Álgebra I. Examen parcial 1 Universidad de El Salvador, 05/04/2019

Ejercicio 1 (2 puntos). En el cuerpo de las series de Laurent $\mathbb{Q}((X))$ encuentre la serie inversa a $f = X - X^3$.

Ejercicio 2 (2 puntos). Sea $n \neq 1$ un entero libre de cuadrados. Consideremos el anillo $\mathbb{Z}[\sqrt{n}]$ con la norma $N(a+b\sqrt{n}):=a^2-nb^2\in\mathbb{Z}$. Demuestre que si $N(\alpha)=\pm 2,\pm 3,\pm 5,\pm 7,\ldots$ es un número primo, entonces α es irreducible en $\mathbb{Z}[\sqrt{n}]$.

Ejercicio 3 (2 puntos). En el anillo de los enteros de Gauss $\mathbb{Z}[i]$, encuentre α tal que

$$(\alpha) = (1 + 2i, 1 + i).$$

Ejercicio 4 (2 puntos). Consideremos el polinomio

$$f := X^3 + X + 1 \in k[X].$$

Determine para cuáles cuerpos k entre $\mathbb{R}, \mathbb{C}, \mathbb{F}_2, \mathbb{F}_3$ este polinomio es irreducible. Justifique sus respuestas.

Ejercicio 5 (2 puntos). Demuestre que en el anillo $\mathbb{Z}[\sqrt{5}]$ no existe ningún elemento invertible α tal que

$$1 < \alpha < 2 + \sqrt{5}$$
.