Création d'un algorithme détectant les faux billets

CLADIERE Nathan, projet 6, Formation Data Analyst OC

Sommaire

- Contexte et objectifs
- Statistiques descriptives
- Analyse exploratoire (ACP)
- Classification non-supervisé : clustering avec K-means
- Classification supervisée: modélisation par régression logistique

Contexte et objectifs

- Data de billets vrai et faux
- Trouver un algorithme détectant les futurs faux billets:
 - Statistiques descriptives des billets
 - Analyse exploratoire de données (ACP)
 - Réalisation d'une classification non-supervisé (K-means)
 - Réalisation d'une classification supervisé (regression logistique)

Contexte et objectifs : données

- Caractéristiques des billets
 - Longueur du billet (length)
 - Hauteur du billet à gauche (height_left)
 - Hauteur du billet à droite (height_right)
 - Marge bord supérieur/image du billet (margin_up)
 - Marge bord inférieur/image du billet (margin_low)
 - Diagonale (diagonal)
 - Billet vrai ou faux (is_genuine)
- Data prep: check données manquantes

M0: Statistiques descriptives des caractéristiques des billets

M0: lois de distribution et mesures de forme

- Normalité : Test Kolmogorov Smironov,
 Pvalue >0,05
- Apparence de l'histogramme:
 - Kurtosis et Skewness varient beaucoup
 - Allure générale de l'histogramme de répartition : courbe Gaussienne

M0: Moyennes et écart-types déjà révélateurs

- Mesure centrée-réduite
- Moyenne différente pour chaque caractéristiques
- Ecart-type moins grand :
 - marge_low
 - length

M0: analyses bivariés illustrant les différences

- Différence confuse
 - Diagonal
 - Heights
 - Marge_up
- Différence semble significative :
 - Margin_low
 - Length

M0: Conclusion

- Différences plus marqués sur ces deux caractéristiques :
 - Margin_low
 - Length
- Caractéristiques semblent illustrer la différences entre les billets

Détermination de l'influence des caractéristiques via une ACP

M1: Analyse en Composantes principales

M1: Détermination du nombre de composantes

Premier plan factoriels: 69 %

• F1 : 47 %

• F2:22 %

 Suffisant pour voir l'influence des différentes caractéristiques

M1: interprétation du cercle des corrélations

	diagonal	height_left	height_right	margin_low	margin_up	length
F1	0.07	0.48	0.49	0.43	0.35	-0.47
F2	0.78	0.34	0.24	-0.32	-0.14	0.31

Positivement : Hauteurs, Margins

Négativement : length

• F2: Diagonal

M1: Qualité et contribution des individus

Contributions: carrés des distance à l'origine

- Inertie du nuage de points provenant des vrais et faux (en moyenne)
 - Vrai billets: 5,3
 - Faux billets: 6,8
- Valable aussi pour les 20 valeurs les plus hautes (entre 20 et 9)
 - Nombre de billets vrai :10
 - Nombre de billets Faux

Qualités: cos²

- Bonne représentation sur l'axe F1 (en moyenne)
 - Vrais billets: 0,45
 - Faux billets: 0,49
- Représentation moins marquée sur F2(en moyenne)
 - Vrais billets: 0,25
 - Faux billets: 0,21

M1: Projections des individus

- Pas de différence sur la diagonale (F2)
- Influence sur F1 bien plus marqué
- Spécialement sur l'axe margin_low / length

M1: conclusion

- Observation de caractéristiques plus influentes :
 - Margin_low
 - Length
- Quelques individus difficiles à caractériser avec des caractéristiques proches
- Est-ce qu'une classification non-supervisée classe bien les billets?

15

M2 : Classification non-supervisé (K-means)

M2: choix du nombre de clusters

 Graphique de distorsion méthode du coude : 5 clusters

Contexte vrai /faux billets : 2 Clusters

M2:différence significative entre clusters

- Méthode
 - Test d'égalité des variance (Fisher)
 - Tests statistiques (Welsh/Student)
- Clusters différents
 - Heights
 - Margins
 - Length
- Clusters sans différence
 - Diagonal
- Diagonal pas importante pour détecter des faux billets

M2: Comparaisons des cluster au vrai/faux sur le premier plan factoriel

Numériquement assez proche

Vrai/Faux : 100/70

• K-means: 93 /77

Fiabilité du clustering

Taux d'erreur : 5,29%

M2: Conclusion

- Clusterisation non supervisée pas assez précise
 - Taux d'erreur trop important pour des billets (>5%)
 - Différence entre cluster notable

