

# Collectieve Intelligentie

SIMON PAUW

**VECTOREN EN INPRODUCT** 

### Context

### Matrixfactorizatie









# Recap

$$\cos(a,b) = \frac{\sum_{i=1}^{n} a_i \cdot b_i}{\sqrt{\sum_{i=1}^{n} a_i^2} \cdot \sqrt{\sum_{i=1}^{n} b_i^2}}$$

|                    | Meike | Lars | Rudolf |
|--------------------|-------|------|--------|
| Titanic            | 0.9   | 0.5  | 0.9    |
| Luca               | 0.7   | 0.8  | 0.7    |
| The Great Dictator | 1.0   | 0.3  | 0.8    |
|                    |       |      |        |

$$\cos(a,b) = \frac{\sum_{i=1}^{n} a_i \cdot b_i}{\sqrt{\sum_{i=1}^{n} a_i^2} \cdot \sqrt{\sum_{i=1}^{n} b_i^2}}$$

$$\cos(\text{Luca, The Great Dictator}) = \frac{0.7 \cdot 1.0 + 0.8 \cdot 0.3 + 0.7 \cdot 0.8}{\sqrt{0.7 \cdot 0.7 + 0.8 \cdot 0.8 + 0.7 \cdot 0.7} \cdot \sqrt{1.0 \cdot 1.0 + 0.3 \cdot 0.3 + 0.8 \cdot 0.8}}$$

|                    | Meike | Lars | Rudolf |
|--------------------|-------|------|--------|
| Titanic            | 0.9   | 0.5  | 0.9    |
| Luca               | 0.7   | 0.8  | 0.7    |
| The Great Dictator | 1.0   | 0.3  | 0.8    |
| •••                |       |      |        |

$$\cos(a,b) = \frac{\sum_{i=1}^{n} a_i \cdot b_i}{\sqrt{\sum_{i=1}^{n} a_i^2} \cdot \sqrt{\sum_{i=1}^{n} b_i^2}}$$

$$\cos(\text{Luca, The Great Dictator}) = \frac{0.7 \cdot 1.0 + 0.8 \cdot 0.3 + 0.7 \cdot 0.8}{\sqrt{0.7 \cdot 0.7 + 0.8 \cdot 0.8 + 0.7 \cdot 0.7} \cdot \sqrt{1.0 \cdot 1.0 + 0.3 \cdot 0.3 + 0.8 \cdot 0.8}} \approx 0.896$$

|                    | Meike | Lars | Rudolf |
|--------------------|-------|------|--------|
| Titanic            | 0.9   | 0.5  | 0.9    |
| Luca               | 0.7   | 0.8  | 0.7    |
| The Great Dictator | 1.0   | 0.3  | 0.8    |
|                    |       |      |        |

$$\cos(a,b) = \frac{\sum_{i=1}^{n} a_i \cdot b_i}{\sqrt{\sum_{i=1}^{n} a_i^2} \cdot \sqrt{\sum_{i=1}^{n} b_i^2}}$$

 $\cos(\text{Luca}, \text{The Great Dictator}) \approx 0.896$ 

Similarities → KNN → Aanbevelingen

### Implementatie [notebook]

### Vectoren

### Vectoren

|                    | Meike | Lars | Rudolf |
|--------------------|-------|------|--------|
| Titanic            | 0.9   | 0.5  | 0.9    |
| Luca               | 0.7   | 0.8  | 0.7    |
| The Great Dictator | 1.0   | 0.3  | 0.8    |
|                    |       |      |        |

$$I = \begin{pmatrix} 0.7 \\ 0.8 \\ 0.7 \end{pmatrix} \qquad d = \begin{pmatrix} 1.0 \\ 0.3 \\ 0.8 \end{pmatrix}$$

