Smart Robotic Cart: A Prototype

Kallistah Allen Darrah Beebe Jason Braker

Advisors: Dr. Suruz Miah Dr. Prasad Shastry

Department of Electrical and Computer Engineering, Bradley University, Peoria IL

Problem Statement

- Design a robotic cart that follows the user
- Does not use line-of-sight sensors to locate the user

Line-of-Sight Sensing

Line-of-Sight sensors must have an open path between the sensor and the object being sensed (no obstacles between)

- Existing smart carts use line-of-sight sensors
- If line-of-sight is not required, the robotic cart could still maintain communication with the remote on the user and be able to locate the user when an obstacle comes between them

Proposed Solution

Utilize wireless analog radio frequency (RF) signals

Benefits:

- Cost-effective
- Signals propagate through objects, so communication does not require line-of-sight

Downside:

RF signals are noisy due to reverberations

Project Goals

The robotic cart system should:

- Utilize <u>wireless signal strength</u> to locate the user
- Move to follow the user
- Not use line-of-sight sensors to follow the user
- Have a **cost-effective** design

Robotic Cart Specifications

- Cart should be able to follow the remote target
- Cart should remain a distance of 1 [m] to 1.5 [m] from the remote target
- Cart should be able to attain a speed of at least 1 [m/s]
- Cart should not require line-of-sight to follow remote

Robotic Cart System Block Diagram

- Four inputs
- Two outputs

Remote Target Subsystem Block Diagram

- Two inputs
- One output

Mobile Cart Subsystem Block Diagram

- Four inputs
- Three outputs

Main System Components

- Budget Bot Chassis Physical framework of robotic cart
- BeagleBone Blue Embedded computer to control robotic cart
- XBee S2C Module Wireless communication module

Budget Bot Chassis

BeagleBone Blue

XBee S2C Module

Reflector Arrays

- Two designs
 - Paraboloidal focuses signals coming directly into reflector
 - o Parabolic/Paraboloidal better reception of signals from above

Model 1: Paraboloidal Reflector

Model 2: Combined Parabolic/Paraboloidal Reflector

System Prototype

We created a prototype robotic cart using the paraboloidal reflector design. This prototype was used for testing.

Robot

Operation of Mobile Cart System

Repeatedly execute Localization and Navigation Algorithms until powered down

Localization Algorithm

- Coordinator sends request for signal strength measurement to remote
- 2. Remote responds with its measured signal strength
- 3. Receivers measure signal strength of message from remote
- 4. Rotate reflector array 9 degrees
- 5. Repeat steps 1-4 until 10 measurements have been taken
- 6. Calculate distance to remote using strength of signal received by remote
- 7. Calculate angle to remote as the direction of the maximum signal strength measured by the receivers

Navigation Algorithm

Distance to remote: d_r

Angle to remote: θ_r

Proportional control gain for linear velocity: K_v

Proportional control gain for angular velocity: K_{ω}

- 1. Calculate linear velocity $v = sign(d_r \cos \theta_r) K_v d_r$
- 2. Calculate angular velocity $\omega = K_{\omega}\theta_r$
- 3. Apply speeds to wheel motors to move the robot

Robot Model 2 (In Progress)

Uses the combined parabolic/paraboloidal reflector shape

 Intended to allow better reception of signals from above

This model is not yet tested

Current Challenges

- Accuracy of angle estimation is low and causes some errors in the robots trajectory to the remote
 - Possible solution: Implement the Extended Kalman Filter (EKF) algorithm to filter out noise
- Distance estimation is not consistent and will drastically change if the user stands between the remote and the robot

Conclusion

- Designed and implemented a cost-effective robotic cart that is able to locate and follow the user
- We are continuing to refine our design to better solve the problem

