Итоговый конспект стр. 1 из 4

1 Определения

1.1 Ступенчатая функция

 $f: X \to \mathbb{R}$ — ступенчатая, если:

$$\exists$$
 разбиение $X = \bigsqcup_{\scriptscriptstyle{ ext{KOH.}}} e_i : orall i \;\; f \Big|_{e_i} = ext{const}_i = c_i$

При этом разбиение называется допустимым для этой функции.

1.2 Разбиение, допустимое для ступенчатой функции

Дано выше. (1.1, стр. 1)

1.3 ЧЗмеримая функция

- (X,\mathfrak{A},μ) пространство с мерой
- $f: X \to \overline{\mathbb{R}}$
- E ∈ A

f измерима на множестве E, если $\forall a \in \mathbb{R} \;\; E(f < a)$ измеримо, т.е. $\in \mathfrak{A}$

2 Теоремы

2.1 Лемма "о структуре компактного оператора"

- $V:\mathbb{R}^m o \mathbb{R}^m$ линейный оператор
- $\det V \neq 0$

Тогда \exists ортонормированные базисы $g_1 \dots g_m$ и $h_1 \dots h_m$, а также $\exists s_1 \dots s_m > 0$, такие что:

$$\forall x \in \mathbb{R}^m \quad V(x) = \sum_{i=1}^m s_i \langle x, g_i \rangle h_i$$

 $\mathsf{И} \mid \det V \mid = s_1 s_2 \dots s_m.$

Доказательство. $W := V^*V -$ самосопряженный оператор (матрица симметрична относительно диагонали).

Из линейной алгебры мы знаем, что такой оператор имеет:

- Собственные числа: $c_1 \dots c_m$ вещественные (возможно с повторениями)
- Собственные векторы: $g_1 \dots g_m$ ортонормированные

M3137y2019

Итоговый конспект стр. 2 из 4

Примечание. Пока мы в \mathbb{R}^m (а не в \mathbb{C}^m), * есть транспонирование. В комплексном случае ещё берется сопряжение.

$$c_i \langle g_i, g_i \rangle \stackrel{(1)}{=} \langle Wg_i, g_i \rangle \stackrel{(2)}{=} \langle Vg_i, Vg_i \rangle > 0$$

- 1: т.к. g_i собственный вектор для W с собственным значением c_i .
- 2: из линейной алгебры:

$$W_{kl} = \sum_{i=1}^{m} V_{ik} V_{il}$$
$$\langle Wg_i, g_i \rangle = \sum_{k,l,j} V_{jk} V_{jl} g_k^{(i)} g_l^{(i)} = \langle Vg_i, Vg_i \rangle$$

Таким образом, $c_i > 0$.

$$s_i := \sqrt{c_i}$$
$$h_i := \frac{1}{s_i} V g_i$$

$$\langle h_i, h_j \rangle \stackrel{\text{def } h_i}{=} \frac{1}{s_i s_j} \langle V g_i, V g_j \rangle \stackrel{(3)}{=} \frac{1}{s_i s_j} \langle W g_i, g_j \rangle \stackrel{(4)}{=} \frac{c_i}{s_i s_j} \langle g_i, g_j \rangle \stackrel{(5)}{=} \delta_{ij}$$

- 3: из линейной алгебры, аналогично предыдущему.
- 4: т.к. g_i собственный вектор для W с собственным значением c_i .
- 5: при $i\neq j$ $\langle g_i,g_j\rangle=0$ в силу ортогональности, а при i=j $\langle g_i,g_j\rangle=1$ в силу ортонормированности и $\frac{c_i}{s_is_j}=\frac{c_i}{\sqrt{c_i}\sqrt{c_i}}=1$

Примечание. $\delta_{ij} = egin{cases} 1, & i=j \\ 0, & i
eq j \end{cases}$ — символ Кронекера.

