

PTPv2 Clock synchronization usage by the financial sector

Presented in the Vrije Universiteit Amsterdam (VU) https://www.vu.nl/en/

Pedro V. Estrela, PhD Performance Engineer 14-Jan-2014

Outline

- Part 1: Financial markets overview
 - How electronic markets work
 - Why low-latency a crucial requirement
- Part 2: Industrial research example
 - PTPv2 clock synchronization
 - Issues on the state-of-the-art

About the presenter

Pedro V. Estrela:

- PhD in Mobile IP networks (2007)
- Efficiency and Transparency work
- NS2 network simulations

Performance System Engineer

- Think of the mechanic that tunes your car
- Measure all latency steps (accurately)
- Remove the biggest bottleneck

Financial markets overview

Market participants

- Most market participants have an <u>opinion</u>, to:
 - Invest / raise capital
 - Get / provide Risk insurance

Market making

- IMC: Global Liquidity provider
 - Present in all major Equities / Derivatives markets
 - 4 offices worldwide, all time zones
- Market-Making business:
 - Like a currency house <u>no market opinion</u>
 - We liquidity by providing both buy and sell prices

Quoting example

How much is 100 Euros in USD?

Bank	We buy	Mid Price	We sell	Quote age
ABN Amro	-0.800	136.620	+0.800	6 hours
BPI Portugal	-0.815	136.445	+0.815	1 hour
CapitalSpreads.com	-0.002	136.651	+0.002	3 seconds

How much do you get back in EUR?

Orders matching

- Buyers and Sellers
 - Meet at a regulated exchange
 - Express their <u>intention</u> to buy / sell
 - Orders continuously matched by price-time priority

Trading 101

Imagine this just happened...

	BUYERS			SELLERS		
London	8 eur	9 eur	10 eur	11 eur	12 eur	13 eur
Frankfurt	6 eur	7 eur	8 eur	9 eur	10 eur	11 eur

Questions

- Q1: what would you do here?
- Q2: what should the <u>market maker</u> do here?

Where do we need speed?

What speed do we need?

How long is a....

- millisecond (ms)
 - A camera flash illuminates for 1 millisecond
 - Distance between countries
- microsecond (µs)
 - 3 microseconds Light to travel one Kilometer (1 billion km/h)
 - In and Out a machine, including all processing
- nanosecond (ns)
 - 3 nanoseconds Light to travel one meter cable
 - 350ns packet forward in a switch

Industrial research example: Clock Sync distribution

Clock sync Distribution

- Where does civil time comes from?
 - "Mean" of the world's stablest atomic clocks
 - Pushed every month to GPS Satellites
 - Continuously broadcasted to GPS receivers
 - Distributed to every machine at IMC

NTP summary

- Network Time Protocol (NTP)
 - Very mature IETF standard
 - All messages unicast
 - Multiple time sources
 - Only accurate to milliseconds worldwide

NTP operation

PTPv2 summary

- Precision Time Protocol (PTPv2)
 - Recent IEEE 1588 standard
 - Multicast messages
 - Single time source
 - Accurate to microseconds worldwide
 - Supports HW timestamping
 - PTP support on the switches

PTPv2 operation

Master multicasts its time to all clients

Clients separately measure the return path

Single master problem

- GM "traitor" scenario:
 - GM sent bad time (<u>leap seconds</u> = 0)
 - Backup GMs stay passive (same BMC)
 - Clients trust their single GM = jumps / slews

- Byzantine robustness
 - Always corner cases with single GM
 - Clients <u>must</u> listen to 2*T+1 sources (1997 proof)

Possible solution

Byzantine faults: effect of accelerating time in PTP Master Timesources: PTP + 5 NTP servers

Conclusion

• IMC

- IT Internships
- Trainee Traders
- Research collaborations

More questions?

- Contact pedro.estrela@imc.nl
- Paper: http://tagus.inesc-id.pt/~pestrela/timip/Challenges_ deploying_PTPv2_in_a_Global_Financial_company.pdf