4 - ANÁLISE DE SÉRIES TEMPORAIS

"Série Temporal é um conjunto de observações sobre uma variável, ordenado no tempo", e registrado em períodos regulares. Podemos enumerar os seguintes exemplos de séries temporais: temperaturas máximas e mínimas diárias em uma cidade, vendas mensais de uma empresa, valores mensais do IPC-A, valores de fechamento diários do IBOVESPA, resultado de um eletroencefalograma, gráfico de controle de um processo produtivo.

A suposição básica que norteia a análise de séries temporais é que há um sistema causal mais ou menos constante, relacionado com o tempo, que exerceu influência sobre os dados no passado e pode continuar a fazê-lo no futuro. Este sistema causal costuma atuar criando *padrões não aleatórios* que podem ser detectados em um gráfico da série temporal, ou mediante algum outro processo estatístico.

O objetivo da análise de séries temporais é identificar padrões não aleatórios na série temporal de uma variável de interesse, e a observação deste comportamento passado pode permitir fazer previsões sobre o futuro, orientando a *tomada de decisões*.

Vamos ver alguns gráficos de séries temporais.

Figura 1 - Número de passageiros transportados

Que padrões não aleatórios podemos identificar na Figura 1?

- observe que há uma tendência crescente no número de passageiros transportados (ou pelo menos havia antes de 11 de setembro de 2001...).
- há uma sucessão regular de "picos e vales" no número de passageiros transportados, isso deve ser causado pelas oscilações devido a feriados, períodos de férias escolares, etc., que estão geralmente relacionados às estações do ano, e que se repetem todo ano (com maior ou menor intensidade).

Em outras palavras, identificamos dois padrões que podem tornar a ocorrer no futuro: crescimento no número de passageiros transportados, flutuações sazonais. Tais padrões poderiam ser incorporados a um modelo estatístico, possibilitando fazer previsões que auxiliarão na tomada de decisões.

Vamos observar mais um conjunto de dados, a produção mensal de veículos no Brasil entre janeiro de 1997 e dezembro de 2014.

Figura 2 - Série mensal da produção de veículos automotores no Brasil de janeiro de 1997 a dezembro de 2014

Fonte: adaptado pelo autor de Microsoft ® a partir de dados da ANFAVEA – Associação Nacional dos Fabricantes de Veículos Automotores, disponíveis em http://www.anfavea.com.br/tabelas.html, acessados em 13/11/2015

Quais padrões podem ser identificados na Figura 2?

- observe que há uma tendência crescente no número de veículos produzidos (começando em cerca de 125000 em janeiro de 1997 e terminando em 200000 em dezembro de 2014);
- as flutuações (picos e vales) não são tão regulares quanto as identificadas na Figura 1;
- observa-se uma queda na produção no mês de janeiro de 2009, em fins de 2008 a produção mensal estava em torno de 300000 veículos, e caiu para menos de 100000 naquele mês (provavelmente por causa da crise mundial no último trimestre de 2008).

Figura 3 - Gráfico de controle: fração de defeituosos

Na Figura 3 temos uma série temporal particular, trata-se de um gráfico de controle de fração de defeituosos, bastante utilizado em Controle Estatístico da Qualidade para avaliar se um processo

produtivo está estável, e, portanto, previsível. Neste caso, *não queremos* que haja padrões não aleatórios, se eles existirem o processo está fora de controle estatístico, instável e imprevisível, e não podemos garantir a qualidade dos produtos resultantes: precisamos atuar sobre o processo e fazer as correções necessárias.

Figura 4 - Produção mensal de minério de ferro no Brasil

No caso da Figura 4 a série aparenta comportar-se de forma errática. Em vermelho pode-se ver uma linha que possibilita identificar o nível da produção de minério de ferro, uma tendência, que se situa entre 10000 e 12000 milhares de toneladas: neste caso não há tendência crescente ou decrescente, mas é possível identificar o comportamento de longo prazo da série. Aparentemente não há variações regulares, como no caso da Figura 1, que configurem sazonalidade.

O problema fundamental é utilizar um modelo que permita incluir os vários tipos de padrões, possibilitando realizar previsões. O ponto de partida é realizar a *decomposição* da série em padrões.

4.1 - Modelo Clássico das Séries Temporais

Segundo o modelo clássico todas as séries temporais são compostas de quatro padrões:

- tendência (T), que é o comportamento de longo prazo da série, que pode ser causada pelo crescimento demográfico, ou mudança gradual de hábitos de consumo, ou qualquer outro aspecto que afete a variável de interesse no longo prazo;
- variações cíclicas ou ciclos (C), flutuações nos valores da variável com duração *superior* a um ano, e que se repetem com certa periodicidade², que podem ser resultado de variações da economia como períodos de crescimento ou recessão, ou fenômenos climáticos como o El Niño (que se repete com periodicidade superior a um ano);

¹ Veremos posteriormente que se trata de uma média móvel.

² Alguns autores não incluem as variações cíclicas no modelo clássico da série temporal.

- variações sazonais ou sazonalidade (S), flutuações nos valores da variável com duração *inferior* a um ano, e que se repetem todos os anos, geralmente em função das estações do ano (ou em função de feriados ou festas populares, ou por exigências legais, como o período para entrega da declaração de Imposto de Renda); se os dados forem registrados *anualmente* NÃO haverá influência da sazonalidade na série³;
- variações irregulares (I), que são as flutuações inexplicáveis, resultado de fatos fortuitos e inesperados como catástrofes naturais, atentados terroristas como o de 11 de setembro de 2001, decisões intempestivas de governos, etc.

Aqui é importante salientar que nem sempre uma série temporal, mesmo que o modelo clássico seja considerado apropriado para analisá-la, irá apresentar todos os componentes citados acima:

- a série pode apresentar <u>apenas variações irregulares</u>: não se percebe comportamento crescente ou decrescente de longo prazo (tendência), ou flutuações sazonais ou cíclicas (como as séries da Figura 3 e da Figura 4).
- a série pode apresentar <u>apenas tendência e variações irregulares</u>⁴: não são identificadas flutuações sazonais ou cíclicas, apenas o comportamento crescente/decrescente de longo prazo e as variações aleatórias.
- a série pode apresenta <u>apenas variações sazonais e irregulares</u>: o comportamento de longo prazo da série é aproximadamente constante, mas observam-se flutuações dentro dos períodos de um ano, que se repetem todos os anos.
- quaisquer outras combinações possíveis.

A decomposição da série permitirá identificar quais componentes estão atuando naquele conjunto em particular, além de possibilitar obter índices e/ou equações para realizar previsões para períodos futuros da série.

A questão crucial do modelo clássico é decidir como será a equação que relaciona as componentes com a variável. Há duas opções: o modelo aditivo ou o modelo multiplicativo:

- No modelo **aditivo** o valor da série (Y) será o resultado da soma dos valores das componentes (que apresentam a mesma unidade da variável):

 $\mathbf{Y} = \mathbf{T} + \mathbf{C} + \mathbf{S} + \mathbf{I}$ ou $\mathbf{Y} = \mathbf{T} + \mathbf{C} + \mathbf{I}$ (se os dados forem registrados anualmente) Nas previsões não temos como incluir a componente irregular no modelo, pois ela é resultado de fatos fortuitos, teoricamente imprevisíveis. Todas as componentes têm a mesma unidade da série: se esta for em milhões de reais todas também terão tal unidade.

- Pode ser usado também o modelo **multiplicativo**, no qual o *produto* das componentes resultará na variável da série:

 $\mathbf{Y} = \mathbf{T} \times \mathbf{C} \times \mathbf{S} \times \mathbf{I}$ ou $\mathbf{Y} = \mathbf{T} \times \mathbf{C} \times \mathbf{I}$ (se os dados forem registrados anualmente) Novamente, não incluímos a componente irregular. Há, porém, uma diferença crucial: apenas a tendência tem a mesma unidade da variável. As demais componentes têm valores que modificam a tendência: assumem valores em torno de 1 (se maiores do que 1 aumentam a tendência, se menores diminuem a tendência, se exatamente iguais a 1 não causam efeito). Na Figura 6 observe a escala vertical do gráfico das componentes cíclicas, sazonais e irregulares: são valores próximos de 1, enquanto a escala da Figura 5 tem a mesma escala para o valor original da série e a tendência (em milhões de dólares). Isso ocorreu porque decompusemos a série temporal usando um modelo multiplicativo.

Chamando a variável de interesse de Y, a equação de sua série temporal seria: Y = f(T,C,S,I) Podemos observar as componentes na Figura 5 e na Figura 6.

2

³ Pois não será possível observar se as flutuações se repetem sistematicamente dentro dos anos.

⁴ Não há como se livrar das variações irregulares...

Figura 5 - Série original e tendência linear

Na Figura 5 podemos observar uma série temporal de vendas (em milhões de dólares), e a tendência, no caso uma reta (tendência linear), que mostra um crescimento no longo prazo.

Na Figura 6 podemos observar as três outras componentes. Observe que a cada 5 ou 6 anos ocorre um ciclo, uma mudança nos valores da variável (a linha azul). Há também variações sazonais, que se repetem todos os anos, devido provavelmente às estações (a linha vermelha). Por fim, há variações erráticas, que não apresentam regularidade, mas que talvez se relacionem com eventos inesperados ocorridos no período, as variações irregulares (linha verde).

Figura 6 - Componentes cíclicas, sazonais e irregulares.

Qual é o melhor modelo? Dependerá dos dados da própria série, das características intrínsecas do problema. Apresentaremos posteriormente medidas que possibilitam avaliar a adequação das previsões feitas por um modelo.

4.2 - Obtenção da Tendência

A tendência descreve o comportamento da variável retratada na série temporal no longo prazo. Há três objetivos básicos na sua identificação: avaliar o seu comportamento para utilizá-lo em previsões, removê-la da série para facilitar a visualização das outras componentes, ou ainda identificar o nível da série (o valor ou faixa típica de valores que a variável pode assumir, se não for observado comportamento crescente ou decrescente no longo prazo). A obtenção da tendência pode ser feita de três formas: através de um modelo de regressão (como o modelo linear - reta), através de médias móveis, ou através de ajuste exponencial (que não deixa de ser uma média móvel).

4.2.1 - Obtenção de tendência por mínimos quadrados

O procedimento é semelhante ao usado na regressão linear simples (ver seção 3.2.4), mas agora a variável independente será *sempre* o tempo. Para uma série registrada anualmente, por exemplo, de 2005 a 2014, a variável independente assumiria os valores dos anos. Para uma série registrada mensalmente, por exemplo, com 60 meses, a variável independente poderia assumir os valores de 1 a 60. As equações podem ser as mesmas usadas anteriormente (a estimativa do valor da série, Y, é denotada como \hat{Y}), e que também podem ter seus coeficientes obtidos por aplicativos computacionais:

- linear (reta) $T = b \times t + a$;
- polinômio de segundo grau $T = c \times t^2 + b \times t + a$
- logarítmico $T = b \times Ln(t) + a$;
- potência $T = b \times t^a$;

Marcelo

- exponencial - $T = b \times e^{a \times t}$

Menezes

Onde T é o valor da tendência, t é o valor do tempo, no caso linear b é o coeficiente angular da reta (se positivo indica tendência crescente, se negativo a tendência é decrescente) e a é o coeficiente linear da reta. As equações dos coeficientes estão expressas a seguir.

$$b = \frac{n \times \sum_{i=1}^{n} (t_i \times Y_i) - \sum_{i=1}^{n} t_i \times \sum_{i=1}^{n} Y_i}{n \times \sum_{i=1}^{n} (t_i^2) - \left(\sum_{i=1}^{n} t_i\right)^2} \qquad a = \frac{\sum_{i=1}^{n} Y_i - b \times \sum_{i=1}^{n} t_i}{n}$$

Onde Y_i é um valor qualquer da variável registrada na série temporal, t_i é o período associado a Y_i , e n é o número de períodos da série. Para encontrar os coeficientes basta calcular os somatórios (tal como em análise de regressão linear simples).

Exemplo 4.1 - Os dados a seguir apresentam o patrimônio líquido (em bilhões de reais) de um banco de 2005 a 2015. Supondo que o modelo linear seja apropriado para descrever a tendência da série, encontre os coeficientes da reta de mínimos quadrados. Faça a previsão de tendência para os anos de 2016 e 2017.

Ano	Patrimônio (R\$1.000.000)
2009	30
2010	32
2011	32
2012	35
2013	37
2014	38
2015	42
2016	41
2017	44
2018	46
2019	47

A variável dependente é o saldo de vendas: será o Y. Há 11 períodos: n = 11. O próximo passo é encontrar os somatórios necessários para obter os coeficientes. Mas ao invés de usarmos os anos, o que poderia complicar nossos cálculos, vamos trabalhar com períodos, sendo 2009 o período 1, 2010 o 2 e assim por diante. A tabela ficaria então (já incluindo as colunas $t \times y$ e t^2):

Ano	Patrimônio (Y) (R\$1.000.000)	Tempo (t)	t.Y	t^2
2009	30	k, 1	30	1
2010	32	2	64	4
2011	32	3	96	9
2012	35	4	140	16
2013	37	5	185	25
2014	38	6	228	36
2015	42	7	294	49
2016	41	-8	328	64
2017	44 Marcelo	9	396	81
2018	46	10	460	100
2019	47 Mellezes	11	517	121
Soma	424 Reis	66	2768	506

Substituindo os valores nas equações:

$$b = \frac{n \times \sum_{i=1}^{n} (t_i \times y_i) - \sum_{i=1}^{n} t_i \times \sum_{i=1}^{n} y_i}{n \times \sum_{i=1}^{n} (t_i^2) - \left(\sum_{i=1}^{n} t_i\right)^2} = \frac{11 \times 2768 - 66 \times 424}{11 \times 506 - (66)^2} = 1,76$$

$$a = \frac{\sum_{i=1}^{n} y_i - b \times \sum_{i=1}^{n} t_i}{n} = \frac{424 - (1,76 \times 66)}{11} = 27,96$$

Então a equação de tendência é:

$$T = 27,96 + 1,76 \times t$$

O ano de 2020 corresponderá ao período 13, e 2021 ao período 14 da série temporal. Substituindo estes valores na equação acima:

$$T_{2020} = 27,96 + (1,76 \times 12) = 49,08$$

 $T_{2021} = 27,96 + (1,76 \times 13) = 50,84$

Podemos então apresentar um gráfico (feito no Microsoft Excel) da série original, a reta de tendência e a projeção para os anos de 2020 e 2021 (Figura 7).

Figura 7 - Patrimônio líquido de um banco: série anual, tendência linear e projeção

Fonte: Hipotética

4.2.1.1 - Medidas de acuracidade

Conforme mencionado neste Capítulo (e no Capítulo 3) vários aplicativos computacionais podem obter os coeficientes de modelos de regressão/tendência pelo método dos mínimos quadrados. Mas como escolher qual é o melhor?

Uma abordagem seria usar o coeficiente de determinação (r²): o melhor modelo de tendência por mínimos quadrados seria aquele com o maior r², como os aplicativos computacionais permitem a obtenção rápida deste coeficiente o processo de comparação seria simplificado. Embora simples esta opção não será adotada aqui por motivos que serão explicados a seguir. Outra possibilidade seria o uso da análise de resíduos do modelo, mas esta apresenta um inconveniente: a não ser que seja utilizado um software estatístico específico (que pode ser muito caro ou complicado de usar), a obtenção dos resíduos e a construção dos diagramas de dispersão dos resíduos em planilha eletrônica pode levar algum tempo⁵.

A literatura de Análise de Séries Temporais recomenda o uso de medidas de acuracidade, que são estatísticas que permitem avaliar o ajuste de uma previsão aos dados originais, por meio do cálculo de médias das diferenças (erros) entre os dados originais e as previsões em cada período da série temporal⁶. Embora as medidas exijam o cálculo dos erros (resíduos) para todos os modelos sob análise, não demanda a construção de diagramas, e suas conclusões geralmente coincidem com as da avaliação do r². E podem depois ser adaptadas para comparar os resultados da recomposição pelos modelos aditivo e multiplicativo.

Dentre as várias disponíveis destacam-se três, usadas inclusive por softwares estatísticos como o Minitab ®: Erro Absoluto Médio (EAM), Erro Quadrático Médio (EQM) e Erro Percentual Absoluto Médio (EPAM). Todas se baseiam nos cálculos dos erros: as diferenças entre os valores da série e os valores preditos pelas equações de tendência para cada período t da série.

⁵ Esta abordagem foi usada no Capítulo 3 por ser a prática estabelecida em Análise de Regressão, especialmente na Análise de Regressão Múltipla (com várias variáveis independentes), que é a mais usada na prática.

⁶ MAKRIDAKIS, S., WHEELWRIGHT, S.C., HYNDMAN, R.J. Forecasting: methods and applications. 3rd ed.- New York: Wiley, 1998.

Erro absoluto médio (EAM):
$$EAM = \frac{1}{n} \times \sum_{t=1}^{n} |e_t|$$

Erro quadrático médio (EQM):
$$EQM = \frac{1}{n} \times \sum_{t=1}^{n} e_{t}^{2}$$

Erro percentual absoluto médio (EPAM):
$$EPAM = \frac{1}{n} \times \sum_{t=1}^{n} \left| \left(\frac{e_t}{Y_t} \right) \times 100 \right|$$

Onde:
$$e_t = Y_t - \hat{T}_t$$

 e_t é o erro (diferença entre o valor da série, Y_t , e o valor previsto por um modelo de tendência T_t em um período genérico t). As duas primeiras medidas dependem da escala dos valores da série, o que dificulta a comparação com outras séries, ou mesmo entre diferentes intervalos de tempo na mesma série. A última, EPAM, por ser relativa, não apresenta aqueles problemas 7 . Não obstante, por apresentar divisão pelos valores da série, pode ser inapropriada quando a série tiver valores iguais ou próximos a zero. A segunda medida, EQM, semelhante ao desvio padrão, dá maior ênfase a grandes erros do que EAM 8 . Pode-se usar todas, o que é fácil de implementar em uma planilha eletrônica, ou já faz parte dos programas estatísticos. O melhor modelo será o que apresentar os valores mais próximos de zero.

Exemplo 4.2 – Seja a produção mensal de veículos no Brasil entre janeiro de 1997 e dezembro de 2014, mostrada na Figura 2. Após o ajuste dos cinco modelos de tendência (linear, polinômio de segundo grau, logarítmico, potência e exponencial é possível observar as curvas e a série original na

Figura 8 - Série mensal da produção de veículos automotores no Brasil de janeiro de 1997 a dezembro de 2014 com cinco modelos de tendência obtidos por mínimos quadrados

Fonte: adaptado pelo autor de Microsoft ® a partir de dados da ANFAVEA – Associação Nacional dos Fabricantes de Veículos Automotores, disponíveis em http://www.anfavea.com.br/tabelas.html, acessados em 13/11/2015

⁷ MAKRIDAKIS, S., WHEELWRIGHT, S.C., HYNDMAN, R.J. Forecasting: methods and applications . John Wiley & Sons, 3rd edition, 1998, páginas 42-44.

⁸ CAMM, J. D., EVANS, J. R. Management Science and decision technology. South-Western College Publishing, 2000, página 103.

A tabela a seguir apresenta a produção mensal de veículos no Brasil para os meses de Janeiro a Dezembro de 1997 (correspondem aos valores de t, período, de 1 e 12, respectivamente), extraídos dos dados usados na Figura 2 e na Figura 8, e as previsões feitas para os mesmos meses pelas

equações de tendência mostradas na Figura 8.

t	Prod. (Y _t)		Ţ.	$\hat{T_t} =$		
	veículos	988,24×t + 96844	$0,9929 \times t^2 + 772,79 \times t + 104672$	51593×ln(t) - 22526	58386×t ^{0,27}	$110007 \times e^{0.0051 \times t}$
1	124889	97832,24	105445,7829	-22526	105445,8	58386
2	136323	98820,48	106221,5516	13235,54	106219,6	70402,3
3	153164	99808,72	106999,3061	34154,7	106993,3	78547,34
4	172391	100796,96	107779,0464	48997,08	107767,1	84891,64
5	162310	101785,2	108560,7725	60509,73	108540,9	90163,47
6	170685	102773,44	109344,4844	69916,25	109314,7	94712,99
7	160400	103761,68	110130,1821	77869,34	110088,5	98738,2
8	173863	104749,92	110917,8656	84758,63	110862,3	102363
9	182952	105738,16	111707,5349	90835,41	111636	105670,6
10	192829	106726,4	112499,19	96271,27	112409,8	108719,8
11	130140	107714,64	113292,8309	101188,6	113183,6	111553,9
12	101255	108702,88	114088,4576	105677,8	113957,4	114205,7

Substituindo o valor de t nas equações mostradas no Quadro 24 é possível calcular as tendências por mínimos quadrados para todos os períodos da série. Para o período 2, por exemplo, as tendências são:

- linear: $\hat{T}_t = 988,24 \times 2 + 96844 = 98820,48$;
- polinômio de segundo grau: $\hat{T}_t = 0.9929 \times 2^2 + 772.79 \times 2 + 104672 = 106219.6$;
- logarítmico: $\hat{T}_t = 51593 \times \ln(2) 22526 = 13235,54$;
- potência: $\hat{T}_t = 58386 \times 2^{0.27} = 106219.6$;
- exponencial: $\hat{T}_t = 110007 \times e^{0.0051 \times 2} = 70402,3.$

Na tabela a seguir mostra-se como realizar o cálculo dos erros para a tendência linear para os

primeiros doze meses da série da Figura 2 (Janeiro a Dezembro de 1997).

