- 1. Considere una observación con ruido $\overline{y}_i = \overline{x} + \overline{v}_i$, donde \overline{x} y \overline{v}_i son variables aleatorias independientes. \overline{v}_i es un ruido Gaussiano blanco con media 0 y varianza σ_v^2 , donde \overline{x} toma valores de ± 1 con igual probabilidad, es decir, el 50% para +1 ó -1 para todas las mediciones de \overline{y}_i . Con \overline{v}_i siendo ruido blanco, se asume que $\mathbb{E}[v_i v_j] = 0$ para todo $i \neq j$
 - a. Estimación de \overline{x} dadas N observaciones:

Solution.

Se tiene que:

$$\mathbb{E}[\overline{x}|\overline{y} = y_0, ..., y_N] = \int_{-\infty}^{\infty} x f_{x|y_0, ..., y_N}(x|y_0, ..., y_N)$$
 (1)

Con:

$$f_{\overline{v}}(v) = \frac{1}{\sqrt{\sigma_x^2}} \frac{1}{\sqrt{2\pi}} e^{\frac{-v^2}{2}}$$
 (2)

Ahora, el valor de $f_v(y_i - x)$ debe de expresarse como un producto de la forma

$$f_v = \prod_{i=0}^{n} f_{\overline{v}}(y_i \pm 1)$$
 (3)

esto x
q para cada y_i , la funcion f_v toma un valor en específico, el cual es la multiplicación de los valores anteriores.

Así, se tiene la solución descrita en las siguientes páginas:

Ahora, sabemos por propiedad de Bayes:
$$\int_{\overline{X}} |\overline{Y}(x, Y)| = \int_{\overline{X}} |\overline{Y}(x, Y)| = \int_{\overline{Y}} |\overline{Y}(x, Y)| dx$$

Entanes se tiene que:

$$f_{\overline{x}|y_0,\dots,y_n} = \frac{f(x,y_0,\dots,y_n)(*)}{f(y_0,\dots,y_n)(**)}$$

*
$$f(x|y_0,...,y_n) = f(x) \cdot f(y_0,...,y_n)x)$$
 por votos de clase
= $f(x) \cdot \prod_{i \in I} f_v(y_i - x)$

Ahora $f(x) = \frac{1}{2} S(x-1) + \frac{1}{2} S(x+1)$, también por victas de clase

entonces:
$$\int (x|y_0, \dots, y_n) = \frac{1}{2} \left[\delta(x-1) \prod_{i=0}^n f_v(y_i-1) + \delta(x+1) \prod_{i=0}^n f_v(y_i+1) \right]$$

**) Por notos de clase:
$$f_{\overline{y}}(y) = \frac{1}{2} f_{\overline{y}}(y+1) + \frac{1}{2} f_{\overline{y}}(y-1)$$
, entones
$$f(y_0, y_0, y_0) = \frac{1}{2} \left[\prod_{i=0}^{n_z} f_{\overline{y}}(y_i+1) + \prod_{i=0}^{n_z} f_{\overline{y}}(y_i-1) \right]$$

Ahora sustituyendo en (i)

$$f_{x|y_{0},...y_{n}} = \frac{1}{2} \left[S(x-1) \prod_{i=0}^{n} f_{v}(y_{i}-1) + S(x+1) \prod_{i=0}^{n} f_{v}(y_{i}+1) \right]$$

$$\frac{1}{2} \left[\prod_{i=0}^{n} f_{v}(y_{i}+1) + \prod_{i=0}^{n} f_{v}(y_{i}-1) \right]$$

$$\int_{|x|} |y_{0}, y_{0}| = \int_{|x|} |x_{0}| |y_{0}| + \int_{|x|} |y_{0}| + \int_{|x|} |y_{0}| + \int_{|x|} |y_{0}| |y_{0}| + \int_{|x|} |y_{0}| +$$

Simplificando los cuadráticos queda:

$$E[X|_{Y_0,...,Y_N}] = \frac{1}{1+\prod_{i=0}^{N}e^{\frac{2Y_i}{V_0}}} + \frac{1}{1+\prod_{i=0}^{N}e^{\frac{2Y_i}{V_0}}} = \frac{1}{1+\prod$$

b) bet incise a) se tiene que:
$$f_{\overline{x}|_{Y_0, \dots, Y_n}} = \frac{S(x-1) \prod_{i=0}^n f_v(y_i+1)}{\prod_{i=0}^n f_v(y_i+1) + \prod_{i=0}^n f_v(y_i+1)} + \frac{J(x+1) \prod_{i=0}^n f_v(y_i+1)}{\prod_{i=0}^n f_v(y_i+1) + \prod_{i=0}^n f_v(y_i-1)}$$

pero el S(x±1) venía de tener una probabilidad = 50%. Si abaro la probabilidad es P para 1 y 1-p para -1, entones

$$E\left[\frac{1}{x}|y_{0},...,y_{n}\right] = \frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{2}}}e^{-\frac{(y_{i+1})^{2}}{2\sigma_{v}^{2}}}} - \frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{2}}}e^{-\frac{(y_{i-1})^{2}}{2\sigma_{v}^{2}}} \cdot (1-\rho)}$$

$$\frac{1}{1+\frac{1}{1+\frac{1}{2}}}e^{-\frac{(y_{i-1})^{2}}{2\sigma_{v}^{2}}} \cdot \rho$$

$$\frac{1}{1+\frac{1}{1+\frac{1}{2}}}e^{-\frac{(y_{i-1})^{2}}{2\sigma_{v}^{2}}} \cdot \rho$$

$$\frac{1}{1+\frac{1}{1+\frac{1}{2}}}e^{-\frac{(y_{i-1})^{2}}{2\sigma_{v}^{2}}} \cdot \rho$$

