0.1 Formy dwuliniowe (a) i formy kwadratowe (b)

(a)
$$\phi(w, \tilde{w}) = \int_0^1 w(t)\tilde{w}'(t)dt \in \mathbb{R}, \quad w, \tilde{w} \in \mathbb{R}_3[.], \phi : \mathbb{R}_5[.] \times \mathbb{R}_5[.] \to \mathbb{R}$$

(b)
$$\varphi(w) = \phi(w, w) = \int_0^1 w(t)w'(t)dt, \quad \varphi : \mathbb{R}_3[.] \to \mathbb{R}.$$

Definicja 1 Niech $\phi: V \times V \to \mathbb{F}$ będzie formą dwuliniową. Odwzorowanie $\varphi: V \to \mathbb{F}$ takie, $\dot{z}e \ \varphi(v) = \phi(v,v)$ nazywamy formą kwadratową związaną $z \ \phi$

 $\begin{aligned} \mathbf{Przykład} \ \mathbf{1} \ \ Formy \ kwadratowe \ na \ V &= \mathbb{R}^2. \ Niech \ A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \phi_A(x, \tilde{x}) = x^T A \tilde{x} = [x_1, x_2] \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \\ ax_1 \tilde{x}_1 + bx_1 \tilde{x}_2 + cx_2 \tilde{x}_1 + dx_2 \tilde{x}_2 \\ \varphi_A(x) &= \phi_A(x, x) = [x_1, x_2] \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = ax_1^2 + (b+c)x_1x_2 + dx_2^2 \end{aligned}$

Przypomnienie:

$$\phi = \phi_a + \phi_s, \phi_a(v, \tilde{v}) = \frac{1}{2}(\phi(v, \tilde{v}) - \phi(\tilde{v}, v)), \phi_s(v, \tilde{v}) = \frac{1}{2}(\phi(v, \tilde{v}) + \phi(\tilde{v}, v)).$$

Zauważmy $\varphi(v) = \phi_a(v, v) + \phi_s(v, v) = \phi_s(v, v)$

Stwierdzenie 1 Jeżeli $\varphi, \phi, \phi_a, \phi_s$ - jak wyżej, to

$$\phi_s(v,\tilde{v}) = \frac{1}{2}(\varphi(v+\tilde{v}) - \varphi(v) - \varphi(\tilde{v}))$$
 - formula polaryzacyjna!.

Uwaga: Powyższe stwierdzenie zadaje 1-1 odpowiedniość między symetrycznymi formami dwuliniowymi a formami kwadratowymi.

Przykład 2 $\varphi: \mathbb{R}^2 \to \mathbb{R}$ - forma kwadratowa.

$$\varphi \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = ax_1^2 + bx_1x_2 + cx_2^2.$$

 $\forall rozważmy \ \phi_{\lambda}(x,\tilde{x}) = x^{T} \begin{bmatrix} a & \frac{b-\lambda}{2} \\ \frac{b+\lambda}{2} & c \end{bmatrix} \tilde{x}. \ Zauważmy, \ \dot{z}e \ \varphi(x) = \phi_{\lambda}(x,x), \ \phi_{0} \ jest \ symetryczną formą dwuliniową oraz \varphi(x) = \phi_{0}(x,x)$

Przykład 3 φ - forma kwadratowa i niech ϕ będzie symetryczną formą dwuliniową zadaną przez φ . Macierzą formy φ w bazie $\mathcal E$ definiujemy jako macierz ϕ w $\mathcal E$.

$$rk\varphi \stackrel{def}{=} rk\phi.$$

 φ niezdegenerowana gdy ϕ jest niezdegenerowana. Wracając do przykładu: \mathcal{E} - baza standardowa \mathbb{R}^2 ,

$$[\varphi]_{\mathcal{E}} = \begin{bmatrix} a & \frac{b}{2} \\ \frac{b}{2} & c \end{bmatrix}.$$

Definicja 2 Mówimy, że baza \mathcal{E} diagonalizuje formę kwadratową φ jeżeli macierz $[\varphi]_{\mathcal{E}}$ jest diagonalna.

