Pràctica virtual

Grup: 73 Cognoms: Torner Viñals

Nom: Miquel

Data: 16/10/2020

Qualificació:

Podeu afegir més fulls si us falta per algun dels exercicis

2.1 Divisor de tensió

Resolució del problema previ (apartat 1.3)

Valors mesurats

valors "aleatoris" de les resistències, $R_1^* = R_1 + n_1 - 5$, $R_2^* = R_2 + n_2 - 5$

DNI : 41543688F $R_1(100\Omega) = 99 \Omega$ $R_2(200\Omega) = 196 \Omega$

Intensitats teòriques i experimentals (els valors teòrics són els que resulten al problema previ, on heu utilitzat els valors nominals)

/ ^{te} = 16,7 mA	I ^{ex} = 16,9 mA
	<i>V</i> AB ^{ex} = 1,67 V
<i>V</i> BC ^{te} = 3,33 V	<i>V</i> BC ^{ex} = 3,32 V

Captura de pantalla del circuit implementat amb una eina de simulació

2.2 Resistència equivalent: Circuit 1

Resolució del problema previ (apartat 1.4)

Valors mesurats

Resistència equivalent

valors "aleatoris" de les resistències

DNI: 41543688F

$R_1(100Ω) = 99 Ω$	R4(100Ω)=99Ω
$R_2(100Ω) = 96 Ω$	R5(100Ω)= 98 Ω
$R_3(100\Omega) = 100 \Omega$	

Circuit 1

<i>V</i> C ^{te} = 0,5 V	<i>V</i> C ^{ex} = 0,5 V
V_D^{te} = 0,5 V	$V_D^{\text{ex}} = 0.5V$
/1 ^{te} = 5 mA	/1 ^{ex} = 5,02 mA
/2 ^{te} = 5 mA	/2 ^{ex} = 5,12 mA
$I_{\varepsilon}^{\text{te}}$ = 10 mA	$l_{\varepsilon}^{\text{ex}}$ = 10,15 mA
$R_{\varepsilon q}^{\text{te}} = 100 \Omega$	$R_{\mathcal{E}q}^{\text{ex}} = (199*195)/(199+195) = 98,48 \Omega$

Captura de pantalla del circuit implementat amb una eina de simulació

2.3 Resistència equivalent: Circuit 2

Resolució del problema previ (apartat 1.5)

La R_{equivalent} la treurem de l'exercici 1.4 donat que per calcular-la no huarem de tenir en compte R4, i per tant serà la mateixa.

Valors mesurats

Circuit 2

<i>V</i> C ^{te} = 0,5 V	$Vc^{\text{ex}} = 0.5 \text{ V}$
V_d^{te} = 0,5 V	$V_{\rm d}^{\rm ex}$ = 0,5 V
/1 ^{te} = 5 mA	/ ₁ ex = 5,01 mA
/2 ^{te} = 5 mA	/2 ^{ex} = 5,14 mA
$l\varepsilon^{\text{te}}$ = 10 mA	$l_{\varepsilon}^{\text{ex}}$ = 10 ,15 mA
$R_{\mathcal{E}q}^{\text{te}} = 100 \Omega$	$R_{\mathcal{E}q}^{\text{ex}} = 98,48 \Omega$

Donat que la intensitat que passa per R_4 és ≈ 0 , calcularem la resistència equivalent experimental com en el circuit 1.

Captura de pantalla del circuit implementat amb una eina de simulació

