Practica de SAS

Se tiene los datos de un experimento con la respuesta del maíz a la fertilización nitrogenada, fosfatada y a la densidad de plantas, empleando la siguiente matriz de resultados, se aplicara un diseño experimental de bloques al azar (BCA), con tres repeticiones para tratar de averiguar cual de los tratamientos arrojara los mejores resultados, es decir los mejores rendimientos.

				Rendimientos		
tratamientos	N (Kg/ha)	P (Kg/ha)	D (miles Pl/ha)	Rep I	Rep II	Rep III
1	90	20	35	2475	2525	2410
2	90	20	52	2630	2680	2600
3	90	40	35	2215	2270	2180
4	90	40	52	3100	3240	3050
5	120	20	35	2580	2600	2550
6	120	20	52	3695	3850	3530
7	120	40	35	2600	2590	2620
8	120	40	52	4070	4150	4020
9	60	20	35	1600	1730	1550
10	150	40	52	3840	3920	3750
11	90	0	35	2580	2650	2520
12	120	60	52	4205	4150	4240
13	90	20	23	1495	1405	1550
14	120	40	65	3765	3720	3790

Fuente: Claure. 2003

Al escribir el programa en SAS en la ventana de Program editor tendremos:

```
Data ejemplo1;
Input trat bloq n p den rend;
cards;
1 1 90 20 35 2475
...
14 3 120 40 65 3790
Proc print;
Run;
```

Con el anterior programa habremos ingresado el archivo, los datos y posteriormente impreso los datos ingresados.

No debe olvidarse que los datos que se deben ingresar (completos) en cards son los siguientes:

1	1	90	20	35	2475
1	2	90	20	35	2525
1	3	90	20	35	2410
2	1	90	20	52	2630
2	2	90	20	52	2680
2	3	90	20	52	2600
3	1	90	40	35	2215
3	2	90	40	35	2270
3	3	90	40	35	2180
4	1	90	40	52	3100

4	2	90	40	52	3240
4	3	90	40	52	3050
5	1	120	20	35	2580
5	2	120	20	35	2600
5	3	120	20	35	2550
6	1	120	20	52	3695
6	2	120	20	52	3850
6	3	120	20	52	3530
7	1	120	40	35	2600
7	2	120	40	35	2590
7	3	120	40	35	2620
8	1	120	40	52	4070
8	2	120	40	52	4150
8	3	120	40	52	4020
9	1	60	20	35	1600
9	2	60	20	35	1730
9	3	60	20	35	1550
10	1	150	40	52	3840
10	2	150	40	52	3920
10	3	150	40	52	3750
11	1	90	0	35	2580
11	2	90	0	35	2650
11	3	90	0	35	2520
12	1	120	60	52	4205
12	2	120	60	52	4150
12	3	120	60	52	4240
13	1	90	20	23	1495
13	2	90	20	23	1405
13	3	90	20	23	1550
14	1	120	40	65	3765
14	2	120	40	65	3720
14	3	120	40	65	3790

Para poder procesar los datos debemos escribir los siguientes comandos:

```
Data ejemplo1;
Input trat bloq n p den rend;
cards;
1 1 90 20 35 2475
...
14 3 120 40 65 3790
Proc anova;
Classes trat bloq;
Model rend=trat bloq;
```

Donde:

Run;

```
    proc anova = sirve para hacer el análisis de varianzas en situaciones balanceadas y
    classes = nos da la lista de variables de clasificación
    model variable dependiente = variables independientes nos indica que la variable dependiente (en este caso rendimiento) esta en función de los factores que se suponen actúan sobre la misma variable dependiente. En este caso bloques y tratamientos
```

Se esta tratando de averiguar si existe o no efecto significativo de tratamientos o bloques sobre el rendimiento. Así también se trata de averiguar si hay variación entre bloques.

El resultado obte	nido con SAS	S nos arrojara la siguiente v	ventana de output:	Este valor interesa	nos
		The SAS System	10:42 Sund	ay, June 7	8 4
		Analysis of Variance Pro	ocedure	,	\setminus
Dependent Variable	e: REND				
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	15	30048140.47619040	2003209.36507937	484.50	0.0001
Error	26	107500.00000000	4134.61538462		
Corrected Total	41	30155640.47619040			
	R-Square	C.V.	Root MSE		REND Mean
	0.996435	2.201191	64.30097499	2921	.19047619
Source	DF	Anova SS	Mean Square	F Value	Pr > F
TRAT	13	30003107.14285710	2307931.31868132	558.20	0.0001
BLOQ	2	45033.33333337	22516.66666669	5.45	0.0106

En esta ventana de resultados trataremos de ver los resultados del Rend o rendimiento y buscar si se cumple que Pr > F. Si este valor es menor a 0.05 (valor limite) ó el valor de 0.10.

Por lo tanto:

```
si Pr>F es menor o igual que 0.05 \Rightarrow F es significativa si Pr>F es mayor que 0.05 \Rightarrow F es NO significativa
```

Como nos salio Pr>F = 0.0001 tenemos que es significativa, es decir, que hay unos tratamientos mejores que otros. Finalmente haremos la comparación de medias con SAS para determinar cuales de esos tratamientos son los mejores. Para lo cual aumentaremos los siguientes comandos:

Data ejemplo1;
Input trat bloq n p den rend;
cards;
1 1 90 20 35 2475
...
14 3 120 40 65 3790
Proc glm;
Class trat bloq;
Model rend=trat bloq;
Means trat/tukey alpha=0.01
Run;

Con lo anterior se esta cambiando a procedimiento glm, solicitando la comparación de medias de la variable trat en base a la prueba de Tukey a un nivel de significancia de 0.01 (alpha =0.01).

En los resultados tendremos que nos dividirá los tratamientos en base a sus medias dándole letras como A, B, C, D, etc., Siendo los tratamientos A los que dan mejor resultado que los B y estos que los C y así sucesivamente.

Los resultados que SAS nos arrojara son los siguientes:

¿Son los mejores??

The SAS System 10:42 Sun General Linear Models Tukey's Studentized Range (HSD) Te								
NOTE: This test controls the type I experimen has a higher type II error r		out ge	nerally /					
Alpha= 0.01 df= 26 MSE= 4134.615 Critical Value of Studentized Range= 6.189 Minimum Significant Difference= 229.77 Means with the same letter are not significantly different.								
Tukey Grouping	Mean	N	TRAT					
A A	4198.33	3	12					
A	4080.00	3	8					
В В	3836.67	3	10					
В В	3758.33	3	14					
В	3691.67	3	6					
С	3130.00	3	4					
D D	2636.67	3	2					
D D	2603.33	3	7					
D	2583.33	3	11					
D D	2576.67	3	5					
D D	2470.00	3	1					
E	2221.67	3	3					
F	1626.67	3	9					
F F	1483.33	3	13					

Según estos resultados, los mejores tratamientos de la prueba son los tratamiento 12 y 8 que arrojan los mayores rendimientos de maíz. Al observar la tabla original tenemos que dichos tratamientos son los que demandan mayor nivel de fertilización nitrogenada, el nivel de fertilización con fósforo puede ser de 40 o 60 Kg/ha y tienen una densidad de siembra de 52 mil plantas/ha, como podemos ver en la tabla resumen a continuación.

				Rendimientos		
tratamientos	N (Kg/ha)	P (Kg/ha)	D (miles Pl/ha)	Rep II Rep III		Rep III
8	120	40	52	4070	4150	4020
12	120	60	52	4205	4150	4240