

Smoothing – from wiki

- In statistics and image processing, to smooth a data set is to create an approximating function that attempts to capture important patterns in the data, while leaving out noise or other fine-scale structures/rapid phenomena.
- Denoising and fairing

Denoising

> Meshes obtained from real world objects are often noisy.

Denoising

> Eliminate noises in high frequency and preserve features.

Noises and features

- What is noise on a surface? What is feature on a surface?
- > High frequencies and low frequencies

Fairing

Compute shapes that are as smooth as possible

Mesh smoothing

- Which part to be removed/preserved?
- Certain prior assumptions
 - > Geometric
 - > Semantic

Outline

- Filter-based methods
 - Laplacian smoothing
 - Bilateral denoising
 - Spectral filters
- Optimization-based methods
- Data-driven methods

Laplacian smoothing

- Diffusion flow: a mathematically well-understood model for the time dependent process of smoothing a given signal f(x, t).
- > Heat diffusion, Brownian motion
- Diffusion equation: $\frac{\partial f(x,t)}{\partial t} = \lambda \Delta f(x,t)$

Laplacian smoothing

- $\Rightarrow \text{ Diffusion equation: } \frac{\partial f(x,t)}{\partial t} = \lambda \Delta f(x,t)$
 - > A second-order linear partial differential equation
 - ightharpoonup Smooth an arbitrary function f on a manifold surface by using Laplace-Beltrami operator
 - Discretize the equation both in space and time

Spatial discretization

- > Sample values at the mesh vertices $f(x,t) = \{f(v_i,t), i = 1, ..., n\}$
- Discrete Laplace calculated on vertices.
- Matrix form: $\vec{F}(t) = (f(v_1, t), ..., f(v_n, t))^T$

$$\frac{\partial \vec{F}(t)}{\partial t} = \lambda L \vec{F}(t)$$

Temporal discretization

- > Uniform sampling: $(t, t + h, t + 2h, \dots)$
- Explicit Euler integration $(h \to 0)$: $\vec{F}(t+h) = \vec{F}(t) + h \frac{\partial \vec{F}(t)}{\partial t} = \vec{F}(t) + h\lambda L\vec{F}(t)$
- > Implicit Euler integration:

$$\vec{F}(t+h) = \vec{F}(t) + h\lambda L\vec{F}(t+h)$$
$$(I-h\lambda L)\vec{F}(t+h) = \vec{F}(t)$$

Laplacian smoothing

- Function: $\vec{F}(t) = \vec{p}(t) = (p_1(t), ..., p_n(t))^T$ $n \times 3$
- ▶ Laplacian smoothing: $p_i \leftarrow p_i + h\lambda(L\vec{p})_i$

Problem - shrinkage

Repeated iterations of Laplacian smoothing shrinks the mesh

Improved Laplacian

Taubin smoothing: Laplacian + expansion

$$p_i \leftarrow p_i + h\lambda(L\vec{p})_i, \lambda > 0; p_i \leftarrow p_i + h\mu(L\vec{p})_i, \mu < 0$$

Improved Laplacian

> Mean curvature : $2H_iN_i = (L\vec{p})_i$

$$\vec{F}(t+h) = \vec{F}(t) + h\lambda L\vec{F}(t), \lambda > 0; \ \vec{F}(t+h) = \vec{F}(t) + h\mu L\vec{F}(t), \mu < 0$$

Fairing

Steady-states of the flow:

$$Lx = 0$$

$$L^2 \boldsymbol{x} = 0$$

$$L^3 \boldsymbol{x} = 0$$

- Gaussian filter: $I(p) \leftarrow \frac{1}{K_p} \sum_{q \in \Omega(p)} W_s(||p-q||) I(q)$
 - $\rightarrow \Omega(p)$ neighborhood of p
 - \triangleright W_S position similarity between $m{p}$ and $m{q}$, Gaussian function with standard deviations
 - $\succ K_p$ is the normalization term, the summation of weights

Solution Gaussian filter: $I(p) \leftarrow \frac{1}{K_p} \sum_{q \in \Omega(p)} W_s(||p-q||) I(q)$

