Brandiece Berry - Advanced Calculus Final Exam - SPR 2022

Problem 1

Show \mathbb{Q} is a field with the field axioms.

 \mathbb{Q} is the set of rational numbers of the form $\frac{a}{b}$ where $a \in \mathbb{Z}$ and $b \in \mathbb{N}$.

Field Axioms:

A1 - closure under addition and commutative property of addition:

For any $a, b \in \mathbb{R}$ there is a number $a + b \in \mathbb{R}$ and a + b = b + a.

A1 closure) Let $x, y \in \mathbb{Q}$. By definition of the set of rational numbers,

$$x = \frac{a}{b}$$
 $y = \frac{c}{d}$

where $a, c \in \mathbb{Z}$ and $b, d \in \mathbb{N}$. It is given that both \mathbb{Z} and \mathbb{N} are closed under addition and multiplication. It follows that:

$$x + y = \frac{a}{b} + \frac{c}{d}$$

and with some algebra

$$rac{ad+cb}{bd}$$

It follows that ad, cb, and $ad + cb \in \mathbb{Z}$ and $bd \in \mathbb{N}$ and therefore $\frac{ad+cb}{bd} \in \mathbb{Q}$, by the definition of rational numbers.

The addition of rational numbers creates a rational number, so $\mathbb Q$ is closed under addition.

A1 Commutative)

Let $x, y \in \mathbb{Q}$. By definition of the set of rational numbers, $x = \frac{a}{b}$ $y = \frac{c}{d}$

where $a,c\in\mathbb{Z}$ and $b,d\in\mathbb{N}$. It is given that both \mathbb{Z} and \mathbb{N} are closed under addition and multiplication. It follows that:

$$x + y = \frac{a}{b} + \frac{c}{d} = \frac{ad + cb}{bd}$$

and

$$y + x = \frac{c}{d} + \frac{a}{b} = \frac{cb + ad}{bd}$$

To verify that x + y = y + x,

$$\frac{ad + cb}{bd} = \frac{cb + ad}{bd}$$

$$\frac{ad}{bd} + \frac{cb}{bd} = \frac{cb}{bd} + \frac{ad}{bd}$$

$$\frac{a}{b} + \frac{c}{d} = \frac{c}{d} + \frac{a}{b}$$

$$x + y = y + x$$

A2 - associative property of addition:

For any $a, b, c \in \mathbb{R}$ the identity (a + b) + c = a + (b + c) is true.

Let $x,y,z\in\mathbb{Q}$, consider (x+y)+z and given that $x=\frac{a}{b}$, $y=\frac{c}{d}$, and $z=\frac{f}{g}$

$$(x+y)+z=\left(rac{a}{b}+rac{c}{d}
ight)+rac{f}{g}$$

Using the fact that

$$rac{a}{b}+rac{c}{d}=rac{ad+cb}{bd} \ \left(rac{a}{b}+rac{c}{d}
ight)+rac{f}{g}=\left(rac{ad+cb}{bd}
ight)+rac{f}{g}=rac{g(ad+cb)+f(bd)}{bdg}=rac{adg+cbg+fbd}{bdg}$$

Next, consider x + (y + z)

$$x+(y+z)=\frac{a}{b}+\left(\frac{c}{d}+\frac{f}{g}\right)=\frac{a}{b}+\left(\frac{cg+df}{dg}\right)=\frac{b(cg+df)+a(dg)}{bdg}=\frac{bcg+bdf+adg}{bdg}$$

Verify that (x + y) + z = x + (y + z)

Setting the two expressions equal to each other, simplifying, and utilizing A1:

$$rac{adg + cbg + fbd}{bdg} = rac{bcg + bdf + adg}{bdg} \ rac{adg}{bdg} + rac{cbg}{bdg} + rac{fbd}{bdg} = rac{cgb}{bdg} + rac{bdf}{bdg} + rac{adg}{bdg} \ \left(rac{a}{b} + rac{c}{d}
ight) + rac{f}{g} = rac{a}{b} + \left(rac{c}{d} + rac{f}{g}
ight)$$

It follows that (x + y) + z = x + (y + z).

A3 - existence of a zero element:

There is a unique number $0 \in \mathbb{R}$ so that, for all $a \in \mathbb{R}$, a + 0 = 0 + a = a.

Consider $x \in \mathbb{Q}$, where $x = \frac{a}{b}$, and $a \in \mathbb{Z}$ and $b \in \mathbb{N}$

$$x + 0 = \frac{a}{b} + \frac{0}{1} = \frac{a}{b} + \frac{0}{1} \cdot \frac{b}{b} = \frac{a + 0b}{b} = \frac{a}{b}$$

A4 - existence of a negative element:

For any number $a \in \mathbb{R}$ there is a corresponding number denoted by -a with the property that a + (-a) = 0.

