Nom	Prénom	Groupe
ou Numéro d'étudiant	si l'examen	est anonyme

INF124

Durée: 2h00, sans documents.

- Tous les appareils électroniques sont interdits à l'exception des montres
- Le barème est donné à titre indicatif
- Le sujet comporte 6 exercices indépendants
- Le sujet est sur 60 mais il suffit d'avoir 50 pour avoir la note maximale.
- Répondez sur votre copie sauf pour les questions avec pointillés
- N'oubliez pas de mettre votre nom, votre numéro d'étudiant et de groupe sur le sujet.
- N'oubliez pas de glisser le sujet dans votre copie.
- Commencez par lire tout le sujet pour repérer les questions faciles

Exercice 1 : Clôture transitive, circularité, accessibilité (10 pt)

- **Q1.** (1 pt) Dessinez le graphe de la relation R sur $\{1, 2, 3, 4, 5\}$ définie par $R = \{(1, 3), (3, 1), (3, 2), (3, 4), (4, 5)\}$
- Q2. $(1.5 \,\mathrm{pt})$ Dessinez le graphe de la clôture transitive de la relation R.

Relation circulaire

Définition 1 Une relation $R \subseteq A \times A$ est circulaire si $\forall x \in A, \exists a_1, \dots, a_n \in A, x \ R \ a_1 \land a_1 \ R \ a_2 \land \dots \land a_n \ R \ x$

- Q3. (1 pt) Expliquez en quelques lignes ce que signifie cette définition.
- Q4. (1pt) La relation R est-elle circulaire? Justifiez votre réponse.

Accessibilité

Définition 2 Un élément e' est accessible depuis l'élément e par R s'il existe un chemin qui relie e à e' dans R (en respectant le sens des flêches).

Q5. (1 pt) Donnez l'ensemble acc(e) des éléments accessibles depuis e dans R pour e=1, e=2, e=3.

Implantation

Indication: Si vous le souhaitez vous pouvez réutiliser la fonction écrite en TP void cloture_transitive(int N, bool CTR[N][N], bool R[N][N]) qui remplit le tableau CTR avec la cloture transitive de la relation R.

Q6. (2.5 pt) Écrire une fonction C qui remplit l'ensemble set avec tous les éléments de [0...N-1] accessibles par R depuis l'élément e.

void accessible(bool R[N][N], int e, bool set[N])

Q7. (2 pt) Écrire en C un prédicat circulaire qui prend en paramètre une relation $R \subseteq N \times N$ et indique si une relation R est circulaire.

Exercice 2 : Propriétés de relations binaires (10 pt)

Q8. (8 pt) Pour chacune des propriétés suivantes donnez sous forme de tableau de booléenns une relation R sur $A = \{0, 1, 2\}$ qui satisfait la propriété et une relation qui ne la satisfait pas.

- $(a) \ \forall x,y \in A, \ x \ R \ y \Rightarrow y \ R \ x$ $R \ \text{satisfaisant} \ (a) \qquad R \ \text{ne satisfaisant pas} \ (a)$ $R \ | 0 \ | 1 \ | 2$ $0 \ | 1 \ | 2$ $1 \ | 1 \ | 2$ $2 \ | 1 \ | 2$
- R satisfaisant (b)R ne satisfaisant pas (b)R 0 1 2 R 0 1 (b) $\forall x, y \in A, x R y \land y R x$ 0 0 1 1 2 2
- R satisfaisant (d)R ne satisfaisant pas (d)0 1 0 1 RR 2 (d) $\forall x \in A, \exists y \in A, x R y \land y R x$ 0 0 1 1 2 2

Q9. (1 pt) Parmi les propriétés (a, b, c, d), lesquelles correspondent exactement à la définition de « R symétrique »?

Q10. (1pt) Parmi les propriétés (a, b, c, d), lesquelles impliquent que R est symétrique?

