Der Zerfall Fermis Goldene Regel Teilchenströme Formfaktoren Resultate unter t_0 - und \mathcal{O} -Variation Ausblick

Formfaktoren des semileptonischen $D o Kl\nu$ Zerfalls

Dimitrios Skodras

Lehrstuhl für Theoretische Physik IV Technische Universität Dortmund

03.09.2014

Gliederung

- Der Zerfall
- 2 Fermis Goldene Regel
 - Differentielle Zerfallsbreite dΓ
 - Phasenraumvolumen dΦ
 - Matrixelement M
- Teilchenströme
 - Dirac-Gleichung
 - 4-Fermionen-Wechselwirkung
- 4 Formfaktoren
 - Axialvektorformfaktoren und f_
 - Formfaktor f₊
- **6** Resultate unter t_0 und \mathcal{O} -Variation
- 6 Ausblick

Standardmodell

- Teilcheninhalt:
 - Leptonen: e^+ , μ^+ , ν • Quarks: \bar{u} , \bar{d} , s, c
 - Bosonen: W^+ , g
- Fundamentale Wechselwirkungen:
 - starke Wechselwirkung (QCD)
 - elektroschwache Wechselwirkung (GSW-Theorie)

ruhendes D-Meson

c . D \bar{u}, \bar{d} .

Feynmangraph des $D o K l \nu$ Zerfalls

- ruhendes D-Meson
- propagiert in t

Feynmangraph des $D o K l \nu$ Zerfalls

- ruhendes D-Meson
- propagiert in t.

Feynmangraph des $D o Kl\nu$ Zerfalls

- ruhendes D-Meson
- 2 propagiert in t.
- c wandelt unter Abstrahlung von W^+ in s
- W^+ zerstrahlt in Leptonpaar I^+ , ν_I

Feynmangraph des $D o K l \nu$ Zerfalls

Überblick

Fermis Goldene Regel:

$$\Gamma_{\text{Rate}} = 2\pi \underbrace{\delta(E_f - E_i)}_{\text{Phasenraum } \Phi} \cdot \underbrace{|\langle f|V|i\rangle|}_{\text{Amplitude } M}^2$$

- Teilchenströme
 - relativistischer Dirac-Strom
 - kurze Reichweite von W⁺ für geringe Energien
 - → Beschreibung durch
 4-Fermionen-Wechselwirkung
- ullet Starke WW zwischen c und $ar{q}_1$
 - \circ erhält Parität ${\cal P}$
 - o störungsrechnerisch nicht erfassbar
 - \rightarrow Darstellung durch **Formfaktoren** f

- Der Zerfall
- 2 Fermis Goldene Regel
 - Differentielle Zerfallsbreite dΓ
 - Phasenraumvolumen dΦ
 - Matrixelement M
- 3 Teilchenströme
 - Dirac-Gleichung
 - 4-Fermionen-Wechselwirkung
- 4 Formfaktoren
 - Axialvektorformfaktoren und f_{-}
 - Formfaktor f_+
- **5** Resultate unter t_0 und \mathcal{O} -Variation
- 6 Ausblick

Der Zerfall Fermis Goldene Regel Teilchenströme Formfaktoren Resultate unter t_0 - und \mathcal{O} -Variation Ausblick

Differentielle Zerfallsbreite d Γ Phasenraumvolumen d Φ Matrixelement M

- was ist gamma (wie wird es bestimmt, was hat es mit D^* auf sich)

Ergebnis der differentiellen Zerfallsbreite

Fermis Goldene Regel:

$$d\Gamma(D \to K l \nu) = \frac{|M|^2}{2m_D} d\Phi(K, l, \nu)$$

$$= \frac{G_F^2 |V_{cs}|^2}{24\pi^3} |f_+(q^2)|^2 |p_K|^3 dq^2$$
(1)

wird im Folgenden hergeleitet.

Fermikonstante G_F , CKM-Element V_{cs} , Formfaktor f_+ , Kaonimpuls p_K , Impulsübertrag q^2

Phasenraumvolumen

-zweck

Berechnung

$$d\Phi = (2\pi)^4 \frac{d^3 p_K}{2(2\pi)^3 E_K} \frac{d^3 k_1}{2(2\pi)^3 E_1} \frac{d^3 k_2}{2(2\pi)^3 E_2} \delta^4(p_D - p_K - k_1 - k_2)$$

$$= \frac{1}{(2\pi)^5} \frac{d^3 p_K}{2E_K} \int \frac{d^3 k_1}{2(2\pi)^3 E_1} \frac{d^3 k_2}{2(2\pi)^3 E_2} \delta^4(q - k_1 - k_2) k_{1,\mu} k_{2,\nu}$$

Leptonimpulse k_i integriert, da Verteilung der Zerfallsbreiten durch $\mathrm{d}q^2$ gemessen. Die Einträge $k_{1,\mu}$ und $k_{2,\nu}$ stammen von M (folgt im Anschluss)

