Al Development Workflow Assignment Report

1. Problem Definition

Short Answer (Part 1 Q1)

Problem Definition

Hypothetical Problem: Predicting student dropout rates using academic and demographic data.

Objectives:

- 1. Identify at-risk students with 80% accuracy.
- 2. Reduce dropout rates by 20% within one academic year.
- 3. Allocate counseling resources efficiently.

Stakeholders: School administrators, teachers.

KPI: Precision@80% recall (prioritize minimizing false negatives).

Case Study: Hospital Readmission Prediction

Problem: Predict 30-day readmission risk using EHR data.

Objectives:

- 1. Reduce avoidable readmissions by 15%.
- 2. Flag high-risk patients for post-discharge follow-ups.

Stakeholders: Clinicians, hospital administrators, insurers.

2. Data & Preprocessing

Short Answer (Part 1 Q2)

Data Collection & Preprocessing

Data Sources:

- 1. Student: Grades, attendance, socioeconomic status.
- 2. Institutional: Course difficulty, teacher ratios.

Potential Bias: Dataset lacks part-time student representation.

Preprocessing Steps:

- 1. Impute missing grades with subject-wise medians.
- 2. Normalize test scores (Z-score standardization).
- 3. One-hot encode categorical variables (e.g., school branch).

Case Study Data Strategy

- **Data Sources**:
- 1. Structured EHRs (labs, diagnoses, medications).
- 2. Unstructured discharge summaries (NLP extraction).

Ethical Concerns:

- 1. Privacy: Anonymize PHI (Protected Health Information) per HIPAA.
- 2. Bias: Audit model for disparities by race/insurance status.

3. Model Development

Short Answer (Part 1 Q3)

Model Development

Chosen Model: Random Forest (handles mixed data types, robust to outliers).

Data Splits: 60% train, 20% validation, 20% test (stratified by dropout status).

Hyperparameters:

1. `max_depth=5` (avoid overfitting).

2. `class_weight='balanced'` (address class imbalance).

Case Study Model

Model: Logistic Regression (prioritize interpretability for clinicians).

Confusion Matrix:

Metrics:

- Precision = 83% (TP/(TP+FP) = 100/120).
- Recall = 77% (TP/(TP+FN) = 100/130).

4. Deployment & Ethics

Short Answer (Part 1 Q4)

Evaluation & Deployment

Metrics:

- 1. AUC-ROC (handles class imbalance well).
- 2. F1-score (balances precision/recall).
- **Concept Drift**: Monitor via monthly KS-tests on feature distributions.
- **Deployment Challenge**: Latency → optimize with feature selection.

Case Study Deployment

Steps:					
1. Dockerize model as REST API.					
2. Integrate with hospital EHR using HL7/FHIR standards.					
HIPAA Compliance:					
- Data encryption in transit/at rest.					
- Role-based access control (RBAC).					
5. Critical Thinking					
Ethics & Bias					
Impact of Bias: Underrepresentation of uninsured patients could worsen care disparities.					
Mitigation: Adversarial debasing during training.					
Trade-offs					
Interpretability vs. Accuracy: Use LIME/SHAP explanations with Logistic Regression (5% accuracy trade-off justified for trust).					
Resource Limits: Prioritize lightweight models (e.g., Logistic Regression over deep learning).	r				

6. Workflow Diagram & GitHub Setup

Al Development Workflow

```mermaid

```
flowchart TD

A[Problem Scope] --> B[Data Collection]

B --> C[Preprocessing]

C --> D[Model Training]

D --> E[Evaluation]

E --> F[Deployment]

F --> G[Monitoring]
```

# GitHub Repository

#### Files:

1. preprocess.py:

python

Handle missing data

from sklearn.impute import SimpleImputer

imputer = SimpleImputer(strategy='median')

X\_processed = imputer.fit\_transform(X\_raw)

2. train\_model.py:

python

from sklearn.ensemble import RandomForestClassifier

model = RandomForestClassifier(max\_depth=5)

model.fit(X\_train, y\_train)

3. README.md:

markdown

# # Al Assignment

\*\*Objective\*\*: Predict student dropout/hospital readmission.

\*\*KPI\*\*: Precision@80% recall.