

EMC Technologies (NZ) Ltd
PO Box 68-307, Newton
Auckland
New Zealand
Phone 09 360 0862
Fax 09 360 0861
E-Mail Address: aucklab@ihug.co.nz
Web Site: www.emctech.com.au

# **TEST REPORT**

Etherstack Inc. SFFR615WUH1 UHF Small Form Factor Repeater

tested to the

Code of Federal Regulations (CFR) 47

Part 90 - Private Land Mobile Services

for

**Etherstack Inc.** 

This Test Report is issued with the authority of:

**Andrew Cutler - General Manager** 

Colow little



All tests reported herein have been performed in accordance with the laboratory's scope of accreditation

# **Table of Contents**

| 1. | COMPLIANCE STATEMENT    | 3        |
|----|-------------------------|----------|
| 2. | RESULT SUMMARY          | 3        |
| 3. | ATTESTATION             | 4        |
| 4. | CLIENT INFORMATION      | 5        |
| 5. | TEST SAMPLE DESCRIPTION | 5        |
| 6. | TEST RESULTS            | 7        |
| 7. | TEST EQUIPMENT USED     | 19       |
| 8. | ACCREDITATIONS          | 19       |
| 9. | PHOTOGRAPHS             | 20       |
|    | Tech                    | nologies |

# 1. COMPLIANCE STATEMENT

The Etherstack Inc. SFFR615WUH1 UHF Small Form Factor Repeater complies with the limits defined in 47 CFR Part 90 and 47 CFR Part 2 when tested in-accordance with the test methods described in 47 CFR Part 2 and ANSI/ TIA-603-C.

# 2. RESULT SUMMARY

The results of testing, carried out between 12<sup>th</sup> and the 25<sup>th</sup> November 2014, are summarised below.

| Clause | Description                             | Result   |
|--------|-----------------------------------------|----------|
| 90.203 | Certification required                  | Noted    |
|        |                                         |          |
| 2.1046 | RF power output                         | Noted    |
| 90.205 | Power and antenna height limits         | Complies |
|        |                                         |          |
| 2.1049 | Occupied bandwidth                      | Noted    |
| 2.202  | Bandwidths                              | Noted    |
|        |                                         |          |
| 202    |                                         |          |
| 90.207 | Types of emissions                      | Complies |
| 90.209 | Bandwidth limitations                   | Complies |
| 90.210 | Emission masks                          | Complies |
|        |                                         | DIOPIES  |
| 2.1051 | Spurious emissions at antenna terminals | Complies |
| 2 1052 |                                         |          |
| 2.1053 | Field strength of spurious radiation    | Complies |
| 2.1055 | F                                       | NI-4-4   |
| 2.1055 | Frequency stability                     | Noted    |
| 90.213 | Frequency stability                     | Complies |
| 70.213 | requency statinty                       | Complies |
| 90.214 | Transient frequency behaviour           | Complies |
| 00.211 | Transfer Hoquerey conution              | compiles |
| 1.1310 | Radio frequency exposure limits         | Complies |
|        | 1 / <del></del>                         | r        |

## 3. ATTESTATION

This report describes the tests and measurements performed for the purpose of determining compliance with the specification with the following conditions:

The client selected the test sample.

The report relates only to the sample tested.

This report does not contain corrections or erasures.

Measurement uncertainties with statistical confidence intervals of 95% are shown below test results. Both Class A and Class B uncertainties have been accounted for, as well as influence uncertainties where appropriate.

In addition this equipment has been tested in accordance with the requirements contained in the appropriate Commission regulations.

All compliance statements have been made with respect of the specification limit with no reference to the measurement uncertainty.

To the best of my knowledge, these tests were performed using measurement procedures that are consistent with industry or Commission standards and demonstrate that the equipment complies with the appropriate standards.

I further certify that the necessary measurements were made by EMC Technologies NZ Ltd, 47 MacKelvie Street, Grey Lynn, Auckland, New Zealand.

