Normal Maths Pur Notes Algebraic Expressions $a^{m} \times a^{n} = a^{m}$, $a^{m} =$ $x^2 - y^2 = (x + y)(x - y), \quad a^{\frac{1}{m}} = \sqrt[m]{a}, \quad a^{-m} = a^{\frac{1}{m}}, \quad a^{\frac{m}{m}} = \sqrt[m]{a^{m}}, \quad a^{\circ} = 1$ Vab = Va × Vb, Va = va Fractions in the form \sqrt{a} multiply by \sqrt{a} Fractions in the form $a+\sqrt{b}$ multiply by $a-\sqrt{b}$ Fractions in the form $a-\sqrt{b}$ multiply by $a+\sqrt{b}$ Quadratics Qx2+6x+c=a(x+==)2+(c-6) Quadratiz formula: x = -6 = 162-4ac if f(i) = a (x+p) 2+9 if f(x) = a x + b x * c = 0 52- 4ac = dociminant' there is a turning point at (-p, q) 62-4ac LO: no real roots b=- knc = 0 : one repeated ral pot bz-4 uc 70: two distict red pots Equations and Inequalities The solutions of a pair of simultaneous equations represent the points of intersection of their graphs. If y 7 f(x) or y < f(x) the line is dotted, if y 7/ f(x) or y = f(x) then the graph is a solved line.

The graphs $y = \frac{k}{2}$ and $y = \frac{k}{2}$ have asymptotis at x = 0 and y = 0

y = f(x + a) = t randation -a y = af(x) = st retain factor a y = -f(x) reflection is x - axis in y - axis x - axis

 $y = f(x) + \alpha = translation a$ y = f(ax) = stretch factor <math>a y = f(-x) reflection in in y - axis in x - axis y - axis

Straight-Line Graphs a perpendicular line in y-y,= m(x-x1) distance between two points: d= V(x=-x,)=+ (y=-y,)= (inles m. dpoint = $\left(\frac{x_1 \cdot x_2}{2}, \frac{y_1 \cdot y_2}{2}\right)$ circle: 6 (5c-9) 2 + (y-6) 2 = 12 The perpendicular bisector of a chord will go through the contre of a circle. To find the centre of a circle give. 3. points find the two perpendicular bisectors of two chards and find where they meet. Algebraiz Methods You can prove a statement is true by deduction. This is starting from known factors or definitions, then using logical steps to reach the desired conclusion In a proof: . State any information or assumptions you are using . Show every step of your proof clearly · Make sure that every step follows from the last · Make sure you have covered all possible cases · Write a statement of group at the end To prove an ideality: . Start with the expression on one side of the ideality . Manipulate that exposion algebraically untill it matches the other si · Snow every step You can prove a statement by exhaustray. This is breaking it into spootles of topes and proving Hem segmentely. You can prove a statement is not true by a counter-example.

The Binomial Expansion Pascal's triangle not $r(r \circ r(r) = \frac{h!}{r!(n-r)!}$ 0036766 1 The (u+1) the row netor. (atb) = a" + (") a" b + (") a" b = + ... 1 2 1 gives the coefficients + (n) an-rbr + ... + bn 1 3 3 1 in the expansion of general term = (") a" b" 1 4 6 4 1 (a+6)" Trigonometric Ratios a= 52+ c2 - 26c cos A a = 16 = c o (osA = b + c - az Area = = absinc Trigonometric identities and equations ral .. etc tan 30 = 13 Sin 30 = 1/2 cos 30 = 1/2 180° -0,360 Sin 45 = 12/2 60545 = == ten 165 = 1 270° 51,60 = 13/2 (05 60 = = tan 60 = V3 tand = sin O COOD Sin 0 + cos 20 = 1 principle value = angle the rate gives Carrie ou Vectors Any vector is equivalent to adding a negative vetor I a it it's parallel to a To multiply a column vector by a scalar multiply each component by the scalar. To add two educing vectors add the x and y components $\binom{p}{2} + \binom{r}{s} = \binom{p+r}{2+s}.$ $\binom{p}{r} = pi + qj$ A unit vector is a vector of length 1. |a| = 122 + 42 $\begin{array}{cccc}
\overrightarrow{OP} & \overrightarrow{OP} & \overrightarrow{OA} + \frac{2}{24} & \overrightarrow{AB} \\
\overrightarrow{B} & = \overrightarrow{OA} + \frac{2}{24} & (\overrightarrow{OB} - \overrightarrow{OA})
\end{array}$ if a and b are non-parallel and pa + 9 b = ra + 5 b p=r, 2=s

