Name: Solutions

The questions below are worth 5 points each, and the quiz is out of 10. You can either choose two, or solve all 3 for a maximum score of 15/10. Feel free to use the back of the page for extra space.

1. Suppose $T \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$. Prove that λ is an eigenvalue of T if and only if $\overline{\lambda}$ is an eigenvalue of T^* .

We recall that for any operator $S \in \mathcal{L}(V)$, null $S^* = (\text{range } S)^{\perp}$ and range $S^* = (\text{null } S^*)^{\perp}$. With these preliminaries out of the way, we have:

$$\lambda$$
 is an eigenvalue of $T \Leftrightarrow T - \lambda I$ is not invertible $\Leftrightarrow (T - \lambda I)^*$ is not invertible $\Leftrightarrow T^* - \overline{\lambda}I$ is not invertible $\Leftrightarrow \overline{\lambda}$ is an eigenvalue of T^* .

2. Suppopse $S, T \in \mathcal{L}(V)$ are self-adjoint. Prove that ST is self-adjoint if and only if ST = TS.

Since S and T are self-adjoint, we have

$$(ST)^* = T^*S^* = TS,$$

and from this it is clear that $ST = (ST)^*$ if and only if ST = TS.

3. Suppose that T is a normal operator on V and that 3 and 4 are eigenvalues of T. Prove that there exists a vector $v \in V$ such that $||v|| = \sqrt{2}$ and ||Tv|| = 5.

Since 3 and 4 are eigenvalues of T, we can choose eigenvectors u_1, u_2 such that $Tu_1 = 3u_1$ and $Tu_2 = 4u_2$. By normalizing if necessary we may further assume that $||u_1|| = ||u_2|| = 1$. Now, we let $v = u_1 + u_2$. Since T is normal, u_1 and u_2 are orthogonal, and therefore, by the Pythagorean Theorem, we have

$$||v||^2 = ||u_1 + u_2||^2 = ||u_1||^2 + ||u_2||^2 = 1^2 + 1^2 = 2,$$

and we can conclude that $||v|| = \sqrt{2}$. Now, since any scalar multiples of orthogonal vectors are still orthogonal, we also have

$$||Tv||^2 = ||T(u_1 + u_2)||^2 = ||Tu_1 + Tu_2||^2 = ||3u_1 + 4u_2||^2 = ||3u_1||^2 + ||4u_2||^2 = 3^2 + 4^2 = 5^2,$$

and thus $||Tv|| = 5$, as required.