

Monitoramento e Gerenciamento de Redes - Aula 01 -

Mauro Cesar Bernardes

Mauro Cesar Bernardes

profmauro.bernardes@fiap.com.br

- Graduado em Ciência da Computação pela UNIFENAS (1995).
- Pós-Graduação em Informática Gerencial pela FAI/MG (1997).
- Mestrado (1999) e Doutorado (2005) em Ciência da Computação pela Universidade de São Paulo (USP).
- Coordenador Executivo de TI STI /USP
- Professor convidado Laboratório de Sustentabilidade da POLI/USP, Pós-Graduação Mackenzie

Possui experiência na área de Ciência da Computação com ênfase em Governança de TIC e Segurança Computacional, atuando principalmente nos seguintes temas: Governança de TIC, Gerenciamento de Serviços de TIC, Redes de Computadores e Segurança da Informação.

Plano de Aula

Objetivo

- Apresentar o conteúdo programático;
- Análise de cenários em redes de computadores.
- Revisar alguns conceitos importantes;
- Preparar para o primeiro projeto avançado de redes.

Conteúdo

- Endereços de camada de enlace
- Endereços de camada de rede
- Switch

Metodologia

 Aula expositiva sobre os conceitos de Switch, com desenvolvimento de atividade prática e configuração em simulador (Packet Tracer).

Agenda do Primeiro semestre

Início das aulas

Agenda do Primeiro semestre

Fevereiro	
07	- Início das aulas (veteranos)
21	- Início das aulas (calouros)
28	- Carnaval – (aulas suspensas)
Março	
01	- Carnaval – (aulas suspensas)
02	- Quarta-feira de cinzas - (aulas suspensas)
03 a 11	 Período para solicitação de mudança de turma e curso Período para solicitação de dispensa de disciplina e de prova de proficiência
14 a 16	 Divulgação dos pedidos de mudanças de turma e curso Período para regulamentação das disciplinas em regime de dependência
14 a 18	- Divulgação das dispensas de disciplinas
21 a 25	- Prova de proficiência.

Abril 04/04 - Divulgação dos resultados das provas de proficiências. - Quinta-feira Santa (aulas suspensas) 15 - Sexta-feira Santa (aulas suspensas) 17 - Pascoa - Tiradentes (aulas suspensas) 21 - Recesso - (aulas suspensas) 22 Maio - Dia Mundial do trabalho 01 30/05 a 10/06 - Período de avaliações semestrais. Junho 16 - Corpus Christi (aulas suspensas) 17 - Recesso - (aulas suspensas) - Período de avaliações semestrais de disciplinas de dependência. 13 a 15 - Período de solicitação de provas substitutivas regulares e de DP. 13 a 20 - Provas substitutivas regulares e DP. 21 a 24 24 a 30 - Vistas de provas. 30 - Divulgação dos resultados das avaliações semestrais. Julho - Período de férias 01 a 30 Agosto 01 - Retorno das férias

Conteúdo Programático – Anual

- 1. Endereçamento IPV4
 - 1.1. Suas Classes;
 - 1.2. Subredes;
 - 1.3. CIDR;
 - 1.4. VLSM.
- 2. Serviços
 - 2.1. Hospedagem;
 - 2.2. DNS e DDNS;
 - 2.3. FTP e VPN.
- 3. Roteadores
 - 3.1. Modos de configuração;
 - 3.2. Memórias;
 - 3.3. Interfaces;
 - 3.4. Comandos de configuração.
- 4. Roteamento
 - 4.1. Estático;
 - 4.2. Dinâmico;
 - 4.3. RIP; OSPF; EIGRP; BGP.

- 5. Switches e Redes Hierárquicas
 - 5.1. Switch, modos, memórias e
 - interfaces;
 - 5.2. Dispositivos da camada de enlace;
 - 5.3. VLAN;
 - 5.4. Trunking;
 - 5.5. Redes hierárquicas;
 - 5.6. STP.
- 6. Gerenciamento e Monitoramento
 - 6.1. Inventário da Rede;
 - 6.2. Ferramentas para inventário da rede;
 - 6.3. Monitoramento da rede, ICMP e SNPM;
 - 6.4. Ferramentas para o monitoramento da rede.
- **7. IPv6**
 - 7.1. Estrutura dos endereços IPv6.

