A Ouick Recap

CMPE 322/327 - Theory of Computation Week 10: Ogden's Lemma & Push Down Automata

Burak Ekici

April 25-29, 2022

Outline

A Ouick Recap

•00000

- 1 A Quick Recap
- 2 Ogden's Lemma

CFG $G = (N, \Sigma, P, S)$ is in

• Chomsky normal form if for all $A \to \alpha$ in P $\alpha = BC \in \mathbb{N}^2$ or $\alpha = a \in \Sigma$

CFG $G = (N, \Sigma, P, S)$ is in

• Chomsky normal form if for all $A \rightarrow \alpha$ in P $\alpha = BC \in \mathbb{N}^2$ or $\alpha = a \in \Sigma$

$$S \rightarrow XbS \mid XYb \mid YXZ$$

$$X \to Z \mid \varepsilon$$

$$X \to Z \mid \varepsilon$$
 $Y \to bXY \mid \varepsilon$ $Z \to a$

CFG $G = (N, \Sigma, P, S)$ is in

• Chomsky normal form if for all $A \to \alpha$ in P $\alpha = BC \in \mathbb{N}^2$ or $\alpha = a \in \Sigma$

CFG $G: S \to XbS \mid XYb \mid YXZ$ $X \to Z \mid \varepsilon$ $Y \to bXY \mid \varepsilon$ $Z \rightarrow a$ remove ε and unit productions

$$S \rightarrow XbS \mid XYb \mid YXZ$$

 $S \rightarrow bS$

$$X \to Z \mid \epsilon$$

$$X \to Z \mid \varepsilon$$
 $Y \to bXY \mid \varepsilon$ $Z \to a$

CFG $G = (N, \Sigma, P, S)$ is in

• Chomsky normal form if for all $A \to \alpha$ in P $\alpha = BC \in \mathbb{N}^2$ or $\alpha = a \in \Sigma$

CFG G: $S \to XbS \mid XYb \mid YXZ$ $X \to Z \mid \varepsilon$ $Y \to bXY \mid \varepsilon$ $Z \rightarrow a$ remove ε and unit productions

$$S \rightarrow XbS \mid XYb \mid YXZ$$

 $S \rightarrow bS \mid Yb$

$$\langle \rightarrow Z \mid \varepsilon$$

$$X \to Z \mid \varepsilon$$
 $Y \to bXY \mid \varepsilon$ $Z \to a$

CFG $G = (N, \Sigma, P, S)$ is in

• Chomsky normal form if for all $A \to \alpha$ in P $\alpha = BC \in \mathbb{N}^2$ or $\alpha = a \in \Sigma$

$$S \rightarrow XbS \mid XYb \mid YXZ$$

 $S \rightarrow bS \mid Yb \mid YZ$

$$X \to Z \mid \varepsilon$$

$$X \to Z \mid \varepsilon$$
 $Y \to bXY \mid \varepsilon$ $Z \to a$

CFG $G = (N, \Sigma, P, S)$ is in

• Chomsky normal form if for all $A \rightarrow \alpha$ in P $\alpha = BC \in \mathbb{N}^2$ or $\alpha = a \in \Sigma$

Example

$$S \rightarrow XbS \mid XYb \mid YXZ$$

$$X \to Z \mid \varepsilon$$

$$Y \rightarrow bXY \mid \varepsilon \qquad Z \rightarrow a$$

$$S \rightarrow bS \mid Yb \mid YZ$$

$$Y \rightarrow \mathbf{b}Y$$

CFG $G = (N, \Sigma, P, S)$ is in

• Chomsky normal form if for all $A \to \alpha$ in P $\alpha = BC \in \mathbb{N}^2$ or $\alpha = a \in \Sigma$

$$S \to X \text{bS} \mid XY \text{b} \mid YXZ$$

$$X \rightarrow Z$$

$$X \to Z \mid \varepsilon$$
 $Y \to bXY \mid \varepsilon$ $Z \to a$

$$S \rightarrow bS \mid Yb \mid YZ$$

$$Y \rightarrow bY$$

CFG $G = (N, \Sigma, P, S)$ is in

• Chomsky normal form if for all $A \rightarrow \alpha$ in P $\alpha = BC \in \mathbb{N}^2$ or $\alpha = a \in \Sigma$

Example

$$S \rightarrow XbS \mid XYb \mid YXZ$$

 $S \rightarrow bS \mid Yb \mid YZ \mid Xb$

$$X \to Z \mid \varepsilon$$
$$Y \to hY$$

$$Y \to bXY \mid \varepsilon \qquad Z \to a$$

CFG $G = (N, \Sigma, P, S)$ is in

• Chomsky normal form if for all $A \to \alpha$ in P $\alpha = BC \in \mathbb{N}^2$ or $\alpha = a \in \Sigma$

$$S \rightarrow XbS \mid XYb \mid YXZ$$
 $X \rightarrow Z \mid \varepsilon$ $Y \rightarrow bXY \mid \varepsilon$ $Z \rightarrow a$

$$X \to Z$$

$$Y \to bXY \mid \varepsilon \qquad Z \to \varepsilon$$

$$S \rightarrow \mathsf{b} S \mid \mathsf{Y} \mathsf{b} \mid \mathsf{Y} \mathsf{Z} \mid \mathsf{X} \mathsf{b} \mid \mathsf{X} \mathsf{Z} \qquad \qquad \mathsf{Y} \rightarrow \mathsf{b} \mathsf{Y}$$

000000

CFG $G = (N, \Sigma, P, S)$ is in

• Chomsky normal form if for all $A \to \alpha$ in P $\alpha = BC \in \mathbb{N}^2$ or $\alpha = a \in \Sigma$

$$S \rightarrow XbS \mid XYb \mid YXZ$$
 $X \rightarrow Z \mid \varepsilon$ $Y \rightarrow bXY \mid \varepsilon$ $Z \rightarrow a$

$$X \to Z \mid \varepsilon$$

$$Y \rightarrow bXY \mid \varepsilon \qquad Z \rightarrow a$$

$$S \rightarrow bS \mid Yb \mid YZ \mid Xb \mid XZ$$
 $Y \rightarrow bY \mid bX$

A Ouick Recap

000000

CFG $G = (N, \Sigma, P, S)$ is in

• Chomsky normal form if for all $A \to \alpha$ in P $\alpha = BC \in \mathbb{N}^2$ or $\alpha = a \in \Sigma$

$$S \rightarrow XbS \mid XYb \mid YXZ$$

$$S \rightarrow XbS \mid XYb \mid YXZ$$
 $X \rightarrow Z \mid \varepsilon$ $Y \rightarrow bXY \mid \varepsilon$ $Z \rightarrow a$

$$S \rightarrow bS \mid Yb \mid YZ \mid Xb \mid XZ \mid b$$
 $Y \rightarrow bY \mid bX$

A Ouick Recap

000000

CFG $G = (N, \Sigma, P, S)$ is in

• Chomsky normal form if for all $A \to \alpha$ in P $\alpha = BC \in \mathbb{N}^2$ or $\alpha = a \in \Sigma$

$$S \rightarrow XbS \mid XYb \mid YXZ$$
 $X \rightarrow Z \mid \varepsilon$ $Y \rightarrow bXY \mid \varepsilon$ $Z \rightarrow a$
 $S \rightarrow bS \mid Yb \mid YZ \mid Xb \mid XZ \mid b \mid Z$ $Y \rightarrow bY \mid bX$

A Ouick Recap

000000

CFG $G = (N, \Sigma, P, S)$ is in

• Chomsky normal form if for all $A \to \alpha$ in P $\alpha = BC \in \mathbb{N}^2$ or $\alpha = a \in \Sigma$

$$S \rightarrow XbS \mid XYb \mid YXZ$$
 $X \rightarrow Z \mid \varepsilon$ $Y \rightarrow bXY \mid \varepsilon$ $Z \rightarrow a$
 $S \rightarrow bS \mid Yb \mid YZ \mid Xb \mid XZ \mid b \mid Z$ $Y \rightarrow bY \mid bX \mid b$

A Ouick Recap

000000

CFG $G = (N, \Sigma, P, S)$ is in

• Chomsky normal form if for all $A \to \alpha$ in P $\alpha = BC \in \mathbb{N}^2$ or $\alpha = a \in \Sigma$

$$S \rightarrow XbS \mid XYb \mid YXZ$$
 $X \rightarrow Z \mid \varepsilon$ $Y \rightarrow bXY \mid \varepsilon$ $Z \rightarrow a$
 $S \rightarrow bS \mid Yb \mid YZ \mid Xb \mid XZ \mid b \mid Z$ $Y \rightarrow bY \mid bX \mid b$

A Ouick Recap

000000

CFG $G = (N, \Sigma, P, S)$ is in

• Chomsky normal form if for all $A \rightarrow \alpha$ in P $\alpha = BC \in \mathbb{N}^2$ or $\alpha = a \in \Sigma$

Example

$$S \rightarrow XbS \mid XYb \mid YXZ$$
 $X \rightarrow Z \mid \varepsilon$ $Y \rightarrow bXY \mid \varepsilon$ $Z \rightarrow a$
 $S \rightarrow bS \mid Yb \mid YZ \mid Xb \mid XZ \mid b \mid Z$ $Y \rightarrow bY \mid bX \mid b$ $X \rightarrow a$

A Ouick Recap

000000

CFG $G = (N, \Sigma, P, S)$ is in

• Chomsky normal form if for all $A \rightarrow \alpha$ in P $\alpha = BC \in \mathbb{N}^2$ or $\alpha = a \in \Sigma$

Example

$$S \rightarrow XbS \mid XYb \mid YXZ$$
 $X \rightarrow Z \mid \varepsilon$ $Y \rightarrow bXY \mid \varepsilon$ $Z \rightarrow a$
 $S \rightarrow bS \mid Yb \mid YZ \mid Xb \mid XZ \mid b \mid Z$ $Y \rightarrow bY \mid bX \mid b$ $X \rightarrow a$

A Ouick Recap

000000

CFG $G = (N, \Sigma, P, S)$ is in

• Chomsky normal form if for all $A \rightarrow \alpha$ in P $\alpha = BC \in \mathbb{N}^2$ or $\alpha = a \in \Sigma$

Example

$$S \rightarrow XbS \mid XYb \mid YXZ$$
 $X \rightarrow Z \mid \varepsilon$ $Y \rightarrow bXY \mid \varepsilon$ $Z \rightarrow a$
 $S \rightarrow bS \mid Yb \mid YZ \mid Xb \mid XZ \mid b \mid Z$ $Y \rightarrow bY \mid bX \mid b$ $X \rightarrow a$ $S \rightarrow a$

