1 Математическая модель транспортной задачи

Переменные: Пусть x_{ij} — количество груза, перевозимого из пункта поставки A_i в пункт потребления B_j , где i = 1, 2, 3, j = 1, 2, 3, 4, 5.

Ограничения: 1. По запасам:

$$\begin{cases} x_{11} + x_{12} + x_{13} + x_{14} + x_{15} = 200, \\ x_{21} + x_{22} + x_{23} + x_{24} + x_{25} = 250, \\ x_{31} + x_{32} + x_{33} + x_{34} + x_{35} = 160. \end{cases}$$

2. По потребностям:

$$\begin{cases} x_{11} + x_{21} + x_{31} = 120, \\ x_{12} + x_{22} + x_{32} = 120, \\ x_{13} + x_{23} + x_{33} = 100, \\ x_{14} + x_{24} + x_{34} = 210, \\ x_{15} + x_{25} + x_{35} = 60. \end{cases}$$

3. Неотрицательность:

$$x_{ij} \geq 0 \quad \forall i, j.$$

Целевая функция: Минимизировать общие затраты на перевозку:

$$Z = 10x_{11} + 15x_{12} + 16x_{13} + 12x_{14} + 20x_{15} + 21x_{21} + 9x_{22} + 10x_{23} + 9x_{24} + 7x_{25} + 12x_{31} + 15x_{32} + 16x_{33} + 13x_{34} + 21x_{35} \rightarrow \min.$$
 (1)

2 Метод северо-западного угла

Шаги: 1. Начинаем с верхнего левого угла матрицы (клетка x_{11}). 2. Распределяем груз, пока не исчерпаем запас или потребность.

Распределение:

- 1. $x_{11} = \min(200, 120) = 120$. Остаток в A_1 : 200 120 = 80. Потребность B_1 удовлетворена.
 - $2. x_{12} = \min(80, 120) = 80.$ Остаток в A_1 : 0. Потребность B_2 : 120 80 = 40.
- 3. $x_{22} = \min(250, 40) = 40$. Остаток в A_2 : 250 40 = 210. Потребность B_2 удовлетворена.
- 4. $x_{23} = \min(210, 100) = 100$. Остаток в A_2 : 210 100 = 110. Потребность B_3 удовлетворена.
- 5. $x_{24} = \min(110, 210) = 110$. Остаток в A_2 : 0. Потребность B_4 : 210-110 = 100.
- 6. $x_{34} = \min(160, 100) = 100$. Остаток в A_3 : 160 100 = 60. Потребность B_4 удовлетворена.
- 7. $x_{35} = \min(60,60) = 60$. Остаток в A_3 : 0. Потребность B_5 удовлетворена.

Опорный план:

	B_1	B_2	B_3	B_4	B_5
A_1	120	80	0	0	0
A_2	0	40	100	110	0
A_3	0	0	0	100	60

$$Z = 120 \cdot 10 + 80 \cdot 15 + 40 \cdot 9 + 100 \cdot 10$$

$$+ 110 \cdot 9 + 100 \cdot 13 + 60 \cdot 21$$

$$= 1200 + 1200 + 360 + 1000$$

$$+ 990 + 1300 + 1260$$

$$= 7310.$$
(2)

3 Метод минимальной стоимости

Шаги: 1. На каждом шаге выбираем клетку с минимальной стоимостью. 2. Распределяем груз, пока не исчерпаем запас или потребность.

Распределение: 1. Минимальная стоимость $c_{25} = 7$. $x_{25} = \min(250, 60) = 60$. Остаток в A_2 : 250 - 60 = 190. Потребность B_5 удовлетворена.

- 2. Следующая минимальная стоимость $c_{24}=9$. $x_{24}=\min(190,210)=190$. Остаток в A_2 : 0. Потребность B_4 : 210-190=20.
- 3. Следующая минимальная стоимость $c_{22}=9.$ $x_{22}=\min(190,120)=120.$ Но запас A_2 уже исчерпан. Пропускаем.
- 4. Следующая минимальная стоимость $c_{21}=21$, но это дорого. Лучше $c_{11}=10.$ $x_{11}=\min(200,120)=120.$ Остаток в A_1 : 200-120=80. Потребность B_1 удовлетворена.
- 5. Следующая минимальная стоимость $c_{14} = 12$. $x_{14} = \min(80, 20) = 20$. Остаток в A_1 : 80 20 = 60. Потребность B_4 удовлетворена.
- 6. Следующая минимальная стоимость $c_{12}=15$. $x_{12}=\min(60,120)=60$. Остаток в A_1 : 0. Потребность B_2 : 120-60=60.
- 7. Следующая минимальная стоимость $c_{32} = 15$. $x_{32} = \min(160, 60) = 60$. Остаток в A_3 : 160 60 = 100. Потребность B_2 удовлетворена.
- 8. Следующая минимальная стоимость $c_{23}=10$, но A_2 пуст. $c_{33}=16$. $x_{33}=\min(100,100)=100$. Остаток в A_3 : 0. Потребность B_3 удовлетворена. Опорный план:

	B_1	B_2	B_3	B_4	B_5
A_1	120	60	0	20	0
A_2	0	0	0	190	60
A_3	0	60	100	0	0

Стоимость:

$$Z = 120 \cdot 10 + 60 \cdot 15 + 20 \cdot 12 + 190 \cdot 9$$

$$+ 60 \cdot 7 + 60 \cdot 15 + 100 \cdot 16$$

$$= 1200 + 900 + 240 + 1710$$

$$+ 420 + 900 + 1600$$

$$= 6970.$$
(3)

4 Метод Фогеля

Шаги: 1. Для каждой строки и столбца вычисляем разницу между двумя минимальными стоимостями. 2. Выбираем строку или столбец с максимальной разницей. 3. В выбранной строке/столбце распределяем груз в клетку с минимальной стоимостью.

