НИЯУ МИФИ, факультет Кибернетики, Каф. 17

Компьютерная обработка изображений

Лекция 2: Анализ изображений.

Сафонов И.В., Крыжановский К.А., Егорова М.А.

2011

1

Инструменты или средства анализа изображений

- Гистограммы и гистограммные признаки
- Матрицы совместной встречаемости
- Проекции
- Профили интенсивности
- Спектр Фурье

Все рассматриваемые средства могут применяться как к целому изображению, тогда говорят о глобальном анализе, так и к любому фрагменту изображения, тогда говорят о локальном анализе

Гистограмма яркости Гистограмма яркости – столбчатая диаграмма, которая для каждой градации яркости показывает сколько раз в изображении присутствует пиксел данной яркости. 104023 Количество 321013 пикселов 020110 данной яркости 422120 122113 Градации яркости Количество пикселов данной яркости Светлые оттенки Темные оттенки Градации яркости

Гистограммные признаки (1)

Так как гистограмма может рассматриваться как плотность вероятности, то для описания изображения используются традиционные статистические признаки (моменты)

Математическое ожидание (*mean*) – среднее значение:

$$ar{I} = \sum_{j=0}^{B\max} j \cdot P(j)$$
 , где $B\max$ — максимальное значение яркости

Дисперсия (variance) - мера разброса значений:

$$\sigma^2 = \sum_{j=0}^{B\max} (j-\bar{I})^2 P(j) \ , \ \sigma$$
— среднеквадратичное отклонение Коэффициент эксцесса ($\mathit{kurtosis}$) - мера остроты пика распределения:

$$E = \frac{1}{\sigma^4} \sum_{j=0}^{B \max} (j - \bar{I})^4 P(j) - 3$$

Коэффициент асимметрии (skewness) - величина, характеризующая "скошенность" распределения

$$A = \frac{1}{\sigma^3} \sum_{j=0}^{B \max} (j - \bar{I})^3 P(j)$$

Гистограммные признаки (2)

Энергия или однородность (Uniformity) - характеризует наличие пиков или, наоборот, равномерность гистограммы:

Энтропия (*Entropy*) – также характеризует наличие пиков

$$H_{_{n}} = -\sum_{j=0}^{B \max} P(j) \cdot \log_{2} P(j)$$
 энтропия максимальна для равномерной гистограммы

 $E_n = 0.087$

$$H_0 = 5.4$$

 $E_n = 0.004$

$$H_n = 8.0$$

Пример анализа по среднему и с.к.о.

Определите, какому из 3-х изображений соответствует каждая пара математическое ожидание и среднеквадратичное отклонение

мат. ожидание с.к.о. 145.9 85.6 146.9 51.4 62.8 67.8

-

Оценка качества по гистограмме

По гистограмме можно сделать ряд предположений об изображении, например, о его качестве

Низкий контраст

"Узкая" гистограмма, не используется весь динамический диапазон

Переэкспонированное overexposed

Гистограмма смещена вправо, отсутствуют

тёмные оттенки

Недоэкспонированное underexposed

Гистограмма смещена влево, отсутствуют светлые оттенки

Гистограмма в полулогарифмическом масштабе

У некоторых изображений может быть очень много пикселов каких-то определенных значений. На гистограмме они образуют очень высокий пик, а распределение других градаций не видно. В этом случае строят гистограмму в полулогарифмическом масштабе.

A biddy to the in-making degreement.

In the other contents of the contents of

Пример вычисления гистограммы

Пример вычисления гистограммы яркости для полутонового изображения 8 bpp, строки изображения выровнены, и каждая занимает iWidthBytes байт.

Матрицы совместной встречаемости (1)

Матрица совместной встречаемости (co-occurrence matrix) содержит количество случаев совместного появления определенных пар значений пикселов, находящихся на заданном расстоянии dr и dc. В литературе co-occurrence matrix также называют матрицей вхождений и гистограммой второго порядка.

$$P_{(dr,dc)}(a,b) = \frac{N_S(a,b)}{N_T}$$

Условная вероятность того, что пиксел имеет значение a, при условии, что на dr строк и dc столбцов от него находится пиксел со значением b.

