МдАД: Математический анализ

Осень 2018

Занятие 3: 22 Сентября

Преподаватель: Антон Савостьянов

Асситент: Даяна Мухаметшина

Контакты: *Антон Савостьянов, почта*: a.s.savostyanov@gmail.com, *telegram*: @mryodo Даяна Мухаметшина, почта: dayanamuha@gmail.com, *telegram*: @anniesss1

Правила игры: Домашние задания следует присылать в читаемом виде не позднее чем через две недели (после проведения занятия) на почту ассистента. В выполнении домашнего задания ценен любой прогресс

3.1 Числовые ряды

Определение 3.1. Числовым рядом называется формальное выражение вида

$$\sum_{n=1}^{+\infty} a_n = a_1 + a_2 + a_3 + \ldots + a_n + \ldots,$$

где все a_i — некие действительные числа.

Сумму первых n чисел называют частичной суммой ряда:

$$S_n = \sum_{i=1}^n a_i$$

Суммой ряда называют предел последовательности частичных сумм:

$$S = \lim_{n \to +\infty} S_n = \lim_{n \to +\infty} \left[\sum_{i=1}^n a_i \right]$$

В зависимости от того существует ли этот предел или нет, ряд называют сходящимся и расходящимся соответственно.

Упражнение 1. Вычислите частичные суммы рядов:

(a)
$$1+2+3+4+\dots$$

(c)
$$\frac{2}{3 \cdot 5} + \frac{2}{5 \cdot 7} + \frac{2}{7 \cdot 9} + \dots$$

(b)
$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots$$

(d)
$$1-1+1-1+1-1+\dots$$

Часто оказывается так, что вычислить сумму ряда гораздо сложнее, чем установить его сходимость. Поэтому используют набор признаков для качественного анализа ряда на предмет наличия суммы.

Замечание 3.2 (Необходимое свойство сходимости). Если ряд $\sum_{n=0}^{+\infty} a_n$ сходится, то $a_n \to 0$.

Замечание 3.3 (Признак сравнения). Пусть есть два ряда $\sum\limits_{n=1}^{+\infty} a_n$ и $\sum\limits_{n=1}^{+\infty} b_n$, состоящие только из положительных членов, причем, начиная с некоторого $n,\,a_n < b_n$. Тогда:

(a) если
$$\sum_{n=1}^{+\infty} b_n \rightarrow$$
, то и $\sum_{n=1}^{+\infty} a_n \rightarrow$;

(b) если
$$\sum_{n=1}^{+\infty} a_n \nrightarrow$$
, то и $\sum_{n=1}^{+\infty} b_n \nrightarrow$;

Замечание 3.4 (Признак Даламбера). Данный признак является по сути признаком сравнения с конкретным рядом, однако его удобно формулировать отдельно. Если дан знакопостоянный ряд $\sum\limits_{n=1}^{+\infty}a_n$ и $\lim\limits_{n\to +\infty}\dfrac{a_{n+1}}{a_n}=p$:

- (a) если p < 1, то ряд схо- (b) если p > 1, то ряд расдится;
- ходится;
- (c) если p = 1, то признак бесполезен.

Замечание 3.5 (Признак Коши). Данный признак является по сути признаком сравнения с конкретным рядом, однако его удобно формулировать отдельно. Если дан знакопостоянный ряд $\sum\limits_{n=1}^{+\infty}a_n$ и $\lim\limits_{n\to +\infty}\sqrt[n]{a_n}=p$:

- (a) если p < 1, то ряд схо- (b) если p > 1, то ряд рас- (c) если p = 1, то признак дится;
 - ходится;
- бесполезен.

Упражнение 2. Используя ряд $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots$, покажите сходимость такого ряда: $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots$

Как Вы думаете, к чему сходится такой ряд?

Вспомните начальную школу: едва ли не первое, чему вас научили, было правило «от перестановки мест слагаемых в сумме сумма не меняется». К несчастью, в начальной школе знали только про конечные суммы, но теперь же мы умеем обращаться с бесконечными (математики говорят «счетными») суммами — рядами. Будет ли верно там это же правило? Для этого введем два дополнительных понятия:

Определение 3.6. Ряд из a_n (необязательно неотрицательных) называется абсолютно сходящимся, если сходится ряд из $|a_n|$:

$$\sum_{n=1}^{+\infty} |a_n| \to$$

Теорема 3.7. Если ряд сходится абсолютно, то он сходится (т.е. сам, без модулей).