Andrew Cutler General Manager

EMC Technologies NZ Ltd

# 4. CLIENT INFORMATION

**Company Name** Etherstack Inc.

**Address** 1115 Broadway, Suite 1276,

New York, NY10010

**Country** United States of America

**Contact** Mr Doug Chapman

# 5. TEST SAMPLE DESCRIPTION

**Brand Name** Etherstack Inc.

Model Number SFFR615WUH1

Product UHF Small Form Factor Repeater

Manufacturer Etherstack London Ltd

Country of Origin Australia

Serial Number 1200018

FCC I.D 2ADAKSFFR615WUH1

#### Product overview

The SFFR615WUH1 is a small form factor portable repeater that is self-powered and can operate as an APCO P25 standalone repeater.

#### **Power Supply:**

- DC Supply 12 Vdc 10.8 15.6 volt dc Max 10 amps
- AC Supply: 100 240 Vdc (47-63 Hz)
- Internal Batteries 11.25 Vdc Li-ION rechargeable x 2

#### **Output Power**

1 W (+30.0 dBm) to 15 watts (+41.8 dBm)

#### **Transmitter FCC Frequency Bands**

Part 90: 440 - 512 MHz

# **Test frequency**

| Frequency | Power   | Spacing |  |  |
|-----------|---------|---------|--|--|
| (MHz)     | (Watts) | (kHz)   |  |  |
| 487.7250  | 15.0    | 12.5    |  |  |

## **Emission Designators**

8K10F1D

8K10F1E

8K10F7D

8K10F7E

8K10F1W

8K10F7W

# **Standard Temperature and Humidity**

Temperature: +15 °C to +30 °C maintained.

Relative Humidity: 20% to 75% observed.

#### **Standard Test Power Source**

Standard Test Voltage: 13.8 Vdc

#### **Extreme Temperature**

High Temperature: + 50 °C maintained. Low Temperature: - 30 °C maintained.

#### **Extreme Test Voltages**

Low Voltage: 10.8 Vdc High Voltage: 15.6 Vdc

# 6. TEST RESULTS

#### Certification required

Certification of this device is sought for digital and analogue speech transmissions in accordance with section 90.203(j)(4)(iii).

- certification has been sought after January 1, 2015.
- the equipment operates under FCC Part 90
- the equipment is designed to operate in various FCC Part 90 bands between 440 512 MHz
- the equipment can operate in multi-bandwidth mode
- the equipment meets the spectrum efficiency standard of one voice channel per 6.25 kHz of channel bandwidth by using two voice channels per 12.5 kHz bandwidth.

Technologies

- the equipment can operate with a data rate greater than 4.8 kbps per 6.25 kHz of channel

Result: Complies.

# RF power output

Measurements were carried out at the RF output terminals of the transmitter using a 30 dB power attenuator and a 50  $\Omega$  dummy load.

Measurements were carried out when the transmitter was modulated.

Testing was carried out at maximum power output.

| Frequency | Voltage | Rated Output | Measured |
|-----------|---------|--------------|----------|
| (MHz)     | (Vdc)   | Power (dBm)  | (dBm)    |
| 487.725   | 15.6    | 41.8         | 41.2     |
| 487.725   | 13.8    | 41.8         | 41.2     |
| 487.725   | 10.8    | 41.8         | 41.2     |

#### **Limits:**

Part 90 does not specify the transmitter output power.

Result: Complies.

Measurement Uncertainty: ±0.5 dB



#### Part 90.207 – Emission types:

The following emission types are used with 12.5 kHz channelling using various combinations of data and speech

8K10F1D - data

8K10F1E - voice

8K10F7D - two digital data channels

8K10F7E - two digital voice channels

8K10F1W - voice and data channel

8K10F7W - voice + data

All modulation types se standardised C4FM modulation where:

- the same symbol rate (i.e. 4800 symbols/ 9600 bps) is used
- the same symbol deviation is used
- then same transmit shaping filters is used
- the same frequency modulation is used

The output spectrum generated will therefore be the same for each emission designator.

