Discrete Mathematics Lecture 8

Liangfeng Zhang
School of Information Science and Technology
ShanghaiTech University

Summary of Lecture 7

Chinese Reminder Theorem: $n_1, \ldots, n_k \in \mathbb{Z}^+$, $gcd(n_i, n_j) = 1$

$$\begin{cases} x \equiv b_1 \pmod{n_1} \\ x \equiv b_2 \pmod{n_2} \\ \vdots \\ x \equiv b_k \pmod{n_k} \end{cases}$$

always has a unique solution modulo $n = n_1 n_2 \cdots n_k$.

CRT Map $\theta: \mathbb{Z}_n \to \mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_k}; \theta: \mathbb{Z}_n^* \to \mathbb{Z}_{n_1}^* \times \cdots \times \mathbb{Z}_{n_k}^*$

- θ is always a bijection: $\phi(n) = \phi(n_1) \cdots \phi(n_k)$

Group: (G,\star) , a set G and a binary operation \star

- Closure; Associative; Identity; Inverse
- $(\mathbb{Z}_n, +)$ is an additive group
- $(\mathbb{Z}_n^*,*)$ is a multiplicative group

Order

DEFINITION: The **order** of a group G is the cardinality of G.

•
$$|\mathbb{Z}_n| = n, |\mathbb{Z}_p^*| = p - 1, |\mathbb{Z}| = \infty$$

DEFINITION: when $|G| < \infty$, $\forall a \in G$, the **order** of a is defined as the least integer l > 0 s.t. a = 1 (la = 0 for additive group)

EXAMPLE: Determine the orders of all elements of \mathbb{Z}_7^*

•
$$\mathbb{Z}_7^* = \{1,2,3,4,5,6\}$$

•
$$\mathbb{Z}_{7}^{*} = \{1,2,3,4,5,6\}$$
• $o(1) = 1, o(2) = 3, o(3) = 6, o(4) = 3, o(5) = 6, o(6) = 2$

EXAMPLE: Determine the orders of all elements of \mathbb{Z}_6

•
$$\mathbb{Z}_6 = \{0,1,2,3,4,5\}$$
 $\mathcal{O} = \mathbb{C}$

•
$$o(0) = 1, o(1) = o(5) = 6, o(2) = o(4) = 3, o(3) = 2$$

$$0 \qquad |xb=6=0 \qquad 2x3=6=0 \qquad 2x2=6=0$$

$$5xb=30=0 \qquad 4x3=12=0$$

Order of $a \in \mathbb{Z}_{11}^*$

а	a^1	a^2	a^3	a^4	a^5	a ⁶	a^7	<i>a</i> ⁸	<i>a</i> ⁹	a ¹⁰	o(a)
1	1	1	1	1	1	1	1	1	1	1	1
2	2	4	8	5	10	9	7	3	6	1	10
3	3	9	5	4	1	3	9	5	4	1	5
4	4	5	9	3	1	4	5	9	3	1	5
5	5	3	4	9	1	5	3	4	9	1	5
6	6	3	7	9	10	5	8	4	2	1	10
7	7	5	2	3	10	4	6	9	8	1	10
8	8	9	6	4	10	3	2	5	7	1	10
9	9	4	3	5	1	9	4	3	5	1	5
10	10	1	10	1	10	1	10	1	10	1	2

• $a^{10} = 1$ for every $a \in \mathbb{Z}_{11}^*$, o(a)|10 for every $a \in \mathbb{Z}_{11}^*$

Euler's Theorem

THEOREM: Let G be a multiplicative Abelian group of order m.

Then for any $a \in G$, $a^m = 1$.

- $G = \{a_1, \dots, a_m\}$
 - If $i \neq j$, then $aa_i \neq aa_j$.
 - $aa_1 \cdot aa_2 \cdots aa_m = a_1 a_2 \cdots a_m \Rightarrow a^m = 1$

Euler's Theorem: Let n > 1 and $\alpha \in \mathbb{Z}_n^*$. Then $\alpha^{\phi(n)} = 1$.

- $\alpha^{\phi(n)}$, 1 are both residue classes modulo n
- Proof: a corollary of the previous theorem for $G = \mathbb{Z}_n^*$

Fermat's Little Theorem: If p is a prime and $\alpha \in \mathbb{Z}_p$.

Then $\alpha^p = \alpha$.

