්සියලු ම හිමිකම් ඇව්රිණි /(மුගුට්) பதிப்புரிமையுடையது /All Rights Reserved]

(නව නිර්දේශය/புதிய பாடத்திட்டம்/New Syllabus)

phocediage ල් ලංකා විභාග දෙපාර්තලන් දැට සිදුල සම්පූර්ණ විභාග දෙපාර්තලේන්තුව ල් ලංකා විභාග දෙපාර්තලේන්තුව திணைக்களும் இலங்கைப் படுக்கத் தின்னக்கிய இதுவின்படு படிகளுத் திணைக்களும் இலங்கைப் பரிட்சைத் திணைக்களும் ions, Sri Lanka Department of இலங்கிகைப் பிட்டைத் தினைக்களும் Bri Lanka Department of Examinations, Sri Lanka මත්තුව ල් ලංකා විභාග දෙපාර්තුවේ දී ලංකා විභාග දෙපාර්තුවේ ල් ලංකා විභාග දෙපාර්තුවේන්තුව ල් ලංකා විභාග දෙපාර්තුවේන්තුව தே தினைக்களும் இலங்கைப் பிடிக்கது இலங்கைக்களும் இலங்கைப் பரிட்சைத் தினைக்களும்

අධානයන පොදු සහතික පනු (උසස් පෙළ) චිතාගය, 2019 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2019 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2019

්සංයක්ත ගණිතය

இணைந்த கணிதம் Combined Mathematics

2019.08.05 / 0830 - 1140

පැය තුනයි

மூன்று மணித்தியாலம் Three hours

අමතර කියවීම් කාලය

- මිනිත්තු 10 යි

மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் - 10 minutes Additional Reading Time

අමතර කියවීම් කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිවීමේදී පුමුඩත්වය දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදාගන්න.

විහාග අංකය				
L	[

උපදෙස්:

🗱 මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ;

A කොටස (පුශ්න 1 - 10) සහ B කොටස (පුශ්න 11 - 17).

* A කොටස:

සියලු ම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය.

* B කොටස:

පුශ්ත **පහකට** පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.

- st නියමිත කාලය අවසන් වූ පසු f A **කොටසෙහි** පිළිතුරු පතුය, f B **කොටසෙහි** පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- පුශ්න පතුලෙහි **B කොටස පමණක්** විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.

පරීක්ෂකවරුන්ගේ පුගෝජනය සඳහා පමණි.

(10) සංයුක්ත ගණිතය I		
කොටස	පුශ්න අංකය	ලකුණු
	1	
	2	
	3	
	4	
	5	
A	6	
	7	
	8	
	9	
	10	
	11	
	12	
	13	
В	14	
	15	
	16	
	17	
	එකතුව	

	වකරුව
ඉලක්කමෙන්	
අකුරින්	

	നാരതവ വ
උත්තර පතු පරීක්ෂක	
පරීක්ෂා කළේ: ¹ 2	
අධීක්ෂණය කළේ:	

	A කොටස
1.	ගණිත අගපුහන මූලධර්මය භාවිතයෙන්, සියලු $n\!\in\!\mathbb{Z}^+$ සඳහා $\sum_{r=1}^n (2r\!-\!1)=n^2$ බව සාධනය කරන්න.
	······
	······································
2.	එක \emptyset රූප සටහනක $y=\left 4x-3\right $ හා $y=3-2\left x\right $ හි පුස්තාරවල දළ සටහන් අඳින්න.
	ජ්නයින් හෝ අන් අයුරකින් හෝ, $ 2x-3 + x <3$ අසමානතාව සපුරාලන x හි සියලු ම තාත්ත්වික අගයන් සොයන්න.
	······································
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

3.	අංගන්ඩ් සටහනක, $Arg(z-2-2i)=-\frac{3\pi}{4}$	🕹 සපුරාලන	z සංකීර්ණ	සංඛ්	නිරූපණය	කරන	ලක්ෂාව(
	පථයෙහි දළ සටහනක් අඳින්න.						
		37		. t =		_	

ඒ නයින් හෝ අන් අයුරකින් හෝ, $\operatorname{Arg}\left(z-2-2i\right)=-rac{3\pi}{4}$ වන පරිදි $\left|i\,\overline{z}+1\right|$ හි අවම අගය සොයන්න.

 $4. \left(x^3 + \frac{1}{x^2}\right)^7$ හි ද්විපද පුසාරණයේ x^6 හි සංගුණකය 35 බව පෙන්වන්න.

ඉහත ද්විපද පුසාරණයේ x වලින් ස්වායත්ත පදයක් **නොපවතින** බවත් පෙන්වන්න.

5.	$\lim_{x \to 3} \frac{\sqrt{x-2}-1}{\sin(\pi(x-3))} = \frac{1}{2\pi} \partial \mathcal{D} $ මෙපන්වන්න.
6.	$y=\sqrt{rac{x+1}{x^2+1}}$, $x=0$, $x=1$ හා $y=0$ වකු මගින් ආවෘත වන පෙදෙස x - අක්ෂය වටා රේඩියන 2π වලින්
	භූමණය කරනු ලබයි. මෙලෙස ජනනය වන ඝන වස්තුවේ පරිමාව $rac{\pi}{4}(\pi + \ln 4)$ බව පෙන්වන්න.
	4
	4
	4
	4
	4

7.	C යනු $t\in\mathbb{R}$ සඳහා $x=at^2$ සහ $y=2at$ මගින් පරාමිතිකව දෙනු ලබන පරාවලය යැයි ගනිමු; මෙහි $a\neq 0$ වේ. C පරාවලයට $\left(at^2,2at\right)$ ලක්ෂායෙහි දී වූ අභිලම්බ රේඛාවෙහි සමීකරණය $y+tx=2at+at^3$ මගින් දෙනු
	· · · · · · · · · · · · · · · · · · ·
	ලබන බව පෙන්වන්න.
	C පරාවලය මත $P\equiv (4a,4a)$ ලක්ෂායෙහි දී වූ අභිලම්බ රේඛාවට එම පරාවලය නැවත $Q\equiv (aT^2,2aT)$
	ලක්ෂායක දී හමු වේ. $T=-3$ බව පෙන්වන්න.
8.	l_1 හා l_2 යනු පිළිවෙළින් $x+y=4$ හා $4x+3y=10$ මගින් දෙනු ලබන සරල රේඛා යැයි ගනිමු.
8.	l_1 හා l_2 යනු පිළිවෙළින් $x+y=4$ හා $4x+3y=10$ මගින් දෙනු ලබන සරල රේබා යැයි ගනිමු. P හා Q පුභින්න ලක්ෂා දෙක l_1 රේඛාව මත පිහිටා ඇත්තේ මෙම එක් එක් ලක්ෂායේ සිට l_2 රේඛාවට
8.	. 2 -
8.	P හා Q පුභින්න ලක්ෂා දෙක l_1 රේඛාව මත පිහිටා ඇත්තේ මෙම එක් එක් ලක්ෂායේ සිට l_2 රේඛාවට
8.	P හා Q පුභින්න ලක්ෂා දෙක l_1 රේඛාව මත පිහිටා ඇත්තේ මෙම එක් එක් ලක්ෂායේ සිට l_2 රේඛාවට
8.	P හා Q පුභින්න ලක්ෂා දෙක l_1 රේඛාව මත පිහිටා ඇත්තේ මෙම එක් එක් ලක්ෂායේ සිට l_2 රේඛාවට
8.	P හා Q පුභින්න ලක්ෂා දෙක l_1 රේඛාව මත පිහිටා ඇත්තේ මෙම එක් එක් ලක්ෂායේ සිට l_2 රේඛාවට
8.	P හා Q පුභින්න ලක්ෂා දෙක l_1 රේඛාව මත පිහිටා ඇත්තේ මෙම එක් එක් ලක්ෂායේ සිට l_2 රේඛාවට
8.	P හා Q පුභින්න ලක්ෂා දෙක l_1 රේඛාව මත පිහිටා ඇත්තේ මෙම එක් එක් ලක්ෂායේ සිට l_2 රේඛාවට
8.	P හා Q පුභින්න ලක්ෂා දෙක l_1 රේඛාව මත පිහිටා ඇත්තේ මෙම එක් එක් ලක්ෂායේ සිට l_2 රේඛාවට
8.	P හා Q පුභින්න ලක්ෂා දෙක l_1 රේඛාව මත පිහිටා ඇත්තේ මෙම එක් එක් ලක්ෂායේ සිට l_2 රේඛාවට
8.	P හා Q පුභින්න ලක්ෂා දෙක l_1 රේඛාව මත පිහිටා ඇත්තේ මෙම එක් එක් ලක්ෂායේ සිට l_2 රේඛාවට
8.	P හා Q පුභින්න ලක්ෂා දෙක l_1 රේඛාව මත පිහිටා ඇත්තේ මෙම එක් එක් ලක්ෂායේ සිට l_2 රේඛාවට
8.	P හා Q පුභින්න ලක්ෂා දෙක l_1 රේඛාව මත පිහිටා ඇත්තේ මෙම එක් එක් ලක්ෂායේ සිට l_2 රේඛාවට
8.	P හා Q පුභින්න ලක්ෂා දෙක l_1 රේඛාව මත පිහිටා ඇත්තේ මෙම එක් එක් ලක්ෂායේ සිට l_2 රේඛාවට
8.	P හා Q පුභින්න ලක්ෂා දෙක l_1 රේඛාව මත පිහිටා ඇත්තේ මෙම එක් එක් ලක්ෂායේ සිට l_2 රේඛාවට
8.	P හා Q පුභින්න ලක්ෂා දෙක l_1 රේඛාව මත පිහිටා ඇත්තේ මෙම එක් එක් ලක්ෂායේ සිට l_2 රේඛාවට
8.	P හා Q පුභින්න ලක්ෂා දෙක l_1 රේඛාව මත පිහිටා ඇත්තේ මෙම එක් එක් ලක්ෂායේ සිට l_2 රේඛාවට

