Homework. ITT

1. Напоминание

Пусть даны векторы $\mathbf{v}_1,\dots,\mathbf{v}_n$ в каком-то векторном пространстве \mathbf{V} . Говорят, что эти векторы линейно зависимы если можно найти такие числа $\alpha_1,\dots,\alpha_n\in\mathbb{R}$, которые не все равны нулю, что

$$\alpha_1 \mathbf{v}_1 + \cdots + \alpha_n \mathbf{v}_n = \mathbf{o}.$$

В случае же, если это равенство возможно только при $\alpha_1 = ... = \alpha_n = 0$, то говорят, что векторы линейно независимы.

- (1) Пусть $\mathbf{V} = \mathbb{R}^2 := \left\{ \begin{pmatrix} x \\ y \end{pmatrix} x, y \in \mathbb{R} \right\}$. Можно ли найти три различных вектора которые линейно независимы? Если да, то как описать такие векторы?
- (2) Выяснить, являются ли следующие системы векторов линейно зависимы или линейно независимыми:

(a)
$$\mathbf{a}_{1} = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}, \qquad \mathbf{a}_{2} = \begin{pmatrix} 3 \\ -1 \\ 5 \end{pmatrix}, \qquad \mathbf{a}_{3} = \begin{pmatrix} 1 \\ -4 \\ 3 \end{pmatrix},$$
 (b)
$$\mathbf{a}_{1} = \begin{pmatrix} 5 \\ 4 \\ 3 \end{pmatrix}, \qquad \mathbf{a}_{2} = \begin{pmatrix} 3 \\ 3 \\ 2 \end{pmatrix}, \qquad \mathbf{a}_{3} = \begin{pmatrix} 8 \\ 1 \\ 3 \end{pmatrix},$$

в случае линейной зависимости выпишите эту зависимость.

- (3) Пусть дано множество векторов $S = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$
 - (a) Доказать, что если среди этих векторов есть нулевой вектор, то $\mathbf{v}_1, \dots, \mathbf{v}_n$ линейно зависимы.
 - (b) Пусть какие-то k векторов из этого множества линейно зависимы, где 1 < k < n. Доказать, что тогда и все векторы $\mathbf{v}_1, \dots, \mathbf{v}_n$ линейно зависимы.
 - (c) Допустим что любые k векторов, где 1 < k < n линейно независимы. Доказать, что тогда и все векторы $\mathbf{v}_1, \dots, \mathbf{v}_n$ линейно независимы.
- (4) Доказать, что если три вектора $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ линейно зависимы, но вектор \mathbf{v}_3 не выражается линейно через векторы $\mathbf{v}_1, \mathbf{v}_2$, то векторы $\mathbf{v}_1, \mathbf{v}_2$ пропорциональны, т.е., $\mathbf{v}_1 = \alpha \mathbf{v}_2$, где α ненулевое число.
- (5) Пусть $\mathbf{V} = \mathcal{F}(\mathbb{R})$ векторное пространство всех функций на \mathbb{R} . Выясните, являются ли следующие векторы линейно зависимы
 - (a) $1, \sin(x), \cos(x)$
 - (b) $\sin(x)$, $\sin(2x)$, $\sin(3x)$
 - (c) $1, \sin(x), \cos(x), \sin^2(x), \cos^2(x)$.

(6) Пусть $\mathbf{V} = \mathbb{R}[x]$ – пространство полиномов. Выяснить, будут ли следующие полиномы линейно зависимы

$$p_1(x) = 2x^2 - x + 3$$

$$p_2(x) = 3x^3 - 2x^2 + x + 4$$

$$p_3(x) = 4x^2 - x + 4$$

$$p_4(x) = 2x^2 + x - 1$$

$$p_5(x) = 3x^3 - 3x + 9$$

и в случае линейной зависимости выпишите её.