3.5 Cartesian Products

Exercise 3.5.2

Suppose we define an ordered n-tuple to be a surjective function $x:i\in\mathbb{N}:1\leq i\leq n\to X$ whose codomain is some arbitrary set X (so different ordered n-tuples are allowed to have different ranges); we then write x_i for x(i) and also write x as $(x_i)1\leq i\leq n$. Using this definition, verify that we have $(x_i)1\leq i\leq n=(y_i)1\leq i\leq n$ if and only if $x_i=y_i$ for all $1\leq i\leq n$.

Also, show that if $(X_i)1 \le i \le n$ are an ordered *n*-tuple of sets, then the Cartesian product, as defined in Definition 3.5.6, is indeed a set. (Hint: use Exercise 3.4.7 and the axiom of specification.)

Exercise 3.5.4

Let A, B, C be sets. Show that:

a.
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$
,

b. $A \times (B \cup C) = (A \times B) \cup (A \times C), A \times (B \cap C) = (A \times B) \cap (A \times C),$

c. and $A \times (B \setminus C) = (A \times B) \setminus (A \times C)$. (One can of course prove similar identities in which the roles of the left and right factors of the Cartesian product are reversed.)

Exercise 3.5.7

Let X and Y be sets, and let $\pi_{X\times Y\to X}: X\times Y\to X$ and $\pi_{X\times Y\to Y}: X\times Y\to Y$ be the maps $\pi_{X\times Y\to X}(x,y):=x$ and $\pi_{X\times Y\to Y}(x,y):=y$; these maps are known as the coordinate functions on $X\times Y$. Show that for any functions $f:Z\to X$ and $g:Z\to Y$, there exists a unique function $h:Z\to X\times Y$ such that $\pi_{X\times Y\to X}\circ h=f$ and $\pi_{X\times Y\to Y}\circ h=g$. (Compare this to the last part of Exercise 3.3.8, and to Exercise 3.1.7.) This function h is known as the pairing of f and g and is denoted h=(f,g).

Proof.

Exercise 3.5.8

Let X_1, \ldots, X_n be sets. Show that the Cartesian product $\prod_{i=1}^n X_i$ is empty if and only if at least one of the X_i is empty.

Proof.

Exercise 3.5.9

Suppose that I and J are two sets, and for all $\alpha \in I$ let A_{α} be a set, and for all $\beta \in J$ let B_{β} be a set. Show that

$$\left(\bigcup_{\alpha\in I}A_{\alpha}\right)\cap\left(\bigcup_{\beta\in J}B_{\beta}\right)=\bigcup_{(\alpha,\beta)\in I\times J}\left(A_{\alpha}\cap B_{\beta}\right).$$

Proof.

What happens if one interchanges all the union and intersection symbols here?

Answer.

Proof.

Exercise 3.5.10

If $f: X \to Y$ is a function, define the graph of f to be the subset of $X \times Y$ defined by $\{(x, f(x)) : x \in X\}$.

a.	Show that two functions $f: X \to Y$, $f: X \to Y$ are equal if and only if they have the same graph.
	Proof.
b.	Conversely, if G is any subset of $X \times Y$ with the property that for each $x \in X$, the set $\{y \in Y : (x,y) \in G\}$ has exactly one element (or in other words, G obeys the vertical line test), show that there is exactly one function $f: X \to Y$ whose graph is equal to G .
	Proof.
c.	Suppose we define a function f to be an ordered triple $f=(X,Y,G)$, where X,Y are sets, and G is a subset of $X\times Y$ that obeys the vertical line test. We then define the domain of such a triple to be X , the codomain to be Y and for every $x\in X$, we define $f(x)$ to be the unique $y\in Y$ such that $(x,y)\in G$. Show that this definition is compatible with Definition 3.3.1 in the sense that every choice of domain X , codomain Y , and property $P(x,y)$ obeying the vertical line test produces a function as defined here that obeys all the properties required of it in that definition, and is also similarly compatible with Definition 3.3.8.
	Proof.