9.	$A \equiv (-7,9)$ ලක්ෂාය $S \equiv x^2 + y^2 - 4x + 6y - 12 = 0$ වෘත්තයට පිටතින් පිහිටන බව පෙන්වන්න.
	S=0 වෘත්තය මත වූ, A ලක්ෂාසයට ආසන්නතම ලක්ෂායෙහි ඛණ්ඩාංක සොයන්න.

	······································
	α $1 + \frac{2}{3}$
10.	$ heta eq (2n+1)\pi$ සඳහා $t= anrac{v}{2}$ යැයි ගනිමු; මෙහි $n\in\mathbb{Z}$ වේ. $\cos heta=rac{1-t}{1+t^2}$ බව පෙන්වන්න.
10.	$ heta eq (2n+1)\pi$ සඳහා $t= anrac{ heta}{2}$ යැයි ගනිමු; මෙහි $n\in\mathbb{Z}$ වේ. $\cos heta=rac{1-t^2}{1+t^2}$ බව පෙන්වන්න. $ anrac{\pi}{12}=2-\sqrt{3}$ බව අපෝහන ය කරන්න.
10.	- 1 -
10.	- 1 -
10.	- 1 -
10.	- 1 -
10.	- 1 -
10.	- 1 -
10.	- 1 -
10,	- 1 -
10.	- 1 -
10.	- 1 -
10.	- 1 -
10.	- 1 -
10.	- 1 -
10.	- 1 -
10.	- 1 -
10.	- 1 -

සියලු ම හිමිකම් ඇවිරිනි/முழுப் பதிப்புரிமையுடையது/All Rights Reserved)

(නව නිඊදේශය/பුනිய பாடத்திட்டம்/New Syllabus)

gom நிலக சோடுந்துக்கிறும் இ ஒன்ற செற்றோகு இது இது நிலக முறந்து இது இறை செற்றவர்களும் இ ஒன்ற சிலக சேற்றவருக்கு இ திலைக்களம் இலங்கைப் பரிட்சைத் தினைக்களம் இலங்கைப் பரிட்சைத் தினைக்களம் ons, Sri Lanka Department of இலங்கைப் பரிட்கைத் தினைக்களும் Sri Lanka Department of Examinations, Sri Lanka Depart

අධායන පොදු සහතික පනු (උසස් පෙළ) විභාගය, 2019 අගෝස්තු සභ්ඛාධ பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2019 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2019

සංයුක්ත ගණිතය I இணைந்த கணிதம் I Combined Mathematics I

10 S I

B කොටස

* පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න.

11. (a) $p \in \mathbb{R}$ හා $0 යැයි ගනිමු. <math>p^2 x^2 + 2x + p = 0$ සමීකරණයෙහි, 1 මූලයක් **නොවන** බව පෙන්වන්න. α හා β යනු මෙම සමීකරණයෙහි මූල යැයි ගනිමු. α හා β දෙකම තාත්ත්වික බව පෙන්වන්න. p ඇසුරෙන් $\alpha + \beta$ හා $\alpha\beta$ ලියා දක්වා

$$\frac{1}{(\alpha-1)} \cdot \frac{1}{(\beta-1)} = \frac{p^2}{p^2 + p + 2}$$

බව පෙන්වන්න.

 $\frac{\alpha}{\alpha-1}$ හා $\frac{\beta}{\beta-1}$ මූල වන වර්ගජ සමීකරණය $(p^2+p+2)x^2-2(p+1)x+p=0$ මගින් දෙනු ලබන බවත්, මෙම මූල දෙකම ධන වන බවත් පෙන්වන්න.

- (b) c හා d යනු **නිශ්ශන** තාත්ත්වික සංඛන දෙකක් යැයි ද $f(x) = x^3 + 2x^2 dx + cd$ යැයි ද ගනිමු. (x-c) යන්න f(x) හි සාධකයක් බවත්, (x-d) මගින් f(x) බෙදූ විට ශේෂය cd බවත් දී ඇත. c හා d හි අගයන් සොයන්න. c හා d හි මෙම අගයන් සඳහා, $(x+2)^2$ මගින් f(x) බෙදූ විට ශේෂය සොයන්න.
- 12. (a) P_1 හා P_2 යනු පිළිවෙළින් $\left\{A,B,C,D,E,1,2,3,4\right\}$ හා $\left\{F,G,H,I,J,5,6,7,8\right\}$ මගින් දෙනු ලබන කුලක දෙක යැයි ගනිමු. $P_1 \cup P_2$ න් ගනු ලබන වෙනස් අකුරු 3 කින් හා වෙනස් සංඛාහංක 3 කින් යුත්, අවයව 6 කින් සමන්විත මුරපදයක් සෑදීමට අවශාව ඇත. පහත එක් එක් අවස්ථාවේ දී සෑදිය හැකි එවැනි වෙනස් මුරපද ගණන සොයන්න:
 - (i) අවයව 6 ම P_1 න් පමණක් ම තෝරා ගනු ලැබේ,
 - (ii) අවයව 3 ක් P_1 න් ද P_2 න් අනෙක් අවයව 3 ද තෝරා ගනු ලැබේ.
 - $(b) \ r \in \mathbb{Z}^+$ සඳහා $U_r = \frac{1}{r(r+1)(r+3)(r+4)}$ හා $V_r = \frac{1}{r(r+1)(r+2)}$ යැයි ගනිමු.

 $r \in \mathbb{Z}^+$ සඳහා $V_r - V_{r+2} = 6 U_r$ බව පෙන්වන්න.

ඒ නයින්, $n\in \mathbb{Z}^+$ සඳහා $\sum_{r=1}^n U_r = \frac{5}{144} - \frac{(2n+5)}{6(n+1)(n+2)(n+3)(n+4)}$ බව පෙන්වන්න.

 $r \in \mathbb{Z}^+$ සඳහා $W_r = U_{2r-1} + U_{2r}$ යැයි ගනිමු.

 $n \in \mathbb{Z}^+$ සඳහා $\sum_{r=1}^n W_r = \frac{5}{144} - \frac{(4n+5)}{24(n+1)(n+2)(2n+1)(2n+3)}$ බව **අපෝහන**ය කරන්න.