Итерации: 1. Разницы по строкам: A_1 : 12 - 10 = 2, A_2 : 9 - 7 = 2, A_3 : 13 - 12 = 1. Разницы по столбцам: B_1 : 12 - 10 = 2, B_2 : 15 - 9 = 6, B_3 : 16 - 10 = 6, B_4 : 12 - 9 = 3, B_5 : 7 - 7 = 0. Максимальная разница в столбцах B_2 и B_3 (6). Выбираем B_2 , минимальная стоимость c_{22} = 9. c_{22} = min(250, 120) = 120. Остаток в A_2 : 250 - 120 = 130. Потребность B_2 удовлетворена.

- 2. Удаляем столбец B_2 . Разницы по строкам: A_1 : 12 10 = 2, A_2 : 9 7 = 2, A_3 : 13 12 = 1. Разницы по столбцам: B_1 : 12 10 = 2, B_3 : 10 10 = 0 (так как $c_{23} = c_{33} = 10$), B_4 : 12 9 = 3, B_5 : 7 7 = 0. Максимальная разница в столбце B_4 (3). Минимальная стоимость c_{24} = 9. x_{24} = $\min(130, 210)$ = 130. Остаток в A_2 : 0. Потребность B_4 : 210 130 = 80.
- 3. Удаляем строку A_2 . Разницы по строкам: A_1 : 12 10 = 2, A_3 : 13 12 = 1. Разницы по столбцам: B_1 : 12 10 = 2, B_3 : 16 16 = 0, B_4 : 12 12 = 0, B_5 : 21 20 = 1. Максимальная разница в строках A_1 (2) и столбцах B_1 (2). Выбираем A_1 , минимальная стоимость c_{11} = 10. c_{11} = min(200, 120) = 120. Остаток в A_1 : 200 120 = 80. Потребность B_1 удовлетворена.
- 4. Удаляем столбец B_1 . Разницы по строкам: A_1 : 12 12 = 0, A_3 : 13 13 = 0. Разницы по столбцам: B_3 : 16 16 = 0, B_4 : 12 12 = 0, B_5 : 21 20 = 1. Все разницы нулевые, распределяем по минимальным стоимостям. $x_{14} = \min(80, 80) = 80$. Остаток в A_1 : 0. Потребность B_4 удовлетворена.
 - 5. Остается A_3 . $x_{33} = 100$, $x_{35} = 60$. Опорный план:

	B_1	B_2	B_3	B_4	B_5
A_1	120	0	0	80	0
A_2	0	120	0	130	0
A_3	0	0	100	0	60

$$Z = 120 \cdot 10 + 80 \cdot 12 + 120 \cdot 9$$

$$+ 130 \cdot 9 + 100 \cdot 16 + 60 \cdot 21$$

$$= 1200 + 960 + 1080 + 1170$$

$$+ 1600 + 1260$$

$$= 7270.$$
(4)

5 Проверка на оптимальность методом потенциалов

Проверим план, полученный методом минимальной стоимости (он лучше других).

Базисные клетки: $x_{11}, x_{12}, x_{14}, x_{24}, x_{25}, x_{32}, x_{33}$.

Система потенциалов:

$$u_1+v_1=10$$
, $u_1+v_2=15$, $u_1+v_4=12$, $u_2+v_4=9$, $u_2+v_5=7$, $u_3+v_2=15$, $u_3+v_3=16$.

Полагаем $u_1 = 0$:

$$v_1 = 10$$
, $v_2 = 15$, $v_4 = 12$, $u_2 = 9 - 12 = -3$, $v_5 = 7 - (-3) = 10$, $u_3 = 15 - 15 = 0$, $v_3 = 16 - 0 = 16$.

Проверка свободных клеток:

$$\Delta_{ij} = c_{ij} - (u_i + v_j).$$

$$1.~\Delta_{13}=16-(0+16)=0,\,2.~\Delta_{15}=20-(0+10)=10,\,3.~\Delta_{21}=21-(-3+10)=14,\,4.~\Delta_{22}=9-(-3+15)=-3$$
 (отрицательная оценка).

План не оптимален. Улучшаем по клетке x_{22} .

Цикл пересчета: $x_{22} \to x_{12} \to x_{14} \to x_{24}$. Минимальный груз в минусовых клетках: $\theta = \min(60, 190) = 60$. Новый план:

$$x_{22} = 60$$
, $x_{12} = 0$, $x_{14} = 80$, $x_{24} = 130$.

Обновленный план:

	B_1	B_2	B_3	B_4	B_5
A_1	120	0	0	80	0
A_2	0	60	0	130	60
A_3	0	60	100	0	0

Стоимость: $Z = 6970 - 3 \cdot 60 = 6790$.

6 Итоговый оптимальный план:

	B_1	B_2	B_3	B_4	B_5
A_1	120	0	0	80	0
A_2	0	60	0	130	60
A_3	0	60	100	0	0

Минимальная стоимость: Z = 6790.