The only difference is the type of information transmitted, i.e. voice, data, 2x voice, 2x data, and combinations of.



#### **Part 90.209 – Bandwidth limitations:**

The authorised bandwidth is taken to be the necessary bandwidth.

Various emission designators declared by the client.

Measurements have also been made to verify this declared bandwidth.

The occupied bandwidth has been measured and compared against the occupied bandwidth declared by the client.

Measurements have been made of each modulation type using a spectrum analyser operating in peak hold mode and a 30 dB attenuator.

Initially power measurements are made using a resolution bandwidth of 120 kHz.

This level is used as a reference level on the spectrum analyser.

The resolution bandwidth is then changed to 100 Hz and the reference level minus 23 dB (99%) absolute bandwidth points determined





**Result:** Complies.

#### **Spectrum Masks**

The spectrum masks are defined in:

Section 90.210(d) – Mask D has been applied as the transmitter can operate in the band 421 - 512 MHz using an authorised bandwidth of 12.5 kHz as per Section 90.209(b)(5).

The reference level for the following emission mask measurements has been determined using a resolution bandwidth of 120 kHz with the transmitter modulated.

All measurements have been made with a -30 dB correction factor as a 30 dB attenuator is placed between the transmitter and the spectrum analyser.

Measurements were made in peak hold.

The transmitter was modulated using the modulation sources internal to the transmitter as supplied by the client.



**Result:** Complies

# Transmitter spurious emissions at the antenna terminals

Frequency: 487.725 MHz

| Spurious emission<br>(MHz) | Emission level (dBm) | Limit<br>(dBm) |
|----------------------------|----------------------|----------------|
| 975.450                    | <-70.0               | -20.0          |
| 1463.175                   | <-70.0               | -20.0          |
| 1950.900                   | <-70.0               | -20.0          |
| 2438.625                   | -69.6                | -20.0          |
| 2926.350                   | <-70.0               | -20.0          |
| 3414.075                   | <-70.0               | -20.0          |
| 3901.800                   | <-70.0               | -20.0          |
| 4389.525                   | <-70.0               | -20.0          |
| 4877.250                   | <-70.0               | -20.0          |

No other emissions were observed

#### Limit:

Part 90.210(d) Mask D, (3) on any frequency removed from the centre of the authorised bandwidth by a displacement frequency of more than 12.5 kHz shall be attenuated by at least  $50 + 10 \log (P)$  or 70 dB whichever is the lesser attenuation.

The spurious emission limit defined by Mask D has been applied as this transmitter can operate using channel spacing of 12.5 kHz.

Part 2.1051 states that emissions greater than 20 dB below the limit need not be specified.

Part 2.1057 states that the spectrum should be investigated up to the 10<sup>th</sup> harmonic if the transmitter operates below 10 GHz.

A rated power of 15.0 watts gives a limit of -20.0 dBm.

No measurements were made above the 10<sup>th</sup> harmonic.

