CS 6041 Theory of Computation

Nondeterministic finite automata

Kun Suo

Computer Science, Kennesaw State University

https://kevinsuo.github.io/

Nondeterminism

• Deterministic:

Next state is unique

• Nondeterministic:

- Next state is not unique
- e move

Nondeterminism

accept

• ϵ and different choices generates **different copies** q₁ q₂ q₃ reject reject q_1 q_2 q_3 q_4 accept q_3

Nondeterminism

 When the move cannot continue, the copy will disappear

 If one copy accept, the entire computation accept

N₁ on input 1101 (0)

N₁ on input 1101 (1)

N₁ on input 1101 (1)

N₁ on input 1101 (2)

N₁ on input 1101 (2)

 q_1

N₁ on input 1101 (3)

N₁ on input 1101 (4)

 q_1

N₁ on input 1101 (5)

 q_1

Deterministic finite automaton (DFA) vs Nondeterministic finite automaton (NFA)

Computation branch of N₁ on input 1101

NFA diagram - -> Description

• $L(N_1) = \{ w \mid w \text{ contains substring } 101 \text{ or } 11 \}$

L(N₂)={w | The third from end letter of w is 1}

$$\Sigma = \{0,1\}$$

e.g., 0101, 0010111

• $L(N_2)=\{w \mid \text{The third from end letter of } w \text{ is } 1\}$ $\Sigma=\{0,1\}$

Non-determinism: to test the third from end letter

```
q4: last letter of w
```

q3: the first from end letter of w

q2: the second from end letter of w

q1: the third from end letter of w

q4: the third from end letter of w is 1

q3: the second from end letter of w is 1

q2: the first from end letter of w is 1

q1: all strings

• $L(N_2)=\{w \mid \text{The third from end letter of } w \text{ is } 1\}$ $\Sigma=\{0,1\}$

Non-determinism: to test the third from end letter

q4: the third from end letter of w is 1

q3: the second from end letter of w is 1

q2: the first from end letter of w is 1

q1: all strings

$$q_3$$

$$q_4$$

• $L(N_2)=\{w \mid \text{The third from end letter of } w \text{ is } 1\}$ $\Sigma=\{0,1\}$

Non-determinism: to test the third from end letter

q4: the third from end letter of w is 1

q3: the second from end letter of w is 1

q2: the first from end letter of w is 1

Language description - -> DFA diagram

- $L(N_2)=\{w \mid \text{The third from end letter of w is 1}\}$, $\Sigma=\{0,1\}$
- determinism: we need to record the last three letters

$$\left(q_{110}\right)$$

$$q_{001}$$

$$q_{101}$$

$$q_{011}$$

$$q_{111}$$

Language description - -> DFA diagram

- L(N₂)={w | The third from end letter of w is 1}, Σ ={0,1}
- determinism: we need to record the last three letters

Language description - -> DFA diagram

- L(N₂)={w | The third from end letter of w is 1}, Σ ={0,1}
- determinism: we need to record the last three letters

Comparison

Example: NFA description - -> Diagram

• $L(N_3) = \{ 0^k \mid \text{ where k is a multiple of 2 or 3 } \}$

NFA diagram: accept or reject?

N₄: What strings does it accept/reject?

ε, a, b, bb, baa, baba, babba?

 N_4 accepts ε , a, baba, baa, rejects b, bb, babba.

Definition of nondeterministic finite automaton

$$N = (Q, \Sigma, \delta, q_0, F)$$
, where

- Q: finite set of states
- Σ: finite alphabet as input; $(Σ_ε = Σ ∪ {ε})$
- δ : Q×Σ_ε→P(Q), transition function
- \circ q₀∈Q: start state
- F⊆Q: accept state set

DFA vs. NFA definition comparison

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- **1.** Q is a finite set called the *states*,
- **2.** Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*, ¹
- **4.** $q_0 \in Q$ is the *start state*, and
- **5.** $F \subseteq Q$ is the **set of accept states**.²

A *nondeterministic finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set of states,
- **2.** Σ is a finite alphabet,
- 3. $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.

Transition function: to some states,

destination is a set of states

Example: NFA diagram - -> definition

$$N_1=(Q,\Sigma,\delta,q_1,F);$$

Q = {q₁,q₂,q₃,q₄};

$$\Sigma$$
 = {0,1, ε };

$$q_0 = q_1$$

F = { q_4 };

$$\delta =$$

	0	1	3
q_1	$\{q_1\}$	$\{q_1,q_2\}$	Ø
q_2	$\{q_3\}$	Ø	$\{q_3\}$
q_3	Ø	{q ₄ }	Ø
q_4	{q ₄ }	{q ₄ }	Ø

Definition of computation for NFAs

- NFA N=(Q, Σ , δ ,q₀,F)
 - Input w=w₁w₂...w_m
- Computation: state sequence r₀,r₁,...,r_m
 - \circ $r_0 = q_0$
 - $r_{i+1} \in \delta(r_i, w_{i+1})$ (i=0,1,...,m-1)
- Accept:
 - \circ $r_m \in F$
- M accepts w: there exists one accept
 - L(M)={x | M accept x}

Computation of N₁ on input 1101