Exemplo de grandes Backbones

Exemplo de grandes Backbones

Questões Iniciais

Breve Revisão

- Modelo OSI x TCP/IP
- Endereços da camada de Enlace/Acesso à rede
- Endereços de camada de Rede/Internet
- Switches

Revisão: OSI x TCP/IP

Revisão: OSI x TCP/IP

Revisão: TCP/IP

Endereço MAC

(A camada de Enlace/Acesso à Rede)

Endereço MAC

- Tecnologias como Ethernet possuem esquemas próprios de endereçamento no nível de enlace.
- Normalmente, os protocolos do nível MAC (*Media Access Control*) usam endereços físicos na formatação das suas primitivas.
- Logo, no nível MAC, para que um frame possa enviado de um host a outro em um enlace de dados, o endereço físico do host destino deve ser conhecido.
- Endereço MAC = Endereço Ethernet = endereço físico

Endereço Físico: Representação

- O tamanho (número de bits) do endereço físico varia conforme a tecnologia de rede.
- No caso da tecnologia Ethernet para redes locais, esse endereço Físico é conhecido como endereço MAC (Media Access Control) e é estruturado da seguinte forma:
 - os endereços têm 48 bits (6 bytes), representados por seis números hexadecimais, separados por ":"
 - os 3 primeiros bytes definem o identificador do fabricante
 - os 3 últimos bytes são definidos pelo fabricante, de forma única
 - Exemplos: 02:60:8C:03:1D:91; 08:00:5A:07:4B:95; 00:60:2F:FA:78:C6

Endereço Físico: Camada 2

- Cada interface de rede (NIC Network Interface Card) vem com um identificador único e exclusivo de fábrica.
- Este identificador é conhecido como: endereço físico, endereço de *hardware* da interface ou endereço MAC.
- Para garantir que não haverá conflitos de endereços, fabricantes de interfaces de rede (ex. Ethernet) devem ser registrados junto a uma autoridade central.
- O código identificador do fabricante é chamado de OUI *Organizationally Unique Identifier*.

Endereço MAC: Camada 2

- O **Endereço MAC** (*Media Access Control*) é um endereço físico associado à interface de comunicação, que conecta um dispositivo à rede.
- O MAC é um endereço "único", não havendo duas interfaces com a mesma numeração.
- Esse endereço é utilizado para controle de acesso em redes de computadores (acesso à Rede Local (LAN).
- Sua identificação é **gravada em** *hardware*, isto é, na memória ROM da placa de rede de equipamentos como *desktops*, *notebooks*, roteadores, *smartphones*, *tablets*, impressoras de rede.

Endereço MAC: Representação

- O endereço MAC é formado por um conjunto de 6 bytes separados por dois pontos (":") ou hífen ("-"), sendo cada byte representado por dois algarismos na forma hexadecimal, como por exemplo: "00:19:B9:FB:E2:58".
- Cada algarismo em hexadecimal corresponde a uma palavra binária de 4 bits, desta forma, os 12 algarismos que formam o endereço totalizam 48 bits (6 bytes).
- Há uma padronização dos endereços MAC administrada pela IEEE (Institute of Electrical and Electronics Engineers) que define que os três primeiros bytes, chamados OUI (Organizationally Unique Identifier), são destinados a identificação do fabricante - eles são fornecidos pela própria IEEE.
- Os três últimos bytes são definidos pelo fabricante, sendo este responsável pelo controle da numeração de cada placa que produz.
- Apesar de ser único e gravado em hardware, o endereço MAC pode ser alterado através de técnicas específicas.

