INF4170 – Architecture des ordinateurs Examen intra – 20 février 2013 13:30 à 16:30

Répondez dans le cahier de réponses.

Question #1 – 15%

Dessinez un circuit logique qui prend en entrée un signal sur 8 bits et qui donne en sortie le même signal sur 8 bits après lui avoir appliqué l'équivalent d'un ET logique avec la valeur 0x74.

Question #2 – 10%

Un décodeur 5/32 prend en entrée un signal sur 5 bits et produit 32 signaux de 1 bit. Comment ce décodeur est-il utilisé dans le circuit du banc de registres?

Question #3 – 10%

Expliquez l'utilité de chacun des bits de contrôle du processeur à un cycle (circuit en annexe).

Question #4 – 10%

À quoi le bit zero de l'UAL sert-il et comment le processeur à 1 cycle l'utilise-t-il?

Question #5 – 15%

Dessinez un circuit logique qui prend en entrée un entier signé sur 8 bits et qui retourne vrai seulement si le nombre est supérieur ou égal à 3, sinon il retourne faux.

Question #6 – 10%

L'instruction srl (Shift Right Logical) possède un encodage de type R. Expliquez clairement ce qui est placé dans chaque champ de l'encodage de type R lorsqu'on encode cette instruction. Type R: 6 bits pour opcode, 5 bits pour rs, 5 bits pour rt, 5 bits pour rd, 5 bits pour shamt et 6 bits pour funct.

Question #7 – 10%

En respectant la norme IEEE 754 sur l'encodage des points flottants, encodez le nombre réel -144.125. Expliquez clairement votre démarche.

Note: 1 bit de signe, 8 bits d'exposant, 23 bits de mantisse.

Question #8 – 20%

Construisez le circuit simplifié de la fonction suivante. Décrivez votre démarche.

Petit rappel sur quelques règles de simplification :

$$ab + ac = a(b+c)$$

$$\overline{a} \overline{b} = \overline{a+b}$$

$$\overline{a} + \overline{b} = \overline{ab}$$

$$\overline{a} b + a \overline{b} = a \oplus b$$

<u>A</u>	<u>B</u>	<u>C</u>	<u>D</u>	<u>S</u>
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1