

Instituto Superior Técnico

Robótica

Direct and Inverse Kinematics of Serial Manipulators

1.º Trabalho de Laboratório

Autores:

João BORGES 75588 Rui GUERRA 75737

Ano Lectivo: 2015-2016

1 Introdução

O problema proposto neste trabalho consiste na representação da pose (posição e orientação) da ponta de um braço robótico (denominado *end-effector*) recorrendo apenas aos graus de liberdade dados pelos ângulos das juntas deste, bem como a determinação das possíveis combinações destes ângulos para obter uma certa pose.

Numa primeira fase, pretende-se determinar esta pose a partir de um conjunto de 6 graus de liberdade $(\theta_1, ..., \theta_6)$ recorrendo apenas a transformações de coordenadas baseadas na cinemática do braço robótico.

Numa segunda fase, partindo de uma pose $(x, y, z, \alpha, \beta, \gamma)$ conhecida, pretende-se conhecer todas as possíveis combinações de ângulos θ para que esta pose se verifique.

Com vista a solucionar estes problemas, implementaram-se dois programas de MATLAB que permitem determinar a pose a partir dos ângulos e vice-versa.

2 Cinemática Directa

O problema de determinar a pose do end-effector do braço robótico a partir dos ângulos $(\theta_1, ..., \theta_6)$ é um problema de cinemática directa que, para ser resolvido, é necessário percorrer um conjunto de passos.

Em primeiro lugar, é necessário estabelecer os referenciais que correspondem a cada junta e definir as relações entre estes. Este passo é importante porque uma boa definição de referenciais será útil para a simplificação do cálculo a ser feito.

A partir destes referencias será, então, criada uma matriz de transformação geral de onde se poderá extrair a pose do end-effector.

2.1 Estabelecimento de Referenciais

Os referenciais foram escolhidos tendo em vista a utilização da convenção Denavit-Hartenberg (D-H) para uma determinação simplificada das transformações entre estes. Uma representação esquemática das posições relativas dos referenciais encontra-se representada na figura 1.

Para além do referencial da base (0), introduziram-se referenciais correspondendo a cada grau de liberdade (1 a 6) de forma que o eixo de rotação corresposse sempre ao eixo z do referencial. O sentido dos ângulos $(\theta_1, ..., \theta_6)$ é também visível no esquema. De notar que os referenciais 1 e 2 bem como os A, 5 e 6 têm a sua origem no mesmo ponto, mas encontram-se representados separadamente para maior facilidade de observação.

Um referencial auxiliar (A) foi também utilizado para representar uma translação para ser possível utilizar a convenção D-H para determinar a transformação entre todos os referenciais, que de outra forma não seria possível.

Figura 1: Representação gráfica dos referenciais usados.

2.2 Cálculo da Matriz de Transformação

A partir dos referenciais escolhidos, criou-se uma tabela com os parâmetros a ser utilizados pela convenção D-H. Esta encontra-se representada na tabela 1.

i	a_{i-1}	α_{i-1}	d_i	θ_i
1	0	0	A=99 mm	θ_1
2	0	$\frac{\pi}{2}$	0	θ_2
3	B=120 mm	0	0	θ_3
4	C=40 mm	$-\frac{\pi}{2}$	0	θ_4
A	0	0	D=195 mm	0
5	0	$\frac{\pi}{2}$	0	θ_5
6	0	$-\frac{\pi}{2}$	0	θ_6

Tabela 1: Parâmetros da convenção D-H obtidos por inspecção dos referenciais.

