MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 2, 2015/2016

BST3254 - MONTE CARLO SIMULATION TECHNIQUES

(All sections / Groups)

5 MARCH 2016 9.00 a.m – 11.00 a.m (2 Hours)

INSTRUCTIONS TO STUDENTS

- 1. This question paper consists of FOUR (4) printed pages excluding the cover page, statistical formulae and tables.
- 2. Answer ALL questions.
- 3. Only non-programmable calculator is allowed to be used in this examination.
- 4. Statistical tables are attached at the end of the question paper.

Question 1 (25 Marks)

The time between arrivals (in minutes) at a counter of a cafeteria in Putrajaya and the service time (in minutes) follow the distribution given in the tables below.

Time between arrivals	Probability
1	0.15
2	0.25
3	0.35
4	0.25

Service time	Probability
2	0.20
3	0.50
4	0.30

(a) Use the random numbers provided to simulate the activity of the first five arrivals. Your simulation table should include time of arrival, service start and end times, time spent waiting in line and idle times. Assume that the counter opens at 8.15 a.m. and the first arrival after this based on the first interarrival time generated.

Random numbers for arrivals: 07, 57, 84, 00, 32 Random numbers for service time: 60, 17, 55, 59, 73

(20 marks)

(b) At what time did the third customer leave the system?

(2 marks)

(c) Compute the average waiting time the customer spends in a queue.

(3 marks)

Continued...

Question 2 (25 Marks)

A marketing manager of a multinational company is planning a questionnaire survey to assess the customer satisfaction level towards its product. He has identified the following tasks to be carried out in order to conduct the survey successfully:

	Immediate		Duration (Days)	
Activity	Predecessors	Optimistic	Most Likely	Pessimistic
A	~	4	5	6
В	-	8	12	16
C	A	4	5	12
D	В	1	3	5
Е	D,A	2	2	2
F	В	3	4	5
G	C,E,F	10	14	18
Н	G	18	20	34

(a) Determine the activity time (t) for each task.

(5 marks)

(b) Represent the design involved in the form of an appropriate network of activities.

(3 marks)

(c) Identify the critical path and the expected completion time of the project.

Determine the earliest start time, latest start time, earliest finish time, latest finish time and slack time.

(17 marks)

Continued...

Question 3 (25 Marks)

(a) Generate exponential variates X_i with mean 5 for the following random numbers:

0.65

0.73

0.37

0.44

0.59

0.29

(7 marks)

(b) The activity times (in seconds) for a bagging operation were recorded as follows:

11.3	8.2	16.8	10.3
7.2	8.6	15.2	9.6
12.5	7.4	8.3	11.1
14.3	11.1	14.5	11.8
12.8	12.3	10.7	9.5
13.8	10.2	14.9	16.3
15.2	7.7	12.9	12.4
13.5	11.0	14.3	16.9
9.2	13.2	7.5	13.2
16.3	14.4	15.1	10.7

Use the chi-square test to test the hypothesis that the activity times are uniformly distributed. Let the number of intervals be k = 5. Use the level of significance $\alpha = 0.10$.

(18 marks)

Continued...

NMI

3/4

Question 4 (25 Marks)

(a) Consider the following pdf for a random variable X,

$$f(x) = \begin{cases} (x+2)/12, & 1 \le x \le 3\\ \sqrt{x-2}/14, & 3 < x \le 6\\ 0, & \text{elsewhere} \end{cases}$$

Use the inverse-transformation technique to show that the random variate generator of X is

$$X = \begin{cases} -2 + \sqrt{24R + 9}, & 0 \le R \le 2/3 \\ 2 + (21R - 13)^{2/3}, & 2/3 < R \le 1 \end{cases}$$

(10 marks)

(b) Consider the interarrival and service times (in minutes) provided as below:

Interarrival times	2 .	4	6	8	10
Service times	1	3	6	5	4

(i) Assuming that the starting clock is 0, compute the arrival and departure times for 5 customers.

(5 marks)

(ii) Prepare Discrete Event Simulation (DES) table for this system until the clock reaches times 18. The stopping event will be at time 45.

