1. No circuito amplificador da figura o transístor é caracterizado por $k'_n(W/L)=1,47 \text{ mA/V}^2$, $V_t=1,5 \text{ V}$ e $\lambda=0 \text{ V}^{-1}$. $V_{DD}=10 \text{ V}$, $R_1=1,5 \text{ M}\Omega$, $R_2=1 \text{ M}\Omega$ e $R_L=3,9 \text{ k}\Omega$.

- a) Desenhe o circuito equivalente para a análise DC. Dimensione os valores das resistências R_3 e R_4 de modo a obter I_D =1,21 mA e V_{DS} =4,05 V. Calcule os parâmetros do modelo de pequenos sinais para o transístor: g_m e r_o .
- **b)** Desenhe o circuito equivalente para a análise AC. Determine as expressões que permitem calcular os parâmetros do amplificador e calcule os seus valores: as resistências de entrada R_i e de saída R_o e os ganhos de tensão $A_v = v_o/v_i$ e de corrente $A_i = i_o/i_i$. Não recorra directamente as expressões do formulário.
- c) Para o sinal de entrada $v_i(t)=100 \sin(\omega t)$ mV, calcule os sinais $v_G(t)$, $i_D(t)$ e $v_D(t)$, componentes DC e AC.
- **2.** No circuito amplificador da figura o transístor é caracterizado por $k'_n(W/L)=2$ mA/V², $V_t=1$ V e $\lambda=0$ V⁻¹. $V_{DD}=12$ V, $R_1=2$ M Ω , $R_2=1$ M Ω , $R_3=1,5$ k Ω , $R_4=300$ Ω e $R_5=1,5$ k Ω .

a) Desenhe o circuito equivalente para a análise DC. Calcule o ponto de funcionamento em repouso: I_D , V_{GS} e V_{DS} . Calcule os parâmetros do modelo de pequenos sinais para o transístor: g_m e r_o .

Electrónica I – LEIC – Exercícios com Transístor de Efeito de Campo (MOSFET)

- **b)** Desenhe o circuito equivalente para a análise AC. Determine as expressões que permitem calcular os parâmetros do amplificador e calcule os seus valores: as resistências de entrada R_i e de saída R_o e os ganhos de tensão $A_v = v_o/v_i$ e de corrente $A_i = i_o/i_i$. i_o é a corrente na resistência R_5 e i_i é a corrente de entrada da fonte v_i .
- c) Para o sinal de entrada $v_i(t)=10 \sin(\omega t)$ mV, calcule os sinais $i_i(t)$, $v_G(t)$, $i_D(t)$, $i_O(t)$, $i_O(t)$, $i_O(t)$.
- **d)** Calcule a amplitude máxima para o sinal de entrada $v_i(t)$, de modo a não verificar distorção no sinal de saída $v_o(t)$.
- **e)** Se retirar do circuito o condensador de contorno da resistência R₄, quais as alterações aos parâmetros do amplificador calculados na alínea b)?
- **3.** Identifique, evidencie e comente as diferenças principais entre os dois tipos de transístores: de junção bipolar (BJT) e de efeito de campo (MOSFET).
- **4.** No circuito seguinte, o transístor é caracterizado por $V_t=1~V$, $k_n^{'}(W/L)=2~mA/V^2~e~\lambda=0,01~V^{-1}$. Considere $V_{DD}=V_{SS}=5~V$, $R_1=R_2~e~R_L=10~k\Omega$.

- a) Desenhe o circuito equivalente para a análise DC de ponto de funcionamento em repouso. Para $I_D=1$ mA e $V_{DS}=4$ V, dimensione valores para as resistências R_1 , R_2 , R_3 e R_4 . Despreze o efeito de λ na análise DC.
- **b)** De que modo as resistências R₁, R₂, R₃ e R₄ influenciam o ponto de funcionamento em repouso?
- c) Calcule os parâmetros do modelo híbrido de pequenos sinais para o transístor. Desenhe o circuito equivalente para a análise AC de pequenos sinais. v_i é a tensão de entrada e v_0 é a tensão de saída. Considere a análise a baixas frequências, $C \rightarrow \infty$.
- **d)** Calcule as resistências de entrada R_i e de saída R_o da montagem e indicadas no circuito. Indique todos os passos do cálculo das expressões para R_i e R_o.

Electrónica I - LEIC - Exercícios com Transístor de Efeito de Campo (MOSFET)

- e) Calcule os ganhos de tensão $A_v = v_o/v_i$ e de corrente $A_i = i_o/i_i$. i_o é a corrente na resistência de carga R_L e i_i é a corrente de entrada da fonte v_i . Indique todos os passos do cálculo das expressões para A_v e A_i .
- **f)** Para um sinal de entrada $v_i(t)=100\times\sin(\omega t)$ mV, calcule os sinais $i_i(t)$, $i_D(t)$, $i_O(t)$, $v_{GS}(t)$, $v_{DS}(t)$ e $v_O(t)$, componentes DC e AC.
- **g)** Qual a amplitude máxima de um sinal sinusoidal $v_i(t)$ de entrada, de modo a manter o transístor na zona de saturação.
- **5.** No circuito seguinte, o transístor é caracterizado por V_t =-1 V, $k_p^{'}(W/L)$ =2 mA/V 2 e λ =-0,01 V $^{-1}$. Considere V_{DD} = V_{SS} =5 V, R_1 = R_2 e R_L =10 k Ω .