Таким образом, $\{h_i\}$ ортонормирован.

$$V(x) \stackrel{\text{def } x}{=} V \left(\sum_{i=1}^{m} \langle x, g_i \rangle g_i \right) \stackrel{\text{(6)}}{=} \sum_{i=1}^{m} \langle x, g_i \rangle V(g_i) \stackrel{\text{def } h_i}{=} \sum s_i \langle x, g_i \rangle h_i$$

• 6: в силу линейности V

$$(\det V)^2 \stackrel{(7)}{=} \det(V^*V) \stackrel{\det W}{=} \det W \stackrel{(8)}{=} c_1 \dots c_m$$

Итоговый конспект стр. 3 из 4

• 7: в силу мультипликативности det и инвариантности относительно транспонирования.

• 8: т.к. det инвариантен по базису и в базисе собственных векторов det $W = c_1 \dots c_m$.

$$|\det V| = \sqrt{c_1} \dots \sqrt{c_m} = s_1 \dots s_m$$

2.2 ! Теорема о преобразовании меры Лебега при линейном отображении

• $V: \mathbb{R}^m o \mathbb{R}^m$ — линейное отображение

Тогда $\forall E \in \mathfrak{M}^m \ V(E) \in \mathfrak{M}^m$ и $\lambda(V(E)) = |\det V| \cdot \lambda E$

Доказательство.

- 1. Если $\det V=0$ $\mathrm{Im}(V)$ подпространство в $\mathbb{R}^m\Rightarrow\lambda(\mathrm{Im}(V))=0$ по следствию 6 лекции 15 третьего семестра. Тогда $\forall E\ V(E)\subset\mathrm{Im}(V)\Rightarrow\lambda(V(E))=0$
- 2. Если $\det V \neq 0$ $\mu E := \lambda(V(E))$ мера, инвариантная относительно сдвигов. Это было доказано в конце прошлого семестра:

$$\mu(E+a) = \lambda(V(E+a)) = \lambda(V(E) + V(a)) = \lambda(V(E)) = \mu E$$

 $\Rightarrow \exists k : \mu = k\lambda$ по недоказанной теореме из прошлого семестра.

Мы хотим найти k, для этого нужно что-нибудь померять. Померяем что-то очень простое, например $Q = \{ \sum \alpha_i g_i \mid \alpha_i \in [0,1] \}$ — единичный куб на векторах g_i .

$$V(g_i) = s_i h_i$$
. Таким образом, $V(Q) = \{\sum \alpha_i s_i h_i \mid \alpha_i \in [0,1]\}$.

$$\mu Q = \lambda(V(Q)) = s_1 \dots s_m = |\det V| = |\det V| \underbrace{\lambda Q}_{=1}$$

Таким образом, $k = |\det V|$

2.3 Теорема об измеримости пределов и супремумов

 f_n — измеримо на X. Тогда:

- 1. $\sup f_n$, $\inf f_n$ измеримо.
- 2. $\overline{\lim} f_n, \underline{\lim} f_n$ измеримо.

M3137y2019

Итоговый конспект стр. 4 из 4

3. Если $\forall x \; \exists \lim_{n \to +\infty} f_n(x) = h(x)$, то h(x) измеримо.

Доказательство.

1. $g=\sup f_n \quad X(g>a)\stackrel{(9)}{=}\bigcup_n X(f_n>a)$ и счётное объединение измеримых множеств измеримо.

9:

•
$$X(g>a)\subset\bigcup_n X(f_n>a)$$
, т.к. если $x\in X(g>a)$, то $g(x)>a$.
$$\sup_n f_n(x)=g(x)\neq a\Rightarrow \exists n: f_n(x)>a$$

- $X(g>a)\supset\bigcup_n X(f_n>a)$, т.к. если $x\in X(f_n>a)$, то $f_n(x)>a$, следовательно g(x)>a.
- 2. $(\overline{\lim} f_n)(x) = \inf_n (s_n = \sup(f_n(x), f_{n+1}(x), \dots))$. Т.к. \sup и \inf измерим, $\overline{\lim} f_n$ тоже измерим.
- 3. Очевидно, т.к. если $\exists \lim$, то $\lim = \overline{\lim} = \lim$