	Prod.	Equação da tendência	Erro	Módulo do erro	Erro quadrático	Erro percentual
t	(Y _t) veículos	$\hat{T}_t = 988,24x + 96844$	$e_{t} = Y_{t} - \hat{T}_{t}$	$ e_t $	$e_t^{\ 2}$	$ (e_t/Y_t)\times 100 $
1	124889	97832,24	27056,76	27056,76	732068261,7	21,66
2	136323	98820,48	37502,52	37502,52	1406439006	27,51
3	153164	99808,72	53355,28	53355,28	2846785904	34,84
4	172391	100796,96	71594,04	71594,04	5125706564	41,53
5	162310	101785,2	60524,8	60524,8	3663251415	37,29
6	170685	102773,44	67911,56	67911,56	4611979982	39,79
7	160400	103761,68	56638,32	56638,32	3207899292	35,31
8	173863	104749,92	69113,08	69113,08	4776617827	39,75
9	182952	105738,16	77213,84	77213,84	5961977088	42,20
10	192829	106726,4	86102,6	86102,6	7413657727	44,65
11	130140	107714,64	22425,36	22425,36	502896771,1	17,23
12	101255	108702,88	-7447,88	7447,88	55470916,49	7,36

Realizando o mesmo procedimento para as outras equações de tendência, para todos os períodos da série mostrada na Figura 2, podem-se obter as medidas de acuracidade de cada modelo, conforme a tabela a seguir:

Madida	Modelo					
Medida	Linear	Polinômio de 2º grau	Logarítmico	Potência	Exponencial	
EAM	27928,64	27752,31	42944,76	39481,05	28195,36	
EQM	1247075874	1235156012	2618630743	2222579666	1306864744	
EPAM	15,83	15,63	25,37	22,01	15,35	

Os menores valores das medidas de acuracidade são mostrados em negrito. A tendência por polinômio de segundo grau tem os menores valores de EAM e EQM, mas a tendência por exponencial tem o menor EPAM. Por maioria, escolhe-se o polinômio de segundo grau como o melhor modelo para representar a tendência da série por mínimos quadrados. Podemos usar este modelo para fazer a previsão da tendência da série nos doze meses de 2015, que seriam os períodos 217 a 228 da série.

Mês	Período (t)	Previsão tendência (polinômio de 2º grau)	(veículos)
Janeiro 2015	217	$\hat{T}_t = 0.9929 \times 217^2 + 772.79 \times 217 + 104672 =$	319122,0981
Fevereiro 2015	218	$\hat{T}_t = 0.9929 \times 218^2 + 772.79 \times 218 + 104672 =$	320326,7996
Março 2015	219	$\hat{T}_t = 0.9929 \times 219^2 + 772.79 \times 219 + 104672 =$	321533,4869
Abril 2015	220	$\hat{T}_t = \frac{0.9929 \times 220^2 + 772}{104672} = \frac{104672}{104672}$	322742,16
Maio 2015	221	$\hat{T}_i = 0.9929 \times 221^2 + 772.79 \times 221 + 104672 =$	323952,8189
Junho 2015	222	$\hat{T}_t = 0.9929 \times 222^2 + 772.79 \times 222 + 104672 =$	325165,4636
Julho 2015	223	$\hat{T}_t = 0.9929 \times 223^2 + 772.79 \times 223 + 104672 =$	326380,0941
Agosto 2015	224	$\hat{T}_t = 0.9929 \times 224^2 + 772.79 \times 224 + 104672 =$	327596,7104
Setembro 2015	225	$\hat{T}_t = 0.9929 \times 225^2 + 772.79 \times 225 + 104672 =$	328815,3125
Outubro 2015	226	$\hat{T}_t = 0.9929 \times 226^2 + 772.79 \times 226 + 104672 =$	330035,9004
Novembro 2015	227	$\hat{T}_t = 0.9929 \times 227^2 + 772.79 \times 227 + 104672 =$	331258,4741
Dezembro 2015	228	$\hat{T}_t = 0.9929 \times 228^2 + 772,79 \times 228 + 104672 =$	332483,0336

4.2.2 - Obtenção de tendência por médias móveis

As médias móveis são uma forma alternativa de obtenção da tendência ou nível de uma série temporal. Calcula-se a média dos primeiros **n** períodos da série, colocando o resultado no período exatamente no centro deles. Progressivamente, vamos acrescentando um período seguinte e desprezando o primeiro da média imediatamente anterior, e calculando novas médias, que vão se movendo até o fim da série. O número de períodos (n) é chamado de ordem da série.

Exemplo 4.3 - Os dados a seguir, que representam as vendas anuais das fábricas (em milhões de unidades), em todo o mundo, de carros, caminhões e ônibus fabricados pela General Motors Corporation de 1970 a 1992. Obtenha a tendência da série por médias móveis de 3, 5 e 7 períodos, e plote-as em um gráfico junto com os dados originais⁹.

⁹ Adaptado de LEVINE, D. M., BERENSON, M. L. e STEPHAN, D. – Estatística: Teoria e Aplicações usando o Excel. Rio de Janeiro: LTC, 2000.

Ano	Vendas	Ano	Vendas	Ano	Vendas
1970	5,3	1978	9,5	1986	8,6
1971	7,8	1979	9,0	1987	7,8
1972	7,8	1980	7,1	1988	8,1
1973	8,7	1981	6,8	1989	7,9
1974	6,7	1982	6,2	1990	7,5
1975	6,6	1983	7,8	1991	7,0
1976	8,6	1984	8,3	1992	7,2
1977	9,1	1985	9,3		

Primeiramente vamos apresentar um gráfico da série original, para observar se não seria possível ajustar uma reta como tendência da série. Veja a Figura 9.

Figura 9 - Vendas da GM (milhões de unidades)

Não parece haver um comportamento crescente, ou decrescente, no longo prazo. Poderia se afirmar que a série não tem tendência, e que não seria apropriado ajustar uma equação de reta aos dados. Não obstante, há interesse em obter o nível da série, em que patamar estão as vendas da GM.

Vamos aplicar médias móveis de 3, 5 e 7 períodos e observar os resultados.

Médias Móveis de 3 períodos

Devemos juntar os períodos de 3 em 3, sempre acrescentando o próximo e desprezando o primeiro do grupo anterior, colocando o resultado no período central $(2^{\circ} período)$:

```
1970 - 1971 - 1972 com resultado em 1971; 1971 - 1972 - 1973 com resultado em 1972;
```

^{1972 - 1973 - 1974} com resultado em 1973; 1973 - 1974 - 1975 com resultado em 1974;

^{1974 - 1975 - 1976} com resultado em 1975; 1975 - 1976 - 1977 com resultado em 1976;

^{1976 - 1977 - 1978} com resultado em 1977; e assim por diante, até chegar a

^{1990 - 1991 - 1992} com resultado em 1991.

A tabela com os resultados:

Ano	Vendas (Y) - em	Total Móvel 3 períodos	Média Móvel 3 períodos
	milhões		
1970	5,3	-	-
1971	7,8	20,9	6,97
1972	7,8	24,3	8,10
1973	8,7	23,2	7,73
1974	6,7	22	7,33
1975	6,6	21,9	7,30
1976	8,6	24,3	8,10
1977	9,1	27,2	9,07
1978	9,5	27,6	9,20
1979	9	25,6	8,53
1980	7,1	22,9	7,63
1981	6,8	20,1	6,70
1982	6,2	20,8	6,93
1983	7,8	22,3	7,43
1984	8,3	25,4	8,47
1985	9,3	26,2	8,73
1986	8,6	25,7	8,57
1987	7,8	24,5	8,17
1988	8,1	23,8	7,93
1989	7,9	23,5	7,83
1990	7,5	22,4	7,47
1991	7	21,7	7,23
1992	7,2		-

Observe que ao calcularmos médias móveis alguns períodos ficam sem tendência, porque os resultados das médias são postos no centro dos períodos.

Média móvel de 5 períodos

Devemos juntar os períodos de 5 em 5, sempre acrescentando o próximo e desprezando o primeiro do grupo anterior, colocando o resultado no período central (3º período):

```
1970 - 1971 - 1972 - 1973 - 1974 com resultado em 1972;
```

1974 – 1975 – 1976 – 1977 – 1978 com resultado em 1976; e assim por diante, até chegar a

1988 - 1989 - 1990 - 1991 - 1992 com resultado em 1990.

A tabela com os resultados:

^{1971 - 1972 - 1973 - 1974 - 1975} com resultado em 1973;

^{1972 - 1973 - 1974 - 1975 - 1976} com resultado em 1974;

^{1973 – 1974 – 1975 – 1976 – 1977} com resultado em 1975;

Ano	Vendas (Y) - em	Total Móvel 5 períodos	Média Móvel 5 períodos
	milhões		
1970	5,3	-	-
1971	7,8	-	-
1972	7,8	36,3	7,26
1973	8,7	37,6	7,52
1974	6,7	38,4	7,68
1975	6,6	39,7	7,94
1976	8,6	40,5	8,1
1977	9,1	42,8	8,56
1978	9,5	43,3	8,66
1979	9	41,5	8,3
1980	7,1	38,6	7,72
1981	6,8	36,9	7,38
1982	6,2	36,2	7,24
1983	7,8	38,4	7,68
1984	8,3	40,2	8,04
1985	9,3	41,8	8,36
1986	8,6	42,1	8,42
1987	7,8	41,7	8,34
1988	8,1	39,9	7,98
1989	7,9	38,3	7,66
1990	7,5	37,7	7,54
1991	7	Marcelo	-
1992	7,2	Marceio	-
•		Menezes	

Novamente, alguns períodos ficam sem tendência, porque os resultados das médias são postos no centro dos períodos. Aqui, como as médias agrupam 5 períodos, dois ficam sem tendência no início e dois ao final da série.

Média móvel de 7 períodos

Devemos juntar os períodos de 7 em 7, sempre acrescentando o próximo e desprezando o primeiro do grupo anterior, colocando o resultado no período central (5º período):

```
1970 - 1971 - 1972 - 1973 - 1974 - 1975 - 1976 com resultado em 1973;
1971 - 1972 - 1973 - 1974 - 1975 - 1976 - 1977 com resultado em 1974;
1972 - 1973 - 1974 - 1975 - 1976 - 1977 - 1978 com resultado em 1975;
1973 - 1974 - 1975 - 1976 - 1977 - 1978 - 1979 com resultado em 1976;
1974 - 1975 - 1976 - 1977 - 1978 - 1979 - 1980 com resultado em 1977;
1975 - 1976 - 1977 - 1978 - 1979 - 1980 - 1981 com resultado em 1978;
e assim por diante, até chegar a
1986 - 1987 - 1988 - 1989 - 1990 - 1991 - 1992 com resultado em 1989.
```

A tabela com os resultados:

Ano	Vendas (Y) - em milhõe	s Total Móvel 7 períodos	Média Móvel 7 períodos
1970	5,3	-	-
1971	7,8	-	-
1972	7,8	-	-
1973	8,7	51,5	7,36
1974	6,7	55,3	7,90
1975	6,6	57	8,14
1976	8,6	58,2	8,31
1977	9,1	56,6	8,09
1978	9,5	56,7	8,10
1979	9	56,3	8,04
1980	7,1	55,5	7,93
1981	6,8	54,7	7,81
1982	6,2	54,5	7,79
1983	7,8	54,1	7,73
1984	8,3	54,8	7,83
1985	9,3	56,1	8,01
1986	8,6	57,8	8,26
1987	7,8	57,5	8,21
1988	8,1	56,2	8,03
1989	7,9	54,1	7,73
1990	7,5		-
1991	7	40 (42 F) (52) J. 45	-
1992	7,2		-

Aqui, como as médias agrupam 7 períodos, três ficam sem tendência no início e três ao final da série. Construindo o gráfico da série original com as médias móveis:

Figura 10 - Vendas da GM e médias móveis de 3, 5 e 7 períodos

Quanto maior o número de períodos da série agrupados pela média móvel mais "alisada" fica a linha de tendência (média móvel de 7 períodos): esta representa melhor o comportamento de longo prazo, indicando uma ligeira oscilação em torno de 8 milhões de unidades vendidas (este é o **nível** da série). E quanto menor o número de períodos mais a tendência acompanhará os dados originais (média móvel de 3 períodos). Por este motivo, quando uma série apresenta muitas irregularidades é comum "alisá-la" através de médias móveis.

Mas o que aconteceria se o número de períodos fosse par? Se possível, devemos escolher um número ímpar de períodos, para que o resultado seja colocado em um período central que tem correspondente na série temporal. Contudo, se a série temporal for registrada trimestralmente, e queremos obter a sua tendência por médias móveis, devemos utilizar médias móveis de 4 períodos (porque há 4 trimestres no ano), para que possamos obter a tendência sem influência da sazonalidade. Se a série for registrada mensalmente, devemos utilizar médias móveis de 12 períodos. Nestes dois casos os períodos "centrais" (que começariam em 2,5° e 6,5° respectivamente) não têm correspondente na série original, o que tornará impossível remover a tendência da série para observar outras componentes. As médias móveis precisam ser centralizadas: calculam-se novas médias móveis, a partir das calculadas com 4 ou 12 períodos, mas agora de 2 períodos, colocando seus resultados em períodos que têm correspondentes na série.

Exemplo 4.4 - Uma corretora de seguros está avaliando os contratos obtidos ao longo de vários anos. A série foi registrada trimestralmente. Obtenha a tendência da série utilizando médias móveis.

	Trimestre			
Ano	I	II	III	IV
2016	24	21	11	9
2017	20	20	⊥ 7	6
2018	15	14	5	6
2019	13	la. 121a	3 4	5

Como a série é registrada trimestralmente, e a tendência deve ser obtida por médias móveis, é preciso calcular médias móveis de 4 períodos, pois há 4 trimestres no ano. Contudo, como este número de períodos é par, médias móveis de 2 períodos, calculadas a partir daquelas de 4 períodos, precisam ser obtidas para obter resultados centrados.

Trim.	Con.	Total móvel 4 per.	Total móvel 2 per. (centrado)	Média Móvel 2 per. (centrada)
2016 I	24			
			Marcelo	
2016 II	21		donozoo	
		65		
2016 III	11		126	15,75
		61		
2016 IV	9		121	15,125
		60		
2017 I	20	7 .0	116	14,5
2017 H	20	56	100	12.625
2017 II	20	52	109	13,625
2017 III	7	53	101	12,625
2017 111		48	101	12,023
2017 IV	6	40	90	11,25
2017 11	0	42	70	11,23
2018 I	15		82	10,25
		40		-, -
2018 II	14		80	10
		40		
2018 III	5		78	9,75
		38		
2018 IV	6		74	9,25
		36		
2019 I	13	25	71	8,875
2010 H	10	35	60	0.625
2019 II	12	24	69	8,625
2010 III	1	34		
2019 III	4			
2019 IV	5			
2017 I V	J			1

As linhas mais escuras na tabela acima indicam os períodos "centrais" das médias móveis de ordem 4, que não têm correspondente na série original. Para facilitar o nosso trabalho calculamos apenas os totais móveis de 4 períodos, acompanhe:

- os primeiros 4 períodos são os 4 trimestres de 2016; 2016 I, 2016 II, 2016 III, 2016 IV; o total móvel deles (igual a 65) deve ficar no centro destes períodos, ou seja entre 2016 II e 2016 III, que é um período inexistente na série original;
- em seguida desprezamos 2016 I e incluímos 2017 I: 2016 II, 2016 III, 2016 IV, 2017 I; o total móvel (igual a 61) deve ficar entre 2016 III e 2016 IV, novamente inexistente na série original;
- prosseguimos até os 4 últimos períodos: 2019 I, 2019 II, 2019 III, 2019 IV; o total móvel (igual a 34) deve ficar entre 2019 II e 2019 III.

Agora precisamos obter as médias móveis centradas. Primeiramente calculamos os totais móveis de 2 períodos, juntando 2 totais móveis de 4 períodos calculados anteriormente:

- o total móvel de 4 períodos que está entre 2016 II e 2016 III, com o que está entre 2016 III e 2016 IV, cujo resultado (126) deverá ficar em 2016 III (passando a ter correspondente na série original);
- o total móvel de 4 períodos que está entre 20<mark>16 II</mark>I e 2016 IV, com o que está entre 2016 IV e 2017 I, cujo resultado (121) deverá ficar em 2016 IV (passando a ter correspondente na série original);
- prosseguimos até os últimos 2 totais móveis de 4 períodos: entre 2019 I e 2019 II, e entre 2019 II e 2019 III, cujo resultado (69) deverá ficar em 2019 II.

Dividimos os totais móveis de 2 períodos por oito (porque agrupamos dois conjuntos de 4 períodos), e obtemos as médias móveis centradas. Repare que faltam médias móveis para exatamente 2 períodos no início da série e para exatamente 2 no final, porque as médias móveis iniciais envolvem 4 períodos (porque há 4 trimestres no ano). Se a série fosse mensal faltariam 6 períodos no início e 6 no final.

Vamos ver como ficam a série original e a tendência em um gráfico:

Figura 11 - Número de contratos: série original e médias móveis de 4 períodos (centradas)

É interessante observar que a tendência do número de contratos é <u>decrescente</u>. Supondo que fossem dados atuais e desejássemos fazer previsões para o futuro, trata-se de um inquietante sinal para a corretora de seguros. Se o mercado encontra-se retraído o mau desempenho seria explicável, mas mesmo assim é preocupante que no longo prazo o número de contratos está caindo, a não ser que o valor individual dos contratos compense esta redução.

4.2.3 - Ajuste Exponencial

O ajuste exponencial é uma outra forma de obter a tendência de uma série temporal. Apresenta algumas vantagens em relação às médias móveis:

- permite realizar previsões de curto prazo (para o período seguinte da série), o que não é possível por médias móveis.
- leva em conta todos os valores previamente observados ao período sob análise, e não somente os "mais próximos" dele, como ocorre nas médias móveis.

Na realidade o ajuste exponencial fornece uma média móvel exponencialmente ponderada ao longo da série temporal: ou seja, cada previsão ou valor ajustado depende de todos os valores prévios. Os pesos designados para os valores observados decrescem ao longo do tempo, ou seja, o valor observado mais recentemente recebe o maior peso, o valor anterior o segundo maior e o valor observado inicialmente recebe o menor peso: isso é bom senso, imagina-se que os dados mais recentes devam ter mais influência nas previsões do que os mais antigos. O ajuste exponencial é uma das ferramentas disponíveis no suplemento Análise de Dados do Microsoft Excel.

Para realizar o ajuste exponencial basta aplicar a seguinte fórmula para um período de tempo i qualquer:

 $\mathbf{E_i} = \mathbf{W} \times \mathbf{Y_i} + (1 - \mathbf{W}) \times \mathbf{E_{i-1}}$

Onde:

i - um período de tempo qualquer;

Y_i - valor da série original no período i;

E_i - valor da série exponencialmente ajustada no período i;

 E_{i-1} - valor da série exponencialmente ajustada no período i - 1 (período anterior);

W - constante de regularização ou coeficiente de ajuste (0 < W < 1);

Considera-se que o primeiro valor da série original será igual ao primeiro valor ajustado, isto significa que o ajuste realmente começa a partir do segundo período da série. Como cada valor ajustado leva em conta o valor ajustado imediatamente anterior (multiplicado pela constante de regularização) teoricamente todos os valores prévios da série contribuem para o valor ajustado.

A escolha da constante de regularização W é crucial para o ajuste exponencial, mas é um processo subjetivo. Não obstante, é possível estabelecer uma regra de escolha:

- se o interesse é simplesmente obter a tendência, eliminando o efeito das outras componentes, o valor de W deverá ser próximo de zero;
- se houver interesse, porém, em realizar previsão com a série é recomendável que o valor de W seja mais próximo de 1, de maneira a refletir melhor o comportamento da série no curto prazo.

Exemplo 4.5 - Faça o ajuste exponencial da série de vendas do Exemplo 4.2 (usando W = 0,25; W = 0.5; W = 0.75 e W = 0.10). Construa um gráfico conjunto da série original com os quatro ajustes.