Subgroup

DEFINITION: Let (G,\star) be an Abelian group. A subset $H\subseteq G$ is called a **subgroup** of G if (H,\star) is also a group. $(H\leq G)$

- Multiplicative: $G = \mathbb{Z}_6^* = \{1,5\}, H = \{1\}$ 们/6 G最大子群 一分
- Additive: $G = \mathbb{Z}_6 = \{0,1,2,3,4,5\}; H = \{0,2,4\}$

THEOREM: Let (G,\cdot) be an Abelian group. Let $\langle g \rangle = \{g^k : k \in \mathbb{Z}\}$ be a subset of G, where $g \in G$. Then $\langle g \rangle \leq G$.

- Closure: $g^a \cdot g^b = g^{a+b} \in \langle g \rangle$
- Associative: $g^a \cdot (g^b \cdot g^c) = g^{a+b+c} = (g^a \cdot g^b) \cdot g^c$
- Identity element: $g^0 \cdot g^a = g^a \cdot g^0 = g^a$
- Inverse: $g^a \cdot g^{-a} = g^{-a} \cdot g^a = g^0$
- Communicative: $g^a \cdot g^b = g^{a+b} = g^{b+a} = g^b \cdot g^a$

Cyclic Group循环的 $eg.(Zn+),(Zn^*,x)$ $Zn^*<[1]n> <math>Z_n^*<[2]s>$

- **DEFINITION**: Let (G,\cdot) be an Abelian group. G is said to be **cyclic** if there exists $g \in G$ such that $G = \langle g \rangle$.
 - g is called a **generator** of G. %

EXAMPLE:
$$\mathbb{Z}_{10}^* = \{[1]_{10}, [3]_{10}, [7]_{10}, [9]_{10}\} = \langle [3]_{10} \rangle$$

- $g = [3]_{10}$
- $g^0 = [1]_{10}, g^1 = [3]_{10}, g^2 = [9]_{10}, g^3 = [27]_{10} = [7]_{10}$

REMARK: Let *G* be a finite group and let $g \in G$. Then $\langle g \rangle$ can be computed as $\{g^1, g^2, ...\}$

Cyclic Group

EXAMPLE: \mathbb{Z}_p^* is a cyclic group and $G = \langle g \rangle$ is a cyclic subgroup.

- p = 1797693134862315907729305190789024733617976978942306572734300811577326758055009631327084773224075360211201138798713933576587897688144166224 92847430639474124377767893424865485276302219601246094119453082952085005 76883815068234246288147391311054082723716335051068458629823994724593847 9716304835356329624227998859
 - p is a prime; $\mathbb{Z}_p^* = \langle 2 \rangle$ is a cyclic group of order p-1
- q = 8988465674311579538646525953945123668089884894711532863671504057886633790275048156635423866120376801056005693993569667882939488440720831124 64237153197370621888839467124327426381511098006230470597265414760425028 84419075341171231440736956555270413618581675255342293149119973622969239 P=11 9= 11-1=5

858152417678164812113999429

•
$$q = (p-1)/2$$
 is a prime

•
$$g=3$$
 PEEN

• $G = \langle g \rangle$ is a subgroup of \mathbb{Z}_p^* of order q

$$< [3]_{1}>$$
 $= [3, 9, 5, 4, 1, 7]$

DLOG and CDH

DEFINITION: Let $G = \langle g \rangle$ be a cyclic group of order q with generator g. For every $h \in G$, there exists $x \in \{0,1,...,q-1\}$ such that $h = g^x$. The integer x is called the **discrete** logarithm of h with respect to g. A Horizontal points f is a cyclic group of order f with generator f is a cyclic group of order f with generator f is a cyclic group of order f with f is a cyclic group of order f with f is a cyclic group of order f with f is a cyclic group of order f with f is a cyclic group of order f with f is a cyclic group of order f with f is a cyclic group of order f with f is a cyclic group of order f with f is a cyclic group of order f with f is a cyclic group of order f with f is a cyclic group of order f with f is a cyclic group of order f with f is a cyclic group of f in f is a cyclic group of f i

• $x = \log_g h$ 9, habitely loghted by the state of the st

DLOG Problem: $G = \langle g \rangle$ is a cyclic group of order q

- **Input**: G and $h = g^x$ for $x \leftarrow \{0, 1, ..., q 1\}$
- **Output**: $f_{\text{DLOG}}(q, G, g; h) = \log_g h$