Exercice 3: Programmation de prédicats sur les relations (10 pt)

Q11. (4 pt) Écrire en C un prédicat sym qui teste si deux relations R et S sur $\{0,...,N-1\}$ vérifient la propriété

$$\forall x, y, (x R y \Rightarrow y S x)$$

Les relations R et S sont représentées par des tableaux de booléens R et S

bool sym(bool R[N][N], bool S[N][N])

Q12. (1 pt) Rappelez, en quelques lignes de français, les conditions pour qu'une relation $R \subseteq A \times B$ soit une fonction.

Q13. (1 pt) Donnez, la formule logique, qui traduit le fait qu'une relation $R \subseteq A \times B$ est une fonction.

Q14. (4 pt) Écrire en C un prédicat fonction qui teste si une relation $R \subseteq A \times B$ est une fonction de A vers B.

bool fonction(bool R[A][B])

Exercice 4: Preuve en déduction naturelle ou Contre-exemple (10 pt)

Pour chacun des propriétés suivantes

- si elle est vraie, démontrez-la en déduction naturelle
- si elle est fausse : donnez un contre-exemple

1.
$$[(A \land B) \Rightarrow C] \Longrightarrow [A \Rightarrow (B \Rightarrow C)]$$

2.
$$[A \land (B \lor C)] \Longrightarrow [(A \land B) \lor (A \land C))]$$

3.
$$[(A \Rightarrow C) \lor (B \Rightarrow C)] \Longrightarrow [(A \lor B) \Rightarrow C]$$

4.
$$[(A \Rightarrow C) \land (B \Rightarrow C)] \Longrightarrow [(A \lor B) \Rightarrow C]$$

Exercice 5: Composition de relations (10 pt)

On considère trois ensembles $A = \{0, 2, 4, 6\}$, $B = \{a, b, c, d\}$, $C = \{1, 3, 5\}$ et deux relations $R \subseteq A \times B$ et $S \subseteq B \times C$ définies par

$$R = \{(0,c), (4,a), (4,c), (6,a), (6,b), (6,c)\} \quad \text{et} \quad S = \underbrace{ \begin{array}{c|c} S & 1 & 3 & 5 \\ \hline a & V & F & F \\ \hline b & F & F & V \\ \hline c & F & F & V \\ \hline d & F & V & F \\ \end{array} }_{}$$

Q15. (2pt) Dessinez le graphe A vers B de R et le graphe B vers C de S.

Q16. vrai ou faux? (2pt)

- 1. S est une fonction?
- 2. S est injective?
- 3. S est surjective?
- 4. S est bijective?

Q17. (2 pt) Dessinez le graphe de la composition $S \circ R$.

Q18. (2 pt) Complétez la définition de

$$S \circ R = \{ \dots \}$$

Q19. (4 pt) Écrire en C l'algorithme de composition de deux relations $R \subseteq A \times B$ et $S \subseteq B \times C$ représentées par des tableaux de booléens.

void composition(bool SoR[A][C], bool S[B][C], bool R[A][B])

Exercice 6: Analyse d'une relation (10 pt)

Soit $R \subseteq \mathbb{N} \times \mathbb{N}$ définie par

$$R = \{ (a, b) \in \mathbb{N} \times \mathbb{N} \mid a \times b \le a + b \}$$

Q20. (6 pt) Pour chacune des propriétés (a, b, c, d)

- 1. Rappelez la définition générale de la propriété
- 2. Réécrire la définition dans le cas particulier de R
- 3. Indiquez si la relation R satisfait la propriété
- 4. Justifiez précisement la réponse 3.
- (a) R reflexive
- (b) R symétrique
- (c) R transitive
- (d) R anti-symétrique
- **Q21.** (2 pt) Donnez la relation $R \circ R$ sous la forme d'un ensemble de couples.
- **Q22.** (2 pt) En déduire que $R \circ (R \circ R) = R \circ R$