**Result:** Complies

Measurement Uncertainty: ±3.3 dB

## Field strength of the transmitter spurious emissions

Frequency: 487.725 MHz

| Frequency (MHz) | Level<br>(dBµV/m) | Level (dBm) | Limit (dBm) | Antenna    | Margin (dB) | Result |
|-----------------|-------------------|-------------|-------------|------------|-------------|--------|
| 975.4500        | 41.7              | -55.7       | -20.0       | Vertical   | 35.7        | Pass   |
| 975.4500        | 27.3              | -70.1       | -20.0       | Horizontal | 50.1        | Pass   |
| 1463.1750       | 41.5              | -55.9       | -20.0       | Vertical   | 35.9        | Pass   |
| 1463.1750       | 41.6              | -55.8       | -20.0       | Horizontal | 35.8        | Pass   |
| 1950.9000       | 44.5              | -52.9       | -20.0       | Vertical   | 32.9        | Pass   |
| 1950.9000       | 44.5              | -52.9       | -20.0       | Horizontal | 32.9        | Pass   |
| 2438.6250       | 46.1              | -51.3       | -20.0       | Vertical   | 31.3        | Pass   |
| 2438.6250       | 46.0              | -51.4       | -20.0       | Horizontal | 31.4        | Pass   |
| 2926.3500       | 48.5              | -48.9       | -20.0       | Vertical   | 28.9        | Pass   |
| 2926.3500       | 48.1              | -49.3       | -20.0       | Horizontal | 29.3        | Pass   |
| 3414.0750       | 50.0              | -47.4       | -20.0       | Vertical   | 27.4        | Pass   |
| 3414.0750       | 50.0              | -47.4       | -20.0       | Horizontal | 27.4        | Pass   |
| 3901.8000       | 53.0              | -44.4       | -20.0       | Vertical   | 24.4        | Pass   |
| 3901.8000       | 53.0              | -44.4       | -20.0       | Horizontal | 24.4        | Pass   |
| 4389.5250       | 54.0              | -43.4       | -20.0       | Vertical   | 23.4        | Pass   |
| 4389.5250       | 54.0              | -43.4       | -20.0       | Horizontal | 23.4        | Pass   |
| 4877.2500       | 55.0              | -42.4       | -20.0       | Vertical   | 22.4        | Pass   |
| 4877.2500       | 55.0              | -42.4       | -20.0       | Horizontal | 22.4        | Pass   |

The transmitter was tested while transmitting continuously while attached to a dummy load.

When operating in transmit mode no significant emissions were detected between the harmonic emissions that were detected.

Device was tested on an open area test site at a distance of 3 metres.

Testing was carried out at EMC Technologies NZ Ltd Open Area Test Site, which is located at Driving Creek, Orere Point, Auckland.

The level recorded is the signal generator output level in dBm less any gains / losses due to the coax cable and the dipole antenna.

#### Limit:

All spurious emissions are to be attenuated by at least  $50 + 10 \log (P)$ . The rated power of 15 watts gives a limit of -20 dBm.

No measurements were made above the 10<sup>th</sup> harmonic.

Result: Complies.

**Measurement Uncertainty**: ± 4.1 dB

# **Frequency Stability**

Frequency stability measurements were between - 30 °C and + 50 °C in 10 °C increments.

At each temperature the transmitter was given a period of 30 minutes to stabilise.

The transmitter was then turned on and the frequency error measured after a period of 1 minute.

Frequency: 487.725 MHz

| Temperature | 10.0 Vdc | 13.8 Vdc | 15.6 Vdc |
|-------------|----------|----------|----------|
| (°C)        | (Hz)     | (Hz)     | (Hz)     |
| +50         | -460.0   | -468.0   | -464.0   |
| +40         | -488.0   | -487.0   | -485.0   |
| +30         | -475.0   | -472.0   | -470.0   |
| +20         | -377.0   | -380.0   | -383.0   |
| +10         | -493.0   | -488.0   | -485.0   |
| 0           | -487.0   | -487.0   | -483.0   |
| -10         | -460.0   | -459.0   | -461.0   |
| -20         | -432.0   | -433.0   | -434.0   |
| -30         | -399.0   | -424.0   | -422.0   |

#### Limit:

Part 90.213 states that fixed / base station transmitters operating between 421 - 512 MHz with 12.5 kHz channelling are required to have a frequency tolerance of 1.5 ppm.

A worst case frequency error of 1.0 ppm (488 Hz / 487.725 MHz) was observed.

Result: Complies.

**Measurement Uncertainty:** ± 30 Hz

#### Transient frequency behaviour

Transient frequency behaviour measurements are applicable to wide band and narrow band transmitters operating in the frequency band 421 - 512 MHz.

Measurements were carried out using the method described in TIA-603.

