

MAM4

EDP1

2024-25

Exam CC no. 2

Durée 2H00. Documents non autorisés. Tous les exercices sont indépendants.

Le barème prévisionnel est indiqué pour chaque exercice.

Exercice 1 (5 points)

On considère le schéma de Gear

$$rac{3u_{j}^{n+1}-4u_{j}^{n}+u_{j}^{n-1}}{2\Delta t}-
urac{u_{j+1}^{n+1}-2u_{j}^{n+1}+u_{j-1}^{n+1}}{\Delta x^{2}}=0$$

pour l'équation de la chaleur

$$\frac{\partial u}{\partial t} - \nu \frac{\partial^2 u}{\partial x^2} = 0.$$

Montrer que le schéma est consistant à l'ordre 2 à la fois en temps et en espace.

Réponse. Étant donnés les ordres recherchés en t en x, on fait un DL en (t_{n+1},x_j) à l'ordre 3 en temps, 4 en espace. En écrivant, notamment, que

$$u(t_{n-1},x_j)=u+rac{\partial u}{\partial t}(-2\Delta t)+rac{1}{2}rac{\partial^2 u}{\partial t^2}(-2\Delta t)^2+rac{1}{6}rac{\partial^3 u}{\partial t^3}(-2\Delta t)^3+O(\Delta t^4)$$

où le membre de droite est évalué en (t_{n+1},x_j) , on obtient que l'erreur de troncature vérifie

$$E_j^{n+1} = -rac{1}{3}rac{\partial^3 u}{\partial t^3}\Delta t^2 + O(\Delta t^3) - rac{
u}{12}rac{\partial^4 u}{\partial x^4}\Delta x^2 + O(\Delta x^3).$$

Exercice 2 (4 points)

2.1

On considère le schéma de Dufort-Frankel (avec u>0) :

$$rac{u_{j}^{n+1}-u_{j}^{n-1}}{2\Delta t}-
urac{u_{j+1}^{n}-u_{j}^{n+1}-u_{j}^{n-1}+u_{j-1}^{n}}{\Delta x^{2}}=0.$$

Montrer que, sous une condition CFL que l'on précisera, u_j^{n+1} s'écrit comme combinaison convexe des $(u_j^n)_j$ et des $(u_j^{n-1})_j$.

Réponse. Avec $\sigma :=
u \Delta t / \Delta x$, on a

$$u_{j}^{n+1} = rac{1}{1+2\sigma}((1-2\sigma)u_{j}^{n-1} + 2\sigma u_{j-1}^{n} + 2\sigma u_{j+1}^{n})$$

qui est bien une combinaison convexe si (0<) $\sigma \leq 1/2$ (CFL).

2.2

En déduire la stabilité L^∞ de ce schéma sous cette même condition.

Réponse. Sous cette condition, si les $(u_j^0)_j$ ainsi que les $(u_j^1)_j$ sont dans le convexe [m,M], on vérifie par une récurrence immédiate que tous les $(u^n)_j$ aussi pour $n\geq 2$, d'où la stabilité L^∞ .

Exercice 3 (4 points)

3.1

On considère l'équation des ondes sur un domaine $\Omega \subset {f R}$

$$rac{\partial^2 u}{\partial t^2}(t,x) - rac{\partial^2 u}{\partial x^2}(t,x) = 0, \quad t>0, \quad x\in\Omega.$$

Montrer qu'en posant $v:=\partial u/\partial t$, $w:=\partial u/\partial x$ et U:=(v,w) on peut mettre l'équation sous la forme

$$rac{\partial U}{\partial t}(t,x)-Jrac{\partial U}{\partial x}(t,x)=0,\quad t>0,\quad x\in\Omega,$$

où J est une matrice 2 imes 2 que l'on précisera.

Réponse. En supposant u assez régulière et en utilisant le théorème de Schwarz (égalité des dérivées partielles croisées secondes), on a la forme voulue avec

$$J = egin{bmatrix} 0 & 1 \ 1 & 0 \end{bmatrix}$$
 .

