convex = chord lies above function evaluated between (W_0, W_1)

 $\frac{\partial L(w)}{\partial w} = 0$ = $\sum_{i} -y_{i} \mathbf{x}_{i} (1 - p(y_{i} | \mathbf{x}_{i}))$

$$h(x_1, x_2) = \begin{cases} 1, & \text{if } w_1 x_1 + w_2 x_2 + 8 \ge 0 \\ 0, & \text{otherwise} \end{cases}$$

*first, find points where y = 0 & x = 0

 $w_1x_1 + w_2x_2 + 8 = 0$

 $w_1(2) + w_2(0) + 8 = 0$

 $2w_1 + 0 + 8 = 0$ $2w_1 = -8$

 $w_1 = -4$

 $w_1x_1 + w_2x_2 + 8 = 0$ $w_1(0) + w_2(4) + 8 = 0$

 $0 + 4w_2 + 8 = 0$

 $4w_2 = -8$

 $w_2 = -2$

B. Linear regression deals with the prediction of continuous values; logistic regression deals with the prediction of class labels.

$$AB = \left(\begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{array}\right) \left(\begin{array}{ccc} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{array}\right)$$

$$= \left(\begin{array}{ccc} a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} & a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32} \\ a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} & a_{21}b_{12} + a_{22}b_{22} + a_{23}b_{32} \end{array}\right)$$

Dot Product: $a \cdot b = a^{\mathsf{T}}b$

-dot product will change value if one of the vectors gets longer but stays pointed in the same direction

$$\frac{\text{sparrow} \cdot \text{chipmunk}}{||\text{sparrow}||_2 \times ||\text{chipmunk}||_2} = 0.0082$$

-unscaled numericals in vector

 $\partial (\mathbf{a} \cdot \mathbf{x})$

 $\partial(\mathbf{x} \cdot \mathbf{a})$

$w^* = \arg\max_w G(w)$
$= \arg \max_{w} \ln(G(w))$
$= \arg\min_{w} - \ln(G(w))$

OLS Closed Form

A = np.dot(np.transpose(X), X)

Obtain optimal W

When b>0 the decision boundary is moved along

the opposite direction of w.

W = np.dot(inv(A),np.dot(np.transpose(X),Y))

a is not a function of x	$\frac{\partial (\mathbf{a}^{\top} \mathbf{x})}{\partial \mathbf{x}} = \frac{\partial (\mathbf{a}^{\top} \mathbf{a})}{\partial \mathbf{x}} =$ $\frac{\partial \mathbf{a}^{\top} \mathbf{x}}{\partial \mathbf{x}} = \frac{\partial \mathbf{x}^{\top} \mathbf{a}}{\partial \mathbf{x}} =$	\mathbf{a}^{\top}	a
A is not a function of x b is not a function of x	$\frac{\partial \mathbf{b}^{\top} \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} =$	$\mathbf{b}^{\top}\mathbf{A}$	$\mathbf{A}^{\top}\mathbf{b}$
A is not a function of x	$\frac{\partial \mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} =$	$\mathbf{x}^\top(\mathbf{A}+\mathbf{A}^\top)$	$(\mathbf{A} + \mathbf{A}^\top)\mathbf{x}$
A is not a function of x A is symmetric	$\frac{\partial \mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} =$	$2\mathbf{x}^{\top}\mathbf{A}$	$2\mathbf{A}\mathbf{x}$
A is not a function of x	$rac{\partial^2 \mathbf{x}^ op \mathbf{A} \mathbf{x}}{\partial \mathbf{x}^2} =$	$\mathbf{A} + \mathbf{A}^{\top}$	
A is not a function of x A is symmetric	$\frac{\partial^2 \mathbf{x}^\top \mathbf{A} \mathbf{x}}{\partial \mathbf{x}^2} =$	2 A	

-> set the parameters Validation set -> try different models, select best Test set -> how good is your chosen model

 $\epsilon_{\text{testing}} = \epsilon_{\text{training}} + \epsilon_{\text{generalization}}$

When b<0 the decision

the same direction of w.

boundary is moved along

train > 0, gen = 0completely random highly generalizable, no error train =0, qen > 0perfect classifications non-generalizable, large error

Low Variance (Precise)

×	0
*	+
38	
M M M	31 27 29
386	-
	-

Logistic classifier

36 36 36 36 36 36 36 36 36 36	decision boundary	
ax G(S,B) = H(S)	$S(S) - \sum_{i=1}^{t} \frac{ S_i }{ S } H(S_i)$	
3	i=1 $ S $ $ S $	

identities. Vector-by-vector $\frac{\partial}{\partial \mathbf{x}}$					
Condition	Expression	Numerator layout, i.e. by y and x ^T	Denominator layout, i.e. by y ^T and x		
a is not a function of x	$\frac{\partial \mathbf{a}}{\partial \mathbf{x}} =$	0			
	$\frac{\partial \mathbf{x}}{\partial \mathbf{x}} =$	I			
A is not a function of x	$\frac{\partial \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} =$	A	\mathbf{A}^{\top}		
A is not a function of x	$\frac{\partial \mathbf{x}^{\top} \mathbf{A}}{\partial \mathbf{x}} =$	\mathbf{A}^{\top}	A		
a is not a function of x , u = u(x)	$\frac{\partial a\mathbf{u}}{\partial \mathbf{x}} =$	$a\frac{\partial \mathbf{u}}{\partial \mathbf{x}}$			
a = a(x), u = u(x)	$\frac{\partial a\mathbf{u}}{\partial \mathbf{x}} =$	$a\frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \mathbf{u}\frac{\partial a}{\partial \mathbf{x}}$	$a\frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \frac{\partial a}{\partial \mathbf{x}}\mathbf{u}^{\top}$		
A is not a function of x , u = u(x)	$\frac{\partial \mathbf{A}\mathbf{u}}{\partial \mathbf{x}} =$	$\mathbf{A} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$	$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} \mathbf{A}^\top$		
u = u(x), v = v(x)	$\frac{\partial (\mathbf{u}+\mathbf{v})}{\partial \mathbf{x}} =$	$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \frac{\partial \mathbf{v}}{\partial \mathbf{x}}$			
u = u(x)	$\frac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{x}} =$	$\frac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$	$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} \frac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{u}}$		

Identities: vector-by-vector

 $G(S_{right}) = -\frac{5}{6}(0.4\log_2 0.4 + 0.6\log_2 0.6) = 0.81,$ G(S,B) = H(S) - 0.81 G(S,B) = H(S) - 0.81 $G(S_{left}) = -\frac{1}{6}(1\log_2 1 + 0\log_2 0) = 0,$