

Claims

- 1 1. An electronic device, comprising a sensor having a magnetically permeable member
2 and a circuit, wherein said circuit adjusts sensor output to provide sensor output data
3 independent of temperature of said magnetically permeable member, wherein said
4 circuit uses a signal derived from resistance of said sensor to correct for temperature.
- 1 2. The electronic device as recited in claim 1, wherein said magnetically permeable
2 member is moveable.
- 1 3. The electronic device as recited in claim 1, wherein said magnetically permeable
2 member is located within an inductor coil.
- 1 4. The electronic device as recited in claim 3, wherein said resistance comprises
2 resistance of said inductor coil.
- 1 5. The electronic device as recited in claim 1, wherein said sensor is a displacement
2 sensor.
- 1 6. The electronic device as recited in claim 1, wherein said sensor comprises input pads
2 for receiving a first signal and a second signal, said first signal having a higher
3 frequency than said second signal.
- 1 7. The electronic device as recited in claim 1, wherein said circuit further uses a signal
2 derived from resistance of said sensor to correct for a temperature gradient.
- 1 8. The electronic device as recited in claim 1, wherein said circuit comprises a variable

2 gain amplifier.

1 9. The electronic device as recited in claim 1, wherein said magnetically permeable
2 member comprises a highly permeable material.

1 10. The electronic device as recited in claim 9, wherein said highly permeable material
2 comprises permalloy, ferrite, and 400 series stainless steel.

1 11. The electronic device as recited in claim 1, wherein said magnetically permeable
2 member comprises magnetoelastic characteristics.

1 12. The electronic device as recited in claim 11, wherein said magnetoelastic
2 characteristics are modulated by strain, stress, or torque.

- 1 13. An electronic device, comprising a coil, a magnetically permeable member that
2 extends in said coil, and a circuit, wherein said circuit adjusts output voltage of said
3 coil to compensate for a change in temperature in said coil and in said member.
- 1 14. The electronic device as recited in claim 13, wherein said magnetically permeable
2 member is moveable with respect to said coil.
- 1 15. The electronic device as recited in claim 13, wherein said circuit uses resistance of
2 said coil to compensate for change in temperature of said coil and in said member.
- 1 16. The electronic device as recited in claim 13, wherein said sensor is a displacement
2 sensor.
- 1 17. The electronic device as recited in claim 13, wherein said sensor comprises input pads
2 for receiving a first signal and a second signal, said first signal having a higher
3 frequency than said second signal.
- 1 18. The electronic device as recited in claim 13, wherein said core extends in two coils
2 and wherein said circuit further uses a signal derived from resistance of at least one of
3 said coils to correct for a temperature gradient across said coils.
- 1 19. The electronic device as recited in claim 13, wherein said circuit comprises a variable
2 gain amplifier.
- 1 20. The electronic device as recited in claim 13, wherein said magnetically permeable
2 member comprises a highly permeable material.
- 1 21. The electronic device as recited in claim 20, wherein said highly permeable material

2 comprises permalloy, ferrite, and 400 series stainless steel.

1 22. The electronic device as recited in claim 13, wherein said magnetically permeable
2 member comprises magnetoelastic characteristics.

1 23. The electronic device as recited in claim 22, wherein said magnetoelastic
2 characteristics are modulated by strain, stress, or torque.

PRINTED IN U.S.A. 05-15-00

- 1 24. An electronic device, comprising an inductor, a magnetically permeable member
2 coupled to said inductor, and a circuit, wherein said circuit adjusts a voltage output of
3 said inductor to provide a voltage independent of temperature of said inductor and
4 temperature of said magnetically permeable member.
- 1 25. The electronic device as recited in claim 24, wherein said magnetically permeable
2 member is moveable with respect to said inductor.
- 1 26. The electronic device as recited in claim 24, wherein said circuit uses resistance of
2 said coil to compensate for change in temperature of said inductor and in said
3 member.
- 1 27. The electronic device as recited in claim 24, wherein said inductor, member and
2 circuit comprise a sensor.
- 1 28. The electronic device as recited in claim 27, wherein said inductor, member and
2 circuit comprise a displacement sensor.
- 1 29. The electronic device as recited in claim 27, wherein said sensor comprises input pads
2 for receiving a first signal and a second signal, said first signal having a higher
3 frequency than said second signal.
- 1 30. The electronic device as recited in claim 24, further comprising a second inductor,
2 wherein said magnetically permeable member is coupled to said second inductor and
3 wherein said circuit further uses a signal derived from resistance of at least one of said
4 inductors to correct for a temperature difference between said inductors and provide
5 and provide a voltage independent of temperature difference between said inductors.
- 1 31. The electronic device as recited in claim 24, wherein said circuit comprises a variable

2 gain amplifier.

