1 Pseudo-effective

Definition 1.0.1. A divisor class $D \in N^1(X)_{\mathbb{R}}$ is *pseudo-effective* if it is in the closure of the cone of effective divisors.

Definition 1.0.2. A class $\alpha \in N_1(X)_{\mathbb{R}}$ is movable if $\alpha \cdot D \geq 0$ for any effective Cartier divisor D.

Proposition 1.0.3. If D is pseudo-effective if and only if $D \cdot \alpha \geq 0$ for all movable classes α .

Proof. If D is pseudo-effective then by definition,

$$D = \lim_{t \to 0} D_t$$

for D_t effective \mathbb{R} -divisors. If α is movable then by definition $D_t \cdot \alpha \geq 0$ for t > 0. Since intersection products are continuous (they are really polynomials in the coefficients) we have $D \cdot \alpha \geq 0$. The coverse holds for duals of cones in finite-dimensional vector spaces. Indeed, if D is not pseudo-effective, the separating hyperplane theorem ensures the existence of a numerical curve class α such that $E \cdot \alpha \geq 0$ on all effective divisors, i.e. α is movable, but $D \cdot \alpha < 0$.

2 Miyaoka's Theorem

2.1 Harder-Narasimhan filtration

Remark. Note that it is not true that a nonzero map $\varphi: \mathcal{E} \to \mathscr{F}$ of vector bundles implies that $c_1(\mathcal{E}) \cdot H^{n-1} \leq c_1(\mathscr{F}) \cdot H^{n-1}$ unless both have the same rank. For example, consider on \mathbb{P}^1 the map $\mathcal{O}_X(1) \to \mathcal{O}_X(1) \oplus \mathcal{O}_X(-1)$. However, if X is smooth $\varphi: \mathcal{E} \to \mathscr{F}$ is a nonzero map of torsion-free sheaves of the same rank r then there is a map $\det \varphi: \det \mathcal{E} \to \det \mathscr{F}$ and hence we get that $c_1(\mathscr{F}) - c_1(\mathcal{E}) = c_1(\det \mathscr{F}) - c_1(\det \mathcal{E})$ is effective.

References:

(a) Miyaoka, Higher Dimensional Algebraic Varities

(b)

Let X be a smooth projective variety of dimension n with ample divisor H. Then for any torsion-free coherent sheaf \mathcal{E} define,

$$\mu(\mathcal{E}) := \frac{c_1(\mathcal{E}) \cdot H^{n-1}}{\operatorname{rank} \mathcal{E}}$$

Then stability and semistablity are defined the usual way.

Proposition 2.1.1. Fix a torsion-free sheaf of rank r on the projective polarized variety (X, H). Then the set of slopes $\{\mu(\mathscr{F}) \mid 0 \neq \mathscr{F} \subset \mathscr{E}\} \subset \frac{1}{r!}\mathbb{Z}$ is bounded above. Let μ_1 be the maximum then $\{\mathscr{F} \subset \mathscr{E} \mid \mu(\mathscr{F}) = \mu_1\}$ contains the largest element with respect to the inclusion relation (the maximal destabilizer).

Proof. Because \mathcal{E} is torsion-free there are injections,

$$\mathcal{E} \hookrightarrow \mathcal{E}^{\vee\vee} \hookrightarrow \mathcal{O}_X(mH)^N$$

for some integers m, N. Therefore, it suffices to show that slopes of subsheaves of $\mathcal{O}_X(mH)^N$ are bounded. Let $\mathscr{F} \subset \mathscr{E}$ be a rank s subsheaf. At the generic point the matrix corresponding to $\mathscr{F} \hookrightarrow \mathcal{O}_X(mH)^N$ has s independent columns (because it is full rank) and hence we can choose $\mathscr{F} \hookrightarrow \mathcal{O}_X(mH)^N \to \mathcal{O}_X(mH)^s$ such that the composition is injective. Then taking determinants we get $\deg \mathscr{F} \leq smH^n$ and hence $\mu(\mathscr{F}) \leq mH^n$ proving a uniform bound.

