OMIS 645 APPLIED BUSINESS ANALYTICS SAS

JOB POSTINGS AND FORTUNE 1000 COMPANIES

VENKATA ANIRUDH THOTA

KALYAN PRANEETH PERALA

SIVANI KALVALAPALLI

TANUSHREE CHUNGI

Introduction:

The theme of this project is job postings in indeed and fortune 1000 companies. The datasets that are used in the project are indeed job posting for data scientist, data analyst and data engineer positions which was then combined with the dataset that corresponds to fortune 1000 companies. The indeed job posting dataset is extracted from the data gov and data world and was further cleansed for our analysis. The second dataset is extracted from the fortune 1000 US companies is extracted from various sites including fortune 1000 information websites.

As a team, we agreed to run analysis on these datasets because these datasets are quite relevant to us and this course, because each of us aspire to land in a job in a fortune 1000 company or at the least in a data analyst related position. The datasets variables such as skills required, and salary sparked more interest. We were also interested in the assets the revenue, the number of employees and locations of these fortune 1000 US companies. In compliance, with the questions that we had as a team, we conducted various analysis and analyzed the results, we have interpreted the results for these questions.

The indeed job posting dataset has columns such as job title, queried salary, number of skills and company. The dataset also has information regarding the number of reviews and the number of stars for that posting, the location of the company and the industry to which the company belongs. Each row that is each level of analysis in this dataset is about a job posting.

The second dataset that is considered is the fortune 1000 companies' dataset. The dataset corresponds to the fortune 1000 US companies, here the level of analysis is a company. The columns in this dataset includes current rank and previous rank of the company, the revenue, profits, assets, market value, number of employees, CEO's name and title.

The dataset also contains information regarding the sector and industry these companies belong to and the city, state and location details including the latitude and longitude. The two datasets that is the fortune 1000 US dataset and the indeed dataset were combined based on the company name, that is the company name is used as the primary key. The analysis and the inferences in the report are extracted from these separate datasets as well as the combination of the two datasets.

Data Cleansing and Enhancement:

The datasets had many empty cells, and these were cleaned. To run the analysis, we also enhanced the dataset, in the fortune 1000 US companies' dataset we added the gender of the chief executive officer. In order to enhance the data and make it simpler to run the analysis we created segregated datasets, using the job type. The job type in the dataset is a categorical variable with three categories., we segregated the three categories made it into three variables with binary categories. In order to make the analysis more efficient, the indeed dataset has a column on salary that is in various ranges. We converted these values in ranges into six different levels and use that in salary levels excel file for analysis. The following are the salary levels: <80000 is considered as level 1, 80000-99999 is level 2, 100000-119999 is level 3, 120000-139999 is level 4, 140000-159999 is level 5 and the last one level 6 is >160000.

While combining the two datasets we used the company name as the primary key to join these two tables, we used the SQL queries to combine these two tables. Redundant information such as the latitude and longitude of the company location in the data sets was eliminated. Some columns such as the name of the CEO in the fortune 1000 Us companies were deleted. We combined the two datasets by adding an additional column titled "Is Fortune". The "Is Fortune" column is a binary categorical, if the value is 1, then the company is a part of the fortune 1000, if the value is 0, then the company is not a part of the fortune 1000.

QUESTIONS, RESULTS AND INTERPRETATIONS:

Question 1: Which job type has more posting in fortune 1000 companies?

Data Set: Indeed and Fortune 1000 Combined

Test: Chi-Square Test of Independence.

Row Variable: Is fortune

Column Variables: Job Type (Data Analyst, Data Engineer, Data Scientist)

$$X_{calc}^2 = \sum_{f=1}^r \sum_{k=1}^c [(f_{f,k} - e_{f,k})^2 / e_{f,k}]$$

Statistic	DF	Value	Prob
Chi-Square	2	87.7453	<.0001
Likelihood Ratio Chi-Square	2	87.5891	<.0001
Mantel-Haenszel Chi-Square	1	79.2886	<.0001
Phi Coefficient		0.1239	
Contingency Coefficient		0.1230	
Cramer's V		0.1239	

Sample Size = 5715

Interpretation of results:

Setting up the hypothesis:

 H_0 : Variables are independent H_1 : Variables are dependent

Chi square value = 87.7453

The P value is <.0001 which is less than the level of the significance 0.05. We conclude that we reject the null hypothesis and conclude that the job postings are dependent on fortune 1000 companies.