A Ouick Recap

000000

CFG $G = (N, \Sigma, P, S)$ is in

• Chomsky normal form if for all $A \to \alpha$ in P $\alpha = BC \in \mathbb{N}^2$ or $\alpha = a \in \Sigma$

$$S \rightarrow XbS \mid XYb \mid YXZ$$
 $Y \rightarrow bXY$ $Z \rightarrow a$
 $S \rightarrow bS \mid Yb \mid YZ \mid Xb \mid XZ \mid b$ $Y \rightarrow bY \mid bX \mid b$ $X \rightarrow a$ $S \rightarrow a$

$$Y \to bXY$$
 $Z \to a$

$$S \rightarrow \epsilon$$

CFG $G = (N, \Sigma, P, S)$ is in

• Chomsky normal form if for all $A \rightarrow \alpha$ in P $\alpha = BC \in \mathbb{N}^2$ or $\alpha = a \in \Sigma$

Example

CFG $G: S \to XbS \mid XYb \mid YXZ \qquad X \to Z \mid \varepsilon \qquad Y \to bXY \mid \varepsilon \qquad Z \to a$ remove ε and unit productions

$$S \rightarrow XbS \mid XYb \mid YXZ$$
 $Y \rightarrow bXY$ $Z \rightarrow a$
 $S \rightarrow bS \mid Yb \mid YZ \mid Xb \mid XZ \mid b$ $Y \rightarrow bY \mid bX \mid b$ $X \rightarrow a$ $S \rightarrow a$

introduce new non-terminals

$$B \rightarrow b$$

000000

CFG $G = (N, \Sigma, P, S)$ is in

• Chomsky normal form if for all $A \to \alpha$ in P $\alpha = BC \in \mathbb{N}^2$ or $\alpha = a \in \Sigma$

CFG
$$G: S \to XbS \mid XYb \mid YXZ \qquad X \to Z \mid \varepsilon \qquad Y \to bXY \mid \varepsilon \qquad Z \to a$$
 remove ε and unit productions

$$S \rightarrow XbS \mid XYb \mid YXZ$$
 $Y \rightarrow bXY$ $Z \rightarrow a$
 $S \rightarrow bS \mid Yb \mid YZ \mid Xb \mid XZ \mid b$ $Y \rightarrow bY \mid bX \mid b$ $X \rightarrow a$ $S \rightarrow a$

introduce new non-terminals

$$B \rightarrow b$$
 $S \rightarrow XBS \mid XYB \mid YXZ \mid BS \mid YB \mid YZ \mid XB \mid XZ \mid b \mid a$ $X \rightarrow a$ $Y \rightarrow BXY \mid BY \mid BX \mid b$ $Z \rightarrow a$

A Ouick Recap

00000

CFG $G = (N, \Sigma, P, S)$ is in

• Chomsky normal form if for all $A \to \alpha$ in P $\alpha = BC \in \mathbb{N}^2$ or $\alpha = a \in \Sigma$

CFG $G: S \to XbS \mid XYb \mid YXZ \qquad X \to Z \mid \varepsilon \qquad Y \to bXY \mid \varepsilon$ $Z \rightarrow a$ remove ε and unit productions

$$S \rightarrow XbS \mid XYb \mid YXZ$$
 $Y \rightarrow bXY$ $Z \rightarrow a$
 $S \rightarrow bS \mid Yb \mid YZ \mid Xb \mid XZ \mid b$ $Y \rightarrow bY \mid bX \mid b$ $X \rightarrow a$ $S \rightarrow a$

introduce new non-terminals

$$B \rightarrow b$$
 $S \rightarrow XBS \mid XYB \mid YXZ \mid BS \mid YB \mid YZ \mid XB \mid XZ \mid b \mid a$
 $X \rightarrow a$ $Y \rightarrow BXY \mid BY \mid BX \mid b$ $Z \rightarrow a$

split long right-hand sides

$$B \rightarrow b$$
 $S \rightarrow TS \mid UB \mid VZ \mid BS \mid YB \mid YZ \mid XB \mid XZ \mid b \mid a$
 $X \rightarrow a$ $Y \rightarrow BU \mid BY \mid BX \mid b$ $Z \rightarrow a$

$$T \rightarrow XB$$
 $U \rightarrow XY$ $V \rightarrow YX$

A Quick Recap

000000

Proof. (Idea)

A Ouick Recap

000000

take $k = 2^{n+1}$ where n is number of nonterminals of any CFG in Chomsky normal form that accepts $A - \{\varepsilon\}$

A Ouick Recap

000000

Example

A Quick Recap

000000

Example

A Ouick Recap

000000

• choose
$$z = a^k b^k c^k$$

Example

• choose
$$z = a^k b^k c^k$$

check:
$$z \in A$$
 $|z| = 3k \ge k$

Exampl

 $A = \{a^i b^i c^i \mid i \ge 0\}$ is not context-free

• choose $z = a^k b^k c^k$ check: $z \in A$ $|z| = 3k \ge k$

• split: z = uvwxy with $|vwx| \le k$ and $vx \ne \varepsilon$

Exampl

 $A = \{ a^i b^i c^i \mid i \ge 0 \}$ is not context-free

• choose $z = a^k b^k c^k$ check: $z \in A$ $|z| = 3k \ge k$

• split: z = uvwxy with $|vwx| \le k$ and $vx \ne \varepsilon$

• choose i = 0

000000

 $A = \{a^i b^i c^i \mid i \ge 0\}$ is not context-free

• choose $z = a^k b^k c^k$ check: $z \in A$ $|z| = 3k \ge k$

• split: z = uvwxy with $|vwx| \le k$ and $vx \ne \varepsilon$

• choose i = 0

vwx cannot contain both a's and c's

Exampl

- choose $z = a^k b^k c^k$ check: $z \in A$ $|z| = 3k \ge k$
- split: z = uvwxy with $|vwx| \le k$ and $vx \ne \varepsilon$
- choose i = 0
- vwx cannot contain both a's and c's
 - vwx has no a's: uviwxiy has more a's than b's or c's

A Ouick Recap

000000

- $z = a^k b^k c^k$ check: $z \in A$ $|z| = 3k \ge k$ choose
 - split: z = uvwxy with $|vwx| \le k$ and $vx \ne \varepsilon$
 - choose
 - vwx cannot contain both a's and c's

 - vwx has no a's: uv^iwx^iy has more a's than b's or c's vwx has no c's: uv^iwx^iy has more c's than b's or a's

Theoren

A Ouick Recap

00000

given CFG $G = (N, \Sigma, P, S)$ and string $x \in \Sigma^*$, it is decidable whether $x \in L(G)$

A Ouick Recap

00000

given CFG $G = (N, \Sigma, P, S)$ and string $x \in \Sigma^*$, it is decidable whether $x \in L(G)$

Proof.

efficient and elegant algorithm: Cocke Kasami Younger (CKY)

convert G into Chomsky normal form

Theoren

A Ouick Recap

00000

given CFG $G = (N, \Sigma, P, S)$ and string $x \in \Sigma^*$, it is decidable whether $x \in L(G)$

Proof.

efficient and elegant algorithm: Cocke Kasami Younger (CKY)

- convert G into Chomsky normal form
- for all $0 \le i < j \le |x|$
 - x_{ij} is substring of x of length j-i starting at position i

00000

given CFG $G = (N, \Sigma, P, S)$ and string $x \in \Sigma^*$, it is decidable whether $x \in L(G)$

Proof.

efficient and elegant algorithm: Cocke Kasami Younger (CKY)

- convert G into Chomsky normal form
- for all $0 \le i < i \le |x|$
 - x_{ij} is substring of x of length j-i starting at position i
 - $T_{ij} = \{A \in N \mid A \xrightarrow{*} x_{ij}\}$

00000

given CFG $G = (N, \Sigma, P, S)$ and string $x \in \Sigma^*$, it is decidable whether $x \in L(G)$

Proof.

efficient and elegant algorithm: Cocke Kasami Younger (CKY)

- convert G into Chomsky normal form
- for all $0 \le i < i \le |x|$
 - x_{ij} is substring of x of length j-i starting at position i
 - $T_{ij} = \{A \in N \mid A \xrightarrow{*} x_{ij}\}$

compute T_{ii} by induction on j-i

Theoren

given CFG $G = (N, \Sigma, P, S)$ and string $x \in \Sigma^*$, it is decidable whether $x \in L(G)$

Proof.

efficient and elegant algorithm: Cocke Kasami Younger (CKY)

- convert G into Chomsky normal form
- for all $0 \le i < j \le |x|$
 - x_{ij} is substring of x of length j-i starting at position i
 - $T_{ij} = \{A \in N \mid A \xrightarrow{*}_{G} x_{ij}\}$

compute T_{ij} by induction on j-i

• $x \in L(G) \iff S \in T_{0|x|}$

Outline

- 1 A Quick Recap
- 2 Ogden's Lemma

Observation

• pumping lemma is useless to show that $A = \{a^nb^nc^m \mid n \neq m\}$ is not context-free

Observation

- pumping lemma is useless to show that $A = \{a^n b^n c^m \mid n \neq m\}$ is not context-free
- more control is needed over where pumping takes place

Observation

- pumping lemma is useless to show that $A = \{a^n b^n c^m \mid n \neq m\}$ is not context-free
- more control is needed over where pumping takes place

A Ouick Recap

 $A = \{a^n b^n c^m \mid n \neq m\}$ is not context-free

• suppose A is context-free

A Ouick Recap

- suppose *A* is context-free
- let k be integer in Ogden's lemma

A Ouick Recap

- suppose A is context-free
- let k be integer in Ogden's lemma
- choose: $z = a^k b^k c^{k+k!}$ mark all a's

- suppose A is context-free
- let k be integer in Ogden's lemma
- choose: $z = a^k b^k c^{k+k!}$ mark all a's
- split: z = uvwxy with vx containing at least one a

A Ouick Recap

- suppose A is context-free
- let *k* be integer in Ogden's lemma
- choose: $z = a^k b^k c^{k+k!}$ mark all a's
- split: z = uvwxy with vx containing at least one a
- four cases:

A Ouick Recap

- suppose A is context-free
- let k be integer in Ogden's lemma
- choose: $z = a^k b^k c^{k+k!}$ mark all a's
- split: z = uvwxy with vx containing at least one a
- four cases:
 - ① v or x contains different letters choose i = 2: $uv^i wx^i y \notin L(a^*b^*c^*) \supset A$

A Ouick Recap

- suppose A is context-free
- let k be integer in Ogden's lemma
- choose: $z = a^k b^k c^{k+k!}$ mark all a's
- split: z = uvwxv with vx containing at least one a
- four cases:
 - ① v or x contains different letters choose i = 2: $uv^i wx^i y \notin L(a^*b^*c^*) \supset A$
 - 2 $x = c^m \implies v = a^n$ with n > 0 choose i = 0: $uv^i wx^i y = a^{k-n} b^k c^{k+k!-m} \notin A$

