1

0.1 Constructing the Real Numbers

0.1.1 Upper Bounds

Now, we seen in the previous section that \mathbb{Q} has "gaps". $x^2 = 2$ has no solution in \mathbb{Q} .

We need to fill in these gaps somehow while not knowing where the gaps and holes are.

Definition (Upper Bound):

Let $E \subset S$ ordered. If there exists $\beta \in S$ such that for all $x \in E$, $x \leq \beta$, then β is an **upper bound (u.b.)** for E. We say E is bounded above.

A lower bound can be defined similarly with "greater than or equal to."

Example:

Consider the set $A = \{x \mid x^2 < 2\}$. 2 is an u.b. for A. $\frac{2}{3}$ is also an u.b. for A.

Definition (Least Upper Bound):

If there exists an $\alpha \in S$ such that:

- 1. α is an upper bound of E
- 2. If $\gamma < \alpha$, then γ is not an upper bound of E.

Then α is called a **least upper bound (lub)** of E or the **suprenum** of E. Write $\alpha = \sup E$.

Example:

Let $S = \mathbb{Q}$.

1.
$$E = \left\{ \frac{1}{2}, 1, 2 \right\} \left[\sup E = 2 \right]$$

2.
$$E = \{x \in \mathbb{Q} \mid x < 0\} \ \boxed{\sup E = 0}$$

3.
$$E = \mathbb{Q} \left[\sup E \text{ does not exist} \right]$$

4.
$$E = A$$
 (as defined above) sup E does not exist

Definition (Least Upper Bound Property):

A set S has the **least upper bound property** if every nonempty subset of S that has an upper bound has a least upper bound.

0.1.2 Dedekind Cuts

Definition (Dedekind Cut):

A **Dedekind cut** α is a subset of \mathbb{Q} such that:

1.
$$\alpha \neq \emptyset$$
, \mathbb{Q}

- 2. If $p \in \alpha$, $q \in \mathbb{Q}$ and q < p, then $q \in \alpha$. (Closed downward)
- 3. If $p \in \alpha$, then p < r for some $r \in \alpha$. (No largest number)

Example:

 $\alpha = \{x \in \mathbb{Q} \mid x < 0\}$ is a cut.

- 1. $\alpha \neq 0, \mathbb{Q} \checkmark$
- 2. Let $p \in \alpha$, $q \in \mathbb{Q}$. Assume q < p. By the transitivity property of order, q < 0. Thus, $p \in \alpha$.
- 3. Let $p \in \alpha$ and $r \in \alpha$ such that $r = \frac{q}{2}$. Since $q < 0, q < \frac{q}{2}$. Thus q < r. \checkmark

Example:

 $\gamma = \{r \mid r \leq 2\}$ is not a cut. This set does have a largest element, 2.

Definition (Rational Numbers):

Let $\mathbb{R} = \{ \alpha \mid \alpha \text{ is a cut } \}.$

We also define the following:

- $\alpha < \beta$ to mean $\alpha \subsetneq \beta$. This is an order.
- $\alpha + \beta = \{r + s \mid r \in \alpha \text{ and } s \in \beta\}$. (This means \mathbb{R} is a field.)
- $\alpha \cdot \beta$
 - 1. For positive cuts $\{\alpha \mid \alpha > 0^*\} = \mathbb{R}_+$: If $\alpha, \beta \in \mathbb{R}_+$, let $\alpha \cdot \beta = \{p \mid p \leq rs \text{ for some } r \in \alpha, s \in \beta, \ and r, s > 0\}$.
 - 2. For cases with negative cuts, $\alpha \cdot \beta = \begin{cases} (-\alpha)(-\beta) & \text{if } \alpha < 0^*, \ \beta < 0^* \\ -[(-\alpha)\beta] & \text{if } \alpha < 0^*, \ \beta > 0^* \\ -[\alpha(-\beta)] & \text{if } \alpha > 0^*, \ \beta < 0^* \end{cases}$

where the products are the same as defined for postive cuts and $-\alpha$, $-\beta$ are the additive inverses of α , β respectively. (The additive inverses are defined below.)

Theorem 1. \mathbb{R} is an ordered field with the least upper bound property. \mathbb{R} contains \mathbb{Q} as a subfield.

Proofs Showing $\mathbb R$ is an Ordered Field

The following section proves Theorem 1.

Proof.

Step 1: We must show there is order on \mathbb{R} .

Let $\alpha, \beta, \gamma \in \mathbb{R}$. We must show that they demonstrate both trichotomy and transitivity.

1. Trichotomy:

It is clear that at most one of the following can be true: $\alpha < \beta$, $\alpha = \beta$, $\beta < \alpha$. For example, if $\alpha < \beta$, then $\alpha \subsetneq \beta$ and by the definition of a proper subset, $\alpha \neq \beta$ and β is not a proper subset of α .

