Step-1

Given that the matrix is $C = \begin{pmatrix} 3 & 0 \\ 1 & 2 \end{pmatrix}$

We need to find the matrix A.

We can determine A by using Cholesky factorization. i.e. $A = CC^T$.

So,

$$A = \begin{pmatrix} 3 & 0 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix}$$
$$= \begin{pmatrix} 9 & 3 \\ 3 & 5 \end{pmatrix}$$

Therefore, the matrix $A = \begin{pmatrix} 9 & 3 \\ 3 & 5 \end{pmatrix}$

Step-2

Given that $A = \begin{pmatrix} 4 & 8 \\ 8 & 25 \end{pmatrix}$,

We need to find C.

We know that if $A = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$ then a and $\frac{ac - b^2}{a}$ are the pivots.

So,

$$\begin{pmatrix} a & b \\ b & c \end{pmatrix} = LDL^{T}$$

$$= \begin{pmatrix} 1 & 0 \\ \frac{b}{a} & 1 \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & \frac{ac - b^{2}}{a} \end{pmatrix} \begin{pmatrix} 1 & \frac{b}{a} \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 4 & 0 \\ 0 & 9 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$

Step-3

Here a = 4, b = 8 and c = 25.

$$L = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}, D = \begin{pmatrix} 4 & 0 \\ 0 & 9 \end{pmatrix}$$
Now

Now,

$$C = L\sqrt{D}$$

$$C = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$$

$$= \begin{pmatrix} 2 & 0 \\ 4 & 3 \end{pmatrix}$$

Thus, the matrix
$$C = \begin{pmatrix} 2 & 0 \\ 4 & 3 \end{pmatrix}$$

$$A = \begin{pmatrix} 9 & 3 \\ 3 & 5 \end{pmatrix} \text{ and } C = \begin{pmatrix} 2 & 0 \\ 4 & 3 \end{pmatrix}.$$

Therefore, the matrices are