Série 10

L'exercise 1 sera discuté pendant le cours le mardi 29 novembre. L'exercice 5 (*) peut être rendu le jeudi 1 decembre aux assistants jusqu'à 15h.

Exercice 1 - QCM

(a)

(b)

Déterminer si les énoncés proposés sont vrais ou faux.		
• Soient V un K -espace vectoriel, (v_1, \ldots, v_n) une famille gén $A, B \in L(V, V)$. Si $A(v_i) = B(v_i), i = 1, \ldots, n$, donc $A = B$.	ératrice	de V et
) vrai	○ faux
• Soit V un K -espace vectoriel de dimension finie. Soient A, B que $A \circ B = 0$ et dim Ker $(B) = 0$. Alors A est l'application nu		V) telles
) vrai	○ faux
- Soit $F:V \to W$ une application linéaire, où V,W sont deux K -	espaces v	rectoriels
avec $\dim(V) = n$ et $\dim(W) = m$. Si $n < m$, donc F ne peut pa	as être su	ırjective.
) vrai	O faux
• Soit $V = \mathbb{F}_2^{10}$. Il existe une application linéaire $F: V \to V$ telle (le nombre d'éléments) de Ker (F) est 128.	que la ca	rdinalité
) vrai	O faux
• L'opérateur de décalage à droite $\Sigma : \mathbb{R}^n \to \mathbb{R}^n, \Sigma(v_1, v_2, \dots, v_n)$: est une application injective.	$= (0, v_1,$	v_2, \ldots, v_{n-1}
) vrai	O faux
ullet Soit V l'espace vectoriel des suites réelles. L'opérateur de déca	_	roite Σ :
$V \to V, \Sigma(v_1, v_2, v_3, \ldots) := (0, v_1, v_2, \ldots)$ est une application inj	ective.	
) vrai	O faux
Soit $F: M_{n \times n}(\mathbb{R}) \to M_{n \times n}(\mathbb{R})$ l'application linéaire définie comme F Laquelle des assertions suivantes est correcte?	$T:X\mapsto X$	$X - X^T$.
$\bigcap \operatorname{rang}(F) = 0.$		
\bigcap rang $(F) = n - 1$.		
$\bigcap \operatorname{rang}(F) = n^2 - 1.$		
$\bigcap \operatorname{rang}(F) = n(n-1)/2.$		

Exercice 2

Resultat 1: Si $p \in \mathbb{R}_n[t]$ a n+1 racines différentes, $n \in \mathbb{N}$, donc p est le polynôme nul. Soient I l'intervalle [0,1], $n \geq 1$ un entier positif et $x_0, x_1, \ldots, x_n \in I$ des nombres différents. En utilisant le **Resultat 1**, montrer que la matrice de Vandermonde

$$V = \begin{pmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^{n-1} & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} & x_1^n \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 1 & x_{n-1} & x_{n-1}^2 & \cdots & x_{n-1}^{n-1} & x_{n-1}^n \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} & x_n^n \end{pmatrix} \in M_{(n+1)\times(n+1)}(\mathbb{R})$$

est inversible.

Exercice 3

Soient V un K-espace vectoriel de dimension finie et $T \in L(V, V)$. Montrer que les assertions suivantes sont équivalentes.

- i) $V = \text{Ker}(T) \oplus \text{Im}(T)$.
- ii) $\operatorname{Ker}(T) = \operatorname{Ker}(T^2)$, où $T^2 = T \circ T$.

Exercice 4

Soit U un sous-espace vectoriel de \mathbb{R}^n . Montrer qu'il existe un système linéaire de n équations et n variables tel que son ensemble de solutions est exactement U.

Exercice 5 (\star)

Considèrer l'intervalle [0,1] et l'application $I: f \mapsto F$, telle que F'(x) = f(x), pour tout $x \in [0,1]$. Soit V l'espace vectoriel des fonctions réelles continues sur [0,1] et affines par morceaux, et W l'espace vectoriel des fonctions réelles continues sur [0,1] et quadratiques par morceaux.

- i) Trouver des bases pour V et W.
- ii) Calculer la matrice de I par rapport à ces bases.
- iii) Calculer le rang de cette matrice.

Exercice 6

Soit $T: \mathbb{R}^3 \to \mathbb{R}^3$ l'application linéaire donnée par

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \rightarrow \begin{pmatrix} 3x_1 + x_3 \\ 2x_2 + x_3 \\ x_1 + x_2 \end{pmatrix}.$$

Soient E la base canonique de \mathbb{R}^3 et F une base de \mathbb{R}^3 donnée par

$$F = \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}.$$

- i) Donner la matrice M qui représente T par rapport aux bases E (de départ) et F (d'arrivée).
- ii) Même question pour les bases F (de départ) et E (d'arrivée).
- iii) Même question pour les bases F (de départ) et F (d'arrivée).

Exercice 7

Soit $S: \mathbb{R}^3 \longrightarrow \mathbb{R}^4$ l'application linéaire définie par

$$S(x, y, z) = (3x - y + 2z, x + 3y - z, x - 3y + 5z, 2x - y)$$

et soit $T: \mathbb{R}_2[t] \longrightarrow \mathbb{R}^3$ l'application linéaire définie par T(f(t)) = (f(0), 0, f(2)).

- a) Déterminer la matrice de T par rapport aux bases canoniques de $\mathbb{R}_2[t]$ et \mathbb{R}^3 , ainsi que la matrice de S par rapport aux bases canoniques de \mathbb{R}^3 et \mathbb{R}^4 .
- b) À l'aide d'un calcul matriciel, déterminer la matrice de $S \circ T$ par rapport aux bases canoniques de $\mathbb{R}_2[t]$ et \mathbb{R}^4 .
- c) À l'aide d'un calcul matriciel, déterminer la matrice du vecteur $T(t^2 3t + 4)$ par rapport à la base canonique de \mathbb{R}^3 .
- d) À l'aide d'un calcul matriciel, déterminer la matrice du vecteur $S(T(t^2 3t + 4))$ par rapport à la base canonique de \mathbb{R}^4 .

Exercice 8 (avancée)

Soient $A, B \in M_{n \times n}(\mathbb{R})$ et $F : M_{n \times n}(\mathbb{R}) \to M_{n \times n}(\mathbb{R})$ l'application linéaire définie comme $F : X \mapsto AX - XB$. Déterminer la matrice de F par rapport à la base canonique de l'espace vectoriel $M_{n \times n}(\mathbb{R})$.

Indication: https://fr.wikipedia.org/wiki/Produit de Kronecker.