Operacja	Czas nomin.	Op. Poprzednie	Czas min.	Pracownicy
A	6		3	3
В	8		3	2
С	11	a	6	3
D	8	b	6	3
Е	6	С	3	1
F	5	cd	3	3

Zasoby funduszy na skracanie: 7 (dane do p. IV); zasoby pracowników: 4

Dane jest przedsięwzięcie o strukturze i parametrach operacji określonej w powyższej tabeli.

Przedsięwzięcie składa się z sześciu operacji, oznaczonych literami ABCDEF. Struktura zależności między operacjami jest określona przez podanie operacji poprzedzających, które muszą zostać zakończone, żeby dana operacja mogła się rozpocząć.

- I. Narysować sieć operacji w przedstawieniu łukowym (operacje jako łuki) i w węzłowym (operacje jako węzły).
- II. Przy nominalnych czasach trwania operacji:
 - A. wyznaczyć najkrótszy czas trwania przedsięwzięcia T1,
 - B. wskazać odpowiadającą mu ścieżkę krytyczną,
 - C. obliczyć zapasy czasu operacji nie krytycznych,
 - D. wypisać wszystkie ścieżki,
 - E. wskazać takie operacje, których wydłużenie o 2 dni (jednej na raz) w stosunku do czasu nominalnego spowoduje wydłużenie czasu trwania przedsiewziecia o 1 dzień.
 - F. wskazać takie operacje, których skrócenie o 2 dni (jednej na raz) w stosunku do czasu nominalnego spowoduje skrócenie czasu trwania przedsięwzięcia o 1 dzień.
 - G. naszkicować wykres przedstawiający harmonogram przedsięwzięcia przy rozpoczynaniu wszystkich operacji w najwcześniejszych terminach,
 - H. naszkicować wykres przedstawiający liczbę pracowników zatrudnionych w poszczególne dni przy harmonogramie z p. G,
 - I. naszkicować wykres przedstawiający harmonogram przedsięwzięcia przy rozpoczynaniu wszystkich operacji w najpóźniejszych terminach niepowodujących wydłużenia czasu trwania całego przedsiewziecia ponad T1 (wyznaczony w p. A).
- III. Przy minimalnych czasach trwania operacji:
 - A. wyznaczyć najkrótszy czas trwania przedsięwzięcia T2,
 - B. obliczyć zużycie zasobu potrzebne do maksymalnego skrócenia wszystkich operacji (może być większe od dostępnego),
 - wyznaczyć najmniejsze zużycie zasobu wystarczające do skrócenia czasu przedsięwzięcia do T2.
- IV. Wykorzystując zasób w dostępnych granicach przydzielić go tak do skracania poszczególnych operacji, by jak najwięcej skrócić czas trwania przedsięwzięcia. Podać uzyskany czas T3 oraz liczbę jednostek zasobu przydzielaną poszczególnym operacjom.
- V. Przy nominalnych czasach wykonywania wszystkich operacji zaplanować przedsięwzięcie w taki sposób, żeby łączna liczba pracowników zatrudnianych w tym samym czasie żadnego dnia nie przekroczyła podanej (dostępnej) liczby pracowników. Podać czas przedsięwzięcia T4 oraz chwile rozpoczynania poszczególnych operacji (uwaga, czas przedsięwzięcia nie musi być najmniejszy z możliwych). Naszkicować wykres przedstawiający liczbę pracowników zatrudnionych w poszczególne dni.
- VI. (Punkt opcjonalny) Zapisać zadania programowania liniowego odpowiadające:
 - A. Problemowi z p. II A; podać wartości zmiennych i funkcji celu odpowiadające harmonogramowi z p. II G i wykazać, że są spełnione wszystkie ograniczenia zadania;
 - Problemowi z p. III C; sprawdzić, czy dla rozwiązania odpowiadającego decyzjom z p. IV są spełnione wszystkie ograniczenia i obliczyć wartość funkcji celu.

Operacja	Czas nomin.	Op. Poprzednie	Czas min.	Pracownicy
A	8		4	3
В	11		6	1
С	8	ab	4	3
D	8	b	4	2
Е	18		4	3
F	9	de	5	2

Zasoby funduszy na skracanie: 6 (dane do p. IV); zasoby pracowników: 4

Dane jest przedsięwzięcie o strukturze i parametrach operacji określonej w powyższej tabeli.

Przedsięwzięcie składa się z sześciu operacji, oznaczonych literami ABCDEF. Struktura zależności między operacjami jest określona przez podanie operacji poprzedzających, które muszą zostać zakończone, żeby dana operacja mogła się rozpocząć.

- Narysować sieć operacji w przedstawieniu łukowym (operacje jako łuki) i w węzłowym (operacje jako węzły).
- II. Przy nominalnych czasach trwania operacji:
 - A. wyznaczyć najkrótszy czas trwania przedsięwzięcia T1,
 - B. wskazać odpowiadającą mu ścieżkę krytyczną,
 - C. obliczyć zapasy czasu operacji nie krytycznych,
 - D. wypisać wszystkie ścieżki,
 - E. wskazać takie operacje, których wydłużenie o 2 dni (jednej na raz) w stosunku do czasu nominalnego spowoduje wydłużenie czasu trwania przedsięwzięcia o 1 dzień.
 - F. wskazać takie operacje, których skrócenie o 2 dni (jednej na raz) w stosunku do czasu nominalnego spowoduje skrócenie czasu trwania przedsięwzięcia o 1 dzień.
 - G. naszkicować wykres przedstawiający harmonogram przedsięwzięcia przy rozpoczynaniu wszystkich operacji w najwcześniejszych terminach,
 - H. naszkicować wykres przedstawiający liczbę pracowników zatrudnionych w poszczególne dni przy harmonogramie z p. G,
 - I. naszkicować wykres przedstawiający harmonogram przedsięwzięcia przy rozpoczynaniu wszystkich operacji w najpóźniejszych terminach niepowodujących wydłużenia czasu trwania całego przedsięwzięcia ponad T1 (wyznaczony w p. A).
- III. Przy minimalnych czasach trwania operacji:
 - A. wyznaczyć najkrótszy czas trwania przedsięwzięcia T2,
 - B. obliczyć zużycie zasobu potrzebne do maksymalnego skrócenia wszystkich operacji (może być większe od dostępnego),
 - Wyznaczyć najmniejsze zużycie zasobu wystarczające do skrócenia czasu przedsięwzięcia do T2.
- IV. Wykorzystując zasób w dostępnych granicach przydzielić go tak do skracania poszczególnych operacji, by jak najwięcej skrócić czas trwania przedsięwzięcia. Podać uzyskany czas T3 oraz liczbę jednostek zasobu przydzielaną poszczególnym operacjom.
- V. Przy nominalnych czasach wykonywania wszystkich operacji zaplanować przedsięwzięcie w taki sposób, żeby łączna liczba pracowników zatrudnianych w tym samym czasie żadnego dnia nie przekroczyła podanej (dostępnej) liczby pracowników. Podać czas przedsięwzięcia T4 oraz chwile rozpoczynania poszczególnych operacji (uwaga, czas przedsięwzięcia nie musi być najmniejszy z możliwych). Naszkicować wykres przedstawiający liczbę pracowników zatrudnionych w poszczególne dni.
- VI. (Punkt opcjonalny) Zapisać zadania programowania liniowego odpowiadające:
 - A. Problemowi z p. II A; podać wartości zmiennych i funkcji celu odpowiadające harmonogramowi z p. II G i wykazać, że są spełnione wszystkie ograniczenia zadania;
 - B. Problemowi z p. III C; sprawdzić, czy dla rozwiązania odpowiadającego decyzjom z p. IV są spełnione wszystkie ograniczenia i obliczyć wartość funkcji celu.

Operacja	Czas nomin.	Op. Poprzednie	Czas min.	Pracownicy
A	13		6	3
В	11		3	1
С	6	a	3	3
D	6	b	4	2
Е	14	ab	5	1
F	9	cd	5	2

Zasoby funduszy na skracanie: 8 (dane do p. IV); zasoby pracowników: 4

Dane jest przedsięwzięcie o strukturze i parametrach operacji określonej w powyższej tabeli.

Przedsięwzięcie składa się z sześciu operacji, oznaczonych literami ABCDEF. Struktura zależności między operacjami jest określona przez podanie operacji poprzedzających, które muszą zostać zakończone, żeby dana operacja mogła się rozpocząć.