 $N_S(a,b)$ – число пар пикселов, таких что: I(r,c)=a И I(r+dr,c+dc)=b; a, b из [0, Bmax], N_T – общее количество пар пикселов, которые могут существовать при заданных *dr* и *dc*.

Матрицы совместной встречаемости (2)

Матрицы совместной встречаемости используют для обнаружения текстур, т.е. изображений состоящих из регулярно повторяющихся фрагментов.

Фотореалистичное изображение

Искусственная

Фото искусственной текстуры в естественных условиях

Для фотореалистичных изображений значения в матрицах совместной встречаемости вытянуты вдоль главной диагонали, для текстур значения сгруппированы в несколько пиков.

Текстурные признаки

Признаки, вычисляемые по матрице совместной встречаемости, используются для детектирования текстур.

Автокорреляция:

$$B_A = \sum_{a=0}^{B \max} \sum_{b=0}^{B \max} a \cdot b \cdot P(a,b)$$

Ковариация:

$$B_C = \sum_{a=0}^{B \max} \sum_{b=0}^{B \max} (a - \overline{a}) \cdot (b - \overline{b}) \cdot P(a, b)$$

Момент инерции или контраст:

$$B_I = \sum_{a=0}^{B \max} \sum_{b=0}^{B \max} (a-b)^2 \cdot P(a,b)$$

Энергия:
$$B_E = \sum_{a=0}^{B_{\max}} \sum_{b=0}^{B_{\max}} P^2(a,b)$$
Энтропия:

Энтропия:

$$B_N = -\sum_{a=0}^{B \max} \sum_{b=0}^{B \max} P(a,b) \cdot \log_2 P(a,b)$$

Проекция на ось – сумма пикселов на линии перпендикулярной данной

1010 Проекция на 0000 1111 0010 1110

3241 Проекция на горизонтальную ось

По проекциям можно восстановить изображение. В тривиальных случаях достаточно несколько проекций. Для восстановления полутоновых изображений в томографии используется несколько сотен проекций. Восстановление изображений по проекциям выполняют с помощью преобразования Радона.

Проекции

широко

Профили

Профиль — значения пикселов вдоль прямой (иногда кривой). Строят профили яркости и интенсивности цветовых каналов.

Профили используют для оценки резкости изображений, а также для оценки равномерности освещенности фона.

Построение спектра изображения

Вычислительная сложность двумерного ДПФ $O(N^4)$ для изображения размера $N \times N$. Это очень много, поэтому на практике используют алгоритм Быстрого Преобразования Фурье (БПФ, Fast Fourier Transform, FFT) и сепарабельность (разделимость) ДПФ, т.е. возможность выполнить одномерные БПФ для строк, затем столбцов изображения.

Существует несколько алгоритмов БПФ. Для каждой конкретной платформы может быть выбран свой наиболее эффективный алгоритм. В качестве примера ниже рассмотрен БПФ с прореживанием по времени (*Decimation In Time, DiT*). Данный алгоритм выполняет обработку массивов с размером равным степени двух.

Алгоритм ПФ для полутоновых изображений со сложностью $O((Zlog_2Z)^2)$:

- ullet дополняем изображения строками и столбцами нулей до размера Z×Z, где Z-степень двух
- выполняем БПФ для строк
- выполняем БПФ для столбцов
- переставляем квадранты для сдвига постоянной составляющей в центр

