Design and Analysis of Algorithms

Lecture-2

Dharmendra Kumar (Associate Professor)

Department of Computer Science and Engineering

United College of Engineering and Research,

Prayagraj

Selection Sort

Selection Sort

```
Selection_sort(A)
n \leftarrow length[A]
for i\leftarrow1 to n-1
          min \leftarrow i
          for j \leftarrow i+1 to n
                    if(A[j] < A[min])
                               min ←j
          Interchange A[i] \leftrightarrow A[min]
```

Time complexity,
$$T(n) = \theta(n^2)$$

Bubble Sort

Bubble _Sort(A)

```
Procedure bubblesort (List array, number length_of_array)
         for i=1 to length_of_array - 1;
3
                   for j=1 to length_of_array – I;
4
                            if array [j] > array [j+1] then
5
                                     temporary = array [j+1]
                                     array[j+1] = array[j]
                                     array[i] = temporary
8
                            end if
9
                   end of j loop
10
         end of i loop
   return array
12 End of procedure
```

Divide and Conquer approach

The divide-and-conquer paradigm involves three steps at each level of the recursion:

Divide the problem into a number of sub-problems that are smaller instances of the same problem.

Conquer the sub-problems by solving them recursively. If the sub-problem sizes are small enough, however, just solve the sub-problems in a straightforward manner.

Combine the solutions to the sub-problems into the solution for the original problem.

Analysis of Divide and Conquer based algorithm

When an algorithm contains a recursive call to itself, we can often describe its running time by a *recurrence equation* or *recurrence*, which describes the overall running time on a problem of size n in terms of the running time on smaller inputs. We can then use mathematical tools to solve the recurrence and provide bounds on the performance of the algorithm.

Analysis of Divide and Conquer based algorithm

A recurrence equation for the running time of a divideand-conquer algorithm uses the three steps of the basic paradigm.

The recurrence equation for the running time of a divideand-conquer algorithm is the following:-

$$T(n) = aT(n/b) + D(n) + C(n)$$
, if $n > c$
= $\theta(1)$, otherwise

Where, n is the size of original problem. a is the number of sub-problems in which the original problem divided at an instant. Each sub-problems has size n/b. c is a small integer.

Merge Sort

Merge Sort Algorithm

```
MERGE-SORT(A, p, r)

1 if p < r

2 q = \lfloor (p+r)/2 \rfloor

3 MERGE-SORT(A, p, q)

4 MERGE-SORT(A, q+1, r)

5 MERGE(A, p, q, r)
```

Merge Sort Algorithm

```
MERGE(A, p, q, r)
 1 n_1 = q - p + 1
 2 n_2 = r - q
 3 let L[1...n_1 + 1] and R[1...n_2 + 1] be new arrays
 4 for i = 1 to n_1
        L[i] = A[p+i-1]
 6 for j = 1 to n_2
  R[j] = A[q+j]
 8 L[n_1 + 1] = \infty
 9 R[n_2 + 1] = \infty
10 i = 1
11 j = 1
12 for k = p to r
13
        if L[i] \leq R[j]
            A[k] = L[i]
14
15
            i = i + 1
        else A[k] = R[j]
16
            j = j + 1
17
```

Merge Sort Algorithm Analysis

The recurrence equation for the running time of merge sort algorithm will be

$$T(n) = 2T(n/2) + \theta(1) + \theta(n), \quad \text{if } n > 1$$
$$= \theta(1) \quad , \quad \text{otherwise}$$

It can be modified as:-

$$T(n) = 2T(n/2) + \theta(n)$$
, if $n > 1$
= $\theta(1)$, otherwise

Merge Sort Algorithm Analysis

When we solve recurrence equation, modify it as:-

$$T(n) = 2T(n/2) + cn$$
, if $n > 1$
= d, otherwise

Here, c and d are some constants.

Merge Sort Algorithm Analysis

Iterative method:

```
T(n) = 2T(n/2) + cn
      = 2(2T(n/4) + cn/2) + cn
      = 2^2 T(n/4) + 2cn
      = 2^{2}(2T(n/8)+cn/4) + 2cn
      = 2^3 T(n/8) + 3cn
      = 2^k T(n/2^k) + kcn
      = nT(1) + c \operatorname{nlog}(n)  (Let n = 2^k)
      = dn + cnlog(n) (since T(1) = d)
      = \theta(n\log(n))
```

Therefore, $T(n) = \theta(n\log(n))$