Measure Theory

Felix Chen

Contents

0.1	Expectations	2
0.2	L_p spaces	:
	Convergence in L_p space	
	Integrals in probability space	

Theorem 0.0.1 (Fauto's Lemma)

Let $\{f_n\}$ be non-negative measurable functions almost everywhere, then

$$\int_X \liminf_{n \to \infty} f_n \, \mathrm{d}\mu \le \liminf_{n \to \infty} \int_X f_n \, \mathrm{d}\mu.$$

Proof. Let $g_k := \inf_{n \geq k} f_n \uparrow g := \liminf_{n \to \infty} f_n$. By monotone convergence theorem,

$$\int_X g \,\mathrm{d}\mu = \lim_{k \to \infty} \int_X g_k \,\mathrm{d}\mu \le \lim_{k \to \infty} \inf_{n \ge k} \int_X f_n \,\mathrm{d}\mu = \liminf_{n \to \infty} \int_X f_n \,\mathrm{d}\mu.$$

Corollary 0.0.2

If there exists integrable g s.t. $f_n \geq g$, then $\int_X \liminf_{n \to \infty} f_n$ exists and

$$\int_X \liminf_{n \to \infty} f_n \, \mathrm{d}\mu \le \liminf_{n \to \infty} \int_X f_n \, \mathrm{d}\mu.$$

Theorem 0.0.3 (Lebesgue)

Let $f_n \to f, a.e.$ or $f_n \xrightarrow{\mu} f$, if there exists non-negative integrable function g s.t. $|f_n| \le g, \forall n$, then

$$\lim_{n \to \infty} \int_X f_n \, \mathrm{d}\mu = \int_X f \, \mathrm{d}\mu.$$

Proof. When $f_n \to f, a.e.$, by Fatou's lemma,

$$\int_X f \, \mathrm{d}\mu = \int_X \lim_{n \to \infty} f_n \, \mathrm{d}\mu \le \liminf_{n \to \infty} \int_X f_n \, \mathrm{d}\mu.$$

Since $|f_n| \leq g$,

$$\int_X f \, \mathrm{d}\mu = \int_X \lim_{n \to \infty} f_n \, \mathrm{d}\mu \ge \limsup_{n \to \infty} \int_X f_n \, \mathrm{d}\mu,$$

which gives the desired.

When $f_n \xrightarrow{\mu} f$, for all subsequence $\{n_k\}$, exists a subsequence $\{n'\}$ s.t. $f_{n'} \to f, a.e.$. Thus $\int_X f_{n'} d\mu \to \int_X f d\mu$, hence $\int_X f_n d\mu \to \int_X f d\mu$. (Why?)

Corollary 0.0.4

Let f_n be random variable on $(\Omega_n, \mathscr{F}_n, P_n)$, $f_n \stackrel{d}{\to} f$, then we have

$$\lim_{n \to \infty} \int_{X_n} f_n \, \mathrm{d}P_n = \int_X f \, \mathrm{d}P.$$

Proposition 0.0.5 (Transformation formula of integrals)

Let $g:(X,\mathcal{F},\mu)\to (Y,\mathcal{S})$ be a measurable map. For all measurable f on (Y,\mathcal{S}) , then

$$\int_{Y} f \, \mathrm{d}\mu \circ g^{-1} = \int_{X} f \circ g \, \mathrm{d}\mu$$

if one of them exists.

Proof. By the typical method, we only need to prove for indicator function f.

Remark 0.0.6 — μ and $\mu \circ g^{-1}$ are the same measure in different spaces.

§0.1 Expectations

Let ξ be a r.v. on (Ω, \mathcal{F}, P) ,

Definition 0.1.1 (Expectations). If $\int_{\Omega} \xi \, dP$ exists, then we call it the **expectation** of ξ , denoted by $E(\xi)$ or $E\xi$.

