MATH 2033 HW-4 Due Oct 4.

- 1. Prove that if a Cauchy sequence of rational numbers $(a_k)_{k\in\mathbb{N}}$ does not converge to 0, then there exists a positive integer N such that all the rational numbers $\{a_k \mid k \geq N\}$ have the same sign, that is, either every number in $\{a_k \mid k \geq N\}$ is positive, or every number in $\{a_k \mid k \geq N\}$ is negative.
- 2. Recall that for two Cauchy sequences of rational numbers $(a_k)_{k\in\mathbb{N}}$ and $(b_k)_{k\in\mathbb{N}}$, we define the equivalence relation by

$$(a_k)_{k\in\mathbb{N}}\sim (b_k)_{k\in\mathbb{N}}$$
 if $(a_k-b_k)_{k\in\mathbb{N}}$ converges to 0.

For a Cauchy sequence $(a_k)_{k \in \mathbb{N}}$, we denote $[a_k]$ as the equivalence class of $(a_k)_{k \in \mathbb{N}}$. Define the multiplication of two equivalence classes by

$$[a_k] \cdot [b_k] = [a_k b_k].$$

Prove that this multiplication is well-defined.

- 3. Prove that the order "<" on \mathbb{R} which was defined in class satisfies the following property: If $x, y, z \in \mathbb{R}$ with x < y and z > 0, then xz < yz.
- 4. Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of rational numbers converging to a rational number a. Suppose that $a\neq 0$. For $k=1,2,\cdots$, let

$$b_k = \begin{cases} 0 & \text{if } a_k = 0\\ \frac{1}{a_k} & \text{if } a_k \neq 0 \end{cases}$$

Prove that $\{b_n\}_{n\in\mathbb{N}}$ converges to $\frac{1}{a}$.