Vendas (Y)	Ano	Vendas (Y)	Ano	Vendas (Y)
5,3	1978	9,5	1986	8,6
7,8	1979	9,0	1987	7,8
7,8	1980	7,1	1988	8,1
8,7	1981	6,8	1989	7,9
6,7	1982	6,2	1990	7,5
6,6	1983	7,8	1991	7,0
8,6	1984	8,3	1992	7,2
9,1	1985	9,3		
	5,3 7,8 7,8 8,7 6,7 6,6 8,6	5,3 1978 7,8 1979 7,8 1980 8,7 1981 6,7 1982 6,6 1983 8,6 1984	5,3 1978 9,5 7,8 1979 9,0 7,8 1980 7,1 8,7 1981 6,8 6,7 1982 6,2 6,6 1983 7,8 8,6 1984 8,3	5,3 1978 9,5 1986 7,8 1979 9,0 1987 7,8 1980 7,1 1988 8,7 1981 6,8 1989 6,7 1982 6,2 1990 6,6 1983 7,8 1991 8,6 1984 8,3 1992

Vamos demonstrar os cálculos para W = 0.25.

Vamos considerar que o primeiro valor da série, Y_{1970} , será igual ao primeiro valor ajustado, E_{1970} . Podemos então realizar o ajuste para o ano de 1971:

$$\mathbf{E}_{1971} = \mathbf{W} \times \mathbf{Y}_{1971} + (1 - \mathbf{W}) \times \mathbf{E}_{1970} = (0.25 \times 7.8) + (1 - 0.25) \times (5.3) = 5.93$$
 milhões *Para o ano de 1972:*

$$\mathbf{E}_{1972} = \mathbf{W} \times \mathbf{Y}_{1972} + (1 - \mathbf{W}) \times \mathbf{E}_{1971} = (0.25 \times 7.8) + (1 - 0.25) \times (5.93) = 6.39 \text{ milhões}$$

O processo segue até o final da série. De maneira análoga podemos obter o ajuste para W = 0.5 e W = 0.75. Os valores ajustados estão na tabela a seguir:

Ano	Vendas (Y) - em milhões	W = 0.25	W = 0.50	W = 0.75	W = 0.10
1970	5,3	5,3	5,3	5,3	5,3
1971	7,8	5,93	6,55	7,18	5,55
1972	7,8	6,39	7,18	7,64	5,78
1973	8,7	6,97	7,94	8,44	6,07
1974	6,7	6,90	7,32	7,13	6,13
1975	6,6	6,83	6,96	6,73	6,18
1976	8,6	7,27	7,78	8,13	6,42
1977	9,1	7,73	8,44	8,86	6,69
1978	9,5	8,17	8,97	9,34	6,97
1979	9	8,38	8,98	9,08	7,17
1980	7,1	8,06	8,04	7,60	7,16
1981	6,8	7,74	7,42	7,00	7,13
1982	6,2	7,36	6,81	6,40	7,04
1983	7,8	7,47	7,31	7,45	7,11
1984	8,3	<mark> 7,6</mark> 8	7,80	8,09	7,23
1985	9,3	8,08	8,55	9,00	7,44
1986	8,6	8,21	8,58	8,70	7,55
1987	7,8	8,11	8,19	8,02	7,58
1988	8,1	8,11	8,14	8,08	7,63
1989	7,9	8,05	8,02	7,95	7,66
1990	7,5	7,92	7,76	7,61	7,64
1991	7	7,69	7,38	7,15	7,58
1992	7,2	7,57	7,29	7,19	7,54

E o gráfico é mostrado na Figura 12:

Figura 12 - Ajuste exponencial com vários valores de W

Quanto menor o valor de W mais "alisada" é a série, com as variações de curto prazo sendo amortizadas, possibilitando visualizar o comportamento de longo prazo da série, seja ele crescente/decrescente ou estacionário: para W = 0,1 é fácil perceber uma tendência crescente nas vendas, mas que parece estar se estabilizando. À medida que o valor de W aproxima-se de 1 o ajuste exponencial torna-se mais próximo da série original, o que pode ser útil na previsão para o ano de 1993.

Por exemplo, se quiséssemos realizar a previsão para o ano de 1993, o valor previsto seria aquele ajustado para o ano imediatamente anterior (1992): para W = 0.25 Vendas₁₉₉₃ = 7,57 milhões; para $W = 0.50 \text{ Vendas}_{1993} = 7.29 \text{ milhões}$; para $W = 0.75 \text{ Vendas}_{1993} = 7.19 \text{ milhões}$; para $W = 0.75 \text{ Vendas}_{1993} = 7.19 \text{ milhões}$; para $W = 0.75 \text{ Vendas}_{1993} = 7.19 \text{ milhões}$; para $W = 0.75 \text{ Vendas}_{1993} = 7.19 \text{ milhões}$; para $W = 0.75 \text{ Vendas}_{1993} = 7.19 \text{ milhões}$; para $W = 0.75 \text{ Vendas}_{1993} = 7.19 \text{ milhões}$; para $W = 0.75 \text{ Vendas}_{1993} = 7.19 \text{ milhões}$; para $W = 0.75 \text{ Vendas}_{1993} = 7.19 \text{ milhões}$; para $W = 0.75 \text{ Vendas}_{1993} = 7.19 \text{ milhões}$; para $W = 0.75 \text{ Vendas}_{1993} = 7.19 \text{ milhões}$; para $W = 0.75 \text{ Vendas}_{1993} = 7.19 \text{ milhões}$; para $W = 0.75 \text{ Vendas}_{1993} = 7.19 \text{ milhões}$; para $W = 0.75 \text{ Vendas}_{1993} = 7.19 \text{ milhões}$; para $W = 0.75 \text{ Vendas}_{1993} = 7.19 \text{ milhões}$; para $W = 0.75 \text{ Vendas}_{1993} = 7.19 \text{ milhões}$; para $W = 0.75 \text{ Vendas}_{1993} = 7.19 \text{ milhões}$; para $W = 0.75 \text{ Vendas}_{1993} = 7.19 \text{ milhões}$; para $W = 0.75 \text{ Vendas}_{1993} = 7.19 \text{ milhões}$ 0,10 Vendas₁₉₉₃ = 7,59 milhões. Qual destas previsões é a mais apropriada? Como se trata de uma previsão de **curto prazo** é recomendável escolher as previsões feitas para valores mais altos de W. 0,5 ou 0,75, que mostram melhor as flutuações. Sendo assim, espera-se que as vendas em 1993 estejam entre em 7,29 e 7,19 milhões de unidades. Assim que os dados de 1993 estivessem disponíveis poderíamos fazer a previsão sobre 1994, e assim por diante.

Compare a curva para W = 0.10 da Figura 12, que indica uma tendência crescente de vendas, com a média móvel de 7 períodos da Figura 10, que indica estabilização em torno de 8 milhões. Em qual das duas confiar? Lembre-se de que o ajuste exponencial leva em conta todos os valores anteriores ao período, e que a média móvel apenas aqueles definidos no seu período (3, 5, 7), e que maior peso é dado aos valores <mark>dos períodos m</mark>ais próximos, o que pode representar maior acuracidade, pois são mais recentes.

4.2.4 - Remoção da Tendência

Uma vez identificada a tendência, seja por equações ou por médias móveis, ela pode ser removida da série, para facilitar a visualização das outras componentes:

Marcelo

$$Y-T=C+S+I$$
 para um modelo aditivo
$$\frac{Y}{T}=C\times S\times I$$
 para um modelo multiplicativo

Vejamos como ficaria a série mostrada na Figura 5 com a remoção da tendência, pelos modelos aditivo e multiplicativo (ambas supondo uma tendência linear):

Figura 13- Série temporal de vendas (Figura 5) com tendência removida – modelo aditivo

Observe a escala do gráfico. Os valores oscilam em torno de zero: se maiores do que zero indicam componentes que aumentam a tendência, se menores que diminuem. A escala do gráfico é semelhante a da Figura 6 (milhões de dólares).

Vendas sem tendência - modelo multiplicativo

Figura 14 - Série temporal de vendas (Figura 5) com tendência removida – modelo multiplicativo

Observe a escala do gráfico, com valores em torno de 1: a tendência foi removida, restaram apenas as componentes cíclicas, sazonais e irregulares que modificam a tendência em um modelo multiplicativo.

Marcelo

4.3 - Obtenção das variações sazonais

Conforme visto na seção 4.1 as variações sazonais são oscilações de curto prazo, que ocorrem sempre dentro do ano, e que se repetem sistematicamente ano após ano. Obviamente uma série temporal registrada anualmente (ou seja, os valores dos dias, meses, trimestres, são resumidos em um valor anual) *não tem* componente sazonal.

Nos modelos aditivo e multiplicativo as variações sazonais são representadas pelos *índices* sazonais, ou fatores sazonais, um para cada período em que o ano é dividido (se a série é registrada mensalmente há 12 índices, se trimestralmente há 4 índices, etc.). Os índices sazonais modificam a tendência, ao serem somados (modelo aditivo) ou multiplicados por ela:

- no modelo aditivo, se todos os índices forem próximos ou exatamente iguais a zero então as componentes sazonais parecem não exercer grande efeito sobre a série; se os índices forem substancialmente diferentes de zero, tanto positivos como negativos, o valor da tendência será modificado por eles, indicando influência das componentes sazonais na série.
- no modelo multiplicativo, se todos os índices sazonais forem aproximadamente iguais a 1 então as componentes sazonais parecem não exercer grande efeito sobre a série; se os índices forem substancialmente diferentes de 1, pelo menos 5% acima ou abaixo em alguns dos meses ou trimestres, o valor da tendência será modificado por eles, indicando que as componentes sazonais afetam a série.

Ouando se usa o modelo aditivo a soma de todos os índices sazonais precisa ser igual, ou muito próxima, de zero. Quando se usa o modelo multiplicativo a soma precisa ser igual ao período

da sazonalidade: se a série é trimestral deve ser igual a 4 (4 trimestres no ano), se é mensal deve ser igual a 12, e assim por diante. Em alguns casos é preciso fazer pequenas correções para garantir tal comportamento.

Para obter as variações sazonais recomenda-se que a série temporal tenha, no mínimo, quatro anos completos (16 trimestres, 48 meses, por exemplo). Caso contrário, será mais difícil confirmar a existência da regularidade inerente às variações sazonais (alguns programas estatísticos simplesmente não apresentam os resultados para séries menores).

Há vários métodos para a obtenção dos índices sazonais, entre eles o método da razão para a média móvel (ou método da média móvel percentual). Ele consiste em:

- 1) obter médias móveis de ordem igual ao número de períodos sazonais (4 se a série é trimestral, 12 se é mensal);
- 2) obter médias móveis de 2 períodos, centradas, a partir das médias móveis calculadas no passo 1;
- 3) obter os índices sazonais para cada período:
 - no modelo ADITIVO, subtraindo dos valores originais da série as médias móveis centradas calculadas no passo 2;
 - no modelo MULTIPLICATIVO, dividindo os valores originais da série pelas médias móveis centradas calculadas no passo 2;
- 4) obter medidas de síntese dos índices calculados no passo 3, que representarão cada período sazonal (por exemplo, a mediana dos índices sazonais de todos os janeiros existentes na série).
 - no modelo ADITIVO, calcular a média aritmética simples dos valores correspondentes ao período sazonal (média dos índices obtidos em todos os janeiros da série, por exemplo);
 - no modelo MULTIPLICATIVO, calcular a média aritmética simples dos valores correspondentes ao período sazonal, sem incluir os valores máximo e mínimo¹⁰ (imagine que há os índices 1,05; 1,054; 1,061; 1,07; 1,072; 1,08, a média seria calculada excluindo os valores 1,05 e 1,08, mínimo e máximo respectivamente); uma solução alternativa seria calcular a mediana dos índices de cada período.
- 5) fazer as correções necessárias para que a soma dos índices seja coerente (igual a zero para o aditivo e igual à ordem da sazonalidade no multiplicativo):
 - no modelo ADITIVO, somar todos os índices calculados no passo 4 e dividir a soma pela ordem da sazonalidade (4 se trimestral, 12 se mensal, etc.); o resultado deverá ser subtraído de cada um dos índices, garantindo que a soma deles seja igual a zero.
 - no modelo MULTIPLICATIVO, somar todos os índices calculados no passo 4, subtrair da soma a ordem da sazonalidade (4 se trimestral, 12 se mensal, etc.), e dividir a subtração pela ordem da sazonalidade (novamente, 4 se trimestral, 12 se mensal, etc.); subtrair o resultado de 1; o resultado deverá ser multiplicado por cada um dos índices, garantindo que a soma deles seja igual à ordem da sazonalidade.

Os passos 1 e 2 são virtualmente idênticos ao procedimento para obtenção de tendência por médias móveis visto na seção 4.2.2 (quando o número de períodos é par).

Exemplo 4.6 - Obtenha os índices sazonais, tanto pelo modelo aditivo quanto pelo multiplicativo, para a série de contratos de seguros apresentada no Exemplo 4.4. Interprete os resultados encontrados.

Há dados disponíveis para quatro anos completos, de 2014 a 2017. Veja os resultados na tabela abaixo:

¹⁰ Também chamada de média interna, ou medial average (em inglês).

Pelo modelo aditivo.

Trimestre	No. de Contratos	Totais Móveis 4 períodos	Totais Móveis 2 períodos (centrados)	Médias Móveis 2 períodos (centradas)	Índices sazonais
2016 I	24	1		•	
2016 II	21				
		65			
2016 III	11		126	15,75	-4,750
		61			
2016 IV	9		121	15,125	-6,125
		60			
2017 I	20		116	14,5	5,500
		56			
2017 II	20		109	13,625	6,375
		53			
2017 III	7		101	12,625	-5,625
		48			
2017 IV	6		90	11,25	-5,250
		42			
2018 I	15	James 1	82	10,25	4,750
		40			
2018 II	14	485	80	10	4,000
		40			
2018 III	5		78	9,75	-4,75
		38			
2018 IV	6		74	9,25	-3,25
		36			
2019 I	13	-	71	8,875	4,125
		35			
2019 II	12	0.0	69	8,625	3,375
		34			
2019 III	4		Daia		
2010 77	_				
2019 IV	5				

Temos que encontrar 4 índices sazonais, já que há 4 trimestres no ano. Como a série é registrada trimestralmente, e a tendência deve ser obtida por médias móveis, é preciso calcular médias móveis de 4 períodos, pois há 4 trimestres no ano. Contudo, como este número de períodos é par, médias móveis de 2 períodos, calculadas a partir daquelas de 4 períodos, precisam ser obtidas para obter resultados centrados. O procedimento inicial é semelhante ao feito no Exemplo 4.3, até a obtenção das médias móveis de 2 períodos centradas.

Para obter os índices sazonais devemos subtrair dos valores originais da série as médias móveis centradas, a partir de 2014 III até 2017 II, cujos resultados estão na última coluna da tabela acima. Os índices para cada trimestre serão:

 $Trimestre\ I =>$ 5,500 4,750 4,000 *Trimestre II =>* 6,375 4,000 3,375 *Trimestre III=>* -4,750 -5,625 -4,75 *Trimestre IV=>* -6,125 -5,250 -3,25

Os índices somente foram calculados para os períodos em que havia médias móveis de 2 períodos centradas.

Como é um modelo aditivo precisamos calcular a média de cada trimestre. Então os índices sazonais serão:

Trimestre I = 4,792 Trimestre II = 4,583 Trimestre III = -5,042 Trimestre IV = -4,875

Observe que há uma diferença considerável entre os índices. No primeiro trimestre do ano o número de contratos aumenta em cerca de 5, no segundo aumenta outros 5, e no terceiro e quarto trimestres sofre uma queda de 5. Estas oscilações são grandes demais para ter ocorrido por acaso, há influência da sazonalidade na série de contratos. Somando os índices vamos obter -0,5417, indicando que é preciso realizar uma correção. Como a sazonalidade tem ordem 4, divide-se a soma por 4 obtendo -0,135417. Subtraindo de cada índice este valor:

Trimestre I = 4,792 - (-0, 135417) = 4,9271

Trimestre II = 4,583 - (-0, 135417) = 4,7188

Trimestre III = -5,042 - (-0, 135417) = -4,9063

Trimestre IV = -4,875 - (-0, 135417) = -4,7396

E a soma dos quatro índices é virtualmente igual a zero.

Pelo modelo multiplicativo:

Trimestre	No. de Contratos	Totais Móveis	Totais Móveis 2	Médias Móveis 2	Índices sazonais
		4 períodos	períodos (centrados)	períodos (centradas)	
2016 I	24				
2016 II	21	E 2			
		65			
2016 III	11	5	126	15,75	0,698
		61			
2016 IV	9	260	121	15,125	0,595
		60			
2017 I	20	1	116	14,5	1,379
		56			
2017 II	20	100	109	13,625	1,468
		53			
2017 III	7	1/1	arce10h	12,625	0,554
		48			
2017 IV	6	M	P 790 P	11,25	0,533
		42			
2018 I	15		82	10,25	1,463
		40			
2018 II	14		80	10	1,400
		40			
2018 III	5		78	9,75	0,513
		38			
2018 IV	6		74	9,25	0,649
		36			
2019 I	13		71	8,875	1,465
		35		,	
2019 II	12		69	8,625	1,391
-		34			
2019 III	4				
2019 IV	5				

Temos que encontrar 4 índices sazonais, já que há 4 trimestres no ano. Como a série é registrada trimestralmente, e a tendência deve ser obtida por médias móveis, é preciso calcular médias móveis de 4 períodos, pois há 4 trimestres no ano. Contudo, como este número de períodos é par, médias móveis de 2 períodos, calculadas a partir daquelas de 4 períodos, precisam ser obtidas para obter resultados centrados. O procedimento inicial é semelhante ao feito no Exemplo 4.4, até a obtenção das médias móveis de 2 períodos centradas.

Para obter os índices sazonais devemos dividir os valores originais da série pelas médias móveis centradas, a partir de 2014 III até 2017 II, cujos resultados estão na última coluna da tabela acima. Os índices para cada trimestre serão:

 $Trimestre\ I =>$ 1,379 1,463 1,465 *Trimestre II =>* 1,468 1,400 1,391 *Trimestre III=>* 0,698 0,554 0,513 *Trimestre IV=>* 0,595 0,533 0,649

Os índices somente foram calculados para os períodos em que havia médias móveis de 2 períodos centradas. Precisamos calcular a média de cada trimestre, excluindo os valores máximo e mínimo.. Neste caso, como há apenas 3 valores basta excluir os extremos. Então os índices sazonais serão: Trimestre I = 1,463 Trimestre II = 1,400 Trimestre III = 0,554 Trimestre IV = 0,595

Observe que há uma diferença considerável entre os índices. No primeiro trimestre do ano o número de contratos aumenta cerca de 46,3% ([1,463 - 1] × 100), no segundo aumenta 40%, no terceiro trimestre sofre uma queda de 44,6% ([0,554 - 1] \times 100), e no quarto a queda é de 40,5%. Estas oscilações são grandes demais para ter ocorrido por acaso, há influência da sazonalidade na série de contratos. Somando os índices vamos obter 4,013, indicando que é preciso realizar uma correção. Como a sazonalidade tem ordem 4, subtrai-se a soma de 4 e divide-se o resultado por 4 obtendo 0,0032. Subtraindo este valor de 1, teremos 0,9968, multiplicando este resultado pelos índices obtemos os índices corrigidos:

Trimestre I = $1,463 \times 0,9968 = 1,459$

Trimestre II = $1,400 \times 0,9968 = 1,395$

Trimestre III = $0.554 \times 0.9968 = 0.553$

Trimestre IV = $0.595 \times 0.9968 = 0.593$

E a soma dos quatro índices é virtualmente igual a 4.

Podemos remover a sazonalidade da série, dividindo os valores originais de cada período por seu respectivo índice sazonal, pelos modelos aditivo e multiplicativo, e podemos ver o resultado em gráficos:

grajicos.					
Trimestre	Y	S (multiplicativo)	$\mathbf{T} \times \mathbf{C} \times \mathbf{I} = \mathbf{Y}/\mathbf{S}$	S (aditivo)	$\mathbf{T} + \mathbf{C} + \mathbf{I} = \mathbf{Y} - \mathbf{S}$
2016 I	24	1,459	16,453	4,927	19,073
2016 II	21	1,395	15,049	4,719	16,281
2016 III	11	0,553	19,904	-4,906	15,906
2016 IV	9	0,593	15,174	-4,740	13,740
2017 I	20	1,459	13,711	4,927	15,073
2017 II	20	1,395	14,332	4,719	15,281
2017 III	7	0,553	12,666	-4,906	11,906
2017 IV	6	0,593	10,116	-4,740	10,740
2018 I	15	1,459	10,283	4,927	10,073
2018 II	14	1,395	10,032	4,719	9,281
2018 III	5	0,553	9,047	-4,906	9,906
2018 IV	6	0,593	10,116	-4,740	10,740
2019 I	13	1,459	8,912	4,927	8,073
2019 II	12	1,395	8,599	4,719	7,281
2019 III	4	0,553	7,238	-4,906	8,906
2019 IV	5	0,593	8,430	-4,740	9,740

Figura 16 - Índices Sazonais trim. – modelo aditivo

Figura 17 – Série sem sazonalidade – modelo multiplic.