Consider the distribution $\mu_{\xi} = P \circ \xi^{-1}$, $F_{\xi}(x) = P(\xi \leq x)$. Let $f = \mathrm{id} : \mathbb{R} \to \mathbb{R}$, then $E(\xi) = E(\mu_{\xi})$:

$$\int_{\mathbb{R}} x \, \mathrm{d} F_\xi(x) = \int_{\mathbb{R}} f \, \mathrm{d} \mu_\xi = \int_{\mathbb{R}} f \, \mathrm{d} P \circ \xi^{-1} = \int_{\mathbb{R}} f \circ \xi \, \mathrm{d} P = \int_{\Omega} \xi \, \mathrm{d} P = E(\xi).$$

Let f be a measurable function on $(\mathbb{R}, \mathscr{B}_{\mathbb{R}})$, then $f(\xi)$ is a measurable function on (Ω, \mathscr{F}) , and

$$Ef(\xi) = \int_{\mathbb{R}} f \, \mathrm{d}F_{\xi}.$$

Let $\eta = f \circ \xi$, by the transformation formula,

$$Ef(\xi) = \int_{\Omega} \eta(\omega) \, dP(\omega)$$

$$= \int_{\mathbb{R}} y \, dP \circ \eta^{-1}(y) = \int_{\mathbb{R}} y \, d\mu_{\eta}(y) = \int_{\mathbb{R}} y \, d\mu_{\xi} \circ f^{-1}(y)$$

$$= \int_{\mathbb{R}} f(x) \, d\mu_{\xi}(x) = \int_{\mathbb{R}} f \, dF_{\xi}.$$

Example 0.1.2

Possion distribution: $P(\xi = i) = \frac{\lambda^i}{i!} e^{-\lambda} =: p_i$. Its expectation is

$$\int_{\mathbb{R}} x \, \mathrm{d}\mu = \int_{\mathbb{N}} x \, \mathrm{d}\mu = \sum_{i=0}^{\infty} i p_i.$$

For continuous distribution, the density function p is actually a non-negative, integrable function, and $\int_{\mathbb{R}} p(x) dx = 1$. So $\mu(B) = \int_{B} p(x) dx$ is a probability measure.

Since $\mu_{\xi}|_{\mathscr{P}_{\mathbb{R}}} = \mu|_{\mathscr{P}_{\mathbb{R}}}$, $\mu_{\xi} = \mu$. By typical method, we can prove

$$Ef(\xi) = \int_{\mathbb{R}} f \, \mathrm{d}\mu_{\xi} = \int_{\mathbb{R}} f(x) p(x) \, \mathrm{d}x.$$

§0.2 L_p spaces

Definition 0.2.1 (L_p spaces). Let $1 \le p < \infty$. Define

$$||f||_p := \left(\int_X |f|^p\right)^{\frac{1}{p}}, \quad L_p(X, \mathscr{F}, \mu) := \{f : ||f||_p < \infty\}.$$

Sometimes we'll simplify the notation as $L_p(\mu), L_p(\mathscr{F})$ or just L_p .

- $f \in L_1$ iff f integrable, let $||f|| := ||f||_1$.
- $f \in L_p \iff f^p \in L_1 \implies f$ is finite a.e..

In fact, L_p is a normed vector space under the norm $\|\cdot\|_p$:

Lemma 0.2.2

Let $1 \le p < \infty$, let $C_p = 2^{p-1}$, then

$$|a+b|^p \le C_p(|a|^p + |b|^p), \quad a, b \in \mathbb{R}.$$

Proof. It's a single-variable inequality, it's obvious by taking the derivative.

Thus by taking integral on both sides,

$$\int_X |f + g|^p d\mu \le C_p \left(\int_X |f|^p d\mu + \int_X |g|^p d\mu \right).$$

So L_p space is a vector space.

Lemma 0.2.3 (Holder's inequality)

Let $1 < p, q < \infty$, and $\frac{1}{p} + \frac{1}{q} = 1$.

 $||fg|| \le ||f||_p ||g||_q$, $\forall f \in L_p, g$ measurable.

