23V / 500mA 低压降线性降压转换器

产品描述

DS8242系列是一组低压差 (LDO) 转换器, 具有 2V 至 23V 宽电压输入范围、低压差、低功耗和小型化封装的 等特性。

DS8242 低至 1.5uA 低静态电流特性,特别适合用于电 池供电、长时间待机系统设备应用,能帮助降低系统设 备的待机功耗,有效延长待机时间和电池使用寿命。

DS8242 系列支持输出电容采用陶瓷电容器, 在 2V 至 23V 的宽输入电压范围内和整个输出负载电流 0mA-500mA 范围内稳定工作。

产品特性

- 1.5uA 静态电流 (无负载)
- ±1% 输出电压精度
- 500mA 输出瞬间最大电流
- 宽范围输入电压: 2V 至 23V
- 低压差: 0.35V (Vo=5V/lo=100mA 条件下)
- 支持固定输出电压: 1.8V, 2.5V, 2.8V, 3.0V, 3.3V, 3.6V, 5V
- 支持陶瓷电容或者钽电容
- 限流保护
- 过温保护
- 提供SSOT-23、SOT-23-3、SOT-23-5、SOT-89-3 封 装

产品应用

- 手持式、电池供电设备
- 低功耗微处理器
- 笔记本电脑、掌上型电脑和 PDA
- 无线通讯设备
- 音频/视频设备
- 车载导航系统
- 工业控制
- 智能电表
- 智能家居

封装脚位图

产品信息

DS8242-AABB

代码	描述	符号	说明	
		18	$V_{OUT} = 1.8V$	
AA	输出电压	33 V _{OUT} =	$V_{OUT} = 2.8V$	
			$V_{OUT} = 3.3V$	
		50	$V_{OUT} = 5.0V$	
BB		SS3	SSOT-23	
				S3
		S5	SOT-23-5	
	封装类型	A3	SOT-89-3	
		A3L	SOT-89-3 (L-Type)	
		Δ3R SOT-89-	SOT-89-3 (R-Type)	

如有需要输出电压 1.8V 至 5V 之间的特殊电压产品,可进行产品定制。

引脚功能描述

脚位号							
SSOT-23 SOT-23-3	SOT-23-5	SOT-89-3	SOT-89-3 (L-Type)	SOT-89-3 (R-Type)	名称	功能描述	
1	2	2	2	1	GND	接地	
2	5	3	1	3	VOUT	电源输出端口	
3	1	1	3	2	VIN	电源输入端口	
	3,4				NC	浮空脚	

典型应用电路

图 1: 固定输出电压应用电路

产品功能框图

最大耐压值 (Note 1)

VIN 至 GND
VOUT 至 GND
DS8242-18, DS8242-33, DS8242-50
VOUT 至 VIN
封装热阻 (Note 2)
SSOT-23, θ_{JA} 250 °C /W
SOT-23-5, SOT-23-3, θ _{JA}
SOT-89-3, θ _{JA} 120 °C /W
引脚焊锡温度(Soldering, 10 sec.) 260 °C
结点温度 150 ℃
存储温度范围40 ℃ to 150 ℃
ESD 静电
HBM 2KV
MM 200V

建议应用条件

输入电压 VIN	2.0V to 23V
应用结温范围	-40 °C to 125 °C
应用环温范围	-40 °C to 85 °C

电气特性

(V_{IN} =12V, V_{EN} =5V, T_A=25℃ 除另有说明外)

参数	符号	测试条件	最小值	典型值	最大值	单位
输入电压	VIN		2		23	V
输出电压精准度		I _{LOAD} = 0.1mA	-1		1	%
	V _{DROP}	V _{OUT} ≥ 5V		0.35		
Dropout 电压(I _{LOAD} =100mA)	V _{DROP_3.3V}	V _{OUT} = 3.3V		0.42		V
	V _{DROP_1.8V}	V _{OUT} = 1.8V		0.5		
静态电流 (I _{LOAD} = 0mA) (Note 3)	lα	V _{IN} > V _{OUT}		1.5		μA
输入电压调整率	ΔLINE	$I_{LOAD} = 1mA,$ $10V \le V_{IN} \le 20V$		0.5		%
负载电压调整率	ΔLOAD	10mA≤ I _{LOAD} ≤ 0.2A		0.3		%
输出瞬间最大电流值	l _{OUT}	$V_{IN} = V_{OUT} + 1.8V$		500		mA
输出电流限流值	ILIM	V _{OUT} = 0V	501	700		mA
电源抑制比	PSRR	$V_{OUT} = 5V,$ $I_{LOAD} = 30\text{mA},$ $V_{IN} = 12V,$ $f = 1\text{KHz}$		70		dB
过温度关断温度	T _{SD}	I _{LOAD} = 10mA		160		°C
过温度关断迟滞	ΔT_{SD}	ILUAD — TUTTIA		15		°C

- Note 1. 任何超过"最大耐压值"的应用可能会导致芯片遭受永久性损坏。这些是额定最大耐压值,仅表示在这个范围内芯片不会损伤,但不保证所有性指标都正常,在任何超过"最大耐压值"的场合使用,都可能导致芯片永久性损坏。在接近或等于最大耐压值情况下使用,可能会影响产品可靠性。
- Note 2. θ_{JA} 测量条件: $T_A = 25$ °C, 使用 DSTECH EVB 板。
- Note 3. 当 VIN > VOUT 时,静态电流如电气规格所标示,但当 VIN ≤ VOUT 时,静态电流会比电气 规格所标示大。

