Mestrado Integrado em Eng. Electrónica Industrial e Computadores

Instruction Set

Microcontroladores 2º Ano – A06

Fetch do opcode

Directivas assembly básicas

CSEG AT X

- coloca a próxima instrução no endereço X da memória de código/programa (ROM);
- ex: CSEG AT 0H

END

Indica ao assembler que o ficheiro fonte terminou.

"Etiquetas"

- Em vez de calcularmos o endereço de cada salto, podemos utilizar etiquetas ou *labels* para marcar esses endereços:
- ex:

CSEG AT 0H

JMP MAIN ;dependendo da distância do salto, o assembler escolhe a instrução de salto ideal

. . . .

MAIN:

MOV R0,#25

Características eléctricas

Portos de Entrada/Saída

V_{OL} – tensão de saída nível lógico baixo

V_{OH} – tensão de saída nível lógico alto

Em condições de regime permanente (não transitórias), I_{OL} deve ser externamente limitada de modo a garantir:

I_{OL} máxima por pino de porto: 10mA

I_{OI} máxima por porto (8-bit): 15mA (P1, P2 e P3) e 26mA (P0)

I_{OL} total máxima para todos os pinos de saída: 71mA

Laboratórios - Interface

Problema:

 Com base no valor de 4 pinos de entrada do porto 2 (P2.4 a P2.7), ou seja, do *nibble* (4-bit) mais significativo de P2, escrever no *display* de 7-segmentos o caracter hexadecimal correspondente ao valor do *nibble*.

Hardware:

Exemplo

- O microcontrolador automaticamente coloca no endereço A0H da memória de dados interna, a representação binária das tensões lidas nos pinos de entrada P2.7 a P2.4;
- No exemplo os bits P2.7 a P2.4 foram definidos como entradas digitais e os bits P2.3 a P2.0 como saídas digitais, usando a instrução: MOV P2,#0F0H;
- Reparar que os bits foram lidos em lógica negativa devido à configuração do hardware;
- O programa lê os bits do porto E/S para o acumulador: MOV A,P2
- O programa realiza operações sobre o acumulador;
- Após as verificações e conversões o programa tem no acumulador os bits (bit a 0 LED liga, bit a 1 LED desliga) a colocar nos pinos do porto de E/S (P1);
- MOV P1,A ;acendem-se os segmentos desejados.

KIT8051- Esquema de Ligações

a	Pl 3
b	Pl.2
c	P1.0
d	Pl.6
e	Pl 5
f	Pl.7
g	Pl.4
dp	P1.1

Escrever **0** em P1.3 liga o segmento **a**. Escrever 1 desliga

DATA (00h:7Fh)

- Registos de trabalho (R0..R7)
 - Banco 0: 00h:07h
 - Banco 1: 08h:0Fh
 - Banco 2: 10h:17h
 - Banco 3: 18h:1Fh
- Selecção de banco
 - Bits RS0 (bit 3) e RS1 (bit 4) do registo PSW
- Zona endereçável ao bit
 - DATA 20h:2Fh
 - Processamento booleano
- Uso Geral
 - DATA 30h:7Fh
- Endereçamento directo e indirecto

Modos de endereçamento

- Existem 4 bancos de registos, estando apenas um activo num dado instante
 - Os bits 3 e 4 (RS0 e RS1) do registo PSW (endereço 0D0h do SFR) especificam qual o banco que está activo;
 - MOV PSW, #000 11 000B activa o banco 3

 Os bancos de registo ocupam os primeiros 32 bytes da RAM interna;

DATA (20h:2Fh) - BIT

Zona endereçável ao bit

- Operações booleanas;
- Nota:

esta zona da DATA é endereçável ao byte (16 bytes) e ao bit (128 bits)

MOV A,2AH ;Acumulador armazena bits 50h:57h

SETB 2AH ;Bit 2Ah é colocado a um

– Instruções:

