网销案件EDA

目的: 对网销案件从不同维度,运用制表、作图、特征分析等方法进行探索性数据分析,以发现赔案的规律和特点,对业务的发展提供决策建议。

分析思路:

- 1. 数据导入与概览
- 2. 案件整体情况
 - 。 赔款金额描述统计与分布情况
 - 。 投保人与被保险人关系分布情况
 - 。 出险原因分布情况
- 3. 时间维度
 - 。 每日赔款金额趋势和赔案数量分布
- 4. 机构维度
 - 。 各机构案件数量与赔款金额对比
 - 。 各机构赔案业务来源占比
 - 。 各机构赔案险种占比
- 5. 险种维度
 - 。 各险种赔案数量对比
 - 各险种案均赔款对比
 - 各险种出险案件数量随时间变化趋势
 - 。 各出险原因出险案件数量时间趋势
- 6. 出险省份维度
 - 。 各省份案件数量分布
 - 。 各省份案均赔款分布
 - 。 各省份险种构成
- 7. 业务来源维度
 - 。 各业务来源赔案数量对比
 - 。 各业务来源案均赔款对比
 - 各业务来源赔款总额对比
- 8. 终端维度
 - 。 各终端来源赔案数量对比
 - 。 各终端来源案均赔款对比
- 9. 年龄维度
 - 。 各年龄段案件数量对比
 - 。 各年龄段案均赔款对比
 - 。 各年龄段赔案出险原因分布
- 10. 相关性探索
 - 。 各类日期差值分布情况
 - 。 各日期差值与赔案金额相关性分析

1. 数据导入与概览

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.style.use('ggplot')
from pyecharts.charts import Bar
import pandas_profiling
from eplot import eplot
import warnings
warnings.filterwarnings('ignore')
```

```
data = pd.read_csv('process_data.csv')
```

data.info(

```
RangeIndex: 1426 entries, 0 to 1425
Data columns (total 26 columns):
company 1426 non-null object
organization 1426 non-null object
id 1426 non-null object
birthday 1426 non-null object
relationship_insured 1426 non-null object
insurance_code 1426 non-null int64
```

```
date_case 1426 non-null object
start_date_insurance 1426 non-null object
report_date 1426 non-null object
decision_time 1426 non-null object
loss_type 1426 non-null int64
pay_money 1426 non-null int64
pay_counts 1426 non-null int64
business_source 1426 non-null object
terminal_source 1426 non-null object
channel 1426 non-null object
insurance_type 1426 non-null object
case_reason 1426 non-null object
case_province 1426 non-null object
case_city 1426 non-null object
case_city 1426 non-null object
case_city 1426 non-null object
case_town 1382 non-null object
case_road 1426 non-null object
dage 881 non-null float64
diff_case_date 1426 non-null float64
diff_report_date 1426 non-null float64
diff_dic_data 1426 non-null float64
diff_dic_data 1426 non-null float64
dtypes: float64(5), int64(3), object(18)
```

data.describe()

	insurance_code	loss_type	pay_money	pay_counts	age	diff_case_date	diff_report_date	diff_d
count	1426.000000	1426.000000	1426.000000	1426.000000	881.000000	1426.000000	1426.000000	1426.0
mean	619.865358	0.019635	2068.582574	0.009818	45.253121	139.692146	25.390603	21.624
std	69.447404	0.138792	4968.942240	0.105506	11.680333	97.872727	35.454893	28.578
min	604.000000	0.000000	11.200000	0.000000	19.000000	0.000000	0.000000	0.0000
25%	604.000000	0.000000	349.385000	0.000000	37.000000	57.000000	2.000000	3.0000
50%	606.000000	0.000000	863.220000	0.000000	46.000000	127.000000	14.000000	11.000
75%	606.000000	0.000000	2434.730000	0.000000	54.000000	210.000000	33.000000	29.000
max	1229.000000	1.000000	109100.000000	2.000000	67.000000	449.000000	310.000000	208.00