- a) Desenhe o circuito equivalente para a análise DC de ponto de funcionamento em repouso. Para $I_D=1$ mA e $V_{DS}=-4$ V, dimensione valores para as resistências R_1 , R_2 , R_3 e R_4 . Despreze o efeito de λ na análise DC.
- **b)** De que modo as resistências R₁, R₂, R₃ e R₄ influenciam o ponto de funcionamento em repouso?
- c) Calcule os parâmetros do modelo híbrido de pequenos sinais para o transístor. Desenhe o circuito equivalente para a análise AC de pequenos sinais. v_i é a tensão de entrada e v_o é a tensão de saída.
- **d)** Calcule as resistências de entrada R_i e de saída R_o da montagem. Indique todos os passos do cálculo das expressões para R_i e R_o .
- **e)** Calcule os ganhos de tensão $A_v = v_o/v_i$ e de corrente $A_i = i_o/i_i$. i_o é a corrente na resistência de carga R_L e i_i é a corrente de entrada da fonte v_i . Indique todos os passos do cálculo das expressões para A_v e A_i .
- **f)** Para um sinal de entrada $v_i(t)=100\times\sin(\omega t)$ mV, calcule os sinais $i_i(t)$, $i_D(t)$, $i_O(t)$, $v_{GS}(t)$, $v_{DS}(t)$ e $v_O(t)$, componentes DC e AC.

6. No circuito da figura 1, o transístor é caracterizado por $K_n(W/L)=1$ mA/V², $V_t=1$ V e $\lambda=0$ V⁻¹. $V_{DD}=10$ V, $R_1=R_2=10$ M Ω , $R_4=6$ k Ω .

Figura 1. Figura 2.

- **a.** Calcule o valor da resistência R_3 de modo a ter o transístor na zona de saturação e uma tensão dreno-fonte de 4 V.
- **b.** De que modo o valor da resistência R_3 influencia o ponto de funcionamento em repouso. Calcule a gama de valores de R_3 que mantém o transístor na região de saturação.
- c. Considere agora o circuito da figura 2, uma montagem amplificadora construída a partir do circuito da figura 1, com resistência de carga R_5 =6 k Ω . Calcule o ganho de tensão e as resistências de entrada e saída.
- **d.** De que modo os valores das resistências no circuito influenciam os parâmetros do amplificador calculados na alínea anterior.

7. No circuito da figura todos os transístores são caracterizados por $k_n'(W/L)=0,1$ mA/V², $V_t=1$ V e $\lambda=0$ V⁻¹. $V_{DD}=+5$ V.

Calcule o valor máximo para a resistência R que mantém o transístor M1 na zona de saturação.

Electrónica I – LEIC – Exercícios com Transístor de Efeito de Campo (MOSFET)

8. No circuito da figura, o transístor é caracterizado por $K_p'(W/L)=0,1$ mA/V², $V_t=-1$ V e $\lambda=0$ V $^{-1}$. $V_{DD}=-10$ V, $V_{SS}=10$ V, $R_G=1$ M Ω , $R_D=3$ k Ω , $R_S=2$ k Ω .

- **a.** Calcule o ponto de funcionamento em repouso para os seguintes casos: $V_{GG}=V_{SS}$ e $V_{GG}=0$ V.
- **b.** Calcule os valores de V_{GG} para os quais ocorre transição na zona de funcionamento do transístor, mantendo os outros componentes do circuito com valores constantes.
- **c.** Com V_{GG} =0 V, calcule a gama de valores de R_D que mantém o transístor na região de saturação, mantendo os outros componentes do circuito com valores constantes.
- **d.** Com V_{GG} =0 V, calcule o valor mínimo de V_{DD} que mantém o transístor na região de saturação, mantendo os outros componentes do circuito com valores constantes.
- **e.** Considere agora que tem um MOSFET de enriquecimento canal n. Que modificações efectuaria ao circuito para obter os mesmos valores de ponto de funcionamento em repouso. Caracterize o transístor.

9. No circuito da figura todos os transístores são caracterizados por $k_n^{'}=20~\mu\text{A/V}^2$, $V_t=1~V$, L=2 μm , W=30 μm e $\lambda=0~V^{-1}$.

Calcule R_1 para obter uma corrente I_{D1} =150 μA .

Se $R_1=R_2$, calcule a tensão no dreno do transístor M_2 .

Suponha que liga um transístor M3 ao

transístor M2 com os terminais correspondentes ligados, com se indica na figura atrás. Calcule o valor da resistência R_2 que permite ter $V_{DS2}=V_{DS1}$.

