# Robust Principal Component Analysis: a Review

Subhabrata Majumdar, Snigdhansu Chatterjee

## Abstract:

Keywords: Data depth; Multivariate ranking; Principal components analysis; robust statistics; functional data; dimension reduction

# 1 Introduction

Principal component Analysis (PCA) is one of the oldest, yet most widely used methods of unsupervised multivariate analysis. For a data matrix  $\mathbf{X} \in \mathbb{R}^{n \times p}$  containing observations in p variables for n samples, each column having mean 0, principal components are defined as p-dimensional vectors  $\mathbf{w}_k$ ,  $1 \le k \le p$  such that

$$\mathbf{w}_{k} = \begin{cases} \arg \max_{\|\mathbf{w}\|=1} \mathbf{w}^{T} \mathbf{X}^{T} \mathbf{X} \mathbf{w} & \text{if } k = 1 \\ \arg \max_{\|\mathbf{w}\|=1} \mathbf{w}^{T} \mathbf{R}_{k}^{T} \mathbf{R}_{k} \mathbf{w} & \text{if } k > 1; \quad \mathbf{R}_{k} = \mathbf{X} - \sum_{s=1}^{k-1} \mathbf{X} \mathbf{w}_{s} \mathbf{w}_{s}^{T} \end{cases}$$

$$(1.1)$$

Following a lagrange multiplier approach, the eigenvectors of  $\mathbf{X}^T\mathbf{X}$ , equivalently the right singular vectors obtained from the singular value decomposition of  $\mathbf{X}$  provide solutions to (1.1).

more stuff
robustness towards outliers
robustness towards corrupted entries
combine?

# 2 Robust covariance estimation, data transformation, and beyond

#### 2.1 Robust covariance matrices, projection pursuit

The earliest approaches to robust PCA were based on robustly estimating the population covariance matrix, and using eigenvectors of that estimate as principal components. Some methods of robust covariance matrix estimation include the Minimum Volume Ellipsoid estimator (Rousseeuw, 1984), a projection-based estimator by (Maronna et al., 1976), the Minimum Covariance Determinant (MCD) estimator (Rousseeuw, 1985) and the Stael-Donoho estimators (Maronna and Yohai, 1995; Zuo and Cui, 2005). Although these estimators have high breakdown points, they suffered from two severe drawbacks. Firstly the explicit evaluation of the population covariance matrix meant that obtaining principal components were not possible when n < p. Secondly, even when n > p, these methods become computationally intensive with large data dimensions.

Li and Chen (1985) first introduced the idea of Projection Pursuit (PP) in robust PCA to alleviate these problems. Notice that the case for k = 1 in (1.1) can be rewritten as

$$\mathbf{w}_1 = \operatorname*{arg\,max}_{\|\mathbf{w}\|=1} Var(\mathbf{X}\mathbf{w})$$

The proposal of Li and Chen (1985) was to simply use a robust univariate scale estimator  $s_n$  (e.g. median, MCD) to obtain the robust PCs from a size n sample  $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$ :

$$\hat{\mathbf{w}}_{1}^{\text{PP}} = \underset{\|\mathbf{w}\|=1}{\text{arg max}} s_{n}(\mathbf{w}^{T}\mathbf{x}_{1}, \dots, \mathbf{w}^{T}\mathbf{x}_{n});$$

$$\hat{\mathbf{w}}_{k}^{\text{PP}} = \underset{\|\mathbf{w}\|=1; \mathbf{w} \perp \mathbf{w}_{s}, s < k}{\text{arg max}} s_{n}(\mathbf{w}^{T}\mathbf{x}_{1}, \dots, \mathbf{w}^{T}\mathbf{x}_{n}) \quad \text{for } 1 < k \leq p$$

Aside from not having any restrictions for high-dimensional data, the PP approach allowed the flexibility of using any robust univariate scale estimator, and sequential estimation of the principal components. PP-based robust PCA became a popular method for chemometric data analysis in the 1990-s and early 2000-s, mainly due to the algorithmic developments by Xie et al. (1993), Hubert et al. (2002) and Croux et al. (2007).

The ROBPCA method of Hubert et al. (2005) combines the above two approaches. Specifically, ROBPCA consists of the following steps:

• Do an initial dimension reduction of the data matrix:  $\mathbf{X}_{n \times p} \mapsto \mathbf{Z}_{n \times r}, r \leq p$  by projecting all data points on the subspace formed by the right singular vectors of  $\mathbf{X}$ :

$$\mathbf{X} = \mathbf{U}_{n \times r} \mathbf{D}_{r \times r} \mathbf{V}_{r \times p}; \quad \mathbf{Z} = \mathbf{U}\mathbf{D}$$

• Calculate the outlyingness of all samples:

$$O(\mathbf{z}_i) = \max_{\mathbf{v} \in B} \frac{|\mathbf{z}_i^T \mathbf{v} - m_n(\mathbf{z}_j^T \mathbf{v})|}{s_n(\mathbf{z}_i^T \mathbf{v})}$$

where  $m_n$  and  $s_n$  are robust location and scale estimators, respectively. When  $\binom{n}{2} < 250$ , B is the set of vectors passing through all pairs of sample points, and is a collection of 250 randomly chosen non-zero vectors in  $\mathbb{R}^r$  otherwise.

