

Mathematik für Infotronik (1)

Gerald Kupris 06.10.2010

Zur Person

Prof. Dr.-Ing. Gerald Kupris

geb. 1965

Lehrgebiet: Entwurf eingebetteter Systeme

Start: 1.10.2009

Büro: ITRONIK 3 im ITC Ulrichsberger Str. 17, Gebäude: E

Sprechzeit: Donnerstags 10:00

Tel.: +49 (0)991-9913 0309

Fax: +49 (0)991-9913 2124

Handy: 0171 – 46 62 581

Email: gerald.kupris@fh-deggendorf.de

Daten: V:\fakultaet-et\Vorlesungen\Kupris

Organisatorisches

Präsenzveranstaltung!

keine Benutzung von Laptops, Handys etc.!

Aufmerksamkeit gefordert!

intensive Gespräche mit Nachbarn, Lesen von Zeitungen, Büchern etc., Lösen von Kreuzworträtseln, Sudokus etc. nicht zugelassen!

Fragen sehr erwünscht!

Zeitplan beachten!

Pünktlichkeit unbedingt erforderlich!

Mathematik im Stundenplan

	Montag	Dienstag	Mittwoch	Donnerstag
1	Digitaltechnik 1		GET	Physik
			gem. mit MK-1	
	Bö E 101		Ku C 106	Ku A 111
2	Mathematik 1	Einführung in die Programmierung	Mathematik 1	GET
		r rogrammer ang		gem. mit MK-1
	Ku E 204	Jr ITC-Computerraum	Ku E 102	Fr C 106
3	Physik	Einführung in die Programmierung		Mathematik 1
	Ku E 204	Jr ITC-Computerraum		Ku E 102
4		Grundlagen der Informatik	Grundlagen der Betriebswirtschaft	
		Jr ITC-Computerraum	Schm E 102	
5		Grundlagen der Informatik		
		Jr ITC-Computerraum		

Einordnung Mathematik

Bachelor in Angewandte Informatik / Infotronik			Semesterwochenstunden (SWS)							
Pflichtfächer mit SWS (Semesterwochenstunden,			1. Sem.	2. Sem.	3. Sem.	4. Sem.	5. Sem.	6. Sem.	7. Sem.	•
Unterrichtseinheiten pro Woche in der Vorlesungszeit),										
Kursnummern, ECTS-Leistungspunkten	Modul-									
Kein Vorpraktikum vor Studienbeginn	Nr.	Kurs-Nr.	ws	SS	WS	SS	WS	SS	WS	ECTS
Mathematik I	0-01	0 1101	6							6
Physik	0-02	0 1102	4							5
Grundlagen der Elektrotechnik	O-03	0 1103	4							5
Digitaltechnik I	0-04	0 1104	2							2
Grundlagen der Informatik	O-05	0 1105	4							5
Einführung in die Programmierung	0-06	0 1106	4							5
Grundlagen der Betriebswirtschaft	0-07	0 1107	2							2
Mathematik II	0-08	0 2101		6						6
Physikalische Grundlagen der Sensorik	0-09	0 2102		4						5
Bauelemente und Schaltungen der Elektronik	0-10	0 2103		4						5
Objektorientierte Programmierung	0-11	0 2104		4						5
Algorithmen und Datenstrukturen	0-12	0 2105		4						5
Rhetorik und Kommunikation	0-13	0 2106		2						2
Allgemeinwissenschaftliches Wahlfach 1	0-14	Z 2107		2						2
Digitaltechnik II	0-15	0 3101			4					5
Meßtechnik	0-16	0 3102			4					5
Mikrorechnertechnik	0-17	0 3103			4					5
Regelungstechnik	0-18	0 3104			4					5
Software-Engineering	0-19	0 3105			6					8
Allgemeinwissenschaftliches Wahlfach 2	0-20	Z 3106			2					2

Vorlesungsinhalte Mathematik für Infotronik 1. und 2. Semester

- 1. Grundlagen, Mengen und Zahlenarten
- 2. Gleichungen und Ungleichungen
- 3. Gleichungen mit einer Unbekannten
- 4. Ungleichungen mit einer Unbekannten
- 5. Komplexe Zahlen
- 6. Folgen
- 7. Funktionen
- 8. Differenzialrechnung einer Veränderlichen
- 9. Integralrechnung einer Veränderlichen
- 10. Vektorrechnung
- 11. Reihen
- 12. Fourier-Transformation
- 13. Laplace-Transformation
- 14. Lineare Algebra
- 15. Statistik
- 16. Kryptographie

Literaturempfehlung

Rießinger:

Mathematik für Ingenieure: Eine anschauliche Einführung für das praxisorientierte Studium

Verlag: Springer, Berlin; Auflage: 7. Aufl. (März 2009)

