Combinational Circuit Design

Design the following circuits using Verilog and create a testbench (directed or randomized) for each design to check its functionality.

1)

- The design has 5 inputs and 2 outputs
- Use Behavioral coding style to implement the basic gates

2) Design a 4-bit priority encoder, the following truth table is provided where x is 4-bit input and y is a 2-bit output

y0	у1	х0	x1	x2	x3
1	1	Х	Х	Х	1
0	1	X	Χ	1	0
1	0	X	1	0	0
0	0	Χ	0	0	0

3) Design a decimal to BCD "Binary Coded Decimal" encoder has 10 input lines D0 to D9 and 4 output lines Y0 to Y3. Below is the truth table for a decimal to BCD encoder. Output should be held LOW if none of the following input patterns is observed.

Input								Output					
D ₉	D ₈	D ₇	D_6	D ₅	D ₄	D ₃	D_2	D_1	D_0	Y ₃	Y ₂	Y_1	Yo
0	0	0	0	0	0	0	0	0	1	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	1
0	0	0	0	0	0	0	1	0	0	0	0	1	0
0	0	0	0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	0	1	0	0	0	0	0	1	0	0
0	0	0	0	1	0	0	0	0	0	0	1	0	1
0	0	0	1	0	0	0	0	0	0	0	1	1	0
0	0	1	0	0	0	0	0	0	0	0	1	1	1
0	1	0	0	0	0	0	0	0	0	1	0	0	0
1	0	0	0	0	0	0	0	0	0	1	0	0	1

- 4) Implement N-bit adder using Dataflow modeling style
 - The design takes 2 inputs (A, B) and the summation is assigned to output (C) ignoring the carry.
 - Parameter N has default value = 1.
- 5) Design N-bit ALU that perform the following operations
 - The design has 3 inputs and 1 output
 - Instantiate the half adder from the previous design
 - For the subtraction, subtract B from A "A B"
 - Parameter N has default value = 4.

Inputs		Outputs					
opo	code	Operation					
0	0	Addition					
1	0	Subtraction					
0	1	OR					
1	1	XOR					

- 6) Implement 4-bit ALU display on 7 Segment LED Display
 - The design has 4 inputs: A, B, opcode, enable.
 - The design has 7 outputs (a-g)
 - Instantiate the N-bit ALU designed in the previous design with parameter N = 4
 - ALU should execute the operation on A and B depending on the input opcode
 - ALU output should be considered as the digit to be displayed on the 7 segment LED display
 - Below the truth table of the 7-segment decoder

	Input	Output								
Digit	enable	a	b	С	d	e	f	g		
0	1	1	1	1	1	1	1	0		
1	1	0	1	1	0	0	0	0		
2	1	1	1	0	1	1	0	1		
3	1	1	1	1	1	0	0	1		
4	1	0	1	1	0	0	1	1		
5	1	1	0	1	1	0	1	1		
6	1	1	0	1	1	1	1	1		
7	1	1	1	1	0	0	0	0		
8	1	1	1	1	1	1	1	1		
9	1	1	1	1	1	0	1	1		
Α	1	1	1	1	0	1	1	1		
b	1	0	0	1	1	1	1	1		
С	1	1	0	0	1	1	1	0		
d	1	0	1	1	1	1	0	1		
E	1	1	0	0	1	1	1	1		
F	1	1	0	0	0	1	1	1		
X	0	0	0	0	0	0	0	0		

Deliverables:

1) The assignment should be submitted as a PDF file with this format <your_name>_Assignment2 for example Kareem_Waseem_Assignment2

3

2) Snippets from the waveforms captured from QuestaSim for each design with inputs assigned values and output values visible

Note that your document should be organized as 6 sections corresponding to each design above, and in each section, I am expecting the Verilog code for the design, testbench and the waveforms snippets

FACEBOOK GRP: DIGITAL ELECTRONICS COURSES (VERILOG)

MOBILE NO.: 01009279775