- Narysować sieć operacji w przedstawieniu łukowym (operacje jako łuki) i w węzłowym (operacje jako węzły).
- II. Przy nominalnych czasach trwania operacji:
 - A. wyznaczyć najkrótszy czas trwania przedsięwzięcia T1,
 - B. wskazać odpowiadającą mu ścieżkę krytyczną,
 - C. obliczyć zapasy czasu operacji nie krytycznych,
 - D. wypisać wszystkie ścieżki,
 - E. wskazać takie operacje, których wydłużenie o 2 dni (jednej na raz) w stosunku do czasu nominalnego spowoduje wydłużenie czasu trwania przedsięwzięcia o 1 dzień.
 - F. wskazać takie operacje, których skrócenie o 2 dni (jednej na raz) w stosunku do czasu nominalnego spowoduje skrócenie czasu trwania przedsięwzięcia o 1 dzień.
 - G. naszkicować wykres przedstawiający harmonogram przedsięwzięcia przy rozpoczynaniu wszystkich operacji w najwcześniejszych terminach,
 - H. naszkicować wykres przedstawiający liczbę pracowników zatrudnionych w poszczególne dni przy harmonogramie z p. G,
 - I. naszkicować wykres przedstawiający harmonogram przedsięwzięcia przy rozpoczynaniu wszystkich operacji w najpóźniejszych terminach niepowodujących wydłużenia czasu trwania całego przedsięwzięcia ponad T1 (wyznaczony w p. A).
- III. Przy minimalnych czasach trwania operacji:
 - A. wyznaczyć najkrótszy czas trwania przedsięwzięcia T2,
 - B. obliczyć zużycie zasobu potrzebne do maksymalnego skrócenia wszystkich operacji (może być większe od dostępnego),
 - C. wyznaczyć najmniejsze zużycie zasobu wystarczające do skrócenia czasu przedsięwzięcia do T2
- IV. Wykorzystując zasób w dostępnych granicach przydzielić go tak do skracania poszczególnych operacji, by jak najwięcej skrócić czas trwania przedsięwzięcia. Podać uzyskany czas T3 oraz liczbę jednostek zasobu przydzielaną poszczególnym operacjom.
- V. Przy nominalnych czasach wykonywania wszystkich operacji zaplanować przedsięwzięcie w taki sposób, żeby łączna liczba pracowników zatrudnianych w tym samym czasie żadnego dnia nie przekroczyła podanej (dostępnej) liczby pracowników. Podać czas przedsięwzięcia T4 oraz chwile rozpoczynania poszczególnych operacji (uwaga, czas przedsięwzięcia nie musi być najmniejszy z możliwych). Naszkicować wykres przedstawiający liczbę pracowników zatrudnionych w poszczególne dni.
- VI. (Punkt opcjonalny) Zapisać zadania programowania liniowego odpowiadające:
 - A. Problemowi z p. II A; podać wartości zmiennych i funkcji celu odpowiadające harmonogramowi z p. II G i wykazać, że są spełnione wszystkie ograniczenia zadania;
 - B. Problemowi z p. III C; sprawdzić, czy dla rozwiązania odpowiadającego decyzjom z p. IV są spełnione wszystkie ograniczenia i obliczyć wartość funkcji celu.

Operacja	Czas nomin.	Op. Poprzednie	Czas min.	Pracownicy
A	8		4	3
В	11	a	5	1
С	3		2	3
D	8	ac	4	2
Е	10	С	5	3
F	4	ed	2	2

Zasoby funduszy na skracanie: 5 (dane do p. IV); zasoby pracowników: 4

Dane jest przedsięwzięcie o strukturze i parametrach operacji określonej w powyższej tabeli.

Przedsięwzięcie składa się z sześciu operacji, oznaczonych literami ABCDEF. Struktura zależności między operacjami jest określona przez podanie operacji poprzedzających, które muszą zostać zakończone, żeby dana operacja mogła się rozpoczać.

- Narysować sieć operacji w przedstawieniu łukowym (operacje jako łuki) i w węzłowym (operacje jako węzły).
- II. Przy nominalnych czasach trwania operacji:
 - A. wyznaczyć najkrótszy czas trwania przedsięwzięcia T1,
 - B. wskazać odpowiadająca mu ścieżkę krytyczną,
 - C. obliczyć zapasy czasu operacji nie krytycznych,
 - D. wypisać wszystkie ścieżki,
 - E. wskazać takie operacje, których wydłużenie o 2 dni (jednej na raz) w stosunku do czasu nominalnego spowoduje wydłużenie czasu trwania przedsięwzięcia o 1 dzień.
 - F. wskazać takie operacje, których skrócenie o 2 dni (jednej na raz) w stosunku do czasu nominalnego spowoduje skrócenie czasu trwania przedsięwzięcia o 1 dzień.
 - G. naszkicować wykres przedstawiający harmonogram przedsięwzięcia przy rozpoczynaniu wszystkich operacji w najwcześniejszych terminach,
 - H. naszkicować wykres przedstawiający liczbę pracowników zatrudnionych w poszczególne dni przy harmonogramie z p. G,
 - I. naszkicować wykres przedstawiający harmonogram przedsięwzięcia przy rozpoczynaniu wszystkich operacji w najpóźniejszych terminach niepowodujących wydłużenia czasu trwania całego przedsięwzięcia ponad T1 (wyznaczony w p. A).
- III. Przy minimalnych czasach trwania operacji:
 - A. wyznaczyć najkrótszy czas trwania przedsięwzięcia T2,
 - B. obliczyć zużycie zasobu potrzebne do maksymalnego skrócenia wszystkich operacji (może być większe od dostępnego),
 - C. wyznaczyć najmniejsze zużycie zasobu wystarczające do skrócenia czasu przedsięwzięcia do T2
- IV. Wykorzystując zasób w dostępnych granicach przydzielić go tak do skracania poszczególnych operacji, by jak najwięcej skrócić czas trwania przedsięwzięcia. Podać uzyskany czas T3 oraz liczbę jednostek zasobu przydzielaną poszczególnym operacjom.
- V. Przy nominalnych czasach wykonywania wszystkich operacji zaplanować przedsięwzięcie w taki sposób, żeby łączna liczba pracowników zatrudnianych w tym samym czasie żadnego dnia nie przekroczyła podanej (dostępnej) liczby pracowników. Podać czas przedsięwzięcia T4 oraz chwile rozpoczynania poszczególnych operacji (uwaga, czas przedsięwzięcia nie musi być najmniejszy z możliwych). Naszkicować wykres przedstawiający liczbę pracowników zatrudnionych w poszczególne dni.
- VI. (Punkt opcjonalny) Zapisać zadania programowania liniowego odpowiadające:
 - A. Problemowi z p. II A; podać wartości zmiennych i funkcji celu odpowiadające harmonogramowi z p. II G i wykazać, że są spełnione wszystkie ograniczenia zadania;
 - B. Problemowi z p. III C; sprawdzić, czy dla rozwiązania odpowiadającego decyzjom z p. IV są spełnione wszystkie ograniczenia i obliczyć wartość funkcji celu.

Operacja	Czas nomin.	Op. Poprzednie	Czas min.	Pracownicy
A	10		4	2
В	11		6	3
С	5	b	3	2
D	5	a	2	2
Е	4	cd	2	3
F	5	ac	3	2

Zasoby funduszy na skracanie: 8 (dane do p. IV); zasoby pracowników: 4

Dane jest przedsięwzięcie o strukturze i parametrach operacji określonej w powyższej tabeli.

Przedsięwzięcie składa się z sześciu operacji, oznaczonych literami ABCDEF. Struktura zależności między operacjami jest określona przez podanie operacji poprzedzających, które muszą zostać zakończone, żeby dana operacja mogła się rozpocząć.

- Narysować sieć operacji w przedstawieniu łukowym (operacje jako łuki) i w węzłowym (operacje jako węzły).
- II. Przy nominalnych czasach trwania operacji:
 - A. wyznaczyć najkrótszy czas trwania przedsięwzięcia T1,
 - B. wskazać odpowiadająca mu ścieżkę krytyczną,
 - C. obliczyć zapasy czasu operacji nie krytycznych,
 - D. wypisać wszystkie ścieżki,
 - E. wskazać takie operacje, których wydłużenie o 2 dni (jednej na raz) w stosunku do czasu nominalnego spowoduje wydłużenie czasu trwania przedsięwzięcia o 1 dzień.
 - F. wskazać takie operacje, których skrócenie o 2 dni (jednej na raz) w stosunku do czasu nominalnego spowoduje skrócenie czasu trwania przedsięwzięcia o 1 dzień.
 - G. naszkicować wykres przedstawiający harmonogram przedsięwzięcia przy rozpoczynaniu wszystkich operacji w najwcześniejszych terminach,
 - H. naszkicować wykres przedstawiający liczbę pracowników zatrudnionych w poszczególne dni przy harmonogramie z p. G,
 - I. naszkicować wykres przedstawiający harmonogram przedsięwzięcia przy rozpoczynaniu wszystkich operacji w najpóźniejszych terminach niepowodujących wydłużenia czasu trwania całego przedsięwzięcia ponad T1 (wyznaczony w p. A).
- III. Przy minimalnych czasach trwania operacji:
 - A. wyznaczyć najkrótszy czas trwania przedsięwzięcia T2,
 - B. obliczyć zużycie zasobu potrzebne do maksymalnego skrócenia wszystkich operacji (może być większe od dostępnego),
 - C. wyznaczyć najmniejsze zużycie zasobu wystarczające do skrócenia czasu przedsięwzięcia do T2
- IV. Wykorzystując zasób w dostępnych granicach przydzielić go tak do skracania poszczególnych operacji, by jak najwięcej skrócić czas trwania przedsięwzięcia. Podać uzyskany czas T3 oraz liczbę jednostek zasobu przydzielaną poszczególnym operacjom.
- V. Przy nominalnych czasach wykonywania wszystkich operacji zaplanować przedsięwzięcie w taki sposób, żeby łączna liczba pracowników zatrudnianych w tym samym czasie żadnego dnia nie przekroczyła podanej (dostępnej) liczby pracowników. Podać czas przedsięwzięcia T4 oraz chwile rozpoczynania poszczególnych operacji (uwaga, czas przedsięwzięcia nie musi być najmniejszy z możliwych). Naszkicować wykres przedstawiający liczbę pracowników zatrudnionych w poszczególne dni.
- VI. (Punkt opcjonalny) Zapisać zadania programowania liniowego odpowiadające:
 - A. Problemowi z p. II A; podać wartości zmiennych i funkcji celu odpowiadające harmonogramowi z p. II G i wykazać, że są spełnione wszystkie ograniczenia zadania;
 - B. Problemowi z p. III C; sprawdzić, czy dla rozwiązania odpowiadającego decyzjom z p. IV są spełnione wszystkie ograniczenia i obliczyć wartość funkcji celu.