```
data.shape
```

```
(1426, 26)
```

```
# 根据先验经验,填充学平险年龄为均值8,标准差1的正态分布随机数
age = np.random.normal(loc=8, scale=1.0, size=484)
age = age.astype('int64')
data['age'][data['insurance_type']== '学平险'] = age
```

2. 案件整体情况

2.1 赔款金额描述统计与分布情况

```
print(data.pay_money.describe())
print('总赔款金额:', data.pay_money.sum())
# 注意应该保留报案号,可以去重复案件,describe已经给出
print('案均金额:', data.pay_money.sum()/ data.id.count())

# 存在极值,用切比雪夫
plt.title('赔款金额分布情况')
data.pay_money[data.pay_money<15000].plot.hist(bins=10)
print('赔款大于>15000的案件数量:', data.pay_money[data.pay_money>15000].count())
```

```
1426.000000
count
mean
         2068.582574
       4968.942240
min
          11.200000
         349.385000
25%
50%
         863.220000
       2434.730000
75%
max 109100.000000
总赔款金额: 2949798.75
案均金额: 2068.5825736325387
赔款大于>15000的案件数量: 11
```


赔款金额箱线图

data.pay_money[data.pay_money>15000].plot.box()
plt.show()

2.2 投保人与被保险人人关系分布情况

投保人与被保险人关系分布情况

data.relationship_insured.value_counts().plot.bar()
plt.xticks(rotation=0)
plt.show()

2.3 出险原因分布情况

plt.figure(figsize=(10,8))
data.case_reason.value_counts().sort_values().plot.barh()
plt.show()

3. 时间维度

3.1 每日赔款金额趋势和赔案数量分布

```
plt.figure(figsize=(10,15))
plt.subplot(411)
data.groupby('decision_time_month').pay_money.sum().plot(label='pay_money')
plt.legend()
plt.subplot(412)
data.groupby('decision_time_month').id.count().plot(label='decision_case')
plt.legend()
plt.subplot(413)
# 2019-7到2019-9有下降. 猜测与放暑假有关, 进一步钻取学平险报案情况
data.groupby('report_date_month').id.count().plot(label='report_case')
plt.legend()
plt.subplot(414)
data[data.insurance_type=='学平险'].groupby('report_date_month').id.count().plot(label='student_report_case')
plt.legend()
plt.show()
```


赔款金额累加折线图 接近二八法则,3:7 data.pay_money.sort_values(ascending=False).cumsum().reset_index(drop=True).plot() plt.show()

4. 机构维度

4.1 各机构案件数量与赔款金额对比

```
plt.figure(figsize=(10,15))
plt.subplot(211)
data.groupby('company').id.count().sort_values().plot.barh()
plt.title('各机构案件数量对比')
plt.subplot(212)
data.groupby('company').pay_money.sum().sort_values().plot.barh()
plt.title('各机构赔款金额对比')
plt.show()
```

各机构案件数量对比

各机构赔款金额对比 普业一部 阳江 广州市分 佛山 茂名 漕远 順德 湛江 韶关 潮州 惠州 江门 黄埔 汕头 梅州 河源 番禺

4.2 各机构赔案业务来源占比

东菲

200000

400000

```
df = data.pivot_table(index='company', columns='business_source',\
    values='id', aggfunc='count')
plt.figure(figsize=(10,15))
df.plot.barh(stacked=True)
plt.show()
```

600000

800000

1000000

1200000

1400000

4.3 各机构赔案险种占比

```
plt.figure(figsize=(10,15))

df = data.pivot_table(index='company', columns='insurance_type',\
    values='id', aggfunc='count')

df.plot.barh(stacked=True)
plt.show()
```


5. 险种维度

5.1 各险种赔案数量对比

```
plt.figure(figsize=(10,7))
data.insurance_type.value_counts().plot.barh()
plt.show()
```


5.2 各险种案均赔款对比

