English Translation Of German Patent Application DE 42 25 534 A1 (Rolf Gnauert) which was filed on August 1, 1992 and published on February 3, 1994 describes in general an arrangement for operating, controlling and monitoring electric motors in underground working. As you can see from figure 2, a power supply line 4 is connected via a switch 5 to a power source. A plurality a electric motors 1a -1i are also coupled to the power line 4. Signals for controlling each of said electric motors are generated by a control unit 6 and encoded by an Amplitude Shift Keying data converter 8. The encoded data are modulated and transmitted to the power line 4. Therefore, the encoded signals can be transmitted to each of the electric motors via power line 4. Each of said electric motors is coupled with a converter for decoding the signals. Thus, it is possible to control each of said electric motors without any additional control lines. It is also possible to receive data signals from said electric motors for monitoring operation of said motors.

(19) BUNDESREPUBLIK

DEUTSCHLAND

Offenlegungsschrift

[®] DE 42 25 534 A 1

DEUTSCHES PATENTAMT

Aktenzeichen: P 42 25 534.1 Anmeldetag: 1. 8.92

Offenlegungstag: 3. 2.94 (5) Int. Cl.5: H 02 P 7/48 H 02 P 7/74 G 08 C 19/00 H 02 J 13/00

// H02K 17/30

(71) Anmelder:

Gnauert, Rolf, 4370 Marl, DE

(74) Vertreter:

Oidtmann, P., Dipl.-Ing. Dr.-Ing.; Bockermann, R., Dipl.-Ing., Pat.-Anwälte, 44791 Bochum

② Erfinder:

gleich Anmelder

(A) Anordnung zum Betreiben, Steuern und Überwachen von Elektromotoren in untertägigen Betrieben

Die Erfindung betrifft eine Anordnung zum Betreiben, Steuern und Überwachen von Elektromotoren (1a-1i) in untertägigen Betrieben. Dabei wird eine zentrale Energieversorgungsleitung (4) vorgesehen. An die Energieversorgungsleitung (4) können eine Vielzahl von Elektromotoren (1a-1i) gekoppelt sein. Die Signale zur Steuerung jedes Elektromotors (1a-1i) werden von einer Steuereinheit (6) über einen ASK-Datenkoppler (8) umgesetzt und der Energieversorgungsleitung (4) aufmoduliert. Die Signale werden folglich über die Energieversorgungsleitung (4) übertragen. Am jeweiligen Elektromotor (1a-1i) werden die ankommenden Signale in einem weiteren ASK-Datenkoppler entkoppelt und zu einer verarbeitenden Steuerung weitergeleitet, die entsprechend dem Informationsinhalt der einzelnen Befehlssignale die jeweiligen Motorbefehle ausführt. Umgekehrt können Signale von der Steuerung des Elektromotors (1a-1i) mittels des ASK-Datenkopplers über die Energieversorgungsleitung (4) zurück zur übergeordneten Steuereinheit (6) übertragen werden.

Beschreibung

Die Erfindung betrifft eine Anordnung zum Betreiben, Steuern und Überwachen von Elektromotoren in untertägigen Betrieben gemäß den Merkmalen im Oberbegriff des Patentanspruchs 1.

Zum Antrieb der verschiedenen Bergwerksmaschinen werden vorwiegend Elektromotoren eingesetzt. Elektromotore haben einen hohen Wirkungsgrad von über 90%. Ein weiterer Vorzug ist die direkte Umwand- 10 lung der elektrischen Energie in eine Drehbewegung. Von Bedeutung für den Bergbau sind fast ausschließlich die Asynchronmotoren, und hier insbesondere wegen der Forderung nach Schlagwettersicherheit die Kurzschlußläufermotoren. Kurzschlußläufermotoren nehmen beim Anlaufen einen sehr hohen Strom auf. Das führt zu Spannungsschwankungen im Netz. Bei Motoren größerer Leistung werden Anlaufwiderstände oder es wird ein Anlauftrafo vor die Ständerwicklungen geschaltet. Meistens werden Sterndreieckschalter verwen- 20 det. Diese Schalter schalten zuerst die Ständerwicklungen im Stern, d. h. auf verminderte Spannung und nach dem Hochlaufen auf Dreieck, d. h. auf volle Spannung.