Operacja	Czas nomin.	Op. Poprzednie	Czas min.	Pracownicy
A	9		5	3
В	17	a	3	1
С	7	a	4	3
D	11		6	2
Е	9	С	5	3
F	11	cd	6	2

Zasoby funduszy na skracanie: 4 (dane do p. IV); zasoby pracowników: 4

Dane jest przedsięwzięcie o strukturze i parametrach operacji określonej w powyższej tabeli.

Przedsięwzięcie składa się z sześciu operacji, oznaczonych literami ABCDEF. Struktura zależności między operacjami jest określona przez podanie operacji poprzedzających, które muszą zostać zakończone, żeby dana operacja mogła się rozpocząć.

- Narysować sieć operacji w przedstawieniu łukowym (operacje jako łuki) i w węzłowym (operacje jako węzły).
- II. Przy nominalnych czasach trwania operacji:
 - A. wyznaczyć najkrótszy czas trwania przedsięwzięcia T1,
 - B. wskazać odpowiadającą mu ścieżkę krytyczną,
 - C. obliczyć zapasy czasu operacji nie krytycznych,
 - D. wypisać wszystkie ścieżki,
 - E. wskazać takie operacje, których wydłużenie o 2 dni (jednej na raz) w stosunku do czasu nominalnego spowoduje wydłużenie czasu trwania przedsięwzięcia o 1 dzień.
 - F. wskazać takie operacje, których skrócenie o 2 dni (jednej na raz) w stosunku do czasu nominalnego spowoduje skrócenie czasu trwania przedsięwzięcia o 1 dzień.
 - G. naszkicować wykres przedstawiający harmonogram przedsięwzięcia przy rozpoczynaniu wszystkich operacji w najwcześniejszych terminach,
 - H. naszkicować wykres przedstawiający liczbę pracowników zatrudnionych w poszczególne dni przy harmonogramie z p. G,
 - I. naszkicować wykres przedstawiający harmonogram przedsięwzięcia przy rozpoczynaniu wszystkich operacji w najpóźniejszych terminach niepowodujących wydłużenia czasu trwania całego przedsięwzięcia ponad T1 (wyznaczony w p. A).
- III. Przy minimalnych czasach trwania operacji:
 - A. wyznaczyć najkrótszy czas trwania przedsięwzięcia T2,
 - B. obliczyć zużycie zasobu potrzebne do maksymalnego skrócenia wszystkich operacji (może być większe od dostępnego),
 - Wyznaczyć najmniejsze zużycie zasobu wystarczające do skrócenia czasu przedsięwzięcia do T2.
- IV. Wykorzystując zasób w dostępnych granicach przydzielić go tak do skracania poszczególnych operacji, by jak najwięcej skrócić czas trwania przedsięwzięcia. Podać uzyskany czas T3 oraz liczbę jednostek zasobu przydzielaną poszczególnym operacjom.
- V. Przy nominalnych czasach wykonywania wszystkich operacji zaplanować przedsięwzięcie w taki sposób, żeby łączna liczba pracowników zatrudnianych w tym samym czasie żadnego dnia nie przekroczyła podanej (dostępnej) liczby pracowników. Podać czas przedsięwzięcia T4 oraz chwile rozpoczynania poszczególnych operacji (uwaga, czas przedsięwzięcia nie musi być najmniejszy z możliwych). Naszkicować wykres przedstawiający liczbę pracowników zatrudnionych w poszczególne dni.
- VI. (Punkt opcjonalny) Zapisać zadania programowania liniowego odpowiadające:
 - A. Problemowi z p. II A; podać wartości zmiennych i funkcji celu odpowiadające harmonogramowi z p. II G i wykazać, że są spełnione wszystkie ograniczenia zadania;
 - B. Problemowi z p. III C; sprawdzić, czy dla rozwiązania odpowiadającego decyzjom z p. IV są spełnione wszystkie ograniczenia i obliczyć wartość funkcji celu.

Operacja	Czas nomin.	Op. Poprzednie	Czas min.	Pracownicy
A	3		2	3
В	6		3	1
С	6	ab	3	3
D	11		6	2
Е	11	b	6	3
F	9	cd	5	2

Zasoby funduszy na skracanie: 7 (dane do p. IV); zasoby pracowników: 5

Dane jest przedsięwzięcie o strukturze i parametrach operacji określonej w powyższej tabeli.

Przedsięwzięcie składa się z sześciu operacji, oznaczonych literami ABCDEF. Struktura zależności między operacjami jest określona przez podanie operacji poprzedzających, które muszą zostać zakończone, żeby dana operacja mogła się rozpocząć.

- Narysować sieć operacji w przedstawieniu łukowym (operacje jako łuki) i w węzłowym (operacje jako węzły).
- II. Przy nominalnych czasach trwania operacji:
 - A. wyznaczyć najkrótszy czas trwania przedsięwzięcia T1,
 - B. wskazać odpowiadającą mu ścieżkę krytyczną,
 - C. obliczyć zapasy czasu operacji nie krytycznych,
 - D. wypisać wszystkie ścieżki,
 - E. wskazać takie operacje, których wydłużenie o 2 dni (jednej na raz) w stosunku do czasu nominalnego spowoduje wydłużenie czasu trwania przedsięwzięcia o 1 dzień.
 - F. wskazać takie operacje, których skrócenie o 2 dni (jednej na raz) w stosunku do czasu nominalnego spowoduje skrócenie czasu trwania przedsięwzięcia o 1 dzień.
 - G. naszkicować wykres przedstawiający harmonogram przedsięwzięcia przy rozpoczynaniu wszystkich operacji w najwcześniejszych terminach,
 - H. naszkicować wykres przedstawiający liczbę pracowników zatrudnionych w poszczególne dni przy harmonogramie z p. G,
 - I. naszkicować wykres przedstawiający harmonogram przedsięwzięcia przy rozpoczynaniu wszystkich operacji w najpóźniejszych terminach niepowodujących wydłużenia czasu trwania całego przedsięwzięcia ponad T1 (wyznaczony w p. A).
- III. Przy minimalnych czasach trwania operacji:
 - A. wyznaczyć najkrótszy czas trwania przedsięwzięcia T2,
 - B. obliczyć zużycie zasobu potrzebne do maksymalnego skrócenia wszystkich operacji (może być większe od dostępnego),
 - Wyznaczyć najmniejsze zużycie zasobu wystarczające do skrócenia czasu przedsięwzięcia do T2.
- IV. Wykorzystując zasób w dostępnych granicach przydzielić go tak do skracania poszczególnych operacji, by jak najwięcej skrócić czas trwania przedsięwzięcia. Podać uzyskany czas T3 oraz liczbę jednostek zasobu przydzielaną poszczególnym operacjom.
- V. Przy nominalnych czasach wykonywania wszystkich operacji zaplanować przedsięwzięcie w taki sposób, żeby łączna liczba pracowników zatrudnianych w tym samym czasie żadnego dnia nie przekroczyła podanej (dostępnej) liczby pracowników. Podać czas przedsięwzięcia T4 oraz chwile rozpoczynania poszczególnych operacji (uwaga, czas przedsięwzięcia nie musi być najmniejszy z możliwych). Naszkicować wykres przedstawiający liczbę pracowników zatrudnionych w poszczególne dni.
- VI. (Punkt opcjonalny) Zapisać zadania programowania liniowego odpowiadające:
 - A. Problemowi z p. II A; podać wartości zmiennych i funkcji celu odpowiadające harmonogramowi z p. II G i wykazać, że są spełnione wszystkie ograniczenia zadania;
 - B. Problemowi z p. III C; sprawdzić, czy dla rozwiązania odpowiadającego decyzjom z p. IV są spełnione wszystkie ograniczenia i obliczyć wartość funkcji celu.

Operacja	Czas nomin.	Op. Poprzednie	Czas min.	Pracownicy
A	9		5	2
В	9		5	3
С	14	b	7	2
D	12	ab	3	2
Е	25	b	3	4
F	12	cd	6	2

Zasoby funduszy na skracanie: 7 (dane do p. IV); zasoby pracowników: 4

Dane jest przedsięwzięcie o strukturze i parametrach operacji określonej w powyższej tabeli.

Przedsięwzięcie składa się z sześciu operacji, oznaczonych literami ABCDEF. Struktura zależności między operacjami jest określona przez podanie operacji poprzedzających, które muszą zostać zakończone, żeby dana operacja mogła się rozpocząć.

