Regression Model

```
Supervised learning has two type of model:
    1)Regression
    2)classification

1. Regression (CH-5)
Regression is continuous:
    -> LR(linear regression)
    -> Polynomial Regression

2. Classification (CH-6)
Classification is discrete:
    -> KNN
    -> Decision Tree
```

LR(linear regression)

```
simple linear regression(SLR):
    y=mx+c
    where, y=dependent variable
        x=independent variable
        m=co-efficient
        c=intercept

multiple linear regression(MLR):
```

```
Step of Supervised learning process-

step1 : Define the problem
step2 : Collect and Prepare data
step3 : Data prepocessing
step4 : Feature Engineering
step5 : Select a model
step6 : Split the data in test/train
step7 : Train the model
step8 : Validate hyper parameters
step9 : Validate the model on the basis of tesing data
step10: Iterate the model
```

```
# Simple linear regression with the help of excel
```

Simple linear regression model

```
In [5]: import pandas as pd
import numpy as np

df=pd.read_csv("placement_03-06.csv")
df
```

Out[5]:

	cgpa	package
0	6.89	3.26
1	5.12	1.98
2	7.82	3.25
3	7.42	3.67
4	6.94	3.57
195	6.93	2.46
196	5.89	2.57
197	7.21	3.24
198	7.63	3.96
199	6.22	2.33

200 rows × 2 columns

In [6]: df.info()

```
In [7]: from sklearn.model_selection import train_test_split
         y=df['package']
         У
Out[7]: 0
                 3.26
         1
                 1.98
                 3.25
          2
          3
                 3.67
          4
                 3.57
         195
                 2.46
         196
                 2.57
          197
                 3.24
          198
                 3.96
          199
                 2.33
         Name: package, Length: 200, dtype: float64
In [11]: x=df.drop('package',axis=1)
Out[11]:
               cgpa
               6.89
            1
               5.12
            2
               7.82
               7.42
               6.94
          195
               6.93
          196
               5.89
          197
               7.21
          198
               7.63
          199
               6.22
          200 rows × 1 columns
In [12]: type(y)
Out[12]: pandas.core.series.Series
In [13]: type(x)
Out[13]: pandas.core.frame.DataFrame
In [14]: | y.shape
Out[14]: (200,)
```

```
In [15]: | x.shape
Out[15]: (200, 1)
In [49]: x_train,x_test,y_train,y_test=train_test_split(x,y,train_size=0.8,random_state=
In [50]: print(y_train.shape)
         print(y_test.shape)
         print(x_train.shape)
         print(x_test.shape)
         (160,)
         (40,)
         (160, 1)
         (40, 1)
In [51]: from sklearn.linear_model import LinearRegression
         lr=LinearRegression()
         model=lr.fit(x_train,y_train)
In [52]: print("m = ",model.coef_)
         m = [0.58154877]
In [53]: print("c =" ,model.intercept_)
         c = -1.0859839580358024
In [54]:
         # v=mx+c
         y pred=model.predict(x test)
         print(y_pred)
         [2.9383335 4.36894346 3.18258398 1.89736121 3.49662031 3.35123312
          2.76968435 2.94996447 3.07208971 3.94441286 3.57222165 2.94996447
          2.75805338 2.64755911 3.67108494 3.2174769 3.97930579 2.90925606
          2.19395108 3.31052471 4.29915761 2.8918096 1.87409926 2.30444534
          3.62456104 2.12998071 3.9269664 2.36841571 1.5716939 2.06601035
          2.31026083 3.6885314 3.5024358 3.03719679 2.57195777 2.39167766
          3.170953
                     3.82228762 3.15932203 2.94414898]
```

Out[55]:

	actual	predicted
58	3.09	2.938333
40	4.02	4.368943
34	3.42	3.182584
102	1.37	1.897361
184	3.14	3.496620
198	3.96	3.351233
95	2.79	2.769684
4	3.57	2.949964
29	3.49	3.072090
168	3.52	3.944413
171	3.76	3.572222
18	2.98	2.949964
11	2.60	2.758053
89	2.72	2.647559
110	3.76	3.671085
118	2.88	3.217477
159	4.08	3.979306
35	2.87	2.909256
136	2.10	2.193951
59	3.31	3.310525
51	3.79	4.299158
16	2.35	2.891810
44	1.86	1.874099
94	2.42	2.304445
31	3.89	3.624561
162	2.55	2.129981
38	4.36	3.926966
28	2.24	2.368416
193	1.94	1.571694
27	2.16	2.066010
47	3.26	2.310261
165	4.08	3.688531
194	3.67	3.502436
177	3.64	3.037197
176	3.23	2.571958

