O PyTorch

深度残差网络

主讲人: 龙良曲

ResNet

The residual module

- Introduce skip or shortcut connections (existing before in various forms in literature)
- Make it easy for network layers to represent the identity mapping
- For some reason, need to skip at least two layers

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, <u>Deep Residual Learning for Image Recognition</u>, CVPR 2016 (Best Paper)

ResNet

Deeper residual module (bottleneck)

Directly performing 3x3
convolutions with 256 feature
maps at input and output:
256 x 256 x 3 x 3 ~ 600K
operations

 Using 1x1 convolutions to reduce 256 to 64 feature maps, followed by 3x3 convolutions, followed by 1x1 convolutions to expand back to 256 maps:

256 x 64 x 1 x 1 ~ 16K 64 x 64 x 3 x 3 ~ 36K 64 x 256 x 1 x 1 ~ 16K Total: ~70K

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, <u>Deep Residual Learning for Image Recognition</u>, CVPR 2016 (Best Paper)

ResNet: ILSVRC 2015 winner

Revolution of Depth

AlexNet, 8 layers (ILSVRC 2012)

VGG, 19 layers (ILSVRC 2014)

ResNet, 152 layers (ILSVRC 2015)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, Deep Residual Learning for Image Recognition, CVPR 2016

BOOM!

Research

MSRA @ ILSVRC & COCO 2015 Competitions

- 1st places in all five main tracks
 - ImageNet Classification: "Ultra-deep" (quote Yann) 152-layer nets
 - ImageNet Detection: 16% better than 2nd
 - ImageNet Localization: 27% better than 2nd
 - COCO Detection: 11% better than 2nd
 - COCO Segmentation: 12% better than 2nd

*improvements are relative numbers

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". arXiv 2015.

Why call Residual?

$$\mathcal{F}(x)\,:=\,\mathcal{H}(x)-x$$


```
class ResBlk(nn.Module):
    def __init__(self, ch_in, ch_out):
        self.conv1 = nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=1, padding=1)
        self.bn1 = nn.BatchNorm2d(ch_out)
        self.conv2 = nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1)
        self.bn2 = nn.BatchNorm2d(ch_out)
        self.extra = nn.Sequential()
        if ch_out != ch_in:
            self.extra = nn.Sequential(
                nn.Conv2d(ch_in, ch_out, kernel_size=1, stride=1),
                nn.BatchNorm2d(ch_out)
                                                                             256-d
                                                                         1x1, 64
                                                                             relu
    def forward(self, x):
                                                                                         1x1
                                                                         3x3, 64
        out = F.relu(self.bn1(self.conv1(x)))
                                                                             relu
        out = self.bn2(self.conv2(out))
                                                                         1x1, 256
        out = self.extra(x) + out
        return out
                                                                             relu
```


: Element-wise addition

下一课时

nn.Module

Thank You.