

字节跳动基于 Iceberg 的海量特征 存储实践

钱瀚丨字节跳动

个人简介

- 字节跳动基础架构资深研发
- 超过8年的研发经验
- 曾就职于搜狗、百度、京东
- 目前专注于大数据和AI基础架构方向

/ 背景

/ 解决方案

/ 收益

/ 未来规划

#1 背景

- 在线抽取特征
- 以行的格式存储 在 HDFS
- 不存原始特征, 只存抽取后的特征
- 数据的并发读取
- 断点恢复
- Format 解析

▶ 高速训练

痛点

- 存储原始特征
- 离线调研能力
- 支持特征回填
- 降低存储成本
- 降低训练成本
- 提升训练速度

#2解决方案

Parquet

- 1. 基于列存
- 2. 压缩率高
- 3. 支持选列

Iceberg

- 1. 模式演进
- 2. 特征回填
- 3. 并发读写

整体架构

业务		
抖音 头条 小说		
平台		
Metadata Service		
框架		
Spark Primus		
格式		
Iceberg Parquet		
调度器 存储		
Yarn K8S HDFS		

Apache Iceberg is an open table format for huge analytic datasets.

- 模式演进
- 隐藏分区&分区演进
- 支持事务
- MVCC
- 计算存储引擎解耦

并发读写

模式演进

- 基于 id
- 框架解耦
- 完全的模式演进

deleteColumn(colB) addColumn(ColB)

- Copy On Write
 - Backfill -> Rewrite datafiles

- Merge On Read
 - Backfill -> Append update files
 - Compact -> Rewrite data files and update files

Merge On Read

Merge On Read

限制

● datafile 和 updatefile 都需要有唯一主键,并按主键排序

读取

- Projection 决定需要读哪些 datafile 和 updatefile
- 根据 Datafile 进行任务的拆分,根据 datafile 主键的 min max 决定读哪个 updatefile
- 读取是一个datafile 和 updatefile 多路归并的过程
- SEQ 决定合并的顺序

Copy on Write	Merge On Read
读写放大严重	没有读写放大
存储空间浪费	节省存储空间
读取逻辑简单	读取逻辑复杂
写入耗费更多资源	写入耗费更少资源
读取无需额外计算资源	绝大部分场景读取不需额外资源, 少部分场景需要额外资源

- 按行传输
- 框架透传数据给训练器

训练优化

- 选列降低 IO
- 额外增加了序列化反序列化以及构造 Row 的开销,训练速度变慢,资源增加

● 向量化读取提升训练速度,降低部分资源消耗

训练优化

● 基于 Arrow 的数据传输,降低序列化和反序列化开销,进一步提升训练速度, 降低资源消耗

#3 收益

#1

离线特征工程能力

#2

存储成本降低40%以上

#3

降低训练开销

- CPU 降低 13%
- 网络 IO **降低** 40%

#4 未来规划

未来规划

支持 Upsert

物化视图

Data Skipping

基于 arrow 的数据预处理

麦思博(msup)有限公司是一家面向技术型企业的培训咨询机构,携手2000余位中外客座导师,服务于技术团队的能力提升、软件工程效能和产品创新迭代,超过3000余家企业续约学习,是科技领域占有率第1的客座导师品牌,msup以整合全球领先经验实践为己任,为中国产业快速发展提供智库。

高可用架构公众号主要关注互联网架构及高可用、可扩展及高性能领域的知识传播。订阅用户覆盖主流互联网及软件领域系统架构技术从业人员。 高可用架构系列社群是一个社区组织,其精神是"分享+交流",提倡社区的人人参与,同时从社区获得高质量的内容。