MOV C,bit# MOV bit#,CCLR bit# SETB bit#

• CPL bit#

• JB bit#,addr JNB bit#,addr

End.	nº do bit								
	7	6	5	4	3	2	1	0	
2F	7F	7E	7D	7C	7B	7A	79	78	
2E	77	76	75	74	73	72	71	70	
2D	6F	6E	6D	6C	6B	6A	69	68	
2C	67	66	65	64	63	62	61	60	
2B	5F	5E	5D	5C	5B	5A	59	58	
2A	57	56	55	54	53	52	51	50	
29	4F	4E	4D	4C	4B	4A	49	48	
28	47	46	45	44	43	42	41	40	
27	3F	3E	3D	3C	3B	ЗА	39	38	
26	37	36	35	34	33	32	31	30	
25	2F	2E	2D	2C	2B	2A	29	28	
24	27	26	25	24	23	22	21	20	
23	1F	1E	1D	10	1B	1A	19	18	
22	17	16	15	14	13	12	11	10	
21	OF	0E	OD	OC	OB	0A	09	08	
20	07	06	05	04	03	02	01	00	
								\neg	
	l							ı	

DATA (80h:FFh)

Duas zonas distintas nos mesmos endereços

Selecção da área de memória SFR ou IDATA feita pelo modo de endereçamento:

- Endereçamento Directo SFR
 - Acesso aos periféricos internos através dos SFRs
 - Alguns dos SFRs são endereçáveis ao bit
- Endereçamento Indirecto IDATA
 - Área de propósito geral
 - Nem todas as versões têm esta memória implementada
 - Útil para colocar a stack

SFR - DATA - 80h:FFh

- Special Function Registers SFRs
- Registos Aritméticos:

Acumulador: A ou Acc

- Registo B

Registo de Estados: PSW

- Apontadores:
 - Apontador da Stack
 - Apontador de Dados: DPTR
 - DPH MSB de DPTR
 - DPL LSB de DPTR
- Portos de E/S
 - P0, P1, P2 e P3
- Sistema de Interrupções
 - IEeIP
- Comunicações série RS-232
 - SCON e SBUF
- Power Managment:
 - PCON

Registos de Trabalho (A e B) Flags de Estado (PSW)

Portos Entrada/Saída Digitais

Controlo de Interrupções

Modos de energia Apontador para a Stack

Instruções e operandos

- As instruções do processador são armazenadas na forma de "opcodes" na memória de programa (CODE ou XCODE) do processador;
- A cada instrução está associado um "opcode" único;
- O PC tem o endereço da memória de programa onde está armazenado o próximo "opcode" a ser executado;
- Esse "opcode" é lido para o IR e processado pelo CPU;
- O 8051 lê sempre pelo menos um byte da memória de programa interna. No caso da memória externa lê sempre 2 byte.
 - O tamanho das instruções pode ser de 1-, 2- ou 3-byte;

Instruções e operandos

- As instruções do processador operam sobre dados (operandos);
- Os operandos podem ser de entrada (dados de entrada: input) ou de saída (resultado: output);
- O segundo (e em alguns casos o 3º) byte lido da memória de programa corresponde ao operando de entrada da instrução;
- A versatilidade na programação de um processador encontra-se na diversidade de instruções (operações) e na forma como os operandos de entrada e de saída são obtidos (modos de endereçamento).

Tipos de instrução

- O 8051 possui 5 grupos funcionais de instruções:
 - Instruções aritméticas
 - Instruções lógicas
 - Instruções de transferência de dados
 - Instruções para a manipulação de variáveis booleanas
 - Instruções de controlo de fluxo de execução

Instruções Aritméticas

Mnemonic	Operation	A	ddressi	ng Mod	Execution Time in X1 Mode @12 MHz (μs)	
		Dir	Ind	Reg	lm m	
ADD A, <byt>e</byt>	A = A + <byte></byte>	Х	Х	Х	Х	
ADDC A, <byte></byte>	A = A + <byte> + C</byte>	Х	х	Х	х	1
SUBB A, <byte></byte>	$A = A - \langle byte \rangle - C$	Х	х	х	x	1
INC A	A = A + 1	Accur	Accumulator only			1
INC <byte></byte>	 	Х	Х	Х		1
INC DPTR	DPTR = DPTR + 1	Data	Pointer (only		2
DEC A	A = A - 1	Accur	mulator	only		1
DEC <byte></byte>	 	Х	Х	Х		1
MUL AB	$B:A = B \times A$	ACC	ACC and B only			4
DIV AB	A = Int [A/B] B = Mod [A/B]	ACC	ACC and B only			4
DA A	Decimal Adjust	Accur	mulator	only		1