The job postings of fortune 1000 companies depend on job type, and looking at the bar graph from the result in the appendix, we can state that data science role is most common job role for fortune 1000 and data analyst is most common role in non-fortune company.

Question 2: Which location has more postings of different job types?

Data Set: Indeed and Fortune 1000 Combined

Test: Chi-Square Test of Independence.

Row Variable: Job Type (Data Analyst, Data Engineer, Data Scientist)

Column Variables: Location

$$X_{calc}^2 = \sum_{f=1}^r \sum_{k=1}^c [(f_{f,k} - e_{f,k})^2 / e_{f,k}]$$

Statistic	DF	Value	Prob
Chi-Square	100	218.4061	<.0001
Likelihood Ratio Chi-Square	100	223.5882	<.0001
Mantel-Haenszel Chi-Square	1	9.6629	0.0019
Phi Coefficient		0.1999	
Contingency Coefficient		0.1961	
Cramer's V		0.1414	

Interpretation of results:

Setting up the hypothesis:

 H_0 : Variables are independent

 H_1 : Variables are dependent

Chi square value = 218.4061

The P value is <.0001 which is less than the level of the significance 0.05. We conclude that we reject the null hypothesis and conclude that the variables are dependent on job type.

The job postings of different job types depend on location, and looking at the bar graph from the result in the appendix, we can state that data science, data engineer and data analyst job postings are more in CA, NY, VA, TX

Question 3: Is there any significant difference in salary level for each job type? Can we infer something information from that?

Test: Chi-Square Test of Independence

Dataset Used: Indeed

Row Variable: Job Type (Data Analyst, Data Engineer, Data Scientist)

Column Variables: Job levels (1,2,3,4,5,6) 6- being the highest

$$X_{calc}^2 = \sum_{f=1}^r \sum_{k=1}^c [(f_{f,k} - e_{f,k})^2 / e_{f,k}]$$

Statistics for Table of Salary_level by Job_Type

Statistic	DF	Value	Prob
Chi-Square	10	2493.7994	<.0001
Likelihood Ratio Chi-Square	10	2621.4312	<.0001
Mantel-Haenszel Chi-Square	1	1464.3487	<.0001
Phi Coefficient		0.6606	
Contingency Coefficient		0.5512	
Cramer's V		0.4671	

Sample Size = 5715

Interpretation of results:

Setting up the hypothesis:

 H_0 : Variables are independent H_1 : Variables are dependent

Chi square value = 2493.79

The P value is <.0001 which is less than the level of the significance 0.05. We conclude that we reject the null hypothesis and conclude that the variables are dependent.

The job postings of different salary levels depend on job type, and looking at the bar graph from the result in the appendix, we can state that data scientist posting are more common on the higher level of salary while data analyst position are more common in the lower range of salary level.

Questions 4: Is there any significant different in number of skills required for each job type?

Test: Linear Regression

Dataset Used: Indeed

Dependent Variable: No_of_Skills

Classification Variables: Job Type (Data Analyst, Data Engineer, Data Scientist)

Least Squares Model (No Selection)

Analysis of Variance							
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F		
Model	2	33598	16799	837.81	<.0001		
Error	5712	114533	20.05135				
Corrected Total	5714	148132					

Root MSE	4.47787
Dependent Mean	7.80367
R-Square	0.2268
Adj R-Sq	0.2265
AIC	22855
AICC	22855
SBC	17158

Parameter Estimates								
Parameter	DF	Estimate	Standard Error	t Value	Pr > t			
Intercept	1	8.493118	0.088797	95.65	<.0001			
Job_Type data_analyst	1	-4.002321	0.138087	-28.98	<.0001			
Job_Type data_engineer	1	2.346621	0.149751	15.67	<.0001			
Job_Type data_scientist	0	0			- 1			

