Group Research Meeting

Adwait Datar

Technical University of Hamburg

3rd Feb.2020

Problem

- Coupled loop
- Two step-synthesis procedure:
 - 1 Design a local tracking exponentially stabilizing controller (with performance measures specified by the exponents)
 - 2 Use these as inputs to design the network dynamics
- Analysis via
 - rho-IQCs for exponential stability of tracking dynamics
 - Singular perturbation theory

Time-scale separation¹

$$\begin{split} \dot{x} &= -(L(\mathcal{G}) \otimes I) \left(I \otimes M \right) z \ = -(L(\mathcal{G}) \otimes M) z \\ \varepsilon \dot{z} &= g(x,z) \end{split}$$

- ► If the time-scales are separated enough, we can study(and use the vast literature on)
 - simplified network dynamics
 - robust/LPV controller synthesis for uncertain/non-linear agent dynamics

 $^{^{1}[2019] \ \}mathsf{Awad}$,Chapman , Schoof , Narang-Siddarth, and Mesbahi

Updates

- ▶ Vidyasagar: Review singular perturbation for Linear systems
- Khalil:
 - Understand stability analysis
 - Exponential stability relaxes the conditions on Lyapunov functions
- Ongoing work:
 - Arrive at LMIs to search for Lyapunov functions
 - Check the conservatism for simple examples

Problem 2: Stochastic version of the IQC result

Theorem 7.16 Suppose that $M: \mathcal{L}^k_{2e} \to \mathcal{L}^k_{2e}$ is causal and bounded, $\Delta: \mathcal{L}^k_{2e} \to \mathcal{L}^k_{2e}$ is causal, Σ is a bounded quadratic form, $\mathscr{D} \subset \mathcal{L}^k_{2e}$, and that

there exist ε > 0 and m₀ such that

$$\Sigma\begin{pmatrix} w_T \\ M(w)_T \end{pmatrix} \le -\varepsilon \|w_T\|^2 + m_0 \quad \text{for all } T > 0, w \in \mathcal{L}_2^k;$$
 (7.3.2)

there exists δ₀ with

$$\Sigma\left(\begin{array}{c}\Delta(z)T\\z_T\end{array}\right) \ge -\delta_0 \ \ \text{for all} \ \ T > 0, \ z \in M(\mathcal{L}_2^k) + \mathcal{D}. \tag{7.3.3}$$

Then there exist $\gamma > 0$ and γ_0 such for any $d \in \mathcal{D}$ with response $z \in \mathcal{L}^d_{2\varepsilon}$ satisfying (7.3.1): $\|z_T\|^2 \le \gamma^2 \|d_T\|^2 + \gamma \gamma_0 \text{ for all } T > 0.$ (7.3.4) If M is linear one can choose $\gamma_0 = m_0 + \delta_0$.

 $ightharpoonup \Delta$ is characterized by (7.3.3). Can we relax this to a stochastic version?

Updates:

Understand the proofs and subtleties involved in hard and soft IQCs

Thank you