Principal Component Analysis

Morgan Bengtsson benmo417@student.liu.se Cliver Zardán cliza724@student.liu.se

Introduction: In this lecture

- What is PCA?
- Example: The Spring
- Mathematical basics
 - Linear Algebra
 - Statistics
- Example Continued
 - Steps
- Data mining and PCA
- Conclusions
- References

What is PCA?

Magic Box

What is PCA?

- Extract of relevant information
- Find patterns
- Relatively simple
- Reduce of dimensions
- Change of basis
- Somewhat remove noise

Example: The Spring

- Artificially created
- Could be relatively real though
- Ideal spring

Example: The Spring Data

Complicated multidimensional dataset

	1	2	3	4	5	6	7
1	0.1231	0.2655	0.3258	0.3411	0.3295	0.3783	0.5683
2	0.1195	0.1767	0.2925	0.4223	0.5193	0.6965	0.887
3	0.137	0.0142	0.0345	-0.0205	-0.0595	0.0488	-0.0976

Matematical Basics

Linear algebra:

- Eigen vectors
- Eigen values
- Matrix Algebra

Statistics:

- Standard Deviation
- Variance
- Covariance
- Covariance Matrix

Linear Algebra: Eigenvalues & Eigenvectors

Eigenvectors can only be found for square matrices.

Eigenvectors and eigenvalues comes in pairs.

Orthogonal

Ex. A 3x3 matrix has 3 eigenvectors. The highest eigenvalue represents the best eigenvector.

Statistics: Covariance and Covariance Matrix

Covariance = Dependence betwen two sets

Covariance Matrix = If working with many dimensions

$$C = \begin{pmatrix} cov(x,x) & cov(x,y) & cov(x,z) \\ cov(y,x) & cov(y,y) & cov(y,z) \\ cov(z,x) & cov(z,y) & cov(z,z) \end{pmatrix}$$

Covariance Matrix of a 3-dimensional data set.

Example Continued

Complicated multidimensional dataset

	1	2	3	4	5	6	7
1	0.1231	0.2655	0.3258	0.3411	0.3295	0.3783	0.5683
2	0.1195	0.1767	0.2925	0.4223	0.5193	0.6965	0.887
3	0.137	0.0142	0.0345	-0.0205	-0.0595	0.0488	-0.0976

Example Continued: PCA Steps 1 - 7

- 1. Subtract the mean along each dimension
- 2. Calculate the covariance matrix
 - o cov = 1/(N-1) *dataDist*dataDist';
- 1. Calculate the *Principal Components* of cov. (eigs in Matlab)
 - Sorted with respect to eigenvalues

Example Continued: PCA Steps 1 - 7

- 4. Select the principal components that are relevant
 - Three principal components
 - Data transformed with respect to each PC

Example Continued: PCA Steps

- 5. Transform with respect to those (Feature Vector)
 - o dataPC12 = PC(:,1:2)'*dataDist;
- 6. Choose
 - Transform to original coordinates
 - Keep the new coordinate system
- 7. Re add the mean values

Example: Summary

- Complicated data set
- Found principal components
- Reduced dimension
- Transformed to new basis

Data mining and PCA

- Better representation of data
- More representative basis
- Accuracy of classification model
- Faster and better data processing

Data mining and PCA

- Applications
 - Military
 - Medicine
 - Experiments
 - Neuroscience
 - Computer Graphics
 - Infovis
 - 0 ...

Conclucions

Strengths

- Easy
- Widely used
- Efficent
- No tweaking

Weaknesses

No tweaking

References

Principal Components

http://csnet.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf

A Tutorial on Principal Component Analysis

http://www.snl.salk.edu/%7Eshlens/pub/notes/pca.pdf

Principal Components Analysis

http://www.resample.com/xlminer/help/PCA/pca_intro.htm

Questions?