Time Series Regression

Multiple Linear Regression Analysis

on Time Series Data

Contents

- 1. Linear Regression Model for Time Series Data
- 2. The Concept of Autocorrelation
- 3. Autocorrelation in Multiple Linear Regression
- 4. Detecting Presence of Autocorrelation
 - i. Durbin Watson Test
 - ii. Durbin Watson Test in R
- 5. Remedial Measure: Maximum Likelihood Estimation Method

Linear Regression Model for Time Series Data

$$Y_t = b_0 + b_1 X_{1t} + b_2 X_{2t} + ... + b_p X_{pt} + e_t$$

Where,

: Dependent Variable at time t

 $X_{1t}, X_{2t}, ..., X_{pt}$: Independent Variables at time t

 $b_0, b_1, ..., b_p$: Parameters of Model

e_t : Random Error Component at time t

Variables can either be Continuous or Categorical

The Concept of Autocorrelation

- Autocorrelation is a correlation between a time series (Y_t) and another time series representing lagged values of the same time series (Y_{t-k}) .
- Autocorrelation refers to the correlation of a time series with its own past values

t	Y _t
1	Y ₁
2	Y ₂
"	"
"	"
10	Y ₁₀

t	Y_{t}	Y _{t-1}
2	Y ₂	Y ₁
S	Y ₃	Y ₂
"	"	"
"	"	"
10	Y ₁₀	Y ₉

Correlation between Y_t and Y_{t-1} is "first order autocorrelation"

Autocorrelation in Multiple Linear Regression

- Autocorrelation is observed only when the data is a time series or panel data
- In regression model, absence of autocorrelation among errors is one of the key assumptions

Autocorrelation > Incorrect Standard
Errors of Parameters

If we obtain the OLS estimators of the regression model without correcting error autocorrelation, the model may yield

- Underestimation of True Error Variance
- Overestimation of R²
- Misleading Results of t & F Tests

Case Study – Predicting Sales

Background

 A retail store undertakes two-fold marketing campaign, one for print media and the other for digital. The company also collects information on yearly increments (price adjusted) in sales. The company wishes to check if the marketing expenses have any bearing on the sales

Objective

 To predict price adjusted incremental sales based on expenses on marketing campaigns

Available Information

- Yearly time series data, of 11 years
- Independent Variables: Marketing expenses for Print Media and Online
- Dependent Variable: Price Adjusted Incremental Sales

Data Snapshot

SALES VS MARKETING COSTS

		С	OSTS	
		Depender Variable	nt Indep	endent iables
	year	sales	print	online
-	2000	65	20	30
	2001	62	27	23
	2002	70	28	34
	2002		24	24
	·		700	3.6

	3003	74	74	
Columns0	Description	Type	Measurement	Possible values
Year	Year	Numeric	2000 to 2010	11
Sales	Price Adjusted Incremental Sales	Numeric	in Euro Million	Positive values
Print	Expenses on Print Marketing	Numeric	in Euro Million	Positive values
online	Expenses on Online Marketing	Numeric	in Euro Million	Positive values

Detecting Presence of Autocorrelation – Durbin Watson Test

Objective

To check the assumption of 'No Autocorrelation'

Null Hypothesis H_0 : Autocorrelation is not present among errors Alternate Hypothesis H_1 : Not H0

Test Statistic	$d \approx 2 (1-r)$ Where r is sample autocorrelation based on residuals obtained in regression model. Ideal Value of $d = 2$ (taking $r = 0$)
Decision Criteria	Reject the null hypothesis if p-value < 0.05

Durbin Watson Test in R

```
sales<-read.csv("SALES VS MARKETING COSTS.csv",header=TRUE)</pre>
salesmodel<-lm(sales~print+online,data=sales)</pre>
summary(salesmodel)
# Output
Call:
lm(formula = sales ~ print + online, data = sales)
Residuals:
    Min
             10 Median 30
                                     Max
-2.16109 -1.00608 0.07342 0.85923 2.32128
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 30.05815 3.78520 7.941 4.61e-05 ***
print 0.48154 0.14275 3.373 0.00974 **
online 0.76633 0.06828 11.224 3.56e-06 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.486 on 8 degrees of freedom
Multiple R-squared: 0.952, Adjusted R-squared:
F-statistic: 79.3 on 2 and 8 DF, p-value: 5.317e-06
```

Importing the Data and Fitting Linear Model

Durbin Watson Test in R

```
# Install & Load package "car"
 # Durbin Watson Test
 install.packages("car")
 library(car)
 durbinWatsonTest(salesmodel)
                   durbinWatsonTest() in package car carries
                   out the Durbin Watson test. Output gives the
                   d-w statistic as well as p-value.
# Output
> durbinWatsonTest(salesmodel)
 lag Autocorrelation D-W Statistic p-value
            0.4804249 0.7259509
                                       0.004
 Alternative hypothesis: rho != 0
 Interpretation:
   Reject H0, p-value<0.05.
   Errors have significant autocorrelation.
```

Error Process in the Presence of Autocorrelation

Presence of autocorrelation implies that, errors at time t are related to errors at previous time points

$$e_t = \rho_1 e_{t-1} + \rho_2 e_{t-2} + ... + \rho_k e_{t-k} + u_t$$

 ρ_k is coefficient of autocorrelation of lag k between $e_t \& e_{t-k}$

 u_t is such that,

$$E(u_t)=0$$

 $V(u_t)$ = Constant

$$Cov(u_t, u_s)=0$$
 $s\neq 0$

Consequences of Ignoring Autocorrelation

If we obtain the OLS estimators of the model, without correcting error autocorrelation, the model may yield

Autocorrelation – Remedial Measures

Cochrane-Orcutt Method

Praise-Winsten Method

Maximum Likelihood Estimation Method

Maximum Likelihood Estimation Method

- Maximum likelihood estimator (MLE) can be obtained by maximizing the log likelihood function with respect to b, σ_{11}^2 , ρ
- Log likelihood function is given as follows:

$$\ln L = -\frac{\sum_{t=1}^{T} u_t^2}{2\sigma_u^2} + \frac{1}{2} \ln(1 - \rho^2) - \frac{T}{2} (\ln 2\pi + \ln \sigma_u^2)$$

Parameter Estimation – Maximum Likelihood Estimation Method

```
# Parameter Estimation (Maximum Likelihood Estimation)
salests<-ts(sales$sales,start=2000,end=2010)</pre>
                   ts() converts a column from a data frame to a
                   simple time series object.
xvar<-subset(sales, select=c("online", "print")) \|</pre>
                                                   subset() creates a subset
                                                   of all the independent
                                                   variables
salesmodel<-arima(salests, order=c(1,0,0), xreg=xvar)</pre>
                        arima() estimates model parameters. Subset of
                        independent variables (which is a vector or matrix of
                        external regressors) is used in xreg=
coef(salesmodel)
 ar1 intercept
                  online
                                 print
 0.7774653 32.0288203 0.8117825 0.3621399
```

Parameter Estimation – Maximum Likelihood Estimation Method

```
# Output
```

```
z test of coefficients:

Estimate Std. Error z value Pr(>|z|)
ar1 0.777465 0.171698 4.5281 5.952e-06 ***
intercept 32.028820 2.137725 14.9827 < 2.2e-16 ***
online 0.811782 0.033897 23.9486 < 2.2e-16 ***
print 0.362140 0.065133 5.5600 2.697e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Interpretation:

 Both print and online are significant variables in this output as well

Predictions

Quick Recap

Statistical Model	 Y_t=b₀ + b₁x_{1t} + b₂x_{2t} + + b_px_{pt} + e_t Here, t - the time element is added to each term
What is Autocorrelation	Autocorrelation refers to the correlation of a time series with its own past values
Consequences	Presence of Autocorrelation results in incorrect standard errors of model parameters
Test	 The Durbin Watson test is used to check autocorrelation durbinwatsonTest() in package car performs the D-W Test in R
Maximum Likelihood Estimation Method	Method of correcting autocorrelation problem