12/3/2019

Dependent Variable: No_of_Skills No_of_Skills

Parameter Estimates							
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Standardized Estimate
Intercept	Intercept	В	8.49312	0.08880	95.65	<.0001	0
Job_Type_data_analyst	Job_Type data_analyst	В	-4.00232	0.13809	-28.98	<.0001	-0.36477
Job_Type_data_engineer	Job_Type data_engineer	В	2.34662	0.14975	15.67	<.0001	0.19721
Job_Type_data_scientist	Job_Type data_scientist	0	0	10			

Interpretation of results:

Setting up the hypothesis:

 H_0 : Job type does not predict number of skills

 H_1 : Job type predicts number of skills

F value = 837.8

The P value is <.0001 which is less than the level of the significance 0.05, we can conclude that the model is significant.

Looking at the R square value, we can say that 22.6% of variance in number of skills is predicted by the model.

From the ANNOVA table parameter estimates p-value which is also less than 0.05, we conclude that we reject the null hypothesis and conclude that job type predicts number of skills.

Also, we can say that data analyst job requires 4 (approx.) time less skills as compared to data scientist job positions, and data engineer job requires 2.3 time more skills as compared to data engineer.

Question 5: Does knowing SAS effect the chances of being qualified for data scientist job?

Analysis: Binary logistic regression

Data set used: Indeed and fortune combined

Y - Data scientist

X - SAS skill

Results:

Model Fit Statistics						
Criterion Intercept Only Intercept and Covariates						
AIC	7855.303	7749.100				
SC	7861.954	7762.401				
-2 Log L	7853.303	7745.100				

R-9	Square	0.0188	Max-rescaled R-Square	0.0251
-----	--------	--------	-----------------------	--------

Testing Global Null Hypothesis: BETA=0								
Test Chi-Square DF Pr > ChiSq								
Likelihood Ratio	108.2038	1	<.0001					
Score	108.7255	1	<.0001					
Wald	105.8071	1	<.0001					

Type 3 Analysis of Effects					
Effect DF Chi-Square Pr > ChiSq					
sas	1	105.8071	<.0001		

Analysis of Maximum Likelihood Estimates								
Parameter DF Estimate Standard Chi-Square Pr > ChiSq								
Intercept		1	0.4028	0.0665	36.6631	<.0001		
sas	0	1	-0.7480	0.0727	105.8071	<.0001		
sas	1	0	0					

	Odds Ratio Esti	imates	
Effect	Point Estimate	95% Confiden	
sas 0 vs 1	0.473	0.410	0.546

Association of Predicted Probabilities and Observed Responses										
Percent Concordant	19.5	Somers' D	0.103							
Percent Discordant	9.2	Gamma	0.358							
Percent Tied	71.2	Tau-a	0.051							
Pairs	8066396	С	0.551							

Interpretation of the result:

The Wald's Chi-Square value for the variable is 105.8071 and the p-value is <.0001

- The –2Log L values for only intercepts and intercepts with covariates is decreasing citing that the model is a good fit.
- From the p-value of Wald Chi-square we can conclude that the model is significant.
- The R square range for the model is 1.8 to 2.5%, that is the percent variance explained by the model.
- From the p-value in type 3 Analysis table, we can conclude that the skill "SAS" has a significant effect on the chances of being qualified for a data scientist job.

- From the Odds ratio estimates table, we can infer that knowing SAS increases your chances for Data scientist by 52.7%
- From the c-value, we can say 55.1% of rows in the current data are correctly predicted by the model

Question 6: Machine Learning influence on job posting for data scientist who already knows SAS.

Test: Moderation (binary logistic regression)

Data set used: Indeed and fortune combined

Y - Data scientist

X - SAS skill

M (moderator) - Machine Learning skill

• Results after adding Machine Learning as moderator

	Mo	del Fit	Statist	ics							
Criterion	Intercep	t Only	Intercept and Covariates								
AIC	78	55.303			5	637.823					
SC	78	61.954			5	664.426					
-2 Log L	78	53.303			5	629.823					
R-Square	0.3223	Max-re	escale	d R-So	quare	0.4315					
R-Square	1					0.4315					
	0.3223										
	1		lypoth		BETA=						
Tes	ting Globa	al Null H	lypoth	esis: l	BETA=	0					
Test	ting Globa	al Null H Chi-So 2223	lypoth quare	esis: I DF	BETA=	0 ChiSq					

