Introducción a la Lógica y la Computación — Estructuras de orden Práctico 7: Teorema de Birkhoff para reticulados distributivos.

- 1. Sea L un reticulado. Demostrar que si $x \in L$ es irreducible y $x_1, \ldots, x_n \in L$ son todos distintos de x, entonces $x \neq \sup\{x_1, \ldots, x_n\}$.
- 2. Probar que todo átomo es irreducible.
- 3. Para cada uno de los reticulados diagramados:
 - a) Dibuje el diagrama de Hasse del poset de elementos irreducibles.
 - b) Dibuje en cada caso el diagrama de Hasse de $\mathfrak{D}(Irr(L))$.
 - c) Utilice el Teorema de Birkhoff para determinar si es distributivo o no.

- 4. a) Determine $Irr(D_{300})$.
 - b) Describa de la manera aritmética cuáles son los elementos irreducibles de D_n .
 - c) ¿Qué forma tiene los posets $Irr(D_n)$ en general?
 - d) (*) ¿Da el ítem anterior alguna pista de qué forma tienen los reticulados D_n en general?

(La respuesta, en la clase que viene).

- 5. Determine cuándo D_n es isomorfo a algún $\mathcal{P}(X)$. En tal caso, dé un X adecuado y describa explícitamente el isomorfismo.
- 6. Sea P un poset (finito).
 - a) Probar que todo elemento de $\mathfrak{D}(P)$ se obtiene como una unión (finita) de ideales principales.
 - b) Concluir que $Irr((\mathfrak{D}(P),\subseteq)) = \{d\downarrow \mid d\in P\}.$
 - c) (*) Probar el Teorema de Birkhoff Reverso.
- 7. Dé todos los reticulados distributivos con exactamente 3 elementos irreducibles.

Recomendamos comenzar con los siguientes ejercicios: 1; 2; 3a; 3b y 3c para L_n con $n \le 7$; 4a; y 7. Una vez terminados pueden seguir con los otros, y también extender 3b y 3c al resto de los diagramas.