- Narysować sieć operacji w przedstawieniu łukowym (operacje jako łuki) i w węzłowym (operacje jako węzły).
- II. Przy nominalnych czasach trwania operacji:
 - A. wyznaczyć najkrótszy czas trwania przedsięwzięcia T1,
 - B. wskazać odpowiadającą mu ścieżkę krytyczną,
 - C. obliczyć zapasy czasu operacji nie krytycznych,
 - D. wypisać wszystkie ścieżki,
 - E. wskazać takie operacje, których wydłużenie o 2 dni (jednej na raz) w stosunku do czasu nominalnego spowoduje wydłużenie czasu trwania przedsięwzięcia o 1 dzień.
 - F. wskazać takie operacje, których skrócenie o 2 dni (jednej na raz) w stosunku do czasu nominalnego spowoduje skrócenie czasu trwania przedsięwzięcia o 1 dzień.
 - G. naszkicować wykres przedstawiający harmonogram przedsięwzięcia przy rozpoczynaniu wszystkich operacji w najwcześniejszych terminach,
 - H. naszkicować wykres przedstawiający liczbę pracowników zatrudnionych w poszczególne dni przy harmonogramie z p. G,
 - I. naszkicować wykres przedstawiający harmonogram przedsięwzięcia przy rozpoczynaniu wszystkich operacji w najpóźniejszych terminach niepowodujących wydłużenia czasu trwania całego przedsięwzięcia ponad T1 (wyznaczony w p. A).
- III. Przy minimalnych czasach trwania operacji:
 - A. wyznaczyć najkrótszy czas trwania przedsięwzięcia T2,
 - B. obliczyć zużycie zasobu potrzebne do maksymalnego skrócenia wszystkich operacji (może być większe od dostępnego),
 - Wyznaczyć najmniejsze zużycie zasobu wystarczające do skrócenia czasu przedsięwzięcia do T2.
- IV. Wykorzystując zasób w dostępnych granicach przydzielić go tak do skracania poszczególnych operacji, by jak najwięcej skrócić czas trwania przedsięwzięcia. Podać uzyskany czas T3 oraz liczbę jednostek zasobu przydzielaną poszczególnym operacjom.
- V. Przy nominalnych czasach wykonywania wszystkich operacji zaplanować przedsięwzięcie w taki sposób, żeby łączna liczba pracowników zatrudnianych w tym samym czasie żadnego dnia nie przekroczyła podanej (dostępnej) liczby pracowników. Podać czas przedsięwzięcia T4 oraz chwile rozpoczynania poszczególnych operacji (uwaga, czas przedsięwzięcia nie musi być najmniejszy z możliwych). Naszkicować wykres przedstawiający liczbę pracowników zatrudnionych w poszczególne dni.
- VI. (Punkt opcjonalny) Zapisać zadania programowania liniowego odpowiadające:
 - A. Problemowi z p. II A; podać wartości zmiennych i funkcji celu odpowiadające harmonogramowi z p. II G i wykazać, że są spełnione wszystkie ograniczenia zadania;
 - B. Problemowi z p. III C; sprawdzić, czy dla rozwiązania odpowiadającego decyzjom z p. IV są spełnione wszystkie ograniczenia i obliczyć wartość funkcji celu.

Operacja	Czas nomin.	Op. Poprzednie	Czas min.	Pracownicy
A	10		5	2
В	9	a	5	3
С	10	b	5	1
D	9		6	3
Е	18	ad	3	4
F	15	d	2	2

Zasoby funduszy na skracanie: 5 (dane do p. IV); zasoby pracowników: 5

Dane jest przedsięwzięcie o strukturze i parametrach operacji określonej w powyższej tabeli.

Przedsięwzięcie składa się z sześciu operacji, oznaczonych literami ABCDEF. Struktura zależności między operacjami jest określona przez podanie operacji poprzedzających, które muszą zostać zakończone, żeby dana operacja mogła się rozpocząć.

- Narysować sieć operacji w przedstawieniu łukowym (operacje jako łuki) i w węzłowym (operacje jako węzły).
- II. Przy nominalnych czasach trwania operacji:
 - A. wyznaczyć najkrótszy czas trwania przedsięwzięcia T1,
 - B. wskazać odpowiadającą mu ścieżkę krytyczną,
 - C. obliczyć zapasy czasu operacji nie krytycznych,
 - D. wypisać wszystkie ścieżki,
 - E. wskazać takie operacje, których wydłużenie o 2 dni (jednej na raz) w stosunku do czasu nominalnego spowoduje wydłużenie czasu trwania przedsięwzięcia o 1 dzień.
 - F. wskazać takie operacje, których skrócenie o 2 dni (jednej na raz) w stosunku do czasu nominalnego spowoduje skrócenie czasu trwania przedsięwzięcia o 1 dzień.
 - G. naszkicować wykres przedstawiający harmonogram przedsięwzięcia przy rozpoczynaniu wszystkich operacji w najwcześniejszych terminach,
 - H. naszkicować wykres przedstawiający liczbę pracowników zatrudnionych w poszczególne dni przy harmonogramie z p. G,
 - I. naszkicować wykres przedstawiający harmonogram przedsięwzięcia przy rozpoczynaniu wszystkich operacji w najpóźniejszych terminach niepowodujących wydłużenia czasu trwania całego przedsięwzięcia ponad T1 (wyznaczony w p. A).
- III. Przy minimalnych czasach trwania operacji:
 - A. wyznaczyć najkrótszy czas trwania przedsięwzięcia T2,
 - B. obliczyć zużycie zasobu potrzebne do maksymalnego skrócenia wszystkich operacji (może być większe od dostępnego),
 - Wyznaczyć najmniejsze zużycie zasobu wystarczające do skrócenia czasu przedsięwzięcia do T2.
- IV. Wykorzystując zasób w dostępnych granicach przydzielić go tak do skracania poszczególnych operacji, by jak najwięcej skrócić czas trwania przedsięwzięcia. Podać uzyskany czas T3 oraz liczbę jednostek zasobu przydzielaną poszczególnym operacjom.
- V. Przy nominalnych czasach wykonywania wszystkich operacji zaplanować przedsięwzięcie w taki sposób, żeby łączna liczba pracowników zatrudnianych w tym samym czasie żadnego dnia nie przekroczyła podanej (dostępnej) liczby pracowników. Podać czas przedsięwzięcia T4 oraz chwile rozpoczynania poszczególnych operacji (uwaga, czas przedsięwzięcia nie musi być najmniejszy z możliwych). Naszkicować wykres przedstawiający liczbę pracowników zatrudnionych w poszczególne dni.
- VI. (Punkt opcjonalny) Zapisać zadania programowania liniowego odpowiadające:
 - A. Problemowi z p. II A; podać wartości zmiennych i funkcji celu odpowiadające harmonogramowi z p. II G i wykazać, że są spełnione wszystkie ograniczenia zadania;
 - B. Problemowi z p. III C; sprawdzić, czy dla rozwiązania odpowiadającego decyzjom z p. IV są spełnione wszystkie ograniczenia i obliczyć wartość funkcji celu.

Operacja	Czas nomin.	Op. Poprzednie	Czas min.	Pracownicy
A	10		5	3
В	5	a	3	4
С	13	b	7	2
D	7	a	4	2
Е	17	a	5	4
F	8	bd	4	2

Zasoby funduszy na skracanie: 8 (dane do p. IV); zasoby pracowników: 7

Dane jest przedsięwzięcie o strukturze i parametrach operacji określonej w powyższej tabeli.

Przedsięwzięcie składa się z sześciu operacji, oznaczonych literami ABCDEF. Struktura zależności między operacjami jest określona przez podanie operacji poprzedzających, które muszą zostać zakończone, żeby dana operacja mogła się rozpoczać.

- Narysować sieć operacji w przedstawieniu łukowym (operacje jako łuki) i w węzłowym (operacje jako węzły).
- II. Przy nominalnych czasach trwania operacji:
 - A. wyznaczyć najkrótszy czas trwania przedsięwzięcia T1,
 - B. wskazać odpowiadającą mu ścieżkę krytyczną,
 - C. obliczyć zapasy czasu operacji nie krytycznych,
 - D. wypisać wszystkie ścieżki,
 - E. wskazać takie operacje, których wydłużenie o 2 dni (jednej na raz) w stosunku do czasu nominalnego spowoduje wydłużenie czasu trwania przedsięwzięcia o 1 dzień.
 - F. wskazać takie operacje, których skrócenie o 2 dni (jednej na raz) w stosunku do czasu nominalnego spowoduje skrócenie czasu trwania przedsięwzięcia o 1 dzień.
 - G. naszkicować wykres przedstawiający harmonogram przedsięwzięcia przy rozpoczynaniu wszystkich operacji w najwcześniejszych terminach,
 - H. naszkicować wykres przedstawiający liczbę pracowników zatrudnionych w poszczególne dni przy harmonogramie z p. G,
 - I. naszkicować wykres przedstawiający harmonogram przedsięwzięcia przy rozpoczynaniu wszystkich operacji w najpóźniejszych terminach niepowodujących wydłużenia czasu trwania całego przedsięwzięcia ponad T1 (wyznaczony w p. A).
- III. Przy minimalnych czasach trwania operacji:
 - A. wyznaczyć najkrótszy czas trwania przedsięwzięcia T2,
 - B. obliczyć zużycie zasobu potrzebne do maksymalnego skrócenia wszystkich operacji (może być większe od dostępnego),
 - Wyznaczyć najmniejsze zużycie zasobu wystarczające do skrócenia czasu przedsięwzięcia do T2.
- IV. Wykorzystując zasób w dostępnych granicach przydzielić go tak do skracania poszczególnych operacji, by jak najwięcej skrócić czas trwania przedsięwzięcia. Podać uzyskany czas T3 oraz liczbę jednostek zasobu przydzielaną poszczególnym operacjom.
- V. Przy nominalnych czasach wykonywania wszystkich operacji zaplanować przedsięwzięcie w taki sposób, żeby łączna liczba pracowników zatrudnianych w tym samym czasie żadnego dnia nie przekroczyła podanej (dostępnej) liczby pracowników. Podać czas przedsięwzięcia T4 oraz chwile rozpoczynania poszczególnych operacji (uwaga, czas przedsięwzięcia nie musi być najmniejszy z możliwych). Naszkicować wykres przedstawiający liczbę pracowników zatrudnionych w poszczególne dni.
- VI. (Punkt opcjonalny) Zapisać zadania programowania liniowego odpowiadające:
 - A. Problemowi z p. II A; podać wartości zmiennych i funkcji celu odpowiadające harmonogramowi z p. II G i wykazać, że są spełnione wszystkie ograniczenia zadania;
 - B. Problemowi z p. III C; sprawdzić, czy dla rozwiązania odpowiadającego decyzjom z p. IV są spełnione wszystkie ograniczenia i obliczyć wartość funkcji celu.