Определение 3.8. Ряд из a_n (необязательно неотрицательных) называется условно сходящимся, если ряд из $|a_n|$ расходится, а ряд из a_n тем не менее сходится:

$$\sum_{n=1}^{+\infty} |a_n| \nrightarrow \qquad \sum_{n=1}^{+\infty} a_n \to$$

Замечание 3.9. Самое важное: признаки сравнения для сходимости не работают для знакопеременных рядов! Совсем.

Для таких рядов выделяют другие семейства признаков сходимости, мы упомянем хотя бы один:

Замечание 3.10 (признак Лейбница). Если знакопеременный ряд имеет вид $\sum_{n=1}^{+\infty} (-1)^n a_n$, причем a_n монотонно убывает и неотрицательны, $\lim_{n\to\infty} a_n = 0$, то такой ряд сходится.

Упражнение 3. Установите сходимость (абсолютную или условную, где это имеет смысл) или расходимость следующих рядов:

(a)
$$\frac{1^2}{4^1} + \frac{2^2}{4^2} + \ldots + \frac{n^2}{4^n} + \ldots$$
 (c) $\frac{1}{\sqrt{1}} - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \ldots + \frac{(-1)^{n-1}}{\sqrt{n}} + \ldots$

(b)
$$\left(\frac{1}{4}\right)^1 + \left(\frac{2}{7}\right)^2 + \ldots + \left(\frac{n}{3n+1}\right)^n + \ldots$$
 (d) $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n!}$

Теорема 3.11 (Удивительная теорема). Оказывается, что только в абсолютно сходящемся ряду от перестановки мест слагаемых сумма не меняется; в условно сходящемся ряду, переставляя слагаемые, можно добиться вообще любой суммы!

3.2 Степенные ряды и ряды Тейлора

Определение 3.12. Степенным рядом называется функция вида:

$$\sum_{n=0}^{+\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + \ldots + c_n x^n + \ldots,$$

которая для каждого x возвращает сумму соответствующего числового ряда. Иногда центр ряда бывают сдвинут из нуля в точку a и пишут:

$$\sum_{n=0}^{+\infty} c_n(x-a)^n = c_0 + c_1(x-a) + c_2(x-a)^2 + \dots + c_n(x-a)^n + \dots$$

Несложно понять, что один ряд легко получить из другого заменой t=x-a.

На самом деле ряды функциональные сходятся сильно хуже, чем ряды числовые: например, даже если все слагаемые в ряду есть непрерывные функции, то в результате ряд вполне может задавать и разрывную функцию:

Упражнение 4. Пусть задан функциональный ряд $1+\sum\limits_{n=1}^{+\infty}\left(x^{n}-x^{n-1}\right)$ (подумайте, степенной ли он?). Вычислите его предельные суммы, нарисуйте их, проверьте на непрерывности на отрезке [0,1], вычислите сумму ряда, нарисуйте ее, проверьте на непрерывность.

Важным вопросом для таких рядов является множество таких x, что ряд сходится.

Определение 3.13. Радиусом сходимости ряда с центром в точке a называется такое число R, что степенной ряд

$$\sum_{n=0}^{+\infty} c_n(x-a)^n = c_0 + c_1(x-a) + c_2(x-a)^2 + \ldots + c_n(x-a)^n + \ldots$$

сходится для любого x в интервале (a-R;a+R). Число R может вычислено по следующему правилу: R=1/p, где $p=\lim_{n\to +\infty}\frac{a_{n+1}}{a_n}$ или $p=\lim_{n\to +\infty}\sqrt[n]{a_n}$.

Замечание 3.14. Речь идет именно про интервал (a-R;a+R), про концы, к сожалению, нужно рассуждать отдельно (и делать это гораздо сложнее, как правило).

