北京航空航天大学数学分析(上)期中考试试题

2006年11月26日

班级 _____ 学号 _____ 姓名 _____

一、填雪	空题(每小题 4 分, 共 28 分)		
1.	$\lim_{x \to +\infty} \left(\sqrt{x+1} - \sqrt{x-1} \right) = \underline{\hspace{1cm}}$	<u>_</u>	
2.	$\lim_{n\to\infty} \left(1 + \frac{1}{n} + \frac{1}{n^2}\right)^n =$		
	$\lim_{x \to +\infty} \left(\frac{x^2 + 1}{x + 1} - ax - b \right) = 0$ 只知	, <i>b</i> =	o
	设圆周 $x^2 + y^2 = 2$ 在某 P 点处的切线平行于直约为		_ '点的坐标
5.	旦 知 $y = \frac{x^2 + \sin x}{1 + x}$,	则	y'
	设 $y = x^{x^2}$, 则 $y' =$		
7. 设 $y = y(x)$ 由方程 $e^{y} + 2xy = e$ 确定,则 $\frac{d^{2}y}{dx^{2}}\Big _{x=0} =$			
	C. 同阶(不等价)无穷小 D. 较低	阶无穷小	f(x)
2. 设函数 $f(x)$ 对一切 x 满足: $xf''(x) + 3x[f'(x)]^2 = 1 - e^{-x}$ 。若有 $x_0 \neq 0$ 是函数 $f(x)$ 的驻点,即 $f'(x_0) = 0$,则			
		$f(x_0) \underset{\mathbb{E}}{} f(x)$ 的极	大值
C. $(x_0, f(x_0))$ 是曲线 $y = f(x)$ 的拐点			
	D. $f(x_0)$ 是 $f(x)$ 的极值, $(x_0, f(x_0))$ 也是曲线	y = f(x) 的拐点	
3. 曲线	$y = \frac{1 + e^{x^2}}{1 - e^{x^2}}$	1	[]
A.	. 仅有水平渐近线 B. 既有水平渐近线	え ,又有铅直渐近约	戋
C.	. 仅有铅直渐近线 D. 既无水平渐近线	え ,又无铅直渐近约	戈
4. "	f(x) 在 $[a,b]$ 上不一致连续"的正确表述是	ľ	1
$A.\exists \varepsilon_0 > 0$, $\forall \delta > 0$, 对 $[a,b]$ 中一切满足 $ x'-x'' < \delta$ 的 x',x'' ,都有			

 $|f(x')-f(x'')| \ge \varepsilon_0$

- B. $\forall \varepsilon_0 > 0$, $\forall n \in N^+$, 对 [a,b] 中一切满足 $\left| s_n t_n \right| < \frac{1}{n}$ 的 s_n, t_n , 都有 $\left| f(s_n) f(t_n) \right| \ge \varepsilon_0$ 。
- $C.\exists \varepsilon_0 > 0$, $\forall \delta > 0$, $\varepsilon_0 = [a,b]$ 中都存在 $|x'-x''| < \delta$ 的 x',x'' , 使得 $|f(x') f(x'')| \ge \varepsilon_0$ 。
- D. $\forall \varepsilon_0 > 0$, $\forall \delta > 0$, 在 [a,b] 中存在满足 $\lim_{n \to \infty} \left| s_n t_n \right| = 0$ 的数列 $\left\{ s_n \right\}, \left\{ t_n \right\}$, 使

$$|f(s_n)-f(t_n)| \ge \varepsilon_0$$

三、计算题(每小题 6 分, 本题共 30 分)

$$\lim_{x \to 0} \frac{e^x - \sin x - 1}{1 - \sqrt{1 - x^2}}$$

$$(2)$$
 $\overset{n}{\aleph}$ $x_1 > 0$, $x_{n+1} = \frac{1}{2} \left(x_n + \frac{2}{x_n} \right)$, $n = 1, 2, 3, \dots$

- (4) $y = \frac{x^2}{1-x}$, $x \in y^{(n)}$, (n > 2)
- (5) 已知 $f(x) = 12x^5 + 15x^4 40x^3$, 求 f(x) 的极值点与极值。

四、证明题(8)

设函数
$$f(x)$$
 有二阶连续导函数,且 $f(0)=0$. 令
$$g(x) = \begin{cases} \frac{f(x)}{x} & x \neq 0 \\ f'(0) & x = 0 \end{cases}$$

(2) 证明 g'(x) 在 x = 0 处连续。

五、证明题(8分)

设 f(x) 在点 $x = x_0$ 外连续, 并且 $f(x_0) > 0$

求证: $\exists \delta > 0$, $\dot{\beta} = |x - x_0| < \delta$ 时, 都有 f(x) > 0.

六、证明题(10 分)

设函数 f(x) 在 [0,1] 上有三阶导函数,且 f(0) = f(1) = 0, $F(x) = x^2 f(x)$ 。证明:存在 $\xi \in (0,1)$,使得 $F'''(\xi) = 0$ 。

七、加选题(10分)

设函数 f(x) 在 [a,b] 上连续,且对区间 [a,b] 上的每一个 x ,总存在 $y \in [a,b]$,使

 $|f(y)| \le \frac{1}{2} |f(x)|$ 。 求证: 至少存在一点 $\xi \in [a,b]$, 使得 $f(\xi) = 0$ 。