Correction des exercices

Exercice 1:

1- Calcul de la vitesse de propagation :

$$\vee = \sqrt{\frac{F}{\mu}}$$

La masse linéaire de la corde est égale : $\mu = \frac{m}{L}$ d'où $\forall = \sqrt{\frac{F.L}{m}}$

A.N: $V = \sqrt{\frac{5 \times 8}{0.1}} \implies V = 20 \ m/s$

2- Calcul de la durée de parcours :

La propagation se fait avec vitesse constante : $V = \frac{L}{\Lambda t} \implies \Delta t = \frac{L}{V}$

A.N: $\Delta t = \frac{8}{20} \implies \forall = 0, 4 s$

Exercice 2:

Solution:

1- Expression de la durée Δt :

L'éclair parcourt la distance d en une durée : t_1 à la vitesse \vee_{son} tel que :

$$\forall_{son} = \frac{d}{t_{son}} \Longrightarrow t_{son} = \frac{d}{\forall_{son}}$$

Le tonnerre parcourt la distance d en une durée : t_2 à la vitesse c tel que :

$$c = \frac{d}{t_{ ext{\'e}clair}} \Longrightarrow t_{ ext{\'e}calir} = \frac{d}{c}$$

La durée qui s'épare la réception de l'éclair et la réception de tonnerre est :

$$\Delta t = t_{son} - t_{\acute{e}calir} \Longrightarrow \Delta t = d\left(\frac{1}{V_{son}} - \frac{1}{c}\right)$$

2- Montrons l'expression :

On a: $V_{son} \ll c \implies \frac{1}{V_{son}} \gg \frac{1}{c}$

Expression $\Delta t = d\left(\frac{1}{V_{con}} - \frac{1}{c}\right)$ devient :

$$\Delta t = \frac{d}{\vee_{son}} \implies d = \Delta t. \vee_{son}$$
$$d = 5 \times 340 = 1700 m$$

6

Exercice 3:

1- Pour quoi les ondes ultrasonores sont des ondes mécaniques ?

Les ondes ultrasonores sont des ondes mécaniques car elles nécessitent un milieu matériel pour se propager : déplacement de zones de compression et de zone de dilatations de l'air.

2- Le retard τ entre l'émission et la réception :

D'après l'écran de l'oscilloscope le retard est :

$$\tau = V_H$$
. $x = 1, 0 ms/div \times 2iv = 2, 0 ms$

3- la distance d qui sépare l'émetteur et le récepteur de la paroi réfléchissante :

Le son parcourt 2 fois la distance d pour aller de l'émetteur au récepteur pendant une durée de $\tau = 2ms$.

$$\forall = \frac{2d}{\tau} \Rightarrow d = \frac{\forall \cdot \tau}{2}$$

$$d = \frac{340 \times 1, 0 \times 10^{-3}}{2} = 0,34 m = 34 cm$$

Exercice 4:

1- L'onde est transversale:

car les points de la corde se déplacent perpendiculairement par rapport à la direction de propagation de la perturbation.

De plus l'onde étudiée est une onde progressive. Elle transporte de l'énergie et ne déplace pas la matière.

2- Représentation du point A sur la corde :

3- La célérité de l'onde le long de la corde a pour expression :

$$\vee = \frac{d}{\Delta t}$$

Où d désigne la distance parcourue en mètre pendant la durée Δt en secondes.

Dans ce cas le front d'onde se situe à 3 m de la source au bout de 3s, donc $\vee = \frac{3}{3} = 1 \, m/s$

4- Description du mouvement du point D :

Une fois l'onde arrive au point D, il commence à descendre puis remonter et redescend et enfin sur sa position de repos : il se déplace sur une droite perpendiculaire à l'axe des x dessiné.

La longueur d'onde sur le schéma est de 1m donc on utilise la formule :

$$\vee = \frac{L}{\Delta t'} \implies \Delta t' = \frac{L}{\vee} \implies \Delta t' = \frac{1}{1} = 1s$$

5- Localisation des points A, B et C à la date t' = 4s sur la corde :

A la date $t_2 = 4s$, le front d'onde se trouve à une distance d_2 lel que :

$$\vee = \frac{d_2}{t_2} \implies d_2 = \vee \cdot t_2 \implies d_2 = 1 \times 4 = 4m$$

6- Le retard τ' du point F par rapport à E :

Considérons l'extrémité de la corde située au point noté F à 6,0 m de l'élève.

Calculons le retard du point F par rapport au point A :

$$\vee = \frac{AF}{\tau'} \implies \tau' = \frac{AF}{\vee} \implies \tau' = \frac{6}{1} = 6s$$

Le point F commence son mouvement à la date $t_F = \tau' = 6s$, son mouvement va durer t = 1s, F s'arrête à la date $t'_F = t_F + t = 7s$, à partir de $t'_F = 7s$ le point F est au repos du nouveau.

