INTERCONNECTION AND DAMPING ASSIGNMENT PASSIVITY-BASED CONTROL OF MECHANICAL SYSTEMS WITH UNDERACTUATION DEGREE ONE



# PASSIVITY BASED POSITION CONTROL FOR VTOL DYNAMICS (PORT-HAMILTONIAN SYSTEM)

La Sala - Scuderi

# What is a VTOL? Vertical Take-off and Landing Aircraft

Doesn't need a landing strip.
Can land and take-off like an helicopter



### Used for what? **EXPORT DEMOCRACY**



### How does it work?

Phase 3: **Lakeholg** 



### Our Goal:



Reach a desired position  $x_d$  with zero velocity



Start From an initial position  $x_0$ 

### Model

$$\begin{cases} \ddot{x} = -\sin\theta \ v_1 + \varepsilon \cos\theta \ v_2 \\ \ddot{y} = \cos\theta \ v_1 + \varepsilon \sin\theta \ v_2 \ -g \\ \ddot{\theta} = v_2 \end{cases}$$

 $v_1$ : Vertical Acceleration

v<sub>2</sub>: (Angular) Roll Acceleration





### Change of input

$$\begin{cases} \ddot{x} = -\sin\theta \ v_1 + \varepsilon \cos\theta \ v_2 \\ \ddot{y} = \cos\theta \ v_1 + \varepsilon \sin\theta \ v_2 \ - g \\ \ddot{\theta} = v_2 \end{cases}$$

$$\begin{cases} \ddot{x} = u_1 \\ \ddot{y} = u_2 \end{cases}$$

$$\ddot{\theta} = \frac{1}{\varepsilon} \left( g \sin \theta + u_1 \cos \theta + u_2 \sin \theta \right)$$



$$\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = g \begin{bmatrix} \cos \theta \\ \sin \theta / \varepsilon \end{bmatrix} + \begin{bmatrix} -\sin \theta & \cos \theta \\ \cos \theta / \varepsilon & \sin \theta / \varepsilon \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$



Globally defined!

### State Space Representation

$$\begin{cases} q_{1} \coloneqq x \\ q_{2} \coloneqq y \\ q_{3} \coloneqq \vartheta \end{cases}$$

$$\begin{cases} \dot{q}_{1} = p_{1} \\ \dot{q}_{2} = p_{2} \\ \dot{q}_{3} = p_{3} \end{cases}$$

$$p_{1} = u_{1}$$

$$p_{2} \coloneqq \dot{y}$$

$$p_{3} \coloneqq \dot{\vartheta}$$

$$\begin{cases} \dot{q}_{1} = p_{1} \\ \dot{q}_{2} = p_{2} \\ \dot{q}_{3} = p_{3} \end{cases}$$

$$p_{1} = u_{1}$$

$$p_{2} = u_{2}$$

$$p_{3} = \frac{g}{\varepsilon} \sin q_{3} + \frac{1}{\varepsilon} \cos q_{3} u_{1} + \frac{1}{\varepsilon} \sin q_{3} u_{2}$$

### **Compact Form**

$$\begin{cases} \dot{q} = p \\ \dot{p} = \begin{bmatrix} 0 \\ 0 \\ \frac{g}{\varepsilon} \sin q_3 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ \frac{1}{\varepsilon} \cos q_3 & \frac{1}{\varepsilon} \sin q_3 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

### Port-Hamiltonian form

$$\begin{cases} \dot{q} = p \\ \dot{p} = \frac{g}{\varepsilon} \sin(q_3) e_3 G u \end{cases}$$



- m = n 1 = 2
- $\exists G^{\perp}s.t: G^{\perp}\nabla_q(p^TM^{-1}p) = 0 \Rightarrow$  $M \ doesn't \ depend \ on \ q$
- G depends solely on  $q_3$



$$\begin{bmatrix} \dot{q} \\ \dot{p} \end{bmatrix} = \begin{bmatrix} 0_{3\times3} & I_{3\times3} \\ -I_{3\times3} & 0_{3\times3} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ -\frac{g}{\varepsilon} \cos(q_3) \\ p_1 \\ p_2 \\ p_3 \end{bmatrix} + \begin{bmatrix} 0_{3\times2} \\ G_{3\times2} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

# **Passivity**

• Storage Function:  $H(q,p) = \frac{1}{2}p^TM^{-1}p + \frac{g}{\varepsilon}\cos(q_3)$ 

• Passivating output: 
$$y = g^T \nabla H(q, p) = \begin{bmatrix} p_1 - \frac{p_3}{\varepsilon} \cos(q_3) \\ p_2 + \frac{p_3}{\varepsilon} \sin(q_3) \end{bmatrix}$$



$$\dot{H}(q,p) = \nabla^T H(q,p) \begin{bmatrix} \dot{q} \\ \dot{p} \end{bmatrix} = \mathbf{y}^T u$$

The system is **passive** w.r.t this storage function and this passivating output. In addiction the system is lossless as we expected, since there isn't any damping.

### Necessity of using IDA-PBC

• 
$$\nabla H(q_d, p_d) = \begin{bmatrix} 0 \\ 0 \\ -\frac{g}{\varepsilon} \sin(q_3) \\ p_1 \\ p_2 \\ p_3 \end{bmatrix}_{(q_d, p_d)} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$







We need  $m{u} = m{u_{ES}} + m{u_{DI}}$  to makes  $ig(q_{1_d}$ ,  $q_{2_d}$ , 0, 0, 0, 0,  $ig)^T$  asymptotically stable.