Proof. WLOG $||f||_p > 0$, $0 < ||g||_q < \infty$. Let

$$a = \left(\frac{|f|}{\|f\|_p}\right)^p = \frac{|f|^p}{\int_X |f|^p d\mu}, \quad b = \left(\frac{|g|}{\|g\|_q}\right)^q = \frac{|g|^q}{\int_X |g|^q d\mu}.$$

By weighted AM-GM,

$$\int_{X} \frac{|fg|}{\|f\|_{p} \|g\|_{q}} d\mu \le \int_{X} \left(\frac{a}{p} + \frac{b}{q}\right) d\mu = \frac{1}{p} + \frac{1}{q} = 1.$$

The equality holds iff a = b, i.e. $\exists \alpha, \beta \geq 0$ not all zero s.t. $\alpha |f|^p = \beta |g|^q$, a.e..

Theorem 0.2.4 (Minkowski's inequality)

Let $1 \leq p < \infty$, then

$$||f + g||_p \le ||f||_p + ||g||_p, \quad \forall f, g \in L_p.$$

The equality holds iff (1): $p = 1, fg \ge 0$; (2) $p > 1, \exists \alpha, \beta \ge 0, s.t.\alpha f = \beta g, a.e.$.

Proof. When p = 1, it follows by $|f + g| \le |f| + |g|$.

When $p \ge 1$, let $q = \frac{p}{p-1}$, by Holder's inequality,

$$|f+g|^p \le |f||f+g|^{p-1} + |g||f+g|^{p-1},$$

$$\implies ||f+g||_p^p \le (||f||_p + ||g||_p) \cdot ||f+g|^{p-1}||_q.$$

Note that

$$|||f+g|^{p-1}||_q = \left(\int_X |f+g|^p d\mu\right)^{\frac{1}{q}} = ||f+g||_p^{\frac{p}{q}}.$$

Since $f + g \in L_p$, we can divide both sides by $||f + g||_p^{\frac{p}{q}}$ to get the result.

In L_p space, we view two functions f = g, a.e. as the same function, i.e. the original function space modding the equivalence relation out.

Hence $(L_p/\sim, \|\cdot\|_p)$ is a normed vector space.

When $p = \infty$, define

$$||f||_{\infty} := \inf\{a \in \mathbb{R} : \mu(|f| > a) = 0\}, \quad L_{\infty} := \{f : ||f||_{\infty} < \infty\}.$$

We call the functions in L_{∞} essentially bounded.

Let $\mu(X) < \infty$, then $f \in L_{\infty} \implies f \in L_p$, and $\lim_{p \to \infty} ||f||_p = ||f||_{\infty}$: For all $0 < a < ||f||_{\infty}$,

$$a^p \mu(|f| > a) \le \int_X |f|^p \mathbf{I}_{|f| > a} \, \mathrm{d}\mu \le \int_X |f|^p \, \mathrm{d}\mu \le ||f||_\infty^p \mu(X),$$

So taking the exponent $\frac{1}{n}$,

$$a \leftarrow a\mu(|f| > a)^{\frac{1}{p}} \le ||f||_p \le ||f||_{\infty}$$

But when $\mu(X) = \infty$, let $f \equiv 1$, then $f \in L_{\infty}$ but $f \notin L_p$.

Theorem 0.2.5

Let $f, g \in L_{\infty}$,

$$||fg|| \le ||f|| ||g||_{\infty},$$

 $||f + g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}.$

Proof.

$$\int_X |fg| \,\mathrm{d}\mu \le \int_X |f| \|g\|_\infty \,\mathrm{d}\mu = \|f\| \|g\|_\infty.$$

Since $|f(x) + g(x)| \le |f(x)| + |g(x)| \le ||f||_{\infty} + ||g||_{\infty}$, a.e., we get the second inequality.

Similarly we get $(L_{\infty}, \|\cdot\|_{\infty})$ is a normed vector space.

The norm can deduce a distance:

$$\rho(f,g) := \|f - g\|$$

Theorem 0.2.6 (L_p space is complete)

Let $1 \leq p \leq \infty$. If $\{f_n\} \subset L_p$ satisfying $\lim_{n,m\to\infty} ||f_n - f_m||_p = 0$, then there exist $f \in L_p$ s.t. $\lim_{n\to\infty} ||f - f_n||_p = 0$.

