Replanification avec perturbation minimale

Thierry Moisan, Claude-Guy Quimper, Jonathan Gaudreault, et Sébastien Michaud

Université Laval, consortium de recherche FORAC

6 février 2015

Plan de la présentation

- Problématique
- Mesures de distance
- Programmation linéaire
- Modèle linéaire à partie entière
- Expériences et résultats

Problèmes avec la replanification

- Nous sommes dans un contexte de production.
- Supposons qu'un plan de production existe déjà.
- Une nouvelle commande arrive et nous devons replanifier.
- Le plan de production résultant peut être très différent de l'original.
 - Cela crée des problèmes sur le plancher lorsque du travail doit être fait avant la production.
 - Cela peut être encore pire après plusieurs replanifications.

Planification et ordonnancement des opérations de finition du bois

Un ensemble de commandes à remplir est connu.

- La plupart des commandes ne peuvent pas être remplies à l'aide de l'inventaire.
- Notre but est de planifier et ordonnancer les opérations de production pour satisfaire ces demandes.
- Planifier: choisir les actions à utiliser durant la production.
- Ordonnancement: quand et qui doit exécuté ces actions.

Planification et ordonnancement des opérations de finition du bois

- Les processus sont des opérations créant plusieurs produits à partir d'un intrant.
- Chaque produit peut être obtenu avec un processus alternatif.

- Il y a des contraintes de configurations qui restricte le séquencement des opérations.
- Nous minimisons le retard des commandes (backorders).
- Le plan de production est modélisé à l'aide d'un programme mathématique à valeur entières (MIP).

Replanification

- Après une première planification nous obtenons un plan de production optimal.
- Nous ajoutons des contraintes pour fixer une borne supérieure sur le nombre backorders à chaque période.
- Nous incluons ensuite les nouvelles commandes dans le jeu de données et nous réoptimisons afin de minimiser les backorders.
- Cette replanification cré un plan optimal qui respecte les commandes déjà existantes.
- Mais plusieurs plans optimaux existent. Comment pouvons-nous choisir le plus proche de l'original?

Objectif/Méthodologie

- L'objectif est de modéliser la re-planification du plan de production.
- Méthodologie
 - Minimiser les backorders.
 - Fixer les backorders optimaux sous forme de bornes supérieures dans le modèle.
 - Change la fonction objective pour la distance entre le plan de production d'origine et le nouveau plan.
 - Obtenir le nouveau plan de production qui minimise cette distance.

Mesures de distance

- Nous considérons le choix de famille de bois à chaque période comme étant un caractère d'un mot.
- Nous utilisons trois métriques de distance pour mesurer la similarité de deux plans de production.
 - Distance de Hamming (Hamming 1950)
 - Distance d'édition (Levenshtein 1966)
 - Distance de Damerau-Levenshtein (Damerau 1964)

Plan de production et mot

Distance de Hamming

- Compte le nombre de caractères différents à chaque position (substitutions).
- Peut seulement être appliquée aux mots de même longueur.

Distance de Hamming de 8

Distance d'édition

- Compte le nombre de caractères différents à chaque position (substitutions).
- Considère aussi le nombre de suppression et d'insertion de caractères.
- Peut être appliquée à des mots de longueurs différentes.

Distance d'édition de 4

Distance de Damerau-Levenshtein

- Compte le nombre de caractères différent à chaque position (substitutions).
- Considère aussi le nombre de suppression et d'insertion de caractères.
- La permutation de deux caractères adjacents a une distance de 1.

Distance de Damerau-Levenshtein de 3

Plan

- Problématique
- 2 Mesures de distance
- Programmation linéaire
- Modèle linéaire à partie entière
- Expériences et résultats

Exemple de programmation linéaire

- Supposons qu'un marchand vend deux types de produit: du jus de pommes et du jus d'ananas.
- Il souhaite trouver un inventaire maximisant la quantité détenue mais en prenant en compte des contraintes.
- Le jus de pommes vaut 4\$ le litre.
- Le jus d'ananas vaut 8\$ le litre.
- L'inventaire doit contenir une majorité de jus d'ananas.
- Le marchand veut garder plus d'un litre de jus de pommes.
- L'inventaire contient au maximum une valeur de 50\$.
- Quelle quantité de jus de chaque catégorie doit-il garder?

Exemple de programmation linéaire

- x: quantité de jus d'ananas
- y: quantité de jus de pommes

Maximise
$$x + y$$

sujet à $x \ge y$
 $y \ge 1$
 $8x + 4y \le 50$
 $x \ge 0$
 $y \ge 0$

Exemple de programmation linéaire

- x: quantité de jus d'ananas
- y: quantité de jus de pommes

Maximise
$$x + y$$

sujet à $x \ge y$
 $y \ge 1$
 $8x + 4y \le 50$
 $x \ge 0$
 $y \ge 0$

• Solution optimale: $x = \frac{50}{12}$, $y = \frac{50}{12}$

Simplexe

- Le simplexe permet de résoudre ce type de problème.
- L'idée principale est de se déplacer sur les frontières de l'espace de solution.
- L'espace de solution étant un polytope convexe, lorsqu'une solution localement optimale est trouvée, il s'agit de la solution globalement optimale.