Type 3 A	nalysi	s of Effects	
Effect	DF	Wald Chi-Square	Pr > ChiSq
sas	1	80.8550	<.0001
machine_learning	1	790.1858	<.0001
sas*machine_learning	1	9.1725	0.0025

A	naly	sis	of Max	cimum Likel	ihood Estim	ates	
Parameter			DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept			1	1.8635	0.1436	168.3566	<.0001
sas	0		1	-0.5520	0.1543	12.7987	0.0003
sas	1		0	0			
machine_learning	0		1	-2.3218	0.1693	188.0307	<.0001
machine_learning	1		0	0			
sas*machine_learning	0	0	1	-0.5607	0.1851	9.1725	0.0025
sas*machine_learning	0	1	0	0	-		
sas*machine_learning	1	0	0	0			
sas*machine_learning	1	1	0	0			

Association of Predicted Probabilities and Observed Responses										
Percent Concordant	69.9	Somers' D	0.629							
Percent Discordant	7.0	Gamma	0.819							
Percent Tied	23.2	Tau-a	0.311							
Pairs	8066396	С	0.814							

$$Y = b0 + b1 X + b2 M + b3 XM + e$$

 $Y = 1.8 - 0.5 X - 2.3M - 0.5 XM + e$

Interpretation of results:

Hypothesis:

H₀: There is no interaction effect

H₁: There is interaction effect

The p-value for the product of sas and machine_learning is 0.0025

- The –2Log L values for only intercepts and intercepts with covariates is decreasing citing that the model is a good fit.
- From the p-value of Wald Chi-square we can conclude that the model is significant.
- The R square range for the model has significantly increased to 32.2-43.1% after the moderator is added, that means that variance explained by this model has increased after adding machine learning as moderator
- From the p-value of Type 3 analysis table, we can reject the null hypothesis and conclude that there is an interaction effect between the variables. Thus, inferring that the skill "Machine Learning" increases chances of a job posting for data scientist with existing knowledge of SAS.
- From the c-value we can say that 81.4% of rows in current data are correctly predicted by the model

APPENDIX

Frequency

	Table of Is_Fort	une by Job_Type											
	Job_Type(Job_Type)												
Is_Fortune(Is_Fortune)	data_analyst	data_engineer	data_scientist	Total									
0	1536	1158	1911	4605									
1	257	221	632	1110									
Total	1793	1379	2543	5715									

Statistics for Table of Is_Fortune by Job_Type

Statistic	DF	Value	Prob
Chi-Square	2	87.7453	<.0001
Likelihood Ratio Chi-Square	2	87.5891	<.0001
Mantel-Haenszel Chi-Square	1	79.2886	<.0001
Phi Coefficient		0.1239	
Contingency Coefficient		0.1230	
Cramer's V		0.1239	

Sample Size = 5715

Results: Table Analysis

Frequency				

																						1	Γable	of Jol	ь_Тур	e by L	ocatio	n																								
																										Loca	ion(L	cation	n)																							
Job_Type(Job_Type)	AL	AR	AZ	CA	СО	СТ	DC	DE	FL	GA	HI	IA II) 1	L I	N K	K)	L	A N	IA N	/ID I	ME I	иі м	N I	мо	мт	NC	ND	NE	NH	NJ	NM	NV	NY	ОН	ок	OR	PA	REMOTE	RI	sc	SD	TN	TX	USA	UT	VA	VT	WA	WI	wv	WY	Total
data_analyst	6	8	15	376	25	29	48	6	44	59	2	10	1 6	6 2	0	1 6	3	1 :	86	55	6 3	39 2	27	37	0	46	0	1	2	54	2	7	230	33	2	26	56		2	15	1	21	117	24	17	85	. 2	57	11	2	1	1791
data_engineer	2	2	14	296	37	14	24	4	16	24	0	11 () 6	8	8 :	3	1	1 :	52	20	6	16 1	3	7	1	38	1	2	2	20	0	5	118	26	1	19	28	:	2 2	3	0	7	76	8	. 7	72	. 0	43	9	1	1	1131
data_scientist	9	18	24	723	47	32	68	7	43	56	4	9 5	5 10	6 1	8 :	5 6	3	4 1	33	94	2 3	30 2	26	33	0	55	0	7	3	54	3	8	253	49	1	18	55		3	6	0	16	136	39	10	177	0	122	19	0	0	2541
Total	17	28	53	1395	109	75	140	17	103	139	6	30 6	3 24	0 4	6 !	13	3	6 2	71 1	69	14 8	35 6	66	77	1	139	1	10	7	128	5	20	601	108	4	63	139	1	7	24	1	44	329	71	34	334	2	222	39	3	2	5463
																							Fre	quen	cy Mi	ssing :	252																									

