- 1. A hydrocarbon is a gas at room temperature. When 1 mole of the compound burns in air, 2 mole of CO₂ are produced. When it is bubbled into bromine water, the bromine loses colour. Which of the following compounds could it be?
 - a) C₂H₅OH

b) CH₂CHCH₃

c) CH₃CH₃

- d) CH₂CH₂
- 2. Asprin, whose structure is shown, contains which functional groups?
 - a) A ketone and an alcohol
 - b) An ester and a ketone
 - c) An ester and a carboxylic acid
 - d) A ketone, alcohol and ester
- COOH O₂CCH₃
- 3. From the list of 4 compounds below, identify the compound that is NOT an isomer of any other compound in the list.

Butuanoic acid, butanal, methylpropanoate, ethylethanoate

- a) Butuanoic acid
- b) Butanal
- c) Methylpropanoate
- d) Ethylethanoate
- 4. Which of the following pure substances will have the highest melting point?
 - a) Ethane
 - b) Ethanal
 - c) Ethanoic acid
 - d) Ethanol
- 5. Which of the following compounds can have geometric isomers?

a)

b)

$$H_3C$$
 $C=C$ CH_3

c)

d)

- 6. A student labelled an organic compound 1-bromo-2,2-dimethylethane, but the name was incorrect according to IUPAC standards. The correct name would be
 - a) 2-dimethyl 1 bromoethane
 - b) 1-bromo-2-methylpropane
 - c) 2-methyl-3-bromopropane
 - d) 1,1-dimethyl-2-bromoethane

- 7. Which of the following substances would you expect to be most soluble in water?
 - a) 1-butanol
 - b) Pentane
 - c) Propanone
 - d) Methylpropanal
- 8. Which of the following statements is FALSE?
 - a) Oxidation of 1-butanol with potassium permanganate produces butanal and subsequently butanoic acid
 - b) Oxidation of 2-butanol with potassium permanganate produces 2-butanone
 - c) Methane when treated with hydrogen chloride produces chloromethane and hydrogen gas
 - d) Ethanoic acid reacts with magnesium to produce hydrogen gas.

Study the section of polymer below to answer questions 9 and 10:

$$= \underbrace{\mathsf{N}}_{\mathsf{H}} - (\mathsf{CH}_2)_6 - \underbrace{\mathsf{N}}_{\mathsf{H}} - \mathsf{C} - (\mathsf{CH}_2)_4 - \mathsf{C} - \underbrace{\mathsf{N}}_{\mathsf{H}} - (\mathsf{CH}_2)_6 - \underbrace{\mathsf{N}}_{\mathsf{H}} - \mathsf{C} - (\mathsf{CH}_2)_4 - \mathsf{C} - \mathsf{C}$$

- 9. This segment is probably part of
 - a) A polyester
 - b) A polyamine
 - c) A polypeptide
 - d) A polycarbide
- 10. A monomer from the polymer could be:

a)
$$NH_2 - (CH_2)_6 - NH_2$$

b)

END OF MULTIPLE CHOICE

Year 12 ChemistryOrganic Chemistry Test 2016

Student Name:	
Teacher:	

- 60 minutes working time
- Non-programmable calculator and data sheet allowed.

Multiple Choice	Short Answer	Extended Answer	Total	
10	23	27	60	

Section I – Multiple Choice

Mark your choice with a cross (X). Please do not circle your answer.

- 1. A B C **Đ**
- 2. **A B C D**
- 3. A B C D
- 4. A B D
- 5.—A B C **Đ**
- 6. A **B** C **D**
- 7. **A B C D**
- 8. **A B C D**
- 9. A **B** C **D**
- 10. **A B C D**

Section II - Short Answer Questions

Question 1

Identify the **organic** reactants that could be used to produce each of the following organic compounds (name or chemical formula):

Compound	Reactants
Butanone	Butan-2-ol (and permanganate / dichromate)
2-bromopropane	Hydrogen bromide and propene
Ethylheptanoate	Ethanol and heptanoic acid

[3 marks]

Question 2

Give the correct IUPAC name or complete structural formula for the following compounds:

IUPAC Name	Structural Formula		
2-amino-3-hydroxy-pentanoic acid	HO CH ₃		
	CH ₂ - CH - CH ₂ - CHO		
3-bromo-4-fluorobutanal			
3 bi onio 4 naorobatana	, 5,		
	CH ₂ = CH – CH – CH ₂ – CH ₃		
3-ethyl-5-methylhex-1-ene	 CH₂ – CH – CH₃		
3-ethyl-3-methylnex-1-ene	Cn ₂ - Cn - Cn ₃		
	CH₃		
	OH		
	H ₃ C		
2,4-dimethyl-cyclohexanol			
	Ĭ.		
	CH ₃		

