presenta la relación de éstos con los sistemas de ecuaciones, estudiados en el capítulo 1. Esta presentación proporciona una mayor motivación para el estudiante y sigue el orden de la mayoría de los temarios del curso. También se incluyó una sección (2.8) en la que se aplican matrices a la teoría de gráficas. El capítulo 3 proporciona una introducción a los determinantes e incluye un ensayo histórico sobre las contribuciones de Leibniz y Cauchy al álgebra lineal (sección 3.5).

Dentro de este material básico, incluso hay secciones opcionales que representan un reto un poco mayor para el estudiante. Por ejemplo, la sección 3.5 proporciona una demostración completa de que det $AB = \det A \det B$. La demostración de este resultado, mediante el uso de matrices elementales, casi nunca se incluye en libros introductorios.

El capítulo 4 analiza los vectores en el plano y el espacio. Muchos de los temas de este capítulo se cubren según el orden con el que se presentan en los libros de cálculo, de manera que es posible que el estudiante ya se encuentre familiarizado con ellos. Sin embargo, como una gran parte del álgebra lineal está relacionada con el estudio de espacios vectoriales abstractos, los alumnos necesitan un acervo de ejemplos concretos que el estudio de los vectores en el plano y el espacio proporciona de manera natural. El material más difícil de los capítulos 5, 6 y 7 se ilustra con ejemplos que surgen del capítulo 4. La sección 4.4 incluye un ensayo histórico sobre Gibbs y el origen del análisis vectorial.

El capítulo 5 contiene una introducción a los espacios vectoriales generales y es necesariamente más abstracto que los capítulos anteriores. No obstante, intentamos presentar el material como una extensión natural de las propiedades de los vectores en el plano, que es en realidad la forma en que surgió el tema. Se ha modificado el orden entre el estudio de cambios de base (sección 5.6) y los conceptos de rango y nulidad de matrices (sección 5.7), por considerar que ésta es una secuencia de conceptos más clara. En la sección opcional (5.8) se demuestra que todo espacio vectorial tiene una base. Al hacerlo se analizan los conjuntos ordenados y el lema de Zorn. Dicho material es más complicado que cualquier otro tema en el libro y se puede omitir. Sin embargo, como el álgebra lineal a menudo se considera el primer curso en el que las demostraciones son tan importantes como los cálculos, en mi opinión el estudiante interesado debe disponer de una demostración de este resultado fundamental. En el capítulo 6 se presenta la relación existente entre los espacios vectoriales y los productos internos, y se incluye una sección (6.2) de aplicaciones interesantes sobre la aproximación por mínimos cuadrados.

El capítulo 7 continúa el análisis que se inició en el capítulo 5 con una introducción a las transformaciones lineales de un espacio vectorial a otro. Comienza con dos ejemplos que muestran la manera natural en la que pueden surgir las transformaciones. La sección 7.3 describe de manera detallada la geometría de las transformaciones de \mathbb{R}^2 en \mathbb{R}^2 , e incluye expansiones, compresiones, reflexiones y cortes. La sección 7.5 ahora contiene un estudio más detallado de las isometrías de \mathbb{R}^2 .

El capítulo 8 describe la teoría de los valores y vectores característicos o valores y vectores propios. Se introducen en la sección 8.1 y en la sección 8.2 se da una aplicación biológica minuciosa del crecimiento poblacional. Las secciones 8.3, 8.4 y 8.5 presentan la diagonalización de una matriz, mientras que la sección 8.6 ilustra, para unos cuantos casos, cómo se puede reducir una matriz a su forma canónica de Jordan. La sección 8.7 estudia las ecuaciones diferenciales matriciales y es la única sección del libro que requiere conocimiento del primer curso de cálculo. Esta sección proporciona un ejemplo de la utilidad de reducir una matriz a su forma canónica de Jordan (que suele ser una matriz diagonal). En la sección 8.8 introduje dos de mis resultados favoritos acerca de la teoría de matrices: el teorema de Cayley-Hamilton y el teorema de los círculos de Gershgorin. El teorema de los círculos de Gershgorin es un resultado muy rara vez estudiado en los libros de álgebra lineal elemental, que proporciona una manera sencilla de estimar los valores propios de una matriz.

En el capítulo 8 tuve que tomar una decisión difícil: si analizar o no valores y vectores propios complejos. Decidí incluirlos porque me pareció lo más adecuado. Algunas de las matrices "más agradables" tienen valores propios complejos. Si se define un valor propio como un número real, sólo en un principio se pueden simplificar las cosas, aunque esto sea un error. Todavía más, en muchas aplicaciones que involucran valores propios (incluyendo algunas de la sección 8.7), los modelos más in-