Statistic	DF	Value	Prob
Mantel-Haenszel Chi-Square	1	9.6629	0.0019
Phi Coefficient		0.1999	
Contingency Coefficient		0.1961	
Cramer's V		0.1414	

Sample Size = 5463 Frequency Missing = 252 Frequency Expected Deviation

Та	ble of Salary_le	vel by Job_Type		
		Job_Type(Job	_Type)	
Salary_level(Salary level)	data_analyst	data_engineer	data_scientist	Total
1	713	27	48	788
	247.22	190.14	350.64	
	465.78	-163.1	-302.6	
2	595	125	233	953
	298.99	229.95	424.06	
	296.01	-105	-191.1	
3	288	396	710	1394
	437.35	336.37	620.29	
	-149.3	59.635	89.713	
4	70	452	770	1292
	405.35	311.75	574.9	
	-335.3	140.25	195.1	
5	47	275	551	873
	273.89	210.65	388.46	
	-226.9	64.35	162.54	
6	80	104	231	415
	130.2	100.14	184.66	
	-50.2	3.8626	46.338	
Total	1793	1379	2543	5715

12/3/2019 Results: Table Analysis

Statistics for Table of Salary_level by Job_Type

Statistic	DF	Value	Prob
Chi-Square	10	2493.7994	<.0001
Likelihood Ratio Chi-Square	10	2621.4312	<.0001
Mantel-Haenszel Chi-Square	1	1464.3487	<.0001
Phi Coefficient		0.6606	
Contingency Coefficient		0.5512	
Cramer's V		0.4671	

Sample Size = 5715

Data Set	ANI.INDEED_ALL_PROJ
Dependent Variable	No_of_Skills
Selection Method	None

Number of Observations Read	5715
Number of Observations Used	5715

Class Level Information					
Class	Levels	Values			
Job_Type	3	data_analyst data_engineer data_scientist			

Dimensions			
Number of Effects	2		
Number of Parameters	4		

Least Squares Summary						
Step	Effect Entered	Number Effects In	Number Parms In	SBC		
0	Intercept	1	1	18611.0193		
1	Job_Type	2	3	17158.2161*		
* Optimal Value of Criterion						

Least Squares Model (No Selection)

Analysis of Variance						
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F	
Model	2	33598	16799	837.81	<.0001	
Error	5712	114533	20.05135			
Corrected Total	5714	148132				

Root MSE	4.47787
Dependent Mean	7.80367
R-Square	0.2268
Adj R-Sq	0.2265
AIC	22855
AICC	22855
SBC	17158

Parameter Estimates							
Parameter	t Value	Pr > t					
Intercept	1	8.493118	0.088797	95.65	<.0001		
Job_Type data_analyst	1	-4.002321	0.138087	-28.98	<.0001		
Job_Type data_engineer	1	2.346621	0.149751	15.67	<.0001		
Job_Type data_scientist	0	0					

Model: MODEL1

Dependent Variable: No_of_Skills No_of_Skills

Parameter Estimates							
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Standardized Estimate
Intercept	Intercept	В	8.49312	0.08880	95.65	<.0001	0
Job_Type_data_analyst	Job_Type data_analyst	В	-4.00232	0.13809	-28.98	<.0001	-0.36477
Job_Type_data_engineer	Job_Type data_engineer	В	2.34662	0.14975	15.67	<.0001	0.19721
Job_Type_data_scientist	Job_Type data_scientist	0	0				

Model: MODEL1
Dependent Variable: No_of_Skills No_of_Skills

Model Information					
Data Set ANI.INDEED_JOB_SEG					
Response Variable	data_scientist	data_scientist			
Number of Response Levels	2				
Model	binary logit				
Optimization Technique	Fisher's scoring				

Number of Observations Read	5715
Number of Observations Used	5715

Response Profile			
Ordered Value	data_scientist	Total Frequency	
1	0	3172	
2	1	2543	

Probability modeled is data_scientist='1'.