Sprache: Deutsch

ISBN-10: 3540892052

Rießinger:

Übungsaufgaben zur Mathematik für Ingenieure: Mit durchgerechneten und erklärten Lösungen

Verlag: Springer, Berlin; Auflage: 4. Aufl. (Februar 2009)

Sprache: Deutsch

ISBN-10: 3540892095

06.10.2010 7

Literaturempfehlung

Jürgen Koch, Martin Stämpfle: Mathematik für das Ingenieurstudium,

Verlag: Hanser Verlag, München 2010

Sprache: Deutsch

ISBN-10: 3446422162

Aussagelogik

Für die Aussagen A_1 und A_2 bezeichnet man

- die Negation oder das Gegenteil der Aussage A_1 mit $\neg A_1$,
- die Und-Verknüpfung der beiden Aussagen mit $A_1 \wedge A_2$,
- die Oder-Verknüpfung der beiden Aussagen mit $A_1 \vee A_2$,
- die Implikation der beiden Aussagen mit $A_1 \Longrightarrow A_2$,
- die Äquivalenz der beiden Aussagen mit $A_1 \Longleftrightarrow A_2$.

Für die Aussagen A_1 und A_2 gilt:

$$\neg (A_1 \land A_2) = \neg A_1 \lor \neg A_2$$

$$\neg (A_1 \lor A_2) = \neg A_1 \land \neg A_2$$

Mengendefinition

In der aufzählenden Form einer Menge M werden alle Elemente a, b, c, \ldots aufgezählt, die zu M gehören:

$$M = \{a, b, c, \ldots\}.$$

In der beschreibenden Form einer Menge M besteht M aus allen Elementen x, die eine bestimmte Eigenschaft erfüllen:

$$M = \{x \mid x \text{ hat bestimmte Eigenschaft}\}.$$

Die leere Menge bezeichnet man mit $\emptyset = \{\}.$

Mengenzugehörigkeit

Die Mengenzugehörigkeit beschreibt man für

- ein Element einer Menge mit $a \in \{a, b, c\}$,
- kein Element einer Menge mit d ∉ {a, b, c}.

Die Menge M_1 ist eine Teilmenge der Menge M_2 , falls jedes Element x der Menge M_1 auch in der Menge M_2 enthalten ist:

 $M_1 \subset M_2: x \in M_1 \implies x \in M_2.$

Mengenoperationen

Für die Mengen M_1 und M_2 definiert man

- ▶ die Vereinigungsmenge durch $M_1 \cup M_2 = \{x \mid x \in M_1 \lor x \in M_2\}$,
- die Schnittmenge durch $M_1 \cap M_2 = \{ x \mid x \in M_1 \land x \in M_2 \},$
- die Differenzenmenge durch $M_1 \setminus M_2 = \{ x \mid x \in M_1 \land x \notin M_2 \}.$

Mengenkomplement

Bezogen auf eine Grundmenge ist das Komplement einer Menge definiert durch

$$M^C = \{ x \mid x \notin M \}.$$

Kein Element von M ist in der Menge $M^{\mathcal{C}}$ enthalten und umgekehrt.

Menge der natürlichen Zahlen

Die Menge der natürlichen Zahlen wird beschrieben durch

$$\mathbb{N} = \{1, 2, 3, \ldots\}.$$

Definition Unendlichkeit:

In der Mathematik versteht man unter dem Begriff Unendlichkeit das Gegenteil von Endlichkeit. Eine Menge hat also genau dann unendlich viele Elemente, wenn die Anzahl der Elemente nicht endlich ist. Zur Bezeichnung der Unendlichkeit verwendet man das Symbol ∞.

Die Bezeichnungen ∞ und $-\infty$ sind Symbole und keine Zahlen. Mit den Symbolen ∞ und $-\infty$ darf man nicht einfach rechnen wie mit Zahlen.

Menge der ganzen Zahlen

Die Menge der ganzen Zahlen wird beschrieben durch

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}.$$

Welche Rechenoperationen sind definiert?

Menge der Rationalen Zahlen

Die Menge der rationalen Zahlen besteht aus allen Zahlen, die sich als Bruch zweier ganzer Zahlen darstellen lassen:

$$\mathbb{Q} = \left\{ q = \frac{n}{m} \middle| n, m \in \mathbb{Z}, m \neq 0 \right\}.$$

Dezimalzahl

Ein Zahl der Form

$$z_n z_{n-1} \dots z_2 z_1 z_0 \dots z_{-1} z_{-2} z_{-3} \dots$$
, $z_k \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

bezeichnet man als Dezimalzahl. Sie besteht aus endlich vielen Ziffern z_k vor dem Dezimalpunkt und endlich oder unendlich vielen Ziffern z_k nach dem Dezimalpunkt.