Упражнение 5. Найдите сумму ряда и интервал сходимости ряда:

(a)
$$1 + x + x^2 + x^3 + \ldots + x^n + \ldots$$
 (b) $3 + 3(x-2) + 3(x-2)^2 + 3(x-2)^3 + \ldots$

Теперь перейдем к самому важному функциональному ряду, который нам потребуется (вернее, к одному из двух самых важных; вторым является ряд Фурье).

Определение 3.15. Производную n-го порядка функции f(x) в точке a будем обозначать $f^{(n)}(a)$. Здесь, конечно же, стоит полагать, что производная n-го порядка вычисляется последовательно как производная от (n-1)-ой производной, и все эти производные есть.

Определение 3.16. Многочленом Тейлора для функции f(x) в точке a называется полином $T_n(x)$ вида:

$$T_n(x) = f(a) + \frac{f'(a)}{1!}(x-a)^1 + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

На самом деле все дальнейшие мысли можно объединить одной простой: многочлен Тейлора довольно-таки похож на функцию f(x) в окрестности точки a. для этого приведем каноническую запись:

$$f(x) = T_n(x) + R_n(x) = f(a) + \frac{f'(a)}{1!}(x - a)^1 + \frac{f''(a)}{2!}(x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + R_n(x)$$

Причем, как мы уже с вами знаем, каждое следующее слагаемое многочлена Тейлора более высокого порядка малости (то есть «о-малое»), чем предыдущее:

Теорема 3.17 (Остаточный член в форме Пеано). $R_n(x) = \overline{o}((x-a)^n)$

Это утверждение не говорит ничего содержательного, кроме того, приближение достаточно хорошее. Впрочем, из него можно сделать два вывода: чем выше порядок разложения (чем больше n), тем лучше точность; и чем дальше мы отходим от точки a, тем хуже точность.

Теорема 3.18 (Остаточный член в форме Лагранжа). $R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$, где $c \in (a,x)$.

Такая форма уже позволяет сделать оценку сверху ну модуль ошибки $|R_n(x)|$: для этого дополнительно положим, что (n+1)-ая прозводная ограничена числом M на отрезке от (a,x), тогда:

$$|R_n(x)| \le \frac{M}{(n+1)!} (x-a)^{n+1}$$

Все это, конечно, верно, если мы достаточно недалеки от центра разложения. Но как это определить? На самом деле, метод написан выше.

Рассмотрим бесконечный ряд Тейлора:

$$f(a) + \frac{f'(a)}{1!}(x-a)^1 + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + \dots$$

Несложно заметить, что это степенной ряд, а значит, у него можно указать радиус сходимости; соответственно все рассуждения о качественности приближений правомерны только в пределах этого радиуса сходимости.

Определение 3.19. В случаях, когда функция разложена в ряд с центров в a=0, ряд называют рядом Маклорена.

Упражнение 6. Вычислите $f^{(n)}(0)$ для функций и постройте ряды Маклорена:

(a)
$$f(x) = e^x$$

(b)
$$f(x) = \sin x$$

(c)
$$f(x) = (1+x)^{\alpha}$$

Как вы думаете, как получить ряд для $e^x \sin x$?

Упражнение 7. Вычислите:

- (a) $\lim_{x \to 0} \frac{\sin x x}{x^3}$
- (b) e с точностью до 1/1000
- (c) 2.01^7 с точностью до 1/100

Интегралы и площади 3.3

К сожалению, если вдаваться в подробности интегрального исчисления, то мы неизбежно увязнем в огромном числе формальностей. С точки зрения математики, введение таких формальностей позволило существенно продвинуться вперед в прикладном смысле, однако в нашем случае такие применения не столь важны.

Определение 3.20. Первообразной F(x) для функции f(x) называется функция, для которой: F'(x) = f(x). Несложно заметить, что из одной первообразной легко получить другую, добавлением константы: (G(x))' = (F(x) + C)' = F'(x) + C' = f(x).

Теорема 3.21. Если одна из первообразных функции f(x) имеет вид F(x), то все первообразные данной функции имеют вид F(x) + C (то есть нет других первообразных, кроме как полученных вертикальным сдвигом).

