Συναρτήσεις Συνέχεια Συνάρτησης

Κωνσταντίνος Λόλας

 10^o ΓΕΛ Θεσσαλονίκης

Οταν εμείς το υπολογίζαμε...

Μέχρι στιγμής πλησιάζαμε. Ηρθε ο καιρός να φτάσουμε!

Συνέχεια 1

Συνέχεια σε σημείο

Μία συνάρτηση είναι συνεχής στο x_0 αν $\lim_{x\to x_0}f(x)=f(x_0)$

Συνέχεια 2

Συνέχεια σε διάστημα

Μία συνάρτηση είναι συνεχής στο $[\alpha, \beta]$ όταν:

$$ullet$$
 $\lim_{x o x_0} f(x) = f(x_0)$ για κάθε $x \in (\alpha, \beta)$

$$\circ \lim_{x \to \alpha^+} f(x) = f(\alpha)$$

Συνέχεια 3

Συνεχής συνάρτηση

Μία συνάρτηση είναι συνεχής όταν είναι συνεχής σε κάθε σημείο του πεδίου ορισμού της.

Λόλας (10^{o} ΓΕΛ) Συναρτήσεις 5/17

- Πολυωνυμικές
- Εκθετικές
- Λογαριθμικές
- Τριγωνομετρικές
- Appnted

- Πολυωνυμικές
- Εκθετικές
- Λογαριθμικές
- Τριγωνομετρικές
- Αρρητες

- Πολυωνυμικές
- Εκθετικές
- Λογαριθμικές
- Τριγωνομετρικές
- Αρρητες

- Πολυωνυμικές
- Εκθετικές
- Λογαριθμικές
- Τριγωνομετρικές
- Αρρητες

- Πολυωνυμικές
- Εκθετικές
- Λογαριθμικές
- Τριγωνομετρικές
- Άρρητες

- \bullet f+g
- *J* —
- \bullet $f \cdot g$
- 9
- \bullet $f \circ g$
- ΟΛΕΣ ΟΙ ΓΝΩΣΤΕΣ

- \bullet f+g
- \bullet f-g
- f · g
- $\frac{f}{a}$
- g
- ΟΛΕΣ ΟΙ ΓΝΩΣΤΕΣ

- \bullet f+g
- \bullet f-g
- $\bullet f \cdot g$
- $\frac{f}{g}$
- 9 • f • (
- ΟΛΕΣ ΟΙ ΓΝΩΣΤΕΣ

- \bullet f+g
- \bullet f-g
- $\bullet f \cdot g$
- $\bullet \frac{f}{a}$
- g
- \bullet $f \circ g$
- ΟΛΕΣ ΟΙ ΓΝΩΣΤΕΣ

- \bullet f+g
- \bullet f-g
- $\bullet f \cdot g$
- $\bullet \frac{f}{g}$
- Ο ΛΕΣ ΟΙ ΓΝΩΣΤΕΣ

- \bullet f+g
- \bullet f-g
- $\bullet f \cdot g$
- $\bullet \frac{f}{g}$
- \bullet $f \circ g$
- ΟΛΕΣ ΟΙ ΓΝΩΣΤΕΣ

Το μέλλον...

- Αντί να υπολογίζουμε όρια, θα υπολογίζουμε τιμές
- Αν δεν μπορούμε να υπολογίζουμε τιμές, θα υπολογίζουμε όρια
- Αφού η συνάρτηση δεν "διακόπτεται" βγάζουμε ωραία θεωρήματα

Λόλας $(10^{o}$ ΓΕΛ) Συναρτήσεις 8/17

Το μέλλον...

- Αντί να υπολογίζουμε όρια, θα υπολογίζουμε τιμές
- Αν δεν μπορούμε να υπολογίζουμε τιμές, θα υπολογίζουμε όρια

Συναρτήσεις 8/17

Το μέλλον...

- Αντί να υπολογίζουμε όρια, θα υπολογίζουμε τιμές
- Αν δεν μπορούμε να υπολογίζουμε τιμές, θα υπολογίζουμε όρια
- Αφού η συνάρτηση δεν "διακόπτεται" βγάζουμε ωραία θεωρήματα

Στο moodle θα βρείτε τις ασκήσεις που πρέπει να κάνετε, όπως και αυτή τη παρουσίαση

Ασκήσεις

8/17

Να εξετάσετε, αν καθεμιά από τις παρακάτω συναρτήσεις είναι συνεχής στο x_0 :

①
$$f(x) = \begin{cases} \frac{x^2 - 1}{x - 1}, & x \neq 1 \\ 2, & x = 1 \end{cases}$$
, $x_0 = 1$

②
$$f(x) = \begin{cases} \frac{\eta \mu x}{x}, & x < 0 \\ 2x + 1, & x \ge 0 \end{cases}$$
, $x_0 = 0$

