Homework 7

D. Zack Garza

November 5, 2019

Contents

1	Prol	blem 1																	1											
	1.1	Part 1																 						 						1
	1.2	Part 2																												2

1 Problem 1

1.1 Part 1

In order for IS to be a submodule of A, we need to show the following implication:

$$x \in IS, \ a \in A \implies xa, ax \in IS.$$

Suppose $x \in IS$. Then by definition, $x = \sum_{i=1}^{n} r_i a_i$ for some $r_i \in R, a_i \in A$.

But then

$$xa = \left(\sum_{i=1}^{n} r_i a_i\right) a$$
$$= \sum_{i=1}^{n} r_i a_i a$$
$$= \sum_{i=1}^{n} r_i a'_i,$$

where $a'_i := a_i a$ for each i, which is still an element of A since A itself is a module and thus closed under multiplication.

But this expresses xa as an element of IS. Similarly, we have

$$ax = a \left(\sum_{i=1}^{n} r_i a_i \right)$$
$$= \sum_{i=1}^{n} a r_i a_i a$$
$$:= \sum_{i=1}^{n} r_i a a_i,$$
$$:= \sum_{i=1}^{n} r_i a'_i,$$

and so $ax \in IS$ as well.

1.2 Part 2

Letting $R/I \curvearrowright A/IA$ be the action given by $r+I \curvearrowright +IA := ra+IA$, we need to show the following:

- r.(x + y) = r.x + r.y,
- (r+r').x = r.x + r'.x,
- (rs).x = r.(s.x), and
- 1.x = x.

Letting \oplus denote the addition defined on cosets, we have

$$\begin{split} r &\curvearrowright (x + IA \oplus y + IA) \coloneqq r \curvearrowright x + y + IA \\ &\coloneqq r(x + y) + IA \\ &= rx + ry + IA \\ &\coloneqq rx + IA \oplus ry + IA \\ &\coloneqq (r \curvearrowright x + IA) \oplus (r \curvearrowright y + IA). \end{split}$$

$$(r+s) \curvearrowright x + IA \coloneqq (r+s)x + IA$$

 $\coloneqq rx + sx + IA$
 $\coloneqq rx + IA \oplus sx + IA$
 $\coloneqq (rs \curvearrowright IA) \oplus (sx \curvearrowright IA).$