Instruções aritméticas

- A maioria das instruções são executadas num único ciclo máquina, exceptuando:
 - INC DPTR (2 ciclos)
 - MUL AB (4 ciclos)
 - DIV AB (4 ciclos)
- Ao usá-las deve-se prestar atenção à forma como:
 - A instrução afecta o registo de estado (PSW);
 - O comportamento da instrução é afectado pelo estado do registo PSW.

Instruções aritméticas

Exemplos:

R7 = R7 - R6

MOV A, R7

CLR C

SUBB A, R6

MOV R7, A

SUBB A, Rn

Bytes:

Deve ser explicitamente inicializado a zero caso o valor seja desconhecido

Cycles: 1

Encoding:

10011rrr

Operation

 $(A) \leftarrow (A) - (C) - (Rn)$

Decrementar DPTR

DEC DPL

; decrementa o LSB do DPTR

MOV R7, DPL

; guarda o resultado em R7

CJNE R7, #0FFH, SKIP

; verifica se houve *underflow* para 0FFH

DEC DPH

; caso contrário decrementa o MSB do DPTR

SKIP: ...

Instruções Lógicas

Mnemonic	Operation	Addressing Modes				Execution Time @ 12MHz (μs)
		Dir	Ind	Reg	lmm	
ANL A, <byte></byte>	A = A AND <byte></byte>	Х	Х	Х	Х	1
ANL <byte>, A</byte>	 	Х				1
ANL <byte>, # data</byte>	 <byte> = <byte> AND # data</byte></byte>	Х				2
ORL A, <byte></byte>	A = A OR <byte></byte>	Х	Х	Х	Х	1
ORL <byte>, A</byte>	 	Х				1
ORL <byte>, # data</byte>	<byte> = <byte> OR # data</byte></byte>	Х				2
XRL A, <byte></byte>	A = A XOR <byte></byte>	Х	Х	Х	Х	1
XRL <byte>, A</byte>	 	Х				1
XRL <byte>, # data</byte>	 <byte> = <byte> XOR # data</byte></byte>	Х				2
CLR A	A = 00H	,	Accumu	lator on	y	1
CLP A	A = NOT A	,	Accumu	lator on	y	1
RL A	Rotate ACC Left 1 bit	,	Accumu	lator on	y	1
RLC A	Rotate Left through Carry	Accumulator only		1		
RR A	Rotate ACC Right 1 bit	Accumulator only		1		
RRC A	Rotate Right through Carry	Accumulator only			1	
SWAP A	Swap Nibbles in A	,	Accumu	lator on	у	1

Instruções lógicas

- Todas as instruções lógicas que usam o acumulador são executados num único ciclo máquina;
 - As restantes são executados em 2 ciclos máquina
- Todas as instruções lógicas podem manipular directamente (endereçamento directo) qualquer byte da memória interna;
- As instruções e-lógico, ou-lógico, ou-exclusivológico e negação-lógica podem manipular tanto bytes como bits;

Instruções lógicas

Exemplo:

Converter binário em A para BCD

```
< 100<sub>10</sub>
```

MOV B, #10 ; carregar B com o divisor da base decimal

DIV AB ; dividir o número no acumulador por 10

; deixa em **A** a parte inteira da divisão e em **B** o resto

SWAP A ; mover o dígito das dezenas para o *nibble* mais

; significativo do acumulador

ANL A,#0F0H; linha seguinte podia ser ORL?