Operacja	Czas nomin.	Op. Poprzednie	Czas min.	Pracownicy
A	8		4	2
В	5		2	3
С	10	b	5	1
D	18	ab	4	2
Е	9	a	5	4
F	10	ce	5	2

Zasoby funduszy na skracanie: 6 (dane do p. IV); zasoby pracowników: 4

Dane jest przedsięwzięcie o strukturze i parametrach operacji określonej w powyższej tabeli.

Przedsięwzięcie składa się z sześciu operacji, oznaczonych literami ABCDEF. Struktura zależności między operacjami jest określona przez podanie operacji poprzedzających, które muszą zostać zakończone, żeby dana operacja mogła się rozpocząć.

- Narysować sieć operacji w przedstawieniu łukowym (operacje jako łuki) i w węzłowym (operacje jako węzły).
- II. Przy nominalnych czasach trwania operacji:
 - A. wyznaczyć najkrótszy czas trwania przedsięwzięcia T1,
 - B. wskazać odpowiadającą mu ścieżkę krytyczną,
 - C. obliczyć zapasy czasu operacji nie krytycznych,
 - D. wypisać wszystkie ścieżki,
 - E. wskazać takie operacje, których wydłużenie o 2 dni (jednej na raz) w stosunku do czasu nominalnego spowoduje wydłużenie czasu trwania przedsięwzięcia o 1 dzień.
 - F. wskazać takie operacje, których skrócenie o 2 dni (jednej na raz) w stosunku do czasu nominalnego spowoduje skrócenie czasu trwania przedsięwzięcia o 1 dzień.
 - G. naszkicować wykres przedstawiający harmonogram przedsięwzięcia przy rozpoczynaniu wszystkich operacji w najwcześniejszych terminach,
 - H. naszkicować wykres przedstawiający liczbę pracowników zatrudnionych w poszczególne dni przy harmonogramie z p. G,
 - I. naszkicować wykres przedstawiający harmonogram przedsięwzięcia przy rozpoczynaniu wszystkich operacji w najpóźniejszych terminach niepowodujących wydłużenia czasu trwania całego przedsięwzięcia ponad T1 (wyznaczony w p. A).
- III. Przy minimalnych czasach trwania operacji:
 - A. wyznaczyć najkrótszy czas trwania przedsięwzięcia T2,
 - B. obliczyć zużycie zasobu potrzebne do maksymalnego skrócenia wszystkich operacji (może być większe od dostępnego),
 - Wyznaczyć najmniejsze zużycie zasobu wystarczające do skrócenia czasu przedsięwzięcia do T2.
- IV. Wykorzystując zasób w dostępnych granicach przydzielić go tak do skracania poszczególnych operacji, by jak najwięcej skrócić czas trwania przedsięwzięcia. Podać uzyskany czas T3 oraz liczbę jednostek zasobu przydzielaną poszczególnym operacjom.
- V. Przy nominalnych czasach wykonywania wszystkich operacji zaplanować przedsięwzięcie w taki sposób, żeby łączna liczba pracowników zatrudnianych w tym samym czasie żadnego dnia nie przekroczyła podanej (dostępnej) liczby pracowników. Podać czas przedsięwzięcia T4 oraz chwile rozpoczynania poszczególnych operacji (uwaga, czas przedsięwzięcia nie musi być najmniejszy z możliwych). Naszkicować wykres przedstawiający liczbę pracowników zatrudnionych w poszczególne dni.
- VI. (Punkt opcjonalny) Zapisać zadania programowania liniowego odpowiadające:
 - A. Problemowi z p. II A; podać wartości zmiennych i funkcji celu odpowiadające harmonogramowi z p. II G i wykazać, że są spełnione wszystkie ograniczenia zadania;
 - B. Problemowi z p. III C; sprawdzić, czy dla rozwiązania odpowiadającego decyzjom z p. IV są spełnione wszystkie ograniczenia i obliczyć wartość funkcji celu.

Operacja	Czas nomin.	Op. Poprzednie	Czas min.	Pracownicy
A	3		2	2
В	11		6	3
С	13	b	5	2
D	8	a	2	3
Е	12	ab	3	4
F	11	d	5	2

Zasoby funduszy na skracanie: 8 (dane do p. IV); zasoby pracowników: 4

Dane jest przedsięwzięcie o strukturze i parametrach operacji określonej w powyższej tabeli.

Przedsięwzięcie składa się z sześciu operacji, oznaczonych literami ABCDEF. Struktura zależności między operacjami jest określona przez podanie operacji poprzedzających, które muszą zostać zakończone, żeby dana operacja mogła się rozpoczać.

- Narysować sieć operacji w przedstawieniu łukowym (operacje jako łuki) i w węzłowym (operacje jako węzły).
- II. Przy nominalnych czasach trwania operacji:
 - A. wyznaczyć najkrótszy czas trwania przedsięwzięcia T1,
 - B. wskazać odpowiadającą mu ścieżkę krytyczną,
 - C. obliczyć zapasy czasu operacji nie krytycznych,
 - D. wypisać wszystkie ścieżki,
 - E. wskazać takie operacje, których wydłużenie o 2 dni (jednej na raz) w stosunku do czasu nominalnego spowoduje wydłużenie czasu trwania przedsięwzięcia o 1 dzień.
 - F. wskazać takie operacje, których skrócenie o 2 dni (jednej na raz) w stosunku do czasu nominalnego spowoduje skrócenie czasu trwania przedsięwzięcia o 1 dzień.
 - G. naszkicować wykres przedstawiający harmonogram przedsięwzięcia przy rozpoczynaniu wszystkich operacji w najwcześniejszych terminach,
 - H. naszkicować wykres przedstawiający liczbę pracowników zatrudnionych w poszczególne dni przy harmonogramie z p. G,
 - I. naszkicować wykres przedstawiający harmonogram przedsięwzięcia przy rozpoczynaniu wszystkich operacji w najpóźniejszych terminach niepowodujących wydłużenia czasu trwania całego przedsięwzięcia ponad T1 (wyznaczony w p. A).
- III. Przy minimalnych czasach trwania operacji:
 - A. wyznaczyć najkrótszy czas trwania przedsięwzięcia T2,
 - B. obliczyć zużycie zasobu potrzebne do maksymalnego skrócenia wszystkich operacji (może być większe od dostępnego),
 - Wyznaczyć najmniejsze zużycie zasobu wystarczające do skrócenia czasu przedsięwzięcia do T2.
- IV. Wykorzystując zasób w dostępnych granicach przydzielić go tak do skracania poszczególnych operacji, by jak najwięcej skrócić czas trwania przedsięwzięcia. Podać uzyskany czas T3 oraz liczbę jednostek zasobu przydzielaną poszczególnym operacjom.
- V. Przy nominalnych czasach wykonywania wszystkich operacji zaplanować przedsięwzięcie w taki sposób, żeby łączna liczba pracowników zatrudnianych w tym samym czasie żadnego dnia nie przekroczyła podanej (dostępnej) liczby pracowników. Podać czas przedsięwzięcia T4 oraz chwile rozpoczynania poszczególnych operacji (uwaga, czas przedsięwzięcia nie musi być najmniejszy z możliwych). Naszkicować wykres przedstawiający liczbę pracowników zatrudnionych w poszczególne dni.
- VI. (Punkt opcjonalny) Zapisać zadania programowania liniowego odpowiadające:
 - A. Problemowi z p. II A; podać wartości zmiennych i funkcji celu odpowiadające harmonogramowi z p. II G i wykazać, że są spełnione wszystkie ograniczenia zadania;
 - B. Problemowi z p. III C; sprawdzić, czy dla rozwiązania odpowiadającego decyzjom z p. IV są spełnione wszystkie ograniczenia i obliczyć wartość funkcji celu.

Operacja	Czas nomin.	Op. Poprzednie	Czas min.	Pracownicy
A	13		7	2
В	11		6	3
С	3	b	2	2
D	11	ab	6	2
Е	10	a	5	4
F	5	de	3	2

Zasoby funduszy na skracanie: 4 (dane do p. IV); zasoby pracowników: 4

Dane jest przedsięwzięcie o strukturze i parametrach operacji określonej w powyższej tabeli.

Przedsięwzięcie składa się z sześciu operacji, oznaczonych literami ABCDEF. Struktura zależności między operacjami jest określona przez podanie operacji poprzedzających, które muszą zostać zakończone, żeby dana operacja mogła się rozpocząć.