	97	2.84	2.391678				
	174	2.99	3.170953				
	73	4.03	3.822288				
	69	2.94	3.159322				
	172	2.51	2.944149				
In [56			solute error) y_act-y_pred				
In [57	mae=m	<pre>from sklearn.metrics import mean_absolute_error mae=mean_absolute_error(y_test,y_pred) print(mae)</pre>					
	0.299	31188!	593316804				
In [58	-	ean_s	rn.metrics import mean_squared_error quared_error(y_test,y_pred)				
	0.137	00625	19255722				
In [59	-	_score	rn.metrics import r2_score e(y_test,y_pred)				

0.7283345498058083

actual predicted

Multiple linear regression model-1

```
In [67]: import pandas as pd
    df=pd.read_csv("Advertising_03-06.csv")
    df
```

Out[67]:

	Unnamed: 0	TV	Radio	Newspaper	Sales
0	1	230.1	37.8	69.2	22.1
1	2	44.5	39.3	45.1	10.4
2	3	17.2	45.9	69.3	9.3
3	4	151.5	41.3	58.5	18.5
4	5	180.8	10.8	58.4	12.9
195	196	38.2	3.7	13.8	7.6
196	197	94.2	4.9	8.1	9.7
197	198	177.0	9.3	6.4	12.8
198	199	283.6	42.0	66.2	25.5
199	200	232.1	8.6	8.7	13.4

200 rows × 5 columns

In [68]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	200 non-null	int64
1	TV	200 non-null	float64
2	Radio	200 non-null	float64
3	Newspaper	200 non-null	float64
4	Sales	200 non-null	float64

dtypes: float64(4), int64(1)

memory usage: 7.9 KB

```
In [69]: df.drop("Unnamed: 0",axis=1,inplace=True)
df
```

Out[69]:

	TV	Radio	Newspaper	Sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	9.3
3	151.5	41.3	58.5	18.5
4	180.8	10.8	58.4	12.9
195	38.2	3.7	13.8	7.6
196	94.2	4.9	8.1	9.7
197	177.0	9.3	6.4	12.8
198	283.6	42.0	66.2	25.5
199	232.1	8.6	8.7	13.4

200 rows × 4 columns

```
In [70]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 4 columns):
```

```
#
   Column
              Non-Null Count Dtype
    -----
              -----
                             ----
0
   TV
              200 non-null
                             float64
   Radio
              200 non-null
                             float64
1
2
              200 non-null
                             float64
   Newspaper
3
   Sales
              200 non-null
                             float64
```

dtypes: float64(4)
memory usage: 6.4 KB

```
In [71]: from sklearn.model_selection import train_test_split
    y=df['Sales']
y
```

```
Out[71]: 0
                  22.1
                  10.4
          1
          2
                   9.3
          3
                  18.5
          4
                  12.9
                  . . .
          195
                   7.6
          196
                   9.7
          197
                  12.8
          198
                  25.5
```

199

13.4

Name: Sales, Length: 200, dtype: float64

```
In [72]: x=df.drop('Sales',axis=1)
x
```

Out[72]:

37.8	69.2
39.3	45.1
45.9	69.3
41.3	58.5
10.8	58.4
3.7	13.8
4.9	8.1
9.3	6.4
42.0	66.2
8.6	8.7
	41.3 10.8 3.7 4.9 9.3 42.0

200 rows × 3 columns

```
In [78]: print(x_train.shape)
    print(x_test.shape)
    print(y_train.shape)
    print(y_test.shape)
```

```
(170, 3)
(30, 3)
(170,)
(30,)
```

```
In [80]: from sklearn.linear_model import LinearRegression
lr=LinearRegression()
model=lr.fit(x_train,y_train)
print("m =" ,model.coef_)
print("c =" ,model.intercept_)

m = [ 0.04666462  0.18481678 -0.00121229]
c = 2.898009326357265

In [81]: y_pred=model.predict(x_test)
print(y_pred)

[21.8561195  16.43070013  7.61358579  17.81414167  18.64171793  23.81414579
        16.29442126  13.26019548  9.10013819  17.24141586  14.3795469  9.89375986
        17.34765633  16.79371444  14.88188303  15.48747719  12.40242285  17.2108581
        11.28920355  18.17106497  9.35301379  12.68796292  8.76659008  10.48401019
        11.33546207  15.00377232  9.8013108  19.48893945  18.43960804  17.16086278]
```

