RESISTIVE

Mohammad Hasan, Aaron Price Wa'el Alkalbani , Mosiah Beal Group 6 10/21/2023

Introduction and physical properties

1- Cell Description

This cell consists of a NMOS and pull up resistor as a load bearing component, vs a typical Enhancement inverter. These resistive load inverters may be used in place of enhancement inverters for various reasons, including but not limited too:

- Simplicity of technology
- Higher output voltage when compared to enhancement
- Availability with older technologies

2- Cell Symbols

Figure 1: Resistive inverter (Short)

Figure 2: Resistive inverter (long)

3- Cell Truth Table (for both resistive inverters)

Cell input	Cell output
Α	Υ
0	1
1	0

4- Cell schematic

Figure 3: Resistive inverter (short r = 60K)

Figure 4: Resistive inverter (long R0 = r=R = 200K)

5- Cell Dimensions

Resistive

transistor instance number	Width (nm)	Length (nm)	resistance (ohms)
Resistor (R0)	_	_	60k
NMOS (M0)	90	50	-

Resistive Long

transistor instance number	Width (nm)	Length (nm)	resistance (ohms)
Resistor (R0)	_	_	200k
NMOS (M0)	90	50	-

6- Input X: output rise time data

Resistive

Input rise/fall time (ps)	FO0	FO1	FO2	FO4	F08
40				808.5	

Resistive Long

Input rise/fall time (ps)	FO0	FO1	FO2	FO4	FO8
40				2925.0	

7- Input X: output fall time data

Resistive

Input rise/fall time (ps)	FO0	FO1	FO2	FO4	FO8
40				118.2	

Resistive Long

Input rise/fall time (ps)	FO0	FO1	FO2	FO4	FO8
40				105.8	

8- Data worst case Low to High propagation delay $t_{\mbox{\scriptsize plh}}$

Resistive

Input rise/fall time (ps)	FO0	FO1	FO2	FO4	F08
40				590.613	

Resistive Long

	out rise/fall ne (ps)	FO0	FO1	FO2	FO4	FO8
40					2082.7	

9- Data worst case High to Low propagation delay $t_{\mbox{\tiny phl}}$

Resistive

Input rise/fall time (ps)	FO0	FO1	FO2	FO4	FO8
40	-			100.105	

Resistive Long

Input rise/fall time (ps)	FO0	FO1	FO2	FO4	FO8
40				90.7394	

10- Transient analysis

Figure 5: Transient analysis on Resistive Short circuitry

Figure 6: Transient analysis on Resistive Long circuitry

Table of Transien	nt Anal	lvsis
--------------------------	---------	-------

ТҮРЕ	t _{plh} (ps)	t _{phl} (ps)	t _r (ps)	t _f (ps)
CMOS	275.404	96.995	391.1	116.6
CMOS_LONG	75.756	31.985	94.56	32.14
Enhancement mode NFET	323.892	72.1549	1560	74.74
Enhancement mode NFET Long	1034.43	62.3649	4724	77.4
Resistive load	590.613	100.105	880.5	118.2
Resistive load Long	2082.7	90.7394	2925	105.8

11- DC analysis

Figure 7: DC analysis on Resistive Short circuitry

Figure 8: DC analysis on Resistive Long circuitry

Table of DC Analysis

ТҮРЕ	V _{IH_DC} (mV)	V _{IL_DC} (mV)	V _{OH_DC} (mV)	V _{OL_DC} (mV)
CMOS	613.3	369.374	1129.1	53.0749
CMOS_LONG	614.032	369.597	1128.76	53.984
Enhancement mode NFET	344.75	624.697	508.485	117.365
Enhancement mode NFET Long	270.272	550.588	528.809	66.047
Resistive load	677.123	307.049	1126.49	115.919
Resistive load Long	558.172	239.854	1132.73	56.047