Ahora dado que $e^{\ln(A)} = A$ entonces $p = e^{\ln(B)}$ y (1-p) = e entonces sustituyendo en (***):

$$\begin{split}
\tilde{\mathbb{E}}\left[\tilde{X}|Y_{0},Y_{0}\right] &= \tilde{\mathbb{E}}\left[\frac{Y_{i}}{GV^{2}} \cdot e^{\ln\left(\frac{P}{i-p}\right)} - \tilde{\mathbb{E}}\left[\frac{-Y_{i}}{GV^{2}} \cdot e^{-\ln\left(\frac{P}{i-p}\right)}\right] \\
&= \tilde{\mathbb{E}}\left[\tilde{X}|Y_{0},Y_{0}\right] &= \tilde{\mathbb{E}}\left[\frac{Y_{i}}{GV^{2}} \cdot e^{-\ln\left(\frac{P}{i-p}\right)} + \tilde{\mathbb{E}}\left[\frac{-Y_{i}}{GV^{2}} \cdot e^{-\ln\left(\frac{P}{i-p}\right)}\right] \\
&= \tilde{\mathbb{E}}\left[\tilde{X}|Y_{0},Y_{0}\right] &= \tilde{\mathbb{E}}\left[\frac{Y_{i}}{GV^{2}} \cdot e^{-\ln\left(\frac{P}{i-p}\right)} + \tilde{\mathbb{E}}\left[\frac{-Y_{i}}{GV^{2}} \cdot e^{-\ln\left(\frac{P}{i-p}\right)}\right] \\
&= \tilde{\mathbb{E}}\left[\tilde{X}|Y_{0},Y_{0}\right] &= \tilde{\mathbb{E}}\left[\frac{Y_{i}}{GV^{2}} \cdot e^{-\ln\left(\frac{P}{i-p}\right)} + \tilde{\mathbb{E}}\left[\frac{-Y_{i}}{GV^{2}} \cdot e^{-\ln\left(\frac{P}{i-p}\right)}\right] \\
&= \tilde{\mathbb{E}}\left[\tilde{X}|Y_{0},Y_{0}\right] &= \tilde{\mathbb{E}}\left[\frac{Y_{i}}{GV^{2}} \cdot e^{-\ln\left(\frac{P}{i-p}\right)} + \tilde{\mathbb{E}}\left[\frac{-Y_{i}}{GV^{2}} \cdot e^{-\ln\left(\frac{P}{i-p}\right)}\right] \\
&= \tilde{\mathbb{E}}\left[\tilde{X}|Y_{0},Y_{0}\right] &= \tilde{\mathbb{E}}\left[\frac{Y_{i}}{GV^{2}} \cdot e^{-\ln\left(\frac{P}{i-p}\right)} + \tilde{\mathbb{E}}\left[\frac{Y_{i}}{GV^{2}} \cdot e^{-\ln\left(\frac{P}{i-p}\right)}\right] \\
&= \tilde{\mathbb{E}}\left[\tilde{X}|Y_{0},Y_{0}\right] &= \tilde{\mathbb{E}}\left[\frac{Y_{i}}{GV^{2}} \cdot e^{-\ln\left(\frac{P}{i-p}\right)} + \tilde{\mathbb{E}}\left[\frac{Y_{i}}{GV^{2}} \cdot e^{-\ln\left(\frac{P}{$$

Ahora, sumo los exponentes de e:

$$E[x|y_{l,r,y,y_{n}}] = \prod_{\substack{n \in U \\ i \neq 0}} \left[e^{\left(\frac{x_{i}}{\sigma_{V}^{2}} + \ln\left(\frac{P}{I-P}\right)\right)} - e^{\frac{x_{i}}{\sigma_{V}^{2}} + \ln\left(\frac{P}{I-P}\right)} \right] \\
= \left[e^{\left(\frac{x_{i}}{\sigma_{V}^{2}} + \ln\left(\frac{P}{I-P}\right)\right)} - e^{\frac{x_{i}}{\sigma_{V}^{2}} + \ln\left(\frac{P}{I-P}\right)} \right] \\
+ e^{\left(\frac{X_{i}}{\sigma_{V}^{2}} + \ln\left(\frac{P}{I-P}\right)\right)}$$

Así entonies:
$$\frac{1}{x} = \tanh \left[\frac{1}{2} \ln \left(\frac{P}{1-P} \right) + \sum_{i=0}^{n} \frac{Y_i}{\sigma_{v^2}} \right]$$

Ahour si el ruido está covelacionado y $\overline{V} = col\left\{V_{0}, V_{1}, ..., V_{N}\right\}$ $\overline{V} = E[\overline{V}\overline{V}^{*}]$, entones el vuido Gaussiano se vuelve en la eccación (3) de la signiente forma: $f_{V} = f_{\overline{V}}(Y_{1} \pm 1)$ Unte que no hay producto (\overline{I}_{1}^{*}) con und distribución: $\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} e^{-\frac{1}{2}} K_{V}^{-1}h$ (on $h = col\left\{I_{1}, ..., I_{1}^{*}\right\}$ $V^{*} = col\left\{Y_{1}, Y_{1}, ..., Y_{N}^{*}\right\}$ Usando el resultado parcial del inciso b), enton(v_{1} : $\hat{X} = tanh\left[\frac{1}{Z}ln\left(\frac{P}{1-P}\right) + \sum_{i=0}^{N} \frac{Y_{i}}{\sqrt{V_{i}}}\right]$ esta parte va a cambiar a la parle Nel exponente de v_{1}^{*} . k_{1}^{*} . k_{2}^{*} . k_{3}^{*} . k_{4}^{*} . k_{5}^{*} . $k_{5}^{$