DE	FINIDO PELO IEE	E	DEFINIDO PELO FABRICANTE					
		1	r					
1 BYTE	1 BYTE	1 BYTE	1 BYTE	1 BYTE	1 BYTE			

Endereço Físico: Visualização

- O endereço da camada de enlace, também chamado de endereço físico ou endereço MAC pode ser facilmente visualizado nos sistemas operacionais:
 - Microsoft Windows, utilizando-se o comando ipconfig /all
 - Em sistemas Unix, o comando ifconfig exibe as interfaces e seus respectivos endereços de enlace
- A seguir são exibidas as saídas resumidas dos comandos ipconfig/all e ifconfig, respectivamente.


```
c: \>ipconfig/all
```

Adaptador Ethernet Conexão local:

Endereço físico : 00-88-14-4D-4C-FB

~\$ ifconfig

eth0 Link encap:Ethernet__Endereço de HW__00:1D:7D:B2:34:F9 inet end.:

192.168.88.50 Bcast:192.168.88.255 Mask:255.255.255.0

Endereço Físico: Visualização

Endereço Físico: Visualização

Endereço de Broadcast: Camada 2

Em redes locais seguindo o padrão Ethernet, o endereço MAC de broadcast é em hexadecimal é **FF-FF-FF-FF-FF**.

Endereço Internet Protocol (IP)

(A camada de Rede)

Atribuição do endereço IP

Atribuição do endereço IPv4

Formato do Endereçamento IPv4

131.108.122.204

Representado em formato decimal, separados por ponto, contendo número de 0 a 255

10000011 01101100 01111010 11001100 Endereço de 32 bits

10000011.01101100.01111010.11001100

Endereço agrupado em bytes

131.108.122.204

Parte da Rede Parte do Host

Binário	Decimal
00000000	0
11111111	255

Formato do Endereçamento IPv4

Classes de Endereços IPv4

Classe D

Primeiro byte: 224 a 239

Classe E

Primeiro byte: 240 a 255

Revisando

Revisando

Revisando

Representação do endereço IPv6

Os endereços IPv6 têm 128 bits e são escritos como uma sequência de valores hexadecimais, muitas vezes chamados de hextetos.

Cada 4 bits são representados por um único dígito hexadecimal, totalizando 32

dígitos hexadecimais, como mostra a Figura.

 Os endereços IPv6 não diferenciam maiúsculas e minúsculas e podem ser escritos tanto em minúsculas como em maiúsculas

Representação do endereço IPv6: Formato preferencial

- Como mostrado na Figura, o formato preferencial para escrever um endereço IPv6 é:
 - x: x: x: x: x: x: x, com cada "x" consistindo de quatro valores hexadecimais.
- Quando falamos de 8 bits de um endereço IPv4, usamos o termo **octeto** (um endereço IPv4 é representado 4 octetos).
- No IPv6, um hexteto é o termo não oficial usado para se referir a um segmento de 16 bits ou quatro valores hexadecimais (um endereço IPv6 é representado por 8 hextetos).
- Cada "x" equivale a um único hexteto, 16 bits ou quatro dígitos hexadecimais.

Representação do endereço IPv6: Formato preferencial

- Formato preferencial significa que o endereço IPv6 é gravado usando todos os 32 dígitos hexadecimais.
- Isso n\u00e3o significa necessariamente que \u00e9 o m\u00e9todo ideal para representar o endere\u00f3o IPv\u00e3.
- Veremos duas regras para ajudar a reduzir o número de dígitos necessários para representar um endereço IPv6.

Representação do endereço IPv6: Formato preferencial

A Figura apresenta exemplos de endereços IPv6 no formato preferencial.

32 dígitos	2001	:	0DB8		0000	:	1111	:	0000	:	0000	:	0000	:	0200
32 digitos	2001		0000		0000				0000		0000		0000		
	2001	:	0DB8	:	0000	:	00A3	:	ABCD	:	0000	:	0000	:	1234
	2001	:	0DB8	:	000A	:	0001	:	0000	:	0000	:	0000	:	0100
	2001	:	0DB8	:	AAAA	:	0001	:	0000	:	0000	:	0000	:	0200
	FE80	:	0000	:	0000	:	0000	:	0123	:	4567	:	89AB	:	CDEF
	FE80	:	0000	:	0000	:	0000	:	0000	:	0000	:	0000	:	0001
	FF02	:	0000	:	0000	:	0000	:	0000	:	0000	:	0000	:	0001
	FF02	:	0000	:	0000	:	0000	:	0000	:	0001	:	FF00	:	0200
	0000	:	0000	:	0000	:	0000	:	0000	:	0000	:	0000	:	0001
	0000	:	0000	:	0000	:	0000	:	0000	:	0000	:	0000	:	0000