ඒ නයින්, $\sum_{r=1}^\infty W_r$ අපරිමිත ශ්‍රේණිය අභිසාරී බව පෙන්වා එහි ඓකාශ සොයන්න.

$$\mathbf{A} = \begin{pmatrix} a & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} 2 & 1 & 3 \\ 1 & -a & 4 \end{pmatrix}$$
 හා $\mathbf{C} = \begin{pmatrix} b & -2 \\ -1 & b+1 \end{pmatrix}$ යනු $\mathbf{A} \mathbf{B}^{\mathsf{T}} = \mathbf{C}$ වන පරිදි වූ නාහස යැයි

ගනිමු; මෙහි $a,b\!\in\!\mathbb{R}$ වේ.

a=2 හා b=1 බව පෙන්වන්න.

තව ද ${f C}^{-1}$ නොපවතින බව පෙන්වන්න.

 ${f P}=rac{1}{2}({f C}-2{f I})$ යැයි ගනිමු. ${f P}^{-1}$ ලියා දක්වා, $2{f P}({f Q}+3{f I})={f P}-{f I}$ වන පරිදි ${f Q}$ නාහසය සොයන්න; මෙහි ${f I}$ යනු ගණය ${f 2}$ වන ඒකක නාහසය වේ.

- (b) $z,z_1,z_2\in\mathbb{C}$ යැයි ගනිමු.
 - (i) Re $z \le |z|$, wo

(ii)
$$z_2 \neq 0$$
 සඳහා $\left| \frac{z_1}{z_2} \right| = \frac{\left| z_1 \right|}{\left| z_2 \right|}$

බව පෙන්වන්න.

$$z_1+z_2 \neq 0$$
 සඳහා $\operatorname{Re}\left(\frac{z_1}{z_1+z_2}\right) \leq \frac{\left|z_1\right|}{\left|z_1+z_2\right|}$ බව **අපෝහනය** කරන්න.

$$z_1+z_2 \neq 0$$
 සඳහා $\operatorname{Re}\left(\frac{z_1}{z_1+z_2}\right)+\operatorname{Re}\left(\frac{z_2}{z_1+z_2}\right)=1$ බව සතාපනය කර,

 $z_1,z_2\in\mathbb{C}$ සඳහා $\left|z_1+z_2\right|\leq \left|z_1\right|+\left|z_2\right|$ බව පෙන්වන්න.

(c)
$$\omega = \frac{1}{2} \left(1 - \sqrt{3} i \right)$$
 යැයි ගනිමු.

 $1+\omega$ යන්න $r(\cos\theta+i\sin\theta)$ ආකාරයෙන් පුකාශ කරන්න; මෙහි r(>0) හා $\theta\left(-\frac{\pi}{2}<\theta<\frac{\pi}{2}\right)$ යනු නිර්ණය කළ යුතු නියත වේ.

ද මුවාවර් පුමේයය භාවිතයෙන්, $(1+\omega)^{10}+(1+\overline{\omega})^{10}=243$ බව පෙන්වන්න.

14.(a)
$$x \neq 3$$
 සඳහා $f(x) = \frac{9(x^2 - 4x - 1)}{(x - 3)^3}$ යැයි ගනිමු.

 $x \neq 3$ සඳහා f(x) හි වනුත්පන්නය, f'(x) යන්න $f'(x) = -\frac{9(x+3)(x-5)}{(x-3)^4}$ මගින් දෙනු ලබන බව පෙන්වන්න.

ස්පර්ශෝන්මුඛ, y – අන්තෘඛණ්ඩය හා හැරුම් ලක්ෂා දක්වමින්, y=f(x) හි පුස්තාරයේ දළ සටහනක් අඳින්න.

 $x \neq 3$ සඳහා $f''(x) = \frac{18(x^2 - 33)}{(x - 3)^5}$ **බව දී ඇත.** y = f(x) හි පුස්තාරයේ නතිවර්තන ලක්ෂාවල x -ඛණ්ඩාංක

සොයන්න.

(b) යාබද රූපයෙන් පතුලක් සහිත සෘජු වෘත්තාකාර කේතු ඡින්නකයක ආකාරයෙන් වූ බේසමක් පෙන්වයි. බේසමෙහි ඇල දිග 30 cm ක් ද උඩත් වෘත්තාකාර දාරයෙහි අරය පතුලෙහි අරය මෙන් දෙගුණයක් ද වේ. පතුලේ අරය r cm යැයි ගනිමු.

බේසමේ පරිමාව $V\,\mathrm{cm}^3$ යන්න $0\!<\!r\!<\!30$ සඳහා

$$V = rac{7}{3} \pi r^2 \sqrt{900 - r^2}$$
 මගින් දෙනු ලබන බව පෙන්වන්න.
බේසමේ පරිමාව උපරිම වන පරිදි r හි අගය සොයන්න.

15.
$$(a)$$
 $0 \le \theta \le \frac{\pi}{4}$ සඳහා $x = 2\sin^2\theta + 3$ ආදේශය භාවිතයෙන්, $\int_3^4 \sqrt{\frac{x-3}{5-x}} \, \mathrm{d}x$ අගයන්න.

(b) භින්න භාග භාවිතයෙන්, $\int \frac{1}{(x-1)(x-2)} \, \mathrm{d}x$ සොයන්න.

$$t > 2$$
 සඳහා $f(t) = \int_{3}^{t} \frac{1}{(x-1)(x-2)} dx$ යැයි ගනිමු.

t>2 සඳහා $f(t)=\ln{(t-2)}-\ln{(t-1)}+\ln{2}$ බව **අපෝහනය** කරන්න.

කොටස් වශයෙන් අනුකලනය භාවිතයෙන්, $\int \ln{(x-k)}\,\mathrm{d}x$ සොයන්න; මෙහි k යනු තාත්ත්වික නියනයකි.

ඒ නයින්, $\int f(t) \, \mathrm{d}t$ සොයන්න.

(c) a හා b නියත වන $\int_a^b f(x) dx = \int_a^b f(a+b-x) dx$ සූනුය භාවිතයෙන්,

$$\int_{-\pi}^{\pi} \frac{\cos^2 x}{1 + e^x} dx = \int_{-\pi}^{\pi} \frac{e^x \cos^2 x}{1 + e^x} dx$$
 බව පෙන්වන්න.

ඒ නයින්,
$$\int\limits_{-x}^{\pi}\frac{\cos^2x}{1+e^x}\;\mathrm{d}x\;\;\mathrm{s}$$
 අගය සොයන්න.

 $16. \ 12x - 5y - 7 = 0$ හා y = 1 සරල රේඛාවල ඡේදන ලක්ෂාය වන A හි බණ්ඩාංක ලියා දක්වන්න.

 $m{l}$ යනු මෙම රේඛාවලින් සෑදෙන සුළු කෝණයෙහි සමච්ඡේදකය යැයි ගතිමු. $m{l}$ සරල රේඛාවේ සමීකරණය සොයන්න.

P යනු l මත වූ ලක්ෂායක් යැයි ගනිමු. P හි බණ්ඩාංක $(3\lambda+1,2\lambda+1)$ ලෙස ලිවිය හැකි බව පෙන්වන්න; මෙහි λ \in \mathbb{R} වේ.

 $B\equiv (6,0)$ යැයි ගනිමු. B හා P ලක්ෂා විෂ්කම්භයක අන්ත ලෙස වූ වෘත්තයෙහි සමීකරණය $S+\lambda U=0$ ලෙස ලිවිය හැකි බව පෙන්වන්න; මෙහි $S\equiv x^2+y^2-7x-y+6$ හා $U\equiv -3x-2y+18$ වේ.

 $S\!=\!0$ යනු AB විෂ්කම්භයක් ලෙස ඇති වෘත්තයෙහි සමීකරණය බව **අපෝහනය** කරන්න.

 $U\!=\!0$ යනු l \supset ලම්බව, B හරහා යන සරල රේඛාවේ සමීකරණය බව පෙන්වන්න.

