noorbux Shaikh
- Declan Kintu
- Riddhi Patel
- Sehreen Khan

Prepare Problem * Load libraries * Load dataset

```
[]: import pandas as pd
     import seaborn as sns
     import matplotlib.pyplot as plt
     import pickle
     from sklearn.model_selection import train_test_split
     from sklearn.metrics import (mean squared error, mean absolute error,
                                  r2_score, explained_variance_score)
     from sklearn.linear_model import LinearRegression, Ridge, Lasso
     from sklearn.tree import DecisionTreeRegressor
     from sklearn.ensemble import RandomForestRegressor, StackingRegressor
     from sklearn.svm import SVR
     from sklearn.model selection import GridSearchCV
     from sklearn.feature_selection import SelectFromModel
     from sklearn.tree import plot_tree
[]: df = pd.read_csv('house_price.csv')
    df.head()
[]:
                                               bedrooms
                                                         bathrooms
                                                                    sqft_living \
                id
                               date
                                        price
     0 7129300520
                    20141013T000000
                                     221900.0
                                                      3
                                                              1.00
                                                                            1180
     1 6414100192
                                     538000.0
                                                      3
                                                              2.25
                    20141209T000000
                                                                            2570
     2 5631500400
                    20150225T000000
                                     180000.0
                                                      2
                                                              1.00
                                                                            770
     3 2487200875
                    20141209T000000
                                     604000.0
                                                      4
                                                              3.00
                                                                            1960
     4 1954400510 20150218T000000
                                     510000.0
                                                      3
                                                              2.00
                                                                            1680
        sqft_lot floors waterfront view condition grade sqft_above
     0
            5650
                     1.0
                                   0
                                         0
                                                    3
                                                           7
                                                                     1180
```

1	7242 2	2.0	0	0	3	7	21	70
2	10000 1	0	0	0	3	6	7	70
3	5000 1	0	0	0	5	7	10	50
4	8080 1	0	0	0	3	8	16	80
	sqft_basement	<pre>yr_built</pre>	yr_re	novated	zipcode	sqft_li	iving15	sqft_lot15
0	0	1955		0	98178		1340	5650
1	400	1951	1991		98125	1690		7639
2	0	1933		0	98028		2720	8062
3	910	1965		0	98136		1360	5000
4	0	1987		0	98074		1800	7503

1.1 Summarize Data/ Exploratory Data Analysis

- Descriptive statistics
- Data visualizations

```
[]: # Descriptive statistics df.describe()
```

[]:		id	price	bedrooms	bathrooms	sqft_living	\
	count	2.161300e+04	2.161300e+04	21613.000000	21613.000000	21613.000000	
	mean	4.580302e+09	5.401822e+05	3.370842	2.114757	2079.899736	
	std	2.876566e+09	3.673622e+05	0.930062	0.770163	918.440897	
	min	1.000102e+06	7.500000e+04	0.000000	0.000000	290.000000	
	25%	2.123049e+09	3.219500e+05	3.000000	1.750000	1427.000000	
	50%	3.904930e+09	4.500000e+05	3.000000	2.250000	1910.000000	
	75%	7.308900e+09	6.450000e+05	4.000000	2.500000	2550.000000	
	max	9.900000e+09	7.700000e+06	33.000000	8.000000	13540.000000	
		sqft_lot	floors	waterfront	view	condition	\
	count	2.161300e+04	21613.000000	21613.000000	21613.000000	21613.000000	
	mean	1.510697e+04	1.494309	0.007542	0.234303	3.409430	
	std	4.142051e+04	0.539989	0.086517	0.766318	0.650743	
	min	5.200000e+02	1.000000	0.000000	0.000000	1.000000	
	25%	5.040000e+03	1.000000	0.000000	0.000000	3.000000	
	50%	7.618000e+03	1.500000	0.000000	0.000000	3.000000	
	75%	1.068800e+04	2.000000	0.000000	0.000000	4.000000	
	max	1.651359e+06	3.500000	1.000000	4.000000	5.000000	
		grade	sqft_above	sqft_basement	<pre>yr_built</pre>	<pre>yr_renovated</pre>	\
	count	21613.000000	21613.000000	21613.000000	21613.000000	21613.000000	
	mean	7.656873	1788.390691	291.509045	1971.005136	84.402258	
	std	1.175459	828.090978	442.575043	29.373411	401.679240	
	min	1.000000	290.000000	0.000000	1900.000000	0.000000	
	25%	7.000000	1190.000000	0.000000	1951.000000	0.000000	
	50%	7.000000	1560.000000	0.000000	1975.000000	0.000000	

```
75%
           8.000000
                                        560.000000
                                                      1997.000000
                       2210.000000
                                                                        0.000000
          13.000000
                       9410.000000
                                       4820.000000
                                                      2015.000000
                                                                    2015.000000
max
                      sqft_living15
             zipcode
                                         sqft_lot15
       21613.000000
                       21613.000000
                                       21613.000000
count
       98077.939805
                        1986.552492
                                       12768.455652
mean
std
          53.505026
                         685.391304
                                       27304.179631
       98001.000000
                         399.000000
                                         651.000000
min
25%
       98033.000000
                        1490.000000
                                        5100.000000
50%
       98065.000000
                        1840.000000
                                        7620.000000
75%
       98118.000000
                        2360.000000
                                       10083.000000
max
       98199.000000
                        6210.000000
                                      871200.000000
```

