

Intelligent Recommender System —— An Introduction

School of Computer Science and Technology East China Normal University

Wei Zhang (张伟)

Brief Course Introduction

- Recommender Systems (RS) are key technical components in many online applications, such as product recommendation, video recommendation, or stream recommendation in social networks.
- In this course, we focus on some basic and advanced RS algorithms and their applications.
- Goals
 - Understand basic concepts and procedures of RS
 - Master basic recommendation algorithms
 - Practice coding

Contact Information

● Wei Zhang (张伟)

- Associate Researcher, School of Computer Science and Technology, East China Normal University
- Research interest: Data mining, machine learning application
 - Focusing on applications in recommender system
 - Homepage: https://weizhangltt.github.io/
 - Mail: <u>zhangwei.thu2011@gmail.com</u>
- Office: Room B903, Science Building
 - Office hours: 10:00-11:30 (Tuesday)

Prerequisite

Python

- Suitable for data science (e.g., processing data)
- Many third-party libraries for scientific computing
 - Deep learning: Tensorflow, PyTorch

Artificial Intelligence

- Some basic concepts in Al
 - E.g., cost function, optimization

Basic Mathematics

E.g., matrix computation

Evaluation

Course Grade (100%)

- 10% class participation, 45% homework (15% each), 45% final project
- Class participation
- Homework
 - 3 programming assignments, about 2 weeks for each
- Final project
 - Working as a group (2-3 persons)
 - Multiple choices (e.g., data science competition, selfdefined task w.r.t. recommendation, paper survey)
 - Note: If you want only one or more than 3 persons in a group, please contact me.

Programming Assignments

- Assignment 1
 - User-based collaborative filtering (UCF)
- Assignment 2
 - Content-based recommendation
- Assignment 3
 - Latent factor model (matrix factorization)
- Req.: Each should include code (executable), report
 - More details will be clarified in later courses
 - Should be *executable*

Course Materials

• 大夏学堂

- Platform for material uploading
- URL: https://elearning.ecnu.edu.cn/

• 包括

- Slides
- Assignments
 - Requirement
 - Data

Others

- Including some suggested papers, or books
- Releasing assignment scores
- Course WeChat group

Reference Books

- 推荐系统: 技术、评估及高效算法
 - 机械工业出版社
- 推荐系统实践
 - 项亮, 人民邮电出版社
- 推荐系统
 - 人民邮电出版社
- 深度学习推荐系统
 - 人民邮电出版社

Introduction

Which digital camera should I buy?
What is the best holiday for me and my family?
Which is the best investment for supporting the education of my children?
Which movie should I rent? Which web sites will I find interesting?
Which book should I buy for my next vacation?
Which degree and university are the best for my future?

What is recommender system?

Architecture of Full RS

RS is a system including many parts

- Storage, computation engines, web service, etc.
- Many components, very complex

An Overview of RS (from Alg. Perspective)

Key components

- Data: User、Item、User-Item Interaction (e.g., score)
- Algorithm
- Explanations:
 - Why recommending these items (optional)

Pipeline of RS in Industry

- Coarse ranking
 - From millions of items to hundreds
- Fine-grained ranking
 - From dozens to hundreds

Two-stage approach

Note: third stage -> reranking (optional)

More Detailed Pipeline

Stage 1: Retrieval

 Retrieval from many sources (e.g., real-time news, question-answers, short videos)

Stage 2: Rough ranking

- Using simple models or complicated rules to generate candidate recommendation
- Size: Several hundred to several thousand
 - E.g., 1000 candidate recommendation

Stage 3: Candidates pass to next stage

Manual rules to filter or adjust some candidates

More Detailed Pipeline

- Stage 4: Sophisticated ranking
 - Complicated machine learning (ML) models
 - Size: Dozens to hundreds
 - E.g., 100 candidate recommendation
- Stage 5: Diversity
 - Multiple diversity criteria
- Stage 6: Blending rules (business)
 - E.g., adding local news

What we focus in this course

Stage 2: Rough ranking

- Using simple models or complicated rules to generate candidate recommendation
- Size: Several hundred to several thousand
 - E.g., 1000 candidate recommendation

Stage 4: Sophisticated ranking

- Complicated machine learning (ML) models
- Size: Dozens to hundreds
 - E.g., 100 candidate recommendation