To show at least one of them must be true, suppose the first two statements are false. Then α is not a subset of β . By definition of a proper subset, there exists some $a \in \alpha$ such that $a \notin \beta$. Consider some $b \in \beta$. Since β is closed downward, b < a. This also means $b \in \alpha$ since α is also closed downward. This shows that $\beta \subsetneq \alpha$. Thus $\beta < \alpha$. We conclude that at least one of these statements must be true.

2. Transitivity:

We assume that $\alpha < \beta$ and $\beta < \gamma$. By definition of <, $\alpha \subsetneq \beta$ and $\beta \subsetneq \gamma$. By definition of a proper subset, $\alpha \subsetneq \gamma$ and we conclude that $\alpha < \gamma$.

We have shown the cuts demonstrate order.

Step 2: Next, we must show that addition is closed (A1).

Let $\alpha, \beta \in \mathbb{R}$ and $\gamma = \{r + s \mid r \in \alpha \text{ and } b \in \beta\}$. To show addition is closed, we must show that γ is a cut.

- 1. First, we must show that $\gamma \neq \emptyset$, \mathbb{Q} . It should be clear that γ cannot be the empty set. Since $\alpha, \beta \neq \mathbb{Q}$, there exists $c \notin \alpha, d \notin \beta$. Now a < c and b < d for all $a \in \alpha, b \in \beta$. Thus a + b < c + d. Therefore $c + d \notin \gamma$. We conclude that $\gamma \neq \emptyset$, \mathbb{Q} .
- 2. Second, we must show that γ is closed downward. Let $p \in \gamma, q \in \mathbb{Q}$. Assume q < p. Since $p \in \gamma$, there exists $r \in \alpha$ and $s \in \beta$ such that p = r + s so q < r + s. This means q - s < r. Since α is closed downward, $q - s \in \alpha$. Then q = q - s + s where $q - s \in \alpha$ and $s \in \beta$. We have shown that γ is closed downward.
- 3. Third, we must show that γ has no largest number. Let $p \in \gamma$. Then there exists some $a \in \alpha$ and $b \in \beta$ such that p = a + b. Since both cuts α, β have no largest number, there exists $c \in \alpha$ and $d \in \beta$ where a < c and b < d. Thus $c + d \in \gamma$ and p < c + d. We have shown that γ has no largest member.

We have shown that γ meets the definition of a cut.

Step 3: **A2** and **A3** follows since addition in \mathbb{Q} is commutative and associative.

Step 4: We must show that $0^* = \{q \in \mathbb{Q} \mid q < 0\}$ is the additive identity for \mathbb{R} (A4). In other words, we must show that $\alpha + 0^* = \alpha$. Let $\alpha \in \mathbb{R}$.

- 1. First, we must show that $\alpha + 0^* \subset \alpha$. Let $a \in \alpha$ and $b \in 0^*$. Since b < 0, a + b < a. Thus $a + b \in \alpha$ (since α is closed downward). We conclude that $\alpha + 0^* \subset \alpha$.
- 2. Second, we must show that $\alpha \subset \alpha + 0^*$. Let $a, b \in \alpha$. Since α has no largest member, we can pick a, b such that b > a. Then $a - b \in 0^*$ and similar to before $a = b + (a - b) \in \alpha + 0^*$. We conclude that $\alpha \subset \alpha + 0^*$.

Thus we conclude that $\alpha + 0^* = \alpha$.

Step 5: Next, we must show that the additive inverse for $\alpha \in \mathbb{R}$ is $\beta = \{p \in \mathbb{Q} \mid \text{ there exists } r > 0 \text{ s.t. } -p-r \notin \alpha\}$ (A5).

Let $\alpha \in \mathbb{R}$.

- 1. First, we must show that β is a cut.
 - i. We must show that β is non-trivial. Since $\alpha \neq \emptyset$, there exists some $a \in \alpha$. Since α is closed downward, $a - b \in \alpha$ for all b > 0. Thus $-a \notin \beta$ so $\beta \neq \mathbb{Q}$.

Since $\alpha \in \mathbb{Q}$, there exists some $c \notin \alpha$. Consider d = -c - 1. Then $-d - 1 \notin \alpha$ (since c = -d - 1). Thus $d \in \beta$ so $\beta \neq \emptyset$.

- ii. We must show that β is closed downward. Let $p \in \beta$, $q \in \mathbb{Q}$. We assume that q < p. There exists some r > 0 s.t. $-p - r \notin \alpha$. Since q < p, -q - r > -p - r. Thus $-q - r \notin \alpha$ (since α is closed downward), so $q \in \beta$. We conclude that β is closed downward.
- iii. We must show that β has no largest member. Consider j = f + (h/2). Then j > f, and $-j - (h/2) = -f - h \notin \alpha$. Then $j \in \beta$. Thus we find β also has no largest member.

We conclude that β satisfies the definition of a cut.

