Modelos Generativos 2

Material auxiliar

Máster en Inteligencia Artificial aplicada a Mercados Financieros

Jorge del Val

Índice

- 1. Recap
- 2. Variational Autoencoders
- 3. Generative Adversarial Networks
- 4. Bonus: Autoregressive Models

Recap

Recordando...

Para nosotros, cada dato x_i es una *realización* de una variable aleatoria subyacente \mathbf{x} , con una distribución de probabilidad p(x) desconocida

$$\mathbf{x} \sim p(x)$$

- El *aprendizaje no supervisado* es el campo que intenta inferir propiedades de **x** sólo con las muestras (datos).
- Los *modelos generativos* son un subconjunto del aprendizaje no supervisado que pretende *aproximar* x como una combinación de variables aleatorias "simples" que se puedan muestrear:

$$\mathbf{x} \approx G_{\theta}(\mathbf{z_1}, \mathbf{z_2}, ..., \mathbf{z_k}) \triangleq \hat{\mathbf{x}}$$

Entrenamiento

Queremos aproximar \mathbf{x} como $\hat{\mathbf{x}} = G_{\theta}(\mathbf{z})$. ¿Cómo encontramos los parámetros θ óptimos?

Maximiza la verosimilitud (likelihood) de tu modelo!!

$$\max_{\theta} \mathcal{L}(\theta | x_{train}) = \max_{\theta} \prod_{i=1}^{N} p_{\theta}(x_i)$$

$$\max_{\theta} \log \mathcal{L}(\theta | x_{train}) = \max_{\theta} \sum_{i=1}^{N} \log p_{\theta}(x_i)$$

Image credit: Colin Raffel

Necesitamos $p_{\theta}(x)$ explícitamente!

Probabilidad de que tu modelo generara x_i

Optimización

Optimizamos una función de coste (error)!

Stochastic Gradient Descent

$$\min_{\theta} L(\theta; \text{data})$$


```
z = x^2 + 2y^2
```

```
model = MyNetwork()
theta = model.parameters()
optimizer = torch.optim.Adam(theta, lr=0.001)

for x, y in dataloader:
    y_pred = model(x)
    loss = myloss(y, y_pred)
    loss.backwards()
    optimizer.step()
```

```
model = MyNetwork()
theta = model.trainable_variables
optimizer = tf.train.AdamOptimizer(lr = 0.001)

for x, y in dataset:
   with tf.GradientTape() as g
       y_pred = model(x)
       loss = myloss(y, y_pred)
   grads = g.gradient(loss, theta)
   optimizer.apply_gradients(zip(grads, model.trainable_variables))
```

O PyTorch

Optimización

Optimizamos una función de coste (error)!

Stochastic Gradient Descent


```
z = x^{2} + 2y^{2}
z = x^{
```

```
model = MyNetwork()
model = MyNetwork()
                                                 theta = model.trainable variables
theta = model.parameters()
                                                           - +f +nain AdamOntimizan(ln - 0.001)
optimizer = torch.optim.Adam(
                             Easy to gradient descent any function with
for x, y in dataloader:
                             current frameworks!! ©
   y_pred = model(x)
   loss = myloss(y, y_pred)
   loss.backwards()
                                                          loss = myloss(y, y_pred)
   optimizer.step()
                                                      grads = g.gradient(loss, theta)
                                                     optimizer.apply gradients(zip(grads, model.trainable variables))
                  O PyTorch
                                                                             TensorFlow
```


Dimensiones latentes de los datos

Principal Component Analysis

original data space component space **PCA** PC 1 PC 2 $^{\circ}$ PC₁ Gene 2 Gene 1

Principal Component Analysis

Autoencoders

... pero no podemos usar la variable z para muestrear; ninguna relación con la distribución de probabilidad 🗵

Let's go mathy!: Divergencia de Kullback-Leibler (KL)

Cómo medimos la "distancia" entre dos distribuciones?

$$KL(p||q) = \mathbb{E}_{x \sim p(x)} \left[\log \frac{p(x)}{q(x)} \right] = \int_{x} p(x) \log \frac{p(x)}{q(x)} dx$$

Variational Autoencoders

Lo que queremos!

