20250410 데이터 구조

1절. 리스트(List)

1.1 리스트 만들기 및 접근하기

설명	예시
[]를 이용해서 만들며, 여러 타입의 값	<pre>numbers = [1, 2, 3, 4, 5] mixed = [1,</pre>
을 하나의 변수에 저장/관리 가능	"hello", 3.14, True]
lict∩ 하스를 이용하 귀스트 생선	<pre>(empty = list()) (converted = list("hello"))</pre>
iist() a 구 될 어 6 년 니 — - 6 6	→ [['h', 'e', 'l', 'l', 'o']]
각 요소의 위치를 나타내는 숫자 • 0	<pre>numbers = [10, 20, 30, 40] onumbers[0] →</pre>
부터 시작 • 맨 마지막 인덱스는 -1	$\boxed{10} < br > \boxed{numbers[-1]} \rightarrow \boxed{40}$
[from:ston:sten] 형식으로 부분 데	numbers = [10, 20, 30, 40, 50]
	$\langle br \rangle $ $\underbrace{[20, 30, 40]}$
11212	$<$ br> $(numbers[::2]) \rightarrow ([10, 30, 50])$
이데스아 슬라이신을 이용해서 있기/쓰	numbers = [10, 20, 30] • 읽기:(numbers[1])
	\rightarrow (20) • \triangle 7 : (numbers[1] = 25) \rightarrow ([10, 25,
	30]
리스트는 여러 타입의 데이터를 담을 수	(mixed = [0, True, '2', 3, [4, 5, 6]])
있음	[[[] [4, 5, 0]]
	[]를 이용해서 만들며, 여러 타입의 값을 하나의 변수에 저장/관리 가능 list() 함수를 이용한 리스트 생성 각 요소의 위치를 나타내는 숫자 * 00 부터 시작 부터 시작 * 만 마지막 인덱스는 -1 [from:stop:step] 형식으로 부분 데이터셋 추출 인덱스와 슬라이싱을 이용해서 읽기/쓰기지원 리스트는 여러 타입의 데이터를 담을 수

1.2 리스트 관련 함수와 특징

함수/개념	설명	예시
range(from, to, by)	from부터 to 앞까지 by씩 증가하는 범위의 정수 생성 • from 생략 시: 0부터 시작 • by 생략 시: 1씩 증가	$\begin{array}{c} \text{(list(range(5)))} \rightarrow & [0, 1, 2, 3, 4] \\ \\ < \text{br} > & [1 \text{(st(range(2, 8)))} \rightarrow & [2, 3, 4, 5, 6, 7]] \\ \\ < \text{br} > & [1 \text{(st(range(1, 10, 2)))} \rightarrow & [1, 3, 5, 7, 6]] \\ \\ \boxed{9]} \end{array}$
(len(리스트)	리스트의 요소 개수 반환	$(len([1, 2, 3, 4])) \rightarrow (4)$
enumerate(나열 가능한 자료)	(인덱스, 값) 쌍의 집합으로 반환	for idx, val in enumerate(['a', 'b', 'c']):) print(idx, val)) 결과: a)

1.3 리스트 요소 추가

연산자/메서드	설명	예시
+	두 리스트 연결	$([1, 2] + [3, 4]) \rightarrow ([1, 2, 3, 4])$
*	리스트를 지정한 수만큼 반복	$([1, 2] * 3) \rightarrow ([1, 2, 1, 2, 1, 2])$
(append(값)	맨 뒤에 요소 추가	$ \begin{array}{c} (\text{numbers} = [1, 2, 3]) < \text{br} > (\text{numbers.append}(4)) \\ \rightarrow ([1, 2, 3, 4]) \end{array} $
(extend(리스 트)	맨 뒤에 리스트를 요소별로 추가	$[numbers = [1, 2, 3]] < br > [numbers.extend([4, 5])] \rightarrow [[1, 2, 3, 4, 5]]$
(insert(idx,	idx번째 인덱스 위치에 값 추가	<pre>numbers = [1, 2, 4] numbers.insert(2,</pre>
값))	(기존 데이터는 오른쪽으로 이동)	$\overline{3)} \rightarrow ([1, 2, 3, 4])$