CDH Problem: computational Diffie-Hellman

- **Input**: $G = \langle g \rangle$ of order q and $A = g^a$, $B = g^b$ for $a, b \leftarrow \{0, 1, ..., q 1\}$

Public-Key Encryption

- Gen, Enc, Dec: key generation, encryption, decryption
- m, c, pk, sk: plaintext (message), ciphertext, public key, private key
- \mathcal{M} , \mathcal{C} : plaintext space, ciphertext space
- $\Pi = (\mathbf{Gen}, \mathbf{Enc}, \mathbf{Dec}) + \mathcal{M}, |\mathcal{M}| > 1$
 - Correctness: Dec(sk, Enc(pk, m)) = m for any pk, sk, m
 - **Security**: if sk is not known, it's difficult to learn m from pk, c

和知文 Private-Key Encryption

- Gen, Enc, Dec: key generation, encryption, decryption
- m, c, k: plaintext (message), ciphertext, secret key
- \mathcal{M} , \mathcal{C} : plaintext space, ciphertext space
- $\Pi = (\mathbf{Gen}, \mathbf{Enc}, \mathbf{Dec}) + \mathcal{M}, |\mathcal{M}| > 1$
 - Correctness: Dec(k, Enc(k, m)) = m for any k, m
 - **Security**: if *k* is not known, it's difficult to learn *m* from *c*

Diffie-Hellman Key Exchange

The Scheme: $G = \langle g \rangle$ is a cyclic group of prime order q

- Alice: $a \leftarrow \mathbb{Z}_q$, $A = g^a$; send (q, G, g, A) to Bob
- Bob: $b \leftarrow \mathbb{Z}_q$, $B = g^b$; send B to Alice; output $k = A^b$
- Alice: output $k = B^a$

Whitfield Diffie, Martin E. Hellman: New directions in Cryptography, IEEE Trans. Info. Theory, 1976 **Turing Award 2015**

Correctness: $A^b = g^{ab} = B^a$

Wiretapper: view = (q, G, g, A, B)

Security: view $\Rightarrow g^{ab}$

Diffie-Hellman Key Exchange

2,4,8,16,9,18,13,3,6,12,

EXAMPLE: p = 23; $\mathbb{Z}_p^* = \langle 5 \rangle$; $G = \langle 2 \rangle$, q = |G| = 11, g = 2

Adversary: q = 11, p = 23, g = 2, A = 8, B = 13, k = ?

23=2 ×11+1

Security

Algorithms for DLOG, CDH: solving the DLOG problem first

- G: the group \mathbb{Z}_p^* of order q = p 1
 - The best known algorithm runs in $\exp \left(O(\sqrt{\ln q \ln \ln q})\right)$
 - $|G| = 2^{1024}$ has been used for many years; now not very safe
 - $|G| = 2^{2048}$ is recommended for today's application
- G: an order q subgroup of \mathbb{Z}_p^* , where p = 2q + 1 is a safe prime
 - The best known algorithm runs in $\exp \left(O(\sqrt{\ln q \ln \ln q})\right)$
- For specific group G of order q, the best known algorithm runs in
 - $\exp\left(O\left(\sqrt{(\ln q)^{1/3}(\ln \ln q)^{2/3}}\right)\right)$ //multiplicative group $\mathbb{F}_{p^k}^*$
- For specific group *G* of order *q*, the best algorithm runs in
 - $O(\sqrt{q})$ // elliptic curves

Combinatorics 45

Enumerative combinatorics

• permutations, combinations, partitions of integers, generating functions, combinatorial identities, inequalities

Designs and configurations

 block designs, triple systems, Latin squares, orthogonal arrays, configurations, packing, covering, tiling

Graph theory

• graphs, trees, planarity, coloring, paths, cycles,

Extremal combinatorics

extremal set theory, probabilistic method......

Algebraic combinatorics

• symmetric functions, group, algebra, representation, group actions......

Sets and Functions

DEFINITION: A **set** is an unordered collection of **elements**

- $a \in A$; $a \notin A$); roster method, set builder; empty set \emptyset , universal set
- A = B; $A \subseteq B$; $A \subset B$; $A \cup B$; $A \cap B$; \bar{A}

DEFINITION: Let $A, B \neq \emptyset$ be two sets. A function (map)

 $f: A \to B$ assigns a unique element $b \in B$ for all $a \in A$.