Omitir 0 à esquerda:

- A primeira regra para ajudar a reduzir a notação de endereços IPv6 é omitir os 0s (zeros) à esquerda de qualquer seção de 16 bits ou hexteto. Por exemplo:
 - 01AB pode ser representado como 1AB
 - 09F0 pode ser representado como 9F0
 - 0A00 pode ser representado como A00
 - 00AB pode ser representado como AB
- Essa regra se aplica somente aos 0 à esquerda, e NÃO aos 0 à direita.
- Caso contrário, o endereço ficaria ambíguo.
- Por exemplo, o hexteto "ABC" poderia ser "OABC" ou "ABCO", mas essas duas representações não se referem ao mesmo valor

- As Figuras mostram vários exemplos de como a omissão dos 0 à esquerda pode ser usada para reduzir o tamanho de um endereço IPv6.
- O formato preferencial é exibido para cada exemplo.
- Observe como a omissão dos 0 à esquerda em cada exemplo resulta em uma representação menor do endereço

Preferencial	0000:0000:0000:0000:0000:0000:0000	Preferencial	2001:0DB8:0000:A300:ABCD:0000:0000:1234
Nenhum 0 à esquerda	0: 0: 0: 0: 0: 0: 0	Nenhum 0 à esquerda	2001: DB8: 0:A300:ABCD: 0: 0:1234
Preferencial	2001:0DB8:000A:1000:0000:0000:0000:0100	Preferencial	FE80:0000:0000:0000:0123:4567:89AB:CDEF
Nenhum 0 à esquerda	2001: DB8: A:1000: 0: 0: 100	Nenhum 0 à esquerda	FE80: 0: 0: 123:4567:89AB:CDEF
Preferencial	FF02:0000:0000:0000:0000:0000:0000:0001	Preferencial	FF02:0000:0000:0000:0000:FF00:0200
Preferencial Nenhum 0 à esquerda	FF02: 0: 0: 0: 0: 0: 0: 1	Preferencial Nenhum 0 à esquerda	FF02: 00: 0: 0: 0: 1:FF00: 200

Omitir todos os segmentos 0

- A segunda regra para ajudar a reduzir a notação de endereços IPv6 é que o uso de dois-pontos duplo
 (::) pode substituir uma única sequência contígua de um ou mais segmentos de 16 bits (hextetos)
 compostos exclusivamente por 0.
- Os dois-pontos em dobro (::) só podem ser usados uma vez em um endereço; caso contrário, haveria mais de um endereço resultante possível.
- Quando associada à técnica de omissão dos 0 à esquerda, a notação de endereço IPv6 pode ser bastante reduzida.
- É o chamado formato compactado.
- Possíveis expansões do endereço ambíguo compactado:
 - 2001:0DB8::ABCD:0000:0000:1234
 - 2001:0DB8::ABCD:0000:0000:0000:1234
 - 2001:0DB8:0000:ABCD::1234
 - 2001:0DB8:0000:0000:ABCD::1234
- Endereço incorreto:
 - 2001:0DB8::ABCD::1234

As Figuras mostram vários exemplos de como o uso de dois-pontos duplo (::) e a omissão de **0** à esquerda podem reduzir o tamanho de um endereço IPv6.

