CLAIMS

1. A method for producing a sealed $^{210}\text{Pb-}^{210}\text{Po}$ α source (α particle emitter) comprising the steps of: collecting $^{210}\text{Pb-}^{210}\text{Po}$ with a ^{210}Pb collector

5

using radon collection;

precipitating the hydroxides of the collected ²¹⁰Pb-²¹⁰Po and collecting the precipitates using a polycarbonate (PC) filter;

- dissolving the $^{210}\text{Pb}-^{210}\text{Po}$ hydroxide precipitates to form a $^{210}\text{Pb}-^{210}\text{Po}$ radioactive thin film; and sealing the $^{210}\text{Pb}-^{210}\text{Po}$ radioactive thin film for protection.
- 2. The method for producing a sealed $^{210}\text{Pb}-^{210}\text{Po}$ a source (α particle emitter) according to claim 1, wherein the step of collecting $^{210}\text{Pb}-^{210}\text{Po}$ with a ^{210}Pb collector using radon collection is a $^{210}\text{Pb}-^{210}\text{Po}$ collection process characterized in that

a substance containing uranium series

20 radioactive nuclides is used as a ²²²Rn source, ²²²Rn

generated from the ²²²Rn source is passed along with a

carrier gas through a cold trap that is cooled to a

temperature at or below a boiling point of ²²²Rn

(-62°C) to liquefy the ²²²Rn, and ²¹⁰Pb-²¹⁰Po among

25 daughter nuclides generated by the decay of the

liquefied ²²²Rn is collected by taking the ²¹⁰Pb-²¹⁰Po

adhering to the cold trap wall sides or remaining in

the cold trap, which has returned to room temperature, into a solution using a solvent for collecting.

- 3. The production method according to claim 2, wherein the ²²²Rn source is selected from the group consisting of natural uranium ore powder and a radium source.
- 4. The production method according to claim 2, wherein the carrier gas is selected from the group consisting of nitrogen and dry air.
- 5. The production method according to claim 2, wherein the solvent for dissolving ²¹⁰Pb-²¹⁰Po is selected from the group consisting of nitric acid, sulfuric acid and hydrochloric acid solution.
- The method for producing a sealed ²¹⁰Pb-²¹⁰Po
 α source (α particle emitter) according to claim 1, wherein the step of precipitating the hydroxides of the collected ²¹⁰Pb-²¹⁰Po and collecting the precipitates by a polycarbonate (PC) filter is a process in which the hydroxide precipitate is
 prepared by adding excess ammonium hydroxide solution to nitric acid, sulfuric acid or hydrochloric acid solution containing ²¹⁰Pb and ²¹⁰Po which is a nuclide generated from decay of ²¹⁰Pb, the precipitate is settled, and then the ²¹⁰Pb and ²¹⁰Po made into a
 hydroxide precipitate is collected using the PC

filter.

7. The method for producing a sealed $^{210}\text{Pb}-^{210}\text{Po}$

 α source (α particle emitter) according to claim 1, wherein the step of dissolving the $^{210}\text{Pb}-^{210}\text{Po}$ hydroxide precipitate to form a $^{210}\text{Pb}-^{210}\text{Po}$ radioactive thin film is a process in which the PC filter that has collected ^{210}Pb and ^{210}Po as hydroxide precipitate is dissolved in a mixed solvent of dichloroethane and dichloromethane, and the resultant solution is dripped to form a thin film of 1 micron or less by natural evaporation of the solution.

5

- 8. The production method according to claim 7, wherein the mixing ratio of the dichloroethane and dichloromethane is 1:1.
- 9. The method for producing a sealed ²¹⁰Pb-²¹⁰Po α source (α particle emitter) according to claim 1,

 15 wherein the step of sealing the ²¹⁰Pb-²¹⁰Po radioactive thin film protection is a process in which a separate PC filter is dissolved in a mixed solvent of dichloroethane and dichloromethane, and the resultant solution is dripped onto a thin film prepared in

 20 accordance with the process of claim 7 to form a thin film of 1 micron or less.
 - 10. The production method according to claim 9, wherein the mixing ratio of dichloroethane and dichloromethane is 1:1.
- 11. The method for producing a sealed $^{210}\text{Pb}-^{210}\text{Po}$ α source (α particle emitter) according to any of claims 7 to 10, characterized in that the content of

²¹⁰Pb-²¹⁰Po atoms is controlled by controlling the solution amount extracted for dripping.

- 12. A ^{210}Pb collector which uses radon collection for collecting $^{210}\text{Pb}-^{210}\text{Po}$, which comprises:
- a ²²²Rn source which includes a substance containing uranium series radioactive nuclides;

5

a moisture trap for collecting ²²²Rn gas generated by the ²²²Rn source along with a carrier gas and sending only pure radon gas to a cold trap; and

- a ²²²Rn collector trap for liquefying the ²²²Rn gas by cooling to a temperature at or below the boiling point of ²²²Rn (-62°C) and then generating ²¹⁰Pb and ²¹⁰Po which have a relatively long half-life among daughter nuclides generated from decay of the ²²²Rn.
 - 13. The collector according to claim 12, wherein the ²²²Rn source is selected from the group consisting of natural uranium ore powder and a radium source.
- 20 14. The collector according to claim 12, wherein the carrier gas is selected from the group consisting of nitrogen and dry air.