Test d'une classification supervisée pour prédire

20

M3: Classification supervisée régression logistique

M3: Méthode

- Utilisation de statsmodels.glm via python
- Procédure itérative descendante (backward)
 - Implémentation de tous les regresseurs
 - Retrait des paramètres non-significatifs
- Création d'un modèle avec les paramètres des différents regresseurs significatif
- Vérification du modèle
 - Matrice de de confusion
 - Sensibilité
 - Spécificité
 - Taux d'erreur
 - Précision
 - F1 score

22

M3: Procédure itérative (initialisation)

- Backward, problème avec 3 variables utilisées ensemble (séparation parfaite):
 - Margin_up
 - Margin_low
 - Length
- Analyses précédentes : margin_low et length plus importantes

23

M3: Procédure itérative (backward)

- Initialisation
- Suppression du regresseur le moins significatif height_right : pValue = 0,785
- Fin de la procédure
- Tous les regresseurs sont significatifs pValue = 0,014

Dep. Variable: is_genuineBol			No. Observations:			149
Model: GLM			Df Residuals:			143
Model Family:	Binomial	Df Model:			5	
Link Function	1:	logit	Scale:		1.0000	
Method:		IRLS	Log-Like:	lihood:		-4.1250
Date:	Tue	, 29 Sep 2020	Deviance	:		8.2499
Time:		18:10:25	Pearson chi2:			8.74
No. Iteration	ns:	12				
Covariance Ty	/pe:	nonrobust				
	coef	std err	z	P> z	[0.025	0.975]
Intercept	-1589.7988	1561.462	-1.018	0.309	-4650.208	1470.610
diagonal	3.5478	7.182	0.494	0.621	-10.529	17.625
height_left	-2.5560	8.917	-0.287	0.774	-20.033	14.921
height_right	1.4045	5.152	0.273	0.785	-8.693	11.502
margin_low	-14.8769	7.800	-1.907	0.056	-30.165	0.411
length	10.3834	5.761	1.802	0.071	-0.908	21.675

Generalized Linear Model Regression Results								
Dep. Variable: is_genuineBol			eBol No. Ob	No. Observations:				
Model: GLM			GLM Df Res	Df Residuals:				
Model Family: Binomial			mial Df Mod	Df Model:				
Link Function: 1			ogit Scale:	Scale:				
Method: IRLS		IRLS Log-Li	Log-Likelihood:					
Date: Tue, 29 Sep 2		2020 De v ian	Deviance:					
Time:		16:4	16:47:39 Pearson chi2:		10.0			
No. Iterations: 11			11					
Covariance Type: nonrobust			bust					
	coef	std err	z	P> z	[0.025	0.975]		
-			-2.456			-188.465		
margin_low	-13.2064 8.8351		-2.464	0.014				
length	3.576	2.471	0.013	1.826	15.844			

M3: Etablissement du modèle et vérification

• Modèle :
$$f(x) = \frac{e^{\beta_1 + \beta_2 marginlow + \beta_3 length}}{1 + e^{\beta_1 + \beta_2 marginlow + \beta_3 length}}$$

Beta 1, 2 et 3 paramètres calculés par la régression logistique

M3: Vérification du modèle

- Le taux de spécificité:
 - VN/(FP+VN) = 98,6 %
- Le taux d'erreur:
 - (FN+FP)/tot pop = 1,18 %
- Le taux de sensibilité:
 - VP/(VP+FN)=99,0 %
- Précision :
 - VP/(VP+FP) = 99,0%
- F₁ score:
 - Moyenne harmonique de sensibilité et précision = 0,99

		Conditions		
		Positives	Négatives	
Prédictions	Positives	VP:99	FP: 1	
	Négatives	FN:1	VN:69	

M3: illustration du FN et du FP

	Margin _low	Lenght	Di	Qualité F1	Qualité F2	Proba
FP	4.28	112.23	2,48	0,32	0,008	0,86
FN	4.63	112.47	2,37	0,22	0,47	0,35

- Billets mal représentés sur F1
- Peu d'influence sur l'inertie du nuage de points
- Différences sur les caractéristiques très faible
- Probabilité pas marquées

M3 Conclusion

Régression logistique efficace

• Précision : 99,0%

• F1 score : 0,99

Modèle prometteur

• A éprouver sur un nouveau jeu de billet

28