Now suppose that $\mathscr{F}_1, \mathscr{F}_2 \subset \mathcal{E}$ are two subsheaves with $\mu(\mathscr{F}_1) = \mu(\mathscr{F}_2) = \mu_1$. It suffices to show that $\mu(\mathscr{F}_1 + \mathscr{F}_2) = \mu_1$. Consider the exact sequence,

$$0 \longrightarrow \mathscr{F}_1 \cap \mathscr{F}_2 \longrightarrow \cdots \longrightarrow \mathscr{F}_1 \oplus \mathscr{F}_2 \longrightarrow \mathscr{F}_1 + \mathscr{F}_2 \longrightarrow 0$$

and the additivity of Chern classes.

$$r\mu(\mathscr{F}_1 + \mathscr{F}_2) = r_1\mu(\mathscr{F}_1) + r_2\mu(\mathscr{F}_2) - r'\mu(\mathscr{F}_1 \cap \mathscr{F}_2)$$

where $r = \operatorname{rank}(\mathscr{F}_1 + \mathscr{F}_2)$ and $r_i = \operatorname{rank}\mathscr{F}_i$ and $r' = \operatorname{rank}(\mathscr{F}_1 \cap \mathscr{F}_2)$. By definition of μ_1 we have $\mu(\mathscr{F}_1 \cap \mathscr{F}_2) \leq \mu_1$ and thus,

$$r\mu(\mathscr{F}_1 + \mathscr{F}_2) \ge (r_1 + r_2 - r')\mu_1$$

and thus $\mu(\mathscr{F}_1 + \mathscr{F}_2) \ge \mu_1$ but trivially $\mu(\mathscr{F}_1 + \mathscr{F}_2) \le \mu_1$ so we win.

Definition 2.1.2. By the above result, setting $\mu_{\text{max}}(\mathcal{E}) = \mu_1$ is a well-defined invariant of (X, H, \mathcal{E}) and so is the maximal destabilizer. By maximality, the maximal destabilizer is saturated and H-semistable.

Lemma 2.1.3. Let \mathcal{E} be torsion-free and $\mathscr{F} \subset \mathcal{E}$ the maximal destabilizer. Then \mathcal{E} is H-semistable iff $\mathscr{F} = \mathcal{E}$ iff $\mu(\mathcal{E}) = \mu_{\max}(\mathscr{F})$. If \mathcal{E} is not H-semistable then $\mu_{\max}(\mathcal{E}/\mathscr{F}) < \mu_{\max}(\mathcal{E}) = \mu(\mathscr{F})$.

Proof. Indeed, \mathcal{E} is H-semistable iff $\mu_{\max}(\mathcal{E}) = \mu(\mathcal{E})$ since this exactly means that every subsheaf has slope at most $\mu(\mathcal{E})$ but this is equivalent to $\mathscr{F} = \mathcal{E}$ since \mathscr{F} is maximal amoung subsheaves with $\mu(\mathscr{F}) = \mu_{\max}(\mathcal{E})$.

Suppose that $\mu_{\max}(\mathcal{E}) > \mu(\mathcal{E})$. Then if $0 \neq \mathscr{F}' \subset (\mathcal{E}/\mathscr{F})$ is the maximal destabilizer then its preimage $\mathscr{F}'' \subset \mathcal{E}$ must satisfy $\mu(\mathscr{F}'') < \mu_{\max}(\mathcal{E})$ because \mathscr{F}'' strictly contains \mathscr{F} then consider,

$$0 \to \mathscr{F} \to \mathscr{F}'' \to \mathscr{F}' \to 0$$

we have,

$$r\mu(\mathscr{F}) + r'\mu(\mathscr{F}') = r''\mu(\mathscr{F}'') < r''\mu(\mathscr{F})$$

and therefore,

$$r'\mu(\mathscr{F}')<(r''-r)\mu(\mathscr{F})$$

but r' = r'' - r so we conclude.