1.4 인덱싱과 요소 갯수

메서드/연산	설명	예시
변수	인덱스를 이용한 특정 위치	<pre>fruits = ['apple', 'banana', 'orange'] fruits[1]</pre>
[index]	요소 접근	→ ('banana')
(index(찾을 데이터)	찾을 데이터가 있는 요소의 인덱스 반환 찾을 데이 터가 없을 경우 오류 발생	<pre>fruits = ['apple', 'banana', 'orange'] (fruits.index('banana')) → 1 (fruits.index('grape')) → (ValueError)</pre>
count(찾을 데이터)	리스트에서 찾을 데이터의 갯수 반환	<pre>numbers = [1, 2, 2, 3, 2, 4] numbers.count(2) →</pre>

1.5 원하는 요소 추출

방법	설명	예시
	리스트에서 원하는 index의 데이터 추출	
리스	• [from:stop	numbers = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
트] 형식으로 사용 • from부터 stop 앞까지	본: numbers[2:7] → [2, 3, 4, 5, 6] • step 지정:
- 슬라	step씩 증가하는 인덱스의 값을 추출 •	numbers[1:8:2])→([1, 3, 5, 7]) • 음수 인덱스:
르니 이싱	from 생략 시 처음, stop 생략 시 끝, step 생	numbers[-3:])→([7, 8, 9]) • 역순:
410	략 시 1 ∙ 음수 인덱스 사용 가능 ∙	$\left(numbers[::-1]\right) \to \left([9, 8, 7, \ldots, 0]\right)$
	인덱스 범위를 벗어나도 에러 발생 안 함	
리스		• 짝수만 추출: ([x for x in range(10) if x % 2
트	리스트에서 원하는 데이터를 추출하는 간결	== 0])→[0, 2, 4, 6, 8] •제곱값생성:
컴프	한 방법 • [표현식 for 변수 in 리스트 if	$[x**2 for x in range(5)] \rightarrow [0, 1, 4, 9, 16]$
리헨	조건식]	• 문자열 처리: ([s.upper() for s in ['a',
션 _∢		<u>'b', 'c']]</u>) → [['A', 'B', 'C'])

1.6 요소 수정하기

방법	설명	예시
인덱스로 수 정	특정 위치의 요소 값 변경	$ \frac{\text{numbers} = [1, 2, 3, 4]}{3, 4]} < br > \frac{\text{numbers}[1] = 20}{3, 4} \rightarrow ([1, 20, 4]) $
슬라이싱 수 정 (step 미포함)	부분 리스트를 통째로 수정 원본과 교체할 리스트 의 길이가 달라도 됨	[numbers = [1, 2, 3, 4, 5]] < br> [numbers = [1, 2, 3, 4, 5]] < br> [1, 20, 30, 5] < br> [1, 20, 300, 400, 5] < br> [1, 200, 300, 400, 5]
슬라이싱 수 정 (step 포함)	특정 간격의 요소들을 교체 원본과 교체할 리스트 의 길이가 같아야 함	$ \begin{array}{c} \text{(numbers = [1, 2, 3, 4, 5, 6]) < br>} & \text{(numbers[::2] = [10, 30, 50])} \\ \hline 30, 50] \rightarrow & \text{(10, 2, 30, 4, 50, 6]} \end{array} $

1.7 요소 삭제

메서드/방법	설명	예시
(pop())	가장 마지막 인덱스 요소를 반환하 고 삭제	$ \frac{\text{numbers} = [1, 2, 3, 4]}{\text{numbers.pop()}} \rightarrow \frac{\text{last} = 4, \text{numbers} = [1, 2, 3]}{3]} $
(pop(idx)	지정한 idx번 요소를 반환하고 삭제	$ \frac{\text{numbers} = [1, 2, 3, 4]}{\text{numbers.pop(1)}} \rightarrow \text{second} = 2, \text{ numbers} = [1, \frac{3}{3}, 4] $
(remove(값)	리스트에서 첫 번째로 등장하는 해 당 값을 삭제 ValueError 발생	numbers = [1, 2, 2, 3, 4] (numbers.remove(2)) → [1, 2, 3, 4] 2만 삭제)
(del 변수 [idx])	idx번째 요소를 삭제	$ \begin{array}{c} (\text{numbers} = [1, 2, 3, 4]) < \text{br} > (\text{del numbers}[1]) \rightarrow \\ ([1, 3, 4]) \end{array} $
(del 변수 [from:to])	슬라이싱 범위의 요소들을 삭제	$ \begin{array}{c} (\text{numbers} = [1, 2, 3, 4, 5]) < \text{br} > (\text{del}) \\ (\text{numbers}[1:3]) \rightarrow ([1, 4, 5]) \end{array} $
clear()	리스트의 모든 요소를 삭제	numbers = [1, 2, 3, 4] (numbers.clear()) → [](빈리스트)