```
df = data.groupby('insurance_type').apply(lambda x : x.pay_money.sum()/ x.pay_money.count())
df.sort_values().plot.barh()
plt.show()
```


5.3 各险种出险案件数量随时间变化趋势

```
insurance_type = ['个意险', '出行无忧', '学平险', '旅游意外', '个人医疗A', '驾意险', '肠胃炎', '境外出行']
num = data.insurance_type.nunique()
df = data.groupby(['insurance_type', 'date_case_month']).count().id

plt.figure(figsize=(15,12))
for i in range(num):
    df[insurance_type[i]].plot(label=insurance_type[i])
plt.legend()
plt.show()
```


5.4 各出险原因出险案件数量时间趋势

```
case_reason_type = ['意外', '疾病', '其他']
num = data.case_reason_type.nunique()
df = data.groupby(['case_reason_type', 'date_case_month']).count().id

plt.figure(figsize=(15,12))
for i in range(num):
    df[case_reason_type[i]].plot(label=case_reason_type[i])
plt.legend()
plt.show()
```


6. 出险省份维度

6.1 各省份案件数量分布

plt.figure(figsize=(10,8))
data.case_province.value_counts().sort_values().plot.barh()
plt.show()

6.2 各省份案均赔款分布

 $\label{limits} $$ plt.figure(figsize=(10,8))$ $$ data.groupby('case_province').apply(lambda x : x.pay_money.sum()/x.id.count()).sort_values().plot.barh() $$ plt.show() $$$

6.3 各省份险种构成

plt.figure(figsize=(10,50))
data.pivot_table(index='case_province', columns='insurance_type', values='id', aggfunc='count').plot.barh(stacked=True)
plt.show()

7. 业务来源维度

7.1 各业务来源赔案数量对比

data.business_source.value_counts().sort_values().plot.barh()
plt.show()

7.2 各业务来源案均赔款对比

7.3 各业务来源赔款总额对比

data.groupby('business_source').sum().pay_money.plot.barh()
plt.show()

8. 终端维度

8.1 各终端来源赔案数量对比

data.terminal_source.value_counts().sort_values().plot.barh()
plt.show()

8.2 各终端来源案均赔款对比

 $\label{lem:data.groupby('terminal_source').apply(lambda $x : x.pay_money.sum()/x.id.count()).sort_values().plot.barh() plt.show()$

9. 年龄维度

对年龄分析,去掉年龄为空值的数据 data_age = data.dropna(axis=0,subset=["age"]) #指定列,按行删除 data_age.isnull().sum() print(data_age.shape) print(data_age.age.describe())

```
count
        1364.000000
mean
          31.875367
          20.365170
std
           5.000000
min
25%
           8.000000
50%
          35.000000
          49.000000
75%
          67.000000
max
```

9.1 各年龄段案件数量对比

```
data_age.age_label.value_counts().plot.barh()
plt.show()
```


9.2 各年龄段案均赔款对比

```
# 柱形图 data_age.groupby('age_label').apply(lambda x : x.pay_money.sum()/x.id.count()).sort_values().plot.barh() plt.show()
```


9.3 各年龄段赔案出险原因分布

plt.figure(figsize=(10,50))
data_age.pivot_table(index='age_label', columns='case_reason_type', values='id', aggfunc='count').plot.barh(stacked=True)
plt.show()

10. 相关性探索

10.1 各类日期差值分布情况

赔款日期与报案日期之差的分布 data.diff_dic_data.plot.hist() plt.show()

出险日期与保单起期之差的分布 sns.kdeplot(data.diff_case_date) plt.show()

报案日期与出险日期之差的分布

 $\verb|sns.kdeplot(data.diff_report_date)|\\$

plt.show()

10.2 各日期差值与赔案金额相关性分析

sns.pairplot(data[['diff_dic_data', 'diff_report_date', 'diff_case_date', 'pay_money']])
plt.show()

导出数据

data_age.to_csv('data_age.csv',encoding='utf_8_sig', index=0)

data_age.to_excel('data_age.xlsx', index=0)