සියලු $\lambda \in \mathbb{R}$ සඳහා $S + \lambda U = 0$ සමීකරණය සහිත වෘත්ත මත වූ ද B වලින් පුභින්ත වූ ද අචල ලක්ෂායෙහි බණ්ඩාංක සොයන්න.

S=0 මගින් දෙනු ලබන වෘත්තය, $S+\lambda\,U=0$ මගින් දෙනු ලබන වෘත්තයට පුලම්බ වන පරිදි λ හි අගය සොයන්න.

17. (a) $\sin A$, $\cos A$, $\sin B$ හා $\cos B$ ඇසුරෙන් $\sin (A+B)$ ලියා දක්වා, $\sin (A-B)$ සඳහා එවැනි පුකාශනයක් ලබා ගන්න.

$$2 \sin A \cos B = \sin (A+B) + \sin (A-B)$$
 to

$$2\cos A\sin B = \sin(A+B) - \sin(A-B)$$

බව **අපෝහනය** කරන්න.

ඒ නයින්, $0<\theta<\frac{\pi}{2}$ සඳහා $2\sin3\theta\cos2\theta=\sin7\theta$ විසඳන්න.

- (b) ABC නිකෝණයක BD=DC හා AD=BC වන පරිදි D ලක්ෂාය AC මත පිහිටා ඇත. $B\hat{A}C=\alpha$ හා $A\hat{C}B=\beta$ යැයි ගනිමු. සුදුසු තිකෝණ සඳහා සයින් නීතිය භාවිතයෙන්, $2\sin\alpha\cos\beta=\sin(\alpha+2\beta)$ බව පෙන්වන්න. $\alpha:\beta=3:2$ නම්, ඉහත (a) හි අවසාන පුතිඵලය භාවිතයෙන්, $\alpha=\frac{\pi}{6}$ බව පෙන්වන්න.
- $(c) \ 2 an^{-1} x + an^{-1} (x+1) = rac{\pi}{2}$ විසඳන්න. ඒ නයින්, $\cos \left(rac{\pi}{4} rac{1}{2} an^{-1} \left(rac{4}{3}
 ight)
 ight) = rac{3}{\sqrt{10}}$ බව පෙන්වන්න.

තිබලු ම හිමිකම් ඇව්ටමේ (முழுப் பதிப்புரிமைபுடையது /All Rights Reserved)

(නව නිර්දේශය/புதிய பாடத்திட்டம்/New Syllabus)

NEW

ந்தைவது இ ලංකා විශාශ දෙපාර්තරම් අද අතුල පිළිබුණ කළ පිළිබුණ ප්රචාර්තරම් අතුල විශාශ දෙපාර්තරම් අද ලංකා විශාශ දෙපාර්තරම් අද தினைக்களும் இஸ்கையை படி இது இணைக்குள்ம இன்றுக்கும் பர்ட் அத்து தினைக்களும் இஸ்குகைய் பர்ட் அத்த தினைக்களும் ions, Sri Lauka Department of இது நினைக்குள்ம இன்றுக்கும் நின்று இரு முற்றுக்கும் முற்றுக்கும் இரு முற்றுக்கும் முற்றுக்கும் இரு முற்றுக்கும் இரு முற்றுக்கும் இரு முற்றுக்கும் இரு முற்றுக்கும் இரு முறுக்கும் முற்றுக்கும் இரு முற்றுக்கும் இரு முற்றுக்கு இரு முற்றுக்கும் முற்றுக்கு இரு முறுக்கு இரு முற்றுக்கு இரு முறுக்கு இரு முற்றுக்கு முற்றுக்கு முற்றுக்கு முற்றுக்கு இரு முற்றுக்கு இரு முற்றுக்கு இரு முற்றுக்கு இரு முறுக்கு இரு முற்றுக்கு இரு முற்றுக்கு இரு முற்றுக்கு இரு முற்றுக்கு இரு முற்றுக்கு இரு முற்றுக்கு இரு முறைக்கு முறைக்கு இரு முறைக்கு முற்றுக்கு இரு முற்றுக்கு இரு முறைக்கு இரு முறைக்கு இரு முறை

குංයූක්ත ගණිතය II இணைந்த கணிதம் II Combined Mathematics II 10 S II

2019.08.07 / 0830 - 1140

පැය භූනයි

மூன்று மணித்தியாலம் Three hours අමතර කියවීම කාලය

Additional Reading Time

eralapi.com

- මිනිත්තු 10 යි

மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள்

- 10 គ្រាល់៤គេរសត - 10 minutes

අමහර කියවීම් කාලය පුශ්න පතුය කියවා පුශ්න හෝරා ගැනීමටත් පිළිතුරු ලිවීමේදී පුමුබත්වය දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදාගන්න.

විභාග අංකය

උපදෙස්:

🔆 මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ;

A තොටහ (පුශ්න 1 - 10) සහ B කොටග (පුශ්න 11 - 17).

* A කොටය:

තීයමු ම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය.

* B කොට :

පුශ්න **පහක**ට පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.

- * නියමිත කාලය අවසන් වූ පසු A **කොටගෙහි** පිළිතුරු පතුය, B **නොටගෙහි** පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විහාග ශාලාධිපතිට භාර දෙන්න.
- st පුශ්න පතුයෙහි f B කොටස පමණක් විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.
- 🔆 මෙම පුශ්න පතුයෙහි දු මගින් ගුරුත්වජ ක්වරණය දැක්වෙයි.

පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

(10) සංයුතන ගණනය 11		
තොටස	උශ්න අංකය	ලකුණු
	2	
	3	
	4	
	5	
A	6	
	7	
,	8	
	9	
	10	
	11	
	12	
	13	
В	14	
	15	
	16	
	17	
	එකතුව	

/10) ലംഘട്ടത മതിരുവ

	එකතුව
ඉලක්කමෙන්	
අකුරින්	

ළු පරීක්ෂක ප්රීක්ෂක ප්රීක්ෂා කළේ: 2 අධීක්ෂණය කළේ:

A **6**500005

1.	එක එකක ස්කන්ධය m වූ A , B හා C අංශු තුනක් එම පිළිවෙළින්, සුමට නිරස් මේසයක් මත සරල රේඛාවක තබා ඇත. A අංශුවට u පුවේගයක් දෙනු ලබන්නේ එය B අංශුව සමග සරල ලෙස ගැටෙන පරිදි ය. A අංශුව සමග ගැටුන පසු, B අංශුව චලනය වී C අංශුව සමග සරල ලෙස ගැටේ. A හා B අතර පුතාහාගති සංගුණකය e වේ. පළමු ගැටුමෙන් පසුව B හි පුවේගය සොයන්න.
	B හා C අතර පුතාාගති සංගුණකය ද e වේ. B සමග ගැටුමෙන් පසුව C හි පුවේගය ලියා දක්වන්න.
	,
2.	තිරස් හා සිරස් සංරචක පිළිවෙළින් \sqrt{ga} හා $\sqrt{6ga}$ සහිත
	පුවේගයකින් තිරස් ගෙබිමක් මත වූ <i>O</i> ලක්ෂායක සිට අංශුවක් පුක්ෂේප
	කරනු ලැබේ. රූපයේ දැක්වෙන පරිදි, එකිනෙක $\mathbb C$ a තිරස් දුරකින් පිහිටි
	උස a හා b වූ සිරස් තාප්ප දෙකකට යාන්තමින් ඉහළින් අංශුව යයි. $\sqrt{6ga}$ b උස a වූ තාප්පය පසු කරන විට අංශුවේ පුවේගයෙහි සිරස් සංරචකය
	$2\sqrt{ga}$ බව පෙන්වන්න.
	0
	$b=rac{5a}{2}$ බව තවදුරටත් පෙන්වන්න.
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

