

Introducing our machining tool

Why ultrafast lasers?

Nanosecond pulse duration

- A High removal rate
- Low precision due to melt-dominated ablation
- **V** Debris and burrs
- Pronounced heat affected zone

Pulse duration <10 ps

- High precision due to sublimationdominated ablation
- ▲ Minimal thermal impact
- Processing of practically all materials due to non-linear absorption
- Relatively low removal rate

Group Micro and Nano Structuring

Team structure

Drilling

Transparent Materials

Thin film ablation

- Selective thin film ablation
- Interference patterning
- Surface structuring and functionalization

3D-Structuring

- Structuring of embossing tools
- High-power USP material processing
- Ablation of compound materials
- Scaling approaches (beam splitting and shaping)

Semiconductor

- 3D-Lithography
- Laser-Lift-Off
- Dicing
- Trenching

- Cooling holes for turbomachinery
- Drilling of embossing tools
- **CFRP-Preforms**
- Precision drilling

- USP processing of transparent materials
- Pump & probe analysis
- Integrated optics
- SLE
- Beam shaping

Seite 3

Multibeam processing

Fundamentals

- Split high pulse energy into numerous partial beams (>100 possible)
- Beam splitting achieved with DOEs or other semitransparent mirrors
- **Static** multibeam processing
 - Whole bundle of beams is guided over workpiece simultaneously
 - Suitable for strictly periodic structures or processing of multiple workpieces
- Flexible multibeam processing
 - Each beamlet can be individually modulated
 - Modulation achieved with external AOMs

internal

DOE

Dimensions Gap width: 5 µm Bridge width: 5 µm

Mask

Focussing lens

Multibeam-Array

Galvo-Scanner

Static multibeam processing

Scanner-based high-throughput drilling with >100 beams

- 20000 holes per second possible
- Shaped holes possible
- Applications:
 - Filters
 - **Atomizers**
 - Masks

Static multibeam processing

Polymer foil drilling using ultrafast UV laser

- Holes of 1–5 µm diameter with extremely high reproducibility
- No thermal damage

© Fraunhofer ILT

All kinds of polymer processable

Static multibeam processing

USP-structuring in a continuous production line (1)

Benchmarking productivity for battery production

Multibeam multiscanner module

- High-power ultrafast laser (160 W, 1 mJ)
- 4 scanners with 6 beamlets for each scanner (1 pulse \rightarrow 24 pulses)
- Structuring band material of 250 mm width

MultiFlex project (2019–2023) (1)

- Beam splitter/DOE Laser beam
 - Beamlets (here: $25 = 5 \times 5$)

Modulator Beam switch

Mask

Workpiece

GalvoScanner

Spot array

- **Array of 64 individually switchable beamlets**
- Scan field correction for each beamlet
- **FPGA** based control system
- **Online process monitoring**
- Using 650 kW average laser power
- Large area surface structuring
- Throughput increase by 1-2 orders of magnitude

Funded by

the European Union

MultiFlex project (2019–2023) (2)

Delivery and assembly of Multiflex machine in April 2023

Beam path

Prism stacks

Optical table in machine

MultiFlex project (2019–2023) (3)

Current status

- Alignment of 64 beams ongoing
- Calibration of AOM drivers ongoing

Coming soon

- Tests on use-case: injection molding tool insert with non-periodic micro-lens array for automotive backlighting
- Application lab at ILT

Synchronized 1x8 beam array

Metamorpha project (2022–2026) (1)

- Substitution of conventional "dirty" manufacturing processes
- Arbitrary beam shaping with 2 cascaded SLMs
- Module compatible with 3/5-axis and cylinder structuring setups
- 3D sensor for individualized processes
- Machine-learning algorithms

 Realtime monitoring and closed-loop control for defect-free production
- Re-manufacturing of worn tools

Vertical wall angles

By manipulation of incidence angle

"Optical stamping"

Beam profile = final contour

Metamorpha project (2022–2026) (3)

Approaches for productivity scaling

- Beam splitting
- Adapted dynamic size of focus spot
- Optical stamping
- Realtime monitoring and closed-loop control for defect-free production
- USP process chains (ablation+cleaning+polishing)
 - Re-manufacturing of worn tools
 - Modules can be parallelized

_L\SE\

internal

Carbide punch machined in USP process chain

