of 18 \times^* is a local minimizer of f and $\nabla^2 f$ exists and is continuous in an open neighborhood of \times^* , then $\nabla f(\times^*) = 0$ and $\nabla^2 f(\times^*) > 0$.

The proof rimply rays that if $\forall^2 f(x^*) < 0$ then there exists a direction in the neighborhood of x^* where we can more some small amount and eyo "Lownwards" on the runface, by uning the Taylor expansion.

©T2.3 only arrumes that \(\nable f(x*) > 0,
i.e. prositive remi-definiteness, which

e un include rodelle points, i.e. not
rhiet minimizers.

$$|\overline{Z}| m_k(p) = f_k + p^T \nabla f_k + \frac{1}{2} p^T \nabla^2 f_k p \approx f(x_k + p)$$

$$\frac{\partial m_k}{\partial p} = \nabla f_k + \nabla^2 f_k p = 0 \implies p_k'' = -(\nabla^2 f_k)^{-1} \nabla f_k \prod$$

$$= -\nabla f_{k}^{T} \nabla^{2} f_{k}^{$$

If $\nabla^2 f_k < 0$, then p_k^{κ} is not a descent direction.

©
$$f(x) = \frac{1}{2} x^{\dagger} G x + x^{\dagger} C$$
, $x \in \mathbb{R}^{n}$, $G = G^{\dagger} > 0$
 $\nabla f_{k} = G x$, $\nabla^{2} f_{k} = G$,
 $p_{k}^{K} = -G^{\dagger} G x_{k} = -x_{k} \implies x_{k+1} = x_{k} - x_{k} = 0$
Since the optimum is always in the origin, regardless of G and C , we can just simply go to $O - duh!$

②
$$\int (x) = \frac{1}{8}x^{T}Gx + x^{T}C$$
, $G = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$, $C = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$,

 $x \in X$, $X = \{x \in \mathbb{R}^{2} \mid X_{1}^{2} + X_{2}^{2} \leq 1\}$

(omex if: $\int (ax + (1-a)y) \leq a \int (x) + (1-a) \int (y)$,

 $\alpha = [0,1]$
 $\int (ax + (1-a)y) = \frac{1}{2}(ax + (1-a)y)^{T}G(ax + (1-a)y) + (ax + (1-a)y)^{T}C$
 $= \frac{1}{2}(a^{2}x^{T}Gx + a(1-a)x^{T}Gy + a(1-a)y^{T}Gx + (1-a)y^{T}Gx)$
 $+ (1-a)^{2}y^{T}Gy) + ax^{T}C + (1-a)y^{T}C$
 $(x)^{2}(x) + (1-a)^{2}(x) + (1$

$$det(\lambda I - \nabla^2 f(x+1)) = (x - 802)(x - 200) - 160000$$

$$= \lambda^2 - 1002 \times + 400 = 0$$

$$= \lambda \lambda \approx 0,3994, \lambda \approx 1001,6$$

$$= \lambda \nabla^2 f(x+1) > 0$$