Figura 18 - Índices sazonais - modelo multiplicativo

Qual dos dois modelos é o mais apropriado? Veremos posteriormente medidas da acuracidade dos modelos, que permitirá escolher o mais adequado.

4.4 - Obtenção de variações cíclicas e irregulares¹¹

Geralmente as variações cíclicas e irregulares são avaliadas em conjunto. Conforme visto anteriormente as variações cíclicas são padrões de longo prazo (superiores a um ano), como por exemplo períodos de crescimento e recessão da economia. Já as variações irregulares são resultado de fatos fortuitos, inesperados. Alguns autores não mencionam as variações cíclicas porque em certos casos a série temporal precisa abranger décadas para que seja possível identificar o comportamento cíclico, e, especialmente em séries sócio-econômicas os dados mais antigos podem estar realmente ultrapassados e contribuir para a construção de um modelo irreal. Não obstante, optou-se por levá-las em conta neste texto para obter um modelo completo.

As variações cíclicas e irregulares são obtidas através da remoção das componentes tendência e sazonalidade (esta última apenas se os dados não forem anuais). No modelo aditivo:

$$CI = Y - T - S$$

No modelo multiplicativo:

$$CI = \frac{Y}{\left(T \times S\right)}$$

Onde Y é o valor original da série, T é a tendência, e S é a componente sazonal (representada através dos índices sazonais).

É costume construir um gráfico de linhas com as variações cíclicas e irregulares, através do qual podemos identificar se os ciclos realmente influenciam a série, qual é sua periodicidade, e ainda se o efeito das variações irregulares é muito grande (e se é possível relacioná-lo com fatos específicos). Às vezes as variações irregulares tornam difícil a visualização dos ciclos, o que pode exigir a aplicação de médias móveis às variações cíclicas e irregulares para "alisá-la", de modo a facilitar a sua identificação.

¹¹ Embora todos os autores concordem com a presença das componentes irregulares no modelo clássico das séries temporais, não há unanimidade sobre as componentes cíclicas. Assim, o leitor pode encontrar referências sobre séries temporais que desconsideram por completo os ciclos.

Para identificar se há ciclos na série os seguintes padrões devem ser observados no gráfico das variações cíclicas e irregulares:

- no modelo aditivo, se há alternâncias sistemáticas entre valores maiores e menores do que zero ao longo dos períodos, e se os valores permanecem predominantemente maiores/menores do que zero durante pelo menos 1 ano (por exemplo: 2 anos acima de zero, seguido por 3 abaixo de zero, e assim sucessivamente);
- no modelo multiplicativo, se há alternâncias sistemáticas entre valores maiores e menores do que 1 ao longo dos períodos, e se os valores permanecem predominantemente maiores/menores do que 1 durante pelo menos 1 ano (por exemplo: 2 anos acima de 1, seguido por 3 abaixo de 1, e assim sucessivamente);

Os valores zero e 1 são os pontos neutros nos modelos aditivo e multiplicativo respectivamente, se as variações não se afastarem muito de zero (no modelo aditivo) ou de 1 (no modelo multiplicativo) elas não causarão modificações tangíveis na tendência, e portanto não influenciarão na série. A alternância sistemática precisa ser identificada, caso contrário o efeito dos ciclos ou é inexistente ou é inferior ao das componentes irregulares, podendo então ser desprezado no processo de previsão.

Se os ciclos influenciam na série temporal eles precisam ser levados em consideração no modelo. Precisamos calcular índices para os ciclos também, para os períodos de baixa e de alta, havendo dois procedimentos:

- calcula-se a mediana¹², ou a média sem os valores máximo e mínimo, das variações cíclicas e irregulares para todos os períodos de alta (e baixa) existentes na série; este procedimento agrega informações de toda a série;
- calcula-se a mediana, ou a média sem os valores máximo e mínimo, apenas para o último período de alta (e baixa); este procedimento privilegia as informações mais recentes, que podem ser mais úteis em previsões.

Também podemos observar os efeitos das variações irregulares, basta identificarmos eventuais quedas e altas no gráfico e relacionar tais eventos com fatos ocorridos no mesmo período. É importante observar que muitas vezes tais acontecimentos não causam efeito imediato, ou mesmo não causam efeito algum, o que pode surpreender o analista desavisado.

Na Figura 19 podemos observar novamente a série temporal da Figura 5. Na Figura 20 temos esta série após a remoção da tendência e sazonalidade, supondo um modelo aditivo, resultando apenas nas variações cíclicas e sazonais. Na Figura 22 temos a mesma situação, mas com o modelo multiplicativo.

¹² Usamos a mediana ao invés da média para evitar que valores discrepantes, causados por variações irregulares, distorçam os resultados.

Figura 20 - Série temporal de vendas - apenas variações cíclicas e irregulares - modelo aditivo

Com alguma atenção conseguimos identificar a existência de ciclos, relativamente longos. Observe a alternância sistemática de valores menores e maiores do que zero, por períodos superiores a 1 ano: janeiro de 1965 a dezembro de 1971 baixa, de janeiro de 1972 a dezembro de 1978 alta, etc. Observe, porém, que há pontos que mesmo nos períodos de baixa atingem valores acima de zero, e em períodos de alta abaixo de zero. Isso ocorre devido à influência das variações irregulares. Contudo, se o efeito das variações irregulares fosse suavizado a visualização seria mais fácil. Aplicando médias móveis de 12 períodos, posteriormente centradas, temos a Figura 21:

Figura 21 - Série temporal de vendas - médias móveis de 12 períodos das variações cíclicas e irregulares - modelo aditivo

Com o modelo multiplicativo:

Figura 22 - Série temporal de vendas - apenas variações cíclicas e irregulares – modelo multiplicativo

Com alguma atenção conseguimos identificar a existência de ciclos, relativamente longos. Observe a alternância sistemática de valores menores e maiores do que 1, por períodos superiores a 1 ano: janeiro de 1965 a dezembro de 1971 baixa, de janeiro de 1972 a dezembro de 1978 alta, etc. Novamente, se o efeito das variações irregulares fosse suavizado a visualização seria mais fácil. Aplicando médias móveis de 12 períodos, posteriormente centradas, temos a Figura 23:

Figura 23 - Série temporal de vendas - médias móveis de 12 períodos das variações cíclicas e irregulares - modelo multiplicativo.

Foi possível verificar, tanto pelo modelo aditivo quanto pelo multiplicativo que as variações cíclicas têm influência sobre os valores da série. Isso obriga a sua consideração ao realizar a previsão dos valores futuros da série: é necessário identificar se os períodos para os quais se quer fazer a previsão serão de alta ou baixa, e obter índices cíclicos (semelhantes aos índices sazonais) para os períodos. Para o caso do exemplo acima a série terminou em dezembro de 2000. Imagine-se que houvesse interesse em fazer a previsão para os anos imediatamente seguintes, 2001 e 2002. Estes dois anos, de acordo com os resultados da Figura 20 a Figura 23, seriam anos de alta ou baixa? Conforme visto anteriormente, os períodos de alta e baixa costumam inverter-se a cada 7 anos, 84 meses: em 1993 iniciou-se um período de baixa, que durou até fins de 1999, passando a haver um aumento nos índices a partir de 2000, como o período de alta dura cerca de 7 anos espera-se que os anos de 2000 a 2006 sejam períodos de alta.

Como obter os índices cíclicos? Vamos obter um valor apenas, que representará os períodos de alta: podemos calcular a mediana dos valores de todos os períodos de alta (1972 a 1978; 1986 a 1992; 2000); ou obter a mediana dos valores do último período completo de alta (1986 a 1992), que seriam dados mais recentes e talvez com maior influência sobre a série.

Exemplo 4.7 - Os dados a seguir representam as vendas líquidas (em bilhões de dólares), e a tendência (obtida por uma equação de reta) da Kodak. Remova a tendência da série usando os modelos aditivo e multiplicativo. Você identifica variações cíclicas?

modelo	s aditivo	e muniphca	ilivo. voce ideni	imca variações cicii
Ano	Vendas	Tendência	CI = Vendas -	CI =
			Tendência	Vendas/Tendência
1978	1,60	0,743587	0,856413	2,151732
1979	2,00	1,566462	0,433538	1,276763
1980	2,70	2,389338	0,310662	1,13002
1981	3,70	3,212213	0,487787	1,151854
1982	4,60	4,035089	0,564911	1,14
1983	4,62	4,857964	-0,23796	0,951016
1984	5,00	5,68084	-0,68084	0,880152
1985	5,78	6,503715	-0,72371	0,888723
1986	6,30	7,326591	-1,02659	0,859881
1987	8,00	8,149466	-0,14947	0 <mark>,9816</mark> 59
1988	10,25	8,972342	1,277658	1,1 <mark>42</mark> 4
1989	10,50	9,795217	0,704783	1 <mark>,07</mark> 1952
1990	11,90	10,61809	1,28191	1,120729
1991	10,20	11,44097	-1,24097	0,891533
1992	10,60	12,26384	-1,66384	0,86433
1993	10,60	13,08672	-2,48672	0,809981
1994	11,50	13,90959	-2,40959	0,826768
1995	13,30	14,73247	-1,43247	0,902768
1996	17,00	15,55535	1,44465	1,092872
1997	18,40	16,37822	2,02178	1,123443
1998	18,90	17,2011	1,6989	1,098767
1999	18,90	18,02397	0,87603	1,048604
2000	18,94	18,84685	0,09315	1,004942

Como a série é anual NÃO influência sazonalidade. **Podemos** simplesmente subtrair Tendência das vendas (modelo aditivo) ou dividir as Vendas pela Tendência (modelo multiplicativo), obtendo as componentes CI. resultados ao lado permitem observar os valores da série com a tendência linear removida. Observe que há alternância entre valores maiores e menores do que zero no modelo aditivo, e 1 no modelo multiplicativo, ao longo dos anos. Contudo tal constatação pode se tornar difícil para séries maiores. É preciso construir os gráficos das variações cíclicas e irregulares.

Figura 24 - Vendas líquidas da Kodak - variações cíclicas e irregulares - modelo aditivo

Pelo modelo aditivo é possível identificar uma variação sistemática: nos anos de 1978 a 1982 (5 anos) têm valores MAIORES DO QUE ZERO para as variações CI. De 1983 a 1987 (outros 5 anos), os valores de CI são MENORES DO QUE ZERO. Em 1988 ocorre outra inversão, valores maiores do que zero até 1990. Em 1991, as variações CI voltam a ficar menores do que zero, permanecendo assim até 1995 (5 anos). No ano de 1996 ocorre a última inversão da série, com os valores tornando a ser maiores do que zero até o ano 2000. Conclui-se então que HÁ VARIAÇÃO CÍCLICA nesta série, pois se pode perceber uma alternância entre valores maiores e menores do que zero (das variações CI) a cada 5 anos.

Figura 25 - Vendas líquidas da Kodak - variações cíclicas e irregulares – modelo multiplicativo

Pelo modelo multiplicativo também é possível identificar uma variação sistemática: nos anos de 1978 a 1982 (5 anos) têm valores MAIORES DO QUE 1 para as variações CI. De 1983 a 1987 (outros 5 anos), os valores de CI são MENORES DO QUE 1. Em 1988 ocorre outra inversão, valores maiores do que 1 até 1990. Em 1991, as variações CI voltam a ficar menores do que 1, permanecendo assim até 1995 (5 anos). No ano de 1996 ocorre a última inversão da série, com os valores tornando a ser maiores do que 1 até o ano 2000. Conclui-se então que HÁ VARIAÇÃO CÍCLICA nesta série, pois se percebe uma alternância entre valores maiores e menores do que 1(das variações CI) a cada 5 anos.

Como há variações cíclicas na série elas devem ser levadas em conta na previsão que será feita. Observando os gráficos das variações CI acima, o ano de 2000 parece ser o último de um ciclo de alta. É razoável imaginar que os anos de 2001 a 2005 serão anos de baixa: a tendência precisará ser multiplicada pelos índices de ciclos de baixa. Além disso, na etapa de recomposição da série (ver seção 4.5), para avaliar qual modelo (aditivo ou multiplicativo) é o mais adequado para representá-la, será necessário usar os índices para os ciclos de alta também¹³. Então, são necessários índices cíclicos para alta e baixa, oriundos do modelo aditivo e do multiplicativo, considerando todos os ciclos completos para a recomposição e os índices do último ciclo completo de baixa para usar na previsão futura.

Ciclos	de	alta
Cicios	ue	ana

Ano	1978	1979	1980	1981	1982	1988	1989
Aditivo	0,856413	0,433538	0,310662	0,487787	0,564911	1,277658	0,704783
Multiplicativo	2,151732	1,276763	1,13002	1,151854	1,14	1,1424	1,071952
Ano	1990	1996	1997	1998	1999	2000	
Aditivo	1,28191	1,44465	2,02178	1,6989	0,87603	0,09315	
Multiplicativo	1,120729	1,092872	1,123443	1,098767	1,048604	1,004942	

¹³ Embora os ciclos de alta não tenham a regularidade dos de baixa, enquanto os dois ciclos de alta tem exatamente 5 anos, os três ciclos de alta têm 5, 3 e 5 anos respectivamente.

Para a recomposição, calculando as medianas: CI Aditivo = 0,856413; CI Multiplicativo = 1,123443.

Para a previsão: não se calcula, pois os períodos seguintes da série supostamente seriam de baixa.

~·	1	1	7	•
(10)	00	do	n	aixa
$\sim \iota \iota \iota \iota$	ω_{o}	uc	$\boldsymbol{\nu}$	uinu

Ano	1983	1984	1985	1986	1987	1991	1992
Aditivo	-0,23796	-0,68084	-0,72371	-1,02659	-0,14947	-1,24097	-1,66384
Multiplicativo	0,951016	0,880152	0,888723	0,859881	0,981659	0,891533	0,86433
Ano	1993	1994	1995				
Aditivo	-2,48672	-2,40959	-1,43247				
Multiplicativo	0,809981	0,826768	0,902768				

Para a recomposição, calculando as medianas: CI Aditivo = -1,13378; CI Multiplicativo = 0.884437.

Para a previsão (medianas dos resultados do último ciclo completo de baixa, de 1991 a 1995): CI Aditivo = -1,66384; CI Multiplicativo = 0,86433.

4.5 - Recomposição

A recomposição consiste em agregar todas as componentes identificadas na análise de séries temporais, para que seja possível realizar a melhor previsão possível. Ao fazer a recomposição, levando em conta todas as componentes que causam influência na série é possível avaliar qual modelo, aditivo ou multiplicativo, apresenta melhores resultados.

No modelo aditivo: $\hat{\mathbf{Y}} = \mathbf{T} + \mathbf{S} + \mathbf{C}$ No modelo multiplicativo: $\hat{\mathbf{Y}} = \mathbf{T} \times \mathbf{S} \times \mathbf{C}$ Onde T é a tendência (definida por uma equação, médias móveis ou ajuste exponencial - seção 4.2), S é a componente sazonal (definida pelos índices sazonais - seção 4.3), e C é a componente cíclica (definida por índices - seção 4.4).

Exemplo 4.8 – Faça a recomposição da série a seguir, supondo um modelo aditivo.

Aditivo: $\hat{\mathbf{Y}} = \mathbf{T} + \mathbf{C} + \mathbf{S}$						
T	C	S				
90	-22	-5				
94	-22	-4				
98	-22	-4				
102	-22	-6				
106	-22	-7				
110	-22	-3				
114	-22	-1				
118	-22	5				
122	-22	5				

Para fazer a recomposição da série devemos somar as componentes da série, já que é um modelo aditivo.

O resultado está na tabela a seguir.

	Δ.						
	Aditivo: $\hat{\mathbf{Y}} = \mathbf{T} + \mathbf{C} + \mathbf{S}$						
T	C	S	Y				
90	-22	-5	63				
94	-22	-4	68				
98	-22	-4	72				
102	-22	-6	74				
106	-22	-7	77				
110	-22	-3	85				
114	-22	-1	91				
118	-22	5	101				
122	-22	5	105				

Para fazer previsões para períodos futuros basta obter os valores de tendência, aplicar os índices sazonais apropriados (se houver influência da sazonalidade), e os índices das variações cíclicas (se houver influência delas) identificando se os períodos para os quais desejamos fazer as previsões serão de alta ou baixa.

Multiplicativo: $\hat{\mathbf{Y}} = \mathbf{T} \times \mathbf{C} \times \mathbf{S}$				
T	C	S		
90	0,7	0,90		
94	0,7	0,92		
98	0,7	0,92		
102	0,7	0,86		
106	0,7	0,82		
110	0,7	0,94		
114	0,7	0,95		
118	0,7	1,10		
122	0.7	1.10		

Exemplo 4.9 - Faça a recomposição da série a seguir, supondo um modelo multiplicativo.

Para fazer a recomposição da série devemos multiplicar as componentes da série, já que é um modelo multiplicativo.

O resultado está na tabela a seguir.

Multiplicativo: $\hat{\mathbf{Y}} = \mathbf{T} \times \mathbf{C} \times \mathbf{S}$					
T	C	S	Y		
90	0,7	0,9	56,7		
94	0,7	0,92	60,536		
98	0,7	0,92	63,112		
102	0,7	0,86	61,404		
106	0,7	0,82	60,844		
110	0,7	0,94	72,38		
114	0,7	0,95	75,81		
118	0,7	1,1	90,86		
122	0,7	1,1	93,94		

Novamente, para fazer previsões para períodos futuros basta obter os valores de tendência, aplicar os índices sazonais apropriados (se houver influência da sazonalidade), e os índices das variações cíclicas (se houver influência delas) identificando se os períodos para os quais desejamos fazer as previsões serão de alta ou baixa.

4.5.1 - Medição da acuracidade do modelo

Na seção 4.2.1.1 foram apresentadas as medidas de acuracidade para avaliar qual modelo de tendência por mínimos quadrados era o mais apropriado. As mesmas medidas podem ser utilizadas para avaliar qual modelo (aditivo ou multiplicativo) é o mais apropriado para descrever a série e ser usado nas previsões. A diferenca é que agora os erros são calculados usando os valores da recomposição.

Marcelo

Erro absoluto médio (EAM):
$$EAM = \frac{1}{n} \times \sum_{t=1}^{n} |e_{t}|$$

Erro quadrático médio (EQM):
$$EQM = \frac{1}{n} \times \sum_{t=1}^{n} e_{t}^{2}$$

Erro percentual absoluto médio (EPAM):
$$EPAM = \frac{1}{n} \times \sum_{t=1}^{n} \left| \left(\frac{e_t}{Y_t} \right) \times 100 \right|$$

Onde:
$$e_t = Y_t - \hat{Y}_t$$

et é o erro (diferença entre o valor da série, Yt, e o valor de recomposição pelo modelo aditivo ou multiplicativo $\hat{Y_t}$ em um período genérico t). O melhor modelo será o que apresentar os valores mais próximos de zero.

Exemplo 4.10. Os dados abaixo contêm os valores trimestrais de exportação de minério de ferro do país latino-americano Pindorama (em milhões de dólares, já expurgado o efeito da inflação). Usando o modelo aditivo e o multiplicativo:

- a) obtenha os componentes da série
- b) interprete os resultados
- c) faça a recomposição da série
- d) avalie qual é o melhor modelo
- e) faça a previsão de vendas para os 4 trimestres seguintes.