Несложно понять, что речь идет об обратном действии к взятию производной; такое действие называется интегрированием, а множество всех первообразных — неопределенным интегралом. Обозначение: $\int f(x)dx = F(x) + C$.

Упражнение 8. При помощи интегрирования укажите такую функцию f(x), что:

(a)
$$f'(x) = \sin x$$

(d)
$$f'(x) = f(x)$$

(g)
$$f''(x) = -f(x)$$

(b)
$$f'(x) = \sin x + \cos x$$

(e)
$$f'(x) = 2f(x)$$

(b)
$$f'(x) = \sin x + \cos x$$
 (e) $f'(x) = 2f(x)$ (h) $f''(x) = -f(x) + 1$

(c)
$$f'(x) = x^2$$

(f)
$$f''(x) = x^2$$

(i)
$$x^2f'' + xf' + f = 0$$

Теорема 3.22 (Замена переменной). Пусть дан интеграл $\int f(x)dx$; пусть также нашлась биективная замена x=g(t). Тогда эквивалентный интеграл будет $\int f(x)dx=$ $\int f(g(t))dg(t) = \int f(g(t))g'(t)dt$. Такое рассуждение верно и в обратную сторону.

Например, рассмотрим интеграл $\int \frac{xdx}{1+x^2}$:

$$\int \frac{xdx}{1+x^2} = \frac{1}{2} \int \frac{2xdx}{1+x^2} = \frac{1}{2} \int \frac{dx^2}{1+x^2} = \frac{1}{2} \int \frac{d(1+x^2)}{1+x^2} = \frac{1}{2} \ln(1+x^2) + C$$

Теорема 3.23 (Интегрирование по частям). Пусть дан интеграл $\int u(x)v'(x)dx$. Тогда можно воспользоваться следующим преобразованием: $\int u(x)v'(x)dx = u(x)v(x) - \int u'(x)v(x)dx$. Такой метод удобно применять, когда под интегралом стоит сложная функция с простой производной.

Например, рассмотрим интеграл $\int \arctan x dx$:

$$\int \arctan x \, dx = \int \arctan x \cdot 1 \, dx = \arctan x - \int x \cdot \frac{1}{1+x^2} \, dx = \arctan x - \frac{1}{2} \ln(1+x^2) + C$$

Теперь обратимся к определенному интегралу. Фактически, определенным интегралом называется площадь под графиком функции на заданном отрезке; при этом площадь ориентирована: если функция отрицательна, то площадь идет с минусом, а если положительна, то с плюсом.

Теорема 3.24 (Формула Ньютона-Лейбница). Пусть требуется вычислить определенный интеграл функции f(x) на отрезке [a;b]. Тогда $\int_a^b f(x)dx = F(b) - F(a)$, где F(x) — любая первообразная функции f(x).

Упражнение 9. Вычислите следующие определенные интегралы:

(a)
$$\int_1^4 (x^2 + 2x + 3) dx$$
 (d) $\int_1^9 \frac{x-1}{\sqrt{x}} dx$

(d)
$$\int_{1}^{9} \frac{x-1}{\sqrt{x}} dx$$

(g)
$$\int_{e}^{e^4} \frac{dx}{x\sqrt{\ln x}}$$

(b)
$$\int_{1}^{3} \frac{2}{x^4} dx$$

(e)
$$\int_0^1 x e^{-x^2} dx$$

(h)
$$\int_0^1 (x-1)^2 5 dx$$

(c)
$$\int_0^1 10^x dx$$

(f)
$$\int_0^{+\infty} e^x \cos x dx$$
 (i) $\int_2^3 \frac{1}{x^2 - 1} dx$

(i)
$$\int_2^3 \frac{1}{x^2-1} dx$$

Вектор-функции 3.4

В данном части мы опишем еще один способ задавать графики функций, который является более общим и в то же время более сложным.

Определение 3.25. Вектор-функцией называется отображение из одномерного множества (отрезка, интервала, луча, прямой) в дву- или трехмерное. Де-факто, это вектор функций: r(t) = (x(t), y(t), z(t)), где x(t), y(t) и z(t) — обычные функции одной переменной.

