Conditional Invertible Neural Networks (cINNs)

Amirhossein Ghanaatian

October 17, 2024

Direct Mapping from Design Parameters to Latent Space

- Instead of training an invertible neural network to predict y and x
 with additional latent variable z, the cINN transforms x directly to a
 latent representation z conditioned on the observation y.
- This is achieved by using y as an additional input to each affine coupling layer in both forward and backward processes.

Conditioning on Target Property y

- The cINN directly maps the design parameters x to a latent space z, conditioned on the target property y.
- Conditioning on y is accomplished by providing y as an extra input into each affine coupling layer of the invertible neural network, in both forward and reverse directions.
- The mapping between x and z depends on (is conditional on) the value of the target property y.
- Key Aspect: Using the target y to condition the bijective mapping between the design space x and latent space z.

Generating Consistent Designs

- In the cINN model, the design parameters x are directly transformed into a latent representation z, conditioned on the observation of the target property y.
- By conditioning the mapping between x and z on the value of y, the cINN model learns to generate designs that are consistent with the desired target property.

Training with Maximum Likelihood Loss Function

 The cINN model is trained using a maximum likelihood loss function, as shown in Equation 7 of the paper:

$$L(z) = -\frac{1}{2} (||z||^2 + \log|\det(J_{x\to z})|)$$

- z: Latent representation
- $||z||^2$: Squared norm of z
- $\det(J_{x\to z})$: Determinant of the Jacobian matrix for the mapping from x to z

Minimizing the Loss Function

- By minimizing this loss function, the cINN model learns to:
 - Generate a latent representation z that follows a standard Gaussian distribution.
 - Ensure that the mapping between x and z is invertible and preserves the information content.

Inference and Generation of Design Candidates

- During inference, the cINN model can:
 - Generate design candidates by sampling from the latent space z conditioned on the desired target property y.
 - Map the samples back to the design space x using the inverse mapping learned by the model.

Latent Variables Represent Stochasticity

- Latent Variables (z):
 - Represent the stochasticity or randomness inherent in the one-to-many mapping.
 - Allow the model to generate multiple valid structures corresponding to the same material properties by sampling different z values.

Understanding the Loss Function Components

The loss function in a cINN is derived from the negative log-likelihood of the data under the model and is given by:

$$L(z) = \frac{1}{2} ||z||^2 - \log|\det(J_{x \to z})|$$

Where:

- $\frac{1}{2}||z||^2$: Represents the data fidelity term, penalizing deviations of z from the standard normal distribution. This term is always non-negative since it's based on the squared norm.
- $-\log |\det (J_{x \to z})|$: Accounts for the volume change during the transformation from x to z. This term can be positive or negative depending on the value of the determinant.

Why the Loss Can Be Negative

- Initial Positive Loss: At the start of training, the model parameters are often initialized randomly, and the network hasn't learned meaningful transformations yet. The Jacobian determinant $\det(J_{x\to z})$ may be close to 1, leading to $\log |\det(J_{x\to z})| \approx 0$. The loss is then dominated by the positive quadratic term $\frac{1}{2}||z||^2$, resulting in a positive total loss.
- Transition to Negative Loss: As training progresses, the model learns transformations that better fit the data. The Jacobian determinant can become larger than 1, making $\log |\det(J_{x \to z})|$ positive. Consequently, the term $-\log |\det(J_{x \to z})|$ becomes negative. If this negative value outweighs the positive quadratic term, the overall loss becomes negative.

Is This Correct Behavior?

Yes, this is generally acceptable and can be expected in training cINNs. Here's why:

- Model Learning Dynamics: The negative loss indicates that the model is successfully learning transformations that increase the likelihood of the observed data under the model. The negative log-likelihood (which is being minimized) decreases, signifying improved model performance.
- Probability Density Interpretation: A negative loss means that the model assigns a higher probability density to the observed data than the initial state did. This is a sign of effective learning.

Interpretation:

 More Negative Loss Indicates Higher Likelihood: A loss of -15 suggests the model assigns a higher likelihood to the data than a loss of -5.

Is a More Negative Loss Better?

In General, Yes:

- Lower NLL Equals Better Fit: Minimizing the negative log-likelihood means the model better fits the data.
- Comparing -15 and -5: -15 is lower than -5, indicating a better fit to the training data.

However, Be Cautious:

- Overfitting Risk: A significantly negative loss on training data may not generalize to unseen data.
- Validation Performance: Always verify that the model performs well on a validation set.

How Negative is Too Negative?

Moderate Negative Values (-5 to -20):

 In many cases, negative loss values within this range can be expected, as they indicate a good balance between fitting the data and the model's transformation properties.

Extremely Negative Values:

- If you see losses much lower than -20 or -30, it might signal an issue:
 - Numerical instability: The Jacobian determinant might become very large or small, causing instability in the log-determinant term.
 - Overfitting: The model might be overfitting to the training data, especially if the validation loss does not decrease in a similar fashion.