Unsupervised Learning: Embedding Methods

Why use unsupervised learning?

In many (industry) problems, raw data is cheap but labeling is expensive – pretraining

In scientific applications, unsupervised learning may be more useful for exploratory analysis

 Finding structure in the data that motivates subsequent explanatory work.

Embedding

Basic idea: take high-dimensional, complicated data and project it down to make relationships in the data easier to understand.

Principle Component Analysis

Simplest form of embedding is Principle Component Analysis.

Find independent directions of variation in the data, look at only the few biggest components.

Principle Component Analysis

In PCA, transform the data in such a way that we can approximately reconstruct it with fewer dimensions

- PCA is a compression algorithm!

More generally, could use any kind of approximately invertible non-linear transform.

Auto-encoders

Reconstruction task: Given x, predict x.

Trivial if no other constraints. p(x|x) = 1

But if we force it to use a lower-dimensional intermediate **latent** variable, can require compression:

Non-invertible embeddings

Rather than reconstructing the data, simply say that we want similar data-points to be embedded near each-other.

t-SNE UMAP

Becht et al, "Dimensionality reduction for visualizing single-cell data using UMAP" https://www.nature.com/articles/nbt.4314

Auto-encoders - problem

Auto-encoders try to compress the data, but with reference to the original representation.

But this may not correspond to physically meaningful senses of similarity.

Example: slightly offset textures are very dissimilar in pixel space, but are still 'the same thing'.

Similarity-based embedding

If we can provide an external reference for what **similarity** means, can use that to guide the geometry of the embedding.

Optimize the embedding function such that points that are more similar (in the externally provided sense) are closer to each-other in the embedding space.

Triplet Embedding

Pick two examples which are similar (x_1, x_2) and one which is different x_3

Embed examples using the same function (neural network):

$$X_{1}, X_{2}, X_{3} \rightarrow Z_{1}, Z_{2}, Z_{3}$$

Compare the z_1 - z_2 distance to the z_1 - z_3 distance.

Ask d_{12} to be less than d_{13}

Triplet Embedding Loss

Potential problem: if we just ask $E[d_{13} - d_{12}]$ to be large, we can do this by having a few points run off to infinity.

Fix: If the difference is bigger than some cutoff value, we won't care about making it even bigger:

$$L_{\textit{triplet}} \!=\! \max \left(d_{12} \!-\! d_{13} \!+\! \alpha, 0 \right) \label{eq:triplet}$$
 (Hinge loss)

 $d_{12} - d_{13}$

Implementing Triplet Embedding with Convolutional Neural Networks

Start with standard classification architecture.

Make final layer linear rather than SoftMax

of output neurons = embedding dimension

Form batches composed of sets of three images, two 'similar', one 'different'. Pass all three through the network.

Compute L_{triplet} and back-propagate.

Interpreting Embeddings

What does it mean if two points are near eachother?

What do shapes in the embedding mean?

Are embedding structures reproducible?

Often no firm answers to these questions – exploratory, rather than explanatory.

Interpreting Embeddings

If you have labels, one way to test embeddings is:

Train a classifier on the embedding coordinates and compare with a classifier on the original data.

If accuracies are similar: you successfully captured the relevant information.

Perform direct analysis (inspecting correlations) on the embedding coordinates.

https://nlml.github.io/in-raw-numpy/in-raw-numpy-t-sne/

Interpreting Triplet Embeddings

In triplet embeddings, the distance in the embedding space can tell you about **ambiguities** in the data.

Points that **should** be far apart but are not (based on your similarity source) may indicate the existence of equivalency classes not captured by your sense of similarity.

Example: if similarity = geographical distance, then far away points that map to the same **z** may correspond to recurring terrain types.