In summary this method calls for the use of an external signal generator tuned to transmitter transmit frequency with an output level 0.1 % (-30 dB) of the level from the transmitter with a 1 kHz tone with a frequency deviation of 12.5 kHz being applied to the input of a modulation analyser along with the output from the transmitter.

The modulation analyser produces an amplitude difference signal and a frequency difference signal, which are applied to the input of a storage oscilloscope.

The unmodulated transmitter is then keyed which produces a trigger pulse that is AC coupled to the oscilloscope that produces a display on the screen.

The result of the change in the ratio of power between the test signal from the signal generator and the transmitter output will produce 2 separate sides on the oscilloscope picture. One will show the 1000 Hz test modulation and the other will be the frequency difference of the transmitter versus time.

| <b>Channel Spacing</b> | Period t <sub>1</sub> | Period t <sub>2</sub> | Period t <sub>3</sub> |
|------------------------|-----------------------|-----------------------|-----------------------|
| (kHz)                  | (kHz)                 | (kHz)                 | (kHz)                 |
| 12.5                   | <12.5                 | Nil                   | Nil                   |

#### Limits:

| Time     |        | 12.5 kHz               |
|----------|--------|------------------------|
| Interval | Period | <b>Deviation</b> (kHz) |
| $t_1$    | 10 ms  | ± 12.5                 |
| $t_2$    | 25 ms  | ± 6.25                 |
| $t_3$    | 10 ms  | ± 12.5                 |

Result: Complies.

**Measurement Uncertainty**: Frequency difference  $\pm 1.6$  kHz, Time period  $\pm 1$  ms

#### 12.5 kHz transmitter turn on

Green Trace = 1 kHz tone with FM deviation of 12.5 kHz and any transient.

Green trace has been maximised to give full screen indication of a ±12.5 kHz.

Therefore each Y axis division = 3.125 kHz per division.

The X axis has been set to a sweep rate of 10 ms/division.

Triggering has been set to occur 2 divisions from the left hand edge (20 ms). This is position ton.

*t*1 occurs between 2.0 and 3.0 divisions from the left-hand edge. *t*2 occurs between 3.0 and 5.5 divisions from the left-hand edge.

A small transient can be observed just after ton.



#### 12.5 kHz transmitter turn off

Green Trace = 1 kHz tone with FM deviation of 12.5 kHz and any transient.

Green trace has been maximised to give full screen indication of a  $\pm$  12.5 kHz.

Therefore each Y axis division = 3.125 kHz per division.

The X axis has been set to a sweep rate of 10 ms/division.

The display of the 1 kHz signal rising has been positioned 5 divisions from the left hand edge (50 ms).

This is position *t*off.

t3 occurs between 4.0 and 5.0 divisions from the left hand edge.

No transient response can be observed just before toff.



### Exposure of humans to RF fields

As per FCC KDB 447498 D01 and Section 2.1091 radio frequency transmitters are required to be operated in a manner that ensures the public is not exposed to RF energy levels.

Calculations have been made using the General Public/Uncontrolled Exposure limits that are defined in Section 1.1310.

Minimum safe distances have been calculated below.

Power density,  $mW/cm^2 = E^2/3770$ 

- General Population / Uncontrolled exposure limit will be  $0.29 \text{ mW/cm}^2$  (f/1500 = 440 MHz/1500)

As this radio can operate over the range of 440 - 512 MHz the lowest frequency of operation in the USA, which will give the worst case result, would be 440 MHz.

The minimum distance from the antenna at which the MPE is met is calculated from the equation relating field strength in V/m, transmit power in watts, transmit antenna gain, transmitter duty cycle and separation distance in metres:

Power Density = 
$$0.29 \text{ mW/cm}^2 = \text{E}^2/3770$$
  
E=  $\sqrt{0.29*3770}$   
E =  $33.1 \text{ V/m}$ 

The rated maximum transmitter power (P) = 15 watts.

A duty cycle (DC) of 100% as the transmitter is a base station could possibly be operated for long periods of time.

Transmitter is operated using a quarter wave whip antenna with a gain (G) of 2.14 dBi (1.64).