ADD A, B; adiciona ao valor no acumulador (dígito das

; dezenas) o dígito das unidades

Instruções Transferência de Dados

Mnemonic	Operation	Addressing Modes				Execution Time @ 12MHz (μs)
		Dir	Ind	Reg	lmm	
MOV A, <src></src>	A = <src></src>	Х	Х	Х	Х	1
MOV <dest>, A</dest>	<dest> = A</dest>	Х	Х	Х		1
MOV <dest>, <src></src></dest>	<dest> = <src></src></dest>	Х	х	х	х	2
MOV DPTR, # data 16	DPTR = 16-bit immediate constant				х	2
PUSH <src></src>	INC SP: MOV "@SP", <scr></scr>	Х				2
POP <dest></dest>	MOV <dest>, "@SP": DEC SP</dest>	Х				2
XCH A, <byte></byte>	ACC and <byte> Exchange Data</byte>	Х	Х	Х		1
XCHD A, @Ri	ACC and @ Ri exchange low nibbles		Х			1

Transferência de Dados

Address Width	Mnemonic	Operation	Execution Time @ 12MHz (μs)
8 bits	MOVX A, @Ri	Read external RAM @ Ri	2
8 bits	MOVX @ Ri, A	Write external RAM @ Ri	2
16 bits	MOVX A, @ DPTR	Read external RAM @ DPTR	2
16 bits	MOVX @ DPTR, A	Write external RAM @ DPTR	2

Mnemonic	Operation	Execution Time @ 12MHz (µs)
MOVC A, @A + DPTR	Read Pgm Memory at (A + DPTR)	2
MOVC A, @A + PC	Read Pgm Memory at (A + PC)	2

Instruções de transferência de dados

- Toda a movimentação de dados no interior da memória interna são executados em 1 ou 2 ciclos máquina.
- A movimentação de dados entre a memória interna e externa realiza-se através do endereçamento indirecto.
- Todas as movimentações que operam na memória externa são executadas em 2 ciclos máquina.
 - Usam o acumulador como fonte ou destino
- O strobe de leitura/escrita (/RD e /WD) são activados apenas durante a execução da instrução MOVX.

Instruções de transferência de dados

- Exemplo: Movimentação de dados a partir da memória externa
 - Fonte de dados: endereços 10F4H e 10F5H (memória externa).
 - Destino dos dados: registos R6 e R7, respectivamente.

MOV **DPTR**, #10F4H ; inicializa o apontador de dados de 16 bit com ; o menor endereço fonte. MOVX A, @DPTR : lê o dado apontado pelo apontador de dados de : 16 bits e coloca-o no acumulador MOV R6, A ; transfere o dado lido do acumulador para R6 INC **DPTR** ; aponta para o próximo endereço fonte (10F5H) MOVX A, @DPTR ; lê o dado apontado pelo apontador de dados de : 16 bits e coloca-o no acumulador MOV R7, A ; transfere o 2º dado lido do acumulador para R7

Instruções de transferência de dados

- A instrução MOV R1,R2 não existe!
- Uma maneira de a implementar seria:

```
MOV A,R2
MOV R1,A
```

No entanto os registos estão implementados em memória.
 Portanto podemos:

```
MOV R1,2 ; 2 é o endereço de R2 (banco 0) na memória RAM interna
```

Para não estarmos dependentes do banco:

```
USING 0 ; indicar qual o banco que estamos a usar
```

MOV R1,AR2 ; AR2 é o endereço de R2 na memória RAM interna no

; banco seleccionado pela directiva USING

 Ou seja, podemos sempre utilizar o endereço directo do registo com que pretendemos utilizar.

ACC - Acumulador

Instruções Booleanas

Mnemonic	Operation	Execution Time @ 12MHz (μs)
ANL C,bit	C = C AND bit	2
ANL C,/bit	C = C AND (NOT bit)	2
ORL C,bit	C = C OR bit	2
ORL C,/bit	C = C OR (NOT bit)	2
MOV C,bit	C = bit	1
MOV bit,C	bit = C	2
CLR C	C = 0	1
CLR bit	bit = 0	1
SETB C	C = 1	1
SETB bit	bit = 1	1
CPL C	C = NOT C	1
CPL bit	bit = NOT bit	1
JC rel	Jump if $C = 1$	2
JNC rel	Jump if $C = 0$	2
JB bit,rel	Jump if bit = 1	2
JNB bit,rel	Jump if bit $= 0$	2
JBC bit,rel	Jump if bit = 1; CLR bit	2