In [83]: diff=pd.DataFrame({"actual":y_test,"predicted":y_pred})
diff

Out[83]:

	actual	predicted
58	23.8	21.856120
40	16.6	16.430700
34	9.5	7.613586
102	14.8	17.814142
184	17.6	18.641718
198	25.5	23.814146
95	16.9	16.294421
4	12.9	13.260195
29	10.5	9.100138
168	17.1	17.241416
171	14.5	14.379547
18	11.3	9.893760
11	17.4	17.347656
89	16.7	16.793714
110	13.4	14.881883
118	15.9	15.487477
159	12.9	12.402423
35	12.8	17.210858
136	9.5	11.289204
59	18.4	18.171065
51	10.7	9.353014
16	12.5	12.687963
44	8.5	8.766590
94	11.5	10.484010
31	11.9	11.335462
162	14.9	15.003772
38	10.1	9.801311
28	18.9	19.488939
193	19.6	18.439608
27	15.9	17.160863

```
In [84]: from sklearn.metrics import mean_absolute_error
mae=mean_absolute_error(y_test,y_pred)
print(mae)
```

0.984560464503767

```
In [85]: from sklearn.metrics import mean_squared_error
    mse=mean_squared_error(y_test,y_pred)
    print(mse)
```

1.8945245763596135

```
In [86]: from sklearn.metrics import r2_score
    rs=r2_score(y_test,y_pred)
    print(rs)
```

0.882855181551423

Multiple linear regression model-2

```
In [91]: import pandas as pd
    df=pd.read_csv("insurance_03-06.csv")
    df
```

Out[91]:

	age	sex	bmi	children	smoker	region	expenses
0	19	female	27.9	0	yes	southwest	16884.92
1	18	ma l e	33.8	1	no	southeast	1725.55
2	28	ma l e	33.0	3	no	southeast	4449.46
3	33	ma l e	22.7	0	no	northwest	21984.47
4	32	ma l e	28.9	0	no	northwest	3866.86
1333	50	ma l e	31.0	3	no	northwest	10600.55
1334	18	female	31.9	0	no	northeast	2205.98
1335	18	female	36.9	0	no	southeast	1629.83
1336	21	female	25.8	0	no	southwest	2007.95
1337	61	female	29.1	0	yes	northwest	29141.36

1338 rows × 7 columns

```
In [92]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1338 entries, 0 to 1337
Data columns (total 7 columns):
```

#	Column	Non-N	Null Count	Dtype
0	age	1338	non-null	int64
1	sex	1338	non-null	object
2	bmi	1338	non-null	float64
3	children	1338	non-null	int64
4	smoker	1338	non-null	object
5	region	1338	non-null	object
6	expenses	1338	non-null	float64
dtyp	es: float6	4(2),	int64(2),	object(3)
memo	rv usage:	73.3+	KB	

memory usage: 73.3+ KB

In [93]: df.drop(["sex","children","region"],axis=1,inplace=True)

Out[93]:

	age	bmi	smoker	expenses
0	19	27.9	yes	16884.92
1	18	33.8	no	1725.55
2	28	33.0	no	4449.46
3	33	22.7	no	21984.47
4	32	28.9	no	3866.86
1333	50	31.0	no	10600.55
1334	18	31.9	no	2205.98
1335	18	36.9	no	1629.83
1336	21	25.8	no	2007.95
1337	61	29.1	yes	29141.36

1338 rows × 4 columns

```
In [97]: df1=pd.get_dummies(df,drop_first=True)
df1
```

Out[97]:

	age	bmi	expenses	smoker_yes
0	19	27.9	16884.92	1
1	18	33.8	1725.55	0
2	28	33.0	4449.46	0
3	33	22.7	21984.47	0
4	32	28.9	3866.86	0
1333	50	31.0	10600.55	0
1334	18	31.9	2205.98	0
1335	18	36.9	1629.83	0
1336	21	25.8	2007.95	0
1337	61	29.1	29141.36	1

1338 rows × 4 columns

16884.92

```
In [103]: from sklearn.model_selection import train_test_split
    y=df1['expenses']
y
```

```
Out[103]: 0
```

```
1
         1725.55
2
         4449.46
3
        21984.47
4
          3866.86
           . . .
1333
        10600.55
1334
          2205.98
1335
          1629.83
1336
         2007.95
1337
        29141.36
```

Name: expenses, Length: 1338, dtype: float64

```
In [104]: x=df1.drop('expenses',axis=1)
x
```

