Appendix B

Solvents 437

Vol. A 24

Solvents

DIETER STOYE, Hüls Aktiengesellschaft, Mari, Federal Republic of Germany

	4	38	6.	Purification and August
l.	Definitions 4	178	7.	Uses
2.	Physicochemical Principles	136	7.1.	Solvents in Paints
2.1.	Theory of Solutions	36	7.1.	Solvents in Paint Removers
2.2.	Dipole Moment, Polarity, and Polarizability	442	7.3.	Solvents in Printing lnks
	Polarizability	443	7.3. 7.4.	Extraction
2.3.	Hydrogen Bond Parameters	443	1.A. 1.5.	Extractive Distillation
2.4-	Solvation			Chromatography
2.5.	Solvents, Latent Solvents, and Non-Solvents	444	7.6.	Solvents for Chemical Reactions 465
7.6	Dilution Ratio and Dilutability	444	7.7.	Solvents for Recrystallization 466
2.6.	- Call-Louder Muss on		7.8.	Solvents in Film Production
2.7.	Solubility	446	7.9.	Solvents for Synthetic Fibers 466
2.8.	Dissolution and Solution Properties	446		
3.	Physical and Chemical Properties	448	7.11	. Solvents for Rubber, Plastics, and Resin Solutions
3,1.	Evaporation and Vaporization	448	7 17	2. Solvents for Degreasing
3.2.	Hygroscopicity	450	7.1	3. Solvents for Dry Cleaning
3.3.	Density and Refractive Index	. 450	7.1.	4. Solvents in Aerosol Caus and Dispensers 466
3.4	Viscosity and Surface Tension	. 450	8.	Economic Aspects
3.5	Vapor Density	. 451		Solvent Groups 467
3.6		. 452	9,	467
3,7	. Flash Point, Ignition Temperature,	452	9.1	469
	and Ignition Limits	, 43-	9.2	Terpenoids . 469
3.8	Heats of Combustion and Calorific Values	, 453	9.3	Terpene Hydrocaronis and responses
		. 454	. 9	Aromatic Hydrocarbons
3.9	Health	454	9_	
4.		454	9.	6. Alcohols
4.	. 447	455	9.	7. Ketones
4.	Aenoris	457	9.	8. Esters
5.	. I Dtion	457		9. Ethers
	a manage Sulectance	s 459	9.	10. Glycol Ethers
		460	9.	.11, Miscellaneous Solvents49
	3. Fire Hazard	460		0. References 50
5	4 Waste			

Ullmann's Encyclopedia of Industrial Chemistry, Vol. A 24

© 1993 VCH Publishers, Inc. 0-89573-174-6/93/\$5.00 + .50

Solvents

469

/ol. A 24

0

()

11

1.5

1.5

1.5

1.5 18.7

18.7

18.7

18.7

18.7 13.0

9.7 7.7

7.7

8.4 11.7

9.8 119

K.4

x.4

3.8

K.8

:0.3

4.9

3.0

2.0

4.7

5.0

3.0

₹.0

3.0

Vol. A 24

Table 16. Miscibility of solvents with water (wt % at 20 °C)