- suppose A is context-free
- let *k* be integer in Ogden's lemma
- choose: $z = a^k b^k c^{k+k!}$ mark all a's
- split: z = uvwxy with vx containing at least one a
- four cases:
 - ① v or x contains different letters choose i = 2: $uv^i wx^i y \notin L(a^*b^*c^*) \supset A$
 - 2 $x = c^m \implies v = a^n$ with n > 0 choose i = 0: $uv^i wx^i y = a^{k-n} b^k c^{k+k!-m} \notin A$
 - (§) $x = b^m \implies v = a^n$ with n > 0 choose $i = 1 + \frac{k!}{n}$: $uv^i w x^i y = a^{k+k!} b^{k+m} \frac{k!}{n} c^{k+k!} \notin A$

A Ouick Recap

- suppose A is context-free
- let k be integer in Ogden's lemma
- choose: $z = a^k b^k c^{k+k!}$ mark all a's
- split: z = uvwxy with vx containing at least one a
- four cases:
 - ① v or x contains different letters choose i = 2: $uv^i wx^i y \notin L(a^*b^*c^*) \supset A$
 - $x = c^m \implies v = a^n$ with n > 0 choose i = 0: $uv^i wx^i y = a^{k-n} b^k c^{k+k!-m} \notin A$
 - (§) $x = b^m \implies v = a^n$ with n > 0 choose $i = 1 + \frac{k!}{n}$: $uv^i w x^i y = a^{k+k!} b^{k+m} \frac{k!}{n} c^{k+k!} \notin A$

Outline

- 1 A Quick Recap
- 2 Ogden's Lemma
- 3 Push Down Automaton

• NPDA is septuple $M = (Q, \Sigma, \Gamma, \delta, s, \bot, F)$ with

- NPDA is septuple $M = (Q, \Sigma, \Gamma, \delta, s, \bot, F)$ with
 - Q: finite set of states

- NPDA is septuple $M = (Q, \Sigma, \Gamma, \delta, s, \bot, F)$ with
 - Q: finite set of states
 - Σ : input alphabet

- NPDA is septuple $M = (Q, \Sigma, \Gamma, \delta, s, \bot, F)$ with
 - Q: finite set of states
 - Σ: input alphabetΓ: stack alphabet

- NPDA is septuple $M = (Q, \Sigma, \Gamma, \delta, s, \bot, F)$ with
 - O: finite set of states
 - Σ: input alphabetΓ: stack alphabet

 - δ : finite subset of $(Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma) \times (Q \times \Gamma^*)$

- NPDA is septuple $M = (Q, \Sigma, \Gamma, \delta, s, \bot, F)$ with
 - O: finite set of states
 - Σ: input alphabetΓ: stack alphabet

 - δ : finite subset of $(Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma) \times (Q \times \Gamma^*)$
 - $s \in O$: start state

- NPDA is septuple $M = (Q, \Sigma, \Gamma, \delta, s, \bot, F)$ with
 - O: finite set of states
 - Σ : input alphabet
 - \bigcirc Γ : stack alphabet
 - δ : finite subset of (Q × (Σ ∪ {ε}) × Γ) × (Q × Γ *)
 - $s \in Q$: start state
 - **⑥** \bot ∈ Γ: initial stack symbol

- NPDA is septuple $M = (Q, \Sigma, \Gamma, \delta, s, \bot, F)$ with
 - O: finite set of states
 - \bigcirc Σ : input alphabet
 - Γ: stack alphabet
 - δ : finite subset of (Q × (Σ ∪ { ϵ }) × Γ) × (Q × Γ *)
 - $s \in O$: start state
 - **⑥** \bot **∈** Γ: initial stack symbol
 - $F \subseteq Q$: final states

 $A = \{x \in \{[,]\}^* \mid x \text{ is balanced}\}\$ is accepted by NPDA $M = (Q, \Sigma, \Gamma, \delta, 1, \bot, F)$ with

- ① $Q = \{1, 2\}$
- $\Sigma = \{[,]\}$
- $\Gamma = \{\bot, [\}$
- **4** $F = \{2\}$
- s = 1
- $\delta = \{((1, [, \bot), (1, [\bot)), ((1,], [), (1, \varepsilon)), ((1, [, [), (1, [[)), ((1, \varepsilon, \bot), (2, \varepsilon))\}$

- NPDA is septuple $M = (Q, \Sigma, \Gamma, \delta, s, \bot, F)$ with
 - O: finite set of states
 - Σ : input alphabet
 - Γ : stack alphabet
 - δ : finite subset of $(Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma) \times (Q \times \Gamma^*)$
 - $s \in O$: start state
 - $\bot \in \Gamma$: initial stack symbol
 - $F \subseteq O$: final states
- configuration: element of $O \times \Sigma^* \times \Gamma^*$

- NPDA is septuple $M = (Q, \Sigma, \Gamma, \delta, s, \bot, F)$ with
 - O: finite set of states
 - \bigcirc Σ : input alphabet
 - Γ: stack alphabet
 - δ : finite subset of (Q × (Σ ∪ { ϵ }) × Γ) × (Q × Γ *)
 - $s \in O$: start state

 - $F \subseteq Q$: final states
- configuration: element of $Q \times \Sigma^* \times \Gamma^*$ (current state, remaining input, stack content)

- NPDA is septuple $M = (Q, \Sigma, \Gamma, \delta, s, \bot, F)$ with
 - Q: finite set of states
 - Σ : input alphabet
 - Γ : stack alphabet
 - δ : finite subset of $(Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma) \times (Q \times \Gamma^*)$
 - $s \in O$: start state
 - $\bot \in \Gamma$: initial stack symbol
 - $F \subseteq O$: final states
- configuration: element of $O \times \Sigma^* \times \Gamma^*$ (current state, remaining input, stack content)
- start configuration on input x: (s, x, \bot)

- NPDA is septuple $M = (Q, \Sigma, \Gamma, \delta, s, \bot, F)$ with
 - Q: finite set of states
 - \bigcirc Σ : input alphabet
 - Γ: stack alphabet
 - δ : finite subset of $(Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma) \times (Q \times \Gamma^*)$
 - S ∈ Q: start state
 - \bigcirc $\bot \in \Gamma$: initial stack symbol
 - $F \subseteq O$: final states
- configuration: element of $O \times \Sigma^* \times \Gamma^*$ (current state, remaining input, stack content)
- start configuration on input x: (s, x, \bot)
- next configuration relation is binary relation $\frac{1}{N}$ defined as: $(p, ay, A\beta) \frac{1}{N} (q, y, \gamma\beta)$ for all $((p, a, A), (q, \gamma)) \in \delta$ with $a \in \Sigma \cup \{\epsilon\}$ and $v \in \Sigma^*$, $\beta \in \Gamma^*$

 $A = \{x \in \{[,]\}^* \mid x \text{ is balanced}\}\$ is accepted by NPDA $M = (Q, \Sigma, \Gamma, \delta, 1, \bot, F)$ with

- ① $Q = \{1, 2\}$
- $\Sigma = \{[,]\}$
- $\Gamma = \{\bot, [\}$
- **4** $F = \{2\}$
- s = 1
- $\delta = \{((1, [, \bot), (1, [\bot)), ((1,], [), (1, \varepsilon)), ((1, [, [), (1, [[)), ((1, \varepsilon, \bot), (2, \varepsilon))\}$

input:

 $A = \{x \in \{[,]\}^* \mid x \text{ is balanced}\}\$ is accepted by NPDA $M = (Q, \Sigma, \Gamma, \delta, 1, \bot, F)$ with

- ① $Q = \{1, 2\}$
- $\Sigma = \{[,]\}$
- $\Gamma = \{\bot, [\}$
- **4** $F = \{2\}$
- s = 1
- $\delta = \{((1, \lceil, \bot), (1, \lceil \bot)), ((1, \rceil, \lceil), (1, \varepsilon)), ((1, \lceil, \lceil), (1, \lceil[\rceil)), ((1, \varepsilon, \bot), (2, \varepsilon))\}$

input:

state: stack:

 $A = \{x \in \{[,]\}^* \mid x \text{ is balanced}\}\$ is accepted by NPDA $M = (Q, \Sigma, \Gamma, \delta, 1, \bot, F)$ with

- ① $Q = \{1, 2\}$
- $\Sigma = \{[,]\}$
- $\Gamma = \{\bot, [\}$
- **4** $F = \{2\}$
- s = 1
- $\delta = \{((1, [, \bot), (1, [\bot)), ((1,], [), (1, \varepsilon)), ((1, [, [), (1, [[)), ((1, \varepsilon, \bot), (2, \varepsilon))\}$

input:

state: stack:

A Ouick Recap

 $A = \{x \in \{[,]\}^* \mid x \text{ is balanced}\}\$ is accepted by NPDA $M = (Q, \Sigma, \Gamma, \delta, 1, \bot, F)$ with

- ① $Q = \{1, 2\}$
- $\Sigma = \{[,]\}$
- **4** $F = \{2\}$
- **6** s = 1
- $\delta = \{((1, [, \bot), (1, [\bot)), ((1,], [), (1, \varepsilon)), ((1, [, [), (1, [[)), ((1, \varepsilon, \bot), (2, \varepsilon)))\}$

input: [[] [[]]

state: 1 1 stack: $\bot \bot$

A Ouick Recap

 $A = \{x \in \{[,]\}^* \mid x \text{ is balanced}\}\$ is accepted by NPDA $M = (Q, \Sigma, \Gamma, \delta, 1, \bot, F)$ with

- ① $Q = \{1, 2\}$
- $\Sigma = \{[,]\}$
- 4 $F = \{2\}$
- s = 1
- $\delta = \{((1, [, \bot), (1, [\bot)), ((1,], [), (1, \varepsilon)), ((1, [, [), (1, [[)), ((1, \varepsilon, \bot), (2, \varepsilon)))\})\}$

input: [[] [[]]] state: 1 1

state: 1 stack: ⊥

stack: $\bot \bot$ [

```
A = \{x \in \{[,]\}^* \mid x \text{ is balanced}\}\ is accepted by NPDA M = (Q, \Sigma, \Gamma, \delta, 1, \bot, F) with
  ① Q = \{1, 2\}
       \Sigma = \{[,]\}
  \Gamma = \{\bot, [\}
  4 F = \{2\}
  s = 1
       \delta = \{((1, [, \bot), (1, [\bot)), ((1, ], [), (1, \varepsilon)), ((1, [, [), (1, [])), ((1, \varepsilon, \bot), (2, \varepsilon))\}
                                            input:
                                                         111
                                            state:
                                                         \bot \bot \bot
                                            stack:
```

