1. A compound of formula (I)

wherein

R is hydrogen, lower alkyl, (C₃-C₆)cycloalkyl, hydroxy, halo, lower alkoxy, trifluoromethoxy, trifluoromethyl or cyano; and

A is biaryl, optionally substituted β -naphthyl, bicyclic heterocyclic aryl, (C_3-C_6) cycloalkyl-monocyclic carbocyclic aryl, or $(C_5$ or $C_6)$ cycloalkane fused-monocyclic carbocyclic aryl; provided that when bicyclic heterocyclic aryl is optionally substituted quinolinyl, R is located at the 5-position and R does not represent hydrogen; or a pharmaceutically acceptable salt thereof; or a pharmaceutically acceptable ester thereof.

- 2. A compound according to claim 1, wherein A represents optionally substituted β -naphthyl, optionally substituted quinolinyl, optionally substituted isoquinolinyl, optionally substituted 5,6,7,8-tetrahydronaphthyl, optionally substituted indanyl, optionally substituted biphenylyl, optionally substituted (C_3 - C_6)cycloalkyl-phenyl or optionally substituted monocyclic heteroaryl-phenyl; provided that when A is optionally substituted quinolinyl, R is located at the 5-position and R does not represent hydrogen.
- 3. A compound according to claim 1 of formula (II)

$$R$$
 CH_2COOH
 R
 R_1
 R_2
 R_3
 R_4
 R_4

wherein

R is hydrogen, (C₁-C₄)alkyl, (C₃-C₆)cycloalkyl, halo, lower alkoxy, trifluoromethoxy, cyano or trifluoromethyl;

R₁ is hydrogen, fluoro, chloro, (C₁ or C₂)alkyl-or trifluoromethyl;

R₂ is hydrogen, fluoro, chloro, (C₁ or C₂)alkyl or trifluoromethyl;

R₃ is optionally substituted phenyl or (C₃-C₆)cycloalkyl;

R4 is hydrogen, halo, lower alkyl or trifluoromethyl; and

R₅ is halo, lower alkyl or trifluoromethyl;

or a pharmaceutically acceptable salt thereof; or a pharmaceutically acceptable ester thereof.

4. A compound according to claim 3 of formula (II), wherein

R is hydrogen, methyl, ethyl, propyl, methoxy, chloro, fluoro, cyclopropyl, cyano, trifluoromethoxy or trifluoromethyl;

R₁, R₂, R₄ and R₅ are, independently, hydrogen, fluoro or chloro; and

 R_3 is (C_3-C_6) cycloalkyl, phenyl, or phenyl mono- or poly-substituted independently by lower alkyl, fluoro, chloro, lower alkoxy or $(C_1$ or $C_2)$ alkylenedioxy;

or a pharmaceutically acceptable salt thereof; or a pharmaceutically acceptable ester thereof.

5. A compound according to claim 1 of formula (III)

$$R$$
 CH_2COOH
 R_1
 R_2
 R_3
 R_4
 R_4
 R_3

wherein

R is hydrogen, (C₁-C₄)alkyl, (C₃-C₆)cycloalkyl, halo, lower alkoxy, trifluoromethoxy or trifluoromethyl;

R₁ is hydrogen, chloro, fluoro or (C₁ or C₂)alkyl;

R₂ is hydrogen or fluoro;

R₃ is cyclopropyl, cyclohexyl, phenyl or phenyl substituted by chloro, fluoro, lower alkoxy, lower alkyl or lower alkylenedioxy;

R₄ is hydrogen, (C₁ or C₂)alkyl, trifluoromethyl or fluoro; and

R₅ is fluoro, chloro or (C₁ or C₂)alkyl;

or a pharmaceutically acceptable salt thereof; or a pharmaceutically acceptable ester thereof.

6. A compound according to claim 5,

wherein

R is (C₁ or C₂)alkyl, cyclopropyl, chloro or fluoro;

R₁ is chloro or fluoro;

R₂ is hydrogen or fluoro;

R₃ is cyclopropyl;

R₄ is hydrogen, methyl or fluoro; and

R₅ is fluoro;

or a pharmaceutically acceptable salt thereof; or a pharmaceutically acceptable ester thereof.

7. A compound according to claim 1 of formula (I), wherein

R is hydrogen, lower alkyl, (C₃-C₆)cycloalkyl, halo, lower alkoxy, trifluoromethoxy, cyano or trifluoromethyl; and

A is selected from radicals (a) and (b)

$$R_6$$
 R_8
 $(CH_2)_n$

wherein in radical (a)

n is 1 or 2; and

R₆-R₈ are independently hydrogen, lower alkyl or halo; and

wherein in radical (b)

R₉-R₁₂ are independently hydrogen, lower alkyl or halo; and

X and Y are CH, or one of the X and Y is N and the other is CH; provided that when X is N and Y is CH, R is located at the 5-position and R does not represent hydrogen;

or a pharmaceutically acceptable salt thereof; or a pharmaceutically acceptable ester thereof.

8. A compound according to claim 1 of formula (la)

wherein R and A have meaning as defined in said claim; or a pharmaceutically acceptable salt thereof.

- A pharmaceutical composition comprising an effective amount of a compound of claim 1 in combination with one or more pharmaceutically acceptable carriers.
- 10. A method of treating cyclooxygenase-2 (COX-2) dependent disorders in mammals which comprises administering to a mammal in need thereof an effective amount of a compound of claim 1.
- 11. A method of selectively inhibiting COX-2 activity in a mammal without substantially inhibiting cyclooxygenase-1 activity which comprises administering to a mammal in need thereof an effective COX-2 inhibiting amount of a compound of claim 1.
- 12. A method of treating rheumatoid arthritis, osteoarthritis, dysmenorrhea, pain, tumors or inflammation in mammals which comprises administering to a mammal in need thereof a correspondingly effective amount of a compound of claim 1.
- 13. A method for the preparation of a compound of formula (I) of claim 1 which comprises:
 - a) coupling a compound of formula (IV) or (IVa)

wherein

Z is iodo or bromo;

R has meaning as defined in claim 1;

 $\ensuremath{\mathsf{R}}_{\ensuremath{\mathsf{a}}}$ is hydrogen, an alkali metal cation or lower alkyl, preferably isopropyl; and

R₁₃ and R₁₄ are lower alkyl; or R₁₃ and R₁₄ together with the nitrogen atom represent piperidino, pyrrolidino or morpholino;

with a compound of formula (V)

$$A - NH_2$$
 (V)

wherein A has meaning as defined in claim 1, in the presence of copper and cuprous iodide to obtain a compound of formula (VI) or (VIa)

$$R \leftarrow CH_2CON$$
 R_{13}
 R_{14}
 R_{15}
 R_{15}
 R_{15}
 R_{16}
 R_{16}
 R_{17}
 R_{18}
 R_{19}
 R_{19

and hydrolyzing the resulting compound of formula (VI) or (VIa) to a compound of formula (I); or

(b) hydrolyzing a lactam of formula (IX)

wherein

R and A have meaning as defined in claim 1, with a strong base; and

in above processes, if desired, temporarily protecting any interfering reactive groups and then isolating the resulting compound of the invention; and, if desired, converting any resulting compound into another compound of the invention; and/or if desired converting a free carboxylic acid of the invention into a pharmaceutically acceptable ester derivative thereof; and/or if desired, converting a resulting free acid into a salt or a resulting salt into the free acid or into another salt.