Corollary 2.1.4. There exists a filtration,

$$0 = \mathscr{F}_0 \subset \mathscr{F}_1 \subset \cdots \subset \mathscr{F}_s = \mathscr{E}$$

where \mathscr{F}_{i+1} is the preimage in \mathscr{E} of the maximal destabilizer of $\mathscr{E}/\mathscr{F}_i$. Therefore, $\mathscr{F}_{i+1}/\mathscr{F}_i$ is H-semistable and the slopes satisfy,

$$\mu_{\max}(\mathcal{E}) = \mu(\mathscr{F}_1/\mathscr{F}_0) > \mu(\mathscr{F}_2/\mathscr{F}_1) > \dots > \mu(\mathscr{F}_s/\mathscr{F}_{s-1}) = \mu_{\min}(\mathcal{E})$$

Furthermore, $\mu_{\min}(\mathcal{E}) = -\mu_{\max}(\mathcal{E}^{\vee})$ is the minimal slope of a torsion-free quotient of \mathcal{E} .

3 Relations Between Notions of Semipositiviity

Theorem 3.0.1 (Mehta-Ramanathan). Let X be a normal projective variety of dimension ≥ 2 and H an ample divisor. Let \mathcal{E} be torsion-free sheaf. Then for $m \gg 0$ the restriction of \mathcal{E} to a gneral member $Y \in |mH|$ is $H|_Y$ -semistable if and only if \mathcal{E} is H-semistable.

Therefore, we can reduce to sufficently large degree complete intersection curves.

4 The Main Theorem

Proposition 4.0.1. Let X be a smooth projective variety over a field of characteristic p > 0. Assume there is a \mathbb{Q} -divisor D with deg D > 0 such that when restricted to a generated complete intersection curve $\mathscr{F}(-D)$ ample and $(\mathcal{T}_X/F)(-D)$ negative. Then on the open U where $\mathscr{F} \subset \mathcal{T}_X$ is a subbundle we have that \mathscr{F} is a p-closed foliation.

Proof. The bracket defines an \mathcal{O}_X -linear map $\bigwedge^2 \mathscr{F} \to \mathcal{T}_X/\mathscr{F}$. This must be zero because $(\wedge^2 \mathscr{F})(-D)$ is ample but $(\mathcal{T}_X/\mathscr{F})(-2D)$ is negative if restricted to a general curve. Hence \mathscr{F} is a foliation.

The p^{th} -power map induces $F^*\mathscr{F} \to (\mathcal{T}_X/\mathscr{F})$ then $F^*\mathscr{F}(-D)$ is ample on a generic curve but $(\mathcal{T}_X/\mathscr{F})(-D)$ is negative so the map is zero.

Theorem 4.0.2. Let (X, H) be a smooth, polarized projective variety over a field of characteristic p > 0. Assume that there is a p-closed foliation $\mathscr{F} \subset \mathcal{T}_X$ such that,

$$(-K_X + (p-1)\det \mathscr{F}) \cdot H^{n-1} > 0$$

Then X contains a rational curve C through a general point of X such that,

$$C \cdot H \le \frac{2pH^n}{(-K_X + (p-1)\det \mathscr{F}) \cdot H^{n-1}}$$

Proof. Let $\pi: X \to Y$ be the quotient by \mathscr{F} . Let $H^{(1)}$ be an ample divisor on $X^{(1)}$ such that $\varphi^*H^{(1)}=pH$. Let $mH^{(1)}$ be very ample and $\Gamma^{(1)}\subset X^{(1)}$ be a general complete intersection curve cut out by $mH^{(1)}$ and $\Gamma^*\subset Y$ and $\Gamma\subset X$ its inversel image with reduced structure. The natural projection $\Gamma\to\Gamma^{(1)}$ is Frobenius and Γ is numerically equivalent to $m^{n-1}H^{n-1}$ as a 1-cycle on X. Let d be the degree of $\pi:\Gamma\to\Gamma^*$ which is either 1 or p. Then we have,

$$d(\Gamma^* \cdot (-K_Y)) = \Gamma \cdot (-\pi^* K_Y) = \Gamma \cdot (-K_X + (p-1)\det \mathscr{F}) = m^{n-1}H^{n-1} \cdot (-K_X + (p-1)\det \mathscr{F})$$

Since this is positive, by Bend-and-Break through a general point of Y there exists a rational curve C' such that,

$$C' \cdot \pi_* H \le 2 \frac{\Gamma^* \cdot \pi_* H}{\Gamma^* \cdot (-K_Y)}$$

Then its image under $Y^{(-1)} \to X$ produces a rational curve C through a general point of X of degree at most,

$$C \cdot H \le \frac{2d(\Gamma \cdot H)}{\Gamma \cdot (-\pi^* K_Y)} = \frac{2pm^{n-1}H^n}{m^{n-1}(-K_X + (p-1)\det\mathscr{F}) \cdot H^{n-1}} = \frac{2pH^n}{(-K_X + (p-1)\det\mathscr{F}) \cdot H^{n-1}}$$

Theorem 4.0.3. Let X be a normal projective variety over an algebraically closed field of characteristic zero. If \mathcal{T}_X is not generically semi-negative then X is uniruled.