### What now?

### **REMEMBER:**

Passive System! (Port-Hamiltonian Form)

**Energy Shaping** 

+

**Damping Injection** 

under

**Zero State Detectability** 

=

**Asymptotic Stability** 

# Energy Shaping... (wishful thinking)

#### WHAT WE HAVE (OPEN LOOP)

### **Port Hamiltonian Form**

$$\begin{bmatrix} \dot{q} \\ \dot{p} \end{bmatrix} = [\mathcal{J} - \mathcal{R}] \begin{bmatrix} \nabla_q H \\ \nabla_p H \end{bmatrix} + \begin{bmatrix} 0 \\ G \end{bmatrix} \mathbf{u}$$

### **Storage Function**

H(q,p) such that  $(q^*,p^*)$  is **NOT** a minimum of H

H(q,p) only positive semidefinite (not a LF)

#### **Physical Constraint**

$$\dot{q} = p$$

#### WHAT WE WANT (CLOSED LOOP)

#### **Desired Port Hamiltonian Form**

$$\begin{bmatrix} \dot{q} \\ \dot{p} \end{bmatrix} = [\mathcal{J}_d - \mathcal{R}_d] \begin{bmatrix} \nabla_q H_d \\ \nabla_p H_d \end{bmatrix} + \begin{bmatrix} 0 \\ G \end{bmatrix} \mathbf{v}$$

#### **Desired Storage Function**

 $H_d(q,p)$  such that  $(q^*, p^*)$  is a minimum of  $H_d$ 

Choose  $H_d(q,p)$  that qualifies as a Lyapunov Function

### Physical Constraint (can't change)

$$\dot{q} = p$$

## Interconnection and Damping Assignment

#### **BEFORE ENERGY SHAPING:**

$$\begin{bmatrix} \dot{q} \\ \dot{p} \end{bmatrix} = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix} \begin{bmatrix} \nabla_q H \\ \nabla_p H \end{bmatrix} + \begin{bmatrix} 0 \\ G \end{bmatrix} u_{ES}$$



#### **AFTER ENERGY SHAPING:**

$$\begin{bmatrix} \dot{q} \\ \dot{p} \end{bmatrix} = \begin{bmatrix} 0 & M_d \\ -M_d & 0 \end{bmatrix} \begin{bmatrix} \nabla_q H_d \\ \nabla_p H_d \end{bmatrix}$$

#### **MATCHING EQUATION**

$$\begin{bmatrix} 0 \\ Gu_{ES} \end{bmatrix} = \begin{bmatrix} -\nabla_p H \\ \nabla_q H \end{bmatrix} + \begin{bmatrix} M_d \nabla_p H_d \\ -M_d \nabla_q H_d \end{bmatrix}$$



#### **ENERGY SHAPING FEEDBACK**

$$u_{ES} = G^{\#}(\nabla_q H - M_d \nabla_q H_d)$$



#### **MATCHING CONDITION**

$$G^{\perp}(\nabla_q H - M_d \nabla_q H_d) = 0$$

### What about Hd?

$$H_d = \frac{1}{2} p^T M_d^{-1}(q) p + V_d(q - q^*)$$

$$V_d = -\frac{g}{k_1 - k_2 \varepsilon} \cos q_3 + \frac{1}{2} \varphi (q - q^*)^T P \varphi (q - q^*)$$

RECENTER Potential Energy in  $q^*$ 

$$M_{d} = \begin{bmatrix} k_{1}\varepsilon \cos^{2}q_{3} + k_{3} & k_{1}\varepsilon \cos q_{3}\sin q_{3} & k_{1}\cos q_{3} \\ k_{1}\varepsilon \cos q_{3}\sin q_{3} & -k_{1}\varepsilon \cos^{2}q_{3} + k_{3} & k_{1}\sin q_{3} \\ k_{1}\cos q_{3} & k_{1}\sin q_{3} & k_{2} \end{bmatrix}$$

Needed due to underactuation

Doesn't change the physical contstraint:

$$\dot{q} = M_d \nabla_p H_d = M_d M_d^{-1} p = p$$

### Zero State Detectability

To use the damping injection, we need that the system is Zero State Detectable:

- Computing the new passivating output  $y_d = g^T \nabla H_d(q, p)$
- And putting  $y_d = 0$



$$M = \{(q_{1_d}, q_{2_d}, 0, 0, 0, 0)^T\} \Rightarrow \text{the system is Z.S.D} \text{ and moreover it is Z.S.O}$$

### Damping Injection

Since we have proved that the system is Z.S.D, we can apply the damping injection:

$$u_{DI} = -K_v y_d = -\begin{bmatrix} k_{v_{11}} & k_{v_{12}} \\ k_{v_{21}} & k_{v_{22}} \end{bmatrix} \begin{bmatrix} y_{d_1} \\ y_{d_2} \end{bmatrix}$$

and now the point  $\left(q_{1_d}$  ,  $q_{2_d}$  , 0 , 0 , 0 , 0 , 0 \right)^T is **G.A.S** for the system.