

CS322:Big Data

Final Class Project Report

Project (FPL Analytics / YACS coding): <u>YACS coding</u> Date: <u>06/12/2020</u>

SNo	Name	SRN	Class/Section
1	Yashashvini R	PES1201800087	5D
2	Greeshma C R	PES1201800196	5B
3	Navyadhara Gana Sai G	PES1201800230	5A
4	Ruchitha M	PES1201800252	5F

Introduction

Big data workloads consist of multiple jobs from different applications. These workloads are too large to run on a single machine. Therefore, they are run on clusters of interconnected machines. A scheduling framework is used to manage and allocate the resources of the cluster. And one efficient way is to build a framework for scheduling on multiple machines. And what we implement here is YACS.

YACS – Yet Another Centralized Scheduling Framework, has one Master, workers which bind together to perform the scheduling tasks in the most efficient way.

Related work

- 1. https://arxiv.org/abs/0906.0350
- 2. <u>Process Scheduling (rutgers.edu)</u>]

Design

The design of this framework is quite simple but effective.

- 1. It has one Master/Driver processes and 3 worker processes mimicing 3 degenerate machines running on the same machine through different threads.
- 2. Threading locks are used to prevent any kind of race conditions or dead locks.
- 3. The master and the workers are connected through ports. Each worker operates on a different port.
- 4. Each of the three workers have a certain number of slots available in them.
- 5. A driver sends the queue of requests/tasks/jobs to be scheduled and the master schedules these queue of tasks using three different scheduling algorithms based on selection and they are
 - i. Round Robin Scheduling.
 - ii. Least Loaded Scheduling.
 - iii. Random Selection Scheduling.
- 6. Both map and reduce tasks are scheduled and sent to workers.
- 7. Master schedules the tasks using any one of the above algorithms and sends them to worker to update the time and the slots available
- 8. The worker acknowledge the connections and update the master through port connections.
- 9. Log files are maintained to analyse the flow of tasks to and fro worker and master.

Results

Worker Vs No of Jobs

Worker Vs Time in Secs

Problems

- 1. Faced few problems while binding ports
- 2. Numpy caused problems with installation.

Conclusion

YACS was overall a very good project working on. We were able to learn about socket programming and also how seamlessly computer handles large amounts of data through an excellent framework.

EVALUATIONS:

SNo	Name	SRN	Contribution (Individual)
1	Yashashvini R	PES1201800087	Master[Connection functions
			between master and workers,
			Scheduling Algorithms],
			Worker
2	Greeshma C R	PES1201800196	Master[Socket Programming],
			log file analysis
3	Navyadhara Gana Sai G	PES1201800230	Master [Connection functions
	-	_	between master and workers,
			Scheduling Algorithms],
			Worker
4	Ruchitha M	PES1201800252	Master[Socket Programming],
			log file analysis

(Leave this for the faculty)

Date	Evaluator	Comments	Score

CHECKLIST:

SNo	Item	Status
1.	Source code documented	Yes
2.	Source code uploaded to	navydhara79/BD 0087 0196 0230 0252 Project
	GitHub - (access link for	(github.com)
	the same, to be added in	
	status →)	
3.	Instructions for building	BD 0087 0196 0230 0252 Project/README.md
	and running the code. Your	at main ·
	code must be usable out of	navydhara79/BD 0087 0196 0230 0252 Project
	the box.	(github.com)