- Narysować sieć operacji w przedstawieniu łukowym (operacje jako łuki) i w węzłowym (operacje jako węzły).
- II. Przy nominalnych czasach trwania operacji:
 - A. wyznaczyć najkrótszy czas trwania przedsięwzięcia T1,
 - B. wskazać odpowiadającą mu ścieżkę krytyczną,
 - C. obliczyć zapasy czasu operacji nie krytycznych,
 - D. wypisać wszystkie ścieżki,
 - E. wskazać takie operacje, których wydłużenie o 2 dni (jednej na raz) w stosunku do czasu nominalnego spowoduje wydłużenie czasu trwania przedsięwzięcia o 1 dzień.
 - F. wskazać takie operacje, których skrócenie o 2 dni (jednej na raz) w stosunku do czasu nominalnego spowoduje skrócenie czasu trwania przedsięwzięcia o 1 dzień.
 - G. naszkicować wykres przedstawiający harmonogram przedsięwzięcia przy rozpoczynaniu wszystkich operacji w najwcześniejszych terminach,
 - H. naszkicować wykres przedstawiający liczbę pracowników zatrudnionych w poszczególne dni przy harmonogramie z p. G,
 - I. naszkicować wykres przedstawiający harmonogram przedsięwzięcia przy rozpoczynaniu wszystkich operacji w najpóźniejszych terminach niepowodujących wydłużenia czasu trwania całego przedsięwzięcia ponad T1 (wyznaczony w p. A).
- III. Przy minimalnych czasach trwania operacji:
 - A. wyznaczyć najkrótszy czas trwania przedsięwzięcia T2,
 - B. obliczyć zużycie zasobu potrzebne do maksymalnego skrócenia wszystkich operacji (może być większe od dostępnego),
 - Wyznaczyć najmniejsze zużycie zasobu wystarczające do skrócenia czasu przedsięwzięcia do T2.
- IV. Wykorzystując zasób w dostępnych granicach przydzielić go tak do skracania poszczególnych operacji, by jak najwięcej skrócić czas trwania przedsięwzięcia. Podać uzyskany czas T3 oraz liczbę jednostek zasobu przydzielaną poszczególnym operacjom.
- V. Przy nominalnych czasach wykonywania wszystkich operacji zaplanować przedsięwzięcie w taki sposób, żeby łączna liczba pracowników zatrudnianych w tym samym czasie żadnego dnia nie przekroczyła podanej (dostępnej) liczby pracowników. Podać czas przedsięwzięcia T4 oraz chwile rozpoczynania poszczególnych operacji (uwaga, czas przedsięwzięcia nie musi być najmniejszy z możliwych). Naszkicować wykres przedstawiający liczbę pracowników zatrudnionych w poszczególne dni.
- VI. (Punkt opcjonalny) Zapisać zadania programowania liniowego odpowiadające:
 - A. Problemowi z p. II A; podać wartości zmiennych i funkcji celu odpowiadające harmonogramowi z p. II G i wykazać, że są spełnione wszystkie ograniczenia zadania;
 - B. Problemowi z p. III C; sprawdzić, czy dla rozwiązania odpowiadającego decyzjom z p. IV są spełnione wszystkie ograniczenia i obliczyć wartość funkcji celu.

Operacja	Czas nomin.	Op. Poprzednie	Czas min.	Pracownicy
A	10		5	3
В	5	a	3	1
С	9	a	5	3
D	3	b	2	2
Е	7	С	4	3
F	6	cd	3	2

Zasoby funduszy na skracanie: 6 (dane do p. IV); zasoby pracowników: 4

Dane jest przedsięwzięcie o strukturze i parametrach operacji określonej w powyższej tabeli.

Przedsięwzięcie składa się z sześciu operacji, oznaczonych literami ABCDEF. Struktura zależności między operacjami jest określona przez podanie operacji poprzedzających, które muszą zostać zakończone, żeby dana operacja mogła się rozpoczać.

- Narysować sieć operacji w przedstawieniu łukowym (operacje jako łuki) i w węzłowym (operacje jako węzły).
- II. Przy nominalnych czasach trwania operacji:
 - A. wyznaczyć najkrótszy czas trwania przedsięwzięcia T1,
 - B. wskazać odpowiadającą mu ścieżkę krytyczną,
 - C. obliczyć zapasy czasu operacji nie krytycznych,
 - D. wypisać wszystkie ścieżki,
 - E. wskazać takie operacje, których wydłużenie o 2 dni (jednej na raz) w stosunku do czasu nominalnego spowoduje wydłużenie czasu trwania przedsięwzięcia o 1 dzień.
 - F. wskazać takie operacje, których skrócenie o 2 dni (jednej na raz) w stosunku do czasu nominalnego spowoduje skrócenie czasu trwania przedsięwzięcia o 1 dzień.
 - G. naszkicować wykres przedstawiający harmonogram przedsięwzięcia przy rozpoczynaniu wszystkich operacji w najwcześniejszych terminach,
 - H. naszkicować wykres przedstawiający liczbę pracowników zatrudnionych w poszczególne dni przy harmonogramie z p. G,
 - I. naszkicować wykres przedstawiający harmonogram przedsięwzięcia przy rozpoczynaniu wszystkich operacji w najpóźniejszych terminach niepowodujących wydłużenia czasu trwania całego przedsięwzięcia ponad T1 (wyznaczony w p. A).
- III. Przy minimalnych czasach trwania operacji:
 - A. wyznaczyć najkrótszy czas trwania przedsięwzięcia T2,
 - B. obliczyć zużycie zasobu potrzebne do maksymalnego skrócenia wszystkich operacji (może być większe od dostępnego),
 - Wyznaczyć najmniejsze zużycie zasobu wystarczające do skrócenia czasu przedsięwzięcia do T2.
- IV. Wykorzystując zasób w dostępnych granicach przydzielić go tak do skracania poszczególnych operacji, by jak najwięcej skrócić czas trwania przedsięwzięcia. Podać uzyskany czas T3 oraz liczbę jednostek zasobu przydzielaną poszczególnym operacjom.
- V. Przy nominalnych czasach wykonywania wszystkich operacji zaplanować przedsięwzięcie w taki sposób, żeby łączna liczba pracowników zatrudnianych w tym samym czasie żadnego dnia nie przekroczyła podanej (dostępnej) liczby pracowników. Podać czas przedsięwzięcia T4 oraz chwile rozpoczynania poszczególnych operacji (uwaga, czas przedsięwzięcia nie musi być najmniejszy z możliwych). Naszkicować wykres przedstawiający liczbę pracowników zatrudnionych w poszczególne dni.
- VI. (Punkt opcjonalny) Zapisać zadania programowania liniowego odpowiadające:
 - A. Problemowi z p. II A; podać wartości zmiennych i funkcji celu odpowiadające harmonogramowi z p. II G i wykazać, że są spełnione wszystkie ograniczenia zadania;
 - B. Problemowi z p. III C; sprawdzić, czy dla rozwiązania odpowiadającego decyzjom z p. IV są spełnione wszystkie ograniczenia i obliczyć wartość funkcji celu.

Operacja	Czas nomin.	Op. Poprzednie	Czas min.	Pracownicy
A	10		5	2
В	11		6	3
С	14	b	7	2
D	13	ab	6	2
Е	12	b	6	4
F	10	cd	5	2

Zasoby funduszy na skracanie: 7 (dane do p. IV); zasoby pracowników: 5

Dane jest przedsięwzięcie o strukturze i parametrach operacji określonej w powyższej tabeli.

Przedsięwzięcie składa się z sześciu operacji, oznaczonych literami ABCDEF. Struktura zależności między operacjami jest określona przez podanie operacji poprzedzających, które muszą zostać zakończone, żeby dana operacja mogła się rozpoczać.

- Narysować sieć operacji w przedstawieniu łukowym (operacje jako łuki) i w węzłowym (operacje jako węzły).
- II. Przy nominalnych czasach trwania operacji:
 - A. wyznaczyć najkrótszy czas trwania przedsięwzięcia T1,
 - B. wskazać odpowiadającą mu ścieżkę krytyczną,
 - C. obliczyć zapasy czasu operacji nie krytycznych,
 - D. wypisać wszystkie ścieżki,
 - E. wskazać takie operacje, których wydłużenie o 2 dni (jednej na raz) w stosunku do czasu nominalnego spowoduje wydłużenie czasu trwania przedsięwzięcia o 1 dzień.
 - F. wskazać takie operacje, których skrócenie o 2 dni (jednej na raz) w stosunku do czasu nominalnego spowoduje skrócenie czasu trwania przedsięwzięcia o 1 dzień.
 - G. naszkicować wykres przedstawiający harmonogram przedsięwzięcia przy rozpoczynaniu wszystkich operacji w najwcześniejszych terminach,
 - H. naszkicować wykres przedstawiający liczbę pracowników zatrudnionych w poszczególne dni przy harmonogramie z p. G,
 - I. naszkicować wykres przedstawiający harmonogram przedsięwzięcia przy rozpoczynaniu wszystkich operacji w najpóźniejszych terminach niepowodujących wydłużenia czasu trwania całego przedsięwzięcia ponad T1 (wyznaczony w p. A).
- III. Przy minimalnych czasach trwania operacji:
 - A. wyznaczyć najkrótszy czas trwania przedsięwzięcia T2,
 - B. obliczyć zużycie zasobu potrzebne do maksymalnego skrócenia wszystkich operacji (może być większe od dostępnego),
 - Wyznaczyć najmniejsze zużycie zasobu wystarczające do skrócenia czasu przedsięwzięcia do T2.
- IV. Wykorzystując zasób w dostępnych granicach przydzielić go tak do skracania poszczególnych operacji, by jak najwięcej skrócić czas trwania przedsięwzięcia. Podać uzyskany czas T3 oraz liczbę jednostek zasobu przydzielaną poszczególnym operacjom.
- V. Przy nominalnych czasach wykonywania wszystkich operacji zaplanować przedsięwzięcie w taki sposób, żeby łączna liczba pracowników zatrudnianych w tym samym czasie żadnego dnia nie przekroczyła podanej (dostępnej) liczby pracowników. Podać czas przedsięwzięcia T4 oraz chwile rozpoczynania poszczególnych operacji (uwaga, czas przedsięwzięcia nie musi być najmniejszy z możliwych). Naszkicować wykres przedstawiający liczbę pracowników zatrudnionych w poszczególne dni.
- VI. (Punkt opcjonalny) Zapisać zadania programowania liniowego odpowiadające:
 - A. Problemowi z p. II A; podać wartości zmiennych i funkcji celu odpowiadające harmonogramowi z p. II G i wykazać, że są spełnione wszystkie ograniczenia zadania;
 - B. Problemowi z p. III C; sprawdzić, czy dla rozwiązania odpowiadającego decyzjom z p. IV są spełnione wszystkie ograniczenia i obliczyć wartość funkcji celu.