Série temporal de exportações trimestrais de minério de ferro de Pindorama

	serie temporar de exportações triniestrais de nimerio de ferio de 1 indorana							
Trimestre	Período	Exportações (Y)	Mês	Período	Exportações (Y)			
2002I	1	840,642	2011I	37	7664,585			
2002II 2		1025,228	2011II	38	8269,515			
2002III	3	1661,896	2011III	39	8672,151			
2002IV	4	1562,665	2011IV	40	8626,384			
2003I	5	1602,747	2012I	41	5783,997			
2003II	6	1607,427	2012II	42	6796,005			
2003III	7	2265,952	2012III	43	7227,356			
2003IV	8	2426,605	2012IV	44	7205,338			
2004I	9	1922,275	2013I	45	6621,604			
2004II	10	2539,831	2013II	46	7425,485			
2004III	11	336 <mark>4,126</mark>	2013III	47	8449,733			
2004IV	12	321 <mark>4,098</mark>	2013IV	48	8034,425			
2005I	13	660,427	2014I	49	7352,909			
2005II	14	1029,301	2014II	50	7854,567			
2005III	15	1875,142	2014III	51	8977,176			
2005IV	16	1956,286	2014IV	52	8636,05			
2006I	17	2012,788	2015I	53	8337,523			
2006II	18	2361,815	2015II	54	9329,111			
2006III	19	2593,368	2015III	55	9929,435			
2006IV	20	2484,648	2015IV	56	9926,461			
2007I	21	2486,245	2016I	57	11640,39			
2007II	22	2751,869	2016II	58	12383,55			
2007III	23	3370,818	2016III	59	13165,48			
2007IV	24	3543,604	2016IV	60	13037,23			
2008I	25	3087,11	2017I	61	12459,31			
2008II	26	3883,603	2017II	62	13182,14			
2008III	27	4138,753	2017III	63	13997,94			
2008IV	28	4340,18	2017IV	64	14013,37			
2009I	29	5891,115	2018I	65	13364,47			
2009II	30	6790,334	2018II	66	14283,71			
2009III	31	7138,473	2018III	67	14716,93			
2009IV	32	7303,687	2018IV	68	14697,71			
2010I	33	6634,528	2019I	69	11914,95			
2010II	34	7280,065	2019II	70	12087,63			
2010III	35	8340,944	2019III	71	12778,27			
2010IV	36	8235,631	2019IV	72	12771,35			

a) O primeiro passo é construir um gráfico de linhas da série para avaliar a disposição dos pontos. Usando o Microsoft Excel ® chega-se à Figura 26.

Figura 26 - Gráfico de linhas das exportaç<mark>ões trimestrais de min</mark>ério de ferro de Pindorama de 2000 a 2017 Fonte: hipotética

Sem o efeito da inflação há uma tendência de CRESCIMENTO na série, que começa com valor em torno de menos de 1000 milhões de dólares e após 18 anos (72 trimestres) termina em torno de 13000 milhões de dólares. Como há interesse em realizar a previsão para 4 trimestres (períodos) após o término da série é recomendável utilizar algum modelo de tendência por mínimos quadrados (conforme a seção 4.2.1). É possível adicionar os cinco modelos de tendência (linear, logarítmico, polinômio de 2º grau, potência e exponencial) ao gráfico da Figura 26, resultando na Figura 27.

Figura 27 - Gráfico de linhas das exportações trimestrais de minério de ferro de Pindorama de 2000 a 2017 com cinco modelos de tendência obtidos por mínimos quadrados

Fonte: hipotética

Substituindo o valor de t nas equações mostradas na Figura 27 é possível calcular as tendências por mínimos quadrados para todos os períodos da série. Alguns modelos podem ter valores negativos para os primeiros períodos da série (como o linear e o logarítmico no caso acima), por causa do processo de obtenção dos coeficientes. Para cada modelo é preciso calcular os erros e obter as medidas de acuracidade.

Tendência para a série trimestral de exportação de minério de ferro – modelos de mínimos $auadrados - 1^a$ parte

quadrados – 1ª parte							
t	$\hat{T}_t = 195,08 \times t - 233,88$	$\hat{T}_t = 3855, 9 \times \ln(t) - 5911, 7$	$\hat{T}_t = 0.9131 \times t^2 + 128,43 \times t - 588,23$	$\hat{T}_t = 377,32 \times t^{0.7959}$	$\hat{T}_t = 1429, 1 \times e^{0.0359}$		
1	-38,8	-5911,7	717,5731	377,32	1481,337		
2	156,28	-3238,99	848,7424	655,0879	1535,483		
3	351,36	-1675,56	981,7379	904,5876	1591,608		
4	546,44	-566,288	1116,56	1137,338	1649,785		
5	741,52	294,1316	1253,208	1358,376	1710,088		
6	936,6	997,1453	1391,682	1570,509	1772,596		
7	1131,68	1591,535	1531,982	1775,511	1837,388		
8	1326,76	2106,419	1674,108	1974,6	1904,548		
9	1521,84	2560,578	1818,061	2168,66	1974,164		
10	1716,92	2966,838	1963,84	2358,359	2046,324		
11	1912	3334,344	2111,445	2544,218	2121,121		
12	2107,08	3669,852	2260,876	2726,655	2198,653		
13	2302,16	3978,488	2412,134	2906,012	2279,019		
14	2497,24	4264,241	2565,218	3082,571	2362,322		
15	2692,32	4530,271	2720,128	3256,573	2448,67		
16	2887,4	4779,125	2876,864	3428,222	2538,174		
17	3082,48	5012,887	3035,426	3597,693	2630,95		
18	3277,56	5233,284	3195,814	3765,141	2727,117		
19	3472,64	5441,762	3358,029	3930,699	2826,799		
20	3667,72	5639,544	3522,07	4094,488	2930,124		
21	3862,8	5827,674	3687,937	4256,613	3037,227		
22	4057,88	6007,051	3855,63	4417,169	3148,244		
23	4252,96	6178,452	4025,15	4576,242	3263,319		
24	4448,04	6342,558	4196,496	4733,91	3382,601		
25	4643,12	6499,963	4369,668	4890,241	3506,242		
26	4838,2	6651,194	4544,666	5045,301	3634,403		
27	5033,28	6796,717	4721,49	5199,149	3767,248		
28	5228,36	6936,947	4900,14	5351,837	3904,95		
29	5423,44	7072,256	5080,617	5503,417	4047,684		
30	5618,52	7202,977	5262,92	5653,933	4195,636		
31	5813,6	7329,411	5447,049	5803,428	4348,995		
32	6008,68	7451,831	5633,004	5951,942	4507,961		
33	6203,76	7570,484	5820,786	6099,512	4672,737		
34	6398,84	7685,594	6010,394	6246,171	4843,535		
35	6593,92	7797,367	6201,828	6391,953	5020,577		
36	6789	7905,991	6395,088	6536,887	5204,09		
37	6984,08	8011,638	6590,174	6681,002	5394,311		
38	7179,16	8114,468	6787,086	6824,323	5591,485		
39	7374,24	8214,627	6985,825	6966,877	5795,866		
40	7569,32	8312,25	7186,39	7108,687	6007,717		
41	7764,4	8407,463	7388,781	7249,774	6227,313		
42	7959,48	8500,38	7592,998	7390,162	6454,934		
43	8154,56	8591,112	7799,042	7529,868	6690,876		
44	8349,64	8679,757	8006,912	7668,913	6935,443		
45	8544,72	8766,41	8216,608	7807,314	7188,948		
46	8739,8	8851,158	8428,13	7945,089	7451,72		
47	8934,88	8934,084	8641,478	8082,254	7724,097		
48	9129,96	9015,264	8856,652	8218,825	8006,429		
70	9129,90	9013,204	0050,052	0210,023	0000,429		

Tendência para a série trimestral de exportação de minério de ferro – modelos de mínimos quadrados – 2^a parte

		91	uaaraaos – 2. parie		
t	$\hat{T}_{t} = 195,08 \times t - 233,88$	$\hat{T}_t = 3855, 9 \times \ln(t) - 5911, 7$	$\hat{T}_t = 0.9131 \times t^2 + 128.43 \times t - 588.23$	$\hat{T}_t = 377,32 \times t^{0,7959}$	$\hat{T}_{t} = 1429, 1 \times e^{0.0359}$
49	9325,04	9094,77	9073,653	8354,816	8299,082
50	9520,12	9172,67	9292,48	8490,242	8602,431
51	9715,2	9249,026	9513,133	8625,116	8916,869
52	9910,28	9323,901	9735,612	8759,451	9242,8
53	10105,36	9397,349	9959,918	8893,26	9580,645
54	10300,44	9469,424	10186,05	9026,555	9930,838
55	10495,52	9540,176	10414,01	9159,347	10293,83
56	10690,6	9609,654	10643,79	9291,646	10670,09
57	10885,68	9677,901	10875,4	9423,465	11060,11
58	11080,76	9744,962	11108,84	9554,812	11464,38
59	11275,84	9810,877	11344,1	9685,698	11883,43
60	11470,92	9875,683	11581,19	9816,132	12317,79
61	11666	9939,419	11820,11	9946,123	12768,04
62	11861,08	10002,12	12060,85	10075,68	13234,74
63	12056,16	10063,81	12303,41	10204,81	13718,49
64	12251,24	10124,54	12547,81	10333,52	14219,94
65	12446,32	10184,32	12794,03	10461,83	14739,71
66	12641,4	10243,19	13042,07	10589,73	15278,47
67	12836,48	10301,17	1 <mark>3291</mark> ,95	10717,24	15836,94
68	13031,56	10358,3	13543,64	10844,35	16415,81
69	13226,64	10414,59	13797,17	10971,09	17015,84
70	13421,72	10470,07	14052,52	11097,45	17637,81
71	13616,8	10524,77	14309,7	11223,45	18282,51
72	13811,88	10578,7	14568,7	11349,08	18950,78

Para cada modelo é preciso calcular os erros. Erros para tendência linear (reta) -1^a parte

· +	Exportações (V)	$\hat{T}_t = 195,08 \times t - 233,88$	(/	erro ²	larro 0/-1
t	Exportações (Y)		/erro/		erro%
1	840,642	-38,8	_879,442	773418,2	104,6155
2	1025,228	156,28	868,948	755070,6	84,75656
3	1661,896	351,36	1310,536	1717505	78,85788
4	1562,665	546,44	1016,225	1032713	65,03153
5	1602,747	741,52	861,227	741711,9	53,73443
6	1607,427	936,6	670,827	450008,9	41,73297
7	2265,952	1131,68	1134,272	1286573	50,05719
8	2426,605	1326,76	1099,845	1209659	45,32443
9	1922,275	1521,84	400,435	160348,2	20,83131
10	2539,831	1716,92	822,911	677182,5	32,40023
11	3364,126	1912	1452,126	2108670	43,16503
12	3214,098	2107,08	1107,018	1225489	34,44257
13	660,427	2302,16	1641,733	2695287	248,5866
14	1029,301	2497,24	1467,939	2154845	142,6151
15	1875,142	2692,32	817,178	667779,9	43,57953
16	1956,286	2887,4	931,114	866973,3	47,59601
17	2012,788	3082,48	1069,692	1144241	53,14479
18	2361,815	3277,56	915,745	838588,9	38,77294
19	2593,368	3472,64	879,272	773119,2	33,90464
20	2484,648	3667,72	1183,072	1399659	47,61528
21	2486,245	3862,8	1376,555	1894904	55,36683
22	2751,869	4057,88	1306,011	1705665	47,45905
23	3370,818	4252,96	882,142	778174,5	26,16997
24	3543,604	4448,04	904,436	818004,5	25,52306
25	3087,11	4643,12	1556,01	2421167	50,40345
26	3883,603	4838,2	954,597	911255,4	24,58019
27	4138,753	5033,28	894,527	800178,6	21,61344
28	4340,18	5228,36	888,18	788863,7	20,46413

Erros para tendência linear (reta) – 2ª parte

	Erros para tendencia linear (reta) – 2º parte							
t	Exportações (Y)	$\hat{T}_t = 195,08 \times t - 233,88$	erro	erro ²	erro%			
29	5891,115	5423,44	467,675	218719,9	7,93865			
30	6790,334	5618,52	1171,814	1373148	17,25709			
31	7138,473	5813,6	1324,873	1755288	18,55961			
32	7303,687	6008,68	1295,007	1677043	17,73087			
33	6634,528	6203,76	430,768	185561,1	6,492821			
34	7280,065	6398,84	881,225	776557,5	12,10463			
35	8340,944	6593,92	1747,024	3052093	20,94516			
36	8235,631	6789	1446,631	2092741	17,56552			
37	7664,585	6984,08	680,505	463087,1	8,878563			
38	8269,515	7179,16	1090,355	1188874	13,18524			
39	8672,151	7374,24	1297,911	1684573	14,96643			
40	8626,384	7569,32	1057,064	1117384	12,25385			
41	5783,997	7764,4	1980,403	3921996	34,23935			
42	6796,005	7959,48	1163,475	1353674	17,11998			
43	7227,356	8154,56	927,204	859707,3	12,82909			
44	7205,338	8349,64	1144,302	1309427	15,88131			
45	6621,604	8544,72	1923,116	3698375	29,04305			
46	7425,485	8739,8	1314,315	1727424	17,70006			
47	8449,733	8934,88		235367,6	5,741566			
48	8034,425	9129,96	1095,535	1200197	13,63551			
49	7352,909	9325,04	1 <mark>972,1</mark> 31	3889301	26,8211			
50	7854,567	9520,12	<u>1665,5</u> 53	2774067	21,2049			
51	8977,176	9715,2	738,024	544679,4	8,221115			
52	8636,05	9910,28	1274,23	1623662	14,75478			
53	8337,523	10105,36	1767,837	3125248	21,20338			
54	9329,111	10 <mark>3</mark> 00,44	971,329	943480	10,41181			
55	9929,435	10495,52	566,085	320452,2	5,70108			
56	9926,461	10690,6	764,139	583908,4	7,698			
57	11640,39	10885,68	754,714	569593,2	6,483578			
58	12383,55	11080,76	1302,789	1697259	10,52032			
59	13165,48	11275,84	1889,641	3570743	14,353			
60	13037,23		1566,312	2453333	12,01415			
61	12459,31	11666	793,307	629336	6,367184			
62	13182,14	11861,08	1321,059	1745197	10,02158			
63	13997,94	12056,16	1941,778	3770502	13,87189			
64	14013,37	12251,24	1762,128	3105095	12,57462			
65	13364,47	12446,32	918,145	842990,2	6,870047			
66	14283,71	12641,4	1642,31	2697182	11,49778			
67	14716,93	12836,48	1880,453	3536103	12,77748			
68	14697,71	13031,56	1666,15	2776056	11,33612			
69	11914,95	13226,64	1311,687	1720523	11,00875			
70	12087,63	13421,72	1334,087	1779788	11,03679			
71	12778,27	13616,8	838,535	703140,9	6,562198			
72	12771,35	13811,88	1040,527	1082696	8,147351			
		Erros para tendênc	cia logarítmica					
t	Exportações (Y)	$\hat{T}_t = 3855, 9 \times \ln(t) - 5911, 7$	erro	erro ²	erro%			

		Liros para ienaene	ia iogariinica	1 рине	
t	Exportações (Y)	$\hat{T}_t = 3855, 9 \times \ln(t) - 5911, 7$	erro	$erro^2$	erro%
1	840,642	-5911,7	6752,342	45594122	803,2363
2	1025,228	-3238,99	4264,222	18183587	415,9291
3	1661,896	-1675,56	3337,457	11138618	200,8222
4	1562,665	-566,288	2128,953	4532439	136,2386
5	1602,747	294,1316	1308,615	1712474	81,64828
6	1607,427	997,1453	610,2817	372443,7	37,96637
7	2265,952	1591,535	674,4171	454838,4	29,76308
8	2426,605	2106,419	320,1864	102519,3	13,19483
9	1922,275	2560,578	638,3032	407431	33,20562
10	2539,831	2966,838	427,0069	182334,9	16,81241
11	3364,126	3334,344	29,78162	886,9447	0,885271
12	3214,098	3669,852	455,7536	207711,3	14,17983

Erros para tendência logarítmica – 2ª parte

t	Exportações (Y)	$\hat{T}_t = 3855, 9 \times \ln(t) - 5911, 7$	erro	erro ²	erro%
13	660,427	3978,488	3318,061	11009530	502,4115
14	1029,301	4264,241	3234,94	10464838	314,2851
15	1875,142	4530,271	2655,129	7049709	141,5961
16	1956,286	4779,125	2822,839	7968419	144,2958
17	2012,788	5012,887	3000,099	9000596	149,0519
18	2361,815	5233,284	2871,469	8245337	121,5789
19	2593,368	5441,762	2848,394	8113350	109,8338
20	2484,648	5639,544	3154,896	9953369	126,9756
21	2486,245	5827,674	3341,429	11165148	134,3966
22	2751,869	6007,051	3255,182	10596207	118,2898
23	3370,818	6178,452	2807,634	7882810	83,29237
24	3543,604	6342,558	2798,954	7834142	78,98608
25	3087,11	6499,963	3412,853	11647568	110,5517
26	3883,603	6651,194	2767,591	7659562	71,2635
27	4138,753	6796,717	2657,964	7064775	64,22138
28	4340,18	6936,947	2596,767	6743201	59,83087
29	5891,115	7072,256	1181,141	1395094	20,04953
30	6790,334	7202,977	412,643	170274,2	6,076917
31	7138,473	7329,411	190,9383	36457,42	2,674777
32	7303,687	7451,831	148,1441	21946,66	2,028346
33	6634,528 7280,065	7570,484	935,9555 405,5285	876012,7	14,10734 5,570397
34 35	8340,944	7685,594 7797,367	543,5774	164453,4 295476,4	5,570397 6,516977
36	8235,631	7905,991	329,6403	108662,7	
37	7664,585	8011,638	347,0534	120446	4,002612 4,528013
38	8269,515	8114,468	155,0465	24039,43	1,874917
39	8672,151	8214,627	457,5236	209327,9	5,27578
40	8626,384	8312,25	314,1337	98679,99	3,641546
41	5783,997	8 <mark>407,463</mark>	2623,466	6882571	45,35731
42	6796,005	8500,38	1704,375	2904895	25,07908
43	7227,356	8591,112	1363,756	1859829	18,86936
44	7205,338	8679,757	1474,419	2173911	20,46287
45	6621,604	8766,41	2144,806	4600192	32,39103
46	7425,485	8851,158	_1425,673	2032545	19,19973
47	8449,733	8934,084	484,3511	234596	5,732147
48	8034,425	9015,264	980,839	962045,1	12,20795
49	7352,909	9094,77	1741,861	3034079	23,68941
50	7854,567	9172,67	1318,103	1737394	16,78135
51	8977,176	9249,026	271,8505	73902,67	3,02824
52	8636,05	9323,901	687,8507	473138,5	7,964876
53 54	8337,523 9329,111	9397,349 9469,424	1059,826 140,3126	1123230 19687,62	12,71152 1,50403
55	9929,435	9540,176	389,259	151522,5	3,920253
56	9929,453	9609,654	316,8074	100366,9	3,191544
57	11640,39	9677,901	1962.493	3851377	16,85933
58	12383,55	9744,962	2638,587	6962140	21,30719
59	13165,48	9810,877	3354,604	11253370	25,4803
60	13037,23	9875,683	3161,549	9995391	24,25015
61	12459,31	9939,419	2519,888	6349838	20,22495
62	13182,14	10002,12	3180,022	10112537	24,12371
63	13997,94	10063,81	3934,125	15477338	28,10503
64	14013,37	10124,54	3888,831	15123004	27,75086
65	13364,47	10184,32	3180,145	10113323	23,79553
66	14283,71	10243,19	4040,52	16325804	28,28761
67	14716,93	10301,17	4415,759	19498925	30,00461
68	14697,71	10358,3	4339,41	18830481	29,5244
69	11914,95	10414,59	1500,362	2251085	12,59226
70	12087,63 12778,27	10470,07 10524,77	1617,56 2253,498	2616501 5078252	13,38194 17,6354
72	12771,35	10524,77	2253,498	4807741	17,0334
12	14//1,33	103/0,/	2192,030	400//41	17,10033

