2017 年 6 月 ___日

湖南大学课程考试试卷

<u> </u>										
题	号	1-5	6-10	11-12	13-14	15-16	17-18			总分
应得约	分	15	15	14	20	20	16			100
实得么	分									
评卷。	人									

填空题(每小题3分,5小题共15分)

- 1. 已知 $(\vec{a} \times \vec{b}) \cdot \vec{c} = 1$,则 $(\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}) \cdot (\vec{a} + \vec{b} + 2\vec{c}) =$
- **2.** 函数 $f(x,y) = \sqrt{x^2 + y^2} + xy$ 在 (x,y) = (0,0) 处沿方向 $\vec{l} = \vec{i} + 2\vec{j}$ 的方向
- 3. 过曲线 L: $\begin{cases} (x-1)^2 + (y-1)^2 = 1, \\ z = 0. \end{cases}$ 上每点与点 P(0,0,1) 连直线作成的曲面 方程是.....()
- 4. f(x) 以 2π 为周期,在 $(-\pi,\pi]$ 内 $f(x) = \sin^2 x$,则它的傅里叶级数的系 数 $a_2 =$ _ _ _ _ _ $b_2 =$ _ _ _ _ .
- 5. 已知幂级数 $\sum_{n=1}^{+\infty} a_n x^n$ 的收敛半径为 R ,则级数 $\sum_{n=1}^{+\infty} \frac{2^n a_n}{n+1} x^n$ 的收敛半径是 _

湖南大学教务处

选择题(将你认为正确答案的序号填在题干的括号内,每小题 3 分,5 小题共 15 分)

- 6 设 z 是 x,y 的 函数由方程 z=f(z,x,xy) 确定 , $f\in C^1$,则 $\frac{\partial z}{\partial x}$ 的表达式
- A. $f_1' + f_2' + f_3'y$ B. $\frac{f_2' + f_3'y}{1 f_1'}$ C. $f_2' + f_3'y$ D. $\frac{f_2' + f_3'y}{1 + f_1'}$
- 7. 将射线 x = y = z ($x \ge 0$) 绕 y 轴旋转一周所成的曲面方程是...........()
- A. $y^2 = z^2 + x^2$ B. $x = \sqrt{\frac{y^2 + z^2}{2}}$ C. $2y^2 = z^2 + x^2$ D. $y = \sqrt{\frac{z^2 + x^2}{2}}$
- A. 3π B. 2π C. 0 D. 6π
- 9. 已知 $f \in C$,令 $I(t) = \iint_{x^2 + y^2 \le t^2} f(x^2 + y^2) d\sigma$, 则 $\frac{dI}{dt} = \dots$ (
- A. $2\pi f(t)$ B. $2\pi f(t^2)$ C. $2\pi t f(t^2)$ D. $\frac{\pi}{\sqrt{t}} f(t)$
 - 10. 下列级数中,发散的级数是()
- A. $\sum_{n=1}^{+\infty} \frac{1}{n^2}$ B. $\sum_{n=1}^{+\infty} (-1)^{n-1} \ln(1 + \frac{1}{\sqrt{n}})$ C. $\sum_{n=1}^{+\infty} \frac{1}{\ln(n^n + n^2 + 1)}$ D.
- $\sum_{n=1}^{+\infty} (e^{\frac{1}{n^2}} 1) \sin n$

计算题(11、12 每题 7 分,13—17 每题 10 分,18 题 6 分)

11. 求极限
$$\lim_{\substack{x \to 0 \ y \to 0}} \frac{e^{2(x^2 + y^2)} + x^2y - 1}{x^2 + y^2}$$

12. 设 $z = (x+y)^{x-y}$,利用多元复合函数链式法则求 $\frac{\partial z}{\partial y}$, $\frac{\partial^2 z}{\partial y \partial x}$.

13. 已知 $f \in C$,D 是由 y = -x,x = 1及 y = 1围成的区域,

$$\Re \iint_D y(|y-x|-xf(x^2+y^2))d\sigma$$

14. 有一平面力场, $\vec{F}(x,y)=y(\sin x-x^2)\vec{i}+(xy^2+\cos y)\vec{j}$,一质点在该场力的作用下沿上半圆周 $L:x^2+y^2=a^2$ 从 A(a,0) 到达 B(-a,0) ,求场力所做的功.

15. 不可压缩的非稳定流体通过有向曲面 $\Sigma: x^2 + y^2 + z^2 = R^2(z > 0)$, Σ 法向与 z 轴正向成锐角 ,流体的速度为 $\vec{V}(x,y,z,t) = (xy^2 + t)\vec{i} + y(z^2 + t^2)\vec{j} + (x^2z + yz + 2)\vec{k}$,求在时间段 $0 \le t \le 2$ 内流体通过曲面 Σ 的流量.

.

16. 求幂级数 $\sum_{n=1}^{+\infty}(n^2+1)x^n$ 的收敛区间及和函数,并求 $\sum_{n=1}^{+\infty}\frac{n^2-1}{2^{n-1}}$.

17. 在第一卦限内的单位球面 $x^2 + y^2 + z^2 = 1$ 上找一点,使球面在该点处的切平面与三坐标平面围成的立体的体积最小.

18. 设 f(x) 是以1为周期的连续函数,且 $\int_0^1 f(x) dx = a$,,求 $\int_0^1 dx \int_0^x f(x+y) dy$