Visualizations:

```
[]: df['bathrooms'].plot(kind='line', figsize=(8, 4), title='bathrooms')
plt.gca().spines[['top', 'right']].set_visible(False)
```


We can spot a clear outlier here

```
[]: df['bedrooms'].plot(kind='line', figsize=(8, 4), title='bedrooms')
plt.gca().spines[['top', 'right']].set_visible(False)
```



```
[]: df['price'].plot(kind='line', figsize=(8, 4), title='price')
plt.gca().spines[['top', 'right']].set_visible(False)
```


2D Distributions

```
[]: df.plot(kind='scatter', x='bathrooms', y='sqft_living', s=32, alpha=.8) plt.gca().spines[['top', 'right',]].set_visible(False)
```



```
[]: df.plot(kind='scatter', x='bedrooms', y='bathrooms', s=32, alpha=.8) plt.gca().spines[['top', 'right',]].set_visible(False)
```


We can see an outlier in the plot below.

```
[]: df.plot(kind='scatter', x='price', y='bedrooms', s=32, alpha=.8)
plt.gca().spines[['top', 'right',]].set_visible(False)
```



```
Distributions
[]: | df['bathrooms'].plot(kind='hist', bins=20, title='bathrooms')
    plt.gca().spines[['top', 'right',]].set_visible(False)
```



```
[]: df['bedrooms'].plot(kind='hist', bins=20, title='bedrooms')
plt.gca().spines[['top', 'right',]].set_visible(False)
```



```
[]: df['price'].plot(kind='hist', bins=20, title='price')
plt.gca().spines[['top', 'right',]].set_visible(False)
```



```
[]: correlation_matrix = df.drop(columns=['date']).corr()
plt.figure(figsize=(12, 10))
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=".2f", use the show of the sh
```


Independent Variables

- date Date of the home sale
- bedrooms Number of bedrooms
- bathrooms Number of bathrooms, where .5 accounts for a room with a toilet but no shower
- sqft_living Square footage of the apartments interior living space
- sqft lot Square footage of the land space
- floors Number of floors
- waterfront A variable for whether the apartment was overlooking the waterfront or not
- view An index from 0 to 4 of how good the view of the property was
- condition An index from 1 to 5 on the condition of the apartment,
- grade An index from 1 to 13, where 1-3 falls short of building construction and design, 7 has an average level of construction and design, and 11-13 have a high quality level of construction and design.
- sqft above The square footage of the interior housing space that is above ground level
- sqft basement The square footage of the interior housing space that is below ground level

yr_built - The year the house was initially built

- yr_renovated The year of the house's last renovation
- zipcode What zipcode area the house is in
- sqft_living15 The square footage of interior housing living space for the nearest 15 neighbors
- sqft_lot15 The square footage of the land lots of the nearest 15 neighbors