විගාග	අංකය
් විශාග	අංකය

<u>al</u>	L/2019/10/05-11(INEW)	
3.	රූපයෙහි A, B හා C යනු ස්කන්ධ පිළිවෙළින් m, m හා M වූ අංශු වේ. A හා B අංශු සැහැල්ලු අවිතනා තන්තුවකින් සම්බන්ධ කර ඇත. සුමට තිරස් මේසයක් මත වූ C අංශුව, මේසයේ දාරයට සවිකර ඇති සුමට කුඩා කප්පියක් මතින් යන තවත් සැහැල්ලු අවිතනා තන්තුවකින් B ට ඇඳා ඇත. අංශු හා තන්තු සියල්ලම එකම සිරස් තලයක පිහිටයි. තන්තු නොබුරුල්ව ඇතිව පද්ධතිය නිශ්චලතාවයේ සිට මුදා හරිනු ලැබේ. A හා B යා කරන තන්තුවේ ආතතිය නිර්ණය කිරීමට පුමාණවත් සමීකරණ ලියා දක්වන්න.	M C mOB
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

		<i>*</i> ***********************************

		• · · · · · · · · · · · · · · · · · · ·
4.	පහළට චලනය වේ. එහි චලිතයට R (> $Mg\sin\alpha$) N නියත පුතිරෝධයක් ඇත. එක්තරාත්වරණය a ms $^{-2}$ වේ. මෙම මොහොතේ දී කාරයේ පුවේගය සොයන්න.	ාත සෘජු මාර්ගයක් දිගේ
		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		#.h
		• • • • • • • • • • • • • • • • • • • •

5 .	එක එකක ස්කන්ධය m වූ A හා B අංශු දෙකක්, අවල සුමට කප්පියක් මතින් යන සැහැල්ලු $\frac{IIIIIIIIII}{2}$
	අවිතනා තන්තුවක දෙකෙළවරට ඈඳා සමතුලිතතාවයේ එල්ලෙයි. A ට සිරස්ව a දුරක්
	ඉහළින් වූ ලක්ෂායකින් නිශ්චලතාචයේ සිට මුදා හරින ලද ස්කන්ධය m ම වූ C කුඩා
	පබළුවක් ගුරුත්වය යටතේ නිදහසේ චලනය වී A සමග ගැටී හා වේ. (රූපය බලන්න.) m
	A හා C අතර ගැටුම සිදු වන මොහොතේ දී තන්තුවේ ආවේගය ද ඉහත ගැටුමෙන්
	මොහොතකට පසු B ලබා ගන්නා පුවේගය ද නිර්ණය කිරීමට පුමාණවත් සමීකරණ ලියා
	දක්වන්න.
	\widetilde{m} \widetilde{m}
	•
6.	සුපුරුදු අංකනයෙන්, O අචල මූලයකට අනුබුද්ධයෙන් A හා B ලක්ෂා දෙකක පිහිටුම් දෛශික පිළිවෙළින්
6.	සුපුරුදු අංකනයෙන්, O අවල මූලයකට අනුබද්ධයෙන් A හා B ලක්ෂා දෙකක පිහිටුම් දෛශික පිළිවෙළින් $2\mathbf{i} + \mathbf{j}$ හා $3\mathbf{i} - \mathbf{j}$ යායි ගනිම, $A\hat{O}C = A\hat{O}D = \frac{\pi}{a}$ හා $OC = OD = \frac{1}{a}AB$ වන පරිදි වූ C හා D පුහින්න ලක්ෂා
6.	$2\mathbf{i} + \mathbf{j}$ හා $3\mathbf{i} - \mathbf{j}$ යැයි ගනිමු. $A\hat{O}C = A\hat{O}D = \frac{\pi}{2}$ හා $OC = OD = \frac{1}{3}AB$ වන පරිදි වූ C හා D පුහින්න ලක්ෂා
6.	<u> </u>
6.	$2\mathbf{i} + \mathbf{j}$ හා $3\mathbf{i} - \mathbf{j}$ යැයි ගනිමු. $A\hat{O}C = A\hat{O}D = \frac{\pi}{2}$ හා $OC = OD = \frac{1}{3}AB$ වන පරිදි වූ C හා D පුහින්න ලක්ෂා
6.	$2\mathbf{i} + \mathbf{j}$ හා $3\mathbf{i} - \mathbf{j}$ යැයි ගනිමු. $A\hat{O}C = A\hat{O}D = \frac{\pi}{2}$ හා $OC = OD = \frac{1}{3}AB$ වන පරිදි වූ C හා D පුහින්න ලක්ෂා
6.	$2\mathbf{i} + \mathbf{j}$ හා $3\mathbf{i} - \mathbf{j}$ යැයි ගනිමු. $A\hat{O}C = A\hat{O}D = \frac{\pi}{2}$ හා $OC = OD = \frac{1}{3}AB$ වන පරිදි වූ C හා D පුහින්න ලක්ෂා
6.	$2\mathbf{i} + \mathbf{j}$ හා $3\mathbf{i} - \mathbf{j}$ යැයි ගනිමු. $A\hat{O}C = A\hat{O}D = \frac{\pi}{2}$ හා $OC = OD = \frac{1}{3}AB$ වන පරිදි වූ C හා D පුහින්න ලක්ෂා
6.	$2\mathbf{i} + \mathbf{j}$ හා $3\mathbf{i} - \mathbf{j}$ යැයි ගනිමු. $A\hat{O}C = A\hat{O}D = \frac{\pi}{2}$ හා $OC = OD = \frac{1}{3}AB$ වන පරිදි වූ C හා D පුහින්න ලක්ෂා
6.	$2\mathbf{i} + \mathbf{j}$ හා $3\mathbf{i} - \mathbf{j}$ යැයි ගනිමු. $A\hat{O}C = A\hat{O}D = \frac{\pi}{2}$ හා $OC = OD = \frac{1}{3}AB$ වන පරිදි වූ C හා D පුහින්න ලක්ෂා
6.	$2\mathbf{i} + \mathbf{j}$ හා $3\mathbf{i} - \mathbf{j}$ යැයි ගනිමු. $A\hat{O}C = A\hat{O}D = \frac{\pi}{2}$ හා $OC = OD = \frac{1}{3}AB$ වන පරිදි වූ C හා D පුහින්න ලක්ෂා
6.	$2\mathbf{i} + \mathbf{j}$ හා $3\mathbf{i} - \mathbf{j}$ යැයි ගනිමු. $A\hat{O}C = A\hat{O}D = \frac{\pi}{2}$ හා $OC = OD = \frac{1}{3}AB$ වන පරිදි වූ C හා D පුහින්න ලක්ෂා
6.	$2\mathbf{i} + \mathbf{j}$ හා $3\mathbf{i} - \mathbf{j}$ යැයි ගනිමු. $A\hat{O}C = A\hat{O}D = \frac{\pi}{2}$ හා $OC = OD = \frac{1}{3}AB$ වන පරිදි වූ C හා D පුහින්න ලක්ෂා
6.	$2\mathbf{i} + \mathbf{j}$ හා $3\mathbf{i} - \mathbf{j}$ යැයි ගනිමු. $A\hat{O}C = A\hat{O}D = \frac{\pi}{2}$ හා $OC = OD = \frac{1}{3}AB$ වන පරිදි වූ C හා D පුහින්න ලක්ෂා
6.	$2\mathbf{i} + \mathbf{j}$ හා $3\mathbf{i} - \mathbf{j}$ යැයි ගනිමු. $A\hat{O}C = A\hat{O}D = \frac{\pi}{2}$ හා $OC = OD = \frac{1}{3}AB$ වන පරිදි වූ C හා D පුහින්න ලක්ෂා
6.	$2\mathbf{i} + \mathbf{j}$ හා $3\mathbf{i} - \mathbf{j}$ යැයි ගනිමු. $A\hat{O}C = A\hat{O}D = \frac{\pi}{2}$ හා $OC = OD = \frac{1}{3}AB$ වන පරිදි වූ C හා D පුහින්න ලක්ෂා
6.	$2\mathbf{i} + \mathbf{j}$ හා $3\mathbf{i} - \mathbf{j}$ යැයි ගනිමු. $A\hat{O}C = A\hat{O}D = \frac{\pi}{2}$ හා $OC = OD = \frac{1}{3}AB$ වන පරිදි වූ C හා D පුහින්න ලක්ෂා
6.	$2\mathbf{i} + \mathbf{j}$ හා $3\mathbf{i} - \mathbf{j}$ යැයි ගනිමු. $A\hat{O}C = A\hat{O}D = \frac{\pi}{2}$ හා $OC = OD = \frac{1}{3}AB$ වන පරිදි වූ C හා D පුහින්න ලක්ෂා
6.	$2\mathbf{i} + \mathbf{j}$ හා $3\mathbf{i} - \mathbf{j}$ යැයි ගනිමු. $A\hat{O}C = A\hat{O}D = \frac{\pi}{2}$ හා $OC = OD = \frac{1}{3}AB$ වන පරිදි වූ C හා D පුහින්න ලක්ෂා

