Factoriser l'expression suivante en utilisant une identité remarquable :

$$16x^2 - 9$$

Question 3:

Déterminer le nouveau prix d'un article coutant 58,5 € et dont le nouveau prix a une augmentation de 8 %

Question 2:

Déterminer la forme canonique de

$$3x^2 + 5x + (-2)$$

Factoriser l'expression suivante en utilisant une identité remarquable :

$$16x^2 - 9$$

Question 3:

Déterminer le nouveau prix d'un article coutant $58,5 \in$ et dont le nouveau prix a une augmentation de 8 %

Question 2:

Déterminer la forme canonique de

$$3x^2 + 5x + (-2)$$

1.
$$(4x+3)(4x-3)$$

Factoriser l'expression suivante en utilisant une identité remarquable :

$$16x^2 - 9$$

Question 3:

Déterminer le nouveau prix d'un article coutant $58,5 \in$ et dont le nouveau prix a une augmentation de 8 %

Question 2:

Déterminer la forme canonique de

$$3x^2 + 5x + (-2)$$

- $1. \quad (4x+3)(4x-3)$
- $2. \quad 3\left(x \frac{-5}{6}\right)^2 + \frac{-49}{12}$

Factoriser l'expression suivante en utilisant une identité remarquable :

$$16x^2 - 9$$

Question 3:

Déterminer le nouveau prix d'un article coutant $58,5 \in$ et dont le nouveau prix a une augmentation de 8 %

Question 2:

Déterminer la forme canonique de

$$3x^2 + 5x + (-2)$$

- 1. (4x+3)(4x-3)
- $2. \quad 3\left(x \frac{-5}{6}\right)^2 + \frac{-49}{12}$
 - **3.** 63,18 €

Solution détaillée de la question 1 :

Factoriser l'expression suivante en utilisant une identité remarquable :

$$16x^2 - 9$$

Solution : On reconnaît l'identité remarquable
$$a^2 - b^2 = (a + b)(a - b)$$
 avec $a > 0$ et $b > 0$.

et
$$b > 0$$
.

Ici,
$$a^2 = 16x^2$$
 donc $a = 4x$

$$16x^2 - 9 = (4x - 6)^2$$

Et $b^2 = 9$ donc b = 3

Donc:
$$16x^2 - 9 = (4x + 3)(4x - 3)$$

Solution détaillée de la question 2 :

Déterminer la forme canonique de

$$3x^2 + 5x + (-2)$$

Pour
$$ax^2 + bx + c$$
, la forme canonique est $a(x - \alpha)^2 + \beta$ avec :

Détermination de la forme canonique :
Pour
$$ax^2 + bx + c$$
, la forme canonique est $a(x - \alpha)^2 + \beta$ avec :
$$\alpha = -\frac{b}{2a}$$
Avec $a = 3$,
$$b = 5$$
 at $c = (-2)$:
$$\alpha = -\frac{5}{2 \times 3} = \frac{-5}{6} = \frac{-5}{6}$$

$$\beta = -\frac{5^2 - 4 \times 3 \times (-2)}{4 \times 3} = -\frac{25 - (-24)}{12}$$

•
$$\alpha = -\frac{b}{2a}$$
 Avec $a = 3$,

•
$$\alpha = -\frac{b}{2a}$$
 Avec $a = 3$,
• $\beta = -\frac{b^2 - 4ac}{4a}$ $b = 5$ et $c = (-2)$:

$$\alpha = -\frac{5}{2 \times 3}$$
$$\beta = -\frac{5^2 - 4}{3}$$

$$= \frac{49}{-12} = \boxed{\frac{4 \times 3}{-49}}$$

$$= \frac{12}{-12} = \boxed{12}$$
Donc:

$$3x^{2} + 5x + (-2) = 3\left(x - \frac{-5}{6}\right)^{2} + \frac{-49}{12}$$

Solution détaillée de la question 3 :

Déterminer le nouveau prix d'un article coutant 58,5 \leqslant et dont le nouveau prix a une augmentation de 8 %

On utilise la formule suivante :

Nouveau Prix = Ancien Prix+Ancien Prix×
$$\left(\frac{t}{100}\right)$$

où t est le taux d'augmentation ou de réduction.

ou t est le taux a augmentation ou de reduct Ici il s'agit d'une augmentation, avec

Ici il s'agit d'une augmentation, avec Ancien Prix = 58,5 et t = 8. Nouveau Prix = $58,5 + 58,5 \times \frac{8}{100}$ = 58,5 + 4,68

Ainsi:

Nouveau Prix = 63,18