A Ouick Recap

```
A = \{x \in \{[,]\}^* \mid x \text{ is balanced}\}\ is accepted by NPDA M = (Q, \Sigma, \Gamma, \delta, 1, \bot, F) with
  ① Q = \{1, 2\}
       \Sigma = \{[,]\}
  \Gamma = \{\bot, [\}
  4 F = \{2\}
  s = 1
       \delta = \{((1, [, \bot), (1, [\bot)), ((1, [, [), (1, \varepsilon)), ((1, [, [), (1, [[)), ((1, \varepsilon, \bot), (2, \varepsilon))\}
                                            input:
                                                         111
                                            state:
                                                         \bot \bot \bot
                                            stack:
```

- ① $Q = \{1, 2\}$
- $\Sigma = \{[,]\}$
- $\Gamma = \{\bot, [\}$
- **4** $F = \{2\}$
- s = 1
- $\delta = \{((1, [, \bot), (1, [\bot)), ((1,], [), (1, \varepsilon)), ((1, [, [), (1, [[)), ((1, \varepsilon, \bot), (2, \varepsilon))\}$

```
input:
       1111
state:
        \bot \bot \bot \bot \bot
stack:
```

A Ouick Recap

A Ouick Recap

 $A = \{x \in \{[,]\}^* \mid x \text{ is balanced}\}\$ is accepted by NPDA $M = (Q, \Sigma, \Gamma, \delta, 1, \bot, F)$ with

- ① $Q = \{1, 2\}$
- $\Sigma = \{[,]\}$
- ① $F = \{2\}$
- s = 1
- $\delta = \{((1, [, \bot), (1, [\bot)), ((1,], [), (1, \varepsilon)), ((1, [, [), (1, [[)), ((1, \varepsilon, \bot), (2, \varepsilon)))\}$

A Ouick Recap

```
A = \{x \in \{[,]\}^* \mid x \text{ is balanced}\}\ is accepted by NPDA M = (Q, \Sigma, \Gamma, \delta, 1, \bot, F) with
```

- ① $Q = \{1, 2\}$
- $\Sigma = \{[,]\}$
- $\Gamma = \{\bot, [\}$
- **4** $F = \{2\}$
- **6** s = 1
- $\delta = \{((1, [, \bot), (1, [\bot)), ((1,], [), (1, \varepsilon)), ((1, [, [), (1, [[)), ((1, \varepsilon, \bot), (2, \varepsilon))\})\}$

 $A = \{x \in \{[,]\}^* \mid x \text{ is balanced}\}\$ is accepted by NPDA $M = (Q, \Sigma, \Gamma, \delta, 1, \bot, F)$ with

- ① $Q = \{1, 2\}$
- $\Sigma = \{[,]\}$
- $\Gamma = \{\bot, [\}$
- **4** $F = \{2\}$
- s = 1
- $\delta = \{((1, [, \bot), (1, [\bot)), ((1,], [), (1, \varepsilon)), ((1, [, [), (1, [[)), ((1, \varepsilon, \bot), (2, \varepsilon))\}$

input: 111111 state: \bot \bot \bot \bot \bot \bot \bot stack:

- ① $Q = \{1, 2\}$
- $\Sigma = \{[,]\}$
- $\Gamma = \{\bot, [\}$
- **4** $F = \{2\}$
- s = 1
- $\delta = \{((1, [, \bot), (1, [\bot)), ((1,], [), (1, \varepsilon)), ((1, [, [), (1, [])), ((1, \varepsilon, \bot), (2, \varepsilon))\}$

```
input:
             111111
state:
             \bot \bot \bot \bot \bot \bot \bot
stack:
```

A Ouick Recap

 $A = \{x \in \{[,]\}^* \mid x \text{ is balanced}\}\$ is accepted by NPDA $M = (Q, \Sigma, \Gamma, \delta, 1, \bot, F)$ with

- ① $Q = \{1, 2\}$
- $\Sigma = \{[,]\}$
- **4** $F = \{2\}$
- **6** s = 1
- $\delta = \{((1, [, \bot), (1, [\bot)), ((1,], [), (1, \varepsilon)), ((1, [, [), (1, [[)), ((1, \varepsilon, \bot), (2, \varepsilon)))\}$

- ① $Q = \{1, 2\}$
- $\Sigma = \{[,]\}$
- $\Gamma = \{\bot, [\}$
- $F = \{2\}$
- s = 1
- $\delta = \{((1, [, \bot), (1, [\bot)), ((1,], [), (1, \varepsilon)), ((1, [, [), (1, [])), ((1, \varepsilon, \bot), (2, \varepsilon))\}$

```
input:
            1111111
state:
            T \perp T \perp T \perp T \perp T
stack:
```

A Ouick Recap

 $A = \{x \in \{[,]\}^* \mid x \text{ is balanced}\}\$ is accepted by NPDA $M = (Q, \Sigma, \Gamma, \delta, 1, \bot, F)$ with

- ① $Q = \{1, 2\}$
- $\Sigma = \{[,]\}$
- **4** $F = \{2\}$
- **6** s = 1
- $\delta = \{((1, [, \bot), (1, [\bot)), ((1,], [), (1, \varepsilon)), ((1, [, [), (1, [[)), ((1, \varepsilon, \bot), (2, \varepsilon)))\}$

- ① $Q = \{1, 2\}$
- $\Sigma = \{[,]\}$
- $\Gamma = \{\bot, [\}$
- $F = \{2\}$
- s = 1
- $\delta = \{((1, [, \bot), (1, [\bot)), ((1,], [), (1, \varepsilon)), ((1, [, [), (1, [])), ((1, \varepsilon, \bot), (2, \varepsilon))\}$

```
input:
        11111111
state:
stack:
```

A Ouick Recap

- ① $Q = \{1, 2\}$
- $\Sigma = \{[,]\}$
- $\Gamma = \{\bot, [\}$
- ① $F = \{2\}$
- s = 1
- $\delta = \{((1, [, \bot), (1, [\bot)), ((1,], [), (1, \varepsilon)), ((1, [, [), (1, [[)), ((1, \varepsilon, \bot), (2, \varepsilon)))\}$

- ① $Q = \{1, 2\}$
- $\Sigma = \{[,]\}$
- $\Gamma = \{\bot, [\}$
- $F = \{2\}$
- s = 1
- $\delta = \{((1, [, \bot), (1, [\bot)), ((1,], [), (1, \varepsilon)), ((1, [, [), (1, [[)), ((1, \varepsilon, \bot), (2, \varepsilon))\}$

```
input:
       111111111
state:
stack:
```

- ① $Q = \{1, 2\}$
- $\Sigma = \{[,]\}$
- $\Gamma = \{\bot, [\}$
- $F = \{2\}$
- s = 1
- $\delta = \{((1, [, \bot), (1, [\bot)), ((1,], [), (1, \varepsilon)), ((1, [, [), (1, [[)), ((1, \varepsilon, \bot), (2, \varepsilon))\}$

```
input:
state:
stack:
```

A Ouick Recap

 $A = \{x \in \{[,]\}^* \mid x \text{ is balanced}\}\$ is accepted by NPDA $M = (Q, \Sigma, \Gamma, \delta, 1, \bot, F)$ with

- ① $Q = \{1, 2\}$
- $\Sigma = \{[,]\}$
- $\Gamma = \{\bot, [\}$
- ① $F = \{2\}$
- **6** s = 1
- $\delta = \{((1, [, \bot), (1, [\bot)), ((1,], [), (1, \varepsilon)), ((1, [, [), (1, [[)), ((1, \varepsilon, \bot), (2, \varepsilon)))\}$

A Ouick Recap

- ① $Q = \{1, 2\}$
- $\Sigma = \{[,]\}$
- $\Gamma = \{\bot, [\}$
- ① $F = \{2\}$
- **6** s = 1
- $\delta = \{((1, [, \bot), (1, [\bot)), ((1,], [), (1, \varepsilon)), ((1, [, [), (1, [[)), ((1, \varepsilon, \bot), (2, \varepsilon)))\}$

- ① $Q = \{1, 2\}$
- $\Sigma = \{[,]\}$
- $\Gamma = \{\bot, [\}$
- $F = \{2\}$
- s = 1
- $\delta = \{((1, [, \bot), (1, [\bot)), ((1,], [), (1, \varepsilon)), ((1, [, [), (1, [[)), ((1, \varepsilon, \bot), (2, \varepsilon))\}$

```
input:
                                                   11111
state:
                                                   \bot \bot \bot \bot \bot \bot
stack:
```

A Ouick Recap

- ① $Q = \{1, 2\}$
- $\Sigma = \{[,]\}$
- $\Gamma = \{\bot, [\}$
- ① $F = \{2\}$
- **6** s = 1
- $\delta = \{((1, [, \bot), (1, [\bot)), ((1,], [), (1, \varepsilon)), ((1, [, [), (1, [[)), ((1, \varepsilon, \bot), (2, \varepsilon)))\}$

A Ouick Recap

- ① $Q = \{1, 2\}$
- $\Sigma = \{[,]\}$
- $\Gamma = \{\bot, [\}$
- $F = \{2\}$
- **6** s = 1
- $\delta = \{((1, [, \bot), (1, [\bot)), ((1,], [), (1, \varepsilon)), ((1, [, [), (1, [[)), ((1, \varepsilon, \bot), (2, \varepsilon)))\}$

•
$$\frac{n}{M} = (\frac{1}{M})^n \quad \forall n \ge 0$$

•
$$\frac{n}{M} = (\frac{1}{M})^n \quad \forall n \ge 0$$

•
$$\frac{*}{M} = \bigcup_{n \geq 0} \frac{n}{M}$$

NPDA $M = (Q, \Sigma, \Gamma, \delta, s, \bot, F)$

•
$$\frac{n}{M} = (\frac{1}{M})^n \quad \forall n \ge 0$$

•
$$\frac{*}{M} = \bigcup_{n \geq 0} \frac{n}{M}$$

• $x \in \Sigma^*$ is accepted by final state if $(s, x, \bot) \xrightarrow{*}_{M} (q, \varepsilon, \alpha)$ with $q \in F$

•
$$\frac{n}{M} = (\frac{1}{M})^n \quad \forall n \ge 0$$

•
$$\frac{*}{M} = \bigcup_{n \geq 0} \frac{n}{M}$$

- $x \in \Sigma^*$ is accepted by final state if $(s, x, \bot) \xrightarrow{*}_{M} (q, \varepsilon, \alpha)$ with $q \in F$
- $L_f(M) = \{x \in \Sigma^* \mid x \text{ is accepted by final state}\}$