> Gaussian filter:

$$I(p) \leftarrow \frac{1}{K_p} \sum_{q \in \Omega(p)} W_s(||p - q||) I(q)$$

$$I(p) \leftarrow \frac{1}{K_p} \sum_{q \in \Omega(p)} W_s(||p-q||) W_r(||I(p)-I(q)||) I(q)$$
 bilateral filter

$$I_s' = \frac{1}{k_s} \sum_{p} \overbrace{I(p)}^{\text{image}} \ \overbrace{f(s-p)}^{\text{spatial}} \ \underbrace{g(I_s-I_p)}^{\text{influence}}$$

$$k_s = \sum_p f(s-p) \ g(I_s - I_p)$$

Bilateral filtering of meshes

- Height above surface is equivalent to the gray level values in images
- Apply the bilateral filter to heights
- Move the vertex to its new height

How to represent noise-free surface

> A plane that passes through the point is the estimator to the smooth surface

How to represent noise-free surface

- > Approximating plane: (1) a good approximation to surface, (2) preserve features
- > For vertex p with normal n:

For
$$q \in \Omega(p)$$
:
$$d_q = \langle n, q - p \rangle$$

$$w_s = \exp(-\|q - p\|^2/(2\sigma_s))$$

$$w_r = \exp(-d^2/(2\sigma_r))$$

$$d += w_s w_r d_q$$

$$w += w_s w_r$$
End
$$p = p + \frac{d}{w} \cdot n$$

Detail

- Normal: weighted average of the normal
 - 1-ring neighborhood of the vertex.
 - k-ring neighborhood for extremely noisy data
- Mesh shrinkage: volume preservation technique
 - Computing the volume
 - Sclae to preserve volume

Bilateral normal filtering

- > The normals on facets are well-defined
- Considers normals as a surface signal defined over the original mesh
- A novel bilateral normal filter that depends on both spatial distance and signal distance
- Recover vertex positions in global and non-iterative manner

Bilateral normal filtering

$$n_T \leftarrow \frac{1}{K_p} \sum_{T' \in \Omega(T)} A_{T'} W_s(||c_{T'} - c_T||) W_r(||n_{T'} - n_T||) n_T$$

- $oldsymbol{\cdot} \quad n_T$ the normal of face T
- c_T the center of face T
- $\Omega(T)$ the neighbor of face T
- A_T the area of face T

Bilateral normal filtering

- Given the normal on each facet, determine the vertex positions to match the normal as much as possible.
- Local and iterative scheme
 - · update the normal field
 - update the vertex positions
- > Global and non-iterative scheme

Normal updating

Local and iterative scheme:

$$n_T \leftarrow \frac{1}{K_p} \sum_{T' \in \Omega(T)} A_{T'} W_S W_r n_T$$

Global and non-iterative scheme:

$$E = (1 - \lambda)E_S + \lambda E_a$$

- 1. Normalize the new normal after each iteration
- 2. Multiple iterations: increase the influence from a 1-ring neighborhood to a wider region, leading to a smoother mesh.

$$E_{S} = \sum_{T} A_{T} \| (Ln)_{T} \|_{2}^{2}$$

$$E_{a} = \sum_{T} A_{T} \| n_{T} - n_{T}^{0} \|_{2}^{2}$$

Vertex updating

$$\begin{cases} \langle n_T, x_j - x_i \rangle = 0 \\ \langle n_T, x_k - x_j \rangle = 0 \implies E = \sum_T \sum_{ij \in T} \langle n_T, x_j - x_i \rangle^2 \\ \langle n_T, x_i - x_k \rangle = 0 \end{cases}$$

2. Gauss-Seidel iteration (fix other vertex, update one vertex)

$$x_i \leftarrow x_i + \frac{1}{N_i} \sum_{T \in \Omega(i)} \langle n_T, c_T - x_i \rangle n_T$$

- a) No need to determine a suitable step size.
- b) Not computationally expensive. No need to solve a linear system.

