RAPPORT TP1

1-NI ELVIS II+ :DSP :

- > PART1:Arbitrary Waveform Generator(ARB)
 - Sine.A=1,f=1khz:

Sine.A=2,f=2khz :

Sine.A=5,f=8khz :

> PART2 : visualisation du signal sur ARB

> PART3: Visualisation du signal sur SCOPE

2- Channel 0 Settings. Source (AI 0). Click Enabled. RUN:

6. View/Check Generated Signal:

> PART 4: Visualisation du Signal sur (DSA)

2-Signal Input(Formule) & Analyse Spectrale :

QUESTIONS:

1-x1(t)=1*cos(2*pi(1)*f1*t); f1=1Khz

2-x2(t)=1*cos(2*pi(1)*f1*t) +2*cos(2*pi(1)*f2*t): f2=2khz

3-x3(t) = 1*cos(2*pi(1)*f1*t) + 2*cos(2*pi(1)*f2*t + 5*cos(2*pi(1)*f3*t) : f3=8khz

5.1 :spectre de x(t)

Conclusion :

Quand la fréquence d'échantillonnage diminue progressivement, le phénomène d'aliasing s'accentue, entraînant une déformation croissante du spectre. Pour éviter cet aliasing, il est essentiel de choisir une fréquence d'échantillonnage supérieure à deux fois la fréquence maximale du signal.

6.1:

Fs = 20khz:

Fs=19 Khz:

Fs=18 khz:

Fs=17khz:

Fs=15 khz:

Fs= 14 khz:

Fs= 13 khz:

Fs=12 khz:

Fs=11 khz:

Fs=10 khz:

Fs=9 khz:

Fs= 8khz:

Fs=6 khz:

Fs=4 khz:

Fs=3khz:

Fs= 2khz:

Fs= 1khz:

• Conclusion:

Un échantillonnage à 8 kHz engendre un aliasing, où la composante à 8 kHz se replie et apparaît à 0 kHz.

IBTISSAME MEGHRAOUI
HIBA NAHRI
OUSSAMA NOR