Homework 6 Foundations of Computational Math 2 Spring 2012

Solutions will be posted Friday, 2/17/11

Problem 6.1

Consider a minimax approximation to a function f(x) on [a, b]. Assume that f(x) is continuous with continuous first and second order derivatives. Also, assume that f''(x) < 0 on for $a \le x \le b$, i.e., f is concave on the interval.

- **6.1.a.** Derive the equations you would solve to determine the linear minimax approximation, $p_1(x) = \alpha x + \beta$, to f(x) on [a, b] and describe their use to solve the problem.
- **6.1.b.** Apply your approach to determine $p_1(x) = \alpha x + \beta$ for $f(x) = -x^2$ on [-1, 1].
- **6.1.c.** How does $p_1(x)$ relate to the quadratic monic Chebyshev polynomial $t_2(x)$?
- **6.1.d.** Apply your approach to determine $\tilde{p}_1(x) = \tilde{\alpha}x + \tilde{\beta}$ for $f(x) = -x^2$ on [0,1].
- **6.1.e.** How could the quadratic monic Chebyshev polynomial $t_2(y)$ on $-1 \le y \le 1$ be used to provide and alternative derivation of $\tilde{p}_1(x)$ on $0 \le x \le 1$?
- **6.1.f.** Suppose you adapt your approach to derive a constant approximation, $p_0(x)$. What points will you use as the extrema of the error?

Problem 6.2

Show that the Chebyshev polynomial of degree n can be written

$$T_n(x) = \frac{1}{2} \left[(x + \sqrt{x^2 - 1})^n + (x - \sqrt{x^2 - 1})^n \right]$$

Problem 6.3

6.3.a. Suppose you are given an arbitrary polynomial of degree 3 or less with the form

$$p(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3.$$

Show that there are unique coefficients, γ_i , $0 \le i \le 3$, for p(x) in the representation of the form

$$p(x) = \gamma_0 T_0(x) + \gamma_1 T_1(x) + \gamma_2 T_2(x) + \gamma_3 T_3(x)$$

where $T_i(x)$, $0 \le i \le 3$, are the Chebyshev polynomials.

- **6.3.b.** Is this true for any degree n? Justify your answer.
- **6.3.c.** Consider $T_{32}(x)$, the Chebyshev polynomial of degree 32 and $T_{51}(x)$, the Chebyshev polynomial of degree 51. What is the coefficient of x^{13} in $T_{32}(x)$? What is the coefficient of x^{20} in $T_{51}(x)$?