#### Som

|                    | Meike | Lars | Rudolf |
|--------------------|-------|------|--------|
| Titanic            | 0.9   | 0.5  | 0.9    |
| Luca               | 0.7   | 0.8  | 0.7    |
| The Great Dictator | 1.0   | 0.3  | 0.8    |
|                    |       |      |        |

$$I = \begin{pmatrix} 0.7 \\ 0.8 \\ 0.7 \end{pmatrix} \qquad d = \begin{pmatrix} 1.0 \\ 0.3 \\ 0.8 \end{pmatrix}$$

$$l + d = ?$$

#### Som

|                    | Meike | Lars | Rudolf |
|--------------------|-------|------|--------|
| Titanic            | 0.9   | 0.5  | 0.9    |
| Luca               | 0.7   | 0.8  | 0.7    |
| The Great Dictator | 1.0   | 0.3  | 0.8    |
|                    |       |      |        |

$$I = \begin{pmatrix} 0.7 \\ 0.8 \\ 0.7 \end{pmatrix} \qquad d = \begin{pmatrix} 1.0 \\ 0.3 \\ 0.8 \end{pmatrix}$$

$$l + d = \begin{pmatrix} 0.7 + 1.0 \\ 0.8 + 0.3 \\ 0.7 + 0.8 \end{pmatrix} = \begin{pmatrix} 1.7 \\ 1.1 \\ 1.5 \end{pmatrix}$$

|                    | Meike | Lars | Rudolf |
|--------------------|-------|------|--------|
| Titanic            | 0.9   | 0.5  | 0.9    |
| Luca               | 0.7   | 0.8  | 0.7    |
| The Great Dictator | 1.0   | 0.3  | 0.8    |
|                    |       |      |        |

$$I = \begin{pmatrix} 0.7 \\ 0.8 \\ 0.7 \end{pmatrix} \qquad d = \begin{pmatrix} 1.0 \\ 0.3 \\ 0.8 \end{pmatrix}$$

$$l \cdot d = ?$$

|                    | Meike | Lars | Rudolf |
|--------------------|-------|------|--------|
| Titanic            | 0.9   | 0.5  | 0.9    |
| Luca               | 0.7   | 0.8  | 0.7    |
| The Great Dictator | 1.0   | 0.3  | 0.8    |
|                    |       |      |        |

$$I = \begin{pmatrix} 0.7 \\ 0.8 \\ 0.7 \end{pmatrix} \qquad d = \begin{pmatrix} 1.0 \\ 0.3 \\ 0.8 \end{pmatrix}$$

$$l \cdot d = \begin{pmatrix} 0.7 \cdot 1.0 \\ 0.8 \cdot 0.3 \\ 0.7 \cdot 0.8 \end{pmatrix} = \begin{pmatrix} 0.7 \\ 2.4 \\ 5.6 \end{pmatrix}$$



|                    | Meike | Lars | Rudolf |
|--------------------|-------|------|--------|
| Titanic            | 0.9   | 0.5  | 0.9    |
| Luca               | 0.7   | 0.8  | 0.7    |
| The Great Dictator | 1.0   | 0.3  | 0.8    |
|                    |       |      |        |

$$I = \begin{pmatrix} 0.7 \\ 0.8 \\ 0.7 \end{pmatrix} \qquad d = \begin{pmatrix} 1.0 \\ 0.3 \\ 0.8 \end{pmatrix}$$

$$0.7 \cdot 1.0 \\ + \\ l \cdot d = 0.8 \cdot 0.3 \\ + \\ 0.7 \cdot 0.8$$

|                    | Meike | Lars | Rudolf |
|--------------------|-------|------|--------|
| Titanic            | 0.9   | 0.5  | 0.9    |
| Luca               | 0.7   | 0.8  | 0.7    |
| The Great Dictator | 1.0   | 0.3  | 0.8    |
|                    |       |      |        |

$$I = \begin{pmatrix} 0.7 \\ 0.8 \\ 0.7 \end{pmatrix} \qquad d = \begin{pmatrix} 1.0 \\ 0.3 \\ 0.8 \end{pmatrix}$$

$$l \cdot d = 0.7 \cdot 1.0 + 0.8 \cdot 0.3 + 0.7 \cdot 0.8 = 0.87$$



$$a = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \end{pmatrix} \qquad b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \end{pmatrix}$$

$$a \cdot \mathbf{b} = a_1 \cdot \mathbf{b_1} + a_2 \cdot \mathbf{b_2} + \cdots$$

#### Hoe deelnemen?





**Deelnamelink kopiëren** 



$$a = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \qquad b = \begin{pmatrix} 100 \\ 10 \\ 1 \end{pmatrix}$$

$$a \cdot b = ?$$



$$a = \begin{pmatrix} 2 \\ 2 \\ 3 \\ 5 \end{pmatrix} \qquad b = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix}$$

$$a \cdot b = ?$$



### Inproduct in Pandas: @

```
1  s1 = pd.Series([1, 2, 3])
2  s2 = pd.Series([100, 10, 1])
3
4  inproduct = s1 @ s2
5  print(inproduct)
```