The safe distance would be calculated as follows:

$$d = \sqrt{(30 * P * G*DC) / E}$$
  
 $d = \sqrt{(30 * 15 * 1.64 * 1) / 33.1}$   
 $d = 0.82$  metres or 82 cm

**Result:** Complies if the safe distances defined above are applied.

# 7. TEST EQUIPMENT USED

| Instrument            | Manufacturer    | Model        | Serial #    | Asset | Cal Due    | Interval |
|-----------------------|-----------------|--------------|-------------|-------|------------|----------|
| Aerial Controller     | EMCO            | 1090         | 9112-1062   | 3710  | N/a        | N/a      |
| Aerial Mast           | EMCO            | 1070-1       | 9203-1661   | 3708  | N/a        | N/a      |
| Biconical Antenna     | Schwarzbeck     | BBA 9106     | -           | 3612  | 12/01/2015 | 3 years  |
| Horn Antenna          | EMCO            | 3115         | 9511-4629   | E1526 | 04/06/2017 | 3 years  |
| Level generator       | Anritsu         | MG443B       | M61689      | E1143 | 15/01/2015 | 2 years  |
| Log Periodic Antenna  | Schwarzbeck     | VUSLP 91111  | 9111-228    | 3785  | 12/01/2015 | 3 years  |
| Modulation Analyzer   | Rohde & Schwarz | FMA          | 837807/020  | E1552 | 15/01/2015 | 2 years  |
| Modulation Analyzer   | Hewlett Packard | 8901B        | 2608A00782  | E1090 | 15/01/2015 | 2 years  |
| Oscilloscope          | Tektronics      | 745A         | B010643     | E1569 | 15/01/2015 | 2 years  |
| Power Attenuator      | JFW             | 50FH-030-100 | -           | •     | N/a        | N/a      |
| Power Supply          | Hewlett Packard | 6032A        | 2743A-02859 | E1069 | N/a        | N/a      |
| Receiver              | Rohde & Schwarz | ESIB-40      | 100171      | 4003  | 29/01/2015 | 1 year   |
| Selective Level Meter | Anritsu         | ML422C       | M35386      | E1140 | 03/07/2015 | 2 years  |
| Signal Generator      | Rohde & Schwarz | SMHU         | 838923/028  | E1493 | 22/01/2015 | 2 years  |
| Spectrum Analyzer     | Hewlett Packard | E7405A       | US39150142  | 3776  | 26/02/2015 | 1 year   |
| Thermal chamber       | Contherm        | M180F        | 86025       | E1129 | 01/06/2015 | N/a      |
| Thermometer           | DSIR            | RT200        | 035         | E1049 | 01/06/2015 | N/a      |
| Turntable             | EMCO            | 1080-1-2.1   | 9109-1578   | 3709  | N/a        | N/a      |
| VHF Balun             | Schwarzbeck     | VHA9103      | -           | 3603  | 12/01/2015 | 3 years  |

At the time of testing all test equipment was within calibration.

# 8. ACCREDITATIONS

Testing was carried out in accordance with EMC Technologies Ltd registration with the Federal Communications Commission as a listed facility, registration number: 90838, which was updated in June 2014.

All testing was carried out in accordance with the terms of EMC Technologies (NZ) Ltd International Accreditation New Zealand (IANZ) Accreditation to NZS/ISO/IEC 17025.

All measurement equipment has been calibrated in accordance with the terms of the EMC Technologies (NZ) Ltd International Accreditation New Zealand (IANZ) Accreditation to NZS/ISO/IEC 17025.

International Accreditation New Zealand has Mutual Recognition Arrangements for testing and calibration with various accreditation bodies in a number of economies. This includes NATA (Australia), UKAS (UK), SANAS (South Africa), NVLAP (USA), A2LA (USA), SWEDAC (Sweden). Further details can be supplied on request.

# 9. PHOTOGRAPHS





# Radiated emissions setup







