

Combined the Data-driven with Model-driven Strategy: A Novel Framework for Mixed Noise Removal in Hyperspectral Image

Qiang Zhang, Qiangqiang Yuan*, Jie Li, Liangpei Zhang

Wuhan University

https://qzhang95.github.io

2020/9/25

- Background
- **2** Methodology
- **Experiments**
- 4 Conclusion

Background

HSI Mixed Noise Removal

➤ Model-driven Methods:
Total Variation

Total Variation
Low Rank Matrix/Tensor
Spare Representation

Data-driven Methods:

HSID-CNN (Yuan et al, 2018) HSI-DeNet (Chang et al., 2018) SSGN (Zhang et al., 2019)

How about Combined the Data-driven with Model-driven Strategy?

- 1 Background
- Methodology
- 3 Experiments
- 4 Conclusion

Methodology

1) Problem Formulation

$$Y = X + S + N$$

Latent Clean HSI

Noise Variance

$$\mathbf{Y}_i \sim \mathcal{N}(\mathbf{Y}_i | \mathbf{Z}_i, \sigma_i^2), i = 1, 2, \dots b$$

$$\mathbf{Z}_i \sim \mathcal{N}(\mathbf{Z}_i \mid \mathbf{X}_i, \varepsilon_0^2), i = 1, 2, \dots b$$

$$\sigma_i^2 \sim IG(\sigma_i^2 | \frac{p^2}{2} - 1, \frac{p^2 \xi_i}{2}), i = 1, 2, \dots b$$

$$\mathbf{S}_i \sim \mathcal{K}(\mathbf{S}_i \mid Y_i, \mathbf{Y}), i = 1, 2, \dots b$$

Bayesian Posterior Framework:

$$q(\mathbf{Z}_i, \sigma_i^2, \mathbf{S}_i \mid \mathbf{Y}) = q(\mathbf{Z}_i \mid \mathbf{Y})q(\sigma_i^2 \mid \mathbf{Y})q(\mathbf{S}_i \mid \mathbf{Y})$$

How to infer the three variables?

$$q(\mathbf{Z}_i \mid \mathbf{Y}) = \mathcal{N}(\mathbf{Z}_i \mid \varphi_i(Y_i, \mathbf{Y}_s; W_E), m_i^2(Y_i, \mathbf{Y}_s; W_E))$$

Non-i.i.d. noise estimation

$$q(\sigma_i^2 \mid \mathbf{Y}) = IG(\sigma_i^2 \mid \alpha_i(Y_i, \mathbf{Y}_s; W_D), \beta_i(Y_i, \mathbf{Y}_s; W_D))$$

Non-i.i.d. noise distribution

$$q(\mathbf{S}_i \mid \mathbf{Y}) = TV(\mathbf{S}_i \mid \mathbf{K}_s(\nabla \mathbf{Y}_s; W_s))$$

Sparse noise spatio-spectral gradient

Methodology

2) Flowchart

Methodology

3) Model Optimization

The lower bound of the non-i.i.d. noise

$$\mathcal{L}(\mathbf{Z}, \sigma^2; \mathbf{Y}) = E_{q(\mathbf{Z}, \sigma^2 | \mathbf{Y})} - D_{KL}(q(\mathbf{Z} | \mathbf{Y}) | p(\mathbf{Z})) - D_{KL}(q(\sigma^2 | \mathbf{Y}) | p(\sigma^2))$$

* More details can be found in the following reference

Anisotropic TV term for sparse noise

$$TV(\mathbf{S}_i; \mathbf{Y}) = \|\nabla_v \mathbf{K}_s\|_1 + \|\nabla_h \mathbf{K}_s\|_1$$

Vertical gradient of spectral difference

Horizontal gradient of spectral difference

$$loss(W_E, W_D, W_S) = -\mathcal{L}(\mathbf{Z}, \sigma^2; \mathbf{Y}) + \eta \cdot TV(\mathbf{S}_i; \mathbf{Y})$$

Using BP to optimize W_E , W_D , W_S

- 1 Background
- 2 Methodology
- **Experiments**
- 4 Conclusion

Experiments

Simulated Experiments

	Noisy	HSSNR	BM4D	LRMR	NMoG	SSGN	Proposed
Case 1: i.i.d. Gaussian noise							
MPSNR	23.27	27.25	28.62	33.21	<u>34.51</u>	34.37	34.53
MSSIM	0.769	0.923	0.941	0.981	0.983	0.982	0.982
MSA	19.47	9.083	5.116	4.628	4.127	4.241	4.129
Time/s	-	304.4	461.8	449.6	513.8	7.3	14.8
Case 2: non-i.i.d. Gaussian noise							
MPSNR	19.78	23.51	24.24	28.73	<u>29.76</u>	25.90	30.88
MSSIM	0.654	0.84	0.856	0.958	0.962	0.896	0.976
MSA	23.72	11.34	10.37	6.14	<u>5.73</u>	9.21	5.102
Time/s	-	312.6	479.5	437.9	538.2	7.2	<u>15.0</u>
Case 3: non-i.i.d. Gaussian noise + stripe noise							
MPSNR	20.82	25.64	26.39	28.35	<u>29.98</u>	27.35	30.67
MSSIM	0.669	0.893	0.938	0.957	0.967	0.948	0.974
MSA	22.47	10.92	7.87	6.142	6.298	6.565	5.436
Time/s	-	314.8	486.3	440.7	542.5	7.3	<u>15.1</u>

Model-driven:

- HSSNR (TGRS, 2006)
- BM4D (TIP, 2012)
- LRMR (TGRS, 2014)
- NMoG (TCYB, 2018)

Data-driven:

• SSGN (TGRS, 2019)

Quantitative Evaluation of the W. DC HSI data

Experiments

Real Experiments

(a) Noisy (24, 104, 187)

(b) HSSNR

(c) **BM4D**

(d) LRMR

(e) NMoG

(f) SSGN

(g) Proposed

- 1 Background
- 2 Methodology
- 3 Experiments
- 4 Conclusion

Conclusion

- > Combine the model-driven and data-driven based strategy
- > Deep spatio-spectral Bayesian posterior framework
- > Aiming at mixed noise in hyperspectral image

Paper & Code & Dataset

Thanks!

Qiang Zhang Wuhan University

https://qzhang95.github.io