Proof. Take $n_1 < n_2 < \cdots$ such that

$$||f_m - f_n||_p \le \frac{1}{2^k}, \quad \forall n, m \ge n_k.$$

Let $g = \uparrow \lim_{k \to \infty} g_k$, where

$$g_k := |f_{n_1}| + \sum_{i=1}^k |f_{n_{i+1}} - f_{n_i}| \in L_p, \quad g_k \ge 0.$$

Since

$$||g_k||_p \le ||f_{n_1}||_p + \sum_{i=1}^k ||f_{n_{i+1}} - f_{n_i}||_p \le ||f_{n_1}||_p + 1.$$

$$\implies ||g||_p = \uparrow \lim_{k \to \infty} ||g_k||_p \le ||f_{n_1}||_p + 1.$$

Here we use the monotone convergence theorem. We can check the above also holds for $p = \infty$. Therefore $g \in L_p \implies g < \infty, a.e.$. We have

$$f := f_{n_1} + \sum_{i=1}^{\infty} (f_{n_{i+1}} - f_{n_i}) = \lim_{k \to \infty} f_k, a.e.$$

the series is absolutely convergent, so f exists a.e. and $|f| \leq g, a.e.$

Lastly we can check: when $p = \infty$,

$$||f_n - f||_{\infty} \le ||f_n - f_{n_k}||_{\infty} + ||f_{n_k} - f||_{\infty}$$

where the both term approach to 0 as $n \to \infty$.

When $p < \infty$, by Fatou's lemma,

$$||f_n - f||_p^p = \int_X |f_n - f|^p d\mu = \int_X \lim_{k \to \infty} |f_n - f_{n_k}|^p d\mu \le \liminf_{k \to \infty} \int_X |f_n - f_{n_k}|^p d\mu \le \varepsilon.$$

Remark 0.2.7 — Using the same technique we can prove that if f_n is Cauchy in measure, then f_n converge to some f in measure:

Let
$$A_i = \{|f_{n_{i+1}} - f_{n_i}| > 2^{-i}\}$$
 s.t. $\mu(A_i) < 2^{-i}$.
Define $f = f_{n_1} + \sum_{i \ge 1} (f_{n_{i+1}} - f_{n_i})$ on the set $\bigcup_{k \ge 1} \bigcap_{i \ge k} A_i^c$.

This theorem implies that $(L_p, \|\cdot\|_p)$ is a Banach space. So we can try to define an *inner product* on L_p space:

$$\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2).$$

We can check $\langle \cdot, \cdot \rangle$ is bilinear only if p = 2, so L_2 is actually a Hilbert space.

When 0 , let

$$||f||_p := \int_X |f|^p d\mu, \quad L_p = \{f : ||f||_p < \infty\}.$$

Lemma 0.2.8

Let $0 , <math>C_p = 1$, then

$$|a+b|^p \le C_p(|a|^p + |b|^p), \quad \forall a, b \in \mathbb{R}.$$

So L_p is a vector space.

Theorem 0.2.9 (Minkowski)

Let 0 then

$$||f + g||_p \le ||f||_p + ||g||_p.$$

Remark 0.2.10 — When $||f||_p = (\int_X |f|^p d\mu)^{\frac{1}{p}}$, 0 . then it won't satisfy Minkowski's inequality.

Thus L_p is only a metric space but not a normed vector space. Using the same method we can prove L_p is a complete metric space.

§0.3 Convergence in L_p space

Definition 0.3.1. Let $0 , <math>f, f_1, f_2, \dots \in L_p$. When $||f_n - f||_p \to 0$, then we write $f_n \xrightarrow{L_p} f$, called **average converge of order** p.

Theorem 0.3.2

Let 0 ,

- If $f_n \xrightarrow{L_p} f$, then $f_n \xrightarrow{\mu} f$, and $||f_n||_p \to ||f||_p$.
- If $f_n \to f$, a.e. or in measure, then $||f_n||_p \to ||f||_p \iff f_n \xrightarrow{L_p} f$.