Out[104]:

	age	bmi	smoker_yes
0	19	27.9	1
1	18	33.8	0
2	28	33.0	0
3	33	22.7	0
4	32	28.9	0
1333	50	31.0	0
1334	18	31.9	0
1335	18	36.9	0
1336	21	25.8	0
1337	61	29.1	1

1338 rows × 3 columns

```
In [105]:
          print(type(x))
          print(type(y))
          <class 'pandas.core.frame.DataFrame'>
          <class 'pandas.core.series.Series'>
In [106]: print(x.shape)
          print(y.shape)
          (1338, 3)
           (1338,)
In [110]:
          x_train,x_test,y_train,y_test=train_test_split(x,y,train_size=0.85,random_state
          print(x_train.shape)
          print(x_test.shape)
          print(y_train.shape)
          print(y_test.shape)
          (1137, 3)
          (201, 3)
          (1137,)
```

(201,)

```
In [112]: y_pred=model.predict(x_test)
print(y_pred)
```

```
[ 4.66662368e+03
                  1.33010678e+04
                                   1.34653152e+04
                                                   1.28193039e+04
  1.04531758e+03
                  3.12026024e+04
                                   1.31016999e+04
                                                   1.21308741e+04
  3.76778485e+03
                  3.02539216e+04
                                   1.18854074e+04
                                                   1.72896696e+04
  8.86756871e+03
                  8.61286966e+03
                                   4.06122202e+03
                                                   1.05509036e+04
  4.29383875e+03
                  6.38320741e+03
                                   1.53904365e+04
                                                   1.51357374e+04
                                   9.24596826e+03
  1.25646049e+04
                  3.24170861e+04
                                                   9.94182153e+03
  2.71199666e+03
                  8.16435467e+03
                                   8.37108330e+03
                                                   1.15236009e+04
  7.49432680e+03
                  4.39165114e+03
                                   1.43900422e+04
                                                   5.90331509e+03
  3.32255987e+04
                  2.72951572e+04
                                   3.29597957e+04
                                                   1.00008958e+04
  3.12247474e+04
                  2.58702645e+04
                                   1.59459962e+04
                                                   3.36224001e+04
  6.22444920e+03
                  1.44712615e+04
                                   1.03183495e+04
                                                   1.55787005e+04
                                   4.86411999e+03
  4.05573278e+03
                  1.31718781e+04
                                                   2.95746614e+04
  7.53499914e+03
                                   1.43734491e+04
                                                   1.22157738e+04
                  1.24538798e+04
                                                   1.07797145e+04
  2.26535321e+03
                  8.35817060e+03
                                   2.56229262e+04
  3.37608222e+04
                  1.52114048e+04
                                   2.16198890e+03
                                                   6.75967273e+03
  7.26913354e+03
                  1.49696184e+04
                                   2.72693318e+04
                                                   3.38570492e+03
  1.58075741e+04
                  1.12098276e+04
                                   1.03404946e+04
                                                   1.09477678e+04
  1.24649429e+03
                                   3.66992504e+04
                                                   3.23635637e+04
                  2.50193961e+04
  2.59571964e+03
                  1.03552788e+04
                                   1.41316627e+04
                                                   3.45138782e+04
  3.16606358e+03
                  4.88445616e+03
                                   1.10954221e+04
                                                   9.81631220e+03
 -6.80435782e+02
                  1.34081125e+04
                                   1.01577825e+04
                                                   4.02248391e+03
  3.30428239e+04
                  3.31239805e+04
                                   7.45190830e+03
                                                   3.75667119e+04
  1.17838519e+04
                  9.63908936e+03
                                   3.02354569e+04
                                                   3.25611227e+04
                                                   1.16325172e+04
  1.45838581e+04
                  1.11784503e+04
                                   6.18947609e+02
  9.95105385e+03
                  1.49234568e+04
                                   1.51301855e+04
                                                   5.06535939e+03
  1.40855011e+04
                  2.64092311e+04
                                   2.78046180e+04
                                                   2.82050999e+04
  3.62138688e+04
                  2.72065771e+04
                                   1.27787162e+03
                                                   9.77015062e+03
  4.97116470e+03
                                   6.12295643e+03
                                                   4.73124988e+03
                  1.22471511e+04
  1.43475829e+03
                  1.79375524e+04
                                   3.23805056e+03
                                                   2.53296497e+03
  1.04751735e+04
                  1.28544243e+04
                                   1.01484875e+04
                                                   3.79729064e+03
  9.62804819e+03
                  1.22452796e+04
                                   8.10528039e+03
                                                   7.55159223e+03
  3.68930663e+04
                  1.18373743e+04
                                   1.08665485e+04
                                                   2.91058729e+04
  3.59480032e+04
                  1.16749357e+04
                                   2.90116782e+04
                                                   8.55329335e+01
  7.19533771e+03
                  3.21623870e+04
                                   9.21459093e+03 -8.59906805e+00
  1.56026762e+03
                  5.28493804e+03
                                   7.85800479e+03
                                                   1.23117147e+04
  1.46650774e+04
                  8.45411145e+03
                                   2.91280179e+04
                                                   1.65348047e+04
  1.36554508e+04
                  1.15568498e+04
                                   2.49235533e+03
                                                   9.48220269e+03
  4.31224069e+03
                  5.55448403e+03
                                   1.19887090e+04
                                                   5.04502322e+03
  1.38824529e+04
                  1.30629618e+04
                                   1.36886370e+04
                                                   7.95394564e+03
  1.19905805e+04
                  1.05472232e+04
                                   9.67233823e+03
                                                   5.36247695e+03
  6.67851612e+03
                  4.06066956e+04
                                   1.37182054e+04
                                                   4.76262722e+03
  7.32820782e+03
                  5.62640832e+03
                                   3.27548760e+04
                                                   1.17986362e+04
  1.16915915e+04
                  6.64345840e+03
                                   6.26137847e+03
                                                   6.78924121e+03
  3.31905409e+04
                  3.51322552e+04
                                   2.35580483e+03
                                                   7.03845104e+03
  5.61349562e+03
                  1.41039658e+04
                                   1.29820779e+03
                                                   1.12780715e+04
  1.34856514e+04
                  1.13612250e+04
                                   1.07170226e+04
                                                   1.24722817e+04
  2.14907619e+03
                  2.85299771e+04
                                   3.12545393e+03
                                                   1.50286300e+04
  6.79853622e+03
                  8.54088267e+03
                                   1.45930904e+04
                                                   3.89897958e+04
  3.05165810e+03
                                   4.59101900e+03
                                                   8.31943249e+03
                  1.21511695e+03
  7.05136374e+03
                  4.57249167e+03
                                   9.51177117e+03
                                                   9.37147760e+03
  9.98424003e+03]
```

```
In [113]: diff=pd.DataFrame({"actual":y_test,"predicated":y_pred})
diff
```