Berechnung

Für die weitere Berechnung werden folgende Gleichungen des *D*-Meson-Ruhesystems benötigt:

$$\bullet \ \frac{\mathrm{d}^3 p_K}{2E_K} = 2\pi |p_K| \mathrm{d} E_K$$

$$\bullet |p_K| = \frac{\sqrt{\lambda(m_D^2, m_K^2, q^2)}}{2m_D}$$

$$\bullet \int \frac{\mathrm{d}^3 k_1}{2(2\pi)^3 E_1} \frac{\mathrm{d}^3 k_2}{2(2\pi)^3 E_2} \delta^4 (q - k_1 - k_2) k_{1,\mu} k_{2,\nu} = \frac{\pi}{24} (q^2 g_{\mu\nu} + 2q_\mu q_\nu)$$

$$\lambda=a^2+b^2+c^2-2(ab+bc+ac)$$
 - Källén-Funktion, $g_{\mu,\nu}={
m diag}(1,-1,-1,-1)$ - Minkowski-Metrik

Berechnung

Diese führen zu einem Ausdruck für das Phasenraumvolumen:

$$d\Phi = \frac{\pi}{24} (q^2 g_{\mu\nu} + 2q_{\mu}q_{\nu}) \frac{|p_K|}{(2\pi)^4} dE_K$$
 (2)

Matrixelement

- zweck - berechnung an der tafel (grob) - detaillierter auf folie

Differentielle Zerfallsbreite d Γ Phasenraumvolumen d Φ Matrixelement M

Berechnung I

hiernach verlinkung zu teilchenstroeme

Berechnung II

Abschliessend kann das quadrierte Matrixelement nach Umformung des leptonischen Anteils durch Casimirs Trick wie folgt geschrieben werden als

$$|M|^{2} = \frac{G_{F}^{2}|V_{cs}|^{2}}{2}|f_{+}(q^{2})|^{2}P^{\mu}P^{\nu} \cdot 8(k_{l,\mu}k_{\nu,\nu} - g_{\mu\nu}k_{l}k_{\nu} + k_{l,\nu}k_{\nu,\mu})$$

$$= 4G_{F}^{2}|V|^{2}|f_{+}(q^{2})|^{2}(2P^{\mu}P^{\nu} - P^{2}g^{\mu\nu})k_{l,\nu}k_{\nu,\mu}$$
(3)

Berechnung II

Nun können (2) und (3) unter Verwendung von

$$(2P^{\mu}P^{\nu}-P^{2}g^{\mu\nu})(2q_{\mu}q_{\nu}+q^{2}g_{\mu\nu})=4\lambda(m_{D}^{2},m_{K}^{2},q^{2})=16m_{D}^{2}|p_{K}|^{2}$$

miteinander verknüpft und zu (1) zusammengefasst werden ++ Verlinkung auf f++

- Der Zerfall
- 2 Fermis Goldene Regel
 - Differentielle Zerfallsbreite dΓ
 - Phasenraumvolumen dΦ
 - Matrixelement M
- Teilchenströme
 - Dirac-Gleichung
 - 4-Fermionen-Wechselwirkung
- 4 Formfaktoren
 - Axialvektorformfaktoren und f_{-}
 - Formfaktor f_+
- **5** Resultate unter t_0 und \mathcal{O} -Variation
- 6 Ausblick

Dirac-Gleichung

- Lorentzinvariant
- Für Spin 1/2 -Teilchen
- Besitzt positiv definite Wahrscheinlichkeitsdichte j⁰

Dirac-Gleichung:

$$(i\gamma_{\mu}\partial^{\mu} - m)\psi = (i\partial \!\!\!/ - m)\psi = (\not \!\!\!/ - m)\psi = 0 \tag{4}$$

Dirac-Matrix γ^{μ} , Dirac-Wellenfunktion ψ , Dirac-Spinoren u, v

Dirac-Strom j^{μ}

- Beschreibt Wahrscheinlichkeitsstrom eines propagierenden Teilchens
- ullet Strom genügt Kontinuitätsgleichung $\partial_{\mu}j^{\mu}=0$

$$j^{\mu} = \bar{\psi}\gamma^{\mu}\psi.$$

Rechtfertigung

- Am W⁺ koppeln hier ein hadronischer und ein leptonischer Strom
- Hohe Masse des W^+ (\approx 82 GeV)
 - → Vier Fermionen(-ströme) wechselwirken in einem Punkt
- Niederenergetischer Grenzfall $(q^2 < 2 \text{ GeV}^2)$ der GSW-Theorie

Strom-Strom-Kopplung

- Das Verhalten unter Lorentz-Transformationen ist für Ströme vielfältig (S, P, V, A, T)
- Aus Strömen konstruierter Hamiltonian muss (pseudo-)skalar sein (z.B. bei V-A-Kopplung)
- Diese erfordert Paritätsverletzung (Schwache WW koppelt an linkshändige Teilchen und rechtshändige Antiteilchen)
- Projektionsoperator $P=(1-\gamma_5)$ extrahiert linkshändige Komponente der Spinoren
 - → Dirac-Ströme wird um Axialstromanteil erweitert:

$$j^{\mu} = \bar{\psi}\gamma^{\mu}(1 - \gamma_5)\psi \tag{5}$$

- Der Zerfall
- 2 Fermis Goldene Regel
 - Differentielle Zerfallsbreite dΓ
 - Phasenraumvolumen dΦ
 - Matrixelement M
- 3 Teilchenströme
 - Dirac-Gleichung
 - 4-Fermionen-Wechselwirkung
- 4 Formfaktoren
 - Axialvektorformfaktoren und f_
 - Formfaktor f_+
- **5** Resultate unter t_0 und \mathcal{O} -Variation
- 6 Ausblick

