STOCHASTIC PROCESSES

Fall 2017

Week 4

Solutions by

JINHONG DU

15338039

Let X_1, X_2, \dots, X_n be independent continuous random variables with common density function f. Let $X_{(i)}$ denote the ith smallest of X_1, X_2, \dots, X_n .

(e) Let S_i denote the time of the *i*th event of the Poisson process $\{N(t), t \ge 0\}$. Find $\mathbb{E}[S_i|N(t) = n]$ for $i \le n$ and i > n.

(1) $i \leqslant n$

 \therefore given that $N(t) = n, S_1, \dots, S_n$ have the same distribution as the order statistics corresponding to n independent random variables uniformly distributed on the interval (0, t)

: ,

$$f_{S_i|N(t)=n}(x) = \frac{n!}{(i-1)!(n-i)!} \cdot \left(\frac{x}{t}\right)^{i-1} \left(1 - \frac{x}{t}\right)^{n-i} \frac{1}{t} \mathbf{1}_{[0,t]}(x)$$

٠.

$$\begin{split} \mathbb{E}[S_i|N(t) = n] &= \int_0^t \frac{n!}{(i-1)!(n-i)!} \cdot \left(\frac{x}{t}\right)^{i-1} \left(1 - \frac{x}{t}\right)^{n-i} \frac{1}{t} x \mathrm{d}x \\ &= \frac{n!}{(i-1)!(n-i)!} t \cdot Beta(i+1,n-i+1) \\ &= \frac{n!}{(i-1)!(n-i)!} t \frac{\Gamma(i+1)\Gamma(n-i+1)}{\Gamma(n+2)} \\ &= \frac{i}{n+1} t \end{split}$$

(2) i > n

$$\mathbb{P}\{S_{i} \leq s | N(t) = n\} = \mathbb{P}\{N(s) - N(t) \geq i - n | N(t) - N(0) = n\} \\
= \mathbb{P}\{N(s) - N(t) \geq i - n\} \\
= \mathbb{P}\{N(s - t) - N(0) \geq i - n\} \qquad \text{(stationary increments)} \\
= \mathbb{P}\{N(s - t) \geq i - n\} \\
= \mathbb{P}\{S_{i-n} \leq s - t\} \\
= \int_{0}^{s-t} \frac{(\lambda x)^{i-n-1}}{(i - n - 1)!} \lambda e^{-\lambda x} dx \\
f_{S_{i}|N(t)=n}(s) = \frac{\lambda^{i-n-1}(s - t)^{i-n-1}}{(i - n - 1)!} \lambda e^{-\lambda(s - t)} \\
\mathbb{E}[S_{i}|N(t) = n] = \int_{t}^{\infty} \frac{\lambda^{i-n-1}(s - t)^{i-n-1}}{(i - n - 1)!} \lambda e^{-\lambda(s - t)} s ds \\
= \frac{x - \lambda(s - t)}{1} \frac{1}{\lambda} \int_{0}^{\infty} \frac{x^{i-n}}{(i - n - 1)!} e^{-x} dx + t \int_{0}^{\infty} \frac{x^{i-n-1}}{(i - n - 1)!} e^{-x} dx \\
= \frac{\Gamma(i - n + 1)}{\lambda(i - n - 1)!} + t \frac{\Gamma(i - n)}{(i - n - 1)!} \\
= \frac{i - n}{\lambda} + t$$

Let T_1, T_2, \cdots denote the interarrival times of events of a non-homogeneous Poisson process having intensity function $\lambda(t)$.

(a) Are the T_i independent?

Let $m(t) = \int_0^t \lambda(s) ds$. We know that $\forall t, s > 0, N(t+s) - N(s) \sim Poisson(m(t+s) - m(s))$. That is,

$$\mathbb{P}(N(t+s) - N(s) = n) = \frac{[m(t+s) - m(s)]^n}{n!} e^{-[m(t+s) - m(s)]}$$

No, T_i 's are not independent. For example, the conditional probability of $T_2 > t$ given $T_1 = s$ is

$$\mathbb{P}(T_2 > t | T_1 = s) = \mathbb{P}(0 \text{ events in } (s, s+t] | T_1 = s)$$
$$= \mathbb{P}(0 \text{ events in } (s, s+t])$$
$$= e^{-[m(s+t)-m(s)]}$$

which depends on s, i.e. T_2 depends on T_1 .

(b) Are the T_i identically distributed?

No. Since the rates are non-homogeneous, the T_i will not be identically distributed.

(c) Find the distribution of T_1 .

Since $T_1 > t$ means no event occurs before time t, i.e., N(t) = 0, we can derive the distribution function of T_1 , $F_{T_1}(t)$ as follows

$$F_{T_1}(t) = \mathbb{P}(T_1 \leqslant t)$$

$$= 1 - \mathbb{P}(T_1 > t)$$

$$= 1 - \mathbb{P}(N(t) = 0)$$

$$= 1 - e^{-m(t)}$$

Therefore, the density function of T_1 is

$$f_{T_1}(t) = \frac{\mathrm{d}}{\mathrm{d}t} F_{T_1}(t)$$
$$= \lambda(t) e^{-m(t)}$$

(d) Find the distribution of T_2 .

$$F_{T_2}(t) = \mathbb{P}(T_2 \le t)$$

$$= 1 - \mathbb{P}(T_2 > t)$$

$$= 1 - \int_0^\infty \mathbb{P}(T_2 > t | T_1 = s) f_{T_1}(s) ds$$

$$= 1 - \int_0^\infty e^{-[m(t+s) - m(s)]} \lambda(s) e^{-m(s)} ds$$

$$= 1 - \int_0^\infty \lambda(s) e^{-m(s+t)} ds$$

Therefore, the density function of T_2 is

$$f_{T_2}(t) = \frac{\mathrm{d}}{\mathrm{d}t} F_{T_2}(t)$$

$$= \int_0^\infty \lambda(s) \frac{\mathrm{d}}{\mathrm{d}t} e^{-m(s+t)} \mathrm{d}s$$

$$= \int_0^\infty \lambda(s) \lambda(s+t) e^{-m(s+t)} \mathrm{d}s$$

2.39

Compute Cov(X(s), X(t)) for a compound Poisson process.

Suppose that X_1, X_2, \cdots independent identical distributed with distribution F and each of them has mean μ and variance σ^2 .

(1) s = t,

$$Cov(X(s), X(t)) = Var[X(s)]$$

= $s(\mu^2 + \sigma^2)$

(2) $s \neq t$, suppose that s < t

$$Cov(X(s), X(t)) = \frac{1}{2} \left\{ Var[X(s)] + Var[X(t)] - Var[X(t) - X(s)] \right\}$$

$$= \frac{1}{2} \left\{ \lambda s(\mu^2 + \sigma^2) + \lambda t(\mu^2 + \sigma^2) - Var[X(t - s)] \right\}$$

$$= \frac{1}{2} \left\{ \lambda s(\mu^2 + \sigma^2) + \lambda t(\mu^2 + \sigma^2) - \lambda(t - s)(\mu^2 + \sigma^2) \right\}$$

$$= \lambda s(\mu^2 + \sigma^2)$$