Proof. Let $\mathscr{F} \subset \mathcal{T}_X$ be the maximal destabilizer and we assume $\mu(\mathscr{F}) > 0$. Then let D = cH with $\mu(\mathscr{F}) > c > \mu_{\max}(\mathcal{T}_X/\mathscr{F})$ so that $\mathscr{F}(-D)$ is ample and $(\mathcal{T}_X/\mathscr{F})(-D)$ is negative on the generic complete intersection curve. Then applying the previous result we get modulo almost all primes a p-closed foliation $\mathscr{F} \subset \mathcal{T}_X$. Then we apply the previous theorem so for almost all p the reduction of X is uniruled by rational curves C of degree bounded uniformly by,

$$C \cdot H \le \frac{3H^n}{(\det \mathscr{F}) \cdot K_X}$$

because $\mu(\mathscr{F}) > 0$ so the denominator is nonzero. Therefore, because the Hom scheme is finite type X must be uniruled.

Is it true that X uniruled implies Ω_X not generically semipositive?

Proof. Let X be uniruled by $f: \mathbb{P}^1 \times B \dashrightarrow X$ and Ω_X be generically semipositive. Consider a generic complete intersection curve $C \subset X$ and its preimage $C' \subset \mathbb{P}^1 \times B$. Then $g: C' \to C$ is finite. Since $\Omega_X|_C$ is semipositive $g^*\Omega_X|_C$ is semipositive so $\Omega_X|_C \to \Omega_{\mathbb{P}^1 \times B}|_{C'}$ which is generically injective and of the same rank means that $\Omega_{\mathbb{P}^1 \times B}|_{C'}$ must also be semipositive. However, $\Omega_{\mathbb{P}^1 \times B} = \Omega_{\mathbb{P}^1} \boxtimes \Omega_B$ and C' is a generic complete intersection curve so $\Omega_{\mathbb{P}^1}|_{C'}$ is negative giving a contradiction.

5 Supplementary Lemmas

Proposition 5.0.1. Let C be a smooth projective curve over an algebraically closed field of characteristic zero. Let \mathcal{E} be a locally free sheaf of rank r and $\pi : \mathbb{P}(\mathcal{E}) \to C$ the projective bundle. Let $M = c_1(\mathcal{O}_{\mathbb{P}(\mathcal{E})}(1)) - (1/\operatorname{rank} \mathcal{E})\pi^*c_1(\mathcal{E})$. Then the following are equivalent,

- (a) for any finite $f: C' \to C$ then $f^*\mathcal{E}$ is μ -semistable
- (b) M is nef
- (c) Nef(X) = $\mathbb{R}_+ M + \mathbb{R}_+ \pi^* P$ for $P \in N^1(C)$ a generator
- (d) $\overline{NE}(X) = \mathbb{R}_+ M^{r-1} + \mathbb{R}_+ M^{r-2} \pi^* P$
- (e) $\overline{\mathrm{Eff}}(X) = \mathrm{Nef}(X)$
- (f) $\overline{\mathrm{Eff}}(X) \subset \mathrm{Nef}(X)$
- (g) $M \pi^*D$ is not pseduo-effective for any \mathbb{Q} -divisor D with deg D > 0
- (h) $M + \pi^*D$ is ample for some \mathbb{Q} -divisor D with $0 < \deg D < 1/r!$
- (i) $M \pi^*D$ is not pseudo-effective, where D is some \mathbb{Q} -divisor with $0 < \deg D < 1/r!$
- (j) \mathcal{E} is μ -semistable.