### Inproduct in Pandas

```
0 1 2
0 1 1 1
1 1 2 3
2 100 10 1
3 0 1 1
```

```
1  s1 = df1.loc[2]
2  s2 = df1.loc[3]
3  inproduct = s1 @ s2
4  print(inproduct)
```



|                    | Meike | Lars | Rudolf |
|--------------------|-------|------|--------|
| Titanic            | 0.9   | 0.5  | 0.9    |
| Luca               | 0.7   | 0.8  | 0.7    |
| The Great Dictator | 1.0   | 0.3  | 0.8    |
|                    |       |      |        |

$$\cos(a,b) = \frac{\sum_{i=1}^{n} a_i \cdot b_i}{\sqrt{\sum_{i=1}^{n} a_i^2} \cdot \sqrt{\sum_{i=1}^{n} b_i^2}}$$

$$\cos(\text{Luca, The Great Dictator}) = \frac{0.7 \cdot 1.0 + 0.8 \cdot 0.3 + 0.7 \cdot 0.8}{\sqrt{0.7 \cdot 0.7 + 0.8 \cdot 0.8 + 0.7 \cdot 0.7} \cdot \sqrt{1.0 \cdot 1.0 + 0.3 \cdot 0.3 + 0.8 \cdot 0.8}}$$

|                    | Meike | Lars | Rudolf |
|--------------------|-------|------|--------|
| Titanic            | 0.9   | 0.5  | 0.9    |
| Luca               | 0.7   | 0.8  | 0.7    |
| The Great Dictator | 1.0   | 0.3  | 0.8    |

$$\cos(l, d) = \frac{\sum_{i=1}^{n} l_i \cdot d_i}{\sqrt{\sum_{i=1}^{n} l_i^2} \cdot \sqrt{\sum_{i=1}^{n} d_i^2}}$$

$$\cos(\text{Luca, The Great Dictator}) = \frac{0.7 \cdot 1.0 + 0.8 \cdot 0.3 + 0.7 \cdot 0.8}{\sqrt{0.7 \cdot 0.7 + 0.8 \cdot 0.8 + 0.7 \cdot 0.7 \cdot \sqrt{1.0 \cdot 1.0 + 0.3 \cdot 0.3 + 0.8 \cdot 0.8}}}$$

$$d = \begin{pmatrix} 0.7 \\ 0.8 \\ 0.7 \end{pmatrix} \qquad d = \begin{pmatrix} 1.0 \\ 0.3 \\ 0.8 \end{pmatrix} \qquad \cos(l, d) = ?$$

|                    | Meike | Lars | Rudolf |
|--------------------|-------|------|--------|
| Titanic            | 0.9   | 0.5  | 0.9    |
| Luca               | 0.7   | 0.8  | 0.7    |
| The Great Dictator | 1.0   | 0.3  | 0.8    |

$$\cos(l, d) = \frac{\sum_{i=1}^{n} l_i \cdot d_i}{\sqrt{\sum_{i=1}^{n} l_i^2} \cdot \sqrt{\sum_{i=1}^{n} d_i^2}}$$

$$\cos(\text{Luca, The Great Dictator}) = \frac{0.7 \cdot 1.0 + 0.8 \cdot 0.3 + 0.7 \cdot 0.8}{\sqrt{0.7 \cdot 0.7 + 0.8 \cdot 0.8 + 0.7 \cdot 0.7} \cdot \sqrt{1.0 \cdot 1.0 + 0.3 \cdot 0.3 + 0.8 \cdot 0.8}}$$

$$d = \begin{pmatrix} 0.7 \\ 0.8 \\ 0.7 \end{pmatrix} \qquad d = \begin{pmatrix} 1.0 \\ 0.3 \\ 0.8 \end{pmatrix} \qquad \cos(l, d) = \frac{l \cdot d}{\sqrt{l \cdot l} \cdot \sqrt{d \cdot d}}$$



Cosine similarity in Pandas. Welke is correct?





cosine\_sim = s1 \* s2 / (np.sqrt(s1 \* s1) \* np.sqrt(s2 \* s2))



cosine\_sim = s1 @ s2 / (np.sqrt(s1 @ s1) \* np.sqrt(s2 @ s2))