•
$$\frac{n}{M} = (\frac{1}{M})^n \quad \forall n \ge 0$$

•
$$\frac{*}{M} = \bigcup_{n \geq 0} \frac{n}{M}$$

- $x \in \Sigma^*$ is accepted by final state if $(s, x, \bot) \xrightarrow{*} (q, \varepsilon, \alpha)$ with $q \in F$
- $L_f(M) = \{x \in \Sigma^* \mid x \text{ is accepted by final state}\}$
- $x \in \Sigma^*$ is accepted by empty stack if $(s, x, \bot) \xrightarrow{*}_{M} (q, \varepsilon, \varepsilon)$

•
$$\frac{n}{M} = (\frac{1}{M})^n \quad \forall n \ge 0$$

•
$$\frac{*}{M} = \bigcup_{n \geq 0} \frac{n}{M}$$

- $x \in \Sigma^*$ is accepted by final state if $(s, x, \bot) \xrightarrow{*} (q, \varepsilon, \alpha)$ with $q \in F$
- $L_f(M) = \{x \in \Sigma^* \mid x \text{ is accepted by final state}\}$
- $x \in \Sigma^*$ is accepted by empty stack if $(s, x, \bot) \xrightarrow{*} (q, \varepsilon, \varepsilon)$
- $L_e(M) = \{x \in \Sigma^* \mid x \text{ is accepted by empty stack}\}$

•
$$\frac{n}{M} = (\frac{1}{M})^n \quad \forall n \ge 0$$

•
$$\frac{*}{M} = \bigcup_{n \geq 0} \frac{n}{M}$$

- $x \in \Sigma^*$ is accepted by final state if $(s, x, \bot) \xrightarrow{*} (q, \varepsilon, \alpha)$ with $q \in F$
- $L_f(M) = \{x \in \Sigma^* \mid x \text{ is accepted by final state}\}$
- $x \in \Sigma^*$ is accepted by empty stack if $(s, x, \bot) \xrightarrow{*} (q, \varepsilon, \varepsilon)$
- $L_e(M) = \{x \in \Sigma^* \mid x \text{ is accepted by empty stack}\}$

Theoren

A Ouick Recap

CFGs and NPDAs are equivalent:

- $A = L_f(M)$ for some NPDA M

CFGs and NPDAs are equivalent:

- A = L(G) for some CFG $G \iff$
- $A = L_f(M)$ for some NPDA $M \iff$
- $A = L_e(M)$ for some NPDA M

CFGs and NPDAs are equivalent:

- A = L(G) for some CFG $G \iff$
- $A = L_f(M)$ for some NPDA $M \iff$
- $A = L_e(M)$ for some NPDA $M \iff$
- $A = L_e(M) = L_f(M)$ for some NPDA M

A Ouick Recap

ability to perform at most one transition (move)

ability to perform at most one transition (move)

• at the same state

A Ouick Recap

ability to perform at most one transition (move)

• at the same state

A Ouick Recap

popping the same symbol off the stack

ability to perform at most one transition (move)

at the same state

A Ouick Recap

- popping the same symbol off the stack

ability to perform at most one transition (move)

- at the same state
- popping the same symbol off the stack
- $\begin{cases} \text{consuming the same input character} \\ \text{consuming an input character and the empty string } \varepsilon \end{cases}$

Definition

A Ouick Recap

A deterministic pushdown automaton (DPDA) is an octuple $M = (Q, \Sigma, \Gamma, \delta, \bot, \dashv, s, F)$

- $\mathbf{1}$ is a special symbol not in Σ , called the right endmarker
- 2 for any $p \in Q$, $a \in \Sigma \cup \{\epsilon\}$, $A \in \Gamma$, the set $\delta \subseteq (Q \times (\Sigma \cup \{+\} \cup \{\epsilon\}) \times \Gamma) \times (Q \times \Gamma^*)$ contains
 - at most one element of the form $((p, a, A), (q, \beta))$
 - exactly one transition of the form $((p, a, A), (q, \beta))$ or $((p, \varepsilon, A), (q, \beta))$

Exampl

A Ouick Recap

 $A = \{x \in \{[,]\}^* \mid x \text{ is balanced}\}\$ is accepted by DPDA $M = (\{0,1\},\{[,]\},\{[,\bot\},\delta,\bot,\dashv,0,\{1\})\$ with

$$\begin{array}{c}
|,|,\varepsilon\\ |,|,||\\
|,|,|,|\perp\\
\end{array}$$

$$M \text{ start} \longrightarrow 0 \longrightarrow 1$$

the final state acceptance criterion.

Remark

• DPDAs are strictly less powerful than NPDAs

Remark

A Ouick Recap

- DPDAs are strictly less powerful than NPDAs
- deterministic context-free language is set accepted by DPDA

Remark

A Ouick Recap

- DPDAs are strictly less powerful than NPDAs
- deterministic context-free language is set accepted by DPDA

$$A = \{a^i b^j c^k \mid i = i \text{ or } i = k\}$$

Outline

A Ouick Recap

- A Quick Recap
- 2 Ogden's Lemma
- Closure Properties Context-Free Sets Deterministic Context-Free Sets

Theoren

context-free sets are effectively closed under

- union
- concatenation
- asterate
- · homomorphic image
- homomorphic preimage

Theorer

context-free sets are effectively closed under

- union
- concatenation
- asterate
- · homomorphic image
- homomorphic preimage

context-free sets are not closed under

- intersection
- complement

•
$$A = L(G_1)$$
 for CFG $G_1 = (N_1, \Sigma, P_1, S_1)$
 $B = L(G_2)$ for CFG $G_2 = (N_2, \Sigma, P_2, S_2)$

- $A = L(G_1)$ for CFG $G_1 = (N_1, \Sigma, P_1, S_1)$ $B = L(G_2)$ for CFG $G_2 = (N_2, \Sigma, P_2, S_2)$
- without loss of generality $N_1 \cap N_2 = \emptyset$

- $A = L(G_1)$ for CFG $G_1 = (N_1, \Sigma, P_1, S_1)$ $B = L(G_2)$ for CFG $G_2 = (N_2, \Sigma, P_2, S_2)$
- without loss of generality $N_1 \cap N_2 = \emptyset$
- $A \cup B = L(G)$ for CFG $G = (N, \Sigma, P, S)$ with

- $A = L(G_1)$ for CFG $G_1 = (N_1, \Sigma, P_1, S_1)$ $B = L(G_2)$ for CFG $G_2 = (N_2, \Sigma, P_2, S_2)$
- without loss of generality $N_1 \cap N_2 = \emptyset$
- $A \cup B = L(G)$ for CFG $G = (N, \Sigma, P, S)$ with

 - $P := P_1 \cup P_2 \cup \{S \to S_1 \mid S_2\}$

Proof. (union)

- $A = L(G_1)$ for CFG $G_1 = (N_1, \Sigma, P_1, S_1)$ $B = L(G_2)$ for CFG $G_2 = (N_2, \Sigma, P_2, S_2)$
- without loss of generality $N_1 \cap N_2 = \emptyset$
- $A \cup B = L(G)$ for CFG $G = (N, \Sigma, P, S)$ with

 - $P := P_1 \cup P_2 \cup \{S \rightarrow S_1 \mid S_2\}$

•
$$A = \{a^n b^n a \mid n \ge 0\}$$
 $S_1 \to Ta$ $T \to aTb \mid \varepsilon$

•
$$B = \{a^nba^n \mid n \ge 0\}$$
 $S_2 \rightarrow aS_2a \mid b$

Proof. (union)

- $A = L(G_1)$ for CFG $G_1 = (N_1, \Sigma, P_1, S_1)$ $B = L(G_2)$ for CFG $G_2 = (N_2, \Sigma, P_2, S_2)$
- without loss of generality $N_1 \cap N_2 = \emptyset$
- $A \cup B = L(G)$ for CFG $G = (N, \Sigma, P, S)$ with
 - $0 N := N_1 \cup N_2 \cup \{S\}$
 - $P := P_1 \cup P_2 \cup \{S \rightarrow S_1 \mid S_2\}$

•
$$A = \{a^n b^n a \mid n \ge 0\}$$
 $S_1 \to Ta$ $T \to aTb \mid \varepsilon$

•
$$B = \{a^nba^n \mid n \ge 0\}$$
 $S_2 \rightarrow aS_2a \mid b$

•
$$A \cup B$$
 $S \rightarrow S_1 \mid S_2$

Proof. (concatenation)

•
$$A = L(G_1)$$
 for CFG $G_1 = (N_1, \Sigma, P_1, S_1)$
 $B = L(G_2)$ for CFG $G_2 = (N_2, \Sigma, P_2, S_2)$

•
$$A = \{a^n b^n a \mid n \ge 0\}$$
 $S_1 \to Ta$ $T \to aTb \mid \varepsilon$

•
$$B = \{a^nba^n \mid n \ge 0\}$$
 $S_2 \rightarrow aS_2a \mid b$

Proof. (concatenation)

- $A = L(G_1)$ for CFG $G_1 = (N_1, \Sigma, P_1, S_1)$ $B = L(G_2)$ for CFG $G_2 = (N_2, \Sigma, P_2, S_2)$
- without loss of generality $N_1 \cap N_2 = \emptyset$

•
$$A = \{a^n b^n a \mid n \ge 0\}$$
 $S_1 \to Ta$ $T \to aTb \mid \varepsilon$

•
$$B = \{a^nba^n \mid n \ge 0\}$$
 $S_2 \rightarrow aS_2a \mid b$

Proof. (concatenation)

- $A = L(G_1)$ for CFG $G_1 = (N_1, \Sigma, P_1, S_1)$ $B = L(G_2)$ for CFG $G_2 = (N_2, \Sigma, P_2, S_2)$
- without loss of generality $N_1 \cap N_2 = \emptyset$
- AB = L(G) for CFG $G = (N, \Sigma, P, S)$ with
 - $0 N := N_1 \cup N_2 \cup \{5\}$

•
$$A = \{a^n b^n a \mid n \ge 0\}$$
 $S_1 \to Ta$ $T \to aTb \mid \varepsilon$

•
$$B = \{a^nba^n \mid n \ge 0\}$$
 $S_2 \rightarrow aS_2a \mid b$

Proof. (concatenation)

- $A = L(G_1)$ for CFG $G_1 = (N_1, \Sigma, P_1, S_1)$ $B = L(G_2)$ for CFG $G_2 = (N_2, \Sigma, P_2, S_2)$
- without loss of generality $N_1 \cap N_2 = \emptyset$
- AB = L(G) for CFG $G = (N, \Sigma, P, S)$ with
 - $0 N := N_1 \cup N_2 \cup \{5\}$
 - $P := P_1 \cup P_2 \cup \{S \to S_1 S_2\}$