Operacja	Czas nomin.	Op. Poprzednie	Czas min.	Pracownicy
A	6		3	2
В	7		4	3
С	5	b	3	1
D	9		5	3
Е	12	ab	2	4
F	8	cd	4	2

Zasoby funduszy na skracanie: 6 (dane do p. IV); zasoby pracowników: 4

Dane jest przedsięwzięcie o strukturze i parametrach operacji określonej w powyższej tabeli.

Przedsięwzięcie składa się z sześciu operacji, oznaczonych literami ABCDEF. Struktura zależności między operacjami jest określona przez podanie operacji poprzedzających, które muszą zostać zakończone, żeby dana operacja mogła się rozpoczać.

- Narysować sieć operacji w przedstawieniu łukowym (operacje jako łuki) i w węzłowym (operacje jako węzły).
- II. Przy nominalnych czasach trwania operacji:
 - A. wyznaczyć najkrótszy czas trwania przedsięwzięcia T1,
 - B. wskazać odpowiadającą mu ścieżkę krytyczną,
 - C. obliczyć zapasy czasu operacji nie krytycznych,
 - D. wypisać wszystkie ścieżki,
 - E. wskazać takie operacje, których wydłużenie o 2 dni (jednej na raz) w stosunku do czasu nominalnego spowoduje wydłużenie czasu trwania przedsięwzięcia o 1 dzień.
 - F. wskazać takie operacje, których skrócenie o 2 dni (jednej na raz) w stosunku do czasu nominalnego spowoduje skrócenie czasu trwania przedsięwzięcia o 1 dzień.
 - G. naszkicować wykres przedstawiający harmonogram przedsięwzięcia przy rozpoczynaniu wszystkich operacji w najwcześniejszych terminach,
 - H. naszkicować wykres przedstawiający liczbę pracowników zatrudnionych w poszczególne dni przy harmonogramie z p. G,
 - I. naszkicować wykres przedstawiający harmonogram przedsięwzięcia przy rozpoczynaniu wszystkich operacji w najpóźniejszych terminach niepowodujących wydłużenia czasu trwania całego przedsięwzięcia ponad T1 (wyznaczony w p. A).
- III. Przy minimalnych czasach trwania operacji:
 - A. wyznaczyć najkrótszy czas trwania przedsięwzięcia T2,
 - B. obliczyć zużycie zasobu potrzebne do maksymalnego skrócenia wszystkich operacji (może być większe od dostępnego),
 - Wyznaczyć najmniejsze zużycie zasobu wystarczające do skrócenia czasu przedsięwzięcia do T2.
- IV. Wykorzystując zasób w dostępnych granicach przydzielić go tak do skracania poszczególnych operacji, by jak najwięcej skrócić czas trwania przedsięwzięcia. Podać uzyskany czas T3 oraz liczbę jednostek zasobu przydzielaną poszczególnym operacjom.
- V. Przy nominalnych czasach wykonywania wszystkich operacji zaplanować przedsięwzięcie w taki sposób, żeby łączna liczba pracowników zatrudnianych w tym samym czasie żadnego dnia nie przekroczyła podanej (dostępnej) liczby pracowników. Podać czas przedsięwzięcia T4 oraz chwile rozpoczynania poszczególnych operacji (uwaga, czas przedsięwzięcia nie musi być najmniejszy z możliwych). Naszkicować wykres przedstawiający liczbę pracowników zatrudnionych w poszczególne dni.
- VI. (Punkt opcjonalny) Zapisać zadania programowania liniowego odpowiadające:
 - A. Problemowi z p. II A; podać wartości zmiennych i funkcji celu odpowiadające harmonogramowi z p. II G i wykazać, że są spełnione wszystkie ograniczenia zadania;
 - B. Problemowi z p. III C; sprawdzić, czy dla rozwiązania odpowiadającego decyzjom z p. IV są spełnione wszystkie ograniczenia i obliczyć wartość funkcji celu.

Operacja	Czas nomin.	Op. Poprzednie	Czas min.	Pracownicy
A	3		2	2
В	5		3	3
С	10	b	5	2
D	10	a	5	2
Е	21	ab	2	4
F	12	cd	6	2

Zasoby funduszy na skracanie: 5 (dane do p. IV); zasoby pracowników: 4

Dane jest przedsięwzięcie o strukturze i parametrach operacji określonej w powyższej tabeli.

Przedsięwzięcie składa się z sześciu operacji, oznaczonych literami ABCDEF. Struktura zależności między operacjami jest określona przez podanie operacji poprzedzających, które muszą zostać zakończone, żeby dana operacja mogła się rozpocząć.

- Narysować sieć operacji w przedstawieniu łukowym (operacje jako łuki) i w węzłowym (operacje jako węzły).
- II. Przy nominalnych czasach trwania operacji:
 - A. wyznaczyć najkrótszy czas trwania przedsięwzięcia T1,
 - B. wskazać odpowiadającą mu ścieżkę krytyczną,
 - C. obliczyć zapasy czasu operacji nie krytycznych,
 - D. wypisać wszystkie ścieżki,
 - E. wskazać takie operacje, których wydłużenie o 2 dni (jednej na raz) w stosunku do czasu nominalnego spowoduje wydłużenie czasu trwania przedsięwzięcia o 1 dzień.
 - F. wskazać takie operacje, których skrócenie o 2 dni (jednej na raz) w stosunku do czasu nominalnego spowoduje skrócenie czasu trwania przedsięwzięcia o 1 dzień.
 - G. naszkicować wykres przedstawiający harmonogram przedsięwzięcia przy rozpoczynaniu wszystkich operacji w najwcześniejszych terminach,
 - H. naszkicować wykres przedstawiający liczbę pracowników zatrudnionych w poszczególne dni przy harmonogramie z p. G,
 - I. naszkicować wykres przedstawiający harmonogram przedsięwzięcia przy rozpoczynaniu wszystkich operacji w najpóźniejszych terminach niepowodujących wydłużenia czasu trwania całego przedsięwzięcia ponad T1 (wyznaczony w p. A).
- III. Przy minimalnych czasach trwania operacji:
 - A. wyznaczyć najkrótszy czas trwania przedsięwzięcia T2,
 - B. obliczyć zużycie zasobu potrzebne do maksymalnego skrócenia wszystkich operacji (może być większe od dostępnego),
 - C. wyznaczyć najmniejsze zużycie zasobu wystarczające do skrócenia czasu przedsięwzięcia do T2
- IV. Wykorzystując zasób w dostępnych granicach przydzielić go tak do skracania poszczególnych operacji, by jak najwięcej skrócić czas trwania przedsięwzięcia. Podać uzyskany czas T3 oraz liczbę jednostek zasobu przydzielaną poszczególnym operacjom.
- V. Przy nominalnych czasach wykonywania wszystkich operacji zaplanować przedsięwzięcie w taki sposób, żeby łączna liczba pracowników zatrudnianych w tym samym czasie żadnego dnia nie przekroczyła podanej (dostępnej) liczby pracowników. Podać czas przedsięwzięcia T4 oraz chwile rozpoczynania poszczególnych operacji (uwaga, czas przedsięwzięcia nie musi być najmniejszy z możliwych). Naszkicować wykres przedstawiający liczbę pracowników zatrudnionych w poszczególne dni.
- VI. (Punkt opcjonalny) Zapisać zadania programowania liniowego odpowiadające:
 - A. Problemowi z p. II A; podać wartości zmiennych i funkcji celu odpowiadające harmonogramowi z p. II G i wykazać, że są spełnione wszystkie ograniczenia zadania;
 - B. Problemowi z p. III C; sprawdzić, czy dla rozwiązania odpowiadającego decyzjom z p. IV są spełnione wszystkie ograniczenia i obliczyć wartość funkcji celu.

Operacja	Czas nomin.	Op. Poprzednie	Czas min.	Pracownicy
A	9		5	2
В	10		5	3
С	7	b	4	1
D	6	ab	3	2
Е	7	a	4	4
F	3	d	2	2

Zasoby funduszy na skracanie: 4 (dane do p. IV); zasoby pracowników: 5

Dane jest przedsięwzięcie o strukturze i parametrach operacji określonej w powyższej tabeli.

Przedsięwzięcie składa się z sześciu operacji, oznaczonych literami ABCDEF. Struktura zależności między operacjami jest określona przez podanie operacji poprzedzających, które muszą zostać zakończone, żeby dana operacja mogła się rozpoczać.

