Analysis I

Wintersemester 2013/2014

Prof. Dr. D. Lenz

Blatt 8

Abgabe 12.12.2013

- (1) Sei $(x_n)_{n\in\mathbb{N}}$ eine reelle Zahlenfolge. Man zeige:
 - (a) Wenn $(x_n)_{n\in\mathbb{N}}$ konvergiert, so konvergiert auch jede Teilfolge $(x_{n_k})_{k\in\mathbb{N}}$.
 - (b) Wenn $(x_{2n})_{n\in\mathbb{N}}$, $(x_{2n+1})_{n\in\mathbb{N}}$ und $(x_{3n})_{n\in\mathbb{N}}$ konvergieren, dann konvergiert auch $(x_n)_{n\in\mathbb{N}}$.
- (2) Untersuchen Sie die angegebenen Folgen auf Konvergenz und bestimmen Sie gegebenenfalls den Grenzwert.

(a)
$$\left(n^{\frac{5}{2}}\left(\frac{n^{\frac{1}{2}}}{n^2+1}-\frac{n^{-\frac{1}{2}}}{n+1}\right)\right)_{n\in\mathbb{N}}$$
 (b) $\left(\frac{n!}{a^n}\right)_{n\in\mathbb{N}}$ mit $a>0$, (c) $\left(\frac{n!}{\left(\frac{2n}{n}\right)}\right)_{n\in\mathbb{N}}$

(3) Sei die Folge $(a_n)_{n\in\mathbb{N}}$ rekursiv definiert mit $a_1\geq 0$ und

$$a_{n+1} := \frac{3(1+a_n)}{3+a_n}$$
, für $n \ge 1$.

Zeigen Sie, dass $(a_n)_{n\in\mathbb{N}}$ eine Cauchy-Folge ist und bestimmen Sie ihren Grenzwert.

Hinweis: Sie können zum Beispiel Monotonie untersuchen und die beiden Fälle $a_1^2 > 3$ und $a_1^2 < 3$ unterscheiden.

(4) Sei $f:(0,\infty) \longrightarrow (0,\infty)$ definiert durch $f(x):=\frac{1}{1+x}$. Untersuchen Sie die Folge $(a_n)_{n\in\mathbb{N}}$ gegeben durch

$$a_n := \underbrace{f \circ \ldots \circ f}_{n\text{-mal}}(1)$$

auf Konvergenz und bestimmen Sie gegebenenfalls den Grenzwert.

Hinweis: Geben Sie eine rekursive Definition der Folge an und untersuchen Sie auf Beschränktheit und Monotonie. Was können Sie über Vorzeichen und Größe von $a_{n+1} - a_n$ im Verhältnis zu $a_n - a_{n-1}$ sagen?

Zusatzaufgaben:

- (Z1) Finden Sie eine Folge $(q_n)_{n\in\mathbb{N}}$ in \mathbb{R} , die jede rationale Zahl als Häufungspunkt hat. Können Sie die Folge $(q_n)_{n\in\mathbb{N}}$ so wählen, daß $\sqrt{2}$ kein Häufungspunkt ist?
- (Z2) Beweisen Sie den Satz von Bolzano-Weierstrass auf $\mathbb R$ mit Hilfe des Intervallschachtelungsprinzips.