Use the top k PCs calculated from the h least outlying points  $(k \leq r; k, h \text{ suitably chosen})$  to

transform the data again:

$$\mathbf{Z}^* = \mathbf{Z}\mathbf{P}_0; \quad \mathbf{P}_0 \in \mathbb{R}_{r \times k}$$

• Robustly estimate the scatter matrix of  $\mathbf{Z}^*$ , take its eigenvectors as the estimated robust PCs.

As Hubert et al. (2005) showed through application on simulated and real data, the combination of a PP approach (first step) and robust scatter matrix estimation (third step) used by ROBPCA results in efficiency gains in estimating population principal components, as well as better detection of outlying points, compared to either of the previous types of methods for robust PCA.

#### 2.2 Data transformation and M-estimation

A parallel approach towards robust PCA has also been developed by researchers, that is focused on the usage of robust transformations on the data, specifically multivariate signs and ranks, and related M-estimates of scatter. First introduced by Möttönen and Oja (1995), the multivariate sign or spatial sign of a vector  $\mathbf{x} \in \mathbb{R}^p$  with respect to a location parameter  $\boldsymbol{\mu} \in \mathbb{R}^p$  is defined as:

$$\mathbf{S}(\mathbf{x}) = rac{\mathbf{x} - oldsymbol{\mu}}{\|\mathbf{x} - oldsymbol{\mu}\|} \mathbb{I}_{\mathbf{x} 
eq oldsymbol{\mu}}$$

When **x** is a random sample from an elliptical distribution, the sign transformation keeps the population eigenvectors constant. Since all vectors in the same direction get mapped to the same spatial sign regardless of their magnitude, eigenvector estimates calculated from the Sign Covariance Matrix (SCM), or equivalently the SVD of a sign transformed data matrix can act as robust PCs (Locantore et al., 1999; Visuri et al., 2000).

There are two components of a multivariate data point: its direction and magnitude. Spatial sign discards the magnitude and only uses the direction. Consequently, although the sign transformation provides an intuitively simple way of robustly estimating population eigenvectors, the estimates are not very accurate, in terms of asymptotic and finite-sample efficiencies (Majumdar and Chatterjee, 2015). In fact, Magyar and Tyler (2014) showed that the eigenvectors of the *M*-estimate of scatter proposed by Tyler (1987) has uniformly lower asymptotic risk than those obtained from the SCM.

Majumdar and Chatterjee (2015) rectified this by weighting the spatial signs by a bounded distance measure from the origin. They used data depth (Zuo and Serfling, 2000) to construct these weight functions. For some  $\mathbf{y} \in \mathbb{R}^p$  and a set of points in  $\mathbb{R}^p$ , say  $(\mathbf{y}_1, \dots, \mathbf{y}_n)^T = \mathbf{Y}$ , data depth (denoted



Figure 1: allthree

by  $D(\mathbf{y}, \mathbf{Y})$ ) provides an affine invariant scalar measure of how close  $\mathbf{y}$  is to the data cloud. The depth-based weighted spatial signsMajumdar and Chatterjee (2015) are explicitly constructed as:

$$\tilde{\mathbf{x}} = \left[ \sup_{\mathbf{z}} D(\mathbf{z}, \mathbf{X}) - D(\mathbf{x}, \mathbf{X}) \right] \mathbf{S}(\mathbf{x} - \bar{\mathbf{X}})$$
(2.1)

The transformation  $\mathbf{x} \mapsto \tilde{\mathbf{x}}$  preserves the magnitude information of the point: points with the same direction but different magnitudes get mapped further from the origin as the magnitude increases. However, due to the boundedness of data depth, this mapping limits the maximum distance an outlying point can get mapped to (see figure 1). Thus the weighted sign transformation improves upon the sign-based PCA in terms of lower estimation errors for elliptic underlying distributions, while still preserving robustness properties like high breakdown points and bounded influence functions (Majumdar and Chatterjee, 2015).

#### 2.3 Robust PCA and outlier detection

Aside from obtaining a lower dimensional projection of the data matrix **X** in spite of outliers that is close enough to the projection of **X** by the first few population eigenvectors, detecting the outliers themselves is also closely associated with robust PCA. These samples can be of interest for mechanistic reasons. For example in the analysis of near infra-red absorbance for 39 gasoline samples over 226 wavelengths using ROBPCA (Hubert et al., 2005), six compounds are flagged as outliers, and these turn out to be the only samples containing alcohol. Hubert et al. (2005) also introduced a notion of outlier diagnostics that is applicable to any method of robust PCA and can serve as a means to

compare different relevant techniques as well.