•
$$A = \{a^n b^n a \mid n \ge 0\}$$
 $S_1 \to Ta$ $T \to aTb \mid \varepsilon$

•
$$B = \{a^nba^n \mid n \ge 0\}$$
 $S_2 \rightarrow aS_2a \mid b$

Proof. (concatenation)

•
$$A = L(G_1)$$
 for CFG $G_1 = (N_1, \Sigma, P_1, S_1)$
 $B = L(G_2)$ for CFG $G_2 = (N_2, \Sigma, P_2, S_2)$

• without loss of generality
$$N_1 \cap N_2 = \emptyset$$

•
$$AB = L(G)$$
 for CFG $G = (N, \Sigma, P, S)$ with

$$0 N := N_1 \cup N_2 \cup \{S\}$$

②
$$P := P_1 \cup P_2 \cup \{S \to S_1 S_2\}$$

•
$$A = \{a^n b^n a \mid n \ge 0\}$$

•
$$A = \{a^n b^n a \mid n \ge 0\}$$
 $S_1 \to Ta$ $T \to aTb \mid \varepsilon$

•
$$B = \{a^n b a^n \mid n \ge 0\}$$
 $S_2 \rightarrow a S_2 a \mid b$

$$S \rightarrow S_1S_2$$

Proof. (asterate)

•
$$A = L(G_1)$$
 for CFG $G_1 = (N_1, \Sigma, P_1, S_1)$

Proof. (asterate)

- $A = L(G_1)$ for CFG $G_1 = (N_1, \Sigma, P_1, S_1)$
- $A^* = L(G)$ for CFG $G = (N, \Sigma, P, S)$ with
 - ① $N := N_1 \cup \{5\}$

Proof. (asterate)

- $A = L(G_1)$ for CFG $G_1 = (N_1, \Sigma, P_1, S_1)$
- $A^* = L(G)$ for CFG $G = (N, \Sigma, P, S)$ with
 - ① $N := N_1 \cup \{5\}$
 - $P := P_1 \cup \{S \to S_1 S \mid \varepsilon\}$

Proof. (asterate)

- $A = L(G_1)$ for CFG $G_1 = (N_1, \Sigma, P_1, S_1)$
- $A^* = L(G)$ for CFG $G = (N, \Sigma, P, S)$ with

 - $P := P_1 \cup \{S \to S_1 S \mid \varepsilon\}$

Example

• $A = \{a^n b^n a \mid n \ge 0\}$ $S_1 \to Ta$ $T \to aTb \mid \varepsilon$

Proof. (asterate)

- $A = L(G_1)$ for CFG $G_1 = (N_1, \Sigma, P_1, S_1)$
- $A^* = L(G)$ for CFG $G = (N, \Sigma, P, S)$ with
 - $0 N := N_1 \cup \{S\}$
 - $P := P_1 \cup \{S \to S_1 S \mid \varepsilon\}$

• $A = \{a^n b^n a \mid n \ge 0\}$ $S_1 \rightarrow Ta$ $T \rightarrow aTb \mid \varepsilon$

$$S_1 \rightarrow Ta \quad T \rightarrow aTb \mid \epsilon$$

• A*

$$S \rightarrow S_1 S \mid \varepsilon$$

•
$$A = L(G_1)$$
 for CFG $G_1 = (N_1, \Sigma, P_1, S_1)$ homomorphism $h : \Sigma^* \to \Delta^*$

- $A = L(G_1)$ for CFG $G_1 = (N_1, \Sigma, P_1, S_1)$ homomorphism $h \colon \Sigma^* \to \Delta^*$
- h(A) = L(G) for CFG $G = (N_1, \Delta, P, S_1)$ with $P := \{B \to \widehat{h}(\alpha) \mid B \to \alpha \in P_1\}$ where $\widehat{h} : (N_1 \cup \Sigma)^* \to (N_1 \cup \Delta)^*$ is the obvious extension of h

- $A = L(G_1)$ for CFG $G_1 = (N_1, \Sigma, P_1, S_1)$ homomorphism $h: \Sigma^* \to \Delta^*$
- h(A) = L(G) for CFG $G = (N_1, \Delta, P, S_1)$ with $P := \{B \to \widehat{h}(\alpha) \mid B \to \alpha \in P_1\}$ where $\widehat{h}: (N_1 \cup \Sigma)^* \to (N_1 \cup \Delta)^*$ is the obvious extension of h:

$$\widehat{h}(a_1 \cdots a_n) = \widehat{h}(a_1) \cdots \widehat{h}(a_n) \quad \text{with} \quad \widehat{h}(a) = \begin{cases} a & \text{if } a \in N_1 \\ h(a) & \text{if } a \in \Sigma \end{cases}$$

Proof. (homomorphic image)

- $A = L(G_1)$ for CFG $G_1 = (N_1, \Sigma, P_1, S_1)$ homomorphism $h: \Sigma^* \to \Delta^*$
- h(A) = L(G) for CFG $G = (N_1, \Delta, P, S_1)$ with $P := \{B \to \widehat{h}(\alpha) \mid B \to \alpha \in P_1\}$ where $\widehat{h}: (N_1 \cup \Sigma)^* \to (N_1 \cup \Delta)^*$ is the obvious extension of h:

$$\widehat{h}(a_1 \cdots a_n) = \widehat{h}(a_1) \cdots \widehat{h}(a_n)$$
 with $\widehat{h}(a) = \begin{cases} a & \text{if } a \in N_1 \\ h(a) & \text{if } a \in \Sigma \end{cases}$

- $A = \{a^n b^n a \mid n \ge 0\}$ $S_1 \to Ta \quad T \to aTb \mid \varepsilon$
- homomorphism h with h(a) = b and h(b) = ac

Proof. (homomorphic image)

- $A = L(G_1)$ for CFG $G_1 = (N_1, \Sigma, P_1, S_1)$ homomorphism $h: \Sigma^* \to \Delta^*$
- h(A) = L(G) for CFG $G = (N_1, \Delta, P, S_1)$ with $P := \{B \to \widehat{h}(\alpha) \mid B \to \alpha \in P_1\}$ where $\widehat{h}: (N_1 \cup \Sigma)^* \to (N_1 \cup \Delta)^*$ is the obvious extension of h:

$$\widehat{h}(a_1 \cdots a_n) = \widehat{h}(a_1) \cdots \widehat{h}(a_n)$$
 with $\widehat{h}(a) = \begin{cases} a & \text{if } a \in N_1 \\ h(a) & \text{if } a \in \Sigma \end{cases}$

•
$$A = \{a^n b^n a \mid n \ge 0\}$$
 $S_1 \to Ta$ $T \to aTb \mid \varepsilon$

• homomorphism h with
$$h(a) = b$$
 and $h(b) = ac$

•
$$h(A)$$
 $S_1 \to Tb$ $T \to bTac \mid \varepsilon$

Proof. (homomorphic preimage)

• $A = L_f(M)$ for NPDA $M = (Q, \Sigma, \Gamma, \delta, s, \bot, F)$ homomorphism $h \colon \Delta^* \to \Sigma^*$

- $A = L_f(M)$ for NPDA $M = (Q, \Sigma, \Gamma, \delta, s, \bot, F)$ homomorphism $h: \Delta^* \to \Sigma^*$
- $h^{-1}(A) = L_f(N)$ for NPDA $N = (Q', \Delta, \Gamma, \delta', s', \bot, F')$ with

- $A = L_f(M)$ for NPDA $M = (Q, \Sigma, \Gamma, \delta, s, \bot, F)$ homomorphism $h: \Delta^* \to \Sigma^*$
- $h^{-1}(A) = L_f(N)$ for NPDA $N = (Q', \Delta, \Gamma, \delta', s', \bot, F')$ with

- $A = L_f(M)$ for NPDA $M = (Q, \Sigma, \Gamma, \delta, s, \bot, F)$ homomorphism $h : \Delta^* \to \Sigma^*$
- $h^{-1}(A) = L_f(N)$ for NPDA $N = (Q', \Delta, \Gamma, \delta', s', \bot, F')$ with
 - $O' := \{(q, x) \mid q \in O \text{ and } x \text{ is suffix of } h(a) \text{ for some } a \in \Delta\}$

- $A = L_f(M)$ for NPDA $M = (Q, \Sigma, \Gamma, \delta, s, \bot, F)$ homomorphism $h: \Delta^* \to \Sigma^*$
- $h^{-1}(A) = L_f(N)$ for NPDA $N = (Q', \Delta, \Gamma, \delta', s', \bot, F')$ with
 - $0' := \{(a, x) \mid a \in Q \text{ and } x \text{ is suffix of } h(a) \text{ for some } a \in \Delta \}$
 - \mathfrak{D} $\mathfrak{S}' := (\mathfrak{S}, \mathfrak{E})$

 - 4 δ' consisting of following transitions:
 - (1) $(((p, \varepsilon), a, A), ((p, h(a)), A))$ for all $p \in Q$, $a \in \Delta$, $A \in \Gamma$

Let
$$\Sigma = \{c, d\}, \Delta = \{e, f\}$$
 and $h: \Delta^* \to \Sigma^*$ such that

$$h(e) = cdd$$
 $h(f) = dcdd$

Example

Let
$$\Sigma = \{c, d\}, \Delta = \{e, f\}$$
 and $h: \Delta^* \to \Sigma^*$ such that

$$h(e) = cdd$$

$$h(f) = dcdd$$

$$((p, \varepsilon), eef, A)$$

$$\xrightarrow{1}_{N}$$
 $((p, cdd), ef, A)$

(by transition in 4.1)