Electrónica I – LEIC – Exercícios com Transístor de Efeito de Campo (MOSFET)

10. No circuito da figura o transístor de depleção canal p é caracterizado por $k_p^{'}=8~\mu\text{A/V}^2,~V_t=2~V,~L=2~\mu\text{m},~W=500~\mu\text{m}$ e $\lambda=0~V^{-1}.$

Calcule as correntes no circuito.

Calcule as tensões de dreno e fonte do transístor.

Calcule o valor mínimo para V_{SS} que mantém o transístor na zona de saturação.

11. No circuito da figura, o transístor é caracterizado por $K_n(W/L)=0.1$ mA/V², $V_t=1$ V e $\lambda=0$ V⁻¹. $V_{DD}=10$ V, $V_{SS}=-10$ V, $R_G=1$ M Ω , $R_D=3$ k Ω , $R_S=2$ k Ω .

- **a.** Calcule o ponto de funcionamento em repouso para os seguintes casos: $V_{GG}=V_{SS}$ e $V_{GG}=0$ V.
- **b.** Calcule os valores de V_{GG} para os quais ocorre transição na zona de funcionamento do transístor, mantendo os outros componentes do circuito com valores constantes.
- **c.** Com V_{GG} =0 V, calcule a gama de valores de R_{D} que mantém o transístor na região de saturação, mantendo os outros componentes do circuito com valores constantes.
- **d.** Com V_{GG} =0 V, calcule o valor mínimo de V_{DD} que mantém o transístor na região de saturação, mantendo os outros componentes do circuito com valores constantes.

12. MOSFET de enriquecimento

- **a.** Um transístor com $k_n'(W/L)=0.2$ mA/V², $V_t=1.5$ V e $\lambda=0.02$ V¹ opera com $V_{GS}=3.5$ V. Calcule a corrente de dreno para $V_{DS}=2$ V e para $V_{DS}=10$ V. A partir destes valores, calcule a resistência de saída r_o , para aquele valor de V_{GS} .
- **b.** Para um determinado transístor com $V_t=1$ V, observaram-se as seguintes situações $(V_{DS}=0,2\ V,\ V_{GS}=2\ V,\ I_D=0,1\ mA)$ e $(V_{DS}=0,2\ V,\ V_{GS}=5\ V,\ I_D=0,4\ mA)$. Na operação de um MOSFET para valores baixos de $V_{DS},\ I_D$ é proporcional a $(V_{GS}-V_t)V_{DS}$. Calcule a constante de proporcionalidade e a gama de valores da resistência dreno-fonte para a variação de $V_{GS}=2\ V$ a 5 V.
- **c.** Compare as características dos MOSFET canal n e canal p, no que se refere ao seu comportamento físico e circuitos de polarização.
- **13.** Nos circuitos da figura os transístores são caracterizados por $|V_t|=1$ V, k'(W/L)=1 mA/V² e $\lambda=0$ V⁻¹. $V_{DD}=+5$ V, $V_{SS}=-5$ V. $R_G=1$ M Ω , $R_D=6$ k Ω , $R_S=6$ k Ω . Determine as tensões e as correntes nos dois circuitos.

14. No circuito da figura, $V_{DD}=15$ V, $R_1=1$ M Ω , $R_2=2$ k Ω e $R_3=2$ k Ω . O transístor é caracterizado por k'(W/L)=2 mA/V², $V_t=1,5$ V e $\lambda=0$ V⁻¹.

- a) Calcule o ponto de funcionamento em repouso de tensões e correntes no transístor para $V_i = -V_{DD}$, $V_i = 0$ V, $V_i = V_{DD}/2$ e $V_i = V_{DD}$.
- **b)** Com $V_i \in [-V_{DD}, V_{DD}]$, calcule os valores de V_i correspondentes a transições na zona de funcionamento do transístor.
- **c)** Escolha um valor de V_i correspondente a um ponto de funcionamento do transístor na região de tríodo. Nesta situação, calcule a resistência dreno-fonte correcta e aproximada.
- **d)** Escolha um valor de V_i correspondente a um ponto de funcionamento do transístor na região de saturação. Nesta situação, calcule a resistência dreno-fonte. Nesta alínea, considere λ =0,01 V^{-1} .
- e) Para V_i uma onda quadrada de valores mínimo 0 V e máximo V_{DD} , calcule o sinal de tensão no dreno do transístor. Esboce ambos os sinais.
- **f)** Escolha um novo valor de $V_i \in [-V_{DD}, V_{DD}]$ para um dos pontos de transição calculados na alínea b). Por alteração única de R_2 , calcule o novo valor desta resistência correspondente ao novo valor de V_i de transição.

15. No circuito da figura pretende-se $I_D=182~\mu A$, $V_{DS}=7,29~V$, uma resistência de entrada $R_i=42~k\Omega$ e um ganho de tensão $A_v=v_o/v_i=-2,75.~V_{DD}=10~V$, $V_t=1~V~e~k^{'}(W/L)=0,1~mA/V^2.$

Dimensione as resistências do circuito: R_1 , R_2 , R_3 e R_4 .