Consider $x \in \mathbb{Q}$, where $x = \frac{a}{b}$, and $a \in \mathbb{Z}$ and $b \in \mathbb{N}$

$$x + (-x) = \frac{a}{b} + (-\frac{a}{b}) = \frac{a}{b}$$

Since $b \in \mathbb{N}$ it cannot be negative and so it follows

$$\frac{a}{b} + \left(-\frac{a}{b}\right) = \frac{a}{b} + \left(\frac{-a}{b}\right) = \frac{a-a}{b} = \frac{0}{b} = 0$$

M1 - closure under multiplication and commutative property of multiplication:

For any $a, b \in \mathbb{R}$ there is a number $ab \in \mathbb{R}$ and ab = ba.

M1 Closure) Let $x, y \in \mathbb{Q}$. By definition of the set of rational numbers,

$$x = \frac{a}{b}$$
 $y = \frac{c}{d}$

where $a, c \in \mathbb{Z}$ and $b, d \in \mathbb{N}$. It is given that both \mathbb{Z} and \mathbb{N} are closed under addition and multiplication. It follows that:

$$xy = \frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$

It follows that $ac \in \mathbb{Z}$ and $bd \in \mathbb{N}$ and therefore $\frac{ac}{bd} \in \mathbb{Q}$ by the definition of rational numbers.

The product of rational numbers creates another rational number, so Q is closed under multiplication

M1 Commutative Property) Consider $x \cdot y$, given that $x = \frac{a}{b}$ and $y = \frac{c}{d}$

$$x \cdot y = \frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd} = \frac{ca}{db} = \frac{c}{d} \cdot \frac{a}{b} = y \cdot x$$

M2 - associative property of multiplication:

For any $a,b,c\in\mathbb{R}$ the identity (ab)c=a(bc) is true.

Let $x, y, z \in \mathbb{Q}$, consider(xy)z, given that $x = \frac{a}{b}$, $y = \frac{c}{d}$, and $z = \frac{f}{g}$. Because of M1, $xy = \frac{ac}{bd} \in \mathbb{Q}$ and it is given that $\frac{f}{g} \in \mathbb{Q}$.

It follows that

$$(xy)z=\left(rac{a}{b}\cdotrac{c}{d}
ight)rac{f}{g}=rac{acf}{bdg}=rac{a}{b}\left(rac{cf}{dg}
ight)=rac{a}{b}\left(rac{c}{d}\cdotrac{f}{g}
ight)=x(yz)$$

M₃ - identity property of multiplication:

There is a unique number $1 \in \mathbb{R}$ so that a1 = 1a = a for all $a \in \mathbb{R}$.

Consider $x \in \mathbb{Q}$, where $x = \frac{a}{b}$, and $a \in \mathbb{Z}$ and $b \in \mathbb{N}$

$$x \cdot 1 = 1x = 1\left(\frac{a}{b}\right) = \left(\frac{a}{b}\right) \cdot 1 = \frac{a}{b}$$

M4 - inverse property of multiplication:

For any number $a \in \mathbb{R}$, $a \neq 0$, there is a corresponding number denoted a^{-1} with the property that $aa^{-1} = 1$. Consider $x \in \mathbb{Q}$, where $x = \frac{a}{b}$ and $a \in \mathbb{Z}$ and $b \in \mathbb{N}$

$$x \cdot x^{-1} = \frac{a}{b} \left(\frac{a}{b}\right)^{-1}$$

By the rules of exponents

$$\left(\frac{a}{b}\right)^{-1} = \frac{b}{a}$$

It follows that

$$\frac{a}{b} \left(\frac{a}{b} \right)^{-1} = \frac{a}{b} \left(\frac{b}{a} \right) = \frac{ab}{ba}$$

By M1 ab = ba so

$$\frac{ab}{ba} = \frac{ba}{ba} = \frac{b}{b} \cdot \frac{a}{a} = 1 \cdot 1 = 1$$

AM1 - distributive property:

For any $a,b,c\in\mathbb{R}$ the identity (a+b)c=ac+bc is true.