Λόλας (10^o ΓΕΛ) Συναρτήσεις 9/17

Να εξετάσετε, αν καθεμιά από τις παρακάτω συναρτήσεις είναι συνεχής στο x_0 :

①
$$f(x) = \begin{cases} \frac{x^2 - 1}{x - 1}, & x \neq 1 \\ 2, & x = 1 \end{cases}$$
, $x_0 = 1$

$$f(x) = \begin{cases} \frac{\eta \mu x}{x}, & x < 0 \\ 2x + 1, & x \ge 0 \end{cases}, x_0 = 0$$

Λόλας (10^o ΓΕΛ) Συναρτήσεις 9/17

Να μελετήσετε τη συνάρτηση $f(x)=e^x+\ln(x+1)$ ως προς τη συνέχεια και να βρείτε το $\lim_{x\to 0} f(x)$.

Λόλας (10^o ΓΕΛ) Συναρτήσεις 10/17

Δίνεται η συνάρτηση
$$f(x)= egin{cases} e^x+\eta\mu x, & x<0 \\ 1, & x=0 \\ \sigma\upsilon\nu x\cdot\ln(x+1), & x>0 \end{cases}$$

- Να μελετήσετε τη συνάρτηση f ως προς τη συνέχεια.

Λόλας (10^o ΓΕΛ) Συναρτήσεις 11/17

Δίνεται η συνάρτηση
$$f(x)= egin{cases} e^x+\eta\mu x, & x<0 \\ 1, & x=0 \\ \sigma\upsilon\nu x\cdot\ln(x+1), & x>0 \end{cases}$$

- Να μελετήσετε τη συνάρτηση f ως προς τη συνέχεια.
- Να αποδείξετε ότι η f είναι συνεχής στο διάστημα $[-\pi, 0]$.

Λόλας (10^o ΓΕΛ) Συναρτήσεις 11/17

Δίνεται η συνάρτηση
$$f(x)= egin{cases} 4\alpha e^x+\beta\sigma\upsilon\nu x, & x<0 \\ x+2, & 0\leq x\leq 1 \\ \ln x+\alpha x-\beta, & x>1 \end{cases}$$

Να βρείτε τις τιμές των α και β για τις οποίες η f είναι συνεχής.

Λόλας (10^o ΓΕΛ) Συναρτήσεις 12/17

Εστω $f:\mathbb{R}\to\mathbb{R}$ μία συνεχής συνάρτηση για την οποία ισχύει

$$xf(x)=x^2+\eta\mu x$$
, για κάθε $x\in\mathbb{R}$

Να βρείτε τον τύπο της συνάρτησης f

Λόλας (10^o ΓΕΛ) Συναρτήσεις 13/17

Εστω $f:\mathbb{R} o \mathbb{R}$ μία συνάρτηση η οποία είναι συνεχής στο $x_0=1$. Αν $\lim_{x\to 1}\frac{f(x)-2}{x-1}=3\text{, na δείξετε ότι }f(1)=2$

Λόλας (10^o ΓΕΛ) Συναρτήσεις 14/17

Εστω $f:(0,+\infty)\to\mathbb{R}$ μία συνάρτηση για την οποία ισχύει

$$f^3(x)+f(x)=\ln x$$
, για κάθε $x>0$

Nα δείξετε ότι η f είναι συνεχής στο $x_0 = 1$

Λόλας (10^o ΓΕΛ) Συναρτήσεις 15/17

Εστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση για την οποία ισχύει

$$2f(x)=x+\eta\mu f(x)$$
, για κάθε $x\in\mathbb{R}$

Να δείξετε ότι:

- $(1) |f(x)| \le |x|$, για κάθε $x \in \mathbb{R}$

Λόλας (10^o ΓΕΛ) Συναρτήσεις 16/17

Εστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση για την οποία ισχύει

$$2f(x)=x+\eta\mu f(x)$$
, για κάθε $x\in\mathbb{R}$

Να δείξετε ότι:

- $(1) |f(x)| \le |x|$, για κάθε $x \in \mathbb{R}$
- ② Η f είναι συνεχής στο $x_0 = 0$

Λόλας (10^o ΓΕΛ) Συναρτήσεις 16/17

Εστω $f:(0,+\infty)\to\mathbb{R}$ μία συνάρτηση για την οποία ισχύει

$$f(xy)=f(x)+f(y)$$
, για κάθε $x,y\in(0,+\infty)$

Να δείξετε ότι αν η f είναι συνεχής στο x = 1, τότε η συνάρτηση είναι συνεχής στο $(0, +\infty)$

Λόλας (10^o ΓΕΛ) Συναρτήσεις 17 / 17