- Narysować sieć operacji w przedstawieniu łukowym (operacje jako łuki) i w węzłowym (operacje jako węzły).
- II. Przy nominalnych czasach trwania operacji:
 - A. wyznaczyć najkrótszy czas trwania przedsięwzięcia T1,
 - B. wskazać odpowiadającą mu ścieżkę krytyczną,
 - C. obliczyć zapasy czasu operacji nie krytycznych,
 - D. wypisać wszystkie ścieżki,
 - E. wskazać takie operacje, których wydłużenie o 2 dni (jednej na raz) w stosunku do czasu nominalnego spowoduje wydłużenie czasu trwania przedsięwzięcia o 1 dzień.
 - F. wskazać takie operacje, których skrócenie o 2 dni (jednej na raz) w stosunku do czasu nominalnego spowoduje skrócenie czasu trwania przedsięwzięcia o 1 dzień.
 - G. naszkicować wykres przedstawiający harmonogram przedsięwzięcia przy rozpoczynaniu wszystkich operacji w najwcześniejszych terminach,
 - H. naszkicować wykres przedstawiający liczbę pracowników zatrudnionych w poszczególne dni przy harmonogramie z p. G,
 - I. naszkicować wykres przedstawiający harmonogram przedsięwzięcia przy rozpoczynaniu wszystkich operacji w najpóźniejszych terminach niepowodujących wydłużenia czasu trwania całego przedsięwzięcia ponad T1 (wyznaczony w p. A).
- III. Przy minimalnych czasach trwania operacji:
 - A. wyznaczyć najkrótszy czas trwania przedsięwzięcia T2,
 - B. obliczyć zużycie zasobu potrzebne do maksymalnego skrócenia wszystkich operacji (może być większe od dostępnego),
 - Wyznaczyć najmniejsze zużycie zasobu wystarczające do skrócenia czasu przedsięwzięcia do T2.
- IV. Wykorzystując zasób w dostępnych granicach przydzielić go tak do skracania poszczególnych operacji, by jak najwięcej skrócić czas trwania przedsięwzięcia. Podać uzyskany czas T3 oraz liczbę jednostek zasobu przydzielaną poszczególnym operacjom.
- V. Przy nominalnych czasach wykonywania wszystkich operacji zaplanować przedsięwzięcie w taki sposób, żeby łączna liczba pracowników zatrudnianych w tym samym czasie żadnego dnia nie przekroczyła podanej (dostępnej) liczby pracowników. Podać czas przedsięwzięcia T4 oraz chwile rozpoczynania poszczególnych operacji (uwaga, czas przedsięwzięcia nie musi być najmniejszy z możliwych). Naszkicować wykres przedstawiający liczbę pracowników zatrudnionych w poszczególne dni.
- VI. (Punkt opcjonalny) Zapisać zadania programowania liniowego odpowiadające:
 - A. Problemowi z p. II A; podać wartości zmiennych i funkcji celu odpowiadające harmonogramowi z p. II G i wykazać, że są spełnione wszystkie ograniczenia zadania;
 - B. Problemowi z p. III C; sprawdzić, czy dla rozwiązania odpowiadającego decyzjom z p. IV są spełnione wszystkie ograniczenia i obliczyć wartość funkcji celu.

Operacja	Czas nomin.	Op. Poprzednie	Czas min.	Pracownicy
A	5		3	4
В	9	a	5	3
С	5	a	2	3
D	19		5	2
Е	7	С	4	4
F	6	bc	3	2

Zasoby funduszy na skracanie: 6 (dane do p. IV); zasoby pracowników: 5

Dane jest przedsięwzięcie o strukturze i parametrach operacji określonej w powyższej tabeli.

Przedsięwzięcie składa się z sześciu operacji, oznaczonych literami ABCDEF. Struktura zależności między operacjami jest określona przez podanie operacji poprzedzających, które muszą zostać zakończone, żeby dana operacja mogła się rozpocząć.

- Narysować sieć operacji w przedstawieniu łukowym (operacje jako łuki) i w węzłowym (operacje jako węzły).
- II. Przy nominalnych czasach trwania operacji:
 - A. wyznaczyć najkrótszy czas trwania przedsięwzięcia T1,
 - B. wskazać odpowiadającą mu ścieżkę krytyczną,
 - C. obliczyć zapasy czasu operacji nie krytycznych,
 - D. wypisać wszystkie ścieżki,
 - E. wskazać takie operacje, których wydłużenie o 2 dni (jednej na raz) w stosunku do czasu nominalnego spowoduje wydłużenie czasu trwania przedsięwzięcia o 1 dzień.
 - F. wskazać takie operacje, których skrócenie o 2 dni (jednej na raz) w stosunku do czasu nominalnego spowoduje skrócenie czasu trwania przedsięwzięcia o 1 dzień.
 - G. naszkicować wykres przedstawiający harmonogram przedsięwzięcia przy rozpoczynaniu wszystkich operacji w najwcześniejszych terminach,
 - H. naszkicować wykres przedstawiający liczbę pracowników zatrudnionych w poszczególne dni przy harmonogramie z p. G,
 - I. naszkicować wykres przedstawiający harmonogram przedsięwzięcia przy rozpoczynaniu wszystkich operacji w najpóźniejszych terminach niepowodujących wydłużenia czasu trwania całego przedsięwzięcia ponad T1 (wyznaczony w p. A).
- III. Przy minimalnych czasach trwania operacji:
 - A. wyznaczyć najkrótszy czas trwania przedsięwzięcia T2,
 - B. obliczyć zużycie zasobu potrzebne do maksymalnego skrócenia wszystkich operacji (może być większe od dostępnego),
 - C. wyznaczyć najmniejsze zużycie zasobu wystarczające do skrócenia czasu przedsięwzięcia do T2
- IV. Wykorzystując zasób w dostępnych granicach przydzielić go tak do skracania poszczególnych operacji, by jak najwięcej skrócić czas trwania przedsięwzięcia. Podać uzyskany czas T3 oraz liczbę jednostek zasobu przydzielaną poszczególnym operacjom.
- V. Przy nominalnych czasach wykonywania wszystkich operacji zaplanować przedsięwzięcie w taki sposób, żeby łączna liczba pracowników zatrudnianych w tym samym czasie żadnego dnia nie przekroczyła podanej (dostępnej) liczby pracowników. Podać czas przedsięwzięcia T4 oraz chwile rozpoczynania poszczególnych operacji (uwaga, czas przedsięwzięcia nie musi być najmniejszy z możliwych). Naszkicować wykres przedstawiający liczbę pracowników zatrudnionych w poszczególne dni.
- VI. (Punkt opcjonalny) Zapisać zadania programowania liniowego odpowiadające:
 - A. Problemowi z p. II A; podać wartości zmiennych i funkcji celu odpowiadające harmonogramowi z p. II G i wykazać, że są spełnione wszystkie ograniczenia zadania;
 - B. Problemowi z p. III C; sprawdzić, czy dla rozwiązania odpowiadającego decyzjom z p. IV są spełnione wszystkie ograniczenia i obliczyć wartość funkcji celu.

Operacja	Czas nomin.	Op. Poprzednie	Czas min.	Pracownicy
A	8		6	3
В	11		6	4
С	6	ab	3	2
D	3		2	2
Е	13	b	5	5
F	8	cd	4	3

Zasoby funduszy na skracanie: 4 (dane do p. IV); zasoby pracowników: 6

Dane jest przedsięwzięcie o strukturze i parametrach operacji określonej w powyższej tabeli.

Przedsięwzięcie składa się z sześciu operacji, oznaczonych literami ABCDEF. Struktura zależności między operacjami jest określona przez podanie operacji poprzedzających, które muszą zostać zakończone, żeby dana operacja mogła się rozpocząć.

- Narysować sieć operacji w przedstawieniu łukowym (operacje jako łuki) i w węzłowym (operacje jako węzły).
- II. Przy nominalnych czasach trwania operacji:
 - A. wyznaczyć najkrótszy czas trwania przedsięwzięcia T1,
 - B. wskazać odpowiadającą mu ścieżkę krytyczną,
 - C. obliczyć zapasy czasu operacji nie krytycznych,
 - D. wypisać wszystkie ścieżki,
 - E. wskazać takie operacje, których wydłużenie o 2 dni (jednej na raz) w stosunku do czasu nominalnego spowoduje wydłużenie czasu trwania przedsięwzięcia o 1 dzień.
 - F. wskazać takie operacje, których skrócenie o 2 dni (jednej na raz) w stosunku do czasu nominalnego spowoduje skrócenie czasu trwania przedsięwzięcia o 1 dzień.
 - G. naszkicować wykres przedstawiający harmonogram przedsięwzięcia przy rozpoczynaniu wszystkich operacji w najwcześniejszych terminach,
 - H. naszkicować wykres przedstawiający liczbę pracowników zatrudnionych w poszczególne dni przy harmonogramie z p. G,
 - I. naszkicować wykres przedstawiający harmonogram przedsięwzięcia przy rozpoczynaniu wszystkich operacji w najpóźniejszych terminach niepowodujących wydłużenia czasu trwania całego przedsięwzięcia ponad T1 (wyznaczony w p. A).
- III. Przy minimalnych czasach trwania operacji:
 - A. wyznaczyć najkrótszy czas trwania przedsięwzięcia T2,
 - B. obliczyć zużycie zasobu potrzebne do maksymalnego skrócenia wszystkich operacji (może być większe od dostępnego),
 - C. wyznaczyć najmniejsze zużycie zasobu wystarczające do skrócenia czasu przedsięwzięcia do T2
- IV. Wykorzystując zasób w dostępnych granicach przydzielić go tak do skracania poszczególnych operacji, by jak najwięcej skrócić czas trwania przedsięwzięcia. Podać uzyskany czas T3 oraz liczbę jednostek zasobu przydzielaną poszczególnym operacjom.
- V. Przy nominalnych czasach wykonywania wszystkich operacji zaplanować przedsięwzięcie w taki sposób, żeby łączna liczba pracowników zatrudnianych w tym samym czasie żadnego dnia nie przekroczyła podanej (dostępnej) liczby pracowników. Podać czas przedsięwzięcia T4 oraz chwile rozpoczynania poszczególnych operacji (uwaga, czas przedsięwzięcia nie musi być najmniejszy z możliwych). Naszkicować wykres przedstawiający liczbę pracowników zatrudnionych w poszczególne dni.
- VI. (Punkt opcjonalny) Zapisać zadania programowania liniowego odpowiadające:
 - A. Problemowi z p. II A; podać wartości zmiennych i funkcji celu odpowiadające harmonogramowi z p. II G i wykazać, że są spełnione wszystkie ograniczenia zadania;
 - B. Problemowi z p. III C; sprawdzić, czy dla rozwiązania odpowiadającego decyzjom z p. IV są spełnione wszystkie ograniczenia i obliczyć wartość funkcji celu.