- injective $= f(a) = f(b) \Rightarrow a = b$
- surjective_{m,h}: <math>f(A) = B</sub>
- **bijective** xy: injective and surjective

Cardinality of Sets

- **DEFINITION:** Let *A* be a set. *A* is a **finite set** if it has finitely many elements; Otherwise, *A* is an **infinite set**.
 - The **cardinality** $A \mid A \mid$ of a finite set A is the number of elements in A.
- **EXAMPLE:** \emptyset , $\{1\}$, $\{x: x^2 2x 3 = 0\}$, $\{a, b, c, ..., z\}$ are all finite sets; \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} are all infinite sets
- **DEFINITION:** Let A, B be any sets. We say that A, B have the same cardinality (|A| = |B|) if there is a bijection $f: A \to B$
 - We say that $|A| \le |B|$ if there exists an injection $f: A \to B$.
 - If $|A| \le |B|$ and $|A| \ne |B|$, we say that |A| < |B|
- **THEOREM**: Let *A*, *B*, *C* be any sets. Then
 - |A| = |A|
 - $|A| = |B| \Rightarrow |B| = |A|$
 - $|A| = |B| \land |B| = |C| \Rightarrow |A| = |C|$

Cardinality of Sets

EXAMPLE:
$$|\mathbb{Z}^{+}| = |\mathbb{N}| = |\mathbb{Z}| = |\mathbb{Q}^{+}| = |\mathbb{Q}|$$
 $\frac{1}{1} \longrightarrow \frac{2}{1} \longrightarrow \frac{3}{1} \longrightarrow \frac{4}{1} \longrightarrow \frac{4}{1} \longrightarrow \frac{1}{2} \longrightarrow \frac{3}{2} \longrightarrow \frac{4}{2} \longrightarrow \frac{1}{2} \longrightarrow \frac{2}{2} \longrightarrow \frac{3}{2} \longrightarrow \frac{4}{2} \longrightarrow \frac{2}{2} \longrightarrow \frac{3}{2} \longrightarrow \frac{4}{2} \longrightarrow \frac{2}{2} \longrightarrow \frac{3}{2} \longrightarrow \frac{4}{2} \longrightarrow \frac{2}{2} \longrightarrow$

• $f: \mathbb{R} \to \mathbb{R}^+ \ x \mapsto 2^x$

 $f\colon \mathbb{Z}^+ \to \mathbb{Q}^+$

- $f:(0,1) \to \mathbb{R} \ x \mapsto \tan(\pi(x-1/2))$
- $f:[0,1] \to (0,1)$
 - $f(1) = 2^{-1}$, $f(0) = 2^{-2}$, $f(2^{-n}) = 2^{-n-2}$, n = 1,2,3,...
 - f(x) = x for all other x

EXAMPLE: $|2^X| = |\mathcal{P}(X)|$

- $2^X = \{ \alpha \mid \alpha \colon X \to \{0,1\} \}$ the set of all functions from X to $\{0,1\}$
- $\mathcal{P}(X) = \{A | A \subseteq X\}$: the power set of X
- $f: 2^X \to \mathcal{P}(X)$ $\alpha \mapsto A = \{x: \alpha(x) = 1\}$

Cardinality of Sets

THEOREM: $|(0,1)| \neq |\mathbb{Z}^+|$

• Suppose that $|(0,1)| = |\mathbb{Z}^+|$. Then there is a bijection $f: \mathbb{Z}^+ \to (0,1)$

```
f(1) = 0.b_{11}b_{12}b_{13}b_{14}b_{15}b_{16}b_{17}b_{18}b_{19} \cdots
f(2) = 0.b_{21}b_{22}b_{23}b_{24}b_{25}b_{26}b_{27}b_{28}b_{29} \cdots
f(3) = 0.b_{31}b_{32}b_{33}b_{34}b_{35}b_{36}b_{37}b_{38}b_{39} \cdots
f(4) = 0.b_{41}b_{42}b_{43}b_{44}b_{45}b_{46}b_{47}b_{48}b_{49} \cdots
f(5) = 0.b_{51}b_{52}b_{53}b_{54}b_{55}b_{56}b_{57}b_{58}b_{59} \cdots
f(6) = 0.b_{61}b_{62}b_{63}b_{64}b_{65}b_{66}b_{67}b_{68}b_{69} \cdots
\cdots
f(n) = 0.b_{n1}b_{n2}b_{n3}b_{n4}b_{n5}b_{n6}b_{n7}b_{n8}b_{n9} \cdots
```