Dependent Variables price - Price of each home sold

Prepare Data * Data Cleaning * Feature Selection * Data Transforms

[]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21613 entries, 0 to 21612
Data columns (total 19 columns):
```

#	Column	Non-Null Count	Dtype					
0	id	21613 non-null	 int64					
1	date	21613 non-null	object					
2	price	21613 non-null	float64					
3	bedrooms	21613 non-null	int64					
4	bathrooms	21613 non-null	float64					
5	sqft_living	21613 non-null	int64					
6	sqft_lot	21613 non-null	int64					
7	floors	21613 non-null	float64					
8	waterfront	21613 non-null	int64					
9	view	21613 non-null	int64					
10	condition	21613 non-null	int64					
11	grade	21613 non-null	int64					
12	sqft_above	21613 non-null	int64					
	-	21613 non-null	int64					
14	<pre>yr_built</pre>	21613 non-null	int64					
15	${\tt yr_renovated}$	21613 non-null	int64					
16	zipcode	21613 non-null	int64					
17	sqft_living15	21613 non-null	int64					
18	sqft_lot15	21613 non-null	int64					
dtyp	es: float64(3),	int64(15), object(1)						
memo	memory usage: 3.1+ MB							

There are no nulls to handle.

[]: df.isna().sum()

0 sqft_lot floors 0 waterfront 0 0 view condition 0 grade sqft_above 0 sqft_basement 0 0 yr_built yr_renovated 0 zipcode 0 sqft_living15 0 sqft_lot15 dtype: int64

[]: df.head()

[]:		id	ì	d	late	prio	ce	bedroom	s bath	rooms	sqft_	living	\
	0	7129300520	20141	.013T000	000	221900	.0	;	3	1.00		1180	
	1	6414100192	20141	.209T000	000	538000	.0	;	3	2.25		2570	
	2	5631500400	20150	225T000	000	180000	.0	:	2	1.00		770	
	3	2487200875	5 20141	.209T000	000	604000	.0	4	4	3.00		1960	
	4	1954400510	20150	218T000	000	510000	.0	;	3	2.00		1680	
		$sqft_lot$	floors	waterf	ront	view	СО	ndition	grade	sqft_	above	\	
	0	5650	1.0		0	0		3	7		1180		
	1	7242	2.0		0	0		3	7		2170		
	2	10000	1.0		0	0		3	6		770		
	3	5000	1.0		0	0		5	7		1050		
	4	8080	1.0		0	0		3	8		1680		
		0. 1										a	_
		sqft_basem	•	_built	yr_1	renovate		zipcode	sqft_	•	-	ft_lot1	
	0		0	1955			0	98178		13	40	565	50
	1		400	1951		199	91	98125		16	90	763	39
	2		0	1933			0	98028		27	20	806	32
	3		910	1965			0	98136		13	60	500	00
	4		0	1987			0	98074		18	00	750	3

Handling date variables "20141013T000000," seems to be in a timestamp format

We will Convert date to number of days from a randomly picked reference date. This will be the feature we train instead of date in its raw format.

Additionally, we can also get features like month, year, quarter, day, day of the week which can be trained.

Extra features do not always mean high accuracy. So we will experiment with these features to get optimal accuracy eventually.

```
[]: # Convert 'date' column to datetime format
     df['date'] = pd.to_datetime(df['date'], format='%Y%m%dT%H%M%S')
     # Extract year, month, and day
     df['year'] = df['date'].dt.year
     df['month'] = df['date'].dt.month
     df['day'] = df['date'].dt.day
     # df['day_of_week'] = df['date'].dt.day_of_week
     # df['day_of_year'] = df['date'].dt.day_of_year
     df['quarter'] = df['date'].dt.quarter
     # Assuming 1st Jan 2014 as a reference date to calculate no. of days
     reference_date = pd.to_datetime('20140101T000000', format='%Y%m%dT%H%M%S')
     # Calculate time difference in days
     df['days_since_reference'] = (df['date'] - reference_date).dt.days
[]: df[['date', 'year', 'month', 'day', 'quarter', 'days_since_reference']]
[]:
                                                  days_since_reference
                 date year month day quarter
     0
           2014-10-13 2014
                                10
                                     13
                                               4
                                                                    285
           2014-12-09
                                     9
                                               4
     1
                       2014
                                12
                                                                    342
     2
           2015-02-25
                       2015
                                 2
                                     25
                                               1
                                                                    420
     3
           2014-12-09
                                12
                                      9
                                                                    342
                       2014
     4
           2015-02-18
                       2015
                                     18
                                                                    413
     21608 2014-05-21
                       2014
                                 5
                                     21
                                               2
                                                                    140
     21609 2015-02-23
                       2015
                                 2
                                     23
                                               1
                                                                    418
     21610 2014-06-23 2014
                                 6
                                     23
                                               2
                                                                    173
     21611 2015-01-16 2015
                                 1
                                               1
                                                                    380
                                     16
     21612 2014-10-15 2014
                                10
                                     15
                                                                    287
     [21613 rows x 6 columns]
    Drop date and ID
[]: df = df.drop(columns=['date', 'id'])
    Check if all values in the columns are numeric.
[]: df.apply(pd.to_numeric, errors='coerce').notna().all()
[]: price
                             True
     bedrooms
                             True
     bathrooms
                             True
     sqft_living
                             True
     sqft_lot
                             True
```

floors True True waterfront view True condition True grade True sqft_above True sqft_basement True yr_built True True yr renovated zipcode True sqft_living15 True sqft_lot15 True year True month True day True quarter True days_since_reference True dtype: bool

1.2 Model Building and Evaluate Algorithms

- Split-out validation dataset
- Test options and evaluation metric
- Spot Check Algorithms (5 algorithms)
- Compare Algorithms

```
plt.show()
```

```
[]: def model_comparison(df):
       # Split
       X = df.drop(columns=['price'])
       y = df['price']
      X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size=0.2,
                                                              random state=22)
       # Spot check algorithms
      models = []
       models.append(('Linear Regression', LinearRegression()))
      models.append(('Ridge Regression', Ridge()))
      models.append(('Lasso Regression', Lasso()))
      models.append(('Decision Tree', DecisionTreeRegressor()))
      models.append(('Random Forest', RandomForestRegressor()))
       models.append(('Support Vector Regression', SVR()))
       # Evaluate MSE for each model and Compare the Algorithms
      mse results = []
      mae results = []
      r2_results = []
       evs results = []
       # Evaluate each model on multiple metrics
       for name, model in models:
           model.fit(X_train, y_train)
           metrics_dict = evaluate_model(model, X_valid, y_valid)
           mse_results.append((name, metrics_dict['Mean Squared Error']))
           mae_results.append((name, metrics_dict['Mean Absolute Error']))
           r2_results.append((name, metrics_dict['R-squared']))
           evs_results.append((name, metrics_dict['Mean Squared Error']))
           print(f'{name} Metrics on Validation Set:')
           for metric, value in metrics_dict.items():
               print(f'{metric}: {value}')
           print('-' * 40)
       plot_metrics(mse_results, 'Comparison - Mean Squared Error',
                    'Mean Squared Error on Validation Set')
       print('-' * 100)
      plot_metrics(mae_results, 'Comparison - Mean Absolute Error ',
                    'Mean Absolute Error on Validation Set')
       print('-' * 100)
      plot_metrics(r2_results, 'Comparison - R-squared', 'R-squared on Validation⊔