Out[113]:

	actual	predicated
559	1646.43	4666.623676
1087	11353.23	13301.067793
1020	8798.59	13465.315239
460	10381.48	12819.303931
802	2103.08	1045.317580
891	7243.81	7051.363739
414	2134.90	4572.491675
258	11520.10	9511.771173
538	8233.10	9371.477595
929	6289.75	9984.240030

201 rows × 2 columns

```
In [114]: from sklearn.metrics import mean_absolute_error
    mae=mean_absolute_error(y_test,y_pred)
    print(mae)
```

4019.341739524793

```
In [115]: from sklearn.metrics import mean_squared_error
    mse=mean_squared_error(y_test,y_pred)
    print(mse)
```

36946790.51390431

```
In [116]: from sklearn.metrics import r2_score
    rs=r2_score(y_test,y_pred)
    print(rs)
```

0.739443551121639

Model-3

Out[1]:

	Car_Name	Year	Selling_Price	Present_Price	Driven_kms	Fuel_Type	Selling_type	Transmi
0	ritz	2014	3.35	5.59	27000	Petrol	Dealer	N
1	sx4	2013	4.75	9.54	43000	Diesel	Dealer	٨
2	ciaz	2017	7.25	9.85	6900	Petrol	Dealer	٨
3	wagon r	2011	2.85	4.15	5200	Petrol	Dealer	٨
4	swift	2014	4.60	6.87	42450	Diesel	Dealer	٨
296	city	2016	9.50	11.60	33988	Diesel	Dealer	Ν
297	brio	2015	4.00	5.90	60000	Petrol	Dealer	٨
298	city	2009	3.35	11.00	87934	Petrol	Dealer	٨
299	city	2017	11.50	12.50	9000	Diesel	Dealer	٨
300	brio	2016	5.30	5.90	5464	Petrol	Dealer	٨

301 rows × 9 columns

In [2]: car.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 301 entries, 0 to 300
Data columns (total 9 columns):

