NSR Search Results Page 1 of 4

Visit the <u>Isotope Explorer</u> home page!

25 reference(s) found:

Keynumber: 1999**SE16**

Reference: Phys.Rev. C60, 054613 (1999)

Authors: P.V.Sedyshev, P.Mohr, H.Beer, H.Oberhummer, Yu.P.Popov, W.Rochow

Title: Measurement of Neutron Capture on ⁵⁰Ti at Thermonuclear Energies

Keyword abstract: NUCLEAR REACTIONS 50 Ti(n, γ),E=25,30,52,145 keV; measured capture σ ; deduced Maxwellian averaged σ,stellar reaction rates. ⁵¹Ti deduced resonance width. Activation technique, enriched target, HPGe detector.

Keynumber: 1998MOZT

Reference: Proc.Intern.Symposium on Nuclear Astrophysics, Nuclei in the Cosmos V, Volos, Greece,

July 6-11, 1998, N.Prantzos, S.Harissopulos, Eds., Editions Frontieres, Paris, p.192 (1998)

Authors: P.Mohr, H.Beer, H.Oberhummer, P.V.Sedyshev, Y.P.Popov, W.Rochow

Title: Neutron Capture of ⁴⁶Ca, ⁴⁸Ca, and ⁵⁰Ti at Stellar Energies

Keyword abstract: NUCLEAR REACTIONS ⁴⁶. ⁴⁸Ca. ⁵⁰Ti(n,γ).E <200 keV: measured capture σ:

deduced direct capture, resonance contributions.

Keynumber: 1995NA31

Reference: J.Radioanal.Nucl.Chem. 200, 435 (1995)

Authors: S.S.Narkhede, Z.R.Turel

Title: Instrumental Neutron Activation Analysis of Al,V and Ti Employing ²⁵²Cf as a Thermal Neutron

Source

Keyword abstract: NUCLEAR REACTIONS ²⁷Al, ⁵¹V, ⁵⁰Ti(n, γ),E=thermal; measured E γ ,I γ ; deduced rapid element determination possibility in ores, alloys. Neutron from ²⁵²Cf isotopic source.

Keynumber: 1995MO40

Reference: Aust.J.Phys. 48, 125 (1995) Authors: A.J.Morton, D.G.Sargood

Title: Thermonuclear Reactions Rates for Reactions Leading to N = 28 Nuclei

Keyword abstract: NUCLEAR REACTIONS ⁴⁴, ⁴⁶K, ⁴⁶, ⁴⁷, ⁴⁸Ca, ⁴⁵, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰Sc, ⁴⁶, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰Ti, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰, ⁵¹V, ⁴⁸, ⁴⁹, ⁵⁰, ⁵¹, ⁵²Cr, ⁵¹, ⁵², ⁵³Mn, ⁵², ⁵³, ⁵⁴Fe, ⁵⁵Co(n,γ), (n,p), (n,α), (p,γ), (p,n), (p,α) , (α,γ) , (α,n) , (α,p) , E not given; 56 Ni (n,γ) , (n,p), (n,α) , (α,γ) , (α,n) , (α,p) , E not given; 46 Ar, 45 , 47 K (p,γ) , (p,n), (p,α) , (α,γ) , (α,n) , (α,p) , (

Statistical model calculations, optical-model potential.

Keynumber: 1983SA30

Reference: Aust.J.Phys. 36, 583 (1983)

Authors: D.G.Sargood

Title: Effect of Excited States on Thermonuclear Reaction Rates

Keyword abstract: NUCLEAR REACTIONS,ICPND ²⁰, ²¹, ²²Ne, ²³Na, ²⁴, ²⁵, ²⁶Mg, ²⁷Al, ²⁸, ²⁹, ³⁰Si, ³¹P, ³², ³³, ³⁴, ³⁶S, ³⁵, ³⁷Cl, ³⁶, ³⁸, ⁴⁰Ar, ³⁹, ⁴⁰, ⁴¹K, ⁴⁰, ⁴², ⁴³, ⁴⁴, ⁴⁶, ⁴⁸Ca, ⁴⁵Sc, ⁴⁶, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰Ti, ⁵⁰, ⁵¹V, ⁵⁰, ⁵², ⁵³, ⁵⁴Cr, ⁵⁵Mn, ⁵⁴, ⁵⁶, ⁵⁷, ⁵⁸Fe, ⁵⁹Co, ⁵⁸, ⁶⁰, ⁶¹, ⁶², ⁶⁴Ni, ⁶³, ⁶⁵Cu, ⁶⁴, ⁶⁶, ⁶⁷Zn(n,γ), $(n,p), (n,\alpha), (p,\gamma), (p,n), (p,\alpha), (\alpha,\gamma), (\alpha,n), (\alpha,p), {}^{70}Zn(p,\gamma), (p,n), (p,\alpha), (\alpha,\gamma), (\alpha,n), (\alpha,p), E=low;$ compiled target thermal distribution energy state to ground state thermonuclear reaction rate of reaction

NSR Search Results Page 2 of 4

σ vs temperature. Statistical model.

