Assignment Set: 1, 2, 3, 4, 6, 8 from pages 148 - 149

1)

Mark each statement as true or false. Justify each answer.

- a. A set S is compact iff every open cover of S contains a finite subcover.
- b. Every finite set is compact.
- c. No infinite set is compact.
- d. If a set is compact, then it has a maximum and a minimum.
- e. If a set has a maximum and a minimum, then it is compact.

2)

Mark each statement as true or false. Justify each answer.

- a. Some unbounded sets are compact.
- b. If $S \subset \mathbb{R}$ is compact, then $\exists x \in \mathbb{R}$ st $s \in S'$
- c. If S is compact and $s \in S'$, then $s \in S$.
- d. If S is unbounded, then S has at least one accumulation point.
- e. Let: $F = \{A_i, i \in \mathbb{N} \}$. Suppose that the intersection of any finite subfamily of F is nonempty. If \cap $F = \emptyset$, then, for some $k \in \mathbb{N}$, A_k is not compact.

3)

Show that each subset of \mathbb{R} is not compact by describing an open cover for it that has no finite subcover.

- a. '[1, 3)
- b. $[1,2) \cup (3,4]$
- c. N
- d. $\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$
- $e. \{x \in \mathbb{Q} : 0 \le x \le 2\}$

4)

Prove that the intersection of any collection of compact sets is compact.

6)

Show that compactedness is necessary in Corollary 3.5.8. That is, find a family of intervals $\{A_n : n \in \mathbb{N} \}$ with $A_{n+1} \subset A_n \ \forall \ n, \ \bigcup_{n=1}^{\infty} A_n = \emptyset$, and such that:

- a. The sets A_n are all closed.
- b. The sets A_n are all bounded.

8)

If $S \subset \mathbb{R}$ is compact and $T \subset S$ is closed, then T is compact.

- a. Prove this using the definition of compactness.
- b. Prove this using the Heine-Borel theorem.