- 2. Second, we must show that $\alpha + \beta = 0^*$.
 - i. We need to show that $\alpha + \beta \subset 0^*$. Let $s \in \alpha$ and $t \in \beta$. By definition of β , there exists u > 0 s.t. $-t - u \notin \alpha$. Then -t - u > s and it follows that s + t < -u < 0. Therefore $s + t \in 0^*$.
 - ii. We also need to show that $0^* \subset \alpha + \beta$. Let $v \in 0^*$ and w = -v/2. Then w > 0. By the Archimedean property of \mathbb{Q} , there exists $n \in \mathbb{Z}$ s.t. $nw \in \alpha$ and $(n+1)w \notin \alpha$. Consider x = -(n+2)w. Now $-x = nw + 2w \implies -x - w = nw + w = (n+1)w \notin \alpha$. By definition of β , $x \in \beta$. We find v = -2w = -(n+2)w + nw = p + x and conclude that $v \in \alpha + \beta$.

This shows that $\alpha + \beta = 0^*$.

We have proved that β is the additive inverse for α and that \mathbb{R} satisfies all the addition axioms. Next we will show that \mathbb{R} satisfies the multiplication axioms.

Step 6: We must show that \mathbb{R} is closed under multiplication (M1). We will only consider the positive case for multiplication (because I am lazy and the whole thing is tedious. Most books only do the addition axioms.)

Let $\alpha, \beta \in \mathbb{R}_+$ and $\alpha\beta = \{p \mid p \leq ab, a \in \alpha, b \in \beta, \text{ and } a, b > 0\}$. We must prove $\alpha\beta \in \mathbb{R}$ as before.

i. Since α, β are non-trivial, there exists some $a \in \alpha, b \in \beta$ s.t. a, b > 0. Now $ab \leq ab$. Thus $ab \in \alpha\beta$ so $\alpha\beta \neq \emptyset$.

There also exists some $c \notin \alpha, d \notin \beta$ s.t. c > a and d > b for all $a \in \alpha$ and $b \in \beta$. Now cd > ab for all $a \in \alpha, b \in \beta$. Thus $cd \notin \alpha\beta$ so $\alpha\beta \neq \mathbb{Q}$.

- ii. Let $p \in \alpha\beta$, $q \in \mathbb{Q}$, and q < p. Now p < ab for some $a \in \alpha$, $b \in \beta$. By order of \mathbb{Q} , $q so <math>q \in \alpha\beta$.
- iii. Since α, β have no largest member, we can pick some c > a and d > b s.t. $c \in \alpha$ and $d \in \beta$. Thus $p \leq ab < cd$, so $ab \in \alpha\beta$.

We have shown that $\alpha\beta$ satisfy all three properties of a cut.

<u>Step 6:</u> We must show that multiplication in \mathbb{R} is commutative (**M2**) and associative (**M3**). Let $p \in \alpha\beta$. Now $p \leq ab$ for some $a \in \alpha$, $b \in \beta$, a, b > 0. Since multiplication in \mathbb{Q} is commutative, $p \leq ba$. Thus, $p \in \beta\alpha$. Clearly $\alpha\beta \subset \beta\alpha$ and $\beta\alpha \subset \alpha\beta$. We conclude that $\alpha\beta = \beta\alpha$ and multiplication in \mathbb{R} is commutative.

The proof that multiplication in \mathbb{R} is associative is similar relying on multiplication in \mathbb{Q} is associative.

Step 7: We must show that there is a multiplicative identity in \mathbb{R} (M4).

We will define it to be $1^* = p \in \mathbb{Q} \mid p < 1$. Let $\alpha \in \mathbb{R}$. We must demonstrate that $\alpha \cdot 1^* = \alpha$.

- 1. We must show $\alpha \cdot 1^* \subset \alpha$. Let $p \in \alpha \cdot 1^*$. Now $p \le a \cdot b$ for some $a \in \alpha$, $b \in 1^*$. Since b < 1, $p \le ab < a$ so $p \in \alpha$.
- 2. We also must show $\alpha \subset \alpha \cdot 1^*$. We can choose some $c \in \alpha$ s.t. c > a. This implies $\frac{a}{c} < 1$ so $\frac{a}{c} \in 1^*$. Thus $a = c \cdot \frac{a}{c} \in \alpha \cdot 1^*$.

We conclude that $\alpha \cdot 1^* = \alpha$.

Step 8: We must show that there is a multiplicative inverse in \mathbb{R} (M5). We will define the multiplicative inverse for $\alpha \in \mathbb{R}_+$ as: $\beta = 0^* \cup \{0\} \cup \{p \in \mathbb{Q} \mid \text{ there is an } r \in \mathbb{Q} \text{ with } r > 1 \text{ and } \frac{1}{rp} \notin \alpha\}$. Let $\alpha \in \mathbb{R}$.

- 1. We must show $\beta \in \mathbb{R}$.
 - i. Clearly $\beta \neq \emptyset$. Since $\alpha \neq \mathbb{Q}$ and $\alpha \in \mathbb{R}_+$, there exists some $a \in \alpha$ where a > 0. Then $1/a \notin \beta$ since there is no

The cases for multiplication with negative cuts are also similar using the identity: $\gamma = -(-\gamma)$.