Let
$$\Sigma = \{c, d\}, \Delta = \{e, f\}$$
 and $h: \Delta^* \to \Sigma^*$ such that

$$h(e) = cdd$$

$$h(f) = dcdd$$

$$((p, \varepsilon), eef, A)$$

 $((p, cdd), ef, A)$

$$\frac{1}{N} \quad ((p, cdd), ef, A)$$

$$\frac{1}{N} \quad ((p, cddcdd), f, A)$$

Let
$$\Sigma = \{c, d\}, \Delta = \{e, f\}$$
 and $h: \Delta^* \to \Sigma^*$ such that

$$h(e) = cdd$$
 $h(f) = dcdd$

$$((p, \varepsilon), eef, A)$$
 - $((p, cdd), ef, A)$ - $((p, cddcdd), f, A)$ -

$$\frac{1}{N} \qquad ((p, cdd), ef, A)$$

$$\frac{1}{N} \qquad ((p, cddcdd), f, A)$$

$$\frac{1}{N} \qquad ((p, cddcdddcdd), \varepsilon, A)$$

Let
$$\Sigma = \{c,d\}$$
, $\Delta = \{e,f\}$ and $h \colon \Delta^* \to \Sigma^*$ such that

$$h(e) = cdd$$
 $h(f) = dcdd$

$$((p, \varepsilon), \text{eef}, A) \qquad \xrightarrow[N]{} ((p, cdd), \text{ef}, A)$$

$$((p, cdd), \text{ef}, A) \qquad \xrightarrow[N]{} ((p, cddcdd), f, A)$$

$$((p, cddcddd, f, A) \qquad \xrightarrow[N]{} ((p, cddcdddcdd), \epsilon, A\gamma) \qquad \xrightarrow[N]{} ((q, ddcdddcdd), \epsilon, A\gamma) \qquad \xrightarrow[N]{} ((q, ddcddcddd), \epsilon, A\gamma) \qquad \xrightarrow[N]{} ((q, ddcddcddddd), \epsilon, A\gamma) \qquad \xrightarrow[N]{} ((q, ddcddcddd), \epsilon, A\gamma) \qquad \xrightarrow[N]{} ((q, ddcdddcdd), \epsilon, A\gamma) \qquad \xrightarrow[N]{} ((q, ddcddcddd), \epsilon, A\gamma) \qquad \xrightarrow[N]{} ((q, ddcdddcdd), \epsilon, A\gamma) \qquad \xrightarrow$$

$$((p, cddcdd), f, A)$$

 $((p, cddcdddcdd), \varepsilon, A)$

$$((p, caacaaacaa), \varepsilon, A)$$

 $((q, ddcdddcdd), \varepsilon, B\gamma)$ if $((p, c, A), (q, B)) \in \delta$

Let
$$\Sigma = \{c, d\}$$
, $\Delta = \{e, f\}$ and $h: \Delta^* \to \Sigma^*$ such that

$$h(e) = cdd \qquad h(f) = dcdd$$

$$((p, \varepsilon), eef, A) \qquad \frac{1}{N} \qquad ((p, cdd), ef, A) \qquad \text{(by transition in 4.1)}$$

$$((p, cdd), ef, A) \qquad \frac{1}{N} \qquad ((p, cddcdd), f, A) \qquad \text{(by transition in 4.1)}$$

$$((p, cddcdd), f, A) \qquad \frac{1}{N} \qquad ((p, cddcdddcdd), \varepsilon, A) \qquad \text{(by transition in 4.1)}$$

$$((p, cddcdddcdd), \varepsilon, A\gamma) \qquad \frac{1}{N} \qquad ((q, ddcdddcdd), \varepsilon, B\gamma) \qquad \text{if } ((p, c, A), (q, B)) \in \delta \qquad \text{(by transition in 4.2)}$$

$$((q, ddcdddcdd), \varepsilon, B\gamma) \qquad \frac{1}{N} \qquad ((r, dcdddcdd), \varepsilon, C\gamma) \qquad \text{if } ((q, d, B), (r, C)) \in \delta \qquad \text{(by transition in 4.2)}$$

Let
$$\Sigma = \{c,d\}$$
, $\Delta = \{e,f\}$ and $h \colon \Delta^* \to \Sigma^*$ such that
$$h(e) = cdd \qquad h(f) = dcdd$$

$$((p,\varepsilon), eef, A) \qquad \frac{1}{N} \qquad ((p,cdd), ef, A) \qquad \text{(by transition in 4.1)}$$

$$((p,cdd), ef, A) \qquad \frac{1}{N} \qquad ((p,cddcdd), f, A) \qquad \text{(by transition in 4.1)}$$

$$((p,cddcdd), f, A) \qquad \frac{1}{N} \qquad ((p,cddcdddcdd), \varepsilon, A) \qquad \text{(by transition in 4.1)}$$

$$((p,cddcdddcdd), \varepsilon, A\gamma) \qquad \frac{1}{N} \qquad ((q,ddcdddcdd), \varepsilon, B\gamma) \qquad \text{if } ((p,c,A), (q,B)) \in \delta \qquad \text{(by transition in 4.2)}$$

$$((q,ddcdddcdd), \varepsilon, B\gamma) \qquad \frac{1}{N} \qquad ((r,dcdddcdd), \varepsilon, C\gamma) \qquad \text{if } ((q,d,B), (r,C)) \in \delta \qquad \text{(by transition in 4.2)}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

Let
$$\Sigma = \{c,d\}, \ \Delta = \{e,f\} \ \text{and} \ h: \Delta^* \to \Sigma^* \ \text{such that}$$

$$h(e) = cdd \qquad h(f) = dcdd$$

$$((p,\varepsilon), eef, A) \qquad \frac{1}{N} \qquad ((p,cdd), ef, A) \qquad \text{(by transition in 4.1)}$$

$$((p,cdd), ef, A) \qquad \frac{1}{N} \qquad ((p,cddcdd), f, A) \qquad \text{(by transition in 4.1)}$$

$$((p,cddcdd), f, A) \qquad \frac{1}{N} \qquad ((p,cddcdddcdd), \varepsilon, A) \qquad \text{(by transition in 4.1)}$$

$$((p,cddcdddcdd), \varepsilon, A\gamma) \qquad \frac{1}{N} \qquad ((q,ddcdddcdd), \varepsilon, B\gamma) \qquad \text{if } ((p,c,A), (q,B)) \in \delta \qquad \text{(by transition in 4.2)}$$

$$((q,ddcdddcdd), \varepsilon, B\gamma) \qquad \frac{1}{N} \qquad ((r,dcdddcdd), \varepsilon, C\gamma) \qquad \text{if } ((q,d,B), (r,C)) \in \delta \qquad \text{(by transition in 4.2)}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$((p',d), \varepsilon, A'\gamma) \qquad \frac{1}{N} \qquad ((q',\varepsilon), \varepsilon, B'\gamma) \qquad \text{if } ((p',d,A'), (q',B')) \in \delta \qquad \text{(by transition in 4.2)}$$

Proof. (homomorphic preimage)

- $A = L_f(M)$ for NPDA $M = (Q, \Sigma, \Gamma, \delta, s, \bot, F)$ homomorphism $h: \Delta^* \to \Sigma^*$
- $h^{-1}(A) = L_f(N)$ for NPDA $N = (O', \Delta, \Gamma, \delta', s', \bot, F')$ with

 - 4 δ' consisting of following transitions:
 - (((p, ϵ), a, A), ((p, h(a)), A)) for all $p \in Q$, $a \in \Delta$, $A \in \Gamma$
 - $(((p,by),\varepsilon,A),((q,y),\gamma)) \qquad \text{for all } ((p,b,A),(q,\gamma)) \in \delta \text{ with } b \in \Sigma \cup \{\varepsilon\}$
- claim: $((s, \varepsilon), x, \bot) \xrightarrow{*}_{H} ((q, \varepsilon), \varepsilon, \gamma) \iff (s, h(x), \bot) \xrightarrow{*}_{H} (q, \varepsilon, \gamma)$ for all $x \in \Delta^*$

Push Down Automaton

Context-Free Sets

Theoren

context-free sets are not closed under intersection

•
$$A = \{a^ib^ic^j \mid i,j \ge 0\}$$

 $B = \{a^ib^jc^j \mid i,j \ge 0\}$

Theorem

context-free sets are not closed under intersection

Proof.

•
$$A = \{a^i b^j c^j \mid i, j \ge 0\} = \{a^i b^i \mid i \ge 0\} \{c^j \mid j \ge 0\}$$

 $B = \{a^i b^j c^i \mid i, j \ge 0\} = \{a^i \mid i \ge 0\} \{b^j c^i \mid j \ge 0\}$

A and B are context-free

Theorem

context-free sets are not closed under intersection

•
$$A = \{a^i b^j c^j \mid i, j \ge 0\} = \{a^i b^j \mid i \ge 0\} \{c^j \mid j \ge 0\}$$

 $B = \{a^i b^j c^j \mid i, j \ge 0\} = \{a^i \mid i \ge 0\} \{b^j c^j \mid j \ge 0\}$

- A and B are context-free
- $A \cap B = \{a^i b^i c^i \mid i \ge 0\}$ is not context-free

Theorem

context-free sets are not closed under intersection

Proof.

- $A = \{a^ib^jc^i \mid i,j \ge 0\} = \{a^ib^i \mid i \ge 0\}\{c^i \mid j \ge 0\}$ $B = \{a^ib^jc^i \mid i,j \ge 0\} = \{a^i \mid i \ge 0\}\{b^jc^i \mid j \ge 0\}$
- A and B are context-free
- $A \cap B = \{a^i b^i c^i \mid i \ge 0\}$ is not context-free

Theorem

intersection of context-free set and regular set is context-free

Theorem

intersection of context-free set A and regular set B is context-free

Proof.

• $A = L_f(M_1)$ for NPDA $M_1 = (Q_1, \Sigma, \Delta, \delta_1, s_1, \bot, F_1)$

Theorem

intersection of context-free set A and regular set B is context-free

- $A = L_f(M_1)$ for NPDA $M_1 = (Q_1, \Sigma, \Delta, \delta_1, s_1, \bot, F_1)$
- $B = L(M_2)$ for DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$

Theorem

intersection of context-free set A and regular set B is context-free

- $A = L_f(M_1)$ for NPDA $M_1 = (Q_1, \Sigma, \Delta, \delta_1, s_1, \bot, F_1)$
- $B = L(M_2)$ for DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$
- define NPDA $N = (Q, \Sigma, \Delta, \delta, s, \bot, F)$ with
 - $Q := Q_1 \times Q_2$
 - $s := (s_1, s_2)$
 - $F := F_1 \times F_2$

Theoren

intersection of context-free set A and regular set B is context-free

- $A = L_f(M_1)$ for NPDA $M_1 = (Q_1, \Sigma, \Delta, \delta_1, s_1, \bot, F_1)$
- $B = L(M_2)$ for DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$
- define NPDA $N = (Q, \Sigma, \Delta, \delta, s, \bot, F)$ with
 - $Q := Q_1 \times Q_2$
 - $s := (s_1, s_2)$
 - $F := F_1 \times F_2$
 - δ consists of transitions $(\forall p \in Q_1 \ \forall q \in Q_2 \ \forall A \in \Gamma)$

$$(((p,q),a,A),((p',q'),\gamma)) \qquad \text{for all } a \in \Sigma, ((p,a,A),(p',\gamma)) \in \delta_1 \text{ and } q' = \delta_2(q,a)$$

