Assignment 3-2 Convert to the Floating Point Representation from Decimal. Lab 1

1. Make a assembly program that has the floating data 1.0 ## Program to represent 1.0

```
.data
val1: .float 1.0
    .text
    .glob1 main

main:
    li $v0, 2  # print floating service code
        lwc1 $f12, val1
        move $a0, $v0
        mfc1 $t1, $f12
        syscall
## End of file
```

Mfc1 stands for move from coprocessor 1. It's use to transfer data between floating-point coprocessor and the general purpose registers.

\$9, Destination register (\$t1).

\$f12, Source register from which the floating point value will come from.

2. Then check out the data section

a. What is the value hexadecimal?

First 9 bits are the sign and exponent, so the remaining bits are the mantissa, which holds the actual decimal value **1.0**, so the value the hexadecimal holds is **1.0**.

But if we were to treat it as an unsigned or signed integer, we would get 1,065,353,216

b. Represent in the IEEE 754 format.

It's the Binary32 standard, which is represented as 1 sign bit, 8 exponent width bits, and the rest of the 24 (23 explicitly stored) bits as mantissa or the significand precision bits. 0 = sign bit = positive

0111 1111 = exponent **decimal value** = **127** Bias is 127 for Binary32, so **127 - 127** = **Exponent value is 0**

c. Elaborate on the vault \$t1 with IEEE 754 format.

\$t1, aka \$9, holds 3f800000, which stated above, **holds 1.0 in IEEE 754 format**. If not in IEEE 754, and if it's instead read at it's face value without the IEEE standard, it would hold **1,065,353,216**.