Eine weitere Möglichkeit der Drehzahlveränderung ist bei den polumschaltbaren Motoren gegeben. Das 25 sind Kurzschlußläufermotoren, bei denen durch Umschalten die Polzahl im Stator verändert wird. Polumschaltbare Kurzschlußläufermotoren haben eine große Anwendung gefunden, weil sie die Einfachheit der Kurzschlußläufermotoren mit der stufenweisen Drehzahl- 30 stellbarkeit vereinigen. In zunehmendem Maße kommen bei der Steuerung derartiger Motoren auch Halbleiterbauelemente zum Einsatz.

Aus der DE-OS 36 31 298 ist ein polumschaltbarer Drehstrommotor mit zwei dreiphasigen Ständerwick- 35 lungen bekannt. Die beiden Ständerwicklungen werden über Thyristoren, welche einschließlich ihrer Gatesteuerung in bzw. an das Motorgehäuse ein- bzw. angebaut sind, angesteuert und aus einer gemeinsamen Motorleitung mit den Wechsel strömen des antreibenden Dreh- 40 stroms beaufschlagt.

Derartige Kurzschlußläufermotoren haben sich betriebsmäßig bewährt. Nachteilig ist hierbei, daß jeder Motor mit einer eigenen Motorzuleitung ausgerüstet werden und zusätzlich über eine eigene Steuerleitung 45 zur Übertragung von Befehlssignalen verfügen muß.

Der Erfindung liegt ausgehend von der im Oberbegriff des Patentanspruchs 1 beschriebenen Anordnung die Aufgabe zugrunde, diese derart auszugestalten, daß der Materialeinsatz für die Zuleitungen unter Einspa- 50 steuert und überwacht werden können. rung von Schaltgeräten und geringerem Installationsaufwand merklich gesenkt sowie die Signalkommunikation verbessert werden kann.

Die Lösung dieser Aufgabe besteht nach der Erfindung in den im kennzeichnenden Teil des Patentan- 55 Drehstrommotors einschließlich Schaltung und spruchs 1 aufgeführten Merkmalen.

Danach wird jetzt eine zentrale Energieversorgungsleitung vorgesehen. Die Signale zur Steuerung jedes Motors werden von einer Steuereinheit mittels eines ASK(Amplitude Shift Keying)-Datenkopplers auf die Energieversorgungsleitung moduliert. Die Signale werden folglich über die Energieversorgungsleitung übertragen. Am Elektromotor werden die ankommenden Signale in einem weiteren ASK-Datenkoppler empfangen Entsprechend dem Informationsinhalt der einzelnen Befehlssignale führt die Steuerung die jeweiligen Motorbefehle durch und steuert die integrierten Thyristoren in der erforderlichen Weise an.

Umgekehrt können Signale von der Steuerung des Elektromotors mittels des ASK-Datenkopplers über die Energieversorgungsleitung zur übergeordneten Steuereinheit übertragen werden. Durch die Rückmeldung ist eine konstante Überwachung und Dokumentation des Betriebsablaufs möglich. So können beispielsweise kontinuierlich oder in Zeitabständen Meldungen über die Betriebstemperatur oder die Stromaufnahme an die Steuereinheit weitergeleitet werden.

Durch die erfindungsgemäße Anordnung können elektrische Zuleitungen eingespart werden. Dies bringt nicht nur einen wesentlichen Kostenvorteil mit sich, sondern auch eine Einsparung an Gewicht bei den Kabeln und eine Verbesserung des Handlings der Motoren einschließlich ihrer Zuleitungen bei vorwiegend ortsveränderlichen Anlagen. Weiterhin können Schaltgeräte eingespart werden, wodurch folglich auch der Installationsaufwand geringer und ein weiterer Kostenvorteil erreicht wird. Dies ist insbesondere auch deshalb der Fall, weil zusätzliche Steuerleitungen zum Motor und vom Motor zurück für Rückmeldungen entfallen.

Ein weiterer Vorteil ist, daß mehrere Motoren an eine einzige Energieversorgungsleitung angeschlossen sein können, die zentral durch das Grubengebäude verläuft.

Eine Motorstromzuleitung ist dann jeweils nur von der Energieversorgungsleitung zum entsprechenden Motor notwendig. Dabei kann der gesamte Signaltransport über die zentrale Energieversorgungsleitung bis hin zum einzelnen Motor erfolgen (Patentanspruch 2).