Exercice 5:

<u>1- Le signal est transversal</u>: car la direction de propagation est perpendiculaire à la direction de déformation.

2- Graphiquement la longueur du signal est *L* :

$$L = 10 - 4 = 6cm$$

La durée τ du signal :

$$\forall = \frac{L}{\tau} \implies \tau = \frac{L}{\forall} \implies \tau = \frac{6.10^{-2}}{2} = 3.10^{-2} \text{ s}$$

3- Détermination de l'instant t_{1:}

Le signal quitte le point S à l'instant t=0, à l'instant t₁ il arrive à un point M de la corde dont l'aspect est représenté dans la figure 1.

$$V = \frac{SM}{\Delta t} = \frac{d}{t_M - t_0} = \frac{d}{t_M}$$
$$t_M = \frac{d}{V} \Longrightarrow t_M = \frac{10 \times 10^{-2}}{2} = 5.10^{-2} \text{ s}$$

4- Représentation de l'aspect de la corde à l'instant t₂=7.10⁻² s :

Le signal parcourt la distance d' pendant la durée $t_2 = 7.10^{-2} s$ tel que :

$$\forall = \frac{d}{t_2} \Longrightarrow d = \forall . t_2 = 2 \times 7 \times 10^{-2} = 14.10^{-2} \ m = 14 \ cm$$

Le front du signal est à la distance d' = 14 cm de la source S ; l'arrière du signal est à la distance :

$$d'' = d' - L = 14 - 6 = 8cm$$

5- Déterminer l'instant t'_0 au bout duquel le signal quitte le point Q situé à 16cm de la source S.

Le point Q commence sa vibration à l'instant $t_Q = \frac{SQ}{V} = \frac{0.16}{2} = 8.10^{-2} s$

Son mouvement dure pendant une durée $\tau = 3.10^{-2} s$

Le point Q termine son mouvement à la date $t'_Q = t_Q + \tau = 11.10^{-2} s$

6- Représentation de la variation de l'élongation Y_S de la source S en fonction du temps :

Pour déterminer l'élongation de la source S il faut déterminer l'amplitude Y_S du point S à quelques instants remarquable :

Distance SM _i	$SM_0=0$	$SM_1=1$	$SM_2=2$	$SM_3=3$	$SM_4=4$	$SM_5=5$	$SM_6=6$	$SM_7 = 7$	
(cm)									
Instant t _i	$t_0 = 0$	$t_1=0,5$	$t_2 = 1$	$t_3 = 1, 5$	$t_4 = 2$	$t_5 = 2, 5$	$t_6 = 3$	$t_7 = 3, 5$	
$(10^{-2}s)$									
Amplitude Y _S	$Y_S = 0$	$Y_S=0,25$	$Y_S = 0,5$	$Y_S=0,75$	$Y_S = 1$	$Y_S = 0, 5$	$Y_S = 0$	$Y_S = 0$	
(cm)									

On obtient l'élongation Y_M du point M en faisant une translation de l'élongation Y_S du point S selon l'axe de temps avec le retard τ (voir figure ci-dessus).

Exercice 6:

1-

1-1- Définition de l'onde transversale :

Une onde est transversale si la direction déformation d'un point est perpendiculaire à celle de la propagation de l'onde.

1-2- Types d'ondes :

- -Le schéma 1 correspond à la propagation d'une onde longitudinale.
- -Le schéma 2 correspond à la propagation d'une onde transversale.

2-

2-1- D'après Le texte, les ondes P sont plus rapides que les ondes S.

L'origine des temps (t=0) a été choisie comme instant du début du séisme à San Francisco.

Le train d'ondes A est détecté en premier (t=40s) puis le train d'ondes B arrive ensuite à la station d'Eureka.

2-2- Justification de la réponse :

La détection du séisme à la station d'Eureka est obtenue à la date t_2 = 8h 15min 20s.

Pour que les ondes P parcourent la distance d épicentre- station Eureka, il a fallu environ

$$\Delta t = t_2 - t_1 = 40 s.$$

Le séisme s'est donc produit à l'épicentre à la date $t_1 = t_2 - \Delta t$

$$t_1 = 8h15 \min 20s - 40s = 8h14 \min 20s$$

2-3- Distance entre l'épicentre du séisme de la station Eureka :

$$d = V. \Delta t$$
$$d = 10 \times 40 = 400 \ km$$

2-4-- vitesse moyenne des ondes S:

Le parcourt de la distance d par les ondes S nécessite une durée de $\Delta t' = 66 \ s$

$$V_S = \frac{400}{66} = 6.1 \ km/h$$