Theoren

intersection of context-free set A and regular set B is context-free

- $A = L_f(M_1)$ for NPDA $M_1 = (Q_1, \Sigma, \Delta, \delta_1, s_1, \bot, F_1)$
- $B = L(M_2)$ for DFA $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$
- define NPDA $N = (Q, \Sigma, \Delta, \delta, s, \bot, F)$ with
 - $Q := Q_1 \times Q_2$
 - $s := (s_1, s_2)$
 - $F := F_1 \times F_2$
 - δ consists of transitions $(\forall p \in Q_1 \ \forall q \in Q_2 \ \forall A \in \Gamma)$

$$(((p,q),a,A),\,((p',q'),\gamma)) \qquad \text{ for all } a \in \Sigma,\,((p,a,A),(p',\gamma)) \in \delta_1 \text{ and } q' = \delta_2(q,a) \\ (((p,q),\epsilon,A),\,((p',q),\gamma)) \qquad \text{ for all } ((p,\epsilon,A),(p',\gamma)) \in \delta_1$$

Proof. (cont'd)

• claim $(\forall p \in Q_1 \ \forall q \in Q_2 \ \forall x \in \Sigma^*)$

$$((p,q),x,\bot) \xrightarrow[N]{*} ((p',q'),\varepsilon,\gamma) \quad \Longleftrightarrow \quad (p,x,\bot) \xrightarrow[M_1]{*} (p',\varepsilon,\gamma) \text{ and } \widehat{\delta}_2(q,x) = q'$$

is proved by induction

Proof. (cont'd)

• claim $(\forall p \in Q_1 \ \forall q \in Q_2 \ \forall x \in \Sigma^*)$

$$((p,q),x,\bot) \xrightarrow[N]{*} ((p',q'),\varepsilon,\gamma) \quad \Longleftrightarrow \quad (p,x,\bot) \xrightarrow[M_1]{*} (p',\varepsilon,\gamma) \text{ and } \widehat{\delta}_2(q,x) = q'$$

is proved by induction

$$L_f(N) = \{ x \in \Sigma^* \mid ((s_1, s_2), x, \bot) \xrightarrow[N]{*} ((p, q), \varepsilon, \gamma) \text{ and } (p, q) \in F \}$$

Proof. (cont'd)

• claim $(\forall p \in Q_1 \ \forall q \in Q_2 \ \forall x \in \Sigma^*)$

$$((p,q),x,\perp) \xrightarrow[N]{*} ((p',q'),\varepsilon,\gamma) \quad \Longleftrightarrow \quad (p,x,\perp) \xrightarrow[M]{*} (p',\varepsilon,\gamma) \text{ and } \widehat{\delta}_2(q,x) = q'$$

is proved by induction

$$\begin{split} L_f(N) &= \{x \in \Sigma^* \mid ((s_1, s_2), x, \bot) \xrightarrow[N]{*} ((p, q), \varepsilon, \gamma) \text{ and } (p, q) \in F\} \\ &= \{x \in \Sigma^* \mid (s_1, x, \bot) \xrightarrow[M_1]{*} (p, \varepsilon, \gamma) \text{ and } \widehat{\delta}_2(s_2, x) = q \text{ such that } p \in F_1, \ q \in F_2\} \end{split}$$

Proof. (cont'd)

• claim $(\forall p \in Q_1 \ \forall q \in Q_2 \ \forall x \in \Sigma^*)$

$$((p,q),x,\perp) \xrightarrow[N]{*} ((p',q'),\varepsilon,\gamma) \quad \Longleftrightarrow \quad (p,x,\perp) \xrightarrow[M]{*} (p',\varepsilon,\gamma) \text{ and } \widehat{\delta}_2(q,x) = q'$$

is proved by induction

$$\begin{split} L_f(N) &= \{x \in \Sigma^* \mid ((s_1, s_2), x, \bot) \xrightarrow{*}_N ((p, q), \varepsilon, \gamma) \text{ and } (p, q) \in F\} \\ &= \{x \in \Sigma^* \mid (s_1, x, \bot) \xrightarrow{*}_{M_1} (p, \varepsilon, \gamma) \text{ and } \widehat{\delta}_2(s_2, x) = q \text{ such that } p \in F_1, \ q \in F_2\} \\ &= \{x \in \Sigma^* \mid x \in L_f(M_1) \text{ and } x \in L(M_2)\} \end{split}$$

Proof. (cont'd)

• claim $(\forall p \in Q_1 \ \forall q \in Q_2 \ \forall x \in \Sigma^*)$

$$((p,q),x,\bot) \xrightarrow{*}_{N} ((p',q'),\varepsilon,\gamma) \quad \Longleftrightarrow \quad (p,x,\bot) \xrightarrow{*}_{M_{\bullet}} (p',\varepsilon,\gamma) \text{ and } \widehat{\delta}_{2}(q,x) = q'$$

is proved by induction

$$\begin{split} L_f(N) &= \{ x \in \Sigma^* \mid ((s_1, s_2), x, \bot) \xrightarrow{*}_N ((p, q), \varepsilon, \gamma) \text{ and } (p, q) \in F \} \\ &= \{ x \in \Sigma^* \mid (s_1, x, \bot) \xrightarrow{*}_{M_1} (p, \varepsilon, \gamma) \text{ and } \widehat{\delta}_2(s_2, x) = q \text{ such that } p \in F_1, \ q \in F_2 \} \\ &= \{ x \in \Sigma^* \mid x \in L_f(M_1) \text{ and } x \in L(M_2) \} \\ &= A \cap B \end{split}$$

Theoren

context-free sets are not closed under complement

Proof.

- $A = \{xx \mid x \in \{a, b\}^*\}$
- A is not context-free because

$$A \cap L(a^*b^*a^*b^*) = \{a^nb^ma^nb^m \mid m, n \ge 0\}$$

is not context-free (by pumping lemma)

Theoren

context-free sets are not closed under complement

Proof.

- $A = \{xx \mid x \in \{a, b\}^*\}$
- A is not context-free because

$$A \cap L(a^*b^*a^*b^*) = \{a^nb^ma^nb^m \mid m, n \ge 0\}$$

is not context-free (by pumping lemma)

•
$$\sim A = \{a, b\}^* - \{xx \mid x \in \{a, b\}^*\}$$
 is context-free

Theorem

context-free sets are not closed under complement

Proof.

- $A = \{xx \mid x \in \{a, b\}^*\}$
- A is not context-free because

$$A \cap L(a^*b^*a^*b^*) = \{a^nb^ma^nb^m \mid m, n \ge 0\}$$

is not context-free (by pumping lemma)

•
$$\sim A = \{a, b\}^* - \{xx \mid x \in \{a, b\}^*\}$$
 is context-free:

$$S \rightarrow AB \mid BA \mid A \mid B$$

$$S \rightarrow AB \mid BA \mid A \mid B$$

$$C \rightarrow a \mid b$$

$$A \rightarrow CAC \mid a$$

$$B \rightarrow CBC \mid b$$

Theoren

deterministic context-free sets are effectively closed under

- complement
- homomorphic preimage

Theoren

deterministic context-free sets are effectively closed under

- complement
- homomorphic preimage

deterministic context-free sets are not closed under

- union
- intersection
- concatenation
- asterate
- homomorphic image

Push Down Automaton

Closure Properties

Deterministic Context-Free Sets

Theoren

deterministic context-free sets are not closed under union

Theoren

deterministic context-free sets are not closed under union

•
$$A = \{a^i b^j c^k \mid i \neq j\}$$
 and $B = \{a^i b^j c^k \mid j \neq k\}$

Theoren

deterministic context-free sets are not closed under union

- $A = \{a^i b^j c^k \mid i \neq j\}$ and $B = \{a^i b^j c^k \mid j \neq k\}$
- A and B are deterministic context-free

Theoren

deterministic context-free sets are not closed under union

- $A = \{a^i b^j c^k \mid i \neq i\}$ and $B = \{a^i b^j c^k \mid i \neq k\}$
- A and B are deterministic context-free
- suppose $A \cup B$ is deterministic context-free

Theoren

deterministic context-free sets are not closed under union

- $A = \{a^i b^j c^k \mid i \neq j\}$ and $B = \{a^i b^j c^k \mid j \neq k\}$
- A and B are deterministic context-free
- suppose $A \cup B$ is deterministic context-free

$$\Rightarrow$$
 $\sim (A \cup B) = (\sim A) \cap (\sim B)$ is deterministic context-free

Theoren

deterministic context-free sets are not closed under union

- $A = \{a^i b^j c^k \mid i \neq j\}$ and $B = \{a^i b^j c^k \mid j \neq k\}$
- A and B are deterministic context-free
- suppose $A \cup B$ is deterministic context-free

$$\Rightarrow$$
 $\sim (A \cup B) = (\sim A) \cap (\sim B)$ is deterministic context-free

$$\implies$$
 $(\sim A) \cap (\sim B)$ is context-free

Theoren

deterministic context-free sets are not closed under union

- $A = \{a^i b^j c^k \mid i \neq j\}$ and $B = \{a^i b^j c^k \mid j \neq k\}$
- A and B are deterministic context-free
- suppose $A \cup B$ is deterministic context-free

$$\Rightarrow$$
 $\sim (A \cup B) = (\sim A) \cap (\sim B)$ is deterministic context-free

$$\implies$$
 $(\sim A) \cap (\sim B)$ is context-free

$$\implies$$
 $(\sim A) \cap (\sim B) \cap L(a*b*c*) = \{a^i b^j c^k \mid i = j = k\}$ is context-free

Theoren

deterministic context-free sets are not closed under union

- $A = \{a^i b^j c^k \mid i \neq j\}$ and $B = \{a^i b^j c^k \mid j \neq k\}$
- A and B are deterministic context-free
- suppose $A \cup B$ is deterministic context-free

$$\Rightarrow$$
 $\sim (A \cup B) = (\sim A) \cap (\sim B)$ is deterministic context-free

$$\implies$$
 $(\sim A) \cap (\sim B)$ is context-free

$$\implies$$
 $(\sim A) \cap (\sim B) \cap L(a*b*c*) = \{a^i b^j c^k \mid i = j = k\}$ is context-free

Theoren

deterministic context-free sets are not closed under union

Proof.

- $A = \{a^i b^j c^k \mid i \neq j\}$ and $B = \{a^i b^j c^k \mid j \neq k\}$
- A and B are deterministic context-free
- suppose $A \cup B$ is deterministic context-free

$$\Rightarrow$$
 $\sim (A \cup B) = (\sim A) \cap (\sim B)$ is deterministic context-free

$$\implies$$
 $(\sim A) \cap (\sim B)$ is context-free

$$\implies$$
 $(\sim A) \cap (\sim B) \cap L(a^*b^*c^*) = \{a^ib^jc^k \mid i=j=k\}$ is context-free

• A∪B is not deterministic context-free

Push Down Automaton

Deterministic Context-Free Sets

Thanks! & Questions?