[4 marks]

Question 3

Write balanced equations for the following reactions:

a) Combustion of octene in a plentiful supply of air.

$$C_8H_{16}$$
 + 12 O_2 \rightarrow 8 CO_2 + 8 H_2O

[2 marks]

b) The reaction between ethanoic acid and solid sodium carbonate.

$$2 CH_3COOH + Na_2CO_3 \rightarrow 2 CH_3COO^-Na^+ + CO_2 + H_2O$$

[2 marks]

c) The reaction between potassium dichromate with ethanal.

$$CH_3CHO + H_2O \rightarrow CH_3COOH + 2 H^+ + 2e^-$$
 x3
 $Cr_2O_7^{2-} + 14 H^+ + 6 e^- \rightarrow 2 Cr^{3+} + 7 H_2O$

$$3 \text{ CH}_3\text{CHO} + \text{Cr}_2\text{O}_7^{2-} + 8 \text{ H}^+ \rightarrow 3 \text{ CH}_3\text{COOH} + 2 \text{ Cr}^{3+} + 4 \text{ H}_2\text{O}$$

Question 4

The molecular formula $C_4H_8O_2$ can represent the molecule shown below:

There are many isomers of this molecule. Draw **two** that are esters and **one** that is a carboxylic acid.

	Structure
Ester	
	Ethyl ethanoate Methyl propanoate Propyl methanoate
Ester	
	Any two of the above
Carboxylic acid	
	Any carboxylic acid with 4 carbons

Question 5

a) What is a monomer?

Small molecule that can be joined to others of the same kind to make a polymer.

[1 mark]

b) Poly vinyl acetate is a soluble polymer with the following structure.

c) Draw the structure of the monomer responsible for the polymer.

$$H_2C$$
 O CH_3

[2 marks]

d) The structural formulae for terephthalic acid and 1,3-propandiol are shown below:

Using these monomers draw a section polymer showing exactly two complete repeating units.

[2 marks]

e) State the type of polymerization involved in this reaction:

Section III - Extended Answer Questions

Question 6

Amino acids form polymers through peptide linkages.

a) Connect two **alanine** molecules with a peptide link.

[2 marks]

b) Amino acids exist as zwitterions. Rewrite **alanine** as it would be found at the pH values indicated below:

рН	Structure of Alanine
3	H H H H O
7	H H H H H H H H H H H H H H H H H H H
10	H_NH H-C-H

c) Circle and name the three amino acids that have been used to make the polypeptide shown below.

[3 marks]

d) Explain the following with regard to protein structure and explain how each structure is held together.

Primary	The primary structure of a protein is the sequence of amino acids in the polypeptide chain or chains.
Secondary	The repeated coiling and folding of a polypeptide chain due to hydrogen bonding between the amine hydrogen and acid oxygen atoms on the protein backbone.
Tertiary	3D structure of a protein due to interactions between amino acid side chains (R groups).

e) Label the different parts of the diagrams below:

DETAILS OF BOND TYPES

- f) Explain how heat and pH changes can disrupt protein structure.
- pH too high will convert -NH₃⁺ to NH₂, or too high will convert C-O⁻ to -C-OH which will disrupt ionic bonds
- Higher kinetic energy can disrupt IM forces within protein
- Protein can 'uncoil' or lose shape

[3 marks]

Question 7

A sample of a compound containing carbon, hydrogen and nitrogen only was burned in oxygen and produced 2.64 g of carbon dioxide, 0.630 g of water and 0.460 g of nitrogen dioxide.

a.
$$n(CO_2) = 0.05999 \text{ mol} = n(C) \text{ in the compound } \checkmark$$

$$n(H_2O) = = 0.03497 \text{ mol}\checkmark$$

n(H) in the compound = 2 × 0.03497 = 0.06994 mol \checkmark

$$n(NO_2) = 0.009998 \text{ mol} = n(N) \text{ in the compound}$$

	<u>C</u>	<u>H</u>	<u>N</u>
Mole:	0.05999	0.06994	0.009998
Ratio:			✓
=	6	6.995	1
≈	6	7	1

The empirical formula is therefore C_6H_7N .

b. molecular mass = $n \times formula mass$

$$95 = n \times 93.126$$

 $n \approx 1$

The molecular formula is therefore C₆H₇N. ✓