(10 marks)

End of Page

STATISTICAL TABLES

Freedom			
(N)	$D_{0.10}$	D _{0:05}	$D_{0.01}$
1	0.950	0.975	0.995
2	0.776	0.842	0.929
3	0.642	0.708	0.828
4	0.564	0.624	0.733
5	0.510	0.565	0.669
6	0.470	0.521	0.618
7	0.438	0.486	0.577
8	0.411	0.457	0.543
9	0.388	0.432	0.514
10	0.368	0.410	0.490
11	0.352	0.391	0.468
12	0.338	0.375	0.450
13	0.325	0.361	0.433
14	0.314	0.349	0.418
15	0.304	0.338	0.404
16	0.295	0.328	0.392
17	0.286	0.318	0.381
18	0.278	0.309	0.371
19	0.272	0.301	0.363
20	0.264	0.294	0.356
25	0.240	0.270	0.320
30	0.220	0.240	0.290
35	0.210	0.230	0.270
35 Over 35	0.210 1.22 √N	0.230 1.36 √N	0.270 1.63 √N

Table 1
The Upper Tail Area Under the
Standard Normal Curve

	1	1								
Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641
0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
3.5	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
3.6	0.0002	0.0002	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
3.7	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
3.8	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
3.9	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
4.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

Table A.7 Critical Values for Chi-Squared Distributions

	χ_{ν}^2 density curve
	Shaded area = a
0	
V	_ Xa,v

					α		$-\chi_{\dot{\alpha},\nu}$			
W	.995	,99	.975	.95	.90	.10	.05	.025	.01	.005
1	0.000	0.000	0.001	0.004	0.016	2.706	3.843	5.025	6.637	7.882
2	0.010	0.020	0.051	0.103	0.211	4.605	5.992	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11,344	12.837
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.832	15.085	16.748
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14,440	16.812	18,548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.012	18.474	20.276
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.534	20.090	21.954
9	1.735	2.088	2.700	3.325	4.168	14,684	16.919	19.022	21.665	23.587
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188
11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.724	26.755
12	3.074	3.571	4.404	5.226	6,304	18.549	21.026	23,337	26,217	28.300
13	3.565	4.107	5.009	5.892	7.041	19.812	22.362	24.735	27.687	29.817
14	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141	31.319
15	4.600	5.229	6.262	7.261	8.547	22.307	24.996	27,488	30.577	32.799
		5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000	34.267
16	5.142	6.407	7.564	8.682	10.085	24.769	27.587	30.190	33.408	35.716
17	5.697	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34,805	37.156
18	6.265	7.632	8.906	10.117	11.651	27.203	30.143	32.852	36.190	38.580
19	6.843 7.434	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566	39.997
		8.897	10.283	11.591	13.240	29.615	32.670	35,478	38.930	41.399
21	8.033	9.542	10.283	12.338	14.042	30.813	33.924	36.781	40.289	42.796
22	8.643	10.195	11.688	13.090	14.848	32.007	35.172	38.075	41.637	44.179
23	9.260	10.193	12.401	13.848	15.659	33.196	36.415	39.364	42.980	45.558
24 25	9.886 10.519	11.523	13.120	14.611	16.473	34,381	37.652	40,646	44.313	46.925
		12.198	13.844	15.379	17,292	35,563	38.885	41.923	45.642	48.290
26	11.160	12.198	14.573	16.151	18.114	26.741	40.113	43.194	46.962	49.642
27	11.807	13.565	15.308	16.928	18.939	37.916	41.337	44.461	48.278	50.993
28	12.461	14.256	16.147	17.708	19.768	39.087	42,557	45.772	49.586	52.333
29 30	13.120	14.954	16.791	18.493	20.599	40.256	43.773	46.979	50.892	53.672
				19.280	21.433	41.422	44.985	48.231	52.190	55.000
31	14.457	15.655	17.538	20.072	22,271	42.585	46.194	49.480	53,486	56.328
32	15.134	16.362	18.291	20.866	23.110	43.745	47.400	50.724	54.774	57.646
33	15.814	17.073	19.046	21.664	23.952	44.903	48.602	51.966	56.061	58.964
34	16.501	17.789	19.806		24.796	46.059	49.802	53.203	57.340	60.272
35	17.191	18,508	20.569	22.465			50.998	54.437	58.619	61.581
36	17.887	19.233	21.336	23.269	25.643	47.212	52.192	55.667	59.891	62.880
37	18.584	19.960	22.105	24.075	26.492	48.363	53.384	56.896	61.162	64.181
38	19.289	20.691	22.878	24.884	27.343	49.513	54.572	58.119	62.426	65.473
39	19.994	21.425	23.654	25.695	28.196	50.660	55.758	59.342	63.691	66.766
40	20.706	22.164	24.433	26.509	29.050	51.805	J.J. 1 JO	سقد ۳ الدواد الد		·

For $\nu > 40$, $\chi^2_{\alpha,\nu} = \nu \left(1 - \frac{2}{9\nu} + z_{\alpha} \sqrt{\frac{2}{9\nu}} \right)^3$