Preferencial	200	91	: 0 D	B 8	:000	9 0	:111	11:	00	00	: (00	9 0	: 0	00	9 0	: 0	20	0
Nenhum 0 à esquerda	200	91	: D	В 8	:	0	:111	11		9	:		0	:		0	:	2 0	0
Compactado	200	91	: DB	8:	0:11	l 1	1::2	200)										
Preferencial	F E 8	80:	00	0 0	: 000	0	: 000	9 0 :	01	2 3	: -	4 5	6 7	: 8	3 9	ΑВ	: (DE	F
Nenhum 0 à esquerda	F E 8	80:		0	:	0	:	0 :	1	2 3	: -	4 5	6 7	: 8	3 9	ΑВ	: (D E	F
Compactado	FE8	80:	: 1	2 3	: 456	5 7	:89/	AB:	C D	E F									
Preferencial	F F Ø	2:	00	9 0	:000	0	: 000	0 :	00	9 6	: 1	00	01	: F	F	9 9	: 6	20	0
Nenhum 0 à esquerda	FF0	2:		0	:	0	:	0 :		9	:		1	: F	: F	0 0	:	2 0	0
Compactado	FF0	2:	: 1	: F	F00:	2	9 0												
Preferencial	000	0:	00	9 0	: 000	0	: 000	0 :	00	0 0	: (00	9 0	: 0	00	9 0	: 6	0 0	0
Nenhum 0 à esquerda		0:		0	:	0	:	0:		0	:		0	:		0	:		0
Compactado	::																		

Preferencial	2001:0DB8:0000:0000:ABCD:0000:0000:0100
Nenhum 0 à esquerda	2 01: DB8: 0: 0:ABCD: 0: 0: 100
Compactado	2001:DB8:4:ABCD:0:0:100
ou	
Compactado	2001:DB8:0:0:ABCD::100
Preferencial	FF02:0000:0000:0000:0000:0000:0000:0001
Nenhum 0 à esquerda	FF02: 0: 0: 0: 0: 1
Compactado	FF02::1
Preferencial	0000:0000:0000:0000:0000:0000:0000:0000
Nenhum 0 à esquerda	0: 0: 0: 0: 0: 0: 1
Compactado	::1

Exercício 1

Switches

Equipamentos intermediários que operam na camada de Enlace/Acesso à rede

O Switch é o equipamento utilizado em redes de computadores para reencaminhar dados (*frames*) entre os diversos *host*s de acordo com o endereço MAC (de origem e de destino), sendo destinado a para segmentação de redes locais.

Figura 1: Foto de um Switch D-Link de 24 portas

Figura 2: Representação de um switch

Figura 3: conexões de cabos em switches em um rack

O comutador (em inglês, Switch) é um dispositivo utilizado em redes locais de computadores (LAN) para reencaminhar quadros (*frames*) entre os diversos hosts utilizando para isso o endereço MAC (endereço de camada 2).

Um Switch opera na camada 2 (Enlace) do modelo OSI, encaminhando os quadros de acordo com o endereço MAC de destino.

Porém, atualmente existem switchs que operam em conjunto na camada 3 (rede), herdando algumas propriedades dos roteadores (*routers*).

Switch 48P Cisco 10/100/1000Mbps Rj45 2X Gigabit

R\$ 2.823,20 Processtec 85% positivos (218) Comparar preços de 5+ lojas

DESCRIÇÃO Fabricante: **Cisco** Systems - Inc Modelo do produto: SG250-50-K9-BR Nome de marca: **Cisco** Nome do produto: SG250-50 ...

Switch Cisco | Catalyst 3850 | Capacidade 88 Gbps | 24x Portas | MPN: WS-C3850-24U-L

R\$ 49.299,15 FourServ

★★★★★ 1 comentário sobre o produto

A Cisco Catalyst 3850 Series é a próxima geração de classe empresarial switches de acesso da camada empilháveis ? que ...

Switch 48P Cisco 10/100/1000Mbps Poe+ 2P Sfp Gerenciável

R\$ 6.668,64 Processtec 85% positivos (218) Comparar preços de 5+ lojas

A **Cisco** 220 Series, parte do portfólio de negócios de pequenas e médias empresas o **Cisco**, é uma série de **switches** ...

Switch Cisco | Catalyst 3650 | 48 Portas Poe | Gigabit | 4 SFP | MPN: WS-C3650-48PS-L

R\$ 55.249.15 FourServ

Cisco Catalyst 3650 48 Port PoE 4x1G Uplink IP Base

Switch Cisco SG220 | 24 Portas | 10/100/1000 | Gigabit | 02 SFP | Layer2 | MPN: SG220-26-K9-BR

R\$ 1.359,15 FourServ | Comparar preços de 5+ lojas

A **Cisco** Série 220 parte da linha de soluções **Cisco** Small Business Network. É uma série de **switches** inteligentes e acessíveis ...

Switch Cisco | Catalyst 2960X | 48 Portas Gigabit | PoE 740W | 2 SFP+ | Layer3 | Gerenciável | MPN: WS-C2960X-48FPD-LB

R\$ 17.594,15 FourServ | Comparar preços de 2 lojas

**** 2 comentários sobre o produto

PoE - 48x 10/100/1000

Switch Rede RJ45 08 Portas KP-E08

R\$ 44,45 Acessório Facil

O **Switch** 8 Portas 10/100Mbps KP-E08 fornece uma maneira fácil de expandir a sua rede cabeada. Todas as 8 portas suportam auto ...

- Um **Switch** é um equipamento de rede que permite interconectar dispositivos em uma rede de computadores, usando **comutação de pacotes** para receber dados de um dispositivo de origem, processar e encaminhar dados a um dispositivo de destino;
- A decisão de encaminhamento é feita com base no endereço MAC (o endereço Físico gravado na interface de rede) de origem e de destino
- Um switch que pode operar em mais de uma camada é chamado de Switch Multilayer

- O switch permite a conexão de dispositivos em uma rede local por meio de suas interfaces (portas).
- É possível encontrar switches com a partir de 4 portas até 48 (ou mais em alguns modelos especiais), operando em velocidades que podem variar entre Fast Ethernet (100 Mbps) e 10 Gbps (ou mesmo maior, em modelos muito especializados).
- O cenário mais comum é de Switches com interfaces operando a GigaEthernet (1 Gbps).
- É possível também associar alguns modelos de switches para permitir a conexão de mais dispositivos a um mesmo segmento de rede, com maior número de portas.

A tabela de endereços MAC do switch

- Um switch usará o endereço MAC de destino para determinar a interface de saída.
- Antes que um switch possa tomar essa decisão, ele deve saber qual interface o destino está localizado.
- Um switch cria uma tabela de endereços MAC, também conhecida como uma tabela CAM (*Content Addressable Memory*), gravando o endereço MAC de origem na tabela juntamente com a porta recebida.

A tabela de endereços MAC do switch

Switching de encaminhamento de quadros na rede

- Dois termos são associados a quadros que entram ou saem de uma interface:
 - Ingresso: entrar pela interface no switch
 - Saída: sair pela interface no switch
- Um switch encaminha quadros Ethernet com base na interface de entrada e no endereço MAC de destino.
- Um switch usa sua Tabela de endereços MAC para tomar decisões de encaminhamento.
- Observação: um switch nunca permitirá que o tráfego seja encaminhado para fora da interface que recebeu o tráfego.

O método de aprendizado e encaminhamento do switch

O switch usa um processo de duas etapas:

Etapa 1. Aprender

- Examina o endereço de origem;
- Adiciona o MAC de origem se n\u00e3o estiver na tabela;
- Redefine a definição de tempo de intervalo para 5 minutos se a origem estiver na tabela

Etapa 2. Encaminhar

- Examina o endereço de destino;
- Se o MAC de destino estiver na tabela de endereços MAC, ele será encaminhado para a porta especificada;
- Se um MAC de destino não estiver na tabela, ele será encaminhado a todas as interfaces, exceto a que foi recebida.

Switch de encaminhamento de quadros

- Os switches usam software em circuitos integrados específicos de aplicativos (ASICs) para tomar decisões muito rápidas.
- Um switch usará um dos dois métodos para tomar decisões de encaminhamento depois de receber um quadro:
 - **Switching Store and Forward** Recebe todo o quadro e garante que o quadro é válido. A comutação de armazenamento e encaminhamento é o método de comutação preferido da Cisco.
 - **Switching cut-through** Encaminha o quadro imediatamente após determinar o endereço MAC de destino de um quadro de entrada e a porta de saída.