Uma vez obtidos estes parâmetros, é possível escrever as matrizes de transformação entre referenciais consecutivos

$${}^{0}_{1}T = \begin{bmatrix} c_{1} & -s_{1} & 0 & 0 \\ s_{1} & c_{1} & 0 & 0 \\ 0 & 0 & 1 & A \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{1}_{2}T = \begin{bmatrix} c_{2} & -s_{2} & 0 & 0 \\ 0 & 0 & -1 & 0 \\ s_{2} & c_{2} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{2}_{3}T = \begin{bmatrix} c_{3} & -s_{3} & 0 & B \\ s_{3} & c_{3} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{3}_{4}T = \begin{bmatrix} c_{4} & -s_{4} & 0 & C \\ 0 & 0 & 1 & 0 \\ -s_{4} & -c_{4} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{4}_{4}T = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & D \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{5}_{5}T = \begin{bmatrix} c_{5} & -s_{5} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -s_{6} & -c_{6} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$(1)$$

Para simplificação de notação, as funções trigonométricas $sin(\theta_x)$ e $cos(\theta_x)$ serão abreviadas para s_x e c_x e as constantes relativas a distâncias serão representadas por A, B, C e D, como se indica na tabela 1. A matriz de transformação geral pode ser então obtida por

$${}_{6}^{0}T = {}_{1}^{0} T \cdot {}_{2}^{1} T \cdot {}_{3}^{2} T \cdot {}_{4}^{3} T \cdot {}_{4}^{4} T \cdot {}_{5}^{4} T \cdot {}_{5}^{5} T = \begin{bmatrix} {}_{6}^{0}R & {}_{6}^{0}P \\ 0 & 1 \end{bmatrix}.$$
 (2)

2.3 Obtenção da Pose do End-effector

A partir da matriz ${}^{0}_{6}$ T é possível determinar os parâmetros da pose do end-effector. A posição (x,y,z) é obtida directamente a partir das entradas (1,4), (2,4) e (3,4), respectivamente, desta matriz. Para definir os parâmetros da orientação (α,β,γ) escolheu-se uma convenção de ângulos de Euler Z-Y-X. Segundo esta convenção, estes ângulos podem ser obtidos somente a partir da matriz de rotação ${}^{0}_{6}$ R (com entradas representadas por r_{ij}) através das expressões

$$\alpha = atan2\left(\frac{r_{21}}{c_{\beta}}, \frac{r_{11}}{c_{\beta}}\right) \qquad \beta = atan2\left(-r_{31}, \sqrt{r_{11}^2 + r_{21}^2}\right) \qquad \gamma = atan2\left(\frac{r_{32}}{c_{\beta}}, \frac{r_{33}}{c_{\beta}}\right)$$
(3)

para $c_{\beta}\neq 0$. Caso contrário $\alpha=0,\ \beta=\pm\frac{\pi}{2}$ e $\gamma=\pm atan2\left(r_{12},r_{22}\right)$.

2.4 Testes Experimentais

Após implementar a função $direct_kinematics.m$ em MATLAB, realizaram-se diversos testes experimentais para verificar o bom funcionamento do programa desenvolvido. Na figura 2 apresentam-se dois testes, onde se observam a representação do braço robótico e a pose final do end-effector. O teste à esquerda teve como input os ângulos (0,0,0,0,0,0) e o teste à direita teve os ângulos $(\frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2}, 0, \frac{\pi}{2}, 0)$.

Figura 2: Representação gráfica do braço robótico e *output* da função *direct_kinematics.m* para dois exemplos.

É de notar que não é possível visualizar os efeitos dos três últimos graus de liberdade no gráfico devido a estes apenas influenciarem a orientação final do *end-effector*. De qualquer forma, o bom funcionamento do programa pode ser verificado de acordo com os referenciais estabelecidos anteriormente a partir do *output* da função.

3 Cinemática Inversa

Determinar os valores dos ângulos $(\theta_1, ..., \theta_6)$ do braço robótico a partir da pose do *end-effector* é um problema mais complexo, devido à multiplicidade de soluções para cada pose e à complexidade do cálculo numérico para cada um dos ângulos.