Keynumber: 1983AH01

Reference: Ann.Nucl.Energy 10, 41 (1983)

Authors: A.Ahmad

Title: Analysis and Evaluation of Thermal and Resonance Neutron Activation Data

Keyword abstract: NUCLEAR REACTIONS ⁴⁵Sc, ⁵⁰Ti, ⁵⁰Cr, ⁵¹V, ⁵⁵Mn, ⁵⁸Fe, ⁵⁹Co, ⁷⁴Se, ⁸⁵Rb, ⁹⁴,

 96 Zr, 123 Sb, 130 Ba, 133 Cs, 139 La, 140 Ce, 159 Tb, 180 Hf, 181 Ta, 197 Au(n, γ),E=thermal,epithermal;

analyzed data. Generalized least-squares fit.

Keynumber: 1980PIZN

Coden: CONF Kiev(Neutron Physics) Proc, Part3, P270, Pisanko

Keyword abstract: NUCLEAR REACTIONS 22 , 23 Na,Mg, 24 , 25 , 26 Mg, 27 Al,Si, 28 , 29 , 30 Si, 31 P,S, 32 , 33 , 34 S,Cl, 35 , 36 , 37 Cl,Ar, 36 , 38 , 40 Ar,K, 39 , 40 , 41 K,Ca, 40 , 42 , 43 , 44 , 46 , 48 Ca, 45 , 46 Sc,Ti, 46 , 47 , 48 , 49 , 50 Ti,V, 50 , 51 V,Cr, 50 , 52 , 53 , 54 Cr,Fe, 54 , 56 , 57 , 58 Fe, 59 Co,Ni, 58 , 59 , 60 , 61 , 62 , 64 Ni,Cu, 63 , 65 Cu,Zn, 64 , 66 , 67 , 68 , 70 Zn,Ga, 69 , 71 Ga(n,γ), (n,n), (n,α),E=thermal; evaluated σ,radiative capture resonance integrals.

Keynumber: 1979THZW

Reference: Proc.Specialsts Meeting on Neutron Data Structural Materials for Fast Reactors, December

5-8, 1977, Geel, Belgium, p.675 (1979)

Authors: B.Thom, D.B.Gayther, M.C.Moxon, B.W.Thomas

Title: Capture Cross-Section Measurements on the Separated Isotopes of Titanium

Keyword abstract: NUCLEAR REACTIONS ⁴⁶, ⁴⁷, ⁴⁹, ⁵⁰Ti(n, γ),E=low; measured capture σ . ⁴⁷, ⁴⁸,

⁵⁰, ⁵¹Ti deduced resonance parameters.

Keynumber: 1979KAZI

Coden: REPT NEANDC(J)-61/U,P94,Kayashima

Keyword abstract: NUCLEAR REACTIONS ⁴⁶, ⁴⁸Ti, ⁸⁶Sr, ¹¹⁰Cd, ¹¹⁵In, ¹²², ¹²⁴Te(n,p), ⁵⁰Ti, ⁶³Cu, ⁸⁹Y, ¹²⁸Te(n,γ), ⁵⁵Mn, ⁶⁶Zn, ⁸⁶Sr, ⁸⁹Y, ¹¹⁶Cd, ¹¹⁵In, ¹²⁰, ¹²², ¹²⁴, ¹³⁰Te(n,2n),E=14.6 MeV; measured

σ. Activation technique.

Keynumber: 1977ALYR

Reference: AAEC/E-402 (1977)

Authors: B.J.Allen, J.W.Boldeman, A.R.de L.Musgrove, R.L.Macklin

Title: Resonance Neutron Capture in the Isotopes of Titanium

Keyword abstract: NUCLEAR REACTIONS ⁴⁶, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰Ti(n,γ),E=2.75-300 keV; measured

capture γ-yield. ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰, ⁵¹ Ti deduced resonance parameters.

