CAAM 336 · DIFFERENTIAL EQUATIONS

Problem Set 3

Posted Wednesday 5 September 2012. Due Wednesday 12 September 2012, 5pm.

1. [20 points]

Determine whether each of the following functions (\cdot, \cdot) determines an inner product on the vector space \mathcal{V} . If not, show all the properties of the inner product that are violated.

(a)
$$\mathcal{V} = C^1[0,1], (u,v) = \int_0^1 u(x)v'(x) dx$$
 (b) $\mathcal{V} = C[0,1]$: $(u,v) = \int_0^1 |u(x)||v(x)| dx$ (c) $\mathcal{V} = C[0,1]$: $(u,v) = \int_0^1 u(x)v(x)e^{-x} dx$ (d) $\mathcal{V} = C[0,1]$: $(u,v) = \int_0^1 \left(u(x) + v(x)\right) dx$

2. [20 points]

Suppose \mathcal{V} is a vector space with an associated inner product. The angle $\angle(u,v)$ between u and $v \in \mathcal{V}$ is defined via the equation

$$(u, v) = ||u|| ||v|| \cos \angle (u, v).$$

Let $\mathcal{V} = C[0,1]$ and $(u,v) = \int_0^1 u(x)v(x) dx$. Compute $\cos \angle (x^n,x^m)$ between $u(x) = x^n$ and $v(x) = x^m$ for nonnegative integers m and n. What happens to $\angle (x^n,x^{n+1})$ as $n \to \infty$?

3. [25 points]

Consider the polynomials $\phi_1(x) = 1$, $\phi_2(x) = x$, and $\phi_3(x) = 3x^2 - 1$, which form a basis for the set of all quadratic polynomials. These polynomials are orthogonal in C[-1,1] with the usual inner product

$$(u,v) = \int_{-1}^{1} u(x)v(x) dx.$$

(You do not need to prove this.) In the parts below, "best approximation" is defined with respect to this inner product, and the norm it induces.

Let
$$f(x) = \cos(\pi x)$$
.

- (a) Construct the best approximation $f_1(x) = c_1\phi_1(x)$ to f(x) from span $\{\phi_1\}$ (i.e., determine c_1 to minimize $||f f_1||$ in C[-1, 1]).
- (b) Construct the best approximation $f_2(x) = c_1\phi_1(x) + c_2\phi_2(x)$ to f(x) from span $\{\phi_1, \phi_2\}$.
- (c) Construct the best approximation $f_3(x) = c_1\phi_1(x) + c_2\phi_2(x) + c_3\phi_3(x)$ to f(x) from span $\{\phi_1, \phi_2, \phi_3\}$.
- (d) Produce a plot that superimposes your best approximation from parts (a), (b), and (c) on top of a plot of f(x).

4. [35 points]

Suppose $N \ge 1$ is an integer and define h = 1/(N+1) and $x_j = jh$ for j = 0, ..., N+1.

We can approximate the differential equation

$$\frac{d^2}{dx^2}u = f(x), \quad x \in (0,1),$$

with homogeneous Dirichlet boundary conditions u(0) = u(1) = 0 by the matrix equation

$$\frac{1}{h^2} \begin{bmatrix}
-2 & 1 & & & \\
1 & -2 & 1 & & \\ & 1 & -2 & \ddots & \\ & & \ddots & \ddots & 1 \\ & & & 1 & -2
\end{bmatrix}
\begin{bmatrix}
u_1 \\ u_2 \\ \vdots \\ u_{N-1} \\ u_N
\end{bmatrix} = \begin{bmatrix}
f(x_1) \\ f(x_2) \\ \vdots \\ f(x_{N-1}) \\ f(x_N)
\end{bmatrix},$$

where $u_i \approx u(x_i)$. (Entries of the matrix that are not specified are zero.)

(a) Suppose that $f(x) = 25\pi^2 \cos(5\pi x)$.

Compute and plot the approximate solutions obtained when N = 8, 16, 32, 64, 128.

You may superimpose these on one plot. To solve the linear systems, you may use MATLAB's 'backslash' command: $u = A \setminus f$.

For each value of N compute the maximum error $|u_j - u(x_j)|$, given that the true solution is

$$u(x) = 1 - 2x - \cos(5\pi x).$$

Plot this error using a loglog plot with error on the vertical axis and N on the horizontal axis.

(b) Explain what adjustments to the right hand side of the matrix equation are necessary to accommodate the inhomogeneous Dirichlet boundary conditions

$$u(0) = 1, \quad u(1) = 2.$$

Compute and plot solutions for N = 8, 32, 128.

(c) Now suppose that we have mixed boundary conditions

$$u(0) = 1, \quad \frac{du}{dx}(1) = -5$$

The matrix equation will now have the form

$$\frac{1}{h^2} \begin{bmatrix}
-2 & 1 & & & \\
1 & -2 & 1 & & \\ & 1 & -2 & \ddots & \\ & & \ddots & \ddots & 1 & 0 \\ & & & 1 & -2 & \star \\ & & & \star & \star & \star
\end{bmatrix} \begin{bmatrix}
u_1 \\ u_2 \\ \vdots \\ u_{N-1} \\ u_N \\ u_{N+1}\end{bmatrix} = \begin{bmatrix}
f(x_1) - * \\ f(x_2) \\ \vdots \\ f(x_{N-1}) \\ f(x_N) \\ \star
\end{bmatrix}.$$

Specify values for the entries marked by \star to impose the approximation

$$\frac{du}{dx}(1) \approx \frac{u_{N-1} - 4u_N + 3u_{N+1}}{2h} = -5.$$

Compute and plot solutions for N = 8, 32, 128.

Optional: What happens to the overall accuracy of the approximate solution if, instead of the $O(h^2)$ accurate approximation given above, you only use the O(h) approximation

$$\frac{du}{dx}(1) \approx \frac{u_{N+1} - u_N}{h}?$$