Let $x,y,z\in\mathbb{Q}$, given that $x=rac{a}{b}$, $y=rac{c}{d}$, and $z=rac{f}{g}$. It follows that:

$$x + y = \frac{a}{b} + \frac{c}{d} = \frac{ad + cb}{bd}$$

Consider (x + y)z

$$(x+y)z = \left(rac{ad+cb}{bd}
ight)rac{f}{g} \ = rac{f(ad+cb)}{bdg} \ = rac{adf+cbf}{bdg} \ = rac{adf}{bdg} + rac{cbf}{bdg}$$

Next, consider xz + yz

$$egin{aligned} rac{a}{b} \cdot rac{f}{g} + rac{c}{d} \cdot rac{f}{g} \ rac{af}{bg} + rac{cf}{dg} \ rac{d(af)}{bdg} + rac{b(cf)}{bdg} \ rac{adf}{bdg} + rac{cbf}{bdg} \end{aligned}$$

It follows that (x + y)z = xz + yz.

Problem 2 Show that

$$|x_1 + x_2 + \ldots + x_n| \le |x_1| + |x_2| + \ldots + |x_n|$$

For any numbers x_1, x_2, \ldots, x_n

Proof:

Let $S \subset \mathbb{N}$ such that $\forall n \in S, P(n)$ is true.

Basis Step: Consider n = 1.

$$|x_1| \leq |x_1|$$
 \checkmark

 $\therefore P(1)$ is true and $1 \in S$ so S is not empty.

Induction Step: Assume $k \ge 1$ such that P(k) is true and $k \in S$

$$|x_1 + x_2 + \ldots + x_k| \le |x_1| + |x_2| + \ldots + |x_k|$$

It follows that:

$$|x_1 + x_2 + \ldots + x_k| \le |(x_1 + x_2 + \ldots + x_{k-1}) + x_k|$$

By the Triangle Inequality, $|x + y| \le |x| + |y|$,

$$|(x_1+x_2+\ldots+x_{k-1})+x_k| \le |x_1+x_2+\ldots+x_{k-1}|+|x_k|$$

using the inductive hypothesis

$$|x_1 + x_2 + \ldots + x_{k-1}| \le |x_1| + |x_2| + \ldots + |x_{k-1}|$$

Problem 3

Consider the sequence defined recursively by

$$x_1=\sqrt{2},\quad x_n=\sqrt{2+x_{n-1}}$$

Show by induction that $x_n \leq x_{n+1}$ for all n.

Proof:

Let $S \subset \mathbb{N}$ such that $\forall n \in S, P(n)$ is true.

Basis Step: Consider n = 1

$$x_1 < x_2 \ \sqrt{2} < \sqrt{2 + \sqrt{2}} \ 1.414 < 1.847 \ \checkmark$$

 $\therefore P(1)$ is true and $1 \in S$ so S is not empty.

Induction Step: Assume $k \geq 1$ such that P(k) is true and $k \in S$ Consider $x_k < x_{k+1}$, with some algebra

$$x_k < x_{k+1} \ +2 \ +2 \ 2+x_k < 2+x_{k+1} \ \sqrt{2+x_k} < \sqrt{2+x_{k+1}}$$
 Hence, $x_{k+1} < x_{k+2}$

So, $P(k) \Rightarrow P(k+1)$ and $S = \mathbb{N}$.

$$\therefore$$
 By PMI for $x_1=\sqrt{2}, x_n=\sqrt{2+x_{n-1}} \ \ orall n\in \mathbb{N}, \, x_n\leq x_{n+1}.$

Problem 4

If $\{s_n\}$ is a sequence of positive number converging to 0, show that $\{\sqrt{s_n}\}$ also converges to zero.

Let $\epsilon > 0$. Since s_n is convergent, we can find an $N \in \mathbb{N}$ such that $\forall n > N$,

$$|s_n|<\epsilon^2$$

Since $s_n>0, |s_n|=s_n$ Therefore $s_n<\epsilon^2$ With some algebra

$$egin{aligned} s_n < \epsilon^2 \ \sqrt{s_n} < \sqrt{\epsilon^2} \ |\sqrt{s_n} - 0| < \epsilon \end{aligned}$$

Problem 5

Which statements are true?

- 1. If $\{s_n\}$ and $\{t_n\}$ are both divergent then so is $\{s_n+t_n\}$. True
- 2. If $\{s_n\}$ and $\{t_n\}$ are both divergent then so is $\{s_nt_n\}$. True
- 3. If $\{s_n\}$ and $\{s_n+t_n\}$ are both convergent then so is $\{t_n\}$. False
- 4. If $\{s_n\}$ and $\{s_nt_n\}$ are both convergent then so is $\{t_n\}$. True
- 5. If $\{s_n\}$ convergent then so too is $\{\frac{1}{s_n}\}$. True
- 6. If $\{s_n\}$ convergent then so too is $\{(s_n)^2\}$. True
- 7. If $\{(s_n)^2\}$ convergent then so too is $\{s_n\}$. False