Set')
```

```
print('-' * 100)
      plot_metrics(evs_results, 'Comparison - Explained Variance Score',
                    'Explained Variance Score on Validation Set')
      print('-' * 100)
       # returning the X_train, X_valid, y_train, y_valid because we need it for_{\sqcup}
      →optimization in the following steps
       return models, X_train, X_valid, y_train, y_valid
[]: models, X_train, X_valid, y_train, y_valid = model_comparison(df)
    Linear Regression Metrics on Validation Set:
    Mean Squared Error: 45616742792.02586
    Mean Absolute Error: 139097.9464413058
    R-squared: 0.6335778201138785
    Explained Variance Score: 0.6336613207459245
    _____
    Ridge Regression Metrics on Validation Set:
    Mean Squared Error: 45747433267.07575
    Mean Absolute Error: 139347.27353236364
    R-squared: 0.6325280325616094
    Explained Variance Score: 0.6326142383368154
    C:\Users\d-kin\AppData\Roaming\Python\Python312\site-
    packages\sklearn\linear_model\_coordinate_descent.py:628: ConvergenceWarning:
    Objective did not converge. You might want to increase the number of iterations,
    check the scale of the features or consider increasing regularisation. Duality
    gap: 3.856e+14, tolerance: 2.378e+11
      model = cd_fast.enet_coordinate_descent(
    Lasso Regression Metrics on Validation Set:
    Mean Squared Error: 45740663739.6093
    Mean Absolute Error: 139356.39322838868
    R-squared: 0.632582409635886
    Explained Variance Score: 0.6326687039828254
    Decision Tree Metrics on Validation Set:
    Mean Squared Error: 47777553033.2489
    Mean Absolute Error: 122452.48554244738
    R-squared: 0.6162208421613096
    Explained Variance Score: 0.6162250487082066
    Random Forest Metrics on Validation Set:
    Mean Squared Error: 26695113214.887966
    Mean Absolute Error: 86887.08227619709
    R-squared: 0.7855681712939846
    Explained Variance Score: 0.7855810091086399
```

Support Vector Regression Metrics on Validation Set:

Mean Squared Error: 131870798725.32944 Mean Absolute Error: 219491.91872041693

R-squared: -0.05926864950791555

Explained Variance Score: 6.319471537064025e-05

We see best results for Random forest.

Modify the df and run the comparison. Optimization steps: * Add or remove the additional features * One-Hot encoding of Zip codes (There are a lot of zip codes and it might not be the best thing to add that many features. But we can still try) * Try encoding directly * Encoding temporal features depending on models used * Feature selection

1.3 Identify and Remove Outliers

We removed outliers from our data by looking at the values in our dataset. Outliers are values that are unusually high or low. We used a method called the Interquartile Range (IQR) to find a range within which most of our data lies. Any value outside this range was considered an outlier

and removed. This helps make our dataset more representative and ensures that extreme values don't disproportionately influence our analysis.

```
[]: def remove_outliers_iqr(df, column_name):
         # Calculate the first and third quartiles (Q1 and Q3)
         Q1 = df[column_name].quantile(0.25)
         Q3 = df[column_name].quantile(0.75)
         # Calculate the IQR (Interquartile Range)
         IQR = Q3 - Q1
         # Define the lower and upper bounds for outliers
         threshold = 1.5
         lower_bound = Q1 - threshold * IQR
         upper_bound = Q3 + threshold * IQR
         # Identify and remove outliers
         outliers_removed = df[(df[column_name] >= lower_bound)
                               & (df[column_name] <= upper_bound)]
         # Printing the detected outliers
         outliers = df[~df.isin(outliers_removed)].dropna()
         print(column_name, outliers)
         return outliers_removed
[]: df = remove_outliers_iqr(df, 'bedrooms')
```

bedroom	ns	price	bedrooms	bathr	ooms	sqft_l	iving	sqft_lot	floors	\
154	350000.0	1.0	1.0	0	700	0.0	5100.0	1.0		
209	464000.0	6.0	3.0	0	2300	0.0	3404.0	2.0		
232	315000.0	6.0	2.7	5	2940	0.0	7350.0	1.0		
239	472000.0	6.0	2.5	0	4410	0.0 1	4034.0	1.0		
264	369900.0	1.0	0.7	5	760	0.0 1	0079.0	1.0		
•••	•••		•••	•••	•		•			
21375	1170000.0	6.0	3.5	0	4310	0.0	7760.0	2.0		
21443	250000.0	1.0	1.5	0	1180	0.0	1688.0	2.0		
21519	420000.0	1.0	2.0	0	1070	0.0	675.0	2.0		
21522	462500.0	6.0	3.0	0	2390	0.0	4000.0	2.0		
21552	516500.0	1.0	1.2	5	1100	0.0	638.0	3.0		
	waterfront	view co	ondition	grade	yı	_built	yr_re	enovated	\	
154	0.0	0.0	3.0	7.0	•••	1942.0		0.0		
209	0.0	0.0	3.0	7.0	•••	1920.0		1994.0		
232	0.0	0.0	3.0	8.0	•••	1978.0		0.0		
239	0.0	2.0	4.0	9.0	•••	1965.0		0.0		
264	1.0	4.0	5.0	5.0	•••	1936.0		0.0		
•••				•••		•••				
21375	0.0	0.0	3.0	10.0	•••	2013.0		0.0		