Przykład 4 $\varphi(x) = x_1^2 + 4x_1x_2 + 3x_2^2$. Znaleźć bazę diagonalizującą.

$$\varphi(x) = (x_1 + 2x_2)^2 - x_2^2 = 3(x_2 + \frac{2}{3}x_1)^2 - \frac{1}{3}x_1^1.$$

Rozważmy dwie formy liniowe na \mathbb{R}^2 :

$$\psi_1(x) = x_1 + 2x_2$$
$$\psi_2(x) = x_2.$$

$$[\varphi]_{\mathcal{E}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 Wówczas $\varphi(x) = (\psi_1(x))^2 - (\psi_2(x))^2 = (\psi_1^2 - \psi_2^2)(x)$

$$\mathcal{E}^* = \left(\psi_1 = \begin{bmatrix} 1, 2 \end{bmatrix}, \psi_2 = \begin{bmatrix} 0, 1 \end{bmatrix}\right), \mathcal{E} = \left(f_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, f_2 = \begin{bmatrix} -2 \\ 1 \end{bmatrix}\right).$$

Notacja: Niech $\varphi_1, \varphi_2 \in V^*$. Wówczas funkcja $\varphi: v \in V \to \varphi_1(v)\varphi_2(v) \in \mathbb{F}$ jest formą kwadratową.

$$\phi(v,\tilde{v}) = \varphi_1(v)\varphi_2(\tilde{v}), \frac{1}{2}(\varphi_1(v)\varphi_2(\tilde{v}) + \varphi_2(v)\varphi_1(\tilde{v})) = \phi_s(v,\tilde{v}).$$

Notacja: $\varphi \stackrel{\text{ozn}}{=} \varphi_1 \varphi_2$, $\phi = \varphi_1 \bigotimes \varphi_2$. W szczególności $\phi_s = \frac{1}{2} (\varphi_1 \bigotimes \varphi_2 + \varphi_2 \bigotimes \varphi_1$ Jeśli teraz $\varphi : V \to \mathbb{F}$ - dowolna forma kwadratowa oraz $\mathcal{E} = (e_1, \dots, e_n)$ - baza $V, \mathcal{E}^* = (e_1, \dots, e_n)$

 (ψ_1,\ldots,ψ_n) - baza dualna,

Macierz φ w $\mathcal{E} : [\varphi]_{\mathcal{E}} = [a_{ij}]$, zachodzi $\varphi = \sum_{i,j} a_{ij} = \psi_i \psi_j$ $a_{ij} = a_{ji},$

Twierdzenie 1 (Lagrange'a)

Dla każdej formy kwadratowej itnieje (co najmniej jedna) baza diagonalizująca

Dowód 2 $\mathcal{E}^* = (\psi_1, \dots, \psi_n), \varphi = \sum_{i,j} a_{ij} \psi_i \psi_j, \ gdzie \ a_{ij} = a_{ji}.$ Przypuśćmy, że $a_{ij} \neq 0$ dla pewnego i, np. i = 1.

Rozważmy formę liniową

$$\tilde{\psi}_1 = \psi_1 + \frac{1}{a_{11}} \sum_{j \neq 1} a_{1j} \psi_j.$$

Wówczas istnieje wsp. bij. i, j = 2, ..., n taka, że

$$\sum_{i,j} a_{ij} \psi_i \psi_j = a_{11} \tilde{\psi}_1^2 + \sum_{i,j=2}^n b_{ij} \psi_i \psi_j.$$

np.

$$a_{11}\psi_1^2 + a_{12}\psi_1\psi_2 + a_{21}\psi_2\psi_1 + a_{22}\psi_2^2 = a_{11}(\psi_1 + \frac{q_{12}}{a_{11}}\psi_z)^2 + (a_{22} - \frac{a_{12}^2}{a_{11}})\psi_2^2.$$

Przykład 5 $V = \mathbb{R}^3$.

$$\varphi(x) = x_1 x_2 + x_2 x_3 = \left(\frac{x_1 + x_2}{2}\right)^2 - \left(\frac{x_1 - x_2}{2}\right)^2 + x_2 x_3^{y_3}.$$

$$x_2 = y_1 - y_2, \varphi(x) = y_1^2 - y_2^2 + y_1 y_3 - y_2 y_3 = (y_1 + \frac{y_3}{2})^2 - \frac{y_3^2}{4} - y_2^2 - y_2 y_3 = (y_1 + \frac{y_3}{2})^2 - (y_2 + \frac{y_3}{2})^2.$$

$$\psi_1 = y_1 + \frac{y_3}{2} = \frac{x_1 + x_2 + x_3}{2}, \psi_2 = \frac{x_1 - x_2 + x_3}{2}, \psi_3 = \dots$$

$$\psi_1 = \frac{1}{2} [1, 1, 1]$$

$$\psi_2 = \frac{1}{2} [1, -1, 1]$$

$$\psi_3 \stackrel{np}{=} [1, 0, -1].$$

$$\mathcal{E}^* = (\psi_1, \psi_2, \psi_3), \mathcal{E} = (f_1, f_2, f_3), \varphi = \psi_1^2 - \psi_2^2, (f_1, f_2, f_3) = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ 1 & 0 & -1 \end{bmatrix}^{-1}.$$