Jede Dezimalzahl mit endlich vielen Nachkommastellen und jede periodische Dezimalzahl ist als Bruch darstellbar und somit eine rationale Zahl. Umgekehrt bestehen die rationalen Zahlen genau aus allen Dezimalzahlen, die endlich viele Nachkommastellen haben oder periodisch sind.

Irrationale und Reelle Zahlen

Eine Zahl, die sich nicht als Bruch zweier ganzer Zahlen darstellen lässt, bezeichnet man als irrationale Zahl. Irrationale Zahlen besitzen eine Dezimaldarstellung mit unendlich vielen Nachkommastellen, die sich nicht periodisch wiederholen.

Die Menge der reellen Zahlen \mathbb{R} besteht aus allen rationalen und irrationalen Zahlen.

Einbettung der Zahlenmengen

Die natürlichen Zahlen sind eine echte Teilmenge der ganzen Zahlen, die ganzen Zahlen sind eine echte Teilmenge der rationalen Zahlen und die rationalen Zahlen sind eine echte Teilmenge der reellen Zahlen : $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$.

Ordnung der Reellen Zahlen

Für zwei reelle Zahlen x_1 und x_2 gilt immer genau eine der folgenden Beziehungen:

• x_1 kleiner x_2 , also $x_1 < x_2$

 x_1 x_2 \hat{x}

 x_1 gleich x_2 , also $x_1 = x_2$

 $_{1} = x_{2}$

 $x_1 = x_2$ \hat{x}

 x_1 größer x_2 , also $x_1 > x_2$

Für zwei reelle Zahlen x_1 und x_2 verwendet man die Symbole \leq und \geq , falls gilt:

• x_1 kleiner oder gleich x_2 , also $x_1 \le x_2$

• x_1 größer oder gleich x_2 , also $x_1 \ge x_2$

Intervalle

Intervalle sind Teilmengen der reellen Zahlen, die sich ohne Zwischenräume von einer Untergrenze a bis zu einer Obergrenze b erstrecken:

- ▶ abgeschlossenes Intervall $[a, b] = \{x \in \mathbb{R} \mid a \le x \le b\}$
- offenes Intervall $(a, b) = \{x \in \mathbb{R} \mid a < x < b\}$
- ▶ halboffenes Intervall $(a, b] = \{x \in \mathbb{R} \mid a < x \le b\}$
- ▶ halboffenes Intervall $[a,b) = \{x \in \mathbb{R} \mid a \le x < b\}$

Bei einem Intervall darf man für die Obergrenze auch das Symbol ∞ und für die Untergrenze das Symbol $-\infty$ verwenden. Man spricht dann von einem unendlichen Intervall:

- ▶ halboffenes Intervall $[a, \infty) = \{x \in \mathbb{R} \mid a \le x < \infty\}$
- offenes Intervall $(a, \infty) = \{x \in \mathbb{R} \mid a < x < \infty\}$
- ▶ halboffenes Intervall $(-\infty, b] = \{x \in \mathbb{R} \mid -\infty < x \le b\}$
- offenes Intervall $(-\infty, b) = \{x \in \mathbb{R} \mid -\infty < x < b\}$

Betrag

Der Betrag einer reellen Zahl x ist definiert als

$$|x| = \begin{cases} x & \text{für } x \ge 0 \\ -x & \text{für } x < 0. \end{cases}$$

Das Betragszeichen lässt sich durch Fallunterscheidungen auflösen.

Für reelle Zahlen x und y gelten folgende Rechenregeln für den Betrag:

$$|x \cdot y| = |x| \cdot |y|$$

$$\left| \frac{x}{y} \right| = \frac{|x|}{|y|}$$

$$|x^a| = |x|^a$$
 für reelle Hochzahlen a

Was ist der Betrag?

Der Betrag lässt sich als Abstand interpretieren:

- ▶ Der Abstand der Zahl x zum Ursprung ist |x|
- ▶ Der Abstand der beiden Zahlen x und y zueinander ist |x-y|.

Für beliebige reelle Zahlen x und y gelten die Dreiecksungleichungen für den Betrag:

$$|x \pm y| \le |x| + |y|$$

$$|x \pm y| \ge ||x| - |y||$$

Quellen

Peter Hartmann: Mathematik für Informatiker, Vieweg Verlag, Wiesbaden 2006

Manfred Brill: Mathematik für Informatiker, Hanser Verlag, München 2005

Thomas Rießinger: Mathematik für Ingenieure, Springer Verlag, Berlin 2009

Lothar Papula: Mathematik für Ingenieure und Naturwissenschaftler, Vieweg+Teubner Verlag, 2009

Jürgen Koch, Martin Stämpfle: Mathematik für das Ingenieurstudium, Hanser Verlag, München 2010