Proof. When $f_n \xrightarrow{L_p} f$, let $A := \{|f_n - f| > \varepsilon\}$,

$$\mu(A) \le \frac{1}{\varepsilon^p} \int_{V} |f_n - f|^p \mathbf{I}_A \, \mathrm{d}\mu \le \frac{1}{\varepsilon^p} ||f_n - f||_p^p \to 0.$$

and obviously $||f_n||_p \to ||f||_p$

On the other hand, when $f_n \to f$, a.e. and $||f_n||_p \to ||f||_p$, From $|a+b|^p \le C_p(|a|^p + |b|^p)$,

$$g_n := C_p(|f_n|^p + |f|^p) - |f_n - f|^p \ge 0.$$

 $g_n \to 2C_p|f|^p$, a.e., so

$$\int_X 2C_p |f|^p d\mu \le \liminf_{n \to \infty} \int_X g_n d\mu = 2C_p \int_X |f|^p d\mu - \limsup_{n \to \infty} \int_X |f_n - f|^p d\mu.$$

When $f_n \to f$ in measure, for any subsequence there exist its subsequence $f_{n'} \to f, a.e.$, so $||f_{n'} - f||_p \to 0$, hence $||f_n - f||_p \to 0$.

Remark 0.3.3 — This theorem implies for any L_p function f, we can take simple functions $f_1, f_2, \dots \to f$ and $|f_n| \uparrow |f|$, so $f_n \xrightarrow{L_p} f$.

Definition 0.3.4 (Weak convergence). Let $1 , and <math>f_1, f_2 \cdots \in L_p$. If

$$\lim_{n \to \infty} \int_X f_n g \, \mathrm{d}\mu = \int_X f g \, \mathrm{d}\mu, \quad \forall g \in L_q.$$

Then we say f_n weak convergent to f, denoted by $f_n \xrightarrow{(w)L_p} f$.

When p = 1 and (X, \mathcal{F}, μ) is a σ -finite measure space, and the condition also holds, we say $\{f_n\}$ weak convergent to f in L_1 .

Corollary 0.3.5

Let $1 \leq p < \infty$, then

$$f_n \xrightarrow{L_p} f \implies f_n \xrightarrow{(w)L_p} f.$$

Proof. By Holder's inequality,

$$\left| \int_X (f_n - f) g \, \mathrm{d}\mu \right| \le \|f_n - f\|_p \|g\|_q \to 0.$$

If $\sup_{t\in T} ||f_t||_p =: M < \infty$, then we say $\{f_t, t\in T\}$ is **bounded in** L_p .

Theorem 0.3.6

Let $1 , <math>\{f_n\} \subset L_p$, there exists M s.t. $||f_n||_p \leq M$, $\forall n$. If $f_n \to f$, a.e. or in measure, then $f \in L_p$ and $f_n \to f$ weakly.

Proof. First $||f||_p \leq M$:

$$\int_X |f|^p d\mu \le \liminf_{n \to \infty} \int_X |f_n|^p d\mu \le M^p.$$

Next we prove the weak convergence: For all $g \in L_q$, recall the bounded convergence theorem in probability, we can view M as a bound of f_n , and $\|g\|_q$ as P.

Let $B = \{|f_n - f| \le \hat{\varepsilon}\}$, consider

$$a := \int_{B} (f_n - f)g \,\mathrm{d}\mu, \quad b := \int_{B^c} (f_n - f)g \,\mathrm{d}\mu.$$

Note that

$$|a| \le \hat{\varepsilon} \int_X |g| \,\mathrm{d}\mu.$$

But $\int_X |g| d\mu$ might be infinity, so let $A_k := \{\frac{1}{k} \le |g|^q \le k\}$, we have

$$\int_{A_k} |g| \, \mathrm{d}\mu \le k^{\frac{1}{q}} \mu(A_k) < \infty.$$

 $(\frac{1}{k}\mu(A_k) < \int_{A_k} |g|^q d\mu < \infty \text{ since } g \in L_q).$ Now we can proceed:

$$a := \int_{A \setminus B} (f_n - f) g \, \mathrm{d}\mu, \quad b := \int A_k^c \cup B^c(f_n - f) g \, \mathrm{d}\mu.$$

Now $|a| \le \hat{\varepsilon} k^{\frac{1}{q}} \mu(A_k) < \varepsilon$.

$$\left| \int_{X} (f_n - f) g \mathbf{I}_{A_k^c \cup B^c} \, d\mu \right| \le \|f_n - f\|_p \|g \mathbf{I}_{A_k^c \cup B^c}\|_q \le 2M \left(\int_{A_k^c} |g|^q \, d\mu + \int_{A_k \setminus B} |g|^q \, d\mu \right).$$

By LDC(Dominated convergence), $A_k^c \to \{g=0,\infty\}$, so $\int_{A_k^c} |g|^q d\mu < \varepsilon$.

Since $\mu(A_k) < \infty$, $f_n \to f, a.e. \implies f_n \xrightarrow{\mu} f$. By the continuity of integrals, $\mu(A_k \setminus B) \le \mu(B^c) < \delta \implies \int_{A_k \setminus B} |g|^q d\mu < \varepsilon$.

Now we can conclude: $\forall \varepsilon > 0$, first choose k large, then $\hat{\varepsilon}$ small, we get

$$\int_X (f_n - f)g \, \mathrm{d}\mu \le \varepsilon + 4M\varepsilon \implies f_n \xrightarrow{(w)L_p} f.$$

Remark 0.3.7 — The proof is a little complicated, we divide the entire integral to three part, and estimate them respectively.

When p = 1, f_n bounded in L_p cannot imply weak convergence.

Example 0.3.8

Let $X = \mathbb{N}$, $\mu(\{k\}) = 1, \forall k$, clearly it's σ -finite. Let $f_n(k) = \mathbf{I}_{k=n}$, then $||f_n|| = \sum_k \mu(k)|f_n(k)| = 1$, and $f_n \to 0$, a.e.. But let $g = 1 \in L_{\infty}$, $\int_X (f_n - f)g \, \mathrm{d}\mu = 1 \not\to 0$.

Proposition 0.3.9

Let $f_1, f_2, \dots \in L_1$, then:

$$||f_n|| \to ||f|| \& f_n \to f, a.e. \implies f_n \xrightarrow{L_1} f \implies f_n \xrightarrow{(w)L_1} f \implies \int_A f_n \, \mathrm{d}\mu \to \int_A f \, \mathrm{d}\mu, \forall A.$$

Proof. For the last part let $g = \mathbf{I}_A$, the rest is trivial.

§0.4 Integrals in probability space

We can also consider L_p space in probability space (Ω, \mathscr{F}, P) .

Theorem 0.4.1

Let $0 < s < t < \infty$. Then $L_t \subset L_s$. If $s \ge 1$, we have $||f||_s \le ||f||_t$, with equality f constant.

Proof. When $f \in L_t$, let $p = \frac{t}{s}$, $q = \frac{t}{t-s}$.

$$\int_{\Omega} |f|^{s} \cdot 1 \, dP \le |||f|^{s}||_{p} ||1||_{q} = (E|f|^{sp})^{\frac{1}{p}} = (E|f|^{t})^{\frac{1}{p}}.$$

So $f \in L_s \implies L_t \subset L_s$. When $s \ge 1$,

$$||f||_s^s \le (||f||_t)^{\frac{t}{p}} = ||f||_t^s \implies ||f||_s \le ||f||_t.$$

From this we know $L_{\infty} \subset L_p$, and $||f||_p \uparrow ||f||_{\infty}$.

Remark 0.4.2 — This theorem does not hold for general space. Let $X = \mathbb{N}$, $\mu(\{n\}) = 1$, $f(n) = \frac{1}{n}$, then $f \in L_2 \setminus L_1$.

The expectation Ef^k is called k-order moment of random variable f.

Definition 0.4.3 (Uniformly integrable). Let $\{f_t, t \in T\}$ be r.v.'s, if $\forall \varepsilon > 0, \exists \lambda > 0$, such that

$$E|f_t|\mathbf{I}_{\{|f_t|>\lambda\}}<\varepsilon, \quad \forall t\in T,$$

then we say $\{f_t, t \in T\}$ uniformly integrable.

If $\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t } \forall A \in \mathscr{F},$

$$P(A) < \delta \implies E|f_t|\mathbf{I}_A < \varepsilon, \forall t \in T,$$

we say $\{f_t\}$ is uniformly absolutely continuous, which is abbreviated as absolutely continuous.

Theorem 0.4.4

Uniformly integrable \iff absolute continuity and bounded in L_1 .