Instruções Booleanas

- Nas instruções booleanas, o carry funciona como o "Acumulador";
- Quando é utilizado um bit da memória de dados, esse bit reside na área endereçável ao bit (20h a 2Fh - se tiver um endereço entre 00h e 7Fh) ou pertence a um SFR endereçável ao bit, endereços superiores a 80h (P0.0);
- Há instruções de salto condicional que se baseiam no estado do bit carry (JC e JNC) ou de um bit da memória de dados interna (JB, JNB e JBC):

– Exemplo:

MOV C,P2.4

ANL C,/P2.5

JNC CONTINUA

SETB P1.7

CONTINUA:

...

Instruções de Salto

Mnemonic	Operation	Execution Time @ 12MHz (μs)
JMP addr	Jump to addr	2
JMP @A + DPTR CALL addr	Jump to A + DPTR Call subroutine at addr	2 2
RET RETI	Return from subroutine Return from interrupt	2 2
NOP	No operation	1

Mnemonic	Operation	Addressing Modes			Execution Time @ 12MHz (μs)	
		DIR IND REG IMM				
JZ rel	Jump if A = 0	Accumulator only			2	
JNZ rel	Jump if A ≠ 0	Accumulator only			2	
DJNZ <byte>,rel</byte>	Decrement and jump if not zero	Х	х		2	
CJNZ A, <byte>,rel</byte>	Jump if A = <byte></byte>	Х			Х	2
CJNE <byte>,#data,rel</byte>	Jump if <byte> = #data</byte>		Χ	Х		2

Instruções de salto

- As instruções de salto permitem alterar a sequência normal de execução das instruções por parte do CPU;
- A instrução "JMP addr" pode ser utilizada pelo programador, mas na realidade será utilizada uma de três instruções: SJMP, AJMP ou LJMP;
- Qualquer que seja a instrução seleccionada o programador tem de fornecer ao assembler o endereço do destino do salto do mesmo modo: através de um etiqueta ou de um endereço de destino de 16-bit;
- A instrução JMP @A+DPTR fornece "case jumps". O endereço de destino é calculado em tempo de execução:

```
SWITCH_ACC:

MOV DPTR,#CASEJUMP

RL A

JMP @A+DPTR

CASEJUMP:

AJMP CASE0

AJMP CASE1

AJMP CASE2
```


Invocação de subrotinas

- A instrução "CALL addr" pode ser utilizada pelo programador, mas na realidade será utilizada uma de duas instruções: ACALL ou LCALL;
- Qualquer que seja a instrução seleccionada o programador tem de fornecer ao assembler o endereço da subrotina do mesmo modo: através de um etiqueta ou de um endereço de 16-bit, o assemblador coloca o endereço no formato correcto;
- Para retornar da subrotina e continuar a execução na instrução seguinte à instrução CALL (invocação da rotina), tem de ser utilizada a instrução RET;
- O endereço da instrução seguinte, que é o conteúdo do PC, é armazenado na memória de dados (na Stack);
- A instrução RETI é usada para terminar uma rotina de serviço a uma interrupção.

Saltos condicionais

- Alteração do fluxo de execução, em tempo de execução, com base no valor de uma variável (posição de memória), um registo ou de um bit;
- Reparar que n\u00e3o existe o bit Z (zero) no registo PSW. As instru\u00fc\u00fces JZ e
 JNZ testam o valor do acumulador directamente;
- A instrução DJNZ é utilizada para controlo de loops:

```
MOV R3,#8D
MOV A,#1
CTRLOOP:
MOV P1,A
RL A
DJNZ R3,CTRLOOP
...
```

A instrução CJNE pode também ser utilizada para controlo de *loops*, no entanto a principal utilização é nas comparações "maior que, menor que".
 Os dois bytes dos operandos são utilizados, o bit *carry* é colocado a 1 se o primeiro operando for menor que o segundo.