

LINEAR ALGEBRA

UE19MA251

APARNA B S

Department of Science and Humanities

Unit 5 Singular Value Decomposition

Aparna B S

Department of Science and Humanities

https://towardsdatascience.com/understanding-singular-value-decomposition-and-its-application-in-data-science-388a54be95d

Importance of the method:

- □ Intimately related to the familiar theory of diagonalizing a symmetric matrix.
 □ Factorizes a matrix into 3 components.
- ☐ Has interesting algebraic properties.
- ☐ Gives further geometric and theoretical insights.
- ☐ Has many applications to data science.

Agenda for the chapter

- Tests for positive definiteness
- Positive Definite Matrices and Least Squares
- Semi definite Matrices
- Singular Value Decomposition
- Applications of the SVD.

Agenda for the class

- Quadratic form
- Examples on quadratic form
- Quadratic form Going the other way.
- •Quadratic forms for a non-symmetric matrix
- Graphs of quadratic forms
- •Examples

Recall

- \square If A is a real symmetric matrix of order n by n, then there exists an orthonormal matrix V whose columns are the eigenvectors of A and a diagonal matrix D, having its diagonal entries as the eigenvalues of A, such that : A = VDV^T
- ☐ The above process gives the eigenvalue decomposition of the matrix A.
- ☐ The singular value decomposition (SVD) is intimately related to the eigenvalue decomposition.

Quadratic Form

Any $n \times n$ real symmetric matrix A determines a quadratic form q_A

in *n* variables by the formula

$$q_A(x_1,\ldots,x_n) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j = \mathbf{x}^{\mathrm{T}} A \mathbf{x}.$$

Conversely, given a quadratic form in n variables, its coefficients can be arranged into an $n \times n$ symmetric matrix.

Quadratic Form

✓Note: $x^t A x$ is a scalar

Quadratic Form

Quadratic Form – Example 1

Let
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
. Compute $\mathbf{x}^T A \mathbf{x}$ for the following matrices.

a.
$$A = \begin{bmatrix} 4 & 0 \\ 0 & 3 \end{bmatrix}$$

a.
$$A = \begin{bmatrix} 4 & 0 \\ 0 & 3 \end{bmatrix}$$
 b. $A = \begin{bmatrix} 3 & -2 \\ -2 & 7 \end{bmatrix}$

Quadratic Form - Example

PES UNIVERSITY ONLINE

Solution:

a.
$$\mathbf{x}^T A \mathbf{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 4x_1 \\ 3x_2 \end{bmatrix} = 4x_1^2 + 3x_2^2$$
.

b.
$$\mathbf{x}^{T} A \mathbf{x} = \begin{bmatrix} x_{1} & x_{2} \end{bmatrix} \begin{bmatrix} 3 & -2 \\ -2 & 7 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} x_{1} & x_{2} \end{bmatrix} \begin{bmatrix} 3x_{1} - 2x_{2} \\ -2x_{1} + 7x_{2} \end{bmatrix}$$

$$= x_{1} (3x_{1} - 2x_{2}) + x_{2} (-2x_{1} + 7x_{2})$$

$$= 3x_{1}^{2} - 2x_{1}x_{2} - 2x_{2}x_{1} + 7x_{2}^{2}$$

$$= 3x_{1}^{2} - 4x_{1}x_{2} + 7x_{2}^{2}$$

Quadratic Form – Example 2

$$A = \left[egin{array}{ccc} 3 & -2 \ -2 & 7 \end{array}
ight]$$

We could rewrite this in the form $Q(x) = 3x_1^2 - 4x_1x_2 + 7x_2^2$.

$$=x^TAx$$

Quadratic Form – Going the other way

Question: Is any function of the form $Q(x) = ax_1^2 + bx_1x_2 + cx_2^2$ a quadratic form?

Answer: Yes. Set
$$A = \left[\begin{array}{cc} a & b/2 \\ b/2 & c \end{array} \right]$$
 .

Question: What about
$$Q(x) = 5x_1^2 + 3x_2^2 + 2x_3^2 - x_1x_2 + 8x_2x_3$$
?

Answer: Set
$$A = \begin{bmatrix} 5 & -1/2 & 0 \\ -1/2 & 3 & 4 \\ 0 & 4 & 2 \end{bmatrix}$$
.

Quadratic Form – What if A isn't symmetric?

If A isn't symmetric, the function $Q(x) = x^T A x$ is still a quadratic form:

Define
$$\hat{A} = \frac{A+A^T}{2}$$
 then

$$x^{T} \hat{A}x = x^{T} \left(\frac{A + A^{T}}{2}\right) x$$

$$= \frac{1}{2} \left(x^{T} A x + x^{T} A^{T} x\right)$$

$$= \frac{1}{2} \left(x^{T} A x + x^{T} A x\right) = x^{T} A x.$$

Because of this, it is safe to assume that A is symmetric when we examine quadratic forms.

Graphs of Quadratic forms

(a)
$$z = 3x_1^2 + 7x_2^2$$

(c)
$$z = 3x_1^2 - 7x_2^2$$

(b)
$$z = 3x_1^2$$

(d)
$$z = -3x_1^2 - 7x_2^2$$

Graphs of Quadratic forms

Graphically, the graph z = Q(x) is

- convex up if Q is positive definite,
- concave down if Q is negative definite,
- A "saddle" if Q is indefinite.

EXAMPLE

The quadratic form of
$$f(x,y) = ax^2 + 2abx + by^2$$

may be represented as x^TAx where

$$X = \begin{bmatrix} 2 \\ y \end{bmatrix} ; A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

THANK YOU

Aparna B. S

Department of Science & Humanities

aparnabs@pes.edu