1.8 정렬하기

메서드	설명	예시
sort()	리스트 자체를 정렬된 결 과로 변경 기본 정렬: 오름차순	<pre>numbers = [3, 1, 4, 2] (numbers.sort()) → numbers = [1, 2, 3, 4]</pre>
sort(reverse=True)	내림차순으로 정렬	<pre>numbers = [3, 1, 4, 2]</pre>
<pre>(reverse())</pre>	리스트 자체를 역순으로 변경 (정렬은 하지 않 고 순서만 뒤집음)	<pre>numbers = [3, 1, 4, 2] numbers.reverse() → (numbers = [2, 4, 1, 3])</pre>

1.9 복제하기

복제 방 법	설명	예시
스칼라 데이터 의 복제	단일 값(정수, 문자열 등)은 직접 할당으로 독립적인 복제 가능	i = 10 # 원본 copy_i = i # 복제본 # 현재 두 변수는 같은 값을 가리킴 변경 # 원본 값은 그대로 유지 (i = 10)
얕은 복 사(할당)	리스트를 직접 할당하면 같은 객 체를 참조 하나를 수정하면 다른 하나도 변경됨	original = [1, 2, 3] # 원본>cbr>(shallow = original # 얕은 복사>cbr>(shallow[0] = 99 # 복사본 수정)
깊은 복 사(복제)	(copy()) 메서드를 사용하여 독 립적인 복제본 생성 하나를 수정해도 다른 하나는 영향 없음	original = [1, 2, 3] # 원본)

1.10 다차원 리스트

개념	설명	예시
2차원 리스트	리스트 안에 리스트가 있는 구조	<pre>numbers_2d = [</pre>
접근 방법	이중 인덱스로 접근	$\boxed{numbers_2d[0][2]} \rightarrow \boxed{92}$
크기 확인	행과 열의 개수	$(len(numbers_2d)) \rightarrow (3)$ (행 개수) $(len(numbers_2d[0])) \rightarrow (4) (열 개수)$
<pre>min()/max()</pre>	2차원 리스트에서 적용 시: 0번 인덱스 요소가 가장 작은 리스트 반 환 * max(): 0번 인덱스 요소가 가장 큰 리스트 반환	$min([[3, 5], [1, 9]]) \rightarrow ([1, 9])$ $br>(max([[3, 5], [1, 9]])) \rightarrow ([3, 5])$
문자 리스트 비교	문자 리스트일 경우 아스키코드 값으로 비교	(min(['abc', 'def', 'ABC'])) → ('ABC') (A 의 아스키코드: 65, a의 아스키코드: 97)

1.11 리스트 정렬과 집계 함수

함수	설명	예시
	리스트를 정렬하여 새로운	(numbers = [1, 12, 3, 5, 4] (sorted(numbers))
(sorted(리스트)	리스트 반환 원본 리	\rightarrow [1, 3, 4, 5, 12] < br> (numbers) \rightarrow [1, 12, 3, 5,
	스트는 변경되지 않음	4] (원본 유지)
(sorted(리스트,	리스트를 내림차순으로 정	$(sorted(numbers, reverse=True)) \rightarrow ([12, 5, 4, 3,$
reverse=True)	렬	1]
(sum/2IAE)	리스트 요소들의 합계 반	(sum/[1 12 2 E 4]) (2E)
sum(리스트) 환	환	$(sum([1, 12, 3, 5, 4])) \rightarrow (25)$
•		

2절. 튜플(Tuple)

특 징	설명	예시
기	• 리스트와 유사하지만 읽기 전용 • 수정	
본	이 필요 없는 데이터에 사용 • 수정 불가	(coordinates = (10, 20)) < br>(person = ('John',
특	하므로 데이터 수정, 추가, 삭제 불가 •	25, 'Developer')
성	제공되는 함수가 많지 않음	
챙 성 하 돼	• 소괄호 ()) 사용 • (tuple()) 함수 사용 >• 괄호 없이 콤마로만 구분해도 튜플로 인식	empty = () single = (1,) pr> (numbers = (1,) 2, 3, 4) from_list = tuple([1, 2, 3]) (implicit = 1, 2, 3 # 괄호 없이도 튜플)
전 다 하 돼	리스트와 동일하게 인덱싱, 슬라이싱 사용 가능	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
다 당 한 다	파이썬은 여러 값이 전달될 때 튜플 타입으 로 전달	(a, b = (10, 20)) (x, y, z = 1, 2, 3 # 튜플 자동 할당)
지 원 메 서 드	읽기 전용이므로 제한된 메서드만 제공	$\begin{array}{l} (\text{numbers} = (1, 2, 2, 3, 4)) < \text{br} > (\text{numbers.count}(2)) \\ \rightarrow (2) < \text{br} > (\text{numbers.index}(3)) \rightarrow (3) \end{array}$