7.	තිරස සමග පිළිවෙළින් $lpha$ හා $rac{\pi}{3}$ කෝණ සාදන AP හා BP $A = A = A = A = A = A = A = A = A = A $
	සැහැල්ලු අවිතනා තන්තු දෙකක් මගින් තිරස් සිවිලිමකින්
	එල්ලා ඇති බර W වූ P අංශුවක්, රූපයේ දැක්වෙන පරිදි
	සමතුලිතතාවයේ පවතී. AP තන්තුවේ ආතතිය, W හා $lpha$
	ඇසුරෙන් සොයන්න. \checkmark_P
	ඒ නගීන්. මෙම ආතතියේ අවම අගයන් එයට අනුරූප $lpha$ හි අගයන් සොයන්න.
	·

8.	දිග $2a$ හා බර W වූ ඒකාකාර AB දණ්ඩක් එහි A කෙළවර රඑ තිරස්
	ගෙබීමක් මත ද B කෙළවර සුමට සිරස් බිත්තියකට එරෙහිව ද $B \longrightarrow rac{W}{2}$
	තබා ඇත. බීත්තියට ලම්බ සිරස් තලයක දණ්ඩ සමතුලිතතාවයේ
	තබා ඇත්තේ A කෙළවරේ දී බින්තිය දෙසට යෙදූ විශාලත්වය P
	වන තිරස් බලයක් මගිනි. රූපයේ F හා R මගින් පිළිවෙළින් A හි දී
	ඝර්ෂණ බලය හා අහිලම්බ පුතිකිුයාව දක්වා ඇත. B හි දී බිත්තිය
	මගින් ඇති කරන පුතිකිුයාව, රූපයේ පෙන්වා ඇති පරිදී $rac{W}{2}$ ද
	4
	දණ්ඩ හා ගෙබිම අතර සර්ෂණ සංගුණකය $\frac{1}{4}$ ද නම්, $\frac{W}{4} \le P \le \frac{3W}{4}$ බව පෙන්වන්න.

9.	A හා B යනු Ω නියැදි අවකාශයක සිද්ධි දෙකක් යැයි ගනිමු. සුපුරුදු අංකනයෙන්, $P(A)=rac{3}{5}$, $P(A\cap B)=rac{2}{5}$
	හා $P(A'\cap B)=rac{1}{10}$ බව දී ඇත. $P\left(B ight)$ හා $P(A'\cap B')$ සොයන්න; මෙහි A' හා B' වලින් පිළිවෙළින් A හා
	B හි අනුපූරක සිද්ධි දැක්වේ.
	·
10.	එක එකක් 5 ට අඩු ධන නිබීල පහකට මාතයන් දෙකක් ඇති අතර ඉන් එකක් 3 වේ. ඒවායේ මධා s න s ය හා
10.	එක එකක් 5 ට අඩු ධන නිඛිල පහකට මාතයන් දෙකක් ඇති අතර ඉන් එකක් 3 වේ. ඒවායේ මධාෘනායෙ හා මධාසේථය යන දෙකම 3 ට සමාන වේ. මෙම නිඛිල පහ සොයන්න.
10.	·
10.	මධාස්ථය යන දෙකම 3 ට සමාන වේ. මෙම නිඛිල පහ සොයන්න.
10.	මධාස්ථය යන දෙකම 3 ට සමාන වේ. මෙම නිඛිල පහ සොයන්න.
10.	මධාස්ථය යන දෙකම 3 ට සමාන වේ. මෙම නිඛිල පහ සොයන්න.
10.	මධාස්ථය යන දෙකම 3 ට සමාන වේ. මෙම නිඛිල පහ සොයන්න.
10.	මධාසේථය යන දෙකම 3 ට සමාන වේ. මෙම නිඛිල පහ සොයන්න.
10.	මධාසේථය යන දෙකම 3 ට සමාන වේ. මෙම නිඛිල පහ සොයන්න.
10.	මධාසේථය යන දෙකම 3 ට සමාන වේ. මෙම නිඛිල පහ සොයන්න.
10.	මධාසේථය යන දෙකම 3 ට සමාන වේ. මෙම නිඛිල පහ සොයන්න.
10.	මධාසේථය යන දෙකම 3 ට සමාන වේ. මෙම නිඛිල පහ සොයන්න.
10.	මධාසේථය යන දෙකම 3 ට සමාන වේ. මෙම නිඛිල පහ සොයන්න.
10.	මධාසේථය යන දෙකම 3 ට සමාන වේ. මෙම නිඛිල පහ සොයන්න.
10.	මධාසේථය යන දෙකම 3 ට සමාන වේ. මෙම නිඛිල පහ සොයන්න.
10.	මධාසේථය යන දෙකම 3 ට සමාන වේ. මෙම නිඛිල පහ සොයන්න.
10.	මධාසේථය යන දෙකම 3 ට සමාන වේ. මෙම නිඛිල පහ සොයන්න.
10.	මධාසේථය යන දෙකම 3 ට සමාන වේ. මෙම නිඛිල පහ සොයන්න.

සියලු ම හිමිතම් ඇවීරුම් / ω ලාලට පුතිටපුල්කාගයකා යනු / $All\ Rights\ Reserved$)

්නව නිර්දේශය/பුනිய பாடத்திட்டம்/New Syllabus

තරමින්තුව ලී ලංකා විභාග දෙපාර්තු**ල් පුසුවු සිදුල් පිටාර්තුලේ සිදුල් විභාග දෙපාර්තරම්න්තුව ලී ලංකා විභාග දෙපාර්තරම්න්තුව** නිශාක්ෂයണාව இலங்கைப் பල්දුණ්දුම් නිශාක්ෂයවා ඉදිරියක්තුව බැඳුල් නිශාක්ෂය හැරියාවේ නිශාක්ෂය මෙයා සිදුල් නිශාක්ෂය විභාගත්ව සිදුල් සිදුල ව ලී ලංකා වත්ග අදහර්ගල්න්නව දී ලංකා තිබෙන පදහර්ගන්නාකව ලී ලංකා වනුනු අදහර්ගමන්තුව ලී ලංකා විභාග අදහර්ගමන්ග ணக்களும் இலங்கைப் பிர்ட்ஸ்ச்ச இயண்டுகளில் இலங்கைப் பர்ட்சைத் திணைக்க

අධාායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2019 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2019 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2019

සංයුක්ත ගණිතය

II II

இணைந்த கணிதம் Combined Mathematics

* පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න.

(මෙම පුශ්න පතුයෙහි දු මගින් ගුරුත්වජ ක්වරණය දැක්වෙයි.)

 ${f 11.}$ (a) P හා Q මෝටර් රථ දෙකක් සෘජු පාරක් දිගේ තියත ත්වරණ සහිතව එකම දිශාවකට චලනය වේ. කාලය t=0 හි දී P හි පුවේගය u m s^{-1} ද Q හි පුවේගය (u+9) m s^{-1} ද වේ. P හි නියත ත්වරණය f m s⁻² ද Q හි නියන ත්වරණය $\left(f + \frac{1}{10}\right)$ m s⁻² ද වේ.

B කොටස

- (i) $t \ge 0$ සඳහා P හා Q හි චලිතවලට, එකම රූපයක හා
- (ii) $t \ge 0$ සඳහා P ට සාපේක්ෂව Q හි චලිතයට, වෙනම රූපයක,

පුවේග-කාල වකුවල දළ සටහන් අඳින්න.