An den an die Energieversorgungsleitung angeschlossenen Motor können über Verzweigungsleitungen weitere Motoren angeschlossen sein (Patentansprüche 3 und 4). Jeder einzelne Motor kann dabei die Funktion eines Verteilers übernehmen.

Unter Anwendung der Merkmale des Patentanspruchs 5 übernimmt ein Schütz die Netzkurzschlußüberwachung sowie die thermische Überwachung der Energieversorgungsleitung. In diesem Zusammenhang kann bei Bedarf auch in jede Motorstromleitung ein Schütz gelegt werden.

Zweckmäßig sind der ASK-Datenkoppler sowie die mit ihm zusammenarbeitende Steuerung jeweils in die Energieversorgungsleitung zwischen Schütz und Motor eingekoppelt (Patentanspruch 6).

Gemäß den Merkmalen des Patentanspruchs 7 kann die Steuereinheit auch Übertage angeordnet sein. Sie ist dann zweckmäßig in eine Prozeßleitzentrale integriert, von der aus die komplexen betrieblichen Abläufe ge-

Die Erfindung ist nachfolgend anhand von in den Zeichnungen dargestellten Ausführungsbeispielen näher erläutert. Es zeigen:

Fig. 1 eine Ausführungsform eines polumschaltbaren

Fig. 2 eine Anordnung zum Betreiben, Steuern und Überwachen von Elektromotoren in untertägigen Betrieben gemäß der Erfindung.

In der Fig. 1 ist ein polumschaltbarer Motor 1 mit zwei dreiphasigen Ständerwicklungen W1, W2 dargestellt. Die Phasen einer Hauptversorgungsleitung 2 sind mit L₁-L₃ bezeichnet. Diese sind hier nur angedeutet. Sie können sich aber beispielsweise durch ein komplettes Grubengebäude erstrecken, wobei auch mehrere und zu einer verarbeitenden Steuerung weitergeleitet. 65 Motoren an die Hauptversorgungsleitung 2 gekoppelt sein können.

> Über ein Schaltgerät 3 mit integrierten Schützen ist eine Energieversorgungsleitung 4 mit der Hauptversor

gungsleitung 2 verbunden. Zum Motor 1 geht von der Energieversorgungsleitung 4 eine Motorstromleitung 5 ab. Für jede Ständerwicklung W1, W2 des Motors 1 sind vier Thyristoren A₁-A₄ und B₁-B₄ vorgesehen. Die Ständerklemmen der Ständerwicklung W1 sind mit C₁-C₃ und die Ständerklemmen der Ständerwicklung W₂ mit D₁-D₃ bezeichnet. Jede Ständerklemme

 C_1-C_3 und D_1-D_3 hat eine Stromverzweigung, in die

jeweils ein Thyristor A₁ - A₄ bzw. B₁ - B₄ eingebaut ist. Weiterhin ist aus der Fig. 1 die Anordnung einer spei- 10 cherprogrammierbaren Steuereinheit (SPS) 6 mit Befehlseingängen X₁-X₃ zu entnehmen, die über eine Leitung 7 mit einem ASK-Datenkoppler 8 verbunden ist. Über die Leitungen 9, 10 ist der ASK-Datenkoppler 8 mit den Phasen 4a, 4b der Energieversorgungsleitung 15

4 gekoppelt. Motorseitig ist ein ASK-Datenkoppler 11 über Leitungen 12, 13 mit den Phasen 5a, 5b der Motorstromleitung 5 verbunden. Mittels einer Leitung 14 wird der Kontakt zu einer Steuerung 15 hergestellt. Von der 20 Steuerung 15 gehen Steuerleitungen 16-23 zu den Gates G_1-G_8 der Thyristoren A_1-A_4 und B_1-B_4 ab. Weiterhin weist die Steuerung 15 Befehlseingänge Y1, Y2 für die Motorüberwachung auf.

Andeutungsweise sind in der Fig. 1 Abzweigungen 25 10 Leitung mit Verzweigungsleitungen 24 dargestellt.