3 cosine\_sim = s1 \* s2 / (np.sqrt(s1 \* s1) @ np.sqrt(s2 \* s2))

4 cosine\_sim = s1 @ s2 / (np.sqrt(s1 @ s1) @ np.sqrt(s2 @ s2))

# Vectoren voor Content-Based Filtering

**GENRES** 

### Vectoren

|                    | Meike | Lars | Rudolf |
|--------------------|-------|------|--------|
| Titanic            | 0.9   | 0.5  | 0.9    |
| Luca               | 0.7   | 0.8  | 0.7    |
| The Great Dictator | 1.0   | 0.3  | 0.8    |
|                    |       |      |        |

$$I = \begin{pmatrix} 0.7 \\ 0.8 \\ 0.7 \end{pmatrix} \qquad d = \begin{pmatrix} 1.0 \\ 0.3 \\ 0.8 \end{pmatrix}$$

**↓** 

Vectoren → Similarities → Voorspelde ratings (knn) → Aanbevelingen

### CBF: Genres

| Inception       | Action    | Adventure | Sci-Fi  | Thriller |
|-----------------|-----------|-----------|---------|----------|
| Frozen          | Adventure | Comedy    | Fantasy | Musical  |
| Blade<br>Runner | Action    | Thriller  | Darma   | Sci-Fi   |
|                 |           |           |         |          |
|                 |           |           |         |          |

### CBF: Genres

```
Inception
                      Adventure
                                 Sci-Fi
                                           Thriller
          Action
Frozen
          Adventure
                      Comedy
                                 Fantasy
                                           Musical
Blade
          Action
                      Thriller
                                  Darma
                                           Sci-Fi
Runner
```

Vectoren → Similarities → Voorspelde ratings (knn) → Aanbevelingen

### CBF: Genres

| Inception       | Action    | Adventure | Sci-Fi  | Thriller |
|-----------------|-----------|-----------|---------|----------|
| Frozen          | Adventure | Comedy    | Fantasy | Musical  |
| Blade<br>Runner | Action    | Thriller  | Darma   | Sci-Fi   |
|                 |           |           |         |          |
|                 |           |           |         |          |

```
Vectoren → Similarities → Voorspelde ratings (knn) → Aanbevelingen ???
```

### CBF: Genres (one-hot encoding)

| 1               | Action | Adventure | Comed<br>y | Drama | Fantasy | Musical | Sci-Fi | Thriller |
|-----------------|--------|-----------|------------|-------|---------|---------|--------|----------|
| Inception       | 1      | 1         | 0          | 0     | 0       | 0       | 1      | 1        |
| Frozen          | 0      | 1         | 1          | 0     | 1       | 1       | 0      | 0        |
| Blade<br>Runner | 1      | 0         | 0          | 1     | 0       | 0       | 1      | 1        |

Vectoren

one-hot enc

$$I = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}$$

$$\mathsf{F} = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

$$B = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}$$

### CBF: Genres (one-hot encoding)

| 1                     | Action                        | Adventure                                                      | Comed<br>y     | Drama | Fantasy                                                             | Musical | Sci-Fi                                                            | Thriller                                                            |
|-----------------------|-------------------------------|----------------------------------------------------------------|----------------|-------|---------------------------------------------------------------------|---------|-------------------------------------------------------------------|---------------------------------------------------------------------|
| Inception             | 1                             | 1                                                              | 0              | 0     | 0                                                                   | 0       | 1                                                                 | 1                                                                   |
| Frozen                | 0                             | 1                                                              | 1              | 0     | 1                                                                   | 1       | 0                                                                 | 0                                                                   |
| Blade<br>Runner       | 1                             | 0                                                              | 0              | 1     | 0                                                                   | 0       | 1                                                                 | 1                                                                   |
| Vectore one-hot cos(a | enc                           | Similarities $a \cdot b$ $\overline{a \cdot a} \cdot \sqrt{b}$ |                |       | $I = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$ | F       | $= \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}$ | $B = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$ |
| cos(c                 | $(i, D) = \frac{1}{\sqrt{2}}$ | $\overline{a \cdot a} \cdot \sqrt{b}$                          | $\overline{b}$ |       | $\binom{1}{1}$                                                      | /       | $\binom{0}{0}$                                                    | $\binom{1}{1}$                                                      |

