Università degli studi di Catania Corso di laurea triennale in Fisica Esame di Meccanica Analitica Appello del 24.09.2021

In un piano verticale, si consideri un riferimento fisso $\{O', x', y'\}$ ed un riferimento mobile relativo $\{O, x, y\}$, con gli assi orizzontali x ed x' costantemente sovrapposti, che si muove di moto traslatorio lungo la direzione positiva di x' con accelerazione costante a=g (essendo g l'accelerazione di gravitá).

Solidale con il riferimento mobile relativo, sia dato un sistema materiale S, posto nel piano verticale xy, costituito da un disco omogeneo γ di massa M centro C e raggio R e da un'asta omogenea AB di massa 2M baricentro G e lunghezza $L=\sqrt{3}\,R$. Il sistema é soggetto ai seguenti vincoli: γ é vincolata a rotolare senza strisciare all'interno di una circonferenza fissa Γ di centro O e raggio 2R; l'asta AB ha gli estremi A e B vincolati a scorrere senza attrito sul bordo di γ (vedi figura).

Sul sistema S, altre alla forza peso, agisce la forza $\{F = -k(C - \overline{C}), C\}$, dove \overline{C} é la proiezione ortogonale di C sull'asse delle y e k é una costante positiva. Sciegliando come coordinate lagrangiane le variabili $\{\vartheta, \varphi\}$ dove ϑ é l'angolo che il vettore C - O forma con la verticale discendente e φ é l'angolo che il vettore G - C forma con la verticale discendente (passante per C) e ponendo per semplicitá $k = 6\sqrt{2}\,Mg/R$, si chiede di :

- 1. Determinare tutte le possibili configurazioni di equilibrio relativo 1 di S, analizzando la loro stabilitá ed instabilitá.
- 2. Scrivere le equazioni del moto relativo di S e gli eventuali integrali primi
- 3. Studiare i moti in prima approssimazione attorno ad una eventuale configurazione di equilibrio stabile per il sistema.