Erros para tendência polinômio de 2º grau – 1º parte

t	Exportações (Y)	$\hat{T}_t = 0.9131 \times t^2 + 128,43 \times t - 588,23$	/erro/	erro ²	erro%
1	840,642	717,5731	123,0689	15145,95	14,63987
2	1025,228	848,7424	176,4856	31147,17	17,21428
3	1661,896	981,7379	680,1581	462615	40,92663
4	1562,665	1116,56	446,1054	199010	28,54773
5	1602,747	1253,208	349,5395	122177,9	21,80878
6	1607,427	1391,682	215,7454	46546,08	13,42179
7	2265,952	1531,982	733,9701	538712,1	32,39125
8	2426,605	1674,108	752,4966	566251,1	31,01026
9	1922,275	1818,061	104,2139	10860,54	5,421384
10	2539,831	1963,84	575,991	331765,6	22,67832
11	3364,126	2111,445	1252,681	1569209	37,23644
12	3214,098	2260,876	953,2216	908631,4	29,65752
13	660,427	2412,134	1751,707	3068477	265,2385
14	1029,301	2565,218	1535,917	2359040	149,2194
15	1875,142	2720,128	844,9855	714000,5	45,06248
16	1956,286	2876,864	920,5776	847463,1	47,05741
17	2012,788	3035,426	1022,638	1045788	50,80703
18	2361,815	3195,814	833,9994	695555	35,3118
19	2593,368	3358,029	764,6611	584706,6	29,48525
20	2484,648	3522,07	1037,422	1076244	41,75328
21	2486,245	3687,937	1201,692	1444064	48,33362
22	2751,869	3855,63	1103,761	1218289	40,10952
23	3370,818	4025,15	654,3319	428150,2	19,41167
24	3543,604	4196,496	652,8916	426267,4	18,42451
25	3087,11	4369,668	1282,558	1644954	41,54557
26	3883,603	4544,666	661,0626	437003,8	17,02189
27	4138,753	4721,49	582,7369	339582,3	14,08001
28	4340,18	4900,14	559,9604	313555,6	12,90178
29	5891,115	5 <mark>0</mark> 80,617	810,4979	656906,8	13,75797
30	6790,334	5262,92	1527,414	2332994	22,49395
31	7138,473	5447,049	1691,424	2860915	23,69448
32	7303,687	5633,004	1670,683	2791180	22,87451
33	6634,528	5820,786	813,7421	662176,2	12,26526
34	7280,065	6010,394	_ 1269,671	1612065	17,44039
35	8340,944	6201,828	2139,117	4575819	25,64598
36	8235,631	6395,088	1840,543	3387600	22,34854
37	7664,585	6590,174	1074,411	1154359	14,01786
38	8269,515	6787,086	1482,429	2197595	17,92643
39	8672,151	6985,825	1686,326	2843695	19,4453
40	8626,384	7186,39	1439,994	2073583	16,6929
41	5783,997	7388,781	1604,784	2575332	27,74524
42	6796,005	7592,998	796,9934	635198,5	11,72738
43	7227,356	7799,042	571,6859	326824,8	7,910028
44	7205,338	8006,912	801,5736	642520,2	11,12472
45	6621,604	8216,608	1595,004	2544036	24,08787
46 47	7425,485 8449,733	8428,13	1002,645	1005296 36766,11	13,50275 2,269242
48	8449,733 8034,425	8641,478 8856,652	191,7449 822,2274	676057,9	10,23381
48	7352,909	9073,653	1720,744	2960960	23,40222
50	7352,909 7854,567	9292,48	1437,913	2967594	18,30671
51	8977,176	9292,48	535,9571	287250	5,970219
52	8636,05	9735,612	1099,562	1209037	12,73224
53	8337,523	9959,918	1622,395	2632165	19,45896
54	9329,111	10186,05	856,9386	734343,8	9,185641
55	9929,435	10414,01	484,5725	234810,5	4,880162
56	9926,461	10643,79	717,3306	514563,2	7,226449
57	11640,39	10875,4	764,9921	585212,9	6,571875
58	12383,55	11108,84	1274,711	1624887	10,29358
59	13165,48	11344,1	1821,38	3317425	13,83451
60	13037,23	11544,1	1456,042	2120058	11,16834
- 50	10007,20	11501,17	1100,012	2120000	11,10051

Erros para tendência polinômio de 2º grau – 2ª parte

t	Exportações (Y)	$\hat{T}_t = 0.9131 \times t^2 + 128.43 \times t - 588.23$	erro	erro ²	/erro%/
61	12459,31	11820,11	639,2019	408579,1	5,130317
62	13182,14	12060,85	1121,293	1257297	8,506151
63	13997,94	12303,41	1694,524	2871412	12,10553
64	14013,37	12547,81	1465,56	2147867	10,4583
65	13364,47	12794,03	570,4375	325398,9	4,268315
66	14283,71	13042,07	1241,636	1541661	8,692674
67	14716,93	13291,95	1424,987	2030588	9,682636
68	14697,71	13543,64	1154,066	1331867	7,85201
69	11914,95	13797,17	1882,216	3542737	15,79709
70	12087,63	14052,52	1964,887	3860781	16,25535
71	12778,27	14309,7	1531,432	2345284	11,98466
72	12771,35	14568,7	1797,347	3230458	14,07327

Erros para tendência potência – 1ª parte

	Erros para tenaencia potencia – 1 parte									
t	Exportações (Y)	$\hat{T}_t = 377,32 \times t^{0,7959}$	erro	$erro^2$	erro%					
1	840,642	377,32	463,322	214667,3	55,11526					
2	1025,228	655,0879	370,1401	137003,7	36,1032					
3	1661,896	904,5876	757,3084	573516	45,56894					
4	1562,665	1137,338	425,3275	180903,5	27,21808					
5	1602,747	1358,376	244,3708	59717,11	15,247					
6	1607,427	1570,509	<i>36,918</i> 09	1362,945	2,296719					
7	2265,952	1775,511	490,441	240532,4	21,64393					
8	2426,605	1974,6	452, <mark>00</mark> 49	204308,5	18,62705					
9	1922,275	2168,66	246,38 48	60705,49	12,81736					
10	2539,831	2358,359	181,4725	32932,26	7,145062					
11	3364,126	2544,218	819,9083	672249,7	24,37211					
12	3214,098	2726,655	487,4431	237600,7	15,16578					
13	660,427	2906,012	2245,585	5042650	340,0201					
14	1029,301	3082,571	2053,27	4215919	199,482					
15	1875,142	3256,573	1381,431	1908352	73,67076					
16	1956,286	3428,222	1471,936	2166595	75,24134					
17	2012,788	3597,693	1584,905	2511924	78,74178					
18	2361,815	3765,141	1403,326	1969323	59,41726					
19	2593,368	3930,699	1337,331	1788455	51,56735					
20	2484,648	4094,488	1609,84	2591585	64,79147					
21	2486,245	4256,613	1770,368	3134203	71,2065					
22	2751,869	4417,169	1665,3	2773225	60,51524					
23	3370,818	4576,242	1205,424	1453048	35,76059					
24	3543,604	4733,91	1190,306	1416827	33,59025					
25	3087,11	4890,241	1803,131	3251282	58,40839					
26	3883,603	5045,301	1161,698	1349543	29,9129					
27	4138,753	5199,149	1060,396	1124439	25,62114					
28	4340,18	5351,837	1011,657	1023451	23,30911					
29	5891,115	5503,417	387,6984	150310	6,581069					
30	6790,334	5653,933	1136,401	1291408	16,73557					
31	7138,473	5803,428	1335,045	1782345	18,70211					
32	7303,687	5951,942	1351,745	1827214	18,50771					
33	6634,528	6099,512	535,0163	286242,4	8,06412					
34	7280,065	6246,171	1033,894	1068936	14,20171					
35	8340,944	6391,953	1948,991	3798565	23,36655					
36	8235,631	6536,887	1698,744	2885731	20,62676					
37	7664,585	6681,002	983,5834	967436,2	12,83283					
38	8269,515	6824,323	1445,192	2088579	17,47614					
39 40	8672,151	6966,877	1705,274	2907959 2303405	19,66379					
40	8626,384	7108,687	1517,697	2303403	17,59367					

Erros para tendência potência – 2ª parte

t	Exportações (Y)	$\hat{T}_t = 377,32 \times t^{0,7959}$	/erro/	$erro^2$	erro%
41	5783,997	7249,774	1465,777	2148504	25,34195
42	6796,005	7390,162	594,1566	353022,1	8,742734
43	7227,356	7529,868	302,5121	91513,58	4,185654
44	7205,338	7668,913	463,575	214901,8	6,433772
45	6621,604	7807,314	1185,71	1405909	17,90669
46	7425,485	7945,089	519,6043	269988,6	6,997581
47	8449,733	8082,254	367,4787	135040,6	4,348998
48	8034,425	8218,825	184,3999	34003,31	2,295122
49	7352,909	8354,816	1001,907	1003817	13,62599
50	7854,567	8490,242	635,6747	404082,3	8,093058
51	8977,176	8625,116	352,0603	123946,5	3,921727
52	8636,05	8759,451	123,401	15227,8	1,428905
53	8337,523	8893,26	555,737	308843,6	6,665493
54	9329,111	9026,555	302,5563	91540,3	3,243142
55	9929,435	9159,347	770,0885	593036,2	7,755612
56	9926,461	9291,646	634,8145	402989,5	6,395175
57	11640,39	9423,465	2216,929	4914774	19,04514
58	12383,55	9554,812	2828,737	8001751	22,8427
59	13165,48	9685,698	3479,783	12108887	26,43111
60	13037,23	9816,132	3221,1	10375483	24,70693
61	12459,31	9946,123	2513,184	6316092	20,17114
62	13182,14	10075,68	<i>3106,459</i>	9650087	23,56567
63	13997,94	10204,81	3793,1 27	14387812	27,09775
64	14013,37	10333,52	3679,8 44	13541249	26,25952
65	13364,47	10461,83	2902,6 37	8425303	21,71907
66	14283,71	10589,73	3693 ,981	13645496	25,8615
67	14716,93	10717,24	3999,698	15997583	27,17752
68	14697,71	10844,35	3853,356	14848356	26,21739
69	11914,95	10 <mark>971,</mark> 09	943,862	890875,5	7,92166
70	12087,63	11097,45	990,1789	980454,3	8,191669
71	12778,27	11223,45	1554,816	2417452	12,16766
72	12771,35	11349,08	1422,27	2022853	11,13641

Erros para tendência exponencial – 1ª parte

t	Exportações (Y)	$\hat{T}_t = 377,32 \times t^{0.7959}$	erro	erro ²	erro%
1	840,642	1481,337	640,6947	410489,7	76,21493
2	1025,228	1535,483	510,2548	260360	49,76989
3	1661,896	1591,608	70,28792	4940,392	4,229381
4	1562,665	1649,785	87,11983	7589,865	5,575081
5	1602,747	1710,088	107,3411	11522,11	6,697319
6	1607,427	1772,596	165,1685	27280,64	10,27534
7	2265,952	1837,388	428,5642	183667,3	18,91321
8	2426,605	1904,548	522,0567	272543,2	21,51387
9	1922,275	1974,164	51,88872	2692,439	2,699339
10	2539,831	2046,324	493,5073	243549,4	19,43071
11	3364,126	2121,121	1243,005	1545061	36,94881
12	3214,098	2198,653	1015,445	1031129	31,59347
13	660,427	2279,019	1618,592	2619839	245,0826
14	1029,301	2362,322	1333,021	1776944	129,5074
15	1875,142	2448,67	573,5276	328934	30,58582
16	1956,286	2538,174	581,8879	338593,5	29,74452
17	2012,788	2630,95	618,1617	382123,9	30,71171
18	2361,815	2727,117	365,3016	133445,3	15,46699
19	2593,368	2826,799	233,4307	54489,9	9,001064
20	2484,648	2930,124	445,4764	198449,2	17,92915
21	2486,245	3037,227	550,9818	303581	22,1612
22	2751,869	3148,244	396,3751	157113,2	14,40385
23	3370,818	3263,319	107,4987	11555,96	3,189098
24	3543,604	3382,601	161,0032	25922,04	4,543488

Erros para tendência exponencial – 2ª parte

		21103 para tenaena	T * T	2 parte	
t	Exportações (Y)	$\hat{T}_t = 377,32 \times t^{0.7959}$	/erro/	$erro^2$	erro%
25	3087,11	3506,242	419,1322	175671,8	13,57685
26	3883,603	3634,403	249,1999	62100,61	6,41672
27	4138,753	3767,248	371,5046	138015,6	8,976244
28	4340,18	3904,95	435,2304	189425,5	10,02793
29	5891,115	4047,684	1843,431	3398238	31,29172
30	6790,334	4195,636	2594,698	6732459	38,21164
31	7138,473	4348,995	2789,478	7781185	39,07667
32	7303,687	4507,961	2795,726	7816086	38,27829
33	6634,528	4672,737	1961,791	3848626	29,56942
34	7280,065	4843,535	2436,53	5936677	33,46852
35	8340,944	5020,577	3320,367	11024837	39,80805
36	8235,631	5204,09	3031,541	9190240	36,81006
37	7664,585	5394,311	2270,274	5154144	29,62031
38	8269,515	5591,485	2678,03	7171846	32,38437
39	8672,151	5795,866	2876,285	8273016	33,16692
40	8626,384	6007,717	2618,667	6857415	30,35648
41	5783,997	6227,313	443,3156	196528,7	7,66452
42	6796,005	6454,934	341,0705	116329,1	5,018691
43	7227,356	6690,876	536,4795	287810,3	7,422902
44	7205,338	6935,443	269,8954	72843,52	3,74577
45	6621,604	7188,948	567,3442	321879,4	8,568078
46	7425,485	7451,72	26,2349 8	688,2742	0,35331
47	8449,733	7724,097	725,6364	526548,1	8,587684
48	8034,425	8006,429	27,99575	783,7619	0,348447
49	7352,909	8299,082	946, <mark>17</mark> 27	895242,9	12,86801
50	7854,567	8602,431	747, 8643	559301	9,521395
51	8977,176	8916,869	60,307	3636,935	0,671781
52	8636,05	9242,8	606,7501	368145,6	7,025782
53	8337,523	9580,645	1243,122	1545351	14,90996
54	9329,111	9930,838	601,7271	362075,5	6,449994
55	9929,435	10293,83	364,3969	132785,1	3,669866
56	9926,461	10670,09	743,633	552990	7,491421
57	11640,39	11060,11	580,2847	336730,4	4,985095
58	12383,55	11464,38	919,1686	844870,8	7,422497
59	13165,48	11883,43	1282,052	1643658	9,737984
60	13037,23	12317,79	719,4381	517591,2	5,518335
61	12459,31	12768,04	308,7292	95313,72	2,4779
62	13182,14	13234,74	52,59683	2766,426	0,399001
63	13997,94	13718,49	279,4436	78088,75	1,99632
64	14013,37	14219,94	206,5673	42670,06	1,474073
65	13364,47	14739,71	1375,24	1891285	10,29027
66	14283,71	15278,47	994,7635	989554,4	6,964321
67	14716,93	15836,94	1120,002	1254405	7,610295
68	14697,71	16415,81	1718,1	2951867	11,68957
69	11914,95	17015,84	5100,89	26019083	42,81083
70	12087,63	17637,81	5550,177	30804461	45,91616
71	12778,27	18282,51	5504,245	30296715	43,07506
72	12771,35	18950,78	6179,423	38185267	48,38503

Calculando as médias dos erros para cada modelo de tendência:

Medida de	Modelo de tendência por mínimos quadrados					
acuracidade	Linear	Logarítmico	Polinômio 2º grau	Potência	Exponencial	
EAM	1165,268	1947,506	1067,884	1356,523	1182,716	
EPM	1516287	5775276	1391922	2886324	3277487	
EQM	30,24822	66,71768	24,66333	30,76143	22,8097	

Os menores valores das medidas de acuracidade são mostrados em negrito. A tendência por polinômio de segundo grau tem os menores valores de EAM e EQM, mas a tendência por exponencial tem o menor EPAM. Por maioria, escolhe-se o polinômio de segundo grau como o melhor modelo para representar a tendência da série por mínimos quadrados. Para obter as componentes cíclicas e irregulares e para fazer a previsão para os quatro trimestres de 2017 devese usar este modelo.

Agora passa-se à obtenção dos índices sazonais. Como a série é trimestral é preciso calcular médias móveis de 4 períodos, e depois centrá-las. Vamos apresentar apenas os totais móveis de 2 períodos (calculados a partir dos de 4 períodos), as médias móveis de 2 períodos, centradas, e os índices sazonais para os modelos aditivo e multiplicativo. O procedimento é basicamente o mesmo visto no Exemplo 4.6.

Índices sazonais das exportações de minério de ferro de Pindorama – 1ª parte

Trimestre	Exportação (Y)	Totais móveis 4 períodos		Médias	Índices sazonais aditivos = Y - MM	Índices sazonais
2002I	840,642		i degle.			
2002II	1025,228		417.5			
2002III	1661,896	5090,431	10942,97	1367,871	294,025	1,215
2002IV	1562,665	5852,536	12287,27	1535,909	26,756	1,017
2003I	1602,747	6434,735	13473,53	1684,191	-81,444	0,952
2003II	1607,427	7038,791	14941,52	1867,69	-260,263	0,861
2003III	2265,952	7902,731	16124,99	2015,624	250,328	1,124
2003IV	2426,605	8222,259	17376,92	2172 ,115	254,490	1,117
2004I	1922,275	9154,663	19407,5	2 <mark>425</mark> ,938	-503,663	0,792
2004II	2539,831	10252,84	21293,17	266 1,646	-121,815	0,954
2004III	3364,126	11040,33	20818,81	2602,352	761,775	1,293
2004IV	3214,098	9778,482	18046,43	2255,804	958,294	1,425
2005I	660,427	8267,952	15046,92	1880,865	-1220,438	0,351
2005II	1029,301	6778,968	12300,12	1537,516	-508,215	0,669
2005III	1875,142	5521,156	12394,67	1549,334	325,808	1,210
2005IV	1956,286	6873,517	15079,55	1884,944	71,343	1,038
2006I	2012,788	8206,031	17130,29	2141,286	-128,498	0,940
2006II	2361,815	8924,257	18376,88	2297,11	64,706	1,028
2006III	2593,368	9452,619	19378,7	2422,337	171,031	1,071
2006IV	2484,648	9926,076	20242,21	2530,276	-45,628	0,982
2007I	2486,245	10316,13	21409,71	2676,214	-189,969	0,929
2007II	2751,869	11093,58	23246,12	2905,765	-153,896	0,947
2007III	3370,818	12152,54	24905,94	3113,242	257,576	1,083
2007IV	3543,604	12753,4	26638,54	3329,817	213,787	1,064
2008I	3087,11	13885,14	28538,21	3567,276	-480,166	0,865
2008II	3883,603	14653,07	30102,72	3762,84	120,764	1,032
2008III	4138,753	15449,65	33703,3	4212,912	-74,159	0,982
2008IV	4340,18	18253,65	39414,03	4926,754	-586,574	0,881
2009I	5891,115	21160,38	45320,48	5665,061	226,055	1,040
2009II	6790,334	24160,1	51283,71	6410,464	379,870	1,059
2009III	7138,473	27123,61	54990,63	6873,829	264,644	1,039
2009IV	7303,687	27867,02	56223,78	7027,972	275,715	1,039
2010I	6634,528	28356,75	57915,98	7239,497	-604,969	0,916
2010II	7280,065	29559,22	60050,39	7506,299	-226,234	0,970
2010III	8340,944	30491,17	62012,39	7751,549	589,395	1,076
2010IV	8235,631	31521,23	64031,9	8003,988	231,644	1,029
2011I	7664,585	32510,68	65352,56	8169,07	-504,485	0,938
2011II	8269,515	32841,88	66074,52	8259,315	10,200	1,001
2011III	8672,151	33232,64	64584,68	8073,085	599,066	1,074
2011IV	8626,384	31352,05	61230,58	7653,823	972,561	1,127
2012I	5783,997	29878,54	58312,28	7289,035	-1505,038	0,794
2012II	6796,005	28433,74	55446,44	6930,805	-134,800	0,981
2012III	7227,356	27012,7	54863	6857,875	369,481	1,054
2012IV	7205,338	27850,3	56330,09	7041,261	164,077	1,023

Índices sazonais das exportações de minério de ferro de Pindorama – 2ª parte

Trimestre	Exportação (Y)	Totais móveis 4	Totais móveis	Médias	Índices sazonais	Índices sazonais
		períodos	centrados (2	móveis	aditivos = Y - MM	multiplicativos = Y/MM
			períodos)	centradas		
2013I	6621,604	28479,78	58181,94	7272,743	-651,139	0,910
2013II	7425,485	29702,16	60233,41	7529,176	-103,691	0,986
2013III	8449,733	30531,25	61793,8	7724,225	725,508	1,094
2013IV	8034,425	31262,55	62954,19	7869,273	165,152	1,021
2014I	7352,909	31691,63	63910,71	7988,839	-635,930	0,920
2014II	7854,567	32219,08	65039,78	8129,972	-275,405	0,966
2014III	8977,176	32820,7	66626,02	8328,252	648,924	1,078
2014IV	8636,05	33805,32	69085,18	8635,647	0,403	1,000
2015I	8337,523	35279,86	71511,98	8938,997	-601,474	0,933
2015II	9329,111	36232,12	73754,65	9219,331	109,780	1,012
2015III	9929,435	37522,53	78347,93	9793,491	135,944	1,014
2015IV	9926,461	40825,4	84705,24	10588,16	-661,694	0,938
2016I	11640,39	43879,84	90995,72	11374,47	265,929	1,023
2016II	12383,55	47115,89	97342,54	12167,82	215,731	1,018
2016III	13165,48	50226,66	101272,2	12659,03	506,453	1,040
2016IV	13037,23	51045,57	102889,7	12861,22	176,016	1,014
2017I	12459,31	51844,16	104520,8	13065,1	-605,790	0,954
2017II	13182,14	52676,62	106329,4	13291,17	-109,032	0,992
2017III	13997,94	53652,75	108210,7	13526,33	471,605	1,035
2017IV	14013,37	54557,91	110217,4	13777,17	236,194	1,017
2018I	13364,47	55659,48	112038	14004,74	-640,280	0,954
2018II	14283,71	56378,48	113441,3	14180,16	103,548	1,007
2018III	14716,93	57062,82	11 <mark>2676</mark> ,1	1 <mark>40</mark> 84,52	632,418	1,045
2018IV	14697,71	55613,31	109030,5	13628,82	1068,893	1,078
2019I	11914,95	53417,23	104895,8	<u> 1</u> 3111,97	-1197,021	0,909
2019II	12087,63	51478,56	101030,8	12628,85	-541,213	0,957
2019III	12778,27	49552,2	717		-	
2019IV	12771,35				-	_
			Marce	elo		

Há 17 índices sazonais para cada trimestre.

