A Systematic Analysis of Second-Order Optimization in **Large Scale Neural Network Training**

Gabe Montague Linjian Ma Jiayu Ye

EECS Department, University of California at Berkeley {linjian, gabe_montague, yejiayu}@berkeley.edu

Second-order acceleration for the training of deep neural networks (DNNs) may offer the promise of saved time, but caution and care are required to avoid pitfalls.

Is Second Order

BETTER OR WORSE

- Modern development of AI technology is limited by the time and expense required to train DNNs *
- Training involves finding the **global minimum** of an objective function (landscape)
- In recent years, optimization researchers have proposed that **second-order methods** may help * to decrease training times.

First-Order Methods

$$f(x) \approx f(x_0) + \nabla f(x_0)^{\top} (x - x_0)$$

Approximate f(x) as hyperplane

Second-Order Methods

$$f(x) \approx f(x_0) + \nabla f(x_0)^{\top} (x - x_0) + \frac{1}{2} (x - x_0) \mathbf{H}(x_0) (x - x_0)$$

Approximate f(x) as quadric hypersurface

Method Investigated	Order	Success Cases	Scalable to Industry Level?
Stochastic Gradient Descent (SGD)	First	Works with almost every problem	Yes; high data-efficiency
Kronecker-factored Approximate Curvature (K-FAC)	Second	Academic datasets under certain configurations	Not as much; lower data-efficiency
Trust Region Conjugate Gradient (TRCG)	Second	Academic datasets under certain configurations	No; struggles with local minima
Stochastic TRCG (STRCG)	Second	Certain academic datasets	Unlikely

A detailed evaluation of large-batch K-FAC is presented in our work: Ma et al. "Inefficiency of K-FAC for Large Batch Size Training." arXiv preprint arXiv:1903.06237