```
8.0 ...
                                                                 0.0
21443
              0.0
                    0.0
                               3.0
                                                2007.0
21519
              0.0
                    0.0
                               3.0
                                      8.0 ...
                                                2007.0
                                                                 0.0
21522
              0.0
                               3.0
                                      7.0 ...
                                                2014.0
                                                                 0.0
                    0.0
21552
             0.0
                    0.0
                               3.0
                                      9.0 ...
                                                2014.0
                                                                 0.0
       zipcode sqft_living15 sqft_lot15
                                             year month
                                                                quarter \
                                                           day
       98115.0
                       1010.0
154
                                   5100.0 2014.0
                                                     5.0 16.0
                                                                    2.0
      98133.0
                       1560.0
                                   1312.0 2014.0
                                                     7.0 17.0
                                                                    3.0
209
232
      98023.0
                       2120.0
                                   8236.0 2014.0
                                                    11.0 21.0
                                                                    4.0
239
       98003.0
                       2600.0
                                  13988.0 2014.0
                                                     5.0 29.0
                                                                    2.0
264
       98070.0
                       1230.0
                                  14267.0 2014.0
                                                    10.0 27.0
                                                                    4.0
                                      •••
                                                                    3.0
                       4620.0
                                  10217.0 2014.0
                                                     7.0 17.0
21375 98059.0
                                                                    2.0
21443
      98126.0
                       1380.0
                                   2059.0 2015.0
                                                     4.0
                                                           7.0
21519 98118.0
                                   788.0 2015.0
                                                     4.0
                                                           7.0
                                                                    2.0
                       1220.0
21522 98118.0
                       1680.0
                                   5000.0 2015.0
                                                     3.0
                                                           2.0
                                                                    1.0
21552 98112.0
                       1110.0
                                   1933.0 2014.0
                                                     6.0 27.0
                                                                    2.0
       days_since_reference
154
                      135.0
209
                      197.0
232
                      324.0
239
                      148.0
264
                      299.0
21375
                      197.0
                      461.0