කාලය t=0 හි දී P මෝටර් රථය Q මෝටර් රථයට වඩා මීටර 200 ක් ඉදිරියෙන් සිටි බව තවදුරටත් දී ඇත. P පසුකර යෑමට Q මගින් ගනු ලබන කාලය සොයන්න.

(b) සමාන්තර ඍජු ඉවුරු සහිත පළල a වූ ගඟක් u ඒකාකාර පුවේගයෙන් ගලයි. රූපයෙහි, $A,\,B,\,C$ හා Dයන ඉවුරු මත වූ ලක්ෂා සමචතුරසුයක ශීර්ෂ වේ. ජලයට සාපේක්ෂව නියත $v\,(>u)$ චේගයෙන් චලනය චන B_1 හා B_2 බෝට්ටු දෙකක් එකම මොහොතක A සිට ඒවායේ ගමන් ආරම්භ කරයි. B_1 බෝට්ටුව පළමුව \overrightarrow{AC} දිගේ C වෙත ගොස් ඉන්පසු CD දිශාවට ගඟ දිගේ ඉහළට D වෙත යයි. B_{γ} බෝට්ටුව පළමුව AB දිශාවට ගඟ දිගේ පහළට B වෙත ගොස් ඉන්පසු BD දිගේ D වෙත යයි. එකම රූපයක, B_1 හි A සිට C දක්වා ද B_2 හි B සිට D දක්වා ද චලිත සඳහා පුවේග තිුකෝණවල දළ සටහන් අඳින්න.

ඒ නගින්. A සිට C දක්වා චලිතයේ දී B_1 බෝට්ටුවේ චේගය $\frac{1}{\sqrt{2}}\Big(\sqrt{2\,v^2-u^2}+u\Big)$ බව පෙන්වා B සිට Dදක්වා චලිතයේ දී B_{γ} බෝට්ටුවේ චේගය සොයන්න.

 B_1 හා B_2 බෝට්ටු දෙකම එකම මොහොතක දී D වෙත ළඟා වන බව තවදුරටත් පෙන්වන්න.

12.(a) රූපයෙහි ABC හා LMN තිුකෝණ, $A\hat{C}B=L\hat{N}M=rac{\pi}{3}$ හා $A\hat{B}C=L\hat{M}N=rac{\pi}{2}$ වූ BC හා MN අඩංගු

මුහුණත් සුමට ති්රස් ගෙබීමක් මත තබන ලද පිළිවෙළින් X හා Y සර්වසම සුමට ඒකාකාර කුඤ්ඤ දෙකක ගුරුත්ව කේන්දු තුළින් වූ සිරස් හරස්කඩ චේ. ස්කන්ධය 3m වූ X කූඤ්ඤය ගෙබිම මත චලනය වීමට

නිදහස් වන අතර Y කුඤ්ඤය **අවලව** තබා ඇත. AC හා LNරේඛා අදාළ මුනුණත්වල උපරිම බෑවුම් රේඛා වේ. A හා L හි සවිකර ඇති සුමට කුඩා කප්පි දෙකක් මතින් යන සැහැල්ලු අවිතනා තන්තුවක දෙකෙළවර ස්කන්ධ පිළිවෙළින් m හා 2mවූ P හා Q අංශු දෙකකට ඈඳා ඇත. රූපයේ පරිදි ආරම්භක පිහිටීමේ දී, තන්තුව නොබුරුල්ව හා AP = AL = LQ = a වන ලෙස P හා Q අංශු පිළිවෙළින් AC හා LN මත අල්වා තබා ඇත. පද්ධතිය නිශ්චලතාවයෙන් මුදා හරිනු ලැබේ. Y වෙත

යාමට X ගනු ලබන කාලය, a හා g ඇසුරෙන් නිර්ණය කිරීමට පුමාණවත් සමීකරණ ලබා ගන්න.

(b) රූපයේ පෙන්වා ඇති පරිදි සුමට සිහින් ABCDE බටයක් සිරස් තලයක සවිකර ඇත. දිග $2\sqrt{3}a$ වූ AB කොටස සෘජු වන අතර එය B හි දී අරය 2a වූ BCDE වෘත්තාකාර කොටසට ස්පර්ශක වේ. A හා E අන්ත O කේන්දුයට සිරස්ව ඉහළින් පිහිටයි. ස්කන්ධය m වූ P අංශුවක් A හි දී බටය තුළ තබා තිශ්චලතාවයේ සිට සීරුචෙන් මුදා හරිනු ලැබේ. \overrightarrow{OA} සමග $\theta\left(\frac{\pi}{3} < \theta < 2\pi\right)$ කෝණයක් \overrightarrow{OP} සාදන විට P අංශුවේ වේගය, v යන්න, $v^2 = 4ga(2-\cos\theta)$ මගින් දෙනු ලබන බව පෙන්වා, එම මොහොතේ දී P අංශුව මත බටයෙන් ඇති කරන පුතිකිුයාව සොයන්න.

P අංශුව A සිට B දක්වා චලිතයේ දී එය මත බටයෙන් ඇති කරන පුතිකියාව ද සොයන්න.

P අංශුව B පසු කරන විට P අංශුව මත බටයෙන් ඇති කරන පුතිකිුයාව ක්ෂණිකව චෙනස් වන බව පෙන්වන්න.

13. තිරසට $\frac{\pi}{6}$ කෝණයකින් ආනත සුමට අවල තලයක උපරිම බෑවුම් රේඛාවක් මත OA = a හා AB = 2a වන පරිදි O පහළම ලක්ෂාය ලෙස ඇතිව O, A හා B ලක්ෂා එම පිළිවෙළින් පිහිටා ඇත. ස්වාභාවික දිග a හා පුතාහස්ථතා මාපාංකය mg වූ සැහැල්ලු පුතාහස්ථ තන්තුවක එක් කෙළවරක් O ලක්ෂායට ඈඳා ඇති අතර අනෙක් කෙළවර ස්කන්ධය m වූ P අංශුවකට ඈඳා ඇත. P අංශුව B ලක්ෂාය කරා ළඟා වන තෙක් තන්තුව OAB රේඛාව දිගේ අදිනු ලැබේ. ඉන්පසු P

අංශුව තිශ්චලතාවයේ සිට මුදා හරිනු ලැබේ. B සිට A දක්වා P හි චලිත සමීකරණය, $0 \le x \le 2a$ සඳහා, $\ddot{x} + \frac{g}{a} \left(x + \frac{a}{2} \right) = 0$ මගින් දෙනු ලබන බව පෙන්වන්න; මෙහි AP = x වේ.

 $y=x+rac{a}{2}$ යැයි ගෙන ඉහත චලිත සමීකරණය $rac{a}{2} \le y \le rac{5\pi}{2}$ සඳහා $\ddot{y}+\omega^2 y=0$ ආකාරයෙන් නැවත ලියන්න; මෙහි $\omega=\sqrt{rac{g}{a}}$ වේ.

ඉහත සරල අනුවර්තී චලිතයේ කේන්දුය සොයා $\dot{y}^2=\omega^2\,(c^2-y^2\,)$ සූතුය භාවිතයෙන්, c විස්තාරය හා A වෙත ළඟා වන විට P හි පුවේගය සොයන්න.

O වෙත ළඟා වන විට P හි පුවේගය $\sqrt{7ga}$ බව පෙන්වන්න.

B සිට O දක්වා චලනය වීමට P මගින් ගනු ලබන කාලය $\sqrt{\frac{a}{g}}\left\{\cos^{-1}\left(\frac{1}{5}\right)+2k\right\}$ බවත් පෙන්වන්න; මෙහි $k=\sqrt{7}-\sqrt{6}$ වේ.

P අංශුව O වෙන ළඟා වන විට, කලයට ලම්බව O හි සවිකර ඇති සුමට බාධකයක් හා එය ගැටෙයි. බාධකය හා P අතර පුතාසාගති සංගුණකය e වේ. $0 < e \le \frac{1}{\sqrt{7}}$ නම්, පසුව සිදු වන P හි චලිතය සරල අනුවර්තී නොවන බව පෙන්වන්න.