3.1 Construção da Matriz de Transformação

Em primeiro lugar, é necessário criar a matriz de transformação a partir da pose de *input* $(x, y, z, \alpha, \beta, \gamma)$. Considerando novamente a convenção de ângulos de Euler Z-Y-X, é possível escrever esta matriz em função destes parâmetros através da expressão

3.2 Cálculo dos Ângulos das Juntas

Utilizando $_{tool}^{base}$ T é possível determinar todas as soluções possíveis para $(\theta_1, ..., \theta_6)$. A fórmula geral usada para obter as expressões de cada θ foi

$$\begin{bmatrix} {}_{n}^{0}\mathrm{T}(\theta_{1},...,\theta_{n}) \end{bmatrix}^{-1} \cdot \underset{tool}{base} \mathrm{T} = {}_{6}^{n}\mathrm{T}(\theta_{n+1},...,\theta_{6})$$

$$(5)$$

para diferentes valores de n escolhidos de forma a simplificar o cálculo simbólico para cada θ . As expressões são obtidas escolhendo uma ou duas entradas da matriz que resultem em equações simples que dependam de apenas um ângulo desconhecido. Por exemplo, as expressões obtidas para θ_1 e θ_3 foram

$$\theta_1 = atan2\left(\frac{y}{x}\right)$$
 \vee $\theta_1 = atan2\left(\frac{y}{x}\right) - \pi$ (6)

e

$$\theta_3 = atan2(C, D) - atan2(K, \pm \sqrt{C^2 + D^2 - K^2}),$$
 (7)

sendo

$$K = \frac{(c_1x + s_1y)^2 + (z - A)^2 - B^2 - C^2 - D^2}{2B}.$$
 (8)

Os restantes ângulos têm expressões mais complexas mas que foram possíveis de obter apenas com dependências de outros ângulos já obtidos anteriormente. Estas poderão ser visualizadas no ficheiro <code>inverse_kinematics.m</code> no MATLAB.

Como se pode observar, θ_1 e θ_3 têm duas soluções cada. Analisando os restantes ângulos também se poderá concluir que os ângulos θ_4 , θ_5 e θ_6 têm duas combinações de soluções. Assim, poder-se-á concluir que existem no total 8 soluções para $(\theta_1, ..., \theta_6)$ que satisfaçam a pose desejada. Contudo, é possível não haver solução para os ângulos, o que acontece quando a raiz quadrada utilizada no cálculo de θ_3 produz um número imaginário. É possível também acontecer uma singularidade caso θ_5 seja múltiplo de π . Neste caso, não é possível distinguir os efeitos de θ_4 e θ_6 pelo que os resultados obtidos para estas variáveis não são únicos, sendo que estas dependem uma da outra. Por fim, outra singularidade pode ocorrer caso x = y = 0. Quando isto sucede, θ_1 poderá tomar qualquer valor para satisfazer a pose desejada.

3.3 Testes Experimentais

De seguida demonstram-se vários exemplos de possíveis outputs para a função desenvolvida $inverse_kinematics.m$. Na figura 3 estão representadas as soluções obtidas para três poses. As soluções de cima correspondem às poses obtidas nos exemplos da figura 2, e a de baixo corresponde às soluções da pose (0,0,0.01,0,0,0).