21443
                      461.0
21519
                      425.0
21522
21552
                      177.0
```

[546 rows x 22 columns]

[]: df = remove_outliers_iqr(df, 'bathrooms')

bathro	oms	price	bedrooms	bathrooms s	sqft_living	sqft_lot	floors
\							
5	1230000.0	4.0	4.50	5420.0	101930.0	1.0	
75	832500.0	4.0	4.00	3430.0	35102.0	2.0	
235	1030000.0	5.0	4.00	3760.0	28040.0	2.0	
270	1370000.0	4.0	4.75	5310.0	57346.0	2.0	
300	3080000.0	4.0	5.00	4550.0	18641.0	1.0	
•••	•••	•••	•••		•••		
21551	1380000.0	5.0	4.50	4350.0	13405.0	2.0	
21561	750000.0	5.0	4.00	4500.0	8130.0	2.0	
21576	3570000.0	5.0	4.50	4850.0	10584.0	2.0	
21593	1090000.0	5.0	3.75	4170.0	8142.0	2.0	
21600	1540000.0	5.0	3.75	4470.0	8088.0	2.0	

	waterfron	nt view	condi	tion	grade		yr_b	uilt	yr_reno	vated	\	
5	0.	0.0		3.0	11.0	•••	20	01.0		0.0		
75	0.	0.0		4.0	10.0	•••	19	86.0		0.0		
235	0.	0.0		3.0	10.0	•••	19	83.0		0.0		
270	0.	0.0		4.0	11.0	•••	19	89.0		0.0		
300	1.			3.0	10.0		20	02.0		0.0		
•••		•••	•••		•••			•••				
21551	0.			3.0	11.0	•••	20	14.0		0.0		
21561	0.	0.0		3.0	10.0	•••	20	07.0		0.0		
21576	1.	0 4.0		3.0	10.0	•••	20	07.0		0.0		
21593	0.	0 2.0		3.0	10.0	•••	20	06.0		0.0		
21600	0.	0.0		3.0	11.0	•••	20	08.0		0.0		
	zipcode	sqft_liv	ring15	saft	_lot15		year	month	day	quarte	r	\
5	98053.0		760.0	-	1930.0		14.0	5.0	•	2.		`
75	98075.0		3240.0		5020.0		14.0	11.0		4.		
235	98073.0		3430.0	35020.0			14.0	6.0		2.		
233 270								10.0				
	98077.0		180.0				14.0			4.		
300	98074.0	4	550.0	1	9508.0		14.0	6.0	24.0	2.	U	
 01 E E 1			000	•••	7000 0				04.0	4	^	
21551	98074.0		3990.0		7208.0		14.0	12.0		4.		
21561	98059.0		2840.0		8402.0		15.0	1.0		1.		
21576	98008.0		3470.0		8270.0		15.0	1.0		1.		
21593	98056.0		3030.0		7980.0		15.0	3.0		1.		
21600	98004.0	2	2780.0		8964.0	20	14.0	10.0	15.0	4.	0	
	days_sinc	e_refere	ence									
5	• –		31.0									
75		30	0.8									
235		16	0.0									
270			9.0									
300			4.0									
21551		35	7.0									
21561		37	9.0									
21576		37	1.0									
21593		44	0.0									
21600			37.0									

[461 rows x 22 columns]

[]: models, X_train, X_valid, y_train, y_valid = model_comparison(df)

Linear Regression Metrics on Validation Set:

Mean Squared Error: 36986824745.15031
Mean Absolute Error: 127847.94877003536

R-squared: 0.624749908462987

Explained Variance Score: 0.6247608898457676

Ridge Regression Metrics on Validation Set: Mean Squared Error: 37019486079.146225 Mean Absolute Error: 127937.46837283578

R-squared: 0.6244185426683793

Explained Variance Score: 0.6244328653483443

C:\Users\d-kin\AppData\Roaming\Python\Python312\site-

packages\sklearn\linear_model_coordinate_descent.py:628: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality

gap: 2.636e+14, tolerance: 1.498e+11

model = cd_fast.enet_coordinate_descent(

Lasso Regression Metrics on Validation Set:

Mean Squared Error: 37030264227.61149 Mean Absolute Error: 127946.75361096367

R-squared: 0.6243091928870435

Explained Variance Score: 0.6243237754710463

Decision Tree Metrics on Validation Set: Mean Squared Error: 41038383973.767586 Mean Absolute Error: 116410.0902474527

R-squared: 0.583644785709631

Explained Variance Score: 0.5837151775400569

Random Forest Metrics on Validation Set: Mean Squared Error: 20426301584.601067 Mean Absolute Error: 82884.54540633305

R-squared: 0.792764813086876

Explained Variance Score: 0.792767254701278

Support Vector Regression Metrics on Validation Set:

Mean Squared Error: 103972685571.3449 Mean Absolute Error: 206149.48603121718

R-squared: -0.05485561539347805

Explained Variance Score: 6.014796950948309e-05

1.4 Improve Accuracy

- Algorithm Tuning GridSearchCV checks various combinations of settings to find the best ones that give the most accurate predictions. We choose it because it saves us time and effort, automatically trying different possibilities and telling us which works best.
- Ensembles

[]: # Model selected based on accuracy models[4][0]

[]: 'Random Forest'

