Introduction CS 411/507 - Cryptography

Erkay Savaş / Atıl Utku Ay

Faculty of Engineering and Natural Sciences
Sabanci University

October 1, 2023

Instructors

- Erkay Savaş
 - erkays@sabanciuniv.edu
 - erkay.savas@sabanciuniv.edu
- Atıl Utku Ay
 - utku.ay@sabanciuniv.edu
 - atilutkuay@sabanciuniv.edu

Announcements - I

Textbook

Nigel P. Smart. Cryptography Made Simple. Springer, 2016.
 ISBN 978-3-319-21936-3

Additional Resources

- W. Trappe & L. C. Washington. Introduction to Cryptography with Coding Theory, 2nd Edition, Prentice-Hall, 2006. ISBN:0-13-198199-4.
- C. Paar & J. Pelzl. Understanding Cryptography. Springer 2010. ISBN: 978-3-642-04100-6
- D. R. Stinson, Cryptography: Theory and Practice, 3rd Edition, Chapman & Hall/CRC, 2006.
- A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied Cryptography, CRC Press, 1997.

Announcements - II

- Python programming language may be used for homework assignments
- Python support for number theory and cryptography
 - https://pypi.python.org/pypi/eulerlib/0.2
 - https://pypi.python.org/pypi/pycrypto

Announcements - III

- Grading Policy
 - Midterm exam 30%
 - Final exam 40%
 - Homeworks 15%
 - Term Project 15%
- Lectures will not be streamed and/or recorded.

Subjects to be Covered

- Classic Ciphers
- Number Theory & Other Math Background
- Stream Ciphers
- Block Ciphers & DES & AES
- Cryptographic Hash Functions
- Public Key Cryptosystems
 - RSA
 - Discrete Logarithm Based Cryptosystems
 - Elliptic Curve Cryptography
 - Post Quantum Cryptography (if time permits)
- Digital Signatures
- Key Management & Distribution
- Zero Knowledge Protocols (if time permits)
- Secret Sharing (if time permits)

Terminology

Cryptology

 All-inclusive term used for the study of secure and trusted systems operating in insecure media and related problems.

Cryptography

 The process of designing/constructing/implementing cryptographic systems to realize security and trust in cyberspace which is intrinsically insecure and not-trustable.

Cryptanalysis

- The discipline of breaking the cryptographic systems
- Without a complete understanding of crypto-analytic techniques it is impossible to design good (secure, unbreakable) cryptographic systems

Cryptography

- People want/need security, privacy, and trust in the cyberspace.
 - e.g., secure communication over insecure media
- For these, cryptography provides
 - Primitives,
 - Methods,
 - Techniques
 - Protocols, algorithms
- In the past, cryptography is heavily used for military applications (e.g., Caesar cipher)
- Nowadays, cryptography is an essential part of the civilian life

Aspects of Cryptography

- Modern cryptography heavily depends on
 - Mathematics
 - Digital systems
- Inter-disciplinary study of three fields:
 - Mathematics
 - Computer Science
 - Electrical/Electronics Engineering
- Other Disciplines
 - coding theory, complexity theory, statistics, physics

Basic Communication Scenario

Eve's Goals

- Passive adversary
 - Read the message
 - Figure out the decryption key and read all messages encrypted with this key
- Active adversary
 - Modify the contents of the message
 - Bob will think Alice sent the altered message
 - 2 Impersonate Alice
 - Communicate with Bob who thinks he is communicating with Alice

Kerckhkoffs' Principle

- Complete knowledge of the algorithm is public
 - While assessing the strength of a cryptosystem, one should always assume that the enemy knows the cryptographic algorithm used
- The security of the system should be based on
 - the quality (strength) of the algorithm, but not its obscurity
 - the key space (or key length)

Attack Methods

- Ciphertext only
 - Eve has access only to the ciphertext
- Known Plaintext
 - Eve has pairs of ciphertext and the corresponding plaintext and tries to deduce the key
- Chosen Plaintext
 - Eve can have a ciphertext corresponding to a sample plaintext which she believes is useful in deducing the key
- Chosen Ciphertext
 - Eve can have a plaintext corresponding to a sample ciphertext which she believes is useful in deducing the key

Symmetric Key Algorithms

- Encryption & decryption keys are known to both
- They are related (if not identical)
 - easy to derive the decryption key once the encryption key is known (and vice versa)
- DES, AES (Rijndael)
- A secret must be known (agreed upon) to communicating parties
 - $\boldsymbol{\mathsf{-}}$ so they can generate encryption and decryption keys
- Key distribution and/or management problem