CONTENTS Measure Theory

Proof. Firstly when $\{f_t\}$ uniformly integrable, $\forall A \in \mathscr{F}, \lambda > 0$,

$$E|f_t|\mathbf{I}_A = E|f_t|\mathbf{I}_{A\cap\{|f_t| \le \lambda\}} + E|f_t|\mathbf{I}_{A\cap\{|f_t| > \lambda\}}$$

$$\leq \lambda P(A) + E|f_t|\mathbf{I}_{\{|f_t| > \lambda\}}$$

Let A = X we know $E|f_t| \le \lambda + \frac{\varepsilon}{2}, \forall t \in T$. Now let $\delta = \frac{\varepsilon}{2\lambda}$ we get AC property. On the other hand,

$$\lambda P(|f_t| > \lambda) \le E|f_t|\mathbf{I}_{\{|f_t| > \lambda\}} \le E|f_t| \le M, \forall t \in T.$$

So when $\lambda > \frac{M}{\delta}$, $P(|f_t| > \lambda) < \delta$, hence $E|f_t|\mathbf{I}_{\{|f_t| > \lambda\}} \le \varepsilon$, $\forall t \in T$.

Theorem 0.4.5

Let $0 , and <math>f_n \to f$ in probability. TFAE:

- (1) $\{|f_n|^p\}$ uniformly integrable; (2) $f_n \xrightarrow{L_p} f$; (3) $f \in L_p$ and $||f_n||_p \to ||f||_p$.

Proof. (1) \implies (2): Take subsequence $f_{n'} \to f, a.s.$,

$$E|f|^p \le \liminf_{n \to \infty} E|f_n|^p < \infty,$$

since $\{|f_n|^p\}$ is bounded in L_1 . This means $f \in L_p$.

Let $A_n = \{|f_n - f| > \varepsilon\}$, now we compute

$$E|f_n - f|^p \le \varepsilon^p + E|f_n - f|^p \mathbf{I}_{A_n} \le \varepsilon^p + C_p E|f_n|^p \mathbf{I}_{A_n} + C_p E|f|^p \mathbf{I}_{A_n}$$

Since $P(A_n) \to 0$ and $\{|f_n|^p\}$ absolutely continuous (also note $E|f|^p \mathbf{I}_{A_n} \to 0$), RHS converges to 0. Therefore $f_n \xrightarrow{L_p} f$.

As for $(3) \implies (1)$, we'll prove a lemma:

Lemma 0.4.6

If $f_n \xrightarrow{P} f$, then $\forall 0 ,$

$$|f_n|^p \mathbf{I}_{\{|f_n| \le \lambda\}} \xrightarrow{P} |f|^p \mathbf{I}_{\{|f| \le \lambda\}}, \quad \forall \lambda \in C(F_{|f|}).$$

By lemma and bounded convergence theorem, their expectation also converges. Note that $||f_n||_p \to ||f||_p$, so

$$E|f_n|^p \mathbf{I}_{\{|f_n|>\lambda\}} \to E|f|^p \mathbf{I}_{\{|f|>\lambda\}},$$

thus $\forall \varepsilon > 0, \exists \lambda_0 \in C(F_{|f|})$, s.t. $E|f|^p \mathbf{I}_{\{|f| > \lambda_0\}}$ TODO!

Proof of the lemma. Since $|f_n| \to |f|$ in probability, WLOG $f_n, f \ge 0$. Define

$$A_n := \{ f_n \le \lambda \} \Delta \{ f \le \lambda \} \cap \{ |f_n^p - f^p| < \varepsilon \}$$

$$B_n := \{ f_n, f \le \lambda, |f_n^p - f^p| < \varepsilon \}.$$

Since x^p is uniformly continuous in $[0,\lambda]$, $B_n \subset \{|f_n - f| > \kappa_{\varepsilon,\lambda}\}$, $P(B_n) \to 0$. Also $P(A_n) \to 0$ as

$$A_n \subset \{\lambda - \delta < f \le \lambda + \delta\} \cup \{|f_n - f| \ge \delta\},\$$

and $F_{|f|}$ continuous at λ .