3.2

On considère le schéma vectoriel associé ci-dessous :

$$rac{U_{j}^{n+1}-U_{j}^{n}}{\Delta t}-Jrac{U_{j+1}^{n+1}-U_{j-1}^{n+1}}{2\Delta x}=0.$$

Montrer que la stabilité L^2 de ce schéma revient à étudier, pour chaque mode $k\in {\bf Z}$, les valeurs propres d'une matrice A(k) que l'on précisera. (On ne demande ni de déterminer ces valeurs propres, ni de faire l'étude de stabilité.)

Réponse. En injectant un mode de Fourier (vectoriel) k sous la forme $U_i^n=e^{2i\pi kj\Delta x}A(k)$, on obtient

$$(I - i\sigma \sin \alpha_k J)A(k) = I$$

où $\sigma:=\Delta t/\Delta x$, et où $\alpha_k:=2\pi k\Delta x$. Le déterminant du facteur de gauche valant $1+\sigma^2\sin^2\alpha_k\geq 1>0$, on en déduit que

$$A(k) = (I - i\sigma \sin lpha_k J)^{-1}.$$

Exercice 4 (4 points)

On considère la portion de code ci-dessous pour l'équation d'advection :

```
A = spdiagm(-1 => -.5\sigma^2 * ones(J), \\ 0 => (1 + \sigma^2) * ones(J + 1), \\ 1 => -.5\sigma^2 * ones(J))
A[1, end] = -.5\sigma^2
A[end, 1] = -.5\sigma^2
F = cholesky(A)
w = zeros(J + 1)
for n \in 1:N \\ w[2:end-1] = u[2:end-1] - .5\sigma * (u[3:end] - u[1:end-2]) \\ w[1] = u0(x[1] - V * n * \Delta t) \\ w[end] = w[1] \\ u = F \setminus w
end
```

4.1

Quel est le schéma numérique utilisé ? (On donnera son expression.)

Réponse. Il s'agit du schéma de Lax-Wendroff implicite :

$$u_{j}^{n+1}=u_{j}^{n}-rac{\sigma}{2}(u_{j+1}^{n}-u_{j-1}^{n})+rac{\sigma^{2}}{2}(u_{j+1}^{n+1}-2u_{j}^{n+1}+u_{j-1}^{n+1}).$$

4.2

Quel est l'intérêt d'utiliser la fonction spdiagm pour construire la matrice A ?

Réponse. La matrice construite est creuse (*sparse*) ce qui occasione un stockage réduit et permet une factorisation plus efficace.

4.3

Expliquer pourquoi on calcule w[1] après w[2:end-1].

Réponse. La valeur mise à jour de w[1] serait sinon utilisée (à tort) pour la mise à jour de w[2:end].

4.4

Expliquer le rôle de la ligne $u = F \setminus w$.

Réponse. On réutilise la factorisation (creuse) de Cholesky, faite une fois pour toute avant la boucle d'itération sur le pas de temps, pour faire une résolution du système linéaire A * u = w par simple remontée triangulaire.

Exercice 5 (3 points)

On cherche u dans $\mathscr{C}^2(\overline{\Omega})$ (où Ω est un ouvert de \mathbf{R}^n à bord régulier) telle que

$$-\Delta u(x) + u(x) = f(x), \quad x \in \Omega,$$

avec conditions aux limites de Dirichlet, u=0 sur $\partial\Omega$, et f une fonction continue sur

 $\overline{\Omega}$. On admet que le sous-espace

$$H^1_0(\Omega):=\{v\in H^1(\Omega)\ |\ v=0\ ext{sur}\ \partial\Omega\}$$

muni du produit scalaire de $H^1(\Omega)$ est encore un espace de Hilbert. Montrer que toute solution du problème précédent, dite *solution forte*, est encore solution d'un nouveau problème que l'on précisera.

Réponse. Si u est solution forte, pour tout v dans $H^1_0(\Omega)$ on a

$$\int_{\Omega} (-\Delta u + u) v \, \mathrm{d}x = \int_{\Omega} f v \, \mathrm{d}x.$$

En utilisant le théorème de Stockes, on en déduit ($\Gamma:=\partial\Omega$)

$$-\int_{\Gamma}rac{\partial u}{\partial n}v\,\mathrm{d}\sigma+(u|v)_{H^1}=\int_{\Omega}fv\,\mathrm{d}x.$$

L'intégrale sur le bord étant nulle grâce à l'appartenance de v à H^1_0 , on déduit la formulation faible attendue.