Universidade de São Paulo Instituto de Matemática e Estatística Bacharelado em Ciência da Computação

Grafos: legal demais!

Marcelo Machado Lage

Monografia Final mac 499 — Trabalho de Formatura Supervisionado

Supervisor: Prof. Dr. Guilherme Oliveira Mota

Durante o desenvolvimento deste trabalho o autor recebeu auxílio financeiro da FAPESP

São Paulo

O conteúdo deste trabalho é publicado sob a licença CC BY 4.0 (Creative Commons Attribution 4.0 International License)

Resumo

Marcelo Machado Lage. **Grafos: legal demais!**. Monografia (Bacharelado). Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2025.

Elemento obrigatório, constituído de uma sequência de frases concisas e objetivas, em forma de texto. Deve apresentar os objetivos, métodos empregados, resultados e conclusões. O resumo deve ser redigido em parágrafo único, conter no máximo 500 palavras e ser seguido dos termos representativos do conteúdo do trabalho (palavras-chave). Deve ser precedido da referência do documento. Texto texto

Palavra-chave1. Palavra-chave2. Palavra-chave3.

Abstract

Marcelo Machado Lage. **Graphs: so cool!**. Capstone Project Report (Bachelor). Institute of Mathematics and Statistics, University of São Paulo, São Paulo, 2025.

Keywords: Keyword1. Keyword2. Keyword3.

Sumário

1 Resultados clássicos				
2	Álgebras de flag			
	2.1 Preliminares	3		
	2.2 Aplicações para a Conjectura 1	3		
3	Gran limitado	5		

Capítulo 1

Resultados clássicos

Seja G um grafo. Defininimos D(G) como o menor tamanho de um $F \subseteq E(G)$ tal que G - F é bipartido.

Teorema 1 (Mantel). Seja G um grafo livre de triângulos com n vértices. Então $e(G) \leq \left\lfloor \frac{n^2}{4} \right\rfloor$. Além disso, se vale a igualdade então G é bipartido completo.

Teorema 2 (Estabilidade). Seja $m \ge 0$ um inteiro e seja G um grafo livre de triângulos com n vértices e $\frac{n^2}{4} - m$ arestas. Então $D(G) \le m$.

Conjectura 1 (Erdős). Seja G um grafo livre de triângulos com n vértices. Então G pode ser tornado bipartido pela remoção de no máximo $\frac{n^2}{25}$ arestas, i.e.

$$D(G) \le \frac{n^2}{25}.$$

Uma Conjectura relacionada:

Conjectura 2. Seja G um grafo livre de triângulos com n vértices. Então existe $X \subseteq V(G)$ com $X = \left\lfloor \frac{n}{2} \right\rfloor$ tal que $e(G[X]) \le \frac{n^2}{50}$.

Observe que o Teorema 2 prova a Conjetura para grafos suficientemente densos (com pelo menos $\frac{n^2}{4} - \frac{n^2}{25}$ arestas).

Definição 1. Sejam G um grafo e H um blow-up de G, com $\phi: V(H) \to V(G)$ sendo um homomorfismo que define esse blow-up. Dizemos que um $S \subseteq E(H)$ é canônico com relação a ϕ se para quaisquer e, $f \in E(H)$ com $\phi(e) = \phi(f)$ vale que $e \in S \iff f \in S$. Em outras palavras, entre cada par de classes de H escolhemos ou todas as arestas entre essas classes ou não escolhemos nenhuma dessas arestas.

Se ϕ for claro do contexto, iremos omitir e dizer apenas que o conjunto de arestas do blow-up é simplesmente canônico.

Teorema 3 (Simetrização). Seja G um grafo livre de triângulos e seja H um blow-up de G. Então existe $F \subseteq E(H)$ canônico com |F| = D(H) e tal que G - F é bipartido.

Corolário 1. Seja H um blow-up balanceado de C₅ com n vértices. Então

$$D(H) = \frac{n^2}{25}.$$

Em particular, a Conjectura 1 (se verdadeira) dá a melhor constante possível.

Teorema 4 (EFPS). Seja G um grafo livre de triângulo com n vértices e m arestas. Então

$$D(G) \le \left\{ m - \frac{m^2}{4n}, \frac{m}{2} - \frac{2m(2m^2 - n^3)}{n^2(n^2 - 2m)} \right\}.$$

Corolário 2. Para todo n inteiro positivo, a Conjectura 1 é verdadeira para grafos com n vértices e pelo menos $\frac{n^2}{5}$ arestas.