14.(a) OACB යනු සමාන්තරාසුයක් යැයි ද D යනු AC මත AD:DC=2:1 වන පරිදි වූ ලක්ෂාය යැයි ද ගනිමු. O අනුබද්ධයෙන් A හා B ලක්ෂාවල පිහිටුම් දෙශික පිළිවෙළින් λa හා b වේ; මෙහි $\lambda > 0$ වේ. \overrightarrow{OC} හා \overrightarrow{BD} දෙශික, a, b හා λ ඇසුරෙන් පුකාශ කරන්න.

දැන්, \overrightarrow{OC} යන්න \overrightarrow{BD} ට ලම්බ වේ යැයි ගනිමු. $3\left|\mathbf{a}\right|^2\lambda^2+2(\mathbf{a}\cdot\mathbf{b})\lambda-\left|\mathbf{b}\right|^2=0$ බව පෙන්වා $\left|\mathbf{a}\right|=\left|\mathbf{b}\right|$ හා $A\hat{OB}=\frac{\pi}{3}$ නම්, λ හි අගය සොයන්න.

(b) කේන්දුය O හා පැත්තක දිග 2a වූ ABCDEF සවිධි ෂඩසුයක තලයෙහි වූ බල තුනකින් පද්ධතියක් සමන්විත වේ. මූලය O හි ද Ox-අක්ෂය \overrightarrow{OB} දිගේ ද Oy-අක්ෂය \overrightarrow{OH} දිගේ ද ඇතිව බල හා ඒවායේ කුියා ලක්ෂා, සුපුරුදු අංකනයෙන්, පහත වගුවේ දක්වා ඇත; මෙහි H යනු CD හි මධා ලක්ෂාය වේ. (P නිව්ටන වලින් ද a මීටර වලින් ද මනිනු ලැබේ.)

ම්යා ලක්ෂ පය	ට්ගිටුම් දෛශිකය	වලය
A	$a\mathbf{i} - \sqrt{3}a\mathbf{j}$.	$3Pi + \sqrt{3}Pj$
C	ai+√3aj	$-3Pi + \sqrt{3}Pj$
E	-2ai	-2√3P j

පද්ධතිය යුග්මයකට තුලා වන බව පෙන්වා, යුග්මයේ සූර්ණය සොයන්න. දැන්, \overrightarrow{FE} දිගේ කිුයා කරන විශාලත්වය 6P N වූ අතිරේක බලයක් මෙම පද්ධතියට ඇතුළත් කරනු ලැබේ. නව පද්ධතිය ඌනනය වන තනි බලයේ විශාලත්වය, දිශාව හා කිුයා රේඛාව සොයන්න.

15. (a) එක එකක දිග 2a වූ AB හා BC ඒකාකාර දඬු දෙකක් B හි දී සුමට ලෙස සන්ධි කර ඇත. AB දණ්ඩේ බර W ද BC දණ්ඩේ බර 2W ද වේ. A කෙළවර අචල ලක්ෂාකට සුමට ලෙස අසව් කර ඇත. AB හා BC දඬු යටි අත් සිරස සමග පිළිවෙළින් α හා β කෝණ සාදමින් මෙම පද්ධතිය සිරස් තලයක සමතුලිතතාවගේ තබා ඇත්තේ, C හි දී රූපයේ පෙන්වා ඇති BC ට ලම්බ දිශාව ඔස්සේ යෙදූ $\frac{W}{2}$ බලයක් මගිනි. $\beta = \frac{\pi}{6}$ බව පෙන්වා, B සන්ධියේ දී AB දණ්ඩ මගින් BC දණ්ඩ මත යොදන පුතිකුියාවෙහි තිරස් හා සිරස් සංරචක සොයන්න. $\tan \alpha = \frac{\sqrt{3}}{9}$ බවත් පෙන්වන්න.

(b) රූපයෙහි පෙන්වා ඇති රාමු සැකිල්ල ඒවායේ කෙළවරවල දී සුමට ලෙස සන්ධි කළ AB,BC,BD,DC හා AC සැහැල්ලු දඬු පහකින් සමන්විත වේ.

මෙහි AB = CB = a ද CD = 2a ද $B\hat{A}C = \frac{\pi}{6}$ ද බව දී ඇත. රාමු සැකිල්ල A හි දී අචල ලක්ෂායකට සුමට ලෙස අසව කර ඇත. D සන්ධියේ දී W භාරයක් එල්ලා, AC සිරස්ව ද CD තිරස්ව ද ඇතිව සිරස් තලයක රාමු සැකිල්ල සමතුලිතව තබා ඇත්තේ C සන්ධියේ දී AB දණ්ඩට සමාන්තරව රූපයේ පෙන්වා ඇති දිශාවට යෙදූ P බලයක් මගිනි. බෝ අංකනය භාවිතයෙන් D, B හා C සන්ධි සඳහා පුතාංබල සටහනක් අඳින්න.

- (i) ආතති ද තෙරපුම් ද යන්න පුකාශ කරමින් දඬු පහේම පුතාහබල, හා
- (ii) P හි අගයසොයන්න.

- $m{16}$. (i) අරය a වූ තුනී ඒකාකාර අර්ධ වෘත්තාකාර කම්බියක ස්කන්ධ කේන්දුය එහි කේන්දුයේ සිට $rac{2a}{\pi}$ දුරකින් ද
 - (ii) අරය a වූ තුතී ඒකාකාර අර්ධ ගෝලාකාර කබොළක ස්කන්ධ කේන්දුය එහි කේන්දුයේ සිට $\frac{a}{2}$ දුරකින් ද පිහිටන බව පෙන්වන්න.

- 17.(a) ආරම්භයේ දී එක එකක් සුදු පාට හෝ කළු පාට වූ, පාටින් හැර අන් සෑම අයුරකින්ම සමාන බෝල 3 ක් පෙට්ටියක අඩංගු වේ. දැන්, පාටින් හැර අන් සෑම අයුරකින්ම පෙට්ටියේ ඇති බෝලවලට සමාන සුදු පාට බෝලයක් පෙට්ටිය තුළට දමා ඉන්පසු සසම්භාවී ලෙස බෝලයක් පෙට්ටියෙන් ඉවතට ගනු ලැබේ. පෙට්ටියේ ඇති බෝලවල ආරම්භක සංයුති හතර සම සේ භවා වේ යැයි උපකල්පනය කරමින්,
 - (i) ඉවතට ගත් බෝලය සුදු පාට එකක් වීමේ,
 - (ii) ඉවතට ගත් බෝලය සුදු පාට එකක් බව දී ඇති විට ආරම්භයේ දී පෙට්ටිය තුළ හරියටම කළු පාට බෝල 2 ක් තිබීමේ,

සම්භාවිතාව සොයන්න.

(b) μ හා σ යනු පිළිවෙළින් $\left\{x_i:i=1,2,...,n\right\}$ අගයන් කුලකයේ මධානාසය හා සම්මත අපගමනය යැයි ගනිමු. $\left\{\alpha x_i:i=1,2,...,n\right\}$ අගයන් කුලකයේ මධානාසය හා සම්මත අපගමනය සොයන්න; මෙහි α යනු නියනයකි.

එක්තරා සමාගමක සේවකයින් 50 දෙනකුගේ මාසික වැටුප් පහත වගුවේ සාරාංශගත කර ඇත:

මායික වැටුප (රුපියල් දහසේ ඒවායින්)	සේවකයින් ගණන
5 – 15	9
15 – 25	11
25 – 35	14
35 – 45	10
45 – 55	6

සේවකයින් 50 දෙනාගේ මාසික වැටුප්වල මධානාය හා සම්මත අපගමනය නිමානය කරන්න.

වසරක ආරම්භයේ දී එක් එක් සේවකයාගේ මාසික වැටුප p% වලින් වැඩි කරනු ලැබේ. ඉහත සේවකයින් 50 දෙනාගේ නව මාසික වැටුප්වල මධානාය රුපියල් $29\ 172$ බව දී ඇත. p හි අගය හා සේවකයින් 50 දෙනාගේ නව මාසික වැටුප්වල සම්මත අපගමනය නිමානය කරන්න.