RS as a Function

Function

score = f(user, item)

Input:

- user:
 - demographics: age, gender, income
 - preferences: bought products, watched videos
 - situational context: time, where, emotion
- item: *to be recommended*
 - description: image, text
 - attributes: price, location, category

Output:

score: relevance score; used for ranking

Considerations for RS function

Function

- score = f(user, item; w)
- w: parameters

Major Consideration for Specific Applications:

- 1. user, item What information of them to consider
- 2. f How to build the RS function (a.k.a., model)
 - e.g., collaborative filtering, matrix factorization, neural networks
- 3. w How to optimize the parameters w

Recommender systems reduce information overload by estimating relevance

- Content-Based Algorithm
 - Vector Space Model
 - Using content to represent an item as a vector

Collaborative Filtering

- Collaborative Signals: Behavior Similarity of Users
- Memory-based CF
 - User-CF
 - Item-CF
- Model-based CF
 - Latent factor model

- Community-Based Algorithm
 - Social-based recommendation algorithms
 - TrustWalker^[1], SocialRec^[2], etc.

- Hybrid Recommendation Algorithm
 - Merge multiple RS algorithms
 CTR^[1]

Why do we need recommender system?

Benefits of RS (Why Companies Need RS?)

- Increasing sales volume of commodities
- Increasing consumption of more item types
 - Beneficial for long-tail items

Increasing user satisfaction

Long tail plot. (Sample of Movielens 20m ratings data)

- Increasing user loyalty
 - User historical behaviors are stored
- Better learning user preference

Real Applications

Entertainment

Music, movie

Content

News feeds, news portal

E-commerce

Products

Service

Tourism, knowledge sharing

Homepage RS: Entertainment

Homepage RS: Content

- 工信部提醒:短信可以为您提供"行程证明"
- 美媒妄称"中国是亚洲病夫"接到中方交涉后仍不道歉
- 日本疫情蔓延中国是否提供支持或援助?外交部回应
- 一个美国人发问:如果疫情发生在休斯敦 该怎么办
- 为什么要解剖新冠肺炎逝世患者遗体?
- 细约载客司机扣心感染护拉中国乘客 市长怒了
- 新发明隔离帽来了: 计医护的口罩勒痕消失
- 俄媒:科学家发现病毒致命弱点有望促成疫苗研发

News Feeds

News Portal

Homepage RS: E-commerce

Homepage RS: Service

Relevance Recommendation

0

△ 我来说一说...

看了又看

99元免基础运费(20kg内)

8:00前下单,预计02月21日(周五)送达,受全国道路 等待。

How to evaluate recommender system?

Evaluation Method

Offline experiment

- Use historical behavior data for testing
- Segmenting data into training and testing.

Online experiment

Use instant interactions with users for testing

User study

Hiring users for testing

Evaluation Metric

- Prediction accuracy
 - E.g., Root Mean Squared Error (RMSE), NDCG
- Coverage
 - Percent of items in the training data the model is able to recommend on a test set
- Novelty
- Diversity
- •

Where to find references for advanced RS?

DBLP and Google

- Recommender System
 - ACM Recommender Systems conference (RecSys)
- Intelligent Information Processing
 - ACM SIGKDD Int. Conf. on Knowledge Discovery in Databases and Data Mining (KDD)
 - ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR)
 - The Web Conference (WWW)
 - Int. Conf. on Web Search and Data Mining (WSDM)

- Other related conferences
 - ML conferences: ICML, NIPS
 - AI conferences: AAAI, IJCAI
- Journals
 - IEEE Trans. On Knowledge and Data Eng. (TKDE)
 - ACM Transactions on Information Systems (TOIS)
 - ACM Trans. on KDD
 - Data Mining and Knowledge Discovery (DAMI or DMKD)

Experience Sharing of Competition

- Kaggle
 - https://www.kaggle.com/competitions
 - Winner Experience:
 - https://www.kaggle.com/c/criteo-display-adchallenge/discussion/10555
- 阿里天池
 - https://tianchi.aliyun.com/competition/gameList/algori thmList
- Biendata
 - https://biendata.com/competition

Thanks! Questions?

Wei Zhang

zhangwei.thu2011@gmail.com

https://weizhangltt.github.io/