SEQUENCE LISTING

<110>	DURANTEL, DAVID					
<120>	METHOD FOR ASSAYING REPORT OF DRUGS	LICATION OF	HBV AND	TESTING	SUSCEPTBII	LITY
<130>	P08599US00/BAS					
	10528833 2006-06-16					
	PCT/EP2003/012398 2003-09-26					
	EP 02356188.9 2002-09-27					
<160>	33					
<170>	PatentIn version 3.2					
<210> <211> <212> <213>	36					
<220> <223>	OLGIONUCLEOTIDE					
<400> tgcgca	1 accgc ggccgcgcaa ctttttc	acc tctgcc			3	36
<210> <211> <212> <213>	36					
<220> <223>	OLIGONUCLEOTIDE					
<400> tgcgca	2 accag ggcgcgccaa ctttttc	acc tctgcc			3	36
<210> <211> <212> <213>	36					
<220> <223>	OLIGONUCLEOTIDE					
<400>	3 acccc tqcaqqqcaa ctttttc	acc tctgcc			3	36

```
<210> 4
<211> 36
<212> DNA
<213> Artificial
<220>
<223> OLIGONUCLEOTIDE
<400> 4
                                                                   36
tgcgcaccag gtttaaacaa ctttttcacc tctgcc
<210> 5
<211> 36
<212> DNA
<213> Artificial
<220>
<223> OLIGONUCLEOTIDE
<400> 5
                                                                   36
tgcgcaccag cggccgccaa ctttttcacc tctgcc
<210> 6
<211> 36
<212> DNA
<213> Artificial
<220>
<223> OLIGONUCLEOTIDE
<400> 6
                                                                   36
tgcgcaccac ctgcaggcaa ctttttcacc tctgcc
<210> 7
<211> 36
<212> DNA
<213> Artificial
<220>
<223> OLIGONUCLEOTIDE
                                                                   36
tgccacccag gtttaaacaa ctttttcacc tctgcc
<210> 8
<211> 36
<212> DNA
<213> Artificial
<220>
<223> OLIGONUCLEOTIDE
```

<400> 8 tgcgcaccag gcgcgcccaa cttttcacc tctgcc	36
<210> 9 <211> 36 <212> DNA <213> Artificial	
<220> <223> OLIGONUCLEOTIDE	
<400> 9 tgcgcacggc gcgcctgcaa ctttttcacc tctgcc	36
<210> 10 <211> 36 <212> DNA <213> Artificial	
<220> <223> OLIGONUCLEOTIDE	
<400> 10 tgcgcaccct gcaggtgcaa ctttttcacc tctgcc	36
<210> 11 <211> 36 <212> DNA <213> Artificial	
<220> <223> OLIGONUCLEOTIDE	
<400> 11 tgcgcaccgc ggccgcgcaa ctttttcacc tctgcc	36
<210> 12 <211> 36 <212> DNA <213> Artificial	
<220> <223> OLIGONUCLEOTIDE	
<400> 12 tgcgcaccat taattaacaa ctttttcacc tctgcc	36
<210> 13 <211> 24 <212> DNA <213> Artificial	

<220> <223>	OLIGONUCLEOTIDE		
<400> ggcago	13 cacas cctagcagcc	atgg	24
<210> <211> <212> <213>	24		
<220> <223>	OLIGONUCLEOTIDE		
<400> ggcago	14 cacas ccgagcagcc	atgg	24
<210> <211> <212> <213>	23		
<220> <223>	OLIGONUCLEOTIDE		
<400> acmtcs	15 stttc catggetget	agg	23
<210> <211> <212> <213>	23		
<220> <223>	OLIGONUCLEOTIDE		
<400> acmtcs	16 stttc catggctgct	cgg	23
<210> <211> <212> <213>	30	·	
<220> <223>	OLIGONUCLEOTIDE		
<400> ctaage	17 ggcat gcgatacaga	gcwgaggcgg	30

<210> 18

```
<211> 30
<212> DNA
<213> Artificial
<220>
<223> OLIGONUCLEOTIDE
<400> 18
                                                             30
ctaagggtcg acgatacaga gcwgaggcgg
<210> 19
<211> 30
<212> DNA
<213> Artificial
<220>
<223> OLIGONUCLEOTIDE
<400> 19
                                                             30
taaacaatgc atgaaccttt accccgttgc
<210> 20
<211> 43
<212> DNA
<213> Artificial
<220>
<223> OLIGONUCLEOTIDE
                                                                   43
ccggaaagct tatgctcttc tttttcacct ctgcctaatc atc
<210> 21
<211> 42
<212> DNA
<213> Artificial
<220>
<223> OLIGONUCLEOTIDE
<400> 21
                                                                   42
ccqqagagct catgctcttc aaaaagttgc atggtgctgg tg
<210> 22
<211> 30
<212> DNA
<213> Artificial
<220>
<223> OLIGONUCLEOTIDE
<400> 22
                                                             30
gctcttcttt ttcacctctg cctaatcatc
```

<210> 23 <211> 29 <212> DNA <213> Artificial	
<220> <223> OLIGONUCLEOTIDE	
<400> 23 gctcttcaaa aagttgcatg gtgctggtg	29
<210> 24 <211> 42 <212> DNA <213> Gallus sp.	
<400> 24 cggccctata aaaagcgaag cgcgcggcgg gcgggagtcg ct	42
<210> 25 <211> 34 <212> DNA <213> Human cytomegalovirus	
<400> 25 tatataagca gagctcgttt agtgaaccgt caga	34
<210> 26 <211> 34 <212> DNA <213> Homo sapiens	
<400> 26 tatataagga cgcgccgggt gtggcacagc tagt	34
<210> 27 <211> 33 <212> DNA <213> Homo sapiens	
<400> 27 tatataagtg cagtagtcgc cgtgaacgtt ctt	33
<210> 28 <211> 34 <212> DNA <213> Simian virus 40	
<400> 28 gactaatttt ttttatttat gcagaggccg aggc	34

<210> 29 <211> 33 <212> DNA <213> Rous sarcoma virus	
<400> 29 tatttaagtg cctagctcga tacaataaac gcc	33
<210> 30	
<211> 42 <212> DNA <213> Artificial	
<220> <223> OLIGONUCLEOTIDE	
<400> 30 cggccctata aaaagcgaag cgcgcggccg ccgggagtcg ct	42
<210> 31 <211> 44 <212> DNA <213> Hepatitis B virus	
<400> 31 tgcgcaccag caccatgcaa ctttttcacc tctgcctaat catc	44
<210> 32 <211> 44 <212> DNA <213> Hepatitis B virus	
<400> 32 acgcgtggtc gtggtacgtt gaaaaagtgg agacggatta gtag	44
<210> 33 <211> 9 <212> DNA <213> Hepatitis B virus	
<400> 33 ttgaaaaag	9