

Problem R-09K $C_8H_{18}O_3$. This problem requires you to analyze the ¹H NMR spectrum of the diethylacetal of ethoxy acetaldehyde. The complete spectrum with integrations is on the next page.

(a) Give the chemical shift(s), multiplicity and couplings (δ 3.23, dt, J = 8, 2 Hz) of each unique proton in the spectrum. You may use first order analysis.

Α	
В	
С	
D	
E	
F	

(b) To show you understand the pattern, put a marker (x) over each peak corresponding to proton E.

Problem R-09K $C_8H_{18}O_3$. This problem requires you to analyze the ¹H NMR spectrum of the diethyl acetal of ethoxy acetaldehyde. The complete spectrum with integrations is on the next page.

- (a) Give the chemical shift(s), multiplicity and couplings (δ 3.23, dt, J = 8, 2 Hz) of each unique proton in the spectrum. You may use first order analysis.
- **2** A δ 1.23, t, J = 7 Hz
- δ 3.71, dq, J = 10, 7 Hz, δ 3.58, dq, J = 10, 7 Hz (B protons are diastereotopic) ABX₃
- 1 C δ 4.63, t, J = 5 Hz
- 1 D $\delta 3.48, d, J = 5 Hz$
- **2** E δ 3.55, q, J = 7 Hz
- **2** F δ 1.20, t, J = 7 Hz
- 2 (b) To show you understand the pattern, put a marker (x) over each peak corresponding to proton E.