A-level Algebraic Methods To prove a statement by contradiction, you start by assuming it is not true. You then use logical steps to show that this leads to something impossible to retional number = = where a and 6 are integers with no common foretor. A faction with two + linear factors in the denominator can be split into two+ separate fractions. This is called splitting it into partial fractions. If the fraction is proper (numerator has a degree less than the denominator) it can be split into partial fractions of a constant over one of the linear pactors. If it is improper (numerator has a degree equal tom or larger than the denominator), you can either convert it to a mixed faction using algebraic dission or F(z) = Q(x) × divisor + remainder or find the form of the partial fractions. This can be done by boking at the degrees of the numerator and denominator. If they are equal, add A to the partial fractions, if they are greater add Ax+B etc. Functions and Graphs When f(x) = 0, |f(x)| = f(x). When f(x) < 0, |f(x)| = -f(x). If drawing the graph of If(x) 1, reflect all values below the x-axes in the x-axis. If drawing f(1x1), reflect all values where x70in the y-axis (still keeping them on the right side). A function must have one output for one input, can have many inputs for same out fg(x) means apply g first, then f. f(x) is the involve of f''(x), ff''(x) = f''f(x) = xf'(a) is the reflection of f(x) in the line y= x. Domain of f(x) = range of f''(x), Domain of f''(x) = range of f(x)f(z+a) = herizontal translation of -a f(x) + a = vertical translation of ta +(ax) = horizontal stretch of a afla) = pertical stretch of a + (-x) = reflection in y-axis -f(x) = reflection in x-axis

Segnences and Series Arithmet.z: difference between terms is Geometric: common natio between consective constant Vn = a r n - 1 Un = a + (n-1)d $S_1 = \frac{n}{2} (2a + (n-1)d)$ = $\frac{n}{2} (a + ()$ $S_n = a(1-r^n) = a(r^n-1)$ 1-r r-1 proof: write out ferms, flip, proof: write out terms, write out terms of find Zsn, find Sn rsn, find Sn rsn, divide by (1 -So = a (11/41) A sequenence is: increasing if until 7 Un decreasing if Uni, 2 Un peradic if it cycles: if Unix = Un (x = 'order' of the sequence) Binomial Expansion If n is negative or a fraction: $(1+x)^n = 1 + nx + n(n-1)x^2$. valid: 12/21 21 if given flow (a +bx)" do = (a(1+ &x))" = a"(1+ &x)" Radians Sin & - 1/2 $\cos \frac{\tau}{4} = \frac{\sqrt{\epsilon}}{2}$ $\tan \frac{\tau}{4} = 1$ Sin =4= 1/2 sin = 3 = 13/2 cos = 1/2 tan = 13 Are length = L = r0 Area sector = A = 2 r20 Area segment = A = = = (0 - sin 0)

When Q is small and is radius: Sin 8 x B tan 8 x B cos 8 x 1 = =

Differentiation

Chain rule: $\frac{dy}{dz} = \frac{dy}{dx} \times \frac{dn}{dz}$ if $y = (f(x))^n$, $\frac{dy}{dz} = n f'(x) (f(x))^{n-1}$ if y = f(g(x)), $\frac{dy}{dz} = f'(g(x)) g'(z)$ Product rule: if y = uv, $\frac{dy}{dz} = v \frac{du}{dz} + u \frac{dv}{dz}$