### CBF: Genres (one-hot encoding)

| 1                             | Action | Adventure                            | Comed<br>y | Drama | Fantasy                                                        | Musical | Sci-Fi                                                       | Thriller                                             |
|-------------------------------|--------|--------------------------------------|------------|-------|----------------------------------------------------------------|---------|--------------------------------------------------------------|------------------------------------------------------|
| Inception                     | 1      | 1                                    | 0          | 0     | 0                                                              | 0       | 1                                                            | 1                                                    |
| Frozen                        | 0      | 1                                    | 1          | 0     | 1                                                              | 1       | 0                                                            | 0                                                    |
| Blade<br>Runne <mark>r</mark> | 1      | 0                                    | 0          | 1     | 0                                                              | 0       | 1                                                            | 1                                                    |
| Vectorei<br>one-hot           |        | Similarities accard inde $a \cdot b$ |            |       | $I = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$ | F       | $= \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \end{pmatrix}$ | $B = \begin{pmatrix} 1\\0\\0\\1\\0\\0 \end{pmatrix}$ |
| cos(a                         |        | $a \cdot b$                          |            |       | $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$                         | )       | $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$                       | $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$               |

### CBF: Genres

| 1               | Action | Adventure | Comed<br>y | Drama | Fantasy | Musical | Sci-Fi | Thriller |
|-----------------|--------|-----------|------------|-------|---------|---------|--------|----------|
| Inception       | 1      | 1         | 0          | 0     | 0       | 0       | 1      | 1        |
| Frozen          | 0      | 1         | 1          | 0     | 1       | 1       | 0      | 0        |
| Blade<br>Runner | 1      | 0         | 0          | 1     | 0       | 0       | 1      | 1        |

Vectoren → Similarities → Voorspelde ratings (knn) → Aanbevelingen

one-hot enc Jaccard index

# Vectoren voor Content-Based Filtering

**TEXT** 

### CBF: Text

#### Webshop

- beschrijving product
- naam product
- reviews

#### **Films**

- synopsis
- ondertitels
- Reviews

#### Boeken

- Inhoud
- 0



Quick Mill 810 en 820 Rood

Deze Quick Mill espressor meer dan 35 jaar geprodu Quick Mill geheim schuilt Dé oplossing tegen kalkaa koffie temperatuur, dus bi (espresso)koffie genieten. want binnen 10 seconden cappuccino en latte mach

#### AVATAR: THE WAY OF WATER REVIEWS

**All Critics** 

Top Critics

All Audience

Verified Audience



**Matt Brunson** Film Frenzy

I'll say this for James Cameron: At this point, he can slap his nar an old print of Plan 9 From Outer Space, re-release it as Avatar 3 Way of Outer Space, and incessantly hype it until it crosses the b dollar mark and racks up the awards.

Full Review | Original Score: 2/4 | Apr 18, 2023

atant example where the visual spectacle (it can dazz ) swallows up an unexceptional story.

#### Alice's Adventures i

### Alice's Ad

Lewis Carroll, Chr









Chris Riddell's brilliant nev sumptuous hardback and much-loved favourite class



### CBF: Text

| Inception | Cobb and Arthur are "extractors"; they perform corporate espionage using experimental dreamsharing technology to infiltrate their targets' subconscious and extract information |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Frozen    | Princess Elsa of Arendelle possesses magical powers allowing her to control ice and snow, often using them to play with her younger sister Anna                                 |
|           |                                                                                                                                                                                 |

Vectoren → Similarities → Voorspelde ratings (knn) → Aanbevelingen

Hoe kunnen we teksten omzetten in een lijst met getallen?

|                                     | brutus | de | fietser | hond | kat | over | steekt | straat |
|-------------------------------------|--------|----|---------|------|-----|------|--------|--------|
| De hond steekt de<br>straat over    | 0      | 2  | 0       | 1    | 0   | 1    | 1      | 1      |
| De fietser steekt de<br>straat over | 0      | 2  | 1       | 0    | 0   | 1    | 1      | 1      |
| De kat steekt de<br>straat over     | 0      | 2  | 0       | 0    | 1   | 1    | 1      | 1      |
| Brutus steekt de<br>straat over     | 1      | 1  | 0       | 0    | 0   | 1    | 1      | 1      |

Probleem 1. Langere teksten -> hogere scores (grotere kans ergens op te lijken).