- Let $b_i = \begin{cases} 4, & b_{ii} \neq 4 \\ 5, & b_{ii} = 4 \end{cases}$ for i = 1,2,3,...
- $b = 0.b_1b_2b_3b_4b_5b_6b_7b_8b_9 \cdots$ is in (0,1) but has no preimage
 - $b \neq f(i)$ for every i = 1, 2, ...
- *f* cannot be a bijection

Cantor's Diagonal Argument

Question: Show that $|A| \neq |\mathbb{Z}^+|$.

The Diagonal Argument:

- 1) Suppose that $|A| = |\mathbb{Z}^+|$. Then there is a bijection $f: \mathbb{Z}^+ \to A$
- 2) Represent the function *f* as a list:

```
f(1) a_1 \cdots a_2 \cdots a_2
```

- 3) Construct an element x by considering the diagonal of the list
- 4) Show that $x \neq a_i$ for all $i \in \mathbb{Z}^+$
- 5) Show that $x \in A$
- 6) 4) and 5) give a contradiction

Cantor's Theorem

THEOREM: (Cantor) Let A be any set. Then $|A| < |\mathcal{P}(A)|$.

- $|A| \leq |\mathcal{P}(A)|$
 - The function $f: A \to \mathcal{P}(A)$ defined by $f(a) = \{a\}$ is injective.
- $|A| \neq |\mathcal{P}(A)|$
 - Assume that there is a bijection $g: A \to \mathcal{P}(A)$
 - Define $X = \{a : a \in A \text{ and } a \notin g(a)\}$
 - *X* should appear in the list. It is clear that $X \subseteq A$ and hence $X \in \mathcal{P}(A)$
 - *X* will not appear in the list. Suppose that X = g(x) for some $x \in A$
 - If $x \in X$, then $x \notin g(x) = X$
 - This gives a contradiction
 - If $x \notin X$, then $x \in g(x) = X$
 - This gives a contradiction

The Halting Problem

$$\mathbf{HALT}(P,I) = \begin{cases} \text{"halts"} & \text{if } P(I) \text{ halts;} \\ \text{"loops forever"} & \text{if } P(I) \text{ loops forever.} \end{cases}$$

• *P*: a program; *I*: an input to the program *P*.

QUESTION: Is there a Turing machine **HALT**?

- Turing machine: can be represented as a an element of $\{0,1\}^*$
 - $\{0,1\}^* = \bigcup_{n\geq 0} \{0,1\}^n$: the set of all finite bit strings

THEOREM: There is no Turing machine **HALT**.

- Assume there is a Turing machine HALT
- Define a new Turing machine **Turing**(*P*) that runs on any Turing machine *P*
 - **If** HALT(P, P) = "halts", loops forever
 - **If** HALT(P, P) = "loops forever", halts
- Turing(Turing) loops forever⇒ HALT(Turing, Turing) =
 "halts"⇒Turing(Turing) halts
- Turing(Turing) halts ⇒ HALT(Turing, Turing) = "loops forever"⇒Turing(Turing) loops forever

Countable and Uncountable

- **DEFINITION:** A set *A* is **countable**_{°, ¬¬} if $|A| < \infty$ or $|A| = |\mathbb{Z}^+|$; otherwise, it is said to be **uncountable**_{¬¬∞, ¬¬¬∞}.
 - countably infinite: $|A| = |\mathbb{Z}^+|$

EXAMPLE:

- $\mathbb{Z}^-, \mathbb{Z}^+, \mathbb{Z}, \mathbb{Q}^-, \mathbb{Q}^+, \mathbb{Q}, \mathbb{N}, \mathbb{N} \times \mathbb{N}$, are countable
- \mathbb{R}^- , \mathbb{R}^+ , \mathbb{R} , (0,1), [0,1], (0,1], [0,1), (a, b), [a, b] are uncountable
- **THEOREM:** A set A is countably infinite iff its elements can be arranged as a sequence $a_1, a_2, ...$
 - If A is countably infinite, then there is a bijection $f: \mathbb{Z}^+ \to A$
 - If $A = \{a_1, a_2, ...\}$, then the $f: \mathbb{Z}^+ \to A$ defined by $f(i) = a_i$ is a bijection
 - $a_i = f(i)$ for every i = 1,2,3...