Die Steuerung des Motors 1, beispielsweise eine Drehzahländerung von einer niedrigeren zu einer höheren Geschwindigkeit bzw. umgekehrt oder ein Rechtsoder Linkslauf, geschieht wie folgt:

Von der Steuereinheit 6 geht ein entsprechendes Signal zur Einschaltung des Langsamgangs über die Leitung 7 zum ASK-Datenkoppler 8. Dieser verändert das Signal derart, daß es auf die Strom führenden Phasen 4a, 4b der Energieversorgungsleitung 4 moduliert und mit 35 20 Steuerleitung diesen übertragen werden kann. Dieses Verfahren ist so gewählt, daß beispielsweise die konstante Frequenz von 100 kHz entsprechend den zu übertragenden Daten getastet wird. Eine logische "Null" bewirkt dann das Senden der Frequenz; eine logische "Eins" hingegen das 40 Unterdrücken der Frequenz. Im Motor 1 wird das Signal vom ASK-Datenkoppler 11 entkoppelt, so daß es von der Steuerung 15 verarbeitet wird. Diese besorgt dann, daß die Ständerwicklung D1 eingeschaltet wird.

Wird z. B. ein Rechtslauf verlangt, so erfolgt ein ent- 45 sprechendes Signal von der Steuereinheit 6 über den ASK-Datenkoppler 8 und die Energieversorgungsleitung 4 sowie die Motorstromleitung 5 mit der Entkopplung im ASK-Datenkoppler 11 und der Auswertung in der Steuerung 15 derart, daß die Gates G1 und G4 der 50 A4 Thyristor Thyristoren A₁ und A₄ gezündet werden. Dadurch flie-Ben die Ströme IA1, IA4 und I3. Für eine Drehrichtungsumkehr werden dementsprechend die Thyristoren A2 und A3 gezündet, so daß die Ströme laz, las und ls fließen.

Wird der Schnellgang angesteuert, erfolgt eine Umschaltung auf die Ständerwicklung W2. Entsprechend der verlangten Drehrichtung werden entweder die Thyristoren B1 und B4 oder die Thyristoren B2 und B3 leitend.

In der Fig. 2 ist eine Anordnung in technisch generalisierter Weise dargestellt, bei der mehrere Motoren 1a-1i an eine Energieversorgungsleitung 4 gekoppelt sind.

Die Energieversorgungsleitung 4 ist über ein Schütz 3 65 mit einer hier nicht dargestellten Hauptversorgungsleitung bzw. Energiequelle verbunden. Hinter dem Schütz 3 sind der ASK-Datenkoppler 8 und die Steuerung 6 an

die Energieversorgungsleitung 4 gekoppelt. Über Motorstromleitungen 25, 26, 27, 28 sind die Motoren 1a-1d direkt mit der Energieversorgungsleitung 4 verbunden.

Mittels Verzweigungsleitungen 29, 30, 31 sind weitere 5 Motoren 1f-1i direkt oder indirekt mit den an die Energieversorgungsleitung 4 angeschlossenen Motoren 1c, 1d angeschlossen.

Bezugszeichenaufstellung

- 1 PU-Motor 1a-1i-PU-Motor
- 2 Hauptversorgungsleitung
- 3 Schaltgerät
- 4 Energieversorgungsleitung 4a-Phase
 - 4b-Phase
- 5 Motorstromleitung 5a-Phase
- 5b-Phase
- 6 SPS
- 7 Leitung
- 8 ASK-Datenkoppler
- 9 Leitung
- 11 ASK-Datenkoppler
- 12 Leitung
- 13 Leitung
- 14 Leitung
- 30 15 Steuerung
 - 16 Steuerleitung
 - 17 Steuerleitung
 - 18 Steuerleitung
 - 19 Steuerleitung

 - 21 Steuerleitung
 - 22 Steuerleitung
 - 23 Steuerleitung
 - 24 Verzweigungsleitung
 - 25 Motorstromleitung
 - 26 Motorstromleitung
 - Motorstromleitung
 - 28 Motorstromleitung
 - 29 Verzweigungsleitung
 - 30 Verzweigungsleitung 31 Verzweigungsleitung
 - A₁ Thyristor
 - A₂ Thyristor
 - A₃ Thyristor

 - B₁ Thyristor
 - B₂ Thyristor
 - B₃ Thyristor
 - B₄ Thyristor
 - C₁ Ständerklemme
 - C₂ Ständerklemme
 - C₃ Ständerklemme
 - D_i Ständerklemme D₂ Ständerklemme
- 60 D₃ Ständerklemme
 - I₃ Strom
 - las Strom
 - IA2 Strom
 - la3 Strom
 - IA4 Strom
 - IBI Strom
 - IB2 Strom
 - las Strom

