創意電資工程入門教育設計 期末自選專案實作

第六組(G5) 成員: 廖凱威、邱嘉豪

報告大綱:

<u> </u>	教案目標	page2
	驅動問題:自選題遊戲情境	page3
\equiv	主情境實作方式	page4
四、	子情境設想與策略演算法實作	page5
五、	各周教案整合與新知	page6
六、	學生自選題實施方式規劃	page6
七、	評量方式與流程	page8
八、	實作成果問題討論與結論	page8

1. 教案目標

我們的教案目標會有三個面向,希望學生在認知、技能、情意上都會有所學習增 長,如表一所示。

在學習認知上,我們希望同學除了課內的 BFS 演算法、車子組裝、RFID 讀取、紅外線循跡、以及藍芽傳輸之外,課外的部分還希望同學們多學習 Python 的平行處理,以及對 feedback, feedforward 等概念有初步認識。

在技能練習的部分,我們首先希望學生在學習課程內教材以及課程外的內容後,藉由本自選題主情境的實作,訓練其設想並建構不同子情境下可能面臨問題的模型,嘗試以模型還原實際狀況。再者,希望學生從問題情境模型的建立,發展創意發想、構思、設計並實作其應對方法的能力,由發想、構思、設計、實作這樣的專案流程,培養學生問題發現與解決之能力。最後,讓大一同學們接觸到這種大型的專案,可訓練他們能夠熟悉大型專案設計實作的運作模式,培養其分工合作、時間管控、進度規劃、錯誤排除等專案管理能力。

最後在情義的部分,於自選題情境的構思階段時,對於預計成果表現優劣的期待 心,可激發學生於設計實作階段最佳化實際成果的動機。另外,本自選題規劃的兩組競爭 模式,也可激發學生為求勝最佳化實作成果的動機。

表一、統整上述之教案目標:

編號	目標	
認知(1)	課內知識(演算法、自走車)	
認知(2)	課外知識(threading, feedforward)	
技能(1)	建構子情境模型並還原實際狀況	
技能(2)	培養問題發現與解決之能力 (設計實作問題之解決方法)	
技能(3)	大型專案管理所需之能力(分工、進度規劃)	
情意(1)	激發最佳化實作成果之動機(期待心、競爭模式)	

2. 驅動問題: 自選題遊戲情境

我們這組的自選題,將模擬一個實際的生活情境,透過這個模擬情境,希望同學們可以解決這個世界上可能會發生的例子,也提升同學們的興趣。因此,我們設計了二種生活上的情境,同學們可擇一或是自行發想其餘類似情境融入。

情境一:

聯合國人道組織運送物資至第三世界一區域各村莊,然而物資有限,只夠送至四個,送完後由兩逃生口擇一逃出本區域(遊戲成功)。第三世界軍閥須攔截物資運輸車,攔截到即物資全無(遊戲失敗),因此運送物資的車子須閃避軍閥完成運送物資的任務。

情境二:

警匪追逐,有銀行搶匪想要搶城市內的銀行,地圖上有五個銀行,當搶匪搶完任四個銀行後,由兩逃生口其一逃出本城市,遊戲結束且搶匪獲勝。警察的車子必須須攔截到搶匪,一但抓到搶匪,遊戲結束且警察獲勝。

統合以上情境之描述,我們可歸納建構出一個統一的遊戲情境模型:

- 1.情境發生在一個有限區域的地圖中。
- 2.地圖包含三個起始點或終點、五個目標地點(村莊、銀行),以及剩下的一般地點。
- 3.每兩個地點之間可能有道路連結,也可能沒有。
- 4.地圖中存在兩個角色的互動:躲避者(搶匪、聯合國)與追趕者(警察、軍閥)。
- 5. 兩角色起始位於三個起始點其中兩個。
- 6. 躲避者目標:在躲避追趕者的前提下,到達任四目標地點,最後前往一終點結束。
- 7. 追趕者目標:盡可能地靠近躲避者直到兩者所在地點相鄰,一旦相鄰則結束。

問題設計實作引導:躲避者

- 1. 躲避者要如何選擇五個目標地點中會行經的四個?
- 2. 躲避者要如何有效地躲避追趕者的攔截(feedback/feedforward)?
- 3. 躲避者要如何設計兼顧上述兩問題的解決方法?

問題設計實作引導:追趕者

- 1. 追趕者要如何得知躲避者的現在位置(feedback)?
- 2. 追趕者要如何有效地接近追趕者的所在位置?
- 3. 追趕者要如何預測躲避者的未來位置以利先發制人(feedforward)?