3절. 딕셔너리(Dictionary)

특 징	설명	예시
기 본 특 성	• 중괄호 {}를 이용해서 키(key)-값(value) 쌍으로 구성된 자료 구조 • 키는 중복 불가(유일한 값 만 가능) • 키에 리스트 등 변경 가능한 자료형 은 사용 불가 • 값은 중복 가능 • 인덱스를 이용한 접근 지원 안 함	<pre>person = {'name': 'John', 'age': 30, 'job':</pre>
생 성 방 법	• 중괄호({}) 사용 • (dict()) 함수 사용	<pre>empty = {} scores = {'math': 90, 'science': 85} from_tuples = dict([('a', 1), ('b', 2)]) with_keywords = dict(name='John', age=30)</br></pre>
접 긴 방 탭	키를 이용해 값에 접근	<pre>(person = {'name': 'John', 'age': 30}) (person['name']) → ('John')</pre>

4절. 셋(Set)

특		
징	설명	예시
기 본 특 성	• 중복을 허용하지 않는 집합 • 순 서가 없음(인덱스 접근 불가) • 수 학의 집합 개념과 동일	(unique_numbers = {1, 2, 3, 2, 1}) > 출력: ({1, 2, 3}) (중복제거됨)
전 전 하 돼	• 중괄호 ({}) 사용 (빈 셋은 (set())으로 생성해야 함) • (set()) 함수 사용	numbers = {1, 2, 3, 4} from_list = set([1, 2, 2, 3]) empty = set() (빈 중괄호 ({})는 빈 딕셔너리임)
요 소 추 가	• (add()): 기본자료형, 튜플 등 하나의 요소로 추가 (update()): 리스 트, 튜플, 딕셔너리, 셋의 요소들을 개 별적으로 추가 	numbers = $\{1, 2, 3\}\$ obr>• $\{1, 2, 3, 4\}\$ obr>• $\{1, 2, 3, 4\}\$ obr>• $\{1, 2, 3, 4, (5, 6)\}\$ (튜플은 하나의 요소) obr>• $\{1, 2, 3, 4, (5, 6)\}\$ or $\{1, 2, 3, 4, (5, 6)\}\$ or $\{1, 2, 3, 4, (5, 6), 7, 8\}\$ obr>• $\{1, 2, 3, 4, (5, 6), 7, 8\}\$ obr>• $\{1, 2, 3, 4, (5, 6), 7, 8, "a", "b"\}\$ (키만 추가)
집 합 연 산	• &: 교집합 -): 차집합 ' : 대칭차집합 (br) • (intersection()): 교집합 (br) • (union()): 합집합 (difference()): 차집합	(A = {1, 2, 3, 4}) (B = {3, 4, 5, 6}) (A & B) → ({3, 4})(교집합) (·A
요 소 삭 제	• (remove()): 요소 삭제 (없으면 오류) >• (discard()): 요소 삭제 (없어 도 오류 없음) >• (pop()): 임의의 요소 반환 및 삭제	$[numbers = \{1, 2, 3, 4\}] < br> [numbers.remove(3)] \rightarrow [\{1, 2, 4\}] < br> [numbers.discard(5)] \rightarrow [\{1, 2, 4\}] (변화 없음) [x] < br> [x] = [numbers.pop()] \rightarrow x는 셋의 임의 요소, 셋에서는 제거됨$

5절. enumerate 함수

특징	설명	예시
기본 개념	• 반복자 또는 순서 객체로 반복 문을 처리할 때 사용하는 함수 • 리스트, 튜플, 셋, 딕셔너 리 등을 for문에 사용할 때 인덱 스와 값을 함께 얻을 수 있음	fruits = ['apple', 'banana', 'cherry'] for idx, fruit in enumerate(fruits):
인덱 스 시 작값 지정	• 두 번째 매개변수로 시작 인덱 스 지정 가능	fruits = ['apple', 'banana', 'cherry'] for idx, fruit in enumerate(fruits, 1): sbr>
다양 한 자 료형 활용	• 리스트, 튜플, 문자열 등 순회 가능한 자료형에 사용 가능	# 문자열 활용