Evidencia 2: Documento de diseño lógico

Definición de la arquitectura seleccionada

Para este proyecto se selecciona una arquitectura Cliente–Servidor, ya que permite centralizar la base de datos en un servidor único y conectar múltiples clientes desde distintos equipos. Esta arquitectura es ideal para garantizar seguridad, facilidad de mantenimiento y acceso compartido a la información.

Ventajas:

Acceso concurrente controlado

Centralización de la información

Escalabilidad moderada

Copias de seguridad más fáciles de gestionar

Componentes fundamentales explicados

Componente	Descripción
Cliente	Aplicación instalada en los equipos de los usuarios (PCs o móviles) que envía peticiones al servidor.
Servidor	Equipo central que aloja la base de datos y procesa todas las solicitudes.
Base de datos	Sistema gestor (ej. MySQL, SQL Server) que almacena la información estructurada.
Red	Conexión LAN/Wi-Fi que permite la comunicación entre clientes y servidor.

Justificación en relación con los requisitos del sistema

Se requiere acceso simultáneo desde varias estaciones.

Se necesita un punto centralizado de almacenamiento de datos.

La seguridad y control de accesos son importantes.

La arquitectura Cliente-Servidor es la más adecuada para garantizar la integridad de la información.

Diagramas ER o UML según el caso

Ejemplo: Diagrama ER (Sistema Hospitalario)Entidades principales:

Pacientes(ID_Paciente, Nombre, DNI, Dirección, Teléfono)

Doctores(ID Doctor, Nombre, Especialidad, Teléfono)

Citas(ID_Cita, Fecha, ID_Paciente, ID_Doctor)

Consultas(ID_Consulta, Diagnóstico, Tratamiento, ID_Cita)

Relaciones:

Un paciente puede tener muchas citas.

Un doctor atiende muchas citas.

Cada cita está asociada a una consulta.

Evidencia 3: Diagrama de arquitectura de base de datos

Ejemplo para una universidad:

Evidencia 4: Documento de diseño lógico

✓ Modelos conceptual, lógico y físico

Conceptual: Identifica entidades, atributos y relaciones (Ej.: Paciente-Cita-Doctor).

Lógico: Transforma entidades en tablas con claves primarias y foráneas.

Físico: Implementación real en el SGBD (MySQL, SQL Server), con tipos de datos y restricciones.

▼ Técnicas de modelado aplicadas

Diagramas Entidad–Relación (ER)

Normalización de tablas (1FN, 2FN, 3FN)

Uso de claves primarias y foráneas

Definición de relaciones uno a muchos y muchos a muchos

✓ Justificación de normalización o desnormalización

Se aplica normalización hasta la 3FN para:

Evitar redundancia de datos

Asegurar consistencia

Facilitar modificaciones futuras