Results

Fig. 1: Our mesh denoising schemes based on bilateral normal filtering produce better results than the state-of-the-art methods at challenging regions with sharp features or irregular surface sampling. From left to right: an input CAD-like model with random subdivision, denoising results with bilateral mesh filtering (vertex-based) [1], unilateral normal filtering [2], probabilistic smoothing [3], prescribed mean curvature flow [4], our local, iterative scheme, and our global, non-iterative scheme. All the meshes in the paper are flat-shaded to show faceting.

Spectral filters

> 1D Fourier Transform:

$$F(w) = \int_{-\infty}^{\infty} f(x)e^{-2\pi iwx} dx$$

$$f(x) = \int_{-\infty}^{\infty} F(w) e^{2\pi i w x} dw$$

Spatial domain $f(x) \Leftrightarrow$ frequency domain F(w)

Spectral filters

Spectral filters

> 2-manifold surface:

Sine and cosine functions ⇔ eigenfunctions of the Laplace operator

$$\Delta e_w(x) = -(2\pi w)^2 e_w(x), e_w(x) = e^{2\pi i w x}$$

Definition of eigenfunctions of the Laplace operator

$$\Leftrightarrow Le_i = \lambda_i e_i$$

Spectral filters

$$\mathbf{L} = \mathbf{V} \mathbf{D} \mathbf{V}^{T} \qquad \mathbf{V} = \begin{pmatrix} | & | & | & | \\ \mathbf{v}_{1} & \mathbf{v}_{2} & \dots & \mathbf{v}_{n} \\ | & | & | \end{pmatrix}, \quad \mathbf{D} = \begin{pmatrix} k_{1} & k_{2} & \dots & k_{n} \\ k_{2} & \dots & k_{n} \\ | & & | & | \end{pmatrix}$$

Spectral filters

$$\mathbf{L} = \mathbf{V} \mathbf{D} \mathbf{V}^T$$

$$\mathbf{L} = \mathbf{V} \mathbf{D} \mathbf{V}^{T} \qquad \mathbf{V} = \begin{pmatrix} | & | & | \\ \mathbf{v}_{1} & \mathbf{v}_{2} & \dots & \mathbf{v}_{n} \\ | & | & | \end{pmatrix}, \mathbf{D} = \begin{pmatrix} k_{1} & & \\ & k_{2} & & \\ & & \dots & \\ & & & k_{n} \end{pmatrix}$$

V₅₀

Low-pass filter

$$f = \sum_{i=1}^{m} \langle f, e_i \rangle e_i, m < n$$

 \rightarrow Replace f with vertex coordinates

Other filters

Figure 5: Low-pass, enhancement and band-exaggeration filters. The filter can be changed by the user, the surface is updated interactively.

Discussion

- Computationally expensive
 - Paper: Fast Approximation of Laplace-Beltrami Eigenproblems, SGP 2018
- > A very useful representation of triangle mesh
 - 3D printing
 - Reduced-Order Shape Optimization Using Offset Surfaces, SIGGRAPH 2015
 - Non-Linear Shape Optimization Using Local Subspace Projections, SIGGRAPH 2016
 - Face modeling simplification and Laplacian coordinate for details

Outline

- > Filter-based methods
- Optimization-based methods
 - L_0 smoothing
 - Total Variation
- Data-driven methods

Prior

> The model consists of flat regions

$\overline{L_0}$ Smoothing

- \triangleright Paper: Mesh denoising via L_0 minimization
 - > Maximizes flat regions and gradually removes noise while preserving sharp features.
- ightarrow From image processing Paper: Image smoothing via L_0 gradient minimization

L_0 minimization for images

- > Energy: $|c c^*|^2 + \lambda |\nabla c|_0$
 - > c: a vector of pixel colors
 - $\rightarrow c^*$: original image colors
 - $\triangleright \nabla c$: a vector of gradients of these colors
 - $\triangleright |\nabla c|_0 : L_0 \text{ norm of } \nabla c$

Optimization method

> Auxiliary variables δ :

$$\min_{c,\delta} |c - c^*|^2 + \beta |\nabla c - \delta|^2 + \lambda |\delta|_0$$