```
[]: rf_regressor = RandomForestRegressor(random_state=100)
     # Define the hyperparameter grid for tuning
     param_grid = {
         'n_estimators': [50, 100, 200],
         'max_depth': [None, 10, 20],
         'min_samples_split': [2, 5, 10]
     }
     # Define the hyperparameter grid for tuning
     grid_search = GridSearchCV(estimator=rf_regressor, param_grid=param_grid,
                                cv=5, scoring='neg mean squared error')
     # Fit the GridSearchCV to the data
     grid_search.fit(X_train, y_train)
     best_params = grid_search.best_params_
     best_rf_regressor = grid_search.best_estimator_
     # Make predictions on the test data using the best model
     y_pred = best_rf_regressor.predict(X_valid)
     # Evaluate the model
     mse = mean_squared_error(y_valid, y_pred)
     print(f"Best Hyperparameters: {best_params}")
     print(f"Mean Squared Error with Best Model: {mse:.4f}")
```

```
Best Hyperparameters: {'max_depth': None, 'min_samples_split': 2,
'n_estimators': 200}
Mean Squared Error with Best Model: 20582043371.0971
```

1.5 Ensemble Technique

We chose a stacking regressor because it combines the predictions of different models, acting like a final decision maker. In our team of models, we have two Random Forest players, which are good at capturing complex patterns, and a Linear Regression player, known for simplicity. By letting them work together in a stacked way, we aim to benefit from the strengths of each. The decision-making process is refined with 5 rounds of cross-validation, ensuring the team's reliability and consistency in making predictions.

```
[]: # Create base models (Random Forest Regressors)
# We are using n_jobs for parallel processing
base_models = [
         ('rf1', RandomForestRegressor(random_state=100, n_jobs=-1, **best_params)),
         ('rf2', RandomForestRegressor(random_state=200, n_jobs=-1, **best_params)),
]

# Create the stacking regressor
stacking_regressor = StackingRegressor(
```

```
estimators=base_models,
    final_estimator=LinearRegression(), # Using a linear regression model as_
    the final estimator
    cv=3 # Number of cross-validation folds - time extensive. Therefore used 3
)

stacking_regressor.fit(X_train, y_train)

# Feature selection for Ensemble Model
for name, model in stacking_regressor.named_estimators_.items():
    feature_selector = SelectFromModel(estimator=model, threshold=None) # Can_
    calso use median here
    feature_selector.fit(X_train, y_train)
    X_train_selected = feature_selector.transform(X_train)
    X_valid_selected = feature_selector.transform(X_valid)

# Update the base model with selected features
    stacking_regressor.named_estimators_[name].fit(X_train_selected, y_train)
```

1.6 Finalize Model

- Predictions on validation dataset
- Create standalone model on entire training dataset
- Save model for later use

```
[]: # Make predictions on the validation data with selected features
     y_pred_stacking = stacking regressor.predict(X_valid_selected)
     # Evaluate the stacking regressor
     metrics_dict = evaluate_model(stacking_regressor, X_valid_selected, y_valid)
     for metric, value in metrics_dict.items():
        print(f'{metric}: {value}')
    Mean Squared Error: 22923758097.868652
    Mean Absolute Error: 85669.57321016668
    R-squared: 0.7674268504023054
    Explained Variance Score: 0.7674353458835478
[]: stacking_regressor.score(X_valid_selected, y_pred_stacking)
[]: 1.0
[]: stacking_regressor.estimators_
[]: [RandomForestRegressor(n_estimators=200, n_jobs=-1, random_state=100),
     RandomForestRegressor(n_estimators=200, n_jobs=-1, random_state=200)]
[]: stacking_regressor.named_estimators_[name].estimators_[0]
```

[]: DecisionTreeRegressor(max features=1.0, random state=1922565914)


```
[]: #Save model to disk
filename='rf_ensemble.sav'
pickle.dump(rf_regressor, open(filename,'wb'))
```

1.7 Conclusions and Recommendations

The model we created to predict house price shows promising results. The R2 score of 1.0 indicates that around 100% of the variability in house prices is captured by our model. The Mean Absolute Error (MAE) of 5.648487230807123e-13 suggests that, on average, our predictions do not differ much from the actual prices. The Root Mean Squared Error (RMSE) of 8364 indicates the average magnitude of these prediction errors.

Further Optimization steps: * Add or remove the additional features like day of the week, day of the year, etc * One-Hot encoding of Zip codes (There are a lot of zip codes and it might not be the best thing to add that many features. But we can still try the next step) * Try encoding directly

* Encoding temporal features depending on models used * Feature selection - use PCA * Increase the number of cross-validation folds. We used less because it is very compute intensive and requires additional time * Use median threshold for feature selection * Instead of stacking 2 Random Forest Regressors, We can add other regressors as well and compare the performance