

Pilani Campus

Minimization of DFA (Continued...)

Shashank Gupta
Assistant Professor
Department of Computer Science and Information Systems

DFA Equivalence Class Algorithm

Input: DFA, $A = (Q, \Sigma, \delta, q_0, F)$.

Output: Equivalence classes over Q.

DFA Equivalence Class Algorithm (Continued....)

- 1. Divide Q into two classes C1 and C2:
 - -Final states C1 = F
 - -Non-final states C2 = Q F.

DFA Equivalence Class Algorithm (Continued.....)

2. While in the previous step a change has been made do at step k+1

for each k-equivalence class C_j in E_k for each pair of states p,q in C_j for each $\sigma \in \Sigma$

if $\delta(p, \sigma) \neq_k \delta(q, \sigma)$ then divide C_j into classes in such way that p and q will be in different classes.

DFA Equivalence Class Algorithm (Continued....)

The computation of equivalence states can stop when $E_k = E_{k+1}$.

If
$$E_k = E_{k+1}$$
 then $E_{k+1} = E_{k+2}$.

More Examples

Generate the minimal DFA for the following DFA over $\Sigma = \{a,b\}$ using State Equivalence Mechanism.

DFA Minimization

Table Filling Mechanism

Algorithm

Input D =
$$(Q, \Sigma, \delta, q_0, F)$$

Design a table for all {p, q} pairs where p, q ∈
 Q

Mark a pair $\{p,q\}$ if $p \in F$ and $q \notin F$ or vice-versa.

Algorithm (Continued.....)

Repeat the following until no more pairs can be marked

• Mark $\{p, q\}$ if $\{\delta(p,a), \delta(q,a)\}$ is marked for some $a \in \Sigma$.

Two or more states are equivalent if they are not marked.

Minimization Example

Minimization Example (Continued....)

Minimization Example (Continued....)

6

Minimization Example (Continued....)

lead

More Examples

Generate the minimal DFA for the following DFA over $\Sigma = \{a,b\}$ using Table filling mechanism

Topics Covered (Till Now)

- Finite Automaton
- Designing of DFA and NFA
- Equivalence between NFA and DFA
- Regular Languages and Regular Expressions
- ∈-NFA and Generalized NFA (GNFA)
- Equivalence between ∈-NFA and NFA
- Equivalence between FA and Regular Expressions
- Closure Properties of Regular Languages
- Non-Regular Languages
- Minimization of DFA