- Alternating optimization:
 - Fix c, solve δ subproblem: $\min_{\delta} \beta |\nabla c \delta|^2 + \lambda |\delta|_0$ Analytic solution
 - Fix δ , solve c subproblem: $\min |c c^*|^2 + \beta |\nabla c \delta|^2$ Quadratic

δ – subproblem

$$| \text{If } \delta = 0, \beta | \nabla c - \delta |^2 + \lambda |\delta|_0 = \beta |\nabla c|^2$$

$$| \text{If } \delta \neq 0, \beta | \nabla c - \delta |^2 + \lambda |\delta|_0 \geq \lambda$$

$$\beta |\nabla c - \delta|^2 + \lambda |\delta|_0 \ge \min(\beta |\nabla c|^2, \lambda)$$

$$\delta = \begin{cases} 0, & \beta |\nabla c|^2 \le \lambda \\ \nabla c, & \beta |\nabla c|^2 > \lambda \end{cases}$$

Figure 13: *Image abstraction and pencil sketching results. Ou method removes the least important structures.*

Mesh denoising

- > $c \rightarrow$ vertex coordinate p
- > $\nabla c \rightarrow$ discrete differential operator
- Define on edges

Figure 2: From left to right: noisy input surface with $\sigma = 0.3l_e$, vertex-based cotangent operator, our cotangent edge operator, our area-based edge operator. The bottom row shows wireframes with flipped triangles denoted by red edges. None of these results use regularization.

Differential edge operator

Flat
$$\Leftrightarrow |\nabla c| = 0$$

$$> \nabla_{p_2} A_{p_1 p_2 p_3} + \nabla_{p_4} A_{p_1 p_3 p_4}$$

•
$$D(e) = \begin{bmatrix} -\cot\theta_{2,3,1} - \cot\theta_{1,3,4} \\ \cot\theta_{2,3,1} + \cot\theta_{3,1,2} \\ -\cot\theta_{3,1,2} - \cot\theta_{4,1,3} \\ \cot\theta_{1,3,4} + \cot\theta_{4,1,3} \end{bmatrix}^T \begin{bmatrix} p_1 \\ p_2 \\ p_3 \\ p_4 \end{bmatrix}$$

•
$$|D(e)| = 2\sin(\frac{\gamma}{2})|p_3 - p_1|$$

Problem of cotan weights

The issue stems from degenerate
 triangles where the cotan weights
 approach infinity as an angle
 approaches zero

Figure 2: From left to right: noisy input surface with $\sigma = 0.3l_e$, vertex-based cotangent operator, our cotangent edge operator, our area-based edge operator. The bottom row shows wireframes with flipped triangles denoted by red edges. None of these results use regularization.

Area-based edge operator

$$D(e) = \begin{bmatrix} -\cot\theta_{2,3,1} - \cot\theta_{1,3,4} \\ \cot\theta_{2,3,1} + \cot\theta_{3,1,2} \\ -\cot\theta_{3,1,2} - \cot\theta_{4,1,3} \\ \cot\theta_{1,3,4} + \cot\theta_{4,1,3} \end{bmatrix}^T \begin{bmatrix} p_1 \\ p_2 \\ p_3 \\ p_4 \end{bmatrix} \times ||p_1 - p_3||_2^2$$

ullet Similarly: when p_j are planar: $0 = \sum_{j} \omega_{j} p_{j}, 0 = \sum_{j} \omega_{j}$ $\omega_1 = -\Delta_{2,3,4}, \omega_2 = \Delta_{1,3,4},$ $\omega_3 = -\Delta_{1,2,4}, \, \omega_4 = \Delta_{1,2,3}$

Results

Figure 9: From left to right: the input mesh with large noise in random directions, bilateral filtering [Fleishman et al. 2003], prescribed mean curvature flow [Hildebrandt and Polthier 2004], mean filtering [Yagou et al. 2002], bilateral normal filtering [Zheng et al. 2011], our result. We show the wireframe of each surface below.

