1/1 point

Gradient descent for logistic regression

repeat {
$$w_j = w_j - \alpha \left[\frac{1}{m} \sum_{i=1}^m \ (f_{\overrightarrow{\mathbf{w}},b} \left(\overrightarrow{\mathbf{x}}^{(i)} \right) - \mathbf{y}^{(i)}) \mathbf{x}_j^{(i)} \right]$$

$$b = b - \alpha \left[\frac{1}{m} \sum_{i=1}^m \ (f_{\overrightarrow{\mathbf{w}},b} \left(\overrightarrow{\mathbf{x}}^{(i)} \right) - \mathbf{y}^{(i)}) \right]$$

} simultaneous updates

$$f_{\overrightarrow{\mathbf{w}},b}(\overrightarrow{\mathbf{x}}) = \frac{1}{1 + e^{-(\overrightarrow{\mathbf{w}} \cdot \overrightarrow{\mathbf{x}} + b)}}$$

- 1. Which of the following two statements is a more accurate statement about gradient descent for logistic regression?
 - The update steps are identical to the update steps for linear regression.
 - igorealth The update steps look like the update steps for linear regression, but the definition of $f_{ec w,b}(\mathbf{x}^{(i)})$ is different.

For logistic regression, $f_{\vec{w},b}(\mathbf{x}^{(i)})$ is the sigmoid function instead of a straight line.