Proof. Let $r = \operatorname{rank} \mathcal{E}$ and $X = \mathbb{P}(\mathcal{E})$. By the canonical bundle formula, setting $\xi := c_1(\mathcal{O}_{\mathbb{P}(\mathcal{E})}(1))$ we get

$$\xi^r = \xi^{r-1} \pi^* c_1(\mathcal{E})$$

Therefore,

$$M^{r} = (\xi - 1/r \pi^{*} c_{1}(\mathcal{E}))^{r} = \xi^{r} - \xi^{r-1} \pi^{*} c_{1}(\mathcal{E}) = 0$$

since $(\pi^*c_1(\mathcal{E}))^i = 0$ for i > 1. This implies that,

$$M^{r-2} \cdot (M + \pi^* D) \cdot (M - \pi^* D) = M^r - M^{r-2} (\pi^* D)^2 = 0$$

since the square of any pullback divisor is zero.

Note that $\overline{\mathrm{NE}}(X) \subset N_1(X)$ is the dual cone of $\mathrm{Nef}(X) \subset N^1(X)$ basically by definition. Let $P \in N^1(C)$ be a generator. We know that $N^1(X)$ has a basis M and P.

Suppose $D = aM + b\pi^*P$ is nef. Since $\pi^*P \cdot M^{r-2}$ is a line in a fiber which is an effective curve we see $a = D \cdot (\pi^*P) \cdot M^{r-2} \ge 0$. Furthermore, $D^r = a^{r-1}b \ge 0$ so for a > 0 this implies $b \ge 0$ (which is also clear for a = 0). Since π^*P is nef we see $(b) \iff (c)$.

Lets show that M^{r-1} and $M^{r-2}\pi^*P$ form a basis of $N_1(X)$. Indeed, against the basis $M, \pi^*P \in N^1(X)$ the intersection pairing is given by the matrix

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

which is nondegenerate. Therefore $(c) \iff (d)$ using the intersection pairing.

If M is nef then $M + \epsilon \pi^* D$ by (c) is in the interior of the nef cone hence is ample. If $D = aM + b\pi^* P$ is pseduo-effective then $D \cdot (M + \epsilon \pi^* D)^{r-2} \in \overline{\mathrm{NE}}(X)$ and so is its limit $\epsilon \to 0$ so $D \cdot M^{r-2} = aM^{r-1} + bM^{r-2}\pi^* P \in \overline{\mathrm{NE}}(X)$ hence $a, b \ge 0$ by (d). If a, b > 0 then D is ample and hence effective so we conclude (e).

Lemma 5.0.2. Let $f: C' \to C$ be a separable surjective k-map of smooth complete curves. Let \mathcal{E} be a bundle on C. Then the Harder-Narishiman filtration of $f^*\mathcal{E}$ is the pullback of the Harder-Narishiman filtration of \mathcal{E} .

Proof. Note that $\deg f^*\mathcal{E} = \deg f^* \det \mathcal{E} = (\deg f) \cdot (\deg \mathcal{E})$. By factoring the morphism it suffices to consider the case where f is Galois with galois group G. We need to show that if

$$0 = \mathcal{E}_0 \subseteq \mathcal{E}_1 \subseteq \cdots \subseteq \mathcal{E}_r = \mathcal{E}$$

is the Harder-Narisimhan filatration then $f^*\mathcal{E}_i$ is the Harder-Narisimhan filatration of \mathcal{E} . Since the slopes of the graded parts are still strictly decreasing after applying f^* , it suffices to show that if \mathcal{E} is semistable then $f^*\mathcal{E}$ is semistable and then we apply this to the graded parts (here we use flatness of f to ensure that f^* is exact). Let $\mathcal{F} \subset f^*\mathcal{E}$ be the maximal destabilizer. Consider the G-action on $f^*\mathcal{E}$ then $\sigma_g: f^*\mathcal{E} \to f^*\mathcal{E}$ must preserve \mathcal{F} since it is canonical (there is a unique maximal subbundle containing all subbundles of maximal slope) and hence \mathcal{F} descends to $\mathcal{F}_0 \subset \mathcal{E}$ but $\mu(\mathcal{F}_0) = \deg f \mu(\mathcal{F})$ so since $\mu(\mathcal{F}_0) \leq \mu(\mathcal{E})$ we must have $\mu(\mathcal{F}) = \mu(f^*\mathcal{E})$ and hence $f^*\mathcal{E} = \mathcal{F}$. \square