COTAMMID (COCAT	5 0010111115/1	
Column	Non-Null Count	Dtype
Car_Name	301 non-null	object
Year	301 non-null	int64
Selling_Price	301 non-null	float64
Present_Price	301 non-null	float64
Driven_kms	301 non-null	int64
Fuel_Type	301 non-null	object
Selling_type	301 non-null	object
Transmission	301 non-null	object
Owner	301 non-null	int64
es: float64(2),	int64(3), object	t(4)
ry usage: 21.3+	KB	
	Column Car_Name Year Selling_Price Present_Price Driven_kms Fuel_Type Selling_type Transmission Owner es: float64(2),	Column Non-Null Count

localhost:8888/notebooks/unit-5.ipynb#

In [3]: car.drop("Car_Name",axis=1,inplace=True)
car

Out[3]:

	Year	Selling_Price	Present_Price	Driven_kms	Fuel_Type	Selling_type	Transmission	Own
0	2014	3.35	5.59	27000	Petrol	Dealer	Manual	
1	2013	4.75	9.54	43000	Diesel	Dealer	Manual	
2	2017	7.25	9.85	6900	Petrol	Dealer	Manual	
3	2011	2.85	4.15	5200	Petrol	Dealer	Manual	
4	2014	4.60	6.87	42450	Diesel	Dealer	Manual	
296	2016	9.50	11.60	33988	Diesel	Dealer	Manual	
297	2015	4.00	5.90	60000	Petrol	Dealer	Manual	
298	2009	3.35	11.00	87934	Petrol	Dealer	Manual	
299	2017	11.50	12.50	9000	Diesel	Dealer	Manual	
300	2016	5.30	5.90	5464	Petrol	Dealer	Manual	

301 rows × 8 columns

In [4]: car['Age']=2024-car['Year']
 car

Out[4]:

	Year	Selling_Price	Present_Price	Driven_kms	Fuel_Type	Selling_type	Transmission	Own
0	2014	3.35	5.59	27000	Petrol	Dealer	Manual	
1	2013	4.75	9.54	43000	Diesel	Dealer	Manual	
2	2017	7.25	9.85	6900	Petrol	Dealer	Manual	
3	2011	2.85	4.15	5200	Petrol	Dealer	Manual	
4	2014	4.60	6.87	42450	Diesel	Dealer	Manual	
296	2016	9.50	11.60	33988	Diesel	Dealer	Manual	
297	2015	4.00	5.90	60000	Petrol	Dealer	Manual	
298	2009	3.35	11.00	87934	Petrol	Dealer	Manual	
299	2017	11.50	12.50	9000	Diesel	Dealer	Manual	
300	2016	5.30	5.90	5464	Petrol	Dealer	Manual	

301 rows × 9 columns

In [5]: car.drop("Year",axis=1,inplace=True)
 car

Out[5]:

	Selling_Price	Present_Price	Driven_kms	Fuel_Type	Selling_type	Transmission	Owner	Ag
0	3.35	5.59	27000	Petrol	Dealer	Manual	0	1
1	4.75	9.54	43000	Diesel	Dealer	Manual	0	1
2	7.25	9.85	6900	Petrol	Dealer	Manual	0	
3	2.85	4.15	5200	Petrol	Dealer	Manual	0	1
4	4.60	6.87	42450	Diesel	Dealer	Manual	0	1
296	9.50	11.60	33988	Diesel	Dealer	Manual	0	
297	4.00	5.90	60000	Petrol	Dealer	Manual	0	
298	3.35	11.00	87934	Petrol	Dealer	Manual	0	1
299	11.50	12.50	9000	Diesel	Dealer	Manual	0	
300	5.30	5.90	5464	Petrol	Dealer	Manual	0	

301 rows × 8 columns

Out[8]:

	Selling_Price	Present_Price	Driven_kms	Owner	Age	Fuel_Type_Diesel	Fuel_Type_Petrol
0	3.35	5.59	27000	0	10	0	1
1	4.75	9.54	43000	0	11	1	0
2	7.25	9.85	6900	0	7	0	1
3	2.85	4.15	5200	0	13	0	1
4	4.60	6.87	42450	0	10	1	0
296	9.50	11.60	33988	0	8	1	0
297	4.00	5.90	60000	0	9	0	1
298	3.35	11.00	87934	0	15	0	1
299	11.50	12.50	9000	0	7	1	0
300	5.30	5.90	5464	0	8	0	1