Teorema 5 (Erdős - Győri - Simonovits). Seja G um grafo livre de triângulos com n vértices e pelo menos $\frac{n^2}{25}$ arestas. Então existe um grafo H também com n vértices tal que H é um blow-up de C_5 e, além disso, $e(G) \le e(H)$ e $D(G) \le D(H)$.

A prova é algorítmica.

Capítulo 2

Álgebras de flag

2.1 Preliminares

Seja $k \ge 0$ um inteiro. Um *tipo* de *tamanho* k é um grafo G com V(G) = [k], i.e. é um grafo com todos os seus vértices rotulados. O tipo vazio é denotado por \emptyset .

Seja σ um tipo de tamanho k. Um σ -flag é um par (F, ϕ) em que $\phi : [k] \to V(F)$ é um homomorfismo de grafos injetor tal que $F[\phi([k])] \cong \sigma$.

Exemplo 1 (Mantel). Se
$$= 0$$
, então $\le \frac{1}{2}$.

2.2 Aplicações para a Conjectura 1

Teorema 6. Se
$$= 0$$
 e $\geq \frac{2}{25}$, então $= \frac{2}{1}$ $\leq \frac{2}{25}$.

Corolário 3. Seja G um grafo com n vértices e pelo menos $\frac{n^2}{5}$ arestas. Então a Conjectura 1 vale para G.

O ponto é que ter a linguagem de flag algebras facilita obter cotas a partir da ideia de "cortes locais" e daí pode automatizar o processo.

Teorema 7 (Balogh-Clemen-Lidický). Seja G um grafo livre de triângulos com n vértices. Então, vale que

1.
$$D(G) \leq \frac{n^2}{23.5}$$
;

2.
$$D(G) \le \frac{n^2}{25}$$
 se $e(G) \ge 0.3197 \binom{n}{2}$;

3.
$$D(G) \le \frac{n^2}{25}$$
 se $e(G) \le 0.2486 \binom{n}{2}$.

Capítulo 3

Grau limitado

Vamos tentar resolver quando $\delta(G)$ é grande? Ok, ok, você vai dizer "mas o resultado do capítulo 2 já cobre isso". Verdade, mas queremos mais *estrutura* sobre os conjuntos que geram D(G), então ainda vale a pena estudar esses casos!

Seja $d \ge 1$ um inteiro positivo.

Definição 2. Seja $d \ge 1$ um inteiro positivo. O *grafo de Andrásfai F_d* é o grafo com vértices $\{0, 1, ..., 3d - 2\}$ e arestas entre i e i + d + j para cada $j \in \{0, 1, ..., d - 1\}$. Uma forma de representar os grafos de Andrásfai é colocar os vértices em uma circunferência em sentido horário como vértices de (3d - 1)-ágono regular e ligar cada vértice com os d vértices mais distantes dele.

Figura 3.1: Grafos de Andrásfai para d=1 a d=4. Observe que F_d é d-regular e livre de triângulos.

Teorema 8. Seja G um grafo livre de triângulos com n vértices e $d \in \{1, 2, ..., 9\}$. Se $\delta(G) > \frac{d}{3d-1}$, então G está contido em um blow-up de F_{d-1} .

Teorema 9. Seja G um grafo livre de triângulos aresta com n vértices tal que $\delta(G) > \frac{10n}{29}$ ou $\delta(G) > \frac{n}{3}$ e $\chi(G) \le 3$. Então existe um inteiro $d \ge 1$ tal que G é subgrafo de um blow-up de F_d .

Lema 1. Seja G um grafo e suponha que existem $F_1, F_2, F_3, F_4, F_5 \subseteq E$ tais que:

• $F_i \cap F_j = \emptyset$ para todo $i \neq j$ com $i, j \in \{1, 2, 3, 4, 5\}$;

• $G - F_i$ é bipartido para cada $i \in \{1, 2, 3, 4, 5\}.$

Então G satisfaz a Conjectura 1.

Esse Lema vai funcionar para F_4 , mas não para F_5 .

Corolário 4. Se $\delta(G) > 4n/11$, então $D(G) \leq \frac{n^2}{25}$.