Quotient rule: if $y = \frac{u}{v}$, $\frac{dy}{dz} = \frac{v \frac{dy}{dz} - u \frac{dy}{dz}}{v^2}$

	И		
10		· · · · · · · · · · · · · · · · · · ·	
	f(x)	f'(x)	
12	SINKX	Kcoskx Concave: f"(x) & O	
	cos Kx	- Ksinkx Convex: f"(3) 3 0	
	tan Kx	Kseck 2	
	cot K2	- $14\cos e^{-2}kx$ point of inflection = $f''(x)$ changes	
	seckx	Kseckx tankx Sign	
	GSECKZ	- Krosecka cot ka	
	ekz	Ke Kx	
	Inloc	kx K	
4	akz	KInaakz	
	f(9)	$f'(y) \stackrel{dy}{dx}$	
	y h	ny n-1 dy	
	-xy	x dy + 9	
	M Numerical	Methods	
	If the function	on f(x) is continuous on the interval [a, 6] and f(a) and	
		opposite signs then flat has at least one pot, x,	
4 4 1		e): a < x < 6	
والمراج والم		n equation of the form f(x)=0 by an iterative	
6	method, rearrange $f(x)=0$ into the form $x=g(x)$ and use the		
9	itentine for	nwa $X_{ne_1} = g(X_n)$.	
	Newton - Raphson Jornala: Xn+1 = Xn - f(xn)		
	$f'(z_n)$		
	Vectors		
	Distance from 8 to (2, y, z) = \ x2 + y2 + Z2		
	Distance between (x, y, Z,) and (xz, y, Zz) = V(x, - zz) + (y, -y)2+(z, - Zz		
	<u>i</u> = (°)	$ \hat{x} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \mathcal{V} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} $	
Maria I	If the vector	or man a = xi + yj + ZK makes an angle 0 x w. Th	
- W		e-aris thin cos 0 = = x	
	,	1al	

4		
	Integration	
	f(x)	$\int f(x) \cdot dx$
	X.	n+1 2n+1 + C By Parts: In de de uv - Iv du de
		N+1
	e Kx	$\frac{1}{\kappa}e^{\kappa x} + C \qquad \int f(x) - g(x) dx = \int f(x) dx - \int g(x) dx$
	1	In 21 + C
	COS 16×	$\frac{1}{16} \sin kx + C \qquad \int_{a}^{b} y dx \sim \frac{1}{2} h \left(y_0 + y_1 + 2 \left(y_1 + y_2 - 1 \right) \right)$ $-\frac{1}{16} \cos x + C \qquad h = b - a$ $\frac{1}{16} \tan kx + C \qquad n$
	Sin Kx	- = 605x + 6 h= 6-a
	Sec * * x	- tankx + C n
	cosec² kx	- = cotx + c
	Seckx tankx	1 Seckal + C
	cosecka cot ka	= 1 cosec 16x + C
	f' (ax+ b)	= f(ax+6)+C
	tansc	In sec = + c
	1 cot x	ln sin 2 + 6
	sec z	In sec x + tanx + C
	losee 7	-Inlcosecz+cotzl+C
	12 f'(x)	TR7 = [n f(x)]
	+(x)	If struggling check part a)
	$K f'(x) (f(x))^n$	TRY $\frac{d}{dx} (f(x))^{n+1}$ is might have proved something you can use
	No. Officer	Train to the Millians of the Company
	By Ports: W	se when y = product of algebraic and trig.
	[-14]	product of algebraic and exponential
		In function
	Substitution:	use when y = product of two algebrains functions
	4 note:	du should cancel out the other part
	Reverse chuin Ru	$u = use$ when $y = f'(x)(f(x))^2$
	In Integration	= use when y = Kf'(a)
	J	f(x)

Partial fractions = denominator is factorised into linear Jactors or is quadratic