|                                                                | brutus | de | fietser | hond | kat | over | steekt | straat |
|----------------------------------------------------------------|--------|----|---------|------|-----|------|--------|--------|
| De hond steekt de<br>straat over naar de<br>fietser met de kat | 0      | 3  | 1       | 1    | 1   | 1    | 1      | 1      |
| De hond steekt de<br>straat over                               | 0      | 2  | 1       | 0    | 0   | 1    | 1      | 1      |
|                                                                |        |    |         |      |     |      |        |        |
|                                                                |        |    |         |      |     |      |        |        |

Oplossing 1. Term Frequency (TF): #voorkomens/#lengte tekst

|                                                                | brutus | de   | fietser | hond | kat  | over | steekt | straat |
|----------------------------------------------------------------|--------|------|---------|------|------|------|--------|--------|
| De hond steekt de<br>straat over naar de<br>fietser met de kat | 0      | 3/12 | 1/12    | 1/12 | 1/12 | 1/12 | 1/12   | 1/12   |
| De hond steekt de<br>straat over                               | 0      | 2/6  | 1/6     | 0    | 0    | 1/6  | 1/6    | 1/6    |
|                                                                |        |      |         |      |      |      |        |        |
|                                                                |        |      |         |      |      |      |        |        |

Oplossing 1. Term Frequency (TF): #voorkomens/#lengte tekst

|                                                                | brutus | de    | fietser | hond   | kat    | over   | steekt | straat |
|----------------------------------------------------------------|--------|-------|---------|--------|--------|--------|--------|--------|
| De hond steekt de<br>straat over naar de<br>fietser met de kat | 0      | 0.25  | 0.0833  | 0.0833 | 0.0833 | 0.0833 | 0.0833 | 0.0833 |
| De hond steekt de<br>straat over                               | 0      | 0.333 | 0.1667  | 0      | 0      | 0.1667 | 0.1667 | 0.1667 |
| ••••                                                           |        |       |         |        |        |        |        |        |

Oplossing 1. Term Frequency (TF): #voorkomens/#lengte tekst

|                                     | brutus | de    | fietser | hond  | kat   | over  | steekt | straat |
|-------------------------------------|--------|-------|---------|-------|-------|-------|--------|--------|
| De hond steekt de<br>straat over    | 0      | 0.333 | 0       | 0.167 | 0     | 0.167 | 0.167  | 0.167  |
| De fietser steekt de<br>straat over | 0      | 0.333 | 0.167   | 0     | 0     | 0.167 | 0.167  | 0.167  |
| De kat steekt de<br>straat over     | 0      | 0.333 | 0       | 0     | 0.167 | 0.167 | 0.167  | 0.167  |
| Brutus steekt de<br>straat over     | 0.2    | 0.4   | 0       | 0     | 0     | 0.2   | 0.2    | 0.2    |

#### Probleem 2. Veelvoorkomende woorden scoren hoog

|                                     | brutus | de    | fietser | hond  | kat   | over  | steekt | straat |
|-------------------------------------|--------|-------|---------|-------|-------|-------|--------|--------|
| De hond steekt de<br>straat over    | 0      | 0.333 | 0       | 0.167 | 0     | 0.167 | 0.167  | 0.167  |
| De fietser steekt de<br>straat over | 0      | 0.333 | 0.167   | 0     | 0     | 0.167 | 0.167  | 0.167  |
| De kat steekt de<br>straat over     | 0      | 0.333 | 0       | 0     | 0.167 | 0.167 | 0.167  | 0.167  |
| Brutus steekt de<br>straat over     | 0.2    | 0.4   | 0       | 0     | 0     | 0.2   | 0.2    | 0.2    |

Oplossing 2. Inverse Document Frequency (IDF):

In(#aantal documenten/#aantal documenten met het betreffende word)

| brutus  | de      | fietser | hond    | kat     | over    | steekt  | straat  |
|---------|---------|---------|---------|---------|---------|---------|---------|
| In(4/1) | In(4/4) | In(4/1) | In(4/1) | In(4/1) | In(4/4) | In(4/4) | In(4/4) |

Oplossing 2. Inverse Document Frequency (IDF):

In(#aantal documenten/#aantal documenten met het betreffende word)

| brutus | de | fietser | hond  | kat   | over | steekt | straat |
|--------|----|---------|-------|-------|------|--------|--------|
| 1,386  | 0  | 1,386   | 1,386 | 1,386 | 0    | 0      | 0      |