Keynumber: 1976SC16

Reference: Nucl.Phys. A264, 105 (1976)

Authors: O.Schwerer, M.Winkler-Rohatsch, H.Warhanek, G.Winkler **Title:** Measurement of Cross Sections for 14 MeV Neutron Capture

Keyword abstract: NUCLEAR REACTIONS ³⁷Cl, ⁴¹K, ⁵⁰Ti, ⁵¹V, ⁵⁵Mn, ⁷¹Ga, ⁸⁷Rb, ⁸⁹Y, ¹²⁷I, ¹³⁰Te, ¹³⁸Ba, ¹³⁹La, ¹⁴²Ce, ¹⁸⁶W, ¹⁹⁸Pt, ¹⁹⁷Au(n,γ),E=14.6 MeV; measured σ. Natural targets.

Keynumber: 1974VU01

Reference: Lett.Nuovo Cim. 10, 1 (1974)

NSR Search Results Page 3 of 4

Authors: J. Vuletin, P. Kulisic, N. Cindro

Title: Activation Cross-Sections of (n, γ) Reactions at 14 MeV

Keyword abstract: NUCLEAR REACTIONS ⁵⁰Ti, ²⁷Mg, ³⁷Cl, ⁵⁵Mn, ⁷⁵As, ¹²⁷I, ¹³⁸Ba, ¹⁴¹Pr, ¹⁷⁰Er

 (n,γ) ,E=14 MeV; measured σ .

Keynumber: 1974RIZD

Coden: CONF Petten(Neutron Capture Gamma Ray Spectroscopy),P151

Keyword abstract: NUCLEAR REACTIONS ²⁷Al, ⁵⁰Ti, ⁵¹V, ¹⁰³Rh, ¹²⁷I, ¹³⁹La(n,γ),E=14.6 MeV;

measured $\sigma(E\gamma)$.

Keynumber: 1974RI14

Reference: Nucl.Sci.Eng. 55, 17 (1974)

Authors: F.Rigaud, M.G.Desthuilliers, G.Y.Petit, J.L.Irigaray, G.Longo, F.Saporetti **Title:** Improved Activation Measurements of (n, γ) Cross Section for 14.6-MeV Neutrons

Keyword abstract: NUCLEAR REACTIONS ²⁷Al, ⁵⁰Ti, ⁵¹V, ¹⁰³Rh, ¹²⁷I, ¹³⁹La(n,γ),E=14.6 MeV;

measured σ .

Kevnumber: 1972KN07

Reference: Vestsi Akad.Navuk BSSR, Ser.Fiz.-Mat.Navuk No.3, 79 (1972) **Authors:** U.A.Knatsko, S.A.Nyagrei, E.A.Rudak, A.M.Khilmanovich

Title: Radiative Capture of Thermal Neutrons by Titanium Isotopes

Keyword abstract: NUCLEAR REACTIONS 46 , 49 , 50 Ti(n, γ),E=thermal; measured E γ ,I γ . 47 , 50 , 51 Ti

deduced levels,L,J,π.

Keynumber: 1972KN03

Reference: Nucl.Phys. A194, 458 (1972)

Authors: V.A.Knatko, E.A.Rudak

Title: Phonon-Particle Doorway States in (n,γ) Reactions on Nuclei with N=28 and N=82

Keyword abstract: NUCLEAR REACTIONS 50 Ti, 52 Cr, 54 Fe, 138 Ba, 140 Ce, 142 Nd(n,γ),E=thermal; analyzed σ(Εγ). 51 Ti, 53 Cr, 55 Fe, 139 Ba, 141 Ce, 143 Nd calculated levels,wave functions,B(E1); analyzed phonon-particle doorway states.

Keynumber: 1972KN02

Reference: Yad.Fiz. 15, 1132 (1972); Sov.J.Nucl.Phys. 15, 626 (1972)

Authors: V.A.Knatko, E.A.Rudak

Title: Doorway States of 'Phonon + Particle' Type in (n,γ) Reactions with N = 28 and N = 82 Nuclei **Keyword abstract:** NUCLEAR REACTIONS ⁵⁰Ti, ⁵²Cr, ⁵⁴Fe, ¹³⁸Ba, ¹⁴⁰Ce, ¹⁴²Nd (n,γ) ,E=thermal; calculated E1 I γ . ⁵¹Ti, ⁵³Cr, ⁵⁵Fe, ¹³⁹Ba, ¹⁴¹Ce, ¹⁴³Nd analyzed E1 transitions,doorway states.