Total variation-based method

- Replace the vertex positions with the normals.
 - Facet normal filtering total variation
 - Vertex updating iterative updating
- How to remove the noise and preserve the sharp feature?
 - Sharp feature is sparse.
 - Normal difference on edge is sparse

Total variation-based method

$$\min E_{TV} + \alpha E_{\alpha}$$

1.
$$E_{TV} = \sum_{e} w_e l_e \sqrt{\|\nabla n_e\|_2^2}$$
,

where
$$\nabla n_e = n_1 - n_2$$
, $w_e = \exp(-\|n_1^* - n_2^*\|_2^4)$

2.
$$E_{\alpha} = \sum_{f} ||n_{f} - n_{f}^{*}||_{2}^{2}$$

Outline

- > Filter-based methods
- Optimization-based methods
- Data-driven methods
 - Mesh Denoising via CascadedNormal Regression

A highly nonlinear function

Mesh Denoising via Cascaded Normal Regression

Goal: learn the relationship between noisy geometry and the ground truth geometry

$$n_f = \mathcal{F}(\Omega_f)$$
, Ω_f : local noisy region

Cascaded Regression

- The output from the current regression function serves as the input of the next regression function
- Each regression function: a neural network with a single hidden layer

Offline training stage

> A training pair: (S_i, \bar{n}_i)

 S_i : filtered face normal descriptor (FND) of ith face

 $ar{n}_i$: ground-truth face normal

> Goal - learn the function:

$$\mathcal{F}: S_i \to \overline{n}_i, \forall i$$

Runtime denoising stage

- > Extract FND for each face
- ightarrow Apply ${\mathcal F}$ to obtain new normal for each face
- Recover vertices with known normal

Bilateral normal filtering

$$n_T^{(k+1)} \leftarrow \frac{1}{K_p} \sum_{T' \in \Omega(T)} A_{T'} W_s(||c_{T'} - c_T||) W_r(||n_{T'}^{(k)} - n_T^{(k)}||) n_T^{(k)}$$

Parameters: σ_s , σ_r , iteration number M

Bilateral filtered face normal descriptor (B-FND)

$$S_T = (n_T^{(1)}(\sigma_{s_1}, \sigma_{r_1}), \dots, n_T^{(1)}(\sigma_{s_L}, \sigma_{r_L}), \dots, n_T^{(M)}(\sigma_{s_1}, \sigma_{r_1}), \dots, n_T^{(M)}(\sigma_{s_L}, \sigma_{r_L}))$$

Guided bilateral filter (joint bilateral filter)

$$n_T^{(k+1)} \leftarrow \frac{1}{K_p} \sum_{T' \in \Omega(T)} A_{T'} W_s(||c_{T'} - c_T||) W_r(||g(n_{T'}^{(k)}) - g(n_T^{(k)})||) n_T^{(k)}$$

Gaussian normal filter:
$$g\left(n_T^{(k)}\right) = \frac{1}{K_p} \sum_{T' \in \Omega(T)} A_{T'} W_s\left(\left|\left|c_{T'} - c_T\right|\right|\right) n_T^{(k)}$$

Guided filtered face normal descriptor (G-FND)

$$S_{g,T} = (n_{g,T}^{(1)}(\sigma_{s_1}, \sigma_{r_1}), \dots, n_{g,T}^{(1)}(\sigma_{s_L}, \sigma_{r_L}), \dots, n_{g,T}^{(M)}(\sigma_{s_1}, \sigma_{r_1}), \dots, n_{g,T}^{(M)}(\sigma_{s_L}, \sigma_{r_L}))$$

Training data

- > A dataset: $D = \{S_i, \bar{n}_i\}_{i=1}^N, S_i = [S_T(i), S_{g,T}(i)]$
- \triangleright First Partition the training data into K_c clusters via a k-means algorithm
- For each cluster D_l : 85% the training set D_{l1} , 15% validation set D_{l2}

Cascaded scheme

G-FND in the first regression function

Choice of hyperparameters

- σ_s : $\{l_e, 2l_e\}$, l_e is the average edge length.
- > σ_r : {0.1,0.2,0.35,0.5, ∞ }
- $\rightarrow K = 1$

> 3 cascaded regressions are enough to generate good results.

Results