Class Level Information				
Class	Class Value Design Variables			
sas	0	1 (
	1	0	1	

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics				
Criterion	Intercept Only	Intercept and Covariates		
AIC	7855.303	7749.100		
SC	7861.954	7762.401		
-2 Log L	7853.303	7745.100		

	R-Square	0.0188	Max-rescaled R-Square	0.0251	
--	----------	--------	-----------------------	--------	--

Testing Global Null Hypothesis: BETA=0				
Test	Chi-Square	DF	Pr > ChiSq	
Likelihood Ratio	108.2038	1	<.0001	
Score	108.7255	1	<.0001	
Wald	105.8071	1	<.0001	

Type 3 Analysis of Effects				
Effect	DF	Wald Chi-Square	Pr > ChiSq	
sas	1	105.8071	<.0001	

Analysis of Maximum Likelihood Estimates						
Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept		1	0.4028	0.0665	36.6631	<.0001
sas	0	1	-0.7480	0.0727	105.8071	<.0001
sas	1	0	0			

Odds Ratio Estimates				
Effect	Point Estimate	95% Confiden		
sas 0 vs 1	0.473	0.410	0.546	

Association of Predicted Probabilities and Observed Responses				
Percent Concordant	19.5	Somers' D	0.103	
Percent Discordant	9.2	Gamma	0.358	
Percent Tied	71.2	Tau-a	0.051	
Pairs	8066396	С	0.551	

Model Information				
Data Set	ANI.INDEED_JOB_SEG			
Response Variable	data_scientist	data_scientist		
Number of Response Levels	2			
Model	binary logit			
Optimization Technique	Fisher's scoring			

Number of Observations Read	5715
Number of Observations Used	5715

Response Profile			
Ordered Value	data_scientist	Total Frequency	
1	0	3172	
2	1	2543	

Probability modeled is data_scientist='1'.

Class Level Information								
Class Value Design Variables								
sas	0	1	0					
	1	0	1					
machine_learning	0	1	0					
	1	0	1					

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics							
Criterion Intercept Only Intercept and Covariates							
AIC	7855.303	5637.823					
sc	7861.954	5664.426					
-2 Log L	7853.303	5629.823					

R-Square	0.3223	Max-rescaled R-Square	0.4315
----------	--------	-----------------------	--------

Testing Global Null Hypothesis: BETA=0							
Test Chi-Square DF Pr > ChiSq							
Likelihood Ratio	2223.4803	3	<.0001				
Score	2073.0466	3	<.0001				
Wald	1707.2235	3	<.0001				

Type 3 Analysis of Effects							
Effect DF Chi-Square Pr > Chi							
sas	1	80.8550	<.0001				
machine_learning	1	790.1858	<.0001				
sas*machine_learning	1	9.1725	0.0025				

Analysis of Maximum Likelihood Estimates							
Parameter DF Estimate Error Chi-Square Pr > ChiSq							

Analysis of Maximum Likelihood Estimates							
Parameter			DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept			1	1.8635	0.1436	168.3566	<.0001
sas	0		1	-0.5520	0.1543	12.7987	0.0003
sas	1		0	0			
machine_learning	0		1	-2.3218	0.1693	188.0307	<.0001
machine_learning	1		0	0			
sas*machine_learning	0	0	1	-0.5607	0.1851	9.1725	0.0025
sas*machine_learning	0	1	0	0			
sas*machine_learning	1	0	0	0			
sas*machine_learning	1	1	0	0			

Association of Predicted Probabilities and Observed Responses								
Percent Concordant 69.9 Somers' D 0.629								
Percent Discordant	7.0	Gamma	0.819					
Percent Tied	23.2	Tau-a	0.311					
Pairs	8066396	С	0.814					