Statistical Physics (3rd tierce exam)

Name:

ID:

	11).				
	1. (a)	(b)	(c)	(d)	
U	2. (a)	(b)	(c)	(d)	
	3. (a)	(b)	(c)	(d)	
	4. (a)	(b)	(c)	(d)	
	5. (a)	(b)	(c)	(d)	
	6. (a)	(b)	(c)	(d)	
	7. (a)	(b)	(c)	(d)	
	8. (a)	(b)	(c)	(d)	
	9. (a)	(b)	(c)	(d)	
	10. (a)	(b)	(c)	(d)	
	11. (a)	(b)	(c)	(d)	
	12. (a)	(b)	(c)	(d)	
	13. (a)	(b)	(c)	(d)	
	14. (a)	(b)	(c)	(d)	
	15. (a)	(b)	(c)	(d)	

- 1. Ideal gas equation PV = NKT is true when the system is in classical domain (high temperature). To understand this macroscopic phenomena, we have to consider microscopic statistical description: gas constituent particles with
 - (a) Maxwell-Boltzmann (MB) distribution function
 - (b) Bose-Einstein (BE) distribution function
 - (c) Fermi-Dirac (FD) distribution function
 - (d) none of the above
- 2. According to ideal gas equations PV = NKT, $U = \frac{3}{2}NKT$, at zero temperature (T = 0), pressure P and internal energy U will be zero but it is not true because low temperature is quantum domain, where gas constituent particles follow
 - (a) classical distribution MB
 - (b) quantum distribution FD/BE
 - (c) equipartition of energy law
 - (d) none of the above
- 3. Considering compact star like white dwarf as electron gas only (ignoring its other components), then for statistical mechanical description of white dwarf, which distribution is required?
 - (a) MB
 - (b) **B**E
 - (c) FD
 - (d) none of the above
- 4. Fermion with energy ϵ in a gas with temperature T and chemical potential/Fermi energy μ will follow FD distribution, whose mathematical form will be $f_{FD} =$
 - (a) $1/\{\exp(\frac{\epsilon-\mu}{KT})+1\}$
 - (b) $1/\{\exp(\frac{\epsilon-\mu}{KT}) 1\}$ (c) $\exp(-\frac{\epsilon-\mu}{KT})$

 - (d) none of the above
- 5. At Fermi energy, i.e. $\epsilon = \mu$
 - (a) $f_{FD}(\epsilon = \mu) = 0$
 - (b) $f_{FD}(\epsilon = \mu) = 1/2$ (c) $f_{FD}(\epsilon = \mu) = 1$

 - (d) none of the above
- 6. At $\epsilon \ll \mu$ or $\epsilon \to 0$
 - (a) $f_{FD} = 0$
 - (b) $f_{FD} = 1/2$
 - (c) $f_{FD} = 1$
 - (d) none of the above
- 7. At $\epsilon \gg \mu$ or $\epsilon \to \infty$
 - (a) $f_{FD} = 0$
 - (b) $f_{FD} = 1/2$
 - (c) $f_{FD} = 1$
 - (d) none of the above
- 8. At T = 0
 - (a) $f_{FD} = 0$ for $\epsilon < \mu$ and $f_{FD} = 1$ for $\epsilon > \mu$

(b)
$$f_{FD}=1$$
 for $\epsilon<\mu$ and $f_{FD}=0$ for $\epsilon>\mu$ (c) $f_{FD}=1$ (d) none of the above

- 9. No of electrons N in metal can be expressed as

$$N = 2 \int_0^\infty \frac{d^3 x d^3 p}{h^3} \frac{1}{e^{\beta(\epsilon - \mu)} + 1}$$
 (1)

with electron's energy $\epsilon = \frac{p^2}{2m}$. Here $\beta = 1/(KT)$, $\mu = \frac{p_F^2}{2m}$. At T=0 we get number density as (a) $\frac{N}{V} = \frac{8\pi}{5h^3}(2m\mu)^{5/2}$ (b) $\frac{N}{V} = \frac{8\pi}{4h^3}(2m\mu)^{4/2}$ (c) $\frac{N}{V} = \frac{8\pi}{3h^3}(2m\mu)^{3/2}$ (d) none of the above

- 10. Total energy (internal energy) of electron gas can be expressed as

$$U = 2 \int_0^\infty \frac{d^3 x d^3 p}{h^3} \frac{6}{e^{\beta(\epsilon - \mu)} + 1} . \tag{2}$$

In the same condition, described in earlier question, energy density of electron gas will be

- (a) $\frac{U}{V} = \frac{8\pi}{5h^3} \frac{(2m\mu)^{5/2}}{2m}$
- (a) $\frac{\bar{v}}{V} = \frac{8\pi}{5h^3} \frac{(2m\mu)^4}{2m}$ (b) $\frac{U}{V} = \frac{8\pi}{4h^3} \frac{(2m\mu)^{4/2}}{2m}$ (c) $\frac{U}{V} = \frac{8\pi}{3h^3} \frac{(2m\mu)^{3/2}}{2m}$ (d) none of the above

- 11. Average energy of non-relativistic fermion (or boson or any particle) in classical domain is $\epsilon_{av} = \frac{U}{N} = \frac{3}{2}KT$, according to which $\epsilon_{av} = 0$ at T = 0, but according quantum relations (discussed in earlier 2 questions), at T=0, average energy of non-relativistic fermion is

 - (a) $\epsilon_{av} = \frac{3}{3}\mu$ (b) $\epsilon_{av} = \frac{3}{5}\mu$ (c) $\epsilon_{av} = \mu$

 - (d) none of the above
- 12. Grand canonical potential Φ or Pressure times volume of electron gas can be expressed as

$$-\Phi = PV = 2 \int_0^\infty \frac{d^3x d^3p}{h^3} \frac{pv/3}{e^{\beta(\epsilon - \mu)} + 1} , \qquad (3)$$

In the same condition, described in earlier questions, pressure of electron gas will be

- (a) $P = \frac{8\pi}{15h^3} \frac{(2m\mu)^{5/2}}{m}$ (b) $P = \frac{8\pi}{12h^3} \frac{(2m\mu)^{4/2}}{m}$ (c) $P = \frac{8\pi}{9h^3} \frac{(2m\mu)^{3/2}}{m}$ (d) none of the above

- 13. For non-relativistic fermion (or boson or any particle) in classical domain, we get relation between internal energy density and pressure as $\frac{U}{V} = \frac{3}{2}P$ by fusing two equations $U = \frac{3}{2}NKT$ and PV = NKT. Similar kind of relation between internal energy density and pressure for degenerate (i.e. at T=0) and non-relativistic electron gas will be

- (a) $\frac{U}{V} = \frac{1}{3}P$ (b) $\frac{U}{V} = \frac{3}{2}P$ (c) $\frac{U}{V} = \frac{2}{3}P$ (d) none of the above
- 14. Example of degenerate and relativistic electron gas is
 - (a) White dwarf
 - (b) Neutron star
 - (c) black hole
 - (d) none of the above
- 15. Example of degenerate and relativistic neutron gas is
 - (a) White dwarf
 - (b) Neutron star
 - (c) black hole
 - (d) none of the above