Bài tập chương 6

(Trường vô hướng)

Bài 1. Cho
$$u=x^2+y^2+z^2$$
. Tính $\frac{\partial u}{\partial \overrightarrow{\ell}}(1;0;-1)$ với $\overrightarrow{\ell}=(1;-2;2)$.

Bài 2. Cho hàm ẩn z(x,y) xác định bởi $z^3+2xz-y=0$ và z(-1;-1)=1 Tính $\frac{\partial z}{\partial \overrightarrow{\ell}}(-1;-1)$ với $\overrightarrow{\ell}=(2;1)$.

Bài 3. Cho $u=\sqrt[4]{x^4+y^4+z^4}$. Tính $\overrightarrow{\operatorname{grad}}u(1;1;1)$.

(Trường vector)

Bài 1. Tính thông lượng của trường vector $\overrightarrow{F} = x^4 \overrightarrow{i} + y^4 \overrightarrow{j} + z^4 \overrightarrow{k}$ đi qua mặt cầu $x^2 + y^2 + z^2 = 4$ hướng ra ngoài.

Bài 2. Tính thông lượng của trường vector $\overrightarrow{F} = xz^2\overrightarrow{i} + x^2y\overrightarrow{j} + y^2(z+1)\overrightarrow{k}$ đi qua nửa mặt cầu $z = \sqrt{1 - x^2 - y^2}$ hướng ra ngoài.

Bài 3. Cho trường vector:

$$\overrightarrow{F} = (x^2y + y^2z)\overrightarrow{i} + xyz\overrightarrow{j} + (yz^2 + xy^2)\overrightarrow{k}$$

Tìm những điểm trong trường vector không phải là điểm xoáy.

Bài 4. Các trường sau có phải trường thế?

(a)
$$\overrightarrow{F} = -\frac{m}{r^3} \overrightarrow{r'}$$
 ; $r = \sqrt{x^2 + y^2 + z^2}$ (Trường hấp dẫn)

(b) $\overrightarrow{\operatorname{grad}} u$; trong đó u(x,y,z) là hàm có các đạo hàm riêng cấp 2 liên tục.

(c)
$$\overrightarrow{F} = \frac{x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}}{(x^2 + y^2 + z^2)^{\frac{3}{4}}}$$

Bài 5. Tính hoàn lưu của trường vector $\overrightarrow{F} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$ dọc theo đường cong C xác định bởi:

$$\begin{cases} x^2 + y^2 + z^2 = 9\\ x + 2y + z = 0 \end{cases}$$

hướng ngược chiều kim đồng hồ khi nhìn từ chiều dương trục $\mathcal{O}z.$

Bài 6. Cho trường vô hướng u(x, y, z) và trường vector \overrightarrow{F} . Chứng minh rằng:

- (a) $\operatorname{div}(\overrightarrow{\operatorname{grad}}u) = \Delta u$
- (b) $\overrightarrow{rot}(u\overrightarrow{F}) = u \cdot \overrightarrow{rot}\overrightarrow{F} + \overrightarrow{grad}u \wedge \overrightarrow{F}$