1 32. The electronic device as recited in claim 24, wherein said magnetically permeable
2 member comprises a highly permeable material.

1 33. The electronic device as recited in claim 32, wherein said highly permeable material
2 comprises permalloy, ferrite, and 400 series stainless steel.

1 34. The electronic device as recited in claim 24, wherein said magnetically permeable
2 member comprises magnetoelastic characteristics.

1 35. The electronic device as recited in claim 34, wherein said magnetoelastic
2 characteristics are modulated by strain, stress, or torque.

CONFIDENTIAL - DRAFT

- 1 36. An electronic device for sensing at least one parameter, comprising:
- 2 a first circuit element comprising a reactance and a resistance, said first circuit
3 element comprising input terminals and output terminals;
- 4 said input terminals for providing a first input signal and a second input signal
5 different from said first signal to said first circuit element;
- 6 said output terminals for providing a first output signal and a second output signal
7 from said first circuit element;
- 8 a second circuit element connected to said output terminals to use said first output
9 signal and said second output signal, wherein said second circuit element generates
10 a first parameter that depends exclusively on said resistance and a second parameter
11 that depends exclusively on said reactance; and
- 12 a third circuit element connected to said second circuit element wherein said third
13 circuit element compensates said second parameter for changes in said first
14 parameter.
- 1 37. An electronic device as recited in claim 36, wherein said first circuit element
2 comprises a variable reluctance transducer having a high permeability core, wherein
3 said first parameter provides a measure of temperature and said second parameter
4 provides a measure of position of said core in said transducer.
- 1 38. An electronic device as recited in claim 37, wherein a portion of said variable
2 reluctance transducer is included in a Wheatstone bridge.

1 39. An electronic device as recited in claim 37, wherein said a variable reluctance
2 transducer comprises a differential variable reluctance transducer.

1 40. An electronic device as recited in claim 36, wherein said first parameter is used to
2 correct said second parameter for variation in permeability of said core with
3 temperature.

1 41. An electronic device as recited in claim 36, wherein said third circuit element
2 comprises a third output signal, wherein said third output signal comprises
3 displacement of said core corrected for temperature of said core.

1 42. An electronic device as recited in claim 36, wherein said third circuit element further
2 comprises a device containing a relationship between said permeability and said first
3 parameter, wherein said device provides said relationship for said correction.

1 43. An electronic device as recited in claim 42, wherein said device comprises a variable
2 gain amplifier.

1 46. An electronic device as recited in claim 45, wherein said programmable device
2 comprises a microprocessor.

1 47. A circuit as recited in claim 36, wherein said first input signal has a first frequency
2 and said second input signal has a second frequency, said first frequency lower than

3 said second frequency, and wherein said second circuit comprises a first frequency
4 filter connected to said output, and a second frequency filter connected to said output,
5 wherein said third circuit element comprises an input from said first frequency filter
6 and an input from said second frequency filter, wherein said third circuit element
7 adjusts its output based on the low frequency input.

1 48. An electronic device as recited in claim 47, wherein said second circuit element
2 further comprises a fourth circuit element to compensate for a temperature gradient
3 across said transducer.

1 49. An electronic device as recited in claim 48, wherein said fourth circuit element
2 comprises a summing amplifier to add said output signals across said bridge.

1 50. An electronic device as recited in claim 48, wherein said fourth circuit element
2 comprises a summing amplifier to add output signals across said bridge and a device
3 to provide a difference between said output signals across said bridge, wherein said
4 summing amplifier and said device are connected to receive signal passing through
5 said low pass filter.

1 51. An electronic device as recited in claim 48, wherein said fourth circuit element further
2 comprises a device to provide a difference between said output signals across said
3 bridge, wherein said device is connected to receive signals passing through said high
4 pass filter.

1 52. An electronic device as recited in claim 48, wherein said fourth circuit element further
2 comprises a device to provide a difference between conditioned low frequency signal
3 and conditioned high frequency signal, wherein said difference signal is proportional
4 to position compensated for gradient of temperature.

- 1 53. A sensor comprising a component and a circuit, wherein said component is used by
2 said circuit both for sensing a first parameter and for sensing temperature wherein the
3 temperature is used in said circuit for correcting said first parameter to make output of
4 said sensor independent of change in temperature with time.
- 1 54. A sensor as recited in claim 53 wherein the temperature is further used for correcting
2 said first parameter to make said sensor independent of temperature gradient.
- 1 55. A circuit as recited in claim 53, wherein said component comprises an inductor.
- 1 56. A circuit as recited in claim 55, wherein said component comprises a bridge circuit
2 comprising two inductors.
- 1 57. A circuit as recited in claim 55, wherein said inductor comprise a magnetically
2 permeable core.

DRAFT - DO NOT CITE