5

10

5

I_{B4} Strom

L₁ Phase U

L₂ Phase V L₃ Phase W

W₁ Ständerwicklung

W2 Ständerwicklung

X₁ Befehlseingang

X₂ Befehlseingang

X₃ Befehlseingang

Y₁ Befehlseingang

Y₂ Befehlseingang

Patentansprüche

 Anordnung zum Betreiben, Steuern und Überwa- 15 chen mindestens eines Elektromotors (1, 1a-1i) in untertägigen Betrieben, insbesondere eines polumschaltbaren Käfigläufermotors (1, 1a-1i) mit zwei dreiphasigen Ständerwicklungen (W1, W2), die über integrierte Thyristoren (A₁-A₄, B₁-B₄) ansteuer- 20 bar sind, mit einer dreiphasigen Hauptversorgungsleitung (2) und an diese über mindestens einen elektromagnetischen Schalter (3) angeschlossene Energieversorgungsleitung (4) und einer Motorsteuerung (15) dadurch gekennzeichnet, daß die Signale 25 eines von einer Steuereinheit (6) stammenden digitalen Befehlsstroms in einem ASK-Datenkoppler (8) umsetzbar und der Energieversorgungsleitung (4) aufmodulierbar sind und daß jedem Elektromotor (1, 1a-1i) ein ASK-Datenkoppler (11) sowie 30 eine mit der Steuereinheit (6) mindestens indirekt zusammenwirkende bidirektionale Steuerung (15) zugeordnet ist.

2. Anordnung nach Patentanspruch 1 mit mindestens zwei Elektromotoren (1, 1a-1i), dadurch gekennzeichnet, daß jeder E-Motor (1, 1a-1d) über eine eigene Motorstromleitung (5, 25, 26, 27, 28) an die Energieversorgungsleitung (4) angeschlossen ist.

3. Anordnung nach Patentanspruch 2, dadurch gekennzeichnet, daß je ein Elektromotor (1, 1c, 1d)
über eine Motorstromleitung (27, 28) an die Energieversorgungsleitung (4) angeschlossen ist und jeder weitere Motor (1f-1i) über eine Verzweigungsleitung (29, 30, 31) mit dem an die Energieversorgungsleitung (4) angeschlossen Motor (1,
1c-1f) verbunden ist.

4. Anordnung nach einem der Patentansprüche 1 bis 3, dadurch gekennzeichnet, daß jeder weitere Elektromotor (1f-1i) direkt oder indirekt über 50 mindestens einen zwischengeschalteten Elektromotor (1c, 1d) mittels Verzweigungsleitungen (29, 30, 31) an den mit der Energieversorgungsleitung (4) verbundenen Elektromotor (1c, 1d) angeschlossen ist.

5. Anordnung nach einem der Patentansprüche 1 bis 4, dadurch gekennzeichnet, daß in die Energieversorgungleitung (4) zwischen dem Anschluß an die Hauptversorgungsleitung (2) und dem Anschluß der Motorstromleitung (5, 25, 26, 27, 28) an die Energieversorgungsleitung (4) ein Schütz (3) geschaltet ist.

6. Anordnung nach einem der Patentansprüche 1 bis 5, dadurch gekennzeichnet, daß der ASK-Datenkoppler (8) sowie die Steuerung (6) in die Energieversorgungsleitung (4) zwischen Schütz (3) und Motor (1, 1a-1i) eingekoppelt sind.

7. Anordnung nach einem der Patentansprüche 1

bis 6, dadurch gekennzeichnet, daß die Steuereinheit (6) und/oder der ASK-Datenkoppler (8) Übertage sowie mit einer Prozeßleitzentrale logisch verknüpfbar angeordnet und die Energieversorgungsleitung (4) von Übertage in den untertägigen Betrieb geleitet ist.

Hierzu 2 Seite(n) Zeichnungen

Nummer:

Int. Cl.⁸:

DE 42 25 534 A1 H 02 P 7/48

Nummer: Int. Cl.⁵: Offenlegungstag: DE 42 25 534 A1 H 02 P 7/48 3. Februar 1994