Deep Latent Variable Models

Genial! Optimicemos la likelihood!

$$p_{\theta}(x) = \int p_{\theta}(x|z) \, p(z) dz$$

Diferentes modelos – diferentes métodos

- 1.Tenemos $p_{\theta}(\hat{x})$ explícitamente: maximizamos likelihood.
- 2. $p_{\theta}(\hat{x})$ es intratable: lo podemos aproximar
 - Markov Chain Monte Carlo (MCMC) methods
 - Variational methods (e.g. Variational Autoencoders)
- 3.No necesitamos $p_{\theta}(\hat{x})$; está implícito!
 - Adversarial methods (e.g. GANs)

Taxonomy of Generative Models

(Goodfellow 2016)

Variational Autoencoder

$$p_{\theta}(x) = \int p_{\theta}(x|z) \, p(z) dz$$

Variational Autoencoder

Variational Autoencoder

$$\log p_{\theta}(x) \ge \mathbb{E}_{z \sim q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - \mathrm{KL}[q_{\phi}(z|x) \parallel p(z)]$$

Maximize this instead!

¿Por qué? *Nerd warning*

$$\log p_{\theta}(x) =$$

$$\log \int_{Z} p_{\theta}(x|z) p(z) dz = \log \int_{Z} p_{\theta}(x|z) p(z) \frac{q(z|x)}{q(z|x)} dz = \log \mathbb{E}_{z \sim q} \left[\frac{p_{\theta}(x|Z) p(z)}{q(z|x)} \right] \leq 1$$

$$\mathbb{E}_{z \sim q} \left[\log \frac{p_{\theta}(x|z)p(z)}{q(z|x)} \right] = \mathbb{E}_{z \sim q} \left[\log p_{\theta}(x|z) - \log \frac{p(z)}{q(z|x)} \right] = \mathbb{E}_{z \sim q} \left[\log p_{\theta}(x|z) \right] + \mathbb{E}_{z \sim q} \left[\log p_{\theta}(x|z) - \log \frac{p(z)}{q(z|x)} \right] = \mathbb{E}_{z \sim q} \left[\log p_{\theta}(x|z) - \log \frac{p(z)}{q(z|x)} \right] = \mathbb{E}_{z \sim q} \left[\log p_{\theta}(x|z) - \log \frac{p(z)}{q(z|x)} \right] = \mathbb{E}_{z \sim q} \left[\log p_{\theta}(x|z) - \log \frac{p(z)}{q(z|x)} \right] = \mathbb{E}_{z \sim q} \left[\log p_{\theta}(x|z) - \log \frac{p(z)}{q(z|x)} \right] = \mathbb{E}_{z \sim q} \left[\log p_{\theta}(x|z) - \log \frac{p(z)}{q(z|x)} \right] = \mathbb{E}_{z \sim q} \left[\log p_{\theta}(x|z) - \log \frac{p(z)}{q(z|x)} \right] = \mathbb{E}_{z \sim q} \left[\log p_{\theta}(x|z) - \log \frac{p(z)}{q(z|x)} \right] = \mathbb{E}_{z \sim q} \left[\log p_{\theta}(x|z) - \log \frac{p(z)}{q(z|x)} \right] = \mathbb{E}_{z \sim q} \left[\log p_{\theta}(x|z) - \log \frac{p(z)}{q(z|x)} \right] = \mathbb{E}_{z \sim q} \left[\log p_{\theta}(x|z) - \log \frac{p(z)}{q(z|x)} \right] = \mathbb{E}_{z \sim q} \left[\log p_{\theta}(x|z) - \log \frac{p(z)}{q(z|x)} \right] = \mathbb{E}_{z \sim q} \left[\log p_{\theta}(x|z) - \log \frac{p(z)}{q(z|x)} \right] = \mathbb{E}_{z \sim q} \left[\log p_{\theta}(x|z) - \log \frac{p(z)}{q(z|x)} \right] = \mathbb{E}_{z \sim q} \left[\log p_{\theta}(x|z) - \log \frac{p(z)}{q(z|x)} \right] = \mathbb{E}_{z \sim q} \left[\log p_{\theta}(x|z) - \log \frac{p(z)}{q(z|x)} \right] = \mathbb{E}_{z \sim q} \left[\log p_{\theta}(x|z) - \log \frac{p(z)}{q(z|x)} \right] = \mathbb{E}_{z \sim q} \left[\log p_{\theta}(x|z) - \log \frac{p(z)}{q(z|x)} \right] = \mathbb{E}_{z \sim q} \left[\log p_{\theta}(x|z) - \log \frac{p(z)}{q(z|x)} \right] = \mathbb{E}_{z \sim q} \left[\log p_{\theta}(x|z) - \log \frac{p(z)}{q(z|x)} \right] = \mathbb{E}_{z \sim q} \left[\log p_{\theta}(x|z) - \log \frac{p(z)}{q(z|x)} \right] = \mathbb{E}_{z \sim q} \left[\log p_{\theta}(x|z) - \log \frac{p(z)}{q(z|x)} \right] = \mathbb{E}_{z \sim q} \left[\log p_{\theta}(x|z) - \log \frac{p(z)}{q(z|x)} \right] = \mathbb{E}_{z \sim q} \left[\log p_{\theta}(x|z) - \log \frac{p(z)}{q(z|x)} \right] = \mathbb{E}_{z \sim q} \left[\log p_{\theta}(x|z) - \log \frac{p(z)}{q(z|x)} \right] = \mathbb{E}_{z \sim q} \left[\log p_{\theta}(x|z) - \log \frac{p(z)}{q(z|x)} \right] = \mathbb{E}_{z \sim q} \left[\log p_{\theta}(x|z) - \log \frac{p(z)}{q(z|x)} \right] = \mathbb{E}_{z \sim q} \left[\log p_{\theta}(x|z) - \log \frac{p(z)}{q(z|x)} \right] = \mathbb{E}_{z \sim q} \left[\log p_{\theta}(x|z) - \log \frac{p(z)}{q(z|x)} \right] = \mathbb{E}_{z \sim q} \left[\log p_{\theta}(x|z) - \log \frac{p(z)}{q(z|x)} \right] = \mathbb{E}_{z \sim q} \left[\log p_{\theta}(x|z) - \log \frac{p(z)}{q(z|x)} \right]$$