We illustrate this in  $\ref{eq:consider}$ . Here we consider data in 3 dimensions, and consider the relative position of the samples with respect to the two-dimensional principal component subspace  $\mathcal{M}$ . We can classify such points into four categories:

- 1. Regular observations: points that form a homogeneous group close to  $\mathcal{M}$  (A and B in figure);
- 2. Good leverage points: points that lie close to  $\mathcal{M}$ , but at a distance from the regular observations (C in figure);
- 3. Orthogonal outliers: These points (point D in figure) lie far away from their projections on  $\mathcal{M}$  (point D', but the projections themselves are close to the regular observations;
- 4. Bad leverage points: These points are also far away from their projections on  $\mathcal{M}$  (E and E' respectively), but the projections are also far away from the regular observations.

Hubert et al. (2005) introduced the concept of score distance (SD) and orthogonal distance (OD) to distinguish between these four types of points. With our notation, for the  $i^{th}$  observation these distances are defined as:

$$SD_i = \sum_{j=1}^q \frac{t_{ij}}{\lambda_j}; \quad OD_i = \|(\mathbf{I} - \mathbf{W}_k \mathbf{W}_k^T)(\mathbf{x}_i - \boldsymbol{\mu})\|$$

The SD can be interpreted as the weighted distance of the projection of a point on the hyperplane formed by the first k PCs, while OD is the orthogonal distance of that point and the k-PC hyperplane. It is now clear from our picture that regular observations have low values of both SD and OD, while bad leverage points have high values of both. An orthogonal outlier has small SD but large OD, whereas a good leverage point has high SD but small OD. To explicitly classify sample points into these 4 categories, Hubert et al. (2005) use  $\sqrt{\chi_{k,0.975}^2}$  and  $[\hat{\mu}(OD^{2/3}) + \hat{\sigma}(OD^{2/3})\Phi^{-1}(0.975)]^{3/2}$  as upper cutoffs for score distance and orthogonal distance, respectively. Here  $\hat{\mu}$  and  $\hat{\sigma}$  are univariate MCD estimators, and  $\Phi$  is the standard normal cumulative distribution function.

- 3 Principal Component Pursuit
- 4 Numerical examples
- 5 Robust PCA in other spaces
- 5.1 Kernel PCA
- 5.2 Functional PCA
- 6 Conclusion

## References

- C. Croux, P. Flizmoser, and M. R. Oliviera. Algorithms for ProjectionPursuit robust principal component analysis. *Chemometr. Intell. Lab. Syst.*, 87:218–225, 2007.
- M. Hubert, P. J. Rousseeuw, and S. Verboven. A Fast Method for Robust Principal Components With Applications to Chemometrics. *Chemometr. Intell. Lab. Syst.*, 60:101–111, 2002.
- M. Hubert, P. J. Rousseeuw, and K. V. Branden. ROBPCA: A New Approach to Robust Principal Component Analysis. *Technometrics*, 47-1:64–79, 2005.
- G. Li and Z. Chen. Projection-pursuit approach to robust dispersion matrices and principal components: Primary theory and Monte Carlo. *J. Amer. Statist. Assoc.*, 80(759–766), 1985.
- N. Locantore, J.S. Marron, D.G. Simpson, N. Tripoli, J.T. Zhang, and K.L. Cohen. Robust principal components of functional data. TEST, 8:1–73, 1999.
- A.F. Magyar and D.E. Tyler. The asymptotic inadmissibility of the spatial sign covariance matrix for elliptically symmetric distributions. *Biometrika*, 101:673–688, 2014.
- S. Majumdar and S. Chatterjee. Robust estimation of principal components from depth-based multivariate rank covariance matrix. http://arxiv.org/abs/1502.07042, 2015.
- R. A. Maronna, W. A. Staehl, and V. J. Yohai. Bias-Robust Estimators of Multivariate Scatter Based on Projections. *J. Mult. Anal.*, 42:141–161, 1976.

- R.A. Maronna and V.J. Yohai. The behavior of the Stahel-Donoho Robust Multivariate Estimator. *J. Amer. Statist. Assoc.*, 90:329–341, 1995.
- J. Möttönen and H. Oja. Multivariate spatial sign and rank methods. J. Nonparametric Stat., 1995.
- P. Rousseeuw. Multivariate estimation with high breakdown point. In *Mathematical Statistics and Applications, Volume B (Proc. 4th Pannonian Symp. Math. Statist., Bad Tatzmannsdorf, 1983)*, pages 283–97, Dordrecht, 1985. D. Reidel.
- P. J. Rousseeuw. Least Median of Squares Regression. J. Amer. Statist. Assoc., 79:871–880, 1984.
- D.E. Tyler. A distribution-free M-estimator of multivariate scatter. Ann. Statist., 15:234–251, 1987.
- S. Visuri, V. Koivunen, and H. Oja. Sign and rank covariance matrices. *J. Statist. Plan. Inf.*, 91: 557–575, 2000.
- Y.-L. Xie, J.-H. Wang, Y.-Z. Liang, L.-X. Sun, X.-H. Song, and R.-Q. Yu. Robust principal component analysis by projection pursuit. *J. Chemometr.*, 7:527–541, 1993.
- Y. Zuo and M. Cui. Depth weighted scatter estimators. Ann. Statist., 33-1:381-413, 2005.
- Y. Zuo and R. Serfling. General notions of statistical depth functions. Ann. Statist., 28-2:461-482, 2000.