3. 主情境實作方式

依照上面的情境,我們規劃了一個瓦楞紙製的地圖。如下圖一所示,每個方塊大小約 15cm,矩形區域為 11*11 片。每一片上面的圖案不同,總共有三種圖案:

- 1.黑色十字方塊(下圖有顏色的方塊):區域各地點(Node),為了座標編號下面放置 RFID
- 2.黑色直線方塊:作為連接地點(Node)之間的道路
- 3.全白方塊:填補地圖中空白無方塊處

我們使用兩輛課程中組裝的自走車扮演遊戲情境中兩角色,以類似指定題的方式在地圖中移動。整張地圖共有 39 個 Node, Node 下方都會有一張 RFID, 當一台車子讀取到 RFID時,會讀取其座標,並將此座標的資訊藉藍芽傳送給另一台車的控制者(電腦 Python)。控制者為完成角色目標,藉此資料決定欲前往的目的地(決策演算法)和下一步的動作:左轉、右轉、直走、向後轉。上述動作雙方同時進行,因此使用平行化處理。

地圖最右方有三個凸出的 Node,遊戲初始時會選擇其中兩個成為車子的起點,圖中紅色 Node 為目標地點(村莊、銀行),躲避者自走車可在完成目標後由編號 37 或者 39 號的 Node 擇一到達結束。

圖一、自選題專案地圖示意圖

4. 子情境設想與策略演算法實作

試想遊戲主情境在進行時,依照兩車策略演算法實作的成效分類,兩者的互動可能會在下列子情境中發生。學生於本自選題的任務為給定任一下列預設情境,設想與實作此情境下可能會發生的實際狀況,並於遊戲進行過程成功將其還原模擬。以下將就策略演算法成效將子情境分為三大等第進行介紹:

1.無互動(最差):

兩車皆無視對方位置(No feedback),只使用 BFS 來走過地圖所有地點一輪,因為無法得知對方位置,因此有機率導致兩車相撞。這一子情境將無法觀察到自走車追蹤跟隨(追趕者)和躲避(躲避者)的互動行為發生。

2.1. 躲避者較弱(次之):

追趕者此子情境內會根據躲避者所在位置進行追蹤,雖然無預測其未來可能位置,但是由於躲避者忽略追趕者現今位置以及附近危險的 Node(feedback 資訊不足),選擇了極有可能被攔截的路徑前往最理想(最安全)的目標地點,因而被攔截。因此,即使追趕者無使用 feedforward,躲避者仍有可能自投羅網而遭到攔截。

躲避者: feedback 資訊不足 追趕者: 僅使用 feedback

2.2. 躲避者技高一籌(更好):

此子情境內的躲避者不但會選擇最理想(最安全)的目標地點前往,也懂得如何跟據 追趕者所在位置選擇最安全的路徑避開。追趕者於此子情境內會追蹤跟隨躲避者,但是只 會根據其所在位置進行追蹤,並無預測其未來可能的目的地,因而無法先發制人(No feedforward),只能永遠尾隨躲避者而因此落後。故此情境下,躲避者技高一籌。

躲避者: feedforward 和 feedback 皆有使用

追趕者:僅使用 feedback

3.自訂理想演算法競爭(最好):

考量到上述子情境為預先設定好並請同學實作模擬還原,此子情境內希望開放同學 自行構思設計心目中理想之策略演算法,並於遊戲中進行競爭。由於雙方理論上皆使用自 行設計的理想策略,因此競爭過程可能會難以分出明顯勝負,因此關於此子情境的評分標 準將於稍後說明。關於追趕者之策略,同學或許可嘗試實作其他子情境中無使用的融合 feedforward 和 feedback 概念的演算法。作為範例,我們於此子情境內的實作驗證階段時所設計的演算法如下:

躲避者:

使用『躲避者技高一籌』中的演算法。

追趕者:

預測躲避者目的地,先嘗試先發制人前往此目的地附近『巡邏』,並於躲避者接近自身時鎖定追蹤跟隨其位置(feedforward 和 feedback 皆有使用)。

5. 各周教案整合與新知

5-1. 課內(認知(1)):

我們希望學生能夠從 W1~W6 的指定題製作出一台能夠循跡的自走車,並且運用 W3 學到的 BFS 演算法,讓車子至少能走出最基本的策略。

- -Breadth-First Search (BFS,廣度優先搜尋)
- -沿用指定題自走車 W1~W6 教案 (車子組裝、RFID 讀取、紅外線循跡、以及藍芽傳輸)