IS THE FOLLOWING TRUE

Proposition 5.0.3. Let C be a smooth projective curve over an algebraically closed field of characteristic zero. Let \mathcal{E} be a locally free sheaf of rank r and $\pi : \mathbb{P}(\mathcal{E}) \to C$ the projective bundle. Let $M = c_1(\mathcal{O}_{\mathbb{P}(\mathcal{E})}(1))$. Then the following are equivalent,

(a) for any finite $f: C' \to C$ then $f^*\mathcal{E}$ is semipositive (b) M is nef (c) $M - \pi^*D$ is not pseduo-effective for any \mathbb{Q} -divisor D with deg D > 0(d) $M + \pi^*D$ is ample for some \mathbb{Q} -divisor D with $0 < \deg D < 1/r!$ (e) $M - \pi^*D$ is not pseudo-effective, where D is some \mathbb{Q} -divisor with $0 < \deg D < 1/r!$ (f) \mathcal{E} is semipositive. *Proof.* Notice that $M^2 = c_1(\mathcal{E})$ Corollary 5.0.4. Let (X, H) be a normal, projective, polarized scheme over a ring R of characteristic zero, finitely generated over \mathbb{Z} . Let \mathcal{E} be a torsion free sheaf on X. Let $K = \operatorname{Frac}(R)$. If \mathcal{E}_K is H-semistable on X_K then \mathcal{E} is H-semistable on reduction mod p for almost all p. *Proof.* Let $C \sim mH^{n-1}$ be a general complete intersection curve on X of large degree. Then we may assume that $\mathcal{E}|_C$ is μ -semistable on C_K hence using the above notation $M + c\pi^*H$ is ample on $\mathbb{P}(\mathcal{E}_C)_K$ but ampleness is an open condition for projective morphisms so this is satisfied for $\mathcal{E}|_C$ modulo almost every p, which implies H-semistability modulo almost every prime. **Lemma 5.0.5.** Let C be a smooth curve and \mathcal{E} a vector bundle. Then \mathcal{E} is μ -semistable if and

only if $\mathcal{E}(-\mu)$ is semipositive.

Proof. This is almost immediate from the definition. Semistable means that for any $\mathcal{E} \to \mathcal{L}$ we have $\mu(\mathcal{L}) \geq \mu(\mathcal{E})$ and semipositive means $\mu(\mathcal{L}) \geq 0$ so shifting by $-\mu(\mathcal{E})$ these are the same condition.

Corollary 5.0.6. Over a field of characteristic zero, if \mathcal{E} is H-semistable then $\mathcal{E}^{\otimes n}$ is H-semistable. Hence the direct summands $S^m \mathcal{E}$ and $\Lambda^m \mathcal{E}$ are H-semistable. More generally, if $\mathcal{E}_1, \mathcal{E}_2$ are Hsemistable then $\mathcal{E}_1 \otimes \mathcal{E}_2$ are H-semistable.

Proof. We can reduce to a complete intersection curve of sufficiently divisible degree. Suppose $\mathcal{E}_1, \mathcal{E}_2$ are μ -semistable this means that $\mathcal{O}_{\mathbb{P}(\mathcal{E}_i)}(1)$ are nef for i=1,2.

Corollary 5.0.7.

Proof. We can reduce to a complete intersection curve of sufficiently divisible degree. Then we just need to show that if $\mathcal{E}_1, \mathcal{E}_2$ are semipositive then $\mathcal{E}_1 \otimes \mathcal{E}_2$ is semipositive. Consider $\mathcal{E}_1 \otimes \mathcal{E}_2 \twoheadrightarrow$ \mathscr{F} where \mathscr{F} is a vector bundle. I ONLY SEE HOW TO DO THIS IF ONE IS GLOBALLY GENERATED?

Definition 5.0.8. Let X be a projective variety and \mathscr{F} a torsion-free coherent sheaf. We say that \mathscr{F} is generically H-semipositive if $\mu_{\min}(\mathscr{F}) \geq 0$.

Remark. This is equivalent to "generically nef". WHY?