Nombre entiers

- x: quantité de jus d'ananas
- y: quantité de jus de pommes

Maximise
$$x + y$$

sujet à $x \ge y$
 $y \ge 1$
 $8x + 4y \le 50$
 $x \ge 0$
 $y \ge 0$

Nombre entiers

- x: quantité de jus d'ananas
- y: quantité de jus de pommes

Maximise
$$x + y$$

sujet à $x \ge y$
 $y \ge 1$
 $8x + 4y \le 50$
 $x \in \mathcal{N}$
 $y \in \mathcal{N}$

 Le problème devient NP-Complet.

Nombre entiers

Maximise
$$X + Y$$

sujet à $x \ge y$
 $y \ge 1$
 $8x + 4y \le 50$
 $x \in \mathcal{N}$
 $y \in \mathcal{N}$

 Le problème devient NP-Complet.

Programmation linéaire à partie entière

- Branch & bound
 - Le modèle est résolu à l'aide du simplexe en supposant que toutes les variables sont continues.
 - Si la variables x est de type entier et la solution du simplex est x = 5.2 on crée deux branche.
 - **1** En ajoutant la contrainte $x \le 5$.
 - 2 En ajoutant la contrainte $x \ge 6$.
 - Des bornes sur les solutions possibles sont obtenus et permettent de réduire la taille de l'espace de recherche.
- En cas d'échec (aucune solution ou solution non-optimale) on retourne en arrière (backtrack) et on continue la recherche.

Plan

- Problématique
- Mesures de distance
- Programmation linéaire
- Modèle linéaire à partie entière
- 5 Expériences et résultats

Modèle de la distance de Hamming

- Cette distance est modélisée comme un somme.
- Ce concept a déjà été étudié (Brown et coll. 1997).
- Soit X un mot composé des caractères x_1, x_2, \ldots, x_n et Y un mot composé des caractères y_1, y_2, \ldots, y_n .

$$Hamming(X,Y) = \sum_{i=1}^{n} I(x_i \neq y_i).$$

Modèle de la distance d'édition

• La distance est équivalente au chemin le plus court dans un graphe et peut être résolu en temps polynomial.

- Les transitions verticales et horizontales représentent, respectivement, les suppressions et les insertions.
- Les transitions diagonales représentent l'égalité ou l'inégalité de chaque paire d'éléments.

Exemple de la distance d'édition

Exemple de la distance d'édition

Exemple de la distance d'édition

- La distance est modélisée comme une extension du chemin de la distance d'édition.
- La plus longue transition diagonale représente la permutation de caractères subséquents.

Plan

- Problématique
- Mesures de distance
- Programmation linéaire
- Modèle linéaire à partie entière
- Expériences et résultats

Plan d'expérimentation

- Nous avons utilisé notre méthodologie pour replanifier des opérations de l'entreprise forestière Maibec.
- Nous optimisons les instances d'origines et nous fixons une borne supérieure sur la quantité de retard à chaque période.
- Nous simulons l'arrivée de groupes de 1 à 15 commandes en se basant sur les données existantes.
- Nous changeons la fonction objectif afin de minimiser la distance entre le plan d'origine et le nouveau plan que nous souhaitons généré.

Instances provenant d'une compagnie canadienne de produit forestier

Nous avons travaillé avec les instances suivantes:

- 65,142 variables
- 50,238 contraintes
- 42 variables de décision entière de cardinalité 6
- Nous avons utilisé le solveur CPLEX 12.5

Temps d'exécution

Moyenne géométrique des temps d'exécution de chaque expérimentation.

	Minimisation	minimisation	Minimisation	Minimisation
	des	de la	de la	de la
	backorders	distance de	distance	distance de
	(secondes)	Hamming	d'édition	Damerau-
		(secondes)	(secondes)	Levenshtein
				(secondes)
Instances faciles	1.4	0.7	4.7	4.2
Instances difficiles	564.5	7.9	135.8	127.3

Plans de production comparés avec la distance de Damerau-Levenshtein

Conclusion

- Nous avons proposé une nouvelle méthodologie de replanification qui minimise la distance entre deux plans de production.
- Nous avons utilisé trois métriques de distance afin de mesurer la similarité entre deux plans de productions:
 - Distance de Hamming
 - ▶ Distance d'édition
 - Distance de Damerau-Levenshtein
- Nous avons modélisé ces distances dans modèle MIP.
- Nous avons expérimenté avec le problème de planification et d'ordonnancement des opérations de finition du bois d'oeuvre.
 - Satisfiant les nouvelles commandes
 - Stabilisant la production
 - ▶ Peut être fait en une fraction du temps nécessaire pour obtenir le premier plan de production.

Travaux futurs

- Explorer des mesures de distance plus proche des besoins exacts de l'industrie.
 - ► Par exemple une distance avec une pénalité exponentielle.
- Est-ce que cette approche peut être appliquée à un ensemble de machines parallèles?