

Further topics

Lecturer: Seungmok Song

Contents

1. Model predictive control

Prediction

- Main idea
 - How to win a race? : Optimization

Objective:

■ Minimize lap time

Constraints:

- Avoid other cars
- Stay on road
- Don't skid
- Limited acceleration

Intuitive approach:

- Look forward and plan path based on
 - Road conditions
 - Upcoming corners
 - Abilities of car
 - etc...

- Main idea
 - How to win a race? : Optimization

Minimize (lap time)
while avoid other cars
stay on road
...

Solve optimization problem to compute minimum-time path

- Main idea
 - How to win a race? : Optimization

Minimize (lap time)
while avoid other cars
stay on road
...

- Solve optimization problem to compute minimum-time path
- What to do if something unexpected happens?
 - We didn't see a car around the corner!
 - Must introduce *feedback*

• Main idea

- How to predict?
 - Model of a system
 - 2D kinematic bicycle model (rear wheel reference point)
 - State: x, y, v, ψ, δ
 - Input: $a, \dot{\delta}$

$$x_{k+1} = Ax_k + Bu_k$$

$$y_k = Cx_k$$

$$x_{k+2} = A(Ax_k + B\mathbf{u_k}) + B\mathbf{u_{k+1}}$$

$$y_{k+1} = C(Ax_k + Bu_k)$$

:

Minimize(J)

$$J = \sum (\Delta y)^2 = \sum (y_{ref} - y_k)^2$$

- Optimization problem
 - How to optimize

Variables: u_k , u_{k+1} , u_{k+2} , $\cdots u_{k+l}$

- $f: \mathbb{R}^n \to \mathbb{R}$ is the **objective function** to be minimized over the *n*-variable vector x,
- $g_i(x) \le 0$ are called **inequality constraints**
- $h_i(x) = 0$ are called **equality constraints**, and
- ullet $m \ge 0$ and $p \ge 0$.

• MPC vs PID

• Example

- Blog: https://automatedcars.space/home/2018/11/28/differential-gps-for-mpc-based-path-following
- Video: https://youtu.be/WT43DCK7sf8
- Code: https://github.com/MPC-Berkeley/genesis_path_follower (ROS, Python)

• Example

- Video: https://youtu.be/32v-e3dptjo
- Paper: "Robust Sampling Based Model Predictive Control with Sparse Objective Information" (RSS 2 018)
- http://www.roboticsproceedings.org/rss14/p42.pdf

Thank You

