Centrul Național de Evaluare și Examinare

III. országos magyar matematikaolimpia XXX. EMMV

megyei szakasz, 2020. január 18.

X. osztály

1. feladat.

a) Bizonyítsd be, hogy a $\log_2 3 + \log_3 2$ szám egész része 2.

b) Igazold, hogy

$$\frac{\log_a x}{\log_{bc} x} + \frac{\log_b x}{\log_{ac} x} + \frac{\log_c x}{\log_{ab} x} \ge 6$$

bármely a, b, c, x > 1 valós szám esetén.

2. feladat. Adottak az $a = \sqrt[3]{22 + 10\sqrt{7}}$ és $b = \sqrt[3]{22 - 10\sqrt{7}}$ valós számok.

a) Bizonyítsd, hogy $a + b \in \mathbb{N}$.

b) Igazold, hogy $a^{2n} + b^{2n}$ osztható 8-cal, bármely $n \in \mathbb{N}^*$ esetén.

3. feladat. Adott az $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{a^{2x}}{a^{2x} + a}$ függvény, ahol a pozitív valós szám.

a) Bizonyítsd be, hogy f(x) + f(1-x) = 1, minden $x \in \mathbb{R}$ esetén!

b) Számítsd ki az $f\left(\frac{1}{2020}\right) + f\left(\frac{2}{2020}\right) + \dots + f\left(\frac{2019}{2020}\right)$ összeget!

4. feladat.

a) Adottak a $z_1, z_2 \in \mathbb{C} \setminus \mathbb{R}$ számok úgy, hogy $|z_1| = |z_2| = 1$ és $\lambda z_1 z_2 \neq -1$, ahol $\lambda \in \{-1, 1\}$. Bizonyítsd be, hogy

$$\frac{z_1 + \lambda z_2}{1 + \lambda z_1 z_2} \in \mathbb{R}.$$

b) Igazold, hogy bármely a valós szám esetén léteznek olyan $z_1, z_2 \in \mathbb{C} \setminus \mathbb{R}$ komplex számok, amelyekre $|z_1| = |z_2|$, valamint $\lambda z_1 z_2 \neq -1$ úgy, hogy az a szám felírható legyen

$$\frac{z_1 + \lambda z_2}{1 + \lambda z_1 z_2}$$

alakban, ahol $\lambda \in \{-1,1\}.$