OpenGeoProver Output for conjecture "Chou 320 (Menelaus' Theorem)"

Wu's method used

February 20, 2012

1 Validation of Construction Protocol

Construction steps:

- Free point A
- Free point B
- Free point C
- Line BC through two points B and C
- Random point D from line BC
- Line CA through two points C and A
- Random point E from line CA
- Line DE through two points D and E
- Line AB through two points A and B
- Intersection point F of point sets DE and AB

Theorem statement:

• Ratio product (AF/FB)*(BD/DC)*(CE/EA) is equal to -1.0

Validation result: Construction protocol is valid.

2 Transformation of Construction Protocol to algebraic form

Transformation of Construction steps

2.1 Transformation of point A:

• Point A has been assigned following coordinates: (0, 0)

2.2 Transformation of point B:

• Point B has been assigned following coordinates: $(0, u_1)$

2.3 Transformation of point C:

• Point C has been assigned following coordinates: (u_2, u_3)

2.4 Transformation of point D:

- Point D has been assigned following coordinates: (u_4, x_1)
- Polynomial that point D has to satisfy is:

$$p = u_2x_1 + (-u_4u_3 + u_4u_1 - u_2u_1)$$

• Processing of polynomial

$$p = u_2x_1 + (-u_4u_3 + u_4u_1 - u_2u_1)$$

Info: Polynomial

$$p = u_2x_1 + (-u_4u_3 + u_4u_1 - u_2u_1)$$

added to system of polynomials that represents the constructions

• New polynomial added to system of hypotheses

2.5 Transformation of point E:

- Point E has been assigned following coordinates: (u_5, x_2)
- Polynomial that point E has to satisfy is:

$$p = u_2x_2 - u_5u_3$$

• Processing of polynomial

$$p = u_2x_2 - u_5u_3$$

Info: Polynomial

$$p = u_2x_2 - u_5u_3$$

added to system of polynomials that represents the constructions

• New polynomial added to system of hypotheses

2.6 Transformation of point F:

- Point F has been assigned following coordinates: (x_3, x_4)
- Polynomial that point F has to satisfy is:

$$p = (u_5 - u_4)x_4 - x_3x_2 + x_3x_1 + u_4x_2 - u_5x_1$$

• Processing of polynomial

$$p = (u_5 - u_4)x_4 - x_3x_2 + x_3x_1 + u_4x_2 - u_5x_1$$

Info: Polynomial

$$p = (u_5 - u_4)x_4 - x_3x_2 + x_3x_1 + u_4x_2 - u_5x_1$$

added to system of polynomials that represents the constructions

- New polynomial added to system of hypotheses
- Polynomial that point F has to satisfy is:

$$p = x_3$$

• Processing of polynomial

$$p = x_3$$

Info: Will try to rename X coordinate of point F

Info: Y coordinate of point F will be replaced by X coordinate

Info: X coordinate of point F renamed by zero

- \bullet Point F has been renamed. Point F has been assigned following coordinates: (0, $x_3)$
- Repeating instantiation of first condition of this point, after its coordinate has been renamed
- Polynomial that point F has to satisfy is:

$$p = (u_5 - u_4)x_3 + u_4x_2 - u_5x_1$$

• Processing of polynomial

$$p = (u_5 - u_4)x_3 + u_4x_2 - u_5x_1$$

Info: Polynomial

$$p = (u_5 - u_4)x_3 + u_4x_2 - u_5x_1$$

added to system of polynomials that represents the constructions

• New polynomial added to system of hypotheses

Transformation of Theorem statement

• Polynomial for theorem statement:

$$p = (u_5u_2 - u_4u_2)x_3 + (u_5u_4u_1 - u_5u_2u_1)$$

Time spent for transformation of Construction Protocol to algebraic form

• 0.06 seconds

3 Invoking the theorem prover

The used proving method is Wu's method.

The input system is:

$$p_1 = u_2x_1 + (-u_4u_3 + u_4u_1 - u_2u_1)$$

$$p_2 = u_2x_2 - u_5u_3$$

$$p_3 = (u_5 - u_4)x_3 + u_4x_2 - u_5x_1$$

3.1 Triangulation, step 1

Choosing variable: Trying the variable with index 3.

Variable x_3 selected: The number of polynomials with this variable, with indexes from 1 to 3, is 1.

Single polynomial with chosen variable: Chosen polynomial is p_3 . No reduction needed.

The triangular system has not been changed.

3.2 Triangulation, step 2

Choosing variable: Trying the variable with index 2.

Variable x_2 selected: The number of polynomials with this variable, with indexes from 1 to 2, is 1.

Single polynomial with chosen variable: Chosen polynomial is p_2 . No reduction needed.

The triangular system has not been changed.

3.3 Triangulation, step 3

Choosing variable: Trying the variable with index 1.

Variable x_1 selected: The number of polynomials with this variable, with indexes from 1 to 1, is 1.

Single polynomial with chosen variable: Chosen polynomial is p_1 . No reduction needed.

The triangular system has not been changed.

The triangular system is:

$$p_1 = u_2x_1 + (-u_4u_3 + u_4u_1 - u_2u_1)$$

$$p_2 = u_2x_2 - u_5u_3$$

$$p_3 = (u_5 - u_4)x_3 + u_4x_2 - u_5x_1$$

4 Final Remainder

4.1 Final remainder for conjecture Chou 320 (Menelaus' Theorem)

Calculating final remainder of the conclusion:

$$g = (u_5u_2 - u_4u_2)x_3 + (u_5u_4u_1 - u_5u_2u_1)$$

with respect to the triangular system.

1. Pseudo remainder with p_3 over variable x_3 :

$$g = (-u_5u_4u_2 + u_4^2u_2)x_2 + (u_5^2u_2 - u_5u_4u_2)x_1 + (u_5^2u_4u_1 - u_5^2u_2u_1 - u_5u_4^2u_1 + u_5u_4u_2u_1)$$

2. Pseudo remainder with p_2 over variable x_2 :

$$g = (u_5^2 u_2^2 - u_5 u_4 u_2^2) x_1 +$$

$$(-u_5^2 u_4 u_3 u_2 + u_5^2 u_4 u_2 u_1 - u_5^2 u_2^2 u_1 +$$

$$u_5 u_4^2 u_3 u_2 - u_5 u_4^2 u_2 u_1 + u_5 u_4 u_2^2 u_1)$$

3. Pseudo remainder with p_1 over variable x_1 :

$$g = 0$$

5 Prover results

Status: Theorem has been proved.

Space Complexity: The biggest polynomial obtained during prover execution contains 3 terms.

Time Complexity: Time spent by the prover is 0.02 seconds.

6 NDG Conditions

NDG Conditions in readable form

- Points F, A, B and C are not collinear
- Points D, E and A are not collinear

Time spent for processing NDG Conditions

 \bullet 0.607 seconds