OREGON STATE UNIVERSITY

Project Group 21

CS 325: Project 3

Colin Bradford Charles Jenkins Albert Le

May 23, 2015

1 Problem 1

Part A:

i. Linear Problem Formulation

Let each route be represented as variables of the form "SourceDestination." For example a route from Plant 1 to Warehouse 1 would be "p1w1."

Objective function:

Minimize:

```
10~p1w1+15~p1w2+11~p2w1+8~p2w2+13~p3w1+8~p3w2+9~p3w3+14~p4w2+8~p4w3+5~w1r1+6~w1r2+7~w1r3+10~w1r4+12~w2r3+8~w2r4+10~w2r5+14~w2r6+14~w3r4+12~w3r5+12~w3r6+6~w3r7
```

Subject To:

```
Supply Constraints:
```

```
\begin{array}{l} p1w1 + p1w2 = 150 \\ p2w1 + p2w2 = 450 \\ p3w1 + p3w2 + p3w3 = 250 \\ p4w2 + p4w3 = 150 \end{array}
```

```
Demand Constraints:
```

```
w1r1 = 100

w1r2 = 150

w1r3 + w2r3 = 100

w1r4 + w2r4 + w3r4 = 200

w2r5 + w3r5 = 200

w2r6 + w3r6 = 150

w3r7 = 100
```

Balancing Constraints:

```
\begin{array}{l} p1w1+p2w1+p3w1-w1r1-w1r2-w1r3-w1r4<=0\\ p1w2+p2w2+p3w2+p4w2-w2r3-w2r4-w2r5-w2r6<=0\\ p3w3+p4w3-w3r4-w3r5-w3r6-w3r7<=0 \end{array}
```

Non-negativity Constraints:

p1w1, p1w2, p2w1, p2w2, p3w1, p3w2, p3w3, p4w2, p4w3, w1r1, w1r2, w1r3, w1r4, w2r3, w2r4, w2r5, w2r6, w3r4, w3r5, w3r6, w3r7 >= 0

ii. LINDO Code and Output

```
MIN 10 p1w1 + 15 p1w2 + 11 p2w1 + 8 p2w2 + 13 p3w1 + 8 p3w2 + 9 p3w3
 + 14 p4w2 + 8 p4w3 + 5 w1r1 + 6 w1r2 + 7 w1r3 + 10 w1r4 + 12 w2r3
  + 8  w2r4 + 10 w2r5 + 14 w2r6 + 14 w3r4 + 12 w3r5 + 12 w3r6 + 6 w3r7
   p1w1 + p1w2 = 150
   p2w1 + p2w2 = 450
   p3w1 + p3w2 + p3w3 = 250
   p4w2 + p4w3 = 150
   w1r1 = 100
   w1r2 = 150
   w1r3 + w2r3 = 100
   w1r4 + w2r4 + w3r4 = 200
   w2r5 + w3r5 = 200
   w2r6 + w3r6 = 150
   w3r7 = 100
   p1w1 + p2w1 + p3w1 - w1r1 - w1r2 - w1r3 - w1r4 <= 0
   p1w2 + p2w2 + p3w2 + p4w2 - w2r3 - w2r4 - w2r5 - w2r6 \le 0
   p3w3 + p4w3 - w3r4 - w3r5 - w3r6 - w3r7 <= 0
   p1w1 > 0
   p1w2 > 0
   p2w1 > 0
   p2w2 > 0
   p3w1 > 0
   p3w2 > 0
```

p3w3 > 0p4w2 > 0p4w3 > 0w1r1 > 0w1r2 > 0w1r3 > 0w1r4 > 0w2r3 > 0w2r4 > 0w2r5 > 0w2r6 > 0w3r4 > 0 w3r5 > 0w3r6 > 0w3r7 > 0END

LP OPTIMUM FOUND AT STEP 13

OBJECTIVE FUNCTION VALUE

1) 17100.00

VARIABLE	VALUE	REDUCED COST
P1W1	150.000000	0.000000
P1W2	0.000000	8.000000
P2W1	200.000000	0.000000
P2W2	250.000000	0.000000
P3W1	0.000000	2.000000
P3W2	150.000000	0.000000
P3W3	100.000000	0.000000
P4W2	0.000000	7.000000
P4W3	150.000000	0.000000
W1R1	100.000000	0.000000
W1R2	150.000000	0.000000
W1R3	100.000000	0.000000
W1R4	0.000000	5.000000
W2R3	0.000000	2.000000
W2R4	200.000000	0.000000
W2R5	200.000000	0.000000
W2R6	0.000000	1.000000
W3R4	0.000000	7.000000
W3R5	0.000000	3.000000

W3R6	150.000000	0.00000
W3R7	100.000000	0.000000
ROW	SLACK OR SURPLUS	DUAL PRICES
2)	0.00000	-10.000000
3)	0.00000	-11.000000
4)	0.00000	-11.000000
5)	0.00000	-10.000000
6)	0.00000	-5.000000
7)	0.00000	-6.000000
8)	0.00000	-7.000000
9)	0.00000	-5.000000
10)	0.00000	-7.000000
11)	0.00000	-10.000000
12)	0.00000	-4.000000
13)	0.00000	0.000000
14)	0.00000	3.000000
15)	0.00000	2.000000
16)	150.000000	0.000000
17)	0.00000	0.000000
18)	200.000000	0.000000
19)	250.000000	0.000000
20)	0.00000	0.000000
21)	150.000000	0.000000
22)	100.00000	0.000000
23)	0.00000	0.000000
24)	150.000000	0.000000
25)	100.00000	0.000000
26)	150.000000	0.000000
27)	100.00000	0.000000
28)	0.00000	0.000000
29)	0.00000	0.000000
30)	200.000000	0.000000
31)	200.000000	0.000000
32)	0.00000	0.000000
33)	0.000000	0.000000
34)	0.00000	0.000000
35)	150.000000	0.000000
36)	100.000000	0.00000
•		

NO. ITERATIONS= 13

iii. Optimal Shipping Routes and Minimum Cost

The optimal shipping routes and quantity of refrigerators per route are:

Route	Refrigerators
P1W1	150
P2W1	200
P2W2	250
P3W2	150
P3W3	100
P4W3	150
W1R1	100
W1R2	150
W1R3	100
W2R4	200
W2R5	200
W3R6	150
W3R7	100

The optimal minimum cost is \$17,100

Part B:

Part C:

Part D:

2 Problem 2

Part A:

i.

ii.

iii.

Part B:

i.

ii.

iii.

Part C:

i.

ii.

iii.

3 Problem 3

Part A:

i

ii.

iii.

Part B:

i.

ii.

iii.

iv.

Part C: