This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

- BUNDESREPUBLIK
 - DEUTSCHLAND

DEUTSCHES PATENTAMT

- Pat ntschrift
- DE 44 18 818 C 2

5. 712.316

- (21) Akt nzeich n:
- P 44 18 818.8-44
- Anmeldetag:
- 31. 5.94
- Offenlegungstag:
- 12. 1.95
- Veröffentlichungstag
 - der Patenterteilung: 21. 8. 97

(6) Int. Cl.5:

C 08 F 220/04 C 08 F 220/58

C 08 F 291/00 C 08 F 2/44 A 61 L 15/24 A 61 L 15/60

C 08 J 9/20 G 02 B 6/44

B 01 J 20/26 A 61 F 13/15

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

- (8) Innere Priorität:
 - P 43 23 001.6

09.07.93

Patentinhaber:

Chemische Fabrik Stockhausen GmbH, 47805 Krefeld, DE

(4) Vertreter:

Klöpsch, G., Dipl.-Ing. Dr.-Ing., Pat.-Anw., 40597 Düsseldorf

@ Erfinder:

Dahmen, Kurt, Dr., 41239 Mönchengladbach, DE; Herrmann, Edgar, Dr., 41334 Nettetal, DE; Pflüger, Klaus, 47807 Krefeld, DE

 Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

> 40 39 354 C2 40 20 780 C1 DE

39 17 848 C1 DE DE 31 18 172 C2 40 21 847 A1 DE

22 97 885 FR 53 14 420 US 51 54 713

US 51 18 719 US US 48 49 184 5 38 983 A1 EP

4 53 286 A2 EP

JP 3-273071 A., In: Patents Abstracts of Japan, C-916, March 3, 1992, Vol. 16, No. 86;

- Pulverförmige, vernetzte, wäßrige Flüssigkeiten und/oder Körperflüssigkeiten absorbierende Polymere, Verfahren zu ihrer Herstellung und ihre Anwendung
- Pulverförmiges, wasserquelibares, vernetztes und nachträglich oberflächlich vernetztes, Wasser, wäßrige Flüssigkeiten, insbesondere Körperflüssigkeiten absorbierendes Polymerisat, gebildet aus:

a) 55 bis 99,9 Gew.46 polymerisierten, ungesättigten, polymerisierbaren, säuregruppenenthaltenden Monomeren, wobei diese Monomere zu mindestens 50 Mol96 neutralisiert als Salze vorliegen,

b) 0 bis 40 Gew.% polymerisierten, ungesättigten, mit a) copolymerisierbaren Monomeren, c) 0,1 bis 5,0 Gew.% mindestens eines Vernetzungsmittels, d) 0 bis 30 Gew.% eines wasserlöslichen Polymeren, wobei die Summe a) bis d) 100 Gew.96 ergibt,

wobei das Polymerisat eine Aufnahmekapazitāt für 0,9%ige NaCI-Lösung von mindestens 12 g/g Polymerisat bei einer Belastung von 60 g/cm² und eine Aufnahmegeschwindigkeit für 0,9%ige NaCI-Lösung von mindestens 10 g/g Polymerisat in 30 Sekunden aufweist.

25

Beschreibung

Die Erfindung betrifft pulverförmige, vernetzte, wäßrige Flüssigkeiten sowie Blut absorbierende Polymere (Superabsorber) mit verbesserten Eigenschaften hinsichtlich Aufnahmegeschwindigkeit, Quellung und Rückhaltevermögen von wäßrigen Flüssigkeiten unter hoher Belastung, ein Verfahren zur H rstellung dieser P lymeren sowie ihre Verwendung in absorbi renden Sanitärartikeln, wie Babywindeln, bei der Erwachseneninkontinenz, der Damenhygiene und der Wundabdeckung.

Superabsorber sind wasseruniösliche, vernetzte Polymere, die in der Lage sind, unter Quellung und Ausbildung von Hydrogelen große Mengen an wäßrigen Flüssigkeiten und Körperflüssigkeiten, wie z.B. Urin oder Blut, aufzunehmen und die absorbierte Flüssigkeitsmenge unter einem bestimmten Druck zurückzuhalten. Durch diese charakteristischen Absorptionseigenschaften finden die Polymeren hauptsächlich Anwendung bei

der Einarbeitung in Sanitärartikel, wie z. B. in Babywindeln und Damenbinden.

Während in der Entwicklung der Superabsorber zunächst allein das sehr hohe Quellvermögen bei Kontakt mit Flüssigkeit, auch freie Quellkapazität genannt, im Vordergrund stand, hat sich später gezeigt, daß es nicht nur auf die Menge der absorbierten Flüssigkeit ankommt, sondern auch auf die Festigkeit des gequollenen Gels. Absorptionsvermögen oder auch Quellvermögen oder freie Quellkapazität genannt einerseits und Gelfestigkeit bei einem vernetzten Polymeren andererseits stellen jedoch gegenläufige Eigenschaften dar, wie bereits aus der US-Re 32,649 bekannt ist. Das bedeutet, daß Polymere mit besonders hohem Absorptionsvermögen nur eine geringe Festigkeit des gequollenen Gels aufweisen mit der Folge, daß das Gel unter einem angewendeten Druck (z. B. Körperdruck) deformierbar ist und die weitere Flüssigkeitsverteilung und -aufnahme verhindert. Nach der US-Re 32,649 soll daher ein ausgewogenes Verhältnis zwischen Absorptionsvermögen (Gelvolumen) und Gelstärke angestrebt werden, damit bei der Verwendung derartiger Superabsorber in einer Windelkonstruktion Flüssigkeitsaufnahme, Flüssigkeitstransport, Trockenheit der Windel und der Haut gewährleistet sind. Dabei kommt es nicht nur darauf an, daß das Polymer Flüssigkeit unter nachfolgender Einwirkung eines Drucks zurückhalten kann, nachdem das Polymer zunächst frei quellen konnte, sondern auch darauf, Flüssigkeiten auch gegen einen gleichzeitig, d. h. während der Flüssigkeitsabsorption, ausgeübten Druck aufzunehmen, wie es unter praktischen Gegebenheiten geschieht, wenn ein Baby oder eine Person auf einem Sanitärartikel sitzt oder liegt oder wenn es, z. B. durch Beinbewegungen, zur Einwirkung von Scherkräften kommt. Diese spezifische Absorptionseigenschaft wird in der EP 0 339 461 als Aufnahme unter Druck bezeichnet.

Der zunehmenden Tendenz, aus verständlichen ästhetischen Gründen und aus Umweltaspekten (Verringerung des Deponievolumens) die Sanitärartikel immer kleiner und dünner zu gestalten, kann nur dadurch entsprochen werden, daß man den großvolumigen Fluffanteil in Windeln reduziert und gleichzeitig den Anteil an Superabsorber erhöht. Hierdurch muß der Superabsorber zusätzliche Aufgaben bezüglich Flüssigkeitsaufnahme und -transport übernehmen, die vorher der Fluff erfüllte, welche die bisher bekannten Superabsorber nicht

ausreichend erfüllen können.

15 SE 21

-

7.

Dies ist besonders dann der Fall, wenn der Anteil des Superabsorbers in der Absorptionszone eines Hygieneartikels auf 40 bis 60 Gew.% und darüber hinaus erhöht wird. Hierbei kann es wegen zu geringer Aufnahmegeschwindigkeit des Superabsorbers bei mehreren Miktionen durch eine Blockade im Flüssigkeitstransport und in
der Flüssigkeitsverteilung, insbesondere unter Druckbelastung, zum sog. leakage kommen, d. h. die Flüssigkeit
wird durch den Hygieneartikel nicht mehr aufgenommen und führt zur Nässung der Windeloberfläche und damit
der Haut.

Um superabsorbierende Polymere bereitzustellen, die charakteristische Eigenschaften wie hohe Aufnahmekapazität, hohe Gelstärke und hohes Aufnahmevermögen unter Druck besitzen, ist es notwendig, die Polymer-

harze nachträglich einer Oberflächenbehandlung zu unterwerfen.

So werden in der US-PS 4 043 952 zur Verbesserung der Dispergierbarkeit in Wasser polyvalente Metallverbindungen und in der US-PS 4 051 086 zur Verbesserung der Aufnahmegeschwindigkeit Glyoxal empfohlen. Die DE-OS 27 40 169 beschreibt die Herstellung von Absorptionsmitteln auf der Basis von Kalium- und Ammoniumacrylathaltigen Polymerisaten, die mit Polyolen behandelt und als Pulver und Folien in Windeln und anderen Hygiene- und medizinischen Artikeln eingesetzt werden. In den EP 0 083 022 (zur verbesserten Dispergierbarkeit in Wasser und zur Verbesserung des Absorptionsvermögens), DE-OS 33 31 644 (zur Verbesserung der Resistenz gegen Salzlösungen bei hoher Wasseraufnahmegeschwindigkeit), DE-OS 35 07 775 (ebenfalls zur Erhöhung der Salzbeständigkeit bei guter Flüssigkeitsabsorption und Gelfestigkeit), DE-OS 35 23 617 zur Verbesserung der Fließfähigkeit und zum Verhindern des Zusammenbackens, DE-OS 36 28 482 (zur Verbesserung der Wasseraufnahme bei wiederholter Verwendung) und EP 0 349 240 (zur Erzielung eines Gleichgewichtes zwischen Absorptionsvermögen und Absorptionsgeschwindigkeit sowie Gelfestigkeit und Saugkraft) wird die Nachbehandlung von Harzen mit zwei- oder mehrfunktionelle Gruppen enthaltenden Vernetzungsmitteln beschrieben, die mit den Carboxyl- oder Carboxylatgruppen oder anderen im Polymer enthaltenden Gruppen reagieren können. Hierbei wird entweder das Pulver direkt mit den Komponenten, ggf. unter Mitverwendung geringer Mengen Wasser und Lösungsmittel, vermischt oder das Pulver in einem inerten Lösungsmittel dispergiert oder 10 bis 40 Gew.% Wasser enthaltende Polymere werden in einem hydrophilen oder hydrophoben Lösungsmittel dispergiert und anschließend oder gleichzeitig mit dem Vernetzungsmittel vermischt. Als Vernetzungsmittel können Polyglycidylether, Haloepoxiverbindungen, Polyole, Polyamine oder Polyisocyanate verwendet werden. Neben diesen werden in DE-OS 33 14 019, EP 0 317 106 und DE-OS 37 37 196 weiterhin polyfunktionelle Aziridinverbindungen, Alkyl-di-(tri)-halogenide und öllösliche Polyepoxiverbindungen erwähnt. In der DE-OS 35 03 458 (zur Erzielung eines Polymeren mit gutem Wasserabsorptionsvermögen, hoher Wasserabsorptionsrate und hoher Gelfestigkeit bei nicht-klebrigem Gel) erfolgt die Aufbringung eines Vernetzungsmittels auf ein Polymerharz in Gegenwart eines inerten anorganischen Pulvermaterials wie SiO₂ ohne Verwendung organischer Lösungsmittel. Nach der DE-PS 40 20 780 wird die verbesserte Absorption unter Druck durch

44 18 818

oberflächenvernetzende Behandlung eines Polymerharzes mit 0,1 bis 5 Gew.% Alkylencarbonat erreicht. Allen genannten Verfahren ist g meinsam, daß anschließend ein Temperaturbehandlung der Harze erfolgt.

Die nach diesem Stand der Technik gewonnenen Superabsorber weisen unter iner Druckbelastung von 20 g/cm² eine hoh Quellfähigkeit aus, die nach dr Lehre der DE-PS 40 20 780 bi einer Aufnahme unter diesem Druck (AUL) von 28 bis 34 g/g an 0,9%iger Natriumchloridlösung liegt. Es wird weiter berichtet, daß die nach der genannt n Patentschrift hergestellten Produkte ein hohe Anfangsgeschwindigkeit der Flüssigkeitsaufnahme unter Druck aufweisen, so daß 80% der Gesamtkapazität bereits nach 15 Minuten erreicht werden.

Es hat sich jedoch herausgestellt, daß die relativ hohe Aufnahmegeschwindigkeit bei den bisher durch Nachbehandlung nach dem Stand der Technik herstellbaren Polymerharzen besonders dann gegeben ist, wenn die Flüssigkeitsaufnahme unter gleichzeitig einwirkender Druckbelastung erfolgt. Bei belastungsfreier Quellung 10

ist die Aufnahme jedoch noch verbesserungsbedürftig.

Für die praktische Verwendung von Absorberharzen in Hygieneartikeln ist eine schnelle Flüssigkeitsaufnahme unter belastungsfreier Quellung nämlich sehr wichtig, weil z.B. Kinder- oder Erwachsenenwindeln nicht immer durch das Körpergewicht belastet sind und in diesen Fällen ebenfalls eine schnelle Absorption großer

Flüssigkeitsmengen erfolgen muß, um Leakage zu vermeiden.

Die DE-OS-38 31 261 betrifft ein Polymerisationsverfahren zur Herstellung von flüssigkeitsabsorbierenden, vernetzten Acrylharzen, wobei zusätzlich entweder vor oder nach der Polymerisation, jedoch vor der Trocknung, ein N-haltiges, thermisch zersetzbares Treibmittel zur Erhöhung des Neutralisationsgrades auf 102 bis 140% zugesetzt wird. Über den Gehalt des eingesetzten Treibmittels soll die Größe der Quellgeschwindigkeit steuerbar sein. Die so erhaltenen Acrylharze, die keiner nachträglichen Oberflächenvernetzung unterzogen 20 wurden, zeigen bei Kontakt mit Flüssigkeiten kein Verkleben bzw. Gel-blocking.

In der US-PS 4 529 739 werden Absorptionsmittel beschrieben die ausgehend von hydrophoben Polymerisa-

ten in Latexform durch Verseifung und unter Zusatz von Carbonaten als Blähmittel hergestellt werden.

Aus der US-PS 5 118 719 ist bekannt, superabsorbierende Polymere mit verbesserter Wasserabsorptionsrate mittels carbonathaltiger Blähmittel herzustellen, die durch Freisetzung von Kohlendioxid zu einem Hydrogel mit 25 mikrozellularer Struktur führen. Wie aus den Beispielen der US-PS 5 118 719 hervorgeht, ist zwar die Absorptionsrate verbessert, es ist allerdings ein Abfall in der Absorptionskapazität festzustellen. Absorberharze, hergestellt nach der genannten US-PS, zeigen eine wesentlich schlechtere Aufnahme unter Druck (AUL) als sie die Produkte nach dem Stand der Technik, z. B. nach der DE-PS 40 20 780, aufweisen. Nach den bekannten Verfahrensweisen werden insbesondere keine wasserabsorbierenden Harze erhalten, die eine Verbesserung der Absorptionsgeschwindigkeit bei belastungsfreier Quellung aufweisen, obwohl sie eine hohe Aufnahme unter einem Druck von 20 g/cm² besitzen.

Die nach dem Stand der Technik bekannten Absorberharze weisen weiterhin den Nachteil auf, daß bei höherer Belastung als 20 g/cm² die Quellfähigkeit stark zurückgeht. Bei einem danach bekannten Polymer, das unter einer Belastung von 20 g/cm² eine AUL von 30 g/g besitzt, fällt die AUL bei einer Belastung von 40 g/cm² auf 15 g/g und bei 60 g/cm² auf 9 g/g. Dieser Abfall in der Absorptionskapazität unter hohem Druck wirkt sich besonders negativ in den neuen Windelkonstruktionen mit erhöhtem Superabsorberanteil aus, in denen das Absorberharz auch weitgehend den Flüssigkeitstransport zu den entfernteren Speicherzonen übernehmen muß. Hierbei bildet sich infolge der unzureichenden Gelstabilität ein weiches, unter hohem Druck deformierbares

Gel, das durch das sog. Gel-blocking den weiteren Flüssigkeitstransport behindert.

Es ist deshalb Aufgabe der vorliegenden Erfindung, superabsorbierende Polymere bereitzustellen, die neben einer verbesserten Absorptionsgeschwindigkeit und hohem Retentionsvermögen in besonderem Maße eine

hohe Aufnahme unter erhöhter Druckeinwirkung besitzen. Die Aufgabe wird gelöst durch ein pulverförmiges wasserquellbares, vernetztes und nachträglich oberflächlich vernetztes Wasser, wäßrige Flüssigkeiten, insbesondere Körperflüssigkeiten absorbierendes Polymerisat,

a) 55 bis 99,9 Gew.% polymerisierten, ungesättigten, polymerisierbaren säuregruppenenthaltenden Monomeren, wobei diese Monomeren zu mindestens 50 Mol% neutralisiert als Salze vorliegen, b) 0 bis 40 Gew.% polymerisierten, ungesättigten, mit a) copolymerisierbaren Monomeren,

50

c) 0,1 bis 5,0 Gew.% eines Vernetzungsmittels,

d) 0 bis 30 Gew.% eines wasserlöslichen Polymeren, wobei die Summe a) bis d) 100 Gew.% ergibt,

wobei das Polymerisat eine Aufnahmekapazität für eine 0,9%ige NaCl-Lösung von mindestens 12 g/g Polymerisat, vorzugsweise 16 g/g Polymerisat bei einer Belastung von 60 g/cm² und eine Aufnahmegeschwindigkeit für 55 0,9% ige NaCl-Lösung von mindestens 10 g/g Polymerisat, vorzugsweise 16 g/g Polymerisat in 30 Sekunden aufweist

Überraschenderweise hat sich gezeigt, daß superabsorbierende Polymere mit neutralisierten Säuregruppen, deren Kationen ausgewählt sind aus der Gruppe Lithium, Natrium und vorzugsweise Kalium, Rubidium, Cäsium, Ammonium, Monomethylammonium, Dimethylammonium oder Trimethylammonium, eine bedeutende Verbesserung der Absorptionsgeschwindigkeit aufweisen, wenn bei der Herstellung der Polymerprodukte vor dem Polymerisationsschritt ein Treibmittel auf der Basis von Kohlendioxid der Monomerlösung zugesetzt worden ist. Gleichzeitig weisen die erfindungsgemäßen Superabsorber eine Verbesserung der Absorption unter hoher Druckeinwirkung dadurch auf, daß die teilchenförmigen Absorberharze mit einem reaktiven, mehrfunktionellen Nachvernetzungsmittel behandelt und anschließend auf 120-300°C erhitzt worden sind.

Es war aus dem vorstehend beschriebenen Stand der Technik kein Hinweis ableitbar, wie die Eigenschaftskombination n aus verbesserter Aufnahmegeschwindigkeit bei gleichzeitig b lastungsfreier sowie belasteter

Aufnahm und verbess rtem Aufnahmevermögen unter hohem Druck erreicht werden kann.

Es wurde nun gefunden, daß verbesserte wasserabsorbierende Harze erhalten w rden, wenn Hydrogele mit mikrozellularer Struktur, die unter Verwendung von Blähmitteln erzeugt werden und dies Harz einer oberflächenvernetzenden Behandlung, z. B. nach dem Verfahren der DE-PS 40 20 780 unt rworfen w rden. Weiterhin wurde gefunden, daß die Kati nen von Lithium, Natrium und vorzugsweis von Kalium, Rubidium, Cāsium sowie Ammonium, Monomethylammonium, Dimethylammonium oder Trimethylammonium, die in den bei der Neutralisation der säuregruppenenthaltenden Monomeren entstehenden Salzen vorliegen, ein n bestimmenden Einfluß auf die Absorptionskapazität und -geschwindigkeit ausüben. Hierbei zeigte sich, daß eine deutliche Verbesserung der Aufnahmekapazität unter Gewichtsbelastung sowie eine Verbesserung der Aufnahmegeschwindigkeit eintritt.

Bevorzugt zu verwendende Kationen sind das Kalium- und das Ammoniumion.

10

Wasserabsorbierende Harze die zur oberflächenvernetzenden Behandlung verwendet werden können, werden erhalten durch Polymerisation von 55—99,9 Gew.% Monomeren mit Säuregruppen, wie z. B. Acrylsäure, Methacrylsäure, 2-Acrylamido-2-methylpropansulfonsäure oder Mischungen dieser Monomeren; die Säuregruppen liegen mindestens zu 50 Mol% neutralisiert vor. Besonders bevorzugt ist ein Harz, das aus vernetzter Acrylsäure oder Methacrylsäure gebildet ist, die zu 50—80 Mol% neutralisiert ist.

Die Neutralisation der Säuregruppen in den wäßrigen Monomerlösungen erfolgt mit Basen nach bekannten Methoden, z. B. mit Laugen, Carbonaten oder Aminen. Bevorzugte Neutralisationsmittel sind neben Natriumlauge vor allem Kalilauge und Ammoniak. Als weitere Monomere können für die Herstellung der wasserabsorbierenden Harze 0-40 Gew.% Acrylamid, Methacrylamid, Hydroxyethylacrylat, Dimethylaminoalkyl(meth)-acrylat, Dimethylaminopropylacrylamid oder Acrylamidopropyltrimethylammoniumchlorid verwendet werden. Höhere Anteile als 40% dieser Monomerer verschlechtern die Quellfähigkeit der Harze.

Als Vernetzer können alle Verbindungen verwendet werden, die mindestens zwei ethylenisch ungesättigte Doppelbindungen oder eine ethylenisch ungesättigte Doppelbindung und eine gegenüber Säuregruppen reaktive funktionelle Gruppe oder mehrere gegenüber Säuregruppen reaktive funktionelle Gruppen tragen. Beispielhaft seien genannt: Acrylate und Methacrylate von Polyolen, wie Butandiol-diacrylat, Hexandiol-dimethacrylat, Polyglykol-diacrylat, Trimethylolpropantriacrylat, oder Allylacrylat, Diallylacrylamid, Triallylamin, Diallylether, Methylenbisacrylamid oder N-Methylolacrylamid, weiter Polyglycidylether, wie z. B. Ethylenglykoldiglycidylether und Glycerinpolyglycidylether und/oder Polyole, wie Glycerin, Trimethylolpropan und/oder Polyalkylenglykole, wie Polyethylenglykol 200 bis 600. Ebenso können Polyamine verwendet werden.

Als wasserlösliche Polymere können im wasserabsorbierenden Harz 0-30 Gew.% teil- oder vollverseifter Polyvinylalkohol, Polyvinylpyrrolidon, Stärke oder Stärkederivate, Polyglykole oder Polyacrylsäuren enthalten sein. Das Molekulargewicht dieser Polymeren ist unkritisch, solange sie wasserlöslich sind. Bevorzugte wasserlösliche Polymere sind Stärke oder Polyvinylalkohol oder Gemische dieser Polymeren. Der bevorzugte Gehalt an solchen wasserlöslichen Polymeren im wasserabsorbierenden Harz liegt bei 1-5 Gew.%, insbesondere wenn Stärke und/oder Polyvinylalkohol als lösliche Polymere vorhanden sind. Die wasserlöslichen Polymere können als Pfropfpolymere mit den Säuregruppen enthaltenden Polymeren vorliegen.

Bevorzugt werden neben Harzen, die durch vernetzende Polymerisation teilneutralisierter Acrylsäure erhalten worden sind, solche verwendet, die zusätzlich Anteile von pfropfpolymerisierter Stärke oder von Polyvinylalkohol enthalten.

Die Herstellung der erfindungsgemäßen Absorberharze erfolgt nach bekannten Verfahren. Das kann sowohl nach dem Prinzip der wäßrigen Lösungspolymerisation (Gelverfahren) als auch nach dem inversen Emulsions-

/Suspensionsverfahren erfolgen.
Erfindungsgemäß muß in der Monomerlösung oder -dispersion ein Treibmittel auf der Basis von Kohlenstoffdioxid als Carbonat oder in Form von Kohlenstoffdioxid, gasförmig oder fest, gelöst oder dispergiert werden. Als Carbonate können eine Menge von 0,1—5,0 Gew.%, bezogen auf wasserfreie Polymersubstanz, z. B. Natrium-carbonat, Natriumhydrogencarbonat, Kaliumcarbonat, Kaliumhydrogencarbonat, Ammoniumcarbonat, Magnesiumcarbonat, Calciumcarbonat oder Gemische dieser Substanzen verwendet werden. Bei der Verwendung von festem Kohlenstoffdioxid (Trockeneis) kann gleichzeitig die Kühlung der Monomerenlösung oder -dispersion auf Temperaturen zwischen —10 und 30°C, bevorzugt zwischen 0 und 10°C sowie die Entfernung von Sauerstoff

Bei der oberflächenvernetzenden Behandlung gibt es hinsichtlich der Teilchenform des eingesetzten Absorberharzes keine speziellen Einschränkungen. Das Polymer kann in Form von Kügelchen vorliegen, die durch inverse Suspensionspolymerisation erhalten wurden oder in Form von unregelmäßig geformten Teilchen, die durch Trocknung und Zerkleinerung der Masse aus der Lösungspolymerisation stammen. Die Trocknung des Hydrogels erfolgt bei Temperaturen von 80–200°C insbesondere bei 100–180°C und vorzugsweise bei 120–150°C. Die Teilchengröße liegt normalerweise zwischen 20 und 3000 μm, bevorzugt zwischen 50 und

Zur oberflächenvernetzenden Behandlung können die wasserabsorbierenden Harze mit den bekannten Nachvernetzungsmitteln auf Basis mindestens bifunktioneller, mit Säuregruppen, insbesondere Carboxylgruppen reaktionsfähigen Verbindungen verwendet werden. Die wasserabsorbierenden Harze können mit den Nachvernetzungsmitteln direkt, in wäßrig alkoholischer Lösung oder in wäßriger Lösung vermischt werden. Die Menge des Nachvernetzungsmittels beträgt 0,01 bis 10 Gew.-%, vorzugsweise 0,01 bis 4,0 Gew.-% und besonders bevorzugt 0,01 bis 2,0 Gew.-%, bezogen auf das wasserabsorbierende Harz. Auch Mischungen verschiedener Nachvernetzungsmittel können verwendet werden. Die Menge Alkohol wird von der Löslichkeit des Mittels bestimmt und wird aus technischen Gründen, wie z. B. Explosionsschutz, so gering wie möglich gehalten. Geeignete Alkohole sind Methanol, Ethanol, Butanol oder Butylgtykol sowie Gemische dieser Alkohole. Bevorzugtes Lösungsmittel ist Wasser, das in einer Menge von 0,3—5,0 Gew.%, bezogen auf Harz, verwendet wird. Es best ht auch die Möglichkeit, das Nachvernetzungsmittel aus einer Pulvermischung, z. B. mit einem anorgani-

44 18 818

schen Trägermaterial wie SiO2, aufzubringen.

Als oberflächenvernetzende, mindestens zweifunktionelle, mit Säuregruppen reaktionsfähigen Verbindungen werden Polyole wie Glycerin und/oder P lyalkylengiykole wie Polyethylengiykol und/oder Polyamine wie Triethanolamin bevorzugt. Besonders bevorzugt sind als Oberflächenvernetzungsmittel Alkylencarbonate gemäß DE-PS 40 20 780.

Um die gewünscht n Eigenschaften zu erzielen, ist eine gleichmäßige Verteilung des Mittels auf dem Harzpulver erforderlich. Dazu führt man die Vermischung in geeigneten Mischern durch, wie z. B. Wirbelbettmischer, Schaufelmischer, Walzenmischer oder Doppelschneckenmischer.

Es besteht auch die Möglichkeit, die Behandlung des Absorberharzes während eines der Verfahrensschritte bei der Herstellung des Polymerharzes vorzunehmen. Hierzu ist besonders der Prozeß der inversen Suspen-

sionspolymerisation geeignet. Die sich an die Zugabe des Oberflächenvernetzungsmittels anschließende thermische Behandlung wird bei 100-300°C durchgeführt, bevorzugt bei 120-250°C. Sie ist abhängig von der Verweilzeit und der Art des Reaktionsmittels. Bei 150°C muß die thermische Behandlung über mehrere Stunden durchgeführt werden, während bei 250°C wenige Minuten, z. B. 0,5 bis 5 Minuten ausreichen, um die gewünschten Eigenschaften zu erzielen. Die thermische Behandlung kann in üblichen Trocknern oder Öfen durchgeführt werden; beispielhaft seien Drehrohröfen, Wirbelbetttrockner, Paddeltrockner, Tellertrockner oder Infrarottrockner genannt.

Die Polymeren gemäß der Erfindung können in großtechnischer Weise nach kontinuierlichen und diskontinuierlichen Verfahren hergestellt werden. Die erfindungsgemäßen Mittel können für weite Anwendungsgebiete eingesetzt werden. Wenn sie z. B. als Absorbierungsmittel in Damenbinden und Windeln oder zur Wundabdekkung verwendet werden, dann besitzen sie die Eigenschaft, daß sie große Mengen an Menstruationsblut, Urin oder anderen Körperflüssigkeiten schnell absorbieren. Die Absorptionsfähigkeit und -geschwindigkeit ist viel höher als bei bekannten Produkten. Da die erfindungsgemäßen Mittel die absorbierten Flüssigkeiten unter hohem Druck aufnehmen und zurückhalten, sind die Mittel besonders anwendungsfreundlich. Sie sind bevorzugt geeignet, in höheren Konzentrationen, bezogen auf hydrophiles Fasermaterial wie z.B. Fluff, eingesetzt zu 25 werden, als dies bisher möglich war.

Bei der Verwendung kann der Anteil des absorbierenden Polymerisats über 35 Gew.% liegen, 15-100 Gew.% und vorzugsweise 30-70 Gew.% bezogen auf die vom absorbierenden Polymerisat mit dem Fluff gebildete Menge betragen. Die erfindungsgemäßen Polymerisate zeichnen sich dabei durch eine verbesserte Verteilung der Flüssigkeit, insbesondere in den überwiegend Polymerisat enthaltenden Schichten direkt nach 30 der Flüssigkeitsaufnahme aus.

Die erfindungsgemäßen Polymerisate sind weiterhin als Absorptionsmittel für Wasser und wäßrige Flüssigkeiten geeignet zur Verwendung in strom- und lichtleitenden Kabeln, in Verpackungsmitteln sowie als Bodenverbesserungsmittel und als künstlicher Boden zur Pflanzenzüchtung.

Testmethoden

35

45

Zur Charakterisierung der wasserabsorbierenden Harze wurden Retention (TB), Aufnahme unter Druck (AUL) und Aufnahmegeschwindigkeit (AV bzw. Vortex) gemessen

Die Retention wird nach der Teebeutelmethode bestimmt und als Mittelwert aus drei Messungen angegeben. 40 Ca. 200 mg Harz werden in einen Teebeutel eingeschweißt und für 20 Minuten in 0,9% ige NaCI-Lösung getaucht. Anschließend wird der Teebeutel in einer Schleuder (23 cm Durchmesser, 1.400 Upm) 5 Minuten geschleudert und gewogen. Einen Teebeutel ohne wasserabsorbierendes Harz läßt man als Blindwert mitlaufen:

Retention =
$$\frac{\text{Auswaage - Blindwert}}{\text{Einwaage}} [g/g]$$

Die Aufnahme unter Druck (AUL) wird nach der in der EP 0 339 461 beschriebenen Methode bestimmt: In 50 einen Zylinder mit Siebboden gibt man die Einwaage an Superabsorber und belastet das Pulver mit einem Stempel, der einen Druck von 20 g/cm², bzw. 40 g/cm², bzw. 60 g/cm² ausübt. Der Zylinder wird anschließend auf einen Demand-Absorbency-Tester (DAT) gestellt, wo man den Superabsorber eine Stunde lang 0,9%ige NaCl-Lösung saugen läßt.

Die Absorptionsgeschwindigkeit (AV) wird in abgewandelter Form nach der Methode Aufnahme unter Druck 55 (AUL), wie in der EP 0 339 461 beschrieben, bestimmt. Die Aufnahme der 0,9% igen Kochsalzlösung wird in diesem Fall ohne Belastung des Pulvers mit zusätzlichen Gewichten gemessen. Nach 15 s, 30 s, 1, 3, 5, 10 und 15 min wird die aufgenommene Flüssigkeitsmenge durch Auswiegen bestimmt. Die Messung wird als Dreifachbe-

stimmung durchgeführt. Der Vortex-Test zur Bestimmung der Absorptionsgeschwindigkeit wird in Anlehnung an die in der WO 87/03208 beschriebenen Methode durchgeführt. Die Einwaage beträgt 2,0 g Polymer, und es wird die Zeit vom Einstreuen der Polymers in den Flüssigkeitskegel bis zum Verschwinden des Vortex in Sekunden gemessen.

Beispiele

Vergleichsbeispiel 1

Nach Beispiel 4 der DE-PS 40 20 780 wird eine wäßrige Monomerlösung, bestehend aus einer Mischung von

Natriumacrylat und Acrylsäure im Molverhältnis 70:30 und Triallylamin als Vern tzer polymerisiert. Das entstandene Gel wird zerkleinert, getrocknet, gemahlen und auf einen Kornbereich von 90-850 µm abgesiebt. Das pulverförmige Produkt wird mit einer Mischung aus 0,2/1,0/2,0% 1,3-Di xolan-2-on/Wasser/Ethanol, bezogen auf Pulver, vermischt und 1 Stund auf 180°C erhitzt.

Vergleichsbeispiel 2

Nach Beispiel 4 der US-PS 5.118.719 wird eine wäßrige Monomerlösung, bestehend aus einer Mischung von Natriumacrylat und Acrylsäure im Molverhältnis 70:30 und Triallylamin als Vernetzer, nach Zugabe von 0,5% basischem Magnesiumcarbonat polymerisiert. Das entstandene Gel wird zerkleinert, getrocknet, gemahlen und abgesiebt (90-850 µm) (Produkteigenschaften in Tabelle 1).

Beispiel 1

Vergleichsbeispiel 1 wird wiederholt. Der Monomerlösung wird jedoch vor der Polymerisation 0,5% basisches Magnesiumcarbonat als CO₂ freisetzendes Treibmittel zugesetzt, wie in US-PS 5.118.719 beschrieben. Das erhaltene pulverförmige Polymerisat wird der gleichen Nachbehandlung wie in Vergleichsbeispiel 1 unterworfen (Produkteigenschaften in Tabelle 1).

Tabelle 1

25	Vergleichsbeispiel	1	2		Beispiel 1	Durchschnittswerte d. Beispiele 2- 10
	ТВ	30	26	30	g/g	29.
30						
	AUL 20 g/cm ²	30	20	31	g/g	26
35	40 g/cm ²	15	9	24	g/g	20
33	60 g/cm ²	9	8	19	g/g	16
40	Vortex	83	18	26	S .	21
45	AV 15 s	2	. 7	5	g/g	9
	30 s	4	15	12	g/g	16
	1 min	9	24	20	g/g	23
50	3 min	19	33	28	g/g	32
	5 min	25	36	33	g/g	35
55	10 min	34	37	37	g/g	38
33	15 min	- 39	37	39	g/g	40

TB = Teebeuteltest

5

20

AUL = Aufnahme unter Druck (absoption under load)

AV = Absorptionsgeschwindigkeit (absorption velocity)

Beispiele 2 bis 8

Eine wäßrig Monomerlösung bestehend aus einer Mischung aus

Beispiel 2: Kaliumacrylat Beispiel 3: Kaliumacrylat Beispiel 4: Kaliumacrylat Beispiel 5: Kaliumacrylat Beispiel 6: Ammoniumacrylat Beispiel 7: Methylammoniumacrylat	5
Beispiel 8: Casiumacrylat und Acrylsaure im Molverhältnis 70/30 und Triallylamin als Vernetzer wurd unter Zusatz eines Carbonats und Acrylsaure im Molverhältnis 70/30 und Triallylamin als Vernetzer wurd unter Zusatz eines Carbonats und	10
Beispiele 9 und 10	15
Eine wäßrige Monomerlösung bestehend aus einer Mischung aus Beispiel 9: Kaliumacrylat Beispiel 10: Ammoniumacrylat	20
und Acrylsäure im Molverhältnis 70/30 und 1 riallylamin als Verhetzer unter Zusatz von Korließend polymerisiert. Das (PVA) wurde mit Kohlendioxid (durch Eintrag von Trockeneis) gesättigt und anschließend polymerisiert. Das entstandene Gel wurde zerkleinert, getrocknet, gemahlen und auf 90-850 µm abgesiebt. Das pulverförmige gesiebte Polymer wurde mit einer Mischung aus 1,3-Dioxolan-2-on bzw. Ethylenglykoldi- Das pulverförmige gesiebte Polymer wurde mit einer Mischung aus 1,3-Dioxolan-2-on bzw. Ethylenglykoldi-	25
glycidylether (EGDE), Wasser und Ethanol vermischt und 0,5-1 Stunde auf 120-300 et 120-3	B
	30
	35
·	40
	45
	50
	5
	6

Tabelle 2

Beispiel	2	3	4	5	
Kation	K	K ·	K	K	
Vernetzer [%]	0,4	0,4	0,4	0,5	
Carbonat [%]	1,5 Kalium	2,5 Kalium	1,5 Kalium	0,5Kalium	
PVA [%]	1,0	1,0	-	1,0	
1,3-Dioxolan-2-on	[%]0,5	0,5	0,5	0,5	
Wasser [%]	2,0	2,0	2,0	2,0	
Ethanol [%]	4,0	2,0	2,0	2,0	
Zeit[min]	30 .	30	30	30	
Temperatur [°C]	200	180	200	200	
•		_			
тв	27	28	27	27	g/g
AUL 20 g/cm ²	25	28	27	25	g/g
· 40 g/cm ²	20	20	22	23	g/g
60 g/cm ²	18	14	18	. 21	g/g
Vortex	21	16	21	23	s
AV 15's	12	10	10 ·	9	g/g
30 s	19	20	16	16	g/g
1 min	26	28	24	23	g/ g
3 min	36	38	31	33	g/ g
5 min	38	43	_. 33	35	g/g
10 min	39	44	35	36 ·	g/g
15 min	40	45	37	38	g/g

8

Beispiel	6	7	8 .	9	10
Kation	NH4	NH ₃ CH ₃	Cs	K	NH4
Vernetzer [%]	0,3	0,3	0,3	0,3	0,3
Carbonat [%]	1,5 NH4 ⁺	1,5 NH4 ⁺	1,5 Cäsium	CO_2	CO ₂
Sättigungstemp.°C	-	•	-	4	13
Polyvinylalkohol[%		•	-	1,0	1,0
EGDE	0,25	•	-	-	0,25
1,3-Dioxolan-2-on	-	1,0	0,5	0,5	-
Wasser	2,0 ·	8,0	2,0	2,0	2,0
Ethanol	2,0	8,0	2,0	2,0	2,0
Zeit[min]	· 60	60	30	30	60
Temperatur [°C]	120	140	210	200	120
ТВ	33	35	20	27	33g/g
AUL 20 g/cm ²	28	24	19	25	29g/g
40 g/cm ²	22	- 17	16	20	23g/g
60 g/cm ²	18	12 .	13	16	17g/g
Vortex	27	28	30	15	12s
AV 15 s	8	6	4	12	14g/g
.`30 s	13	12	12	17	20g/g
1 min	19	18	16	28	27g/g
3 min	31	26	19	36	36g/g
5 min	34	29	20	40	41g/g
10 min	40 ·	34	21	43	44g/g
15 min	42	37	21	44	45g/g

Vergleichsbeispiel 3

Vergleichsbeispiel 2 wird wiederholt. Die zur Neutralisation erforderliche Natronlauge wird durch Kalilauge im gleichen Molverhältnis ersetzt. Der Monomerlösung wird vor der Polymerisation 1,5% Kaliumcarbonat 60 zugesetzt.

Vergleichsbeispiel 4

Vergleichsbeispiel 1 wird wiederholt. Die zur Neutralisation erforderliche Natronlauge wird durch Kalilauge 65 im gleichen Molverhältnis ersetzt. Das erhaltene pulverförmige Polymerisat wird der gleichen Nachbehandlung wie in Vergleichbeispi 11 unterworfen.

Vergleichsbeispiel 5

Vergleichsbeispiel 3 wird wiederholt. Die zur Neutralisation erforderliche Kalilauge wird durch wäßrige Ammoniaklösung im gleichen Molverhältnis ersetzt. Der M nomerlösung wird vor der Polymerisation 0,5% Ammoniumcarbonat zugesetzt.

1 報報

了。 1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年,1000年

4

40

50

55

60

Vergleichsbeispiel 6

Vergleichsbeispiel 4 wird wiederholt. Die zur Teilneutralisation erforderliche Kalilauge wird durch wäßrige
Ammoniaklösung im gleichen Molverhältnis ersetzt. Das pulverförmige Produkt wird mit einer Mischung aus
0,25/2,0/2,0 EGDE/Wasser/Aceton, bezogen auf Pulver, vermischt und 1 Stunde auf 120°C erhitzt.

Tabelle 3

15							•
	Verglei	chsbeispiel	3	44	5	6	
	TB		31	30	57	54	g/g
20	AUL	20g/cm²	10	24	8	9	g/g
		40g/cm²	9	16	7	8	<i>g</i> /g
		60g/cm²	7	11.	6	8	g/g
25	Vortex		70	24	12	20	s
	AV	15 s	3	8	2	8	g/g
30		30 s	. 7	14	3	12	g/g
		1 min	13	. 22	3	17	g/g
		3 min	22	32	5	22	g/g
		5 min	29	38	7	29	g/g
35		10 min	34	40	9	31	<i>g</i> /g
	•	15 min	36	42	10	34	g/g

Vergleichsbeispiel 7

Das Polymer aus Beispiel 2 wird vor der Nachbehandlung auf die Fraktion 100—300 μm abgesiebt und nicht nachbehandelt. Die Quellgeschwindigkeit (Quellhöhe nach 1 min) und die Quellhöhe nach 10 min wurden mit dem sog. FIRET-Test bestimmt, Methode der Firma Lantor B.V.; Veenendaal/NL (s. Tabelle). Der Test wird so modifiziert, daß anstelle des Tapes 0,2 g Superabsorber auf den Boden des Meßtopfes gleichmäßig verteilt werden und mit einem Vlies oder Tissue abgedeckt werden (simuliertes Tape).

Beispiel 11

Das Polymer aus Beispiel 2 wird vor der Nachbehandlung auf die Fraktion 100-300 µm abgesiebt und anschließend der gleichen Nachbehandlung wie in Beispiel 1 unterworfen. Die Prüfung der Produkteigenschaften erfolgt wie in Vergleichsbeispiel 8 (s. Tabelle).

Beispiel 12

Das Polymer aus Beispiel 2 wird nach der Nachbehandlung auf die Fraktion 100-300 µm abgesiebt. Die Prüfung der Produkteigenschaften erfolgt wie in Vergleichsbeispiel 8 (s. Tabelle 4).

Tabelle 4

	Vergleichsbeispiel 7	Beispiel 11	Beispiel 12
•	Quellgeschwindigkeit 2,2	8,2	9,1 mm/min
65	Quellhöhe nach 10 min 11,8	12	12 mm/min

44 18 818

Di nach den Beispielen 11 und 12 erhaltenen erfindungsgemäßen Produkte sind besonders als Komponente in strom- und lichtleitenden Kabeln zur Abdichtung gegen eindringendes Wasser geeign t.

Patentansprüche

- 1. Pulverförmiges, wasserquellbares, vernetztes und nachträglich oberflächlich vernetztes, Wasser, wäßrige Flüssigkeiten, insbesondere Körperflüssigkeiten absorbierendes Polymerisat, gebildet aus:
 - a) 55 bis 99,9 Gew.% polymerisierten, ungesättigten, polymerisierbaren, säuregruppenenthaltenden Monomeren, wobei diese Monomere zu mindestens 50 Mol% neutralisiert als Salze vorliegen,
 - b) 0 bis 40 Gew.% polymerisierten, ungesättigten, mit a) copolymerisierbaren Monomeren,
 - c) 0,1 bis 5,0 Gew.% mindestens eines Vernetzungsmittels,
- d) 0 bis 30 Gew.% eines wasserlöslichen Polymeren, wobei die Summe a) bis d) 100 Gew.% ergibt, wobei das Polymerisat eine Aufnahmekapazität für 0,9% ige NaCl-Lösung von mindestens 12 g/g Polymerisat bei einer Belastung von 60 g/cm² und eine Aufnahmegeschwindigkeit für 0,9%ige NaCl-Lösung von mindestens 10 g/g Polymerisat in 30 Sekunden aufweist.
- Polymerisate nach Anspruch 1, gekennzeichnet durch eine Korngröße von 20 bis 3000 μm.
- 3. Pulverförmiges, wasserquellbares, vernetztes und nachträglich oberflächlich vernetztes Wasser, wäßrige Flüssigkeiten, insbesondere Körperflüssigkeiten absorbierendes Polymerisat, gebildet aus:
 - a) 55 bis 99,9 Gew.% polymerisierten ungesättigten, polymerisierbaren, säuregruppenenthaltenden Monomeren, wobei diese Monomere zu mindestens 50 Mol% neutralisiert als Salze vorliegen,
 - b) 0 bis 40 Gew.% polymerisierten, ungesattigten, mit a) copolymerisierbaren Monomeren,
 - c) 0,1 bis 5,0 Gew.% mindestens eines Vernetzungsmittels,
- d) 0 bis 30 Gew.% eines wasserlöslichen Polymeren, wobei die Summe a) bis d) 100 Gew.% ergibt, dadurch gekennzeichnet, daß die Salze nach a) als Kationen Li⁺, Na⁺, vorzugsweise K⁺, Cs⁺, Rb⁺ und Ammonium-Ionen sowie primäre, sekundäre und tertiäre Methylammonium-Ionen allein oder in Kombination enthalten, die Monomeren vor der Polymerisation mit 0,1 bis 5,0 Gew.%, bezogen auf das Polymerisat, eines Treibmittels auf Basis von Kohlendioxid versetzt worden sind, das Polymerisat getrocknet und mit einer oder mehreren zur nachträglichen Oberflächenvernetzung reaktionsfähigen Verbindungen oder de-
- ren Lösung oder Dispersion versetzt und auf eine Temperatur von 100 bis 300°C erhitzt worden ist. 4. Polymerisate nach Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß die Säuregruppen enthaltenden 30
- aus der Gruppe ausgewählt sind, die aus Acrylsäure, Methacrylsäure, Acrylamidomethylpropansulfonsäure Monomeren a) und Mischungen dieser Monomeren besteht
- aus der Gruppe ausgewählt sind, die aus Acrylamid, Methacrylamid, Hydroxyalkylacrylat, Dimethylamino- 35 alkyl(meth)acrylat, Dimethylaminopropyl(meth)acrylamid, den quaternären Amin- und Ammoniumsalzen dieser Monomeren und Mischungen dieser Monomeren besteht,
- das Vernetzungsmittel c) aus der Gruppe ausgewählt ist, die aus Alkylenbisacrylamid, N-Methylolacrylamid, Butandioldiacrylat, Hexandioldimethacrylat, Polyglykoldiacrylat, Trimethylolpropantriacrylat, Allylacrylat, Diallylacrylamid, Triallylamin, Diallylether, Ethylenglykoldiglycidylether, Glycerinpolyglycidylether, Glycerin, Trimethylolpropan, Polyalkylenglykole wie Polyethylenglykol 200 bis 600 und Polyamine oder Mischungen dieser
- Vernetzungsmittel besteht, das Treibmittel auf Basis von Kohlendioxid, ein Carbonat aus der aus Na2CO3, K2CO3, (NH4)2CO3, MgCO3, CaCO₃, NaHCO₃, KHCO₃, Mischungen der vorstehenden Carbonate oder Kohlendioxid in gasförmiger
- oder fester Form bestehenden Gruppen ausgewählt ist. 5. Verfahren zur Herstellung der Polymeren nach den Ansprüchen 1 bis 4 durch Polymerisation der Monomeren a), der mit a) copolymerisierbaren Monomeren b) und des Vernetzungsmittels c) in Gegenwart des wasserlöslichen Polymeren d), dadurch gekennzeichnet, daß die Salze nach a) aus der Gruppe ausgewählt sind, die aus Lithium, Natrium und vorzugsweise Kalium-, Cäsium-, Rubidium-, Ammonium-, primāren, sekundären und tertiären Methylammonium-Ionen oder Mischungen dieser Ionen besteht, die Monomeren vor der Polymerisation mit 0,1 bis 5,0 Gew.%, bezogen auf das Polymerisat, eines Treibmittels auf Basis von Kohlendioxid versetzt werden, Polymerisation der erhaltenen Monomerenmischung unter Zugabe von radikalbildenden Initiatoren oder Initiierung durch Belichtung oder Bestrahlung unter Ausbildung eines Hydrogels, das Polymerisat getrocknet und mit einer oder mehreren zur nachträglichen oberflächennahen Vernetzung reaktionsfähigen Verbindungen oder deren Lösung oder Dispersion gleichmäßig verteilt
- versetzt und auf eine Temperatur von 100 bis 300° C erhitzt wird. 6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß das Polymerisat bei Temperaturen von 80 bis
- 200° C getrocknet wird. 7. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß das Polymerisat nach der Trocknung gemahlen 60
- 8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß das Polymerisat auf eine Korngröße von 20 bis 3000 μm abgesiebt wird.
- 9. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß zur oberflächennahen Vernetzung auf eine Temperatur von 120 bis 250° C erhitzt wird.
- 10. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Polymerisation in wäßriger Lösung durchgeführt wird.
- 11. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Polymerisation in einer W/O-Dispersion

5	durchgeführt wird. 12. Verwendung der Polymerisate nach den Ansprüchen 1 bis 4 als Komponent in Körperflüssigkeiten absorbierenden Sanitärartikeln und in Wundabdeckungen. 13. Verwendung der P lymerisat nach den Ansprüchen 1 bis 4 als Komponente in Windeln, Damenbinden und Inkontinenzartikeln. 14. V rwendung der Polymerisat nach den Ansprüchen 1 bis 4 als Komponente in strom- und lichtleitenden
10	Kabeln. 15. Verwendung der Polymerisate nach den Ansprüchen 1 bis 4 als Bodenverbesserungsmittel. 16. Verwendung der Polymerisate nach den Ansprüchen 1 bis 4 als künstlicher Boden zur Pflanzenzüchtung. 17. Verwendung der Polymerisate nach den Ansprüchen 1 bis 4 als Komponente in Verpackungsmitteln. 18. Verwendung der Polymerisate nach den Ansprüchen 1 bis 4 sowie 12 und 13 in Windeln mit einem Gewichtsanteil der Polymerisate nach den Ansprüchen 1 bis 4 bezogen auf die Gewichtsmenge von Polymerisat und Fluff von 15 bis 100 Gew.%.
15	
20	
25	
÷	
30	
35	
40	
45	
50	
55	