ECS 171: Machine Learning

Summer 2023
Edwin Solares
easolares@ucdavis.edu
Data Preprocessing

Object Classification using CNN's

Data Preprocessing

Goal: Using transforms, scale data to similar values

Scaling Data

- 1. Normalizing Scaling from 0 to 1
- 2. Standardization Scaling data so mean = 0 and standard deviation = 1
 - a. Assumes data is already normalized
- 3. Testing for normality Shapiro-Wilk Test
 - a. Others include Q-Qplot (quantile plots), Histogram plot, Kolmogorov-Smirnov Test

Transform data - Non Constants Transformations

- Log Transformation
- 2. Square Root Transformation
- 3. Cube Root Transformation

Data Preprocessing

Goal: Using transforms, scale data to similar values

Encoding

- 1. Replace categories with integer values
- 2. Create new features based on k # of categories containing binar values

Imputing Data

- Dropping null data
- 2. Replacing null values with mean, median, most frequent values, etc.
- 3. More options discussed after Midterm

Normalizing Data

$$X' = \frac{X - X_{min}}{X_{max} - X_{min}}$$

Used when data is not normally distributed

Benefits:

- Faster processing for GD methods
- Allows you to view actual importance to predicted values using weights

Implementation:

MinMax Normalization

Standardizing Data

$$z = \frac{x - \mu}{\sigma}$$

Used when data is normalized

u= Mean

Benefits:

 $\sigma=$ Standard Deviation

- Much faster processing for GD methods
- Allows you to view actual importance to predicted values using weights

Implementation:

Z-score standardization

Encoding Data: Value Replacement

Used for transforming categorical data into integer classes

Take k number of categories and assign integer values from 0 to k-1

Size		Size
Small		0
Medium		1
Large		2

Encoding Data: Feature Expansion

Used for transforming categorical data into integer classes

- Take k number of categories and assign k new feature vectors
- New feature vectors contain binary values: 0 or 1

Size
Small
Medium
Large

Small	Medium	Large
1	0	0
0	1	0
0	0	1

One-Hot Encoding

Imputing Data: Dropping Null Data

- Used when sufficient data is available, and most data is complete
- If null data is randomized, then less bias than other methods

Imputing Data: Filling Null Values

- Used when sufficient data is NOT available, and most data is INCOMPLETE
- Depending on how null data is distributed, different methods may be used to reduce bias. I.e. Mean, Median, Random, Most Frequent

Example of using Mean value

Jupyter Notebooks Time!