$$\mathbb{E}_{z \sim q} \left[\log \frac{q(z|x)}{p(z)} \right] = \mathbb{E}_{z \sim q} \left[\log p_{\theta}(x|z) \right] - \text{KL}(q(z|x)|| p(z))$$

Variational Autoencoders

Pros:

- Inferencia eficiente gratis!
 - O Buena herramienta para modelar la estructura interna de los datos
- Entrenamiento estable
- Buen fundamento teórico

Cons:

No genera muy buenas muestras

Generative Adversarial Networks

Generative Adversarial Networks

Similitud entre muestras

Una solución: entrenar un clasificador $D_{\phi}(x)$ para discriminar!

- Si el clasificador no puede decir si una muestra es real o no, ambas distribuciones están cerca.
- Entrenamos con la *cross-entropy loss* estandar:

$$\max_{\phi} L_d(\phi) = \max_{\phi} \left(\mathbb{E}_{x_r \sim p_{real}} \log \left(D_{\phi}(x_r) \right) + \mathbb{E}_{x_f \sim p_{fake}} \log \left(1 - D_{\phi}(x_f) \right) \right)$$

Se puede probar que el coste de un clasificador *óptimo* $L_d(\phi^*)$ está relacionado con la *cercanía* entre ambas distribuciones (Jensen-Shannon divergence).

The GAN game

Queremos minimizar la "cercanía" entre las muestras generadas y las reales medida por el coste del discriminador:

$$\min_{\theta}$$
 "closeness"

$$= \min_{\theta} \left(\max_{\phi} \left(\mathbb{E}_{x_r \sim p_{real}} \log \left(D_{\phi}(x_r) \right) + \mathbb{E}_{x_f \sim p_{fake}} \log \left(1 - D_{\phi}(x_f) \right) \right) \right)$$

Es formalmente un juego minimax de dos jugadores!

Generative Adversarial Networks

Bonus: autoregressive models

$$p_{\theta}(x) = \prod_{t=1}^{T} p_{\theta}(x_t | x_1, ..., x_{t-1})$$

Divide et impera!