Countable and Uncountable

THEOREM: Let *A* be countably infinite, then any infinite subset $X \subseteq A$ is countable.

- Let $A = \{a_1, a_2, ...\}$. Then $X = \{a_{i_1}, a_{i_2}, ...\}$ X is countable
- **THEOREM:** Let *A* be uncountable, then any set $X \supseteq A$ is uncountable.
 - If *X* is countable, then *A* is finite or countably infinite

THEOREM: If *A*, *B* are countably infinite, then so is $A \cup B$

- $A = \{a_1, a_2, a_3, \dots\}, B = \{b_1, b_2, b_3, \dots\}$
- $A \cup B = \{a_1, b_1, a_2, b_2, a_3, b_3, ...\}$ //no elements will be included twice
 - application: the set of irrational numbers is uncountable

THEOREM: If A, B are countably infinite, then so is $A \times B$

- $A = \{a_1, a_2, a_3, \dots\}, B = \{b_1, b_2, b_3, \dots\}$
- $A \times B = \{(a_1, b_1), (a_1, b_2), (a_2, b_1), (a_1, b_3), (a_2, b_2), (a_3, b_1), (a_1, b_4), \dots \}$

Schröder-Bernstein Theorem

QUESTION: How to compare the cardinality of sets in general?

- $|\mathbb{Z}^-| = |\mathbb{Z}^+| = |\mathbb{Z}| = |\mathbb{Q}^-| = |\mathbb{Q}^+| = |\mathbb{Q}| = |\mathbb{N}| = |\mathbb{N} \times \mathbb{N}|$
- $|\mathbb{R}^-| = |\mathbb{R}^+| = |\mathbb{R}| = |(0,1)| = |[0,1]| = |(0,1)| = |[0,1)|$
- $|\mathbb{Z}^+| \neq |(0,1)|$: hence, $|\mathbb{Z}^+| \neq |\mathbb{R}|$, and in fact $|\mathbb{Z}^+| < |\mathbb{R}|$
- $|\mathbb{Z}^+| < |\mathcal{P}(\mathbb{Z}^+)|$
- $|\mathbb{R}|$? $|\mathcal{P}(\mathbb{Z}^+)|$: which set has more elements?

THEOREM: If $|A| \le |B|$ and $|B| \le |A|$, then |A| = |B|.

EXAMPLE: Show that |(0,1)| = |[0,1)|

- $|(0,1)| \le |[0,1)|$
 - $f:(0,1) \to [0,1)$ $x \to \frac{x}{2}$ is injective
- $|[0,1)| \le |(0,1)|$
 - $g:[0,1) \to (0,1) \ x \to \frac{x}{4} + \frac{1}{2}$ is injective

Schröder-Bernstein Theorem

EXAMPLE:
$$|\mathcal{P}(\mathbb{Z}^+)| = |[0,1)| = (|\mathbb{R}|)$$

- $|\mathcal{P}(\mathbb{Z}^+)| \leq |[0,1)|$
 - $f: \mathcal{P}(\mathbb{Z}^+) \to [0,1)$ $\{a_1, a_2, \dots\} \mapsto 0 \dots 1_{a_1} \dots 1_{a_2} \dots \text{ is an injection.}$
- $|[0,1)| \le |\mathcal{P}(\mathbb{Z}^+)|$
 - $\forall x \in [0,1), x = 0, r_1 r_2 \cdots (r_1, r_2, \cdots \in \{0, \dots, 9\}, \text{no } \dot{9})$
 - $0 \leftrightarrow 0000, 1 \leftrightarrow 0001, \dots, 9 \leftrightarrow 1001$
 - x has a binary representation $x = 0.b_1b_2 \cdots$
 - $f:[0,1) \to \mathcal{P}(\mathbb{Z}^+) \ x \mapsto \{i: i \in \mathbb{Z}^+ \land b_i = 1\} \text{ is an injection }$

THEOREM:
$$|\mathbb{Z}^+| < |\mathcal{P}(\mathbb{Z}^+)| = |[0,1)| = |(0,1)| = |\mathbb{R}|$$

The continuum hypothesis Edition: There is no cardinal number between \aleph_0 and c, i.e., there is no set A such that $\aleph_0 < |A| < c$.