Store-and-Forward Switching

Store and Forward tem duas características principais:

- Verificação de erros O switch verificará a Sequência de Verificação de Quadro (FCS) para erros de CRC. Quadros ruins serão descartados.
- Buffering A interface de entrada armazenará o porta-retratos enquanto verifica o FCS. Isso também permite que o switch se ajuste a uma diferença de potencial nas velocidades entre as portas de entrada e saída.

Cut-Through Switching

O Cut-Through encaminha o quadro imediatamente após determinar o MAC de destino.

- Conceitos de comutação Cut-Through:
 - É apropriado para switches que precisam de latência abaixo de 10 microssegundos
 - Não verifica o FCS, para que ele possa propagar erros
 - Pode levar a problemas de largura de banda se o switch propagar muitos erros
 - Não é possível suportar portas com velocidades diferentes que vão da entrada à saída

Domínios de switching Domínios de colisão

Os switches eliminam domínios de colisão e reduzem o congestionamento

- Quando há full duplex no link, os domínios de colisão são eliminados.
- Quando houver um ou mais dispositivos em halfduplex, agora haverá um domínio de colisão.
 - → Haverá agora disputa pela largura de banda.
 - → Colisões agora são possíveis.
- A maioria dos dispositivos usam a negociação automática como configuração padrão para duplex e velocidade.

Domínios de Switching: Domínios de broadcast

- Um domínio de *Broadcast* se estende por todos os dispositivos da Camada 1 ou da Camada 2 em uma LAN.
 - Somente um dispositivo de camada 3 (roteador) quebrará o domínio de broadcast, também chamado de domínio de difusão MAC.
 - O domínio de broadcast consiste em todos os dispositivos na LAN que recebem o tráfego de transmissão broadcast.
- Quando o switch de camada 2 receber a transmissão, ele encaminhará a todas as interfaces, exceto a interface de entrada.
- Muitas transmissões em broadcast podem causar congestionamento e desempenho de rede ruim.
- Aumentar os dispositivos na Camada 1 ou na Camada 2 fará com que o domínio de broadcast se expanda.

Para estudo:

Capítulo 5

Configuração de switches

Capítulo 6

VLANs

Capítulo 7

Listas de Controle de Acesso

Capítulo 8

DHCP

Capítulo 9

NAT para IPv4

Capítulo 10

Descoberta, gerenciamento e manutenção de dispositivos

Seção 6.0

Ferramentas

Seção 6.1

Segmentação de VLAN

Seção 6.2

Implementações de VLAN

Seção 6.3

Roteamento entre VLANs com o uso de roteadores

Seção 6.4

Resumo

https://www.netacad.com/

Referências Bibliográficas

Kurose, James F. Redes de computadores e a Internet: uma abordagem top-down/James F. Kurose e Keith W. Ross; 6ª edição, São Paulo: Addison Wesley, 2013. ISBN 978-85-8143-677-7.

Tanenbaum, Andrew S; Wetherall, David. Redes de Computadores. São Paulo: Pearson Prentice Hall, 2011. 5ª edição americana. ISBN 978-85-7605-924-0.

BIRKNER, Mathew H. Projeto de Interconexão de Redes. São Paulo: Pearson Education do Brasil, 2003. ISBN 85.346.1499-7.

Referências Bibliográficas

- Tanenbaum, A.; Wetherall, D. Redes de Computadores. 5^a ed. Pearson, 2011.
- Wikipedia. IEEE 802.1Q. Disponível em http://en.wikipedia.org/wiki/IEEE_802.1Q
- IEEE. 802.1Q-2011 IEEE Standard for Local and metropolitan area networks--Media Access Control (MAC) Bridges and Virtual Bridged Local Area Networks. Disponível em http://standards.ieee.org/findstds/standard/802.1Q-2011.html
- ODOM, W. CCNA ICND2 Guia Oficial de Certificação do Exame. 2ª ed. Alta Books, 2008.