Motivation

- Fermi-Wechselwirkung berücksichtigt die starke WW zwischen c und \bar{q}_1 nicht
 - → gilt aber für Leptonenstrom
 - → Hadronenstrom durch Formfaktoren darstellen
- Formfaktoren sind einheitenlose Größen, die theoretisch unzugängliche Einflüsse enthalten (sollen berechnet werden)
- Viererimpulse p_D und p_K sind einzige Freiheitsgrade und müssen zur Darstellung ausreichen
- Da QCD Parität erhält, müssen Formfaktorausdrücke dasselbe Transformationsverhalten unter Parität haben, wie V bzw. A.

Axialvektorformfaktoren

- ullet Eigenwerte der Parität ${\cal P}$ sind $\pi=\pm 1$ und multiplikativ, da diskrete Symmetrie
- Vektoren und Pseudoskalare transformieren mit $\pi=-1$, Axialvektoren mit $\pi=+1$

$$\mathcal{P} \langle \bar{K}^0 | V^{\mu} | D^+ \rangle = (-1) \cdot (-1) \cdot (-1) = -1$$

 $\mathcal{P} \langle \bar{K}^0 | A^{\mu} | D^+ \rangle = (-1) \cdot (+1) \cdot (-1) = +1.$

- Keine Kombination aus p_D^μ , p_K^μ und $\epsilon^{\mu\nu\alpha\beta}$ transformiert mit $\pi=+1$
 - $\rightarrow \langle K(p_K) | A^{\mu} | D(p_D) \rangle = 0$
 - → Keine Axialvektorformfaktoren!

Vektorformfaktoren

Viererimpulse selbst transformieren unter Parität wie Vektoren

 \rightarrow Allgemeine Darstellung durch zwei Formfaktoren f_+ , f_- :

$$\langle K(p_K) | V^{\mu} | D(p_D) \rangle = f_+(q^2)(p_D + p_K)^{\mu} + f_-(q^2)(p_D - p_K)^{\mu}.$$

Formfaktor f_

Betrachtung von M_{-} nur mit f_{-} :

$$\begin{split} M_{-} &= \frac{G_F V_{cs}}{\sqrt{2}} f_{-}(q^2) (p_D - p_K)^{\mu} \bar{u}_{\nu} \gamma_{\mu} (1 - \gamma_5) v_I \\ &= \frac{G_F V_{cs}}{\sqrt{2}} f_{-}(q^2) (k_{\nu} + k_I)^{\mu} \bar{u}_{\nu} \gamma_{\mu} (1 - \gamma_5) v_I \\ &= \frac{G_F V_{cs}}{\sqrt{2}} f_{-}(q^2) \bar{u}_{\nu} (k_{\nu} + k_I) (1 - \gamma_5) v_I \\ &\stackrel{(4)}{=} \frac{G_F V_{cs}}{\sqrt{2}} f_{-}(q^2) \bar{u}_{\nu} (m_{\nu} + m_I) (1 - \gamma_5) v_I \,. \end{split}$$

Die Leptonmassen sind für $I=e,~\mu$ verglichen mit m_D vernachlässigbar

- $\rightarrow f_{-}$ liefert ebenfalls keinen Beitrag!
- ++link zu Matrixelement II++

Kinematische Grenzen

Parametrisierung

parametrisierung fit resultate

Methode der kleinsten Quadrate

- Der Zerfall
- 2 Fermis Goldene Regel
 - Differentielle Zerfallsbreite dΓ
 - Phasenraumvolumen dΦ
 - Matrixelement M
- 3 Teilchenströme
 - Dirac-Gleichung
 - 4-Fermionen-Wechselwirkung
- 4 Formfaktoren
 - Axialvektorformfaktoren und f_{-}
 - Formfaktor f_+
- **5** Resultate unter t_0 und \mathcal{O} -Variation
- 6 Ausblick

- Der Zerfall
- 2 Fermis Goldene Regel
 - Differentielle Zerfallsbreite dΓ
 - Phasenraumvolumen dΦ
 - Matrixelement M
- 3 Teilchenströme
 - Dirac-Gleichung
 - 4-Fermionen-Wechselwirkung
- 4 Formfaktoren
 - Axialvektorformfaktoren und f_{-}
 - Formfaktor f_+
- **5** Resultate unter t_0 und \mathcal{O} -Variation
- 6 Ausblick

Der Zerfall Fermis Goldene Regel Teilchenströme Formfaktoren Resultate unter t_0 - und \mathcal{O} -Variation **Ausblick**

Bonus

Bonusfolien