Solvent	Solvent in water	Water in solvent
Hexane	0.53	0.1
Tetrahydroauphthalene		0.2
Dipentene		0.72 0.05
Toluene	0.035	0.02
p-Xylene	0.02	0.02
Ethylbenzene	0.02	0.04
Styrenc	_	±6.0 ₹
Methanol	3C :	oc oc
Ethanol	60	œ.
Propanol	oc oc	20
Isopropyl alcohol	∞ 7.5	19.7
†Butanol	8.4	16.2
/ Isobutanul	12.5	44.1
sec-Butanul	80 12:2	au.
tert-Butanol	0.58	7.2
Hexanol	0.19	4.0
Trimethylcyclohexanol	3.6	3.6
Cyclohexanol	2.9	5.8
Methylbenzyl ulcohol	ω συ	90
Ethylene glycol	ω ω	SE
Methyl glycol	∞ ∞	3 €
Ethyl glycol	æ.	ဆပ
Propyl glycol	œ	ə c
Butyl giyeol	96	oc.
Ethyl diglycol	×	oc.
Methoxypropanol	∞ ∞	90
Methyldipropylene glycol	4.5	0.9
Nitrocthane	1.4	0.5
1. Nitropropune	1.7	0.6
2-Nitropropane	6.9	1.2
Diethyl ether	0.3	0.2
Dibutyl ether Methyl tert-butyl ether	4.8	1.3
Tetrahydrofuran	37)	ဘ
· · · · · · · · · · · · · · · · · · ·	50	∞
Dioxune Methyl acetate	24.0	8.0
Ethyl accuse	6.1	3.3
Isopropyl acciate	2.9	1.9
Butyl acctate	Q.B3	0.62
Isobutyl acctate	0.67	1.65
Ethyl glycol acetate	23.5	6.5
Butyl glycol acctate	1.5	1.7
Cyclohexyl acctute	0.2	0.5
Butyl glycolate	7.5	25.0
Propylene carbonate	21.4	7.5
Acctone	œ	DC
Methyl ethyl ketone	26.0	12.0
Methyl isobutyl ketone	2.0	2.4
Diisobutyi ketane	0.04	0.42 8.0
Cyclohexanone	2.3	-
1 Isophorone	1.2	4.3
Trimethylcyclohexanone	0.3	1.4
Diacetone alcohol	∞ _	œ 0.16
Dichloromethane	2.0	0.16
1,1.1-Trichloroethane	0.44	0.05
Trichloroethylene	0.1	0.02
Tetrachloroethylene	0.02	0.01
Dimethylformamide	œ	20
Dimethyl sulfoxide	90	3 C

9.2. Cycloaliphatic Hydrocarbons

The solvency of cycloaliphatic hydrocarbons is between that of aliphatic and aromatic hydrocarbons. They have a high solvency for fats, oils, oil-modified alkyd resins, styrene-modified oils and alkyd resins, bitumen, rubber, and other polymers. Polar resins (e.g., urca -, melamine-, and phenol-formaldehyde resins), as well as alcohol-soluble synthetic resins and cellulose esters are, however, insoluble.

Cycloaliphatic hydrocarbons are miscible with most other solvents, but are insoluble in water.

Cyclohexane [110-82-7] is a water-clear, colorless liquid with a gasoline-like smell; it is miscible with most organic solvents except methanol, dimethylformamide, and solvents of similar polarity (-- Cyclohexane).

Methylcyclohexane [108-87-2] is similar to cyclohexane but less volatile (- Cyclohexane,

A8, p. 215). 1,2,3,4-Tetrahydronaphthalene [119-64-2] (te-

tralin) is an aromatic-cycloaliphatic hydrocarbon. It is a colorless liquid with a naphthalenelike odor, insoluble in water, and miscible with all common organic solvents (- Naphthalenc and Hydronaphthalenes, A 17. p. 6). It dissolves fats, oils, linoxyn, rubber, waxes, asphalt, bitumen, pitch, tar, phenol, naphthalene, iodine, sulfur, etc., and is used on a large scale in painting work, and in floor wax and shoe polish production. It also dissolves colophony. Congo copals, glyptal resins, coumarone resins, ketoneformaldehyde resins, and aminoplasts. It imparts good flow properties to paints and produces high-gloss, smooth film surfaces. It is autooxidative and thus acts as an oxygen carrier in drying oils.

Decahydronaphthalene [91-17-8] (decalin) is a colorless solvent with a pungent odor and fairly high volatility, its solvency is somewhat lower than that of tetrahydronaphthalene (- Naphthalene and Hydronaphthalenes, A 17, p. 6).

9.3. Terpene Hydrocarbons and Terpenoids

Turpentine oil [8006-64-2] (D1N 53248). Only pure ethercal oil obtained from the distillation of the resinous secretion of living pine trees, and from which no valuable constituents (e.g.,