_	theta <8x6 double>							theta <8x6 double>						
	1	2	3	4	5	6		1	2	3	4	5	6	
1	0	3.8171e-16	-4.1633e-16	0	3.4626e-17	0	1	-1.5708	2.550	7 1.5708	3.1416	2.5507	-1.0170e-1	
2	0	1.7673	-2.7369	0	0.9696	0	2	-1.5708	1.570	08 1.9754	3.1416	1.9754	-4.8213e-1	
3	-3.1416	1.3742	-4.1633e-16	-3.1416	1.3742	-1.4638e-16	3	1.5708	1.570	1.5708	2.2204e-16	1.5708	1.1119e-3	
4	-3.1416	3.1416	-2.7369	-3.1416	0.4046	-2.3504e-16	4	1.5708	0.590	9 1.9754	2.6464e-16	2.1461	1.4398e-1	
5	0	3.8171e-16	-4.1633e-16	-3.1416	-3.4626e-17	-3.1416	5	-1.5708	2.550	7 1.5708	0	-2.5507	-3.141	
6	0	1.7673	-2.7369	-3.1416	-0.9696	-3.1416	6	-1.5708	1.570	1.9754	0	-1.9754	-3.141	
7	-3.1416	1.3742	-4.1633e-16	0	-1.3742	-3.1416	7	1.5708	1.570	1.5708	-3.1416	-1.5708	-3.141	
8	-3.1416	3.1416	-2.7369	0	-0.4046	3.1416	8	1.5708	0.590	9 1.9754	-3.1416	-2.1461	-3.141	
			E	theta <8x6 d	ouble>							ľ		
				1	2	3		4	5	6				
				1 0	2.1972	1.5079	9	0	2.5780	0				
				2 0	0.9443	2.0383	3	3.1416	2.9827	3.1416				
				-3.1416	2.1972	1.5079	9	0	2.5780	3.1416				
				4 -3.1416	0.9443	2.0383	3	3.1416	2.9827	-2.4339e-16				
				5 0	2.1972	1.5079	9	-3.1416	-2.5780	-3.1416				
				6 0	0.9443	2.0383	3	0	-2.9827	0				
				7 -3.1416	2.1972	1.5079	9	-3.1416	-2.5780	0				
				-3.1416	0.9443	2.0383		0	-2.9827	-3.1416				

Figura 3: Output da função inverse kinematics.m para três exemplos.

Observa-se o bom funcionamento do programa desenvolvido no segundo exemplo, já que a entrada usada na cinemática directa corresponde à terceira solução obtida, a menos de erros de arredondamento. No primeiro exemplo, tem-se a situação de existir a singularidade de θ_5 ser múltiplo de π . Enquanto se observa que, de facto, a pose usada na cinemática inversa corresponde à primeira solução indicada na lista, o programa avisa que a singularidade existe e que, portanto, existem outras soluções. θ_4 e θ_6 não se distinguem, e como neste caso θ_5 = 0, tem-se apenas que θ_4 = $-\theta_6$ (caso θ_5 = π , ter-se-ia θ_4 = θ_6). No terceiro exemplo observa-se o caso de existir a singularidade x = y = 0. Neste caso é dado um aviso a indicar que θ_1 pode tomar qualquer valor para além dos indicados na solução. No caso de o ponto ser inválido (por ser impossível o braço robótico chegar a essa posição), o output da função é simplesmente o valor -1.

4 Instruções de Utilização das Funções MATLAB

A função $direct_kinematics.m$ recebe como argumento um vector de dimensão 6 correspondendo aos ângulos $(\theta_1, ..., \theta_6)$. A saída é também um vector de dimensão 6 correspondendo à pose $(x, y, z, \alpha, \beta, \gamma)$ do end-effector de acordo com a convenção de ângulos de Euler Z-Y-X. Um exemplo de utilização desta função é o comando "pose=direct_kinematics(theta);", se theta corresponder ao vector de ângulos.

A função inverse_kinematics.m recebe como argumento um vector de dimensão 6 indicando a pose do end-effector desejada $(x, y, z, \alpha, \beta, \gamma)$ usando a mesma convenção. A saída é uma matriz de 8 linhas por 6 colunas correspondendo às 8 soluções possíveis de ângulos $(\theta_1, ..., \theta_6)$, ou então apenas um valor igual a -1 caso o ponto seja inválido. Um exemplo de utilização é o comando "theta=inverse_kinematics(pose);".

5 Conclusões

No trabalho realizado foi possível resolver o problema de determinar a pose do end-effector do braço robótico a partir dos ângulos das suas juntas $(\theta_1, ..., \theta_6)$, bem como o problema inverso. Após a definição dos referenciais a usar e a escolha da convenção de ângulos, o problema a resolver resumiu-se em grande parte à realização de manipulações algébricas.

O resultado obtido foi duas funções de MATLAB, denominadas direct_kinematics.m e inverse_kinematics.m, que produzem todas as soluções possíveis para cada problema, detectando singularidades e entradas inválidas.