Часто вектор-функции называют кривыми (по Жордану) на плоскости и в пространстве. Надо отметить, что отнюдь не всегда кривые являются графиками функций, однако все графики функций могут быть представлено в виде вектор-функций: действительно, если y = f(x), to r(t) = t, f(t).

Упражнение 10. Какую кривую на плоскости задает вектор-функция:

(a)
$$(\cos t, \sin t), 0 \le t \le 2\pi$$

(c)
$$(3t-5, 2t+1)$$

(b)
$$(\cos 2t, \sin 2t), 0 \le t \le 2\pi$$

(d)
$$(\cos t, \sin t, t)$$

Определение 3.26. Если r(t) = (x(t), y(t), z(t)), то ее производная равна r'(t) = (x'(t), y'(t), z'(t)). Более того, если надо посчитать вектор касательной к кривой в точке c — это вектор r'(c) = (x'(c), y'(c), z'(c))

Упражнение 11. Найдите уравнение касательной для кривой r(t) = (3t - 5, 2t + 1) в точке (-2, 3).

Функции двух переменных 3.5

Определение 3.27. Функцией двух переменных называется функциональное отображение из плоскости, то есть \mathbb{R}^2 , в \mathbb{R} . Как и функции одной переменной, у функции двух переменных есть множество допустимых аргументов, то есть множество допустимых пар (x, y), при которых задана функция.

Как и раньше, графиком функции называется множество точек (x, y, f(x, y)); если раньше речь шла о кривых, то графиком функции двух переменных будет являться поверхность.

Упражнение 12. Найдите области определения функций:

(a)
$$f(x,y) = \ln(9 - x^2 - y^2)$$

(b)
$$f(x,y) = \frac{\sqrt{y-x^2}}{1-x^2}$$

Упражнение 13. Постройте эскиз графика функции:

(a)
$$f(x,y) = 6 - 3x - 2y$$

(a)
$$f(x,y) = 6 - 3x - 2y$$
 (b) $f(x,y) = \sqrt{4 - x^2 - y^2}$ (c) $f(x,y) = y^2 + 1$

(c)
$$f(x,y) = y^2 + 1$$

Определение 3.28. Линией уровня (или кривой) называется множество точек (x,y) таких, что f(x,y) = C, где C — некоторая константа, тот самый уровень. Альтернативным способом изображения функций двух переменных (не в виде поверхности) как и раз и является график линий уровня для разных C. Линии уровня для разных C не пересекаются.

Упражнение 14. Нарисуйте несколько линий уровня и укажите направление роста для следующих функций:

(a)
$$f(x,y) = x^2 - y^2$$

(b)
$$f(x,y) = (2x - 3y)^6$$

(a)
$$f(x,y) = x^2 - y^2$$
 (b) $f(x,y) = (2x - 3y)^6$ (c) $f(x,y) = x^2 + y^2 + z^2$

Определение 3.29. Пусть f(x,y) задана в некоторой окрестности точки (a,b). Предел функции f(x,y) при стремлении (x,y) к (a,b) равен A, если значения функции f(x,y)отличаются от A меньше любого наперед заданного числа в какой-нибудь окрестности точки (a,b). Обозначение: $\lim_{(x,y)\to(a,b)} f(x,y) = A$.

Иными словами: как бы не подходили по плоскости xOy к точке (a,b) — по спирали, по прямой, дискретно — предел значений функции на этом пути все равно должен быть A.

Определение 3.30. f(x,y) называется непрерывной в точке (a,b), если $\lim_{(x,y)\to(a,b)} f(x,y) =$ f(a,b)

Упражнение 15. Вычислите предел и проверьте на непрерывность:

(a)
$$\lim_{(x,y)\to(2,1)} 3x^2 - 2xy^3$$

(b)
$$\lim_{(x,y)\to(0,0)} \frac{x^3}{x^2y+2yx^2}$$

(a)
$$\lim_{(x,y)\to(2,1)} 3x^2 - 2xy^3$$
 (b) $\lim_{(x,y)\to(0,0)} \frac{x^3}{x^2y+2yx^2}$ (c) $\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}}$