典型电气特性

应用指导

输入和输出电容

DS8242 系列产品应用,需要选择合适的输入电容和输出电容,以确保产品应用获得稳定可靠的性能。使用 1uF 或者更大容值的输入电容,并将其靠近 IC 的 VIN 和 GND pin 脚摆放。输出电容可选用 1mΩ以上 ESR (等效串联阻抗),有效容值 1uF 至 22uF 的电容。并将输出电容靠近 IC 的 V_{OUT} 和 GND 脚摆放。增加输出电容的容值和降低 ESR 能够提升电路的 PSRR 和瞬态响应能力。

电流限制功能

DS8242 系列产品内部的电流限制器可持续监控及控制 输出功率晶体管,将输出电流限制至 700mA (典型值)。 限流功能确保输出可以短路至地,器件不会损坏。

Dropout 电压

DS8242 系列采用 PMOS 传输晶体管来实现低压差。当 $(V_{IN}-V_{OUT})$ 小于 (V_{DROP}) 时,PMOS 晶体管处于线性工作区域,输入至输出阻抗即为 PMOS 的 $R_{DS(ON)}$,在此状态下,PMOS 等效于一颗电阻, V_{DROP} 和输出电流近似成比例。和其他线性电压转换器一样,DS8242 系列的 PSRR 和瞬态响应能力会随着 $(V_{IN}-V_{OUT})$ 压差接近 V_{DROP} 而下降。

OTP (过温度保护)

当产品的结点温度超过160°C (典型值) 时, DS8242会 关闭 P-MOS 关闭输出。当结点温度往回降大约15°C 时, IC 会重新自动重启工作。

热散功率

持续工作时,IC 的结点温度不应超过其额定值。最大的 热散功率取决于IC 封装的热阻、PCB 布图、周围气流速 率以及结点和环境温度的差异。最大热散功率计算如下:

环温 TA=25°C, 使用 DSTECH PCB,

SSOT-23 封装:

PD (Max) = $(125^{\circ}C - 25^{\circ}C) / (250^{\circ}C/W) = 0.4W$

SOT-23-3/SOT-23-5 封装:

PD (Max) = $(125^{\circ}C - 25^{\circ}C) / (220^{\circ}C/W) = 0.45W$

SOT-89-3 封装:

PD (Max)= $(125^{\circ}C - 25^{\circ}C) / (120^{\circ}C/W) = 0.83W$

热散功率(PD)等于输出电流和LDO上的压降的乘积,计算公式如下:

PD = (VIN - VOUT) × IOUT

Layout 注意事项

将输入电容、输出电容和 LDO 放置在 PCB 的同一面,并尽量将电容器靠近 IC 的输入输出脚摆放,可实现电路最佳性能。输入电容和输出电容的接地连接必须拉回到 DS8242 的接地引脚,并使用短而粗的铺线连接。避免使用长走线、窄走线、或者通过过孔走线,这些会增加寄生电感和电阻,导致电路性能变差,特别是在瞬态工作条件下。

封装信息

Symbol	Millimeters		Inches	
	Min.	Max.	Min.	Max.
Α	0.900	1.150	0.035	0.045
A1	0.000	0.100	0.000	0.004
В	1.200	1.400	0.047	0.055
b	0.300	0.500	0.012	0.020
С	2.250	2.550	0.089	0.100
D	2.800	3.000	0.110	0.118
е	1.900		0.0	75
Н	0.080	0.150	0.003	0.006
L	0.300	0.500	0.012	0.020

SSOT-23

Symbol	Millim	Millimeters		Inches	
	Min.	Max.	Min.	Max.	
Α	0.889	1.295	0.035	0.051	
A1	0.000	0.152	0.000	0.006	
В	1.397	1.803	0.055	0.071	
b	0.250	0.560	0.010	0.022	
С	2.591	2.997	0.102	0.118	
D	2.692	3.099	0.106	0.122	
е	1.803	2.007	0.071	0.079	
Н	0.080	0.254	0.003	0.010	
Ĺ	0.300	0.610	0.012	0.024	

SOT-23-3L

Symbol	Millim	eters	Inches	
	Min.	Max.	Min.	Max.
Α	0.889	1.295	0.035	0.051
A1	0.000	0.152	0.000	0.006
В	1.397	1.803	0.055	0.071
b	0.250	0.560	0.010	0.022
С	2.591	2.997	0.102	0.118
D	2.692	3.099	0.106	0.122
е	0.838	1.041	0.033	0.041
Н	0.080	0.254	0.003	0.010
L	0.300	0.610	0.012	0.024

SOT-23-5L

Symbol	Millimeters		Inches	
Symbol	Min.	Max.	Min.	Max.
Α	1.397	1.600	0.055	0.063
b	0.356	0.483	0.014	0.019
В	2.388	2.591	0.094	0.102
b1	0.406	0.533	0.016	0.021
С	3.937	4.242	0.155	0.167
C1	0.787	1.194	0.031	0.047
D	4.394	4.597	0.173	0.181
D1	1.397	1.753	0.055	0.069
е	1.448	1.549	0.057	0.061
Н	0.356	0.432	0.014	0.017

SOT-89-3L