301 rows × 9 columns

```
In [9]: from sklearn.model_selection import train_test_split
          y=car1['Selling_Price']
          У
 Out[9]: 0
                    3.35
          1
                    4.75
          2
                    7.25
          3
                    2.85
          4
                   4.60
                   . . .
          296
                   9.50
          297
                   4.00
          298
                   3.35
          299
                  11.50
          300
                    5.30
          Name: Selling_Price, Length: 301, dtype: float64
In [10]: x=car1.drop("Selling_Price",axis=1)
          Х
Out[10]:
                Present_Price Driven_kms Owner Age Fuel_Type_Diesel Fuel_Type_Petrol Selling_type_In
             0
                        5.59
                                   27000
                                              0
                                                  10
                                                                    0
             1
                                   43000
                                                                                    0
                        9.54
                                              0
                                                  11
                                                                    1
             2
                                    6900
                                                                    0
                        9.85
                                              0
                                                   7
                                                                                     1
             3
                        4.15
                                    5200
                                              0
                                                  13
                                                                    0
                                                                                     1
                                              0
                                                  10
                                                                                    0
             4
                        6.87
                                   42450
                                                                    1
                                              ...
                                                   ...
           296
                        11.60
                                   33988
                                              0
                                                   8
                                                                    1
                                                                                    0
           297
                        5.90
                                   60000
                                              0
                                                   9
                                                                    0
                                                                                     1
           298
                        11.00
                                   87934
                                              0
                                                  15
                                                                    0
                                                                                     1
           299
                        12.50
                                    9000
                                              0
                                                   7
                                                                                    0
                                                                    1
           300
                        5.90
                                    5464
                                              0
                                                   8
                                                                    0
                                                                                     1
          301 rows × 8 columns
In [11]:
          print(type(x))
          print(type(y))
          <class 'pandas.core.frame.DataFrame'>
          <class 'pandas.core.series.Series'>
In [12]: print(x.shape)
          print(y.shape)
          (301, 8)
           (301,)
```

```
In [13]: x_train,x_test,y_train,y_test=train_test_split(x,y,train_size=0.85,random_state
         print(x_train.shape)
         print(x_test.shape)
         print(y_train.shape)
         print(y_test.shape)
         (255, 8)
         (46, 8)
         (255,)
         (46,)
In [14]: | from sklearn.linear_model import LinearRegression
         lr=LinearRegression()
         model=lr.fit(x_train,y_train)
         print("m =" ,model.coef_)
         print("c =" ,model.intercept_)
         m = \begin{bmatrix} 4.35302568e-01 & -5.74656638e-06 & 3.09388161e-01 & -3.92843790e-01 \end{bmatrix}
           2.25837305e+00 5.10872356e-01 -1.21081820e+00 -1.83023303e+00]
         c = 6.805277248730253
In [15]: y_pred=model.predict(x_test)
         y_pred
Out[15]: array([ 7.78693357, 2.99462971, -0.50679037, 4.18535814,
                                                                      0.52057204,
                  5.76800596, 1.91861631, 2.61742261, 7.67505414,
                                                                      0.9729874,
                  8.07083232, 3.5281268, 4.88005217, 4.60002113, -2.04896272,
                  3.07278595, 7.92318893, 6.74538423, 6.87869784, 7.95766833,
                 4.25721114, 4.07722942, 11.29456886, 8.02126452,
                                                                      9.47602518,
                  3.45113708, 3.87626941, 1.05764871, -0.56181678, -0.54720019,
                  0.03389518, -1.19234707, 4.26949393, 20.55308353, 18.62280514,
                  4.27026138, 3.52636571, 1.64807387, -0.02518064, 5.76668222,
                  7.97846986, 9.80428476, 0.40823392, 6.05156627, 5.83961851,
                 4.32779026])
```

In [17]: diff=pd.DataFrame({"actual":y_test,"predicated":y_pred})
diff

Out[17]:

	actual	predicated
285	7.40	7.786934
248	4.00	2.994630
150	0.50	-0.506790
217	3.15	4.185358
107	1.25	0.520572
206	5.75	5.768006
132	0.75	1.918616
73	2.65	2.617423
288	8.40	7.675054
157	0.48	0.972987
267	8.35	8.070832
88	3.45	3.528127
300	5.30	4.880052
58	4.10	4.600021
192	0.20	-2.048963
177	0.35	3.072786
11	6.85	7.923189
230	6.15	6.745384
224	5.11	6.878698
29	7.45	7.957668
27	6.00	4.257211
293	3.25	4.077229
78	5.25	11.294569
12	7.50	8.021265
85	2.50	9.476025
18	3.25	3.451137
298	3.35	3.876269
139	0.60	1.057649
180	0.30	-0.561817
176	0.35	-0.547200
182	0.30	0.033895
197	0.16	-1.192347
202	4.40	4.269494
59	19.99	20.553084
51	23.00	18.622805

In [18]:

In [19]:

In [20]:

In [21]:

Out[21]:

In [27]:

In [29]:

	actual	predicated
89	4.75	4.270261
240	3.75	3.526366
120	1.05	1.648074
19 ⁻	0.20	-0.025181
22	4.50	5.766682
250	10.25	7.978470
250	12.90	9.804285
193	0.20	0.408234
4	4.60	6.051566
70	3.95	5.839619
294	3.75	4.327790
mae		rn.metrics import mean_absolute_error bsolute_error(y_test,y_pred)
1.1	9191117	38890504
mse		rn.metrics import mean_squared_error quared_error(y_test,y_pred)
3.4	6831075	8909892
rs=		rn.metrics import r2_score e(y_test,y_pred)
0.8	4041697	53392161
х.с	olumns	
Ind	'Fu	resent_Price', 'Driven_kms', 'Owner', 'Age', 'Fuel_Type_Diesel', rel_Type_Petrol', 'Selling_type_Individual', 'Transmission_Manual'], re='object')
	red=mod nt(y_pr	el.predict([[425000,100000,0,8,0,1,0,0]]) ed)
[18	5007.19	02717]
	red=mod nt(y_pr	el.predict([[80000,425000,0,8,0,1,0,0]]) ed)
[34	825.936	57286]

MODEL-4

```
In [31]: import pandas as pd
import numpy as np
olm=pd.read_csv("olympic100m.csv")
olm
```

Out[31]:

	year	time
0	1896	12.00
1	1900	11.00
2	1904	11.00
3	1906	11.20
4	1908	10.80
5	1912	10.80
6	1920	10.80
7	1924	10.60
8	1928	10.80
9	1932	10.30
10	1936	10.30
11	1948	10.30
12	1952	10.40
13	1956	10.50
14	1960	10.20
15	1964	10.00
16	1968	9.95
17	1972	10.14
18	1976	10.06
19	1980	10.25
20	1984	9.99
21	1988	9.92
22	1992	9.96
23	1996	9.84
24	2000	9.87
25	2004	9.85
26	2008	9.69
27	2012	9.63
28	2016	9.81

```
In [32]: olm.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 29 entries, 0 to 28
         Data columns (total 2 columns):
               Column Non-Null Count Dtype
          0
               year
                       29 non-null
                                        int64
               time
                       29 non-null
          1
                                        float64
         dtypes: float64(1), int64(1)
         memory usage: 592.0 bytes
In [33]: from sklearn.model_selection import train_test_split
         y=olm['time']
         У
Out[33]: 0
                12.00
         1
                11.00
         2
                11.00
                11.20
          3
                10.80
         4
          5
                10.80
         6
                10.80
         7
                10.60
         8
                10.80
                10.30
         9
                10.30
         10
         11
                10.30
         12
                10.40
         13
                10.50
         14
                10.20
                10.00
         15
         16
                9.95
                10.14
         17
         18
                10.06
         19
                10.25
         20
                 9.99
         21
                 9.92
                 9.96
         22
         23
                 9.84
         24
                 9.87
         25
                 9.85
         26
                 9.69
                 9.63
         27
                 9.81
         28
         Name: time, dtype: float64
```

Out[37]:

7]:		
		year
	0	1896
	1	1900
	2	1904
	3	1906
	4	1908
	5	1912
	6	1920
	7	1924
	8	1928
	9	1932
	10	1936
	11	1948
	12	1952
	13	1956
	14	1960
	15	1964
	16	1968
	17	1972
	18	1976
	19	1980
	20	1984
	21	1988
	22	1992
	23	1996
	24	2000
	25	
		2004
	26	2008
	27	2012
	28	2016
_ 1		

```
In [38]: print(type(x))
print(type(y))
```

```
<class 'pandas.core.frame.DataFrame'>
<class 'pandas.core.series.Series'>
```

```
In [39]:
          print(x.shape)
          print(y.shape)
          (29, 1)
          (29,)
In [40]:
         x_train,x_test,y_train,y_test=train_test_split(x,y,train_size=0.85,random_state
          print(x_train.shape)
          print(x_test.shape)
          print(y_train.shape)
          print(y_test.shape)
          (24, 1)
          (5, 1)
          (24,)
          (5,)
In [41]: from sklearn.linear_model import LinearRegression
          lr=LinearRegression()
          model=lr.fit(x_train,y_train)
          print("m = " ,model.coef_)
print("c = " ,model.intercept_)
          m = [-0.0129917]
          c = 35.764216687315766
In [42]: y_pred=model.predict([[2024]])
          print(y_pred)
          [9.46902066]
In [ ]:
```