		Trim	estre	
	I	II	III	IV
	-81,444	-260,263	294,025	26,756
	-503,663	-121,815	250,328	254,490
	-1220,438	-508,215	761,775	958,294
	-128,498	64,706	325,808	71,343
	-189,969	-153,896	171,031	-45,628
	-480,166	120,764	257,576	213,787
ź 1.	226,055	379,870	-74,159	-586,574
İndices sazonais — aditivos —	-604,969	-226,234	264,644	275,715
aanivos	-504,485	10,200	589,395	231,644
	-1505,038	-134,800	599,066	972,561
	-651,139	-103,691	369,481	164,077
	-635,930	-275,405	725,508	165,152
	-601,474	109,780	648,924	0,403
	265,929	215,731	135,944	-661,694
	-605,790	-109,032	506,453	176,016
	-640,280	103,548	471,605	236,194
	-1197,021	-541,213	632,418	1068,893
SOMA	-9058,319	-1429,964	6929,821	3521,428

No modelo aditivo primeiramente calculam-se as médias aritméticas simples dos índices de cada trimestre para obter o representante de cada um:

Trimestre I: Índice sazonal = -9058,319/17 = -532,842

Trimestre II: Índice sazonal = -1429,964/17 = -84,116

Trimestre III: Índice sazonal = 6929,821/17 = 407,637

Trimestre IV: Índice sazonal = *3521,428/17* = *207,143*

A soma dos índices aditivos é igual a -2,178, que é DIFERENTE de zero, portanto, precisa ser corrigida.

O excesso vale = -2,178 / 4 = -0,5445. Este excesso deve ser subtraído de cada um dos índices obtidos anteriormente:

Índices sazonais	Trimestre						
maices sazonais	I	II	III	IV			
Índice sazonal original	-532,842	-84,116	407,637	207,143			
Excesso	-0,5445	-0,5445	-0,5445	-0,5445			
Índice sazonal aditivo	-532,298	-83,571	408,181	207,687			

A soma dos índices é praticamente igual a zero. Há influência de sazonalidade na série pelo modelo aditivo, porque os índices sazonais afastam-se significativamente de zero (o neutro na adição):

- no trimestre I as exportações sofrem uma queda de 532 milhões de dólares (índice sazonal aditivo igual a -532,298) em relação à média trimestral;
- no trimestre II as exportações sofrem uma queda de 83 milhões de dólares (índice sazonal aditivo igual a -83,571) em relação à média trimestral;
- no trimestre III as exportações sofrem um aumento de 408 milhões de dólares (índice sazonal aditivo igual a 408,181) em relação à média trimestral;
- no trimestre IV as exportações sofrem um aumento de 207 milhões de dólares (índice sazonal aditivo igual a 207,687) em relação à média trimestral;

Procedimento análogo pode ser feito para os índices multiplicativos, mas a média que será calculada será a interna, sem os extr<mark>emos (máximo</mark> e mínimo em cada trimestre, que estão *sublinhados*)

	,	Trim	estre	
	I	II	III	IV
	0,952	0,861	1,215	1,017
	0,792	0,954	1,124	1,117
	<u>0,351</u>	<u>0,669</u>	<u>1,293</u>	<u>1,425</u>
	0,940	1,028	1,210	1,038
	0,929	0,947	1,071	0,982
	0,865	1,032	1,083	1,064
Índices sazonais	<u>1,040</u>	<u>1,059</u>	<u>0,982</u>	<u>0,881</u>
multiplicativos	0,916	0,970	1,039	1,039
munipucunvos	0,938	1,001	1,076	1,029
	0,794	0,981	1,074	1,127
	0,910	0,986	1,054	1,023
	0,920	0,966	1,094	1,021
	0,933	1,012	1,078	1,000
	1,023	1,018	1,014	0,938
	0,954	0,992	1,040	1,014
	0,954	1,007	1,035	1,017
	0,909	0,957	1,045	1,078
SOMA sem os extremos	13,730	14,712	16,251	15,505

Como foram retirados dois índices a soma sem os extremos precisa ser dividida por 15, para obter o representante de cada trimestre:

Trimestre I: $Indice\ sazonal = 13,730/15 = 0,915$

Trimestre II: Índice sazonal = 14,712/15 = 0,981

Trimestre III: Índice sazonal = 16,251/15 = 1,083

Trimestre IV: Índice sazonal = 15,505/15 = 1,034

A soma dos índices multiplicativos é igual a 4,013, que é DIFERENTE de 4 (ordem da sazonalidade, já que a série é trimestral), portanto, precisa ser corrigida.

O excesso vale = (4,013-4)/4 = 0,0033. Este excesso deve ser subtraído de 1, para obter o fator de correção: Fator = 1 - 0.0033 = 0.9967. E os índices obtidos anteriormente precisam ser multiplicados por este fator:

Índices sazonais		Trimestre						
indices sazonais	I	II	III	IV				
Índice sazonal original	0,915	0,981	1,083	1,034				
Fator	0,9967	0,9967	0,9967	0,9967				
Índice sazonal multiplicativo	0,912	0,978	1,080	1,030				

A soma dos índices é igual a 4. Há influência de sazonalidade na série pelo modelo multiplicativo, porque os índices sazonais afastam-se significativamente de 1 (o neutro na multiplicação), em pelo menos dois casos (e as diferenças foram superiores a 5%):

- no trimestre I as exportações sofrem uma queda de 8,8% (índice sazonal multiplicativo igual a 0,912) em relação à média trimestral;
- no trimestre II as exportações sofrem uma queda de 2,2% (índice sazonal multiplicativo igual a 0,978) em relação à média trimestral;
- no trimestre III as exportações sofrem um aumento de 8% (índice sazonal multiplicativo igual a 1,080) em relação à média trimestral;
- no trimestre IV as exportações sofrem um aumento de 3% (índice sazonal multiplicativo igual a 1,030) em relação à média trimestral;

Assim, conclui-se que na recomposição da série e nas previsões feitas para os períodos seguintes da série é necessário considerar a componente sazonal, tanto no modelo aditivo quanto no modelo multiplicativo.

A última componente a avaliar é a cícli<mark>ca, que é analis</mark>ada em conjunto com a irregular. Na seção 4.4 foi explicado como proceder:

> CI = Y - T - SNo modelo aditivo:

No modelo multiplicativo: $CI = \frac{Y}{(T \times S)}$

Conforme mencionado anteriormente deve ser usada a tendência calculado pelo modelo de polinômio de 2º grau, e como há influência de sazonalidade os índices sazonais também precisam ser considerados:

Componentes cíclicas e irregulares (CI) - modelos aditivo e multiplicativo -1^a parte

Componentes cicticas e trregulares (C1) - modetos datitivo e muniplicativo – 1 parte								
Trimestre	Exportações (Y)	T (pol.2° grau)	S aditivo	S multiplicativo	CI Aditivo	CI Multiplicativo		
2002I	840,642	717,573	-532,298	0,912	655,367	1,285		
2002II	1025,228	848,742	-83,571	0,978	260,057	1,235		
2002III	1661,896	981,738	408,181	1,080	271,977	1,567		
2002IV	1562,665	1116,560	207,687	1,030	238,418	1,359		
2003I	1602,747	1253,208	-532,298	0,912	881,838	1,402		
2003II	1607,427	1391,682	-83,571	0,978	299,316	1,181		
2003III	2265,952	1531,982	408,181	1,080	325,789	1,370		
2003IV	2426,605	1674,108	207,687	1,030	544,810	1,407		
2004I	1922,275	1818,061	-532,298	0,912	636,512	1,159		
2004II	2539,831	1963,840	-83,571	0,978	659,562	1,322		
2004III	3364,126	2111,445	408,181	1,080	844,500	1,475		
2004IV	3214,098	2260,876	207,687	1,030	745,535	1,380		
2005I	660,427	2412,134	-532,298	0,912	-1219,409	0,300		
2005II	1029,301	2565,218	-83,571	0,978	-1452,346	0,410		
2005III	1875,142	2720,128	408,181	1,080	-1253,167	0,638		
2005IV	1956,286	2876,864	207,687	1,030	-1128,265	0,660		
2006I	2012,788	3035,426	-532,298	0,912	-490,340	0,727		
2006II	2361,815	3195,814	-83,571	0,978	-750,428	0,756		
2006III	2593,368	3358,029	408,181	1,080	-1172,842	0,715		
2006IV	2484,648	3522,070	207,687	1,030	-1245,109	0,685		
2007I	2486,245	3687,937	-532,298	0,912	-669,394	0,739		
2007II	2751,869	3855,630	-83,571	0,978	-1020,190	0,730		
2007III	3370,818	4025,150	408,181	1,080	-1062,513	0,775		
2007IV	3543,604	4196,496	207,687	1,030	-860,579	0,820		

 $Componentes\ c\'iclicas\ e\ irregulares\ (CI)\ -\ modelos\ aditivo\ e\ multiplicativo\ -2^a\ parte$

Trimestre	Exportações (Y)	T (pol.2° grau)	S aditivo	S multiplicativo	CI Aditivo	CI Multiplicativo
2008I	3087,11	4369,668	-532,298	0,912	-750,259	0,775
2008II	3883,603	4544,666	-83,571	0,978	-577,492	0,874
2008III	4138,753	4721,490	408,181	1,080	-990,918	0,812
2008IV	4340,18	4900,140	207,687	1,030	-767,647	0,860
2009I	5891,115	5080,617	-532,298	0,912	1342,796	1,271
2009II	6790,334	5262,920	-83,571	0,978	1610,985	1,319
2009III	7138,473	5447,049	408,181	1,080	1283,243	1,213
2009IV	7303,687	5633,004	207,687	1,030	1462,996	1,259
2010I	6634,528	5820,786	-532,298	0,912	1346,040	1,250
2010II	7280,065	6010,394	-83,571	0,978	1353,242	1,238
2010III	8340,944	6201,828	408,181	1,080	1730,936	1,245
2010IV	8235,631	6395,088	207,687	1,030	1632,856	1,250
2011I	7664,585	6590,174	-532,298	0,912	1606,709	1,275
2011II	8269,515	6787,086	-83,571	0,978	1566,000	1,246
2011III	8672,151	6985,825	408,181	1,080	1278,145	1,149
2011IV	8626,384	7186,390	207,687	1,030	1232,307	1,165
2012I	5783,997	7388,781	-532,298	0,912	-1072,486	0,858
2012II	6796,005	7592,998	-83,571	0,978	-713,422	0,915
2012III	7227,356	7799,042	408,181	1,080	-979,867	0,858
2012IV	7205,338	8006,912	207,687	1,030	-1009,261	0,874
2013I	6621,604	8216,608	-532,298	0,912	-1062,706	0,884
2013II	7425,485	8428,130	-83,571	0, 978	-919,074	0,901
2013III	8449,733	8641,478	408,181	1,080	-599,926	0,905
2013IV	8034,425	8856,652	207,687	1,030	-1029,914	0,881
2014I	7352,909	9073,653	-532,298	0,912	-1188,446	0,889
2014II	7854,567	9292,480	-83,571	0,978	-1354,342	0,864
2014III	8977,176	9513,133	408,181	1,080	-944,138	0,874
2014IV	8636,05	9735,612	207,687	1,030	-1307,249	0,861
2015I	8337,523	9959,918	-532,298	0,912	-1090,097	0,918
2015II	9329,111	10186,050	-83,571	-0,978	-773,368	0,936
2015III	9929,435	10414,008	408,181	1,080	-892,754	0,883
2015IV	9926,461	10643,792	207,687	1,030	-925,018	0,905
2016I	11640,39	10875,402	-532,298	0,912	1297,290	1,174
2016II	12383,55	11108,838	-83,571	0,978	1358,282	1,140
2016III	13165,48	11344,101	408,181	1,080	1413,199	1,075
2016IV	13037,23	11581,190	207,687	1,030	1248,355	1,093
2017I	12459,31	11820,105	-532,298	0,912	1171,500	1,156
2017II	13182,14	12060,846	-83,571	0,978	1204,864	1,118
2017III	13997,94	12303,414	408,181	1,080	1286,343	1,053
2017IV	14013,37	12547,808	207,687	1,030	1257,873	1,084
2018I	13364,47	12794,028	-532,298	0,912	1102,736	1,145
2018II	14283,71	13042,074	-83,571	0,978	1325,207	1,120
2018III	14716,93	13291,946	408,181	1,080	1016,806	1,025
2018IV	14697,71	13543,644	207,687	1,030	946,379	1,054
2019I	11914,95	13797,169	-532,298	0,912	-1349,918	0,947
2019II	12087,63	14052,520	-83,571	0,978	-1881,316	0,880
2019III	12778,27	14309,697	408,181	1,080	-1939,613	0,827
2019IV	12771,35	14568,700	207,687	1,030	-2005,034	0,851

O próximo passo é construir gráficos de CI para o modelo aditivo e para o modelo multiplicativo.

Figura 28 - Componentes CI da série de exportação de minério de ferro de Pindorama - modelo aditivo

Pelo modelo aditivo (Figura 28) é possível identificar uma variação sistemática: nos anos de 2002 a 2004 (3 anos) têm valores MAIORES DO QUE ZERO para as variações CI. De 2005 a 2008 (4 anos), os valores de CI são MENORES DO QUE ZERO. Em 2009 ocorre outra inversão, valores maiores do que zero até 2011. Em 2012, as variações CI voltam a ficar menores do que zero, permanecendo assim até 2015 (4 anos). No ano de 2016 ocorre mais uma inversão, valores maiores do que zero até 2018 (último período COMPLETO de alta). No ano de 2019 ocorre a última inversão da série, com os valores tornando a ser menores do que zero. Presumindo que a periodicidade se mantenha, a baixa deve durar 4 anos, de 2019 a 2022, então 2020 deverá ser de baixa. Conclui-se então que HÁ VARIAÇÃO CÍCLICA nesta série, pois se pode perceber uma alternância entre valores maiores e menores do que zero (das variações CI): 3 anos de alta e 4 anos de alta.

Figura 29 - Componentes CI da série de exportação de minério de ferro de Pindorama - modelo multiplicativo

Pelo modelo multiplicativo (Figura 29) é possível identificar uma variação sistemática: nos anos de 2003 a 2004 (3 anos) têm valores MAIORES DO QUE 1 para as variações CI. De 2005 a 2008 (4 anos), os valores de CI são MENORES DO QUE 1. Em 2009 ocorre outra inversão, valores

maiores do que 1 até 2011. Em 2012, as variações CI voltam a ficar menores do que 1, permanecendo assim até 2015 (4 anos). No ano de 2016 ocorre mais uma inversão, valores maiores do que 1 até 2018 (último período COMPLETO de alta). No ano de 2019 ocorre a última inversão da série, com os valores tornando a ser menores do que 1. Presumindo que a periodicidade se mantenha, a baixa deve durar 4 anos, de 2019 a 2022, então 2020 deverá ser de baixa. Conclui-se então que HÁ VARIAÇÃO CÍCLICA nesta série, pois se pode perceber uma alternância entre valores maiores e menores do que 1 (das variações CI): 3 anos de alta e 4 anos de alta.

Conclui-se que há influência de ciclos na série, com altas de 3 anos e baixas de 4 anos. Portanto, eles precisam ser considerados na recomposição da série e nas previsões. É preciso obter índices cíclicos (para o modelo aditivo e para o multiplicativo) tanto para a recomposição quanto para a previsão: para a recomposição calculam-se as medianas de todos os períodos de alta e de baixa, e para a previsão são utilizadas as medianas dos últimos períodos completos de alta e de baixa.

Para o modelo aditivo.

- Recomposição ciclos de alta: mediana dos índices CI dos anos de 2002 2004, 2009 -2011, e 2016 – 2018, resultando em 1240,331 (na recomposição da série será usado este valor para todos os anos de alta);
- Recomposição ciclos de baixa: mediana dos índices CI dos anos 2005 2008; 2012 -2015, e 2019, resultando em -102<mark>5,05 (na recom</mark>posição da série será usado este valor para todos os anos de baixa);
- Previsão ciclos de alta¹⁴: mediana dos índices CI do último período completo de alta (2016 – 2018), resultando em 1253,114;
- Previsão ciclos de baixa: mediana dos índices CI do último período completo de baixa (2012 – 2015), resultando em -994,564;

Menezes

Para o modelo multiplicativo.

- Recomposição ciclos de alta: mediana dos índices CI dos anos de 2002 2004, 2009 -2011, e 2016 – 2018, resultando em 1,237 (na recomposição da série será usado este valor para todos os anos de alta);
- Recomposição ciclos de baixa: mediana dos índices CI dos anos 2005 2008; 2012 -2015, e 2019, resultando em 0,859 (na recomposição da série será usado este valor para todos os anos de baixa);
- Previsão ciclos de alta¹⁵: mediana dos índices CI do último período completo de alta (2016 – 2018), resultando em 1,105;
- Previsão ciclos de baixa: mediana dos índices CI do último período completo de baixa (2012 – 2015), resultando em 0,883;

Quanto às componentes irregulares, já que foram identificados ciclos, deve-se olhar a Figura 28 e Figura 29 procurando mudanças bruscas nos valores de CI que indicassem a presença de algum fortuito com influência na série. É importante ressaltar que não há informações sobre eventos que porventura causassem quaisquer efeitos, então a análise será subjetiva.

Na Figura 28, observa-se que no primeiro ciclo de alta (2002 a 2004) os valores de CI estão em torno de 500, e nos dois outros ciclos de alta (2009 – 2011 e 2016 – 2018) em torno de 1250, mas apesar de algumas flutuações não há mudanças bruscas que sugiram um efeito irregular significativo. Já nos dois primeiros ciclos de baixa (2005 – 2008, 2012 – 2016) os valores de CI estão em torno de -1000, com algumas flutuações até -500 no primeiro trimestre de 2006 (deveria ser investigado se algum evento poderia ter provocado tal resultado), mas houve uma redução

¹⁵ Embora o ano de 2017 seja de alta, ou seja, este valor não será calculado, foi incluído como exemplo.

¹⁴ Embora o ano de 2017 seja de alta, ou seja, este valor não será calculado, foi incluído como exemplo.

substancial em 2019, com os valores iniciando em -1350 e caindo para -2000 nos últimos trimestres do ano: pode ser um efeito irregular (a ser investigado) ou simplesmente um novo nível no ciclo de baixa (como aconteceu nos ciclos de alta). Conclui-se então, que não efeito significativo de componente irregular na série, observando o gráfico CI pelo modelo aditivo.

Na Figura 29, observa-se que no primeiro ciclo de alta (2002 a 2004) os valores de CI estão em torno de 1,3, e nos dois outros ciclos de alta (2009 – 2011 e 2016 – 2018) reduzem para 1,2 e 1,1, mas apesar de algumas flutuações também não há mudanças bruscas que sugiram um efeito irregular significativo. No primeiro ciclo de baixa (2005 – 2008) aparentemente houve algo, pois o valor de CI desceu a 0,3 estabilizando em 0,8 apenas ao fim do ciclo, permanecendo neste patamar nos outros ciclos de baixa. Conclui-se então, que não efeito significativo de componente irregular na série, observando o gráfico CI pelo modelo multiplicativo.

b) Então, há tendência de crescimento nos valores trimestrais de exportação de minério de ferro de Pindorama, e o melhor modelo de mínimos quadrados para representar tal tendência é o polinômio de segundo grau com a seguinte equação: $\hat{T}_t = 0.9131 \times t^2 + 128,43 \times t - 588,23$

Há influência de sazonalidade na série, tanto pelo modelo aditivo quanto pelo modelo

multiplicativo, conforme demonstrado pelos valores dos índices sazonais:

Índices sazonais	200		Trim	estre	
indices sazonais	486	I	II .	III	IV
Índice sazonal aditivo	400	-532,298	-83,571	408,181	207,687
Índice sazonal multiplicativo	1	0,912	0,978	1,080	1,030

Nos dois primeiros trimestres do ano há queda nas exportações (índices sazonais aditivos negativos e índices sazonais multiplicativos menores do que 1) e nos dois últimos há aumento nas exportações (índices sazonais aditivos positivos e índices sazonais multiplicativos maiores do que viarceio

Há influência de ciclos na série trimestral das exportações, sendo os ciclos de alta com duração de 3 anos (2002 - 2004; 2009 - 2011; 2016 - 2018) e os de baixa de 4 anos (2005 - 2008; 2012 -2015), sendo que em 2019 iniciou um novo ciclo de baixa, que deve durar até 2022, e os índices de

ciclos representantes dos períodos de alta e baixa (para recomposição e previsão):

The second secon		F	, , , , , , , , , , , , , , , , , , , ,
	Ciolo do alta	Recomposição	1240,331
M. 1.1 1.4	Ciclo de alta	Previsão	1253,114
Modelo aditivo	Ciclo de baixa	Recomposição	-1025,05
	Cicio de baixa	Previsão	-995,564
	Ciclo de alta	Recomposição	1,237
Modelo multiplicativo	Cicio ae aiia	Previsão	1,105
тоаею тинрисануо	Ciclo de baixa	Recomposição	0,859
	Cicio de baixa	Previsão	0,883

Não houve evidência de influência significativa de componente irregular.

c) Como as componentes tendência, sazonalidade e ciclos influenciam a série de valores trimestrais de exportação de minério de ferro de Pindorama (conforme as conclusões dos itens a e b) elas precisam ser consideradas na recomposição da série, tanto pelo modelo aditivo quanto pelo multiplicativo.

