LED ленти

Кристиян Стоименов

1 ноември 2023 г.

ТУЕС, **ПВМКС**

Устройство

- Съставен от отделни пиксели;
- Всеки от тях използва три отделни LED червено, зелено и синьо;
- Наредени в редичка всяко получава данни от D_{in} и препраща към D_{out} .

NO.	Symbol	PIN	Function description							
1	DO	DATA OUT	Control data signal output							
2	GND	GROUND	Ground, data & power grounding							
3	DI	DATA IN	Control data signal input							
4	VDD	POWER SUPPLY	Power supply							

G7	G6	G5	G4	G3	G2	G1	G0	R7	R6	R5	R4	R3	R2	R1	R0	В7	В6	В5	B4	В3	B2	В1	В0

- При програмиране изпращаме последователно данните, отразяващи стойностите за R, G & B на всеки един пиксел;
- Всеки от тях при получаване *отделя първите 24b* от данните за себе си и препраща останалите към D_{out} .
- Отделените 24b спазват формата на горната картинка.

Програмиране

- Използваме библиотеката https://github.com/adafruit/Adafruit_NeoPixel;
- Не се грижим самостоятелно за времената, а се доверяваме някой друг да го върши вместо нас.

API

- Типът, който имплементира функционалносите, необходими ни e Adafruit_NeoPixel;
- На конструктора трябва да подадем брой пиксели и изводът на Arduino, за който е закачена лентата;
- Въпреки това преди да използваме трябва изрично да се извика begin().

API

- Основно използваме setPixelColor() и show();
- Забележка 1: За да видим промяна върху лентата, трябва непременно да извикаме show() след setPixelColor();
- Забележка 2: show() е блокираща функция.

Datasheet

https://tinyurl.com/pvmks-led-strip

API

https://tinyurl.com/pvmks-led-strip-api

Пример

Да се свърже програмируема WS2812B LED лента и посредством библиотеката Adafruit_NeoPixel да се реализира програма, която засичайки вход от два отделни бутона мести настоящия пиксел наляво и надясно. Нека този пиксел бъде в син цвят, докато останалите са в червен. Да се добрави ограничение по границите на лентата, така че "пикселът, който местим да не излезе навън".

СИМ

симулация

хранилище

Литература

- "WS2812B Datasheet". URL: https://gitlab.com/tuesembedded/vmks/-/blob/master/Datasheets/WS2812B.pdf (дата на посещ. 28.09.2023)
- V. Garistov. "Examples using the WS2812B LED strip".
 URL: https://gitlab.com/tues-embedded/vmks/ /tree/master/Examples/LED_strip (дата на посещ.
 28.09.2023)
- "Arduino library for controlling single-wire-based LED pixels and strips.". URL:

https://github.com/adafruit/Adafruit_NeoPixel (дата на посещ. 28.09.2023)

• "What's Behind the Light? – How WS2812B LED Strips Work". 2021. URL:

https://youtu.be/rHoFqKGOPRI?si=QT92s-Z7ipxHhqZ-(дата на посещ. 28.09.2023)

 "What is Vcc, Vss, Vdd, Vee in Electronics?". url: https://woopcb.com/blog/what-is-vcc-vss-vdd-vee-inelectronics (дата на посещ. 28.09.2023)