Public Key Cryptosystems - PKC

- Why public key cryptography?
 - Single key → security problems
 - Key Distribution and Management is difficult in symmetric cryptosystems (DES, 3DES, IDEA, AES (Rijndael)) over large networks.
 - Electronic signatures
 - Other cryptographic applications such as
 - Key exchange,
 - Secret key derivation,
 - Secret sharing functions,
 - Secure multi-party computations,
 - e-voting,
 - e-cash
 - Blockchain
 - Privacy enhancing technologies

Fundamentals of PKC

- Each user has a pair of keys which are generated together under a scheme
 - Private key known only to the owner
 - Public key known to anyone in the systems with assurance
- Encryption and decryption methods are public
- Encryption
 - Sender encrypts the message by the public key of the receiver
- Decryption
 - Only the receiver can decrypt the message by her/his private key

A Non-Mathematical PKC

Aspects of PKC

- Based on a mathematical problem, which we think, is difficult to solve
 - Computationally infeasible
- Powerful tools with their own problems.
 - Computation and resource intensive operations are involved.
 - Implementation is always a challenge.
 - Much slower than the symmetric key algorithms.
 - PKC is not used for encrypting large amount of data
- Example PKCs
 - RSA,
 - DL,
 - Elliptic curve cryptosystems, IBE
 - Lattice-based cryptosystems

Key Length 1/2

- Kerckhkoffs' principle,
 - the strength (security) of cryptosystems based on two important properties:
 - the quality of the algorithm
 - the key length
- The quality of a cryptosystems is hard to measure
 - provable security
 - some attempts to formalize such as <u>random-oracle model</u> and <u>random-oracle model</u> and distinguishability
- Key length must be sufficiently large
 - An adversary should not be able figure out the key simply by trying all possible keys in the key space, <u>brute-force</u> or <u>exhaustive-search</u> attacks

Key Length 2/2

- DES utilizes 56-bit keys
 - key space is 2^{56} (or approximately 7.2×10^{16})
- \bullet Example: Assume there are $2^{100} \approx 10^{30}$ possible keys
 - Further assume we can try 10^{12} keys in a second
 - 3.15×10^7 seconds in a year
 - Takes 3.17×10^{10} years to try out the keys
 - comparable to the predicted lifetime of the universe
 - What about DES?
 - \bullet Couple of days with an optimized hardware (cost \sim \$10,000 US)
 - This explains the switch from 56-bit DES to 128-bit AES

Cryptanalyst's Job

- Brute force (or exhaustive search) is the last resort
- In order to reduce the possible keys to try out one takes advantage
 - Weakness in cryptographic algorithm
 - Weakness in the implementation of cryptographic algorithm
- Longer keys do not necessarily improve the security
 - Effective key length is important

Unbreakable Cryptosystems ??

- Practical Security
 - Almost all of the practical cryptosystems are theoretically breakable given the <u>time</u> and computational resources
- Theoretically unbreakable system:
 - One-time-pad
- One-time pad
 - Requires exchanging a key that is as long as the plaintext.
 - However impractical, it is still being used in certain applications which necessitate very high-level security.
 - Its security relies on the condition that keys are generated using "truly random sources"

Main Objectives of Cryptography

- Confidentiality
 - Hiding contents of messages exchanged in a transaction
- Authentication
 - The origin (owner) of a message is correctly identified
- Integrity
 - Only authorized parties are able to modify data and transmitted information
- Non-repudiation
 - Requires that neither of the authorized parties deny the aspects of a valid transaction

Cryptographic Applications

Digital Signatures

 allows electronically sign (personalize) the electronic documents, messages and transactions

Identification

 is capable of replacing password-based identification methods with more powerful (secure) techniques

Key Establishment

 To communicate a key to your correspondent (or perhaps actually mutually generate it with him) whom you have never physically met before

Secret Sharing

 Distribute parts of a secret to a group of people who can never exploit it individually

Cryptographic Applications

- E-commerce
 - Secure transactions over an insecure channel like Internet
- E-cash (e.g., Bitcoin)
 - The cash can be sent securely through computer networks
 - The cash cannot be copied and reused
 - The spender of the cash can remain anonymous
 - The transaction can be done offline
 - The cash can be transferred to others
 - A piece of cash can be divided into smaller amounts
- Electronic Voting
- Secure Multi-party Computation