 $\hat{\mathbf{Y}} = \mathbf{T} + \mathbf{S} + \mathbf{C}$ $\hat{\mathbf{Y}} = \mathbf{T} \times \mathbf{S} \times \mathbf{C}$ No modelo aditivo: *No modelo multiplicativo:* Usando os valores anteriormente obtidos:

Recomposição série trimestral de exportação de minério de ferro de Pindorama -1^a parte

Recor	nposição serie irimesi. Tendência	на ис схр	l açuo u	Aditivo	acjerrot			
Trimestre		Ciclo					<i>Multiplicative</i>	
17111105170	$\hat{T}_t = 0.9131 \times t^2 + 128,43 \times t - 588,23$	Cicio	C	S	\hat{Y}	C	S	Ŷ
2002I	717,573	Alta	1240,331	-532,298	1425,606	1,237	0,912	809,755
2002II	848,742	Alta	1240,331	-83,571	2005,502	1,237	0,978	1027,088
2002III	981,738	Alta	1240,331	408,181	2630,249	1,237	1,080	1311,935
2002IV	1116,560	Alta	1240,331	207,687	2564,577	1,237	1,030	1423,023
2003I	1253,208	Alta	1240,331	-532,298	1961,240	1,237	0,912	1414,200
2003II	1391,682	Alta	1240,331	-83,571	2548,441	1,237	0,978	1684,115
2003III	1531,982	Alta	1240,331	408,181	3180,493	1,237	1,080	2047,247
2003IV	1674,108	Alta	1240,331	207,687	3122,126	1,237	1,030	2133,603
2004I	1818,061	Alta	1240,331	-532,298	2526,094	1,237	0,912	2051,617
2004II	1963,840	Alta	1240,331	-83,571	3120,600	1,237	0,978	2376,500
2004III	2111,445	Alta	1240,331	408,181	3759,957	1,237	1,080	2821,606
2004IV	2260,876	Alta	1240,331	207,687	3708,894	1,237	1,030	2881,422
20051	2412,134	Baixa	-1025,05	-532,298	854,783	0,859	0,912	1889,596
2005II	2565,218	Baixa	-1025,05	-83,571	1456,594	0,859	0,978	2154,943
2005III	2720,128	Baixa	-1025,05	408,181	2103,256	0,859	1,080	2523,398
2005IV	2876,864	Baixa	-1025,05	207,687	2059,498	0,859	1,030	2545,243
2006I	3035,426	Baixa	-1025,05	-532,298	1478,075	0,859	0,912	2377,865
2006II	3195,814	Baixa	-1025,05	-83,571	2087,191	0,859	0,978	2684,684
2006III	3358,029	Baixa	-1025,05	408,181	2741,157	0,859	1,080	3115,164
2006IV	3522,070	Baixa	-1025,05	207,687	2704,704	0,859	1,030	3116,075
2007I	3687,937	Baixa	-1025,05	-532,298	2130,586	0,859	0,912	2889,024
2007II	3855,630	Baixa	-1025,05	- <mark>83,</mark> 571	2747,007	0,859	0,978	3238,971
2007III	4025,150	Baixa	-1025,05	408,181	3408,278	0,859	1,080	3734,037
2007IV	4196,496	Baixa	-1025,05	207,687	3379,130	0,859	1,030	3712,759
2008I	4369,668	Ваіха	-1025,05	-532,298	2812,317	0,859	0,912	3423,072
2008II	4544,666	Baixa	-1025,05	-83,571	3436,042	0,859	0,978	3817,803
2008III	4721,490	Baixa	-1025,05	408,181	4104,618	0,859	1,080	4380,015
2008IV	4900,140	Baixa	-1025,05	207,687	4082,775	0,859	1,030	4335,294
20091	5080,617	Alta	1240,331	-532,298	5788,650	1,237	0,912	5733,294
2009II	5262,920	Alta	1240,331	-83,571	6419,680	1,237	0,978	6368,813
2009III	5447,049	Alta	1240,331	408,181	7095,561	1,237	1,080	7279,104
2009IV	5633,004	Alta	1240,331	207,687	7081,022	1,237	1,030	7179,103
2010I	5820,786	Alta	1240,331	-532,298	6528,818	1,237	0,912	6568,548
2010II	6010,394	Alta	1240,331	-83,571	7167,153	1,237	0,978	7273,353
2010III	6201,828	Alta	1240,331	408,181	7850,339	1,237	1,080	8287,744
2010IV	6395,088	Alta	1240,331	207,687	7843,105	1,237	1,030	8150,357
20111	6590,174	Alta	1240,331	-532,298	7298,206	1,237	0,912	7436,774
2011II	6787,086	Alta	1240,331	-83,571	7943,846	1,237	0,978	8213,252
2011III	6985,825	Alta	1240,331	408,181	8634,337	1,237	1,080	9335,431
2011IV	7186,390	Alta	1240,331	207,687	8634,408	1,237	1,030	9158,849
2012I	7388,781	Baixa	-1025,05	-532,298	5831,430	0,859	0,912	5788,158
2012II	7592,998	Baixa	-1025,05	-83,571	6484,375	0,859	0,978	6378,593
2012III	7799,042	Baixa	-1025,05	408,181	7182,170	0,859	1,080	7234,987
2012IV	8006,912	Baixa	-1025,05	207,687	7189,546	0,859	1,030	7083,942
2013I	8216,608	Baixa	-1025,05	-532,298	6659,257	0,859	0,912	6436,654
2013II	8428,130	Baixa	-1025,05	-83,571	7319,506	0,859	0,978	7080,156
2013III	8641,478	Baixa	-1025,05	408,181	8024,606	0,859	1,080	8016,495
2013IV	8856,652	Baixa	-1025,05	207,687	8039,287	0,859	1,030	7835,732
2014I	9073,653	Baixa	-1025,05	-532,298	7516,302	0,859	0,912	7108,038
2014II	9292,480	Baixa	-1025,05	-83,571	8183,856	0,859	0,978	7806,264
2014III	9513,133	Baixa	-1025,05	408,181	8896,261	0,859	1,080	8825,109
2014IV	9735,612	Baixa	-1025,05	207,687	8918,247	0,859	1,030	8613,373
2015I	9959,918	Baixa	-1025,05	-532,298	8402,567	0,859	0,912	7802,313
2015II	10186,050	Baixa	-1025,05	-83,571	9077,426	0,859	0,978	8556,919
2015III	10414,008	Baixa	-1025,05	408,181	9797,136	0,859	1,080	9660,829
2015IV	10643,792	Baixa	-1025,05	207,687	9826,426	0,859	1,030	9416,865
2016I	10875,402	Alta	1240,331	-532,298	11583,434	1,237	0,912	12272,500
2016II	11108,838	Alta	1240,331	-83,571	12265,598	1,237	0,978	13443,130
2016III	11344,101	Alta	1240,331	408,181	12992,613	1,237	1,080	15159,565
2016IV	11581,190	Alta	1240,331	207,687	13029,208	1,237	1,030	14759,896
	11001,170		12.0,001	_==,,00,	-2027,200	1,207	1,000	1.,0,,0,0

Recomposição série trimestral de exportação de minério de ferro de Pindorama -2^a parte

	Tendência			Aditivo		Λ	<i>Aultiplicativ</i>	0
Trimestre	$\hat{T}_t = 0.9131 \times t^2 + 128,43 \times t - 588,23$	Ciclo	С	S	\hat{Y}	C	S	\hat{Y}
2017I	11820,105	Alta	1240,331	-532,298	12528,138	1,237	0,912	13338,564
2017II	12060,846	Alta	1240,331	-83,571	13217,606	1,237	0,978	14595,183
2017III	12303,414	Alta	1240,331	408,181	13951,925	1,237	1,080	16441,532
2017IV	12547,808	Alta	1240,331	207,687	13995,825	1,237	1,030	15991,823
2018I	12794,028	Alta	1240,331	-532,298	13502,060	1,237	0,912	14437,600
2018II	13042,074	Alta	1240,331	-83,571	14198,833	1,237	0,978	15782,594
2018III	13291,946	Alta	1240,331	408,181	14940,457	1,237	1,080	17762,546
2018IV	13543,644	Alta	1240,331	207,687	14991,662	1,237	1,030	17260,988
2019I	13797,169	Baixa	-1025,05	-532,298	12239,818	0,859	0,912	10808,305
2019II	14052,520	Baixa	-1025,05	-83,571	12943,896	0,859	0,978	11804,996
2019III	14309,697	Baixa	-1025,05	408,181	13692,825	0,859	1,080	13274,769
2019IV	14568,700	Baixa	-1025,05	207,687	13751,335	0,859	1,030	12889,344

Para cada modelo é preciso calcular os erros e obter as medidas de acuracidade.

Erros para recomposição da série trimestral de exportação de minério de ferro de Pindorama – 1ª

parte									
<i>m</i> .	Y	Aditivo			Multiplicativo				
Trimestre		\hat{Y}	erro	erro ²	erro%	\hat{Y}	/erro/	erro ²	erro%
2002I	840,642	1425,606	584,964	342182,5	69,585	809,755	30,887	954,0	3,674
2002II	1025,228	2005,502	980,274	960937,0	95,615	1027,088	1,860	3,5	0,181
2002III	1661,896	2630,249	968,353	937708,4	58,268	1311,935	349,961	122472,9	21,058
2002IV	1562,665	2564,577	1001,912	1003828,0	64,116	1423,023	139,642	19499,8	8,936
2003I	1602,747	1961,240	358,493	128517,3	22,367	1414,200	188,547	35550,1	11,764
2003II	1607,427	2548,441	941,014	885507,6	58,542	1684,115	76,688	5881,0	4,771
2003III	2265,952	3180,493	914,541	836386,1	40,360	2047,247	218,705	47831,8	9,652
2003IV	2426,605	3122,126	695,521	483749,4	28,662	2133,603	293,002	85849,9	12,075
2004I	1922,275	2526,094	603,819	364597,0	31,412	2051,617	129,342	16729,2	6,729
2004II	2539,831	3120,600	580,769	337292,1	_22,866	2376,500	163,331	26677,0	6,431
2004III	3364,126	3759,957	395,831	156681,9	11,766	2821,606	542,520	294327,5	16,127
2004IV	3214,098	3708,894	494,796	244823,0_	15,395	2881,422	332,676	110673,0	10,351
2005I	660,427	854,783	194,356	37774,3	29,429	1889,596	1229,169	1510857,0	186,117
2005II	1029,301	1456,594	427,293	182579,2	41,513	2154,943	1125,642	1267070,4	109,360
2005III	1875,142	2103,256	228,114	52035,9	12,165	2523,398	648,256	420236,0	34,571
2005IV	1956,286	2059,498	103,212	10652,7	5,276	2545,243	588,957	346870,4	30,106
2006I	2012,788	1478,075	534,713	285917,7	26,566	2377,865	365,077	133281,4	18,138
2006II	2361,815	2087,191	274,624	75418,5	11,628	2684,684	322,869	104244,4	13,670
2006III	2593,368	2741,157	147,789	21841,7	5,699	3115,164	521,796	272271,5	20,120
2006IV	2484,648	2704,704	220,056	48424,8	8,857	3116,075	631,427	398700,7	25,413
2007I	2486,245	2130,586	355,659	126493,0	14,305	2889,024	402,779	162230,7	16,200
2007II	2751,869	2747,007	4,862	23,6	0,177	3238,971	487,102	237268,0	17,701
2007III	3370,818	3408,278	37,460	1403,3	1,111	3734,037	363,219	131927,8	10,775
2007IV	3543,604	3379,130	164,474	27051,7	4,641	3712,759	169,155	28613,4	4,774
2008I	3087,11	2812,317	274,793	75511,3	8,901	3423,072	335,962	112870,2	10,883
2008II	3883,603	3436,042	447,561	200310,9	11,524	3817,803	65,800	4329,6	1,694
2008III	4138,753	4104,618	34,135	1165,2	0,825	4380,015	241,262	58207,3	5,829
2008IV	4340,18	4082,775	257,405	66257,5	5,931	4335,294	4,886	23,9	0,113
2009I	5891,115	5788,650	102,465	10499,1	1,739	5733,294	157,821	24907,5	2,679
2009II	6790,334	6419,680	370,654	137384,7	5,459	6368,813	421,521	177679,7	6,208
2009III	7138,473	7095,561	42,912	1841,5	0,601	7279,104	140,631	19777,1	1,970
2009IV	7303,687	7081,022	222,665	49579,7	3,049	7179,103	124,584	15521,1	1,706
2010I	6634,528	6528,818	105,710	11174,5	1,593	6568,548	65,980	4353,4	0,994
2010II	7280,065	7167,153	112,912	12749,1	1,551	7273,353	6,712	45,1	0,092
2010III	8340,944	7850,339	490,605	240693,2	5,882	8287,744	53,200	2830,2	0,638
2010IV	8235,631	7843,105	392,526	154076,5	4,766	8150,357	85,274	7271,7	1,035
2011I	7664,585	7298,206	366,379	134233,2	4,780	7436,774	227,811	51897,7	2,972
2011II	8269,515	7943,846	325,669	106060,3	3,938	8213,252	56,263	3165,6	0,680
2011III	8672,151	8634,337	37,814	1429,9	0,436	9335,431	663,280	439939,9	7,648
2011IV	8626,384	8634,408	8,024	64,4	0,093	9158,849	532,465	283519,0	6,173

Erros para recomposição da série trimestral de exportação de minério de ferro de Pindorama – 2ª parte

	Y	Aditivo				Multiplicativo			
Trimestre		Ŷ	erro	erro ²	erro%	\hat{Y}	erro	erro ²	erro%
2012I	5783,997	5831,430	47,433	2249,9	0,820	5788,158	4,161	17,3	0,072
2012II	6796,005	6484,375	311,630	97113,4	4,585	6378,593	417,412	174232,4	6,142
2012III	7227,356	7182,170	45,186	2041,8	0,625	7234,987	7,631	58,2	0,106
2012IV	7205,338	7189,546	15,792	249,4	0,219	7083,942	121,396	14736,9	1,685
2013I	6621,604	6659,257	37,653	1417,7	0,569	6436,654	184,950	34206,6	2,793
2013II	7425,485	7319,506	105,979	11231,6	1,427	7080,156	345,329	119252,2	4,651
2013III	8449,733	8024,606	425,127	180732,8	5,031	8016,495	433,238	187694,9	5,127
2013IV	8034,425	8039,287	4,862	23,6	0,061	7835,732	198,693	39478,8	2,473
2014I	7352,909	7516,302	163,393	26697,4	2,222	7108,038	244,871	59961,6	3,330
2014II	7854,567	8183,856	329,289	108431,5	4,192	7806,264	48,303	2333,2	0,615
2014III	8977,176	8896,261	80,915	6547,2	0,901	8825,109	152,067	23124,3	1,694
2014IV	8636,05	8918,247	282,197	79635,0	3,268	8613,373	22,677	514,2	0,263
2015I	8337,523	8402,567	65,044	4230,8	0,780	7802,313	535,210	286449,9	6,419
2015II	9329,111	9077,426	251,685	63345,4	2,698	8556,919	772,192	596281,0	8,277
2015III	9929,435	9797,136	132,299	17503,1	1,332	9660,829	268,606	72149,1	2,705
2015IV	9926,461	9826,426	100,035	10007,0	1,008	9416,865	509,596	259688,0	5,134
2016I	11640,39	11583,434	56,960	3244,4	0,489	12272,500	632,106	399558,2	5,430
2016II	12383,55	12265,598	117,951	13912,4	0,952	13443,130	1059,581	1122711,7	8,556
2016III	13165,48	12992,613	172,868	29883,5	1,313	15159,565	1994,084	3976370,5	15,146
2016IV	13037,23	13029,208	8,024	64,4	0,062	14759,896	1722,664	2967571,9	13,213
2017I	12459,31	12528,138	68,831	4737,7	0,552	13338,564	879,257	773092,4	7,057
2017II	13182,14	13217,606	35,467	1257,9	0,269	<i>14595,183</i>	1413,044	1996692,3	10,719
2017III	13997,94	13951,925	46,013	2117,2	0,329	16441,532	2443,594	5971151,6	17,457
2017IV	14013,37	13995,825	17,543	307,8	0,125	15991,823	1978,455	3914283,2	14,118
2018I	13364,47	13502,060	137,595	18932,4	1,030	14437,600	1073,135	1151619,1	8,030
2018II	14283,71	14198,833	84,877	7204,1	0,594	15782,594	1498,884	2246654,2	10,494
2018III	14716,93	14940,457	223,524	49963,2	1,519	17762,546	3045,613	9275757,7	20,695
2018IV	14697,71	14991,662	293,952	86407,8	2,000	17260,988	2563,278	6570395,8	17,440
2019I	11914,95	12239,818	324,865	105537,5	2,727	10808,305	1106,648	1224670,1	9,288
2019II	12087,63	12943,896	856,263	733186,9	7,084	11804,996	282,637	79883,9	2,338
2019III	12778,27	13692,825	914,560	836420,8	7,157	13274,769	496,504	246515,8	3,886
2019IV	12771,35	13751,335	979,982	960364,2	-7,673	12889,344	117,991	13921,8	0,924

Agora é possível obter as medidas de acuracidade para os dois modelos:

Medida de	Modelo				
acuracidade	Aditivo	Multiplicativo			
EAM	299,207	542,819			
EPM	169720,298	705070,108			
EQM	11,181	12,032			

O modelo aditivo apresenta as três medidas de acuracidade com valores mais próximos de zero, portanto, é o mais adequado para representar a série trimestral de exportação de minério de ferro de Pindorama, e para realizar previsões dos valores futuros.

- d) Para realizar a previsão das exportações para o ano de 2020 (os quatro trimestres), com base nos resultados dos itens anteriores, deve-se considerar o seguinte:
 - as componentes tendência, sazonalidade e ciclos influenciam na série, portanto precisam ser utilizadas na previsão;
 - a tendência por mínimos quadrados deve ser a do polinômio de 2º grau, com a equação sendo $\hat{T}_t = 0.9131 \times t^2 + 128,43 \times t - 588,23$, onde t irá variar de 73 a 76 (já que a série disponível tem 72 períodos – trimestres);
 - o modelo a ser utilizado para combinar as componentes deve ser o aditivo (as componentes devem ter seus valores SOMADOS para obter a previsão);
 - os índices sazonais deverão ser os seguintes:

Trimestre I = -532.298 $Trimestre\ II = -83.571$ Trimestre III 408.181 $Trimestre\ IV = 207,687$

- conforme explicado nos itens b e c 2020 será a continuação de um ciclo de baixa que iniciou em 2019 e deve continuar até 2022, portanto o índice de ciclo deve ser de baixa, e como se trata de uma previsão deve ser igual a -994,564.

Os resultados estão na tabela a seguir:

Trimestre	Período	$\hat{T}_t = 0.9131 \times t^2 + 128,43 \times t - 588,23$	Sazonalidade	Ciclo	Previsão
2020 I	73	14829,53	-532,298	-994,564	13302,668
2020 II	74	15092,19	0,977566	-994,564	14098,599
2020 III	75	15356,67	1,079816	-994,564	14363,183
2020 IV	76	15622,98	1,03025	-994,564	14629,442

Então a previsão é que as exportações trimestrais de minério de ferro de Pindorama oscilem entre 13302,668 e 14629,442 milhões de dólares em 2020.

4.6 - Outros modelos de séries temporais

Além do modelo clássico apresentado neste capítulo podem ser usados os métodos de Holt-Winters para modelos multiplicativos e aditivos. Maiores detalhes em SOARES, J. F., FARIAS, A. A., CESAR, C. C. – Introdução à Estatística, LTC, Rio de Janeiro, 1991.

Há também outras abordagens diferentes do modelo clássico. Entre estes modelos devem ser citados os modelos Auto-Regressivos (AR), os modelos de Médias Móveis Auto-Regressivos de (ARMA) e os modelos de Médias Móveis Integrados Auto-Regressivos (ARIMA). Tais tópicos geralmente são vistos em cursos de pós-graduação.

> Menezes Reis