21

БПФ с прореживанием по времени (1)

$$X(k) = \frac{1}{N} \sum_{n=0}^{N-1} x(n) \exp(-j2\pi kn/N)$$
 далее опустим множитель I/N
$$X(k) = \sum_{n=0}^{N-1} x(n) W_N^{kn}, \quad W = \exp(-j2\pi/N)$$

$$X(k) = \sum_{n=0}^{N-1} x(n) W_N^{nk}, \quad W = \exp(-j2\pi/N)$$

$$X(k) = \sum_{n=0}^{N-1} x(n) W_N^{nk} + \sum_{n=0}^{N-1} x(n) W_N^{nk}$$

$$n \text{ четное}$$

$$= \sum_{n=0}^{N/2-1} x(2n) W_N^{2nk} + \sum_{n=0}^{N/2-1} x(2n+1) W_N^{(2n+1)k}$$

$$X(k) = \sum_{n=0}^{N/2-1} x_1(n) W_{N/2}^{nk} + W_N^{k} \sum_{n=0}^{N/2-1} x_2(n) W_{N/2}^{nk}$$

$$x_1(n) = x(2n), \quad n = 0, 1, \dots, N/2 - 1$$

$$x_2(n) = x(2n+1), \quad n = 0, 1, \dots, N/2 - 1$$

$$X(k) = X_1(k) + W_N^{k} X_2(k)$$

где $X_1(k)$ и $X_2(k)$ равны $N\!/2$ точечному ДПФ последовательностей $\{xI(n)\}$ и $\{x2(n)\}$ соответственно.

$$X(k) = \begin{cases} X_1(k) + W_N^k X_2(k), & 0 \le k \le N/2 - 1 \\ X_1(k - N/2) - W_N^{k - N/2} X_2(k - N/2), & N/2 \le k < N \end{cases}$$

$$X(0) = X_1(0) + W_N^0 X_2(0)$$

$$X(N/2) = X_1(N/2 - N/2) - W_N^{N/2 - N/2} X_2(N/2 - N/2)$$

$$= X_1(0) - W_N^0 X_2(0)$$

Схема операции "бабочка" в БПФ с прореживанием во времени

Упрощённое представление

W – поворачивающий множитель (twiddle)

БПФ с прореживанием по времени (2)

точечных БПФ

точечных БПФ

Исходные данные в бит-реверсивном порядке

23

Пример БПФ (1)

```
Пример вычисления БПФ с прореживанием по времени для одномерного сигнала.
void FftDit( complex<double>* data, int size, int sizeLog2, int dir )
    ComplexBitReverse(data, size); // переставить в бит-реверсивном порядке int ptsInLeftDft,ptsInRightDft = 1;
    for ( int stage = 1; stage <= sizeLog2; ++stage )</pre>
         ptsInLeftDft = ptsInRightDft; // установить ptsInLeftDfT = 2**(stage-1) ptsInRightDft *= 2; // установить ptsInRightDfT = 2**stage
                                               // установить ptsInRightDFT = 2**stage
         complex<double> twiddle = complex<double>(1.0, 0.0); // поворачивающий множ.
         double trigArg = M_PI / ptsInLeftDft;
         // dir == 1 для прямого преобразования, dir == -1 для обратного
         complex<double> wFactor = complex<double>(cos(trigArg),-sin(trigArg)*dir);
         for( int butterflyPos = 0; butterflyPos < ptsInLeftDft; ++butterflyPos )</pre>
              for(int topNode=butterflyPos; topNode < size; topNode+=ptsInRightDft )</pre>
                  int botNode = topNode + ptsInLeftDft;
complex<double> temp = data[botNode] * twiddle;
data[botNode] = data[topNode] - temp;
                  data[topNode] += temp;
                 // конец цикла по topNode
              twiddle *= wFactor;
         } // конец цикла "бабочка"
    } // конец цикла stage
                                                                                                   24
```

Пример БПФ (2)

```
// функция переставляет данные в массиве в бит-реверсивном порядке void ComplexBitReverse( complex<double>* data, int size ) {
   int middle = size/2,
      revSize = size - 1,
      j = 0;
   for ( int i = 0; i < revSize; ++i )
   {
    if( i < j )
      swap( data[i], data[j] ); // меняем элементы местами int k = middle;
   while ( k <= j ) {
      j -= k;
      k /= 2;
    }
   j += k;
}
```

25

Примеры спектров (1)

Амплитуда спектра

Две синусоиды по горизонтали и одна по вертикали дают на спектре отчетливые пики.

Текстуры также часто образуют на спектре пики