Keynumber: 1971TE01

Reference: Phys.Rev. C3, 663 (1971)

Authors: J.Tenenbaum, R.Moreh, Y.Wand, G.Ben-David

Title: Study of the Level Structure of 50 Ti and 51 Ti Using the 49 Ti(n, γ) and 50 Ti(n, γ) Reactions

Keyword abstract: NUCLEAR REACTIONS ⁴⁹, ⁵⁰Ti(n, γ),E=thermal; measured E γ ,I γ , $\gamma\gamma(\theta)$; deduced

Q. 50 , 51 Ti deduced levels,J, π , γ -branching.

Keynumber: 1971RYZZ

Reference: Proc.Int.Conf.Chemical Nuclear Data, Measurements and Applications, Canterbury,

NSR Search Results Page 4 of 4

England, M.L.Hurrell, Ed., Institution of Civil Engineers, London, p.139 (1971)

Authors: T.B.Ryves

Title: Thermal Neutron Capture Cross Section Measurements at the NPL

Keyword abstract: NUCLEAR REACTIONS ²³Na, ²⁶Mg, ²⁷Al, ³⁰Si, ³⁷Cl, ⁴¹K, ⁵⁰Ti, ⁵¹V, ⁵⁸Fe, ⁶⁴Ni, 63, 65 Cu, 69, 71 Ga, 75 As, 79, 81 Br, 89 Y, 107, 109 Ag, 115 In, 121, 123 Sb, 127 I, 139 La, 151 Eu, 196, 198 Pt

 $(n.\gamma)$.E=thermal: measured σ .

Keynumber: 1971RYZX

Coden: CONF Canterbury(Chem Nucl Data),P139,12/10/72

Keyword abstract: NUCLEAR REACTIONS ²³Na, ²⁶Mg, ²⁷Al, ³⁰Si, ³⁷Cl, ⁴¹K, ⁵⁰Ti, ⁵¹V, ⁵⁸Fe, ⁶⁴Ni, 63, 65 Cu, 69, 71 Ga, 75 As, 79 Br, 81 Br, 89 Y, 107, 109 Ag, 115 In, 121, 123 Sb, 127 I, 139 La, 151 Eu, 196, 198 Pt (n,γ) , E=thermal; measured σ ; deduced resonance integrals.

Keynumber: 1971NEZZ

Coden: CONF Moscow(NuclSpectros,Structure) Abstr P38

Keyword abstract: NUCLEAR REACTIONS ⁴⁶, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰Ti(n,γ),E not given; measured Eγ,Ιγ. ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰, ⁵¹Ti deduced transitions.

Keynumber: 1971AR39

Reference: Phys.Scr. 4, 89 (1971)

Authors: S.E.Arnell, R.Hardell, A.Hasselgren, C.-G.Mattsson, O.Skeppstedt

Title: Thermal Neutron Capture in ⁵⁰Ti and ⁶⁴Ni

Keyword abstract: NUCLEAR REACTIONS ⁵⁰Ti, ⁶⁴Ni(n,γ),E=thermal; measured E γ ,I γ ; deduced Q.

⁵¹Ti, ⁶⁵Ni deduced levels. Ge(Li) pair,anti-Compton spectrometer.

Keynumber: 1970TEZX Coden: REPT IA-1218,P29

Keyword abstract: NUCLEAR REACTIONS 50 Ti(n, γ),E=thermal; measured Q,E γ ,I γ , γ y-coin, γ y(θ).

⁵¹Ti deduced levels.J. π .

Keynumber: 1969DU12

Reference: J.Nucl.Energy 23, 443 (1969)

Authors: N.D.Dudey, R.R.Heinrich, A.A.Madson **Title:** Fast Neutron Capture by Vanadium and Titanium

Keyword abstract: NUCLEAR REACTIONS 50 Ti. 51 V(n, γ).E=.15-1.7 MeV: measured σ (E).

Keynumber: 1967CS01

Reference: Nucl. Phys. A95, 229(1967)

Authors: J.Csikai, G.Peto, M.Buczko, Z.Miligy, N.A.Eissa **Title:** Radiative Capture Cross Sections for 14.7 MeV Neutrons

Keyword abstract: NUCLEAR REACTIONS ²⁷Al, ³⁰Si, ³¹P, ⁴⁵Sc, ⁴⁸Ca, ⁵⁰Ti, ⁵¹V, ⁸⁹Y, ¹²³Sb, ¹³⁹La, 209 Bi(n, γ), E = 14.7 MeV; measured σ . 23 Na, 55 Mn, 103 Rh, 141 Pr, 165 Ho, 208 Pb(n, γ), E = 13.4-15.0

MeV; measured $\sigma(E)$. ¹⁰³Rh(n, γ), E = 13.4-15.0 MeV; measured $\sigma(g)/\sigma(M)$; deduced spin cutoff

parameter. Enriched ³⁰Si, ⁴⁸Ca targets.