5-2. 課外(認知(2)):

我們希望學生能夠從各種預設子情境的策略演算法實作,對 feedback 和 feedforward 控制的概念有初步認識。另外,遊戲進行時由於需要雙方同步運算以達成遊戲的流暢性,我們希望學生學習 Python Threading Library 的平行處理並將其實作在程式架構上,平行處理的使用同時也可使雙方系統整合相對方便簡單,無須擔心整合後架構雜亂的問題。

- -對 Feedback & Feedforward 之基本認識
- -平行處理: Python Threading Library

6.學生自選題實施方式規劃

我們規劃學生在實作本自選題時採用下方式進行,可視課程實際運作狀況做調整:

兩組團隊合作競爭互動:

兩組共同實作本自選題。地圖部分兩組共用,每組使用一台自走車,但兩種腳色之行為模式每組皆須設計實作。車子控制端共用一台電腦並同時藍芽連接兩自走車,將兩腳色行為之策略演算法各自包裝起來放入程式架構,分別控制兩車動作。

合作:

兩組學生須合作整合兩組之系統,且合作設想實作各種上述預設子情境(不含"自訂理想演算法競爭")中的策略演算法,並於遊戲進行過程還原模擬實際狀況,分別扮演一角色進行,不須互換重新。

競爭:

兩組學生將各自使用"自訂理想演算法競爭"中設計的策略演算法於遊戲中競爭,兩組分別扮演一腳色進行,再互換腳色重新進行,建議可以兩組先行合作磨合測試以利展示時的順利成功。圖二為本專案的系統架構:

圖二、自選題專案架構示意圖

7. 評量方式與流程

第一部分合作:情境模擬以及還原成效(70%):(技能(1))

兩組合作模擬和還原遊戲中各種等第的策略演算法表現,展示時有達成最基礎的自 走車追蹤跟隨(追趕者)與躲避(躲避者)效果者得此部分六成分數(42%)。每個子情境等第和 狀況皆有另外成功還原模擬者得剩下四成(28%),**還原子情境時不需交換腳色重新進行** (除"自訂理想演算法競爭"外),此四成分數(28%)依照各等第的配分比例如下:

無互動	10%		
躲避者較弱	45%		
躲避者技高一籌	45%		
自訂理想演算法競爭	併入"遊戲表現與演算法實作成效"計算		

表二、情境模擬後,各等第的配分方式

第二部分競爭:遊戲表現與演算法實作成效(30%):(技能(2))

本部分評分時雙方將使用自訂理想演算法進行遊戲競爭,並在遊戲結束第一輪後交換腳色重新進行。躲避者若是有成功到達並讀取目標地點的 RFID 者,得分依照被攔截前成功讀取的數量線性增加,最高得此部分四成分數(12%),成功到達終點讀取 RFID 者再得一成分數(3%)。追趕者得分則是依照從起始地點出發,第一次到達躲避者周遭鄰近兩 Node 以內(含)之前所行經的 Node 數量遞減,經過越少 Node 分數越高,最高得此部分四成分數(12%),而剩下一成(3%)為成功攔截之得分。此部分總分為躲避者得分和追趕者得分之加總。

8. 實作成果問題討論與結論

1.地圖製作:

地圖的製作方式我們使用塑膠瓦楞板用拼圖的方式製作而成,原先是希望擁有較高的自由度,但是實際操作時,花費的經費跟時間成本很高,而且在最後 demo 的時候,也有地圖問題(塑膠瓦楞紙高低不平)讓車子無法行動的狀況,因此建議可以事先規劃好地圖,然後地圖用大型海報輸出,可能會穩定許多,也可以降低時間與金錢成本。

2.策略演算法實作問題:

於策略演算法的實作驗證階段時,我們觀察到於"自訂理想演算法競爭"進行階段時,倘若雙方各自設計的理想演算法程度或運作模式相近,雙方互動的行為可能會較難用肉眼觀察比較演算法的實作優劣,因此僅能使用於"遊戲表現與演算法實作成效"中較客觀的評分標準進行成效的評量,明顯的勝負將難以辨別。

另外,由於策略演算法的運作可能須經過相當繁瑣的步驟,加上同時有兩台自走車的演算法正在運作,系統的運作將十分複雜,於測試階段的除錯可能會花上許多時間。更進一步,程式端的除錯只能在一台電腦進行,演算法的除錯將難以團隊共同合作的方式進行,因此正須培養學生熟悉大型專案的架構與運作流程,並進行錯誤排除的專案管理能力(技能(3))。