Oplossing 2. Term Frequency (TF-IDF): TF \* IDF

TF

| fietser | hond  | kat   | over  | steekt | straat |
|---------|-------|-------|-------|--------|--------|
| 0       | 0.167 | 0     | 0.167 | 0.167  | 0.167  |
| 0.167   | 0     | 0     | 0.167 | 0.167  | 0.167  |
| 0       | 0     | 0.167 | 0.167 | 0.167  | 0.167  |
| 0       | 0     | 0     | 0.2   | 0.2    | 0.2    |

IDF

| brutus | de | fietser | hond  | kat   | C |
|--------|----|---------|-------|-------|---|
| 1,386  | 0  | 1,386   | 1,386 | 1,386 | C |

Oplossing 2. Term Frequency (TF-IDF): TF \* IDF

|                                     | brutus   | de     | fietser   | hond      | kat       | over   | steekt | straat |
|-------------------------------------|----------|--------|-----------|-----------|-----------|--------|--------|--------|
| De hond steekt de<br>straat over    | 0*1,39   | 0.33*0 | 0*1,39    | 0.17*1,39 | 0*1,39    | 0.17*0 | 0.17*0 | 0.17*0 |
| De fietser steekt de<br>straat over | 0*1.39   | 0.33*0 | 0.17*1,39 | 0*1,39    | 0*1,39    | 0.17*0 | 0.17*0 | 0.17*0 |
| De kat steekt de<br>straat over     | 0*1.39   | 0.33*0 | 0*1,39    | 0*1,39    | 0.17*1,39 | 0.17*0 | 0.17*0 | 0.17*0 |
| Brutus steekt de<br>straat over     | 0.2*1,39 | 0.4*0  | 0*1,39    | 0*1,39    | 0*1,39    | 0.2*0  | 0.2*0  | 0.2*0  |

Probleem 2. Veelvoorkomende woorden scoren hoog

|                                     | brutus | de | fietser | hond  | kat   | over | steekt | straat |
|-------------------------------------|--------|----|---------|-------|-------|------|--------|--------|
| De hond steekt de<br>straat over    | 0      | 0  | 0       | 0.236 | 0     | 0    | 0      | 0      |
| De fietser steekt de<br>straat over | 0      | 0  | 0.236   | 0     | 0     | 0    | 0      | 0      |
| De kat steekt de<br>straat over     | 0      | 0  | 0       | 0     | 0.236 | 0    | 0      | 0      |
| Brutus steekt de<br>straat over     | 0.278  | 0  | 0       | 0     | 0     | 0    | 0      | 0      |

### TF-IDF Vectorisatie

#### Fillmbeschrijvingen

|                                          | Cobb | and | are | Elsa | Arthur | Princess | of |  |
|------------------------------------------|------|-----|-----|------|--------|----------|----|--|
| Inception: "Cobb and Arthur are"         | 0.9  | 0   | 0   | 0    | 0.6    | 0.1      | 0  |  |
| Frozen: "Princess Elsa of Arendelle and" | 0    | 0   | 0   | 0.8  | 0      | 0.4      | 0  |  |
|                                          |      |     |     |      |        |          |    |  |

### TF-IDF Vectorisatie

#### Fillmbeschrijvingen

|                                          | Cobb | and | are | Elsa | Arthur | Princess | of |  |
|------------------------------------------|------|-----|-----|------|--------|----------|----|--|
| Inception: "Cobb and Arthur are"         | 0.9  | 0   | 0   | 0    | 0.6    | 0.1      | 0  |  |
| Frozen: "Princess Elsa of Arendelle and" | 0    | 0   | 0   | 0.8  | 0      | 0.4      | 0  |  |
|                                          |      |     |     |      |        |          |    |  |

Vectoren → Similarities → Voorspelde ratings (knn) → Aanbevelingen

## Betere vectorisatie?

**TEXT** 



### TF-IDF vectorisatie tekst

#### Probleem 3. Geen semantiek:

- Een kat is meer als een hond dan een fiets?
- Brutus kan de naam van een hond zijn?
- Een bank (voor geld) is hetzelfde als een bank (voor zitten).

#### Probleem 4. Geen gramatica:

Woordvolgorde wordt genegeerd.

"Meike eet een taart" is hetzelfde als "Een taart eet Meike" (surealistische horrorfilm?)

Geen TF-IDF gebruiken maar bijvoorbeeld word2vec

# Vragen?