Gate MA-2024

1

AI24BTECH11032 Shreyansh Sonkar

53) Which of the following is/are eigenvalue(s) of the Sturm-Liouville problem

$$y^{n} + \lambda y = 0, 0 \le x \le \pi,$$
$$y(0) = y(0)$$
$$y(\pi) = y(\pi)?$$

- a) $\lambda = 1$
- b) $\lambda = 2$
- c) $\lambda = 3$
- d) $\lambda = 4$
- 54) Let $f: \mathbb{R}^2 \to R$ be a function such that

$$f(x, y) = \begin{cases} \left(1 - \cos\frac{x^2}{y^2}\right) \sqrt{x^2 + y^2}, & \text{if } y \neq 0, x \in \mathbb{R} \\ 0, & \text{otherwise} \end{cases}$$

Which of the following is/are correct?

- a) f is continuous at (0,0), but not differentiable at (0,0)
- b) f is differentiable at (0,0)
- c) All the directional derivatives of f at (0,0) exist and they are equal to zero
- d) Both the partial derivatives of f at (0,0) exist and they are equal to zero
- 55) For an integer n, let $f_n(x) = xe^{-nx}$ where $x \in [0, 1]$. Let $S := \{f_n : n \ge 1\}$. Consider the matric space (C([0, 1]), d) where

$$d(f,g) = \sup_{x \in (0,1)} \{ |f(x) - g(x)| \}, f,g \in C([0,1]).$$

Which of the following statement(s) is/are true?

- a) S is an equi-continuous family of continuous functions
- b) S is closed in (C([0,1]),d)
- c) S is bounded in (C([0,1]),d)
- d) S is compact in (C([0,1]), d)
- 56) Let $T: \mathbb{R}^4 \to \mathbb{R}^4$ be an \mathbb{R} -linear transformation such that 1 and 2 are the only eigenvalues of T Suppose the dimensions of Kernel ($T I_4$) and Range($T 2I_4$) are 1 and 2, respectively. Which of the following is/are possible (upper triangular) Jordan canonical form(s) of T?

a)
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

$$\begin{array}{c} \text{b)} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix} \\ \text{c)} \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix} \\ \text{d)} \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix} \end{array}$$

57) Let $L^2([-1,1])$ denote the space of all real-valued Lebesgue square-integrable functions on [-1,1], with the usual norm $\|\cdot\|$. Let P_I be the subspace of $L^2([-1,1])$ consisting of all the polynomials of degree at most 1. Let $f \in L^2([-1,1])$ be such that $\|f\|^2 = \frac{18}{5}, \int_{-1}^1 f(x) dx = 2$, and $\int_{-1}^1 f(x) dx = 0$. Then

$$\inf_{g \in P_1} ||f - g||^2 = \underline{\hspace{1cm}}$$

(Round off to TWO decimal places)

58) The maximum value of f(x, y, z) = 10x + 6y - 8z subject to the constraints

$$5x - 2y + 6z \le 20$$
$$10x + 4y - 6z \le 30$$
$$x, y, a \ge 3$$

is equal to ______(Round off to TWO decimal places)

- 59) Let $K \subseteq C$ be the field extension of \mathbb{Q} Q obtained by adjoining all the roots of the polynomial equation $(X^2 2)(X^3 3) = 0$ The number of distinct fields F such that $\mathbb{Q} \subseteq F \subseteq K$ is equal to _____ (answer in integer)
- 60) Let H be the subset of S_3 consisting of all $\sigma \in S_3$ such that

Trace
$$(A_1A_2A_3)$$
 = Trace $(A_{\sigma(1)}A_{\sigma(2)}A_{\sigma(3)})$

for all $A_1, A_2, A_3 \in M_2(C)$. The number of elements in H is equal to _____ (answer in integer)

61) Let r: $[0,1] \to \mathbb{R}^2$ be a continuously differentiable path from (0,2) to (3,0) and let F: $\mathbb{R}^2 \to \mathbb{R}^2$ be defined F(x,y) = (1-2y,1-2x). The line integral of F along r

$$\int F.dr$$

is equal to ______(round off to TWO decimal places)

62) Let u = u(x, t) be the solution of the initial value problem

$$\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} = 0, x \in \mathbb{R}, t > 0,$$

$$u(x, 0) = 0, x \in \mathbb{R},$$

$$\frac{\partial u}{\partial t}(x, 0) = \begin{cases} x^4 (1 - x)^4, & \text{If } 0 < x < 1 \\ 0, & \text{otherwise} \end{cases}$$

If $\alpha = \inf \{t > 0 : u(2,t) > 0\}$, then α is equal to (round off to TWO decimal places)

63) The boundary value problem

$$x^{2}y'' = 2xy' + 2y = 0, 1 \le x \le 2,$$
(63.1)

$$y(1) - y(1) = 1,$$
 (63.2)

$$y(2) = ky'(2) = 4,$$
 (63.3)

(63.4)

has infinitely many distinct solutions when k is equal to _____ (round off to TWO decimal places)

- 64) The global maximum of $f(x,y) = (x^2 + y^2 e^{2-x-y})$ on $\{(x,y) \in \mathbb{R}^2 : x \ge 0, y \ge 0\}$ is equal to ______ (round off to TWO decimal places)
- 65) Let $k \in \mathbb{R}$ and D= $\{(r, \theta) : 0 < r < 2, 0 < \theta < \pi\}$. Let $u(r, \theta)$ be the solution of the following boundary value problem

$$\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0, (r, \theta) \in D,$$
$$u(r, 0) = u(r, \pi) = 0, 0 \le r \le 2,$$
$$u(2, \theta) = k \sin(2\theta), 0 < \theta < \pi$$

If $u\left(1,\frac{\pi}{4}\right) = 2$, then the value of k is equal to _____ (round off to TWO decimal places)